

Registers and Counters

Contents

- 1. Registers and Register Transfers
- 2. Shift Registers
- 3. Design of Binary Counters
- 4. Counters for Other Sequences
- 5. Counter Design using S-R and J-K Flip-Flops
- 6. Derivation of Flip-Flop Input Equations Summary

Objectives

- Explain the operation of registers. Show how to transfer data between registers using a tri-state bus.
- Explain the operation of shift registers, show how to build them using flip-flops, and analyze their operation. Construct a timing diagram for a shift register.
- Explain the operation of binary counters, show how to build them using flip-flops and gates, and analyze their operation.
- Given the present state and desired next state of a flip-flop, determine the required flip-flop inputs.
- Given the desired counting sequence for a counter, derive the flip-flop input equations.
- Explain the procedures used for deriving flip-flop input equations.
- Construct a timing diagram for a counter by tracing signals through the circuit.

Introduction:

- A register consists of a group of flip-flops with a common clock input. Registers are commonly used to store and shift binary data.
- A counter is usually constructed from two or more flip-flops which change states in a prescribed sequence when input pulses are received.

4-Bit D Flip-Flop Registers with Data, Load, Clear and Clock Inputs:

- When Load = 1, the clock signal (Clk) is transmitted to the flip-flop clock inputs and the data applied to the *D* inputs will be loaded into the flip-flop on the falling edge of the clock.
- The flip-flops in the register have asynchronous clear inputs that are connected to a common clear signal, ClrN. ClrN is normally 1, and if it is changed momentarily to 0, the *Q* outputs of all four flip-flops will become 0.
- Note that gating the clock with another signal can cause timing problems.

4-Bit D Flip-Flop Registers with Clock Enable:

- The load signal is connected to all four CE inputs. When Load = 0, the clock is disabled and the register holds its data. When Load is 1, the clock is enabled, and the data applied to the *D* inputs will be loaded into the flip-flops, following the falling edge of the clock.
- Figure (c) shows a symbol for the 4-bit register using bus notation for the D inputs and Q outputs. A group of wires that perform a common function is often referred to as a bus. A heavy line is used to represent a bus, and a slash with a number beside it indicates the number of bits in the bus.

Data Transfer Between Registers:

- If En = 1 and Load = 1, the output of register <u>A</u> is enabled onto the tri-state bus and the data in register A will be stored in Q after the rising edge of the clock.
- If En = 0 and Load = 1, the output of register <u>B</u> will be enabled onto the tri-state bus and stored in Q after the rising edge of the clock.

FIGURE 12-2

Data Transfer Between Registers

© Cengage Learning 2014

8-Bit Register with Tri-State Output:

- Figure 12-3(a) shows an integrated circuit register that contains eight *D* flip-flops with tri-state buffers at the flip-flop outputs.
- These buffers are enabled when En = 0. A symbol for this 8-bit register is shown in Figure 12-3(b).

FIGURE 12-3

Logic Diagram for 8-Bit Register with Tri-State Output

Cengage Learning 2014

Data Transfer Using a Tri-State Bus:

- When EnA = 0, the tri-state outputs of register A are enabled on to the bus.
- If LdG = 1, these signals of the bus are loaded into register G after the rising clock edge (or into register H if LdH = 1)
- If LdG = LdH = 1, both G and H will be loaded from the bus.

FIGURE 12-4 Data Transfer Using a Tri-State Bus © Cengage Learning 2014

If EF = 00, A is stored in G (or H).

If EF = 01, B is stored in G (or H).

If EF = 10, C is stored in G (or H).

If EF = 11, D is stored in G (or H).

Parallel Adder with Accumulator:

- It is frequently desirable to store one number in a register of flip-flops (called an **accumulator**) and add a second number to it, leaving the result stored in the accumulator.
- An add signal (Ad) is used to load the adder outputs into the accumulator flip-flops on the rising clock edge.
- The next state of the filp-flop can be written as $x_i^+ = s_i$.
- If Ad = 1, the number X in the accumulator is replaced with the sum of X and Y, following the rising edge of the clock.

© Cengage Learning 2014 x_n x_t x_t

FIGURE 12-5 n-Bit Parallel Adder with Accumulator

Adder Cell with Multiplexer:

- Figure 12-6 shows a typical cell of the adder where the accumulator flip-flop can either be loaded directly from y_i or from the sum output s_i through the multiplexer.
- This would eliminate the extra step of clearing the accumulator but would add to the hardware complexity. (Otherwise clear the accumulator using the asynchronous clear inputs on the flip-flops)
- When Ld = 1, the multiplexer selects y_i , and y_i is loaded into the accumulator flip-flop (x_i) on the rising clock edge.
- When Ad = 1 and Ld = 0, the adder output (s_i) is loaded into x_i .
- The *Ad* and *Ld* signals are ORed together to enable the clock when either addition or loading occurs.
- When Ad = Ld = 0, the clock is disabled and the accumulator outputs do not change.

FIGURE 12-6 Adder Cell with Multiplexer

Cengage Learning 2014

Shift Registers:

- A shift register is a register in which binary data can be stored, and this data can be shifted to the left or right when a shift signal is applied.
- Shifts can be linear or cyclic.
- The figure shows a 4-bit right-shift register with serial input and output constructed from *D* flip-flops.
- When Shift = 1, the clock is enabled and shifting occurs on the rising clock edge.
 When Shift = 0, no shifting occurs and the data in the register is unchanged.

(b) Timing diagram

Serial-In Serial-Out Shift Registers:

- Serial in means that data is shifted into the first flip-flop one bit at a time, and the flip-flops cannot be loaded in parallel.
- Serial out means that data can only be read out of the last flip-flop and the outputs from the other flip-flops are not connected to terminals of the integrated circuit.
- The inputs to the first flip-flops are S = SI and R = SI'.

• If SI = 1, a 1 is shifted into the register when it is clocked, and if SI = 0, a 0 is shifted in.

Parallel-In Parallel-Out Shift Register:

- Parallel-in implies that all four bits can be loaded at the same time, and parallel-out implies that all bits can be read out at the same time.
- The shift register has two control inputs, shift enable (Sh) and load enable (L).
- If Sh = 1 (and L=1, or L=0), clocking the register causes the serial input (SI) to be shifted into the first flip-flop, while the data in flip-flops Q_3 , Q_2 , Q_1 are shifted right.
- If Sh = 0 and L = 1, clocking the shift register will cause the four data inputs (D_3, D_2, D_1, D_0) to be loaded in parallel into the flip-flops.
- If Sh = L = 0, clocking the register causes no change of state.

TABLE12-1
Shift Register
Operation

© Cengage Learning 2014

In	puts		Next			
Sh (Shift)	L (Load)	Q ₃ +	Q_{2}^{+}	Q_1^{+}	Q_0^{+}	Action
0	0	Q_3	Q_2	Q_1	Q_0	No change
0	1	D_3	D_2	D_1	D_0	Load
1	Х	SI	Q_3	Q_2	Q_1	Right shift

Parallel-Out

Parallel-Out Right-Shift Register

© Cengage Learning 2014

(a) Block diagram

Parallel-In Parallel-Out Shift Register:

- For the first flip-flop, when Sh = L = 0, the flip-flop Q_3 output is selected by the MUX, so $Q_3^+ = Q_3$ and no state change occurs.
- When Sh = 0 and L = 1, the data input D_3 is selected and loaded into the flip-flop.
- When Sh = 1 and L = 0, 1, SI is selected and loaded into the flip-flop. The second MUX selects Q_2 , D_2 or Q_3 , etc.
- The next-state equations for the flip-flops are

$$Q_3^+ = Sh' \cdot L' \cdot Q_3 + Sh' \cdot L \cdot D_3 + Sh \cdot SI$$

$$Q_2^+ = Sh' \cdot L' \cdot Q_2 + Sh' \cdot L \cdot D_2 + Sh \cdot Q_3$$

$$Q_1^+ = Sh' \cdot L' \cdot Q_1 + Sh' \cdot L \cdot D_1 + Sh \cdot Q_2$$

$$Q_0^+ = Sh' \cdot L' \cdot Q_0 + Sh' \cdot L \cdot D_0 + Sh \cdot Q_1$$

Conversion of Parallel Data to Serial Data:

- The output from the last flip-flop (Q_0) serves as a serial output as well as one of the parallel outputs.
 - ✓ The first clock pulse loads data into the shift register in parallel.
 - ✓ Assuming that the register is initially clear $(Q_3Q_2Q_1Q_0 = 0000)$, that the serial input is SI = 0 throughout, and that the data inputs $D_3D_2D_1D_0 = 1011$ during the load time t_0 .
 - Shifting occurs at the end of t_1 , t_2 , and t_3 and the serial output can be read during these clock times. During t_4 , Sh = L = 0, so no state change occurs.

Johnson Counter:

- A circuit that cycles through a fixed sequence of states is called a counter.
- A shift register with inverted feedback is called a Johnson counter or a twisted ring counter.
- If the register is in state 010, then a shift pulse takes it to 101 and vice versa; therefore, we have a secondary loop on the transition graph
- If the feedback is not converted (e.g., Q_1 connected to D_3), the shift register counter is called a ring counter.

FIGURE 12-12 Shift Register with Inverted Feedback

Cengage Learning 2014

(b) Transition graph

General Form of a Shift Register Counter:

- The bit being shifted into the leftmost stage can be a general function of the shift register contents.
- If the gate logic only contains exclusive-OR gates, the counter is called a linear (feedback) shift register counter.
- It can be shown that, for each integer n, there exists a linear n-bit shift register counter that generates a count cycle of length 2^n -1; all states are included except for the all 0's state.
- Linear shift register counters have many applications, including as random number generators and as encoders and decoders for linear error-correcting codes.

Synchronous and Ripple Counters:

- For synchronous counters, the operation of the flip-flops is synchronized by a common clock pulse so that when several flip-flops must change state, the state changes occur simultaneously.
- Ripple counters are those in which the state change of one flip-flop triggers another flip-flop.

Binary Counters Using 3 T Flip-Flops to Count Clock Pulses:

- We assume that all the flip-flops change state a short time following the rising edge of the input pulse.
- The state of the counter is determined by the states of the individual flip-flops; for example, if flip-flop *C* is in state 0, *B* in state 1, and *A* in state 1, the state of the counter is 011.
- Initially, assume that all flip-flops are set to the 0 state. When a clock pulse is received, the counter will change to state 001; when a second pulse is received, the state will change to 010, etc. When 111 is reached, the counter resets to the 000 state.
- The sequence of flip-flop states is CBA = 000, 001, 010, 011, 100, 101, 110, 111, (repeat) 000, ... (Design by inspection)
 - \checkmark Because A changes state on every rising clock edge, T_A must equal 1.
 - ✓ B changes state only if A = 1. Therefore, A is connected to T_B , so that if A = 1, B will change state when a rising clock edge occurs.
 - \checkmark C changes state when a rising clock edge occurs only if B and A are both 1.

FIGURE 12-14 Synchronous Binary Counter

© Cengage Learning 2014

Pres	ent S	State	Ne	xt St	ate
C	В	Α	C+	B^+	A^+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Design of Binary Counter Using Transition Tables:

- This table shows the present state of flip-flops *C*, *B*, and *A* (before a clock pulse is received) and the corresponding next state (after the clock pulse is received).
- A third column in the table is used to derive the inputs for T_C , T_B , and T_A .
 - ✓ Whenever the entries in the A and A^+ columns differ, flip-flop A must change state and T_A must be 1.
 - ✓ Similarly, if *B* and B^+ differ, *B* must change state so T_B must be 1.

Karnaugh Maps for Binary Counters:

■ Figure 12-15 shows the Karnaugh maps for $T_{\rm C}$ and $T_{\rm B}$, from which $T_{\rm C} = BA$ and $T_{\rm B} = A$. These equations yield the same circuit derived previously for Figure 12-14.

TABLE12-2
Transition Table for
Binary Counter
© Cengage Learning 2014

Present State			Next State			Flip-l	Flip-Flop Inputs		
C	В	A	C+	B^+	A^+	T_{C}	$T_{\rm B}$	T_{A}	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	0	1	
1	1	1	0	0	0	1	1	1	

FIGURE 12-15 Karnaugh Maps for Binary Counter © Cengage Learning 2014

FIGURE 12-14
Synchronous
Binary Counter
© Cengage Learning 2014

Binary Counter with D Flip-Flops:

■ We must convert each *D* flip-flop to a *T* flip-flop by adding an XOR (exclusive-OR) gate, as shown in Figure 11-28(b). Figure 12-16 shows the resulting counter circuit.

FIGURE 12-14 Synchronous **Binary Counter** © Cengage Learning 2014 T_B Clock **FIGURE 12-16 Binary Counter** with D Flip-Flops Cengage Learning 2014

(b) Conversion of D to T

Binary Counter with D Flip-Flops:

We can also derive the D flip-flop inputs for the binary counter starting with its transition table (Table 12-2). For a D flip-flop, $Q^+ = D$. By inspection of the table, $Q_A^+ = A'$, so $D_A = A'$. The maps for Q_B^+ and Q_C^+ are plotted in Figure 12-17. The D input equations derived from the maps are

$$D_A = A^+ = A'$$

 $D_B = B^+ = BA' + B'A = B \oplus A$ (12-2)
 $D_C = C^+ = C'BA + CB' + CA' = C'BA + C(BA)' = C \oplus BA$

which give the same logic circuit as was obtained by inspection.

FIGURE 12-17
Karnaugh Maps
for D Flip-Flops
© Cengage Learning 2014

Pres	ent S	State	Ne	xt St	ate	
C	В	Α	C ⁺	B^+	A^+	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	

Binary Counter with T Flip-Flops:

• 3-bit, 4-bit, and 5-bit binary counters with T flip-flops

D		P1:- P1
Present State	Next State	Flip-Flop
		Inputs
DCBA	$D^+C^+B^+A^+$	$T_{\rm D}T_{\rm C}T_{\rm B}T_{\rm A}$
0000	0 0 0 1	0 0 0 1
0001	0 0 1 0	0 0 1 1
0010	0 0 1 1	0 0 0 1
0011	0 1 0 0	0 1 1 1
0100	0 1 0 1	0 0 0 1
0 1 0 1	0 1 1 0	0 0 1 1
0110	0 1 1 1	0 0 0 1
0 1 1 1	1 0 0 0	1 1 1 1
1000	1 0 0 1	0 0 0 1
1001	1 0 1 0	0 0 1 1
1010	1 0 1 1	0 0 0 1
1011	1 1 0 0	0 1 1 1
1100	1 1 0 1	0 0 0 1
1101	1 1 1 0	0 0 1 1
1110	1 1 1 1	0 0 0 1
1111	0 0 0 0	1 1 1 1

Binary Up-Down Counter:

■ The transition graph and table for up-down counter are shown below.

FIGURE 12-18 Transition Graph and Table for Up-Down Counter

© Cengage Learning 2014

	$C^+B^+A^+$				
CBA	U	D			
000	001	111			
001	010	000			
010	011	001			
011	100	010			
100	101	011			
101	110	100			
110	111	101			
111	000	110			

• The up-down counter can be implemented using D flip-flops and gates as shown below.

The corresponding logic equations are

$$\begin{split} D_A &= A^+ = A \oplus (U+D) \\ D_B &= B^+ = B \oplus (UA+DA') \\ D_C &= C^+ = C \oplus (UBA+DB'A') \end{split}$$

FIGURE 12-19
Binary Up-Down
Counter
© Cengage Learning 2014

Loadable Counter with Count Enable:

■ The loadable counter has two control signals *Ld* (load) and *Ct* (Count).

• The next-state equations for the counter of Figure 12-21 are

$$\begin{split} A^+ &= D_A = (Ld \cdot A + Ld \cdot D_{Ain}) \oplus Ld \cdot Ct \\ B^+ &= D_B = (Ld \cdot B + Ld \cdot D_{Bin}) \oplus Ld \cdot Ct \cdot A \\ C^+ &= D_C = (Ld \cdot C + Ld \cdot D_{Cin}) \oplus Ld \cdot Ct \cdot B \cdot A \end{split}$$

When Ld = 0 and Ct = 1, these equations reduce to $A^+ = A'$, $B^+ = B \oplus A$, and $C^+ = C \oplus BA$, which are the equations previously derived for a 3-bit counter.

Counter for Other Sequences (Example):

We will design a counter for the transition table shown in Table 12-3 using T Flip-Flops.

FIGURE 12-22 Transition Graph for Counter Cengage Learning 2014

(a) Next-state maps for Table 12-3

TABLE 12-3 Transition Table for Figure 12-22

© Cengage Learning 2014

В

(b) Derivation of T inputs

Determination of Flip-Flop inputs from Nest-State Equations

FIGURE 12-23

Cengage Learning 2014

(a) Next-state maps for Table 12-3

TABLE 12-9

Determination of Flip-Flop Input Equations from Next-State Equations Using Karnaugh Maps

© Cengage Learning 2014

		Q:	= 0	Q = 1		Rules for Forming Input Map From Next-State Map*	
Type of Flip-Flop	Input	$Q^+ = 0$	Q ⁺ = 1	$Q^+ = 0$	$Q^{+} = 1$	Q = 0 Half of Map	Q = 1 Half of Map
Delay	D	0	1	0	1	no change	no change
Toggle	T	0	1	1	0	no change	complement
Set-Reset	S	0	1	0	Х	no change	replace 1's with X's**
	R	X	0	1	0	replace 0's with X's**	complement
J-K	J	0	1	X	X	no change fill	fill in with X's
	K	X	X	1	0	in with X's	complement

Q+ means the next state of Q

X is a don't-care

^{*}Always copy X's from the next-state map onto the input maps first.

[&]quot;Fill in the remaining squares with 0's.

Input for T Flip-Flop:

- Q represents the present state of the flip-flop (C, B, or A) under consideration, and Q^+ represents the next state $(C^+, B^+, \text{ or } A^+)$ of the same flip-flop.
- T=1 whenever a state of change is required.

TABLE 12-4	Q	Q^+	T	
Input for	0	0	0	
T Flip-Flop	0	1	1	$T = Q^+ \oplus Q$
© Cengage Learning 2014	1	0	1	
3 3	1	1	0	

Counter Using T Flip-Flops and Timing Diagram:

FIGURE 12-24
Counter Using
T Flip-Flops
© Cengage Learning 2014

FIGURE 12-25 Timing Diagram for Figure 12-24

© Cengage Learning 2014

Procedure for Designing a Counter Using T Flip-Flops:

- Form a transition table which gives the next flip-flop states for each combination
 of present flip-flop states.
- Plot the next-state maps from the table.
- 3. Plot a T input map for each flip-flop. When filling in the T_Q map, T_Q must be 1 whenever Q⁺ ≠ Q. This means that the T_Q map can be formed from the Q⁺ map by complementing the Q = 1 half of the map and leaving the Q = 0 half unchanged.
- Find the T input equations from the maps and realize the circuit.

TABLE 12-9
Determination of
Flip-Flop Input
Equations from
Next-State
Equations
Using Karnaugh
Maps

© Cengage Learning 2014

		Q = 0		Q = 1		Rules for Forming Input Map From Next-State Map*		
Type of Flip-Flop	Input	$Q^+ = 0$	$Q^{+} = 1$	$Q^+ = 0$	$Q^{+} = 1$	Q = 0 Half of Map	Q = 1 Half of Map	
Delay	D	0	1	0	1	no change	no change	
Toggle	T	0	1	1	0	no change	complement	
Set-Reset			0	Х	no change	replace 1's with X's**		
			0	1	0	replace 0's with X's**	complement	
J-K	J	0	1	X	X	no change fill	fill in with X's	
	K	X	X	1	0	in with X's	complement	

Q+ means the next state of Q

X is a don't-care

^{*}Always copy X's from the next-state map onto the input maps first.

^{**}Fill in the remaining squares with 0's.

Counter Design using D Flip-Flops:

• For a D flip-flop, $Q^+ = D$, so the D input map is identical with the next-state map.

TABLE 12-3
Transition Table for Figure 12-22
© Cengage Learning 2014

C	В	Α	C+	B^+	A ⁺
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	_	_	_
1	1	0	_	-	_
1	1	1	0	1	0

FIGURE 12-23

© Cengage Learning 2014

$$D_{C} = C^{+} = B'$$

 $D_{B} = B^{+} = C + BA'$
 $D_{A} = A^{+} = CA' + BA' = A'(C+B)$

FIGURE 12-27

Counter of Figure 12-22 Using D Flip-Flops

Cengage Learning 2014

Binary Counter with Clear:

- Counters and shift registers with clear, preset, or parallel load capability can also be used to generate non-binary count cycles.
- Consider a binary counter with a clear input as shown Figure 12-28.

- Synchronous Clear: $Clr = Q_3Q_0$
- Asynchronous Clear: $Clr = Q_3Q_1$

Binary Counter with Parallel Load:

- A decimal counter that counts using the excess-3 code
 - ✓ The counter must cycle through states 3 to 12. The logic must cycle through 3 through 12.
 - ✓ The logic must generate Ld when the counter is in state 12 and the parallel inputs must be 0011.

$$D_3 = 0, D_2 = 0, D_1 = 1, D_0 = 1$$

 $Ld = Q_3Q_2$

✓ States 0, 1, 2, 13, 14 and 15 are don't cares.

FIGURE 12-29 Binary Counter with Parallel Load © Cengage Learning 2014

Procedure for Counter Design Using S-R Flip-Flops:

Instead of deriving an input equation for each D or T flip-flop, the S and R input equations must be derived.

Transition Graph for Counter

Cengage Learning 2014

TABLE 12-5 S-R Flip-Flop Inputs

Cengage Learning 2014

		(a)	
S	R	Q	Q ⁺
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	− inputs not
1	1	1	−∫ allowed

(b)								
Q	Q^+	S	R					
0	0	∫0	0					
•	U	0 (1					
0	1	1	0					
1	0	0	1					
1	1	ſ0	0					
1	1	1	0					

(c)

TABLE 12-3 Transition Table for

Figure 12-22 © Cengage Learning 2014 **TABLE 12-6**

© Cengage Learning 2014

C	В	Α	C +	B +	A^+	Sc	R _C	S_B	R_B	SA	R_A
0	0	0	1	0	0	1	0	0	Х	0	Х
0	0	1	_	_	_	X	Х	Х	Х	Х	Х
0	1	0	0	1	1	0	Х	Х	0	1	0
0	1	1	0	0	0	0	Х	0	1	0	1
1	0	0	1	1	1	X	0	1	0	1	0
1	0	1	-	-	_	X	Х	Х	Х	Х	Х
1	1	0	_	_	_	X	Х	X	X	Х	Х
1	1	1	0	1	0	0	1	X	0	0	1

Counter Using S-R Flip Flops:

FIGURE 12-30

Counter of Figure 12-22 Using S-R Flip-Flops

© Cengage Learning 2014

(a) Next-state maps

(b) S-R flip-flop equations

Procedure for Counter Design Using J-K Flip- Flops:

■ The procedure used to design a counter with J-K flip-flops is very similar to that used for S-R flip-flops, except that J and K can be 1 simultaneously, in which case the flip-flop changes state.

© Cengage Learning 2014

TABLE 12-3 Transition Table for

Figure 12-22

© Cengage Learning 2014

C	В	Α	C ⁺	B^+	A^+
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	_	_	_
4	4	^			

TABLE 12-7 J-K Flip-Flop Inputs

© Cengage Learning 2014

		(a)	
J	Κ	Q	Q ⁺
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

TABLE 12-8

© Cengage Learning 2014

C	В	Α	C+	B^+	A^+	J _C	K_{C}	J_B	K_B	J_A	K_A
0	0	0	1	0	0	1	Х	0	X	0	X
0	0	1	_	_	-	Х	Х	Х	Х	Х	X
0	1	0	0	1	1	0	Х	Х	0	1	X
0	1	1	0	0	0	0	Х	Х	1	Х	1
1	0	0	1	1	1	Х	0	1	Х	1	X
1	0	1	_	_	_	Х	Х	Х	Х	Х	X
1	1	0	_	_	_	Х	Х	Х	Х	Х	X
1	1	1	0	1	0	Х	1	Х	0	Х	1
			•			•					

Counter Design Using J-K Flip-Flop:

FIGURE 12-31

Counter of Figure 12-22 Using J-K Flip-Flops

© Cengage Learning 2014

(a) Next-state maps

(b) J-K flip-flop input equations

(c) Logic circuit (omitting the feedback lines)

Derivation of Flip-Flop Input Equation - Summary

Summary:

- The input equation for the flip-flops in a sequential circuit may be derived from the next-state equations by using truth tables or by using Karnaugh maps.
- For the D flip-flop, the input is the same as the next state.
- For the T flip-flop, the input is 1 whenever a state change is required.
- For the S-R flip-flop, S is 1 whenever the flip-flop must be set to 1 and R is 1 when it must be reset to 0.
- For a J-K flip-flop, the J and K inputs are the same as S and R, respectively, except that when one input is 1 the other input is X.

TABLE 12-9
Determination of
Flip-Flop Input
Equations from
Next-State
Equations
Using Karnaugh
Maps

© Cengage Learning 2014

		Q =	= 0	Q =	= 1	Rules for Forming Input Map From Next-State Map*		
Type of Flip-Flop	Input	$Q^+ = 0$	Q ⁺ = 1	$Q^+ = 0$	Q ⁺ = 1	Q = 0 Half of Map	Q = 1 Half of Map	
Delay	D	0	1	0	1	no change	no change	
Toggle	T	0	1	1	0	no change	complement	
Set-Reset	S	0	1	0	X	no change	replace 1's with X's**	
	R	Х	0	1	0	replace 0's with X's**	complement	
J-K	J	0	1	X	X	no change fill	fill in with X's	
	K	X	X	1	0	in with X's	complement	

O+ means the next state of O

X is a don't-care

^{*}Always copy X's from the next-state map onto the input maps first.

^{**}Fill in the remaining squares with 0's.

Derivation of Flip-Flop Input Equation - Summary

Example 1:

Example (illustrating the use of Table 12-9)

Next-state map

D input map

T input map

S-R input maps

J-K input maps

For the S-R flip-flop, note that when Q = 0, R = X if $Q^+ = 0$; and when Q = 1, R=1 if $Q^+=0$. Therefore, to form the R map from the Q^+ map, replace 0's with X's on the Q = 0 half of the map and replace 0's with 1's on the Q = 1 half (and fill in 0's for the remaining entries). Similarly, to form the S map from the Q^+ map, copy the 1's on the Q = 0 half of the map, and replace the 1's with X's on the Q = 1 half.

