Duncan Watson-Parris

Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Oxford, UK Email: duncan@watson-parris.co.uk; Tel.: +44(0) 7495 757587

Research Experience

	Senior Research Associate and Course Director , University of Oxford My research focuses on better understanding aerosol-cloud interactions and improving their representation in global climate models through the use of machine learning
2015 - 2020	Post-doctoral Research Associate , University of Oxford Research on the understanding and improvement of aerosol processes in climate models

Professional Experience

2020- Present	Independent Consultant, Oxford University Innovation, Oxford European Space Agency 'Digital Twin Earth Precursor' project (worth >£500k total)
2011- 2015	Data Analytics Consultant , Tessella Ltd., Abingdon I completed various projects for national and multi-national R&D organisations.

Education

2007- 2011	PhD Theoretical Physics, University of Manchester Carrier localization in InGaN/GaN quantum wells
2003- 2007	First Class BSc. (Hons.) Theoretical and Computational Physics, Cardiff University Project: Computer simulation studies of spin-glass systems

Awards, Fellowships, and Grants

2020	Amazon Web Services (AWS) Machine Learning Research Awards: \$40,000
2018	Co-wrote: "iMIRACLI on AWS", AWS: \$150,000
2017	Researcher Co-I: "access to EnVironmental Analytics for Developing countriEs (EVADE), UK
	Science and Technology Facilities Council (STFC): £50,399
2018	NVIDIA GPU Grant: ca. £2000
2019	NeurIPS 2019 Climate Change AI workshop – Best Paper and \$10,000 in Microsoft Azure
	cloud computing credits
2019	ICML 2019 Climate Change AI workshop – Best Paper
2015	Alan Taylor visiting lecturer award, University of Oxford
2009	ICNS-8 Conference paper selected for cover-page of journal special issue
2009	Institute of Physics "Research Student Conference Fund" for ICNS-8
2009	UKNC Travel Bursary for ICNS-8

Teaching Experience

Machine Learning for Climate Physics, Virtual, May 2021

• An invited extra-curricular lecture for Oxford Physics Undergraduate students.

1st iMIRACLI summer school, Virtual, September 2020

• I designed, organized and managed a two-week summer school for the 15 PhD students enrolled on the iMIRACLI Marie Curie ITN across Europe, as well as 8 other invited students.

Big data analysis, Environmental Research DTP (Oxford University), September 2015 – Present

• I co-develop and deliver this two-day post-graduate course including sections on data management, data fusion techniques, and climate data analysis on large clusters.

CIS user-workshop, International, 2015 - 2017:

Python for climate scientists, Oxford University, December 2016

Physics of the Atmosphere and Oceans October 2016 - May 2017

Invited Presentations

- 2022 UN AI for Good Accelerating Climate Science with AI, Virtual
- **2021** International Aerosol Modeling Algorithms Conference, Virtual
- **2021** AGU Fall Meeting, Virtual (declined)
- **2021** Machine Learning for Climate, UC Santa Barbra
- 2021 ISC High Performance, Virtual
- **2021** US CLIVAR Data Science Webinar, Virtual
- **2021** ETH Zurich Institute for Atmospheric and Climate Science ML Seminar, Virtual
- 2021 Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford
- **2020** Hebrew University Climate, Atmosphere and Oceanography, Virtual
- **2020** University of Wyoming Department of Atmospheric Science, Virtual
- **2020** ECMWF-ESA Workshop on ML for Earth System Observation and Prediction, Virtual
- **2020** University of Bath Department of Computer Science, Virtual
- 2020 NCAS@Reading Science Meeting, Reading (cancelled due to COVID19)
- **2018** Telluride Science Research Center Workshop, Colorado (declined)
- **2018** World Climate Research Programme workshop, Ringberg
- 2017 Swedish Meteorological and Hydrological Institute
- **2008** Rank Prize Funds symposium

Publications

*Co-advised ORCID: <u>0000-0002-5312-4950</u>; <u>Google Scholar</u> Published peer-reviewed papers: 34; First author: 8. Currently > 1000 citations; h-index 16.

Submitted and Under Review

- **(2021)** *Williams, A., Stier, P., Dagan. G., **Watson-Parris, D.** *Strong control of effective radiative forcing by the spatial pattern of absorbing aerosol.* Submitted to Nature Climate Change
- **(2021) Watson-Parris, D.**, Williams, A., Deaconu, L., Stier, P. *Model calibration using ESEm v1.0.0 an open, scalable Earth System Emulator.* Submitted to Geoscientific Model Development: 10.5194/gmd-2021-267
- (2021) Myhre, G., Samset, B. H., Stjern, C. W., ..., Watson-Parris, D. Observational constraints reduce estimates of the global mean climate relevance of black carbon. Submitted to Nature Climate Change
- (2021) Salzmann, M., ..., Watson-Parris, D., ..., Tegen, I. *The global atmosphere-aerosol model ICON-A-HAM2.3*. Submitted to Journal of Advances in Modeling Earth Systems
- (2021) Christensen, M., Gettelman, A.,, Watson-Parris, D., ... Opportunistic Experiments to Constrain Aerosol Effective Radiative Forcing. Submitted to Atmospheric Chemistry and Physics: 10.5194/acp-2021-559
- (2021) Kramer, R.J., Soden, B.J., Smith, C.J., Myhre, G., Forster, P.M., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., ..., Watson-Parris, D. Inter-model spread in instantaneous radiative forcing across multiple climate drivers. Under review Nature Geoscience
- (2021) Kasim, M. F., Watson-Parris, D., Deaconu, L., Topp-Mugglestone, J., Hatfield, P., Froula, D. H., Gregori, G., Jarvis, M., Korenaga, J., Viezzer, E. & Vinko S. M. *Accelerating simulations in science with deep neural architecture search*. Submitted to Machine Learning: Science and Technology: arxiv:2001.08055
 - **Highlight**: From models of galaxies to atoms, simple AI shortcuts speed up simulations by billions of times. Science 10.1126/science.abb2769

Accepted / published

- 2021 Sand, M., Samset, B. H., Myhre, G., ..., and Watson-Parris, D. *Aerosol absorption in global models from AeroCom Phase III*. Atmospheric Chemistry and Physics: 10.5194/acp-2021-51
- *Zhang, S., Stier, P., **Watson-Parris, D.** *On the Contribution of Fast and Slow Responses to Precipitation Changes Caused by Aerosol Perturbations.* Atmospheric Chemistry and Physics, 21: 10.5194/acp-21-10179-2021

*Langton, T., Stier, P., **Watson-Parris, D.**, Mulcahy, J. *Decomposing Indirect Aerosol Forcing by Global Cloud Regimes*. Geophysical Research Letters, 48: 10.1029/2021GL093833

- **Watson-Parris, D.** *Machine learning for climate and weather are worlds apart.* Philosophical Transactions of the Royal Society A, 379: 10.1098/rsta.2020.0098
- Dagan, G., Stier, P. & **Watson-Parris, D.** *An energetic view on the geographical dependence of the fast aerosol radiative effects on precipitation*. Journal of Geophysical Research: Atmospheres, 126: 10.1029/2020JD033045
- **Watson-Parris, D.**, Sutherland, S. A., Christensen, M. W. & Stier, P. *A large-scale analysis of pockets of open cells and their radiative impact.* Geophysical Research Letters, 48: 10.1029/2020GL092213
- 2020 Gettelman, A., Lamboll, R. D., Bardeen, C., Forster, P., Watson-Parris, D. Climate Impacts of COVID-19 Induced **Emission** Changes. Geophysical Research Letters, 10.1029/2020GL091805 **Highlight:** COVID-19 lockdowns temporarily raised global temperatures https://bit.ly/3p20zc8
- Haywood, J. M., Abel, S., ... **Watson-Parris, D.**, ... Zuidema, P. *Overview: The CLoud-Aerosol-Radiation Interaction and Forcing: Year-2017 (CLARIFY-2017) measurement campaign.* Atmospheric Chemistry and Physics: 21: 10.5194/acp-21-1049-2021
- **2020** Dagan, G., Stier, P. & **Watson-Parris, D.** Aerosol forcing masks and delays the formation of the North-Atlantic warming hole by three decades. Geophysical Research Letters, 47, e2020GL090778: 10.1029/2020GL090778
- Brown, H, Liu, X., ..., **Watson-Paris, D.**, ..., Chand, D. *Biomass burning aerosols in most climate models are too absorbing*. Nature Communications: 10.1038/s41467-020-20482-9
- **2020** Che, H., Stier, P., Gordon, H., **Watson-Parris, D.**, and Deaconu, L. *The significant role of biomass burning aerosols in clouds and radiation in the South-eastern Atlantic Ocean*, Atmospheric Chemistry and Physics, 21: 10.5194/acp-21-17-2021
- McCoy, I. L., McCoy, D. T., Wood, R., Regayre, L., **Watson-Parris, D.**, Grosvenor, D. P., Mulcahy, J., Hu, Y., Bender, F. A. M., Field, P. R., Carslaw, K., Gordon, H. *The hemispheric contrast in cloud microphysical properties constrains aerosol forcing*. Proceedings of the National Academy of Sciences 117 (32): 10.1073/pnas.1922502117
- Allen, R. J., Lamarque, J. F., **Watson-Parris, D.** & Olivie, D. *Assessing California wintertime precipitation responses to various climate drivers*. Journal of Geophysical Research: Atmospheres, 125: 10.1029/2019JD031736
- **2020 Watson-Parris, D.,** Bellouin, N., Deaconu, L., Schutgens, N., Yoshioka, M., Regayre, L. A., Pringle, K. J., Johnson, J. S., Carslaw, K. S. & Stier, P. *Constraining uncertainty in aerosol direct forcing.* Geophysical Research Letters, 47: 10.1029/2020GL087141
- **2020** Wood, T., Maycock, A. C., Forster, P. M., Richardson T. B., **Watson-Parris, D.** *The Southern hemisphere midlatitude circulation response to rapid adjustments and sea surface temperature driven feedbacks* Journal of Climate 1-53: 10.1175/JCLI-D-19-1015.1
- Richardson, T. B., Forster, P. M., Smith, C. J., Maycock, A. C., Wood, T., Andrews, T., Boucher, ..., Mülmenstädt, J., Myhre, G., Olivié, D., Portmann, R. W., Samset, B. H., ... Watson-Parris, D. Efficacy of Climate Forcings in PDRMIP Models. Journal of Geophysical Research: Atmospheres, 124: 10.1029/2019JD030581
 Editors' Highlight: How Does Climate Respond to Different Forcings? https://eos.org/editor-highlights/how-does-climate-respond-to-different-forcings
- Hodnebrog, O., Myhre, G., Samset, B. H., Alterskjær, K., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., M Forster, P., ..., **Watson-Parris, D.** *Water vapour adjustments and responses differ between climate drivers*. Atmospheric Chemistry and Physics, 19(20): 10.5194/acp-19-12887-2019
- **2019** Tegen, I., Neubauer, D., Ferrachat, S., Drian, C. S.-L., Bey, I., Schutgens, N., Stier, P., **Watson-Parris, D.**, Stanelle, T., ..., Heinold, B., & Lohmann, U. *The global aerosol-climate model ECHAM6.3–HAM2.3 Part 1: Aerosol evaluation*. Geoscientific Model Development, 12(4): 10.5194/gmd-12-3609-2019
- **2019b Watson-Parris, D.**, Schutgens, N., Reddington, C., Pringle, K. J., Liu, D., Allan, J. D., Coe, H., Carslaw, K. S., & Stier, P. *In situ constraints on the vertical distribution of global aerosol.*

- Atmospheric Chemistry and Physics, 19(18): 10.5194/acp-19-11765-2019
- **2019** Dagan, G., Stier, P., & **Watson-Parris, D.** Contrasting Response of Precipitation to Aerosol Perturbation in the Tropics and Extratropics Explained by Energy Budget Considerations. Geophysical Research Letters, 46(13): 10.1029/2019GL083479
- **2019** Dagan, G., Stier, P., & **Watson-Parris, D.** Analysis of the Atmospheric Water Budget for Elucidating the Spatial Scale of Precipitation Changes Under Climate Change. Geophysical Research Letters, 46(17–18): 10.1029/2019GL084173
- Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., ..., Stevens, B. Bounding global aerosol radiative forcing of climate change. Reviews of Geophysics, 2019RG000660: 10.1029/2019RG000660

 Editors' Highlight: Effects of Particles on Climate Remain Unsettled https://eos.org/editor-highlights/effects-of-particles-on-climate-remain-unsettled Clarivate ESI 'Highly Cited' and 'Hot' paper: Top 0.1% of Geosciences papers 2020
- 2019 Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., Van Den Heever, S. C., & Stier, P. (2019). *Tobac 1.2: Towards a flexible framework for tracking and analysis of clouds in diverse datasets*. Geoscientific Model Development, 12(11): 10.5194/gmd-12-4551-2019
- **2019** Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A., Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkeväg, A., ..., **Watson-Parris, D.**, ..., Yu, F. *Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation*. Atmospheric Chemistry and Physics, 19(13): 10.5194/acp-19-8591-2019
- Myhre, G., Kramer, R. J., Smith, C. J., Hodnebrog, Ø., Forster, P., Soden, B. J., Samset, B. H., Stjern, C. W., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Olivié, D., ... Watson-Parris, D. Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes. Geophysical Research Letters, 45(20): 10.1029/2018GL079474
- **2018 Watson-Parris, D.**, Schutgens, N., Winker, D., Burton, S. P., Ferrare, R. A., & Stier, P. *On the Limits of CALIOP for Constraining Modeled Free Tropospheric Aerosol*. Geophysical Research Letters, 45(17): 10.1029/2018GL078195
- Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, D., ... Watson-Parris, D. Understanding Rapid Adjustments to Diverse Forcing Agents. Geophysical Research Letters, 45(21): 10.1029/2018GL079826
- **2018** Lund, M. T., Samset, B. H., Skeie, R. B., **Watson-Parris, D.**, Katich, J. M., Schwarz, J. P., & Weinzierl, B. *Short Black Carbon lifetime inferred from a global set of aircraft observations*. Npj Climate and Atmospheric Science, 1(1), 31: 10.1038/s41612-018-0040-x
- **2016 Watson-Parris, D.,** Schutgens, N., Cook, N., Kipling, Z., Kershaw, P., Gryspeerdt, E., Lawrence, B., & Stier, P. *Community Intercomparison Suite (CIS) v1.4.0: A tool for intercomparing models and observations*. Geoscientific Model Development, 9(9): 10.5194/gmd-9-3093-2016
- 2011-2015 (Working in Industry)
- 2013 Badcock, T. J., Hammersley, S., Watson-Parris, D., Dawson, P., ..., McAleese, C., Oliver, R. A., & Humphreys, C. J. (2013). *Carrier density dependent localization and consequences for efficiency droop in InGaN/GaN quantum well structures*. Japanese Journal of Applied Physics, 52(8 PART 2): 10.7567/JJAP.52.08JK10
- 2012 Hammersley, S., Watson-Parris, D., Dawson, P, ..., McAleese, C., Oliver, R. A., & Humphreys, C. J. (2012). The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures. Journal of Applied Physics, 111(8): 10.1063/1.3703062
- **Watson-Parris, D.**, Godfrey, M. J., Dawson, P., Oliver, R. A., Galtrey, M. J., Kappers, M. J., & Humphreys, C. J. (2011). *Carrier localization mechanisms in InxGa1-xN/GaN quantum wells*. Physical Review B, 83(11): 10.1103/PhysRevB.83.115321

2011 Hammersley, S., Badcock, T. J., Watson-Parris, D., Godfrey, M. J., Dawson, P., Kappers, M. J., & Humphreys, C. J. (2011). *Study of efficiency droop and carrier localisation in an InGaN/GaN quantum well structure*. Physica Status Solidi (C), 8, 2194-2196: 10.1002/pssc.201001001

2010 Watson-Parris, D., Godfrey, M. J., Oliver, R. A., Dawson, P., Galtrey, M. J., Kappers, M. J., & Humphreys, C. J. (2010). *Energy landscape and carrier wave-functions in InGaN/GaN quantum wells.* Physica Status Solidi (C), 7, 2255–2258: 10.1002/pssc.200983516 **Highlight:** Chosen for the cover page of special issue

Conference Papers

- *Jesson, A., Manshausen, P., Douglas, A., **Watson-Parris, D.**, Gal, Y., Stier, P. Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific. *Climate Change AI workshop at NeurIPS 2021:* arxiv:2110.15084
- *Harder, P., **Watson-Parris, D.**, Strassel, D., Gauger, N., Stier, P., Keuper, J. *Emulating Aerosol Microphysics with Machine Learning*. Tackling Climate Change with Machine Learning Workshop at ICML 2021
- *Schroeder de Witt, C., Tong, C., Zantedeschi, V., Martini D., Kalaitzis, A., Chantry, M., **Watson-Parris, D.**, Bilinski, P. *RainBench: Towards Data-Driven Global Precipitation Forecasting from Satellite Imagery.* Accepted at Thirty-Fifth AAAI Conference on Artificial Intelligence
- *Tong, C., Schroeder de Witt, C. A., Zantedeschi, V., Martini, D., Kalaitzis, A., Chantry, M., Watson-Parris, D., Bilinski, P. *RainBench: Enabling Data-Driven Precipitation Forecasting on a Global Scale.* Tackling Climate Change with Machine Learning workshop at NeurIPS 2020 Highlight: Spotlight talk
- *Zantedeschi, V., Martini, D., Tong, C., Schroeder de Witt, C. A., Bilinski, P., Kalaitzis, A., Chantry, M., Watson-Parris, D. Towards Data-Driven Physics-Informed Global Precipitation Forecasting From Satellite Imagery. AI for Earth Sciences workshop at NeurIPS 2020

 Highlight: Spotlight talk
- *Harder, P., Jones, W., Lguensat, R., Bouabid, S., Fulton, J., Quesada-Chacón, D., Marcolongo, A., Stefanović, S., Rao, Y., Manshausen, P. & **Watson-Parris, D.** *NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations.* Tackling Climate Change with Machine Learning workshop at NeurIPS 2020: arxiv:2011.07017
- *Zantedeschi, V., Falasca, F., Douglas, A., Strange, R., Kusner, M. J., **Watson-Parris, D.** *Cumulo:**A Dataset for Learning Cloud Classes. Climate Change AI workshop at NeurIPS 2019:
 arxiv:1911.04227

 *Highlight: Chosen for 'best paper' award
- **2019a Watson-Parris, D.**, Sutherland, S., Christensen, M., Caterini, A., Sejdinovic, D., Stier, P. "Detecting anthropogenic cloud perturbations with deep learning" Climate Change: How Can AI Help? workshop at the ICML 2019: arxiv:1911.13061 **Highlight:** Chosen for 'best paper' award

Book contributions

- (2021) Allan, J. and Watson-Parris, D. Measurements of Ambient Aerosol Properties. In "Aerosols and Climate", Edited by Ken Carslaw. Elsevier (with Editor)
- **(2021)** Contributed to *Modelling of short-lived climate forcers.* In "AMAP 2021 Assessment: Arctic climate, air quality, and health impacts from short-lived climate forcers" (with Editor)

Mentoring

- Climate Change Faculty for Stanford AI for Climate Change Bootcamp (2020-present)
- Super Mentor for Frontier Development Lab (<u>FDL</u>) summer projects (2019-present)
- 5 Phd Students: Peter Manshausen (2020-present); Sofija Stefanović (2020-2021); Andrew Williams. (2019-present); Tom Langton (2018-present); Shipeng Zhang (2018-2020).
- 3 MPhys projects: Thomas Matthews (2019); Robin Gan (2019); Sam Sutherland (2018).

Contributed Presentations

*Oral prese	*Oral presentation	
2021	*NOAA 3 rd Workshop on Leveraging AI in Environmental Sciences, Virtual	
2021	International Conference on Clouds and Precipitation, Virtual	
2021	*HAMMOZ workshop, Virtual	
2020	*AGU Fall Meeting, Virtual	
2020	*AeroCom workshop, Virtual	
2020	*ORACLES-CLARIFY joint workshop, Virtual	
2020	*Aerosol, Cloud, Precipitation and Climate, Virtual	
2019	AGU Fall Meeting, San Francisco	
2019	*1st Artificial Intelligence for Copernicus Workshop, Reading	
2019	*Machine learning for weather and climate, Oxford	
2019	Gordon Research Conference on Radiation and Climate, Lewiston, ME	
2019	*International Conference on Machine Learning, Los Angeles	
2019	*Joint AerChemMIP, RFMIP and PDRMIP meeting, Princeton	
2019	*Machine learning for Environmental Sciences, Cambridge	
2019	*ORACLES-CLARIFY joint workshop, Paris	
2019	*AeroCom workshop, Barcelona	
2018	*Oxford Machine Learning for Climate Workshop, Oxford	
2018	*AeroCom workshop, Washington DC	
2018	*EGU General Assembly, Vienna	
2018	*HAMMOZ workshop, Leipzig	
2017	Gordon Research Conference on Radiation and Climate, Lewiston, ME	
2017	*AeroCom workshop, Helsinki	
2017	*HAMMOZ consortium workshop, Zurich	
2016	*EGU General Assembly, Vienna	
2015	*ESA EO Science 2.0 conference, Rome	
2009	*8th International Conference on Nitride Semiconductors (ICNS-8), S. Korea	
2009	*UK Nitrides Consortium (UKNC) meeting, Oxford	

Service and Outreach

Conference and workshop organisation

- Lead Convener of proposed EGU 2022 session "Machine Learning for Climate Science"
- Co-chair of the UN AI for Good Accelerating Climate Science with AI series (2021-2022)
- Meta-reviewer for Climate Change AI workshop at ICML 2021
- Chair of "Machine Learning" session at UK Atmospheric Science Conference 2021
- Program committee member for Climate Change AI workshop at NeurIPS 2020
- Program committee member for AI for Earth Sciences workshop at NeurIPS 2020
- Co-chair of 10th "Climate Informatics" international conference (2020)
- Organising Committee member for "Machine Learning for Nowcasting" workshop (2020)
- Co-host of the 1st "Oxford Machine Learning in Climate Science" workshop (2018)
- Co-convener of the machine learning in climate forum of the Oxford Climate Research Network

Editorial

Guest Editor for 'Environmental Informatics' special issue in Environmental Data Science

Peer review

Geophysical Research Letters; Journal of Geophysical Research – Atmospheres; Nature Communications; Atmospheric Chemistry and Physics (Letters); Geoscientific Model Development; Journal of Advances in Modelling Earth Systems; Atmospheric Environment; International Journal of Climatology; AGU Books **Proposal review**

Swiss Data Science Center (SDSC) Collaborative Data Science Projects; Research Council of Norway for Chinese-Norwegian Collaboration Projects within Climate Systems; Climate Change AI Innovation Grants (meta-reviewer).

Outreach

 AGU News article "COVID-19 lockdowns temporarily raised global temperatures": https://bit.ly/3p20zc8 (2021)

- Featured in "Climate Researchers Enlist Big Cloud Providers for Big Data Challenges" Wall Street Journal: https://www.wsj.com/articles/climate-researchers-enlist-big-cloud-providers-for-big-data-challenges-11606300202 (2020)
- Interviewed in Amazon Web Services for the "Fix This" podcast (https://bit.ly/37ZhGWL) and a blog post by the CTO of Amazon: https://www.allthingsdistributed.com/2020/11/science-of-climate-change.html (2020)
- "Climate change: difficult choices" Science Week at Europa School, Culham (2020)
- "Stargazing+" open day for children with additional support needs (2019)
- "Stargazing+" open day for children with additional support needs (2018)
- "Climate change: what is it all about?" Science Week at Europa School, Culham (2017)
- "Stargazing live" departmental public day (2017)

Committee memberships

- Steering committee member of the AeroCom international modelling consortium
- Steering committee member of the HAMMOZ aerosol model community

Other

- Co-organised a departmental Equality, Diversity and Inclusion (EDI) session (2021)
- AGU Outstanding Student Presentation Award (OSPA) judge (2019)

Professional Memberships

American Geosciences Union; European Geosciences Union; Institute of Physics; British Computer Society (2012 - 2015)

Professional development

- ECRs: Managing researchers an introduction for postdocs (2019)
- *Udacity Deep Learning* Covers deep convolutional neural networks and inception (2018)
- NVIDIA Deep Learning Institution Ambassador (2018)
- Software/Data Carpentry instructor training (2017)
- Stanford University (Coursera) Machine Learning Covers modern machine learning algorithms including back propagation and stochastic gradient descent (2016)
- *Open University module in Project Management (M865; 2014)*
- BCS Professional Graduate Diploma module in Software Engineering (2013)

Scientific computing skills

Programming: I consider myself fluent in Python and Fortran, and have extensive experience using C++, MATLAB, and the Tensorflow, GPy and Keras machine learning libraries.

Open-source projects: <u>CIS</u> (lead developer and maintainer); $\underline{\text{ESEm}}$ (lead developer and maintainer); $\underline{\text{iris}}$ (contributor); $\underline{\text{cartopy}}$ (contributor) and $\underline{\text{xarray}}$ (contributor).