

AD-A196 429



US Army Corps  
of Engineers

The Hydrologic  
Engineering Center

DTIC FILE COPY

(4)

# Water Quality Modeling of Reservoir System Operations Using HEC-5

DTIC  
ELECTED  
JUN 15 1988  
**S D**  
*s*  
**D**

DISTRIBUTION STATEMENT A

Approved for public release  
Distribution Unlimited

Training Document No. 24

September 1987

88 6 14 053

TRAINING DOCUMENT NO. 24

WATER QUALITY MODELING  
OF RESERVOIR SYSTEM OPERATIONS  
USING HEC-5

R.G. WILLEY

SEPTEMBER 1987

|                 |                          |
|-----------------|--------------------------|
| Accession For   |                          |
| NTIS CRAGI      |                          |
| DTIC TAB        | <input type="checkbox"/> |
| U.S. GOVERNMENT | <input type="checkbox"/> |
| JESSE           | <input type="checkbox"/> |
| By              |                          |
| Date            |                          |
| Cost            |                          |
| A-1             |                          |

US ARMY CORPS OF ENGINEERS  
WATER RESOURCES SUPPORT CENTER  
HYDROLOGIC ENGINEERING CENTER  
609 Second Street  
Davis, California 95616

WATER QUALITY MODELING  
OF RESERVOIR SYSTEM OPERATIONS  
USING HEC-5

TABLE OF CONTENTS

| <u>CHAPTER</u> | <u>TITLE</u>                 | <u>PAGE</u> |
|----------------|------------------------------|-------------|
|                | TABLE OF CONTENTS            | i           |
|                | LIST OF FIGURES              | ii          |
| I              | INTRODUCTION                 | 1           |
| II             | MATHEMATICAL MODEL           | 3           |
| III            | RESERVOIR SYSTEM DESCRIPTION | 11          |
| IV             | APPLICATION PROCEDURE        | 13          |
| V              | SIMULATION RESULTS           | 18          |
| VI             | SUMMARY                      | 20          |
| VII            | REFERENCES                   | 21          |

APPENDIX

- A     HEC-5 Input for Water Quality Modeling
- B     Selected HEC-5 Printer Output for Water Quality Modeling
- C     Selected Graphical Displays of Output

## LIST OF FIGURES

| <u>NUMBER</u> | <u>TITLE</u>                                                                    | <u>PAGE</u> |
|---------------|---------------------------------------------------------------------------------|-------------|
| 1             | Typical Reservoir System Schematic                                              | 2           |
| 2             | Geometric Representation of a Stratified Reservoir and Mass Transport Mechanism | 5           |
| 3             | Geometric Representation of Stream and Mass Transport Mechanism                 | 7           |
| 4             | Sacramento Valley Reservoir System Schematic                                    | 12          |

## CHAPTER I

### INTRODUCTION

The U.S. Army Corps of Engineers is responsible for the operation of hundreds of multiple purpose reservoirs in addition to maintenance of hundreds of miles of non-reservoir projects (e.g., levees and navigation channels). Management of reservoir releases for water quality can be analyzed to determine the operation with any one of the numerously available reservoir computer programs [WRE 1969a, HEC 1972, U.S. Army 1977, HEC 1978, Loftis 1980]. With river water quality programs, the impact of specified reservoir releases can be evaluated at downstream points of interest [HEC 1978].

The problem with using single project models is the difficulty of coordinating releases among projects which impact on a single location. This is particularly obvious in Figure 1 where the operation of both reservoirs A and B impact on the amount and quality of water at City A (i.e., control point 3). As the system is expanded further downstream, the computations necessary to provide a best operation of reservoirs A through D for control point 7 obviously require a comprehensive system approach.

The "HEC-5, Simulation of Flood Control and Conservation Systems, Appendix on Water Quality Analysis" computer model [HEC 1986] has been developed specifically for evaluating the type of problem shown in Figure 1. The model is capable of evaluating a reservoir system of up to ten reservoirs and up to thirty control points. The model will determine a best system operation for water quantity and quality; evaluating operational concerns like flood control, hydropower, water supply, and irrigation diversions. Changing needs and natural inputs can also be accommodated.

The HEC-5 water quality routines can be used to determine the quality constituents available with the best system water quantity operation or alternately the best water quality operation. The model can analyze water temperature, up to three conservative and three non-conservative constituents, dissolved oxygen and phytoplankton. Optional computation intervals from hourly to monthly are available. Graphical post-processor capability can be interfaced through other available software.

This training document provides guidance on the application of the HEC-5 computer program to a typical water quality study. The purpose of this training document is to familiarize the first time user of HEC-5 with the procedure to follow for collecting, assembly, and manipulating water quality input data. The optional types of executions and the proper interpretation of results are also discussed at some length. The author conveys many significant items not normally discussed in a users manual or even in short course lectures. These items resulted from experience gained by completing several studies with this water quality model.

Following the procedures in this document will help the reader apply HEC-5 to routinely encountered problems involving evaluation of water quality conditions in existing and/or proposed multipurpose reservoir systems.

The HEC-5 water quality model is new and therefore a research tool until it has been successfully applied to numerous practical problems. The HEC would appreciate your comments and observations which could be added to this report or to the users manual regarding experiences with the application of HEC-5. As desirable improvements are identified, modifications will be made.

Additional assistance in understanding HEC-5 is available by contacting Mr. Willey at (916) 551-1748 or (FTS) 460-1748.



Figure 1  
TYPICAL RESERVOIR SYSTEM SCHEMATIC

## CHAPTER II

### MATHEMATICAL MODEL

The mathematical model, "HEC-5, Simulation of Flood Control and Conservation Systems, Appendix on Water Quality Analysis," has been used to analyze the Sacramento Valley [Willey 1985], Kanawha River Basin [Willey 1986], and the Monongahela River Basin [Willey 1987] Reservoir Systems. The computer program Users Manual [HEC 1986], and several technical papers [Duke 1984, Willey 1982, 1983, 1984, and 1987] adequately document the details of the model concepts and the input description, so only a brief overview is provided in this chapter.

The HEC-5 water quality computer program is composed of a flow simulation module (HEC-5A) and the water quality simulation module (HEC-5Q). They are an integrated package with feedback capability between the two modules. Each module, the gate selection routine and the flow alteration option are described below.

#### Flow Simulation Module

The flow simulation module was developed to assist in planning studies for evaluating proposed reservoirs in a system and to assist in sizing the flood control and conservation storage requirements for each project recommended for the system. The program can be used in studies made immediately after the occurrence of a flood to show the effects of existing and/or proposed reservoirs on flows and damages in the system. The program should also be useful in selecting the proper reservoir releases throughout the system during flood emergencies in order to minimize flooding as much as possible and yet empty the system as quickly as possible while maintaining a balance of flood control storage ("balanced pool") among the reservoirs.

The above purposes are accomplished by simulating the operation of a system of reservoirs of any configuration for short interval historical floods or for long duration nonflood periods or for combinations of the two. Specifically the program may be used to determine:

- a. Flood control and conservation storage requirements for each reservoir in the system.
- b. The influence of a system of reservoirs on the spatial and temporal distribution of runoff in a basin.
- c. The evaluation of operational criteria for both flood control and conservation (including hydropower) for a system of reservoirs.
- d. The expected annual flood damages, system costs, and system net benefits for flood damage reduction.
- e. The system of existing and proposed reservoirs or other alternatives that result in the maximum net flood control benefits for the system by making simulation runs for selected alternative systems.

### Water Quality Simulation Module

The water quality simulation module was developed to simulate temperature, as well as three user-selected conservative and three user-selected non-conservative constituents. The model also allows dissolved oxygen to be simulated if the user selects either carbonaceous or nitrogenous oxygen demanding constituents. An option for phytoplankton evaluation is also available.

The water quality simulation module accepts system flows generated by the flow simulation module and computes the distribution of all the water quality constituents in each of the reservoirs in the system and their associated downstream river reaches. The reservoirs may be in any arbitrary parallel and tandem configuration.

The water quality simulation module also selects the gate openings for reservoir selective-withdrawal structures to meet user-specified water quality objectives at downstream control points. If the objectives cannot be satisfied with the previously computed "balanced pool" flows, the model will compute a modified flow distribution necessary to better satisfy all down-stream objectives. With these capabilities, the planner may evaluate the effects of proposed reservoir-stream system modifications on water quality and determine how a reservoir intake structure should be operated to achieve desired water quality objectives within the system.

Each reservoir is assumed to be a control point, in keeping with the concepts used in the development of the flow simulation module. Additional control points may be placed in the stream system below the reservoirs at stream confluences and any other desirable locations.

Computational time steps from hourly to monthly are optional. The model is limited to simulations of one calendar year.

The reservoirs are represented by a series of one-dimensional horizontal elements such as those shown in Figure 2. Each horizontal element is characterized by an area, thickness and volume. In the aggregate, the assemblage of layered volume elements is a geometric representation of the prototype reservoir. This one-dimensional representation has been shown to represent adequately water quality conditions in many deep, well stratified reservoirs by Eiker [US Army 1977], Baca [1977] and Water Resources Engineers [1968, 1969a, 1969b].

Each horizontal layer is assumed to be completely mixed with all isopleths parallel to the water surface both laterally and longitudinally. External inflows and withdrawals occur as sources or sinks within each layer and are instantaneously dispersed and homogeneously mixed throughout each element from the headwaters of the impoundment to the dam. It is not



Figure 2  
GEOMETRIC REPRESENTATION OF A STRATIFIED RESERVOIR  
AND MASS TRANSPORT MECHANISM

possible, therefore, to model longitudinal variations in water quality constituents. Simulation results are most representative of conditions in the main reservoir body.

Vertical advection is governed by the location of inflow to, and outflow from, the reservoir. Thus the computation of the zones of distribution and withdrawal for inflows and outflows are of considerable significance in operation of the model. The WES withdrawal method [Bohan 1973] is used for determining the allocation of outflow. The Debler inflow allocation method [Debler 1959] is used for the placement of inflows.

Vertical advection (physical movement of mass due to continuity balance) is the net interelement flow and is one of two transport mechanisms used in the module to transport water quality constituents between elements. Effective diffusion is the other transport mechanism. The effective diffusion is composed of molecular and turbulent diffusion and convective (physical movement of water due to density instability) mixing.

Wind and flow-induced turbulent diffusion and convective mixing are the dominant components of effective diffusion in the epilimnion of most reservoirs. In quiescent, well-stratified reservoirs, molecular diffusion may be a significant component in the metalimnion and hypolimnion. For deep, well-stratified reservoirs with significant inflows to or withdrawals from the hypolimnion, flow induced turbulence in the hypolimnion dominates. For weakly stratified reservoirs, wind induced or wind and flow induced turbulent diffusion will be the dominant component of the effective diffusion throughout the reservoir. One of two methods may be selected by the user to calculate effective diffusion coefficients. For shallow weakly stratified reservoirs, the wind controlled mixing [HEC 1978] method is appropriate, while the stability method [HEC 1978] is more appropriate for deeper well stratified reservoirs. Both of these methods have been shown in numerous applications to adequately represent the mixing phenomena for heat and dissolved water quality constituents when properly applied.

The stream system is represented conceptually as a linear network of segments or volume elements as shown in Figure 3. Each element is characterized by length, width, cross-sectional area, hydraulic radius, energy slope, Manning's n, and a flow and depth relationship. Flow rates at stream control points are calculated within the flow simulation module using any one of the several programmed hydrologic routing methods. Within the flow simulation module, incremental local flows (i.e., inflow between adjacent control points) are assumed to be located at the nearest control point.

Within the water quality simulation module, the incremental local flow may be divided into components and placed at different locations within the stream reach (i.e., that portion of the stream bounded by the two control points). A flow balance is



Figure 3

GEOMETRIC REPRESENTATION OF STREAM SYSTEM AND  
MASS TRANSPORT MECHANISM

used to determine the flow rate at element boundaries. Any flow imbalance (i.e., the difference in the flow at the upstream control point plus all tributary inflows and the flow at the downstream control point) is distributed uniformly to the flows at each element boundary. Once interelement flows are established, the depth, surface width, and cross sectional area are computed at each element boundary either by using the input flow-depth relationship or by assuming normal depth.

#### Gate Selection Routine

Once the desired reservoir release and the target water quality to meet downstream needs has been computed, the gate selection algorithm determines which ports should be open and what flow rate should pass through each open port in order to maximize a particular function of the downstream water quality target concentrations. Solution of this problem is accomplished by using mathematical optimization techniques. The objective function is related to the target downstream target qualities subject to various types of constraints at the individual ports.

The reservoir intake structure can have up to two wet wells, containing up to eight intake ports, and a flood control outlet. It is assumed that releases through any of these ports (including the flood control outlet) leave the reservoir through a common pipe. At any given time, only one port in either wet well and the flood control outlet may be operated. Hence, the algorithm provides flows through three ports at most.

The HEC-5 model also provides for releases through an uncontrolled spillway. These releases are not a part of the gate selection algorithm, but the water quality of the spillway releases are considered by the gate selection algorithm.

The algorithm proceeds by considering a sequence of problems, each representing a different combination of open ports. For each combination, the optimal allocation of total flow to ports is determined. The combination of open ports with the highest water quality index defines the optimal operation strategy for the time period under consideration.

There are four different types of combinations of open ports. For one-port problems, all of the flow is taken from a single port and the water quality index is computed. For two-port problems, combinations of one port in each wet well and combinations of each port with the flood gate are considered. For three-port problems, combinations of one port in each wet well and the floodgate are considered. The total flow to be released downstream is specified externally to the gate selection routine, but if the flow alteration option is selected, then the flow can be treated as an additional decision variable and the flow for which the water quality index is maximized is also determined.

For each combination of open ports, a sequence of flow allocation strategies is generated using a gradient method, a gradient projection method, or a Newton projection method as appropriate. The value of any flow allocation strategy is determined by evaluation of a water quality index subject to the hydraulic constraints of the system. The sequence converges to the optimal allocation strategy for the particular combination of open ports. These problems are solved very efficiently by using mathematical optimization techniques that take advantage of the problem structure, namely a quadratic objective function with linear constraints.

#### Flow Alteration Routine

The flow alteration routine is designed to change the reservoir releases, computed by the flow simulation module, to better satisfy the stream control point water quality objectives. Timing of intervening tributary inflows are considered. Second order effects, such as reaeration and external heating due to increased or decreased stream surface area, are not included.

The calculation procedure for the flow alteration option is as follows:

1. The relative mass of a water quality parameter being simulated that needs to be added to the flow at the control point (for those constituents below the target) or reduced in the flow at the control point (for those constituents above the target) is computed.
2. The average reservoir release concentration is computed for all reservoirs for which the constituent concentration in the releases is greater than the target concentration at the control point of interest (for those constituents below the target) or for which the constituent concentration in the releases is less than the target at the control point of interest (for those constituents above the target).
3. The total dilution flow requirement is then computed by dividing the result of step 1 by the result of step 2 to provide the total flow release needed to bring the constituent concentration at the control point of interest to the target.
4. The flow is then apportioned to the reservoirs capable of bringing the control point constituent concentration to the target in proportion to the flows originally computed for those reservoirs by the flow simulation module.

Thus the flow alteration requirement can be computed for each control point and for each constituent. The various computed flow rates are then combined by using the coefficients of a linear programming objective function and the deviation of the respective constituent concentrations from the target concentrations at each respective control point.

Once the flow augmentation requirement is determined, the flow simulation module is recalled and the computations for flow and water quality are repeated for the final results.

#### Summary

HEC-5 model is capable of simulating the water quality effects of the operation of a system of reservoirs. Each reservoir may be operated to satisfy a number of objectives, including flood control, low-flow, hydropower production, water supply and water quality control. The water quality portion of the model simulates temperature and eight water quality constituents including dissolved oxygen and phytoplankton. The model will determine the water quality needed from all reservoir releases to meet specified downstream water quality objectives and will determine the gate openings in each reservoir that will yield the appropriate reservoir release water quality. Should it be necessary, flows will be altered to ensure that downstream water quality objectives are met. The model selects the "best" solution for the system-wide reservoir operation.

## CHAPTER III

### RESERVOIR SYSTEM DESCRIPTION

The Sacramento Valley reservoir system consists of four major reservoirs as shown in Figure 4. Shasta and Keswick are tandem reservoirs in parallel with Oroville and Folsom Reservoirs. Numerous tributaries and irrigation diversions are involved.

Shasta and Keswick Reservoirs are located on the Sacramento River in northern California in the northern end of the Sacramento Valley about 240 river miles north of Sacramento. Keswick is a reregulation reservoir designed to even-out the daily hydropower releases from Shasta. Below Shasta and above Keswick, inter-basin water transfers enter the Sacramento River through Spring Creek. Along the Sacramento River, Cow Creek and Cottonwood Creek are major inflowing tributaries and the Anderson-Cottonwood, Tehama-Colusa, Corning and Glenn-Colusa Irrigation District Canals are major irrigation diversions.

Oroville Reservoir is located on the Feather River in the Sierra foothills about 95 river miles north of Sacramento. Major tributaries entering the Feather River include the Yuba and Bear Rivers. Major diversions are located immediately below Oroville Dam from the Thermalito Afterbay. The Feather River flows into the Sacramento River near Verona.

Folsom Reservoir is located on the American River in the Sierra foothills about 30 miles east of Sacramento. The American River below Folsom Reservoir is leveed with no major tributaries entering before its confluence with the Sacramento River at Sacramento (I Street).

The Sacramento River continues to flow south towards the San Francisco Bay via the Sacramento and San Joaquin Delta. This study's lower boundary is located near Hood about 20 miles south of Sacramento and just upstream of the Delta's maze of interconnected waterways.



Figure 4

### SACRAMENTO VALLEY RESERVOIR SYSTEM SCHEMATIC

## CHAPTER IV

### APPLICATION PROCEDURE

The application of the HEC-5 to the Sacramento Valley reservoir system, described in Chapter III, or to any other system begins with data collection, assembly, and manipulation. Each of these tasks in addition to model execution is discussed below. Interpretation of results is discussed in Chapter V.

#### Data Collection

The HEC-5 model data requirements are similar to those of most comprehensive water quality models. The data to be collected are categorized into three types; time independent, required time dependent and optional time dependent.

The time independent data include: physical description of the reservoir (i.e., elevation vs. volume, surface area and discharge capacity; and vertical reservoir segmentation), physical description of the river (i.e., river mile vs. cross section and channel discharge capacity; and river reach segmentation), control point desired and required flows, model coefficients (i.e., flow routing; reservoir diffusion; physical, chemical and biological reactions rates) and initial conditions for the start of the simulation. The input data for the Sacramento Valley reservoir system is shown in Appendix A. The time independent data for the water quantity input are on the RL, RO, RS, RQ, RA, RE, R2, CP, ID and RT records. For the water quality input, the time independent data are on L1, L2, LR, L3, L6, L7, L8, PL, L9, Cl, C2, C5, C6, C7, SA, DK, CR, S1, S2, SR, S3, S4 and KR records.

The required time dependent data include: evaporation, wind speed, cloud cover, air temperature, dew point temperature, flow diversions, inflow quantity and quality for all reservoir and river tributaries, discharge quantity from reservoirs, and control point target water quality conditions. The time dependent data are on the R3, IN, QA and QD records for the water quantity input. The input for the water quality portion are on the EZ, ET, CT, I2 and I4 records.

The optional time dependent data include: reservoir storages; river flows at other than control points; and reservoir water quality profiles and river time series plots. These data are used as checks (using auxillary graphics programs) on the model output in contrast to the previously mentioned data which are required to make the model work. This data is referred to as calibration data.

#### Data Assembly

Sources for the data categorized above are numerous. In general, they include all water-related agencies at the federal, state, local and private levels. To name a few, the following should all be considered when searching for data:

Corps of Engineers (COE)  
Bureau of Reclamation (BUR)  
Geological Survey (USGS)  
Environmental Protection Agency (EPA)  
state departments of natural resources  
state environmental protection agencies  
state colleges and universities  
city and county public works offices  
utility, water and flood control districts

Meteorological data (dry bulb temperature, dew point temperature, cloud cover and wind speed) are readily available from the U.S. Weather Service, local airports and universities. The primary data source for Corps of Engineers offices is the U.S. Air Force Environmental Technical Applications Center (OL-A USAFETAC) and for other offices is the NOAA's National Weather Service (NWS) office; both in Asheville, North Carolina. They should be contacted early in the data assembly task, and an order should be placed for the required meteorological data. Normally it will take 30 to 60 days to receive the data after the request is made. This data service is free to the Corps of Engineers and is documented in Department of Army Pamphlet 115-1. It is recommended that data format CD 144 be requested from OL-A USAFETAC at (FTS) 672-0218 or NWS at (704) 259-0682.

#### Data Manipulation

For simplification, the meteorological data should be reformatted with the "Weather" computer program [HEC 1986] and then input to the "Heat Exchange" computer program [U.S. Army 1977], available from HEC, which provides output in the form necessary for the HEC-5 program (i.e., ET record images). If HEC-5 computation intervals shorter than daily are going to be used, the use of the "Heat Exchange" program should be substituted with a similar utility program.

The cross-sectional data may be already available in the proper format if previous flood plain or flood damage analysis were studied using the HEC-2 program. Because HEC-2 is a widely used water surface profile program, the author has found the cross-sectional data already available in the proper format on many past water quality studies. For simplification, the HEC-2 type data should be input to the "GEDA" computer program [HEC 1981], available from the HEC, which provides output in the form necessary for the HEC-5Q program (i.e., S3 card images).

The meteorological and cross-sectional data account for about 60% of the water quality portion of the data to be prepared on a typical study.

Tributary inflows, diversions and reservoir discharges may be readily available from WATSTORE and STORET data systems. WATSTORE is managed by the USGS and contains streamflow data. STORET is managed by the EPA and contains water quality data. These computer data systems can often provide the necessary

inflow and reservoir discharge quantity and quality data. Modification of output format to the required HEC-5 input format for the IN, QA, QD and I4 cards is trivial. Past experience has shown that the flow data from WATSTORE is often not available at the same location as water quality data from STORET. Therefore judgement must be used to determine its usability by direct transfer of location or appropriate adjustment. The two types of data must be compatible for the computer program to calculate the appropriate constituent load time series. This type of data is about 20% of the water quality portion of the input data.

The remaining 20% of the typical data set is located by searching through COE reservoir regulation manuals, searching through COE files and making numerous judgement decisions regarding a thorough knowledge of the study objectives, the drainage area being studied and the concepts employed by the HEC-5 model.

#### Model Execution

The model can be used in several different ways. The cheapest, fastest execution, also requiring the least data preparation, is a steady state analysis. The input, calculation and output intervals are monthly. These may be used for screening monthly data for multiple years to find a critical period (poor water quality condition) for more detailed analysis. This method will only find the most critical period of at least monthly duration and not necessarily critical periods of shorter duration.

The model can be used to study temperature only or temperature and any combination of up to three conservative parameters (i.e., chlorides, total dissolved solids - TDS, alkalinity, specific conductance), up to three nonconservative parameters (i.e., coliform, carbonaceous biochemical oxygen demand - CBOD, ammonia) and dissolved oxygen (DO). If the phytoplankton option is requested, the parameters in the model must include at least temperature, TDS, nitrate, phosphate, phytoplankton, CBOD, ammonia, and DO. The more parameters simulated, the more computation and data preparation time involved. The phytoplankton option is particularly time consuming since all the parameter calculations possible are being performed with this option.

The model can be used for existing and/or proposed reservoirs. If an existing condition is being simulated, usually the objective is to reproduce historical events through model calibration. The calibration option can take about 50% less computer time because the time-consuming linear programming algorithms are not used.

Calibration should begin by reproducing observed temperature profiles in the reservoirs and stream channels. The reservoir diffusion coefficients, A1 and GSWH, provide the best initial adjustments. The second step in reservoir calibration involves adjustments to the three factors affecting light penetration:

secchi disk; solar radiation absorbed near surface, XQPCT; and depth associated with XQPCT amount of solar radiation. The above five variables are interrelated and will need to be adjusted simultaneously. Although many other variables affect the thermal and water quality constituent calibration of reservoirs, it is not recommended to adjust them unless you have more data than normal for reproducing observed profiles. Reservoir calibration decisions may include the user's choice of the input weather station.

The calibration of the river profiles may also involve the users choice of weather stations to index the meteorology affecting the river. Unless more than normal data are available, it is not recommended to adjust any model variables.

Once the model has been calibrated, the objective may be to modify an existing reservoir operation pattern or to evaluate the impact of proposed new reservoirs or channel modifications. This analysis requires the use of the linear programming algorithm and the increase of computer time is significant.

The simulation mode discussed above can be used either to evaluate the best water quality that can be provided throughout the system for given reservoir discharges (obtained either external to the simulation or determined by the HEC-5 quantity part of the model) or to evaluate the best water quality operation without preconceived discharge quantities. The former operation is referred to as a balanced pool operation and the latter as a flow augmentation operation.

The balanced pool operation is the standard HEC-5 analysis for flow. When using the balanced pool operation, the water quality portion of the program simply evaluates the best vertical level for withdrawal at each reservoir (assuming multiple level intakes are available) to meet all downstream water quality targets for the given reservoir discharge.

The flow augmentation operation allows the model to relax the balanced pool concept and to decide how much flow should come from which reservoir and at which vertical level in order to meet downstream water quality targets. Sometimes downstream water quality improvements require significantly increased discharge rates to obtain only small improvements in water quality. This flow augmentation operation is the most-costly execution and not always a practical alternative for real world regulation given power, water conservation and flood control storage considerations.

For this demonstration application, the input data shown in Appendix A was executed using the calibration option. Application of this option allows the user to define the exact level of the intake structure operated and the exact quantity of discharge from each dam. This is the normal method of model application when calibrating the model to observed historical data. This application was executed for water temperature, specific conductance, alkalinity, CBOD, ammonia, and dissolved

oxygen because this was the data available. Actually, all these types of data are very limited in availability on most tributaries but some of them (e.g., temperature, dissolved oxygen and specific conductance) are more readily available as in-channel data. The in-channel data are the optional time dependent data used for calibration.

Selected portions of the computer output are shown in Appendix B. Graphical displays of the results are shown in Appendix C and are discussed in Chapter V.

## CHAPTER V

### SIMULATION RESULTS

The Sacramento Valley reservoir system operation described in Chapter III was simulated using HEC-5 and produced results which were compared to water quantity and quality data in the four reservoirs and at all downstream control points. The data for comparison purposes consisted of discharge rates at most control points as well as water temperature at many of the same locations. Other water quality parameters are less available but are compared where they are available.

The model simulation for the Sacramento Valley system used temperature, specific conductance (sometimes called electrical conductivity), alkalinity, carbonaceous biochemical oxygen demand (CBOD), ammonia ( $\text{NH}_3$ ) and dissolved oxygen (DO). These specific parameters were chosen based on the availability of at least limited data except for CBOD which was estimated and adjusted by calibration to reproduce DO.

The Sacramento Valley reservoir system results are shown in Appendix B in an abbreviated form. The computer output begins with an echo of the input data. These output should be examined carefully to insure that the program is getting the data that the user expects the program to execute. This step of interpretation of results is important and well worth the required time.

The remainder of the computer output are the day-by-day results of water quality profiles in the reservoirs and along the stream network. The output is quite voluminous and only selected portions have been included. Because it is so voluminous, it is also difficult to interpret in tabular form.

The graphical display of these results is included as Appendix C for the reservoirs and at selected locations along the stream network. While this graphical capability is not a part of HEC-5, an option exists for the model to write the results to an HEC data storage system called DSS [HEC 1985]. An HEC graphics program called DISPLAY (described in the DSS manual) can read the results from DSS and produce plots as shown. These plots satisfactorily demonstrate the capability of HEC-5 to reasonably reproduce observed reservoir and stream profiles on large systems.

The legends at the bottom of the reservoir water quality plots, pages C1-C16, define simulated and observed data for various dates. Shasta, Oroville and Folsom Reservoirs have sufficient observed temperature data to be useful for calibration purposes. Sufficient observed data for the other parameters were not available except in Folsom Reservoir as shown.

Considering the model limitation of having only one weather station for the entire system (subsequently modified to use parameter statements), it is the author's opinion that the reproduction is quite good. Perhaps some further refinement could be achieved with additional trials, but the acceptability of the model can be demonstrated with these results. The Oroville Reservoir observed data anomaly in June (page C6) cannot be explained with the available input, particularly when the much cooler observed hypolimnion temperatures of May and July are noted.

The legend at the bottom of the time series stream plots defines the various observed and simulated water quality parameters for the study period. As with the reservoir plots, only those locations which have sufficient observed data to be used for calibration purposes are shown. Unlike the simulated data, the observed data points are often more than one-day apart. Extreme caution should be applied to any interpolation between observed data points.

In general, the calibration of the model is quite good along the Sacramento River for all the observed parameters downstream to Hamilton City. Butte City and Colusa temperatures (pages C24 and C26 respectively) show that significant warming of this reach of the Sacramento River takes place at least during the Spring (April and May 1979). This temperature consideration, in addition to the lack of sufficient simulated quantity of flow at Butte City and Colusa (pages C23 and C25 respectively) suggests that the undefined return flows on the Sacramento River between Hamilton City to Knights Landing are sufficiently large to cause significant errors. Other parameter reproductions are also poor; apparently due to undefined return flows.

The Feather River below Oroville and the American River below Folsom lack sufficient water quality data to provide adequate information for calibration purposes. The reproduction of observed flow is shown in pages C29 and C30.

Careful interpretation and evaluation of the Sacramento River results lead the author to encourage the continued application of this model to help develop understanding of the workings and operation of any stream system.

## CHAPTER VI

### SUMMARY

HEC-5 can be used for comprehensive water quality studies involving complex river network and reservoir systems. The program is used to compute the best operation for a reservoir system and determine either the water quality condition resulting from the best water quantity operation (balanced pool method) or the best water quality operation without maintaining balanced reservoir conservation pools for the system (flow alteration method).

The HEC-5 model uses a linear optimization scheme to determine the target water quality at the dam to best meet all user weighted downstream targets. Then a non-linear scheme is used with user weights to determine how the intake structure will be operated.

The Sacramento River results and results of the two additional applications referenced in Chapter II have each provided model improvements and added confidence in the model validation. While it is true that large comprehensive data sets have not been used to validate the model, the author believes that the variety of years modeled and the variety of locations studied have provided sufficient experience to the Corps of Engineers to warrant the continued use and application of the HEC-5 water quality model.

It is the conclusion of this study that HEC-5 is a viable tool for evaluating reservoir systems operation for water quality analysis.

## CHAPTER VII

### REFERENCES

- Baca, R.G., A.F. Gasperino, A. Branstetter and M.S. Annette, 1977, "Water Quality Models for Municipal Water Supply Reservoirs," a report prepared for the Engineering and Water Supply Department, Adelaide, South Australia.
- Bohan, J.P. and J.L. Grace, Jr., 1973, "Selective Withdrawal from Man-made Lakes; Hydraulic Laboratory Investigation," Technical Report H-73-4, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, MS.
- Debler, W.R., 1959, "Stratified Flow into a Line Sink," ASCE Journal of Engineering Mechanics Division, Vol. 85, EM3.
- Duke, James H., Donald J. Smith and R. G. Willey, 1985, "Reservoir System Analysis for Water Quality," Technical Paper No. 99, Hydrologic Engineering Center.
- Hydrologic Engineering Center, 1972, "Reservoir Temperature Stratification", Computer Program Description.
- Hydrologic Engineering Center, 1978, "Water Quality for River-Reservoir Systems," Computer Program Description.
- Hydrologic Engineering Center, 1981, "Geometric Elements from Cross Section Coordinates" (GEDA), Computer Program Description.
- Hydrologic Engineering Center, 1985, "HECDSS User's Guide and Utility Program Manuals.
- Hydrologic Engineering Center, 1986, "Weather," Computer Program Description.
- Hydrologic Engineering Center, 1986, "HEC-5, Simulation of Flood Control and Conservation Systems, Appendix on Water Quality Analysis," Draft Computer Program Users Manual.
- Kaplan, E., 1980, "Reservoir Optimization for Water Quality Control," a PhD Dissertation, University of Pennsylvania.
- Loftis, B., 1980, "WESTEX - A Reservoir Heat Budget Model," Draft Computer Program Description, Waterways Experiment Station.
- U.S. Army Corps of Engineers, Baltimore District, 1977, "Thermal Simulation of Lakes," Computer Program Description.
- Water Resources Engineers, 1968, "Prediction of Thermal Energy Distribution in Streams and Reservoirs," report to Department of Fish and Game, State of California.
- Water Resources Engineers, 1969a, "Mathematical Models for the Prediction of Thermal Energy Changes in Impoundments," report to the Environmental Protection Agency.

Water Resources Engineers, 1969b "The Thermal Simulation of Applegate Reservoir to Evaluate the Effect of Outlet Placement and Discharge on Downstream Temperature," report to Corps of Engineers, Portland District.

Willey, R.G., 1982, "River and Reservoir Systems Water Quality Modeling Capability," Technical Paper No. 83, Hydrologic Engineering Center.

Willey, R.G., 1983, "Reservoir System Regulation for Water Quality Control," Technical Paper No. 88, Hydrologic Engineering Center.

Willey, R. G., 1984, "Computer Models for Evaluating the Effects of Water Resource Projects on Streamflow and Water Quality", Hydrologic Engineering Center, Unpublished Draft.

Willey, R. G., D. J. Smith and J. H. Duke, 1985, "Modeling Water Resource Systems for Water Quality, Technical Paper No. 104, Hydrologic Engineering Center.

Willey, R. G., 1985, "Water Quality Simulation of Reservoir System Operations in the Sacramento Valley Using HEC-5Q," Training Document No. 24, Hydrologic Engineering Center.

Willey, R. G., 1986, "Kanawha River Basin Water Quality Modeling," Special Projects Report No. 86-5, Hydrologic Engineering Center.

Willey, R. G., 1987, "Monongahela River Basin Water Quality Modeling," Project Report 87-1, Hydrologic Engineering Center.

Willey, R. G., 1987, "Modeling and Managing Water Resource Systems for Water Quality, Technical Paper No. 113, Hydrologic Engineering Center.

**APPENDIX A**

**HEC-5 Input for Sacramento River System  
Water Quality Modeling**

T1                    HEC-5 INPUT FOR  
 T2                    SHASTA, OROVILLE AND FOLSOM  
 T3                    RESERVOIR SYSTEM TEST

|            |        |         |        |         |         |         |         |         |
|------------|--------|---------|--------|---------|---------|---------|---------|---------|
| J1         | 0      | 1       | 5      | 3       | 4       | 2       | 0       | 0       |
| J2         | 0      | 1       | 0      | 0       | 0       | 0       | 0       | 0       |
| J3         | 12     | 0       | 0      | 0       | 0       | 1       | 0       | 0       |
| J9         | 0      | 0       | 1      |         |         |         |         |         |
| RL         | 1      | 4137800 | 587000 | 1000000 | 3252100 | 4552200 | 4552200 |         |
| RL         | 1      | 1       | -1     | 0       | 587000  |         |         |         |
| RL         | 2      | 1       | -1     | 0       | 1000000 |         |         |         |
| RL         | 3      | 1       | 0      | 0       | 9999    | 9999    | 9999    | 4370000 |
|            |        |         |        |         | 4552200 | 4552200 | 4552200 | 3892000 |
|            |        |         |        |         | 4552200 | 4552200 | 4552200 | 9999    |
| RL         | 4      | 1       | -1     | 0       | 4552200 |         |         |         |
| RL         | 5      | 1       | -1     | 0       | 4552200 |         |         |         |
| RO         | 14     | 2       | 3      | 4       | 5       | 6       | 7       | 8       |
| RO         | 11     | 12      | 19     | 22      | 23      |         |         | 9       |
| RS         | -18    | 10      | 818    | 1248    | 3275    | 3320    | 3436    | 3554    |
| RS         | 3928   | 3980    | 4059   | 4193    | 4330    | 4470    | 4613    | 4759    |
| RQ         | 18     | 0       | 14000  | 33700   | 71500   | 72000   | 73600   | 74900   |
| RQ         | 79000  | 79700   | 85000  | 100000  | 130000  | 170000  | 220000  | 267800  |
| RA         | 18     | 200     | 7500   | 10800   | 22700   | 22800   | 23400   | 24000   |
| RA         | 25800  | 26100   | 26400  | 27100   | 27700   | 28300   | 28900   | 29600   |
| RE         | 18     | 630     | 840    | 887     | 1008    | 1010    | 1015    | 1020    |
| RE         | 1035   | 1037    | 1040   | 1045    | 1050    | 1055    | 1060    | 1065    |
| R2         | 7500   | 2000    |        |         | 240     |         |         |         |
| R3         | 99.99  | 99.99   | 99.99  | .09     | 6.02    | 10.41   | 11.28   | 8.93    |
| R3         | 99.99  | 99.99   |        |         |         |         |         | 8.12    |
| CP         | 1      | 79000   | 1500   | 1000    |         |         |         | -4.49   |
| IDSHASTA   |        | 303.8   |        |         |         |         |         |         |
| RT         | 1      | 2       |        |         |         |         |         |         |
| CP         | 2      | 7900    | 1500   | 1000    |         |         |         |         |
| IDSPRING   | CR     | 300     |        |         |         |         |         |         |
| RT         | 2      | 3       |        |         |         |         |         |         |
| RL         | 3      | 22677   | 2000   | 5000    | 22000   | 22000   | 30000   |         |
| RO         |        |         |        |         |         |         |         |         |
| RS         | 18     | 10      | 11172  | 14705   | 25237   | 25298   | 25457   | 25626   |
| RS         | 26207  | 26426   | 26657  | 26901   | 27157   | 27426   | 27707   | 28003   |
| RQ         | 18     | 0       | 15000  | 30000   | 110000  | 111000  | 120000  | 130000  |
| RQ160000   | 170000 | 180000  | 190000 | 200000  | 210000  | 220000  | 230000  | 248000  |
| RA         | 18     | 50      | 200    | 250     | 300     | 310     | 325     | 350     |
| RA         | 425    | 450     | 475    | 500     | 525     | 550     | 575     | 610     |
| RE         | 18     | 437.5   | 526.8  | 542.5   | 580.8   | 581.0   | 581.5   | 582.0   |
| RE         | 583.5  | 584.0   | 584.5  | 585.0   | 585.5   | 586.0   | 586.5   | 587.0   |
| R2         | 7500   | 2000    |        |         | 240     |         |         |         |
| R3         | 99.99  | 99.99   | 99.99  | .09     | 6.02    | 10.41   | 11.28   | 8.93    |
| R3         | 99.99  | 99.99   |        |         |         |         |         | 8.12    |
| CP         | 3      | 79000   | 3500   | 3000    |         |         |         | -4.49   |
| IDKESWICK  |        | 294.6   |        |         |         |         |         |         |
| RT         | 3      | 4       | 1.2    | .1      | 24      |         |         |         |
| CP         | 4      | 80000   | 4000   | 3500    |         |         |         |         |
| IDACID-COW |        | 280.1   |        |         |         |         |         |         |
| RT         | 4      | 5       | 1.2    | .1      | 24      |         |         |         |
| DR         | 4      |         |        |         |         |         |         |         |
| CP         | 5      | 80000   | 4000   | 3500    |         |         |         |         |

|             |       |         |        |        |         |         |         |         |         |         |
|-------------|-------|---------|--------|--------|---------|---------|---------|---------|---------|---------|
| IDCOTTONWD  | 273.2 |         |        |        |         |         |         |         |         |         |
| RT          | 5     | 6       |        |        |         |         |         |         |         |         |
| CP          | 6     | 100000  | 4000   | 3500   |         |         |         |         |         |         |
| IDBEND      | BR    | 260.2   |        |        |         |         |         |         |         |         |
| RT          | 6     | 7       | 1.2    | .1     | 24      |         |         |         |         |         |
| CP          | 7     | 100000  | 4000   | 3500   |         |         |         |         |         |         |
| IDTC-C      | CANAL | 243     |        |        |         |         |         |         |         |         |
| RT          | 7     | 8       | 1.2    | .1     | 24      |         |         |         |         |         |
| DR          | 7     |         |        |        | -5      |         |         |         |         |         |
| CP          | 8     | 100000  | 4000   | 3500   |         |         |         |         |         |         |
| IDGCID      | CANAL | 206     |        |        |         |         |         |         |         |         |
| RT          | 8     | 9       | 1.2    | .1     | 24      |         |         |         |         |         |
| DR          | 8     |         |        |        | -5      |         |         |         |         |         |
| CP          | 9     | 125000  | 4000   | 3500   |         |         |         |         |         |         |
| IDHAM CITY  | 199.3 |         |        |        |         |         |         |         |         |         |
| RT          | 9     | 10      |        |        |         |         |         |         |         |         |
| CP          | 10    | 130000  | 4000   | 3500   |         |         |         |         |         |         |
| IDBUTTE CY  | 168.5 |         |        |        |         |         |         |         |         |         |
| RT          | 10    | 11      |        |        |         |         |         |         |         |         |
| CP          | 11    | 135000  | 4000   | 3500   |         |         |         |         |         |         |
| IDCOLUSA    | 143.4 |         |        |        |         |         |         |         |         |         |
| RT          | 11    | 12      |        |        |         |         |         |         |         |         |
| CP          | 12    | 140000  | 4000   | 3500   |         |         |         |         |         |         |
| IDGRIMES    | 117.7 |         |        |        |         |         |         |         |         |         |
| RT          | 12    | 19      | 1.2    | .1     | 24      |         |         |         |         |         |
| RL          | 13    | 3059593 | 640000 | 852200 | 2788000 | 3538000 | 3814000 |         |         |         |
| RL          | 1     | 13      | -1.0   |        | 640000  |         |         |         |         |         |
| RL          | 2     | 13      | -1.0   |        | 852200  |         |         |         |         |         |
| RL          | 3     | 13      | 0      | 0      | 9999    | 9999    | 9999    | 3001900 | 3391900 | 3537000 |
| RL          |       |         |        |        | 3537000 | 3537000 | 3537000 | 3350500 | 3163000 | 9999    |
| RL          | 4     | 13      | -1.0   |        | 3538000 |         |         |         |         |         |
| RL          | 5     | 13      | -1.0   |        | 3814000 |         |         |         |         |         |
| RC          | 8     | 14      | 15     | 16     | 17      | 18      | 19      | 22      | 23      |         |
| RS          | -15   | 1       | 10     | 32     | 75      | 148     | 261     | 419     | 629     | 901     |
| RS          | 1244  | 1666    | 2181   | 2801   | 3544    | 3791    |         |         |         |         |
| RQ          | 15    | 0       | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 4000    |
| RQ          | 8000  | 8000    | 8000   | 8000   | 8000    | 590000  |         |         |         |         |
| RA          | 15    | 70      | 300    | 600    | 1100    | 1830    | 2700    | 3600    | 4800    | 6100    |
| RA          | 7600  | 9300    | 11300  | 13500  | 16200   | 19000   |         |         |         |         |
| RE          | 15    | 250     | 300    | 350    | 400     | 450     | 500     | 550     | 600     | 650     |
| RE          | 700   | 750     | 800    | 850    | 900     | 923     |         |         |         |         |
| R2          | 5000  | 2500    |        |        | 120     |         |         |         |         |         |
| R3          | 99.99 | 99.99   | 99.99  | .35    | 5.08    | 8.02    | 8.56    | 7.77    | 7.72    | -2.03   |
| R3          | 99.99 | 99.99   |        |        |         |         |         |         |         |         |
| CP          | 13    | 180000  |        | 150    | 100     |         |         |         |         |         |
| IDOROV DAM  | 75.4  |         |        |        |         |         |         |         |         |         |
| RT          | 13    | 14      |        |        |         |         |         |         |         |         |
| CP          | 14    | 180000  |        | 150    | 100     |         |         |         |         |         |
| IDTD POOL   | 71.8  |         |        |        |         |         |         |         |         |         |
| RT          | 14    | 15      | 1.2    | .1     | 24      |         |         |         |         |         |
| DR          | 14    |         |        |        |         | -5      |         |         |         |         |
| CP          | 15    | 180000  |        | 150    | 100     |         |         |         |         |         |
| IDFEATHER R | 58.8  |         |        |        |         |         |         |         |         |         |
| RT          | 15    | 16      |        |        |         |         |         |         |         |         |
| CP          | 16    | 180000  |        | 150    | 100     |         |         |         |         |         |

|                         |        |        |       |           |         |         |                  |         |         |         |
|-------------------------|--------|--------|-------|-----------|---------|---------|------------------|---------|---------|---------|
| <b>IDGRIDLEY 45.6</b>   |        |        |       |           |         |         |                  |         |         |         |
| RT                      | 16     | 17     | 1.2   | .1        | 24      |         |                  |         |         |         |
| CP                      | 17     | 300000 | 2300  | 2000      |         |         |                  |         |         |         |
| <b>IDSHANGHI 26.2</b>   |        |        |       |           |         |         |                  |         |         |         |
| RT                      | 17     | 18     | 1.2   | .1        | 24      |         |                  |         |         |         |
| CP                      | 18     | 320000 | 2300  | 2000      |         |         |                  |         |         |         |
| <b>IDNICOLAUS 8.1</b>   |        |        |       |           |         |         |                  |         |         |         |
| RT                      | 18     | 19     | 1.2   | .1        | 24      |         |                  |         |         |         |
| CP                      | 19     | 435000 | 6300  | 5500      |         |         |                  |         |         |         |
| <b>IDVERONA 80.2</b>    |        |        |       |           |         |         |                  |         |         |         |
| RT                      | 19     | 22     | 1.2   | .1        | 24      |         |                  |         |         |         |
| RL                      | 20     | 832100 | 1000  | 90000     | 610000  | 1010000 | 1120000          |         |         |         |
| RL                      | 1      | 20     | -1.0  | 0         | 1000    |         |                  |         |         |         |
| RL                      | 2      | 20     | -1.0  | 0         | 90000   |         |                  |         |         |         |
| RL                      | 3      | 20     | 0     | 0         | 9999    | 9999    | 9999             | 840000  | 1009000 | 1009000 |
| RL                      |        |        |       |           | 1009000 | 1009000 | 1009000          | 1009000 | 610000  | 9999    |
| RL                      | 4      | 20     | -1.0  | 0         | 1010000 |         |                  |         |         |         |
| RL                      | 5      | 20     | -1.0  | 0         | 1120000 |         |                  |         |         |         |
| RO                      | 3      | 21     | 22    | 23        |         |         |                  |         |         |         |
| RS                      | -12    | 1      | 8     | 24        | 49      | 89      | 152              | 251     | 398     | 535     |
| RS                      | 835    | 1115   | 1176  |           |         |         |                  |         |         |         |
| RQ                      | 12     | 4360   | 7640  | 8000      | 8000    | 8000    | 8000             | 8000    | 8000    | 8000    |
| RQ257960                | 599580 | 663940 |       |           |         |         |                  |         |         |         |
| RA                      | 12     | 90     | 510   | 740       | 1250    | 1950    | 3120             | 4780    | 7020    | 8200    |
| RA                      | 10520  | 11930  | 12200 |           |         |         |                  |         |         |         |
| RE                      | 12     | 225    | 250   | 275       | 300     | 325     | 350              | 375     | 400     | 418     |
| RE                      | 450    | 475    | 480   |           |         |         |                  |         |         |         |
| R2                      | 7500   | 5000   |       |           | 72      |         |                  |         |         |         |
| R3                      | 99.99  | 99.99  | 99.99 | 2.5       | 8.2     | 11.2    | 10.4             | 9.8     | 8.1     | 1.0     |
| R3                      | 99.99  | 99.99  |       |           |         |         |                  |         |         |         |
| CP                      | 20     | 115000 | 1300  | 1000      |         |         |                  |         |         |         |
| <b>IDFOLSOM 28.5</b>    |        |        |       |           |         |         |                  |         |         |         |
| RT                      | 20     | 21     | 1.2   | .1        | 24      |         |                  |         |         |         |
| DR                      | 20     |        |       |           |         |         |                  |         |         |         |
| QD                      | 12     | 9999   | 9999  | 9999      | 62      | 104     | 134 <sup>1</sup> | 136     | 129     | 122     |
| QD                      | 72     | 9999   | 9999  |           |         |         |                  |         |         |         |
| CP                      | 21     | 115000 | 1300  | 1000      |         |         |                  |         |         |         |
| <b>IDFAIR OAKS 21.5</b> |        |        |       |           |         |         |                  |         |         |         |
| RT                      | 21     | 22     | 1.2   | .1        | 24      |         |                  |         |         |         |
| CP                      | 22     | 435000 | 7600  | 6500      |         |         |                  |         |         |         |
| <b>IDI STREET 59.5</b>  |        |        |       |           |         |         |                  |         |         |         |
| RT                      | 22     | 23     | 1.2   | .1        | 24      |         |                  |         |         |         |
| CP                      | 23     | 435000 | 7600  | 6500      |         |         |                  |         |         |         |
| <b>IDHOOD 38.3</b>      |        |        |       |           |         |         |                  |         |         |         |
| RT                      | 23     | 0      |       |           |         |         |                  |         |         |         |
| ED                      |        |        |       |           |         |         |                  |         |         |         |
| BF                      | 0      | 214    |       | 079040100 | 210     | 24      |                  |         |         |         |
| <b>ZW A-HEC5Q F-SIM</b> |        |        |       |           |         |         |                  |         |         |         |
| IN                      | 1      | 1APR79 | 8520  | 7810      | 7910    | 7920    | 8740             | 9170    | 7510    | 7130    |
| IN                      | 6740   | 7460   | 6500  | 6930      | 6580    | 6950    | 6930             | 9080    | 8170    | 7200    |
| IN                      | 6750   | 7170   | 7570  | 8150      | 9290    | 9180    | 8450             | 7270    | 8130    | 7680    |
| IN                      | 8320   | 8840   | 10210 | 9580      | 7980    | 7920    | 12230            | 13210   | 13690   | 12460   |
| IN                      | 9940   | 10560  | 9670  | 8360      | 9010    | 9370    | 9490             | 7650    | 8300    | 8050    |
| IN                      | 7190   | 7460   | 7770  | 7530      | 6260    | 7740    | 7060             | 6370    | 4400    | 4450    |

|    |      |        |      |      |      |      |      |      |      |       |
|----|------|--------|------|------|------|------|------|------|------|-------|
| IN | 4930 | 4740   | 4970 | 4590 | 4370 | 2660 | 4750 | 6490 | 3680 | 4030  |
| IN | 3970 | 2280   | 3420 | 5600 | 4870 | 3940 | 4070 | 2950 | 1490 | 2710  |
| IN | 3890 | 4450   | 4500 | 4870 | 5820 | 890  | 1810 | 4630 | 3710 | 4210  |
| IN | 2880 | 3760   | 1750 | 2380 | 3610 | 4440 | 3580 | 3690 | 3760 | 1590  |
| IN | 2790 | 3570   | 4390 | 4290 | 5010 | 3110 | 2340 | 1930 | 3820 | 3740  |
| IN | 5120 | 3680   | 2530 | 2110 | 3060 | 4080 | 2920 | 3590 | 4490 | 4370  |
| IN | 1830 | 1850   | 3430 | 3970 | 4090 | 2780 | 3460 | 1900 | 2530 | 2830  |
| IN | 3340 | 3590   | 4310 | 4050 | 1490 | 1540 | 3450 | 3360 | 3940 | 3480  |
| IN | 4190 | 1290   | 1760 | 3480 | 4770 | 3290 | 4020 | 3060 | 1610 | 2080  |
| IN | 2800 | 3430   | 4460 | 4150 | 4400 | 3010 | 2920 | 1290 | 3750 | 4630  |
| IN | 4320 | 3390   | 1420 | 2460 | 3260 | 4930 | 3780 | 3500 | 3820 | 3010  |
| IN | 2290 | 1880   | 3720 | 3820 | 3540 | 4520 | 3090 | 3040 | 2860 | 3290  |
| IN | 3120 | 3660   | 2910 | 2720 | 3010 | 4170 | 2490 | 3060 | 2970 | 3480  |
| IN | 2300 | 3300   | 3170 | 3740 | 4270 | 3250 | 3400 | 3180 | 3550 | 4690  |
| IN | 5200 | 6030   | 5480 | 4200 | 1990 | 1650 | 3680 | 4680 | 9120 | 18220 |
| IN | 5970 | 2670   | 2310 | 5080 | 3320 | 6710 |      |      |      |       |
| IN | 2    | 1APR79 | 718  | 517  | 557  | 595  | 480  | 559  | 495  | 364   |
| IN | 366  | 315    | 230  | 235  | 0    | 0    | 0    | 279  | 0    | 0     |
| IN | 370  | 0      | 0    | 215  | 0    | 0    | 0    | 0    | 0    | 492   |
| IN | 506  | 485    | 632  | 0    | 0    | 0    | 0    | 0    | 215  | 783   |
| IN | 964  | 433    | 515  | 236  | 0    | 314  | 313  | 352  | 424  | 429   |
| IN | 742  | 724    | 740  | 873  | 795  | 802  | 736  | 989  | 914  | 796   |
| IN | 674  | 537    | 604  | 738  | 587  | 582  | 581  | 742  | 601  | 686   |
| IN | 552  | 877    | 623  | 810  | 665  | 563  | 556  | 593  | 638  | 558   |
| IN | 617  | 560    | 561  | 585  | 653  | 2590 | 560  | 805  | 555  | 557   |
| IN | 579  | 556    | 973  | 2220 | 2550 | 2800 | 2560 | 2560 | 2340 | 2830  |
| IN | 2790 | 2760   | 2850 | 2710 | 2610 | 2180 | 1680 | 2170 | 2320 | 2080  |
| IN | 2260 | 2250   | 2290 | 2220 | 2390 | 2310 | 2350 | 1650 | 1630 | 1740  |
| IN | 1650 | 1620   | 1580 | 1690 | 2470 | 2460 | 2620 | 2610 | 2590 | 2350  |
| IN | 2590 | 2600   | 2610 | 2660 | 2580 | 2240 | 2630 | 2560 | 2600 | 2740  |
| IN | 2740 | 2790   | 2840 | 2790 | 2970 | 2880 | 2790 | 2830 | 2570 | 2530  |
| IN | 2520 | 2450   | 2620 | 2620 | 2580 | 2710 | 2700 | 2680 | 2700 | 1460  |
| IN | 1560 | 1480   | 1570 | 1570 | 1670 | 1640 | 1630 | 1540 | 1330 | 1550  |
| IN | 1550 | 1540   | 1650 | 1490 | 1500 | 1580 | 1490 | 1570 | 1480 | 1480  |
| IN | 1480 | 1500   | 1530 | 1500 | 1300 | 418  | 433  | 430  | 432  | 430   |
| IN | 505  | 428    | 374  | 376  | 419  | 416  | 417  | 484  | 460  | 456   |
| IN | 623  | 1610   | 1640 | 1660 | 2360 | 2280 | 2300 | 2280 | 2290 | 2480  |
| IN | 2530 | 2280   | 2200 | 2290 | 2290 | 2290 |      |      |      |       |
| IN | 4    | 1APR79 | 609  | 551  | 509  | 478  | 467  | 491  | 509  | 462   |
| IN | 461  | 451    | 432  | 418  | 416  | 439  | 438  | 502  | 800  | 679   |
| IN | 510  | 462    | 437  | 443  | 585  | 1610 | 868  | 712  | 1000 | 745   |
| IN | 655  | 610    | 1070 | 889  | 733  | 695  | 1540 | 1530 | 1510 | 1200  |
| IN | 991  | 821    | 719  | 657  | 618  | 611  | 586  | 577  | 539  | 505   |
| IN | 496  | 478    | 465  | 456  | 437  | 392  | 367  | 349  | 317  | 296   |
| IN | 269  | 246    | 223  | 205  | 194  | 188  | 182  | 154  | 142  | 126   |
| IN | 114  | 113    | 107  | 101  | 87   | 76   | 71   | 72   | 76   | 80    |
| IN | 83   | 84     | 78   | 78   | 73   | 69   | 63   | 60   | 57   | 54    |
| IN | 47   | 42     | 37   | 38   | 37   | 37   | 44   | 47   | 47   | 48    |
| IN | 46   | 40     | 34   | 36   | 35   | 32   | 27   | 27   | 19   | 20    |
| IN | 21   | 22     | 23   | 19   | 19   | 18   | 20   | 20   | 18   | 19    |
| IN | 23   | 18     | 17   | 13   | 12   | 10   | 11   | 11   | 12   | 8     |
| IN | 9.1  | 12     | 10   | 9.7  | 11   | 12   | 11   | 11   | 18   | 14    |
| IN | 13   | 13     | 16   | 20   | 23   | 21   | 25   | 22   | 17   | 19    |
| IN | 10   | 17     | 54   | 95   | 111  | 73   | 68   | 63   | 55   | 52    |
| IN | 48   | 32     | 27   | 26   | 25   | 23   | 17   | 16   | 15   | 12    |

**Most of the Time Series Inflow (IN), Specified Discharge (QA),  
Natural Flow (NQ), and Division (QD) Records  
have been deleted from this listing.**

|    |      |        |      |      |      |      |      |      |      |      |
|----|------|--------|------|------|------|------|------|------|------|------|
| QD | 14   | 1APR79 | 499  | 498  | 479  | 467  | 467  | 468  | 467  | 467  |
| QD | 580  | 772    | 919  | 992  | 1095 | 1244 | 1281 | 1564 | 1750 | 1781 |
| QD | 1917 | 2079   | 2265 | 2463 | 2484 | 2394 | 2377 | 2287 | 2212 | 2189 |
| QD | 2189 | 2204   | 2186 | 2237 | 2408 | 2690 | 2962 | 3072 | 3223 | 3423 |
| QD | 3434 | 3550   | 3661 | 3658 | 3665 | 3704 | 3658 | 3594 | 3519 | 3472 |
| QD | 3379 | 3321   | 3230 | 3131 | 3086 | 3019 | 2929 | 2876 | 2864 | 2828 |
| QD | 2821 | 2844   | 2840 | 2860 | 2895 | 2928 | 3008 | 3082 | 3124 | 3125 |
| QD | 3158 | 3192   | 3210 | 3292 | 3280 | 3291 | 3312 | 3310 | 3357 | 3356 |
| QD | 3359 | 3360   | 3359 | 3361 | 3355 | 3369 | 3366 | 3377 | 3396 | 3403 |
| QD | 3414 | 3399   | 3367 | 3345 | 3339 | 3283 | 3224 | 3220 | 3203 | 3198 |
| QD | 3224 | 3222   | 3220 | 3208 | 3221 | 3245 | 3262 | 3271 | 3304 | 3318 |
| QD | 3352 | 3357   | 3375 | 3346 | 3320 | 3291 | 3289 | 3277 | 3301 | 3289 |
| QD | 3272 | 3256   | 3245 | 3248 | 3226 | 3215 | 3211 | 3198 | 3203 | 3189 |
| QD | 3171 | 3178   | 3159 | 3124 | 3122 | 3132 | 3097 | 3055 | 3054 | 3077 |
| QD | 3053 | 2988   | 2972 | 2968 | 2967 | 2929 | 2884 | 2830 | 2780 | 2767 |
| QD | 2745 | 2712   | 2681 | 2610 | 2498 | 2391 | 2384 | 2352 | 2257 | 2193 |
| QD | 2113 | 2010   | 1940 | 1895 | 1827 | 1713 | 1580 | 1518 | 1499 | 1445 |
| QD | 1423 | 1345   | 1273 | 1206 | 1179 | 1161 | 1146 | 1140 | 1123 | 1035 |
| QD | 966  | 967    | 972  | 954  | 957  | 962  | 954  | 974  | 1028 | 1070 |
| QD | 1065 | 1066   | 1043 | 1024 | 1023 | 1019 | 1020 | 1024 | 1019 | 1024 |
| QD | 1017 | 1017   | 1016 | 1021 | 1021 | 1022 | 1014 | 1001 | 999  | 870  |
| QD | 799  | 694    | 515  | 517  | 516  | 610  |      |      |      |      |

NOLIST

EJ

TI                    WATER QUALITY DATA FOR  
 TI                    SHASTA, OROVILLE AND FOLSOM  
 TI                    RESERVOIR SYSTEM TEST  
 JA      790401    791027      23      4      C      0  
 EZ      -1  
 ET      91      58.3      121.6      2032.2      11.0  
 ET      92      60.5      118.1      2083.4      10.0  
 ET      93      62.9      91.8      1618.1      7.0  
 ET      94      72.9      67.5      2081.8      4.0  
 ET      95      64.4      118.5      2060.8      9.0  
 ET      96      58.1      79.0      1016.9      6.0  
 ET      97      65.3      107.1      2142.5      8.0  
 ET      98      58.5      141.7      1486.5      12.0  
 ET      99      58.8      111.6      1858.7      10.0  
 ET      100     56.0      125.3      2007.7      12.0  
 ET      101     65.3      94.9      1856.2      7.0  
 ET      102     63.4      116.0      1864.8      9.0  
 ET      103     67.8      98.3      2229.5      7.0  
 ET      104     68.5      99.2      2196.4      7.0  
 ET      105     65.6      96.8      1551.0      7.0  
 ET      106     57.4      140.2      1339.5      12.0  
 ET      107     60.2      88.5      1580.8      7.0  
 ET      108     64.1      78.2      2203.9      6.0  
 ET      109     67.2      68.4      2302.6      5.0  
 ET      110     58.7      74.8      1121.7      6.0  
 ET      111     65.3      80.3      1824.4      6.0  
 ET      112     59.3      121.8      1383.7      10.0  
 ET      113     60.6      123.5      1824.4      10.0  
 ET      114     65.0      81.3      1847.1      6.0  
 ET      115     68.4      62.9      1407.7      4.0  
 ET      116     62.2      87.5      829.5      6.0  
 ET      117     71.3      79.6      2014.9      5.0  
 ET      118     68.4      87.9      2032.7      6.0  
 ET      119     63.7      84.3      1153.3      6.0  
 ET      120     63.2      128.1      1882.5      10.0  
 ET      121     65.6      85.3      1682.0      6.0  
 ET      122     72.4      105.7      2449.9      7.0  
 ET      123     64.9      153.6      2335.7      12.0  
 ET      124     59.5      131.5      1184.1      11.0  
 ET      125     59.6      151.3      1718.9      13.0  
 ET      126     59.0      118.3      1481.1      10.0  
 ET      127     56.6      124.4      1489.1      11.0  
 ET      128     63.2      106.7      2558.3      9.0  
 ET      129     63.1      126.9      2566.9      11.0  
 ET      130     70.8      94.0      2575.5      7.0  
 ET      131     76.4      76.3      2583.8      5.0  
 ET      132     87.7      68.0      2506.3      3.0  
 ET      133     89.0      69.1      2516.4      3.0  
 ET      134     82.2      96.2      2519.5      5.0  
 ET      135     67.5      180.6      2540.8      13.0  
 ET      136     77.5      88.0      2415.0      5.0  
 ET      137     80.9      92.8      2557.5      5.0  
 ET      138     77.5      132.7      2565.2      8.0  
 ET      139     73.3      156.2      2560.2      10.0

**Most of the Weather Records (ET) have been  
deleted from this listing.**

|    |      |      |       |        |      |
|----|------|------|-------|--------|------|
| ET | 273  | 74.0 | 83.6  | 1659.7 | 5.0  |
| ET | 274  | 72.4 | 109.7 | 1639.5 | 7.0  |
| ET | 275  | 69.4 | 134.1 | 1614.9 | 9.0  |
| ET | 276  | 76.5 | 44.5  | 770.3  | 2.0  |
| ET | 277  | 68.9 | 118.0 | 1586.8 | 8.0  |
| ET | 278  | 70.4 | 94.0  | 1539.6 | 6.0  |
| ET | 279  | 65.2 | 100.9 | 749.5  | 7.0  |
| ET | 280  | 64.5 | 135.0 | 1511.2 | 10.0 |
| ET | 281  | 63.7 | 76.0  | 900.4  | 5.0  |
| ET | 282  | 75.4 | 59.7  | 1494.0 | 3.0  |
| ET | 283  | 71.1 | 81.6  | 1343.6 | 5.0  |
| ET | 284  | 66.7 | 115.0 | 1329.5 | 8.0  |
| ET | 285  | 64.7 | 76.1  | 866.6  | 5.0  |
| ET | 286  | 66.6 | 107.5 | 689.2  | 7.0  |
| ET | 287  | 66.4 | 108.4 | 680.2  | 7.0  |
| ET | 288  | 69.0 | 97.0  | 966.7  | 6.0  |
| ET | 289  | 68.4 | 105.5 | 1393.1 | 7.0  |
| ET | 290  | 66.9 | 75.9  | 1254.9 | 5.0  |
| ET | 291  | 57.3 | 121.5 | 495.5  | 10.0 |
| ET | 292  | 59.2 | 165.7 | 483.0  | 13.0 |
| ET | 293  | 57.2 | 101.1 | 1051.9 | 8.0  |
| ET | 294  | 60.0 | 58.1  | 1271.8 | 4.0  |
| ET | 295  | 58.9 | 79.1  | 921.8  | 6.0  |
| ET | 296  | 60.4 | 108.3 | 628.1  | 8.0  |
| ET | 297  | 59.0 | 104.8 | 624.7  | 8.0  |
| ET | 298  | 58.5 | 116.4 | 616.5  | 9.0  |
| ET | 299  | 61.8 | 72.1  | 1231.0 | 5.0  |
| ET | 300  | 67.2 | 39.4  | 1257.3 | 2.0  |
| ET | 301  | 58.1 | 96.1  | 1256.1 | 8.0  |
| ET | 302  | 51.7 | 156.4 | 1257.0 | 16.0 |
| ET | 303  | 51.1 | 70.0  | 732.9  | 6.0  |
| ET | -304 | 58.5 | 66.7  | 1199.3 | 5.0  |

| QC |                      | 1      | 1     | 0     | 0    | 1     | 1    | 1    |
|----|----------------------|--------|-------|-------|------|-------|------|------|
| TQ | SPECIFIC CONDUCTANCE |        |       |       |      |       |      |      |
| TQ | TOTAL ALKALINITY     |        |       |       |      |       |      |      |
| TQ | CARBONACEOUS BOD     |        |       |       |      |       |      |      |
| TQ | AMMONIA AS N         |        |       |       |      |       |      |      |
| TQ | DISSOLVED OXYGEN     |        |       |       |      |       |      |      |
| L1 |                      | 30     | 1     |       |      |       |      |      |
| L2 | 1                    | 10     | 0     | 5     | .6   | 1.5   |      | 1    |
| LR | 1                    | 100000 |       |       |      |       |      |      |
| L3 | .01                  | 1.0-6  | .3-4  | 0     | -.7  |       |      |      |
| L6 | 330                  | 186000 | 1037  |       |      |       |      |      |
| L7 | 18                   | 14000  | 815   |       |      |       |      |      |
| L8 | 0                    | 50     | 850   | 1800  | 3350 | 3400  | 3500 | 3600 |
| L8 |                      | 3900   | 3950  | 4000  | 4500 | 4600  | 4700 | 4800 |
| PL | 10                   | 100    | 0     | -2    |      |       |      |      |
| PL | 5                    | 100    | 0     | -.1   |      |       |      |      |
| PL | 3                    | 100    | 0     | -.1   |      |       |      |      |
| PL | 1                    | 100    | 0     | -2    |      |       |      |      |
| PL | 3                    | 100    | 0     | -10   |      |       |      |      |
| PL | 5                    | 100    | 3.2   | -.7   | .1   | -.005 |      |      |
| L9 | 0                    | 5.7    | 5.7   | 6.2   | 8.5  | 8.7   | 8.9  | 9.1  |
| L9 |                      | 9.5    | 9.6   | 9.7   | 9.7  | 9.8   | 9.8  | 9.8  |
| C1 |                      | 130    | 130   | 130   | 130  | 130   | 130  | 130  |
| C1 |                      | 130    | 130   | 130   | 130  | 130   | 130  | 130  |
| C2 |                      | 45     | 45    | 45    | 45   | 45    | 45   | 45   |
| C2 |                      | 45     | 45    | 45    | 45   | 45    | 45   | 45   |
| C5 | .1                   | .1     | .1    | .1    | .1   | .1    | .1   | .1   |
| C5 | .1                   | .1     | .1    | .1    | .1   | .1    | .1   | .1   |
| C6 | .002                 | .002   | .002  | .002  | .002 | .002  | .002 | .002 |
| C6 | .002                 | .002   | .002  | .002  | .002 | .002  | .002 | .002 |
| C7 | 5                    | 5      | 5     | 5     | 5    | 5     | 5    | 5    |
| C7 | 5                    | 5      | 5     | 5     | 5    | 5     | 5    | 5    |
| SA | 100                  | 100    | 100   | 100   | 100  | 100   | 100  | 100  |
| SA | 100                  | 100    | 100   | 100   | 100  | 100   | 100  | 100  |
| DK | 0                    | .1     | .05   | 1.463 | 4.57 |       |      |      |
| L2 | 3                    | 10     | 47500 | 3     | .6   | 1     | 1    |      |
| LR |                      |        |       |       |      |       |      |      |
| L3 | .01                  | 1.0-6  | .3-4  | 0     | -.7  |       |      |      |
| L6 | 200                  | 248000 | 560   |       |      |       |      |      |
| L7 | 1173                 | 15000  | 514   |       |      |       |      |      |
| L8 | 0                    | 40     | 450   | 500   | 600  | 610   | 640  | 670  |
| L8 |                      | 760    | 790   | 820   | 850  | 880   | 910  | 940  |
| PL | 10                   | 100    | 0     | -2    |      |       |      |      |
| PL | 5                    | 100    | 0     | -.1   |      |       |      |      |
| PL | 3                    | 100    | 0     | -.1   |      |       |      |      |
| PL | 1                    | 100    | 0     | -2    |      |       |      |      |
| PL | 3                    | 100    | 0     | -10   |      |       |      |      |
| PL | 5                    | 100    | 3.2   | -.7   | .1   | -.005 |      |      |
| L9 | 9                    | 9      | 9     | 9     | 9    | 9     | 9    | 9    |
| L9 | 9                    | 9      | 9     | 9     | 9    | 9     | 9    | 9    |
| C1 | 130                  | 130    | 130   | 130   | 130  | 130   | 130  | 130  |
| C1 | 130                  | 130    | 130   | 130   | 130  | 130   | 130  | 130  |
| C2 | 45                   | 45     | 45    | 45    | 45   | 45    | 45   | 45   |
| C2 | 45                   | 45     | 45    | 45    | 45   | 45    | 45   | 45   |
| C5 | .1                   | .1     | .1    | .1    | .1   | .1    | .1   | .1   |
| C5 | .1                   | .1     | .1    | .1    | .1   | .1    | .1   | .1   |

|    |      |        |      |       |       |       |      |      |      |      |
|----|------|--------|------|-------|-------|-------|------|------|------|------|
| C6 | .002 | .002   | .002 | .002  | .002  | .002  | .002 | .002 | .002 | .002 |
| C6 | .002 | .002   | .002 | .002  | .002  | .002  | .002 | .002 | .002 | .002 |
| C7 | 5    | 5      | 5    | 5     | 5     | 5     | 5    | 5    | 5    | 5    |
| C7 | 5    | 5      | 5    | 5     | 5     | 5     | 5    | 5    | 5    | 5    |
| SA | 100  | 100    | 100  | 100   | 100   | 100   | 100  | 100  | 100  | 100  |
| SA | 100  | 100    | 100  | 100   | 100   | 100   | 100  | 100  | 100  | 100  |
| DK | 0    | .1     | .05  | 1.463 | 4.57  |       |      |      |      |      |
| L2 | 13   | 14     | 0    | 10    | .4    | 1     |      |      |      |      |
| LR | 2    | 30000  |      |       |       |       |      |      |      |      |
| L3 | .01  | 1.0-6  | .3-4 |       | 0     | -.7   |      |      |      |      |
| L6 | 180  | 350000 | 901  |       |       |       |      |      |      |      |
| L7 | 10   | 4000   | 652  | 720   | 788   | 856   |      |      |      |      |
| L7 | 10   | 4000   | 669  | 737   | 805   | 873   |      |      |      |      |
| L8 |      | 200    | 400  | 600   | 800   | 1000  | 1200 | 1400 | 1600 | 1800 |
| L8 |      | 2000   | 2300 | 2600  | 3000  | 3300  | 3500 |      |      |      |
| PL | 10   | 100    | 0    | -.2   |       |       |      |      |      |      |
| PL | 5    | 100    | 0    | -.1   |       |       |      |      |      |      |
| PL | 3    | 100    | 0    | -.1   |       |       |      |      |      |      |
| PL | 1    | 100    | 0    | -.2   |       |       |      |      |      |      |
| PL | 3    | 100    | 0    | -10   |       |       |      |      |      |      |
| PL | 5    | 100    | 3.2  | -.7   | .1    | -.005 |      |      |      |      |
| L9 | 6.67 | 6.67   | 6.67 | 6.67  | 6.67  | 6.67  | 6.67 | 6.67 | 6.67 | 6.67 |
| L9 | 7.78 | 9.44   | 12.8 | 10.0  | 12.8  | 12.8  |      |      |      |      |
| C1 | 62   | 62     | 62   | 62    | 62    | 62    | 62   | 62   | 62   | 62   |
| C1 | 62   | 62     | 62   | 62    | 62    | 62    |      |      |      |      |
| C2 | 40   | 40     | 40   | 40    | 40    | 40    | 40   | 40   | 40   | 40   |
| C2 | 40   | 40     | 40   | 40    | 40    | 40    |      |      |      |      |
| C5 | 0    | 0      | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    |
| C5 | 0    | 0      | 0    | 0     | 0     | 0     |      |      |      |      |
| C6 | 0    | 0      | 0    | 0     | 0     | 0     | 0    | 0    | 0    | 0    |
| C6 | 0    | 0      | 0    | 0     | 0     | 0     |      |      |      |      |
| C7 | .5   | 1      | 1.5  | 2     | 2.5   | 3     | 3.5  | 4    | 5    |      |
| C7 | 6    | 7      | 8    | 9     | 10    | 10    |      |      |      |      |
| SA | 100  | 100    | 100  | 100   | 100   | 100   | 100  | 100  | 100  | 100  |
| SA | 100  | 100    | 100  | 100   | 100   | 100   |      |      |      |      |
| DK | 0    | .1     | .05  | 1.463 | 4.57  |       |      |      |      |      |
| L2 | 20   | 7      | 0    | 12    | .4    | 2     |      |      |      |      |
| LR | 3    | 26400  |      |       |       |       |      |      |      |      |
| L3 | .01  | 1.0-6  | 1.-4 |       | 0     | -.7   |      |      |      |      |
| L6 | 336  | 567000 | 418  |       |       |       |      |      |      |      |
| L7 | 10.4 | 8000   | 307  |       |       |       |      |      |      |      |
| L8 |      | 100    | 500  | 1000  | 2000  | 3000  | 4000 | 5000 | 6000 | 7000 |
| L8 |      | 8000   | 9000 | 10000 | 11000 |       |      |      |      |      |
| PL | 10   | 100    | 0    | -.2   |       |       |      |      |      |      |
| PL | 5    | 100    | 0    | -.1   |       |       |      |      |      |      |
| PL | 3    | 100    | 0    | -.1   |       |       |      |      |      |      |
| PL | 1    | 100    | 0    | -.2   |       |       |      |      |      |      |
| PL | 3    | 100    | 0    | -10   |       |       |      |      |      |      |
| PL | 5    | 100    | 3.2  | -.7   | .1    | -.005 |      |      |      |      |
| L9 | 8    | 8      | 8.5  | 8.5   | 9     | 9.3   | 10   | 12.7 | 13.3 |      |
| L9 | 13.3 | 13.3   | 13.3 | 13.3  |       |       |      |      |      |      |
| C1 | 70   | 70     | 70   | 70    | 70    | 70    | 70   | 70   | 70   | 70   |
| C1 | 70   | 70     | 70   | 70    |       |       |      |      |      |      |
| C2 | 20   | 20     | 20   | 20    | 20    | 20    | 20   | 20   | 20   | 20   |
| C2 | 20   | 20     | 20   | 20    |       |       |      |      |      |      |

|    |       |         |        |        |         |       |        |      |      |     |
|----|-------|---------|--------|--------|---------|-------|--------|------|------|-----|
| C5 | 0     | 0       | 0      | 0      | 0       | 0     | 0      | 0    | 0    | 0   |
| C5 | 0     | 0       | 0      | 0      |         |       |        |      |      |     |
| C6 | .02   | .02     | .02    | .02    | .02     | .02   | .02    | .02  | .02  | .02 |
| C6 | .02   | .02     | .02    | .02    |         |       |        |      |      |     |
| C7 | 10.5  | 10.5    | 10.7   | 10.7   | 10.7    | 10.6  | 11.1   | 11.4 | 11.3 |     |
| C7 | 11.3  | 11.3    | 11.3   | 11.3   |         |       |        |      |      |     |
| SA | 100   | 100     | 100    | 100    | 100     | 100   | 100    | 100  | 100  | 100 |
| SA | 100   | 100     | 100    | 100    |         |       |        |      |      |     |
| DK | 0     | .1      | .05    | 1.463  | 4.57    |       |        |      |      |     |
| CR | 1.047 | 1.047   | 1.047  | 1.0159 |         |       |        |      |      |     |
| S1 | 30    | 1       | 0      | 95     | 21      |       |        |      |      |     |
| S2 | 1     | 303.80  | 2      | 300.00 | 1.90    | 300.0 | 4      |      |      |     |
| S2 |       |         |        |        | 1       |       |        |      |      |     |
| S2 | 3     | 294.58  | 4      | 275.94 | 4.66    | 280.1 | 5      |      |      |     |
| S2 | 4     | 275.94  | 5      | 271.28 | 2.33    | 273.2 | 6      |      |      |     |
| S2 | 5     | 271.28  | 6      | 261.96 | 4.66    | 271.2 | 7      |      |      |     |
| S2 | 6     | 261.96  | 7      | 243.32 | 4.66    |       |        |      |      |     |
| S2 | 7     | 243.32  | 8      | 206.04 | 4.66    | 225.1 | 8      |      |      |     |
| S2 | 8     | 206.04  | 9      | 196.72 | 4.66    |       |        |      |      |     |
| S2 | 9     | 196.72  | 10     | 168.76 | 4.66    |       |        |      |      |     |
| S2 | 10    | 168.76  | 11     | 140.80 | 4.66    |       |        |      |      |     |
| S2 | 11    | 140.80  | 12     | 117.50 | 4.66    |       |        |      |      |     |
| S2 | 12    | 117.50  | 19     | 80.22  | 4.66    |       |        |      |      |     |
| S2 | 13    | 75.38   | 14     | 71.82  | 1.78    | 75.00 | 9      |      |      |     |
| S2 | 14    | 71.82   | 15     | 58.84  | 3.245   | 58.84 | 9      |      |      |     |
| S2 | 15    | 58.84   | 16     | 45.56  | 3.32    |       |        |      |      |     |
| S2 | 16    | 45.56   | 17     | 26.25  | 2.41375 | 29.65 | 10     |      |      |     |
| S2 | 17    | 26.25   | 18     | 8.76   | 4.3725  | 12.30 | 11     |      |      |     |
| S2 | 18    | 8.76    | 19     | 0.0    | 4.38    |       |        |      |      |     |
| S2 | 19    | 80.22   | 22     | 59.64  | 4.116   |       |        |      |      |     |
| S2 | 20    | 28.53   | 21     | 20.93  | 2.533   |       |        |      |      |     |
| S2 | 21    | 20.93   | 22     | 0.0    | 4.186   |       |        |      |      |     |
| S2 | 22    | 59.64   | 23     | 38.28  | 2.67    |       |        |      |      |     |
| SR | -1    | 23      | 1      | 2      |         |       |        |      |      |     |
| S3 | 1     | 303.800 | 478.00 | 0.     | 0.00    | 0.    | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 479.00 | 116.   | 0.92    | 121.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 480.00 | 243.   | 1.43    | 133.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 481.00 | 382.   | 1.86    | 145.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 482.00 | 534.   | 2.24    | 154.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 483.00 | 693.   | 2.58    | 165.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 484.00 | 864.   | 2.88    | 176.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 485.00 | 1042.  | 3.18    | 182.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 486.00 | 1227.  | 3.46    | 187.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 487.00 | 1416.  | 3.72    | 191.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 489.00 | 1807.  | 4.21    | 200.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 491.00 | 2215.  | 4.65    | 208.  | 0.0518 |      |      |     |
| S3 | 1     | 303.800 | 493.00 | 2642.  | 5.05    | 219.  | 0.0516 |      |      |     |
| S3 | 1     | 303.800 | 495.00 | 3095.  | 5.38    | 234.  | 0.0512 |      |      |     |
| S3 | 1     | 303.800 | 497.00 | 3584.  | 5.64    | 256.  | 0.0503 |      |      |     |
| S3 | 1     | 303.800 | 499.00 | 4116.  | 5.91    | 277.  | 0.0497 |      |      |     |
| S3 | 1     | 303.800 | 501.00 | 4699.  | 5.99    | 310.  | 0.0478 |      |      |     |
| S3 | 1     | 303.800 | 503.00 | 5366.  | 5.83    | 361.  | 0.0447 |      |      |     |
| S3 | 1     | 303.800 | 506.00 | 6585.  | 5.84    | 444.  | 0.0431 |      |      |     |
| S3 | 1     | 303.800 | 509.00 | 8019.  | 6.02    | 517.  | 0.0430 |      |      |     |
| S3 | 1     | 303.800 | 512.00 | 9695.  | 6.25    | 593.  | 0.0432 |      |      |     |

Most of the Cross Section Geometry (S3) records  
have been deleted from this listing.

|    |        |        |        |        |        |        |        |        |        |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| S3 | 23     | 38.280 | -27.20 | 0.     | 0.00   | 0.     | 0.0350 |        |        |
| S3 | 23     | 38.280 | -26.20 | 37.    | 0.70   | 62.    | 0.0350 |        |        |
| S3 | 23     | 38.280 | -25.20 | 107.   | 1.21   | 78.    | 0.0350 |        |        |
| S3 | 23     | 38.280 | -24.20 | 197.   | 1.46   | 108.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -23.20 | 329.   | 1.67   | 151.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -22.20 | 500.   | 1.93   | 187.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -21.20 | 699.   | 2.24   | 210.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -20.20 | 921.   | 2.49   | 236.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -19.20 | 1173.  | 2.68   | 276.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -18.20 | 1457.  | 2.95   | 293.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -16.20 | 2100.  | 3.29   | 352.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -14.20 | 2818.  | 3.89   | 365.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -12.20 | 3559.  | 4.43   | 377.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -10.20 | 4323.  | 4.95   | 386.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -8.20  | 5110.  | 5.40   | 399.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -6.20  | 5919.  | 5.84   | 410.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -4.20  | 6749.  | 6.26   | 420.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | -2.20  | 7601.  | 6.66   | 431.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | 0.80   | 8919.  | 7.22   | 447.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | 3.80   | 10285. | 7.75   | 463.   | 0.0350 |        |        |
| S3 | 23     | 38.280 | 6.80   | 11695. | 8.26   | 477.   | 0.0350 |        |        |
| S4 | 488.00 | 484.00 | 474.00 | 470.82 | 448.33 | 412.26 | 380.34 | 361.08 | 349.15 |
| S4 | 326.12 | 304.00 | 288.02 | 265.60 | 252.15 | 245.73 | 234.40 | 212.83 | 196.14 |
| S4 | 186.62 | 173.24 | 154.59 | 149.59 | 144.68 | 131.72 | 114.81 | 107.99 | 100.84 |
| S4 | 90.88  | 82.48  | 75.01  | 64.09  | 57.11  | 49.00  | 41.94  | 39.89  | 35.20  |
| S4 | 32.80  | 30.70  | 26.86  | 22.49  | 20.97  | 20.92  | 18.02  | 13.21  | 10.86  |
| S4 | 6.00   | 5.00   | 4.00   | 3.00   | 225    | 207    | 207    | 150    | 126.4  |
| S4 | 105    | 94     | 80     | 72     | 61     | 60     | 57     | 54     | 48     |
| S4 | 45     | 44     | 37     | 36     | 35     | 34     | 33     | 27     | 19     |
| S4 | 11     | 4      | 3.0    | 1.5    | 1.0    | 0.5    | 117    | 109    | 96     |
| S4 | 85     | 65     | 42     | 30     | 20     | 10     | 0      | -1     | -2     |
| S4 | -3     | -4     | -5     | -6     | -7     |        |        |        |        |

|    |          |     |     |       |      |
|----|----------|-----|-----|-------|------|
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| KR | .1       | .1  | .05 | 1.463 | 4.57 |
| CT | 1 790401 | 12  | 1   | 0     |      |
| CT | -791031  | 12  | 1   | 0     |      |
| CT | 790401   | 130 | 1   | 0     |      |
| CT | -791031  | 130 | 1   | 0     |      |
| CT | 790401   | 60  | 1   | 0     |      |
| CT | -791031  | 60  | 1   | 0     |      |
| CT | 790401   | 5   | 1   | 0     |      |
| CT | -791031  | 5   | 1   | 0     |      |
| CT | 790401   | .1  | 1   | 0     |      |
| CT | -791031  | .1  | 1   | 0     |      |
| CT | 790401   | 5   | 0   | 1     |      |
| CT | -791031  | 5   | 0   | 1     |      |
| CT | 2 790401 | 12  | 1   | 0     |      |
| CT | -791031  | 12  | 1   | 0     |      |
| CT | 790401   | 130 | 1   | 0     |      |
| CT | -791031  | 130 | 1   | 0     |      |
| CT | 790401   | 60  | 1   | 0     |      |
| CT | -791031  | 60  | 1   | 0     |      |
| CT | 790401   | 5   | 1   | 0     |      |
| CT | -791031  | 5   | 1   | 0     |      |
| CT | 790401   | .1  | 1   | 0     |      |
| CT | -791031  | .1  | 1   | 0     |      |
| CT | 790401   | 5   | 0   | 1     |      |
| CT | -791031  | 5   | 0   | 1     |      |
| CT | 3 790401 | 12  | 1   | 0     |      |
| CT | -791031  | 12  | 1   | 0     |      |
| CT | 790401   | 130 | 1   | 0     |      |
| CT | -791031  | 130 | 1   | 0     |      |
| CT | 790401   | 60  | 1   | 0     |      |
| CT | -791031  | 60  | 1   | 0     |      |
| CT | 790401   | 5   | 1   | 0     |      |
| CT | -791031  | 5   | 1   | 0     |      |
| CT | 790401   | .1  | 1   | 0     |      |
| CT | -791031  | .1  | 1   | 0     |      |

Most of the Control Point Target records (CT)  
have been deleted from this listing.

|    |    |         |        |                           |                  |        |     |        |     |
|----|----|---------|--------|---------------------------|------------------|--------|-----|--------|-----|
| CT | 23 | 790401  | 14     | 1                         | 0                |        |     |        |     |
| CT |    | 790516  | 19     | 1                         | 0                |        |     |        |     |
| CT |    | 790614  | 21.5   | 1                         | 0                |        |     |        |     |
| CT |    | 790726  | 22.5   | 1                         | 0                |        |     |        |     |
| CT |    | 790823  | 21.0   | 1                         | 0                |        |     |        |     |
| CT |    | 790913  | 21.5   | 1                         | 0                |        |     |        |     |
| CT |    | -791031 | 19.0   | 1                         | 0                |        |     |        |     |
| CT |    | 790401  | 150    | 1                         | 0                |        |     |        |     |
| CT |    | 790515  | 130    | 1                         | 0                |        |     |        |     |
| CT |    | 790612  | 148    | 1                         | 0                |        |     |        |     |
| CT |    | 790726  | 130    | 1                         | 0                |        |     |        |     |
| CT |    | 790823  | 157    | 1                         | 0                |        |     |        |     |
| CT |    | 790913  | 189    | 1                         | 0                |        |     |        |     |
| CT |    | -791031 | 190    | 1                         | 0                |        |     |        |     |
| CT |    | 790401  | 64     | 1                         | 0                |        |     |        |     |
| CT |    | 790515  | 43     | 1                         | 0                |        |     |        |     |
| CT |    | 790612  | 51     | 1                         | 0                |        |     |        |     |
| CT |    | 790726  | 48     | 1                         | 0                |        |     |        |     |
| CT |    | 790823  | 69     | 1                         | 0                |        |     |        |     |
| CT |    | 790913  | 72     | 1                         | 0                |        |     |        |     |
| CT |    | -791031 | 72     | 1                         | 0                |        |     |        |     |
| CT |    | 790401  | 20     | 1                         | 0                |        |     |        |     |
| CT |    | -791031 | 20     | 1                         | 0                |        |     |        |     |
| CT |    | 790401  | 5      | 1                         | 0                |        |     |        |     |
| CT |    | -791031 | 5      | 1                         | 0                |        |     |        |     |
| CT |    | 790401  | 10     | 0                         | 1                |        |     |        |     |
| CT |    | 790726  | 7.8    | 0                         | 1                |        |     |        |     |
| CT |    | -791031 | 7.8    | 0                         | 1                |        |     |        |     |
| I1 |    | 790401  | 791031 |                           |                  |        |     |        |     |
| I2 |    |         | 0      | INFLOW - TOTAL LOCAL FLOW |                  |        |     |        |     |
| I4 |    | 790401  | -1     | 491031                    | -1               | -1     |     |        |     |
| I2 |    | 1       | 0      | SHASTA INFLOW             |                  |        |     |        |     |
| I4 |    | 790401  | -15    | 490707                    | -12              | 791031 | -5  | -1     |     |
| I2 |    |         | 0      | SHASTA INFLOW EC          |                  |        |     |        |     |
| I4 |    | 790401  | 120    | 790529                    | 120              | 790716 | 140 | 791011 | 120 |
| I4 |    | 791031  | 120    | -1                        |                  |        |     |        |     |
| I2 |    |         | 0      | SHASTA INFLOW ALKALINITY  |                  |        |     |        |     |
| I4 |    | 790401  | 55     | 790502                    | 55               | 790529 | 45  | 790716 | 50  |
| I4 |    | 790911  | 64     | 791031                    | 64               | -1     |     |        |     |
| I2 |    |         | 0      | SHASTA INFLOW BOD         |                  |        |     |        |     |
| I4 |    | 790401  | 1.5    | 791031                    | .8               | -1     |     |        |     |
| I2 |    |         | 0      | SHASTA INFLOW NH3         |                  |        |     |        |     |
| I4 |    | 790401  | 0      | 790716                    | .02              | 790919 | .03 | 791031 | 0   |
| I4 |    |         | -1     |                           |                  |        |     |        |     |
| I2 |    |         | -1     | 0                         | SHASTA INFLOW DO |        |     |        |     |
| I4 |    | 790401  | 100    | 791031                    | 100              | -1     |     |        |     |
| I2 |    |         | 0      | INFLOW - TOTAL LOCAL FLOW |                  |        |     |        |     |
| I4 |    | 790401  | -1     | 491031                    | -1               | -1     |     |        |     |

|    |        |      |                                 |      |        |      |        |      |
|----|--------|------|---------------------------------|------|--------|------|--------|------|
| I2 |        | 0    | OROVILLE INFLOW                 |      |        |      |        |      |
| I4 | 790401 | 12.8 | 790701                          | 14.0 | 790718 | 18.3 | 790801 | 12.0 |
| I4 | 790901 | 10.0 | 791001                          | 7.22 | 791031 | 4.44 | -1     |      |
| I2 |        | 0    | OROVILLE INFLOW EC              |      |        |      |        |      |
| I4 | 790401 | 62   | 790718                          | 60   | 791031 | 60   | -1     |      |
| I2 |        | 0    | OROVILLE INFLOW ALKALINITY      |      |        |      |        |      |
| I4 | 790401 | 150  | 791031                          | 150  | -1     |      |        |      |
| I2 |        | 0    | OROVILLE INFLOW BOD             |      |        |      |        |      |
| I4 | 790401 | 5    | 791031                          | 5    | -1     |      |        |      |
| I2 |        | 0    | OROVILLE INFLOW AMMONIA         |      |        |      |        |      |
| I4 | 790401 | .01  | 790718                          | 0    | 791031 | 0    | -1     |      |
| I2 |        | 0    | OROVILLE INFLOW DISOLVED OXYGEN |      |        |      |        |      |
| I4 | 790401 | 10.4 | 790718                          | 8.5  | 791031 | 8.5  | -1     |      |
| I2 |        | 0    | INFLOW - TOTAL LOCAL FLOW       |      |        |      |        |      |
| I4 | 790401 | -1   | 491031                          | -1   | -1     |      |        |      |
| I2 |        | 0    | FOLSOM INFLOW                   |      |        |      |        |      |
| I4 | 790401 | 8.0  | 790530                          | 14.0 | 790727 | 14.0 | 791022 | 15.0 |
| I4 | -1     |      |                                 |      |        |      |        |      |
| I2 |        | 0    | FOLSOM INFLOW EC                |      |        |      |        |      |
| I4 | 790401 | 74   | 790516                          | 71   | 790614 | 76   | 790718 | 74   |
| I4 | 790807 | 67   | 790911                          | 62   | 791031 | 61   | -1     |      |
| I2 |        | 0    | FOLSOM INFLOW ALKALINITY        |      |        |      |        |      |
| I4 | 790401 | 20   | 790530                          | 13   | 790727 | 19   | 791031 | 19   |
| I4 | -1     |      |                                 |      |        |      |        |      |
| I2 |        | 0    | FOLSOM INFLOW BOD               |      |        |      |        |      |
| I4 | 790401 | 5    | 791031                          | 5    | -1     |      |        |      |
| I2 |        | 0    | FOLSOM INFLOW AMMONIA           |      |        |      |        |      |
| I4 | 790401 | .01  | 790530                          | .09  | 790718 | .02  | 790727 | 0    |
| I4 | 790807 | .01  | 791031                          | .01  | -1     |      |        |      |
| I2 |        | 0    | FOLSOM INFLOW DO                |      |        |      |        |      |
| I4 | 790401 | 10.7 | 790516                          | 9.4  | 790530 | 10.6 | 790614 | 9.1  |
| I4 | 790718 | 9.5  | 790727                          | 10   | 790807 | 7.9  | 790911 | 8.6  |
| I4 | 791031 | 10.6 | -1                              |      |        |      |        |      |
| I2 |        | 0    | INFLOW - TOTAL LOCAL FLOW       |      |        |      |        |      |
| I4 | 790401 | -1   | 491031                          | -1   | -1     |      |        |      |
| I2 | 1      | 0    | SPRING CR. INFLOW               |      |        |      |        |      |
| I4 | 790401 | -5   | 790707                          | -2   | 791031 | -7   | -1     |      |
| I2 |        | 0    | SPRING CR. EC                   |      |        |      |        |      |
| I4 | 790401 | 200  | 791031                          | 200  | -1     |      |        |      |
| I2 |        | 0    | SPRING CR. ALKALINITY           |      |        |      |        |      |
| I4 | 790401 | 55   | 791031                          | 55   | -1     |      |        |      |
| I2 |        | 0    | SPRING CR. BOD                  |      |        |      |        |      |
| I4 | 790401 | 0    | 791031                          | 0    | -1     |      |        |      |
| I2 |        | 0    | SPRING CR. NH3                  |      |        |      |        |      |
| I4 | 790401 | .00  | 791031                          | .00  | -1     |      |        |      |
| I2 | -1     | 0    | SPRING CR. DO                   |      |        |      |        |      |
| I4 | 790401 | 125  | 791031                          | 125  | -1     |      |        |      |
| I2 |        | 0    | INFLOW - TOTAL LOCAL FLOW       |      |        |      |        |      |
| I4 | 790401 | -1   | 491031                          | -1   | -1     |      |        |      |
| I2 | 1      | 0    | COW CR. INFLOW                  |      |        |      |        |      |
| I4 | 790401 | 0    | 790707                          | -2   | 791031 | -7   | -1     |      |
| I2 |        | 0    | COW CR. EC                      |      |        |      |        |      |
| I4 | 790401 | 200  | 791031                          | 200  | -1     |      |        |      |
| I2 |        | 0    | COW CR. ALKALINITY              |      |        |      |        |      |
| I4 | 790401 | 100  | 791031                          | 100  | -1     |      |        |      |

|    |        |                             |             |             |        |    |  |
|----|--------|-----------------------------|-------------|-------------|--------|----|--|
| I2 |        | 0 COW CR. BOD               |             |             |        |    |  |
| I4 | 790401 | 0 791031                    | 0           | -1          |        |    |  |
| I2 |        | 0 COW CR. NH3               |             |             |        |    |  |
| I4 | 790401 | .00 791031                  | .00         | -1          |        |    |  |
| I2 |        | 0 COW CR. DO                |             |             |        |    |  |
| I4 | 790401 | 135 791031                  | 135         | -1          |        |    |  |
| I2 |        | 0 INFLOW - TOTAL LOCAL FLOW |             |             |        |    |  |
| I4 | 790401 | -1 491031                   | -1          | -1          |        |    |  |
| I2 |        | 0 COTTONWOOD CR. INFLOW     |             |             |        |    |  |
| I4 | 790401 | 0 790707                    | -2 791031   | -7          | -1     |    |  |
| I2 |        | 0 COTTONWOOD CR. EC         |             |             |        |    |  |
| I4 | 790401 | 200 791031                  | 200         | -1          |        |    |  |
| I2 |        | 0 COTTONWOOD CR. ALKALINITY |             |             |        |    |  |
| I4 | 790401 | 100 791031                  | 100         | -1          |        |    |  |
| I2 |        | 0 COTTONWOOD CR. BOD        |             |             |        |    |  |
| I4 | 790401 | 0 791031                    | 0           | -1          |        |    |  |
| I2 |        | 0 COTTONWOOD CR. NH3        |             |             |        |    |  |
| I4 | 790401 | .00 791031                  | .00         | -1          |        |    |  |
| I2 |        | 0 COTTONWOOD CR. DO         |             |             |        |    |  |
| I4 | 790401 | 135 791031                  | 135         | -1          |        |    |  |
| I2 |        | 0 INFLOW - TOTAL LOCAL FLOW |             |             |        |    |  |
| I4 | 790401 | -1 491031                   | -1          | -1          |        |    |  |
| I2 |        | 0 BATTLE CR. INFLOW         |             |             |        |    |  |
| I4 | 790401 | 0 790707                    | -2 791031   | -7          | -1     |    |  |
| I2 |        | 0 BATTLE CR. EC             |             |             |        |    |  |
| I4 | 790401 | 200 791031                  | 200         | -1          |        |    |  |
| I2 |        | 0 BATTLE CR. ALKALINITY     |             |             |        |    |  |
| I4 | 790401 | 100 791031                  | 100         | -1          |        |    |  |
| I2 |        | 0 BATTLE CR. BOD            |             |             |        |    |  |
| I4 | 790401 | 0 791031                    | 0           | -1          |        |    |  |
| I2 |        | 0 BATTLE CR. NH3            |             |             |        |    |  |
| I4 | 790401 | .00 791031                  | .00         | -1          |        |    |  |
| I2 |        | 0 BATTLE CR. DO             |             |             |        |    |  |
| I4 | 790401 | 135 791031                  | 135         | -1          |        |    |  |
| I2 |        | 0 INFLOW - TOTAL LOCAL FLOW |             |             |        |    |  |
| I4 | 790401 | -1 491031                   | -1          | -1          |        |    |  |
| I2 |        | 0 THOMES CR. INFLOW         |             |             |        |    |  |
| I4 | 790401 | 5 790625                    | 9 791031    | 5           | -1     |    |  |
| I2 |        | 0 THOMES CR. EC             |             |             |        |    |  |
| I4 | 790401 | 350 791031                  | 350         | -1          |        |    |  |
| I2 |        | 0 THOMES CR. ALKALINITY     |             |             |        |    |  |
| I4 | 790401 | 350 791031                  | 350         | -1          |        |    |  |
| I2 |        | 0 THOMES CR. BOD            |             |             |        |    |  |
| I4 | 790401 | 10 790601                   | 20 791001   | 20          | 791031 | 10 |  |
| I4 |        | -1                          |             |             |        |    |  |
| I2 |        | 0 THOMES CR. NH3            |             |             |        |    |  |
| I4 | 790401 | .05 791031                  | .05         | -1          |        |    |  |
| I2 |        | 0 THOMES CR. DO             |             |             |        |    |  |
| I4 | 790401 | 135 791031                  | 135         | -1          |        |    |  |
| I2 |        | 0 INFLOW - TOTAL LOCAL FLOW |             |             |        |    |  |
| I4 | 790401 | -1 491031                   | -1          | -1          |        |    |  |
| I2 |        | 0 BYPASSED FEATHER RIVER    |             |             |        |    |  |
| I4 | 790401 | 13.9 790418                 | 14.4 790516 | 17.8 790718 | 15.6   |    |  |
| I4 | 790815 | 15.6 790919                 | 12.2 791031 | 12.2        | -1     |    |  |

|    |        |                                           |             |      |        |      |  |
|----|--------|-------------------------------------------|-------------|------|--------|------|--|
| I2 |        | 0 BYPASSED FEATHER RIVER EC               |             |      |        |      |  |
| I4 | 790401 | 68 790418                                 | 68 790516   | 64   | 790718 | 65   |  |
| I4 | 790815 | 65 791031                                 | 51 -1       |      |        |      |  |
| I2 |        | 0 BYPASSED FEATHER RIVER ALKALINITY       |             |      |        |      |  |
| I4 | 790401 | 40 791031                                 | 50 -1       |      |        |      |  |
| I2 |        | 0 BYPASSED FEATHER RIVER BOD              |             |      |        |      |  |
| I4 | 790401 | .5 791031                                 | .5 -1       |      |        |      |  |
| I2 |        | 0 BYPASSED FEATHER RIVER AMMONIA          |             |      |        |      |  |
| I4 | 790401 | .03 790516                                | .01 790718  | 0    | 791031 | 0    |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 BYPASSED FEATHER RIVER DISSOLVED OXYGEN |             |      |        |      |  |
| I4 | 790401 | 10 790418                                 | 10 790516   | 9.2  | 790718 | 8.6  |  |
| I4 | 790815 | 7.6 790919                                | 6.2 791031  | 6.2  | -1     |      |  |
| I2 |        | 0 INFLOW - TOTAL LOCAL FLOW               |             |      |        |      |  |
| I4 | 790401 | -1 491031                                 | -1 -1       |      |        |      |  |
| I2 |        | 0 YUBA RIVER                              |             |      |        |      |  |
| I4 | 790401 | 11.0 790424                               | 13.5 790524 | 15.5 | 790621 | 18.0 |  |
| I4 | 790726 | 16.5 790823                               | 11.5 790920 | 15.5 | 791031 | 15.5 |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 YUBA RIVER EC                           |             |      |        |      |  |
| I4 | 790401 | 87 790424                                 | 92 790523   | 72   | 790621 | 78   |  |
| I4 | 790726 | 74 790823                                 | 76 790920   | 76   | 791031 | 76   |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 YUBA RIVER ALKALINITY                   |             |      |        |      |  |
| I4 | 790401 | 34 790424                                 | 36 790523   | 29   | 790621 | 31   |  |
| I4 | 790726 | 31 790823                                 | 31 790920   | 32   | 791031 | 32   |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 YUBA RIVER BOD                          |             |      |        |      |  |
| I4 | 790401 | 10. 791031                                | 10. -1      |      |        |      |  |
| I2 |        | 0 YUBA RIVER AMMONIA                      |             |      |        |      |  |
| I4 | 790401 | .01 790424                                | .00 790523  | .02  | 790621 | .00  |  |
| I4 | 790726 | .00 790823                                | .02 790921  | .00  | 791031 | .00  |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 YUBA RIVER DO                           |             |      |        |      |  |
| I4 | 790401 | 11.0 790424                               | 10.8 790523 | 10.0 | 790621 | 9.5  |  |
| I4 | 790726 | 9.9 790823                                | 9.9 790920  | 10.3 | 791031 | 10.3 |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 INFLOW - TOTAL LOCAL FLOW               |             |      |        |      |  |
| I4 | 790401 | -1 491031                                 | -1 -1       |      |        |      |  |
| I2 |        | 0 BEAR RIVER                              |             |      |        |      |  |
| I4 | 790401 | 13.5 790424                               | 14.5 790523 | 21.0 | 790621 | 24.0 |  |
| I4 | 790726 | 25.5 790823                               | 25.5 790920 | 19.0 | 791031 | 19.0 |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 BEAR RIVER EC                           |             |      |        |      |  |
| I4 | 790401 | 91 790424                                 | 89 790523   | 82   | 790621 | 210  |  |
| I4 | 790726 | 174 790823                                | 199 790920  | 190  | 791031 | 190  |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 BEAR RIVER ALKALINITY                   |             |      |        |      |  |
| I4 | 790401 | 30 790424                                 | 28 790523   | 26   | 790621 | 67   |  |
| I4 | 790726 | 63 790823                                 | 75 790920   | 74   | 791031 | 74   |  |
| I4 | -1     |                                           |             |      |        |      |  |
| I2 |        | 0 BEAR RIVER BOD                          |             |      |        |      |  |
| I4 | 790401 | 10. 791031                                | 10. -1      |      |        |      |  |
| I2 |        | 0 BEAR RIVER AMMONIA                      |             |      |        |      |  |
| I4 | 790401 | .35 791031                                | .35 -1      |      |        |      |  |

|    |        | 0 BEAR RIVER DO |         |        |     |        |     |        |     |
|----|--------|-----------------|---------|--------|-----|--------|-----|--------|-----|
| I2 |        | 790401          | 11.0    | 790424 | 9.7 | 790523 | 8.3 | 790621 | 8.8 |
| I4 |        | 790823          | 9.9     | 790920 | 8.4 | 791031 | 8.4 | -1     |     |
| G1 | 790401 | 791031          |         |        |     |        |     |        |     |
| G2 | 1      | 790401          | 791031  | 0      | 0   | 1      | 1   |        |     |
| G2 | 3      | 790401          | 791031  | 0      | 0   | 1      | 1   |        |     |
| G2 | 13     | 790401          | 791031  | 0      | 0   | 1      | 4   | 1      | 4   |
| G2 | 20     | 790401          | -791031 | 0      | 0   | 1      | 1   |        |     |
| ER |        |                 |         |        |     |        |     |        |     |

**APPENDIX B**

**Selected Computer Output for Sacramento River System  
Water Quality Modeling**

WATER QUALITY DATA FOR  
SHASTA, CROVILLE AND FOLSOM  
RESERVOIR SYSTEM TEST

| DAY OF SIMULATION                | FIRST DAY OF SIMULATION | 210 |
|----------------------------------|-------------------------|-----|
| FINAL DAY OF SIMULATION          | 91 (79/ 4/ 1)           |     |
| NUMBER OF CONTROL POINTS         | 300 (79/10/27)          |     |
| NUMBER OF RESERVOIRS             | 23                      |     |
| INPUT UNITS (ENGLISH=0/METRIC=1) | 4                       |     |
|                                  | 0                       |     |
|                                  | C                       |     |
| WATER TEMPERATURE UNITS          |                         |     |
| SCRATCH FILE NUMBER 1            | 62                      |     |
| SCRATCH FILE NUMBER 3            | 21                      |     |
| SCRATCH FILE NUMBER 4            | 64                      |     |
| SCRATCH FILE NUMBER 5            | 65                      |     |
| SCRATCH FILE NUMBER 6            | 66                      |     |
| SCRATCH FILE NUMBER 7            | 67                      |     |

| METEOROLOGICAL DATA SUMMARY |      |          |           |          |          |      |
|-----------------------------|------|----------|-----------|----------|----------|------|
| DATE                        | ZONE | EQT.TEMP | HEAT.EXTC | SHORT.IW | WIND.SPD | ZONE |
| 91/24                       | 1    | 58.30    | 121.60    | 2032.20  | 11.00    |      |
| 92/24                       | 1    | 60.50    | 118.10    | 2083.40  | 10.00    |      |
| 93/24                       | 1    | 62.90    | 91.80     | 1618.10  | 7.00     |      |
| 94/24                       | 1    | 72.90    | 67.50     | 2081.80  | 4.00     |      |
| 95/24                       | 1    | 64.40    | 118.50    | 2060.80  | 9.00     |      |
| 96/24                       | 1    | 58.10    | 79.00     | 1016.90  | 6.00     |      |
| 97/24                       | 1    | 65.30    | 107.10    | 2142.50  | 8.00     |      |
| 98/24                       | 1    | 58.50    | 141.70    | 1486.50  | 12.00    |      |
| 99/24                       | 1    | 58.80    | 111.60    | 1858.70  | 10.00    |      |
| 100/24                      | 1    | 56.00    | 125.30    | 2007.70  | 12.00    |      |
| 101/24                      | 1    | 65.30    | 94.90     | 1856.20  | 7.00     |      |
| 102/24                      | 1    | 63.40    | 116.00    | 1864.80  | 9.00     |      |
| 103/24                      | 1    | 67.80    | 98.30     | 2229.50  | 7.00     |      |
| 104/24                      | 1    | 68.50    | 99.20     | 2196.40  | 7.00     |      |
| 105/24                      | 1    | 65.60    | 96.80     | 1551.00  | 7.00     |      |
| 106/24                      | 1    | 57.40    | 140.20    | 1339.50  | 12.00    |      |
| 107/24                      | 1    | 60.20    | 88.50     | 1580.80  | 7.00     |      |
| 108/24                      | 1    | 64.10    | 78.20     | 2203.90  | 6.00     |      |
| 109/24                      | 1    | 67.20    | 68.40     | 2302.60  | 5.00     |      |
| 110/24                      | 1    | 58.70    | 74.80     | 1121.70  | 6.00     |      |
| 111/24                      | 1    | 65.30    | 80.30     | 1824.40  | 6.00     |      |
| 112/24                      | 1    | 59.30    | 121.80    | 1383.70  | 10.00    |      |
| 113/24                      | 1    | 60.60    | 123.50    | 1824.40  | 10.00    |      |
| 114/24                      | 1    | 65.00    | 81.30     | 1847.10  | 6.00     |      |
| 115/24                      | 1    | 68.40    | 62.90     | 1407.70  | 4.00     |      |
| 116/24                      | 1    | 62.20    | 87.50     | 829.50   | 6.00     |      |
| 117/24                      | 1    | 71.30    | 79.60     | 2014.90  | 5.00     |      |
| 118/24                      | 1    | 68.40    | 87.90     | 2032.70  | 6.00     |      |
| 119/24                      | 1    | 63.70    | 84.30     | 1153.30  | 6.00     |      |
| 120/24                      | 1    | 63.20    | 128.10    | 1882.50  | 10.00    |      |
| 121/24                      | 1    | 65.60    | 85.30     | 1682.00  | 6.00     |      |
| 122/24                      | 1    | 72.40    | 105.70    | 2449.90  | 7.00     |      |
| 123/24                      | 1    | 64.90    | 153.60    | 2335.70  | 12.00    |      |
| 124/24                      | 1    | 59.50    | 131.50    | 1184.10  | 11.00    |      |

|        |   |       |        |         |       |
|--------|---|-------|--------|---------|-------|
| 285/24 | 1 | 66.70 | 76.10  | 866.40  | 5.00  |
| 286/24 | 1 | 66.60 | 107.50 | 689.20  | 7.00  |
| 287/24 | 1 | 66.40 | 108.40 | 680.20  | 7.00  |
| 288/24 | 1 | 69.00 | 97.00  | 966.70  | 6.00  |
| 289/24 | 1 | 68.40 | 105.50 | 1393.10 | 7.00  |
| 290/24 | 1 | 66.90 | 75.90  | 1254.90 | 5.00  |
| 291/24 | 1 | 57.30 | 121.50 | 495.50  | 10.00 |
| 292/24 | 1 | 59.20 | 165.70 | 483.80  | 15.00 |
| 293/24 | 1 | 57.20 | 101.10 | 1051.90 | 8.00  |
| 294/24 | 1 | 60.00 | 58.10  | 1271.80 | 4.00  |
| 295/24 | 1 | 58.90 | 79.10  | 921.80  | 6.00  |
| 296/24 | 1 | 60.40 | 108.30 | 628.10  | 8.00  |
| 297/24 | 1 | 59.00 | 104.80 | 624.70  | 8.00  |
| 298/24 | 1 | 58.50 | 116.40 | 616.50  | 9.00  |
| 299/24 | 1 | 61.80 | 72.10  | 1231.00 | 5.00  |
| 300/24 | 1 | 67.20 | 39.40  | 1257.30 | 2.00  |
| 301/24 | 1 | 58.10 | 96.10  | 1256.10 | 8.00  |
| 302/24 | 1 | 51.70 | 156.40 | 1257.00 | 16.00 |
| 303/24 | 1 | 51.10 | 70.00  | 732.90  | 6.00  |
| 304/24 | 1 | 58.50 | 66.70  | 1199.30 | 5.00  |

IN ADDITION TO TEMPERATURE, THE FOLLOWING CONSTITUENTS ARE BEING SIMULATED. ( EXCEPT AS NOTED )

SPECIFIC CONDUCTANCE  
 TOTAL ALKALINITY  
 CARBONACEOUS BOD  
 AMMONIA AS N  
 DISSOLVED OXYGEN

\*\*\*\*

INDICATES QUALITY DATA WILL BE READ BUT NOT SIMULATED

## RESERVOIR RELATED DATA

PRINTOUT INTERVAL, DAYS  
VERTICAL LAYER PRINTOUT INTERVAL

30  
1

| RESERVOIR NUMBER                                 | 1                         |
|--------------------------------------------------|---------------------------|
| CONTROL POINT I.D.                               | 1                         |
| LAYER THICKNESS, FT                              | 10.0                      |
| MAXIMUM WATER SURFACE ELEVATION, FT              | 1070.0                    |
| BOTTOM ELEVATION, FT                             | 630.0                     |
| STARTING RESERVOIR VOLUME, ACFT                  | 4137800.                  |
| SECCI DISK DEPTH, FT                             | 5.0                       |
| DEPTH OF INITIAL SOLAR ENERGY ABSORPTION, FT     | 1.50                      |
| FRACTION OF SOLAR ENERGY ABSORBED                | 0.60                      |
| METEOROLOGICAL DATA ZONE                         | 1                         |
| INFLOW I.D.                                      | EFFECTIVE RES. LENGTH, FT |
| 1                                                | 100000.                   |
| WATER COLUMN MINIMUM STABILITY, KG/M3/N          | 0.10E-01                  |
| WATER COLUMN CRITICAL STABILITY (GSMH), KG/M3/N  | 0.10E-05                  |
| MAXIMUM ALLOWABLE DISPERSION (A1), M2/SEC        | 0.30E-06                  |
| Coefficient relating gradient to dispersion (A3) | -0.70E+00                 |

## OUTLET CHARACTERISTICS

|             | VIRTUAL WIDTH, FT | MAXIMUM FLOW, CFS | ELEMENT | ELEVATION, FT |
|-------------|-------------------|-------------------|---------|---------------|
| SPILLWAY    | 330.00            | 186000.00         | 41      | 1037.00       |
| WEIR WELL 1 | 18.00             | 14000.00          | 19      | 815.00        |

## GATE SELECTION SUBOPTIMIZATION FUNCTION

| CONSTITUENT | WEIGHTING | POLYNOMIAL FUNCTION COEFFICIENTS               |
|-------------|-----------|------------------------------------------------|
| 1           | 1.00E+01  | 1.00E-02 0.00E+00 -2.00E+00                    |
| 2           | 5.00E+00  | 1.00E-02 0.00E+00 -1.00E-01                    |
| 3           | 3.00E+00  | 1.00E-02 0.00E+00 -1.00E-01                    |
| 6           | 1.00E+00  | 1.00E-02 0.00E+00 -2.00E+00                    |
| 7           | 3.00E+00  | 1.00E-02 0.00E+00 -1.00E-01                    |
| 8           | 5.00E+00  | 1.00E-02 3.20E+00 -7.00E-01 1.00E-01 -5.00E-03 |

## RESERVOIR GEOMETRY AND INITIAL TEMPERATURE

| ELEMENT | ELEVATION<br>FT | AREA<br>ACRE | VOLUME<br>ACFT | ELEMENT VOL<br>ACFT | WIDTH<br>FT | TEMPERATURE<br>C |
|---------|-----------------|--------------|----------------|---------------------|-------------|------------------|
| 1       | 630.0           | 200.         | 0.             | 13737.              | 50.         | 5.70             |
| 2       | 640.0           | 547.         | 13737.         | 7211.               | 88.         | 5.70             |
| 3       | 650.0           | 895.         | 20948.         | 10685.              | 126.        | 5.70             |
| 4       | 660.0           | 1242.        | 31633.         | 14159.              | 164.        | 5.70             |
| 5       | 670.0           | 1590.        | 45791.         | 17333.              | 202.        | 5.70             |
| 6       | 680.0           | 1937.        | 63426.         | 21107.              | 240.        | 5.70             |
| 7       | 690.0           | 2284.        | 84531.         | 24580.              | 279.        | 5.70             |
| 8       | 700.0           | 2632.        | 109111.        | 28054.              | 317.        | 5.70             |
| 9       | 710.0           | 2979.        | 137166.        | 31528.              | 355.        | 5.70             |
| 10      | 720.0           | 3327.        | 168694.        | 35002.              | 393.        | 5.70             |
| 11      | 730.0           | 3676.        | 203696.        | 38476.              | 431.        | 5.70             |
| 12      | 740.0           | 4021.        | 242172.        | 41950.              | 469.        | 5.70             |
| 13      | 750.0           | 4369.        | 284122.        | 45424.              | 507.        | 5.70             |
| 14      | 760.0           | 4716.        | 329546.        | 48898.              | 545.        | 5.70             |
| 15      | 770.0           | 5063.        | 378444.        | 52372.              | 583.        | 5.70             |
| 16      | 780.0           | 5411.        | 430816.        | 55846.              | 621.        | 5.70             |
| 17      | 790.0           | 5758.        | 488662.        | 59320.              | 660.        | 5.70             |
| 18      | 800.0           | 6106.        | 545982.        | 62794.              | 698.        | 5.70             |
| 19      | 810.0           | 6453.        | 608776.        | 66268.              | 736.        | 5.70             |
| 20      | 820.0           | 6800.        | 675043.        | 69741.              | 774.        | 5.70             |
| 21      | 830.0           | 7148.        | 744785.        | 73215.              | 812.        | 5.70             |
| 22      | 840.0           | 7495.        | 818000.        | 78471.              | 850.        | 5.70             |
| 23      | 850.0           | 8199.        | 896471.        | 85598.              | 1052.       | 5.81             |
| 24      | 860.0           | 8903.        | 981979.        | 92545.              | 1254.       | 5.91             |
| 25      | 870.0           | 9606.        | 1074524.       | 99582.              | 1456.       | 6.02             |
| 26      | 880.0           | 10310.       | 1174106.       | 107038.             | 1659.       | 6.13             |
| 27      | 890.0           | 11098.       | 1281144.       | 115893.             | 1838.       | 6.26             |
| 28      | 900.0           | 12081.       | 1397037.       | 125727.             | 1967.       | 6.45             |
| 29      | 910.0           | 13064.       | 1522765.       | 135561.             | 2095.       | 6.64             |
| 30      | 920.0           | 14048.       | 1658325.       | 145395.             | 2223.       | 6.83             |
| 31      | 930.0           | 15031.       | 1803720.       | 155228.             | 2351.       | 7.02             |
| 32      | 940.0           | 16015.       | 1958949.       | 16502.              | 2479.       | 7.21             |
| 33      | 950.0           | 16998.       | 2124011.       | 174896.             | 2607.       | 7.40             |
| 34      | 960.0           | 17981.       | 2298907.       | 184730.             | 2735.       | 7.59             |
| 35      | 970.0           | 18965.       | 2483637.       | 194564.             | 2883.       | 7.78             |
| 36      | 980.0           | 19948.       | 2678200.       | 204397.             | 2991.       | 7.97             |
| 37      | 990.0           | 20931.       | 2882597.       | 214231.             | 3119.       | 8.16             |
| 38      | 1000.0          | 21915.       | 3096828.       | 221066.             | 3228.       | 8.35             |
| 39      | 1010.0          | 22991.       | 3317899.       | 22695.              | 3400.       | 8.70             |
| 40      | 1020.0          | 23099.       | 3544880.       | 23695.              | 3600.       | 9.10             |
| 41      | 1030.0          | 24299.       | 3781865.       | 25733.              | 3800.       | 9.40             |
| 42      | 1040.0          | 27168.       | 4039198.       | 277682.             | 4000.       | 9.70             |
| 43      | 1050.0          | 28368.       | 4316880.       | 289682.             | 4600.       | 9.80             |
| 44      | 1060.0          | 29568.       | 4608562.       | 301682.             | 4800.       | 9.80             |
| 45      | 1070.0          | 30768.       | 4908243.       | 301682.             | 5000.       | 9.80             |

## INITIAL RESERVOIR WATER QUALITY DATA

| ELEMENT | ELEV   | CONS. 1 | CONS. 2 | CONS. 3 | NONCONS. 1 | NONCONS. 2 | NONCONS. 3 | O2 SOURCE/SINK | O2 100.00 |
|---------|--------|---------|---------|---------|------------|------------|------------|----------------|-----------|
| 1       | 630.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 2       | 640.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 3       | 650.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 4       | 660.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 5       | 670.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 6       | 680.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 7       | 690.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 8       | 700.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 9       | 710.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 10      | 720.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 11      | 730.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 12      | 740.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 13      | 750.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 14      | 760.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 15      | 770.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 16      | 780.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 17      | 790.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 18      | 800.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 19      | 810.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 20      | 820.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 21      | 830.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 22      | 840.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 23      | 850.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 24      | 860.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 25      | 870.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 26      | 880.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 27      | 890.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 28      | 900.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 29      | 910.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 30      | 920.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 31      | 930.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 32      | 940.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 33      | 950.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 34      | 960.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 35      | 970.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 36      | 980.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 37      | 990.0  | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 38      | 1000.0 | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 39      | 1010.0 | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 40      | 1020.0 | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 41      | 1030.0 | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 42      | 1040.0 | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 43      | 1050.0 | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 44      | 1060.0 | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |
| 45      | 1070.0 | 130.00  | 45.00   | 0.00    | 0.00       | 0.10       | 0.00       | 5.0            | 100.00    |

CONSTITUENT NO. 1 IS SPECIFIC CONDUCTANCE  
CONSTITUENT NO. 2 IS TOTAL ALKALINITY  
CONSTITUENT NO. 3 IS NOT BEING SIMULATED  
CONSTITUENT NO. 4 IS NOT BEING SIMULATED  
CONSTITUENT NO. 5 IS CARBOINACEOUS BOD  
CONSTITUENT NO. 6 IS AMMONIA AS N  
CONSTITUENT NO. 7 IS DISSOLVED OXYGEN

DECAY RATES AND CONVERSION FACTORS ARE

CONSTITUENT NO. 4 DECAY RATE = 0.0000  
CONSTITUENT NO. 5 DECAY RATE = 0.1000  
CONSTITUENT NO. 6 DECAY RATE = 0.0500  
CONSTITUENT NO. 5 CONVERSION FACTOR = 1.4650  
CONSTITUENT NO. 6 CONVERSION FACTOR = 4.5700

|                                                  |           |      |
|--------------------------------------------------|-----------|------|
| RESERVOIR NUMBER                                 | 2         | 3    |
| CONTROL POINT 1.D.                               |           |      |
| LAYER THICKNESS, FT                              |           | 10.0 |
| MAXIMUM WATER SURFACE ELEVATION, FT              | 587.5     |      |
| BOTTOM ELEVATION, FT                             | 437.5     |      |
| STARTING RESERVOIR VOLUME, ACFT                  | 22677.    |      |
| SECCHI DISK DEPTH, FT                            | 3.0       |      |
| DEPTH OF INITIAL SOLAR ENERGY ABSORPTION, FT     | 1.00      |      |
| FRACTION OF SOLAR ENERGY ABSORBED                | 0.60      |      |
| METEOROLOGICAL DATA ZONE<br>(U/S STREAM SEC.)    | 47500.    | 1    |
| WATER COLUMN MINIMUM STABILITY, KG/M3/M          | 0.10E-01  |      |
| WATER COLUMN CRITICAL STABILITY (GSNH), KG/M3/M  | 0.10E-05  |      |
| MAXIMUM ALLOWABLE DISPERSION (A1), M2/SEC        | 0.30E-04  |      |
| COEFFICIENT RELATING GRADIENT TO DISPERSION (A3) | -0.70E-09 |      |

#### OUTLET CHARACTERISTICS

|            | VIRTUAL WIDTH, FT | MAXIMUM FLOW, CFS | ELEMENT | ELEVATION, FT |
|------------|-------------------|-------------------|---------|---------------|
| SPILLWAY   | 200.00            | 248000.00         | 12      | 560.00        |
| WET WELL 1 | 1173.00           | 15000.00          | 8       | 514.00        |

#### GATE SELECTION SUBOPTIMIZATION FUNCTION

| CONSTITUENT | WEIGHTING | POLYNOMIAL FUNCTION COEFFICIENTS |
|-------------|-----------|----------------------------------|
| 1           | 1.00E+01  | 1.00E+02                         |
| 2           | 5.00E+00  | 1.00E+02                         |
| 3           | 3.00E+00  | 1.00E+02                         |
| 6           | 1.00E+00  | 1.00E+02                         |
| 7           | 3.00E+00  | 1.00E+02                         |
| 8           | 5.00E+00  | 1.00E+02                         |

## RESERVOIR GEOMETRY AND INITIAL TEMPERATURE

| ELEMENT | ELEVATION<br>FT | AREA<br>ACRE | VOLUME<br>ACFT | ELEMENT VOL<br>ACFT | WIDTH<br>FT | TEMPERATURE<br>C |
|---------|-----------------|--------------|----------------|---------------------|-------------|------------------|
| 1       | 437.5           | 50.          | 0.             | 594.                | 40.         | 9.00             |
| 2       | 447.5           | 67.          | 594.           | 752.                | 86.         | 9.00             |
| 3       | 457.5           | 86.          | 1346.          | 920.                | 132.        | 9.00             |
| 4       | 467.5           | 100.         | 2266.          | 1088.               | 178.        | 9.00             |
| 5       | 477.5           | 117.         | 3354.          | 1256.               | 226.        | 9.00             |
| 6       | 487.5           | 134.         | 4610.          | 1426.               | 270.        | 9.00             |
| 7       | 497.5           | 151.         | 6033.          | 1592.               | 315.        | 9.00             |
| 8       | 507.5           | 168.         | 7625.          | 1760.               | 361.        | 9.00             |
| 9       | 517.5           | 184.         | 9385.          | 1933.               | 407.        | 9.00             |
| 10      | 527.5           | 202.         | 11318.         | 2182.               | 452.        | 9.00             |
| 11      | 537.5           | 236.         | 13499.         | 2454.               | 486.        | 9.00             |
| 12      | 547.5           | 257.         | 15953.         | 2631.               | 513.        | 9.00             |
| 13      | 557.5           | 270.         | 18584.         | 2761.               | 539.        | 9.00             |
| 14      | 567.5           | 283.         | 21345.         | 2891.               | 565.        | 9.00             |
| 15      | 577.5           | 296.         | 24236.         | 4648.               | 591.        | 9.00             |
| 16      | 587.5           | 634.         | 28883.         | 4648.               | 1000.       | 9.00             |

## INITIAL RESERVOIR WATER QUALITY DATA

| ELEMENT | ELEV  | CONS.1 | CONS.2 | CONS.3 | NONCONS.1 | NONCONS.2 | NONCONS.3 | OXYGEN | O2 SOURCE/SINK |
|---------|-------|--------|--------|--------|-----------|-----------|-----------|--------|----------------|
| 1       | 437.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 2       | 447.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 3       | 457.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 4       | 467.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 5       | 477.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 6       | 487.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 7       | 497.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 8       | 507.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 9       | 517.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 10      | 527.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 11      | 537.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 12      | 547.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 13      | 557.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 14      | 567.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 15      | 577.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |
| 16      | 587.5 | 130.00 | 45.00  | 0.00   | 0.00      | 0.10      | 0.00      | 5.0    | 100.00         |

CONSTITUENT NO. 1 IS SPECIFIC CONDUCTANCE  
CONSTITUENT NO. 2 IS TOTAL ALKALINITY  
CONSTITUENT NO. 3 IS NOT BEING SIMULATED  
CONSTITUENT NO. 4 IS NOT BEING SIMULATED  
CONSTITUENT NO. 5 IS CARBONACEOUS BOD  
CONSTITUENT NO. 6 IS AMMONIA AS N  
CONSTITUENT NO. 7 IS DISSOLVED OXYGEN

DECAY RATES AND CONVERSION FACTORS ARE

|                                       |        |
|---------------------------------------|--------|
| CONSTITUENT NO. 4 DECAY RATE =        | 0.0000 |
| CONSTITUENT NO. 5 DECAY RATE =        | 0.1000 |
| CONSTITUENT NO. 6 DECAY RATE =        | 0.0500 |
| CONSTITUENT NO. 5 CONVERSION FACTOR = | 1.4430 |
| CONSTITUENT NO. 6 CONVERSION FACTOR = | 4.5700 |

| RESERVOIR NUMBER                                             | 3           | 13        |
|--------------------------------------------------------------|-------------|-----------|
| CONTROL POINT I.D.                                           |             |           |
| LAYER THICKNESS, FT                                          |             |           |
| MAXIMUM WATER SURFACE ELEVATION, FT                          | 14.0        | 923.0     |
| BOTTOM ELEVATION, FT                                         | 250.0       | 305953.   |
| STARTING RESERVOIR VOLUME, ACF                               |             |           |
| SECCHI DISK DEPTH, FT                                        | 10.0        |           |
| DEPTH OF INITIAL SOLAR ENERGY ABSORPTION, FT                 | 1.00        |           |
| FRACTION OF SOLAR ENERGY ABSORBED                            | 0.40        |           |
| METEOROLOGICAL DATA ZONE                                     |             | 1         |
| INFLOW I.D.    EFFECTIVE RES. LENGTH, FT                     | 2    30000. |           |
| WATER COLUMN MINIMUM STABILITY, KG/M <sup>3</sup> /M         |             | 0.10E-01  |
| WATER COLUMN CRITICAL STABILITY (GSMH), KG/M <sup>3</sup> /M |             | 0.10E-05  |
| MAXIMUM ALLOWABLE DISPERSION (A1), M <sup>2</sup> /SEC       |             | 0.30E-04  |
| COEFFICIENT RELATING GRADIENT TO DISPERSION (A3)             |             | -0.70E+00 |

#### OUTLET CHARACTERISTICS

|            | VIRTUAL WIDTH, FT | MAXIMUM FLOW, CFS | ELEMENT | ELEVATION, FT |
|------------|-------------------|-------------------|---------|---------------|
| SPILLWAY   | 180.00            | 350000.00         | 47      | 901.00        |
| WET WELL 1 | 10.00             | 4000.00           | 29      | 652.00        |
|            |                   |                   | 34      | 720.00        |
|            |                   |                   | 38      | 788.00        |
|            |                   |                   | 43      | 856.00        |
| WET WELL 2 | 10.00             | 4000.00           | 30      | 669.00        |
|            |                   |                   | 35      | 737.00        |
|            |                   |                   | 40      | 805.00        |
|            |                   |                   | 45      | 873.00        |

#### GATE SELECTION SUBOPTIMIZATION FUNCTION

| CONSTITUENT | WEIGHTING | POLYNOMIAL FUNCTION COEFFICIENTS                           |
|-------------|-----------|------------------------------------------------------------|
| 1           | 1.00E+01  | 1.00E+02    0.00E+00    -2.00E+00                          |
| 2           | 5.00E+00  | 1.00E+02    0.00E+00    -1.00E+01                          |
| 3           | 3.00E+00  | 1.00E+02    0.00E+00    -1.00E+01                          |
| 6           | 1.00E+00  | 1.00E+02    0.00E+00    -2.00E+00                          |
| 7           | 3.00E+00  | 1.00E+02    0.00E+00    -1.00E+01                          |
| 8           | 5.00E+00  | 1.00E+02    3.20E+00    -7.00E+01    1.00E-01    -5.00E-03 |

## RESERVOIR GEOMETRY AND INITIAL TEMPERATURE

| ELEMENT | ELEVATION<br>FT | AREA<br>ACRE | VOLUME<br>ACFT | ELEMENT VOL.<br>ACFT | WIDTH<br>FT | TEMPERATURE<br>C |
|---------|-----------------|--------------|----------------|----------------------|-------------|------------------|
| 1       | 250.0           | 70.          | 0.             | 2411.                | 200.        | 6.67             |
| 2       | 264.0           | 132.         | 2411.          | 2274.                | 256.        | 6.67             |
| 3       | 278.0           | 193.         | 4485.          | 3136.                | 312.        | 6.67             |
| 4       | 292.0           | 255.         | 7821.          | 4066.                | 368.        | 6.67             |
| 5       | 306.0           | 326.         | 11886.         | 5152.                | 424.        | 6.67             |
| 6       | 320.0           | 410.         | 17038.         | 6328.                | 480.        | 6.67             |
| 7       | 334.0           | 494.         | 23366.         | 7504.                | 536.        | 6.67             |
| 8       | 348.0           | 578.         | 30870.         | 9083.                | 592.        | 6.67             |
| 9       | 362.0           | 720.         | 39954.         | 11133.               | 648.        | 6.67             |
| 10      | 376.0           | 871.         | 51086.         | 13250.               | 704.        | 6.67             |
| 11      | 390.0           | 1022.        | 64336.         | 15434.               | 760.        | 6.67             |
| 12      | 404.0           | 1183.        | 79770.         | 17853.               | 816.        | 6.67             |
| 13      | 418.0           | 1348.        | 97622.         | 20440.               | 872.        | 6.67             |
| 14      | 432.0           | 1552.        | 118062.        | 23027.               | 928.        | 6.67             |
| 15      | 446.0           | 1737.        | 141090.        | 26006.               | 984.        | 6.67             |
| 16      | 460.0           | 1978.        | 167096.        | 29534.               | 1004.       | 6.67             |
| 17      | 474.0           | 2241.        | 194630.        | 33219.               | 1096.       | 6.67             |
| 18      | 488.0           | 2504.        | 229850.        | 36882.               | 1152.       | 6.67             |
| 19      | 502.0           | 2764.        | 266731.        | 40387.               | 1208.       | 6.67             |
| 20      | 516.0           | 3005.        | 307118.        | 43758.               | 1264.       | 6.67             |
| 21      | 530.0           | 3246.        | 350877.        | 47150.               | 1320.       | 6.67             |
| 22      | 544.0           | 3487.        | 398006.        | 50904.               | 1376.       | 6.67             |
| 23      | 558.0           | 3785.        | 448910.        | 55384.               | 1432.       | 6.67             |
| 24      | 572.0           | 4127.        | 504294.        | 60166.               | 1488.       | 6.67             |
| 25      | 586.0           | 4468.        | 564461.        | 64949.               | 1544.       | 6.67             |
| 26      | 600.0           | 4810.        | 629610.        | 69810.               | 1600.       | 6.67             |
| 27      | 614.0           | 5163.        | 699219.        | 74769.               | 1656.       | 6.67             |
| 28      | 628.0           | 5516.        | 773968.        | 79688.               | 1712.       | 6.67             |
| 29      | 642.0           | 5868.        | 8534656.       | 84896.               | 1768.       | 6.67             |
| 30      | 656.0           | 6260.        | 938552.        | 90751.               | 1824.       | 6.80             |
| 31      | 670.0           | 6702.        | 1029283.       | 96925.               | 1880.       | 7.11             |
| 32      | 684.0           | 7144.        | 1126208.       | 103118.              | 1936.       | 7.42             |
| 33      | 698.0           | 7587.        | 1229326.       | 109312.              | 1992.       | 7.74             |
| 34      | 712.0           | 8029.        | 1338638.       | 115506.              | 2072.       | 8.18             |
| 35      | 726.0           | 8472.        | 1454144.       | 121699.              | 2156.       | 8.64             |
| 36      | 740.0           | 8914.        | 1575863.       | 128206.              | 2240.       | 9.11             |
| 37      | 754.0           | 9401.        | 1704050.       | 135811.              | 2324.       | 9.71             |
| 38      | 768.0           | 10000.       | 1839861.       | 144200.              | 2408.       | 10.65            |
| 39      | 782.0           | 10600.       | 1984061.       | 152589.              | 2492.       | 11.59            |
| 40      | 796.0           | 11199.       | 2136650.       | 160866.              | 2576.       | 12.53            |
| 41      | 810.0           | 11782.       | 2297515.       | 168986.              | 2630.       | 12.24            |
| 42      | 824.0           | 12359.       | 2466501.       | 177061.              | 2792.       | 11.46            |
| 43      | 838.0           | 12936.       | 2643562.       | 185340.              | 2904.       | 10.67            |
| 44      | 852.0           | 13544.       | 2828922.       | 195227.              | 3012.       | 10.11            |
| 45      | 866.0           | 14345.       | 3024149.       | 206438.              | 3096.       | 10.90            |
| 46      | 880.0           | 15146.       | 3230587.       | 217650.              | 3130.       | 11.68            |
| 47      | 894.0           | 15947.       | 3448237.       | 198627.              | 3264.       | 12.46            |
| 48      | 908.0           | 16249.       | 3644864.       | 126696.              | 3370.       | 12.80            |
| 49      | 922.0           | 5671.        | 3773560.       | 3491.                |             |                  |

## INITIAL RESERVOIR WATER QUALITY DATA

| ELEMENT | ELEV  | CONS. 1 | CONS. 2 | CONS. 3 | NONCONS. 1 | NONCONS. 2 | NONCONS. 3 | O2 SOURCE/SINK |
|---------|-------|---------|---------|---------|------------|------------|------------|----------------|
| 1       | 250.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 0.00       | 100.00         |
| 2       | 264.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 0.6        | 100.00         |
| 3       | 278.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 0.8        | 100.00         |
| 4       | 292.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 0.9        | 100.00         |
| 5       | 306.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 1.1        | 100.00         |
| 6       | 320.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 1.2        | 100.00         |
| 7       | 334.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 1.3        | 100.00         |
| 8       | 348.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 1.5        | 100.00         |
| 9       | 362.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 1.6        | 100.00         |
| 10      | 376.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 1.8        | 100.00         |
| 11      | 390.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 1.9        | 100.00         |
| 12      | 404.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 2.0        | 100.00         |
| 13      | 418.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 2.2        | 100.00         |
| 14      | 432.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 2.3        | 100.00         |
| 15      | 446.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 2.5        | 100.00         |
| 16      | 460.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 2.6        | 100.00         |
| 17      | 474.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 2.7        | 100.00         |
| 18      | 488.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 2.9        | 100.00         |
| 19      | 502.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 3.0        | 100.00         |
| 20      | 516.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 3.2        | 100.00         |
| 21      | 530.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 3.3        | 100.00         |
| 22      | 544.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 3.4        | 100.00         |
| 23      | 558.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 3.6        | 100.00         |
| 24      | 572.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 3.7        | 100.00         |
| 25      | 586.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 3.9        | 100.00         |
| 26      | 600.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 4.0        | 100.00         |
| 27      | 614.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 4.3        | 100.00         |
| 28      | 628.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 4.6        | 100.00         |
| 29      | 642.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 4.8        | 100.00         |
| 30      | 656.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 5.1        | 100.00         |
| 31      | 670.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 5.4        | 100.00         |
| 32      | 684.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 5.7        | 100.00         |
| 33      | 698.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 6.0        | 100.00         |
| 34      | 712.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 6.2        | 100.00         |
| 35      | 726.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 6.5        | 100.00         |
| 36      | 740.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 6.8        | 100.00         |
| 37      | 754.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 7.1        | 100.00         |
| 38      | 768.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 7.4        | 100.00         |
| 39      | 782.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 7.6        | 100.00         |
| 40      | 796.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 7.9        | 100.00         |
| 41      | 810.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 8.2        | 100.00         |
| 42      | 824.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 8.5        | 100.00         |
| 43      | 838.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 8.8        | 100.00         |
| 44      | 852.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 9.0        | 100.00         |
| 45      | 866.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 9.3        | 100.00         |
| 46      | 880.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 9.6        | 100.00         |
| 47      | 894.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 9.9        | 100.00         |
| 48      | 908.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 10.0       | 100.00         |
| 49      | 922.0 | 62.00   | 40.00   | 0.00    | 0.00       | 0.00       | 10.0       | 100.00         |

CONSTITUENT NO. 1 IS SPECIFIC CONDUCTANCE  
CONSTITUENT NO. 2 IS TOTAL ALKALINITY  
CONSTITUENT NO. 3 IS NOT BEING SIMULATED  
CONSTITUENT NO. 4 IS NOT BEING SIMULATED  
CONSTITUENT NO. 5 IS CARBONACEOUS BOD  
CONSTITUENT NO. 6 IS AMMONIA AS N  
CONSTITUENT NO. 7 IS DISSOLVED OXYGEN

DECAY RATES AND CONVERSION FACTORS ARE

CONSTITUENT NO. 4 DECAY RATE = 0.0000  
CONSTITUENT NO. 5 DECAY RATE = 0.1000  
CONSTITUENT NO. 6 DECAY RATE = 0.0500  
CONSTITUENT NO. 5 CONVERSION FACTOR = 1.4630  
CONSTITUENT NO. 6 CONVERSION FACTOR = 4.5700

RESERVOIR NUMBER 4

CONTROL POINT I.D.

20

|                                                  |           |
|--------------------------------------------------|-----------|
| LAYER THICKNESS, FT                              | 7.0       |
| MAXIMUM WATER SURFACE ELEVATION, FT              | 480.0     |
| BOTTOM ELEVATION, FT                             | 225.0     |
| STARTING RESERVOIR VOLUME, ACF                   | 832100.   |
| SECCHI DISK DEPTH, FT                            | 12.0      |
| DEPTH OF INITIAL SOLAR ENERGY ABSORPTION, FT     | 2.00      |
| FRACTION OF SOLAR ENERGY ABSORBED                | 0.40      |
| METEOROLOGICAL DATA ZONE                         | 1         |
| INFLOW I.D.                                      | 3         |
| EFFECTIVE RES. LENGTH, FT                        | 264.00    |
| WATER COLUMN MINIMUM STABILITY, KG/M3/M          | 0.10E-01  |
| WATER COLUMN CRITICAL STABILITY (CSWR), KG/M3/M  | 0.10E-05  |
| MAXIMUM ALLOWABLE DISPERSION (A1), M2/SEC        | 0.10E-03  |
| COEFFICIENT RELATING GRADIENT TO DISPERSION (A3) | -0.70E+00 |

## OUTLET CHARACTERISTICS

|            | VIRTUAL WIDTH, FT | MAXIMUM FLOW, CFS | ELEMENT | ELEVATION, FT |
|------------|-------------------|-------------------|---------|---------------|
| SPILLWAY   | 336.00            | 567000.00         | 28      | 418.00        |
| WET WELL 1 | 10.40             | 8000.00           | 12      | 307.00        |

## GATE SELECTION SUBOPTIMIZATION FUNCTION

## CONSTITUENT WEIGHTING POLYNOMIAL FUNCTION COEFFICIENTS

|   |          |          |          |           |
|---|----------|----------|----------|-----------|
| 1 | 1.00E+01 | 1.00E+02 | 0.00E+00 | -2.00E+00 |
| 2 | 5.00E+00 | 1.00E+02 | 0.00E+00 | -1.00E-01 |
| 3 | 3.00E+00 | 1.00E+02 | 0.00E+00 | -1.00E-01 |
| 6 | 1.00E+00 | 1.00E+02 | 0.00E+00 | -2.00E-00 |
| 7 | 3.00E+00 | 1.00E+02 | 0.00E+00 | -1.00E-01 |
| 8 | 5.00E+00 | 1.00E+02 | 3.20E+00 | -7.00E-01 |
|   |          |          | 1.00E-01 | -5.00E-03 |

## RESERVOIR GEOMETRY AND INITIAL TEMPERATURE

| ELEMENT | ELEVATION<br>FT | AREA<br>ACRE | VOLUME<br>ACFT | ELEMENT VOL<br>ACFT | WIDTH<br>FT | TEMPERATURE<br>C |
|---------|-----------------|--------------|----------------|---------------------|-------------|------------------|
| 1       | 225.0           | 90.          | 0.             | 2002.               | 100.        | 8.00             |
| 2       | 232.0           | 196.         | 2002.          | 1747.               | 212.        | 8.00             |
| 3       | 239.0           | 303.         | 3750.          | 2492.               | 324.        | 8.00             |
| 4       | 246.0           | 409.         | 6262.          | 3220.               | 436.        | 8.00             |
| 5       | 253.0           | 511.         | 9462.          | 3909.               | 560.        | 8.06             |
| 6       | 260.0           | 606.         | 13370.         | 4575.               | 700.        | 8.20             |
| 7       | 267.0           | 701.         | 17946.         | 5242.               | 840.        | 8.34             |
| 8       | 274.0           | 796.         | 23187.         | 5942.               | 980.        | 8.48             |
| 9       | 281.0           | 901.         | 29129.         | 6681.               | 1240.       | 8.50             |
| 10      | 288.0           | 1008.        | 35910.         | 7426.               | 1520.       | 8.50             |
| 11      | 295.0           | 1114.        | 43235.         | 8294.               | 1800.       | 8.50             |
| 12      | 302.0           | 1256.        | 51529.         | 9593.               | 2080.       | 8.54             |
| 13      | 309.0           | 1485.        | 61122.         | 11200.              | 2360.       | 8.68             |
| 14      | 316.0           | 1715.        | 72322.         | 12807.              | 2640.       | 8.82             |
| 15      | 323.0           | 1944.        | 85129.         | 14554.              | 2920.       | 8.96             |
| 16      | 330.0           | 2214.        | 99683.         | 16498.              | 3200.       | 9.06             |
| 17      | 337.0           | 2500.        | 116181.        | 18497.              | 3480.       | 9.14             |
| 18      | 344.0           | 2785.        | 134678.        | 20614.              | 3760.       | 9.23             |
| 19      | 351.0           | 3104.        | 155291.        | 23554.              | 4040.       | 9.33             |
| 20      | 358.0           | 3425.        | 178845.        | 27199.              | 4320.       | 9.52             |
| 21      | 365.0           | 4146.        | 206044.        | 30845.              | 4600.       | 9.72             |
| 22      | 372.0           | 4667.        | 236889.        | 34558.              | 4880.       | 9.92             |
| 23      | 379.0           | 5207.        | 271446.        | 38388.              | 5160.       | 10.43            |
| 24      | 386.0           | 5761.        | 309834.        | 42269.              | 5440.       | 11.19            |
| 25      | 393.0           | 6316.        | 352103.        | 46150.              | 5720.       | 11.94            |
| 26      | 400.0           | 6870.        | 398253.        | 50107.              | 6000.       | 12.70            |
| 27      | 407.0           | 7446.        | 448360.        | 54142.              | 6389.       | 12.93            |
| 28      | 414.0           | 8023.        | 502503.        | 57984.              | 6778.       | 13.17            |
| 29      | 421.0           | 8544.        | 560487.        | 61374.              | 7094.       | 13.30            |
| 30      | 428.0           | 8991.        | 621861.        | 64506.              | 7312.       | 13.30            |
| 31      | 435.0           | 9439.        | 686367.        | 67639.              | 7531.       | 13.30            |
| 32      | 442.0           | 9886.        | 754006.        | 70771.              | 7750.       | 13.30            |
| 33      | 449.0           | 10334.       | 824776.        | 73908.              | 7969.       | 13.30            |
| 34      | 456.0           | 10783.       | 898685.        | 77052.              | 8240.       | 13.30            |
| 35      | 463.0           | 11232.       | 975737.        | 80197.              | 8520.       | 13.30            |
| 36      | 470.0           | 11681.       | 1055934.       | 83446.              | 8800.       | 13.30            |
| 37      | 477.0           | 12160.       | 1139380.       | 83446.              | 9400.       | 13.30            |

INITIAL RESERVOIR WATER QUALITY DATA

|    | ELEMENT | ELEV  | CONS.1 | MONCONS.1 | NONCONS.1 | OXYGEN | SOURCE/SINK |
|----|---------|-------|--------|-----------|-----------|--------|-------------|
| 1  | 225.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  | 02          |
| 2  | 232.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 3  | 239.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 4  | 246.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 5  | 253.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 6  | 260.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 7  | 267.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 8  | 274.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 9  | 281.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 10 | 288.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 11 | 295.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 12 | 302.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 13 | 309.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 14 | 316.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 15 | 323.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 16 | 330.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 17 | 337.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 18 | 344.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 19 | 351.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 20 | 358.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 21 | 365.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 22 | 372.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 23 | 379.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 24 | 386.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 25 | 393.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 26 | 400.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 27 | 407.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 28 | 414.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 29 | 421.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 30 | 428.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 31 | 435.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 32 | 442.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 33 | 449.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 34 | 456.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 35 | 463.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 36 | 470.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |
| 37 | 477.0   | 70.00 | 20.00  | 0.00      | 0.00      | 10.00  |             |

CONSTITUENT NO. 1 IS SPECIFIC CONDUCTANCE  
CONSTITUENT NO. 2 IS TOTAL ALKALINITY  
CONSTITUENT NO. 3 IS NOT SIMULATED  
CONSTITUENT NO. 4 IS NOT BEING SIMULATED  
CONSTITUENT NO. 5 IS CARBONACEOUS BOD  
CONSTITUENT NO. 6 IS AMMONIA AS N  
CONSTITUENT NO. 7 IS DISSOLVED OXYGEN

DECAY RATES AND CONVERSION FACTORS ARE

CONSTITUENT NO. 4 DECAY RATE = 0.0000  
CONSTITUENT NO. 5 DECAY RATE = 0.1000  
CONSTITUENT NO. 6 DECAY RATE = 0.0500  
CONSTITUENT NO. 5 CONVERSION FACTOR = 1.4530  
CONSTITUENT NO. 6 CONVERSION FACTOR = 4.5700

THERMAL ADJUSTMENT FACTORS FOR

CONSTITUENT NO. 4 DECAY RATE = 1.0470  
CONSTITUENT NO. 5 DECAY RATE = 1.0470  
CONSTITUENT NO. 6 DECAY RATE = 1.0470  
OXYGEN REAERATION RATE = 1.0159

## STREAM RELATED DATA

PRINTOUT INTERVAL, DAYS 30  
 PRINTOUT INTERVAL, ELEMENTS 1  
 CROSS SECTION PRINT CONTROL 0  
 NUMBER OF CROSS SECTIONS 95  
 POINTS DEFINING CROSS SECTION GEOMETRY 21  
 X-SECTION WIDTH ADJUSTMENT RATIO 1.00

## STREAM REACH DATA

| REACH | UP STREAM CP. | UP STREAM LOC. | DOWN STREAM CP. | DOWN STREAM LOC. | ELT LENGTH MILE | TRIB LOCATIONS AND NUMBER |
|-------|---------------|----------------|-----------------|------------------|-----------------|---------------------------|
| 1     | 1             | 303.8          | 2               | 300.0            | 1.90            | 300.0 4 0.0               |
| 2     | 3             | 294.6          | 4               | 275.9            | 4.66            | 280.1 5 0.0               |
| 3     | 4             | 275.9          | 5               | 271.3            | 2.33            | 273.2 6 0.0               |
| 4     | 5             | 271.3          | 6               | 262.0            | 4.66            | 271.2 7 0.0               |
| 5     | 6             | 262.0          | 7               | 243.3            | 4.66            | 0.0 0.0                   |
| 6     | 7             | 243.3          | 8               | 206.0            | 4.66            | 225.1 8 0.0               |
| 7     | 8             | 206.0          | 9               | 196.7            | 4.66            | 0.0 0.0                   |
| 8     | 9             | 196.7          | 10              | 168.8            | 4.66            | 0.0 0.0                   |
| 9     | 10            | 168.8          | 11              | 140.8            | 4.66            | 0.0 0.0                   |
| 10    | 11            | 140.8          | 12              | 117.5            | 4.66            | 0.0 0.0                   |
| 11    | 12            | 117.5          | 19              | 80.2             | 4.66            | 0.0 0.0                   |
| 12    | 13            | 75.4           | 14              | 71.8             | 1.78            | 75.0 9 0.0                |
| 13    | 14            | 71.8           | 15              | 58.8             | 3.25            | 58.8 9 0.0                |
| 14    | 15            | 58.8           | 16              | 45.6             | 3.32            | 0.0 0.0                   |
| 15    | 16            | 45.6           | 17              | 26.3             | 2.41            | 29.7 10 0.0               |
| 16    | 17            | 26.3           | 18              | 6.6              | 4.37            | 12.3 11 0.0               |
| 17    | 18            | 8.8            | 19              | 0.0              | 4.38            | 0.0 0.0                   |
| 18    | 19            | 80.2           | 22              | 59.6             | 4.12            | 0.0 0.0                   |
| 19    | 20            | 28.5           | 21              | 20.9             | 2.53            | 0.0 0.0                   |
| 20    | 21            | 20.9           | 22              | 0.0              | 4.19            | 0.0 0.0                   |
| 21    | 22            | 59.6           | 23              | 38.3             | 2.67            | 0.0 0.0                   |

## METEOROLOGICAL AND REAERATION CONTROLS

| ELEMENT | LOCATION | MET. ZONE | K2 METHOD             | K2(LIF SET) | POINT K2 |
|---------|----------|-----------|-----------------------|-------------|----------|
| 1       | 302.85   | 1         | (OCONNER AND DORBINS) |             |          |
| 2       | 300.95   | 2         | (OCONNER AND DORBINS) |             |          |
| 3       | 292.25   | 3         | (OCONNER AND DORBINS) |             |          |
| 4       | 287.59   | 1         | (OCONNER AND DORBINS) |             |          |
| 5       | 282.93   | 1         | (OCONNER AND DORBINS) |             |          |
| 6       | 278.27   | 4         | (OCONNER AND DORBINS) |             |          |
| 7       | 274.77   | 4         | (OCONNER AND DORBINS) |             |          |
| 8       | 272.44   | 5         | (OCONNER AND DORBINS) |             |          |
| 9       | 268.95   | 5         | (OCONNER AND DORBINS) |             |          |
| 10      | 264.29   | 6         | (OCONNER AND DORBINS) |             |          |
| 11      | 259.63   | 6         | (OCONNER AND DORBINS) |             |          |
| 12      | 254.97   | 1         | (OCONNER AND DORBINS) |             |          |
| 13      | 250.31   | 1         | (OCONNER AND DORBINS) |             |          |
| 14      | 245.65   | 7         | (OCONNER AND DORBINS) |             |          |

|    |        |    |  |   |                      |
|----|--------|----|--|---|----------------------|
| 15 | 240.99 | 7  |  | 1 | (COONER AND DOBBINS) |
| 16 | 236.33 |    |  | 1 | (COONER AND DOBBINS) |
| 17 | 231.67 |    |  | 1 | (COONER AND DOBBINS) |
| 18 | 227.01 |    |  | 1 | (COONER AND DOBBINS) |
| 19 | 222.35 |    |  | 1 | (COONER AND DOBBINS) |
| 20 | 217.69 |    |  | 1 | (COONER AND DOBBINS) |
| 21 | 213.03 |    |  | 1 | (COONER AND DOBBINS) |
| 22 | 208.37 | 6  |  | 1 | (COONER AND DOBBINS) |
| 23 | 203.71 | 8  |  | 1 | (COONER AND DOBBINS) |
| 24 | 199.05 | 9  |  | 1 | (COONER AND DOBBINS) |
| 25 | 194.39 | 9  |  | 1 | (COONER AND DOBBINS) |
| 26 | 189.73 |    |  | 1 | (COONER AND DOBBINS) |
| 27 | 185.07 |    |  | 1 | (COONER AND DOBBINS) |
| 28 | 180.41 |    |  | 1 | (COONER AND DOBBINS) |
| 29 | 175.75 |    |  | 1 | (COONER AND DOBBINS) |
| 30 | 171.09 | 10 |  | 1 | (COONER AND DOBBINS) |
| 31 | 166.43 | 10 |  | 1 | (COONER AND DOBBINS) |
| 32 | 161.77 |    |  | 1 | (COONER AND DOBBINS) |
| 33 | 157.11 |    |  | 1 | (COONER AND DOBBINS) |
| 34 | 152.45 |    |  | 1 | (COONER AND DOBBINS) |
| 35 | 147.79 |    |  | 1 | (COONER AND DOBBINS) |
| 36 | 143.13 | 11 |  | 1 | (COONER AND DOBBINS) |
| 37 | 138.47 | 11 |  | 1 | (COONER AND DOBBINS) |
| 38 | 133.81 |    |  | 1 | (COONER AND DOBBINS) |
| 39 | 129.15 |    |  | 1 | (COONER AND DOBBINS) |
| 40 | 124.49 |    |  | 1 | (COONER AND DOBBINS) |
| 41 | 119.83 | 12 |  | 1 | (COONER AND DOBBINS) |
| 42 | 115.17 | 12 |  | 1 | (COONER AND DOBBINS) |
| 43 | 110.51 |    |  | 1 | (COONER AND DOBBINS) |
| 44 | 105.85 |    |  | 1 | (COONER AND DOBBINS) |
| 45 | 101.19 |    |  | 1 | (COONER AND DOBBINS) |
| 46 | 96.53  |    |  | 1 | (COONER AND DOBBINS) |
| 47 | 91.87  |    |  | 1 | (COONER AND DOBBINS) |
| 48 | 87.21  |    |  | 1 | (COONER AND DOBBINS) |
| 49 | 82.55  | 19 |  | 1 | (COONER AND DOBBINS) |
| 50 | 78.89  |    |  | 1 | (COONER AND DOBBINS) |
| 51 | 75.23  | 13 |  | 1 | (COONER AND DOBBINS) |
| 52 | 72.71  | 14 |  | 1 | (COONER AND DOBBINS) |
| 53 | 70.20  | 14 |  | 1 | (COONER AND DOBBINS) |
| 54 | 66.95  |    |  | 1 | (COONER AND DOBBINS) |
| 55 | 63.71  |    |  | 1 | (COONER AND DOBBINS) |
| 56 | 60.46  | 15 |  | 1 | (COONER AND DOBBINS) |
| 57 | 57.18  | 15 |  | 1 | (COONER AND DOBBINS) |
| 58 | 53.86  |    |  | 1 | (COONER AND DOBBINS) |
| 59 | 50.54  |    |  | 1 | (COONER AND DOBBINS) |
| 60 | 47.22  | 16 |  | 1 | (COONER AND DOBBINS) |
| 61 | 44.35  | 16 |  | 1 | (COONER AND DOBBINS) |
| 62 | 41.94  |    |  | 1 | (COONER AND DOBBINS) |
| 63 | 39.53  |    |  | 1 | (COONER AND DOBBINS) |
| 64 | 37.11  |    |  | 1 | (COONER AND DOBBINS) |
| 65 | 34.70  |    |  | 1 | (COONER AND DOBBINS) |
| 66 | 32.28  |    |  | 1 | (COONER AND DOBBINS) |
| 67 | 29.87  |    |  | 1 | (COONER AND DOBBINS) |
| 68 | 27.46  | 17 |  | 1 | (COONER AND DOBBINS) |
| 69 | 24.06  | 17 |  | 1 | (COONER AND DOBBINS) |
|    | 19.69  |    |  | 1 | (COONER AND DOBBINS) |

|       |       |    |                      |
|-------|-------|----|----------------------|
| 15.32 | 18    | 1  | (COONER AND DOBBINS) |
| 10.95 | 18    | 1  | (COONER AND DOBBINS) |
| 6.57  | 18    | 1  | (COONER AND DOBBINS) |
| 72    | 2.19  | 19 | (COONER AND DOBBINS) |
| 73    | 78.16 | 19 | (COONER AND DOBBINS) |
| 74    | 74.05 | 1  | (COONER AND DOBBINS) |
| 75    | 69.93 | 1  | (COONER AND DOBBINS) |
| 76    | 65.81 | 1  | (COONER AND DOBBINS) |
| 77    | 18.84 | 21 | (COONER AND DOBBINS) |
| 78    | 61.70 | 22 | (COONER AND DOBBINS) |
| 79    | 27.26 | 20 | (COONER AND DOBBINS) |
| 80    | 24.73 | 22 | (COONER AND DOBBINS) |
| 81    | 22.20 | 21 | (COONER AND DOBBINS) |
| 82    | 14.65 | 1  | (COONER AND DOBBINS) |
| 83    | 10.46 | 1  | (COONER AND DOBBINS) |
| 84    | 6.28  | 1  | (COONER AND DOBBINS) |
| 85    | 2.09  | 22 | (COONER AND DOBBINS) |
| 86    | 58.31 | 22 | (COONER AND DOBBINS) |
| 87    | 55.64 | 1  | (COONER AND DOBBINS) |
| 88    | 52.97 | 1  | (COONER AND DOBBINS) |
| 89    | 50.30 | 1  | (COONER AND DOBBINS) |
| 90    | 47.63 | 1  | (COONER AND DOBBINS) |
| 91    | 44.96 | 1  | (COONER AND DOBBINS) |
| 92    | 42.29 | 1  | (COONER AND DOBBINS) |
| 93    | 39.62 | 23 | (COONER AND DOBBINS) |

\*\*\* WARNING \*\*\* ZERO HYDRAULIC SLOPE BETWEEN CROSS-SECTIONS 51 AND 52  
\*\*\*\*\* SLOPE SET TO .0001 \*\*\*\*\*  
\*\*\* WARNING \*\*\* ZERO HYDRAULIC SLOPE BETWEEN CROSS-SECTIONS 49 AND 75  
\*\*\*\*\* SLOPE SET TO .0001 \*\*\*\*\*

| REACH NO | DECAY RATES FOR STREAM REACHES |        |        |
|----------|--------------------------------|--------|--------|
|          | CONS 4                         | CONS 5 | CONS 6 |
| 1        | 0.100                          | 0.100  | 0.050  |
| 2        | 0.100                          | 0.100  | 0.050  |
| 3        | 0.100                          | 0.100  | 0.050  |
| 4        | 0.100                          | 0.100  | 0.050  |
| 5        | 0.100                          | 0.100  | 0.050  |
| 6        | 0.100                          | 0.100  | 0.050  |
| 7        | 0.100                          | 0.100  | 0.050  |
| 8        | 0.100                          | 0.100  | 0.050  |
| 9        | 0.100                          | 0.100  | 0.050  |
| 10       | 0.100                          | 0.100  | 0.050  |
| 11       | 0.100                          | 0.100  | 0.050  |
| 12       | 0.100                          | 0.100  | 0.050  |
| 13       | 0.100                          | 0.100  | 0.050  |
| 14       | 0.100                          | 0.100  | 0.050  |
| 15       | 0.100                          | 0.100  | 0.050  |
| 16       | 0.100                          | 0.100  | 0.050  |
| 17       | 0.100                          | 0.100  | 0.050  |
| 18       | 0.100                          | 0.100  | 0.050  |
| 19       | 0.100                          | 0.100  | 0.050  |
| 20       | 0.100                          | 0.100  | 0.050  |
| 21       | 0.100                          | 0.100  | 0.050  |

## CONTROL POINT 1

| TEMPERATURE OBJECTIVES, C |        | WEIGHTING | RESERVOIRS SPECIFIED FOR FLOW AUGMENTATION CONTROL |   |   |   |
|---------------------------|--------|-----------|----------------------------------------------------|---|---|---|
| DATE                      | TARGET | 1.00      | 0.00                                               | 0 | 0 | 0 |
| 790401                    | 12.00  | 1.00      | 0.00                                               | 0 | 0 | 0 |
| -791031                   | 12.00  | 1.00      | 0.00                                               | 0 | 0 | 0 |

  

| SPECIFIC CONDUCTANCE |        | WEIGHTING | RESERVOIRS SPECIFIED FOR FLOW AUGMENTATION CONTROL |   |   |   |
|----------------------|--------|-----------|----------------------------------------------------|---|---|---|
| DATE                 | TARGET | 1.00      | 0.00                                               | 0 | 0 | 0 |
| 790401               | 130.00 | 1.00      | 0.00                                               | 0 | 0 | 0 |
| -791031              | 130.00 | 1.00      | 0.00                                               | 0 | 0 | 0 |

## TOTAL ALKALINITY

| DATE    | TARGET | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING |
|---------|--------|-----------|-----------|-----------|-----------|-----------|
| 790401  | 60.00  | 1.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| -791031 | 60.00  | 1.00      | 0.00      | 0.00      | 0.00      | 0.00      |

## CARBONACEOUS BOD

| DATE    | TARGET | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING |
|---------|--------|-----------|-----------|-----------|-----------|-----------|
| 790401  | 5.00   | 1.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| -791031 | 5.00   | 1.00      | 0.00      | 0.00      | 0.00      | 0.00      |

## AMMONIA AS N

| DATE    | TARGET | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING |
|---------|--------|-----------|-----------|-----------|-----------|-----------|
| 790401  | 0.10   | 1.00      | 0.00      | 0.00      | 0.00      | 0.00      |
| -791031 | 0.10   | 1.00      | 0.00      | 0.00      | 0.00      | 0.00      |

## DISSOLVED OXYGEN

| DATE    | TARGET | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING |
|---------|--------|-----------|-----------|-----------|-----------|-----------|
| 790401  | 5.00   | 0.00      | 1.00      | 0.00      | 0.00      | 0.00      |
| -791031 | 5.00   | 0.00      | 1.00      | 0.00      | 0.00      | 0.00      |

## CONTROL POINT 2

## TEMPERATURE OBJECTIVES, C

| DATE    | TARGET | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING |
|---------|--------|-----------|-----------|-----------|-----------|-----------|
| 790401  | 12.00  | 1.00      | 0.00      | 0.00      | 0         | 0         |
| -791031 | 12.00  | 1.00      | 0.00      | 0.00      | 0         | 0         |

## SPECIFIC CONDUCTANCE

| DATE    | TARGET | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING |
|---------|--------|-----------|-----------|-----------|-----------|-----------|
| 790401  | 130.00 | 1.00      | 0.00      | 0.00      | 0         | 0         |
| -791031 | 130.00 | 1.00      | 0.00      | 0.00      | 0         | 0         |

## TOTAL ALKALINITY

| DATE    | TARGET | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING | WEIGHTING |
|---------|--------|-----------|-----------|-----------|-----------|-----------|
| 790401  | 60.00  | 1.00      | 0.00      | 0.00      | 0         | 0         |
| -791031 | 60.00  | 1.00      | 0.00      | 0.00      | 0         | 0         |

Most of the Control Point Target records (CT)  
have been deleted from this listing.

CONTROL POINT 23

| TEMPERATURE OBJECTIVES, C | DATE   | TARGET | WEIGHTING | RESERVOIRS SPECIFIED FOR FLOW AUGMENTATION | CONTROL |
|---------------------------|--------|--------|-----------|--------------------------------------------|---------|
|                           | 790401 | 14.00  | 1.00      | 0.00                                       | 0 0     |
|                           | 790516 | 19.00  | 1.00      | 0.00                                       | 0 0     |
|                           | 790614 | 21.50  | 1.00      | 0.00                                       | 0 0     |
|                           | 790726 | 22.50  | 1.00      | 0.00                                       | 0 0     |
|                           | 790823 | 21.00  | 1.00      | 0.00                                       | 0 0     |
|                           | 790913 | 21.50  | 1.00      | 0.00                                       | 0 0     |
|                           | 791031 | 19.00  | 1.00      | 0.00                                       | 0 0     |

SPECIFIC CONDUCTANCE

| DATE   | TARGET | WEIGHTING | WEIGHTING |
|--------|--------|-----------|-----------|
| 790401 | 150.00 | 1.00      | 0.00      |
| 790515 | 130.00 | 1.00      | 0.00      |
| 790612 | 148.00 | 1.00      | 0.00      |
| 790726 | 130.00 | 1.00      | 0.00      |
| 790823 | 157.00 | 1.00      | 0.00      |
| 790913 | 189.00 | 1.00      | 0.00      |
| 791031 | 190.00 | 1.00      | 0.00      |

TOTAL ALKALINITY

| DATE   | TARGET | WEIGHTING | WEIGHTING |
|--------|--------|-----------|-----------|
| 790401 | 64.00  | 1.00      | 0.00      |
| 790515 | 43.00  | 1.00      | 0.00      |
| 790612 | 51.00  | 1.00      | 0.00      |
| 790726 | 48.00  | 1.00      | 0.00      |
| 790823 | 69.00  | 1.00      | 0.00      |
| 790913 | 72.00  | 1.00      | 0.00      |
| 791031 | 72.00  | 1.00      | 0.00      |

790401  
791031  
214  
**FIRST DAY OF INFLOW QUALITY RECORD**  
**LAST DAY OF INFLOW QUALITY RECORD**  
**TOTAL NUMBER OF DAYS**

```

TRIB 1    1 CARDS READ FOR INFLOW = TOTAL LOCAL FLOW
TRIB 1    1 CARDS READ FOR SHASTA INFLOW EC
TRIB 1    2 CARDS READ FOR SHASTA INFLOW DO
TRIB 1    2 CARDS READ FOR SHASTA INFLOW ALKALINITY
TRIB 1    1 CARDS READ FOR SHASTA INFLOW BOD
TRIB 1    2 CARDS READ FOR SHASTA INFLOW NH3
TRIB 1    1 CARDS READ FOR SHASTA INFLOW DO
TRIB 1    2 CARDS READ FOR SHASTA INFLOW EC
TRIB 2    1 CARDS READ FOR INFLOW = TOTAL LOCAL FLOW
TRIB 2    2 CARDS READ FOR CROVILLE INFLOW EC
TRIB 2    1 CARDS READ FOR CROVILLE INFLOW DO
TRIB 2    2 CARDS READ FOR CROVILLE INFLOW BOD
TRIB 2    1 CARDS READ FOR CROVILLE INFLOW AMMONIA
TRIB 2    2 CARDS READ FOR CROVILLE INFLOW DISOLVED OXYGEN
TRIB 2    1 CARDS READ FOR CROVILLE INFLOW = TOTAL LOCAL FLOW
TRIB 3    1 CARDS READ FOR OROVILLE INFLOW EC
TRIB 3    2 CARDS READ FOR OROVILLE INFLOW DO
TRIB 3    1 CARDS READ FOR OROVILLE INFLOW BOD
TRIB 3    2 CARDS READ FOR OROVILLE INFLOW AMMONIA
TRIB 3    1 CARDS READ FOR OROVILLE INFLOW = TOTAL LOCAL FLOW
TRIB 3    2 CARDS READ FOR FOLSOM INFLOW EC
TRIB 3    2 CARDS READ FOR FOLSOM INFLOW DO
TRIB 3    1 CARDS READ FOR FOLSOM INFLOW BOD
TRIB 3    2 CARDS READ FOR FOLSOM INFLOW AMMONIA
TRIB 3    3 CARDS READ FOR FOLSOM INFLOW DO
TRIB 3    1 CARDS READ FOR SPRING CR. INFLOW
TRIB 4    1 CARDS READ FOR SPRING CR. DO
TRIB 4    1 CARDS READ FOR SPRING CR. EC
TRIB 4    1 CARDS READ FOR SPRING CR. ALKALINITY
TRIB 4    1 CARDS READ FOR COM CR. EC
TRIB 4    1 CARDS READ FOR COM CR. DO
TRIB 4    1 CARDS READ FOR COM CR. BOD
TRIB 4    1 CARDS READ FOR COM CR. NH3
TRIB 5    1 CARDS READ FOR COM CR. DO
TRIB 5    1 CARDS READ FOR COM CR. BOD
TRIB 5    1 CARDS READ FOR COM CR. EC
TRIB 5    1 CARDS READ FOR COM CR. NH3
TRIB 5    1 CARDS READ FOR COTTONWOOD CR. DO
TRIB 5    1 CARDS READ FOR COTTONWOOD CR. EC
TRIB 5    1 CARDS READ FOR COTTONWOOD CR. ALKALINITY
TRIB 5    1 CARDS READ FOR COTTONWOOD CR. BOD
TRIB 6    1 CARDS READ FOR COTTONWOOD CR. NH3
TRIB 6    1 CARDS READ FOR COTTONWOOD CR. DO
TRIB 6    1 CARDS READ FOR COTTONWOOD CR. EC
TRIB 6    1 CARDS READ FOR COTTONWOOD CR. ALKALINITY
TRIB 6    1 CARDS READ FOR COTTONWOOD CR. BOD
TRIB 7    1 CARDS READ FOR BATTLE CR. DO
TRIB 7    1 CARDS READ FOR BATTLE CR. BOD
TRIB 7    1 CARDS READ FOR BATTLE CR. NH3
TRIB 7    1 CARDS READ FOR BATTLE CR. EC

```

TRIB 8 ... 1 CARDS READ FOR INFLOW = TOTAL LOCAL FLOW  
 TRIB 8 ... 1 CARDS READ FOR THOMES CR. INFLOW ( RTO = 1.00 )  
 TRIB 8 ... 1 CARDS READ FOR THOMES CR. EC  
 TRIB 8 ... 1 CARDS READ FOR THOMES CR. ALKALINITY  
 TRIB 8 ... 1 CARDS READ FOR THOMES CR. BOD  
 TRIB 8 ... 1 CARDS READ FOR THOMES CR. NH3  
 TRIB 8 ... 1 CARDS READ FOR THOMES CR. DO ( RTO = 1.00 )  
 TRIB 9 ... 1 CARDS READ FOR INFLOW = TOTAL LOCAL FLOW  
 TRIB 9 ... 2 CARDS READ FOR BYPASSED FEATHER RIVER  
 TRIB 9 ... 2 CARDS READ FOR BYPASSED FEATHER RIVER EC  
 TRIB 9 ... 1 CARDS READ FOR BYPASSED FEATHER RIVER ALKALINITY  
 TRIB 9 ... 1 CARDS READ FOR BYPASSED FEATHER RIVER BOD  
 TRIB 9 ... 2 CARDS READ FOR BYPASSED FEATHER RIVER AMMONIA  
 TRIB 9 ... 2 CARDS READ FOR BYPASSED FEATHER RIVER DISSOLVED OXYGEN  
 TRIB 10 ... 1 CARDS READ FOR INFLOW = TOTAL LOCAL FLOW  
 TRIB 10 ... 3 CARDS READ FOR YUBA RIVER EC  
 TRIB 10 ... 3 CARDS READ FOR YUBA RIVER DO  
 TRIB 10 ... 3 CARDS READ FOR YUBA RIVER EC  
 TRIB 10 ... 3 CARDS READ FOR YUBA RIVER ALKALINITY  
 TRIB 10 ... 1 CARDS READ FOR YUBA RIVER BOD  
 TRIB 10 ... 3 CARDS READ FOR YUBA RIVER AMMONIA  
 TRIB 10 ... 3 CARDS READ FOR YUBA RIVER DO  
 TRIB 11 ... 1 CARDS READ FOR INFLOW = TOTAL LOCAL FLOW  
 TRIB 11 ... 3 CARDS READ FOR BEAR RIVER  
 TRIB 11 ... 3 CARDS READ FOR BEAR RIVER EC  
 TRIB 11 ... 3 CARDS READ FOR BEAR RIVER BOD  
 TRIB 11 ... 3 CARDS READ FOR BEAR RIVER AMMONIA  
 TRIB 11 ... 1 CARDS READ FOR BEAR RIVER DO  
 TRIB 11 ... 1 CARDS READ FOR BEAR RIVER BOD  
 TRIB 11 ... 2 CARDS READ FOR BEAR RIVER DO

TIME ( YEAR/MONTH/DAY/HOUR ) VS. INFLOW QUALITY AT CONTROL POINTS

| TRIB                         | 1 ...  | INFLOW = TOTAL LOCAL FLOW |        |             | INFLOW RATE AS FRACTION OF LOCAL FLOW |             |        | TEMPERATURE ( C ) AS DEPARTURE FROM EQUILIBRIUM TEMPERATURE |        |             | SPECIFIC CONDUCTANCE |             |       | TOTAL ALKALINITY |       |             | CARBOVACUOUS BOD |             |       | AMMONIA AS N |      |  |
|------------------------------|--------|---------------------------|--------|-------------|---------------------------------------|-------------|--------|-------------------------------------------------------------|--------|-------------|----------------------|-------------|-------|------------------|-------|-------------|------------------|-------------|-------|--------------|------|--|
|                              |        | TIME                      | VALUE  | TIME        | TIME                                  | VALUE       | TIME   | VALUE                                                       | TIME   | VALUE       | TIME                 | TIME        | TIME  | TIME             | TIME  | TIME        | TIME             | TIME        | TIME  | TIME         | TIME |  |
| 79/ 4/ 2/ 0                  | -1.00  | 79/11/ 1/ 0               | -1.00  |             |                                       |             |        | 79/11/ 1/ 0                                                 | -5.00  |             |                      |             |       |                  |       |             |                  |             |       |              |      |  |
| TRIB 1 ... SHASTA INFLOW EC  |        |                           |        |             |                                       |             |        |                                                             |        |             |                      |             |       |                  |       |             |                  |             |       |              |      |  |
| 79/ 4/ 2/ 0                  | 120.00 | 79/ 5/30/ 0               | 120.00 | 79/ 7/17/ 0 | 140.00                                | 79/10/12/ 0 | 120.00 | 79/11/ 1/ 0                                                 | 120.00 | 79/ 9/12/ 0 | 64.00                | 79/11/ 1/ 0 | 64.00 | 79/11/ 1/ 0      | 64.00 | 79/11/ 1/ 0 | 64.00            | 79/11/ 1/ 0 | 64.00 | 79/11/ 1/ 0  |      |  |
| TRIB 1 ... SHASTA INFLOW BOD |        |                           |        |             |                                       |             |        |                                                             |        |             |                      |             |       |                  |       |             |                  |             |       |              |      |  |
| 79/ 4/ 2/ 0                  | 55.00  | 79/ 5/ 3/ 0               | 55.00  | 79/ 5/30/ 0 | 45.00                                 | 79/ 7/17/ 0 | 50.00  | 79/11/ 1/ 0                                                 | 50.00  | 79/ 9/12/ 0 | 64.00                | 79/11/ 1/ 0 | 64.00 | 79/11/ 1/ 0      | 64.00 | 79/11/ 1/ 0 | 64.00            | 79/11/ 1/ 0 | 64.00 | 79/11/ 1/ 0  |      |  |
| TRIB 1 ... SHASTA INFLOW NH3 |        |                           |        |             |                                       |             |        |                                                             |        |             |                      |             |       |                  |       |             |                  |             |       |              |      |  |
| 79/ 4/ 2/ 0                  | 0.00   | 79/ 7/17/ 0               | 0.02   | 79/ 9/20/ 0 | 0.03                                  | 79/11/ 1/ 0 | 0.00   | 79/11/ 1/ 0                                                 | 0.00   | 79/11/ 1/ 0 | 0.00                 | 79/11/ 1/ 0 | 0.00  | 79/11/ 1/ 0      | 0.00  | 79/11/ 1/ 0 | 0.00             | 79/11/ 1/ 0 | 0.00  |              |      |  |

| TRIB 1 ... SHASTA INFLOW DO                 |        |             |        | DISSOLVED OXYGEN AS PERCENT SATURATION |       |             |       |
|---------------------------------------------|--------|-------------|--------|----------------------------------------|-------|-------------|-------|
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 100.00 | 79/11/ 1/ 0 | 100.00 |                                        |       |             |       |
| TRIB 2 ... INFLOW = TOTAL LOCAL FLOW        |        |             |        | INFLOW RATE AS FRACTION OF LOCAL FLOW  |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | -1.00  | 79/11/ 1/ 0 | -1.00  |                                        |       |             |       |
| TRIB 2 ... OROVILLE INFLOW                  |        |             |        | TEMPERATURE, C                         |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 12.80  | 79/ 7/ 2/ 0 | 14.00  | 79/ 7/19/ 0                            | 18.30 | 79/ 8/ 2/ 0 | 12.00 |
| 79/11/ 1/ 0                                 | 4.44   |             |        |                                        |       |             |       |
| TRIB 2 ... OROVILLE INFLOW EC               |        |             |        | SPECIFIC CONDUCTANCE                   |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 62.00  | 79/ 7/19/ 0 | 60.00  | 79/11/ 1/ 0                            | 60.00 |             |       |
| TRIB 2 ... OROVILLE INFLOW ALKALINITY       |        |             |        | TOTAL ALKALINITY                       |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 150.00 | 79/11/ 1/ 0 | 150.00 |                                        |       |             |       |
| TRIB 2 ... OROVILLE INFLOW BOD              |        |             |        | CARBONACEOUS BOD                       |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 5.00   | 79/11/ 1/ 0 | 5.00   |                                        |       |             |       |
| TRIB 2 ... OROVILLE INFLOW AMMONIA          |        |             |        | AMMONIA AS N                           |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 0.01   | 79/ 7/19/ 0 | 0.00   | 79/11/ 1/ 0                            | 0.00  |             |       |
| TRIB 2 ... OROVILLE INFLOW DISSOLVED OXYGEN |        |             |        | DISSOLVED OXYGEN, MG/L                 |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 10.40  | 79/ 7/19/ 0 | 8.50   | 79/11/ 1/ 0                            | 8.50  |             |       |
| TRIB 3 ... INFLOW = TOTAL LOCAL FLOW        |        |             |        | INFLOW RATE AS FRACTION OF LOCAL FLOW  |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | -1.00  | 79/11/ 1/ 0 | -1.00  |                                        |       |             |       |
| TRIB 3 ... FOLSOM INFLOW EC                 |        |             |        | TEMPERATURE, C                         |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 8.00   | 79/ 5/31/ 0 | 14.00  | 79/ 7/28/ 0                            | 14.00 | 79/10/23/ 0 | 15.00 |
| TRIB 3 ... FOLSOM INFLOW                    |        |             |        | SPECIFIC CONDUCTANCE                   |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 74.00  | 79/ 5/17/ 0 | 71.00  | 79/ 6/15/ 0                            | 76.00 | 79/ 7/19/ 0 | 74.00 |
| 79/11/ 1/ 0                                 | 61.00  |             |        |                                        |       |             |       |
| TRIB 3 ... FOLSOM INFLOW ALKALINITY         |        |             |        | TOTAL ALKALINITY                       |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 20.00  | 79/ 5/31/ 0 | 13.00  | 79/ 7/28/ 0                            | 19.00 | 79/11/ 1/ 0 | 19.00 |
| TRIB 3 ... FOLSOM INFLOW BOD                |        |             |        | CARBONACEOUS BOD                       |       |             |       |
| TIME                                        | VALUE  | TIME        | VALUE  | TIME                                   | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0                                 | 5.00   | 79/11/ 1/ 0 | 5.00   |                                        |       |             |       |

| TRIB 3 ...  |        | FOLSOM INFLOW AMMONIA     |        | AMMONIA AS N                                              |       |             |       |             |       |             |       |
|-------------|--------|---------------------------|--------|-----------------------------------------------------------|-------|-------------|-------|-------------|-------|-------------|-------|
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 0.01   | 79/ 5/31/ 0               | 0.09   | 79/ 7/19/ 0                                               | 0.02  | 79/ 7/28/ 0 | 0.00  | 79/ 8/ 0    | 0.01  | 79/11/ 1/ 0 | 0.01  |
| TRIB 3 ...  |        | FOLSOM INFLOW DO          |        | DISSOLVED OXYGEN, MG/L                                    |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 10.70  | 79/ 5/17/ 0               | 9.40   | 79/ 5/31/ 0                                               | 10.60 | 79/ 6/15/ 0 | 9.10  | 79/ 7/19/ 0 | 9.50  | 79/ 7/28/ 0 | 10.00 |
| 79/ 8/ 0    | 7.90   | 79/ 9/12/ 0               | 8.60   | 79/ 11/ 1/ 0                                              | 10.60 |             |       |             |       |             |       |
| TRIB 4 ...  |        | INFLOW = TOTAL LOCAL FLOW |        | INFLOW RATE AS FRACTION OF LOCAL FLOW                     |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | -1.00  | 79/11/ 1/ 0               | -1.00  |                                                           |       |             |       |             |       |             |       |
| TRIB 4 ...  |        | SPRING CR. INFLOW         |        | TEMPERATURE (C) AS DEPARTURE FROM EQUILIBRIUM TEMPERATURE |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | -5.00  | 79/ 7/ 8/ 0               | -2.00  | 79/11/ 1/ 0                                               | -7.00 |             |       |             |       |             |       |
| TRIB 4 ...  |        | SPRING CR. EC             |        | SPECIFIC CONDUCTANCE                                      |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 200.00 | 79/11/ 1/ 0               | 200.00 |                                                           |       |             |       |             |       |             |       |
| TRIB 4 ...  |        | SPRING CR. ALKALINITY     |        | TOTAL ALKALINITY                                          |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 55.00  | 79/11/ 1/ 0               | 55.00  |                                                           |       |             |       |             |       |             |       |
| TRIB 4 ...  |        | SPRING CR. BOD            |        | CARBOGANEOUS BOD                                          |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 0.00   | 79/11/ 1/ 0               | 0.00   |                                                           |       |             |       |             |       |             |       |
| TRIB 4 ...  |        | SPRING CR. NH3            |        | AMMONIA AS N                                              |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 0.00   | 79/11/ 1/ 0               | 0.00   |                                                           |       |             |       |             |       |             |       |
| TRIB 4 ...  |        | SPRING CR. DO             |        | DISSOLVED OXYGEN AS PERCENT SATURATION                    |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 125.00 | 79/11/ 1/ 0               | 125.00 |                                                           |       |             |       |             |       |             |       |
| TRIB 5 ...  |        | INFLOW = TOTAL LOCAL FLOW |        | INFLOW RATE AS FRACTION OF LOCAL FLOW                     |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | -1.00  | 79/11/ 1/ 0               | -1.00  |                                                           |       |             |       |             |       |             |       |
| TRIB 5 ...  |        | CON CR. INFLOW            |        | TEMPERATURE (C) AS DEPARTURE FROM EQUILIBRIUM TEMPERATURE |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 0.00   | 79/ 7/ 8/ 0               | -2.00  | 79/11/ 1/ 0                                               | -7.00 |             |       |             |       |             |       |
| TRIB 5 ...  |        | CON CR. EC                |        | SPECIFIC CONDUCTANCE                                      |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 200.00 | 79/11/ 1/ 0               | 200.00 |                                                           |       |             |       |             |       |             |       |
| TRIB 5 ...  |        | CON CR. ALKALINITY        |        | TOTAL ALKALINITY                                          |       |             |       |             |       |             |       |
| TIME        | VALUE  | TIME                      | VALUE  | TIME                                                      | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
| 79/ 4/ 2/ 0 | 100.00 | 79/11/ 1/ 0               | 100.00 |                                                           |       |             |       |             |       |             |       |

|             |                           |             |        |             |       |      |       |      |       |      |       |
|-------------|---------------------------|-------------|--------|-------------|-------|------|-------|------|-------|------|-------|
| TRIB 5 ...  | CON CR. BOD               | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 0.00                      | 79/11/ 1/ 0 | 0.00   |             |       |      |       |      |       |      |       |
| TRIB 5 ...  | CON CR. NH3               | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 0.00                      | 79/11/ 1/ 0 | 0.00   |             |       |      |       |      |       |      |       |
| TRIB 5 ...  | CON CR. DO                | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 135.00                    | 79/11/ 1/ 0 | 135.00 |             |       |      |       |      |       |      |       |
| TRIB 6 ...  | INFLOW = TOTAL LOCAL FLOW | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | -1.00                     | 79/11/ 1/ 0 | -1.00  |             |       |      |       |      |       |      |       |
| TRIB 6 ...  | COTTONWOOD CR. INFLOW     | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 0.00                      | 79/ 7/ 8/ 0 | -2.00  | 79/11/ 1/ 0 | -7.00 |      |       |      |       |      |       |
| TRIB 6 ...  | COTTONWOOD CR. EC         | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 200.00                    | 79/11/ 1/ 0 | 200.00 |             |       |      |       |      |       |      |       |
| TRIB 6 ...  | COTTONWOOD CR. ALKALINITY | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 100.00                    | 79/11/ 1/ 0 | 100.00 |             |       |      |       |      |       |      |       |
| TRIB 6 ...  | COTTONWOOD CR. BOD        | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 0.00                      | 79/11/ 1/ 0 | 0.00   |             |       |      |       |      |       |      |       |
| TRIB 6 ...  | COTTONWOOD CR. NH3        | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 0.00                      | 79/11/ 1/ 0 | 0.00   |             |       |      |       |      |       |      |       |
| TRIB 6 ...  | COTTONWOOD CR. DO         | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 135.00                    | 79/11/ 1/ 0 | 135.00 |             |       |      |       |      |       |      |       |
| TRIB 7 ...  | INFLOW = TOTAL LOCAL FLOW | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | -1.00                     | 79/11/ 1/ 0 | -1.00  |             |       |      |       |      |       |      |       |
| TRIB 7 ...  | BATTLE CR. INFLOW         | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 0.00                      | 79/ 7/ 8/ 0 | -2.00  | 79/11/ 1/ 0 | -7.00 |      |       |      |       |      |       |
| TRIB 7 ...  | BATTLE CR. EC             | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 200.00                    | 79/11/ 1/ 0 | 200.00 |             |       |      |       |      |       |      |       |
| TRIB 7 ...  | BATTLE CR. ALKALINITY     | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 100.00                    | 79/11/ 1/ 0 | 100.00 |             |       |      |       |      |       |      |       |
| TRIB 7 ...  | BATTLE CR. BOD            | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 0.00                      | 79/11/ 1/ 0 | 0.00   |             |       |      |       |      |       |      |       |
| TRIB 7 ...  | BATTLE CR. NH3            | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 0.00                      | 79/11/ 1/ 0 | 0.00   |             |       |      |       |      |       |      |       |
| TRIB 7 ...  | BATTLE CR. DO             | TIME        | VALUE  | TIME        | VALUE | TIME | VALUE | TIME | VALUE | TIME | VALUE |
| 79/ 4/ 2/ 0 | 135.00                    | 79/11/ 1/ 0 | 135.00 |             |       |      |       |      |       |      |       |

| TRIB | 7           | ...    | BATTLE CR.                 | BOD             | TIME        | VALUE | TIME        | VALUE       | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
|------|-------------|--------|----------------------------|-----------------|-------------|-------|-------------|-------------|-------------|-------|-------------|-------|-------------|-------|-------------|-------|
|      | 79/ 4/ 2/ 0 | 0.00   | 79/11/ 1/ 0                | 0.00            |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 7           | ...    | BATTLE CR.                 | NH <sub>3</sub> | TIME        | VALUE | TIME        | VALUE       | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
|      | 79/ 4/ 2/ 0 | 0.00   | 79/11/ 1/ 0                | 0.00            |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 7           | ...    | BATTLE CR.                 | DO              | TIME        | VALUE | TIME        | VALUE       | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE |
|      | 79/ 4/ 2/ 0 | 135.00 | 79/11/ 1/ 0                | 135.00          |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 8           | ...    | INFLOW = TOTAL LOCAL FLOW  | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | -1.00  | 79/11/ 1/ 0                | -1.00           |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 8           | ...    | THOMES CR. INFLOW          | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | 5.00   | 79/ 6/26/ 0                | 9.00            | 79/11/ 1/ 0 | 5.00  |             | 79/11/ 1/ 0 | 9.00        |       |             |       |             |       |             |       |
| TRIB | 8           | ...    | THOMES CR. EC              | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | 350.00 | 79/11/ 1/ 0                | 350.00          |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 8           | ...    | THOMES CR. ALKALINITY      | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | 350.00 | 79/11/ 1/ 0                | 350.00          |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 8           | ...    | THOMES CR. BOD             | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | 10.00  | 79/ 6/ 2/ 0                | 20.00           | 79/10/ 2/ 0 | 20.00 | 79/10/ 2/ 0 | 20.00       | 79/11/ 1/ 0 | 10.00 |             |       |             |       |             |       |
| TRIB | 8           | ...    | THOMES CR. NH <sub>3</sub> | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | 0.05   | 79/11/ 1/ 0                | 0.05            |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 8           | ...    | THOMES CR. DO              | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | 135.00 | 79/11/ 1/ 0                | 135.00          |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 9           | ...    | INFLOW = TOTAL LOCAL FLOW  | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | -1.00  | 79/11/ 1/ 0                | -1.00           |             |       |             |             |             |       |             |       |             |       |             |       |
| TRIB | 9           | ...    | BYPASSED FEATHER RIVER     | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | 13.90  | 79/ 4/19/ 0                | 14.40           | 79/ 5/17/ 0 | 14.40 | 79/ 5/17/ 0 | 17.80       | 79/ 7/19/ 0 | 15.60 | 79/ 8/16/ 0 | 15.60 | 79/ 9/20/ 0 | 15.60 | 79/ 9/20/ 0 | 12.20 |
| TRIB | 9           | ...    | BYPASSED FEATHER RIVER EC  | TIME            | VALUE       | TIME  | VALUE       | TIME        | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  | VALUE       | TIME  |
|      | 79/ 4/ 2/ 0 | 68.00  | 79/ 4/19/ 0                | 68.00           | 79/ 5/17/ 0 | 68.00 | 79/ 5/17/ 0 | 64.00       | 79/ 7/19/ 0 | 65.00 | 79/ 8/16/ 0 | 65.00 | 79/ 9/20/ 0 | 65.00 | 79/ 9/20/ 0 | 51.00 |

| TRIB 9 ... BYPASSED FEATHER RIVER ALKALINITY                            |       | TOTAL ALKALINITY                      |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
|-------------------------------------------------------------------------|-------|---------------------------------------|-------|-------------|-------|-------------|-------|-------------|-------|-------------|-------|-------|-------|-------|-------|-------|--|
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 40.00 | 79/11/ 1/ 0                           | 50.00 |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 9 ... BYPASSED FEATHER RIVER BOD                                   |       | CARBONACEOUS BOD                      |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 0.50  | 79/11/ 1/ 0                           | 0.50  |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 9 ... BYPASSED FEATHER RIVER AMMONIA                               |       | AMMONIA AS N                          |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 0.03  | 79/ 5/17/ 0                           | 0.01  | 79/ 7/19/ 0 | 0.00  | 79/11/ 1/ 0 | 0.00  |             |       |             |       |       |       |       |       |       |  |
| TRIB 9 ... BYPASSED FEATHER RIVER DISSOLVED OXYGEN/ISOLVED OXYGEN, MG/L |       | TIME                                  |       | VALUE       |       | TIME        |       | VALUE       |       | TIME        |       | VALUE |       | TIME  |       | VALUE |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 10.00 | 79/ 4/19/ 0                           | 10.00 | 79/ 5/17/ 0 | 9.20  | 79/ 7/19/ 0 | 8.60  | 79/ 8/16/ 0 | 7.60  | 79/ 9/20/ 0 | 6.20  |       |       |       |       |       |  |
| TRIB 10 ... INFLOW = TOTAL LOCAL FLOW                                   |       | INFLOW RATE AS FRACTION OF LOCAL FLOW |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | -1.00 | 79/11/ 1/ 0                           | -1.00 |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 10 ... YUBA RIVER                                                  |       | TEMPERATURE, C                        |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 11.00 | 79/ 4/25/ 0                           | 13.50 | 79/ 5/25/ 0 | 15.50 | 79/ 6/22/ 0 | 15.50 |             |       |             |       |       |       |       |       |       |  |
| 79/ 9/21/ 0                                                             | 15.50 | 79/11/ 1/ 0                           | 15.50 |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 10 ... YUBA RIVER EC                                               |       | SPECIFIC CONDUCTANCE                  |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 87.00 | 79/ 4/25/ 0                           | 92.00 | 79/ 5/24/ 0 | 72.00 | 79/ 6/22/ 0 | 72.00 |             |       |             |       |       |       |       |       |       |  |
| 79/ 9/21/ 0                                                             | 76.00 | 79/11/ 1/ 0                           | 76.00 |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 10 ... YUBA RIVER ALKALINITY                                       |       | TOTAL ALKALINITY                      |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 34.00 | 79/ 4/25/ 0                           | 36.00 | 79/ 5/24/ 0 | 29.00 | 79/ 6/22/ 0 | 31.00 |             |       |             |       |       |       |       |       |       |  |
| 79/ 9/21/ 0                                                             | 32.00 | 79/11/ 1/ 0                           | 32.00 |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 10 ... YUBA RIVER BOD                                              |       | CARBONACEOUS BOD                      |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 10.00 | 79/11/ 1/ 0                           | 10.00 |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 10 ... YUBA RIVER AMMONIA                                          |       | AMMONIA AS N                          |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 0.01  | 79/ 4/25/ 0                           | 0.00  | 79/ 5/24/ 0 | 0.02  | 79/ 6/22/ 0 | 0.00  |             |       |             |       |       |       |       |       |       |  |
| 79/ 9/22/ 0                                                             | 0.00  | 79/11/ 1/ 0                           | 0.00  |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 10 ... YUBA RIVER DO                                               |       | DISSOLVED OXYGEN, MG/L                |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | 11.00 | 79/ 4/25/ 0                           | 10.80 | 79/ 5/24/ 0 | 10.00 | 79/ 6/22/ 0 | 9.50  |             |       |             |       |       |       |       |       |       |  |
| 79/ 9/21/ 0                                                             | 10.30 | 79/11/ 1/ 0                           | 10.30 |             |       |             |       |             |       |             |       |       |       |       |       |       |  |
| TRIB 11 ... INFLOW = TOTAL LOCAL FLOW                                   |       | INFLOW RATE AS FRACTION OF LOCAL FLOW |       | TIME        |       | VALUE       |       | TIME        |       | VALUE       |       | TIME  |       | VALUE |       |       |  |
| TIME                                                                    | VALUE | TIME                                  | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME        | VALUE | TIME  | VALUE | TIME  | VALUE |       |  |
| 79/ 4/ 2/ 0                                                             | -1.00 | 79/11/ 1/ 0                           | -1.00 |             |       |             |       |             |       |             |       |       |       |       |       |       |  |



\*\*\*\*\* CALIBRATION MODE \*\*\*\*\* GATE SPECIFICATIONS \*\*\*\*\*

START TIME (YR/MDA) 790401 END TIME (YR/MDA) 791031

| RES<br>I.D. | START TIME | END TIME | SPILLWAY | FLOOD CONTROL | WET WELL 1<br>FLOW GATE<br>CFS NO | WET WELL 2<br>FLOW GATE<br>CFS NO |
|-------------|------------|----------|----------|---------------|-----------------------------------|-----------------------------------|
| 1           | 790401     | 791031   | 0.00     | 0.00          | 1.00 1.                           | 0.00 0.                           |
| 3           | 790401     | 791031   | 0.00     | 0.00          | 1.00 1.                           | 0.00 0.                           |
| 13          | 790401     | 791031   | 0.00     | 0.00          | 1.00 4.                           | 1.00 4.                           |
| 20          | 790401     | 791031   | 0.00     | 0.00          | 1.00 1.                           | 0.00 0.                           |

\*RTCOF

ROUTING COEFFICIENTS FROM RES 1 TO MY

|                                                                              |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|
| MY= 2 1.0000                                                                 |  |  |  |  |  |  |
| MY= 3 1.0000                                                                 |  |  |  |  |  |  |
| MY= 4 0.2857 0.5102 0.1458 0.0416 0.0119 0.0034                              |  |  |  |  |  |  |
| MY= 5 0.0816 0.2915 0.3436 0.1725 0.0705 0.0262 0.0087 0.0020                |  |  |  |  |  |  |
| MY= 6 0.0816 0.2915 0.3436 0.1725 0.0705 0.0262 0.0087 0.0020                |  |  |  |  |  |  |
| MY= 7 0.0233 0.1249 0.2588 0.2705 0.1714 0.0867 0.0384 0.0150 0.0049 0.0014  |  |  |  |  |  |  |
| MY= 8 0.0067 0.0476 0.1411 0.2285 0.2302 0.1640 0.0950 0.0478 0.0212 0.0083  |  |  |  |  |  |  |
| MY= 9 0.0019 0.0170 0.0656 0.1445 0.2050 0.2041 0.1557 0.0988 0.0546 0.0269  |  |  |  |  |  |  |
| MY= 10 0.0019 0.0170 0.0656 0.1445 0.2050 0.2041 0.1557 0.0988 0.0546 0.0269 |  |  |  |  |  |  |
| MY= 11 0.0019 0.0170 0.0656 0.1445 0.2050 0.2041 0.1557 0.0988 0.0546 0.0269 |  |  |  |  |  |  |
| MY= 12 0.0019 0.0170 0.0656 0.1445 0.2050 0.2041 0.1557 0.0988 0.0546 0.0269 |  |  |  |  |  |  |
| MY= 19 0.0005 0.0058 0.0277 0.0773 0.1426 0.1889 0.1854 0.1479 0.1081 0.0595 |  |  |  |  |  |  |
| MY= 20 0.0317 0.0153 0.0068 0.0028 0.0010                                    |  |  |  |  |  |  |
| MY= 22 0.0002 0.0019 0.0110 0.0371 0.0845 0.1386 0.1727 0.1710 0.1408 0.1001 |  |  |  |  |  |  |
| MY= 23 0.0630 0.0358 0.0185 0.0088 0.0039 0.0016                             |  |  |  |  |  |  |
| MY= 24 0.0000 0.0068 0.0041 0.0165 0.0447 0.0886 0.1341 0.1612 0.1596 0.1345 |  |  |  |  |  |  |
| MY= 25 0.0993 0.0655 0.0392 0.0215 0.0109 0.0052 0.0023                      |  |  |  |  |  |  |

## ROUTING COEFFICIENTS FROM RES

13 TO MY

|     |    |        |
|-----|----|--------|
| NY= | 14 | 1.0000 |
| NY= | 15 | 0.2857 |
| NY= | 16 | 0.2857 |
| NY= | 17 | 0.0816 |
| NY= | 18 | 0.0233 |
| NY= | 19 | 0.0067 |
| NY= | 20 | 0.0029 |
| NY= | 21 | 0.0019 |
| NY= | 22 | 0.0005 |
| NY= | 23 | 0.0317 |

0.5102 0.1458 0.0416 0.0119 0.0034  
 0.5102 0.1458 0.0416 0.0119 0.0034  
 0.2915 0.3436 0.1725 0.0705 0.0262 0.0087 0.0020  
 0.2588 0.2705 0.1714 0.0867 0.0384 0.0150 0.0049 0.0014  
 0.2285 0.2302 0.1640 0.0950 0.0478 0.0212 0.0083  
 0.0656 0.1445 0.2050 0.2041 0.1557 0.0988 0.0546 0.0269  
 0.0048 0.0017 0.0119 0.0119 0.0119 0.0119 0.0119 0.0119  
 0.0277 0.0773 0.1426 0.1869 0.1854 0.1479 0.1001 0.0595  
 0.0058 0.0153 0.0068 0.0028 0.0010

## ROUTING COEFFICIENTS FROM RES

20 TO MY

|     |    |        |
|-----|----|--------|
| NY= | 21 | 0.2857 |
| NY= | 22 | 0.0816 |
| NY= | 23 | 0.0233 |

0.5102 0.1458 0.0416 0.0119 0.0034  
 0.2915 0.3436 0.1725 0.0705 0.0262 0.0087 0.0020  
 0.2588 0.2705 0.1714 0.0867 0.0384 0.0150 0.0049 0.0014

INTERPOLATION OF RESERVOIR LEVELS (RL CARDS) WAS USED.

## RESERVOIR MODEL RESULTS

RESERVOIR NO 1 .. CONTROL POINT 1

JULIAN DATE 120 (HOUR 24)

METEOROLOGICAL DATA

|                                       |      |
|---------------------------------------|------|
| EQUILIBRIUM TEMPERATURE, C            | 17.3 |
| HEAT EXCHANGE COEFFICIENT, LANGLAYS/C | 62.7 |
| SHORT WAVE SOLAR RADIATION, LANGLAYS  | 512. |
| WIND SPEED, M/S                       | 4.5  |
| EVAPORATION RATE, AC. FT./DAY         | 6.86 |

EQUILIBRIUM TEMPERATURE, C  
HEAT EXCHANGE COEFFICIENT, LANGLAYS/C  
SHORT WAVE SOLAR RADIATION, LANGLAYS  
WIND SPEED, M/S  
EVAPORATION RATE, AC. FT./DAY

## INFLOW DATA

| TRIB<br>NO | FLOW<br>CFS | TEMP<br>C | CONS.1<br>MG/L | CONS.2<br>MG/L | CONS.3<br>MG/L | NONCON.1<br>MG/L | NONCON.2<br>MG/L | NONCON.3<br>MG/L | OXYGEN<br>MG/L |
|------------|-------------|-----------|----------------|----------------|----------------|------------------|------------------|------------------|----------------|
| 1          | 8839.8      | 3.2       | 120.0          | 55.00          | 0.00           | 0.00             | 0.96             | 0.00             | 13.4           |

## OUTFLOW INFORMATION

| OUTLET        | FLOW<br>CFS | TEMP<br>C | CONS.1<br>MG/L | CONS.2<br>MG/L | CONS.3<br>MG/L | NONCON.1<br>MG/L | NONCON.2<br>MG/L | NONCON.3<br>MG/L | OXYGEN<br>MG/L |
|---------------|-------------|-----------|----------------|----------------|----------------|------------------|------------------|------------------|----------------|
| WET WELL NO 1 | 6232.9      | 5.9       | 129.0          | 45.96          | 0.00           | 0.00             | 0.08             | 0.00             | 5.6            |
| TOTAL OUTFLOW | 6232.9      | 5.9       | 129.0          | 45.95          | 0.00           | 0.00             | 0.08             | 0.00             | 5.6            |

RESERVOIR INFORMATION

|                                |          |
|--------------------------------|----------|
| WATER SURFACE ELEVATION, FT    | 1048.27  |
| RESERVOIR SURFACE AREA, AC     | 28161.   |
| RESERVOIR STORAGE VOLUME, ACFT | 4270990. |

## RESERVOIR WATER QUALITY

| DEPTH<br>FT | TEMP<br>C | CONS.1<br>MG/L | CONS.2<br>MG/L | CONS.3<br>MG/L | NONCON.1<br>MG/L | NONCON.2<br>MG/L | NONCON.3<br>MG/L | OXYGEN<br>MG/L |
|-------------|-----------|----------------|----------------|----------------|------------------|------------------|------------------|----------------|
| 5.0         | 17.1      | 131.6          | 46.14          | 0.00           | 0.00             | 0.03             | 0.00             | 9.4            |
| 15.0        | 13.3      | 129.8          | 45.57          | 0.00           | 0.00             | 0.03             | 0.00             | 7.4            |
| 25.0        | 9.2       | 129.3          | 45.77          | 0.00           | 0.00             | 0.05             | 0.00             | 5.8            |
| 35.0        | 8.0       | 128.6          | 46.45          | 0.00           | 0.00             | 0.09             | 0.00             | 6.1            |
| 45.0        | 7.4       | 128.4          | 46.64          | 0.00           | 0.00             | 0.09             | 0.00             | 6.2            |
| 55.0        | 7.3       | 128.4          | 46.56          | 0.00           | 0.00             | 0.09             | 0.00             | 6.1            |
| 65.0        | 7.2       | 128.6          | 46.44          | 0.00           | 0.00             | 0.08             | 0.00             | 6.0            |
| 75.0        | 7.2       | 128.7          | 46.31          | 0.00           | 0.00             | 0.07             | 0.00             | 5.9            |
| 85.0        | 7.1       | 128.8          | 46.20          | 0.00           | 0.00             | 0.07             | 0.00             | 5.8            |
| 95.0        | 7.1       | 128.9          | 46.11          | 0.00           | 0.00             | 0.06             | 0.00             | 5.8            |
| 105.0       | 7.0       | 129.0          | 46.03          | 0.00           | 0.00             | 0.06             | 0.00             | 5.7            |
| 115.0       | 6.8       | 129.0          | 45.99          | 0.00           | 0.00             | 0.06             | 0.00             | 5.7            |
| 125.0       | 6.7       | 129.0          | 46.00          | 0.00           | 0.00             | 0.07             | 0.00             | 5.7            |
| 135.0       | 6.5       | 129.0          | 46.04          | 0.00           | 0.00             | 0.07             | 0.00             | 5.7            |
| 145.0       | 6.4       | 128.9          | 46.14          | 0.00           | 0.00             | 0.08             | 0.00             | 5.8            |

|       |     |       |       |      |      |
|-------|-----|-------|-------|------|------|
| 155.0 | 6.3 | 128.8 | 46.19 | 0.00 | 0.00 |
| 165.0 | 6.2 | 128.8 | 46.21 | 0.00 | 0.00 |
| 175.0 | 6.1 | 128.8 | 46.20 | 0.00 | 0.00 |
| 185.0 | 6.0 | 128.8 | 46.18 | 0.00 | 0.00 |
| 195.0 | 5.9 | 128.8 | 46.15 | 0.00 | 0.00 |
| 205.0 | 5.9 | 128.9 | 46.12 | 0.00 | 0.00 |
| 215.0 | 5.8 | 128.9 | 46.08 | 0.00 | 0.00 |
| 225.0 | 5.7 | 129.0 | 46.02 | 0.00 | 0.00 |
| 235.0 | 5.7 | 129.1 | 45.90 | 0.00 | 0.00 |
| 245.0 | 5.7 | 129.2 | 45.80 | 0.00 | 0.00 |
| 255.0 | 5.6 | 129.3 | 45.73 | 0.00 | 0.00 |
| 265.0 | 5.6 | 129.3 | 45.68 | 0.00 | 0.00 |
| 275.0 | 5.6 | 129.4 | 45.64 | 0.00 | 0.00 |
| 285.0 | 5.6 | 129.4 | 45.61 | 0.00 | 0.00 |
| 295.0 | 5.6 | 129.4 | 45.57 | 0.00 | 0.00 |
| 305.0 | 5.6 | 129.5 | 45.54 | 0.00 | 0.00 |
| 315.0 | 5.6 | 129.5 | 45.51 | 0.00 | 0.00 |
| 325.0 | 5.6 | 129.5 | 45.48 | 0.00 | 0.00 |
| 335.0 | 5.6 | 129.5 | 45.46 | 0.00 | 0.00 |
| 345.0 | 5.6 | 129.6 | 45.45 | 0.00 | 0.00 |
| 355.0 | 5.6 | 129.6 | 45.43 | 0.00 | 0.00 |
| 365.0 | 5.6 | 129.6 | 45.42 | 0.00 | 0.00 |
| 375.0 | 5.6 | 129.6 | 45.41 | 0.00 | 0.00 |
| 385.0 | 5.6 | 129.6 | 45.39 | 0.00 | 0.00 |
| 395.0 | 5.6 | 129.6 | 45.37 | 0.00 | 0.00 |
| 405.0 | 5.6 | 129.7 | 45.32 | 0.00 | 0.00 |
| 415.0 | 5.7 | 129.8 | 45.20 | 0.00 | 0.00 |

## RESERVOIR MODEL RESULTS

RESERVOIR NO 2 .. CONTROL POINT 3

JULIAN DATE 120 (HOUR 24)

## METEOROLOGICAL DATA

EQUILIBRIUM TEMPERATURE, C 17.3  
 HEAT EXCHANGE COEFFICIENT, LANGLAWS/C 62.7  
 SHORT WAVE SOLAR RADIATION, LANGLAWS 512.  
 WIND SPEED, M/S 4.5  
 EVAPORATION RATE, AC.FT./DAY 0.07

## INFLOW DATA

| TRIB NO | FLOW CFS | TEMP C | CONS.1 MG/L | CONS.2 MG/L | CONS.3 MG/L | NONCON.1 MG/L | NONCON.2 MG/L | NONCON.3 MG/L | OXYGEN MG/L |
|---------|----------|--------|-------------|-------------|-------------|---------------|---------------|---------------|-------------|
| 50      | 6717.9   | 6.6    | 134.2       | 46.60       | 0.00        | 0.00          | 0.07          | 0.00          | 6.4         |

## OUTFLOW INFORMATION

| OUTLET        | FLOW CFS | TEMP C | CONS.1 MG/L | CONS.2 MG/L | CONS.3 MG/L | NONCON.1 MG/L | NONCON.2 MG/L | NONCON.3 MG/L | OXYGEN MG/L |
|---------------|----------|--------|-------------|-------------|-------------|---------------|---------------|---------------|-------------|
| WET WELL NO 1 | 6717.8   | 6.9    | 132.2       | 46.18       | 0.00        | 0.00          | 0.06          | 0.00          | 6.2         |
| TOTAL OUTFLOW | 6717.8   | 6.9    | 132.2       | 46.18       | 0.00        | 0.00          | 0.06          | 0.00          | 6.2         |

RESERVOIR INFORMATION WATER SURFACE ELEVATION, FT 569.70  
 RESERVOIR SURFACE AREA, AC 285.  
 RESERVOIR STORAGE VOLUME, ACFT 22000.

## RESERVOIR WATER QUALITY

| DEPTH FT          | TEMP C | CONS.1 MG/L | CONS.2 MG/L | CONS.3 MG/L | NONCON.1 MG/L | NONCON.2 MG/L | NONCON.3 MG/L | OXYGEN MG/L |
|-------------------|--------|-------------|-------------|-------------|---------------|---------------|---------------|-------------|
| 5.0               | 8.3    | 134.4       | 46.57       | 0.00        | 0.00          | 0.06          | 0.00          | 6.8         |
| 15.0              | 7.4    | 134.4       | 46.57       | 0.00        | 0.00          | 0.06          | 0.00          | 6.5         |
| 25.0              | 7.1    | 134.4       | 46.57       | 0.00        | 0.00          | 0.06          | 0.00          | 6.5         |
| 35.0              | 7.0    | 134.6       | 46.59       | 0.00        | 0.00          | 0.06          | 0.00          | 6.4         |
| 45.0              | 6.9    | 134.5       | 46.58       | 0.00        | 0.00          | 0.06          | 0.00          | 6.4         |
| 55.0 <sup>1</sup> | 6.9    | 134.0       | 46.50       | 0.00        | 0.00          | 0.06          | 0.00          | 6.4         |
| 65.0              | 6.9    | 133.2       | 46.38       | 0.00        | 0.00          | 0.06          | 0.00          | 6.3         |
| 75.0              | 6.8    | 132.5       | 46.27       | 0.00        | 0.00          | 0.06          | 0.00          | 6.2         |
| 85.0              | 6.6    | 131.3       | 46.08       | 0.00        | 0.00          | 0.06          | 0.00          | 6.0         |
| 95.0              | 6.4    | 130.3       | 45.88       | 0.00        | 0.00          | 0.06          | 0.00          | 5.9         |
| 105.0             | 6.2    | 129.1       | 45.55       | 0.00        | 0.00          | 0.06          | 0.00          | 5.7         |
| 115.0             | 6.1    | 127.1       | 44.75       | 0.00        | 0.00          | 0.05          | 0.00          | 5.6         |
| 125.0             | 5.9    | 123.9       | 43.38       | 0.00        | 0.00          | 0.04          | 0.00          | 5.4         |

## RESERVOIR MODEL RESULTS

RESERVOIR NO 3 .. CONTROL POINT 13

JULIAN DATE 120 (HOUR 24)

|                     |                                       |       |
|---------------------|---------------------------------------|-------|
| METEOROLOGICAL DATA | EQUILIBRIUM TEMPERATURE, C            | 17.3  |
|                     | HEAT EXCHANGE COEFFICIENT, LANGLAYS/C | 62.7  |
|                     | SHORT WAVE SOLAR RADIATION, LANGLAYS  | 512.  |
|                     | WIND SPEED, M/S                       | 4.5   |
|                     | EVAPORATION RATE, AC. FT./DAY         | 14.87 |

## INFLOW DATA

| TRIB NO | FLOW CFS | TEMP C | CONS. 1 MG/L | CONS. 2 MG/L | CONS. 3 MG/L | NONCON. 1 MG/L | NONCON. 2 MG/L | NONCON. 3 MG/L | OXYGEN MG/L |
|---------|----------|--------|--------------|--------------|--------------|----------------|----------------|----------------|-------------|
| 1       | 7803.9   | 13.2   | 61.5         | 150.00       | 0.00         | 3.42           | 0.00           | 9.9            |             |
| 2       |          |        |              |              |              |                |                |                |             |
| TOTAL   | 3561.9   | 13.8   | 61.9         | 80.53        | 0.00         | 0.00           | 0.63           | 0.00           | 8.5         |

## OUTFLOW INFORMATION

| OUTLET         | FLOW CFS | TEMP C | CONS. 1 MG/L | CONS. 2 MG/L | CONS. 3 MG/L | NONCON. 1 MG/L | NONCON. 2 MG/L | NONCON. 3 MG/L | OXYGEN MG/L |
|----------------|----------|--------|--------------|--------------|--------------|----------------|----------------|----------------|-------------|
| WET WELL NO 1  | 1781.0   | 12.9   | 61.9         | 82.36        | 0.00         | 0.00           | 0.63           | 0.00           | 8.3         |
| WET WELL NO 2  | 1781.0   | 14.6   | 61.9         | 78.71        | 0.00         | 0.00           | 0.51           | 0.00           | 8.6         |
| TOTAL OUT FLOW | 3561.9   | 13.8   | 61.9         | 80.53        | 0.00         | 0.00           | 0.63           | 0.00           | 8.5         |

| RESERVOIR INFORMATION | WATER SURFACE ELEVATION, FT    | 884.25   |
|-----------------------|--------------------------------|----------|
|                       | RESERVOIR SURFACE AREA, AC     | 15389.   |
|                       | RESERVOIR STORAGE VOLUME, ACFT | 3297820. |

## RESERVOIR WATER QUALITY

| DEPTH FT | TEMP C | CONS. 1 MG/L | CONS. 2 MG/L | CONS. 3 MG/L | NONCON. 1 MG/L | NONCON. 2 MG/L | NONCON. 3 MG/L | OXYGEN MG/L |
|----------|--------|--------------|--------------|--------------|----------------|----------------|----------------|-------------|
| 7.002    | 16.1   | 62.0         | 70.43        | 0.00         | 0.00           | 0.28           | 0.00           | 9.0         |
| 21.0     | 13.9   | 61.9         | 89.64        | 0.00         | 0.00           | 0.76           | 0.00           | 8.3         |
| 35.0     | 12.6   | 61.9         | 87.82        | 0.00         | 0.00           | 0.78           | 0.00           | 8.2         |
| 49.0     | 12.2   | 61.9         | 81.14        | 0.00         | 0.00           | 0.70           | 0.00           | 8.3         |
| 63.0     | 11.7   | 62.0         | 51.60        | 0.00         | 0.00           | 0.12           | 0.00           | 8.3         |
| 77.0     | 11.5   | 62.0         | 46.36        | 0.00         | 0.00           | 0.05           | 0.00           | 8.3         |
| 91.0     | 11.4   | 62.0         | 43.81        | 0.00         | 0.00           | 0.02           | 0.00           | 8.2         |
| 105.0    | 11.0   | 62.0         | 41.59        | 0.00         | 0.00           | 0.01           | 0.00           | 7.8         |
| 119.0    | 10.2   | 62.0         | 40.32        | 0.00         | 0.00           | 0.00           | 0.00           | 7.3         |
| 133.0    | 9.4    | 62.0         | 40.05        | 0.00         | 0.00           | 0.00           | 0.00           | 6.9         |
| 147.0    | 8.9    | 62.0         | 40.01        | 0.00         | 0.00           | 0.00           | 0.00           | 6.6         |
| 161.0    | 8.4    | 62.0         | 40.00        | 0.00         | 0.00           | 0.00           | 0.00           | 6.3         |
| 175.0    | 8.0    | 62.0         | 40.00        | 0.00         | 0.00           | 0.00           | 0.00           | 6.0         |
| 189.0    | 7.6    | 62.0         | 40.00        | 0.00         | 0.00           | 0.00           | 0.00           | 5.8         |
| 203.0    | 7.3    | 62.0         | 40.00        | 0.00         | 0.00           | 0.00           | 0.00           | 5.4         |



## RESERVOIR MODEL RESULTS

RESERVOIR NO 4 .. CONTROL POINT 20

JULIAN DATE 120 (HOUR 24)

## METEOROLOGICAL DATA

EQUILIBRIUM TEMPERATURE, C 17.3  
 HEAT EXCHANGE COEFFICIENT, LANGLAYS/C 62.7  
 SHORT WAVE SOLAR RADIATION, LANGLAYS 512.  
 WIND SPEED, M/S 4.5  
 EVAPORATION RATE, AC.FT./DAY 77.29

## INFLOW DATA

| TRIB NO | FLOW CFS | TEMP C | CONS.1 MG/L | CONS.2 MG/L | CONS.3 MG/L | NONCON.1 MG/L | NONCON.2 MG/L | NONCON.3 MG/L | OXYGEN MG/L |
|---------|----------|--------|-------------|-------------|-------------|---------------|---------------|---------------|-------------|
| 3       | 6279.9   | 10.9   | 72.1        | 16.67       | 0.00        | 0.00          | 3.42          | 0.01          | 9.9         |

## OUTFLOW INFORMATION

| OUTLET        | FLOW CFS | TEMP C | CONS.1 MG/L | CONS.2 MG/L | CONS.3 MG/L | NONCON.1 MG/L | NONCON.2 MG/L | NONCON.3 MG/L | OXYGEN MG/L |
|---------------|----------|--------|-------------|-------------|-------------|---------------|---------------|---------------|-------------|
| WET WELL NO 1 | 2448.0   | 9.2    | 71.5        | 19.50       | 0.00        | 0.00          | 0.55          | 0.01          | 9.1         |
| TOTAL OUTFLOW | 2448.0   | 9.2    | 71.5        | 19.50       | 0.00        | 0.00          | 0.55          | 0.01          | 9.1         |

RESERVOIR INFORMATION WATER SURFACE ELEVATION, FT 461.82  
 RESERVOIR SURFACE AREA, AC 11157.  
 RESERVOIR STORAGE VOLUME, ACFT 263553.

## RESERVOIR WATER QUALITY

| DEPTH FT | TEMP C | CONS.1 MG/L | CONS.2 MG/L | CONS.3 MG/L | NONCON.1 MG/L | NONCON.2 MG/L | NONCON.3 MG/L | OXYGEN MG/L |
|----------|--------|-------------|-------------|-------------|---------------|---------------|---------------|-------------|
| 3.5      | 16.3   | 70.5        | 20.15       | 0.00        | 0.00          | 0.00          | 0.01          | 10.4        |
| 4.5      | 16.3   | 70.5        | 20.15       | 0.00        | 0.00          | 0.00          | 0.01          | 10.4        |
| 17.5     | 15.7   | 70.4        | 20.10       | 0.30        | 0.00          | 0.00          | 0.01          | 10.7        |
| 24.5     | 14.1   | 70.2        | 20.03       | 0.00        | 0.00          | 0.02          | 0.01          | 10.9        |
| 31.5     | 13.0   | 70.2        | 19.96       | 0.00        | 0.00          | 0.06          | 0.01          | 10.9        |
| 38.5     | 12.1   | 70.3        | 19.82       | 0.00        | 0.00          | 0.18          | 0.01          | 10.8        |
| 45.5     | 11.5   | 70.6        | 19.49       | 0.00        | 0.00          | 0.48          | 0.01          | 10.5        |
| 52.5     | 11.0   | 71.0        | 18.91       | 0.00        | 0.00          | 1.03          | 0.01          | 10.1        |
| 59.5     | 10.7   | 71.2        | 18.70       | 0.00        | 0.00          | 1.21          | 0.01          | 9.8         |
| 66.5     | 10.6   | 71.3        | 18.70       | 0.00        | 0.00          | 1.21          | 0.01          | 9.8         |
| 73.5     | 10.4   | 71.3        | 18.90       | 0.00        | 0.00          | 1.00          | 0.01          | 9.7         |
| 80.5     | 10.3   | 71.3        | 19.00       | 0.00        | 0.00          | 0.89          | 0.01          | 9.6         |
| 87.5     | 10.1   | 71.3        | 19.07       | 0.00        | 0.00          | 0.82          | 0.01          | 9.5         |
| 94.5     | 10.0   | 71.4        | 19.13       | 0.00        | 0.00          | 0.77          | 0.01          | 9.4         |
| 101.5    | 9.8    | 71.4        | 19.19       | 0.00        | 0.00          | 0.72          | 0.01          | 9.3         |
| 108.5    | 9.7    | 71.4        | 19.25       | 0.00        | 0.00          | 0.68          | 0.01          | 9.3         |



## STREAM MODEL RESULTS

JULIAN DATE 120 (HOUR 24)

METEOROLOGICAL DATA  
(MET. ZONE 1)

|    |                            |
|----|----------------------------|
|    | EQUILIBRIUM TEMPERATURE, C |
| 1  | 17.3                       |
| 3  | 62.7                       |
| 13 | 512.5                      |
| 20 | 4.5                        |

HEAT EXCHANGE COEFFICIENT, LANGLAWS/C  
SHORT WAVE SOLAR RADIATION, LANGLAWS  
WIND SPEED, M/S

## RESERVOIR RELEASES

| RESERVOIR NO | FLOW CFS | TEMP C | CONS. 1 MG/L | CONS. 2 MG/L | CONS. 3 MG/L | NONCON. 1 MG/L | NONCON. 2 MG/L | NONCON. 3 MG/L | OXYGEN MG/L |
|--------------|----------|--------|--------------|--------------|--------------|----------------|----------------|----------------|-------------|
| 1            | 6232.0   | 5.9    | 129.00       | 45.95        | 0.00         | 0.00           | 0.08           | 0.00           | 5.6         |
| 3            | 6717.9   | 6.9    | 132.24       | 46.18        | 0.00         | 0.00           | 0.06           | 0.00           | 6.2         |
| 13           | 3562.0   | 13.8   | 61.92        | 80.35        | 0.00         | 0.00           | 0.60           | 0.00           | 8.5         |
| 20           | 2448.0   | 9.2    | 71.55        | 19.50        | 0.00         | 0.00           | 1.55           | 0.01           | 9.1         |

## LOCAL FLOWS AND WATER QUALITY

| C.P. NO | FLOW CFS | TEMP C | CONS. 1 MG/L | CONS. 2 MG/L | CONS. 3 MG/L | NONCON. 1 MG/L | NONCON. 2 MG/L | NONCON. 3 MG/L | OXYGEN MG/L |
|---------|----------|--------|--------------|--------------|--------------|----------------|----------------|----------------|-------------|
| 2       | 485.0    | 13.2   | 200.00       | 55.00        | 0.00         | 0.00           | 0.00           | 0.00           | 13.2        |
| 4       | 610.0    | 16.7   | 200.00       | 100.00       | 0.00         | 0.00           | 0.00           | 0.00           | 13.2        |
| 5       | 897.0    | 16.7   | 200.00       | 100.00       | 0.00         | 0.00           | 0.00           | 0.00           | 13.2        |
| 6       | 510.0    | 16.7   | 200.00       | 100.00       | 0.00         | 0.00           | 0.00           | 0.00           | 13.2        |
| 8       | 410.0    | 23.7   | 350.00       | 350.00       | 0.00         | 0.00           | 10.03          | 0.01           | 11.6        |
| 14      | 89.0     | 15.8   | 66.36        | 61.34        | 0.00         | 0.00           | 0.34           | 0.00           | 9.7         |
| 15      | 400.0    | 15.8   | 66.36        | 41.34        | 0.00         | 0.00           | 0.34           | 0.00           | 9.7         |
| 17      | 581.0    | 13.9   | 88.21        | 34.67        | 0.00         | 0.00           | 6.84           | 0.00           | 10.6        |
| 18      | 356.0    | 15.7   | 87.67        | 27.62        | 0.00         | 0.00           | 6.84           | 0.08           | 9.4         |

## STREAM WATER QUALITY

| LOCATION | C.P./TRIB | TEMP C | CONS. 1 MG/L | CONS. 2 MG/L | CONS. 3 MG/L | NONCON. 1 MG/L | NONCON. 2 MG/L | NONCON. 3 MG/L | OXYGEN MG/L |
|----------|-----------|--------|--------------|--------------|--------------|----------------|----------------|----------------|-------------|
| 302.85   | 1 / 0     | 6.0    | 129.00       | 45.94        | 0.00         | 0.00           | 0.08           | 0.00           | 5.7         |
| 300.95   | 2 / 4     | 6.6    | 134.17       | 46.60        | 0.00         | 0.00           | 0.07           | 0.00           | 6.4         |
| 292.25   | 3 / 0     | 7.2    | 132.02       | 46.15        | 0.00         | 0.00           | 0.06           | 0.00           | 7.0         |
| 287.59   |           | 7.5    | 131.86       | 46.12        | 0.00         | 0.00           | 0.06           | 0.00           | 7.5         |
| 282.93   |           | 7.7    | 131.72       | 46.10        | 0.00         | 0.00           | 0.06           | 0.00           | 8.0         |
| 278.27   | 4 / 5     | 8.8    | 137.56       | 50.78        | 0.00         | 0.00           | 0.06           | 0.00           | 8.8         |
| 274.77   | 4 / 0     | 8.9    | 137.51       | 50.79        | 0.00         | 0.00           | 0.06           | 0.00           | 8.9         |
| 272.44   | 5 / 6     | 9.9    | 144.81       | 56.59        | 0.00         | 0.00           | 0.05           | 0.00           | 9.5         |
| 268.95   | 5 / 7     | 10.4   | 147.09       | 58.86        | 0.00         | 0.00           | 0.05           | 0.00           | 9.7         |
| 264.29   | 6 / 0     | 10.6   | 147.06       | 58.90        | 0.00         | 0.00           | 0.05           | 0.00           | 9.8         |
| 259.63   | 6 / 0     | 10.4   | 142.64       | 57.19        | 0.00         | 0.00           | 0.04           | 0.00           | 9.7         |
| 254.97   |           | 10.6   | 142.64       | 57.24        | 0.00         | 0.00           | 0.04           | 0.00           | 9.8         |
| 250.31   |           | 10.8   | 142.65       | 57.28        | 0.00         | 0.00           | 0.04           | 0.00           | 9.9         |
| 245.65   | 7 / 0     | 10.9   | 142.66       | 57.33        | 0.00         | 0.00           | 0.04           | 0.00           | 10.0        |
| 240.99   | 7 / 0     | 11.1   | 142.68       | 57.39        | 0.00         | 0.00           | 0.04           | 0.00           | 10.1        |

|       |         |       |       |       |      |      |      |         |
|-------|---------|-------|-------|-------|------|------|------|---------|
| 10.95 | 18 / 11 | 13.6  | 51.15 | 30.20 | 0.00 | 2.61 | 10.0 | 2722.8  |
| 6.57  | 18 / 0  | 13.9  | 51.54 | 30.32 | 0.00 | 2.60 | 0.00 | 2796.5  |
| 2.19  | 19 / 0  | 14.2  | 52.06 | 30.44 | 0.00 | 2.54 | 0.00 | 2833.2  |
| 78.16 | 19 / 0  | 14.2  | 59.12 | 64.45 | 0.00 | 1.15 | 0.00 | 9737.6  |
| 74.05 | 14.3    | 59.12 | 64.15 | 64.15 | 0.00 | 1.14 | 0.00 | 9680.0  |
| 69.93 | 14.4    | 59.12 | 63.82 | 63.82 | 0.00 | 1.13 | 0.00 | 9622.4  |
| 65.81 | 14.5    | 59.11 | 63.45 | 63.45 | 0.00 | 1.12 | 0.00 | 9564.8  |
| 61.70 | 22 / 0  | 14.6  | 59.08 | 63.05 | 0.00 | 1.10 | 0.00 | 9507.3  |
| 27.26 | 20 / 0  | 9.3   | 71.55 | 19.50 | 0.00 | 0.55 | 0.01 | 5.2     |
| 24.73 | 9.5     | 71.55 | 19.50 | 19.50 | 0.00 | 0.55 | 0.00 | 108.6   |
| 22.20 | 21 / 0  | 9.9   | 71.55 | 19.50 | 0.00 | 0.55 | 0.00 | 2448.0  |
| 18.84 | 21 / 0  | 10.4  | 71.55 | 19.50 | 0.00 | 0.55 | 0.00 | 2479.7  |
| 14.65 | 10.8    | 71.55 | 19.50 | 19.50 | 0.00 | 0.55 | 0.00 | 86.3    |
| 10.46 | 11.3    | 71.55 | 19.51 | 19.51 | 0.00 | 0.55 | 0.00 | 2513.0  |
| 6.28  | 11.7    | 71.55 | 19.51 | 19.51 | 0.00 | 0.54 | 0.00 | 35.7    |
| 2.09  | 22 / 0  | 12.1  | 71.55 | 19.51 | 0.00 | 0.54 | 0.00 | 2498.0  |
| 58.31 | 22 / 0  | 10.2  | 71.55 | 19.50 | 0.00 | 0.55 | 0.00 | 2432.9  |
| 55.64 | 10.2    | 71.55 | 19.51 | 19.51 | 0.00 | 0.55 | 0.00 | 12.2    |
| 52.97 | 10.3    | 71.55 | 19.51 | 19.51 | 0.00 | 0.55 | 0.00 | 0.0     |
| 50.30 | 10.4    | 71.55 | 19.51 | 19.51 | 0.00 | 0.54 | 0.00 | 1.35    |
| 47.63 | 10.5    | 71.55 | 19.51 | 19.51 | 0.00 | 0.54 | 0.00 | 0.0     |
| 44.96 | 10.6    | 71.55 | 19.51 | 19.51 | 0.00 | 0.54 | 0.00 | 1.48    |
| 42.29 | 10.7    | 71.55 | 19.51 | 19.51 | 0.00 | 0.54 | 0.00 | 1.61    |
| 39.62 | 23 / 0  | 10.8  | 71.55 | 19.51 | 0.00 | 0.54 | 0.00 | 1.73    |
|       |         |       |       |       |      | 0.00 | 10.4 | 11436.1 |
|       |         |       |       |       |      | 0.00 | 10.4 | 11355.9 |
|       |         |       |       |       |      | 0.00 | 0.0  | 0.0     |

**APPENDIX C**

**Graphical Displays of Sacramento River System  
Water Quality Modeling**





























































| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------|
| 1. REPORT NUMBER<br>Training Document No. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                               |
| 4. TITLE (and Subtitle)<br>WATER QUALITY MODELING OF RESERVOIR SYSTEM OPERATIONS USING HEC-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | 5. TYPE OF REPORT & PERIOD COVERED                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 6. PERFORMING ORG. REPORT NUMBER                            |
| 7. AUTHOR(s)<br>R. G. Willey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | 8. CONTRACT OR GRANT NUMBER(s)                              |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>US Army Corps of Engineers<br>The Hydrologic Engineering Center<br>609 Second Street, Davis, CA 95616                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 12. REPORT DATE<br>September 1987                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 13. NUMBER OF PAGES<br>114                                  |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 15. SECURITY CLASS. (of this report)                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                  |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Distribution of this publication is unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                             |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                             |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                             |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Water quality, Reservoir systems analysis, Computer model, Stream system analysis, Reservoir operation, Reservoir releases, Optimization, Project planning.                                                                                                                                                                                                                                                                                                                            |                       |                                                             |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>This training document was written to assist users of computer program HEC-5, Simulation of Flood Control and Conservation Systems in water quality applications. This document supplements the program Users Manual, which is the basic documentation for the program. In addition to a brief description of the water quality version of the HEC-5 model, this document also includes descriptions of application procedure, data requirements, and example program input and output. |                       |                                                             |