

www.vishay.com

Vishay Semiconductors

# FRED Pt® Gen 5 Ultrafast Rectifier Diode, 600 V, 150 A



SOT-227

| PRIMARY CHARACTERISTICS                                  |                                       |  |  |  |  |  |
|----------------------------------------------------------|---------------------------------------|--|--|--|--|--|
| V <sub>R</sub>                                           | 600 V                                 |  |  |  |  |  |
| V <sub>F</sub> (typical) at 75 A, per diode              | 1.34 V                                |  |  |  |  |  |
| t <sub>rr</sub> (typical) at 75 A, per diode             | 70 ns                                 |  |  |  |  |  |
| I <sub>F(DC)</sub> per module at T <sub>C</sub> = 117 °C | 150 A                                 |  |  |  |  |  |
| Туре                                                     | Modules - diode, FRED Pt®             |  |  |  |  |  |
| Package                                                  | SOT-227                               |  |  |  |  |  |
| Circuit configuration                                    | Two separate diodes, parallel pin-out |  |  |  |  |  |

#### **FEATURES**

- Ultrafast and optimized Q<sub>rr</sub>
- Best in class forward voltage drop and switching losses trade off



- Optimized for high speed operation
- 175 °C maximum operating junction temperature
- Electrically isolated base plate
- Large creepage distance between terminal
- Simplified mechanical designs, rapid assembly
- Designed and qualified for industrial level
- UL approved file E78996
- Material categorization: for definitions of compliance please see <a href="https://www.vishav.com/doc?99912">www.vishav.com/doc?99912</a>

#### **DESCRIPTION / APPLICATIONS**

Featuring a unique combination of low conduction and switching losses, the VS-U5FH150FA60 is the right choice for high frequency converters, both soft switched / resonant. The semiconductor in the SOT-227 package is isolated from the copper base plate, allowing for common heatsinks and compact assemblies to be built.

These modules are specifically designed to improve efficiency of PFC and output rectification stages of EV / HEV battery charging stations, booster stage of solar inverters, and UPS applications, these devices are perfectly matched to operate with MOSFETs or high speed IGBTs.

| ABSOLUTE MAXIMUM RATINGS                         |                                   |                                 |             |       |  |  |
|--------------------------------------------------|-----------------------------------|---------------------------------|-------------|-------|--|--|
| PARAMETER                                        | SYMBOL                            | TEST CONDITIONS                 | MAX.        | UNITS |  |  |
| Cathode to anode voltage                         | V <sub>R</sub>                    |                                 | 600         | V     |  |  |
| Continuous forward current per diode             | I <sub>F</sub>                    | T <sub>C</sub> = 117 °C         | 75          | Δ.    |  |  |
| Single pulse forward current per diode           | I <sub>FSM</sub>                  | T <sub>J</sub> = 25 °C          | 575         | А     |  |  |
| Maximum power dissipation per module             | P <sub>D</sub>                    | T <sub>C</sub> = 117 °C         | 215         | W     |  |  |
| RMS isolation voltage                            | V <sub>ISOL</sub>                 | Any terminal to case, t = 1 min | 2500        | V     |  |  |
| Operating junction and storage temperature range | T <sub>J</sub> , T <sub>Stg</sub> |                                 | -55 to +175 | °C    |  |  |

| <b>ELECTRICAL SPECIFICATIONS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                 |                                                     |      |      |      |       |
|--------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------|------|------|------|-------|
| PARAMETER                                                                            | SYMBOL          | TEST CONDITIONS                                     | MIN. | TYP. | MAX. | UNITS |
| Cathode to anode breakdown voltage                                                   | $V_{BR}$        | I <sub>R</sub> = 100 μA                             | 600  | -    | -    |       |
| Forward voltage                                                                      | $V_{FM}$        | I <sub>F</sub> = 75 A                               | -    | 1.34 | 1.7  | V     |
|                                                                                      |                 | I <sub>F</sub> = 75 A, T <sub>J</sub> = 150 °C      | -    | 1.12 | -    |       |
|                                                                                      |                 | V <sub>R</sub> = 600 V                              | -    | 0.2  | 50   |       |
| Reverse leakage current                                                              | I <sub>RM</sub> | T <sub>J</sub> = 125 °C, V <sub>R</sub> = 600 V     | -    | 31   | -    | μA    |
|                                                                                      |                 | $T_J = 150  ^{\circ}\text{C},  V_R = 600  \text{V}$ | -    | 139  | -    |       |



| <b>DYNAMIC RECOVERY CHARACTERISTICS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                  |                                   |                                                                                     |      |      |      |       |
|---------------------------------------------------------------------------------------------|------------------|-----------------------------------|-------------------------------------------------------------------------------------|------|------|------|-------|
| PARAMETER                                                                                   | SYMBOL           | TEST CONDITIONS                   |                                                                                     | MIN. | TYP. | MAX. | UNITS |
| Dovorgo roccyony timo                                                                       |                  | T <sub>J</sub> = 25 °C            | $I_F = 75 \text{ A},$ $di_F/dt = 1000 \text{ A/}\mu\text{s},$ $V_R = 400 \text{ V}$ | -    | 70   | -    | - ns  |
| Reverse recovery time                                                                       | t <sub>rr</sub>  | T <sub>J</sub> = 125 °C           |                                                                                     | -    | 99   | -    |       |
| Dook recovery current                                                                       | ı                | T <sub>J</sub> = 25 °C            |                                                                                     | -    | 19   | -    | A     |
| Peak recovery current                                                                       | I <sub>RRM</sub> | T <sub>J</sub> = 125 °C           |                                                                                     | -    | 40   | -    |       |
| Reverse recovery charge Q <sub>rr</sub>                                                     | 0                | T <sub>J</sub> = 25 °C            |                                                                                     | -    | 0.6  | -    |       |
|                                                                                             | Qrr              | T <sub>J</sub> = 125 °C           |                                                                                     | -    | 2.5  | -    | μC    |
| Junction capacitance                                                                        | C <sub>T</sub>   | V <sub>R</sub> = 600 V, f = 1 MHz |                                                                                     | -    | 64.4 | -    | pF    |

| THERMAL - MECHANICAL SPECIFICATIONS             |                   |                       |      |      |            |             |
|-------------------------------------------------|-------------------|-----------------------|------|------|------------|-------------|
| PARAMETER                                       | SYMBOL            | TEST CONDITIONS       | MIN. | TYP. | MAX.       | UNITS       |
| Thermal resistance junction to case, per diode  | В                 |                       | -    | -    | 0.54       |             |
| Thermal resistance junction to case, per module | R <sub>thJC</sub> |                       | -    | -    | 0.27       | °C/W        |
| Thermal resistance case to heatsink, per module | R <sub>thCS</sub> | Flat, greased surface | -    | 0.05 | -          |             |
| Weight                                          |                   |                       | -    | 30   | -          | g           |
| Mounting torque                                 |                   | Torque per diode      | -    | -    | 1.1 (9.7)  | Nm (lbf.in) |
|                                                 |                   | Torque to heatsink    | -    | -    | 1.8 (15.9) | Nm (lbf.in) |
| Case style                                      |                   |                       |      | SOT  | Γ-227      |             |



Fig. 1 - Typical Forward Voltage Drop Characteristics



Fig. 2 - Typical Values of Reverse Current





Fig. 3 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Diode)



Fig. 4 - Average Power Loss vs. Average Forward Current



Fig. 5 - Typical Junction Capacitance vs. Reverse Voltage



Fig. 6 - Diode Reverse Recovery Time vs.  $dI_Fdt$ 



Fig. 7 - Diode Reverse Recovery Current vs. dl<sub>F</sub>dt



Fig. 8 - Diode Reverse Recovery Charge vs. dI<sub>F</sub>dt



Fig. 9 - Maximum Thermal Impedance Junction to Case

#### **ORDERING INFORMATION TABLE**



| CIRCUIT CONFIGURATION                 |                            |                    |  |  |  |
|---------------------------------------|----------------------------|--------------------|--|--|--|
| CIRCUIT                               | CIRCUIT CONFIGURATION CODE | CIRCUIT DRAWING    |  |  |  |
| Two separate diodes, parallel pin-out | F                          | Lead Assignment  4 |  |  |  |

| LINKS TO RELATED DOCUMENTS |                          |  |  |  |  |
|----------------------------|--------------------------|--|--|--|--|
| Dimensions                 | www.vishay.com/doc?95423 |  |  |  |  |
| Packaging information      | www.vishay.com/doc?95425 |  |  |  |  |

## SOT-227 Generation 2

#### **DIMENSIONS** in millimeters (inches)





#### Note

· Controlling dimension: millimeter



## **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.