

Team 9
Madeline Kaufman, Surosh Kumar, Tyler Lai,
Patrick Richey, M.T. Wilson

TURNING FOOT-TRAFFIC INSIGHT INTO ENGAGEMENT & ROI

Problem and Opportunity

CURRENT CHALLENGES

OPPORTUNITY

No real-time foot traffic insights

Data-driven space optimization

Blind resource allocation decisions

Enhanced student experience

Missing engagement metrics

Maximized marketing impact

Tansform campus data into actionable insights

ENHANCED ENGAGEMENT

Increase in student participation through data-driven event planning

IMPROVED ROI

Return on marketing investments with targeted campaigns

RESOURCE OPTIMIZATION

More efficient space and staff allocation

Real-time analytics → proactive campus decisions

Marketing & Events

Campaign Effectiveness Tracking Event Attendance Optimization

Facilities & Operations

Space Utilization Insights Resource Allocation Data

Campus Vendors

Customer Traffic Patterns
Peak Hours Optimization

Student Services

Service Accessibility Data Support Resource Planning

Administration

Strategic PlanningInsights ROI Measurement

Students

Enhanced Campus Experience Better Event Awareness

Current Solutions and Issues with the Status Quo

Guesswork-Based Decisions

Limited data collection

Error-prone manual counts

No real-time insights

Inefficient Resource Allocation

Misaligned resources

Staff/space under or over-utilized

Changes happen too late

Current Impact: estimated 30% Estimated Resource Waste

Solution Approach: Why Computer Vision is Critical

How Our Solution Addresses Issues

Automated, real-time data capture

Immediate visibility into traffic, usage, patterns

Dynamic resource optimization during events

Importance of CV

Scales across multiple locations without physical sensors

Non-invasive: protects privacy and requires no active participation

Enables detailed analysis of flow, density, and dwell time

Result: Smarter, faster, more efficient campus operations powered by visual intelligence

End-to-End Schematic START CV Pipeline (YOLOv8 + Metrics Storage (Supabase/ClickHouse) Image Acquisition Tracker) (Campus Cameras) Market Intelligence **Notification Service** Interactive Dashboard Edge Gateway Agent (Motion Filter / Privacy Mask) Feedback Loop (Labeling **END** & Retrain)

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @ 640px resolution.

Key upgrades: FlashAttention, NMS-free head, region-wise attention (+2 mAP vs YOLOv11).

Licensed under AGPL-3.0.

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @

640px resolution.

Key upgrades: FlashA

head, region-wise atte

YOLOV11).

Licensed under AGPL

INTENDED USE

Real-time crowd metrics for smarter campus engagement.

No identity tracking.

No enforcement.

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @

640px resolution.

Key upgrades: FlashA

head, region-wise atte

YOLOV11).

Licensed under AGPL

FACTORS FOR PERFORMANCE

INTEND

Real-time crowd metro campus engagement.

No identity tracking

No enforcement

Lighting, weather, and crowd occlusion.

Camera angles, video quality, and dataset bias.

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @

640px resolution.

Key upgrades: FlashA

head, region-wise atte YOLOv11).

Licensed under AGPL

TRAINING DATA

INTENDI

Real-time crowd metricampus engagement.

No identity tracking

No enforcement.

Pre-trained on COCO: 80 classes, everyday objects.

Fine-tuned on ASU campus footage, 45 minutes, frame-sampled for crowd patterns.

FACTOR PERFORI

Lighting, weather, and

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @

640px resolution.

Key upgrades: FlashA

head, region-wise atte YOLOv11).

Licensed under AGPL

TRAINING DATA

Pretrained on COCO: 80 classes everyday objects.

INTEND

Real-time crowd met campus engagement.

No identity tracking

No enforcement.

EVALUATION DATA

Held-out frames from ASU footage, unseen during fine-tuning.

Validated people detection accuracy, crowd density estimation.

FACTOR PERFORI

Lighting, weather, and

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @

640px resolution.

Key upgrades: FlashA

head, region-wise atte YOLOv11).

Licensed under AGPL

TRAINING DATA

Pretrained on COCO: 80 classes, everyday objects.

EVALUATION DATA

Held-out frames from ASU footage, unseen during fine-tuning.

pple detection accuracy, estimation.

INTENDI

Real-time crowd met campus engagement.

No identity tracking

No enforcement.

EVALUATION METRICS

Metrics ③

mAP@50 65.9% Precision

70.4%

Recall

65.1%

FACTOR PERFORI

Lighting, weather, and

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @

640px resolution.

Key upgrades; FlashA

head, region-wise atte YOLOv11).

Licensed under AGPL

TRAINING DATA

Pretrained on COCO: 80 classes, everyday objects.

EVALUATION DATA

Held-out frames from ASU footage, unseen during fine-tuning.

ple detection accuracy, estimation.

INTEND

Real-time crowd me campus engagement

No identity tracking

No enforcement

ETHICAL CONSIDERATIONS

Anonymized detection respecting individual privacy.

Strictly excludes identity, biometric, or surveillance use.

FACTOR PERFORI

Lighting, weather, and

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @

640px resolution.

Key upgrades: FlashA

head, region-wise atte YOLOv11).

Licensed under AGPL

TRAINING DATA

Pretrained on COCO: 80 classes, everyday objects.

EVALUATION DATA

Held-out frames from ASU footage, unseen during fine-tuning.

ple detection accuracy, estimation.

INTENDI

Real-time crowd metro campus engagement.

No identity tracking

No enforcement.

CAVEATS AND RECOMMENDATIONS

Performance drops in low-light, extreme crowding, or low-res feeds.

Retraining is recommended as environments or camera setups evolve.

THICAL

cking. No facial

anonymous movement

FACTOR PERFORI

Lighting, weather, and

MODEL DETAILS

YOLOv12 (n/s/m/l/x variants) released Feb 2025.

2.6M-59M params, 6.5-199 GFLOPs @ 640px resolution.

Key upgrades: FlashAttention, NMS-free head, region-wise attention (+2 mAP vs YOLOv11).

Licensed under AGPL-3.0.

TRAINING DATA

Pretrained on COCO: 80 classes, everyday objects.

Fine-tuned on ASU campus footage, 45 minutes, frame-sampled for crowd patterns.

EVALUATION DATA

Held-out frames from ASU footage, unseen during fine-tuning.

Validated people detection accuracy, crowd density estimation.

INTENDED USE

Real-time crowd metrics for smarter campus engagement.

No identity tracking.

No enforcement.

ETHICAL CONSIDERATIONS

No identity tracking. No facial recognition.

Designed for anonymous movement insights only.

FACTORS FOR PERFORMANCE

Lighting, weather, and crowd occlusion.

Camera angles, video quality, dataset bias.

EVALUATION METRICS

Metrics ③

mAP@50
65.9%

Precision
70.4%

Recall
65.1%

CAVEATS AND RECOMMENDATIONS

Performance drops in low-light, extreme crowding, or low-res feeds.

Retraining recommended as environments or camera setups evolve.

CV Solution Description

Proof of Concept

DATA COLLECTION BIAS AND LIMITATIONS

OPERATIONAL LIMITATIONS

MODEL BIAS & LIMITATIONS

DATA COLLECTION

OPERATIONAL

MODEL

Flow inaccuracies in crowds

Difficulty with group sizes

MITIGATION

Fine-tune with crowded scene datasets

Focus on density, not individual counts

Ethical, Privacy, and Security Risks

ETHICS

RISK

Non-consensual data usage

Surveillance concerns

MITIGATION

Public disclosures; clear signage

Transparency campaigns; stakeholder engagement

Ethical, Privacy, and Security Risks

PRIVACY

RISK

Identification of individuals

Cross-referencing with other data

MITIGATION

Blur/anonymize visual data

Prohibit external data merging; strict policies

Ethical, Privacy, and Security Risks

SECURITY

RISK

Unauthorized access or leaks

System vulnerabilities

MITIGATION

Encryption; limited access controls

Regular security audits; secured environments

Task Ownership

Task	Contributor(s)
Initiated project concept, framed end-to-end solution strategy	Madeline Kaufman, Surosh Kumar, Tyler Lai, Patrick Richey, M.T. Wilson
Defined project objectives and success criteria	Surosh Kumar
Led data acquisition: video sourcing, frame extraction, and annotation planning	Surosh Kumar
Annotation of data	Surosh Kumar, Tyler Lai, Patrick Richey
Selected YOLOv12 model architecture and fine-tuned with custom dataset	Surosh Kumar, Tyler Lai
Business strategy development	Madeline Kaufman, Surosh Kumar, Tyler Lai, Patrick Richey, M.T. Wilson
Conducted technical, operational, ethical, privacy, and security risk analysis	Madeline Kaufman, Surosh Kumar
Proposed mitigation strategies for identified risks	Madeline Kaufman
Scoped system sensitivities to layout, infrastructure, and environmental changes	Tyler Lai, Patrick Richey
Developed ethical safeguard recommendations (e.g., anonymization techniques, transparency plans)	Madeline Kaufman
Planned data security measures for storage, transmission, and processing	Madeline Kaufman
Drafted and designed major sections of the final presentation, including the model card and technical documentation	Madeline Kaufman, Surosh Kumar
Designed and reformatted presentation materials for clarity and accuracy	Madeline Kaufman, Surosh Kumar, Tyler Lai, Patrick Richey
Developed system workflow from image capture to actionable marketing insights	Surosh Kumar
Created marketing intelligence visualizations based on model outputs	Surosh Kumar
Model selection assistance	Madeline Kaufman, Surosh Kumar, Tyler Lai
Proof of concept development	Madeline Kaufman, Surosh Kumar, Tyler Lai, Patrick Richey, M.T. Wilson
End-to-end architecture outlining	Madeline Kaufman, Surosh Kumar, Tyler Lai, Patrick Richey, M.T. Wilson

Citations

Arizona State University. (n.d.). ASU campus maps and facilities overview. Retrieved April 26, 2025, from https://www.asu.edu/map/

Meta Platforms, Inc. (n.d.). React documentation: A JavaScript library for building user interfaces. Retrieved April 26, 2025, from https://react.dev/

Microsoft. (n.d.). *TypeScript documentation: JavaScript with syntax for types*. Retrieved April 26, 2025, from https://www.typescriptlang.org/docs/

Roboflow Inc. (n.d.). Roboflow documentation: Data annotation, model training, and deployment guides. Retrieved April 26, 2025, from https://docs.roboflow.com

Tailwind Labs. (n.d.). *Tailwind CSS documentation: Rapidly build modern websites*. Retrieved April 26, 2025, from https://tailwindcss.com/docs

Ultralytics. (2025). YOLOv12: Region-wise attention and FlashAttention integration. Retrieved from https://docs.ultralytics.com/models/yolov12

Vite Contributors. (n.d.). Vite: Next generation frontend tooling documentation. Retrieved April 26, 2025, from https://vitejs.dev/