Anoxybacillus rupiensis TS-4 α -amylase: A thermostable amylase exhibiting prominent application in the detergent industry

Bhavtosh A. Kikani, Susen Kurien

Abstract

The physicochemical conditions influencing α -amylase secretion by a thermophilic bacterium, *Anoxybacillus rupiensis* TS-4 (Genbank Number, KU360725) were optimized by the response surface methodology, using Plackett Burman design, followed by Box Behnken Design to enhance amylase production by 3 fold as compared to the one variable at a time approach. The trends revealed incubation temperature, medium pH and starch concentration as the most significant variables. The amylase was purified by ion exchange chromatography, followed by size exclusion chromatography with fold purification and yield of 17.85 and 34.72%, respectively. The molecular weight, K_m and V_{max} of the purified amylase were 48 kD, 0.58 mgmL⁻¹ and 3124 μ molmL⁻¹ min⁻¹, respectively. It catalyzed starch over a broader range of temperature and pH, having optima as 80 °C and 8, respectively. The enzyme was stable at a broad range of temperatures and pH, displaying higher half-life and reduced deactivation rate constant. The feasibility of the starch catalysis reaction mediated by the studied amylase was substantiated by determining the thermodynamic parameters, such as alterations in the enthalpy, entropy, activation energy and Gibb's free energy. The attributes of the amylase such as calcium independence, alkalitolerance and stability in presence of various chelators and surfactants aid uniqueness, novelty and commercial promise.

Production and purification of A. rupiensis TS-4 α -amylase

Table 1 Experimental design used to optimize physicochemical factors affecting A. rupiensis
TS-4 amylase production by the Box Behnken Design (Software used was Sigma XL, USA)

Run Order	Temperature	pН	Starch	Response (Y)			
	(°C)		(% w/v)	Experimental (U/ ml)	Predicted (U/ ml)		
1	50	8	0.1	0	0		
2	50	6	2	70	70.17		
3	60	6	1	65	69.37		
4	50	8	2	80	83.75		
5	60	7	0.1	0	0		
6	50	6	0.1	0	0		
7	50	7	1	95	97.99		
8	40	6	1	70	69.37		
9	50	7	1	95	97.99		
10	60	8	1	80	80.62		
11	60	7	2	90	85.72		
12	50	7	1	95	97.99		
13	40	7	2	75	75.62		
14	40	7	0.1	0	0		
15	40	8	1	80	77.87		

Table 2 Statistical analysis of the experiments employed to optimize physicochemical factors affecting A. rupiensis TS-4 amylase production by the Box Behnken Design

Source	Degree of	Sum of	Mean	F-value	P value > F	
	freedom	square	square			
Model	9	20517	2279.7	107.28	0.0000	
Error	5	106.25	21.250			
Lack of Fit	3	106.25	35.417		0.0000	
Pure Error	2	0	0			
Total (Model +	14	20623	1473.1			
Frror)						

Where, R² (experimental): 0.99; R² (adjusted): 0.98; Coefficient of variance: 4.61

Table 3 Purification p	rofile along with the fo	ld purification and pu	rification yield

Purification Steps	Volume (mL)	Total Activity (U)	Total Protein (mg)	Specific Activity (U/mg)	Purification fold	Yield (%)	
Crude enzyme	100	11800	23.6	500	127	100	
0-50% fraction	4	721	1.31	550	1.1	6.11	
50-70% fraction	4	3147	1	3147	6.3	26.67	
Ion Exchange Chromatography	4	4523	0.52	8625	17.25	38.33	
Size Exclusion Chromatography	4	4097	0.45	8928	17.85	34.72	

SDS-PAGE (12%) gel eletrophoresis; Lane 1 (purified α-amylase) Lane 2 (Protein Marker, Thermo Fisher)

Characterization of A. rupiensis TS-4 α -amylase

Temperature stability profiles of A. rupiensis TS-4 amylase; 50 °C (Circle), 70 °C (Triangle) and 90 °C (Square)

Thermodynamics, Detergent applications of A. rupiensis TS-4 α -amylase

Table 4 Calculation of various thermodynamic parameters of enzyme-substrate reaction

Conditions 50		K_d			T _{1/2}			ΔG*		Δ H *	ΔS*	E
		(\mathbf{m}^{-1})		(h)		(kJ/mol)		(kJ/mol)	(J/mol K)	(kJ/mol)		
	50 °C	70 °C	90 °C	50 °C	70 °C	90 °C	50 °C	70 °C	90 °C			
Without CaCl ₂	0.000525	0.000888	0.002310	22	13	5	101.4	105.1	108.7	45.86	-171.54	49.63
20 mM CaCl ₂	0.00578	0.001050	0.003850	20	11	3	101.5	104.1	106.6	60.23	-127.86	64.01
pH 6	0.000578	0.001283	0.003850	20	9	3	101.3	103.9	106.5	58.93	-131.12	62.71
pH 7	0.000525	0.000888	0.002310	22	13	5	101.4	105.1	108.7	45.86	-171.54	49.63
pH 8	0.000679	0.001283	0.003850	17	9	3	101.1	103.5	106.2	54.20	-144.27	57.99
pH 9	0.000772	0.001444	0.005770	13	8	2	100.8	103.7	106.5	60.30	-124.52	63.84

Table 5 Washing efficiency of A. rupisns is TS-4 amylase with various commercially available detergents; whereas, 0.2% surfactant and detergent concentration, 1000 μ L amylase in 25 mL of 20 mM tris-HCl buffer, pH 8 was used

Experiments	Washing conditions	Starch	Washing efficiency (%)
	Volume: 25 mL	(mg/mL)	[(S ₁ - S ₂ / S ₁) x 100%]
	Incubation Temperature: 70 °C	[S ₂]	
	Time duration: 1 h		
Initial starch	concentration [S ₁]: 50 mg/ mL		
Control	Buffer	46.33	7.34
Test 1	Buffer + SDS	33.67	32.67
Test 2	Buffer + Tween 20	42.80	14.40
Test 3	Buffer + Tween 80	37.71	24.58
Test 4	Buffer + Triton 100	35.29	29.42
Test 5	Buffer + Surf excel	31.42	37.16
Test 6	Buffer + Tide	32.07	35.86
Test 7	Buffer + Rin	34.03	31.94
Test 8	Buffer + Ghadi	35.49	29.02
Test 9	Buffer + Aerial	24.61	49.22
Test 10	Buffer + Wheel	29.71	40.58
Test 11	Buffer + Enzyme	24.30	51.40
Test 12	Buffer + Enzyme + SDS	29.11	41.78
Test 13	Buffer + Enzyme + Tween 20	30.25	39.50
Test 14	Buffer + Enzyme + Tween 80	27.44	45.12
Test 15	Buffer + Enzyme + Triton 100	32.29	35.42
Test 16	Buffer+ Enzyme + Surf excel	22.48	55.04
Test 17	Buffer + Enzyme + Tide	29.46	41.08
Test 18	Buffer + Enzyme + Rin	24.17	51.67
Test 19	Buffer + Enzyme + Ghadi	30.82	38.36
Test 20	Buffer + Enzyme + Aerial	18.09	63.82

Table 6 Comparative profile of A. rupiensis TS-4 amylase with other reported amylases of Anoxybacillus sp.

Organism	Molecular weight (kDa)	Temperature optima	pH optima	Stability attributes	D'Amico et al., 2003	
Anoxybacillus sp. AH1	85	60	7	60% activity retained after 120 min at 60		
A. flavithermus SO-19	96	70	6	62% activity retained after 720 min at 50	Tari et al., 2008	
A. amylolyticus	60	60	5.6	50% activity retained after 65h at 60	Fincan et al., 2014	
Anoxybacillus sp. KP1	-NA-	60	8	Stable between 50 and 70 for 30 min	Acher et al., 2016	
A. flavithermus	60	55	6	50% activity retained after 120 min at 50	Ozdemir et al., 2016	
Anoxybacillus sp. ASKA	50	60	8	50% activity retained after 48 h at 65	Muhammad et al., 2017	
A. rupiensis TS-4	48	80	8	50% activity retained after 22 h at 50	Present study	

References

- 1. S. D'Amico, J. C. Marx, C. Gerday, G. Feller, Activity-stability relationships in extremophilic enzymes. *J Biol Chem.* **2003**, 278, 7891-7896.
- 2. C. Tari, N. Digan, N. Gogus, Biochemical and thermal characterization of crude exo-polygalactoronase produced by *Aspergillus sojae*. Food Chem. **2008**, 111, 824-829.
- 3. O. Acer, F. M. Bekler, H. Pirinccioglu, R. G. Guven, K. Guven, Purification and characterization of thermostable and detergent-stable α-amylase from *Anoxybacillus* sp. AH1. *Food Technol Biotechnol*, **2016**, *54*, 70.
- 4. S. Ozdemir, V. Okumus, M. S. Ulutas, A. Dundar, A. T. Akarsubasic, S. Dumontet, Production and characterization of thermostable α-amylase from thermophilic *Anoxybacillus flavithermus* sp. nov. SO-19. *Starch-Starke*, **2016**, *68*, 1244-1253.
- S. A. Fincan, B. Enez, Production, purification, and characterization of thermostable α-amylase from thermophilic *Anoxybacillus amylolyticus*. Starch-Starke, 2014, 66, 182-189.
 D. Muhammad, B. Bahaala, J. Muhammad, N. Habibullah, H.B. Muhammad, Vinctio and thermodynamic properties of navel.
- 6. R. Muhammad, P. Raheela, J. Muhammad, N. Habibullah, H.R. Muhammad, Kinetic and thermodynamic properties of novel glucoamylase from *Humicola* species. *Enz Microb Technol.* **2017**, *41*, 558-564.

Acknowledgement and Contact Details

The authors greatly acknowledge financial and infrastructural support received at P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa – 388 421 (Gujarat, India).

Contact details:
Bhavtosh A. Kikani, PhD (Microbiology)
Assistant Professor
Department of Biological Sciences
P.D. Patel Institute of Applied Sciences
Charotar University of Science and Technology
Changa – 388 421 (Gujarat, India)
(e-Mail): bhavtoshkikani.bio@charusat.ac.in