Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie I*

Prof. Dr. J. Kramer

Abgabetermin: 11.12.2018 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben.

JEDES Blatt mit Namen, Matrikelnummer, Übungsgruppennummer versehen.

Serie 8 (30 Punkte)

Aufgabe 1 (10 Punkte)

Es seien V und W zwei K-Vektorräume. Welche der folgenden Abbildungen $f\colon V\longrightarrow W$ sind linear? Begründen Sie.

Bestimmen Sie für die linearen Abbildungen $f: V \longrightarrow W$ jeweils den Kern $\ker(f)$ und das Bild $\operatorname{im}(f)$.

(a)
$$K = \mathbb{R}, \ f \colon \mathbb{R}^4 \longrightarrow \mathbb{R}^3$$
, gegeben durch $f\left(\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix}\right) = \begin{pmatrix} \xi_1 + \xi_2 - \xi_3 \\ \xi_1 + 3\xi_2 + \xi_3 + 2\xi_4 \\ \xi_2 + \xi_3 + \xi_4 \end{pmatrix}$;

(b)
$$K = \mathbb{C}, \ f \colon \mathbb{C}^4 \longrightarrow \mathbb{C}^4$$
, gegeben durch $f\left(\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix}\right) = \begin{pmatrix} \xi_4 \\ 1 \\ 0 \\ \xi_1 \end{pmatrix}$;

(c)
$$K = \mathbb{Q}, f: \mathbb{Q}^2 \longrightarrow \mathbb{Q}, \text{ gegeben durch } f\left(\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}\right) = \xi_1 \cdot \xi_2;$$

(d)
$$K = \mathbb{R}, f: \mathbb{R}[X]_{\leq 3} \longrightarrow \mathbb{R}[X]_{\leq 3},$$
 gegeben durch $f(p(X)) = p'(X) - p(0)$.

Aufgabe 2 (10 Punkte)

Es sei $\{e_1, e_2, e_3, e_4\}$ die Standardbasis des \mathbb{Q} -Vektorraums \mathbb{Q}^4 . Wir betrachten die lineare Abbildung $f: \mathbb{Q}^4 \longrightarrow \mathbb{Q}^3$, die durch die Vorgabe

$$f(e_1) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, f(e_2) = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, f(e_3) = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}, f(e_4) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

festgelegt ist.

- (a) Geben Sie die Abbildungsvorschrift von f an.
- (b) Bestimmen Sie eine Basis \mathcal{B}' von $\ker(f)$ und ergänzen Sie diese zu einer Basis \mathcal{B} von \mathbb{Q}^4 .
- (c) Zeigen Sie, dass das Bild der Menge $\mathcal{B} \setminus \mathcal{B}'$ eine Basis \mathcal{B}'' von im(f) bildet.

Aufgabe 3 (10 Punkte)

Es seien V und W zwei K-Vektorräume und $f:V\longrightarrow W$ eine lineare Abbildung. Beweisen Sie die folgenden Aussagen:

- (a) Das Bild $f(V') \subseteq W$ eines Unterraums $V' \subseteq V$ ist ein Unterraum von W.
- (b) Das Urbild $f^{-1}(W') \subseteq V$ eines Unterraums $W' \subseteq W$ ist ein Unterraum von V.
- (c) Wenn f injektiv und die nicht-leere Menge $\{v_1, \ldots, v_n\} \subseteq V$ linear unabhängig ist, dann ist auch die Menge $\{f(v_1), \ldots, f(v_n)\} \subseteq W$ linear unabhängig.
- (d) Es sei V n-dimensional, $\mathcal{B} = \{b_1, \ldots, b_n\}$ eine Basis von V und $\{f(b_1), \ldots, f(b_n)\}$ bilde ein Erzeugendensystem von W. Dann wird jede Basis \mathcal{B}' von V durch f auf ein Erzeugendensystem von W abgebildet.

Aufgabe* 4 (10 Zusatzpunkte)

Es sei U ein m-dimensionaler Unterraum des K-Vektorraums K^n , d.h., es ist $0 \le m \le n$. Zeigen Sie, dass es natürliche Zahlen i_1, \ldots, i_m aus der Menge $\{1, \ldots, n\}$ gibt, so dass die Abbildung $f: U \longrightarrow K^m$, gegeben durch die Zuordnung

$$\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} \mapsto \begin{pmatrix} \xi_{i_1} \\ \vdots \\ \xi_{i_m} \end{pmatrix},$$

ein Isomorphismus, d.h. eine bijektive lineare Abbildung, ist.