

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T \mathcal{Y} \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки
⁻ КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Кручение стержня прямоугольного сечения

Студент	ФН2-51Б		В. Г. Пиневич	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Руководитель курсовой работы			A. D. Wamanyu	
			А.В. Котович	
		(Подпись, дата)	(И. О. Фамилия)	

Оглавление 2

Оглавление

В	ведение	3
1.	Постановка задачи	3
	1.1. Кручение	3
	1.2. Определения	4
2.	Решение задачи о кручении стержня энергетическим методом	4
3.	Решение задачи о кручении стержня методом Ритца	5
За	ключение	8
Ст	тисок использованных источников	Q

Введение 3

Введение

Проблема решения задачи о скручивании балки возникает во многих задачах, в частности в строительной механике. < Что-то написать здесь>. Данная работа посвящена изучению двух численных методов решения таких задач, оценке их точности.

1. Постановка задачи

1.1. Кручение

Кручением называется такой вид нагружения стержня, при котором из всех шести внутренних силовых факторов в его поперечных сечениях не равен нулю только крутящий момент $M_{\rm kp}$.

Рассмотрим стержень прямоугольного сечения. Такой стержень при закручивании подвержен депланациям («выходят из плоскости»). Другими словами депланация означает, что точки сечения перемещаются вдоль оси стержня в различных направлениях.

Рис. 1. Кручение стержня прямоугольного сечения

Будем решать задачу о его кручении двумя способами: энергетическим методом (в виде ряда по ортогональной системе функций) и методом Ритца (в виде ряда по степенным функциям).

Совместим ось z с осью кручения, оси x и y расположим произвольно в плоскости поперечного сечения. Задача кручения сходится к поиску функции ψ (1) [2]. Эта функция должна быть постоянна вдоль границы поперечного сечения, константу можно выбирать произвольно. Мы будем принимать ее равной нулю.

$$\Delta \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -2G\theta,\tag{1}$$

где G — модуль сдвига, θ — угол закручивания на единицу времени.

1.2. Определения

<Функан>

2. Решение задачи о кручении стержня энергетическим методом

Рассмотрим задачу [1] о кручении стержня, основание которого представляет собой прямоугольник $0 \leqslant x \leqslant a, \ 0 \leqslant y \leqslant b$. Функция кручения $\psi(x,y)$ удовлетворяет условию $-\Delta \psi = 2G\theta$ (1).

Функция $\psi(x,y)$ обращается в нуль на сторонах прямоугольника $x=0,\,x=a,$ $y=0,\,y=b.$

Энергетическое произведение функций u(x,y), v(x,y) выражается формулой

$$[u, v] = -\int_{0}^{a} \int_{0}^{b} (v(x, y)\Delta u(x, y)) dxdy,$$
 (2)

энергетическая норма

$$||u||^{2} = -\int_{0}^{a} \int_{0}^{b} (u(x,y)\Delta u(x,y)) dxdy,$$
 (3)

Функции

$$\varphi_{mn}(x,y) = \sin\frac{m\pi x}{a} \sin\frac{n\pi y}{b}, \quad m,n = 1,2,\dots$$
 (4)

- непрерывно дифференцируемы сколько угодно раз и обращаются в нуль на контуре прямоугольника и потому входят в область определения оператора данной задачи;
- ортогональны по энергии;
- не нормированы.

Докажем ортогональность, для этого заметим, что

$$\Delta\varphi_{mn}(x,y) = -\pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right) \varphi_{mn}(x,y). \tag{5}$$

Тогда

$$[\varphi_{mn}, \varphi_{rs}] = -\int_{0}^{a} \int_{0}^{b} \varphi_{mn} \Delta \varphi_{rs} dx dy$$
$$[\varphi_{mn}, \varphi_{rs}] = \pi^{2} \left(\frac{r^{2}}{a^{2}} + \frac{s^{2}}{b^{2}}\right) \int_{0}^{a} \sin\left(\frac{m\pi x}{a}\sin\frac{r\pi x}{a}\right) dx \int_{0}^{a} \sin\left(\frac{n\pi y}{b}\sin\frac{s\pi y}{b}\right) dy.$$

Если $m \neq r$ или $nx \neq s$, то $[\varphi_{mn}, \varphi_{rs}] = 0$. Пологая, что r = m и s = n, найдем

$$\|\varphi_{mn}\|^2 = \frac{\pi^2 \left(b^2 m^2 + a^2 n^2\right)}{4ab},$$

следовательно система функций (4) не нормированная. Поделим φ_{mn} на $\|\varphi_{mn}\|$, получим систему

$$\psi_{mn}(x,y) = \frac{2}{\pi} \sqrt{\frac{ab}{b^2 m^2 + a^2 n^2}} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.$$
 (6)

По формуле (??) функция кручения представляется рядом

$$\psi(x,y) = \sum_{m,n=1}^{\infty} (2G\theta, \psi_{mn}) \,\psi_{mn}(x,y), \tag{7}$$

коэффициенты которого равны

$$(2G\theta, \psi_{mn}) = \frac{4G\theta}{\pi} \int_{0}^{a} \sin\left(\frac{m\pi x}{a}\right) dx \int_{0}^{b} \sin\left(\frac{n\pi y}{b}\right) dy =$$
$$= \frac{4abG\theta}{\pi^{3}mn} \sqrt{\frac{ab}{b^{2}m^{2} + a^{2}n^{2}}} [1 - (-1)^{m}] [1 - (-1)^{n}].$$

Заметим, что коэффициенты ряда (7) равны нулю, если хотя бы одно из чисел m или n четное. В противном случае

$$(2G\theta, \psi_{mn}) = \frac{4abG\theta}{\pi^3 mn} \sqrt{\frac{ab}{b^2 m^2 + a^2 n^2}},$$

откуда, соотношение (7) примет итоговый вид

$$\psi(x,y) = \frac{32a^2b^2G\theta}{\pi^4} \sum_{m,n=1,3,5,\dots} \frac{\sin\frac{m\pi x}{a} \sin\frac{n\pi y}{b}}{mn(b^2m^2 + a^2n^2)}.$$
 (8)

Рассмотрим график и линии уровни функции (8)

3. Решение задачи о кручении стержня методом Ритца

Решение задачи кручения стержня прямоугольного сечения [1], как уже было показано выше, сводится к интегрированию уравнения Пуассона (1)

$$-\Delta \psi = 2G\theta$$
,

где G — модуль сдвига, θ — угол закручивания стержня на единицу его длины, в прямоугольнике

$$-a \leqslant x \leqslant a, -b \leqslant y \leqslant b$$

Рис. 2. Кручение стержня прямоугольного сечения

Рис. 3. Кручение стержня прямоугольного сечения

при краевых условиях

$$\psi(\pm a, y) = \psi(x, \pm b) = 0.$$

Полагая для упрощения $\psi = 2G\theta u$, получим задачу в виде

$$\begin{cases}
-\Delta u = 1, \\
u(\pm a, y) = u(x, \pm b) = 0.
\end{cases}$$
(9)

Применим метод Ритца, взяв за координатные функции полиномы. Из соображений симметрии ясно, что функция u(x,y) четна как по x, так и относительно y. Такие многочлены, равные нулю на контуре прямоугольника, т. е. на прямых $x=\pm a$, $y=\pm b$ имеют вид

$$(x^2 - a^2)(y^2 - b^2)(a_1 + a_2x^2 + a_3y^2 + \dots)$$
(10)

Ограничимся тремя членами и положим приближенно

$$u \approx u_3 = (x^2 - a^2)(y^2 - b^2)(a_1 + a_2x^2 + a_3y^2). \tag{11}$$

Найдя соответствующие производные и приравняв их нулю, получим систему линейных алгебраических уравнений Ритца, вида (??), решение которой в данном случае

$$\begin{cases}
a_1 = \frac{35(9a^4 + 130a^2b^2 + 9b^4)}{16(45a^6 + 509a^4b^2 + 509a^2b^4 + 45b^6)}, \\
a_2 = \frac{105(9a^2 + b^2)}{16(45a^6 + 509a^4b^2 + 509a^2b^4 + 45b^6)}, \\
a_3 = \frac{105(a^2 + 9b^2)}{16(45a^6 + 509a^4b^2 + 509a^2b^4 + 45b^6)}.
\end{cases} (12)$$

Рассмотрим график и линии уровни функции (11)

Рис. 4. Кручение стержня прямоугольного сечения

Рис. 5. Кручение стержня прямоугольного сечения

Заключение 8

Заключение

В ходе выполнения курсовой были изучены методы интегрирования и обобщенных функций нахождения уравнения упругого изгиба стержня. С помощью этих методов были решены два типа задач, их результаты оказались идентичны. Метод интегрирования является более трудоемким и менее удобным по сравнению с методом обобщенных функций, так как требует учета большего количества граничных условий и большего объема вычислений.

Список использованных источников

- 1. С. Г. Михлин. Вариационные методы в математической физике, М.: Изд-во Наука, 1970. 512 с.
- 2. С. П. Тимошенко, Дж. Гудьер. Теория упругости, М.: Изд-во Наука, 1975. 576 с.