北京航空航天大学

2020-2021 学年 第二学期期末

《复变函数》

班 级	字 号	学 号		
姓 名	成 绩			

试题	_	 三	四	总 分
得分				

1

复变函数期末考试试卷 2021-06-28

班号	学号	姓名	成绩	_	
注意事项:	1、答案必须写	在试卷上,写在稿:	纸上无效;		
	2、本卷正卷共	???页,卷面	满分为 100 分。		
题目:					
一、判例	新题(共 20 分,	每小题 2 分。在每	小题后面打上合适的	り符号" √	"或
"×").1	l、函数 <i>f(z)</i> 在点	z_0 可导,则函数 $f(z)$)在 z ₀ 处解析。(×)	
2、若	函数 ƒ(z)在区域	D 内具有一阶连续(扁导数,则 $f(z)$ 在 D 内]解析。(x)
3、著	昔函数 ƒ(z)在区域	$\mathcal{L}D$ 内解析,则对 \mathcal{L}	内的任一条简单闭印	曲线 <i>C</i> ,有	
$\int_{c} f(z) dz =$	· 0 ·			(x)
4、有界整	函数必为常数。			(4)
5,	若函数 $f(z)$ 在区均	或 D 内的解析,对于	于 D 内的一个序列 $\{z$,,},有	
$f(z_n)=0,$	$n = 1, 2, 3, \cdots$,则有	在区域 D 内 $f(z)$ $≡$ () 。	(x)
6、讫	$\c b f(z)$ 在区域 $\c D$	内解析,且不为常数	数,则 $ f(z) $ 在 D 的	边界 <i>C</i> 上边	达到最
小值。				(x)
7、著		去奇点,则 $\operatorname{Res}(f(z))$	$(z),\infty)=0$ o	(×	()
8、若	z_0 为 $f(z)$ 的本情	生奇点,则 $\lim_{z\to z_0} f(z)$:	= ∞ 。	(:	×)

- 9、满足不等式 $\left| \frac{z-i}{z+i} \right| \le 2$ 的所有点 z 的集合是一个有界区域。 (×)
- 10、若函数 f(z) 在区域 D 内除去孤立奇点外解析,则 f(z) 为 D 内的亚纯函数。

二、 填空题(共30分,每空3分)

- 3、Ln(3-4i)的主值是 $\underline{\qquad}ln5-iarctan\frac{4}{3}\underline{\qquad}$ 。

它在 复平面上除去正实轴后得到的区域 内可以分出单值解析分支。

5、设
$$f(z) = \int_C \frac{e^{\xi}}{\xi - z} d\xi$$
,其中 $C: |\xi| = 4$,则 $f'(i\pi) = ____ - 2i\pi ___$

6、幂级数
$$\sum_{n=0}^{\infty} (2i)^n z^{2n+1}$$
的收敛半径为 $\frac{\sqrt{2}}{2}$ _____。

7、函数
$$f(z) = z^8 + 6z^3 + z$$
 在单位圆内的零点个数为_____3____。

- 8、函数 $\frac{\cot \pi z}{2z-3}$ 在 |z-i|=2 内的奇点个数是__4___。
- 9、设c为沿原点z=0到点z=1+i的直线段,则 $\int_c 2\bar{z}dz=_2$ ____。

三、 计算题(共36分)

1、(本题 8 分) 计算积分 $\oint_{|z|=2} \frac{2z-1}{z(z-1)^2} dz$ 。

解: 设 $f(z) = \frac{2z-1}{z(z-1)^2}$,则f(z)在|z|=2内只有两个极点,z=0为一级极点,z=1是二级极点,由留数计算得

$$\operatorname{Res}_{z=0} f(z) = \frac{2z-1}{(z-1)^2} \big|_{z=0} = -1, \operatorname{Res}_{z=1} f(z) = (\frac{2z-1}{z})' \big|_{z=1} = 1.$$

由留数定理得原式 = $2\pi i(-1+1) = 0$.

2、**(本题 8 分)** 求函数 $f(z) = \frac{1}{(z-1)(z-2)^2}$ 在 0 < |z-1| < 1 内的罗朗展式。

$$\mathbf{f}(z) = \frac{1}{(z-1)(z-2)^2} = \frac{1}{z-1} \frac{1}{(z-2)^2} = \frac{1}{z-1} \left(\frac{1}{1-(z-1)} \right)^2$$

$$=\frac{1}{z-1}\left(\sum_{n=0}^{\infty}(z-1)^n\right)'$$

$$= \sum_{n=1}^{\infty} n(z-1)^{n-2} \quad (0 < |z-1| < 1)_{\circ}$$

3、**(本题 10 分)** 应用留数计算实积分 $I = \int_{0}^{+\infty} \frac{x \sin x}{a^2 + x^2} dx$, 其中 a > 0。

解: $f(z) = \frac{z}{(a^2 + z^2)}$ 在实轴上解析,分母的次数比分子高,在上半平面上除去

z = ai 为一级极点外解析,并且 $f(z) \rightarrow 0(z \rightarrow \infty)$;

注意到
$$f(x) = \frac{x}{(a^2 + x^2)}$$
 为奇函数,于是

$$\int_{-\infty}^{+\infty} \frac{x e^{ix}}{(a^2 + x^2)} dx = 2\pi i \text{Res} \left[\frac{z e^{iz}}{z^2 + a^2}, z = ai \right] = \pi e^{-a} i$$

对比虚部得

$$\int_{-\infty}^{+\infty} \frac{x \sin x}{(a^2 + x^2)} dx = \pi e^{-a}$$

$$I = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x \sin x}{(a^2 + x^2)} dx = \frac{\pi e^{-a}}{2}$$

4、(本题 10 分) 求将上半平面 Im z > 0 映射成单位圆|w| < 1 的保形映射 w = f(z),且使 f(2i) = 0, $\arg f'(2i) = 0$ 。

解: 设映射为

$$w = f(z) = \lambda \frac{z - 2i}{z + 2i}$$
, 其中 λ 待定,且 $|\lambda| = 1$,

它把求将上半平面 $\operatorname{Im} z > 0$ 上的点 2i 映射为单位圆|w| < 1 的圆心,把 2i 关于实轴的对称点- 2i 映射为单位圆|w| = 1 的对称点 $w = \infty$ 。

由于
$$w'=f'(z)=\lambda \frac{4i}{(z+2i)^2}$$
, $w'(2i)=f'(2i)=-\frac{\lambda}{4}i$, 若使 arg $f'(2i)=0$,

只需取 $\lambda = i$ 即可。

于是所求映射为

$$w = f(z) = i \frac{z - 2i}{z + 2i} .$$

四、 得分

证明题(本题14分)

- (1) 证明代数基本定理: 任何 n(≥1) 次代数方程至少有一个根。
- (2) 若函数 f(z) 在区域内解析,且 arg f(z) 在 D 内为常数,试证 f(z) 必为常数。