Program w języku Python realizujący metodę Newtona (stycznych)

Bartosz Beksa, Paweł Bukowski, Tomasz Domurad, Michalina Całus kwiecień 2021

1 Teoretyczny opis metody numerycznej

Problem znalezienia miejsca zerowego funkcji $f:[a,b]\to R$ zamienimy na wyznaczenie miejsca zerowego stycznej do wykresu tej funkcji. Niech x_0 ϵ [a,b] będzie ustalonym startowym przybliżeniem miejsca zerowego f.

Za kolejne przybliżenie x_1 przyjmiemy miejsce zerowe stycznej w punkcie $(x_0, f(x_0))$ w poniższym równaniu:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

wstawiamy y = 0 i otrzymujemy:

$$0 = f'(x_0)(x - x_0) + f(x_0) \Rightarrow x_1 := x_0 - \frac{f(x_0)}{f'(x_0)}$$

Otrzymamy tak iteracje nazywane metodą Newtona lub stycznych.

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k \ge 0$$

Rysunek 1: Metoda stycznych na wykresie

Błąd przybliżenia

Dzięki kolejnym iteracjom uzyskujemy coraz dokładniejsze przybliżenie miejsca zerowego. Obliczenia można kontynuować do czasu gdy wynik będzie satysfakcjonujący. Błąd k-tego przybliżenia można oszacować poprzez nierówność:

$$|x^* - x_k| \frac{f(x_k)}{m}$$

$$|x^* - x_k| \frac{M}{2m} (x^* - x_{k-1})^2$$

gdzie stałe wylicza się ze wzorów:

$$m = \min_{x \in [a,b]} |f'(x)|$$

$$M = \max_{x \in [a,b]} |f''(x)|$$

2 Przykład ilustrujący metodę

Metodą Newtona wyznaczymy dodatni pierwiastek z równania $x^2=2$:

$$f'(x) = 2x$$

$$f''(x) = 2$$

za x_0 uznamy 2

z metody Newtona wiemy, że $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ a więc:

$$x_1 = 2 - \frac{f(x_2)}{f'(x_2)} = 2 - \frac{2}{4} = 1,5$$

$$x_2 = 1, 5 - \frac{0.25}{3} \approx 1,4166$$

$$x_3 \approx 1,4142$$

Takie przybliżenie miejsca zerowego jest już dla nas wystarczająco dobre.

3~ Opis implementacji algorytmu realizującego metodę

Program pobiera od użytkownika wzór funkcji, ustalone startowe przybliżone miejsce zerowe funkcji oraz ilość iteracji jakie ma wykonać żeby obliczyć miejsce zerowe funkcji, a następnie zwraca ułamek, który jest przybliżeniem miejsca zerowego podanej funkcji.

Program wykorzystuje funkcje pomocnicze do obliczeń:

- functionvalue oblicza wartość funkcji dla podanej wartości
- derivativevalue oblicza wartość pochodnej funkcji dla podanej wartości
- count liczy przybliżenie miejsca zerowgo z dokładnością do n iteracji

		a (stycznych))		_		×				
Jak Fui np	Instrukcja Jako zmiennej należy używać 'x'. Funkcja powinna być zapisana jak wyrażenie matematyczne w pythonie np. x² powinno być zapisane w postaci x**2 2x powinno być zapisane w postaci 2*x Zmienna 'n' musi być większa bądź równa 1. x₀ należy podać jako liczbę zmiennoprzecinkową										
	Podaj dan f(x) = x ₀ =	e				-					
	n =		Oblicz								

Rysunek 2: prezentacja działania programu 1

		tona (styczn	ych)	_		×						
Jak Fui np Zm	Instrukcja Jako zmiennej należy używać 'x'. Funkcja powinna być zapisana jak wyrażenie matematyczne w pythonie np. x² powinno być zapisane w postaci x**2 2x powinno być zapisane w postaci 2*x Zmienna 'n' musi być większa bądź równa 1. x₀ należy podać jako liczbę zmiennoprzecinkową											
	Podaj dane											
	f(x) =	x**2	_									
	x ₀ =	2	_									
	n =	2										
	Oblicz											
			0.50000									

Rysunek 3: prezentacja działania programu $2\,$

Rysunek 4: prezentacja działania programu 3

Rysunek 5: prezentacja działania programu 4

4 Kod programu

Kod załączony w archiwum razem z dokumentacją.

5 Dokładniejszy opis programu

Program używa wbudowanej w pythona biblioteki tkinter używanej do stworzenia interfejsu graficznego.

Program po uruchomieniu wyświetla instrukcję wprowadzania danych i prosi o podanie wzoru funkcji, x_0 od którego zacznie przybliżanie i liczbę n, czyli ilośc iteracji które ma wykonać. Zwraca przybliżone miejsce zerowe w postaci liczby zmiennoprzecinkowej.

Zabespieczeniem przed wprowadzeniem niepoprawnych danych jest m.in. komunikat: "Zmienna 'n' musi być większa bądź równa 1." lub

komunikat: "Sprawdź czy funkcja jest dobrze wprowadzona."

6 Uruchomienie programu

Do uruchomienia programu potrzebny będzie zainstalowany Python najlepiej w wersji 3.8.0. Należy umieścić wszystkie plik w jednym miejscu i uruchomić app.pyw przy pomocy pythona.

Rysunek 6: Uruchomienie 1

Metoda Newtona (stycznych) —

Instrukcja

Jako zmiennej należy używać 'x'.

Funkcja powinna być zapisana jak wyrażenie matematyczne w pythonie np. x² powinno być zapisane w postaci x**2

2x powinno być zapisane w postaci 2*x

Zmienna 'n' musi być większa bądź równa 1.

x₀ należy podać jako liczbę zmiennoprzecinkową

Podaj dane

f(x) =

x₀ =

n =

Oblicz

Rysunek 7: Uruchomienie 2