Yushu Pan

+1-626-318-5125 | yp2602@columbia.edu | 560 Riverside Drive, APT 1S, NY, 10027 | Personal Website

RESEARCH INTEREST

My research interests focus on the intersection of causal inference and machine learning, under the supervision of Prof. Elias Bareinboim. I am particularly interested in causal generative models and causal representation learning.

EDUCATION

Columbia University

Sep 2021 - Expected Jun 2026

Ph.D. Student in Computer Science

New York, United States

• GPA: 4.0/4.0 Advisor: Prof. Elias Bareinboim

California Institute of Technology

Sep 2019 - Jun 2021

Master of Science in Electrical Engineering

Pasadena, United States

∘ GPA: 4.2/4.3 Advisor: Prof. Yisong Yue

Beijing Institute of Technology

Sep 2015 - Jun 2019

Bachelor of Science in Electrical Engineering

Beijing, China

∘ GPA: 93/100 Ranking: 1/425 Advisor: Prof. Yuantao Gu

Peking University

Sep 2017 - Jun 2019

Bachelor of Economics

Beijing, China

∘ GPA: 3.7/4

PUBLICATIONS

[1] Li, A*., Pan, Y*., Bareinboim, E. "Disentangled Representation Learning in Non-Markovian Causal Systems", In 38th Conference on Neural Information Processing Systems (NeurIPS), 2024.

*Contributed equally, Author names in alphabetical order

- [2] Pan, Y. and Bareinboim, E. "Counterfactual Image Editing", In Proceedings of International Conference on Machine Learning (ICML), 2024.
- [3] Xia, K., Pan, Y., Bareinboim, E. "Neural Causal Models for Counterfactual Identification and Estimation", In International Conference on Learning Representations, (ICLR), 2023.
- [4] Pan, Y., Jiao, Y., Li, T., Gu, Y. "An efficient algorithm for hyperspectral image clustering", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.

SELECTED RESEARCH PROJECTS

• Image Editing in Modern AI with Causality

Mar 2023 - present

Advisor: Prof. Elias Bareinboim, Columbia University

- Developed a new causal framework for image editing tasks and theoretically proved that current state-of-the-art models cannot provide causal reliability for image editing tasks.
- Proposed 'counterfactual(ctf)-consistent estimators' that ensure causal consistency between the features users prioritize for practical applications. Developed an algorithm called Augmented Neural Causal Model (ANCM) that efficiently provides ctf-consistent estimators and generates high-fidelity counterfactual images in extensive experiments.
- (Ongoing) Incorporate 'ctf-consistent estimators' with **text-to-image** pre-trained models (e.g., StableDiffusion, Latent Diffusion Model) to perform causal image editing using text prompts.

Causal Disentangled Representation Learning

Oct 2023 - present

Advisor: Prof. Elias Bareinboim, Columbia University

- Formalized a general version of the causal representation learning problem and developed graphical criteria and an algorithm (CRID) to determine whether a pair of user-chosen variables are disentangled non-Markovian settings, considering arbitrary interventional and observational distributions from multiple heterogeneous domains.
- Developed a VAE-based algorithm to practically estimate causal disentangled representations and leverage them for image generation and downstream classification tasks.

• Neural Causal Model for Counterfactual Identification and Estimation

Sep 2022 - May 2023

Advisor: Prof. Elias Bareinboim, Columbia University

- Theoretically proved that deep models are incapable of making causal inferences when trained solely on observational data. Developed a class of causal models using neural networks, called **Neural Causal Models (NCMs)**, for counterfactual identification and estimation.
- Developed a GAN-based implementation of Neural Causal Models (NCM) and conducted experiments to demonstrate the accuracy and efficiency of the GAN-NCM approach.

Data-Driven Optimization for ML Algorithms

Jan 2020 - Sep 2021

Advisor: Prof. Yisong Yue, Caltech

- Developed a data-driven continuous optimization approach for structure learning. Designed a meta-learning architecture and a reinforcement learning-based method to achieve auto-hyperparameter tuning.
- Subspace Methods and Hyperspectral Images Clustering

Mar 2018 - Jun 2019

Advisor: Prof. Yuantao Gu, Tsinghua University

 Designed a high-accuracy SuperPixel and Angle-based HyperSpectral Image Clustering (SPAHSIC) algorithm with low time complexity, utilizing superpixel segmentation and principal angles between subspaces for hyperspectral image clustering. Performed SPAHSIC on medical and satellite hyperspectral images.

INDUSTRIAL EXPERIENCE

Pulmonary Nodules Detection in CT Images

Dec 2017 - Mar 2018

Advisor: Prof. Yi Zhang, West China Hospital

• Implemented and optimized 3D-conventional neural networks, 3D-region proposal U-nets for lung nodule detection with West China Hospital's CT images.

HONORS AND AWARDS

Greenwoods Fellowship

Oct 2021

Fu Foundation of Engineering and Applied Science at Columbia University

• Xu Te Li Scholarship (awarded to top 0.1% of undergraduates)

Beijing Institute of Technology

May 2019

• National Scholarship Chinese Ministry of Education

Dec 2017

• Grand prize in the Excellence 9 Mathematical Competition of China

Oct 2016

Excellence League

TEACHING

• TA, CS 4775, Causal Inference I, Columbia University, Fall 2023 / Fall 2024.

- TA, CS 4995, Causal Inference II, Columbia University, Spring 2023.
- TA, ACM 116, Introduction to Probability Models, Caltech, Fall 2020.

SKILLS

- Programming Languages: Python, C, Verilog, VHDL, Matlab, CAD
- Packages: Pytorch, Tensorflow, Scikit-learn, Keras
- Languages: English (fluent), Chinese (native)