Resumen 12

1 Definición Sea D un conjunto en \mathbb{R}^2 (una región plana). Un **campo vectorial sobre** \mathbb{R}^2 es una función \mathbf{F} que asigna a cada punto (x, y) en D un vector bidimensional $\mathbf{F}(x, y)$.

2 Definición Sea E un subconjunto de \mathbb{R}^3 . Un **campo vectorial sobre** \mathbb{R}^3 es una función \mathbf{F} que asigna a cada punto (x, y, z) en E un vector tridimensional $\mathbf{F}(x, y, z)$.

Campos gradiente

Si f es una función escalar de dos variables, de acuerdo con la sección 14.6 su gradiente ∇f (o grad f), se define como

$$\nabla f(x, y) = f_x(x, y) \mathbf{i} + f_y(x, y) \mathbf{j}$$

Por tanto, ∇f es realmente un campo vectorial sobre \mathbb{R}^2 y se llama **campo vectorial gradiente**. Del mismo modo, si f es una función escalar de tres variables, su gradiente es un campo vectorial sobre \mathbb{R}^3 dado por

$$\nabla f(x, y, z) = f_x(x, y, z) \mathbf{i} + f_y(x, y, z) \mathbf{j} + f_z(x, y, z) \mathbf{k}$$

2 Definición Si f se define sobre una curva C suave dada por las ecuaciones 1, entonces la **integral de línea de f a lo largo de C** es

$$\int_C f(x, y) ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i$$

si este límite existe.

$$\int_C f(x, y) ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Las fórmulas siguientes establecen que las integrales de línea respecto a x y y se pueden también evaluar expresando todo en términos de t: x = x(t), y = y(t), dx = x'(t) dt, dy = y'(t) dt.

$$\int_{C} f(x, y) dx = \int_{a}^{b} f(x(t), y(t)) x'(t) dt$$

$$\int_{C} f(x, y) dy = \int_{a}^{b} f(x(t), y(t)) y'(t) dt$$

recordar que una representación vectorial del segmento rectilíneo que inicia en \mathbf{r}_0 y termina en \mathbf{r}_1 está dado por

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1 \qquad 0 \le t \le 1$$

Definición Sea F un campo vectorial continuo definido sobre una curva suave C dada por una función vectorial $\mathbf{r}(t)$, $a \le t \le b$. Entonces la integral de línea de F a lo largo de C es

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz \qquad \text{donde } \mathbf{F} = P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}$$

2 Teorema Sea C una curva suave definida por la función vectorial $\mathbf{r}(t)$, $a \le t \le b$. Sea f la función derivable de dos o tres variables cuyo vector gradiente ∇f es continuo sobre C. Entonces

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

$$\int_C \nabla f \cdot d\mathbf{r} = f(x_2, y_2) - f(x_1, y_1)$$

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$

3 Teorema $\int_C \mathbf{F} \cdot d\mathbf{r}$ es independiente de la trayectoria en D si y sólo si $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ para toda trayectoria cerrada C en D.

4 Teorema Supongamos que \mathbf{F} es un campo vectorial que es continuo sobre una región conexa abierta D. Si $\int_C \mathbf{F} \cdot d\mathbf{r}$ es independiente de la trayectoria en D, entonces \mathbf{F} es un campo vectorial conservativo sobre D, es decir, existe una función f tal que $\nabla f = \mathbf{F}$.

5 Teorema Si $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ es un campo vectorial conservativo, donde P y Q tienen derivadas parciales continuas de primer orden sobre un dominio D, entonces en la totalidad de D tenemos

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Teorema Sea $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ un campo vectorial sobre una región simplemente conexa D. Supongamos que P y Q tienen derivadas continuas de primer orden y

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 en toda la región D

Entonces **F** es conservativo.

Conservación de la energía

Aplicaremos las ideas de este capítulo a un campo de fuerzas continuo \mathbf{F} que hace que se desplace un objeto a lo largo de una trayectoria C definida por $\mathbf{r}(t)$, $a \le t \le b$, donde $\mathbf{r}(a) = A$ es el punto inicial y $\mathbf{r}(b) = B$ es el punto terminal de C. De acuerdo con la segunda ley de Newton del movimiento (véase la sección 13.4), la fuerza $\mathbf{F}(\mathbf{r}(t))$ en un punto sobre C se relaciona con la aceleración $\mathbf{a}(t) = \mathbf{r}''(t)$ mediante la ecuación

$$\mathbf{F}(\mathbf{r}(t)) = m\mathbf{r}''(t)$$

Teorema de Green Sea C una curva simple cerrada, suave por tramos con orientación positiva en el plano, y sea D la región que delimita C. Si P y Q tienen derivadas parciales continuas sobre una región abierta que contiene a D, entonces

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Superficies paramétricas

Casi de la misma manera como se describió una curva en el espacio mediante una función vectorial $\mathbf{r}(t)$ de un solo parámetro t, podemos describir una superficie mediante una función vectorial $\mathbf{r}(u, v)$ de dos parámetros u y v. Suponemos que

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k}$$

es una función con valor vectorial definida sobre una región D en el plano uv. De este modo, x, y y z, las funciones componentes de \mathbf{r} , son funciones de dos variables u y v con dominio D. El conjunto de todos los puntos (x, y, z) en \mathbb{R}^3 tal que

y (u, v) varía en todo el dominio D, se llama **superficie paramétrica** S y las ecuaciones 2 se llaman **ecuaciones paramétricas** de S. Cada elección de u y v da un punto sobre S; luego de efectuar todas las elecciones, obtenemos todo S. En otras palabras, la superficie S es trazada por la punta del vector de posición $\mathbf{r}(u, v)$ cuando (u, v) se desplaza por toda la región D (véase la figura 1).

