Functional Analysis Facts

Sam Fleischer

April 11, 2016

1 Three Pillars of Analysis

1.1. **Monotone Convergence Theorem** - If a sequence of non-negative functions is increasing, we can pull the limit through an integral.

 $\lim_{k} \int f_k = \int \lim_{k} f_k.$

1.2. **Fatou's Lemma** - For a sequence of non-negative functions, the integral of the lim inf is less than or equal to the lim inf of the integral.

 $\int \liminf_{k} f_k \le \liminf_{k} \int f_k.$

- $(1.2.1) f_k = k \mathcal{X}_{(0,\frac{1}{k})}.$
 - 1.2.1.1. $\int_0^1 f_k = 1$ for all $k \implies \liminf_k \int_0^1 f_k = \liminf_k 1 = 1$.
 - 1.2.1.2. But since $f_k \to 0$ pointwise a.e., $\liminf_k f_k(x) = 0 \implies \int_0^1 \liminf_k f(x) dx = 0$.
- 1.3. **Dominated Convergence Theorem** If a sequence converges pointwise almost everywhere and is dominated, then it converges in norm to its pointwise limit.

$$\lim_{k} \int f_{k} = \int \lim_{k} f_{k} = \int f.$$
$$\lim_{k} \|f_{k} - f\|_{1} = 0.$$

2 Integrals over Product Spaces

- 2.1. **Fubini's Theorem** If a function is integrable on a product space, then the integral over the product space is equal to both iterated integrals.
 - (2.1.1) Iterated integrals may exist without the existence of the integral over the product space.
- 2.2. **Semi-converse of Fubini's Theorem** If an iterated integral exists of the *absolute value* of a function on a prodct space, then the integral of the product space is equal to both iterated integrals.
- 2.3. **Tonelli's Theorem** If a function is non-negative and measurable on a product space, then the integral over the product space is equal to both iterated integrals.

3 L^p Spaces

3.1. Convexity is a thing.

$$x^{\lambda} \le (1 - \lambda) + \lambda x \qquad \forall \lambda \in (0, 1).$$
$$a^{\lambda} b^{1 - \lambda} \le \lambda a + (1 - \lambda) b \qquad \forall \lambda \in (0, 1), \qquad \forall a, b \ge 0.$$

3.2. **Hölder's Inequality** - For conjugate exponents p and q, the 1-norm of a product of L^p and L^q functions is finite, and the 1-norm of the product is less than or equal to the product of the norms of the original functions.

$$||fg||_1 \le ||f||_p ||g||_q$$

.

3.3. Interpolation Inequality - For $1 \le r \le s \le t \le \infty$, if u is in L^r and L^t , then u is in L^s and the s-norm is less than of equal to the product of the r- and t-norms raised to the appropriate power.

$$||u||_{s} \le ||u||_{r}^{a} ||u||_{t}^{1-a}$$
 where $\frac{1}{s} = \frac{a}{r} + \frac{1-a}{t}$.

3.4. **Minkowski's Inequality** - For functions in L^p , the norm of their sum is less than or equal to the sum of their norms.

$$||f + g||_p \le ||f||_p + ||g||_p.$$

- 3.5. L^p is a normed linear space.
- 3.6. L^p is a Banach Space (a complete (Cauchy sequences converge) normed linear space). Steps of the proof:
 - (3.6.1) Construct the Cauchy sequence.
 - (3.6.2) Construct a monotone sequence from the Cauchy sequence.
 - (3.6.3) Use Mikowski's Inequality and Triangle Inequality to show the sequence is uniformly bounded.
 - (3.6.4) Show pointwise convergence of Cauchy sequence using Triangle Inequality.
 - (3.6.5) Use dominated Convergence Theorem to show norm convergence of Cauchy sequence.
- 3.7. **Pointwise convergence implies a double implication** If a sequence of functions converge pointwise, then their norms converge if and only if they converge in norm.

$$f_k \to f$$
 pointwise \Longrightarrow $\left[\|f_k - f\|_p \to 0 \iff \|f_k\|_p \to \|f\|_p \right].$

3.8. L^p Comparisons - For $1 \le r \le s \le t \le \infty$, if a function in L^s can be written as the sum of functions in L^r and L^t .

$$L^s \subset L^r + L^t$$
.

3.9. L^p Comparison for Finite Spaces - For finite measure spaces, a function in L^q is also in L^p for all q > p.

$$L^q \subset L^p$$
.

- 3.10. Approximation of L^p $(p < \infty)$ by Simple Functions The set of Simple Functions are dense in L^p .
- 3.11. Approximation of L^p ($p < \infty$) by Continuous Functions For bounded measure spaces, the set of continuous functions is dense in L^p .
- 3.12. Approximation of L_{loc}^p by Smooth Functions For a function f in L_{loc}^p , its mollified functions:
 - (3.12.1) are infinitely differentiable,
 - (3.12.2) converge pointwise to f,
 - (3.12.3) converge uniformly to f on compact subsets of the space (given f is continuous), and
 - (3.12.4) converge to f in L_{loc}^p .

4 Convolutions and (in general) Integral Operators

4.1. **Boundedness of Integral Operators** - An integral operator has bounded norm (and is hence continuous) if both of the absolute iterated integrals of its kernel are bounded (say by C_1 and C_2).

$$||K||_{\mathcal{B}(L^p(\mathbb{R}^n))} \le C_1^{\frac{1}{p}} C_2^{\frac{1}{q}}.$$

4.2. Cauchy-Young Inequality - If p and q are conjugate exponents, then for all nonnegative a and b,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

(4.2.1) Cauchy-Young Inequality with δ - If p and q are conjugate exponents, the for all nonnegative a and b.

$$ab \le \delta a^p + C_{\delta} b^q, \qquad \delta > 0, \qquad C_{\delta} = (\delta p)^{-\frac{q}{p}} q^{-1}.$$

4.3. Simple Version of Young's Inequality - For L^1 function k and L^p function f, the p-norm of their convolution is less than or equal to the product of their respective norms.

$$||k * f||_p \le ||k||_1 ||f||_p.$$

4.4. (More general) Young's Inequality for Convolution - For L^p function k and L^q function f, the r-norm of their convolution is bounded by the product of their respective norms, given $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.

$$\|k*f\|_r \leq \|k\|_p \|f\|_q, \qquad 1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}.$$

5 The Dual Space and Weak Topology

5.1. Norm of an Integral Operator is the Norm of its Kernel - For conjugate exponents p and q, integration of an L^p function against an L^q function is a continuous linear functional on L^p and the operator norm is equal to the norm of the L^q function.

$$F_g(f) = \int fg$$
 and $\|F_g\|_{\text{op}} = \|g\|_q$.

5.2. Riesz Representation Theorem (1 - For conjugate exponents <math>p and q, every bounded (continuous) linear functional on L^p can be represented as an integral operator whose kernel is in L^q .

$$\phi \in (L^p)^* \implies \exists g \in L^q \text{ such that } \phi(f) = \int fg \ \forall f \in L^p.$$

- 5.3. Reflexivity of L^p (1 < $p < \infty$) The dual space of the dual space of L^p is isomorphic to L^p .
- 5.4. **Radon-Nikodym Theorem** If μ and ν are two finite measures on a measure space where ν is absolutely continuous with respect to μ , then there exists an L^1 function h to change the measure of integration as follows:

$$\int F d\nu = \int F h d\mu \qquad \text{for every positive measurable function } F.$$

5.5. Converse to Hölder's Inequality - For finite measure spaces, if a product of a measurable function and any simple function is L^1 , and if the supremum of the L^1 -norm of the product (for simple functions of L^p -norm 1) is finite, then the measurable function is in L^q and its L^q -norm is equal to that supremum.

$$M(g) = \sup_{\|f\|_p = 1} \left\{ \left| \int_{\Omega} f g \mathrm{d} \mu \right| \ : \ f \text{ is a simple function} \right\} < \infty \quad \Longrightarrow \quad g \in L^q(\Omega) \ \text{ and } \ \|g\|_q = M(g).$$

- 5.6. Alaoglu's Lemma The closed unit ball in the dual of a Banach space is compact in the weak-* topology.
- 5.7. Weak Compactness for $L^p(\Omega)$ for $1 Every bounded sequence in <math>L^p$ has a weakly convergent subsequence.
- 5.8. Weak-* compactness for L^{∞} Every bounded sequence in L^{∞} has a weak* convergent subsequence.
- 5.9. Convergence implies weak convergence Convergent sequences in L^p are weakly convergent.
- 5.10. Weak Limits have Bounded Norms The L^p norm of a weak limit is bounded by the lim inf of the L^p norms of its sequence.
- 5.11. Weakly convergent Sequences are bounded Weakly convergent L^p sequences have bounded L^p norms.
- 5.12. **Egoroff's Theorem** For pointwise convergent sequences on finite domains, there exist arbitrarily small (positive measure) subsets such that the sequence converges uniformly on its complement.

$$\forall \varepsilon < 0, \ \exists E \subset \Omega \text{ with } |E| < \varepsilon \text{ such that } f_k \to f \text{ uniformly on } \Omega \setminus E.$$