

New Test Beam Results of 3D and Pad Detectors Constructed with Poly-Crystalline CVD Diamond

Vienna Conference on Instrumentation

Michael Reichmann 19th of February, 2019

Table of Contents

- Motivation
- 2 Introduction
- 3 3D Pixel Detectors
- Pad Detectors (Rate Studies)
- Conclusion
- 6 Outlook

Section 1

Motivation

Diamond as Detector Material

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- \bullet current detectors is designed to survive ${\sim}12\,\text{month}$ in High-Luminosity LHC
- $\bullet \to CERN\ R/D$ for more radiation tolerant detector designs and/or materials

Diamond as Detector Material

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2
 ight)$
- ullet current detectors is designed to survive ${\sim}12\,\mathrm{month}$ in High-Luminosity LHC
- → CERN R/D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - ▶ isolating material
 - ▶ high charge carrier mobility
 - ► smaller signal than in silicon with same thickness (large bandgap)
 - \blacktriangleright after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

M. Reichmann (FIHzürich)

Diamond as Detector Material

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz/cm}^2
 ight)$
- ullet current detectors is designed to survive $\sim\!12\,\mathrm{month}$ in High-Luminosity LHC
- → CERN R/D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - ▶ isolating material
 - ▶ high charge carrier mobility
 - ► smaller signal than in silicon with same thickness (large bandgap)
 - $\,\blacktriangleright\,$ after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

Work of RD42:

- investigate signals and radiation tolerance in various detector designs:
 - ▶ pad → full diamond as single cell readout
 - ightharpoonup pixel ightarrow diamond sensors on state-of-the-art pixel chips
 - ▶ 3D pixel → detector with design to reduce drift distance

M. Reichmann (all zürich) 3D Diamond Detectors 19th of February, 2019

2 / 22

Section 2

Introduction

Diamond as Particle Detector

(a) Detector Schematics

(b) 15 cm Ø pCVD Diamond Wafer

- detectors operated as ionisation chambers
- poly-crystals produced in large wafers
- metallisation on both sides

M. Reichmann (FIHzürich)

Working Principle

- after large radiation fluence all detectors become trap limited
- bias and readout electrode inside detector material
- ullet same thickness D o same amount of induced charge o shorter drift distance L
- increase collected charge in detectors with limited mean drift path (Schubweg)

M. Reichmann (FIHzürich)

Laser drilling

- "drilling" columns using 800 nm fs-LASER (Oxford)
- convert diamond into resistive mixture of carbon phases (i.a. DLC, graphite, ...)
- usage of Spatial Light Modulation (SLM) to correct for vertical aberration
- initial column yield $\sim 90 \% \rightarrow \text{now} \ge 99 \%$
- \bullet initial column diameter 6 \sim 10 $\mu m \rightarrow$ now 2.6 μm

Bump Bonding

(a) bump bond schematics

- (b) 3×2 bump pads
- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- ullet small gap (\sim 15 μ m) to the surface to avoid a high voltage break-through

3D Diamond Detectors

Bump Bonding

- (b) 1 × 5 bump pads
- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- \bullet small gap $(\sim\!15\,\mu\text{m})$ to the surface to avoid a high voltage break-through

Progress in Diamond Detectors

3D Detectors - History in Diamonds:

- proved that 3D works in pCVD diamond
- scale up the number of columns per detector: $\mathcal{O}(100) \to \mathcal{O}(1000)$ (x40)
- reducing the cell size: $150 \, \mu m \times 150 \, \mu m \rightarrow 50 \, \mu m \times 50 \, \mu m \rightarrow 25 \, \mu m \times 25 \, \mu m$ (soon)
- reducing the diameter of the columns: $6 \sim 10 \, \mu m \rightarrow 2.6 \, \mu m \rightarrow 1 \sim 2 \, \mu m$ (soon)
- ullet \rightarrow increasing column yield: \sim 90 % \rightarrow >99 %
- recently tested first irradiated 50 $\mu m \times 50 \, \mu m$ 3D detector (3.5 $\cdot \, 10^{15} \, n/cm^2)$

3D Pixel Detectors:

- visible improvements with each step reducing the cell size
- all worked as expected (to first order)

Rate Studies in Pad Detectors:

- particle fluxes from 1 kHz/cm² up to 20 MHz/cm²
- irradiations up to $4 \cdot 10^{15} \, \text{n/cm}^2$

Section 3

3D Pixel Detectors

7 / 22

1×5 Ganging

Figure: Final Detector

- readout chip (ROC): ATLAS FEI4
- Size: 5 mm × 5 mm
- \bullet active area $3 \, \text{mm} \times 3 \, \text{mm}$
- tin-silver bump bonding at IFAE (Barcelona)

Efficiencies

- two different tunings of the FEI4 chip
- efficiency with low threshold significantly higher: 97.7 %
- inefficiencies most likely due to bump bonding issues

9 / 22

Time Over Threshold

Figure: Time over threshold

- 5 tot ≈ 11000 e
- \bullet mean of the ToT distribution: $6.73 \rightarrow 14800 \, \mathrm{e}$
- 81 % of the charge collected

2 × 3 Ganging

Figure: Final Detector

- readout chip (ROC): CMS PSI46digv2.1repspin
- Size: $5 \, \text{mm} \times 5 \, \text{mm}$
- active area 3.5 mm × 3.5 mm
- indium bump-bonding (Princeton)

11 / 22

Efficiencies - First PSI Beam Test

(a) Efficiency Map Diamond

(b) Efficiency Map Silicon

- beam test right after the first bump bonding (top right corner badly bonded)
- spatial resolution of $\mathcal{O}(100 \, \mu m)$
- efficiency in red fiducial area: Diamond: 99.1 %, Silicon: 99.9 %

Efficiencies - First PSI Beam Test

(a) Efficiency Map

- (b) Efficiency vs. voltage
- beam test right after the first bump bonding (top right corner badly bonded)
- spatial resolution of $\mathcal{O}(100 \, \mu \text{m})$
- effective efficiency (relative to silicon) in red fiducial area: 99.2 %
- already fully efficient at 30 V
- ROC stopped working after this beam test

Efficiencies - CERN Beam Test

Figure: Efficiency at threshold of \sim 3500 e

- high resolution measurement at CERN
- find non-working/non-connected cells
- sensor twice re-bump-bonded with the same indium (no reprocessing)
 - ▶ no removal of old bumps, no change of surface metallisation

M. Reichmann (FIHzürich) 3D Diamond Detectors 19th of February, 2019

13 / 22

Efficiencies - Second PSI Beam Test

- sensor twice re-bump-bonded with the same indium (no reprocessing)
- ullet effective efficiency in red fiducial area: 97.3 %
- already fully efficient at 30 V
- ullet only very small area working well o many bump bond problems

M. Reichmann (FIHzürich)

Pulse Height - Second Beam Test

- (b) Pulse height vs. voltage
- wrong pulse height calibration in first beam test
- full charge collection also at 30 V
- \bullet mean pulse height: 11 000 e \rightarrow \simeq 14 000 e at CERN \rightarrow consistent with 1 \times 5 data

Section 4

Pad Detectors (Rate Studies)

Leakage Currents

Figure: Leakage Current of a non-irradiated pCVD diamond

- ullet very low base leakage current (no beam) of $\mathcal{O}\left(1\,\mathrm{nA}\right)$
- leakage current of most of the diamonds linear in flux
- basis of most diamond beam monitors at CERN

M. Reichmann (FIII zürich) 3D Diamond Detectors 19th of February, 2019

16 / 22

Signal Maps

- (a) scCVD (6dB attenuation)
- uniform signal distribution in scCVD
- region dependent signal in pCVD

(b) pCVD

Silicon Diode

- silicon diode as reference
- as expected no dependence on rate

Rate Studies in Irradiated pCVD

- rate scaled to the mean
- pulse height very stable after irradiation
- ullet using rad hard electronics o noise stays the same

M. Reichmann (FIHzürich)

Rate Dependence

- ullet less than 20 % of the tested diamonds show rate dependence >10 %
- ullet very large rate dependence at the first measurement (>90 %)
- ullet after reprocessing and surface cleaning with RIE very stable behaviour (\sim 2%)
- feasible to "fix" bad diamonds

Section 5

Conclusion

Conclusion

- strongly improved fabrication of 3D diamonds
 - ▶ 40x more cells
 - smaller cell size
 - ► thinner columns
- 3D Detectors work well in pCVD diamond
 - ▶ 99.2 % efficiency
 - nearly full charge collection
- rate tests of irradiated pCVD diamonds up to $4 \cdot 10^{15} \, \text{n/cm}^2$
- irradiated pCVD diamond does not show rate dependence to $\mathcal{O}(2\%)$
- possible to repair pCVD diamonds with surface issues

Section 6

Outlook

Outlook

- \bullet results of $3.5 \cdot 10^{15} \, n/cm^2$ irradiated $50 \, \mu m \times 50 \, \mu m$ detectors
- \bullet continue irradiation up to $1 \cdot 10^{16} \, \text{n/cm}^2$
- test both 50 μ m imes 50 μ m and 25 μ m imes 25 μ m pixel detectors
- \bullet reduce column diameter to $1\sim 2\,\mu\text{m}$
- ullet build pixel device on newest RD53 chip (50 $\mu m imes 50 \, \mu m$ pixel pitch)
- continue scale up by 10x

