IC 272 - Data Science III

Assignment 2: Principal Component Analysis (PCA) and K-Nearest Neighbour (KNN)

Deadline: October 01, 2023: 23.59 Hr.

Dataset Description:

You are given a CSV file "**iris.csv**" containing the measurements of three types of Iris flowers:

Independent variables/ Attributes/ Features:

- i. "SepalLengthCm": Sepal length in cm.
- ii. "SepalWidthCm": Sepal width in cm.
- iii. "PetalLengthCm": Petal length in cm.
- iv. "PetalWidthCm": Petal width in cm.

Dependent variable/ Target Attribute/ Class:

i. "species": Type of the flower corresponding to a set of measurements.

Problem Statements:

- I. Read the file using Pandas and do the following:
 - a. Extract the attributes as one matrix and the target attribute as an array, called "true class labels" or y.
 - b. Replace the outliers (if at all any) in the attributes with the median of the respective attributes. Let's call this outlier corrected data as **X**.
 - c. Reduce the dimension of X through Principal Component Analysis (PCA) by implementing Algorithm 1 in Python:

Algorithm 1 Data Dimension Reduction using Principal Component Analysis (PCA)

Require: Data matrix X having N=150 number of samples. Each sample is of dimension d=4.

Ensure: The reduced-dimensional data - dimension is reduced from d=4 to l=2.

- 1: Subtract the respective mean from each attribute (dimension) in data samples (tuples). Lets call the mean subtracted data as \tilde{X} .
- 2: Compute the correlation matrix $C = \tilde{X}^T \tilde{X}$.
- 3: Perform eigen analysis of C using numpy.linalg.eig.
- 4: Order the eigenvalues (λ 's) of C such that $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_4$.
- 5: Consider l=2 eigenvectors (q's) corresponding to the l significant eigenvalues and create a matrix \mathbf{Q} of size 2×4 .
- 6: Take the original data X. Project each original sample \mathbf{x}_i , i = 1, 2, ..., 150 onto each of the l directions performing the following operation: $\hat{\mathbf{X}} = \mathbf{Q}\mathbf{X}$.
- 7: Return the dimension-reduced version $\hat{\mathbf{X}} \in \mathbb{R}^{150 \times 2}$ of the original data \mathbf{X} .
 - d. Draw a scatter plot of the dimension-reduced data generated in QI.(c). Superimpose the eigen directions with proper scaling (use in-built plotting functions).
 - e. Reconstruct the original data from dimension-reduced data generated in QI.(c) by implementing Algorithm 2 in Python:

Algorithm 2 Reconstruction of Data from Dimension-reduced Data

Require: 1. Dimension-reduced data matrix $\hat{\mathbf{X}}$ having N=150 number of samples, each of dimension l=2.

2. Eigenvector matrix Q.

Ensure: The reconstructed original data $\dot{\mathbf{X}} \in \mathbb{R}^{150 \times 4}$.

- 1: Approximate each original sample \mathbf{x}_i , i = 1, 2, ...150 by performing the following operation: $\dot{\mathbf{X}} = \hat{\mathbf{X}}\mathbf{Q}$.
- 2: Return the reconstructed original data $\hat{\mathbf{X}}$ of size 150×4 .
 - f. Compute the RMSE between the original data (\mathbf{X}) and its reconstruction $(\dot{\mathbf{X}})$ using your implementation in Assignment 1.

- II. Consider the dimension-reduced data generated in QI.(c) and do the following:
 - a. Build a K-Nearest Neighbour (KNN) classifier by implementing Algorithm 3 in Python:

Algorithm 3 K-Nearest Neighbour (KNN)

- **Require:** 1. Dimension-reduced data matrix $\hat{\mathbf{X}}$ having N=150 number of samples, each of dimension l=2.
 - 2. True class label vector v.

Ensure: A matrix containing the true class label (actual) and the predicted class label (predicted) of each test sample \mathbf{x}_i^{test} .

- 1: Split data $\hat{\mathbf{X}}$ into training set and test set using sklearn.model_selection.train_test_split($\hat{\mathbf{X}}$,y ,random_state=104, test_size=0.20, shuffle=True).
- 2: **for** each test sample X_i^{test} in the test set **do**
- 3: **for** each training sample \mathbf{X}_{i}^{train} in the training set **do**
- 4: Compute the Euclidean distance between X_i^{test} and X_i^{train} as

$$dist = \sqrt{\sum_{l=1}^{2} (\mathbf{X}_{il}^{test} - \mathbf{X}_{jl}^{train})^2}$$

- 5: **end for**
- 6: Sort the training examples in ascending order of the distance to \mathbf{X}_i^{test} (use in-built sorting function).
- 7: Choose the first K = 5 examples in the sorted list.
- 8: Assign X_i^{test} to the most common class among its 5 neighbours.
- 9: Save the actual and predicted class labels of \mathbf{X}_i^{test} .
- 10: end for
- 11: Return the matrix of actual and predicted class labels of 150×2 samples.
 - b. Compute the confusion matrix using the function from **sklearn.metrics**. Create an interpretable visual display of the confusion matrix using the function from **sklearn.metrics** and plot it using **matplotlib.pyplot**.