Path dependence & Local interaction models

201927507 김예서 201927527 성하림

201927532 이소진

20192/532 이오진

201927545 최원준

201927549 홍지민

201527137 정대현

<목차>

- 1. Path dependence의 개념과 설명
- 2. Path dependence의 실제 사례와 적용 아이디어
- 3. 내용 정리와 생각해 볼 점
- 4. Local interaction models의 개념과 설명
- 5. Local interaction models의 실제 사례와 적용 아이디어
- 6. 내용 정리와 생각해 볼 점

14장의 개념과 설명

Path dependence 경로의존성 Polya process

The balancing process

Tipping point

Path dependence 경로의존성

Path dependence 경로의존성 어떤 일을 수행하는 데 있어서
한번 일정한 경로에 의존하기 시작하면
나중에 그 경로가 비효율적인 것을 알게 되더라도
그 경로의 방식을 벗어나지 못하게 되는 사고의 습관

Polya process & The balancing process

Polya process

항아리에 흰 공과 회색 공이 있다.

랜덤으로 공을 뽑고 하나를 뽑으면 같은 색의 공을 추가로 더해 항아리에 집어넣는다.

이 시행을 반복함으로써 여러 번 나온 색의 공이 뽑힐 확률이 점점 높아지는 현상을 확인할 수 있다.

Polya process & The balancing process

Polya process

경로에 의한 결과와 평형을 만든다.(긍정적 피드백) 같은 색의 공을 추가적으로 더하면 두 규칙적인 속성이 여전히 유 지된다.

색상의 어떤 비율도 발생할 수 있으며 동등하게 개연성을 가진다.

Polya process & The balancing process

The balancing process

항아리에 흰 공과 회색 공이 있다.

랜덤으로 공을 뽑고 하나를 뽑으면 다른 색의 공을 추가로 더해 항아리에 집어넣는다.

이 시행을 반복함으로써 한 번 나온 색의 공이 다시 나올 확률은 점점 줄어든다.

>경로에 의한 결과는 만들지만 평형은 만들 수 없다. (부정적 피 드백)

Path dependence & Tipping point

Figure 14.2: A Tipping Point vs. Path Dependence

Path Dependence_ QWERTY

QWERTY 키보드

수동 타자기

본래 타이핑의 속도를 일부러 늦추도록 비효율적으로 설계되었으나, 오랫동안 익숙하고 친숙해져 오늘날에도 표준적인 QWERTY 배열

Polya Process_ Apple

색상에 있어 어떤 비율도 발생 가능하며, 동등한 개연성 가짐 → 어떤 색상의 제품을 제작해야 하는지 고민해야 함

The Balancing Process Olympic

아메리카

아시아

오세아니아

제2차 세계대전 이후로는 각 대륙별로 비슷한 수만큼의 올림픽 게임들이 개최됨. (장기적으로 동일한 비율로 수렴)

Path Dependence_ Microsoft

IBM과 Microsoft의 개인용 컴퓨터 개발 작업

→ Microsoft가 PC 기반으로 세계 컴퓨터 시장을 호령할 기반 갖춤

Tipping Point_Assasination of Archduke Franz Ferdinand

프란츠 페르디난트 대공 암살 사건 → 제1차 세계대전

14. Path Dependence Summary

POLYA PROCESS

긍정적 피드백 경로에 의한 결과와 평형

BALANCING

PROCESS

부정적 피드백

경로에 의한 결과와 평형 X 결과적으로 동일한 비율 수렴

TIPPING POINT

예측불허의 임계점 해당 임계점을 넘는 순간 확률 급증

시사점

관성 관성의 법칙관성의 법칙처럼 시행이 증가할수록
확률이 높아짐

기회비용 낮은 기회비용의 선택 기회비용이 경로의존성에 영향을 미침

주관적 요소 인간의 감성, 익숙함 주관적 요소들이 확률을 높이고 높은 확률이 주관적 요소를 생성

시사점

시사점

경로의존성의 해결책

50%확률

매순간 다양성 고려 매순간 다양성을 고려한 피드백을 통해 50% 확률 유지

TIPPING POINT

티핑 포인트 생성 티핑 포인트를 통해 기존 경로를 탈피

경로의존성의 해결책

Local interaction models

- 1) Local majority model
 - -격자판 안에 있는 9개의 셀 -셀의 상태는 On 또는 Off 가운데에 위치한 셀 "C"->총 8개의 이웃 가짐.

-If 5개 또는 그 이상의 이웃들의 상태가 자신이 나타내는 상태와 다르면 -> <u>이웃의 상태와 같은 상태로</u> change.

1	2	3
4	С	5
6	7	8

"Equilibrium configuration(평형 상태의 배치)"

• Equilibrium configuration(평형 상태의 배치) : 모든 셀들이 다수의 이 웃들이 나타내는 상태로 어울리게(매칭) 되는 것.

<특성>

- -초기 배치에 의존하기는 하지만 game of life에서 처럼 민감하게 의존하지는 않음.
- -하나의 셀이 이웃에 따라 상태를 변화시켜도 최종 배치에 큰 영향을 미치지는 않음.
- -격자판의 패턴은 셀들이 활성화 되는 순서에 의존.

"Path dependence(경로 의존성)"을 나타낸다.

Example)

- 1. Physical systems(물리적 체계)
- ■격자판 = 자기장
- 각각의 셀 = 자석
- 셀의 상태 = 원자 회전(두 상태 중 하나-negative or positive) 이 때 셀들의 상태는 주변에 있는 셀들, 즉 이웃 셀들의 상태와 매칭.
- 2. Local coordination among people(사람들 사이의 조화)
- ■격자판 = 사회적 네트워크
- ■각각의 셀 = 각 개인의 행동(손 흔들기, 인사하기, 중단시키기, 손 들기) 사람들은 이웃들의 행동과 같은 행동을 하고 싶어 함.

예외 현상) <u>"patchy equilibrium configuration"</u>(고르지 못한 평형 배치)

- =frustrated state(Physical systems(물리적 체계))
- =suboptimal equilibrium(social network(사회적 시각))
- 인사하는 사람에 상응하기 위해 손 흔들기 or 고개 숙이기 등 다른 행동들
- 패치들의 경계에 있는 사람: 이웃들 과의 <u>상호작용</u>에 서투를 수 있음.

Why?

=>상호작용의 효과(이웃의 상태에 따라 달라지는 현상)가 <u>지역적(locally)</u>으로만 적용되기 때문.

Why?=> 상호작용의 효과(이웃의 상태에 따라 달라지는 현상)가 <u>지역적</u> (locally)으로만 적용되기 때문.

- If) 셀들의 상태가 지역적인 것을 넘어 세계적으로 다수인 상태에 매칭
- -> 셀들이 같은 상태가 되는 속도 매우
- : 공통적인 행동/같은 상태가 되는 것은 넓은 네트워크를 필요로 함.

"The paradox of coordination"
사람들이 <u>지역적</u>으로만 조화된다면 세계적인 배치는 다양성이 만들 어진다.

2) The Game of life

- Local majority와 마찬가지로 격자판 안에서 일어나며 안에 존재하는 셀들은 두 상태 중 한 상태를 나타냄.
- 이 때 모든 셀들의 상태가 <u>동시에 업데이트 되고 두 가지 한계점을 가지고 있음.</u> (->초기배치, time1에서의 배치, time2에서의 배치... 등)

If)각각의 셀들의 상태가 alive 또는 dead라고 했을 때 각각의 셀들은 8개의 인접한 이웃을 가지고 있으며 두 가지 규칙(한계점)에 의해 상태를 동시에 변화 시킴.

Rule1: life rule: 정확하게 3개의 살아있는 이웃을 가진 dead cell은 죽게 된다.

Rule2: death rule: 2개보다 작거나 3개보다 많은 살아있는 이웃을 가진 live cell은 죽게된다.

2) The Game of life

<결과>

•The game of life 에서는 초기 조건에 의존하여 다양한 결과가 나올 수 있음.(셀들의 상태가 동시에 업데이트 되기 때문)

즉, 한계점(규칙)에 의존하는 작은(simple) 부분들(parts)들이 모여 더 복잡한 현상(다양한 결과들 등)을 만들 수 있다.

Local majority와 Game of life의 비교

공통점	차이점	
-각각의 셀들이 두 가지 상태 중 하나를 나타낸다.	- Local majority는 초기 배치에 민감할 정도는 아 닌 정도로 의존하지만 Game of life 에서는 초기 배치가 중요한 부분 중 하나이다.	
-어떠한 상황에 의해 셀들의 상태가 바뀔 수 있다.		
-초기배치에 어느 정도는 의존한다.	- Local majority는 모든 셀들의 상태가 순차적으로 업데이트 되지만 Game of life 에서는 동시에 업데이트 된다.	
	- Local majority와 달리 Game of life 에서는 두 가지 한계점(규칙)이 존재한다.	
	- Local majority는 결과가 대부분 평형 상태의 배 치가 나오게 되지만 Game of life 에서는 다양한 결과가 나올 수 있다.	

Local interaction models 실제 사례

1) Boids

- 1986년에 Craig Reynolds가 만든 인공 생명 (artificial life) 프로그램.
- 새와 같은 동물들이 무리 지어 행동할 때 나타나는 조율된 행동 시뮬레이션.
- 새들의 행동의 복잡한 형태는 개체들의 상호작용을 통한 몇 가지 간단한 규칙들로 이루어져 있음.
- 컴퓨터 애니메이션에 공헌.

Local interaction models 실제 사례

<Boids의 간단한 세 가지 규칙. >

- (1) 분리(Separation)의 규칙 : 보이드는 다른 보이드 들과 적당한 거리를 유지하려고 함.
- (2) 정렬(Alignment)의 규칙 : 보이드는 주변의 다른 보이드 들과 동일한 방향과 속도를 유지하려고 함.
- (3) 응집(Cohesion)의 규칙 : 보이드는 주변 보이드 들의 평균 위치로 갈 수 있도록 그들의 방향과 속도를 조정함. _____

Local interaction models 적용 아이디어

Boids의 적용 아이 디어

- 각 새들이 집단행동에서 지키는 규칙들을 통해 행동 조율 규칙으로 복잡계(군집)에 모인 구성원들 간의 상호작용을 보여줌.
- 실제 새들도 동료와 부딪치지 않는 방법을 알고 있으며, 상대 동료가 자기를 들이받지 않을 것이라고 확신하기 때문에 나는 도중에도 방향을 바꿀 수 있음.

군집(집단) 비행, 행동을 하기 위해 규칙, 즉 사회적 맥락(Social Context)를 공유.

Local interaction models 실제 사례

- 2) 세포 자동자 (cellular automata)
- 1951년 폰 노이만이 고안한 모형.
- 여러 개의 튜링 기계를 29개의 상태를 가지는 2차원 격자형태로 나열.
- 생명을 수 많은 격자 상의 공간에 위치한 '코드' 로 논리의 산물이라 규정.
- 생명을 탄소유기물로부터 해방시켜 다양한 논리적 구조들로 확장시킴.
- 자기복제, 돌연변이, 자기조직 등의 특성을 발견할 수 있어 생명의 본질을 탐구하는데 유용.

Local interaction models 실제 사례

- 컴퓨터 바이러스
- 실제 바이러스와 매우 유사한 특징을 가진 대표적인 인공생명의 예.
- 다른 컴퓨터에 자신을 복제할 수 있고, 다른 프로그램을 변경시키는 프로그램으로 구성.
- 인공생명적으로 접근 하면 컴퓨터 바이러스가 자기 변화 메커니즘을 갖고 있어 새로운 변화에 적응 가능.

Local interaction models 적용 아이디어

세포 자동자 의 적용 아이 디어

- 셀(cell)은 상태정보를 가지고 매 시간, 단계마다 주위 다른 셀들의 상태를 확인하고 간단한 규칙에 의해 다른 시간, 단계의 상태를 결정지음.
- 이러한 셀들의 상태 또는 행동이 누적되어 전체적 인 행동이 이루어지며, "복잡계"를 구성함.

단순한 규칙들이 서로 상호작용하여 보다 질서 있고 의미 있는 복잡한 행동들을 만들어 낸다.

Local interaction models 를 적용한 다른 예시들

- 사람들의 대피 시뮬레이션, 비상구의 위치에 따른 변화 통해 건물 설계.
- 사람들이 거리에서 마주 걸어가는 패턴 통해 건물의 통로 구조나 도로 설계.
- 고속도로에서 자동차의 흐름 예측.
- 도로의 곡선, 언덕, 신호등, 제한 속도, 출구의 위치, 트럭의 양 등 변수 조절 시뮬레 이션으로 도로 설계.

15. Local Interaction Models Summary

Local Majority Model

지역적인 변화로 평형을 이루는 상호작용

Game of Life

전역적인 변화를 보여주는 여러가지 상호작용

해당 모델을 응용한 적용 사례

Craig Reynolds Boids 인공 생명 프로그램 예시

Automata Theory계산 능력이 있는 컴퓨터 과학

Cellular Automata수학의 이산 모델

Local Interaction Models의 시사점

단순함에서 파생되는 복잡성

토지이용 변화 예측 미로 생성과 품질 검증 대피 시뮬레이션 극장의 비상구 위치 설계

다양한 시뮬레이션 모델 적용

내쉬 균형 이론과 게임 이론 같은 상호작용 이론의 토대를 제공

