Stand: 01.09.2017

Schulformspezifische Kompetenzen und Begriffe im Cluster HTL 2 gültig ab den Matura-Prüfungsterminen 2017/2018

1 Zahlen und Maße

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung	
Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_1.1	absolute und relative Fehler verstehen und anwenden	
Clusterspezifische Kompetenzen (Cluster HTL 2)		
B_T2_1.2	komplexe Zahlen in der Gauß'schen Zahlenebene darstellen, erklären und in verschiedene Formen ineinander umrechnen (Komponentenform, Polarformen) sowie komplexe Zahlen addieren, subtrahieren, multiplizieren und dividieren	

Begriffe:

ppm (parts per million)

Vorsilben von Pico- bis Tera-

j bzw. i ... imaginäre Einheit mit $j^2 = -1$ bzw. $i^2 = -1$

Realteil, Imaginärteil, Betrag, Argument einer komplexen Zahl

Polarformen: $z = r \cdot [\cos(\varphi) + j \cdot \sin(\varphi)] = r \cdot e^{j \cdot \varphi} = (r; \varphi) = r / \varphi$

2 Algebra und Geometrie

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung	
Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_2.1	Trigonometrie des allgemeinen Dreiecks verstehen und anwenden siehe Kommentar	
B_T_2.2	anwendungsbezogene Exponential- und Logarithmusgleichungen mittels Technologieeinsatz lösen	
Clusterspezifische Kompetenzen (Cluster HTL 2)		
B_T2_2.3	quadratische Gleichungen in einer Variablen lösen und die verschiedenen möglichen Lösungsfälle inklusive komplexer Lösungen interpretieren	
B_T2_2.4	Vektoren in ℝ² und ℝ³ verstehen und anwenden siehe Kommentar	
B_T2_2.5	lineare Gleichungssysteme in Matrizenschreibweise übertragen und umgekehrt und diese Darstellungsform mithilfe der Matrizenmultiplikation begründen	

Kommentar B_T_2.1: Sinussatz, Cosinussatz, Flächeninhalt

Kommentar B_T2_2.4: Addition, Multiplikation mit einem Skalar, Skalarprodukt, Ortsvektor, Betrag, Einheitsvektor, Normalvektor, Gegenvektor, Winkel zwischen Vektoren, Vektorpro-

neitsvektor, Normalvektor, Gegenvektor, Winkei zwischen Vektoren, vektorprodukt, Richtungsvektor, Parameterdarstellung von Geraden (Lagebeziehungen)*, Resultierende von vektoriellen Größen bzw. Zerlegung in deren Komponenten

* wird ab dem Haupttermin 2020 (Mai 2020) prüfungsrelevant

Begriffe:

Horizontalebene, Vertikalebene; Horizontale, Vertikale Kräfteparallelogramm, Kräftedreieck

3 Funktionale Zusammenhänge

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung		
Kompetenz	Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_3.1	den Zusammenhang zwischen Funktion und Umkehrfunktion erklären und grafisch als Spiegelung des Graphen an der 1. Mediane veranschaulichen, interpretieren und damit argumentieren		
B_T_3.2	folgende Funktionen und deren Verknüpfungen grafisch darstellen, interpretieren, zu Berechnungen verwenden und erklären: lineare Funktion, quadratische Funktion, Wurzelfunktion, Potenzfunktion, Exponentialfunktion (Wachstums-, Sättigungs- und Abklingfunktion), Logarithmusfunktion; den Einfluss der Parameter a , b und c bei $a \cdot f(x+b) + c$ verstehen und anwenden, wenn f eine der eben genannten Funktionen ist (Verschiebung im Koordinatensystem und Skalierung)		
Clusterspezifische Kompetenzen (Cluster HTL 2)			
B_T2_3.3	die in B_T_3.2 genannten Funktionen, Polynomfunktionen sowie die Funktionen mit den Gleichungen $y = a \cdot \sin(b \cdot x + c) + d$ und $y = a \cdot \cos(b \cdot x) + d$ zur anwendungsbezogenen Modellierung verwenden, zugehörige Rechnungen mittels Technologieeinsatz durchführen; im Kontext interpretieren und argumentieren siehe Kommentar		
B_T2_3.4 ¹	logarithmische Skalierung: modellieren, interpretieren und argumentieren (Darstellung über mehrere Zehnerpotenzen; Darstellung von Potenz-, Exponential- und Logarithmusfunktion als Gerade)		
B_T2_3.5 ¹	bei anwendungsbezogenen Aufgabenstellungen mithilfe arithmetischer und geometrischer Folgen und Reihen modellieren, die Aufgaben lösen, bei deren Bearbeitung interpretieren und argumentieren		

Kommentar B T2 3.3: Funktionen können auch abschnittsweise definiert sein.

Begriffe:

s-t-, v-t-, a-t-Diagramm (t ist auf der waagrechten Achse aufgetragen)

Interpolation bzw. Extrapolation

Sättigungswert (Kapazitätsgrenze)

Kosten- und Preistheorie: Preisfunktion der Nachfrage p_N , Gewinnbereich, Gewinngrenzen: untere Gewinngrenze (Break-even-Point, Gewinnschwelle), Stückkostenfunktion (Durchschnittskostenfunktion) allgemeine Sinusfunktion:

 $y(t) = A \cdot \sin(\omega \cdot t + \varphi)$ mit A ... Amplitude, ω ... Kreisfrequenz, φ ... Nullphasenwinkel; f ... Frequenz, T ... Schwingungsdauer (Periodendauer), $t_0 = \frac{-\varphi}{\omega}$... Phasenverschiebung, Zeigerdiagramm

Folgen und Reihen: explizites/rekursives Bildungsgesetz, explizite/rekursive Darstellungsform, Grenzwert/Konvergenz/Divergenz einer Folge bzw. Reihe

Rentenrechnung: Barwert, Endwert, Rate, Laufzeit, Zinssatz (i), aufzinsen bzw. abzinsen, Aufzinsungsfaktor (1 + i) bzw. Abzinsungsfaktor $\left(\frac{1}{1+i}\right)$, Verzinsungsperiode p.a./p.s./p.q./p.m., vorschüssig bzw. nachschüssig, Zeitachse (Zeitlinie), Bezugszeitpunkt

¹ Dieser Deskriptor wird ab dem Haupttermin 2020 (Mai 2020) prüfungsrelevant.

4 Analysis

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung		
Kompetenz	Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_4.1	Eigenschaften von Funktionen: asymptotisches Verhalten bei Sättigungs- und Abklingfunktionen beschreiben und erklären; Unstetigkeitsstellen interpretieren		
Clusterspez	Clusterspezifische Kompetenzen (Cluster HTL 2)		
B_T2_4.2	Ableitungsfunktionen von Winkel- und Logarithmusfunktionen sowie von zusammengesetzten Funktionen berechnen; Quotientenregel anwenden		
B_T2_4.3	Stammfunktionen von Winkel- und Exponentialfunktionen berechnen; Methode der linearen Substitution anwenden		
B_T2_4.4	Differenzialrechnung im anwendungsbezogenen Kontext anwenden: modellieren, berechnen, interpretieren und damit argumentieren siehe Kommentar		
B_T2_4.5	Integralrechnung im anwendungsbezogenen Kontext anwenden: modellieren, berechnen, interpretieren und damit argumentieren siehe Kommentar		
B_T2_4.6	in Natur und Technik auftretende Änderungsraten mit dem Differenzialquotienten beschreiben und erklären; Probleme in Anwendungsbereichen mit Differenzialgleichungen des Typs $\frac{\mathrm{d}y}{\mathrm{d}x} = k \cdot y$ bzw. $\frac{\mathrm{d}y}{\mathrm{d}x} = k \cdot (r - y)$ modellieren und diese lösen; Unterschied zwischen exponentiellem und beschränktem Wachstum anhand der Differenzialgleichung interpretieren und erklären		
B_T2_4.7 ¹	Probleme in Anwendungsbereichen mit linearen Differenzialgleichungen 1. Ordnung mit konstanten Koeffizienten modellieren und diese lösen; Methode <i>Trennen der Variablen</i> anwenden; homogene und inhomogene Differenzialgleichung unterscheiden, allgemeine und spezielle Lösung bestimmen, die Lösungsteile und die Lösung darstellen und interpretieren siehe Kommentar		

 $v = \frac{ds}{dt}$, $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$

Kommentar B_T2_4.5: Anwendung der Integralrechnung auf die in B_T_3.2 und B_T2_3.3 genannten Funktionstypen sowie Funktionen, die aus diesen zusammengesetzt sind; Ermittlung einer Größe aus ihrer Änderungsrate durch Integration unter Berücksichtigung von Anfangsbedingungen;

das bestimmte Integral (orientierter Flächeninhalt) interpretieren;

aus der Physik wird die Kenntnis folgender Zusammenhänge vorausgesetzt:

 $s = \int v \, dt$ und $v = \int a \, dt$ Volumen von Rotationskörpern Bogenlänge Integralmittelwert: linearer Mittelwert

Kommentar B_T2_4.7: Das Modellieren von Differenzialgleichungen beschränkt sich auf das Übertragen von angegebenen Zusammenhängen in mathematische Formelsprache.

¹ Dieser Deskriptor wird ab dem Haupttermin 2020 (Mai 2020) prüfungsrelevant.

Begriffe:

Kosten- und Preistheorie: Grenzkostenfunktion, degressiv bzw. progressiv, Kostenkehre

Ableitung nach der Zeit auch mit Punktnotation \dot{x} , \ddot{x}

Differenzial einer Funktion

Anfangsbedingung, Anfangswertproblem, Anfangswertaufgabe

Störglied, Störfunktion

allgemeine Lösung (ohne Berücksichtigung der Anfangsbedingungen)

spezielle Lösung (nach Einsetzen der Anfangsbedingungen in die allgemeine Lösung)

5 Stochastik

Deskriptor	Formulierung des Deskriptors: Inhalt und Handlung		
Kompetenz	Kompetenzen für Teil B (übergreifend über beide HTL-Cluster)		
B_T_5.1	Normalverteilung: Zusammenhang zwischen der Dichte- und der Verteilungsfunktion verstehen und anwenden, Erwartungswert μ bzw. Standardabweichung σ bei bekannten Bedingungen (Wahrscheinlichkeit, Intervallgrenzen) ermitteln		
B_T_5.2	Verteilung des Stichprobenmittelwertes normalverteilter Werte: modellieren, berechnen, interpretieren und erklären		
B_T_5.3 ¹	Schätzwerte für Verteilungsparameter (μ , σ) bestimmen; zweiseitige Konfidenzintervalle für den Erwartungswert μ einer normalverteilten Zufallsvariablen: modellieren, berechnen, interpretieren und erklären siehe Kommentar		
B_T_5.4	lineare Regression und Korrelation: Zusammenhangsanalysen für anwendungsbezogene Problemstellungen beschreiben und relevante Größen (Parameter der Funktionsgleichung, Korrelationskoeffizient nach Pearson) mittels Technologieeinsatz berechnen und interpretieren sowie die Methode der kleinsten Quadrate erklären und interpretieren		
Clusterspezifische Kompetenzen (Cluster HTL 2)			
B_T2_5.5	mit Ausgleichsfunktionen (linear, quadratisch, kubisch, exponentiell) modellieren, diese mittels Technologieeinsatz bestimmen, die Ergebnisse interpretieren sowie die Methode der kleinsten Quadrate erklären und interpretieren		

Kommentar B_T_5.3: Schätzwert für
$$\mu$$
: $\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ und σ^2 : $s_{n-1}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2$

(Zu unterscheiden sind die Fälle bei unbekannter und bekannter Varianz: Die Anwendung der t-Verteilung (im Vergleich zur Normalverteilung) ist bei unbekannter Varianz zur Bestimmung des Konfidenzintervalls für μ erforderlich.)

Begriffe:

Zufallsstreubereich

Irrtumswahrscheinlichkeit

Konfidenzintervall (Vertrauensbereich)

Punktwolke

Regressionsgerade (Trendgerade), Regressionslinie (Trendlinie)

Regressionsfunktion (Ausgleichsfunktion)

Fehlerquadratsumme

¹ Dieser Deskriptor wird ab dem Haupttermin 2020 (Mai 2020) prüfungsrelevant.