Démonstration Si G = (V, E), soit $v \in V$ Supposons que: • $v \in e_1$ où $e_1 \in M\Delta P$ • $v \in e_2$ où $e_2 \in M\Delta P$ On ne peut pas avoir $e_1 \in M$ et $e_2 \in M$ (car M couplage) ni $e_1 \in P \setminus M$ et $e_2 \in P \setminus M$ (car ce ne serait pas alternant). Par symétrie, supposons $e_1 \in M \backslash P$ et $e_2 \in P \backslash M$ 1. Si v est extrémité de P: **absurde** car v est libre (P augmentant) mais v adjacent à $e_1 \in M$ 2. $\exists e_3 \neq e_2 \in P$ adjacent à v, P est augmentant et $e_2 \notin M$ donc $e_3 \in M$ absurde car v adjacent à 2 arêtes de M