- 1. Any language in SPACE(f(n)) as defined using the two-tape read-only model can be simulated with a single tape model using at most O(n) space. Similarly, any language in SPACE(f(n)) as defined using a single tape model can be simulated with a two-tape read-only model with an improvement of a most O(n) space. Thus, the complexity classes are equivalent where $f(n) \geq n$.
- 2. The winning strategy for X is to move to the top-right position. O can then move to block only either the top-centre or centre-right position. If O moves to the top-centre, X moves to the centre-right. If O move to the centre-right, X moves to the top-centre.
- 3. Player I has a winning strategy as follows:
 - Player I begins at node 1.
 - Player 2 chooses node 2.
 - Player I chooses node 4. Node 3 has only one outgoing edge which connects to node 6. As node 6 has no outgoing edges, this path would guarantee a win for Player II.
 - Player II chooses node 5.
 - Player I chooses node 6. As no unchosen nodes remain, Player I wins.
- 4. Let L_i be a language decided by PSPACE turing machine M_i . We define languages $L_{\cup} = L_i \cup L_j$, $\bar{L}_i = \{w \mid w \notin L_i\}$, $L_i^* = \{x_1 x_2 \dots x_k \mid k \geq 0 \text{ and each } x_i \in L_i\}$.

We define M_{\cup} , \bar{M}_i and M_i^* as follows:

 M_{\cup} = "On input w

- 1. Run $M_i\langle w\rangle$. If M_i accepts, accept.
- 2. Run $M_i\langle w\rangle$. If M_i accepts, accept.
- 3. If neither $M_i\langle w\rangle$, $M_j\langle w\rangle$ accepted, reject."

 \bar{M}_i = "On input w

1. Run $M_i\langle w \rangle$. If M_i accepts, reject, else accept."

 $M_i^* =$ "On input w

- 1. If $w = \epsilon$, accept.
- 2. For each m, where $1 \le m \le n$, n = |w|.
 - 3. Split w into m pieces, such that $w = w_1 w_2 \dots w_k$.
 - 4. For all $i, 1 \leq i \leq m$, run $M_i \langle w_i \rangle$. If M_i rejects, go to step 2.

- 5. M_i has accepted for all i, accept.
- 6. M_i has rejected for all m, reject."
- 5. Construct a TM M to decide A_{DFA} When M receives input $\langle A, w \rangle$, a DFA and a string, M simulates A on w by keeping track of A's current state and its current head locations, and updating them appropriately. The space required to carry out this simulation is $O(\log n)$ because M can record each of these values by storing a pointer into its input.
- 6. Construct a language L, such that L is PSPACE-hard. As L is PSPACE-hard, TQBF $\leq_p L$. We know SAT $\leq_p TQBF$, which gives us SAT $\leq_p L$. As SAT is NP-complete, L is NP-hard, and the proof is complete.
- 7. Let A_1 and A_2 be languages that are decided by NL-machines N_1 and N_2 . Construct three Turing machines: N_{\cup} deciding $A_1 \cup A_2$; N_{\circ} deciding $A_1 \circ A_2$; and N_* deciding A_1^* . Each of these machines operates as follows.

Machine N_{\cup} nondeterministically branches to simulate N_1 or to simulate N_2 . In either case, N_{\cup} accepts if the simulated machine accepts.

Machine N_{\circ} nondeterministically selects a position on the input to divide it into two substrings. Only a pointer to that position is stored on the work tape - insufficient space is available to store the substrings themselves. Then N_{\circ} simulates N_1 on the first substring, branching nondeterministically to simulate N_1 's nondeterminism. On any branch that reaches N_1 's accept state, N_{\circ} simulates N_2 on the second substring. On any branch that reaches N_2 's accept state, N_{\circ} accepts.

Machine N_* has a more complex algorithm, so we describe its stages.

$N_* =$ "On input w:

- 1. Initialise two input position pointers p_1 and p_2 to 0, the position immediately preceding the first input symbol.
- 2. Accept if no input symbols occur after p_2 .
- 3. Move p_2 forward to a nondeterministically selected position.
- 4. Simulate N_1 on the substring of w from the position following p_1 to the position at p_2 , branching nondeterministically to simulate N_1 's nondeterminism.
- 5. If this branch of the simulation reaches N_1 's accept state, copy p_2 to p_1 and go to stage 2. If N_1 rejects on this branch, reject."
- 8. We let s_1, s_2, \ldots, s_k be the starting position, and s'_1, s'_2, \ldots, s'_k the position after the move is made. We define NIM_s to be the result of performing an XOR operation on each column in s_1, s_2, \ldots, s_k , such that $\text{NIM}_s = s_1 \oplus s_2 \oplus \ldots \oplus s_k$. We

note that s_1, s_2, \ldots, s_k is balanced if and only if $NIM_k = 0$.

Let s_l denote the pile from which sticks are removed, such that $s_i = s'_i$ for all $i \neq l$ and $s_l > s'_l$. We then have

$$NIM'_{s} = 0 \oplus NIM'_{s}$$

$$= NIM_{s} \oplus NIM_{s} \oplus NIM'_{s}$$

$$= NIM_{s} \oplus (s_{1} \oplus s_{2} \oplus \ldots \oplus s_{k}) \oplus (s'_{1} \oplus s'_{2} \oplus \ldots \oplus s'_{k})$$

$$= NIM_{s} \oplus (s_{1} \oplus s'_{1}) \oplus \ldots \oplus (s_{k} \oplus s'_{k})$$

$$= NIM_{s} \oplus 0 \oplus \ldots \oplus (s_{l} \oplus s'_{l}) \oplus \ldots \oplus 0$$

$$= NIM_{s} \oplus s_{l} \oplus s'_{l}$$

Assume $\text{NIM}_s \neq 0$. Let d be the most significant non-zero bit of NIM_s . To move to a balanced position, We choose l such that $s_l \neq 0$, and set $s'_l = \text{NIM}_s \oplus s_l$. Note that we chose d in a way that maintains the constraint that $s'_l < s_l$. We then have

$$\begin{aligned} \text{NIM}_s' &= \text{NIM}_s \oplus s_l \oplus s_l' \\ &= \text{NIM}_s \oplus s_l \oplus (\text{NIM}_s \oplus s_l) \\ &= (\text{NIM}_s \oplus s_l) \oplus (\text{NIM}_s \oplus s_l) \\ &= 0 \end{aligned}$$

Assume $\text{NIM}_s = 0$. To move to an unbalanced position, choose any l. We then have $\text{NIM}'_s = s_l \oplus s'_l$, where $s_l \neq s'_l$.

9. Let a_i, b_i, c_i be the *i*-th digits of a, b, c and r_i the carry generated for c_i . We then have

$$r_i = \left(c_{i-1} + \sum_{j+k=i+1} a_j b_k\right) \mod 2$$
$$c_i = \left(\sum_{m=0}^{i-2} \sum_{j+k=i-m} a_j b_k\right) / D$$

We define machine M, which decides $\text{MULT}\langle a\#b\#c\rangle$.

M = "On input a # b # c:

- 1. Initialise t = 0.
- 2. Let $a = a_1 a_2 \dots a_p$, $b = b_1 b_2 \dots b_q$, $c = c_1 c_2 \dots c_{p+q-1}$.
- 3. For k = 0 to k = p + q 1
 - 4. For j = max(1, k p + 1) to min(k, q).
 - 5. Let i = k j + 1.
 - 6. Update $t = t + (a_i b_i)$.

- 7. If $c_k = t \mod 2$, continue, else reject.
- 8. Update $t = \lfloor t/2 \rfloor$.
- 9. If $c_{p+q} = t \mod 2$, accept, else reject.

As M stores i, j, k only as pointers to the input tape, they require only $O(\log n)$ of worktape space. We note that the sum and carry can never exceed values larger than $O(\log n)$ bits, meaning that t requires no more than $O(\log n)$ worktape space, and completing the proof that $\mathrm{MULT} \in L$.