Homework #6

Rhea Mae Edwards # Ott brobsitio 932-389-303

1) Arithmetic Crowits

5.1 Delay 79mes for 64-8st Adders

Two-Thout Grave Delay = 150 ps Full Adder Delay = 450 ps

a) A Rapple Corry Adder

Tripple = N+FA

tripple = 64 (450) | tripple = 23800 ps

b) A Carry-lookahead Adder with 4-8i+ Blocks

c) A Prefax Adder

2100 ps

5.2 Compareng a 64-Bit Ripple Camy Adder and a 64-Bit corry-backatical Adder - only Two Input Gales Used State Power Negligible Two-thput Gak = 15 Mm2 = 50 psdekay = 20 FF to halpate rapacitance 64-BA Ripple-Corry Adder 64-BH Carry-Lookenhead Adder

64(7 gates) = 448 Gates 16 (47 gates) = 752 Gates

a) Operating at 100 MHz and 1.2V, Area, Delays, Power

Arapple = 448(15) Acia = 782(15) Area: Arappie = 6720 jum² Acu = 11280 jum²

Aripple < ACLA)

Delay: $+_{FA} = 3(50) = 150 ps$

trapple = 64(150)

trapple = 9600ps

ten = 50+6(50) + (64/4-1)(2×50) + 4(150)

tow = 2450ps

tropple > tcla

Power: P= bacvap

Prapple = 12 ((448 x 20 x 10-15) (1.2)2 (100 x 106))

Propole = 0.00064512 W

Pax = 1/2 ((782×20×10-15)(1.2)2(100×106))

PCLA = 0.00108288 W

Propple < PCLA

6) The Kapple-Carry Adder as smaller and requires less power when compared to the Carry-lookahead Adder but at does take larger to process due to also larger deaus. The Carry-lookahead Adder may be broper and realizing there power, but it is also fasher when compared to the Ripple-Cantry Adder.

5.3 Designer Deastons

A designer impht chase a ripple culty adder instadof a callylookahad adder to it requires less pore and less power; even though it may take a killent known to process clue to its longer debut time. Maybe the designer is designing a calculater where physical space and less usage of power consumption may seem more important over the length of time it takes for the device to calculate.

2) Interview Questions

5.1 Largest Possible Result

Multiplying Two Unsigned N-BA Numbers

Largest Possible Result = $(2^n - 1)^2$

What is the largest possible result when adding two unsigned N-bot numbers?

$$\frac{+11}{110}$$
 $\frac{+111}{1110}$ $\frac{+1111}{1110}$ $\frac{+1111}{1110}$ $\frac{+1111}{1110}$ $\frac{+1111}{1110}$ $\frac{+1111}{1110}$ $\frac{+1111}{11110}$ $\frac{+1111}{1110}$ $\frac{+11111}{1110}$ $\frac{+11111}{1100}$ $\frac{+11111}{$

Largest Possible Result = $2(2^{n}-1)$