Claim Amendments

1	1. (previously amended) An apparatus for adding a pluratity of
2	partial products comprising:
3	a plurality of carry-save adders coupled together in series, each of the
4	carry-save adders in the series receiving one of the plurality of partial products
5	and two intermediate vectors from a prior carry-save adder in the series of carry-
6	save adders, and outputting a carry bit, a sum bit and two intermediate vectors
7	wherein the first one in the series of carry-save adders receives two of the
8	plurality of partial products;
9	a last carry-save adder coupled to a last one in the series of carry-save
10	adders and receiving a last partial product of the plurality of partial products and
11	two intermediate vectors from a last one in the series of carry-save adders, and
12	outputting a carry vector (Cmsb) and a sum vector (Smsb);
13	a plurality of carry-propagate adders coupled in series and coupled to the
14	plurality of carry-save adders, each of said plurality of carry-propagate adders
15	outputting a resulting bit and a carry bit; and
16	an output register coupled to the first one in the series of carry-save
17	adders, the last carry-save adder, and the plurality of carry-propagate adders, and
18	storing the plurality of resulting bits, the sum bit output by the first one in the
19	series of carry-save adders and the carry bit output by the last one in the series of
20	carry-propagate adders.
1	2. (previously amended) The apparatus according to claim 1, further
2	comprising:
3	a MOST SIGNIFICANT BIT carry output register coupled to the las
4	carry-save adder and storing the most significant bit carry vector (Cmsb); and
5	a MOST SIGNIFICANT BIT sum output register coupled to the last
6	carry-save adder and storing the most significant bit sum vector (Smsb)

1	3. (original) The apparatus according to claim 1, wherein at touch one of
2	the carry-propagate adders comprises a half-adder and the other carry-propagate
3	adders comprise full-adders.
1	4. (original) An apparatus for adding a plurality of partial products
2	comprising:
3	a plurality of carry-save adders coupled together in series, each of the
4	plurality of carry-save adders receiving a successive one of the plurality of partial
5	products and two intermediate vectors (In-1, In-2) from a prior carry-save adder
6	in the series of carry-save adders and each of the plurality of carry-save adders
7	outputting a carry bit (Cn-1) a sum bit (Sn-1) and two intermediate vectors (In,
8	In+1) wherein a first one in the series of carry-save adders receives two of the
9	plurality of partial products;
10	a last carry-save adder coupled to a last one in the series of carry-save
11	adders, receiving a last one of the plurality of partial products and two
12	intermediate vectors from said last one in the series of carry-save adders, and
13	outputting a plurality of sum bits and a plurality of carry bits; and
14	a plurality of half-adder/full-adder series combinations coupled to the last
15	carry-save adder, each of the plurality of half-adder/full-adder series combinations
16	receiving two carry bits of the plurality of carry bits output by the last carry-save
17	adder and two sum bits of the plurality of sum bits output by the last carry-save
18	adder, and outputting two result bits and a carry bit.
1	5. (previously amended) The apparatus according to claim 4, further
2	comprising:
3	two half-adders coupled together in series and coupled to the last carry-
4	save adder, said two half-adders receiving from the last carry-save adder two most
5	significant carry bits and a most significant sum bit and outputting two result bits

6	and a carry bit as a plurality of most significant bits of the result of adding the
7	plurality of partial products.
1	6. (previously amended) The apparatus according to claim 5, further
2	comprising a single output register coupled to the plurality of half-adder/full-
3	adder combinations and storing the two result bits and the carry bit output by each
4	of the plurality of half-adder/full-adder series combinations.
1	
1	7. (currently amended) A method of improving reducing the speed of a
2	multiplier comprising the steps of:
3	replacing carry and save registers [49a, 49b] relating to a set of
4	least significant bits with a single register [48] and a carry-propagate adder
5	comprising a half adder [37] and a set of full adders [38-49]
6	partitioning sum and carry vectors into most significant bit and least
7	significant bit components;
8	feeding the least significant bit components into a set of ripple-carry
9	adders [37-40]; and
0	using a single register in the accumulation stage to accumulate the bits
1	relating to least significant bit components.
1	
1	8. (New) The method of claim 7 wherein the set of ripple-carry
2	adders [37-40] include full-adders [38-40] and half-adder 37.