Managing Flow in Agile Projects

Chuck Cobb

AGILE PROJECT MGT AUTHOR AND INSTRUCTOR

@chuckcobb3 www.managedagile.com

Module Overview

Kanban Overview/Examples

Kanban Boards

Flow and the Theory of Constraints

Cumulative Flow Diagrams

Kanban Overview

What Is Kanban?

"Kanban is a visual signal that's used to trigger an action.

The word Kanban is Japanese. Roughly translated, it means 'card you can see'."

Differences Between "Push" and "Pull" Systems

A "push" system is totally planned in advance and production capacity is scheduled against a long-term forecast

Example:

Production is Planned Against a Forecast

Waterfall is a "push" system – An attempt is made to plan all of the requirements in advance and "push" them through the development process

Differences Between "Push" and "Pull" Systems

A "pull" system is totally driven by demand and built to satisfy immediate <u>actual</u> needs (not <u>forecasted</u> needs based on a plan)

Example:

Production is Scheduled to Fill Customer Demand

Kanban is a "Pull" System – It is Totally Driven by Demand Rather Than Being Planned

Differences Between Scrum and Kanban

Scrum is a push/pull system

Work is planned to some extent in the product backlog and broken up into sprints and releases

Within a sprint, the work is planned, limited, and allocated to the team

However, it is demand-driven based on priorities set by the product owner

Kanban is totally a pull system

No attempt is made to plan requirements in advance

A Kanban process does not break up the work into sprints at all

It is a continuous flow model – work is taken into the process immediately based on priority as soon as resources are available to work on it

Kanban Example - Customer Service Queue

Some number of customer service agents are trained to respond to customer support issues

It is totally demand-driven by customers calling in with issues

It is impossible to completely plan all aspects of the process

Work in Process (WIP) Limits in Kanban

Kanban Processes Many Times Have Stages

Customer Problems

Level 2
Problem
Resolution

Work in Process (WIP) Limits in Kanban

The process is designed to optimize overall flow

Any individual stage in the process may have capacity limitations to limit overall "work in process" or flow

Customer Problems

Level 2
Problem
Resolution

Kanban Examples

Kanban Process Examples - Reports

A demand-driven process to produce reports

A development group is assigned to produce business reports for users

Work is unplanned and demand-driven

Kanban Process Examples - Mature Products

A product has reached a mature stage in its lifecycle that calls for ongoing support

Feature requests and bug support tasks are queued on the basis of priority

Work is performed on a continuous basis as resources are available to work on it

Kanban Process Examples - Unplanned Projects

Small and simple projects that do not require significant planning

A Kanban process might be more streamlined and more efficient,

But of course, the caveat is that it is probably totally unplanned

Kanban is a Foundation for Scrum

Within a sprint in Scrum, a Kanban process is used to manage the flow of work-inprocess

Kanban Flow

Kanban Boards

Kanban Boards

Kanban Boards Are Used to Visually Show the Flow of Items Through a Kanban Process

Kanban Boards

Columns in a Kanban Board Represent Stages in the Kanban Process

Kanban Boards with "Stickies"

Simple Kanban boards can be done with "White Boards" and "stickies"

Kanban Boards with "Stickies"

Limitations:

- The data on the board is not updated automatically as progress is made.
- Doesn't work well for distributed teams
- Also doesn't provide a management reporting capability

Kanban Boards with Online Tools

Kanban Boards Can Be Done With an Online Tool

Kanban Boards with Online Tools

Advantages:

- The data can be automatically updated in real-time as the work is being done
- Anyone can have direct access to either view or update the information locally or remotely
- The information on the board can automatically feed reporting tools such as burndown charts

Why is the Concept of "Flow" Important?

Traditional Project

Agile Project

1. Take an Economic View

Prioritize requirements by highest business value first

Defer lower value requirements

Recognize the point of diminishing returns and develop the Minimum Viable Product first

2. Queues - Actively Manage Queues

Having too many items waiting in a queue to start development is wasteful and inefficient

The requirements may change prior to going into development

Speculation in the requirements that are done too far into the future can result in erroneous assumptions

3. Variability - Understand and Exploit Variability

Breaking up large requirements into smaller ones that are of a more uniform size reduces variability and can improve flow

4. Batch Size - Reduce Batch Size

Large batch sizes tend to cause bottlenecks and inhibit flow

5. WIP Constraints - Apply Work in Progress (WIP) Constraints

Don't take on more work than you can handle

Be aware of capacity limitations in different stages of work

Use specialized resources wisely

6. Control Flow Under Uncertainty - Cadence and Synchronization

Having a repeatable cadence improves the efficiency of the process and

Allows synchronizing a predictable development process with a much more unpredictable flow of requirements

7. Fast Feedback - Get Feedback as Fast as Possible

Fast feedback can lower the expected loss by truncating unproductive paths more quickly or

Raise the expected gain because we can exploit an emergent opportunity by rapidly redirecting resources

8. Decentralized Control - Decentralize Control

Decentralizing control enables much more rapid and more effective decision-making

Theory of Constraints

Theory of Constraints

The "Theory of Constraints" is a systematic method for analyzing and improving process flow

The Theory of Constraints was originally developed by Elihu Goldratt and was originally published in his book, "The Goal"

Theory of Constraints - Example

Process designed to upgrade over 100 applications to a new version of Visual Studio.Net:

Cobb, Charles, Managed Agile Development - Making Agile Work for Your Business, 2013 p 42-43

Theory of Constraints

Identify

<u>Identify</u> the stage or portion of the process that is the most critical constraint or bottleneck.

Exploit

Do whatever you can to <u>exploit</u> or optimize that portion of the process to make it more efficient.

Subordinate

<u>Subordinate</u> everything else in the process to work within that limitation.

Elevate

Do whatever is necessary to <u>elevate</u> the constraint.

Check for New Constraint

Finally, once you've relieved a bottleneck, another part of the process then will typically become a new bottleneck.

Theory of Constraints - Example

Step	Result
Identify the Primary Constraint	QA Test Resources Was the Primary Constraint on the Overall Process
Exploit the Constraint	Try to Optimize the Use of QA Resources by Spreading the Load

Theory of Constraints - Example

Step	Result
Subordinate Everything Else	Everything Else in the Process Must be Limited by the Primary Constraint (QA Test Resources)
Elevate the Constraint	Add More QA Resources if Possible to Relieve the Constraint
Check for New Constraints	After Adding More QA Resources, Reevaluate the Overall Process and Check for New Constraints

Cumulative Flow Diagrams

What is a Burn-down Chart?

What is a Burn-up Chart? Work to be Completed (Story Points or Hours) **Change in Scope** Planned Work to be Completed ---Revised Projected --- Actual **Actual Work Completed Date**

Time Span Planned for Work to be Completed

Work Completed in Story Points

Limitations of Burn-down and Burn-up Charts

Only shows total work completed or remaining to be completed

Doesn't provide visibility into:

How the work is progressing in each stage of the process

Where the bottlenecks might be

If you want to improve the process flow, you probably need more information

What is a Cumulative Flow Diagram?

Cumulative flow diagrams enable us to measure how efficiently we're delivering valuable, working product to the customer, and indicate where we need to focus our process improvement efforts

What if the Burn-up Was Abnormal?

What if the Burn-up Was Abnormal?

What Information Does a CFD Provide?

Cumulative flow diagrams are only practical when the team uses an online tool for tracking work

Up Next: Course Summary

