Advanced Mechanics of Materials Vocabulary

Stress and Strain

Vector Transformation: $\mathbf{a}' = \mathbf{M}\mathbf{a}$, where \mathbf{M} is the transformation, or rotation or direction cosine matrix

$$o \quad \mathbf{M} = \begin{bmatrix} x' \cdot x & x' \cdot y & x' \cdot z \\ y' \cdot x & y' \cdot y & y' \cdot z \\ z' \cdot x & z' \cdot y & z' \cdot z \end{bmatrix}$$

Tensor (2nd order) Transformation: $T' = MTM^T$

Stress vector on arbitrary surface with normal unit vector $m{n}$: $m{t} = m{T} m{n} = m{ au} + m{\sigma}$

Material Response

Hooke's Law (Voigt Notation)

$$\begin{bmatrix} \varepsilon_{XX} \\ \varepsilon_{yy} \\ \varepsilon_{ZZ} \\ \varepsilon_{yz} \\ \varepsilon_{ZX} \\ \varepsilon_{Xy} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1+\nu & 0 & 0 \\ 0 & 0 & 0 & 0 & 1+\nu & 0 \\ 0 & 0 & 0 & 0 & 0 & 1+\nu \end{bmatrix} \begin{bmatrix} \sigma_{XX} \\ \sigma_{Xy} \\ \sigma_{ZZ} \\ \sigma_{ZZ} \\ \sigma_{ZX} \\ \sigma_{Xy} \end{bmatrix}$$

Failure Theory

O Max distortion energy (Von Mises): $(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2) = 2\sigma_{vp}^2$

Coulomb-Mohr: $\frac{\sigma_1}{\sigma_{11}} - \frac{\sigma_3}{\sigma_{12}'} = 1$

Fracture Mechanics

Stress intensity factor: $K = \lambda \sigma \sqrt{\pi a}$

Fatigue

$$\circ N_{cr} = N_f \left(\frac{\sigma_{cf}}{\sigma_f}\right)^{1/b}, \text{ where } b = \frac{\ln(\sigma_f/\sigma_e)}{\ln(N_f/N_e)}$$

• Soderberg:
$$\frac{\sigma_a}{\sigma_{cr}} + \frac{\sigma_m}{\sigma_{vp}} = 1$$

$$\circ \quad \text{Gerber: } \frac{\sigma_a}{\sigma_{cc}} + \left(\frac{\sigma_m}{\sigma_{cc}}\right)^2 = 1$$

$$\circ \quad \mathsf{SAE:} \frac{\sigma_a}{\sigma_{cr}} + \frac{\sigma_m}{\sigma_f} = 1$$

Dynamic Loading

Impact factor (vertical drop): $K = 1 + \sqrt{1 + \frac{2h}{\delta_{ct}}}$

Stress Concentrations

Stress distribution around a hole in a flat plate under uniaxial loading

$$\begin{split} &\sigma_r = \frac{1}{2}\sigma_o \left[\left(1 - \frac{a^2}{r^2} \right) + \left(1 + \frac{3a^4}{r^4} - \frac{4a^2}{r^2} \right) \cos 2\theta \right] \\ &\sigma_\theta = \frac{1}{2}\sigma_o \left[\left(1 + \frac{a^2}{r^2} \right) - \left(1 + \frac{3a^4}{r^4} \right) \cos 2\theta \right] \\ &\tau_{r\theta} = -\frac{1}{2}\sigma_o \left(1 - \frac{3a^4}{r^4} + \frac{2a^2}{r^2} \right) \sin 2\theta \end{split}$$

Table 3.2. Maximum Pressure Po and Deflection δ of Two Bodies in Contact

Configuration		Spheres: $p_o = 1.5 \frac{F}{\pi a^2}$	Cylinders: $p_o = \frac{2}{\pi} \frac{F}{aL}$	
A	z į	Sphere on a Flat Surface	Cylinder on a Flat Surface	
	F	$a = 0.880 \sqrt[3]{Fr_1 \Delta}$	$a = 1.076 \sqrt{\frac{F}{L} r_l \Delta}$	
	(r_1) $r_2=\infty$		For $E_1 = E_2 = E$:	
7	a - Y	$\delta = 0.775 \sqrt[3]{F^2 \frac{\Delta^2}{r_1}}$	$\delta = \frac{0.579F}{EL} \left(\frac{1}{3} + \ln \frac{2r_1}{a} \right)$	
В	Z +	Two Spherical Balls	Two Cylindrical Rollers	
	F	$a = 0.880 \sqrt[3]{F \frac{\Delta}{m}}$	$a = 1.076 \sqrt{\frac{F\Delta}{Lm}}$	
	(+ r ₁)	$\delta = 0.775 \sqrt[3]{F^2 \Delta^2 n} \leftarrow n$	1	
	F Y			
С	Z A	Sphere on a Spherical Seat	Cylinder on a Cylindrical Sea	
	F 12	$a = 0.880 \sqrt[3]{F\frac{\Delta}{n}}$	$a = 1.076 \sqrt{\frac{F\Delta}{Ln}}$	
,	a F	$\delta = 0.775 \sqrt[3]{F^2 \Delta^2 n}$		
Note:	$\Delta = \frac{1}{E_1} + \frac{1}{E_2}, m =$	$\frac{1}{r_1} + \frac{1}{r_2}$, $n = \frac{1}{r_1} - \frac{1}{r_2}$ * all	formulae in this table assume $\nu =$	

Stress distributions: Stresses as a function of the load axis, z (for v=0.3): (left) two spheres; (right) two parallel cylinders. Note: All normal stresses are compressive and principal (τ only non-zero for change of coordinates)

Beam Bending

$$\sigma_x = \frac{(M_y I_z + M_z I_{yz})z - (M_y I_{yz} + M_z I_y)y}{I_y I_z - I_{yz}^2}$$

Torsion

Table 6.2. Shear Stress and Angle of Twist of Various Members in Torsion

Cross section	Maximum shearing stress		Angle of twist per unit length	
2b $2b$ A For circular bar: $a=b$	$\tau_A = \frac{2T}{\pi a b^2}$		$\theta = \frac{(a^2 + b^2)T}{\pi a^3 b^3 G}$	
A a Equilateral triangle	$\tau_A = \frac{20T}{a^3}$		$\theta = \frac{46.2T}{a^4 G}$	
	$\tau_A = \frac{T}{\alpha a b^2}$		$\theta = \frac{T}{\beta ab^3 G}$	
	a/b		β	α
, a ,	1.0		0.141	0.208
	1.5		0.196	0.231
A I	2.0		0.229	0.246
	2.5		0.249	0.256
	3.0		0.263	0.267
	4.0		0.281	0.282
	5.0		0.291	0.292
	10.0		0.312	0.312
	∞		0.333	0.333
B	$\tau_A = \frac{T}{2abt_1}$ $\tau_B = \frac{T}{2abt}$		$\theta = \frac{(at + bt_1)T}{2tt_1a^2b^2G}$	
For circular tube: $a=b$	$\tau_A = \frac{T}{2\pi abt}$		$\theta = \frac{\sqrt{2(a^2 + b^2)}T}{4\pi a^2 b^2 t G}$	
A a Hexagon	$\tau_A = \frac{5.7T}{a^3}$		$\theta = \frac{8.8T}{a^4 G}$	

Narrow, rectangular cross section

$$\tau_{max} = \frac{3T}{bt^2} \qquad \theta = \frac{3T}{bt^3G}$$

Thin-walled, closed cross sections

$$\tau = \frac{T}{2At} \qquad \theta = \frac{1}{2AG} \oint \tau ds$$

Thick-Walled Pressure Vessels

• Stress equations

$$\sigma_r = \frac{a^2 p_i - b^2 p_o}{b^2 - a^2} - \frac{(p_i - p_o)a^2 b^2}{(b^2 - a^2)r^2}$$

$$\sigma_\theta = \frac{a^2 p_i - b^2 p_o}{b^2 - a^2} + \frac{(p_i - p_o)a^2 b^2}{(b^2 - a^2)r^2}$$

$$\sigma_z = \frac{p_i a^2 - p_o b^2}{b^2 - a^2}$$

Castigliano's Method Equations

$$\begin{split} \delta_i &= \frac{1}{AE} \int N \frac{\partial N}{\partial P_i} dx + \frac{1}{EI} \int M \frac{\partial M}{\partial P_i} dx + \frac{1}{AG} \int \alpha V \frac{\partial V}{\partial P_i} dx + \frac{1}{JG} \int T \frac{\partial T}{\partial P} dx \\ \theta_i &= \frac{1}{AE} \int N \frac{\partial N}{\partial C_i} dx + \frac{1}{EI} \int M \frac{\partial M}{\partial C_i} dx + \frac{1}{AG} \int \alpha V \frac{\partial V}{\partial C_i} dx + \frac{1}{JG} \int T \frac{\partial T}{\partial C_i} dx \end{split}$$

Buckling

Given
$$P_{cr}=rac{\pi^2 EI}{L_e^2}$$

Plasticity

$$M = \frac{3}{2} M_{yp} \left[1 - \frac{1}{3} \left(\frac{e}{h} \right)^2 \right]$$

$$T = \frac{\pi c^3}{6} \left(4 - \frac{\rho_0^3}{c^3} \right) \tau_{yp} = \frac{4}{3} T_{yp} \left(1 - \frac{1}{4} \frac{\rho_0^3}{c^3} \right)$$