

				Sub	ject	Cod	le: k	C A	301
Roll No:									

MCA (SEM III) THEORY EXAMINATION 2021-22 ARTIFICIAL INTELLIGENCE

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 2

- a. Define the terms weak artificial intelligence and strong artificial intelligence.
- b. What is natural language processing?
- c. Explain AND-OR graph.
- d. Differentiate between simple hill climbing and steepest ascent hill climbing algorithms.
- e. Justify the usage of universal and existential quantifier with an example.
- f. Compare propositional logic and predicate logic
- g. Explain naïve bayes classifier.
- h. What are statistical learning models.
- i. Write short note on Support Vector Machine (SVM)
- j. What does a Bayesian network represent?

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

- a. What is PEAS description of the task environment for "Internet shopping agent".
- b. Describe alpha-beta pruning and give the other modifications to Min-Max procedure to improve its performance?
- c. Write the steps for converting FOPL into CNF.
- d. What is machine learning? Differentiate between supervised, unsupervised and reinforcement learning.
- e. Design principles of pattern recognition system. Explain Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Describe intelligent agents in terms of Precepts, Actions, Goals and Environment with suitable block diagram and example.
- (b) Differentiate between goal-based agent and utility-based intelligent agents with the help of block diagram?

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Identify the difference between forward and backward chaining? Given the knowledge base as: P, P→Q, Q→R. Infer R by using forward and backward chaining?

				Sub	ject	Cod	le: k	KCA	301
Roll No:									

(b) Explain the A* Algorithm on the following figure. Explicitly write down the queue at each step and find the path till goal state.

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

Printed Page: 2 of 2

- (a) Convert the following sentence into predicate logic and then prove "Was Marcus loyal to Caesar? using resolution:
 - 1. Marcus was a man.
 - 2. Marcus was a Pompeian.
 - 3. All Pompeian's were Romans.
 - 4. Caesar was a ruler.
 - 5. All Romans were either loyal to Caesar or hated him.
 - 6. Everyone is loyal to someone.
 - 7. People only try to assassinate rulers they are not loyal to.
 - 8. Marcus tried to assassinate Caesar.
- (b) Distinguish between Markov model and Hidden Markov Model (HMM) in probabilistic reasoning?

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Describe the decision tree-learning model by choosing a suitable example? Discuss the issues related to the applications of decision tree
- (b) Explain the expectation and maximization (EM) algorithm for finding the maximum likelihood with hidden variables

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) To which category of clustering schemes does the k-means algorithm belong? What is its major advantage? Which are the factors that influence the computation duration of this algorithm
- (b) Show, how classification is done by k-nearest neighbors. Construct KNN classification algorithms on the following dataset and predict the class for X (p1=4, p2=6). Given k=3.

P1	P2	Class
6	5	False
7	7	False
3	5	True
2	4	True