Effective Concurrency Testing for Distributed Systems

汇报人: 张俊

Concurrency is crucial but difficult

Parallel nodes

Untimely communication

Concurrent requests

Distributed failures

- Systematic testing (model checking)
 - Exhaustively enumerate all possible interleavings
 - The interleaving space grows exponentially – quickly become intractable
- Randomized testing
 - Sample interleavings simple and lightweight
 - Probabilistic concurrency testing (PCT) [1]
 - Coincide simple root causes by interleaving a small subset of ops
 - · Still suffer from complex tests too many operations to choose from!

Partial order sampling (POS)

- Extremely simple algorithm:
 - Assign operations with random priorities
 - Always schedule the available operation with the highest

Conflict analysis

- Insight: it suffices to interleave conflicting operations to reach any testing result.
 - No need to interleave nonconflicting ones!

Figure 2. The workflow of Morpheus.

Name	Description	KLOC	Errors
locks	Lock manager	4.1	2
gproc	Process registry	7.3	2
gen_leader	Leader election	1.7	٥
mnesia	DBMS	27.3	2
rabbitmq	Message broker	60.7	
ra	Replicated log	8.6	4
Total		109.7	11

根本原因:协议设计缺陷。为了性能,协议允许客户端传播其锁条目给其他(可能未请求该锁的)客户端。同时,服务器会在锁空闲时**从本地状态移除该锁的条目以节省空间(重置版本号)**。

复合操作不是原子的,被中间插入的操作打断,导致了状态不一致。

Comparison with Systematic Testing

Case	Systematic	Random walk	POS
crce-2	81	4.29	4.39
crce-3	119	1351.35	17.43

实验结果:

- 1. crce (Chain Replication Protocol):
 - crce-2: POS (4.39 trials/error) 和 Random Walk (4.29) 性能接近,都远优于系统性测试(81 trials)。
 - crce-3: POS (17.43 trials/error) 显著优于 Random Walk (1351.35) 和系统性测试 (119) 。
- 2. **C6023 (Cassandra Bug)**:在10万次试验中,系统性测试和Random Walk**一次都没发现**错误,而 POS发现了20次。
- 3. locks-1: 只有这个真实错误能在Concuerror上运行。结果: 系统性测试 (0/100000) 、Random Walk (1/100000)、POS (18987/100000, 约5.27 trials/error)。

Morpheus Error-detection Performance

Case	RW	RW+	PCT	PCT+	POS	POS+	POS*	POS*+
locks-1	0.0042	0.0312	0.0895	0.1164	0.1521	0.2087	0.1562	0.2239
locks-2	0.0210	0.0117	0.0022	0.0071	0.0073	0.0124	0.0103	0.0140
gproc-1	0	0.0001	0.0015	0.0018	0.0031	0.0106	0.0008	0.0023
gproc-2	0	0.0190	0.0496	0.0781	0.0605	0.1170	0.0416	0.0648
gproc-3	0	0.0002	0.0431	0.0385	0.0156	0.0450	0.0027	0.0094
mnesia-1	0	0.0001	0.0219	0.0223	0.0141	0.0168	0.0091	0.0124
mnesia-2	0	0.0008	0.0075	0.0078	0.0117	0.0253	0.0104	0.0254
ms-1	0	0.0061	0.3000	0.2833	0.1489	0.2420	0.1505	0.2478
ra-1	0	0	0.0025	0.0036	0.0070	0.0120	0.0062	0.0126
ra-2	0	0	0.0010	0.0011	0.0053	0.0042	0.0063	0.0044
ra-3	0	0.0001	0.0003	0.0002	0.0032	0.0031	0.0032	0.0033
Mean	N/A	N/A	0.0089	0.0106	0.0151	0.0249	0.0109	0.0180
Ratio to POS+	N/A	N/A	35.62%	42.66%	60.67%	100.00%	43.74%	72.01%
CA Improvement		N/A		19.77%		64.82%		64.65%

最佳组合: POS+ (基础POS + 冲突分析) 是表现最好的组合。

总体优势: POS+ 的整体错误检测率是 RW 的 280.77%,是 PCT 的 234.90%。优势极其明显。

POS*的意外表现:高级版POS(Pos*)的表现反而比基础版(Pos)更差(平均低28%)。这验证了

作者在§2.2中的判断:在消息传递模型中,复杂的依赖跟踪会因误报而性能下降。

RW的致命缺陷:Random Walk (Rw)在11个错误中有2个根本检测不到(hit-ratio为0),这印证了

引言中关于其概率保证极弱的论述。

Effect of Conflict Analysis

Case	Operations	Conflicts	Hit-ratio
gproc-1	6593,39	325.59	0.0031
Scheme	FNs	FPs	
PC	0.09	1192.16	0.0064 (206%)
{P,PC}	0.54	526.27	0.0106 (342%)
mnesia-2	10018,80	628.25	0.0117
PC	0.18	4612.02	0.0174 (149%)
(P,PC)	1.13	1442.74	0.0253 (216%)

(P, PC) 签名将**误报 (False Positives)** 的非冲突操作数量大幅降低 (从1192->526, 4612->1442) ,使其与真实冲突数处于同一量级。

更好的精度直接转化为**更高的性能**:使用(P, PC)签名后,冲突分析对 gproc-1 和 mnesia-2 的检测性能分别提升了 **342%** 和 **216%**(与无CA的POS相比)。

The Real-time Performance of Morpheus

Morpheus引入了**近两个数量级的开销**。这在需要完全控制交错的一致性测试中是**常见且可接受的**。