Calcul différentiel

Exercice 1

Déterminer si les applications suivantes sont des immersions et/ou des submersions :

Determiner of less applications survaintes sont des infiniersions et/ou des subset
$$-\begin{cases} f_1: \mathbb{C}^* \to \mathbb{C}^* & \begin{cases} f_2: \mathbb{C} \to \mathbb{C} \\ z \mapsto z^2 \end{cases} & \begin{cases} f_2: \mathbb{C} \to \mathbb{C} \\ z \mapsto z^2 \end{cases} \end{cases}$$

$$-\begin{cases} f_3: \mathbb{R} \to \mathbb{R}^2 \\ (0, e^{-\frac{1}{t}}) \text{ si } t > 0 \\ (0, 0) \text{ si } t = 0 \\ (e^{\frac{1}{t}}, 0) \text{ si } t < 0 \end{cases} & \begin{cases} f_4: \mathbb{R} \to \mathbb{R}^2 \\ t \mapsto r(t) \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix} & \text{si } r^2 + (r')^2 \neq 0. \end{cases}$$

$$-\begin{cases} f_5: \mathbb{R}^3 \to \mathbb{R} \\ (x, y, z) \to x^2 + y^2 - z^2 \end{cases}$$

$$-\begin{cases} f_6: \mathbb{R} \to \mathbb{R}^2 \\ t \mapsto \begin{pmatrix} \cos(t) \\ \sin(2t) \end{pmatrix} \end{cases}$$

Pour le dernier exemple, trouver une fonction dont une ligne niveau est l'image de cette immersion. Que se passe-t-il en (0,0)?

Exercice 2

Soit A une matrice de $M_n(\mathbb{C})$ et λ une valeur propre simple de A. Montrer qu'il existe une submersion lisse $\phi: \Omega \to \mathbb{C}$, avec Ω voisinage ouvert de A telle $\phi(B)$ soit une valeur propre de B pour tout B.

Exercice 3

Soit U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}^m$ une fonction \mathcal{C}^k qui est une immersion. Montrer que pour tout x de U, il existe un voisinage V de x tel que f(V) est une sous-variété de \mathbb{R}^m . Est-ce que f(V) est une sous-variété de \mathbb{R}^m ?

Topologie

Exercice 4

Soient E un espace de Banach, F et G des evn.

- 1. Montrer qu'une limite simple d'applications linéaires continues de E vers F est une application linéaire continue.
- 2. Soit $B: E \times F \to G$ une application bilinéaire dont les applications partielles sont continues. Montrer que B est continue.

Exercice 5

Soient $\omega \in C^0([a,b],\mathbb{R})$ continue. Pour tout $n \in \mathbb{N}$, on considère des réels $(\lambda_{i,n})_{0 \le i \le n}$ et des points de [a,b] deux à deux distincts $(x_{i,n})_{0 \le i \le n}$.

Pour $f \in C^0([a,b],\mathbb{R})$ on note $I_n(f) = \sum_{i=0}^n \lambda_{i,n} f(x_{i,n})$ et $E_n(f) = \int_a^b f(x)\omega(x)dx - I_n(f)$.

1. Montrer que l'application $E_n: C^0([a,b],\mathbb{R}) \to \mathbb{R}$ est linéaire continue (pour la norme sup sur $C^0([a,b],\mathbb{R})$) et vérifie :

$$\sum_{i=0}^{n} |\lambda_{i,n}| - \int_{a}^{b} |\omega(x)| dx \le |||E_n||| \le \sum_{i=0}^{n} |\lambda_{i,n}| + \int_{a}^{b} |\omega(x)| dx$$

- 2. Montrer que les propositions suivantes sont équivalentes (Théorème de Polya) :
 - $\forall f \in C^0([a, b], \mathbb{R}) \lim_{n \to +\infty} E_n(f) = 0$
 - $-\forall P \in \mathbb{R}[X] \lim_{n \to +\infty} E_n(P) = 0 \text{ et } \exists M > 0 \ \forall n \in \mathbb{N} \ \sum_{i=0}^n |\lambda_{i,n}| \leq M$

Exercice 6

Soit $f: \mathbb{R}_{>0} \to \mathbb{R}$ une fonction continue, telle que pour tout $x \in \mathbb{R}_{>0}$, la suite $(f(nx))_{n \in \mathbb{N}_{>0}}$ tend vers 0 quand n tend vers $+\infty$. Montrer que f(x) tend vers 0 quand x tend vers $+\infty$.

Exercice 7 [Théorème de Corominas, ou de Sunyer y Balaguer]

Soit I un intervalle ouvert de \mathbb{R} , et $f: I \to \mathbb{R}$ une fonction \mathcal{C}^{∞} . On supose : $\forall x \in I, \exists n \in \mathbb{N}, f^{(n)}(x) = 0$. On se propose de montrer : $\exists n \in \mathbb{N}, \forall x \in I, f^{(n)}(x) = 0$ (autrement dit, f est une fonction polynomiale). On dit que $x \in I$ est polynomial s'il existe un voisinage de x dans I sur lequel f coïncide avec un polynôme.

- 1. Soit $J \subset I$ un intervalle tel que tout x de J est polynomial. Montrer que f coïncide avec un polynôme sur J.
- 2. Soit F_n l'ensemble des points x de I tels que $f^{(n)}(x) = 0$. Montrer que F_n est un fermé de I.
- 3. Soit Z l'ensemble des points de I qui ne sont pas polynomiaux. Montrer que Z est un fermé de I sans point isolé.
- 4. Soit $Z_n = Z \cap F_n$. On suppose que Z est non vide. Montrer qu'il existe un intervalle ouvert U de I et un entier n_0 tels que $Z \cap U \neq \emptyset$ et $Z \cap U \subset Z_{n_0}$.
- 5. Montrer que pour tout $x \in Z \cap U$, pour tout $n \geq n_0$, on a $f^{(n)}(x) = 0$.
- 6. Soit $x \in (I \setminus Z) \cap U$. Montrer qu'il existe a et b tels que]a, b[est un voisinage de x contenu dans $(I \setminus Z) \cap U$ et que a ou b est dans $Z \cap U$. En déduire que f coïncide sur]a, b[avec un polynôme de degré $\leq n_0$.
- 7. En déduire que f coïncide avec un polynôme de degré $\leq n_0$ sur U, puis que Z est vide, et conclure.