12ML:: BASICS

Data

 $\mathcal{X} \subseteq \mathbb{R}^p$: p-dimensional **feature space** / input space Usually we assume categorical features to be numerically encoded.

${\cal Y}$: target space

e.g.: $\mathcal{Y}=\mathbb{R}$ for regression, $\mathcal{Y}=\{0,1\}$ or $\mathcal{Y}=\{-1,+1\}$ for binary classification, $\mathcal{Y}=\{1,\ldots,g\}$ for multi-class classification with g classes

 $\mathbf{x} = (x_1, \dots, x_p)^T \in \mathcal{X}$: **feature vector** / covariate vector

 $y \in \mathcal{Y}$: **target variable** / output variable Concrete samples are called labels

 $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{X} \times \mathcal{Y}$: i -th observation / sample / instance / example

 $\mathbb{D} = \bigcup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n$: set of all finite data sets

 $\mathbb{D}_n = (\mathcal{X} \times \mathcal{Y})^n \subseteq \mathbb{D}$: set of all finite data sets of size n

 $\mathcal{D} = ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})) \in \mathbb{D}_n : \mathbf{data} \mathbf{set} \text{ of size } n.$ An n-tuple, a family indexed by $\{1, \dots, n\}$. We use \mathcal{D}_n to emphasize its size.

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}} \subseteq \mathcal{D}$: data sets for training and testing Often: $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \ \dot{\cup} \ \mathcal{D}_{\mathsf{test}}$

 \mathbb{P}_{xy} : joint probability distribution on $\mathcal{X} \times \mathcal{Y}$

Classification

 $o_k(y) = \mathbb{I}(y = k) \in \{0, 1\}$: multiclass one-hot encoding, if y is class k. We write $\mathbf{o}(y)$ for the g-length encoding vector and $o_k^{(i)} = o_k(y^{(i)})$

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k In case of binary labels we might abbreviate: $\pi = \mathbb{P}(y = 1)$.

Model and Learner

Model / Hypothesis: $f: \mathcal{X} \to \mathbb{R}^g$ maps features to predictions, often parametrized by $\theta \in \Theta$ (then we write $f_{\theta}(\mathbf{x})$ or $f(\mathbf{x}|\theta)$).

 $\Theta \subseteq \mathbb{R}^d$: parameter space

 $\theta = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model **parameter** vector Some models may traditionally use different symbols.

 $\mathcal{H} = \{f : \mathcal{X} \to \mathbb{R}^g \mid f \text{ belongs to a certain functional family} \}$: **Hypothesis space** – set of functions to which we restrict learning

Learner / Inducer $\mathcal{I}: \mathbb{D} \times \Lambda \to \mathcal{H}$ takes a training set $\mathcal{D}_{\mathsf{train}} \in \mathbb{D}$, produces model $f: \mathcal{X} \to \mathbb{R}^g$, with hyperparam. configuration $\lambda \in \Lambda$. We also write $\mathcal{I}: \mathbb{D} \times \Lambda \to \Theta$ or $\mathcal{I}_{\lambda}: \mathbb{D} \to \Theta$

 $\Lambda = \Lambda_1 \times \Lambda_2 \times ... \times \Lambda_\ell \subseteq \mathbb{R}^\ell$: hyperparameter space Λ_i are usually bounded real or integer intervals or a finite categorical set

 $oldsymbol{\lambda} = (\lambda_1, \lambda_2, ..., \lambda_\ell) \in oldsymbol{\Lambda}$: hyperparameter configuration

 $\epsilon = y - f(\mathbf{x})$ or $\epsilon^{(i)} = y^{(i)} - f(\mathbf{x}^{(i)})$: (i-th) **residual** in regression

Classification

 $\pi_k(\mathbf{x}): \mathcal{X} \to [0,1]$ probability prediction for class k, approximates $\mathbb{P}(y=k\mid \mathbf{x})$; for binary we abbreviate with $\pi(\mathbf{x})$ for $\mathbb{P}(y=1\mid \mathbf{x})$.

 $f_k(\mathbf{x}): \mathcal{X} \to \mathbb{R}$: **scoring** / discriminant **function** for class k; for binary we use $f(\mathbf{x}) = f_1(\mathbf{x}) - f_2(\mathbf{x})$

 $h(\mathbf{x}): \mathcal{X} \to \mathcal{Y}:$ hard label function; Typically created by $h(\mathbf{x}) = \arg \max f_k(\mathbf{x})$ or $h(\mathbf{x}) = \arg \max \pi_k(\mathbf{x})$

 $yf(\mathbf{x})$ or $y^{(i)}f(\mathbf{x}^{(i)})$: margin for (i-th) observation in binary classification

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(\mathbf{x})$, $\hat{\pi}(\mathbf{x})$ and $\hat{\boldsymbol{\theta}}$

The hat symbol denotes **learned** functions and parameters.

Loss, Risk and ERM

 $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}_0^+:$ loss function: Quantifies "quality" $L(y, f(\mathbf{x}))$ of prediction $f(\mathbf{x})$ (or $L(y, \pi(\mathbf{x}))$ of prediction $\pi(\mathbf{x})$) for true y.

 $\mathcal{R}_{\mathsf{emp}}: \mathcal{H} o \mathbb{R}:$ (theoretical) risk; $\mathcal{R}(f) = \mathbb{E}_{((\mathbf{x},y) \sim \mathbb{P}_{\mathsf{xv}})}[L\left(y,f(\mathbf{x})
ight)]$

 $\mathcal{R}_{\mathsf{emp}}:\mathcal{H} o \mathbb{R}:$ empirical risk; $\mathcal{R}_{\mathsf{emp}}(f) = \sum_{i=1}^n L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$

Since f is usually defined by **parameters** θ , we also write: $\mathcal{R}_{emp}: \Theta \to \mathbb{R}; \ \mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \theta\right)\right)$

Empirical risk minimization (ERM): $\hat{m{ heta}} \in \arg\min_{m{ heta} \in \Theta} \mathcal{R}_{\mathsf{emp}}(m{ heta})$

Regression Losses

L2 loss / squared error:

- $ightharpoonup L(y, f(x)) = (y f(x))^2 \text{ or } L(y, f(x)) = 0.5(y f(x))^2$
- ► Convex and differentiable, non-robust against outliers
- ► Optimal constant model: $\hat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} = \bar{y}$
- ▶ Optimal model over \mathbb{P}_{xy} for unrestricted \mathcal{H} : $\hat{f}(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}]$

L1 loss / absolute error:

- $ightharpoonup L(y, f(\mathbf{x})) = |y f(\mathbf{x})|$
- ► Convex and more robust, non-differentiable
- ▶ Optimal constant model: $\hat{f}(\mathbf{x}) = \text{med}(y^{(1)}, \dots, y^{(n)})$
- ▶ Optimal model over \mathbb{P}_{xy} for unrestricted \mathcal{H} : $\hat{f}(\mathbf{x}) = \text{med}[y|\mathbf{x}]$

Classification Losses

0-1-loss (binary case)

 $L(y, h(\mathbf{x})) = \mathbb{I}(y \neq h(\mathbf{x}))$

 $L(y, f(\mathbf{x})) = \mathbb{I}(yf(\mathbf{x}) < 0) \text{ for } \mathcal{Y} = \{-1, +1\}$

Discontinuous, results in NP-hard optimization

Brier score (binary case)

 $L(y, \pi(\mathbf{x})) = (\pi(\mathbf{x}) - y)^2$ for $\mathcal{Y} = \{0, 1\}$ Least-squares on probabilities

Log-loss / Bernoulli loss / binomial loss (binary case)

 $L(y, \pi(\mathbf{x})) = -y \log(\pi(\mathbf{x})) - (1 - y) \log(1 - \pi(\mathbf{x}))$ for $\mathcal{Y} = \{0, 1\}$ $L(y, \pi(\mathbf{x})) = \log(1 + (\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})})^{-y})$ for $\mathcal{Y} = \{-1, +1\}$

Assuming a logit-link $\pi(\mathbf{x}) = \exp(f(\mathbf{x}))/(1 + \exp(f(\mathbf{x})))$: $L(y, f(\mathbf{x})) = -y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x})))$ for $\mathcal{Y} = \{0, 1\}$ $L(y, f(\mathbf{x})) = \log(1 + \exp(-y \cdot f(\mathbf{x})))$ for $\mathcal{Y} = \{-1, +1\}$ Penalizes confidently-wrong predictions heavily

Brier score (multi-class case)

$$L(y, \pi(\mathbf{x})) = \sum_{k=1}^{g} (\pi_k(\mathbf{x}) - o_k(y))^2$$

Log-loss (multi-class case)

$$L(y, \pi(\mathbf{x})) = -\sum_{k=1}^{g} o_k(y) \log(\pi_k(\mathbf{x}))$$

Optimal constant models

0-1-loss: $h(\mathbf{x}) \in \operatorname*{arg\,max}_{j \in 0,1} \sum_{i=1}^{n} \mathbb{I}(y^{(i)} = j)$

Brier and log-loss (binary): $\hat{\pi}(\mathbf{x}) = \bar{y}$ Brier and log-loss (multiclass): $\hat{\pi}(\mathbf{x}) = \left(\frac{1}{n}\sum_{i=1}^{n}o_{1}^{(i)},\ldots,\frac{1}{n}\sum_{i=1}^{n}o_{g}^{(i)}\right)$