Syntaks og semantik

Lektion 4

20 februar 2007

Forord

- Administrivia
- Non-deterministiske endelige automater
- NFAs og regulære udtryk

- Der skulle nu være nok Sipsere i boghandelen
- Deadline for aflevering af syntaksopgave-erstatnings-opgavestilling (for PE-studerende) er i dag!
- næste gang: spørgetime!

Definition 1.37: En nondeterministisk endelig automat (NFA) er en 5-tupel $M = (Q, \Sigma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- δ : $Q × (Σ ∪ {ε}) → <math>P(Q)$: transitions-funktionen
- $q_0 \in Q$: starttilstanden
- $F \subseteq Q$: mængden af accepttilstande

M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $y_1, y_2, \dots, y_m \in \Sigma \cup \{\varepsilon\}$ og $r_0, r_1, \dots, r_m \in Q$ således at $w = y_1 y_2 \dots y_m$ og

- $0 r_0 = q_0,$
- 2 $r_{i+1} \in \delta(r_i, y_{i+1})$ for alle i = 0, 1, ..., m-1, og
- \circ $r_m \in F$.

- enhver DFA er også en NFA
- enhver NFA kan laves om til en DFA der genkender samme sprog (delmængdekonstruktionen)
- et sprog er defineret til at være regulært hvis der er en DFA der genkender det
- et sprog er regulært hvis og kun hvis der er en NFA der genkender det
 - regulære sprog er lukket under ∪, ∘, * (vises ved at konstruere en ny NFA ud fra de givne NFAs)
 - regulære sprog er lukket under ∩ og ⁻ (komplement) (vises ved at konstruere en ny DFA ud fra de givne DFAs; konstruktionerne virker kun for DFAs!)
 - NFAs er generelt mere simple at fremstille
 - men nogen gange kan det være nødvendigt at arbejde med DFAs – eksempel: opgave 1.13

Lemma 1.55: Hvis et sprog beskrives ved et regulært udtryk, da er det regulært.

Bevises ved strukturel induktion:

- konvertér de basale regulære udtryk til NFAs
- brug lukningsegenskaber til at konvertere sammensætninger af regulære udtryk til sammensætninger af NFAs
- Smart!

I dag: Lemma 1.60: Hvis et sprog er regulært, da kan det beskrives ved et regulært udtryk.

(Bevises ved at *generalisere* NFAs til GNFAs.)

⇒ Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.

 $\mathsf{NFA} \Rightarrow \mathsf{RE}$ Ikke-regulære sprog

Regulære og ikke-regulære sprog

Nøgle til beviset: Ny slags maskiner der kombinerer NFA og regulære udtryk: generaliserede nondeterministiske endelige automater (GNFA)

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- δ : $(Q \setminus \{q_f\}) \times (Q \setminus \{q_0\})$ → R : transitions-funktionen
- $q_0 \in Q$: starttilstanden

Notation: $\mathcal{R} = \mathcal{R}(\Sigma) =$ mængden af alle regulære udtryk over et givet alfabet Σ .

(Bemærk at GNFAs introduceres kun for det her bevis. De bruges ikke til andet.)

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor delene er

- $lack \delta: ig(Q \setminus \{q_f\} ig) imes ig(Q \setminus \{q_0\} ig) o \mathcal{R}:$ transitions-funktionen
- $oldsymbol{0}$ $q_f \in Q$: accepttilstanden

Ligesom NFAs, men

- med kun én accepttilstand
- med regulære udtryk på transitionerne i stedet for tegn
- med transitioner fra enhver tilstand til enhver tilstand (også sig selv), bortset fra at
 - starttilstanden ikke har indgående transitioner, og at
 - accepttilstanden ikke har udgående transitioner

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- δ : $(Q \setminus \{q_f\}) \times (Q \setminus \{q_0\})$ → \mathcal{R} : transitions-funktionen
- $q_0 \in Q$: starttilstanden
- $oldsymbol{0}$ $q_f \in Q$: accepttilstanden

GNFAen accepterer et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $y_1, y_2, \ldots, y_m \in \Sigma^*$ (!) og $r_0, r_1, \ldots, r_m \in Q$ således at $w = y_1 y_2 \ldots y_m$ og

- $0 r_0 = q_0,$
- ② $y_{i+1} \in [\delta(r_i, r_{i+1})]$ for alle i = 0, 1, ..., m-1, og
- $oldsymbol{0}$ $r_m = q_f$.

Bevisidé: konvertér en DFA til en GNFA og så GNFAen til et regulært udtryk ved at fjerne én tilstand ad gangen.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med $[\![M]\!] = L$.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$:
 - (a) Lav en ny starttilstand q₀ og en ny accepttilstand q_f, med ε-transitioner fra q₀ til den gamle starttilstand og fra alle gamle accepttilstande til q_f.
 - (b) Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels.
 - (c) Indsæt ∅-transitioner hvor der mangler pile.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- **1** Konvertér *M* til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$:
 - (a) Lav en ny starttilstand q_0 og en ny accepttilstand q_t , med ε -transitioner fra q_0 til den gamle starttilstand og fra alle gamle accepttilstande til q_f .
 - (b) Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels.
 - (c) Indsæt ∅-transitioner hvor der mangler pile.

$$Q = Q_1 \cup \{q_0, q_f\}$$

$$\delta(q, q') = \begin{cases} \varepsilon & \text{hvis } q = q_0 \text{ eller } q' = q_f \\ a_1 \cup a_2 \cup \dots \cup a_k & \text{hvis } q, q' \in Q_1 \text{ og } \delta_1(q, a_i) = q' \\ & \text{for alle } i = 1, 2, \dots, k \end{cases}$$

$$\emptyset & \text{hvis } q, q' \in Q_1 \text{ og } \delta_1(q, a) \neq q'$$

$$\text{for alle } a \in \Sigma$$

for alle $a \in \Sigma$

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med $\llbracket M \rrbracket = L$.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$
- Konvertér G til et regulært udtryk R:

CONVERT(G):

- Lad k = |Q| antallet af tilstande i G.
- **2** Hvis k = 2, returnér $\delta(q_0, q_f)$.
- o Vi har k > 2. Lad $q_{\text{rip}} ∈ Q \setminus \{q_0, q_f\}$. Lad $Q' = Q \setminus \{q_{\text{rip}}\}$, og definér $\delta' : (Q' \setminus \{q_f\}) \times (Q' \setminus \{q_0\}) \to \mathcal{R}$ på følgende måde:

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med $\llbracket M \rrbracket = L$.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$
- 2 Konvertér G til et regulært udtryk R:

CONVERT(G):

- Lad k = |Q| antallet af tilstande i G.
- 2 Hvis k = 2, returnér $\delta(q_0, q_f)$.
- o Vi har k > 2. Lad $q_{\text{rip}} ∈ Q \setminus \{q_0, q_f\}$. Lad $Q' = Q \setminus \{q_{\text{rip}}\}$, og definér $\delta' : (Q' \setminus \{q_f\}) \times (Q' \setminus \{q_0\}) \rightarrow \mathcal{R}$ på følgende måde:

$$q$$
 R_1
 R_2
 R_4
 q
 q
 R_3

For
$$q \in Q' \setminus \{q_f\}$$
 og $q' \in Q' \setminus \{q_0\}$ lad $R_1 = \delta(q, q_{\text{rip}}), R_2 = \delta(q_{\text{rip}}, q_{\text{rip}}),$ $R_3 = \delta(q_{\text{rip}}, q')$ og $R_4 = \delta(q, q')$, og lad $\delta'(q, q') = R_4 \cup R_1(R_2)^*R_3$.

• Returnér CONVERT $(G' = (Q', \Sigma, \delta', q_0, q_f))$

- Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med $\llbracket M \rrbracket = L$.
 - Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$
 - Konvertér G til et regulært udtryk R.
 - **3** Vis at [M] = [R]:
 - Vis at $\llbracket M \rrbracket = \llbracket G \rrbracket$: nemt
 - ② Vis at [G] = [R]:
 - Hvis k = |Q| = 2: $Q = \{q_0, q_f\}$, og $R = \delta(q_0, q_f)$ $\Rightarrow \checkmark$
 - ② Hvis k > 2: Vis at [G] = [G']
 - One!

Ikke alle sprog er regulære. F.x. sproget $\{0^n1^n \mid n \in \mathbb{N}\}$:

- en uendelig automat!

Pumping Lemma: en egenskab ved alle regulære sprog.

⇒ Hvis et sprog ikke har den egenskab, kan det ikke være regulært.

- $|y| > 0 \text{ og } |xy| \le p,$
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.

En gang til:

```
For ethvert regulært sprog A findes p \in \mathbb{N}_0 således at for ethvert s \in A med |s| \geq p findes en opsplitning s = xyz således at |y| > 0 og |xy| \leq p og for alle i \in \mathbb{N}_0 xy^iz \in A.
```

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.

Eksempel 1.73: Sproget $B = \{0^n 1^n \mid n \in \mathbb{N}\}$ er ikke regulært.

Bevis (ved modstrid; kortere end i bogen!): Antag at B er regulært, og lad p være pumpelængden. Lad $s = 0^p 1^p$, da er $|s| \ge p$.

Lad s = xyz være en opsplitning af s som opfylder pumpelemmaets betingelser. Pga. $|xy| \le p$ kan y kun indeholde 0er, og pga. |y| > 0 indeholder y mindst ét 0.

Sidste betingelse i lemmaet siger bl.a. at ordet $xyyz \in A$, men dette ord indeholder for mange 0er. Modstrid!

- $|y| > 0 \text{ og } |xy| \le p,$
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.

Bevis: Lad $M = (Q, \Sigma, \delta, q_0, F)$ være en DFA der genkender A, og lad p = |Q|. Lad $s = s_1 s_2 \dots s_n \in A \text{ med } |s| \ge p$.

Mens M læser s, kommer den igennem en følge af n+1 tilstande. Men n+1>p, så der er flere tilstande i følgen end der er i M!

Dvs. der er en tilstand der optræder to gange i følgen – en løkke!

Hvis vi tager x til at være den del af s der læses $f \sigma r$ løkken, y den del der læses i løkken, og z den del der læses e f t e r løkken, kan vi gennemløbe løkken i gange og genkende strengen $x y^i z$.

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.

Bevis: Lad $M=(Q,\Sigma,\delta,q_0,F)$ være en DFA der genkender A, og lad p=|Q|. Lad $s=s_1s_2\dots s_n\in A$ med $|s|\geq p$.

Lad $r_1, r_2, \ldots, r_{n+1} \in Q$ således at $r_1 = q_0, r_{n+1} \in F$, og $r_{i+1} = \delta(r_i, s_i)$ for alle i.

Vi har $n+1 \ge p+1$, og |Q|=p. Derfor findes indices j og ℓ således at $1 \le j < \ell \le p+1$ og $r_j=r_\ell$.

Lad $x=s_1\dots s_{j-1},\ y=s_j\dots s_{\ell-1},\ z=s_\ell\dots s_n.$ Pga. $j<\ell$ har vi $|y|\geq 0,$ og $\ell\leq p+1$ medfører $|xy|\leq p.$

Eftersom $\delta(r_{\ell-1}, s_{\ell-1}) = r_j$, er enhver følge $(r_1, \ldots, r_{j-1})(r_j, \ldots, r_{\ell-1})^i(r_\ell, \ldots, r_{n+1})$ en accepterende følge for M, og ordet den genkender er xy^iz .

Eksempel 1.74: Sproget

 $C = \{w \mid \text{antallet af 0 i } w \text{ er lig med antallet af 1} \} \subseteq \{0,1\}^* \text{ er ikke regulært.}$

(Samme bevis som for eksempel 1.73)

Bemærkning (opgave 1.48): Sproget

 $D = \{w \mid \text{ antallet af 01 i } w \text{ er lig med antallet af 10}\} \subseteq \{0, 1\}^*$ er regulært!

(Men *kun* over alfabetet $\{0,1\}$; hvis alfabetet f.x. er $\{0,1,2\}$, er *D ikke* regulært ...)

Bevis:

