# Lecture2: Basic physics of semiconductor (2)

Sung-Min Hong (<a href="mailto:smhong@gist.ac.kr">smhong@gist.ac.kr</a>)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

#### Review

- Why semiconductor technology?
- Silicon has the diamond crystal structure.
- Its band structure (Band gap ~ 1.12 eV)





- At 0K, valence bands are completely filled.
  - Upper ones (conduction bands) are completely empty.

# I-680 (a *free*way in California)

• (Google image)



- Once again, in this analogy, fare = energy
  - Then, who pays?

# Thermal energy

- At higher temperatures, electrons gain thermal energy.
  - The covalent bonds are broken.
  - They act as free charge carriers.



#### **Go-stones**

- Concept of holes
  - When freed from a covalent bond, an electron leaves a "void" behind.
  - It the void is called a "hole."



Go-stones (Google Image)

Electrons and holes are charge-carriers.

# Intrinsic carrier density

- At higher temperatures,
  - There will be a certain amount of electrons and holes.
  - How many "free" electrons? (Assume the intrinsic material.)
  - It is the meaning of the intrinsic carrier density,  $n_i$ .
- Expression of n<sub>i</sub>

$$n_i = 5.2 \times 10^{15} \, T^{1.5} \exp \frac{-E_g}{2k_B T} \, [electrons/cm^3]$$

- Boltzmann constant,  $k_B$
- At 300K,  $n_i$  is roughly  $10^{10}$  [electrons/cm<sup>3</sup>].

## **Impurity atom**

- The phosphorus atom has 5 valence electrons.
  - Additional electron (e in the right figure) serves as a charge carrier.



Pure silicon



Silicon with "impurity" atom (For example, phosphorus)

# **Impurity atoms**

- One impurity atom contributes a "free" electron.
  - If 2 (, 3, 4, 5, ...) phosphorus atoms are introduced?
  - 2 (, 3, 4, 5, ...) additional electrons will be generated!
- More specifically,
  - When the density of the phosphorus atom is  $N [atoms/cm^3]$ ,
  - The electron density becomes N [electrons/cm<sup>3</sup>].
- Typical value? (Feeling about the numbers)
  - $10^{15} [atoms/cm^3]$ : Almost no impurity
  - $10^{17} [atoms/cm^3]$ : Low (or moderate) impurity density
  - 10<sup>19</sup> [atoms/cm<sup>3</sup>]: High impurity density (Not extremely high)
- What is it good for?
  - Conductivity can be changed drastically.

## n-type? p-type?

- Phosphorus has 5 valence electrons.
  - Therefore, it contributes an electron.
  - n-type
- Boron has 3 valence electrons.
  - It cannot provide 4 valence electrons to complete 4 bonds.
  - Instead, it contributes a hole.
  - p-type

# Minority carrier density

- Majority vs. minority
  - In the n-type semiconductor, electrons are majority carriers.
  - On the other hand, holes are minority carriers.
  - At equilibrium,

$$np = n_i^2$$

# Nonequilibrium

- Up to now, we have considered the equilibrium case.
- Various ways to generate the nonequilibrium cases:
  - Electric potential difference
  - Others?
- Result?
  - Flow of charged particles!