ESCUELA POLITECNICA NACIONAL CONSEJO DE DOCENCIA

EPN-GD-MSP-03-03-PRD-05-FRM-02

SILABO

Versión 2

UNIDAD ACADEMICA:	DEP MATEMATICA					
CARRERA:	(RRA19) MAESTRÍA EN OPTIMIZACIÓN MATEMÁTICA					
PERIODO ACADÉMICO:	2025-A	MARZO 2025 - AGOSTO 2025	TIPO:	ORDINARIO		

DETALLE DE ASIGNATURA:

NOMBRE:	GEOMETRÍA COMPUTACIONAL	PARALELO:	1
CÓDIGO:	MOPRR144	PENSUM:	2020B
CRÉDITOS:	4.00	MODALIDAD	
		(TIPO)	OBLIGATORIA

COMPONENTES DE ORGANIZACIÓN DE LOS APRENDIZAJES	HORAS POR SEMANA	HORAS POR PERIODO ACADEMICO
Aprendizaje en Contacto con el Docente (AC)	2.00	32
Aprendizaje Práctico Experimental (AP)	2.00	32
Aprendizaje Autónomo (AA)	8.0	128
TOTAL	12.00	192

REQUISITOS DE LA ASIGNATURA

CO-REQUISITOS		PRE-REQUISITOS	
NOMBRE	CÓDIGO	NOMBRE	CÓDIGO

HORARIO DE LA ASIGNATURA:

COMPONENTE DE APRENDIZAJES	HORARIO
AC	MOPRR144 - GEOMETRÍA COMPUTACIONAL - 1 - Desde: 09/07/2025Hasta:04/08/2025

DESCRIPCIÓN DE LA ASIGNATURA:

EN ESTE CURSO SE PRESENTAN LAS NOCIONES BÁSICAS DE LA TEORÍA POLIEDRAL Y LA GEOMETRÍA COMPUTACIONAL, A PARTIR DEL CONOCIMIENTO DE LOS CONCEPTOS DE ESPACIO VECTORIAL Y ESPACIO AFÍN DEL ÁLGEBRA LINEAL.

INFORMACIÓN DE PROFESOR(ES) A CARGO:

NOMBRE	CORREO	FORMACIÓN ACADÉMICA	PARALELO	COMPONENTE DE APRENDIZAJE	DOCENTE PRINCIPAL
TORRES CARVAJAL LUIS MIGUEL	luis.torres@epn.e du.ec	DOCTOR EN CIENCIAS NATURALES (DR.RER.NAT)	1	AC	X

OBJETIVOS DE CARRERA QUE APORTA LA ASIGNATURA: GEOMETRÍA COMPUTACIONAL

CARRERA	OBJETIVO
(RRA19) MAESTRÍA EN OPTIMIZACIÓN MATEMÁTICA	NO APLICA

RESULTADOS DEL APRENDIZAJE DE LA ASIGNATURA:

TIPO DE RESULTADO	DESCRIPCIÓN DEL RESULTADO	FORMA DE EVIDENCIAR EL CUMPLIMIENTO**
Conocimientos	1. COMPRENDER LAS NOCIONES GEOMÉTRICAS BÁSICAS DE LA TEORÍA POLIEDRAL. 2. ENTENDER LAS INTERPETACIONES GEOMÉTRICAS DE LOS RESULTADOS DE LA TEORÍA DE DUALIDAD DE LA PROGRAMACIÓN LINEAL.	Evaluaciones escritas
Destrezas	1. IDENTIFICAR LA ESTRUCTURA DE FACETAS DE UN POLIEDRO. 2. EMPLEAR TÉCNICAS GEOMÉTRICAS PARA OBTENER RESULTADOS FUNDAMENTALES DE LA OPTIMIZACIÓN LINEAL.	Evaluaciones escritas
Valores y actitudes	1. VALORAR LA ABSTRACCIÓN MATEMÁTICA COMO UNA HERRAMIENTA FUNDAMENTAL EN EL CAMPO DE LA OPTIMIZACIÓN.	Participación en clases.

^{**} Descripciones específicas, medibles y demostrables de lo que el estudiante deberá hacer para el logro de los resultados del aprendizaje.

CONTENIDOS Y ACTIVIDADES DE APRENDIZAJE DE LA ASIGNATURA

DOCENTE: TORRES CARVAJAL LUIS MIGUEL, PARALELO: 1, COMPONENTE: AC

N°	SEMANA	CONTENIDO	COMPONENTE DE APRENDIZAJE	HOR AS	ACTIVIDADES DE APRENDIZAJE
1	FECHA1	Recapitulación de espacios	AC	2.0	Clase magistral
		vectoriales y afines.	AP	2.0	Clase magistral y ejercicios.
2	FECHA2	Combinaciones cónicas y convexas	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Clase magistral y ejercicios.
3	FECHA3	Ejemplos relevantes de poliedros y	AC	2.0	Clase magistral y ejercicios.
		polítopos: simplex, hipercubos, polítopos de cruz.	AP	2.0	Clase magistral y ejercicios.
4	FECHA4	Ejemplos de polítopos: pirámides,	AC	2.0	Clase magistral y ejercicios.
		bipirámides, productos cartesianos, prismas. Diagramas de Schlegel.	AP	2.0	Evaluación escrita.
5	FECHA5	Ejemplos de polítopos: Polítopos	AC	2.0	Clase magistral y ejercicios.
		cíclicos	AP	2.0	Clase magistral y ejercicios.
6	FECHA6	Otros ejemplos de polítopos:	AC	2.0	Clase magistral y ejercicios.
		Permutaedro, polítopo de Birkhoff, polítopo del TSP	AP	2.0	Clase magistral y ejercicios.
7	FECHA7	Ejercicios en polymake.	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Clase magistral y ejercicios.
8	FECHA8	Teorema de Minkowski-Weyl.	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Clase magistral y ejercicios.
9	FECHA9	Teorema de Minkowski-Weyl.	AC	2.0	Clase magistral y ejercicios.
		Eliminación de Fourier-Motzkin.	AP	2.0	Evaluación escrita.
10	FECHA10	Lema de Farkas.	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Clase magistral y ejercicios.
11	FECHA11	Primera evaluación.	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Clase magistral y ejercicios.
12	FECHA12	Conos de recesión y	AC	2.0	Clase magistral y ejercicios.
		homogeinización. Ejercicios en polymake.	AP	2.0	Clase magistral y ejercicios.
13	FECHA13	Propiedades básicas de vértices,	AC	2.0	Clase magistral y ejercicios.

			AP	2.0	Clase magistral y ejercicios.
14	FECHA14	Retícula de caras de un polítopo.	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Clase magistral y ejercicios.
15	FECHA15	Polaridad.	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Clase magistral y ejercicios.
16	FECHA16	Segunda evaluación.	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Evaluación escrita.
17	FECHA17	Representaciones de polítopos. Polítopos simples y simpliciales.	AC	2.0	Clase magistral y ejercicios.
		Polítopos simples y simpliciales. Ejercicios en polymake.	AP	2.0	Clase magistral y ejercicios.
18	FECHA18	Optimización lineal.	AC	2.0	Clase magistral y ejercicios.
			AP	2.0	Clase magistral y ejercicios.
19	FECHA19	Tercera evaluación. Cuarta	AC	2.0	Clase magistral y ejercicios.
		evaluación.	AP	2.0	Clase magistral y ejercicios.

BIBLIOGRAFÍA BÁSICA OBLIGATORIA:

1.-Ziegler, G.M., 2007. Lectures on Polytopes. Lugar de publicación: . EditorialSpringer

BIBLIOGRAFÍA COMPLEMENTARIA ADICIONAL:

-Grünbaum, B., 2003. Convex Polytopes. Lugar de publicación: . EditorialSpringer
-Matousek, J., 2002. Lectures on Discrete Geometry. Lugar de publicación: . EditorialSpringer

METODOLOGÍA DE APRENDIZAJE DE LA ASIGNATURA

DOCENTE: TORRES CARVAJAL LUIS MIGUEL, PARALELO: 1, COMPONENTE: AC

Método de aprendizaje	Recursos de aprendizaje	Escenarios de aprendizaje
Clases magistrales.	Exposición y prácticas.	No aplica.

EVALUACIÓN

IMPORTANTE: De acuerdo al Art. 80 del RRA la contribución de cada componente de evaluación no podrá exceder el 35% de la calificación del aporte

ACTIVIDAD DE EVALUACIÓN	TIPO	APORTE 1 (%)	APORTE 2 (%)
Primera evaluación.	Formativa	25.0	25.0
Segunda evaluación	Formativa	25.0	25.0
Tercera evaluación	Formativa	25.0	25.0
Cuarta evaluación	Formativa	25.0	25.0
		100.0	100.0

HORARIO Y MECANISMOS DE TUTORÍAS:

DOCENTE: TORRES CARVAJAL LUIS MIGUEL, PARALELO: 1, COMPONENTE: AC

Horario (s) de tutorías	Ubicación / mecanismo / herramienta de contacto		
Viernes 9h00 - 11h00	Previa cita por correo electrónico.		

POLÍTICAS DE DESARROLLO DE LA ASIGNATURA

DOCENTE: TORRES CARVAJAL LUIS MIGUEL, PARALELO: 1, COMPONENTE: AC

Se	espera	trabajo	autónomo	por	narte d	del	estudiante.

ADAPTACIONES CURRICULARES PARA ATENDER A ESTUDIANTES CON NECESIDADES EDUCATIVAS ESPECIALES:

Metodologías de enseñanza-aprendizaje:			
Ambientes de enseñanza-aprendizaje:			
Métodos e instrumentos de evaluación:			

UBICACIÓN:

Espac	eio:E03-P6/E004		