Lezione 20 – il teorema di Cook-Levin

Lezione del 21/05/2024

La struttura di NP

- Come abbiamo già detto, la dispensa 9 studia due questioni "strutturali" relative alla classe NP
 - la struttura dei problemi che popolano la classe NP
 - la struttura della classe NP.
- Sin qui, ci siamo occupati di studiare la struttura dei problemi che popolano NP
 - e abbiamo trovato un modo alternativo per dimostrare che un problema è in NP
- In questa lezione ci occupiamo della seconda questione: vogliamo capire se i problemi che popolano NP sono tutti uguali, per quel che riguarda la loro complessità, oppure ce ne sono alcuni più "difficili di" altri
- E qui, sono certa, starete scalpitando sulle vostre sedie...
 - ma come tutti uguali?! starete dicendo
 - perché P ⊆ NP, e quindi dentro NP ci sono, sicuramente, problemi trattabili computazionalmente
 - ma dentro NP ci sono anche problemi che in P non si riesce proprio a collocarceli
- La domanda, ora, è: fra i problemi in NP che non si riesce a collocare in P, ce ne sono alcuni più "difficili" di altri?

La struttura di NP

- La domanda, ora, è: fra i problemi in NP che non si riesce a collocare in P, ce ne sono alcuni più "difficili" di altri?
- Equi, di nuovo, starete scalpitando sulle vostre sedie...
 - ma certo che ci sono problemi più difficili degli altri, in NP!
 - Sono i problemi NP-completi!
 - Perché, ce lo ricordiamo bene, se un problema NP-completo appartenesse alla classe P allora sarebbe P = NP!
- ightharpoonup Perchè, ricordiamo, un problema (decisionale) Γ è NP-completo se
 - $ightharpoonup \Gamma \in NP$ e per ogni altro problema $\Gamma_1 \in NP$, si ha che $\Gamma_1 \leq \Gamma$
 - e P è chiusa rispetto a ≤
- Bene, tutto giusto: i problemi NP-completi sono i problemi "più difficili" in NP
- Certo, ammesso che esistano
- Perché: chi ce lo dice che esiste almeno un problema NP-completo?
- Ce lo dice il Teorema di Cook-Levin!

- Ve lo ricordate il (caro, vecchio) problema SAT?
- " dati un insieme X di variabili booleane ed un predicato f, definito sulle variabili in X e in forma congiuntiva normale, decidere se esiste una assegnazione a di valori in {vero, falso} alle variabili in X tale che f(a(X))=vero "
- Dove, ricordiamo, un predicato f è in forma congiuntiva normale se
 - fè la congiunzione di un certo numero di clausole: $f = c_1 \wedge c_2 \dots \wedge c_m$
 - ightharpoonup e ciascuna c_j è la disgiunzione (v) di letterali, ad esempio x_1 v \neg x_2 v x_3 v \neg x_4
- Ebbene, il Teorema di Cook-Levin dice, semplicemente, che
- TEOREMA di Cook-Levin: SAT è NP-completo
- Un enunciato facile facile...

- TEOREMA di Cook-Levin: SAT è NP-completo
- Un enunciato facile facile...
- Per dimostrarlo occorre mostrare che è possibile ridurre a SAT ogni problema in NP
- lacktriangle ossia, dobbiamo prendere un **qualsiasi** problema Γ in NP mostrare come trasformare le sue istanze in istanze di SAT in modo tale che
 - se x è un'istanza sì di Γ allora l'istanza nella quale x viene trasformata è un'istanza sì di SAT
 - se x è un'istanza no di Γ allora l'istanza nella quale x viene trasformata è un'istanza no di SAT
- Ma in NP troviamo problemi in ambiti diversissimi
 - problemi di acquisto di biglietti aerei senza spendere una fortuna
 - problemi di suddivisione di oggetti sui due piatti di una bilancia mantenendoli in equilibrio
 - problemi di piastrellamento di un pavimento senza lasciare spazi scoperti
 - problemi di scelta di rappresentanti
 - **...**
- Come facciamo a mostrare come trasformare una qualsiasi istanza di un qualsiasi problema in NP in un'istanza di SAT?

- TEOREMA di Cook-Levin: SAT è NP-completo
- Come facciamo a mostrare come trasformare un qualsiasi problema in NP a SAT se i problemi in NP sono così diversi gli uni dagli altri?
- Semplice: sfruttiamo l'unica caratteristica che tutti i problemi in NP hanno in comune: l'appartenere ad NP!
- Ossia la caratteristica di essere accettati da una macchina di Turing non deterministica in tempo polinomiale
- Consideriamo, allora, un generico problema $\Gamma \in NP$ e sia $L_{\Gamma} \subseteq \{0,1\}^*$ il linguaggio contenente la codifica ragionevole delle istanze sì di Γ
- lacktriangle e cerchiamo di descrivere sotto forma di espressione booleana il predicato " $x \in L_{\Gamma}$ "
 - per il momento, ci disinteressiamo della forma congiuntiva normale
 - la dimostrazione che vi presento in questa lezione è diversa da quella sulle dispense

- Consideriamo un generico problema $\Gamma \in NP$ e sia $L_{\Gamma} \subseteq \{0,1\}^*$ il linguaggio contenente la codifica ragionevole delle istanze sì di Γ
- lacktriangle e cerchiamo di descrivere sotto forma di espressione booleana il predicato " $x \in L_{\Gamma}$ "
- ▶ sia NT_{Γ} una macchina di Turing non deterministica <u>ad un nastro</u>che accetta, <u>anzi</u>, che decide, L_{Γ} in tempo polinomiale: ossia, esiste un polinomio p tale che, per ogni $x \in \{0,1\}^*$
 - ntime(NT_Γ,x) \leq p(|x|)
 - ightharpoonup NT_r (x) = q_A se x \in L_r
 - NT_Γ (x) \neq q_A se x \notin L_Γ
- L'affermazione " $x \in L_{\Gamma}$ " è logicamente equivalente all'affermazione $\gamma(x) = x$ (e nient'altro che x) è scritto sul nastro di NT_{Γ}
 - $\underline{\mathbf{e}}$ la testina di NT $_{\Gamma}$ è posizionata sul primo carattere di x
 - $\underline{\mathbf{e}}$ NT_{Γ} è nel suo stato iniziale,
 - e esiste una sequenza di al più p(|x|) quintuple di NT $_{\Gamma}$ che possono essere eseguite una di seguito all'altra e portano la macchina nello stato q_A "
- cioè $x \in L_{\Gamma}$ se e soltanto se $\gamma(x)$ è vera

Da computazione a espressione

- \rightarrow $x \in L_{\Gamma}$ se e soltanto se $\gamma(x)$ è vera
- non resta che descrivere $\gamma(x)$ sotto forma di una espressione booleana E(x) che sia soddisfacibile se e soltanto se $\gamma(x)$ è vera
- \blacktriangleright E(x) deve descrivere una computazione di NT_{Γ} che ha inizio con x scritto sul suo nastro
- e, poiché ogni computazione di ogni macchina di Turing è una sequenza di stati globali,
- per costruire E(x) è necessario introdurre le variabili booleane che descrivano, per ogni passo t della computazione (con $0 \le t \le p(|x|)$) lo stato globale in cui si troverebbe NT_{Γ} al passo t della computazione $NT_{\Gamma}(x)$:
 - un insieme N di variabili booleane che permettano di rappresentare il carattere contenuto in ciascuna cella del nastro di lavoro di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x);
 - un insieme M di variabili booleane che permettano di rappresentare lo stato interno di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x);
 - un insieme R di variabili booleane che permettano di rappresentare la cella del nastro di lavoro sulla quale è posizionata la testina di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x).
- Vediamo, uno alla volta, questi insiemi di variabili
 - insieme alle condizioni che devono soddisfare perché rappresentino quel che devono rappresentare

Variabili per lo stato interno

- Iniziamo a descrivere l'insieme M di variabili booleane che permettono di rappresentare lo stato interno di NT_{Γ} ad ogni passo della computazione $NT_{\Gamma}(x)$
- Sia Q = { q_0 , q_1 , q_2 , ..., q_k } l'insieme degli stati di NT_{Γ} ,
 - ightharpoonup ove q_0 è lo stato iniziale, $q_1 = q_A$ e $q_2 = q_R$
- L'insieme M di variabili, insieme ad una porzione E_M dell'espressione **E(x)** che stiamo costruendo, servono a descrivere in quale stato interno si trova NT_Γ ad ogni passo della computazione NT_Γ (x): ciò che vogliamo è che
 - ightharpoonup ogni volta che i valori assegnati alle variabili in M fanno assumere ad E_M il valore vero,
 - osservando i valori assegnati alle variabili contenute in M, dobbiamo essere in grado di rispondere a domande del tipo "è q_4 lo stato interno di NT_{Γ} al passo 25 della computazione NT_{Γ} (x)?".
- Per ogni passo t (con $0 \le t \le p(|x|)$), e per ogni i $\in \{0,1,...,k\}$, M contiene una variabile booleana M_i^t :

$$M = \{M_i^t : 0 \le t \le p(|x|) \land i \in \{0,1,...,k\}\}$$

con il seguente significato: assegnando a M_1^i il valore vero rappresentiamo il fatto che, al passo t della computazione NT_{Γ} (x), la macchina NT_{Γ} si trova nello stato q_i

Variabili per lo stato interno

Per ogni passo t (con $0 \le t \le p(|x|)$), e per ogni i $\in \{0,1,...,k\}$, M contiene una variabile booleana M_i^p :

$$M = \{M_i^t : 0 \le t \le p(|x|) \} \land i \in \{0,1,...,k\}$$

- con il seguente significato: assegnando a M_i^t il valore vero rappresentiamo il fatto che, al passo t della computazione $NT_{\Gamma}(x)$, la macchina NT_{Γ} si trova nello stato q_i
- affinché le variabili in M descrivano effettivamente lo stato interno di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x), dobbiamo imporre che esse siano coerenti:
 - **ad ogni passo della computazione** NT_{Γ} (x) la macchina NT_{Γ} si trova in uno (ed esattamente uno!) dei suoi stati interni
 - allora dobbiamo fare in modo che possano essere prese in considerazione solo quelle assegnazioni di valori alle variabili in M tali che, per ogni t compreso fra 0 e p(|x|), ad una e una sola delle variabili M^t₀, M^t₁:,..., M^t_k sia assegnato il valore vero.
- A questo scopo, introduciamo p(|x|)+1 espressioni: E_{M}^{0} , E_{M}^{1} , ..., E_{M}^{0}
- dove E[†]_M è l'espressione nelle variabili in M che corrisponde all'affermazione

al passo t di NT_{Γ} (x) la macchina NT_{Γ} si trova in uno (ed esattamente uno!) dei suoi stati interni

Variabili per lo stato interno

- E^t_M è l'espressione nelle variabili in M che corrisponde all'affermazione al passo t di NT_Γ (x) la macchina NT_Γ si trova in uno (ed esattamente uno!) dei suoi stati interni
- Allora,

Che assume il valore **vero** se e soltanto se ad <u>esattamente</u> una delle variabili M_0^{\dagger} , M_1^{\dagger} , M_2^{\dagger} , ..., M_k^{\dagger} è assegnato il valore **vero**

Variabili per la posizione della testina

- Secondo step: descriviamo l'insieme R di variabili booleane che permettono di rappresentare la posizione della testina di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x)
- Osserviamo che, poiché NT_{Γ} ha a disposizione p(|x|) passi per accettare x, allora non utilizza più di p(|x|) celle del nastro
- **a**llora, assumiamo che NT_{Γ} (x) utilizzi le celle 1, 2, ..., p(|x|)
- L'insieme R di variabili, insieme ad una porzione E_R dell'espressione E(x) che stiamo costruendo, servono a descrivere su quale cella del nastro di NT_Γ è posizionata la testina ad ogni passo della computazione NT_Γ (x): ciò che vogliamo è che
 - ightharpoonup ogni volta che i valori assegnati alle variabili in R fanno assumere ad E_R il valore vero,
 - osservando i valori assegnati alle variabili contenute in R, dobbiamo essere in grado di rispondere a domande del tipo "la testina di NT_{Γ} è posizionata sulla cella 51 al passo 86 della computazione NT_{Γ} (x)?".

Variabili per la posizione della testina

- Secondo step: descriviamo l'insieme R di variabili booleane che permettono di rappresentare la posizione della testina di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x)
- Per ogni passo t (con $0 \le t \le p(|x|)$), e per ogni i $\in \{1,...,p(|x|)\}$, R contiene una variabile booleana R_i^t :

$$R = \{R_i^t : 0 \le t \le p(|x|) \land 1 \le i \le p(|x|) \}$$

- con il seguente significato: assegnando a R_i^t il valore vero rappresentiamo il fatto che, al passo t della computazione $NT_{\Gamma}(x)$, la testina di NT_{Γ} si trova sulla cella i
- affinché le variabili in R descrivano effettivamente la posizione della testina di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x), dobbiamo imporre che esse siano coerenti:
 - ad ogni passo della computazione NT_Γ (x) la testina di NT_Γ è posizionata su una (ed esattamente una!) delle celle del suo nastro
 - allora dobbiamo fare in modo che possano essere prese in considerazione solo quelle assegnazioni di valori alle variabili in R tali che, per ogni t compreso fra 0 e p(|x|), ad una e una sola delle variabili R^t₁, R^t₂:, ..., R^t_{p(|x|)} sia assegnato il valore **vero**.
- Come prima, a questo scopo introduciamo p(|x|)+1 espressioni: $E_R^1, \dots, E_R^{(|x|)}$

Variabili per la posizione della testina

- E[†]_R è l'espressione nelle variabili in R che corrisponde all'affermazione al passo t di NT_Γ (x) la testina di NT_Γ è posizionata su una (ed esattamente una!) delle celle del suo nastro
- Allora,

Che assume il valore **vero** se e soltanto se ad <u>esattamente</u> una delle variabili R_1^t , R_2^t , R_3^t , ..., R_p^t (|x|) è assegnato il valore vero

- Terzo step: descriviamo l'insieme N di variabili booleane che permettono di rappresentare il carattere contenuto in ciascuna cella del nastro di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x)
- Ricordiamo che NT_{Γ} utilizza al più p(|x|) celle del nastro che assumiamo essere le celle 1, 2, ..., p(|x|)
- e che $L_{\Gamma} \subseteq \{0,1\}^*$
 - \blacktriangleright e, perciò, una qualsiasi cella del nastro di NT $_{\Gamma}$, ad un qualunque passo della computazione NT $_{\Gamma}$ (x), può contenere 0 oppure 1 oppure \Box
- L'insieme di variabili N, insieme ad una porzione E_N dell'espressione E(x) che stiamo costruendo, servono a descrivere quale simbolo è contenuto in ogni cella del nastro di NT_r ad ogni passo della computazione NT_r (x): ciò che vogliamo è che
 - ightharpoonup ogni volta che i valori assegnati alle variabili in N fanno assumere ad E_N il valore vero,
 - osservando i valori assegnati alle variabili contenute in N, dobbiamo essere in grado di rispondere a domande del tipo "è 1 il simbolo contenuto nella cella 12 di NT_{Γ} al passo 25 della computazione NT_{Γ} (x)?".

- Terzo step: descriviamo l'insieme N di variabili booleane che permettono di rappresentare il carattere contenuto in ciascuna cella del nastro di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x)
- Per ogni passo t (con $0 \le t \le p(|x|)$), per ogni i $\in \{0,1,...,p(|x|)\}$, e per ogni j $\in \{0,1,\square\}$, N contiene una variabile booleana N_{ij}^{t} :

$$N = \{ N_{ij}^t : 0 \le t \le p(|x|) \land 1 \le i \le p(|x|) \land j \in \{0,1,\square\} \}$$

- con il seguente significato: assegnando a N_{ij}^t il valore vero rappresentiamo il fatto che, al passo t della computazione NT_{Γ} (x), la cella i del nastro di NT_{Γ} contiene il simbolo j
- affinché le variabili in N descrivano effettivamente i contenuti delle celle del nastro di NT_{Γ} ad ogni passo della computazione NT_{Γ} (x), dobbiamo imporre che esse siano coerenti:
 - ad ogni passo della computazione NT_Γ (x) ogni cella di NT_Γ contiene un simbolo ed esattamente uno!
 - allora dobbiamo fare in modo che possano essere prese in considerazione solo quelle assegnazioni di valori alle variabili in N tali che, per ogni t compreso fra 0 e p(|x|), e per ogni i compreso fra 1 e p(|x|), ad una e una sola delle variabili N^tio, N^tio, N tio sia assegnato il valore vero.
- Di nuovo, a questo scopo introduciamo p(|x|)+1 espressioni: E^0_N , E^1_N , ..., $E^{p(|x|)}_N$

- Ma, ora, abbiamo bisogno di un passo intermedio
- Indichiamo con E^{† i}_N l'espressione nelle variabili in N che corrisponde all'affermazione

al passo t di $NT_{\Gamma}(x)$ la cella i di NT_{Γ} contiene un elemento (ed esattamente uno!) dell'insieme { 0,1, \square }

Che assume il valore vero se e soltanto se ad <u>esattamente</u> una delle variabili N^tio, N^tio, N^tio è assegnato il valore vero

- Dunque E^{† i}_N è l'espressione nelle variabili in R che corrisponde all'affermazione al passo t di NT_Γ (x) la cella i di NT_Γ contiene un elemento (ed esattamente uno!) dell'insieme { 0,1, □ }
 - **E**^{t i}_N assume il valore **vero** se e soltanto se ad esattamente una delle variabili N^t₁₀, N^t₁₁, N^t₁₀ è assegnato il valore vero
- Infine, per ognit compreso fra 0 = p(|x|), poniamo

$$E^{\dagger}_{N} = E^{\dagger 1}_{N} \wedge E^{\dagger 2}_{N} \wedge ... \wedge E^{\dagger p(|x|)}_{N}$$

- E^t_N assume il valore vero se e soltanto se, per ogni cella i del nastro di NT, ad esattamente una delle variabili N^t_{i0}, N^t_{i1}, N^t_{i□} è assegnato il valore vero
- ossia, E^{t}_{N} assume il valore vero se e soltanto se, per ogni cella i del nastro di NT_{Γ} , al passo t di NT_{Γ} (x) la cella i di NT_{Γ} contiene un elemento (ed esattamente uno!) dell'insieme { 0,1, \square }

Ricapitolando...

- Siamo partiti da un generico problema $\Gamma \in NP$ e dal linguaggio $L_{\Gamma} \subseteq \{0,1\}^*$ contenente una codifica ragionevole delle istanze sì di Γ
- Abbiamo considerato una macchina di Turing non deterministica NT_{Γ} che accetta, le parole x in L_{Γ} in tempo p(|x|) polinomiale in |x|
- E abbiamo osservato che l'affermazione " $x \in L_{\Gamma}$ " è logicamente equivalente all'affermazione
 - $\gamma(x) = x$ (e nient'altro che x) è scritto sul nastro di NT_{Γ}
 - e la testina di NT_Γ è posizionata sul primo carattere di x
 - e NT_{Γ} è nel suo stato iniziale,
 - e esiste una sequenza di al più p(|x|) quintuple di NT_r che possono essere eseguite una di seguito all'altra e portano la macchina nello stato q_A "
- cioè $x \in L_{\Gamma}$ se e soltanto se $\gamma(x)$ è vera
- Ci siamo proposti di descrivere $\gamma(x)$ sotto forma di espressione booleana E(x) che sia soddisfacibile se e soltanto se $\gamma(x)$ è vera
- e poiché E(x) deve descrivere una computazione di NT_Γ che ha inizio con x scritto sul suo nastro, ossia, <u>una sequenza di stati globali tale che si passa da uno stato globale al successivo mediante l'esecuzione di una quintupla
 </u>
- abbiamo definito le variabili booleane che ci permettono di descrivere gli stati globali che compongono la computazione NT_Γ (x) (e le condizioni per la loro consistenza!)
- non ci resta che descrivere configurazione iniziale, stati globali e computazione...

Rappresentare un generico stato globale

- Descriviamo, dunque, all'interno di E(x) gli stati globali che compongono la computazione NT_r(x)
- Ma lo abbiamo già fatto!
- Le variabili che descrivono uno stato globale SG_t in cui si trova la macchina NT_{Γ} al passo t di una **generica** computazione di p(|x|) passi sono:
 - le variabili M_0^1 , M_1^1 , ..., M_k^1 per lo stato interno
 - \rightarrow le variabili R^{\dagger}_{1} , R^{\dagger}_{2} , ..., $R^{\dagger}_{p(|x|)}$ per la posizione della testina
 - le variabili N_{10}^t , N_{11}^t , N_{10}^t , ..., $N_{p(|x|)0}^t$, $N_{p(|x|)1}^t$, $N_{p(|x|)0}^t$ che il contenuto delle p(|x|) celle del nastro utilizzate durante la computazione
- e gli stati globali di NT_{Γ} al passo t di $NT_{\Gamma}(x)$ sono completamente descritti da tutte e sole le assegnazioni di verità che soddisfano $S^{\dagger} = E^{\dagger}_{M} \wedge E^{\dagger}_{R} \wedge E^{\dagger}_{N}$
- lacktriangle infatti, una assegnazione di verità che soddisfa \mathcal{S}^{t} rappresenta
 - ▶ l'unico stato interno in cui si trova NT_{Γ} al tempo t, l'unica cella del nastro sulla quale è posizionata la testina di NT_{Γ} al tempo t, e l'unico simbolo in $\{0,1, \square\}$ contenuto in ciascuna cella del nastro di NT_{Γ} al tempo t
- viceversa, dato uno stato globale di NT_{Γ} al tempo t, è facile derivare da esso una assegnazione di verità che soddisfa S^{\dagger}

- A questo punto, sappiamo come rappresentare uno stato globale generico e lo stato globale iniziale della computazione NT_Γ(x) mediante una assegnazione di verità alle variabili in M, R e N
- **dobbiamo** rappresentare allo stesso modo le computazioni **della macchina** NT_{Γ} che accettano in al più p(|x|) passi
- Ossia: esiste una sequenza di al più p(|x|) quintuple di NT_Γ che possono essere eseguite una di seguito all'altra e portano la macchina nello stato q_A
- Possiamo allora dire che $NT_{\Gamma}(x)$ è una computazione accettante in p(|x|) passi se:
 - \blacksquare al passo 0, NT_{Γ} esegue una quintupla e
 - \blacksquare al passo 1, NT_{Γ} è nello stato q_A oppure esegue una quintupla e
 - lacktriangle al passo 2, NT $_{\Gamma}$ è nello stato q_{A} oppure esegue una quintupla e
 - **...**
 - al passo p(|x|) 1, NT_{Γ} è nello stato q_A oppure esegue una quintupla e
 - al passo p(|x|), NT_{Γ} è nello stato q_A .

- Dobbiamo mostrare come esprimere
 - \blacksquare al passo t, NT_{Γ} è nello stato q_A oppure esegue una quintupla
- \blacksquare Sia (q_{i1} , s1, s2, q_{i2} , m) una quintupla di NT_{Γ}
 - con m = -1 se la testina si muove a sinistra, m = 0 se rimane ferma, m = +1 se si muove a destra
- L'affermazione "la quintupla (q_{i1}, s1, s2, q_{i2}, m) è eseguita al passo t mentre la testina è posizionata sulla cella u" è equivalente all'espressione

$$G^{\dagger}(u, \langle q_{i1}, s1, s2, q_{i2}, m \rangle) = M^{\dagger}_{i1} \wedge R^{\dagger}_{u} \wedge N^{\dagger}_{u s1} \wedge N^{\dagger+1}_{u s2} \wedge M^{\dagger+1}_{i2} \wedge R^{\dagger+1}_{u+m}$$

- ossia: "al passo t la macchina è nello stato q_{i1}, la testina è posizionata sulla cella u e legge il simbolo s1, e al passo t+1 la macchina è nello stato q_{i2}, nella cella u è stato scritto s2 e la testina è stata spostata sulla cella u + m"
- L'espressione $\mathcal{G}^{\dagger}(u, \langle q_{i1}, s1, s2, q_{i2}, m \rangle)$ significa: "al passo t, la testina è posizionata sulla cella u e viene eseguita la quintupla $\langle q_{i1}, s1, s2, q_{i2}, m \rangle$ "
- ma, al passo t, la testina potrebbe essere posizionata su qualunque cella...

L'affermazione "la quintupla (q_{i1}, s1, s2, q_{i2}, m) è eseguita al passo t mentre la testina è posizionata sulla cella u" è equivalente all'espressione

$$G^{t}(u, \langle q_{i1}, s1, s2, q_{i2}, m \rangle) = M^{t}_{i1} \wedge R^{t}_{u} \wedge N^{t}_{u s1} \wedge N^{t+1}_{u s2} \wedge M^{t+1}_{i2} \wedge R^{t+1}_{u+m}$$

- L'espressione $G^{\dagger}(u, \langle q_1, s_1, s_2, q_2, m_{\rangle})$ significa: "al passo t, la testina è posizionata sulla cella u e viene eseguita la quintupla $\langle q_1, s_1, s_2, q_2, m_{\rangle}$ ", ma, al passo t, la testina potrebbe essere posizionata su qualunque cella...
- Allora, per esprimere che "su qualunque cella sia posizionata la testina, la quintupla (q_{i1}, s1, s2, q_{i2}, m) è eseguita al passo t" scriviamo l'espressione

```
G^{\dagger}(\langle q_{i1}, s1, s2, q_{i2}, m \rangle) = G^{\dagger}(1, \langle q_{i1}, s1, s2, q_{i2}, m \rangle) \vee G^{\dagger}(2, \langle q_{i1}, s1, s2, q_{i2}, m \rangle) \vee ... \vee G^{\dagger}(p(|x|), \langle q_{i1}, s1, s2, q_{i2}, m \rangle)
```

che significa "al passo t la macchina è nello stato q_{i1}, la testina è posizionata su una qualsiasi cella u (con 1 ≤ u ≤ p(|x|)) e legge il simbolo s1, e al passo t+1 la macchina è nello stato q_{i2}, nella cella u è stato scritto s2 e la testina è stata spostata sulla cella u + m"

- Per esprimere che "su qualunque cella sia posizionata la testina, la quintupla $\langle q_{i1}, s1, s2, q_{i2}, m \rangle$ è eseguita al passo t" scriviamo l'espressione $\mathcal{G}^{\dagger}(\langle q_{i1}, s1, s2, q_{i2}, m \rangle) = \mathcal{G}^{\dagger}(1, \langle q_{i1}, s1, s2, q_{i2}, m \rangle) \vee \mathcal{G}^{\dagger}(2, \langle q_{i1}, s1, s2, q_{i2}, m \rangle) \vee ... \vee \mathcal{G}^{\dagger}(p(|x|), \langle q_{i1}, s1, s2, q_{i2}, m \rangle)$
- Se l'insieme delle quintuple di NT_{Γ} è $\{\langle q_{11}, s_{11}, s_{12}, q_{12}, m_1 \rangle, \langle q_{21}, s_{21}, s_{22}, q_{22}, m_2 \rangle, \dots, \langle q_{h1}, s_{h1}, s_{h2}, q_{h2}, m_h \rangle\}$

" al passo t viene eseguita una quintupla di NT $_{\Gamma}$ "

scriviamo l'espressione

```
G^{\dagger} = G^{\dagger}(\langle q_{11}, s11, s12, q_{12}, m1 \rangle) \vee G^{\dagger}(\langle q_{21}, s21, s22, q_{22}, m2 \rangle) \vee ...
... \vee G^{\dagger}(\langle q_{h1}, sh1, sh2, q_{h2}, mh \rangle)
```

Per esprimere l'affermazione

"al passo t viene eseguita una quintupla di NT_Γ " scriviamo l'espressione

```
G^{\dagger} = G^{\dagger}(\langle q_{11}, s11, s12, q_{12}, m1 \rangle) \vee G^{\dagger}(\langle q_{21}, s21, s22, q_{22}, m2 \rangle) \vee ...
... \vee G^{\dagger}(\langle q_{h1}, sh1, sh2, q_{h2}, m2 \rangle)
```

- Allora, per esprimere l'affermazione
 - \blacksquare al passo t, NT_{Γ} è nello stato q_A oppure esegue una quintupla
 - ricordando che q_A = q₁
- scriviamo: M¹₁ ∨ g¹

Rappresentare la configurazione iniziale di $NT_{\Gamma}(x)$

- Descriviamo, ora, una espressione che andrà a comporre E(x) che permette di descrivere lo stato globale iniziale di $NT_{\Gamma}(x)$, ossia, la prima parte di $\gamma(x)$:
 - " x (e nient'altro che x) è scritto sul nastro di NT_{Γ} e la testina di NT_{Γ} è posizionata sul primo carattere di x e NT_{Γ} è nel suo stato iniziale "
- ightharpoonup NT_{Γ} è nel suo stato interno iniziale
 - Facile: è sufficiente imporre che ad M_0^0 debba essere assegnato il valore vero
- lacktriangle / la testina di NT $_{\Gamma}$ è posizionata sul primo carattere di x
 - \blacksquare Facile: è sufficiente imporre che ad \mathbb{R}^0_1 debba essere assegnato il valore vero
- $ightharpoonup \Lambda$ x (e nient'altro che x) è scritto sul nastro di NT_{Γ}
 - sia x = x1 x2 ... xn (ovviamente, $xi \in \{0,1, \square\}$ per i = 1, ..., n)
 - allora, è sufficiente imporre che per i = 1, ..., n, ad $N_{i \times i}^0$ debba essere assegnato il valore **vero** per i = n+1, ..., p(n) ad $N_{i \cap i}^0$ debba essere assegnato il valore **vero**

Rappresentare la configurazione iniziale di $NT_{\Gamma}(x)$

- Descriviamo, ora, una espressione che andrà a comporre E(x) che permette di descrivere lo stato globale iniziale di $NT_{\Gamma}(x)$, ossia, la prima parte di $\gamma(x)$:
 - " x (e nient'altro che x) è scritto sul nastro di NT_{Γ} e la testina di NT_{Γ} è posizionata sul primo carattere di x e NT_{Γ} è nel suo stato iniziale "
- Quindi, lo stato globale iniziale di $NT_{\Gamma}(x)$ è completamente descritto da una assegnazione di verità che soddisfa

$$\mathcal{H} = M^{0}_{0}$$

$$\wedge R^{0}_{1}$$

$$\wedge N^{0}_{1 \times 1} \wedge N^{0}_{2 \times 2} \wedge ... \wedge N^{0}_{n \times n} \wedge N^{0}_{n+1} \wedge N^{0}_{n+2} \wedge ... \wedge N^{0}_{p(n)}$$

esempio: se x = 1001,

$$\mathcal{H} = M_{0}^{0} \wedge R_{1}^{0} \wedge N_{11}^{0} \wedge N_{20}^{0} \wedge N_{30}^{0} \wedge N_{41}^{0} \wedge N_{50}^{0} \dots \wedge N_{p(4)0}^{0}$$

Finalmente, E(x)

- Possiamo, infine, mettere insieme tutti i mattoncini che abbiamo sin qui costruito
 - il predicato *H* che assume valore vero se e soltanto se alle variabili in M, R, N vengono assegnati valori di verità corrispondenti alla presenza di x (e nient'altro) sul nastro, alla testina posizionata sulla cella 1, e alla macchina che si trova nello stato interno iniziale
 - per ogni t, il predicato St che assume valore vero se e solo se alle variabili che descrivono lo stato globale al passo t vengono assegnati valori di verità consistenti (la macchina è in uno ed un solo stato ecc.)
 - per ogni t, il predicato g^{\dagger} che assume valore vero se e solo se alle variabili vengono assegnati valori di verità che descrivono l'esecuzione di una quintupla al passo t
 - ricordando che M_1^t è la variabile che descrive se al passo t NT_{Γ} è nello stato q_A
 - e ricordando che NT_r(x) è una computazione accettante se:
 - al passo 0, NT_r esegue una quintupla,
 - \blacksquare e al passo 1, NT_r è nello stato q_A oppure esegue una quintupla e ...
 - al passo p(|x|) 1, NT_r è nello stato q_A oppure esegue una quintupla, e al passo p(|x|), NT_r è nello stato q_A .
- per ottenere l'espressione E(x)

$$\begin{split} \mathsf{E}(\mathsf{x}) &= \mathcal{H} \wedge \mathcal{S}^0 \wedge \left(\mathsf{M}^0_1 \vee \mathcal{G}^0\right) \wedge \mathcal{S}^1 \wedge \left(\mathsf{M}^1_1 \vee \mathcal{G}^1\right) \wedge \mathcal{S}^2 \wedge \dots \\ & \dots \wedge \mathcal{S}^{\mathsf{p}(|\mathsf{x}|)-1} \wedge \left(\mathsf{M}^{\mathsf{p}(|\mathsf{x}|)-1}_1 \vee \mathcal{G}^{\mathsf{p}(|\mathsf{x}|)-1}\right) \wedge \mathcal{S}^{\mathsf{p}(|\mathsf{x}|)} \wedge \mathsf{M}^{\mathsf{p}(|\mathsf{x}|)}_1 \end{split}$$

$x \in L_{\Gamma}$ se e solo se E(x) è soddisfacibile

A partire da NT_{Γ} e da $x \in \{0,1\}^*$ abbiamo ottenuto

```
\mathbf{E}(\mathbf{x}) = \mathcal{H} \wedge \mathcal{S}^{0} \wedge (\mathsf{M}^{0}_{1} \vee \mathcal{G}^{0}) \wedge \mathcal{S}^{1} \wedge (\mathsf{M}^{1}_{1} \vee \mathcal{G}^{1}) \wedge \dots \\ \dots \wedge \mathcal{S}^{\mathsf{p}(|\mathbf{x}|)-1} \wedge (\mathsf{M}^{\mathsf{p}(|\mathbf{x}|)-1}_{1} \vee \mathcal{G}^{\mathsf{p}(|\mathbf{x}|)-1}) \wedge \mathcal{S}^{\mathsf{p}(|\mathbf{x}|)} \wedge \mathsf{M}^{\mathsf{p}(|\mathbf{x}|)}_{1}
```

- Ricordiamo che stiamo mostrando che \mathbf{L}_{Γ} è riducibile polinomialmente a SAT (senza curarci della forma congiuntiva normale)
 - e che, quindi, abbiamo mostrato come trasformare x in E(x)
 - ▶ la macchina NT_{Γ} gioca il ruolo di costante: non è l'istanza!
- Dobbiamo, a questo punto, dimostrare che

 $x \in L_{\Gamma}$ se e soltanto se esiste una assegnazione di verità per le variabili in M, R, N che soddisfa E(x)

se $x \in L_{\Gamma}$ allora E(x) è soddisfacibile

A partire da NT_{Γ} e da $x \in \{0,1\}^*$ abbiamo ottenuto

```
E(x) = \mathcal{H} \wedge S^{0} \wedge (M^{0}_{1} \vee G^{0}) \wedge S^{1} \wedge (M^{1}_{1} \vee G^{1}) \wedge ...
... \wedge S^{p(|x|)-1} \wedge (M^{p(|x|)-1}_{1} \vee G^{p(|x|)-1}) \wedge S^{p(|x|)} \wedge M^{p(|x|)}_{1}
```

- se $x \in L_{\Gamma}$, allora esiste una computazione di $NT_{\Gamma}(x)$ che termina in q_A in al più p(|x|) passi
- cioè, esistono
 - una sequenza di stati globali SG_0 , SG_1 , ..., SG_0 , con $u \le p(|x|)$
- tali che
 - SG₀ è lo stato globale in cui la macchina è nello stato q₀, la testina è posizionata sulla cella 1, le prime |x| celle contengono i bit di x, e le rimanenti p(|x|)-x celle contengono □
 - per t = 0, ..., u-1, lo stato interno di SG_t è q_{t1} e il simbolo letto dalla testina è s_{t1} , e SG_{t+1} è lo stato globale corrispondente all'esecuzione della t-esima quintupla della sequenza a partire da SG_t
 - lo stato interno di SG_u è q_A

se $x \in L_{\Gamma}$ allora E(x) è soddisfacibile

- A partire
 - dalla sequenza di stati globali SG_0 , SG_1 , ..., Sg_u , con $u \le p(|x|)$
 - ▶ e dalla sequenza di u quintuple, dove la quintupla i è $\langle q_{i1}, s_{i1}, s_{i2}, q_{12}, m_i \rangle$, con $0 \le i \le U-1$
- costruiamo una assegnazione di verità a che soddisfa

$$\mathbf{E}(\mathbf{x}) = \mathcal{H} \wedge \mathcal{S}^{0} \wedge (\mathbf{M}^{0}_{1} \vee \mathcal{G}^{0}) \wedge \mathcal{S}^{1} \wedge (\mathbf{M}^{1}_{1} \vee \mathcal{G}^{1}) \wedge \dots \wedge \mathcal{S}^{\mathbf{U}} \wedge (\mathbf{M}^{\mathbf{U}}_{1} \vee \mathcal{G}^{\mathbf{U}}) \wedge \dots \wedge \mathcal{S}^{\mathbf{U}} \wedge (\mathbf{M}^{\mathbf{U}}_{1} \vee \mathcal{G}^{\mathbf{U}}) \wedge \dots \wedge \mathcal{S}^{\mathbf{U}} \wedge (\mathbf{M}^{\mathbf{U}}_{1} \vee \mathcal{G}^{\mathbf{U}}) \wedge (\mathbf{M}^{\mathbf{U}}_{1} \vee \mathcal{G$$

- 1: usiamo SG₀. Poniamo
 - $a(M^{0}_{0}) = a(R^{0}_{1}) = vero$
 - per j = 1, ..., |x|, se il bit j di x è 0 poniamo $a(N_{j0}^0) = vero$ altrimenti poniamo $a(N_{j1}^0) = vero$
 - per j = |x|, ..., p(|x|), poniamo $a(N_{|x|}^0)$ = **vero**
 - \blacksquare a assegna falso a tutte le altre variabili in M^0 , R^0 , N^0
 - ightharpoonup pertanto, **a** soddisfa $\mathcal{H} \wedge \mathcal{S}^0$

se $x \in L_{\Gamma}$ allora E(x) è soddisfacibile

- **2: usiamo SG₁**, **SG₂**, ..., **SG_u**. Definiamo $\mathbf{a}(M_i^t)$, $\mathbf{a}(R_i^t)$, $\mathbf{a}(N_{ji}^t)$, usando SG^t analogamente a quanto abbiamo fatto al punto 1.
- Questo garantisce che, per ogni t=1, ..., u,
 - esiste uno ed un solo i tale che $a(M^{\dagger}_{i}) = vero$
 - esiste uno ed un solo i tale che $a(R^{\dagger}) = vero$
 - per ogni j = 1, ..., p(|x|), esiste uno ed un solo i tale che $a(N_{ji}) = vero$
- \blacksquare e quindi che, per ogni t=1, ..., u, a soddisfa S^{\dagger}
- **3: usiamo le quintuple**. Poiché per ogni t = 0, ..., u-1 può essere eseguita la quintupla t della sequenza, allora, per ogni t = 0, ..., u-1, a soddisfa t
- **4:** lo stato interno di SG_u è q_A . Allora, $a(M^u_1)$ =vero; perciò, benché al passo u non venga eseguita alcuna quintupla, a soddisfa $(M^u_1 \vee g^u)$
- **5:** $\mathbf{t} > \mathbf{u}$. Per ogni i = 0, ..., k poniamo $\mathbf{a}(M_i^t) = \mathbf{a}(M_i^0)$, per ogni j = 1, ..., h poniamo $\mathbf{a}(R_i^t) = \mathbf{a}(R_i^0)$, $\mathbf{a}(N_{i0}^t) = \mathbf{a}(N_{i0}^0)$, $\mathbf{a}(N_{i1}^t) = \mathbf{a}(N_{i1}^0)$, $\mathbf{a}(N_{i1}^t) = \mathbf{a}(N_{i1}^0)$, ed è facile verificare che a soddisfa $\mathbf{S}^t \in \mathbf{M}_1^t$
- Questo dimostra che a soddisfa E(x)

se E(x) è soddisfacibile allora $x \in L_{\Gamma}$

► A partire da NT_{Γ} e da x ∈ {0,1}* abbiamo ottenuto

```
\mathbf{E}(\mathbf{x}) = \mathcal{H} \wedge \mathcal{S}^{0} \wedge (\mathsf{M}^{0}_{1} \vee \mathcal{G}^{0}) \wedge \mathcal{S}^{1} \wedge (\mathsf{M}^{1}_{1} \vee \mathcal{G}^{1}) \wedge \dots \\ \dots \wedge \mathcal{S}^{\mathsf{p}(|\mathbf{x}|)-1} \wedge (\mathsf{M}^{\mathsf{p}(|\mathbf{x}|)-1}_{1} \vee \mathcal{G}^{\mathsf{p}(|\mathbf{x}|)-1}) \wedge \mathcal{S}^{\mathsf{p}(|\mathbf{x}|)} \wedge \mathsf{M}^{\mathsf{p}(|\mathbf{x}|)}_{1}
```

- supponiamo, ora, che esista una assegnazione di verità a alle variabili in M, R, N che soddisfa E(x)
- ossia, a soddisfa \mathcal{H} , $S^{p(|x|)}$ e $M^{p(|x|)}_1$
- \rightarrow e, inoltre, per ogni t = 0, 1, ..., p(|x|)-1, a soddisfa S^{\dagger} e ($M^{\dagger}_{1} \vee G^{\dagger}_{2}$)
- Poiché, ricordiamo, ogni assegnazione di verità che soddisfa $S^{\dagger} = E^{\dagger}_{M} \wedge E^{\dagger}_{R} \wedge E^{\dagger}_{N} \wedge \dots \wedge E^{\dagger}_{\Gamma} \wedge E^{\dagger}_{N} \wedge E^{$
 - specificando che, per ogni ogni $t = 0, 1, ..., p(|x|)-1, NT_{\Gamma}$ è in uno (ed un solo) stato interno, con la testina posizionata su una (e una sola) cella che contiene un (ed un solo) elemento in $\{0, 1, \square\}$
- allora a descrive una sequenza $SG^1, ..., SG^{p(|x|)-1}$ di stati globali di NT_{Γ}
 - dove, per ogni t = 0, 1, ..., p(|x|)-1, SG^{\dagger} è lo stato descritto da $a(S^{\dagger})$

se E(x) è soddisfacibile allora $x \in L_{\Gamma}$

► A partire da NT_{Γ} e da x ∈ {0,1}* abbiamo ottenuto

```
\mathbf{E}(\mathbf{x}) = \mathcal{H} \wedge \mathcal{S}^{0} \wedge (\mathsf{M}^{0}_{1} \vee \mathcal{G}^{0}) \wedge \mathcal{S}^{1} \wedge (\mathsf{M}^{1}_{1} \vee \mathcal{G}^{1}) \wedge \dots \\ \dots \wedge \mathcal{S}^{\mathsf{p}(|\mathbf{x}|)-1} \wedge (\mathsf{M}^{\mathsf{p}(|\mathbf{x}|)-1}_{1} \vee \mathcal{G}^{\mathsf{p}(|\mathbf{x}|)-1}) \wedge \mathcal{S}^{\mathsf{p}(|\mathbf{x}|)} \wedge \mathsf{M}^{\mathsf{p}(|\mathbf{x}|)}_{1}
```

- supponiamo, ora, che esista una assegnazione di verità a che soddisfa E(x)
- allora a descrive una sequenza $SG^1, ..., SG^{p(|x|)-1}$ di stati globali di NT_{Γ}
- poiché, a soddisfa \mathcal{H} , a (S^0) descrive lo stato globale in cui x (e solo x) è scritto sul nastro, NT_{Γ} è nello stato q_0 , e la testina è posizionata sul carattere più a sinistra dell'input
- inoltre, per ogni t = 0, 1, ..., p(|x|)-1, a soddisfa $(M^t_1 \vee G^t)$
- allora, per ogni t = 0, 1, ..., p(|x|)-1,
 - o viene eseguita una quintupla (se $a(G^{\dagger}) = vero$) che fa passare da SG^{\dagger} a $SG^{\dagger+1}$
 - **oppure** NT_{Γ} è in q_A (se $a(M_1^{\dagger}) = vero$)
 - osserviamo che non può accadere $a(G^{\dagger}) = vero e a(M^{\dagger}_{1}) = vero in quanto esiste uno e un solo i tale che <math>a(M^{\dagger}_{1}) = vero$ e non esistono quintuple che partono da $q_{1} = q_{A}$

se E(x) è soddisfacibile allora $x \in L_{\Gamma}$

- supponiamo, ora, che esista una assegnazione di verità a che soddisfa E(x)
- lacktriangle a corrisponde ad una sequenza $SG^1, \ldots, SG^{p(|x|)-1}$ di stati globali di NT_{Γ}
 - dove, per ogni t = 0, 1, ..., p(|x|)-1, SG^{\dagger} è lo stato globale corrispondente a $a(S^{\dagger})e S^{0}$ corrisponde allo stato globale iniziale di $NT_{\Gamma}(x)$ aaa
- inoltre, per ogni t = 0, 1, ..., p(|x|)-1, se $a(g^t) = vero$ allora viene eseguita una quintupla che fa passare da SG^t a SG^{t+1} ,
- \triangleright D'altra parte, poiché a soddisfa E(x), allora deve essere $a(M^{p(|x|)}_1) = vero$
 - e questo significa che esiste un indice h tale che a(Mh1) = vero
 - e che (come è facile verificare), per ogni $t \ge h$, $a(M_1^t) = vero$
- sia \cup {0, 1, ..., p(|x|)} il primo intero tale che $\alpha(M_1^t) = vero$
 - \blacksquare ossia, per ogni $t = 0, 1, ..., \upsilon 1, \alpha(G^{\dagger}) = vero$
 - e, quindi, per ogni t = 0, 1, ..., u-1, viene eseguita una quintupla che fa passare da SG^{\dagger} a $SG^{\dagger+1}$
- allora (SG_0 , SG_1 , ..., SG^{\cup}) è una computazione accettante di $NT_{\Gamma}(x)$
- e, quindi, $x \in L_{\Gamma}$

Quanto costa calcolare E(x)?

A partire da NT_{Γ} e da $x \in \{0,1\}^*$ abbiamo ottenuto

$$E(x) = \mathcal{H} \wedge S^{1} \wedge (M^{1}_{1} \vee G^{1}) \wedge S^{2} \wedge (M^{2}_{1} \vee G^{2}) \wedge ...$$

$$... \wedge S^{p(|x|)-1} \wedge (M^{p(|x|)-1}_{1} \vee G^{p(|x|)-1}) \wedge S^{p(|x|)} \wedge M^{p(|x|)}_{1}$$

- Ricordiamo che stiamo mostrando che \mathbf{L}_{Γ} è riducibile polinomialmente a SAT (senza curarci della forma congiuntiva normale)
 - e che, quindi, abbiamo mostrato come trasformare x in E(x)
 - ▶ la macchina NT_{Γ} gioca il ruolo di costante: non è l'istanza!
- ► Ma quanto tempo occorre a calcolare E(x) a partire da NT_{Γ} e da $x \in \{0,1\}^*$?
- È facile verificare che, per ogni t = 0, 1, ..., p(|x|), calcolare S^t e G^t richiede O(p(|x|)) passi
 - ightharpoonup e, quindi, calcolarli tutti richiede O([p(|x|)]²) passi
- Calcolare # richiede un numero di passi proporzionale a p(|x|)
- In conclusione, calcoliamo E(x) in $O([p(|x|)]^2)$ passi

Abbiamo considerato un qualunque $L_{\Gamma} \in NP$, e da $x \in \{0,1\}^*$ abbiamo costruito

- \blacksquare e abbiamo dimostrato che E(x) è calcolabile in O([p(|x|)]²) passi
- e abbiamo dimostrato che $x \in L_{\Gamma}$ se e soltanto se E(x) è soddisfacibile
- Come abbiamo osservato, E(x) non è in forma congiuntiva normale
- Tuttavia, è semplice trasformare E(x) in forma congiuntiva normale
 - ullet è sufficiente applicare le leggi distributive di Λ e V, separatamente, a ciascun S^{\dagger} e G^{\dagger}
 - ma non lo facciamo!
- e questo richiede O(p(|x|)) passi
 - anche se non lo dimostriamo
- E, poiché l'algoritmo non deterministico che abbiamo utilizzato per mostrare che 3SAT ∈ NP prova anche che SAT ∈ NP, questo completa la dimostrazione del Teorema di Cook-Levin:

SAT è NP-completo