SERIE 67 — ENCODER ABSOLUTO SERIAL

- Singleturn e Multiturn
- Interface Serial RS485
- Comunicação Mod Bus
- Diâmetro 58mm em aço inox. com flange synchro
- Eixo em Aço Inox Semi-vazado
- Ligações com cabo ou com conector

CARACTERÍSTICAS MECÂNICAS

Base	Aço Inox
Tampa	Aço Inox
Eixo	Aço Inox
Rolamentos	6804ZZ
Peso	0,4 kG
Grau de proteção (padrão)	IP54
Rotação maxima	600 RPM
Carga radial máxima	15kG
Carga axial máxima	15kG

CARACTERÍSTICAS ELÉTRICAS

Alimentação	24 Vdc (nom)
Corrente total máxima	100mA
Corrente máxima por saída	20mA
Temperatura de operação	-10 a +70°C
Resolução do multiturn	até 12 bits
Resolução do singleturn	360 , 2048 até 13 bits

0800 772 3877 www.hohner.com.br

Ligações com cabo ou conector Identidade fixa

Preto Pino 1 = 0 Volts (-)
Vermelho Pino 2 = +Vcc (24v)
Azul Pino 3 = Rs485- (Low)
Branco Pino 4 = Rs485+ (High)

Conector Seleção identidade

Pino 1 = 0 volts (-) Pino 2 = +Vcc (24v) Pino 3 = RS485-Pino 4 = RS485+

Pino 5 = 2.0 | Seleção de Pino 6 = 2.1 | Escravos Pino 7 = 2.2 | 1 a 7 Pino 8 = 2.3 opcional - 8 a 15

Pino 9 = Comun Pino 10 - 11 - 12 = NC

Tabela Aberto (Sem ligação):- nível lógico "1". Ligar ao pino CM (comum):- nível lógico "0".

Função	СМ	Pino	Pino	Pino	Pino
Mic 08	Pino 8	5 = 2.0	6 = 2.1	7 = 2.2	
DB - 9	Pino 9	5 = 2.0	6 = 2.1	7 = 2.2	8 = 2.3
RC 12 CW	Pino 9	5 = 2.0	6 = 2.1	7 = 2.2	8 = 2.3
Identida	ide				
№ 01 № 02 № 03 № 04 № 05 № 07 № 08 № 09 № 10		Ligar ao CM Aberto Ligar ao CM	Ligar ao CM Ligar ao CM Aberto Aberto Ligar ao CM Ligar ao CM	Aberto Ligar ao CM Ligar ao CM Ligar ao CM Ligar ao CM Aberto Aberto Aberto Aberto	Aberto Aberto Aberto Ligar ao CM Ligar ao CM Ligar ao CM Ligar ao CM
№ 12 № 13 № 14 № 15		Aberto Ligar ao CM Aberto Ligar ao CM	Aberto Aberto Ligar ao CM Ligar ao CM	Ligar ao CM Ligar ao CM Ligar ao CM Ligar ao CM	Ligar ao CM Ligar ao CM Ligar ao CM Ligar ao CM

Os pontos de ligação para seleção de escravo, quando ligados ao Comum (0 volts) passam a ter o valor lógico 1. O Escravo número 1 tem o valor binário 0001. Código binário 0000 não tem efeito.

Código para compra

Tipo 67H

Diâmetro do Eixo Semi - vazado

0=10 mm x 22 mm 2=12 mm x 22 mm 5=15mm x 22 mm

Frequência de Comunicação Fonte de 12 a 28Vdc

Baud Rate

CW CCW
Sem Sem
paridade paridade

B = 9.600 2 = 9.600
C = 19.200 3 = 19.200

CW CCW
Paridade Impar Impar
F = 9.600 7 = 9.600
G = 19.200 8 = 19.200

Paridade Impar até Resolução de 12 bits Singleturn ou Multiturn 0909

Conexões

Pensa Cabo

- 1 = Cabo 2 Metros.
- 2 = Cabo 4 Metros.
- 3 = Cabo 6 Metros.
- 4 = Cabo 4 Mts + DB-9

Conector Macho

- 5 = 5 Pinos 805P
- C = 5 Pinos MIC 5
- 8 = 8 Pinos MIC 8
- 0 = 12 Pinos RC 12
- 9 = DB-9 9 Pinos

Identidade:

0 = Seleção no Conector

Escravo Fixo

- $1 = N^{\circ}. 01$
- $2 = N^{\circ}.02$
- $3 = N^{\circ}.03$
- $4 = N^{\circ}.04$
- $5 = N^{\circ}.05$
- $6 = N^{\circ}.06$
- $7 = N^{\circ}.07$
- $8 = N^{\circ}.08$
- $9 = N^{\circ}.09$
- $A = N^{\circ}.10$
- $B = N^{\circ}$. 11
- $C = N^{\circ}$. 12
- $D = N^{\circ}. 13$
- **E** = N°. 14
- F = N°. 15

De 1 a 7 disponível no conector de 8 pólos - Opcional DB-9

Paridade Impar escravo de 1 a 7

Resolução

Singleturn Posições

0360 = 360 9 Bits 0011 = 2048 11 Bits 0012 = 4096 12 Bits 0013 = 8192 13 Bits

Multiturn Voltas

	_	
Bits:	Posições	Voltas
0101 =	0002	0002
0202 =	0004	0004
0303 =	0008	8000
0404 =	0016	0016
0505 =	0032	0032
0606 =	0064	0064
0707 =	0128	0128
0808 =	0256	0256
0909 =	0512	0512
1203 =	4096	8000
1206 =	4096	0064
1209 =	4096	0512
1212 =	4096	4096

Fixação de cabos ou conectores

1 = Fixação Axial

2 = Fixação Radial

Configuração do Encoder comunicação Mod-Bus

- Interface: Rs485, não isolada
- Modo: RTU
- Função: **3** (Holding Registers 01H(LSB) e 01(MSB)
- Velocidade: **9600** ou **19200** (especificado na compra)
- Paridade: Sem Paridade
- Escravo na Rede: entre **01** e **07** (O Endereço 0H (000B) não é válido em Mod-Bus)

Instalação:

Certifique-se de que a alimentação está de acordo com a especificada (tensão e polaridade) e que a linha de comunicação Rs485 está com a polaridade correta (Data+ com Data+ e Data- com Data-)

Leitura de Dados:

A leitura do Encoder no modo RTU é feita pela função 03H (Read Multiple Registers). O registro 01H contém os 16 bits menos significativos, e o registro seguinte 02H, os demais bits (se existirem). Ver a resolução total do Encoder. Caso o sistema operacional do PLC permita, a leitura pode ser feita como "Long Integer" (inteiro de 32 bits), onde dois Registradores consecutivos são lidos e considerados como um único Word inteiro de 32 bits (0 a 232)

Observar que este valor conterá os bits da parte Singleturn somados a parte do Multiturn.