STAT538A: Statistical Learning: the Way of the Kernel

Winter 2020

Lecture 1

Lecturer: Zaid Harchaoui Scribe: Lang Liu

1 Kernel and Hilbert Space

We first give some important definitions.

Definition 1 (Empirical Mean Vector). If $x_1, \ldots, x_n \in \mathbb{R}^d$, the empirical mean vector is defined as:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

And the mean vector is defined as:

$$\mu = \mathbb{E}(X)$$
.

Definition 2 (Cauchy Sequence). Given a metric space (\mathcal{X}, d) , a sequence $(x_k)_{k \geq 1} \subset \mathcal{X}$ is called a Cauchy sequence, if for every $\varepsilon > 0$ there exists a positive integer N such that the distance $d(x_m, x_n) < \varepsilon$ for all m, n > N.

Definition 3 (Hilbert Space). Let \mathcal{H} be a vector space equipped with an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$. Let $\|\cdot\|_{\mathcal{H}} : \mathcal{H} \to R$ be the associated norm defined as

$$||f||_{\mathcal{H}} = \sqrt{\langle f, f \rangle_{\mathcal{H}}}, \quad f \in \mathcal{H}.$$

The vector space \mathcal{H} is a Hilbert space if it is complete with respect to this norm, i.e., every Cauchy sequence in \mathcal{H} has a limit in \mathcal{H} .

Hilbert space is a generalization of Euclidean space which may be infinite dimensional. Indeed, every Euclidean space is a Hilbert space. This generalization allows us to work with spaces of functions. The next definition identifies a particular type of function spaces that we will use throughout this course.

Definition 4 (Reproducing Kernel Hilbert Space). Let \mathcal{X} be a set and \mathcal{H} be a Hilbert space of functions defined on \mathcal{X} . We call \mathcal{H} a Reproducing Kernel Hilbert Space (RKHS) if there exists a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that, for every $x \in \mathcal{X}$, $k(x, \cdot) \in \mathcal{H}$ and the reproducing property

$$\langle f, k(x, \cdot) \rangle_{\mathcal{H}} = f(x)$$

holds for every $f \in \mathcal{H}$. We refer to k as a reproducing kernel for the space \mathcal{H} , and call $\phi(x) := k(x, \cdot)$ the feature map from \mathcal{X} to \mathcal{H} .

Definition 5 (Empirical Mean Element). Assume $\phi: \mathcal{X} \to \mathcal{H}$ is the feature map in an RKHS \mathcal{H} , then the empirical mean element is defined as

$$\hat{\mu}_{\mathcal{H}} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i).$$

Note that \mathcal{H} is a vector space, so the empirical mean element $\hat{\mu}_{\mathcal{H}} \in \mathcal{H}$.

Remark It follows from the reproducing property that $\forall f \in \mathcal{H}$,

$$\langle \hat{\mu}_{\mathcal{H}}, f \rangle_{\mathcal{H}} = \langle \frac{1}{n} \sum_{i=1}^{n} \phi(x_i), f \rangle_{\mathcal{H}} = \frac{1}{n} \sum_{i=1}^{n} f(x_i),$$

which is computationally tractable.

Example 6. Here are two examples of reproducing kernels

- Linear kernel: $k(x,y) = x^{\top}y$ for $x,y \in \mathbb{R}^d$.
- Gaussian kernel: $k(x,y) = exp(-\frac{\|x-y\|_2^2}{\sigma^2})$ for $x,y \in \mathbb{R}^d$, where $\sigma > 0$.
- Bag of vectors kernel: let $\mathcal{X} := \{\{v_1, \dots, v_p\} : v_i \in \mathbb{R}^d \text{ for } i \in [p] := \{1, \dots, p\}, p \in \mathbb{N}\}$. The bag of vectors kernel is defined by:

$$k({u_1, \dots, u_p}, {v_1, \dots, v_q}) = \sum_{i=1}^p \sum_{j=1}^q u_i^T v_j.$$

Definition 7 (Positive Semi-Definite Kernel). A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a positive semi-definite (PSD) kernel if it satisfies:

- Symmetry: $\forall x, y \in \mathcal{X}, k(x, y) = k(y, x)$.
- Positive semi-definiteness: for every $n \in \mathbb{N}, \alpha_1, \ldots, \alpha_n \in \mathbb{R}$, and $x_1, \ldots, x_n \in \mathcal{X}$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \ge 0.$$

It is said to be strictly positive definite if the above equality implies $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Example 8. Let $\mathcal{X} = \mathbb{R}^d$, the linear kernel $k(x,y) = x^{\top}y$ is a PSD kernel.

- It is symmetric since $x^{\top}y = (x^{\top}y)^{\top} = (y)^{\top}x$.
- PSD follows from

$$\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} k(x_{i}, x_{j}) = \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} x_{i}^{T} x_{j}$$

$$= \left(\sum_{i} \alpha_{i} x_{i}\right)^{\top} \left(\sum_{i} \alpha_{i} x_{i}\right)$$

$$> 0.$$

An argument analogous to Example 8 shows that the reproducing kernel of an RHKS is PSD.

Proposition 9. Let \mathcal{H} be an RKHS of functions defined on \mathcal{X} with reproducing kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, then k is PSD.

Here listed below is a table of common kernel functions:

Kernel Function	$k(\mathbf{x}, \mathbf{y})$	Domain $\mathcal X$
Dirac	$\mathbb{1}_{x=y}$	$\{1,2,\ldots,m\}$
Discrete	$\sum_{s \in \mathcal{X}} w_s \#_s(\mathbf{x}) \#_s(\mathbf{y})$ with $w_s > 0$ for all s	$\{s_1,s_2,\ldots,s_m\}$
Linear	$\langle \mathbf{x}, \mathbf{y} angle$	\mathbb{R}^d
Polynomial	$(\langle \mathbf{x}, \mathbf{y} angle + c)^p$	\mathbb{R}^d
Gaussian	$\exp(-\sigma \ \mathbf{x} - \mathbf{y}\ _2^2), \ \sigma > 0$	\mathbb{R}^d
Laplacian	$\exp(-\sigma \ \mathbf{x} - \mathbf{y}\ _1), \ \sigma > 0$	\mathbb{R}^d
Rational quadratic	$(\ \mathbf{x} - \mathbf{y}\ _2^2 + c^2)^{-\beta}, \ \beta > 0, c > 0$	\mathbb{R}^d
Exponential	$\exp(\sigma(\mathbf{x}, \mathbf{y})), \ \sigma > 0$	compact sets of \mathbb{R}^d
Matérn	$rac{2^{1- u}}{\Gamma(u)}\left(rac{\sqrt{2 u}\ \mathbf{x}-\mathbf{x}'\ _2}{\sigma} ight)K_ u\left(rac{\sqrt{2 u}\ \mathbf{x}-\mathbf{x}'\ _2}{\sigma} ight)$	\mathbb{R}^d
Poisson	$1/(1-2\alpha\cos(\mathbf{x}-\mathbf{y})+\alpha^2),\ 0<\alpha<1$	$([0,2\pi),+)$

Figure 1: Well-known Kernel Functions.

Next theorem establishes the correspondence between Reproducing Kernel Hilbert Spaces and positive semi-definite kernels.

Theorem 10 (Aronszajn, 1950). Let \mathcal{X} be a metric space and $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PSD kernel, there exists a unique Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)_{\mathcal{H}})$ of functions on \mathcal{X} satisfying the following conditions:

- (i) for all $x \in \mathcal{X}, \phi(x) := k(x, \cdot) \in \mathcal{H},$
- (ii) the span of the set $\{\phi(x)|x\in\mathcal{X}\}$ is dense in \mathcal{H} , and
- (iii) for all $f \in \mathcal{H}$ and $x \in \mathcal{X}, f(x) = \langle \phi(x), f \rangle_{\mathcal{H}}$.

In particular, \mathcal{H} is an RKHS.