

Information Technology

FIT1006 Business Information Analysis

Lecture 19
Time Series Analysis and Forecasting

Topics covered:

- Time series data
- Components of a time series
- Smoothing with moving averages and medians
- Exponential smoothing.

Lectures 19/20 Motivating problem

- Given the value of building work (quarterly) from Sep 1974 –
 Dec 2018.
- Model time series.
- Use historical data to forecast demand for 2019 and 2020.
- Source: ABS.

http://www.abs.gov.au

(File: FIT1006 Lecture 19 and 20.xlsx)

Quarter/Year	Value of Building Work (all sectors) \$'Bil
Sep-1974	11.53
Dec-1974	11.06
Mar-1975	9.64
Jun-1975	10.41
Sep-1975	11.15
Dec-1975	10.65
Mar-1976	10.18
Jun-1976	11.37
Sep-1976	11.63
Dec-1976	11.37
Mar-1977	10.14
Jun-1977	11.12
Sep-1977	11.07
Dec-1977	10.57
:	
Mar-2017	27.75
Jun-2017	30.59
Sep-2017	31.52
Dec-2017	31.86
Mar-2018	29.26
Jun-2018	32.84
Sep-2018	32.99
Dec-2018	32.69

Cont.

• If the actual value of building work in 2019 & 2020 is now known (as shown in the table), calculate the accuracy of the forecast.

Quarter/Year	Value of Building Work (All sectors) \$'Bil
Mar-2019	29.74
Jun-2019	31.08
Sep-2019	32.17
Dec-2019	30.83
Mar-2020	28.35
Jun-2020	30.14
Sep-2020	30.24
Dec-2020	30.14

Time Series

- A Time Series describes a set of observations made over a period of time. Daily maximum temperatures, hourly share prices, annual population counts, weekly sales figures are all examples of time series.
- It is usual, but not strictly necessary, that the observations are recorded at equal intervals.
- Some examples of time series follow:

Australian All Ordinaries

ASX All Ordinaries

Value of Building Work (All Sectors)

Monthly Food Retail Sales

Monthly Household Goods Sales

Monthly Clothing & Footwear Sales

SUV sales, Monthly

Passenger vehicle sales, Monthly

Retail turnover, department stores

13

TS Analysis vs Forecasting

- Time series describes a set of observations made over a period of time – example, the daily maximum temperatures, hourly share prices, annual population counts, weekly sales figures, etc.
- Time series analysis is the description and modelling of a time series. For instance we might attempt to describe patterns in the data with a mathematical model.
- Forecasting is the method of attempting to predict the value of future observations from past data.
- Forecasting from past data is of great interest to business, for example in retailing and the financial sector.

Components of a Time Series

- Time series can be thought of as being composed of three elements:
 - Trend, (absence of trend is 'stationary')
 - Seasonal or cyclic element, and
 - a Random component.

Additive Model

 Data has an additive model when it is reasonable to assume that the observed time series can be explained as:

Data = Trend + Seasonal Variation + Random Variation

Multiplicative Model

Data has a multiplicative model when it is reasonable to assume that the observed time series can be explained as:

Data = Trend * Seasonal Variation * Random Variation

Question 1

The main features of this time series are:

✓ A. trend & random

- B. seasonal & random
- C. trend & seasonal D. random only

Question 2

The main features of this time series are:

A. trend & random

- B. seasonal & random
- C. trend & seasonal
- ✓ D. trend & random & seasonal

Question 3

The main features of this time series are:

A. trend & random

- B. seasonal & random
- C. trend & seasonal
- ✓ D. trend & random & seasonal

Question 4

The main features of this time series are:

- A. trend & random ✓ B. seasonal & random
- C. trend & seasonal
- D. trend & random & seasonal

Question 5

The main features of this time series are:

- A. trend & random & seasonal additive
- ✓ B. trend & random & seasonal <u>multiplicative</u>

C. Inconclusive

Moving Averages

- One of the first tasks in the analysis of additive time series is to smooth the data using a moving average.
- As the name suggests, a moving average works by successively taking observations over a number of periods and averaging. The average of the time indexes locates the moving average in time.
- Odd numbers of data are preferred for MA's because the data remains centred (time index is an integer), 3, 5, 7 being usual lengths. For quarterly data, a centred 4 period average is used. Medians are also used for robust smoothing.

3 Period Moving Average

D	ata	3 MA	3 MA
	4		
	7	→ (4+7+9)/3	6.67
	9	- (7+9+12)/3	9.33
	12	→ (9+12+3)/3	8.00
	_3	→ (12+3+6)/3	7.00
,	6		4.33
	4	•••	6.00
	8		6.00
	6		7.67
	9		7.67
	8		7.00
	4		5.67
	5		3.67
	2		

5 Period Moving Average

Г	ata	5 MA	5 MA
	4		
	7		
	9	- (4+7+9+12+3)/5	7.00
	12	→ (7+9+12+3+6)/5	7.40
	_3	=(9+12+3+6+4)/5	6.80
	6		6.60
	4		5.40
	8	•••	6.60
	6	•••	7.00
	9	•••	7.00
	8	•••	6.40
	4	•••	5.60
	5		
	2		

Centred 4 Period Moving Average

- For quarterly data, or other data with cycles of 4 periods, a centred 4 period moving average is often used.
- The reasoning for this method is as follows:
 - The moving average contains 4 observations, which comprise a single cycle (Summer Autumn Winter Spring).
 - For observations in periods 1, 2, 3 and 4, the time index of the average is at period 2.5, i.e., between observations 2 and 3.
 - We thus take the average of pairs of off-centred observations to re-centre them.
 - This method can be adapted for other even numbered cycles.

Centered 4 period moving average

Period	Data	4 MA		4CMA	4CMA
1	4				
2	7	► (4+7+9+12)/4	8.00		
3	9	→ (7+9+12+3)/4	7.75	= (8.00+7.75)/2	7.88
4	12	=(9+12+3+6)/4	7.50	= (7.75+7.50)/2	7.63
5	3	=(12+3+6+4)/4	6.25	=(7.50+6.25)/2	6.88
6	6		5.25		5.75
7	4		6.00		5.63
8	8		6.75		6.38
9	6		7.75		7.25
10	9		6.75		7.25
11	8		6.50		6.63
12	4		4.75		5.63
13	5				
14	2			-	

Smoothing With Medians

 Medians can also be used to smooth data. They are robust to outliers, although not as 'smooth' as means.

Da	ıta	3 Median	3 Med
	4		
	7	\rightarrow Median $(4, 7, 9)$	7.00
L	9	\longrightarrow Median $(7, 9, 12)$	9.00
1	12	→Median(9, 12, 3)	9.00
	3		6.00
	6	•••	4.00
	4	•••	6.00
	8	•••	6.00
	6	•••	8.00
	9	•••	8.00
	8	•••	8.00
	4	••••	5.00
	5		4.00
	2		

Methods Compared (FIT1006 Lecture 19 and 20.xlsx)

	Clothing,					
	Footwear,					
	Accessories					
Month Year	Retailing \$m	3 MA	5MA	4 MA c	3 Med	12MA c
1/01/2010	1545.9					
1/02/2010	1273.6	1423.9			1452.3	
1/03/2010	1452.3	1411.1	1486.6	1458.3	1452.3	
1/04/2010	1507.5	1537.8	1489.1	1507.4	1507.5	
1/05/2010	1653.6	1573.2	1550.2	1558.8	1558.6	
1/06/2010	1558.6	1597.1	1561.9	1575.1	1579.0	
1/07/2010	1579	1549.5	1582.5	1570.1	1558.6	1622.2
1/08/2010	1511	1566.7	1570.7	1569.2	1579.0	1621.0
1/09/2010	1610.1	1571.9	1590.2	1583.3	1594.6	1622.8
1/10/2010	1594.6	1620.3	1783.8	1722.5	1610.1	1625.6
1/11/2010	1656.3	1932.6	1781.4	1838.1	1656.3	1626.3
1/12/2010	2546.8	1900.7	1717.7	1786.3	1656.3	1624.6
1/01/2011	1499	1779.2	1694.4	1726.2	1499.0	1618.9
1/02/2011	1291.8	1423.0	1673.1	1579.3	1478.2	1610.1
1/03/2011	1478.2	1440.0	1489.0	1470.6	1478.2	1601.7
1/04/2011	1549.9	1551.4	1498.4	1518.3	1549.9	1596.0
1/05/2011	1626.1	1574.0	1531.3	1547.3	1549.9	1592.9

Methods Compared: Graph

Analysis of share prices

• Moving average forecasts over different periods are used by some share analysts to determine when a share is trending up or down. Figure below is from E*trade.

Exponential Smoothing

- Exponential smoothing is a way of forecasting one, two, three ... periods ahead, using historical data.
- Exponential smoothing uses an observation at time t as well as the forecast value at time t. The forecast for the following period is based on the current observation less a proportion of the error observed in the current period.
- This method is called an <u>adaptive technique</u> as it makes use of the most recent information to correct (update) the forecast.

Exponential Smoothing cont.

- New forecast = previous forecast + α(previous actual - previous forecast)
- New forecast = previous forecast α (error)

• α is between 0 and 1 $\hat{y}_{t+1} = \hat{y}_t + a(y_t - \hat{y}_t)$ Forecast Next Period Forecast Current Period Observed Current Period

Example (Class Activity)

lacktriangle The process of exponential smoothing when lpha

Example

Exponential 3	Smoothing		Sim	Simple Exponential Smoothing			
0.6			alph	a =	0.6		
Observed	forecast	error	Peri	iod	Observ	forecast	error
55	55.00	0.00	JAN		55	=55	=0
59	55.00	4.00	FEB	}	59	=55+0.6*0	=59-55
53	57.40	-4.40	MA	R	53	=55+0.6*4	53-57.40
48	54.76	-6.76	APR	2	48	57.4+0.6*-4.4	• • •
44	50.70	-6.70	MA	Y	44	• • •	• • •
50	46.68	3.32	JUN	Ţ	50	• • •	•••
52	48.67	3.33	JUL	,	52	• • •	•••
46	50.67	-4.67	AUC	$\mathbf{\tilde{J}}$	46	• • •	•••
40	47.87	-7.87	SEP	ı	40	• • •	• • •
37	43.15	-6.15	OCT	Γ	37	• • •	• • •
42	39.46	2.54	NO	V	42	•••	•••

The Value of a

$$a = 0.1$$

$$a = 0.3$$

$$a = 0.6$$

$$a = 0.9$$

Forecast Accuracy

 One approach to measuring the accuracy of a forecast is to use Mean Absolute Percent Error (MAPE). This is the average error of a series of forecasts.

$$MAPE = \frac{\sum_{i=1}^{n} \frac{|\hat{Y}_i - y_i|}{y_i}}{n}$$

 $\hat{y}_i = forecast at period i$

 $y_i = actual \ value \ period \ i$

n = number of terms evaluated

37

Example

	Alpha =	0.3	
Data	Forecast	Error	APE
4	4.00	0.00	4
7	4.00	3.00	0.43
9	4.90	4.10	0.46
12	6.13	5.87	0.49
3	7.89	-4.89	1.63
6	6.42	-0.42	0.07
4	6.30	-2.30	0.57
8	5.61	2.39	0.30
6	6.33	-0.33	0.05
9	6.23	2.77	0.31
8	7.06	0.94	0.12
4	7.34	-3.34	0.84
5	6.34	-1.34	0.27
2	5.94	-3.94	1.97

We don't include first value as it is not a forecast.

APE

$$APE = \frac{|Y_i - y_i|}{y_i}$$

=Error/Actual

A common technique for exponential smoothing is to choose an α that minimises MAPE using the Excel Solver.

$$MAPE = \frac{1}{n} \times \sum_{i=1}^{n} \frac{|\hat{Y}_i - y_i|}{y_i}$$

MAPE 58%

This is the average

Summary

You should be able to:

- Plot a time series graph.
- Recognise the 3 components of a time series:
 - Trend;
 - Seasonal or cyclic component;
 - Random fluctuations (or noise).
- Construct a moving average.
- Make a one period forecast using exponential smoothing.
- Know the effect of different values of α .
- Calculate the accuracy of a forecast using MAPE.

Reading/Questions (Selvanathan)

- Reading: Time Series
 - 7th Ed. Sections 17.1, 17.2, 17.7.
- Questions: Time Series
 - 7th Ed. Questions 17.1, 17.3, 17.5, 17.6, 17.8, 17.38, 17.40.
 - Tutorial 11 Questions.
 - Create moving averages and exponential smoothed forecasts of some historical time series:
 - Ref: FIT1006 Lecture 19 and 20.xlsx

www.abs.gov.au

