EEE 51 Assignment 3

2nd Semester SY 2018-2019

Due: 5pm Tuesday, February 19, 2019 (Rm. 220)

Instructions: Write legibly. Show all solutions and state all assumptions. Write your full name, student number, and section at the upper-right corner of each page. Start each problem on a new sheet of paper. Box or encircle your final answer.

Answer sheets should be color coded according to your lecture section. The color scheme is as follows:

THQ – yellow THU – white WFX – pink

1. Single Stage Amplifier with Diode connected Load

Given that $V_{DD} = 5V$, $k_n = 6mA/V^2$, $k_p = 0.5mA/V^2$, $V_{th_n} = 0.7V$, $V_{th_p} = -0.5V$, $\lambda_n = 0.1V^{-1}$, $\lambda_p = 0.05V^{-1}$, and both FETs in saturation, answer the questions below.

Figure 1: Amplifier with diode connected load

- (a) What is the amplifier configuration? (1 pt.)
- (b) Solve for I_{DS} and V_{BIAS} given that $V_{OUT}=2.5V$ (2 pts.)
- (c) Solve for the small signal parameters then draw the small-signal equivalent circuit. Properly label all components and their values as well as terminal names. DO NOT assume that $|\lambda V_{DS}| < 1$ for both transistors in this part (use partial differentiation to get the small signal parameters). (3 pts.)
- (d) Get the expression for R_o then solve for its value. (2 pts.)
- (e) Get the expression for G_m then solve for its value. (1 pt.)
- (f) Solve for the value of the small signal voltage gain, $\frac{v_{out}}{v_{in}}$ (1 pt.)

2. Single Stage Amplifier with Current Source Load

For Figure 2, Assume that Q1 and Q2 are biased to operate in Forward Active Region @ T=300K but only Q1 has an early voltage that approaches infinity $(V_{A_{Q1}} \longrightarrow \infty)$.

(a) Single Stage Amplifier with Load Resistor R_L

(b) Single Stage Amplifier with Q2

Figure 2

- (a) Refer to Figure 2a for the items below.
 - i. Give the type of amplifier configuration for Figure 2a. (1 pt.)
 - ii. Draw the *simplified* small signal equivalent circuit and label all transistors terminals, small signal parameters and external resistors. (2 pts.)
 - iii. Derive the *simplified* expression for voltage gain $A_{v1} = \frac{v_{out}}{v_{in}}$ in terms of small signal parameters, R_E and R_L . You can assume that $(r_{\pi} >> \frac{1}{g_m})$ so that $(r_{\pi}||\frac{1}{g_m}) \approx \frac{1}{g_m}$. (2 pts.)
- (b) Suppose that I_{DC} was replaced by Q2 which is shown in Figure 2b, refer to this figure for the items below.
 - i. Is the amplifier configuration type changed when R_L was replaced with Q2? Why or Why not? (Limit your answer into two sentences). (1 pt.)
 - ii. Draw the *simplified* small signal equivalent circuit and label all transistors terminals, small signal parameters and external resistors. (3 pts.)
 - iii. Derive the *simplified* expression for voltage gain $A_{v2} = \frac{v_{out}}{v_{in}}$ in terms of small signal parameters and R_E . You can also assume that $(r_{\pi} >> \frac{1}{q_m})$. (2 pts.)
- (c) Lets say that the $\beta's$ for both transistors (Q1 for both figures and Q2) are high enough for the base currents (I_{B1} and I_{B2}) to be negligible with respect to the collector currents I_{C1} and I_{C2} . Now, for Figures 2a and 2b and given that $V_{EE} = 8V$, $V_{OUT} = 3V$, $R_E = 80\Omega$ with a voltage drop of

 $V_{R_E}=1.6V,~Q2$ early voltage $V_{A_{Q2}}=100V,$ and still holding the assumption for Q1 early voltage to be $V_{A_{Q1}}\longrightarrow\infty$, Calculate the following:

- i. Values for the derived A_{v1} and A_{v2} . (Limit your answer up to two decimal places) (3 pts.)
- ii. The percentage increase/decrease of the two gains above relative to A_{v2} . What can you conclude about this? (1 pt.)

TOTAL: 25 points.