

WEST NILE VIRUS

Pesticides - To spray or not to spray?

DSI 16 Project 4 : Dominic Ong / Vikaskalia / Peter Wong / Jeriel Wong / Cheyanne Wong

Problem Statement

- Make predictions where West Nile Virus is present in the city of Chicago
- Predictions will be used to decide where to spray
- Conduct cost-benefit analysis

Data Science WorkFlow

Data Description

				Pe	riod					
Dataset	2007	2008	2009	2010	2011	2012	2013	2014	Rows	Columns
Train	V		V		V		V		10506	12
Test		V		V		V		V	116293	11
Weather	V	V	V	V	V	V	V	V	14835	4
Spray					V	V			2944	22

Data Cleaning & Transformation

Data Cleaning

Merging Rows > 50 Mosquitos

Merge Train & Weather dataset

Data Imputation

Weather Station 1 & 2 Ffill

Spread of Trapped Mosquitoes By Year

Even though the total number of mosquitoes caught in 2013 was lower than that of 2013, the percentage of WNV presence went up in 2013.

2013 Trap locations and Spray Area

In 2013, WNV presence was found in most traps across the city. The area near Station 1 in the northern region seems to be a hotspot for WNV presence. The spraying of pesticide is concentrated in this region.

Spread of Trapped Mosquitoes By Month

Number of mosquitoes trapped was the highest in the month of August where the weather is hot and humid. The presence of WNV was also higher in this month.

Seasonal Trend of Mosquitoes Infestation With Ave Temperature

The above graph shows that mosquitoes prefer the higher temperatures as when temperature increase so does the number of mosquitoes.

No. of Mosquitoes Cases with Total Rainfall

Total rainfall (precipitation) is inversely proportional to both the number of mosquitos and number of WNV-positive traps.

Mosquito Species with Positive & Negative Virus

The types of mosquitoes carrying the WNV virus are Culex Restuans and Culex Pipiens. Traps with presence of these mosquitoes have a higher probability of testing positive for the virus as compared to other types of mosquitoes.

Imbalanced Class

Feature Engineering

One-Hot Encoding

Time-lagged Weather Conditions

Interaction Terms

Principal Component Analysis

SMOTE

Multicollinearity Reduction

tmax_wk1	tmin_wk1	tavg_wk1	dewpoint_wk1	wetbulb_wk1	heat_wk1	cool_wk1	preciptotal_wk1	loc
87.0	60.0	74.0	44.0	58.0	0.0	9.0	0.0	-3669.828863
87.0	60.0	74.0	44.0	58.0	0.0	9.0	0.0	-3669.828863

Modeling

Modeling Approach

Model Types

- Logistic Regression
- Random Forest
- XGBoost

Tuning Techniques

- Pipeline
- GridSearch
- PCA

Evaluation Approach

Metrics

- Accuracy
- ROC AUC
- Specificity

Methods

- Cross Validation (Kfold)
- Confusion Matrix
- Feature Importance Analysis
- ROC_AUC Curve
- Misclassification Analysis

Model

Evaluation Metrics:

- Accuracy
- Specificity
- ROC-AUC Score

XGBoost is our best model!

	log_reg	log_reg_pca	extra_trees	xgboost	random_forest
01 Train score	0.7732	0.6486	0.9038	0.9045	0.9919
02 Test score	0.7909	0.5923	0.8281	0.8386	0.8699
03 Score diff	-0.0177	0.0563	0.0757	0.0659	0.122
04 Train recall	0.7401	0.6875	0.9452	0.9426	0.9932
05 Test recall	0.4565	0.7391	0.4783	0.5652	0.2391
06 Precision	0.1193	0.0912	0.1507	0.1793	0.1250
07 Specificity	0.8098	0.5840	0.8479	0.8540	0.9055
08 Sensitivity	0.4565	0.7391	0.4783	0.5652	0.2391
09 True Negatives	660	476	691	696	738
10 False Positives	155	339	124	119	77
11 False Negatives	25	12	24	20	35
12 True Positives	21	34	22	26	11
13 Train ROC Score	0.8570	0.7002	0.9684	0.9683	0.9998
14 Test ROC Score	0.7201	0.7322	0.8141	0.8520	0.7363
15 Train CV Score	0.7713	0.6479	0.8896	0.8934	0.9039
16 Test CV Score	0.9466	0.9466	0.9466	0.9385	0.9291

	log_reg lo	og_reg_pca	extra_trees	xgboost	random_forest
Train Score	0.7723	0.649	0.907	0.902	0.992
Test Score	0.785	0.595	0.832	0.841	0.870

Accuracy

Ratio of correctly predicted observation to the total observations

$$\frac{TN+TP}{TN+FP+TP+FN}$$

	log_reg	og_reg_pca	extra_trees	xgboost	random_forest
Specificity	0.804	0.588	0.852	0.854	0.906
False Positives	160	336	121	119	77

Specificity $\frac{TN}{TN+FP}$

False Positive Count (WNV Mosquitoes)

ROC - AUC Score

	log_reg log	g_reg_pca ex	ktra_trees	xgboost	random_forest
Train ROC	0.857	0.701	0.971	0.968	0.999
Test ROC	0.722	0.729	0.810	0.852	0.753

Feature Importance Top 5 Features:

- loc
- sunrise
- resultspeed
- tmax_wk1
- tmin_wk1

Importance plot provides a score that indicates how useful each feature was in the construction of the boosted decision trees within the model. The more an attribute is used to make key decisions with decision trees, the higher its relative importance.

Distribution of Probability:

- 119 False Positives
- 20 False Negatives

Minimizing the # of False Negatives is of greater importance in this problem. Predicting Mosquitoes to have WNV when do they actually do not have it (False Positives) is less of a concern than predicting Mosquitoes not to have WNV when they actually do have it (False Negatives).

Model Prediction

XG Boost Model Prediction for 2014 - July

Cost Benefit Analysis

Table 2

Estimated inpatient and outpatient economic costs of WNND cases, Sacramento County, California, 2005*

Item	Cost per case†	No. cases to which cost applies‡	% Cases to which cost applies§	Total cost for all cases	Total cost if treatment/service were used in all cases		
Inpatient treatment costs	\$33,143	46	100	\$1,524,570	\$1,524,570		
Outpatient costs	Cost						
	per case¶						
Outpatient hospital treatment	\$333	17	36	\$5,668	\$15,337		
Physician visits	\$450	46	100	\$20,708	\$20,708		
Outpatient physical therapy	\$909	46	100	\$41,810	\$41,810		
Occupational therapy	\$4,037	3	7	\$12,111	\$185,699		
Speech therapy	\$588	1	1	\$588	\$27,032		
Total			-	\$80,885	\$290,586		
Nursing home costs	Cost#						
Nursing home stay**	\$190	2	4	\$36,195	\$36,195		
Transportation	\$65	46	100	\$2,977	\$2,977		
Home health aides, babysitters, etc.	\$1,569	7	14	\$10,983	\$505,211		
Total				\$50,154	\$544,383		
Total for WNND				\$2,140,409	\$2,844,339		

Table 3

Estimated economic costs of WNND cases due to productivity loss, Sacramento County, California, 2005^\star

		Value of				io. ients		Total
Productivity loss	Value of work day missed†	nonwork day missed‡	No. work days missed	No. nonwork days missed	<60	>60	% Cases	costs for all cases
For patients <60 y	\$191	\$125	50	10	31		100	\$334,800
For patients ≥60 y		\$125		60		15	100	\$112,500
For caretakers		\$125		-	8	4	26	\$37,500
Total costs								\$484,800

Conclusion

Business Recommendations

- Conduct aerial spraying
- Social Education
- Birds/Pests Monitoring

Further Exploration

- Hyperparameter tuning
- Time lag weather data
- Poisson Regression modeling
- Post spray effectiveness

Submission and Description	Private Score	Public Score
submission.csv	0.67902	0.70339

Thank You