JEE ASSIGNMENT 7

1

(2024 - 4 Marks)

(2024 - 4 Marks)

d) 50

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Yellanki Siddhanth (EE24BTECH11059)

1) For $\lambda > 0$, let θ be the angle between the vectors $\mathbf{a} = \hat{i} + \lambda \hat{j} - 3\hat{k}$ and $\mathbf{b} = 3\hat{i} - \hat{j} + 2\hat{k}$. If the vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are mutually perpendicular, then the value of $(14 \cos \theta)^2$

c) 40

2024 Jan 27 Shift 2 1 to 15

b) 25

is equal to

a) 20

2)	Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ at the elements of the	and $B = I + adj(A) + (a)$ the matrix B is:	$\mathrm{dj}A)^2 + \ldots + (\mathrm{adj}A)^{10}$	Then, the sum of all (2024 - 4 Marks)		
	a) -88	b) -124	c) 22	d) -110		
3)	Let $y = y(x)$ $(2x^3y + 8xy - 2)d$	be the solution of $x = 0$. If $y(0) = 0$, the	the differential equal to $y(2)$ is equal to	(2021 125 1)		
	a) $\frac{\pi}{32}$	b) 2π	c) $\frac{\pi}{16}$	d) $\frac{\pi}{8}$		
4)	Let C be a circle with radius $\sqrt{10}$ units and centre at the origin. Let the line $x+y=1$ intersects the circle C at the points P and Q. Let MN be a chord of C of length unit and slope -1. Then, a distance (in units) between the chord PQ and the chord MN is (2024 - 4 Marks)					
	a) $\sqrt{2} + 1$	b) $3 - \sqrt{2}$	c) $2 - \sqrt{3}$	d) $\sqrt{2} - 1$		
5)	Consider a hyperbola H having centre at the origin and foci on the x -axis. Let C_1 be the circle touching the hyperbola H and having the centre at the origin. Let C_2 be the circle touching the hyperbola H at its vertex and having the centre at one of its foci. If areas (in sq units) of C_1 and C_2 are 36π and 4π , respectively, then the length (in units) of latus rectum of H is (2024 - 4 Marks)					
	a) $\frac{14}{3}$	b) $\frac{28}{3}$	c) $\frac{11}{3}$	d) $\frac{10}{3}$		
6)	Let $f(x) = 3\sqrt{x}$	$\frac{1}{2} + \sqrt{4 - x}$ be a real	valued function. If α	and β are respectively		

the minimum and the maximum values of f, then $\alpha^2 + 2\beta^2$ is equal to

d) 42

d) $\frac{566}{81}$

(2024 - 4 Marks)

10) Let a relation R on N × N be defined as: $(x_1, y_1) R (x_2, y_2)$ if and only if $x_1 \le x_2$ or $y_1 \le y_2$. Consider the two statements: (I) R is reflexive but not symmetric. (II) R is transitive Then which one of the following is true? (2024 - 4 Marks) a) Both (I) and (II) are correct. c) Only (II) is correct. b) Only (I) is correct. d) Neither (I) nor (II) is correct. 11) Let PQ be a chord of the parabola $y^2 = 12x$ and the midpoint of PQ be at (4, 1). Then, which of the following point lies on the line passing through the points P and Q? (2024 - 4 Marks) a) $(\frac{3}{2}, -16)$ b) $(3, -3)$ c) $(2, -9)$ d) $(\frac{1}{2}, -20)$ 12) The area (in sq. units) of the region $S = \{z \in \mathbb{C} : z-1 \le 2; (z+\overline{z}) + i(z-\overline{z}) \le 2, \operatorname{Im}(z) \ge 0\}$ is (2024 - 4 Marks) a) $\frac{7\pi}{4}$ b) $\frac{7\pi}{3}$ c) $\frac{17\pi}{8}$ d) $\frac{3\pi}{2}$ 13) Let $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\mathbf{c} = x\hat{i} + 2\hat{j} + 3\hat{k}$, $x \in \mathbb{R}$. If \mathbf{d} is the unit vector in the direction of $\mathbf{b} + \mathbf{c}$ such that $\mathbf{a} \cdot \mathbf{d} = 1$, then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is equal to (2024 - 4 Marks) a) 11 b) 6 c) 9 d) 3 14) Given that the inverse trigonometric function assumes principal values only. Let x , y be any two real numbers in $[-1, 1]$ such that $\cos^{-1} x - \sin^{-1} y = \alpha, \frac{-\pi}{2} \le \alpha \le \pi$. Then, the minimum value of $x^2 + y^2 + 2xy \sin \alpha$ is (2024 - 4 Marks)	a) $\frac{\pi}{6}$	b) $\frac{\pi}{2}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{4}$			
a) Both (I) and (II) are correct. b) Only (I) is correct. c) Only (II) is correct. d) Neither (I) nor (II) is correct. 11) Let PQ be a chord of the parabola $y^2 = 12x$ and the midpoint of PQ be at (4, 1). Then, which of the following point lies on the line passing through the points P and Q? $(2024 - 4 \text{ Marks})$ a) $\left(\frac{3}{2}, -16\right)$ b) $(3, -3)$ c) $(2, -9)$ d) $\left(\frac{1}{2}, -20\right)$ 12) The area (in sq. units) of the region $S = \{z \in \mathbb{C} : z - 1 \le 2; (z + \overline{z}) + i(z - \overline{z}) \le 2, \text{Im}(z) \ge 0\}$ is $(2024 - 4 \text{ Marks})$ a) $\frac{7\pi}{4}$ b) $\frac{7\pi}{3}$ c) $\frac{17\pi}{8}$ d) $\frac{3\pi}{2}$ 13) Let $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\mathbf{c} = x\hat{i} + 2\hat{j} + 3\hat{k}$, $x \in \mathbb{R}$. If \mathbf{d} is the unit vector in the direction of $\mathbf{b} + \mathbf{c}$ such that $\mathbf{a} \cdot \mathbf{d} = 1$, then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is equal to $(2024 - 4 \text{ Marks})$ a) 11 b) 6 c) 9 d) 3 14) Given that the inverse trigonometric function assumes principal values only. Let x , y be any two real numbers in $[-1, 1]$ such that $\cos^{-1} x - \sin^{-1} y = \alpha, \frac{-\pi}{2} \le \alpha \le \pi$.	$y_1 \le y_2$. Consider the two statements: (I) R is reflexive but not symmetric.						
Then, which of the following point lies on the line passing through the points P and Q ? (2024 - 4 Marks) a) $\left(\frac{3}{2}, -16\right)$ b) $(3, -3)$ c) $(2, -9)$ d) $\left(\frac{1}{2}, -20\right)$ 12) The area (in sq. units) of the region $S = \{z \in \mathbb{C} : z-1 \le 2; (z+\bar{z})+i(z-\bar{z}) \le 2, \operatorname{Im}(z) \ge 0\}$ is (2024 - 4 Marks) a) $\frac{7\pi}{4}$ b) $\frac{7\pi}{3}$ c) $\frac{17\pi}{8}$ d) $\frac{3\pi}{2}$ 13) Let $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\mathbf{c} = x\hat{i} + 2\hat{j} + 3\hat{k}$, $x \in \mathbb{R}$. If \mathbf{d} is the unit vector in the direction of $\mathbf{b} + \mathbf{c}$ such that $\mathbf{a} \cdot \mathbf{d} = 1$, then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is equal to (2024 - 4 Marks) a) 11 b) 6 c) 9 d) 3 14) Given that the inverse trigonometric function assumes principal values only. Let x , y be any two real numbers in $[-1, 1]$ such that $\cos^{-1} x - \sin^{-1} y = \alpha, \frac{-\pi}{2} \le \alpha \le \pi$.	a) Both (I) and (I	I) are correct.	c) Only (II) is co	orrect.			
 12) The area (in sq. units) of the region S = {z ∈ ℂ: z - 1 ≤ 2; (z + z̄) + i(z - z̄) ≤ 2, Im(z) ≥ 0} is (2024 - 4 Marks) a) ^{7π}/₄ b) ^{7π}/₃ c) ^{17π}/₈ d) ^{3π}/₂ 13) Let a = î + ĵ + k̂, b = 2î + 4ĵ - 5k̂ and c = xî + 2ĵ + 3k̂, x ∈ ℝ. If d is the unit vector in the direction of b + c such that a · d = 1, then (a × b) · c is equal to (2024 - 4 Marks) a) 11 b) 6 c) 9 d) 3 14) Given that the inverse trigonometric function assumes principal values only. Let x, y be any two real numbers in [-1, 1] such that cos⁻¹ x - sin⁻¹ y = α, ^{-π}/₂ ≤ α ≤ π. 	Then, which of the following point lies on the line passing through the points P and						
$\{z \in \mathbb{C} : z-1 \le 2; (z+\bar{z})+i(z-\bar{z}) \le 2, \operatorname{Im}(z) \ge 0\}$ is (2024 - 4 Marks) a) $\frac{7\pi}{4}$ b) $\frac{7\pi}{3}$ c) $\frac{17\pi}{8}$ d) $\frac{3\pi}{2}$ 13) Let $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\mathbf{c} = x\hat{i} + 2\hat{j} + 3\hat{k}$, $x \in \mathbb{R}$. If \mathbf{d} is the unit vector in the direction of $\mathbf{b} + \mathbf{c}$ such that $\mathbf{a} \cdot \mathbf{d} = 1$, then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is equal to (2024 - 4 Marks) a) 11 b) 6 c) 9 d) 3 14) Given that the inverse trigonometric function assumes principal values only. Let x , y be any two real numbers in $[-1, 1]$ such that $\cos^{-1} x - \sin^{-1} y = \alpha, \frac{-\pi}{2} \le \alpha \le \pi$.	a) $(\frac{3}{2}, -16)$	b) (3, -3)	c) (2, -9)	d) $(\frac{1}{2}, -20)$			
 13) Let a = î + ĵ + k̂, b = 2î + 4ĵ - 5k̂ and c = xî + 2ĵ + 3k̂, x ∈ ℝ. If d is the unit vector in the direction of b + c such that a · d = 1, then (a × b) · c is equal to (2024 - 4 Marks) a) 11 b) 6 c) 9 d) 3 14) Given that the inverse trigonometric function assumes principal values only. Let x, y be any two real numbers in [-1, 1] such that cos⁻¹ x - sin⁻¹ y = α, -π/2 ≤ α ≤ π. 							
 If d is the unit vector in the direction of b + c such that a · d = 1, then (a × b) · c is equal to (2024 - 4 Marks) a) 11 b) 6 c) 9 d) 3 14) Given that the inverse trigonometric function assumes principal values only. Let x, y be any two real numbers in [-1, 1] such that cos⁻¹ x - sin⁻¹ y = α, -π/2 ≤ α ≤ π. 	a) $\frac{7\pi}{4}$	b) $\frac{7\pi}{3}$	c) $\frac{17\pi}{8}$	d) $\frac{3\pi}{2}$			
14) Given that the inverse trigonometric function assumes principal values only. Let x , y be any two real numbers in $[-1, 1]$ such that $\cos^{-1} x - \sin^{-1} y = \alpha$, $\frac{-\pi}{2} \le \alpha \le \pi$.	If d is the unit vector in the direction of $\mathbf{b} + \mathbf{c}$ such that $\mathbf{a} \cdot \mathbf{d} = 1$, then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is						
y be any two real numbers in $[-1,1]$ such that $\cos^{-1} x - \sin^{-1} y = \alpha, \frac{-\pi}{2} \le \alpha \le \pi$.	a) 11	b) 6	c) 9	d) 3			

a) 24

a) $\frac{173}{27}$

a) $\frac{\sqrt{14}}{7}$

b) 44

is $\frac{46}{9}$, then the variance of the distribution is

b) $\frac{151}{27}$

b) $\frac{3\sqrt{14}}{7}$

X

P(X)

c) 38

4

a + b

c) $\frac{581}{81}$

6

2b

c) $\frac{6\sqrt{14}}{7}$ d) $\frac{5\sqrt{14}}{7}$

8

3*b*

7) If the mean of the following probability distribution of a radam variable X:

a

2

2a

8) Let P be the point of intersection of the lines $\frac{x-2}{1} = \frac{y-4}{5} = \frac{z-2}{1}$ and $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-3}{2}$. Then, the shortest distance of P from the line 4x = 2y = z is (2024 - 4 Marks)

9) If the value of the integral $\int_{-1}^{1} \frac{\cos \alpha x}{1+3^x} dx$ is $\frac{2}{\pi}$. Then, a value of α is (2024 - 4 Marks)

a) $\frac{1}{2}$

- b) 0
- c) -1
- d) $\frac{-1}{2}$

15) Let $f(x) = \int_0^x (t + \sin(1 - e^t)) dt$, $x \in \mathbb{R}$. Then, $\lim_{x \to 0} \frac{f(x)}{x^3}$ is equal to (2024 - 4 Marks)

a) $-\frac{2}{3}$ b) $\frac{1}{6}$

- c) $-\frac{1}{6}$ d) $\frac{2}{3}$