Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Test 13

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$ z = \frac{ 1+2i }{ 1-2i } = \frac{\sqrt{1^2+2^2}}{\sqrt{1^2+(-2)^2}} =$	3p
	$=\frac{\sqrt{5}}{\sqrt{5}}=1$	2p
2.	$f(-x) = (\sqrt{2} + 1)^{-x} + (\sqrt{2} - 1)^{-x} = (\frac{1}{\sqrt{2} + 1})^{x} + (\frac{1}{\sqrt{2} - 1})^{x} =$	3 p
	$=(\sqrt{2}-1)^x+(\sqrt{2}+1)^x=f(x)$, pentru orice număr real x , deci funcția f este pară	2p
3.	$x + 2 = x^2 \Rightarrow x^2 - x - 2 = 0$ x = -1, care nu convine, sau $x = 2$, care convine	3p 2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Numerele naturale de două cifre care au ambele cifre divizibile cu 3 sunt \overline{ab} cu $a \in \{3,6,9\}$ și $b \in \{0,3,6,9\}$, deci sunt 12 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{12}{90} = \frac{2}{15}$	1p
5.	Perpendiculara din A pe BC este și mediatoarea lui BC , deci coordonatele centrului cercului circumscris triunghiului ABC sunt soluțiile sistemului $\begin{cases} y = 3x + 1 \\ 2y = x + 7 \end{cases}$	3p
	x=1, $y=4$	2p
6.	$\cos(\pi - x) = -\cos x , \sin(\pi - x) = \sin x$	2p
	$-\sin x \cos x - \sin x \cos x = -1 \Leftrightarrow 2\sin x \cos x = 1 \Leftrightarrow \sin 2x = 1 \text{ si, cum } x \in \left(0, \frac{\pi}{2}\right), \text{ obținem } x = \frac{\pi}{4}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(a) = \begin{pmatrix} 1 & \ln a \\ 0 & 1 \end{pmatrix} = 1 \cdot 1 - 0 \cdot \ln a =$	2p
	$=1-0=1$, pentru orice $a \in (0,+\infty)$	3 p
	$A(a) \cdot A(b) = \begin{pmatrix} 1 & \ln a + \ln b \\ 0 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & \ln(ab) \\ 0 & 1 \end{pmatrix} = A(ab), \text{ pentru orice } a, b \in (0, +\infty)$	2p

c)	$A(a) \cdot A(a) \cdot A(a) = A(a^3) = \begin{pmatrix} 1 & \ln a^3 \\ 0 & 1 \end{pmatrix}, \text{ pentru orice } a \in (0, +\infty)$	2p
	$ \begin{pmatrix} 1 & \ln a^3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2020 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \ln a^3 = 2020 \Leftrightarrow \ln a = \frac{2020}{3} \Leftrightarrow a = \sqrt[3]{e^{2020}}, \text{ care convine} $	3 p
2.a)	$x \circ y = \frac{1}{3}xy + x + y + 3 - 3 = \frac{1}{3}x(y+3) + (y+3) - 3 =$	2p
	$= (y+3)\left(\frac{1}{3}x+1\right) - 3 = \frac{1}{3}(x+3)(y+3) - 3$, pentru orice numere reale x și y	3 p
b)	$f(x) \circ f(y) = \frac{1}{3} (f(x) + 3) (f(y) + 3) - 3 = \frac{1}{3} (3x - 3 + 3) (3y - 3 + 3) - 3 =$	2p
	=3xy-3=f(xy), pentru orice numere reale x și y	3p
c)	$f\left(\frac{x+3}{3}\right) = 3 \cdot \frac{x+3}{3} - 3 = x \text{, pentru orice } x \in \mathbb{R} \text{, deci } x_k = f\left(\frac{x_k+3}{3}\right), \text{ pentru orice } k \in \mathbb{N}, k \ge 1$	2p
	$x_1 \circ x_2 \circ \dots \circ x_n = f\left(\frac{x_1+3}{3}\right) \circ f\left(\frac{x_2+3}{3}\right) \circ \dots \circ f\left(\frac{x_n+3}{3}\right) = f\left(\frac{(x_1+3)(x_2+3) \cdot \dots \cdot (x_n+3)}{3^n}\right) = f\left(\frac{x_1+3}{3}\right) \circ \dots \circ f\left(\frac{x_n+3}{3}\right) = f\left(\frac{x_1+3}{3}\right) \circ \dots \circ f\left(\frac{x_n+3}{3}\right) = f\left(\frac{x_n+3}{3}\right) \circ \dots \circ f\left(\frac$	
	$= 3 \cdot \frac{(x_1 + 3)(x_2 + 3) \cdot \dots \cdot (x_n + 3)}{3^n} - 3 = \frac{(x_1 + 3)(x_2 + 3) \cdot \dots \cdot (x_n + 3) - 3^n}{3^{n-1}}, \text{ pentru orice } n \in \mathbb{N}, n \ge 2$	3 p
	și orice numere reale $x_1, x_2,, x_{n-1}$ și x_n	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{1}{2\sqrt{\frac{x+1}{x-1}}} \cdot \frac{x-1-(x+1)}{(x-1)^2} =$	3p
	$= \frac{1}{2} \cdot \sqrt{\frac{x-1}{x+1}} \cdot \frac{-2}{(x-1)^2} = -\frac{1}{(x-1)\sqrt{x^2-1}}, \ x \in (1, +\infty)$	2p
b)	$f(2) = \sqrt{3}, \ f'(2) = -\frac{1}{\sqrt{3}}$	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = -\frac{1}{\sqrt{3}}x + \frac{5}{\sqrt{3}}$	3p
c)	$\lim_{x \to 1} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \sqrt{\frac{x+1}{x-1}} = +\infty, \text{ deci dreapta de ecuație } x = 1 \text{ este asimptotă verticală la graficul}$	2p
	funcției f	
	$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \sqrt{\frac{x+1}{x-1}} = 1$, deci dreapta de ecuație $y=1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f , de unde obținem că punctul de intersecție a celor două asimptote	3p
	este $(1,1)$	
2.a)	$\int_{0}^{1} \left(f(x) - \frac{x}{\sqrt{x^2 + 9}} \right) dx = \int_{0}^{1} x^2 dx =$	2 p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	3 p

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

b)	$f(x) - f(-x) = x^2 + \frac{x}{\sqrt{x^2 + 9}} - (-x)^2 - \frac{-x}{\sqrt{(-x)^2 + 9}} = \frac{2x}{\sqrt{x^2 + 9}}$, pentru orice număr real x	2p
	$\int_{0}^{4} (f(x) - f(-x)) dx = \int_{0}^{4} \frac{2x}{\sqrt{x^2 + 9}} dx = 2\sqrt{x^2 + 9} \bigg _{0}^{4} = 2(5 - 3) = 4$	3p
c)	$\int_{4}^{a} \frac{f(x)}{x} dx = \int_{4}^{a} \left(x + \frac{1}{\sqrt{x^2 + 9}} \right) dx = \left(\frac{x^2}{2} + \ln\left(x + \sqrt{x^2 + 9}\right) \right) \Big _{4}^{a} = \frac{a^2 - 16}{2} + \ln\frac{a + \sqrt{a^2 + 9}}{9}$	3p
	$\frac{a^2 - 16}{2} = 10$ și, cum $a > 4$, obținem $a = 6$	2p