

Rohan Sharma

50431056

24-October-2022

University at Buffalo The State University of New York

Contents

- Introduction
- Few Shot Learning Problem
- Meta Learning Problem
- Approaches
- MAML
- Algorithm
- MAML for FSL, RL
- Algorithm
- Experiments
- Pros and Cons
- Legacy
- Conclusion

Introduction

- Meta learning essentially means learning to learn
- If a classifier learns to classify on a dataset with N classes, will it do well on N` new classes?
 - Why can't we use the learned model again?
- Learn a model on a variety of learning tasks
- Now requires few-shot training on the new tasks with SOTA performance
- Easy to finetune
- Use the same model for both tasks and all others
- Generic learning algorithm that learns to learn!

Few Shot Learning

- Problem Definition
 - N Classes
 - K samples per class
 - K is usually very small
- Challenges
 - Not enough data!

Meta Learning

- Problem Definition
 - N Classes
 - K samples per class
 - New N` classes
 - Very few samples in each
 - Learn and classify!
- Challenges
 - Not enough data!
 - Catastrophic forgetting
 - Learning to learn is difficult

1. Meta-training

2. Meta-testing

Approaches

Two approaches to defining a meta-learner

- Train a separate network on meta attributes:
 - Train a pattern matcher (kNN/kernel machine):
 Matching networks (Vinyals et al. 2016)
 - Train on Prototypes: Prototypical Networks (Snell et al. 2017)
 - Meta-Learner LSTM (Ravi & Larochelle, 2017)
- Optimization approaches:
 - MAML (Finn et al. 2017)
 - Reptile (Nichol et al. 2018)
 - iMAML (Rajeswaran et al. 2019)

Figure 1: Matching Networks architecture

MAML

WHY IS THIS OPTIMIZATION?

- Traditional approaches to optimization learn on one task
- Learning other tasks presents a generalization problem
- Challenge is to optimize a network that translates well to other tasks
- Optimize model parameters to make them sensitive to changes in the task
- Requires a differentiable framework

Algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples

6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

: end for

8: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$

9: end while

Inner Loop: Update the model for a task from an initialization

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$$

Algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples

6: Compute adapted parameters with gradient de-

scent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

7: end for

Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$

9: end while

Outer Loop: Optimize for the performance of all inner loop models on all tasks

Meta-objective:

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

Total loss of all updated models

Meta-update:

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$$

Total loss of all updated models

9

MAML for Few-Shot Supervised Learning

- Regression: predict the outputs of a function from only K datapoints sampled from that function, after training on many functions with similar statistical properties
- Classification: learn to classify an object only from K examples, after training on many other types of objects

How to use MAML?

 Simply use the general framework with appropriate loss functions!

Regression: Mean-squared error (MSE)

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \|f_{\phi}(\mathbf{x}^{(j)}) - \mathbf{y}^{(j)}\|_2^2,$$

Classification: Cross-entropy loss

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$

MAML for Reinforcement Learning

- Goal: enable an agent to quickly acquire a new task policy using only a small amount of experience
- How to use MAML?
 - Use policy gradient method for a differentiable framework
 - Sample new examples with the new policy

Algorithms for FSL and RL

Algorithm 2 MAML for Few-Shot Supervised Learning

```
Require: p(\mathcal{T}): distribution over tasks Require: \alpha, \beta: step size hyperparameters
```

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

Algorithm 3 MAML for Reinforcement Learning

```
Require: p(\mathcal{T}): distribution over tasks Require: \alpha, \beta: step size hyperparameters
```

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using f_{θ} in \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{T_i}(f_{\theta})$
- 8: Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta'_i}$ in \mathcal{T}_i
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
- 11: end while

Experiments – Main Questions

- Can MAML enable fast learning of new tasks?
- Can MAML be used for meta-learning in multiple different domains?
- Can MAML models continue to improve with additional gradient updates?

Experiments – Regression

- Task: Regressing to a several sine waves (varying amplitude and phase) given K data points
- Training set: Several sinusoids (tasks)
 not from the test set
- MAML: Meta-training on all tasks with MAML + fine-tuning on K data points
- Baseline: Pretraining on all tasks with SGD + fine-tuning on K data points
- One update for K=10 or K=5 examples, finetuned using the same samples

Experiments – Regression

- Able to extimate parts of the curve lacking data points
- Learned the periodic structure
- Right: Catastrophic forgetting and failure to extrapolate and generalize

Experiments – Classification

 Task: Few shot classification of N unseen classes with only K instances

Omniglot

- Handwritten character classification on Omniglot
- 20 instances of 1623 chars from50 alphabets

Mini-ImageNet

- Subset of ImageNet
- 64 train, 24 val, 12 test classes

Experiments – Classification

Table 1. Few-shot classification on held-out Omniglot characters (top) and the MiniImagenet test set (bottom). MAML achieves results that are comparable to or outperform state-of-the-art convolutional and recurrent models. Siamese nets, matching nets, and the memory module approaches are all specific to classification, and are not directly applicable to regression or RL scenarios. The \pm shows 95% confidence intervals over tasks. Note that the Omniglot results may not be strictly comparable since the train/test splits used in the prior work were not available. The MiniImagenet evaluation of baseline methods and matching networks is from Ravi & Larochelle (2017).

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	-	_
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	_
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	$48.07 \pm 1.75\%$	${\bf 63.15 \pm 0.91\%}$	
MAML (ours)	${\bf 48.70 \pm 1.84\%}$	$63.11 \pm 0.92\%$	

Experiments – RL

Task: 2D Navigation - move the point agent to a goal randomly chosen for each task

- MAML:
 - Meta-training a policy on all tasks with MAML
 - Fine-tune on sampled trajectories from pre-training

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = -\mathbb{E}_{\mathbf{x}_t, \mathbf{a}_t \sim f_{\phi}, q_{\mathcal{T}_i}} \left[\sum_{t=1}^{H} R_i(\mathbf{x}_t, \mathbf{a}_t) \right]$$

- Baseline 1 (pretrained): Pretraining a policy on all tasks + fine-tuning
- Baseline 2 (random): Training a policy from scratch with random initialization
- Baseline 3 (oracle): All parameters known (pos, dir, vel for agent)

Figure 4. Top: quantitative results from 2D navigation task, Bottom: qualitative comparison between model learned with MAML and with fine-tuning from a pretrained network.

pre-update

goal position

Pros and Cons

- Pros:
 - Can MAML enable fast learning of new tasks? YES
 - Can MAML be used for meta-learning in multiple different domains?
 YES
 - Can MAML models continue to improve with additional gradient updates? YES
 - Pros: Adaptable to any task that is differentiable
 - No new model for meta training
 - Generalization
- Cons:
 - Gradient through gradient makes it computationally expensive
 - Susceptible to learning rate variations
 - Not easy to train (Number of inner optimization steps to make the computation easier is an open question)

Legacy

- 7342 citations and counting!
- Used for:
 - NAS
 - Hyperparameter tuning (learning the learning rate)
 - Curriculum learning (learning easy data first)
 - You name it!
- Several of the works improve the computational efficiency

Fig. 28 The relationships between the covered optimization-based meta-learning techniques. As one can see, MAML has a central position in this network of techniques as it has inspired many other works

Thank you!