Lecture 7

- **Read:** Chapter 3.8, Chapter 4.1, 4.4-4.11.
- Continuous Random Variables (continued)
 - Probability Models of Derived Random Variables
 - Conditioning a Continuous Random Variable
- Multiple Continuous Random Variables
 - Joint Cumulative Distribution Function
 - Joint Probability Density Function
 - Marginal Probability Density Function
 - Functions of Two Random Variables
 - Expected Values
 - Conditioning by an Event/Conditioning by a Random Variable
 - Independent Random Variables
 - Jointly (Bivariate) Gaussian Random Variables

Application: Generating RVs on a Computer: Setup

- Suppose your computer can generate $X \sim \text{uniform}[0,1]$ RVs (e.g., do a random() call).
- How do we generate some other random variable, say Y, with a given CDF, say $F(\cdot)$?

Application: Generating RVs on a Computer: Approach

$$X \sim \text{uniform}([0,1]) \longrightarrow \boxed{g(\cdot) = ?} \longrightarrow Y \text{ with } F_Y(y) = F(y)$$

Suppose that g() is increasing.

$$F_{Y}(y) = P[Y \le y] = P[g(X) \le y] = P[X \le g^{-1}(y)]$$

- Our goal is to make $F_Y(y) = g^{-1}(y) = \underbrace{F_Y(y)}_{\text{prespecified CDF}}$
- Thus, $g^{-1}(y) = F(y)$ and $g(g^{-1}(y)) = g(F(y))$

 $f_X(x)$

• Thus, $g = F^{-1}$, the inverse of the specified CDF.

Application: Generating RVs on a Computer: Example

• How do we generate exponential RVs based on uniform RVs?

Recall Y is exponential(a) if

$$F_Y(y) = F(y) = \begin{cases} 1 - e^{-ay} & \text{, } y \ge 0 \\ 0 & \text{, otherwise} \end{cases}$$

• Since $g = F^{-1}$, if $x = 1 - e^{-ay}$.

Since
$$g = F^{-1}$$
, if $x = 1 - e^{-ay}$, $x - 1 = -e^{-ay}$ $1 - x = e^{-ay}$ $\ln(1 - x) = -ay$ $\frac{\ln(1 - x)}{-a} = y$

- So, $g(x) = \frac{\ln(1-x)}{2}$.
- If $X \sim \text{uniform}[0,1]$, then $Y = \frac{\ln(1-X)}{2} \sim \exp(a)$.
- Note: $Y = \frac{\ln(X)}{2}$ also works! (because if X is uniform on [0,1], then so is 1 - X) 4□ > 4□ > 4 = > 4 = > = 900

Reminder: "Functions of Discrete RVs"

- Suppose X is a discrete RV with range S_X and PMF $p_X(x)$.
- Let Y = g(X).
- Then, Y is also discrete with $S_Y = \{g(x)|x \in S_X\}$ and

$$p_Y(y) = \sum_{\substack{x:g(x)=y\\x\in S_X}} p_X(x)$$

• Example: Suppose $X \sim \text{uniform } \{-1,0,1,2\} \text{ and } Y = X^2$. Then, $S_Y = \{0,1,4\}$ and

$$p_Y(0) = p_Y(4) = 1/4$$

 $p_Y(1) = 1/2$

Summary: Possibilities for Derived Distributions

There is at least one value assumed with positive probability; cannot be continuous

Getting a Discrete RV from a Continuous RV

• Example: Let $X \sim N(0,1)$ and let

$$g(x) = \begin{cases} 1 & \text{, } x \ge 0 \\ -1 & \text{, } x < 0 \end{cases}$$

Let Y = g(X). What is the PDF/PMF of Y?

Note
$$S_Y = \{-1, 1\}$$

and $P[Y = -1] = P[X < 0] = 1/2$
 $P[Y = 1] = 1/2$

 <u>Remark:</u> In general, functions g(·) which have flat regions may lead to discrete/mixed RVs.

Derived Random Variables: Example

Let

$$g(x) = \begin{cases} x^2 & \text{, } x \ge 0 \\ 0 & \text{, otherwise} \end{cases}$$

and define Y = g(X). Find $f_Y(y)$, $F_Y(y)$ given $f_X(x)$, $F_X(x)$.

Find
$$F_Y(y) = \begin{cases} 0 & , y < 0 \\ F_X(0) & , y = 0 \\ ??? & , y > 0 \end{cases}$$

$$F_Y(0) = P[Y \le 0] = P[Y = 0] = P[X \le 0] = F_X(0)$$

$$F_Y(y) = P[Y \le y] = P[g(X) \le y]$$

$$= P[X \le \sqrt{y}] = F_X(\sqrt{y})$$

Derived Random Variables: Example (cont.)

Let

$$g(x) = \begin{cases} x^2 & \text{, } x \ge 0 \\ 0 & \text{, otherwise} \end{cases}$$

and define Y = g(X). Find $f_Y(y)$, $F_Y(y)$ given $f_X(x)$, $F_X(x)$.

• Suppose
$$X \sim N(0,1)$$
. Then, $F_X(0) = 1/2$.
Then, $F_Y(y) = \begin{cases} 0 & \text{, } y < 0 \\ 1/2 & \text{, } y = 0 \\ F_X(\sqrt{y}) & \text{, } y > 0 \end{cases}$

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \begin{cases} \frac{1}{2}\delta(y) + \frac{1}{2\sqrt{y}}f_X(\sqrt{y}) & \text{, } y \ge 0 \\ 0 & \text{, otherwise} \end{cases}$$
where, $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

Summary: Possibilities for Derived Distributions

Conditioning a Continuous Random Variable

- Suppose that X has PDF $f_X(x)$ and let B be an event (i.e., a subset of \mathbb{R} , with P[B] > 0).
- **Definition:** The conditional PDF of X given B is given by

$$f_{X|B}(x) = \begin{cases} rac{f_X(x)}{P[B]} & \text{, } x \in B \\ 0 & \text{, otherwise} \end{cases}$$

• Interpretation: Having observed B, we know that X must lie in this set, so the new PDF is the same as the old one, but renormalized by P[B].

Conditioning a Continuous Random Variable: Conditional Expectations

$$E[X|B] = \int_{-\infty}^{+\infty} x f_{X|B}(x) dx$$
$$E[g(X)|B] = \int_{-\infty}^{+\infty} g(x) f_{X|B}(x) dx$$

Conditioning a Continuous Random Variable: Example

- Suppose that the holding time (duration) in minutes, T, of a telephone call is known to have an exponential distribution.
- $T \sim \exp(1/3)$ or

$$f_T(t) = egin{cases} rac{1}{3}e^{-1/3t} & \text{, } t \geq 0 \\ 0 & \text{, otherwise} \end{cases}$$

• Let $B = \{T > 2\}$. Find $f_{T|B}(t)$.

$$P[B] = \int_{2}^{+\infty} f_{T}(t)dt = 1 - P[T \le 2]$$
$$= 1 - (1 - e^{-2/3})$$
$$= e^{-2/3}$$

$$f_{T|B}(t) = \begin{cases} \frac{f_{T}(t)}{P[B]} = \frac{\frac{1}{3}e^{-1/3t}}{e^{-2/3}} = \frac{1}{3}e^{-\frac{1}{3}(t-2)} & \text{, } t > 2\\ 0 & \text{, otherwise} \end{cases}$$

Conditioning a Continuous Random Variable: Example (cont.)

• Let $B = \{T > 2\}$. Find E[T|B].

$$E[T|B] = \int_{-\infty}^{+\infty} t f_{T|B}(t) dt$$
$$= \int_{2}^{+\infty} t \frac{1}{3} e^{-\frac{1}{3}(t-2)} dt$$
$$= 5 \text{ minutes}$$

Reminder on integration by parts:

on integration by parts:
$$\int_a^b f(x)g'(x)dx = f(x)g(x)|_a^b - \int_a^b f'(x)g(x)dx$$

0 f_{TIB}(t)

Multiple Continuous Random Variables

 Example: We would like to consider pairs of continuous RVs, e.g., (X,Y). Experiment produces at least two continuous RVs.

Joint CDF

• **Definition:** (**Joint CDF**) The joint CDF of *X* and *Y* is given by

$$F_{X,Y}(x,y) = P[X \le x, Y \le y]$$

Multiple Continuous RVs: Joint CDF Properties

- $0 \le F_{X,Y}(x,y) \le 1$
- $F_{X,Y}(x,+\infty) = P[X \le x, Y \le +\infty]$ = $P[X \le x]$ = $F_X(x)$

- $F_Y(y) = F_{X,Y}(+\infty, y)$
- $F_{X,Y}(-\infty,y) = F_{X,Y}(x,-\infty) = 0$
- If $x_1 \ge x$ and $y_1 \ge y$, then $F_{X,Y}(x_1, y_1) \ge F_{X,Y}(x, y)$.

Multiple Continuous RVs: Joint CDF and Rectangles

 We can use the joint CDF to compute the probability associated with rectangles as follows:

•
$$P[B] = F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_1)$$

•
$$P[A] = P[B] - (F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2))$$

Joint Probability Density Function (PDF)

• **Definition:** (Joint PDF) The joint PDF of (X, Y) is $f_{X,Y}(x,y)$ satisfying

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) dv du$$
 equivalently, $f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$

• Interpretation: $f_{X,Y}$ as the probability per unit area around (x,y). It can exceed 1, but must be such that $f_{X,Y} \ge 0$. $P[x \le X \le x + dx, y \le Y \le y + dy] \approx f_{X,Y}(x,y)dxdy$

$$P[x \le X \le x + dx] \approx f_X(x) dx$$

Joint PDF Properties

- $f_{X,Y}(x,y) \ge 0$ (for all (x,y))
- $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dxdy = 1.$
- For any event $A \subset \mathbb{R}^2$ (i.e., subset of the x-y plane)

$$P[A] = \int_{A} \int f_{X,Y}(x,y) dx dy$$

Marginal PDF

• <u>Definition</u>: (Marginal PDF) Experiment produces continuous RVs X and Y, with joint PDF $f_{X,Y}(x,y)$, marginal PDFs are given by

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$$
$$f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx$$

• Proof: Write $F_X(x)$ as an integral, take the derivative.

Marginal PDF: Example

- Joint PDF which is uniform on region shown below.
- Find the constant c and marginals.

.....

Marginal PDF: Example

- Joint PDF which is uniform on region shown on previous slide.
- Find $P[X \ge Y]$.

.....

• Let $B = \{(x, y) | x \ge y\}$

$$P[X \ge Y] = P[(X, Y) \in B] = \int_{B} \int f_{X,Y}(x, y) dxdy$$
$$= \frac{1}{4} Area(A \cap S_{X,Y}) = \frac{1}{4}$$

Marginal PDF Example: Uniform Joint PDF

 Suppose (X, Y) is a randomly selected point out of the unit square.

Then,
$$f_{X,Y}(x,y) = \begin{cases} 1 & \text{, } 0 \le x,y \le 1 \\ 0 & \text{, otherwise} \end{cases}$$

- $F_{X,Y}(x,y) = 0$
- \coprod : $F_{X,Y}(x,y) = x \cdot y \quad (x,y)$ are in region II: $0 \le x \le 1, 0 \le y \le 1$
- $\coprod: F_{X,Y}(x,y) = x$
- $IV: F_{X,Y}(x,y) = y$
- **V**: $F_{X,Y}(x,y) = 1$

Marginal CDF

$$F_X(x) = P[X \le x]$$

$$= P[X \le x, Y \le \infty]$$

$$= \int_H \int f_{X,Y}(\alpha, \beta) d\alpha d\beta$$

$$= \int_{\alpha = -\infty}^x \int_{\beta = -\infty}^\infty f_{X,Y}(\alpha, \beta) d\beta d\alpha$$

$$f_X(x) = \int_{\beta = -\infty}^\infty f_{X,Y}(\alpha, \beta) d\beta$$

Independent RVs

- X and Y are independent if $\forall x, y, F_{X,Y}(x,y) = F_X(x)F_Y(y)$ (equivalently, if $\forall x, y, f_{X,Y}(x,y) = f_X(x)f_Y(y)$).
- Example: Let X and Y be uniform on $[0,1] \times [0,1]$

$$f_{X,Y}(x,y) = \begin{cases} 1 & \text{, } 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{, otherwise} \end{cases}$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \begin{cases} 1 & \text{, } 0 \le x \le 1 \\ 0 & \text{, otherwise} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \begin{cases} 1 & \text{, } 0 \le y \le 1 \\ 0 & \text{, otherwise} \end{cases}$$

Functions of Two Random Variables (I)

• **Example:** Receiver outputs *X* and *Y* from two antennas.

$$W_1 = max(X, Y)$$

 $W_2 = X + Y$
 $W_3 = aX + bY$

• What is the PDF of W_i ?

• Find the CDF of W_i first.

$$F_{W_1}(w_1) = P[W_1 \le w_1]$$

$$= P[max(X, Y) \le w_1]$$

$$= P[X \le w_1, Y \le w_1]$$

$$= F_{X,Y}(w_1, w_1)$$

Functions of Two Random Variables (II)

• If X and Y were independent, we could write $F_X(w_1)F_Y(w_1)$ instead of $F_{X,Y}(w_1, w_1)$:

$$F_{W_1}(w_1) = F_X(w_1)F_Y(w_1)$$

$$f_{W_1}(w_1) = f_X(w_1)F_Y(w_1) + F_X(w_1)f_Y(w_1)$$
[the derivative of the product of two functions]

If X and Y are not independent

$$f_{W_1}(w_1) = \frac{\partial F_{X,Y}(w_1, w_1)}{\partial x}|_{(w_1, w_1)} + \frac{\partial F_{X,Y}(w_1, w_1)}{\partial y}|_{(w_1, w_1)}$$

Functions of Two Random Variables (III)

• If X and Y were independent $F_{W_2}(w_2) = P[W_2 < w_2]$

$$F_{W_{2}}(w_{2}) = P[W_{2} \le w_{2}]$$

$$= P[X + Y \le w_{2}]$$

$$= \int_{A} \int f_{X,Y}(x,y) dxdy$$

$$= \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{w_{2}-y} f_{X,Y}(x,y) dxdy$$

$$= \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{w_{2}-y} f_{X}(x) f_{Y}(y) dxdy$$

$$= \int_{y=-\infty}^{\infty} f_{Y}(y) F_{X}(w_{2}-y) dy$$

$$F_{X}(h(w_{2})) = f_{X}(h(w_{2})) = f_{X}(w_{2}-y)$$

$$h(w_2) = w_2 - y$$
 $f_{W_2} = f_X * f_Y \text{ (Convolution)}$

Functions of Two Random Variables

• Theorem: For continuous random variables X and Y, the CDF of W = g(X, Y) is

$$F_W(w) = P[W \le w] = P[g(X, Y) \le w] = \iint_{g(x,y) \le w} f_{X,Y}(x,y) dxdy$$

$$W = g(X, Y)$$
 Examples

•
$$W_1 = X + Y$$

•
$$W_2 = max(X, Y)$$

•
$$W_3 = XY$$

•
$$W_4 = X/Y$$

Finding the Expected Value E[W]

- We want to find the expectation of W = g(X, Y). (E[W] = E[g(X, Y)])
- Method 1: Find the PDF of W, $f_W(w)$, then calculate

$$E[W] = \int_{-\infty}^{\infty} w f_W(w) dw$$

• Method 2: We can also compute the expected value of W = g(X, Y) without going through the complicated process of deriving a probability model for W

$$E[W] = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$$

Expectation of Sums

• Expected value of $g(X, Y) = g_1(X, Y) + ... + g_n(X, Y)$ is

$$E[g(X,Y)] = E[g_1(X,Y)] + ... + E[g_n(X,Y)]$$

Sums:

$$E[X + Y] = E[X] + E[Y]$$

$$E[aX + bY + c] = aE[X] + bE[Y] + c \text{ (Linear operator)}$$

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$

Covariance:

$$Cov[X, Y] = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

Correlation Coefficient

<u>Definition</u>: Correlation coefficient of two random variables X and Y is

$$\rho_{X,Y} = \frac{\textit{Cov}[X,Y]}{\sqrt{\textit{Var}[X]\textit{Var}[Y]}}$$

- Theorem: $-1 \le \rho_{X,Y} \le 1$
- Same as for discrete random variables

Two Types of Conditioning

- By the occurrence of an event B of nonzero probability
 - Typically, this event B will be described in terms of a relationship between X and Y such as X < Y or $X + Y \le 100$.
 - Conditioning $f_{X,Y}(x,y)$ by an event is essentially the same as conditioning $f_X(x)$ by an event.
- By the observation that one of the random variables, say X, takes on the value x

Conditional Joint PDF

- When we learn that an event B occurs, we need to adjust our probability model for X and Y to reflect this knowledge.
- This modified probability model is the conditional joint PDF $f_{X,Y|B}(x,y)$.
- Given an event B with P[B] > 0, the conditional joint PDF of X and Y is

$$f_{X,Y|B}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{P[B]} & \text{, } (x,y) \in B\\ 0 & \text{, otherwise} \end{cases}$$

• Remove samples that do not belong to B and normalize.

Conditional PDF of Y Given X = x

- View joint PDF along slice X = x and renormalize.
- $f_{Y|X}(y|x)$: $f_{Y|X}(y|x)dy = P[y \le Y \le y + dy|x \le X \le x + dx]$
- · Using Bayes' Theorem,

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

• $f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x) = f_{X|Y}(x|y)f_Y(y)$

Conditional PDFs: Example

• For the joint PDF and $B=[0,2]\times[0,2]$, what do $f_{X,Y|B}$, $f_{X|Y}$, and $f_{Y|X}$ look like?

$$f_{X|Y}(x|3.5) = \frac{f_{X,Y}(x,3.5)}{f_{Y}(3.5)} = \frac{1/4}{1/4} = 1$$

$$f_{X|Y}(x|2.5) = \frac{f_{X,Y}(x,2.5)}{f_{Y}(2.5)} = \frac{1/4}{1/2} = 1/2$$

$$f_{X|Y}(x|1.5) = \frac{f_{X,Y}(x,1.5)}{f_{Y}(1.5)} = \frac{1/4}{1/4} = 1$$

Conditional Expected Value

• <u>Definition</u>: (Conditional Expected Value) If $f_Y(y) > 0$, the conditional expected value of X given Y = y is

$$E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

• <u>Definition</u>: (Conditional Expected Value of a Function) For any y such that $f_Y(y) > 0$, the conditional expected value of g(X, Y) given Y = y is

$$E[g(X,Y)|Y=y] = \int_{-\infty}^{\infty} g(x,y) f_{X|Y}(x|y) dx$$

• Special case: conditional variance Var[X|Y = y]

$$Var[X|Y = y] = E[(X - E[X|Y = y])^{2}|Y = y]$$

Expected Value of Conditional Expected Value

- Note that the conditional expected value E[g(X, Y)|Y = y] is a function of the observed value y of random variable Y.
- We can view the conditional expected value as a function of the random variable Y denoted E[g(X,Y)|Y].
- Since E[g(X,Y)|Y] is a function of Y, it is a random variable.
- We calculate the expected value of E[g(X, Y)|Y] just as we would for any function h(Y).
- Theorem:

$$E[E[g(X,Y)|Y]] = \int_{-\infty}^{\infty} E[g(X,Y)|Y=y]f_Y(y)dy = E[g(X,Y)]$$

Expected Values: Example

Let X and Y be random variables with joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 6y & \text{, } 0 \le y \le x \le 1 \\ 0 & \text{, otherwise} \end{cases}$$

• Find the marginal PDF $f_X(x)$.

.....

• For
$$0 \le x \le 1$$
,
 $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{x} 6y dy = 3x^2$

So,

$$f_X(x) = \begin{cases} 3x^2 & \text{, } 0 \le x \le 1\\ 0 & \text{, otherwise} \end{cases}$$

Expected Values: Example (cont.)

Let X and Y be random variables with joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 6y & \text{, } 0 \le y \le x \le 1 \\ 0 & \text{, otherwise} \end{cases}$$

• Find the conditional PDF $f_{Y|X}(y|x)$. For what values of x is $f_{Y|X}(y|x)$ defined?

.....

• $f_{Y|X}(y|x)$ defined wherever $f_X(x) > 0$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \begin{cases} 2y/x^2 & \text{if } 0 \leq y \leq x \leq 1 \\ 0 & \text{if otherwise} \end{cases}$$

Expected Values: Example (cont.)

• Let X and Y be random variables with joint PDF

$$f_{X,Y}(x,y) = egin{cases} 6y & \text{, } 0 \leq y \leq x \leq 1 \\ 0 & \text{, otherwise} \end{cases}$$

• Find the conditional expected value E[Y|X=x].

.....

$$E[Y|X = x] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy = \int_{0}^{x} y \frac{2y}{x^{2}} dy = \frac{2}{x^{2}} \left[\frac{y^{3}}{3} \right]_{0}^{x} = \frac{2}{3} x$$

Independent Continuous RVs

• <u>Definition</u>: (Independence) Continuous RVs X and Y are independent iff:

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

If X and Y are independent,

$$f_{X|Y}(x|y) = f_X(x)$$
 $f_{Y|X}(y|x) = f_Y(y)$

Independence: Example 1

Are X and Y independent?

$$f_{X,Y}(x,y) = \begin{cases} 4xy & \text{, } 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & \text{, otherwise} \end{cases}$$

The marginal PDFs of X and Y are

• Is $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all pairs (x,y)? Yes. X and Y are independent.

Independence: Example 2

Are U and V independent?

$$f_{U,V}(u,v) = egin{cases} 24uv & , \ u \geq 0, \ v \geq 0, \ u+v \leq 1 \ 0 & , \ ext{otherwise} \end{cases}$$

Region of nonzero density is triangular and

$$f_U(u) = egin{cases} 12u(1-u)^2 & \text{, } 0 \leq u \leq 1 \ 0 & \text{, otherwise} \end{cases}$$
 $f_V(v) = egin{cases} 12v(1-v)^2 & \text{, } 0 \leq v \leq 1 \ 0 & \text{, otherwise} \end{cases}$

- Is $f_{U,V}(u,v) = f_U(u)f_V(v)$? No. U and V are not independent!
- Learning the value of U changes our knowledge of V.
- For example, learning that U=1/2 informs us that the event P[V < 1/2] = 1.

Independence: Example Summary

 In these two examples, we see that the region of nonzero probability plays a crucial role in determining whether random variables are independent.

Properties of Independent Continuous RVs

• Theorem: For independent random variables X and Y

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

$$Cov[X, Y] = 0$$

$$Var[X + Y] = Var[X] + Var[Y]$$

Jointly Gaussian Random Variables

Definition: X and Y have a bivariate Gaussian PDF if

$$f_{X,Y}(x,y) = \frac{exp\left[-\frac{\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2}{2(1-\rho^2)}\right]}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$
 where $\sigma_1 > 0$, $\sigma_2 > 0$, $-1 < \rho < 1$

When $\rho = 0$

- $\mu_1 = \mu_2 = 0$, $\sigma_1 = \sigma_2 = 1$
- Joint PDF has circular symmetry of a hat

$$\rho = 0$$

When $\rho = 0.9$

- $\mu_1 = \mu_2 = 0$, $\sigma_1 = \sigma_2 = 1$
- Joint PDF forms a ridge over the line x = y
- ullet The ridge becomes increasingly steep as ho o 1

$$\rho = 0.9$$

When $\rho = -0.9$

- $\mu_1 = \mu_2 = 0$, $\sigma_1 = \sigma_2 = 1$
- Joint PDF forms a ridge over the line x = -y
- ullet The ridge becomes increasingly steep as ho o -1

$$\rho = -0.9$$

Rewriting the Bivariate Gaussian PDF

Complete the square of the exponent to write

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$$

where

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

$$f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}\tilde{\sigma}_2} e^{-(y-\tilde{\mu}_2(x))^2/2\tilde{\sigma}_2^2}$$

Bivariate Gaussian Properties

- $E[X] = \mu_1$
- Given X = x, Y is Gaussian
- Conditional mean of Y given X = x:

$$\tilde{\mu}_2(x) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1)$$
$$= E[Y|X = x]$$

Gaussian Marginal PDF When $\rho = 0$ (X and Y are Uncorrelated)

• Theorem: If X and Y are the bivariate Gaussian random variables in our definition above and $\rho = 0$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{-(y-\mu_2)^2/2\sigma_2^2}$$

Gaussian Conditional PDF

- Given the marginal PDFs of X and Y, we use the definition of the conditional PDF to find the conditional PDFs.
- If X and Y are the bivariate Guassian random variables defined above, the conditional PDF of Y given X is

$$f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}\tilde{\sigma}_2} e^{-(y-\tilde{\mu}_2(x))^2/2\tilde{\sigma}_2^2}$$

where

$$\tilde{\mu}_2(x) = E[Y|X = x] = \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1)$$

$$\tilde{\sigma}_2^2 = Var[Y|X = x] = \sigma_2^2(1 - \rho^2)$$

Gaussian Conditional PDF

- Cross-sectional view of the joint Gaussian PDF with $\mu_1=\mu_2=0,\ \sigma_1=\sigma_2=1,\ {\rm and}\ \rho=0.9$
- The bell shape of the cross section occurs because the conditional PDF $f_{Y|X}(y|x)$ is Gaussian.

More Than Two Continuous RVs

<u>Definition</u>: (Multivariate Joint CDF) The joint CDF of X₁,..., X_n is

$$F_{X_1,...,X_n}(x_1,...,x_n) = P[X_1 \le x_1,...,X_n \le x_n]$$

• **<u>Definition</u>**: (Multivariate Joint PDF) The joint PDF of $X_1, ..., X_n$ is $f_{X_1, ..., X_n}(x_1, ..., x_n)$ satisfying

$$F_{X_1,...,X_n}(x_1,...,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1,...,X_n}(u_1,...,u_n) du_1...du_n$$

Joint PDF Properties

•
$$f_{X_1,...,X_n}(x_1,...,x_n) = \frac{\partial^n F_{X_1,...,X_n}(x_1,...,x_n)}{\partial x_1...\partial x_n}$$

•
$$f_{X_1,...,X_n}(x_1,...,x_n) \ge 0$$

•
$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1,...,X_n}(x_1,...,x_n) dx_1...dx_n = 1$$

•
$$P[A] = \int \cdots \int_A f_{X_1,...,X_n}(x_1,...,x_n) dx_1 dx_2...dx_n$$

Marginal PDFs

• Theorem: For a joint PDF of four random variables, $f_{W,X,Y,Z}(w,x,y,z)$, some marginal PDFs are

$$f_{X,Y,Z}(x,y,z) = \int_{-\infty}^{\infty} f_{W,X,Y,Z}(w,x,y,z)dw$$

$$f_{W,Z}(w,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{W,X,Y,Z}(w,x,y,z)dxdy$$

$$f_{X}(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{W,X,Y,Z}(w,x,y,z)dwdydz$$

 Can be generalized in a straightforward way to any marginal PDF of a joint PDF of an arbitrary number of random variables.

N Independent Random Variables

<u>Definition</u>: (N Independent Random Variables) X₁, ..., X_n are independent if

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1)...f_{X_n}(x_n)$$

for all $x_1, ..., x_n$.

N Independent Random Variables

- Mutual independence of n random variables is typically the results of an experiment with special structure that ensures the independence
- The most common example occurs when an experiment consists of n independent trials.
- In this case, trial i produces the random variable X_i. Since all trials follow the same experiment, all of X_i have the same PDF. In this case, we say the random variables X_i are identically distributed.
- <u>Definition</u>: (Independent and Identically Distributed)
 X₁,..., X_n are independent and identically distributed (iid) if and only if

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_X(x_1)...f_X(x_n)$$

for all $x_1, ..., x_n$.

Function of N Random Variables

- Just as we did for one and two random variables, we can derive a new random variable $Y = g(X_1, ..., X_n)$ that is a function of n random variables.
- When the X_i are continuous, we can find the CDF of Y

$$F_Y(y) = P[Y \le y] = \int \cdots \int_{g(x_1,...,x_n) \le y} f_{X_1,...,X_n}(x_1,...,x_n) dx_1...dx_n$$

Expectation of a Function of N Random Variables

• Theorem: For $Y = g(X_1, ..., X_n)$, the expected value is

$$E[Y] = E[g(X_1, ..., X_n)]$$

= $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, ..., x_n) f_{X_1, ..., X_n}(x_1, ..., x_n) dx_1 ... dx_n$

- When $(X_1, ..., X_n)$ are independent, the expected value of $g(X_1) \times \cdots \times g(X_n)$ is the product of the expected values.
- Theorem: If $X_1, ..., X_n$ are independent random variables,

$$E[g(X_1,...,X_n)] = E[g(X_1)] \cdot \cdot \cdot E[g(X_n)]$$

N Random Variables: Example 1

- Let $X_1,...,X_n$ be iid RVs, with mean 0, variance 1 and covariance $Cov[X_i,X_i]=\rho$.
- Find the expected value and variance of the sum $Y = X_1, ..., X_n$.

 The mean value of a sum of random variables is always the sum of their individual means.

$$E[Y] = \sum_{i=1}^{n} E[X_i] = 0$$

N Random Variables: Example 1 (cont.)

- The variance of any sum of random variables can be expressed in terms of the individual variances and covariances.
- Since E[Y] is zero, $Var[Y] = E[Y^2]$. Thus,

$$Var[Y] = E\left[\left(\sum_{i=1}^{n} X_i\right)^2\right] = E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j\right]$$
$$= \sum_{i=1}^{n} E[X_i^2] + \sum_{i=1}^{n} \sum_{j\neq i}^{n} E[X_i X_j]$$

- Since $E[X_i] = 0$, $E[X_i^2] = Var[X_i] = 1$ and for $i \neq j$ $E[X_iX_j] = Cov[X_i, X_j] = \rho$
- Thus,

$$Var[Y] = n + n(n-1)\rho$$

N Random Variables: Example 2

- Let $X_1, ..., X_n$ denote n iid random variables each with PDF $f_X(x)$.
- Find the CDF and PDF of $Y = min(X_1, ..., X_n)$.

......

N Random Variables: Example 2 (cont.)

We have

$$P[Y \ge y] = P[min(X_1, ..., X_n) \ge y]$$

$$= P[X_1 \ge y, ..., X_n \ge y) \ge y]$$

$$= (P[X_1 \ge y])^n$$

$$= [1 - F_X(y)]^n$$

Therefore, the CDF is

$$F_Y(y) = P[Y \le y] = 1 - P[Y \ge y]$$

= $1 - (1 - F_X(y))^n$

So, the PDF is

$$f_Y(y) = \frac{dF_Y(y)}{dy} = n(1 - F_X(y))^{n-1} f_X(y)$$