The perceptron

TEAM POTATO CLOCK

Erin Edkins Alex Ludert Gautier PICOT

ICS 635 University of Hawai'i September 2, 2016

Our Perceptron program classifies of a set of N two-dimensional points (x_i, y_i) with label $l_i = \pm 1$ by using a *learning rate* $< c \le 1$ (0.5 by default).

▶ *Datas* : (x_j, y_j, I_j) , $1 \le j \le N$

- ▶ *Datas* : $(x_j, y_j, l_j), 1 \le j \le N$
- ▶ *Points* : $P_j = (1, x_j, y_j), 1 \le j \le N$

- ▶ *Datas* : $(x_j, y_j, l_j), 1 \le j \le N$
- ▶ *Points* : $P_j = (1, x_j, y_j), 1 \le j \le N$
- ▶ Initialize the *weight* vector w = (0, 0, 0)

- ▶ *Datas* : $(x_j, y_j, l_j), 1 \le j \le N$
- ▶ *Points* : $P_j = (1, x_j, y_j), 1 \le j \le N$
- ▶ Initialize the *weight* vector w = (0, 0, 0)
- ▶ Initialize the *outputs* $y_j = 1, 1 \le j \le N$

- ▶ $Datas: (x_j, y_j, l_j), 1 \le j \le N$
- ▶ *Points* : $P_j = (1, x_j, y_j), 1 \le j \le N$
- ▶ Initialize the *weight* vector w = (0, 0, 0)
- ▶ Initialize the *outputs* $y_j = 1, 1 \le j \le N$
- ► Transfer θ : Step function

- **Datas**: $(x_i, y_i, l_i), 1 \le j \le N$
- ▶ Points: $P_i = (1, x_i, y_i), 1 < i < N$
- Initialize the weight vector w = (0, 0, 0)
- ▶ Initialize the *outputs* $y_i = 1, 1 < j < N$
- Transfer θ : Step function

- While the classification is not achieved
 - Initialize wrong= 0
 - ▶ For each point P_i , calculate the *new label* $y_i = \theta(w \cdot P_i)$
 - ▶ If $y_i \neq I_i$, update the weight $w+=c*y_i*P_J$ and wrong+=1

- ▶ *Datas* : $(x_j, y_j, l_j), 1 \le j \le N$
- ▶ *Points* : $P_j = (1, x_j, y_j), 1 \le j \le N$
- ▶ Initialize the *weight* vector w = (0, 0, 0)
- ▶ Initialize the *outputs* $y_j = 1, 1 \le j \le N$
- ► Transfer θ : Step function

- While the classification is not achieved
 - ► Initialize wrong= 0
 - ▶ For each point P_j , calculate the *new label* $y_j = \theta(w \cdot P_j)$
 - ▶ If $y_j \neq l_j$, update the weight $w+=c*y_j*P_J$ and wrong+=1
- ► Classification is *achieved* if wrong= 0

Our Perceptron program classifies of a set of *N two-dimensional* points (x_j, y_j) with label $l_j = \pm 1$ by using a *learning rate* $< c \le 1$ (0.5 by default).

- ▶ *Datas* : $(x_j, y_j, l_j), 1 \le j \le N$
- ▶ *Points* : $P_i = (1, x_i, y_i), 1 \le i \le N$
- ▶ Initialize the *weight* vector w = (0, 0, 0)
- ▶ Initialize the *outputs* $y_i = 1, 1 \le j \le N$
- Transfer θ : Step function

- While the classification is not achieved
 - Initialize wrong= 0
 - ▶ For each point P_j , calculate the *new label* $y_j = \theta(w \cdot P_j)$
 - ▶ If $y_j \neq l_j$, update the weight $w+=c*y_j*P_J$ and wrong+=1
- ► Classification is *achieved* if wrong= 0

Remark: to guarantee that the algorithm stops, we *limit the while loop loops* (at most 50 iterations by default).

To test our algorithm, we have implemented a Data Fake Generator.

▶ Generates a cloud of random 2D points separated by a line

- Generates a cloud of random 2D points separated by a line
 - ▶ Random $slope -1 \le m \le 1$ and random y-intercept $-1 \le b \le 1$ by default.

- ▶ Generates a cloud of random 2D points separated by a line
 - ▶ Random $slope -1 \le m \le 1$ and random y-intercept $-1 \le b \le 1$ by default.
 - ▶ The user may enter desired values for *m* and *b*.

- Generates a cloud of random 2D points separated by a line
 - ▶ Random slope $-1 \le m \le 1$ and random y-intercept $-1 \le b \le 1$ by default.
 - ▶ The user may enter desired values for m and b.

Figure: A collection 100 points linearly separated

Convergence of the algorithm : the linearly separable case

The algorithm *converges* when the classified datas can be separated by a line.

In this animation, the *green line* shows the line defined by the weight vector w. Through the execution of the algorithm, the line *stabilizes* \iff the weight vector is *no longer* updated \iff the algorithm *converges*.

Divergence of the algorithm : the non linearly separable case

The algorithm diverges when the classified datas can not be separated by a

line.

In this animation, the *green line* shows the line defined by the weight vector w. Through the execution of the algorithm, the line *does not stabilize* \iff the weight vector *keeps being updated* \iff the algorithm *diverges*.

Thank you...

...Mister Rosenblatt!

