Model Predictive Control for Linear and Hybrid Systems Constrained Linear Optimal Control

Francesco Borrelli

Department of Mechanical Engineering, University of California at Berkeley, USA

fborrelli@berkeley.edu

March 10, 2011

Outline

- Constrained Linear Optimal Control
 - Problem Formulation
 - Feasible Sets
- 2 Constrained Optimal Control: 2-Norm Case
- ③ Constrained Optimal Control: 1-norm and ∞-norm
- 4 Infinite Horizon
- 5 Minimum Time Control

Constrained Linear Optimal Control

Consider the cost function

$$J_0(x(0), U_0) \triangleq p(x_N) + \sum_{k=0}^{N-1} q(x_k, u_k)$$

and the constrained finite time optimal control problem (CFTOC)

$$J_0^*(x(0)) = \min_{U_0} \quad J_0(x(0), U_0)$$
subj. to
$$x_{k+1} = Ax_k + Bu_k, \ k = 0, \dots, N-1$$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0, \dots, N-1$$

$$x_N \in \mathcal{X}_f$$

$$x_0 = x(0)$$
(1)

where N is the time horizon and \mathcal{U} , \mathcal{X} , \mathcal{X}_f are polyhedral regions.

- Denote by $U_0 \triangleq [u_0', \dots, u_{N-1}']' \in \mathbb{R}^s$, $s \triangleq mN$ the optimization vector.
- If the 1-norm or ∞ -norm is used in the cost function (1), then $p(x_N) = \|Px_N\|_p$ and $q(x_k, u_k) = \|Qx_k\|_p + \|Ru_k\|_p$.
- If the squared euclidian norm is used in the cost function (1), then $p(x_N) = x'_N P x_N$ and $q(x_k, u_k) = x'_k Q x_k + u'_k R u_k$.

Feasible Sets

Denote by $\mathcal{X}_0 \subseteq \mathcal{X}$ the set of initial states x(0) for which the optimal control problem (1) is feasible, i.e.,

$$\mathcal{X}_{0} = \{x_{0} \in \mathbb{R}^{n} | \exists (u_{0}, \dots, u_{N-1}) \text{ such that } x_{k} \in \mathcal{X}, \ u_{k} \in \mathcal{U}, \\ k = 0, \dots, N-1, \ x_{N} \in \mathcal{X}_{f}, \text{ where } x_{k+1} = Ax_{k} + Bu_{k}, \\ k = 0, \dots, N-1\},$$

We denote with \mathcal{X}_i the set of states x_i at time i for which (1) is feasible

$$\mathcal{X}_i = \{ x_i \in \mathbb{R}^n | \exists (u_i, \dots, u_{N-1}) \text{ such that } x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \\ k = i, \dots, N-1, \ x_N \in \mathcal{X}_f, \text{ where } x_{k+1} = Ax_k + Bu_k \},$$

- The sets \mathcal{X}_i for i = 0, ..., N play an important role in the the solution of the CFTOC. They are *independent* on *the cost*.
- We will study the properties of these sets in the next lectures... Let's first show how to solve the problem.

Outline

- Constrained Linear Optimal Control
- 2 Constrained Optimal Control: 2-Norm Case
 - Batch Approach
 - Recursive Approach
 - Example
- 3 Constrained Optimal Control: 1-norm and ∞ -norm
- 4 Infinite Horizon
- 6 Minimum Time Control

2-Norm Constrained Linear Optimal Control

Consider the cost function

$$J_0(x(0), U_0) \triangleq x_N' P x_N + \sum_{k=0}^{N-1} x_k' Q x_k + u_k' R u_k$$
 (2)

with $P \succeq 0$, $Q \succeq 0$, $R \succ 0$ and the constrained finite time optimal control problem (CFTOC)

$$J_0^*(x(0)) = \min_{U_0} \quad J_0(x(0), U_0)$$
subj. to
$$x_{k+1} = Ax_k + Bu_k, \ k = 0, \dots, N-1$$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0, \dots, N-1$$

$$x_N \in \mathcal{X}_f$$

$$x_0 = x(0)$$
(3)

where N is the time horizon and \mathcal{U} , \mathcal{X} , \mathcal{X}_f are polyhedral regions.

- \bullet Let's try to compute the state-feedback solution to (2)–(3) by using mp-QP
- Recall we had two approaches: batch approach and recursive approach.

Feasible Sets -Batch Approach

Be $A_x x \leq b_x$, $A_f x \leq b_f$, $A_u u \leq b_u$ the \mathcal{H} -representations of sets \mathcal{X} , \mathcal{X}_f and \mathcal{U} , respectively. Define the polyhedron \mathcal{P}_i for $i = 0, \ldots, N-1$ as follows

$$\mathcal{P}_i = \{ (U_i, x_i) \in \mathbb{R}^{m(N-i)+n} | G_i U_i - E_i x_i \le W_i \}$$

where G_i , E_i and W_i are defined as follows

$$G_i = \begin{bmatrix} A_u & 0 & \dots & 0 \\ 0 & A_u & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & A_u \\ 0 & 0 & \dots & A_u \\ 0 & 0 & \dots & 0 \\ A_x B & 0 & \dots & 0 \\ A_x A B & A_x B & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_f A^{N-i-1} B & A_x A^{N-i-2} B & \dots & A_x B \end{bmatrix}$$

Feasible Set - Batch Approach

$$E_{i} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -A_{x} \\ -A_{x}A \\ -A_{x}A^{2} \\ \vdots \\ -A_{f}A^{N-i} \end{bmatrix} W_{i} = \begin{bmatrix} b_{u} \\ b_{u} \\ \vdots \\ b_{u} \\ b_{x} \\ b_{x} \\ b_{x} \\ \vdots \\ b_{f} \end{bmatrix}$$

Then set \mathcal{X}_i is a **polyhedron** and can be computed by **projecting** the polyhedron \mathcal{P}_i on the x_i space.

Rewrite the problem as

$$J_0^*(x(0)) = \min_{U_0} J_0(x(0), U_0) = U_0' H U_0 + 2x'(0) F U_0 + x'(0) Y x(0)$$

$$= \min_{U_0} J_0(x(0), U_0) = (U_0' x'(0))' \begin{bmatrix} H & F' \\ F & Y \end{bmatrix} (U_0 x(0))$$
subj. to $G_0 U_0 \le W_0 + E_0 x(0)$

Observe that $\begin{bmatrix} H & F' \\ F & Y \end{bmatrix} \succeq 0$ since $J_0(x(0), U_0) \geq 0$ by assumption.

Define $z \triangleq U_0 + H^{-1}F'x(0)$ and transform the problem into

$$\hat{J}^*(x(0)) = \min_{z} z'Hz$$

subj. to $G_0z \le W_0 + S_0x(0)$,

where
$$S_0 \triangleq E_0 + G_0 H^{-1} F'$$
, and $\hat{J}^*(x(0)) = J_0^*(x(0)) - x(0)'(Y - F H^{-1} F')x(0)$.

The CFTOC problem can be recast as a *multiparametric quadratic program*.

Main Results

The *Open loop optimal control function* can be obtained by solving the mp-QP problem and calculating $U_0^*(x(0))$, $\forall x(0) \in \mathcal{X}_0$ as $U_0^* = z^*(x(0)) - H^{-1}F'x(0)$.

Corollary

The control law $u^*(0) = f_0(x(0))$, $f_0 : \mathbb{R}^n \to \mathbb{R}^m$, obtained as a solution of the CFTOC (2)-(3) is continuous and piecewise affine on polyhedra

$$f_0(x) = F_0^i x + g_0^i$$
 if $x \in CR_0^i$, $i = 1, ..., N_0^r$

where the polyhedral sets $CR_0^i = \{x \in \mathbb{R}^n | H_0^i x \leq K_0^i\}, i = 1, \dots, N_0^r \text{ are a partition of the feasible polyhedron } \mathcal{X}_0$.

Corollary

The value function $J_0^*(x(0))$ is convex and piecewise quadratic on polyhedra. Moreover, if the mp-QP problem is not degenerate, then the value function $J_0^*(x(0))$ is $C^{(1)}$.

Consider the same CFTOC over the shortened time horizon [i, N]

$$\min_{U_{i}} \quad \|Px_{N}\|_{2} + \sum_{k=i}^{N-1} \|Qx_{k}\|_{2} + \|Ru_{k}\|_{2}$$
subj. to
$$x_{k+1} = Ax_{k} + Bu_{k}, \ k = i, \dots, N-1 \\
x_{k} \in \mathcal{X}, \ u_{k} \in \mathcal{U}, \ k = i, \dots, N-1 \\
x_{N} \in \mathcal{X}_{f} \\
x_{i} = x(i)$$

where $U_i \triangleq [u_i', \dots, u_{N-1}']$. The problem can be translated into the mp-QP

$$\min_{U_i} \qquad U_i' H_i U_i + 2x'(i) F_i U_i + x'(i) Y_i x(i)$$
 subj. to
$$G_i U_i \leq W_i + E_i x(i).$$

Main Results

- **●** The *Open loop optimal control function over* [i, N] can be obtained by solving the corresponding mp-QP problem and calculating $U_i^*(x(i))$, $\forall x(i) \in \mathcal{X}_i$ as $U_i^* = z^*(x(i)) H_i^{-1}F_i'x(0)$.
- The first component of the multiparametric solution has the form

$$u_i^*(x(i)) = f_i(x(i)), \ \forall x(i) \in \mathcal{X}_i,$$

where the control law $f_i: \mathbb{R}^n \to \mathbb{R}^m$, is **continuous and PPWA**

$$f_i(x) = F_i^j x + g_i^j$$
 if $x \in CR_i^j, j = 1, ..., N_i^r$

and where the polyhedral sets $CR_i^j = \{x \in \mathbb{R}^n | H_i^j x \leq K_i^j\}, j = 1, \dots, N_i^r$ are a *partition of the feasible polyhedron* \mathcal{X}_i .

The feedback solution $u^*(k) = f_k(x(k)), k = 0, ..., N-1$ of the CFTOC with p = 2 is obtained by **solving** N **mp-QP problems of decreasing size**.

Corollary

The state-feedback control law $u^*(k) = f_k(x(k))$, $f_k : \mathcal{X}_k \subseteq \mathbb{R}^n \to \mathcal{U} \subseteq \mathbb{R}^m$, obtained as a solution of the CFTOC (2)-(3) for $k = 0, \ldots, N-1$ is time-varying, continuous and piecewise affine on polyhedra

$$f_k(x) = F_k^i x + g_k^i$$
 if $x \in CR_k^i$, $i = 1, \dots, N_k^r$

where the polyhedral sets $CR_k^i = \{x \in \mathbb{R}^n \mid H_k^i x \leq K_k^i\}, i = 1, \dots, N_k^r \text{ are a partition of the feasible polyhedron } \mathcal{X}_k$.

Consider the **dynamic programming formulation** of the CFTOC

$$J_j^*(x_j) \triangleq \min_{u_j} x_j' Q x_j + u_j' R u_j + J_{j+1}^* (A x_j + B u_j)$$
 subj. to
$$x_j \in \mathcal{X}, \ u_j \in \mathcal{U},$$

$$A x_j + B u_j \in \mathcal{X}_{j+1}$$

for j = 0, ..., N - 1, with boundary conditions

$$J_N^*(x_N) = x_N' P x_N$$
$$\mathcal{X}_N = \mathcal{X}_f,$$

Observe that $J_{j+1}^*(Ax_j + Bu_j)$ is piecewise quadratic for j < N-1 and the problem is not simply an mp-QP.

Example

Consider the double integrator

$$\left\{ \begin{array}{rcl} x(t+1) & = & \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] x(t) + \left[\begin{array}{cc} 0 \\ 1 \end{array} \right] u(t) \\ y(t) & = & \left[\begin{array}{cc} 1 & 0 \end{array} \right] x(t) \end{array} \right.$$

subject to constraints

$$-1 \le u(k) \le 1, \ k = 0, \dots, 5$$

$$10 \Big|_{\mathcal{L}_{\infty}(k)} \le \begin{bmatrix} 10 \end{bmatrix} \quad k = 0$$

$$\begin{bmatrix} -10\\ -10 \end{bmatrix} \le x(k) \le \begin{bmatrix} 10\\ 10 \end{bmatrix}, \ k = 0, \dots, 5$$

Compute the **state feedback** optimal controller solving the CFTOC problem with $N=6,\ Q=\left[\begin{smallmatrix}1&0\\0&1\end{smallmatrix}\right],\ R=0.1,\ P$ the solution of the ARE, $\mathcal{X}_f=\mathbb{R}^2$.

Example

(a) Partition of the state space for the affine control law $u^*(0)$ $(N_0^r = 13)$

(c) Partition of the state space for the affine control law $u^*(2)$ $(N_T^2 = 13)$

(b) Partition of the state space for the affine control law $u^*(1)$ $(N_1^T = 13)$

(d) Partition of the state space for the affine control law $u^*(3)$ $(N_3^r = 11)$

Example

(e) Partition of the state space for the affine control law $u^*(4)$ $(N_4^r = 7)$

(f) Partition of the state space for the affine control law $u^*(5)$ $(N_5^r = 3)$

Outline

- Constrained Linear Optimal Control
- 2 Constrained Optimal Control: 2-Norm Case
- 3 Constrained Optimal Control: 1-norm and ∞-norm
 - Problem Formulation
 - Batch Approach
 - Recursive Approach
- 4 Infinite Horizon
- 5 Minimum Time Control

Problem Formulation

Consider the cost function

$$J_0(x(0), U_0) \triangleq \|Px_N\|_p + \sum_{k=0}^{N-1} \|Qx_k\|_p + \|Ru_k\|_p$$
 (4)

with p=1 or $p=\infty,\,P,\,Q,\,R$ full column rank matrices, and the constrained finite time optimal control problem (CFTOC)

$$J_{0}^{*}(x(0)) = \min_{U_{0}} \quad J_{0}(x(0), U_{0})$$
subj. to $x_{k+1} = Ax_{k} + Bu_{k}, \ k = 0, \dots, N-1$

$$x_{k} \in \mathcal{X}, \ u_{k} \in \mathcal{U}, \ k = 0, \dots, N-1$$

$$x_{N} \in \mathcal{X}_{f}$$

$$x_{0} = x(0)$$
(5)

where N is the time horizon and \mathcal{U} , \mathcal{X} , \mathcal{X}_f are polyhedral regions.

- Let's to compute the state-feedback solution to (4)–(5) by using mp-LP
- Recall we had two approaches: batch approach and recursive approach.

Problem Formulation

Recall that the problem can be equivalently formulated as

$$\min_{z_0} \qquad \varepsilon_0^x + \ldots + \varepsilon_N^x + \varepsilon_0^u + \ldots + \varepsilon_{N-1}^u$$
subj. to
$$-\mathbf{1}_n \varepsilon_k^x \le \pm Q \left[A^k x_0 + \sum_{j=0}^{k-1} A^j B u_{k-1-j} \right],$$

$$-\mathbf{1}_r \varepsilon_N^x \le \pm P \left[A^N x_0 + \sum_{j=0}^{N-1} A^j B u_{N-1-j} \right],$$

$$-\mathbf{1}_m \varepsilon_k^u \le \pm R u_k,$$

$$A^k x_0 + \sum_{j=0}^{k-1} A^j B u_{k-1-j} \in \mathcal{X}, \ u_k \in \mathcal{U},$$

$$A^N x_0 + \sum_{j=0}^{N-1} A^j B u_{N-1-j} \in \mathcal{X}_f,$$

$$k = 0, \ldots, N-1$$

$$x_0 = x(0)$$

The the problem results in the following standard mp-LP

$$\label{eq:condition} \begin{aligned} \min_{z_0} & c_0' z_0 \\ \text{subj. to} & \bar{G}_0 z_0 \leq \bar{W}_0 + \bar{S}_0 x(0) \end{aligned}$$

where
$$z_0 \triangleq \{\varepsilon_0^x, \dots, \varepsilon_N^x, \varepsilon_0^u, \dots, \varepsilon_{N-1}^u, u_0', \dots, u_{N-1}'\} \in \mathbb{R}^s,$$

 $s \triangleq (m+1)N + N + 1$ and

$$\bar{G}_0 = \left[\begin{array}{cc} G_\varepsilon & 0 \\ 0 & G_0 \end{array} \right], \ \bar{S}_0 = \left[\begin{array}{c} S_\varepsilon \\ S_0 \end{array} \right], \ \bar{W}_0 = \left[\begin{array}{c} W_\varepsilon \\ W_0 \end{array} \right]$$

Main Results

- Open loop input trajectory.
 - Solve the mp-LP and find $z_0^*(x(0))$ as a continuous piecewise affine function of x(0).
 - Calculate

$$U_0^* = [0 \ldots 0 I_m \ 0 \ldots 0] z_0^*(x(0)).$$

- **3** Properties and structure of $z_0^*(x(0))$ inherited by U_0^* .
- ② State feedback loop input trajectory.
 - Solve a sequence of mp-LPs

$$\min_{z_i} c_i' z_i
\text{subj. to } \bar{G}_i z_i \leq \bar{W}_i + \bar{S}_i x(i),$$

obtained by rewriting the original problem over the finite time horizon [i, N], and find $z_i^*(x(i))$ as a continuous piecewise affine function of x(i).

Calculate

$$u_i^*(x(i)) = [0 \dots 0 I_m 0 \dots 0] z_i^*(x(i)).$$

3 Properties and structure of $z_i^*(x(i))$ inherited by $u_i^*(x(i))$.

The feedback solution $u^*(k) = f_k(x(k)), k = 0, ..., N-1$ of the CFTOC (4)-(5) is obtained by **solving** N **mp-LP problems of decreasing size**.

Corollary

The state-feedback control law $u^*(k) = f_k(x(k))$, $f_k : \mathcal{X}_k \subseteq \mathbb{R}^n \to \mathcal{U} \subseteq \mathbb{R}^m$, obtained as a solution of the CFTOC (4)–(5) for k = 0, ..., N-1 is time-varying, continuous and piecewise affine on polyhedra

$$f_k(x) = F_k^i x + g_k^i$$
 if $x \in CR_k^i$, $i = 1, \dots, N_k^r$

where the polyhedral sets $CR_k^i = \{x \in \mathbb{R}^n \mid H_k^i x \leq K_k^i\}, i = 1, \dots, N_k^r \text{ are a partition of the feasible polyhedron } \mathcal{X}_k$.

Consider the *dynamic programming formulation*

$$J_j^*(x_j) \triangleq \min_{u_j} \quad \|Qx_j\|_p + \|Ru_j\|_p + J_{j+1}^*(Ax_j + Bu_j)$$

subj. to $x_j \in \mathcal{X}, \ u_j \in \mathcal{U},$
 $Ax_j + Bu_j \in \mathcal{X}_{j+1}$

for j = 0, ..., N - 1, with boundary conditions

$$J_N^*(x_N) = ||Px_N||_p$$
$$\mathcal{X}_N = \mathcal{X}_f,$$

Theorem

The state feedback piecewise affine solution of the CFTOC for p=1 or $p=\infty$ is obtained by solving the above problem via N mp-LPs.

Consider the first step j = N - 1 of the dynamic programming recursion

$$J_{N-1}^{*}(x_{N-1}) \triangleq \min_{u_{N-1}} \|Qx_{N-1}\|_{p} + \|Ru_{N-1}\|_{p} + J_{N}^{*}(Ax_{N-1} + Bu_{N-1})$$
subj. to
$$x_{N-1} \in \mathcal{X}, \ u_{N-1} \in \mathcal{U},$$

$$Ax_{N-1} + Bu_{N-1} \in \mathcal{X}_{f}$$

 $J_{N-1}^*(x_{N-1}),\,u_{N-1}^*(x_{N-1})$ and \mathcal{X}_{N-1} can be calculated by solving the following mp-LP

$$J_{N-1}^*(x_{N-1}) \triangleq \min_{\substack{\mu, u_{N-1} \\ \text{subj. to}}} \mu$$

$$u \geq \|Qx_{N-1}\|_p + \|Ru_{N-1}\|_p + \|P(Ax_{N-1} + Bu_{N-1})\|_p + \|P(Ax_{N-1} + Bu_{N-1})\|_p + \|Ru_{N-1} + Bu_{N-1} + Bu$$

At step j = N - 2 of the dynamic programming recursion

$$J_{N-2}^{*}(x_{N-2}) \triangleq \min_{u_{N-2}} ||Qx_{N-2}||_{p} + ||Ru_{N-2}||_{p}$$

$$+J_{N-1}^{*}(Ax_{N-2} + Bu_{N-2})$$
subj. to
$$x_{N-2} \in \mathcal{X}, \ u_{N-2} \in \mathcal{U},$$

$$Ax_{N-2} + Bu_{N-2} \in \mathcal{X}_{f}$$

Recall that $J_{N-1}^*(x_{N-1})$ is a convex and piecewise affine function of x_{N-1} , i.e.,

$$J_{N-1}^*(x_{N-1}) = \max_{i=1,\dots,n_{N-1}} \{c_i x_{N-1} + d_i\}$$

Rewrite the problem at step j = N - 2 as

$$J_{N-2}^*(x_{N-2}) \triangleq \min_{\substack{\mu, u_{N-2} \\ \text{subj. to}}} \mu$$

$$u \geq \|Qx_{N-2}\|_p + \|Ru_{N-2}\|_p + c_i(Ax_{N-2} + Bu_{N-2}) + d_i$$

$$i = 1, \dots, n_{N-1},$$

$$x_{N-2} \in \mathcal{X}, \ u_{N-2} \in \mathcal{U},$$

$$Ax_{N-2} + Bu_{N-2} \in \mathcal{X}_{N-1}$$

and solve it to calculate $J_{N-2}^*(x_{N-2})$, $u_{N-2}^*(x_{N-2})$ and \mathcal{X}_{N-2} .

Outline

- Constrained Linear Optimal Control
- 2 Constrained Optimal Control: 2-Norm Case
- 3 Constrained Optimal Control: 1-norm and ∞-norm
- 4 Infinite Horizon
 - Infinite Horizon Solution: 2-norm
 - A CLQR Algorithm
 - Infinite Horizon Solution: 1-norm and ∞ -norm
- Minimum Time Control

Infinite Horizon: 2-norm

Consider the following infinite-horizon constrained linear quadratic regulation problem (CLQR)

$$J_{\infty}^{*}(x(0)) = \min_{u_{0}, u_{1}, \dots} \sum_{k=0}^{\infty} x'_{k} Q x_{k} + u'_{k} R u_{k}$$
subj. to
$$x_{k+1} = A x_{k} + B u_{k}, \ k = 0, \dots, \infty$$

$$x_{k} \in \mathcal{X}, \ u_{k} \in \mathcal{U}, \ k = 0, \dots, \infty$$

$$x_{0} = x(0)$$

Consider the feasible set

$$\mathcal{X}_{\infty} = \{x(0) \in \mathbb{R}^n | \text{ Problem is feasible and } J_{\infty}^*(x(0)) < +\infty\}.$$

Observe that

- $\mathcal{X}_{\infty} = \mathcal{K}_{\infty}(\mathcal{O})$ with $\mathcal{O} = 0$
- If x(0) is close to the origin, then the constraints will never become active and the solution of the problem will yield the *unconstrained* LQR.

Definition (Maximal LQR Invariant Set $\mathcal{O}_{\infty}^{LQR}$)

Consider the system x(k+1) = Ax(k) + Bu(k). $\mathcal{O}_{\infty}^{LQR} \subseteq \mathbb{R}^n$ denotes the maximal positively invariant set for the autonomous constrained linear system:

$$x(k+1) = (A + BF_{\infty})x(k), \ x(k) \in \mathcal{X}, \ u(k) \in \mathcal{U}, \ \forall \ k \ge 0$$

where $u(k) = F_{\infty}x(k)$ is the unconstrained LQR control law obtained from the solution of the ARE.

We guess that there is some finite time $\bar{N}(x_0)$ at which the state enters $\mathcal{O}_{\infty}^{\text{LQR}}$. After $\bar{N}(x_0)$ the system evolves in an unconstrained manner $(x_k^* \in \mathcal{X}, \ u_k^* \in \mathcal{U}, \ \forall k > \bar{N})$.

Use the *optimality principle* and split the problem into *two subproblems*.

- up to time $k = \bar{N}$, where the constraints may be active

Up to time $k = \bar{N}$

$$J_{\infty}^{*}(x(0)) = \min_{u_{0}, u_{1}, \dots} \sum_{k=0}^{N-1} x_{k}' Q x_{k} + u_{k}' R u_{k} + J_{\bar{N} \to \infty}^{*}(x_{\bar{N}})$$
subj. to $x_{k} \in \mathcal{X}, \ u_{k} \in \mathcal{U}, \ k = 0, \dots, \bar{N} - 1$

$$x_{k+1} = A x_{k} + B u_{k}, \ k \ge 0$$

$$x_{0} = x(0).$$

At time $k > \bar{N}$

$$J_{\bar{N}\to\infty}^*(x_{\bar{N}}) = \min_{\substack{u_{\bar{N}}, u_{\bar{N}+1}, \dots \\ \text{subj. to}}} \sum_{k=\bar{N}}^{\infty} x_k' Q x_k + u_k' R u_k$$

$$\text{subj. to} \quad x_{k+1} = A x_k + B u_k, \ k \ge \bar{N}$$

$$= x_{\bar{N}}' P_{\infty} x_{\bar{N}}$$

Theorem (Equality of Finite and Infinite Optimal Control)

For any given initial state x(0), the solution to the two subproblems is equal to the infinite-time solution of, if the terminal state $x_{\bar{N}}$ of subproblem 1 lies in the positive invariant set $\mathcal{O}^{LQR}_{\infty}$ and no terminal set constraint is applied, i.e. the state 'voluntarily' enters the set $\mathcal{O}^{LQR}_{\infty}$ after \bar{N} steps.

Q: How to determine $\bar{N}(x_0)$?

Theorem (Explicit solution of CLQR)

Assume that (A, B) is a stabilizable pair and $(Q^{1/2}, A)$ is an observable pair, $R \succ 0$. The state-feedback solution to the (infinite time) CLQR problem in a compact set of the initial conditions $S \subseteq \mathcal{X}_{\infty} = \mathcal{K}_{\infty}(\mathbf{0})$ is time-invariant, continuous and piecewise affine on polyhedra

$$u^*(k) = f_{\infty}(x(k)), \quad f_{\infty}(x) = F^j x + g^j \quad \text{if} \quad x \in CR^j_{\infty}, \quad j = 1, \dots, N^r_{\infty}$$

where the polyhedral sets $CR^j_{\infty} = \{x \in \mathbb{R}^n : H^j x \leq K^j\}, j = 1, \dots, N^r_{\infty} \text{ are a finite partition of the feasible compact polyhedron } S \subseteq \mathcal{X}_{\infty}.$

Consider the constrained finite time optimal control problem

$$\begin{array}{ll} J_0^*(x(0)) = & \min_{U_0} & J_0(x(0),U_0) \\ & \text{subj. to} & x_{k+1} = Ax_k + Bu_k, \ k = 0,\dots,N-1 \\ & x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0,\dots,N-1 \\ & x_N \in \mathbb{R}^n \quad \text{no terminal constraints} \\ & x_0 = x(0) \end{array}$$

with

$$J_0(x(0), U_0) \triangleq \underbrace{\|P_{\infty} x_N\|_p}_{P_{\infty} \text{ solution of the ARE}} + \sum_{k=0}^{N-1} \|Qx_k\|_p + \|Ru_k\|_p$$

All states entering the invariant set $\mathcal{O}^{LQR}_{\infty}$ in N steps, through the computed control law are *infinite-horizon optimal*.

① Compute the Maximal LQR Invariant Set $\mathcal{O}_{\infty}^{\text{LQR}}$. Be

$$\mathcal{P}_0 \triangleq \mathcal{O}_{\infty}^{\text{LQR}} = \{ x \in \mathbb{R}^n | H_0 x \le K_0 \}$$

- **②** Find a point \bar{x} by stepping over a facet of $\mathcal{O}^{LQR}_{\infty}$ with a small step ϵ .
- **3** Solve the CFTOC for $x(0) = \bar{x}$, $\mathcal{X}_f = \mathbb{R}^n$, $P = P_{\infty}$, N = 1.

(g) Compute positive invariant region $\mathcal{O}_{\infty}^{\mathrm{LQR}}$ after \bar{N} and step over facet with step-size ϵ .

(h) Solve QP for new point with horizon N = 1 to create the first constrained region \mathcal{P}_1 .

(i) Compute reachability subset of \mathcal{P}_1 to obtain \mathcal{ITP}_1^1 .

• If the problem is feasible, be

$$\mathcal{P}_1 = \{ x \in \mathbb{R}^n | H_1 x \le K_1 \}$$

the polyhedron defined by the active constraints at \bar{x} and $U_1^* = F_1 x(0) + G_1$ the associated control law.

3 Find the points in \mathcal{P}_1 evolving in one step to $\mathcal{O}_{\infty}^{\mathrm{LQR}}$ as

$$x_1 \in \mathcal{O}_{\infty}^{\text{LQR}}, \ x_1 = Ax_0 + BU_1^*,$$

 $x_0 \in \mathcal{P}_1$

(j) Compute positive invariant region $\mathcal{O}_{\infty}^{\text{LQR}}$ after \bar{N} and step over facet with step-size ϵ .

sco Borrelli (UC Berkeley)

(k) Solve QP for new point with horizon N = 1 to create the first constrained re-

gion \mathcal{P}_1 .

March 10, 2011

At a generic step r of the algorithm

- Step over a facet to a new point \bar{x} and determine the polyhedron \mathcal{P}_r and the associated control law $(U_N^* = F_r x(0) + G_r)$ with the horizon N.
- ② Extract from \mathcal{P}_r the set of points entering $\mathcal{O}_{\infty}^{\text{LQR}}$ in N time-steps by applying U_N^* .

$$x_N \in \mathcal{O}_{\infty}^{\mathrm{LQR}}$$

 $x_0 \in \mathcal{P}_r$

② Continue exploring the facets increasing N. The algorithm terminates when \mathcal{S} is covered or when we can no longer find a new feasible polyhedron \mathcal{P}_r .

Theorem (Exact Computation of $\bar{N}_{\mathcal{S}}$)

If we explore any given compact set S with the proposed algorithm, the largest resulting horizon is equal to \bar{N}_S , i.e.,

$$\bar{N}_{\mathcal{S}} = \max_{\mathcal{ITP}_r^N} \max_{r=0,\dots,R} N$$

Consider the following *infinite-horizon* problem with constraints

$$J_{\infty}^{*}(x(0)) = \min_{u_{0}, u_{1}, \dots} \sum_{k=0}^{\infty} \|Qx_{k}\|_{p} + \|Ru_{k}\|_{p}$$
subj. to
$$x_{k+1} = Ax_{k} + Bu_{k}, \ k = 0, \dots, \infty$$

$$x_{k} \in \mathcal{X}, \ u_{k} \in \mathcal{U}, \ k = 0, \dots, \infty$$

$$x_{0} = x(0)$$
(9)

with Q and R full column rank and the constraint sets \mathcal{X} and \mathcal{U} containing the origin in their interior and the set

$$\mathcal{X}_{\infty} = \{x(0) \in \mathbb{R}^n | \text{ Problem } (9) \text{ is feasible and } J_{\infty}^*(x(0)) < +\infty \}.$$

Observe that

- **Q** Full rank assumption on Q and R implies $u_k^* \to 0$ and $x_k^* \to 0$.
- ② If x(0) close enough to the origin, the **problem** is unconstrained
- Splitting the problem into a constrained and unconstrained still works.
 But the calculation of the maximal invariant set is not trivial since the unconstrained controller is a PPWA.
- The DP approach is straightforward here (recall that in the 2-norm case it was not because of the PPWQ structure of the cost-to-go), since the cost-to-go is PPWA.

Outline

- 1 Constrained Linear Optimal Control
- 2 Constrained Optimal Control: 2-Norm Case
- ③ Constrained Optimal Control: 1-norm and ∞-norm
- 4 Infinite Horizon
- 5 Minimum Time Control
 - Example

Minimum Time Control

Consider the *minimum-time* constrained optimal control problem

$$J_0^*(x(0)) = \min_{U_0,N} \qquad N$$
 subj. to
$$x_{k+1} = Ax_k + Bu_k, \ k = 0,\dots, N-1$$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0,\dots, N-1$$

$$x_N \in \mathcal{X}_f$$

$$x_0 = x(0)$$

IDEA

- **Offline phase** Solve a sequence of 1-step problems to enter \mathcal{X}_f in $1, 2, \ldots, N$ steps. Recall that the result for each problem is a state feedback controller along with a feasibility set.
- **Online phase** Given the current state, use the controller leading to \mathcal{X}_f in minimum time.

Minimum Time Control. Offline Phase

Solve the following multiparametric program

$$\min_{u_0} c(x_0, u_0)
\text{subj. to} x_1 = Ax_0 + Bu_0
 x_0 \in \mathcal{X}, u_0 \in \mathcal{U}
 x_1 \in \mathcal{X}_f$$

with $c(x_0, u_0)$ any quadratic function. The solution is a PPWA controller and $\mathcal{X}_0 = \mathcal{K}_1(\mathcal{X}_f)$

Continue setting up and solving 1-step mp programs

$$\min_{u_0} c(x_0, u_0)
\text{subj. to} x_1 = Ax_0 + Bu_0
 x_0 \in \mathcal{X}, u_0 \in \mathcal{U}
 x_1 \in \mathcal{K}_{j-1}(\mathcal{X}_f)$$

where
$$\mathcal{X}_0 = \mathcal{K}_j(\mathcal{X}_f)$$

 \bullet Obtain $\mathcal{K}_1(\mathcal{X}_f), \ldots, \mathcal{K}_N(\mathcal{X}_f)$

Minimum Time Control. Online Phase

Algorithm (Minimum-Time Controller: On-Line Application)

- \bigcirc Obtain state measurement x.
- **9** Find controller partition $c_{min} = \min_{c \in \{0,...,N\}} c$, s.t. $x \in \mathcal{K}_c(\mathcal{X}_f)$.
- **3** Find controller region r, such that $x \in \mathcal{P}_r^{c_{\min}}$ and compute $u_0 = F_r^{c_{\min}} x + G_r^{c_{\min}}$.
- **4** Apply input u_0 to system and go to Step 1.

Minimum Time Control. Example

Consider the double integrator

$$\left\{ \begin{array}{rcl} x(t+1) & = & \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] x(t) + \left[\begin{array}{cc} 0 \\ 1 \end{array} \right] u(t) \\ y(t) & = & \left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right] x(t) \end{array} \right.$$

subject to constraints

$$-1 \le u(k) \le 1, \ k = 0, \dots, 5$$

$$\begin{bmatrix} -10 \\ -10 \end{bmatrix} \le x(k) \le \begin{bmatrix} 10 \\ 10 \end{bmatrix}, \ k = 0, \dots, 5$$

Minimum Time Control. Example

