Statistical and Mathematical Methods for Data Analysis

Dr. Syed Faisal Bukhari

Associate Professor

Department of Data Science

Faculty of Computing and Information Technology

University of the Punjab

Textbooks

- ☐ Probability & Statistics for Engineers & Scientists,
 Ninth Edition, Ronald E. Walpole, Raymond H.
 Myer
- ☐ Elementary Statistics: Picturing the World, 6th Edition, Ron Larson and Betsy Farber
- ☐ Elementary Statistics, 13th Edition, Mario F. Triola

Reference books

- ☐ Probability and Statistical Inference, Ninth Edition, Robert V. Hogg, Elliot A. Tanis, Dale L. Zimmerman
- ☐ Probability Demystified, Allan G. Bluman
- □ Practical Statistics for Data Scientists: 50 Essential Concepts, Peter Bruce and Andrew Bruce
- ☐ Schaum's Outline of Probability, Second Edition, Seymour Lipschutz, Marc Lipson
- ☐ Python for Probability, Statistics, and Machine Learning, José Unpingco

References

Readings for these lecture notes:

□ Probability & Statistics for Engineers & Scientists, Ninth edition, Ronald E. Walpole, Raymond H. Myer

These notes contain material from the above book.

Discrete Probability Distribution

- The set of ordered pairs (x, f(x)) is a probability function, probability mass function, or probability distribution of the discrete random variable X if, for each possible outcome x,
- 1. $f(x) \ge 0$,
- $2. \ \sum_{x} f(x) = 1,$
- 3. P(X = x) = f(x).

Example: A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives.

$$N = 20$$

$$n = 2$$

$$k = 3$$

$$P(X = x) = h(x; N, n, k) = \binom{k}{k}\binom{k}{N-k}\binom{k}{N-k}\binom{k}{N-k}$$

 $n-(N-k)\} \le x \le min\{n, k\}$

Let X represent the number of defective computers

$$max{0, n - (N-k)} = max{0, 2 - (20 - 3)}$$

= $max(0, -17) = 0$

$$min\{n, k\} = min(2, 3) = 2$$

Probability Distribution		
X	P(X = x)	
0	136	
	191	
1	51	
	$\overline{190}$	
2	3	
	190	
	$\sum P(X) = 1$	

Example : If a car agency **sells 50%** of its inventory of a certain foreign car equipped with side airbags, find a formula for the **probability distribution** of the number of cars with side airbags among the **next 4 cars** sold by the agency.

$$b(x; n, p) = {n \choose x} p^x q^{n-x}, x = 0, 1, 2, ..., n$$

Here n = 4, p = 0.50, q = 0.50

Let x denotes the number of cars with side airbags

$$\mathbf{b}(\mathbf{x}; \mathbf{4}, \mathbf{0}. \mathbf{50}) = {4 \choose \mathbf{x}} (\mathbf{0}.\mathbf{50})^{\mathbf{x}} (\mathbf{0}.\mathbf{50})^{\mathbf{4}-\mathbf{x}}, \ \mathbf{x} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$$
$$= {4 \choose \mathbf{x}} (\mathbf{0}.\mathbf{50})^{\mathbf{4}}, \ \mathbf{x} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$$
$$\mathbf{b}(\mathbf{x}; \mathbf{4}, \mathbf{0}. \mathbf{50}) = \frac{1}{16} {4 \choose \mathbf{x}}, \ \mathbf{x} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$$

Cumulative Distribution Function

The cumulative distribution function F(x) of a discrete random variable X with probability distribution f(x) is

$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$
, for $-\infty < x < \infty$

Example A stockroom clerk returns **three safety helmets at random** to three steel mill employees who had previously checked them. If **Smith**, **Jones**, **and Brown**, in that order, receive one of the three hats, list the **sample points for the possible orders of returning the helmets**, and find the value **m** of the random variable **M** that represents the number of **correct matches**

If **S**, **J**, and **B** stand for **Smith's**, **Jones's**, and **Brown's** helmets, respectively, then the possible arrangements in which the helmets may be returned and the number of correct matches are

Sample space	m
SJB	3
SBJ	1
JSB	1
BJS	1
JBS	0
BSJ	0

$: F(x) = P(X \le x)$

For the random variable M, the number of correct matches in the previous example, we have

$$F(2) = P(M \le 2) = f(0) + f(1) = \frac{2}{6} + \frac{3}{6} = \frac{5}{6}$$

The cumulative distribution function of *M* is

$$\mathbf{F(m)} = \begin{cases} 0, & \text{for } m < 0, \\ \frac{2}{6} = \frac{1}{3}, & \text{for } 0 \le m < 1, \\ \frac{5}{6}, & \text{for } 1 \le m < 3, \\ 1, & \text{for } m \ge 3. \end{cases}$$

Example : Find the cumulative distribution function of the random variable X in $f(x) = \frac{1}{16} \binom{4}{x}$, x = 0, 1, 2, 3, 4. Using F(x), verify that f(2) = 3/8.

$$f(x) = \frac{1}{16} {4 \choose x}, x = 0, 1, 2, 3, 4$$

$$f(0) = \frac{1}{16}$$

$$f(1) = \frac{4}{16}$$

$$f(2) = \frac{6}{16}$$

$$f(3) = \frac{4}{16}$$

$$f(4) = \frac{1}{16}$$

$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$
, for $-\infty < x < \infty$

$$F(0) = P(X \le 0) = f(0) = \frac{1}{16},$$

$$F(1) = P(X \le 1) = f(0) + f(1) ----(1)$$

$$= \frac{1}{16} + \frac{4}{16} = \frac{5}{16},$$

$$F(2) = P(X \le 2) = f(0) + f(1) + f(2) ----(2)$$

$$= \frac{1}{16} + \frac{4}{16} + \frac{6}{16} = \frac{11}{16},$$

$$F(3) = P(X \le 3) = f(0) + f(1) + f(2) + f(3)$$

$$= \frac{1}{16} + \frac{4}{16} + \frac{6}{16} + \frac{4}{16}$$

$$= \frac{1}{16} + \frac{4}{16} + \frac{6}{16} + \frac{4}{16} = \frac{15}{16},$$

$$F(4) = P(X \le 4) = f(0) + f(1) + f(2) + f(3) + f(4)$$

$$= \frac{1}{16} + \frac{4}{16} + \frac{6}{16} + \frac{4}{16} + \frac{1}{16}$$

$$= \frac{16}{16} = 1$$

$$\therefore F(x) = \begin{cases} 0, & \text{for } x < 0, \\ \frac{1}{16}, & \text{for } 0 \le x < 1, \\ \frac{5}{16}, & \text{for } 1 \le x < 2, \\ \frac{11}{16}, & \text{for } 2 \le x < 3, \\ \frac{15}{16}, & \text{for } 3 \le x < 4, \\ 1, & \text{for } x \ge 4. \end{cases}$$

Using CDF, to find the probability (2) –(1):

$$f(2) = F(2) - F(1) = \frac{11}{16} - \frac{5}{16} = \frac{6}{16} = \frac{3}{8}$$

Probability mass function plot vs. Probability histogram

Probability mass function plot vs. Probability histogram

Discrete cumulative distribution function

Discrete cumulative distribution function

Continuous Probability Distributions

- ☐ A continuous random variable has a probability of 0 of assuming exactly any of its values.
- ☐ Consequently, its **probability distribution cannot** be given in **tabular form**.

Continuous Probability Distributions

- We shall concern ourselves with computing probabilities for various intervals of continuous random variables such as P(a < X < b), P(W ≥ c), and so forth.
- \square Note that when X is continuous,

$$P(a < X \le b) = P(a < X < b) + P(X = b) = P(a < X < b).$$

- ☐ That is, it does not matter whether we include an endpoint of the interval or not.
- \square This is not true, though, when X is discrete.

Because **areas** will be used to represent probabilities and probabilities are **positive numerical values**, the **density function** must lie entirely **above the** *x* **axis**.

Typical density functions.

Probability Density Function

The function f(x) is a probability density function (pdf) for the continuous random variable X, defined over the set of real numbers, if

1.
$$f(x) \ge 0$$
, for all $x \in R$.

2.
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
.

3.
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Example: Suppose that the error in the reaction temperature, in °C, for a controlled laboratory experiment is a continuous random variable *X* having the probability density function

$$f(x) = \begin{cases} \frac{x^2}{3}, -1 < x < 2, \\ 0, \text{ elsewhere} \end{cases}$$

- (a) Verify that f(x) is a density function.
- (b) Find $P(0 < X \le 1)$.

$$\Box f(x) \geq 0$$
.

$$\Box \int_{-\infty}^{+\infty} f(x) dx = 1.$$

LHS =
$$\int_{-1}^{2} \frac{x^2}{3} dx$$

= $\left[\frac{x^3}{9}\right]_{-1}^{2}$
= $\frac{[(2)^3 - (-1)^3]}{9}$
= 1

LHS = RHS

$$P(0 < X \le 1) = \int_0^1 \frac{x^2}{3} dx$$
$$= \left[\frac{x^3}{9}\right]_0^1$$
$$= \frac{\left[(1)^3 - (0)^3\right]}{9}$$
$$= \frac{1}{9}$$

Probability mass function plot vs. Probability histogram

Probability mass function plot vs. Probability histogram

Discrete cumulative distribution function

Discrete cumulative distribution function

Cumulative Distribution Function

The cumulative distribution function F(x) of a continuous random variable X with density function f(x) is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$
, for $-\infty < x < \infty$

$$P(a < X < b) = F(b) - F(a)$$
 and $f(x) = \frac{dF(x)}{dx}$, if the derivative exists.

Example: For the density function

$$f(x) = \begin{cases} \frac{x^2}{3}, -1 < x < 2, \\ 0, \text{ elsewhere} \end{cases}$$

, find F(x), and use it to evaluate $P(0 < X \le 1)$.

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt, \text{ for } -\infty < x < \infty$$
For $-1 < x < 2$,
$$F(x) = \int_{-1}^{x} \frac{t^{2}}{3} dt$$

$$= \left[\frac{t^{3}}{9}\right]_{-1}^{x}$$

$$= \frac{[(x)^{3} - (-1)^{3}]}{9}$$

$$= \frac{x^{3} + 1}{9}$$

$$F(x) = \begin{cases} 0, & \text{for } x < -1, \\ \frac{x^3 + 1}{9}, & \text{for } -1 \le x < 2, \\ 1, & \text{for } x \ge 2 \end{cases}$$

$$F(x) = \begin{cases} 0, & \text{for } x < -1, \\ \frac{x^3 + 1}{9}, & \text{for } -1 \le x < 2, \\ 1, & \text{for } x \ge 2 \end{cases}$$

$$P(0 < X \le 1) = F(1) - F(0)$$

$$F(1) = \frac{1^3 + 1}{9} = \frac{2}{9}$$

$$F(0) = \frac{0^3 + 1}{9} = \frac{1}{9}$$

$$P(0 < X \le 1) = \frac{2}{9} - \frac{1}{9} = \frac{1}{9}$$

Example: The **Department of Energy (DOE)** puts projects out on bid and generally estimates what a reasonable bid should be. Call the **estimate b**. The DOE has determined that the **density function** of the

winning (low) bid is
$$f(y) = \begin{cases} \frac{5}{8b}, & \frac{2}{5}b \le y \le 2b, \\ 0, & \text{elsewhere} \end{cases}$$

Find **F(y)** and use it to **determine the probability** that the **winning bid is less than** the DOE's preliminary **estimate b**.

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt, \text{ for } -\infty < x < \infty$$

$$\frac{2}{5}b \le y \le 2b$$

$$F(y) = \int_{\frac{2}{5}b}^{y} \frac{5}{8b} dy$$

$$= \left[\frac{5}{8b}y\right]_{\frac{2}{5}b}^{y}$$

$$= \frac{5}{8b}y - \frac{5}{8b}(\frac{2}{5}b)$$

$$= \frac{5}{8b}y - \frac{1}{4}$$

$$F(y) = \begin{cases} \mathbf{0}, & y < \frac{2}{5}b, \\ \frac{5}{8b}y - \frac{1}{4}, & \frac{2}{5}b \le y \le 2b \\ \mathbf{1}, & y \ge 2b. \end{cases}$$

To determine the probability that the winning bid is less than the preliminary bid estimate b, we have

$$F(y) = \frac{5}{8b} y - \frac{1}{4}$$

$$\Rightarrow$$
F(b) = $\frac{5}{8b}$ **b** - $\frac{1}{4}$

$$\Rightarrow$$
F(b) = $\frac{5}{8} - \frac{1}{4}$

:
$$P(Y \le b) = F(b) = \frac{5}{8} - \frac{1}{4} = \frac{3}{8}$$