

Analysis of new methods of sequencing applied to metagenomics Math4genomics – 03/06/2020

3-juin-20 Confidential

Why use new sequencing methods in metagenomics?

- Generally, the sequencing methods used is short-read sequencing (100-150nt), then these reads are mapped on reference genes
 - → only quantitative information provided
 - → not all the reference genes are associated to a taxonomy
- New sequencing methods to reconstruct genomes
 - → reconstruction of unknown genomes
 - → identify structural variations between strains hosted by different individuals

3-juin-20 Confidential

10X technology

10X linked reads technology overview

Samples preparation

- 3 samples from feces from 3 healthy donors: ENT1, ENT2 and ENT3
- Number of unique barcodes : from 1.7 to 2 millions

Barcode analysis

- → Approximately, 25% of barcodes are represented by one pair of reads
- → In general, we have 60 to 250 reads for one barcode

Barcode analysis

- Assembly of reads with Megahit (without the barcode information) then mapping reads on obtained contigs
- For each contig, the number of unique barcode represented is counted :

- → On average, we found one new barcode every 30-35 base.
- → This reflects the fact that multiple similar fragments have been assembled in the same contig

Assembly process

- 3 tested tools :
 - Megahit → classic assembly tool that does not use the information of barcodes
 - Athena and Cloudspades → specific assembly tools that use the information of barcodes
- Cloudspades successfully run for 2 samples
- Athena managed to assembly all the samples but is time consuming
 - → approximately 2 days for one run on large computing machine (30 CPUs, 40 Gb of RAM)

Assembly analysis

Number of contigs obtained for each assembler

Metaquast comparison: ENT1

Assembly	ENT1.athena	ENT1.cloudspades	ENT1.megahit
Number of contigs (>500 bp)	16 738	121 389	143 184
Total length	211 362 115	331 941 134	330 432 418
Total aligned length	48 771 118	63 743 109	64 945 104
Unaligned length	162 275 467	264 970 470	263 926 727
Genome fraction (%)	48,7	64	63,6
Largest contig	1 021 174	876 749	687 903
Largest alignment	221 614	204 217	151 089
# misassembled contigs	855	1 144	2 548

→ The genome fraction is lower for Athena but the contigs obtained are longer for a reduced number of contigs

Metaquast comparison: ENT1

- → The aligned length is comparable for the most of species
- → But for some species, the length of assembly with athena is drastically falling

Metaquast comparison : ENT2

Assembly	ENT2.athena	ENT2.cloudspades	ENT2.megahit
Number of contigs (>500 bp)	24 855	174 228	196 290
Total length	282 787 620	461 018 073	449 745 372
Total aligned length	52 005 807	57 383 930	57 750 825
Unaligned length	230 341 439	400 326 806	390 607 541
Genome fraction (%)	53,8	60,1	59,6
Largest contig	1 519 458	989 393	457 602
Largest alignment	201 261	179 866	174 554
# misassembled contigs	886	959	2 098

Metaquast comparison: ENT2

Total aligned contig length depending on species

Quality of reconstructed genomes

- Binning of contigs with MetaBAT: based on tetranucleotide frequency and coverage.
- Quality assesment of bins, inspired from A. Bishara et al.
 - checkM, based on genes markers → score of completeness and contamination
 - Aragorn → detection of tRNA
 - Barrnap → prediction of rRNA
- Level of quality :
 - Complete: > 90 % completeness, < 5 % contamination, presence of one copy of each rRNA, at least 18 tRNA
 - High: > 90 % completeness, < 5 % contamination
 - Medium : > 50 % completeness, < 10 % contamination</p>

Genomes quality of samples

	EN	IT1	EN	T2	ENT3
	Athena	Cloudspades	Athena	Cloudspades	Athena
	75	72	76	92	23
low					
	67 %	60,5 %	55,1 %	57,5 %	49 %
	24	33	42	52	16
medium					
	21,4 %	27,7 %	30,4 %	32,5 %	34 %
	8	13	12	15	4
high					
	7,1 %	10,9 %	8,7 %	9,4 %	8,5 %
	5	1	8	1	4
complete					
	4,5 %	0,8 %	5,8 %	0,6 %	8,5 %
total					
totai	112	119	138	160	47

- → Athena gives more complete genomes.
- → Cloudspades assemblies are more present in the medium and high qualities

Oxford Nanopore technology

Confidential Page 16

Oxford nanopore technology overview

- → Detection of local electrical potential
- → Base-calling from these values to obtain the DNA sequences

http://www2.technologyreview.com/news/427677/nanopore-sequencing/

3-juin-20 Confidential

Samples sequencing

2 samples analyzed : ENT2 and ENT3

	ENT2	ENT3
Number of reads	4 922 475	3 053 785
Median read length	1 664	3 025
Total length	12 538 529 930	14 950 090 294

ENT2 density read length

ENT3 density read length

Assembly process

- 2 assembly strategies :
 - Flye assembly :
 - specific tool for long reads assembly with metagenomic option
 - Only use of nanopore reads
 - Hybrid assemby :
 - with metaspades, specific for metagenomic assembly
 - use of nanopore reads and short reads from same individual

Metaquast comparison : ENT2

Assembly	ENT2.flye	ENT2.hybrid
Number of contigs (>500 bp)	6 569	69 726
Total length	371 695 694	388 325 709
Total aligned length	53 962 179	49 047 920
Unaligned length	317 626 904	337 528 845
Genome fraction (%)	65,8	64,5
Largest contig	2 856 717	2 610 394
Largest alignment	325 246	213 301
# misassembled contigs	372	812

→ The flye assembly, with only use of nanopore reads, gives a slightly better genome fraction for 10-fold less contigs than hybrid assembly.

Metaquast comparison: ENT2

Total aligned contig length depending on species

Comparison between 10X and nanopore assemblies

Confidential Page 22

Metaquast comparison for ENT2 sample

Assembly	ENT2.athena 10X	ENT2.flye Nanopore
Number of contigs (>500 bp)	24 855	6 569
Total length	282 787 620	371 695 694
Total aligned length	53 197 335	58 181 442
Unaligned length	229 158 438	313 294 956
Genome fraction (%)	62,4	66,1
Largest contig	1 519 458	2 856 717
Largest alignment	208 591	325 246
# misassembled contigs	884	448

- → In this example, the assembly with nanopore reads seems to outperform the results obtained with reads from 10X technology
- → But we have only one sample to make the comparison, we cannot generalize

Metaquast comparison for ENT2 sample

Total aligned contig length depending on species

Conclusion

10X technology :

- Samples preparation seems to be less difficult than for long reads sequencing
- No assembler that clearly outperforms the other in all the cases, but these tools are still under developpement
- Oxford nanopore technology :
 - Samples preparation is certainly the bottleneck for metagenomic analysis: DNA extraction step is very difficult to master
 - Tools for hybrid assembly (use of short and long reads) need improvement for metagenomic

Thank you!