Machine Learning Techniques

(機器學習技法)

Lecture 4: Soft-Margin Support Vector Machine

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 Embedding Numerous Features: Kernel Models

Lecture 3: Kernel Support Vector Machine

kernel as a shortcut to (transform + inner product) to **remove dependence on** \tilde{d} : allowing a spectrum of simple (**linear**) models to infinite dimensional (**Gaussian**) ones with margin control

Lecture 4: Soft-Margin Support Vector Machine

- Motivation and Primal Problem
- Dual Problem
- Messages behind Soft-Margin SVM
- Model Selection
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

recall: SVM can still overfit :-(

recall: SVM can still overfit :-(

• part of reasons: Φ

recall: SVM can still overfit :-(

- part of reasons: Φ
- other part: separable

recall: SVM can still overfit :-(

- part of reasons: Φ
- other part: separable

if always insisting on **separable** (⇒ **shatter**), have power to **overfit to noise**

want: give up on some noisy examples

want: give up on some noisy examples

pocket min b, \mathbf{w} $\sum_{n=1}^{N} [y_n \neq \text{sign}(\mathbf{w}^T \mathbf{z}_n + b)]$

want: give up on some noisy examples

pocket

 $\min_{b,\mathbf{w}}$

$$\sum_{n=1}^{N} \llbracket y_n \neq \mathsf{sign}(\mathbf{w}^T \mathbf{z}_n + b) \rrbracket$$

hard-margin SVM

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$$
 for all n

want: **give up** on some noisy examples

pocket

min

$$\sum_{n=1}^{N} \llbracket y_n \neq \operatorname{sign}(\mathbf{w}^T \mathbf{z}_n + b) \rrbracket$$

hard-margin SVM

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

 $y_n(\mathbf{w}^T\mathbf{z}_n+b)>1$ for all ns.t.

combination:

$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C}$$

$$\sum_{i=1}^{N} \begin{bmatrix} y_i \end{bmatrix}$$

$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} \left[y_n \neq \operatorname{sign}(\mathbf{w}^T\mathbf{z}_n + b) \right]$$

$$y_n(\mathbf{w}^T\mathbf{z}$$

$$y_n(\mathbf{w}^T\mathbf{z}_n+b)\geq 1$$
 for correct n

want: **give up** on some noisy examples

pocket

min

$$\sum_{n=1}^{N} [y_n \neq \operatorname{sign}(\mathbf{w}^T \mathbf{z}_n + b)]$$

hard-margin SVM

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

 $y_n(\mathbf{w}^T\mathbf{z}_n+b)>1$ for all ns.t.

combination:

$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} \left[y_n \neq \mathsf{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{z}_n + b) \right]$$

$$y_n(\mathbf{w}^T\mathbf{z}_n+b)\geq 1$$
 for **correct** n

$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge -\infty$$
 for incorrect n

want: give up on some noisy examples

pocket

 $\min_{b,\mathbf{w}}$

$$\sum_{n=1}^{N} \llbracket y_n \neq \operatorname{sign}(\mathbf{w}^T \mathbf{z}_n + b) \rrbracket$$

hard-margin SVM

$$\min_{b,\mathbf{w}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$ for all n

$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} \left[y_n \neq \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{z}_n + b) \right]$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$$
 for correct n

$$y_n(\mathbf{w}^T\mathbf{z}_n+b)\geq -\infty$$
 for incorrect n

C: trade-off of large margin & noise tolerance

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C \cdot \sum_{n=1}^{N} [y_n \neq \text{sign}(\mathbf{w}^T\mathbf{z}_n + b)]$$
s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \infty \cdot [y_n \neq \text{sign}(\mathbf{w}^T\mathbf{z}_n + b)]$$

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} [[y_n \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_n + b)]]$$
s.t.
$$y_n(\mathbf{w}^{T}\mathbf{z}_n + b) \ge 1 - \infty \cdot [[y_n \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_n + b)]]$$

• [I·]: non-linear, not QP anymore :-(

$$\begin{aligned} & \underset{b,\mathbf{w}}{\text{min}} & & \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} \left[y_{n} \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_{n} + b) \right] \\ & \text{s.t.} & & y_{n}(\mathbf{w}^{T}\mathbf{z}_{n} + b) \geq 1 - \infty \cdot \left[y_{n} \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_{n} + b) \right] \end{aligned}$$

• [:]: non-linear, not QP anymore :-(
—what about dual? kernel?

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} [[y_n \neq \text{sign}(\mathbf{w}^T\mathbf{z}_n + b)]]$$
s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \infty \cdot [[y_n \neq \text{sign}(\mathbf{w}^T\mathbf{z}_n + b)]]$$

- [·]: non-linear, not QP anymore :-(—what about dual? kernel?
- cannot distinguish small error (slightly away from fat boundary)

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} [y_n \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_n + b)]$$
s.t.
$$y_n(\mathbf{w}^{T}\mathbf{z}_n + b) \geq 1 - \infty \cdot [y_n \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_n + b)]$$

- [·]: non-linear, not QP anymore :-(—what about dual? kernel?
- cannot distinguish small error (slightly away from fat boundary)
 or large error (a...w...a...y... from fat boundary)

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \frac{C}{C} \cdot \sum_{n=1}^{N} [y_n \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_n + b)]$$
s.t.
$$y_n(\mathbf{w}^{T}\mathbf{z}_n + b) \geq 1 - \infty \cdot [y_n \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_n + b)]$$

- [·]: non-linear, not QP anymore :-(—what about dual? kernel?
- cannot distinguish small error (slightly away from fat boundary)
 or large error (a...w...a...y... from fat boundary)

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N}$$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) > 1 -$

for all n

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \frac{C}{C} \cdot \sum_{n=1}^{N} \left[y_n \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_n + b) \right]$$
s.t.
$$y_n(\mathbf{w}^{T}\mathbf{z}_n + b) \ge 1 - \infty \cdot \left[y_n \neq \text{sign}(\mathbf{w}^{T}\mathbf{z}_n + b) \right]$$

- [·]: non-linear, not QP anymore :-(—what about dual? kernel?
- cannot distinguish small error (slightly away from fat boundary)
 or large error (a...w...a...y... from fat boundary)
- record 'margin violation' by ξ_n —linear constraints

soft-margin SVM:
$$\min_{b, \mathbf{w}, \xi} \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{\mathbf{C}} \cdot \sum_{n=1}^{N}$$

s.t. $y_n(\mathbf{w}^T \mathbf{z}_n + b) \ge 1 - \xi_n \text{ and } \xi_n \ge 0 \text{ for all } n$

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C \cdot \sum_{n=1}^{N} [[y_n \neq \text{sign}(\mathbf{w}^T\mathbf{z}_n + b)]]$$
s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \infty \cdot [[y_n \neq \text{sign}(\mathbf{w}^T\mathbf{z}_n + b)]]$$

- [·]: non-linear, not QP anymore :-(—what about dual? kernel?
- cannot distinguish small error (slightly away from fat boundary)
 or large error (a...w...a...y... from fat boundary)
- record 'margin violation' by ξ_n —linear constraints
- penalize with margin violation instead of error count
 quadratic objective

soft-margin SVM:
$$\min_{b,\mathbf{w},\xi} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} \xi_n$$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$ for all n

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b,\mathbf{w},\xi} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\begin{aligned} & \underset{b, \mathbf{w}, \boldsymbol{\xi}}{\text{min}} & & \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{\mathbf{C}} \cdot \sum_{n=1}^{N} \xi_n \\ & \text{s.t.} & & y_n (\mathbf{w}^T \mathbf{z}_n + b) \geq 1 - \xi_n \text{ and } \xi_n \geq 0 \text{ for all } n \end{aligned}$$

• parameter C: trade-off of large margin & margin violation

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b,\mathbf{w},\xi} \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \frac{C}{C} \cdot \sum_{n=1}^{N} \xi_{n}$$
s.t.
$$v_{n}(\mathbf{w}^{T}\mathbf{z}_{n} + b) > 1 - \frac{C}{C}$$

$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

- parameter C: trade-off of large margin & margin violation
 - large C: want less margin violation

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b,\mathbf{w},\xi} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C} \cdot \sum_{n=1}^N \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

- parameter C: trade-off of large margin & margin violation
 - large C: want less margin violation
 - small C: want large margin

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{\substack{b,\mathbf{w},\xi\\ b,\mathbf{w},\xi}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C} \cdot \sum_{n=1}^N \xi_n$$
s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n \text{ and } \xi_n \ge 0 \text{ for all } n$

- parameter C: trade-off of large margin & margin violation
 - large C: want less margin violation
 - small C: want large margin
- QP of $\tilde{d} + 1 + N$ variables, 2N constraints

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{\boldsymbol{b}, \mathbf{w}, \boldsymbol{\xi}} \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{2} \cdot \sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

- parameter C: trade-off of large margin & margin violation
 - large C: want less margin violation
 - small C: want large margin
- QP of $\tilde{d} + 1 + N$ variables, 2N constraints

next: remove dependence on \vec{d} by soft-margin SVM primal \Rightarrow dual?

At the optimal solution of

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C \cdot \sum_{n=1}^N \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n ,

- assume that $y_1(\mathbf{w}^T\mathbf{z}_1 + b) = -10$. What is the corresponding ξ_1 ?
 - **1**
 - **2** 11
 - 3 21
 - 4 31

Fun Time

At the optimal solution of

$$\min_{b, \mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_n$$
s.t. $y_n(\mathbf{w}^T \mathbf{z}_n + b) \ge 1 - \xi_n \text{ and } \xi_n \ge 0 \text{ for all } n$,

assume that $y_1(\mathbf{w}^T\mathbf{z}_1 + b) = -10$. What is the corresponding ξ_1 ?

- **1**
- **2** 11
- 3 21
- **4** 31

Reference Answer: 2

$$\xi_1$$
 is simply $1 - y_1(\mathbf{w}^T \mathbf{z}_1 + b)$ when $y_1(\mathbf{w}^T \mathbf{z}_1 + b) < 1$.

primal:
$$\min_{b,\mathbf{w},\boldsymbol{\xi}}$$

$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + C \cdot \sum_{n=1}^N \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

primal:
$$\min_{b, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_n$$

s.t. $y_n(\mathbf{w}^T \mathbf{z}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$ for all n

primal:
$$\min_{b,\mathbf{w},\xi} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_n$$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$ for all n

$$\mathcal{L}(b, \mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^N \xi_n$$

primal:
$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C \cdot \sum_{n=1}^N \xi_n$$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$ for all n

$$\mathcal{L}(b, \mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_{n} + \sum_{n=1}^{N} \alpha_{n} \cdot (1 - \xi_{n} - y_{n}(\mathbf{w}^{T} \mathbf{z}_{n} + b)) +$$

primal:
$$\min_{b, \mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_n$$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$ for all n

$$\mathcal{L}(b, \mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_{n} + \sum_{n=1}^{N} \alpha_{n} \cdot (1 - \xi_{n} - y_{n}(\mathbf{w}^{\mathsf{T}} \mathbf{z}_{n} + b)) + \sum_{n=1}^{N} \beta_{n} \cdot (-\xi_{n})$$

primal:
$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C \cdot \sum_{n=1}^N \xi_n$$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$ for all n

Lagrange function with Lagrange multipliers α_n and β_n

$$\mathcal{L}(b, \mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_{n} + \sum_{n=1}^{N} \alpha_{n} \cdot (1 - \xi_{n} - y_{n}(\mathbf{w}^{\mathsf{T}} \mathbf{z}_{n} + b)) + \sum_{n=1}^{N} \beta_{n} \cdot (-\xi_{n})$$

want: Lagrange dual

$$\max_{\substack{\alpha_n \geq 0, \ \beta_n \geq 0}} \left(\min_{\substack{b, \mathbf{w}, \boldsymbol{\xi}}} \ \mathcal{L}(b, \mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \right)$$

Simplify ξ_n and β_n

$$\max_{\alpha_n \ge 0, \ \beta_n \ge 0} \quad \left(\min_{b, \mathbf{w}, \boldsymbol{\xi}} \right)$$

$$\max_{\alpha_n \geq 0, \ \beta_n \geq 0} \quad \left(\min_{b, \mathbf{w}, \xi} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^N \xi_n \right)$$

$$+\sum_{n=1}^{N}\alpha_{n}\cdot\left(1-\xi_{n}-y_{n}(\mathbf{w}^{\mathsf{T}}\mathbf{z}_{n}+b)\right)+\sum_{n=1}^{N}\beta_{n}\cdot\left(-\xi_{n}\right)\right)$$

Simplify ξ_n and β_n

$$\max_{\alpha_n \ge 0, \ \beta_n \ge 0} \left(\min_{b, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^N \xi_n + \sum_{n=1}^N \alpha_n \cdot (1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) + \sum_{n=1}^N \beta_n \cdot (-\xi_n) \right)$$

•
$$\frac{\partial \mathcal{L}}{\partial \xi_n} = 0 =$$

$$\max_{\boldsymbol{\alpha}_{n} \geq 0, \ \beta_{n} \geq 0} \left(\min_{\boldsymbol{b}, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_{n} + \sum_{n=1}^{N} \alpha_{n} \cdot (1 - \xi_{n} - y_{n}(\mathbf{w}^{T} \mathbf{z}_{n} + b)) + \sum_{n=1}^{N} \beta_{n} \cdot (-\xi_{n}) \right)$$

•
$$\frac{\partial \mathcal{L}}{\partial \xi_n} = 0 = C - \alpha_n - \beta_n$$

$$\max_{\alpha_n \ge 0, \ \beta_n \ge 0} \left(\min_{b, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^N \xi_n + \sum_{n=1}^N \alpha_n \cdot (1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) + \sum_{n=1}^N \beta_n \cdot (-\xi_n) \right)$$

- $\frac{\partial \mathcal{L}}{\partial \mathcal{E}_n} = 0 = C \alpha_n \beta_n$
- no loss of optimality if solving with implicit constraint $\beta_n = C \alpha_n$ and explicit constraint $0 < \alpha_n < C$:

$$\max_{\alpha_n \ge 0, \ \beta_n \ge 0} \left(\min_{b, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^N \xi_n + \sum_{n=1}^N \alpha_n \cdot (1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) + \sum_{n=1}^N \beta_n \cdot (-\xi_n) \right)$$

- $\frac{\partial \mathcal{L}}{\partial \mathcal{E}_n} = 0 = C \alpha_n \beta_n$
- no loss of optimality if solving with implicit constraint $\beta_n = C \alpha_n$ and explicit constraint $0 < \alpha_n < C$: β_n removed

$$\max_{\alpha_n \geq 0, \ \beta_n \geq 0} \quad \left(\min_{b, \mathbf{w}, \xi} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \cdot \left(1 - \xi_n - y_n (\mathbf{w}^T \mathbf{z}_n + b) \right) + \sum_{n=1}^{N} \beta_n \cdot (-\xi_n) \right)$$

- $\frac{\partial \mathcal{L}}{\partial \mathcal{E}_n} = 0 = C \alpha_n \beta_n$
- no loss of optimality if solving with implicit constraint $\beta_n = C \alpha_n$ and explicit constraint $0 \le \alpha_n \le C$: β_n removed

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) \right)$$

$$\max_{\alpha_n \geq 0, \ \beta_n \geq 0} \quad \left(\min_{b, \mathbf{w}, \xi} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \cdot (1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) + \sum_{n=1}^{N} \beta_n \cdot (-\xi_n) \right)$$

- $\frac{\partial \mathcal{L}}{\partial \mathcal{E}_n} = 0 = C \alpha_n \beta_n$
- no loss of optimality if solving with implicit constraint $\beta_n = C \alpha_n$ and explicit constraint $0 \le \alpha_n \le C$: β_n removed

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) + \sum_{n=1}^N (C - \alpha_n - \beta_n) \cdot \xi_n \right)$$

$$\max_{\alpha_n \geq 0, \ \beta_n \geq 0} \quad \left(\min_{b, \mathbf{w}, \xi} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \cdot \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \cdot (1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) + \sum_{n=1}^{N} \beta_n \cdot (-\xi_n) \right)$$

- $\frac{\partial \mathcal{L}}{\partial \mathcal{E}_n} = 0 = C \alpha_n \beta_n$
- no loss of optimality if solving with implicit constraint $\beta_n = C \alpha_n$ and explicit constraint $0 \le \alpha_n \le C$: β_n removed

ξ can also be removed :-), like how we removed b

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) + \sum_{n=1}^N (C - \alpha_n - \beta_n) \cdot \xi_n \right)$$

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) \right)$$

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) \right)$$

familiar? :-)

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) \right)$$

familiar? :-)

• inner problem same as hard-margin SVM

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) \right)$$

familiar? :-)

- inner problem same as hard-margin SVM
- $\frac{\partial \mathcal{L}}{\partial b} = 0$: no loss of optimality if solving with constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) \right)$$

familiar? :-)

- inner problem same as hard-margin SVM
- $\frac{\partial \mathcal{L}}{\partial b} = 0$: no loss of optimality if solving with constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$
- $\frac{\partial \mathcal{L}}{\partial w_i} = 0$: no loss of optimality if solving with constraint

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n$$

$$\max_{0 \leq \alpha_n \leq C, \ \beta_n = C - \alpha_n} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b)) \right)$$

familiar? :-)

- inner problem same as hard-margin SVM
- $\frac{\partial \mathcal{L}}{\partial b} = 0$: no loss of optimality if solving with constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$
- $\frac{\partial \mathcal{L}}{\partial w_i} = 0$: no loss of optimality if solving with constraint $\mathbf{w} = \sum_{n=1}^{N} \alpha_n \mathbf{y}_n \mathbf{z}_n$

standard dual can be derived using the same steps as Lecture 2

Standard Soft-Margin SVM Dual

$$\begin{aligned} & \underset{\boldsymbol{\alpha}}{\text{min}} & & \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{T} \mathbf{z}_{m} - \sum_{n=1}^{N} \alpha_{n} \\ & \text{subject to} & & \sum_{n=1}^{N} y_{n} \alpha_{n} = 0; \\ & & 0 \leq \alpha_{n} \leq C, \text{for } n = 1, 2, \dots, N; \\ & \text{implicitly} & & \mathbf{w} = \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{z}_{n}; \\ & & \beta_{n} = C - \alpha_{n}, \text{for } n = 1, 2, \dots, N \end{aligned}$$

Standard Soft-Margin SVM Dual

$$\begin{aligned} & \underset{\boldsymbol{\alpha}}{\text{min}} & & \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{T} \mathbf{z}_{m} - \sum_{n=1}^{N} \alpha_{n} \\ & \text{subject to} & & \sum_{n=1}^{N} y_{n} \alpha_{n} = 0; \\ & & 0 \leq \alpha_{n} \leq C, \text{for } n = 1, 2, \dots, N; \\ & \text{implicitly} & & \mathbf{w} = \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{z}_{n}; \\ & & \beta_{n} = C - \alpha_{n}, \text{for } n = 1, 2, \dots, N \end{aligned}$$

—only difference to hard-margin: upper bound on α_n

Standard Soft-Margin SVM Dual

$$\begin{aligned} & \underset{\boldsymbol{\alpha}}{\text{min}} & & \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{T} \mathbf{z}_{m} - \sum_{n=1}^{N} \alpha_{n} \\ & \text{subject to} & & \sum_{n=1}^{N} y_{n} \alpha_{n} = 0; \\ & & 0 \leq \alpha_{n} \leq C, \text{for } n = 1, 2, \dots, N; \\ & \text{implicitly} & & \mathbf{w} = \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{z}_{n}; \\ & & \beta_{n} = C - \alpha_{n}, \text{for } n = 1, 2, \dots, N \end{aligned}$$

—only difference to hard-margin: upper bound on α_n

another (convex) \overline{QP} , with N variables & 2N + 1 constraints

Fun Time

In the soft-margin SVM, assume that we want to increase the parameter *C* by 2. How shall the corresponding dual problem be changed?

- $oldsymbol{0}$ the upper bound of $lpha_n$ shall be halved
- **2** the upper bound of α_n shall be decreased by 2
- 4 the upper bound of α_n shall be doubled

Fun Time

In the soft-margin SVM, assume that we want to increase the parameter ${\it C}$ by 2. How shall the corresponding dual problem be changed?

- $oldsymbol{0}$ the upper bound of α_n shall be halved
- 2 the upper bound of α_n shall be decreased by 2
- 3 the upper bound of α_n shall be increased by 2
- 4 the upper bound of α_n shall be doubled

Reference Answer: (3)

Because C is exactly the upper bound of α_n , increasing C by 2 in the primal problem is equivalent to increasing the upper bound by 2 in the dual problem.

Kernel Soft-Margin **SVM** Algorithm

 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c}) \text{ for }$ equ./lower-bound/upper-bound constraints

- 1 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./lower-bound/upper-bound constraints

- 1 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./lower-bound/upper-bound constraints
- 3 b ←?

- 1 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./lower-bound/upper-bound constraints
- 3 b ←?
- 1 return SVs and their α_n as well as b such that for new \mathbf{x} , $g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV indices } n} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$

Kernel Soft-Margin **SV**M Algorithm

- 1 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./lower-bound/upper-bound constraints
- 3 b ←?
- o return SVs and their α_n as well as b such that for new \mathbf{x} ,

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV indices } n} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

almost the same as hard-margin

- 1 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./lower-bound/upper-bound constraints
- 3 b ←?
- 4 return SVs and their α_n as well as b such that for new \mathbf{x} ,

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV indices } n} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

- almost the same as hard-margin
- more flexible than hard-margin
 primal/dual always solvable

Kernel Soft-Margin SVM Algorithm

- 1 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (\mathbf{A}, \mathbf{c})$ for equ./lower-bound/upper-bound constraints
- 3 b ←?
- 4 return SVs and their α_n as well as b such that for new \mathbf{x} , $g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV indices } n} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$
- almost the same as hard-margin
- more flexible than hard-margin
 primal/dual always solvable

remaining question: step (3)?

hard-margin SVM

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

• SV
$$(\alpha_s > 0)$$

 $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

hard-margin SVM

complementary slackness:

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

• SV
$$(\alpha_s > 0)$$

 $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

soft-margin SVM

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

hard-margin SVM

complementary slackness:

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

• SV
$$(\alpha_s > 0)$$

 $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

soft-margin SVM

$$\alpha_n(1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) = 0$$
$$(C - \alpha_n)\xi_n = 0$$

• SV
$$(\alpha_s > 0)$$

 $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

hard-margin SVM

complementary slackness:

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

• SV
$$(\alpha_s > 0)$$

 $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

soft-margin SVM

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

• SV
$$(\alpha_s > 0)$$

 $\Rightarrow b = y_s - y_s \xi_s - \mathbf{w}^T \mathbf{z}_s$

hard-margin SVM

complementary slackness:

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

• SV $(\alpha_s > 0)$ $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

soft-margin SVM

$$\frac{\alpha_n(1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) = 0}{(C - \alpha_n)\xi_n = 0}$$

- SV $(\alpha_s > 0)$ $\Rightarrow b = y_s - y_s \xi_s - \mathbf{w}^T \mathbf{z}_s$
- free $(\alpha_s < C)$ $\Rightarrow \xi_s =$

hard-margin SVM

complementary slackness:

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

• SV $(\alpha_s > 0)$ $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

soft-margin SVM

$$\frac{\alpha_n(1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) = 0}{(C - \alpha_n)\xi_n = 0}$$

- SV $(\alpha_s > 0)$ $\Rightarrow b = y_s - y_s \xi_s - \mathbf{w}^T \mathbf{z}_s$
- free $(\alpha_s < C)$ $\Rightarrow \xi_s = 0$

hard-margin SVM

complementary slackness:

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

• SV $(\alpha_s > 0)$ $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

soft-margin SVM

complementary slackness:

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

- SV $(\alpha_s > 0)$ $\Rightarrow b = y_s - y_s \xi_s - \mathbf{w}^T \mathbf{z}_s$
- free $(\alpha_s < C)$ $\Rightarrow \xi_s = 0$

solve unique b with free SV (\mathbf{x}_s, y_s) :

$$b = y_s - \sum_{\text{SV indices } n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s)$$

hard-margin SVM

complementary slackness:

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

• SV $(\alpha_s > 0)$ $\Rightarrow b = y_s - \mathbf{w}^T \mathbf{z}_s$

soft-margin SVM

complementary slackness:

$$\alpha_n(1 - \xi_n - y_n(\mathbf{w}^T \mathbf{z}_n + b)) = 0$$
$$(C - \alpha_n)\xi_n = 0$$

- SV $(\alpha_s > 0)$ $\Rightarrow b = y_s - y_s \xi_s - \mathbf{w}^T \mathbf{z}_s$
- free $(\alpha_s < C)$ $\Rightarrow \xi_s = 0$

solve unique b with free SV (\mathbf{x}_s, y_s) :

$$b = y_s - \sum_{\substack{\text{SV indices } n}} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s)$$

—range of *b* otherwise

• large $C \Longrightarrow$ less noise tolerance \Longrightarrow 'overfit'?

Soft-Margin Gaussian SVM in Action

- large C ⇒ less noise tolerance ⇒ 'overfit'?
- warning: SVM can still overfit :-(

Soft-Margin Gaussian SVM in Action

- large $C \Longrightarrow$ less noise tolerance \Longrightarrow 'overfit'?
- warning: SVM can still overfit :-(

soft-margin Gaussian SVM: need careful selection of (γ, C)

$$\alpha_n(1-\xi_n-y_n(\mathbf{w}^\mathsf{T}\mathbf{z}_n+b))=0$$
$$(C-\alpha_n)\xi_n=0$$

complementary slackness:

$$\alpha_n(1-\xi_n-y_n(\mathbf{w}^\mathsf{T}\mathbf{z}_n+b))=0$$
$$(C-\alpha_n)\xi_n=0$$

• \square free SV (0 < α_n < C): $\xi_n = 0$, on fat boundary, locates b

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^\mathsf{T}\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

- non SV $(0 = \alpha_n)$: $\xi_n = 1$
- \square free SV (0 < α_n < C): $\xi_n = 0$, on fat boundary, locates b

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

- non SV $(0 = \alpha_n)$: $\xi_n = 0$,
- \Box free SV (0 < α_n < C): ξ_n = 0, on fat boundary, locates b

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^\mathsf{T}\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

- non SV $(0 = \alpha_n)$: $\xi_n = 0$, 'away from'/on fat boundary
- \square free SV (0 < α_n < C): ξ_n = 0, on fat boundary, locates b

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

- non SV $(0 = \alpha_n)$: $\xi_n = 0$. 'away from'/on fat boundary
- \square free SV (0 < α_n < C): $\xi_n = 0$, on fat boundary, locates b
- \triangle bounded SV ($\alpha_n = C$): $\xi_n =$

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

- non SV $(0 = \alpha_n)$: $\xi_n = 0$. 'away from'/on fat boundary
- \square free SV (0 < α_n < C): $\xi_n = 0$, on fat boundary, locates b
- \triangle bounded SV ($\alpha_n = C$): ξ_n = violation amount,

$$\alpha_n(1-\xi_n-y_n(\mathbf{w}^\mathsf{T}\mathbf{z}_n+b))=0$$
$$(C-\alpha_n)\xi_n=0$$

- non SV $(0 = \alpha_n)$: $\xi_n = 0$, 'away from'/on fat boundary
- \square free SV (0 < α_n < C): ξ_n = 0, on fat boundary, locates b
- \triangle bounded SV ($\alpha_n = C$): $\xi_n = \text{violation amount},$ 'violate'/on fat boundary

Soft-Margin Support Vector Machine

Physical Meaning of α_n

complementary slackness:

$$\frac{\alpha_n(1-\xi_n-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0}{(C-\alpha_n)\xi_n=0}$$

- non SV $(0 = \alpha_n)$: $\xi_n = 0$. 'away from'/on fat boundary
- \square free SV (0 < α_n < C): $\xi_n = 0$, on fat boundary, locates b
- \triangle bounded SV ($\alpha_n = C$): ξ_n = violation amount, 'violate'/on fat boundary

 α_n can be used for data analysis

Fun Time

For a data set of size 10000, after solving SVM, assume that there are 1126 support vectors, and 1000 of those support vectors are bounded. What is the possible range of $E_{in}(g_{SVM})$ in terms of 0/1 error?

- **1** $0.0000 \le E_{in}(g_{SVM}) \le 0.1000$
- 2 $0.1000 \le E_{in}(g_{SVM}) \le 0.1126$
- 3 $0.1126 \le E_{in}(g_{SVM}) \le 0.5000$

Fun Time

For a data set of size 10000, after solving SVM, assume that there are 1126 support vectors, and 1000 of those support vectors are bounded. What is the possible range of $E_{\rm in}(g_{\rm SVM})$ in terms of 0/1 error?

- $0.0000 \le E_{in}(g_{SVM}) \le 0.1000$
- 2 $0.1000 \le E_{in}(g_{SVM}) \le 0.1126$
- 3 $0.1126 \le E_{in}(g_{SVM}) \le 0.5000$
- 4 $0.1126 \le E_{in}(g_{SVM}) \le 1.0000$

Reference Answer: (1)

The bounded support vectors are the only ones that could violate the fat boundary: $\xi_n \ge 0$. If $\xi_n \ge 1$, then the violation causes a 0/1 error on the example. On the other hand, it is also possible that $\xi_n < 1$, and in that case the violation does not cause a 0/1 error.

• complicated even for (C, γ) of Gaussian SVM

- complicated even for (C, γ) of Gaussian SVM
- more combinations if including other kernels or parameters

- complicated even for (C, γ) of Gaussian SVM
- more combinations if including other kernels or parameters

how to select?

- complicated even for (C, γ) of Gaussian SVM
- more combinations if including other kernels or parameters

how to select? validation:-)

• $E_{cv}(C, \gamma)$: 'non-smooth' function of (C, γ) —difficult to optimize

- E_{cv}(C, γ): 'non-smooth' function of (C, γ)
 —difficult to optimize
- proper models can be chosen by V-fold cross validation on a few grid values of (C, γ)

- $E_{cv}(C, \gamma)$: 'non-smooth' function of (C, γ) —difficult to optimize
- proper models can be chosen by V-fold cross validation on a few grid values of (C, γ)

Ecv: very popular criteria for soft-margin SVM

recall: $E_{loocy} = E_{cv}$ with N folds

claim: $E_{loocv} \leq \frac{\#SV}{N}$

recall: $E_{loocy} = E_{cy}$ with N folds

claim:
$$E_{loocv} \leq \frac{\#SV}{N}$$

• for (\mathbf{x}_N, y_N) : if optimal $\alpha_N = \mathbf{0}$ (non-SV)

recall: $E_{loocy} = E_{cy}$ with N folds

```
claim: E_{loocv} \leq \frac{\#SV}{N}
```

• for $(\mathbf{x}_N, \mathbf{y}_N)$: if optimal $\alpha_N = 0$ (non-SV) $\implies (\alpha_1, \alpha_2, \dots, \alpha_{N-1})$ still optimal when leaving out (\mathbf{x}_N, y_N)

recall: $E_{loocy} = E_{cy}$ with N folds

```
claim: E_{loocv} \leq \frac{\#SV}{N}
```

• for (\mathbf{x}_N, y_N) : if optimal $\alpha_N = 0$ (non-SV) $\Rightarrow (\alpha_1, \alpha_2, \dots, \alpha_{N-1})$ still optimal when

leaving out (\mathbf{x}_N, y_N)

key: what if there's better α_n ?

```
claim: E_{loocv} \leq \frac{\#SV}{N}
```

- for $(\mathbf{x}_N, \mathbf{y}_N)$: if optimal $\alpha_N = 0$ (non-SV) $\implies (\alpha_1, \alpha_2, \dots, \alpha_{N-1})$ still optimal when leaving out (\mathbf{x}_N, y_N) key: what if there's better α_n ?
- SVM: g⁻ = g when leaving out non-SV

```
claim: E_{loocv} \leq \frac{\#SV}{N}
```

- for $(\mathbf{x}_N, \mathbf{y}_N)$: if optimal $\alpha_N = 0$ (non-SV) $\implies (\alpha_1, \alpha_2, \dots, \alpha_{N-1})$ still optimal when leaving out (\mathbf{x}_N, y_N) key: what if there's better α_n ?
- SVM: g⁻ = g when leaving out non-SV

```
e_{\text{non-SV}} = \text{err}(g^-, \text{non-SV})
```

```
claim: E_{loocv} \leq \frac{\#SV}{N}
```

- for $(\mathbf{x}_N, \mathbf{y}_N)$: if optimal $\alpha_N = 0$ (non-SV) $\implies (\alpha_1, \alpha_2, \dots, \alpha_{N-1})$ still optimal when leaving out (\mathbf{x}_N, y_N) key: what if there's better α_n ?
- SVM: g⁻ = g when leaving out non-SV

$$e_{\text{non-SV}} = \text{err}(g^-, \text{non-SV})$$

= $\text{err}(g, \text{non-SV}) = 0$

```
claim: E_{loocv} \leq \frac{\#SV}{N}
```

- for $(\mathbf{x}_N, \mathbf{y}_N)$: if optimal $\alpha_N = 0$ (non-SV) $\implies (\alpha_1, \alpha_2, \dots, \alpha_{N-1})$ still optimal when leaving out (\mathbf{x}_N, y_N) key: what if there's better α_n ?
- SVM: g⁻ = g when leaving out non-SV

$$egin{array}{lcl} oldsymbol{e}_{\mathsf{non-SV}} &=& \mathrm{err}(oldsymbol{g}^-, \mathsf{non-SV}) \ &=& \mathrm{err}(oldsymbol{g}, \mathsf{non-SV}) = 0 \ oldsymbol{e}_{\mathsf{SV}} &\leq& 1 \end{array}$$

recall: $E_{loocy} = E_{cy}$ with N folds

claim: $E_{loocv} \leq \frac{\#SV}{N}$

$$v \leq \frac{\#SV}{N}$$

• for $(\mathbf{x}_N, \mathbf{y}_N)$: if optimal $\alpha_N = 0$ (non-SV) $\implies (\alpha_1, \alpha_2, \dots, \alpha_{N-1})$ still optimal when leaving out (\mathbf{x}_N, y_N)

key: what if there's better α_n ?

SVM: g⁻ = g when leaving out non-SV

$$e_{\text{non-SV}} = \operatorname{err}(g^-, \text{non-SV})$$

$$= \operatorname{err}(g, \text{non-SV}) = 0$$
 $e_{\text{SV}} \leq 1$

motivation from hard-margin SVM: only SVs needed

recall: $E_{loocy} = E_{cy}$ with N folds

claim:
$$E_{loocv} \leq \frac{\#SV}{N}$$

- for $(\mathbf{x}_N, \mathbf{y}_N)$: if optimal $\alpha_N = 0$ (non-SV) $\implies (\alpha_1, \alpha_2, \dots, \alpha_{N-1})$ still optimal when leaving out (\mathbf{x}_N, y_N)
- key: what if there's better α_n ?
- SVM: g⁻ = g when leaving out non-SV

$$e_{\text{non-SV}} = \operatorname{err}(g^-, \text{non-SV})$$

$$= \operatorname{err}(g, \text{non-SV}) = 0$$
 $e_{\text{SV}} \leq 1$

motivation from hard-margin SVM: only SVs needed

scaled #SV bounds leave-one-out CV error

• nSV(C, γ): 'non-smooth' function of (C, γ)
—difficult to optimize

- nSV(C, γ): 'non-smooth' function of (C, γ)
 —difficult to optimize
- just an upper bound!

- nSV(C, γ): 'non-smooth' function of (C, γ)
 —difficult to optimize
- just an upper bound!
- dangerous models can be ruled out by nSV on a few grid values of (C, γ)

- nSV(C, γ): 'non-smooth' function of (C, γ)
 —difficult to optimize
- just an upper bound!
- dangerous models can be ruled out by nSV on a few grid values of (C, γ)

nSV: often used as a **safety check** if computing E_{cv} is too time-consuming

Fun Time

For a data set of size 10000, after solving SVM on some parameters, assume that there are 1126 support vectors, and 1000 of those support vectors are bounded. Which of the following cannot be E_{loocv} with those parameters?

- 0.0000
- 2 0.0805
- **3** 0.1111
- 4 0.5566

Fun Time

For a data set of size 10000, after solving SVM on some parameters, assume that there are 1126 support vectors, and 1000 of those support vectors are bounded. Which of the following cannot be E_{loocv} with those parameters?

- 0.0000
- 2 0.0805
- 3 0.1111
- 4 0.5566

Reference Answer: (4)

Note that the upper bound of E_{loocv} is 0.1126.

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 4: Soft-Margin Support Vector Machine

- Motivation and Primal Problem
 add margin violations ξ_n
- Dual Problem

upper-bound α_n by C

- Messages behind Soft-Margin SVM
 bounded/free SVs for data analysis
- Model Selection cross-validation, or approximately nSV
- next: other kernel models for soft binary classification
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models