MIDTERM 1 MATH 3215-C (PROBABILITY AND STATISTICS)

TUESDAY, SEPTEMBER 22

INSTRUCTOR: ARMENAK PETROSYAN

IMPORTANT: Please read carefully (1pt)

- You have a 12 hour window to take and submit your exam (7 am 7 pm).
- Be warned: **exam ends at 7 pm** (e.g. if you start at 6 pm, you only have 1 hour).
- After you opened this file you have 100 minutes to finish the work and 20 minutes to submit it (120 minutes in total).
- If you run into difficulties submitting on GradeScope, email the files to the instructor before the 120 minutes expire and before 7 pm. Late submissions will not be accepted.
- If you encounter technical problems, email the instructor as soon as possible.
- You CAN use the course textbook and the lecture notes/slides for reference.
- You **CAN** use any fact we presented in class without proving them; anything else used must be proved.
- You CAN use any calculator you want.
- You **CANNOT** get any help from anyone.
- Posting the problems online to get help or to let others know what the problems are will be a violation; it will be reported and result in a penalty.
- To get full credit you need to write complete answers.
- The total amount of points for this exam is 75. Different problems have different weights.
- Be wise with your time. You can handwrite your answers on a different paper, and submit a photocopy. Make sure it is readable. No need to print the problem sheet or copy the problems.

Problem 1. (10pt) Post office employs three postmen and they need to deliver post to 120 different households. In how many different ways can they split the job equally?

Problem 2 (10pt). Four people are asked to guess a number between 0 and 9. What is the probability that at least two of them will guess the same number (assuming equiprobability space)?

Problem 3 (10pt). a) Let A, B be any two events. Show that

$$P(A \cap B) \ge P(A) + P(B) - 1.$$

b) For any events A_1, \ldots, A_n , use induction to show

$$P(A_1 \cap \cdots \cap A_n) \ge P(A_1) + \cdots + P(A_n) - n + 1.$$

Problem 4 (10pt). Are you more likely to win exactly 3 games out of 4 or exactly 5 games out of 8 against an equally strong opponent?

Problem 5 (12pt). Urn 1 contains one red ball and three blue balls. Urn 2 contains one red ball. A random ball is drawn from urn 1 and placed into urn 2. Then one ball is drawn at random from urn 2 and it turns out red. What is the conditional probability that the ball remaining in the urn 2 is also red?

Problem 6 (12pt). Suppose the cdf of the random variable X is given by

$$F(x) = \begin{cases} 0 & x < -1 \\ \frac{1}{2} & -1 \le x < 2 \\ \frac{3}{4} & 2 \le x < 3 \\ \frac{5}{6} & 3 \le x < 4 \\ 1 & x \ge 4 \end{cases}.$$

- (a) Draw the histogram of X.
- (b) Find the mean and variance of X.

Problem 7 (10pt). A fair coin is flipped 5 times and the number of heads is recorded as X_1 . The same coin is then flipped 6 times and the number of heads is recorder as X_2 . Find the conditional probability

$$P(X_1 = 2|X_1 + X_2 = 4).$$