Planeacion Agregada Caso: ManuTech S.A.

Por:

Vicente Ramírez Samperio

Heriberto de la Cruz Resendiz

ManuTech S.A. es una empresa líder en la fabricación de componentes electrónicos estandarizados. La compañía enfrenta el reto de planificar su producción para los próximos 12 meses, en un entorno donde la demanda varía mes a mes y existen restricciones tanto internas como externas.

Contexto y Problema

Desarrollar un modelo de planeación agregada que busque equilibrar la demanda proyectada con la capacidad de producción disponible, minimizando al mismo tiempo los costos totales.

Objetivo del Modelo

Variable	Descripción	Unidades
w_t	Número de trabajadores empleados en el mes(t)	trabajadores
H_t	Número de trabajadores contratados en el mes(t)	trabajadores
L_t	Número de trabajadores despedidos en el mes(t)	trabajadores
P_t	Producción en tiempo normal en el mes(t)	miles de unidades
O_t	Horas totales de tiempo extra utilizadas en el mes(t)	horas
PO_t	Producción en tiempo extra en el mes(t)	miles de unidades
i_t	Inventario al final del mes(t)	miles de unidades
PA_t	Unidades subcontratadas con el proveedor A en el mes(t)	miles de unidades
PB_t	Unidades subcontratadas con el proveedor B en el mes(t)	miles de unidades
PC_t	Unidades subcontratadas con el proveedor C en el mes(t)	miles de unidades

Modelo de PL (variables)

Parámetro	Descripción	Valor
D _t	Demanda en el mes(t)	Ver tabla de demanda mensual
I_0	Inventario inicial	60 miles de unidades
W ₀	Número inicial de trabajadores	1,200 trabajadores
d	Días laborables por mes	23 días
h	Horas laborables por día	8 horas
р	Tiempo de producción por unidad	8 minutos (0.133 horas)
S_n	Salario por hora en tiempo normal	\$25 por hora
Se	Salario por hora en tiempo extra (50% adicional)	\$37.5 por hora
c_m	Costo de materiales por unidad	\$24 por unidad
c_i	Costo de mantener inventario	\$3 por unidad por mes
c_a	Costo unitario del proveedor A	\$39 por unidad
c _b	Costo unitario del proveedor B	\$37.5 por unidad
c _c	Costo unitario del proveedor C	\$38 por unidad
Capa	Capacidad máxima del proveedor A	150 miles de unidades por mes
Capb	Capacidad máxima del proveedor B	150 miles de unidades por mes
Cap_c	Capacidad máxima del proveedor C	90 miles de unidades por mes
O _{max}	Máximo de horas extra por trabajador por mes	18 horas

Modelo de PL (parámetros)

Función objetivo

$$MIN Z = \sum_{i} t = 112[(sn \cdot d \cdot h \cdot Wt) + (cm \cdot Pt) + (se \cdot Ot) + (ci \cdot It) + (cA \cdot PAt) + (cB \cdot PBt) + (cC \cdot PCt)]$$

Restricciones

1.- Producción en tiempo extra:

$$POt = \frac{O_t}{1000p}$$

2.- Balance de inventario:

$$It = It - 1 + Pt + POt + PAt + PBt + PCt - Dt$$

3.- Capacidad de producción en tiempo normal:

$$Pt \le \frac{W_t dh}{1000p}$$

4.- Limitación de horas extra:

$$0t \le 0max \cdot Wt$$

Restricciones

5.- Capacidad de los proveedores:

$$PA_t \leq Cap_a$$

$$PB_t \leq Cap_b$$

$$PC_t \leq Cap_c$$

6.- Balance de fuerza laboral:

$$Wt = W_{t-1} + H_t - L_t$$

7.- Inventario y fuerza laboral inicial y final:

$$W_{12}=W_0$$

8.- No negatividad:

$$Wt, Ht, Lt, Pt, Ot, POt, It, PAt, PBt, PCt \ge 0 \ \forall t = 1..12$$

Costo Total: \$ 33,318,068.00											
									Search:	ch:	
Mes 🍦	Trabajadores 🖣	Prod. Normal 🛊	Horas Extra 🖣	Prod. Extra 🍦	Prov. A 🏺	Prov. B 🏺	Prov. C 🏺	Inventario 🖣	Demanda 🝦	Prod. Total 🍦	
1	449	620.00	0.00	0.00	150.00	150.00	90.00	0.00	950	1,010.00	
2	478	660.00	0.00	0.00	150.00	150.00	90.00	0.00	1050	1,050.00	
3	587	810.00	0.00	0.00	150.00	150.00	90.00	0.00	1200	1,200.00	
4	659	910.00	0.00	0.00	150.00	150.00	90.00	0.00	1300	1,300.00	
5	768	1,060.00	0.00	0.00	150.00	150.00	90.00	0.00	1450	1,450.00	
6	877	1,210.00	0.00	0.00	150.00	150.00	90.00	0.00	1600	1,600.00	
7	804	1,110.00	0.00	0.00	150.00	150.00	90.00	0.00	1500	1,500.00	
8	514	710.00	0.00	0.00	150.00	150.00	90.00	0.00	1100	1,100.00	
9	406	560.00	0.00	0.00	150.00	150.00	90.00	0.00	950	950.00	
10	370	510.00	0.00	0.00	150.00	150.00	90.00	0.00	900	900.00	
11	39	54.00	0.00	0.00	150.00	150.00	90.00	756.00	1200	444.00	
12	1200	1,656.00	0.00	0.00	150.00	150.00	90.00	60.00	1350	2,046.00	
Total		9,870.00	0.00	0.00	1,800.00	1,800.00	1,080.00		14550	14,550.00	

Solución Optima

Demanda vs. Producción

Distribución de la Producción

El modelo de planeación agregada que se desarrolló es una herramienta útil y bien estructurada que considera varios aspectos importantes como el número de trabajadores, la producción interna, el uso de horas extra, la contratación de proveedores externos y el manejo de inventarios. Gracias a este modelo, fue posible encontrar una forma eficiente de operar, logrando un ahorro de \$33.3 millones al año. Esto se consiguió al producir el 67.8% con personal interno y subcontratar el 32.2% restante, sin recurrir a horas extra debido a su alto costo, y manteniendo inventarios bajos.

Conclusión