Математическая статистика.

Андрей Тищенко @AndrewTGk

2024/2025

Лекция 10 января

Преамбула

Статистика. Мнения о появлении этого слова:

- 1. Статистиками в Германии назывались люди, собирающие данные о населении и передающие их государству.
- 2. В определённый день в Венеции народ выстраивался для выплаты налогов (строго фиксированных, в зависимости от рода действий). Государство собирало данные обо всём населении. Это происходило до появления статистиков в Германии, поэтому мы будем считать, что статистика пошла из Венеции.

Задача статистики— по результатам наблюдений построить вероятностную модель наблюдаемой случайной величины.

Основные определения

Определение

Однородной выборкой объёма n называется случайный вектор $X = (X_1, \ldots, X_n)$, компоненты которого являются независимыми и одинаково распределёнными. Элементы вектора X называются <u>элементами</u> выборки.

Определение

Если элементы выборки имеют распределение $F_{\xi}(x)$, то говорят, что выборка соответствует распределению $F_{\xi}(x)$ или порождена случайной величиной ξ с распределением $F_{\xi}(x)$.

Определение

Детерминированный вектор $x=(x_1,\ldots,x_n)$, компоненты которого x_i являются реализациями соответствующих случайных величин X_i ($i=\overline{1,n}$), называется реализацией выборки.

Уточнение

Если X — однородная выборка объёма n, то его реализацией будет вектор x, каждый элемент x_i которого является значением соответствующей ему случайной величины (элемента выборки) X_i .

Определение

Выборочным пространством называется множество всех возможных реализаций выборки

$$X = (X_1, \dots, X_n)$$

Пример

У вектора $X = (X_1, \ldots, X_{10})$ каждый элемент X_i которой порождён случайной величиной $\xi \sim U(0, 1)$, выборочным пространством является \mathbb{R}^{10} (так как X_i может принять любое значение на \mathbb{R})

Определение

Обозначим $x_{(i)}-i$ -ый по возрастанию элемент, тогда будет справедливо:

$$x_{(1)} \leqslant x_{(2)} \leqslant \dots \leqslant x_{(n)}$$

Обозначим $X_{(k)}$ случайную величину, реализация которой при каждой реализации x выборки X принимает значение $x_{(k)}$. Тогда последовательность $X_{(1)}, \ldots, X_{(n)}$ называется вариационным рядом выборки.

Определение

Случайная величина $X_{(k)}$ называется k-ой порядковой статистикой выборки.

Определение

Случайные величины $X_{(1)},\ X_{(n)}$ называются <u>эстремальными</u> порядковыми статистиками.

Определение

Порядковая статистика $X_{([n\cdot p])}$ называется выборочной квантилью уровня p, где $p\in[0,\ 1]$

Определение

Пусть каждый элемент выборки X объёма n имеет распределение $F_{\xi}(x)$. Эмпирической функцией распределения такой выборки называется

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x)$$

I — индикаторная функция. $I = \begin{cases} 1, \text{ если аргумент верен} \\ 0, \text{ иначе} \end{cases}$

Пусть x_1, \ldots, x_n — реализация выборки X_1, \ldots, X_n

Свойства $\hat{F}_n(x)$

1.
$$\forall x \in \mathbb{R}$$
 $E\hat{F}_n(x) = E\left(\frac{1}{n}\sum_{k=1}^n I(X_k \leqslant x)\right) = \frac{1}{n}\sum_{k=1}^n EI(X_k \leqslant x) = P(X_1 \leqslant x) = F_{\xi}(x)$

2. По усиленному закону больших чисел (УЗБЧ)

$$\forall x \in \mathbb{R} \quad \hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x) \xrightarrow[n \to \infty]{\text{п. н.}} EI(X_k \leqslant x) = F_{\xi}(x)$$

Гистограмма

Разбить \mathbb{R} на (m+2) непересекающихся интервала. Рассматриваются $x_{(1)},\ldots,\ x_{(m)}$

Название	Обозначение	Формула
Количество	m	
интервалов	111	
Размах	r	<i>m</i> – <i>m</i>
выборки	,	$r = x_{(m)} - x_{(1)}$
Ширина	Λ	$\Lambda = r$
интервала	Δ	$\Delta = \overline{m}$
Количество		
попаданий на	$ u_i $	_
і-ый интервал		
Частота		
попаданий на	h_i	$h_i = \frac{ u_i}{\Delta}$
<i>i</i> -ый интервал		

Лекция 17 января

Определение

Пусть $X_1, \ldots, X_n \sim F(x, \theta)$. <u>k-ым начальным выборочным моментом</u> называется

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k, \ k \in \mathbb{N}$$

Выборочным средним называется:

$$\hat{\mu}_1 = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

Определение

k-ым центральным выборочным моментом называется

$$\hat{\nu}_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k, \ k = 2, \ 3, \dots$$

$$\hat{\nu}_2 = S^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$
 называется выборочной дисперсией

Пусть $(x_1, y_1), \ldots, (x_n, y_n)$ соответствует распределению $F(x, y, \theta)$

Определение

Выборочной ковариацией называется

$$\hat{K}_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Определение

Выборочным коэффициентом корреляции называется

$$\hat{\rho}_{xy} = \frac{\hat{K}_{xy}}{\sqrt{S_x^2 S_y^2}}$$

1.
$$E\hat{\mu}_k = E\left(\frac{1}{n}\sum_{i=1}^n X_i^k\right) = \frac{1}{n}\sum_{i=1}^n EX_i^k = EX_1^k = \mu_k$$

$$2. \ E\overline{X} = m_x$$

3.
$$\mathcal{D}\hat{\mu}_k = \mathcal{D}\left(\frac{1}{n}\sum_{i=1}^n x_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n \mathcal{D}X_i^k = \frac{1}{n}\mathcal{D}X_i^k = \frac{1}{n}\left(EX_1^{2k} - (EX_1^K)^2\right) = \frac{1}{n}(\mu_{2k} - \mu_k^2)$$

4.
$$\mathcal{D}\overline{x} = \frac{\sigma_{x_1}^2}{n}$$

5. По УЗБЧ

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k \xrightarrow[n \to \infty]{\text{II. H.}} E\hat{\mu}_k = \mu_k$$

$$\hat{\nu}_k \xrightarrow[n \to \infty]{\text{II. H.}} \nu_k$$

6. По ЦПТ

$$\frac{\hat{\mu}_k - \mu_k}{\sqrt{\frac{\mu_{2k} - \mu_k^2}{n}}} \xrightarrow[d]{n \to \infty} U, \ U \sim N(0, \ 1)$$

$$\frac{\sqrt{n}(\overline{x} - m_{x_1})}{\sigma} \xrightarrow[n \to \infty]{d} U$$

7.
$$ES^{2} = E\left(\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}\left(x_{i}^{2}-2x_{i}\overline{X}+\overline{X}^{2}\right)\right) = E(x^{2}) - \frac{2}{n}\sum_{i=1}^{n}E(x_{i}\overline{X}) + \frac{1}{n}\sum_{i=1}^{n}E\overline{X}^{2} = E(x^{2}) - \frac{2}{n}\sum_{i=1}^{n}Ex_{i}\sum_{j=1}^{n}x_{j} + \frac{1}{n}\sum_{i=1}^{n}E\left(\sum_{j=1}^{n}x_{j}\right)^{2} = E(x^{2}) - \frac{2}{n}E\sum_{i=1}^{n}x_{i}\sum_{j=1}^{n}x_{j} + \frac{n-1}{n}\sigma^{2}$$

8.
$$E\hat{K}_{xy} = \frac{n-1}{n} \cos(x, y)$$

Определение

Оценкой $\hat{\theta}$ параметра θ , называется функция:

$$\hat{\theta} = T(x_1, \dots, x_n)$$
, не зависящая от θ

Например, отвратительная оценка среднего роста людей в аудитории.

$$\hat{m} = \frac{2x_2 + 5x_5 + 10x_{10}}{3}$$

Определение

Оценка $\hat{\theta}$ называется <u>несмещённой,</u> если $E\hat{\theta}=\theta$ для любых возможных значений этого параметра.

Определение

Оценка $\hat{\theta}(x_1,\ldots,x_n)$ называется асимптотически несмещённой оценкой θ , если

$$\lim_{n \to \infty} E\hat{\theta}(x_1, \dots, x_n) = \theta$$

$$\lim_{n \to \infty} ES^2 = \lim_{n \to \infty} \frac{n-1}{n} \sigma^2 = \sigma^2$$

Несмещённой выборочной (или исправленной) выборочной дисперсией называется

$$\tilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Оценки

$$\hat{m}_{1} = \frac{x_{1} + x_{2} + x_{3}}{3}$$

$$\hat{m}_{2} = \frac{\sum_{i=1}^{10} x_{i}}{10}$$

$$\hat{m}_{3} = \overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{n}$$

Являются несмещёнными.

Определение

Оценка $\hat{\theta}(x_1, ..., x_n)$ называется: Состоятельной оценкой θ , если

$$\hat{\theta}(x_1,\ldots,x_n) \xrightarrow[n \to \infty]{p} \theta$$

Сильно состоятельной оценкой, если

$$\hat{\theta}(x_1,\ldots,x_n) \xrightarrow[n\to\infty]{\text{II. H.}} \theta$$

Определение

Пусть $\hat{\theta}$ — несмещённая оценка параметра θ . Если $\mathcal{D}\hat{\theta} \leqslant \mathcal{D}\theta^*$, где θ^* — любая несмещённая оценка параметра θ . Тогда $\hat{\theta}$ называется эффективной оценкой параметра θ .

R-эффективные оценки

Рассматриваем выборку $X_1, \ldots, X_n \sim f(x, \theta), \ \theta \in \Theta \subseteq \mathbb{R}^1$. Назовём модель $(S, f(x, \theta))$ регулярной, если она удовлетворяет следующим условиям:

1. $\forall x \in S$ функция $f(x, \theta) = f(x_1, \dots, x_n, \theta) > 0$ и дифференцируема по θ .

2.
$$\begin{cases} \frac{\delta}{\delta\theta} \int_{S} f(x, \theta) dx = \int_{S} \frac{\delta}{\delta\theta} f(x, \theta) dx \\ \frac{\delta}{\delta\theta} \int_{S} T(x) f(x, \theta) dx = \int_{S} \frac{\delta}{\delta\theta} T(x) f(x, \theta) dx \end{cases}$$

Пусть $\hat{\theta} = T(x) = T(x_1, ..., x_n)$ — несмещённая оценка параметра θ :

$$\int_{S} \frac{\delta}{\delta \theta} f(x, \theta) dx = \frac{\delta}{\delta \theta} \int_{S} f(x, \theta) dx = \frac{\delta}{\delta \theta} 1 = 0$$

$$\int_{S} \frac{\delta}{\delta \theta} T(x) f(x, \theta) dx = \frac{\delta}{\delta \theta} \int_{S} T(x) f(x, \theta) dx = \frac{\delta}{\delta \theta} ET(x) = \frac{\delta}{\delta \theta} \theta = 1$$

Определение

Информацией Фишера о параметре θ , содержащейся в выборке $X_1,\dots,\ X_n$ называется величина

$$I_n(\theta) = E\left(\frac{\delta \ln \left(f(x, \theta)\right)}{\delta \theta}\right)^2 = \int_{S} \left(\frac{\delta \ln \left(f(x, \theta)\right)}{\delta \theta}\right)^2 f(x, \theta) dx$$

Неравенство Рао-Крамера

Если $S, f(x, \theta)$ — регулярная модель и $\hat{\theta}$ — несмещённая оценка θ , то

$$\mathcal{D}(\hat{\theta}) \geqslant \frac{1}{I_n(\theta)}$$

Доказательство

Выпишем некоторые равенства (пригодятся в доказательстве):

$$\int_{S} \frac{\delta}{\delta \theta} f(x, \theta) dx = \int_{S} \frac{\delta f(x, \theta)}{\delta \theta} \frac{f(x, \theta)}{f(x, \theta)} dx \stackrel{*}{=} \int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 0$$

Пояснение *. Логарифм — сложная функция. По правилу дифференцирования сложной функции:

$$\frac{\delta \ln f(x, \theta)}{\delta \theta} = \frac{1}{f(x, \theta)} \cdot \frac{\delta f(x, \theta)}{\delta \theta}$$
$$\int_{S} \frac{\delta}{\delta \theta} T(x) f(x, \theta) dx = \int_{S} T(x) \frac{\delta}{\delta \theta} f(x, \theta) \frac{f(x, \theta)}{f(x, \theta)} dx = \int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 1$$

Чуть преобразуем последнее полученное равенство:

$$\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = \int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx - \theta \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = \underbrace{\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f($$

$$= \int_{S} \left(T(x) - \theta \right) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 1 \Rightarrow 1 = 1^{2} = \left(\int_{S} \left(T(x) - \theta \right) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx \right)^{2} dx$$

Далее нам понадобится неравенство Коши-Буняковского, которое выглядит так:

$$\left(\int \varphi_1(x)\varphi_2(x)\,dx\right)^2 \leqslant \int \varphi_1^2(x)\,dx\int \varphi_2^2(x)\,dx$$

Подгоним полученное равенство $(f(x, \theta) > 0 \Rightarrow f(x, \theta) = \sqrt{f(x, \theta)}^2)$:

$$\left(\int_{S} \left(T(x) - \theta\right) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx\right)^{2} = \left(\int_{S} \underbrace{\left(T(x) - \theta\right) \sqrt{f(x, \theta)}}_{\varphi_{1}(x)} \cdot \underbrace{\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)}}_{\varphi_{2}(x)} dx\right)^{2} = 1$$

И применим неравенство Коши-Буняковского:

$$1 = \left(\int_{S} \underbrace{\left(T(x) - \theta \right) \sqrt{f(x, \theta)}}_{\varphi_{1}(x)} \cdot \underbrace{\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)}}_{\varphi_{2}(x)} dx \right)^{2} \leqslant$$

$$\leqslant \int_{S} \left((T(x) - \theta) \sqrt{f(x, \theta)} \right)^{2} dx \cdot \int_{S} \left(\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)} \right)^{2} dx =$$

$$= \int_{S} \left(T(x) - \theta \right)^{2} f(x, \theta) dx \cdot \int_{S} \left(\frac{\delta \ln \left(f(x, \theta) \right)}{\delta \theta} \right)^{2} f(x, \theta) dx$$

$$= \int_{S} \left(T(x) - \theta \right)^{2} f(x, \theta) dx \cdot \int_{S} \left(\frac{\delta \ln \left(f(x, \theta) \right)}{\delta \theta} \right)^{2} f(x, \theta) dx$$

Получаем:

$$1 \leqslant \mathcal{D}(\theta) \cdot I_n(\theta) \Rightarrow \mathcal{D}(\theta) \geqslant \frac{1}{I_n(\theta)}$$

Оценка $\hat{\theta}$ называется <u>R</u>-эффективной, если $E\hat{\theta}=\theta$ и $\mathcal{D}\hat{\theta}=\frac{1}{I_n(\theta)}$

Лекция 24 января

Замечание 1

$$I_n(\theta) = \mathcal{D}\left(\frac{\delta \ln f(x, \theta)}{\delta \theta}\right)$$

Замечание 2

$$I_n(\theta) = nI_1(\theta)$$

$$f(x, \theta) = f(x_1, \dots, x_n, \theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

$$E\left(\frac{\delta \ln f(x, \theta)}{\delta \theta}\right)^{2} = E\left(\sum_{i=1}^{n} \frac{\delta \ln f(x_{i}, \theta)}{\delta \theta}\right)^{2} = \sum_{i \neq j} E\left(\frac{\delta \ln f(x_{i}, \theta)}{\delta \theta} \cdot \frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right) + nE\left(\frac{\delta \ln f(x_{1}, \theta)}{\delta \theta}\right)^{2} = \sum_{i \neq j} \left(E\left(\frac{\delta \ln f(x_{i}, \theta)}{\delta \theta}\right) \cdot E\left(\frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right)\right) + nE\left(\frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right)^{2} = nE\left(\frac{\delta \ln f(x_{j}, \theta)}{\delta \theta}\right)^{2} = nI_{1}(\theta)$$

Замечание 3

Пример: $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$ Рассмотрим оценку $\hat{\theta} = \overline{X}$, её дисперсия $\mathcal{D}\overline{X} = \frac{\sigma^2}{n}$. Посчитаем информацию Фишера:

$$I_1(\theta) = E\left(\frac{\delta \ln f(x,\,\theta)}{\delta \theta}\right)^2 = E\left(\frac{\delta}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\theta)^2}{2\sigma^2}}\right)\right)^2 = E\left(\frac{\delta}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma}-\frac{(x-\theta)^2}{2\sigma^2}\right)\right)^2 = E\left(\frac{x-\theta}{\sigma^2}\right)^2 = \frac{1}{\sigma^4}E(x-\theta)^2 = \frac{\sigma^2}{\sigma^4} = \frac{1}{\sigma^2} \Rightarrow I_n(\theta) = \frac{n}{\sigma^2}$$
 Знаем, что $\mathcal{D}\hat{\theta} \geqslant \frac{1}{nI_1(\theta)} = \frac{\sigma^2}{n} = \mathcal{D}(\overline{X}) \Rightarrow$ оценка $\hat{\theta} = \overline{X}$ является R-эффективной. Критерий эффективности $X_1, \ldots, X_n \sim F_{\xi}(x,\,\theta), \; \theta \in \Theta \subset \mathbb{R}^1$ выполнены условия регулярности, то есть

$$\int T(x) \frac{\delta f(x, \theta)}{\delta \theta} dx = \frac{\delta}{\delta \theta} \int T(x) f(x, \theta) dx = E \hat{\theta}$$

Определение

Функцией вклада выборки X_1, \ldots, X_n называется

$$U(x, \theta) = \sum_{i=1}^{n} \frac{\delta \ln f(x_i, \theta)}{\delta \theta}$$

Пусть $0 < U(x, \theta) < \infty$.

 $\hat{\theta} = T(x_1, \dots, x_n)$ — R-эффективная оценка $\theta \Leftrightarrow \hat{\theta} - \theta = a(\theta)U(x, \theta)$, где $a(\theta) = \mathcal{D}\hat{\theta}$

Доказательство ⇒:

Пусть $\hat{\theta} - \theta = a(\theta)U(x, \theta) \Rightarrow \hat{\theta}$ — R-эффективная оценка θ .

Посчитаем математическое ожидание частей равенства:

$$E(\hat{\theta} - \theta) = a(\theta)EU(x, \ \theta) = a(\theta) \int \frac{\delta \ln f(x, \ \theta)}{\delta \theta} f(x, \ \theta) dx = 0$$

Посчитаем дисперсию частей:

$$\mathcal{D}(\hat{\theta} - \theta) = a^2(\theta)\mathcal{D}U(x, \ \theta) = \underbrace{a^2(\theta)}_{=(\mathcal{D}(\hat{\theta}))^2} I_n(\theta) \Rightarrow \mathcal{D}(\hat{\theta}) = (\mathcal{D}(\hat{\theta}))^2 I_n(\theta) \Rightarrow 1 = \mathcal{D}(\theta)I_n(\theta)$$

Значит оценка является R-эффективной.

 $Доказательство \Leftarrow$:

Пусть $\hat{\theta}$ — R-эффективная оценка $\Rightarrow \hat{\theta} - \theta = a(\theta)U(x, \theta)$. Хотим доказать, что $\rho(\hat{\theta}, U(x, \theta)) = 1$. Для подсчёта корреляции нужно посчитать ковариацию:

$$\operatorname{cov}(\hat{\theta},\ U(x,\ \theta)) = E(\hat{\theta} - \theta)U(x,\ \theta) = E\hat{\theta}U(x,\ \theta) - \theta\underbrace{EU(x,\ \theta)}_{=0} =$$

$$= \int_{S} T(x)U(x, \theta)f(x, \theta) dx = \int_{S} T(x)\frac{\delta \ln f(x, \theta)}{\delta \theta}f(x, \theta) dx = 1$$

Так как $\hat{\theta}$ — R-эффективная оценка, то $\mathcal{D}\hat{\theta} = \frac{1}{I_n(\theta)}$. Знаем, что $\mathcal{D}U(x, \theta) = I_n(\theta)$, тогда:

$$\rho(\hat{\theta}, \ U(x, \ \theta)) = \frac{\text{cov}(\hat{\theta}, \ U(x, \ \theta))}{\sqrt{\mathcal{D}\hat{\theta}\mathcal{D}U(x, \ \theta)}} = \frac{1}{\sqrt{\frac{I_n(\theta)}{I_n(\theta)}}} = 1 \Rightarrow$$
$$\Rightarrow \hat{\theta} = c_1 + c_2 U(x, \ \theta)$$

$$E\hat{\theta}=c_1+Ec_2U(x,\;\theta)=c_1+0=\theta,\;$$
так как оценка эффективная $\mathcal{D}\hat{\theta}=c_2^2I_n(\theta)=\frac{1}{I_n(\theta)}\Rightarrow c_2^2=\frac{1}{I_n^2}\Rightarrow c_2=\frac{1}{I_n}=\mathcal{D}\hat{\theta}=a(\theta).$ Итак, $\hat{\theta}=\theta+a(\theta)U(x,\;\theta)\Rightarrow\hat{\theta}-\theta=U(x,\;\theta).$

Метод моментов

 $X_1, \ldots, X_n \sim F_{\xi}(x, \theta), \ \theta \in \Theta \subset \mathbb{R}^k$

$$\exists \mu_j < \infty, \ j = \overline{1, \ k} \quad \underbrace{\mu_j}_{=\mu_j(\theta)} = E\xi^j = \int_{-\infty}^{+\infty} x^j f(x, \ \theta) \, dx = 1$$

Тогда можно получить систему уравнений:

$$\begin{cases} \hat{\mu}_1 = \mu_1(\theta) \\ \vdots \\ \hat{\mu}_k = \mu_k(\theta) \end{cases} \tag{1}$$

Если система уравнений (1) однозначно разрешима относительно $\theta_1, \ldots, \theta_k$, то решения $\hat{\theta_1}, \ldots, \hat{\theta_k}$ называется равной $\theta_1, \ldots, \theta_k$ по методу моментов.

Пример

 $X_1,\dots,\ X_n \sim N(heta_1,\ heta_2^2),\ heta = (heta_1,\ heta_2^2),$ тогда:

$$\begin{cases} \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n x_i = \theta_1 \Rightarrow \hat{\theta}_1 = \overline{X} \\ \hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2 = \theta_2^2 + \theta_1^2, \ \left(E\xi^2 = \mathcal{D}\xi + (E\xi)^2 \right) \Rightarrow \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 = \overline{X}^2 \end{cases}$$

Метод максимального правдоподобия (ММП)

Определение

Функцией правдоподобия для X_1, \ldots, X_n , порождённых случайной величиной ξ , называется функция

$$L(x_1,\ldots,\ x_n,\ \theta) = \begin{cases} \prod\limits_{i=1}^n f(x_i,\ \theta),\ \text{если }\xi$$
 — непрерывная случайная величина $\prod\limits_{i=1}^n P(\xi=x_i,\ \theta),\ \text{если }\xi$ — дискретная случайная величина

Реализацией оценки максимального правдоподобия (ОМП) называется значение $\hat{\theta} \in \Theta$, такое что:

$$\hat{\theta} = \operatorname{argmax} L(x_1, \dots, x_n, \theta), \text{ где } \theta \in \Theta$$

Для нахождения точки максимума нужно взять частные производные по всем составляющим θ от функции правдоподобия. Однако считать производную произведения нам впадлу, поэтому мы введём следующую вещь:

Определение

Функция $\ln L(x_1, \ldots, x_n, \theta)$ называется логарифмической функцией правдоподобия.

Итак, получаем систему уравнений:

$$\begin{cases} \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_1} = 0 \\ \vdots \\ \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_k} = 0 \end{cases}$$

Логарифм монотонный, поэтому его argmax совпадёт с argmax функции $L(x_1, \ldots, x_n, \theta)$ (HAУKA!).

Пример

Для Гауссовской величины $N(\theta_1, \theta_2^2)$:

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\theta_1)^2}{2\theta_2^2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\frac{1}{\theta_2}\right)^n e^{-\frac{(x-\theta_1)^2}{2\theta_2^2}}$$

Логарифмируем:

$$\ln L(x_1, \dots, x_n, \theta) = \ln \left(\frac{1}{\sqrt{2\pi}}\right)^n - n \ln \theta_2 - \frac{\sum_{i=1}^n (x_i - \theta_1)^2}{2\theta_2^2}$$

Возьмём частные производные:

$$\begin{cases} \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_1} = \frac{\sum_{i=1}^{n} (x_i - \hat{\theta}_1)}{\hat{\theta}_2^2} \\ \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_2} = -\frac{n}{\hat{\theta}_2} + \frac{\sum_{i=1}^{n} (x_i - \hat{\theta}_1)^2}{\hat{\theta}_2^3} \end{cases}$$

Посчитаем θ_1 , θ_2 :

$$\begin{cases} \sum_{i=1}^{n} (x_i - \hat{\theta}_1) = 0 \Rightarrow \hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{X} \\ -n\hat{\theta}_2^2 + \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0 \Rightarrow \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \end{cases}$$

Лекция 31 января.

Робастные оценки

От слова robust.

Определение

Пусть оценка $\hat{\theta}_n$ построена по выборке X_1, \ldots, X_n . Затем добавлено наблюдение x и построена оценка $\hat{\theta}_{n+1}$, тогда кривой чувствительности, изучающей влияние наблюдения x на оценку $\hat{\theta}$ называется функция:

$$SC_n(x) = \frac{\hat{\theta}_{n+1} - \hat{\theta}_n}{\frac{1}{n+1}} = (n+1)(\hat{\theta}_{n+1} - \hat{\theta}_n)$$

Оценка $\hat{\theta}$ называется B-робастной, если $SC_n(x)$ ограничена.

Пример

Пусть $\hat{\theta} = \overline{X}$

$$SC_n(x) = (n+1)\left(\frac{1}{n+1}\left(\sum_{i=1}^n (x_i) + x\right) - \frac{1}{n}\sum_{i=1}^n x_i\right) = \sum_{i=1}^n x_i + x - \left(\sum_{i=1}^n x_i + \frac{1}{n}\sum_{i=1}^n x_i\right) = x - \overline{X}$$

Это линейная функция от x, то есть кривая чувствительности неограничена.

Пусть $\hat{\theta} = \hat{\mu}$ (выборочная медиана)

$$\hat{\mu} = \begin{cases} X_{(k+1)}, & n = 2k+1\\ \frac{X_{(k)} + X_{(k+1)}}{2}, & n = 2k \end{cases}$$

Определение

Пороговой точкой (BP) ε_n^* оценки $\hat{\theta}$, построенной на выборке $X_1,\ldots,\ X_n$ называется:

$$\varepsilon_n^* = \frac{1}{n} \max \left\{ m : \max_{i_1, \dots, i_m} \sup_{y_1, \dots, y_m} |\hat{\theta}(z_1, \dots, z_m)| < \infty \right\}$$

Где выборка $z_1,\dots,\ z_m$ получена заменой значений $X_{i_1},\dots,\ X_{i_m}$ на произвольные значения $y_1,\dots,\ y_m$

Доверительные интервалы

Определение

Пусть для $X_1, \ldots, X_n \sim F(x, \theta), \ \theta \subset \Theta \subset \mathbb{R}^1$ построены статистики $T_1(x_1, \ldots, x_n)$ и $T_2(x_1, \ldots, x_n)$, такие что

$$\begin{cases} T_1(x) < T_2(x) \\ P(T_1(x) < \theta < T_2(x)) = 1 - \alpha, \ 0 < \alpha < 1 \end{cases}$$

Тогда интервал $(T_1(x), T_2(x))$ называется доверительным интервалом уровня надёжности (доверия) $1-\alpha$ параметра θ .

Определение

Случайная функция $G(x_1,\ldots,\ x_n,\ \theta)=G(x,\ \theta)$ называется центральной (опорной) статистикой, если

- 1. $G(x, \theta)$ непрерывна и монотонна по θ
- 2. $F_G(x)$ не зависит от θ

Односторонние доверительные интервалы:

$$P(G(x, \theta) < Z_{1-\alpha}) = 1 - \alpha$$
$$P(Z_{\alpha} < G(x, \theta)) = 1 - \alpha$$

Квантили не зависят от θ , с их помощью можно выразить односторонние доверительные интервалы. Центральным доверительным интервалом будет:

$$P(Z_{\frac{\alpha}{2}} < G(x, \theta) < Z_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

Определение

Пусть случайные величины $\xi_1, \dots, \ \xi_m \sim N(0, \ 1)$ и независимы.

Тогда случайная величина $\eta = \sum_{i=1}^{m} \xi_i^2 \sim \chi^2(m)$ (удовлетворяет распределению хи-квадрат (χ^2) с m степенями свободы).

Пусть $\xi_0,\ \xi_1,\dots,\ \xi_m \sim N(0,\ 1)$ и независимы. Тогда случайная величина $\zeta=\frac{\xi_0}{\sqrt{\frac{1}{m}\sum_{i=1}^m\xi_i^2}}\sim t(m)$ (распределение Стьюдента с m степенями свободы)

Определение

Пусть случайная величина $\xi_1 \sim \chi^2(m), \ \xi_2 \sim \chi^2(n)$ и ξ_1 и ξ_2 — независимы. Тогда случайная величина $F = \frac{\frac{1}{m}\xi_1}{\frac{1}{n}\xi_2} \sim F(m,\ n)$ (распредление Фишера со степенями свободы $n,\ m$)

Теорема Фишера

Пусть X_1, \ldots, X_n порождены случайной величиной $X \sim N(m, \sigma^2)$, тогда:

- 1. $\frac{nS^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{x_i \overline{x}}{\sigma}\right)^2 \sim \chi^2(n-1)$ (так как мы знаем \overline{X} , и все наблюдения, а по n-1 наблюдению и \overline{X} можно восстановить последнее наблюдение)
- 2. \overline{X} и S^2 независимые случайные величины.

Пример 1

 $X_1,\ldots,~X_n\sim N(\theta,~\sigma^2),~\sigma^2$ — известно. Построить доверительный инр
тервал для θ

$$\hat{\theta} = \overline{X} \sim N(\theta, \frac{\sigma^2}{n})$$

$$\frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} \sim N(0, 1)$$

$$P\left(Z_{\frac{\alpha}{2}} < \frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} < Z_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

Поскольку по середине стоит стандартное гауссовское распределение: $Z_{\frac{\alpha}{2}}=-Z_{1-\frac{\alpha}{2}}$

$$P\left(-\frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} - \overline{X} < -\theta < \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} - \overline{X}\right) = 1 - \alpha$$

$$P\left(\overline{X} - \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} < \theta < \overline{X} + \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Итак, доверительный интервал: $\left(\overline{X} - \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}, \ \overline{X} + \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}\right)$

Пример 2

 $X_1,\ldots,\ X_n \sim N(m,\ \theta_2^2)$. Построить доверительный интервал для θ_2^2

$$\sum_{i=1}^{n} \left(\frac{x_i - m}{\theta_2}\right)^2 \sim \chi^2(n)$$

$$P\left(\chi_{n, \frac{\alpha}{2}}^2 < \frac{\sum_{i=1}^{n} (x_i - m)^2}{\theta_2^2} < \chi_{n, 1 - \frac{\alpha}{2}}^2\right) = 1 - \alpha$$

$$P\left(\frac{\sum_{i=1}^{n} (x_i - m)^2}{\chi_{n, 1 - \frac{\alpha}{2}}^2} < \theta_2^2 < \frac{\sum_{i=1}^{n} (x_i - m)^2}{\chi_{n, \frac{\alpha}{2}}^2}\right) = 1 - \alpha$$

Здесь $\chi^2_{n,\ \alpha}$ — квантиль уровня α распределения $\chi^2(n)$

Пример 3

Если нам неизвестны оба параметра $N(\theta_1, \theta_2^2)$. Заменяем m на \overline{X} : Доверительный интервал для θ_2 :

$$P\left(\frac{\sum\limits_{i=1}^{n}(x_{i}-\overline{X})^{2}}{\chi_{n,\ 1-\frac{\alpha}{2}}^{2}}<\theta_{2}^{2}<\frac{\sum\limits_{i=1}^{n}(x_{i}-\overline{X})^{2}}{\chi_{n,\ \frac{\alpha}{2}}^{2}}\right)=1-\alpha$$

Доверительный интервал для θ_1 :

$$\frac{\sqrt{n}\left(\frac{\overline{X}-\theta}{\sigma}\right)}{\sqrt{\frac{1}{n-1}\sum\left(\frac{(x_i-\overline{X})}{\sigma}\right)^2}} = \frac{\sqrt{n}(\overline{X}-\theta_1)}{\tilde{S}} \sim t(n-1)$$

Обозначим $t_{n,\ \alpha}$ квантиль уровня α распределения t(n), заметим, что $t_{n,\ 1-\alpha}=t_{n,\ 1-\frac{\alpha}{2}}$

$$P(t_{n, 1-\frac{\alpha}{2}} < \frac{\sqrt{n}(\overline{X} - \theta_1)}{\tilde{S}} < t_{n, \frac{\alpha}{2}}) = 1 - \alpha$$

$$P(\overline{X} - \frac{\tilde{S} \cdot t_{n, 1-\frac{\alpha}{2}}}{\sqrt{n}} < \theta_1 < \overline{X} + \frac{\tilde{S} \cdot t_{n, 1-\frac{\alpha}{2}}}{\sqrt{n}}) = 1 - \alpha$$

Лекция 7 февраля

Задача

 $X_1,\ldots,\ X_{n_1}\sim N(m_1,\ \sigma_1^2)$ и $Y_1,\ldots,\ Y_{n_2}\sim N(m_2,\ \sigma_2^2)$. σ известны, m — неизвестны. $X_1,\ldots,\ X_n$ и $Y_1,\ldots,\ Y_n$ независимы. Доверительнный интервал для $\theta=m_1-m_2$

$$T(x, y) = \frac{\overline{X} - \overline{Y} - \theta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Задача

Пусть $X_1, \ldots, X_{n_1} \sim N(m_1, \sigma^2), Y_1, \ldots, Y_{n_2} \sim N(m_2, \sigma^2).$ σ неизвестна. Выборки независимы.

Утверждение

$$\frac{\sum_{i=1}^{n_1} (x_i - \overline{X})^2}{\sum_{i=1}^{n_2} (y_i - \overline{Y})^2} \sim F(n_1 - 1, n_2 - 1)$$

$$\frac{\overline{X} - \overline{Y} - (m_1 - m_2)}{\sqrt{\hat{\mathcal{D}}(\overline{X} - \overline{Y})}}$$

Посчитаем дисперсию в знаменателе:

$$\mathcal{D}(\overline{X} - \overline{Y}) = \mathcal{D}\overline{X} + \mathcal{D}\overline{Y} = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$$
$$S^2 = \frac{\sum_{i=1}^{n_1} (x_i - \overline{X})^2 + \sum_{i=1}^{n_2} (y_i - \overline{Y})^2}{n_1 + n_2 - 2}$$

Тогда

$$\frac{\overline{X} - \overline{Y} - (m_1 - m_2)}{\sqrt{\hat{\mathcal{D}}(\overline{X} - \overline{Y})}} = \frac{\overline{X} - \overline{Y} - (m_1 - m_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

Теперь можно построить доверительный интервал:

$$P\left(-t_{1-\alpha/2,\ n_1+n_2-2} < \frac{\overline{X} - \overline{Y} - \theta}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < t_{1-\alpha/2,\ n_1+n_2-2}\right) = 1 - \alpha$$

$$P\left(-t_{1-\alpha/2,\ n_1+n_2-2} \cdot S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} - (\overline{X} - \overline{Y}) < -\theta < t_{1-\alpha/2,\ n_1+n_2-2} \cdot S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} - (\overline{X} - \overline{Y})\right) = 1 - \alpha$$

$$P\left((\overline{X} - \overline{Y}) - t_{1-\alpha/2,\ n_1+n_2-2} \cdot S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \theta < t_{1-\alpha/2,\ n_1+n_2-2} \cdot S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + (\overline{X} - \overline{Y})\right) = 1 - \alpha$$

Асимптотические доверительные интервалы

Пусть $X_1, \ldots, X_n \sim F(x, \theta), \ \theta \in \Theta \subset \mathbb{R}^1$ $\hat{\theta}$ — состоятельная оценка θ .

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{d} U, \ U \sim N(0, \ \sigma^2(\theta))$$

И $\sigma^2(\theta)$ непрерывна по θ .

$$P\left(Z_{\alpha/2} < \frac{\sqrt{n}(\hat{\theta}_n - \theta)}{\sigma(\hat{\theta}_n)} < Z_{1-\alpha/2}\right) \to 1 - \alpha$$

$$P\left(\hat{\theta}_n - \frac{\sigma(\hat{\theta}_n)Z_{1-\alpha/2}}{\sqrt{n}} < \theta < \frac{\sigma(\hat{\theta}_n)Z_{1-\alpha/2}}{\sqrt{n}} + \hat{\theta}_n\right)$$

Если \exists R-эффективная оценка $\hat{\theta}_n$, то выбирая её $\mathcal{D}\hat{\theta}_n = \frac{1}{I_n(\theta)}$, тогда $\frac{\sigma(\hat{\theta}_n)}{\sqrt{n}} = \sqrt{\mathcal{D}\hat{\theta}_n} = \frac{1}{\sqrt{nI_1(\hat{\theta}_n)}}$

$$P\left(\hat{\theta}_n - \frac{Z_{1-\alpha/2}}{\sqrt{nI_1(\hat{\theta}_n)}} < \theta < \hat{\theta}_n + \frac{Z_{1-\alpha/2}}{\sqrt{nI_1(\hat{\theta}_n)}}\right) \to 1 - \alpha$$

Пример

 $X_1, \ldots, X_n \sim Bi(1, \theta)$ АДИ для θ :

$$\hat{\theta} = \frac{\sum_{i=1}^n x_i}{n}$$
 — несмещённая, состоятельная, R-эффективная

 $\mathcal{D}x_i = \theta(1-\theta).$

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow[n \to \infty]{d} U, \ U \sim N(0, \ \theta(1 - \theta))$$

$$P\left(\hat{\theta} - Z_{1-\alpha/2}\sqrt{\frac{\hat{\theta}(1 - \hat{\theta})}{n}} < \theta < \hat{\theta} + Z_{1-\alpha/2}\frac{\sqrt{\hat{\theta}(1 - \hat{\theta})}}{\sqrt{n}}\right) \to 1 - \alpha$$

Определение

Основная (или нулевая) гипотеза H_0 , с ней конкурируют $H_1,\ H_2,\ldots,\ H_A$ (альтернативные гипотезы).

Определение

Сложной гипотезой называют гипотезу, которая не определяет параметры распределения или само распределение однозначно.

Например

$$H_1: \xi \sim N(m, \sigma^2)$$

 $H_2: \xi \sim N(5, \sigma^2)$

Простая гипотеза определяет распределение однозначно, например:

$$H_3: \xi \sim N(5, 36)$$

Односторонние гипотезы выглядят так:

 $H_4: \xi m < 5$

 $H_5: \xi m > 5$

Двусторонние:

$$H_6: n \neq 5$$

$$H_7: m \in [1, 3]$$

А гипотеза H_8 : {"Сегодня хорошая погода"} не является статистической, ведь не относится к распределению и параметрам.

Определение

Статистическим критерием называют правило, руководствуясь которым, на основании реализации x_1, \ldots, x_n выборки X_1, \ldots, X_n принимается решение о справедливости/несправедливости гипотезы H_0 . Делим множество реализаций выборки S на два множества S_0, S_1 , такие что

$$S_0 \cdot S_1 = \emptyset$$

$$S_0 + S_1 = S$$

Назовём S_0 доверительной областью, а S_1 — критической областью. Если реализация попала в S_0 , то мы принимаем H_0 , иначе принимает альтернативную гипотезу.

Тогда ошибкой первого рода (уровнем значимости критерия) называется

$$P(X \in S_1 \mid \text{верна } H_0) = \alpha$$

Ошибкой второго рода называется

$$P(X \in S_0 \land \text{верна } H_1) = 1 - \beta$$

Определение

Пусть критерий предназначен для проверки $H_0: \theta = \theta_0$ против альтернативы $H_1: \theta \neq \theta_0$, тогда функцией мощности критерия называется

$$\beta(\theta) = P(X \in S_1, \ \theta)$$

Критерий называется состоятельным, если при отдалении от θ_0 его функция мощности стремится к 1.

Лекция 13 февраля

Проверка статистических гипотез

Если β — функция мощности критерия проверки гипотезы $H_0: \theta = \theta_0$, тогда $\beta(\theta) = P(X \in S_1, \theta)$ и $\beta(\theta_0) = \alpha$, где α — вероятность ошибки первого рода.

Задача

 $H_0: \theta = \theta_0$ и $H_1: \theta \in \Theta_1, \theta_0 \notin \Theta_1$. Пусть зафиксировано $\alpha > 0$, тогда критерий называется несмещённым, если:

$$\beta(\theta) \leqslant \alpha$$
, если $\theta = \theta_0$

$$\beta(\theta) > \alpha$$
, если $\theta \in \Theta_1$

Критерий, предназначенный для проверки $H_0: \theta = \theta_0$ против $H_1: \theta \in \Theta_1$ называется состоятельным, если

$$\forall \theta \in \Theta_1 \quad \beta(\theta) \xrightarrow[n \to \infty]{} 1$$
, где n — количество испытаний

Определение

Критерий β_0 называется равномерно наиболее мощным, если среди всех критериев β :

$$\forall \theta \in \Theta \quad \beta_0(\theta) \geqslant \beta(\theta)$$

Локально наиболее мощным, если

$$\forall \theta \in \Theta_1 \subseteq \Theta \quad \beta_0(\theta) \geqslant \beta(\theta)$$

Алгоритм проверки параметрических гипотез

- 1. Сформулировать проверяемую гипотезу H_0 и альтернативную к ней H_1 .
- 2. Выбрать уровень значимости α
- 3. Выбрать статистику T для проверки гипотезы H_0
- 4. Найти распределение $F(z \mid H_0)$ статистики T, при условии {" H_0 верна"}
- 5. Построить, в зависимости от формулировки гипотезы H_1 и уровня значимости α , критическую область \overline{G}
- 6. Получить реализацию выборки наблюдений x_1, \ldots, x_n и вычислить реализацию $t = \varphi(x_1, \ldots, x_n)$ статистики T критерия
- 7. Принять статистическое решение на уровне доверия 1α : если $t \in \overline{G}$, то отклонить гипотезу H_0 как не согласующуюся с результатами наблюдений, а если $t \in G$, то принять гипотезу H_0 как не противоречащую результатам наблюдений.

Задача

Дамы оценивают чай. Могут ли из двух чашек выбрать чашку с хорошим чаем? Проводятся наблюдения $X_1,\ldots,\ X_n \sim Bi(1,\ p)$

- 1. $H_0: p=p_0=0.5, H_1: p>0.5$. То есть H_0 дамы не могут выбрать (просто пытаются угадать).
- $2. \ \alpha = 0.05$. Так как специально указано не было, берём стандартное значение.
- 3. $T(x) = \sum_{i=1}^{n} x_i$
- 4. $T(x \mid H_0) \sim Bi(n, \frac{1}{2})$. Если n велико:

$$\frac{T(x) - np_0}{\sqrt{np_0(1 - p_0)}} = \tilde{T}(x) \sim N(0, 1)$$

- 5. Доверительная область: $[0, Z_{0,95}] = [0, 1.65]$. Критическая область: $(1.65, +\infty)$
- 6. Пусть у нас есть данные $n = 30, \sum_{i=1}^{30} x_i = 20 = T(x)$

$$\tilde{T}(x) = \frac{20 - 30 \cdot \frac{1}{2}}{\sqrt{30 \cdot 0.5 \cdot 0.5}} \approx 1.82574$$

7. Попали в критическую область, значит принимаем H_1 на уровне доверия $1-\alpha=0.95$

Задача

А если у нас есть две серии различных испытаний Бернулли?

Пусть $\xi_1 \sim Bi(n_1, p_1)$ и $\xi_2 \sim Bi(n_2, p_2)$. Хотим проверить $H_0: p_1 = p_2$ против альтернатив $H_1: p_1 < p_2$. $H_2: p_1 > p_2$. $H_2: p_1 \neq p_2$.

 $p_2,\ H_2:p_1>p_2,\ H_3:p_1\neq p_2.$ Введём обозначение $\hat{p}_1=rac{\sum_{i=1}^{n_1}x_{i1}}{n_1},\ \hat{p}_2=rac{\sum_{i=1}^{n_2}x_{i2}}{n_2},$ тогда:

$$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\mathcal{D}(\hat{p}_1 - \hat{p}_2)}} \sim N(0, 1)$$

Посчитаем $\mathcal{D}(\hat{p}_1 - \hat{p}_2) = \mathcal{D}(\hat{p}_1) + \mathcal{D}(\hat{p}_2) - 2\underbrace{\cot(\hat{p}_1, \hat{p}_2)}_{=0} = \frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2} = pq\left(\frac{1}{n_1} + \frac{1}{n_2}\right).$

Oценим p:

$$\hat{p} = \frac{\sum_{i=1}^{n_1} x_{i1} + \sum_{i=1}^{n_2} x_{i2}}{n_1 + n_2}$$

Тогда $\tilde{T}(x) = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$. По этой статистике уже можем принимать решения.

Лекция 21 февраля

Лемма Неймана-Пирсона

Пусть $X_1, \ldots, X_n \sim f(x, \theta)$, параметр θ неизвестен. Проверяется простая гипотеза $H_0: \theta = \theta_0$ против простой альтернативной гипотезы $H_1: \theta = \theta_1$ (БОО $\theta_1 > \theta_0$).

Существует наиболее мощный критерий для проверки H_0 против H_1 с критической областью $S_{1\alpha}^* = \{(x_1,\ldots,\ x_n) \mid T(x_1,\ldots,\ x_n) \geqslant c_\alpha\}$, где $T(x_1,\ldots,\ x_n) = \frac{L(x_1,\ldots,\ x_n,\ \theta_1)}{L(x_1,\ldots,\ x_n,\ \theta_0)} = \frac{\prod_{i=1}^n f(x_i,\ \theta_1)}{\prod_{i=1}^n f(x_i,\ \theta_0)}$, а c_α такое что $P_{\theta_0}(T(x) \geqslant c_\alpha) = \alpha$

Доказательство

Пусть есть критерий с критической областью $S_{1\alpha}$ лучше (более мощный) предложенного нашей леммой. Тогда (под x далее понимается вектор (x_1, \ldots, x_n)):

$$\beta(\theta_1, S_{1\alpha}) = \int_{S_{1\alpha}} \prod_{i=1}^n f(x_i, \theta_1) dx_1 \dots dx_n = \int_{S_{1\alpha}} L(x, \theta_1) dx = \int_{S_{1\alpha}S_{1\alpha}^*} L(x, \theta_1) dx + \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} L(x, \theta_1) dx = \int_{S_{1\alpha}S_{1\alpha}^*} L(x, \theta_1) dx = \int_{S_{1\alpha}S_{1$$

По определению функции T(x):

$$T(x) = \frac{L(x, \theta_1)}{L(x, \theta_0)} \Rightarrow T(x)L(x, \theta_0) = L(x, \theta_1)$$

Подставим это в сумму:

$$= \int_{S_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \ \theta_{0}) \, dx + \int_{S_{1\alpha}\overline{S}_{1\alpha}^{*}} T(x)L(x, \ \theta_{0}) \, dx$$

По определению $\beta(\theta, S_1) = P(X \in S_1, \theta)$ то есть правдоподобие попадания случайной величины в критическую область при заданном параметре.

$$\beta(\theta_{1}, S_{1\alpha}^{*}) = \int_{S_{1\alpha}^{*}} L(x, \theta_{1}) dx = \int_{S_{1\alpha}S_{1\alpha}^{*}} L(x, \theta_{1}) dx + \int_{\overline{S}_{1\alpha}S_{1\alpha}^{*}} L(x, \theta_{1}) dx =$$

$$= \int_{S_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx + \int_{\overline{S}_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx$$

Чуток пошаманим с выведенными формулами:

$$\beta\left(\theta_{1}, S_{1\alpha}\right) - \beta\left(\theta_{1}, S_{1\alpha}^{*}\right) = \left(\int_{S_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx + \int_{S_{1\alpha}\overline{S}_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx\right) - \left(\int_{S_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx + \int_{\overline{S}_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx\right) \Rightarrow$$

$$\Rightarrow \beta\left(\theta_{1}, S_{1\alpha}\right) - \beta\left(\theta_{1}, S_{1\alpha}^{*}\right) = \int_{S_{1\alpha}\overline{S}_{1\alpha}^{*}} \underbrace{T(x)L(x, \theta_{0}) dx - \int_{S_{1\alpha}^{*}\overline{S}_{1\alpha}} \underbrace{T(x)L(x, \theta_{0}) dx}_{\geqslant c_{\alpha}} \right) = \int_{S_{1\alpha}\overline{S}_{1\alpha}^{*}} \underbrace{T(x)L(x, \theta_{0}) dx - \int_{S_{1\alpha}^{*}\overline{S}_{1\alpha}^{*}} \underbrace{T(x)L(x, \theta_{0}) dx}_{\geqslant c_{\alpha}}$$

Теперь можно составить равенство:

$$\beta(\theta_1, S_{1\alpha}) = \beta(\theta_1, S_{1\alpha}^*) + \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} \underbrace{T(x)}_{< c_{\alpha}} L(x, \theta_0) dx - \int_{S_{1\alpha}^*\overline{S}_{1\alpha}} \underbrace{T(x)}_{\geqslant c_{\alpha}} L(x, \theta_0) dx$$

Правый интеграл содержит область $S_{1\alpha}^*$, по заданию это множество таких точек, в которых $T(x) \ge c_\alpha$. Левый интеграл, наоборот, содержит $\overline{S}_{1\alpha}^*$, то есть все точки, в которых $T(x) < c_\alpha$. Значит будет справедливо неравенство:

$$\beta(\theta_1, S_{1\alpha}) < \beta(\theta_1, S_{1\alpha}^*) + c_{\alpha} \left(\int_{S_{1\alpha} \overline{S}_{1\alpha}^*} L(x, \theta_0) dx - \int_{S_{1\alpha}^* \overline{S}_{1\alpha}} L(x, \theta_0) dx \right)$$

Вероятность попадания в критическую область должна быть равна α , тогда верно:

$$\alpha = \int_{S_{1\alpha}} L(x, \ \theta_0) \, dx = \int_{S_{1\alpha}^*} L(x, \ \theta_0) \, dx$$

При этом

$$\int_{S_{1\alpha}} L(x, \theta_0) dx = \int_{S_{1\alpha}S_{1\alpha}^*} L(x, \theta_0) dx + \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} L(x, \theta_0) dx
\int_{S_{1\alpha}^*} L(x, \theta_0) dx = \int_{S_{1\alpha}^*S_{1\alpha}} L(x, \theta_0) dx + \int_{S_{1\alpha}^*\overline{S}_{1\alpha}} L(x, \theta_0) dx
\int_{S_{1\alpha}} L(x, \theta_0) dx - \int_{S_{1\alpha}^*} L(x, \theta_0) dx = \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} L(x, \theta_0) dx - \int_{S_{1\alpha}^*\overline{S}_{1\alpha}} L(x, \theta_0) dx = \alpha - \alpha = 0$$

Тогда в ранее записанном неравенстве:

$$c_{\alpha} \left(\int_{S_{1\alpha} \overline{S}_{1\alpha}^*} L(x, \ \theta_0) \, dx - \int_{S_{1\alpha}^* \overline{S}_{1\alpha}} L(x, \ \theta_0) \, dx \right) = 0 \Rightarrow$$

$$\Rightarrow \beta(\theta_1, \ S_{1\alpha}) < \beta(\theta_1, \ S_{1\alpha}^*) + 0 \Rightarrow \beta(\theta_1, \ S_{1\alpha}) < \beta(\theta_1, \ S_{1\alpha}^*)$$

То есть всякая критическая область, отличная от $S_{1\,\alpha}^*$, будет менее мощной.

Задача

 $X_1, \ldots, X_n \sim N(m, \sigma^2)$, дисперсия известна. Построить наиболее мощный критерий для проверки $H_0: m=m_0$ против $H_1: m=m_1>m_0$

Решение (моё)

По лемме Неймана-Пирсона критическая область необходимого нам критерия должна выглядеть так:

$$S_{1\alpha}^* = \{(x_1, \dots, x_n) \mid T(x) \ge c_\alpha\}, \ T(x) = \frac{L(x, m_1)}{L(x, m_0)} \ge c_\alpha, \ P_{m_0}(T(x) \ge c_\alpha) = \alpha$$

$$L(x, m_1) = \prod_{i=1}^n f(x_i, m_1) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - m_1)^2}{2\sigma^2}}$$

$$L(x, m_0) = \prod_{i=1}^n f(x_i, m_0) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - m_0)^2}{2\sigma^2}}$$

$$\frac{L(x, m_1)}{L(x, m_0)} = e^{\sum_{i=1}^n \frac{(x_i - m_0)^2 - (x_i - m_1)^2}{2\sigma^2}} = e^{\sum_{i=1}^n \frac{(m_0 - m_1)(2x_i - m_1 - m_2)}{2\sigma^2}}$$

Хотим найти такое c_{α} , что $P\left(T(x)\geqslant c_{\alpha}\right)=\alpha$, то есть хотим найти:

$$F_{T(x)}(c_{\alpha}) = \alpha \Rightarrow \int_{-\infty}^{c_{\alpha}} e^{\sum_{i=1}^{n} \frac{(m_0 - m_1)(2x_i - m_1 - m_2)}{2\sigma^2}} dx = \alpha$$

Ответ с лекции

$$S_{1\alpha}^*\{(x_1,\ldots, x_n) \mid \overline{X} \geqslant m_0 + \frac{Z_{1-\alpha}\sqrt{n}}{\sigma}\} = \{(x_1,\ldots, x_n) \mid \frac{(\overline{X}-m_0)\sqrt{n}}{\sigma} \geqslant Z_{1-\alpha}\}$$

Задача

Для проверки гипотезы $H_0: m = m_0$

$$T(x) = \frac{(\overline{X} - m_0)\sqrt{n}}{\sigma} \Rightarrow T(x)\big|_{H_0: m = m_0} \sim N(0, 1)$$

Против гипотезы $H_1: m > m_0$

Против гипотезы $H_2: m < m_0$

Против гипотезы $H_3: m \neq m_0$

Пояснение: на рисунках зелёным обозначена доверительная область, красным обозначена критическая область.

Задача

Снова гауссовская выборка, но дисперсия неизвестна. Хотим проверить гипотезу $H_0: m=m_0$. Тогда нужно поменять статистику на:

$$T(x) = \frac{(\overline{X} - m_0)\sqrt{n}}{\tilde{S}} = \frac{(\overline{X} - m_0)\sqrt{n-1}}{S}$$

$$T(x)\big|_{H_0} \sim t(n-1)$$

Против гипотезы $H_1: m > m_0$

Против гипотезы $H_2: m < m_0$

Против гипотезы $H_3: m \neq m_0$

Та же самая идея, только разделение идёт по квантилям распределения Стьюдента.

Задача

Теперь строим критерий для оценки дисперсии при известном математическом ожидании. Проверяем гипотезу $H_0: \sigma = \sigma_0$:

$$T(x) = \frac{\sum_{i=1}^{n} (x_i - m)^2}{\sigma_0^2}$$
$$T(x)|_{H_0: \sigma = \sigma_0} \sim \chi^2(n)$$

Против гипотезы $H_1: \sigma < \sigma_0$

Против гипотезы $H_2: \sigma > \sigma_0$

Против гипотезы $H_3: \sigma \neq \sigma_0$

Задача

Если математическое ожидание неизвестно:

$$T(x) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{\sigma_0^2}$$

$$T(x)\big|_{H_0:\sigma=\sigma_0} \sim \chi^2(n-1)$$

Против гипотезы $H_1: \sigma < \sigma_0$

Против гипотезы $H_2: \sigma > \sigma_0$

Против гипотезы $H_3: \sigma \neq \sigma_0$

Проверка гипотез о распределении случайных величин

Критерий Колмогорова (КАКОЙ ЖЕ ОН КРУТОЙ)

 $X_1, \ldots, X_n \sim F_{\xi}(x, \theta_0) = F_0(x), \ \theta_0$ известна. Проверяем гипотезу $H_0: \xi \sim F_0(x)$

Колмогоров предложил считать $D_n = \max_{1 \le i \le n} |\hat{F}_n(x_i) - F_0(x_i)|$.

Если $n \to \infty$ (начиная с 20 уже хорошая апроксимация) и при условии верности H_0 получаем

$$\sqrt{n}D_n \sim K(t)$$

Функция распределения Колмогорова

$$K(t) = \sum_{j=-\infty}^{+\infty} (-1)^j \exp\{-j^2 t^2\}$$

Критерий хи-квадрат

 $X_1, \ldots, \ X_n \sim F_{\xi}(x, \ \theta_0) = F_0(x), \ \theta_0$ знаем. Проверяем гипотезу $H_0: \xi \sim F_0(x).$

Делим \mathbb{R}^1 на l+2 интервала, где $S_0=-\infty,\ S_{l+1}=+\infty$ тогда $\hat{p}_k=\frac{n_k}{n},\ p_k^{(0)}=F_0(S_k)-F_0(S_{k-1}),$ где $k=\overline{1,\ l+1}.$

Здесь возникает
$$\hat{\chi}^2 = \sum_{k=1}^{l+1} \frac{n}{p_k^{(0)}} \left(\hat{p}_k - p_k^{(0)} \right)^2$$

Утверждение

Если $0 < p_k^{(0)} < 1$ для $\forall k = \overline{1,\ l+1},\ n \to \infty$ и справедлива $H_0,$ то

$$\hat{\chi}^2 \sim \chi^2(l)$$

Тогда график будет выглядеть так

Задача

Проверяем теории из биологии

	$p_k^{(0)}$	n_k	$\hat{p}_k = \frac{n_k}{n}$
AB	$\frac{9}{16}$	315	0.556
Ab	$ \begin{array}{r} \hline $	108	0.194
aB	$\frac{3}{16}$	101	0.182
ab	$\frac{1}{16}$	32	0.058

Теперь проверим $H_0: \vec{p}^{(0)} = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right)$ Применяя критерий хи-квадрат:

 $\hat{\chi}^2 = 0.49$, посчитали за кадром

$$\hat{\chi}^2\big|_{H_0} \sim \chi^2(3)$$

Тогда при параметрах $\alpha = 0.05, \ \chi^2_{3, 0.95} = 7.81 \Rightarrow$ наш результат лежит в доверительной области.

Лекция 28 февраля

Критерий хи-квадрат Пирсона

Имеется выборка $X_1, \ldots, X_n \sim F_\xi(x, \theta), \ \theta \in \Theta \subset \mathbb{R}^n.$ Проверяем гипотезу $H_0: \xi \sim F_\xi^0(x, \theta)$ (здесь использован верхний индекс для указания на какое-то конкретное распределение).

- 1. Оценим вектор параметров $\theta = (\theta_1, \dots, \theta_m)$ по методу максимального правдоподобия.
- 2. Разбиваем \mathbb{R}^1 на (l+1) непересекающийся интервал.

3. Введём следующие обозначения:

$$\forall k \in [1, \ l-1] \cap \mathbb{Z} \quad \hat{p}_k = \frac{n_k}{n}$$

$$\forall k \in [0, \ l] \cap \mathbb{Z} \quad p_k^{(0)} \left(\hat{\theta} \right) = P_{H_0} \left(\xi \in \Delta_k \right), \ (\text{вероятность } \xi \text{ попасть в } k\text{-ый интервал при условии } H_0 \right)$$

$$p_k^{(0)} \left(\hat{\theta} \right) = F \left(s_{k+1}, \ \hat{\theta} \right) - F \left(s_k, \ \hat{\theta} \right)$$

Тогда справедливо

$$\hat{\chi}^2 = \sum_{k=0}^{l} \frac{n}{p_k^{(0)}(\hat{\theta})} \left(\hat{p}_k - \hat{p}_k^{(0)}(\hat{\theta}) \right)^2 = n p_0^{(0)}(\hat{\theta}) + \sum_{k=1}^{l-1} \frac{n}{p_k^{(0)}(\hat{\theta})} \left(\hat{p}_k - \hat{p}_k^{(0)}(\hat{\theta}) \right)^2 + n p_l^{(0)}(\hat{\theta})$$

Утверждение

При $n \to \infty$, $p_k^{(0)} > 0$, $\sum_{k=0}^{\infty} p_k^{(0)} = 1$ и соблюдении некоторых условий регулярности (про дифференцируемость и существование вторых производных) выполняется

$$|\hat{\chi}^2|_{H_0} \sim \chi^2(l+1-1-m)$$

Здесь l+1 — количество интервалов, а m — количество оцененных параметров. Доверительным интервалом будет $(0, \chi^2_{1-\alpha, l-m})$

Определение

Выборки $X_1,\ldots,\ X_m \sim F_x(t)$ и $Y_1,\ldots,\ Y_m \sim F_y(t)$ называются однородными, если

$$\forall t \in \mathbb{R}^1 \quad F_x(t) \sim F_y(t)$$

Для доказательства однородности выборок следует проверять гипотезу $H_0: \forall t \in \mathbb{R}^1 \quad F_x(t) = F_y(t)$

Пример

Имеется две выборки $X_1,\ldots,\ X_m \sim F(t)$ и $Y_1,\ldots,\ Y_n \sim F(t-\theta)$. Пусть $|EX|<\infty,$ тогда

$$EY_{1} = \int_{-\infty}^{+\infty} t f_{y}(t) dt = \int_{-\infty}^{+\infty} t f_{x}(t - \theta) dt = \left\langle t - \theta = z \right\rangle = \int_{-\infty}^{+\infty} (z + \theta) f_{x}(z), \ dz =$$

$$= \int_{-\infty}^{+\infty} z f_{x}(z) dz + \theta \int_{-\infty}^{+\infty} f_{x}(z) dz = EX + \theta$$

Тогда для проверки однородности могут быть использованы гипотезы:

Критерий Стьюдента

Есть две выборки $X_1, \ldots, X_m \sim N(m_x, \sigma^2)$ и $Y_1, \ldots, Y_n \sim N(m_y, \sigma^2)$. Выборки независимы и имеют одинаковые (но неизвестные нам) дисперсии.

Тогда для проверки гипотезы $H_0: m_y - m_x = 0$ подойдёт статистика:

$$T(x, y) = \frac{\overline{Y} - \overline{X}}{S\sqrt{\frac{1}{n} + \frac{1}{m}}}$$

Здесь $S^2 = \frac{\sum_{i=1}^m \left(x_i - \overline{X}\right)^2 + \sum_{i=1}^n \left(y_i - \overline{Y}\right)^2}{m + n - 2}$. При верности гипотезы H_0 получаем

$$T(x, y)|_{H_0} \sim t(n+m-2)$$

Против гипотезы $H_1: \theta < 0$

Против гипотезы $H_2: \theta > 0$

Против гипотезы $H_3: \theta \neq 0$

Ранговые критерии

Определение

Рангом элемента выборки называется его номер в вариационном ряду:

$$R(x_{(k)}) = k$$

Процедура определения рангов элементов выборки называется ранжированием.

Определение

Связкой размера n называют n совпадающих элементов выборки.

Если связке размера m предшествует k элементов, то все элементы связки получают один ранг, равный

$$\frac{1}{m} \sum_{i=k+1}^{m+k} i$$

Ранговый критерий Вилкоксона (1945)

Предполагается $X_1, \ldots, X_m \sim F(t)$ и $Y_1, \ldots, Y_n \sim F(t-\theta)$. Выборки независимы, F(t) — непрерывное распределение. Проверяем гипотезу $H_0: \theta = 0$.

Интуитивно понятно, что в случае $\theta \ll 0$ (математическое ожидание Y сильно меньше, чем у X) элементы в вариационном ряду располагаются так:

$$y_{(1)}, \ldots, y_{(n)}x_{(1)}, \ldots, x_{(m)}$$

И в случае $\theta \gg 0$:

$$x_{(1)}, \ldots, x_{(m)}y_{(1)}, \ldots, y_{(n)}$$

Для проверки критерия введём следующую статистику:

$$W_{m, n} = \sum_{i=1}^{n} R_i$$
, где R_i – ранг Y_i в объединённой выборке

Тогда для случая $\theta \ll 0$

$$\min W_{m, n} = \sum_{i=1}^{n} R_i = (n+1)\frac{n}{2}$$

Для случая $\theta \gg 0$

$$\max W_{m, n} = \sum_{i=1}^{n} R_i = (n + 2m + 1) \frac{n}{2}$$

Если $\theta = 0$, то выборка должна быть перемешана, тогда для статистики справедливо.

$$EW_{m, n}|_{H_0} = (n+m+1)\frac{n}{2}, \ \mathcal{D}W_{m, n} = \frac{mn}{12}(m+n+1)$$

Лекция 7 марта

Разбираем пример на применение критерия Вилкоксона.

 $X_1, \ldots, X_m \sim F_x(t)$ и $Y_1, \ldots, Y_n \sim F_y(t-\theta)$. Проверяем гипотезу $H_0: \theta = 0$.

$$W_{m, n} = \sum_{i=1}^{n} R_i$$

Пусть $m=4,\ n=2,$ тогда есть $C_6^2=15$ способов расставить y. Пусть $(R_1,\ R_2)=(r_1,\ r_2),$ тогда:

(r_1, r_2)	$W_{4, 2}$	$P_{H_0}((R_1, R_2) = (r_1, r_2))$
(1, 2)	3	$\frac{\frac{1}{15}}{\frac{1}{1}}$
(1, 3)	4	$\frac{1}{15}$
(1, 4)	5	$ \begin{array}{r} \hline 15 \\ \hline 15 \\ \hline 1 \end{array} $
(1, 5)	6	$\frac{1}{15}$
(1, 6)	7	
(2, 3)	5	$\frac{1}{15}$
(2, 4)	6	$\frac{1}{15}$
(2, 5)	7	$\frac{1}{15}$
(2, 6)	8	$\frac{1}{15}$
(3, 4)	7	$\frac{1}{15}$
(3, 5)	8	$ \begin{array}{r} \hline 15 \\ \hline 1 \\ \hline 15 \\ \hline 15 \\ \hline 1 \\ \hline 1 \\ \end{array} $
(3, 6)	9	$\frac{1}{15}$
(4, 5)	9	$\frac{1}{15}$
(4, 6)	10	$ \begin{array}{r} \overline{15} \\ \underline{1}5 \\ \overline{1}5 \\ \overline{1} \end{array} $
(5, 6)	11	$\frac{1}{15}$

Теперь можем составить таблицу

$W_{4, 2}$	3	4	5	6	7	8	9	10	11
P	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{2}{15}$	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{1}{15}$

Получается симметричное распределение, его функция распределения в некоторых точках:

$$F_W(3) = \frac{1}{15}, \ F_W(4) = \frac{2}{15}$$

 $EW_{m, n} = (m + n + 1)\frac{n}{2} \Rightarrow EW_{4, 2} = 7$

Распределение дискретное, поэтому квантиль считается так

$$Z_{\beta} = \min\{x \mid F(x) \geqslant \beta\}$$

Если $\min(m, n) \to \infty$, то

$$W^* = \left. \frac{W - EW_{m, n}}{\sqrt{\mathcal{D}W_{m, n}}} \right|_{H_0} \to N(0, 1)$$

Поправка на наличие связок. Имеется l связок и t_k — размер k-ой связки $(k=\overline{1,\ l})$. Тогда

$$\tilde{\mathcal{D}}W_{m, n} = \mathcal{D}W_{m, n} - \frac{mn\sum_{i=1}^{l} t_k(t_k^2 - 1)}{12N(N - 1)},$$
 где $N = m + n$

Далее идёт 10 минут обсуждения плюсов данного метода.

Проверка гипотезы об однородности против гипотезы о растяжении (сжатии)

$$X_1, \dots, X_m \sim F(t-\mu) \text{ и } Y_1, \dots, Y_n \sim F\left(\frac{t-\mu}{\Delta}\right), \ \Delta > 0$$
Если
$$\int_{-\infty}^{+\infty} tf(t) \, dt = 0 \text{ и } \exists \mathcal{D}X, \text{ то}$$

$$EX = \int_{-\infty}^{+\infty} tf(t-\mu) \, dt = \langle z = t-\mu \rangle = \int_{-\infty}^{+\infty} (z+\mu)t(z) \, dz = \mu$$

$$\mathcal{D}X = \int_{-\infty}^{+\infty} (t-\mu)^2 f(t-\mu) \, dt = \int_{-\infty}^{+\infty} z^2 f(z) \, dz$$

$$\mathcal{D}Y = \int_{-\infty}^{+\infty} (t-\mu)^2 \frac{1}{\Delta} f\left(\frac{t-\mu}{\Delta}\right) \, dt = \left\langle \frac{z = \frac{t-\mu}{\Delta}}{dz = \frac{1}{\Delta} dt} \right\rangle \int_{-\infty}^{+\infty} \Delta^2 z^2 f(z) \, dz = \Delta^2 \mathcal{D}X \Rightarrow \frac{\mathcal{D}Y}{\mathcal{D}X} = \Delta^2$$

Критерий Фишера

$$X_1, \ldots, X_m \sim N(m_1, \sigma_1^2), Y_1, \ldots, Y_n \sim N(m_2, \sigma_2^2)$$

 $X_1,\dots,\ X_m \sim N(m_1,\ \sigma_1^2),\ Y_1,\dots,\ Y_n \sim N(m_2,\ \sigma_2^2)$ Случайные величины независимы, параметры неизвестны. Проверяем гипотезу $H_0:\sigma_1^2=\sigma_2^2$

$$T(x, y) = \frac{\frac{1}{m-1} \sum_{i=1}^{m} (x_i - \overline{X})^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{Y})^2} \bigg|_{H_0} \sim F(m-1, n-1),$$
 распределение Фишера

 $\xi \sim F(m,\ n) \Rightarrow \frac{1}{\xi} \sim F(n,\ m).$ Тогда для квантилей справедливо:

 z_{β} — квантиль уровня β распределения $F(m, n), \frac{1}{z_{\beta}}$ — квантиль уровня $(1 - \beta)$ распределения F(n, m)

$$\beta = P\left(\xi \leqslant z_{\beta}\right) = P\left(\frac{1}{\xi} \geqslant \frac{1}{z_{\beta}}\right) = 1 - \underbrace{P\left(\frac{1}{\xi} \leqslant \frac{1}{z_{\beta}}\right)}_{=1,\beta}$$

$$H_1: \sigma_1^2 < \sigma_2^2$$

$$H_1:\sigma_1^2<\sigma_2^2$$
 $ilde{S}_1^2> ilde{S}_2^2\Rightarrow$ принимаем H_0

$$\tilde{S}_1^2 < \tilde{S}_2^2, \ T(x, \ y) = \frac{\tilde{S}_2^2}{\tilde{S}_1^2} \sim F(n-1, \ m-1) \Rightarrow$$
 на правом хвосте критическая область.

$$H_2: \sigma_1^2 > \sigma_2^2$$

$$\tilde{S}_1^2 < \tilde{S}_2^2 \Rightarrow$$
 принимаем H_0

$$H_2: \sigma_1^2 > \sigma_2^2$$
 $\tilde{S}_1^2 < \tilde{S}_2^2 \Rightarrow$ принимаем H_0 $\tilde{S}_1^2 > \tilde{S}_2^2, \ T(x, y) = \frac{\tilde{S}_1^2}{\tilde{S}_2^2} \sim F(m-1, n-1) \Rightarrow$ снова на правом хвосте критическая область (поменяли числитель и знаменатель).

$$H_3:\sigma_1\neq\sigma_2$$

$$\tilde{S}_1^2 < \tilde{S}_2^2, \ T(x, \ y) = \frac{\tilde{S}_2^2}{\tilde{S}_1^2} \sim F(n-1, \ m-1) \Rightarrow$$
 критическая область на правом хвосте.

$$\tilde{S}_{1}^{2} > \tilde{S}_{2}^{2}, \ T(x, y) = \frac{\tilde{S}_{1}^{\frac{1}{2}}}{\tilde{S}_{2}^{2}} \sim F(m-1, n-1) \Rightarrow$$
 на правом хвосте критическая область.

Критерий Ансари-Брэйли

$$X_1, \ldots, X_m \sim F(t-\mu)$$

 $Y_1, \ldots, Y_n \sim F\left(\frac{t-\mu}{\Delta}\right), \Delta > 0$

Предположения

Выборки независимы, $F(\mu) = 0.5$ Проверяем гипотезу $H_0: \Delta = 1$

Замечание 1

Если
$$\mathcal{D}X<\infty$$
 и $\int\limits_{-\infty}^{+\infty}tf(t)\,dt=0$, то $\Delta^2=\frac{\mathcal{D}Y}{\mathcal{D}X}$ Если $\mathcal{D}X=+\infty$, то $\begin{cases} \Delta<1\Rightarrow$ выборка Y сжата относительно X $\Delta>1\Rightarrow$ выборка Y растянута относительно X

Замечание 2

Если $X_1, \ldots, X_m \sim F(t-\mu_1)$ и $Y_1, \ldots, Y_n \sim F\left(\frac{t-\mu_2}{\Delta}\right)$ (то есть сдвиги $\mu_1, \ \mu_2$ различные), то рекомендуется найти выборочную медиану $\hat{\mu}_x$ и $\hat{\mu}_y$ и рассматривать выборки $x_1 - \hat{\mu}_x, \ldots, \ x_m - \hat{\mu}_x$ и $y_1 - \hat{\mu}_y, \ldots, \ y_n - \hat{\mu}_y$

Реально критерий Ансари-Брейли

Вводим обозначение m + n = N, а также статистика:

$$A_{m, n} = \sum_{i=1}^{N} \left(\frac{N+1}{2} - \left| R_i - \frac{N+1}{2} \right| \right)$$

Здесь R_i — ранг X_i в объединённой выборке. По своей сути $\left|R_i-\frac{N+1}{2}\right|$ есть расстояние до ближайшего конца выборки (если мы пронумеруем выборку в прямом и в обратном порядке, то каждый элемент получит минимальный из номеров).

Если $n+m \le 20$, то существует таблица точных значений квантилей статистики A Если $\min(m,\ n) \to \infty$, то

$$A^* = \left. \frac{A - EA_{m, n}}{\sqrt{DA_{m, n}}} \right|_{H_0} \sim N(0, 1)$$

Свойства данной статистики:

$$EA_{m, n} = \begin{cases} \frac{m(N+2)}{4}, & N \equiv 0\\ \frac{m(N+1)^2}{4N}, & N \equiv 1 \end{cases}$$

$$\mathcal{D}A_{m, n} = \begin{cases} \frac{mn(N+2)(N-2)}{48(N-1)}, & N \equiv 0\\ \frac{mn(N^2+3)(N+1)}{48N^2}, & N \equiv 1 \end{cases}$$

Если проверяем гипотезу $H_0: \Delta = 1$ (используем значение A^*)

Против гипотезы $H_1:\Delta<1$

Против гипотезы $H_2: \Delta > 1$

Против гипотезы $H_3: \Delta \neq 1$

MAD оценка (Medium Absolute Deviation)

Оценка среднеквадратичного отклонения выборки с неизвестным распределением:

$$MAD = \underset{1 \le i \le n}{\text{med}} \left| x_i - \underbrace{\text{med}(x_1, \dots, x_n)}_{\hat{m}u} \right|$$

Это медиана модулей отклонения от выборочной медианы

Критерий КОЛМОГОРОВА-Смирнова

Даны две выборки $X_1, \ldots, X_m \sim F(t)$ и $Y_1, \ldots, Y_n \sim G(t)$.

Предположения

Выборки независимые, F(t), G(t) непрерывные.

Применение

Проверяем гипотезу $H_0: \forall t \quad F(t) = G(t)$ против альтернативы общего вида: $H_1: \exists t \quad F(t) \neq G(t)$. Оцениваем функции распределения с помощью эмпирических функций распределения.

Рассматривается статистика:

$$D_{m, n} = \max_{1 \le i \le m+n} \left| \hat{F}_m(z_i) - \hat{G}_n(z_i) \right|$$

Здесь $z=(z_1,\dots,\ z_{m+n})$ — объединённая выборка из $x_1,\dots,\ x_m,\ y_1,\dots,\ y_n.$

Если $m + n \leq 20$, то есть таблица с точными квантилями.

Если m+n>20, тогда хорошей апроксимацией будет:

$$D_{m, n} \sim K(t)$$
, (распределение Колмогорова)

Тогда прямая разбивается на следующие области (отрицательные):

 k_{α} — квантиль Колмогорова уровня α . Известная точка $k_{0.95}=1.36$

Данный критерий наименее мощный среди всех упомянутых ранее, поскольку является более общим. Если понятно, с чем связана неоднородность выборок, то стоит применять более специализированные критерии.

Однофакторный дисперсионный анализ

Определения

Фактор — какая-то переменная, которая по нашему мнению влияет на конечный результат.

Уровень фактора — значение переменной фактора (в задаче их должно быть конечное число).

Отклик:

1	2		k
x_{11}	x_{12}		x_{1k}
x_{21}	x_{22}		x_{2k}
:	•	٠.	•
$x_{n_1 1}$	$x_{n_2 2}$		$x_{n_k k}$

Столбцы — выборка, являющаяся результатом испытания с каким-то конкретным уровнем фактора (С ростом номера столбца переменная фактора растёт).

$$x_{ij} = \theta + \tau_j + \varepsilon_{ij}$$

 ε_{ij} — независимое одинаковое распределение случайной величины с $E\varepsilon_{ij}=0,\ \mathcal{D}\varepsilon_{ij}=\sigma^2$ (дисперсия неизвестная).

 $H_0: \tau_1 = \cdots = \tau_k = 0$ против $H_1: \exists i: \tau_i \neq 0.$

Критерий Фишера

Обозначения

$$N = n_1 + \dots + n_k$$
$$\overline{X}_N = \frac{1}{N} \sum_{j=1}^k \sum_{i=1}^{n_j} x_{ij}$$

Предположения

$$\varepsilon_{ij} \sim N(0, \sigma^2).$$

Формулировка

$$SS_{\text{общ}} = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(x_{ij} - \overline{X}_{N} \right)^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(X_{ij} \pm \overline{X}_{\bullet j} - \overline{X}_{N} \right) = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(x_{ij} - \overline{X}_{\bullet j} \right)^{2} + \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(\overline{X}_{\bullet j} - \overline{X}_{N} \right)^{2} + \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(x_{ij} - \overline{X}_{\bullet j} \right) \left(\overline{X}_{\bullet j} - \overline{X}_{N} \right)$$

$$+ \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(x_{ij} - \overline{X}_{\bullet j} \right) \left(\overline{X}_{\bullet j} - \overline{X}_{N} \right)$$

$$= 0$$

Лекция 21 марта

Напоминание

$$SS_{\text{общ}} = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(x_{ij} - \overline{X}_{\bullet j} \right)^{2} + \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(\overline{X}_{\bullet j} - \overline{X}_{N} \right)^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(x_{ij} - \overline{X}_{\bullet j} \right)^{2} + \sum_{j=1}^{k} n_{j} \left(\overline{X}_{\bullet j} - \overline{X}_{N} \right)^{2} = SS_{\text{случ.}} + SS_{\text{yp. ds.}}$$

Из предположения о гауссовости $SS_{\text{случ}}$:

$$\frac{SS_{\text{случ.}}}{\sigma^2} = \sum_{i=1}^k \sum_{i=1}^{n_j} \left(\frac{x_{ij} - \overline{X}_{\bullet j}}{\sigma} \right)^2 \sim \chi^2(N - k)$$

При справедливости гипотезы H_0 :

$$\frac{SS_{\text{yp.}\,\Phi.}}{\sigma^2} = \sum_{j=1}^k n_j \left(\frac{\overline{X}_{\bullet j} - \overline{X}_N}{\sigma} \right)^2 \Big|_{H_0} \sim \chi^2(k-1)$$

Тогда про следующую статистику известно:

$$\frac{\frac{SS_{\text{yp. }\Phi.}}{\sigma^{2}(k-1)}}{\frac{SS_{\text{c.nyч.}}}{\sigma^{2}(N-k)}} = \frac{\frac{SS_{\text{yp. }\Phi.}}{(k-1)}}{\frac{SS_{\text{c.nyч.}}}{(N-k)}} \sim F(k-1, N-k)$$

Критической областью тогда будет $(F_{1-\alpha, k-1, N-k}, +\infty)$. Если H_0 отвергается, то

$$\begin{aligned} x_{ij} &= \theta_j + \varepsilon_{ij}, \quad \varepsilon_{i, j} \sim N(0, \sigma^2) \\ \theta_j &= \theta + \tau_j, \quad j = \overline{1, \ k} \\ \hat{\theta}_j &= \overline{X}_{\bullet j} \\ \hat{\theta}_j &\sim N\left(\theta_j, \frac{\sigma^2}{n_j}\right), \text{ T. K. } \frac{(\overline{X}_{\bullet j} - \theta_j)\sqrt{n_j}}{\sigma} \sim N(0, 1) \\ \mathcal{D}\hat{\theta}_j &= \mathcal{D}\left(\frac{1}{n_j}\sum_{i=1}^{n_j} X_{ij}\right) = \frac{\sigma^2}{n_j} \\ \hat{\sigma}^2 &= \frac{1}{N-k}\sum_{j=1}^k \sum_{i=1}^{n_j} \left(x_{ij} - \overline{X}_{\bullet j}\right)^2 \\ \frac{(\overline{X}_{\bullet j} - \theta_j)\sqrt{n_j}}{\hat{\sigma}} \sim t(N-k) \Rightarrow \\ \Rightarrow P\left(t_{\alpha/2, \ N-k} < \frac{(\overline{X}_{\bullet j} - \theta_j)\sqrt{n_j}}{\hat{\sigma}} < t_{1-\alpha/2, \ N-k}\right) = 1 - \alpha \Rightarrow \\ \Rightarrow P\left(\overline{X}_{\bullet j} - \frac{t_{1-\alpha, \ N-k}\hat{\sigma}}{\sqrt{n_j}} < \theta_j < \overline{X}_{\bullet j} + \frac{t_{1-\alpha, \ N-k}\hat{\sigma}}{\sqrt{n_j}}\right) = 1 - \alpha, \quad j = \overline{1, \ k} \end{aligned}$$

Определение

Контрастом γ параметров $\theta_j,\ j=\overline{1,\ k}$ в модели (*) называется:

$$\gamma = \sum_{j=1}^{k} c_j \theta_j$$

где константы c_j удовлетворяют $\sum_{j=1}^k c_j = 0$. Обычно берут две константы равные -1 и 1, остальные зануляют (в результате получаем, насколько контрастируют параметры конкретных столбов).

Определение

Оценкой контраста считается:

$$\hat{\gamma} = \sum_{j=1}^{k} c_j \hat{\theta}_j = \sum_{j=1}^{k} c_j \overline{X}_{\bullet j}$$

Параметры оценки:

$$\hat{\gamma} \sim N\left(\gamma, \ \sigma^2 \sum_{j=1}^k \frac{c_j^2}{n_j}\right)$$

$$\mathcal{D} \sum_{j=1}^k c_j \overline{X}_{\bullet j} = \sum_{j=1}^k c_j^2 \mathcal{D} \overline{X}_{\bullet j} = \sigma^2 \sum_{j=1}^k \frac{c_j^2}{n_j}$$

$$\frac{\hat{\gamma} - \gamma}{\sigma \sqrt{\sum_{j=1}^k \frac{c_j^2}{n_j}}} \sim t(N - k)$$

$$P\left(t_{\alpha/2, \ N-k} < \frac{\hat{\gamma} - \gamma}{\hat{\sigma} \sqrt{\sum_{j=1}^k \frac{c_j^2}{n_j}}} < t_{1-\alpha/2, \ N-k}\right) = 1 - \alpha$$

$$P\left(\hat{\gamma} - t_{1-\alpha/2, \ N-k} \hat{\sigma} \sqrt{\sum_{j=1}^k \frac{c_j^2}{n_j}} < \gamma < \hat{\gamma} + t_{1-\alpha/2, \ N-k} \hat{\sigma} \sqrt{\sum_{j=1}^k \frac{c_j^2}{n_j}}\right) = 1 - \alpha$$

Ранговый критерий Краскела-Уоллиса

Имееются выборки $z_1=(x_{1\,1},\ldots,\ x_{n_1\,1}),\ldots,\ z_k=(x_{1\,k},\ldots,\ x_{n_k\,k})$

Предположение

Выборки независимы, как и элементы в них.
$$x_{11} \sim F(t - \theta_1), \ldots, x_{ik} \sim F(t - \theta_k), i = \overline{1, n_j}$$
 Распределение $F(t)$ непрерывное

Гипотезы

$$H_0: \theta_1 = \dots = \theta_k = \theta, \ \theta$$
 — какое-то произовольное число для удобства обозначения
$$H_1: \exists j: \theta_j \neq \theta$$

Обозначения

$$r_{ij}$$
 — ранг x_{ij} в объединённой выборке объёма $N=n_1+\cdots+n_k$ $\overline{r}_{ullet j}=rac{1}{n_j}\sum_{j=1}^{n_j}r_{ij}$

Идея критерия

Имеется таблица

1	2		k
r_{11}	r_{12}		r_{1k}
•	•	٠	•
$r_{n_1 1}$	$r_{n_2 2}$		$r_{n_k k}$
$\overline{r}_{\bullet 1}$	$\overline{r}_{ullet 2}$		$\overline{r}_{\bullet \ k}$

Составим следующую статистику:

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} n_j \left(\overline{r}_{\bullet j} - \frac{N+1}{2} \right)^2$$

Если $\min(n_1, \ldots, n_k) \to \infty$:

$$H\Big|_{H_0} \sim \chi^2(k-1)$$

Критерий выглядит вот так:

Замечание

Всё написанное выше работает для выборки без связок. Если связки всё-таки есть, то нужен поправочный коэффициент.

Ранговый критерий Джонкхиера

Условия совпадают с критерией Краскела-Уоллиса, но альтернативная гипотеза другая:

Гипотезы

 $H_0: \theta_1 = \dots = \theta_k = \theta$ против $H_1: \theta_1 \leq \theta_1 \leq \dots \leq \theta_k$, где хотя бы одно неравенство строгое. То есть предполагаем, что увеличение фактора ведёт к увеличению математического ожидания.

Идея критерия

Введём функцию:

$$\varphi(y, z) = \begin{cases} 1, & y < z \\ 0.5, & y = z \\ 0, & y > z \end{cases}$$

И функцию:

$$U_{l, m} = \sum_{i=1}^{n_l} \sum_{j=1}^{n_m} \varphi(x_{ij}, x_{jm})$$

Теперь возьмём статистику:

$$J = \sum_{1 \le l < m \le k} U_{l, m}$$

Если $\min(n_1,\ldots, n_k) \to \infty$:

$$J^* = \frac{J - EJ}{\sqrt{\mathcal{D}J}} \sim N(0, 1)$$

Параметры статистики J (запоминать необязательно):

$$EJ = \frac{1}{4} \left(N^2 - \sum_{i=1}^k n_i^2 \right)$$

$$\mathcal{D}J = \frac{1}{72} \left(N^2 (2N+3) - \sum_{i=1}^k n_i^2 (2n_i + 3) \right)$$

Заметим, что при k = 2:

$$W = J + \frac{n_2(n_2 + 1)}{2}$$

Да и вообще статистика J является статистикой Вилкоксона с каким-то смещением, то есть все его свойства наследуются.