TGCAGACTAAACCAGTCATTACTTGTTTCAAGAGCGTTCTGCTAATCTACACTTTTATTTTC TGGATCACTGGCGTTATCCTTCTTGCAGTTGGCATTTGGGGCAAGGTGAGCCTGGAGAATTA CTTTTCTCTTTTAAATGAGAAGGCCACCAATGTCCCCTTCGTGCTCATTGCTACTGGTACCG TCATTATTCTTTTGGGCACCTTTGGTTGTTTTGCTACCTGCCGAGCTTCTGCATGGATGCTA AAACTGTATGCAATGTTTCTGACTCTCGTTTTTTTTGGTCGAACTGGTCGCTGCCATCGTAGG ATTTGTTTTCAGACATGAGATTAAGAACAGCTTTAAGAATAATTATGAGAAGGCTTTGAAGC AGTATAACTCTACAGGAGATTATAGAAGCCATGCAGTAGACAAGATCCAAAATACGTTGCAT TGTTGTGGTGTCACCGATTATAGAGATTGGACAGATACTAATTATTACTCAGAAAAAGGATT TCCTAAGAGTTGCTGTAAACTTGAAGATTGTACTCCACAGAGAGATGCAGACAAAGTAAACA ATGAAGGTTGTTTTATAAAGGTGATGACCATTATAGAGTCAGAAATGGGAGTCGTTGCAGGA ATTTCCTTTGGAGTTGCTTGCTTCCAACTGATTGGAATCTTTCTCGCCTACTGCCWCTCTCG ${\tt TGCCATAACAAATAACCAGTATGAGATAGTG} {\color{red}{\bf TAA}} {\tt CCCAATGTATCTGTGGGCCTATTCCTCT}$ CTACCTTTAAGGACATTTAGGGTCCCCCCTGTGAATTAGAAAGTTGCTTGGCTGGAGAACTG GTAGACCTAAAACTACACCAATAGGCTGATTCAATCAAGATCCGTGCTCGCAGTGGGCTGAT TCAATCAAGATGTATGTTTGCTATGTTCTAAGTCCACCTTCTATCCCATTCATGTTAGATCG TTGAAACCCTGTATCCCTCTGAAACACTGGAAGAGCTAGTAAATTGTAAATGAAGT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA19902

><subunit 1 of 1, 245 aa, 1 stop, 1 unknown

><MW: -1, pI: 8.36, NX(S/T): 1

MASPSRRLQTKPVITCFKSVLLIYTFIFWITGVILLAVGIWGKVSLENYFSLLNEKATNVPF VLIATGTVIILLGTFGCFATCRASAWMLKLYAMFLTLVFLVELVAAIVGFVFRHEIKNSFKN NYEKALKQYNSTGDYRSHAVDKIQNTLHCCGVTDYRDWTDTNYYSEKGFPKSCCKLEDCTPQ RDADKVNNEGCFIKVMTIIESEMGVVAGISFGVACFQLIGIFLAYCXSRAITNNQYEIV

Important features of the protein:

Signal peptide:

amino acids 1-42

Transmembrane domains:

amino acids 19-42, 61-83, 92-114, 209-230,

N-glycosylation site.

amino acids 134-138

Tyrosine kinase phosphorylation site.

amino acids 160-168, 160-169

N-myristoylation site.

amino acids 75-81, 78-84, 210-216, 214-220, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 69-80, 211-222

CCCACGCGTCCGCGTGGCCTCGCGTCCATCTTTGCCGTTCTCTCGGACCTGTCACAAA GGAGTCGCCGCCGCCGCCCCCCCCCCCCCCCGGGGGGCCCGGGAGGTAGAGAAAGTCAGT GCCGGGGTAGGCTCTGGAAAGGGCCCGGGAGAGAGGTGGCGTTGGTCAGAACCTGAGAAACA GCCGAGAGGTTTTCCACCGAGGCCCGCGCTTGAGGGATCTGAAGAGGGTTCCTAGAAGAGGGT GTTCCCTCTTTCGGGGGTCCTCACCAGAAGAGGTTCTTGGGGGGTCGCCCTTCTGAGGAGGCT GCGGCTAACAGGGCCCAGAACTGCCATTGGATGTCCAGAATCCCCTGTAGTTGATAATGTTG GGAATAAGCTCTGCAACTTTCTTTGGCATTCAGTTGTTAAAAACAAATAGGATGCAAATTCC TCAACTCCAGGTTATGAAAACAGTACTTGGAAAACTGAAAACTACCTAA**ATG**ATCGTCTTTG GTTGGGCCGTGTTCTTAGCGAGCAGAAGCCTTGGCCAGGGTCTGTTGTTGACTCTCGAAGAG CACATAGCCCACTTCCTAGGGACTGGAGGTGCCGCTACTACCATGGGTAATTCCTGTATCTG CCGAGATGACAGTGGAACAGTGTTGACACCCAACAGCAACAGGCCGAGAACAGTG CAGTACCCACTGCTGACACAAGGAGCCAACCACGGGACCCTGTTCGGCCACCAAGGAGGGGC CGAGGACCTCATGAGCCAAGGAGAAAGAAACAAAATGTGGATGGGCTAGTGTTGGACACACT GGCAGTAATACGGACTCTTGTAGATAAG**TAA**GTATCTGACTCACGGTCACCTCCAGTGGAAT GAAAAGTGTTCTGCCCGGAACCATGACTTTAGGACTCCTTCAGTTCCTTTAGGACATACTCG CCAAGCCTTGTGCTCACAGGGCAAAGGAGAATATTTTAATGCTCCGCTGATGGCAGAGTAAA TGATAAGATTTGATGTTTTTGCTTGCTGTCATCTACTTTGTCTGGAAATGTCTAAATGTTTC TGTAGCAGAAAACACGATAAAGCTATGATCTTTATTAGAG

 ${\tt MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNSCICRDDSGTDDSVDTQQQQ} \\ {\tt AENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKKQNVDGLVLDTLAVIRTLVDKO} \\$

Signal peptide:

amino acids 1-16

Casein kinase II phosphorylation site.

amino acids 22-26, 50-54, 113-117

N-myristoylation site.

amino acids 18-24, 32-38, 34-40, 35-41, 51-57

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56107</pre>

<subunit 1 of 1, 231 aa, 1 stop

<NX(S/T): 0

MEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVSGFLLFRSLPRHTFGLVQSKLFPFYFHISM GCAFINLCILASQHAWAQLTFWEASQLYLLFLSLTLATVNARWLEPRTTAAMWALQTVEKER GLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHGLSSLCNLGCVLSNGLCLAGLALEIRSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 86-103, 60-75

Casein kinase II phosphorylation site.

amino acids 82-86

Tyrosine kinase phosphorylation site.

amino acids 144-151

N-myristoylation site.

amino acids 4-10, 5-11, 47-53, 170-176, 176-182

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 54-65

G-protein coupled receptors proteins.

amino acids 44-85

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTT CTTGTATTATACAAGAAAGGAGTGTACCTATCACACACAGGGGGAAAA**ATG**CTCTTTTGGGT GCTAGGCCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAG ACATCACTGATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCC AGAATGTCAAGAGGACTGCCCAGTGGGTGAAGAACCAAGTTGGGGAAAAGGTCTCTGGGGT CTACAGAGAACCTATTGAAGTGAACCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTC CTTTGGTCAAGAAAGCTCAAGGGAGAGTTATTAATGTCTCCAGTGTTGGAGGTCGCCTTGCA ATCGTTGGAGGGGCTATACTCCATCCAAATATGCAGTGGAAGGTTTCAATGACAGCTTAAG ACGGGACATGAAAGCTTTTGGTGTGCACGTCTCATGCATTGAACCAGGATTGTTCAAAACAA ACTTGGCAGATCCAGTAAAGGTAATTGAAAAAAACTCGCCATTTGGGAGCAGCTGTCTCCA GACATCAAACAATATGGAGAAGGTTACATTGAAAAAAGTCTAGACAAACTGAAAGGCAA TAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTGCATGGACCACGCTCTAACAA GTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAATTTTCTGGATACCTCTG TCTCACATGCCAGCAGCTTTGCAAGACTTTTTATTGTTGAAACAGAAAGCAGAGCTGGCTAA TCCCAAGGCAGTG**TGA**CTCAGCTAACCACAAATGTCTCCTCCAGGCTATGAAATTGGCCGAT TTCAAGAACACATCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACTCATTTAGA TCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGTCCCTG CTCAAGTTTTCTTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCTGT ATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATG ATCTTTACCGTGGCCTGCCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTT AAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56406

><subunit 1 of 1, 319 aa, 1 stop

><MW: 35227, pI: 8.97, NX(S/T): 3

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLT ESGSTALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDW LTLEDYREPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGF NDSLRRDMKAFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLD KLKGNKSYVNMDLSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQK AELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

GCGGGCTGTTGACGGCGCTGCGATGCCTGCCGAGGCAGAGAAGCGGAGCTCTCGGTT CCTCTCAGTCGGACTTCCTGACGCCGCCAGTGGGCGGGGCCCCTTGGGCCGTCGCCACCACT GTAGTCATGTACCCACCGCCGCCGCCGCCTCATCGGGACTTCATCTCGGTGACGCTGAG CTTTGGCGAGAGCTATGACAACAGCAAGAGTTGGCGGCGCGCTCGTGCTGGAGGAAATGGA AGCAACTGTCGAGATTGCAGCGGAATATGATTCTCTTCCTCCTTGCCTTTCTGCTTTTCTGT GGACTCCTCTTCTACATCAACTTGGCTGACCATTGGAAAGCTCTGGCTTTCAGGCTAGAGGA AGAGCAGAAGTGAGGCCAGAAATTGCTGGGTTAAAACCAGCAAATCCACCCGTCTTACCAG CTCCTCAGAAGGCGGACACCGACCCTGAGAACTTACCTGAGATTTCGTCACAGAAGACACAA AGACACATCCAGCGGGGACCACCTCACCTGCAGATTAGACCCCCAAGCCAAGACCTGAAGGA ATCCGCAGAGGACAGTCATCAGCTGGAGGGGGAGCGGTGATCGAGCCTGAGCAGGGCACCGAG CTCCCTTCAAGAAGAGCAGAAGTGCCCACCAAGCCTCCCCTGCCACCGGCCAGGACACAGGG AAGGATACCGCAAGTTTGCATGGGGCCATGACGAGCTGAAGCCTGTGTCCAGGTCCTTCAGT GAGTGGTTTGGCCTCGGTCTCACACTGATCGACGCGCTGGACACCATGTGGATCTTGGGTCT GAGGAAAGAATTTGAGGAAGCCAGGAAGTGGGTGTCGAAGAAGTTACACTTTGAAAAGGACG TGGACGTCAACCTGTTTGAGAGCACGATCCGCATCCTGGGGGGGCTCCTGAGTGCCTACCAC CTGTCTGGGGACAGCCTCTTCCTGAGGAAAGCTGAGGATTTTGGAAATCGGCTAATGCCTGC CTTCAGAACACCATCCAAGATTCCTTACTCGGATGTGAACATCGGTACTGGAGTTGCCCACC CGCCACGGTGGACCTCCGACAGCACTGTGGCCGAGGTGACCAGCATTCAGCTGGAGTTCCGG GAGCTCTCCCGTCTCACAGGGGATAAGAAGTTTCAGGAGGCAGTGGAGAAGGTGACACAGCA CATCCACGGCCTGTCTGGGAAGAAGGATGGGCTGGTGCCCATGTTCATCAATACCCACAGTG GCCTCTTCACCCACCTGGGCGTATTCACGCTGGGCCCAGGGCCGACAGCTACTATGAGTAC CTGCTGAAGCAGTGGATCCAGGGCGGGAAGCAGGAGACACAGCTGCTGGAAGACTACGTGGA AGCCATCGAGGGTGTCAGAACGCACCTGCTGCGGCACTCCGAGCCCAGTAAGCTCACCTTTG TGGGGGAGCTTGCCCACGGCCGCTTCAGTGCCAAGATGGACCACCTGGTGTGCTTCCTGCCA GGGACGCTGGCCTCTGCCCACGCCTGCCCGCCACCACATGGAGCTGGCCCAGGA GCTCATGGAGACTTGTTACCAGATGAACCGGCAGATGGAGACGGGGCTGAGTCCCGAGATCG TGCACTTCAACCTTTACCCCCAGCCGGGCCGTCGGGACGTGGAGGTCAAGCCAGCAGACAGG CACAACCTGCTGCGGCCAGAGACCGTGGAGAGCCTGTTCTACCTGTACCGCGTCACAGGGGA CCGCAAATACCAGGACTGGGGGCTGGGAGATTCTGCAGAGCTTCAGCCGATTCACACGGGTCC CCTCGGGTGGCTATTCTTCCATCAACAATGTCCAGGATCCTCAGAAGCCCGAGCCTAGGGAC AAGATGGAGAGCTTCTTCCTGGGGGAGACGCTCAAGTATCTGTTCTTGCTCTTCTCCGATGA CCCAAACCTGCTCAGCCTGGACGCCTACGTGTTCAACACCGAAGCCCACCCTCTGCCTATCT GGACCCCTGCCTAGGGTGGATGGCTGCTGGTGTGGGGACTTCGGGTGGGCAGAGGCACCTTG CTGGGTCTGTGGCATTTTCCAAGGGCCCACGTAGCACCGCCAACCGCCAAGTGGCCCAGGCT CTGAACTGGCTCTGGGCTCCTCGTCTCTGCTTTAATCAGGACACCGTGAGGACAAGTGA GGCCGTCAGTCTTGGTGTGATGCGGGGTGGGCTGGGCCGCTGGAGCCTCCGCCTGCTTCCTC CAGAAGACACGAATCATGACTCACGATTGCTGAAGCCTGAGCAGGTCTCTGTGGGCCGACCA GAGGGGGCTTCGAGGTGGTCCCTGGTACTGGGGTGACCGAGTGGACAGCCCAGGGTGCAGC TCTGCCCGGGCTCGTGAAGCCTCAGATGTCCCCAATCCAAGGGTCTGGAGGGGCTGCCGTGA CTCCAGAGGCCTGAGGCTCCAGGGCTGGCTCTGGTGTTTACAAGCTGGACTCAGGGATCCTC CTGGCCGCCCGCAGGGGGCTTGGAGGGCTGGACGCCAAGTCCGTCTAGCTCACGGGCCCCT CCAGTGGAATGGGTCTTTTCGGTGGAGATAAAAGTTGATTTGCTCTAACCGCAA

FIGURE 10

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56529

><subunit 1 of 1, 699 aa, 1 stop

><MW: 79553, pI: 7.83, NX(S/T): 0

MAACEGRRSGALGSSQSDFLTPPVGGAPWAVATTVVMYPPPPPPPPHRDFISVTLSFGESYDN SKSWRRSCWRKWKQLSRLQRNMILFLLAFLLFCGLLFYINLADHWKALAFRLEEEQKMRPE IAGLKPANPPVLPAPQKADTDPENLPEISSQKTQRHIQRGPPHLQIRPPSQDLKDGTQEEAT KRQEAPVDPRPEGDPQRTVISWRGAVIEPEQGTELPSRRAEVPTKPPLPPARTQGTPVHLNY RQKGVIDVFLHAWKGYRKFAWGHDELKPVSRSFSEWFGLGLTLIDALDTMWILGLRKEFEEA RKWVSKKLHFEKDVDVNLFESTIRILGGLLSAYHLSGDSLFLRKAEDFGNRLMPAFRTPSKI PYSDVNIGTGVAHPPRWTSDSTVAEVTSIQLEFRELSRLTGDKKFQEAVEKVTQHIHGLSGK KDGLVPMFINTHSGLFTHLGVFTLGARADSYYEYLLKQWIQGGKQETQLLEDYVEAIEGVRT HLLRHSEPSKLTFVGELAHGRFSAKMDHLVCFLPGTLALGVYHGLPASHMELAQELMETCYQ MNRQMETGLSPEIVHFNLYPQPGRRDVEVKPADRHNLLRPETVESLFYLYRVTGDRKYQDWG WEILQSFSRFTRVPSGGYSSINNVQDPQKPEPRDKMESFFLGETLKYLFLLFSDDPNLLSLD AYVFNTEAHPLPIWTPA

Important features of the protein:

Transmembrane domain:

amino acids 21-40 and 84-105 (type II)

FIGURE 11

GGCGCCGCGTAGGCCCGGGAGGCCGGCCGGCCTGCGCATGCCCCATGCGCCGC CGCCTCTCCGCACGATGTTCCCCTCGCGGAGGAAAGCGGCGCAGCTGCCCTGGGAGGACGGC AGGTCCGGGTTGCTCTCCGGCGCCTCCCTCGGAAGTGTTCCGTCTTCCACCTGTTCGTGGC CTGCCTCTCGCTGGGCTTCTTCTCCCTACTCTGGCTGCAGCTCAGCTGCTCTGGGGACGTGG CCGCCCCTGAGCACTGGGAAGAAGACGCATCCTGGGGCCCCCACCGCCTGGCAGTGCTGGT GCCCTTCCGCGAACGCTTCGAGGAGCTCCTGGTCTTCGTGCCCCACATGCGCCGCTTCCTGA GCAGGAAGAAGATCCGGCACCACATCTACGTGCTCAACCAGGTGGACCACTTCAGGTTCAAC CGGGCAGCGCTCATCAACGTGGGCTTCCTGGAGAGCAGCAACAGCACGGACTACATTGCCAT GCACGACGTTGACCTGCTCCTCTCAACGAGGAGCTGGACTATGGCTTTCCTGAGGCTGGGC CCTTCCACGTGGCCTCCCGGAGCTCCACCCTCTCTACCACTACAAGACCTATGTCGGCGGC ATCCTGCTGCTCCCAAGCAGCACTACCGGCTGTGCAATGGGATGTCCAACCGCTTCTGGGG CTGGGGCCGCGAGGACGACGAGTTCTACCGGCGCATTAAGGGAGCTGGGCTCCAGCTTTTCC GCCCCTCGGGAATCACAACTGGGTACAAGACATTTCGCCACCTGCATGACCCAGCCTGGCGG CCTGCACTGTCCTCAACATCATGTTGGACTGTGACAAGACCGCCACACCCTGGTGCACATTC AGC**TGA**GCTGGATGGACAGTGAGGAAGCCTGTACCTACAGGCCATATTGCTCAGGCTCAGGA CAAGGCCTCAGGTCGTGGGCCCAGCTCTGACAGGATGTGGAGTGGCCAGGACCAAGACAGCA AGCTACGCAATTGCAGCCACCGGCCGCCAAGGCAGGCTTGGGCTGGGCCAGGACACGTGGG GGACCCCCCTGCCTTCCTGCTCACCCTACTCTGACCTCCTTCACGTGCCCAGGCCTGTGGG TAGTGGGGAGGCTGAACAGGACAACCTCTCATCACCCTACTCTGACCTCCTTCACGTGCCC

FIGURE 12

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531

><subunit 1 of 1, 327 aa, 1 stop

><MW: 37406, pI: 9.30, NX(S/T): 1

MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLFVACLSLGFFSLLWLQLSCSGDVARAVR GQGQETSGPPRACPPEPPPEHWEEDASWGPHRLAVLVPFRERFEELLVFVPHMRRFLSRKKI RHHIYVLNQVDHFRFNRAALINVGFLESSNSTDYIAMHDVDLLPLNEELDYGFPEAGPFHVA SPELHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDEFYRRIKGAGLQLFRPSGI TTGYKTFRHLHDPAWRKRDQKRIAAQKQEQFKVDREGGLNTVKYHVASRTALSVGGAPCTVL NIMLDCDKTATPWCTFS

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 29-49 (type II)

N-glycosylation site.

amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 27-31

Tyrosine kinase phosphorylation site.

amino acids 226-233

N-myristoylation site.

amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

FIGURE 13

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56862</pre>

<subunit 1 of 1, 73 aa, 1 stop

<MW: 7879, pI: 7.21, NX(S/T): 0

 $\verb|MLLLTLLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQ|$

PRGEGEKVGDG

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

GGGACCCATGCGGCCGTGACCCCCGGCTCCCTAGAGGCCCAGCGCAGCCGCAGCGACAAAG GAGCATGTCCGCGCGGGGAAGGCCCGTCCTCCGGCCGCCATAAGGCTCCGGTCGCCGCTGG GCCCGCGCCGCTCCTGCCCGCCCGGGCTCCGGGGCGCCCGCTAGGCCAGTGCGCCGCCG CTCGCCCGCAGGCCCGGCCGCAGCATGGAGCCACCCGGACGCCGGGGGCCGCGCGCA GCCGCCGCTGTTGCCGCTCTCGCTGTTAGCGCTGCTCGCCTGCTGGGAGGCGGCGCG GCGCGCGCGCGCCGCCGCCGCTGCAAGCACGATGGGCGCCCCGAGGGGCTGGC AGGGCGGCGCGCCGCGAGGGCAAGGTGGTGTGCAGCAGCCTGGAACTCGCGCAGGTCCT GCCCCCAGATACTCTGCCCAACCGCACGGTCACCCTGATTCTGAGTAACAATAAGATATCCG AGCTGAAGAATGGCTCATTTTCTGGGTTAAGTCTCCTTGAAAGATTGGACCTCCGAAACAAT CTTATTAGTAGTATAGATCCAGGTGCCTTCTGGGGACTGTCATCTCTAAAAAAGATTGGATCT GACAAACAATCGAATAGGATGTCTGAATGCAGACATATTTCGAGGACTCACCAATCTGGTTC GGCTAAACCTTTCGGGGAATTTGTTTTCTTCATTATCTCAAGGAACTTTTGATTATCTTGCG TCATTACGGTCTTTGGAATTCCAGACTGAGTATCTTTTGTGTGACTGTAACATACTGTGGAT GCATCGCTGGGTAAAGGAGAAGAACATCACGGTACGGGATACCAGGTGTGTTTATCCTAAGT CACTGCAGGCCCAACCAGTCACAGGCGTGAAGCAGGAGCTGTTGACATGCGACCCTCCGCTT GAATTGCCGTCTTTCTACATGACTCCATCTCATCGCCAAGTTGTGTTTGAAGGAGACAGCCT TCCTTTCCAGTGCATGGCTTCATATATTGATCAGGACATGCAAGTGTTGTGGTATCAGGATG GGAGAATAGTTGAAACCGATGAATCGCAAGGTATTTTTGTTGAAAAGAACATGATTCACAAC TGCTCCTTGATTGCAAGTGCCCTAACCATTTCTAATATTCAGGCTGGATCTACTGGAAATTG GGGCTGTCATGTCCAGACCAAACGTGGGAATAATACGAGGACTGTGGATATTGTGGTATTAG AGAGTTCTGCACAGTACTGTCCTCCAGAGAGGGTGGTAAACAACAAAGGTGACTTCAGATGG CCCAGAACATTGGCAGGCATTACTGCATATCTGCAGTGTACGCGGAACACCCATGGCAGTGG GATATATCCCGGAAACCCACAGGATGAGAGAAAAGCTTGGCGCAGATGTGATAGAGGTGGCT TTTGGGCAGATGATTATTCTCGCTGTCAGTATGCAAATGATGTCACTAGAGTTCTTTAT ATGTTTAATCAGATGCCCTCAATCTTACCAATGCCGTGGCAACAGCTCGACAGTTACTGGC TTACACTGTGGAAGCAGCCAACTTTTCTGACAAAATGGATGTTATATTTGTGGCAGAAATGA TTGAAAAATTTGGAAGATTTACCAAGGAGGAAAAATCAAAAGAGCTAGGTGACGTGATGGTT GAGCTCACGTTTATTCAACATATTCACCCAATATTGCTCTGGAAGCTTATGTCATCAAGTCT ACTGGCTTCACGGGGATGACCTGTACCGTGTTCCAGAAAGTGGCAGCCTCTGATCGTACAGG ACTTTCGGATTATGGGAGGCGGGATCCAGAGGGAAACCTGGATAAGCAGCTGAGCTTTAAGT GCAATGTTTCAAATACATTTTCGAGTCTGGCACTAAAGGTATGTTACATTCTGCAATCATTT $\texttt{AAGACTATTTACAGT} \underline{\textbf{TAA}} \texttt{ATTAGAATGCTCCAAATGTTCTGCTTCGCAAAATAACCTTATTA}$ AAAGATTTTTTTTTGCAGGAAGATAGGTATTATTGCTTTTTGCTACTGTTTTAAAGAAAACTA ACCAGGAAGAACTGCATTACGACTTTCAAGGGCCCTAGGCATTTTTGCCTTTGATTCCCTTT CTTCACATAAAAATATCAGAAATTACATTTTATAACTGCAGTGGTATAAATGCAAATATACT GATTTTAAGACAATAAGATGTTTTCATGGGCCCCTAAAAGTATCATGAGCCTTTGGCACTGC TTGAAGCAAGCAAATGAAAGCATTTTTACTGATTTTTAAAATTTGGTGCTTTAGATATATTT GACTACACTGTATTGAAGCAAATAGAGGAGGCACAACTCCAGCACCCTAATGGAACCACATT TTTTTCACTTAGCTTTCTGTGGGCATGTGTAATTGTATTCTCTGCGGTTTTTAATCTCACAG TTGAATGAATGAACGAAAAAAAAAAAAAAAA

MEPPGRRRGRAQPPLLLPLSLLALLALLGGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGK
VVCSSLELAQVLPPDTLPNRTVTLILSNNKISELKNGSFSGLSLLERLDLRNNLISSIDPGA
FWGLSSLKRLDLTNNRIGCLNADIFRGLTNLVRLNLSGNLFSSLSQGTFDYLASLRSLEFQT
EYLLCDCNILWMHRWVKEKNITVRDTRCVYPKSLQAQPVTGVKQELLTCDPPLELPSFYMTP
SHRQVVFEGDSLPFQCMASYIDQDMQVLWYQDGRIVETDESQGIFVEKNMIHNCSLIASALT
ISNIQAGSTGNWGCHVQTKRGNNTRTVDIVVLESSAQYCPPERVVNNKGDFRWPRTLAGITA
YLQCTRNTHGSGIYPGNPQDERKAWRRCDRGGFWADDDYSRCQYANDVTRVLYMFNQMPLNL
TNAVATARQLLAYTVEAANFSDKMDVIFVAEMIEKFGRFTKEEKSKELGDVMVDIASNIMLA
DERVLWLAQREAKACSRIVQCLQRIATYRLAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCT
VFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSLALKVCYILQSFKTIYS

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 13-40 (type II)

N-glycosylation site.

amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336, 433-437, 453-457, 592-596

N-myristoylation site.

amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57, 57-63, 99-105, 123-129, 142-148, 162-168, 317-323, 320-326, 384-390, 403-409, 554-560

FIGURE 17

FIGURE 18

MSRSSKVVLGLSVLLTAATVAGVHVKQQWDQQRLRDGVIRDIERQIRKKENIRLLGEQIILT EQLEAEREKMLLAKGSQKS

Signal peptide:

amino acids 1-21

FIGURE 19

 $\tt CTGTCGTCTTTGCTTCAGCCGCAGTCGCCACTGGCTGCCTGAGGTGCTCTTACAGCCTGTTC$ CAAGTGTGGCTTAATCCGTCTCCACCACCAGATCTTTCTCCGTGGATTCCTCTGCTAAGACC GCTGCCATGCCAGTGACGGTAACCCGCACCACCATCACAACCACCACGACGTCATCTTCGGG $\verb|CCTGGGGTCCCCATGATCGTGGGGTCCCCTCGGGCCCTGACACAGCCCCTGGGTCTCCTTCGC| \\$ CTGCTGCAGCTGGTGTCTACCTGCGTGGCCTTCTCGCTGGTGGCTAGCGTGGGCGCCTGGAC GGGGTCCATGGGCAACTGGTCCATGTTCACCTGGTGCTTCTCCGTGACCCTGATCA TCCTCATCGTGGAGCTGTGCGGGCTCCAGGCCCGCTTCCCCCTGTCTTGGCGCAACTTCCCC ATCACCTTCGCCTGCTATGCGGCCCTCTTCTGCCTCTCGGCCTCCATCATCTACCCCACCAC CTATGTCCAGTTCCTGTCCCACGGCCGTTCGCGGGACCACGCCATCGCCGCCACCTTCTTCT CCTGCATCGCGTGTGTGGCCTTACGCCACCGAAGTGGCCTGGACCCGGGCCCGGCCCGGCGAG ATCACTGGCTATATGGCCACCGTACCCGGGCTGCTGAAGGTGCTGGAGACCTTCGTTGCCTG CATCATCTTCGCGTTCATCAGCGACCCCAACCTGTACCAGCACCAGCCGGCCCTGGAGTGGT GCGTGGCGGTGTACGCCATCTGCTTCATCCTAGCGGCCATCGCCATCCTGCTGAACCTGGGG GAGTGCACCAACGTGCTACCCATCCCCTTCCCCAGCTTCCTGTCGGGGCTGGCCTTGCTGTC TGTCCTCTCTATGCCACCGCCCTTGTTCTCTGGCCCCTCTACCAGTTCGATGAGAAGTATG GCGCCCAGCCTCGCGCTCGAGAGATGTAAGCTGCAGCCGCAGCCATGCCTACTACGTGTGT GCCTGGGACCGCCGACTGGCTGTGGCCATCCTGACGCCATCAACCTACTGGCGTATGTGGC TGACCTGGTGCACTCTGCCCACCTGGTTTTTGTCAAGGTC**TAA**GACTCTCCCAAGAGGCTCC CGTTCCCTCTCCAACCTCTTTGTTCTTCTTGCCCGAGTTTTCTTTATGGAGTACTTCTTTCC TTCCTTCCTGTGTTGTTTGTTGCCCACATCCTGTTTTCACCCCTGAGCTGTTTCTCTTTTT CTTTTCTTTTTTTTTTTTTTTTTAAGACGGATTCTCACTCTGTGGCCCAGGCTGGAG TGCAGTGGTGCGATCTCAGCTCACTGCAACCCCCGCCTCCTGGGTTCAAGCGATTCTCCTCC CCCAGCCTCCCAAGTAGCTGGGAGGACAGGTGTGAGCTGCCGCACCCAGCCTGTTTCTCTTT TTCCACTCTTTTTTCTCATCTCTTTTCTGGGTTGCCTGTCGGCTTTCTTATCTGCCTGT CCCACCTCCAAAGGTGCTGAGCTCACATCCACACCCCTTGCAGCCGTCCATGCCACAGCCCC CCAAGGGGCCCCATTGCCAAAGCATGCCTGCCCACCCTCGCTGTGCCTTAGTCAGTGTGTAC GTGTGTGTGTGTGTTTTGGGGGGTGGGGGTGGGTAGCTGGGGATTGGGCCCTCTTTCT ATTTGGAGGTCAGTAATTTCCAATGGGCGGAGGCATTAAGCACCGACCCTGGGTCCCTAGG CCCCGCTGGCACTCAGCCTTGCCAGAGATTGGCTCCAGAATTTTTTGCCAGGCTTACAGAACAC CCACTGCCTAGAGGCCATCTTAAAGGAAGCAGGGGCTGGATGCCTTTCATCCCAACTATTCT CTGTGGTATGAAAAAG

FIGURE 20

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727</pre>

<subunit 1 of 1, 322 aa, 1 stop

<MW: 35274, pI: 8.57, NX(S/T): 1

MPVTVTRTTITTTTSSSGLGSPMIVGSPRALTQPLGLLRLLQLVSTCVAFSLVASVGAWTG
SMGNWSMFTWCFCFSVTLIILIVELCGLQARFPLSWRNFPITFACYAALFCLSASIIYPTTY
VQFLSHGRSRDHAIAATFFSCIACVAYATEVAWTRARPGEITGYMATVPGLLKVLETFVACI
IFAFISDPNLYQHQPALEWCVAVYAICFILAAIAILLNLGECTNVLPIPFPSFLSGLALLSV
LLYATALVLWPLYQFDEKYGGQPRRSRDVSCSRSHAYYVCAWDRRLAVAILTAINLLAYVAD
LVHSAHLVFVKV

Important features:

Transmembrane domains:

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192, 205-226, 235-255 and 294-312

N-glycosylation site.

amino acids 66-69

Glycosaminoglycan attachment site.

amino acids 18-21

GAACGTGCCACCATGCCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTC TTGAACTCGTGACCTCATGATCCGCTCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGACGC AAACAGACTGAATTCCCCAAGAGCCAAAGACCAGTGAGGGAGACCAACAAGAAACAGGAAATGCAAAAGAGACCA AGGACAGACTACCAAGAGGGGGGCCAGGAAAGCTCCTCTGACGAGGTGGTATTTCAGCCCAAACTGGAAGAATGA ${\tt AATAGCATGGGATTGGAGGGGGGGAACACCACTTCTGCCGACCTGGGCAGGAGGCATTGAGGGCTTGAGA}$ ${\tt AAGGGCAATGGCAGTAGCAGAAAGGACAGGGTAGGAGCAGGGACTTTGCAGGTGGAATCATTAGGTCTTATC}$ AACAGATATGGGCAAGCAAAGCCAGGGGAGAATTGATGGTAATGCTGAGGTTTGGAGCCAGGCTAGATGGGACAG TGGTGGGTGATGCAAAGGAAGAGGTCAGGAAGCAGGGCCAGACGTGGGGAGAAGGTGTGGGGGTTTGGTTTCCA TCTTGCCGAGTCTGCCGGAATGTGGATGGGAAGACCAAGAGGAGCAAGGGGCAGAGGGGAAGGGAATCTTAA AGAAGTCCTGGATGCCACACTCTTCTTCCTTCCTCCTCTCCTCTCCTCAGAGGTCTCACTCGTGGTTCTTCAT TTCCTGCCTGCCTCCATCTCCTCTGGGTGCTGGGAAAGTGGAGGATTAGCTGAAGTTTTGCTTCTCGGGGCCTG ${\tt TCTGAATCTCCATTGCTTTCTGGGAGGACATAATTCACCTGTCCTAGCTTCTTATCATCTTACATTTCCCTGTAG}$ GGGGAAGGTCATTGCTGTCAGAGGGGCACTGACTTTCTAATGGTGTTACCCAAGGTGAATGTTGGAGACACAGTC GCGATGCTGCCCAAGTCCCGGCGAGCCCTAACTATCCAGGAGATCGCTGCGCTGGCCAGGTCCTCCCTGCATGGT $\texttt{ATGCAGCCCTTCCC} \underline{\textbf{ATG}} \texttt{TTTCTGGCCACTTTGTCCTTTCTCCTCCCGTTTGCACATCCCTTTGGAACTGTTTCCT}$ ACATGGATCCTAACTACTGCCACCTTCCACCTCCCTGCACCTGTGCTCCCTGGCCTGGTCCTTTACCAGGCTTC TCCACCCTCCCCTATCTCCAGGTATTTCCCAGGTGGTGAAGGACCACGTGACCAAGCCTACCGCCATGGCCCAGG GCCGAGTGGCTCACTCATTGAGTGGAAGGGCTGGAGCAAGCCGAGTGACTCACCTGCTGCCCTGGAATCAGCCT TCGCGGAAGCCAAGCTCCGACATGGTCTTCGGTGGATGGCGAGGACTCCACTGATGACTCCTATGATGAGGACT TTGCTGGGGGAATGGACACAGACATGGCTGGGCAGCTGCCCCTGGGGCCGCACCTCCAGGACCTGTTCACCGGCC ACCGGTTCTCCCGGCCTGTGCGCCAGGGCTCCGTGGAGCCTGAGAGCGACTGCTCACAGACCGTGTCCCCAGACA GCGATGAGCTGCTTCTCGCCAAACTGCCCCCAGCCGGGAAAGTGCCTTCCGCAGCCTGGGCCCACTGGAGGCCC ACTGCCAGCCACTCTGCCCACCACTAACGGGCAGCTGGGAACGCCAGCGGCAAGCCTCTGACCTGGCCTCTTCTG GGGTGGTGTCCTTAGATGAGGATGAGGCAGAGCCAGAGGAACAG**TGA**CCCACATCATGCCTGGCAGTGGCATGCA ${\tt TCCCCGGCTGCTGCCAGGGGCAGAGCCTCTGTGCCCAAGTGTGGGCTCAAGGCTCCCAGCAGAGCTCCACAGCC}$ TAGAGGGCTCCTGGGAGCGCTCGCTTCTCCGTTGTGTTTTTGCATGAAAGTGTTTTGGAGAGGAGGCAGGGGCTG GGCTGGGGGCGCATGTCCTGCCCCCACTCCCGGGGCTTGCCGGGGGTTGCCCGGGGCCTCTGGGGCATGGCTACA $\verb|TCTTCTCTGCTTTTCTCACTTCCGAGTCCATGTGCAGTGCTTGATAGAATCACCCCCACCTGGAGGGGCTGG|$ ${\tt ATTCACCTCTCCATCGTCTCTAAATCTTCCTCTTTTTTCCTAAAGACAGAAGGTTTTTGGTCTGTTTTTTCAGTC}$ GGATCTTCTCTCTGGGAGGCTTTGGAATGATGAAAGCATGTACCCTCCACCCTTTTCCTGGCCCCCTAATGG ${\tt ATTCACGCAGAGCTCTCTGAGCGGGAGGTGGAAGAAGGATGGCTCTGGTTGCCACAGAGCTGGGACTTCATGTT}$ CTTCTAGAGAGGGCCACAGAGGGCCACAGGGGTGGCCGGGAGTTGTCAGCTGATGCCTGCTGAGAGGCAGGAAT GGCTCATTAGGTGTTTATTTTGTTCTATTTAAGAATTTGTTTTATTAAAATTAATATAAAAATCTTTGTAAATCTC

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSPFSHPKVHMDPNYCHPSTSLHLCS LAWSFTRLLHPPLSPGISQVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPAALESAFSSY SDLSEGEQEARFAAGVAEQFAIAEAKLRAWSSVDGEDSTDDSYDEDFAGGMDTDMAGQLPLG PHLQDLFTGHRFSRPVRQGSVEPESDCSQTVSPDTLCSSLCSLEDGLLGSPARLASQLLGDE LLLAKLPPSRESAFRSLGPLEAQDSLYNSPLTESCLSPAEEEPAPCKDCQPLCPPLTGSWER QRQASDLASSGVVSLDEDEAEPEQ

Signal peptide:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232, 285-289, 324-328

Tyrosine kinase phosphorylation site.

amino acids 44-52

N-myristoylation site.

amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 11-22

FIGURE 23

GGCACCCTCCTGCTCAGTGCGACATTGTCACACTTAACCCATCTGTTTTCTCTAATGCACGA CAGATTCCTTTCAGACAGGACAACTGTGATATTTCAGTTCCTGATTGTAAATACCTCCTAAG CCTGAAGCTTCTGTTACTAGCCATTGTGAGCTTCAGTTTCTTCATCTGCAAAATGGGCATAA AAGCCTACA**ATG**TTGGCCTTAGCCAAAATTCTGTTGATTTCAACGTTGTTTTATTCACTTCT ATCGGGGAGCCATGGAAAAGAAAATCAAGACATAAACACAACAGAACATTGCAGAAGTTT TTAAAACAATGGAAAATAAACCTATTTCTTTGGAAAGTGAAGCAAACTTAAACTCAGATAAA GAAAATATAACCACCTCAAATCTCAAGGCGAGTCATTCCCCTCCTTTGAATCTACCCAACAA CAGCCACGGAATAACAGATTTCTCCAGTAACTCATCAGCAGAGCATTCTTTGGGCAGTCTAA AACCCACATCTACCATTTCCACAAGCCCTCCCTTGATCCATAGCTTTGTTTCTAAAGTGCCT TGGAATGCACCTATAGCAGATGAAGATCTTTTGCCCATCTCAGCACATCCCAATGCTACACC TGCTCTGTCTTCAGAAAACTTCACTTGGTCTTTGGTCAATGACACCGTGAAAACTCCTGATA ACAGTTCCATTACAGTTAGCATCCTCTCTCAGAACCAACTTCTCCATCTGTGACCCCCTTG ATAGTGGAACCAAGTGGATGGCTTACCACAAACAGTGATAGCTTCACTGGGTTTACCCCTTA TCAAGAAAAACACTCTACAGCCTACCTTAAAATTCACCAATAATTCAAAAACTCTTTCCAA ATACGTCAGATCCCCAAAAAGAAATAGAAATACAGGAATAGTATTCGGGGCCATTTTAGGT GCTATTCTGGGTGTCTCATTGCTTACTCTTGTGGGCTACTTGTTGTGTGGGAAAAAGGAAAAC GGATTCATTTTCCCATCGGCGACTTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACA ATGCACCGGAACCTTATGATGTGAGTTTTGGGAATTCTAGCTACTACAATCCAACTTTGAAT GATTCAGCCATGCCAGAAAGTGAAGAAAATGCACGTGATGGCATTCCTATGGATGACATACC ${\tt TCCACTTCGTACTTCTGTA}$ ${\tt TAG}$ ${\tt AACTAACAGCAAAAAGGCGTTAAACAGCAAGTGTCATCTA}$ CATCCTAGCCTTTTGACAAATTCATCTTTCAAAAGGTTACACAAAATTACTGTCACGTGGAT TTTGTCAAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCAT CCAAAGGTTTTCTTTCTTACAATTTTTGGCCATCCTGAGGCATTTACTAAGTAGCCTTAATT TGTATTTTAGTAGTATTTTCTTAGTAGAAAATATTTGTGGAATCAGATAAAACTAAAAGATT TCACCATTACAGCCCTGCCTCATAACTAAATAATAAAAATTATTCCACCAAAAAATTCTAAA ACAATGAAGATGACTCTTTACTGCTCTGCCTGAAGCCCTAGTACCATAATTCAAGATTGCAT TTTCTTAAATGAAAATTGAAAGGGTGCTTTTTAAAGAAAATTTGACTTAAAGCTAAAAAGAG GACATAGCCCAGAGTTTCTGTTATTGGGAAATTGAGGCAATAGAAATGACAGACCTGTATTC TAGTACGTTATAATTTTCTAGATCAGCACACACATGATCAGCCCACTGAGTTATGAAGCTGA CAATGACTGCATTCAACGGGGCCATGGCAGGAAAGCTGACCCTACCCAGGAAAGTAATAGCT TCTTTAAAAGTCTTCAAAGGTTTTGGGAATTTTAACTTGTCTTAATATATCTTAGGCTTCAA TTATTTGGGTGCCTTAAAAACTCAATGAGAATCATGGT

FIGURE 24

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732</pre>

><subunit 1 of 1, 334 aa, 1 stop

><MW: 36294, pI: 4.98, NX(S/T): 13

MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENI TTSNLKASHSPPLNLPNNSHGITDFSSNSSAEHSLGSLKPTSTISTSPPLIHSFVSKVPWNA PIADEDLLPISAHPNATPALSSENFTWSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVE PSGWLTTNSDSFTGFTPYQEKTTLQPTLKFTNNSKLFPNTSDPQKENRNTGIVFGAILGAIL GVSLLTLVGYLLCGKRKTDSFSHRRLYDDRNEPVLRLDNAPEPYDVSFGNSSYYNPTLNDSA MPESEENARDGIPMDDIPPLRTSV

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 235-262

N-glycosylation site.

amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159, 163-167, 218-222, 225-229, 298-302, 307-311

FIGURE 25

AACAGGATCTCCTCTTGCAGTCTGCAGCCCAGGACGCTGATTCCAGCAGCGCCTTACCGCGC AGCCCGAAGATTCACT**ATG**GTGAAAATCGCCTTCAATACCCCTACCGCCGTGCAAAAGGAGG AGGCGCGGCAAGACGTGGAGGCCCTCCTGAGCCGCACGGTCAGAACTCAGATACTGACCGGC AAGGAGCTCCGAGTTGCCACCCAGGAAAAAGAGGGCTCCTCTGGGAGATGTATGCTTACTCT CTTAGGCCTTCATTCATCTTGGCAGGACTTATTGTTGGTGGAGCCTGCATTTACAAGTACT TCATGCCCAAGAGCACCATTTACCGTGGAGAGATGTGCTTTTTTGATTCTGAGGATCCTGCA AATTCCCTTCGTGGAGGAGGCCTAACTTCCTGCCTGTGACTGAGGAGGCTGACATTCGTGA GGATGACAACATTGCAATCATTGATGTGCCTGTCCCCAGTTTCTCTGATAGTGACCCTGCAG CAATTATTCATGACTTTGAAAAGGGAATGACTGCTTACCTGGACTTGTTGCTGGGGAACTGC TATCTGATGCCCCTCAATACTTCTATTGTTATGCCTCCAAAAAATCTGGTAGAGCTCTTTGG CAAACTGGCGAGTGGCAGATATCTGCCTCAAACTTATGTGGTTCGAGAAGACCTAGTTGCTG AAGTCCTTCCGCCTTCGTCGCAGAGACCTCTTGCTGGGTTTCAACAAACGTGCCATTGATAA ${\tt ATGCTGGAAGATTAGACACTTCCCCAACGAATTTATTGTTGAGACCAAGATCTGTCAAGAG} {\tt T}$ **AA**GAGGCAACAGATAGAGTGTCCTTGGTAATAAGAAGTCAGAGATTTACAATATGACTTTAA CATTAAGGTTTATGGGATACTCAAGATATTTACTCATGCATTTACTCTATTGCTTATGCTTT AAAAAAAGGAAAAAAAAAAAACTACTAACCACTGCAAGCTCTTGTCAAATTTTAGTTTAAT TGGCATTGCTTGTTTTTGAAACTGAAATTACATGAGTTTCATTTTTTCTTTGCATTTATAG GGTTTAGATTTCTGAAAGCAGCATGAATATATCACCTAACATCCTGACAATAAATTCCATCC GTGGAGCAATTTTAAAATTTGAAATATTTTAAATTGTTTTTGAACTTTTTGTGTAAAATATA TCAGATCTCAACATTGTTGGTTTCTTTTGTTTTTCATTTTGTACAACTTTCTTGAATTTAGA AATTACATCTTTGCAGTTCTGTTAGGTGCTCTGTAATTAACCTGACTTATATGTGAACAATT AATGCACAAAATTGTGTAGGTGCTGAATGCTGTAAGGAGTTTAGGTTGTATGAATTCTACAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828</pre>

<subunit 1 of 1, 263 aa, 1 stop

<MW: 29741, pI: 5.74, NX(S/T): 1

MVKIAFNTPTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSF ILAGLIVGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIA IIDVPVPSFSDSDPAAIIHDFEKGMTAYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASG RYLPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR HFPNEFIVETKICQE

Type II transmembrane domain:

amino acids 53-75

N-glycosylation site.

amino acids 166-170

Casein kinase II phosphorylation site.

amino acids 35-39, 132-136, 134-138

N-myristoylation site.

amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 63-74

FIGURE 27

GGAGGAGGGGGGGGCAGCCCAGAGCAGCCCGGGCACCAGCACGGACTCTCT $\mathtt{CTTCCAGCCCAGGTGCCCCCACTCTCGCTCCATTCGGCGGGAGCACCCAGTCCTGTACGCC}$ AAGGAACTGGTCCTGGGGGCACC**ATG**GTTTCGGCGGCAGCCCCCAGCCTCCTCATCCTTCTG TTGCTGCTGCTGGGGTCTGTGCCTGCTACCGACGCCCGCTCTGTGCCCCTGAAGGCCACGTT $\verb|CCTGGAGGATGTGGCGGTAGTGGGGAGGCCGAGGCTCGTCGGCCTCCTCCCGAGCCTCC|\\$ CGCCACCTGGACCCCGGCCCTCAGCCCCACATCGATGGGGCCCCAGCCCACAACCCTGGGG GGCCCATCACCCCCCACCACTTCCTGGATGGGATAGTGGACTTCTTCCGCCAGTACGTGAT GCTGATTGCTGTGGTGGGCTCCCTGGCCTTTCTGCTGATGTTCATCGTCTGTGCCGCGGTCA TCACCCGGCAGAAGCAGAAGGCCTCGGCCTATTACCCATCGTCCTTCCCCAAGAAGAAGTAC GTGGACCAGAGTGACCGGGCCGGGGCCCCCGGGCCTTCAGTGAGGTCCCCGACAGAGCCCC CGACAGCAGGCCCGAGGAAGCCCTGGATTCCTCCCGGCAGCTCCAGGCCGACATCTTGGCCG CCACCCAGAACCTCAAGTCCCCCACCAGGGCTGCACTGGGCGGTGGGGACGGAGCCAGGATG GTGGAGGCCAGGGGCGCAGAGGAGGGAGGGGGGGGGCCAGGAAGTCCA GGGACATGGGGTCCCAGTGGAGACACCAGAGGCGCAGGAGCCGTGCTCAGGGGTCCTTG AGGGGGCTGTGGTGGCCGGTGAGGGCCAAGGGGAGCTGGAAGGGTCTCTCTTGTTAGCCCAG GAAGCCCAGGGACCAGTGGGTCCCCCGAAAGCCCCTGTGCTTGCAGCAGTGTCCACCCCAG TGTCTAACAGTCCTCCCGGGCTGCCAGCCCTGACTGTCGGGCCCCCAAGTGGTCACCTCCCC TGCCAATCCCAGCATGTGCTGATTCTACAGCAGGCAGAAATGCTGGTCCCCGGTGCCCCGGA GGAATCTTACCAAGTGCCATCATCCTTCACCTCAGCAGCCCCAAAGGGCTACATCCTACAGC ACAGCTCCCTGACAAAGTGAGGGAGGGCACGTGTCCCTGTGACAGCCAGGATAAAACATCC CCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCCGGCCCAAACTACTTTTTAAAACA GCTACAGGGTAAAATCCTGCAGCACCCACTCTGGAAAATACTGCTCTTAATTTTCCTGAAGG TGGCCCCTGTTTCTAGTTGGTCCAGGATTAGGGATGTGGGGGTATAGGGCATTTAAATCCTC TCAAGCGCTCTCCAAGCACCCCGGCCTGGGGGTGAGTTTCTCATCCCGCTACTGCTGC GATCAGGTTGAATGAATGGAACTCTTCCTGTCTGGCCTCCAAAGCAGCCTAGAAGCTGAGGG GCTGTGTTTGAGGGGACCTCCACCCTGGGGAAGTCCGAGGGGCTGGGGAAGGGTTTCTGACG CCCAGCCTGGAGCAGGGGGCCCTGGCCACCCCTGTTGCTCACACATTGTCTGGCAGCCTG TGTCCACAATATTCGTCAGTCCTCGACAGGGAGCCTGGGCTCCGTCCTGCTTTAGGGAGGCT CTGGCAGGAGGTCCTCTCCCCCATCCTCCATCTGGGGCTCCCCCAACCTCTGCACAGCTCT

FIGURE 28

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852

><subunit 1 of 1, 283 aa, 1 stop

><MW: 29191, pI: 4.52, NX(S/T): 0

MVSAAAPSLLILLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTPAL SPTSMGPQPTTLGGPSPPTNFLDGIVDFFRQYVMLIAVVGSLAFLLMFIVCAAVITRQKQKA SAYYPSSFPKKKYVDQSDRAGGPRAFSEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSP TRAALGGGDGARMVEGRGAEEEEKGSQEGDQEVQGHGVPVETPEAQEEPCSGVLEGAVVAGE GQGELEGSLLLAQEAQGPVGPPESPCACSSVHPSV

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 94-118

N-myristoylation site.

amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199, 211-217, 238-244, 242-248

FIGURE 29

GGGAGGACAGGGAGTCGGAAGGAGGAGGACAGAGGGGGCACAGAGACGCAGAGCAAGGGCG AAGTTCCAGGGGCCCCTGGCCTGCCTGCTGGCCCTCTGCCTGGGCAGTGGGGAGGCTGG CCCCTGCAGAGCGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCC TGGGAGACGCCCTGAGCGAAGGGGTGGGAAAGGCCCATTGGCAAAGAGGCCGGAGGGGCAGCT GGCTCTAAAGTCAGTGAGGCCCTTGGCCAAGGGACCAGAGAAGCAGTTGGCACTGGAGTCAG GCAGGTTCCAGGCTTTGGCGCAGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATG CTCTGGGAAACACTGGGCACGAGATTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCA GATGCTGTCCGCGGCTCCTGGCAGGGGGTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGG AGGCCATGGCATCTTTGGCTCTCAAGGTGGCCTTGGAGGCCAGGGCCAGGGCAATCCTGGAG CCTCAGGGAGCTCCCTGGGGTCAAGGAGGCCAATGGAGGGCCACCAAACTTTGGGACCAACAC TCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAGAGCCAGCAACCAGAATGAAGGGT GCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGGAGGCAGCGGC TCACAGTCGGGCAGCAGTGGCAGCAATGGTGACAACAACAATGGCAGCAGTGG GTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGTCCTCCTGGGGA TCCAGCACCGGCTCCTCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGACATAAACC CGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGAGCGGGGAATCTGGGATTCAGGGCTTCA GAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTGGA GGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGT TGGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCT GGAAGAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGA ${ t AGCTCTCGCATCCCG}$ CCCTCCTTAAAACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTA

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA59212

><subunit 1 of 1, 440 aa, 1 stop

><MW: 42208, pI: 6.36, NX(S/T): 1

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401
```

Cell attachment sequence.

amino acids 301-304

GACCGGTCCTCCGGTCCTGGATGTGCGGACTCTGCTGCAGCGAGGGCTGCAGGCCCGCCGGGGGGTGCTCACCG TGCCCTGGCTGGTGGAGTTTCTCTCCTTTGCTGACCATGTTGTTCCCTTGCTGGAATATTACCGGGACATCTTCA GTCCCTCATATGCCTTTGAGGTGGACACAGTAGCCCCAGAGCATGGCTTGGACAATGCGCCTGTGGTGGACCAGC AGCTGCTCTACACCTGCTGCCCCTACATCGGAGAGCTCCGGAAACTGCTCGCTTCGTGGGTGTCAGGCAGTAGTG GACGGAGTGGGGGCTTCATGAGGAAAATCACCCCCACCACTACCACCAGCCTGGGAGCCCAGCCTTCCCAGACCA GCCAGGGGCTGCAGGCACAGCTCGCCCAGGCCTTTTTCCACAACCAGCCGCCCTCCTTGCGCCGGACCGTAGAGT TCGTGGCAGAAGAATTGGATCAAACTGTGTCAAACATATCAAGGCTACACTGGTGGCAGATCTGGTGCGCCAGG ${\tt CAGAGTCACTTCTCCAAGAGCAGCTGGTGACACAGGGAGAGGGAGAGGGGAGACCCAGCCCAGCTGTTGGAGATCT}$ TGTGTTCCCAGCTGTGCCCTCACGGGGCCCAGGCATTGGCCCTGGGGCGGGAGTTCTGTCAAAGGAAGACCCCTG GGGCTGTGCGGGCGCTGCTTCCAGAGGAGACCCCGGCAGCCGTTCTGAGCAGTGCAGAGAACATTGCTGTGGGGC GTGCTCTCCTTGGCCGTGGGGCCACGGGACCCTGACGAGGGAGTCTCCCCAGAGCATCTGGAACAGCTCCTAGGC $\verb|CTGCTGAGCCCAAGAAATGTGGGGCTTCTGGCAGACACAAGGCCAAGGGAGTGGGACTTGCTGCTATTCTTGCTA|\\$ CTGCCTTGGGCATTGCACCAGAACCCTGGACCCCGCCTCACGAGGAGGCCCAAGTGCCCAATGCAGACCCTCAC TGGTTGGGGTGTAGCTGGGTCTACAGTCAGACTTCCTGCTCTAAGGGTGTCACTGCCTGGCATCCCACCACGCGA ATCCTAGAGGAAGGAGATTGGCCTGATTTGGGATTATGGCAGAAAAGTCCAGAGATGCCAGTCCTGGAGTAGAA GAGGTGGTGTTTGTTTATCTCTTGGATACTAAATGAAATGAGGTGTGTGGGCTTGTCAACACACAGAATTCAAGCCT CATTTGCTATCCCAGCATCTCTTAAAACTTTGTAGTCTTGGAATTCATGACAGAGGCAAATGACTCCTGCTTAAC TTATGAAGAAAGTTAAAACATGAATCTTGGGAGTCTACATTTTCTTATCACCAGGAGCTGGACTGCCATCTCCTT ATAAATGCCTAACACAGGCCGGGTCTGGTGGCTCATGCCTGTAATCCCAGCACTTTGAGAGGCCTGAGGTCGGCG GACTGCCTGAGGTCAGGAATTCAAGACCAGCCTGGCCAACATGGCAAAACCCCATCTCTACTAAAAATAAAAAAA TTATTAGCTGGGCATGGTGTGTGTGCCTGTAATCCCAGCTACTCAGGAGGATGAGGCAGGAGACCTGCTTGAAC $\tt CTGGAGGTGGAGGTGGAGCCGAGGTCGCACCACTGCACTCCAGTCTGGGTAACAGAGCGAGACTTTCTAG$ AAAAAGCCTAACAAACAGATAAGGTAGGACTCAACCAACTGAAACCTGACTTTCCCCCTGTACCTTCAGCCCCTG TGCAGGTAGTAACCTCTTGAGACCTCTCCCTGACCAGGGACCAAGCACAGGGCATTTAGAGCTTTTTAGAATAAA TTTTTTTTTTTTTTAAAAAGGGCTTTTATTAAAATTCTCCCCACACGATGGCTCCTGCAATCTGCCACAGCTC TGGGGCGTGTCCTGTAGGGAAAGGCCCTGTTTTCCCTGAGGCGGGGCTGGGCTTGTCCATGGGTCCGCGGAGCTG GCCGTGCTTGGCGCCCTGGCGTGTCTTAGCTGCTTCTTGCCGGGCACAGAGCTGCGGGGTCTGGGGGCACCGGG AGCTAAGAGCAGGCTCTGGTGCAGGGGTGGAGGCCTGTCTCTTAACCGACACCCTGAGGTGCTCCTGAGATGCTG GGTCCACCCTGAGTGGCACGGGGAGCAGCTGTGGCCGGTGCTCCTTCYTAGGCCAGTCCTGGGGAAACTAAGCTC GGGCCCTTCTTTGCAAAGACCGAGGATGGGGTGGGGTGTGGGGGACTCATGGGGAATGGCCTGAGGAGCTACGTGT ATGAAGAACATGCCGTCTCGGTGTCTCAGGGCTATTAGGACTTGCCCTCAGGAAGTGGCCTTGGACGACGTCAT GTTATTTTCACAACTGTCCTGCGACGTTGGCCTGGGCACGTCATGGAATGGCCCATGTCCCTCTGCTGCGTGGAC GTCGCGGTCGGGAGTGCCGCAGAGGCGGGGCCAGACGTGCGCCTGGGGGTGAGGGGAGGCCCCCGGGAGGG GGCCGGTAGACAAAGTGGAAGTCGCGCTTGGGCTCGCTGCGCAGCAGCTAGCCCTTGATGCAGTGCGGCAGCGCG TCGTCCGCCAGCTGGAAGCAGCCCCGTCCACCAGCACGACAGCCGGTGCGCCT

MCFLNKLLLLAVLGWLFQIPTVPEDLFFLEEGPSYAFEVDTVAPEHGLDNAPVVDQQLLYTC CPYIGELRKLLASWVSGSSGRSGGFMRKITPTTTTSLGAQPSQTSQGLQAQLAQAFFHNQPP SLRRTVEFVAERIGSNCVKHIKATLVADLVRQAESLLQEQLVTQGEEGGDPAQLLEILCSQL CPHGAQALALGREFCQRKSPGAVRALLPEETPAAVLSSAENIAVGLATEKACAWLSANITAL IRREVKAAVSRTLRAQGPEPAARGERRGCSRA

Signal peptide:

amino acids 1-18

N-glycosylation site.

amino acids 244-248

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 89-93

Casein kinase II phosphorylation site.

amino acids 21-25, 167-171, 223-227

N-myristoylation site.

amino acids 100-106, 172-178, 207-213

Microbodies C-terminal targeting signal.

amino acids 278-282

TCCCTTGACAGGTCTGGTGGCTGGTTCGGGGTCTACTGAAGGCTGTCTTGATCAGGAAACTG AAGACTCTCTGCTTTTGCCACAGCAGTTCCTGCAGCTTCCTTGAGGTGTGAACCCACATCCC TGCCCCAGGGCCACCTGCAGGACGCCGACACCTACCCCTCAGCAGACGCCGGAGAGAAATG AGTAGCAACAAGAGCAGCGGTCAGCAGTGTTCGTGATCCTCTTTGCCCTCATCACCATCCT CATCCTCTACAGCTCCAACAGTGCCAATGAGGTCTTCCATTACGGCTCCCTGCGGGGCCGTA GCCGCCGACCTGTCAACCTCAAGAAGTGGAGCATCACTGACGGCTATGTCCCCATTCTCGGC AACAAGACACTGCCCTCTCGGTGCCACCAGTGTGTGATTGTCAGCAGCTCCAGCCACCTGCT CCACCACTGGCTACTCAGCTGATGTGGGCCAACAAGACCACCTACCGCGTCGTGGCCCATTCC AGTGTGTTCCGCGTGCTGAGGAGGCCCCAGGAGTTTGTCAACCGGACCCCTGAAACCGTGTT AGCGAGCGGGCCTGGTGTTCCCCAACATGGAAGCATATGCCGTCTCTCCCGGCCGCATGCGG CAATTTGACGACCTCTTCCGGGGTGAGACGGGCAAGGACAGGGAGAAGTCTCATTCGTGGTT GAGCACAGGCTGGTTTACCATGGTGATCGCGGTGGAGTTGTGTGACCACGTGCATGTCTATG GCATGGTCCCCCCAACTACTGCAGCCAGCGGCCCCCCCCAGCGCATGCCCTACCACTAC TACGAGCCCAAGGGGCCGGACGAATGTGTCACCTACATCCAGAATGAGCACAGTCGCAAGGG CAACCACCGCTTCATCACCGAGAAAAGGGTCTTCTCATCGTGGGCCCAGCTGTATGGCA TCACCTTCTCCCACCCTCCTGGACCTAGGCCACCCAGCCTGTGGGACCTCAGGAGGGTCAG AGGAGAAGCAGCCTCCGCCCAGCCGCTAGGCCAGGGACCATCTTCTGGCCAATCAAGGCTTG CTGGAGTGTCTCCCAGCCAATCAGGGCCTTGAGGAGGATGTATCCTCCAGCCAATCAGGGCC TGGGGAATCTGTTGGCGAATCAGGGATTTGGGAGTCTATGTGGTTAATCAGGGGTGTCTTTC TTGTGCAGTCAGGGTCTGCGCACAGTCAATCAGGGTAGAGGGGGGTATTTCTGAGTCAATCTG AGGCTAAGGACATGTCCTTTCCCATGAGGCCTTGGTTCAGAGCCCCAGGAATGGACCCCCCA ATCACTCCCCACTCTGCTGGGATAATGGGGTCCTGTCCCAAGGAGCTGGGAACTTGGTGTTG CCCCTCAATTTCCAGCACCAGAAAGAGAGATTGTGTGGGGGGTAGAAGCTGTCTGGAGGCCC GGCCAGAGAATTTGTGGGGTTGTGGAGGTTGTGGGGGCGGTGGGGAGGTCCCAGAGGTGGGA GGCTGGCATCCAGGTCTTGGCTCTGCCCTGAGACCTTGGACAAACCCTTCCCCCTCTCTGGG CACCCTTCTGCCCACACCAGTTTCCAGTGCGGAGTCTGAGACCCTTTCCACCTCCCCTACAA GTGCCCTCGGGTCTGTCCCCGTCTGGACCCTCCCAGCCACTATCCCTTGCTGGAAGGCT CAGCTCTTTGGGGGGTCTGGGGTGACCTCCCCACCTCCTGGAAAACTTTAGGGTATTTTTGC GCAAACTCCTTCAGGGTTGGGGGACTCTGAAGGAAACGGGACAAAACCTTAAGCTGTTTTCT TAGCCCCTCAGCCAGCTGCCATTAGCTTGGCTCTTAAAGGGCCAGGCCTCCTTTTCTGCCCT $\tt CTAGCAGGGAGGTTTTCCAACTGTTGGAGGCGCCTTTGGGGGCTGCCCCTTTGTCTGGAGTCA$ CTGGGGGCTTCCGAGGGTCTCCCTCGACCCTCTGTCGTCCTGGGATGGCTGTCGGGAGCTGT ATCACCTGGGTTCTGTCCCCTGGCTCTGTATCAGGCACTTTATTAAAGCTGGGCCTCAGTGG GGTGTGTTTGTCTCCTGCTCTTCTGGAGCCTGGAAGGAAAGGGCTTCAGGAGGAGGCTGTGA GGCTGGAGGGACCAGATGGAGGAGGCCAGCAGCTAGCCATTGCACACTGGGGTGATGGGTGG GGGCGGTGACTGCCCCAGACTTGGTTTTGTAATGATTTGTACAGGAATAAACACACCTACGC

MSSNKEQRSAVFVILFALITILILYSSNSANEVFHYGSLRGRSRRPVNLKKWSITDGYVPIL GNKTLPSRCHQCVIVSSSSHLLGTKLGPEIERAECTIRMNDAPTTGYSADVGNKTTYRVVAH SSVFRVLRRPQEFVNRTPETVFIFWGPPSKMQKPQGSLVRVIQRAGLVFPNMEAYAVSPGRM RQFDDLFRGETGKDREKSHSWLSTGWFTMVIAVELCDHVHVYGMVPPNYCSQRPRLQRMPYH YYEPKGPDECVTYIQNEHSRKGNHHRFITEKRVFSSWAQLYGITFSHPSWT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 9-31 (type II)

N-glycosylation site.

amino acids 64-68, 115-119

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 50-54

Casein kinase II phosphorylation site.

amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.

amino acids 253-262

N-myristoylation site.

amino acids 37-43, 114-120, 290-294

GTTTCTCATAGTTGGCGTCTTCTAAAGGAAAAACACTAAAATGAGGAACTCAGCGGACCGGGAGCGACGCAGCTT GAGGGAAGCATCCCTAGCTGTTGGCGCAGAGGGGCGAGGCTGAAGCCGAGTGGCCCGAGGTGTCTGAGGGGCTGG GGCAAAGGTGAAAGAGTTTCAGAACAAGCTTCCTGGAACCCATGACCCATGAAGTCTTGTCGACATTTATACCGT CTGAGGGTAGCAGCTCGAAACTAGAAGAAGTGGAGTGTTGCCAGGGACGGCAGTATCTCTTTGTGTGACCCTGGC GGCCTATGGGACGTTGGCTTCAGACCTTTGTGATACACCATGCTGGGGACGATGACGCCGTGGAGAGGAATG AGGCCTGAGGTCACACTGGCTTGCCTCCTAGCCACAGCAGGCTGCTTTGCTGACTTGAACGAGGTCCCTCAG GTCACCGTCCAGCCTGCGTCCACCGTCCAGAAGCCCGGAGGCACTGTGATCTTGGGCTGCGTGGTGGAACCTCCA AGGATGAATGTAACCTGGCGCCTGAATGGAAAGGAGCTGAATGGCTCGGATGATGCTCTGGGTGTCCTCATCACC CACGGGACCCTCGTCATCACTGCCCTTAACAACCACTGTGGGACGGTACCAGTGTGTGGCCCGGATGCCTGCG GGGGCTGTGGCCAGCGTGCCACTGTGACACTAGCCAATCTCCAGGACTTCAAGTTAGATGTGCAGCACGTG TACAGCGTCAAACAAGAGTGGCTGGAGGCCTCCAGAGGTAACTACCTGATCATGCCCTCAGGGAACCTCCAGATT GTGAATGCCAGCCAGGAGGACGAGGGCATGTACAAGTGTGCAGCCTACAACCCAGTGACCCAGGAAGTGAAAACC TCCGGCTCCAGCGACAGGCTACGTGTGCGCCGCTCCACCGCTGAGGCTGCCCGCATCATCTACCCCCCAGAGGCC CAAACCATCATCGTCACCAAAGGCCAGAGTCTCATTCTGGAGTGTGTGGCCAGTGGAATCCCACCCCCACGGGTC ACCTGGGCCAAGGATGGGTCCAGTGTCACCGGCTACAACAAGACGCGCTTCCTGATGAGCAACCTCCTCATCGAC ATCCTCTACAATGTCCAGGTGTTTGAACCCCCTGAGGTCACCATGGAGCTATCCCAGCTGGTCATCCCCTGGGGC GTCTACCAGTGCATGGCCGAGAACGAGGTTGGGAGCGCCCATGCCGTAGTCCAGCTGCGGACCTCCAGGCCAAGC $\verb|CCTGAGCAGATGCTGAGGGGGCAACCGGCGCTCCCCAGACCCCCAACGTCAGTGGGGCCTGCTTCCCCGAAGTGT| \\$ TCATATGAACTGGTGTGGCGGCCTCGGCATGAGGGCAGTGGCCGGGCGCCAATCCTCTACTATGTGGTGAAACAC CGCAAGCAGGTCACAAATTCCTCTGACGATTGGACCATCTCTGGCATTCCAGCCAACCAGCACCGCCTGACCCTC ACCAGACTTGACCCCGGGAGCTTGTATGAAGTGGAGATGGCAGCTTACAACTGTGCGGGAGAGGGCCAGACAGCC ATGGTCACCTTCCGAACTGGACGGCGGCCCAAACCCGAGATCATGGCCAGCAAAGAGCAGCAGATCCAGAGAGAC $\tt CCCACCATCTCCACGGCCTCCGAGACCTCAGTGTACGTGACCTGGATTCCCCGTGGGAATGGTGGGTTCCCAATCCCCACTCGAGACCTCAGTGTACGTGACCTGGATTCCCCGTGGGAATGGTGGGTTCCCAATCCCCACTCGAGACCTCAGTGTACGTGACCTGGATTCCCCGTGGGAATGGTGGGTTCCCAATCCCAATCCACTGGATTCCCCGTGGGAATGGTGGGTTCCCAATCCAATCCACTGGATTCCCCGTGGGAATGGTGGGTTCCCAATCCAATCCACTGGATTCCCCGTGGGAATGGTGGGTTCCCAATCAATCA$ CAGTCCTTCCGTGTGGAGTACAAGAAGCTAAAGAAAGTGGGAGACTGGATTCTGGCCACCAGCGCCATCCCCCA TCGCGGCTGTCCGTGGAGATCACGGGCCTAGAGAAAGGCACCTCCTACAAGTTTCGAGTCCGGGCTCTGAACATG CCCGTGGCAGGTCCTTATATCACCTTCACGGATGCGGTCAATGAGACCACCATCATGCTCAAGTGGATGTACATC GACTACAAGAAGGATATGGTGGAAGGGGACAAGTACTGGCACTCCATCAGCCACCTGCAGCCAGAGACCTCCTAC GACATTAAGATGCAGTGCTTCAATGAAGGAGGGGAGAGCGAGTTCAGCAACGTGATGATCTGTGAGACCAAAGCT CGGAAGTCTTCTGGCCAGCCTGGTCGACTGCCACCCCAACTCTGGCCCCACCACAGCCGCCCCTTCCTGAAACC CTGGGCTCCATCGTTCTCATCGTCACCTTCATCCCCTTCTGCTTGTGGAGGGCCTGGTCTAAGCAAAAACAT ACAACAGACCTGGGTTTTCCTCGAAGTGCCCTTCCACCCTCCTGCCCGTATACTATGGTGCCATTGGGAGGACTC CCAGGCCACCAGGCCAGTGGACAGCCCTACCTCAGTGGCATCAGTGGACGGGCCTGTGCTAATGGGATCCACATG AATAGGGGCTGCCCTCGGCTGCAGTGGGCTACCCGGGCATGAAGCCCCAGCAGCACTGCCCAGGCGAGCTTCAG CAGCAGAGTGACACCAGCAGCCTGCTGAGGCAGACCCATCTTGGCAATGGATATGACCCCCAAAGTCACCAGATC CCCGACAGTCCTGTCCTGGAAGCAGTGTGGGACCCTCCATTTCACTCAGGGCCCCCATGCTGCTTGGGCCTTGTG GCCTACGTAGGACAGGAACCTGGAATGCAGCTCTCCCCGGGGCCACTGGTGCGTGTGTCTTTTGAAACACCACCT TATGTTTTATAATTCTGGAGAGACATAAGGAGTCCTACCCGTTGAGGTTGGAGAGGGAAAATAAAGAAGCTGCCA $\verb|CCTAACAGGAGTCACCCAGGAAAGCACCGCACAGGCTGGCGGGGACAGACTCCTAACCTGGGGCCTCTGCAGTG|\\$ TGAGGGAACAGCAAGGGCACGGTATCACAGCCTGGAGACACCCACACAGATGGCTGGATCCGGTGCTACGGGAA ACATTTTCCTAAGATGCCCATGAGAACAGACCAAGATGTGTACAGCACTATGAGCATTAAAAAAACCTTCCAGAAT

MLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQPASTVQKPGGTVILGCVVEPP RMNVTWRLNGKELNGSDDALGVLITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTL ANLQDFKLDVQHVIEVDEGNTAVIACHLPESHPKAQVRYSVKQEWLEASRGNYLIMPSGNLQ IVNASOEDEGMYKCAAYNPVTQEVKTSGSSDRLRVRRSTAEAARIIYPPEAQTIIVTKGQSL ILECVASGIPPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCMADNGVGQPGA AVILYNVOVFEPPEVTMELSQLVIPWGQSAKLTCEVRGNPPPSVLWLRNAVPLISSQRLRLS RRALRVLSMGPEDEGVYQCMAENEVGSAHAVVQLRTSRPSITPRLWQDAELATGTPPVSPSK LGNPEOMLRGOPALPRPPTSVGPASPKCPGEKGQGAPAEAPIILSSPRTSKTDSYELVWRPR HEGSGRAPILYYVVKHRKQVTNSSDDWTISGIPANQHRLTLTRLDPGSLYEVEMAAYNCAGE GOTAMVTFRTGRRPKPEIMASKEOOIORDDPGASPQSSSQPDHGRLSPPEAPDRPTISTASE TSVYVTWIPRGNGGFPIOSFRVEYKKLKKVGDWILATSAIPPSRLSVEITGLEKGTSYKFRV RALNMLGESEPSAPSRPYVVSGYSGRVYERPVAGPYITFTDAVNETTIMLKWMYIPASNNNT PIHGFYIYYRPTDSDNDSDYKKDMVEGDKYWHSISHLQPETSYDIKMQCFNEGGESEFSNVM ICETKARKSSGOPGRLPPPTLAPPOPPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVL IIVTFIPFCLWRAWSKQKHTTDLGFPRSALPPSCPYTMVPLGGLPGHQASGQPYLSGISGRA ${\tt CANGIHMNRGCPSAAVGYPGMKPQQHCPGELQQQSDTSSLLRQTHLGNGYDPQSHQITRGPK}$ SSPDEGSFLYTLPDDSTHOLLOPHHDCCOROEQPAAVGQSGVRRAPDSPVLEAVWDPPFHSG PPCCLGLVPVEEVDSPDSCQVSGGDWCPQHPVGAYVGQEPGMQLSPGPLVRVSFETPPLTI

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 16-30 (type II), 854-879

FIGURE 37

CGGGAGGCTGGTCATGATCCGGACCCCATTGTCGGCCTCTGCCCATCGCCTGCTCCTC GCTCAGCCGGCGTATCTGCGGCGTCTGCTGCTCCTGCTACTGCTGCTGCTGCTGCGGCAGC CCGTAACCCGCGCGGAGACCACGCCGGGCCCCCCAGAGCCCTCTCCACGCTGGGCTCCCCC AGCCTCTTCACCACGCCGGGTGTCCCCAGCGCCCTCACTACCCCAGGCCTCACTACGCCAGG CACCCCAAAACCCTGGACCTTCGGGGTCGCGCGCAGGCCCTGATGCGGAGTTTCCCACTCG TGGACGCCACAATGACCTGCCCCAGGTCCTGAGACAGCGTTACAAGAATGTGCTTCAGGAT GTTAACCTGCGAAATTTCAGCCATGGTCAGACCAGCCTGGACAGGCTTAGAGACGGCCTCGT GGGTGCCCAGTTCTGGTCAGCCTCCGTCTCATGCCAGTCCCAGGACCAGACTGCCGTGCGCC TCGCCCTGGAGCAGATTGACCTCATTCACCGCATGTGTGCCTCCTACTCTGAACTCGAGCTT TGGTCACTCACTGGACAGCAGCCTCTCTGTGCTGCGCAGTTTCTATGTGCTGGGGGTGCGCT ACCTGACACTTACCTTCACCTGCAGTACACCATGGGCAGAGAGTTCCACCAAGTTCAGACAC CACATGTACACCAACGTCAGCGGATTGACAAGCTTTGGTGAGAAAGTAGTAGAGGAGTTGAA CCGCCTGGGCATGATGATAGATTTGTCCTATGCATCGGACACCTTGATAAGAAGGGTCCTGG TTGAATGTTCCCGATGATATCCTGCAGCTTCTGAAGAACGGTGGCATCGTGATGGTGACACT GTCCATGGGGGTGCTGCAACCTGCTTGCTAACGTGTCCACTGTGGCAGATCACTTTG ACCACATCAGGGCAGTCATTGGATCTGAGTTCATCGGGATTGGTGGAAATTATGACGGGACT GGCCGGTTCCCTCAGGGGCTGGAGGATGTGTCCACATACCCAGTCCTGATAGAGGAGTTGCT GAGTCGTASCTGGAGCGAGGAAGAGCTTCAAGGTGTCCTTCGTGGAAACCTGCTGCGGGTCT TCAGACAAGTGGAAAAGGTGAGAGAGGAGAGCAGGGCGCAGAGCCCCGTGGAGGCTGAGTTT CCATATGGGCAACTGAGCACATCCTGCCACTCCCACCTCGTGCCTCAGAATGGACACCAGGC TACTCATCTGGAGGTGACCAAGCAGCCAACCAATCGGGTCCCCTGGAGGTCCTCAAATGCCT CCCCATACCTTGTTCCAGGCCTTGTGGCTGCCACCATCCCAACCTTCACCCAGTGGCTC $\texttt{TGC} \underline{\textbf{TGA}} \texttt{CACAGTCGGTCCCCGCAGAGGTCACTGTGGCAAAGCCTCACAAAGCCCCCTCTCCT}$ AGTTCATTCACAAGCATATGCTGAGAATAAACATGTTACACATGGAAAA

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA59817

>>subunit 1 of 1, 487 aa, 1 stop, 2 unknown

><MW: 53569.32, pI: 7.68, NX(S/T): 5

MQPTGREGSRALSRRYLRRLLLLLLLLLLLLRQPVTRAETTPGAPRALSTLGSPSLFTTPGVPS
ALTTPGLTTPGTPKTLDLRGRAQALMRSFPLVDGHNDLPQVLRQRYKNVLQDVNLRNFSHGQ
TSLDRLRDGLVGAQFWSASVSCQSQDQTAVRLALEQIDLIHRMCASYSELELVTSAEGLNSS
QKLACLIGVXGGHSLDSSLSVLRSFYVLGVRYLTLTFTCSTPWAESSTKFRHHMYTNVSGLT
SFGEKVVEELNRLGMMIDLSYASDTLIRRVLEVSQAPVIFSHSAARAVCDNLLNVPDDILQL
LKNGGIVMVTLSMGVLQCNLLANVSTVADHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLEDV
STYPVLIEELLSRXWSEEELQGVLRGNLLRVFRQVEKVREESRAQSPVEAEFPYGQLSTSCH
SHLVPQNGHQATHLEVTKQPTNRVPWRSSNASPYLVPGLVAAATIPTFTQWLC

Important features of the protein:

Signal peptide:

amino acids 1-36

Transmembrane domain:

amino acids 313-331

N-glycosylation sites.

amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.

amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359, 357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 136-146

FIGURE 39

TGCTAGGCTCTGTCCCACAATGCACCCGAGAGCAGGAGCTGAAAGCCTCTAACACCCACAGA TCCCTCTATGACTGCAATGTGAGGTGTCCGGCTTTGCTGGCCCAGCAAGCCTGATAAGC**ATG** AAGCTCTTATCTTTGGTGGCTGTGGTCGGGTGTTTGCTGGTGCCCCCAGCTGAAGCCAACAA GAGTTCTGAAGATATCCGGTGCAAATGCATCTGTCCACCTTATAGAAACATCAGTGGGCACA GTGCCTGGCCATGACGTGGAGGCCTACTGCCTGTGCGAGTGCAGGTACGAGGAGCGCAG ACATGGCCTTCCTGATGCTGGTGGACCCTCTGATCCGAAAGCCGGATGCATACACTGAGCAA CTGCACAATGAGGAGGAGAATGAGGATGCTCGCTCTATGGCAGCAGCTGCTGCATCCCTCGG GGGACCCCGAGCAAACACAGTCCTGGAGCGTGTGGAAGGTGCCCAGCAGCGGTGGAAGCTGC AGGTGCAGGAGCAGCGGAAGACAGTCTTCGATCGGCACAAGATGCTCAGC**TAG**ATGGGCTGG TGTGGTTGGGTCAAGGCCCCAACACCATGGCTGCCAGCTTCCAGGCTGGACAAAGCAGGGG CTACTTCTCCCTTCCCTCGGTTCCAGTCTTCCCTTTAAAAGCCTGTGGCATTTTTCCTCCTT CTCCCTAACTTTAGAAATGTTGTACTTGGCTATTTTGATTAGGGAAGAGGGATGTGGTCTCT ATGGAGACATTCGAGGCGGCCTCAGGAGTGGATGCGATCTGTCTCTCCTGGCTCCACTCTTG CCGCCTTCCAGCTCTGAGTCTTGGGAATGTTGTTACCCTTGGAAGATAAAGCTGGGTCTTCAGGAACTCAGTGTCTGGGAGGAAAGCATGGCCCAGCATTCAGCATGTGTTCCTTTCTGCAGTG GTTCTTATCACCACCTCCCAGCCCCGGCGCCCTCAGCCCCAGCCCCAGCTCCAGCCCTG AGGACAGCTCTGATGGGAGAGCTGGGCCCCCTGAGCCCACTGGGTCTTCAGGGTGCACTGGA AGCTGGTGTTCGCTGTCCCTGTGCACTTCTCGCACTGGGGCATGGAGTGCCCATGCATACT $\tt CTGCTGCCGGTCCCCTCACCTGCACTTGAGGGGTCTGGGCAGTCCCTCTCTCCCCAGTGTC$ CACAGTCACTGAGCCAGACGGTCGGTTGGAACATGAGACTCGAGGCTGAGCGTGGATCTGAA ${\tt CACCACAGCCCTGTACTTGGGTTGCCTCTTGTCCCTGAACTTCGTTGTACCAGTGCATGGA}$ GAGAAAATTTTGTCCTCTTGTCTTAGAGTTGTGTGTAAATCAAGGAAGCCATCATTAAATTG TTTTATTTCTCTCA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278</pre>

<subunit 1 of 1, 183 aa, 1 stop</pre>

<MW: 20574, pI: 6.60, NX(S/T): 3

MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPM PVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPDAYTE QLHNEEENEDARSMAAAAASLGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 90-112

N-glycosylation sites.

amino acids 21-24, 38-41 and 47-50

AGCGGGTCTCGCTTGGGTTCCGCTAATTTCTGTCCTGAGGCGTGAGACTGAGTTCATAGGGTCCTGGGTCCCCGA ACCAGGAAGGGTTGAGGGAACACAATCTGCAAGCCCCCGCGACCCAAGTGAGGGGCCCCGTGTTGGGGTCCTCCC CGGAGCAAGGATTCGTCCTGCTGCTCCTACTGGCCGCGGTGCTGATGGTGGAGAGCTCACAGATCGGCAGT TCGCGGGCCAAACTCAACTCCATCAAGTCCTCTCTGGGCGGGGAGACGCCTGGTCAGGCCGCCAATCGATCTGCG GGCATGTACCAAGGACTGGCATTCGGCGGCAGTAAGAAGGGCCAAAAAACCTGGGGCAGGCCTACCCTTGTAGCAGT GATAAGGAGTGTGAAGTTGGGAGGTATTGCCACAGTCCCCACCAAGGATCATCGGCCTGCATGGTGTGTCGGAGA AAAAAGAAGCGCTGCCACCGAGATGGCATGTGCTGCCCCAGTACCCGCTGCAATAATGGCATCTGTATCCCAGTT ACTGAAAGCATCTTAACCCCTCACATCCCGGCTCTGGATGGTACTCGGCACAGAGATCGAAACCACGGTCATTAC TCAAACCATGACTTGGGATGGCAGAATCTAGGAAGACCACACACTAAGATGTCACATATAAAAGGGCATGAAGGA GACCCCTGCCTACGATCATCAGACTGCATTGAAGGGTTTTGCTGTGCTCGTCATTTCTGGACCAAAATCTGCAAA ${\tt CCAGTGCTCCATCAGGGGGAAGTCTGTACCAAACAACGCAAGAAGGGTTCTCATGGGCTGGAAATTTTCCAGCGT}$ TGCGACTGTGCGAAGGGCCTGTCTTGCAAAGTATGGAAAGATGCCACCTACTCCTCCAAAGCCAGACTCCATGTG TGTCAGAAAATT**TGA**TCACCATTGAGGAACATCATCAATTGCAGACTGTGAAGTTGTGTATTTAATGCATTATAG CATGGTGGAAAATAAGGTTCAGATGCAGAAGAATGGCTAAAATAAGAAACGTGATAAGAATATAGATGATCACAA AAAGGGAGAAAGAAAACATGAACTGAATAGATTAGAATGGGTGACAAATGCAGTGCAGCCAGTGTTTCCATTATG CAACTTGTCTATGTAAATAATGTACACATTTGTGGAAAATGCTATTATTAAGAGAACAAGCACACAGTGGAAATT ACTGATGAGTAGCATGTGACTTTCCAAGAGTTTAGGTTGTGCTGGAGGAGAGGTTTCCTTCAGATTGCTGATTGC TTATACAAATAACCTACATGCCAGATTTCTATTCAACGTTAGAGTTTAACAAAATACTCCTAGAATAACTTGTTA TACAATAGGTTCTAAAAATAAAATTGCTAAACAAGAAATGAAAACATGGAGCATTGTTAATTTACAACAGAAAAT ${\tt TTCAGATTCTACGGAATGACAGTATATCTCTTTTATCCTATGTGATTCCTGCTCTGAATGCATTATATTTTCCA}$ AACTATACCCATAAATTGTGACTAGTAAAATACTTACACAGAGCAGAATTTTCACAGATGGCAAAAAAATTTAAA GATGTCCAATATATGTGGGAAAAGAGCTAACAGAGAGATCATTATTTCTTAAAGATTGGCCATAACCTATATTTT GATAGAATTAGATTGGTAAATACATGTATTCATACATACTCTGTGGTAATAGAGACTTAAGCTGGATCTGTACTG CACTGGAGTAAGCAAGAAAATTGGGAAAACTTTTTCGTTTGTTCAGGTTTTGGCAACACATAGATCATATGTCTG AGGCACAAGTTGGCTGTTCATCTTTGAAACCAGGGGATGCACAGTCTAAATGAATATCTGCATGGGATTTGCTAT TGCTGAGATCCTCAAATAATCTCAATTTCAGGAGGTTTCACAAAATGTACTCCTGAAGTAGACAGAGTAGTGAGG $\tt TTTCATTGCCCTCTATAAGCTTCTGACTAGCCAATGGCATCATCCAATTTTCTTCCCAAACCTCTGCAGCATCTG$ $\verb|CTTTATTGCCAAAGGGCTAGTTTCGGTTTTCTGCAGCCATTGCGGTTAAAAAATATAAGTAGGATAACTTGTAAA| \\$ ${\tt ACCTGCATATTGCTAATCTATAGACACCACAGTTTCTAAATTCTTTGAAACCACTTTACTACTTTTTTAAACTT}$ AACTCAGTTCTAAATACTTTGTCTGGAGCACAAAACAATAAAAGGTTATCTTATAGTCGTGACTTTAAACTTTTG TAGACCACAATTCACTTTTAGTTTTCTTTTACTTAAATCCCATCTGCAGTCTCAAATTTAAGTTCTCCCAGTAG AGATTGAGTTTGAGCCTGTATATCTATTAAAAATTTCAACTTCCCACATATATTTACTAAGATGATTAAGACTTA TTAATGAGATGTATTTCTTATAGAGATATTTCTTACAGAAAGCTTTGTAGCAGAATATATTTGCAGCTATTGAC AAAAAAAAAAAAAAAAA

FIGURE 42

MAALMRSKDSSCCLLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLA FGGSKKGKNLGQAYPCSSDKECEVGRYCHSPHQGSSACMVCRRKKKRCHRDGMCCPSTRCNN GICIPVTESILTPHIPALDGTRHRDRNHGHYSNHDLGWQNLGRPHTKMSHIKGHEGDPCLRS SDCIEGFCCARHFWTKICKPVLHQGEVCTKQRKKGSHGLEIFQRCDCAKGLSCKVWKDATYS SKARLHVCQKI

Signal peptide:

amino acids 1-25

GTGTTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCAACATCACGTTTTTAAAAATTGATT TAGCTGCATTTATTTAGTCAGTTTTCATTGCATAGTAATATTTTCATGTAGTATTTTCTAAG TTATATTTTAGTAATTCATATGTTTTAGATTATAGGTTTTAACATACTTGTGAAAATACTTG ATGTGTTTTAAAGCCTTGGGCAGAAATTCTGTATTGTTGAGGATTTGTTCTTTTATCCCCCT TTTAAAGTCATCCGTCCTTGGCTCAGGATTTGGAGAGCTTGCACCACCAAAAATGGCAAACA TCACCAGCTCCCAGATTTTGGACCAGTTGAAAGCTCCGAGTTTGGGCCAGTTTACCACCACC CCAAGTACACAGCAGAATAGTACAAGTCACCCTACAACTACTACTTCTTGGGACCTCAAGCC CCCAACATCCCAGTCCTCAGTCTCAGTCTTGACTTCAAATCTCAACCTGAGCCATCCC CAGTTCTTAGCCAGTTGAGCCAGCGACAACAGCACCAGAGCCAGGCAGTCACTGTTCCTCCT CCTGGTTTGGAGTCCTTTCCTTCCCAGGCAAAACTTCGAGAATCAACACCTGGAGACAGTCC CTCCACTGTGAACAAGCTTTTGCAGCTTCCCAGCACGACCATTGAAAATATCTCTGTGTCTG TCCACCAGCCACAGCCCAAACACATCAAACTTGCTAAGCGGCGGATACCCCCAGCTTCTAAG ATCCCAGCTTCTGCAGTGGAAATGCCTGGTTCAGCAGATGTCACAGGATTAAATGTGCAGTT TGGGGCTCTGGAATTTGGGTCAGAACCTTCTCTCTCTGAATTTGGATCAGCTCCAAGCAGTG AAAATAGTAATCAGATTCCCATCAGCTTGTATTCGAAGTCTTTAAGTGAGCCTTTGAATACA TCTTTATCAATGACCAGTGCAGTACAGAACTCCACATATACAACTTCCGTCATTACCTCCTG CAGTCTGACAAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGTCTTCCTCTTATGACC AGAGTTCTGTGCATAACAGGATCCCATACCAAAGCCCTGTGAGTTCATCAGAGTCAGCTCCA CAGCAAGCTACTCTTGTCATGGCTGGTGCCAACCAAACAGAGGAAGAGGATAGCTCACGTGA ${\tt TGTGGAAAACACCAGTTGGTCAATGGCTCATTCGT} {\color{red}{\textbf{TAA}}} {\tt AAAGCAGCCCTTTTGCTTTTTGT}$ TTTTGGACCAGGTGTTGGCTGTGGTGTTATTAGAAATGTCTTAACCACAGCAAGAAGGAGGT GGTGGTCTCATATTCTTCTGCCCTAATCAGACTGCACCACAAGTGCAGCATACAGTATGCAT TTTAAAGATGCTTGGGCCAGGCGGGGTGGCTGATGCCCATAATCCCAGTGCTTTGGGGGGCC AAGGCAGGCAGATTGCCCAAGCTCAGGAGTTTGAGACCACCCTGGGCAACATGGTGAAACTC TGTCTCTACTAAAATACGAAAAACTAGCCGGGTGTGGTGGCGGCGCGTGCCTGTAATCCCAG CTACTTGGGAGGCTGAGGCACAAGAATCGCTTGAGCCAGCTTGGGCTACAAAGTGAGACTCC GTCTGAAAAGA

FIGURE 44

MCFKALGRNSVLLRICSFIPLLKSSVLGSGFGELAPPKMANITSSQILDQLKAPSLGQFTTT
PSTQQNSTSHPTTTTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPP
PGLESFPSQAKLRESTPGDSPSTVNKLLQLPSTTIENISVSVHQPQPKHIKLAKRRIPPASK
IPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAPSSENSNQIPISLYSKSLSEPLNT
SLSMTSAVQNSTYTTSVITSCSLTSSSLNSASPVAMSSSYDQSSVHNRIPYQSPVSSSESAP
GTIMNGHGGGRSQQTLDSKYSSKLLLSWLVPTKQRKRIAHVMWKTPVGQWLIR

Signal peptide:

amino acids 1-24

FIGURE 45

 ${\tt GCCGAGTGGGACAAAGCCTGGGGCTGGGCGGGGGCCATGCCATCCCGAATCCTGCT}$ TTGGAAACTTGTGCTTCTGCAGAGCTCTGCTGTTCTCCTGCACTCAGCGGTGGAGGAGACGG ACGCGGGGCTGTACACCTGCAACCTGCACCATCACTACTGCCACCTCTACGAGAGCCTGGCC GTCCGCCTGGAGGTCACCGACGGCCCCCCGGCCACCCCCGCCTACTGGGACGGCGAGAAGGA GGTGCTGGCGGTGGCGCGCGCGCACCCGCGCTTCTGACCTGCGTGAACCGCGGGCACGTGT GGACCGACCGCCACGTGGAGGAGGCTCAACAGGTGGTGCACTGGGACCGGCAGCCGCCCGGG GTCCCGCACGACCGCGGGACCGCCTGCTGGACCTCTACGCGTCGGGCGAGCGCCGCCCTA CGGGCCCTTTTTCTGCGCGACCGCGTGGCTGTGGGCGCGGATGCCTTTGAGCGCGGTGACT TCTCACTGCGTATCGAGCCGCTGGAGGTCGCCGACGAGGGCACCTACTCCTGCCACCTGCAC CACCATTACTGTGGCCTGCACGAACGCCGCGTCTTCCACCTGACGGTCGCCGAACCCCACGC GGAGCCGCCCCCGGGGCTCTCCGGGCAACGGCTCCAGCCACAGCGGCCCCCAGGCCCAG ACCCCACACTGGCGCGCGCCACAACGTCATCAATGTCATCGTCCCCGAGAGCCGAGCCCAC TTCTTCCAGCAGCTGGGCTACGTGCTGGCCACGCTGCTCTTCATCCTGCTACTGGTCAC TGTCCTCCTGGCCGCCGCAGGCGCCGCGGAGGCTACGAATACTCGGACCAGAAGTCGGGAA AGTCAAAGGGGAAGGATGTTAACTTGGCGGAGTTCGCTGTGGCTGCAGGGGACCAGATGCTT TACAGGAGTGAGGACATCCAGCTAGATTACAAAAACAACATCCTGAAGGAGAGGGCGGAGCT GGCCCACAGCCCCTGCCTGCCAAGTACATCGACCTAGACAAAGGGTTCCGGAAGGAGAACT $\tt CTCGGGGCATCTCCTGATGCTCCGGGGCTCACCCCCTTCCAGCGGCTGGTCCCGCTTTCCT$ GGAATTTGGCCTGGGCGTATGCAGAGGCCGCCTCCACACCCCTCCCCAGGGGCTTGGTGGC AGCATAGCCCCACCCTGCGGCCTTTGCTCACGGGTGGCCCTGCCCACCCCTGGCACAACC AAAATCCCACTGATGCCCATCATGCCCTCAGACCCTTCTGGGCTCTGCCCGCTGGGGGCCTG AAGACATTCCTGGAGGACACTCCCATCAGAACCTGGCAGCCCCAAAACTGGGGTCAGCCTCA GGGCAGGAGTCCCACTCCTCCAGGGCTCTGCTCGTCCGGGGGCTGGGAGATGTTCCTGGAGGA GGACACTCCCATCAGAACTTGGCAGCCTTGAAGTTGGGGTCAGCCTCGGCAGGAGTCCCACT CCTCCTGGGGTGCTGCCTGCCACCAAGAGCTCCCCCACCTGTACCACCATGTGGGACTCCAG GCACCATCTGTTCTCCCCAGGGACCTGCTGACTTGAATGCCAGCCCTTGCTCCTCTGTTTTG $\tt CTTTGGGCCACCTGGGGCTGCACCCCTGCCCTTTCTCTGCCCCATCCCTACCCTAGCCTTG$ GGACTCTGCCTGGGCTGGAGTCTAGGGCTGGGGCTACATTTGGCTTCTGTACTGGCTGAGGA CAGGGGAGGGAGTGAAGTTGGTTTGGGGTGGCCTGTGTTGCCACTCTCAGCACCCCACATTT AAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60618</pre>

<subunit 1 of 1, 341 aa, 1 stop</pre>

<MW: 38070, pI: 6.88, NX(S/T): 1

MALPSRILLWKLVLLQSSAVLLHSAVEETDAGLYTCNLHHHYCHLYESLAVRLEVTDGPPAT
PAYWDGEKEVLAVARGAPALLTCVNRGHVWTDRHVEEAQQVVHWDRQPPGVPHDRADRLLDL
YASGERRAYGPLFLRDRVAVGADAFERGDFSLRIEPLEVADEGTYSCHLHHHYCGLHERRVF
HLTVAEPHAEPPPRGSPGNGSSHSGAPGPDPTLARGHNVINVIVPESRAHFFQQLGYVLATL
LLFILLLVTVLLAARRRRGGYEYSDQKSGKSKGKDVNLAEFAVAAGDQMLYRSEDIQLDYKN
NILKERAELAHSPLPAKYIDLDKGFRKENCK

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 237-262

N-glycosylation site.

amino acids 205-208

Cell attachment sequence.

amino acids 151-154

Coproporphyrinogen III oxidase proteins.

amino acids 115-140

CGCCGGAGGCAGCGGCGTGGCGCAGCGGCGACATGCCCGTTGTCTCAGAGGACGACTTT CAGCACAGTTCAAACTCCACCTACGGAACCACAAGCAGCAGTCTCCGAGCTGACCAGGAGGC ACTGCTTGAGAAGCTGCTGGACCGCCCGCCCCTGGCCTGCAGAGGCCCGAGGACCGCTTCT GTGGCACATACATCTTCTTCAGCCTGGGCATTGGCAGTCTACTGCCATGGAACTTCTTT ATCACTGCCAAGGAGTACTGGATGTTCAAACTCCGCAACTCCTCCAGCCCAGCCACCGGGGA GGACCCTGAGGGCTCAGACATCCTGAACTACTTTGAGAGCTACCTTGCCGTTGCCTCCACCG TGCCCTCCATGCTGTGCCTGGTGGCCAACTTCCTGCTTGTCAACAGGGTTGCAGTCCACATC CGTGTCCTGGCCTCACTGACGGTCATCCTGGCCATCTTCATGGTGATAACTGCACTGGTGAA GGTGGACACTTCCTCCTGGACCCGTGGTTTTTTTTGCGGTCACCATTGTCTGCATGGTGATCC TCAGCGGTGCCTCCACTGTCTTCAGCAGCAGCATCTACGGCATGACCGGCTCCTTTCCTATG AGGAACTCCCAAGCACTGATATCAGGAGGAGCCATGGGCGGGACGGTCAGCGCCGTGGCCTC ATTGGTGGACTTGGCTGCATCCAGTGATGTGAGGAACAGCGCCCTGGCCTTCTTCCTGACGG CCACCATCTTCCTCGTGCTCTGCATGGGACTCTACCTGCTGCTGTCCAGGCTGGAGTATGCC AGGTACTACATGAGGCCTGTTCTTGCGGCCCATGTGTTTTCTGGTGAAGAGGAGCTTCCCCA GGACTCCCTCAGTGCCCCTTCGGTGGCCTCCAGATTCATTGATTCCCACACACCCCCTCTCC GCCCCATCCTGAAGAAGACGGCCAGCCTGGGCTTCTGTGTCACCTACGTCTTCTTCATCACC AGCCTCATCTACCCCGCCGTCTGCACCAACATCGAGTCCCTCAACAAGGGCTCGGGCTCACT GTGGACCACCAAGTTTTTCATCCCCCTCACTACCTTCCTCCTGTACAACTTTGCTGACCTAT GTGGCCGGCAGCTCACCGCCTGGATCCAGGTGCCAGGGCCCAACAGCAAGGCGCTCCCAGGG TTCGTGCTCCTCCGGACCTGCCTCATCCCCCTCTTCGTGCTCTGTAACTACCAGCCCCGCGT CCACCTGAAGACTGTGGTCTTCCAGTCCGATGTGTACCCCGCACTCCTCAGCTCCCTGCTGG GGCTCAGCAACGGCTACCTCAGCACCCTGGCCCTCCTCTACGGGCCTAAGATTGTGCCCAGG GAGCTGGCTGAGGCCACGGGAGTGGTGATGTCCTTTTATGTGTGCTTGGGCTTAACACTGGG $\tt CTCAGCCTGCTCCTGGTGCACCTCATC{\color{red}{TAG}}{AAGGGAGGACACAAGGACATTGGTG$ CTTCAGAGCCTTTGAAGATGAGAAGAGTGCAGGAGGGCTGGGGGCCATGGAGGAAAGGCC GTGAGCCACGTCCATGCCCATTCCGTGCAAGGCAGATATTCCAGTCATATTAACAGAACACT CCTGAGACAGTTGAAGAAGAAATAGCACAAATCAGGGGTACTCCCTTCACAGCTGATGGTTA ACATTCCACCTTCTTTCTAGCCCTTCAAAGATGCTGCCAGTGTTCGCCCTAGAGTTATTACA AAGCCAGTGCCAAAACCCAGCCATGGGCTCTTTGCAACCTCCCAGCTGCGCTCATTCCAGCT GACAGCGAGATGCAAGCAAATGCTCAGCTCTCCTTACCCTGAAGGGGTCTCCCTGGAATGGA AGTCCCCTGGCATGGTCAGTCCTCAGGCCCAAGACTCAAGTGTGCACAGACCCCTGTGTTCT GCGGGTGAACAACTGCCCACTAACCAGACTGGAAAACCCAGAAAGATGGGCCTTCCATGAAT GCTTCATTCCAGAGGGACCAGAGGGCCTCCCTGTGCAAGGGATCAAGCATGTCTGGCCTGGG TTTTCAAAAAAGAGGGATCCTCATGACCTGGTGGTCTATGGCCTGGGTCAAGATGAGGGTC **GTATTCAAAAA**

FIGURE 48

MAVVSEDDFQHSSNSTYGTTSSSLRADQEALLEKLLDRPPPGLQRPEDRFCGTYIIFFSLGI
GSLLPWNFFITAKEYWMFKLRNSSSPATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFL
LVNRVAVHIRVLASLTVILAIFMVITALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSI
YGMTGSFPMRNSQALISGGAMGGTVSAVASLVDLAASSDVRNSALAFFLTATIFLVLCMGLY
LLLSRLEYARYYMRPVLAAHVFSGEEELPQDSLSAPSVASRFIDSHTPPLRPILKKTASLGF
CVTYVFFITSLIYPAVCTNIESLNKGSGSLWTTKFFIPLTTFLLYNFADLCGRQLTAWIQVP
GPNSKALPGFVLLRTCLIPLFVLCNYQPRVHLKTVVFQSDVYPALLSSLLGLSNGYLSTLAL
LYGPKIVPRELAEATGVVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252, 305-330, 448-472

GACAGTGGAGGGCAGTGGAGAGGACCGCGCTGTCCTGCTGTCACCAAGAGCTGGAGACACCA TCTCCCACCGAGAGTCATGGCCCCATTGGCCCTGCACCTCCTCGTCCTCGTCCCCATCCTCC ${\tt TCAGCCTGGTGGCCTCCCAGGACTGGAAGGCTGAACGCAGCCAAGACCCCTTCGAGAAATGC}$ ATGCAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGACCTGGGGGCTCAATCGGACCCT TCAGCGATGCTGGACACAAGGTCACCATCCTGGAGGCAGATAACAGGATCGGGGGCCGCATC $\tt TTCACCTACCGGGACCAGAACACGGGCTGGATTGGGGAGCTGGGAGCCATGCCCAG$ CTCTCACAGGATCCTCCACAAGCTCTGCCAGGGCCTGGGGGCTCAACCTGACCAAGTTCACCC AGTACGACAAGAACACGTGGACGGAGGTGCACGAAGTGAAGCTGCGCAACTATGTGGTGGAG AAGGTGCCCGAGAAGCTGGGCTACGCCTTGCGTCCCCAGGAAAAGGGCCACTCGCCCGAAGA CATCTACCAGATGGCTCTCAACCAGGCCCTCAAAGACCTCAAGGCACTGGGCTGCAGAAAGG CGATGAAGAAGTTTGAAAGGCACACGCTCTTGGAATATCTTCTCGGGGAGGGGAACCTGAGC CGGCCGGCCGTGCAGCTTCTGGGAGACGTGATGTCCGAGGATGGCTTCTTCTATCTCAGCTT CGCCGAGGCCCTCCGGGCCCACAGCTGCCTCAGCGACAGACTCCAGTACAGCCGCATCGTGG GTGGCTGGGACCTGCTGCCGCGCGCGCTGCTGAGCTCGCTGTCCGGGCTTGTGCTGAAC GCGCCCGTGGTGGCGATGACCCAGGGACCGCACGATGTGCACGTGCAGATCGAGACCTCTCC CCCGGCGCGGAATCTGAAGGTGCTGAAGGCCGACGTGGTGCTGACGGCGAGCGGACCGG CGGTGAAGCGCATCACCTTCTCGCCGCCGCTGCCCGCCACATGCAGGAGGCGCTGCGGAGG CTGCACTACGTGCCGGCCACCAAGGTGTTCCTAAGCTTCCGCAGGCCCTTCTGGCGCGAGGA GCACATTGAAGGCGGCCACTCAAACACCGATCGCCCGTCGCGCATGATTTTCTACCCGCCGC CGCGCGAGGGCGCTGCTGCTGGCCTCGTACACGTGGTCGGACGCGGCGGCAGCGTTCGCC GGCTTGAGCCGGGAAGAGGCGTTGCGCTTGGCGCTCGACGACGTGGCGCATTGCACGGCCC TGTCGTGCGCCAGCTCTGGGACGGCACCGGCGTCGTCAAGCGTTGGGCGGAGGACCAGCACA GCCAGGGTGGCTTTGTGGTACAGCCGCCGCGCTCTGGCAAACCGAAAAGGATGACTGGACG GTCCCTTATGGCCGCATCTACTTTGCCGGCGAGCACACCGCCTACCCGCACGGCTGGGTGGA GACGGCGGTCAAGTCGGCGCTGCGCCCCCCTCAAGATCAACAGCCGGAAGGGGCCTGCAT CGGACACGCCAGCCCCGAGGGGCACGCATCTGACATGGAGGGGCAGGGGCATGTGCATGGG GTGGCCAGCAGCCCTCGCATGACCTGGCAAAGGAAGAAGGCAGCCACCCTCCAGTCCAAGG $\verb|CCAGTTATCTCTCCAAAACACGACCCACAGGGGACCTCGCAT{\color{red}{\textbf{TAA}}} A \texttt{GTATTTTCGGAAAAA}|$

FIGURE 50

MAPLALHLLVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRTLKPQRV
IVVGAGVAGLVAAKVLSDAGHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSSHRIL
HKLCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKVPEKLGYALRPQEKGHSPEDIYQMA
LNQALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFYLSFAEALR
AHSCLSDRLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQIETSPPARNL
KVLKADVVLLTASGPAVKRITFSPPLPRHMQEALRRLHYVPATKVFLSFRRPFWREEHIEGG
HSNTDRPSRMIFYPPPREGALLLASYTWSDAAAAFAGLSREEALRLALDDVAALHGPVVRQL
WDGTGVVKRWAEDQHSQGGFVVQPPALWQTEKDDWTVPYGRIYFAGEHTAYPHGWVETAVKS
ALRAAIKINSRKGPASDTASPEGHASDMEGQGHVHGVASSPSHDLAKEEGSHPPVQGQLSLQ
NTTHTRTSH

Signal peptide:

amino acids 1-21

GAACTCAGAGCCGGGAAGCCCCCATTCACTAGAAGCACTGAGAGATGCGGCCCCCTCGCAGGGTCTGAATTTCCT ${\tt GCTGCTGTTCACAAAGATGCTTTTTATCTTTAACTTTTTGTTTTCCCCACTTCCGACCCCGGCGTTGATCTGCAT}$ CAATCAGTCTGTGGGAATTGAGGGAGGAGCACGGAAGGGGGTTTCCCAGAAGAACAATGACCTAACAAGTTGCTG ATATAGAAAACCAAACCAGCCCTACAGATGGCTATCTTACAAACAGGTGTCTGATAGAGCAGAGTACCTGGGTTC CTGTCTCTTGCATAAAGGTTATAAATCATCACCAGACCAGTTTGTCGGCATCTTTGCTCAGAATAGGCCAGAGTG GATCATCTCCGAATTGGCTTGTTACACGTACTCTATGGTAGCTGTACCTCTGTATGACACCTTGGGACCAGAAGC CATCGTACATATTGTCAACAAGGCTGATATCGCCATGGTGATCTGTGACACACCCCAAAAGGCATTGGTGCTGAT AGGGAATGTAGAGAAAGGCTTCACCCCGAGCCTGAAGGTGATCATCCTTATGGACCCCTTTGATGACGACAAAGGCAAA GCAAAGAGGGGAAAGAGTGGAATTGAGATCTTATCCCTATATGATGCTGAGAACCTAGGCAAAGAGCACTTCAG AAAACCTGTGCCTCCTAGCCCAGAAGACCTGAGCGTCATCTGCTTCACCAGTGGGACCACAGGTGACCCCAAAGG AGCCATGATAACCCATCAAAATATTGTTTCAAATGCTGCTGCCTTTCTCAAATGTGTGGAGCATGCTTATGAGCC CACATTGTTTCCCGCGGTGCCTCGACTCCTTAACAGGATCTACGATAAGGTACAAAATGAGGCCAAGACACCCTTGAAGAAGTTCTTGTTGAAGCTGGCTGTTTCCAGTAAATTCAAAGAGCTTCAAAAGGGGTATCATCAGGCATGATAG TGCCCCCATGTCCACTTCAGTCATGACATTCTTCCGGGCAGCAATGGGATGTCAGGTGTATGAAGCTTATGGTCA AACAGAATGCACAGGTGGCTGTACATTTACATTACCTGGGGACTGGACATCAGGTCACGTTGGGGTGCCCCTGGC TTGCAATTACGTGAAGCTGGAAGATGTGGCTGACATGAACTACTTTACAGTGAATAATGAAGGAGAGGTCTGCAT $\verb|GCTTCACACAGGAGACATTGGTCGCTGGCTCCCGAATGGAACTCTGAAGATCATCGACCGTAAAAAGAACATTTT| \\$ CAAGCTGGCCCAAGGAGAATACATTGCACCAGAGAAGATAGAAAATATCTACAACAGGAGTCAACCAGTGTTACA AATTTTTGTACACGGGGAGAGCTTACGGTCATCCTTAGTAGGAGTGGTTCCTGACACAGATGTACTTCCCTC ATTTGCAGCCAAGCTTGGGGTGAAGGGCTCCTTTGAGGAACTGTGCCAAAACCAAGTTGTAAGGGAAGCCATTTT AGAAGACTTGCAGAAAATTGGGAAAGAAGTGGCCTTAAAACTTTTGAACAGGTCAAAGCCATTTTTCTTCATCC A GAGCCATTTTCCATTGAAAATGGGCTCTTGACACCAACATTGAAAGCAAAGCGAGGAGGAGCTTTCCAAATACTT ${\tt TCGGACCCAAATTGACAGCCTGTATGAGCACATCCAGGAT{\tt TAG}{\tt GATAAGGTACTTAAGTACCTGCCGGCCCACTG}$ ATCCTGTCTTTCCCATCTTCGATGTTGCTAATATTAAGGCTTCAGGGCTACTTTTATCAACATGCCTGTCTTCAA CAAAGGGACCCTCTGTGCCTTCTTTGTTTTTGTGATAAACATAACTTGCCAACAGTCTCTATGCTTATTTACA TCTTCTACTGTTCAAACTAAGAGATTTTTAAATTCTGAAAAACTGCTTACAATTCATGTTTTCTAGCCACTCCAC ${\tt AAACCACTAAAATTTTAGTTTTAGCCTATCACTCATGTCAATCATATCTATGAGACAAATGTCTCCGATGCTCTT}$ CTGCGTAAATTAAATTGTGTACTGAAGGGAAAAGTTTGATCATACCAAACATTTCCTAAACTCTCTAGTTAGATA TCTGACTTGGGAGTATTAAAAATTGGGTCTATGACATACTGTCCAAAAGGAATGCTGTTCTTAAAGCATTATTTA CAGTAGGAACTGGGGAGTAAATCTGTTCCCTACAGTTTGCTGCTGAGCTGGAAGCTGTGGGGGAAGGAGTTGACA GGTGGCCCAGTGAACTTTTCCAGTAAATGAAGCAAGCACTGAATAAAAACCTCCTGAACTGGGAACAAAGATCT A CAGGCAAGCAAGATGCCCACACAACAGGCTTATTTTCTGTGAAGGAACCAACTGATCTCCCCCACCCTTGGATTAGAGTTCCTGCTCTACCTTACCCACAGATAACACATGTTGTTTCTACTTGTAAATGTAAAGTCTTTAAAATAAAC TATTACAGATAAAAA

FIGURE 52

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60775</pre>

<subunit 1 of 1, 739 aa, 1 stop</pre>

<MW: 82263, pI: 7.55, NX(S/T): 3

MDALKPPCLWRNHERGKKDRDSCGRKNSEPGSPHSLEALRDAAPSQGLNFLLLFTKMLFIFN
FLFSPLPTPALICILTFGAAIFLWLITRPQPVLPLLDLNNQSVGIEGGARKGVSQKNNDLTS
CCFSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGSCLLHKGYKSS
PDQFVGIFAQNRPEWIISELACYTYSMVAVPLYDTLGPEAIVHIVNKADIAMVICDTPQKAL
VLIGNVEKGFTPSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLGKEHFRKPVPPSPED
LSVICFTSGTTGDPKGAMITHQNIVSNAAAFLKCVEHAYEPTPDDVAISYLPLAHMFERIVQ
AVVYSCGARVGFFQGDIRLLADDMKTLKPTLFPAVPRLLNRIYDKVQNEAKTPLKKFLLKLA
VSSKFKELQKGIIRHDSFWDKLIFAKIQDSLGGRVRVIVTGAAPMSTSVMTFFRAAMGCQVY
EAYGQTECTGGCTFTLPGDWTSGHVGVPLACNYVKLEDVADMNYFTVNNEGEVCIKGTNVFK
GYLKDPEKTQEALDSDGWLHTGDIGRWLPNGTLKIIDRKKNIFKLAQGEYIAPEKIENIYNR
SQPVLQIFVHGESLRSSLVGVVVPDTDVLPSFAAKLGVKGSFEELCQNQVVREAILEDLQKI
GKESGLKTFEQVKAIFLHPEPFSIENGLLTPTLKAKRGELSKYFRTQIDSLYEHIQD

Important features:

Type II transmembrane domain:

amino acids 61-80

Putative AMP-binding domain signature.

amino acids 314-325

N-glycosylation site.

amino acids 102-105, 588-591 and 619-622

GGAGGCGGAGCCGGCGAGCCGGCCGAGCAGTGAGGGCCCTAGCGGGGCCCGAGCGGG CCCGGGGCCCTAAGCCATTCCTGAAGTCATGGGCTGGCCAGGACATTGGTGACCCGCCAAT CCGGT**ATG**GACGACTGGAAGCCCAGCCCCTCATCAAGCCCTTTGGGGCTCGGAAGAAGCGG AGCTGGTACCTTACCTGGAAGTATAAACTGACAAACCAGCGGGCCCTGCGGAGATTCTGTCA GACAGGGGCCGTGCTTTTCCTGCTGGTGACTGTCATTGTCAATATCAAGTTGATCCTGGACA CTCGGCGAGCCATCAGTGAAGCCAATGAAGACCCAGAGCCAGAGCCAGAGCTATGATGAGGCC CTAGGCCGCCTGGAGCCCCACGGCGCAGAGGCAGTGGTCCCCGGCGGTCCTGGACGTAGA GGTGTATTCAAGTCGCAGCAAAGTATATGTGGCAGTGGATGGCACCACGGTGCTGGAGGATG AGGCCCGGGAGCAGGCCGGGCATCCATGTCATTGTCCTCAACCAGGCCACGGGCCACGTG ATGGCAAAACGTGTGTTTGACACGTACTCACCTCATGAGGATGAGGCCATGGTGCTATTCCT CAACATGGTAGCGCCCGGCCGAGTGCTCATCTGCACTGTCAAGGATGAGGGCTCCTTCCACC TCAAGGACACAGCCAAGGCTCTGCTGAGGAGCCTGGCCAGGCCAGGCCTGCCCTGGGC TGGAGGGACACATGGGCCTTCGTGGGACGAAAAGGAGGTCCTGTCTTCGGGGAGAAACATTC TAAGTCACCTGCCCTCTCTTCCTGGGGGGGCCCAGTCCTGCTGAAGACAGATGTGCCATTGA GCTCAGCAGAAGAGGCAGAGTGCCACTGGGCAGACAGAGCTGAACCGTCGCCGCCGCGC TTCTGCAGCAAAGTTGAGGGCTATGGAAGTGTATGCAGCTGCAAGGACCCCACACCCATCGA GTTCAGCCCTGACCCACTCCCAGACAACAAGGTCCTCAATGTGCCTGTGGCTGTCATTGCAG GGAACCGACCCAATTACCTGTACAGGATGCTGCGCTCTCTGCTTTCAGCCCAGGGGGTGTCT CCTCAGATGATAACAGTTTTCATTGACGGCTACTATGAGGAACCCATGGATGTGGTGGCACT GTTTGGTCTGAGGGGCATCCAGCATACTCCCATCAGCATCAAGAATGCCCGCGTGTCTCAGC ACTACAAGGCCAGCCTCACTGCCACTTTCAACCTGTTTCCGGAGGCCAAGTTTGCTGTGGTT ACTGGAGGAGGATGACAGCCTGTACTGCATCTCTGCCTGGAATGACCAGGGGTATGAACACA CGGCTGAGGACCCAGCACTACTGTACCGTGTGGAGACCATGCCTGGGCTGGGTGCTC AGGAGGTCCTTGTACAAGGAGGAGCTTGAGCCCAAGTGGCCTACACCGGAAAAGCTCTGGGA TTGGGACATGTGGATGCCGGATGCCTGAACAACGCCGGGGCCGAGAGTGCATCATCCCTGACG TTTCCCGATCCTACCACTTTGGCATCGTCGGCCTCAACATGAATGGCTACTTTCACGAGGCC TACTTCAAGAAGCACAAGTTCAACACGGTTCCAGGTGTCCAGCTCAGGAATGTGGACAGTCT GAAGAAGAAGCTTATGAAGTGGAAGTTCACAGGCTGCTCAGTGAGGCTGAGGTTCTGGACC ACAGCAAGAACCCTTGTGAAGACTCTTTCCTGCCAGACACAGAGGGCCCACACCTACGTGGCC TTTATTCGAATGGAGAAAGATGATGACTTCACCACCTGGACCCAGCTTGCCAAGTGCCTCCA TATCTGGGACCTGGATGTGCGTGGCAACCATCGGGGCCTGTGGAGATTGTTTCGGAAGAAGA ACCACTTCCTGGTGGTGGGGGTCCCGGCTTCCCCCTACTCAGTGAAGAAGCCACCCTCAGTC ACCCCAATTTTCCTGGAGCCACCCCCAAAGGAGGAGGGGGGGCCCCAGGAGCACAGAC TCCCTCCATCCTGTAGGATTTTGTAGATGCTGGTAGGGGCTGGGGCTACCTTGTTTTTAACA TGAGACTTAATTACTAACTCCAAGGGGAGGGTTCCCCTGCTCCAACACCCCCGTTCCTGAGTT AAAAGTCTATTTATTTACTTCCTTGTTGGAGAAGGGCAGGAGAGTACCTGGGAATCATTACG ATCCCTAGCAGCTCATCCTGCCCTTTGAATACCCTCACTTTCCAGGCCTGGCTCAGAATCTA ACCTATTTATTGACTGTCCTGAGGGCCTTGAAAACAGGCCGAACCTGGAGGGCCTGGATTTC TTTTTGGGCTGGAATGCTGCCCTGAGGGTGGGGCTGGCTCTTACTCAGGAAACTGCTGTGCC GACACTGGACCAGGCCTCCTCTCAGCCTTCTCTTTGTCCAGATTTCCAAAGCTGGATAAGTT

FIGURE 54

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA61185

><subunit 1 of 1, 660 aa, 1 stop

><MW: 75220, pI: 6.76, NX(S/T): 0

MDDWKPSPLIKPFGARKKRSWYLTWKYKLTNQRALRRFCQTGAVLFLLVTVIVNIKLILDTR
RAISEANEDPEPEQDYDEALGRLEPPRRRGSGPRRVLDVEVYSSRSKVYVAVDGTTVLEDEA
REQGRGIHVIVLNQATGHVMAKRVFDTYSPHEDEAMVLFLNMVAPGRVLICTVKDEGSFHLK
DTAKALLRSLGSQAGPALGWRDTWAFVGRKGGPVFGEKHSKSPALSSWGDPVLLKTDVPLSS
AEEAECHWADTELNRRRRFCSKVEGYGSVCSCKDPTPIEFSPDPLPDNKVLNVPVAVIAGN
RPNYLYRMLRSLLSAQGVSPQMITVFIDGYYEEPMDVVALFGLRGIQHTPISIKNARVSQHY
KASLTATFNLFPEAKFAVVLEEDLDIAVDFFSFLSQSIHLLEEDDSLYCISAWNDQGYEHTA
EDPALLYRVETMPGLGWVLRRSLYKEELEPKWPTPEKLWDWDMWMRMPEQRRGRECIIPDVS
RSYHFGIVGLNMNGYFHEAYFKKHKFNTVPGVQLRNVDSLKKEAYEVEVHRLLSEAEVLDHS
KNPCEDSFLPDTEGHTYVAFIRMEKDDDFTTWTQLAKCLHIWDLDVRGNHRGLWRLFRKKNH
FLVVGVPASPYSVKKPPSVTPIFLEPPPKEEGAPGAPEQT

Important features of the protein:

Transmembrane domain:

amino acids 38-55

Homologous region to Mouse GNT1

amino acids 229-660

CGGACGCGTGGGCTGCTGGTGGGAAGGCCTAAAGAACTGGAAAGCCCACTCTCTTGGAACCACCACAC CTGTTTAAAGAACCTAAGCACCATTTAAAGCCACTGGAAATTTGTTGTCTAGTGGTTGTGGGTGAATA AAGGAGGGCAGA<u>ATG</u>GATGATTTCATCTCCATTAGCCTGCTGTCTCTGGCTATGTTGGTGGGGATGTTA CGTGGCCGGAATCATTCCCTTGGCTGTTAATTTCTCAGAGGAACGACTGAAGCTGGTGACTGTTTTGG GTGCTGGCCTTCTCTGTGGAACTGCTCTGGCAGTCATCGTGCCTGAAGGAGTACATGCCCTTTATGAA GATATTCTTGAGGGAAAACACCACCAAGCAAGTGAAACACATAATGTGATTGCATCAGACAAAGCAGC AGAAAAATCAGTTGTCCATGAACATGAGCACGCCACGACCACACAGCTGCATGCCTATATTGGTG TTTCCCTCGTTCTGGGCTTCGTTTTCATGTTGCTGGTGGACCAGATTGGTAACTCCCATGTGCATTCT ACTGACGATCCAGAAGCAGCAAGGTCTAGCAATTCCAAAATCACCACCACGCTGGGTCTGGTTGTCCA TGCTGCAGCTGATGGTGTTGCTTTGGGAGCAGCAGCATCTACTTCACAGACCAGTGTCCAGTTAATTG GGCTTAGAGCGGAATCGGAATCAGAAAGCACTTGCTGGTCTTTGCATTGGCAGCACCAGTTATGTCCAT GGTGACATACTTAGGACTGAGTAAGAGCAGTAAAGAAGCCCTTTCAGAGGTGAACGCCACGGGAGTGG CCATGCTTTTCTCTGCCGGGACATTTCTTTATGTTGCCACAGTACATGTCCTCCCTGAGGTGGCCGGA GGTTCTGGGTTGCCTCATCCCTCTCATCCTGTCAGTAGGACACCAGCAT**TAA**ATGTTCAAGGTCCAGC CTTGGTCCAGGGCCGTTTGCCATCCAGTGAGAACAGCCGGCACGTGACAGCTACTCACTTCCTCAGTC TCTTGTCTCACCTTGCGCATCTCTACATGTATTCCTAGAGTCCAGAGGGGAGGTGAGGTTAAAACCTG AGTAATGGAAAAGCTTTTAGAGTAGAAACACATTTACGTTGCAGTTAGCTATAGACATCCCATTGTGT TATCTTTTAAAAGGCCCTTGACATTTTGCGTTTTAATATTTCTCTTTAACCCTATTCTCAGGGAAGATG GAATTTAGTTTTAAGGAAAAGAGGAGAACTTCATACTCACAATGAAATAGTGATTATGAAAATACAGT GTTCTGTAATTAAGCTATGTCTCTTTCTTCTTAGTTTAGAGGCTCTGCTACTTTATCCATTGATTTTT AACATGGTTCCCACCATGTAAGACTGGTGCTTTAGCATCTATGCCACATGCGTTGATGGAAGGTCATA GCACCCACTCACTTAGATGCTAAAGGTGATTCTAGTTAATCTGGGATTAGGGTCAGGAAAATGATAGC AAGACACATTGAAAGCTCTCTTTATACTCAAAAGAGATATCCATTGAAAAGGGATGTCTAGAGGGATT TAAACAGCTCCTTTGGCACGTGCCTCTCTGAATCCAGCCTGCCATTCCATCAAATGGAGCAGGAGAGG TGGGAGGAGCTTCTAAAGAGGTGACTGGTATTTTGTAGCATTCCTTGTCAAGTTCTCCTTTGCAGAAT ACCTGTCTCCACATTCCTAGAGAGGAGCCAAGTTCTAGTAGTTTCAGTTCTAGGCTTTCCTTCAAGAA ${\tt CAGTCAGATCACAAAGTGTCTTTGGAAATTAAGGGATATTAAATTTTAAGTGATTTTTTGGATGGTTAT}$ TTTTTTTTAATTATTTCTCTTAGCAGATCAGCAATCCCTCTAGGGACCTAAATACTAGGTCAGCTTT GGCGACACTGTGTCTTCTCACATAACCACCTGTAGCAAGATGGATCATAAATGAGAAGTGTTTGCCTA TCCCTCTAGCCTCTCCTCGCCACAATTTGCTGCTTACTGCTGGTGTTAATATTTTGTGTGGGATGAATT CTTATCAGGACAACCACTTCTCGAACTGTAATAATGAAGATAATAATATCTTTATTCTTTATCCCCTT CAAAGAAATTACCTTTGTGTCAAATGCCGCTTTGTTGAGCCCTTAAAATACCACCTCCTCATGTGTAA ATTGACACAATCACTAATCTGGTAATTTAAACAATTGAGATAGCAAAAGTGTTTAACAGACTAGGATA ATTTTTTTTTCATATTTGCCAAAATTTTTGTAAACCCTGTCTTGTCAAATAAGTGTATAATATTGTAT TATTAATTTATTTTTACTTTCTATACCATTTCAAAACACATTACACTAAGGGGGAACCAAGACTAGTT TCTTCAGGGCAGTGGACGTAGTTTTGTAAAAACGTTTTCTATGACGCATAAGCTAGCCTATG ATTTATTTCCTTCATGAATTTGTCACTGGATCAGCAGCTGTGGAAATAAAGCTTGTGAGCCCTCTGCT ATTTTACTACCAAGAGAAGGTATAGTATGGAAAGTCCAAATGACTTCCTTGATTGGATGTTAACAGCT GACTGGTGTGAGACTTGAGGTTTCATCTAGTCCTTCAAAACTATATGGTTGCCTAGATTCTCTCTGGA

FIGURE 56

MDDFISISLLSLAMLVGCYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHAL
YEDILEGKHHQASETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVDQ
IGNSHVHSTDDPEAARSSNSKITTTLGLVVHAAADGVALGAAASTSQTSVQLIVFVAIMLHK
APAAFGLVSFLMHAGLERNRIRKHLLVFALAAPVMSMVTYLGLSKSSKEALSEVNATGVAML
FSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLILSVGHQH

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 37-56, 106-122, 211-230, 240-260, 288-304

FIGURE 57

GCTCGAGGCCGGCGGCGGGAGAGCGACCCGGGCGGCCTCGTAGCGGGGCCCCGGATCCC CGAGTGGCGGCCGGAGCCTCGAAAAGAGATTCTCAGCGCTGATTTTGAG**ATC**ATGGGCTTGG GAAACGGGCGTCGCAGCATGAAGTCGCCGCCCCTCGTGCTGGCCGCCCTGGTGGCCTGCATC ATCGTCTTGGGCTTCAACTACTGGATTGCGAGCTCCCGGAGCGTGGACCTCCAGACACGGAT AGAACGAGTTCCAGGGAGAGCTGGAGAAGCAGCGGGAGCAGCTTGACAAAATCCAGTCCAGC CACAACTTCCAGCTGGAGAGCGTCAACAAGCTGTACCAGGACGAAAAGGCGGTTTTGGTGAA TAACATCACCACAGGTGAGAGGCTCATCCGAGTGCTGCAAGACCAGTTAAAGACCCTGCAGA GGAATTACGGCAGGCTGCAGCAGGATGTCCTCCAGTTTCAGAAGAACCAGACCAACCTGGAG AGGAAGTTCTCCTACGACCTGAGCCAGTGCATCAATCAGATGAAGGAGGTGAAGGAACAGTG TGAGGAGCGAATAGAAGAGGTCACCAAAAAGGGGAATGAAGCTGTAGCTTCCAGAGACCTGA GTGAAAACAACGACCAGAGACAGCTCCAAGCCCTCAGTGAGCCTCAGCCCAGGCTGCAG GTCCCAGACACCAGCCCCCAGTTCCGAAGTGGTTTTGGATTCAAAGAGACAAGTTGAGAAAG AGGAAACCAATGAGATCCAGGTGGTGAATGAGGAGCCTCAGAGGGACAGGCTGCCGCAGGAG CCAGGCCGGGAGCAGGTGGTAGACAGACCTGTAGGTGGAAGAGGCTTCGGGGGAGCCGG AGAACTGGGCCAGACCCCACAGGTGCAGGCTGCCCTGTCAGTGAGCCAGGAAAATCCAGAGA TGGAGGGCCCTGAGCGAGACCAGCTTGTCATCCCCGACGGACAGGAGGAGGAGCAGGAAGCT GCCGGGGAAGGGAAACCAGCAGAAACTGAGAGGAGAAGATGACTACAACATGGATGAAAA TGAAGCAGAATCTGAGACAGCAAGCAAGCAGCCCTGGCAGGGAATGACAGAAACATAGATG TTTTTAATGTTGAAGATCAGAAAAGAGACACCATAAATTTACTTGATCAGCGTGAAAAGCGG AATCATACACTC**TGA**ATTGAACTGGAATCACATATTTCACAACAGGGCCGAAGAGATGACTA

FIGURE 58

MMGLGNGRRSMKSPPLVLAALVACIIVLGFNYWIASSRSVDLQTRIMELEGRVRRAAAERGA
VELKKNEFQGELEKQREQLDKIQSSHNFQLESVNKLYQDEKAVLVNNITTGERLIRVLQDQL
KTLQRNYGRLQQDVLQFQKNQTNLERKFSYDLSQCINQMKEVKEQCEERIEEVTKKGNEAVA
SRDLSENNDQRQQLQALSEPQPRLQAAGLPHTEVPQGKGNVLGNSKSQTPAPSSEVVLDSKR
QVEKEETNEIQVVNEEPQRDRLPQEPGREQVVEDRPVGGRGFGGAGELGQTPQVQAALSVSQ
ENPEMEGPERDQLVIPDGQEEEQEAAGEGRNQQKLRGEDDYNMDENEAESETDKQAALAGND
RNIDVFNVEDQKRDTINLLDQREKRNHTL

Signal peptide:

amino acids 1-29

TGCCATGGGGGAGCCAAGGGAAACCTGGGGCCTGCTGGATGGCTTCCCGATTTTCGCGGGTTGTTGTTGGTGCTGA TAGATGCTCTGCGATTTGACTTCGCCCAGCCCCAGCATTCACACGTGCCTAGAGAGCCTCCTGTCTCCCTACCCT TCCTGGGCAAACTAAGCTCCTTGCAGAGGATCCTGGAGATTCAGCCCCACCATGCCCGGCTCTACCGATCTCAGG TTGACCCTCCTACCACCACCATGCAGCGCCTCAAGGCCCTCACCACTGCCTACCTTATTGATGCTG GTAGTAACTTCGCCAGCCACGCCATAGTGGAAGACAATCTCATTAAGCAGCTCACCAGTGCAGGAAGGCGTGTAG TCTTCATGGGAGATGATACCTGGAAAGACCTTTTCCCTGGTGCTTTCTCCAAAGCTTTCTTCTTCCCATCCTTCA ATGTCAGAGACCTAGACACAGTGGACAATGGCATCCTGGAACACCTCTACCCCACCATGGACAGTGGTGAATGGG ACGTGCTGATTGCTCACTTCCTGGGTGTGGACCACTGTGGCCACAAGCATGGCCCTCACCACCCTGAAATGGCCA AGAAACTTAGCCAGATGGACCAGGTGATCCAGGGACTTGTGGAGCGTCTGGAGAATGACACACTGCTGGTAGTGG CTGGGGACCATGGGATGACCACAAATGGAGACCATGGAGGGACAGTGAGCTGGAGGTCTCAGCTGCTCTCTTTC TGTATAGCCCCACAGCAGTCTTCCCCAGCACCCCACCAGAGGAGCCAGAGGTGATTCCTCAAGTTAGCCTTGTGC CCACGCTGGCCCTGCTGCGCCTGCCCATCCCATTTGGGAATATCGGGGAAGTGATGGCTGAGCTATTCTCAG GGGGTGAGGACTCCCAGCCCCACTCCTCTGCTTTAGCCCAAGCCTCAGCTCTCCATCTCAATGCTCAGCAGGTGT CCCGATTTCTTCATACCTACTCAGCTGCTACTCAGGACCTTCAAGCTAAGGAGCTTCATCAGCTGCAGAACCTCT TCTCCAAGGCCTCTGCTGACTACCAGTGGCTTCTCCAGAGCCCCAAGGGGGGCTGAGGCGACACTGCCGACTGTGA $\tt TTGCTGAGCTGCAGCAGTTCCTGCGGGGAGCTCGGGCCATGTGCATCGAGTCTTGGGCTCGTTTCTCTTGGTCC$ ${\tt TCCTGGGAACTATTGAGCTGAAGCTAGATCTAGTGCTTCTAGGGGCTGTGGCTGCAGTGAGCTCATTCCTCCCTT}$ TTCTGTGGAAAGCCTGGGCTGGGGGGTCCAAGAGGCCCCTGGCAACCCTGTTTCCCATCCCTGGGCCCGTCC TGTTACTCCTGCTGTTTCGCTTGGCTGTTTCTCTCTGATAGTTTTGTTGTAGCTGAGGCCAGGGCCACCCCCT TCCTTTTGGGCTCATTCATCCTGCTCCTGGTTGTCCAGCTTCACTGGGAGGGCCAGCTGCTTCCACCTAAGCTAC TCACAATGCCCCGCCTTGGCACTTCAGCCACAACAACCCCCCACGGCACAATGGTGCATATGCCCTGAGGCTTG GAATTGGGTTGCTTTTATGTACAAGGCTAGCTGGGCTTTTTCATCGTTGCCCTGAAGAGACACCTGTTTGCCACT $\tt CGGCGCTGGTGGCCTGTTAGCTGCCGTGCGCTTTGTGGCTTCGCCGCTATGGTAATCTCAAGAGCCCCGAGCCAC$ CAGATGAGGCTCCCCCCGTCTCCGGGTCCTGGTCTCTGGGGCATCCATGGTGCTGCCTCGGGCTGTAGCAGGGC TGGCTGCTTCAGGGCTCGCGCTGCTGCTCTGGAAGCCTGTGACAGTGCTGGTGAAGGCTGGGGGCAGGCGCTCCAA GGACCAGGACTGTCCTCACTCCCTTCTCAGGCCCCCCCACTTCTCAAGCTGACTTGGATTATGTGGTCCCTCAAA TCTACCGACACGTGCAGGAGGAGTTCCGGGGCCGGTTAGAGGGGCCAAATCTCAGGGTCCCCTGACTGTGGCTG $\tt CTTATCAGTTGGGGAGTGTCTACTCAGCTGCTATGGTCACAGCCCTCACCCTGTTGGCCTTCCCACTTCTGCTGT$ TTGCAGTAGGTTGCCCACTGCTCTGGCCTTTCCTGTGTGAGAGTCAAGGGCTGCGGAAGAGACAGCAGC CCCCAGGGAATGAAGCTGATGCCAGAGTCAGACCCGAGGAGGAAGAGGAGCCACTGATGGAGATGCGGCTCCGGG ATGCGCCTCAGCACTTCTATGCAGCACTGCTGCAGCTGGGCCTCAAGTACCTCTTTATCCTTGGTATTCAGATTC TGGCCTGTGCCTTGGCAGCCTCCATCCTTCGCAGGCATCTCATGGTCTGGAAAGTGTTTGCCCCTAAGTTCATAT TTGAGGCTGTGGGCTTCATTGTGAGCAGCGTGGGACTTCTCCTGGGCATAGCTTTGGTGATGAGAGTGGATGGTG $\tt CTGTGAGCTCCTGGTTCAGGCAGCTATTTCTGGCCCAGCAGAGGG{\color{red}{T}}{\color{blue}{AG}}{\color{blue}{CCTAGTCTGTGATTACTGGCACTTGGCT}$ ACAGAGAGTGCTGGAGAACAGTGTAGCCTGGCCTGTACAGGTACTGGATGATCTGCAAGACAGGCTCAGCCATAC TCTTACTATCATGCAGCCAGGGGCCGCTGACATCTAGGACTTCATTATTCTATAATTCAGGACCACAGTGGAGTA GCGTGGTGACTTGCACCTATAATCCCAGCACTTTGGGAGGCAGAGGTGGGAGGATTGCTTGGTCCCAGGAGTTCA

FIGURE 60

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809</pre>

<subunit 1 of 1, 1089 aa, 1 stop</pre>

<MW: 118699, pI: 8.49, NX(S/T): 2

MQKASVLLFLAWVCFLFYAGIALFTSGFLLTRLELTNHSSCQEPPGPGSLPWGSQGKPGACW MASRFSRVVLVLIDALRFDFAQPQHSHVPREPPVSLPFLGKLSSLQRILEIQPHHARLYRSQ VDPPTTTMQRLKALTTGSLPTFIDAGSNFASHAIVEDNLIKQLTSAGRRVVFMGDDTWKDLF PGAFSKAFFFPSFNVRDLDTVDNGILEHLYPTMDSGEWDVLIAHFLGVDHCGHKHGPHHPEM AKKLSQMDQVIQGLVERLENDTLLVVAGDHGMTTNGDHGGDSELEVSAALFLYSPTAVFPST PPEEPEVIPQVSLVPTLALLLGLPIPFGNIGEVMAELFSGGEDSQPHSSALAQASALHLNAQ QVSRFLHTYSAATQDLQAKELHQLQNLFSKASADYQWLLQSPKGAEATLPTVIAELQQFLRG ARAMCIESWARFSLVRMAGGTALLAASCFICLLASQWAISPGFPFCPLLLTPVAWGLVGAIA YAGLLGTIELKLDLVLLGAVAAVSSFLPFLWKAWAGWGSKRPLATLFPIPGPVLLLLLFRLA VFFSDSFVVAEARATPFLLGSFILLLVVOLHWEGOLLPPKLLTMPRLGTSATTNPPRHNGAY ALRLGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGGRAKNLWYGACVAALVALLA AVRLWLRRYGNLKSPEPPMLFVRWGLPLMALGTAAYWALASGADEAPPRLRVLVSGASMVLP RAVAGLAASGLALLLWKPVTVLVKAGAGAPRTRTVLTPFSGPPTSQADLDYVVPQIYRHMQE EFRGRLERTKSOGPLTVAAYOLGSVYSAAMVTALTLLAFPLLLLHAERISLVFLLLFLQSFL LLHLLAAGIPVTTPGPFTVPWQAVSAWALMATQTFYSTGHQPVFPAIHWHAAFVGFPEGHGS CTWLPALLVGANTFASHLLFAVGCPLLLLWPFLCESQGLRKRQQPPGNEADARVRPEEEEEP LMEMRLRDAPQHFYAALLQLGLKYLFILGIQILACALAASILRRHLMVWKVFAPKFIFEAVG FIVSSVGLLLGIALVMRVDGAVSSWFRQLFLAQQR

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850, 1016-1034, 1052-1070

Leucine zipper pattern.

amino acids 843-864

N-glycosylation sites.

amino acids 37-40, 268-271

TGCCGCTGCCGCCGCTGCTGTTGCTCCTGGCGGCGCCCTTGGGGACGGGCAGTTCCCTGT GTCTCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGA**ATG**T TCATCACAAATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGT CCTGACAGCTCCAGAGAAGTGGAAGAGAAATCCAGAAGACCTTCCTGTTTCCATGCAACAAA TATACTCCAATCTGAAGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCC CAGTGTGTGACCAACCACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGT ACACGTGGAGTCCTTCGTCCCAGGGCCCCCTCGCCGTGCTCAGCCTTCTGAGAAGCAGTGTG CCAGGACTTTGAAAGATCAATCATCAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTG CCCATATCTATTACCGTGTTTCTTTTTCTGTGATGGGCTATTCCATCTACCGATATATCCA CGTTGGCAAAGAGAAACACCCAGCAAATTTGATTTTGATTTATGGAAATGAATTTGACAAAA GATTCTTTGTGCCTGAAAAAATCGTGATTAACTTTATCACCCTCAATATCTCGGATGAT TCTAAAATTTCTCATCAGGATATGAGTTTACTGGGAAAAAGCAGTGATGTATCCAGCCTTAA TGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGAGGAGGAGGGGGAACATTTAG GGTATGCTTCGCATTTGATGGAAATTTTTTTGTGACTCTGAAGAAACACGGAAGGTACTTCT CTCACCCAGCAGAGTCCCTCAGCAGAACAATACCCCCGGATAAAACAGTCATTGAATATGA ATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTTGCAGG CAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCGCAGGAGCA CACAGACTCGGAGGAGGGGGGAGGAAGAGCCATCGACGACCCTGGTCGACTGGGATCCCC AAACTGGCAGGCTGTTATTCCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCGAG CCTTCTGAGGGGGTCTCGGAGAGGGGGTCTTCTATCTAGACTCTATGAGGAGCCGGC TCCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGT TATATGTGCAGATGGAAAAC**TGA**TGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAAC AAGTGAGTCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGT TTGTCAGTGTCTGTGAGAATTACTTATTTCTTTTTCTCTATTCTCATAGCACGTGTGTGATTG GTTCATGCATGTAGGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGT TGTTCTATGCAGAGAAAGCAGTCAATAAATGTTTGCCAGACTGGGTGCAGAATTTATTCAGG TGGGTGT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62815</pre>

<subunit 1 of 1, 442 aa, 1 stop</pre>

<MW: 49932, pI: 4.55, NX(S/T): 5

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQ
QIYSNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQ
CARTLKDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFD
KRFFVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKH
LGYASHLMEIFCDSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSL
QEEVSTQGTLLESQAALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWD
PQTGRLCIPSLSSFDQDSEGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEW
GLYVQMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 63

CGGACGCGTGGGCGGACGCGTGGGCGTGGGTCTCTGCGGGGAGACGCCAGCCTGCG TCTGCC**ATG**GGGCTCGGGTTGAGGGGCTGGGGACGTCCTCTGCTGACTGTGGCCACCGCCCT GATGCTGCCGTGAAGCCCCCGCAGGCTCCTGGGGGGCCCAGATCATCGGGGGCCACGAGG TGACCCCCCACTCCAGGCCCTACATGGCATCCGTGCGCTTCGGGGGCCCAACATCACTGCGGA GGCTTCCTGCTGCGAGCCCGCTGGGTGGTCTCGGCCGCCCACTGCTTCAGCCACAGAGACCT TGTTTGGCATCGATGCTCTCACCACGCACCCCGACTACCACCCCATGACCCACGCCAACGAC $\tt ATCTGCTGCTGCGGCTGAACGGCTCTGCTGTCCTGGGCCCTGCAGTGGGGCTGCTGAGGCT$ TCGTGTCTGACTTTGAGGAGCTGCCGCCTGGACTGATGGAGGCCAAGGTCCGAGTGCTGGAC CCGGACGTCTGCAACAGCTCCTGGAAGGGCCACCTGACACTTACCATGCTCTGCACCCGCAG TGGGGACAGCCACAGACGGGGCTTCTGCTCGGCCGACTCCGGAGGGCCCCTGGTGTGCAGGA ACCGGGCTCACGGCCTCGTTTCCTTCTCGGGCCTCTGGTGCGGCGACCCCAAGACCCCCGAC GTGTACACGCAGGTGTCCGCCTTTGTGGCCTGGATCTGGGACGTGGTTCGGCGGAGCAGTCC $\verb|CCAGCCCGGCCCCTGCCTGGGACCACCAGGCCCCCAGGAGAAGCCGCC| \textbf{TGA} \\ | GCCACAACCT| \\ | GCCACACCT| \\ | GCCACA$ TGCGGCATGCAAATGAGATGGCCGCTCCAGGCCTGGAATGTTCCGTGGCTGGGCCCCACGGG AAGCCTGATGTTCAGGGTTGGGGTGGGACGGCAGCGGTGGGGCACACCCATTCCACATGCA

FIGURE 64

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845</pre>

><subunit 1 of 1, 283 aa, 1 stop

><MW: 30350, pI: 9.66, NX(S/T): 2

MGLGLRGWGRPLLTVATALMLPVKPPAGSWGAQIIGGHEVTPHSRPYMASVRFGGQHHCGGF LLRARWVVSAAHCFSHRDLRTGLVVLGAHVLSTAEPTQQVFGIDALTTHPDYHPMTHANDIC LLRLNGSAVLGPAVGLLRLPGRRARPPTAGTRCRVAGWGFVSDFEELPPGLMEAKVRVLDPD VCNSSWKGHLTLTMLCTRSGDSHRRGFCSADSGGPLVCRNRAHGLVSFSGLWCGDPKTPDVY TQVSAFVAWIWDVVRRSSPQPGPLPGTTRPPGEAA

Signal peptide:

amino acids 1-30

FIGURE 65

GAGCTACCCAGGCGGCTGGTGTGCAGCAAGCTCCGCGCCGACTCCGGACGCCTGACGCCTGA CGCCTGTCCCCGGCCCGGC**ATG**AGCCGCTACCTGCTGCCGCTGTCGGCGCTGGGCACGGTAG CAGGCGCCGCGTGCTGCTCAAGGACTATGTCACCGGTGGGGCTTGCCCCAGCAAGGCCACC ATCCCTGGGAAGACGGTCATCGTGACGGGCGCCAACACAGGCATCGGGAAGCAGACCGCCTT GGAACTGGCCAGGAGAGGGCAACATCATCCTGGCCTGCCGAGACATGGAGAAGTGTGAGG CGGCAGCAAAGGACATCCGCGGGGAGACCCTCAATCACCATGTCAACGCCCGGCACCTGGAC TTGGCTTCCCTCAAGTCTATCCGAGAGTTTGCAGCAAAGATCATTGAAGAGGAGGAGCGAGT GGACATTCTAATCAACAACGCGGGTGTGATGCGGTGCCCCCACTGGACCACCGAGGACGGCT TCGAGATGCAGTTTGGCGTTAACCACCTGGGTCACTTTCTCTTGACAAACTTGCTGCTGGAC AAGCTGAAAGCCTCAGCCCCTTCGCGGATCATCAACCTCTCGTCCCTGGCCCATGTTGCTGG GCACATAGACTTTGACGACTTGAACTGGCAGACGAGGAAGTATAACACCAAAGCCGCCTACT GCCAGAGCAAGCTCGCCATCGTCCTCTTCACCAAGGAGCTGAGCCGGCGGCTGCAAGGCTCT GGTGTGACTGTCAACGCCCTGCACCCCGGCGTGGCCAGGACAGAGCTGGGCAGACACACGGG CATCCATGGCTCCACCTTCTCCAGCACCACTCGGGCCCATCTTCTGGCTGCTGGTCAAGA GCCCGAGCTGGCCGCCCAGCCCAGCACATACCTGGCCGTGGCGGAGGAACTGGCGGATGTT TCCGGAAAGTACTTCGATGGACTCAAACAGAAGGCCCCGGCCCCCGAGGCTGAGGATGAGGA GGTGGCCCGGAGGCTTTGGGCTGAAAGTGCCCGCCTGGTGGGCTTAGAGGCTCCCTCTGTGA GGGAGCAGCCCCCCAGA**TAA**CCTCTGGAGCAGATTTGAAAGCCAGGATGGCGCCTCCAG ACCGAGGACAGCTGTCCGCCATGCCCGCAGCTTCCTGGCACTACCTGAGCCGGGAGACCCAG GACTGGCGGCCGCCATGCCCGCAGTAGGTTCTAGGGGGGCGGTGCTGGCCGCAGTGGACTGGC CTGCAGGTGAGCACTGCCCCGGGCTCTGGCTGGTTCCGTCTGCTGCTGCCAGCAGGGGAG AGGGGCCATCTGATGCTTCCCCTGGGAATCTAAACTGGGAATGGCCGAGGAGGAAGGGGCTC TGTGCACTTGCAGGCCACGTCAGGAGAGCCAGCGGTGCCTGTCGGGGAGGGTTCCAAGGTGC TCCGTGAAGAGCATGGGCAAGTTGTCTGACACTTGGTGGATTCTTGGGTCCCTGTGGGACCT TGTGCATGCATGGTCCTCTGAGCCTTGGTTTCTTCAGCAGTGAGATGCTCAGAATAACTG CTGTCTCCCATGATGGTGTGGTACAGCGAGCTGTTGTCTGGCTATGGCATGGCTGTGCCGGG GGTGTTTGCTGAGGGCTTCCTGTGCCAGAGCCCAGCCAGAGAGCAGGTGCAGGTGTCATCCC GAGTTCAGGCTCTGCACGGCATGGAGTGGGAACCCCACCAGCTGCTACAGGACCTGGGA TTGCCTGGGACTCCCACCTTCCTATCAATTCTCATGGTAGTCCAAACTGCAGACTCTCAAAC TTGCTCATTT

FIGURE 66

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64842

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35932, pI: 8.45, NX(S/T): 1

MSRYLLPLSALGTVAGAAVLLKDYVTGGACPSKATIPGKTVIVTGANTGIGKQTALELARRG GNIILACRDMEKCEAAAKDIRGETLNHHVNARHLDLASLKSIREFAAKIIEEEERVDILINN AGVMRCPHWTTEDGFEMQFGVNHLGHFLLTNLLLDKLKASAPSRIINLSSLAHVAGHIDFDD LNWQTRKYNTKAAYCQSKLAIVLFTKELSRRLQGSGVTVNALHPGVARTELGRHTGIHGSTF SSTTLGPIFWLLVKSPELAAQPSTYLAVAEELADVSGKYFDGLKQKAPAPEAEDEEVARRLW AESARLVGLEAPSVREQPLPR

Signal peptide:

amino acids 1-17

GAAGTTCGCGAGCGCTGGCATGTGGTCCTGGGGGCGCGCTGCTGCCGGCGCTGCTG GCGCTCGGGACAGGAGACCCAGAAAGGGCTGCGGCTCGGGGCGACACGTTCTCGGCGCTGAC CAGCGTGGCGCCCTGGCGCCCGAGCGCCGGCTGCTGGGGCTGCTGAGGCGGTACCTGC GAGGATTCAACACCCCTGTGGCTAACCCTCTGCTTGCATTTACTCTCATCAAACGCCTGCA GTCTGACTGGAGGAATGTGGTACATAGTCTGGAGGCCAGTGAGAACATCCGAGCTCTGAAGG ATGGCTATGAGAAGGTGGAGCAAGACCTTCCAGCCTTTGAGGACCTTGAGGGAGCAGCAAGG GCCCTGATGCGGCTGCAGGACGTGTACATGCTCAATGTGAAAGGCCTGGCCCGAGGTGTCTT TCAGAGAGTCACTGCCATCACTGACCTGTACAGCCCCAAACGGCTCTTTTCTCTCA CAGGGGATGACTGCCTACCAAGTTGGCAAGGTGGCCTATGACATGGGGGGATTATTACCATGCC ATTCCATGGCTGGAGGAGGCTGTCAGTCTCTTCCGAGGATCTTACGGAGAGTGGAAGACAGA GGATGAGGCAAGTCTAGAAGATGCCTTGGATCACTTGGCCTTTGCTTATTTCCGGGCAGGAA ATGTTTCGTGTGCCCTCAGCCTCTCTCGGGAGTTTCTTCTCTACAGCCCAGATAATAAGAGG ATGGCCAGGAATGTCTTGAAATATGAAAGGCTCTTGGCAGAGGCCCCAACCACGTGGTAGC TGAGGCTGTCATCCAGAGGCCCAATATACCCCACCTGCAGACCAGAGACACCTACGAGGGGC TATGTCAGACCCTGGGTTCCCAGCCCACTCTCTACCAGATCCCTAGCCTCTACTGTTCCTAT GAGACCAATTCCAACGCCTACCTGCTGCTCCAGCCCATCCGGAAGGAGGTCATCCACCTGGA GCCCTACATTGCTCTCTACCATGACTTCGTCAGTGACTCAGAGGCTCAGAAAATTAGAGAAC TTGCAGAACCATGGCTACAGAGGTCAGTGGTGGCATCAGGGGGAGAAGCAGTTACAAGTGGAG TACCGCATCAGCAAAAGTGCCTGGCTGAAGGACACTGTTGACCCAAAACTGGTGACCCTCAA CCACCGCATTGCTGCCCTCACAGGCCTTGATGTCCGGCCTCCCTATGCAGAGTATCTGCAGG TGGTGAACTATGGCATCGGAGGACACTATGAGCCTCACTTTGACCATGCTACGTCACCAAGC GGTGGAAGCTGGAGGAGCCACAGCCTTCATCTATGCCAACCTCAGCGTGCCTGTGGTTAGGA ATGCAGCACTGTTTTGGTGGAACCTGCACAGGAGTGGTGAAGGGGGACAGTGACACACTTCAT GCTGGCTGTCCTGGTGGGAGATAAGTGGGTGGCCAACAAGTGGATACATGAGTATGG TGGTGGAGTCCTGTGGCTTTCCAGAGAAGCCAGGAGCCAAAAGCTGGGGTAGGAGAGAAA AGCAGAGCAGCCTCCTGGAAGAAGGCCTTGTCAGCTTTGTCTGTGCCTCGCAAATCAGAGGC AAGGGAGAGTTGTTACCAGGGGACACTGAGAATGTACATTTGATCTGCCCCAGCCACGGAA AGTTCAGATACTCTCTGTTGGGAACAGGACATCTCAACAGTCTCAGGTTCGATCAGTGGGTC TTTTGGCACTTTGAACCTTGACCACAGGGACCAAGAAGTGGCAATGAGGACACCTGCAGGAG GGGCTAGCCTGACTCCCAGAACTTTAAGACTTTCTCCCCACTGCCTTCTGCTGCAGCCCAAG CAGGGAGTGTCCCCCCCAGAAGCATATCCCAGATGAGTGGTACATTATATAAGGATTTTT ATGTTTATAAATCAAAA

FIGURE 68

MGPGARLAALLAVLALGTGDPERAAARGDTFSALTSVARALAPERRLLGLLRRYLRGEEARL RDLTRFYDKVLSLHEDSTTPVANPLLAFTLIKRLQSDWRNVVHSLEASENIRALKDGYEKVE QDLPAFEDLEGAARALMRLQDVYMLNVKGLARGVFQRVTGSAITDLYSPKRLFSLTGDDCFQ VGKVAYDMGDYYHAIPWLEEAVSLFRGSYGEWKTEDEASLEDALDHLAFAYFRAGNVSCALS LSREFLLYSPDNKRMARNVLKYERLLAESPNHVVAEAVIQRPNIPHLQTRDTYEGLCQTLGS QPTLYQIPSLYCSYETNSNAYLLLQPIRKEVIHLEPYIALYHDFVSDSEAQKIRELAEPWLQ RSVVASGEKQLQVEYRISKSAWLKDTVDPKLVTLNHRIAALTGLDVRPPYAEYLQVVNYGIG GHYEPHFDHATSPSSPLYRMKSGNRVATFMIYLSSVEAGGATAFIYANLSVPVVRNAALFWW NLHRSGEGDSDTLHAGCPVLVGDKWVANKWIHEYGQEFRRPCSSSPED

Signal peptide:

amino acids 1-19

FIGURE 69

GAGATAGGGAGTCTGGGTTTAAGTTCCTGCTCCATCTCAGGAGCCCCTGCTCCCACCCCTAG GAAGCCACCAGACTCCACGGTGTGGGGCCAATCAGGTGGAATCGGCCCTGGCAGGTGGGGCC ACGAGCGCTGGCTGAGGGACCGAGCCGGAGAGCCCCGGAGCCCCCGTAACCCGCGCGGGGAG TGGCTCAAGTTTTCACTTATCATCTATTCCACCGTGTTCTGGCTGATTGGGGCCCTGGTCCT GTCTGTGGGCATCTATGCAGAGGTTGAGCGGCAGAAATATAAAACCCTTGAAAGTGCCTTCC TGGCTCCAGCCATCATCCTCATCCTCCTGGGCGTCGTCATGTTCATGGTCTCCTTCATTGGT GTGCTGGCGTCCCTCCGTGACAACCTGTACCTTCTCCAAGCATTCATGTACATCCTTGGGAT CTGCCTCATCATGGAGCTCATTGGTGGCGTGGTGGCCTTGACCTTCCGGAACCAGACCATTG ACTTCCTGAACGACAACATTCGAAGAGGAATTGAGAACTACTATGATGATCTGGACTTCAAA AACATCATGGACTTTGTTCAGAAAAAGTTCAAGTGCTGTGGCGGGGAGGACTACCGAGATTG GAGCAAGAATCAGTACCACGACTGCAGTGCCCCTGGACCCCTGGCCTGTGGGGTGCCCTACA CCTGCTGCATCAGGAACACGACAGAAGTTGTCAACACCATGTGTGGCTACAAAACTATCGAC AAGGAGCGTTTCAGTGTGCAGGATGTCATCTACGTGCGGGGCTGCACCAACGCCGTGATCAT CTGGTTCATGGACAACTACACCATCATGGCGTGCATCCTCCTGGGCATCCTGCTTCCCCAGT TCCTGGGGGTGCTGCTGACGCTGTACATCACCCGGGTGGAGGACATCATCATGGAGCAC ATGCTGCTTGTGCTACCCCAAT**TAG**GGCCCAGCCTGCCATGGCAGCTCCAACAAGGACCGTC TGGGATAGCACCTCTCAGTCAACATCGTGGGGCTGGACAGGGCTGCGGCCCCTCTGCCCACA CCCAGGGAGCAGAGCCTGGGCCTCCCCTAAGAGGCTTTCCCCGAGGCAGCTCTGGAATCTGT GAGCCTGAGGCTCTGCTCAGGGCCCATTTCATCTCTGGCAGTGCCTTGGCGGTGGTATTCAA GGCAGTTTTGTAGCACCTGTAATTGGGGAGAGGGAGTGTGCCCCTCGGGGCAGGAGGAAGG GCATCTGGGGAAGGGCAGGAGGGAAGAGCTGTCCATGCAGCCACGCCCATGGCCAGGTTGGC CTCTTCTCAGCCTCCCAGGTGCCTTGAGCCCTCTTGCAAGGGCGGCTGCTTCCTTGAGCCTA GTTTTTTTTTACGTGATTTTTGTAACATTCATTTTTTTTGTACAGATAACAGGAGTTTCTGAC TAATCAAAGCTGGTATTTCCCCGCATGTCTTATTCTTGCCCTTCCCCCAACCAGTTTGTTAA

FIGURE 70

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64863

><subunit 1 of 1, 294 aa, 1 stop

><MW: 33211, pI: 5.35, NX(S/T): 3

MPRGDSEQVRYCARFSYLWLKFSLIIYSTVFWLIGALVLSVGIYAEVERQKYKTLESAFLAP
AIILILLGVVMFMVSFIGVLASLRDNLYLLQAFMYILGICLIMELIGGVVALTFRNQTIDFL
NDNIRRGIENYYDDLDFKNIMDFVQKKFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCC
IRNTTEVVNTMCGYKTIDKERFSVQDVIYVRGCTNAVIIWFMDNYTIMACILLGILLPQFLG
VLLTLLYITRVEDIIMEHSVTDGLLGPGAKPSVEAAGTGCCLCYPN

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 22-42, 57-85, 93-116, 230-257

FIGURE 71

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGA CACCTGGGAAG**ATG**GCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACC TTGATCCAAGCCACCCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGA AAAGCTGACACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGC TCAGTGCCATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACC GTCCTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAA GCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCA ACACGCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATC CGCATGGACACCAGTGCAAGTGGCCCCACCCGCCTGGTCCTCAGTGACTGTGCCACCAGCCA AGGTCATGAACCTCCTAGTGCCATCCCTGCCCAATCTAGTGAAAAACCAGCTGTGTCCCGTG ATCGAGGCTTCCTTCAATGGCATGTATGCAGACCTCCTGCAGCTGGTGAAGGTGCCCATTTC CCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTATCCTGCCATCAAGGGTGACACCATTC AGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTTCAATAAC TCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCGTTCAGCCTCATCGTGAGTCA GGACGTGGTGAAAGCTGCAGTGGCTGCTGTTGCTCTCCAGAAGAATTCATGGTCCTGTTGG ACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGAAAAG GCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTT TTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTTTCCCTCCA GTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGTTTTAC ACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTGAT GAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCC ACTCCATCCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTG AAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCC AGCCTCCTTGTGGAAACCCAGCTCTCCTGTCTCCCAG**TGA**AGACTTGGATGGCAGCCATCAG GGAAGGCTGGGTCCCAGCTGGGAGTATGGGTGTGAGCTCTATAGACCATCCCTCTCTGCAAT CAATAAACACTTGCCTGTGAAAAA

FIGURE 72

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881

><subunit 1 of 1, 484 aa, 1 stop

><MW: 52468, pI: 7.14, NX(S/T): 3

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAM REKPAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPL VKTIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMN LLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYL GAKLLDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVL PESAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEAL RPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSIL LPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

FIGURE 73

GAGCGAACATGGCAGCGCGTTGGCGGTTTTGGTGTCTCTGTGACCATGGTGGTGGCGCTG AGTTCCGTCGCCTTGTGAAAGCCCCACCGAGAAATTACTCCGTTATCGTCATGTTCACTGCT CTCCAACTGCATAGACAGTGTGTCGTTTGCAAGCAAGCTGATGAAGAATTCCAGATCCTGGC AAACTCCTGGCGATACTCCAGTGCATTCACCAACAGGATATTTTTTTGCCATGGTGGATTTTT ATGAAGGCTCTGATGTATTTCAGATGCTAAACATGAATTCAGCTCCAACTTTCATCAACTTT CCTGCAAAAGGGAAACCCAAACGGGGTGATACATATGAGTTACAGGTGCGGGGTTTTTCAGC TGAGCAGATTGCCCGGTGGATCGCCGACAGAACTGATGTCAATATTAGAGTGATTAGACCCC CAAATTATGCTGGTCCCCTTATGTTGGGATTGCTTTTGGCTGTTATTGGTGGACTTGTGTAT CTTCGAAGAAGTAATATGGAATTTCTCTTTAATAAAACTGGATGGGCTTTTGCAGCTTTGTG TTTTGTGCTTGCTATGACATCTGGTCAAATGTGGAACCATATAAGAGGACCACCATATGCCC ATAAGAATCCCCACACGGGACATGTGAATTATATCCATGGAAGCAGTCAAGCCCAGTTTGTA GCTGAAACACACATTGTTCTTCTGTTTAATGGTGGAGTTACCTTAGGAATGGTGCTTTTATG GACTTGTTGTATTATTCTTCAGTTGGATGCTCTCTATTTTTAGATCTAAATATCATGGCTAC CCATACAGCTTTCTGATGAGT**TAA**AAAGGTCCCAGAGATATATAGACACTGGAGTACTGGAA ATTGAAAAACGAAAATCGTGTGTGTTTTGAAAAGAAGAATGCAACTTGTATATTTTTGTATTAC CTCTTTTTTTCAAGTGATTTAAATAGTTAATCATTTAACCAAAGAAGATGTGTAGTGCCTTA ACAAGCAATCCTCTGTCAAAATCTGAGGTATTTGAAAATAATTATCCTCTTAACCTTCTCTT CCCAGTGAACTTTATGGAACATTTAATTTAGTACAATTAAGTATATTATAAAAATTGTAAAA CTACTACTTTGTTTTAGTTAGAACAAAGCTCAAAACTACTTTAGTTAACTTGGTCATCTGAT TTTATATTGCCTTATCCAAAGATGGGGAAAGTAAGTCCTGACCAGGTGTTCCCACATATGCC TGTTACAGATAACTACATTAGGAATTCATTCTTAGCTTCTTCATCTTTGTGTGGATGTGTAT ACTTTACGCATCTTTCCTTTTGAGTAGAGAAATTATGTGTGTCATGTGGTCTTCTGAAAATG GAACACCATTCTTCAGAGCACACGTCTAGCCCTCAGCAAGACAGTTGTTTCTCCTCCTCCTT TCTCTAAATACAGGATTATAATTTCTGCTTGAGTATGGTGTTAACTACCTTGTATTTAGAAA GATTTCAGATTCATTCCATCTCCTTAGTTTTCTTTTAAGGTGACCCATCTGTGATAAAAATA TAGCTTAGTGCTAAAATCAGTGTAACTTATACATGGCCTAAAATGTTTCTACAAATTAGAGT TTGTCACTTATTCCATTTGTACCTAAGAGAAAAATAGGCTCAGTTAGAAAAGGACTCCCTGG GAGGTCAGGAGTTCGAGACCATCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATAT AAAAATTAGCTGGGTGTGGCAGGAGCCTGTAATCCCAGCTACACAGGAGGCTGAGGCAC GAGAATCACTTGAACTCAGGAGATGGAGGTTTCAGTGAGCCGAGATCACGCCACTGCACTCC

FIGURE 74

MAARWRFWCVSVTMVVALLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDKFR RLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVDFDEG SDVFQMLNMNSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNY AGPLMLGLLLAVIGGLVYLRRSNMEFLFNKTGWAFAALCFVLAMTSGQMWNHIRGPPYAHKN PHTGHVNYIHGSSQAQFVAETHIVLLFNGGVTLGMVLLCEAATSDMDIGKRKIMCVAGIGLV VLFFSWMLSIFRSKYHGYPYSFLMS

Signal peptide:

amino acids 1-29

Transmembrane domains:

amino acids 183-205, 217-237, 217-287, 301-321

FIGURE 75

AAGCAACCAAACTGCAAGCTTTGGGAGTTGTTCGCTGTCCCTGCCCTGCTCTGCTAGGGAGA GAACGCCAGAGGGAGGCGGCTGGCCCGGCGGCAGGCTCTCAGAACCGCTACCGGCGATGCTA CTGCTGTGGGTGTCGGTGGTCGCAGCCTTGGCGCTGCGGTACTGGCCCCCGGAGCAGGGGA GCAGAGGCGGAGAGCCCAAAGCGCCCAATGTGGTGCTGGTCGTGAGCGACTCCTTCGATG GAAGGTTAACATTTCATCCAGGAAGTCAGGTAGTGAAACTTCCTTTTATCAACTTTATGAAG ACACGTGGGACTTCCTTTCTGAATGCCTACACAAACTCTCCAATTTGTTGCCCATCACGCGC AGCAATGTGGAGTGGCCTCTTCACTCACTTAACAGAATCTTGGAATAATTTTAAGGGTCTAG ATCCAAATTATACAACATGGATGGATGTCATGGAGAGGCATGGCTACCGAACACAGAAATTT GGGAAACTGGACTATACTTCAGGACATCACTCCATTAGTAATCGTGTGGAAGCGTGGACAAG AGATGTTGCTTTCTTACTCAGACAAGAAGGCAGGCCCATGGTTAATCTTATCCGTAACAGGA CTAAAGTCAGAGTGATGGAAAGGGATTGGCAGAATACAGACAAAGCAGTAAACTGGTTAAGA AAGGAAGCAATTAATTACACTGAACCATTTGTTATTTACTTGGGATTAAATTTACCACACCC TTACCCTTCACCATCTTCTGGAGAAAATTTTGGATCTTCAACATTTCACACATCTCTTTATT GGCTTGAAAAAGTGTCTCATGATGCCATCAAAATCCCAAAGTGGTCACCTTTGTCAGAAATG AATTAAGAATATTAGAGCATTTTATTATGCTATGTGTGCTGAGACAGATGCCATGCTTGGTG AAATTATTTTGGCCCTTCATCAATTAGATCTTCTTCAGAAAACTATTGTCATATACTCCTCA GACCATGGAGAGCTGGCCATGGAACATCGACAGTTTTATAAAATGAGCATGTACGAGGCTAG TGCACATGTTCCGCTTTTGATGATGGGACCAGGAATTAAAGCCGGCCTACAAGTATCAAATG TGGTTTCTCTTGTGGATATTTACCCTACCATGCTTGATATTGCTGGAATTCCTCTGCCTCAG AACCTGAGTGGATACTCTTTGTTGCCGTTATCATCAGAAACATTTAAGAATGAACATAAAGT CAAAAACCTGCATCCACCCTGGATTCTGAGTGAATTCCATGGATGTAATGTGAATGCCTCCA CCTACATGCTTCGAACTAACCACTGGAAATATATAGCCTATTCGGATGGTGCATCAATATTG CCTCAACTCTTTGATCTTTCCTCGGATCCAGATGAATTAACAAATGTTGCTGTAAAATTTCC AGAAATTACTTATTCTTTGGATCAGAAGCTTCATTCCATTATAAACTACCCTAAAGTTTCTG CTTCTGTCCACCAGTATAATAAAGAGCAGTTTATCAAGTGGAAACAAAGTATAGGACAGAAT TATTCAAACGTTATAGCAAATCTTAGGTGGCACCAAGACTGGCAGAAGGAACCAAGGAAGTA TGAAAATGCAATTGATCAGTGGCTTAAAACCCATATGAATCCAAGAGCAGTTGTTTAAAAATAGTGTTCTAGAGATACATATAAATATATTACAAGATCATAATTATGTATTTT AAATGAAACAGTTTTAATAATTACCAAGTTTTGGCCGGGCACAGTGGCTCACACCTGTAATC CCAGGACTTTGGGAGGCTGAGGAAAGCAGATCACAAGGTCAAGAGATTGAGACCATCCTGGC CAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAATTAGCTGGGCGCGGTGGTGCACA CCTATAGTCTCAGCTACTCAGAGGCTGAGGCAGGAGGATCGCTTGAACCCGGGAGGCAGCAG TTGCAGTGAGCTGAGATTGCGCCACTGTACTCCAGCCTGGCAACAGAGTGAGACTGTGTCGC TATTTTAAGATAAAATGCCAATGATTATAAAATCACATATTTTCAAAAATGGTTATTATTTA GGCCTTTGTACAATTTCTAACAATTTAGTGGAAGTATCAAAAGGATTGAAGCAAATACTGTA ACAGTTATGTTCCTTTAAATAATAGAGAATATAAAAATATTGTAATAATATGTATCATAAAAAT

FIGURE 76

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64885</pre>

<subunit 1 of 1, 536 aa, 1 stop

<MW: 61450, pI: 9.17, NX(S/T): 7

MLLLWVSVVAALALAVLAPGAGEQRRRAAKAPNVVLVVSDSFDGRLTFHPGSQVVKLPFINF
MKTRGTSFLNAYTNSPICCPSRAAMWSGLFTHLTESWNNFKGLDPNYTTWMDVMERHGYRTQ
KFGKLDYTSGHHSISNRVEAWTRDVAFLLRQEGRPMVNLIRNRTKVRVMERDWQNTDKAVNW
LRKEAINYTEPFVIYLGLNLPHPYPSPSSGENFGSSTFHTSLYWLEKVSHDAIKIPKWSPLS
EMHPVDYYSSYTKNCTGRFTKKEIKNIRAFYYAMCAETDAMLGEIILALHQLDLLQKTIVIY
SSDHGELAMEHRQFYKMSMYEASAHVPLLMMGPGIKAGLQVSNVVSLVDIYPTMLDIAGIPL
PQNLSGYSLLPLSSETFKNEHKVKNLHPPWILSEFHGCNVNASTYMLRTNHWKYIAYSDGAS
ILPQLFDLSSDPDELTNVAVKFPEITYSLDQKLHSIINYPKVSASVHQYNKEQFIKWKQSIG
QNYSNVIANLRWHQDWQKEPRKYENAIDQWLKTHMNPRAV

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-111, 166-169, 193-196, 262-265, 375-378, 413-416, 498-501

Sulfatases proteins:

amino acids 286-315, 359-369, 78-97

FIGURE 77

GAGAGAGTCAGCCTGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAG AGCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCC**ATG** GCCTCTCTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTTGGGCACACT GGTTGCCATGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAG TGTGACATCTATAGCACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGAT GGTGACATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCA CAGTCTTCTGCCAGGAATCCCGAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTC ATCCTTGGAGGCCTCCTGGGATTCATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGA CTTCTACTCACCACTGGTGCCTGACAGCATGAAATTTGAGATTGGAGAGGCTCTTTACTTGG GCATTATTTCTTCCCTGTTCTCCCTGATAGCTGGAATCATCCTCTGCTTTTTCCTGCTCATCC CAGAGAAATCGCTCCAACTACTACGATGCCTACCAAGCCCAACCTCTTGCCACAAGGAGCTC TCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGAGTTCAATTCCTACAGCCTGACAGGGT ATGTG**TGA**AGAACCAGGGGCCAGAGCTGGGGGGGTGGCTGGGTCTGTGAAAAACAGTGGACAG CACCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGTGTCAGAAGGTGCTGCTGAGG ATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGGGGCTAGTGTAACAGCATG CAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCCTCACCTTGCTGCTC CCCTGCCCTAAGTCCCCAACCCTCAACTTGAAACCCCATTCCCTTAAGCCAGGACTCAGAGG ATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACATCCCACTG ACTGACCCTCTGTGATCAAAGACCCTCTCTCTGGCTGAGGTTGGCTCTTAGCTCATTGCTGG GGATGGGAAGGAGAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTCCC TCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCC AGACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAG GATGCAGGATGGGAGGACAGGAAGGCAGCCTGGGACATTTAAAAAAATA

FIGURE 78

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64886

><subunit 1 of 1, 230 aa, 1 stop

><MW: 24549, pI: 8.56, NX(S/T): 1

MASLGLQLVGYILGLLGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGIT QCDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVF FILGGLLGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCS SQRNRSNYYDAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 79

FIGURE 80

MVPRIFAPAYVSVCLLLLCPREVIAPAGSEPWLCQPAPRCGDKIYNPLEQCCYNDAIVSLSE TRQCGPPCTFWPCFELCCLDSFGLTNDFVVKLKVQGVNSQCHSSPISSKCESRRFFP

Signal peptide:

FIGURE 81

FIGURE 82

MAPRGCIVAVFAIFCISRLLCSHGAPVAPMTPYLMLCQPHKRCGDKFYDPLQHCCYDDAVVP LARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCDSARTSDDRLCRSVS

Signal peptide:

FIGURE 83

 ${\tt GCGCGTCCGACGGCGAC}$ TCCCTGCTCTTCGCTCTTCCTGGCTGCGTCCCTAGGTCCGGTGGCAGCCTTCAAGGTCGC CACGCCGTATTCCCTGTATGTCTGTCCCGAGGGGCAGAACGTCACCCTCACCTGCAGGCTCT TGGGCCCTGTGGACAAAGGGCACGATGTGACCTTCTACAAGACGTGGTACCGCAGCTCGAGG GGCGAGGTGCAGACCTCCAGAGCGCCGGCCCATCCGCAACCTCACGTTCCAGGACCTTCA $\verb|CCTGCACCATGGAGGCCACCAGGCTGCCAACACCAGCCACGACCTGGCTCAGCGCCACGGGC|\\$ TGGAGTCGGCCTCCGACCACCATGGCAACTTCTCCATCACCATGCGCAACCTGACCCTGCTG GATAGCGGCCTCTACTGCTGCCTGGTGGTGGAGATCAGGCACCACCACTCGGAGCACAGGGT ACCCATCCTCCCAGGATAGTGAAAACATCACGGCTGCAGCCCTGGCTACGGGTGCCTGC CTCCAACCGCCGTGCCCAGGAGCTGGTGCGGATGGACAGCAACATTCAAGGGATTGAAAACC CCGGCTTTGAAGCCTCACCACCTGCCCAGGGGATACCCGAGGCCAAAGTCAGGCACCCCCTG TCCTATGTGGCCCAGCGGCAGCCTTCTGAGTCTGGGCGGCATCTGCTTTCGGAGCCCAGCAC CCCCTGTCTCCCAGGCCCCGGAGACGTCTTCTTCCCATCCCTGGACCCTGTCCCTGACT $\tt CTCCAAACTTTGAGGTCATC {\color{red} TAG} CCCAGCTGGGGGACAGTGGGCTGTTGTGGCTGGGTCTGG$ GGCAGGTGCATTTGAGCCAGGGCTGGCTCTGTGAGTGGCCTCCTTGGCCTCGGCCCTGGTTC CCTCCCTCCTGCTCTGGGCTCAGATACTGTGACATCCCAGAAGCCCAGCCCCTCAACCCCTC TGGATGCTACATGGGGATGCTGGACGGCTCAGCCCCTGTTCCAAGGATTTTTGGGGTGCTGAG ATTCTCCCCTAGAGACCTGAAATTCACCAGCTACAGATGCCAAATGACTTACATCTTAAGAA GTCTCAGAACGTCCAGCCCTTCAGCAGCTCTCGTTCTGAGACATGAGCCTTGGGATGTGGCA GCATCAGTGGGACAAGATGGACACTGGGCCACCCTCCCAGGCCACCAGACACAGGGCACGGTG GAGAGACTTCTCCCCCGTGGCCGCCTTGGCTCCCCCGTTTTGCCCGAGGCTGCTCTTCTGTC AGACTTCCTCTTTGTACCACAGTGGCTCTGGGGCCAGGCCTGCCCACTGGCCATCGCC ACCTTCCCCAGCTGCCTCCTACCAGCAGTTTCTCTGAAGATCTGTCAACAGGTTAAGTCAAT CTGGGGCTTCCACTGCCTGCATTCCAGTCCCCAGAGCTTGGTGGTCCCGAAACGGGAAGTAC ATATTGGGGCATGGTGGCCTCCGTGAGCAAATGGTGTCTTGGGCAATCTGAGGCCAGGACAG GTGGAGAGGGGCACCTGCCCCGCCCTCCCCATCCCCTACTCCCACTGCTCAGCGCGGGCC ATTGCAAGGGTGCCACACAATGTCTTGTCCACCCTGGGACACTTCTGAGTATGAAGCGGGAT

FIGURE 84

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64897

><subunit 1 of 1, 311 aa, 1 stop

><MW: 33908, pI: 6.87, NX(S/T): 6

MGVPTALEAGSWRWGSLLFALFLAASLGPVAAFKVATPYSLYVCPEGQNVTLTCRLLGPVDK
GHDVTFYKTWYRSSRGEVQTCSERRPIRNLTFQDLHLHHGGHQAANTSHDLAQRHGLESASD
HHGNFSITMRNLTLLDSGLYCCLVVEIRHHHSEHRVHGAMELQVQTGKDAPSNCVVYPSSSQ
DSENITAAALATGACIVGILCLPLILLLVYKQRQAASNRRAQELVRMDSNIQGIENPGFEAS
PPAQGIPEAKVRHPLSYVAQRQPSESGRHLLSEPSTPLSPPGPGDVFFPSLDPVPDSPNFEVI

Signal peptide:

amino acids 1-28

Transmembrane domain:

FIGURE 85

 $\tt TTCCCCGCGTTCTCTTTCCACCTTTCTCTTCTTCCCACCTTAGACCTCCCTTCCTGCCCTCC$ TTTCCTGCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGG GGTCTGTGGGTTGATCTGTGGCCCCTGTGCCTCCGTGTCCTTTTCGTCTCCCCCGA $\tt CTCCGCTCCCGGACCAGCGGCCTGACCCTGGGGAAAGGATGGTTCCCGAGGTGAGGGTCCTC$ AGACATGTTCTGCCTTTTCCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACT TGGAGCCACAAGGCCTGATGTACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCCATGTGAGT TGTTACCGCCTCCACTGTCCGCCTGTCCACTGCCCCCAGCCTGTGACGGAGCCACAGCAATG CTGTCCCAAGTGTGTGGAACCTCACACTCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCC AGCACAACGGGACCATGTACCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCC CGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCAC AACCTGCCCGAACCAGGCTGCCCAGCACCCCTCCCACTGCCAGACTCCTGCTGCCAAGCCT GCAAAGATGAGCCAATCGGATGAAGAGGACAGTGTGCAGTCGCTCCATGGGGTG AGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGGAGAAGAGAGGCCCGGGCACCCCAGC CCCCACTGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTTCAGACCCAAGGGAGCAG GCAGCACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCTGTGTGCATGGCGGG AAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGCCCCTTGCCCTG CATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCCCACCGAGT ACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGGACAAA GCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTCCT CGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGG CCTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAG AGAGGTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGA AAGTCAGGAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCAC GAAGGTCACTGGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGA ${\tt CAAAGTGACCAAGACATAACAAAGACCTAACAGTTGCAGATATGAGCTGTATAATTGTTGTT}$

FIGURE 86

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902

><subunit 1 of 1, 451 aa, 1 stop

><MW: 49675, pI: 7.15, NX(S/T): 1

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCT CSEGAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIF SAHELFPSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEED SVQSLHGVRHPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKH KKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKC CKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLV KDEETEAQRGEVPGPRPHSQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPG AEGHGQSRQSDQDITKT

Signal peptide:

FIGURE 87

FIGURE 88

MDSLRKMLISVAMLGAGAGVGYALLVIVTPGERRKQEMLKEMPLQDPRSREEAARTQQLLLA TLQEAATTQENVAWRKNWMVGGEGGASGRSP

Signal peptide:

FIGURE 89

CAGGAGAGAAGCCACCCCCCCCCCCCCCCAAAGCTAACCCTCGGGCTTGAGGGGAAGA GGCTGACTGTACGTTCCTTCTACTCTGGCACCACTCTCCAGGCTGCC**ATG**GGGCCCAGCACC CCTCTCCTCATCTTGTTCCTTTTGTCATGGTCGGGACCCCTCCAAGGACAGCAGCACCACCT TGTGGAGTACATGGAACGCCGACTAGCTGCTTTAGAGGAACGGCTGGCCCAGTGCCAGGACC AGAGTAGTCGGCATGCTGAGCTGCGGGACTTCAAGAACAAGATGCTGCCACTGCTGGAG GTGGCAGAGAGGGGGGGGGGCACTCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGGA TCGTCTGGAGCGGGAGGTAGACTATCTGGAGACCCAGAACCCAGCTCTGCCCTGTGTAGAGT TTGATGAGAAGGTGACTGGAGGCCCTGGGACCAAAGGCAAGGGAAGAAGGAATGAGAAGTAC GATATGGTGACAGACTGTGGCTACACAATCTCTCAAGTGAGATCAATGAAGATTCTGAAGCG ATTTGGTGGCCCAGCTGGTCTATGGACCAAGGATCCACTGGGGCAAACAGAGAAGATCTACG TGTTAGATGGGACACAGAATGACACAGCCTTTGTCTTCCCAAGGCTGCGTGACTTCACCCTT GCCATGGCTGCCCGGAAAGCTTCCCGAGTCCGGGTGCCCTTCCCCTGGGTAGGCACAGGGCA GCTGGTATATGGTGGCTTTCTTTATTTTGCTCGGAGGCCTCCTGGAAGACCTGGTGGAGGTG GTGAGATGGAGAACACTTTGCAGCTAATCAAATTCCACCTGGCAAACCGAACAGTGGTGGAC AGCTCAGTATTCCCAGCAGAGGGGCTGATCCCCCCCTACGGCTTGACAGCAGACACCTACAT CGACCTGGTAGCTGATGAGGAAGGTCTTTGGGCTGTCTATGCCACCCGGGAGGATGACAGGC ACTTGTGTCTGGCCAAGTTAGATCCACAGACACTGGACACAGAGCAGCAGTGGGACACACCA TGTCCCAGAGAGAATGCTGAGGCTGCCTTTGTCATCTGTGGGACCCTCTATGTCGTCTATAA CACCCGTCCTGCCAGTCGGGCCCGCATCCAGTGCTCCTTTGATGCCAGCGGCACCCTGACCC CTGAACGGGCAGCACTCCCTTATTTTCCCCGCAGATATGGTGCCCATGCCAGCCTCCGCTAT AACCCCGAGAACGCCAGCTCTATGCCTGGGATGATGGCTACCAGATTGTCTATAAGCTGGA GATGAGGAAGAAGAGGAGGAGGTT**TGA**GGAGCTAGCCTTGTTTTTTGCATCTTTCTCACTC CCATACATTTATATTATCCCCACTAAATTTCTTGTTCCTCATTCTTCAAATGTGGGCCAG TTGTGGCTCAAATCCTCTATATTTTTAGCCAATGGCAATCAAATTCTTTCAGCTCCTTTGTT TCATACGGAACTCCAGATCCTGAGTAATCCTTTTAGAGCCCGAAGAGTCAAAACCCTCAATG TTCCCTCCTGCTCTCCTGCCCCATGTCAACAAATTTCAGGCTAAGGATGCCCCAGACCCAGG GCTCTAACCTTGTATGCGGGCAGGCCCAGGGAGCAGCAGTGTTCTTCCCCTCAGAGTG TCAGTGTCCTGAGGAACAGGACTTTCTCCACATTGTTTTGTATTGCAACATTTTTGCATTAAA AAAAAAAAAAAAAAAAAAAAA

FIGURE 90

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64905</pre>

<subunit 1 of 1, 406 aa, 1 stop

<MW: 46038, pI: 6.50, NX(S/T): 2

MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKM LPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGR RNEKYDMVTDCGYTISQVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRL RDFTLAMAARKASRVRVPFPWVGTGQLVYGGFLYFARRPPGRPGGGGEMENTLQLIKFHLAN RTVVDSSVFPAEGLIPPYGLTADTYIDLVADEEGLWAVYATREDDRHLCLAKLDPQTLDTEQ QWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLTPERAALPYFPRRYGAH ASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 177-180, 248-251

FIGURE 91

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAG CCGTCACCTCTCCTGTCATCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCCATG CTCTCATGCTCAGTTTGGTTCTGAGTCTCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTT GGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGGAGGACGCAGCATTCTCCTGTTCCTGTC TCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGTTCTCTAGCGTGG TCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATCAAGGCAGG ACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCTGGAAAACATTAC TGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCA TCTGGGAGCTACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTT GATAGAGACATCCAGCTACTCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTG TGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAACGCCGGGAGCATATCCTGTTCCATG CGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAGGAGATACCTTTTTCGA GCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTATTTTTTG GCATTGTTGGACTGAAGATTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGAC TGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGAC TCTGGATCCAGAGACGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATA GAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCT TCTCAGAGTTTCCAAGCAGGGAAACATTACTGGGAGGTGGACGGAGGACACAATAAAAGGTG GCGCGTGGGAGTGTGCCGGGATGATGTGGACAGGAGGAGGAGTACGTGACTTTGTCTCCCG ATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGT TTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTATGAGTG TTGAAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCC ATAGTCATCTGCCCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGC AATCCCAGAGACAACCACTGAGTCCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGG GATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCAGATGAAGGGGGACTGGCCTGTCC AGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAGAACCG TCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGC TTAGATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTA AAAAA

FIGURE 92

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSS
VVHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQK
AIWELQVSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMH
GLFDVEISLTVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLF
FGIVGLKIFFSKFQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLS
PDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTC
RFEGLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLP
RGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

FIGURE 93

GCGATGGTGCCCCGGTGGCGGTGGCGGCGGCGGTTGCGGAGGCTTCCTTGGTCGGATTGCA CCGTCGCCTCAGCCGCCGCGGGGAATGTCACCGGTGGCGGGGGCCGCGGGGCCAGGTG GACGCGTCGCCGGGCCCCGGGTTGCGGGGCCGAGCCCACCCCTTCCCTAGGGCGACGGC TCCCACGCCCAGGCCCCGAGGACCGGGCCCCCGCGCGCCACCGTCCACCGACCCCTGGCTG CGACTTCTCCAGCCCAGTCCCCGGAGACCACCCCTCTTTGGGCCGACTGCTGGACCCTCTTCC ACCACCTTTCAGGCGCCGCTCGGCCCTCGCCGACCACCCCTCCGGCGGCGGAACGCACTTC GACCACCTCTCAGGCGCCGACCAGACCCGCGCCGACCACCCTTTCGACGACCACTGGCCCGG CGCCGACCACCCTGTAGCGACCACCGTACCGGCGCCCACGACTCCCCGGACCCCGACCCCC TTCGCCTCCTCCAGAGTATGTATGTAACTGCTCTGTGGTTGGAAGCCTGAATGTGAATCGCT GCAACCAGACCACAGGGCAGTGTGAGTGTCGGCCAGGTTATCAGGGGCCTTCACTGTGAAACC TGCAAAGAGGGCTTTTACCTAAATTACACTTCTGGGCTCTGTCAGCCATGTGACTGTAGTCC ACATGGAGCTCTCAGCATACCGTGCAACAGG**TAA**GCAACAGAGGGTGGAACTGAAGTTTATT TTATTTTAGCAAGGGAAAAAAAAGGCTGCTACTCTCAAGGACCATACTGGTTTAAACAAAG GAGGATGAGGGTCATAGATTTACAAAATATTTTATATACTTTTATTCTCTTACTTTATATGT TATATTTAATGTCAGGATTTAAAAACATCTAATTTACTGATTTAGTTCTTCAAAAGCACTAG AGTCGCCAATTTTTCTCTGGGATAATTTCTGTAAATTTCATGGGAAAAAATTATTGAAGAAT AAATCTGCTTTCTGGAAGGGCTTTCAGGCATGAAACCTGCTAGGAGGTTTAGAAATGTTCTT ATGTTTATTAATATACCATTGGAGTTTGAGGAAATTTGTTGTTTGGTTTATTTTTCTCTCTA ATCAAAATTCTACATTTGTTTCTTTGGACATCTAAAGCTTAACCTGGGGGTACCCTAATTTA TTTAACTAGTGGTAAGTAGACTGGTTTTACTCTATTTACCAGTACATTTTTGAGACCAAAAG TAGATTAAGCAGGAATTATCTTTAAACTATTATGTTATTTGGAGGTAATTTAATCTAGTGGA ATAATGTACTGTTATCTAAGCATTTGCCTTGTACTGCACTGAAAGTAATTATTCTTTGACCT TATGTGAGGCACTTGGCTTTTTGTGGACCCCAAGTCAAAAAACTGAAGAGACAGTATTAAAT AATGAAAAAATAATGACAGGTTATACTCAGTGTAACCTGGGTATAACCCAAGATCTGCTGC CACTTACGAGCTGTTCCTTGGGCAAGTAATTTCCTTTCACTGAGCTTGTTTCTTCAAG GTTGTTGTGAAGATTAAATGAGTTGATATATATAAAATGCCTAGCACATGTCACTCAATAAA TTCTGGTTTGTTTTAATTTCAAAGGAATATTATGGACTGAAATGAGAGAACATGTTTTAAGA ACTTTTAGCTCCTTGACAAGAAGTGCTTTATACTTTAGCACTAAATATTTTAAATGCTTTA TAAATGATATTATACTGTTATGGAATATTGTATCATATTGTAGTTTATTAAAAATGTAGAAG AGGCTGGGCGCGGTGGCTCACGCCTGTAATCCTAGCACTTTGGGAGGCCAAGGCGGGTGGAT CACTTGAGGCCAGGAGTTCTAGATGAGCCTGGCCAGCACAGTGAAACCCCGTCTCTACTAAA AATACAAACAAATTAGCTGGGCGTGGTGGCACACCCTGTAGTCCCAGCTACTCGGGAGGCT GAGGCAGGAGATCGGTTGAACCCGGGAGGTGGAGGTTGCAGTGAGCTGAGATCGCGCCACT

FIGURE 94

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952</pre>

><subunit 1 of 1, 258 aa, 1 stop

><MW: 25716, pI: 8.13, NX(S/T): 5

MRSLPSLGGLALLCCAAAAAAVASAASAGNVTGGGGAAGQVDASPGPGLRGEPSHPFPRATA
PTAQAPRTGPPRATVHRPLAATSPAQSPETTPLWATAGPSSTTFQAPLGPSPTTPPAAERTS
TTSQAPTRPAPTTLSTTTGPAPTTPVATTVPAPTTPRTPTPDLPSSSNSSVLPTPPATEAPS
SPPPEYVCNCSVVGSLNVNRCNQTTGQCECRPGYQGLHCETCKEGFYLNYTSGLCQPCDCSP
HGALSIPCNR

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

FIGURE 95

TGCGGCGCAGTGTAGACCTGGGAGGATGGGCCGCCTGCTGCTGCTGCTGCTTTTCTGGCTTTTGG
TCTCGGTGCCCAGGGCCCAGGCCGTGTGGTTGGGAAGACCCTGAGCAGCTTCTTGGG
CCCTGGTACGTGCTTGCGGTGGCCTCCCGGGAAAAGGGCTTTGCCATGGAGAAGGACATGAA
GAACGTCGTGGGGGTGGTGACCCTCACTCCAGAAAACAACCTGCGGACGCTGTCCTCTC
AGCACGGGCTGGGAGGGTGTGACCAGAGTGTCATGGACCTGATAAAGCGAAACTCCGGATGG
GTGTTTGAGAATCCCTCAATAGGCGTGCTGGAGCTCTGGGTGCTGCCACCAACTTCAGAGA
CTATGCCATCATCTTCACTCAGCTGGAGTTCGGGGACCGTCTTCAACACCGTGGAGCTGT
ACAGTCTGACGGAGACAGCCAGCCAGGAGGCCCTTCAACACCGTGGAGCCG
CTGGGCTTCCTGTCACAGTAGCAGCCCAGCTGCAGAAGGACCTCACCTGTGCTCACAAGAT
CCTTCTGTGAGTGCTGCGTCCCCAGTAGGGATGGCGCCCACAGGGTCCTGTGACCTCGGCCA
GTGTCCACCCACCTCGCTCAGCGGCTCCCGGGGCCCACAGCTCAGAATAAAGCGATTC
CACAGCA

FIGURE 96

MGGLLLAAFLALVSVPRAQAVWLGRLDPEQLLGPWYVLAVASREKGFAMEKDMKNVVGVVVT LTPENNLRTLSSQHGLGGCDQSVMDLIKRNSGWVFENPSIGVLELWVLATNFRDYAIIFTQL EFGDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Signal peptide:

FIGURE 97

AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGAC**ATG**CTGCTGCTGCTGCTGCC CCTGCTCTGGGGGAGGGGAGGGCGGAAGGACAAGTAAACTGCTGACGATGCAGAGTT ${\tt CCGTGACGGTGCAGGAAGGCCTGTGTGTCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCAT}$ GGCTGGATTTACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGA CCAGGATGCTCCAGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACC GATTCCACCTCCTTGGGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGA AGAAGTGATGCGGGGAGATACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAA ACATCACCGGCTCTCTGTGAATGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAG GCACCCTGGAGTCCGGCTGCCCCAGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAG GGGACACCCCTATGATCTCCTGGATAGGGACCTCCGTGTCCCCCCTGGACCCCTCCACCAC ${\tt CCGCTCCTCGGTGCTCACCCTCATCCCACAGCCCCAGGACCATGGCACCAGCCTCACCTGTC}$ AGGTGACCTTCCCTGGGGCCAGCGTGACCACGAACAGACCGTCCATCTCAACGTGTCCTAC CCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGAGACGGCACAGTATCCACAGTCTTGGG AAATGGCTCATCTCTCTCACTCCCAGAGGGCCAGTCTCTGCGCCCTGGTCTGTGCAGTTGATG CAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGAGGCCTGACCCTGTGCCCC TCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCACCTGAGGGATGCAGCTGA ATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCTGAACGTCTCCCTGC GTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAATCGGCAAG GCCAGCAGCGGGCTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTCAGCCT CTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCCAGCT TCTGCCCGCTCCTCAGTGGGGGAAGGAGGTCCCAGTATGCATCCCTCAGCTTCCAGATGGT GAAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCC ACAGA**TGA**GAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGA GAAGTCAGAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACT ATGAATTATGTGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAAT

FIGURE 98

MLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWF
REGANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKG
SIKWNYKHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVS
PLDPSTTRSSVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDG
TVSTVLGNGSSLSLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWV
HLRDAAEFTCRAQNPLGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRS
CRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYA
SLSFQMVKPWDSRGQEATDTEYSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

FIGURE 99

FIGURE 100

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65404</pre>

<subunit 1 of 1, 170 aa, 1 stop

<MW: 19457, pI: 9.10, NX(S/T): 0

MKTLFLGVTLGLAAALSFTLEEEDITGTWYVKAMVVDKDFPEDRRPRKVSPVKVTALGGGKL EATFTFMREDRCIQKKILMRKTEEPGKYSAYGGRKLMYLQELPRRDHYIFYCKDQHHGGLLH MGKLVGRNSDTNREALEEFKKLVQRKGLSEEDIFTPLQTGSCVPEH

Important features:

Signal peptide:

FIGURE 101

GTTCCGCAGATGCAGAGGTTGAGGTGGCTGCGGGACTGGAAGTCATCGGGCAGAGGTCTCAC AGCAGCCAAGGAACCTGGGGCCCGCTCCTCCCCCCTCCAGGCCATGAGGATTCTGCAGTTAA TCCTGCTTGCTCTGGCAACAGGGCTTGTAGGGGGGAGACCAGGATCATCAAGGGGTTCGAG TGCAAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTGTTCGAGAAGACGCGGCTACTCTGTGG GGCGACGCTCATCGCCCCCAGATGGCTCCTGACAGCCCACTGCCTCAAGCCCCGCTACA TAGTTCACCTGGGGCAGCACCACCTCCAGAAGGAGGGGGGTGTGAGCAGACCCGGACAGCC ACTGAGTCCTTCCCCCACCCGGCTTCAACAACAGCCTCCCCAACAAGACCACCGCAATGA CATCATGCTGGTGAAGATGGCATCGCCAGTCTCCATCACCTGGGCTGTGCGACCCCTCACCC TCTCCTCACGCTGTCACTGCTGGCACCAGCTGCCTCATTTCCGGCTGGGGCAGCACGTCC AGCCCCCAGTTACGCCTGCCTCACACCTTGCGATGCGCCAACATCACCATCATTGAGCACCA GAAGTGTGAGAACGCCTACCCCGGCAACATCACAGACACCATGGTGTGTGCCAGCGTGCAGG AAGGGGCAAGGACTCCTGCCAGGGTGACTCCGGGGGCCCTCTGGTCTGTAACCAGTCTCTT CAAGGCATTATCTCCTGGGGCCAGGATCCGTGTGCGATCACCCGAAAGCCTGGTGTCTACAC GAAAGTCTGCAAATATGTGGACTGGATCCAGGAGACGATGAAGAACAAT**TAG**ACTGGACCCA CCCACCACACCCCATCACTTCCACTTGGTGTTTGGTTCCTGTTCACTCTGTTAAT AAGAAACCCTAAGCCAAGACCCTCTACGAACATTCTTTGGGCCTCCTGGACTACAGGAGATG CTGTCACTTAATAATCAACCTGGGGTTCGAAATCAGTGAGACCTGGATTCAAATTCTGCCTT GAAATATTGTGACTCTGGGAATGACAACACCTGGTTTGTTCTCTGTTGTATCCCCAGCCCCA AAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 102

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65405</pre>

<subunit 1 of 1, 250 aa, 1 stop

<MW: 27466, pI: 8.87, NX(S/T): 4

MRILQLILLALATGLVGGETRIIKGFECKPHSQPWQAALFEKTRLLCGATLIAPRWLLTAAH CLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITW AVRPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIIEHQKCENAYPGNITDTM VCASVQEGGKDSCQGDSGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYVDWIQETMKNN

Important features:

Signal peptide:

amino acids 1-18

Serine proteases, trypsin family, histidine active site.

amino acids 58-63

N-glycosylation sites.

amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site.

amino acids 145-148

Kringle domain proteins.

amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein

amino acids 199-209, 47-63, 220-243

Apple domain proteins

amino acids 222-249, 189-222

FIGURE 103

FIGURE 104

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65406</pre>

<subunit 1 of 1, 222 aa, 1 stop</pre>

<MW: 25794, pI: 6.24, NX(S/T): 1

MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDG YLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGY AEGKIPPDATLIFEIELYAVTKGPRSIETFKQIDMDNDRQLSKAEINLYLQREFEKDEKPRD KSYQDAVLEDIFKKNDHDGDGFISPKEYNVYQHDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 219-222

N-glycosylation site.

amino acids 45-48

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 87-223, 129-142

EF-hand calcium-binding domain proteins

amino acids 202-214, 195-214

FIGURE 105

FIGURE 106

 ${\tt MQGPLLLPGLCFLLSLFGAVTQKTKTSCAKCPPNASCVNNTHCTCNHGYTSGSGQKLFTFPL} \\ {\tt ETCNARHGGSRL}$

Signal peptide:

FIGURE 107

CAAGCAGGTCATCCCCTTGGTGACCTTCAAAGAGAAGCAGAGAGGGCAGAGGTGGGGGGCAC AGGGAAAGGGTGACCTCTGAGATTCCCCTTTTCCCCCAGACTTTGGAAGTGACCCACC**ATG**G GGCTCAGCATCTTTTTGCTCCTGTGTGTTCTTGGGCTCAGCCAGGCAGCCACACCGAAGATT TTCAATGGCACTGAGTGTGGGCGTAACTCACAGCCGTGGCAGGTGGGGCTGTTTGAGGGCAC CAGCCTGCGCTGCGGGGTGTCCTTATTGACCACAGGTGGGTCCTCACAGCGGCTCACTGCA CAGATCCGGCACAGCGCTTCTCTGTGACCCATCCCGGCTACCTGGGAGCCTCGACGAGCCA CGAGCACGACCTCCGGCTGCCGGCTGCCCGTCCGCGTAACCAGCAGCGTTCAAC CCCTGCCCTGCCCAATGACTGTGCAACCGCTGGCACCGAGTGCCACGTCTCAGGCTGGGGC ATCACCAACCACCGGAACCCATTCCCGGATCTGCTCCAGTGCCTCAACCTCTCCATCGT CTCCCATGCCACCTGCCATGGTGTATCCCGGGAGAATCACGAGCAACATGGTGTGCAG GCGGCGTCCCGGGGCAGGATGCCTGCCAGGGTGATTCTGGGGGGCCCCCTGGTGTGTGGGGGGA GTCCTTCAAGGTCTGGTGTCCTGGGGGGTCTGTGGGGCCCTGTGGACAAGATGGCATCCCTGG AGTCTACACCTATATTTGCAAGTATGTGGACTGGATCCGGATGATCATGAGGAACAAC**TGA**C CTGTTTCCTCCACCTCCACCCCACCCCTTAACTTGGGTACCCCTCTGGCCCTCAGAGCACC AATATCTCCTCCATCACTTCCCCTAGCTCCACTCTTGTTGGCCTGGGAACTTCTTGGAACTT TAACTCCTGCCAGCCCTTCTAAGACCCACGAGCGGGGTGAGAGAGTGTGCAATAGTCTGGA ATAAATATAAATGAAGGAGGGGCAAAAAAAAAAAAA

FIGURE 108

MGLSIFLLCVLGLSQAATPKIFNGTECGRNSQPWQVGLFEGTSLRCGGVLIDHRWVLTAAH CSGSRYWVRLGEHSLSQLDWTEQIRHSGFSVTHPGYLGASTSHEHDLRLLRLRLPVRVTSSV QPLPLPNDCATAGTECHVSGWGITNHPRNPFPDLLQCLNLSIVSHATCHGVYPGRITSNMVC AGGVPGQDACQGDSGGPLVCGGVLQGLVSWGSVGPCGQDGIPGVYTYICKYVDWIRMIMRNN

Signal peptide:

FIGURE 109

GCGCCACACGCAGCTAGCCGGAGCCGGACCAGGCGCCTGTGCCTCCTCCTCGTCCCTCGC $\tt CGCGTCCGCGAAGCCTGGAGCCGGGGGGGGGGCCCCGCGCTCGCC{\color{red} \underline{\textbf{ATG}}} \tt TCGGGCGAGCTCAGCA$ ACAGGTTCCAAGGAGGGAAGGCGTTCGGCTTGCTCAAAGCCCGGCAGGAGGAGGAGGCTGGCC GAGATCAACCGGGAGTTTCTGTGTGACCAGAAGTACAGTGATGAAGAGAACCTTCCAGAAAA GCTCACAGCCTTCAAAGAGAAGTACATGGAGTTTGACCTGAACAATGAAGGCGAGATTGACC TGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTGGAGATGAAG AAGATGATCTCAGAGGTGACAGGGGGTCAGTGACACTATATCCTACCGAGACTTTGTGAA CATGATGCTGGGGAAACGGTCGGCTGTCCTCAAGTTAGTCATGATGTTTGAAGGAAAAGCCA GGACCCCGCCTGGACTCCCAGCCTTCCCACCCCATACCTCCCGATCTTGCTGCCCTT TCATCAATGTCTTTGTAAAGCACAAATTATCTGCCTTAAAGGGGCTCTGGGTCGGGGAATCC TGAGCCTTGGGTCCCCTCCTCTTCTTCCCTCCTTCCCCGCTCCCTGTGCAGAAGGGCTG ATATCAAACCAAAAACTAGAGGGGGCAGGGCCAGGGCAGGGAGGCTTCCAGCCTGTGTTCCC CTCACTTGGAGGAACCAGCACTCTCCATCCTTTCAGAAAGTCTCCAAGCCAAGTTCAGGCTC ACTGACCTGGCTCTGACGAGGACCCCAGGCCACTCTGAGAAGACCTTGGAGTAGGGACAAGG CTGCAGGGCCTCTTTCGGGTTTCCTTGGACAGTGCCATGGTTCCAGTGCTCTGGTGTCACCC AGGACACCACTCGGGGCCCCGCTGCCCCAGCTGATCCCCACTCATTCCACACCTCTTCT CATCCTCAGTGATGTGAAGGTGGGAAGGAAGGAGCTTGGCATTGGGAGCCCTTCAAGAAGG CGTGCAGCCCTACTGTCCCTTACTGGGGCAGCAGAGGCTTCGGAGGCAGAAGTGAGGCCTG GGGTTTGGGGGGAAAGGTCAGCTCAGTGCTGTTCCACCTTTTAGGGAGGATACTGAGGGGAC CAGGATGGGAGAATGAGGAGTAAAATGCTCACGGCAAAGTCAGCAGCACTGGTAAGCCAAGA

FIGURE 110

MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTAFKEKYMEFDLN NEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVNMMLGKRSAVLKLVM MFEGKANESSPKPVGPPPERDIASLP

FIGURE 111A

 $\tt CGCGCTCCCGCGCGCTCTCGGGCTCCACGCGTCTTGCCCCGCAGAGGCAGCCTCCTCCA$ CGCCTGGCGCTGGCCTGGCGAGCGTCCTGAGTGGGCCTCCAGCCGTCGCCTGCCC CACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCACGGGCTGGGCCTCCGCGCGGTTC CTCGGGGCATCCCCGCAACGCTGAGCGCCTTGACCTGGACAGAATAATATCACCAGGATC ACCAAGATGGACTTCGCTGGGCTCAAGAACCTCCGAGTCTTGCATCTGGAAGACAACCAGGT CAGCGTCATCGAGAGAGCGCCTTCCAGGACCTGAAGCAGCTAGAGCGACTGCGCCTGAACA AGAATAAGCTGCAAGTCCTTCCAGAATTGCTTTTCCAGAGCACGCCGAAGCTCACCAGACTA GATTTGAGTGAAAACCAGATCCAGGGGATCCCGAGGAAGGCGTTCCGCGGCATCACCGATGT GAAGAACCTGCAACTGGACAACAACCACATCAGCTGCATTGAAGATGGAGCCTTCCGAGCGC TGCGCGATTTGGAGATCCTTACCCTCAACAACAACAACATCAGTCGCATCCTGGTCACCAGC TTCAACCACATGCCGAAGATCCGAACTCTGCGCCTCCACTCCAACCACCTCTACTGCGACTG CCACCTGGCCTGGCTCTCGGATTGGCTGCGACAGCGACAGTTGGCCAGTTCACACTCT GCATGGCTCCTGTGCATTTGAGGGGCCTTCAACGTGGCGGATGTGCAGAAGAAGAAGGAGTACGTG TGCCCAGCCCCCACTCGGAGCCCCCATCCTGCAATGCCAACTCCATCTCCTGCCCTTCGCC CTGCACGTGCAGCAATAACATCGTGGACTGTCGAGGAAAGGGCTTGATGGAGATTCCTGCCA ACTTGCCGGAGGCCATCGTCGAAATACGCCTAGAACAGAACTCCATCAAAGCCATCCCTGCA GGAGCCTTCACCCAGTACAAGAAACTGAAGCGAATAGACATCAGCAAGAATCAGATATCGGA TATTGCTCCAGATGCCTTCCAGGGCCTGAAATCACTCACATCGCTGGTCCTGTATGGGAACA AGATCACCGAGATTGCCAAGGGACTGTTTGATGGGCTGGTGTCCCTACAGCTGCTCCTC AATGCCAACAGATCAACTGCCTGCGGGTGAACACGTTTCAGGACCTGCAGAACCTCAACTT GCTCTCCCTGTATGACAACAAGCTGCAGACCATCAGCAAGGGGCTCTTCGCCCCTCTGCAGT CCATCCAGACACTCCACTTAGCCCAAAACCCATTTGTGTGCGACTGCCACTTGAAGTGGCTG ACTCGCCAACAGCGCATCAGCCAGATCAAGAGCAAGAAGTTCCGCTGCTCAGGCTCCGAGG ATTACCGCAGCAGGTTCAGCAGCGAGTGCTTCATGGACCTCGTGTGCCCCGAGAAGTGTCGC TGTGAGGGCACGATTGTGGACTGCTCCAACCAGAAGCTGGTCCGCATCCCAAGCCACCTCCC TGAATATGTCACCGACCTGCGACTGAATGACAATGAGGTATCTGTTCTGGAGGCCACTGGCA TCTTCAAGAAGTTGCCCAACCTGCGGAAAATAAATCTGAGTAACAATAAGATCAAGGAGGTG CGAGAGGGAGCTTTCGATGGAGCAGCCAGCGTGCAGGAGCTGATGCTGACAGGGAACCAGCT GGAGACCGTGCACGGGCGCGTGTTCCGTGGCCTCAGTGGCCTCAAAACCTTGATGCTGAGGA GTAACTTGATCAGCTGTGAGTAATGACACCTTTGCCGGCCTGAGTTCGGTGAGACTGCTG TCCCTCTATGACAATCGGATCACCACCATCACCCCTGGGGCCTTCACCACGCTTGTCTCCCT GTCCACCATAAACCTCCTGTCCAACCCCTTCAACTGCCACCTGGCCTGGCCTGGCCA AGTGGTTGAGGAAGAGGCGGATCGTCAGTGGGAACCCTAGGTGCCAGAAGCCATTTTTCCTC AAGGAGATTCCCATCCAGGATGTGGCCATCCAGGACTTCACCTGTGATGGCAACGAGGAGAG TAGCTGCCAGCTGAGCCCGCGCTGCCCGGAGCAGTGCACCTGTATGGAGACAGTGGTGCGAT GCAGCAACAAGGGGCTCCGCGCCCTCCCCAGAGGCATGCCCAAGGATGTGACCGAGCTGTAC CTGGAAGGAAACCACCTAACAGCCGTGCCCAGAGAGCTGTCCGCCCTCCGACACCTGACGCT TATTGACCTGAGCAACAACAGCATCAGCATGCTGACCAATTACACCTTCAGTAACATGTCTC ACCTCTCCACTCTGATCCTGAGCTACAACCGGCTGAGGTGCATCCCCGTCCACGCCTTCAAC GGGCTGCGGTCCCTGCGAGTGCTAACCCTCCATGGCAATGACATTTCCAGCGTTCCTGAAGG ACTGCAGTCTTCGGTGGCTGTCGGAGTGGGTGAAGGCGGGGTACAAGGAGCCTGGCATCGCC CGCTGCAGTAGCCCTGAGCCCATGGCTGACAGGCTCCTGCTCACCACCCCAACCCACCGCTT CCAGTGCAAAGGGCCAGTGGACATCAACATTGTGGCCAAATGCCATGCCTCTCCAGCC CGTGCAAGAATAACGGGACATGCACCCAGGACCCTGTGGAGCTGTACCGCTGTGCCCCC

FIGURE 111B

TACAGCTACAAGGGCAAGGACTGCACTGTGCCCATCAACACCTGCATCCAGAACCCCTGTCA GCATGGAGGCACCTGCACCTGAGTGACAGCCACAAGGATGGGTTCAGCTGCTCCTGCCCTC TGGGCTTTGAGGGGCAGCGGTGTGAGATCAACCCAGATGACTGTGAGGACAACGACTGCGAA AACAATGCCACCTGCGTGGACGGGATCAACAACTACGTGTGTATCTGTCCGCCTAACTACAC AGGTGAGCTATGCGACGAGGTGATTGACCACTGTGTGCCTGAGCTGAACCTCTGTCAGCATG AGGCCAAGTGCATCCCCCTGGACAAAGGATTCAGCTGCGAGTGTGTCCCTGGCTACAGCGGG AAGCTCTGTGAGACAGACAATGATGACTGTGTGGCCCACAAGTGCCGCCACGGGGCCCAGTG CGTGGACACAATCAATGGCTACACATGCACCTGCCCCCAGGGCTTCAGTGGACCCTTCTGTG AACACCCCCACCATGGTCCTACTGCAGACCAGCCCATGCGACCAGTACGAGTGCCAGAAC GGGGCCCAGTGCATCGTGGTGCAGCAGGAGCCCACCTGCCGCTGCCCACCAGGCTTCGCCGG CCCCAGATGCGAGAAGCTCATCACTGTCAACTTCGTGGGCAAAGACTCCTACGTGGAACTGG CCTCCGCCAAGGTCCGACCCCAGGCCAACATCTCCCTGCAGGTGGCCACTGACAAGGACAAC GGCATCCTTCTACAAAGGAGACAATGACCCCCTGGCACTGGAGCTGTACCAGGGCCACGT GCGGCTGGTCTATGACAGCCTGAGTTCCCCTCCAACCACAGTGTACAGTGTGGAGACAGTGA ATGATGGGCAGTTTCACAGTGTGGAGCTGGTGACCCTAAACCAGACCCTGAACCTAGTAGTG CCCCCTCTACCTTGGAGGCATCCCCACCTCCACCGGCCTCTCCGCCTTGCGCCAGGGCACGG ACCGGCCTCTAGGCGGCTTCCACGGATGCATCCATGAGGTGCGCATCAACAACGAGCTGCAG GACTTCAAGGCCCTCCCACCACAGTCCCTGGGGGTGTCACCAGGCTGCAAGTCCTGCACCGT GTGCAAGCACGGCCTGTGCCGCTCCGTGGAGAAGGACAGCGTGGTGTGCGAGTGCCGCCCAG GCTGGACCGGCCCACTCTGCGACCAGGAGGCCCGGGACCCCTGCCTCGGCCACAGATGCCAC CATGGAAAATGTGTGGCAACTGGGACCTCATACATGTGCAAGTGTGCCGAGGGCTATGGAGG GGACTTGTGTGACAACAAGAATGACTCTGCCAATGCCTGCTCAGCCTTCAAGTGTCACCATG GGCAGTGCCACATCTCAGACCAAGGGGAGCCCTACTGCCTGTGCCAGCCCGGCTTTAGCGGC GAGCACTGCCAACAAGAGAATCCGTGCCTGGGACAAGTAGTCCGAGAGGTGATCCGCCGCCA GAAAGGTTATGCATCATGTGCCACAGCCTCCAAGGTGCCCATCATGGAATGTCGTGGGGGCCT GTGGGCCCCAGTGCTGCCAGCCCGCAGCAGCGGGGGAAATACGTCTTCCAGTGCACG GACGGCTCCTCGTTTGTAGAAGAGGTGGAGAGACACTTAGAGTGCGGCTGCCTCGCGTGTTC CTAAGCCCCTGCCGCCTGCCACCTCTCGGACTCCAGCTTGATGGAGTTGGGACAGCC ATGTGGGACCCCCTGGTGATTCAGCATGAAGGAAGTGAAGCTGGAGAGGAAGGTAAAGAAGA AAAAA

FIGURE 112

MAPGWAGVGAAVRARLALALALASVLSGPPAVACPTKCTCSAASVDCHGLGLRAVPRGIPRN AERLDLDRNNITRITKMDFAGLKNLRVLHLEDNQVSVIERGAFQDLKQLERLRLNKNKLQVL PELLFQSTPKLTRLDLSENQIQGIPRKAFRGITDVKNLQLDNNHISCIEDGAFRALRDLEIL TLNNNNISRILVTSFNHMPKIRTLRLHSNHLYCDCHLAWLSDWLRORRTVGOFTLCMAPVHL RGFNVADVOKKEYVCPAPHSEPPSCNANSISCPSPCTCSNNIVDCRGKGLMEIPANLPEGIV EIRLEQNSIKAIPAGAFTQYKKLKRIDISKNQISDIAPDAFQGLKSLTSLVLYGNKITEIAK GLFDGLVSLOLLLLNANKINCLRVNTFODLONLNLLSLYDNKLQTISKGLFAPLQSIQTLHL AQNPFVCDCHLKWLADYLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGSEDYRSRFS SECFMDLVCPEKCRCEGTIVDCSNQKLVRIPSHLPEYVTDLRLNDNEVSVLEATGIFKKLPN LRKINLSNNKIKEVREGAFDGAASVOELMLTGNOLETVHGRVFRGLSGLKTLMLRSNLISCV SNDTFAGLSSVRLLSLYDNRITTITPGAFTTLVSLSTINLLSNPFNCNCHLAWLGKWLRKRR IVSGNPRCOKPFFLKEIPIODVAIODFTCDGNEESSCOLSPRCPEOCTCMETVVRCSNKGLR ALPRGMPKDVTELYLEGNHLTAVPRELSALRHLTLIDLSNNSISMLTNYTFSNMSHLSTLIL SYNRLRCIPVHAFNGLRSLRVLTLHGNDISSVPEGSFNDLTSLSHLALGTNPLHCDCSLRWL SEWVKAGYKEPGIARCSSPEPMADRLLLTTPTHRFQCKGPVDINIVAKCNACLSSPCKNNGT CTQDPVELYRCACPYSYKGKDCTVPINTCIQNPCQHGGTCHLSDSHKDGFSCSCPLGFEGQR CEINPDDCEDNDCENNATCVDGINNYVCICPPNYTGELCDEVIDHCVPELNLCQHEAKCIPL DKGFSCECVPGYSGKLCETDNDDCVAHKCRHGAOCVDTINGYTCTCPQGFSGPFCEHPPPMV LLQTSPCDQYECQNGAQCIVVQQEPTCRCPPGFAGPRCEKLITVNFVGKDSYVELASAKVRP QANISLQVATDKDNGILLYKGDNDPLALELYQGHVRLVYDSLSSPPTTVYSVETVNDGQFHS VELVTLNQTLNLVVDKGTPKSLGKLQKQPAVGINSPLYLGGIPTSTGLSALRQGTDRPLGGF HGCIHEVRINNELODFKALPPOSLGVSPGCKSCTVCKHGLCRSVEKDSVVCECRPGWTGPLC DQEARDPCLGHRCHHGKCVATGTSYMCKCAEGYGGDLCDNKNDSANACSAFKCHHGQCHISD QGEPYCLCQPGFSGEHCQQENPCLGQVVREVIRRQKGYASCATASKVPIMECRGGCGPQCCQ PTRSKRRKYVFQCTDGSSFVEEVERHLECGCLACS

Signal peptide:

amino acids 1-27

FIGURE 113

GGATGCAGGACGCTCCCCTGAGCTGCCTGTCACCGACTAGGTGGAGCAGTGTTTCTTCCGCA
GACTCAACTGAGAAGTCAGCCTCTGGGGCAGGCACCAGGAATCTGCCTTTTCAGTTCTGTCT
CCGGCAGGCTTTGAGGATGAAGGCTGCGGGCATTCTGACCCTCATTGGCTGCCTGGTCACAG
GCGCCGAGTCCAAAATCTACACTCGTTGCAAACTGGCAAAAATATTCTCGAGGGCTGGCCTG
GACAATTACTGGGGCTTCAGCCTTGGAAACTGGATCTGCATGGCATATTATGAGAGCGGCTA
CAACACCACAGCCCCGACGGTCCTGGATGACGGCAGCATCGACTATGGCATCTTCCAGATCA
ACAGCTTCGCGTGGTGCAGACGCGGAAAGCTGAAGGAGAACAACCACTGCCATGTCGCCTGC
TCAGCCTTGATCACTGATGACCTCACAGATGCAATTATCTGTGCCAGGAAAATTGTTAAAGA
GACACAAGGAATGAACTATTGGCAAGGCTGGAAGAAACATTGTGAGGGCAGAGACCTGTCCG
AGTGGAAAAAAGGCTGTGAGGTTTCCTAAACTGGAACTGGACCCAGGATGCTTTGCAGCAAC
GCCCTAGGATTTGCAGTGAATGTCCAAATGCCTGTGTCATCTTTGTCCCGTTTCCTCCCAATA
TTCCTTCTCAAACTTGGAGAGGGAAAATTAAGCTATACTTTTAAGAAAAATAATATTTCCÁT
TTAAATGTC

FIGURE 114

MKAAGILTLIGCLVTGAESKIYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYNTTAP TVLDDGSIDYGIFQINSFAWCRRGKLKENNHCHVACSALITDDLTDAIICARKIVKETQGMN YWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide:

amino acids 1-19

FIGURE 115

CAGGCCATTTGCATCCCACTGTCCTTGTGTTCGGAGCCAGGCCACACCGTCCTCAGCAGTGT CATGTGTTAAAAACGCCAAGCTGAATATATC**ATG**CCCCTATTAAAACTTGTACATGGCTCCC CATTGGTTTTTGGAGAAAGTTCAAGCTTTTTACCTTGGTGTCTGCCTGTATCCCAGTGTTC AGGCTGGCTAGACGCGGAAGAAGATCCTATTTTACTGTCACTTCCCAGATCTGCTTCTCAC CAAGAGAGATTCTTTTCTTAAACGACTATACAGGGCCCCAATTGACTGGATAGAGGAATACA CCACAGGCATGCCAGCTTCATCTTAGTCAACAGCCAGTTCACAGCTGCTGTTTTTAAGGAA ACATTCAAGTCCCTGTCTCACATAGACCCTGATGTCCTCTATCCATCTCTAAATGTCACCAG CTTTGACTCAGTTGTTCCTGAAAAGCTGGATGACCTAGTCCCCAAGGGGAAAAAATTCCTGC TGCTCTCCATCAACAGATACGAAAGGAAGAAAATCTGACTTTGGCACTGGAAGCCCTAGTA CAGCTGCGTGGAAGATTGACATCCCAAGATTGGGAGAGGGTTCATCTGATCGTGGCAGGTGG TTATGACGAGAGTCCTGGAGAATGTGGAACATTATCAGGAATTGAAGAAAATGGTCCAAC AGTCCGACCTTGGCCAGTATGTGACCTTCTTGAGGTCTTTCTCAGACAAACAGAAAATCTCC CTCCTCCACAGCTGCACGTGTGTGCTTTACACACCAAGCAATGAGCACTTTGGCATTGTCCC TCTGGAAGCCATGTACATGCAGTGCCCAGTCATTGCTGTTAATTCGGGTGGACCCTTGGAGT CCATTGACCACAGTGTCACAGGGTTTCTGTGTGAGCCTGACCCGGTGCACTTCTCAGAAGCA AGTGAAGGAAAAATTTTCCCCTGAAGCATTTACAGAACAGCTCTACCGATATGTTACCAAAC TGCTGGTA**TAA**TCAGATTGTTTTTAAGATCTCCATTAATGTCATTTTTATGGATTGTAGACC CAGTTTTGAAACCAAAAAAGAAACCTAGAATCTAATGCAGAAGAGATCTTTTAAAAAATAAA CTTGAGTCTTGAATGTGAGCCACTTTCCTATATACCACACCTCCCTGTCCACTTTTCAGAAA AACCATGTCTTTTATGCTATAATCATTCCAAATTTTGCCAGTGTTAAGTTACAAATGTGGTG TCATTCCATGTTCAGCAGAGTATTTTAATTATATTTTCTCGGGATTATTGCTCTTCTGTCTA TAAATTTTGAATGATACTGTGCCTTAATTGGTTTTCATAGTTTTAAGTGTGTATCATTATCAA AGTTGATTAATTTGGCTTCATAGTATAATGAGAGCAGGGCTATTGTAGTTCCCAGATTCAAT CATAGCGAGAGTGCTCTGTATTTTTTTAAGATAATTTGTATTTTTTGCACACTGAGATATAA TAAAAGGTGTTTATCATAAAAAAAAAAAAAAAAAAAAA

FIGURE 116

MPLLKLVHGSPLVFGEKFKLFTLVSACIPVFRLARRRKKILFYCHFPDLLLTKRDSFLKRLY
RAPIDWIEEYTTGMADCILVNSQFTAAVFKETFKSLSHIDPDVLYPSLNVTSFDSVVPEKLD
DLVPKGKKFLLLSINRYERKKNLTLALEALVQLRGRLTSQDWERVHLIVAGGYDERVLENVE
HYQELKKMVQQSDLGQYVTFLRSFSDKQKISLLHSCTCVLYTPSNEHFGIVPLEAMYMQCPV
IAVNSGGPLESIDHSVTGFLCEPDPVHFSEAIEKFIREPSLKATMGLAGRARVKEKFSPEAF
TEQLYRYVTKLLV

Signal peptide:

amino acids 1-15

FIGURE 117

GACTACGCCGATCCGAGACGTGGCTCCCTGGGCGGCAGAACCATGTTGGACTTCGCGATCTT CGCCGTTACCTTCTTGCTGGCGTTGGTGGGAGCCGTGCTCTACCTCTATCCGGCTTCCAGAC AAGCTGCAGGAATTCCAGGGATTACTCCAACTGAAGAAAAAGATGGTAATCTTCCAGATATT GTGAATAGTGGAAGTTTGCATGAGTTCCTGGTTAATTTGCATGAGAGATATGGGCCTGTGGT $\tt CTCCTTCTGGTTTGGCAGGCGCCTCGTGGTTAGTTTGGGCACTGTTGATGTACTGAAGCAGC$ ATATCAATCCCAATAAGACATCGGACCCTTTTGAAACCATGCTGAAGTCATTATTAAGGTAT CAATCTGGTGGTGGCAGTGTGAGTGAAAACCACATGAGGAAAAATTGTATGAAAATGGTGT GACTGATTCTCTGAAGAGTAACTTTGCCCTCCTCCTAAAGCTTTCAGAAGAATTATTAGATA ATGAAGTCTGTTACACAGATGGTAATGGGTAGTACATTTGAAGATGATCAGGAAGTCATTCG CTTCCAGAAGAATCATGGCACAGTTTGGTCTGAGATTGGAAAAGGCTTTCTAGATGGGTCAC TTGATAAAAACATGACTCGGAAAAAACAATATGAAGATGCCCTCATGCAACTGGAGTCTGTT TTAAGGAACATCATAAAAGAACGAAAAGGAAGGAACTTCAGTCAACATATTTTCATTGACTC CTTAGTACAAGGGAACCTTAATGACCAACAGATCCTAGAAGACAGTATGATATTTTCTCTGG CCAGTTGCATAATAACTGCAAAATTGTGTACCTGGGCAATCTGTTTTTTAACCACCTCTGAA GAAGTTCAAAAAAATTATATGAAGAGATAAACCAAGTTTTTGGAAATGGTCCTGTTACTCC AGAGAAAATTGAGCAGCTCAGATATTGTCAGCATGTGCTTTGTGAAACTGTTCGAACTGCCA AACTGACTCCAGTTTCTGCCCAGCTTCAAGATATTGAAGGAAAAATTGACCGATTTATTATT CCTAGAGAGACCCTCGTCCTTTATGCCCTTGGTGTGGTACTTCAGGATCCTAATACTTGGCC ATCTCCACACAGTTTGATCCAGATCGGTTTGATGATGAATTAGTAATGAAAACTTTTTCCT CACTTGGATTCTCAGGCACACAGGAGTGTCCAGAGTTGAGGTTTGCATATATGGTGACCACA GTACTTCTTAGTGTATTGGTGAAGAGACTGCACCTACTTTCTGTGGAGGGACAGGTTATTGA AACAAAGTATGAACTGGTAACATCATCAAGGGAAGAAGCTTGGATCACTGTCTCAAAGAGAT AT**TAA**AATTTTATACATTTAAAATCATTGTTAAATTGATTGAGGAAAACAACCATTTAAAAA AAATCTATGTTGAATCCTTTTATAAACCAGTATCACTTTGTAATATAAACACCTATTTGTAC TTAA

FIGURE 118

MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGITPTEEKDGNLPDIVNSGSLHEFLVNLH
ERYGPVVSFWFGRRLVVSLGTVDVLKQHINPNKTSDPFETMLKSLLRYQSGGGSVSENHMRK
KLYENGVTDSLKSNFALLLKLSEELLDKWLSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFE
DDQEVIRFQKNHGTVWSEIGKGFLDGSLDKNMTRKKQYEDALMQLESVLRNIIKERKGRNFS
QHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQKKLYEEINQVF
GNGPVTPEKIEQLRYCQHVLCETVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVL
QDPNTWPSPHKFDPDRFDDELVMKTFSSLGFSGTQECPELRFAYMVTTVLLSVLVKRLHLLS
VEGQVIETKYELVTSSREEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

FIGURE 119

FIGURE 120

MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLG LFAVELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVT EMALFVTVFGLKKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 121

FIGURE 122

MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALASECAQHLSLPLRYVVVSHT AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGEDGLVYEGRGWNFTGAHSGHLWNP MSIGISFMGNYMDRVPTPQAIRAAQGLLACGVAQGALRSNYVLKGHRDVQRTLSPGNQLYHL IQNWPHYRSP

Signal peptide:

amino acids 1-20

FIGURE 123

GACTCGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGG ATGATGGTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCC $\tt CGGGTGCCTCGGAAGCGGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCT$ CCTAGGGCTGCTGGCCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCAACCGCC CGAACCACACCCCCACCCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGCGACTTCTAC TCCAACATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAA TGGGACCTTCAGCGTCCACTTCCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCC TCGTGCCCCCAGTAAAGCTGTAGAGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAG GCCTCCAAAATCTTCAACTGCCGGATGGAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTC GCTTTGCACCCACGACCCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCAGCCACCT GGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTGTCTACATCGCCTTCTACAGCACGGACTAT CGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTACCATAGTGATACCCCCTACTACCCATC TGGGTGACCCGGGGCAGGCCACAGAGGCCAGGCCTGGAAGGACAGGCCTGCCCATGC ACGAGGAGATGCCAAGTGGGGCCAGGGCCAAGTCTCAAGTGGCAGAGAAAGGGTCCCAAGTG CTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGTGGGCT CTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGGTCCCCGAGGCC TGTGGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGCCCTTGGTT CTTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGGAGATTTCATCAGTGTGGACAGCCTG TCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGGGC CAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCGCCCTTGAGCCCCTTGTCGTGTGCTGAGCATG GCATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTC CAGCCAGGCCACCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATT GCTGATGGCACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCC ACAGCCCATCCGCGTGCTGTGTCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAG CATCCATGTCCCGGAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCC GAAACCGCTGATTGCTGACTTTTGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTT GCCCCGGGGCA

FIGURE 124

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521

><subunit 1 of 1, 252 aa, 1 stop

><MW: 28127, pI: 8.91, NX(S/T): 5

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMAN STLLGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVD HGNGTFSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGR RTSLCTHDPAKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPY YPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 125

GTGAATGTGAGGGTTTGATGACTTTCAGATGTCTAGGAACCAGAGTGGGTGCAGGGGCCCCA GGCAGGGCTGATTCTTGGGCGGAGGAGTAGGGTAAAGGGTTCTGCATGAGCTCCTTAAAG GACAAAGGTAACAGAGCCAGCGAGAGAGCTCGAGGGGAGACTTTGACTTCAAGCCACAGAAT TGGTGGAAGTGTGCGCCGCCGCCGCCGTCGCTCCTGCAGCGCTGTCGACCTAGCCGCTAG GGCTGCGGCTGCCCACACGGCTCACC**ATG**GGCTCCGGGCGCCGGGCGCTGTCCGCGGTGCCG GCCGTGCTGCTGGTCCTCACGCTGCCGGGGCTCCCGTCTGGGCACAGAACGACACGGAGCC CATCGTGCTGGAGGGCAAGTGTCTGGTGGTGCGACTCGAACCCGGCCACGGACTCCAAGG GCTCCTCTCCCCCGCTGGGGATATCGGTCCGGGCGGCCAACTCCAAGGTCGCCTTCTCG GCGGTGCGGAGCACCAACCACGAGCCATCCGAGATGAGCAACAAGACGCGCATCATTTACTT GAAAAGGAATTTACAGTTTCACGTGATTAAAGTCTACCAGAGCCAAACTATCCAG GTTAACTTGATGTTAAATGGAAAACCAGTAATATCTGCCTTTGCGGGGGACAAAGATGTTAC TCGTGAAGCTGCCACGAATGGTGTCCTGCTCTACCTAGATAAAGAGGATAAGGTTTACCTAA AACTGGAGAAAGGTAATTTGGTTGGAGGCTGGCAGTATTCCACGTTTTCTGGCTTTCTGGTG TTCCCCCTA**TAG**GATTCAATTTCTCCATGATGTTCATCCAGGTGAGGGATGACCCACTCCTG AGTTATTGGAAGATCATTTTTTCATCATTGGATTGATGTCTTTTTATTGGTTTCTCATGGGTG GATATGGATTCTAAGGATTCTAGCCTGTCTGAACCAATACAAAATTTCACAGATTATTTGTG TGTGTCTGTTTCAGTATATTTGGATTGGGACTCTAAGCAGATAATACCTATGCTTAAATGTA ACAGTCAAAAGCTGTCTGCAAGACTTATTCTGAATTTCATTTCCTGGGATTACTGAATTAGT TACAGATGTGGAATTTTATTTGTTTAGTTTTAAAAGACTGGCAACCAGGTCTAAGGATTAGA AAACTCTAAAGTTCTGACTTCAATCAACGGTTAGTGTGATACTGCCAAAGAACTGTATACTG AAAACTTGGATTTTTTTTTCAGTAACTGGTATTATGTTTTCTCTTAAAATAAGGTAATGAA GAATGCTTCATAGTTGTATTTTAATTGTATATGTGAAAGAGTCATATTTTCCAAGTTATATT TTCTAAGAAGAAGAATAGATCATAAATCTGACAAGGAAAAAGTTGCTTACCCAAAATCTAAG TGCTCAATCCCTGAGCCTCAGCAAAACAGCTCCCCTCCGAGGGAAATCTTATACTTTATTGC TCCGTAGACATGACCACTTTATTAACTGGTGGTGGGATGCTGTTGTTTCTAATTATACCTAT TTTTCAAGGCTTCTGTTGTATTTGAAGTATCATCTGGTTTTTGCCTTAACTCTTTAAATTGTA TATATTTATCTGTTTAGCTAATATTAAATTCAAATATCCCATATCTAAATTTAGTGCAATAT CTTGTCTTTTGTATAGGTCATATGAATTCATAAAATTATTTTATGTCTGTTATAGAATAAAGA TTAATATATGTTAAAAAAA

FIGURE 126

MGSGRRALSAVPAVLLVLTLPGLPVWAQNDTEPIVLEGKCLVVCDSNPATDSKGSSSSPLGI SVRAANSKVAFSAVRSTNHEPSEMSNKTRIIYFDQILVNVGNFFTLESVFVAPRKGIYSFSF HVIKVYQSQTIQVNLMLNGKPVISAFAGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVG GWQYSTFSGFLVFPL

Signal peptide:

amino acids 1-27

FIGURE 127

FIGURE 128

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658

><subunit 1 of 1, 257 aa, 1 stop

><MW: 28472, pI: 9.33, NX(S/T): 0

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDN KDGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGF GIMSGVFSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKW GILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKN FLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

FIGURE 129

 $\tt CGGCAACCAGCCGCCGCCACCACCGCTGCCGCCCTGCCGGGGCC{\color{red}{\textbf{ATG}}}{TTCGCTCTGGGCTTGCCCTTCT}$ TGGTGCTCTTGGTGGCCTCGGTCGAGAGCCATCTGGGGGTTCTGGGGCCCAAGAACGTCTCGCAGAAAGACGCCG AGTTTGAGCGCACCTACGTGGACGAGGTCAACAGCGAGCTGGTCAACATCTACACCTTCAACCATACTGTGACCC GCAACAGGACAGAGGGCGTGCGTGTCTCTGTGAACGTCCTGAACAAGCAGAAGGGGGCGCCGTTGCTGTTTGTGG TCCGCCAGAAGGAGGCTGTGGTGTCCTTCCAGGTGCCCCTAATCCTGCGAGGGATGTTTCAGCGCAAGTACCTCT ACCAAAAAGTGGAACCCTGTGTCAGCCCCCCACCAAGAATGAGTCGGAGATTCAGTTCTTCTACGTGGATG TGTCCACCCTGTCACCAGTCAACACCACATACCAGCTCCGGGTCAGCCGCATGGACGATTTTGTGCTCAGGACTG GGGAGCAGTTCAGCTTCAATACCACAGCAGCACCAGCCCCAGTACTTCAAGTATGAGTTCCCTGAAGGCGTGGACT CGGTAATTGTCAAGGTGACCTCCAACAAGGCCTTCCCCTGCTCAGTCATCTCCATTCAGGATGTGCTGTGTCCTG TCTATGACCTGGACAACAACGTAGCCTTCATCGGCATGTACCAGACGATGACCAAGAAGGCGGCCATCACCGTAC AGCGCAAAGACTTCCCCAGCAACAGCTTTTATGTGGTGGTGGTGGTGAAGACCGAAGACCAAGCCTGCGGGGGGCT CCCTGCCTTTCTACCCCTTCGCAGAAGATGAACCGGTCGATCAAGGGCACCGCCAGAAAACCCTGTCAGTGCTGG TGTCTCAAGCAGTCACGTCTGAGGCATACGTCAGTGGGATGCTCTTTTGCCTGGGTATATTTCTCTCTTTTACC TGCTGACCGTCCTCGTGGCCTGCTGGGAGAACTGGAGGCAGAAGAAGACCCTGCTGGTGGCCATTGACCGAG CCTGCCCAGAAAGCGGTCACCCTCGAGTCCTGGCTGATTCTTTTCCTGGCAGTTCCCCTTATGAGGGTTACAACT ATGGCTCCTTTGAGAATGTTTCTGGATCTACCGATGGTCTGGTTGACAGCGCTGGCACTGGGGACCTCTCTTACG GTTACCAGGGCCGCTCCTTTGAACCTGTAGGTACTCGGCCCCGAGTGGACTCCATGAGCTCTGTGGAGGAGGATG ACTACGACACTTGACCGACATCGATTCCGACAAGAATGTCATTCGCACCAAGCAATACCTCTATGTGGCTGACC TGGCACGGAAGGACAAGCGTGTTCTGCGGAAAAAGTACCAGATCTACTTCTGGAACATTGCCACCATTGCTGTCT TCTATGCCCTTCCTGTGGTGCAGCTGGTGATCACCTACCAGACGGTGGTGAATGTCACAGGGAATCAGGACATCT GCTACTACAACTTCCTCTGCGCCCACCCACTGGGCAATCTCAGCGCCTTCAACAACATCCTCAGCAACCTGGGGT ACATCCTGCTGGGGCTGCTTTTCCTGCTCATCCTGCAACGGGAGATCAACCACAACCGGGCCCTGCTGCGCA ATGACCTCTGTGCCCTGGAATGTGGGATCCCCAAACACTTTGGGCTTTTCTACGCCATGGGCACAGCCCTGATGA TGGAGGGCTGCTCAGTGCTTGCTATCATGTGTGCCCCAACTATACCAATTTCCAGTTTGACACATCGTTCATGT ACATGATCGCCGGACTCTGCATGCTGAAGCTCTACCAGAAGCGGCACCCGGACATCAACGCCAGCGCCTACAGTG $\tt CCTACGCCTGCCATTGTCATCTTCTTCTGTGCTGGGCGTGGTCTTTGGCAAAGGGAACACGGCGTTCT$ GGATCGTCTTCTCCATCATTCACATCATCGCCCACCCTGCTCCTCAGCACGCAGCTCTATTACATGGGCCGGTGGA AACTGGACTCGGGGATCTTCCGCCGCATCCTCCACGTGCTCTACACAGACTGCATCCGGCAGTGCAGCGGGCCGC TGCGCCCCAATGATTTCGCTTCCTACTTGTTGGCCATTGGCATCTGCAACCTGCTCCTTTACTTCGCCTTCTACA TCATCATGAAGCTCCGGAGTGGGGAGAGGATCAAGCTCATCCCCCTGCTCTGCATCGTTTGCACCTCCGTGGTCT GGGGCTTCGCGCTCTTCTTCTTCCAGGGACTCAGCACCTGGCAGAAAACCCCTGCAGAGTCGAGGGAGCACA ACCGGGACTGCATCCTCCTCGACTTCTTTGACGACCACGACATCTGGCACTTCCTCCTCCATCGCCATGTTCG GGTCCTTCCTGGTGTTGCTGACACTGGATGACGACCTGGATACTGTGCAGCGGGACAAGATCTATGTCTTC**TAG**C AGGAGCTGGGCCCTTCGCTTCACCTCAAGGGGCCCTGAGCTCCTTTGTGTCATAGACCGGTCACTCTGTCGTGCT GTGGGGATGAGTCCCAGCACCGCTGCCCAGCACTGGATGGCAGCAGGACAGCCAGGTCTAGCTTAGGCTTGGCCT GGGACAGCCATGGGGTGGCATGGAACCTTGCAGCTGCCCTCTGCCGAGGAGCAGGCCTGCTCCCCTGGAACCCCC AGATGTTGGCCAAATTGCTGCTTTCTCAGTGTTGGGGCCCTTCCATGGGCCCCTGTCCTTTGGCTCTCCATTT GTCCCTTTGCAAGAGGAAGGATGGAAGGGACACCCTCCCCATTTCATGCCTTGCATTTTTGCCCGTCCTCCCC ACAATGCCCCAGCCTGGGACCTAAGGCCTCTTTTTCCTCCCATACTCCCACTCCAGGGCCTAGTCTGGGGCCTGA ATCTCTGTCCTGTATCAGGGCCCCAGTTCTCTTTGGGCTGTCCCTGGCTGCCATCACTGCCCATTCCAGTCAGCC AGGATGGATGGGGGTATGAGATTTTGGGGGGTTGGCCAGCTGGTGCCAGACTTTTGGTGCTAAGGCCTGCAAGGGG ${\tt TGAGAACCGCCTTCTGATTCAAGAGGCTGAATTCAGAGGTCACCTCTTCATCCCATCAGCTCCCAGACTGATGCC}$ AGCTGGTGGCCTTTCAGTGCCATTGACACTGCCCAAGAATGTCCAGGGGCAAAGGAGGGATGATACAGAGTTCAG $\tt CCCGTTCTGCCTCCACAGCTGTGGGCACCCCAGTGCCTTAGAAAGGGGCTTCAGGAAGGGATGTGCTGTTT$ AGTTCTGTGTTAGTCATGCACACACATACCTATGAAACCTTGGAGTTTACAAAGAATTGCCCCAGCTCTGGGCAC CCTGGCCACCCTGGTCCTTGGATCCCCTTCGTCCCACCTGGTCCACCCCAGATGCTGAGGATGGGGGGAGCTCAGG CGGGGCCTCTGCTTTGGGGATGGGAATGTTTTTTCTCCCAAACTTGTTTTTATAGCTCTGCTTGAAGGGCTGGG

FIGURE 130

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66659

><subunit 1 of 1, 832 aa, 1 stop

><MW: 94454, pI: 6.94, NX(S/T): 12

MFALGLPFLVLLVASVESHLGVLGPKNVSQKDAEFERTYVDEVNSELVNIYTFNHTVTRNRT
EGVRVSVNVLNKQKGAPLLFVVRQKEAVVSFQVPLILRGMFQRKYLYQKVERTLCQPPTKNE
SEIQFFYVDVSTLSPVNTTYQLRVSRMDDFVLRTGEQFSFNTTAAQPQYFKYEFPEGVDSVI
VKVTSNKAFPCSVISIQDVLCPVYDLDNNVAFIGMYQTMTKKAAITVQRKDFPSNSFYVVVV
VKTEDQACGGSLPFYPFAEDEPVDQGHRQKTLSVLVSQAVTSEAYVSGMLFCLGIFLSFYLL
TVLLACWENWRQKKKTLLVAIDRACPESGHPRVLADSFPGSSPYEGYNYGSFENVSGSTDGL
VDSAGTGDLSYGYQGRSFEPVGTRPRVDSMSSVEEDDYDTLTDIDSDKNVIRTKQYLYVADL
ARKDKRVLRKKYQIYFWNIATIAVFYALPVVQLVITYQTVVNVTGNQDICYYNFLCAHPLGN
LSAFNNILSNLGYILLGLLFLLIILQREINHNRALLRNDLCALECGIPKHFGLFYAMGTALM
MEGLLSACYHVCPNYTNFQFDTSFMYMIAGLCMLKLYQKRHPDINASAYSAYACLAIVIFFS
VLGVVFGKGNTAFWIVFSIIHIIATLLLSTQLYYMGRWKLDSGIFRRILHVLYTDCIRQCSG
PLYVDRMVLLVMGNVINWSLAAYGLIMRPNDFASYLLAIGICNLLLYFAFYIIMKLRSGERI
KLIPLLCIVCTSVVWGFALFFFFQGLSTWQKTPAESREHNRDCILLDFFDDHDIWHFLSSIA
MFGSFLVLLTLDDDLDTVQRDKIYVF

Important features of the protein:

Signal peptide:

amino acids 1-18

Transmembrane domains:

amino acids 292-317, 451-470, 501-520, 607-627, 751-770

Leucine zipper pattern.

amino acids 497-518

N-glycosylation sites.

amino acids 27-30, 54-57, 60-63, 123-126, 141-144, 165-168, 364-367, 476-479, 496-499, 572-575, 603-606, 699-702

FIGURE 131

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGC TCTCTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGGGCCTGTCCTG ACC**ATG**GTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCAGGCTCTCCCCAAGGC CCAGCCTGCAGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACC TGACCAAGTTGCCGCTGCCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCA GGCAAGGCAACTGAGGGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAG GGCCCTGGACCGAGAGGAGCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATG GACATGTCTTGTGGGGTCCACAGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTG ${\tt CCCCATTTCTCAAGCCATCTACAGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCC}$ CTTCCTCTTCCTTGAGGCTTCAGACCGGGATGAGCCAGGCACAGCCAACTCGGATCTTCGAT TCCACATCCTGAGCCAGGCTCCAGCCCAGCCTTCCCCAGACATGTTCCAGCTGGAGCCTCGG CTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGACCAGGCCTCAGGCCACCAGGCCACTG CCACCGTGGAAGTCTCCATCATAGAGAGCCCTGGGTGTCCCTAGAGCCTATCCACCTGGCA GAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTACACTGGAGTGGGGGTGATGT GCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAATGCAGAGGGAAACCTCT ACGTGACCAGAGAGCTGGACAGAGAGCCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAG TGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCTCAGTCCAC CAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCAGATGCCCCCGGCTCCCCCAATTCC CACGTTGTGTATCAGCTCCTGAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTCCA GGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACA TCCTGCTTCTGGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGT GAAGTCGAAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGAT TGGGCCTATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCA TTGATGCTGACCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACA GAAGGGACTTTTGGCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAA GAACCTCAGTTATGAGGCAGCTCCAAGTCATGAGGTGGTGGTGGTGCAGAGTGTGGCGA AGCTGGTGGGGCCAGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGA GTGATGCCACCCCCAAGTTGGACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCC AGCCGGCTCTTTCCTGCTGACCATCCAGCCCTCCGACCCCATCAGCCGAACCCTCAGGTTCT CCCTAGTCAATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCCGGGGGAGGTGCACACC GCCCAGTCCCTGCAGGGCGCCCAGCCTGGGGACACCTACACGGTGCTTGTGGAGGCCCAGGA TACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAATACCTCTGCACACCCCGCCAAGACCATG GCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCTGGCCAGTGGGCACGGTCCCTACAGC TTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGCGCCTCCAGACTCTCAATGGTTC CCATGCCTACCTTGGCCCTGCATTGGGTGGAGCCACGTGAACACATAATCCCCGTGG TGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGATCGTGTGTCGCTGCAAC GTGGAGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGGCATGCCCACGAAGCTGTCGGC AGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTCATTTTCACCC ACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCTGAAGGCG ACTGTC**TGA**ATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTCCC CTGGGAGAGACCCAGCACCCAAGATCCAGCAGGGACAGGACAGAGTAGAAGCCCCTCCAT CTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAAC TTTATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCA

FIGURE 132

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSG
KATEGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVP
HFSQAIYRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRL
GALALSPKGSTSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAE
NLKVLYPHHMAQVHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQN
SHGEDYAAPLELHVLVMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSH
VVYQLLSPEPEDGVEGRAFQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCE
VEVAVTDINDHAPEFITSQIGPISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTE
GTFGLDWEPDSGHVRLRLCKNLSYEAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERV
MPPPKLDQESYEASVPISAPAGSFLLTIQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTA
QSLQGAQPGDTYTVLVEAQDTALTLAPVPSQYLCTPRQDHGLIVSGPSKDPDLASGHGPYSF
TLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEPREHIIPVVVSHNAQMWQLLVRVIVCRCNV
EGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLILIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 133

CCGGGGACATGAGGTGGATACTGTTCATTGGGGCCCTTATTGGGTCCAGCATCTGTGGCCAA GAAAAATTTTTTGGGGACCAAGTTTTGAGGATTAATGTCAGAAATGGAGACGAGATCAGCAA AGATCCCAGGGCTTAGAGTACGCAGTGACAATTGAGGACCTGCAGGCCCTTTTAGACAATGA AGATGATGAAATGCAACACAATGAAGGGCAAGAACGGAGCAGTAATAACTTCAACTACGGGG CTTACCATTCCCTGGAAGCTATTTACCACGAGATGGACAACATTGCCGCAGACTTTCCTGAC CAGCACTGGGAAAGGCGTGAGGCGGCCGCCGTTTGGCTGAATGCAGGCATCCATTCCCGAG AGTGGATCTCCCAGGCCACTGCAATCTGGACGGCAAGGAAGATTGTATCTGATTACCAGAGG GATCCAGCTATCACCTCCATCTTGGAGAAAATGGATATTTTCTTGTTGCCTGTGGCCAATCC TGATGGATATGTGTATACTCAAACTCAAAACCGATTATGGAGGAAGACGCGGTCCCGAAATC CTGGAAGCTCCTGCATTGGTGCTGACCCAAATAGAAACTGGAACGCTAGTTTTGCAGGAAAG GGAGCCAGCGACAACCCTTGCTCCGAAGTGTACCATGGACCCCACGCCAATTCGGAAGTGGA GGTGAAATCAGTGGTAGATTTCATCCAAAAACATGGGAATTTCAAGGGCTTCATCGACCTGC ACAGCTACTCGCAGCTGCTGATGTATCCATATGGGTACTCAGTCAAAAAGGCCCCCAGATGCC GAGGAACTCGACAAGGTGGCGAGGCTTGCGGCCAAAGCTCTGGCTTCTGTGTCGGGCACTGA GTACCAAGTGGGTCCCACCTGCACCACTGTCTATCCAGCTAGCGGGAGCAGCATCGACTGGG CGTATGACAACGGCATCAAATTTGCATTCACATTTGAGTTGAGAGATACCGGGACCTATGGC TTCCTCCTGCCAGCTAACCAGATCATCCCCACTGCAGAGGAGACGTGGCTGGGGCTGAAGAC $\texttt{CATCATGGAGCATGTGCGGGACAACCTCTAC} \underline{\textbf{TAG}} \texttt{GCGATGGCTCTGCTCTACATTTAT}$ TTGTACCCACACGTGCACGCACTGAGGCCATTGTTAAAGGAGCTCTTTCCTACCTGTGTGAG CGTGTGTCCTGGCGGTGTCCCTGCAAGAACTGGTTCTGCCAGCCTGCTCAATTTTGGTCCTG AGCATCACCCCTTCCTGGGTGGCATGTCTCTCTCTACCTCATTTTTAGAACCAAAGAACATC TGAGATGATTCTCTACCCTCATCCACATCTAGCCAAGCCAGTGACCTTGCTCTGGTGGCACT GTGGGAGACACCACTTGTCTTTAGGTGGGTCTCAAAGATGATGTAGAATTTCCTTTAATTTC TCGCAGTCTTCCTGGAAAATATTTTCCTTTGAGCAGCAAATCTTGTAGGGATATCAGTGAAG GTCTCTCCCTCCTCTCTCTGTTTTTTTTTTTTTTTGAGACAGAGTTTTGCTCTTGTTGCC CAGGCTGGAGTGTGATGGCTCGATCTTGGCTCACCACAACCTCTGCCTCCTGGGTTCAAGCA ATTCTCCTGCCTCAGCCTCTTGAGTAGCTTGGTTTATAGGCGCATGCCACCATGCCTGGCTA ATTTTGTGTTTTTAGTAGAGACAGGGTTTCTCCATGTTGGTCAGGCTGGTCTCAAACTCCCA ACCTCAGGTGATCTGCCCTCCTTGGCCTCCCAGAGTGCTGGGATTACAGGTGTGAGCCACTG TGCCGGGCCCGTCCCTTTTTTTAGGCCTGAATACAAAGTAGAAGATCACTTTCCTTCAC TGTGCTGAGAATTTCTAGATACTACAGTTCTTACTCCTCTCTCCCTTTGTTATTCAGTGTG ACCAGGATGGCGGGAGGGGATCTGTGTCACTGTAGGTACTGTGCCCAGGAAGGCTGGGTGAA GTGACCATCTAAATTGCAGGATGGTGAAATTATCCCCATCTGTCCTAATGGGCTTACCTCCT CTTTGCCTTTTGAACTCACTTCAAAGATCTAGGCCTCATCTTACAGGTCCTAAATCACTCAT CTGGCCTGGATAATCTCACTGCCCTGGCACATTCCCATTTGTGCTGTGTGTATCCTGTGTT TCTGTCTATTTTGTATCCTGGACCACAAGTTCCTAAGTAGAGCAAGAATTCATCAACCAGCT TTGTTTTTTTGCTTTTACCAAACATGTCTGTAAATCTTAACCTCCTGCCTAGGATTTGTACA

FIGURE 134

MRWILFIGALIGSSICGQEKFFGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSFNR
PVDVLVPSVSLQAFKSFLRSQGLEYAVTIEDLQALLDNEDDEMQHNEGQERSSNNFNYGAYH
SLEAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKGVRRPAVWLNAGIHSREWI
SQATAIWTARKIVSDYQRDPAITSILEKMDIFLLPVANPDGYVYTQTQNRLWRKTRSRNPGS
SCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQKHGNFKGFIDLHSY
SQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTEYQVGPTCTTVYPASGSSIDWAYD
NGIKFAFTFELRDTGTYGFLLPANQIIPTAEETWLGLKTIMEHVRDNLY

Signal peptide:

amino acids 1-16

FIGURE 135

CAACCATGCAAGGACAGGGCAGGAGAAGAGACCTGCAAAGACATATTTTGTTCCAAA**ATG** GCATCTTACCTTTATGGAGTACTCTTTGCTGTTGGCCTCTGTGCTCCAATCTACTGTGTGTC CCCGGCCAATGCCCCCAGTGCATACCCCCGCCCTTCCTCCACAAAGAGCACCCCTGCCTCAC AGGTGTATTCCCTCAACACCGACTTTGCCTTCCGCCTATACCGCAGGCTGGTTTTGGAGACC $\verb|CCGAGTCAGAACATCTTCTCCCCTGTGAGTGTCTCCACTTCCCTGGCCATGCTCTCCCT|\\$ AAAGACCTGACCTTGAAGATGGGAAGTGCCCTCTTCGTCAAGAAGGAGCTGCAGCTGCAGGC AAATTTCTTGGGCAATGTCAAGAGGCTGTATGAAGCAGAAGTCTTTTCTACAGATTTCTCCA ACCCCTCCATTGCCCAGGCGAGGATCAACAGCCATGTGAAAAAGAAGACCCAAGGGAAGGTT GTAGACATAATCCAAGGCCTTGACCTTCTGACGGCCATGGTTCTGGTGAATCACATTTTCTT TGGGCGAGCAGGTCACTGTGCAAGTCCCCATGATGCACCAGAAAGAGCAGTTCGCTTTTGGG GTGGATACAGAGCTGAACTGCTTTGTGCTGCAGATGGATTACAAGGGAGATGCCGTGGCCTT CTTTGTCCTCCCTAGCAAGGGCAAGATGAGGCAACTGGAACAGGCCTTGTCAGCCAGAACAC TGATAAAGTGGAGCCACTCACTCCAGAAAAGGTGGATAGAGGTGTTCATCCCCAGATTTTCC ATTTCTGCCTCCTACAATCTGGAAACCATCCTCCCGAAGATGGGCATCCAAAATGCCTTTGA CAAAAATGCTGATTTTTCTGGAATTGCAAAGAGAGACTCCCTGCAGGTTTCTAAAGCAACCC ACAAGGCTGTGCTGGATGTCAGTGAAGAGGGCCACTGAGGCCACAGCAGCACCAAG TTCATAGTCCGATCGAAGGATGGTCCCTCTTACTTCACTGTCTCCTTCAATAGGACCTTCCT GATGATGATTACAAATAAAGCCACAGACGGTATTCTCTTTCTAGGGAAAGTGGAAAATCCCA CTAAATCC**TAG**GTGGGAAATGGCCTGTTAACTGATGGCACATTGCTAATGCACAAGAAATAA CAAACCACATCCCTCTTTCTGTTCTGAGGGTGCATTTGACCCCAGTGGAGCTGGATTCGCTG GCAGGGATGCCACTTCCAAGGCTCAATCACCAAACCATCAACAGGGACCCCAGTCACAAGCC AACACCCATTAACCCCAGTCAGTGCCCTTTTCCACAAATTCTCCCAGGTAACTAGCTTCATG GGATGTTGCTGGGTTACCATATTTCCATTCCTTGGGGCTCCCAGGAATGGAAATACGCCAAC CCAGGTTAGGCACCTCTATTGCAGAATTACAATAACACATTCAATAAAACTAAAATATGAAT AAAAAA

FIGURE 136

MASYLYGVLFAVGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLVLE
TPSQNIFFSPVSVSTSLAMLSLGAHSVTKTQILQGLGFNLTHTPESAIHQGFQHLVHSLTVP
SKDLTLKMGSALFVKKELQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVKKKTQGK
VVDIIQGLDLLTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMMHQKEQFAF
GVDTELNCFVLQMDYKGDAVAFFVLPSKGKMRQLEQALSARTLIKWSHSLQKRWIEVFIPRF
SISASYNLETILPKMGIQNAFDKNADFSGIAKRDSLQVSKATHKAVLDVSEEGTEATAATTT
KFIVRSKDGPSYFTVSFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide:

amino acids 1-20

FIGURE 137

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGC CTGAGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAG CCTTTATCTCTTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAG TCTTGGTACATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAG**ATG**AAGATGC AGAAAGGAAATGTTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCC AATGAGACTAGCACCTCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACAGC CACCAACTCTGGGTCCAGTGTGACCTCCAGTGGGGTCAGCACAGCCACCATCTCAGGGTCCA GCGTGACCTCCAATGGGGTCAGCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGG ATCAGCACAGCCACCAACTCTGAGTTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAA CTCTGAGTCCAGCACACCTCCAGTGGGGCCAGCACAGCCACCAACTCTGAGTCCAGCACAC CCTCCAGTGGGGCCAGCACAGTCACCAACTCTGGGTCCAGTGTGACCTCCAGTGGAGCCAGC ACTGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCCAACTCTGA GTCTAGCACACTCTCCAGTGGGGCCAGCACACCCAACTCTGACTCCAGCACAACCTCCA GTGGGGCTAGCACACCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACAGCC ACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCAACTCTGAGTCCAG CACAACCTCCAGTGGGGCCAGCACACCCAACTCTGAGTCCAGAACGACCTCCAATGGGG CTGGCACAGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCAGCACAGCCACCAAC TCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCAACTCTGAGTCCAGCACGAC CTCCAGTGGGGCCAGCACCACCCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCTAGCA CAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCACCAACTCTGAG TCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCCAG TGGGGCCAACACCCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCCAACACACCA CCAACTCTGAGTCCAGCACTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGC ACAACCTCCAGTGGGGTCAGCACAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGC TAGCACAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACCAACCT CTGAGTCTAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACC TCCAGTGGGGCCAACACCCCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAAC AGCCTGGTGGGTGCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCG GCCGTGGGGCTCTTTGCTGGGCTCTTCTTCTGTGAGAAACAGCCTGTCCCTGAGAAACAC CTTTAACACAGCTGTCTACCACCCTCATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAG GGAATCATGGAGCCCCCACAGGCCCAGGTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTA TCATCGATAGCCATGGAGATGAGCGGGAGGAACAGCGGGCCCTGAGCAGCCCCGGAAGCAAG CCAGGAGACCCCTCCCAGCTTTGTTTGAGATCCTGAAAATCTTGAAGAAGGTATTCCTCACC TTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATATTGCTCATTTAGCTAAGAAATAA CTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTCCATCTGGCATTCAAAA AAAAAAAAAAAAAA

FIGURE 138

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATI
SGSSVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSE
SSTPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSS
TTSSGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTT
SNGAGTATNSESSTTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSS
GASTATNSDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGA
NTATNSESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEAST
ATNSESSTVSSGISTVTNSESSTTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAV
SEAKPGGSLVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGP
GPGGNHGAPHRPRWSPNWFWRRPVSSIAMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 139

GGGAGAGAGATAAATAGCAGCGTGGCTTCCCTGGCTCCTCTCTGCATCCTTCCCGACCTTC CCAGCAAT**ATG**CATCTTGCACGTCTGGTCGGCTCCTGCTCCTTCTGCTACTGGGGGCC CTGTCTGGATGGCCGCCAGCGATGACCCCATTGAGAAGGTCATTGAAGGGATCAACCGAGG GCTGAGCAATGCAGAGAGAGAGGTGGGCAAGGCCCTGGATGGCATCAACAGTGGAATCACGC ATGCCGGAAGGGAAGTGGAGAAGGTTTTCAACGGACTTAGCAACATGGGGAGCCACACCGGC AAGGAGTTGGACAAAGGCGTCCAGGGGCTCAACCACGGCATGGACAAGGTTGCCCATGAGAT CAACCATGGTATTGGACAAGCAGGAAAGGAAGCAGAAGCTTGGCCATGGGGTCAACAACG ${\tt CTGCTGGACAGGCCGGGAAGGAGGACAAAGCGGTCCAAGGGTTCCACACTGGGGTCCAC}$ CAGGCTGGGAAGGAAGCAGAGAAACTTGGCCAAGGGGTCAACCATGCTGACCAGGCTGG AAAGGAAGTGGAGAAGCTTGGCCAAGGTGCCCACCATGCTGGCCAGGCCGGGAAGGAGC TGCAGAATGCTCATAATGGGGTCAACCAAGCCAGCAAGGAGGCCAACCAGCTGCTGAATGGC AACCATCAAAGCGGATCTTCCAGCCATCAAGGAGGGGCCACAACCACGCCGTTAGCCTCTGG GGCCTCAGTCAACACGCCTTTCATCAACCTTCCCGCCCTGTGGAGGAGCGTCGCCAACATCA TGCCCTAAACTGGCATCCGGCCTTGCTGGGAGAATAATGTCGCCGTTGTCACATCAGCTGAC ATGACCTGGAGGGTTGGGGGGGACAGGTTTCTGAAATCCCTGAAGGGGGTTGTACTG GGATTTGTGAATAAACTTGATACACCA

FIGURE 140

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66675</pre>

><subunit 1 of 1, 247 aa, 1 stop

><MW: 25335, pI: 7.00, NX(S/T): 0

MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITHAG REVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAG QAGKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAGKELQN AHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWRSVANIMP

Important features of the protein:

Signal peptide:

amino acids 1-25

Homologous region to circumsporozoite (CS) repeats:

amino acids 35-225

FIGURE 141

 $\tt CCCGCGGGGGGCGATGACCGTGACCCTGACTCACTCCAGGTCCGGAGGCGGGGGCCCCCGGGGCGACTCG$ GGGGCGGACCGCGGGGCGGACTGCCGCCGTGAGTCCGGCCGAGCCACCTGAGCCCGAGCCGCGGGACACCGTC GCTCCTGCTCTCCGA**ATG**CTGCGCACCGCGATGGGCCTGAGGAGCTGGCTCGCCGCCCCATGGGGCGCGCTGCCG CCCCGGATCAGCCTGCCTCTGGGCTCTGAAGAGCGGCCATTCCTCAGATTCGAAGCTGAACACATCTCCAACTAC AACCTCAGCTTCCTGCCAGGCGGGGAGTACCAGGAGCTGCTTTGGGGTGCAGACGCAGAGAAAACAGCAGTGC AGCTTCAAGGGCAAGGACCCACAGCGCGACTGTCAAAACTACATCAAGATCCTCCTGCCGCTCAGCGGCAGTCAC CTGTTCACCTGTGGCACAGCAGCCTTCAGCCCCATGTGTACCTACATCAACATGGAGAACTTCACCCTGGCAAGG GACGAGAAGGGGAATGTCCTCCTGGAAGATGGCAAGGGCCGTTGTCCCTTCGACCCGAATTTCAAGTCCACTGCC CTGGTGGTTGATGGCGAGCTCTACACTGGAACAGTCAGCAGCTTCCAAGGGAATGACCCGGCCATCTCGCGGAGC CAAAGCCTTCGCCCCACCAAGACCGAGAGCTCCCTCAACTGGCTGCAAGACCCAGCTTTTGTGGCCTCAGCCTAC ATTCCTGAGAGCCTGGGCAGCTTGCAAGGCGATGATGACAAGATCTACTTTTTCTTCAGCGAGACTGGCCAGGAA CTACAGCAGCGCTGGACCTCCTTCCTCAAGGCCCAGCTGCTGTGCTCACGGCCCGACGATGGCTTCCCCTTCAAC GTGCTGCAGGATGTCTTCACGCTGAGCCCCAGCCCCCAGGACTGGCGTGACACCCTTTTCTATGGGGTCTTCACT TCCCAGTGGCACAGGGGAACTACAGAAGGCTCTGCCGTCTGTGTCTTCACAATGAAGGATGTGCAGAGAGTCTTC CCTGGAGCGTGCATCACCAACAGTGCCCGGGAAAGGAAGATCAACTCATCCCTGCAGCTCCCAGACCGCGTGCTG AACTTCCTCAAGGACCACTTCCTGATGGACGGGCAGGTCCGAAGCCGCATGCTGCTGCTGCAGCCCCAGGCTCGC TACCAGCGCGTGGCTGTACACCGCGTCCCTGGCCTGCACCACACCTACGATGTCCTCTTCCTGGGCACTGGTGAC GGCCGGCTCCACAAGGCAGTGAGCGTGGGCCCCCGGGTGCACATCATTGAGGAGCTGCAGATCTTCTCATCGGGA CAGCCCGTGCAGAATCTGCTCCTGGACACCCACAGGGGGCTGCTGTATGCGGCCTCACACTCGGGCGTAGTCCAG GTGCCCATGGCCAACTGCAGCCTGTACCGGAGCTGTGGGGACCTCCTCGCCCGGGACCCCTACTGTGCTTGG GGAGCCAGCGCCAAGGACCTTTGCAGCGCGTCTTCGGTTGTGTCCCCGTCTTTTGTACCAACAGGGGAAAGCCA TGTGAGCAAGTCCAGCTCCAACACACAGTGAACACTTTGGCCTGCCCGCTCCTCTCCAACCTGGCGACCCGA CTCTGGCTACGCAACGGGGCCCCCGTCAATGCCTCGGCCTCCTGCCACGTGCTACCCACTGGGGACCTGCTGCTG GTGGGCACCCAACAGCTGGGGGAGTTCCAGTGCTGGTCACTAGAGGAGGGCTTCCAGCAGCTGGTAGCCAGCTAC TGCCCAGAGGTGGTGGAGGCGGGGTGGCAGACCAAACAGATGAGGGTGGCAGTGTACCCGTCATTATCAGCACA TCGCGTGTGAGTGCACCAGCTGGTGGCAAGGCCAGCTGGGGTGCAGACAGGTCCTACTGGAAGGAGTTCCTGGTG ATGTGCACGCTCTTTGTGCTGGCCGTGCTGCTCCCAGTTTTATTCTTGCTCTACCGGCACCGGAACAGCATGAAA GTCTTCCTGAAGCAGGGGAATGTGCCAGCGTGCACCCCAAGACCTGCCCTGTGGTGCTGCCCCTGAGACCCGC CCACTCAACGGCCTAGGGCCCCCTAGCACCCCGCTCGATCACCGAGGGTACCAGTCCCTGTCAGACAGCCCCCCG GGGGCCCGAGTCTTCACTGAGTCAGAGAAGAGGCCACTCAGCATCCAAGACAGCTTCGTGGAGGTATCCCCAGTG $\tt TGCCCCGGCCCGGGTCCGCCTTGGCTCGGAGATCCGTGACTCTGTGGTG\underline{TGA}{GAGCTGACTTCCAGAGGACGC}$ TGCCCTGGCTTCAGGGGCTGTGAATGCTCGGAGAGGGTCAACTGGACCTCCCCTCCGCTCTGCTCTTCGTGGAAC CAGTGCTCCTTATGTAAACTGAGCCCTTTGTTTAAAAAACAATTCCAAATGTGAAACTAGAATGAGAGGGAAGAG ATAGCATGCATGCACACACACGCTGCTCCAGTTCATGGCCTCCCAGGGGTGCTGGGGATGCATCCAAAGTGG TTGTCTGAGACAGAGTTGGAAACCCTCACCAACTGGCCTCTTCACCTTCCACATTATCCCGCTGCCACCGGCTGC TTGCTGCCGTCGTCCCACCACCTCAGGGACCAGAGGGCTAGGTTGGCACTGCGGCCCTCACCAGGTCCTGGGCTC GGACCCAACTCCTGGACCTTTCCAGCCTGTATCAGGCTGTGGCCACACGAGAGACAGCGCGAGCTCAGGAGAGA $\tt CTGGTCCTCCCCAGTCCCCAGTTCACCTCCATCCTTCACCTTCACCTCTAAGGGATATCAACACTGCCC$ AGCACAGGGGCCCTGAATTTATGTGGTTTTTATACATTTTTTAATAAGATGCACTTTATGTCATTTTTTAATAAA GTCTGAAGAATTACTGTTTAAAAAAAAAAAAA

FIGURE 142

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA67962

><subunit 1 of 1, 837 aa, 1 stop

><MW: 92750, pI: 7.04, NX(S/T): 6

MLRTAMGLRSWLAAPWGALPPRPPLLILLLLLLLLQPPPPTWALSPRISLPLGSEERPFLRF
EAEHISNYTALLLSRDGRTLYVGAREALFALSSNLSFLPGGEYQELLWGADAEKKQQCSFKG
KDPQRDCQNYIKILLPLSGSHLFTCGTAAFSPMCTYINMENFTLARDEKGNVLLEDGKGRCP
FDPNFKSTALVVDGELYTGTVSSFQGNDPAISRSQSLRPTKTESSLNWLQDPAFVASAYIPE
SLGSLQGDDDKIYFFFSETGQEFEFFENTIVSRIARICKGDEGGERVLQQRWTSFLKAQLLC
SRPDDGFPFNVLQDVFTLSPSPQDWRDTLFYGVFTSQWHRGTTEGSAVCVFTMKDVQRVFSG
LYKEVNRETQQWYTVTHPVPTPRPGACITNSARERKINSSLQLPDRVLNFLKDHFLMDGQVR
SRMLLLQPQARYQRVAVHRVPGLHHTYDVLFLGTGDGRLHKAVSVGPRVHIIEELQIFSSGQ
PVQNLLLDTHRGLLYAASHSGVVQVPMANCSLYRSCGDCLLARDPYCAWSGSSCKHVSLYQP
QLATRPWIQDIEGASAKDLCSASSVVSPSFVPTGEKPCEQVQFQPNTVNTLACPLLSNLATR
LWLRNGAPVNASASCHVLPTGDLLLVGTQQLGEFQCWSLEEGFQQLVASYCPEVVEDGVADQ
TDEGGSVPVIISTSRVSAPAGGKASWGADRSYWKEFLVMCTLFVLAVLLPVLFLLYRHRNSM
KVFLKQGECASVHPKTCPVVLPPETRPLNGLGPPSTPLDHRGYQSLSDSPPGARVFTESEKR
PLSIQDSFVEVSPVCPRPRVRLGSEIRDSVV

Transmembrane domains:

amino acids 23-46 (type II), 718-738

FIGURE 143A

GCCCAGCCGGAGGACGCGGGCAGGGCGGGACGCGGACTCGTCTGCCGCCGCCGTCGTCGCCGTCG GCCCACGCCGCCGCCAGCCCCGAGGGCTGCCGGTCCGGCCAGGCGGCGCTTCCCAGGCCGGCGGGGGCGCGCG GCGATGCGCGCGGGCCCAGCTCTGGCCGCCCGGCTCGGACCCAGATGGCGGCCCGCGCGCACAGGAACTTTCTCT TCGTGGGAGTCATGACCGCCCAGAAATACCTGCAGACTCGGGCCGTGGCCGCCTACAGAACATGGTCCAAGACAA GTGTGGACGACTCCTACCCGCCCCAGAAGAAGTCCTTCATGATGCTCAAGTACATGCACGACCACTACTTGGACA AGTATGAATGGTTTATGAGAGCAGATGATGACGTGTACATCAAAGGAGACCGTCTGGAGAACTTCCTGAGGAGTT TGAACAGCAGCGAGCCCTCTTTCTTGGGCAGACAGGCCTGGGCACCACGGAAGAAATGGGAAAACTGGCCCTGG AGCCTGGTGAGAACTTCTGCATGGGGGGGCCTGGCGTGATCATGAGCCGGGAGGTGCTTCGGAGAATGGTGCCGC ACATTGGCAAGTGTCTCCGGGAGATGTACACCACCCATGAGGACGTGGAGGTGGGAAGGTGTCCCGGAGGTTTG CAGGGGTGCAGTGTCTGGTCTTATGAGATGCGGCAGCTTTTTTATGAGAATTACGAGCAGAACAAAAAGGGGT ACATTAGAGATCTCCATAACAGTAAAATTCACCAAGCTATCACATTACACCCCAACAAAAACCCACCTACCAGT ACAGGCTCCACAGCTACATGCTGAGCCGCAAGATATCCGAGCTCCGCCATCGCACAATACAGCTGCACCGCGAAA TTGTCCTGATGAGCAAATACAGCAACACAGAAATTCATAAAGAGGACCTCCAGCTGGGAATCCCTCCTCCTCA TTGACGGCCAGCCCCTCGAAGAGGAATGGACTCCGCCCAGAGGGAAGCCTTGGACGACATTGTCATGCAGGTCA TGGAGATGATCAATGCCAACGCCAAGACCAGAGGGCGCATCATTGACTTCAAAGAGATCCAGTACGGCTACCGCC GGGTGAACCCCATGTATGGGGCTGAGTACATCCTGGACCTGCTGCTTCTGTACAAAAAGCACAAAAGGGAAGAAA TGACGGTCCCTGTGAGGAGGCACGCGTATTTACAGCAGACTTTCAGCAAAATCCAGTTTGTGGAGCATGAGGAGC TGGATGCACAAGAGTTGGCCAAGAGAATCAATCAGGAATCTGGATCCTTGTCCTTTCTCAAACTCCCTGAAGA AGCTCGTCCCCTTTCAGCTCCCTGGGTCGAAGAGTGAGCACAAAGAACCCAAAGATAAAAAGATAAACATACTGA ${\tt TTCCTTTGTCTGGGCGTTTCGACATGTTTGTGAGAGATTTATGGGAAACTTTGAGAAGACGTGTCTTATCCCCAATC}$ AGAACGTCAAGCTCGTGGTTCTGCTTTTCAATTCTGACTCCAACCCTGACAAGGCCAAACAAGTTGAACTGATGA GAGATTACCGCATTAAGTACCCTAAAGCCGACATGCAGATTTTGCCTGTGTCTGGAGAGTTTTCAAGAGCCCTGG $\tt CCCTGGAAGTAGGATCCTCCCAGTTTAACAATGAATCTTTGCTCTTCTTCTGCGACGTCGACCTCGTGTTTACTA$ CAGAATTCCTTCAGCGATGTCGAGCAAATACAGTTCTGGGCCAACAAATATATTTTCCAATCATCTTCAGCCAGT ATGACCCAAAGATTGTTTATAGTGGGAAAGTTCCCAGTGACAACCATTTTGCCTTTACTCAGAAAACTGGCTTCT AGGAAGTAGGAGTAGTCCACCATCCTGTCTTTTGTGATCCCAATCTTGACCCCAAACAGTACAAAATGT $\tt GTTACAGTAAAAGCAGCAATAATAATGGCTCAGTGAGGACAGCC{\color{red}{T}}{\color{blue$ TAATTATCTAATTTATTTTCAAAAATTTTTTTGTATGATCAGTTTTTTGAAGTCCGTATACAAGGATATATTTTAC CACATCTTCTTGCTGAACATTATGTAGCAGACCTGCTTAACTTTGACTTGAAATGTACCTGATGAACAAAACTTT TTTAAAAAAATGTTTTCTTTTGAGACCCTTTGCTCCAGTCCTATGGCAGAAACGTGAACATTCCTGCAAAGTAT TATTGTAACAAAACACTGTAACTCTGGTAAATGTTCTGTTGTGATTGTTAACATTCCACAGATTCTACCTTTTGT ${\tt GTTTTGTTTTTTTTTTACAATTGTTTTAAAGCCATTTCATGTTCCAGTTGTAAGATAAGGAAATGTGATAATA}$ CACGTAGGTTTTTTGTTTTGTTTTGTTTTTTTTTTTGAGACGGAGTCTCACTCTGTTACCCAGGCTGGAATG CAGTGGCGCAATCTTGGCTCACTTTAACCTCCACTTCCCTGGTTCAAGCAATTCCCCTGCCTTTGCCTCCCGAGT AGCTGGGATTACAGGCACACCACCACGCCCAGNTAGTTTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCAT GCAAGCCCAGCTGGCCACGTAGGTTTTAAAGCAAGGGGCCTGAAGAAGGCACAGTGAGGTATGTGGCTGTTCTCG TGGTAGTTCATTCGGCCTAAATAGACCTGGCATTAAATTTCAAGAAGGATTTGGCATTTTCTCTTCTTGACCCTT CTCTTTAAAGGGTAAAATATTAATGTTTAGAATGACAAAGATGAATTATTACAATAAATCTGATGTACACAGACT GAAACATACACACATACACCCTAATCAAAACGTTGGGGAAAAATGTATTTGGTTTTGTTCCTTTCATCCTGTCTG $\tt TGTTATGTGGGTGGAGATGGTTTTCATTCTTTCATTACTGTTTTTATCCTTTGTATCTGAAATACCTTTAA$ GAGTGTGTTTAGTCTGTTTTATTTGCAGTAAACCGATCTCCAAAGATTTCCTTTTGGAAACGCTTTTTCCCCTCC

FIGURE 143B

FIGURE 144

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836</pre>

><subunit 1 of 1, 802 aa, 1 stop

><MW: 91812, pI: 9.52, NX(S/T): 3

MAARGRRAWLSVLLGLVLGFVLASRLVLPRASELKRAGPRRRASPEGCRSGQAAASQAGGAR
GDARGAQLWPPGSDPDGGPRDRNFLFVGVMTAQKYLQTRAVAAYRTWSKTIPGKVQFFSSEG
SDTSVPIPVVPLRGVDDSYPPQKKSFMMLKYMHDHYLDKYEWFMRADDDVYIKGDRLENFLR
SLNSSEPLFLGQTGLGTTEEMGKLALEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYT
THEDVEVGRCVRRFAGVQCVWSYEMRQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPP
YQYRLHSYMLSRKISELRHRTIQLHREIVLMSKYSNTEIHKEDLQLGIPPSFMRFQPRQREE
ILEWEFLTGKYLYSAVDGQPPRRGMDSAQREALDDIVMQVMEMINANAKTRGRIIDFKEIQY
GYRRVNPMYGAEYILDLLLLYKKHKGKKMTVPVRRHAYLQQTFSKIQFVEHEELDAQELAKR
INQESGSLSFLSNSLKKLVPFQLPGSKSEHKEPKDKKINILIPLSGRFDMFVRFMGNFEKTC
LIPNQNVKLVVLLFNSDSNPDKAKQVELMRDYRIKYPKADMQILPVSGEFSRALALEVGSSQ
FNNESLLFFCDVDLVFTTEFLQRCRANTVLGQQIYFPIIFSQYDPKIVYSGKVPSDNHFAFT
QKTGFWRNYGFGITCIYKGDLVRVGGFDVSIQGWGLEDVDLFNKVVQAGLKTFRSQEVGVVH
VHHPVFCDPNLDPKQYKMCLGSKASTYGSTQQLAEMWLEKNDPSYSKSSNNNGSVRTA

Signal peptide:

amino acids 1-23

FIGURE 145

GGACAACCGTTGCTGGGTGTCCCAGGGCCTGAGGCAGGACGGTACTCCGCTGACACCTTCCC TTTCGGCCTTGAGGTTCCCAGCCTGGTGGCCCCAGGACGTTCCGGTCGCATGGCAGAGTGCT ACGGACGACGCCT**ATG**AAGCCCTTAGTCCTTCTAGTTGCGCTTTTGCTATGGCCTTCGTCTG TGCCGGCTTATCCGAGCATAACTGTGACACCTGATGAAGAGCAAAACTTGAATCATTATATA CAAGTTTTAGAGAACCTAGTACGAAGTGTTCCCTCTGGGGAGCCAGGTCGTGAGAAAAAATC TAACTCTCCAAAACATGTTTATTCTATAGCATCAAAGGGATCAAAATTTAAGGAGCTAGTTA CACATGGAGACGCTTCAACTGAGAATGATGTTTTAACCAATCCTATCAGTGAAGAAACTACA TTGCCAGTTGTTACTGAATCATCTACAAGTCCATATGTTACCTCATACAAGTCACCTGTCAC CACTTTAGATAAGAGCACTGGCATTGAGATCTCTACAGAATCAGAAGATGTTCCTCAGCTCT CAGGTGAAACTGCGATAGAAAAACCCGAAGAGTTTGGAAAGCACCCAGAGAGTTGGAATAAT GATGACATTTTGAAAAAATTTTAGATATTAATTCACAAGTGCAACAGGCACTTCTTAGTGA CACCAGCAACCCAGCATATAGAGAAGATATTGAAGCCTCTAAAGATCACCTAAAACGAAGCC TTGCTCTAGCAGCAGCAGCAGAACATAAATTAAAAACAATGTATAAGTCCCAGTTATTGCCA GTAGGACGAACAAGTAATAAAATTGATGACATCGAAACTGTTATTAACATGCTGTGAATTC TAGATCTAAACTCTATGAATATTTAGATATTAAATGTGTTCCACCAGAGATGAGAAAAAAG CTGCTACAGTATTCAATACATTAAAAAATATGTGTAGATCAAGGAGAGTCACAGCCTTATTA AAAGTTTAT**TAA**ACAATAATATAAAAATTTTAAACCTACTTGATATTCCATAACAAAGCTGA TTTAAGCAAACTGCATTTTTTCACAGGAGAAATAATCATATTCGTAATTTCAAAAGTTGTAT AAAAATATTTTCTATTGTAGTTCAAATGTGCCAACATCTTTATGTGTCATGTGTTATGAACA ATTTTCATATGCACTAAAAACCTAATTTAAAATAAAATTTTGGTTCAGGAAAAAA

FIGURE 146

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68864

><subunit 1 of 1, 350 aa, 1 stop

><MW: 39003, pI: 5.59, NX(S/T): 1

MKPLVLLVALLLWPSSVPAYPSITVTPDEEQNLNHYIQVLENLVRSVPSGEPGREKKSNSPK
HVYSIASKGSKFKELVTHGDASTENDVLTNPISEETTTFPTGGFTPEIGKKKHTESTPFWSI
KPNNVSIVLHAEEPYIENEEPEPEPEPAAKQTEAPRMLPVVTESSTSPYVTSYKSPVTTLDK
STGIEISTESEDVPQLSGETAIEKPEEFGKHPESWNNDDILKKILDINSQVQQALLSDTSNP
AYREDIEASKDHLKRSLALAAAAEHKLKTMYKSQLLPVGRTSNKIDDIETVINMLCNSRSKL
YEYLDIKCVPPEMREKAATVFNTLKNMCRSRRVTALLKVY

Signal peptide:

amino acids 1-19

FIGURE 147

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTG ACCTCCAAATCATCCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACA GGAATATCCATGCTTTTGTGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACA GTGGCAAGTCACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGAGGACGCCGTGTTCT CCTGCTCCCTCTTTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAG TTCCATGCTGTGGTCCACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACA GTATCGAGGGAGAACTGAGTTTGTGAAGGACTCCATTGCAGGGGGGGCGTGTCTCTAAGGC TAAAAAACATCACTCCCTCGGACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTAC GATGAGGAGCCACCTGGGAGCTGCGGGTGGCAGCACTGGGCTCACTTCCTCATTTCCAT CGTGGGATATGTTGACGGAGGTATCCAGTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGC CCACAGCCAAGTGGAAAGGTCCACAAGGACAGGATTTGTCTTCAGACTCCAGAGCAAATGCA GATGGGTACAGCCTGTATGATGTGGAGATCTCCATTATAGTCCAGGAAAATGCTGGGAGCAT ATTGTGTTCCATCCACCTTGCTGAGCAGAGTCATGAGGTGGAATCCAAGGTATTGATAGGAG AGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTATTTTACTCGGGTTACTCTGTGGT GCCCTGTGTGTGTTGTCATGGGGATGATAATTGTTTTCTTCAAATCCAAAGGGAAAATCCA GGCGGAACTGGACTGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACG CAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAA ACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAA GAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGAGACATTACTGGGAGGTGGACGTGGGAC AAAATGTAGGGTGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGAAGAACAATGTG ACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTCAC ATTCAATCCCCATTTTATCAGCCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCC CTGCTGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGA GGAAAAGGGGACTCCCATATTCATATGTCCAGTGTCCTGGGGA**TGA**GACAGAGAAGACCCTG CTTAAAGGGCCCCACACCACAGACCCAGACACAGGCCAAGGGAGAGTGCTCCCGACAGGTGGC CCCAGCTTCCTCTCCGGAGCCTGCGCACAGAGAGTCACGCCCCCCACTCTCCTTTAGGGAGC TGAGGTTCTTCTGCCCTGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGAT TGGCCTGACCCTGTGGGAGTCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCA CATTAGGTTTAGTTTGTGAAAACTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCC CAGGCTCCTCATTTGCTAGTCACGGACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGA CAACGAATGTGAATCATGCTTGCAGGTTTGAGGGCACAGTGTTTGCTAATGATGTTTTTTA TATTATACATTTTCCCACCATAAACTCTGTTTGCTTATTCCACATTAATTTACTTTTCTCTA TACCAAATCACCCATGGAATAGTTATTGAACACCTGCTTTGTGAGGCTCAAAGAATAAAGAG GAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCATTACCTGATACCAAAACCAGGCAAAG AAAACAGAAGAAGAAGGAAAACTACAGGTCCATATCCCTCATTAACACAGACACAAAAA TTCTAAATAAAATTTTAACAAATTAAACTAAACAATATATTTAAAGATGATATATAAACTACT CAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAATATCAACCAGTGTAATT

FIGURE 148

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68866

><subunit 1 of 1, 466 aa, 1 stop

><MW: 52279, pI: 6.16, NX(S/T): 2

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHA
VVHLYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEE
ATWELRVAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGY
SLYDVEISIIVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALC
GVVMGMIIVFFKSKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLS
PNNGYWVLRLTTEHLYFTFNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLT
CQFEGLLRPYIQHAMYDEEKGTPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 149

CCTTCACAGGACTCTTCATTGCTGGTTGGCA**ATG**ATGTATCGGCCAGATGTGGTGAGGGCTA GGAAAAGAGTTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTC CTGGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAA TTACTATAGCACATTGTCATTTACAACTGACAAACTATATGCTGAGTTTGGCAGAGAGGCTT CTAACAATTTTACAGAAATGAGCCAGAGACTTGAATCAATGGTGAAAAATGCATTTTATAAA TCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTCAGTCAACAGAAGCATGG AGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGAAACTGTAG ATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTA TTGCTGCGGAACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAG AAGTAGAAGAGGGTGAATGGCCCTGGCAGGCTAGCCTGCAGTGGGATGGGAGTCATCGCTGT GGAGCAACCTTAATTAATGCCACATGGCTTGTGAGTGCTGCTCACTGTTTTACAACATATAA GAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACAATAAAACCTTCGAAAATGAAACGGG GTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACATGACTATGATATTTCT CTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTCTCCCTGA TGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTGTGACAGGATTTGGAGCACTGAAAA ATGATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACT TGCAATGAACCTCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTT AGAAGGAAAACAGATGCATGCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTA GAGATATCTGGTACCTTGCTGGAATAGTGAGCTGGGGAGATGAATGTGCGAAACCCAACAAG CCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTGGATTACTTCAAAAACTGGTATC**TA** TTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCAATAAAC TGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTG CCAGATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATA ATACAATATTACATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTTGTCAGAATTTTGAC TTGTTGACATAAATTTGTAATGCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTC TAAGAAGAAAAAATCCCCTACATTTTATTGGCACAGAAAAGTATTAGGTGTTTTTCTTAGT GGAATATTAGAAATGATCATATTCATTATGAAAGGTCAAGCAAAGACAGCAGAATACCAATC TCCTTATTTTCATTTCCAAACAACTACTATGATAAATGTGAAGAAGATTCTGTTTTTTTGTG ACCTATAATAATTATACAAACTTCATGCAATGTACTTGTTCTAAGCAAATTAAAGCAAATAT TTATTTAACATTGTTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

FIGURE 150

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871

><subunit 1 of 1, 423 aa, 1 stop

><MW: 47696, pI: 8.96, NX(S/T): 3

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTD KLYAEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICR FHSTEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTL GQSLRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFG VTIKPSKMKRGLRRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDV MFVTGFGALKNDGYSQNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGD SGGPLVSSDARDIWYLAGIVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 151

GTCGAAGGTTATAAAAGCTTCCAGCCAAACGGCATTGAAGTTGAAGATACAACCTGACAGCA CAGCCTGAGATCTTGGGGGATCCCTCAGCCTAACACCCCACAGACGTCAGCTGGTGGATTCCCG $\tt CTGCATCAAGGCCTACCCACTGTCTCC{\color{red} ATG} CTGGGGCTCTCCCTGCCTTCTGTGGCTCCTGGC$ CGTGACCTTCTTGGTTCCCAGAGCTCAGCCCTTGGCCCCTCAAGACTTTGAAGAAGAGGAGG CAGATGAGACTGAGACGGCGTGGCCGCCTTTGCCGGCTGTCCCCTGCGACTACGACCACTGC AGGACTCTCCAGCCCGCCCAGCCGCCCGACCCGCCGCATGGGAAAGTGCGCATTGCGG $\tt CCGAAGAGGGCCGCAGTGGTCCACTGGTGTGCCCCCTTCTCCCCGGTCCTCCACTACTGG$ CTGCTGCTTTGGGACGCGAGCGAGGCTGCGCAGAAGGGGCCCCCGCTGAACGCTACGGTCCG CAGAGCCGAACTGAAGGGGCTGAAGCCAGGGGGCATTTATGTCGTTTGCGTAGTGGCCGCTA ACGAGGCCGGGGCAAGCCGCGTGCCCCAGGCTGGAGGAGAGGGCCTCGAGGGGGCCGACATC $\verb|CCTGCCTTCGGGCCTTGCGCCCTTGCGGTGCCCCCAACCCCGCACTCTGGTCCACGC|\\$ GGCCGTCGGGGTGGGCACGGCCCTGGCCCTGCTAAGCTGTGCCGCCCTGGTGTGGCACTTCT GCCTGCGCGATCGCTGGGGCTGCCCGCGCCGAGCCGCCCGAGCCGCAGGGGCGCTC**TGA** AAGGGGCCTGGGGGCATCTCGGGCACAGACAGCCCCACCTGGGGCGCTCAGCCTGGCCCCCG GCTCCAGGGCCACGGCGGAGTCATGGTTCTCAGGACTGAGCGCTTGTTTAGGTCCGGTACTT

FIGURE 152

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68874

><subunit 1 of 1, 238 aa, 1 stop

><MW: 25262, pI: 6.44, NX(S/T): 1

MLGSPCLLWLLAVTFLVPRAQPLAPQDFEEEEADETETAWPPLPAVPCDYDHCRHLQVPCKE LQRVGPAACLCPGLSSPAQPPDPPRMGEVRIAAEEGRAVVHWCAPFSPVLHYWLLLWDGSEA AQKGPPLNATVRRAELKGLKPGGIYVVCVVAANEAGASRVPQAGGEGLEGADIPAFGPCSRL AVPPNPRTLVHAAVGVGTALALLSCAALVWHFCLRDRWGCPRRAAARAAGAL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 194-220

N-glycosylation site.

amino acids 132-135

FIGURE 153

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCC $\tt CCCAGCGCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGC$ $\verb|TTCTCCCTTACGGGGCTCACA| \textbf{ATG} \\ \texttt{GCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCCTGCT} \\$ $\tt CTACGCCCTCAATCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGA$ TGAGGGACTACCTAAATAATGTTCTCACTTTAACTGCAGAAACGAGGGTAGAGGAAGCAGTC ATTTTGACTTACTTTCCTGTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCAT TGTGGGGATGTTAGGATATTGTGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACT TTGGAAGTTTGCTTGTCATTTTCTGTGTAGAACTGGCTTGTGGCGTTTGGACATATGAACAG GAACTTATGGTTCCAGTACAATGGTCAGATATGGTCACTTTGAAAGCCAGGATGACAAATTA GCTGTGGAGTAGTATTTCACTGACTGGTTGGAAATGACAGAGATGGACTGGCCCCCAGAT TCCTGCTGTGTTAGAGAATTCCCAGGATGTTCCAAACAGGCCCACCAGGAAGATCTCAGTGA CCTTTATCAAGAGGGTTGTGGGAAGAAAATGTATTCCTTTTTGAGAGGAACCAAACAACTGC AGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAATCCTGGCCATGATTCTCACC ATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGGACAGACCAAATGATGTC CTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACTGTTGAAACCAAGCC TGTCAAGAATCTTTGAACACACATCCATGGCAAACAGCTTTAATACACACTTTGAGATGGAG GAGTTA**TAA**AAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACTTGTGAATT TTTGAGTACATACTATGTTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAATAACA CCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTCAC CACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGC CTGTGTATGACTTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTC CGCATCCATGCAAACGAGTCACATATGGTGGGGACTGGAGCCATAGTAAAGGTTGATTTACTT CTACCAACTAGTATATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATA AATATTGGTGACTACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAA GAGCAAGCTAACACATTGTCTTAAGCTGATCAGGGATTTTTTTGTATATAAGTCTGTGTTAAA TCTGTATAATTCAGTCGATTTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAA ATTTGTCCTGTATAGCATCATTATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGT CCTGGGCTTATATTACACATATAACTGTTATTTAAATACTTAACCACTAATTTTGAAAATTA CCAGTGTGATACATAGGAATCATTATTCAGAATGTAGTCTGGTCTTTAGGAAGTATTAATAA GAAAATTTGCACATAACTTAGTTGATTCAGAAAGGACTTGTATGCTGTTTTTCTCCCAAATG AAGACTCTTTTTGACACTAAACACTTTTTTAAAAAAGCTTATCTTTGCCTTCTCCAAACAAGAA GCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAATAGTGTTCTTTTTCTCCAGAAAAAT GCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATTCTTTGTTTTATTTCACTGATTA GAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTATTTCTCAGAATATGGAA AGAAAATTAAAATGTGTCAATAAATATTTTCTAGAGAGTAA

FIGURE 154

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880

><subunit 1 of 1, 305 aa, 1 stop

><MW: 35383, pI: 5.99, NX(S/T): 0

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPV
VHPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQ
WSDMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREF
PGCSKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWAL
YYDRREPGTDQMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 155

GAGAGAGGCAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCC CCTGTGTGGGGAGGCCCTCCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAG ACCGGGAGGATCACAGAGCCAGC<u>ATG</u>TTACAGGATCCTGACAGTGATCAACCTCTGAACAGC CTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCCATGGAGACCTTCAGAAAGGTGGGGAT CCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTGGTTGTCCTCATCAAGG TGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAG CTGTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTT CCCCGAAGGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGG ACTCGGCCACAGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAG ACAGCCTGTAGGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGA TGTTGTTGAAATCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTC TCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTGTGGGAAGAGCCTGAAGACCCCCCGT GTGGTGGGTGGGAGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCAGTACGA CAAACAGCACGTCTGTGGAGGGAGCATCCTGGACCCCCACTGGGTCCTCACGGCAGCCCACT GCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGC AGCTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAA CCATCTGTCTGCCCTTCTTTGATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGA TGGGGCTTTACGAAGCAGAATGGAGGGAAGATGTCTGACATACTGCTGCAGGCGTCAGTCCA GGTCATTGACAGCACACGGTGCAATGCAGACGATGCGTACCAGGGGGAAGTCACCGAGAAGA TGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGTGACAGTGGTGGGCCC CTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGGCTGCGG GGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATG CCCTGCCCACCTGGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCC CTCTGCCCACAGCCTCAGCATTTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCC TCGCAGCCCAGAGGCCCCAGAGGAAGTCAGCAGCCCTAGCTCGGCCACACTTGGTGCTCCC AGCATCCCAGGGAGAGACACAGCCCACTGAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAA GGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCCCAGATCACTGTGGG CTGGAGAGGAAAGGAAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAAGCCTA CTAGAGCAAGAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTT ACCTACTGTTGTCATTGTTATTACAGCTATGGCCACTATTATTAAAGAGCTGTGTAACATCT CTGGCAAAAAAAAAAAA

FIGURE 156

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885</pre>

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47644, pI: 5.18, NX(S/T): 2

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYF
LCGQPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWF
SACFDNFTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSL
HCLACGKSLKTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDV
FNWKVRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFD
EELTPATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE
GGVDTCQGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 157

GGGCTGAGGCACTGAGAGACCGGAAAGCCTGGCATTCCAGAGGGAAGGGAAACGCAGCGGCATCCCCAGGCTCCAG AGCTCCCTGGTGACAGTCTGTGGCTGAGCATGCCCTCCCAGCCCTGGGCCTGGACCCCTGGAGCCTCCTGGGCC GGGTCAGATACTATGCAGGGGATGAACGTAGGGCACTTAGCTTCTTCCACCAGAAGGGCCTCCAGGATTTTGACA AGAAGAAGAGCAATGAGACACAGTGTTTCAACTTCATCCGTGTCCTGGTTTCTTACAATGTCACCCATCTCTACA $\tt CCTGCGGCACCTTCGCCTTCAGCCCTGCTTGTACCTTCATTGAACTTCAAGATTCCTACCTGTTGCCCATCTCGG$ AGGACAAGGTCATGGAGGGAAAAGGCCAAAGCCCCTTTGACCCCGCTCACAAGCATACGGCTGTCTTGGTGGATG GGATGCTCTATTCTGGTACTATGAACAACTTCCTGGGCAGTGAGCCCATCCTGATGCGCACACTGGGATCCCAGC $\tt CTGTCCTCAAGACCGACAACTTCCTCCGCTGGCTGCATCATGACGCCTCCTTTGTGGCAGCCATCCCTTCGACCC$ AGGTCGTCTACTTCTTCGAGGAGACAGCCAGCGAGTTTGACTTCTTTGAGAGGCTCCACACATCGCGGGTGG TGCTCTGCACCCAGCCGGGCAGCTGCCCTTCAACGTCATCCGCCACGCGGTCCTGCTCCCCGCCGATTCTCCCA $\tt CAGCTCCCCACATCTACGCAGTCTTCACCTCCCAGTGGCAGGTTGGCGGGACCAGGAGCTCTGCGGTTTGTGCCT$ TCTCTCTCTGGACATTGAACGTGTCTTTAAGGGGAAATACAAAGAGTTGAACAAAGAAACTTCACGCTGGACTA TCATGAAGGACCATTTCCTGATGGATGAGCAAGTGGTGGGGGACGCCCCTGCTGGTGAAATCTGGCGTGGAGTATA CACGGCTTGCAGTGGAGACAGCCCAGGGCCTTGATGGGCACAGCCATCTTGTCATGTACCTGGGAACCACCACAG GGTCGCTCCACAAGGCTGTGGTAAGTGGGGACAGCAGTGCTCATCTGGTGGAAGAGATTCAGCTGTTCCCTGACC GGGTGCCCGAGCCAACTGTAGTGTCTATGAGAGCTGTGTGGACTGTGTCCTTGCCCGGGACCCCACTGTGCCT GGGACCCTGAGTCCCGAACCTGTTGCCTCCTGTCTGCCCCCAACCTGAACTCCTGGAAGCAGGACATGGAGCGGG AAGAAGTCCTGGCTGTCCCCAACTCCATCCTGGAGCTCCCCTGCCCCACCTGTCAGCCTTTGGCCTCTTATTATT GGAGTCATGGCCCAGCAGCAGTCCCAGAAGCCTCTTCCACTGTCTACAATGGCTCCCTCTTGCTGATAGTGCAGG ATGGAGTTGGGGGTCTCTACCAGTGCTGGGCAACTGAGAATGGCTTTTCATACCCTGTGATCTCCTACTGGGTGG $\tt CCAGGGTCAGTGGGGGCCGCCTGGCTGCCCAGCAGTCCTACTGGCCCCACTTTGTCACTGTCACTGTCCTCT$ TTGCCTTAGTGCTTTCAGGAGCCCTCATCATCCTCGTGGCCTCCCCATTGAGAGCACTCCGGGCTCGGGGCAAGG TTCAGGGCTGTGAGACCCTGCGCCCTGGGGAGAAGGCCCCGTTAAGCAGAGAGCAACACCTCCAGTCTCCCAAGG ${\tt AATGCAGGACCTCTGCCAGTGATGTGGACGCTGACAACAACTGCCTAGGCACTGAGGTAGCT} \underline{{\tt TAA}}{\tt ACTCTAGGCA}$ CAGGCCGGGGCTGCAGGCACCTGGCCATGCTGGCTGGCCCAAGCACAGCCCTGACTAGGATGACAG CAGCACAAAAGACCACCTTTCTCCCCTGAGAGGAGCTTCTGCTACTCTGCATCACTGATGACACTCAGCAGGGTG ATGCACAGCAGTCTGCCTCCCCTATGGGACTCCCTTCTACCAAGCACATGAGCTCTCTAACAGGGTGGGGGCTAC $\tt CCCCAGACCTGCTCCTACACTGATATTGAAGAACCTGGAGAGGATCCTTCAGTTCTGGCCATTCCAGGGACCCTC$ TAAACAATCATATGCTAACATGCCACTCCTGGAAACTCCACTCTGAAGCTGCCGCTTTGGACACCAACACTCCCT TCTCCCAGGGTCATGCAGGGATCTGCTCCCTCCTGCTTCCCTTACCAGTCGTGCACCGCTGACTCCCAGGAAGTC TTTCCTGAAGTCTGACCACCTTTCTTCTTGCTTCAGTTGGGGCAGACTCTGATCCCTTCTGCCCTGGCAGAATGG

FIGURE 158

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71166

><subunit 1 of 1, 761 aa, 1 stop

><MW: 83574, pI: 6.78, NX(S/T): 4

MALPALGLDPWSLLGLFLFQLLQLLLPTTTAGGGGQGPMPRVRYYAGDERRALSFFHQKGLQ
DFDTLLLSGDGNTLYVGAREAILALDIQDPGVPRLKNMIPWPASDRKKSECAFKKKSNETQC
FNFIRVLVSYNVTHLYTCGTFAFSPACTFIELQDSYLLPISEDKVMEGKGQSPFDPAHKHTA
VLVDGMLYSGTMNNFLGSEPILMRTLGSQPVLKTDNFLRWLHHDASFVAAIPSTQVVYFFFE
ETASEFDFFERLHTSRVARVCKNDVGGEKLLQKKWTTFLKAQLLCTQPGQLPFNVIRHAVLL
PADSPTAPHIYAVFTSQWQVGGTRSSAVCAFSLLDIERVFKGKYKELNKETSRWTTYRGPET
NPRPGSCSVGPSSDKALTFMKDHFLMDEQVVGTPLLVKSGVEYTRLAVETAQGLDGHSHLVM
YLGTTTGSLHKAVVSGDSSAHLVEEIQLFPDPEPVRNLQLAPTQGAVFVGFSGGVWRVPRAN
CSVYESCVDCVLARDPHCAWDPESRTCCLLSAPNLNSWKQDMERGNPEWACASGPMSRSLRP
QSRPQIIKEVLAVPNSILELPCPHLSALASYYWSHGPAAVPEASSTVYNGSLLLIVQDGVGG
LYQCWATENGFSYPVISYWVDSQDQTLALDPELAGIPREHVKVPLTRVSGGAALAAQQSYWP
HFVTVTVLFALVLSGALIILVASPLRALRARGKVQGCETLRPGEKAPLSREQHLQSPKECRT
SASDVDADNNCLGTEVA

Signal peptide:

amino acids 1-30

Transmembrane domains:

amino acids 136-156, 222-247, 474-490, 685-704

FIGURE 159

AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAG TCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAGAG GTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAGTTGGCTTGCA TGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAGTGCAGTC ATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATA GTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGGAAGCCATTTGTGGC CATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTC CAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTG ATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTACATTTGACAACACCATCAA GGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGT GGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTAT GTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGC CAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGA ATCCGGAAATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGG AAGTGTCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGA CTGGCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCG GGCAGAATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTCTTT GGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTT AAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGAT ACAAGTCCGCGGCAGTGGCTGCCAGTGTCATCCTGCGCTCCCACCCGCTCAGCCCCACACAG CGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGGCGCGACGCACCTCAAGCCCTA TGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGC TCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGT ${\tt GGGGCCAGAAAGGTGAAGGAGACA}{{\tt TAA}}{\tt GGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGG$ GCGATGTCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTC TAGTTATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGC CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACTTG TCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCCTGCCCC TACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGTTTCTGTTT TGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAGAGTTCAGGGC CGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCACAGTGAGCTCCT TCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAAAATAAAAGTTTACA GCGTTATCTCTCCCCAACCTCACTAA

FIGURE 160

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71169

><subunit 1 of 1, 523 aa, 1 stop

><MW: 59581, pI: 8.68, NX(S/T): 1

MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGP
FMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQCSHF
LNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIPLSYVPV
FRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWF
INSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNP
EIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQ
NSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYK
SAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT
LGTLWLCGKLLGMAVWWLRGARKVKET

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 483-504

FIGURE 161

CTCCATCCCCCAGGTCCAGCCCTCAGTGCTGTCCCATCCAGCAGGGCTACCCTGAAGCTCT GGCTGCAGCCCTCCCGTCCAGTGGGCAGGCGGCTTCATCCCTCCTTTCTCTCCCAAAGCCCA ACTGCTGTCACTGCATGCTCTGCCAAGGAGGAGGAACTGCAGTGACAGCAGGAGTAAGAGT GGGAGGCAGGACAGACCTGGGACACAGGTATGGAGAGGGGGTTCAGCGAGCCTAGAGAGGGC AGACTATCAGGGTGCCGGCGGTGAGAATCCAGGGAGAGGGGGGAAACAGAAGAGGGGCAGA AGACCGGGGCACTTGTGGGTTGCAGAGCCCCTCAGCCATGTTGGGAGCCAAGCCACACTGGC TACCAGGTCCCCTACACAGTCCCGGGCTGCCCTTGGTTCTGGTGCTTCTGGCCCTGGGGGCC GGGTGGGCCCAGGAGGGGTCAGAGCCCGTCCTGCTGGAGGGGGAGTGCCTGGTGGTCTGTGA GCCTGGCCGAGCTGCTGCAGGGGGGGCCCGGGGGAGCAGCCCTGGGAGAGGCACCCCCTGGGC GAGTGGCATTTGCTGCGGTCCGAAGCCACCACCATGAGCCAGCAGGGGAAACCGGCAATGGC ACCAGTGGGGCCATCTACTTCGACCAGGTCCTGGTGAACGAGGGCGGTGGCTTTGACCGGGC $\tt CTCTGGCTCCTTCGTAGCCCCTGTCCGGGGTGTCTACAGCTTCCGGTTCCATGTGGTGAAGG$ TGTACAACCGCCAAACTGTCCAGGTGAGCCTGATGCTGAACACGTGGCCTGTCATCTCAGCC TTTGCCAATGATCCTGACGTGACCCGGGAGGCAGCCACCAGCTCTGTGCTACTGCCCTTGGA CCCTGGGGACCGAGTGTCTCTGCGCCTGCGTCGGGGGAATCTACTGGGTGGTTGGAAATACT ${\tt CAAGTTTCTCTGGCTTCCTCATCTTCCCTCTC}{{\tt TGA}}{\tt GGACCCAAGTCTTTCAAGCACAAGAAT$ ACTCCCTCTGGCTCCTATCCCACCTCTTTGCATGGGACCCTGTGCCAAACACCCCAAGTTTAA CTCCCAGCCACCTGCTTCTTTCCTGCCTGCAGCCCTAGGATCAGGGCAAGGTTTGGCA AGAAGGAAGATCTGCACTACTTTGCGGCCTCTGCTCCTCCGGTTCCCCCACCCCAGCTTCCT GCTCAATGCTGATCAGGGACAGGTGGCGCAGGTGAGCCTGACAGGCCCCCACAGGAGCCCAG ATGGACAAGCCTCAGCGTACCCTGCAGGCTTCTTCCTGTGAGGAAAGCCAGCATCACGGATC TCAGCCAGCACCGTCAGAAGCTGAGCCAGCACCGTATGGGCTAGGGTGGGAGGCTCAGCCAC GGCTGTCCTTCTATGCTGGATCCCAGATGGACTCTGGCCCTTACCTCCCCACCTGAGATTAG GGTGAGTGTGTTTGCTCTGGCTGAGAGCAGAGCTGAGAGCAGGTATACAGAGCTGGAAGTGG ACCATGGAAAACATCGATAACCATGCATCCTCTTGCTTGGCCACCTCCTGAAACTGCTCCAC TCACTGAGTTATCTTCACTGTACCTGTTCCAGCATATCCCCACTATCTCTCTTTCTCCTGAT GGCCCAGCCTGGATGAATCTATCAATAAAACAACTAGAGAATGGTGGTCAGTGAGACACTAT AGAATTACTAAGGAGAAGATGCCTCTGGAGTTTGGATCGGGTGTTACAGGTACAAGTAGGTA TGTTGCAGAGGAAAATAAATATCAAACTGTATACTAAAATTAAAAA

FIGURE 162

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180

><subunit 1 of 1, 205 aa, 1 stop

><MW: 21521, pI: 7.07, NX(S/T): 1

MLGAKPHWLPGPLHSPGLPLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGGA ALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVY SFRFHVVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRG NLLGGWKYSSFSGFLIFPL

Signal peptide:

amino acids 1-32

FIGURE 163

GCTGTTTCTCTCGCGCCACCACTGGCCGCCGGCCGCAGCTCCAGGTGTCCTAGCCGCCCAGC CTCGACGCCGTCCCGGGACCCCTGTGCTCTGCGCGAAGCCCTGGCCCCGGGGGCCGGGGCAT GAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTGACC GGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACT GGATCCAGCATCCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAA GAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTG CTCTACTTCACTTGGCTGGTGTTTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTCACA GTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGA AGACACACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATG GGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGG CATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACC TGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAAT GGGAGTGGCAATGCTATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCC TGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATG GAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTC GAGGAGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCC ATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGGCTGGTGCCCTACTCCA AGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAG CAAGACATCGACCTGTACCACACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCA CAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAAC**TGA**GCCAGCCTTCGGG GCCAATTCCCTGGAGGAACCAGCTGCAAATCACTTTTTTGCTCTGTAAATTTGGAAGTGTCA AAAAAAAAAAAAAAAA

FIGURE 164

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71184

><subunit 1 of 1, 388 aa, 1 stop

><MW: 43831, pI: 9.64, NX(S/T): 3

MKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRS
KVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRS
QWVRNWAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFP
GIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSM
PGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFA
PCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDK
HKTKFGLPETEVLEVN

Important features of the protein:

Transmembrane domain:

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-245, 318-323, 378-383

FIGURE 165

GGCCGCGGATGGGGCCGGGGCCGCCGCCCCACTCGCTGAGGCCCCGACGCAGGGCCGGGCCCGGCCCA GCGGCTGCAGGCTTGTCCAGCCGGAAGCCCTGAGGGCAGCTGTTCCCACTGGCTCTGCTGACCTTGTGCCTTGGA $\tt CGGCTGTCCTCAGCGAGGGGCCGTGCACCCGCTCCTGAGCAGCGCCATGGGCCTGCTGGCCTTCCTGAAGACCCA$ GTTCGTGCTGCACCTGCTGGTCGGCTTTGTCTTCGTGGTGAGTGGTCTGGTCATCAACTTCGTCCAGCTGTGCAC ACTGGTCATGCTGGAGTGGTGGTCCTGCACGGAGTGTACACTGTTCACGGACCAGGCCACGGTAGAGCGCTT GCGCTTCGGAGTGCTGGGGAGCTCCAAGGTCCTCGCTAAGAAGGAGCTGCTCTACGTGCCCCTCATCGGCTGGAC ${\tt GCGCCTGTCGGACTACCCCGAGTACATGTGGTTTCTCCTGTACTGCGAGGGGACGCGCTTCACGGAGACCAAGCA}$ $\tt CCGCGTTAGCATGGAGGTGGCGGCTGCTAAGGGGGCTTCCTGTCCTCAAGTACCACCTGCTGCCGCGGACCAAGGG$ $\tt CTTCACCACCGCAGTCAAGTGCCTCCGGGGGACAGTCGCAGCTGTCTATGATGTAACCCTGAACTTCAGAGGAAA$ GGAAGACATCCCGCTGGATGAAAAGGAAGCAGCTCAGTGGCTTCATAAACTGTACCAGGAGAAGGACGCCCCCA GGAGATATATAATCAGAAGGGCATGTTTCCAGGGGAGCAGTTTAAGCCTGCCCGGAGGCCGTGGACCCTCCTGAA $\tt CTTCCTGTCCTGGGCCACCATTCTCCTGTCTCCCCTCTTCAGTTTTGTCTTGGGCGTCTTTGCCAGCGGATCACC$ ${\tt TCTCCTGATCCTGACTTTCTTGGGGTTTGTGGGAGCAGCTTCCTTTGGAGTTCGCAGACTGATAGGAGAATCGCT}$ TTTCAGGCTAATGAAAAAGAATGAAGGAAAATTAACAGCCTCAGAGACCCATGGTGCACCGTCACACAAATCAA GTAACCTACCCACTCAGGAAGCTCAGTGAACTCCAATGAGGATGAATATCAGAGATCCACACCTAGATATTTCAT AATCAAAGTGTCAAATGACAAAGAATCTTGAAAGCAGCAAGAGATGAGCAACTTATCTTGTTCAAAGGATCTTTG ATCAGATTAACAGCTCATTTCTCCTCAGAAATCATGGGAGCCAGGAGATAGTGGGATGAACACTGTTGAAGGCAA ATTTAATCCCTAATAACAATTAGTCAAGCTTCCTTGACCTGTAGGAAGGCCTGTCTTTAGGCCGGGCACAGTGGC TTACACCTGTAATCCCAGCACTTTGGGAGGCCCAGACGGGTGGATCATTTGGGGTCAGGCTGATCTCAAACTCCT GAGTTCAGGTGATCTGCCCGCCTCAGCCTCCCAAAGTGTTGTGATTGCAGGCGTGAGCCACTGCGCCTGGCCGGA ATTTCTTTTTAAGGCTGAATGATGGGGGCCCAGGCACGATGGCTCACGCCTGTGATCCCAAGTAGCTTGGATTGTA ${\tt AACATGCACCACCATGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGTGTTAGCCAGGCTGGTCTCGATCTCCT}$ GACCTCAAGTGACCACCTGCCTCAGCCTCCAAAGTACTGGGATTACAGGCGTGAGCCACTGTGCCTGGCCTTGA GCATCTTGTGATGTGCTTATTGGCCATTTGTATATCTTCTATCTTCTTTGGGGAAATGTCTGTTCAAGTCCTTTG ${\tt CAGTGGCACAGTCTTGGCTCACTGCAGCCTCCTGGGCTGCAGTGATCCTCCCACCTCAGCCTCCCTTGT}$ GAGGGCCGGGTGTGGCCCCAACTACCAGGGAGACTGAAGTGGGAGGATCGCTTGGGCATGAGAAGTCGAGGCTG CAGTGAGTCGAGGTTGTGCGACTGCATTCCAGCCTGGACAACAGAGTGAGACCCTGTCTC

FIGURE 166

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213

><subunit 1 of 1, 368 aa, 1 stop

><MW: 42550, pI: 9.11, NX(S/T): 1

MGLLAFLKTQFVLHLLVGFVFVVSGLVINFVQLCTLALWPVSKQLYRRLNCRLAYSLWSQLV
MLLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFEIDFLCGWTMCERFGVLGSSKVLAKK
ELLYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHR
VSMEVAAAKGLPVLKYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGKK
YEADMCVRRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWTLLN
FLSWATILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGESLEPGRWRLQ

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

FIGURE 167

 $\texttt{GATATTCTTTATTTTAAGAATCTGAAGTACT} \underline{\textbf{ATG}} \texttt{CATCACTCCCTCCAATGTCCTGGGGCA}$ GCCACCAGGCATATTCATCTTTGTGTGTGTTTTTTCTTTTGCTTTAGCACTGGGGCACTTCTT GATAGCTGGGGTCTGAGACCTGCTTCCTCAGTAAAATTCCTGGGATCTGCCTATACCTTCTT TTCTCTAACCTGCCATACCCTGCTTAAAGCCTCTCAGGGCTTCTCTCTGTTCTTAGGATCAA AGTATTTAGAGCTACAAGAGCCCTCATGGTCTGGCCCCTGCCCCCTGGCCAGCTTCATTGT $\texttt{ACATGTGGTGTTCTCTTGTCGTTCCTG} \underline{\textbf{TAA}} \\ \texttt{TGTGGTATGCCATGGGGTCTTTGCACAAGCCT}$ TTCCTCTTTGGCTGGACACTGTTCCCTGCCCCCCCATACTCTTCCTACTTAATATGTAGTC ATCCTGCAGATTTCAATTCTAACATCATTTTCTCCAGGGATCCTGGCCTGACAGAATCTCAT CTTGTTTAATGCTCTCATAAGACCACTTGTTTCCCTTTTGCAGCACTTGCCACTCAGTTGTA TCTTTATGTGCGTTTGTGGTTGTATGGGTTGTTCTCTTTCCCCAGAATGCCCAGCTCTGAGC CATGTTTTAGAGACTAAATGGAGGAGAGATGAGGAAAAGATTGAAATCTCTCAGTTCACCA GATGGTGTAGGGCCCAGCATTGTAAATTCACACGTTGACTGTGCTTGTGAATTATCTGGGGA TGCAGGTCCTGATTCAGTAGGCCCAGGTTGGGCATCTCTAACAAACTCCCACGTGATGCTGA TGCTGGTCCTATGAACTATACTAAATAGTAAGAATCTATGGAGCCAGGCTGGGCATGGTGGC TCAAGACTAGCCTGGCCAACATGGTGGAACCCCATCTGTACTAAAAATACACAAATTAGCTG GGCATGGTGGCACATGCCTGTAGTCCCAGCTACTTGGGAGGCTGAAGCAAGAGAATCGCTTG AACCTGGGAGGCGGAGGTTGCAGTGAGCCGAGATCAGGCCACTGTATTCCAACCAGGGTGAC AGAGTGAGACTCTATGTCCAAAAAAAAAAAAA

FIGURE 168

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234

><subunit 1 of 1, 143 aa, 1 stop

><MW: 15624, pI: 9.58, NX(S/T): 0

 $\label{thm:compact} $$ MHHSLQCPGAATRHIHLCVCFSFALALGHFLLISLVGKGLSLSCGVGGRQAGLRLIRPWVRR$$ EGKINFYTNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPSWS$$ GPCPPGQLHCTCGVLLSFL$

Important features of the protein:

Signal peptide:

amino acids 1-28

FIGURE 169

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGA TTATAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCAC AGGAGTTGAACTGCTAGGATTCTGACT**ATG**CTGTGGTGGCTAGTGCTCCTACTCCTACCTAC ATTAAAATCTGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGT CACTGTGGCTCTGGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCAC ACCGTCCCCTCGAAGCCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTC ACCAACTGTCTCACGTCTGGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTA GCTGCGGCTTTCAAGGTGGGCCTTGCCCTGGCCGTAGAAGGGAT**TGA**CAAGCCCGAAGATTT CATAGGCGATGGCTCCCACTGCCCAGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGG CTAACCTTTTCATGTCCTGCACATCACCTGATCCATGGGCTAATCTGAACTCTGTCCCAAGG AACCCAGAGCTTGAGTGAGCTGTGGCTCAGACCCAGAAGGGGTCTGCTTAGACCACCTGGTT TATGTGACAGGACTTGCATTCTCCTGGAACATGAGGGAACGCCGGAGGAAAGCAAAGTGGCA GGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATGGAGGTGTTGGGTTATCACAAGGC ATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGAAGGGCTGCCGATGGCGCATGACACACT CGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGATCCACGTACCAGCTGCTG AAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAATCTGCGATCACCAG TGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGGCTAATG GCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCTGTGCG AACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGGCT CAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGT TCAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAA TCCAAACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATG CCAACATTTTGGGAGGCCGAGGCGGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTG GCCAACATGGTGAAACCCCTGTCTCTACTAAAAATACAAAAAAACTAGCCAGGCATGGTGGT GTGTGCCTGTATCCCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGT GAAGGAGGCTGAGACAGGAGAATCACTTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGA AAAAATAAAAAAAGAATTATGGTTATTTGTAA

FIGURE 170

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277

><subunit 1 of 1, 109 aa, 1 stop

><MW: 11822, pI: 8.63, NX(S/T): 0

 $\verb|MLWWLVLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTA|$

SPCWPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRRD

Signal peptide:

amino acids 1-15

FIGURE 171

GCGGGCCGCGAGTCCGAGACCTGTCCCAGGAGCTCAGCTCACGTGACCTGTCACTGCCTC GGCCCTGGGCTCAGCCGCACTGGGCGCCCTTCGCCACTGGCCTCTTCCTGGGGAGGCGGT GCCCCCATGGCGAGGCCGGCGAGAGCAGTGCCTGCTTCCCCCCGAGGACAGCCGCCTGTGG CAGTATCTTCTGAGCCGCTCCATGCGGGAGCACCCGGCGCTGCGAAGCCTGAGGCTGCTGAC CCTGGAGCAGCCGCAGGGGGATTCTATGATGACCTGCGAGCAGGCCCAGCTCTTGGCCAACC TGGCGCGCTCATCCAGGCCAAGAAGGCGCTGGACCTGGGCACCTTCACGGGCTACTCCGCC CTGGCCCTGGCCCTGCCCGCGGACGGCGCGTGGTGACCTGCGAGGTGGACGCGCA GCCCCGGAGCTGGGACGCCCCTGTGGAGGCAGGCCGAGGCGGAGCACAAGATCGACCTCC GGCTGAAGCCCGCCTTGGAGACCCTGGACGAGCTGCTGGCGGCGGCGAGGCCGGCACCTTC GCTGCTGCGACCCGGAGGCATCCTCGCCGTCCTCAGAGTCCTGTGGCGCGGGAAGGTGCTGC GACGTCAGGGTCTACATCAGCCTCCTGCCCCTGGGCGATGGACTCACCTTGGCCTTCAAGAT $\texttt{C} \underline{\textbf{TAG}} \texttt{GGCCCCTAGTGAGTGGGCTCGAGGGAGGGTTGCCTGGGAACCCCAGGAATTGAC}$

FIGURE 172

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71282</pre>

><subunit 1 of 1, 262 aa, 1 stop

><MW: 28809, pI: 8.80, NX(S/T): 1

MTQPVPRLSVPAALALGSAALGAAFATGLFLGRRCPPWRGRREQCLLPPEDSRLWQYLLSRS
MREHPALRSLRLLTLEQPQGDSMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALALAL
PADGRVVTCEVDAQPPELGRPLWRQAEAEHKIDLRLKPALETLDELLAAGEAGTFDVAVVDA
DKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYIS
LLPLGDGLTLAFKI

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 8-30, 109-130

N-glycosylation site.

amino acids 190-193

Tyrosine kinase phosphorylation site.

amino acids 238-246

N-myristoylation sites.

amino acids 22-27, 28-33, 110-115, 205-210, 255-260

Amidation sites.

amino acids 31-34, 39-42

FIGURE 173

CCGCCGCGCAGCCGCTACCGCCGCTGCAGCCGCTTTCCGCGGCCTGGGCCTCTCGCCGTCA GCATGCCACACGCCTTCAAGCCCGGGGACTTGGTGTTCGCTAAGATGAAGGGCTACCCTCAC CATCTTTTTCTTTGGCACACGAAACAGCCTTCCTGGGACCCAAGGACCTGTTCCCCTACG ACAAATGTAAAGACAAGTACGGGAAGCCCAACAAGAGGAAAGGCTTCAATGAAGGGCTGTGG GAGATCCAGAACAACCCCCACGCCAGCTACAGCGCCCCTCCGCCAGTGAGCTCCTCCGACAG CGAGGCCCCGAGGCCAACCCCGCCGACGCAGTGACGCTGACGAGGACGATGAGGACCGGG GGGTCATGGCCGTCACAGCGGTAACCGCCACAGCTGCCAGCGACAGGATGGAGAGCGACTCA GACTCAGACAAGAGTAGCGACAACAGTGGCCTGAAGAGGAAGACGCCTGCGCTAAAGATGTC GGTCTCGAAACGAGCCCGAAAGGCCTCCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCG AAGAGGAGAACTCGGAAAGCTCATCTGAGTCGGAGAAGACCAGCGACCAGGACTTCACACCT GGCGCCGTCAGCCTCCGACTCCAAGGCCGATTCGGACGGGGCCAAGCCTGAGCCGG TCTGTGAAGAAGCCTCCGAGGGGCAGGAAGCCAGCGGAGAAGCCTCTCCCGAAGCCGCGAGG GCGGAAACCGAAGCCTGAACGGCCTCCGTCCAGCTCCAGCAGTGACAGTGACAGCGACGAGG TGGACCGCATCAGTGAGTGGAAGCGGCGGGACGAGGCGCGGAGGCCGGGCCCGG CGGCGGCGAGAGCAGGAGGAGGAGCTGCGGCGCCTGCGGGAGCAGGAGAAGGAGAAGGA GCGGAGCGCGAGCGGCCGACCGCGGGGAGCTGAGCGGGCAGCGGCAGCAGCGGGG ACGAGCTCAGGGAGGACGATGAGCCCGTCAAGAAGCGGGGACGCAAGGGCCGGGGCCGGGGT TGCGGCCCGAGGAGAAGCAAGCCCAAGCCCGTGAAGGTGGAGCGGACCCGGAAGCGGTCC GAGGGCTTCTCGATGGACAGGAAGGTAGAGAAGAAGAAGAAGACCCTCCGTGGAGGAGAAGCT GCAGAAGCTGCACAGTGAGATCAAGTTTGCCCTAAAGGTCGACAGCCCGGACGTGAAGAGGT GCCTGAATGCCCTAGAGGAGCTGGGAACCCTGCAGGTGACCTCTCAGATCCTCCAGAAGAAC ACAGACGTGGTGGCCACCTTGAAGAAGATTCGCCGTTACAAAGCGAACAAGGACGTAATGGA GAAGGCAGCAGAAGTCTATACCCGGCTCAAGTCGCGGGTCCTCGGCCCAAAGATCGAGGCGG TGCAGAAAGTGAACAAGGCTGGGATGGAGAAGGAGAAGGCCGAGGAGAAGCTGGCCGGGGAG GAGCTGGCCGGGGAGGGCCCCCCAGGAGAAGGCGGAGACAAGCCCAGCACCGATCTCTC AGCCCCAGTGAATGGCGAGGCCACATCACAGAAGGGGGGAGAGCGCAGAGGACAAGGAGCACG AGGAGGGTCGGGACTCGGAGGGGGCCAAGGTGTGGCTCCTCTGAAGACCTGCACGACAGC GTACGGGAGGGTCCCGACCTGGACAGGCCTGGGAGCGACCGGCAGGAGCGCACG CCGAGCTCAGGCTGCCCCTCTCCTTCCCCGGCTCGCAGGAGAGCAGAGCAGAGAACTGTGGG TCCAACCAACATGAAATGACTATAAACGGTTTTTTAATGA

FIGURE 174

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286

><subunit 1 of 1, 671 aa, 1 stop

><MW: 74317, pI: 7.61, NX(S/T): 0

MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPPNKYPIFFFGTHETAFLGPKDLFPYD KCKDKYGKPNKRKGFNEGLWEIQNNPHASYSAPPPVSSSDSEAPEANPADGSDADEDDEDRG VMAVTAVTATAASDRMESDSDSDKSSDNSGLKRKTPALKMSVSKRARKASSDLDQASVSPSE EENSESSSESEKTSDQDFTPEKKAAVRAPRRGPLGGRKKKKAPSASDSDSKADSDGAKPEPV AMARSASSSSSSSSSSDSDVSVKKPPRGRKPAEKPLPKPRGRKPKPERPPSSSSSDSDSDEV DRISEWKRRDEARRRELEARRRREQEEELRRLREQEKEEKERRRERADRGEAERGSGGSSGD ELREDDEPVKKRGRKGRGRGPPSSSDSEPEAELEREAKKSAKKPQSSSTEPARKPGQKEKRV RPEEKQQAKPVKVERTRKRSEGFSMDRKVEKKKEPSVEEKLQKLHSEIKFALKVDSPDVKRC LNALEELGTLQVTSQILQKNTDVVATLKKIRRYKANKDVMEKAAEVYTRLKSRVLGPKIEAV QKVNKAGMEKEKAEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGESAEDKEHE EGRDSEEGPRCGSSEDLHDSVREGPDLDRPGSDRQERERARGDSEALDEES

Signal peptide:

amino acids 1-13

FIGURE 175

GTTGGTTCTCCTGGATCTTCACCTTACCAACTGCAGATCTTGGGACTCATCAGCCTCAATAATTATATTAAATTA ${\tt ACACCATTTGAAAGAGAACATTGTTTTCATC} {\tt ATG} {\tt AATGCTAATAAAGATGAAAGACTTAAAGCCAGAAGCCAAGA}$ TTTTCACCTTTTTCCTGCTTTGATGATGCTAAGCATGACCATGTTGTTTCTTCCAGTCACTGGCACTTTGAAGCA AAATATTCCAAGACTCAAGCTAACCTACAAAGACTTGCTGCTTTCAAATAGCTGTATTCCCTTTTTGGGTTCATC AGAAGGACTGGATTTTCAAACTCTTCTCTTAGATGAGGAAAGAGCCAGGCTGCTCTTGGGAGCCAAAGACCACAT CTTTCTACTCAGTCTGGTTGACTTAAACAAAATTTTAAGAAGATTTATTGGCCTGCTGCAAAGGAACGGGTGGA ATTATGTAAATTAGCTGGGAAAGATGCCAATACAGAATGTGCAAATTTCATCAGAGTACTTCAGCCCTATAACAA AACTCACATATATGTGTGTGGAACTGGAGCATTTCATCCAATATGTGGGTATATTGATCTTGGAGTCTACAAGGA GGATATTATATTCAAACTAGACACACATAATTTGGAGTCTGGCAGACTGAAATGTCCTTTCGATCCTCAGCAGCC TTTTGCTTCAGTAATGACAGATGAGTACCTCTACTCTGGAACAGCTTCTGATTTCCTTGGCAAAGATACTGCATT CACTCGATCCCTTGGGCCTACTCATGACCACCACTACATCAGAACTGACATTTCAGAGCACTACTGGCTCAATGG AGCAAAATTTATTGGAACTTTCTTCATACCAGACACCTACAATCCAGATGATGATAAAATATATTTCTTCTTTCG TGAATCATCTCAAGAAGGCAGTACCTCCGATAAAACCATCCTTTCTCGAGTTGGAAGAGTTTGTAAGAATGATGT AGGAGGACAACGCAGCCTGATAAACAAGTGGACGACTTTTCTTAAGGCCAGACTGATTTGCTCAATTCCTGGAAG AGTATATGGAGTCTTTACTACAACCAGCTCCATCTTCAAAGGCTCTGCTGTTTGTGTGTATAGCATGGCTGACAT CAGAGCAGTTTTTAATGGTCCATATGCTCATAAGGAAAGTGCAGACCATCGTTGGGTGCAGTATGATGGGAGAAT TCCTTATCCACGGCCTGGTACATGTCCAAGCAAAACCTATGACCCACTGATTAAGTCCACCCGAGATTTTCCAGA TGATGTCATCAGTTTCATAAAGCGGCACTCTGTGATGTATAAGTCCGTATACCCAGTTGCAGGAGGACCAACGTT CAAGAGAATCAATGTGGATTACAGACTGACACAGATAGTGGTGGATCATGTCATTGCAGAAGATGGCCAGTACGA TGTAATGTTTCTTGGAACAGACATTGGAACTGTCCTCAAAGTTGTCAGCATTTCAAAGGAAAAGTGGAATATGGA GCAACAATTGTACATTGGTTCCCGAGATGGATTAGTTCAGCTCTCCTTGCACAGATGCGACACTTATGGGAAAGC TTCTAAAAGGAGAGCTAGACGCCAAGATGTAAAATATGGCGACCCAATCACCCAGTGCTGGGACATCGAAGACAG CATTAGTCATGAAACTGCTGATGAAAAGGTGATTTTTGGCATTGAATTTAACTCAACCTTTCTGGAATGTATACC TAAATCCCAACAAGCAACTATTAAATGGTATATCCAGAGGTCAGGGGATGAGCATCGAGAGGAGTTGAAGCCCGA TGAAAGAATCATCAAAACGGAATATGGGCTACTGATTCGAAGTTTGCAGAAGAAGGATTCTGGGATGTATTACTG CAAAGCCCAGGAGCACACTTTCATCCACACCATAGTGAAGCTGACTTTGAATGTCATTGAGAATGAACAGATGGA AAATACCCAGAGGGCAGAGCATGAGGAGGGGCAGGTCAAGGATCTATTGGCTGAGTCACGGTTGAGATACAAAGA CTACATCCAAATCCTTAGCAGCCCAAACTTCAGCCTCGACCAGTACTGCGAACAGATGTGGCACAGGGAGAAGCG GAGACAGAGAAACAAGGGGGGCCCAAAGTGGAAGCACATGCAGGAAATGAAGAAGAAACGAAATCGAAGACATCA ${\tt CAGAGACCTGGATGAGCTCCCTAGAGCTGTAGCCACG}$ TATAAAAACATTGCCTTCTGTTTTGTATATCCCTTATAGTAATTCATAAATGCTTCCCATGGAGTTTTGCTAAGG CACAAGACAATAATCTGAATAAGACAATATGTGATGAATATAAGAAAGGGCAAAAAATTCATTTGAACCAGTTTT CCAAGAACAATCTTGCACAAGCAAAGTATAAGAATTATCCTAAAAATAGGGGGTTTACAGTTGTAAATGTTTTA GCTTTATTCCCTCGAATGTCCATTAAGCATGGAATTTACCATGCAGTTGTGCTATGTTCTTATGAACAGATATAT CATTCCTATTGAGAACCAGCTACCTTGTGGTAGGGAATAAGAGGTCAGACACAAATTAAGACAACTCCCATTATC TGGCCACTGGGGTTAAATTTAGTGTACTACAACATTGATTTACTGAAGGGCACTAATGTTTCCCCCAGGATTTCT ATTGACTAGTCAGGAGTAACAGGTTCACAGAGAGAGTTGGTGCTTAGTTATGTGTTTTTTAGAGTATATACTAA GCTCTACAGGGACAGAATGCTTAATAAATACTTTAATAAGATATGGGAAAATATTTTAATAAAACAAGGAAAACA TAATGATGTATAATGCATCCTGATGGGAAGGCATGCAGATGGGATTTGTTAGAAGACAGAAGGAAAGACAGCCAT AAATTCTGGCTTTGGGGAAAACTCATATCCCCATGAAAAGGAAGAACAATCACAAATAAAGTGAGAGTAATGTAA AACTGCTAGCAAAATCTGAGGAAACATAAATTCTTCTGAAGAATCATAGGAAGAGTAGACATTTTATTATAACC AATGATATTTCAGTATATTTTCTCTCTTTTAAAAAATATTTATCATACTCTGTATATTATTTCTTTTTACTGC CTTTATTCTCTCCTGTATATTGGATTTTGTGATTATATTTGAGTGAATAGGAGAAAACAATATATAACACACAGA AACGGAAAGGGTTAAATTAACTCTTTGACATCTTCACTCAACCTTTTCTCATTGCTGAGTTAATCTGTTGTAATT GTAGTATTGTTTTTGTAATTTAACAATAAATAAGCCTGCTACATGT

FIGURE 176

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71883

><subunit 1 of 1, 777 aa, 1 stop

><MW: 89651, pI: 7.97, NX(S/T): 3

MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVTGTLKQNIPRLKLTYKDLLLSNSCIPFL
GSSEGLDFQTLLLDEERGRLLLGAKDHIFLLSLVDLNKNFKKIYWPAAKERVELCKLAGKDA
NTECANFIRVLQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFD
PQQPFASVMTDEYLYSGTASDFLGKDTAFTRSLGPTHDHHYIRTDISEHYWLNGAKFIGTFF
IPDTYNPDDDKIYFFFRESSQEGSTSDKTILSRVGRVCKNDVGGQRSLINKWTTFLKARLIC
SIPGSDGADTYFDELQDIYLLPTRDERNPVVYGVFTTTSSIFKGSAVCVYSMADIRAVFNGP
YAHKESADHRWVQYDGRIPYPRPGTCPSKTYDPLIKSTRDFPDDVISFIKRHSVMYKSVYPV
AGGPTFKRINVDYRLTQIVVDHVIAEDGQYDVMFLGTDIGTVLKVVSISKEKWNMEEVVLEE
LQIFKHSSIILNMELSLKQQQLYIGSRDGLVQLSLHRCDTYGKACADCCLARDPYCAWDGNA
CSRYAPTSKRRARRQDVKYGDPITQCWDIEDSISHETADEKVIFGIEFNSTFLECIPKSQQA
TIKWYIQRSGDEHREELKPDERIIKTEYGLLIRSLQKKDSGMYYCKAQEHTFIHTIVKLTLN
VIENEQMENTQRAEHEEGQVKDLLAESRLRYKDYIQILSSPNFSLDQYCEQMWHREKRRQRN
KGGPKWKHMQEMKKKRNRRHHRDLDELPRAVAT

Important features of the protein:

Signal peptide:

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 32-37

FIGURE 177

CCCTGACCTCCCTGAGCCACACTGAGCTGGAAGCCGCAGAGGTCATCCTGGAGCATGCCCACCGCGGGGAGCAGA GTGGCCTGGAGAAAGAGGTTCAGCGCTTGACCAGCCGAGCTGCCCGTGACTACAAGATCCAGAACCATGGGCATC GGGTGAGGTGGGGGGCACAGGTGTCATGTGCACCTTCTTGTCTCAGCAAGAAGAGCTGAGAGAGGGGATCTTGG AGCCATTGAGGGTGTCATGGAGCTACAGAGGGGGGGGAAAGGTATTTTAAGGTAACAGTGTGGCACAATAGTTAA GAGCACAGTTTTTGGAGCTAGACCGACATAGGTTCAAATTCTCTTCTGTTGCTTCCTAGTTCTGTAGCCCCAGGT . TATTTCCACCCACCCTGTTCTCTGCCTTCCCAACCAGGTACTGCAACGACTGGAGCAGAGGCGGCAGCAGGCTT CAGAGCGGGAGGCTCCAAGCATAGAACAGAGGTTACAGGAAGTGCGAGAGAGCATCCGCCGGGCACAGGTGAGCC TGACCCAGGCCCAGGATGAGGTGGAGCAGGAGCGGCGCTCAGTGAGGCTCGGCTGTCCCAGAGGGACCTCTCTC CAACCGCTGAGGATGCTGAGCTTTCTGACTTTGAGGAATGTGAGGAGACGGGAGAGCTCTTTGAGGAGCCTGCCC AAGACAGTGACAATCCCTGCGGGGCAGAGCCCACAGCATTCCTGGCACAGGCCCTGTACAGCTACACCGGACAGA GTGCAGAGGAGCTGAGCTTCCCTGAGGGGGCCCATCCTCTCTGCTCCCCCGGGCCCAAGATGGAGTAGATGACG $\tt CTACCTCTGTGTTGGATGGGCCCCCTGCACCTGTCCTGGCGGGACAAGCCCTGGACTTCCCTGGGTTCCTGG$ ACATGATGGCACCTCGACTCAGGCCGATGCGTCCACCACCTCCCCCGCCGGCTAAAGCCCCGGATCCTGGCCACC ${\tt CCACACCATCAATGATCCAGAGCAACACCAGCCAAAAGCTGGAATCGCCCTTATTTCCACCCTCACCTCCAAGGGT$ GGAAACTTGCCCCTTCCCATTTCTAGAGCTGGAACCCACTCCTTTTTTTCCCATTGTTCTATCATCTCTAGGACC GGAACTACCTTCTCTTCTGTCATGACCCTATCTAGGGTGGTGAAATGCCTGAAATCTCTGGGGCTGGAAACC CCAGGGTCACTGGGGTTGGGCTGGGGAGAGGAACAGGCCTTGGGAATCAGGAGCTGGAGCCAGGATGCGAAGCAG CTGTAATGGTCTGAGCGGATTTATTGACAATGAATAAAGGGCACGAAGGCCAGGCCAGGGCCTGGGCCTCTTGTG CTAAGAGGGCAGGGGCCTACGGTGCTATTGCTTTAGGGGCCCACCACGGGCAGGGGCCTGCTCCCAGCTGCCAC TGAGGGGCTGTGACCTCTCCTGAGGCCCCCAGCCTGAGACTGTGCAACTCCAGGTGGAAGTAGAGCTGGTCCCTC AGCTGGGGGGCAGTGCTGTCCAGTGGAGGGGAGGGCTTTCACGCCCACCCCCCTGGCCCTGCCAGCTGGTAG TCCATCAGCACAATGAAGGAGACTTGGAGAAGAGGAAGAATAACACTGTTGCTTCCTGTTCAAGCTGTGTCCAGC TTTTCCCCTGGGGCTCCAGGACCTTCCCTACCTCCACCACCAAACCAAGGGATTTATAGCAAAGGCTAAGCCTGC AGTTTACTCTGGGGGTTCAGGGAGCCGAAAGGCTTAAATAGTTTAAGTAGGTGATGGGAAGATGAGATTACCTCA TTTAGGGCTCAGGCAGACTCACCTCACATACTCCCTGCTCCCTGTGGTAGAGACACCTGAGAGAAAGGGGAGGGG TCAACAATGAGAGCCAGGAGTAGGTCCTATCAGTGCCCCCCAGAGTAGAGAGCAATAAGAGCCCAGCCCAGTGC GCAGCCTGGGCTTGGGCCCTCCCTCCGGCCCTCAGTGTTGGCTCTGCAGAAGCTCTGGGGTTCCCTTCAAGTG TCTCAGGGGGCAGCCTCTCCATGGCAGCATCCCTGCCTTGGGCTGCCCTCCCCCAGACCCCTGACCACCCCCTG GGTCCTGTCCCCCACCAGAGCCCCAGCTCCTGTCTGTGGGGGAGCCATCACGGTGTTCGTGCAGTCCATAGCGCT TCTCAATGTGTCACCCGGAACCTGGGGGGGGGGGACCACTGGGGTTTAGGACCACAACTCAGAGGCTGCTTG GCCCTCCCCTCTGACCAGGGACATCCTGAGTTTGGTGGCTACTTCCCTCTGGCCTAAGGTAGGGGAGGCCTTCTC AGATTGTGGGGCACATTGTGTAGCCTGACTTCTGCTGGAGCTCCCAGTCCAGGAGGAAAGAGCCCAAGGCCCACTT TTGGGATCAGGTGCCTGATCACTGGGCCCCCTACCTCAGCCCCCCTTTCCCTGGAGCACCTGCCCACCTGCCCA GCCTCTTGCTGCGGCTGCAATGGATGCAAGGGGCTGCAGAGCCCAGGTGCACTGTGTGATGATGGGAGGGGGCTC $\tt CGTCCTGCAGGCTGGAGGTGGCATCCACACTGGACAGCAGGAGGAGGGGGAGTGAGGGTAACATTTCCATTTCCCT$ TCATGTTTTGTTTCTTACGTTCTTTCAGCATGCTCCTTAAAACCCCAGAAGCCCCAATTTCCCCAAGCCCCATTT TTTCTTGTCTTTATCTAATAAACTCAATATTAAG

FIGURE 178

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401

><subunit 1 of 1, 370 aa, 1 stop

><MW: 40685, pI: 4.53, NX(S/T): 0

MQLAKYQSHSKSCPTVFPPTPVLCLPNQVLQRLEQRRQQASEREAPSIEQRLQEVRESIRRA
QVSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAELS
DFEECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTITEGEWLEVIEEGDADEW
VKARNQHGEVGFVPERYLNFPDLSLPESSQDSDNPCGAEPTAFLAQALYSYTGQSAEELSFP
EGALIRLLPRAQDGVDDGFWRGEFGGRVGVFPSLLVEELLGPPGPPELSDPEQMLPSPSPPS
FSPPAPTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPPAKAPDPGHPDPLT

FIGURE 179A

GAAGGCAGAGACAGGCCAGACAGAGCGCCCAGACAGAGTCCTACAGAGGGGAGAGGCCAGAGAAGCTGCAGA AGACACAGGCAGGGAGAGACAAAGATCCAGGAAAGGAGGGCTCAGGAGGAGAGTTTGGAGAAGCCAGACCCCTGG GCACCTCTCCCAAGCCCAAGGACTAAGTTTTCTCCATTTCCTTTAACGGTCCTCAGCCCTTCTGAAAACTTTGCC GCCCTAGACGGCCTCAGTCCCTCCCAGCTGCAGTACCAGTGCCATCCCAGACAGGCTCGCATCCCGGGAGGGG GCTGCTTCTGCTACTGCTCTCTCTCTCCTGCCCTCAGCCCGGCTGGCCAGCCCCCTCCCCCGGGAGGAGGAGAT CGTGTTTCCAGAGAAGCTCAACGGCAGCGTCCTGCCTGGCTCGGCCCCCTGCCAGGCTGTTGTGCCGCTTGCA GGCCTTTGGGGAGACGCTGCTACTAGAGCTGGAGCAGGACTCCGGTGTGCAGGTCGAGGGGCTGACAGTGCAGTA GGAGTCGGTGGCATCTCTGCACTGGGATGGGGGAGCCCTGTTAGGCGTGTTACAATATCGGGGGGCTGAACTCCA CCTCCAGCCCCTGGAGGGAGCCCCCTAACTCTGCTGGGGGACCTGGGGCTCACATCCTACGCCGGAAGAGTCC TGCCAGCGGTCAAGGTCCCATGTGCAACGTCAAGGCTCCTCTTGGAAGCCCCAGCCCCAGACCCCGAAGAGCCCAA GCGCTTTGCTTCACTGAGTAGATTTGTGGAGACACTGGTGGTGGCAGATGACAAGATGGCCGCATTCCACGGTGC GGGGCTAAAGCGCTACCTGCTAACAGTGATGGCAGCAGCAGCCAAGGCCTTCAAGCACCCAAGCATCCGCAATCC TGTCAGCTTGGTGGTGACTCGGCTAGTGATCCTGGGGTCAGGCGAGGAGGGGCCCCAAGTGGGGCCCCAGTGCTGC CACCGTCTGTGACCCGGCTCGGAGCTGTGCCATTGTGGAGGATGATGGGCCTCCAGTCAGCCTTCACTGCTCAC TGAACTGGGTCATGTCTTCAACATGCTCCATGACAACTCCAAGCCATGCATCAGTTTGAATGGGCCTTTGAGCAC $\tt CTCTCGCCATGTCATGGCCCCTGTGATGGCTCATGTGGATCCTGAGGAGCCCTGGTCCCCTGCAGTGCCCGCTT$ ${\tt CATCACTGACTTCCTGGACAATGGCTATGGGCACTGTCTCTTAGACAAACCAGAGGCTCCATTGCATCTGCCTGT}$ GACTTTCCCTGGCAAGGACTATGATGCTGACCGCCAGTGCCAGCTGACCTTCGGGCCCGACTCACGCCATTGTCC ACAGCTGCCGCCCCTGTGCTGCCCTCTGGTGCTCTGGCCACCTCAATGGCCATGCCATGTGCCAGACCAAACA TGGGGGTGGTCCAGTTCTCCTCCCGAGACTGCACGAGGCCTGTCCCCCGGAATGGTGGCAAGTACTGTGAGGG CCGCCGTACCCGCTCCTGCAACACTGAGGACTGCCCAACTGGCTCAGCCCTGACCTTCCGCGAGGAGCA GTGTGCTGCCTACAACCACCGCACCGACCTCTTCAAGAGCTTCCCAGGGCCCATGGACTGGGTTCCTCGCTACAC AGGCGTGGCCCCCAGGACCAGTGCAAACTCACCTGCCAGGCCCGGGCACTGGGCTACTACTATGTGCTGGAGCC CTGTGATCGCATCATTGGCTCCAAGAAGAAGTTTGACAAGTGCATGGTGTGCGGAGGGGACGGTTCTGGTTGCAG TGCCCTCAATGGTGAATACACGCTGATGCCCTCCCCCACAGATGTGGTACTGCCTGGGGCAGTCAGCTTGCGCTA CAGCGGGGCCACTGCAGCCTCAGAGACACTGTCAGGCCATGGGCCACTGGCCCAGCCTTTGACACTGCAAGTCCT AGTGGCTGGCAACCCCCAGGACACACGCCTCCGATACAGCTTCTTCGTGCCCCGGCCGACCCCTTCAACGCCACG $\tt CCCCACTCCCCAGGACTGGCTGCACCGAAGAGCACAGATTCTGGAGATCCTTCGGCGGCGCCCCTGGGCGGCCAG$ CAGTTGTATTTATTTAGTATTTATTCACTTTTATTTAGCACCAGGGAAGGGACAAGGACTAGGGTCCTGGGGAA $\tt TTCCTGAATTTTATTTTTGGGAAAAGAAAAGTCAAGGGTAGGGTGGGCCTTCAGGGAGTGAGGGATTATCTTTT$ GCACAATCTCGGCTCACTGCATCCTCCGCCTCCCGGGTTCAAGTGATTCTCATGCCTCAGCCTCCTGAGTAGCTG GGATTACAGGCTCCTGCCACCACGCCCAGCTAATTTTTGTTTTGTTTTGTTTTGGAGACAGAGTCTCGCTATTGTC ACCAGGGCTGGAATGATTTCAGCTCACTGCAACCTTCGCCACCTGGGTTCCAGCAATTCTCCTGCCTCAGCCTCC CGAGTAGCTGAGATTATAGGCACCTACCACCACGCCCGGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCAC $\tt CATGTTGGCCAGGCTGGTCTCGAACTCCTGACCTTAGGTGATCCACTCGCCTTCATCTCCCAAAGTGCTGGGATT$ ${\tt ACAGGCGTGACCACCGTGCCTGGCCACCCCAACTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGT}$ TGTGAGCCACCACGCCGGTACATATTTTTTAAATTGAATTCTACTATTTATGTGATCCTTTTGGAGTCAGACAG

FIGURE 179B

FIGURE 180

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73492</pre>

><subunit 1 of 1, 837 aa, 1 stop

><MW: 90167, pI: 8.39, NX(S/T): 1

MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLASLLPSARLASPLPREEEIV FPEKLNGSVLPGSGAPARLLCRLQAFGETLLLELEQDSGVQVEGLTVQYLGQAPELLGGAEP GTYLTGTINGDPESVASLHWDGGALLGVLQYRGAELHLQPLEGGTPNSAGGPGAHILRRKSP ASGQGPMCNVKAPLGSPSPRPRRAKRFASLSRFVETLVVADDKMAAFHGAGLKRYLLTVMAA AAKAFKHPSIRNPVSLVVTRLVILGSGEEGPQVGPSAAQTLRSFCAWQRGLNTPEDSGPDHF DTAILFTRQDLCGVSTCDTLGMADVGTVCDPARSCAIVEDDGLQSAFTAAHELGHVFNMLHD NSKPCISLNGPLSTSRHVMAPVMAHVDPEEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHL PVTFPGKDYDADRQCQLTFGPDSRHCPQLPPPCAALWCSGHLNGHAMCQTKHSPWADGTPCG PAQACMGGRCLHMDQLQDFNIPQAGGWGPWGPWGDCSRTCGGGVQFSSRDCTRPVPRNGGKY CEGRRTRFRSCNTEDCPTGSALTFREEQCAAYNHRTDLFKSFPGPMDWVPRYTGVAPQDQCK LTCQARALGYYYVLEPRVVDGTPCSPDSSSVCVQGRCIHAGCDRIIGSKKKFDKCMVCGGDG SGCSKQSGSFRKFRYGYNNVVTIPAGATHILVRQQGNPGHRSIYLALKLPDGSYALNGEYTL MPSPTDVVLPGAVSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRYSFFVPRPT PSTPRPTPQDWLHRRAQILEILRRRPWAGRK

Important features of the protein:

Signal peptide:

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristoylation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

or completely and work their collegences property first field to the first and

FIGURE 181

CAGCAGTGGTCTCTCAGTCCTCTCAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACC**ATG**G CAAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCC AAGAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTTGGTATCCTGGCCCTAACTCT AATTGTCCTGTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACA TGGAGCACACTTTCTACAGCAATGGAGAGAAGAAGAAGATTTACATGGAAATTGATCCTGTG ACCAGAACTGAAATATTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTT TAAAAACGGATACACTGGCATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGA TTAAAGTGATTCCTGAATTTTCTGAACCAGAAGAGGAAATAGATGAGAATGAAGAAATTACC ACAACTTTCTTTGAACAGTCAGTGATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGA TTTTCTTAAAAATTCCAAAATTCTGGAGATTTGTGATAACGTGACCATGTATTGGATCAATC CCACTCTAATATCAGTTTCTGAGTTACAAGACTTTGAGGAGGAGGAGAAGATCTTCACTTT AGAGAAGACCCGTCACGCCAGACAAGCAAGTGAGGAAGAACTTCCAATAAATGACTATACTG AAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAGGTTATTGTTGTATTTACTGCCGT CGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTAGGCTACTACCCATATCCATA GCATGCTGGGGAGGGTC**TAA**TAGGAGGTTTGAGCTCAAATGCTTAAACTGCTGGCAACATAT AATAAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCT CTCCAGAATTACTTGTAGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACATTATCACC AAAAAAAAAAAAAAAA

FIGURE 182

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73727

><subunit 1 of 1, 317 aa, 1 stop

><MW: 37130, pI: 5.18, NX(S/T): 3

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAY
DMEHTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKT
QIKVIPEFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWI
NPTLISVSELQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDY
TENGIEFDPMLDERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWV
ARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 183

GCGGAACTGCCTCGGCTGGCACCTGAGGAGCGCGTGACCCCGAGGGCCCAGGGAGCTGCC CGGCTGGCCTAGGCAGCCAGCCGCACCATGCCCAGCACGCCGTGCAGCTTCTGGGCTTCCT GCTCAGCTTCCTGGGCATGGTGGGCACGTTGATCACCACCATCCTGCCGCACTGGCGGAGGA TGTGTGTGGCACAGCACAGGCATCTACCAGTGCCAGATCTACCGATCCCTGCTGGCGCTGCC GCGCCTGCGCCGTCATCGGGATGAAGTGCACGCGCTGCGCCAAGGGCACACCCGCCAAGACC CTCCTGGACCACCAACGACGTGCTGCAGAACTTCTACAACCCGCTGCTGCCCAGCGGCATGA AGTTTGAGATTGGCCAGGCCCTGTACCTGGGCTTCATCTCCTCGTCCCTCTCGCTCATTGGT GGCACCCTGCTTTGCCTGTCCTGCCAGGACGAGGCACCCTACAGGCCCTACCAGGCCCCGCC CAGGGCCACCACGACCACTGCAAACACCGCACCTGCCTACCAGCCACCAGCTGCCTACAAAG ACAATCGGGCCCCCTCAGTGACCTCGGCCACGCACGCGGGTACAGGCTGAACGACTACGTG AATGGAGGCAGGGGTTCCAGCACAAAGTTTACTTCTGGGCAATTTTTGTATCCAAGGAAATA ATGTGAATGCGAGGAAATGTCTTTAGAGCACAGGGGACAGAGGGGGGAAATAAGAGGAGGAGAA TTATGTGGGTGATTTGATAACAAGTTTAATATAAAGTGACTTGGGAGTTTGGTCAGTGGGGT

FIGURE 184

MASTAVQLLGFLLSFLGMVGTLITTILPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIY QCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAILGGTL FILAGLLCMVAVSWTTNDVVQNFYNPLLPSGMKFEIGQALYLGFISSSLSLIGGTLLCLSCQ DEAPYRPYQAPPRATTTTANTAPAYQPPAAYKDNRAPSVTSATHSGYRLNDYV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

FIGURE 185

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCG $\texttt{CAGGCGGCAGGGCGGCCAGGATC} \underline{\textbf{ATG}} \\ \texttt{TCCACCACCACATGCCAAGTGGTGGCGTTCCT}$ CCTGTCCATCCTGGGGCTGGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCC AGGACCTGTACGACAACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGC GTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCCTATTTCACCATCCTGGGACTTCCAGC CATGCTGCAGGCAGTGCGAGCCCTGATGATCGTAGGCATCGTCCTGGGTGCCATTGGCCTCC TGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTGCCAAAGCC AACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGT GTCTGTGTTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCG GCATGGGTGGGATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTG GGCTGGGTCGCTGGAGGCCTCACACTAATTGGGGGGTGTGATGATGTGCATCGCCTGCCGGGG CCTGGCACCAGAAGAACCAACTACAAAGCCGTTTCTTATCATGCCTCAGGCCACAGTGTTG CCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTTTGGGTCCAACACCAAAAAACAAGAAG ATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATCCTTCCAAGCACGACTA TGTG**TAA**TGCTCTAAGACCTCTCAGCACGGGCGGAAGAACTCCCGGAGAGCTCACCCAAAA AACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGC CTCGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCC ACCATAAAACAGCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTAT ATTTTGATGATTTAGACAGACTCCCCCTCTTCCTCCTAGTCAATAAACCCATTGATGATCTA CTGCTGTTTGAATTTTGTCTCCCCACCCCCAACTTGGCTAGTAATAAACACTTACTGAAGAA GAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTTACACTG TGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTG CTGTTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAG TCCTCTTTCTGTCGCGGGTCAGAAATTGTCCCTAGATGAAATGAGAAAATTATTTTTTTAAT TTAAGTCCTAAATATAGTTAAAATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGA AATAGCCTCACCCCTACATGTGGATAGAAGGAAATGAAAAAATAATTGCTTTGACATTGTCT ATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCCATGAAAAGCTCACACCTGTAATC CTAGCACTTTGGGAGGCTGAGGAGGAAGGATCACTTGAGCCCAGAAGTTCGAGACTAGCCTG GGCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCATGGTG GCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGG TCCTGTCTAAAAAAATAAAAATAAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAA ACTAATTCTTTAA

FIGURE 186

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734

><subunit 1 of 1, 261 aa, 1 stop

><MW: 27856, pI: 8.50, NX(S/T): 1

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTE CRPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIM FIVSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTL IGGVMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTE DEVQSYPSKHDYV

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 187

GGAAAAACTGTTCTCTTCTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCG GAGTCCAGCTGGCTAAAACTCATCCCAGAGGATA**ATG**GCAACCCATGCCTTAGAAATCGCTG GGCTGTTTCTTGGTGGTGTTGGAATGGTGGCCACAGTGGCTGTCACTGTCATGCCTCAGTGG AGAGTGTCGGCCTTCATTGAAAACAACATCGTGGTTTTTGAAAACTTCTGGGAAGGACTGTG GATGAATTGCGTGAGGCAGGCTAACATCAGGATGCAGTGCAAAATCTATGATTCCCTGCTGG CTCTTTCTCCGGACCTACAGGCAGCCAGAGGACTGATGTGTGCTGCTTCCGTGATGTCCTTC TTGGCTTTCATGATGGCCATCCTTGGCATGAAATGCACCAGGTGCACGGGGGACAATGAGAA GGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCATCATCACGGGCATGGTGGTGC TCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATAACTCAATAGTGAAT GTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCACTGGTGCT GATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTTGTTGCAACGAAAAGAGCAGTAGCTACA GATACTCGATACCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCG CATGCAAATGACAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTA CTGTTCTTAACTGCCTAATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAA GCTATTTCAGCAGAATGAGATATTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAAT TTGTTTTCTAAGGTGGTTCAAGCATCTACTCTTTTTATCATTTACTTCAAAATGACATTGCT AAAGACTGCATTATTTTACTACTGTAATTTCTCCACGACATAGCATTATGTACATAGATGAG TCCATTACACTGAATAAATAGAACTCAACTATTGCTTTTCAGGGAAATCATGGATAGGGTTG AAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCATTTATAATGA AGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATATGCTG TTTTTTAGCCTAGGAGTTAGAAATCCTAACTTCTTTATCCTCTCTCCCAGAGGCTTTTTTT TTCTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCA AACTGCTTTTCCAGGGCTATACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAAGTGATG GAAATCATATATGTATGGATATATTTTAATAAGTATTTGAGTACAGACTTTGAGGTTTCATC ACAAAAAAGTTGTCCTTTGAGAACTTCACCTGCTCCTATGTGGGTACCTGAGTCAAAATTG TCATTTTTGTTCTGTGAAAAATAAATTTCCTTCTTGTACCATTTCTGTTTAGTTTTACTAAA ATCTGTAAATACTGTATTTTTCTGTTTATTCCAAATTTGATGAAACTGACAATCCAATTTGA AAGTTTGTGTCGACGTCTGTCTAGCTTAAATGAATGTGTTCTATTTGCTTTATACATTTATA TTAATAAATTGTACATTTTTCTAATT

FIGURE 188

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735

><subunit 1 of 1, 225 aa, 1 stop

><MW: 24845, pI: 9.07, NX(S/T): 0

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRM QCKIYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGI IFIITGMVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVF CCNEKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

A CONTRACT OF THE PROPERTY OF

FIGURE 189

 $\texttt{TCGCC} \underline{\textbf{ATG}} \texttt{GCCTCTGCCGGAATGCAGATCCTGGGAGTCGTCCTGACACTGCTGGGCTGGGTG}$ AATGGCCTGGTCTCCTGTGCCCTGCCCATGTGGAAGGTGACCGCTTTCATCGGCAACAGCAT $\tt CGTGGTGGCCCAGGTGTGGGAGGGCCTGTGGATGTCCTGCGTGGTGCAGAGCACCGGCC$ AGATGCAGTGCAAGGTGTACGACTCACTGCTGGCGCTGCCACAGGACCTGCAGGCTGCACGT GCCCTCTGTGTCATCGCCCTCCTTGTGGCCCTGTTCGGCTTGCTGGTCTACCTTGCTGGGGC CAAGTGTACCACCTGTGTGGAGGAGAAGGATTCCAAGGCCCGCCTGGTGCTCACCTCTGGGA TTGTCTTTGTCATCTCAGGGGTCCTGACGCTAATCCCCGTGTGCTGGACGGCGCATGCCATC ATCCGGGACTTCTATAACCCCCTGGTGGCTGAGGCCCAAAAGCGGGAGCTGGGGGCCTCCCT GCCCTCGGGGGGTCCCAGGCCCAGCCATTACATGGCCCGCTACTCAACATCTGCCCCT GCCATCTCTCGGGGGCCCTCTGAGTACCCTACCAAGAATTACGTC**TGA**CGTGGAGGGGAATG GGGGCTCCGCTGGCGCTAGAGCCATCCAGAAGTGGCAGTGCCCAACAGCTTTGGGATGGGTT CGTACCTTTTGTTTCTGCCTCCTGCTATTTTTCTTTTGACTGAGGATATTTAAAATTCATTT GAAAACTGAGCCAAGGTGTTGACTCAGACTCTCACTTAGGCTCTGCTGTTTCTCACCCTTGG ATGATGGAGCCAAAGAGGGGATGCTTTGAGATTCTGGATCTTGACATGCCCATCTTAGAAGC TGTCCCCAAGAGTTCCTGCTGCTGCTGGGGGCTGGGCTTCCCTAGATGTCACTGGACAGCTG CCCCCATCCTACTCAGGTCTCTGGAGCTCCTCTTCTCACCCCTGGAAAAACAAATCATCTG TTAACAAAGGACTGCCCACCTCCGGAACTTCTGACCTCTGTTTCCTCCGTCCTGATAAGACG TCCACCCCCAGGGCCAGGTCCCAGCTATGTAGACCCCCGCCCCCACCTCCAACACTGCACC CTTCTGCCCTGCCCCCTCGTCTCACCCCCTTTACACTCACATTTTTATCAAATAAAGCATG TTTTGTTAGTGCA

FIGURE 190

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73736

><subunit 1 of 1, 220 aa, 1 stop

><MW: 23292, pI: 8.43, NX(S/T): 0

MASAGMQILGVVLTLLGWVNGLVSCALPMWKVTAFIGNSIVVAQVVWEGLWMSCVVQSTGQM QCKVYDSLLALPQDLQAARALCVIALLVALFGLLVYLAGAKCTTCVEEKDSKARLVLTSGIV FVISGVLTLIPVCWTAHAIIRDFYNPLVAEAQKRELGASLYLGWAASGLLLLGGGLLCCTCP SGGSQGPSHYMARYSTSAPAISRGPSEYPTKNYV

Transmembrane domains:

amino acids 8-30 (type II), 82-102, 121-140, 166-186

FIGURE 191

GCCAAGGAGAACATCATCAAAGACTTCTCTAGACTCAAAAGGCTTCCACGTTCTACATCTTG AGCATCTTCTACCACTCCGAATTGAACCAGTCTTCAAAGTAAAGGCAATGGCATTTTATCCC TTGCAAATTGCTGGGCTGGTTCTTGGGTTCCTTGGCATGGTGGGGACTCTTGCCACAACCCT TCTGCCTCAGTGGTGGAGTATCAGCTTTTGTTGGCAGCAACATTATTGTCTTTGAGAGGCTC TTGCTCTCTCTTGATCGCCCTGCTTATTGGCATCTGTGGCATGAAGCAGGTCCAGTGCACA GGCTCTAACGAGAGGGCCAAAGCATACCTTCTGGGAACTTCAGGAGTCCTCTTCATCCTGAC GGGTATCTTCGTTCTGATTCCGGTGAGCTGGACAGCCAATATAATCATCAGAGATTTCTACA ACCCAGCCATCCACATAGGTCAGAAACGAGAGCTGGGAGCAGCACTTTTCCTTGGCTGGGCA AGCGCTGCTGTCCTCTTCATTGGAGGGGGTCTGCTTTGTGGATTTTGCTGCTGCAACAGAAA ${\tt ATACGACAATGCTTAGTAAGACCTCCACCAGTTATGTC} {\color{red}{\textbf{TAA}}} {\tt TGCCTCCTTTTGGCTCCAAGT}$ ATGGACTATGGTCAATGTTTTTTATAAAGTCCTGCTAGAAACTGTAAGTATGTGAGGCAGGA GAACTTGCTTTATGTCTAGATTTACATTGATACGAAAGTTTCAATTTGTTACTGGTGGTAGG AATGAAAATGACTTACTTGGACATTCTGACTTCAGGTGTATTAAATGCATTGACTATTGTTG GACCCAATCGCTGCTCCAATTTTCATATTCTAAATTCAAGTATACCCATAATCATTAGCAAG TGTACAATGATGGACTACTTATTACTTTTTGACCATCATGTATTATCTGATAAGAATCTAAA GTTGAAATTGATATTCTATAACAATAAAACATATACCTATTCTA

FIGURE 192

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73737

><subunit 1 of 1, 173 aa, 1 stop

><MW: 18938, pI: 9.99, NX(S/T): 1

 $\label{thm:mncirqarvrlqckfyssllalppaletaralmcvavalslialligicgmkqvqctgsner \\ AKAYLLGTSGVLFILTGIFVLIPVSWTANIIIRDFYNPAIHIGQKRELGAALFLGWASAAVL \\ FIGGGLLCGFCCCNRKKQGYRYPVPGYRVPHTDKRRNTTMLSKTSTSYV$

Important features of the protein:

Transmembrane domains:

amino acids 31-51, 71-90, 112-133

N-glycosylation site.

amino acids 161-164

FIGURE 193

FIGURE 194

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73739

><subunit 1 of 1, 85 aa, 1 stop

><MW: 9232, pI: 7.94, NX(S/T): 0

MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITYGN

ECHLCTESLKSNGRVQFLHDGSC

Signal peptide:

amino acids 1-19

FIGURE 195

FIGURE 196

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742

><subunit 1 of 1, 148 aa, 1 stop

><MW: 17183, pI: 8.77, NX(S/T): 0

MAASPARPAVLALTGLALLLLLCWGPGGISGNKLKLMLQKREAPVPTKTKVAVDENKAKEFL GSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYYGDYYQRHYD EDSAIGPRSPYGFRHGASVNYDDY

Signal peptide:

amino acids 1-30

FIGURE 197

CGGCTCGAGCCCGCCGGAAGTGCCCGAGGGGCCGCGATGGAGCTGGGGGAGCCGGGCGCTC GGTAGCGCGGCGGCAAGGCAGGCGCC**ATG**ACCCTGATTGAAGGGGTGGTGATGAGGTGAC CGTCCTTTTCTCGGTGCTTGCCTGCCTTCTGGTGCTGGCCCTTGCCTGGGTCTCAACGCACA CCGCTGAGGGCGGGGACCCACTGCCCCAGCCGTCAGGGACCCCAACGCCATCCCAGCCCAGC GCAGCCATGGCAGCTACCGACAGCATGAGAGGGGGAGGCCCCAGGGGCAGAGACCCCCAGCCT GAGACACAGAGGTCAAGCTGCACAGCCAGAGCCCAGCACGGGGTTCACAGCAACACCCCCAG CCCCGGACTCCCCGCAGGAGCCCCTCGTGCTACGGCTGAAATTCCTCAATGATTCAGAGCAG GTGGCCAGGGCCTGGCCCCACGACACCATTGGCTCCTTGAAAAGGACCCAGTTTCCCGGCCG GGAACAGCAGGTGCGACTCATCTACCAAGGGCAGCTGCTAGGCGACGACACCCAGACCCTGG GCAGCCTTCACCTCCCAACTGCGTTCTCCACTGCCACGTGTCCACGAGAGTCGGTCCC CCAAATCCCCCTGCCCGCCGGGGTCCGAGCCCGGCCCCTCCGGGCTGGAAATCGGCAGCCT GCTGCTGCCCCTGCTGCTGCTGTTGCTGCTGCTCTGGTACTGCCAGATCCAGTACCGGC CCTTCTTTCCCCTGACCGCCACTCTGGGCCTGGCCGGCTTCACCCTGCTCCTCAGTCTCCTG GCCTTTGCCATGTACCGCCCG**TAG**TGCCTCCGCGGGCGCTTGGCAGCGTCGCCGGCCCCTCC CCTCTTCCCGCTGCCCTGGAGCCCAGCCCTGCGCCGCAGAGGACTCCCGGGACTGGCGGAGG CCCCGCCTGCGACCGCCGGGGCTCGGGGCCACCTCCCGGGGCTGCTGAACCTCAGCCCGCA CTGGGAGTGGGCTCCTCGGGGTCGGGCATCTGCTGTCGCTGCCTCGGCCCCGGGCAGAGCCG GGCCGCCCGGGGGCCCGTCTTAGTGTTCTGCCGGAGGACCCAGCCGCCTCCAATCCCTGAC AGCTCCTTGGGCTGAGTTGGGGACGCCAGGTCGGTGGGAGGCTGGTGAAGGGGAGCGGGGAG AAAAAAA

FIGURE 198

MTLIEGVGDEVTVLFSVLACLLVLALAWVSTHTAEGGDPLPQPSGTPTPSQPSAAMAATDSM RGEAPGAETPSLRHRGQAAQPEPSTGFTATPPAPDSPQEPLVLRLKFLNDSEQVARAWPHDT IGSLKRTQFPGREQQVRLIYQGQLLGDDTQTLGSLHLPPNCVLHCHVSTRVGPPNPPCPPGS EPGPSGLEIGSLLLPLLLLLLLLLWYCQIQYRPFFPLTATLGLAGFTLLLSLLAFAMYRP

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 195-217

FIGURE 199

FIGURE 200

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746

><subunit 1 of 1, 148 aa, 1 stop

><MW: 16896, pI: 6.05, NX(S/T): 1

MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKI NENADGSFDYGLFQINSHYWCNDYKSYSENLCHVDCQDLLNPNLLAGIHCAKRIVSGARGMN NWVEWRLHCSGRPLSYWLTGCRLR

Signal peptide:

amino acids 1-18

FIGURE 201

TCTGACCTGACTGGAAGCGTCCAAAGAGGGACGGCTGTCAGCCCTGCTTGACTGAGAACCCA CCAGCTCATCCCAGACACCTCATAGCAACCTATTTATACAAAGGGGGAAAGAACACCTGAG AATTTGAAGTCCCTGTGAATGGGCTTTCAGAAGGCAATTAAAGAAATCCACTCAGAGAGGAC TTGGGGTGAAACTTGGGTCCTGTGGTTTTCTGATTGTAAGTGGAAGCAGGTCTTGCACACGC TGTTGGCAAATGTCAGGACCAGGTTAAGTGACTGGCAGAAAAACTTCCAGGTGGAACAAGCA ACCCATGTTCTGCTGCAAGCTTGAAGGAGCCTGGAGCGGGAGAAAGCTAACTTGAACATGAC CTGTTGCATTTGGCAAGTTCTAGCAAC**ATG**CTCCTAAGGAAGCGATACAGGCACAGACCATG CAGACTCCAGTTCCTCCTGCTCCTGATGCTGGGATGCGTCCTGATGATGGTGGCGATGT GAAGCCAGGTACCGCCTGGACTTTGGGGAATCCCAGGATTGGGTACTGGAAGCTGAGGATGA GGGTGAAGAGTACAGCCCTCTGGAGGGCCTGCCACCCTTTATCTCACTGCGGGAGGATCAGC TGCTGGTGGCCGTGGCCTTACCCCAGGCCAGAAGGAACCAGAGCCAGGGCAGGAGAGGTGGG AGCTACCGCCTCATCAAGCAGCCAAGGAGGCAGGATAAGGAAGCCCCAAAGAGGGACTGGGG GGCTGATGAGGACGGGGGGGTGTCTGAAGAAGAGGGGTTGACCCCGTTCAGCCTGGACCCAC GTGGCCTCCAGGAGGCACTCAGTGCCCGCATCCCCCTCCAGAGGGCTCTGCCCGAGGTGCGG TTTCCATGATGAGGCCTGGTCCACTCTCCTGCGGACTGTACACAGCATCCTCGACACAGTGC TCTGCTCTCAGCGAATATGTGGCCAGGCTGGAGGGGGGTGAAGTTACTCAGGAGCAACAAGAG GCTGGGTGCCATCAGGGCCCGGATGCTGGGGGCCACCAGAGCCACCGGGGATGTGCTCGTCT TCATGGATGCCCACTGCGAGTGCCACCCAGGCTGGCTGGAGCCCCTCCTCAGCAGAATAGCT GGTGACAGGAGCCGAGTGGTATCTCCGGTGATAGATGTGATTGACTGGAAGACTTTCCAGTA TTACCCCTCAAAGGACCTGCAGCGTGGGGTGTTGGACTGGAAGCTGGATTTCCACTGGGAAC CTTTGCCAGAGCATGTGAGGAAGGCCCTCCAGTCCCCCATAAGCCCCATCAGGAGCCCTGTG GTGCCCGGAGAGGTGGTGGCCATGGACAGACATTACTTCCAAAACACTGGAGCGTATGACTC TCTTATGTCGCTGCGAGGTGGTGAAAACCTCGAACTGTCTTTCAAGGCCTGGCTCTGTGGTG GCTCTGTTGAAATCCTTCCCTGCTCTCGGGTAGGACACATCTACCAAAATCAGGATTCCCAT GTCATTCAAAGAAACCTTCTACAAGCATAGCCCAGAGGCCTTCTCCTTGAGCAAGGCTGAGA AGCCAGACTGCATGGAACGCTTGCAGCTGCAAAGGAGACTGGGTTGTCGGACATTCCACTGG TTTCTGGCTAATGTCTACCCTGAGCTGTACCCATCTGAACCCAGGCCCAGTTTCTCTGGAAA GCTCCACAACACTGGACTTGGGCTCTGTGCAGACTGCCAGGCAGAAGGGGACATCCTGGGCT GTCCCATGGTGTTGGCTCCTTGCAGTGACAGCCGGCAGCAACAGTACCTGCAGCACCAGC GATTCTTCAGAACTGCACGGAGGAAGGCCTGGCCATCCACCAGCAGCACTGGGACTTCCAGG AGAATGGGATGATTGTCCACATTCTTTCTGGGAAATGCATGGAAGCTGTGGTGCAAGAAAAC AATAAAGATTTGTACCTGCGTCCGTGTGATGGAAAAGCCCGCCAGCAGTGGCGATTTGACCA GATAAATGCTGTGGATGAACGA**TGA**ATGTCAATGTCAGAAGGAAAAGAGAATTTTGGCCATC AAAATCCAGCTCCAAGTGAACGTAAAGAGCTTATATATTTCATGAAGCTGATCCTTTTGTGT GTGTGCTCCTTGTGTTAGGAGAGAAAAAAGCTCTATGAAAGAATATAGGAAGTTTCTCCTTT TCACACCTTATTTCATTGACTGCTGGCTGCTTA

FIGURE 202

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73760</pre>

><subunit 1 of 1, 639 aa, 1 stop

><MW: 73063, pI: 6.84, NX(S/T): 2

MLLRKRYRHRPCRLQFLLLLLMLGCVLMMVAMLHPPHHTLHQTVTAQASKHSPEARYRLDFG
ESQDWVLEAEDEGEEYSPLEGLPPFISLREDQLLVAVALPQARRNQSQGRRGGSYRLIKQPR
RQDKEAPKRDWGADEDGEVSEEEELTPFSLDPRGLQEALSARIPLQRALPEVRHPLCLQQHP
QDSLPTASVILCFHDEAWSTLLRTVHSILDTVPRAFLKEIILVDDLSQQGQLKSALSEYVAR
LEGVKLLRSNKRLGAIRARMLGATRATGDVLVFMDAHCECHPGWLEPLLSRIAGDRSRVVSP
VIDVIDWKTFQYYPSKDLQRGVLDWKLDFHWEPLPEHVRKALQSPISPIRSPVVPGEVVAMD
RHYFQNTGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIYQNQDSHSPLDQEATL
RNRVRIAETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRLGCRTFHWFLANVYPEL
YPSEPRPSFSGKLHNTGLGLCADCQAEGDILGCPMVLAPCSDSRQQQYLQHTSRKEIHFGSP
QHLCFAVRQEQVILQNCTEEGLAIHQQHWDFQENGMIVHILSGKCMEAVVQENNKDLYLRPC
DGKARQQWRFDQINAVDER

Signal peptide:

amino acids 1-28

FIGURE 203

CGCCAAGCATGCAGTAAAGGCTGAAAATCTGGGTCACAGCTGAGGAAGACCTCAGAC**ATG**GA TGCCCCTCCCACCGCCTGCTCAGGGCTCTTCATCCTCCCCTCGAACCCCACCAGCCCCAGCC CACCCCAGCCACCCCATCAGGCTTTGAGGAGGGGCCGCCCTCATCCCAATACCCCTGGGCT ATCGTGTGGGGTCCCACCGTGTCTCGAGAGGATGGAGGGGACCCCAACTCTGCCAATCCCGG ATTTCTGGACTATGGTTTTGCAGCCCCTCATGGGCTCGCAACCCCCACCCCCAACTCAGACT CCATGCGAGGTGATGGAGATGGGCTTATCCTTGGAGAGGCACCTGCCACCCTGCGGCCATTC CTGTTCGGGGGCCGTGGGGAAGGTGTGGACCCCCAGCTCTATGTCACAATTACCATCTCCAT CATCATTGTTCTCGTGGCCACTGGCATCATCTTCAAGTTCTGCTGGGACCGCAGCCAGAAGC GACGCAGACCCTCAGGGCAGCAAGGTGCCCTGAGGCAGGAGGAGAGCCAGCAGCACTGACA GACCTGTCCCCGGCTGGAGTCACTGTGCTGGGGGGCCTTCGGGGACTCACCTACCCCACCCC TGACCATGAGGAGCCCCGAGGGGGACCCCGGCCTGGGATGCCCCACCCCAAGGGGGCTCCAG CCTTCCAGTTGAACCGG**TGA**GGGCAGGGGCAATGGGATGGGAGGCAAAGAGGGAAGGCAAC $\mathtt{CTCCCACAGCCCCTGGCCCTCCCAAGGGGGCTGGACCAGCTCCTCTGGGAGGCACCCTTC}$ CTTCTCCCAGTCTCTCAGGATCTGTGTCCTATTCTCTGCTGCCCATAACTCCAACTCTGCCC TCTTTGGTTTTTCTCATGCCACCTTGTCTAAGACAACTCTGCCCTCTTAACCTTGATTCCC CCTCTTTGTCTTGAACTTCCCCTTCTATTCTGGCCTACCCCTTGGTTCCTGACTGTGCCCTT TCCCTCTCCTCTCAGGATTCCCCTGGTGAATCTGTGATGCCCCCAATGTTGGGGTGCAGCC AAGCAGGAGGCCAAGGGCCGGCACAGCCCCCATCCCACTGAGGGTGGGGCAGCTGTGGGGA GCTGGGGCCACAGGGGCTCCTGCCCCTTGCACACCACCCGGAACACTCCCCAGCC CCACGGGCAATCCTATCTGCTCGCCCTCCTGCAGGTGGGGGCCTCACATATCTGTGACTTCG GGTCCCTGTCCCCACCCTTGTGCACTCACATGAAAGCCTTGCACACTCACCTCCACCTTCAC AGGCCATTTGCACACGCTCCTGCACCCTCTCCCCGTCCATACCGCTCCGCTCAGCTGACTCT TGGTCAGCGTTTCCTGCACACTTTACCTCTCATGTGCGTTTCCCGGCCTGATGTTGTGGTGG TGTGCGGCGTGCTCACTCTCCCCTCATGAACACCCCACCCCGCTTTCCGCAGCCCCTGC GTGCTGCTCCAGAGGTGGGTGGGAGGTGAGCTGGGGGCTCCTTGGGCCCTCATCGGTCATGG TCTCGTCCCATTCCACACCATTTGTTTCTCTGTCTCCCCATCCTACTCCAAGGATGCCGGCA TCACCCTGAGGGCTCCCCCTTGGGAATGGGGTAGTGAGGCCCCAGACTTCACCCCCAGCCCA CTGCTAAAATCTGTTTTCTGACAGATGGGTTTTGGGGAGTCGCCTGCTGCACTACATGAGAA TCTGTGTGTGTGCCATTCTCTGGACTTCAGAGCCCCCTGAGCCAGTCCTCCCTTCCCAGCCT CCCTTTGGGCCTCCCTAACTCCACCTAGGCTGCCAGGGACCGGAGTCAGCTGGTTCAAGGCC CCTCCCTCCTTCCACTCTCCTTCCTTTTGCTTCCCTGCCCTTTCCCCCTCCTCAGGTT GTGATATATTTTTGTATTATCTCTTTCTTCTTCTTGTGGTGATCATCTTGAATTACTGTG GGATGTAAGTTTCAAAATTTCAAATAAAGCCTTTGCAAGATAA

FIGURE 204

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393</pre>

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 205

FIGURE 206

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398</pre>

><subunit 1 of 1, 121 aa, 1 stop

><MW: 12073, pI: 4.11, NX(S/T): 0

MASCLALRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTG PPAPTVAPGPEDSTAQERLDQGGGSLGPGAIAAIVIAALLATCVVLALVVVALRKFSAS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 116-119

N-myristoylation site.

amino acids 91-96

FIGURE 207

 $\tt CGGGCCGGGACGGGC\underline{\textbf{ATG}} \tt GCCCTGCTGCTGTGCCTGGTGTCCTGACGGCGCGCGCCCCA$ CGGCTGTCTGCACTGCCACAGCAACTTCTCCAAGAAGTTCTCCTTCTACCGCCACCATGTGA ACTTCAAGTCCTGGTGGGTGGGCGACATCCCCGTGTCAGGGGCGCTGCTCACCGACTGGAGC GACGACACGATGAAGGAGCTGCACCTGGCCATCCCCGCCAAGATCACCCGGGAGAAGCTGGA CCAAGTGGCGACAGCAGTGTACCAGATGATGGATCAGCTGTACCAGGGGAAGATGTACTTCC CCGGGTATTTCCCCAACGAGCTGCGAAACATCTTCCGGGAGCAGGTGCACCTCATCCAGAAC ${\tt ACCCAGCCTAGCACCTGAAGGATCAATGCCATCACCCCGCGGGGACCTCCCC{\tt TAA}{\tt GTAGCCC}}$ CCAGAGGCGCTGGGAGTGTTGCCACCGCCCTCCCCTGAAGTTTGCTCCATCTCACGCTGGGG CGACTGTCAGCACCGCTGTGGCATCTTCCAGTACGAGACCATCTCCTGCAACAACTGCACAG GCCAGGGCCCTACTGTCCCTGGGGTCCCAGGCTCTCCTTGGAGGGGGCTCCCCGCCTTCCAC CTGGCTGTCATCGGGTAGGGCGGGGCCGTGGGTTCAGGGGCGCACCACTTCCAAGCCTGTGT GGTGAGTATGTGTGGGGCACAGGCTGGCTCCCTCAGCTCCCACGTCCTAGAGGGGCTCCCGA GGAGGTGGAACCTCAACCCAGCTCTGCGCAGGAGGCGGCTGCAGTCCTTTTCTCCCTCAAAG GTCTCCGACCTCAGCTGGAGGCGGGCATCTTTCCTAAAGGGTCCCCATAGGGTCTGGTTCC ACCCCATCCCAGGTCTGTGGTCAGAGCCTGGGAGGGTTCCCTACGATGGTTAGGGGTGCCCC ATGGAGGGGCTGACTGCCCCACATTGCCTTTCAGACAGGACACGAGCATGAGGTAAGGCCGC AGATCAGTGGGGGCACTGCAGGTGGGGCTCTCCCTATACCTGGGACACCTGCTGGATGTCAC CTCTGCAACCACCCATGTGGTGGTTTCATGAACAGACCACGCTCCTCTGCCTTCTCCTGG CCTGGGACACACAGAGCCACCCCGGCCTTGTGAGTGACCCAGAGAAGGGAGGCCTCGGGAGA AGGGGTGCTCGTAAGCCAACACCAGCGTGCCGCGCCTGCACACCCTTCGGACATCCCAGGC ACGAGGGTGTCGTGGATGTGGCCACACATAGGACCACACGTCCCAGCTGGGAGGAGAGGCCT GGGGCCCCCAGGGAGGGAGGCAGGGGGGGGGGGACATGGAGAGCTGAGGCAGCCTCGTCTCC CCGCAGCCTGGTATCGCCAGCCTTAAGGTGTCTGGAGCCCCCACACTTGGCCAACCTGACCT TGGAAGATGCTGCTGAGTGTCTCAAGCAGCACTGACAGCAGCTGGGCCTGCCCCAGGGCAAC GTGGGGGGGGAGACTCAGCTGGACAGCCCCTGCCTGTCACTCTGGAGCTGGGCTGCTGCTGC CTCAGGACCCCTCTCCGACCCGGACAGAGCTGAGCTGGCCAGGGCCAGGAGGCGGGAGG GAGGGAATGGGGGTGGGCTGTGCGCAGCATCAGCGCCTGGGCAGGTCCGCAGAGCTGCGGGA TGTGATTAAAGTCCCTGATGTTTCTC

FIGURE 208

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399

><subunit 1 of 1, 157 aa, 1 stop

><MW: 17681, pI: 7.65, NX(S/T): 1

MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDIPVSGALLTDWSDDTMK ELHLAIPAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNIFREQVHLIQNAIIER HLAPGSWGGGQLSREGPSLAPEGSMPSPRGDLP

Signal peptide:

amino acids 1-15

FIGURE 209

AGCAGGAGCAGGAGAGGGACA**ATG**GAAGCTGCCCCGTCCAGGTTCATGTTCCTCTTATTTCT CCTCACGTGTGAGCTGCCTGCAGAAGTTGCTGCAGAAGTTGAGAAATCCTCAGATGGTCCTG GTGCTGCCCAGGAACCCACGTGGCTCACAGATGTCCCAGCTGCCATGGAATTCATTGCTGCC ACTGAGGTGGCTGTCATAGGCTTCTTCCAGGATTTAGAAATACCAGCAGTGCCCATACTCCA TAGCATGGTGCAAAAATTCCCAGGCGTGTCATTTGGGATCAGCACTGATTCTGAGGTTCTGA CACACTACAACATCACTGGGAACACCATCTGCCTCTTTCGCCTGGTAGACAATGAACAACTG AATTTAGAGGACGAAGACATTGAAAGCATTGATGCCACCAAATTGAGCCGTTTCATTGAGAT CAACAGCCTCCACATGGTGACAGAGTACAACCCTGTGACTGTGATTGGGTTATTCAACAGCG TAATTCAGATTCATCTCCTCCTGATAATGAACAAGGCCTCCCCAGAGTATGAAGAGAACATG CACAGATACCAGAAGGCAGCCAAGCTCTTCCAGGGGAAGATTCTCTTTATTCTGGTGGACAG TGGTATGAAAGAAATGGGAAGGTGATATCATTTTTCAAACTAAAGGAGTCTCAACTGCCAG CTTTGGCAATTTACCAGACTCTAGATGACGAGTGGGATACACTGCCCACAGCAGAAGTTTCC $\mathsf{TGAATCAGAAGGAAGACTCCAAAGGTGGAACTC\mathbf{TGA}\mathsf{CTTCTCCTTGGAACTACATATGGCC$ AAGTATCTACTTTATGCAAAGTAAAAAGGCACAACTCAAATCTCAGAGACACTAAACAACAG ACACACGCGCACACACACACACACAGAGCTTCATTTCCTGTCTTAAAATCTCGTTTTCTC CATACTCTGTAAGCCCATCTGTAACACCCTAGATCAAGGCTTTAAGAGACTCACTGTGATG CCTCTATGAAAGAGGCATTCCTAGAGAAAGATTGTTCCAATTTGTCATTTAATATCAAGT TTGTATACTGCACATGACTTACACACACATAGTTCCTGCTCTTTTAAGGTTACCTAAGGGT TGAAACTCTACCTTCTTTCATAAGCACATGTCCGTCTCTGACTCAGGATCAAAAACCAAAGG ATGGTTTTAAACACCTTTGTGAAATTGTCTTTTTGCCAGAAGTTAAAGGCTGTCTCCAAGTC CCTGAACTCAGCAGAAATAGACCATGTGAAAACTCCATGCTTGGTTAGCATCTCCAACTCCC TATGTAAATCAACAACCTGCATAATAAATAAAAGGCAATCATGTTATA

FIGURE 210

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76401

><subunit 1 of 1, 273 aa, 1 stop

><MW: 30480, pI: 4.60, NX(S/T): 1

MEAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPTWLTDVPAAMEFIAATEVAVIG FFQDLEIPAVPILHSMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDI ESIDATKLSRFIEINSLHMVTEYNPVTVIGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAA KLFQGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTLDDEWDTLPTAEVSVEHVQNF CDGFLSGKLLKENRESEGKTPKVEL

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 143-162

FIGURE 211

GGAGAGCCGCGCTGGGACCGGAGTGGGGAGCGCGCGTGGAGGTGCCACCCGGCGCGGTG GCGGAGAGATCAGAAGCCTCTTCCCCAAGCCGAGCCAACCTCAGCGGGGACCCGGGCTCAGG GACGCGGCGGCGGCGGCGACTGCAGTGGCTGGACGATGCCAGCGTCCGCCGGAGCCGGG GCTCTTGACAGCTGGAGTATCAGCCTTGGAAGTATATACGCCAAAAGAAATCTTCGTGGCAA ATGGTACACAAGGGAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACTGGCGGGTTGACC TCAGTCTCCTGGAGCTTCCAGCCAGAGGGGGCCGACACTACTGTGTCGTTTTTCCACTACTC CCAAGGGCAAGTGTACCTTGGGAATTATCCACCATTTAAAGACAGAATCAGCTGGGCTGGAG ACCTTGACAAGAAGATGCATCAATCAACATAGAAAATATGCAGTTTATACACAATGGCACC TATATCTGTGATGTCAAAAACCCTCCTGACATCGTTGTCCAGCCTGGACACATTAGGCTCTA TGTCGTAGAAAAAGAGAATTTGCCTGTGTTTCCAGTTTGGGTAGTGGTGGGCATAGTTACTG CTGTGGTCCTAGGTCTCACTCTGCTCATCAGCATGATTCTGGCTGTCCTCTATAGAAGGAAA AACTCTAAACGGGATTACACTGGCTGCAGTACATCAGAGAGTTTGTCACCAGTTAAGCAGGC ${\tt TCCTCGGAAGTCCCCCTCCGACACTGAGGGTCTTGTAAAGAGTCTGCCTTCTGGATCTCACC}$ AGGGCCCAGTCATATATGCACAGTTAGACCACTCCGGCGGACATCACAGTGACAAGATTAAC AAGTCAGAGTCTGTGGTGTATGCGGATATCCGAAAGAAT**TAA**GAGAATACCTAGAACATATC CTCAGCAAGAACCAAACCGACTCTCGTGCAGAAATGTAGCCCATTACCACATGT AGCCTTGGAGACCCAGGCAAGGACAAGTACACGTGTACTCACAGAGGGAGAGAAAGATGTGT ACAAAGGATATGTATAAATATTCTATTTAGTCATCCTGATATGAGGAGCCAGTGTTGCATGA TGAAAAGATGGTATGATTCTACATATGTACCCATTGTCTTGCTGTTTTTTGTACTTTTCTTTTC AGGTCATTTACAATTGGGAGATTTCAGAAACATTCCTTTCACCATCATTTAGAAATGGTTTG CCTTAATGGAGACAATAGCAGATCCTGTAGTATTTCCAGTAGACATGGCCTTTTAATCTAAG GGCTTAAGACTGATTAGTCTTAGCATTTACTGTAGTTGGAGGATGGAGATGCTATGATGGAA AATACCCATTGGCTATGCCACTTGAAAACAATTTGAGAAGTTTTTTTGAAGTTTTTTCTCACT AAATGTGTCATATCAATTTCTGGATTCATAATAGCAAGATTAGCAAAGGATAAATGCCGAAG GTCACTTCATTCTGGACACAGTTGGATCAATACTGATTAAGTAGAAAATCCAAGCTTTGCTT GAGAACTTTTGTAACGTGGAGAGTAAAAAGTATCGGTTTTA

FIGURE 212

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76510

><subunit 1 of 1, 269 aa, 1 stop

><MW: 29082, pI: 9.02, NX(S/T): 3

MAASAGAGAVIAAPDSRRWLWSVLAAALGLLTAGVSALEVYTPKEIFVANGTQGKLTCKFKS
TSTTGGLTSVSWSFQPEGADTTVSFFHYSQGQVYLGNYPPFKDRISWAGDLDKKDASINIEN
MQFIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVWVVVGIVTAVVLGLTLLISMI
LAVLYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLPSGSHQGPVIYAQLDHSG
GHHSDKINKSESVVYADIRKN

Signal peptide:

amino acids 1-37

Transmembrane domain:

amino acids 161-183

FIGURE 213

GCCGGCTGTGCAGAGACGCCATGTACCGGCTCCTGTCAGCAGTGACTGCCCGGGCTGCCGCC CCCGGGGGCTTGGCCTCAAGCTGCGGACGACGCGGGGTCCATCAGCGCGCCGGGCTGCCGCC ${\tt TCTCGGCCACGGCTGGGGTCGGGGCTCGGGGCTGGGGGTGAAGC}$ TGGCAGGTGGGCTGAGGGGCGCGGCCCCGGCGCAGTCCCCCGCGGCCCCCGACCCTGAGGCG TCGCCTCTGGCCGAGCCGCCACAGGAGCAGTCCCTCGCCCCGTGGTCTCCGCAGACCCCGGC GCCGCCTGCTCCAGGTGCTTCGCCAGAGCCATCGAGAGCCGCCGCGACCTGCTGCACAGGA TCAAGGATGAGGTGGGCGCACCGGGCATAGTGGTTGGAGTTTCTGTAGATGGAAAAGAAGTC TGGTCAGAAGGTTTAGGTTATGCTGATGTTGAGAACCGTGTACCATGTAAACCAGAGACAGT TATGCGAATTGCTAGCATCAGCAAAAGTCTCACCATGGTTGCTCTTGCCAAATTGTGGGAAG CAGGGAAACTGGATCTTGATATTCCAGTACAACATTATGTTCCCGAATTCCCAGAAAAAGAA TATGAAGGTGAAAAGGTTTCTGTCACAACAAGATTACTGATTTCCCATTTAAGTGGAATTCG TCATTATGAAAAGGACATAAAAAAGGTGAAAGAAGAAGAAGCTTATAAAGCCTTGAAGATGA TGAAAGAGAATGTTGCATTTGAGCAAGAAAAGAAGGCCAAAAGTAATGAAAAGAATGATTTT ACTAAATTTAAAACAGAGCAGGAGAATGAAGCCAAATGCCGGAATTCAAAACCTGGCAAGAA AAAGAATGATTTTGAACAAGGCGAATTATATTTTGAGAGAAAAGTTTGAAAATTCAATTGAAT CCCTAAGATTATTTAAAAATGATCCTTTGTTCTTCAAACCTGGTAGTCAGTTTTTTGTATTCA CTATATGCAGAAAATATTCCATGACTTGGATATGCTGACGACTGTGCAGGAAGAAAACGAGC CAGTGATTTACAATAGAGCAAGG**TAA**ATGAATACCTTCTGCTGTGTCTAGCTATATCGCATC TTAACACTATTTTATTAATTAAAAGTCAAATTTTCTTTGTTTCCATTCCAAAATCAACCTGC TGTTTATAAAGTAAAAAA

FIGURE 214

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76522

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41221, pI: 8.54, NX(S/T): 0

MYRLLSAVTARAAAPGGLASSCGRRGVHQRAGLPPLGHGWVGGLGLGLALGVKLAGGLRG
AAPAQSPAAPDPEASPLAEPPQEQSLAPWSPQTPAPPCSRCFARAIESSRDLLHRIKDEVGA
PGIVVGVSVDGKEVWSEGLGYADVENRVPCKPETVMRIASISKSLTMVALAKLWEAGKLDLD
IPVQHYVPEFPEKEYEGEKVSVTTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAF
EQEKEGKSNEKNDFTKFKTEQENEAKCRNSKPGKKKNDFEQGELYLREKFENSIESLRLFKN
DPLFFKPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLDMLTTVQEENEPVIYNRAR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

FIGURE 215

AGGCTGGTGGGAAGAAGCCGAG**ATG**GCGGCAGCCAGCGCTGGGGCAACCCGGCTGCTCCTGC TCTTGCTGATGGCGGTAGCAGCGCCCAGTCGAGCCCGGGCAGCGGCTGCCGGGCCGGGACT GGTGCGCGAGGGCTGGGGCGGAAGGTCGAGAGGCCGAGGCCTGTGGCACGGTGGGGCTGCT GCTGGAGCACTCATTTGAGATCGATGACAGTGCCAACTTCCGGAAGCGGGGCTCACTGCTCT GGAACCAGCAGGATGGTACCTTGTCCCTGTCACAGCGGCAGCTCAGCGAGGAGGAGCGGGGC CGACTCCGGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATCCCAAGGCGACCCGG GGCCCTGGATGGCCTGGAAGCTGGTGGCTATGTCTCCTCCTTTGTCCCTGCGTGCTCCCTGG TGGAGTCGCACCTGTCGGACCAGCTGCACGTGGATGTGGCCGGCAACGTGGTGGGC GTGTCGGTGGTGACGCACCCCGGGGGCTGCCGGGGCCATGAGGTGGAGGACGTGGACCTGGA GCTGTTCAACACCTCGGTGCAGCTGCAGCCGCCCACCACAGCCCCAGGCCCTGAGACGGCGG CCTTCATTGAGCGCCTGGAGATGGAACAGGCCCAGAAGGCCAAGAACCCCCAGGAGCAGAAG TCCTTCTTCGCCAAATACTGGATGTACATCATTCCCGTCGTCCTGTTCCTCATGATGTCAGG ${\tt AGCGCCAGACACCGGGGGCCAGGGTGGGGGTGGGGGTGGTGGTGGGGGTAGTGGCC}$ TTTGCTGTGTGCCACCCTCCCTG**TAA**GTCTATTTAAAAACATCGACGATACATTGAAATGTG TGAACGTTTTGAAAAGCTACAGCTTCCAGCAGCCAAAAGCAACTGTTGTTTTTGGCAAGACGG TCCTGATGTACAAGCTTGATTGAAATTCACTGCTCACTTGATACGTTATTCAGAAACCCAAG GAATGGCTGTCCCCATCCTCATGTGGCTGTGTGGAGCTCAGCTGTGTTGTGTGGCAGTTTAT TAAACTGTCCCCCAGATCGACACGCAAAAAAAA

FIGURE 216

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76529

><subunit 1 of 1, 269 aa, 1 stop

><MW: 28004, pI: 5.80, NX(S/T): 1

MAAASAGATRLLLLLLMAVAAPSRARGSGCRAGTGARGAGAEGREGEACGTVGLLLEHSFEI DDSANFRKRGSLLWNQQDGTLSLSQRQLSEEERGRLRDVAALNGLYRVRIPRRPGALDGLEA GGYVSSFVPACSLVESHLSDQLTLHVDVAGNVVGVSVVTHPGGCRGHEVEDVDLELFNTSVQ LQPPTTAPGPETAAFIERLEMEQAQKAKNPQEQKSFFAKYWMYIIPVVLFLMMSGAPDTGGQ GGGGGGGGGGGGGGGCCCVPPSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 226-243

FIGURE 217

GGAGCGCTGCTGGAACCCGAGCCGGAGCCACAGCGGGGAGGGTGGCCTGGCGGCCT GGAGCCGGACGTGTCCGGGGCGTCCCCGCAGACCGGGGCAGCAGGTCGTCCGGGGGCCCACC AACTGGACTTCTATCAGGTCTACTTCCTGGCCCTGGCAGCTGATTGGCTTCAGGCCCCCTAC CTCTATAAACTCTACCAGCATTACTACTTCCTGGAAGGTCAAATTGCCATCCTCTATGTCTG TGGCCTTGCCTCTACAGTCCTCTTTGGCCTAGTGGCCTCCTCCCTTGTGGATTGGCTGGGTC GCAAGAATTCTTGTGTCCTCTTCTCCCTGACTTACTCACTATGCTGCTTAACCAAACTCTCT CAAGACTACTTTGTGCTGCTAGTGGGGCGAGCACTTGGTGGGCTGTCCACAGCCCTGCTCTT CTCAGCCTTCGAGGCCTGGTATATCCATGAGCACGTGGAACGGCATGACTTCCCTGCTGAGT GTGGCAGCTGAGCCTGTAGCCAGCTGGATAGGGCTGGGGCCTGTAGCGCCCTTTGTGGCTGC CATCCCTCTCCTGGCTCTGGCAGGGGCCTTGGCCCTTCGAAACTGGGGGGGAGAACTATGACC GGCAGCGTGCCTTCTCAAGGACCTGTGCTGGAGGCCTGCGCTGCCTCTGTCGGACCGCCGC GTGCTGCTGGGGCACCATACAAGCTCTATTTGAGAGTGTCATCTTCATCTTTGTCTTCCT CTGGACACCTGTGCTGGACCCACACGGGGCCCCTCTGGGCATTATCTTCTCCAGCTTCATGG CAGCCAGCCTGCTTGGCTCTTCCCTGTACCGTATCGCCACCTCCAAGAGGTACCACCTTCAG CTCTACCAGCCCAGGCCAGGAGAGTCCGGTGGAGTCCTTCATAGCCTTTCTACTTATTGAGT TGGCTTGTGGATTATACTTTCCCAGCATGAGCTTCCTACGGAGAAAGGTGATCCCTGAGACA CCTTGTCCTCCATGACAGTGATCGAAAAACAGGCACTCGGAATATGTTCAGCATTTGCTCTG CTGTCATGGTGATGGCTCTGCTGGCAGTGGTGGGACTCTTCACCGTGGTAAGGCATGATGCT GAGCTGCGGGTACCTTCACCTACTGAGGAGCCCTATGCCCCTGAGCTG**TAA**CCCCACTCCAG GACAAGATAGCTGGGACAGACTCTTGAATTCCAGCTATCCGGGATTGTACAGATCTCTCTGT GACTGACTTTGTGACTGTCCTGTGGTTTCTCCTGCCATTGCTTTGTGTTTTGGGAGGACATGA TGGGGGTGATGGACTGGAAAGAGGTGCCAAAAGTTCCCTCTGTGTTACTCCCATTTAGAAA ATAAACACTTTTAAATGATCAAAAAAAAAAAA

FIGURE 218

MLVTAYLAFVGLLASCLGLELSRCRAKPPGRACSNPSFLRFQLDFYQVYFLALAADWLQAPY
LYKLYQHYYFLEGQIAILYVCGLASTVLFGLVASSLVDWLGRKNSCVLFSLTYSLCCLTKLS
QDYFVLLVGRALGGLSTALLFSAFEAWYIHEHVERHDFPAEWIPATFARAAFWNHVLAVVAG
VAAEAVASWIGLGPVAPFVAAIPLLALAGALALRNWGENYDRQRAFSRTCAGGLRCLLSDRR
VLLLGTIQALFESVIFIFVFLWTPVLDPHGAPLGIIFSSFMAASLLGSSLYRIATSKRYHLQ
PMHLLSLAVLIVVFSLFMLTFSTSPGQESPVESFIAFLLIELACGLYFPSMSFLRRKVIPET
EQAGVLNWFRVPLHSLACLGLLVLHDSDRKTGTRNMFSICSAVMVMALLAVVGLFTVVRHDA
ELRVPSPTEEPYAPEL

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 41-55, 75-94, 127-143, 191-213, 249-270, 278-299, 314-330, 343-359, 379-394, 410-430

FIGURE 219

GCGACGCGCGGGGGGGGGGAGAGGAAACGCGGCCCGGGCCCGGCCCTGGAGATG GTCCCCGGCGCGCGGGTGTTGTCTCGTGCTCTGGCTCCCCGCGTGCGTCGCGCCCA CGGCTTCCGTATCCATGATTATTTGTACTTTCAAGTGCTGAGTCCTGGGGACATTCGATACA TCTTCACAGCCACACCTGCCAAGGACTTTGGTGGTATCTTTCACACAAGGTATGAGCAGATT CACCTTGTCCCCGCTGAACCTCCAGAGGCCTGCGGGGAACTCAGCAACGGTTTCTTCATCCA AGGAGCACGGCGGGCGGCGGTGATCATCTCTGACAACGCAGTTGACAATGACAGCTTCTAC GTGGAGATGATCCAGGACAGTACCCAGCGCACAGCTGACATCCCCGCCCTCTTCCTGCTCGG CCGAGACGGCTACATGATCCGCCGCTCTCTGGAACAGCATGGGCTGCCATGGGCCATCATTT CCATCCCAGTCAATGTCACCAGCATCCCCACCTTTGAGCTGCTGCAACCGCCCTGGACCTTC TGGTAGAAGAGTTTGTCCCACATTCCAGCCATAAGTGACTCTGAGCTGGGAAGGGGAAACCC AGGAATTTTGCTACTTGGAATTTGGAGATAGCATCTGGGGACAAGTGGAGCCAGGTAGAGGA AAAGGGTTTGGGCGTTGCTAGGCTGAAAGGGAAGCCACACCACTGGCCTTCCCCTTCCCCAGG GCCCCCAAGGGTGTCTCATGCTACAAGAAGAGGCCAAGAGACAGGCCCCAGGGCTTCTGGCTA GAACCCGAAACAAAGGAGCTGAAGGCAGGTGGCCTGAGAGCCATCTGTGACCTGTCACACT CACCTGGCTCCAGCCTCCCCTACCCAGGGTCTCTGCACAGTGACCTTCACAGCAGTTGTTGG AGTGGTTTAAAGAGCTGGTGTTTGGGGACTCAATAAACCCTCACTGACTTTTTAGCAATAAA

FIGURE 220

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76532

><subunit 1 of 1, 188 aa, 1 stop

><MW: 21042, pI: 5.36, NX(S/T): 2

MVPGAAGWCCLVLWLPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQ IHLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNAVDNDSF YVEMIQDSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFELLQPPWTFW

Signal peptide:

amino acids 1-20

FIGURE 221

FIGURE 222

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76538

><subunit 1 of 1, 116 aa, 1 stop

><MW: 12910, pI: 6.41, NX(S/T): 1

MELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPILSYWPYGCHCGLGGRGQPKDATDW CCQTHDCCYDHLKTQGCGIYKDNNKSSIHCMDLSQRYCLMAVFNVIYLENEDSE

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 1-24

N-glycosylation site.

amino acids 86-89

N-myristoylation sites.

amino acids 20-25, 45-50

Phospholipase A2 histidine active site.

amino acids 63-70

FIGURE 223

CTCGCTTCTTCTGGATGGGGGCCCAGGGGGCCCAGGAGAGTATAAAGGCGATGTGGAG
GGTGCCCGGCACAACCAGACGCCCAGTCACAGGCGAGAGCCCTGGGATGCACCGGCCAGAGG
CCATGCTGCTGCTCACGCTTGCCCTCCTGGGGGGCCCCACCTGGGCAGGAAGATGTAT
GGCCCTGGAGGAGGCAAGTATTTCAGCACCACTGAAGACTACGACCATGAAATCACAGGGCT
GCGGGTGTCTGTAGGTCTTCTCCTGGTGAAAAGTGTCCAGGTGAAACTTGGAGACTCCTGGG
ACGTGAAACTGGGAGCCTTAGGTGGGAATACCCAGGAAGTCACCCTGCAGCCAGGCGAATAC
ATCACAAAAGTCTTTGTCGCCTTCCAAGCTTTCCTCCGGGGTATGGTCATGTACACCAGCAA
GGACCGCTATTTCTATTTTGGGAAGCTTGATGGCCAGATCTCCTTGCCTACCCCAGCCAAG
AGGGGCAGGTGCTGGTGGGCATCTATGGCCAGTATCAACTCCTTGGCATCAAGAGCATTGGC
TTTGAATGGAATTATCCACTAGAGGAGCCGACCACTGAGCCACCAGTTAATCTCACATACTC
AGCAAACTCACCCGTGGGTCGCTAGGGGGGGTATGGGGCCATCCGAGCTGAGCCATCTGT
GTGGTGGTGGCTGATGGTACTGGAGTAACTGGGGCCATCCGAGCTGAATCCACCAATA
AATAAAGCTTCTGCAGAAAA

FIGURE 224

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76541

><subunit 1 of 1, 178 aa, 1 stop

><MW: 19600, pI: 5.89, NX(S/T): 1

 $\label{thm:continuous} MHRPEAMLLLITLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSVGLLLVKSVQVK \\ LGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDGQISS \\ AYPSQEGQVLVGIYGQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR$

Signal peptide:

amino acids 1-22

FIGURE 225

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCT GAACTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAG CCCCAAATTGCCTGGAAGAATACATCATGTTTTTCGATAAGAAGAAATTGTAGGATCCAGTT TTTTTTTTAACCGCCCCCCCCCCCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATAT CCATGAAGATCCTATTACCTAGGAAGATTTTGATGTTTTGCTGCGAATGCGGTGTTGGGATT TATTTGTTCTTGGAGTGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCT CCCAAGGGGTCCAATTTTTCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTG ACAGGGGCTGTCATGCAACTGGCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAA ${\tt CAATACAAAGG}$ ${\tt GATG}$ ${\tt GGTTTCAATGTAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTT}$ ATAGCCCCCACTGTCTTACTGACAATGCTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTG TAGGTGTGAAGGCAAAATGGTATATTGTGAATCTCAGAAATTACAGGAGATACCCTCAAGTA TATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCTATAACAGCCTTCAAAAACTTAAGTATAAT CAATTTAAAGGGCTCAACCAGCTCACCTGGCTATACCTTGACCATAACCATATCAGCAATAT TGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGAGCTGATTCTTAGTTCCAATAGAA TCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATTTACGGAACTTGGATCTGTCC TATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGCTTGCGGAAGCTGCTGAGTTT ACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCAAGACTGCCGCAACC TGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATGTCTTTGCTGGC TTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGTCATAG GACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGATC GAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGA TTCCAACAAGCTCACATTTATTGGTCAAGAGATTTTGGATTCTTGGATATCCCTCAATGACA TCAGTCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTG AAAAGTTTTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGG AGTAAATGTGATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGT TTGATCTGGCCAGGGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCAT GAGAGCAAACCCCCTTTGCCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGC TGACGCCGAGCACATCTCTTTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCG TGCTCGTCATCCTGCTGGTTATCTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAG CTGCAGCAGCGCTCCCTCATGCGAAGGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAAT GACTCCCAGCACCCAGGAATTTTATGTAGATTATAAACCCACCAACACGGAGACCAGCGAGA TGCTGCTGAATGGGACGGGACCCTGCACCTATAACAAATCGGGCTCCAGGGAGTGTGAGGTA **TGA**ACCATTGTGATAAAAAGAGCTCTTAAAAGCTGGGAAATAAGTGGTGCTTTATTGAACTC TGGTGACTATCAAGGGAACGCGATGCCCCCCCCCCCTCCCCTTCCCTCTCACTTTGGTGG ATCAACCCATTGAAATTTAAATACCACAATCAATGTGAAGCTTGAACTCCGGTTTAATATAA TACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTTGTTTTAAGATAAAACT TCTTTCATAGGTAAAAAAAAAAA

FIGURE 226

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77301

><subunit 1 of 1, 513 aa, 1 stop

><MW: 58266, pI: 9.84, NX(S/T): 4

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAG
CLGLSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYF
LNNTFRPVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELL
DLGYNRIRSLARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTM
SWTWSSLQRLDLSGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLA
GNIWECSRNICSLVNWLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLA
RALPKPTFKPKLPRPKHESKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVI
LLVIYVSWKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLN
GTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-qlycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 227

AGTTCTGAGAAAGAAGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCTT TAAATATGTCAAGATCCAGACTTTTCAGTGTCACCTCAGCGATCTCAACGATAGGGATCTTG TGTTTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCATGCGAAGAAGATGAAATGTGTGT AAATTATAATGACCAACACCCTAATGGCTGGTATATCTGGATCCTCCTGCTGCTGGTTTTGG ATTGATTCTCACAGGCGCACCATGGCAGTTTTTGCTGTTGGAGACTTGGACTCTATTTATGG GACAGAAGCAGCTGTGAGTCCAACTGTTGGAATTCACCTTCAAACTCAAACCCCTGACCTAT ATCCTGTTCCTGCTCCATGTTTTGGCCCTTTAGGCTCCCCACCTCCATATGAAGAAATTGTA $AAAACAACC{ extbf{TGA}}$ TTTTAGGTGTGGATTATCAATTTAAAGTATTAACGACATCTGTAATTCCA AAACATCAAATTTAGGAATAGTTATTTCAGTTGTTGGAAATGTCCAGAGATCTATTCATATA GTCTGAGGAAGGACAATTCGACAAAAGAATGGATGTTGGAAAAAATTTTGGTCATGGAGATG TTTAAATAGTAAAGTAGCAGGCTTTTGATGTGTCACTGCTGTATCATACTTTTATGCTACAC AACCAAATTAATGCTTCTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAGTAGTT TCCATCACATTTAGGACTCCACTGCAGTATACAGCACACCATTTTCTGCTTTAAACTCTTTC CTAGCATGGGGTCCATAAAAATTATTATAATTTAACAATAGCCCAAGCCGAGAATCCAACAT GTCCAGAACCAGAACCAGAAGATAGTATTTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAA GAAAAGTTTGGAGTTGAAGGGTAAAGGATAAATGAAGAGGAAAAGGAAAAGATTACAAGTCT AGGAGATTGCTGAAGATATAGAGCACATATAATGCCAACACGGGGAGAAAAGAAAATTTCCC CTTTTACAGTAATGAATGTGGCCTCCATAGTCCATAGTGTTTCTCTGGAGCCTCAGGGCTTG GCATTTATTGCAGCATCATGCTAAGAACCTTCGGCATAGGTATCTGTTCCCATGAGGACTGC AGAAGTAGCAATGAGACATCTTCAAGTGGCATTTTGGCAGTGGCCATCAGCAGGGGGACAGA CAAAAACATCCATCACAGATGACATATGATCTTCAGCTGACAAATTTGTTGAACAAAACAAT AAACATCAATAGATATCTAAAAA

FIGURE 228

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303</pre>

><subunit 1 of 1, 146 aa, 1 stop

><MW: 16116, pI: 4.99, NX(S/T): 0

MSRSRLFSVTSAISTIGILCLPLFQLVLSDLPCEEDEMCVNYNDQHPNGWYIWILLLLVLVA ALLCGAVVLCLQCWLRRPRIDSHRRTMAVFAVGDLDSIYGTEAAVSPTVGIHLQTQTPDLYP VPAPCFGPLGSPPPYEEIVKTT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

FIGURE 229

TTCTCCAGCTCGATCTGGAGGCTGCTTCGCCAGTGTGGGACGCAGCTGACGCCCGCTTATTA GCTCTCGCTGCGTCGCCCCGGCTCAGAAGCTCCGTGGCGCGCGACCGTGACGAGAAGCCC ACGGCCAGCTCAGTTCTCTTCTACTTTGGGAGAGAGAGAAAGTCAGATGCCCCTTTTAAACT CCCTCTTCAAAACTCATCTCCTGGGTGACTGAGTTAATAGAGTGGATACAACCTTGCTGAAG CAATCTCAAGAAAAATATGTCCCAGAAATTGAGTTTACTGTTGCTTGTATTTGGACTCATT TGGGGATTGATGTTACTGCACTATACTTTTCAACAACCAAGACATCAAAGCAGTGTCAAGTT ACGTGAGCAAATACTAGACTTAAGCAAAAGATATGTTAAAGCTCTAGCAGAGGAAAATAAGA ACACAGTGGATGTCGAGAACGGTGCTTCTATGGCAGGATATGCGGATCTGAAAAGAACAATT GCTGTCCTTCTGGATGACATTTTGCAACGATTGGTGAAGCTGGAGAACAAAGTTGACTATAT TGTTGTGAATGGCTCAGCAGCCAACACCACCAATGGTACTAGTGGGAATTTGGTGCCAGTAA CCACAAATAAAAGAACGAATGTCTCGGGCAGTATCAGA**TAG**CAGTTGAAAATCACCTTGTGC TGCTCCATCCACTGTGGATTATATCCTATGGCAGAAAAGCTTTATAATTGCTGGCTTAGGAC AGAGCAATACTTTACAATAAAAGCTCTACACATTTTCAAGGAGTATGCTGGATTCATGGAAC TCTAATTCTGTACATAAAAATTTTAAAGTTATTTGTTTGCTTTCAGGCAAGTCTGTTCAATG CTGTACTATGTCCTTAAAGAGAATTTGGTAACTTGGTTGATGTGGTAAGCAGATAGGTGAGT TTTGTATAAATCTTTTGTGTTTGAGATCAAGCTGAAATGAAAACACTGAAAAACATGGATTC ATTTCTATAACACATTTATTTAAGTATATAACACGTTTTTTTGGACAAGTGAAGAATGTTTAA TCATTCTGTCATTTGTTCTCAATAGATGTAACTGTTAGACTACGGCTATTTGAAAAAATGTG CTTATTGTACTATATTTTGTTATTCCAATTATGAGCAGAGAAAGGAAATATAATGTTGAAAA TAATGTTTTGAAATCATGACCCAAAGAATGTATTGATTTGCACTATCCTTCAGAATAACTGA AGGTTAATTATTGTATATTTTTAAAAATTACACTTATAAGAGTATAATCTTGAAATGGGTAG CAGCCACTGTCCATTACCTATCGTAAACATTGGGGCCAATTTAATAACAGCATTAAAAATAGTT GTAAACTCTAATCTTATACTTATTGAAGAATAAAAGATATTTTTATGATGAGAGTAACAATA AAGTATTCATGATTTTTCACATACATGAATGTTCATTTAAAAGTTTAATCCTTTGAGTGTCT ATGCTATCAGGAAAGCACATTATTTCCATATTTGGGTTAATTTTGCTTTTATTATATTGGTC TAGGAGGAAGGGACTTTGGAGAATGGAACTCTTGAGGACTTTAGCCAGGTGTATATAATAAA CTTTATGAAATTTTGAATTTGTATAACAGATGCATTAGATATTCATTTTATATAATGGCCAC TTAAAATAAGAACATTTAAAATATAAACTATGAAGATTGACTATCTTTTCAGGAAAAAAGCT GTATATAGCACAGGGAACCCTAATCTTGGGTAATTCTAGTATAAAACAAATTATACTTTTAT CTCTATAGTAACTGCTTAAGTGCAGCTAGCTTCTAGATTTAGACTATATAGAATTTAGATAT TGTATTGTTCGTCATTATAATATGCTACCACATGTAGCAATAATTACAATATTTTATTAAAA CTGTCTACCTTTATGTGAAGAAATTAATTATATGCCATTGCCAGGT

FIGURE 230

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648

><subunit 1 of 1, 140 aa, 1 stop

><MW: 15668, pI: 10.14, NX(S/T): 5

MFFTISRKNMSQKLSLLLLVFGLIWGLMLLHYTFQQPRHQSSVKLREQILDLSKRYVKALAE ENKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNL VPVTTNKRTNVSGSIR

Important features of the protein:

Signal peptide:

amino acids 1-26

FIGURE 231

CGCGGCCGGGCCGGGGTGAGCGTGCCGAGGCGGCTGTGGCGCAGGCTTCCAGCCCCCAC CATGCCGTGGCCCCTGCTGCTGCTGCCGTGAGTGGGGCCCAGACAACCCGGCCATGCT TCCCCGGGTGCCAATGCGAGGTGGAGACCTTCGGCCTTTTCGACAGCTTCAGCCTGACTCGG GTGGATTGTAGCGGCCTGGGCCCCCACATCATGCCGGTGCCCATCCCTCTGGACACAGCCCA CTTGGACCTGTCCTCCAACCGGCTGGAGATGGTGAATGAGTCGGTGTTGGCGGGGCCGGGCT ACACGACGTTGGCTGGCCTGGATCTCAGCCACAACCTGCTCACCAGCATCTCACCCACTGCC TTCTCCCGCCTTCGCTACCTGGAGTCGCTTGACCTCAGCCACAATGGCCTGACAGCCCTGCC AGCCGAGAGCTTCACCAGCTCACCCCTGAGCGACGTGAACCTTAGCCACAACCAGCTCCGGG AGGTCTCAGTGTCTGCCTTCACGACGCACAGTCAGGGCCGGGCACTACACGTGGACCTCTCC TCAGAGCCTGAACCTGGCCTGGAACCGGCTCCATGCCGTGCCCAACCTCCGAGACTTGCCCC TGCGCTACCTGAGCCTGGATGGGAACCCTCTAGCTGTCATTGGTCCGGGTGCCTTCGCGGGG CTGGGAGGCCTTACACACCTGTCTCTGGCCAGCCTGCAGAGGCTCCCTGAGCTGGCGCCCAG TGGCTTCCGTGAGCTACCGGGCCTGCAGGTCCTGGACCTGTCGGGCAACCCCAAGCTTAACT GGGCAGGAGCTGAGGTGTTTTCAGGCCTGAGCTCCCTGCAGGAGCTGGACCTTTCGGGCACC AACCTGGTGCCCTGAGGCGCTGCTCCTCCACCTCCCGGCACTGCAGAGCGTCAGCGT GGGCCAGGATGTGCGGTGCCGGCCTGGTGCGGGAGGCCACCTACCCCCGGAGGCCTGGCT CCAGCCCAAGGTGCCCCTGCACTGCGTAGACACCCGGGAATCTGCTGCCAGGGGCCCCACC ATCTTG**TGA**CAAATGGTGTGGCCCAGGGCCACATAACAGACTGCTGTCCTGGGCTGCCTCAG GTCCCGAGTAACTTATGTTCAATGTGCCAACACCAGTGGGGAGCCCGCAGGCCTATGTGGCA GCGTCACCACAGGAGTTGTGGGCCTAGGAGAGGCTTTGGACCTGGGAGCCACACCTAGGAGC AAAGTCTCACCCCTTTGTCTACGTTGCTTCCCCAAACCATGAGCAGAGGGACTTCGATGCCA AACCAGACTCGGGTCCCCTCCTGCTTCCCCTTCCCCACTTATCCCCCAAGTGCCTTCCCTCAT GTTCAGGTCCACTGGGCTGAGTGTCCCCTTGGGCCCATGGCCCAGTCACTCAGGGGCGAGTT TCTTTTCTAACATAGCCCTTTCTTTGCCATGAGGCCCATGAGGCCCGCTTCATCCTTTTCTAT TTCCCTAGAACCTTAATGGTAGAAGGAATTGCAAAGAATCAAGTCCACCCTTCTCATGTGAC AGATGGGGAAACTGAGGCCTTGAGAAGGAAAAAGGCTAATCTAAGTTCCTGCGGGCAGTGGC ATGACTGGAGCACAGCCTCCTGCCTCCCAGCCCGGACCCAATGCACTTTCTTGTCTCCTCTA ATAAGCCCCACCCTCCCGCCTGGGCTCCCCTTGCTGCCCTTTCCCCATTAGCACA GGAGTAGCAGCAGCAGGACAGGCAAGAGCCTCACAAGTGGGACTCTGGGCCTCTGACCAGCT GTGCGGCATGGGCTAAGTCACTCTGCCCTTCGGAGCCTCTGGAAGCTTAGGGCACATTGGTT CCAGCCTAGCCAGTTTCTCACCCTGGGTTGGGGTCCCCCAGCATCCAGACTGGAAACCTACC CATTTTCCCCTGAGCATCCTCTAGATGCTGCCCCAAGGAGTTGCTGCAGTTCTGGAGCCTCA TCTGGCTGGGATCTCCAAGGGGCCTCCTGGATTCAGTCCCCACTGGCCCTGAGCACGACAGC CCTTCTTACCCTCCCAGGAATGCCGTGAAAGGAGACAAGGTCTGCCCGACCCATGTCTATGC TCTACCCCCAGGGCAGCATCTCAGCTTCCGAACCCTGGGCTGTTTCCTTAGTCTTCATTTTA TAAAAGTTGTTGCCTTTTTAACGGAGTGTCACTTTCAACCGGCCTCCCCTACCCCTGCTGGC CGGGGATGGAGACATGTCATTTGTAAAAGCAGAAAAAGGTTGCATTTGTTCACTTTTGTAAT ATTGTCCTGGGCCTGTGTTGGGGGTGTTGGGGGAAGCTGGGCATCAGTGGCCACATGGGCATC AGGGGCTGGCCCCACAGAGACCCCACAGGGCAGTGAGCTCTGTCTTCCCCCACCTGCCTAGC

FIGURE 232

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77652</pre>

><subunit 1 of 1, 353 aa, 1 stop

><MW: 37847, pI: 6.80, NX(S/T): 2

MPWPLLLLAVSGAQTTRPCFPGCQCEVETFGLFDSFSLTRVDCSGLGPHIMPVPIPLDTAH LDLSSNRLEMVNESVLAGPGYTTLAGLDLSHNLLTSISPTAFSRLRYLESLDLSHNGLTALP AESFTSSPLSDVNLSHNQLREVSVSAFTTHSQGRALHVDLSHNLIHRLVPHPTRAGLPAPTI QSLNLAWNRLHAVPNLRDLPLRYLSLDGNPLAVIGPGAFAGLGGLTHLSLASLQRLPELAPS GFRELPGLQVLDLSGNPKLNWAGAEVFSGLSSLQELDLSGTNLVPLPEALLLHLPALQSVSV GQDVRCRRLVREGTYPRRPGSSPKVPLHCVDTRESAARGPTIL

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 215-232, 287-304

FIGURE 233

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGG GGACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT**ATG**CGTCAATTCCCCA GTTCCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGC CACGACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCAC GGGAGGCTTGGCAGTTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCC TCTAGTCTTGCCTTCAGCCTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGG ACTGAAGACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATG GATTTTCTGAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTA AGGAGGACTGAGTCTTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTT GCTAAGACTCTATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCC GGAAGATCAGCAGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCAT GCCCACATGACATGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCA $\verb|CTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGCTTTGGGGGGAACTAGACATTCTTC| \\$ ${\tt TGCAATGGATGGAGGAGACAGAA}$ ${\tt TAG}$ ${\tt GAGGAAAGTGATGCTGCTAAGAATATTCGAGGT}$ CAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGCATGACCCCAAACCACCATCTCTTTACT GTACTAGTCTTGTGCTGGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGAT TGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTT ATTTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAG AGCAGGTGATGTATTTTTATACAGTAAAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCT AGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGA TATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATT GCACATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTAT CTTCCAGCCAGGAATCCTACACGGCCAGCATGTATTTCTACAAATAAAGTTTTCTTTGCATA ССАААААААААААААААА

FIGURE 234

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83500

><subunit 1 of 1, 261 aa, 1 stop

><MW: 29667, pI: 8.76, NX(S/T): 0

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRP EIFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNL QEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTP DHYTLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALG ELDILLQWMEETE

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 235

CCGTTATCGTCTTGCGCTACTGCTGA**ATG**TCCGTCCCGGAGGAGGAGGAGGCTTTTGCCG CTGACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGC CGAGCTAGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAG CTCTTGCTCGGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACA GCCCTAGGGATCATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCAT TTACAGACACGTAGTGTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTG TGTTTGGCAAAAGTGAAGATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATG GCTGGTGTTATTGGCCAGTTTTTAGCCAATCCAACTGACCTAGTGAAGGTTCAGATGCAAAT GGAAGGAAAAAGGAAACTGGAAGGAAAACCATTGCGATTTCGTGGTGTACATCATGCATTTG CAAAAATCTTAGCTGAAGGAGGAATACGAGGGCTTTGGGCAGGCTGGGTACCCAATATACAA AGAGCAGCACTGGTGAATATGGGAGATTTAACCACTTATGATACAGTGAAACACTACTTGGT ATTGAATACACCACTTGAGGACAATATCATGACTCACGGTTTATCAAGTTTATGTTCTGGAC TGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCATCAAAAGCAGAATAATGAATCAACCA TCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTTACCATCTTGGCTGAGAATGACCC TTTTAA

FIGURE 236

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77568

><subunit 1 of 1, 323 aa, 1 stop

><MW: 36064, pI: 9.33, NX(S/T): 1

MSVPEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGA RESAPYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEH YPLWKSVIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGI RGLWAGWVPNIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTP ADVIKSRIMNQPRDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLT YEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 237

GCCTGAAGTCGGCGTGGGCGTTTGAGGAAGCTGGGATACAGCATTTAATGAAAAATTTATGC TTAAGAAGTAAAA**ATG**GCAGGCTTCCTAGATAATTTTCGTTGGCCAGAATGTGAATGTATTG ACTGGAGTGAGAAAAATGCTGTGGCATCTGTTGTCGCAGGTATATTGTTTTTACAGGC TGGTGGATAATGATTGATGCAGCTGTGGTGTATCCTAAGCCAGAACAGTTGAACCATGCCTT TCACACATGTGGTGTATTTTCCACATTGGCTTTCTTCATGATAAATGCTGTATCCAATGCTC AGGTGAGAGGTGATAGCTATGAAAGCGGCTGTTTAGGAAGAACAGGTGCTCGAGTTTGGCTT TTCATTGGTTTCATGTTGATGTTTGGGTCACTTATTGCTTCCATGTGGATTCTTTTTGGTGC ATATGTTACCCAAAATACTGATGTTTATCCGGGACTAGCTGTGTTTTTTCAAAATGCACTTA ${\tt TATTTTTAGCACTCTGATCTACAAATTTGGAAGAACCGAAGAGCTATGGACC} {\tt TGA}{\tt GATCAC}$ TTCTTAAGTCACATTTTCCTTTTGTTATATTCTGTTTGTAGATAGGTTTTTTATCTCTCAGT ACACATTGCCAAATGGAGTAGATTGTACATTAAATGTTTTGTTTCTTTACATTTTTATGTTC TGAGTTTTGAAATAGTTTTATGAAATTTCTTTATTTTTCATTGCATAGACTGTTAATATGTA TATAATACAAGACTATATGAATTGGATAATGAGTATCAGTTTTTTATTCCTGAGATTTAGAA CTTGATCTACTCCCTGAGCCAGGGTTACATCATCTTGTCATTTTAGAAGTAACCACTCTTGT CTCTCTGGCTGGGCACGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG CCGATTGCTTGAGGTCAAGTGTTTGAGACCAGCCTGGCCAACATGGCGAAACCCCATCTACT AAAAATACAAAAATTAGCCAGGCATGGTGGTGGTGCCTGTAATCCCAGCTACCTGGGAGGC TGAGGCAGGAGAATCGCTTGAACCCGGGGGGCAGAGGTTGCAGTGAGCTGAGTTTGCGCCAC TCTGATTTCTGAAGATGTACAAAAAATATAGCTTCATATATCTGGAATGAGCACTGAGCCA AAAAATATTTGTTCTTATGTATTGAAGAAGTGTACTTTTATATAATGATTTTTTAAATGCCC AAAGGACTAGTTTGAAAGCTTCTTTTAAAAAGAATTCCTCTAATATGACTTTATGTGAGAA

FIGURE 238

MAGFLDNFRWPECECIDWSERRNAVASVVAGILFFTGWWIMIDAAVVYPKPEQLNHAFHTCG VFSTLAFFMINAVSNAQVRGDSYESGCLGRTGARVWLFIGFMLMFGSLIASMWILFGAYVTQ NTDVYPGLAVFFQNALIFFSTLIYKFGRTEELWT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 23-42 (type II), 60-80, 97-117, 128-148

FIGURE 239

GTTGATGGCAAACTTCCTCAAAGGAGGGCAGAGCCTGCGCAGGGCAGGAGCAGCTGGCCCA CTGGCGGCCCGCAACACTCCGTCTCACCCTCTGGGCCCACTGCATCTAGAGGAGGGCCGTCT GTGAGGCCACTACCCCTCCAGCAACTGGGAGGTGGGACTGTCAGAAGCTGGCCCAGGGTGGT GGTCAGCTGGGTCAGGGACCTACGGCACCTGCTGGACCACCTCGCCTTCTCCATCGAAGCAG GGAAGTGGGAGCCTCGAGCCCTCGGGTGGAAGCTGACCCCAAGCCACCCTTCACCTGGACAG $\texttt{G} \underline{\textbf{ATG}} \texttt{AGAGTGTCAGGTGTTCGCCTCCTGGCCCTCATCTTTGCCATAGTCACGACATGGA}$ GCCTCGCCCACCAAGGAGATCCAGGTTAAAAAGTACAAGTGTGGCCTCATCAAGCCCTGCCC AGCCAACTACTTTGCGTTTAAAATCTGCAGTGGGGCCGCCAACGTCGTGGGCCCTACTATGT GCTTTGAAGACCGCATGATCATGAGTCCTGTGAAAAACAATGTGGGCAGAGGCCTAAACATC GCCCTGGTGAATGGAACCACGGGAGCTGTGCTGGGACAGAAGGCATTTGACATGTACTCTGG AGATGTTATGCACCTAGTGAAATTCCTTAAAGAAATTCCGGGGGGGTGCACTGGTGCTGGTGG CCTCCTACGACGATCCAGGGACCAAAATGAACGATGAAAGCAGGAAACTCTTCTCTGACTTG GGGAGTTCCTACGCAAAACAACTGGGCTTCCGGGACAGCTGGGTCTTCATAGGAGCCAAAGA AGGGATGGCCAGAGCTGCTGGAGATGGAGGGCTGCATGCCCCCGAAGCCATTT**TAG**GGTGGC GCAGGGGCTGAGGAGGAGGAGCAGGGGGGTGCTGCGTGGAAGGTGCTGCAGGTCCTTGCACGC TGTGTCGCGCCTCTCCTCCTCGGAAACAGAACCCTCCCACAGCACATCCTACCCGGAAGACC AGCCTCAGAGGGTCCTTCTGGAACCAGCTGTCTGTGGAGAGAATGGGGTGCTTTCGTCAGGG ACTGCTGACGGCTGGTCCTGAGGAAGGACAAACTGCCCAGACTTGAGCCCAATTAAATTTTA

FIGURE 240

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59814</pre>

<subunit 1 of 1, 224 aa, 1 stop

<MW: 24963, pI: 9.64, NX(S/T): 1

MRVSGVLRLLALIFAIVTTWMFIRSYMSFSMKTIRLPRWLAASPTKEIQVKKYKCGLIKPCP ANYFAFKICSGAANVVGPTMCFEDRMIMSPVKNNVGRGLNIALVNGTTGAVLGQKAFDMYSG DVMHLVKFLKEIPGGALVLVASYDDPGTKMNDESRKLFSDLGSSYAKQLGFRDSWVFIGAKD LRGKSPFEQFLKNSPDTNKYEGWPELLEMEGCMPPKPF

Important features:

Signal peptide:

amino acids 1-15

ATP/GTP-binding site motif A (P-loop).

amino acids 184-191

N-glycosylation site.

amino acids 107-110

FIGURE 241

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAAGAGATTTGTCCTGGGGAT CCAGAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACA TCACTCCTCCCTCTCTCTCTCTGCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCC CTGCACCCCTTCCTGGGACACTATGTTGTTCTCCGCCCTCCTGCTGGAGGTGATTTGGATCC TGGCTGCAGATGGGGGTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCA GACATTTGACCCTGATTTGCCTGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGC GGTGGACTTCCCCGAAAATATGTAGCTGCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATC CCCAGGGGGGTCAGACACCAGATCAACAGTGAAGCCACATTTGCAGAGCTCCACATTGTAC ATTATGACTCTGATTCCTATGACAGCTTGAGTGAGGCTGCTGAGAGGCCTCAGGGCCTGGCT GTCCTGGGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAG TCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTCAGTGCCTCCCTTCAACCTAAGAG TGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAGATTTCAATGGAACAGCT GGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAAGCTTCTGGTACAGA ACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCATCCAAGCAGGA CCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAACCGAA AGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCA**TAA**ATTCCTTCTCAGATACCA TGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTG GCCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAG GAATGGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTA GGAGGAAATGAGGAAATCGCTGTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGG GAAGTTTGGGATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCCTTTCCCTAGATA TACTGCGGGATCTCTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATA TATTTGGAAATTAAAGTTTCTGACTTT

FIGURE 242

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812

><subunit 1 of 1, 337 aa, 1 stop

><MW: 37668, pI: 6.27, NX(S/T): 1

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLP
ALQPHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGSEHQ
INSEATFAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRH
KDQKTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTL
FSTEEEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYF
IARKIRKKRLENRKSVVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 243

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTC GTGGACCCAAAGGTAGCAATCTGAAAC**ATG**AGGAGTACGATTCTACTGTTTTGTCTTCTAGG CGGATCAGGGAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTG ATACCATTAACACAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGG AATGACACCTGGTACCCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAAC TGCACCCACATGTGTTACCAATTTTTGTCACACAACTTGGAGCCCAGGGCACTATCCTAAGC TCAGAGGAATTGCCACAAATCTTCACGAGCCTCATCATCCATTCCTTGTTCCCGGGAGGCAT CCTGCCCACCAGTCAGGCAGGGGCTAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAG GAGCAGGTGTAAATCCTGCCACCCAGGGAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGC ACAGATGACGACTTTGCAGTGACCACCCCTGCAGGCATCCAAAGGAGCACACATGCCATCGA GGAAGCCACCACAGAATCAGCAAATGGAATTCAG**TAA**GCTGTTTCAAATTTTTTCAACTAAG CTGCCTCGAATTTGGTGATACATGTGAATCTTTATCATTGATTATATTATGGAATAGATTGA GACACATTGGATAGTCTTAGAAGAAATTAATTCTTAATTTACCTGAAAATATTCTTGAAATT TCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAACAATAATTCAATGGATAAAT CTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATATTAAAACATATTTGGAAA AAAAAAAAAAAAAAAA

FIGURE 244

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQM LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

FIGURE 245

GGAGAGAGGCGCGCGGTGAAAGGCGCATTGATGCAGCCTGCGGCGCCTCGGAGCGCGCG GAGCCAGACGCTGACCACGTTCCTCTCCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCG GCAGCCGGGAGCC**ATG**CGACCCCAGGGCCCCGCCGCCGCAGCGGCTCCGCGGCCTCC TGCTGCTCCTGCTGCAGCTGCCCGCGCCGTCGAGCCCTCTGAGATCCCCAAGGGGAAG CAAAAGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGG GCCAGCAGGAGTGCCTGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTG GGATCCCAGGTCGGGATGGATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAG GAGTCCTGGACACCCAACTACAAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCT TGGGAAAATTGCGGAGTGTACATTTACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGT TCAGTGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTC CCCTGAAATGAATTCAACAATTAATATTCATCGCACTTCTTCTGTGGAAGGACTTTGTGAAG GAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAA GGAGATGCTTCTACTGGATGGAATTCAGTTTCTCGCATCATTATTGAAGAACTACCAAAA**TA** AATGCTTTAATTTTCATTTGCTACCTCTTTTTTTTATTATGCCTTGGAATGGTTCACTTAAAT GACATTTTAAATAAGTTTATGTATACATCTGAATGAAAAGCAAAGCTAAATATGTTTACAGA GGTTTCAATATTTTTTTTAGTTGGTTAGAATACTTTCTTCATAGTCACATTCTCTCAACCTA TAATTTGGAATATTGTTGTGGTCTTTTGTTTTTTCTCTTAGTATAGCATTTTTAAAAAAATA AAAAATTATTTCCAACA

FIGURE 246

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393</pre>

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217