Exercise set 7

Numerical Methods for Hyperbolic Partial Differential Equations

IMATH, FS-2020

Lecturer: Dr. Philipp Öffner Teaching Assistant: Davide Torlo

Problem 7.1 Monotonicity preserving (2pts)

A monotonicity preserving scheme is a method that

$$\begin{cases} u_j^n \le u_{j-1}^n \Rightarrow u_j^{n+1} \le u_{j-1}^{n+1} & \forall n, j \\ u_j^n \ge u_{j-1}^n \Rightarrow u_j^{n+1} \ge u_{j-1}^{n+1} & \forall n, j. \end{cases}$$
 (1)

Prove that if the scheme is a constant coefficient schemes with footprint 2K + 1, i.e.,

$$u_j^{n+1} = \sum_{l=-K}^K C_l u_{j+l}^n, \tag{2}$$

then it is monotonicity preserving if and only if $C_l \geq 0$ for all $l = -K, \ldots, K$.

Problem 7.2 Condition on viscous form to TVD (2pts)

Prove that a FD scheme written in the viscous form

$$u_j^{n+1} = u_j^n - \frac{\lambda}{2} \left(f(u_{j+1}^n) - f(u_{j-1}^n) \right) + \frac{1}{2} \left(Q_{j+1/2} \Delta u_{j+1/2}^n - Q_{j-1/2} \Delta u_{j-1/2}^n \right), \tag{3}$$

where $\lambda = \Delta t/\Delta x$, $\Delta u_{j+1/2} = u_{j+1} - u_j$ and $\Delta f_{j+1/2} = f(u_j) - f(u_{j-1})$, is TVD under the condition

$$\lambda \left| \frac{\Delta f_{j+1/2}}{\Delta u_{j+1/2}} \right| \le Q_{j+1/2} \le 1. \tag{4}$$

Hint Use the result of Harten's Lemma (Theorem 3.13 of the notes).

Problem 7.3 Recipe for TVD schemes (2pts)

The condition (4) gives us a recipe for building TVD schemes. Consider footprint-3 schemes, i.e., $Q_{j+1/2} = Q(u_j, u_{j+1})$, and using the ansatz that

$$Q(u,v) = q(\lambda a(u,v)), \quad a(u,v) = \begin{cases} \frac{f(u) - f(v)}{u - v} & \text{if } u \neq v, \\ f'(u) & \text{if } u = v, \end{cases}$$
 (5)

deduce conditions on the function q, such that the FD scheme would be TVD.

Problem 7.4 TVD or not TVD (4pts)

1. Consider the Lax-Wendroff scheme

$$u_j^{n+1} = u_j^n - \frac{\lambda}{2} \left(f(u_{j+1}^n) - f(u_{j-1}^n) \right) + \frac{\lambda^2}{2} \left(a_{j+1/2} \Delta f_{j+1/2} - a_{j-1/2} \Delta f_{j-1/2} \right), \tag{6}$$

where $a_{j+1/2} = a(u_j, u_{j+1})$ using the definitions of previous exercises. Prove or disprove that the scheme is TVD

Hint Use the criterion you found in Problem 7.3.

2. Consider the Godunov method in its conservative form

$$u_j^{n+1} = u_j^n - \lambda \left(f^{num}(u_j^n, u_{j+1}^n) - f^{num}(u_{j-1}^n, u_j^n) \right)$$
(7)

where

$$f^{num}(u,v) = \begin{cases} \min_{u \le \theta \le v} f(\theta) & \text{if } u \le v, \\ \max_{v \le \theta \le u} f(\theta) & \text{if } v \le u, \end{cases}$$

prove or disprove that the scheme is TVD.

Hint Use directly Harten's Lemma conditions.

3. Test the Lax-Wendroff method for the linear transport equation $\partial_t u + \partial_x u = 0$ on [-1,1] with periodic boundary conditions and initial conditions $u_0 = \cos(\pi x)$. Plot the total variation of the scheme as a function of time, till T = 1, for CFL= 0.7 and CFL= 1. What do you observe? Why? **Hint** You can use the solutions of the Exercise Set 5.

Organiser: Davide Torlo, Office: home (davide.torlo@math.uzh.ch)

Published: Apr 23, 2020

Due date: Apr 30, 2020, h10.00 (use the upload tool of my.math.uzh.ch, see wiki.math.uzh.ch/public/student_upload_homework or if you have troubles send me an email).