物理化学习题

热力学

(期末份量小)

六、(20分)已知 298.15K 以下数据: ↩

物质↩	<u>SO</u> 3(g)←	<u>SO</u> ₂ (g)←	<u>O</u> 2(g)←
$\Delta_f H_m^{\theta}/\mathrm{kJ} \cdot \mathrm{mol}^{-1} \subset$	-395.2←	-296.1←	0←
$S_m^{\theta}/J \cdot K^{-1} \cdot \text{mol}^{-1} \subset$	256.2←	248.5↩	205.03↩

- 1. 求 298.15K , P^{θ} 下反应 SO₂(g) + $\frac{1}{2}$ O₂(g) = SO₃(g)的 K_P^{θ} , K_P 和 K_x ; \leftarrow
- 2. 设 $\Delta_r H_m^{\theta}$, $\Delta_r S_m^{\theta}$ 不随温度变化,反应物按反应计量系数比进料,在什么温度下, SO_2 的平衡转化率可以达到 80%? \hookleftarrow
- 三、(15 分)1mol 双原子分子理想气体由始态(300K,10P[®]),经历如下途径膨胀到 1P[®]:(1)等温可逆膨胀;(2)<u>等温恒外</u>压(1P[®])膨胀;(3)向真空膨胀;(4)等外压(1P[®])绝热膨胀,求此过程的 Q,W, Δ U, Δ H, Δ S, Δ A, Δ G(最后一问(4)不必求 Δ S, Δ A 和 Δ G) \Box

溶液

(分子相关的, 电导相关的公式的运用)

. 某温度压力下,无限稀 HCl、KCl 和 NaCl 三种溶液,在相同电场强度下,Cl 的运动速度和迁移数分别为: u_1, u_2, u_3 和 t_1, t_2, t_3 。则 ()*

 $a.u_1 \neq u_2 \neq u_3$, $t_1 = t_2 = t_3$

b. $u_1 = u_2 = u_3$, $t_1 \neq t_2 \neq t_3 \leftarrow$

c. $u_1 \neq u_2 \neq u_3$, $t_1 \neq t_2 \neq t_3$

 $d.u_1=u_2=u_3, t_1=t_2=t_3 \leftarrow$

a. 99753, 80000, 4808;

b. 4808, 80200, 99753; ←

c. 4808, 99999, 80200;

d. 6448, 80200, 99753←

已知 <u>CuSO4</u> 溶 a. <i>I=b</i>	F液的质量摩尔浓度 b. <i>I=<u>2b</u></i>		⁻ 强度 I 与 b 的关系为(d. I= <u>4b</u> ←	d)	
电导率为() ←		其电导率为 0.0525S/m,其	 基摩尔	
a.5.25 × 10 ⁴	b.5.25 × 10 ²	$c.2.18 \times 10^{-4}$	a.1.84 × 10 ³ ←		
$\Lambda_{\rm m}^{\infty}$ (1/2Ba (O	H) ₂) =228.8×10 ⁻⁴ S •	•	H_4Cl) =129.8×10 ⁻⁴ S • m^2		
8.有 <u>0.1Kg</u> 的摩尔 Z 均分子量为	***************************************	1组分,则其数均分子量	量为, <u>质均分子量</u> 为	์ฮ,	
的摩尔电导率为	J: ←	•	- 率为 <u>0.1434S</u> ・m ⁻¹ ,则 1/2		
A: 14.34×10^{-3} S	• \underline{m}^2 • mol^{-1} , B: 7.17×1	0 ⁻³ S •m² •mol ⁻¹ , C: 14.3	4S •m² •mol-1, D: 7.17S •m²	•mol ^{-1←}	
化学平衡与反应速率					
(各级反应是考察重	直点,总结好表格~;大题:	会和热力学产生关联)			
•	•	时所需时间之比为 c.3 级	g 1/3,则此反应为(d.0 级←)	
己知下列基元H	$\mathbf{H} + \mathbf{H} \mathbf{I} \xrightarrow{\mathbf{k}_2} \mathbf{H}_2 + \mathbf{I}_2 \mathbf{f}$	的反应历程,请根据原	质量作用定律写出 HI 的原	反应速	
度表示式() ←		
已知下列基元 $A+B \xrightarrow{k_2} 2C$ 的反应历程,请根据质量作用定律写出 C 的反应速度表					
示式() ←		
在零、一、二级质	反应中,半衰期 的表	示式分别为(c)			
E_1 , E_2 , E_3 ,	∄ <u>E1≈E3</u> , <u>E2》E1</u> ,	则此连串反应的速控	A 近似相等,反应活化能 步为()	分别为	

(20 分)有下列基元反应: $A(g) \xrightarrow{k_1} B(g) + C(g)$, k_1 , k_2 为正、逆向反应的速率常数,且有: \leftarrow

25 °C 35 °C
$$\leftarrow$$
 $k_1(\text{min}^{-1})$ 0.20 0.40 \leftarrow $k_2(\text{min}^{-1} \cdot \text{atm}^{-1})$ 4×10⁻⁵ 8×10⁻⁵ \leftarrow

- 1. 计算上述可逆反应在 25℃时的平衡常数; ↩
- 2. 分别计算正向和逆向反应的活化能 E_1 和 E_2 ; \leftarrow
- 3. 计算可逆反应的反应热 $\Delta_r H_m$; \leftarrow
- 4. 若反应容器中开始时只有 A,其初始压力 P_0 为 $1P^{\circ}$,问体系总压力 P 达到 $1.5P^{\circ}$ 时所需时间为多少?(25℃) \leftarrow

五、(20 分) N_2O (g)的热分解反应 $2N_2O$ (g)= $2N_2$ (g)+ O_2 (g)。从实验测出不同温度时,各个起始压力与半衰期值如下: 4

反应温度 T/K↩	967←	967←	1030←	1030←
初始压力 p⁰/kPa↩	156.787←	39.197←	7.066↩	47.996←
半衰期 ţ _{1/2} /s↩	380↩	1520←	1440←	212←

试求: (1) 反应级数和不同温度下的速率常数; ↩

- (2) 实验活化能 Ea值; ←
- (3) 若 1030K 时, N₂O (g) 的初始压力为 54.00kPa, 当压力达到 64.00kPa 时所需的时间。 ←

d.沉降电势。

电化学

(重点是电动势, 电极电池反应书写, 和热力学的关联)

下面不属电动现象的是:(a) ←

a.电导 b.电泳 c.电渗

可逆电池电动势(E)等于()← a. 短路时的端电压 b. 电流趋于零时放电的端电压< c. 以一定电流工作时的端电压 d. 以上均可↩ 5.已知: $Fe^{3+}+e^{-}===Fe^{2+}$ ($\Phi_1=0.771V$); $Fe^{2+}+2e^{-}===Fe$ ($\Phi_2=-0.44V$) $Fe^{3+}+3e^{-}===Fe$ 的Ф₃=___。↩ (20 分) 电池: Zn(s) | ZnCl₂(0.05mol.kg⁻¹) | AgCl(s)-Ag(s)← $E = 1.015 - 4.92 \times 10^{-4} (T - 298)$ (伏) \leftarrow (1) 写出电极反应, 电池反应, 标明正负极← (2) 当可逆地有 2mol 电子的电量输出时,计算 25℃下该电池的电动势 E,及 W, Q, $\Delta_r G_m$, $\Delta_r H_m$, $\Delta_r S_m \leftarrow$ (3) 当可逆地有 1 mol 电子的电量输出时,计算 $25 ^{\circ}$ C下该电池的电动势 E,及 W, Q, $\Delta_r G_m$, $\Delta_r H_m$, $\Delta_r S_m \leftarrow$ 六、 (20 分) 298K 时电池 Pt|H2 (p⁸) |HBr (0.100mol • kg⁻¹) |AgBr (s) |Ag (s) 的电动 势 E=0.200V。AgBr 电极的标准电极电势 ψ 8Ag, AgBr, Br.=0.071V, ← (1) 请写出电极反应与电池反应: ↩ (2) 并求所指浓度下 HBr 的平均离子活度系数。← (3) 试根据德拜—休克尔极限公式计算上述 HBr 水溶液的离子平均活度系数 γ±。(德拜公 式- $\lg \gamma \pm = A |z+z-| \sqrt{I}$; A=0.509 (mol·kg⁻¹) -1/2) \leftarrow (气体常数 R=8.314J • K⁻¹ • mol⁻¹; 法拉第常数 F=96480C • mol⁻¹) ←

表面

(吸附的热力学特点,浸润现象,毛细现象,吸附公式)

当表面活性物质加入到水中后,结果是() ← a.dy/dc<0,正吸附; b.dy/dc>0,负吸附; c.dy/dc<0,负吸附; d.dy/dc>0,正吸附。

气体在固体表面上的吸附,一般有: () \leftarrow a. Δ G>0, Δ H>0, Δ S>0 b. Δ G<0, Δ H<0, Δ S>0 d. Δ G<0, Δ H=0, Δ S<0

常用接触角θ判断液体在固体表面上的润湿程度,一般认为θ角()是润湿的。

a. 小于 90°; b. 等于 90°; c.; 大于 90° d. 等于 0°←

. 在某温度压力	下,密封容器内有大么	小不等的小水珠,经一段	设时间后()。
a.小的变大,大	的变小	b.大小水珠变得一样:	大↩
c.小的变小,大	的变大	d.维持 <u>原大小</u> 不变↩	
Ag (I) $=$ Al_2O_3 (S)的界面张力 γ Ag-Al ₂ O ₃ =		氧化铝瓷件表面的接
10.可以用吉布斯	吸附等温式来描述溶液的	的表面吸附,其表达式为	:
若 CHCl3 的分 (1)朗格缪	压为 <u>0.132×101325Pa</u> 帮尔公式中的 <i>b</i> 值; ←	CHCl ₃ ,其饱和吸附量 ,其平衡吸附量为 82. 5Pa 时的平衡吸附量。	5 <u>dm³·kg-¹</u> 。求: ←
的水滴在 25℃时的	***************************************	的毛细管中上升高度为 <u>0.29</u>]毛细管(cos θ =1),25℃)=2 γ Vm/(<u>RTr</u>)) ←	***************************************
胶体			
(胶体特点,性质,重点	(偏向于胶团结构)		
胶体分散系统	中分散相粒度大小范	范围在 (c) ←	
a.1nm 以下	b.1000nm 以上	$c.1nm{\sim}100nm$	d.1000μm 以上←
	强度 I 与()成点 b.入射光强度 I。;	反比。↩ c. 粒子体积 V;	d. 入射光波长﴿
	田管粘度计测定大分子 <u>b.</u> 增比粘度η _{sp} ;	溶液粘度得到的是(c. 绝对粘度η;) d. 特性粘度[η]↩
胶团结构式为		和 <u>0.001mol</u> • dm ⁻³ K ₂ SO ₄ 制 电解质 <u>K₃PO4</u> ,Al(<u>NO</u> ₃) ₃	00000000

- 1.关于溶胶和大分子溶液的描述中,下列说法不正确的是: ← A 粒子大小都在 1~100nm; ←
- B 都不能通过半透膜; ←
- C 都是热力学稳定系统: ↩
- D 溶胶有较强的丁达尔效应,大分子溶液的丁达尔效应较弱。
- a.溶胶发生无规则运动的原因: ↩
- b.天空是蓝色的: ←
- c.1dm³10%的油酸钠水溶液可"溶解"苯达 0.01dm³: ←
- e.<u>如下图当活塞</u>关闭时,在<u>一</u>玻璃管两端悬有两大小不等的肥皂泡,当打开活塞使玻璃管连通时,两气泡将如何变化?为什么?↩

(10 分) 在三个烧杯中分别盛 20cm^3 Fe(OH)₃ 溶胶,分别加入 NaCl、 Na_2SO_4 、 Na_3PO_4 溶液使其聚沉,最少需加电解质的数量为: (1) 1 mol/dm^3 的 NaCl 21cm^3 ; (2)0.01 mol/dm^3 的 Na_2SO_4 125cm^3 ; (3)0.01 mol/dm^3 的 Na_3PO_4 7.4cm^3 。试计算各电解质的聚沉值、聚沉能力之比,并指出溶胶的带电符号。如 Fe^{3+} 过量,试写出该溶胶胶团的胶团结构。 \leftarrow

另: 书上课后习题(尤其大题)也是重点欧~