

SATELLITES

Earth's atmosphere

Basics

L elliptica	I or circu	lar orbits
--------------------	------------	------------

- □ complete rotation time depends on distance satellite-earth
- ☐ inclination: angle between orbit and equator
- □elevation: angle between satellite and horizon
- □LOS (Line of Sight) to the satellite necessary for connection
 - → high elevation needed, less absorption due to e.g. buildings
- □ Uplink: connection base station satellite
- □ Downlink: connection satellite base station
- ☐ typically separated frequencies for uplink and downlink
 - transponder used for sending/receiving and shifting of frequencies
 - transparent transponder: only shift of frequencies
 - regenerative transponder: additionally signal regeneration

Features of Satellite Networks

Effects of satellite mobility

- Topology is dynamic.
- Topology changes are predictable and periodic.
- Traffic is very dynamic and non-homogeneous.
- Handovers are necessary.

Limitations and capabilities of satellites

- Power and onboard processing capability are limited.
- Implementing the state-of-the-art technology is difficult.
- Satellites have a broadcast nature.

Nature of satellite constellations

- Higher propagation delays.
- Fixed number of nodes.
- Highly symmetric and uniform structure.

Atmospheric attenuation

Satellite Transmission Links

- Earth stations communicate by sending signals to the satellite on an uplink
- The satellite then repeats those signals on a downlink
- The broadcast nature of downlink makes it attractive for services such as the distribution of TV programs

Satellite up links and down links can operate in different frequency bands:

Band	Up-Link (Ghz)	Down-link (Ghz)	ISSUES
С	3,700-4,200 MHz	5,925-6,425 MHz	Interference with ground links.
Ku	11.7-12.2 GHz	14.0-14.5 GHz	Attenuation due to rain
Ka	17.7-21.2 GHz	27.5-31.0 GHz	High Equipment cost

- The up-link is a highly directional, point to point link
- The down-link can have a footprint providing coverage for a substantial area "spot beam".

Types of Satellite Orbits

- Based on the inclination, "i", over the equatorial plane:
 - Equatorial Orbits above Earth's equator (i=0°)
 - Polar Orbits pass over both poles (i=90°)
 - Other orbits called inclined orbits (0°<i<90°)
- Based on Eccentricity
 - Circular with centre at the earth's centre
 - Elliptical with one foci at earth's centre

Types of Satellite based Networks

- Based on the Satellite Altitude
 - GEO Geostationary Orbits
 - 36000 Km = 22300 Miles, equatorial, High latency
 - MEO Medium Earth Orbits
 - High bandwidth, High power, High latency
 - LEO Low Earth Orbits
 - Low power, Low latency, More Satellites, Small Footprint
 - VSAT
 - Very Small Aperture Satellites
 - Private WANs

Satellite Orbits – Another perspective

GEO - Geostationary Orbit

- ► In the equatorial plane
- ➤ Orbital Period = 23 h 56 m 4.091 s

= 1 sidereal day*

- ► Satellite appears to be stationary over any point on equator:
 - ► Earth Rotates at same speed as Satellite
 - ► Radius of Orbit r = Orbital Height + Radius of Earth

GEO Satellites

- No handover
- One-way propagation delay: 250-280 ms
- 3 to 4 satellites for global coverage
- Mostly used in video broadcasting
- Another applications:
 - Weather forecast, global communications, military applications
- Advantage: well-suited for broadcast services
- Disadvantages: Long delay, high free-space attenuation

MEO Satellites

- One-way propagation delay: 100 130 ms
- 10 to 15 satellites for global coverage
- Infrequent handover
- Orbit period: ~6 hr
- Mostly used in navigation
 - GPS, Galileo, Glonass
- Communications: Inmarsat, ICO

MEO Example: GPS

- Global Positioning System
 - Developed by US Dept. Of Defence
 - Became fully operational in 1993
 - Currently 31 satellites at 20.200 km.
 - Last lunch: March 2008
- It works based on a geometric principle
 - "Position of a point can be calculated if the distances bet three objects with known positions can be measured"

- Fourth satellite is needed to correct the receiver's clock.
- Selective Availability
- Glonass (Russian): 24 satellites, 19.100 km
- Galileo (EU): 30 satellites, 23.222 km, under development (expected date: 2013)
- Beidou (China): Currently experimental & limited.

LEO - Low Earth Orbits

- Circular or inclined orbit with < 1400 km altitude
 - Satellite travels across sky from horizon to horizon in 5 15 minutes => needs handoff
 - Earth stations must track satellite or have Omni directional antennas
 - Large constellation of satellites is needed for continuous communication (66 satellites needed to cover earth)
 - Requires complex architecture
 - Requires tracking at ground

LEO Satellites

- One-way propagation delay: 5 − 20 ms
- More than 32 satellites for global coverage
- Frequent handover
- Orbit period: ~2 hr
- Applications:
 - Earth Observation
 - GoogleEarth image providers (DigitalGlobe, etc.)
 - RASAT (First satellite to be produced solely in Turkey)
 - Communications
 - Globalstar, Iridium
 - Search and Rescue (SAR)
 - COSPAS-SARSAT

NGSO - Non Geostationary Orbits

- Orbit should avoid Van Allen radiation belts:
 - Region of charged particles that can cause damage to satellite
 - Occur at
 - ~2000-4000 km and
 - ~13000-25000 km

HEO - Highly Elliptical Orbits

- HEOs (i = 63.4°) are suitable to provide coverage at high latitudes (including North Pole in the northern hemisphere)
- Depending on selected orbit (e.g. Molniya, Tundra, etc.) two or three satellites are sufficient for continuous time coverage of the service area.
- All traffic must be periodically transferred from the "setting" satellite to the "rising" satellite (Satellite Handover)

Iridium

- 66 satellites (6 planes, 11 sat per plane) and 10 spares.
- 86.4° inclination: full coverage
- Altitude: 780 km
- Intersatellite links, onboard processing
- Satellite visibility time: 11.1 min
- Satellites launched in 1997-98.
- Initial company went into bankrupcy
 - Technologically flawless, however:
 - Very expensive; Awful business plan
 - Cannot compete with GSM
- Now, owned by Iridium satellite LLC.
- 280.000 subscribers (as of Aug. 2008)
- Multi-year contract with US DoD.
- Satellite collision (February 10, 2009).

The cubesat explosion

Challenges	Implications
Intermittent connectivity	 Satellites on this orbit are characterized by scheduled predictable/semi-predictable intermittent connectivity, whether for a satellite to ground links or inter-satellite links. There are no contemporary paths present for satellite and ground station communication or cross-link communication.
Orbital period	 LEO satellite orbital velocity ~= 7800 m/s, based on the satellite altitude orbital period of about 90–110 minu for 160–1200 km altitudes respectively. Limited encounter time between satellites which in turns bounds data transfer rate.
Inter-CubeSat links	 Transmission range between two satellites, approximately 5–200 km. The transmission range of inter-CubeSats is bound by cross-link antenna transmission power. Limited antenna size and capability compared with the conventional satellites. Limited antenna coverage compared with the conventional satellites.
Up/Downlinks with the ground station	 Transmission range between satellite and ground station, approximately 200–1200 km The transmission range of CubeSats is bounded by the downlink antenna transmit power. Satellite revisit time Limited antenna size and capability
Altitude and inclination ranges	 Orbit altitude rang is 200–1200 km above the Earth and orbit inclination ranges 0°–180°.
Natural drag	 Common de-orbiting behaviour leads to changes in orbital height and hence meeting time between CubeSats will also change over time. Orbiting at lower altitudes increases the drag process. The drag upsurges with increasing solar activity (sunspots).
High failure rate	 Space radiation effects on electronic components, particularly Commercial-off-the Shelf (COTS) components. Impossibility of recovery under failure.
Energy	 Solar cells limited space available on the small size of the CubeSat body. Small storage batteries. High power consumption of up/downlinks and cross-links.
Topology density	- Satellite dissemination and encounter times.
CubeSat stability on orbit	 There is no space on the CubeSats for advanced stability control devices. Antenna directionality and steering ability.
Data rate	 A single CubeSat has limited data rate CubeSat swarms and constellations can provide a higher overall system data rate, however, networking CubeSats in these systems is challenging and requires advanced routing protocols.

CIVI 23/24 94

H

High Altitude Platforms (HAPs)

- Aerial unmanned platforms
- Quasi-stationary position (at 17-22 km)
- Telecommunications & surveillance
- Advantages:
 - Cover larger areas than terrestrial base stations
 - No mobility problems like LEOs
 - Low propagation delay
 - Smaller and cheaper user terminals
 - Easy and incremental deployment
- Disadvantages:
 - Immature airship technology
 - Monitoring of the platform's movement

HAP-Satellite Integration

- HAPs have significant advantages.
- Satellites still represent the most attractive solution for broadcast and multicast services
- Should be considered as complementary technologies.

Satellites - Overview

- GEOs have good broadcasting capability, but long propagation delay.
- LEOs offer low latency, low terminal power requirements.
- Inter-satellite links and on-board processing for increased performance and better utilization of satellites
 - From flying mirrors to intelligent routers on sky.
- Major problem with LEOs: Mobility of satellites
 - Frequent hand-over
- Another important problem with satellites:
 - Infeasible to upgrade the technology, after the satellite is launched

Routing

 One solution: inter satellite links (ISL) ☐ reduced number of gateways needed ☐ forward connections or data packets within the satellite network as long as possible only one uplink and one downlink per direction needed for the connection of two mobile phones Problems: Imore complex focusing of antennas between satellites □high system complexity due to moving routers ☐ higher fuel consumption ☐thus shorter lifetime Iridium and Teledesic planned with ISL

Other systems use gateways and additionally terrestrial networks

Reference model for satellite access

Protocol architecture

RTTE – Radio and Telecommunications Terminal Equipment Directive 102

Protocol architecture

IP interworking

