FCC Test Report

Application Purpose : Original grant

Applicant Name: : INFINIX MOBILITY LIMITED

FCC ID : 2AIZN-X522

Equipment Type : Mobile phone

Model Name : X522

Report Number: FCC17010001A-7

Standard(S) : FCC Part 15 Subpart E

Date Of Receipt : January 04, 2017

Date Of Issue : February 15, 2017

Test By :

(Daisy Oin)

Reviewed By

(Sol Qin)

Authorized by :

(Michal Ling)

Prepared by

QTC Certification & Testing Co., Ltd.

2nd Floor,B1 Buiding,Fengyeyuan Industrial Plant,,Liuxian

2st.Road,Xin'an Street,Bao'an District,,Shenzhen, 518000China. **Registration Number: 588523**

Page 2 of 127

REPORT REVISE RECORD

	REPORT REVIOL REGORD									
Report Version Revise Time		Issued Date	Valid Version	Notes						
	V1.0	/	February 15, 2017	Valid	Original Report					

Table of Contents	Page
1. GENERAL INFORMATION	4
2. TEST DESCRIPTION	7
2.1 MEASUREMENT UNCERTAINTY	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	9
2.4 CONFIGURATION OF SYSTEM UNDER TEST	10
2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	10
·	-
3. SUMMARY OF TEST RESULTS	11
4. MEASUREMENT INSTRUMENTS	12
5. EMC EMISSION TEST	13
5.1 CONDUCTED EMISSION MEASUREMENT	13
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13
5.1.2 TEST PROCEDURE 5.1.3 DEVIATION FROM TEST STANDARD	14 14
5.1.4 TEST SETUP	14
5.1.5 EUT OPERATING CONDITIONS	14
5.1.6 TEST RESULTS	15
5.2 RADIATED EMISSION MEASUREMENT	17
5.2.1 RADIATED EMISSION LIMITS	17
5.2.2 TEST PROCEDURE 5.2.3 DEVIATION FROM TEST STANDARD	18 18
5.2.4 TEST SETUP	19
5.2.5 EUT OPERATING CONDITIONS	20
5.2.5.1 RESULTS (BELOW 30 MHZ)	21
5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ) 5.2.5.3 TEST RESULTS (1GHZ TO 40GHZ)	22 24
6. ANTENNA APPLICATION	
7 FCC PART 15.407 REQUIREMENTS FOR 802.11A/N SYSTEMS	41 42
7. 1 Test Equipment	42
7. 2 Test Procedure	42
7. 3 Test Setup	43
7. 4 Configuration of the EUT 7. 5 EUT Operating Condition	43 43
7. 6 Limit	44
7. 7 Test Result	45

1. GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

VERAL DESCRIP	101101
Test Model	X522
Applicant	INFINIX MOBILITY LIMITED
Address	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian District,Shenzhen,Guangdong,China
Equipment Type	Mobile phone
Brand Name	Infinix
Hardware version:	H539_B1_V1.2
Software version:	X522-H539D1-M-161206V23
Extreme Temp. Tolerance	-10℃ to +65℃
Battery information:	Li-Polymer Battery : BL-30SX Voltage: 3.85V Capacity: 3000mAh Limited Charge Voltage: 4.4V
Adapter Information:	Adapter: A88-502000 Input: 100~240V 50/60Hz 350mA Output: 5V~2A
Operating Frequency	see the below table
Channels	see the below table
Channel Spacing	see the below table
Modulation Type	see the below table
Antenna Type:	PIFA Antenna
Antenna gain:	1.0dBi
Data of receipt	January 04, 2017
Date of test	January 05, 2017 to February 14 , 2017
Deviation	None
Condition of Test Sample	Normal

EUT Specification:

Items	Descr	Description						
Modulation	IEEE 802.11a: OFDM IEEE 802.11n: see the below table IEEE 802.11ac: see the below table							
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)							
Data Rate (Mbps)	IEEE 802.11a: OFDM 6,9,12,18,24,36, IEEE 802.11n: MCS 0-15 up to 150 Mb IEEE 802.11ac: MCS 0-9 up to 866.7 M	ps						
Frequency Range	Band 1: 5150 MHz ~ 5250 MHz Band 2: 5250 MHz ~ 5350 MHz Band 4: 5725 MHz ~ 5850 MHz							
Channel Number	13 for 20MHz bandwidth; 6 for 40MHz	for 20MHz bandwidth; 6 for 40MHz bandwidth; 3 for 80MHz bandwidth						
Communication Mode	☑IP Based (Load Based)	☐Frame Based						
TPC Function	☐With TPC	⊠Without TPC						
Weather Band	☐With 5600~5650MHz	⊠Without 5600~5650MHz						
Beamforming Function	☐With beamforming							
Operating Mode	Outdoor access point	☐Indoor access point						
	☐Fixed point-to-point access points							
	□Master	☐Slave with radar detection						
	Slave without radar detection							

Antenna	One (TX)						
Band width Mode	20 MHz	40 MHz	80 MHz				
IEEE 802.11a	V	X	X				
IEEE 802.11n	V	V	Х				
IEEE 802.11ac	V	V	V				

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS		
802.11n (HT20)	1	MCS 0-15		
802.11n (HT40)	1	MCS 0-15		
802.11ac (HT20)	1	MCS 0-9		
802.11ac (HT40)	1	MCS 0-9		
802.11ac (HT80)	1	MCS 0-9		

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 and HT80 (HT: High Throughput). Then EUT supports HT20 and HT40 and HT80.
Note 2: Modulation modes consist of below configuration:

HT20/HT40: IEEE 802.11n HT20/HT40/HT80: IEEE 802.11ac

We hereby certify that:						
All measurement facilities used to collect the measurement data are located at QTC Certification & Testing Co., Ltd.						
Registration Number: 588523						
We hereby certify that:						

2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty		
1	Conducted Emission Test	±3.2dB		
2	RF power, conducted	±0.16dB		
3	Spurious emissions, conducted	±0.21dB		
4	All emissions, radiated(<1G)	±4.7dB		
5	All emissions, radiated(>1G)	±4.7dB		
6	Temperature	±0.5°C		
7	Humidity	±2%		

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	802.11a
Mode 2	802.11n20
Mode 3	802.11n40
Mode 4	802.11ac20
Mode 5	802.11ac40
Mode 6	802.11ac80

For Conducted Emission					
Final Test Mode	Description				
Mode 1	802.11a				

For Radiated Emission						
Final Test Mode	Description					
Mode 1	802.11a					
Mode 2	802.11n20					
Mode 3	802.11n40					
Mode 4	802.11ac20					
Mode 5	802.11ac40					
Mode 6	802.11ac80					

Note:

- (1) The measurements are performed at the highest, lowest available channels.
- (2) The EUT use new battery.
- (3) Record the worst case of each test item in this report.

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test Software		N/A *#3646633#*									
Test program											
Mode					Tes	t Freque NCB: 2		z)			
802.11a	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz					
802.11n MCS0 VHT20	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz					
802.11ac MCS9 VHT20	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz					
Mode						NCB: 4	0MHz				
802.11n MCS0 VHT40	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz					
802.11ac MCS9 VHT40	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz					
Mode	NCB: 80MHz										
802.11ac MCS9 VHT80	5210 MHz	5290 MHz	5775 MHz								

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

2.4 CONFIGURATION OF SYSTEM UNDER TEST

(EUT: Mobile phone)

I/O Port of EUT				
I/O Port Type	Q'TY	Cable	Tested with	
USB port	1	1m USB cable, unshielded	1	
Power	1	1m	1	

2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	/	A88-502000	/	/
2	Earphone	/	N/A	/	/

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
- (4) The adapter supply by the applicant.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 Subpart C&E				
Standard Section	Test Item	Judgment	Remark	
2.1049 15.403(i)	26dB & 99% Bandwidth	PASS	Complies	
15.407(e)	6dB Spectrum Bandwidth	PASS	Complies	
15.407(a)	Maximum Conducted Output Power	PASS	Complies	
15.407(a)	Power Spectral Density	PASS	Complies	
15.407(b)	Unwanted Emissions	PASS	Complies	
15.207	AC Conducted Emission	PASS	Complies	
15.407(g)	Frequency Stability	PASS	Complies	
15.407(c)	Automatically Discontinue Transmission	PASS	Complies	
15.203 & 15.407(a)	Antenna Requirement	PASS	Complies	
15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	PASS	Complies	

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibratio n Due.
EMI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2016	08/18/2017
Coaxial cable	Megalon	LMR400	N/A	08/12/2016	08/11/2017
GPIB cable	Megalon	GPIB	N/A	08/12/2016	08/11/2017
Spectrum Analyzer	R&S	FSU	100114	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017
Pre-Amplifier	CDSI	PAP-1G18-38		10/13/2016	10/12/2017
Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2016	09/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		09/13/2016	09/12/2017
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2016	08/22/2017
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	04/25/2016	04/24/2017
System-Controller	ccs	N/A	N/A	N.C.R	N.C.R
Turn Table	ccs	N/A	N/A	N.C.R	N.C.R
Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R
RF cable	Murata	MXHQ87WA3000	-	08/21/2016	08/20/2017
Loop Antenna	EMCO	6502	00042960	08/22/2016	08/21/2017
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2016	08/18/2017
Power meter	Anritsu	ML2487A	6K00003613	08/23/2016	08/22/2017
Power sensor	Anritsu	MX248XD		08/19/2016	08/18/2017

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Conducted	Conducted limit (dBµV)		
FREQUENCY (MIDZ)	Quasi-peak	Quasi-peak	limit (dBµV)	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.1.6 TEST RESULTS

EUT	Mobile phone	Model Name	X522
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L
Test Date	January 08,2017	Test Mode	Mode 1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1980	46.51	11.26	57.77	63.69	-5.92	QP
2		0.3379	16.30	10.99	27.29	49.25	-21.96	AVG
3		0.5420	35.54	10.69	46.23	56.00	-9.77	QP
4		0.5420	25.24	10.69	35.93	46.00	-10.07	AVG
5		1.0900	35.10	10.68	45.78	56.00	-10.22	QP
6		1.3500	15.08	10.66	25.74	46.00	-20.26	AVG
7		2.8179	33.18	10.57	43.75	56.00	-12.25	QP
8		3.3180	12.00	10.56	22.56	46.00	-23.44	AVG
9		6.5260	30.31	10.56	40.87	60.00	-19.13	QP
10		8.2540	12.00	10.58	22.58	50.00	-27.42	AVG
11		13.2860	28.19	10.62	38.81	60.00	-21.19	QP
12		13.4460	12.31	10.62	22.93	50.00	-27.07	AVG

Remark: All the modes have been investigated, and only worst mode is presented in this report.

EUT	Mobile phone			del Name	X52	X522		
Temperature	26 ℃		Re	lative Humidit				
Pressure	1010hPa	1010hPa		Phase		N		
Test Date	January 08,	2017	Tes	st Mode	Mode 1			
80.0 dBuV								_
							Limit: — AVG: —	-
							Atu.	4
								4
	X							
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
40	NY .	Mu. X. Infly	A A A A A			. X X		-
141/4	ul. / M/\\	WIN NO AND LAKE	APILLA (MANAMILAPA)	Madaaddalaataa.	الأمامية ال	Marine Marine	ΔN	
	MANY A V. L.	M M 1. 74	<u>r'</u> '	A L. C. L.	destablishing.	- Maylati	The I	\dashv
Maria	(, , , ,)	,	\ _w m/\\\\	manny or war		Human	, dylamythrough mannigh	444
W.0 4	~~~\		• •		the and server they	all more almost	\	peal
	V	V					Mary and and and and	WAVG
								\dashv
0.0								
0.0	0.5		(MHz)	5			30.	.000
			` '					
		Desertion	Correct	Manaura				
No Mi	Free	Reading	Correct	Measure-	Limit	Over		
No. Mk	•	Level	Factor	ment	Limit	Over		
No. Mk	. Freq.	-			Limit dBuV	Over	Detector	
No. Mk	•	Level	Factor	ment	dBuV		Detector QP	
1	MHz 0.2340	dBuV 34.80	Factor dB 11.17	ment dBuV 45.97	dBuV 62.30	dB -16.33	QP	
1 2 *	0.2340 0.5340	dBuV 34.80 38.91	11.17 10.70	ment dBuV 45.97 49.61	dBuV 62.30 56.00	dB -16.33 -6.39	QP QP	
1	MHz 0.2340	dBuV 34.80	Factor dB 11.17	ment dBuV 45.97	dBuV 62.30 56.00	dB -16.33	QP	
1 2 *	0.2340 0.5340	dBuV 34.80 38.91	11.17 10.70	ment dBuV 45.97 49.61	dBuV 62.30 56.00 46.00	dB -16.33 -6.39	QP QP	
1 2 * 3 4	0.2340 0.5340 0.5380 0.8980	dBuV 34.80 38.91 28.68 18.86	Factor dB 11.17 10.70 10.70 10.69	ment dBuV 45.97 49.61 39.38 29.55	dBuV 62.30 56.00 46.00 46.00	dB -16.33 -6.39 -6.62 -16.45	QP QP AVG AVG	
1 2 * 3 4 5	MHz 0.2340 0.5340 0.5380 0.8980 1.4819	Level dBuV 34.80 38.91 28.68 18.86 19.58	Factor dB 11.17 10.70 10.70 10.69 10.66	ment dBuV 45.97 49.61 39.38 29.55 30.24	dBuV 62.30 56.00 46.00 46.00	dB -16.33 -6.39 -6.62 -16.45 -15.76	QP QP AVG AVG	
1 2 * 3 4	0.2340 0.5340 0.5380 0.8980	dBuV 34.80 38.91 28.68 18.86	Factor dB 11.17 10.70 10.70 10.69	ment dBuV 45.97 49.61 39.38 29.55	dBuV 62.30 56.00 46.00 46.00	dB -16.33 -6.39 -6.62 -16.45	QP QP AVG AVG	
1 2 * 3 4 5	MHz 0.2340 0.5340 0.5380 0.8980 1.4819 2.0140	Level dBuV 34.80 38.91 28.68 18.86 19.58 30.77	Factor dB 11.17 10.70 10.70 10.69 10.66	ment dBuV 45.97 49.61 39.38 29.55 30.24 41.38	dBuV 62.30 56.00 46.00 46.00 56.00	d8 -16.33 -6.39 -6.62 -16.45 -15.76 -14.62	QP QP AVG AVG QP	
1 2 * 3 4 5 6	MHz 0.2340 0.5340 0.5380 0.8980 1.4819 2.0140 2.3780	Level dBuV 34.80 38.91 28.68 18.86 19.58 30.77 14.99	Factor dB 11.17 10.70 10.70 10.69 10.66 10.61	ment dBuV 45.97 49.61 39.38 29.55 30.24 41.38 25.59	dBuV 62.30 56.00 46.00 46.00 56.00	d8 -16.33 -6.39 -6.62 -16.45 -15.76 -14.62 -20.41	QP QP AVG AVG AVG AVG	
1 2 * 3 4 5	MHz 0.2340 0.5340 0.5380 0.8980 1.4819 2.0140	Level dBuV 34.80 38.91 28.68 18.86 19.58 30.77	Factor dB 11.17 10.70 10.70 10.69 10.66	ment dBuV 45.97 49.61 39.38 29.55 30.24 41.38	dBuV 62.30 56.00 46.00 46.00 56.00	d8 -16.33 -6.39 -6.62 -16.45 -15.76 -14.62	QP QP AVG AVG QP	
1 2 * 3 4 5 6	MHz 0.2340 0.5340 0.5380 0.8980 1.4819 2.0140 2.3780	Level dBuV 34.80 38.91 28.68 18.86 19.58 30.77 14.99	Factor dB 11.17 10.70 10.70 10.69 10.66 10.61	ment dBuV 45.97 49.61 39.38 29.55 30.24 41.38 25.59	dBuV 62.30 56.00 46.00 46.00 56.00 56.00	d8 -16.33 -6.39 -6.62 -16.45 -15.76 -14.62 -20.41	QP QP AVG AVG AVG AVG	
1 2 * 3 4 5 6 7 8	MHz 0.2340 0.5340 0.5380 0.8980 1.4819 2.0140 2.3780 4.2060 4.6620	Level dBuV 34.80 38.91 28.68 18.86 19.58 30.77 14.99 25.05 12.50	Factor dB 11.17 10.70 10.70 10.69 10.66 10.61 10.60 10.55	ment dBuV 45.97 49.61 39.38 29.55 30.24 41.38 25.59 35.60 23.02	dBuV 62.30 56.00 46.00 46.00 56.00 46.00	dB -16.33 -6.39 -6.62 -16.45 -15.76 -14.62 -20.41 -20.40 -22.98	QP QP AVG AVG QP AVG QP AVG	
1 2 * 3 4 5 6 7 8 9	MHz 0.2340 0.5340 0.5380 0.8980 1.4819 2.0140 2.3780 4.2060 4.6620 9.2100	Level dBuV 34.80 38.91 28.68 18.86 19.58 30.77 14.99 25.05 12.50 14.26	Factor dB 11.17 10.70 10.70 10.69 10.66 10.61 10.60 10.55 10.52 10.60	ment dBuV 45.97 49.61 39.38 29.55 30.24 41.38 25.59 35.60 23.02 24.86	dBuV 62.30 56.00 46.00 46.00 56.00 46.00 56.00	dB -16.33 -6.39 -6.62 -16.45 -15.76 -14.62 -20.41 -20.40 -22.98 -25.14	QP QP AVG AVG QP AVG QP AVG AVG	
1 2 * 3 4 5 6 7 8	MHz 0.2340 0.5340 0.5380 0.8980 1.4819 2.0140 2.3780 4.2060 4.6620	Level dBuV 34.80 38.91 28.68 18.86 19.58 30.77 14.99 25.05 12.50	Factor dB 11.17 10.70 10.70 10.69 10.66 10.61 10.60 10.55	ment dBuV 45.97 49.61 39.38 29.55 30.24 41.38 25.59 35.60 23.02	dBuV 62.30 56.00 46.00 46.00 56.00 46.00 56.00	dB -16.33 -6.39 -6.62 -16.45 -15.76 -14.62 -20.41 -20.40 -22.98	QP QP AVG AVG QP AVG QP AVG	

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBu\	//m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	4 Mills / 4 Mills for Dook 4 Mills / 41 ls for Averence
band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

	then Quasi Peak detector mode re-measured.
e.	If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
f.	For the actual test configuration, please refer to the related Item –EUT Test Photos.
	Note:
	Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported
	.3 DEVIATION FROM TEST STANDARD deviation

5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

5.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5.1 RESULTS (BELOW 30 MHZ)

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization	
Test Mode	Mode 1	Test Date	January 08,2017

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

NOTE:

No result in this part for margin above 20dB.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

5.2.5.2 TEST RESULTS (BETWEEN 30M - 1000 MHZ)

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization :	Horizontal
Test Mode	Mode 1	Test Date	January 08,2017

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		54.0711	29.37	-9.41	19.96	40.00	-20.04	QP
2		74.1351	30.93	-7.58	23.35	40.00	-16.65	QP
3		152.6641	28.83	-4.05	24.78	43.50	-18.72	QP
4		221.3921	35.28	-5.58	29.70	46.00	-16.30	QP
5	*	303.5437	36.12	-5.23	30.89	46.00	-15.11	QP
6	;	562.6624	25.60	0.37	25.97	46.00	-20.03	QP

Remark: All the modes have been investigated, and only worst mode is presented in this report.

																							га	ge z	3 01	. 12
	EUT			Mobile phone						Model Name X5					(522											
	Temp	peratu	ature 20 °C						Relative Humidity 4					48%												
	Press	sure			1010	0 hl	•a						Polarization:			Vertical										
		Mode			Mod	le 1							Tes	st Da	ate				J	anu	ary	08,	201	7		
80.	O dB	uV/m																					nit1:		_	ı
30	Read of the second		1	****\	2	i de la constantina della cons	h algori	J. J. Warring	33 M	dh.quryuh	made	, M. A.	V	May Hay	5	Nag-arth	*******	On the last	d something the second	- Anna Barani	6		Legendaries -			
-20																										
_3	0.000	40	5	0	60	70	80			_		MHz)				30		4	100	50	0	600	700	11	000.	000
	No.	Mk.		Fre	eq.			eve	ing el	(rrec icto			eas me		9-	L	imi	t	C	Ove	er			
				MH	Ηz		C	dBu\	V		d	ΙB		d	BuV	/m		dE	BuV	/m		dB		De	tec	tor
	1	*	44	.27	′52		3	7.3	5		-6	.25		3	1.1	0		40	0.00)	-8	8.9	0	C	ĮΡ	
	2		67	.20	22		3	3.4	5		-8	.36		2	5.0	9		40	0.00)	-1	4.9	91	C	ĮΡ	
	3		104.1701 34.65			-5	.18		29.47			43.50)	-14.03		C	ĮΡ								
_	4		173	.20	51		3	1.2	8		-4	.85		2	6.4	3		43	3.50)	-1	7.0	07	C	ĮΡ	
	5	2	238	.31	02		3	5.2	3		-6	.19		2	9.0	4		46.00 -1		6.9	96	C	ĮΡ			
_	6	į	537	.58	91		2	6.3	0		-0	.20		2	6.1	0		46	00.6)	-1	9.9	90	C	ĮΡ	

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2.5.3 TEST RESULTS (1GHZ TO 40GHZ)

EUT	Mobile phone	Model Name	X522
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	January 08,2017	Frequency	5180MHz

Freq.	Ant.	Emis	ssion	Limit	t	Over(dB)		
(MHz)	Pol.	Level(dBuV)	3m(dBu\	V/m)			
	H/V	PK	AV	PK	AV	PK	AV	
10360	V	59.90	40.64	74	54	-14.10	-13.36	
15540	V	58.76	40.54	74	54	-15.24	-13.46	
10360	Н	58.89	40.27	74	54	-15.11	-13.73	
15540	Н	58.40	39.40	74	54	-15.60	-14.60	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	January 08,2017	Frequency	5240MHz

Freq. (MHz)	Ant.Pol.	Emission I	Level(dBuV	Lir 3m(dB	nit suV/m)	Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
10480	V	59.60	41.81	74	54	-14.40	-12.19	
15720	V	59.87	40.48	74	54	-14.13	-13.52	
10480	Н	59.88	39.27	74	54	-14.12	-14.73	
15720	Н	58.73	39.73	74	54	-15.27	-14.27	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	January 08,2017	Frequency	5260MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)					3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10520	V	58.26	41.13	74	54	-15.74	-12.87
15780	V	59.56	40.41	74	54	-14.44	-13.59
10520	Н	59.74	40.11	74	54	-14.26	-13.89
15780	Н	59.15	40.15	74	54	-14.85	-13.85

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	January 08,2017	Frequency	5320MHz

Freq.	Ant. Pol.	Emis	ission Limit 3m(dBuV/m)		Over(dB)		
(MHz)		Level(dBuV)	,			
	H/V	PK	AV	PK	AV	PK	AV
10640	V	58.51	39.19	74	54	-15.49	-14.81
15960	V	59.40	39.94	74	54	-14.60	-14.06
10640	Н	59.36	40.95	74	54	-14.64	-13.05
15960	Н	58.46	39.46	74	54	-15.54	-14.54

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	January 08,2017	Frequency	5745MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)					3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11490	V	59.49	40.17	74	54	-14.51	-13.83
17235	V	58.28	40.71	74	54	-15.72	-13.29
11490	Н	59.57	40.74	74	54	-14.43	-13.26
17235	Н	59.00	40.00	74	54	-15.00	-14.00

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	January 08,2017	Frequency	5825MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Ove	r(dB)
(MHz)			, 1		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11650	V	60.09	40.62	74	54	-13.91	-13.38
17475	V	59.83	40.46	74	54	-14.17	-13.54
11650	Н	58.56	39.07	74	54	-15.44	-14.93
17475	Н	59.23	40.23	74	54	-14.77	-13.77

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	12() (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	January 08,2017	Frequency	5180MHz

Freq.	Ant.	Emission		Limit		Over(dB)		
(MHz)	Pol.	Level(dBuV)	3m(dBu)	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
10360	V	59.84	41.89	74	54	-14.16	-12.11	
15540	V	59.97	40.87	74	54	-14.03	-13.13	
10360	Н	59.19	39.61	74	54	-14.81	-14.39	
15540	Н	58.64	39.64	74	54	-15.36	-14.36	

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	January 08,2017	Frequency	5240MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV
10480	V	58.41	41.85	74	54	-15.59	-12.15
15720	V	58.84	40.95	74	54	-15.16	-13.05
10480	Н	58.93	39.48	74	54	-15.07	-14.52
15720	Н	58.77	39.77	74	54	-15.23	-14.23

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	January 08,2017	Frequency	5260MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			·		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10520	V	58.69	41.55	74	54	-15.31	-12.45
15780	V	58.10	40.75	74	54	-15.90	-13.25
10520	Н	59.36	39.68	74	54	-14.64	-14.32
15780	Н	59.25	40.25	74	54	-14.75	-13.75

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	January 08,2017	Frequency	5320MHz

Freq.	Ant. Pol.	Emission Lim		Limit 3m(dBuV/m)		Over(dB)	
(MHz)		Level(dBuV)	,			
	H/V	PK	AV	PK	AV	PK	AV
10640	V	60.50	41.01	74	54	-13.50	-12.99
10640	V	59.73	40.08	74	54	-14.27	-13.92
15960	Н	59.87	40.58	74	54	-14.13	-13.42
15960	Н	58.68	39.68	74	54	-15.32	-14.32

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	January 08,2017	Frequency	5745MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)					3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11490	V	60.59	40.02	74	54	-13.41	-13.98
17235	V	59.85	39.14	74	54	-14.15	-14.86
11490	Н	59.48	39.69	74	54	-14.52	-14.31
17235	Н	59.66	40.66	74	54	-14.34	-13.34

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	January 08,2017	Frequency	5825MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)		
(MHz)					3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
11650	V	59.22	39.45	74	54	-14.78	-14.55	
17475	V	59.66	39.95	74	54	-14.34	-14.05	
11650	Н	59.28	40.51	74	54	-14.72	-13.49	
17475	Н	58.04	39.04	74	54	-15.96	-14.96	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	12() ('	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	January 08,2017	Frequency	5190MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m))	
	H/V	PK	AV	PK	AV	PK	AV
10380	V	59.80	40.79	74	54	-14.20	-13.21
15570	V	59.88	39.88	74	54	-14.12	-14.12
10380	Н	58.51	40.15	74	54	-15.49	-13.85
15570	Н	58.07	39.07	74	54	-15.93	-14.93

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	January 08,2017	Frequency	5230MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)		,		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10460	V	59.96	40.39	74	54	-14.04	-13.61
15690	V	59.10	39.76	74	54	-14.90	-14.24
10460	Н	59.96	40.69	74	54	-14.04	-13.31
15690	Н	59.44	40.44	74	54	-14.56	-13.56

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	January 08,2017	Frequency	5270MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			·		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10540	V	58.56	39.18	74	54	-15.44	-14.82
15810	V	58.38	40.37	74	54	-15.62	-13.63
10540	Н	58.69	39.90	74	54	-15.31	-14.10
15810	Н	59.28	40.28	74	54	-14.72	-13.72

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	January 08,2017	Frequency	5310MHz

Freq.	Ant. Pol.	Emission Limit 3m(dBuV/m)		Over(dB)			
(MHz)		Level(dBuV)	,			
	H/V	PK	AV	PK	AV	PK	AV
10620	V	58.47	40.57	74	54	-15.53	-13.43
15930	V	59.31	39.16	74	54	-14.69	-14.84
10620	Н	59.56	39.38	74	54	-14.44	-14.62
15930	Н	59.72	40.72	74	54	-14.28	-13.28

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	January 08,2017	Frequency	5755MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			,		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11510	V	59.36	40.61	74	54	-14.64	-13.39
17265	V	59.07	40.47	74	54	-14.93	-13.53
11510	Н	59.10	40.73	74	54	-14.90	-13.27
17265	Н	59.84	40.84	74	54	-14.16	-13.16

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	January 08,2017	Frequency	5795MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)	
(MHz)					3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11590	V	58.35	41.24	74	54	-15.65	-12.76
17385	V	59.50	39.28	74	54	-14.50	-14.72
11590	Н	59.32	39.51	74	54	-14.68	-14.49
17385	Н	58.18	39.18	74	54	-15.82	-14.82

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	12() ('	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	January 08,2017	Frequency	5180MHz

Freq.	Ant.	Emission		Limit		Over(dB)			
(MHz)	Pol.	Level(dBuV) 3m(dBuV/m)		dBuV) 3m(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV		
10360	V	58.52	39.29	74	54	-15.48	-14.71		
15540	V	59.47	40.19	74	54	-14.53	-13.81		
10360	Н	58.63	40.64	74	54	-15.37	-13.36		
15540	Н	59.72	40.72	74	54	-14.28	-13.28		

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	January 08,2017	Frequency	5240MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)		,		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10480	V	60.21	40.45	74	54	-13.79	-13.55
15720	V	59.00	40.92	74	54	-15.00	-13.08
10480	Н	59.00	40.57	74	54	-15.00	-13.43
15720	Н	59.05	40.05	74	54	-14.95	-13.95

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	January 08,2017	Frequency	5260MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)		,		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10520	V	59.80	39.01	74	54	-14.20	-14.99
15780	V	58.95	40.90	74	54	-15.05	-13.10
10520	Н	59.71	40.16	74	54	-14.29	-13.84
15780	Н	58.45	39.45	74	54	-15.55	-14.55

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	January 08,2017	Frequency	5320MHz

Freq.	Ant. Pol.	Emission		Limit 3m(dBuV/m)		Over(dB)	
(MHz)		Level(l(dBuV)				
	H/V	PK	AV	PK	AV	PK	AV
10640	V	58.11	41.19	74	54	-15.89	-12.81
10640	V	58.26	39.13	74	54	-15.74	-14.87
15960	Н	58.10	39.49	74	54	-15.90	-14.51
15960	Н	59.12	40.12	74	54	-14.88	-13.88

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	January 08,2017	Frequency	5745MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)		·		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
11490	V	59.88	41.58	74	54	-14.12	-12.42
17235	V	59.41	39.84	74	54	-14.59	-14.16
11490	Н	59.20	39.01	74	54	-14.80	-14.99
17235	Н	58.67	39.67	74	54	-15.33	-14.33

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	January 08,2017	Frequency	5825MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)	
(MHz)		, ,		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
11650	V	60.29	40.47	74	54	-13.71	-13.53
17475	V	59.59	40.46	74	54	-14.41	-13.54
11650	Н	58.28	39.52	74	54	-15.72	-14.48
17475	Н	58.12	39.12	74	54	-15.88	-14.88

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	12() (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	January 08,2017	Frequency	5190MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10380	V	60.92	39.30	74	54	-13.08	-14.70
15570	V	59.21	39.54	74	54	-14.79	-14.46
10380	Н	58.96	40.59	74	54	-15.04	-13.41
15570	Н	59.89	40.89	74	54	-14.11	-13.11

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	January 08,2017	Frequency	5230MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)		,		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10460	V	60.93	41.21	74	54	-13.07	-12.79
15690	V	59.72	40.49	74	54	-14.28	-13.51
10460	Н	58.86	39.26	74	54	-15.14	-14.74
15690	Н	58.81	39.81	74	54	-15.19	-14.19

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	January 08,2017	Frequency	5270MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			,		3m(dBuV/m)		
	H/V	PK	AV	PK	PK AV		AV
10540	V	58.63	40.53	74	54	-15.37	-13.47
15810	V	58.07	58.07 39.40		54	-15.93	-14.60
10540	Н	59.31	39.51	74	54	-14.69	-14.49
15810	Н	59.65	40.65	74	54	-14.35	-13.35

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	January 08,2017	Frequency	5310MHz

Freq.	Ant. Pol.	Emis	ssion	Limit 3m(dBuV/m)		Over(dB)	
(MHz)		Level(dBuV)				
	H/V	PK	AV	PK	AV	PK	AV
10620	V	58.61	41.62	74	54	-15.39	-12.38
15930	V	59.93	39.18	74	54	-14.07	-14.82
10620	Н	58.26	40.74	74	54	-15.74	-13.26
15930	Н	59.99	40.99	74	54	-14.01	-13.01

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	January 08,2017	Frequency	5755MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Lir	Limit		Over(dB)	
(MHz)			, l		3m(dBuV/m)			
	H/V	PK	AV	PK	PK AV		AV	
11510	V	59.57	40.33	74	54	-14.43	-13.67	
17265	V	59.01	39.15	74	54	-14.99	-14.85	
11510	Н	58.49	40.12	74	54	-15.51	-13.88	
17265	Н	59.66	40.66	74	54	-14.34	-13.34	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	January 08,2017	Frequency	5795MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)	
(MHz)			, 1		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11590	V	60.31	39.87	74	54	-13.69	-14.13
17385	V	58.47	40.21	74	54	-15.53	-13.79
11590	Н	58.05	40.97	74	54	-15.95	-13.03
17385	Н	59.16	40.16	74	54	-14.84	-13.84

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	12() ('	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 6 TX
Test Date	January 08,2017	Frequency	5210MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10420	V	59.99	39.19	74	54	-14.01	-14.81
15630	V	58.35	40.53	74	54	-15.65	-13.47
10420	Н	59.21	40.93	74	54	-14.79	-13.07
15630	Н	58.16	39.16	74	54	-15.84	-14.84

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 6 TX
Test Date	January 08,2017	Frequency	5290MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV			Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	PK AV		AV	
10580	V	58.80	41.14	74	54	-15.20	-12.86	
15870	V	59.12	40.97	74	54	-14.88	-13.03	
10580	Н	58.40	40.25	74	54	-15.60	-13.75	
15870	Н	58.11	39.11	74	54	-15.89	-14.89	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X522
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5 TX
Test Date	January 08,2017	Frequency	5775MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV		Lir 3m(dB	nit suV/m)	Ove	r(dB)
	H/V	PK	AV	PK	AV	PK	AV
11550	V	60.29	40.93	74	54	-13.71	-13.07
17325	V	59.27	39.54	74	54	-14.73	-14.46
11550	Н	59.04	39.19	74	54	-14.96	-14.81
17325	H	59.72	40.72	74	54	-14.28	-13.28

6. ANTENNA APPLICATION

6.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and FCC part 15C section 15.407.

FCC part 15C section 15.203 and FCC part 15C section 15.407 requirements: Systems operating in the 5150~5850MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.
6.2 Result The EUT's antenna integrated on PCB, The antenna's gain is 1.0dBi and meets the requirement.

7 FCC PART 15.407 REQUIREMENTS FOR 802.11A/N SYSTEMS 7. 1 Test Equipment

Please refer to Section 4 this report.

7. 2 Test Procedure

Test Method:	a)The transmitter was radiated to the spectrum analyzer in peak hold mode.				
		e emission that is 26 dB down from the peak of the			
	emission Compare this with the RBW setting of the analyzer. Readjust RBW and repeat				
	measurement as needed until the RBW/EBW ratio is approximately 1%.				
Test Equipment S	etting – 26dB Bandwidth:	Test Equipment Setting – 99%% Bandwidth:			
a)Attenuation: Au		a)Span: 1.5 times to 5.0 times the OBW			
,	: > 26dB Bandwidth	b)RBW: 1 % to 5 % of the OBW			
	nately 1% of the emission bandwidth	c)VBW: ≥ 3 x RBW			
d)VBW: VBW >		d)Detector: Peak			
e)Detector: Peak	KD II	e)Trace: Max Hold			
f)Trace: Max Hole	1	e) Trace. Wax Floid			
g)Sweep Time: A					
6 dB Bandwidtl					
Test Method:	a)The transmitter was radiated to the	spectrum analyzer in peak hold mode.			
		with KDB789033 D02 v01 for Compliance Testing of			
		structure (U-NII) Devices - section (C) Emission			
	Bandwidth.	ourdetare (O 1111) Devices Godini (O) Emission			
	=				
	c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01				
		med in accordance with KDB662911 DU1 V02r01			
	Emissions				
	Emissions Testing of Transmitters with Multiple (Outputs in the Same Band.			
Test Equipment S	Emissions Testing of Transmitters with Multiple (d)Measured the spectrum width with page 1.5 miles (d)	Outputs in the Same Band.			
Test Equipment S a)Attenuation: Au	Emissions Testing of Transmitters with Multiple (d) Measured the spectrum width with letting:	Outputs in the Same Band.			
a)Attenuation: Au	Emissions Testing of Transmitters with Multiple (d) Measured the spectrum width with letting:	Outputs in the Same Band. bower higher than 6dB below carrier.			
a)Attenuation: Au	Emissions Testing of Transmitters with Multiple (d) Measured the spectrum width with petting:	Outputs in the Same Band. bower higher than 6dB below carrier. e)Detector: Peak			
a)Attenuation: Au b)Span Frequency	Emissions Testing of Transmitters with Multiple (d)Measured the spectrum width with petting: to : > 6dB Bandwidth	Outputs in the Same Band. Dower higher than 6dB below carrier. e)Detector: Peak f)Trace: Max Hold			
a)Attenuation: Au b)Span Frequency c)RBW: 100kHz d)VBW: ≥ 3 x l	Emissions Testing of Transmitters with Multiple (d)Measured the spectrum width with petting: to : > 6dB Bandwidth	Outputs in the Same Band. Dower higher than 6dB below carrier. e)Detector: Peak f)Trace: Max Hold			
a)Attenuation: Au b)Span Frequency c)RBW: 100kHz d)VBW: ≥ 3 x l	Emissions Testing of Transmitters with Multiple of d)Measured the spectrum width with petting: to : > 6dB Bandwidth RBW Jucted Output Power Measurement: a)The transmitter output (antenna poing to the content of the content output)	Outputs in the Same Band. Dower higher than 6dB below carrier. e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter.			
a)Attenuation: Au b)Span Frequency c)RBW: 100kHz d)VBW: ≥ 3 x 1 Maximum Cond	Emissions Testing of Transmitters with Multiple of d)Measured the spectrum width with petting: to : > 6dB Bandwidth RBW Jucted Output Power Measurement: a)The transmitter output (antenna poing to the content of the content output)	Outputs in the Same Band. bower higher than 6dB below carrier. e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto			
a)Attenuation: Au b)Span Frequency c)RBW: 100kHz d)VBW: ≥ 3 x l Maximum Cond	Emissions Testing of Transmitters with Multiple of d)Measured the spectrum width with petting: to :> 6dB Bandwidth RBW Jucted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance	Outputs in the Same Band. Dower higher than 6dB below carrier. e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter.			
a)Attenuation: Au b)Span Frequency c)RBW: 100kHz d)VBW: ≥ 3 x l Maximum Cond	Emissions Testing of Transmitters with Multiple of d)Measured the spectrum width with petting: to :> 6dB Bandwidth RBW Jucted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance Unlicensed National Information Infra conducted output power =>3. Measurement:	Outputs in the Same Band. Dower higher than 6dB below carrier. e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto et) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum rement using a Power Meter (PM) =>b) Method PM-			
a)Attenuation: Au b)Span Frequency c)RBW: 100kHz d)VBW: ≥ 3 x 1 Maximum Cond	Emissions Testing of Transmitters with Multiple of d)Measured the spectrum width with petting: to : > 6dB Bandwidth RBW Jucted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance Unlicensed National Information Infra conducted output power =>3. Measur (Measurement using a gated RF aver	Outputs in the Same Band. Dower higher than 6dB below carrier. e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto et) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum rement using a Power Meter (PM) =>b) Method PM-			

Testing of Transmitters with Multiple Outputs in the Same Band.

every result of the values by mathematic formula.

Test Equipment Setting: Detector - Average

Émissions

Power Spectral Density:

Test Method:

a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).

d)When measuring maximum conducted output power with multiple antenna systems, add

c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power

Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.

d)When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for

the first frequency bin of the summed spectrum. The summed spectrum value for each of the other

frequency bins is computed in the same way.

e)For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW) and the final result should \leq 30 dBm.

Page 43 of 127

Test Equipment Setting:

a)Attenuation: Auto
b)Span Frequency: Encompass the entire emissions bandwidth (EBW) of the signal c)RBW: 1000 kHz d)VBW: 3000 kHz

d)VBW: 3000 kHz

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Frequency Stability Measurement: Test Method: a)The transmitter output (antenna port) was connected to the spectrum analyzer. b)EUT have transmitted absence of modulation signal and fixed channelize. c)Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth. d)Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. e)fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 the limit is less than ±20ppm (IEEE 802.11nspecification). f)The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of nominal value g)Extreme temperature is 0°C~40°C Test Equipment Setting: a)Attenuation: Auto e)Sweep Time: Auto b)Span Frequency: Entire absence of modulation emissions bandwidth c)RBW: 10 kHz

7. 3 Test Setup

d)VBW: 10 kHz

7. 4 Configuration of the EUT

Same as section 2.4 of this report

7. 5 EUT Operating Condition

Same as section 2.2 of this report.

7. 6 Limit	1000/ 0 1 1 1 1 1 1 1 1 1 1					
	and 99% Occupied Bandwidth:					
Limit: 6 dB Bandwidth:	No restriction limits.					
Limit:	For digital modulation systems, the mi	nimum 6dB bandwidth shall be at least 500 kHz.				
Test Equipment S		inimum odb bandwidth shall be at least 500 ki iz.				
a)Attenuation: Aut		e)Detector: Peak				
	v: > 6dB Bandwidth	f)Trace: Max Hold				
c)RBW: 100kHz		g)Sweep Time: Auto				
d)VBW: ≥ 3 x RBV						
Maximum Conducted Output Power Measurement:						
∑5.15~5.25 GHz						
Limit of Outdoor		Limit of Indoor access point:				
	nducted output power over the	The maximum conducted output power over the				
	operation shall not exceed 1 W the maximum antenna gain does not	frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does				
	ansmitting antennas of directional gain	not				
	are used, both the maximum	exceed 6 dBi. If transmitting antennas of directional				
	power and the maximum power	gain greater than 6 dBi are used, both the maximum				
	hall be reduced by the amount in dB	conducted output power and the maximum power				
that the directional	I gain of the antenna exceeds 6 dBi.	spectral density shall be reduced by the amount in				
	r.p. at any elevation angle above 30	dB				
degrees as measu 125 mW (21 dBm)	red from the horizon must not exceed	that the directional gain of the antenna exceeds 6 dBi.				
	oint-to-point access points:					
	nducted output power over the	The maximum conducted output power over the				
	operation shall not exceed 1 W	frequency band of operation shall not exceed 250				
	pint-to-point U-NII devices may employ	mW				
	ctional gain up to 23 dBi without any uction in the maximum conducted	(24dBm) provided the maximum antenna gain does not				
	aximum power spectral density. For	exceed 6 dBi. If transmitting antennas of directional				
	t transmitters that employ a directional	gain greater than 6 dBi are used, both the maximum				
	ter than 23 dBi, a 1 dB reduction in	conducted output power and the maximum power				
	ed output power and maximum	spectral density shall be reduced by the amount in				
	nsity is required for each 1 dB of	dB				
antenna gain in ex	ccess of 23 dBi.	that the directional gain of the antenna exceeds 6				
		dBi.				
	□ 5.25-5.35 GHz & □					
		y bands of operation shall not exceed the lesser of 250				
		mission bandwidth in megahertz. If transmitting				
		both the maximum conducted output power and the amount in dB that the directional gain of the antenna				
exceeds 6 dBi.	pectial defisity shall be reduced by the	amount in db that the directional gain of the antenna				
0,1000000000000000000000000000000000000	∑5.725~5.	85 GHz				
The maximum cor		y band of operation shall not exceed 1 W (30dBm). If				
		Bi are used, both the maximum conducted output				
		educed by the amount in dB that the directional gain of				
		U-NII devices operating in this band may employ				
transmitting anten						
		ling reduction in transmitter conducted power.				
Power Spectral D	<u> </u>					
	⊠5.15~5.2					
	r access point: 17 dBm/MHz	Limit of Indoor access point: 17 dBm/MHz				
	oint-to-point access points: 17	Limit of Mobile and portable client devices: 11				
dBm/MHz		dBm/MHz				
□5.25-5.35 GHz	1_	11 dBm/MHz				
□5.470-5.725 GH		11 dBm/MHz				
∑5.725~5.85 GH		30 dBm/500kHz				
Limit:	ity Measurement:	the hand of operation under all conditions of normal				
∟IIIIII.	operation as specified in the user's ma	the band of operation under all conditions of normal				
		ance shall be ± 20 ppm maximum for the 5 GHz band				
	(IEEE	and than bo ± 20 ppm maximum for the 6 on 2 band				
	802.11n specification).					

7. 7 Test Result

A. 26dB Bandwidth and 99% Occupied Bandwidth

Product	: EUT-Sample	Test Mode	: See section 2.2
Test Item	: 26dB Bandwidth and 99% Occupied Bandwidth	Temperature	: 25 ℃
Test Voltage	: DC 5V	Humidity	: 56%RH
Test Result	: PASS		

26dB Bandwidth

IEEE 802.11a

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	17.236		PASS
High	5240	17.121		PASS

Band2

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5260	17.222		PASS
High	5320	17.093		PASS

Band4

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	16.703		PASS
High	5825	16.799		PASS

IEEE 802.11n 5G 20MHz

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	18.408		PASS
High	5240	18.198		PASS

Band2

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5260	18.324		PASS
High	5320	18.074		PASS

Band4

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	17.815		PASS
High	5825	17.849		PASS

IEEE 802.11n 5G 40MHz

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5190	36.966		PASS
High	5230	36.495		PASS

Band2

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5270	36.715		PASS
High	5310	36.649	-	PASS

Band4

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5755	36.106		PASS
High	5795	36.056		PASS

E 802.11ac 5G 20 d1				
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	25.86		PASS
High	5240	23.17		PASS
d2				
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5260	22.01		PASS
High	5320	23.55		PASS
d4				
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	28.84		PASS
High	5825	31.34		PASS
E 802.11ac 5G 40 d1	MHz			
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5190	40.76		PASS
High	5230	40.67		PASS
d2			·	
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5270	40.67		PASS
High	5310	40.57		PASS
d4	•	·	<u> </u>	
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5755	53.46		PASS
High	5795	56.73		PASS
E 802.11ac 5G 80 d1	MHz			
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5210	81.53		PASS
d2	_			
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5290	81.53	<u></u>	PASS
d4				
Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5775	82.05		PASS

9% Occupied B EE 802.11a nd1				
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	27.46		PASS
High	5240	23.20		PASS
nd2				
Ob annual	Frequency	99% Occupied	FCC Limit	Daniell
Channel	(MHz)	Bandwidth (MHz)	(kHz)	Result
Low	5260	26.70		PASS
High	5320	24.09		PASS
nd4	•			
<u> </u>	Frequency	99% Occupied	FCC Limit	
Channel	(MHz)	Bandwidth (MHz)	(kHz)	Result
Low	5745	16.35	, ,	PASS
High	5825	16.30		PASS
EE 802.11n 5G 20N				
nd1	-			
	Frequency	99% Occupied	FCC Limit	
Channel	(MHz)	Bandwidth (MHz)	(kHz)	Result
Low	5180	26.62	, ,	PASS
High	5240	29.62		PASS
nd2				
	Frequency	99% Occupied	FCC Limit	
Channel	(MHz)	Bandwidth (MHz)	(kHz)	Result
Low	5260	28.14	(14.12)	PASS
High	5320	24.94		PASS
nd4	0020	24.04		17100
iiu4	Frequency	99% Occupied	FCC Limit	
Channel	(MHz)	Bandwidth (MHz)	(kHz)	Result
Low	5745	17.71	(KI12)	PASS
High	5825	17.60		PASS
EE 802.11n 5G 40N		17.00		FAGG
nd1	INZ			
Channel	Frequency	99% Occupied	FCC Limit	Result
Chamilei	(MHz)	Bandwidth (MHz)	(kHz)	Result
Low	5190	50.35		PASS
High	5230	46.37		PASS
nd2			·	
Ch'	Frequency	99% Occupied	FCC Limit	D "
Channel	(MHz)	Bandwidth (MHz)	(kHz)	Result
Low	5270	47.43		PASS
High	5310	47.32		PASS
nd4		<u> </u>	<u> </u>	
01	Frequency	99% Occupied	FCC Limit	5
Channel	(MHz)	Bandwidth (MHz)	(kHz)	Result
Low	5755	36.03	,	PASS
	5795	34.91		PASS
Hiah		,		
High EE 802.11ac 5G 20	MHz			
High EE 802.11ac 5G 20 Ind1	MHz			
EE 802.11ac 5G 20 nd1		99% Occupied	FCC Limit	_
EE 802.11ac 5G 20	Frequency	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
EE 802.11ac 5G 20 nd1 Channel	Frequency (MHz)	Bandwidth (MHz)	FCC Limit (kHz)	
EE 802.11ac 5G 20 Ind1 Channel Low	Frequency (MHz) 5180	Bandwidth (MHz) 18.07		PASS
EE 802.11ac 5G 20 Ind1 Channel Low High	Frequency (MHz)	Bandwidth (MHz)	(kHz)	
EE 802.11ac 5G 20 Ind1 Channel Low High Ind2	Frequency (MHz) 5180 5240	18.07 17.88	(kHz) 	PASS PASS
EE 802.11ac 5G 20 Ind1 Channel Low High	Frequency (MHz) 5180 5240 Frequency	18.07 17.88 99% Occupied	(kHz) FCC Limit	PASS
EE 802.11ac 5G 20 Ind1 Channel Low High Ind2	Frequency (MHz) 5180 5240	18.07 17.88	(kHz) 	PASS PASS

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	18.07		PASS
High	5825	18.26		PASS
E 802.11ac 5G 40 nd1	MHz			
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5190	35.96		PASS
High	5230	35.96		PASS
nd2			•	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5270	35.96		PASS
High	5310	35.96		PASS
nd4			•	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5755	36.05		PASS
High	5795	36.21		PASS
E 802.11ac 5G 80 nd1	MHz			
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5210	76.15		PASS
nd2				
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5290	75.89		PASS
ınd4	<u> </u>			
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
	<u> </u>			

IEEE 802.11a Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11a Band2

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11a Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 20MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 20MHz Band2

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 20MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 40MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 40MHz Band2

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 40MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

26dB Bandwidth and 99% Occupied Bandwidth (CH High)

IEEE 802.11ac 5G 20MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH High)

IEEE 802.11ac 5G 20MHz Band2

IEEE 802.11ac 5G 20MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH High)

IEEE 802.11ac 5G 40MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH High)

IEEE 802.11ac 5G 40MHz Band2

26dB Bandwidth and 99% Occupied Bandwidth (CH High)

IEEE 802.11ac 5G 40MHz Band4

IEEE 802.11ac 5G 80MHz Band2

IEEE 802.11ac 5G 80MHz Band1

B. 6 dB Bandwidth

Product	: EUT-Sample	Test Mode	: See Section 2.2
Test Item	: 6 dB BW	Temperature	: 25 ℃
Test Voltage	: DC 5V	Humidity	: 56%RH
Test Result	PASS		

IEEE 802.11a

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5180	16.44	> 0.5MHz
High	5240	16.44	> 0.5MHz

Page 67 of 127

IEEE 802.11a

•	•			
	Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
	Low	5260	16.44	> 0.5MHz
	High	5320	16.44	> 0.5MHz

Page 68 of 127

IEEE 802.11a

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5745	16.44	> 0.5MHz
High	5825	16.44	> 0.5MHz

Page 69 of 127

IEEE 802.11n 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5180	17.80	> 0.5MHz
High	5240	17.80	> 0.5MHz

Page 70 of 127

IEEE 802.11n 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5260	17.80	> 0.5MHz
High	5320	17.80	> 0.5MHz

Page 71 of 127

IEEE 802.11n 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit	
Low	5745	17.80	> 0.5MHz	
High	5825	17.80	> 0.5MHz	

Page 72 of 127

IEEE802.11n 40MHz

111					
Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit		
Low	5190	36.40	> 0.5MHz		
High	5230	36.52	> 0.5MHz		

Page 73 of 127

IEEE 802.11n 40MHz

٠.					
	Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit	
	Low	5270	36.40	> 0.5MHz	
	High	5310	36.40	> 0.5MHz	

Page 74 of 127

IEEE 802.11n 40MHz

٠.					
	Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit	
	Low	5755	36.56	> 0.5MHz	
	High	5795	36.56	> 0.5MHz	

Page 75 of 127

802.11ac 5GHz 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5180	17.76	> 0.5MHz
High	5240	17.76	> 0.5MHz

Page 76 of 127

802.11ac 5GHz 20MHz

_						
	Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit		
	Low	5260	17.76	> 0.5MHz		
	High	5320	17.76	> 0.5MHz		

Page 77 of 127

802.11ac 5GHz 20MHz

_					
	Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit	
	Low	5745	17.76	> 0.5MHz	
	High	5825	17.76	> 0.5MHz	

Page 78 of 127

802.11ac 5GHz 40MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5190	36.40	> 0.5MHz
High	5230	36.60	> 0.5MHz

Page 79 of 127

802.11ac 5GHz 40MHz

_						
	Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit		
	Low	5270	36.40	> 0.5MHz		
	High	5310	36.64	> 0.5MHz		

Page 80 of 127

802.11ac 5GHz 40MHz

_					
	Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit	
	Low	5755	36.56	> 0.5MHz	
	High	5795	36.44	> 0.5MHz	

802.11ac 5GHz 80MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5210	76.41	> 0.5MHz
High			

Channel Low

802.11ac 5GHz 80MHz

_	THE COUNTY					
	Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit		
	Low	5290	76.41	> 0.5MHz		
	High					

Channel Low

Date: 19.OCT.2016 10:19:10

C. Peak Powe	er			
Product	: EUT-Sample		Test Mode	: See Section 2.2
Test Item	: Peak Power		Temperature	: 25 ℃
Test Voltage	: DC 5V		Humidity	: 56%RH
Test Result	PASS			
IEEE 802.11a Ba	nd1			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5180	15.61	0.25/24.00	PASS
High	5240	14.92	0.20/21.00	PASS
IEEE 802.11a Ba		1		
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5260	15.13	0.25/24.00	PASS
High	5320	15.32	0.20/21.00	PASS
IEEE 802.11a Ba				
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5745	15.23	1.00/30.00	PASS
High	5825	15.65	1.00/00.00	PASS
EEE 802.11n 5G		T		
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5180	13.50	0.25/24.00	PASS
High	5240	13.05	0.20/21.00	PASS
IEEE 802.11n 5G	1	T		1
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5260	13.34	0.25/24.00	PASS
High	5320	13.83	0.20/21.00	PASS
IEEE 802.11n 5G				
IEEE 802.11n 5G Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Channel Low	Frequency (MHz) 5745	(dBm) 12.85	(W/dBm)	PASS
Channel Low High	Frequency (MHz) 5745 5825	(dBm)		
Channel Low	Frequency (MHz) 5745 5825 40MHz Band1	(dBm) 12.85 13.69	(W/dBm) 1.00/30.00	PASS
Channel Low High	Frequency (MHz) 5745 5825	(dBm) 12.85	(W/dBm)	PASS PASS Result
Channel Low High IEEE 802.11n 5G	Frequency (MHz) 5745 5825 40MHz Band1 Frequency	(dBm) 12.85 13.69 Output Power	(W/dBm) 1.00/30.00 FCC Limit	PASS PASS

Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5270	11.59	0.25/24.00	PASS
High 5310		11.88	0.25/24.00	PASS
EEE 802.11n 5G 40MHz Band4				

Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5755	12.38	1.00/30.00	PASS
High	5795	12.48	1.00/30.00	PASS

Report No.: FCC17010001A-7

EEE 802.11ac 50	3 20MHz Band1			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5180	13.75	0.25/24.00	PASS
High	5240	14.31	0.23/24.00	PASS
EEE 802.11ac 50	3 20MHz Band2			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5260	13.13	0.05/04.00	PASS
High	5320	12.26	0.25/24.00	PASS
EEE 802.11ac 50	20MHz Band4	-		•
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5745	12.52	4 00/00 00	PASS
High	5825	12.56	1.00/30.00	PASS
EE 802.11ac 50		<u> </u>		•
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5190	14.67	0.25/24.00	PASS
High	5230	12.43	0.25/24.00	PASS
EE 802.11ac 50	40MHz Band2			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5270	12.02	0.05/04.00	PASS
High	5310	14.81	0.25/24.00	PASS
EE 802.11ac 50	40MHz Band4	•		•
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5755	13.57	4 00/00 00	PASS
High	5795	12.28	1.00/30.00	PASS
EE 802.11ac 50	80MHz Band1			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5210	13.81	0.25/24.00	PASS
			0.25/24.00	
EE 802.11ac 50	80MHz Band2			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5290	13.65	0.25/24.00	PASS
			0.25/24.00	
EE 802.11ac 50	80MHz Band4			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5775	13.72	1.00/30.00	PASS

Page 86 of 127

Page 87 of 127

Page 88 of 127

Page 89 of 127

20M-802.11n 5240MHz

Page 90 of 127

20M-802.11n 5320MHz

Page 91 of 127

Page 92 of 127

Page 93 of 127

Page 94 of 127

Page 95 of 127

Page 96 of 127

Page 97 of 127

Page 98 of 127

Page 99 of 127

Page 100 of 127

Page 101 of 127

roduct	: EUT-Sample		Test Mode	: See Sectio	n 2.2
est Item	: Peak Power Spectral De	: Peak Power Spectral Density		: 25 ℃	
est Voltage	: DC 5V		Humidity : 56%RH		
est Result	: PASS				
EE 802.11a and1					
Channel	Frequency (MHz)	PPSD (dBm)		Limit Hz)	Result
Low	5180	3.657	11dBi	m/MHz	PASS
High	5240	2.715	TUDI	11/1711 12	PASS
and2					
Channel	Frequency (MHz)	PPSD (dBm)		Limit Hz)	Result
Low	5260	2.720	1140	~/N/I	PASS
High	5320	5.140	11dBi	m/MHz	PASS
ınd4	· ·		•	•	
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)		Result
Low	5745	1.164	30dBm/500 kHz		PASS
High	5825	0.965		Bm/MHz)	PASS
EE 802.11n 5G : ind1 Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)		Result
Low	5180	2.976	11.15	44 10 /0411	
High	5240	2.049	11dBi	m/MHz	PASS
nd2			•	•	
Channel	Frequency (MHz)	PPSD (dBm)		FCC Limit (kHz)	
Low	5260	2.310	44-10	/N Al I	PASS
High	5320	2.175	11081	m/MHz	PASS
ınd4			•	•	
Channel	Frequency (MHz)	PPSD (dBm)		FCC Limit (kHz)	
Low	5745	1.104	30dBm/	/500 kHz	PASS
High	5825	0.996	(26.99dBm/MHz)		PASS
EE 802.11n 5G 4 and1	40MHz				
Channel	Frequency (MHz)	PPSD (dBm)		Limit Hz)	Result
Low	5190	0.508	1140	11dBm/MHz	
High	5230	-0.938	Tubi	11/1VII 1Z	PASS
ınd2					
Channel	Frequency (MHz)	PPSD (dBm)		FCC Limit (kHz)	
Low	5270	-0.808	1140	m/MHz	PASS
High	5310	-2.798	TIUDI	11/17/11 12	PASS
ınd4					
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)		Result
Low	5755	-1.709		/500 kHz	PASS
High	5795	-0.866		Bm/MHz)	PASS

	_			
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5180	2.55	11dBm/MHz	PASS
High	5240	2.89	T TUBITI/IVII IZ	PASS
nd2				
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5260	2.12	11dBm/MHz	PASS
High	5320	2.34	TUBITI/IVIEZ	PASS
nd4				
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5745	2.81	30dBm/500 kHz	PASS
High	5825	3.57	(26.99dBm/MHz)	PASS
E 802.11ac 5G 40 nd1)MHz			
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5190	-2.79	4.4 - ID / MI I -	PASS
High	5230	-3.04	11dBm/MHz	PASS
nd2			· ·	
01	Frequency	PPSD	FCC Limit	Danieli
Channel	(MHz)	(dBm)	(kHz)	Result
Low	5270	-3.26	4.4 - ID / MI I	PASS
High	5310	-2.68	11dBm/MHz	PASS
nd4	<u> </u>			
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5755	-2.45	30dBm/500 kHz	PASS
High	5795	-2.31	(26.99dBm/MHz)	PASS
E 802.11ac 5G 80 nd1	DMHz			
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5210	-5.58	11dBm/MHz	PASS
nd2			<u> </u>	
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5290	-5.79		PASS
			11dBm/MHz	
nd4	В			
Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit Result	
Low	5775	-4.57	30dBm/500 kHz	PASS
			(26.99dBm/MHz)	

Note: For 5.725~5.85GHz (Band4): Power Density (dBm/500kHz)= Power Density (dBm/MHz)- 10log(500kHz/RBW) (dB)

IEEE 802.11a Band1

PPSD (CH Low)

IEEE 802.11a Band2

PPSD (CH Low)

IEEE 802.11a Band4

PPSD (CH Low)

IEEE 802.11n 5G 20MHz Band1

PPSD (CH Low)

IEEE 802.11n 5G 20MHz Band2

PPSD (CH Low)

IEEE 802.11n 5G 20MHz Band4

PPSD (CH Low)

IEEE 802.11n 5G 40MHz Band1

PPSD (CH Low)

IEEE 802.11n 5G 40MHz Band2

PPSD (CH Low)

IEEE 802.11n 5G 40MHz Band4

PPSD (CH Low)

E. Frequency Stability							
Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11a				
Test Item:	Frequency Stability	Temperature:	25 ℃				
Test Voltage:	DC 5V	Humidity:	56%RH				
Test Result:	PASS						

Voltage		Measurement Frequency (MHz)				
(V)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
126.50	5179.9488	5239.9206	5259.9366	5319.9224	5744.9168	5824.9134
110.00	5179.9488	5239.9206	5259.9366	5319.9224	5744.9168	5824.9134
93.50	5179.9488	5239.9206	5259.9364	5319.9224	5744.9168	5824.9134
Max. Deviation (MHz)	0.0512	0.0794	0.0636	0.0776	0.0832	0.0866
Max. Deviation (ppm)	9.88	15.15	12.09	14.59	14.48	14.87

Temperature	Measurement Frequency (MHz)					
(℃)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
0	5179.9494	5239.9202	5259.9366	5319.9224	5744.9156	5824.9132
10	5179.9494	5239.9202	5259.9366	5319.9224	5744.9156	5824.9132
20	5179.9494	5239.9202	5259.9364	5319.9226	5744.9156	5824.9132
30	5179.9494	5239.9202	5259.9364	5319.9224	5744.9156	5824.9132
40	5179.9494	5239.9202	5259.9362	5319.9226	5744.9156	5824.9132
Max. Deviation (MHz)	0.0506	0.0792	0.0638	0.0776	0.0844	0.0868
Max. Deviation (ppm)	9.77	15.11	12.13	14.59	15.42	14.90

Page 123 of 127

Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11n 20MHz
Test Item:	Frequency Stability	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)					
(V)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
126.50	5179.9522	5239.9224	5259.9312	5319.9320	5744.9214	5824.9256
110.00	5179.9522	5239.9218	5259.9316	5319.9318	5744.9212	5824.9254
93.50	5179.9520	5239.9222	5259.9312	5319.9322	5744.9212	5824.9256
Max. Deviation (MHz)	0.0480	0.0782	0.0688	0.0682	0.0788	0.0746
Max. Deviation (ppm)	9.26	14.92	13.08	12.82	13.72	12.81

Temperature vs. Frequency Stability

· · · · · · · · · · · · · · · · · · ·						
Temperature		Measurement Frequency (MHz)				
(℃)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
0	5179.9522	5239.9224	5259.9312	5319.9320	5744.9214	5824.9256
10	5179.9522	5239.9218	5259.9316	5319.9318	5744.9212	5824.9254
20	5179.9520	5239.9222	5259.9312	5319.9320	5744.9212	5824.9256
30	5179.9522	5239.9222	5259.9312	5319.9320	5744.9214	5824.9252
40	5179.9518	5239.9218	5259.9310	5319.9318	5744.9214	5824.9254
Max. Deviation (MHz)	0.0482	0.0782	0.0690	0.0682	0.0788	0.0748
Max. Deviation (ppm)	9.31	14.92	13.12	12.82	13.72	12.84

Page 124 of 127

Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11n 40MHz
Test Item:	Frequency Stability	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)					
(V)	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz
126.50	5189.9348	5229.9214	5269.9116	5309.9222	5744.9162	5794.9124
110.00	5189.9348	5229.9214	5269.9118	5309.9224	5744.9162	5794.9124
93.50	5189.9348	5229.9214	5269.9116	5309.9224	5744.9162	5794.9124
Max. Deviation (MHz)	0.0652	0.0786	0.0884	0.0778	0.0838	0.0876
Max. Deviation (ppm)	12.56	15.03	16.77	14.65	14.56	15.12

Temperature vs. Frequency Stability

Tomporatary vor Frequency stability						
Temperature		Measurement Frequency (MHz)				
(℃)	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz
0	5189.9344	5229.9210	5269.9116	5309.9222	5754.9162	5794.9128
10	5189.9344	5229.9210	5269.9118	5309.9224	5754.9162	5794.9128
20	5189.9344	5229.9210	5269.9116	5309.9224	5754.9162	5794.9128
30	5189.9344	5229.9210	5269.9120	5309.9222	5754.9162	5794.9128
40	5189.9344	5229.9210	5269.9116	5309.9220	5754.9162	5794.9128
Max. Deviation (MHz)	0.0656	0.0790	0.0884	0.780	0.0838	0.0872
Max. Deviation (ppm)	12.64	15.11	16.77	14.69	14.56	15.05

Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11ac 20MHz
Test Item:	Frequency Stability	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

Voltage		Measurement Frequency (MHz)				
(V)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
126.50	5179.9556	5239.9236	5259.9324	5319.9326	5744.9228	5824.9244
110.00	5179.9556	5239.9236	5259.9324	5319.9326	5744.9228	5824.9242
93.50	5179.9554	5239.9234	5259.9324	5319.9324	5744.9230	5824.9242
Max. Deviation (MHz)	0.0446	0.0766	0.0676	0.0676	0.0770	0.0758
Max. Deviation (ppm)	8.61	14.62	12.85	12.71	13.40	13.01

Temperature vs. Frequency Stability

remperature vs. rrequeries otability						
Measurement Frequency (MHz)						
5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz	
5179.9536	5239.9248	5259.9334	5319.9328	5744.9224	5824.9234	
5179.9536	5239.9244	5259.9334	5319.9328	5744.9224	5824.9234	
5179.9535	5239.9246	5259.9338	5319.9330	5744.9224	5824.9236	
5179.9534	5239.9246	5259.9336	5319.9330	5744.9222	5824.9236	
5179.9534	5239.9244	5259.9336	5319.9330	5744.9222	5824.9234	
0.0466	0.0756	0.0662	0.0670	0.0776	0.0766	
9.00	14.43	12.59	12.59	13.51	13.15	
	5180 MHz 5179.9536 5179.9536 5179.9535 5179.9534 5179.9534 0.0466	5180 MHz 5240 MHz 5179.9536 5239.9248 5179.9536 5239.9244 5179.9535 5239.9246 5179.9534 5239.9246 5179.9534 5239.9244 0.0466 0.0756	Measurement F 5180 MHz 5240 MHz 5260 MHz 5179.9536 5239.9248 5259.9334 5179.9536 5239.9244 5259.9334 5179.9535 5239.9246 5259.9338 5179.9534 5239.9246 5259.9336 5179.9534 5239.9244 5259.9336 0.0466 0.0756 0.0662	Measurement Frequency (MHz 5180 MHz 5240 MHz 5260 MHz 5320 MHz 5179.9536 5239.9248 5259.9334 5319.9328 5179.9536 5239.9244 5259.9334 5319.9328 5179.9535 5239.9246 5259.9338 5319.9330 5179.9534 5239.9246 5259.9336 5319.9330 5179.9534 5239.9244 5259.9336 5319.9330 0.0466 0.0756 0.0662 0.0670	Measurement Frequency (MHz) 5180 MHz 5240 MHz 5260 MHz 5320 MHz 5745 MHz 5179.9536 5239.9248 5259.9334 5319.9328 5744.9224 5179.9536 5239.9244 5259.9334 5319.9328 5744.9224 5179.9535 5239.9246 5259.9338 5319.9330 5744.9224 5179.9534 5239.9246 5259.9336 5319.9330 5744.9222 5179.9534 5239.9244 5259.9336 5319.9330 5744.9222 0.0466 0.0756 0.0662 0.0670 0.0776	

Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11ac 40MHz
Test Item:	Frequency Stability	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

Voltage	Measurement Frequency (MHz)					
(V)	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz
126.50	5189.9322	5229.9206	5269.9102	5309.9258	5744.9154	5794.9166
110.00	5189.9322	5229.9206	5269.9104	5309.9256	5744.9154	5794.9166
93.50	5189.9322	5229.9206	5269.9102	5309.9254	5744.9152	5794.9162
Max. Deviation (MHz)	0.0678	0.0794	0.0898	0.0746	0.0848	0.0838
Max. Deviation (ppm)	13.06	15.18	17.04	14.05	14.74	14.46

Temperature vs. Frequency Stability

Tomporature vol i requestey etablicy						
Temperature	Measurement Frequency (MHz)					
(℃)	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz
0	5189.9314	5229.9222	5269.9136	5309.9254	5754.9188	5794.9146
10	5189.9314	5229.9224	5269.9138	5309.9252	5754.9188	5794.9144
20	5189.9316	5229.9224	5269.9134	5309.9252	5754.9186	5794.9146
30	5189.9316	5229.9224	5269.9134	5309.9254	5754.9184	5794.9142
40	5189.9314	5229.9224	5269.9134	5309.9252	5754.9184	5794.9142
Max. Deviation (MHz)	0.0686	0.0776	0.0866	0.0748	0.0816	0.0858
Max. Deviation (ppm)	13.22	14.84	16.43	14.09	14.18	14.81

Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11ac 80MHz
Test Item:	Frequency Stability	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

Voltage	Measurement Frequency (MHz)					
(V)	5210 MHz	5290 MHz	5775 MHz			
126.50	5209.9226	5289.9310	5774.9202			
110.00	5209.9222	5289.9308	5774.9204			
93.50	5209.9222	5289.9312	5774.9202			
Max. Deviation (MHz)	0.0778	0.0692	0.0798			
Max. Deviation (ppm)	14.93	13.08	13.82			

Temperature vs. Frequency Stability

	iomportation for reduciney examiny						
Temperature	Measurement Frequency (MHz)						
(℃)	5210 MHz	5290 MHz	5775 MHz				
0	5209.9314	5289.9244	5774.9166				
10	5209.9314	5289.9244	5774.9166				
20	5209.9312	5289.9246	5774.9164				
30	5209.9312	5289.9242	5774.9164				
40	5209.9312	5289.9242	5774.9164				
Max. Deviation (MHz)	0.0688	0.0758	0.0836				
Max. Deviation (ppm)	13.21	14.33	14.48				