Compte rendu de TP - Caméra Infrarouge

Baptiste Fanget - Pezard Léo - Mécanique Energétique 3A

04/02/2025

1 Préambule

1.1 Introduction

L'imagerie infrarouge est un outil essentiel permettant d'observer la chaleur émise par des objets, bien au-delà de ce que l'œil humain peut percevoir. Grâce à une caméra infrarouge, il est ainsi possible de repérer et étudier les changements de température d'une scène, avec des applications variées allant de l'industrie à la recherche scientifique, en passant par la thermographie des bâtiments.

Ce TP a pour but de nous familiariser avec le fonctionnement de la caméra infrarouge et de comprendre comment elle capte et traduit le rayonnement thermique en images exploitables. À travers différentes expériences, nous observerons l'influence de l'émissivité et de la température sur les images obtenues. En utilisant des sources radiatives comme un corps noir ou des surfaces aux propriétés thermiques variées, nous verrons comment interpréter correctement ces images et ce qu'elles nous apprennent sur les objets observés.

1.2 Matériel utilisé

1.2.1 Station d'imagerie et de mesure infrarouge

La chaîne de visualisation et d'acquisition d'images infrarouges comprend tout d'abord la caméra infrarouge (modèle A40 fabriquée par FLIR) à matrice dans le plan focal de l'objectif (FPA : Focal Plane Array) dont la surface sensible est constituée d'une matrice de 320×240 détecteurs microbolométriques (voir la photo en Figure 1).

Figure 1: Photo de la caméra infrarouge utilisée

Cette chaîne est schématisée sur la Figure 2. L'objectif (ou optique sur le schéma) est constitué de lentilles en Germanium (transparent dans l'infrarouge, traité antireflet). La matrice de microbo lomètres, placée après l'objectif, reçoit le flux radiatif venant d'une surface de la scène thermique correspondant à la surface conjuguée de la matrice à travers l'objectif de la caméra (voir Figure 2).

Figure 2: Schéma de la scène thermique vers la matrice de détecteurs puis vers l'image infrarouge

Chaque détecteur de la matrice est sensible dans la gamme 7,5-13 μm . Il faut noter que à température ambiante (environ 20-25°C), la majorité des rayonnements thermiques des objets est émise dans cette plage de 7 à 13 μm . Cela permet à la caméra de capter le maximum d'énergie thermique des objets sans être trop influencée par d'autres sources de rayonnement, comme la lumière visible ou l'infrarouge proche.

Ces détecteurs sont des microbolomètres, de la famille des détecteurs thermiques, dont le principe est basé sur l'échauffement du détecteur consécutif à l'absorption du flux infrarouge pendant une durée donnée, appelée « temps d'intégration ». Cet échauffement du détecteur induit une variation de sa ré sistance électrique dont la mesure est alors proportionnelle au flux infrarouge absorbé. Les tensions délivrées, alors, par tous les détecteurs de la matrice sont lues puis numérisées et transmis à l'ordinateur.

1.2.2 Sources radiatives

1.2.2.1 Corps noir

La source radiative de référence (ou « référence thermorayonnante ») utilisée est un corps noir de laboratoire (Figure 3).

Il s'agit d'une cavité cylindrique à fond conique, revêtue d'un matériau très absorbant, à facteur de forme élevé (profondeur > diamètre), chauffée de façon isotherme par des résistances électriques. Il est équipé d'un disque percé de diaphragmes de tailles différentes qui peuvent se placer devant l'entrée de la cavité. La gamme de température qu'il peut couvrir va de l'ambiante à 1000 degrés, elle est mesurée par une sonde platine en fond de cavité. L'image que l'on a en observant un tel corps noir placé par exemple à 100 degrés dans un

environnement à 20 degrés est donc un disque (« fort » flux quittant la cavité) se détachant de son environnement.

Figure 3: Corps noir de laboratoire

1.2.2.2 Cube de Leslie

Ce cube (Voir Figure 4) présente 4 facettes latérales en aluminium chauffées par une ampoule de 100W placée au centre. La temérature de chaque face peut être supposée uniforme. Les quatre faces présentent un état de surface différent : peinture noire, peinture blanche, aluminium non poli, aluminium poli.

Lors du TP précédent, nous avons pu faire un classement des émissivités de chaque face:

Table 1: Émissivités de chaque face calculées lors du TP précédent.

Face	Émissivité $(\epsilon_{0.4-40\mu m})$
Noire	0.94
Blanche	0.92
Polie	0.05
Non polie	0.1

Nous avions également pu réaliser un classement des faces en fonction de leur pouvoir réfléchissant, par ordre croissant : Face noire, face blanche, face non polie puis face polie.

La réflexion de rayonnement par la face en alumi nium poli est de type spéculaire (rayons concentrés dans 1 seule direction), alors que pour les autres faces, elle pourra être considérée diffuse (rayonnement réparti sur une plus grande surface).

Un pouvoir réfléchissant élevé signifie que le flux de chaleur ne passe pas à travers la surface, il est donc réfléchi par celle-ci, ainsi la chaleur est renvoyée sur la thermopile.

Figure 4: Cube de Leslie

1.2.2.3 Plaque chauffante à différentes émissivités Il s'agit d'une plaque en cuivre régulée en température dont la surface est peinte en noir. Locale ment, comme vous pouvez l'observer sur la Figure 5, l'émissivité de la surface a été modifiée par l'ajout d'adhésifs en aluminium (de gauche à droite : adhésif seul, adhésif + scotch blanc, adhésif + vernis).

La visualisation de cette plaque par la caméra infrarouge permettra donc de s'intéresser aux conséquences de l'émissivité d'une surface sur son image infrarouge, pour une température identique (que l'on suppose non modifiée par l'ajout de l'adhésif).

Figure 5: Plaque chauffante à différentes émissivités

1.3 Travail préparatoire

Réalisé sur Amétice.

Notions importantes abordées :

TODO : notions importantes abordées

2 Expériences

2.1 Observation d'un corps noir et de surfaces non noires en environnement uniforme

2.1.1 Introduction

L'étalonnage de la caméra infrarouge consiste à enregistrer la réponse (en V) de la caméra face à un corps noir de laboratoire à température variable T^0 . La tension mesurée $\Delta V_0(T_0)$ est liée à la température T^0 par la formule suivante :

$$\Delta V^{0}(T^{0}) = k \int_{\lambda} R(\lambda) L^{0}(\lambda, T^{0}) d\lambda$$

Avec:

- $R(\lambda)$ la sensibilité spectrale relative du détecteur dans la bande $\Delta\lambda$.
- k une constante dépendant de la sensibilité maximale (en V/W) du détecteur, du gain de la chaîne d'amplification et des grandeurs relatives à la géométrie de la détection.

Lors de la mesure sur un corps réel, l'émissivité $\epsilon(\lambda)$ influence la tension mesurée ΔV_{mes} , qui peut être exprimée par :

$$\Delta V_{mes} = k \int_{\lambda} R(\lambda) \varepsilon(\lambda) L_{\lambda}^{0}(\lambda, T) d\lambda + k \int_{\lambda} R(\lambda) \left[1 - \varepsilon(\lambda) \right] L_{\lambda}^{0}(\lambda, T_{a}) d\lambda$$

Soit:

$$\Delta V_{mes} = \epsilon_{\Delta\lambda} \Delta V^0(T) + (1 - \epsilon_{\Delta\lambda}) \Delta V^0(T_a) = \Delta V^0(T^0)$$

Avec:

$$\epsilon_{\Delta\lambda} = \frac{\int_{\lambda} \epsilon(\lambda) R(\lambda) L_{\lambda}^{0}(\lambda, T) d\lambda}{\int_{\lambda} R(\lambda) L_{\lambda}^{0}(\lambda, T) d\lambda}$$

La température apparente du corps réel, T_{mes}^0 , est calculée en fonction de ΔV_{mes} , offrant ainsi une estimation de la température du matériau observé.

$$(T_{mes}^0)^4 = \epsilon_{\Delta\lambda} T^4 + (1 - \epsilon_{\Delta\lambda}) T_a^4$$