Probabilidad - 3er Curso (Grado en Ingeniería Informática y Matemáticas)

Control del día 08 de noviembre de 2021

Apellidos, nombre:

- 1. Dado el vector bidimensional (X,Y) distribuido uniformemente en el recinto limitado $R = \{(x,y) \in \mathbb{R}^2 : -2 \le x \le y \le -x\}$:
 - a) (0.5 puntos) Obtener su función de densidad conjunta.
 - b) (1.5 puntos) Obtener su función de distribución conjunta.
 - c) (1 punto) Obtener las dos distribuciones condicionadas posibles.
 - d) (0.5 puntos) Obtener la probabilidad de que $X + Y + 1 \ge 0$.
 - e) (1.5 puntos) Obtener la distribución marginal de Z = X + Y.

Indicación 1. Un vector aleatorio bidimiensional está uniformemente distribuido en un recinto del plano si su función de densidad es una constante no negativa en dicho recinto.

Indicación 2. Para el apartado e) se recomienda apoyarse en un cambio de variable de vector bidimensional continuo a vector bidimensional continuo adecuado.

2. Dado el vector bidimensional (X,Y) con la siguiente función masa de probabilidad conjunta:

X Y	0	1	2
1	1/4	0	0
2	0	1/4	0
3	1/4	0	1/4

- a) (**1 punto**) Obtener la distribución condicionada de la variable aleatoria *Y* a todos los posibles valores de la variable aleatoria *X*.
- b) (1.5 puntos) Obtener la función masa de probabilidad conjunta del vector (X + Y, X Y).
- c) (0.5 puntos) A partir de la función masa de probabilidad marginal de X + Y, obtener $P[X + Y \le 4]$.
- 3. Realizar los siguientes apartados:
 - a) (**1 punto**) Deducir de forma razonada la función generatriz de momentos de una distribucion Gamma. ¿Está definida para todos los números reales?
 - b) (**1 punto**) A partir de la expresión de la función generatriz de momentos anterior obtener el momento de orden 2 centrado en la media.