

Energie Modell (MAG) NDM200

Datum: 10. Juni 2011 Version: 0.1 (27. Juni 2011)

NDM 200

Inhaltsverzeichnis

1	Einl	eitung					
2		Maschine					
	2.1	Beschreibung					
	2.2	Systemgrenzen					
	2.3	Gemessene Verbraucher					
3	Beti	riebszustände und Prozesse					
4	Mes	essungen					
	4.1	Überblick					
	4.2	Überblick der mittleren Leistungen					
	4.3	Messung M03: PR (VDI-Teil)					
	4.4	Leistung der CNC Komponenten für Messung M03					
	4.5	Temperatur von NDM Komponenten für Messung M03					
Lit	eratı	ır					

1 Einleitung
2 Maschine
2.1 Beschreibung
Die NDM 200 ist eine Drehmaschine. Bei dieser Messung wurde ein VDI-Teil ohne Rüsten gefräst.
2.2 Systemgrenzen
2.2 Systemgrenzen
Die Systemgrenzen ziehen wir um die Maschine inklusiv Kühlaggregate. Wir messen die zugeführte elektrische Leistung, die Druckluft- und den Stickstoffverbrauch. Tabelle ?? listet nicht berücksichtigte Energieflüsse auf.

Ausnahme: Bei der Umrechung der gemessenen Druckluft in elektrische Energie berücksich-

tigen wir den Wirkungsgrad eines durchschnittlichen Kompressors.

2.3 Gemessene Verbraucher

 ${\it Tabelle~1~listet~die~gemessenen~Energieverbraucher~auf}.$

Tabelle 1: Gemessene Verbraucher

ID	Name	Beschreibung
100	Gesamteinspeisung	Zuleitung aller elektrischen Verbraucher 400 V AC
10	Versorgung 24 V	E/A-Module, Bremsen, $24V$ -DC
11	Versorgung 230 V	
12	E/R Modul	
13	Überwachungsmodul	
20	CNC	Gesamtleistung aller Achsen. Gemessen vor dem Umrichter, 400V-AC
30	Absaugungsvorrichtung	
40	Hydraulikpumpe	
41	Impulsschmierung	
50	Kühlmittelpumpe Spindel	Geschlossenes Kühlwassersystem für Spindel Kühlung
51	Lüfter Rückkühlung n1	
52	Lüfter Rückkühlung n2	
60	Schaltschrankkühlung links	
61	Schaltschrankkühlung rechts	
62	${ m E/R}$ Modul Lüfter	
70	$\operatorname{Druckluft}$	

3 Betriebszustände und Prozesse

Die gemessenen Betriebszustände und Prozesse sind in Tabelle 2 beschrieben.

Tabelle 2: Prozesse und Betriebszustände

Nr.	Name	Beschreibung
1	AUS	Maschine spannungslos (Hauptschalter aus).
2	EIN	Maschine AUS (Hauptschalter ist eingeschaltet, Steuerspannung nicht
		eingeschaltet, Aktoren spannungslos (Standby)).
3	ST-EIN-NOT	Maschine EIN mit Nothalt (Steuerspannung eingeschaltet, Achsen
		nicht in Regelung.
4	ST-EIN	Maschine EIN ohne Nothalt (Achsen in Regelung).
5	PR	Maschine im Prozess (Achsen in Regelung, alle Einheiten laufen zy-
		klisch je nach Prozessablauf).

4 Messungen

4.1 Überblick

Tabelle 3 listet die Messungen auf.

Tabelle 3: Messungen

Name	Zustand	Beschreibung	${f Zeit}$
M03	$_{ m PR}$	VDI-Teil	12:50-13:06

4.2 Überblick der mittleren Leistungen

Abbildung 1 gibt einen Überblick über die mittleren Leistungen der Verbraucher von allen Messungen. Tabelle 5 enthält dieselbe Information.

Abbildung 1: Überblick über die mittlere Leistung.

Tabelle 4: Mittlere Leistung in kW

Verbraucher	M03
	kW
230V Versorgung	0.07
Versorgung 24 VDC	0.33
${ m E/R~Modul}$	0.00
${ m Ueberwachungsmodul}$	0.07
CNC Total	9.86
Absaugungvorrichtung	0.00
${ m Hydraulikpumpe}$	0.64
Kuehlmittelpumpe Spindel	0.61
Luefter Rueckkuehlung n1	0.04
Luefter Rueckkuehlung n2	0.87
Schaltschrankkuehlung links	0.21
Schaltschrankkuehlung rechts	0.11
${ m E/R}$ Modul Luefter	0.12
Total Verbruacher (ohne DL)	12.02
Einspeisung 400 VAC	11.94
Differenz	-0.08
Druckluft	0.30
Total (inkl. DL)	12.24

4.3 Messung M03: PR (VDI-Teil)

Abbildung 2: Messung M03: Zeitverlauf der Leistungen.

Abbildung 3: Messung M03: Mittlere Leistung der einzelnen Verbraucher.

4.4 Leistung der CNC Komponenten für Messung M03

Tabelle 5: Mittlere Leistung in kW

${f Verbraucher}$	M03
	kW
CNC Total	10.41
C1	6.47
W	0.34
X1	0.00
X2	0.00
Z1	0.00
Z2	0.01
Total	17.22

Abbildung 4: Messung M03: Temperatur von NDM Komponenten.

Abbildung 5: Messung M03: Mittlere Leistung der einzelnen Verbraucher.

Abbildung 6: Messung M03: Mittlere Leistung der einzelnen Verbraucher.

Abbildung 7: Messung M03: Temperatur von NDM Komponenten.

4.5 Temperatur von NDM Komponenten für Messung M03

Abbildung 8: Messung M03: Temperatur von NDM Komponenten.

Literatur

 $[1] \ \ Bayrisches \ Landesamt \ f\"{u}r \ \ Umweltschutz. \ Effiziente \ Druckluftsysteme. \ Augsburg \ 2004.$