

Faculté des sciences et de génie Département de génie des mines, de la métallurgie et des matériaux

Examen du mardi 11 octobre 8h30 -10h25

GML-10463, Matériaux de l'ingénieur, section A GML-21452, Science des matériaux

Professeur : Diego Mantovani

Nom :			Prénom :	
Matricule :			Programme:	:
Matériaux d	e l'ingénieur :		Science des 1	matériaux :
		<u>INSTRUC</u>	CTIONS	
 Aucun doc Déposez s Le profess correction Ordinateur Lisez atten Maîtrisez v Écrivez ser au verso ne 	du français et ce, justes, baladeurs, système tivement l'ensemble cortre impulsivité et ré-	votre carte d'étudi it d'enlever des not squ'à concurrence des s complexes de calc de l'examen avant de fléchissez plusieurs acés prévus au recto si le contraire est inc	ant ; es en regard de la pr le 10 points sur 100 ul et téléphones cellu e commencer à réponde fois avant de réponde Le verso est pour vo	résentation générale et de la ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
• Seulement	t les calculateurs adn ez remettre TOUTES	S les feuilles de ce f	nt permis ; formulaire d'examen	
• Seulement	t les calculateurs adn		nt permis ; formulaire d'examen	

-1- **E1** (25)

Longueur entre les renères (cm)

Une éprouvette d'un alliage inconnu de 1,45 cm de diamètre est soumise à un essai de traction. La longueur initiale entre les repères est de 8,0 cm. Les résultats de l'essai sont les suivants:

Force (N)

Force (N)	Longueur entre les repères (cm)
38 530	8,005
67 580	8,010
96 510	8,015
116 670	8,020
125 950	8,025
135 370	8,048
143 280	8,050 (max, rupture)
REPONSES (indiquer le dévelop	pement détaillé avec éventuel graphique aux pages suivantes):
) Quelle est la valeur du module d	l'élasticité de ce matériau?
b) Quelle est la valeur de la limite	élastique de l'ingénieur (0,2%)?
	priquer un câble pour transporter des lingots ayant une masse de 1 re de celui-ci sachant qu'on ne peut tolérer un allongement supérieur
<u>DÉVELOPPEMENT :</u>	

a) Déterminez les indices de direction correspondant aux vecteurs illustrés aux figures ci-dessous.

REPONSES

Directions	Indices
AI	
ВІ	
CI	
DI	

Directions	Indices
AII	
вп	
CII	
DII	

b) Déterminez les indices de Miller des plans illustrés dans les cubes suivants.

REPONSES:

Plans	Indices de Miller
AI	
BI	
AII	
BII	
AIII	
BIII	

c)	Les feuilles d'aluminium servant à l'emballage des aliments ont environ 0,0254 mm d'épaisseur. En assumant que toutes les cellules unitaires sont arrangées de façon à ce que l'axe a _o soit perpendiculaire à la surface de la feuille, déterminez l'épaisseur de la feuille exprimée en nombre de cellules unitaires. Tenez présent que l.aluminium présente une structure cubique à faces centrées, et que son rayon atomique est de 0,1432 nm.
d)	À partir de 42,6 K, et jusqu'à sa fusion (Tfus = 54,2 K), l'oxygène (O2) cristallise selon une structure cubique de paramètre a = 683 pm. Sa masse volumique est évaluée à 1,32 x 103 kg/m3. Combien de groupement d'O2 contient cette maille élémentaire?

Une tige d'alumine est fabriquée selon la géométrie et les dimensions présentées ci-dessous. Au milieu de sa longueur, deux petits trous doivent être percés pour des raisons techniques liées au montage de la pièce finale. Sous quelle charge cette tige d'alumine se rompra-t-elle ?

Facteur de concentration de contraintes en fonction de la géométrie de la pièce soumise en traction

REPONSES ET DÉVEL	<u>OPPEMENT :</u>		

Un acier inoxydable type 305 possède les caractéristiques mécaniques en fonction du pourcentage de travail à froid (% CW) telles que données sur le graphique à la page suivante.

On veut fabriquer des tiges de 0,55 cm de diamètre dont la résistance doit être supérieure à 1050 MPa, la dureté supérieure à 28 Rc et la limite élastique inférieure à 1050 MPa. Le matériau tel que reçu est sous forme de tiges de 1 cm de diamètre dont la dureté est de 28 Rc. L'usine n'est pas équipée pour le travail à chaud (laminages à froid et recuits seulement). De plus, pour des raisons de résistance à l'usure des matrices, la dureté des tiges ne doit jamais être supérieure à 36 Rc et pour éviter la fissuration de ces tiges la striction à la rupture ne doit jamais être inférieure à 60%.

- a) Établissez en détail la procédure à suivre pour obtenir le produit demandé en minimisant le nombre d'étape pour réduire les coûts.
- **b**) Sachant que la section d'une tige diminue avec le pourcentage de travail à froid pendant que sa résistance augmente linéairement, après quel pourcentage de travail à froid une tige supportera-t-elle la plus grande charge? La tige de départ est à l'état recuit (0 % de C.W).

<u>REPONSES ET DÉVELOPPEMENT :</u>

Variations des propriétés mécaniques de l'acier inoxydable de type 305 en fonction du pourcentage de travail à froid

