

Statement of Verification

BREG EN EPD No.: 000006

Issue 04

This is to verify that the

Environmental Product Declaration provided by:

PPG Architectural Coatings UK Ltd

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for:

Johnstone's Trade Acrylic Satin

Company Address

Huddersfield Road Birstall Batley West Yorkshire WF17 9XA

 EPD

Date of First Issue

Signed for BRE Global Ltd

Emma baker Operator 18 May 2020

Date of this Issue

12 December 2014

19 May 2025

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit $\underline{www.greenbooklive.com/check}\ or\ contact\ us.$

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

BF1805-C Rev 0.1 Page 1 of 13 © BRE Global Ltd, 2017

Environmental Product Declaration

EPD Number: 000006

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013							
Commissioner of LCA study	LCA consultant/Tool							
PPG Architectural Coatings UK Ltd. Huddersfield Road Birstall - Batley, West Yorkshire WF17 9XA United Kingdom	Matthew Percy Product Stewardship Functional Expert PPG Nederland B.V. Amsterdamseweg 14 1422 AD, Uithoorn The Netherlands							
Declared/Functional Unit	Applicability/Coverage							
Johnstone's Trade Acrylic Satin to protect and decorate 1m² of substrate, suitably prepared, on the basis of one layer of the product for the lifetime of the product.	Product Specific							
EPD Type	Background database							
Cradle to Gate with options	Ecoinvent 3.5							
Demonstra	ation of Verification							
CEN standard EN 15	5804 serves as the core PCR ^a							
Independent verification of the declaration and data according to EN ISO 14025:2010 □ Internal □ External								
(Where appropriate ^b)Third party verifier: Jane Anderson								
a: Product category rules								

Comparability

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Product Construction			Use stage				F-1-616			Benefits and loads beyond					
ı	Produc	τ	Const	ruction	Rel	ated to	the bu	ilding fa	ıbric		ed to uilding		End-of-life			the system boundary
A 1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{Q}}$	V	V	$\overline{\mathbf{Q}}$	\square								$\overline{\mathbf{Q}}$	$\overline{\checkmark}$	$\overline{\mathbf{Q}}$	$\overline{\mathbf{Q}}$	

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

PPG Architectural Coatings UK Ltd. Huddersfield Road Birstall - Batley, West Yorkshire WF17 9XA United Kingdom

Construction Product:

Product Description

Johnstone's Trade Acrylic Satin is a coating suitable for interior and exterior wood and suitably primed metal surfaces. It provides a low odour, high opacity finish which is quick drying and non-yellowing.

The EPD for this products covers the following product variants:

- Johnstone's Trade Acrylic Satin White
- Johnstone's Trade Acrylic Satin Base L
- Johnstone's Trade Acrylic Satin Base M
- Johnstone's Trade Acrylic Satin Base D
- Johnstone's Trade Acrylic Satin Base Z

Technical Information

Property	Value, Unit
Spreading rate	12 m²/L
Time to Touch Dry	1-2 hr
Time to Recoat	4 hrs

Main Product Contents

Material/Chemical Input	%
TITANIUM DIOXIDE	0-25%
FILLERS	3-10%
BINDER	25-40%
BIOCIDE	<0.05%
ADDITIVES	1-2%
WATER	45-60%
COALESING AGENTS	3-5%

Manufacturing Process

The manufacturing process involves the mixing and dispersing of raw materials into a homogeneous mixture. The product is then packaged for distribution to the customer.

Process flow diagram

Construction Installation

All surfaces should be sound, clean, dry and free from grease. Remove any crazed or flaking paint. Stir well before use and apply by brush. Avoid overspreading. Do not apply when air or surface temperature is less than 10°C or when rain is imminent.

Use Information

No activities are required during the use phase

End of Life

Coatings are often not removed from their substrate, so the end-of-life disposal of the product is that of the end-of-life disposal of the underlying substrate. For wood this can be landfill or incineration.

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

Johnstone's Trade Acrylic Satin to protect and decorate 1m² of substrate, suitably prepared, at the product spreading rate indicated in the technical datasheet, on the basis of one layer of the product, for the lifetime of the product.

System boundary

The system boundaries of the product LCA follow the modular design defined by /EN15804/. This cradle-to-gate with options study includes the Product stage (A1-A3), Transport Stage (A4), Installation Stage (A5), Deconstruction/Demolition (C1), End-of-life transport (C2), Waste Processing (C3), and Disposal (C4).

Data sources, quality and allocation

Formulation is based on the current recipe extracted from PPG recipe systems. Data related to in-house PPG manufacturing processes has been collected from PPG reporting systems for the 2018 calendar year. This is based on recorded utility use and waste disposal and is of high quality.

For life cycle modelling of the process, SimaPro V.9.0 is used. All relevant background datasets are taken from Ecoinvent V3.5 database supplied with SimaPro and are documented in supporting Ecoinvent documentation.

Many Ecoinvent processes, such as waste disposal, are multi-input and not just for the material specified. For these processes the allocation used for the material in question is the one specified in the Ecoinvent process. Allocation of waste to reuse and waste disposal streams is made on the basis of recent data from reliable sources.

In cases where allocation is necessary, this has been performed on the basis of mass.

Cut-off criteria

Cut off criteria are: 1% of the renewable and non-renewable energy usage 1% of the mass of the process under consideration. The total neglected flows shall be no more than: 5% of the energy usage 5% of the total mass. Exceptions are if flows have significant effects of or energy use in their extraction, use or disposal, or are classed as hazardous waste, then these are specifically included.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts										
			GWP	ODP	AP	EP	POCP	ADPE	ADPF	
		kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG	
Product stage	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG	
1 Toddet Stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG	
	Total (of product stage)	A1-3	2,90E-01	3,58E-08	2,37E-03	1,82E-04	3,51E-04	9,31E-07	4,50E+00	
Construction	Transport	A4	5,96E-03	1,10E-09	1,92E-05	3,19E-06	3,09E-06	1,83E-08	9,04E-02	
process stage	Construction	A5	8,50E-02	2,39E-09	3,42E-04	5,02E-05	7,43E-05	5,81E-08	1,96E+00	
	Use	B1	MND	MND	MND	MND	MND	MND	MND	
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND	
	Repair	В3	MND	MND	MND	MND	MND	MND	MND	
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND	
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND	
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND	
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND	
	Deconstruction, demolition	C1	1,79E-05	3,17E-12	1,33E-07	2,88E-08	2,09E-08	1,01E-11	2,57E-04	
End of life	Transport	C2	9,35E-05	1,73E-11	3,01E-07	5,01E-08	4,86E-08	2,87E-10	1,42E-03	
LIIU OI IIIE	Waste processing	C3	8,59E-02	7,54E-11	5,46E-06	1,82E-06	5,24E-07	1,06E-09	7,63E-03	
	Disposal	C4	8,02E-03	5,24E-11	1,58E-06	3,81E-07	4,61E-07	3,23E-10	4,84E-03	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND	MND	

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG		
Draduct store	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Manufacturing	А3	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	3,73E-01	1,62E-01	5,34E-01	4,17E+00	8,22E-01	4,99E+00		
Construction	Transport	A4	9,67E-04	0,00E+00	9,67E-04	9,18E-02	0,00E+00	9,18E-02		
process stage	Construction	A5	2,92E-01	-1,62E-01	1,30E-01	2,25E+00	-2,62E-03	2,25E+00		
	Use	B1	MND	MND	MND	MND	MND	MND		
	Maintenance	B2	MND	MND	MND	MND	MND	MND		
	Repair	В3	MND	MND	MND	MND	MND	MND		
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND		
	Refurbishment	B5	MND	MND	MND	MND	MND	MND		
	Operational energy use	B6	MND	MND	MND	MND	MND	MND		
	Operational water use	B7	MND	MND	MND	MND	MND	MND		
	Deconstruction, demolition	C1	2,15E-06	0,00E+00	2,15E-06	2,61E-04	0,00E+00	2,61E-04		
	Transport	C2	1,52E-05	0,00E+00	1,52E-05	1,44E-03	0,00E+00	1,44E-03		
End of life	Waste processing	СЗ	2,01E-04	0,00E+00	2,01E-04	7,92E-03	0,00E+00	7,92E-03		
	Disposal	C4	8,67E-05	0,00E+00	8,67E-05	4,99E-03	0,00E+00	4,99E-03		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND	MND	MND		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water									
			SM	RSF	NRSF	FW			
			kg	MJ net calorific value	MJ net calorific value	m³			
	Raw material supply	A1	AGG	AGG	AGG	AGG			
Product stage	Transport	A2	AGG	AGG	AGG	AGG			
Froduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG			
	Total (of product stage)	A1-3	0,00E+00	0,00E+00	0,00E+00	7,26E-03			
Construction	Transport	A4	0,00E+00	0,00E+00	0,00E+00	1,66E-05			
process stage	Construction	A5	0,00E+00	0,00E+00	0,00E+00	2,77E-03			
	Use	B1	MND	MND	MND	MND			
	Maintenance	B2	MND	MND	MND	MND			
	Repair	В3	MND	MND	MND	MND			
Use stage	Replacement	B4	MND	MND	MND	MND			
	Refurbishment	B5	MND	MND	MND	MND			
	Operational energy use	B6	MND	MND	MND	MND			
	Operational water use	B7	MND	MND	MND	MND			
	Deconstruction, demolition	C1	0,00E+00	0,00E+00	0,00E+00	4,14E-08			
Food of life	Transport	C2	0,00E+00	0,00E+00	0,00E+00	2,61E-07			
End of life	Waste processing	СЗ	0,00E+00	0,00E+00	0,00E+00	6,38E-06			
	Disposal	C4	0,00E+00	0,00E+00	0,00E+00	5,01E-06			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND			

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories								
			HWD	NHWD	RWD			
			kg	kg	kg			
	Raw material supply	A1	AGG	AGG	AGG			
Draduot ataga	Transport	A2	AGG	AGG	AGG			
Product stage	Manufacturing	А3	AGG	AGG	AGG			
	Total (of product stage)	A1-3	3,99E-02	1,66E-01	1,50E-05			
Construction	Transport	A4	5,68E-05	4,77E-03	6,21E-07			
process stage	Construction	A5	4,78E-03	1,56E-02	1,83E-06			
	Use	B1	MND	MND	MND			
	Maintenance	B2	MND	MND	MND			
	Repair	В3	MND	MND	MND			
Use stage	Replacement	B4	MND	MND	MND			
	Refurbishment	B5	MND	MND	MND			
	Operational energy use	B6	MND	MND	MND			
	Operational water use	B7	MND	MND	MND			
	Deconstructio n, demolition	C1	2,45E-07	1,45E-06	1,77E-09			
Final of life	Transport	C2	8,92E-07	7,49E-05	9,75E-09			
End of life	Waste processing	СЗ	1,93E-03	3,53E-04	2,28E-08			
	Disposal	C4	1,52E-04	1,63E-02	2,84E-08			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life								
			CRU	MFR	MER	EE		
			kg	kg	kg	MJ per energy carrier		
	Raw material supply	A1	AGG	AGG	AGG	AGG		
Product stage	Transport	A2	AGG	AGG	AGG	AGG		
Froduct stage	Manufacturing	А3	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Construction	Transport	A4	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
process stage	Construction	A5	0,00E+00	2,75E-03	0,00E+00	7,54E-02		
	Use	B1	MND	MND	MND	MND		
	Maintenance	B2	MND	MND	MND	MND		
	Repair	В3	MND	MND	MND	MND		
Use stage	Replacement	B4	MND	MND	MND	MND		
	Refurbishment	B5	MND	MND	MND	MND		
	Operational energy use	B6	MND	MND	MND	MND		
	Operational water use	B7	MND	MND	MND	MND		
	Deconstruction, demolition	C1	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Find of life	Transport	C2	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
End of life	Waste processing	C3	0,00E+00	0,00E+00	0,00E+00	2,91E-01		
	Disposal	C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	MND	MND	MND	MND		

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and add	itional technical information								
Scenario	Parameter	Units	Results						
	Description of scenario								
A4 - Transport to the	Transport by Lorry		Lorry 16-32 tonne EURO5						
A4 – Transport to the building site	Distance: (Road)	km	300						
	Capacity utilisation (incl. empty returns)	%	50						
	Bulk density of transported products	kg/m ³	1.180						
A5 – Installation in the building									
	Brush for application	kg	4.68 × 10 ⁻³						
	Polypropylene sheeting for spill protection	kg	2.28 × 10 ⁻²						
	Amount of paint lost during application due drips splashes, and residue in the can/bucket	kg	9.95 × 10 ⁻⁴						
	Disposal of steel (From primary packaging. Assume 29% landfill, 71% incineration)	kg	7.83 × 10 ⁻³						
	Disposal of polyethylene (From spill sheeting and brush packaging. Assume 29% landfill, 71% incineration)	kg	9.05 × 10 ⁻⁵						
	Disposal of wood (From pallet and brush. Assume 31% recycling, 48% incineration and 20% landfill)	kg	6.61 × 10 ⁻³						
	Disposal of miscellaneous plastic waste (From brush. Assume 29% landfill, 71% incineration)	kg	2.03 × 10 ⁻³						
Reference service life	The service life is highly dependent on the environment in w the EPD gives values for the first application of the coating to coating in the environment in which it is used.								
C1 to C4 End of life,	Product is demolished with the building on which it is applie disposal by incineration (5%), landfill (29.6%) and incinerat								
	Demotion of construction with paint coating	m ³	3.22 × 10 ⁻⁴						
	Transport distance to incineration/landfill	km	30						
	Amount disposed at end of life	kg	3.22 × 10 ⁻⁴						

Summary, comments and additional information

Analysis

Johnstone's Trade Acrylic Satin is available as a White product and four tinting bases (L Base, M Base, D Base and Z Base) for point of sale in-can tinting to give the possibility of approximately 16,000 different colours.

Analysis of the relative contributions of each Module shows that most of the impact comes from the raw materials stage (A1) for most of the indicators. This is shown in Figure 1 for the L Base. This high contribution of raw materials to the impact indicators is not unexpected. As paints are at the end of the chemical value chain much of the expenditure of energy, raw materials, processing, waste processing, etc. in bringing the product to existence has occurred prior to the entry of the raw materials onto the PPG production site.

A further breakdown of the contribution of the different raw material types to environmental indicators in Module A1 shows that the majority of each impact comes from the titanium dioxide and the binder (Figure 2). This is typical for coatings products and not unexpected given these two raw materials are often present in high proportions and have a relatively high environmental impact.

The results presented in this EPD are for the L Base product and represent the upper limit of the environmental impact for Johnstone's Trade Acrylic Satin product group.

Figure 1

Figure 2

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.