Aplicación de CNNs en la conducción autónoma

Rafael Villca Poggian

Club de Ciencia de Datos

Contenido

- 1. Introducción
- 2. Proyecto
- 3. Resultados

Introducción

Sistemas de Conducción Autónoma

Procesaiento de Imágenes

Operaciones Morfológicas

Original Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the

company's software may recognize a date using "00" as 1900 rather than the year

Dilatación

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Original

Erosión

Original

Erosión

Dilatación (Apertura)

Flood Fill

Flood Fill

```
Algoritmo 1: Flood Fill
Requiere: mat : Matriz de valores
Requiere: y : coordenada vertical actual
Requiere: x: coordenada horizontal actual
Requiere: d : vector de direcciones
if mat[y][x] \neq val \& x, y dentro de mat then
   mat[y][x] = marca;
                                  // se marca como visitado
   x_1, y_1 \leftarrow min(x_1, j), min(y_1, i)
   x_2, y_2 \leftarrow max(x_2, j), max(y_2, i)
   for i \rightarrow length d do
       flood_fill(mat, y+d[i].y, x+d[i].x)
   end
end
/* si ya está visitado finaliza la rama de recursión */
```

K-Means

Sea R de dimensiones $m \times k$ y un elemento r_{ij}

$$J = \sum_{i=1}^{m} \sum_{j=1}^{k} r_{ij} ||x_i - \mu_j||^2$$

$$r_{ij} = \begin{cases} 1 & si \ j = \underset{p}{argmin} ||x_i - \mu_p|| \\ 0 & e.o.c \end{cases}$$

$$\mu_j = \frac{\sum_{i} r_{ij} x_i}{\sum_{i} r_{ij}}$$

Visión Computacional

Medias Móviles Exponenciales

- promedia los valores en un tiempo t de manera ponderada exponencialmente por los términos anteriores de la serie.
- Se aplica para encontrar tendencias y suavizar oscilaciones dadas por valores atípicos de poca duración en la señal

$$S_{t} = \begin{cases} y_{0}, & t = 0\\ \alpha y_{t} + (1 - \alpha)S_{t-1}, & t \ge 1 \end{cases}$$

Convolución Separable

- Se separa la convolución en dos etapas para obtener velocidad a costa de exactitud.
- Depthwise: entrada de dimensiones h_i × w_i × c con c filtros de k × k, para obtener una salida de dimensiones h_o × w_o × c.
- **Pointwise:** sobre el anterior paso aplica d filtros de dimensiones $1 \times 1 \times c$, para apilar las salidas y obtener una capa de $h_o \times w_o \times d$
- Este mismo resultado se puede obtener mediante una capa estándar, aplicando d filtros de dimensión $k \times k \times c$
- El número de operaciones es mayor, ya que se realizan $h_i \cdot w_i \cdot c \cdot k^2 \cdot d$
- Esta modificación realiza $h_i \cdot w_i \cdot c \cdot k^2 + h_o \cdot w_o \cdot c \cdot 1^2 \cdot d$ operaciones, $h \cdot w \cdot c \cdot (k^2 + d)$ si la entrada y salida tienen las mismas dimensiones.

Cuello de Botella Residual

 En base esta nueva convolución, se proponen bloques denominados cuellos de botella residuales

- ullet Consisten en una capa PointWise con no linealidad Relu truncada con valor máximo 6 llamada Relu6 para obtener $t\cdot k$ filtros
- Seguido de una capa DepthWise 3×3 con stride s y Relu6
- Finalmente otra capa PointWise sin activación no lineal y que devuelve d filtros

MobileNet V2

Entrada	Operador	Factor t	Canales c	Repeticiones n	Stride s
$224^{2} \times 3$	conv2d	-	32	1	2
$112^{2} \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^{2} \times 32$	bottleneck	6	64	4	2
$14^{2} \times 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^2 \times 160$	bottleneck	6	320	1	1
$7^2 \times 320$	conv2d 1×1	-	1280	1	1
$7^2 \times 1280$	avg pool 7×7	-	-	1	-
$1^2 \times 1280$	conv2d 1×1	-	#clases	-	-

FastDepth

SCORECAM

Métricas de Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y} - y)^{2}$$

$$P = \frac{T_{p}}{T_{p} + F_{p}}$$

$$R = \frac{T_{p}}{T_{p} + F_{n}}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y} - y|$$

$$F = 2 \frac{P \cdot R}{P + P}$$

$$R = \frac{T_p}{T_p + F_n}$$
$$F = 2\frac{P \cdot R}{P + R}$$

Proyecto

Estructura del Proyecto

Extracción de datos

Profundidad

Segmentación

Entrenamiento de las Redes Neuronales

DriveNet

DepthNet y SemsegNet

Clasificación del Color

Modelo

Resultados

Curvas de Aprendizaje

Resultados Profundidad

Resultados Semseg

Resultados Semseg

Clase	Precisión	Exhaustividad	Valor-F
Peatones	0.7141	0.4825	0.5759
Postes	0.7398	0.5404	0.6246
Vehículos	0.9402	0.9254	0.9327
Señales	0.7802	0.6496	0.7089

Clase	IoU	
Peatones	45.72%	
Postes	31.93%	
Vehículos	72.46%	
Señales	37.25%	

Resultados Semseg

Semáfor<u>os</u>

ROI

Zonas de Interés CNN

Fallos

