Na situação da figura II, o peso correspondente à massa de 1,0 kg (que vale $1,0\cdot g$) equilibra a tração do fio aplicada no prato da esquerda. Logo:

$$T = 1.0 \cdot q$$

No corpo em equilíbrio:

$$T + E = P \implies E = P - T = 1,5 \cdot g - 1,0 \cdot g = 0,5 \cdot g$$

Como $E = d_a V g$, temos:

$$d_a Vg = 0.5 \cdot g \implies d_a V = 0.5 \implies 1.0V = 0.5 \therefore V = 0.5 L$$

Resposta: 0,5 L

(Dados: densidade da água = 1 g/cm 3 = 1 kg/L; g = 10 m/s 2 ; massa do corpo = 8 kg)

T = 1.0g

Solução:

O módulo do empuxo no corpo nas duas situações é o mesmo, pois o corpo permaneceu totalmente imerso:

$$E = d_a V g$$

Mas:
$$d_a = 1 \text{ kg/L}$$
; $V = 20 \text{ L}$; $g = 10 \text{ m/s}^2$

O módulo do peso do corpo é igual a: $P = mg = 8 \cdot 10$ \therefore P = 80 N

Como o módulo do empuxo é maior que o do peso, o corpo tende a subir. Na situação da **figura** I, o fio impede a subida do corpo. Na situação da **figura** II, o fio é cortado e o corpo sobe, deformando a mola. Depois de a mola sofrer a deformação x, o equilíbrio é novamente obtido. A força \vec{F} que a mola exerce no corpo tem intensidade:

$$F + P = E \implies F = E - P = 200 \text{ N} - 80 \text{ N} \implies F = 120 \text{ N}$$

Pela lei das deformações elásticas de Hooke: F = kx

Substituindo F = 120 N e k = 50 N/cm, temos:
$$50x = 120$$
 \therefore $x = 2,4$ cm

Resposta: x = 2.4 cm

EXERCÍCIOS PROPOSTOS

- **P. 511** Um balão de hidrogênio de peso igual a 600 N está preso a um fio em equilíbrio estático vertical. Seu volume é igual a 80 m³. Adote $g = 10 \text{ m/s}^2$. Densidade do ar: $d_{ar} = 1,25 \text{ kg/m}^3$. Determine:
 - a) a intensidade do empuxo exercido pelo ar sobre o balão;
 - b) a intensidade da tração no fio que sustém o balão.
- P. 512 (Vunesp) Um bloco de madeira de massa 0,63 kg é abandonado cuidadosamente sobre um líquido desconhecido, que se encontra em repouso dentro de um recipiente. Verifica-se que o bloco desloca 500 cm³ do líquido, até que passa a flutuar em repouso.
 - a) Considerando g = 10,0 m/s², determine a intensidade (módulo) do empuxo exercido pelo líquido no bloco.
 - b) Qual é o líquido que se encontra no recipiente?
 Para responder, consulte a tabela ao lado, após efetuar seus cálculos.

Líquido	Massa específica (g/cm³) à temperatura ambiente
Álcool etílico	0,79
Benzeno	0,88
Óleo mineral	0,92
Água	1,00
Leite	1,03
Glicerina	1,26