# (80415) אינפינטסמלי אינפינטסמלי -03 מטלה פתרון מטלה

2024 במאי 24



. מתקבל, ביניהן ביניהן שהמרחק כך  $A,B\subseteq\mathbb{R}^2$  היקות ולא סגורות שהי שהי נמצא מתקבל.

$$A = \{(x,y) \in \mathbb{R}^2 \mid y = 0\}, B = \{(x,y) \in \mathbb{R}^2 \mid xy = 1\}$$
 נבחר את הקבוצות

. שתי הקבוצות ניתנות לתיאור על־ידי פונקציות  $\mathbb{R} \to \mathbb{R}$  רציפות בכל תחומן ולכן הקבוצות מכילות את כל הנקודות הגבוליות שלהן, ובהתאם סגורות. inf  $\mathrm{dist}(A,B)=0$  ולכן  $\rho((x,0),(x,\frac{1}{x}))=\sqrt{0^2+\frac{1}{x^2}}=\frac{1}{|x|}$  מתקיים  $x\in\mathbb{R}$  מתקיים מתקיים אלעומת זאת, הקבוצות זרות, ונראה כי לכל

יהי עליו. פרחב וקטורי ו- $\|\cdot\|,\|\cdot\|'$  שתי נורמות עליו. עליו

$$A = \{\|v\|' \mid v \in S_1\}$$
ונגדיר ונגדיר  $S_1 = \{v \in V \mid \|v\| = 1\}$ תהי

.inf  $A>0, \sup A<\infty$  אם ורק אם שקולות שקולות נוכיה כי נוכיה

הוכחה. כיוון ראשון: נניח כי הנורמות שקולות.

 $\forall v \in V: C_1 \|v\| \leq \|v\|' \leq C_2 \|v\|$ לכן קיימים  $0 < C_1 \leq C_2$  לכן קיימים

בפרט

$$\forall v \in S_1 : C_1 \le ||v||' \le C_2 \implies \forall a \in A : C_1 \le a \le C_2$$

. $\sup A \leq C_2 < \infty$  וגם ווג $A \geq C_1 \geq 0$  ובהתאם

.sup  $A=b<\infty$ וֹ והA=a>0 כיוון שני: נניה כי

 $. \forall v \in S_1: a\|v\| \leq \|v\|' \leq b\|v\|$ ובהתאם ובהתא<br/>ס $\forall x \in A: a \leq x \leq b$ ישירות לכן נובע לכן לכן

 $\|u\|=\lambda\|u^*\|=\lambda$  בל גם  $u=\lambda u^*$  כך ש־  $\lambda\in\mathbb{R}^+$ ו וו $\|u^*\|=1$  כך ש־ ע\*  $u^*\in V$  וולכן גם אז אנו יודעים כי קיים  $u^*\in V$ 

נשים ב־ $\lambda$ ונקבל את שלושת נכפיל, נכפיל או א $|u^*|| \leq \|u^*\|' \leq b\|u^*\|$ ולכן ולכן ע<br/>  $u^* \in S_1$ ים לב עתה לב

$$a||u|| \le ||u||' \le b||u||$$

ולכן הנורמות שקולות.

 $\mathbb{R}$  מעל ממימד מחב נורמי מרחב ( $V, \|\cdot\|$ ) מרחב יהי

# 'סעיף א

. העתקה ערכית הד-חד העתקה  $T:\mathbb{R}^d o V$  תהי

 $\mathbb{R}^d$  נוכיח שהפונקציה  $f:\mathbb{R}^d o \mathbb{R}$  המוגדרת על־ידי המוגדרת שהפונקציה  $f:\mathbb{R}^d o \mathbb{R}$ 

הוכחה. נראה כי שלוש התכונות של נורמה מתקיימות.

- $f(u) = \|Tu\| = 0 \iff \|u\| = 0$  בלבד, ובהתאם בלבד, הוא וקטור העינה ולכן גרעינה הפיכה ולכן .1
  - .  $\forall u \in \mathbb{R}^2, \lambda \in \mathbb{R}, f(\lambda u) = \|T(\lambda u)\| = \|\lambda \cdot Tu\| = |\lambda| \|Tu\| = |\lambda| f(u)$  . 2
- .  $\forall u,v \in \mathbb{R}^2, f(u+v) = \|T(u+v)\| = \|Tu+Tv\| \leq \|Tu\| + \|Tv\| = f(u) + f(v)$  . 3

 $\mathbb{R}^{d-1}$  מקיימת את התנאים לנורמה ולכן מהווה נורמה ל

ידי נורמה על־ידי  $B=(v_1,\ldots,v_d)$  יהי

$$\|\alpha v_1 + \dots + \alpha_d v_d\|_1 = \sum_{i=1}^d |\alpha_1| = d|\alpha_1|$$

נוכיח שהנורמות  $\|\cdot\|,\|\cdot\|$  שקולות.

הנורמות משרה לנורמה משרה להגדיר אפשר להגדיר היורמות נורמה מ־V ל- $\mathbb{R}^2$ , ולכן אפשר להגדיר פונצקיה משרה לנורמה לשתי הנורמות ב-T מאפשר להשרות נורמה מ־V היורמות

. $\|\cdot\|_1$ הן שקולה ל־ $\|\cdot\|$  מחולה ונקבל כי גם אקולה ל־ $\|\cdot\|_1$  הנורמות ב- $\|\cdot\|_1$ 

יהיו ערכית חד־חד פונקציה  $f:X\to Y$ וים מטריים מרחביים איזו איים מוכיח מטריים מוכיח מטריים הבאים שקולים:

- . היא הומיאומורפיזם f . 1
- . פתוחה f(U) אם ורק אם פתוחה היא  $U\subseteq X$  פתוחה.
- סגורה. f(U) אם ורק אם סגורה איז מגורה  $U\subseteq X$  סגורה. 3

# . נניח כי f היא נניח בי: $2\leftarrow 1$ הומיאומורפיזם.

. פתוחה  $f^{-1}(U)\subseteq X$  גם  $U\subseteq Y$  גם הולכל f(U) פתוחה אז f(U) פתוחה המספיק לרציפות בסיק מהתנאי המספיק לרציפות כי  $U\subseteq X$  פתוחה אז  $U\subseteq Y$  פתוחה אם ורק אם  $f(U)\subseteq Y$  פתוחה אם ורק אם  $f(U)\subseteq Y$  פתוחה אם ורק אם f(U)

. פתוחה  $f(U) \subseteq Y$  אם ורק אם פתוחה של פתוחה וניח כי יש נניח כי יש פתוחה.

Yב פתוחה קבוצה קל( $A^C$ ולכן פתוחה קבוצה אז אז אז  $A^C$ אז אז סגורה קבוצה עהי תהי

באופן דותד לחד־חד בסתירה f(x)=f(y) בי ער כך  $x
eq y\in X$  בקבל כי ישנם  $f(U)\cap f(U^C)\neq\emptyset$  כי בשלילה כי שלילה פועדה. אילו נניח בשלילה כי  $f(U)\cap f(U^C)\neq\emptyset$  בסתירה לחד־חד ערכיות, ולכן  $f(U)\cap f(U^C)=\emptyset$ 

 $f(U^C) = (f(U))^C$  נסיק , ולכן נסתרת עבור אחרת אחרת אחרת אחרת אחרת לע $f(U) \cup f(U^C) = Y$  גם נראה גם

סגורה. סגורה אם ורק אם  $f(U)\subset Y$  סגורה אם סגורה ש־ $U\subset X$  סגורות שירות מטענה זו נוכל להסיק

. אף היא.  $f(U)\subseteq Y$  אם ורק אם סגורה אף סגורה אף סגורה אף כי כל קבוצה יט כי כל סגורה אם טגורה אם יט סגורה אף היא.

 $U\subseteq X$  לכל להשתמש בחד־חד ערכיות באופן זהה לסעיף הקודם וכך גם בעל ונקבל כי

f בשיפות ובהתאם  $f, f^{-1}$  כל קבונים, לשני הכיוונים, מתקיים לשני פתוחה הוא קבוצה פתוחה הוא קבוצה פתוחה המספיק לרציפות, שמקור כל קבוצה פתוחה הוא קבוצה פתוחה הוא המיאומורפיזם.

הציפה. ערכית, על ורציפה הד-חד פונקציה f:X o Yורציפה מטריים מרחבים אור הייו X,Y

#### 'סעיף א

. ביזם שאם אם f אז קומפקט<br/>יXשאם שאם נוכיח נוכיח נוכיח אז הוא

ידוע ש־f על ולכן Y ו־f(X)=Y ולכן על ולכן דוע ידוע ידוע

, הוצגה שהוצגה לטענה שהוצגה לא קומפקטית, אם נניח ש־B עצמה לא קומפקטית לכן לכן גם  $B\subseteq X$  לכן גם היא קומפקטית, אם נניח ש־B עצמה לא קומפקטית.

. הומיאומורפיזם היונובע מתקיים ונובע כי f הומיאומורפיזם.  $B\subseteq X$ 

# 'סעיף ב

ידי אמחד המוגדרת לי:  $f:[0,1) \to S(0,1) \subseteq \mathbb{R}^2$  המוגדרת התרגילים מאחד המונקציה את נבחן את

$$f(t) = (\cos t, \sin t)$$

אבל הראינו כי היא לא הומיאומורפיזם בשאלה 6 סעיף ה'.

#### 'סעיף א

. כדור סגור מטרי שלם, ויהי מטרי מרחב מטרי אור. מרחב מטרי שלם

. שלם מטרי היא הרחב על־ידי על־ידי המושרית שלם במטרי שלם בוכיח  $D^{\scriptscriptstyle -}$ 

 $(a_n)_{n=1}^\infty\subseteq D$  הוכחה. תהי סדרת קושי

 $\lim_{n \to \infty} a_n = a$  ונגדיר מתכנסת (a) ש־ נסיק מהשלמות ולכן אולכן ל $n \in \mathbb{N} a_n \in X$  כמובן כמובן

 $a\in D$  ידוע מכילת שלה גבולית שלה, ואכן מכילה את כלל הנקודות מכילה את כלל הנקודות אבולית שלה נסיק כי  $a\in A$  ידוע כי  $a\in A$  אבל ידוע גם כי  $a\in A$  נסיק כי  $a\in A$  עצמה שלמה.

### 'סעיף ב

נוכיח שלמשוואה

$$f'(x) = x \cdot \cos(f^2(x))$$

0 עם תנאי ההתחלה f(0)=3 יש פתרון יחיד בסביבת

הוכחה. תחילה נמיר למשוואה אינטגרלית ונקבל

$$f(x)=3+\int_0^x t\cdot\cos(f^2(t))dt$$
 נבחר קטע  $T:C(I) o C(I) o C(I)$  סביב  $I=[-a,a]$  על־ידי 
$$T(f)(x)=3+\int_0^x t\cdot\cos(f^2(t))dt$$
 יהיו  $f,g\in C(I)$ , ונניח  $f,g\in C(I)$ , יהי

$$\begin{split} |(Tf)(x)-(Tg)(x)| &= |\int_0^x t \cdot \cos(f^2(t))dt - \int_0^x t \cdot \cos(g^2(t))dt| \\ &= |\int_0^x t \cdot (\cos(f^2(t)) - \cos(g^2(t)))dt| \\ &\leq |\int_0^x t M dt| \\ &\leq M |\frac{x^2}{2}| \\ |(Tf)(x)-(Tg)(x)| \leq \frac{a^2 M}{2} \end{split}$$

. תכחת מכווצת עבור כל  $a < \sqrt{2}$  שנבחר מכווצת מכווצת ההעתקה T

תנאי ההעתקה שבת של בנך מתקיימים של בנך מקיימים ונקבל כי קיימת נקודה  $x_0\in I$  יחידה נקבל כי קיימת של בנך מתקיימים ונקבל המעומה בנת משפט נקודה אונה. בתרון של המשוואה הנתונה.

|f'(0)|<1 שים בים. נניח גם ש־f'ו וf(0)=0 שים קט פונקציה גזירה פונקציה  $f:I o\mathbb{R}$  ותהי  $f:I o \mathbb{R}$  סביבה של סביבה של  $f:I o \mathbb{R}$  בוכיח שקיים קטע א בורנו אין עבורנ בורנו אור בורנו אורנו אור בורנו בורנו אורנו בורנו אורנו בורנו בורנו

 $. \forall x \in X: |f'(x)| < 1$  שיX = [-a,a] כך קיימת סביבת M < 1 רציפה בסביבת M < 1 ור'M < 1 נגדיר M < 1 נגדיר M < 1 במובן M < 1 נגדיר M < 1 נגדיר M < 1 בארתו.

 $f(X)\subseteq X$ עבור שבחרנו לקבל של החלק השלילי על החלק אומעבר דומה על בור  $f^*(x)\subseteq X$ עבור לקבל של מקיימת ל $f^*(x)=|f(x)|-x$ נקבל כי

. המצומצמת ההעתקה g(x)=f(x)ידי על־ידי <br/>  $g:X\to X$ הגעומצמת נגדיר

. בתחום. |g(x)| < M|x| אף מכווצת, ההעתקה הינו ההינו  $|x| < a \implies |g(x)| < |x|$  בתחום.

 $\forall x,y \in (-a,a): |g(x)-g(y)| \leq |g(x)|-|g(y)| < M|x|-M|y| \forall x,y \in (-a,a): |g(x)-g(y)| \leq |M|x|-M|y|$  ותמשיך מפה נמאס לי