文字数	アウトライン	
21	_	\subsection{Phonon計算}
313	•	ここでは、\ref{ZrCr2Laves相のphonon計算による高温安定性}節、\ref{SiC結晶多形における熱膨張率}節で用いたPhonon-DOS法を紹介する.
		Phonon-DOS法とは基底状態におけるPhonon分散曲線(図\ref{Phonon_Dispersion_DOS}
		(a)) を求め、それを積分することによってPhonon-DOSを算出し、熱振動自由エネルギ
		を求める手法である. このルーチンは,VASPのモデル構築前処理ソフトであるMedaAに組み込まれている.
		Phonon計算自身はParlinskiが開発し、フリーソフトとして公開されている直接法を採している\cite{Parlinski}.
115	•	直接法は、単純に一個の原子を平衡位置から微少量だけ動かし、その時のエネルギー図
		化を微分し、原子間の力定数を求める. そしてその力字数から振動数数 awa a st のPhonon 分数曲線を構き、 Phonon POS を求める ヨ
		そしてその力定数から振動数\$\omega\$のPhonon分散曲線を描き,Phonon-DOSを求める手 法である.
44.2		
413	•	Phonon-DOS\$n(\omega)\$から自由エネルギー\$F\$を導出する関係式は \begin{equation}
		$F(a,T)=E(a)+k_{\text{textrm}}B}T\left(0\right)^{\left(nfty\right)n(\omega)} \\$
		<pre>\left[2\textrm{sinh}\left(\frac{\hbar \omega}{2k_\textrm{B} T}\right)\right] \textrm{d}\omega</pre>
		\label{Phonon_DOS_Method}
		\end{equation} となる. \$\omega\$はk-spaceにおける振動数, \$E(a)\$は系の静止エネルギー, \$a\$はその
		とさの格子定数,\$k_\textrm{B}\$はボルツマン定数,\$T\$は温度である.
		\$\hbar\$はプランク定数\$h\$を\$2\pi\$で割った定数である
		\cite{Kittel05}\cite{Nagai05}.
339	•	式(\ref{Phonon_DOS_Method})で明示したように、Phonon-DOS法から算出する自由エネ
		ギーは,格子定数\$a\$と温度\$T\$を変数パラメータとしている. つまり,基底状態における系のエネルギー,およびPhonon-DOSを決定できる高精度な第
		一原理計算と,Phonon-DOS法を組み合わせると,結晶格子の格子モデルさえ設定すれ
		ば、その系における自由エネルギーの温度依存性を算出できることを意味する. これを利用すると、同様の結晶格子において、格子定数などを意図的に操作し、各々の
		モデルにおける自由エネルギーの温度依存性を求めると,ある温度での最安定構造を決
		定でき、結晶多形等の相安定性のみならず、熱膨張率や体積弾性率などの諸物性も求めることが出来る.
222		
220	•	\begin{figure}[htbp] \begin{center}
		\includegraphics[width=11cm]{./yamamoto/Figure/Phonon_Dispersion_DOS.jpg}
		\caption{アルミニウムにおける(a) Phonon分散曲線, (b) Phonon-DOS. } \label{Phonon_Dispersion_DOS}
		\end{center}
26	_	\end{figure}
95	▼	<pre>\begin{thebibliography}{9} • \bibitem{Parlinski}</pre>
0.3		K. Parlinski, Z. Q. Li, and Y. Kawazoe: Phys. Rev. Lett.78(1997) 4063-4066.
82		\bibitem{Kittel05}C.Kittel著, 宇野良清, 津屋昇, 新関駒二郎, 森田章, 山下次郎訳(2005), 『キッ
		テル 固体物理学入門』,丸善株式会社.
62		\bibitem{Nagai05}沼居貴陽著(2005), 『固体物理学演習 キッテルの理解を深めるために』, 丸善株
		式会社.
21		\end{thebibliography}