

Resource Allocation in Multihop Cellular Networks

Submitted by: Xxx Xxx

Supervisor: Xxxx Co-supervisor: Xxxx

School of Electrical & Electronic Engineering

A final year project report presented to the Nanyang Technological University in partial fulfilment of the requirements of the degree of Bachelor of Engineering

Table of Contents

Abstract (not more than one page)	i
Acknowledgements (optional)	i
Acronyms (optional)	iv
Symbols (optional) i	.VV
List of Figures	v
List of Tables	vi
Chapter 1 Introduction	1
1.1 Movitations	. 1
1.2 Objectives and Scope	.1
1.3 Organisations	. 1
Chapter 2 Literature Review	2
2.1 xxx	.2
2.2 xxx	.2
Chapter 3 xxx	. 3
3.1 xxx	.3
3.2 xxx	.3
(More chapters are usually required and can be inserted here)	
Chapter 4 Conclusions and Future Work	. 4
4.1 Conclusions	.4
4.2 Recommendatin in Future Work	.4
Reflection on Learning Outcome Attainment	. 5
References	. 6
Appendix (optional).	7

Abstract

Multihop cellular networks (MCNs) incorporate wireless ad hoc networking into *traditional* single-hop cellular networks (SCNs) and thus they enjoy the flexibility of ad hoc networks, while preserving the benefit of using infrastructure of SCNs. In this Thesis, we study the resource allocation problems in MCNs.

 $Xxxx \dots$

Acknowledgements (optional)

First of all, I would like to express my sincere thanks and great gratitude to my parents.

...

Xxx Xxx

November 2009

Acronyms (optional)

2G Second Generation 3G Third Generation

ACA Adaptive Channel Assignment

AP Access Point

ARS Ad-hoc Relaying Station
ASP Adaptive Switching Point

ATDMA Advanced Time Division Multiple Access

BS Base Station

CAMA Cellular Aided Mobile Ad-hoc Network

CBM Cellular Based Multihop Systems

CDD Code-Division Duplexing

D-PRMA Distributed PRMA DA Demand Assignment

DCA Dynamic Channel Assignment

Symbols (optional)

В channel bandwidth in Hz channel capacity in bps; Cnumber of collisions in time slot td distance Dminimum reuse distance average message access delay D_a D_{id} inter-datagram-arrival time D_{max} maximum tolerable delay for voice packets D_{pc} reading time between two consecutive packet call requests

List of Figures

Figure 1.1: Proposed CMCN architecture.	10
Figure 1.2: TDD-CDMA MCNs with fixed RSs.	13
Figure 2.1: Illustration of FDMA, TDMA and CDMA	16
Figure 2.2: Near-far effect in CDMA cellular systems	21
Figure 2.3: Illustration of channel borrowing schemes.	25
Figure 2.4: Structure of reuse partitioning.	
Figure 2.5: Classifications of medium access control protocols	
Figure 2.6: Frame structure of PRMA.	39
Figure 2.7: Frame structure of PRMA++	
Figure 2.8: Illustration of IPRMA.	44
Figure 3.1: (a) Single-hop cellular networks and (b) Multihop cellular networks	
Figure 3.2: Direct transmission vs. multihop transmission	54
Figure 3.3: Coverage extension to dead spots by relaying.	56
Figure 3.4: The primary relaying strategy in iCAR.	60
Figure 3.5: Virtual cellular network	61
Figure 3.6: Two ways of constructing MCNs	63
Figure 3.7: Illustration of the UCAN architecture.	
Figure 3.8: Illustration of the CMCN architecture	66
Figure 3.9: Illustration of inter-microcell handoff in CMCN	
Figure 3.10: Cell and multihop cell in HMCN.	

List of Tables

Table 2-1: ACO matrix at BS i.	30
Table 3-1: Comparison of selected MCN architectures	74
Table 4-1: Call blocking with different (N_0, N_1) combinations at ρ =5 Erlangs	103
Table 4-2: System capacity for uplink and downlink vs. channel combinations	107
Table 5-1: Interference Information Table for uplink	113
Table 5-2: Interference Constraint Table for the simulated network	113
Table 5-3: Packing-based Channel Searching for uplink.	116
Table 6-1: System parameters for TDD CDMA systems	139
Table 6-2: Supported number of simultaneous voice users.	146
Table A-1: Example of uplink call combinations for state (8,2,1,2,1,3,2)	164
Table B-1: Example of downlink call combinations for state (24,2,1,2,1,3,2)	168

Project No: Xxxx-xxx

Chapter 1

Introduction

This chapter....

1.1 Motivations

This thesis deals with the problem of the blind multiuser detection for DS-CDMA ...

1.2 Objectives and Scope

The communication channel considered in this thesis is assumed to be slow time-varying,

•••

1.3 Organisations

. . . .

Chapter 2 Literature Review

2.1 xxx

2.2 xxx

Chapter 3

XXXX

3.1 xxx

3.2 xxx

Chapter 4

Conclusions and Future Work

4.1 Conclusions

...

4.2 Recommendation in Future Work

...

Reflection on Learning Outcome

Attainment

Reflect on your experience during your FYP and the achievements you have relating to at least three of the points below:

- Engineering knowledge
- Problem Analysis
- Investigation
- Design/development of Solutions
- Modern Tool Usage
- The Engineer and Society
- Environment and Sustainability
- Ethics
- Individual and Team Work
- Communication
- Project Management and Finance
- Lifelong Learning

References

- [1] R. Jordan and C. T. Abdallah, "Wireless communications and networking: An overview," *IEEE Antennas and Propagation Magazine*, vol. 44, pp. 185-193, February, 2002.
- [2] J. E. Padgett, C. G. Gunther, and T. Hattori, "Overview of wireless personal communications," *IEEE Communications Magazine*, vol. 33, pp. 28-41, January, 1995.
- [3] G. L. Stuber, *Principles of Mobile Communication*, 1st ed. New York: Springer, 1996.
- [4] GSM Association, "Worldwide cellular connections exceeds 2 billion," http://www.gsmworld.com/news/press 2005/press05 21.shtml, 2005.
- [5] The Portio Research Limited, *Worldwide Mobile Market Forecasts* 2006-2011, 1st ed. Market Study, UK, 2006.
- [6] P. Chaudhury, W. Mohr, and S. Onoe, "The 3GPP proposal for IMT-2000," *IEEE Communications Magazine*, vol. 37, pp. 72-81, December, 1999.
- [7] A. Urie, M. Streeton, and C. Mourot, "An advanced TDMA mobile access system for UMTS," *IEEE Personal Communications*, vol. 2, pp. 38-47, February, 1995.
- [8] H. Holma and A. Toskala, WCDMA for UMTS: Radio Access for Third Generation Mobile Communications, 3rd ed. Chichester, West Sussex, UK: John Wiley & Sons, 2004.
- [9] H. H. Chen, C. X. Fan, and W. W. Lu, "China's perspectives on 3G mobile communications and beyond: TD-SCDMA technology," *IEEE Wireless Communications*, vol. 9, pp. 48-59, April, 2002.
- [10] C. E. Perkins, *Ad Hoc Networking*, 1st ed. Boston MA, USA: Addison-Wesley, 2001.
- [11] C.-Y. Chong and S. P. Kumar, "Sensor networks: Evolution, opportunities, and challenges," *Proceedings of The IEEE* vol. 91, pp. 1247-1256, August, 2003.
- [12] A. Bria, F. Gessler, O. Queseth, R. Stridh, M. Unbehaun, J. Wu, J. Zander, and M. Flament, "4th-generation wireless infrastructures: Scenarios and research challenges," *IEEE Personal Communications*, vol. 8, pp. 25-31, December, 2001.
- [13] S. Y. Hui and K. H. Yeung, "Challenges in the migration to 4G mobile systems," *IEEE Communications Magazine*, vol. 41, pp. 54-59, December, 2003.
- [14] A. K. Salkintzis, "Interworking techniques and architectures for WLAN/3G integration toward 4G mobile data networks," *IEEE Wireless Communications*, vol. 11, pp. 50-61, June, 2004.

Appendix (optional)