# ACS234 Maths and Data Modelling

Tutorial 5
Wednesday 1pm online

https://github.com/ineskris/ACS234/tree/master/Tutorial5

## Done in Lecture (week 5/6)

- Polynomial Regression
- General Linear Models

### Polynomial Regression

Simple Polynomial Model  $y = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m + e$ 

Estimation (least squares method)  $Y = X\hat{a} + e$   $\hat{a} = (X'X)^{-1}X'Y$ 

General Polynomial Regression (degree 2)  $y = a_0 + a_1X_1 + a_2x_2 + a_3X_1^2 + a_4X_1X_2 + a_5X_2^2 + e_1X_1^2 + a_1X_2^2 + a_2X_2^2 + a_3X_1^2 + a_2X_2^2 + a_3X_2^2 + a_3X_$ 

#### **Exercice 1**

| x    | 0 | 1 | 2  | 3  |
|------|---|---|----|----|
| f(x) | 2 | 7 | 14 | 23 |

Based on the data above, estimate the parameters a0,a1,a2 of the **polynomial regression model**. Calculate the MSE error.

#### **Exercice 2**

Based on the data above, estimate the parameters a0,a1,a2, a3, a4, a5 of the **general polynomial regression** model. Calculate the MSE error.

#### **Exercice 1 - bis**

Based on each dataset, right down the correct matrix X for a polynomial model with the degree associated.

How many points (at least) do we need to find the estimator a?

a) Degree 2

| x    | -3 | 1  | 7  |
|------|----|----|----|
| f(x) | 0  | -1 | 12 |

c) Degree 4

| x    | 1 | 7 | 8 |
|------|---|---|---|
| f(x) | 8 | 7 | 1 |

b) Degree 3

| x    | -1 | 1  | 7  | 12 |
|------|----|----|----|----|
| f(x) | 0  | -1 | 12 | 6  |

d) Degree 2

| x<br>f(x) | 0  | 0.5 | 1  | 5 | 20 |
|-----------|----|-----|----|---|----|
| f(x)      | 13 | 2   | 76 | 0 | 0  |