Recap from last class

- I/O programming
 - Memory-mapped I/O vs. special-purpose I/O instructions
 - Busy-wait is simplest but very inefficient
 - Devices are usually slower than CPU
- Interrupts
 - Using buffer to allow input/output at different rates
 - Priorities and vectors allow to handle multiple interrupts
- Practical I/O interfaces
 - I2C, SPI, USB and GPIO

ECE 1175 Embedded Systems Design

The Bus System

Wei Gao

Embedding A Computer: The CPU Bus

Typical Microprocessor Bus

 Bus is a set of wires and a protocol for the CPU to communicate with memory and devices

Types of Buses

- PC systems
 - Northbridge vs. Southbridge
 - PCI-e vs. ISA

- Embedded systems
 - I2C, SPI and GPIO

Timing Diagrams

- The behavior of a bus is specified as a timing diagram
- A timing diagram shows how signals on a bus vary over time.
 - Generally used for asynchronous machines with timing constraints.

Timing Diagram Notation

- Timing diagram syntax:
 - Constant value (0/1), stable, changing, unknown.
- Timing constraints: minimum time between two events

Basic Block of Most Bus Protocols: Four-Cycle Handshake

- Device 1 raises its output to signal an enquiry
- Device 2 raises output to signal an acknowledge
- Device 1 and 2 can start to transmit data
- 4. Once transfer is complete, device 2 lowers output, signaling it finishes the data transmission
- Device 1 lowers output

When Should You Handshake?

- When response time cannot be guaranteed in advance:
 - Data-dependent delay.
 - Component variations.

Typical Bus Access

Bus Design

- Bus signals are usually tri-stated.
 - Low, high, stable
- Address and data lines may be shared.
- Bus mastership
 - Bus master controls operations on the bus.
 - CPU is default bus master.
 - Other devices may request bus mastership.
 - Separate set of handshaking lines.
 - CPU can't use bus when it is not master

Summary

- The CPU Bus
 - A set of wires and protocols for CPU to communicate with memory and I/O devices.
 - Four-cycle handshake protocol
 - Timing diagram for typical bus access

ECE 1175 Embedded Systems Design

The Cache System

Wei Gao

Embedding A Computer

Memory System and Caches

- Memory is slower than CPU
 - CPU clock rates increase faster than memory
- Caches are used to speed up memory
 - Cache is a small but fast memory that holds copies of the contents of main memory
 - More expensive than main memory, but faster

Cache in the Memory System

- Cache controller mediates between CPU and memory system
- Sends a memory request to both cache and main memory
- If requested location is in cache, request to main memory is aborted

Cache Operation

Many main memory locations are mapped onto one cache

entry.

- May have caches for:
 - instructions;
 - data;
 - data + instructions (unified).
- Memory access time is no longer deterministic.