Everyone's Connected

Contents

T	Ten	iplate	2	
2	Data structures			
	2.1	Simplified DSU (Stolen from GGDem)	2	
	2.2	Disjoint Set Union	2	
	2.3	Segment tree	2	
	2.4	Segment tree Lazy	2	
	2.5	Trie	2	
3	Gra	phs	2	
	3.1	Graph Transversal	2	
		3.1.1 BFS	2	
		3.1.2 DFS	3	
	3.2	Topological Sort	3	
	3.3	APSP: Floyd Warshall	3	
	3.4	SSSP	3	
		3.4.1 Lazy Dijkstra	3	
		3.4.2 Bellman-Ford	3	
	3.5	Strongly Connected Components: Kosaraju	3	
	3.6	Articulation Points and Bridges: ModTarjan	3	
4	Mat	:h	3	
	4.1	Identities	3	

	4.2	Binary Exponentiation and modArith	5					
	4.3	Modular Inverse (dividir mod)	5					
	4.4	Modular Binomial Coeficient and Permutations	5					
	4.5	Non-Mod Binomial Coeficient and Permutations	5					
	4.6	Modular Catalan Numbers	5					
	4.7	Ceil Fraccionario	5					
	4.8	Numeros de Fibonacci	5					
	4.9	Sieve Of Eratosthenes	5					
		Sieve-based Factorization	5					
		Cycle Finding	5					
		Berlekamp Massey	5					
		Modular Berlekamp Massey	5					
		Matrix exponentiation	5					
		Ecuaciones Diofantinas	5					
		Pollard-Rho, Stolen from GGDem	5					
		FFT, Stolen from GGDem	5					
	4.18	Euler Totient Function	5					
_	C		_					
5	Geo	metry	5					
6	Stri	ngs	5					
	6.1	Explode by token	5					
	6.2	Multiple Hashings DS	5					
	6.3	Permute chars of string	5					
	6.4	Longest common subsequence	5					
	6.5	KMP	5					
	6.6	Suffix Array	5					
	6.7	STL Suffix Array	5					
7	Clas		5					
	7.1	Job scheduling	5					
		7.1.1 One machine, linear penalty	5					
		7.1.2 One machine, deadlines	5					
		7.1.3 One machine, profit	5					
		7.1.4 Two machines, min time	5					
8	Flov	X7	5					
O	8.1	Dinic, thx GGDem	5					
	0.1	bline, the dobein	9					
9	cellaneous	5						
	9.1	pbds	5					
	9.2	Bit Manipulation	5					
10	. TD 4		_					
ΤÜ	10 Testing 5							

10.1	Gen and AutoRun testcases	5
	10.1.1 Gen.cpp	5
	10.1.2 Stress testing	5
	10.1.3 Autorum	5
10.2	Highly Composite Numbers	5

1 Template

```
#include <bits/stdc++.h>
  #define endl '\n'
  #define ll long long int
  #define ull unsigned long long int
   using namespace std;
                       -SOLBEGIN----*/
   void solve() {
10
11
       return;
12
13
  int main() {
14
      ios_base::sync_with_stdio(0);
15
       cin.tie(0);
16
17
      int t = 1; cin >> t;
18
      while (t--) solve();
19
20
21
       return 0;
22 }
```

- 2 Data structures
- 2.1 Simplified DSU (Stolen from GGDem)
 - 2.2 Disjoint Set Union
 - 2.3 Segment tree
 - 2.4 Segment tree Lazy
 - 2.5 Trie
 - 3 Graphs
 - 3.1 Graph Transversal
 3.1.1 BFS

#include <bits/stdc++.h>

```
2
   using namespace std;
3
   vector<bool> visited;
   vector<vector<int>> adj;
   void breadth_first_search(int node) {
8
       // BFS requieres queue data structure, starting from initial node 0
9
       queue<int> q;
10
       q.push(node);
11
       visited[node] = true;
12
       // While queue is not empty, pop the first element and push its
13
           children
       while (!q.empty()) {
14
           int v = q.front();
15
           cout << v << "";
16
           q.pop();
17
           // Push all children of v
18
           for (int u : adj[v]) {
19
               // If not visited, push and mark as visited
20
               if (!visited[u]) {
21
                    q.push(u);
22
                    visited[u] = true;
23
24
25
26
27
28
   int main() {
29
       int nodes, edges;
30
       cin >> nodes >> edges;
31
       // Initialize visited and adjacency list
32
       visited.assign(nodes, false);
33
       adj.assign(nodes, vector<int>());
34
       int u, v;
35
       // Values of nodes staring from 0, given as pairs of nodes
36
       for (int i = 0; i < edges; i++) {
37
           cin >> u >> v:
38
           adj[u].push_back(v);
39
           adj[v].push_back(u); // Assuming undirected graph
40
       }
41
       breadth_first_search(0); // Start BFS from node 0
^{42}
43
```

```
return 0;
44
45 }
```

3.1.2 DFS

Topological Sort

3.3 APSP: Floyd Warshall

3.4 SSSP

3.4.1 Lazy Dijkstra

3.4.2 Bellman-Ford

- Strongly Connected Components: Kosaraju
- Articulation Points and Bridges: ModTarjan

Math

4.1 Identities

Coeficientes binomiales.

$$(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{n-k} b^{k}$$

$${n \choose k} = {n \choose n-k}$$

$${n \choose k} = {n-1 \choose k-1} + {n-1 \choose k-1}$$

$$k{n \choose k} = n{n-1 \choose k-1}$$

$$\sum_{k=0}^{n} n{n \choose k} = 2^{n}$$

$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} = 0$$

$${n+m \choose t} = \sum_{k=0}^{t} {n \choose k} {m \choose t-k}$$

$$\sum_{j=k}^{n} {j \choose k} = {n+1 \choose k+1}$$
Numeros Catalanes

Numeros Catalanes.

$$C_n = \frac{2(2n-1)}{n+1}C_{n-1}$$

$$C_n = \frac{1}{n+1}\binom{2n}{n}$$

$$C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}$$

 $\Sigma(n) = O(\log(\log(n)))$ (number of divisors of n)

$$F_{2n+1} = F_n^2 + F_{n+1}^2$$

$$F_{2n} = F_{n+1}^2 - F_{n-1}^2$$

$$\sum_{i=1}^n F_i = F_{n+2} - 1$$

$$F_{n+i}F_{n+j} - F_nF_{n+i+j} = (-1)^n F_i F_j$$

(Möbius Function)

0 if n is square-free

1 if n got even amount of distinct prime factors 0 if n got odd amount of distinct prime factors

(Möbius Inv. Formula) Let
$$g(n) = \sum_{d \mid n} f(d)$$
, then $f(n) = \sum_{d \mid n} d \mid ng(d)\mu\left(\frac{n}{d}\right)$.

Permutaciones objetos repetidos

$$P(n,k) = \frac{P(n,k)}{n_1! n_2! \dots}$$

 $P(n,k) = \frac{P(n,k)}{n_1!n_2!\dots}$ Separadores, Ecuaciones lineares a variables = b $\binom{\binom{a}{b}}{=} \binom{a+b-1}{b} = \binom{a+b-1}{a-1}$ Teorema chino

$$\binom{\binom{a}{b}} = \binom{a+b-1}{b} = \binom{a+b-1}{a-1}$$

sean $\{n_1, n_2, ..., n_k\}$ primos relativos

$$P = n_1 \cdot n_2 \cdot \dots \cdot n_k$$

$$P_i = \frac{P}{n_i}$$

$$x \cong a_1(n_1)$$

$$x \cong a_2(n_2) \dots x \cong a_k(n_k)$$

 $P_1S_1 \cong 1(n_1)$ Donde S soluciones.

$$x = P_1 \hat{S}_1 a_1 + P_2 S_2 a_2 \dots P_k S_k a_k$$

- 4.2 Binary Exponentiation and modArith
 - 4.3 Modular Inverse (dividir mod)
- 4.4 Modular Binomial Coeficient and Permutations
- 4.5 Non-Mod Binomial Coeficient and Permutations
 - 4.6 Modular Catalan Numbers
 - 4.7 Ceil Fraccionario
 - 4.8 Numeros de Fibonacci
 - 4.9 Sieve Of Eratosthenes
 - 4.10 Sieve-based Factorization
 - 4.11 Cycle Finding
 - 4.12 Berlekamp Massey
 - 4.13 Modular Berlekamp Massey
 - 4.14 Matrix exponentiation
 - 4.15 Ecuaciones Diofantinas
 - 4.16 Pollard-Rho, Stolen from GGDem
 - 4.17 FFT, Stolen from GGDem
 - 4.18 Euler Totient Function
 - 5 Geometry
 - 6 Strings
 - 6.1 Explode by token
 - 6.2 Multiple Hashings DS
 - 6.3 Permute chars of string
 - 6.4 Longest common subsequence
 - 6.5 KMP
 - 6.6 Suffix Array
 - 6.7 STL Suffix Array