Working with text: Topic modelling

Damian Trilling

d.c.trilling@uva.nl @damian0604 www.damiantrilling.net

Afdeling Communicatiewetenschap Universiteit van Amsterdam

18-1-2018

Today

- 1 Automated Content Analysis (ACA)
- 2 Basic top-down ACA: Dictionary- and string-based methods Regular expressions
- 3 Unsupervised Machine Learning PCA LDA
- 4 Example and exercise

What's Automated Content Analysis?

Methodological approach

	Counting and Dictionary	Supervised Machine Learning	Unsupervised Machine Learning
Typical research interests and content features	visibility analysis sentiment analysis subjectivity analysis	frames topics gender bias	frames topics
Common statistical procedures	string comparisons counting	support vector machines naive Bayes	principal component analysis cluster analysis latent dirichlet allocation semantic network analysis
	deductive		inductive

Boumans, J. W., & Trilling, D. (2016). Taking stock of the toolkit: An overview of relevant autmated content analysis approaches and techniques for digital journalism scholars. *Digital Journalism*, 4(1), 8–23. doi:10.1080/21670811.2015.1096598

Regular expressions

Basic ACA: Dictionary- and string-based methods Regular expressions

Regular Expressions: What and why?

What is a regexp?

• a very widespread way to describe patterns in strings

Regular Expressions: What and why?

What is a regexp?

- a very widespread way to describe patterns in strings
- Think of wildcards like * or operators like OR, AND or NOT in search strings: a regexp does the same, but is much more powerful

Regular Expressions: What and why?

What is a regexp?

- a very widespread way to describe patterns in strings
- Think of wildcards like * or operators like OR, AND or NOT in search strings: a regexp does the same, but is much more powerful
- You can use them in many text editors (!), in STATA, R, Python, ...

An example

We wanted to find references to companies in several years of news coverage

Problems:

- Spelling variations (ABN, ABN Amro, ABN-Amro, ...)
- Shouldn't be in the middle of the word, but can be at the beginning of a word, optionally connected with a hyphen ("ABN-topman", "Shellstation")

For instance, \bING(?:-.*?)?\b allows to specify exactly this.

Strycharz, J., Strauss, N., & Trilling, D. (2017). The role of media coverage in explaining stock market fluctuations: insights for strategic financial communication. *International Journal of Strategic Communication, online first.* doi:10.1080/1553118X.2017.1378220

Jonkman, J. G., Trilling, D., Verhoeven, P., & Vliegenthart, R. (2016). More or less diverse: An assessment of the effect of attention to media salient company types on media agenda diversity in Dutch newspaper coverage between 2007 and 2013. *Journalism, online first*. doi:10.1177/146488491668037

Basic regexp elements

Alternatives

[TtFf] matches either T or t or F or f

Twitter | Facebook matches either Twitter or Facebook

. matches any character

Basic regexp elements

Alternatives

[TtFf] matches either T or t or F or f

Twitter | Facebook matches either Twitter or Facebook

. matches any character

Repetition

- * the expression before occurs 0 or more times
- + the expression before occurs 1 or more times

Possible applications

Data preprocessing

- Remove unwanted characters, words, ...
- Identify meaningful bits of text: usernames, headlines, where an article starts, . . .
- filter (distinguish relevant from irrelevant cases)

Possible applications

Data analysis: Automated coding

- Actors
- Brands
- links or other markers that follow a regular pattern
- Numbers (!)

This is top-down: we determined a priori what to look for. But what if we do not want to make such assumptions but want to

look what 'emerges' from the data? Enter bottom-up approaches:

Unsupervised Machine Learning

Methodological approach

	Counting and Dictionary	Supervised Machine Learning	Unsupervised Machine Learning
Typical research interests and content features	visibility analysis sentiment analysis subjectivity analysis	frames topics gender bias	frames topics
Common statistical procedures	string comparisons counting	support vector machines naive Bayes	principal component analysis cluster analysis latent dirichlet allocation semantic network analysis
	deductive		inductive

Boumans, J. W., & Trilling, D. (2016). Taking stock of the toolkit: An overview of relevant autmated content analysis approaches and techniques for digital journalism scholars. *Digital Journalism*, 4(1), 8–23. doi:10.1080/21670811.2015.1096598

Unsupervised

- No manually coded data
- We want to identify patterns or to make groups of most similar cases

Unsupervised

- No manually coded data
- We want to identify patterns or to make groups of most similar cases

Example: We have a dataset of Facebook-massages on an organizations' page. We use clustering to group them and later interpret these clusters (e.g., as complaints, questions, praise, ...)

Unsupervised

- No manually coded data
- We want to identify patterns or to make groups of most similar cases

Example: We have a dataset of Facebook-massages on an organizations' page. We use clustering to group them and later interpret these clusters (e.g., as complaints, questions, praise, ...)

Supervised

- We code a small dataset by hand and use it to "train" a machine
- The machine codes the rest

Unsupervised

- No manually coded data
- We want to identify patterns or to make groups of most similar cases

Example: We have a dataset of Facebook-massages on an organizations' page. We use clustering to group them and later interpret these clusters (e.g., as complaints, questions, praise, . . .)

Supervised

- We code a small dataset by hand and use it to "train" a machine
- The machine codes the rest

Example: We have 2,000 of these messages grouped into such categories by human coders. We then use this data to group all remaining messages as well.

inductive and bottom-up: unsupervised machine learning

inductive and bottom-up: unsupervised machine learning

(something you aready did in your Bachelor - no kidding.)

Principal Component Analysis? How does that fit in here?

Principal Component Analysis? How does that fit in here?

In fact, PCA is used everywhere, even in image compression

Principal Component Analysis? How does that fit in here?

PCA in ACA

- Find out what word cooccur (inductive frame analysis)
- Basically, transform each document in a vector of word frequencies and do a PCA

A so-called term-document-matrix

A so-called term-document-matrix

```
1 w1,w2,w3,w4,w5,w6 ...
2 text1, 2, 0, 0, 1, 2, 3 ...
3 text2, 0, 0, 1, 2, 3, 4 ...
4 text3, 9, 0, 1, 1, 0, 0 ...
5 ...
```

These can be simple counts, but also more advanced metrics, like tf-idf scores (where you weigh the frequency by the number of documents in which it occurs), cosine distances, etc.

PCA: implications and problems

- given a term-document matrix, easy to do with any tool
- probably extremely skewed distributions
- some problematic assumptions: does the goal of PCA, to find a solution in which one word loads on one component match real life, where a word can belong to several topics or frames?

Enter topic modeling with Latent Dirichlet Allocation (LDA)

LDA

LDA, what's that?

No mathematical details here, but the general idea

- There are k topics, $T_1 \dots T_k$
- Each document D_i consists of a mixture of these topics, e.g. $80\% T_1, 15\% T_2, 0\% T_3, \dots 5\% T_k$
- On the next level, each topic consists of a specific probability distribution of words
- Thus, based on the frequencies of words in D_i, one can infer its distribution of topics
- Note that LDA (like PCA) is a Bag-of-Words (BOW) approach

Doing a LDA in Python

LDA

You can use gensim (Řehůřek & Sojka, 2010) for this.

Řehůřek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. *Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks*, pp. 45–50. Valletta, Malta: ELRA.

```
from gensim import corpora, models
1
2
    NTOPICS = 100
3
    LDAOUTPUTFILE="topicscores.tsv"
5
    # Create a BOW represenation of the texts
6
    id2word = corpora.Dictionary(texts)
7
    mm =[id2word.doc2bow(text) for text in texts]
8
9
    # Train the LDA models.
10
11
    lda = models.ldamodel.LdaModel(corpus=mm, id2word=id2word, num topics=
        NTOPICS)
12
    # Print the topics.
13
14
    for top in lda.print_topics(num_topics=NTOPICS, num_words=5):
       print ("\n",top)
15
16
17
    # save topic scores
    scoresperdoc=lda.inference(mm)
18
    with open(LDAOUTPUTFILE, "w", encoding="utf-8") as fo:
19
     for row in scoresperdoc[0]:
20
       fo.write("\t".join(["{:0.3f}".format(score) for score in row]))
21
       fo.write("\n")
22
```

Output: Topics (below) & topic scores (next slide)

```
0.069*fusie + 0.058*brussel + 0.045*europesecommissie + 0.036*europese +
         0.023*overname
   0.109*bank + 0.066*britse + 0.041*regering + 0.035*financien + 0.033*
        minister
   0.114*nederlandse + 0.106*nederland + 0.070*bedrijven + 0.042*rusland +
        0.038*russische
   0.093*nederlandsespoorwegen + 0.074*den + 0.036*jaar + 0.029*onderzoek +
         0.027*raad
   0.099*banen + 0.045*jaar + 0.045*productie + 0.036*ton + 0.029*aantal
   0.041*grote + 0.038*bedrijven + 0.027*ondernemers + 0.023*goed + 0.015*
        iaar
   0.108*werknemers + 0.037*jongeren + 0.035*werkgevers + 0.029*jaar +
        0.025*werk
   0.171*bank + 0.122* + 0.041*klanten + 0.035*verzekeraar + 0.028*euro
   0.162*banken + 0.055*bank + 0.039*centrale + 0.027*leningen + 0.024*
        financiele
   0.052*post + 0.042*media + 0.038*nieuwe + 0.034*netwerk + 0.025*
10
        personeel
11
```


Visualization with pyldavis

- 1 import pyLDAvis
- 2 import pyLDAvis.gensim
- 3 % first estiate gensim model, then:
- vis_data = pyLDAvis.gensim.prepare(lda,mm,id2word)
- 5 pyLDAvis.display(vis_data)

Supervised machine learning is something for another time . . .

Example and exercise

Let's have a look at the EU-speech dataset (Jupyter Notebook). I'll first walk you through the example, afterwards, you have time to play with the data yourself.

Damian Trilling

d.c.trilling@uva.nl @damian0604 www.damiantrilling.net