Теорема:
$$J'_{\alpha} = \left(\int_a^b f(x,\alpha) dx\right)'_{\alpha} = \int_a^b f'_{\alpha}(x,\alpha) dx$$
)

Ex:

$$I(\alpha) = \int_0^{+\infty} e^{-x} \frac{\sin \alpha x}{x} dx \ I_{\alpha}'(\alpha) = \int_0^{+\infty} (e^{-x} \frac{\sin \alpha x}{x})_{\alpha}' dx = \int_0^{+\infty} e^{-x} \frac{1}{x} x \cos \alpha x dx = \int_0^{+\infty} e^{-x} \cos \alpha x dx$$

Из этого следует, что $I(\alpha) = \int_{+\infty}^{\infty} \frac{1}{a+\alpha^2} dx = arctg(\alpha) + C$

Так как $I(\alpha)$ - несобственный интеграл, это функция, а не семейство функций. Найдем C. $I(0) = \int_0^{+\infty} e^{-x} \frac{\sin 0 * x}{x} dx = 0 \Longrightarrow C = 0$ Таким образом, $I(\alpha) = (\int_0^{+\infty} e^{-x} \frac{\sin \alpha x}{x} dx)'_{\alpha} = arctg(\alpha)$

Ex: Гамма-функция

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx \quad (\alpha > 0)$$

Исследуем на сходимость:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx = \int_0^1 x^{\alpha - 1} e^{-x} dx + \int_1^{+\infty} x^{\alpha - 1} e^{-x} dx$$

На отрезке [0;1] $e^{(-x)} \in [0;1]$. Тогда $0 \le \int_0^1 x^{\alpha-1} e^{-x} dx \le \int_0^1 x^{\alpha-1} dx \Longrightarrow$ интеграл сходится

Пусть $n > \alpha - 1, n \in \mathbb{N}$, тогда: $\int_{1}^{+\infty} x^{\alpha - 1} e^{-x} dx \le \int_{1}^{+\infty} x^{n} e^{-x} dx - \text{по частям, появятся } x^{k} e^{-x} \Big|_{1}^{+\infty} \to 0 \text{ и } \int_{1}^{+\infty} e^{-x} dx \text{ сходится } Haйлем формулу для <math>\Gamma(\alpha)$:

$$\alpha \in \mathbb{N} \quad \Gamma(1) = \int_{0}^{+\infty} e^{-x} dx = -e^{-x} \Big|_{0}^{+\infty} = 1$$

$$\Gamma(\alpha) = \int_{0}^{+\infty} x^{\alpha - 1} e^{-x} dx = -\int_{0}^{+\infty} x^{\alpha - 1} de^{-x} = -x^{\alpha - 1} e^{-x} \Big|_{1}^{+\infty} + \int_{0}^{+\infty} x^{\alpha - 2} (\alpha - 1) e^{-x} dx = (\alpha - 1) \Gamma(\alpha - 1) = (\alpha - 1)! \Gamma(1) = (\alpha - 1)!$$

$$\Gamma(n + 1) = n!$$

Lab: Посмотреть, как обобщается понятие факториала на вещественные числа:

4. Функция нескольких переменных (ФНП)

4.1. Определение

Nota: Дадим определение ФНП

 $\forall M(x,y)\exists!z\in\mathbb{R}:z=f(x,y)\Longleftrightarrow z=f(x,y)$ - функция двух переменных

Def: Окрестность точки $M_0(x_0,y_0)$

 $U_{\delta}(M_0) = \{(x,y) \in Oxy : (x-x_0)^2 + (y-y_0)^2 < \delta^2, \delta > 0$ - радиус $\}$

 $U_{\delta}(M_0)$ - выколотая

 $Nota: \Delta x=x-x_0, \Delta y=y-y_0,$ одновременное стремление $\Delta x, \Delta y\to 0$ можно заменить $\Delta=\sqrt{(x-x_0)^2+(y-y_0)^2}\to 0$

$$Def\colon \lim_{M\to M_0} z(x,y) = L\in \mathbb{R} \Longleftrightarrow \forall \varepsilon>0 \ \exists \delta>0 \ (\delta=\delta(\varepsilon)) \ |\forall M\in \stackrel{\circ}{U}_{\delta}(M_0)| \ |z(x,y)-L|<\varepsilon$$
 M_0 - точка сгущения и $x_0,y_0\in \mathbb{R}$ (здесь)

Nota: На плоскости Oxy возможно стремление $M \to M_0$ по разным путям F(x,y) = 0 (уравнение кривой)

При этом значение предела вдоль разных путей могут отличаться (аналог односторонних пределов)

Предел в определении - предел в общем смысле: его существование и значение не зависит от пути

 $Def\colon z=f(x,y)$ называется непрерывной в точке $M_(x_0,y_0),$ если $z=f(x_0,y_0)=\lim_{M\to M_0}z(x,y)$ z непрерывна на D, если z непрерывна $\forall (x,y)\in D$

Nota: Справедливы теоремы Вейерштрасса и Больцано-Коши для функции, непрерывной в заданной области

z=f(x,y)непрерывна на $\overline{D}=D\cup\Gamma_{\!\!D},$ где \overline{D} - закрытая область, D - открытая область, $\Gamma_{\!\!D}$ - граница

 $Th. \ \mathrm{W1}$ - z = f(x,y) ограничена на \overline{D}

 $Th. \ \mathrm{W2}$ - \exists наибольшее и наименьшее $z \in \overline{D}$

Th. B-C1 - на границе Γ_D z принимает значения разных знаков $\Longrightarrow \exists M \in \overline{D}: z(M) = 0$

 Th . B-C1 - z(x,y) принимает все значения от $z_{\text{наим}}$ до $z_{\text{наиб}}$

4.2 Производные функции двух переменных

Путям l_1, l_2 соответствуют кривые L_1, L_2 на поверхности z = f(x, y).

Пользуясь геометрическим смыслом производной, заметим, что касательные к L_1, L_2 могут быть различными.

Поэтому для определения производной выберем координатные направления x = const и y = const

$$z = f(x = c, y)$$

$$\frac{\partial z}{\partial y} \stackrel{def}{=} \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}, \text{ где } \Delta_y z = z(x, y + \Delta y) - z(x, y)$$

Определили частную производную z по y

Lab: Дать определение $\frac{\partial z}{\partial x}$

 $Nota \colon \Delta_y z = z(x,y+\Delta y) - z(x,y)$ и $\Delta_y z$ называют частным приращением

Def: Полное приращение $\Delta z \stackrel{def}{=} z(x + \Delta x, y + \Delta y) - z(x, y)$

$$Nota!$$
 $\Delta z \neq \Delta_x z + \Delta_y z$ Обозн.: $\frac{\partial z}{\partial x} = z_x' = z_x$, $\frac{\partial z}{\partial y} = z_y' = z_y$ Как определить функцию, дифференцируемую в точке?

По аналогии $\Delta z = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y$, где $A, B \in \mathbb{R}, \ \alpha, \beta$ - б. м.