

«Московский государственный технический университет имени Н.Э. Баумана»

(национальный исследовательский университет)

ФАКУЛЬТЕТ КАФЕДРА ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Отчет

по домашнему заданию № 1 варианта №7

Название лабораторной работы:

Вычисления. Погрешности вычислений

Программирование разветвляющегося вычислительного процесса

Программирование циклического процесса. Типы циклов

Дисциплина:

O	сновы	прог	рамми	рования

Студент гр. ИУ6-12	Векшин Роман			
	(Подпись, дата)	(И.О. Фамилия)		
Преподаватель		_ Черноусова Татьяна Геннадьевна		
	(Подпись, дата)	(И.О. Фамилия)		

Часть 1

Задание 1

1. Создайте новый проект в отдельной папке и введите программу, представленную ниже, заменив выражения в фигурных скобках соответствующими операторами.

program example2;

```
{$APPTYPE CONSOLE}
uses
     SysUtils;
Var
     y:real;
   begin
       WriteLn('До преобразований y=', y:20:16);
      \{y=1\}
      \{ y = y/6000 \}
     y := \exp(y);
                                    \{y = ex\}
                                    {Квадратный корень}
     y := sqrt(y);
     \{Y = y2\}
      \{ y = ln y \}
      \{ y = 6000y \}
     WriteLn('После преобразований =', y:20:16);
end.
```

- 2. Выполните оценку абсолютной и относительной погрешности представления числа 1 и вычислений над числами типа real. К каким типам относятся данные погрешности?
- 3. Текст программы и результаты занесите в отчет.

Задание 2

Из математики известно, что $\mathrm{ch}^2 \mathrm{x} - \mathrm{sh}^2 \mathrm{x} = 1$, где $\mathrm{ch} \, \mathrm{x} = \frac{e^{\mathrm{x}} + e^{-\mathrm{x}}}{2}$, $\mathrm{sh} \, \mathrm{x} = \frac{e^{\mathrm{x}} - e^{-\mathrm{x}}}{2}$.

1. Разработайте программу, которая вычисляет левую часть этого равенства.

Указание. Программа должна реализовывать следующую последовательность вычислений: y_1 =sh x, y_2 =ch x, $y = y_2^2 - y_1^2$, где x, y, y1, y2 — переменные типа **real**.

Полученные значения y_1 , y_2 и у вывести на экран, указав ширину поля вывода не менее 20 и количество дробных цифр не менее 16.

- 2. Текст программы и ее результаты занесите в отчет.
- 3. Последовательно вводя указанные значения аргумента и рассчитывая погрешности вычислений, заполните таблицу.

IJ*					
X	y1	y2	у	^	え
8,25					
8,32					
8,45					
8,55					
8,32 8,45 8,55 8,65					
8,75					

- 4. Поясните полученный результат и объяснения включите в отчет.
- 5. Измените в программе типы переменных на *double*. Объясните полученный результат. Типы каких переменных реально влияют на точность результата и почему?

Задание 3

Разработайте программу, которая проверяет равенство $\sin 2 x + \cos 2 x = 1$. Убедитесь, что погрешность достаточно мала. Поясните полученный результат.

Решение задания 1

Программа для среды Turbo Delphi

```
program project1;
{$APPTYPE CONSOLE}
Uses SysUtils;
var
  y: real;
begin
  y := 1;
  writeln(UTF8toANSI('До преобразований y='), y: 20: 16);
  y := y / 6000;
  y := exp(y);
                                     \{y = e^x\}
                                     {Квадратный корень}
  y := sqrt(y);
  y := y / 14;
y := 14 * y;
  У
  \bar{y} := sqr(y);
                                   \{Y = y^2\}
  y := \ln(y);

y := 6000 * y;
  writeln(UTF8toANSI('После преобразований ='), y: 20: 16);
  readln();
end.
```

Результат работы

Абсолютная погрешность: 0,000000000012632 Относительная погрешность: 0,0000000000012632

Данные погрешности относятся к погрешностям округления данных вещественного типа.

Решение задания 2

1) Программа для среды Turbo Delphi

```
program project2;
{$APPTYPE CONSOLE}
uses
  SysUtils;
  x, y1, y2, y, delta, otn: real;
begin
  writeln(UTF8toANSI('Введите х'));
  readln(x);
  y1 := (exp(x) - exp(-x)) / 2;
  y2 := (exp(x) + exp(-x)) / 2;
  y := sqr(y2) - sqr(y1);
delta := abs(1 - y);
otn := delta / 1;
  writeln(UTF8toANSI('y1=sh(x)='), y1: 20: 16);
  writeln(UTF8toANSI('y2=ch(x)='), y2: 20: 16);
writeln(UTF8toANSI('y=y2^2-y1^2'), y: 20: 16);
writeln(UTF8toANSI('Aбсолютная погрешность'), delta);
  writeln(UTF8toANSI('Относительная погрешность'), otn);
end.
                                                        Начало
```


2)Пример работы программы

3) Таблица работы программы для некоторых значений х

Х	у1	у2	У	E	27
8,25	1913.812780090	1913.8130413492	0.99999999953	4.6566128730773	4.65661287307739
	6746000	318000	43387	926E-010	26E-010
8,32	2052.579882339 1638000	2052.5801259350 278000	0.99999999906 86774	9.3132257461547 852E-010	9.31322574615478 52E-010
8,45	2337.536260805 6844000	2337.5364747060 999000	1.00000000093	9.3132257461547 852E-010	9.31322574615478 52E-010
8,55	2583.377116815	2583.3773103605	0.99999999720	2.7939677238464	2.79396772384643
	4476000	467000	60323	355E-009	55E-009
8,65	2855.073279313	2855.0734544401	1.0000000093	9.3132257461547	9.31322574615478
	3302000	785000	13226	852E-010	52E-010
8 , 75	3155.343974813	3155.3441332751	1.0000000372	3.7252902984619	3.72529029846191
	8489000	745000	52903	141E-009	41E-009

[^] и [≯] - абсолютная и относительная погрешности соответственно

4)Функции ch(x) и sh(x) быстро возрастают с увеличением $x(\tau, \kappa)$ содержат в себе показательную функцию вида $e^{\lambda}x$). Несмотря на то, что различие y1 и y2 видно уже на 2 символе дробной части, при возведении этих чисел в квадрат разрядной сетки перестаёт хватать и младшие разряды мантиссы, в которых хранятся различные значения sh(x) и ch(x), отбрасываются, в результате чего мы получаем практически равные результаты.

5)При изменении типа данных с real на double результаты не изменились, т.к. количество десятичных значащих цифр и диапазон изменения значения у типов real и double совпадают.

Х	Real Single		Extended		
1	0.000000000000000	0.000000238418579	0.000000000000000		
	0	1			
2	0.0000000000000001	0.000000953674316	0.000000000000018		
	8	4			
4	0.000000000000113	0.000061035156250	0.000000000001137		
	7	0			
8	0.000000000000000	0.250000000000000	0.000000000000000		
	0	0			
1	0.007812500000000	1.0000000000000000	0.007812500000000		
6	0	0			
3	1.0000000000000000	1.0000000000000000	1.0000000000000000		
2	0	0			

Решение задания 3

Программа для среды Turbo Delphi

```
program project3;
{$APPTYPE CONSOLE}
uses
   SysUtils;
var
   x, y1, y2, y, delta, otn: real;
begin
   writeln(utf8toansi('Введите х'));
```

```
y1 := sin(x);
  y2 := cos(x);

y := sqr(y1) + sqr(y2);
  writeln(utf8toansi('Значение '), y: 20: 16);
  if y <> 1 then
  begin
    delta := abs(1 - y);
otn := delta / abs(y);
    writeln(utf8toansi('Абсолютная погрешность'), delta: 20: 16);
    writeln(utf8toansi('Относительная погрешность'), otn: 20: 16);
  end
    writeln(utf8toansi('Погрешность равна нулю или незначительна'));
  readln();
end.
                                                Начало
                                                Ввод х
                                                y1=sin x
                                               y2=cos x
                                             y=y1^2+y2^2
                                                    Υ
                                     да
                                                              нет
                                                  Y<>1
                            delta=abs(1-y)
                                                         Нет погрешности
                           otn=delta/abs(y)
                         Погрешности delta, otn
```

X	Результат	Абсол. Погрешность Относит. погрешность
0	1.0000000000000000	Погрешность равна нулю или незначительна
0.5	1.0000000000000000	Погрешность равна нулю или незначительна
15	1.0000000000000000	Погрешность равна нулю или незначительна
85	1.0000000000000000	Погрешность равна нулю или незначительна

Вывод

readln(x);

Для решения поставленной задачи была написана программа для среды Turbo Delphi. Погрешности найдено не было, так как тесты проводились в 64-разрядной операционной системе.

Часть 2. Программирование разветвляющегося вычислительного процесса

Даны действительные числа X, Y и W. Определить min(X, Y, W) - Y2-W2.

Программа для среды Turbo Delphi:

```
program project3;
{$APPTYPE CONSOLE}
uses
  SysUtils;
function min(a, b, c: real): real;
begin
  if (a \le b) and (a \le c) then min := a
  if (b \le a) and (b \le c) then min := b
  else
    min := c;
end;
var
 x, y, w, znach: real;
begin
  writeln(('Введите x, y, w:'));
  readln(x, y, w);
  znach := min(x, y, w) - sqr(y) - sqr(w);
writeln(znach:20:16);
  readln();
end.
```

Вывод

Для решения поставленной задачи была написана программа, содержащая оператор условной передачи управления, для среды Turbo Delphi.

Часть 3. Программирование циклического процесса. Типы циклов.

Решить задачу, организовав итерационный цикл.

$$S = \sum_{k=0}^{\infty} 1/[k(k+1)(k+2)(k+3)]$$

Вычислить сумму ряда

С ТОЧНОСТЬЮ ⇒.

3 -3!

Проверить программу для точности $= 10^{-2}$, 10^{-3} . Определить, как изменяется число итераций при

изменении точности. Для проверки правильности решения считать точным значением:

	F F		F -				
Eps	10^-1	10^-2	10^-3	10^-4	10^-5	10^-6	10^-7
Результат	0.0	0.05	0.055	0.0555	0.05555	0.055555	0.0555555
Кол-во	1	2	5	13	31	68	148
итер.							

Программа для среды Turbo Delphi

```
program project3;
{$APPTYPE CONSOLE}
uses
  SysUtils;
var
  k, p: integer;
  eps, s1, s2: real;
begin
  s2 := 1 / (3 * 1 * 2 * 3);
  writeln('Введите точность');
  readln(eps);
  s1 := 0;
  k := 0;
  p := round(log10(eps)); // расчёт количества знаков после запятой
  repeat
    k := k + 1;
    s1 := s1 + 1 / (k * (k + 1) * (k + 2) * (k + 3));
  until abs(s1 - s2) <= eps;
writeln('Результат: ', s1:p + 1:p);
  writeln('Количество итераций: ', k);
```


Вывод

Для решения поставленной задачи была написана программа, содержащая итерационный цикл, для среды Turbo Delphi. Вычислены суммы рядов для точностей 10^-1 , 10^-2 , 10^-3 , 10^-4 , 10^-5 , 10^-6 , 10^-7 . Построен график зависимости количества итераций от точности расчетов.