VR 개발 핵심 개념 및 저작 도구 소개

2023. 3. 27 김윤상

목 차

1. VR 개발 핵심 개념

2. 주요 개념

3. 저작 도구 소개

4. 참고 문헌

VR 개발 핵심 개념

1. VR 개발 핵심 개념

- ◆ 3D 그래픽 기반의 VR 개발은 다음의 핵심 개념들이 사용됨
 - 모델링
 - 좌표계
 - 카메라
 - 렌더링

BIOCOMPUTING

주요 개념

2. 주요 개념 - 모델링

- ◆ **모델링**이란 그래픽으로 표현하고자 하는 물체를 정의하는 작업
 - 물체의 정점을 정의함으로써 새로운 물체를 정의하거나,
 - 기존 물체를 조합/변형함으로써 새로운 물체를 정의하는 작업을 포함함
 - 3D 엔진에서는 모델링을 통해 정의된 물체를 오브젝트라고 부름

정점을 정의함으로써 새로운 물체를 생성

2. 주요 개념 - 모델링

- ◆ **모델링**이란 그래픽으로 표현하고자 하는 물체를 정의하는 작업
 - 모델링에 사용된 정점들은 다음 그림과 같이 평면을 정의하여 출력됨
 - 이 때의 정의된 평면을 메쉬(Mesh)라고 함
 - 메쉬는 다각형 평면보다 삼각형 평면이 주로 사용됨
 - 이는 삼각형 평면이 다각형 평면보다 처리 속도가 2배 빠르기 때문임

메쉬 생성 예시

2. 주요 개념 - 좌표계

- ◆ **좌표계**란 물체의 위치를 특정한 하나의 점으로써 유일하게 가리키기 위한 체계
 - 3D 엔진은 다음 그림과 같이 2가지 좌표계를 가지고 있음
 - (1) 전역 좌표계: 프로그램 내 가상 공간을 중심으로 갖는 좌표계
 - (2) 지역 좌표계: 오브젝트를 중심으로 갖는 좌표계

지역 좌표계 (Local Coordinate System)

전역 좌표계 (World Coordinate System)

좌표계의 종류

2. 주요 개념 - 좌표계

- ◆ **좌표계**란 물체의 위치를 특정한 하나의 점으로써 유일하게 가리키기 위한 체계
 - 각각의 오브젝트는 위치/회전/크기 변환 시, 전역 좌표계를 기준으로 수행함
 - 따라서, 지역 좌표계를 기준으로 변환 시에는 전역 좌표계로 일치 시키는 단계가 필요함

전역 좌표계와 일치시키지 않은 상태에서의 회전/크기 변환

전역 좌표계와 일치시킨 상태에서의 회전/크기 변환

지역 좌표계-전역 좌표계 일치 여부에 따른 회전/크기 변환

2. 주요 개념 - 좌표계

- ◆ **좌표계**란 물체의 위치를 특정한 하나의 점으로써 유일하게 가리키기 위한 체계
 - 부모-자식 관계에 의해 부모 오브젝트에 종속된 자식 오브젝트는 부모 오브젝트의
 지역 좌표계에 영향을 받음

• 예를 들어, 돌고래 오브젝트에 종속된 주전자 오브젝트는 돌고래 오브젝트 회전 시

오브젝트 간 부모-자식 관계 형성 시 좌표계 영향

2. 주요 개념 - 카메라

- ◆ 카메라는 출력 장치에 출력할 영상을 생성
 - 카메라 또한 오브젝트와 마찬가지로 지역 좌표계를 가짐
 - 카메라의 좌표를 변환시킴으로써 출력 화면을 결정할 수 있음

지역 좌표계-전역 좌표계 일치 여부에 따른 회전/크기 변환

2. 주요 개념 - 카메라

◆ 카메라는 출력 장치에 출력할 영상을 생성

- 카메라는 목적에 따라서 원근 모드, 직교 모드로 설정 가능함
- 원근 모드: 원근법이 적용되어 투영함
- 직교 모드: 원근법을 무시하여 투영함

원근 모드(좌) vs 직교 모드(우)

2. 주요 개념 - 렌더링

- ◆ 렌더링은 카메라가 보고 있는 오브젝트들을 이미지로 변환하여 그려내는 작업
 - 그래픽 프로그램의 모든 그림은 렌더링의 결과임
 - 조명의 밝기, 오브젝트의 재질 등을 결정함
 - VR HMD에서는 양안으로 그래픽을 보기 때문에, 2개의 카메라가 필요하며,
 따라서 기존의 렌더링과 방법이 다름

VR HMD에서의 렌더링 방법

저작 도구 소개

◆ 자주 사용되는 VR 저작 도구

- VR 저작 도구로는 주로 유니티(Unity), 언리얼(Unreal)과 같은 3D 엔진이 사용됨
- 이는 유니티, 언리얼은 3D 그래픽을 가상 현실로 나타낼 때의 작업들 (예: 좌표계 변환 작업, 렌더링 작업 등)을 쉽게 제어 가능한 인터페이스를 제공해주기 때문임
- 또한 VR 시스템의 구성 요소 (입출력 장치 등)을 통합, 제어, 관리하는 기능을 제공함

◆ 유니티와 언리얼 비교

구분	UNREAL	unity
장점	상대적으로 높은 그래픽 성능PC 콘텐츠 제작에 적합	 낮은 개발 난이도 (직관적인 GUI, 무료 모델, 개발용 리소스) 모바일 콘텐츠 제작에 적합
단점	높은 개발 난이도 고사양 개발 환경 필요	• 상대적으로 낮은 그래픽 성능
라이센스	 무료 (상용화 이후, 5% 로열티) 월 \$1,500 (전담 지원, 로열티 면제) 	• 무료(매출 10만 달러 이하)• 월 \$40(매출 20만 달러 이하)• 월 \$150(매출 20만 달러 이상)• 월 \$200(솔루션 제공, 기업용)

- ◆ 유니티와 언리얼 비교: 그래픽
 - 최근에는 유니티와 언리얼 간의 그래픽 성능의 격차가 줄어들고 있음

◆ 유니티의 특징: 크로스 플랫폼

• 하나의 개발 결과에서 다양한 플랫폼으로 이식이 가능

- PC
- 모바일(아이폰, 안드로이드)
- 웹(익스플로러, 크롬, 사파리)

◆ 유니티의 특징: 라이선스 정책

- 개인 개발자는 월 매출이 10만 달러 이하일 시, 라이선스가 무료
- Personal을 이용하여 콘텐츠 개발 후, 상용화 시 Plus 또는 Pro로 변경 가능
- 언리얼과 달리 로열티가 없음

Personal	Plus	Pro	기업
지난 12개월 동안 매출 또는 모금액이 10만 달러 미만일 경우 자격 요건 충족	지난 12개월 동안 매출 또는 모금액이 20만 달러 미만일 경우 자격 요건 충족	지난 12개월 동안의 매출 또 는 자본금이 20만 달러 이상 인 경우 Pro 또는 Enterprise 를 사용해야 함	최소 20시트. 지난 12개월 동 안의 매출 또는 자본금이 20 만 달러 이상인 경우 Pro 또 는 Enterprise를 사용해야 함

◆ 유니티의 특징: 통합 에셋(Asset) 시스템

- 유니티에서 에셋은 콘텐츠 제작에 사용되는 요소를 의미함
- 유니티는 에셋 스토어(Asset Store)를 통해 다양한 에셋(3D 모델, 애니메이션 등)을 무료 또는 유료로 제공하기 때문에 개발 시간이 단축됨

4. 참고 문헌

- [1] 구부키 류이치. "유니티로 배우는 게임 수학". 한빛미디어. 2016
- [2] 황동윤. "유니티로 배우는 증강 현실과 가상 현실". 도서 출판 길벗. 2017.
- [3] 2018년도 컴퓨터 그래픽스 트레이닝(with 장성욱 박사)
- [4] 2018년도 한국 기술 교육대학교 컴퓨터 그래픽스 강의
- [5] 2019년도 한국 기술 교육대학교 가상 현실 및 실습 강의

