ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

УСТРОЙСТВА ИСПОЛНИТЕЛЬНЫЕ ГСП

МЕТОДЫ ОПРЕДЕЛЕНИЯПРОПУСКНОЙ СПОСОБНОСТИ

ГОСТ 14768-69

Издание официальное

КОМИТЕТ СТАНДАРТОВ, МЕР
И ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ
ПРИ СОВЕТЕ МИНИСТРОВ СССР
МОСКВА

РАЗРАБОТАН Специальным конструкторским бюро по автоматике в нефтепереработке и нефтехимии (СКБ АНН)

Начальник СКБ АНН **Белозерский С. С.** Начальник отдела **Слободкин М. С.** Руководитель темы и исполнитель **Ушанов А. А.**

ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР

Зам. министра Соболев В. М.

ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Отделом приборостроения Комитета стандартов

Начальник отдела член Комитета **Ивлев А. И.** Ст. инженер **Терехова А. Г.**

Отделом приборов и средств автоматизации Всесоюзного научноисследовательского института по нормализации в машиностроении [ВНИИНМАШ]

Начальник отдела **Кальянская И. А.** Ст. инженер **Агейкина Р. И.**

УТВЕРЖДЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 1 апреля 1969 г. (протокол № 41)

ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартов, мери измерительных приборов при Совете Министров СССР от 24 апреля 1969 г. № 722

УСТРОЙСТВА ИСПОЛНИТЕЛЬНЫЕ ГСП Методы определения пропускной способности

ГОСТ 14768—69

Working devices SSI. Methods for determination of capacity

Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 24/VI 1969 г. № 722 срок введения установлен _с 1/I 1971 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает методы определения гидравлических характеристик исполнительных устройств Государственной системы промышленных приборов и средств автоматизации (Γ C Π):

пропускной характеристики; максимальной пропускной способности; минимальной пропускной способности; диапазона изменения пропускной способности.

1. УСТАНОВКА ДЛЯ ИСПЫТАНИЙ

- 1.1. Для определения гидравлических характеристик исполнительного устройства применяют установку гидравлический стенд, принципиальная схема которого дана на чертеже.
- 1.2. Условный проход трубопровода до и после исполнительного устройства должен быть равен условному проходу исполнительного устройства (см. черт. 1A). Допускается установка исполнительного устройства на трубопроводе большего диаметра с помощью конических переходов (см. черт. $1 \, E$).
- 1.3. Длина прямого участка трубопровода до входного патрубка исполнительного устройства должна быть не менее 20 его условных проходов (D_y) ; после выходного патрубка — не менее 15.

1—водяной насос; 2—запорное устройство; 3—обратный клапан;
 4—открытая емкость; 5—сменный участок трубопровода; 6—исполнительное устройство; 7—прибор для определения дакома;
 8—прибор для определения расхода;
 9—обводная (байпасная) линия;
 10—сливная емкость;
 11—конический переход.

2. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИСПЫТАНИЙ

2.1. Испытания должны проводить в бескавитационном режиме водой промышленного водоснабжения при температуре 5—30°C и перепаде давления 1 кгс/см².

В процессе испытания допускается изменение перепада давления. При этом число Рейнольдса потока, при полностью открытом исполнительном устройстве, должно быть не менее 10⁵.

2.2. Места отбора давления должны быть удалены на $(2\pm0.5)~D_{\rm y}$ от входного патрубка и на $(10\pm1)~D_{\rm y}$ от выходного патрубка.

2.3. Исполнительное устройство должно иметь приспособление для перемещения затвора, жесткой его фиксации и замера.

2.4. Испытания проводят путем замера в установившемся режиме расхода и перепада давления воды при положениях затвора (i), соответствующих 2; 4; 6; 8; 10; 20; 30; 40; 50; 60; 70; 80; 90 и 100% условного хода исполнительного устройства.

Примечание. Для заслоночных, шланговых и диафрагмовых исполнительных устройств замеры при 2; 4 и 8% не обязательны.

2.5. Измерения должны проводить с точностью в процентах от максимальной величины:

расход и перепад давления ± 1 перемещение $\pm 0,5$

2.6. Испытание каждого исполнительного устройства должно быть проведено не менее трех раз. Разброс значений не должен превышать 8%. При разбросе, превышающем 8%, проводят повторные испытания.

3. ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

3.1. По данным измерений определяют значение пропускной способности (K_v) в M^3/u по формуле:

$$K_v = \frac{Q}{V\Delta P}$$

где:

Q — объемный расход воды через исполнительное устройство в m^3/u ;

 ΔP — перепад давления на исполнительном устройстве в $\kappa z c/c m^2$.

3.2. По полученным данным определяют среднее арифметическое значение пропускной способности для каждого положения затвора

$$(K_{v2}, K_{v4}, \ldots, K_{v100}).$$

3.3. Строят графики расчетной и действительной пропускных характеристик, откладывая по оси абсцисс относительный ход (относительный поворот вала) $\left(\frac{S}{S_y}\right)$ в %, а по оси ординат — относительную пропускную способность $\left(\frac{K_v}{K_{vv}}\right)$ в %.

Для равнопроцентной пропускной характеристики по оси ординат откладывают логарифм относительной пропускной способности $\lg \frac{K_v}{K_{vv}}$.

3.4. Для построения действительной пропускной характеристики на график наносят точки с координатами, соответствующими среднеарифметическим значениям пропускной способности (K_{vi}) и соединяют их отрезками прямых.

3.5. Расчетную пропускную характеристику строят, соединяя прямой точку с координатами (0; $\frac{K_{vo}}{K_{vv}}$) с точкой ($\frac{S}{S_{y}} = 100$; $\frac{K_{v}}{K_{vv}} = 100$).

Начальную пропускную способность указывают в технической документации, утвержденной в установленном порядке.

Примеры построения пропускных характеристик приведены в

приложении.

3.6. Величину отклонения максимального значения действительной пропускной способности от условной ($\delta_{\kappa 100}$) определяют в % по формуле:

$$\delta_{\kappa_{100}} = \frac{K_{v_{100}} - K_{vy}}{K_{vy}} \cdot 100.$$

Полученное значение $\delta_{\kappa 100}$ не должно превышать указанного в ГОСТ 14770—69.

3.7. Величину отклонения действительной пропускной характеристики от расчетной (δ_{ni}) в % для каждого положения затвора (п. 2.2) определяют по формуле:

$$\delta_{ni} = \frac{n_{ni} - n_{p}}{n_{p}} \cdot 100,$$

где:

 $n_{\rm д}i$ — тангенс угла наклона действительной пропускной характеристики для данного положения затвора;

 $n_{\rm p}$ — тангенс угла наклона расчетной пропускной характеристики.

3.8. Тангенс угла наклона действительной пропускной характеристики определяют по формулам:

A.
$$n_{xi} = \left(\frac{K_{vi+1}}{K_{vy}} - \frac{K_{vi}}{K_{vy}}\right) : \left(\frac{S_{i+1}}{S_y} - \frac{S_i}{S_y}\right) -$$

для линейной пропускной характеристики;

$$\text{ b. } n_{\text{mi}} = 100 \text{ lg } \frac{K_{vi+1}}{K_{vi}} : \left(\frac{S_{i+1}}{S_{y}} - \frac{S_{i}}{S_{y}} \right) -$$

для равнопроцентной пропускной характеристики.

3.9. Тангенс угла наклона расчетной пропускной характеристики определяют по формулам:

A.
$$n_{\rm p} = 1 - \frac{K_{v0}}{K_{vy}} -$$

для линейной пропускной характеристики;

$$\mathsf{B.} \ \ n_{\mathsf{p}} = \mathsf{lg} \frac{K_{\mathsf{vy}}}{K_{\mathsf{vo}}} -$$

для равнопроцентной пропускной характеристики.

3.10. Определяют допустимые углы наклона ($\alpha_{\text{доп}}$) действительной пропускной характеристики и наносят их на график:

A.
$$\alpha_{non} = \text{arc tg} [n_p (1 \pm 0.3)] \cdot \frac{b}{a}$$

для линейной пропускной характеристики;

B.
$$α_{\text{доп}} = \text{arctg } 0.5 [n_p (1 \pm 0.3)] \cdot \frac{b}{a} -$$

для равнопроцентной пропускной характеристики, где:

- a длина отрезка по оси абсцисс в mm , соответствующая $100\,\%\,\frac{S}{S_y}\,$ §
- b длина отрезка по оси ординат в мм, соответствующая $100\% \frac{K_v}{K_{vv}}$.
- 3.11. Исполнительное устройство считают выдержавшим испытание, если отклонение тангенса угла наклона действительной пропускной характеристики от расчетной для каждого положения затвора в интервале хода от 10 до 100% не превышает указанного в ГОСТ 14770—69.
- 3.12. Минимальную пропускную способность (K_{vm}) определяют как наименьшее значение пропускной способности, при котором наклон действительной пропускной характеристики не выходит за пределы допустимых значений.

Минимальная пропускная способность не должна превышать допустимой величины, указанной в технической документации,

утвержденной в установленном порядке.

3.13. Диапазон изменения пропускной способности \mathcal{L} определяют как отношение условной пропускной способности (K_{vy}) к минимальной (K_{vm}) .

Полученную величину диапазона изменения пропускной способности заносят в паспорт изделия вместе с теоретическим диапазоном изменения пропускной способности $\mathcal{I}_{\mathtt{T}}$, определяемым как отношение условной пропускной способности $(K_{v\mathbf{y}})$ к начальной $(K_{v\mathbf{0}})$.

Пример 1. Обработка результатов испытаний исполнительного устройства со следующими техническими данными:

пропускная характеристика — линейная; условная пропускная способность K_{vy} — 80 μ^3/u ; начальная пропускная способность K_{vo} — 2% от K_{vy} ; минимальная пропускная способность K_{vo} — не более 15% от K_{vy} .

1. Среднеарифметические значения полученных при испытаниях данных заносят в табл. 1.

Таблица 1

Отно- ситель- ный	Пропускная способность		$\frac{K_{vi}+1}{K_{vi}}$			
ход <u>S</u> Sy	ная	Отно- ситель- ная <i>К</i> vi	$n_{\text{A}} = \frac{\frac{K_{vl} + 1}{K_{vy}} - \frac{K_{vl}}{K_{vy}}}{\frac{S_l + 1}{S_y} - \frac{S_l}{S_y}}$	$n_{\mathbf{p}} = 1 - \frac{K_{\mathbf{vo}}}{K_{\mathbf{vy}}}$	$\delta_{ni} = \frac{n_{A} - n_{p}}{n_{p}} 100$	^б п доп в %
в %	К _{vi} в м³/ч	v	$S_{\mathbf{y}}$ $S_{\mathbf{y}}$			
2	2	2,5	$\frac{6.5-2.5}{4-2}=2$		+100	
4	5,2	6,5	$\frac{10-6.5}{6-4} = 1.75$		+ 75	
6	8	10	$\frac{2}{2} = 1$		0	
8	9,6	12	1		0	٠
10	11,2	14	0,8		—20	
20	17,6	22	0,8	1		<u>±</u> 30
30	24	30	0,75	,	— 2 5	
40_	30	37,5	0,75			
50	36	45	1,15	! !	+15	
60	45,2	56,5	1,15		+15	
70	54,4	68	1,2		+20	
80	64	80	1,2	1	+20	
90	7 3,5	92	1,2		+20	
100	8 3	104	_			

2. Определяют отклонение максимальной пропускной способности (K_{v_100}) от условной (K_{v_2}):

$$\delta_{\kappa_{100}} = \frac{83 - 80}{80} \cdot 100 = 3,75.$$

3. По данным табл. 1 строят график действительной пропускной характеристики (черт. 1).

Черт. 1

4. Строят расчетную пропускную характеристику (п. 3.5).

5. Вычисляют тангенсы углов наклона действительной пропускной характеристики $n_{\pi i}$ (п. 3.8A) и результаты вычислений заносят в табл. 1.

6. Вычисляют тангенс угла наклона расчетной пропускной характеристики

(п. 3.9A) и заносят в табл. 1.

$$n_{\rm p}=1-\frac{K_{\rm vo}}{K_{\rm vy}}\approx 1.$$

7. Определяют отклонение действительной пропускной характеристики от

расчетной δ_{ni} (п. 3.7) и результаты заносят в табл. 1.

8. Определяют допустимые углы наклона действительной пропускной характеристики (п. 3.10A).

$$\alpha_{\text{mon}} = \text{arctg} [1 \cdot (1 \pm 0.3)] \cdot \frac{100}{100}$$
 $\alpha_{\text{max}} = \text{arctg} 1.3 = 52.5^{\circ}$
 $\alpha_{\text{min}} = \text{arctg} 0.7 = 35^{\circ}$

и наносят их на график.

или

9. Сравнивая углы наклона отрезков действительной характеристики с допустимыми (по графику или по таблице), устанавливают, что в интервале хода от 6 до 100% величина $n_{\pi i}$ не превышает $\pm 30\%$, т. е. лежит в заданных пределах (п. 3.11).

10. Устанавливают, что пропускная способность при положении затвора, соответствующем 6% хода, есть минимальная пропускная способность (K_{vm} л. 3.12)

$$K_{vM} = K_{v6} = 8 \text{ M}^3/4$$

что составляет 10% от условной пропускной способности.

11. Определяют диапазон изменения пропускной способности (п. 3.13)

$$\mathcal{I} = \frac{K_{vy}}{K_{vM}} = \frac{80}{8} = 10.$$

Определяют теоретический диапазон изменения пропускной способности

$$\mathcal{I}_{\rm T} = \frac{K_{vy}}{K_{v0}} = \frac{80}{80 \cdot 0.02} = 50.$$

Полученные значения диапазона изменения пропускной способности заносят в паспорт исполнительного устройства: 50—10.

Пример 2. Обработка результатов испытаний исполнительного устройства со следующими техническими данными:

пропускная характеристика — равнопроцентная;

условная пропускная способность $K_{vy} = 25 \, M^3/4$;

начальная пропускная способность $K_{vo} - 4\%$ от K_{vy} ;

минимальная пропускная способность K_{vM} — не более 10% от K_{vy} .

1. Среднеарифметические значения полученных при испытаниях данных заносят в табл. 2.

Таблица 2

						- 4	
Отно- ситель- ный ход <u>S</u> Sy в %	l crincol	ускная бность отно- ситель- ная К _{vi} К _{vy} в %	$\frac{\frac{K_{vi}+1}{K_{vi}}}$	$\lg \frac{{}^{\prime} K_{vi} + 1}{K_{vi}}$	$n_{\text{A}} = \frac{\frac{1001 \text{g} \frac{K_{vl} + 1}{K_{vl}}}{S_{l} + 1}}{\frac{S_{l} + 1}{S_{y}} - \frac{S_{l}}{S_{y}}}$	$\delta_n = \frac{n_{\Lambda} - n_{P}}{n_{P}} 100$	⁸ пдоп в %
2	0,78	3,1	1,32	0,1206	6,03	330	
4	1	4.1	1.17	0.0682	3,41	143	
6	1,2	4,8	1,11	0,0453	2,265	62	
8	1,32	5.3	1,13	0 ,0 531	2,655	90	
10	1.5	6	1,45	0,1614	1,614	15	
20	2,2	8,7	1,27	0,1038	1,038	-25,7	
30	2,75	11,0	1,27	0,1038	1,038	—2 5,7	±3 0
40	3,5	13,9	1,28	0,1072	1,072	-23,5	
50	4,45	17,8	1,52	0,1818	1,818	29,5	
60	6,75	27	1,48	0,1703	1,703	22	
70	10	40	1.44	0,1584	1,584	13	
80	14.4	57.5	1,27	0,1038	1,038		
90	18,2	73	1,26	0,1004	1,004	-28,5	
100	23	92	_			-	}

2. Определяют отклонение максимальной пропускной способности (K_{v100}) от условной (K_{vy}) (п. 3.6):

$$\delta_{\kappa_{100}} = \frac{23-25}{25} \cdot 100 = -8\%.$$

3. По данным табл. 2 строят график действительной пропускной характеристики (черт. 2), причем по оси ординат откладывают логарифм $\frac{\kappa_{vl}}{\kappa_{\rm nv}}$.

Черт. 2

4. Строят расчетную пропускную характеристику (п. 3.5).

5. Вычисляют тангенсы углов наклона $n_{\pi i}$ действительной пропускной характеристики (п. 3.8E) и результаты вычислений заносят в табл. 2.

6. Вычисляют тангенс угла наклона расчетной пропускной характеристики $n_{\rm p}$ (п. 3.9 E):

$$n_p = \lg \frac{K_{vy}}{K_{v0}} = \lg 25 = 1,398.$$

7. Определяют отклонение действительной пропускной характеристики от расчетной δ_{ni} (п. 3.7) и результаты заносят в табл. 2.

8. Определяют допустимые углы наклона $(a_{\pi \circ n})$ действительной пропускной характеристики (п. 3.10E):

$$\alpha_{non} = \text{arctg } 0.5[1.398(1 \pm 0.3)] \cdot \frac{100}{100}$$

или

$$a_{max} = \text{arctg } 0.91 = 42^{\circ}$$
 $a_{min} = \text{arctg } 0.49 = 26^{\circ}$

и наносят их на график.

9. Сравнивая углы наклона отрезков действительной характеристики с допустимыми (по графику или по таблице), устанавливают, что в интервале хода от 10 до 100% величина $n_{\pi i}$ не превышает $\pm 30\%$, т. е. лежит в заданных пределах (п. 3.11).

10. Устанавливают, что пропускная способность при положении затвора, соответствующем 10% хода, есть минимальная пропускная способность $K_{v,\mathbf{m}}$

(n. 3.12)

$$K_{vM} = K_{v10} = 1.5 \text{ m}^3/4$$

что составляет 6% от условной пропускной способности.

11. Определяют диапазон изменения пропускной способности (п. 3.13):

$$A = \frac{K_{vy}}{K_{vm}} = \frac{25}{1.5} = 16.7.$$

Определяют теоретический диапазон изменения пропускной способности

$$A_{\rm T} = \frac{K_{\rm vy}}{K_{\rm vo}} = \frac{25}{25 \cdot 0.04} = 25.$$

Полученные значения диапазона изменения пропускной способности заносят в паспорт исполнительного устройства: 25—16,7.