Lista 1 Cálculo Numérico Daniel Levacov 118028241

Questão 1) Os códigos se encontram em meu repositório GitHub: https://github.com/danilevas/calculo-numerico/tree/main/lista1

Questão 2)

- Método da Bisseção:
 - Levou 23 iterações
 - o A raiz encontrada foi: 2.506184220314026
 - \circ |f(raiz)| = 6.226911430928794e-08
- Método da Falsa Posição
 - Levou 5 iterações
 - o A raiz encontrada foi: 2.506184026449166
 - o |f(raiz)| = 9.927991884151055e-08
- Método de Newton-Raphson
 - Levou 4 iterações
 - o A raiz encontrada foi: 2.5061841511838856
 - \circ |f(raiz)| = 4.662452202097711e-09
- Método da Secante
 - Levou 4 iterações
 - o A raiz encontrada foi: 2.5061841451621825
 - \circ |f(raiz)| = 3.5547798038493283e-10

O que levou mais iterações foi o método da bisseção, mas o que encontrou o menor |f(raiz)| foi o método da secante.

Questão 3) O programa se encontra no repositório mencionado acima

SEQUESTO Lista 1 Calculo Numérico 10/05/22
$3-x^3-2x+2=0$, $x_0=1$; $f'(x)=3x^2-2$
(aso geral MNR: xm+1 = xn - f(xn)
I feração 1:
$x_1 = x_0 - f(x_0) = x_1 = 1 - 1 - 2 + 2 = 1 - 1 = 0$ Iterataol:
$\frac{1}{x^{2} + x_{1} - f(x_{1})} = x_{2} = 0 - 2 = 1$ $\frac{1}{f'(x_{1})} = \frac{1}{1-2}$
Iteração 3:
$\begin{array}{c} \times 3 = \times 2 - \underbrace{f(\times 2)} = 7 \times 3 = 1 - 1 - 1 + 2 = 1 - 1 = 0 \\ f'(\times 2) & 3 - 2 \end{array}$
$\frac{1}{x^4 = x^3 - f(x^3)} = 7x^4 = 0 - 2 = 1$
F'(x3) (-c)
O valor de xn se alterna entre 1 e 0, o que nos impede de ter um x mais próximo da raiz, estamas em um ciclo sem ter um x mais próximo da raiz, estamas em um ciclo sem
ter um x mais próximo da toiz, estamas em um accoserte fim. Rodando o Programa ele não parava de iterar e não terminava por entrar nesse ciclo.

Questão 4) Códigos no mesmo repositório da questão 1

- 1. Sim, é possível. Ele encontra usando o exemplo da questão 1.
- 2. Código no repositório mencionado acima.