Exercises:

$$\frac{\psi}{\psi} = |+z\rangle \rightarrow \begin{bmatrix} 1\\0 \end{bmatrix} \quad L_{xy}(\theta) \rightarrow \begin{bmatrix} e^{-i\theta/2} & 0\\0 & e^{+i\theta/2} \end{bmatrix}$$

$$\frac{\phi}{\phi} = |+x\rangle \rightarrow \begin{bmatrix} 1\\1 \end{bmatrix} \quad L_{tz}(\phi) \rightarrow \begin{bmatrix} e^{-\theta/2} & 0\\0 & e^{+\theta/2} \end{bmatrix}$$

1.Calculate the following:

$$L_{xy}|+z\rangle$$
 $L_{tz}|+z\rangle$
 $L_{xy}|+x\rangle$ $L_{tz}|+x\rangle$

(Bonus: Draw on Bloch Sphere from Video #5 for various θ and ϕ angles.)

2. Take the above are left-chiral spinors and $SL(2, \mathbb{C})$ matrices...

Write out the left dual, right dual, and right spinors and $SL(2, \mathbb{C})$ matrices.

$$L_{xy}|+z\rangle$$

$$\begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = e^{-i\theta/2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$L_{tz}|+z|$$

$$\begin{bmatrix} e^{-\phi/2} & 0 \\ 0 & e^{+\phi/2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = e^{-\phi/2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = e^{-i\theta/2} \begin{bmatrix} 1 \\ e^{i\theta} \end{bmatrix}$$

$$\begin{bmatrix} e^{-\phi/2} & 0 \\ 0 & e^{+\phi/2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = e^{-\phi/2} \begin{bmatrix} 1 \\ e^{\phi/2} \end{bmatrix}$$

Weyl Spinor Type	Spinor Formula	$ +z\rangle$	$ +x\rangle$
Left	ψ	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
Left Dual	$\psi^T \epsilon$	[0 1]	[-1 1]
Right Dual	ψ^*	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
Right	$\psi^{\dagger}\epsilon$	[0 1]	[-1 1]

Weyl Spinor Type	Spinor Formula	$ +z\rangle$	$ +x\rangle$
Left	ψ	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
Left Dual	$-\epsilon\psi$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$
Right Dual	$oldsymbol{\psi}^*$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
Right	$-\epsilon\psi^*$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Weyl Spinor Type	Lorentz Transformation	$L_{xy}(\theta)$	$L_{tz}(oldsymbol{\phi})$
Left	L	$\begin{bmatrix} e^{-i\theta}/2 & 0 \\ 0 & e^{+i\theta}/2 \end{bmatrix}$	$\begin{bmatrix} e^{-\phi}/_2 & 0 \\ 0 & e^{+\phi}/_2 \end{bmatrix}$
Left Dual	L-1 (row spinor)	$\begin{bmatrix} e^{+i\theta}/2 & 0 \\ 0 & e^{-i\theta}/2 \end{bmatrix}$	$\begin{bmatrix} e^{+\phi}/_2 & 0 \\ 0 & e^{-\phi}/_2 \end{bmatrix}$
Right Dual	L^*	Same as Left Dual	Same as Left
Right	$(L^{-1})^*$	Same as Left	Same as Left Dual

Weyl Spinor Type	Lorentz Transformation	$L_{xy}(\theta)$	$L_{tz}(\phi)$
Left	L	$\begin{bmatrix} e^{-i\theta}/2 & 0 \\ 0 & e^{+i\theta}/2 \end{bmatrix}$	$\begin{bmatrix} e^{-\phi}/_2 & 0 \\ 0 & e^{+\phi}/_2 \end{bmatrix}$
Left Dual	$(L^{-1})^T$ (column spinor)	$\begin{bmatrix} e^{+i\theta}/2 & 0 \\ 0 & e^{-i\theta}/2 \end{bmatrix}$	$\begin{bmatrix} e^{+\phi}/_2 & 0 \\ 0 & e^{-\phi}/_2 \end{bmatrix}$
Right Dual	L^*	Same as Left Dual	Same as Left
Right	$(L^{-1})^{\dagger}$ (column spinor)	Same as Left	Same as Left Dual