Московский Физико-Технический Институт

(национальный исследовательский университет)

Оптика. Лабораторный практикум.

Лабораторная работа № 4.3.2 Дифракция света на ультразвуковой волне в жидкости.

Выполнили: Рябых Владислав, Исыпов Илья группа Б05-905 Рябых Владислав Исыпов Илья

Цель работы:

изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

Оборудование:

оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

Теория

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления n изменяется по закону:

$$n = n_0(1 + m\cos\Omega x)$$

Здесь $\Omega = 2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m \ll 1$). Положим фазу φ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\varphi = knL = \varphi_0(1 + m\cos\Omega x)$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{1}$$

Этот эффект проиллюстрирован на рисунке 1.

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu$$

Ход работы

Определение скорости ультразвука по дифракционной картине

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор К освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива O_2 F=30 см, одно деление винта микроскопа составляет 4 мкм, погрешность измерений примем равной $\sigma=2$ деления, или 8 мкм.

Исследуем изменения дифракционной картины на зеленом свете. При увеличении частоты УЗгенератора и приближении к 1,1 МГц проявляется дифракционная решетка: расстояние между максимумами растет.

Измерим положения x_m дифракционных максимумов с помощью микроскопического винта для четырех частот. Результаты измерений занесены в таблицы 1, 2, 3, 4. На основе каждой таблицы построены графики зависимости $x_m(m)$, они изображены на рисунках 3, 4, 5, 6. Коэффициенты углов наклона прямых b для всех зависимостей сведены в таблицу 5.

m	-3	-2	-1	0	1	2	3
x_m , дел	2.85	3.21	3.62	4.0	4.37	4.72	5.17
Δx_m , MKM	-460	-316	-152	0	148	288	468

Таблица 1: Измерение координаты m-ого максимума x_m при частоте генератора $\nu=1.076~{\rm M}\Gamma$ ц

Рис. 3: График зависимость $x_m(m)$ при частоте генератора $\nu=1.076$ МГц

m	-3	-2	-1	0	1	2	3
x_m , дел	2.84	3.20	3.63	4.0	4.35	4.71	5.23
Δx_m , MKM	-464	-320	-148	0	140	284	492

Таблица 2: Измерение координаты m-ого максимума x_m при частоте генератора $\nu=1.089~{\rm M}\Gamma$ ц

Рис. 4: График зависимость $x_m(m)$ при частоте генератора $\nu=1.089~{\rm M}\Gamma$ ц

m	-3	-2	-1	0	1	2	3
x_m , дел	2.9	3.2	3.7	4.0	4.43	4.8	5.3
Δx_m , MKM	-440	-304	-120	0	172	320	520

Таблица 3: Измерение координаты m-ого максимума x_m при частоте генератора $\nu=1.165~{\rm M}\Gamma$ ц

Рис. 5: График зависимость $x_m(m)$ при частоте генератора $\nu=1.165~{\rm M}\Gamma$ ц

m	-3	-2	-1	0	1	2	3
x_m , дел	2.54	3.1	3.7	4.0	4.45	5.06	5.75
Δx_m , MKM	-584	-360	-120	0	180	424	700

Таблица 4: Измерение координаты m-ого максимума x_m при частоте генератора $\nu=1.289~{\rm M}\Gamma$ ц

Рис. 6: График зависимость $x_m(m)$ при частоте генератора $\nu=1.289~{
m M}\Gamma$ ц

ν , М Γ ц	b, mkm	Λ , mkm	$\Delta\Lambda$, mkm	<i>v</i> , м/с	Δv , м/с
1.076	153.29	1346	15	1448	17
1.089	155.86	1358	13	1479	14
1.165	157.86	1212	12	1411	13
1.289	204.29	1079	19	1391	26

Таблица 5: Вычисление длины ультразвуковой волны Λ и скорости её распространения в воде v

Ошибка при определении Λ и v не превышает 2%. Согласно справочным данным, при комнатной температуре скорость ультразвуковой волны в воде составляет примерно 1490 м/с. Значения, полученные экспериментально, с достаточной точностью соотносятся с ними.

Изменение характера поляризации света при наличии внешнего поля

Для наблюдения акустической решетки используется метод темного поля, который заключается в устранении центрального дифракционного максимума с помощью непрозрачного экрана. Схема установки показана на рисунке 7.

Рис. 7: Схема для наблюдения дифракции методом темного поля

Приставим к задней стенке (для светового луча) кюветы стеклянную пластинку с миллиметровыми делениями; сфокусируем микроскоп на изображение пластинки. Определим цену деления окулярной шкалы микроскопа, совместив ее с миллиметровыми делениями: в 6 делениях миллиметровой шкалы убирается 100 маленьких делений окулярной. Значит, цена деления окулярной шкалы: $C=0.06\,\mathrm{mm}$.

Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум горизонтальной нитью. Таким образом, осевая составляющая фазово-модулированной волны поглощается, а боковые остаются без изменения. Получившееся поле:

$$f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{-i\Omega x} = im\cos\Omega x \Rightarrow I(x) = m^2\cos^2\Omega x = m^2\frac{1+\cos^22\Omega x}{2}$$

Отсюда получаем, что расстояние между темными полосами есть $\Lambda/2$.

Проведем измерение длины ультразвуковой волны, приняв ошибку равной цене деления окулярной шкалы. В таблице 6 содержатся количество маленьких делений окулярной шкалы N (цена деления C=0.06), соответствующее n темным полосам акустической решетки. Формулы для расчета

Рябых Владислав Исыпов Илья

длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1), \qquad v = \nu \Lambda$$

Расчеты также приведены в таблице 6. Ошибка при таком определении скорости звука больше, чем в первой части работы, и составляет около 5%. Сами значения тоже получились больше.

ν, Мгц	Количество делений шкалы окуляра <i>N</i>	Количество темных полос акустической решетки <i>n</i>	Λ , mm	<i>v</i> , м/с	Δv , м/с
1.220	150	15	1.29	1570	70
1.259	150	16	1.20	1510	80
1.271	175	18	1.24	1570	80

Таблица 6: Вычисление длины ультразвуковой волны Λ и скорости распространения ее в воде v методом темного поля

Вывод

В работе были изучены дифракция света на синусоидальной акустической решётке и фазовая решётка, полученная методом тёмного поля. Также были рассчитаны длина волны ультразвука и скорость его распространения в воде.