What is claimed is:

1. A polypeptide chain useful as a subunit of a dimeric osteogenic protein comprising a pair of disulfide-bonded polypeptide chains,

said polypeptide chain having an amino acid sequence sufficiently duplicative of Sequence ID No. 1 or Sequence ID No. 3 such that the dimeric osteogenic protein comprising said polypeptide chain has a conformation capable of inducing endochondral bone formation when implanted in a mammal in association with a matrix.

2. The polypeptide chain of claim 1 wherein the sequence comprises (Sequence ID No. 1):

Ala 1	Ala	Arg	Pro	Leu 5	Lys	Arg	Arg	Gln
Pro 10	Lys	Lys	Thr	Asn	Glu 15	Leu	Pro	His
Pro	Asn 20	Lys	Leu	Pro	Gly	11e 25	Phe	Asp
Asp	Gly	His 30	Gly	Ser	Arg	Gly	Arg 35	Glu
Val	Cys	Arg	Arg 40	His	Glu	Leu	Tyr	Val 45
Arg	Phe	Arg	Asp	Leu 50	Gly	Trp	Leu	Asp
Trp 55	Val	Ile	Ala	Pro	Gln 60	Gly	Tyr	Ser

Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
Phe	Pro	Leu 75	Asp	Ser	Сув	Met	Asn 80	Ala
Thr	Asn	His	Ala 85	Ile	Leu	Gln	Ser	Leu 90
Val	His	Leu	Met	Lys 95	Pro	Asp	Val	Val
Pro 100	Lys	Ala	Cys	Cys	Ala 105	Pro	Thr	Lys
Leu	Ser 110	Ala	Thr	Ser	Val	Leu 115	Tyr	Tyr
Asp	Ser	Ser 120	Asn	Asn	Val	Ile	Leu 125	Arg
Lys	His	Arg	Asn 130	Met	Val	Val	Lys	Ala 135
Cys	Gly	Cys	His.					

3. The polypeptide chain of claim 1 wherein the sequence comprises (Sequence ID No. 3):

hOP-2

Ala 1	Val	Arg	Pro	Leu 5	Arg	Arg	Arg	Gln
Pro 10	Lys	Lys	Ser	Asn	Glu 15	Leu	Pro	Gln
Ala	Asn 20	Arg	Leu	Pro	Gly	11e 25	Phe	Asp
Asp	Val	Asn 30	Gly	Ser	His	Gly	Arg 35	Gln
Val	Cys	Arg	Arg 40	His	Glu	Leu	Tyr	Val 45

Ser Phe Gln Asp Leu Gly Trp Leu 50 Trp Val Ile Ala Pro Gln Gly Tyr Ser 55 60 Ala Cys Gly Glu Tyr Tyr Glu Cys Ser 70 65 Phe Pro Leu Asp Ser Cys Met Asn Ala 75 80 Thr His Ala Ile Gln Ser Leu Asn Leu 90 85 Val His Met Lys Pro Ala Val Leu Asn 95 Ala Pro Lys Ala Cys Cys Pro Thr Lys 105 100 Val Leu Tyr Leu Ser Ala Thr Ser Tyr 110 115 Asp Ser Ser Asn Asn Val Ile Leu Arg 120 125 Val Lys Ala Arg Asn Met Val Lys Ala 130 135 Gly His. Cys Cys

:

4. The polypeptide chain of claim 1 wherein the sequence comprises (Sequence ID No. 7):

 Cys
 Xaa
 X

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 60

Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 70 75

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 90 95

Xaa Cys Xaa 100

and wherein each Xaa independently represents one of the 20 naturally occurring L-isomer, α -amino acids, and together with said 8 cysteine residues define said polypeptide chain.

5. The polypeptide chain of claim 1 wherein the sequence comprises (Sequence ID No. 8):

Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa 30

Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 35

Xaa Xaa Xaa Xaa Cys Cys Xaa Xaa Xaa Xaa 60 65

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 70 75

Xaa Xaa Xaa Xaa Cys Xaa Cys Xaa 90 95

wherein each Xaa independently represents one of the 20 naturally occurring L-isomer, α -amino acids, and together with said 7 cysteine residues define said polypeptide chain.

6. A polypeptide chain useful as a subunit of a dimeric osteogenic protein, said protein being capable of inducing endochondral bone formation when implanted in a mammal in association with a matrix;

said polypeptide chain comprising the amino acid sequence (Sequence ID No. 5):

Cys Xaa, Xaa, His Glu Leu Tyr Val Xaa, Phe 1 5 10

Xaa₄ Asp Leu Gly Trp Xaa₅ Asp Trp Xaa₆ Ile
15 20

Ala Pro Xaa, Gly Tyr Xaa, Ala Tyr Tyr Cys
25

Glu Gly Cys Xaa, Phe Pro Leu Xaa₁₀ Ser Xaa₁₁
35

Met Asn Ala Thr Asn His Ala Ile Xaa₁₂ Thr
45 50

Leu Xaa₁₈ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Xaa₁₈ Val

Pro Lys Xaa₁₉ Cys Cys Ala Pro Thr Xaa₂₀ Leu 60 Xaa₂₁ Ala Xaa₂₂ Ser Val Leu Tyr Xaa₂₃ Asp 70 75

Xaa₂₄ Ser Xaa₂₅ Asn Val Xaa₂₆ Leu Xaa₂₇ Lys 80 85

Xaa₂₈ Pro Asn Met Val Val Xaa₂₉ Ala Cys Gly 90 95

Cys His,

wherein Xaa1 = (Lys or Arg); Xaa2 = (Lys or Arg);
Xaa3 = (Ser or Arg); Xaa4 = (Arg or Gln); Xaa5 = (Gln
or Leu); Xaa6 = (Ile or Val); Xaa7 = (Glu or Gln);
Xaa8 = (Ala or Ser); Xaa9 = (Ala or Ser); Xaa10 =
(Asn or Asp); Xaa11 = (Tyr or Cys); Xaa12 = (Val or
Leu); Xaa13 = (His or Asn); Xaa14 = (Phe or Leu);
Xaa15 = (Ile or Met); Xaa16 = (Asn or Lys); Xaa17 =
(Glu, Asp or Asn); Xaa18 = (Thr, Ala or Val); Xaa19 =
(Pro or Ala); Xaa20 = (Gln or Lys); Xaa21 = (Asn or
Ser); Xaa22 = (Ile or Thr); Xaa23 = (Phe or Tyr);
Xaa24 = (Asp, Glu or Ser); Xaa25 = (Ser or Asn); Xaa26 = (Ile or Asp); Xaa27 = (Lys or Arg); Xaa28 = (Tyr,
Ala or His); and Xaa29 = (Arg or Lys).

- 7. The polypeptide chain of claim 6 whereinXaa₁₁ = Cys.
- 8. A polypeptide chain useful as a subunit of a dimeric osteogenic protein, said protein being capable of inducing endochondral bone formation when implanted in a mammal in association with a matrix;

the amino acid sequence of said polypeptide chain being at least 70% homologous with the amino acid sequence (Sequence ID No. 1):

Ala 1	Ala	Arg	Pro	Leu 5	Lys	Arg	Arg	Gln
Pro 10	Lys	Lys	Thr	Asn	Glu 15	Leu	Pro	His
Pro	Asn 20	Lys	Leu	Pro	Gly	11e 25	Phe	Asp
Asp	Gly	His 30	Gly	Ser	Arg	Gly	Arg 35	Glu
Val	Cys	Arg	Arg 40	His	Glu	Leu	Tyr	Val 45
Arg	Phe	Arg	Asp	Leu 50	Gly	Trp	Leu	Asp
Trp 55	Val	Ile	Ala	Pro	Gln 60	Gly	Tyr	Ser
Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
Phe	Pro	Leu 75	Asp	Ser	Cys	Met	Asn 80	Ala
Thr	Asn	His	Ala 85	Ile	Leu	Gln	Ser	Leu 90
Val	His	Leu	Met	Lys 95	Pro	Asp	Val	Val
Pro 100	Lys	Ala	Cys	Cys	Ala 105		Thr	Lys
Leu	Ser 110	Ala	Thr	Ser	Val	Leu 115	Tyr	Tyr
Asp	Ser	Ser 120	Asn	Asn	Val	Ile	Leu 125	Arg
Lys	His	Arg	Asn 130	Met	Val	Val	Lys	Ala 135
Cys	Gly	Cys	His.		•			

9. The polypeptide chain of claim 8 wherein the amino acid sequence is at least 80% homologous with the amino acid sequence (Sequence ID No. 1):

Ala 1	Ala	Arg	Pro	Leu 5	Lys	Arg	Arg	Gln
Pro 10	Lys	Lys	Thr	Asn	Glu 15	Leu	Pro	His
Pro	Asn 20	Lys	Leu	Pro	Gly	11e 25	Phe	Asp
Asp	Gly	His 30	Gly	Ser	Arg	Gly	Arg 35	Glu
Val	Cys	Arg	Arg 40	His	Glu	Leu	Tyr	Val 45
Arg	Phe	Arg	Asp	Leu 50	Gly	Trp	Leu	Asp
Trp 55	Val	Ile	Ala	Pro	Gln 60	Gly	Tyr	Ser
Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
Phe	Pro	Leu 75	Asp	Ser	Cys	Met	Asn 80	Ala
Thr	Asn	His	Ala 85	Ile	Leu	Gln	Ser	Leu 90
Val	His	Leu	Met	Lys 95	Pro	Asp	Val	Val
Pro 100	Lys	Ala	Cys	Cys	Ala 105	Pro	Thr	Lys
Leu	Ser 110	Ala	Thr	Ser	Val	Leu 115	Tyr	Tyr
Asp	Ser	Ser 120	Asn	Asn	Val	Ile	Leu 125	Arg

Lys His Arg Asn Met Val Val Lys Ala
130 135

Cys Gly Cys His.

10. The polypeptide chain of claim 8 wherein the amino acid sequence comprises (Sequence ID No. 1):

Ala 1	Ala	Arg	Pro	Leu 5	Lys	Arg	Arg	Gln
Pro 10	Lys	Lys	Thr	Asn	Glu 15	Leu	Pro	His
Pro	Asn 20	Lys	Leu	Pro	Gly	11e 25	Phe	Asp
Asp	Gly	His 30	Gly	Ser	Arg	Gly	Arg 35	Glu
Val	Cys	Arg	Arg 40	His	Glu	Leu	Tyr	Val 45
Arg	Phe	Arg	Asp	Leu 50	Gly	Trp	Leu	Asp
Trp 55	Val	Ile	Ala	Pro	Gln 60	Gly	Tyr	Ser
Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
Phe	Pro	Leu 75	Asp	Ser	Cys	Met	Asn 80	Ala
Thr	Asn	His	Ala 85	Ile	Leu	Gln	Ser	Leu 90
Val	His	Leu	Met	Lys 95	Pro	Asp	Val	Val
Pro 100	Lys	Ala	Cys	Cys	Ala 105	Pro	Thr	Lys

Val Leu Tyr Tyr Ala Thr Ser Ser Leu 115 110 Arg Val Ile Leu Ser Asn Asn Ser Asp 125 120 Val Lys Ala Val Asn Met His Arg Lys 135 130 Gly His. Cys Cys

;

11. The polypeptide chain of claim 8 wherein the amino acid sequence comprises (Sequence ID No. 3):

hOP-2

Gln Val Arg Leu Arg Arg Arg Ala Pro 5 1 Gln Glu Leu Pro Pro Lys Ser Asn Lys 15 10 Ile Phe Asp Gly Ala Asn Arg Leu Pro 25 20 Arg Gln His Gly Gly Val Asn Ser Asp 35 30 Tyr Val His Glu Leu Arg Arg Val Cys 45 40 Asp Gln Asp Leu Gly Trp Leu Phe Ser 50 Ala Pro Gln Gly Tyr Ser Trp Val Ile 60 55 Glu Gly Glu Cys Ser Tyr Cys Ala Tyr 70 65 Met Asn Ala Pro Leu Asp Ser Cys Phe 80 **75** Gln Ser Leu Leu His Ala Ile Thr Asn 90 85

Val His Met Lys Pro Asn Val Leu 95 Ala Thr Lys Pro Lys Cys Pro Ala Cys 105 100 Val Leu Tyr Tyr Ser Ala Thr Ser Leu 115 110 Ile Leu Arg Val Asp Glu Ser Asn Asn 125 120 Ala Val Lys Val Asn Met Lys Ala Arg 130 135 His. Cys Gly Cys

12. The polypeptide chain of claim 8 wherein the amino acid sequence comprises (SEQ ID NO. 9):

hOP-2P

Gln Arg Pro Leu Arg Arg 1 5 Pro Gln Ser Glu Leu Asn Pro Lys Lys 15 10 Pro Gly Ile Phe Asp Leu Ala Arg Asn 20 Gly Ser His Gly Arg Gln Asp Val Asn 30 25 Glu Leu Tyr Val Cys His Val Arg Arg 40 35 Leu Asp Phe Gln Asp Leu Gly Trp Ser 50 45 Ser Ile Ala Pro Gln Gly Tyr Val Tyr 60 55 Cys Glu Gly Glu Cys Ser Ala Tyr Tyr 65

Phe 70	Pro	Leu	Asp	Ser	Cys 75	Met	Asn	Ala
Thr	Asn 80	His	Ala	Ile	Leu	Gln 85	Ser	Leu
Val	His	Leu 90	Met	Lys	Pro	Asn	Ala 95	Val
Pro	Lys	Ala	Cys 100	Cys	Ala	Pro	Thr	Lys 105
Leu	Ser	Ala	Thr	Ser 110	Val	Leu	Tyr	Tyr
Asp 115		Ser	Asn	Asn	Val 120	Ile	Leu	Arg
Lys	Ala 125	Arg	Asn	Met	Val	Val 130	Lys	Ala
Cys	Gly	Cys 135	His.					

13. The polypeptide chain of claim 8 wherein the amino acid sequence comprises (SEQ ID NO. 10):

hOP-2R

						Arg 1	Arg	Gln
Pro	Lys 5	Lys	Ser	Asn	Glu	Leu 10	Pro	Gln
Ala	Asn	Arg 15	Leu	Pro	Gly	Ile	Phe 20	Asp
Asp	Val	Asn	Gly 25	Ser	His	Gly	Arg	Gln 30
Val	Cys	Arg	Arg	His 35	Glu	Leu	Tyr	Val

Ser 40	Phe	Gln	Asp	Leu	Gly 45	Trp	Leu	Asp
Tyr	Val 50	Ile	Ala	Pro	Gln	Gly 55	Tyr	Ser
Ala	Tyr	Tyr 60	Суѕ	Glu	Gly	Glu	Cys: 65	Ser
Phe	Pro	Leu	Asp 70	Ser	Cys	Met	Asn	Ala 75
Thr	Asn	His	Ala	Ile 80	Leu	Gln	Ser	Leu
Val 85	His	Leu	Met	Lys	Pro 90	Asn	Ala	Val
Pro	Lys 95	Ala	Cys	Cys	Ala	Pro 100	Thr	Lys
Leu	Ser	Ala 105	Thr	Ser	Val	Leu	Tyr 110	Tyr
Asp	Glu	Ser	Asn 115	Asn	Val	Ile	Leu	Arg 120
Lys	Ala	Arg	Asn	Met 125	Val	Val	Lys	Ala
Cys 130	Gly	Cys	His.					

14. The polypeptide chain of claim 8 wherein the amino acid sequence comprises (SEQ ID NO. 11):

hOP-2S

Gln Gln Ser 1 Phe Phe Val Val Thr Phe Arg Ala Pro 10 5 Thr Pro Pro Ser Pro Ile Arg Arg Ser 20 15

Ala	Val	Arg	Pro 25	Leu	Arg	Arg	Arg	Gln 30	
Pro	Lys	Lys	Ser	Asn 35	Glu	Leu	Pro	Gln	
Ala 40	Asn	Arg	Leu	Pro	Gly 45	Ile	Phe	Asp	
Asp	Val 50	Asn	Gly	Ser	His	Gly 55	Arg	Gln	
Val	Cys	Arg 60	Arg	His	Glu	Leu	Tyr 65	Val	
Ser	Phe	Gln	Asp 70	Leu	Gly	Trp	Leu	Asp 75	
Tyr	Val	Ile	Ala	Pro 80	Gln	Gly	Tyr	Ser	
Ala 85	Tyr	Tyr	Cys	Glu	Gly 90	Glu	Сув	Ser	
Phe	Pro 95	Leu	Asp	Ser	Cys	Met 100	Asn	Ala	
Thr	Asn	His 105	Ala	Ile	Leu	Gln	Ser 110	Leu	
Val	His	Leu	M et 115	Lys	Pro	Asn	Ala	Val 120	
Pro	Lys	Ala	Cys	Cys 125	Ala	Pro	Thr	Lys	
Leu 130	Ser	Ala	Thr	Ser	Val 135	Leu	Tyr	Tyr	
Asp	Glu 140	Ser	Asn	Asn	Val	11e 145	Leu	Arg	
Lys	Ala	Arg 150	Asn	Met	Val	Val	Lys 165	Ala	
Cys	Gly	Cys	His. 170						

15. A polypeptide chain useful as a subunit of a dimeric osteogenic protein, said protein being capable of inducing endochondral bone formation when implanted in a mammal in association with a matrix; said polypeptide chain having an amino acid sequence comprising (Sequence ID No. 2):

Prepro mOP-2

	Met 1	Ala	Met	Arg	Pro. 5	Gly	Pro	Leu
Trp	Leu 10	Leu	Gly	Leu	Ala	Leu 15	Cys	Ala
Leu	Gly	Gly 20	Gly	His	Gly	Pro	Gly 25	Pro
Pro	His	Thr	Cys 30	Pro	Gln	Arg	Arg	Leu 35
Gly	Ala	Arg	Asp	Arg 40	Asp	Met	Gln	Arg
Glu 45	Ile	Leu	Ala	Val	Leu 50	Gly	Leu	Pro
Gly	Arg 55	Pro	Asp	Pro	Val	His 60	Asn	Pro
Pro	Leu	Pro 65	Gly	Thr	Gln	Arg 70	Ala	Pro
Leu	Phe	Met	Leu 70	Asp	Leu	Tyr	His 80	Ala
Met	Thr	Asp	Asp	Asp 85	Asp	Gly	Gly	Pro
Pro 90	Gln	Ala	His	Leu	Gly 95	Arg	Ala	Asp
Leu	Val	Met	Ser	Phe	Val	Asn 105	Met	Val

	Glu	Arg	Asp 110	Arg	Thr	Leu	Gly	Tyr 115	Gln
•	Glu	Pro	His	Trp 120	Lys	Glu	Phe	His	Phe 125
-	Asp	Leu	Thr	Gln	Ile 130	Pro	Ala	Gly	Glu
	Ala 135	Val	Thr	Ala	Ala	Glu 140	Phe	Arg	Ile
	Tyr	Lys 145	Glu	Pro	Ser	Thr	His 150	Pro	Leu
	Asn	Thr	Thr 155	Leu	His	Ile	Ser	M et 160	Phe
	Glu	Val	Val	Gln 165	Glu	His	Ser	Asn	Arg 170
•	Glu	Ser	Asp	Leu	Phe 175	Phe	Leu	Asp	Leu
L	Gln 180	Thr	Leu	Arg	Ser	Gly 185	Asp	Glu	Gly
	Trp	Leu 190	Val	Leu	Asp	Ile	Thr 195	Ala	Ala
	Ser	Asp	A rg 200	Trp	Leu	Leu	Asn	His 205	His
	Lys	Asp	Leu	Gly 210	Leu	Arg	Leu	Tyr	V al 215
	Glu	Thr	Ala	Asp	Gly 220	His	Ser	Met	Asp
	Pro 225	Gly	Leu	Ala	Gly	Leu 230	Leu	Gly	Arg
	Gln	Ala 235	Pro	Arg	Ser	Arg	Gln 240	Pro	Phe
	Met	Val	Thr 245	Phe	Phe	Arg	Ala	Ser 250	Gln
	Ser	Pro	Val	Arg 255	Ala	Pro	Arg	Ala	Ala 260

:

Arg	Pro	Leu	Lys	Arg 265	Arg	Gln	Pro	Lys
Lys 270	Thr	Asn	Glu	Leu	Pro 275	His	Pro	Asn
Lys	Leu 280	Pro	Gly	Ile	Phe	Asp 285	Asp	Gly
His	Gly	Ser 290	Arg	Gly	Arg	Glu	Val 295	Сув
Arg	Arg	His	Glu 300	Leu	Tyr	Val	Arg	Phe 305
Arg	Asp	Leu	Gly	Trp 310	Leu	Asp	Trp	Val
Ile 315	Ala	Pro	Gln	Gly	Tyr 320	Ser	Ala	Tyr
Tyr	Cys 325	Glu	Gly	Glu	Cys	Ala 330	Phe	Pro
Leu	Asp	Ser 335	Cys	Met	Asn	Ala	Thr 340	Asn
His	Ala	Ile	Leu 345	Gln	Ser	Leu	Val	His 350
Leu	Met	Lys	Pro	Asp 355	Val	Val	Pro	Lys
Ala 360	Cys	Cys	Ala	Pro	Thr 365	Lys	Leu	Ser
Ala	Thr 370	Ser	Val	Leu	Tyr	Tyr 375	Asp	Ser
Ser	Asn	Asn 380	Val	Ile	Leu	Arg	Lys 385	His
Arg	Asn	Met	V al	Val	Lys	Ala	Cys	Gly 395

16. A polypeptide chain useful as a subunit of a dimeric osteogenic protein, said protein being

Cys His.

capable of inducing endochondral bone formation when implanted in a mammal in association with a matrix; said polypeptide chain comprising the amino acid sequence (Sequence ID No. 4):

Prepro hOP-2

Met 1	Thr	Ala	Leu	Pro 5	Gly	Pro	Leu	Trp
Leu 10	Leu	Gly	Leu	Ala	Leu 15	Cys	Ala	Leu
Gly	Gly 20	Gly	Gly	Pro	Gly	Leu 25	Arg	Pro
Pro	Pro	Gly 30	Cys	Pro	Gln	Arg	Arg 35	Leu
Gly	Ala	Arg	Asp 40	Arg	Asp	Val	Gln	Arg 45
Glu	Ile	Leu	Ala	Val 50	Leu	Gly	Leu	Pro
Gly 55	Arg	Pro	Arg	Pro	Arg 60	Ala	Pro	Pro
Ala	Ala 65	Ser	Arg	Leu	Pro	Ala 70	Ser	Ala
Pro	Leu	Phe 75	Met	Leu	Asp	Leu	Tyr 80	His
Arg	Met	Ala	Gly 85	Asp	Asp	Asp	Glu	A sp 90
Gly	Ala	Ala	Glu	Ala 95	Leu	Gly	Arg	Ala
Asp 100	Leu	Val	Met	Ser	Phe 105	V al	Asn	Met
Val	Glu 110	Arg	Asp	Arg	Ala	Le u 115	Gly	His

Gln	Glu	Pro 120	His	Trp	Lys	Glu	Phe 125	Arg
Phe	Asp	Leu	Thr 130	Gln	Ile	Pro	Ala	Gly 135
Glu	Ala	Val	Thr	Ala 140	Ala	Glu	Phe	Arg
Ile 145	Tyr	Lys	Val	Pro	Ser 150	Ile	His	Leu
Leu	Asn 155	Arg	Thr	Leu	His	Val 160	Ser	Met
Phe	Gln	Val 165	Val	Gln	Glu	Gln	Ser 170	Asn
Arg	Glu	Ser	Asp 175	Leu	Phe	Phe	Leu	Asp 180
Leu	Gln	Thr	Leu	Arg 185	Ala	Gly	Asp	Glu
Gly 190	Trp	Leu	Val	Leu	A sp 195	Val	Thr	Ala
Ala	Ser 200	Asp	Cys	Trp	Leu	Leu 205	Lys	Arg
His	Lys	Asp 210	Leu	Gly	Leu	Arg	Leu 215	Tyr
Val	Glu	Thr	Glu 220	Asp	Gly	His	Ser	Val 225
Asp	Pro	Gly	Leu	Ala 230	Gly	Leu	Leu	Gly
Gln 235	Arg	Ala	Pro	Arg	Ser 240	Gln	Gln	Pro
Phe	Val 245	Val	Thr	Phe	Phe	Arg 250	Ala	Ser
Pro	Ser	Pro 255	Ile	Arg	Thr	Pro	Arg 260	Ala

Val	Arg	Pro	Leu 265	Arg	Arg	Arg	Gln	Pro 270
Lys	Lys	Ser	Asn	Glu 275	Leu	Pro	Gln	Ala
Asn 280	Arg	Leu	Pro	Gly	Ile 285	Phe	Asp	Asp
Val	His 290	Gly	Ser	His	Gly	Arg 295	Gln	Val
Cys	Arg	Arg 300	His	Glu	Leu	Tyr	Val 305	Ser
Phe	Gln	Asp	Leu 310	Gly	Trp	Leu	Asp	Trp 315
Val	Ile	Ala	Pro	Gln 320	Gly	Tyr	Ser	Ala
Tyr 325	Tyr	Cys	Glu	Gly	Glu 330	Cys	Ser	Phe
Pro	Leu 335	Asp	Ser	Cys	Met	Asn 340	Ala	Thr
Asn	His	Ala 345	Ile	Leu	Gln	Ser	Leu 350	Val
His	Leu	Met	Lys 355	Pro	Asn	Ala	Val	Pro 360
Lys	Ala	Cys	Cys	Ala 365	Pro	Thr	Lys	Leu
Ser 370	Ala	Thr	Ser	Val	Leu 375	Tyr	Tyr	Asp
Ser	Ser 380	Asn	Asn	Val	Ile	Leu 385	Arg	Lys
Ala	Arg	A sn 3 90	Met	Val	Val	Lys	Ala 395	Cys
Gly	Cys	His.						

17. A dimeric osteogenic protein capable of inducing endochondral bone formation in a mammal when

implanted in said mammal in association with a matrix; said protein comprising a pair of disulfide-bonded polypeptide chains constituting a dimeric species, wherein each said polypeptide chain is the polypeptide chain of claim 1, 6, 8, 15 or 16.

- 18. The polypeptide chain of claim 1, 6, 8, 15 or 16 produced by expression of recombinant DNA in a host cell.
- 19. The polypeptide chain of claim 15 wherein said host cell is a procaryotic host cell.
- 20. The polypeptide chain of claim 15 wherein said host cell is a mammalian cell.
- 21. The polypeptide of claim 1, 6, 8, 15 or 16 that is glycosylated.
- 22. A DNA encoding the polypeptide chain of claim 1, 6, 8, 15 or 16.
- 23. A dimeric protein comprising a pair of polypeptide chains expressed from a DNA sequence sufficiently duplicative of the sequence of Sequence ID No. 2 or Sequence ID No. 4 such that, when said polypeptide chains are oxidized to produce a disulfide-bonded dimeric species, the dimeric species has a conformation that is capable of inducing endochondral bone or cartilage formation when disposed within a matrix and implanted in a mammal.