Extinction risk from climate change: Biological and physical processes

March 25th, 2024

Load libraries and data

```
rm(list = ls())
 root.dir = "C:/Users/mcu08001/Documents/1New Research/CC MetaRisk2/Analysis"
#Load Libraries
library(coda); library(ggplot2); library(rstan); library(bayesplot); library(
shinystan); library(loo); library(rstanarm); library(dplyr); library(ggpubr)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = FALSE)
#Load data
dataP<-read.table("MetaRisk2 aggthres 5.txt",header=T); attach(dataP)</pre>
## The following object is masked from package:base:
##
##
       version
#other quantities
#betareg requires no 0s or 1s
koffset = 0.001 #the k that gives the best posterior predictive check
percent2 <- adj.percent</pre>
percent2[adj.percent == 0] = koffset;
percent2[adj.percent == 1] = 1 - koffset;
dataP$percent2 <- percent2;</pre>
data.use<-dataP; attach(data.use)</pre>
## The following object is masked _by_ .GlobalEnv:
##
##
       percent2
## The following objects are masked from dataP:
##
       Adaptation, adj.percent, Antarctic, Arctic, Author, ave.percent,
##
##
       Climate.Mod, concat, Demography.LH, Disp.Mod, Dispersal, Earth.Sys,
       Endemic, Fresh, Island, Land. Use. Change, max.percent, min.percent,
##
       Model.Type, Mtn, N.Middle, Non.clim.threat, Other, Other.Habitat,
##
##
       Physiology, Pop.diff, Pre.Ind.Rise, Region, S.Middle, Scenario,
```

```
## Sp.int, Study, Taxa, Threatened, Time, Total.N, Tropics, version,
## WtSp, Year, Year.Pred

## The following object is masked from package:base:
##
## version

N = length(data.use$percent2)
n.Study <- length(unique(data.use$Study)) #number of studies
Studyint<-as.integer(unclass(factor(data.use$Study)))
phi = data.use$Total.N

#Load intercept model
load("2all_interc.rds")
mod.int<-mod
loo.mod.int<-loo.mod</pre>
```

Test for the overall effect of mechanisms

Here I tested if extinction predictions change based on adding all mechanisms.

```
#form matrix of factors
#create model matrix for coefficients
betamat <- data.frame(</pre>
  Intercept = rep(1,N),
  Dispersal = ifelse(data.use$Dispersal == "Y",1,0),
  Sp.int = ifelse(data.use$Sp.int == "Y",1,0),
  Physiology = ifelse(data.use$Physiology == "Y",1,0),
  Adaptation = ifelse(data.use$Adaptation == "Y",1,0),
  Pop.diff = ifelse(data.use$Pop.diff == "Y",1,0),
  Demography.LH = ifelse(data.use$Demography.LH == "Y",1,0),
  Earth.Sys = ifelse(data.use$Earth.Sys == "Y",1,0),
  Other.Habitat = ifelse(data.use$Other.Habitat == "Y",1,0))
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
# init.beta=rep(0,ncol(betamat)-1)
# init.fn<- function (chain_id) {</pre>
  list(beta = c(-2.5, init.beta))
# }
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
            chains = 3, warmup=7000, cores=3, iter=10000,
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max treedepth = 15))#
```

```
load("3allmechs.rds")#load("2disp.rds") #replace once run
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                          sd
                                                   2.5%
                                                              97.5%
                 mean
                          se_mean
                                                                        n ef
f
## beta[1] -2.49832275 0.002733730 0.08767882 -2.6685318 -2.32670632 1028.675
## beta[2] -0.17927810 0.006082637 0.13358386 -0.4512645 0.08324395 482.307
## beta[3] 0.57021608 0.004242309 0.21643997 0.1490208 0.99546485 2602.976
## beta[4] -0.69508947 0.004510538 0.22090556 -1.1354436 -0.27382868 2398.593
## beta[5] 0.18374189 0.005139278 0.26260149 -0.3358366 0.69727861 2610.899
## beta[6] -0.03520058 0.004532672 0.33066712 -0.6893540 0.62428032 5321.983
## beta[7] 0.76606114 0.005646052 0.22969788 0.3136622 1.21835088 1655.099
## beta[8] 0.24765985 0.013548023 0.75496559 -1.2307855 1.68387334 3105.292
## beta[9] -0.16647449 0.003744163 0.14119534 -0.4383269 0.11719039 1422.103
4
##
                Rhat
## beta[1] 1.0038963
## beta[2] 1.0021249
## beta[3] 1.0016896
## beta[4] 1.0016993
## beta[5] 1.0002538
## beta[6] 1.0000357
## beta[7] 1.0013531
## beta[8] 0.9999919
## beta[9] 1.0016170
#checks
traceplot(mod, pars=params.to.monitor2, inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7612.3
                       96.7
## p_loo
               1986.5 25.0
## looic
             -15224.5 193.5
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                              Count Pct.
## (-Inf, 0.7]
                  (good)
                              1429
                                    44.2%
                                             125
##
      (0.7, 1]
                  (bad)
                              1547
                                    47.8%
                                             <NA>
      (1, Inf)
                  (very bad) 259
##
                                     8.0%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanisms"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 1: Comparisons of LOOic without and
with all mechanisms", format = "markdown")
```

Table 1: Comparisons of LOOic without and with all mechanisms

Test for effect of modeling dispersal

Difference in LOOic = -10.77316

Here I tested if extinction predictions change based on whether species-specific dispersal was modeled. I predicted that extinction risks would not vary overall from the median, assuming that models that do not model dispersal explicitly model an overall mean value.

```
#form matrix of factors
betamat <- model.matrix(~Dispersal, data = data.use) #</pre>
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
}
 # mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.t
o.monitor,
             chains = 3, warmup=5000, cores=7, iter=8000,
#
#
            init = init.fn, control=list(adapt delta = 0.9, max treedepth = 1
5))
load("2disp.rds")#load("2disp.rds") #replace once run
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                     2.5%
                                                               97.5%
                           se mean
                                                                          n eff
                  mean
                                            sd
## beta[1] -2.51345235 0.002357712 0.07537208 -2.6591104 -2.3638673 1021.9732
## beta[2] 0.04655653 0.004855012 0.12127358 -0.1874777 0.2786506 623.9528
##
               Rhat
```

```
## beta[1] 1.002395
## beta[2] 1.006386

#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7604.5
                       96.6
## p_loo
               1994.2 25.0
## looic
            -15209.0 193.2
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                              Count Pct.
## (-Inf, 0.7]
                  (good)
                              1419
                                   43.9%
                                            110
##
      (0.7, 1]
                  (bad)
                              1514
                                    46.8%
                                             <NA>
      (1, Inf)
                  (very bad)
##
                              302
                                     9.3%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanism"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 2: Comparisons of LOOic without and
with mechanism", format = "markdown")
```

Table 2: Comparisons of LOOic without and with mechanism

```
ModelLOOicSEIntercept-only model-15213.77193.3243Model including mechanism-15209.00193.2132
```

```
Looic.diff = loo.mod$estimates[3] - loo.mod.int$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = 4.764411
```

No support for the model (LOOic is higher). ## Effect of modeling species interactions Here I tested if extinction predictions change based on if species interactions were included or not. I predicted that extinction risks would not vary overall from the median, assuming that models that do not model species interactions explicitly model an overall mean value.

```
#form matrix
betamat <- model.matrix(~Sp.int, data = data.use) # 1 - No, 2 - Some, 3 - Yes
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
# init.beta=rep(0,ncol(betamat)-1)
# init.fn<- function (chain id) {</pre>
# list(beta = c(-2.5, init.beta))
# }
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
#
            chains = 3, warmup=7000, cores=3, iter=10000,
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max_treedepth = 15))#
load("2spint.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                 mean
                          se mean
                                          sd
                                                    2.5%
                                                             97.5%
                                                                       n eff
## beta[1] -2.5509373 0.002450317 0.07554138 -2.6970716 -2.399795
                                                                    950.4417
## beta[2] 0.6576968 0.004200829 0.17854542 0.3055554 1.007170 1806.4561
```

```
## Rhat
## beta[1] 1.007268
## beta[2] 1.001380

#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7617.4
                      96.8
## p_loo
               1981.1 25.0
## looic
             -15234.8 193.6
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                             Count Pct.
## (-Inf, 0.7]
                  (good)
                             1373
                                   42.4%
                                            111
##
      (0.7, 1]
                  (bad)
                             1594
                                    49.3%
                                             <NA>
      (1, Inf)
                  (very bad) 268
##
                                     8.3%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanism"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 3: Comparisons of LOOic without and
with mechanism", format = "markdown")
```

Table 3: Comparisons of LOOic without and with mechanism

Model	L00ic	SE
Intercept-only model	-15213.77	193.3243
Model including mechanism	-15234.83	193.5842

```
Looic.diff = loo.mod$estimates[3] - loo.mod.int$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = -21.05881
```

Overall model is better with species interactions (delta LOOIC is negative). ## Effect of modeling physiology Here I tested if extinction predictions change based on if physiology was included or not. I predicted that extinction risks would not vary overall from the median, assuming that models that do not model physiology explicitly model an overall mean value.

```
betamat <- model.matrix(~Physiology, data = data.use) #
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
#
            chains = 3, warmup=7000, cores=3, iter=10000,
           init = init.fn, save_warmup = FALSE, control=list(adapt_delta = 0.
9, max treedepth = 15))#
load("2phys.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                    2.5%
                 mean
                          se mean
                                          sd
                                                              97.5%
                                                                        n eff
## beta[1] -2.4820191 0.002481308 0.07546208 -2.6279215 -2.3346343 924.9032
## beta[2] -0.2411791 0.004835885 0.20727066 -0.6552755 0.1529959 1837.0615
##
               Rhat
```

```
## beta[1] 1.004280
## beta[2] 1.002053
#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7606.0 96.7
## p_loo
               1992.4 25.2
## looic
             -15212.1 193.3
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                             Count Pct.
## (-Inf, 0.7]
                  (good)
                             1425
                                   44.0%
                                            132
##
      (0.7, 1]
                  (bad)
                             1513
                                    46.8%
                                             <NA>
      (1, Inf)
                  (very bad) 297
##
                                     9.2%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanism"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 4: Comparisons of LOOic without and
with mechanism", format = "markdown")
```

Table 4: Comparisons of LOOic without and with mechanism

Model	L00ic	SE
Intercept-only model	-15213.77	193.3243
Model including mechanism	-15212.08	193.3125

```
Looic.diff = loo.mod$estimates[3] - loo.mod.int$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = 1.68942
```

Overall model is worse with physiology (delta LOOIC is positive). ## Effect of modeling demography Here I tested if extinction predictions change based on if demography was included or not. I predicted that extinction risks would not vary overall from the median, assuming that models that do not model demography explicitly model an overall mean value.

```
betamat <- model.matrix(~Demography.LH)</pre>
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
#
            chains = 3, warmup=7000, cores=3, iter=10000,
           init = init.fn, save_warmup = FALSE, control=list(adapt_delta = 0.
9, max treedepth = 15))#
load("2demo.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                    2.5%
                                                              97.5%
                                                                       n eff
                 mean
                           se mean
                                           sd
## beta[1] -2.5629363 0.002470222 0.07888965 -2.7171100 -2.409383 1019.925
## beta[2] 0.6815055 0.004476903 0.18817752 0.3106803 1.052866 1766.770
##
               Rhat
```

```
## beta[1] 1.001379
## beta[2] 1.001775

#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7612.6
                       96.8
## p_loo
               1986.6 24.9
## looic
             -15225.2 193.7
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                             Count Pct.
## (-Inf, 0.7]
                  (good)
                             1401 43.3%
                                            138
##
      (0.7, 1]
                  (bad)
                             1573
                                    48.6%
                                             <NA>
      (1, Inf)
                  (very bad) 261
##
                                     8.1%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanism"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 5: Comparisons of LOOic without and
with mechanism", format = "markdown")
```

Table 5: Comparisons of LOOic without and with mechanism

Model	L00ic	SE
Intercept-only model	-15213.77	193.3243
Model including mechanism	-15225.24	193.6831

```
Looic.diff = loo.mod$estimates[3] - loo.mod.int$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = -11.46957
```

Overall model is better with demography (delta LOOIC is negative). Extinction risks increase when demography is modeled. ## Effect of modeling population differentiation Here I tested if extinction predictions change based on if population differentiation was included or not. I predicted that extinction risks would decrease from the median, assuming that population differentiation indicates more adaptability in species than usually modeled.

```
betamat <- model.matrix(~Pop.diff)</pre>
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain_id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
            chains = 3, warmup=7000, cores=3, iter=10000,
#
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max_treedepth = 15))#
load("2pdiff.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                           se mean
                                                                97.5%
                  mean
                                            sd
                                                     2.5%
                                                                          n eff
## beta[1] -2.49845651 0.002441750 0.07473787 -2.6396638 -2.3494908 936.8698
## beta[2] 0.09185001 0.004529495 0.32213222 -0.5294159 0.7286732 5057.8837
##
               Rhat
```

```
## beta[1] 1.005086
## beta[2] 1.000413

#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7606.6
                       96.9
## p_loo
               1992.5 25.5
## looic
             -15213.1 193.7
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                              Count Pct.
## (-Inf, 0.7]
                  (good)
                              1392 43.0%
                                            127
##
      (0.7, 1]
                  (bad)
                              1565
                                    48.4%
                                             <NA>
      (1, Inf)
                  (very bad) 278
##
                                     8.6%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanism"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 6: Comparisons of LOOic without and
with mechanism", format = "markdown")
```

Table 6: Comparisons of LOOic without and with mechanism

Model	L00ic	SE
Intercept-only model	-15213.77	193.3243
Model including mechanism	-15213.15	193.7395

```
Looic.diff = loo.mod$estimates[3] - loo.mod.int$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = 0.6236441
```

Overall model is worse with population differentiation (delta LOOIC is positive). ## Effect of modeling adaptation Here I tested if extinction predictions change based on if adaptation was included or not. I predicted that extinction risks would decrease from the median, assuming that adaptation indicates more adaptability in species than usually modeled.

```
betamat <- model.matrix(~Adaptation)</pre>
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain_id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
            chains = 3, warmup=7000, cores=3, iter=10000,
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max_treedepth = 15))#
load("2adapt.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                   2.5%
                         se mean
                                                             97.5%
                                                                       n eff
                mean
                                         sd
## beta[1] -2.519886 0.002626487 0.0765695 -2.67391951 -2.3735273 849.887
## beta[2] 0.465504 0.005502585 0.2310354 0.00594716 0.9178168 1762.883
##
               Rhat
## beta[1] 1.001604
## beta[2] 1.000348
```

#checks traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)


```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7605.1
                      96.8
## p_loo
               1993.4 25.4
## looic
             -15210.3 193.6
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                              Count Pct.
## (-Inf, 0.7]
                  (good)
                              1438
                                   44.5%
                                            121
##
      (0.7, 1]
                  (bad)
                              1535
                                    47.4%
                                             <NA>
      (1, Inf)
                  (very bad) 262
##
                                     8.1%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanism"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 7: Comparisons of LOOic without and
with mechanism", format = "markdown")
```

Table 7: Comparisons of LOOic without and with mechanism

Model	L00ic	SE
Intercept-only model	-15213.77	193.3243
Model including mechanism	-15210.27	193.6141

```
Looic.diff = loo.mod$estimates[3] - loo.mod.int$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = 3.497617
```

Overall model is worse with adaptation (delta LOOIC is positive). However, there is a suggestion that extinction risks increase with adaptation. ## Effect of modeling habitat Here I tested if extinction predictions change based on if non-climate habitat variation was included or not. I predicted that extinction risks would increase from the median, assuming that habitat variation would reduce ranges more than just climate alone and thus increase risks.

```
betamat <- model.matrix(~Other.Habitat)</pre>
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain_id) {</pre>
  list(beta = c(-2.5,init.beta))
}
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
            chains = 3, warmup=7000, cores=3, iter=10000,
#
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max_treedepth = 15))#
load("2habitat.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                     2.5%
                  mean
                           se mean
                                            sd
                                                                97.5%
## beta[1] -2.52947317 0.002738102 0.08875661 -2.7036858 -2.3566572 1050.757
## beta[2] 0.07480421 0.003515232 0.13082793 -0.1876801 0.3310826 1385.138
##
               Rhat
```

```
## beta[1] 1.000932
## beta[2] 1.000215

#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7607.3
                       96.6
## p_loo
               1991.1 25.0
## looic
             -15214.6 193.2
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                             Count Pct.
## (-Inf, 0.7]
                  (good)
                             1394
                                  43.1%
                                            117
##
      (0.7, 1]
                  (bad)
                             1568
                                    48.5%
                                             <NA>
      (1, Inf)
                  (very bad) 273
##
                                     8.4%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanism"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 8: Comparisons of LOOic without and
with mechanism", format = "markdown")
```

Table 8: Comparisons of LOOic without and with mechanism

Model	L00ic	SE
Intercept-only model	-15213.77	193.3243
Model including mechanism	-15214.60	193.2276

```
Looic.diff = loo.mod$estimates[3] - loo.mod.int$estimates[3]
cat("Difference in LOOic =", Looic.diff)
## Difference in LOOic = -0.8351962
```

Overall model is better with habitat (delta LOOIC is negative). However, the effect is not borne out by credible intervals of the contrast.

Effect of modeling Earth systems

Here I tested if extinction predictions change based on if Earth systems models were included or not. I predicted that extinction risks would not affect model outcomes.

```
betamat <- model.matrix(~Earth.Sys)</pre>
stan.data<-list(N = N, percent = data.use$percent2, betamat = betamat, phi =</pre>
phi, S = n.Study, P = ncol(betamat), Study = Studyint)
params.to.monitor=c("beta","y_rep","stu","sigma_stu", "eta","log_lik")
init.beta=rep(0,ncol(betamat)-1)
init.fn<- function (chain id) {</pre>
  list(beta = c(-2.5,init.beta))
# mod=stan(file="MetaRisk2 RSTAN beta mat.stan",data=stan.data,pars=params.to
.monitor,
#
            chains = 3, warmup=7000, cores=3, iter=10000,
           init = init.fn, save warmup = FALSE, control=list(adapt delta = 0.
9, max treedepth = 15))#
load("2earth.rds")
params.to.monitor2=c("beta")#
sumx = summary(mod,probs=c(.025,0.975), digits=4, pars=params.to.monitor2)
sumx$summary
##
                                                   2.5%
                 mean
                          se mean
                                           sd
                                                            97.5%
                                                                       n eff
## beta[1] -2.5040802 0.002739317 0.07488736 -2.648257 -2.355702 747.3643
## beta[2] 0.3189709 0.014656238 0.76119787 -1.162564 1.838785 2697.4296
```

```
## Rhat
## beta[1] 1.003790
## beta[2] 1.001719

#checks
traceplot(mod,pars=params.to.monitor2,inc_warmup=FALSE)
```



```
pp_check(
  stan.data$percent,
  rstan::extract(mod, par = 'y_rep')$y_rep[1:100, ],
  fun = 'dens_overlay'
)
```



```
#calculate loo
# log_lik_1 <- extract_log_lik(mod, merge_chains = FALSE)</pre>
# r_eff <- relative_eff(exp(log_lik_1), cores = 6)</pre>
# loo.mod <- loo(log_lik_1, r_eff = r_eff, cores = 6)</pre>
loo.mod #
##
## Computed from 9000 by 3235 log-likelihood matrix.
##
##
            Estimate
                         SE
## elpd_loo
               7604.2
                      96.6
## p_loo
               1994.2 25.1
## looic
            -15208.3 193.2
## MCSE of elpd_loo is NA.
##
## Pareto k diagnostic values:
                                            Min. ESS
##
                             Count Pct.
## (-Inf, 0.7]
                  (good)
                             1395
                                   43.1%
                                            140
##
      (0.7, 1]
                  (bad)
                             1562
                                    48.3%
                                             <NA>
      (1, Inf)
                  (very bad) 278
##
                                     8.6%
                                             <NA>
## See help('pareto-k-diagnostic') for details.
table.data<-data.frame(</pre>
  Model = c("Intercept-only model", "Model including mechanism"),
  LOOic = c(loo.mod.int$estimates[3],loo.mod$estimates[3]),
  SE = c(loo.mod.int$estimates[6],loo.mod$estimates[6])
```

```
)
knitr::kable(table.data, caption = "Table 9: Comparisons of LOOic without and
with mechanism", format = "markdown")
```

Table 9: Comparisons of LOOic without and with mechanism

Overall model is worse with Earth systems (delta LOOIC is positive). ##Compile results and create figures

```
n.total <- nrow(data.use) #total N</pre>
#use common median threat
posterior2=as.data.frame(mod.int)
grand.mean = posterior2[["mu"]]
grand.mean.pred <- invlogit(quantile(grand.mean, probs = c(0.025, 0.5, 0.975)</pre>
))
load("2disp.rds") #replace with Load("2disp.rds") when done
mod.a <- mod</pre>
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Threatened == "Y")/n.total #prop of yes
p.n <- sum(data.use$Threatened == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
```

```
threat.vals <- data.frame(overall.mean = pred.1[2,1],
 beta.N.lo = pred.1[1,2],
 beta.N = pred.1[2,2],
 beta.N.hi = pred.1[3,2],
 beta.Y.lo = pred.1[1,3],
 beta.Y = pred.1[2,3],
 beta.Y.hi = pred.1[3,3],
 beta.N.mean.lo = pred.1[1,4],
 beta.N.mean = pred.1[2,4],
 beta.N.mean.hi = pred.1[3,4],
 beta.Y.mean.lo = pred.1[1,5],
 beta.Y.mean = pred.1[2,5],
 beta.Y.mean.hi = pred.1[3,5]
)
*****
load("2spint.rds")
mod.a <- mod
posterior <- as.data.frame(mod.a)</pre>
p.v <- sum(data.use$Threatened == "Y")/n.total #prop of yes
p.n <- sum(data.use$Threatened == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[2,] <- data.frame(overall.mean = pred.1[2,1],
 beta.N.lo = pred.1[1,2],
 beta.N = pred.1[2,2],
 beta.N.hi = pred.1[3,2],
 beta.Y.lo = pred.1[1,3],
 beta.Y = pred.1[2,3],
 beta.Y.hi = pred.1[3,3],
 beta.N.mean.lo = pred.1[1,4],
 beta.N.mean = pred.1[2,4],
```

```
beta.N.mean.hi = pred.1[3,4],
 beta.Y.mean.lo = pred.1[1,5],
 beta.Y.mean = pred.1[2,5],
 beta.Y.mean.hi = pred.1[3,5]
)
******
load("2phys.rds")
mod.a <- mod</pre>
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Non.clim.threat == "Y")/n.total #prop of yes</pre>
p.n <- sum(data.use$Non.clim.threat == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.v * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
)
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[3,] <- cbind(overall.mean = pred.1[2,1],</pre>
 beta.N.lo = pred.1[1,2],
 beta.N = pred.1[2,2],
 beta.N.hi = pred.1[3,2],
 beta.Y.lo = pred.1[1,3],
 beta.Y = pred.1[2,3],
 beta.Y.hi = pred.1[3,3],
 beta.N.mean.lo = pred.1[1,4],
 beta.N.mean = pred.1[2,4],
 beta.N.mean.hi = pred.1[3,4],
 beta.Y.mean.lo = pred.1[1,5],
 beta.Y.mean = pred.1[2,5],
 beta.Y.mean.hi = pred.1[3,5]
*******
load("2demo.rds")
```

```
mod.a <- mod
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Land.Use.Change == "Y")/n.total #prop of yes</pre>
p.n <- sum(data.use$Land.Use.Change == "N")/n.total #prop of nos
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
)
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[4,]<- cbind(overall.mean = pred.1[2,1],</pre>
  beta.N.lo = pred.1[1,2],
  beta.N = pred.1[2,2],
  beta.N.hi = pred.1[3,2],
  beta.Y.lo = pred.1[1,3],
  beta.Y = pred.1[2,3],
  beta.Y.hi = pred.1[3,3],
  beta.N.mean.lo = pred.1[1,4],
  beta.N.mean = pred.1[2,4],
  beta.N.mean.hi = pred.1[3,4],
  beta.Y.mean.lo = pred.1[1,5],
  beta.Y.mean = pred.1[2,5],
  beta.Y.mean.hi = pred.1[3,5]
load("2pdiff.rds")
mod.a <- mod
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Land.Use.Change == "Y")/n.total #prop of yes</pre>
p.n <- sum(data.use$Land.Use.Change == "N")/n.total #prop of nos
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
```

```
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[5,]<- cbind(overall.mean = pred.1[2,1],
 beta.N.lo = pred.1[1,2],
 beta. N = pred.1[2,2],
 beta.N.hi = pred.1[3,2],
 beta.Y.lo = pred.1[1,3],
 beta.Y = pred.1[2,3],
 beta.Y.hi = pred.1[3,3],
 beta.N.mean.lo = pred.1[1,4],
 beta.N.mean = pred.1[2,4],
 beta.N.mean.hi = pred.1[3,4],
 beta.Y.mean.lo = pred.1[1,5],
 beta.Y.mean = pred.1[2,5],
 beta.Y.mean.hi = pred.1[3,5]
*******
load("2adapt.rds")
mod.a <- mod
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Land.Use.Change == "Y")/n.total #prop of yes</pre>
p.n <- sum(data.use$Land.Use.Change == "N")/n.total #prop of nos
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[6,]<- cbind(overall.mean = pred.1[2,1],
beta.N.lo = pred.1[1,2],
```

```
beta. N = pred.1[2,2],
  beta.N.hi = pred.1[3,2],
  beta.Y.lo = pred.1[1,3],
  beta.Y = pred.1[2,3],
  beta.Y.hi = pred.1[3,3],
  beta.N.mean.lo = pred.1[1,4],
  beta.N.mean = pred.1[2,4],
  beta.N.mean.hi = pred.1[3,4],
  beta.Y.mean.lo = pred.1[1,5],
  beta.Y.mean = pred.1[2,5],
  beta.Y.mean.hi = pred.1[3,5]
)
#************************************
load("2habitat.rds")
mod.a <- mod
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Land.Use.Change == "Y")/n.total #prop of yes
p.n <- sum(data.use$Land.Use.Change == "N")/n.total #prop of nos</pre>
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[7,]<- cbind(overall.mean = pred.1[2,1],
  beta.N.lo = pred.1[1,2],
  beta.N = pred.1[2,2],
  beta.N.hi = pred.1[3,2],
  beta.Y.lo = pred.1[1,3],
  beta.Y = pred.1[2,3],
  beta.Y.hi = pred.1[3,3],
  beta.N.mean.lo = pred.1[1,4],
  beta.N.mean = pred.1[2,4],
  beta.N.mean.hi = pred.1[3,4],
  beta.Y.mean.lo = pred.1[1,5],
  beta.Y.mean = pred.1[2,5],
  beta.Y.mean.hi = pred.1[3,5]
```

```
#
load("2earth.rds")
mod.a <- mod
posterior <- as.data.frame(mod.a)</pre>
p.y <- sum(data.use$Land.Use.Change == "Y")/n.total #prop of yes</pre>
p.n <- sum(data.use$Land.Use.Change == "N")/n.total #prop of nos
beta.Y = invlogit(posterior[["beta[1]"]] + posterior[["beta[2]"]])
beta.N = invlogit(posterior[["beta[1]"]])
\#r.mean.1 = p.n * beta.N + p.y * beta.Y
r.mean.1 = invlogit(grand.mean)
beta.vs.r.mean.n = (beta.N) - (r.mean.1)
beta.vs.r.mean.y = (beta.Y) - (r.mean.1)
param.vals.1 <- data.frame(</pre>
"r.mean.1" = r.mean.1,
"beta.N" = beta.N,
"beta.Y" = beta.Y,
"beta.vs.r.mean.n" = beta.vs.r.mean.n,
"beta.vs.r.mean.y" = beta.vs.r.mean.y
)
pred.1 = (apply(param.vals.1, 2, quantile, probs = c(0.025, 0.5, 0.975), na.rm
=TRUE))
threat.vals[8,]<- cbind(overall.mean = pred.1[2,1],
 beta.N.lo = pred.1[1,2],
 beta.N = pred.1[2,2],
 beta.N.hi = pred.1[3,2],
 beta.Y.lo = pred.1[1,3],
 beta.Y = pred.1[2,3],
 beta.Y.hi = pred.1[3,3],
 beta.N.mean.lo = pred.1[1,4],
 beta.N.mean = pred.1[2,4],
 beta.N.mean.hi = pred.1[3,4],
 beta.Y.mean.lo = pred.1[1,5],
 beta.Y.mean = pred.1[2,5],
 beta.Y.mean.hi = pred.1[3,5]
                       ********************
*******
threat.vals$threat = c("Dispersal", "Species Interactions", "Physiology", "Dem
ography", "Population differentiation", "Adaptation", "Habitat", "Earth syste
ms")
save(threat.vals,file ="Mech traits results.rds")
```

```
threat.vals.r <- threat.vals
threat.vals.r[,1:13] <- round((threat.vals.r[,1:13]), digits = 4)
knitr::kable(threat.vals.r, caption = "Table 10: Extinction risk by mechanist
ic traits and difference from mean, with 95% credible intervals", format = "m
arkdown", font = 5)</pre>
```

Table 10: Extinction risk by mechanistic traits and difference from mean, with 95% credible intervals

ınterva	IS												
overall. mean	beta. N.lo	bet a.N	beta. N.hi	beta. Y.lo	bet a.Y	beta. Y.hi	beta.N. mean.lo	beta.N. mean	beta.N. mean.hi	beta.Y. mean.lo	beta.Y. mean	beta.Y. mean.hi	threat
0.076	0.06 54	0.0 749	0.08 60	0.06 16	0.0 784	0.09 93	-0.0157	0.0010	0.0139	-0.0177	0.0023	0.0254	Dispers al
0.076	0.06 31	0.0 723	0.08 32	0.09 57	0.1 309	0.17 61	-0.0178	0.0035	0.0112	0.0177	0.0551	0.1003	Species Interact ions
0.076	0.06 74	0.0 770	0.08 83	0.04 16	0.0 616	0.08 93	-0.0134	0.0012	0.0164	-0.0371	0.0140	0.0152	Physiol ogy
0.076	0.06 20	0.0 715	0.08 25	0.09 56	0.1 319	0.18 10	-0.0191	0.0044	0.0104	0.0183	0.0560	0.1065	Demogr aphy
0.076	0.06 66	0.0 759	0.08 71	0.04 59	0.0 822	0.14 67	-0.0140	0.0000	0.0153	-0.0320	0.0063	0.0710	Populati on differen tiation
0.076	0.06 45	0.0 745	0.08 52	0.07 44	0.1 138	0.16 83	-0.0161	0.0013	0.0129	-0.0032	0.0379	0.0934	Adaptat ion
0.076	0.06 28	0.0 738	0.08 65	0.06 41	0.0 791	0.09 72	-0.0177	0.0021	0.0144	-0.0147	0.0032	0.0235	Habitat
0.076	0.06 61	0.0 756	0.08 66	0.02 53	0.1 007	0.33 75	-0.0150	0.0003	0.0143	-0.0516	0.0250	0.2615	Earth systems
<pre>Fig1a<-ggplot(data = threat.vals)+ geom_vline(xintercept=grand.mean.pred[2]) + geom_errorbar(aes(y = threat, xmin = beta.Y.lo, xmax = beta.Y.hi), width = 0) + geom_point(stat = "identity", aes(y = threat, x = beta.Y), color = "#416788", size = 3, shape = 15) + xlab("Pre-industrial rise \n in temperature (C)") + xlim(c(0,.35)) + theme_classic()+ theme(axis.title.y = element_blank(),axis.title=element_text(size=14),axis. text = element_text(size=12))+ guides(size=F) ## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as ## of ggplot2 3.3.4.</scale></pre>													
<pre>## This warning is displayed once every 8 hours. ## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was ## generated.</pre>													
Fig1a													

Fig. 1. Predicted extinction risk based on various mechanistic assumptions.

```
#Differences from zero
glob.mean.over <- rep("n", nrow(threat.vals))</pre>
glob.mean.over[threat.vals$beta.Y.mean > 0 & threat.vals$beta.Y.mean.lo > 0]
glob.mean.over[threat.vals$beta.Y.mean < 0 & threat.vals$beta.Y.mean.hi < 0]</pre>
threat.vals$glob.mean.over <- glob.mean.over
Fig1b <- ggplot(data = threat.vals)+
  geom_vline(xintercept=0) +
  geom errorbar(aes(y = threat, xmin = beta.Y.mean.lo, xmax = beta.Y.mean.hi)
, width = 0) +
  geom_point(stat = "identity", aes(y = threat, x = beta.Y.mean, color = glob
.mean.over), size = 3, shape = 15) +
  scale_color_manual(values=c('grey','#5B507A'))+
  xlab("Percent difference \n from global mean") + xlim(c(-.15,.3)) +
  theme classic()+
  theme(axis.title.y = element_blank(),axis.ticks.y = element_blank(),axis.li
ne.y = element_blank(),axis.text.y = element_blank(),
        axis.title=element text(size=14),axis.text = element text(size=12),le
gend.position = "none")+
  guides(size=F)
Fig1b
```


Fig. 2. Predicted extinction risk based on various mechanistic assumptions.

ggarrange(Fig1a, NULL, Fig1b, ncol=3, widths = c(4,.4, 2))

Fig. 3. Predicted extinction risk based on various mechanistic assumptions.

```
#ggsave("Metarisk2 mech.png", width=8, height=6, unit="in", dpi="print")
threat.YN<-data.frame(</pre>
  threat = c("Dispersal - N", "Dispersal - Y", "Sp. Int. - N", "Sp. Int. - Y", "P
hysiology - N", "Physiology - Y", "Demography - N", "Demography - Y", "Pop. diff.
- N", "Pop. diff. - Y", "Adaptation - N", "Adaptation - Y", "Habitat - N", "Habita
t - Y", "Earth systems - N", "Earth systems - Y"),
  YN = rep(c("N","Y"),8),
  beta = c(threat.vals$beta.N[1],threat.vals$beta.Y[1],threat.vals$beta.N[2],
threat.vals$beta.Y[2],threat.vals$beta.N[3],threat.vals$beta.Y[3],threat.vals
$beta.N[4],threat.vals$beta.Y[4],threat.vals$beta.N[5],threat.vals$beta.Y[5],
threat.vals$beta.N[6],threat.vals$beta.Y[6],threat.vals$beta.N[7],threat.vals
$beta.Y[7],threat.vals$beta.N[8],threat.vals$beta.Y[8]),
   beta.lo = c(threat.vals$beta.N.lo[1],threat.vals$beta.Y.lo[1],threat.vals$
beta.N.lo[2],threat.vals$beta.Y.lo[2],threat.vals$beta.N.lo[3],threat.vals$be
ta.Y.lo[3],threat.vals$beta.N.lo[4],threat.vals$beta.Y.lo[4],threat.vals$beta
.N.lo[5],threat.vals$beta.Y.lo[5],threat.vals$beta.N.lo[6],threat.vals$beta.Y
.lo[6],threat.vals$beta.N.lo[7],threat.vals$beta.Y.lo[7],threat.vals$beta.N.l
o[8],threat.vals$beta.Y.lo[8]),
    beta.hi = c(threat.vals$beta.N.hi[1],threat.vals$beta.Y.hi[1],threat.vals
$beta.N.hi[2],threat.vals$beta.Y.hi[2],threat.vals$beta.N.hi[3],threat.vals$b
eta.Y.hi[3],threat.vals$beta.N.hi[4],threat.vals$beta.Y.hi[4],threat.vals$bet
a.N.hi[5],threat.vals$beta.Y.hi[5],threat.vals$beta.N.hi[6],threat.vals$beta.
Y.hi[6],threat.vals$beta.N.hi[7],threat.vals$beta.Y.hi[7],threat.vals$beta.N.
hi[8],threat.vals$beta.Y.hi[8])
```

```
#set colors
boolColors <- as.character(c("N"="#416788", "Y"="#8cb369"))
boolScale <- scale_colour_manual(name="YN", values=boolColors)

#Figures
Fig2<-ggplot(data = threat.YN)+
    geom_vline(xintercept=grand.mean.pred[2]) +
    geom_errorbar(aes(y = threat, xmin = beta.lo, xmax = beta.hi), width = 0) +
    geom_point(stat = "identity", aes(y = threat, x = beta, color = YN), size =
3, shape = 15) +
    xlab("Pre-industrial rise \n in temperature (C)") + xlim(c(0,.35)) +
    theme_classic() + boolScale +
    theme(axis.title.y = element_blank(),axis.title=element_text(size=14),axis.
text = element_text(size=12))+
    guides(color = guide_legend(""))
Fig2</pre>
```


Fig. 4. Predicted extinction risk based on various mechanistic assumptions.

```
#ggsave("Metarisk2 mech YN.png",width=8,height=6,unit="in",dpi="print")
#catalog sample sizes
N.1.st<-length(unique(dataP$Study[dataP$Dispersal == "Y"]))
N.1.mod<-length((dataP$Study[dataP$Dispersal == "Y"]))</pre>
```

```
N.2.st<-length(unique(dataP$Study[dataP$Sp.int == "Y"]))</pre>
N.2.mod<-length((dataP$Study[dataP$Sp.int == "Y"]))</pre>
N.3.st<-length(unique(dataP$Study[dataP$Physiology == "Y"]))</pre>
N.3.mod<-length((dataP$Study[dataP$Physiology == "Y"]))</pre>
N.4.st<-length(unique(dataP$Study[dataP$Demography.LH == "Y"]))</pre>
N.4.mod<-length((dataP$Study[dataP$Demography.LH == "Y"]))</pre>
N.5.st<-length(unique(dataP$Study[dataP$Pop.diff == "Y"]))</pre>
N.5.mod<-length((dataP$Study[dataP$Pop.diff == "Y"]))</pre>
N.6.st<-length(unique(dataP$Study[dataP$Adaptation == "Y"]))</pre>
N.6.mod<-length((dataP$Study[dataP$Adaptation == "Y"]))</pre>
N.7.st<-length(unique(dataP$Study[dataP$Other.Habitat == "Y"]))</pre>
N.7.mod<-length((dataP$Study[dataP$Other.Habitat == "Y"]))</pre>
N.8.st<-length(unique(dataP$Study[dataP$Earth.Sys == "Y"]))</pre>
N.8.mod<-length((dataP$Study[dataP$Earth.Sys == "Y"]))</pre>
table.data<-data.frame(</pre>
  Factor = threat.vals$threat,
  Studies = c(N.1.st, N.2.st, N.3.st, N.4.st, N.5.st, N.6.st, N.7.st, N.8.st),
  Models = c(N.1.mod, N.2.mod, N.3.mod, N.4.mod, N.5.mod, N.6.mod, N.7.mod, N.8.mod)
)
knitr::kable(table.data, caption = "Table 2: Number of studies and models for
each factor", format = "markdown")
```

Table 11: Number of studies and models for each factor

Factor	Studies	Models
Dispersal	64	431
Species Interactions	43	248
Physiology	39	260
Demography	51	337
Population differentiation	9	43
Adaptation	18	121
Habitat	171	1199
Earth systems	5	16

Conclusion

Studies that included species-specific demography, species interactions, and xx predicted higher extinction risks. # Variation explained

```
#After Gelman 2019 R2 for Bayesian
#Load model and beta matrix - check if mu is modeled separately
load("3allmechs.rds")
posterior=as.data.frame(mod);
betamat <- data.frame(</pre>
  Intercept = rep(1,N),
  Dispersal = ifelse(data.use$Dispersal == "Y",1,0),
  Sp.int = ifelse(data.use$Sp.int == "Y",1,0),
  Physiology = ifelse(data.use$Physiology == "Y",1,0),
  Adaptation = ifelse(data.use$Adaptation == "Y",1,0),
  Pop.diff = ifelse(data.use$Pop.diff == "Y",1,0),
  Demography.LH = ifelse(data.use$Demography.LH == "Y",1,0),
  Earth.Sys = ifelse(data.use$Earth.Sys == "Y",1,0),
  Other.Habitat = ifelse(data.use$Other.Habitat == "Y",1,0))
#Variables and matrices
S = 9000; #samples
K = ncol(betamat); #factors
p.mat <- as.matrix(posterior[,1:K])</pre>
y = dataP$percent2
y.mat = t(matrix(rep(y,S), nrow = N, ncol = S))
y.mean <- mean(y)
#Calculate y.pred for fixed effects only
y.pred <- matrix(rep(NA, N*S), nrow = S, ncol = N)</pre>
theta <- y.pred
for (i in 1:N) {
      theta[,i] = invlogit(p.mat %*% t(betamat[i,]))#rows = samples, cols = i
      y.pred[,i] = (theta[,i] * data.use$Total.N[i])/(theta[,i] * data.use$To
tal.N[i] + (1-theta[,i]) * data.use$Total.N[i])
#Calcluate residual variance
res.f = y.mat - y.pred
RSS.f = rowSums((res.f)^2)
res.v.f = 1/(N-1) * RSS.f
#Calculate fit variance
pred.v.f = 1/(N-1) * rowSums((y.pred)^2)
#Calculate R2
R2.v.f = pred.v.f/(pred.v.f + res.v.f)
cat("fixed effects R2 = ", quantile(R2.v.f, probs = c(0.025, 0.5, 0.975), na.rm
= T))
## fixed effects R2 = 0.07282294 0.09797332 0.1291702
```

```
#Total model With random effects
y.pred.c <-(as.matrix(posterior[,(K+1):(N+K)])) #calculated in STAN, with all</pre>
RE and weightings
#Calculate residual variance
res.c = y.mat - y.pred.c
RSS.c = rowSums((res.c)^2)
res.v.c = 1/(N-1) * RSS.c
#Calculate fit variance
pred.v.c = 1/(N-1) * rowSums(y.pred.c^2)
#Calculate full model R2
R2.v.c = pred.v.c/(pred.v.c + res.v.c)
                                                           ")
print("
## [1] "
cat("Overall model R2 = ", quantile(R2.v.c,probs = c(0.025, 0.5, 0.975),na.rm]
= T))
## Overall model R2 = 0.7661777 0.7866636 0.8064059
```