Assignment 12

DESABOINA SRI SATHWIK-AI24BTECH11007

GATE-2024:EE

1) A 3-phase, $11\,kV$, $10\,MVA$ synchronous generator is connected to an inductive load of power factor $\frac{\sqrt{3}}{2}$ via a lossless line with a per-phase inductive reactance of $5\,\Omega$. The per-phase synchronous reactance of the generator is $30\,\Omega$ with negligible armature resistance. If the generator is producing the rated current at the rated voltage, then the power factor at the terminal of the generator is

(EE:2024)

1

- a) 0.63 lagging.
- b) 0.87 lagging.
- c) 0.63 leading.
- d) 0.87 leading.
- 2) For the three-bus lossless power network shown in the figure, the voltage magnitudes at all the buses are equal to 1 per unit (pu), and the differences of the voltage phase angles are very small. The line reactances are marked in the figure, where α , β , γ , and x are strictly positive. The bus injections P_1 and P_2 are in pu. If $P_1 = mP_2$, where m > 0, and the real power flow from bus 1 to bus 2 is 0 pu, then which one of the following options is correct?

(EE:2024)

a)
$$\gamma = m\beta$$

b)
$$\beta = m\gamma$$

c)
$$\alpha = m\gamma$$

d)
$$\alpha = m\beta$$

3) A BJT biasing circuit is shown in the figure, where $V_{BE} = 0.7 V$ and $\beta = 100$. The Quiescent Point values of V_{CE} and I_C are respectively

(EE:2024)

c) 2.61 V and 3.13 mA

b) 3.5 *V* and 2.46 *mA*

d) 4.6 V and 3.13 mA

4) Let f(t) be a real-valued function whose second derivative is positive for $-\infty < t < \infty$. Which of the following statements is/are always true?

(EE:2024)

- a) f(t) has at least one local minimum.
- b) f(t) cannot have two distinct local minima.
- c) f(t) has at least one local maximum.
- d) The minimum value of f(t) cannot be negative.
- 5) Consider the function $f(t) = (\max(0, t))^2$ for $-\infty < t < \infty$, where $\max(a, b)$ denotes the maximum of a and b. Which of the following statements is/are true?

(EE:2024)

- a) f(t) is not differentiable.
- b) f(t) is differentiable and its derivative is continuous.
- c) f(t) is differentiable but its derivative is not continuous.
- d) f(t) and its derivative are differentiable.
- 6) Which of the following differential equations is/are nonlinear?

(EE:2024)

a)
$$tx(t) + \frac{dx(t)}{dt} = t^2 e^t$$
, $x(0) = 0$

a)
$$tx(t) + \frac{dx(t)}{dt} = t^2 e^t$$
, $x(0) = 0$
b) $\frac{1}{2}e^t + x(t)\frac{dx(t)}{dt} = 0$, $x(0) = 0$
c) $x(t)\cos t - \frac{dx(t)}{dt}\sin t = 1$, $x(0) = 0$
d) $x(t) + e^{\left(\frac{dx(t)}{dt}\right)} = 1$, $x(0) = 0$

b)
$$\frac{1}{2}e^t + x(t)\frac{dx(t)}{dt} = 0$$
, $x(0) = 0$

d)
$$x(t) + e^{\left(\frac{dA(t)}{dt}\right)} = 1$$
, $x(0) = 0$

7) For a two-phase network, the phase voltages V_p and V_q are to be expressed in terms of sequence voltages V_{α} and V_{β} as $\begin{pmatrix} V_p \\ V_q \end{pmatrix} = S \begin{pmatrix} V_{\alpha} \\ V_{\beta} \end{pmatrix}$. The possible option(s) for matrix S is/are (EE:2024)

a)
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ d) $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$

8) Which of the following options is/are correct for the Automatic Generation Control (AGC) and Automatic Voltage Regulator (AVR) installed with synchronous generators?

(EE:2024)

- a) AGC response has a local effect on frequency while AVR response has a global effect on voltage.
- b) AGC response has a global effect on frequency while AVR response has a local effect on voltage.
- c) AGC regulates the field current of the synchronous generator while AVR regulates the generator's mechanical power input.
- d) AGC regulates the generator's mechanical power input while AVR regulates the field current of the synchronous generator.
- 9) Two passive two-port networks **P** and **Q** are connected as shown in the figure. The impedance matrix of network **P** is $Z_P = \begin{pmatrix} 40\Omega & 60\Omega \\ 80\Omega & 100\Omega \end{pmatrix}$. The admittance matrix of network **Q** is $Y_Q = \begin{pmatrix} 5S & -2.5S \\ -2.5S & 1S \end{pmatrix}$.

Let the ABCD matrix of the two-port network **R** in the figure be $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. The value of β in Ω is ______ (rounded off to 2 decimal places).

(EE:2024)

10) For the circuit shown in the figure, the source frequency is $5000 \, rad/sec$. The mutual inductance between the magnetically coupled inductors is 5 mH with their self inductances being $125 \, mH$ and $1 \, mH$. The Thevenin's impedance, Z_{th} , between the terminals P and Q in Ω is ______ (rounded off to 2 decimal places).

(EE:2024)

11) In the circuit shown, $Z_1 = 50\angle - 90^\circ \Omega$ and $Z_2 = 200\angle - 30^\circ \Omega$. It is supplied by a three phase 400 V source with the phase sequence being R-Y-B. Assume the watt meters W_1 and W_2 to be ideal. The magnitude of the difference between the readings of W_1 and W_2 in watts is ______ (rounded off to 2 decimal places).

(EE:2024)

12) In the (x, y, z) coordinate system, three point-charges Q, Q, and αQ are located in free space at (-1,0,0), (1,0,0), and (0,-1,0), respectively. The value of α for the electric field to be zero at (0,0.5,0) is ______ (rounded off to 1 decimal place).

(EE:2024)

13) The given equation represents a magnetic field strength $\mathbf{H}(r, \theta, \phi)$ in the spherical coordinate system, in free space. Here, \hat{r} and θ represent the unit vectors along r and θ , respectively. The value of P in the equation should be ______ (rounded off to the nearest integer).

$$\overline{H}(r,\theta,\phi) = \frac{1}{r^3} \left(\hat{r} P \cos \theta + \hat{\theta} \sin \theta \right)$$
(EE:2024)