# nillin Sorts

#### מה נלמד?

- Quicksort מיון מהיר
- חסם תחתון על זמן ריצה של מיון מבוסס השואות
  - מיונים בזמן ליניארי •
  - Counting sort
    - Radix Sort •

#### מיון מהיר Quicksort



- C.A.R.Hoare על ידי 1960 •
- פעול לפי אסטרטגיית הפרד ומשול
- $O(n^2)$  : זמן הריצה במקרה הגרוע ביותר
  - $O(n \log n)$  זמן ריצה צפוי:
- קטנים  $O(n \log n)$  קבועים המסתתרים ב
  - (in-place) ממיין במקום •

### Quicksort הרעיון



#### QuickSort



#### Quicksort

- To sort the sub-array A[p . . r]:
  - Divide (חלק):
    - Partition A[p..r] into A[p..q-1] and A[q+1..r], such that
      - each element in A[p . . q 1] is ≤ A[q] and
      - A[q] is  $\leq$  each element in A[q + 1..r].

#### • Conquer (משול):

- Sort the two sub-arrays by recursive calls to Quicksort.
- Combine (צרף):
  - No work is needed to combine the sub-arrays, because they are sorted in place.



#### Quicksort

Quicksort 
$$(A, p, r)$$
  
if  $(p < r)$  then
$$q = \text{partition } (A, p, r)$$
Quicksort  $(A, p, q - 1)$ 
Quicksort  $(A, q + 1, r)$ 



• Initial call is Quicksort (A, 1, n).



- A[r] = pivot
- All entries in A[p ... i] are  $\leq$  pivot
- All entries in A[i+1..j-1] are > pivot
- All entries in A[j ...r 1] are not yet examined.

# p i j r $\leq pivot$ > pivot pivot



















partition 
$$(A, p, r)$$
 $i = p - 1$ 

for  $(j = p \text{ to } r - 1)$ 
 $if (A[j] \le A[r])$ 
 $i = i + 1$ 
 $exchange A[i] \text{ with } A[j]$ 
 $exchange A[i + 1] \text{ with } A[r]$ 
 $return i + 1$ 





• Complexity:  $\Theta(n)$  to partition an n-element subarray



#### זמן ריצה של מיון מהיר Performance

- The running time of Quicksort depends on the partitioning of the subarrays:
  - If the sub-arrays are balanced, then Quicksort can run as fast as Mergesort.
  - If they are unbalanced, then Quicksort can run as slowly as Insertion sort.

#### מקרה הגרוע ביותר Worst Case

- Occurs when the sub-arrays are completely unbalanced every time.
  - When Quicksort takes a sorted array as input.
- Have 0 elements in one sub-array and n-1 elements in the other sub-array.
- Get the recurrence

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
  
=  $T(n-1) + \Theta(n)$   
=  $\Theta(n^2)$ .

Same running time as insertion sort.

#### מקרה הטוב ביותר Best Case

- Occurs when the sub-arrays are completely balanced every time.
- Each sub-array has  $\approx n/2$  elements.
- Get the recurrence

$$T(n) = 2T(n/2) + \Theta(n)$$
  
=  $\Theta(n \lg n)$ .

#### זמן ריצה צפוי expected running time

- If the pivot is the k'th element, the runtime is T(n) = T(k) + T(n-1-k) + cn
- The probability that the pivot is the k'th element is 1/n
- Therefore, the expected runtime can be expressed as:

$$T(n) = cn + \frac{1}{n} \sum_{k=0}^{n-1} \left( T(k) + T(n-1-k) \right)$$

$$T(n) = cn + \frac{1}{n} \sum_{k=0}^{n-1} \left( T(k) + T(n-1-k) \right)$$

### זמן ריצה צפוי expected running time

$$nT(n) = cn^{2} + 2\sum_{k=0}^{n-1} T(k)(*)$$

$$(n-1)T(n-1) = c(n-1)^{2} + 2\sum_{k=0}^{n-2} T(k)(**)$$

$$nT(n) - (n-1)T(n-1) = c(2n-1) + 2T(n-1)$$

$$nT(n) = c(2n-1) + (n+1)T(n-1)$$

$$\frac{T(n)}{n+1} = \frac{c(2n-1)}{n(n+1)} + \frac{T(n-1)}{n} \le \frac{2nc}{n(n+1)} + \frac{T(n-1)}{n} = \frac{2c}{n+1} + \frac{T(n-1)}{n}$$

$$\frac{T(n)}{n+1} \le \frac{2c}{n+1} + \frac{T(n-1)}{n} \le \frac{2c}{n+1} + \frac{2c}{n} + \frac{T(n-2)}{n-1} \le \dots \le 2c \sum_{i=3}^{n+1} \frac{1}{i} + \frac{T(1)}{2}$$

 $T(n) = O(n \log n)$ 

#### זמן ריצה של מיון מהיר סיכום

- $O(n^2)$  זמן הריצה במקרה הגרוע ביותר:
  - $O(n \log n)$  ימן ריצה צפוי:
- קטנים  $O(n \log n)$  קבועים המסתתרים ב-
  - (in-place) ממיין במקום •

 $O(n \log n)$  MergeSort  $O(n \log n)$  HeapSort  $O(n^2)$  Insertion Sort  $O(n^2)$  QuickSort

?

האם קיים אלגוריתם מיון מבוסס השוואות  $O(n \log n)$  - שזמן ריצתו במקרה הגרוע קטן מ-

### מיונים מבוססים השוואה Comparisons based sorts

- מיון מבוסס השוואות: הוא מיון שבו מידע על סדר האיברים מתקבל אך ורק ע"י השוואת שני איברים.
  - כל המיונים שראינו עד עכשיו הם מבוססי השוואות.
  - $\Omega(n\log n)$  סיבוכיות הזמן של כל מיון מבוסס השוואות היא •



נייצג אלגוריתם מבוסס השוואות בעזרת עץ החלטה - decision tree

בלי הגבלת הכלליות, נניח שכל המספרים שונים זה מזה, ונגביל את עצמינו להשוואה "≥"

### decision tree – עץ החלטה n=3 מיון הכנסה של מערך בגודל

 $a_1 \mid a_2 \mid a_3 \mid$ 

### decision tree – עץ החלטה n=3 מיון הכנסה של מערך בגודל



- $a_j$  כל צומת פנימית  $a_i$ :  $a_j$  מסמנת השוואה בין בין
  - $a_i \leq a_j$  -ו תת-העץ השמאלי מתאר החלטות במידה
    - $a_i>a_j$  -ו תת-העץ הימני מתאר החלטות במידה -
      - כל עלה הוא תמורה של איברי המערך -



- כל מסלול משורש לעלה מתאר סידרת השוואות אפשרית שמבצע אלגוריתם על מערך הקלט בגודל n
  - המסלול הכי ארוך מתאר מספר השוואות המרבי שאלגוריתם מבצע



גובה של עץ ההחלטה
 על זמן ריצה במקרה הגרוע של אלגוריתם מיון



המסלול הכי ארוך מתאר מספר השוואות המרבי שאלגוריתם מבצע



#### מ<u>שפט:</u> החסם התחתון של מיון מבוסס השוואות

כל מיון מבוסס השוואות על מערך בגודל n דורש  $\Omega(n \log n)$  השוואות במקרה הגרוע. הוכחה

מהדיון הקודם יש למצוא חסם תחתון על גובה של עץ ההחלטה.



# ?

## מהו חסם תחתון על גובה של עץ ההחלטה?



#### משפט החסם התחתון של מיון מבוסס השוואות – הוכחה

יהי T עץ החלטה בגובה h המתאר מיון מבוסס השוואות.

כל אחת מn! תמורות של איברי המערך חייבת להופיע באחד העלים. n מצד שני, מספר המירבי של עלים שיכול להיות בעץ בינארי בגובה n הוא n.





 $h \ge \log n!$ 

 $h = \Omega(n \log n)$  מכאן,





# מסקנה: זמן ריצה במקרה הגרוע של כל אלגוריתם מבוסס השוואות על קלט בגודל n חסום מלמטה ע"י $\Omega(n \log n)$ .

האם קיים איזשהו אלגוריתם למיון שזמן  $O(n{\log}n)$  ריצתו במקרה הגרוע קטן יותר מ

לא – אם האלגוריתם משתמש בהשוואות בלבד ש האלגוריתם משתמש במידע נוסף על מערך הקלט – אם אלגוריתם משתמש במידע נוסף על מערך הקלט

#### מיונים בזמן לינארי

 $\mathcal{O}(n)$  ישנם מיונים לא מבוססי השוואות שסיבוכיות הזמן שלהם היא לינארית כלומר ullet

- מיונים אלה מניחים הנחות מסוימות על הקלט.
  - counting sort מיון מנייה
    - Radix Sort מיון בסיס •

# מיון מניה Counting Sort

- הנחה: איברי הקלט הם מספרים שלמים בתחום מ- 0 עד k, עבור k שלם חיובי ullet
- .(כולל x עצמו). x בקלט סופרים את כמות האיברים שקטנים או שווים לוx עצמו).



לאחר מיון  $oldsymbol{A}$ 

## מיון מנייה שלבי האלגוריתם

- 1. שלב המנייה
- 2. שלב הצבירה
- 3. בניית מערך הפלט



- A עבור כל איבר i, נספור כמה איברים שווים ל i יש ב  $\bullet$ 
  - i כמות האיברים ששווים ל  $\mathcal{C}[i]$



- A עבור כל איבר i, נספור כמה איברים שווים ל יש ב  $\cdot$ 
  - i כמות האיברים ששווים ל  $\mathcal{C}[i]$



- A עבור כל איבר i, נספור כמה איברים שווים ל יש ב  $\cdot$ 
  - i כמות האיברים ששווים ל  $\mathcal{C}[i]$



- A עבור כל איבר i, נספור כמה איברים שווים ל יש ב  $\cdot$ 
  - i כמות האיברים ששווים ל  $\mathcal{C}[i]$



- A עבור כל איבר i, נספור כמה איברים שווים ל יש ב  $\cdot$ 
  - i כמות האיברים ששווים ל  $\mathcal{C}[i]$



- A עבור כל איבר i, נספור כמה איברים שווים ל יש ב  $\cdot$ 
  - i כמות האיברים ששווים ל  $\mathcal{C}[i]$









i כמות האיברים שקטנים או שווים ל -  $\mathcal{C}[i]$ 





- $\mathcal{C}[i] \leftarrow \mathcal{C}[i] + \mathcal{C}[i-1]$  נעבור על C משמאל לימין, ונסכום
  - i כמות האיברים שקטנים או שווים ל  $\mathcal{C}[i]$



- $\mathcal{C}[i] \leftarrow \mathcal{C}[i] + \mathcal{C}[i-1]$  נעבור על C משמאל לימין, ונסכום C נעבור על
  - i כמות האיברים שקטנים או שווים ל  $\mathcal{C}[i]$



#### שלב *זו* - שלב צבירה

$$C[i] \leftarrow C[i] + C[i-1]$$
 נעבור על C משמאל לימין, ונסכום C נעבור על C משמאל לימין ונסכום -  $C[i]$ 





















- 1  $for(i \leftarrow 0 to k)$
- $C[i] \leftarrow 0$





- 1  $for(i \leftarrow 0 to k)$
- $C[i] \leftarrow 0$
- for  $(i \leftarrow 1 to A. length)$
- $C[A[i]] \leftarrow C[A[i]] + 1$



- 1  $for(i \leftarrow 0 to k)$
- $C[i] \leftarrow 0$
- **for**  $(i \leftarrow 1 \text{ to } A. \text{ length})$
- $C[A[i]] \leftarrow C[A[i]] + 1$
- 5  $for(i \leftarrow 1 to k)$
- $C[i] \leftarrow C[i] + C[i-1]$



1 
$$for(i \leftarrow 0 to k)$$

$$C[i] \leftarrow 0$$

$$for (i \leftarrow 1 to A. length)$$

$$C[A[i]] \leftarrow C[A[i]] + 1$$

5 
$$for(i \leftarrow 1 to k)$$

$$C[i] \leftarrow C[i] + C[i-1]$$

7 
$$for (j \leftarrow A. length downto 1)$$

$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] - -$$



1 
$$for(i \leftarrow 0 to k)$$

$$C[i] \leftarrow 0$$

*for* 
$$(i \leftarrow 1 \text{ to } A. \text{ length})$$

$$C[A[i]] \leftarrow C[A[i]] + 1$$

5 
$$for(i \leftarrow 1 to k)$$

$$C[i] \leftarrow C[i] + C[i-1]$$

7 
$$for (j \leftarrow A. length downto 1)$$

$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] - -$$



1 
$$for(i \leftarrow 0 to k)$$

$$C[i] \leftarrow 0$$

for 
$$(i \leftarrow 1 to A. length)$$

O(k)

O(n)

O(n)

O(k)

$$C[A[i]] \leftarrow C[A[i]] + 1$$

5 
$$for(i \leftarrow 1 to k)$$

$$C[i] \leftarrow C[i] + C[i-1]$$

**7** 
$$for (j \leftarrow A. length downto 1)$$

$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] - -$$

# מיון מניה זמן ריצה

7 זמן ריצה כולל 7 הינו 7 הינו



# אם בבניית מערך הפלט היינו עוברים על A מהתחלה לסוף (ולא מסוף להתחלה), האם המיון היה נכון ?





# אם בבניית מערך הפלט היינו עוברים על A מהתחלה לסוף (ולא מסוף להתחלה), האם המיון היה נכון ?



## מיון יציב הגדרה

שמירה של הסדר המקורי בין ערכים זהים נקראת תכונת היציבות – stable sort – ומיון שיש לו את התכונה הזו נקרא מיון יציב stability.





## מיון בסיס Radix Sort

הנחה: מספר הקלט הם שלמים בני d

• דוגמה:

# למה חשוב להשתמש במיון יציב למיון ספרות? מה עלול לקרות אם היינו משתמשים במיון לא יציב?

מיון שגויה

מיון שגויה

מיון יציב חשוב לנו רק כדי לקבל זמן ריצה טוב

## מיון בסיס Radix Sort

RadixSort (A, d)

for 
$$(i = 1 \text{ to } d)$$
 do

use a **stable sort** to sort array A on digit i

# RadixSort (A, d) for (i = 1 to d) do use a stable sort to sort array A on digit i

# Radix Sort זמן ריצה

- Assume that we use counting sort as the intermediate sort.
- $\Theta(n + k)$  per pass (digits in range  $0, \ldots, k$ ).
- d passes.
- $\Theta(d(n + k))$  total.
- If k = O(n) and d = O(1), then  $T(n) = \Theta(n)$ .



# סיכום