Simulation of Tree Growth

Eric Ekström 2020-12-01

Abstract

Contents

1	Introduction	
2	Background	
	2.1 Tree Structure and Terminology	
	2.2 Volumetric Light Scattering	
3	Method	
	3.1 Tree Generation	
	3.2 Volumetric Light Scattering	
	3.3 Shadow Mapping	
4	Result	
5	Discussion	
	5.1 Improvements	

1 Introduction

2 Background

2.1 Tree Structure and Terminology

This section covers the terminology used when describing trees. The choice of language is based on the description of trees by (Barthélémy and Caraglio, 2007).

A tree consists of a number of nodes. Each node supports nodes further out in the tree.

- A node is the main component of the tree. It supports at least a bud, another node or a leaf. A node combined with an internode is called a metamer. (Barthélémy and Caraglio, 2007)
- An *internode* is the section of stem between two nodes.
- The *lateral branch* is a supported node that is connected at an angle to the supporting node.
- The *main branch* is a supported node that has the same angle as the supporting node.
- Buds are potential points for expansion of new nodes. A lateral bud is located at the node that already has a main branch. An apical bud is located at a node that has no branches to support.

For this project, a tree grows by shooting a number of new metamers from a bud. This is called rhythmic growth and is the more commonly observed method of growth in nature. (Barthélémy and Caraglio, 2007) The fate of a bud and the number of new metamers depends on a number of factors. For this project, only a simulated light resource was considered.

A node is given an order based on the number of node below it. A node without a supporting node has order 1.

2.2 Volumetric Light Scattering

Volumetric light scattering (also called "godrays" or "crepuscular rays") is a light phenomenon that occurs when the mixture of gas and molecules in the air is just right. This causes light to be rayleigh-scattered and creates visual sun beams through the air. (See Figure 1.)

Figure 1: An example of volumetric light scattering. (Sunshine Kodai Kanal, Manoj K Racherla, 2013)

- 3 Method
- 3.1 Tree Generation
- 3.2 Volumetric Light Scattering
- 3.3 Shadow Mapping
- 4 Result
- 5 Discussion
- 5.1 Improvements

References

- Daniel Barthélémy and Yves Caraglio. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. *Annals of botany*, 99(3):375–407, 2007.
- Radomír Měch and Przemyslaw Prusinkiewicz. Visual models of plants interacting with their environment. In *Proceedings of the 23rd annual conference on Computer graphics and interactive techniques*, pages 397–410, 1996.
- Kenny Mitchell. Chapter 13. volumetric light scattering as a post-process. https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-light-scattering-post-process.