Srishti Lab2

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr
                                0.3.4
## v tibble 3.0.4 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
covid data<-read.csv("covid-19.csv",skip=1)</pre>
covid_masks_policies_data<-read.csv("covid policies masks.csv")</pre>
covid_joined_data<-left_join(</pre>
  covid data,
  covid_masks_policies_data,
by=c("State"))
covid_data_renamed <- covid_joined_data %>%
  rename(
      total_deaths = "Total.Deaths",
      death_in_last_7 = "Deaths.in.Last.7.Days",
      death rate = "Death.Rate.per.100000",
      death_rate_in_last_7 = "Death.Rate.per.100K.in.Last.7.Days",
      mask_mandated = 'Mandate.face.mask.use.by.all.individuals.in.public.spaces.y',
      mask_enforced_by_fines = 'Face.mask.mandate.enforced.by.fines',
      mask_enforced_by_charge = 'Face.mask.mandate.enforced.by.criminal.charge.citation',
     no_legal_mask_enforcement = 'No.legal.enforcement.of.face.mask.mandate.y',
      public_facing_employee_mask = 'Mandate.face.mask.use.by.employees.in.public.facing.businesses.y',
      population_density = 'Population.density.per.square.miles',
      stay_at_home_begin = 'Stay.at.home..shelter.in.place',
     stay_at_home_end = 'End.stay.at.home.shelter.in.place',
      retail_mobility_change ='Retail...recreation',
      grocery_pharm_mobility_change='Grocery...pharmacy',
     parks_mobility_change='Parks',
      transit_mobility_change = 'Transit.stations',
      workplaces_mobility_change = 'Workplaces',
      residential_mobility_change = 'Residential')
```

```
ggplot(covid_data_renamed, aes(x = log(population_density), y = death_rate)) +geom_point()+
  geom_smooth(se = FALSE) +
  labs(title = "Deaths by population density", x = "Log of Population Density", y = "Death rate per 100"
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Deaths by population density

covid_data_renamed\$mask_mandate_rank<-ifelse(covid_data_renamed\$mask_mandated==0,60,rank(as.Date.factor

data.frame(covid_data_renamed\$State,covid_data_renamed\$mask_mandate_rank,covid_data_renamed\$mask_mandat

##		${\tt covid_data_renamed.State}$	<pre>covid_data_renamed.mask_mandate_rank</pre>
##	1	Alabama	26.5
##	2	Alaska	8.0
##	3	Arizona	60.0
##	4	Arkansas	28.0
##	5	California	17.0
##	6	Colorado	26.5
##	7	Connecticut	7.0
##	8	Delaware	10.0
##	9	District of Columbia	3.5
##	10	Florida	60.0
##	11	Georgia	60.0
##	12	Hawaii	38.0
##	13	Idaho	60.0

##		Illinois	11.	
	15	Indiana	31.	
	16	Iowa	60.	
	17	Kansas	23.	
	18	Kentucky	14.	
	19	Louisiana	60.	
	20	Maine	11.	
	21	Maryland	5.	
	22	Massachusetts	13.	
	23	Michigan	9.	0
##	24	Minnesota	30.	0
##	25	Mississippi	34.	0
##	26	Missouri	60.	0
##	27	Montana	60.	0
##	28	Nebraska	60.	0
##	29	Nevada	19.	0
##	30	New Hampshire	60.	0
##	31	New Jersey	1.	0
##	32	New Mexico	15.	0
##	33	New York	3.	5
##	34	North Carolina	19.	0
##	35	North Dakota	60.	0
##	36	Ohio	29.	0
##	37	Oklahoma	60.	0
##	38	Oregon	21.	5
##	39	Pennsylvania	21.	5
##	40	Rhode Island	5.	5
##	41	South Carolina	60.	0
##	42	South Dakota	60.	0
##	43	Tennessee	60.	0
##	44	Texas	23.	5
##	45	Utah	2.	0
##	46	Vermont	32.	5
##	47	Virginia	16.	0
##	48	Washington	19.	0
##	49	West Virginia	25.	
##	50	Wisconsin	32.	5
##	51	Wyoming	60.	0
##		covid_data_renamed.mask_m		
##	1		7/16/20	
##			4/24/20	
##			0	
##			7/20/20	
##			6/18/20	
##			7/16/20	
##			4/20/20	
##			4/28/20	
##			4/17/20	
##			0	
##			0	
##		4	1/0/1900	
##		•	0	
##			5/1/20	
##			7/27/20	
##	10		1/21/20	

```
## 16
## 17
                                 7/3/20
## 18
                                5/11/20
## 19
                                     0
                                 5/1/20
## 20
## 21
                                4/18/20
## 22
                                 5/6/20
                                4/27/20
## 23
## 24
                                7/24/20
## 25
                                 8/5/20
## 26
                                      0
## 27
                                      0
## 28
                                      0
                                6/26/20
## 29
## 30
                                      0
                                 4/8/20
## 31
## 32
                                5/15/20
## 33
                                4/17/20
                                6/26/20
## 34
## 35
                                7/23/20
## 36
## 37
## 38
                                 7/1/20
## 39
                                 7/1/20
                                4/18/20
## 40
## 41
                                      0
## 42
                                      0
## 43
                                      0
                                 7/3/20
## 44
## 45
                                4/10/20
                                 8/1/20
## 46
## 47
                                5/29/20
## 48
                                6/26/20
                                 7/7/20
## 49
## 50
                                 8/1/20
## 51
ggplot(covid_data_renamed, aes(x = mask_mandate_rank, y = death_in_last_7)) +
 geom_point() +
  geom_smooth(se = FALSE) +
 labs(title = "Deaths by Mask Mandate Rank", x = "Mask Mandate Rank", y = "Death rate per 100K")
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Deaths by Mask Mandate Rank


```
ggplot(covid_data_renamed, aes(x = mask_enforced_by_fines+mask_enforced_by_charge , y = death_rate)) +
    geom_point() +
    geom_smooth(se = FALSE) +
    labs(title = "Deaths by Mask Enforcement", x = "Mask Enforcement", y = "Death rate per 100K")

## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at -0.01

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 1.01

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 0

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 4.0401
```

Deaths by Mask Enforcement


```
covid_data_renamed$stay_at_home_length

## [1] 26 27 46 0 NA 32 0 69 58 45 28 67 37 69 54 0 35 0 53 59 46 55 69 51 24

## [26] 28 29 0 39 80 80 NA 97 53 0 57 0 88 65 42 27 0 27 0 0 52 60 70 42 49

## [51] 0

ggplot(covid_data_renamed, aes(x = stay_at_home_length , y = death_rate)) +
    geom_point() +
    geom_smooth(se = FALSE) +
    labs(title = "Deaths by Stay at home length", x = "Stay at home length", y = "Death rate per 100K")

## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'

## Warning: Removed 2 rows containing non-finite values (stat_smooth).
```

Warning: Removed 2 rows containing missing values (geom_point).

Deaths by Stay at home length


```
covid_data_renamed$all_mobility_changes <- covid_data_renamed$retail_mobility_change+</pre>
    covid_data_renamed$grocery_pharm_mobility_change+
    covid_data_renamed$parks_mobility_change+
    covid_data_renamed$transit_mobility_change+
    covid_data_renamed$workplaces_mobility_change+
    covid_data_renamed$residential_mobility_change
covid_data_renamed$mobility_population_dens <- covid_data_renamed$population_density*covid_data_renamed
covid_data_renamed$mobility_with_mask <- covid_data_renamed$mask_mandate_rank*covid_data_renamed$all_mo
ggplot(covid_data_renamed, aes(x = log(mobility_population_dens) , y = death_rate)) +
  geom_point() +
  geom_smooth(se = FALSE) +
 labs(title = "Deaths by Stay at home length", x = "Mobility with Population", y = "Death rate per 100
## Warning in log(mobility_population_dens): NaNs produced
## Warning in log(mobility_population_dens): NaNs produced
## Warning in log(mobility_population_dens): NaNs produced
## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'
## Warning: Removed 34 rows containing non-finite values (stat_smooth).
```

Warning: Removed 33 rows containing missing values (geom_point).

Deaths by Stay at home length


```
ggplot(covid_data_renamed, aes(x = all_mobility_changes , y = death_rate)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  labs(title = "Deaths by Stay at home length", x = "All Mobility Changes", y = "Death rate per 100K")
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Deaths by Stay at home length


```
ggplot(covid_data_renamed, aes(x = mobility_with_mask , y = death_rate)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  labs(title = "Deaths by Stay at home length", x = "Mobility Changes with mask mandate", y = "Death rate")
```

'geom_smooth()' using method = 'loess' and formula 'y \sim x'

Deaths by Stay at home length

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

