Master M₁ II-BDCC

Examen Proba-statistique

Ex.1

Calculer: C_{1000}^{999} ; $\sum_{p=10}^{10} C_{10}^p$; $\sum_{p=1}^{100} p = 1 + 2 + 3 + \dots + 100$.

Ex.2

Soit E un ensemble de cardinal B. Quel est le cardinal de $\mathcal{O}(E)$, c'est-à-dire : quel est le nombre de toutes les parties de E?

Ex.3

Soit $E = \{a, b, c\}$ et $F = \{1,3\}$. Déterminer l'ensemble $E \times F$ (le produit cartésien de E et F).

Ex.4

On lance deux dés de couleurs différentes. Quelle est la probabilité d'obtenir au moins une fois le numéro 1 ? (au moins un des deux dés amène le numéro 1.)

Ex.5

Soit p une probabilité définie sur un ensemble Ω . Soit A, B deux évènements.

- Donner l'expression de P(A/B).
- Supposons A et B indépendants, montrer que \bar{A} et \bar{B} sont également indépendants.

Ex.6

Soit *X* une variable aléatoire dont la loi de probabilité est donnée par le tableau :

X:

x_i	1,1	1,4	3,2	4,5
P_i	1/6	1/3	3/8	1/8

- Calculer :E(X) et V(X)

Ex.7

Soit X une variable aléatoire suivant la loi normale N(0,1). Déterminer les probabilités :

$$P(-1 < X < +1)$$
; $P(-2 < X < +2)$

Ex.8

Considérons la série statistique suivante :

Classes	Effectifs : n_i
[0,2[140
[2,4[100
[4,6[160
[6,10[100
[10,14[40
[14,20[60

- Déterminer : la médiane, la moyenne arithmétique et la variance de cette série.

Ex.9

Le tableau suivant donne la valeur y d'un véhicule d'occasion en fonction du kilométrage x parcouru. On se propose de chercher une loi donnant le prix en fonction du kilométrage.

x (en km)	0	12 000	30 000	78 000	120 000
y (en dhs)	120 000	90 000	75 000	46 000	30 000

- Déterminer l'équation de la droite de régression $D_{y/x}$ $(y \ en \ x)$.