HNCO

0.17

Generated by Doxygen 1.9.1

1 Namespace Index
1.1 Namespace List
2 Hierarchical Index
2.1 Class Hierarchy
3 Class Index
3.1 Class List
4 Namespace Documentation 19
4.1 hnco Namespace Reference
4.1.1 Detailed Description
4.1.2 Typedef Documentation
4.1.2.1 sparse_bit_vector_t
4.1.3 Function Documentation
4.1.3.1 bm_add_columns()
4.1.3.2 bm_add_rows()
4.1.3.3 bm_identity() [1/2]
4.1.3.4 bm_identity() [2/2]
4.1.3.5 bm_invert()
4.1.3.6 bm_multiply()
4.1.3.7 bm_rank()
4.1.3.8 bm_row_echelon_form()
4.1.3.9 bm_set_column()
4.1.3.10 bm_solve()
4.1.3.11 bm_solve_upper_triangular()
4.1.3.12 bm_transpose() [1/2]
4.1.3.13 bm_transpose() [2/2]
4.1.3.14 bv_add() [1/2]
4.1.3.15 bv_add() [2/2] 2
4.1.3.16 bv_from_size_type()
4.1.3.17 bv_from_stream()
4.1.3.18 bv_from_string()
4.1.3.19 bv_from_vector_bool()
4.1.3.20 bv_to_size_type() [1/2] 2
4.1.3.21 bv_to_size_type() [2/2]
4.1.3.22 bv_to_vector_bool()
4.1.3.23 is_in_range() [1/2] 2i
4.1.3.24 is_in_range() [2/2] 2
4.1.3.25 perm_identity()
4.1.3.26 perm_random()
4.1.3.27 sbv_flip()
4.1.3.28 sbv_is_valid() [1/2]

4.1.3.29 sbv_is_valid() [2/2]	. 30
4.2 hnco::algorithm Namespace Reference	. 30
4.2.1 Detailed Description	. 33
4.2.2 Function Documentation	. 33
4.2.2.1 pv_add()	. 33
4.2.2.2 pv_average()	. 34
4.2.2.3 pv_bound()	. 34
4.2.2.4 pv_init()	. 34
4.2.2.5 pv_sample()	. 35
4.2.2.6 pv_uniform()	. 35
4.2.2.7 pv_update() [1/2]	. 36
4.2.2.8 pv_update() [2/2]	. 36
4.3 hnco::algorithm::bm_pbil Namespace Reference	. 36
4.3.1 Detailed Description	. 37
4.4 hnco::algorithm::fast_efficient_p3 Namespace Reference	. 37
4.4.1 Detailed Description	. 37
4.5 hnco::algorithm::hea Namespace Reference	. 37
4.5.1 Detailed Description	. 38
4.6 hnco::app Namespace Reference	. 38
4.6.1 Detailed Description	. 38
4.7 hnco::exception Namespace Reference	. 38
4.7.1 Detailed Description	. 39
4.8 hnco::function Namespace Reference	. 39
4.8.1 Detailed Description	. 41
4.8.2 Function Documentation	. 41
4.8.2.1 compute_walsh_transform()	. 41
4.9 hnco::function::controller Namespace Reference	. 41
4.9.1 Detailed Description	. 42
4.10 hnco::function::modifier Namespace Reference	. 42
4.10.1 Detailed Description	. 43
4.11 hnco::function::representation Namespace Reference	. 43
4.11.1 Detailed Description	. 43
4.11.2 Function Documentation	. 43
4.11.2.1 difference_is_safe()	. 43
4.12 hnco::logging Namespace Reference	. 44
4.12.1 Detailed Description	. 44
4.13 hnco::map Namespace Reference	. 44
4.13.1 Detailed Description	. 46
4.13.2 Typedef Documentation	. 46
4.13.2.1 transvection_sequence_t	. 46
4.13.3 Function Documentation	. 46
4.13.3.1 ts is valid() [1/2]	. 46

	4.13.3.2 ts_is_valid() [2/2]	46
	4.13.3.3 ts_multiply() [1/2]	48
	4.13.3.4 ts_multiply() [2/2]	48
	4.13.3.5 ts_random()	49
	4.13.3.6 ts_random_commuting()	49
	4.13.3.7 ts_random_disjoint()	50
	4.13.3.8 ts_random_non_commuting()	51
	4.13.3.9 ts_random_unique_destination()	51
	4.13.3.10 ts_random_unique_source()	52
	4.14 hnco::neighborhood Namespace Reference	52
	4.14.1 Detailed Description	53
	4.15 hnco::random Namespace Reference	53
	4.15.1 Detailed Description	53
	Class Documentation	E E
5 (55
	5.1 AbstractLabs Class Reference	
	5.1.1 Detailed Description	
	5.2 AbstractMaxSat Class Reference	56 57
	5.2.1 Detailed Description	57 57
	5.2.2 Member Function Documentation	
	· ·	57 57
	5.2.2.2 load_()	
	5.2.2.3 save()	58
	5.2.2.4 save_()	58
	5.2.3 Member Data Documentation	
	5.2.S.1 _expression	
		60
	5.3.1 Detailed Description	60
	5.4.1 Detailed Description	61
	5.4.2 Member Function Documentation	61
	5.4.2.1 is_surjective()	62
	5.4.2.2 random()	62
	5.5 Algorithm Class Reference	62
	5.5.1 Detailed Description	64
	5.5.2 Member Function Documentation	64
	5.5.2.1 finalize()	65
		65
	5.5.2.2 set_solution()	65
	5.5.3 Member Data Documentation	65
	5.5.3.1 _functions	66
	5.5.3.1 _iunctions	66

5.6.1 Detailed Description	66
5.6.2 Member Function Documentation	66
5.6.2.1 make()	66
5.7 BiasedCrossover Class Reference	67
5.7.1 Detailed Description	68
5.7.2 Member Function Documentation	68
5.7.2.1 breed()	68
5.8 BitHerding Class Reference	68
5.8.1 Detailed Description	70
5.8.2 Member Enumeration Documentation	70
5.8.2.1 anonymous enum	70
5.9 BitMoment Struct Reference	70
5.9.1 Detailed Description	71
5.10 BmPbil Class Reference	71
5.10.1 Detailed Description	73
5.10.2 Member Enumeration Documentation	74
5.10.2.1 anonymous enum	74
5.10.2.2 anonymous enum	74
5.10.3 Member Function Documentation	74
5.10.3.1 set_selection_size()	75
5.11 Cache Class Reference	75
5.11.1 Detailed Description	76
5.11.2 Constructor & Destructor Documentation	76
5.11.2.1 Cache()	76
5.11.3 Member Function Documentation	77
5.11.3.1 provides_incremental_evaluation()	77
5.12 CallCounter Class Reference	77
5.12.1 Detailed Description	79
5.13 CommandLineAlgorithmFactory Class Reference	79
5.13.1 Detailed Description	79
5.13.2 Member Function Documentation	80
5.13.2.1 make()	80
5.14 CommandLineApplication Class Reference	80
5.14.1 Detailed Description	81
5.14.2 Constructor & Destructor Documentation	81
5.14.2.1 CommandLineApplication()	81
5.15 CommandLineFunctionFactory Class Reference	82
5.15.1 Detailed Description	83
5.16 CompactGa Class Reference	83
5.16.1 Detailed Description	84
5.17 CompleteSearch Class Reference	84
5.17.1 Detailed Description	85

5.18 ComplexToDouble < T > Struct Template Reference		85
5.18.1 Detailed Description		85
5.19 Controller Class Reference		86
5.19.1 Detailed Description		87
5.19.2 Member Function Documentation		87
5.19.2.1 provides_incremental_evaluation()		87
5.20 Crossover Class Reference		87
5.20.1 Detailed Description		88
5.20.2 Member Function Documentation		88
5.20.2.1 breed()		88
5.21 DeceptiveJump Class Reference		88
5.21.1 Detailed Description		89
5.21.2 Member Function Documentation		90
5.21.2.1 get_maximum()		90
5.21.2.2 has_known_maximum()		90
5.22 DecoratedFunctionFactory Class Reference		90
5.22.1 Detailed Description		91
5.22.2 Member Function Documentation		91
5.22.2.1 make_function_controller()		91
5.23 Decorator Class Reference		92
5.23.1 Detailed Description		93
$5.24\ Dyadic Complex Representation < T > Class\ Template\ Reference\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$		93
5.24.1 Detailed Description		94
5.24.2 Constructor & Destructor Documentation		94
5.24.2.1 DyadicComplexRepresentation() [1/3]		94
5.24.2.2 DyadicComplexRepresentation() [2/3]		94
5.24.2.3 DyadicComplexRepresentation() [3/3]		95
$5.25 \ DyadicInteger Representation < T > Class \ Template \ Reference \\ \ldots \ldots \ldots \ldots \ldots$		95
5.25.1 Detailed Description		96
5.25.2 Constructor & Destructor Documentation		96
5.25.2.1 DyadicIntegerRepresentation() [1/3]		96
5.25.2.2 DyadicIntegerRepresentation() [2/3]		97
5.25.2.3 DyadicIntegerRepresentation() [3/3]		97
$5.26 \ Dyadic Real Representation < T > Class \ Template \ Reference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $		97
5.26.1 Detailed Description		98
5.26.2 Constructor & Destructor Documentation		98
5.26.2.1 DyadicRealRepresentation() [1/3]		98
5.26.2.2 DyadicRealRepresentation() [2/3]		99
5.26.2.3 DyadicRealRepresentation() [3/3]		99
5.26.3 Member Function Documentation		99
5.26.3.1 compute_lengths()		99
5.27 EqualProducts Class Reference	1	00

5.27.1 Detailed Description
5.27.2 Member Function Documentation
5.27.2.1 generate()
5.27.2.2 load()
5.27.2.3 random()
5.27.2.4 save()
5.28 ProgressTracker::Event Struct Reference
5.28.1 Detailed Description
5.29 Factorization Class Reference
5.29.1 Detailed Description
5.29.2 Constructor & Destructor Documentation
5.29.2.1 Factorization()
5.29.3 Member Function Documentation
5.29.3.1 load()
5.30 FfgenOptions Class Reference
5.30.1 Detailed Description
5.31 FirstAscentHillClimbing Class Reference
5.31.1 Detailed Description
5.32 FourPeaks Class Reference
5.32.1 Detailed Description
5.32.2 Member Function Documentation
5.32.2.1 get_maximum()
5.32.2.2 has_known_maximum()
5.33 Function Class Reference
5.33.1 Detailed Description
5.33.2 Member Function Documentation
5.33.2.1 evaluate()
5.33.2.2 evaluate_incrementally()
5.33.2.3 evaluate_safely()
5.33.2.4 get_maximum()
5.33.2.5 provides_incremental_evaluation()
5.33.2.6 update()
5.34 FunctionFactory Class Reference
5.34.1 Detailed Description
5.35 FunctionMapComposition Class Reference
5.35.1 Detailed Description
5.35.2 Constructor & Destructor Documentation
5.35.2.1 FunctionMapComposition()
5.35.3 Member Function Documentation
5.35.3.1 get_maximum()
5.35.3.2 has_known_maximum()
5.36 FunctionPlugin Class Reference

5.36.1 Detailed Description	124
5.36.2 Constructor & Destructor Documentation	124
5.36.2.1 FunctionPlugin()	124
5.37 Generator Struct Reference	124
5.37.1 Detailed Description	125
5.37.2 Member Function Documentation	125
5.37.2.1 reset()	125
5.37.2.2 set_seed()	125
5.38 GeneticAlgorithm Class Reference	126
5.38.1 Detailed Description	127
5.38.2 Constructor & Destructor Documentation	127
5.38.2.1 GeneticAlgorithm()	127
5.39 HammingBall Class Reference	128
5.39.1 Detailed Description	129
5.39.2 Constructor & Destructor Documentation	129
5.39.2.1 HammingBall()	129
5.40 HammingSphere Class Reference	129
5.40.1 Detailed Description	130
5.40.2 Constructor & Destructor Documentation	131
5.40.2.1 HammingSphere()	131
5.41 HammingSphereIterator Class Reference	131
5.41.1 Detailed Description	132
5.41.2 Constructor & Destructor Documentation	132
5.41.2.1 HammingSphereIterator()	132
5.42 Hboa Class Reference	133
5.42.1 Detailed Description	134
5.42.2 Member Data Documentation	134
5.42.2.1 _pimpl	134
5.43 Hea< Moment, Herding > Class Template Reference	135
5.43.1 Detailed Description	137
5.43.2 Member Enumeration Documentation	137
5.43.2.1 anonymous enum	137
5.43.3 Constructor & Destructor Documentation	137
5.43.3.1 Hea()	137
5.43.4 Member Function Documentation	138
5.43.4.1 set_reset_period()	138
5.43.4.2 set_selection_size()	138
5.44 Hiff Class Reference	139
5.44.1 Detailed Description	139
5.44.2 Member Function Documentation	140
5.44.2.1 get_maximum()	140
5.44.2.2 has_known_maximum()	140

5.45 HncoEvaluator Class Reference
5.45.1 Detailed Description
5.46 HncoOptions Class Reference
5.46.1 Detailed Description
5.47 Human Class Reference
5.47.1 Detailed Description
5.48 Hypercubelterator Class Reference
5.48.1 Detailed Description
5.49 Implementation Struct Reference
5.49.1 Detailed Description
5.50 Injection Class Reference
5.50.1 Detailed Description
5.50.2 Constructor & Destructor Documentation
5.50.2.1 Injection()
5.51 IntegerCategoricalRepresentation Class Reference
5.51.1 Detailed Description
5.51.2 Constructor & Destructor Documentation
5.51.2.1 IntegerCategoricalRepresentation()
5.52 IterativeAlgorithm Class Reference
5.52.1 Detailed Description
5.52.2 Constructor & Destructor Documentation
5.52.2.1 IterativeAlgorithm()
5.52.3 Member Function Documentation
5.52.3.1 maximize()
5.52.3.2 set_num_iterations()
5.53 Iterator Class Reference
5.53.1 Detailed Description
5.54 Jump Class Reference
5.54.1 Detailed Description
5.54.2 Member Function Documentation
5.54.2.1 get_maximum()
5.54.2.2 has_known_maximum()
5.55 Labs Class Reference
5.55.1 Detailed Description
5.56 LabsMeritFactor Class Reference
5.56.1 Detailed Description
5.57 LastEvaluation Class Reference
5.57.1 Detailed Description
5.58 LeadingOnes Class Reference
5.58.1 Detailed Description
5.58.2 Member Function Documentation
5.58.2.1 get_maximum()

5.58.2.2 has_known_maximum()
5.59 LinearCategoricalRepresentation Class Reference
5.59.1 Detailed Description
5.59.2 Constructor & Destructor Documentation
5.59.2.1 LinearCategoricalRepresentation()
5.60 LinearFunction Class Reference
5.60.1 Detailed Description
5.60.2 Member Function Documentation
5.60.2.1 generate()
5.60.2.2 has_known_maximum()
5.60.2.3 load()
5.60.2.4 provides_incremental_evaluation()
5.60.2.5 random()
5.60.2.6 save()
5.61 LinearMap Class Reference
5.61.1 Detailed Description
5.61.2 Member Function Documentation
5.61.2.1 is_surjective()
5.61.2.2 random()
5.62 LocalSearchAlgorithm < Neighborhood > Class Template Reference
5.62.1 Detailed Description
5.63 LogContext Class Reference
5.63.1 Detailed Description
5.64 Logger Class Reference
5.64.1 Detailed Description
5.64.2 Constructor & Destructor Documentation
5.64.2.1 Logger()
5.64.2.2 ~Logger()
5.65 LongPath Class Reference
5.65.1 Detailed Description
5.65.2 Member Function Documentation
5.65.2.1 get_maximum()
5.65.2.2 has_known_maximum()
5.66 Ltga Class Reference
5.66.1 Detailed Description
5.66.2 Member Data Documentation
5.66.2.1 _pimpl
5.67 Map Class Reference
5.67.1 Detailed Description
5.67.2 Member Function Documentation
5.67.2.1 is_surjective()
5.68 MapComposition Class Reference

5.68.1 Detailed Description)2
5.68.2 Constructor & Destructor Documentation)2
5.68.2.1 MapComposition())2
5.68.3 Member Function Documentation)3
5.68.3.1 is_surjective())3
5.69 MapgenOptions Class Reference)3
5.69.1 Detailed Description)5
5.70 MaxNae3Sat Class Reference	96
5.70.1 Detailed Description	96
5.70.2 Member Function Documentation	96
5.70.2.1 load()	96
5.71 MaxSat Class Reference)7
5.71.1 Detailed Description	98
5.71.2 Member Function Documentation	98
5.71.2.1 random() [1/2]19	98
5.71.2.2 random() [2/2]19	98
5.72 Mimic Class Reference	99
5.72.1 Detailed Description)(
5.73 Mmas Class Reference)1
5.73.1 Detailed Description)2
5.74 Model Class Reference)2
5.74.1 Detailed Description)3
5.75 ModelParameters Class Reference)3
5.75.1 Detailed Description)4
5.75.2 Member Function Documentation)4
5.75.2.1 add())4
5.75.2.2 average())4
5.75.2.3 init())5
5.75.2.4 update())5
5.75.3 Member Data Documentation)5
5.75.3.1 _weight)5
5.76 Modifier Class Reference)6
5.76.1 Detailed Description)6
5.77 MuCommaLambdaEa Class Reference)7
5.77.1 Detailed Description)8
5.77.2 Constructor & Destructor Documentation)8
5.77.2.1 MuCommaLambdaEa())8
5.78 MultiBitFlip Class Reference)9
5.78.1 Detailed Description)9
5.78.2 Constructor & Destructor Documentation	10
5.78.2.1 MultiBitFlip()	0
5.78.3 Member Function Documentation	10

5.78.3.1 bernoulli_trials()	0
5.78.3.2 rejection_sampling()	0
5.79 MultivariateFunctionAdapter< Fn, Rep, Conv > Class Template Reference	11
5.79.1 Detailed Description	12
5.79.2 Constructor & Destructor Documentation	12
5.79.2.1 MultivariateFunctionAdapter()	12
5.80 MuPlusLambdaEa Class Reference	13
5.80.1 Detailed Description	4
5.80.2 Constructor & Destructor Documentation	4
5.80.2.1 MuPlusLambdaEa()	4
5.81 NearestNeighborIsingModel1 Class Reference	15
5.81.1 Detailed Description	17
5.81.2 Member Function Documentation	7
5.81.2.1 evaluate()	17
5.81.2.2 generate()	7
5.81.2.3 load()	8
5.81.2.4 provides_incremental_evaluation()	8
5.81.2.5 random()	8
5.81.2.6 save()	9
5.82 NearestNeighborIsingModel2 Class Reference	9
5.82.1 Detailed Description	21
5.82.2 Member Function Documentation	21
5.82.2.1 evaluate()	22
5.82.2.2 generate()	22
5.82.2.3 load()	22
5.82.2.4 provides_incremental_evaluation()	23
5.82.2.5 random()	23
5.82.2.6 save()	23
5.83 Needle Class Reference	24
5.83.1 Detailed Description	25
5.83.2 Member Function Documentation	25
5.83.2.1 get_maximum()	25
5.83.2.2 has_known_maximum()	25
5.84 Negation Class Reference	26
5.84.1 Detailed Description	27
5.84.2 Member Function Documentation	27
5.84.2.1 provides_incremental_evaluation()	27
5.85 Neighborhood Class Reference	28
5.85.1 Detailed Description	29
5.85.2 Constructor & Destructor Documentation	29
5.85.2.1 Neighborhood()	29
5.85.3 Member Function Documentation	30

5.85.3.1 map()	30
5.85.3.2 mutate()	30
5.86 NeighborhoodIterator Class Reference	31
5.86.1 Detailed Description	31
5.86.2 Constructor & Destructor Documentation	31
5.86.2.1 NeighborhoodIterator()	31
5.87 NkLandscape Class Reference	32
5.87.1 Detailed Description	33
5.87.2 Member Function Documentation	33
5.87.2.1 generate()	33
5.87.2.2 load()	34
5.87.2.3 random()	34
5.87.2.4 random_structure()	34
5.87.2.5 save()	35
5.88 NpsPbil Class Reference	35
5.88.1 Detailed Description	37
5.89 OnBudgetFunction Class Reference	37
5.89.1 Detailed Description	39
5.89.2 Member Function Documentation	39
5.89.2.1 evaluate()	39
5.89.2.2 evaluate_incrementally()	39
5.89.2.3 update()	40
5.90 OneMax Class Reference	40
5.90.1 Detailed Description	41
5.90.2 Member Function Documentation	41
5.90.2.1 get_maximum()	42
5.90.2.2 has_known_maximum()	42
5.90.2.3 provides_incremental_evaluation()	42
5.91 OnePlusLambdaCommaLambdaGa Class Reference	43
5.91.1 Detailed Description	44
5.91.2 Constructor & Destructor Documentation	44
5.91.2.1 OnePlusLambdaCommaLambdaGa()	44
5.92 OnePlusOneEa Class Reference	45
5.92.1 Detailed Description	46
5.92.2 Constructor & Destructor Documentation	46
5.92.2.1 OnePlusOneEa()	46
5.92.3 Member Function Documentation	47
5.92.3.1 set_num_iterations()	47
5.93 ParameterLessPopulationPyramid Class Reference	47
5.93.1 Detailed Description	48
5.93.2 Member Data Documentation	48
5.93.2.1 _pimpl	48

5.94 ParsedModifier Class Reference
5.94.1 Detailed Description
5.94.2 Constructor & Destructor Documentation
5.94.2.1 ParsedModifier()
5.95 ParsedMultivariateFunction < Parser > Class Template Reference
5.95.1 Detailed Description
5.95.2 Constructor & Destructor Documentation
5.95.2.1 ParsedMultivariateFunction()
5.96 Partition Class Reference
5.96.1 Detailed Description
5.96.2 Member Function Documentation
5.96.2.1 generate()
5.96.2.2 load()
5.96.2.3 random()
5.96.2.4 save()
5.97 Pbil Class Reference
5.97.1 Detailed Description
5.98 Permutation Class Reference
5.98.1 Detailed Description
5.98.2 Member Function Documentation
5.98.2.1 is_surjective()
5.99 Plateau Class Reference
5.99.1 Detailed Description
5.99.2 Member Function Documentation
5.99.2.1 get_maximum()
5.99.2.2 has_known_maximum()
5.100 Population Class Reference
5.100.1 Detailed Description
5.100.2 Constructor & Destructor Documentation
5.100.2.1 Population()
5.100.3 Member Function Documentation
5.100.3.1 comma_selection() [1/2]
5.100.3.2 comma_selection() [2/2]
5.100.3.3 get_best_bv() [1/4]
5.100.3.4 get_best_bv() [2/4]
5.100.3.5 get_best_bv() [3/4]
5.100.3.6 get_best_bv() [4/4]
5.100.3.7 get_best_value() [1/2]
5.100.3.8 get_best_value() [2/2]
5.100.3.9 get_worst_bv() [1/2]
5.100.3.10 get_worst_bv() [2/2]
5.100.3.11 plus_selection() [1/2]

5.100.3.12 plus_selection() [2/2]
5.100.4 Member Data Documentation
5.100.4.1 _compare_index_value
5.100.4.2 _lookup
5.101 PriorNoise Class Reference
5.101.1 Detailed Description
5.101.2 Member Function Documentation
5.101.2.1 get_maximum()
5.101.2.2 has_known_maximum()
5.101.2.3 provides_incremental_evaluation()
5.102 ProgressTracker Class Reference
5.102.1 Detailed Description
5.102.2 Member Function Documentation
5.102.2.1 get_last_improvement()
5.102.3 Member Data Documentation
5.102.3.1 _record_evaluation_time
5.103 ProgressTrackerContext Class Reference
5.103.1 Detailed Description
5.104 Projection Class Reference
5.104.1 Detailed Description
5.104.2 Constructor & Destructor Documentation
5.104.2.1 Projection()
5.104.3 Member Function Documentation
5.104.3.1 is_surjective()
5.105 PvAlgorithm Class Reference
5.105.1 Detailed Description
5.106 Qubo Class Reference
5.106.1 Detailed Description
5.106.2 Member Function Documentation
5.106.2.1 load() [1/2]
5.106.2.2 load() [2/2]
5.106.3 Member Data Documentation
5.106.3.1 _q
5.107 RandomLocalSearch Class Reference
5.107.1 Detailed Description
5.107.2 Member Function Documentation
5.107.2.1 set_patience()
5.107.3 Member Data Documentation
5.107.3.1 _patience
5.108 RandomSearch Class Reference
5.108.1 Detailed Description
5 100 Random Selection Class Reference

5.109.1 Detailed Description
5.109.2 Constructor & Destructor Documentation
5.109.2.1 RandomSelection()
5.110 RandomWalk Class Reference
5.110.1 Detailed Description
5.111 Restart Class Reference
5.111.1 Detailed Description
5.112 Ridge Class Reference
5.112.1 Detailed Description
5.112.2 Member Function Documentation
5.112.2.1 get_maximum()
5.112.2.2 has_known_maximum()
5.113 ScalarToDouble < T > Struct Template Reference
5.113.1 Detailed Description
5.114 SimulatedAnnealing Class Reference
5.114.1 Detailed Description
5.114.2 Member Function Documentation
5.114.2.1 init_beta()
5.115 SingleBitFlip Class Reference
5.115.1 Detailed Description
5.116 SingleBitFlipIterator Class Reference
5.116.1 Detailed Description
5.116.2 Constructor & Destructor Documentation
5.116.2.1 SingleBitFlipIterator()
5.117 SinusSummationCancellation Class Reference
5.117.1 Detailed Description
5.118 SixPeaks Class Reference
5.118.1 Detailed Description
5.118.2 Member Function Documentation
5.118.2.1 get_maximum()
5.118.2.2 has_known_maximum()
5.119 SpinHerding Class Reference
5.119.1 Detailed Description
5.119.2 Member Enumeration Documentation
5.119.2.1 anonymous enum
5.119.3 Constructor & Destructor Documentation
5.119.3.1 SpinHerding()
5.119.4 Member Function Documentation
5.119.4.1 q_variation()
5.120 SpinMoment Struct Reference
5.120.1 Detailed Description
5 120 2 Member Data Documentation

5.120.2.1 _second)2
5.121 StandardBitMutation Class Reference)2
5.121.1 Detailed Description)3
5.121.2 Constructor & Destructor Documentation)3
5.121.2.1 StandardBitMutation() [1/2])3
5.121.2.2 StandardBitMutation() [2/2])4
5.121.3 Member Function Documentation)4
5.121.3.1 set_mutation_rate())4
5.122 SteepestAscentHillClimbing Class Reference)5
5.122.1 Detailed Description)6
5.123 StopOnMaximum Class Reference)6
5.123.1 Detailed Description)7
5.123.2 Constructor & Destructor Documentation)7
5.123.2.1 StopOnMaximum())7
5.124 StopOnTarget Class Reference)8
5.124.1 Detailed Description)9
5.124.2 Constructor & Destructor Documentation)9
5.124.2.1 StopOnTarget())9
5.124.3 Member Function Documentation)9
5.124.3.1 evaluate()	10
5.124.3.2 evaluate_incrementally()	10
5.124.3.3 update()	10
5.125 StopWatch Class Reference	11
5.125.1 Detailed Description	11
5.126 Sudoku Class Reference	11
5.126.1 Detailed Description	13
5.126.2 Member Function Documentation	13
5.126.2.1 load()	13
5.126.2.2 load_()	13
5.126.2.3 random()	13
5.126.2.4 save()	14
5.127 SummationCancellation Class Reference	14
5.127.1 Detailed Description	۱6
5.127.2 Constructor & Destructor Documentation	۱6
5.127.2.1 SummationCancellation()	۱6
5.127.3 Member Function Documentation	۱6
5.127.3.1 has_known_maximum()	۱6
5.128 TargetReached Class Reference	17
5.128.1 Detailed Description	17
5.129 TournamentSelection Class Reference	8
5.129.1 Detailed Description	19
5.129.2 Constructor & Destructor Documentation 31	19

5.129.2.1 TournamentSelection()
5.129.3 Member Function Documentation
5.129.3.1 select()
5.130 Translation Class Reference
5.130.1 Detailed Description
5.130.2 Member Function Documentation
5.130.2.1 is_surjective()
5.130.2.2 load()
5.130.2.3 save()
5.131 Transvection Struct Reference
5.131.1 Detailed Description
5.131.2 Member Function Documentation
5.131.2.1 is_valid()
5.131.2.2 multiply() [1/2]
5.131.2.3 multiply() [2/2]
5.131.2.4 random()
5.131.2.5 random_non_commuting()
5.132 Trap Class Reference
5.132.1 Detailed Description
5.132.2 Constructor & Destructor Documentation
5.132.2.1 Trap()
5.132.3 Member Function Documentation
5.132.3.1 get_maximum()
5.132.3.2 has_known_maximum()
5.133 TsAffineMap Class Reference
5.133.1 Detailed Description
5.133.2 Member Enumeration Documentation
5.133.2.1 SamplingMode
5.133.3 Member Function Documentation
5.133.3.1 is_surjective()
5.133.3.2 random()
5.134 Umda Class Reference
5.134.1 Detailed Description
5.135 UniformCrossover Class Reference
5.135.1 Detailed Description
5.135.2 Member Function Documentation
5.135.2.1 breed()
5.136 UniformSelection Class Reference
5.136.1 Detailed Description
5.136.2 Constructor & Destructor Documentation
5.136.2.1 UniformSelection()
5 137 WalchEvnansion Class Reference

5.137.1 Detailed Description	 336
5.137.2 Member Function Documentation	 336
5.137.2.1 generate()	 336
5.137.2.2 load()	 337
5.137.2.3 random()	 337
5.137.2.4 save()	 338
5.138 WalshExpansion1 Class Reference	 338
5.138.1 Detailed Description	 340
5.138.2 Member Function Documentation	 340
5.138.2.1 generate()	 340
5.138.2.2 has_known_maximum()	 340
5.138.2.3 load()	 341
5.138.2.4 provides_incremental_evaluation()	 341
5.138.2.5 random()	 341
5.138.2.6 save()	 342
5.139 WalshExpansion2 Class Reference	 342
5.139.1 Detailed Description	 344
5.139.2 Member Function Documentation	 344
5.139.2.1 generate()	 344
5.139.2.2 generate_ising1_long_range()	 344
5.139.2.3 generate_ising1_long_range_periodic()	 345
5.139.2.4 load()	 345
5.139.2.5 random()	 346
5.139.2.6 save()	 346
5.139.3 Member Data Documentation	 347
5.139.3.1 _quadratic	 347
5.140 WalshTerm Struct Reference	 347
5.140.1 Detailed Description	 347
5.140.2 Member Data Documentation	 348
5.140.2.1 feature	 348
mdov.	0.40
ndex	349

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

hnco	
Top-level HNCO namespace	13
hnco::algorithm	
Algorithms	30
hnco::algorithm::bm_pbil	
Boltzmann machine PBIL	36
hnco::algorithm::fast_efficient_p3	
Algorithms from the FastEfficientP3 library	37
hnco::algorithm::hea	
Herding evolutionary algorithm	37
hnco::app	
Classes for applications	38
hnco::exception	
Exceptions	38
hnco::function	
Functions defined on bit vectors	39
hnco::function::controller	
Controllers	41
hnco::function::modifier	
Modifiers	42
hnco::function::representation	
Representations	43
hnco::logging	
Logging	44
hnco::map	
Maps	44
hnco::neighborhood	
Neighborhoods for local search	52
hnco::random	
Random numbers	53

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Algorithm
CompleteSearch
LocalSearchAlgorithm< neighborhood::NeighborhoodIterator >
FirstAscentHillClimbing
SteepestAscentHillClimbing
LocalSearchAlgorithm< neighborhood::Neighborhood>
RandomLocalSearch
RandomWalk
SimulatedAnnealing
GeneticAlgorithm
Human
$\label{localSearchAlgorithm} Local Search Algorithm < Neighborhood > \dots $
Mimic
MuCommaLambdaEa
MuPlusLambdaEa
OnePlusLambdaCommaLambdaGa
PvAlgorithm
CompactGa
Mmas
NpsPbil
Pbil
RandomSearch
Restart
BmPbil
Hea < Moment, Herding >
OnePlusOneEa
Hboa
Ltga
ParameterLessPopulationPyramid
AlgorithmFactory
CommandLineAlgorithmFactory
,
BitHerding

4 Hierarchical Index

CommandLineApplication 80 ComplexToDouble < T > 85 Crossover 87 BiasedCrossover 67 UniformCrossover 332 DecoratedFunctionFactory 90 DyadicComplexRepresentation < T > 93 DyadicIntegerRepresentation < T > 95 DyadicRealRepresentation < T > 97 Evaluator 140 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
Crossover 87 BiasedCrossover 67 UniformCrossover 332 DecoratedFunctionFactory 90 DyadicComplexRepresentation < T > 93 DyadicIntegerRepresentation < T > 95 DyadicRealRepresentation < T > 97 Evaluator 140 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
BiasedCrossover 67 UniformCrossover 332 DecoratedFunctionFactory 90 DyadicComplexRepresentation < T > 93 DyadicIntegerRepresentation < T > 95 DyadicRealRepresentation < T > 97 Evaluator 140 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
UniformCrossover 332 DecoratedFunctionFactory 90 DyadicComplexRepresentation < T > 93 DyadicIntegerRepresentation < T > 95 DyadicRealRepresentation < T > 97 Evaluator 140 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
UniformCrossover 332 DecoratedFunctionFactory 90 DyadicComplexRepresentation < T > 93 DyadicIntegerRepresentation < T > 95 DyadicRealRepresentation < T > 97 Evaluator 140 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
OyadicComplexRepresentation < T > 93 OyadicIntegerRepresentation < T > 95 OyadicRealRepresentation < T > 97 Evaluator 140 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
OyadicComplexRepresentation < T > 93 OyadicIntegerRepresentation < T > 95 OyadicRealRepresentation < T > 97 Evaluator 140 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
DyadicIntegerRepresentation < T > 95 DyadicRealRepresentation < T > 97 Evaluator 140 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
DyadicRealRepresentation < T >
Evaluator 140 HncoEvaluator 103 ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
ProgressTracker::Event 103 exception std::runtime_error LastEvaluation 172
exception std::runtime_error LastEvaluation
std::runtime_error LastEvaluation
LastEvaluation
T :D
TargetReached
FigenOptions
Function
AbstractLabs
Labs
LabsMeritFactor
AbstractMaxSat
MaxNae3Sat
MaxSat
DeceptiveJump
Decorator
Controller
Cache
CallCounter
OnBudgetFunction
ProgressTracker
StopOnTarget
StopOnMaximum
Modifier
AdditiveGaussianNoise
FunctionMapComposition
Negation
ParsedModifier
PriorNoise
EqualProducts
Factorization
FourPeaks
FunctionPlugin
Hiff
Jump
LeadingOnes
LinearFunction
LongPath
NearestNeighborIsingModel1
NearestNeighborIsingModel2
Needle
NkLandscape
OneMax
Partition
Plateau
Qubo

2.1 Class Hierarchy 5

Ridge	
SixPeaks	€
SummationCancellation	14
SinusSummationCancellation	94
Trap	25
WalshExpansion	35
WalshExpansion1	38
WalshExpansion2	12
MultivariateFunctionAdapter< Fn, Rep, Conv >	11
FunctionFactory	19
CommandLineFunctionFactory	32
Generator	
HncoOptions	
Implementation	
IntegerCategoricalRepresentation	
Iterator	
Hypercubelterator	
NeighborhoodIterator	
HammingSphereIterator	
SingleBitFlipIterator	
LinearCategoricalRepresentation	
LogContext	
ProgressTrackerContext	72
Logger	
Map 19	90
AffineMap	30
Injection	31
LinearMap	30
MapComposition	91
Permutation	57
Projection	73
Translation	20
TsAffineMap	28
MapgenOptions	93
Model	
ModelParameters	
Neighborhood	
MultiBitFlip	19
HammingBall	
HammingSphere	
StandardBitMutation	
SingleBitFlip	
ParsedMultivariateFunction < Parser >	
Population	
RandomSelection	
TournamentSelection	
UniformSelection	
ScalarToDouble < T >	
SpinHerding	
SpinMoment	
StopWatch	
Sudoku	
Transvection	
WalshTerm	17

6 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AbstractLabs	
Abstract class for low autocorrelation binary sequences	55
AbstractMaxSat	
Abstract class for MaxSat-like functions	56
AdditiveGaussianNoise	
Additive Gaussian Noise	59
AffineMap	
Affine map	60
Algorithm	
Abstract search algorithm	62
AlgorithmFactory	
Algorithm factory	66
BiasedCrossover	
Biased crossover	67
BitHerding	
Herding with bit features	68
BitMoment	
Moment for bit features	70
BmPbil	
Boltzmann machine PBIL	71
Cache	
Cache	75
CallCounter	
Call counter	77
CommandLineAlgorithmFactory	
Command line algorithm factory	79
CommandLineApplication	
Command line application	80
CommandLineFunctionFactory	
Command line function factory	82
CompactGa	
Compact genetic algorithm	83
CompleteSearch	
Complete search	84
ComplexToDouble < T >	
Convert a complex to a double	85

8 Class Index

Controller		
Function controller		86
Crossover Crossover		87
DeceptiveJump	 •	07
Deceptive jump		88
DecoratedFunctionFactory		
Decorated function factory	 ٠	90
Percorator Function decorator		92
DyadicComplexRepresentation < T >	 •	-
Dyadic complex representation		93
DyadicIntegerRepresentation < T >		0.5
Dyadic integer representation	 •	95
Dyadic real representation		97
EqualProducts		
Equal products		100
ProgressTracker::Event Event		100
Event	 •	103
Factorization		104
FfgenOptions		
Command line options for ffgen		106
FirstAscentHillClimbing First ascent hill climbing		112
FourPeaks	 •	
Four Peaks		113
Function		
Function Fun		115
Function factory		119
FunctionMapComposition		
Composition of a function and a map		120
FunctionPlugin Function plugin		100
Generator	 •	123
Random number generator		124
GeneticAlgorithm		
Genetic algorithm		126
HammingBall Hamming ball		128
HammingSphere	 •	0
Hamming sphere		129
HammingSphereIterator		101
Hamming sphere neighborhood iterator	 •	131
Hierarchical Bayesian Optimization Algorithm		133
Hea < Moment, Herding >		
Herding evolutionary algorithm		135
Hiff Hierarchical if and only if		120
HncoEvaluator	 •	139
Evaluator for HNCO functions		140
HncoOptions		
Command line options for hnco		141
Human Human		150
	 •	. 55

3.1 Class List

Hypercub	pelterator	
	Hypercube iterator	160
Implemer		
Injection	Implementation	161
	Injection	161
IntegerCa	ategoricalRepresentation Integer categorical representation	163
IterativeA		100
	Iterative search	164
Iterator	Iterator over bit vectors	167
Jump		
	Jump	168
Labs	Low autocorrelation binary sequences	170
LabsMeri	tFactor	
	Low autocorrelation binary sequences merit factor	171
LastEvalu	Last evaluation	172
LeadingC	Ones Ones Ones Ones Ones Ones Ones Ones	
	Leading ones	173
	tegoricalRepresentation Linear categorical representation	174
LinearFu	nction	
	Linear function	176
LinearMa	Linear map	180
LocalSea	rchAlgorithm< Neighborhood >	
	Local search algorithm	182
LogConte		183
Logger		
	- 33 -	184
LongPath		186
Ltga		
	Linkage Tree Genetic Algorithm	188
Мар	Map	190
MapCom	·	
		191
MapgenC	Command line options for mapgen	193
MaxNae3	3Sat	
MaxSat	Max not-all-equal 3SAT	196
	MAX-SAT	197
Mimic		
Mmas	Mutual information maximizing input clustering	199
IVIIIIas	Max-min ant system	201
Model		
ModelPa		202
wouelFal		203
Modifier		
	Function modifier	206

10 Class Index

MuComma	aLambdaEa	
(mu, lambda) EA	207
MultiBitFlip		
	Multi bit flip	209
	eFunctionAdapter< Fn, Rep, Conv > Multivariate function adapter	211
MuPlusLa		
,	mu+lambda) EA	213
	eighborlsingModel1	
	Nearest neighbor Ising model in one dimension	215
	eighborlsingModel2 Nearest neighbor Ising model in two dimensions	219
Needle	vedicat neighbor iaing model in two dimensions	210
	Needle in a haystack	224
Negation	·	
N	Negation	226
Neighborh		
	Neighborhood	228
•	oodIterator	001
NkLandsca	Neighborhood iterator	231
	NK landscape	232
NpsPbil		
· F	Population-based incremental learning with negative and positive selection	235
OnBudget		
	Function with a limited number of evaluations	237
OneMax	N 14	0.40
	DneMax	240
	1+(lambda, lambda)) genetic algorithm	243
OnePlusO		210
(1+1) EA	245
Parameter	LessPopulationPyramid	
	Parameter-less Population Pyramid	247
ParsedMo		
	Parsed modifier	249
	ItivariateFunction< Parser > Parsed multivariate function	250
Partition	arsea mailivariate function	230
	Partition	252
Pbil		
	Population-based incremental learning	255
Permutation		
	Permutation	257
Plateau	Plateau	258
Population		250
•	Population	260
PriorNoise	•	
F	Prior noise	267
ProgressTi		
	ProgressTracker	270
	rackerContext	270
Projection	og context for ProgressTracker	272
-	Projection	273
PvAlgorith	•	
	Probability vector algorithm	275

3.1 Class List

Qubo
Quadratic unconstrained binary optimization
Random local search
RandomSearch
Random search
Random selection
Random walk
Restart Restart
Ridge
Ridge
Convert a scalar to a double
SimulatedAnnealing Simulated annealing
SingleBitFlip
One bit neighborhood
Single bit flip neighborhood iterator
SinusSummationCancellation Summation cancellation with sinus
SixPeaks
Six Peaks
Herding with spin variables
SpinMoment Moment for spin variables
StandardBitMutation
Standard bit mutation
Steepest ascent hill climbing
StopOnMaximum Stop on maximum
StopOnTarget
Stop on target
Stop watch
Sudoku Sudoku
SummationCancellation
Summation cancellation
Target reached
Tournament Selection Tournament selection
Translation Translation 32
Translation
Transvection
Trap 32
TsAffineMap Transvection sequence affine map
Umda
Univariate marginal distribution algorithm

12 Class Index

rmCrossover	
Uniform crossover	32
rmSelection	
Uniform selection	33
hExpansion	
Walsh expansion	35
hExpansion1	
Walsh expansion of degree 1	38
hExpansion2	
Walsh expansion of degree 2	42
hTerm	
Walsh transform term	1 7

Namespace Documentation

4.1 hnco Namespace Reference

top-level HNCO namespace

Namespaces

· algorithm

Algorithms.

app

Classes for applications.

· exception

Exceptions.

function

Functions defined on bit vectors.

logging

Logging.

• map

Maps

neighborhood

Neighborhoods for local search.

• random

Random numbers.

Classes

· class Iterator

Iterator over bit vectors

· class Hypercubelterator

Hypercube iterator.

class StopWatch

Stop watch.

Functions

```
    template < class A , class B >
        bool have_same_size (const A &a, const B &b)
        Check whether two containers have the same size.
    template < class T >
        T square (T x)
        Generic square function.
    double logistic (double x)
        Logistic function (sigmoid)
    template < typename lter >
        std::string join (lter begin, lter end, std::string const &separator)
        Convert to string and join elements of a container (from SO)
```

Range checking

```
    bool is_in_range (int i, int a, int b)
        Check whether an index is in a given range.

    bool is_in_range (int i, int n)
        Check whether an index is in a given range.
```

Types and functions related to bit matrices

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output bit_matrix_t parameters are passed by reference and must have the right size for the considered function.

Input object parameters are passed by const reference.

```
    typedef std::vector < bit vector t > bit matrix t

      Bit matrix.

    bit_matrix_t bm_rectangular (int nrows, int ncols)

      Make a rectangular bit matrix.

    bit_matrix_t bm_square (int n)

      Make a square bit matrix.

    void bm_identity (bit_matrix_t &M)

      Set a matrix to the identity matrix.

    bit_matrix_t bm_identity (int n)

      Make an identity bit matrix.

    void bm_transpose (bit_matrix_t &N, const bit_matrix_t &M)

      Transpose a bit matrix.

    bit_matrix_t bm_transpose (const bit_matrix_t &M)

      Transpose a bit matrix.

    void bm display (const bit matrix t &M, std::ostream &stream)

      Display bit matrix.

    bool bm is valid (const bit matrix t &M)

      Check whether a bit matrix is valid.

    int bm num rows (const bit matrix t &M)

      Number of rows.
```

int bm_num_columns (const bit_matrix_t &M)

Number of columns.

bool bm_is_square (const bit_matrix_t &M)

Check whether the matrix is a square matrix.

bool bm_is_identity (const bit_matrix_t &M)

Check whether the matrix is the identity matrix.

bool bm_is_upper_triangular (const bit_matrix_t &M)

Check whether the matrix is upper triangular.

void bm_resize (bit_matrix_t &M, int nrows, int ncols)

Resize a bit matrix.

void bm_resize (bit_matrix_t &M, int nrows)

Resize a bit matrix and make it a square matrix.

void bm_clear (bit_matrix_t &M)

Clear bit matrix.

void bm random (bit matrix t &M)

Sample a random bit matrix.

void bm_swap_rows (bit_matrix_t &M, int i, int j)

Swap two rows.

void bm_add_rows (bit_matrix_t &M, int dest, int src)

Add two rows.

• void bm_add_columns (bit_matrix_t &M, int dest, int src)

Add two columns.

void bm_set_column (bit_matrix_t &M, int j, const bit_vector_t &bv)

Set column

void bm_row_echelon_form (bit_matrix_t &A)

Compute a row echelon form of a matrix.

int bm_rank (const bit_matrix_t &A)

Compute the rank of a matrix.

bool bm_solve (bit_matrix_t &A, bit_vector_t &b)

Solve a linear system.

• bool bm_solve_upper_triangular (bit_matrix_t &A, bit_vector_t &b)

Solve a linear system in upper triangular form.

bool bm_invert (bit_matrix_t &M, bit_matrix_t &N)

Invert a bit matrix.

void bm_multiply (bit_vector_t &y, const bit_matrix_t &M, const bit_vector_t &x)

Multiply a bit matrix and a bit vector.

Types and functions related to bit

typedef std::uint8 t bit t

Bit.

bit_t bit_flip (bit_t b)

Flip bit.

• bit_t bit_random (double p)

Sample a random bit.

Types and functions related to bit vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output bit_vector_t parameters are passed by reference and must have the right size for the considered function.

Input bit_vector_t parameters are passed by const reference.

```
typedef std::vector< bit_t > bit_vector_t
      Bit vector.

    std::string by domain (const bit vector t &x)

      Display bit vector.

    void bv_display (const bit_vector_t &v, std::ostream &stream)

      Display bit vector.

    bool by is valid (const bit vector t &x)

      Check whether the bit vector is valid.

    bool bv_is_zero (const bit_vector_t &x)

      Check whether the bit vector is zero.

    int bv_hamming_weight (const bit_vector_t &x)

      Hamming weight.

    int bv_hamming_weight (const std::vector< bool > &x)

      Hamming weight.

    int bv_hamming_distance (const bit_vector_t &x, const bit_vector_t &y)

      Hamming distance between two bit vectors.

    bit_t bv_dot_product (const bit_vector_t &x, const bit_vector_t &y)

      Dot product.

    bit_t bv_dot_product (const bit_vector_t &x, const std::vector< bool > &y)

      Dot product.

    void bv_clear (bit_vector_t &x)

      Clear bit vector.

    void bv_flip (bit_vector_t &x, int i)

      Flip a single bit.

    void bv_flip (bit_vector_t &x, const bit_vector_t &mask)

      Flip many bits.

    void bv_random (bit_vector_t &x)

      Sample a random bit vector.

    void by random (bit vector t &x, int k)

      Sample a random bit vector with given Hamming weight.

    void bv_add (bit_vector_t &dest, const bit_vector_t &src)

      Add two bit vectors.

    void bv_add (bit_vector_t &dest, const bit_vector_t &x, const bit_vector_t &y)

      Add two bit vectors.

    void bv_to_vector_bool (std::vector< bool > &y, const bit_vector_t &x)

      Convert a bit vector to a bool vector.

    void bv_from_vector_bool (bit_vector_t &x, const std::vector< bool > &y)

      Convert a bool vector to a bit vector.

    std::size_t bv_to_size_type (const bit_vector_t &x)

      Convert a small bit vector to a size_t.

    std::size_t bv_to_size_type (const bit_vector_t &x, int start, int stop)

      Convert a slice of a small bit vector to a size_t.
```

```
    void bv_from_size_type (bit_vector_t &x, std::size_t u)
```

Convert a size_t to a small bit vector.

bit_vector_t bv_from_string (const std::string &str)

Read a bit vector from a string.

bit_vector_t bv_from_stream (std::istream &stream)

Read a bit vector from a stream.

Types and functions related to permutations

```
    typedef std::vector< int > permutation t
```

Permutation type

• bool perm_is_valid (const permutation_t &permutation)

Check that a vector represents a permutation.

void perm_identity (permutation_t &s)

Identity permutation.

void perm_random (permutation_t &s)

Sample a random permutation.

Types and functions related to sparse bit vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Input object parameters are passed by const reference.

```
    typedef std::vector< int > sparse bit vector t
```

Sparse bit vector.

bool sbv_is_valid (const sparse_bit_vector_t &sbv)

Check that a sparse bit vector is valid.

• bool sbv_is_valid (const sparse_bit_vector_t &sbv, int n)

Check that a sparse bit vector is valid.

void sbv_flip (bit_vector_t &x, const sparse_bit_vector_t &sbv)

Flip many bits of a bit vector.

void sbv_display (const sparse_bit_vector_t &v, std::ostream &stream)

Display sparse bit vector.

sparse_bit_vector_t sbv_from_bv (const bit_vector_t &bv)

Convert a bit vector to a sparse bit vector.

4.1.1 Detailed Description

top-level HNCO namespace

4.1.2 Typedef Documentation

4.1.2.1 sparse_bit_vector_t

```
typedef std::vector<int> sparse_bit_vector_t
```

Sparse bit vector.

A sparse bit vector is represented as an vector containing the indices of its non-zero components. The indices must be sorted in ascending order.

A sparse bit vector does not know the dimension of the space it belongs to.

Definition at line 50 of file sparse-bit-vector.hh.

4.1.3 Function Documentation

4.1.3.1 bm_add_columns()

Add two columns.

Equivalent to dest = dest + src.

Parameters

М	Bit matrix
dest	Destination column
src	Source column

Warning

M is modified by the function.

Definition at line 187 of file bit-matrix.cc.

4.1.3.2 bm_add_rows()

Add two rows.

Equivalent to dest = dest + src.

Parameters

М	Bit matrix
dest	Destination row
src	Source row

Definition at line 178 of file bit-matrix.cc.

4.1.3.3 bm_identity() [1/2]

```
void bm_identity ( bit\_matrix\_t \ \& \ \textit{M} \ )
```

Set a matrix to the identity matrix.

Precondition

```
bm_is_square(M)
```

Definition at line 39 of file bit-matrix.cc.

4.1.3.4 bm_identity() [2/2]

Make an identity bit matrix.

Parameters

```
n Dimension
```

Returns

An order n identity matrix

Definition at line 50 of file bit-matrix.cc.

4.1.3.5 bm_invert()

Invert a bit matrix.

Parameters

М	Bit matrix
Ν	Inverse bit matrix

Precondition

```
bm_is_square(M)
bm_is_square(N)
bm_num_rows(M) == bm_num_rows(N)
```

Returns

true if M is invertible

Warning

M is modified by the function. Provided that M is invertible, after returning from the function, M is the identity matrix and N is the computed inverse matrix.

Definition at line 316 of file bit-matrix.cc.

4.1.3.6 bm_multiply()

```
void bm_multiply (
                bit_vector_t & y,
                const bit_matrix_t & M,
                 const bit_vector_t & x )
```

Multiply a bit matrix and a bit vector.

Computes y = Mx.

Parameters

У	Output bit vector
М	Bit matrix
X	Bit vector

Definition at line 360 of file bit-matrix.cc.

4.1.3.7 bm_rank()

Compute the rank of a matrix.

Precondition

A must be in row echelon form.

Definition at line 244 of file bit-matrix.cc.

4.1.3.8 bm_row_echelon_form()

Compute a row echelon form of a matrix.

Warning

A is modified by the function.

Definition at line 213 of file bit-matrix.cc.

4.1.3.9 bm_set_column()

```
void bm_set_column (
                bit_matrix_t & M,
                 int j,
                 const bit_vector_t & bv )
```

Set column.

Set a column to a given bit vector.

Parameters

М	Bit matrix
j	Column index
bv	Bit vector

Precondition

```
bm_num_rows(M) == bv.size()
```

Definition at line 202 of file bit-matrix.cc.

4.1.3.10 bm_solve()

```
bool bm_solve (
                bit_matrix_t & A,
                bit_vector_t & b )
```

Solve a linear system.

Solve the linear equation Ax = b.

Parameters

Α	Matrix
b	Right hand side

Precondition

```
bm_is_square(A)
bm_num_rows(A) == b.size()
```

Returns

true if the system has a unique solution

Warning

Both A and b are modified by the function. Provided that A is invertible, after returning from the function, A is the identity matrix and b is the unique solution to the linear equation.

Definition at line 262 of file bit-matrix.cc.

4.1.3.11 bm_solve_upper_triangular()

Solve a linear system in upper triangular form.

Solve the linear equation Ax = b.

Parameters

	Α	Upper triangular matrix
ſ	b	Right hand side

Precondition

```
bm_is_square(A)
bm_num_rows(A) == b.size()
bm_is_upper_triangular(A)
```

Returns

true if the system has a unique solution

Warning

Both A and b are modified by the function. Provided that A is invertible, after returning from the function, A is the identity matrix and b is the unique solution to the linear equation.

Definition at line 295 of file bit-matrix.cc.

4.1.3.12 bm_transpose() [1/2]

```
void bm_transpose (
                bit_matrix_t & N,
                 const bit_matrix_t & M )
```

Transpose a bit matrix.

Precondition

```
bm_num_columns(N) == bm_num_rows(M)
bm_num_rows(N) == bm_num_columns(M)
```

Definition at line 59 of file bit-matrix.cc.

4.1.3.13 bm_transpose() [2/2]

Transpose a bit matrix.

Parameters

M Bit matrix

Returns

Transposed bit matrix

Definition at line 73 of file bit-matrix.cc.

4.1.3.14 bv_add() [1/2]

```
void bv_add (
                bit_vector_t & dest,
                const bit_vector_t & src )
```

Add two bit vectors.

Equivalent to dest = dest + src.

Parameters

dest	Destination bit vector
src	Source bit vector

Warning

Vectors must be of the same size.

Definition at line 124 of file bit-vector.cc.

4.1.3.15 bv_add() [2/2]

```
void bv_add (
          bit_vector_t & dest,
          const bit_vector_t & x,
          const bit_vector_t & y )
```

Add two bit vectors.

Equivalent to dest = x + y.

Parameters

dest	Destination bit vector
Х	First operand
У	Second operand

Warning

Vectors must be of the same size.

Definition at line 133 of file bit-vector.cc.

4.1.3.16 bv_from_size_type()

Convert a size_t to a small bit vector.

Parameters

,	Υ	Output bit vector
ι	J	Unsigned integer representing a bit vector

Precondition

```
x.size() <= 8 * sizeof(std::size_t)
```

Warning

Depending on the size of the output bit vector, some bits might be lost. The original bit vector can be reconstructed only if it is small and the unsigned integer u is the result of bv_to_size_type.

Definition at line 201 of file bit-vector.cc.

4.1.3.17 bv_from_stream()

Read a bit vector from a stream.

Parameters

stream	Input stream

Returns

A bit_vector_t

Definition at line 232 of file bit-vector.cc.

4.1.3.18 bv_from_string()

Read a bit vector from a string.

Parameters

```
str Input string
```

Returns

```
A bit_vector_t
```

Definition at line 216 of file bit-vector.cc.

4.1.3.19 bv_from_vector_bool()

```
void bv_from_vector_bool (
          bit_vector_t & x,
          const std::vector< bool > & y )
```

Convert a bool vector to a bit vector.

Warning

Vectors must be of the same size.

Definition at line 156 of file bit-vector.cc.

4.1.3.20 bv_to_size_type() [1/2]

Convert a small bit vector to a size_t.

x[0] is the least significant bit.

Parameters

```
x Input bit vector
```

Returns

An unsigned integer representing x

Precondition

```
x.size() <= 8 * sizeof(std::size_t)
```

Definition at line 169 of file bit-vector.cc.

4.1.3.21 bv_to_size_type() [2/2]

Convert a slice of a small bit vector to a size_t.

x[start] is the least significant bit.

x[stop-1] is the most significant bit.

Parameters

Χ	Input bit vector
start	Start bit
stop	Stop bit

Returns

An unsigned integer representing x[start], ..., x[stop-1]

Precondition

```
start in [0, x.size())
stop in [start+1, x.size()]
(stop - start) <= 8 * sizeof(std::size_t)</pre>
```

Definition at line 184 of file bit-vector.cc.

4.1.3.22 bv_to_vector_bool()

```
void bv_to_vector_bool (
          std::vector< bool > & y,
          const bit_vector_t & x )
```

Convert a bit vector to a bool vector.

Warning

Vectors must be of the same size.

Definition at line 143 of file bit-vector.cc.

4.1.3.23 is_in_range() [1/2]

Check whether an index is in a given range.

Parameters

i	Index
а	Lower bound
b	Upper bound (excluded)

Returns

```
true if i \ge a and i < b
```

Definition at line 45 of file util.hh.

4.1.3.24 is_in_range() [2/2]

Check whether an index is in a given range.

The lower bound is implicit and is equal to 0.

Parameters

i	Index
n	Upper bound (excluded)

Returns

true if $i \ge 0$ and i < n

Definition at line 56 of file util.hh.

4.1.3.25 perm_identity()

Identity permutation.

Warning

This function does not set the size of the permutation.

Definition at line 46 of file permutation.hh.

4.1.3.26 perm_random()

Sample a random permutation.

Warning

This function does not set the size of the permutation.

Definition at line 56 of file permutation.hh.

4.1.3.27 sbv_flip()

Flip many bits of a bit vector.

Parameters

Х	Input-output bit vector
sbv	Bits to flip

Definition at line 54 of file sparse-bit-vector.cc.

4.1.3.28 sbv_is_valid() [1/2]

Check that a sparse bit vector is valid.

A sparse bit vector is valid if:

- · Its elements are non negative.
- · Its elements are sorted in non-descending order.

Definition at line 32 of file sparse-bit-vector.cc.

4.1.3.29 sbv_is_valid() [2/2]

Check that a sparse bit vector is valid.

A sparse bit vector is valid if:

- · Its elements are non negative.
- Its elements are sorted in non-descending order.
- Its elements are valid indices w.r.t. the given dimension.

Parameters

sbv	Input sparse bit vector
n	Dimension

Definition at line 43 of file sparse-bit-vector.cc.

4.2 hnco::algorithm Namespace Reference

Algorithms.

Namespaces

bm_pbil

Boltzmann machine PBIL.

· fast_efficient_p3

Algorithms from the FastEfficientP3 library.

• hea

Herding evolutionary algorithm.

Classes

· class Algorithm

Abstract search algorithm.

class CompleteSearch

Complete search.

class Restart

Restart.

· class Crossover

Crossover

· class UniformCrossover

Uniform crossover.

· class BiasedCrossover

Biased crossover.

class GeneticAlgorithm

Genetic algorithm.

• class MuCommaLambdaEa

(mu, lambda) EA.

• class MuPlusLambdaEa

(mu+lambda) EA.

• class OnePlusLambdaCommaLambdaGa

(1+(lambda, lambda)) genetic algorithm.

• class OnePlusOneEa

(1+1) EA.

· class Human

Human.

· class IterativeAlgorithm

Iterative search.

· class FirstAscentHillClimbing

First ascent hill climbing.

· class LocalSearchAlgorithm

Local search algorithm.

class RandomLocalSearch

Random local search.

class RandomWalk

Random walk.

class SimulatedAnnealing

Simulated annealing.

• class SteepestAscentHillClimbing

Steepest ascent hill climbing.

• class Mimic

Mutual information maximizing input clustering.

class Population

Population

· class CompactGa

Compact genetic algorithm.

· class Mmas

Max-min ant system.

class NpsPbil

Population-based incremental learning with negative and positive selection.

· class Pbil

Population-based incremental learning.

· class PvAlgorithm

Probability vector algorithm.

· class Umda

Univariate marginal distribution algorithm.

class RandomSearch

Random search.

· class RandomSelection

Random selection.

class UniformSelection

Uniform selection.

class TournamentSelection

Tournament selection.

Typedefs

typedef std::pair < bit_vector_t, double > solution_t
 Type of a solution.

Functions

```
    template < class T >
```

bool matrix_is_symmetric (const std::vector< std::vector< T > > &A)

Check for symmetric matrix.

template < class T >

bool matrix_is_strictly_lower_triangular (const std::vector< std::vector< T >> &A)

Check for strictly lower triangular matrix.

 $\bullet \quad template\!<\!class\ T>$

bool matrix_has_diagonal (const std::vector< std::vector< T > > &A, T x)

Check for diagonal elements.

 $\bullet \quad template\!<\!class \, T>$

bool matrix_has_range (const std::vector< std::vector< T >> &A, T inf, T sup)

Check for element range.

template < class T >

bool matrix_has_dominant_diagonal (const std::vector< std::vector< T >> &A)

Check for element range.

Type and functions related to probability vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output pv_t parameters are passed by reference and must have the right size for the considered function.

Input object parameters are passed by const reference.

```
    typedef std::vector< double > pv_t

      Probability vector type.

    double pv_entropy (const pv_t &pv)

      Entropy of a probability vector.

    void pv_sample (bit_vector_t &x, const pv_t &pv)

     Sample a bit vector.
void pv_uniform (pv_t &pv)
      Probability vector of the uniform distribution.
void pv_init (pv_t &pv)
     Initialize.

    void pv_add (pv_t &pv, const bit_vector_t &x)

      Accumulate a bit vector into a probability vector.

    void pv_average (pv_t &pv, int count)

     Average.

    template < class T >

  void pv_update (pv_t &pv, double rate, const T &x)
      Update a probability vector.

    void pv_update (pv_t &pv, double rate, const pv_t &x, const pv_t &y)

      Update a probability vector.
• void pv_bound (pv_t &pv, double lower_bound, double upper_bound)
     Bound the elements of a probability vector.
```

4.2.1 Detailed Description

Algorithms.

4.2.2 Function Documentation

```
4.2.2.1 pv_add()
```

Accumulate a bit vector into a probability vector.

Equivalent to pv += x

Parameters

pv	Probability vector
X	Bit vector

Definition at line 58 of file probability-vector.cc.

4.2.2.2 pv_average()

Average.

Equivalent to pv = pv / count.

Parameters

pv	Probability vector
count	Number of accumulated bit vectors

Definition at line 67 of file probability-vector.cc.

4.2.2.3 pv_bound()

Bound the elements of a probability vector.

Parameters

pv	Probability vector
lower_bound	Lower bound
upper_bound	Upper bound

Definition at line 82 of file probability-vector.cc.

4.2.2.4 pv_init()

```
void hnco::algorithm::pv_init (
```

```
pv_t & pv ) [inline]
```

Initialize.

All the elements of the probability vector are set to 0.

Parameters

```
pv Probability vector
```

Definition at line 74 of file probability-vector.hh.

4.2.2.5 pv_sample()

Sample a bit vector.

Parameters

Х	Sampled bit vector
pv	Probability vector

Definition at line 46 of file probability-vector.cc.

4.2.2.6 pv_uniform()

Probability vector of the uniform distribution.

All the elements of the probability vector are set to 1/2.

Parameters

Definition at line 66 of file probability-vector.hh.

4.2.2.7 pv_update() [1/2]

Update a probability vector.

Equivalent to pv += rate(x - y)

Parameters

pv	Probability vector
rate	Rate
X	Attractor probability vector
У	Repulsor probability vector

Definition at line 73 of file probability-vector.cc.

4.2.2.8 pv_update() [2/2]

Update a probability vector.

Equivalent to pv += rate * (x - pv)

Parameters

pv	Probability vector
rate	Rate
Χ	Attractor bit vector

Definition at line 103 of file probability-vector.hh.

4.3 hnco::algorithm::bm_pbil Namespace Reference

Boltzmann machine PBIL.

Classes

class BmPbil

Boltzmann machine PBIL.

· class ModelParameters

Parameters of a Boltzmann machine.

· class Model

Model of a Boltzmann machine

4.3.1 Detailed Description

Boltzmann machine PBIL.

4.4 hnco::algorithm::fast_efficient_p3 Namespace Reference

Algorithms from the FastEfficientP3 library.

Classes

• class Hboa

Hierarchical Bayesian Optimization Algorithm.

· class HncoEvaluator

Evaluator for HNCO functions.

struct Implementation

Implementation

• class Ltga

Linkage Tree Genetic Algorithm.

· class ParameterLessPopulationPyramid

Parameter-less Population Pyramid.

4.4.1 Detailed Description

Algorithms from the FastEfficientP3 library.

4.5 hnco::algorithm::hea Namespace Reference

Herding evolutionary algorithm.

Classes

· class BitHerding

Herding with bit features.

struct BitMoment

Moment for bit features.

• class Hea

Herding evolutionary algorithm.

class SpinHerding

Herding with spin variables.

struct SpinMoment

Moment for spin variables.

4.5.1 Detailed Description

Herding evolutionary algorithm.

4.6 hnco::app Namespace Reference

Classes for applications.

Classes

· class AlgorithmFactory

Algorithm factory.

• class CommandLineAlgorithmFactory

Command line algorithm factory.

class CommandLineApplication

Command line application.

· class DecoratedFunctionFactory

Decorated function factory.

class FunctionFactory

Function factory.

· class CommandLineFunctionFactory

Command line function factory.

class HncoOptions

Command line options for hnco.

class FfgenOptions

Command line options for ffgen.

class MapgenOptions

Command line options for mapgen.

Functions

- std::ostream & operator<< (std::ostream &stream, const HncoOptions &options)

 Print a header containing the parameter values.
- std::ostream & operator<< (std::ostream &stream, const FfgenOptions &options)

Print a header containing the parameter values.

std::ostream & operator<< (std::ostream &stream, const MapgenOptions &options)

Print a header containing the parameter values.

4.6.1 Detailed Description

Classes for applications.

4.7 hnco::exception Namespace Reference

Exceptions.

Classes

· class LastEvaluation

Last evaluation.

· class TargetReached

Target reached.

4.7.1 Detailed Description

Exceptions.

4.8 hnco::function Namespace Reference

Functions defined on bit vectors.

Namespaces

· controller

Controllers.

· modifier

Modifiers.

· representation

Representations.

Classes

• class SummationCancellation

Summation cancellation.

• class SinusSummationCancellation

Summation cancellation with sinus.

class EqualProducts

Equal products.

class Factorization

Factorization.

· class FourPeaks

Four Peaks.

class SixPeaks

Six Peaks.

· class NearestNeighborIsingModel1

Nearest neighbor Ising model in one dimension.

• class NearestNeighborIsingModel2

Nearest neighbor Ising model in two dimensions.

class Jump

Jump.

· class DeceptiveJump

Deceptive jump.

class AbstractLabs

Abstract class for low autocorrelation binary sequences.

class Lahs

Low autocorrelation binary sequences.

· class LabsMeritFactor

Low autocorrelation binary sequences merit factor.

· class LinearFunction

Linear function.

· class LongPath

Long path.

class AbstractMaxSat

Abstract class for MaxSat-like functions.

class MaxSat

MAX-SAT.

class MaxNae3Sat

Max not-all-equal 3SAT.

class NkLandscape

NK landscape.

class ParsedMultivariateFunction

Parsed multivariate function.

class Partition

Partition.

· class FunctionPlugin

Function plugin

· class Qubo

Quadratic unconstrained binary optimization.

· class Sudoku

Sudoku.

class OneMax

OneMax.

• class LeadingOnes

Leading ones.

class Needle

Needle in a haystack.

· class Hiff

Hierarchical if and only if.

• class Ridge

Ridge

class Plateau

Plateau.

class Trap

Trap.

class WalshExpansion1

Walsh expansion of degree 1.

class WalshExpansion2

Walsh expansion of degree 2.

• class WalshExpansion

Walsh expansion.

class Decorator

Function decorator

class Function

Function

struct WalshTerm

Walsh transform term.

Functions

- void compute_walsh_transform (function::Function *function, std::vector< function::WalshTerm > &terms)

 Compute the Walsh transform of the function.
- bool bv_is_locally_maximal (const bit_vector_t &bv, Function &fn, neighborhood::NeighborhoodIterator &it)

 Check whether a bit vector is locally maximal.
- bool bv_is_globally_maximal (const bit_vector_t &bv, Function &fn)
 Check whether a bit vector is globally maximal.

4.8.1 Detailed Description

Functions defined on bit vectors.

4.8.2 Function Documentation

4.8.2.1 compute_walsh_transform()

Compute the Walsh transform of the function.

Let f be a fitness function defined on the hypercube $\{0,1\}^n$. Then it can be expressed as $\sum_u c_u \chi_u$ where $c_u = \langle f, \chi_u \rangle$, $\langle f, g \rangle = \frac{1}{2^n} \sum_x f(x) g(x)$, $\chi_u(x) = (-1)^{x \cdot u}$, and $x \cdot u = \sum_i x_i u_i$ (mod 2). In the respective sums, we have x and u in the hypercube and i in $\{1, \ldots, n\}$.

We have dropped the normalizing constant 2^n since we are mostly interested in ratios $|c_u/c_{\max}|$, where c_{\max} is the coefficient with the largest amplitude.

Parameters

function	Function the Walsh transform of which to compute
terms	Vector of non zero terms of the Walsh transform

Warning

The time complexity is exponential in the dimension n. The computation is done with two nested loops over the hypercube. It requires 2^n function evaluations and 2^{2n} dot products and additions.

The size of the Walsh transform is potentially exponential in the dimension n. For example, if n = 10 then the number of terms is at most 1024.

Definition at line 31 of file function.cc.

4.9 hnco::function::controller Namespace Reference

Controllers.

Classes

· class Controller

Function controller.

class StopOnTarget

Stop on target.

• class StopOnMaximum

Stop on maximum.

· class CallCounter

Call counter.

• class OnBudgetFunction

Function with a limited number of evaluations.

class ProgressTracker

ProgressTracker.

· class Cache

Cache.

Functions

std::ostream & operator<< (std::ostream &stream, const ProgressTracker::Event &event)
 Insert formatted output.

4.9.1 Detailed Description

Controllers.

4.10 hnco::function::modifier Namespace Reference

Modifiers.

Classes

class Modifier

Function modifier.

class Negation

Negation.

• class FunctionMapComposition

Composition of a function and a map.

· class AdditiveGaussianNoise

Additive Gaussian Noise.

class ParsedModifier

Parsed modifier.

· class PriorNoise

Prior noise.

4.10.1 Detailed Description

Modifiers.

4.11 hnco::function::representation Namespace Reference

Representations.

Classes

• struct ScalarToDouble

Convert a scalar to a double.

• struct ComplexToDouble

Convert a complex to a double.

class MultivariateFunctionAdapter

Multivariate function adapter.

• class DyadicRealRepresentation

Dyadic real representation.

• class DyadicComplexRepresentation

Dyadic complex representation.

class DyadicIntegerRepresentation

Dyadic integer representation.

• class LinearCategoricalRepresentation

Linear categorical representation.

• class IntegerCategoricalRepresentation

Integer categorical representation.

Functions

```
    template < class T >
        bool difference_is_safe (T a, T b)

    Check whether the difference is safe.
```

4.11.1 Detailed Description

Representations.

4.11.2 Function Documentation

4.11.2.1 difference_is_safe()

Check whether the difference is safe.

The template parameter T must be an integral type such as int or long.

The difference b - a is safe if it can be represented by the type of a and b, i.e. there is no overflow.

Parameters

а	Smallest value
b	Greatest value

Precondition

a < b

Definition at line 242 of file representation.hh.

4.12 hnco::logging Namespace Reference

Logging.

Classes

class LogContext

Log context.

• class ProgressTrackerContext

Log context for ProgressTracker.

• class Logger

Logger.

4.12.1 Detailed Description

Logging.

4.13 hnco::map Namespace Reference

Maps.

Classes

• class Map

Мар

class Translation

Translation.

class Permutation

Permutation.

class LinearMap

Linear map.

class AffineMap

Affine map.

· class MapComposition

Map composition.

· class Injection

Injection.

· class Projection

Projection.

class TsAffineMap

Transvection sequence affine map.

struct Transvection

Transvection.

Types and functions related to transvections

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output transvection sequence t parameters are passed by reference.

Input object parameters are passed by const reference.

• typedef std::vector< Transvection > transvection_sequence_t

Transvection sequence.

• bool transvections_commute (const Transvection &a, const Transvection &b)

Check whether two transvections commute.

• bool transvections_are_disjoint (const Transvection &a, const Transvection &b)

Check whether two transvections are disjoint.

bool ts_is_valid (const transvection_sequence_t &ts)

Check validity.

• bool ts_is_valid (const transvection_sequence_t &ts, int n)

Check validity.

void ts display (const transvection sequence t &ts, std::ostream &stream)

Display a transvection sequence.

void ts_random (transvection_sequence_t &ts, int n, int t)

Sample a random transvection sequence.

void ts_random_commuting (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of commuting transvections.

• void ts_random_unique_source (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of transvections with unique source.

void ts random unique destination (transvection sequence t &ts, int n, int t)

Sample a random sequence of transvections with unique destination.

• void ts_random_disjoint (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of disjoint transvections.

void ts_random_non_commuting (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of non commuting transvections.

• void ts multiply (bit vector t &x, const transvection sequence t &ts)

Multiply a vector by a transvection sequence from the left.

void ts_multiply (bit_matrix_t &M, const transvection_sequence_t &ts)

Multiply a matrix by a transvection sequence from the left.

4.13.1 Detailed Description

Maps.

4.13.2 Typedef Documentation

4.13.2.1 transvection_sequence_t

```
typedef std::vector<Transvection> transvection_sequence_t
```

Transvection sequence.

The general linear group of a linear space of dimension n over the finite field F_2 is the group of invertible n by n bit matrices.

Any invertible bit matrix can be expressed as a finite product of transvections.

Finite transvection sequences can then represent all invertible bit matrices.

Definition at line 166 of file transvection.hh.

4.13.3 Function Documentation

4.13.3.1 ts_is_valid() [1/2]

```
bool ts_is_valid ( {\tt const\ transvection\_sequence\_t\ \&\ ts\ )}
```

Check validity.

Parameters

```
ts Transvection sequence
```

Definition at line 150 of file transvection.cc.

4.13.3.2 ts_is_valid() [2/2]

```
bool ts_is_valid (  \mbox{const transvection\_sequence\_t \& } ts, \\ \mbox{int } n \mbox{ )}
```

4.13 hnco::mar	Namespace	Reference
----------------	-----------	-----------

47

Check validity.

Parameters

ts	Transvection sequence
n	Dimension

Definition at line 156 of file transvection.cc.

4.13.3.3 ts_multiply() [1/2]

```
void ts_multiply ( \label{eq:bit_matrix_t & M,}  const transvection_sequence_t & ts )
```

Multiply a matrix by a transvection sequence from the left.

Parameters

ts	Transvection sequence
М	Bit matrix

Precondition

```
ts_is_valid(ts)
ts_is_valid(ts, bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 366 of file transvection.cc.

4.13.3.4 ts_multiply() [2/2]

```
void ts_multiply ( \label{eq:bit_vector_t & x,} \\ \mbox{const transvection_sequence_t & $ts$} \ )
```

Multiply a vector by a transvection sequence from the left.

Parameters

ts	Transvection sequence
X	Bit vector

Precondition

```
ts_is_valid(ts)
ts_is_valid(ts, x.size())
```

Warning

This function modifies the given bit vector.

Definition at line 356 of file transvection.cc.

4.13.3.5 ts_random()

Sample a random transvection sequence.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
t >= 0
```

Definition at line 172 of file transvection.cc.

4.13.3.6 ts_random_commuting()

Sample a random sequence of commuting transvections.

This function ensures that all transvections in the sequence commute.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n>1
```

t >= 0

Warning

```
If t > floor(n / 2) then t is set to floor(n / 2).
```

If t = floor(n / 2) then the space and time complexity of $ts_random_commuting$ is quadratic in the dimension t.

Definition at line 183 of file transvection.cc.

4.13.3.7 ts_random_disjoint()

Sample a random sequence of disjoint transvections.

Two transvections au_{ij} and au_{kl} are said to be disjoint if the pairs {i,j} and {k,l} are disjoint.

If 2t > n then the sequence length is set to the largest t such that 2t < =n.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

n > 1

t >= 0

Definition at line 311 of file transvection.cc.

4.13.3.8 ts_random_non_commuting()

Sample a random sequence of non commuting transvections.

This function ensures that two consecutive transvections do not commute.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
```

t >= 0

Definition at line 341 of file transvection.cc.

4.13.3.9 ts_random_unique_destination()

Sample a random sequence of transvections with unique destination.

A transvection sequence with unique destination is such that, for each source, there is a unique destination.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

n > 1

t >= 0

Definition at line 278 of file transvection.cc.

4.13.3.10 ts_random_unique_source()

Sample a random sequence of transvections with unique source.

A transvection sequence with unique source is such that, for each destination, there is a unique source.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

n > 1

t >= 0

Definition at line 245 of file transvection.cc.

4.14 hnco::neighborhood Namespace Reference

Neighborhoods for local search.

Classes

• class NeighborhoodIterator

Neighborhood iterator

• class SingleBitFlipIterator

Single bit flip neighborhood iterator.

• class HammingSphereIterator

Hamming sphere neighborhood iterator.

· class Neighborhood

Neighborhood.

· class SingleBitFlip

One bit neighborhood.

class MultiBitFlip

Multi bit flip.

· class StandardBitMutation

Standard bit mutation.

• class HammingBall

Hamming ball.

· class HammingSphere

Hamming sphere.

4.14.1 Detailed Description

Neighborhoods for local search.

There are two unrelated kinds of neighborhoods, those for random local search and those for exhaustive local search.

4.15 hnco::random Namespace Reference

Random numbers.

Classes

• struct Generator

Random number generator.

4.15.1 Detailed Description

Random numbers.

Chapter 5

Class Documentation

5.1 AbstractLabs Class Reference

Abstract class for low autocorrelation binary sequences.

#include <hnco/functions/collection/labs.hh>

Inheritance diagram for AbstractLabs:

Public Member Functions

• AbstractLabs (int n)

Constructor.

• int get_bv_size ()

Get bit vector size.

double compute_autocorrelation (const bit_vector_t &)

Compute autocorrelation.

Protected Attributes

std::vector< int > _sequence
 Binary sequence written using 1 and -1.

5.1.1 Detailed Description

Abstract class for low autocorrelation binary sequences.

Definition at line 32 of file labs.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/labs.hh
- lib/hnco/functions/collection/labs.cc

5.2 AbstractMaxSat Class Reference

Abstract class for MaxSat-like functions.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for AbstractMaxSat:

Public Member Functions

AbstractMaxSat ()

Default constructor.

• int get_bv_size () override

Get bit vector size.

• void display (std::ostream &stream) override

Display the expression.

Load and save instance

• void load (std::string path)

Load instance.

void save (std::string path) const

Save instance.

Protected Member Functions

```
void load_ (std::istream &stream)
```

Load an instance.

• void save_ (std::ostream &stream) const

Save an instance.

Protected Attributes

```
    std::vector< std::vector< int > > _expression
    Expression.
```

• int _num_variables

Number of variables.

5.2.1 Detailed Description

Abstract class for MaxSat-like functions.

Definition at line 36 of file max-sat.hh.

5.2.2 Member Function Documentation

5.2.2.1 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 87 of file max-sat.hh.

5.2.2.2 load_()

Load an instance.

Parameters

```
stream Input stream
```

Exceptions

```
std::runtime_error
```

Definition at line 61 of file max-sat.cc.

5.2.2.3 save()

Save instance.

Parameters

```
path Path of the instance to save
```

Exceptions

```
std::runtime_error
```

Definition at line 99 of file max-sat.hh.

5.2.2.4 save_()

Save an instance.

Parameters

```
stream Outputstream
```

Definition at line 153 of file max-sat.cc.

5.2.3 Member Data Documentation

5.2.3.1 expression

std::vector<std::vector<int> > _expression [protected]

Expression.

An expression is represented by a vector of clauses. A clause is represented by a vector of literals. A literal is represented by a non null integer; if the integer is positive then the literal is a variable; if it is negative then it is the logical negation of a variable.

Definition at line 47 of file max-sat.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.3 AdditiveGaussianNoise Class Reference

Additive Gaussian Noise.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for AdditiveGaussianNoise:

Public Member Functions

• AdditiveGaussianNoise (Function *function, double stddev)

Constructor.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Information about the function

• int get_bv_size ()

Get bit vector size.

Private Attributes

 std::normal_distribution< double > _dist Normal distribution.

Additional Inherited Members

5.3.1 Detailed Description

Additive Gaussian Noise.

Definition at line 170 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.4 AffineMap Class Reference

Affine map.

#include <hnco/maps/map.hh>

Inheritance diagram for AffineMap:

Public Member Functions

```
• void random (int rows, int cols, bool surjective)
```

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Member Functions

```
    template < class Archive > void save (Archive & ar, const unsigned int version) const
```

template < class Archive > void load (Archive & ar, const unsigned int version)
 Load.

Private Attributes

```
• bit_matrix_t _bm
```

Bit matrix.

bit_vector_t _bv

Translation vector

Friends

· class boost::serialization::access

5.4.1 Detailed Description

Affine map.

An affine map f from F_2^m to F_2^n is defined by f(x)=Ax+b, where A is an n x m bit matrix and b is an n-dimensional bit vector.

Definition at line 330 of file map.hh.

5.4.2 Member Function Documentation

5.4.2.1 is_surjective()

```
bool is_surjective ( ) [virtual]
```

Check for surjective map.

Returns

```
true if rank(_bm) == bm_num_rows(_bm)
```

Reimplemented from Map.

Definition at line 139 of file map.cc.

5.4.2.2 random()

```
void random (
          int rows,
          int cols,
          bool surjective )
```

Random instance.

Parameters

rows	Number of rows
cols	Number of columns
surjective	Flag to ensure a surjective map

Exceptions

```
std::runtime_error
```

Definition at line 102 of file map.cc.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.5 Algorithm Class Reference

Abstract search algorithm.

#include <hnco/algorithms/algorithm.hh>

Inheritance diagram for Algorithm:

Public Member Functions

• Algorithm (int n)

Constructor.

• virtual ∼Algorithm ()

Destructor.

Optimization

- virtual void maximize (const std::vector< function::Function * > &functions)=0
 Maximize.
- virtual void finalize ()

Finalize.

Getters

- int get_bv_size ()
 - Get bit vector size.
- const solution_t & get_solution ()

Get the solution.

Setters

void set_log_context (logging::LogContext *log_context)
 Set the log context.

Protected Member Functions

void set_functions (const std::vector< function::Function * > &functions)
 Set functions.

Managing solution

• void random solution ()

Random solution.

void set_solution (const bit_vector_t &x, double value)

Set solution.

void set_solution (const bit_vector_t &x)

Set solution.

• void update_solution (const bit_vector_t &x, double value)

Update solution (strict)

void update_solution (const bit_vector_t &x)

Update solution (strict).

void update_solution (const solution_t &s)

Update solution (strict)

Protected Attributes

• function::Function * _function

Function.

• std::vector< function::Function *> functions

Functions.

solution_t _solution

Solution.

Parameters

 logging::LogContext * _log_context = nullptr Log context.

5.5.1 Detailed Description

Abstract search algorithm.

All algorithms maximize some given function, sometimes called a fitness function or an objective function.

Definition at line 46 of file algorithm.hh.

5.5.2 Member Function Documentation

5.5.2.1 finalize()

```
virtual void finalize ( ) [inline], [virtual]
```

Finalize.

Does nothing.

It is usually overridden by algorithms which do not keep $_$ solution up-to-date. In case $_$ function throws a Last \hookrightarrow Evaluation exception, the algorithm might leave $_$ solution in an undefined state. This can be fixed in this member function.

Reimplemented in RandomLocalSearch, OnePlusOneEa, ParameterLessPopulationPyramid, Ltga, and Hboa.

Definition at line 143 of file algorithm.hh.

5.5.2.2 set_solution()

Set solution.

Warning

Evaluates the function once.

Definition at line 45 of file algorithm.cc.

5.5.2.3 update_solution()

Update solution (strict).

Warning

Evaluates the function once.

Definition at line 62 of file algorithm.cc.

5.5.3 Member Data Documentation

5.5.3.1 _functions

std::vector<function::Function *> _functions [protected]

Functions.

Each thread has its own function.

Definition at line 57 of file algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/algorithm.hh
- · lib/hnco/algorithms/algorithm.cc

5.6 AlgorithmFactory Class Reference

Algorithm factory.

#include <hnco/app/algorithm-factory.hh>

Inheritance diagram for AlgorithmFactory:

Public Member Functions

virtual hnco::algorithm::Algorithm * make (int bv_size)=0
 Make an algorithm.

5.6.1 Detailed Description

Algorithm factory.

Definition at line 32 of file algorithm-factory.hh.

5.6.2 Member Function Documentation

5.6.2.1 make()

```
\begin{tabular}{ll} virtual $$hnco::algorithm::Algorithm* make ( \\ int $bv\_size$ ) [pure virtual] \end{tabular}
```

Make an algorithm.

Parameters

bv_size E	Bit vector size
-----------	-----------------

Implemented in CommandLineAlgorithmFactory.

The documentation for this class was generated from the following file:

• lib/hnco/app/algorithm-factory.hh

5.7 BiasedCrossover Class Reference

Biased crossover.

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for BiasedCrossover:

Public Member Functions

• BiasedCrossover ()

Constructor.

• void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)

• void set_bias (double b)

Set bias.

Private Attributes

 std::bernoulli_distribution _bernoulli_dist Bernoulli distribution.

5.7.1 Detailed Description

Biased crossover.

Definition at line 75 of file crossover.hh.

5.7.2 Member Function Documentation

5.7.2.1 breed()

Breed.

Each offspring's bit is copied from second parent with a fixed probability (the crossover bias), from first parent otherwise.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implements Crossover.

Definition at line 45 of file crossover.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/crossover.hh
- · lib/hnco/algorithms/ea/crossover.cc

5.8 BitHerding Class Reference

Herding with bit features.

```
#include <hnco/algorithms/hea/bit-herding.hh>
```

Public Types

enum { DYNAMICS_MINIMIZE_NORM , DYNAMICS_MAXIMIZE_INNER_PRODUCT }

Public Member Functions

• BitHerding (int n)

Constructor.

· void init ()

Initialization.

void sample (const BitMoment &target, bit_vector_t &x)

Sample a bit vector.

double error (const BitMoment &target)

Compute the error.

Getters

const BitMoment & get_delta ()
 Get delta.

Setters

void set_randomize_bit_order (bool x)

Randomize bit order.

void set_dynamics (int x)

Set the dynamics.

void set_weight (double x)

Set the weight of second order moments.

Protected Member Functions

· void compute_delta (const BitMoment &target)

Compute delta.

void sample_minimize_norm (const BitMoment &target, bit_vector_t &x)

Sample a bit vector.

void sample_maximize_inner_product (const BitMoment &target, bit_vector_t &x)

Sample a bit vector.

Protected Attributes

· BitMoment _count

Counter moment.

• BitMoment _delta

Delta moment.

permutation_t _permutation

Permutation.

• std::uniform_int_distribution< int > _choose_bit

Choose bit.

int _time

Time.

Parameters

• bool randomize bit order = false

Randomize bit order.

int _dynamics = DYNAMICS_MINIMIZE_NORM

Dynamics.

double _weight = 1

Weight of second order moments.

5.8.1 Detailed Description

Herding with bit features.

Definition at line 38 of file bit-herding.hh.

5.8.2 Member Enumeration Documentation

5.8.2.1 anonymous enum

anonymous enum

Enumerator

DYNAMICS_MINIMIZE_NORM	Dynamics defined as minimization of a norm.
DYNAMICS_MAXIMIZE_INNER_PRODUCT	Dynamics defined as maximization of an inner product.

Definition at line 83 of file bit-herding.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/hea/bit-herding.hh
- lib/hnco/algorithms/hea/bit-herding.cc

5.9 BitMoment Struct Reference

Moment for bit features.

#include <hnco/algorithms/hea/bit-moment.hh>

Public Member Functions

• BitMoment (int n)

Constructor.

• void uniform ()

Set the moment to that of the uniform distribution.

void init ()

Initialize.

void add (const bit_vector_t &x)

Accumulate a bit vector.

· void average (int count)

Compute average.

• void update (const BitMoment &p, double rate)

Update moment.

• void bound (double margin)

Bound moment.

· double distance (const BitMoment &p) const

Distance

• double norm_2 () const

Compute the norm 2.

· double diameter () const

Compute the diameter.

• size t size () const

Size

· void display (std::ostream &stream)

Display.

Public Attributes

 $\bullet \quad \mathsf{std} :: \mathsf{vector} < \mathsf{std} :: \mathsf{vector} < \mathsf{double} >> \underline{\quad \mathsf{moment}}$

Moment

• double _weight = 1

Weight of second order moments.

5.9.1 Detailed Description

Moment for bit features.

Definition at line 38 of file bit-moment.hh.

The documentation for this struct was generated from the following files:

- lib/hnco/algorithms/hea/bit-moment.hh
- · lib/hnco/algorithms/hea/bit-moment.cc

5.10 BmPbil Class Reference

Boltzmann machine PBIL.

#include <hnco/algorithms/bm-pbil/bm-pbil.hh>

Inheritance diagram for BmPbil:

Public Types

- enum { SAMPLING_ASYNCHRONOUS , SAMPLING_ASYNCHRONOUS_FULL_SCAN , SAMPLING_SYNCHRONOUS }
- enum { RESET_NO_RESET , RESET_ITERATION , RESET_BIT_VECTOR }

Public Member Functions

• BmPbil (int n, int population_size) Constructor.

Setters for parameters

• void set_selection_size (int x)

Set the selection size.

• void set_learning_rate (double x)

Set the learning rate.

void set_num_gs_steps (int x)

Set the number of gibbs sampler steps.

void set num gs cycles (int x)

Set the number of gibbs sampler cycles.

void set negative positive selection (bool x)

Set negative and positive selection.

void set_sampling (int x)

Set the sampling mode.

void set_mc_reset_strategy (int x)

Set the MC reset strategy.

Setters for logging

void set log norm infinite (bool x)

Log infinite norm of the model parameters.

void set_log_norm_l1 (bool x)

Log 1-norm of the model parameters.

Protected Member Functions

• void set_something_to_log ()

Set flag for something to log.

void sample (bit_vector_t &x)

Sample a bit vector.

· void sample_asynchronous ()

Asynchronous sampling.

• void sample_asynchronous_full_scan ()

Asynchronous sampling with full scan.

• void sample_synchronous ()

Synchronous sampling.

Loop

· void init () override

Initialize.

· void iterate () override

Single iteration.

void log () override

Log.

Protected Attributes

• Population _population

Population.

Model model

Model.

ModelParameters _parameters_all

Parameters averaged over all individuals.

ModelParameters _parameters_best

Parameters averaged over selected individuals.

• ModelParameters_parameters_worst

Parameters averaged over negatively selected individuals.

std::uniform_int_distribution< int > _choose_bit

Uniform distribution on bit_vector_t components.

permutation_t _permutation

Permutation.

Parameters

• int selection size = 1

Selection size (number of selected individuals in the population)

double <u>learning_rate</u> = 1e-3

Learning rate.

• int _num_gs_steps = 100

Number of gibbs sampler steps.

int _num_gs_cycles = 1

Number of gibbs sampler cycles.

bool _negative_positive_selection = false

Negative and positive selection.

• int _sampling = SAMPLING_ASYNCHRONOUS

Sampling mode.

int _mc_reset_strategy = RESET_NO_RESET

MC reset strategy.

Logging

• bool <u>log_norm_infinite</u> = false

Log infinite norm of the model parameters.

• bool <u>log_norm_l1</u> = false

Log 1-norm of the model parameters.

5.10.1 Detailed Description

Boltzmann machine PBIL.

The BM model is slightly different from the one given in the reference below. More precisely, 0/1 variables are mapped to -1/+1 variables as in Walsh analysis.

Reference:

Arnaud Berny. 2002. Boltzmann machine for population-based incremental learning. In ECAI 2002. IOS Press, Lyon.

Definition at line 49 of file bm-pbil.hh.

5.10.2 Member Enumeration Documentation

5.10.2.1 anonymous enum

anonymous enum

Enumerator

SAMPLING_ASYNCHRONOUS	Asynchronous sampling.	
	A single component of the internal state is rand selected then updated by Gibbs sampling. This st repeated _num_gs_steps times.	_
SAMPLING_ASYNCHRONOUS_FULL_SCAN	Asynchronous sampling with full scan.	
	To sample a new bit vector, a random permutation and all components of the internal state are upon Gibbs sampling in the order defined by the permu	lated by
SAMPLING_SYNCHRONOUS	Synchronous sampling.	
	The full internal state is updated in one step f probability vector made of the very marginal pro used in Gibbs sampling.	

Definition at line 54 of file bm-pbil.hh.

5.10.2.2 anonymous enum

anonymous enum

Enumerator

RESET_NO_RESET	No reset.
RESET_ITERATION	Reset MC at the beginning of each iteration.
RESET_BIT_VECTOR	Reset MC before sampling each bit vector.

Definition at line 82 of file bm-pbil.hh.

5.10.3 Member Function Documentation

5.11 Cache Class Reference 75

5.10.3.1 set_selection_size()

```
void set_selection_size (
          int x ) [inline]
```

Set the selection size.

The selection size is the number of selected individuals in the population.

Definition at line 216 of file bm-pbil.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/bm-pbil/bm-pbil.hh
- lib/hnco/algorithms/bm-pbil/bm-pbil.cc

5.11 Cache Class Reference

Cache.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for Cache:

Public Member Functions

```
    Cache (Function *function)
    Constructor.
```

• bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

double get_lookup_ratio ()

Get lookup ratio.

Evaluation

• double evaluate (const bit_vector_t &) Evaluate a bit vector.

Private Attributes

```
    std::unordered_map< std::vector< bool >, double > _cache
    Cache.
    std::vector< bool > _key
```

Key.int _num_evaluations

Evaluation counter.

int num lookups

Lookup counter.

Additional Inherited Members

5.11.1 Detailed Description

Cache.

This is a naive approach, in particular with respect to time complexity. Moreover, there is no control on the size of the database.

There is no default hash function for std::vector<char> hence the need to first copy a bit_vector_t into a std ::vector

::vector

bool>, for which such a function exists, before inserting it or checking its existence in the map.

Definition at line 339 of file controller.hh.

5.11.2 Constructor & Destructor Documentation

5.11.2.1 Cache()

```
Cache (
     Function * function ) [inline]
```

Constructor.

Parameters

function Decorated function	1
-----------------------------	---

Definition at line 358 of file controller.hh.

5.11.3 Member Function Documentation

5.11.3.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented from Controller.

Definition at line 367 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.12 CallCounter Class Reference

Call counter.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for CallCounter:

Public Member Functions

• CallCounter (Function *function)

Constructor.

• int get_num_calls ()

Get the number of calls.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

• void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Protected Attributes

int _num_calls

Number of calls.

5.12.1 Detailed Description

Call counter.

Definition at line 149 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.13 CommandLineAlgorithmFactory Class Reference

Command line algorithm factory.

#include <hnco/app/algorithm-factory.hh>

Inheritance diagram for CommandLineAlgorithmFactory:

Public Member Functions

- CommandLineAlgorithmFactory (const HncoOptions & options)
 Constructor.
- hnco::algorithm::Algorithm * make (int bv_size)
 Make an algorithm.

Private Attributes

 const HncoOptions & _options HNCO options.

5.13.1 Detailed Description

Command line algorithm factory.

Definition at line 42 of file algorithm-factory.hh.

5.13.2 Member Function Documentation

5.13.2.1 make()

Make an algorithm.

Parameters

Implements AlgorithmFactory.

Definition at line 81 of file algorithm-factory.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/app/algorithm-factory.hh
- lib/hnco/app/algorithm-factory.cc

5.14 CommandLineApplication Class Reference

Command line application.

```
#include <hnco/app/application.hh>
```

Public Member Functions

• CommandLineApplication (const HncoOptions & options, FunctionFactory & function_factory, AlgorithmFactory & algorithm_factory)

Constructor.

• void run ()

Run the application.

Private Member Functions

```
    void init ()
```

Initialization.

void make_functions ()

Make all functions.

• void load_solution ()

Load a solution.

void print_information ()

Print information about the function.

• void make_algorithm ()

Make algorithm.

• void maximize ()

Maximize the function.

void print_results (double total_time, bool target_reached)

Print results

void manage_solution (const bit_vector_t &bv)

Manage solution.

Private Attributes

• const HncoOptions & _options

HNCO options.

DecoratedFunctionFactory _decorated_function_factory

Decorated functin factory.

AlgorithmFactory & _algorithm_factory

Algorithm factory.

std::vector< function::Function * > _fns

All functions.

• function::Function * fn = nullptr

Main function.

• hnco::algorithm::Algorithm * _algorithm = nullptr

Algorithm.

• logging::ProgressTrackerContext * _log_context = nullptr

Log context.

5.14.1 Detailed Description

Command line application.

Definition at line 34 of file application.hh.

5.14.2 Constructor & Destructor Documentation

5.14.2.1 CommandLineApplication()

Constructor.

Parameters

options	HNCO options
function_factory	Function factory
algorithm_factory	Algorithm factory

Definition at line 89 of file application.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/application.hh
- lib/hnco/app/application.cc

5.15 CommandLineFunctionFactory Class Reference

Command line function factory.

#include <hnco/app/function-factory.hh>

Inheritance diagram for CommandLineFunctionFactory:

Public Member Functions

- CommandLineFunctionFactory (const HncoOptions & options)
 Constructor.
- hnco::function::Function * make ()
 Make a function.

Private Attributes

const HncoOptions & _options
 HNCO options.

5.15.1 Detailed Description

Command line function factory.

Definition at line 40 of file function-factory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/function-factory.hh
- lib/hnco/app/function-factory.cc

5.16 CompactGa Class Reference

Compact genetic algorithm.

#include <hnco/algorithms/pv/compact-ga.hh>

Inheritance diagram for CompactGa:

Public Member Functions

• CompactGa (int n)

Constructor.

Setters

• void set_learning_rate (double x) Set the learning rate.

Protected Member Functions

Loop

• void init () override Initialize.

 void iterate () override Single iteration.

Protected Attributes

std::vector < bit_vector_t > _candidates
 Candidates.

Parameters

• double <u>learning_rate</u> = 1e-3 *Learning rate*.

5.16.1 Detailed Description

Compact genetic algorithm.

Reference:

Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. 1999. The Compact Genetic Algorithm. IEEE Trans. on Evolutionary Computation 3, 4 (November 1999), 287–297.

Definition at line 41 of file compact-ga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/compact-ga.hh
- lib/hnco/algorithms/pv/compact-ga.cc

5.17 CompleteSearch Class Reference

Complete search.

#include <hnco/algorithms/complete-search.hh>

Inheritance diagram for CompleteSearch:

Public Member Functions

· CompleteSearch (int n)

Constructor.

void maximize (const std::vector< function::Function * > &functions)
 Maximize.

Additional Inherited Members

5.17.1 Detailed Description

Complete search.

Definition at line 34 of file complete-search.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/complete-search.hh
- lib/hnco/algorithms/complete-search.cc

5.18 ComplexToDouble < T > Struct Template Reference

Convert a complex to a double.

#include <hnco/functions/representations/converter.hh>

Public Types

typedef std::complex < T > codomain_type
 Codomain type.

Public Member Functions

double operator() (std::complex < T > z)
 Convert to double.

5.18.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{class T} > \\ \mbox{struct hnco::function::representation::ComplexToDouble} < \mbox{T} > \\ \mbox{}
```

Convert a complex to a double.

Definition at line 45 of file converter.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/functions/representations/converter.hh

5.19 Controller Class Reference

Function controller.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for Controller:

Public Member Functions

• Controller (Function *function)

Constructor.

Information about the function

• int get_bv_size ()

Get bit vector size.

• double get_maximum ()

Get the global maximum.

bool has_known_maximum ()

Check for a known maximum.

• bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

double evaluate_safely (const bit_vector_t &x)
 Safely evaluate a bit vector.

Additional Inherited Members

5.19.1 Detailed Description

Function controller.

Definition at line 42 of file controller.hh.

5.19.2 Member Function Documentation

5.19.2.1 provides_incremental_evaluation()

bool provides_incremental_evaluation () [inline], [virtual]

Check whether the function provides incremental evaluation.

Returns

true if the decorated function does

Reimplemented from Function.

Reimplemented in Cache.

Definition at line 66 of file controller.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/controllers/controller.hh

5.20 Crossover Class Reference

Crossover

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for Crossover:

Public Member Functions

virtual ~Crossover ()
 Destructor.

virtual void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)=0

Breed

5.20.1 Detailed Description

Crossover

Definition at line 35 of file crossover.hh.

5.20.2 Member Function Documentation

5.20.2.1 breed()

Breed.

The offspring is the crossover of two parents.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implemented in BiasedCrossover, and UniformCrossover.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/ea/crossover.hh

5.21 DeceptiveJump Class Reference

Deceptive jump.

#include <hnco/functions/collection/jump.hh>

Inheritance diagram for DeceptiveJump:

Public Member Functions

· DeceptiveJump (int by size, int gap)

Constructor.

• int get_bv_size ()

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

int _gap

Gap.

5.21.1 Detailed Description

Deceptive jump.

This is a jump function with a deceptive gap as defined in "Analyzing evolutionary algorithms" by Thomas Jansen, where it is called Jump_k. Algorithms in the neighborhood of the maximizer (which is the all one bit vector) are taken away from it.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 85 of file jump.hh.

5.21.2 Member Function Documentation

5.21.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
_bv_size + _gap
```

Reimplemented from Function.

Definition at line 111 of file jump.hh.

5.21.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 107 of file jump.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/jump.hh
- lib/hnco/functions/collection/jump.cc

5.22 DecoratedFunctionFactory Class Reference

Decorated function factory.

#include <hnco/app/decorated-function-factory.hh>

Public Member Functions

Constructor.

- DecoratedFunctionFactory (const HncoOptions &options, FunctionFactory &function_factory)
- hnco::function::Function * make_function_modifier ()

Make a function modifier.

• hnco::function::Function * make_function_controller (hnco::function::Function *function)

Make a function controller.

hnco::map::Map * get_map ()

Get map.

hnco::function::controller::ProgressTracker * get_tracker ()

Get tracker controller.

hnco::function::controller::Cache * get cache ()

Get Cache controller.

hnco::function::controller::StopOnTarget * get_stop_on_target ()

Get StopOnTarget controller.

Private Member Functions

hnco::function::Function * make_function ()
 Make a function.

Private Attributes

• const HncoOptions & _options

HNCO options.

FunctionFactory & _function_factory

Factory function.

hnco::map::Map * _map = nullptr

Мар

hnco::function::controller::ProgressTracker * _tracker = nullptr

Tracker controller.

hnco::function::controller::Cache * _cache = nullptr

Cache controller.

hnco::function::controller::StopOnTarget * _stop_on_target = nullptr

StopOnTarget controller.

5.22.1 Detailed Description

Decorated function factory.

Definition at line 35 of file decorated-function-factory.hh.

5.22.2 Member Function Documentation

5.22.2.1 make_function_controller()

Make a function controller.

Parameters

function	Decorated function
Turiculori	Decorated function

Definition at line 254 of file decorated-function-factory.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/app/decorated-function-factory.hh
- lib/hnco/app/decorated-function-factory.cc

5.23 Decorator Class Reference

Function decorator

#include <hnco/functions/decorator.hh>

Inheritance diagram for Decorator:

Public Member Functions

• Decorator (Function *function)

Constructor.

Display

- void display (std::ostream &stream) override
- void describe (const bit_vector_t &x, std::ostream &stream) override
 Describe a bit vector.

Protected Attributes

Function * _function
 Decorated function.

5.23.1 Detailed Description

Function decorator

Definition at line 34 of file decorator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/decorator.hh

5.24 DyadicComplexRepresentation < T > Class Template Reference

Dyadic complex representation.

#include <hnco/functions/representations/representation.hh>

Public Types

typedef std::complex < T > domain_type
 Domain type.

Public Member Functions

• DyadicComplexRepresentation (T lower_bound_re, T upper_bound_re, int num_bits_re, T lower_bound_im, T upper_bound_im, int num_bits_im)

Constructor.

• DyadicComplexRepresentation (T lower_bound, T upper_bound, int num_bits)

Constructor.

• DyadicComplexRepresentation ()

Default constructor.

• int size ()

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

void display (std::ostream &stream)

Display.

Private Attributes

DyadicRealRepresentation< T > _real_part

Representation of the real part.

DyadicRealRepresentation
 T > _imaginary_part

Representation of the imaginary part.

5.24.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{class T} > \\ \mbox{class hnco::function::representation::DyadicComplexRepresentation} < \mbox{T} > \\ \mbox{topsilon} > \mbox{topsil
```

Dyadic complex representation.

Definition at line 157 of file representation.hh.

5.24.2 Constructor & Destructor Documentation

5.24.2.1 DyadicComplexRepresentation() [1/3]

```
DyadicComplexRepresentation (
        T lower_bound_re,
        T upper_bound_re,
        int num_bits_re,
        T lower_bound_im,
        T upper_bound_im,
        int num_bits_im ) [inline]
```

Constructor.

Parameters

lower_bound_re	Lower bound of the real part
upper_bound_re	Upper bound of the real part
num_bits_re	Number of bits to represent the real part
lower_bound_im	Lower bound of the imaginary part
upper_bound_im	Upper bound of the imaginary part
num_bits_im	Number of bits to represent the imaginary part

Definition at line 179 of file representation.hh.

5.24.2.2 DyadicComplexRepresentation() [2/3]

Constructor.

Parameters

lower_bound	Lower bound of both real and imaginary parts
upper_bound	Upper bound of both real and imaginary parts
num_bits	Number of bits to represent both real and imaginary parts

Definition at line 195 of file representation.hh.

5.24.2.3 DyadicComplexRepresentation() [3/3]

DyadicComplexRepresentation () [inline]

Default constructor.

Both the real and the imaginary parts take their values in the interval [0, 1) which is prepresented with 7 bits.

Definition at line 204 of file representation.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/representations/representation.hh

5.25 DyadicIntegerRepresentation < T > Class Template Reference

Dyadic integer representation.

#include <hnco/functions/representations/representation.hh>

Public Types

typedef T domain_type
 Domain type.

Public Member Functions

• DyadicIntegerRepresentation (T lower_bound, T upper_bound, int num_bits)

Constructor

• DyadicIntegerRepresentation (T lower_bound, T upper_bound)

Constructor.

• DyadicIntegerRepresentation ()

Default Constructor.

• int size ()

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

· void display (std::ostream &stream)

Display.

Private Member Functions

void set_num_bits_complete (T lower_bound, T upper_bound)

The the number of bits of a complete representation.

Private Attributes

· int _num_bits

Number of bits.

• int _num_bits_complete

Number of bits for a complete representation.

• T_lower_bound

Lower bound of the interval.

• T_upper_bound

Upper bound of the interval.

5.25.1 Detailed Description

```
template < class T >
```

class hnco::function::representation::DyadicIntegerRepresentation< T >

Dyadic integer representation.

Definition at line 264 of file representation.hh.

5.25.2 Constructor & Destructor Documentation

5.25.2.1 DyadicIntegerRepresentation() [1/3]

Constructor.

The represented interval is [lower_bound..upper_bound].

Parameters

num_bits	Number of bits per real	
lower_bound	Lower bound of the interval	
upper_bound	Upper bound of the interval	

Definition at line 301 of file representation.hh.

5.25.2.2 DyadicIntegerRepresentation() [2/3]

Constructor.

The represented interval is [lower_bound..upper_bound].

Parameters

	Lower bound of the interval
upper_bound	Upper bound of the interval

Definition at line 321 of file representation.hh.

5.25.2.3 DyadicIntegerRepresentation() [3/3]

```
DyadicIntegerRepresentation ( ) [inline]
```

Default Constructor.

The interval [0..255] is represented with 8 bits.

Definition at line 334 of file representation.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/representations/representation.hh

${\bf 5.26}\quad {\bf Dyadic Real Representation}{<{\bf T}>{\bf Class\ Template\ Reference}}$

Dyadic real representation.

#include <hnco/functions/representations/representation.hh>

Public Types

typedef T domain_type
 Domain type.

Public Member Functions

```
• DyadicRealRepresentation (T lower_bound, T upper_bound, int num_bits)
```

Constructor.

• DyadicRealRepresentation (T lower_bound, T upper_bound, T precision)

Constructor.

· DyadicRealRepresentation ()

Default constructor.

• int size ()

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

void display (std::ostream &stream)

Display.

Private Member Functions

• T affine_transformation (T x)

Affine transformation.

void compute_lengths (int num_bits)

Compute lengths.

Private Attributes

```
• std::vector< T > _lengths
```

Lengths of dyadic intervals.

• T_lower_bound

Lower bound of the interval.

• T_length

Length of the interval.

5.26.1 Detailed Description

```
template < class T >
```

class hnco::function::representation::DyadicRealRepresentation < T >

Dyadic real representation.

Definition at line 45 of file representation.hh.

5.26.2 Constructor & Destructor Documentation

5.26.2.1 DyadicRealRepresentation() [1/3]

Constructor.

The represented interval is [lower_bound, upper_bound).

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval
num_bits	Number of bits per real number

Definition at line 88 of file representation.hh.

5.26.2.2 DyadicRealRepresentation() [2/3]

Constructor.

The represented interval is [lower_bound, upper_bound).

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval
precision	Precision

Definition at line 106 of file representation.hh.

5.26.2.3 DyadicRealRepresentation() [3/3]

```
DyadicRealRepresentation ( ) [inline]
```

Default constructor.

The interval [0, 1) is represented with 7 bits.

Definition at line 121 of file representation.hh.

5.26.3 Member Function Documentation

5.26.3.1 compute_lengths()

Compute lengths.

Parameters

num_bits	Number of bits per real number
----------	--------------------------------

Definition at line 63 of file representation.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/representations/representation.hh

5.27 EqualProducts Class Reference

Equal products.

#include <hnco/functions/collection/equal-products.hh>

Inheritance diagram for EqualProducts:

Public Member Functions

• EqualProducts ()

Constructor.

• int get_bv_size () override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

template<class Generator >

void generate (int n, Generator generator)

Instance generator.

void random (int n)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _numbers
Numbers

Friends

· class boost::serialization::access

5.27.1 Detailed Description

Equal products.

Partition a finite set of positive numbers into two subsets such that the product of numbers in the first subset is the closest to the product of numbers in the second subset. This is equivalent to the partition problem applied to the logarithms of the given numbers.

The function computes the negation of the distance between the product of numbers corresponding to ones in the bit vector and the product of those corresponding to zeros. The negation is a consequence of the fact that algorithms in HNCO maximize rather than minimize a function.

Reference:

S. Baluja and S. Davies. 1997. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Technical Report CMU- CS-97-107. Carnegie-Mellon University.

Definition at line 61 of file equal-products.hh.

5.27.2 Member Function Documentation

5.27.2.1 generate()

Instance generator.

Parameters

n	Size of bit vectors
generator	Number generator

Generated by Doxygen

Definition at line 93 of file equal-products.hh.

5.27.2.2 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 126 of file equal-products.hh.

5.27.2.3 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the uniform distribution on [0,1).

Parameters

```
n Size of bit vector
```

Definition at line 108 of file equal-products.hh.

5.27.2.4 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 144 of file equal-products.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/equal-products.hh
- lib/hnco/functions/collection/equal-products.cc

5.28 ProgressTracker::Event Struct Reference

Event

#include <hnco/functions/controllers/controller.hh>

Public Attributes

• int num_evaluations

Number of evaluations.

• double value

Value.

5.28.1 Detailed Description

Event

Definition at line 231 of file controller.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/functions/controllers/controller.hh

5.29 Factorization Class Reference

Factorization.

#include <hnco/functions/collection/factorization.hh>

Inheritance diagram for Factorization:

Public Member Functions

· Factorization ()

Constructor.

• Factorization (const std::string number)

Constructor.

∼Factorization ()

Destructor.

• int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

· void display (std::ostream &stream) override

Display.

• void describe (const bit_vector_t &x, std::ostream &stream) override

Describe a bit vector.

Load and save instance

void load (std::string path)
 Load instance.

Private Member Functions

· void init ()

Init GMP data structures.

· void clear ()

Clear GMP data structures.

void set_number (const std::string number)

Set number.

void convert (const bit_vector_t &x)

Convert a bit vector into two numbers.

Private Attributes

```
    mpz_t _number
```

Number to factorize.

mpz_t _first_factor

First factor.

• mpz_t _second_factor

Second factor.

mpz_t _product

Product.

• std::string _first_factor_string

First factor in binary form.

std::string _second_factor_string

Secon factor in binary form.

• size_t _number_size

Number size in bits.

size_t _first_factor_size

First factor size in bits.

• size_t _second_factor_size

Second factor size in bits.

• int _bv_size

Bit vector size.

5.29.1 Detailed Description

Factorization.

Reference:

Torbjörn Granlund and the GMP development team. 2012. GNU MP: The GNU Multiple Precision Arithmetic Library (5.0.5 ed.).

```
http://gmplib.org/.
```

Definition at line 29 of file factorization.hh.

5.29.2 Constructor & Destructor Documentation

5.29.2.1 Factorization()

Constructor.

Parameters

number Number to factorize written in decimal form
--

Definition at line 82 of file factorization.hh.

5.29.3 Member Function Documentation

5.29.3.1 load()

Load instance.

The file referenced by the path is a text file which contains exactly one natural number written in base 10 without any space

Parameters

path | Path of the instance to load

Exceptions

std::runtime error

Definition at line 102 of file factorization.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/factorization.hh
- lib/hnco/functions/collection/factorization.cc

5.30 FfgenOptions Class Reference

Command line options for ffgen.

```
#include <ffgen-options.hh>
```

Public Member Functions

• FfgenOptions (int argc, char *argv[])

Constructor.

• int get_bv_size () const

Get bv_size.

void set_bv_size (int x)

Set by size.

• bool set_bv_size () const

Get set-flag for bv_size.

double get_coupling_constant () const

Get coupling_constant.

void set_coupling_constant (double x)

Set coupling_constant.

bool set_coupling_constant () const

Get set-flag for coupling constant.

• double get_ep_upper_bound () const

Get ep_upper_bound.

void set_ep_upper_bound (double x)

Set ep_upper_bound.

• bool set_ep_upper_bound () const

Get set-flag for ep_upper_bound.

• double get_field_constant () const

Get field_constant.

void set_field_constant (double x)

Set field constant.

· bool set field constant () const

Get set-flag for field_constant.

int get_function () const

Get function.

void set function (int x)

Set function.

bool set_function () const

Get set-flag for function.

• double get_lin_distance () const

Get lin_distance.

• void set_lin_distance (double x)

Set lin_distance.

bool set_lin_distance () const

Get set-flag for lin_distance.

• int get_lin_generator () const

Get lin_generator.

void set_lin_generator (int x)

Set lin_generator.

• bool set lin generator () const

Get set-flag for lin_generator.

double get_lin_initial_weight () const

Get lin_initial_weight.

void set lin initial weight (double x)

Set lin_initial_weight.

· bool set_lin_initial_weight () const

Get set-flag for lin_initial_weight.

• double get_lin_ratio () const

Get lin_ratio.

• void set lin ratio (double x)

Set lin_ratio.

bool set_lin_ratio () const

Get set-flag for lin_ratio.

· int get ms num clauses () const

Get ms_num_clauses.

void set_ms_num_clauses (int x)

Set ms num clauses.

• bool set_ms_num_clauses () const

Get set-flag for ms_num_clauses.

• int get_ms_num_literals_per_clause () const

Get ms_num_literals_per_clause.

void set_ms_num_literals_per_clause (int x)

Set ms_num_literals_per_clause.

• bool set_ms_num_literals_per_clause () const

Get set-flag for ms_num_literals_per_clause.

int get_nk_k () const

Get nk k.

void set_nk_k (int x)

Set nk k.

• bool set_nk_k () const

Get set-flag for nk_k.

• int get_nn1_generator () const

Get nn1_generator.

void set_nn1_generator (int x)

Set nn1_generator.

• bool set nn1 generator () const

Get set-flag for nn1_generator.

• int get_nn2_generator () const

Get nn2_generator.

void set_nn2_generator (int x)

Set nn2_generator.

• bool set_nn2_generator () const

Get set-flag for nn2_generator.

• int get_nn2_num_columns () const

Get nn2_num_columns.

void set_nn2_num_columns (int x)

Set nn2_num_columns.

• bool set_nn2_num_columns () const

Get set-flag for nn2_num_columns.

• int get_nn2_num_rows () const

Get nn2 num rows.

void set_nn2_num_rows (int x)

Set nn2_num_rows.

• bool set_nn2_num_rows () const

Get set-flag for nn2_num_rows.

• int get_part_upper_bound () const

Get part_upper_bound.

void set_part_upper_bound (int x)

Set part_upper_bound.

• bool set_part_upper_bound () const

Get set-flag for part_upper_bound.

• std::string get_path () const

Get path.

void set_path (std::string x)

Set path.

· bool set path () const

Get set-flag for path.

• int get seed () const

Get seed.

void set_seed (int x)

Set seed.

• bool set_seed () const

Get set-flag for seed.

double get stddev () const

Get stddev.

• void set_stddev (double x)

Set stddev.

• bool set_stddev () const

Get set-flag for stddev.

int get_sudoku_num_empty_cells () const

Get sudoku_num_empty_cells.

void set sudoku num empty cells (int x)

Set sudoku_num_empty_cells.

bool set_sudoku_num_empty_cells () const

Get set-flag for sudoku_num_empty_cells.

• int get_walsh2_generator () const

Get walsh2_generator.

void set_walsh2_generator (int x)

Set walsh2_generator.

• bool set_walsh2_generator () const

Get set-flag for walsh2_generator.

• double get_walsh2_ising_alpha () const

Get walsh2_ising_alpha.

void set_walsh2_ising_alpha (double x)

Set walsh2_ising_alpha.

bool set_walsh2_ising_alpha () const

Get set-flag for walsh2_ising_alpha.

• int get_walsh_num_features () const

Get walsh_num_features.

void set_walsh_num_features (int x)

Set walsh_num_features.

bool set_walsh_num_features () const

Get set-flag for walsh_num_features.

bool with_ms_planted_solution () const

Get ms_planted_solution.

void set_ms_planted_solution ()

Set ms_planted_solution.

· bool with_periodic_boundary_conditions () const

Get periodic_boundary_conditions.

· void set_periodic_boundary_conditions ()

Set periodic_boundary_conditions.

Private Member Functions

void print_help (std::ostream &stream) const

Print help message.

void print_version (std::ostream &stream) const

Print version.

Private Attributes

std::string _exec_name

Name of the executable.

• std::string _version

Name Version.

• int _bv_size

Size of bit vectors.

- · bool_opt_bv_size
- double _coupling_constant

Coupling constant.

- bool opt_coupling_constant
- · double _ep_upper_bound

Upper bound of numbers.

- bool <u>opt_ep_upper_bound</u>
- double _field_constant

Field constant.

- bool _opt_field_constant
- int _function

Type of function.

- · bool opt function
- double _lin_distance

Common distance of arithmetic progression.

- bool <u>opt_lin_distance</u>
- int _lin_generator

Type of LinearFunction generator.

- bool <u>opt_lin_generator</u>
- double _lin_initial_weight

Initial weight.

- bool _opt_lin_initial_weight
- · double _lin_ratio

Common ratio of geometric progression.

- bool _opt_lin_ratio
- int _ms_num_clauses

Number of clauses.

- bool opt ms num clauses
- int _ms_num_literals_per_clause

Number of literals per clause.

- · bool_opt_ms_num_literals_per_clause
- int nk k

Each bit is connected to k other bits.

- bool _opt_nk_k
- · int nn1 generator

Type of NearestNeighborIsingModel1 generator.

- bool <u>opt_nn1_generator</u>
- int _nn2_generator

Type of NearestNeighborIsingModel2 generator.

- bool <u>opt_nn2_generator</u>
- int nn2 num columns

Number of columns.

- bool <u>opt_nn2_num_columns</u>
- int _nn2_num_rows

Number of rows.

- bool opt_nn2_num_rows
- int _part_upper_bound

Upper bound of numbers.

- bool <u>opt_part_upper_bound</u>
- std::string _path

Path (relative or absolute) of a function file.

- · bool opt path
- int _seed

Seed for the random number generator.

- · bool opt seed
- double <u>stddev</u>

Standard deviation.

- bool opt stddev
- int _sudoku_num_empty_cells

Number of empty cells.

- · bool opt sudoku num empty cells
- int _walsh2_generator

Type of WalshExpansion2 generator.

- bool _opt_walsh2_generator
- double _walsh2_ising_alpha

Dyson-Ising: exponential decay parameter for long range interactions.

- bool _opt_walsh2_ising_alpha
- int _walsh_num_features

Number of features.

- bool <u>opt_walsh_num_features</u>
- bool _ms_planted_solution

Generate an instance with a planted solution.

• bool _periodic_boundary_conditions

Periodic boundary conditions.

Friends

std::ostream & operator<< (std::ostream &, const FfgenOptions &)

Print a header containing the parameter values.

5.30.1 Detailed Description

Command line options for ffgen.

Definition at line 11 of file ffgen-options.hh.

The documentation for this class was generated from the following files:

- app/ffgen-options.hh
- app/ffgen-options.cc

5.31 FirstAscentHillClimbing Class Reference

First ascent hill climbing.

#include <hnco/algorithms/ls/first-ascent-hill-climbing.hh>

Inheritance diagram for FirstAscentHillClimbing:

Public Member Functions

• FirstAscentHillClimbing (int n, neighborhood::NeighborhoodIterator *neighborhood) Constructor.

Protected Member Functions

 void iterate () override Single iteration.

Additional Inherited Members

5.31.1 Detailed Description

First ascent hill climbing.

Definition at line 34 of file first-ascent-hill-climbing.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ls/first-ascent-hill-climbing.hh
- lib/hnco/algorithms/ls/first-ascent-hill-climbing.cc

5.32 FourPeaks Class Reference

Four Peaks.

#include <hnco/functions/collection/four-peaks.hh>

Inheritance diagram for FourPeaks:

Public Member Functions

• FourPeaks (int bv_size, int threshold)

Constructor.

• int get_bv_size ()

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

```
• int _bv_size
```

Bit vector size.

· int _threshold

Threshold.

• int _maximum

Maximum.

5.32.1 Detailed Description

Four Peaks.

It is defined by

```
f(x) = \max\{head(x, 1) + tail(x, 0)\} + R(x)
```

where:

- head(x, 1) is the length of the longest prefix of x made of ones;
- tail(x, 0) is the length of the longest suffix of x made of zeros;
- R(x) is the reward;
- R(x) = n if (head(x, 1) > t and tail(x, 0) > t);
- R(x) = 0 otherwise;
- the threshold t is a parameter of the function.

This function has four maxima, of which exactly two are global ones.

For example, if n = 6 and t = 1:

- f(111111) = 6 (local maximum)
- f(1111110) = 5
- f(111100) = 10 (global maximum)

Reference:

S. Baluja and R. Caruana. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of the 12th Annual Conference on Machine Learning. 38–46.

Definition at line 60 of file four-peaks.hh.

5.32.2 Member Function Documentation

5.32.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
2 * _bv_size - _threshold - 1
```

Reimplemented from Function.

Definition at line 91 of file four-peaks.hh.

5.32.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 87 of file four-peaks.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/four-peaks.hh
- lib/hnco/functions/collection/four-peaks.cc

5.33 Function Class Reference

Function

```
#include <hnco/functions/function.hh>
```

Inheritance diagram for Function:

Public Member Functions

• virtual ~Function ()

Destructor.

Information about the function

• virtual int get_bv_size ()=0

Get bit vector size.

• virtual double get_maximum ()

Get the global maximum.

virtual bool has_known_maximum ()

Check for a known maximum.

virtual bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

virtual double evaluate (const bit_vector_t &)=0

Evaluate a bit vector.

virtual double evaluate_incrementally (const bit_vector_t &x, double value, const sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

virtual double evaluate_safely (const bit_vector_t &x)

Safely evaluate a bit vector.

virtual void update (const bit_vector_t &x, double value)

Update states after a safe evaluation.

Display

• virtual void display (std::ostream &stream)

Display.

virtual void display ()

Display to standard output.

virtual void describe (const bit_vector_t &x, std::ostream &stream)

Describe a bit vector.

virtual void describe (const bit_vector_t &x)

Describe a bit vector to standard output.

5.33.1 Detailed Description

Function

Definition at line 45 of file function.hh.

5.33.2 Member Function Documentation

5.33.2.1 evaluate()

Evaluate a bit vector.

This member function is not declared const and is not supposed to be thread-safe. In particular, in order to evaluate a bit vector, it might require some data member to store temporary results. In case of parallel evaluation, there should be a copy of the function per thread, as is done in Population::evaluate_in_parallel.

Implemented in SinusSummationCancellation, SummationCancellation, MultivariateFunctionAdapter < Fn, Rep, Conv >, WalshExpansion, WalshExpansion2, WalshExpansion1, Qubo, Partition, NkLandscape, MaxNae3Sat, MaxSat, LinearFunction, NearestNeighborIsingModel2, NearestNeighborIsingModel1, Factorization, EqualProducts, PriorNoise, ParsedModifier, AdditiveGaussianNoise, FunctionMapComposition, Negation, Cache, ProgressTracker, OnBudgetFunction, CallCounter, StopOnTarget, Trap, Plateau, Ridge, Hiff, Needle, LeadingOnes, OneMax, FunctionPlugin, LongPath, LabsMeritFactor, Labs, DeceptiveJump, Jump, SixPeaks, and FourPeaks.

5.33.2.2 evaluate_incrementally()

Incrementally evaluate a bit vector.

Exceptions

std::runtime_error

Reimplemented in Negation, ProgressTracker, OnBudgetFunction, CallCounter, StopOnTarget, NearestNeighborIsingModel2, NearestNeighborIsingModel1, WalshExpansion1, LinearFunction, and OneMax.

Definition at line 95 of file function.hh.

5.33.2.3 evaluate_safely()

```
virtual double evaluate_safely ( {\tt const\ bit\_vector\_t\ \&\ x\ )} \quad [{\tt inline}] \text{, [virtual]}
```

Safely evaluate a bit vector.

Must neither throw any exception nor update global states (e.g. maximum) in function controllers. It is used in Population::evaluate_in_parallel inside a OMP parallel for loop.

By default, calls evaluate.

Reimplemented in Controller.

Definition at line 109 of file function.hh.

5.33.2.4 get_maximum()

```
virtual double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Exceptions

std::runtime_error

Reimplemented in WalshExpansion1, Plateau, Ridge, Hiff, Needle, LeadingOnes, OneMax, LinearFunction, PriorNoise, FunctionMapComposition, Controller, Trap, LongPath, DeceptiveJump, Jump, SixPeaks, FourPeaks, and SummationCancellation.

Definition at line 61 of file function.hh.

5.33.2.5 provides_incremental_evaluation()

```
virtual bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented in WalshExpansion1, OneMax, LinearFunction, NearestNeighborIsingModel2, NearestNeighborIsingModel1, PriorNoise, Negation, Cache, and Controller.

Definition at line 71 of file function.hh.

5.33.2.6 update()

Update states after a safe evaluation.

By default, does nothing.

Reimplemented in ProgressTracker, OnBudgetFunction, CallCounter, and StopOnTarget.

Definition at line 115 of file function.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/function.hh

5.34 FunctionFactory Class Reference

Function factory.

```
#include <hnco/app/function-factory.hh>
```

Inheritance diagram for FunctionFactory:

Public Member Functions

virtual hnco::function::Function * make ()=0
 Make a function.

5.34.1 Detailed Description

Function factory.

Definition at line 33 of file function-factory.hh.

The documentation for this class was generated from the following file:

• lib/hnco/app/function-factory.hh

5.35 FunctionMapComposition Class Reference

Composition of a function and a map.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for FunctionMapComposition:

Public Member Functions

```
• FunctionMapComposition (Function *function, hnco::map::Map *map)
```

Constructor.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Information about the function

```
• int get_bv_size ()
```

Get bit vector size.

• double get_maximum ()

Get the global maximum.

• bool has_known_maximum ()

Check for a known maximum.

Display

void describe (const bit_vector_t &x, std::ostream &stream)
 Describe a bit vector.

Private Attributes

```
hnco::map::Map * _map
```

Мар.

bit_vector_t _bv

Image of bit vectors under the map.

Additional Inherited Members

5.35.1 Detailed Description

Composition of a function and a map.

Definition at line 100 of file modifier.hh.

5.35.2 Constructor & Destructor Documentation

5.35.2.1 FunctionMapComposition()

Constructor.

Precondition

```
map->get_output_size() == function->get_bv_size()
```

Exceptions

```
std::runtime_error
```

Definition at line 115 of file modifier.hh.

5.35.3 Member Function Documentation

5.35.3.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Exceptions

std::runtime_error

Reimplemented from Function.

Definition at line 135 of file modifier.hh.

5.35.3.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true if the function has a known maximum and the map is bijective.

Reimplemented from Function.

Definition at line 145 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.36 FunctionPlugin Class Reference

Function plugin

#include <hnco/functions/collection/plugin.hh>

Inheritance diagram for FunctionPlugin:

Public Member Functions

• FunctionPlugin (int bv_size, std::string path, std::string name)

Constructor.

• ∼FunctionPlugin ()

Destructor.

• int get_bv_size ()

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Private Types

typedef double(* extern_function_t) (const bit_t *, size_t)
 Type of an extern function.

Private Attributes

• int _bv_size

Bit vector size.

void * _handle

Handle returned by dlopen.

extern_function_t _extern_function

Extern function.

5.36.1 Detailed Description

Function plugin

Definition at line 34 of file plugin.hh.

5.36.2 Constructor & Destructor Documentation

5.36.2.1 FunctionPlugin()

Constructor.

Parameters

bv_size	Size of bit vectors
path	Path to a shared library
name	Name of a function of the shared library

Definition at line 35 of file plugin.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/plugin.hh
- lib/hnco/functions/collection/plugin.cc

5.37 Generator Struct Reference

Random number generator.

```
#include <hnco/random.hh>
```

Static Public Member Functions

```
• static void set_seed (unsigned n)
```

Set seed.

static void set_seed ()

Set seed.

• static void reset ()

Reset engine.

• static double uniform ()

Sample random number with uniform distribution.

• static double normal ()

Sample random number with normal distribution.

• static bool bernoulli ()

Sample random number with Bernoulli distribution.

Static Public Attributes

static std::mt19937 engine
 Mersenne Twister engine.

• static unsigned seed = std::mt19937::default_seed

Seed.

5.37.1 Detailed Description

Random number generator.

Definition at line 34 of file random.hh.

5.37.2 Member Function Documentation

5.37.2.1 reset()

```
void reset ( ) [static]
```

Reset engine.

Using static member seed.

Definition at line 45 of file random.cc.

5.37.2.2 set_seed()

```
void set_seed ( ) [static]
```

Set seed.

Uses std::chrono::system_clock.

Definition at line 39 of file random.cc.

The documentation for this struct was generated from the following files:

- · lib/hnco/random.hh
- lib/hnco/random.cc

5.38 Genetic Algorithm Class Reference

Genetic algorithm.

#include <hnco/algorithms/ea/genetic-algorithm.hh>

Inheritance diagram for GeneticAlgorithm:

Public Member Functions

• GeneticAlgorithm (int n, int mu)

Constructor.

Setters

• void set_mutation_rate (double p)

Set the mutation rate.

void set_crossover_probability (double x)

Set the crossover probability.

• void set_tournament_size (int x)

Set the tournament size.

• void set_allow_no_mutation (bool b)

Set the flag _allow_no_mutation.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

• TournamentSelection _parents

Parents.

• TournamentSelection _offsprings

Offsprings.

neighborhood::StandardBitMutation _mutation

Mutation operator.

• std::bernoulli_distribution _do_crossover

Do crossover.

• UniformCrossover _crossover

Uniform crossover.

Parameters

```
• double _mutation_rate
```

Mutation rate.

• double _crossover_probability = 0.5

Crossover probability.

• int _tournament_size = 10

Tournament size.

bool _allow_no_mutation = false

Allow no mutation.

5.38.1 Detailed Description

Genetic algorithm.

- · Tournament selection for reproduction
- Uniform crossover
- · Standard bit mutation
- (mu, mu) selection (offspring population replaces parent population)

Reference:

J. H. Holland. 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

Definition at line 51 of file genetic-algorithm.hh.

5.38.2 Constructor & Destructor Documentation

5.38.2.1 GeneticAlgorithm()

```
GeneticAlgorithm (
        int n,
        int mu ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors	
mu	Population size	

Definition at line 108 of file genetic-algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/genetic-algorithm.hh
- lib/hnco/algorithms/ea/genetic-algorithm.cc

5.39 HammingBall Class Reference

Hamming ball.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for HammingBall:

Public Member Functions

HammingBall (int n, int r)
 Constructor.

Private Member Functions

• void sample_bits ()

Sample bits.

Private Attributes

std::uniform_int_distribution < int > _choose_k
 Choose the distance to the center.

Additional Inherited Members

5.39.1 Detailed Description

Hamming ball.

Choose k uniformly on [1..r], where r is the radius of the ball, choose k bits uniformly among n and flip them.

Definition at line 300 of file neighborhood.hh.

5.39.2 Constructor & Destructor Documentation

5.39.2.1 HammingBall()

```
\label{eq:ball} \begin{array}{ll} \mbox{HammingBall (} \\ & \mbox{int } n, \\ & \mbox{int } r \mbox{ ) } \mbox{ [inline]} \end{array}
```

Constructor.

Parameters

n	Size of bit vectors	
r	Radius of the ball	

Definition at line 316 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.40 HammingSphere Class Reference

Hamming sphere.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for HammingSphere:

Public Member Functions

• HammingSphere (int n, int r)

Constructor.

void set_radius (int r)

Set radius.

Private Member Functions

void sample_bits ()
 Sample bits.

Private Attributes

int _radius

Radius of the sphere.

Additional Inherited Members

5.40.1 Detailed Description

Hamming sphere.

Uniformly choose r bits among n and flip them, where r is the radius of the sphere.

Definition at line 333 of file neighborhood.hh.

5.40.2 Constructor & Destructor Documentation

5.40.2.1 HammingSphere()

```
HammingSphere (
          int n,
          int r) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
r	Radius of the sphere

Definition at line 349 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.41 HammingSpherelterator Class Reference

Hamming sphere neighborhood iterator.

```
#include <hnco/neighborhoods/neighborhood-iterator.hh>
```

Inheritance diagram for HammingSphereIterator:

Public Member Functions

• HammingSphereIterator (int n, int r)

Constructor.

· bool has next ()

Has next bit vector.

const bit_vector_t & next ()

Next bit vector.

Private Attributes

· bit vector t mask

Mutation mask.

int radius

Radius of the ball.

int index

Index of the next bit to shift to the right.

· int _weight

Partial Hamming weight.

Additional Inherited Members

5.41.1 Detailed Description

Hamming sphere neighborhood iterator.

This iterator enumerates mutation masks with hamming weight equal to the given radius. Suppose that _mask has a first (from left to right) sequence of ones of length _weight and ending at _index:

```
0 ... 0 1 ... 1 0 ...
```

Then the next mask is obtained by moving to the left the first _weight - 1 ones and moving to the right the last one.

```
1 ... 1 0 ... 0 1 ...
```

Definition at line 91 of file neighborhood-iterator.hh.

5.41.2 Constructor & Destructor Documentation

5.41.2.1 HammingSphereIterator()

```
HammingSphereIterator (
                int n,
                int r ) [inline]
```

Constructor.

5.42 Hboa Class Reference 133

Parameters

n	Size of bit vectors
r	Radius of Hamming Ball

Definition at line 113 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.42 Hboa Class Reference

Hierarchical Bayesian Optimization Algorithm.

#include <hnco/algorithms/fast-efficient-p3/hboa.hh>

Inheritance diagram for Hboa:

Public Member Functions

• Hboa (int n)

Constructor.

• ∼Hboa ()

Destructor.

 $\bullet \ \ \ void\ maximize\ (const\ std::vector < function::Function *> \& functions)\\$

Maximize.

• void finalize ()

Finalize.

void set_population_size (int n)

Set population size.

Private Attributes

Implementation * _pimpl

Pointer to implementation.

• int _population_size = 10 Population size.

Additional Inherited Members

5.42.1 Detailed Description

Hierarchical Bayesian Optimization Algorithm.

Implementation of the Hierarchical Bayesian Optimization Algorithm and helper classes based on the publication: Pelikan, M. and Goldberg, D. (2006). Hierarchical bayesian optimization algorithm. In Scalable Optimization via Probabilistic Modeling, volume 33 of Studies in Computational Intelligence, pages 63–90. Springer Berlin Heidelberg.

Author: Brian W. Goldman

Integrated into HNCO by Arnaud Berny

Definition at line 48 of file hboa.hh.

5.42.2 Member Data Documentation

5.42.2.1 _pimpl

Implementation* _pimpl [private]

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 59 of file hboa.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/fast-efficient-p3/hboa.hh
- lib/hnco/algorithms/fast-efficient-p3/hboa.cc

5.43 Hea < Moment, Herding > Class Template Reference

Herding evolutionary algorithm.

#include <hnco/algorithms/hea/hea.hh>

Inheritance diagram for Hea< Moment, Herding >:

Public Types

- enum {
 LOG_ERROR, LOG_DTU, LOG_DELTA, LOG_SELECTION,
 LOG_MOMENT_MATRIX, LAST_LOG }
- typedef std::bitset< LAST_LOG > log_flags_t

Type for log flags.

Public Member Functions

Hea (int n, int population_size)
 Constructor.

Setters

- void set_herding (Herding *x)
 Set the herding algorithm.
- void set_margin (double x)

Set the moment margin.

void set_selection_size (int x)

Set the selection size.

void set_reset_period (int x)

Set the reset period.

• void set_learning_rate (double x)

Set the learning rate.

void set_bound_moment (bool x)

Set the bound moment after update.

void set_weight (double weight)

Set weight.

void set_log_flags (const log_flags_t &lf)
 Set log flags.

Protected Member Functions

Loop

• void init () override

Initialization.

• void iterate () override

Single iteration.

• void log () override

Log.

Protected Attributes

Moment <u>_target</u>

Moment.

• Moment selection

Moment of selected individuals.

Moment _uniform

Uniform moment.

• algorithm::Population _population

Population.

Herding * _herding

Herding.

Logging

• double _error_cache

Error cache.

• double _dtu_cache

Distance to uniform cache.

• double _delta_cache

Delta cache.

• double _selection_cache

Selection distance cache.

 log_flags_t _log_flags Log flags.

Parameters

• double _margin

Moment margin.

• int _selection_size = 1

Selection size.

• int reset_period = 0

Reset period.

• double <u>learning_rate</u> = 1e-4

Learning rate.

• bool _bound_moment = false

Bound moment after update.

5.43.1 Detailed Description

 $\label{lem:class} \begin{tabular}{ll} template < class Moment, class Herding > \\ class hnco::algorithm::hea::Hea < Moment, Herding > \\ \end{tabular}$

Herding evolutionary algorithm.

Reference:

Arnaud Berny. 2015. Herding Evolutionary Algorithm. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO Companion '15). ACM, New York, NY, USA, 1355–1356.

Definition at line 52 of file hea.hh.

5.43.2 Member Enumeration Documentation

5.43.2.1 anonymous enum

anonymous enum

Enumerator

LOG_ERROR	Log error.	
LOG_DTU	Log distance to uniform.	
LOG_DELTA	Log delta (moment increment)	
LOG_SELECTION	Log the distance between the target and the selection moment.	
LOG_MOMENT_MATRIX	Log the moment matrix.	

Definition at line 56 of file hea.hh.

5.43.3 Constructor & Destructor Documentation

5.43.3.1 Hea()

Constructor.

Parameters

n	Size of bit vectors
population_size	Population size

_margin is initialized to 1 / n.

Definition at line 229 of file hea.hh.

5.43.4 Member Function Documentation

5.43.4.1 set_reset_period()

```
void set_reset_period (
          int x ) [inline]
```

Set the reset period.

Parameters

 $x \le 0$ means no reset.

Definition at line 266 of file hea.hh.

5.43.4.2 set_selection_size()

```
void set_selection_size (
          int x ) [inline]
```

Set the selection size.

The selection size is the number of selected individuals in the population.

Definition at line 258 of file hea.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/hea/hea.hh

5.44 Hiff Class Reference 139

5.44 Hiff Class Reference

Hierarchical if and only if.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Hiff:

Public Member Functions

• Hiff (int bv_size)

Constructor.

• int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

bool has_known_maximum () override

Check for a known maximum.

• double get_maximum () override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

int _depth

Tree depth.

5.44.1 Detailed Description

Hierarchical if and only if.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 170 of file theory.hh.

5.44.2 Member Function Documentation

5.44.2.1 get_maximum()

```
double get_maximum ( ) [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
(i + 1) * 2^i where 2^i = bv_size
```

Reimplemented from Function.

Definition at line 195 of file theory.hh.

5.44.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 191 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.45 HncoEvaluator Class Reference

Evaluator for HNCO functions.

```
#include <hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh>
```

Inheritance diagram for HncoEvaluator:

Public Member Functions

HncoEvaluator (hnco::function::Function *function)

Constructor.

float evaluate (const std::vector< bool > &x)

Evaluate a bit vector.

Private Attributes

hnco::function::Function * _function
 HNCO function.

hnco::bit_vector_t _bv

Argument of HNCO function.

5.45.1 Detailed Description

Evaluator for HNCO functions.

Definition at line 36 of file hnco-evaluator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh

5.46 HncoOptions Class Reference

Command line options for hnco.

#include <hnco/app/hnco-options.hh>

Public Member Functions

HncoOptions (int argc, char *argv[])

Constructor.

• int get_algorithm () const

Get algorithm.

void set_algorithm (int x)

Set algorithm.

· bool set_algorithm () const

Get set-flag for algorithm.

• int get_bm_mc_reset_strategy () const

Get bm_mc_reset_strategy.

void set_bm_mc_reset_strategy (int x)

Set bm_mc_reset_strategy.

· bool set bm mc reset strategy () const

Get set-flag for bm_mc_reset_strategy.

int get_bm_num_gs_cycles () const

Get bm_num_gs_cycles.

void set_bm_num_gs_cycles (int x)

Set bm_num_gs_cycles.

· bool set_bm_num_gs_cycles () const

Get set-flag for bm_num_gs_cycles.

int get_bm_num_gs_steps () const

Get bm_num_gs_steps.

void set_bm_num_gs_steps (int x)

Set bm_num_gs_steps.

• bool set_bm_num_gs_steps () const

Get set-flag for bm num gs steps.

· int get_bm_sampling () const

Get bm_sampling.

void set_bm_sampling (int x)

Set bm_sampling.

• bool set_bm_sampling () const

Get set-flag for bm_sampling.

• int get_budget () const

Get budget.

void set_budget (int x)

Set budget.

· bool set_budget () const

Get set-flag for budget.

• int get_bv_size () const

Get bv_size.

void set_bv_size (int x)

Set bv_size.

• bool set_bv_size () const

Get set-flag for bv_size.

· std::string get description path () const

Get description_path.

void set_description_path (std::string x)

Set description_path.

· bool set_description_path () const

Get set-flag for description_path.

• int get_ea_lambda () const

Get ea_lambda.

void set_ea_lambda (int x)

Set ea_lambda.

bool set_ea_lambda () const

Get set-flag for ea_lambda.

• int get_ea_mu () const

Get ea_mu.

void set_ea_mu (int x)

Set ea mu.

• bool set_ea_mu () const

Get set-flag for ea_mu.

• std::string get_expression () const

Get expression.

void set_expression (std::string x)

Set expression.

bool set_expression () const

Get set-flag for expression.

• std::string get_fn_name () const

Get fn_name.

void set_fn_name (std::string x)

Set fn_name.

• bool set_fn_name () const

Get set-flag for fn_name.

int get_fn_num_traps () const

Get fn_num_traps.

void set_fn_num_traps (int x)

Set fn_num_traps.

bool set_fn_num_traps () const

Get set-flag for fn_num_traps.

int get_fn_prefix_length () const

Get fn_prefix_length.

void set_fn_prefix_length (int x)

Set fn_prefix_length.

• bool set_fn_prefix_length () const

Get set-flag for fn_prefix_length.

• int get_fn_threshold () const

Get fn_threshold.

void set_fn_threshold (int x)

Set fn_threshold.

bool set_fn_threshold () const

Get set-flag for fn_threshold.

std::string get_fp_expression () const

 $Get \ fp_expression.$

• void set_fp_expression (std::string x)

Set fp_expression.

• bool set_fp_expression () const

Get set-flag for fp_expression.

• double get_fp_lower_bound () const

Get fp_lower_bound.

void set_fp_lower_bound (double x)

Set fp_lower_bound.

bool set_fp_lower_bound () const

Get set-flag for fp_lower_bound.

• int get_fp_num_bits () const

Get fp_num_bits.

void set_fp_num_bits (int x)

Set fp_num_bits.

• bool set_fp_num_bits () const

Get set-flag for fp_num_bits.

• double get_fp_precision () const

Get fp_precision.

void set_fp_precision (double x)

Set fp_precision.

• bool set_fp_precision () const

Get set-flag for fp_precision.

double get_fp_upper_bound () const

Get fp_upper_bound.

void set_fp_upper_bound (double x)

Set fp_upper_bound.

· bool set fp upper bound () const

Get set-flag for fp_upper_bound.

• int get function () const

Get function.

void set_function (int x)

Set function.

· bool set_function () const

Get set-flag for function.

• double get_ga_crossover_bias () const

Get ga_crossover_bias.

• void set_ga_crossover_bias (double x)

Set ga_crossover_bias.

· bool set ga crossover bias () const

Get set-flag for ga_crossover_bias.

• double get_ga_crossover_probability () const

Get ga_crossover_probability.

void set ga crossover probability (double x)

Set ga_crossover_probability.

• bool set_ga_crossover_probability () const

Get set-flag for ga crossover probability.

• int get_ga_tournament_size () const

Get ga_tournament_size.

void set_ga_tournament_size (int x)

Set ga_tournament_size.

bool set_ga_tournament_size () const

Get set-flag for ga_tournament_size.

· int get hea bit herding () const

Get hea_bit_herding.

void set_hea_bit_herding (int x)

Set hea_bit_herding.

• bool set_hea_bit_herding () const

Get set-flag for hea bit herding.

• int get_hea_num_seq_updates () const

Get hea_num_seq_updates.

void set_hea_num_seq_updates (int x)

Set hea_num_seq_updates.

bool set_hea_num_seq_updates () const

Get set-flag for hea_num_seq_updates.

• int get_hea_reset_period () const

Get hea_reset_period.

void set_hea_reset_period (int x)

Set hea reset period.

· bool set_hea_reset_period () const

Get set-flag for hea reset period.

• int get_hea_sampling_method () const

Get hea_sampling_method.

void set_hea_sampling_method (int x)

Set hea_sampling_method.

bool set_hea_sampling_method () const

Get set-flag for hea_sampling_method.

double get_hea_weight () const

Get hea_weight.

void set_hea_weight (double x)

Set hea_weight.

• bool set_hea_weight () const

Get set-flag for hea_weight.

• double get_learning_rate () const

Get learning_rate.

void set_learning_rate (double x)

Set learning_rate.

bool set_learning_rate () const

Get set-flag for learning_rate.

• int get_map () const

Get map.

void set_map (int x)

Set map.

• bool set_map () const

Get set-flag for map.

• int get_map_input_size () const

Get map_input_size.

void set_map_input_size (int x)

Set map_input_size.

bool set_map_input_size () const

Get set-flag for map_input_size.

std::string get_map_path () const

Get map_path.

void set_map_path (std::string x)

Set map_path.

• bool set_map_path () const

Get set-flag for map_path.

• int get_map_ts_length () const

Get map_ts_length.

void set_map_ts_length (int x)

Set map_ts_length.

bool set_map_ts_length () const

Get set-flag for map_ts_length.

int get_map_ts_sampling_mode () const

Get map_ts_sampling_mode.

void set_map_ts_sampling_mode (int x)

Set map_ts_sampling_mode.

bool set_map_ts_sampling_mode () const

Get set-flag for map_ts_sampling_mode.

• double get_mutation_rate () const

Get mutation_rate.

void set_mutation_rate (double x)

Set mutation_rate.

· bool set mutation rate () const

Get set-flag for mutation_rate.

int get_neighborhood () const

Get neighborhood.

void set_neighborhood (int x)

Set neighborhood.

· bool set neighborhood () const

Get set-flag for neighborhood.

int get_neighborhood_iterator () const

Get neighborhood_iterator.

void set neighborhood iterator (int x)

Set neighborhood iterator.

bool set_neighborhood_iterator () const

Get set-flag for neighborhood iterator.

· double get_noise_stddev () const

Get noise_stddev.

• void set_noise_stddev (double x)

Set noise_stddev.

• bool set_noise_stddev () const

Get set-flag for noise_stddev.

• int get_num_iterations () const

Get num_iterations.

void set_num_iterations (int x)

Set num_iterations.

• bool set_num_iterations () const

Get set-flag for num iterations.

• int get_num_threads () const

Get num_threads.

void set_num_threads (int x)

Set num_threads.

bool set_num_threads () const

Get set-flag for num_threads.

• std::string get_path () const

Get path.

void set_path (std::string x)

Set path.

• bool set_path () const

Get set-flag for path.

• double get_pn_mutation_rate () const

Get pn_mutation_rate.

• void set_pn_mutation_rate (double x)

Set pn_mutation_rate.

bool set_pn_mutation_rate () const

Get set-flag for pn_mutation_rate.

• int get_pn_neighborhood () const

Get pn_neighborhood.

void set_pn_neighborhood (int x)

Set pn neighborhood.

• bool set_pn_neighborhood () const

Get set-flag for pn_neighborhood.

• int get_pn_radius () const

Get pn_radius.

void set_pn_radius (int x)

Set pn_radius.

bool set_pn_radius () const

Get set-flag for pn_radius.

int get_population_size () const

Get population_size.

void set_population_size (int x)

Set population_size.

· bool set_population_size () const

Get set-flag for population_size.

int get_pv_log_num_components () const

Get pv_log_num_components.

void set_pv_log_num_components (int x)

Set pv_log_num_components.

bool set_pv_log_num_components () const

Get set-flag for pv_log_num_components.

int get_radius () const

Get radius.

void set_radius (int x)

Set radius.

• bool set_radius () const

Get set-flag for radius.

• int get_rep_categorical_representation () const

Get rep_categorical_representation.

void set_rep_categorical_representation (int x)

Set rep_categorical_representation.

bool set_rep_categorical_representation () const

Get set-flag for rep_categorical_representation.

std::string get_results_path () const

Get results_path.

void set_results_path (std::string x)

Set results_path.

bool set_results_path () const

Get set-flag for results_path.

• int get_rls_patience () const

Get rls_patience.

void set_rls_patience (int x)

Set rls_patience.

bool set_rls_patience () const

Get set-flag for rls_patience.

• double get_sa_beta_ratio () const

Get sa_beta_ratio.

• void set_sa_beta_ratio (double x)

Set sa_beta_ratio.

• bool set_sa_beta_ratio () const

Get set-flag for sa_beta_ratio.

• double get_sa_initial_acceptance_probability () const

Get sa_initial_acceptance_probability.

void set_sa_initial_acceptance_probability (double x)

Set sa_initial_acceptance_probability.

· bool set sa initial acceptance probability () const

Get set-flag for sa_initial_acceptance_probability.

• int get_sa_num_transitions () const

Get sa_num_transitions.

void set_sa_num_transitions (int x)

Set sa_num_transitions.

· bool set sa num transitions () const

Get set-flag for sa_num_transitions.

• int get_sa_num_trials () const

Get sa_num_trials.

void set sa num trials (int x)

Set sa num trials.

• bool set_sa_num_trials () const

Get set-flag for sa num trials.

• unsigned get_seed () const

Get seed.

• void set_seed (unsigned x)

Set seed.

• bool set seed () const

Get set-flag for seed.

• int get_selection_size () const

Get selection_size.

void set selection size (int x)

Set selection size.

• bool set_selection_size () const

Get set-flag for selection size.

• std::string get_solution_path () const

Get solution_path.

• void set_solution_path (std::string x)

Set solution_path.

bool set_solution_path () const

Get set-flag for solution_path.

· double get target () const

Get target.

void set_target (double x)

Set target.

• bool set_target () const

Get set-flag for target.

· bool with_additive_gaussian_noise () const

Get additive_gaussian_noise.

• void set_additive_gaussian_noise ()

Set additive_gaussian_noise.

bool with_allow_no_mutation () const

Get allow_no_mutation.

• void set_allow_no_mutation ()

Set allow_no_mutation.

bool with_bm_log_norm_infinite () const

Get bm log norm infinite.

void set_bm_log_norm_infinite ()

Set bm_log_norm_infinite.

bool with_bm_log_norm_l1 () const

Get bm_log_norm_l1.

void set_bm_log_norm_l1 ()

Set bm_log_norm_l1.

```
· bool with_bm_negative_positive_selection () const
     Get bm_negative_positive_selection.

    void set_bm_negative_positive_selection ()

     Set bm_negative_positive_selection.

    bool with_cache () const

     Get cache.
· void set cache ()
     Set cache.
• bool with_cache_budget () const
     Get cache_budget.

    void set cache budget ()

     Set cache_budget.

    bool with_concrete_solution () const

     Get concrete_solution.

    void set_concrete_solution ()

     Set concrete_solution.

    bool with_fn_display () const

     Get fn display.
void set_fn_display ()
     Set fn_display.
• bool with_fn_get_bv_size () const
     Get fn_get_bv_size.
void set_fn_get_bv_size ()
     Set fn_get_bv_size.

    bool with_fn_get_maximum () const

     Get fn_get_maximum.

    void set_fn_get_maximum ()

     Set fn_get_maximum.
• bool with_fn_has_known_maximum () const
     Get fn_has_known_maximum.
void set_fn_has_known_maximum ()
     Set fn_has_known_maximum.
• bool with_fn_provides_incremental_evaluation () const
     Get fn_provides_incremental_evaluation.

    void set_fn_provides_incremental_evaluation ()

     Set fn_provides_incremental_evaluation.
· bool with fn walsh transform () const
     Get fn_walsh_transform.

    void set_fn_walsh_transform ()

     Set fn_walsh_transform.

    bool with_hea_bound_moment () const

     Get hea_bound_moment.

    void set_hea_bound_moment ()

     Set hea_bound_moment.
• bool with_hea_log_delta () const
     Get hea_log_delta.

    void set_hea_log_delta ()

     Set hea_log_delta.
· bool with hea log dtu () const
     Get hea_log_dtu.

    void set_hea_log_dtu ()
```

Set hea_log_dtu. • bool with_hea_log_error () const Get hea_log_error. • void set hea log error () Set hea_log_error. bool with_hea_log_moment_matrix () const Get hea_log_moment_matrix. void set hea log moment matrix () Set hea_log_moment_matrix. bool with_hea_log_selection () const Get hea log selection. void set_hea_log_selection ()

Set hea_log_selection.

• bool with_hea_randomize_bit_order () const

Get hea_randomize_bit_order.

void set_hea_randomize_bit_order ()

Set hea_randomize_bit_order.

· bool with_incremental_evaluation () const

Get incremental_evaluation.

void set incremental evaluation ()

Set incremental_evaluation.

· bool with_load_solution () const

Get load solution.

void set_load_solution ()

Set load_solution.

· bool with_log_improvement () const

Get log_improvement.

void set_log_improvement ()

Set log_improvement.

• bool with_map_display () const

Get map_display.

void set_map_display ()

Set map_display.

• bool with_map_random () const

Get map random.

void set_map_random ()

Set map_random.

· bool with_map_surjective () const

Get map_surjective.

void set_map_surjective ()

Set map_surjective.

• bool with_mmas_strict () const

Get mmas_strict.

void set_mmas_strict ()

Set mmas strict.

· bool with_negation () const

Get negation.

void set_negation ()

Set negation.

• bool with_parsed_modifier () const

Get parsed_modifier.

```
    void set_parsed_modifier ()

      Set parsed_modifier.
• bool with_pn_allow_no_mutation () const
      Get pn_allow_no_mutation.

    void set_pn_allow_no_mutation ()

      Set pn_allow_no_mutation.
• bool with_print_defaults () const
      Get print_defaults.
• void set_print_defaults ()
     Set print_defaults.
· bool with_print_description () const
      Get print_description.

    void set_print_description ()

      Set print_description.

    bool with_print_header () const

      Get print_header.

    void set_print_header ()

      Set print_header.
• bool with_print_results () const
      Get print_results.
void set_print_results ()
     Set print_results.
· bool with_print_solution () const
      Get print_solution.

    void set_print_solution ()

      Set print_solution.

    bool with_prior_noise () const

      Get prior_noise.
void set_prior_noise ()
      Set prior_noise.

    bool with_pv_log_entropy () const

      Get pv_log_entropy.
void set_pv_log_entropy ()
      Set pv_log_entropy.
bool with_pv_log_pv () const
      Get pv_log_pv.

    void set pv log pv ()

      Set pv_log_pv.

    bool with_record_evaluation_time () const

      Get record_evaluation_time.

    void set_record_evaluation_time ()

      Set record_evaluation_time.
· bool with_restart () const
      Get restart.
· void set_restart ()
     Set restart.
• bool with_rls_strict () const
     Get rls_strict.

    void set rls strict ()

      Set rls_strict.
· bool with_rw_log_value () const
```

Get rw_log_value.

void set_rw_log_value ()

Set rw log value.

· bool with save description () const

Get save_description.

void set_save_description ()

Set save description.

· bool with save results () const

Get save_results.

void set_save_results ()

Set save results.

· bool with_save_solution () const

Get save_solution.

void set_save_solution ()

Set save_solution.

• bool with_stop_on_maximum () const

Get stop_on_maximum.

void set_stop_on_maximum ()

Set stop_on_maximum.

bool with_stop_on_target () const

Get stop_on_target.

void set_stop_on_target ()

Set stop_on_target.

Private Member Functions

 void print_help (std::ostream &stream) const Print help message.

• void print_help_fp (std::ostream &stream) const

• void print_help_rep (std::ostream &stream) const

Print help message for section rep.

Print help message for section fp.

void print_help_pn (std::ostream &stream) const

Print help message for section pn.

void print_help_map (std::ostream &stream) const

Print help message for section map.

· void print help Is (std::ostream &stream) const

Print help message for section Is.

void print_help_sa (std::ostream &stream) const

Print help message for section sa.

· void print help ea (std::ostream &stream) const

Print help message for section ea.

void print_help_eda (std::ostream &stream) const

Print help message for section eda.

void print_help_hea (std::ostream &stream) const

Print help message for section hea.

void print_help_bm (std::ostream &stream) const

Print help message for section bm.

void print_version (std::ostream &stream) const

Print version.

Private Attributes

std::string _exec_name

Name of the executable.

• std::string _version

Name Version.

• int _algorithm

Type of algorithm.

- bool opt_algorithm
- int _bm_mc_reset_strategy

Markov chain reset strategy.

- bool <u>opt_bm_mc_reset_strategy</u>
- int _bm_num_gs_cycles

Number of Gibbs sampler cycles per bit vector.

- bool_opt_bm_num_gs_cycles
- int _bm_num_gs_steps

Number of Gibbs sampler steps per bit vector.

- bool <u>opt_bm_num_gs_steps</u>
- int _bm_sampling

Sampling mode for the Boltzmann machine.

- bool <u>opt_bm_sampling</u>
- · int _budget

Number of allowed function evaluations (<= 0 means indefinite)

- bool _opt_budget
- int _bv_size

Size of bit vectors.

- bool _opt_bv_size
- std::string _description_path

Path of the description file.

- bool _opt_description_path
- int _ea_lambda

Offspring population size.

- bool _opt_ea_lambda
- int _ea_mu

Parent population size.

- bool _opt_ea_mu
- std::string _expression

Expression of the variable x.

- bool_opt_expression
- std::string _fn_name

Name of the function in the dynamic library.

- bool _opt_fn_name
- int _fn_num_traps

Number of traps.

- bool_opt_fn_num_traps
- int _fn_prefix_length

Prefix length for long path.

- bool <u>opt_fn_prefix_length</u>
- · int _fn_threshold

Threshold (in bits) for Jump, Four Peaks, and Six Peaks.

- bool _opt_fn_threshold
- std::string _fp_expression

Expression to parse.

- bool opt fp expression
- · double _fp_lower_bound

Lower bound.

- · bool_opt_fp_lower_bound
- · int _fp_num_bits

Number of bits in the dyadic representation of a number.

- bool_opt_fp_num_bits
- double _fp_precision

Precision of the dyadic representation of a number.

- bool _opt_fp_precision
- double _fp_upper_bound

Upper bound.

- bool <u>opt_fp_upper_bound</u>
- int _function

Type of function.

- bool _opt_function
- double _ga_crossover_bias

Crossover bias.

- bool <u>opt ga crossover bias</u>
- · double _ga_crossover_probability

Crossover probability.

- bool _opt_ga_crossover_probability
- int _ga_tournament_size

Tournament size.

- bool _opt_ga_tournament_size
- int _hea_bit_herding

Type of bit herding.

- · bool _opt_hea_bit_herding
- · int hea num seq updates

Number of sequential updates per sample.

- bool <u>opt_hea_num_seq_updates</u>
- int _hea_reset_period

Reset period (<= 0 means no reset)

- · bool_opt_hea_reset_period
- int _hea_sampling_method

Sampling method for spin features.

- · bool _opt_hea_sampling_method
- double _hea_weight

Weight of second moments.

- bool _opt_hea_weight
- double _learning_rate

Learning rate.

- bool _opt_learning_rate
- int _map

Type of map.

- · bool opt map
- int _map_input_size

Input size of linear and affine maps.

- bool _opt_map_input_size
- std::string map path

Path of a map file.

- bool_opt_map_path
- int _map_ts_length

Transvection sequence length.

- bool _opt_map_ts_length
- · int _map_ts_sampling_mode

Transvection sequence sampling mode.

- bool <u>opt_map_ts_sampling_mode</u>
- double _mutation_rate

Mutation rate relative to bv_size.

- bool _opt_mutation_rate
- int _neighborhood

Type of neighborhood.

- bool _opt_neighborhood
- · int _neighborhood_iterator

Type of neighborhood iterator.

- · bool opt neighborhood iterator
- double _noise_stddev

Noise standard deviation.

- bool _opt_noise_stddev
- int _num_iterations

Number of iterations (<= 0 means indefinite)

- · bool _opt_num_iterations
- · int _num_threads

Number of threads.

- bool opt num threads
- std::string _path

Path of a function file.

- bool _opt_path
- double _pn_mutation_rate

Mutation rate relative to bv_size.

- bool _opt_pn_mutation_rate
- · int _pn_neighborhood

Type of neighborhood.

- · bool opt pn neighborhood
- · int _pn_radius

Radius of Hamming ball or sphere.

- bool opt_pn_radius
- int _population_size

Population size.

- bool opt population size
- int _pv_log_num_components

Number of probability vector components to log.

- bool <u>opt_pv_log_num_components</u>
- · int _radius

Radius of Hamming ball or sphere.

- bool _opt_radius
- int _rep_categorical_representation

Categorical representation.

- bool _opt_rep_categorical_representation
- std::string results path

Path of the results file.

· bool _opt_results_path

· int _rls_patience

Number of consecutive rejected moves before ending the search (<= 0 means infinite)

- bool _opt_rls_patience
- double _sa_beta_ratio

Ratio for beta or inverse temperature.

- bool opt_sa_beta_ratio
- · double sa initial acceptance probability

Initial acceptance probability.

- bool <u>opt_sa_initial_acceptance_probability</u>
- int _sa_num_transitions

Number of accepted transitions before annealing.

- bool opt_sa_num_transitions
- · int _sa_num_trials

Number of trials to estimate initial inverse temperature.

- · bool opt sa num trials
- · unsigned _seed

Seed for the random number generator.

- bool _opt_seed
- int _selection_size

Selection size (number of selected individuals)

- · bool opt selection size
- std::string _solution_path

Path of the solution file.

- · bool opt solution path
- double <u>target</u>

Target.

- bool _opt_target
- · bool _additive_gaussian_noise

Additive Gaussian noise.

bool _allow_no_mutation

Allow no mutation with standard bit mutation.

bool _bm_log_norm_infinite

Log infinite norm of the parameters.

• bool _bm_log_norm_l1

Log L1 norm of the parameters.

• bool _bm_negative_positive_selection

Negative and positive selection.

• bool _cache

Cache function evaluations.

· bool _cache_budget

Set cache on budget.

• bool _concrete_solution

At the end, print or save the solution in the domain of the concrete function.

bool _fn_display

Display the function and exit.

• bool _fn_get_bv_size

Print the size of bit vectors.

• bool _fn_get_maximum

If the maximum is known then print it and exit with status 0 else exit with status 1.

· bool fn has known maximum

Does the function have a known maximum?

· bool _fn_provides_incremental_evaluation

Does the function provide incremental evaluation?

bool _fn_walsh_transform

Compute the Walsh transform of the function.

bool _hea_bound_moment

Bound moment after update.

· bool _hea_log_delta

Log norm 2 of delta (in moment space)

· bool _hea_log_dtu

Log distance to uniform.

· bool hea log error

Log error (moment discrepancy)

bool _hea_log_moment_matrix

Log moment matrix.

bool _hea_log_selection

Log the distance between the target and the selection moment.

bool _hea_randomize_bit_order

Randomize bit order.

• bool _incremental_evaluation

Incremental evaluation.

· bool _load_solution

Load a solution from a file.

• bool <u>log_improvement</u>

Log improvement.

· bool _map_display

Display the map and exit.

bool _map_random

Sample a random map.

· bool _map_surjective

Ensure that the sampled linear or affine map is surjective.

bool _mmas_strict

Strict (>) max-min ant system.

· bool _negation

Negation (hence minimization) of the function.

• bool _parsed_modifier

Parsed modifier.

bool _pn_allow_no_mutation

Allow no mutation with standard bit mutation.

· bool _print_defaults

Print the default parameters and exit.

• bool _print_description

Print a description of the solution.

· bool _print_header

At the beginning, print the header.

· bool _print_results

Print results.

• bool _print_solution

Print the solution.

· bool _prior_noise

Prior noise.

bool _pv_log_entropy

Log entropy of probability vector.

bool _pv_log_pv

Log probability vector.

• bool _record_evaluation_time

Record evaluation time.

· bool _restart

Restart any algorithm an indefinite number of times.

· bool _rls_strict

Strict (>) random local search.

• bool _rw_log_value

Log bit vector value during random walk.

· bool _save_description

At the end, save a description of the solution in a file.

· bool save results

At the end, save results in a file.

bool _save_solution

At the end, save the solution in a file.

• bool _stop_on_maximum

Stop on maximum.

bool _stop_on_target

Stop on target.

Friends

std::ostream & operator<< (std::ostream &, const HncoOptions &)
 Print a header containing the parameter values.

5.46.1 Detailed Description

Command line options for hnco.

Definition at line 11 of file hnco-options.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/hnco-options.hh
- lib/hnco/app/hnco-options.cc

5.47 Human Class Reference

Human.

#include <hnco/algorithms/human.hh>

Inheritance diagram for Human:

Public Member Functions

• Human (int n)

Constructor.

Protected Member Functions

void parse_bit_vector ()
 Parse bit vector.

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

• bit_vector_t _candidate Candidate.

5.47.1 Detailed Description

Human.

Definition at line 31 of file human.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/human.hh
- lib/hnco/algorithms/human.cc

5.48 Hypercubelterator Class Reference

Hypercube iterator.

#include <hnco/iterator.hh>

Inheritance diagram for Hypercubelterator:

Public Member Functions

• Hypercubelterator (int n)

Constructor.

• bool has_next () override

Has next bit vector.

const bit_vector_t & next () override

Next bit vector.

Additional Inherited Members

5.48.1 Detailed Description

Hypercube iterator.

Implemented as a simple binary adder.

Definition at line 69 of file iterator.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/iterator.hh
- · lib/hnco/iterator.cc

5.49 Implementation Struct Reference

Implementation

#include <hnco/algorithms/fast-efficient-p3/implementation.hh>

Public Attributes

· Configuration configuration

Configuration.

• std::shared_ptr< HncoEvaluator > evaluator

Evaluator.

std::shared_ptr< Middle_Layer > middle_layer
 Middle layer.

5.49.1 Detailed Description

Implementation

Definition at line 37 of file implementation.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/algorithms/fast-efficient-p3/implementation.hh

5.50 Injection Class Reference

Injection.

#include <hnco/maps/map.hh>

Inheritance diagram for Injection:

Public Member Functions

```
    Injection (const std::vector < int > &bit_positions, int output_size)

            Constructor.
    void map (const bit_vector_t &input, bit_vector_t &output)
```

int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Attributes

```
    std::vector < int > _bit_positions
    Bit positions.
```

int _output_size

Output size.

5.50.1 Detailed Description

Injection.

An injection copies the bits of input x to given positions of output y.

```
Let I = \{i_1, i_2, \dots, i_m\} be a subset of \{1, 2, \dots, n\}.
```

An injection f from F_2^m to F_2^n , where $n \ge m$, is defined by f(x) = y, where, for all $j \in \{1, 2, \dots, m\}$, $y_{i_j} = x_j$.

If f is a projection and g is an injection with the same bit positions then their composition $f \circ g$ is the identity.

Definition at line 469 of file map.hh.

5.50.2 Constructor & Destructor Documentation

5.50.2.1 Injection()

Constructor.

The input size of the map is given by the size of bit_positions.

Parameters

bit_positions	Bit positions in the output to where input bits are copied
output_size	Output size

Precondition

```
output_size >= bit_positions.size()
```

Definition at line 147 of file map.cc.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.51 IntegerCategoricalRepresentation Class Reference

Integer categorical representation.

#include <hnco/functions/representations/representation.hh>

Public Types

typedef std::size_t domain_type
 Domain type.

Public Member Functions

• IntegerCategoricalRepresentation (int num_categories)

Constructor.

• int size ()

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a category.

void display (std::ostream &stream)

Display.

Private Attributes

· int _num_categories

Number of categories.

int _num_bits

Number of bits.

5.51.1 Detailed Description

Integer categorical representation.

Definition at line 467 of file representation.hh.

5.51.2 Constructor & Destructor Documentation

5.51.2.1 IntegerCategoricalRepresentation()

```
IntegerCategoricalRepresentation (
                int num_categories ) [inline]
```

Constructor.

Parameters

num_categories	Number of categories
----------------	----------------------

Definition at line 484 of file representation.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/representations/representation.hh

5.52 IterativeAlgorithm Class Reference

Iterative search.

#include <hnco/algorithms/iterative-algorithm.hh>

Inheritance diagram for IterativeAlgorithm:

Public Member Functions

• IterativeAlgorithm (int n)

Constructor.

Optimization

void maximize (const std::vector< function::Function * > &functions)
 Maximize.

Setters

void set_num_iterations (int x)
 Set the number of iterations.

Protected Member Functions

Loop

• virtual void init ()

Initialize.

• virtual void iterate ()=0 Single iteration.

• virtual void log ()

Log.

• virtual void loop ()

Loop.

Protected Attributes

```
· int _iteration
```

Current iteration.

bool _something_to_log = false
 Something to log.

bool _last_iteration = false
 Last iteration.

Parameters

• int _num_iterations = 0 Number of iterations.

5.52.1 Detailed Description

Iterative search.

Definition at line 32 of file iterative-algorithm.hh.

5.52.2 Constructor & Destructor Documentation

5.52.2.1 IterativeAlgorithm()

```
IterativeAlgorithm (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 77 of file iterative-algorithm.hh.

5.52.3 Member Function Documentation

5.52.3.1 maximize()

Maximize.

It is essentially a loop which, at each iteration, calls iterate() then log() only if _something_to_log is true.

Implements Algorithm.

Definition at line 52 of file iterative-algorithm.cc.

5.52.3.2 set_num_iterations()

Set the number of iterations.

Parameters

```
x Number of iterations
```

x <= 0 means indefinite

Definition at line 102 of file iterative-algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/iterative-algorithm.hh
- · lib/hnco/algorithms/iterative-algorithm.cc

5.53 Iterator Class Reference

Iterator over bit vectors

```
#include <hnco/iterator.hh>
```

Inheritance diagram for Iterator:

Public Member Functions

• Iterator (int n)

Constructor.

virtual ∼lterator ()

Destructor.

· virtual void init ()

Initialization.

• virtual bool has next ()=0

Has next bit vector.

• virtual const bit_vector_t & next ()=0

Next bit vector.

Protected Attributes

• bit_vector_t _current

Current bit vector.

• bool <u>_initial_state</u> = true

Flag for initial state.

5.53.1 Detailed Description

Iterator over bit vectors

Definition at line 34 of file iterator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/iterator.hh

5.54 Jump Class Reference

Jump.

#include <hnco/functions/collection/jump.hh>

Inheritance diagram for Jump:

Public Member Functions

```
• Jump (int bv_size, int gap)
```

Constructor.

• int get_bv_size ()

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

bool has_known_maximum ()

Check for a known maximum.

double get_maximum ()

Get the global maximum.

Private Attributes

· int bv size

Bit vector size.

int _gap

Gap.

5.54.1 Detailed Description

Jump.

Reference:

H. Mühlenbein and T. Mahnig. 2001. Evolutionary Algorithms: From Recombination to Search Distributions. In Theoretical Aspects of Evolutionary Computing, Leila Kallel, Bart Naudts, and Alex Rogers (Eds.). Springer Berlin Heidelberg, 135–174.

Definition at line 41 of file jump.hh.

5.54.2 Member Function Documentation

5.54.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 67 of file jump.hh.

5.54.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 63 of file jump.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/jump.hh
- lib/hnco/functions/collection/jump.cc

5.55 Labs Class Reference

Low autocorrelation binary sequences.

#include <hnco/functions/collection/labs.hh>

Inheritance diagram for Labs:

Public Member Functions

• Labs (int n)

Constructor.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Additional Inherited Members

5.55.1 Detailed Description

Low autocorrelation binary sequences.

Reference:

S Mertens. 1996. Exhaustive search for low-autocorrelation binary sequences. Journal of Physics A: Mathematical and General 29, 18 (1996), L473.

```
http://stacks.iop.org/0305-4470/29/i=18/a=005
```

Definition at line 65 of file labs.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/labs.hh
- · lib/hnco/functions/collection/labs.cc

5.56 LabsMeritFactor Class Reference

Low autocorrelation binary sequences merit factor.

#include <hnco/functions/collection/labs.hh>

Inheritance diagram for LabsMeritFactor:

Public Member Functions

• LabsMeritFactor (int n)

Constructor.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Additional Inherited Members

5.56.1 Detailed Description

Low autocorrelation binary sequences merit factor.

Reference:

S Mertens. 1996. Exhaustive search for low-autocorrelation binary sequences. Journal of Physics A: Mathematical and General 29, 18 (1996), L473.

http://stacks.iop.org/0305-4470/29/i=18/a=005

Definition at line 90 of file labs.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/labs.hh
- · lib/hnco/functions/collection/labs.cc

5.57 LastEvaluation Class Reference

Last evaluation.

#include <hnco/exception.hh>

Inheritance diagram for LastEvaluation:

5.57.1 Detailed Description

Last evaluation.

Definition at line 33 of file exception.hh.

The documentation for this class was generated from the following file:

lib/hnco/exception.hh

5.58 LeadingOnes Class Reference

Leading ones.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for LeadingOnes:

Public Member Functions

• LeadingOnes (int bv_size)

Constructor.

• int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum () override

Check for a known maximum.

• double get_maximum () override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.58.1 Detailed Description

Leading ones.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 100 of file theory.hh.

5.58.2 Member Function Documentation

5.58.2.1 get_maximum()

```
double get_maximum ( ) [inline], [override], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 123 of file theory.hh.

5.58.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 119 of file theory.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.59 LinearCategoricalRepresentation Class Reference

Linear categorical representation.

#include <hnco/functions/representations/representation.hh>

Public Types

typedef std::size_t domain_type
 Domain type.

Public Member Functions

LinearCategoricalRepresentation (int num_categories)

Constructor.

• int size ()

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a category.

· void display (std::ostream &stream)

Display.

Private Attributes

```
• int _num_categories
```

Number of categories.

int _nrows

Number of rows.

• int ncols

Number of columns.

bit_matrix_t _A

Linear code as a bit matrix.

bit_vector_t _y

Output category.

bit_vector_t _x

Input bit vector.

5.59.1 Detailed Description

Linear categorical representation.

Definition at line 365 of file representation.hh.

5.59.2 Constructor & Destructor Documentation

5.59.2.1 LinearCategoricalRepresentation()

```
LinearCategoricalRepresentation (
                int num_categories ) [inline]
```

Constructor.

Parameters

num_categories Number of categories

Definition at line 394 of file representation.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/representations/representation.hh

5.60 LinearFunction Class Reference

Linear function.

#include <hnco/functions/collection/linear-function.hh>

Inheritance diagram for LinearFunction:

Public Member Functions

• LinearFunction ()

Constructor.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

• void random (int n)

Random instance.

Load and save instance

• void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () override

Get bit vector size.

• double get_maximum () override

Get the global maximum.

bool has_known_maximum () override

Check for a known maximum.

· bool provides incremental evaluation () override

Check whether the function provides incremental evaluation.

• void display (std::ostream &stream) override

Display.

Private Member Functions

```
    template < class Archive > void serialize (Archive & ar, const unsigned int version)
    Serialize.
```

Private Attributes

```
    std::vector< double > _weights
    Weights.
```

Friends

· class boost::serialization::access

5.60.1 Detailed Description

Linear function.

Definition at line 41 of file linear-function.hh.

5.60.2 Member Function Documentation

5.60.2.1 generate()

```
void generate (
          int n,
          Generator generator ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Weight generator

Definition at line 72 of file linear-function.hh.

5.60.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 159 of file linear-function.hh.

5.60.2.3 load()

Load instance.

Parameters

path	Path of the instance to load
------	------------------------------

Exceptions

```
std::runtime_error
```

Definition at line 101 of file linear-function.hh.

5.60.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 164 of file linear-function.hh.

5.60.2.5 random()

Random instance.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vectors
```

Definition at line 84 of file linear-function.hh.

5.60.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 119 of file linear-function.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/linear-function.hh
- lib/hnco/functions/collection/linear-function.cc

5.61 LinearMap Class Reference

Linear map.

```
#include <hnco/maps/map.hh>
```

Inheritance diagram for LinearMap:

Public Member Functions

• void random (int rows, int cols, bool surjective)

Random instance.

• void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Member Functions

```
    template < class Archive > void save (Archive & ar, const unsigned int version) const Save.
```

```
    template < class Archive > void load (Archive & ar, const unsigned int version)
    Load.
```

Private Attributes

bit_matrix_t _bm Bit matrix.

Friends

· class boost::serialization::access

5.61.1 Detailed Description

Linear map.

A linear map f from ${\cal F}_2^m$ to ${\cal F}_2^n$ is defined by f(x)=Ax, where A is an n x m bit matrix.

Definition at line 266 of file map.hh.

5.61.2 Member Function Documentation

5.61.2.1 is_surjective()

```
bool is_surjective ( ) [virtual]
```

Check for surjective map.

Returns

```
true if rank(_bm) == bm_num_rows(_bm)
```

Reimplemented from Map.

Definition at line 93 of file map.cc.

5.61.2.2 random()

Random instance.

Parameters

rows	Number of rows
cols	Number of columns
surjective	Flag to ensure a surjective map

Exceptions

std::runtime_error

Definition at line 64 of file map.cc.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- · lib/hnco/maps/map.cc

5.62 LocalSearchAlgorithm< Neighborhood > Class Template Reference

Local search algorithm.

#include <hnco/algorithms/ls/local-search-algorithm.hh>

Inheritance diagram for LocalSearchAlgorithm < Neighborhood >:

Public Member Functions

LocalSearchAlgorithm (int n, Neighborhood *neighborhood)
 Constructor.

Setters

- void set_random_initialization (bool b)
 - Set random initialization.
- void set_starting_point (const bit_vector_t &x)
 Set the starting point.

Protected Member Functions

Loop

 void init () override Initialize.

Protected Attributes

• bit_vector_t _starting_point

Starting point.

 $\bullet \quad \text{Neighborhood} * \underline{\quad} \text{neighborhood}$

Neighborhood.

Parameters

• bool <u>_random_initialization</u> = true Random initialization.

5.62.1 Detailed Description

 ${\it template}{<} {\it class Neighborhood}{>} \\ {\it class hnco::algorithm::LocalSearchAlgorithm}{<} {\it Neighborhood}{>} \\$

Local search algorithm.

Definition at line 33 of file local-search-algorithm.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/ls/local-search-algorithm.hh

5.63 LogContext Class Reference

Log context.

#include <hnco/logging/log-context.hh>

Inheritance diagram for LogContext:

Public Member Functions

• virtual std::string to_string ()=0

Get context.

5.63.1 Detailed Description

Log context.

A log context gives an algorithm more information about what is going on during optimization than what can be gained through its function. In particular, its function may not be a function controller. Information is provided through a log context in the form of a string.

Definition at line 41 of file log-context.hh.

The documentation for this class was generated from the following file:

· lib/hnco/logging/log-context.hh

5.64 Logger Class Reference

```
Logger.
```

```
#include <hnco/logging/logger.hh>
```

Public Member Functions

• Logger ()

Default constructor.

• Logger (LogContext *context)

Constructor.

• std::ostringstream & line ()

Get the line.

virtual ~Logger ()

Destructor.

Static Public Member Functions

```
• static std::ostream & stream ()
```

Get the stream.

static void set_stream (std::ostream *stream)

Set the stream.

Private Attributes

 std::ostringstream _line Line.

Static Private Attributes

static std::ostream * _stream = &std::cout
 Output stream.

5.64.1 Detailed Description

Logger.

Simple logger inspired by the Log class published in Dr. Dobb's:

```
https://www.drdobbs.com/cpp/logging-in-c/201804215
```

Definition at line 43 of file logger.hh.

5.64.2 Constructor & Destructor Documentation

5.64.2.1 Logger()

Constructor.

The constructor converts the context to a string which it writes at the beginning of the line.

Parameters

```
context Log context
```

Definition at line 69 of file logger.hh.

5.64.2.2 ~Logger()

```
virtual \simLogger ( ) [inline], [virtual]
```

Destructor.

Send the line to the output stream and add an end of line.

Definition at line 81 of file logger.hh.

The documentation for this class was generated from the following files:

- lib/hnco/logging/logger.hh
- lib/hnco/logging/logger.cc

5.65 LongPath Class Reference

Long path.

#include <hnco/functions/collection/long-path.hh>

Inheritance diagram for LongPath:

Public Member Functions

- LongPath (int bv_size, int prefix_length)
 - Constructor.
- double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Information about the function

- int get_bv_size ()
 - Get bit vector size.
- bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

- int _bv_size
 - Bit vector size.
- int _prefix_length

Prefix length.

5.65.1 Detailed Description

Long path.

Long paths have been introduced by Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb. Here we mostly follow the definition given by Thomas Jansen (see references below).

As an example, here is the 2-long path of dimension 4:

- 0000
- 0001
- 0011
- 0111
- 1111
- 1101
- 1100

The fitness is increasing along the path. The fitness on the complementary of the path is defined as a linear function pointing to the beginning of the path.

To help with the detection of maximum, we have dropped the constant n^2 whose sole purpose was to make the function non negative.

References:

Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb, "Long Path Problems", PPSN III, 1994.

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 62 of file long-path.hh.

5.65.2 Member Function Documentation

5.65.2.1 get_maximum()

```
double get_maximum ( ) [virtual]
```

Get the global maximum.

Let n be the bit vector size and k the prefix length which must divide n. Then the maximum is $k2^{n/k} - k + 1$.

Exceptions

std::runtime_error

Reimplemented from Function.

Definition at line 62 of file long-path.cc.

5.65.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [virtual]
```

Check for a known maximum.

Let n be the bit vector size and k the prefix length which must divide n.

We have to check that the maximum can be represented exactly as a double, that is, it must be lower or equal to 2^{53} . We are a little bit more conservative with the following test.

If $\log_2(k) + n/k \le 53$ then returns true else returns false.

Reimplemented from Function.

Definition at line 52 of file long-path.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/long-path.hh
- · lib/hnco/functions/collection/long-path.cc

5.66 Ltga Class Reference

Linkage Tree Genetic Algorithm.

```
#include <hnco/algorithms/fast-efficient-p3/ltga.hh>
```

Inheritance diagram for Ltga:

Public Member Functions

```
• Ltga (int n)
```

Constructor.

~Ltga ()

Destructor.

void maximize (const std::vector< function::Function * > &functions)

Maximize.

void finalize ()

Finalize.

void set population size (int n)

Set population size.

Private Attributes

• Implementation * _pimpl

Pointer to implementation.

• int _population_size = 10

Population size.

Additional Inherited Members

5.66.1 Detailed Description

Linkage Tree Genetic Algorithm.

Implementation of the Linkage Tree Genetic Algorithm Designed to match the variant in the paper: "Hierarchical problem solving with the linkage tree genetic algorithm" by D. Thierens and P. A. N. Bosman

Author: Brian W. Goldman

Integrated into HNCO by Arnaud Berny

Definition at line 47 of file Itga.hh.

5.66.2 Member Data Documentation

5.66.2.1 _pimpl

```
Implementation* _pimpl [private]
```

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 57 of file Itga.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/fast-efficient-p3/ltga.hh
- lib/hnco/algorithms/fast-efficient-p3/ltga.cc

5.67 Map Class Reference

Мар

#include <hnco/maps/map.hh>

Inheritance diagram for Map:

Public Member Functions

• virtual ∼Map ()

Destructor.

• virtual void map (const bit_vector_t &input, bit_vector_t &output)=0

Мар

• virtual int get_input_size ()=0

Get input size.

• virtual int get_output_size ()=0

Get output size.

• virtual bool is_surjective ()

Check for surjective map.

virtual void display (std::ostream &stream)

Display.

• virtual void display ()

Display to standard output.

5.67.1 Detailed Description

Мар

Definition at line 47 of file map.hh.

5.67.2 Member Function Documentation

5.67.2.1 is_surjective()

```
virtual bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

false

Reimplemented in Translation, TsAffineMap, Projection, Injection, MapComposition, AffineMap, LinearMap, and Permutation.

Definition at line 67 of file map.hh.

The documentation for this class was generated from the following file:

• lib/hnco/maps/map.hh

5.68 MapComposition Class Reference

Map composition.

#include <hnco/maps/map.hh>

Inheritance diagram for MapComposition:

Public Member Functions

```
• MapComposition ()
```

Default constructor.

MapComposition (Map *outer, Map *inner)

Constructor.

void map (const bit_vector_t &input, bit_vector_t &output)

Man

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Attributes

```
Map * _outer
```

Outer map.

• Map * _inner

Inner map.

bit_vector_t _bv

Temporary bit vector.

5.68.1 Detailed Description

Map composition.

The resulting composition f is defined for all bit vector x by f(x) = outer(inner(x)).

Definition at line 400 of file map.hh.

5.68.2 Constructor & Destructor Documentation

5.68.2.1 MapComposition()

Constructor.

Parameters

outer	outer map
inner	inner map

Precondition

```
outer->get_input_size() == inner->get_output_size()
```

Definition at line 424 of file map.hh.

5.68.3 Member Function Documentation

5.68.3.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true if both maps are surjective

Reimplemented from Map.

Definition at line 448 of file map.hh.

The documentation for this class was generated from the following file:

• lib/hnco/maps/map.hh

5.69 MapgenOptions Class Reference

Command line options for mapgen.

```
#include <mapgen-options.hh>
```

Public Member Functions

• MapgenOptions (int argc, char *argv[])

Constructor.

• int get_input_size () const

Get input_size.

void set_input_size (int x)

Set input_size.

• bool set_input_size () const

Get set-flag for input_size.

• int get_map () const

Get map.

void set_map (int x)

Set map.

• bool set_map () const

Get set-flag for map.

int get_output_size () const

Get output_size.

void set_output_size (int x)

Set output_size.

• bool set_output_size () const

Get set-flag for output_size.

• std::string get_path () const

Get path.

void set_path (std::string x)

Set path.

• bool set_path () const

Get set-flag for path.

• int get_seed () const

Get seed.

void set_seed (int x)

Set seed.

• bool set_seed () const

Get set-flag for seed.

• int get_ts_length () const

Get ts_length.

void set_ts_length (int x)

Set ts_length.

bool set_ts_length () const

Get set-flag for ts_length.

• int get_ts_sampling_mode () const

Get ts_sampling_mode.

void set_ts_sampling_mode (int x)

Set ts_sampling_mode.

• bool set_ts_sampling_mode () const

Get set-flag for ts_sampling_mode.

• bool with_surjective () const

Get surjective.

• void set_surjective ()

Set surjective.

Private Member Functions

• void print_help (std::ostream &stream) const

Print help message.

void print_version (std::ostream &stream) const

Print version.

Private Attributes

• std::string _exec_name

Name of the executable.

std::string version

Name Version.

• int _input_size

Input bit vector size.

- bool _opt_input_size
- int _map

Type of map.

- bool _opt_map
- · int _output_size

Output bit vector size.

- bool _opt_output_size
- std::string _path

Path (relative or absolute) of a map file.

- bool _opt_path
- · int _seed

Seed for the random number generator.

- bool _opt_seed
- int _ts_length

Transvection sequence length.

- bool _opt_ts_length
- int _ts_sampling_mode

Transvection sequence sampling mode.

- bool <u>opt_ts_sampling_mode</u>
- bool _surjective

Ensure that the sampled linear or affine map is surjective.

Friends

std::ostream & operator<< (std::ostream &, const MapgenOptions &)

Print a header containing the parameter values.

5.69.1 Detailed Description

Command line options for mapgen.

Definition at line 11 of file mapgen-options.hh.

The documentation for this class was generated from the following files:

- app/mapgen-options.hh
- app/mapgen-options.cc

5.70 MaxNae3Sat Class Reference

Max not-all-equal 3SAT.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for MaxNae3Sat:

Public Member Functions

MaxNae3Sat ()

Default constructor.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

· void load (std::string path)

Load instance.

Additional Inherited Members

5.70.1 Detailed Description

Max not-all-equal 3SAT.

Reference:

Christos M. Papadimitriou. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.

Definition at line 162 of file max-sat.hh.

5.70.2 Member Function Documentation

5.70.2.1 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 177 of file max-sat.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.71 MaxSat Class Reference

MAX-SAT.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for MaxSat:

Public Member Functions

• MaxSat ()

Default constructor.

• void random (int n, int k, int c)

Random instance.

void random (const bit_vector_t &solution, int k, int c)

Random instance with satisfiable expression.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Additional Inherited Members

5.71.1 Detailed Description

MAX-SAT.

Reference:

Christos M. Papadimitriou. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.

Definition at line 119 of file max-sat.hh.

5.71.2 Member Function Documentation

5.71.2.1 random() [1/2]

Random instance with satisfiable expression.

Warning

Since the expression is satisfiable, the maximum of the function is equal to the number of clauses in the expression. However, this information is lost in the save and load cycle as the archive format only manages the expression itself.

Parameters

solution	Solution
k	Number of literals per clause
С	Number of clauses

Definition at line 218 of file max-sat.cc.

5.71.2.2 random() [2/2]

Random instance.

5.72 Mimic Class Reference 199

Parameters

n	Size of bit vectors
k	Number of literals per clause
С	Number of clauses

Definition at line 190 of file max-sat.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.72 Mimic Class Reference

Mutual information maximizing input clustering.

#include <hnco/algorithms/mimic.hh>

Inheritance diagram for Mimic:

Public Member Functions

Mimic (int n, int population_size)
 Constructor.

Setters

void set_selection_size (int selection_size)
 Set the selection size.

Protected Member Functions

void sample (bit_vector_t &bv)

Sample a bit vector.

void compute_conditional_entropy (int index)

Compute conditional entropy.

void update_model ()

Update model.

Loop

· void init () override

Initialize.

· void iterate () override

Single iteration.

Protected Attributes

• Population _population

Population.

· permutation_t _permutation

Permutation.

std::array< pv_t, 2 > _parameters

Model parameters.

pv_t _mean

Mean of selected bit vectors.

• std::vector< double > _entropies

Conditional entropies.

std::array< std::array< int, 2 >, 2 > _table

Contingency table.

• double _lower_bound

Lower bound of probability.

· double _upper_bound

Upper bound of probability.

Parameters

• int _selection_size Selection size.

5.72.1 Detailed Description

Mutual information maximizing input clustering.

This implementation differs from the algorithm described in the reference below in that it constrains all probabilities (marginal and conditional) to stay away from the values 0 and 1 by a fixed margin equal to 1 / n, as usually done in algorithms such as Pbil or Umda.

Reference:

Jeremy S. De Bonet and Charles L. Isbell and Jr. and Paul Viola, MIMIC: Finding Optima by Estimating Probability Densities, in Advances in Neural Information Processing Systems, 1996, MIT Press.

Definition at line 52 of file mimic.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/mimic.hh
- · lib/hnco/algorithms/mimic.cc

5.73 Mmas Class Reference 201

5.73 Mmas Class Reference

Max-min ant system.

#include <hnco/algorithms/pv/mmas.hh>

Inheritance diagram for Mmas:

Public Member Functions

• Mmas (int n)

Constructor.

Setters

- void set_compare (std::function < bool(double, double) > x)
 Set the binary operator for comparing evaluations.
- void set_learning_rate (double x)

 Set the learning rate.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

bit_vector_t _x

Candidate solution.

Parameters

```
    std::function< bool(double, double)> _compare = std::greater_equal<double>()
    Binary operator for comparing evaluations.
```

double _learning_rate = 1e-3
 Learning rate.

5.73.1 Detailed Description

Max-min ant system.

Reference:

Thomas Stützle and Holger H. Hoos. 2000. MAX–MIN Ant System. Future Generation Computer Systems 16, 8 (2000), 889–914.

Definition at line 42 of file mmas.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/mmas.hh
- lib/hnco/algorithms/pv/mmas.cc

5.74 Model Class Reference

Model of a Boltzmann machine

#include <hnco/algorithms/bm-pbil/model.hh>

Public Member Functions

```
• Model (int n)
```

Constructor.

· void init ()

Initialize.

· void reset_mc ()

Reset Markov chain.

· void gibbs sampler (int i)

A Gibbs sampler cycle.

void gibbs_sampler_synchronous ()

A synchronous Gibbs sampler.

· const bit_vector_t & get_state ()

Get the state of the Gibbs sampler.

void update (const ModelParameters &p, const ModelParameters &q, double rate)

Update parameters in the direction of p and away from q.

• double norm_infinite ()

Infinite norm of the parameters.

• double norm_l1 ()

I1 norm of the parameters

Private Attributes

• ModelParameters _model_parameters

Model parameters.

bit_vector_t _state

State of the Gibbs sampler.

pv_t _pv

Probability vector for synchronous Gibbs sampling.

5.74.1 Detailed Description

Model of a Boltzmann machine

Definition at line 102 of file model.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/bm-pbil/model.hh
- lib/hnco/algorithms/bm-pbil/model.cc

5.75 ModelParameters Class Reference

Parameters of a Boltzmann machine.

```
#include <hnco/algorithms/bm-pbil/model.hh>
```

Public Member Functions

• ModelParameters (int n)

Constructor.

• void init ()

Initialize.

void add (const bit_vector_t &x)

Add a bit vector.

• void average (int count)

Compute averages.

• void update (const ModelParameters &p, const ModelParameters &q, double rate)

Update parameters in the direction of p and away from q.

• double norm infinite ()

Infinite norm of the parameters.

• double norm_I1 ()

I1 norm of the parameters

Private Attributes

```
    std::vector< std::vector< double >> _weight
```

Weights.

std::vector< double > _bias

Bias.

Friends

· class Model

5.75.1 Detailed Description

Parameters of a Boltzmann machine.

Definition at line 36 of file model.hh.

5.75.2 Member Function Documentation

5.75.2.1 add()

Add a bit vector.

Only the upper triangular part of _weight is updated with the equation:

```
w_{ij} = w_{ij} + (-1)^{x_i + x_j}
```

where i < j.

Definition at line 47 of file model.cc.

5.75.2.2 average()

```
void average (
          int count )
```

Compute averages.

Only the upper triangular part of _weight is averaged.

Definition at line 72 of file model.cc.

5.75.2.3 init()

```
void init ( )
```

Initialize.

All entries of _weight are set to 0.

Definition at line 38 of file model.cc.

5.75.2.4 update()

```
void update (  {\rm const\ ModelParameters\ \&\ p,}   {\rm const\ ModelParameters\ \&\ q,}   {\rm double\ } rate\ )
```

Update parameters in the direction of p and away from q.

First, the upper triangular part of _weight is updated.

Second, _weight is made symmetrical.

Postcondition

_weight is symmetrical.

Definition at line 84 of file model.cc.

5.75.3 Member Data Documentation

5.75.3.1 _weight

```
std::vector<std::vector<double> > _weight [private]
```

Weights.

_weight is a full square matrix of order n, where n is the dimension of the search space.

Definition at line 43 of file model.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/bm-pbil/model.hh
- lib/hnco/algorithms/bm-pbil/model.cc

5.76 Modifier Class Reference

Function modifier.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for Modifier:

Public Member Functions

• Modifier (Function *function)

Constructor.

Additional Inherited Members

5.76.1 Detailed Description

Function modifier.

Definition at line 39 of file modifier.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/modifiers/modifier.hh

5.77 MuCommaLambdaEa Class Reference

(mu, lambda) EA.

#include <hnco/algorithms/ea/mu-comma-lambda-ea.hh>

Inheritance diagram for MuCommaLambdaEa:

Public Member Functions

MuCommaLambdaEa (int n, int mu, int lambda)
 Constructor.

Setters

- void set_mutation_rate (double p)
- Set the mutation rate.
 void set_allow_no_mutation (bool b)
 Set the flag_allow_no_mutation.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

Population _parents

Parents.

• Population _offsprings

Offsprings.

• neighborhood::StandardBitMutation _mutation

Mutation operator.

std::uniform_int_distribution < int > _select_parent
 Select parent.

Parameters

• double _mutation_rate

Mutation rate.

• bool _allow_no_mutation = false

Allow no mutation.

5.77.1 Detailed Description

(mu, lambda) EA.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 41 of file mu-comma-lambda-ea.hh.

5.77.2 Constructor & Destructor Documentation

5.77.2.1 MuCommaLambdaEa()

```
MuCommaLambdaEa (
        int n,
        int mu,
        int lambda ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
mu	Parent population size
lambda	Offspring population size

Definition at line 89 of file mu-comma-lambda-ea.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/mu-comma-lambda-ea.hh
- · lib/hnco/algorithms/ea/mu-comma-lambda-ea.cc

5.78 MultiBitFlip Class Reference

Multi bit flip.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for MultiBitFlip:

Public Member Functions

• MultiBitFlip (int n)

Constructor.

Protected Member Functions

void bernoulli_trials (int k)

Sample a given number of bits using Bernoulli trials.

void rejection_sampling (int k)

Sample a given number of bits using rejection sampling.

Additional Inherited Members

5.78.1 Detailed Description

Multi bit flip.

Definition at line 183 of file neighborhood.hh.

5.78.2 Constructor & Destructor Documentation

5.78.2.1 MultiBitFlip()

```
MultiBitFlip (
          int n ) [inline]
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 206 of file neighborhood.hh.

5.78.3 Member Function Documentation

5.78.3.1 bernoulli_trials()

Sample a given number of bits using Bernoulli trials.

Parameters

k Number of bits to sample

Definition at line 34 of file neighborhood.cc.

5.78.3.2 rejection_sampling()

```
void rejection_sampling ( \quad \text{int } k \text{ ) } \quad [\text{protected}]
```

Sample a given number of bits using rejection sampling.

Parameters

k Number of bits to sample

Definition at line 52 of file neighborhood.cc.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- · lib/hnco/neighborhoods/neighborhood.cc

5.79 MultivariateFunctionAdapter< Fn, Rep, Conv > Class Template Reference

Multivariate function adapter.

#include <hnco/functions/representations/multivariate-function-adapter.hh>

Inheritance diagram for MultivariateFunctionAdapter< Fn, Rep, Conv >:

Public Member Functions

MultivariateFunctionAdapter (Fn *fn, std::vector< Rep > reps)
 Constructor.

Information about the function

• int get_bv_size () override Get bit vector size.

Evaluation

 double evaluate (const bit_vector_t &bv) override Evaluate.

Display

- void display (std::ostream &stream) override
- void describe (const bit_vector_t &bv, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)
 Unpack a bit vector into values.

Private Attributes

```
• Fn * _function
```

Multivariate function.

• std::vector< Rep > _representations

Representations.

std::vector< typename Rep::domain_type > _variables

· Conv _converter

Converter from codomain to double.

5.79.1 Detailed Description

```
template < class \ Fn, \ class \ Rep, \ class \ Conv> \\ class \ hnco:: function:: representation:: Multivariate Function Adapter < Fn, \ Rep, \ Conv>
```

Multivariate function adapter.

The purpose of this class is to build a regular hnco function from an arbitrary multivariate function. This is achieved using a composition:

- Representations (Rep): hypercube -> domain
- Multivariate function (Fn): product of domains -> codomain
- Converter (Conv): codomain -> double

Definition at line 49 of file multivariate-function-adapter.hh.

5.79.2 Constructor & Destructor Documentation

5.79.2.1 MultivariateFunctionAdapter()

Constructor.

Parameters

fn	Multivariate function
reps	Representations

Definition at line 89 of file multivariate-function-adapter.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/representations/multivariate-function-adapter.hh

5.80 MuPlusLambdaEa Class Reference

(mu+lambda) EA.

#include <hnco/algorithms/ea/mu-plus-lambda-ea.hh>

Inheritance diagram for MuPlusLambdaEa:

Public Member Functions

MuPlusLambdaEa (int n, int mu, int lambda)
 Constructor.

Setters

- void set_mutation_rate (double p)

 Set the mutation rate.
- void set_allow_no_mutation (bool b) Set the flag _allow_no_mutation.

Protected Member Functions

Loop

void init () override
 Initialize.

 void iterate () override
 Single iteration.

Protected Attributes

• Population _parents

Parents.

Population _offsprings

Offsprings.

• neighborhood::StandardBitMutation _mutation

Mutation operator.

std::uniform_int_distribution < int > _select_parent
 Select parent.

Parameters

```
• double _mutation_rate 
 Mutation rate.
```

• bool _allow_no_mutation = false Allow no mutation.

5.80.1 Detailed Description

(mu+lambda) EA.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 40 of file mu-plus-lambda-ea.hh.

5.80.2 Constructor & Destructor Documentation

5.80.2.1 MuPlusLambdaEa()

```
MuPlusLambdaEa (
                int n,
                int mu,
                int lambda ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
mu	Parent population size
lambda	Offspring population size

Definition at line 89 of file mu-plus-lambda-ea.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/mu-plus-lambda-ea.hh
- lib/hnco/algorithms/ea/mu-plus-lambda-ea.cc

5.81 NearestNeighborlsingModel1 Class Reference

Nearest neighbor Ising model in one dimension.

#include <hnco/functions/collection/ising/nearest-neighbor-ising-model-1. \leftarrow hh>

Inheritance diagram for NearestNeighborIsingModel1:

Public Member Functions

· NearestNeighborIsingModel1 ()

Constructor.

• void set_periodic_boundary_conditions (bool x)

Set periodic boundary conditions.

Instance generators

- template < class CouplingGen, class FieldGen >
 void generate (int n, CouplingGen coupling_gen, FieldGen field_gen)
 Instance generator.
- void random (int n)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

· void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit vector t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const sparse_bit_vector_t &flipped_bits)
 override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () override

Get bit vector size.

• bool provides_incremental_evaluation () override

Check whether the function provides incremental evaluation.

void display (std::ostream &stream) override

Display.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

Save.

• template < class Archive >

void load (Archive &ar, const unsigned int version)

Load.

• void resize (int n)

Resize data structures.

Private Attributes

std::vector< double > _coupling

Coupling with nearest neighbor to the right.

• $std::vector < double > _field$

External field.

bit_vector_t _flipped_bits

Flipped bits.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

Friends

· class boost::serialization::access

5.81.1 Detailed Description

Nearest neighbor Ising model in one dimension.

Its expression is of the form

$$f(x) = \sum_{i} J_{i,i+1} (1 - 2x_i)(1 - 2x_{i+1}) + \sum_{i} h_i (1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{i} J_{i,i+1}(-1)^{x_i + x_{i+1}} + \sum_{i} h_i(-1)^{x_i}$$

where $J_{i,i+1}$ is the interaction between adjacent sites i and i+1 and h_i is the external magnetic field interacting with site i.

In the case of periodic boundary conditions, the sum i+1 is mod ${\bf n}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

It should be noted that such an Ising model can be represented by a Walsh expansion of degree 2, that is Walsh Expansion2.

Reference: https://en.wikipedia.org/wiki/Ising_model

Definition at line 65 of file nearest-neighbor-ising-model-1.hh.

5.81.2 Member Function Documentation

5.81.2.1 evaluate()

Evaluate a bit vector.

Complexity: O(n)

Implements Function.

Definition at line 44 of file nearest-neighbor-ising-model-1.cc.

5.81.2.2 generate()

```
void generate (
          int n,
          CouplingGen coupling_gen,
          FieldGen field_gen ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
coupling_gen	Coupling generator
field_gen	External field generator

Definition at line 126 of file nearest-neighbor-ising-model-1.hh.

5.81.2.3 load()

Load instance.

Parameters

path	Path of the instance to load
------	------------------------------

Exceptions

```
std::runtime_error
```

Definition at line 160 of file nearest-neighbor-ising-model-1.hh.

5.81.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 223 of file nearest-neighbor-ising-model-1.hh.

5.81.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

n Size of bit vector

Definition at line 142 of file nearest-neighbor-ising-model-1.hh.

5.81.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 178 of file nearest-neighbor-ising-model-1.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-1.hh
- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-1.cc

5.82 NearestNeighborlsingModel2 Class Reference

Nearest neighbor Ising model in two dimensions.

#include <hnco/functions/collection/ising/nearest-neighbor-ising-model-2. \leftarrow hh>

Inheritance diagram for NearestNeighborIsingModel2:

Public Member Functions

• NearestNeighborIsingModel2 ()

Constructor.

void set_periodic_boundary_conditions (bool x)

Set periodic boundary conditions.

Instance generators

template < class CouplingGen, class FieldGen >
 void generate (int num_rows, int num_columns, CouplingGen coupling_gen, FieldGen field_gen)
 Instance generator.

void random (int num_rows, int num_columns)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit vector t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const sparse_bit_vector_t &flipped_bits)
 override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () override

Get bit vector size.

• bool provides_incremental_evaluation () override

Check whether the function provides incremental evaluation.

· void display (std::ostream &stream) override

Display.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const Save.

• template<class Archive >

void load (Archive &ar, const unsigned int version)

Load.

• void resize (int num_rows, int num_columns)

Resize data structures.

Private Attributes

std::vector< std::vector< double >> _coupling_right

Coupling with nearest neighbor to the right.

std::vector< std::vector< double >> _coupling_below

Coupling with nearest neighbor below.

std::vector< std::vector< double >> _field

External field.

bit_vector_t _flipped_bits

Flipped bits.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

Friends

· class boost::serialization::access

5.82.1 Detailed Description

Nearest neighbor Ising model in two dimensions.

We are considering a rectangular lattice in which each site has (at most) four neighbors (left, right, above, below).

The expression of the function is of the form

$$f(x) = \sum_{(i,j)} J_{ij}(1-2x_i)(1-2x_j) + \sum_i h_i(1-2x_i)$$

or equivalently

$$f(x) = \sum_{(i,j)} J_{ij}(-1)^{x_i + x_j} + \sum_i h_i(-1)^{x_i}$$

where the first sum is over adjacent sites (i, j), J_{ij} is the interaction between adjacent sites i and j, and h_i is the external magnetic field interacting with site i.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

It should be noted that such an Ising model can be represented by a Walsh expansion of degree 2, that is WalshExpansion2.

Reference: https://en.wikipedia.org/wiki/Ising_model

Definition at line 67 of file nearest-neighbor-ising-model-2.hh.

5.82.2 Member Function Documentation

5.82.2.1 evaluate()

Evaluate a bit vector.

Complexity: O(n)

Implements Function.

Definition at line 47 of file nearest-neighbor-ising-model-2.cc.

5.82.2.2 generate()

```
void generate (
          int num_rows,
          int num_columns,
          CouplingGen coupling_gen,
          FieldGen field_gen ) [inline]
```

Instance generator.

Parameters

num_rows	Number of rows
num_columns	Number of columns
coupling_gen	Coupling generator
field_gen	External field generator

Definition at line 134 of file nearest-neighbor-ising-model-2.hh.

5.82.2.3 load()

Load instance.

Parameters

Exceptions

std::runtime_error

Definition at line 172 of file nearest-neighbor-ising-model-2.hh.

5.82.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 240 of file nearest-neighbor-ising-model-2.hh.

5.82.2.5 random()

```
void random (
                int num_rows,
                int num_columns ) [inline]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

num_rows	Number of rows
num_columns	Number of columns

Definition at line 154 of file nearest-neighbor-ising-model-2.hh.

5.82.2.6 save()

Save instance.

Parameters

path	Path of the instance to save

Exceptions

std::runtime_error

Definition at line 190 of file nearest-neighbor-ising-model-2.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-2.hh
- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-2.cc

5.83 Needle Class Reference

Needle in a haystack.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Needle:

Public Member Functions

• Needle (int bv_size)

Constructor.

• int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum () override

Check for a known maximum.

• double get_maximum () override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.83 Needle Class Reference 225

5.83.1 Detailed Description

Needle in a haystack.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 135 of file theory.hh.

5.83.2 Member Function Documentation

5.83.2.1 get_maximum()

```
double get_maximum ( ) [inline], [override], [virtual]
```

Get the global maximum.

Returns

1

Reimplemented from Function.

Definition at line 158 of file theory.hh.

5.83.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 154 of file theory.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.84 Negation Class Reference

Negation.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for Negation:

Public Member Functions

• Negation (Function *function)

Constructor.

Information about the function

• int get_bv_size ()

Get bit vector size.

• bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

Additional Inherited Members

5.84.1 Detailed Description

Negation.

Use cases:

- for algorithms which minimize rather than maximize a function
- · for functions one wishes to minimize
- · when minimization is needed inside an algorithm

Definition at line 60 of file modifier.hh.

5.84.2 Member Function Documentation

5.84.2.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 79 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.85 Neighborhood Class Reference

Neighborhood.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for Neighborhood:

Public Member Functions

• Neighborhood (int n)

Constructor.

virtual ~Neighborhood ()

Destructor.

virtual void set_origin (const bit_vector_t &x)

Set the origin.

virtual const bit_vector_t & get_origin ()

Get the origin.

virtual const bit_vector_t & get_candidate ()

Get the candidate bit vector.

virtual const sparse_bit_vector_t & get_flipped_bits ()

Get flipped bits.

virtual void propose ()

Propose a candidate bit vector.

virtual void keep ()

Keep the candidate bit vector.

· virtual void forget ()

Forget the candidate bit vector.

virtual void mutate (bit_vector_t &bv)

Mutate

virtual void map (const bit_vector_t &input, bit_vector_t &output)

Мар.

Protected Member Functions

virtual void sample_bits ()=0
 Sample bits.

Protected Attributes

```
· bit_vector_t _origin
```

Origin of the neighborhood.

• bit_vector_t _candidate

candidate bit vector

 $\bullet \quad \mathsf{std}{::}\mathsf{uniform_int_distribution}{<} \ \mathsf{int} > \underline{\mathsf{index_dist}} \\$

Index distribution.

• sparse_bit_vector_t _flipped_bits

Flipped bits.

5.85.1 Detailed Description

Neighborhood.

A neighborhood maintains two points, _origin and _candidate. They are initialized in the same state by set_origin. A Neighborhood class must implement the member function sample_bits which samples the bits to flip in _origin to get a _candidate. The following member functions take care of the modifications:

```
· propose: flip _candidate
```

· keep: flip _origin

· forget flip _candidate

After keep or forget, _origin and _candidate are in the same state again.

A Neighborhood class can also behave as a mutation operator through the member functions mutate and map.

Definition at line 61 of file neighborhood.hh.

5.85.2 Constructor & Destructor Documentation

5.85.2.1 Neighborhood()

```
Neighborhood ( \label{eq:neighborhood} \text{ int } n \text{ ) } \quad [\text{inline}]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 86 of file neighborhood.hh.

5.85.3 Member Function Documentation

5.85.3.1 map()

Мар.

The output bit vector is a mutated version of the input bit vector.

Parameters

input	Input bit vector
output	Output bit vector

Definition at line 148 of file neighborhood.hh.

5.85.3.2 mutate()

```
virtual void mutate (
                bit_vector_t & bv ) [inline], [virtual]
```

Mutate.

In-place mutation of the bit vector.

Parameters

Definition at line 134 of file neighborhood.hh.

The documentation for this class was generated from the following file:

• lib/hnco/neighborhoods/neighborhood.hh

5.86 NeighborhoodIterator Class Reference

Neighborhood iterator

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for NeighborhoodIterator:

Public Member Functions

• NeighborhoodIterator (int n)

Constructor.

virtual void set_origin (const bit_vector_t &x)
 Set origin.

Additional Inherited Members

5.86.1 Detailed Description

Neighborhood iterator

Definition at line 35 of file neighborhood-iterator.hh.

5.86.2 Constructor & Destructor Documentation

5.86.2.1 NeighborhoodIterator()

```
NeighborhoodIterator ( int \ n \ ) \quad [inline]
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 44 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.87 NkLandscape Class Reference

NK landscape.

#include <hnco/functions/collection/nk-landscape.hh>

Inheritance diagram for NkLandscape:

Public Member Functions

• NkLandscape ()

Default constructor.

int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

 void display (std::ostream &stream) override Display.

Instance generators

• template<class Generator >

void generate (int n, int k, Generator generator)

Instance generator.

• void random (int n, int k)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Private Member Functions

```
    template < class Archive > void serialize (Archive & ar, const unsigned int version)
    Serialize.
```

• void random_structure (int n, int k)

Random structue.

Private Attributes

```
    std::vector < std::vector < int > > _neighbors
    Bit neighbors.
```

std::vector< std::vector< double >> _partial_functions
 Partial functions.

Friends

· class boost::serialization::access

5.87.1 Detailed Description

NK landscape.

Reference:

S. A. Kauffman. 1993. The origins of order: self-organisation and selection in evolution. Oxford University Press.

Definition at line 47 of file nk-landscape.hh.

5.87.2 Member Function Documentation

5.87.2.1 generate()

Instance generator.

Parameters

n	Size of bit vector
k	Number of neighbors per bit
generator	Generator for partial function values

Definition at line 91 of file nk-landscape.hh.

5.87.2.2 load()

Load instance.

Parameters

Exceptions

```
std::runtime_error
```

Definition at line 128 of file nk-landscape.hh.

5.87.2.3 random()

Random instance.

Partial function values are sampled from the normal distribution.

Parameters

n	Size of bit vector
k	Number of neighbors per bit

Definition at line 109 of file nk-landscape.hh.

5.87.2.4 random structure()

```
void random_structure (  \mbox{int } n, \\ \mbox{int } k \;) \;\; \mbox{[private]}
```

Random structue.

Parameters

n	Size of bit vector
k	Number of neighbors per bit

Definition at line 32 of file nk-landscape.cc.

5.87.2.5 save()

Save instance.

Parameters

)
,

Exceptions

```
std::runtime_error
```

Definition at line 146 of file nk-landscape.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/nk-landscape.hh
- lib/hnco/functions/collection/nk-landscape.cc

5.88 NpsPbil Class Reference

Population-based incremental learning with negative and positive selection.

```
#include <hnco/algorithms/pv/nps-pbil.hh>
```

Inheritance diagram for NpsPbil:

Public Member Functions

NpsPbil (int n, int population_size)
 Constructor.

Setters

- void set_selection_size (int x)
 - Set the selection size.
- void set_learning_rate (double x) Set the learning rate.

Protected Member Functions

Loop

- void init () override
 - Initialize.
- void iterate () override

Single iteration.

Protected Attributes

Population _population

Population.

pv_t _mean_best

Mean of best individuals.

pv_t _mean_worst

Mean of worst individuals.

Parameters

```
• int _selection_size = 1 
Selection size.
```

• double <u>learning_rate</u> = 1e-3 *Learning rate*.

5.88.1 Detailed Description

Population-based incremental learning with negative and positive selection.

Reference:

Arnaud Berny. 2001. Extending selection learning toward fixed-length d-ary strings. In Artificial Evolution (Lecture Notes in Computer Science), P. Collet and others (Eds.). Springer, Le Creusot.

Definition at line 42 of file nps-pbil.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/nps-pbil.hh
- · lib/hnco/algorithms/pv/nps-pbil.cc

5.89 OnBudgetFunction Class Reference

Function with a limited number of evaluations.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for OnBudgetFunction:

Public Member Functions

• OnBudgetFunction (Function *function, int budget)

Constructor.

Evaluation

• double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

• void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Private Attributes

· int _budget

Budget.

Additional Inherited Members

5.89.1 Detailed Description

Function with a limited number of evaluations.

Definition at line 186 of file controller.hh.

5.89.2 Member Function Documentation

5.89.2.1 evaluate()

```
double evaluate ( {\tt const\ bit\_vector\_t\ \&\ x\ )} \quad [{\tt virtual}]
```

Evaluate a bit vector.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 97 of file controller.cc.

5.89.2.2 evaluate_incrementally()

Incrementally evaluate a bit vector.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 106 of file controller.cc.

5.89.2.3 update()

Update after a safe evaluation.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 115 of file controller.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/controllers/controller.hh
- · lib/hnco/functions/controllers/controller.cc

5.90 OneMax Class Reference

OneMax.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for OneMax:

Public Member Functions

OneMax (int bv_size)

Constructor.

Information about the function

• int get by size () override

Get bit vector size.

• double get_maximum () override

Get the global maximum.

bool has_known_maximum () override

Check for a known maximum.

• bool provides_incremental_evaluation () override

Check whether the function provides incremental evaluation.

· void display (std::ostream &stream) override

Display.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

Private Attributes

• int _bv_size

Bit vector size.

5.90.1 Detailed Description

OneMax.

References:

Heinz Mühlenbein, "How genetic algorithms really work: I. mutation and hillclimbing", in Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, 1992

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 41 of file theory.hh.

5.90.2 Member Function Documentation

5.90.2.1 get_maximum()

```
double get_maximum ( ) [inline], [override], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 61 of file theory.hh.

5.90.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 65 of file theory.hh.

5.90.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 70 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.91 OnePlusLambdaCommaLambdaGa Class Reference

(1+(lambda, lambda)) genetic algorithm.

#include <hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.hh>

Inheritance diagram for OnePlusLambdaCommaLambdaGa:

Public Member Functions

OnePlusLambdaCommaLambdaGa (int n, int lambda)
 Constructor.

Setters

- void set_mutation_rate (double p)
 - Set the mutation rate.
- void set_crossover_bias (double x)

Set the crossover bias.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

Population _offsprings

Offsprings.

• std::binomial_distribution< int > _radius_dist

Radius distribution.

• neighborhood::HammingSphere _mutation

Mutation operator.

bit_vector_t _parent

Parent.

• BiasedCrossover _crossover

Biased crossover.

Parameters

· double _mutation_rate

Mutation rate.

• double _crossover_bias

Crossover bias.

5.91.1 Detailed Description

(1+(lambda, lambda)) genetic algorithm.

Reference:

Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box complexity to designing new genetic algorithms. Theoretical Computer Science 567 (2015), 87–104.

Definition at line 49 of file one-plus-lambda-comma-lambda-ga.hh.

5.91.2 Constructor & Destructor Documentation

5.91.2.1 OnePlusLambdaCommaLambdaGa()

Constructor.

By default, _mutation_rate is set to lambda / n and _crossover_bias to 1 / lambda.

Parameters

n	Size of bit vectors
lambda	Offspring population size

Definition at line 103 of file one-plus-lambda-comma-lambda-ga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.hh
- lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.cc

5.92 OnePlusOneEa Class Reference

(1+1) EA.

#include <hnco/algorithms/ea/one-plus-one-ea.hh>

Inheritance diagram for OnePlusOneEa:

Public Member Functions

• OnePlusOneEa (int n)

Constructor.

void maximize (const std::vector< function::Function * > &functions) override
 Maximize.

• void finalize () override

Finalize.

Setters

• void set_num_iterations (int x)

Set the number of iterations.

void set_mutation_rate (double p)

Set the mutation rate.

void set_allow_no_mutation (bool b)

Set the flag _allow_no_mutation.

• void set_incremental_evaluation (bool x)

Set incremental evaluation.

Private Attributes

neighborhood::StandardBitMutation _neighborhood

Neighborhood.

• RandomLocalSearch _rls

Random local search.

Parameters

```
• int _num_iterations = 0
```

Number of iterations.

• double _mutation_rate

Mutation rate.

• bool <u>_allow_no_mutation</u> = false

Allow no mutation.

• bool _incremental_evaluation = false

Incremental evaluation.

Additional Inherited Members

5.92.1 Detailed Description

```
(1+1) EA.
```

(1+1) EA is implemented as a RandomLocalSearch with a StandardBitMutation neighborhood and infinite patience. Thus the class OnePlusOneEa is derived from Algorithm instead of IterativeAlgorithm.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 45 of file one-plus-one-ea.hh.

5.92.2 Constructor & Destructor Documentation

5.92.2.1 OnePlusOneEa()

```
OnePlusOneEa (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

_mutation_rate is initialized to 1 / n.

Definition at line 80 of file one-plus-one-ea.hh.

5.92.3 Member Function Documentation

5.92.3.1 set_num_iterations()

Set the number of iterations.

Parameters

x Number of iterations

 $x \le 0$ means indefinite

Definition at line 111 of file one-plus-one-ea.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/ea/one-plus-one-ea.hh

5.93 ParameterLessPopulationPyramid Class Reference

Parameter-less Population Pyramid.

```
#include <hnco/algorithms/fast-efficient-p3/p3.hh>
```

Inheritance diagram for ParameterLessPopulationPyramid:

Public Member Functions

ParameterLessPopulationPyramid (int n)

Constructor.

~ParameterLessPopulationPyramid ()

Destructor.

void maximize (const std::vector< function::Function * > &functions)

Maximize.

· void finalize ()

Finalize.

Private Attributes

• Implementation * pimpl

Pointer to implementation.

Additional Inherited Members

5.93.1 Detailed Description

Parameter-less Population Pyramid.

Implemention of the Parameter-less Population Pyramid (P3 for short).

Author: Brian W. Goldman

Reference:

"Fast and Efficient Black Box Optimization using the Parameter-less Population Pyramid" by B. W. Goldman and W. F. Punch

Integrated into HNCO by Arnaud Berny

Definition at line 53 of file p3.hh.

5.93.2 Member Data Documentation

5.93.2.1 _pimpl

```
Implementation* _pimpl [private]
```

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 64 of file p3.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/fast-efficient-p3/p3.hh
- lib/hnco/algorithms/fast-efficient-p3/p3.cc

5.94 ParsedModifier Class Reference

Parsed modifier.

#include <hnco/functions/modifiers/parsed-modifier.hh>

Inheritance diagram for ParsedModifier:

Public Member Functions

ParsedModifier (Function *function, std::string expression)
 Constructor.

Information about the function

• int get_bv_size ()

Get bit vector size.

Evaluation

double evaluate (const bit_vector_t &)
 Evaluate a bit vector.

Private Attributes

• FunctionParser _fparser

Function parser.

• double _values [1]

Array of values.

Additional Inherited Members

5.94.1 Detailed Description

Parsed modifier.

Let f be the original function. Then the modified function is equivalent to $g \circ f$, where g is a real function defined by an expression g(x) provided as a string.

Definition at line 40 of file parsed-modifier.hh.

5.94.2 Constructor & Destructor Documentation

5.94.2.1 ParsedModifier()

Constructor.

Parameters

function	Decorated function
expression	Expression to parse

Definition at line 31 of file parsed-modifier.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/parsed-modifier.hh
- · lib/hnco/functions/modifiers/parsed-modifier.cc

5.95 ParsedMultivariateFunction < Parser > Class Template Reference

Parsed multivariate function.

```
#include <hnco/functions/collection/parsed-multivariate-function.hh>
```

Public Types

- typedef Parser::value_type domain_type
 Domain type.
- typedef Parser::value_type codomain_type
 Codomain type.

Public Member Functions

• ParsedMultivariateFunction (std::string expression)

Constructor.

void display (std::ostream &stream)

Display the problem.

codomain_type evaluate (const std::vector< domain_type > &x)

Evaluate.

void describe (const std::vector< domain type > &x, std::ostream &stream)

Describe a solution.

• int get_num_variables ()

Get the number of variables.

Private Attributes

Parser _fparser

Function parser.

• std::vector< std::string > _variable_names

Variable names.

std::string _expression

Expression.

5.95.1 Detailed Description

```
template < class Parser > class hnco::function::ParsedMultivariateFunction < Parser >
```

Parsed multivariate function.

Uses the C++ library "Function Parser" (fparser):

```
http://warp.povusers.org/FunctionParser/fparser.html
```

Warning

The function string syntax depends on the chosen parser.

Definition at line 48 of file parsed-multivariate-function.hh.

5.95.2 Constructor & Destructor Documentation

5.95.2.1 ParsedMultivariateFunction()

Constructor.

Parameters

expression	Expression to parse
------------	---------------------

Definition at line 72 of file parsed-multivariate-function.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/collection/parsed-multivariate-function.hh

5.96 Partition Class Reference

Partition.

#include <hnco/functions/collection/partition.hh>

Inheritance diagram for Partition:

Public Member Functions

• Partition ()

Constructor.

• int get_bv_size () override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

• void random (int n, int upper_bound)

Random instance.

Load and save instance

```
    void load (std::string path)
        Load instance.

    void save (std::string path) const
        Save instance.
```

Display

- void display (std::ostream &stream) override
- void describe (const bit_vector_t &x, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

```
    template < class Archive > void serialize (Archive & ar, const unsigned int version)
    Serialize.
```

Private Attributes

std::vector < int > _numbers
 Multiset of positive integers.

Friends

· class boost::serialization::access

5.96.1 Detailed Description

Partition.

Partition a finite multiset of positive integers into two subsets such that the sum of numbers in the first subset is the closest to the sum of numbers in the second subset.

The function computes the negation of the distance between the sum of numbers corresponding to ones in the bit vector and the sum of those corresponding to zeros. The negation is a consequence of the fact that algorithms in HNCO maximize rather than minimize a function.

Definition at line 53 of file partition.hh.

5.96.2 Member Function Documentation

5.96.2.1 generate()

```
void generate (  \qquad \qquad \text{int } n, \\ \\ \text{Generator } generator \text{ ) } \text{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Number generator

Definition at line 85 of file partition.hh.

5.96.2.2 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 121 of file partition.hh.

5.96.2.3 random()

```
void random (
          int n,
          int upper_bound ) [inline]
```

Random instance.

The numbers are sampled from the uniform distribution on [1..upper_bound].

Parameters

n	Size of bit vector
upper_bound	Upper bound of positive integers

Definition at line 101 of file partition.hh.

5.97 Pbil Class Reference 255

5.96.2.4 save()

Save instance.

Parameters

path | Path of the instance to save

Exceptions

std::runtime_error

Definition at line 139 of file partition.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/partition.hh
- · lib/hnco/functions/collection/partition.cc

5.97 Pbil Class Reference

Population-based incremental learning.

```
#include <hnco/algorithms/pv/pbil.hh>
```

Inheritance diagram for Pbil:

Public Member Functions

Pbil (int n, int population_size)
 Constructor.

Setters

void set_selection_size (int x)
 Set the selection size.

• void set_learning_rate (double x)

Set the learning rate.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

• Population _population Population.

pv_t _mean

Mean of selected bit vectors.

Parameters

int _selection_size = 1
 Selection size.
 double _learning_rate = 1e-3
 Learning rate.

5.97.1 Detailed Description

Population-based incremental learning.

Reference:

S. Baluja and R. Caruana. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of the 12th Annual Conference on Machine Learning. 38–46.

Definition at line 42 of file pbil.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/pv/pbil.hh
- · lib/hnco/algorithms/pv/pbil.cc

5.98 Permutation Class Reference

Permutation.

```
#include <hnco/maps/map.hh>
```

Inheritance diagram for Permutation:

Public Member Functions

```
• void random (int n)
```

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Member Functions

```
    template < class Archive > void save (Archive & ar, const unsigned int version) const Save.
```

template < class Archive > void load (Archive & ar, const unsigned int version)
 Load.

Private Attributes

Friends

· class boost::serialization::access

5.98.1 Detailed Description

Permutation.

A permutation is a linear map f from F_2^n to itself defined by f(x) = y, where $y_i = x_{\sigma_i}$ and σ is a permutation of 0, 1, ..., n - 1.

Definition at line 205 of file map.hh.

5.98.2 Member Function Documentation

5.98.2.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 256 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.99 Plateau Class Reference

Plateau.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Plateau:

Public Member Functions

Plateau (int bv_size)

Constructor.

• int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum () override

Check for a known maximum.

• double get_maximum () override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.99.1 Detailed Description

Plateau.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 242 of file theory.hh.

5.99.2 Member Function Documentation

5.99.2.1 get_maximum()

```
double get_maximum ( ) [inline], [override], [virtual]
```

Get the global maximum.

Returns

Reimplemented from Function.

Definition at line 265 of file theory.hh.

5.99.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 261 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.100 Population Class Reference

Population

#include <hnco/algorithms/population.hh>

Inheritance diagram for Population:

Public Member Functions

Population (int population_size, int n)

Constructor.

• int size () const

Size.

• void random ()

Initialize the population with random bit vectors.

Get bit vectors for non const populations

```
    bit_vector_t & get_bv (int i)
```

Get a bit vector.

bit_vector_t & get_best_bv ()

Get best bit vector.

• bit_vector_t & get_best_bv (int i)

Get best bit vector.

bit_vector_t & get_worst_bv (int i)

Get worst bit vector.

Get bit vectors for const populations

· const bit_vector_t & get_bv (int i) const

Get a bit vector.

• const bit_vector_t & get_best_bv () const

Get best bit vector.

const bit_vector_t & get_best_bv (int i) const

Get best bit vector.

const bit_vector_t & get_worst_bv (int i) const

Get worst bit vector.

Get sorted values

double get_best_value (int i) const

Get best value.

· double get_best_value () const

Get best value.

Evaluation and sorting

• void evaluate (function::Function *function)

Evaluate the population.

void evaluate_in_parallel (const std::vector< function::Function * > &functions)

Evaluate the population in parallel.

• void sort ()

Sort the lookup table.

void partial_sort (int selection_size)

Partially sort the lookup table.

void shuffle ()

Shuffle the lookup table.

Selection

void plus_selection (const Population &offsprings)

Plus selection.

void plus_selection (Population &offsprings)

Plus selection.

void comma_selection (const Population &offsprings)

Comma selection.

• void comma_selection (Population &offsprings)

Comma selection.

Protected Types

typedef std::pair< int, double > index_value_t
 Index-value type.

Protected Attributes

```
    std::vector< bit_vector_t > _bvs
    Bit vectors.
```

```
    std::vector < index_value_t > _lookup
    Lookup table.
```

• std::function< bool(const index_value_t &, const index_value_t &)> _compare_index_value Binary operator for comparing index-value pairs.

5.100.1 Detailed Description

Population

Definition at line 36 of file population.hh.

5.100.2 Constructor & Destructor Documentation

5.100.2.1 Population()

```
Population (
                int population_size,
                int n ) [inline]
```

Constructor.

Parameters

population_size	Population size
n	Bit vector size

Definition at line 65 of file population.hh.

5.100.3 Member Function Documentation

5.100.3.1 comma_selection() [1/2]

Comma selection.

Implemented with a copy.

Precondition

Offspring population must be partially sorted.

Warning

The function does not break ties randomly (workaround: shuffle offsprings).

Definition at line 117 of file population.cc.

5.100.3.2 comma_selection() [2/2]

Comma selection.

Implemented with a swap. Should be faster than comma_selection with a copy.

Precondition

Offspring population must be partially sorted.

Warning

The function does not break ties randomly (workaround: shuffle offsprings). Modifies its argument.

Definition at line 131 of file population.cc.

5.100.3.3 get_best_bv() [1/4]

```
bit_vector_t& get_best_bv ( ) [inline]
```

Get best bit vector.

Precondition

The population must be sorted.

Definition at line 87 of file population.hh.

5.100.3.4 get_best_bv() [2/4]

```
const bit_vector_t& get_best_bv ( ) const [inline]
```

Get best bit vector.

Precondition

The population must be sorted.

Definition at line 119 of file population.hh.

5.100.3.5 get_best_bv() [3/4]

Get best bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 95 of file population.hh.

5.100.3.6 get_best_bv() [4/4]

Get best bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 127 of file population.hh.

5.100.3.7 get_best_value() [1/2]

```
double get_best_value ( ) const [inline]
```

Get best value.

Precondition

The population must be sorted.

Definition at line 156 of file population.hh.

5.100.3.8 get_best_value() [2/2]

```
double get_best_value ( \quad \text{int } i \text{ ) const } \text{ [inline]}
```

Get best value.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 150 of file population.hh.

5.100.3.9 get_worst_bv() [1/2]

Get worst bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 103 of file population.hh.

5.100.3.10 get_worst_bv() [2/2]

Get worst bit vector.

Parameters

```
i Index in the sorted population
```

Precondition

The population must be sorted.

Definition at line 135 of file population.hh.

5.100.3.11 plus_selection() [1/2]

Plus selection.

Implemented with a copy.

Precondition

Both populations must be completely sorted.

Warning

The function does not break ties randomly (workaround: shuffle parents and offsprings).

Definition at line 79 of file population.cc.

5.100.3.12 plus_selection() [2/2]

Plus selection.

Implemented with a swap. Should be faster than plus_selection with a copy.

Precondition

Both populations must be completely sorted.

Warning

The function does not break ties randomly (workaround: shuffle parents and offsprings). Modifies its argument.

Definition at line 98 of file population.cc.

5.100.4 Member Data Documentation

5.100.4.1 _compare_index_value

```
std::function<bool(const index_value_t&, const index_value_t&)> _compare_index_value [protected]
```

Initial value:

```
[](const index_value_t& a, const index_value_t& b) { return a.second > b.second; }
```

Binary operator for comparing index-value pairs.

Definition at line 55 of file population.hh.

5.100.4.2 _lookup

```
std::vector<index_value_t> _lookup [protected]
```

Lookup table.

Let p be of type std::pair<int, double>. Then p.first is the bv index in the unsorted population whereas p.second is the bv value.

Definition at line 52 of file population.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/population.hh
- lib/hnco/algorithms/population.cc

5.101 PriorNoise Class Reference

Prior noise.

#include <hnco/functions/modifiers/prior-noise.hh>

Inheritance diagram for PriorNoise:

Public Member Functions

PriorNoise (Function *fn, neighborhood::Neighborhood *nh)
 Constructor.

Information about the function

- int get_bv_size ()
 - Get bit vector size.
- double get_maximum ()

Get the global maximum.

• bool has_known_maximum ()

Check for a known maximum.

• bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

double evaluate (const bit_vector_t &)
 Evaluate a bit vector.

Private Attributes

• neighborhood::Neighborhood * _neighborhood

Neighborhood.

• bit_vector_t _noisy_bv

Noisy bit vector.

Additional Inherited Members

5.101.1 Detailed Description

Prior noise.

Definition at line 37 of file prior-noise.hh.

5.101.2 Member Function Documentation

5.101.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Delegation is questionable here.

Reimplemented from Function.

Definition at line 69 of file prior-noise.hh.

5.101.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Delegation is questionable here.

Reimplemented from Function.

Definition at line 75 of file prior-noise.hh.

5.101.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented from Function.

Definition at line 79 of file prior-noise.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/modifiers/prior-noise.hh
- lib/hnco/functions/modifiers/prior-noise.cc

5.102 ProgressTracker Class Reference

ProgressTracker.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for ProgressTracker:

Classes

struct Event

Event

Public Member Functions

• ProgressTracker (Function *function)

Constructor.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

void update (const bit_vector_t &x, double value)
 Update after a safe evaluation.

Get information

• const Event & get_last_improvement ()

Get the last improvement.

• double get evaluation time ()

Get evaluation time.

Setters

• void set_log_improvement (bool x)

Log improvement.

void set_record_evaluation_time (bool b)

Record evaluation time.

Protected Member Functions

void update_last_improvement (double value)
 Update last improvement.

Protected Attributes

• Event _last_improvement

Last improvement.

• StopWatch _stop_watch

Stop watch.

Parameters

• bool <u>log_improvement</u> = false

Log improvement.

• bool <u>_record_evaluation_time</u> = false

Record evaluation time.

5.102.1 Detailed Description

ProgressTracker.

A ProgressTracker is a CallCounter which keeps track the last improvement, that is its value and the number of evaluations needed to reach it.

Definition at line 226 of file controller.hh.

5.102.2 Member Function Documentation

5.102.2.1 get_last_improvement()

```
const Event& get_last_improvement ( ) [inline]
```

Get the last improvement.

Warning

If _last_improvement.num_evaluations is zero then _function has never been called. The Event returned by get_last_improvement has therefore no meaning.

Definition at line 302 of file controller.hh.

5.102.3 Member Data Documentation

5.102.3.1 _record_evaluation_time

```
bool _record_evaluation_time = false [protected]
```

Record evaluation time.

Only relevant for ProgressTracker::evaluate.

Definition at line 260 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- · lib/hnco/functions/controllers/controller.cc

5.103 ProgressTrackerContext Class Reference

Log context for ProgressTracker.

```
#include <hnco/logging/log-context.hh>
```

Inheritance diagram for ProgressTrackerContext:

Public Member Functions

• ProgressTrackerContext (hnco::function::controller::ProgressTracker *pt)

Constructor.

• std::string to_string ()

Get context.

Private Attributes

hnco::function::controller::ProgressTracker * _pt
 Progress tracker.

5.103.1 Detailed Description

Log context for ProgressTracker.

Definition at line 50 of file log-context.hh.

The documentation for this class was generated from the following file:

• lib/hnco/logging/log-context.hh

5.104 Projection Class Reference

Projection.

#include <hnco/maps/map.hh>

Inheritance diagram for Projection:

Public Member Functions

```
    Projection (const std::vector < int > &bit_positions, int input_size)
        Constructor.
    void map (const bit_vector_t &input, bit_vector_t &output)
        Map
```

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Attributes

```
    std::vector < int > _bit_positions
    Bit positions.
    int _input_size
    Input size.
```

5.104.1 Detailed Description

Projection.

The projection y of a bit vector x is x where we have dropped a given set of components.

```
Let I = \{i_1, i_2, \dots, i_m\} be a subset of \{1, 2, \dots, n\}.
```

A projection f from F_2^n to F_2^m , where $n \geq m$, is defined by f(x) = y, where, for all $j \in \{1, 2, \dots, m\}$, $y_j = x_{i_j}$.

If f is a projection and g is an injection with the same bit positions then their composition $f \circ g$ is the identity.

Definition at line 525 of file map.hh.

5.104.2 Constructor & Destructor Documentation

5.104.2.1 Projection()

Constructor.

The output size of the map is given by the size of bit_positions.

Parameters

bit_positions	Bit positions in the input from where output bits are copied
input_size	Input size

Precondition

```
input_size >= bit_positions.size()
```

Definition at line 167 of file map.cc.

5.104.3 Member Function Documentation

5.104.3.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 563 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.105 PvAlgorithm Class Reference

Probability vector algorithm.

#include <hnco/algorithms/pv/pv-algorithm.hh>

Inheritance diagram for PvAlgorithm:

Public Member Functions

• PvAlgorithm (int n)

Constructor.

Setters for logging

- void set_log_entropy (bool x)
 - Log entropy.
- void set_log_num_components (int x)

Set the number of probability vector components to log.

void set_log_pv (bool x)

Log probability vector.

Protected Member Functions

void set_something_to_log ()
 Set flag for something to log.

Loop

• void log () override Log. 5.106 Qubo Class Reference 277

Protected Attributes

pv_t _pv

Probability vector.

• double _lower_bound

Lower bound of probability.

• double _upper_bound

Upper bound of probability.

Logging

• bool <u>log_entropy</u> = false Log entropy.

• bool <u>log_pv</u> = false

Log probability vector.

• int _log_num_components = 5

Number of probability vector components to log.

5.105.1 Detailed Description

Probability vector algorithm.

Definition at line 33 of file pv-algorithm.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/pv-algorithm.hh
- · lib/hnco/algorithms/pv/pv-algorithm.cc

5.106 Qubo Class Reference

Quadratic unconstrained binary optimization.

#include <hnco/functions/collection/qubo.hh>

Inheritance diagram for Qubo:

Public Member Functions

Qubo ()

Constructor.

• int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Load and save instance

void load (std::string path)
 Load instance.

Private Member Functions

void load (std::istream &stream)
 Load an instance.

Private Attributes

std::vector< std::vector< double >> _q
 Matrix.

5.106.1 Detailed Description

Quadratic unconstrained binary optimization.

Its expression is of the form $f(x) = \sum_i Q_{ii} x_i + \sum_{i < j} Q_{ij} x_i x_j = x^T Q x$, where Q is an n x n upper-triangular matrix.

Qubo is the problem addressed by qbsolv. Here is its description as given on github:

Qbsolv, a decomposing solver, finds a minimum value of a large quadratic unconstrained binary optimization (QUBO) problem by splitting it into pieces solved either via a D-Wave system or a classical tabu solver.

There are some differences between WalshExpansion2 and Qubo:

- WalshExpansion2 maps 0/1 variables into -1/1 variables whereas Qubo directly deals with binary variables.
- Hence, there is a separate linear part in WalshExpansion2 whereas the linear part in Qubo stems from the diagonal elements of the given matrix.

qbsolv aims at minimizing quadratic functions whereas hnco algorithms aim at maximizing them. Hence Qubo::load negates all elements so that maximizing the resulting function is equivalent to minimizing the original Qubo.

References:

Michael Booth, Steven P. Reinhardt, and Aidan Roy. 2017. Partitioning Optimization Problems for Hybrid Classical/Quantum Execution. Technical Report. D-Wave.

```
https://github.com/dwavesystems/qbsolv
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
```

Definition at line 74 of file qubo.hh.

5.106.2 Member Function Documentation

5.106.2.1 load() [1/2]

Load an instance.

Exceptions

std::runtime_error

Definition at line 37 of file qubo.cc.

5.106.2.2 load() [2/2]

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 105 of file qubo.hh.

5.106.3 Member Data Documentation

5.106.3.1 _q

```
std::vector<std::vector<double> > _q [private]
```

Matrix.

n x n upper triangular matrix.

Definition at line 82 of file qubo.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/qubo.hh
- lib/hnco/functions/collection/qubo.cc

5.107 RandomLocalSearch Class Reference

Random local search.

#include <hnco/algorithms/ls/random-local-search.hh>

Inheritance diagram for RandomLocalSearch:

Public Member Functions

• RandomLocalSearch (int n, neighborhood::Neighborhood *neighborhood)

Constructor.

· void finalize () override

Finalize.

Setters

- void set_compare (std::function< bool(double, double)> x)
 - Set the binary operator for comparing evaluations.
- void set_patience (int x)

Set patience.

• void set_incremental_evaluation (bool x)

Set incremental evaluation.

Protected Member Functions

· void iterate_full ()

Single iteration with full evaluation.

• void iterate_incremental ()

Single iteration with incremental evaluation.

Loop

• void init () override

Initialize.

· void iterate () override

Single iteration.

Protected Attributes

· int _num_failures

Number of failure.

Parameters

```
    std::function< bool(double, double)> _compare = std::greater_equal<double>()
    Binary operator for comparing evaluations.
```

```
• int patience = 50
```

Patience.

• bool _incremental_evaluation = false

Incremental evaluation.

5.107.1 Detailed Description

Random local search.

Definition at line 36 of file random-local-search.hh.

5.107.2 Member Function Documentation

5.107.2.1 set_patience()

```
void set_patience (
          int x ) [inline]
```

Set patience.

Number of consecutive rejected moves before ending the search.

Parameters

If $x \le 0$ then patience is considered infinite.

Definition at line 104 of file random-local-search.hh.

5.107.3 Member Data Documentation

5.107.3.1 _patience

```
int _patience = 50 [protected]
```

Patience.

Number of consecutive rejected moves before ending the search.

Definition at line 55 of file random-local-search.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/random-local-search.hh
- lib/hnco/algorithms/ls/random-local-search.cc

5.108 RandomSearch Class Reference

Random search.

#include <hnco/algorithms/random-search.hh>

Inheritance diagram for RandomSearch:

Public Member Functions

• RandomSearch (int n) Constructor.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

bit_vector_t _candidate
 Candidate.

5.108.1 Detailed Description

Random search.

Definition at line 31 of file random-search.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/random-search.hh
- lib/hnco/algorithms/random-search.cc

5.109 RandomSelection Class Reference

Random selection.

#include <hnco/algorithms/random-selection.hh>

Inheritance diagram for RandomSelection:

Public Member Functions

• RandomSelection (int population_size, int n)

Constructor.

• virtual void init ()

Initialize.

• virtual const bit_vector_t & select ()=0

Select an individual in the population.

Additional Inherited Members

5.109.1 Detailed Description

Random selection.

Definition at line 34 of file random-selection.hh.

5.109.2 Constructor & Destructor Documentation

5.109.2.1 RandomSelection()

Constructor.

Parameters

population_size	Population size
n	Bit vector size

Definition at line 44 of file random-selection.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/random-selection.hh

5.110 RandomWalk Class Reference

Random walk.

#include <hnco/algorithms/ls/random-walk.hh>

Inheritance diagram for RandomWalk:

Public Member Functions

• RandomWalk (int n, neighborhood::Neighborhood *neighborhood) Constructor.

Setters

- void set_incremental_evaluation (bool x)
 Set incremental evaluation.
- void set_log_value () Set log.

Protected Member Functions

- · void iterate_full ()
 - Single iteration with full evaluation.
- void iterate_incremental ()

Single iteration with incremental evaluation.

Loop

- void iterate () override
 - Single iteration.
- void log () override Log.

Protected Attributes

· double _value

Value of the last visited bit vector.

Parameters

 bool _incremental_evaluation = false Incremental evaluation.

5.110.1 Detailed Description

Random walk.

The algorithm simply performs a random walk on the graph implicitly given by the neighborhood. At each iteration, the chosen neighbor does not depend on its evaluation. However optimization takes place as in random search, that is the best visited bit vector is remembered.

Definition at line 41 of file random-walk.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/random-walk.hh
- lib/hnco/algorithms/ls/random-walk.cc

5.111 Restart Class Reference

Restart.

#include <hnco/algorithms/decorators/restart.hh>

Inheritance diagram for Restart:

Public Member Functions

Restart (int n, Algorithm *algorithm)
 Constructor.

Protected Member Functions

Loop

• void iterate () override Single iteration.

Protected Attributes

Algorithm * _algorithm
 Algorithm.

5.111.1 Detailed Description

Restart.

Restart an Algorithm an indefinite number of times. Should be used in conjonction with OnBudgetFunction or StopOnMaximum.

Definition at line 38 of file restart.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/decorators/restart.hh
- lib/hnco/algorithms/decorators/restart.cc

5.112 Ridge Class Reference

Ridge.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Ridge:

Public Member Functions

• Ridge (int bv_size)

Constructor.

• int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum () override

Check for a known maximum.

• double get_maximum () override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.112.1 Detailed Description

Ridge.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 207 of file theory.hh.

5.112.2 Member Function Documentation

5.112.2.1 get_maximum()

```
double get_maximum ( ) [inline], [override], [virtual]
```

Get the global maximum.

Returns

2 * _bv_size

Reimplemented from Function.

Definition at line 230 of file theory.hh.

5.112.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 226 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.113 ScalarToDouble < T > Struct Template Reference

Convert a scalar to a double.

#include <hnco/functions/representations/converter.hh>

Public Types

typedef T codomain_type
 Codomain type.

Public Member Functions

double operator() (T x)
 Convert to double.

5.113.1 Detailed Description

 $\label{template} $$ \ensuremath{\sf template}$ < ${\sf class}$ T> $$ struct hnco::function::representation::ScalarToDouble< T> $$$

Convert a scalar to a double.

Definition at line 33 of file converter.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/functions/representations/converter.hh

5.114 SimulatedAnnealing Class Reference

Simulated annealing.

#include <hnco/algorithms/ls/simulated-annealing.hh>

Inheritance diagram for SimulatedAnnealing:

Public Member Functions

• SimulatedAnnealing (int n, neighborhood::Neighborhood *neighborhood) Constructor.

Setters

- void set_num_transitions (int x)
 - Set the number of accepted transitions before annealing.
- void set num trials (int x)
 - Set the Number of trials.
- void set_initial_acceptance_probability (double x)
 - Set the initial acceptance probability.
- void set_beta_ratio (double x)

Set ratio for beta.

Protected Member Functions

void init_beta ()
 Initialize beta.

Loop

 void init () override Initialize.

• void iterate () override Single iteration.

Protected Attributes

• double _beta

Inverse temperature.

· double _current_value

Current value.

· int _transitions

Number of accepted transitions.

Parameters

• int _num_transitions = 50

Number of accepted transitions before annealing.

• int _num_trials = 100

Number of trials.

• double _initial_acceptance_probability = 0.6

Initial acceptance probability.

• double beta ratio = 1.2

Ratio for beta.

5.114.1 Detailed Description

Simulated annealing.

Reference:

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (May 1983), 671–680.

Definition at line 42 of file simulated-annealing.hh.

5.114.2 Member Function Documentation

5.114.2.1 init_beta()

```
void init_beta ( ) [protected]
```

Initialize beta.

Requires (2 * _num_trials) evaluations. This should be taken into account when using OnBudgetFunction.

Definition at line 34 of file simulated-annealing.cc.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/simulated-annealing.hh
- lib/hnco/algorithms/ls/simulated-annealing.cc

5.115 SingleBitFlip Class Reference

One bit neighborhood.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for SingleBitFlip:

Public Member Functions

SingleBitFlip (int n)
 Constructor.

Private Member Functions

void sample_bits ()
 Sample bits.

Additional Inherited Members

5.115.1 Detailed Description

One bit neighborhood.

Definition at line 160 of file neighborhood.hh.

The documentation for this class was generated from the following file:

• lib/hnco/neighborhoods/neighborhood.hh

5.116 SingleBitFlipIterator Class Reference

Single bit flip neighborhood iterator.

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for SingleBitFlipIterator:

Public Member Functions

• SingleBitFlipIterator (int n)

Constructor.

• bool has_next ()

Has next bit vector.

• const bit_vector_t & next ()

Next bit vector.

Private Attributes

size_t _index
 Index of the last flipped bit.

Additional Inherited Members

5.116.1 Detailed Description

Single bit flip neighborhood iterator.

Definition at line 53 of file neighborhood-iterator.hh.

5.116.2 Constructor & Destructor Documentation

5.116.2.1 SingleBitFlipIterator()

```
SingleBitFlipIterator (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 65 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.117 SinusSummationCancellation Class Reference

Summation cancellation with sinus.

#include <hnco/functions/collection/cancellation.hh>

Inheritance diagram for SinusSummationCancellation:

Public Member Functions

• SinusSummationCancellation (int n)

Constructor.

double evaluate (const bit_vector_t &x)

Evaluate a bit vector.

Additional Inherited Members

5.117.1 Detailed Description

Summation cancellation with sinus.

Reference:

M. Sebag and M. Schoenauer. 1997. A society of hill-climbers. In Proc. IEEE Int. Conf. on Evolutionary Computation. Indianapolis, 319–324.

Definition at line 104 of file cancellation.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/cancellation.hh
- lib/hnco/functions/collection/cancellation.cc

5.118 SixPeaks Class Reference

Six Peaks.

#include <hnco/functions/collection/four-peaks.hh>

Inheritance diagram for SixPeaks:

Public Member Functions

• SixPeaks (int bv_size, int threshold)

Constructor.

• int get_bv_size ()

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

· int threshold

Threshold.

int _maximum

Maximum.

5.118.1 Detailed Description

Six Peaks.

It is defined by

```
f(x) = \max\{head(x, 0) + tail(x, 1) + head(x, 1) + tail(x, 0)\} + R(x)
```

where:

- head(x, 0) is the length of the longest prefix of x made of zeros;
- head(x, 1) is the length of the longest prefix of x made of ones;
- tail(x, 0) is the length of the longest suffix of x made of zeros;
- tail(x, 1) is the length of the longest suffix of x made of ones;
- R(x) is the reward;
- R(x) = n if (head(x, 0) > t and tail(x, 1) > t) or (head(x, 1) > t and tail(x, 0) > t);
- R(x) = 0 otherwise;
- the threshold t is a parameter of the function.

This function has six maxima, of which exactly four are global ones.

For example, if n = 6 and t = 1:

- f(111111) = 6 (local maximum)
- f(1111110) = 5
- f(111100) = 10 (global maximum)

Reference:

J. S. De Bonet, C. L. Isbell, and P. Viola. 1996. MIMIC: finding optima by estimating probability densities. In Advances in Neural Information Processing Systems. Vol. 9. MIT Press, Denver.

Definition at line 128 of file four-peaks.hh.

5.118.2 Member Function Documentation

5.118.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
2 * _bv_size - _threshold - 1
```

Reimplemented from Function.

Definition at line 159 of file four-peaks.hh.

5.118.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 155 of file four-peaks.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/four-peaks.hh
- lib/hnco/functions/collection/four-peaks.cc

5.119 SpinHerding Class Reference

Herding with spin variables.

#include <hnco/algorithms/hea/spin-herding.hh>

Public Types

• enum { SAMPLE_GREEDY , SAMPLE_RLS , SAMPLE_DLS , LAST_SAMPLE }

Public Member Functions

• SpinHerding (int n)

Constructor.

• void init ()

Initialization.

void sample (const SpinMoment &target, bit_vector_t &x)

Sample a bit vector.

• double error (const SpinMoment &target)

Compute the error.

Getters

const SpinMoment & get_delta ()
 Get delta.

Setters

void set_randomize_bit_order (bool x)

Randomize bit order.

void set_sampling_method (int x)

Set the sampling method.

void set_num_seq_updates (int x)

Set the number of sequential updates per sample.

void set_weight (double x)

Set the weight of second order moments.

Protected Member Functions

void compute_delta (const SpinMoment &target)

Compute delta.

void sample_greedy (bit_vector_t &x)

Sample by means of a greedy algorithm.

• double q_derivative (const bit_vector_t &x, int i)

Derivative of q.

double q_variation (const bit_vector_t &x, int i)

Variation of q.

void sample_rls (bit_vector_t &x)

Sample by means of random local search.

void sample_dls (bit_vector_t &x)

Sample by means of deterministic local search.

Protected Attributes

SpinMoment _delta

Delta moment.

· SpinMoment _count

Counter moment.

permutation_t _permutation

Permutation.

std::uniform_int_distribution< int > _choose_bit

Choose bit.

· int _time

Time.

Parameters

• bool <u>_randomize_bit_order</u> = false

Randomize bit order.

• int _sampling_method = SAMPLE_GREEDY

Sampling method.

• int _num_seq_updates

Number of sequential updates per sample.

double _weight = 1

Weight of second order moments.

5.119.1 Detailed Description

Herding with spin variables.

By spin variables, we mean variables taking values 1 or -1, instead of 0 or 1 in the case of binary variables.

Definition at line 37 of file spin-herding.hh.

5.119.2 Member Enumeration Documentation

5.119.2.1 anonymous enum

anonymous enum

Enumerator

SAMPLE_GREEDY	Greedy algorithm.
SAMPLE_RLS	Random local search.
SAMPLE_DLS	Deterministic local search.

Definition at line 97 of file spin-herding.hh.

5.119.3 Constructor & Destructor Documentation

5.119.3.1 SpinHerding()

```
SpinHerding (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

_num_seq_updates is initialized to n.

Definition at line 116 of file spin-herding.hh.

5.119.4 Member Function Documentation

5.119.4.1 q_variation()

Variation of q.

Up to a positive multiplicative constant. Only the sign of the variation matters to local search.

Definition at line 162 of file spin-herding.cc.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/hea/spin-herding.hh
- lib/hnco/algorithms/hea/spin-herding.cc

5.120 SpinMoment Struct Reference

Moment for spin variables.

#include <hnco/algorithms/hea/spin-moment.hh>

Public Member Functions

• SpinMoment (int n)

Constructor.

· void uniform ()

Set the moment to that of the uniform distribution.

• void init ()

Initialize accumulators.

void add (const bit_vector_t &x)

Update accumulators.

· void average (int count)

Compute average.

• void update (const SpinMoment &p, double rate)

Update moment.

void bound (double margin)

Bound moment.

• double distance (const SpinMoment &p) const

Distance.

• double norm_2 () const

Compute the norm 2.

• double diameter () const

Compute the diameter.

• size_t size () const

Size.

· void display (std::ostream &stream)

Display.

Public Attributes

• std::vector< double > _first

First moment.

• std::vector< std::vector< double >> _second

Second moment.

• double _weight = 1

Weight of second order moments.

5.120.1 Detailed Description

Moment for spin variables.

Definition at line 38 of file spin-moment.hh.

5.120.2 Member Data Documentation

5.120.2.1 _second

std::vector<std::vector<double> > _second

Second moment.

This is a lower triangular matrix with only zeros on the diagonal. Only entries $_second[i][j]$ with j < i are considered.

Definition at line 50 of file spin-moment.hh.

The documentation for this struct was generated from the following files:

- · lib/hnco/algorithms/hea/spin-moment.hh
- lib/hnco/algorithms/hea/spin-moment.cc

5.121 StandardBitMutation Class Reference

Standard bit mutation.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for StandardBitMutation:

Public Member Functions

• StandardBitMutation (int n)

Constructor.

• StandardBitMutation (int n, double p)

Constructor.

• void set_mutation_rate (double p)

Set mutation rate.

Setters

• void set_allow_no_mutation (bool b) Set the flag_allow_no_mutation.

Private Member Functions

```
    void sample_bits ()
```

Sample bits.

void bernoulli process ()

Bernoulli process.

Private Attributes

· std::bernoulli_distribution _bernoulli_dist

Bernoulli distribution (biased coin)

• std::binomial_distribution< int > _binomial_dist

Binomial distribution.

• bool _rejection_sampling = false

Rejection sampling.

Parameters

• bool <u>_allow_no_mutation</u> = false *Allow no mutation*.

Additional Inherited Members

5.121.1 Detailed Description

Standard bit mutation.

Each component of the origin bit vector is flipped with some fixed probability. Unless stated otherwise, if no component has been flipped at the end, the process is started all over again. Thus the number of flipped bits follows a pseudo binomial law.

Definition at line 220 of file neighborhood.hh.

5.121.2 Constructor & Destructor Documentation

5.121.2.1 StandardBitMutation() [1/2]

```
StandardBitMutation (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

The Bernoulli probability is set to 1 / n.

Definition at line 255 of file neighborhood.hh.

5.121.2.2 StandardBitMutation() [2/2]

Constructor.

Parameters

n	Size of bit vectors
р	Bernoulli probability

Definition at line 265 of file neighborhood.hh.

5.121.3 Member Function Documentation

5.121.3.1 set_mutation_rate()

```
void set_mutation_rate ( \label{eq:condition} \mbox{double } p \mbox{ ) } \mbox{ [inline]}
```

Set mutation rate.

Sets _rejection_sampling to true if E(X) < sqrt(n), where X is a random variable with a binomial distribution B(n, p), that is if np < sqrt(n) or p < 1 / sqrt(n).

Definition at line 276 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.122 SteepestAscentHillClimbing Class Reference

Steepest ascent hill climbing.

#include <hnco/algorithms/ls/steepest-ascent-hill-climbing.hh>

Inheritance diagram for SteepestAscentHillClimbing:

Public Member Functions

• SteepestAscentHillClimbing (int n, neighborhood::NeighborhoodIterator *neighborhood) Constructor.

Protected Member Functions

 void iterate () override Single iteration.

Protected Attributes

std::vector < bit_vector_t > _candidates
 Potential candidate.

5.122.1 Detailed Description

Steepest ascent hill climbing.

Definition at line 34 of file steepest-ascent-hill-climbing.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.hh
- lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.cc

5.123 StopOnMaximum Class Reference

Stop on maximum.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for StopOnMaximum:

Public Member Functions

• StopOnMaximum (Function *function)

Constructor.

Additional Inherited Members

5.123.1 Detailed Description

Stop on maximum.

Definition at line 136 of file controller.hh.

5.123.2 Constructor & Destructor Documentation

5.123.2.1 StopOnMaximum()

```
StopOnMaximum (
          Function * function ) [inline]
```

Constructor.

Precondition

function->has_known_maximum()

Definition at line 143 of file controller.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/controllers/controller.hh

5.124 StopOnTarget Class Reference

Stop on target.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for StopOnTarget:

Public Member Functions

• StopOnTarget (Function *function, double target)

Constructor.

• const algorithm::solution_t & get_trigger ()

Get trigger.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Private Attributes

```
    double _target
        Target.
        algorithm::solution_t _trigger
        Trigger.
```

Additional Inherited Members

5.124.1 Detailed Description

Stop on target.

The member function eval throws an exception TargetReached when the value of its decorated function reaches a given target.

Warning

The target is detected using the greater or equal operator hence the result should be taken with care in case of non integer (floating point) function values.

Definition at line 92 of file controller.hh.

5.124.2 Constructor & Destructor Documentation

5.124.2.1 StopOnTarget()

Constructor.

Parameters

function	Decorated function
target	Target

Definition at line 107 of file controller.hh.

5.124.3 Member Function Documentation

5.124.3.1 evaluate()

Evaluate a bit vector.

Exceptions

TargetReached

Implements Function.

Definition at line 33 of file controller.cc.

5.124.3.2 evaluate_incrementally()

Incrementally evaluate a bit vector.

Exceptions

TargetReached

Reimplemented from Function.

Definition at line 46 of file controller.cc.

5.124.3.3 update()

Update after a safe evaluation.

Exceptions

TargetReached

Reimplemented from Function.

Definition at line 59 of file controller.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.125 StopWatch Class Reference

```
Stop watch.
```

```
#include <hnco/stop-watch.hh>
```

Public Member Functions

Private Attributes

```
    double _total_time = 0
        Total time.

    clock_t _start
        Start time.
```

5.125.1 Detailed Description

Stop watch.

Definition at line 31 of file stop-watch.hh.

The documentation for this class was generated from the following file:

· lib/hnco/stop-watch.hh

5.126 Sudoku Class Reference

Sudoku.

#include <hnco/functions/collection/sudoku.hh>

Public Types

• typedef std::size_t domain_type

Domain type.

• typedef double codomain_type

Codomain type.

Public Member Functions

• Sudoku ()

Default constructor.

void random (int c)

Random instance.

• int get_num_variables ()

Get the number of variables.

• void display (std::ostream &stream)

Display the problem.

void describe (const std::vector< domain_type > &x, std::ostream &stream)

Describe a solution.

double evaluate (const std::vector< domain_type > &x)

Evaluate a solution.

Private Member Functions

void write_variables (const std::vector< domain_type > &x)
 Write variables.

Private Attributes

• std::vector< std::vector< char >> _problem_instance

Problem instance.

std::vector< std::vector< domain_type >> _candidate

Candidate.

• $std::vector < int > _counts$

Counts.

• int _num_variables

Number of variables.

Load and save instance

void load_ (std::istream &stream)

Load an instance.

· void save_ (std::ostream &stream) const

Save an instance.

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

5.126.1 Detailed Description

Sudoku.

Definition at line 34 of file sudoku.hh.

5.126.2 Member Function Documentation

5.126.2.1 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 100 of file sudoku.hh.

5.126.2.2 load_()

Load an instance.

Exceptions

std::runtime_error

Definition at line 57 of file sudoku.cc.

5.126.2.3 random()

```
void random ( \quad \text{int } c \ )
```

Random instance.

Parameters

```
c Number of empty cells
```

Definition at line 96 of file sudoku.cc.

5.126.2.4 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 112 of file sudoku.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/sudoku.hh
- lib/hnco/functions/collection/sudoku.cc

5.127 SummationCancellation Class Reference

Summation cancellation.

#include <hnco/functions/collection/cancellation.hh>

Inheritance diagram for SummationCancellation:

Public Member Functions

• SummationCancellation (int n)

Constructor.

• int get_bv_size ()

Get bit vector size.

double evaluate (const bit_vector_t &x)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Protected Member Functions

void convert (const bit_vector_t &x)

Convert a bit vector into a real vector.

Protected Attributes

• int _bv_size

Bit vector size.

• std::vector< double > _buffer

Buffer.

5.127.1 Detailed Description

Summation cancellation.

Encoding of a signed integer:

- bit 0: sign
- bits 1 to 8: two's complement representation

Reference:

S. Baluja and S. Davies. 1997. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Technical Report CMU- CS-97-107. Carnegie-Mellon University.

Definition at line 48 of file cancellation.hh.

5.127.2 Constructor & Destructor Documentation

5.127.2.1 SummationCancellation()

```
\label{eq:continuous} \begin{tabular}{ll} Summation Cancellation ( \\ & int \ n \ ) & [inline] \end{tabular}
```

Constructor.

The bit vector size n must be a multiple of 9. The size of _buffer is then n / 9.

Parameters

n | Size of the bit vector

Definition at line 71 of file cancellation.hh.

5.127.3 Member Function Documentation

5.127.3.1 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 87 of file cancellation.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/cancellation.hh
- lib/hnco/functions/collection/cancellation.cc

5.128 TargetReached Class Reference

Target reached.

#include <hnco/exception.hh>

Inheritance diagram for TargetReached:

5.128.1 Detailed Description

Target reached.

Definition at line 40 of file exception.hh.

The documentation for this class was generated from the following file:

• lib/hnco/exception.hh

5.129 TournamentSelection Class Reference

Tournament selection.

#include <hnco/algorithms/random-selection.hh>

Inheritance diagram for TournamentSelection:

Public Member Functions

- TournamentSelection (int population_size, int n) Constructor.
- const bit_vector_t & select () override
 Select an individual in the population.

Setters

void set_tournament_size (int x)
 Set the tournament size.

Private Attributes

std::uniform_int_distribution < int > _choose_individual
 Random index.

Parameters

• int_tournament_size = 10

Tournament size.

Additional Inherited Members

5.129.1 Detailed Description

Tournament selection.

Definition at line 82 of file random-selection.hh.

5.129.2 Constructor & Destructor Documentation

5.129.2.1 TournamentSelection()

Constructor.

Parameters

population_size	Population size
n	Bit vector size

Definition at line 104 of file random-selection.hh.

5.129.3 Member Function Documentation

5.129.3.1 select()

```
const bit_vector_t & select ( ) [override], [virtual]
```

Select an individual in the population.

The selection only requires that the population be evaluated, not necessarily sorted.

Precondition

The population must be evaluated.

Implements RandomSelection.

Definition at line 38 of file random-selection.cc.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/random-selection.hh
- lib/hnco/algorithms/random-selection.cc

5.130 Translation Class Reference

Translation.

#include <hnco/maps/map.hh>

Inheritance diagram for Translation:

Public Member Functions

- void map (const bit_vector_t &input, bit_vector_t &output) override
 Map
- int get_input_size () override

Get input size.

• int get_output_size () override

Get output size.

• bool is_surjective () override

Check for surjective map.

· void display (std::ostream &stream) override

Display.

• void random (int n)

Random instance.

void set_bv (const bit_vector_t &bv)

Set the translation vector.

Load and save map

- void load (std::string path)
 - Load map.
- void save (std::string path) const

Save map.

Private Member Functions

- template < class Archive >
 void save (Archive & ar, const unsigned int version) const
 Save.
- template < class Archive > void load (Archive & ar, const unsigned int version)
 Load.

Private Attributes

bit_vector_t _bv

Translation vector

Friends

· class boost::serialization::access

5.130.1 Detailed Description

Translation.

A translation is an affine map f from F_2y^n to itself defined by f(x)=x+b, where b is an n-dimensional bit vector.

Definition at line 84 of file map.hh.

5.130.2 Member Function Documentation

5.130.2.1 is_surjective()

```
bool is_surjective ( ) [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 126 of file map.hh.

5.130.2.2 load()

Load map.

Parameters

path Path of the map to load

Exceptions

```
std::runtime_error
```

Definition at line 163 of file map.hh.

5.130.2.3 save()

Save map.

Parameters

path Path of the map to save

Exceptions

```
std::runtime_error
```

Definition at line 181 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.131 Transvection Struct Reference

Transvection.

```
#include <hnco/maps/transvection.hh>
```

Public Member Functions

```
    template < class Archive > void save (Archive & ar, const unsigned int version) const Save.
```

template < class Archive >
 void load (Archive & ar, const unsigned int version)
 Load.

· bool is_valid () const

Check validity.

• bool is_valid (int n) const

Check validity.

void display (std::ostream &stream) const

Display transvection.

• void random (int n)

Sample a random transvection.

• void random_non_commuting (int n, const Transvection &a)

Sample a random transvection.

void multiply (bit_vector_t &x) const

Multiply a bit vector from the left.

void multiply (bit_matrix_t &M) const

Multiply a bit matrix from the left.

Public Attributes

· int row_index

Row index.

· int column index

Column index.

5.131.1 Detailed Description

Transvection.

We only consider transvections defined by matrices $\tau_{ij} = I_n + B_{ij}$, where I_n is the $n \times n$ identity matrix and B_{ij} is the matrix whose (i,j) entry is 1 and other entries are zero. Such a matrix is also sometimes called a shear matrix.

Transvections generate invertible matrices over the finite field F_2 .

Definition at line 63 of file transvection.hh.

5.131.2 Member Function Documentation

5.131.2.1 is_valid()

```
bool is_valid ( \quad \quad \text{int } n \text{ ) const}
```

Check validity.

Parameters

n Dimension

Definition at line 48 of file transvection.cc.

5.131.2.2 multiply() [1/2]

```
void multiply (
          bit_matrix_t & M ) const
```

Multiply a bit matrix from the left.

Parameters

```
M Bit matrix
```

Precondition

```
is_valid()
is_valid(bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 117 of file transvection.cc.

5.131.2.3 multiply() [2/2]

```
void multiply (
                bit_vector_t & x ) const
```

Multiply a bit vector from the left.

Parameters

Precondition

```
is_valid()
is_valid(x.size())
```

Warning

This function modifies the given bit vector.

Definition at line 105 of file transvection.cc.

5.131.2.4 random()

```
void random ( \quad \text{int } n \ )
```

Sample a random transvection.

Parameters

```
n Dimension
```

Precondition

n > 1

Definition at line 61 of file transvection.cc.

5.131.2.5 random_non_commuting()

```
void random_non_commuting (  \qquad \qquad \text{int } n, \\  \qquad \qquad \text{const Transvection & } a \text{ )}
```

Sample a random transvection.

This member function ensures that the sampled transvection does not commute with some given one.

Parameters

n	Dimension
а	Given transvection

Precondition

n > 1

Definition at line 77 of file transvection.cc.

The documentation for this struct was generated from the following files:

- · lib/hnco/maps/transvection.hh
- lib/hnco/maps/transvection.cc

5.132 Trap Class Reference

Trap.

#include <hnco/functions/collection/trap.hh>

Inheritance diagram for Trap:

Public Member Functions

• Trap (int bv_size, int num_traps)

Constructor.

• int get_bv_size ()

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

int _bv_size

Bit vector size.

• int _num_traps

Number of traps.

int _trap_size

Trap size.

5.132.1 Detailed Description

Trap.

Reference:

Kalyanmoy Deb and David E. Goldberg. 1993. Analyzing Deception in Trap Functions. In Foundations of Genetic Algorithms 2, L. Darrell Whitley (Ed.). Morgan Kaufmann, San Mateo, CA, 93–108.

Definition at line 43 of file trap.hh.

5.132.2 Constructor & Destructor Documentation

5.132.2.1 Trap()

Constructor.

Parameters

bv_size	Bit vector size
num_traps	Number of traps

Warning

bv_size must be a multiple of num_traps

Definition at line 64 of file trap.hh.

5.132.3 Member Function Documentation

5.132.3.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 88 of file trap.hh.

5.132.3.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 84 of file trap.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/trap.hh
- lib/hnco/functions/collection/trap.cc

5.133 TsAffineMap Class Reference

Transvection sequence affine map.

```
#include <hnco/maps/map.hh>
```

Inheritance diagram for TsAffineMap:

Public Types

enum SamplingMode {
 Unconstrained , CommutingTransvections , UniqueSource , UniqueDestination ,
 DisjointTransvections , NonCommutingTransvections }

Sampling mode.

Public Member Functions

```
• void random (int n, int t, SamplingMode mode)
```

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

bool is_surjective ()

Check for surjective map.

void display (std::ostream &stream)

Display.

· void inverse ()

Inverse.

Private Member Functions

```
    template < class Archive >
        void save (Archive & ar, const unsigned int version) const
        Save.
```

template<class Archive >

void load (Archive &ar, const unsigned int version)

Load.

Private Attributes

• transvection_sequence_t _ts

Transvection sequence

· bit_vector_t _bv

Translation vector

Friends

· class boost::serialization::access

5.133.1 Detailed Description

Transvection sequence affine map.

An affine map f from F_2^m to F_2^n is defined by f(x) = Ax + b, where A is an n x m bit matrix and b is an n-dimensional bit vector.

In TsAffineMap, A is a finite product of transvections represented by a transvection_sequence_t.

Definition at line 577 of file map.hh.

5.133.2 Member Enumeration Documentation

5.133.2.1 SamplingMode

enum SamplingMode

Sampling mode.

Enumerator

Unconstrained	Unconstrained.
CommutingTransvections	Commuting transvections.
UniqueSource	Transvection sequence with unique source
UniqueDestination	Transvection sequence with unique destination
DisjointTransvections	Disjoint transvections.
NonCommutingTransvections	Non commuting transvections.

Definition at line 613 of file map.hh.

5.133.3 Member Function Documentation

5.133.3.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 656 of file map.hh.

5.133.3.2 random()

Random instance.

Parameters

n	Dimension
t	Length of sequence of transvections
mode	Sampling mode

Definition at line 188 of file map.cc.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- · lib/hnco/maps/map.cc

5.134 Umda Class Reference

Univariate marginal distribution algorithm.

#include <hnco/algorithms/pv/umda.hh>

Inheritance diagram for Umda:

Public Member Functions

• Umda (int n, int population_size)

Constructor.

Setters

void set_selection_size (int x)
 Set the selection size.

Protected Member Functions

Loop

- void init () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

Population _population
 Population.

Parameters

• int _selection_size = 1 Selection size.

5.134.1 Detailed Description

Univariate marginal distribution algorithm.

Reference:

H. Mühlenbein. 1997. The equation for response to selection and its use for prediction. Evolutionary Computation 5, 3 (1997), 303–346.

Definition at line 41 of file umda.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/umda.hh
- lib/hnco/algorithms/pv/umda.cc

5.135 UniformCrossover Class Reference

Uniform crossover.

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for UniformCrossover:

Public Member Functions

void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)
 Breed.

5.135.1 Detailed Description

Uniform crossover.

Definition at line 56 of file crossover.hh.

5.135.2 Member Function Documentation

5.135.2.1 breed()

Breed.

The offspring is the uniform crossover of two parents.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implements Crossover.

Definition at line 30 of file crossover.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/crossover.hh
- lib/hnco/algorithms/ea/crossover.cc

5.136 UniformSelection Class Reference

Uniform selection.

#include <hnco/algorithms/random-selection.hh>

Inheritance diagram for UniformSelection:

Public Member Functions

- UniformSelection (int population_size, int n) Constructor.
- const bit_vector_t & select () override
 Select an individual in the population.

Private Attributes

 std::uniform_int_distribution < int > _choose_individual Random index.

Additional Inherited Members

5.136.1 Detailed Description

Uniform selection.

Definition at line 58 of file random-selection.hh.

5.136.2 Constructor & Destructor Documentation

5.136.2.1 UniformSelection()

Constructor.

Parameters

population_size	Population size
n	Bit vector size

Definition at line 71 of file random-selection.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/random-selection.hh
- · lib/hnco/algorithms/random-selection.cc

5.137 WalshExpansion Class Reference

Walsh expansion.

#include <hnco/functions/collection/walsh/walsh-expansion.hh>

Inheritance diagram for WalshExpansion:

Public Member Functions

• WalshExpansion ()

Constructor.

• int get_bv_size () override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

void display (std::ostream &stream) override

Display.

void set_terms (const std::vector< function::WalshTerm > terms)

Set terms.

Instance generators

```
    template < class Generator >
        void generate (int n, int num_features, Generator generator)
        Instance generator.
    void random (int n, int num_features)
        Random instance.
```

Load and save instance

```
    void load (std::string path)
        Load instance.

    void save (std::string path) const
        Save instance.
```

Private Member Functions

```
    template < class Archive >
    void serialize (Archive & ar, const unsigned int version)
        Save.
```

Private Attributes

std::vector< function::WalshTerm > _terms
 Terms.

Friends

· class boost::serialization::access

5.137.1 Detailed Description

Walsh expansion.

Its expression is of the form

$$f(x) = \sum_{u} a_{u}(-1)^{x \cdot u}$$

where the sum is over a subset of $\{0,1\}^n$ and $x \cdot u = \sum_i x_i u_i$ is mod 2. The real numbers a_u are the coefficients of the expansion and the bit vectors u are its feature vectors.

Definition at line 53 of file walsh-expansion.hh.

5.137.2 Member Function Documentation

5.137.2.1 generate()

```
void generate (
        int n,
        int num_features,
        Generator generator ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
num_features	Number of feature vectors
generator	Coefficient generator

Definition at line 86 of file walsh-expansion.hh.

5.137.2.2 load()

Load instance.

Parameters

path	Path of the instance to load
------	------------------------------

Exceptions

```
std::runtime_error
```

Definition at line 131 of file walsh-expansion.hh.

5.137.2.3 random()

```
void random (
          int n,
          int num_features ) [inline]
```

Random instance.

The coefficients are sampled from the normal distribution.

Parameters

n	Size of bit vector
num_features	Number of feature vectors

Definition at line 112 of file walsh-expansion.hh.

5.137.2.4 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 149 of file walsh-expansion.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/walsh/walsh-expansion.hh
- lib/hnco/functions/collection/walsh/walsh-expansion.cc

5.138 WalshExpansion1 Class Reference

Walsh expansion of degree 1.

#include <hnco/functions/collection/walsh/walsh-expansion-1.hh>

Inheritance diagram for WalshExpansion1:

Public Member Functions

• WalshExpansion1 ()

Constructor.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

void random (int n)
 Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Evaluation

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () override

Get bit vector size.

• double get_maximum () override

Get the global maximum.

• bool has_known_maximum () override

Check for a known maximum.

• bool provides_incremental_evaluation () override

Check whether the function provides incremental evaluation.

Private Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _linear
 Linear part.

Friends

· class boost::serialization::access

5.138.1 Detailed Description

Walsh expansion of degree 1.

Its expression is of the form

$$f(x) = \sum_{i} a_i (1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{i} a_i (-1)^{x_i}$$

Definition at line 50 of file walsh-expansion-1.hh.

5.138.2 Member Function Documentation

5.138.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator \mbox{)} \mbox{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Weight generator

Definition at line 82 of file walsh-expansion-1.hh.

5.138.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 172 of file walsh-expansion-1.hh.

5.138.2.3 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 114 of file walsh-expansion-1.hh.

5.138.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 177 of file walsh-expansion-1.hh.

5.138.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vectors
```

Definition at line 96 of file walsh-expansion-1.hh.

5.138.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 132 of file walsh-expansion-1.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/walsh/walsh-expansion-1.hh
- · lib/hnco/functions/collection/walsh/walsh-expansion-1.cc

5.139 WalshExpansion2 Class Reference

Walsh expansion of degree 2.

#include <hnco/functions/collection/walsh/walsh-expansion-2.hh>

Inheritance diagram for WalshExpansion2:

Public Member Functions

• WalshExpansion2 ()

Constructor.

• int get_bv_size () override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

template < class LinearGen, class QuadraticGen >
 void generate (int n, LinearGen linear_gen, QuadraticGen quadratic_gen)
 Instance generators.

void random (int n)

Instance generator.

• void generate_ising1_long_range (int n, double alpha)

Generate one dimensional Ising model with long range interactions.

• void generate_ising1_long_range_periodic (int n, double alpha)

Generate one dimensional Ising model with long range interactions and periodic boundary conditions.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

• void resize (int n)

Resize data structures.

Private Attributes

std::vector< double > _linear

Linear part.

std::vector< std::vector< double >> _quadratic

Quadratic part.

Friends

· class boost::serialization::access

5.139.1 Detailed Description

Walsh expansion of degree 2.

Its expression is of the form

$$f(x) = \sum_{i} a_i (1 - 2x_i) + \sum_{i < j} a_{ij} (1 - 2x_i) (1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{i} a_i (-1)^{x_i} + \sum_{i < j} a_{ij} (-1)^{x_i + x_j}$$

Definition at line 50 of file walsh-expansion-2.hh.

5.139.2 Member Function Documentation

5.139.2.1 generate()

```
void generate (
          int n,
          LinearGen linear_gen,
          QuadraticGen quadratic_gen ) [inline]
```

Instance generators.

Parameters

п	Size of bit vectors
linear_gen	Generator for the linear part
quadratic_gen	Generator for the quadratic part

Definition at line 94 of file walsh-expansion-2.hh.

5.139.2.2 generate_ising1_long_range()

```
void generate_ising1_long_range (
                int n,
                 double alpha )
```

Generate one dimensional Ising model with long range interactions.

Similar to a Dyson-Ising model except for the finite, instead of infinite, linear chain of spins.

Its expression is of the form

$$f(x) = \sum_{ij} J(d_{ij})(1 - 2x_i)(1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{ij} J(d_{ij})(-1)^{x_i + x_j}$$

where $J(d_{ij})$ is the interaction between sites i and j, $d_{ij}=|i-j|$, and $J(n)=n^{-\alpha}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

Parameters

n	Size of bit vectors
alpha	Exponential decay parameter

Definition at line 82 of file walsh-expansion-2.cc.

5.139.2.3 generate ising1 long range periodic()

```
void generate_ising1_long_range_periodic (  \mbox{int } n, \\ \mbox{double } alpha \mbox{ )}
```

Generate one dimensional Ising model with long range interactions and periodic boundary conditions.

Similar to a Dyson-Ising model except for the finite, instead of infinite, linear chain of spins.

Its expression is of the form

$$f(x) = \sum_{ij} J(d_{ij})(1 - 2x_i)(1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{ij} J(d_{ij})(-1)^{x_i + x_j}$$

where $J(d_{ij})$ is the interaction between sites i and j, $d_{ij} = \min\{|i-j|, n-|i-j|\}$, and $J(n) = n^{-\alpha}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

Parameters

n	Size of bit vectors
alpha	Exponential decay parameter

Definition at line 103 of file walsh-expansion-2.cc.

5.139.2.4 load()

void load (

```
std::string path ) [inline]
```

Load instance.

Parameters

```
path Path of the instance to load
```

Exceptions

```
std::runtime_error
```

Definition at line 185 of file walsh-expansion-2.hh.

5.139.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Instance generator.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vector
```

Definition at line 116 of file walsh-expansion-2.hh.

5.139.2.6 save()

Save instance.

Parameters

ра	th	Path of the instance to save

Exceptions

std::runtime_error

Definition at line 203 of file walsh-expansion-2.hh.

5.139.3 Member Data Documentation

5.139.3.1 _quadratic

```
std::vector<std::vector<double> > _quadratic [private]
```

Quadratic part.

Represented as a lower triangular matrix (without its diagonal).

Definition at line 72 of file walsh-expansion-2.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/walsh/walsh-expansion-2.hh
- · lib/hnco/functions/collection/walsh/walsh-expansion-2.cc

5.140 WalshTerm Struct Reference

Walsh transform term.

```
#include <hnco/functions/walsh-term.hh>
```

Public Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
Serialize.

Public Attributes

- std::vector< bool > feature
 Feature.
- · double coefficient

Coefficient.

5.140.1 Detailed Description

Walsh transform term.

Definition at line 35 of file walsh-term.hh.

5.140.2 Member Data Documentation

5.140.2.1 feature

std::vector<bool> feature

Feature.

Implemented with a vector bool instead of a bit_vector_t to reduce the memory consumption.

Definition at line 42 of file walsh-term.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/functions/walsh-term.hh

Index

_compare_index_value	bernoulli_trials
Population, 267	MultiBitFlip, 210
_expression	BiasedCrossover, 67
AbstractMaxSat, 59	breed, 68
_functions	BitHerding, 68
Algorithm, 65	DYNAMICS_MAXIMIZE_INNER_PRODUCT, 70
_lookup	DYNAMICS_MINIMIZE_NORM, 70
Population, 267	BitMoment, 70
_patience	bm_add_columns
RandomLocalSearch, 282	hnco, 18
_pimpl	bm_add_rows
Hboa, 134	hnco, 18
Ltga, 189	bm_identity
ParameterLessPopulationPyramid, 248	hnco, 19
_q	bm invert
Qubo, 279	hnco, 19
_quadratic	bm multiply
WalshExpansion2, 347	hnco, 20
record evaluation time	bm_rank
ProgressTracker, 272	_ hnco, 20
_second	bm_row_echelon_form
SpinMoment, 302	hnco, 21
_weight	bm_set_column
ModelParameters, 205	 hnco, 21
~Logger	bm_solve
Logger, 185	hnco, 21
	bm_solve_upper_triangular
AbstractLabs, 55	hnco, 22
AbstractMaxSat, 56	bm_transpose
_expression, 59	hnco, 23
load, 57	BmPbil, 71
load_, 57	RESET_BIT_VECTOR, 74
save, 58	RESET_ITERATION, 74
save_, 58	RESET NO RESET, 74
add	SAMPLING_ASYNCHRONOUS, 74
ModelParameters, 204	SAMPLING_ASYNCHRONOUS_FULL_SCAN, 74
AdditiveGaussianNoise, 59	SAMPLING_SYNCHRONOUS, 74
AffineMap, 60	set_selection_size, 74
is_surjective, 61	breed
random, 62	BiasedCrossover, 68
Algorithm, 62	Crossover, 88
_functions, 65	UniformCrossover, 333
finalize, 64	bv_add
set_solution, 65	hnco, 24
update solution, 65	bv_from_size_type
AlgorithmFactory, 66	hnco, 25
make, 66	bv_from_stream
average	hnco, 25
ModelParameters, 204	by from string

hnco, 26	BitHerding, 70
bv_from_vector_bool	E ID 1 1 100
hnco, 26	EqualProducts, 100
bv_to_size_type	generate, 101
hnco, 26, 27	load, 102
bv_to_vector_bool	random, 102
hnco, 27	save, 102
	evaluate
Cache, 75	Function, 117
Cache, 76	NearestNeighborlsingModel1, 217
provides_incremental_evaluation, 77	NearestNeighborlsingModel2, 221
CallCounter, 77	OnBudgetFunction, 239
comma_selection	StopOnTarget, 309
Population, 262, 263	evaluate_incrementally
CommandLineAlgorithmFactory, 79	Function, 117
make, 80	OnBudgetFunction, 239
CommandLineApplication, 80	StopOnTarget, 310
CommandLineApplication, 81	evaluate_safely
CommandLineFunctionFactory, 82	Function, 118
Commuting Transvections	Tunction, TTO
TsAffineMap, 330	Factorization, 104
• •	Factorization, 105
CompactGa, 83	load, 106
CompleteSearch, 84	
ComplexToDouble < T >, 85	feature
compute_lengths	WalshTerm, 348
DyadicRealRepresentation< T >, 99	FfgenOptions, 106
compute_walsh_transform	finalize
hnco::function, 41	Algorithm, 64
Controller, 86	FirstAscentHillClimbing, 112
provides_incremental_evaluation, 87	FourPeaks, 113
Crossover, 87	get_maximum, 114
breed, 88	has_known_maximum, 115
	Function, 115
DeceptiveJump, 88	evaluate, 117
get_maximum, 90	evaluate_incrementally, 117
has_known_maximum, 90	evaluate_safely, 118
DecoratedFunctionFactory, 90	get_maximum, 118
make_function_controller, 91	provides_incremental_evaluation, 119
Decorator, 92	update, 119
difference_is_safe	FunctionFactory, 119
hnco::function::representation, 43	FunctionMapComposition, 120
DisjointTransvections	FunctionMapComposition, 121
TsAffineMap, 330	get_maximum, 122
DyadicComplexRepresentation	has_known_maximum, 122
DyadicComplexRepresentation< T >, 94, 95	FunctionPlugin, 123
DyadicComplexRepresentation < T >, 93	FunctionPlugin, 124
DyadicComplexRepresentation, 94, 95	Tunction lugin, 124
DyadicIntegerRepresentation	generate
•	EqualProducts, 101
DyadicIntegerRepresentation < T > , 96, 97	LinearFunction, 177
DyadicIntegerRepresentation< T >, 95	NearestNeighborlsingModel1, 217
DyadicIntegerRepresentation, 96, 97	
DyadicRealRepresentation	NearestNeighborIsingModel2, 222
DyadicRealRepresentation< T >, 98, 99	NkLandscape, 233
DyadicRealRepresentation< T >, 97	Partition, 253
compute_lengths, 99	WalshExpansion, 336
DyadicRealRepresentation, 98, 99	WalshExpansion1, 340
DYNAMICS_MAXIMIZE_INNER_PRODUCT	WalshExpansion2, 344
BitHerding, 70	generate_ising1_long_range
DYNAMICS_MINIMIZE_NORM	WalshExpansion2, 344

generate_ising1_long_range_periodic	Hea< Moment, Herding >, 137
WalshExpansion2, 345	Hea< Moment, Herding >, 135
Generator, 124	Hea, 137
reset, 125	LOG_DELTA, 137
set_seed, 125	LOG DTU, 137
GeneticAlgorithm, 126	LOG ERROR, 137
GeneticAlgorithm, 127	LOG_MOMENT_MATRIX, 137
get best by	LOG_SELECTION, 137
Population, 263, 264	set_reset_period, 138
get_best_value	set_selection_size, 138
·	
Population, 264, 265	Hiff, 139
get_last_improvement	get_maximum, 140
ProgressTracker, 271	has_known_maximum, 140
get_maximum	hnco, 13
DeceptiveJump, 90	bm_add_columns, 18
FourPeaks, 114	bm_add_rows, 18
Function, 118	bm_identity, 19
FunctionMapComposition, 122	bm_invert, 19
Hiff, 140	bm_multiply, 20
Jump, 169	bm rank, 20
LeadingOnes, 174	bm_row_echelon_form, 21
LongPath, 187	bm set column, 21
Needle, 225	bm_solve, 21
OneMax, 241	bm_solve_upper_triangular, 22
Plateau, 259	bm_transpose, 23
	_ ,
PriorNoise, 269	bv_add, 24
Ridge, 288	bv_from_size_type, 25
SixPeaks, 297	bv_from_stream, 25
Trap, 327	bv_from_string, 26
get_worst_bv	bv_from_vector_bool, 26
Population, 265	bv_to_size_type, 26, 27
	bv_to_vector_bool, 27
HammingBall, 128	is_in_range, 28
HammingBall, 129	perm_identity, 29
HammingSphere, 129	perm_random, 29
HammingSphere, 131	sbv_flip, 29
HammingSphereIterator, 131	sbv is valid, 30
HammingSphereIterator, 132	sparse_bit_vector_t, 17
has_known_maximum	hnco::algorithm, 30
DeceptiveJump, 90	pv_add, 33
FourPeaks, 115	pv_add, 33 pv_average, 34
FunctionMapComposition, 122	· — ·
Hiff, 140	pv_bound, 34
Jump, 169	pv_init, 34
LeadingOnes, 174	pv_sample, 35
	pv_uniform, 35
LinearFunction, 178	pv_update, 35, 36
LongPath, 188	hnco::algorithm::bm_pbil, 36
Needle, 225	hnco::algorithm::fast_efficient_p3, 37
OneMax, 242	hnco::algorithm::hea, 37
Plateau, 259	hnco::app, 38
PriorNoise, 269	hnco::exception, 38
Ridge, 288	hnco::function, 39
SixPeaks, 297	compute_walsh_transform, 41
SummationCancellation, 316	hnco::function::controller, 41
Trap, 327	hnco::function::modifier, 42
WalshExpansion1, 340	
Hboa, 133	hnco::function::representation, 43
_pimpl, 134	difference_is_safe, 43
Lea	hnco::logging, 44
TIVA	

hnco::map, 44 transvection_sequence_t, 46 ts_is_valid, 46	has_known_maximum, 178 load, 178 provides_incremental_evaluation, 178
ts_multiply, 48	random, 179
ts_random, 49	save, 179
ts_random_commuting, 49	LinearMap, 180
ts_random_disjoint, 50	is_surjective, 181
ts_random_non_commuting, 50	random, 181
ts_random_unique_destination, 51	load
ts_random_unique_source, 51	AbstractMaxSat, 57
hnco::neighborhood, 52	EqualProducts, 102
hnco::random, 53	Factorization, 106
HncoEvaluator, 140	LinearFunction, 178
HncoOptions, 141	MaxNae3Sat, 196
Human, 159	NearestNeighborIsingModel1, 218
Hypercubelterator, 160	NearestNeighborIsingModel2, 222
	NkLandscape, 234
Implementation, 161	Partition, 254
init	Qubo, 279
ModelParameters, 204	Sudoku, 313
init_beta	Translation, 321
SimulatedAnnealing, 291	WalshExpansion, 337
Injection, 161	WalshExpansion1, 340
Injection, 162	WalshExpansion2, 345
IntegerCategoricalRepresentation, 163	load_
IntegerCategoricalRepresentation, 164	AbstractMaxSat, 57
is_in_range	Sudoku, 313
hnco, 28	LocalSearchAlgorithm < Neighborhood >, 182
is_surjective	LOG DELTA
AffineMap, 61	Hea< Moment, Herding >, 137
LinearMap, 181	LOG_DTU
Map, 191	Hea< Moment, Herding >, 137
MapComposition, 193	LOG ERROR
Permutation, 258	Hea< Moment, Herding >, 137
Projection, 275	LOG_MOMENT_MATRIX
Translation, 321	Hea< Moment, Herding >, 137
TsAffineMap, 330	LOG_SELECTION
is_valid	Hea< Moment, Herding >, 137
Transvection, 323	LogContext, 183
IterativeAlgorithm, 164	Logger, 184
IterativeAlgorithm, 166	~Logger, 185
maximize, 166	Logger, 185
set_num_iterations, 167	LongPath, 186
Iterator, 167	get_maximum, 187
,	has_known_maximum, 188
Jump, 168	Ltga, 188
get_maximum, 169	_pimpl, 189
has_known_maximum, 169	_ριτιρί, 100
	make
Labs, 170	AlgorithmFactory, 66
LabsMeritFactor, 171	CommandLineAlgorithmFactory, 80
LastEvaluation, 172	make_function_controller
LeadingOnes, 173	DecoratedFunctionFactory, 91
get_maximum, 174	Map, 190
has_known_maximum, 174	is_surjective, 191
LinearCategoricalRepresentation, 174	map
LinearCategoricalRepresentation, 175	Neighborhood, 230
LinearFunction, 176	MapComposition, 191
generate, 177	is_surjective, 193
	:- <u></u> ;

MapComposition, 192	NeighborhoodIterator, 231
MapgenOptions, 193	NeighborhoodIterator, 231
maximize	NkLandscape, 232
IterativeAlgorithm, 166	generate, 233
MaxNae3Sat, 196	load, 234
load, 196	random, 234
MaxSat, 197	random_structure, 234
random, 198	save, 235
Mimic, 199	NonCommutingTransvections
Mmas, 201	TsAffineMap, 330
Model, 202	NpsPbil, 235
ModelParameters, 203	1461 511, 200
_weight, 205	OnBudgetFunction, 237
add, 204	evaluate, 239
average, 204	evaluate_incrementally, 239
init, 204	update, 239
update, 205	OneMax, 240
Modifier, 206	get_maximum, 241
MuCommaLambdaEa, 207	has_known_maximum, 242
MuCommaLambdaEa, 208	provides_incremental_evaluation, 242
MultiBitFlip, 209	OnePlusLambdaCommaLambdaGa, 243
bernoulli trials, 210	OnePlusLambdaCommaLambdaGa, 244
MultiBitFlip, 210	OnePlusOneEa, 245
rejection sampling, 210	OnePlusOneEa, 246
multiply	set_num_iterations, 247
Transvection, 323, 324	
MultivariateFunctionAdapter	ParameterLessPopulationPyramid, 247
MultivariateFunctionAdapter< Fn, Rep, Conv >,	_pimpl, 248
212	ParsedModifier, 249
MultivariateFunctionAdapter< Fn, Rep, Conv >, 211	ParsedModifier, 250
MultivariateFunctionAdapter, 212	ParsedMultivariateFunction
MuPlusLambdaEa, 213	ParsedMultivariateFunction < Parser >, 251
	ParsedMultivariateFunction< Parser >, 250
MuPlusLambdaEa, 214 mutate	ParsedMultivariateFunction, 251
Neighborhood, 230	Partition, 252
Neighborhood, 250	generate, 253
NearestNeighborIsingModel1, 215	load, 254
evaluate, 217	random, 254
generate, 217	save, 254
load, 218	Pbil, 255
provides_incremental_evaluation, 218	perm_identity
random, 218	hnco, 29
save, 219	perm_random
NearestNeighborlsingModel2, 219	hnco, 29
evaluate, 221	Permutation, 257
generate, 222	is surjective, 258
load, 222	Plateau, 258
provides incremental evaluation, 223	get maximum, 259
random, 223	has_known_maximum, 259
save, 223	plus_selection
Needle, 224	Population, 266
get_maximum, 225	Population, 260
has_known_maximum, 225	_compare_index_value, 267
Negation, 226	_lookup, 267
provides_incremental_evaluation, 227	comma_selection, 262, 263
Neighborhood, 228	get_best_bv, 263, 264
map, 230	get_best_value, 264, 265
mutate, 230	get_worst_bv, 265
Neighborhood, 229	plus_selection, 266
inglibolliou, 220	pido_30100tion, 200

Population, 262	WalshExpansion, 337
PriorNoise, 267	WalshExpansion1, 341
get_maximum, 269	WalshExpansion2, 346
has_known_maximum, 269	random_non_commuting
provides_incremental_evaluation, 269	Transvection, 325
ProgressTracker, 270	random_structure
_record_evaluation_time, 272	NkLandscape, 234
get_last_improvement, 271	RandomLocalSearch, 280
ProgressTracker::Event, 103	patience, 282
ProgressTrackerContext, 272	set_patience, 281
Projection, 273	RandomSearch, 282
is surjective, 275	RandomSelection, 283
Projection, 274	RandomSelection, 284
provides_incremental_evaluation	RandomWalk, 284
Cache, 77	rejection_sampling
Controller, 87	MultiBitFlip, 210
Function, 119	reset
LinearFunction, 178	Generator, 125
NearestNeighborIsingModel1, 218	RESET BIT VECTOR
NearestNeighborIsingModel2, 223	BmPbil, 74
Negation, 227	RESET ITERATION
OneMax, 242	BmPbil, 74
PriorNoise, 269	RESET NO RESET
WalshExpansion1, 341	BmPbil, 74
pv_add	Restart, 286
hnco::algorithm, 33	Ridge, 287
pv_average	get_maximum, 288
hnco::algorithm, 34	has_known_maximum, 288
pv_bound	
hnco::algorithm, 34	SAMPLE_DLS
pv_init	SpinHerding, 300
hnco::algorithm, 34	SAMPLE_GREEDY
pv_sample	SpinHerding, 300
hnco::algorithm, 35	SAMPLE_RLS
pv_uniform	SpinHerding, 300
hnco::algorithm, 35	SAMPLING_ASYNCHRONOUS
pv_update	BmPbil, 74
hnco::algorithm, 35, 36	SAMPLING_ASYNCHRONOUS_FULL_SCAN
PvAlgorithm, 275	BmPbil, 74
	SAMPLING_SYNCHRONOUS
q_variation	BmPbil, 74
SpinHerding, 300	SamplingMode
Qubo, 277	TsAffineMap, 329
_q, 279	Save
load, 279	AbstractMaxSat, 58
random	EqualProducts, 102
	LinearFunction, 179
AffineMap, 62 EqualProducts, 102	NearestNeighborlsingModel1, 219
LinearFunction, 179	NearestNeighborlsingModel2, 223
LinearMap, 181	NkLandscape, 235 Partition, 254
MaxSat, 198	Sudoku, 314
NearestNeighborlsingModel1, 218	Translation, 322
NearestNeighborIsingModel2, 223	WalshExpansion, 337
NkLandscape, 234	WalshExpansion1, 342
Partition, 254	WalshExpansion2, 346
Sudoku, 313	•
Transvection, 324	save_ AbstractMaxSat, 58
TsAffineMap, 330	sbv_flip
. or minomap, ooo	004_IIIP

hnco, 29	SummationCancellation, 314
sbv_is_valid	has_known_maximum, 316
hnco, 30	SummationCancellation, 316
ScalarToDouble < T >, 289	
select	TargetReached, 317
TournamentSelection, 319	TournamentSelection, 318
set_mutation_rate	select, 319
StandardBitMutation, 304	TournamentSelection, 319
set_num_iterations	Translation, 320
IterativeAlgorithm, 167	is_surjective, 321
OnePlusOneEa, 247	load, 321
set patience	save, 322
RandomLocalSearch, 281	Transvection, 322
set_reset_period	is_valid, 323
Hea< Moment, Herding >, 138	multiply, 323, 324
set seed	random, 324
Generator, 125	random_non_commuting, 325
set_selection_size	transvection_sequence_t
BmPbil, 74	hnco::map, 46
Hea< Moment, Herding >, 138	Trap, 325
set solution	get_maximum, 327
Algorithm, 65	has_known_maximum, 327
SimulatedAnnealing, 290	Trap, 327
init_beta, 291	ts_is_valid
SingleBitFlip, 292	hnco::map, 46
SingleBitFlipIterator, 293	ts_multiply
SingleBitFlipIterator, 294	hnco::map, 48
SinusSummationCancellation, 294	ts_random
SixPeaks, 296	hnco::map, 49
get_maximum, 297	ts_random_commuting
has_known_maximum, 297	hnco::map, 49
sparse_bit_vector_t	ts_random_disjoint
hnco, 17	hnco::map, 50
SpinHerding, 298	ts_random_non_commuting
q_variation, 300	hnco::map, 50
SAMPLE_DLS, 300	ts_random_unique_destination
SAMPLE_GREEDY, 300	hnco::map, 51
SAMPLE_RLS, 300	ts_random_unique_source
SpinHerding, 300	hnco::map, 51
SpinMoment, 301	TsAffineMap, 328
second, 302	CommutingTransvections, 330
StandardBitMutation, 302	DisjointTransvections, 330
set_mutation_rate, 304	is_surjective, 330
StandardBitMutation, 303, 304	NonCommutingTransvections, 330
SteepestAscentHillClimbing, 305	random, 330
StopOnMaximum, 306	SamplingMode, 329
StopOnMaximum, 307	Unconstrained, 330
StopOnTarget, 308	UniqueDestination, 330
evaluate, 309	UniqueSource, 330
evaluate_incrementally, 310	
StopOnTarget, 309	Umda, 331
update, 310	Unconstrained
StopWatch, 311	TsAffineMap, 330
Sudoku, 311	UniformCrossover, 332
load, 313	breed, 333
load_, 313	UniformSelection, 333
random, 313	UniformSelection, 334
save, 314	UniqueDestination
, - · ·	TsAffineMap, 330

```
UniqueSource
    TsAffineMap, 330
update
    Function, 119
    ModelParameters, 205
    OnBudgetFunction, 239
    StopOnTarget, 310
update_solution
    Algorithm, 65
WalshExpansion, 335
    generate, 336
    load, 337
    random, 337
    save, 337
WalshExpansion1, 338
    generate, 340
    has_known_maximum, 340
    load, 340
    provides_incremental_evaluation, 341
    random, 341
    save, 342
WalshExpansion2, 342
    _quadratic, 347
    generate, 344
    generate_ising1_long_range, 344
    generate_ising1_long_range_periodic, 345
    load, 345
    random, 346
    save, 346
WalshTerm, 347
    feature, 348
```