Практикум 6. Критерии.

Первый вариант

 $X_1, \ldots, X_n \sim \mathbb{R}[\theta, \theta + 2]$. Гипотеза $H_0: \theta = 0$, альтернатива $H_1: \theta = \theta_1$. Рассмотрим критические множества вида $\{X_{(1)} < C\}, \{X_{(n)} > C\}$.

- 1.1. Построить графики зависимости ошибки первого рода и второго рода $\alpha_i(C)$ (для $\theta_1=1$ и $\theta_1=-1$). Можно ли одновременно минимизировать обе ошибки?
- 1.2. Для каждого множества найти C такое, что $\alpha_1(C) = 0.05$ и зафиксировать его. Построить теперь графики мощности $\beta(\theta_1), \, \theta_1 \in [-5, 5]$, для разных n. Найдется ли такое n, что inf $\beta(\theta_1) > 0.95$?
- 1.3. Нарисовать графики p-value при нулевой гипотезе и альтернативе. График p-value.
- 1) Генерируем выборку, находим значение статистики критерия T ($T = X_{(1)}$ или $T = X_{(n)}$). Находим функцию распределения $F_T(x)$ нашей статистики.Вычисляем $p value = 1 F_T(T)$, для критических множеств вида $\{T > C\}$, $p value = F_T(T)$, для критических множеств вида $\{T < C\}$. Повторяем $m \ge 100$ раз. Получился массив p_1, \ldots, p_m , упорядочиваем его по возрастанию.
- 2) Строим график: по оси Ox значения p_1, \ldots, p_m , по оси Oy числа $1/m, 2/m, \ldots, 1$.
- 3) Построить графики p-value для гипотезы и альтернативы на одном графике для критериев вида $\{X_{(1)} > C\}, \{X_{(n)} > C\}.$

Мы знаем, что если F(x) непрерывна, то $F_T(T) \sim R[0,1]$. Значит, при гипотезе точки должны быть близки к прямой y=x. При альтернативе мы ожидаем увидеть отклонение от этой прямой. В какую сторону отклоняется график для альтернатив $H_1: \theta=1, H_2: \theta=-1$?

Построить графики p-value для разных критериев на одном графике (для нулевой гипотезы и одной альтернативы). Для какого критического множества p-value при альтернативе сильнее отклоняется от y = x?

 $1.4.\ X_1,\ldots,X_n\sim Bern(\theta),\ H_0:\ \theta=1/2,\ H_1:\theta=1/3.$ При каких n можно построить критическое множество вида $\{\overline{X}< C\}$ так, чтобы ошибки первого и второго рода не превышали 0.05? Пострить графики ошибок первого и второго рода (как функции от C) для разных n.

Второй вариант

 $X_1, \dots, X_n \sim \exp(\theta)$. Гипотеза $H_0: \theta = 2$, альтернатива $H_1: \theta = \theta_1$. Рассмотрим критические множества вида $\{\overline{X} > C\}$, $\{X_{(1)} < C\}$.

- 2.1. Построить графики ошибки первого рода и второго рода $\alpha_i(C)$ (для $\theta_1=5$ и $\theta_1=1$). Можно ли одновременно минимизировать обе ошибки?
- 2.2. Для каждого множества найти C такое, что $\alpha_1(C) = 0.05$ и зафиксировать его. Построить теперь графики мощности $\beta(\theta_1), \, \theta_1 \in (0,5]$, для разных n. Найдется ли такое n, что inf $\beta(\theta_1) > 0.95$?
- 2.3. Нарисовать графики p-value при нулевой гипотезе и альтернативе. График p-value.
- 1) Генерируем выборку, находим значение статистики критерия T. Находим функцию распределения F(x) нашей статистики. Вычисляем $p-value=1-F_T(T)$, для критических множеств вида $\{T>C\}$, $p-value=F_T(T)$, для критических множеств вида $\{T< C\}$. Повторяем $m\geq 100$ раз. Получился массив p_1,\ldots,p_m , упорядочиваем его по возрастанию.
- 2) Строим график: по оси Ox значения p_1, \ldots, p_m , по оси Oy числа $1/m, 2/m, \ldots, 1$.
- 3) Построить графики p-value для гипотезы и альтернативы на одном графике для каждого критерия.

Мы знаем, что если F(x) непрерывна, то $F(T) \sim R[0,1]$. Значит, при гипотезе точки должны быть близки к прямой y=x. При альтернативе мы ожидаем увидеть отклонение от этой прямой. В какую сторону отклоняется график для альтернатив $H_1: \theta=5, H_2: \theta=1$?

Построить графики p-value для разных критериев на одном графике (для нулевой гипотезы и одной альтернативы). Для какого критического множества p-value при альтернативе сильнее отклоняется от y = x?

 $2.4.\ X_1,\ldots,X_n\sim Geom(\theta),\ H_0:\ \theta=1/2,\ H_1:\theta=2/3.$ При каких n можно построить критическое множество вида $\{\overline{X}< C\}$ так, чтобы ошибки первого и второго рода не превышали 0.05? Пострить графики ошибок первого и второго рода (как функции от C) для разных n.

Третий вариант

- $X_1, \ldots, X_n \sim \mathrm{R}[0, \theta]$. Гипотеза $H_0: \theta = 1$, альтернатива $H_1: \theta = \theta_1$. Рассмотрим критические множества вида $\{X_{(n)} > C\}, \{X_{(1)} < C\}$.
- 3.1. Построить графики ошибки первого рода и второго рода $\alpha_i(C)$ (для $\theta_1=5$ и $\theta_1=1/2$). Можно ли одновременно минимизировать обе ошибки?
- 3.2. Для каждого множества найти C такое, что $\alpha_1(C) = 0.05$ и зафиксировать его. Построить теперь графики мощности $\beta(\theta_1)$, $\theta_1 \in [0.1, 5]$, для разных n. Найдется ли такое n, что inf $\beta(\theta_1) > 0.95$?
- 3.3. Нарисовать графики p-value при нулевой гипотезе и альтернативе. График p-value.
- 1) Генерируем выборку, находим значение статистики критерия T. Находим функцию распределения $F_T(x)$ нашей статистики. Вычисляем $p-value=1-F_T(T)$, для критических множеств вида $\{T>C\}$, $p-value=F_T(T)$, для критических множеств вида $\{T< C\}$. Повторяем $m\geq 100$ раз. Получился массив p_1,\ldots,p_m , упорядочиваем его по возрастанию.
- 2) Строим график: по оси Ox значения p_1, \ldots, p_m , по оси Oy числа $1/m, 2/m, \ldots, 1$.
- 3) Построить графики p-value для гипотезы и альтернативы на одном графике для каждого критерия. Мы знаем, что если F(x) непрерывна, то $F(T) \sim R[0,1]$. Значит, при гипотезе точки должны быть близки к прямой y=x. При альтернативе мы ожидаем увидеть отклонение от этой прямой. В какую сторону отклоняется график для альтернатив $H_1: \theta=5, H_2: \theta=1$?
- Построить графики p-value для разных критериев на одном графике (для нулевой гипотезы и одной альтернативы). Для какого критического множества p-value при альтернативе сильнее отклоняется от y = x?
- 3.4. $X_1, \ldots, X_n \sim Poiss(\theta), H_0: \theta = 1, H_1: \theta = 3$. При каких n можно построить критическое множество вида $\{\overline{X} > C\}$ так, чтобы ошибки первого и второго рода не превышали 0.05? Пострить графики ошибок первого и второго рода (как функции от C) для разных n.