1 List of symbols

(1 indicates a dimensionless quantity and – indicates not applicable).

Symbol	Variable name	Units	Description
$\arctan 2(y,x)$	_	_	The four quadrant inverse tangent which returns values in
			the interval $[-\pi, \pi]$, inclusive.
c	c	ms^{-1}	Sound speed in water.
D(v)	filter_v[n]['D']	1	Integer filter decimation factor.
$DFT_{N}DFT(x)$		_	The discrete Fourier transform of length N_{DFT} of x .
f		${ m Hz}$	Frequency.
$f_{ m C}$		Hz	Frequency at centre of linear upsweep chirp pulse. Equiv-
			alent to $f_{\text{start}} + \frac{ f_{\text{stop}} - f_{\text{start}} }{2}$.
$f_{ m n}$	f_n	$_{ m Hz}$	Nominal operating frequency of a transducer.
$f_{ m S}$	f_s	Hz	Analogue to digital sampling frequency.
$f_{ m s,dec}$	f_s_dec	Hz	Decimated sampling frequency.
$f_{ m start}$	f_1	Hz	Start frequency of linear upsweep chirp pulse.
$f_{ m stop}$	f_2	Hz	Stop frequency of linear upsweep chirp pulse.
$g(\theta, \phi, f)$	g_theta_phi_m	1	Transducer gain as a function of echo arrival angle in the
			beam and frequency.
$g_0(f)$	g_0_m	1	Transducer gain along the main acoustic axis, i.e.
			$g(\theta, \phi, f)$ where $\theta = \phi = 0$.
$h_{\mathrm{bp}}(i,v)$	filter_v[n]['h_fl_i']1		Complex valued receiving filter coefficients.
i		1	Generic integer index.
$\Im(x)$		_	The imaginary part of x .
j			The square root of -1 .
m	m	1	Sample index in frequency domain.

$N_{ m u}$	N_u	1	Total number of transducer sectors/transceiver channels
			that are used to receive and process the acoustic signal.
$N_{ m V}$		1	Total number of filter stages.
N_w		1	Number of samples used in the sliding Hanning window.
n	n	1	Sample index in time domain.
$P_{\rm rx.e.t}(f)$		W	FT of the received electric power in a matched load for the
212,0,0			signal from a single target at frequency f .
$P_{\text{rx,e,t}}(f)$ $P_{\text{rx,e,t}}(m)$	P_rx_e_t_m	W	DFT of the received electric power in a matched load for
111,0,0			the signal from a single target.
$P_{\mathrm{rx,e,v}}(f)$		W	FT of the received electric power in a matched load for the
, ,,			signal from a volume at frequency f .
$P_{\mathrm{TX,e,V}}(m)$	P_rx_e_v_m	$ m Wm^2$	DFT of the received electric power in a matched load for
, , . ,			the signal from a volume.
$p_{\rm rx,e}(n)$	p_rx_e_n	W	Received electric power in a matched load.
$p_{ m tx,e}$	p_tx_e	W	Transmitted electric power.
$p_{\mathrm{tx,auto}}(n)$	p_tx_auto	1	Square of the absolute value of the matched filter autocor-
- 011,00000 ()	-		relation function.
$\Re(x)$		_	The real part of x .
r		m	Distance from transducer.
r_0		m	Reference distance.
r_c		m	Distance from the transducer to the centre of the range
			volume covered by t_w .
$r_c(n)$		m	$range_c$ at sample number n .
r(n)	r_n	m	Distance from transducer.
$S_p(n)$	Sp_n	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^2$	Point scattering strength.
$S_{ m V}$		$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength.
$S_{ m V}(f)$		$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at frequency f .
$S_{ m V}(n)$	Sv_n	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at sample index n .

TS		$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^2$	Target strength.
TS(f)		$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^2$	Target strength at frequency f .
TS(m)	TS_m	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^2$	Target strength at frequency index m .
t		S	Time.
t_w	$t_{-}w$	S	Duration of sliding window for calculating volume
			backscattering strength.
u		1	Receiver channel number and transducer sector number.
u(i)		1	The Heaviside step function.
V		m^3	Volume occupied by scattering targets.
v		1	Filter stage.
w		1	The Hann window function.
w(i)	w_i	1	The Hann window function for index i, defined by $w(i) =$
			$0.5(1 + \cos(2\pi i/N_w)), -N_w/2 \le i \le N_w/2.$
$ ilde{w}(i)$	w_{tilde_i}	1	Normalised Hann window.
x^*		_	The complex conjugate of x .
$ x _{2}$		_	The l^2 -norm of x , also known as the Euclidean norm.
$Y_{\rm mf,auto}(m)$	$Y_mf_auto_m$	1	Discrete Fourier transform (DFT) of the autocorrelation
1111,000100			function for the matched filter.
$Y_{\rm mf,auto,red}(m)$	$Y_mf_auto_m_red$	1	DFT of the reduced autocorrelation function for the
1111,000100,100			matched filter.
$Y_{\text{DC.t}}(m)$	$Y_pc_t_m$	V	DFT of the pulse compressed signal from a single target.
$Y_{ m pc,t}(m) \ \hat{Y}_{ m pc,t}(m)$	$Y_{tilde_pc_t_m}$	Vm	DFT of the pulse compressed signal from a single tar-
pc, v ·	-		get normalized by the DFT of the reduced autocorrelation
			function for the matched filter.
$Y_{\mathrm{pc,v}}(m)$	$Y_pc_v_m$	Vm	DFT of the pulse compressed signal from a volume. Com-
r -1. ()	•		pensated for spreading loss.

$ ilde{Y}_{ ext{pc,v}}(m)$	Y_tilde_pc_v_m	V	DFT of the pulse compressed signal from a single volume normalized by the DFT of the reduced autocorrelation function for the matched filter. Compensated for spreading loss.
$y_{ m mf}(n)$		1	Matched filter. Signal used for pulse compression.
$y_{\mathrm{mf,auto}}(n)$		1	Autocorrelation function for the matched filter.
$y_{\text{mf,auto,red}}(n)$	<pre>y_mf_auto_red_n</pre>	1	Reduced autocorrelation function for the matched filter.
$y_{\mathrm{pc}}(n)$		V	Pulse compressed signal averaged over all transducer sectors.
$y_{\mathrm{PC}}(n,u)$		V	Pulse compressed signal from channel u .
$y_{\mathrm{pc,aft}}(n)$		V	Pulse compressed signal from the aft transducer half.
$y_{\text{pc,fore}}(n)$		V	Pulse compressed signal from the forward transducer half.
$y_{\mathrm{pc,port}}(n)$		V	Pulse compressed signal from the port transducer half.
$y_{\mathrm{pc,s}}(n)$		Vm	Pulse compressed signal compensated for spherical spreading.
$y_{\mathrm{pc,star}}(n)$		V	Pulse compressed signal from the starboard transducer half.
$y_{ m pc,t}(n)$		V	Pulse compressed signal from a single target.
$y_{\text{rx}}(n,u)$		V	Received digitised, bandpass filtered, decimated complex signal after the final filter stage, $y_{\text{TX}}(n, u) = y_{\text{TX}}(n, u, N_{\text{V}})$.
$y_{\mathrm{TX}}(n,u,v)$		V	Received digitised, bandpass filtered, decimated complex signal.
$y_{\rm rx,a}(t)$		Pa	Analogue acoustic signal received by the transducer.
$y_{\text{rx,e}}(t,u)$		V	Analogue electric signal received by each transceiver channel u .
$y_{\text{rx,org}}(n, u)$		V	Received digitised signal before the bandpass filtering and decimation stages, $y_{\text{TX},\text{Org}}(n,u) = y_{\text{TX}}(n,u,0)$.

$y_{tx}(n)$	V	Ideal transmitted signal generated from transmit signal
		properties.
$ ilde{y}_{ ext{tx}}(n)$	1	Ideal normalized transmitted signal generated from trans-
		mit signal properties.
$ ilde{y}_{ ext{tx}}(n,v)$	1	Ideal normalized transmitted signal generated from trans-
	_	mit signal properties after application of filter stage v .
$y_{ m tx,a}(t)$	Pa	Analogue acoustic transmit signal.
$y_{\mathrm{tx,e}}(t)$	V	Analogue electric transmit signal.
$y_{ heta}(n)$	rad	Electrical angle along the minor axis of the transducer
		(alongship when ship-mounted).
$y_\phi(n)$	rad	Electrical angle along the major axis of the transducer
		(athwartship when ship-mounted).
$z_{\rm rx,e}$	Ω	Receiver electric impedance.
$z_{ m td,e}$	Ω	Transducer sector electric impedance.
$\alpha(f)$	$\mathrm{dB}~\mathrm{m}^{-1}$	Absorption coefficient at frequency f .
$\gamma_{ heta}$	1	Conversion factor between phase difference in signals from
10	-	the fore and aft transducer halves and the physical arrival
		angle of an echo.
γ_{ϕ}	1	Conversion factor between phase difference in signals from
Ιψ	-	the port and starboard transducer halves and the physical
		arrival angle of an echo.
heta	rad	Angle coordinates along the minor axis of the transducer
·	1000	(alongship when ship-mounted).
λ	m	Acoustic wavelength.
λ_m	m	Acoustic wavelength at frequency index m
	m^2	Backscattering cross-section.
$rac{\sigma_{ m bs}}{ au}$	S	Nominal transmit pulse duration.
	S	Effective transmit pulse duration.
$ au_{ ext{eff}}$	b	Effective drambillio pulse duration.

ϕ	rad	Angle coordinates along the major axis of the transducer
		(athwartship when ship-mounted).
$\psi(f)$	sr	Two-way equivalent beam angle at frequency f .