

STUI	DEN	TI	D N	О		

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

TMA 1301 - COMPUTATIONAL METHODS

(All sections / Groups)

7 MARCH 2018 2.30 p.m – 4.30 p.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 5 pages only with 4 Questions.
- 2. Attempt ALL FOUR questions, All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write your answers in the Answer Booklet provided, and start each solution of a question on a new page.
- 4. Show all steps.

- (a) Given the function $f(x) = x \left(\sqrt{x + \frac{1}{x}} \sqrt{x \frac{1}{x}} \right)$
 - (i) Calculate the value of f(10) by using six-digit arithmetic with rounding. [1 mark]
 - (ii) Convert the given function into a form that avoids the loss of significance. [2 marks]
 - (iii) Calculate the value of f(10) using the function obtained in part (ii) and six-digit arithmetic with rounding. [1 mark]
 - (iv) Taking 0.31623 as an actual value for f(10), find the absolute errors for the computed value from part (i) and (iii).

[1 mark]

(b) (i) Let $f(x) = x^4 - 7x^3 + 18x^2 - 20x + 8$. Is Newton's Method converges quadratically or linearly to the root r = 2 for the given f(x)? Then find $\lim_{n\to\infty} \frac{e_{n+1}}{e_n^2}$ (if converges quadratically) or

 $\lim_{n\to\infty} \frac{e_{n+1}}{e_n}$ (if converges linearly), where e_n denotes the error at step n.

[1.5 marks]

(ii) Suppose f(x) is a function on interval [1,2] with $f(x) = x^2 + 4x - 10$. Perform three iterations using Newton's method to reach an approximated root of the equation f(x) = 0, starting with initial value $p_0 = 1$. Use FIVE decimal places and show all the working steps.

[3.5 marks]
Continued......

[Note: For this question, use FOUR decimal places for all the workings.]

(a) Find the actual value for the definite integral $\int_0^2 3^x dx$.

[Note:
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
]

[1 mark]

(b) Approximate $\int_0^2 3^x dx$ by using the **Trapezoidal Rule** with 5 points, and hence find the absolute error.

[4 marks]

(c) Approximate $\int_0^2 3^x dx$ by completing the following table using **Romberg** algorithm, and hence, find the absolute error.

	m=0	m=1	m=2
n=0	R(0,0)=		
n=1	R(1,0)=	R(1,1)=	
n=2	R(2,0)=	R(2,1)=	R(2,2)=

[4 marks]

(d) Comment on the accuracy of integral obtained in part (b) and (c).

[1 mark]

Continued......

(a) Consider the following linear system:

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 4 \\ 3 & 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ \frac{7}{2} \end{bmatrix}$$

- (i) Use row reduction technique to find an upper triangular U and lower triangular L in the LU factorization of the given linear system.
- (ii) Then find the values of x_1 , x_2 and x_3 by using the **L** and **U** obtained from part (i).

[5.5 marks]

(b) Construct the equations for x, y and z of the following linear system. Then compute the two iterations for x, y and z using the **Gauss-Seidel Method**

$$4x + y - z = 3
2x + 7y + z = 19
x - 3y + 12z = 31$$

Copy the following table into your Answer Booklet and complete it. Write your answers correct to FOUR decimal places.

n	x	у	Z
0	0 .	.0	0
1			
2	ī		18.4

[2.5 marks]

(c) Find the eigenvalues for the following matrix A:

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$

[2 marks]

Continued.....

(a) The following table shows the consumer price index (CPI) of Malaysia for second half year of 2016.

Month (x)	July	August	September	October	November	December
CPI (y)	115.1	115.6	115.3	115.7	116.9	116.6

The CPI of Malaysia for second half year of 2016 is assumed can be fitted using linear least squares.

[Note: Round your answers to ONE decimal place.]

(i) Copy the following table into your Answer Booklet and complete it.

Month	x	У	x^2	ху
July	1	115.1		
August	2	115.6		
September	3	115.3		
October	4	115.7		
November	5	116.9		
December	6	116.6		
	$\sum x =$	$\sum y = 0$	$\sum x^2 =$	$\sum xy =$

[2 marks]

(ii) From (i), find the equation of the best fit linear line y = a + bx using the least squares method.

[3.5 marks]

(iii) From (ii), estimate the CPI of Malaysia in February of year 2017.

[0.5 mark]

Continued.....

(b) Given the following divided difference (DD) table of a function f.

x_k	y_k	First DD	Second DD	Third DD
0				
		-1		
2	-2		3	
			$\overline{2}$	
4	8			****
		-9		
6	-10			

[Note: For (i) and (ii), give your answers in the SIMPLEST FRACTION form.]

(i) Complete the above table.

[2 marks]

(ii) Find the cubic Newton polynomial $P_3(x)$.

[1.5 marks]

(iii) Approximate f(1) from the obtained $P_3(x)$ in (ii).

[0.5 mark]

End of Page