

MATHEMATICS EXTENSION 1: FORM VI

Time Allowed:

2 hours plus 5 minutes' reading time

Examination Date:

Thursday 29 July

Instructions

All questions may be attempted All questions are of equal value (12 marks) All necessary working must be shown Marks may not be awarded for careless work. Approved calculators and templates may be used.

Collection

Start each question in a new booklet If you use a second booklet for a question, staple it to the first. Write your name, teacher's name and question number on each booklet

DKG

Question 1

a) Express
$$\frac{7\pi}{18}$$
 radians as degrees [1]

b) Solve the inequation:
$$\frac{2x+1}{x-2} \ge 1$$
 [3]

Differentiate:
$$\cos^{-1} \frac{1}{x}$$
 [2]

d) Evaluate:
$$\int_{0}^{\pi} \sin^{2} x \, dx$$
 [3]

e) (i) On the same number plane, sketch the graphs of
$$y = |2x - 1|$$
 and $y = |x + 1|$ [2]

(ii) Hence or otherwise, solve
$$|2x-1| \le |x+1|$$

Question 2

a) If
$$\tan\frac{\theta}{2}=\frac{1}{2}$$
, find the value of $\cos2\theta$ in exact form. [3]

b) For the parabola
$$x^2 = 12y$$

(i) Derive the equation of the tangent at
$$(6t, 3t^2)$$

c) Evaluate:
$$\sin\left(2\sin^{-1}\frac{3}{4}\right)$$
 [3]

Question 3

- a) (i) Find the domain and range of the function $y = 3 \sin^{-1}(x-1)$
 - (ii) Sketch the graph of the function $y = 3\sin^{-1}(x-1)$ [2]
- The volume, V_i of a sphere of radius r is increasing at a constant rate of 200 mm³ per second.

(i) Find
$$\frac{dr}{dt}$$
 in terms of r. [3]

- (ii) Determine the rate of increase of the surface area, S of the sphere when the radius is 50 mm. (NOTE: $V = \frac{4}{3}\pi r^3$, $S = 4\pi r^2$) [2]
- (c) A vertical flagpole CD of height h metres stands with its base C on horizontal ground. A is a point on the ground due south of C and B is a point on the ground on a bearing of 120° from C such that the distance AB is 70 metres. The angles of elevation of D from A and B are α and β respectively, where $\tan \alpha = \frac{1}{5}$ and $\tan \beta = \frac{1}{8}$. Find the exact value of h. [5]

Ascham Trial 2004......Form VI Mathematics Extension 1.....page 3

Question 4

Prove that $\frac{d}{dx}(\frac{1}{2}v^2) = \ddot{x}$ [2]

- A bug moving in a straight line has an acceleration given by $\ddot{x} = x(8-3x)$ where x is the displacement in metres from a fixed point O. Initially the bug is at the origin O and has a speed of 4 m/s. Find its speed when it is 1 m on the positive side of 0.
- A particle is oscillating in simple harmonic motion such that its displacement x metres from the origin is given by the equation $\ddot{x} = -16x$ where t is the time in seconds. When t = 0, v = 4 m/s, and x = 5 m.
 - Show that $x = a\cos(4t + \varepsilon)$ is a solution for this equation. (a and ε are constants) [2] [1]

Find the period of the motion.

(ii) Show that the amplitude of the oscillation is $\sqrt{26}$ [3]

[2] What is the maximum speed of the particle? (iv)

Question 5

a) Prove that
$$\frac{\sin 2x}{\sin x} - \frac{\cos 2x}{\cos x} = \sec x$$
 [2]

Prove that if a and b are both positive, then $\frac{a+b}{2} \ge \sqrt{ab}$ [2] b)

Show that $x^3 - 3x + 1 = 0$ has a root α between x = 0 and x = 0.5c)

Taking x = 0.1 as a first approximation, use one application of Newton's method to find (ii) a closer approximation of α , giving your answer correct to four decimal places. [2]

If the three roots of $x^3 - 6x^2 + 3x + k = 0$ form an arithmetic series, find the value of k. [4] d)

Question 6

From the foot of a tower CD, the angle of a) elevation of a building AB a metres high is x. From the top D of the tower, the angle of depression to the top A of the building is 4.

> Show that the height h of the tower is given by

$$h = \frac{a\sin(x+y)}{\sin x \cos y}$$
 [6]

- In the diagram, AD =DE, and DA bisects angle CAB. O is the centre of the circle.
- The diagram is reproduced on page 5. Staple this into your book and work on the diagram on page 5.
- [2] Prove: OD | AC
- Prove: $\angle BDC = \angle ADE$ [3] iii)
- Prove that $\angle CDE = 90^{\circ}$.

Question 7

a) Use the substitution
$$u = x^2 + 1$$
 to evaluate $\int x^3 (x^2 + 1)^3 dx$ [4]

- A particle is projected from a point O with an initial velocity of V and with an angle $\, heta\,$ of elevation. (Air resistance is ignored)
 - Given that $\ddot{x} = 0$ and $\ddot{y} = -g$, derive the equations for x and y as functions of time. [2]
 - If the particle is projected at an angle of 60° with a velocity of $\sqrt{2gl}$ and it passes through the point P(l, h), prove that $\frac{h}{l} = \sqrt{3} - 1$. (You may assume that the equation of the path of the projectile is $y = x \tan \theta - \frac{gx^2}{2V^2} \sec^2 \theta$). [2]
- [1] Give the expansion for cos(A + B).
 - Prove by mathematical induction that for integers $n \ge 1$, [3] $\cos \pi n = (-1)^n$

End of examination

			2
2004: Extension 1 Ascha	m Trial Exam Solutions.		
Question 1	Question 2	$50 t = -\frac{1}{3} \text{ or } t = 2$	b) av = 200 m³/s
a) 70°	t2+1	so egns are	1/ 4 3
b) $x(x-2)^2$, $x \neq 2$ $(2x+1)(x-2) \ge x^2 + 4x + 4$	a) $tan \stackrel{?}{=} = \frac{1}{2}$ let $tan \stackrel{?}{=} = t = \frac{1}{2}$	$y = 2x - 12$ $\alpha y = -3x - \frac{1}{3}$	$V = \frac{1}{3}\pi r^{3}$ $\therefore \frac{dV}{dr} = 4\pi r^{2}$
$x^2 + x - 670$	50: COS 20 = COS²0 - Sù²0	c) sin (2 sin - 13/4)	i) $\frac{dr}{dt} = \frac{dr}{dv} \times \frac{dv}{dt}$
$(x+3)(x-2)70^{-3}\sqrt{2}$	$= \left(\frac{t^2+1}{t^2+1}\right)^2 - \left(\frac{2t}{t^2+1}\right)^2$	$(ct su^{-1} = A 4)$	1) at = av ^ dt = 1 200
x 5 -3 a x 72		Sri A = 3 A	$=\frac{1}{4\pi r^2}$
	$= \frac{t^{4} - 2t^{2} + 1 - 4t^{2}}{(t^{2} + 1)^{2}}$	V7	= 50
c) $\frac{d}{d\kappa} \cos^{-1} \frac{1}{\kappa} = \frac{-\frac{1}{2}}{\sqrt{1-\frac{1}{2}}} = \frac{-\frac{1}{2}}{\sqrt{1-\frac{1}{2}}}$	$= t^{+} - 6t^{2} + 1$:- Si (2 Si - 4)	πγ2
$=\frac{1}{\chi^2\sqrt{\frac{\chi_{k-1}}{2^2}}}$	(t2+1)2	= = sin (2A) = = 2 sin A ws A	The section of the second section of the section of the second section of the section of the second section of the section of
$=\frac{1}{\varkappa\sqrt{\varkappa^2-1}}$	but t=\frac{1}{2}	$= 2 \times \frac{3}{4} \times \sqrt{\frac{7}{16}}$	ii) rate of incr of $SA = \frac{d}{dt}$
	$60 (05 20 = (\frac{1}{2})^{4} - 6(\frac{1}{2})^{4} + 1$	- ·	$S_{} = 4\pi r^{2}$ $\frac{dS}{dr} = 8\pi r$
d) $\int_0^{\pi} \sin^2 x dx$ = $\frac{1}{2} \int_0^{\pi} (1 - \cos 2\pi) dx$	$((\frac{1}{2})^2 + 1)^2$	$=\frac{3\sqrt{7}}{8}=0.992156$	and $\frac{d5}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$
$= \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]^{-1}$	$= \frac{\frac{1}{16} - \frac{6}{4} + 1}{\left(\frac{5}{4}\right)^2}$		= 8 Tr × 50
$= \frac{1}{2} \left[(\overline{1} - 0) - (0 - 0) \right]$	= - 1 = - 2 6	. Question 3	when r= 50,
= [#		$\frac{dS}{dt} = 8 \times T \times 50 \times 50$ $\frac{dS}{dt} = 8 \times T \times 50 \times 50$
4=-2x+1 42x+1	b) i) $\chi^2 = 12y$	$(x-1)$ $y = 3.5 \text{m}^{-1}(x-1)$	
e) a) 1	$y = \frac{\chi^2}{ 2 }$	· 4-2-8N-1 (2-1)	= 8 mm²/s
	y = 1	Domain: -1 4 (2-1) 41	2
y=-x-1	ab x=6t, y'=t	0 6 2 2	c) como Burdó eye view
	so grad of tang = t	42	↑ B
1 3	So eqn of tang $4-3t^2=t(x-bt)$	Pange: - 1/2 / 3 / 1/2	A Tom
ii) 501 of 2201 = x+1	$y = tx - 3t^2$		D 3-D View.
2+1=2x-1	1	(1)	/ c
2 x 2 2	11) tang thun (5,-2)	$\frac{31}{2}$ = $\frac{1}{3}$ y = 3 sn - (x-1)	1 60
soln: 0 = 2 = 2:	$\therefore -2 = 6t - 3t^2$	72	A B
	$\frac{3t^2 - 5t - 2}{(3t + 1)(t - 2)} = 0$		A 70M
7	the man Cook V. Late 1 - fly V		commend to comment the title to the transfer of the comment of the
		4	

THE PERSON NAMED IN COLUMN TO SERVICE AND ASSESSMENT OF THE PERSON OF TH	
LACB = 60° (L's au Str line)	$V^{2} = 22$
now tan $a = \frac{h}{Ac}$	$V = \pm \sqrt{21}$
50 AC = 5	so speed is J22m/s when x=1
AC = 5h	e e a cosmo a
and $\beta = \frac{n}{\beta c}$	b) $x = -16x$ $t = 0, v = 4$ $x = 5$
50 10 18	i) $x = a \cdot \cos(4t + \epsilon)$
Bc = 8h	$\dot{z} = -4a \sin (4t + \epsilon)$
	$\dot{x} = -16 \text{ a cos } (4t + \varepsilon)$
in DABC using wrine rule:	= -16x
AB2 = Ac2+BC2- 2×AC×BC× cos 60°	so it is a soft to equ QED.
70"= 25h" + 64h"- 80h" =	
49h² = 4900	ii) period = 21 4
h ² ≤ 100	= 12
50 h = 10 m	is the first decidence in a second of the se
	W) x=5, v=4 and t=0
Question 4	80 x = a cos (4t + E)
	: 5 = a cos & []
$a(i)$ da_{i} da_{i}	and 4 = - 4 a sin E.
= A (2 v2) × AV	and $4 = -4a \sin \varepsilon$. $-1 = a \sin \varepsilon - \varepsilon$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^2 \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{w}}{d\mathbf{v}}$	and $4 = -4a \sin \varepsilon$. $-1 = a \sin \varepsilon - \varepsilon$ Squaring and adding $\pi \circ \varepsilon$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^2 \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{w}}{d\mathbf{v}}$ $= \frac{d\mathbf{x}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin \varepsilon$. $-1 = a \sin \varepsilon - \varepsilon$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2}\right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{w}}{d\mathbf{v}}$ $= \frac{d\mathbf{x}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin \varepsilon$. $-1 = a \sin \varepsilon - \varepsilon$ Squaring and adding $\pi \circ \varepsilon$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^2 \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{w}}{d\mathbf{v}}$ $= \frac{d\mathbf{x}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin \varepsilon$ $-1 = a \sin \varepsilon - \varepsilon$ Squaring and adding $\pi \varepsilon = \varepsilon$ $26 = a^2 \cos^2 \varepsilon + a^2 \sin^2 \varepsilon$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{w}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin \varepsilon$ $-1 = a \sin \varepsilon \qquad [2]$ Squaring and adding $[] \circ [2]$ $26 = a^2 \cos^2 \varepsilon + a^2 \sin^2 \varepsilon$ $a^2 = 26$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin \varepsilon$ $-1 = a \sin \varepsilon$ $= 2$ Squaring and adding $[a \circ 2]$ $26 = a^2 \cos^2 \varepsilon + a^2 \sin^2 \varepsilon$ $a^2 = 26$ $a = \sqrt{26}$ since $a > 0$ IN) speed is max at $2 = 0$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{n}}$ $= \mathbf{v} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin \epsilon$ $-1 = a \sin \epsilon$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin \varepsilon$ $-1 = a \sin \varepsilon$ $-1 = a \sin \varepsilon$ Squaring and adding [10] $26 = a^2 \cos^2 \varepsilon + a^2 \sin^2 \varepsilon$ $a^2 = 26$ $a = \sqrt{26} \sin ce a = 0$ IN) speed is max at $2e = 0$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin 2$ $-1 = a \sin 2$ = 2 Squaring and adding [10] $26 = a^2 \cos^2 2 + a^2 \sin^2 2$ $a^2 = 26$ $a = \sqrt{26}$ since $a > 0$ iv) speed is max at $2 = 0$ $0 = -16\sqrt{26} \cos (4t + 2)$ $\cos (4t + 2) = 0$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{x}}$ $= \mathbf{v} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{x}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin 2$ $-1 = a \sin 6 = 2$ Squaring and adding [182] $26 = a^2 \cos^2 6 + a^2 \sin^2 6$ $a^2 = 26$ $a = \sqrt{26}$ since $a > 0$ iv) speed is max at $2 = 0$ $0 = -16\sqrt{26} \cos (4t + 6)$ $\cos (4t + 6) = 0$ $\cot (4t + 6) = \frac{1}{2}$, $\cot 7 = 2$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin \epsilon$ $-1 = a \sin \epsilon - \epsilon$ Squaring and adding $\epsilon = \epsilon$ $26 = a^2 \cos^2 \epsilon + a^2 \sin^2 \epsilon$ $a^2 = 26$ $a = \sqrt{26} \text{smice } a \neq 0$ iv) speed is max at $2 = 0$ $0 = -16\sqrt{26} \cos (4t + \epsilon)$ $\cos (4t + \epsilon) = 0$ $\cos (4t + \epsilon) = \frac{\pi}{2}$ at $(4t + \epsilon) = \frac{\pi}{2}$, sub $\Rightarrow 2$ $2 = -4\sqrt{26} \sin \frac{\pi}{2}$
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{x}}$ $= \mathbf{v} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin 2$ $-1 = a \sin 6 = 2$ Squaring and adding 0 0 0 0 0 0 0 0 0 0
$= \frac{d\mathbf{v}}{d\mathbf{v}} \left(\frac{1}{2} \mathbf{v}^{2} \right) \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \mathbf{v} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}} \times \frac{d\mathbf{v}}{d\mathbf{v}}$ $= \frac{d\mathbf{v}}{d\mathbf{v}}$	and $4 = -4a \sin 2$ $-1 = a \sin 2$ $= a \cos 2$

Question 5	$11) z_0 = 0.1$	
a) LHS = SN ZX - COS ZX COSX	by NM, $x_1 = x_0 + \frac{f(x_0)}{f(x_0)}$	
$= \frac{2 \text{ Six } \cos x}{\text{Six }} - \frac{\cos^2 x - 8 \text{i}^2 x}{\cos x}$	$f'(x) = 3x^2 - 3$ $f'(0.1) = 3(0.1)^2 - 3 = -2.97$	
$= \frac{2\cos^2 x - \cos^2 x + 8u^2 x}{\cos x}$	$f(0.1) = (0.1)^3 - 3(0.1) + = 0.7$ $\therefore z_1 = 0.1 + 0.701$	0
$= \frac{5\dot{\eta}^2 z + \cos^2 x}{\cos z}$	-2.97 = 0.3360269	-
	So d = 0.3360 (to 4 dp)	
$\frac{1}{2}\cos x$	er	•
= Sec x	d) $x^3 - 6x^2 + 3x + k = 0$	
= RHS QED.	let roots be a-d, a, a+d.	
a+b 2.66	sum of toots = T	
b) To pr: $\frac{a+b}{2} > \sqrt{ab}$ $\Rightarrow \frac{a+b}{2} - \sqrt{ab} > 0$	50 3a = 6	
	- C	***
1110 - a - 2, Tab + b	Sums of mand of parm = a	
LHe, = <u>a - 2 \lab + b</u>	Sum of prod of pairs = $\frac{1}{4}$	=
2	-50 a (a-a) + (a-d)(a+a) + a (a+d)	n .
LHe, $a = 2\sqrt{ab+b}$ $= \sqrt{(\sqrt{a} - \sqrt{b})^2}$ $= 2$	50 a(a-a) + (a-d)(a+a) + a(a+d) $+a^2 - ad + a^2 - d^2 + a^2 + ad = 3$	T 10 10 10 10 10 10 10 10 10 10 10 10 10
$= \sqrt{(\sqrt{a} - \sqrt{b})^2}$	$50 \cdot a(a-a) + (a-d)(a+a) + a(a+d)$ $a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $3a^2 - d^2 = 3$	
$= \frac{2}{(\sqrt{a} - \sqrt{b})^{2}}$ $= \frac{2}{2}$ $= \frac{2}{1000} (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ fov. } a \neq b$	50 a(a-a) + (a-d)(a+a) + a(a+d) $+a^2 - ad + a^2 - d^2 + a^2 + ad = 3$	
2 $= \sqrt{(\sqrt{a} - \sqrt{b})^{2}}$ 2 $1000 (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $and (\sqrt{a} - \sqrt{b}) = 0 \text{ for } a = b$	So $a(a-a) + (a-d)(a+a) + a(a+d)$ $= a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $= 3a^2 - d^2 = 3$ $= 12 - d^2 = 3$	
$= \frac{2}{(\sqrt{a} - \sqrt{b})^2}$ $= \frac{1}{2}$ $= $	$50 a(a-a) + (a-d)(a+a) + a(a+d)$ $a^{2} - ad + a^{2} - d^{2} + a^{2} + ad = 3$ $3a^{2} - d^{2} = 3$ $12 - d^{2} = 3$ $d^{2} = 9$	
2 $= \sqrt{(\sqrt{a} - \sqrt{b})^{2}}$ 2 $1000 (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $and (\sqrt{a} - \sqrt{b}) = 0 \text{ for } a = b$	So $a(a-a) + (a-d)(a+a) + a(a+d)$ $= a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $= 3a^2 - d^2 = 3$ $= 12 - d^2 = 3$ $= 4^2 = 9$ $= 4 = 4^3$ $= 4 = 4^3$ $= 4 = 4^3$ $= 4 = 4^3$ $= 4 = 4^3$	
$= \frac{2}{(\sqrt{a} - \sqrt{b})^2}$ $= \frac{1}{2}$ $= $	So $a(a-d) + (a-d)(a+d) + a(a+d)$ $a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $3a^2 - d^2 = 3$ $a^2 = q$ $a^2 = q$ $a = d^2 = q$ a = d = d a = d = d a = d = d a = d = d	
$= \frac{2}{(\sqrt{a} - \sqrt{b})^2}$ $= \frac{1}{2}$ $= $	So $a(a-a) + (a-d)(a+a) + a(a+d)$ $= a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $= 3a^2 - d^2 = 3$ $= 12 - d^2 = 3$ $= 4^2 = 9$ $= 4 = 4^3$ $= 4 = 4^3$ $= 4 = 4^3$ $= 4 = 4^3$ $= 4 = 4^3$	
$= \frac{2}{(\sqrt{a} - \sqrt{b})^{2}}$ $= \frac{2}{2}$ $= \frac{1}{2} \cdot $	So $a(a-a) + (a-d)(a+a) + a(a+d)$ $a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $3a^2 - d^2 = 4$ $3a^2 - d^2 = 4$ $3a^2 - d^2 = 4$ $3a^2 - d^2 = 4$ When $d = 3a^2 - d^2 = 4$	
$= (\sqrt{a} - \sqrt{b})^{2}$ $= (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{and } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a = b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a = b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a = b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a = b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } (\sqrt{a} - \sqrt{b})^{2} > 0 \text{ for } a \neq b$ $= \text{so } ($	So $a(a-d) + (a-d)(a+d) + a(a+d)$ $a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $3a^2 - d^2 = 3$ $3a^2 - d$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	So $a(a-d) + (a-d)(a+d) + a(a+d)$ $a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $3a^2 - d^2 = 3$ $3a^2 - d^2 = 3$ $4^2 = 9$ $d = \frac{1}{3}$ prod of roots = $\frac{1}{6}$ a(a-d)(a+d) = -k a(a-d)(a+d) = -k	
$= \frac{2}{(\sqrt{a} - \sqrt{b})^{2}}$	So $a(a-a) + (a-d)(a+a) + a(a+d)$ $a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $3a^2 - d^2 = 4$ $3a^2 - d$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	So $a(a-d) + (a-d)(a+d) + a(a+d)$ $a^2 - ad + a^2 - d^2 + a^2 + ad = 3$ $3a^2 - d^2 = 3$ $3a^2 - d^2 = 3$ $4^2 = 9$ $d = \frac{1}{3}$ prod of roots = $\frac{1}{6}$ a(a-d)(a+d) = -k a(a-d)(a+d) = -k	

 $\angle DAC = \chi + y$ $Sin \chi = \frac{d}{CA}$ $CA = \frac{a}{Sin \chi}$ $\angle COA = 90 - y$

in Δ DAC

 $\frac{h}{\sin(x + y)} = \frac{cA}{\sin(qo - y)}$ $h = \frac{cA}{\sin(z + y)}$ $\cos y$

 $= a \sin(x+y) \varphi = b.$ $\sin x \cdot \cos y = 0$

i) _ _ ADO = x (AO=OD) = alt _ DAC

50. O.D. IL AC ... Q.ED.

ii) LCED = Z (AD = DE) LADE = 180-22 (4 SUM DADE)

LCDB = 180-2x (opp L cyclic quad ACDB

ergo LBDC=LADE OED

ill) let LADC = a now LADB = 90 (Lin semio) SO L BDC = 90 + a = LADE (proved above) SO LCDE = 90, QED

question 7

a) $\int x^3 (x^2 + 1)^3 dx$ let $u = x^2 + 1 = x^2 + u - 1$ $\frac{du}{dx} = 2x$ $\frac{du}{dx} = \frac{du}{2x}$

 $\int x^{3}(x^{2}+1)^{3} dx = \int x^{3}(u)^{3} \frac{du}{dx}$ $= \frac{1}{3} \int x^{2} \cdot u^{3} - du$ $= \frac{1}{2} \int (u-1) \cdot u^{3} du$ $= \frac{1}{2} \int (u^{4} - u^{3}) du$ $= \frac{1}{2} \left(\frac{u^{5}}{5} - \frac{u^{4}}{4} \right) + C$ $= \frac{1}{2} \times \left(\frac{x^{2}+1}{5} - \frac{1}{2} \times \frac{(x^{2}+1)^{4}}{4} + C \right)$ $= \frac{(x^{2}+1)^{5}}{10} - \frac{(z^{2}+1)^{4}}{2} + C$

when t=0, $x=0 \rightarrow D=0$ $x=v+\cos\theta$

y = -qt + Ewhen t=0, $y = V S n \theta$ $\Rightarrow E = V S m \theta$ $y' = -gt + V S m \theta$ $y' = -\frac{1}{2}gt^2 + Vt S n \theta + F$ when t=0, y=0 $\Rightarrow F=0$ $y' = \frac{1}{2}gt^2 + Vt S n \theta$

path of projectile $y = \pi \tan \theta - \frac{q}{2} \times \frac{q}{2} \sec^2 \theta - 11$

 $\theta = 60^{\circ}$, $V = \sqrt{292}$ $+ \frac{1}{2} + \frac{1}$

 $- y = \sqrt{3}x - \frac{39x^2}{\sqrt{2}}$

V SNO 6

initiallyx = v cos o y = v sin o

So $h = \sqrt{3}l - \frac{2gl}{3gl}$ $h = \sqrt{3}l - l$ $h = l(\sqrt{3} - 1)$ $\frac{h}{l} = \sqrt{3} - 1$ QED

c) i) ws (A+B) = (OSA. LOSB... — Sù A. Su B

i) to prove: $(x, \pi n = (-1)^n, n\pi)$ for n = 1 LHS = (x, π) = -1= RHS

So Statement is true for n=1.

assume true for n=ki.e. $\cos \pi k = (-1)^k$... []

now to prove Statement

true for n=k+1i.e. $\cos \pi (k+1) = (-1)^{k+1}$ LHS = $\cos(\pi k + \pi)$

 $= \cos(\pi k + \pi)$ $= \cos \pi k \cdot \cos \pi - \sin \pi k \cdot \sin \pi$ $= -\cos \pi k + o$ $= -\cos \pi k$

= $-(-1)^{k}$ by induct hyp \square = $(-1)^{k}(-1)^{k}$ = $(-1)^{k+1}$

so . - it follows by mathematical induction that statement is true by all 1971.