CRYSTALS

(Cryptographic Suite for Algebraic Lattices)

CCA KEM: Kyber

Digital Signature: Dilithium

Roberto Avanzi – ARM

Joppe Bos – NXP

Leo Ducas – CWI

Eike Kiltz – RUB

Tancrede Lepoint – SRI

Vadim Lyubashevsky – IBM Research

John Schanck – U. Waterloo

Peter Schwabe – U. Radboud

Gregor Seiler – IBM Research

Damien Stehle – ENS Lyon

www.pq-crystals.org

Lattice Cryptography

Easy Problem

Given (A,z), find y

Easy! Just invert A and multiply by z

Hard Problem

Small coefficients to enforce uniqueness Given (A,z), find (y,e)

Seems hard (would have many positive noncryptographic applications if it were easy).

Hard Problem

Given (A,z), find (y,e)

Seems hard.

Even when **A** is over $Z_p[X]/(f(X))$ for certain f(X).

Why is this "Lattice" Crypto?

All solutions $\binom{y}{e}$ to Ay+e=z mod p form a "shifted" lattice.

We want to find the point closest to the origin (BDD Problem).

Brief History

- Lattices studied algorithmically at least since 1982 (LLL)
- Algebraic lattices since at least 1996 (NTRU)
- Lattices over Z_p[X]/(Xⁿ+1) since at least 2008 (SWIFFT)
- Last 10 years one of the hottest area in cryptography. Lots of attention and some interesting algorithms discovered
 - > But ... 0 attacks against lattice crypto based on (Module-) SIS / LWE
 - ➤ Parameters were increased (around 50%) due to conservative considerations of "sieving" attacks requiring exponential space

CRYSTALS Math

Operations

Only two main operations needed (and both are very fast):

- 1. Evaluations of SHAKE256 (can use another XOF too)
- 2. Operations in the polynomial ring $R = Z_p[X]/(X^{256}+1)$ prime $p = 2^{13} 2^9 + 1$ (for Kyber) prime $p = 2^{23} 2^{13} + 1$ (for Dilithium)

Very easy to adjust security because the same hardware/software can be reused

Ring Choice Rationale

- 256-dimensional rings are "just right"
 - Large enough to efficiently encrypt 256-bit keys
 - ➤ Allow for a large enough challenge space for signatures
 - ➤ Allow for enough "granularity" to get the security we want
- **Z**_p[X]/(Xⁿ+1), for a prime p, has been the most widely-used ring in the literature
 - >Very easy to use and the most efficient one
 - Has a lot of properties that are useful in more advanced constructions

Operations

Basic Computational Domain:

Polynomial ring $Z_p[x]/(x^{256}+1)$

Operations used in the schemes:

Modular Security

Just do more of the same operation

CRYSTALS-Dilithium

Leo Ducas – CWI Eike Kiltz – RUB Tancrede Lepoint – SRI Vadim Lyubashevsky – IBM Research Peter Schwabe – U. Radboud Gregor Seiler – IBM Research Damien Stehle – ENS Lyon

Signature Size

Signatures with Uniform Sampling

[Lyu '09] → ... → [BG '14]

Signatures with Uniform Sampling

[Lyu '09] → ... → [BG '14]

$$As_1+s_2=t$$

Sign(μ) Verify(z, c, μ)

```
y \leftarrow \text{Coefficients in } [-\gamma, \gamma]
c := H(high(Ay), μ)
z := y + cs_1 \qquad \text{Needed for security}
and
|z| > \gamma - \beta \text{ or } |\text{low}(Ay - cs_2)| > \gamma - \beta
restart

Signature = (z, c)
Ay - cs_2
```

Signatures with Uniform Sampling

[Lyu '09] → ... → [BG '14]

$$As_1+s_2=t$$

Verify(z, c, μ)

Sign(µ)

y
$$\leftarrow$$
 Coefficients in [-γ, γ]
c := H(high(Ay), μ) Check that $|z| \le \gamma - \beta$
z := y + cs₁ Needed for correctness and
If $|z| > \gamma - \beta$ or $|low(Ay - cs_2)| > \gamma - \beta$ c=H(high(Az - ct), μ) restart
Signature = (z, c) $max(|cs_2|)$ Ay - cs₂

Chopping off Low-Order PK bits

$$As_1 + s_2 = t_0 + bt_1$$

Sign(µ)

Verify(z, c, μ)

Want high($Ay - cs_2$) = high($Ay - cs_2 + ct_0$)

The Carry Hint Vector

Want high(
$$\mathbf{Ay} - \mathbf{cs_2}$$
) = high($\mathbf{Ay} - \mathbf{cs_2} + \mathbf{ct_0}$)

The signer knows $Ay - cs_2 + ct_0$ and ct_0

The verifier knows $Ay - cs_2 + ct_0$

Ay - cs₂ + ct₀ - ct₀ Ay - cs₂ High Bits Low Bits Each 23-bit coefficient Carry bit

Dilithium

(high-level overview)

$$As_1 + s_2 = t_0 + bt_1$$

Sign(µ)

```
y \leftarrow Coefficients in [-γ, γ]

c := H(high(Ay), μ)

z := y + cs_1

If |z| > γ - β or |low(Ay - cs_2)| > γ - β

restart
```

Create carry bit hint vector h

Signature = (z, h, c)

Hint h

- adds 100 200 bytes to the signature
- Saves ≈ 2KB in the public key

Verify(z, c, μ)

Check that
$$|z| \le \gamma - \beta$$

and
c=H(high(h "+" $Az - cbt_1$), μ)
high($Ay - cs_2$)

Parameters for CRYSTALS-Dilithium

(> 128-bit quantum security)

	5 x 4 matrices	6 x 5 matrices
Public Key	≈ 1.5 KB	≈ 1.8 KB
Signature	≈ 2.7 KB	≈ 3.4 KB

Public key generation / verification: > 10,000 per second

Signing: > 3,000 per second

Security Reductions

Signature Scheme Security

(Proof framework for Fiat-Shamir Schemes in the ROM)

Math Problem

Hybrid 1

Real Signature
Scheme

- 1. A₃ gets math problem
- 2. A₃ solves math problem

Non-Interactive and no hash H

- 1. A₂ gets the public key and access to hash H
- 2. A₂ forges a signature

Non-Interactive

- 1. A₁ gets the public key and access to hash H
- 2. A₁ asks signature queries
- 3. A₁ forges a signature

Interactive

- Reduction in the QROM [Unr '17]
- Tight reduction in the QROM if the signing is deterministic [KLS '18]

Dilithium Security

Non-tight in the ROM

Tight in the QROM

Input: random A, t

Output: short $\mathbf{s_1}$, $\mathbf{s_2}$ and c such that

$$As_1 + s_2 - tc = 0$$

(Module)-SIS + (Module)-LWE

Input: random **A**, **t**, and an XOF H
Output: short $\mathbf{s_1}$, $\mathbf{s_2}$, c and μ such that $H(\mathbf{As_1} + \mathbf{s_2} - \mathbf{tc}, \mu) = \mathbf{c}$

Hybrid 1 (Self-Target SIS)

Non-tight reduction in the ROM using rewinding

The Same as Schnorr Signatures

Non-tight in the ROM

Tight in the QROM

Input: random A, t

Output: short $\mathbf{s_1}$, $\mathbf{s_2}$ and c such that

 $As_1 + s_2 - tc = 0$

Input: random **A**, **t**, and an XOF H

Output: short $\mathbf{s_1}$, $\mathbf{s_2}$, c and μ such that

 $H(As_1 + s_2 - tc, \mu) = c$

(Module)-SIS + (Module)-LWE

Hybrid 1 (Self-Target SIS)

Input: random g,h

Output: x, c such that

$$g^xh^c = 1$$

Input: random g, h, and an XOF H

Output: x, c and μ such that $H(g^x h^c, \mu) = c$

Is the "Self-Target" Assumption Worrisome in the QROM?

We believe not

 No example where using "rewinding" in the proof left the scheme vulnerable to a quantum attacker

 Analogous to computationally-binding classical commitments not having a proof in the QROM (and there is no NIST competition for post-quantum commitments)

Base on (Module-)LWE in the QROM?

Dilithium

	recommended	high
Public Key	≈ 1.5 KB	≈ 1.8 KB
Signature	≈ 2.7 KB	≈ 3.4 KB

"Katz-Wang" Tight Dilithium [AFLT '12, ABB+ '15, Unr '17, KLS '18]

		recommended	high
Public Key	5X larger	≈ 7.7 KB	≈ 9.6 KB
Signature	2X larger	≈ 5.7 KB	≈ 7.1 KB

Also significantly (> 10X) slower

Basis for Our Parameter Settings

LWE parameters (i.e. secret key recovery) used the recently en vogue sieving analysis

SIS parameters (i.e. message forgery) – the same analysis + improved (potential) algorithm for ℓ_{∞} - SIS

Possible Trade-Offs (open to community suggestions)

- Smaller secret key coefficients e.g. {-5,...,5} → {-1,0,1}
 - Signatures will be smaller
 - Makes combinatorial hybrid attacks more likely and gets further away from WC-AC parameters
- Module-LWE → Module-LWR
 - (Maybe) a slight reduction in the key size
 - Probably nothing goes wrong with security if sk coefficients are large enough
- Increase the rejection probability
 - Slower, but smaller signatures