NAPAKA POLINOMSKE APROKSIMACIJE

Izrek 1. Naj bo dana funkcija f in točke $x_0, \ldots, x_n, t \in [a, b]$. Potem velja

$$f[x_0, x_1, \dots, x_n, t] = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$
 za nek $\xi \in [a, b]$.

Dokaz. Naj bo p_n interpolacijski polinom za funkcijo f na točkah x_0, \ldots, x_n . Definirajmo funkcijo

$$g(x) := p_n(x) + f[x_0, x_1, \dots, x_n, t] \underbrace{(x - x_0) \cdots (x - x_n)}_{w(x)} - f(x).$$

Ker je p_{n+1} interpolacijski polinom za funkcijo f na točkah x_0, \ldots, x_n, t , ima funkcija g n+2 ničel x_0, \ldots, x_n, t na intervalu [a, b]. Po Rolleovem izreku velja:

- g'(x): vsaj n+1 ničel na intervalu [a,b],
- g''(x): vsaj n ničel na intervalu [a, b],
- $g^{(3)}(x)$: vsaj n-1 ničel na intervalu [a,b],
- $g^{(n+1)}(x)$: vsaj 1 ničlo ξ na na intervalu [a,b].

Velja

$$0 = g^{(n+1)}(\xi) = p^{(n+1)}(\xi) - f^{(n+1)}(\xi) + f[x_0, x_1, \dots, x_n, t]w^{(n+1)}(\xi)$$
$$= -f^{(n+1)}(\xi) + f[x_0, x_1, \dots, x_n, t](n+1)!.$$

Iz zadnjega sledi trditev izreka.