MATA51 – TEORIA DA COMPUTAÇÃO (2022.2)

Docente: Laís Salvador

Tutores: Edeyson Gomes

Ementa

Modelos e Computação: máquinas de Turing, funções recursivas, lambda- Cálculus. Tese de Church. Linguagens enumeráveis, recursivamente enumeráveis e recursivas. Decibilidade. Redução. Problemas indecidíveis. Incompletude da aritmética.

Conteúdo Programático

1. Breve histórico da Teoria da Computação

Contribuições de Hilbert, Church, Turing, Kleene, Gödel e outros

2. Revisão / introdução de alguns conceitos

- Conceito de linguagem, programa, linguagem de programação
- Enumerabilidade das funções computáveis
- Cardinalidade das funções totais definidas em N (aplicação da prova de Cantor)
- Cardinalidade das funções não computáveis

3. Máquinas de Turing (MT)

- Máquinas de Turing (deterministas, não deterministas)
- Variações de Máquinas de Turing (múltiplas trilhas, múltiplas fitas, etc)
- MT universal

Conteúdo Programático

4. Linguagens Recursivas e Recursivamente Enumeráveis

- Linguagens decididas e reconhecidas por MT
- Propriedades de fechamento
- Questões decidíveis e não-decidíveis

5. Estudo de modelos de computação e Tese de Church

- Enunciado da Tese de Church
- Funções recursivas (funções recursivas primitivas, funções recursivas parciais)
- Introdução ao lambda- Cálculus
- · Equivalência entre os modelos estudados

Conteúdo Programático

6. Problemas de decisão

- Problemas decidíveis, indecidíveis e semi-decidíveis
- Redução
- Relação entre decidibilidade de problemas e enumerabilidade de linguagens
- Estudo de alguns problemas de decisão: Problema da parada da auto-aplicação, Problema da Parada; Problema da Equivalência entre programas, alguns problemas de decisão relativos a linguagens da Hierarquia de Chomsky
- Prova de Gödel

.

7. Problemas tratáveis e intratáveis

- Introdução à complexidade de tempo e espaço no modelo de Turing
- Classes de problemas P, NP, NP-completo, Co-NP

Bibliografia

REFERÊNCIAS BÁSICAS

- 1. Introdução à Teoria da Computação. Michael Sipser. Thomson Learning, 2007.
- Teoria da Computação Máquinas Universais e Computabilidade. DIVERIO, Tiaraju A.; MENEZES, Paulo F. Blauth. Bookman, 3ª. Edição, 2011.

REFERÊNCIAS COMPLEMENTARES

- 1. Introdução à teoria de autômatos, linguagens e computação. HOPCROFT, John E.; ULLMAN, Jeffrey D.; MOTWANI, Rajeev. Campus, 2002.
- 2. Prova de Godel. NAGEL, Ernest; NEWMAN, James Roy. Perspectiva, 1973.
- 3. Elementos de teoria da computação. LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Bookman, 2000.
- Desenvolvimento sistemático de programas corretos: a abordagem denotacional.
 MARTINS, Raul Cesar Baptista; MOURA, Arnaldo Vieira; ESCOLA DE COMPUTAÇÃO
 Campinas, SP: Ed. da UNICAMP, 1988.
- Modelos Clássicos de Computação. Flavio Soares Correa da Silva e Ana Cristina Vieira de Melo. Cengage, 2010.
- 6. Introdução aos Fundamentos da Computação Linguagens e Máquinas. Newton José Vieira. Thomson, 2006.

Curso em 2022.2

Método: aulas expositivas dialogadas, discussões em fóruns e atividades assíncronas.

Avaliação:

- **Atividades Didáticas**
- **Projetos**
- **Provas**
- Avaliação feita pelo estudante: avaliação do curso, dos pares e auto avaliação

Atividades e Projetos podem ser desenvolvidos em trios

Curso em 2022.2

Pesos Avaliação:

- Atividades Didáticas 20%
- Projetos -20%
- **Provas** 50%
- Avaliação feita pelo estudante: avaliação do curso, dos pares e auto avaliação 10%

Curso em 2022.2

Programação/Cronograma

- Encontros síncronos às terças e quintas-feiras
- Em algumas semanas: atividades assíncronas na terça e/ou quinta-feira
- Cronograma vai ser publicado no AVA:

https://ava.ufba.br/course/view.php?id=113519

chave de inscrição: mata5120222

Discord: https://discord.gg/mDEXrS4UtK

Um bate papo-inicial

Que conceitos vcs conhecem?

Modelos e Computação: máquinas de Turing, funções recursivas, lambda- Cálculus. Tese de Church. Linguagens enumeráveis, recursivamente enumeráveis e recursivas. Decibilidade. Redução. Problemas indecidíveis. Incompletude da aritmética.

Hierarquia de Chomsky

• Linguagem

Gramática

Reconhecedor

Universo das Linguagens

Hierarquia de Chomsky

A Hierarquia de Chomsky com outros detalhes

Hierarquia de Chomsky

Tipo	Nome das linguagens geradas	Restrições às regras de produção da gramática $X \rightarrow Y$	Máquinas que aceitam estas linguagens
0	De estrutura de frase = Recursivamente enumeráveis	X = qualquer cadeia com não terminais Y = qualquer cadeia	Máquinas de Turing
	Recursivas		Máquinas de Turing que terminam garantidamente
1	Sensíveis ao contexto	X = qualquer cadeia com não terminaisY = qualquer cadeia de comprimentomaior ou igual ao comprimento de X	Máquinas de Turing com fita finita (tamanho proporcional à entrada)
2	Livres contexto	X = qualquer não terminal Y = qualquer cadeia	Autômatos de pilha
	Livres de contexto deterministas		Autômatos de pilha deterministas
3	Regulares	X = qualquer não terminal Y = tN ou Y=t, em que t é um terminal e N é um não terminal	Autômatos finitos