Azonosító jel:

ÉRETTSÉGI VIZSGA • 2005. május

FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma Tisztázati Piszkozati

OKTATÁSI MINISZTÉRIUM

T: 1	Azonosító jel:					
Fizika — emelt szint						

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázat.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap végén található üres oldalakon folytathatja a feladat számának feltüntetésével.

írásbeli vizsga 0513 2 / 16 2005. május 17.

Fizika — emelt szint	Azonosító jel:	
i izika Cilicit szilit		

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobboldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

1.	Fax	motoros célja felé félútig 80 km/h, majd utána 60 km/h se	hassággal haladt
1.		kkora volt az átlagsebessége?	bessegger manaut.
	A) B) C)	Nagyobb, mint 70 km/h. 70 km/h. Kisebb, mint 70 km/h.	
			2 pont
2.		biztosítja a centripetális erőt a függőleges tengelyű, forgó o adt ruha esetében?	centrifuga falára
	A) B) C)	A gravitációs erő. A súrlódási erő. A centrifuga fala által kifejtett nyomóerő.	
			2 pont
3.	meg	ott mennyiségű normálállapotú gáz hőmérsékletét kétfélekép g: izobár, ill. izochor módon. Mindkét esetben azonos ideig m al az elektromos fűtőszállal. Melyik folyamatban nagyobb a h	elegítjük ugyan-
	A) B) C)	Az izobár folyamatban. Az izochor folyamatban. Mindkét folyamatban ugyanakkora.	
			2 pont

4. A grafikon A és B pontja adott mennyiségű oxigéngáz két állapotát jellemzi. Melyik állapotban magasabb a hőmérséklet?

- **A)** Az A pontban.
- **B)** A B pontban.
- C) Azonos.
- **D)** Kevés az adat, nem dönthető el.

2 pont	

5. A rajzokon párhuzamos vezetők láthatóak, melyekben azonos irányban egyenáram folyik. Melyik rajz mutatja helyesen a vezetékekre ható erőket? (Az ábrákon az erők merőlegesek a vezetőkre.)

- A) Az A rajz.
- B) A B rajz.
- C) A C rajz.
- D) A D rajz.

- **6.** Fényesre csiszolt, függőleges tengelyű acélhengert használunk tükörnek. Milyennek látjuk magunkat a tükör előtt állva?
 - A) Alacsonyabbnak és soványabbnak.
 - B) Valós magasságúnak és kövérebbnek.
 - C) Valós magasságúnak és soványabbnak.
 - **D)** Magasabbnak és kövérebbnek.

- 7. Egy 2 mm átmérőjű üvegcsőben lévő higanyt átöntünk egy 1 mm átmérőjűbe. Hogyan változik a "higanyszál" elektromos ellenállása?
 - A) Változatlan marad.
 - B) 2-szeresére nő.
 - C) 4-szeresére nő.
 - **D)** 16-szorosára nő.

- **8.** Kalcium bevonatú lemezt megvilágítunk vörös, majd kék fénnyel. Azt tapasztaljuk, hogy a kék fény hatására elektronok lépnek ki a lemezből, míg vörös fény esetében nem. Mi a magyarázat?
 - A) Csak azért történt így, mert túl gyenge volt a vörös fénynyaláb.
 - B) A kék fény fotonjának energiája nagyobb, mint a vörösé.
 - C) A nagyobb hullámhosszú fény fotonjai könnyebben fedezik az elektron kilépéséhez szükséges munkát.

- 9. A ¹³¹I-izotóp felezési ideje 8,1 nap. Mennyi idő alatt bomlik el az eredeti mennyiség 7/8 része?
 - **A)** $8,1 \cdot \frac{7}{8}$ nap
 - **B)** $8.1 \cdot 2^{\frac{7}{8}}$ nap
 - **C)** 8,1·3 nap

- 10. Egy radioaktív mag a belső (K) héjról befog egy elektront. Hogyan változik a neutronok és a protonok számának n/p aránya?
 - A) Nő.
 - Nem változik. B)
 - Csökken. **C**)

11. Melyik kiskocsi éri el hamarabb az asztal szélét? Az egyikre kötött, csigán átvetett fonalat 20 N erővel húzzuk, a másikra 2 kg tömegű testet akasztottunk. A kocsik tömege egyenlő, $g = 10 \frac{\text{m}}{\text{c}^2}$.

- B)
- C) Egyszerre érik el.

- 12. Két különböző olvadáshőjű anyagból azonos tömegű darabokat megolvasztunk. Melyik megolvasztásához kell több energia?
 - A) A nagyobb olvadáshőjű anyaghoz.
 - Egyenlő energia szükséges. B)
 - A kisebb olvadáshőjű anyaghoz. C)

- 13. Milyen mélynek látszik egy 60 cm mély halastó függőlegesen felülről nézve? (A víz levegőre vonatkoztatott törésmutatója 4/3.)
 - **A)** 40 cm
 - B) 45 cmC) 60 cm
 - **D)** 80 cm

00 (111	
		2 pont

- 14. A Föld sugara R. Mekkora a gravitációs gyorsulás értéke a Föld felszínétől R távolságban, ha a felszínen mért érték g?
 - A) $\frac{g}{4}$
 - $\mathbf{B)} \quad \frac{g}{\sqrt{2}}$
 - C) $\frac{g}{2}$

- 15. Egy űrhajó kétharmad fénysebességgel elsuhan egy gömb alakú űrállomás mellett. Milyen alakú az űrállomás az űrhajós szerint?
 - A) A mozgásának irányában megrövidült.
 - B) Kisebb sugarú gömbbé zsugorodott.
 - C) A mozgásirányára merőlegesen megrövidült.

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő két oldalra írhatja.

1. Az atommag

Értelmezze az atommag felfedezéséhez vezető Rutherford-féle szórási kísérletet! Ismertesse az atommag összetételét, jellemezze az alkotórészeket, értelmezze a rendszám és tömegszám fogalmát! Ismertesse a magot alkotó részecskék közötti kölcsönhatás tulajdonságait! A mellékelt grafikon segítségével indokolja, hogy magfúzióra a könnyű magok, hasadásra a nehéz magok képesek!

Az egy nukleonra jutó kötési energia (fajlagos kötési energia) a tömegszám függvényében

2. A látás fizikája

Hogyan működik az emberi szem optikai szempontból? A képalkotás bemutatásához használja fel a következő oldalon található ábrát! Mit jelent a rövid- és távollátás, hogyan lehet korrigálni? A magyarázathoz készítsen egyszerű ábrát is!

3. A hang

Kísérleti tapasztalatok vagy a mindennapi életben tapasztalható jelenségek alapján igazolja, hogy a hang is hullám! (Elegendő két hullámjelenségre kitérnie!) A hang milyen fizikai tulajdonságai határozzák meg a hangérzetet (hangmagasság, hangerősség, hangszín)? Az egyik tulajdonság esetében állítását támassza alá kísérleti tapasztalattal vagy gyakorlati példával!

Ábra a 2. témához

a)	b)	c)	d)	e)	f)	g)	Kifejtés	Tartalom	Összesen
							5 pont	18 pont	23 pont

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. A táblázat egy telep kapocsfeszültségét és a telep által leadott áram erősségét tartalmazza különböző terhelések esetén.

$U_k(V)$	1,5	3	4,5
I(A)	3	2	1

- a) Mekkora a rövidzárási áram?
- b) Mekkora a telep üresjárási feszültsége?
- c) Mekkora a telep belső ellenállása?

13 pont	

írásbeli vizsga 0513 11 / 16 2005. május 17.

2. Egy gumi tapadókorongot teljesen rányomunk egy tiszta üveglapra az ábrán látható módon. Rányomás után a korong sugara 2 cm.

- a) Miért tapad rá a korong az üveglapra?
- b) Becsülje meg, legfeljebb mekkora tömegű terhet képes megtartani a tapadókorong! (A korong tömege elhanyagolható, $g=9,81~{\rm m\over s^2}$.)

a)	b)	Összesen
3 pont	8 pont	11 pont

- 3. Egy hőszigetelő anyagból készült hengerbe zárt 12 g tömegű neongázt 744 J munkával adiabatikusan összenyomunk. (A neon fajhője állandó térfogaton 620 $\frac{J}{kg\cdot K}$.)
- a) Mennyivel változott meg a neongáz belső energiája?
- b) Milyen hőmérsékletű volt a neongáz kezdetben, ha az összenyomás során 128 °C-ra melegedett fel?

a)	b)	Összesen
4 pont	9 pont	13 pont

4. Ha egy műhold negyedakkora távolságban keringene a Föld körül, mint a Hold, hány nap alatt kerülné meg a Földet?

		_		1	1		
Fizika — emelt szint	Azonosító jel:						

írásbeli vizsga 0513 15 / 16 2005. május 17.

Digileo	– emelt szint	
гіліка —	– emen szini	

4 / / 1					
Azonosító jel:					
AZUHUSHU ICI.					

Figyelem! Az értékelő tanár tölti ki!

	elért pontszám	maximális pontszám
I. Feleletválasztós kérdéssor		30
II. Esszé: tartalom		18
II. Esszé: kifejtés módja		5
III. Összetett feladatok		47
ÖSSZESEN		100
minősítés (százalék)		

javító tanár

	elért pontszám	programba beírt pontszám
I. Feleletválasztós kérdéssor		
II. Esszé: tartalom		
II. Esszé: kifejtés módja		
III. Összetett feladatok		

javító tanár jegyző