Sample and Prune: An Efficient MapReduce Method for Submodular Optimization

Benjamin Moseley Washington University in St. Louis

MapReduce Class [Karloff et al.]

- N is the input size
- Sublinear $(N^{1-\epsilon})$ memory on each machine
- Sublinear $(N^{1-\epsilon})$ number of machines
- Mappers/reducers are poly(N) computable
- \mathcal{MRC}^0 : algorithms that run in O(1) rounds

Algorithmic Design in MapReduce

- No one machine can see the entire input
- No communication between machines during a phase
- Total memory is large

Sampling

- Sample the input in parallel
 - Well represent the input space
 - Generally must be done adaptively
- Sample should be small

Monotone Submodular Function Maximization

- Universe of elements U where |U| = n
- ullet A function $f: 2^U o \mathbb{R}$
- Function is submodular and monotone

 $\forall Y, X \subseteq U$ where $X \subseteq Y$ and every $x \in U \setminus Y$ we have $f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)$

Monotone Submodular Function Maximization

• Find a set S such that

$$\max_{S} f(S)$$

- Possible constraints (hereditary)
 - Cardinality
 - Matroid (system)
 - Knapsack

- Maximum solution size k
- Memory $\Omega(kn^{\epsilon})$

Maximum Coverage

Ads

Submodular Function Maximization

- Maximum submodular coverage
- Minimum spanning tree
- Maximum matching in bipartite graphs

• ...

Greedy Algorithm

- ullet $Y=\emptyset$
- Add elements sequentially with the most value

$$\max_{x} f(\{x\} \cup Y)$$

Simulation of the Greedy Algorithm

- A natural approach
 - Partition data across machines
 - U_i data given to machine i
 - Run greedy on each machine to get a set S_i
 - Map all sets to a single machine and run greedy on $\bigcup_i S_i$

Bad Example

Bad Example

Algorithm's Objective kOptimal Objective 2k-1

Greedy in MR [Kumar-M-Vassilvitskii-Vattani]

- v maximum value an element can give
- For submodular objectives, a $O(\log v)$ round algorithm that computes the greedy solution
 - $(1 \frac{1}{e} \epsilon)$ -approximation for maximum submodular coverage
 - $\frac{1}{3+\epsilon}$ -approximation for weighted matching

Approximate Greedy Algorithm

- ullet $Y=\emptyset$
- Add elements sequentially with (almost) the most value

$$f(\{x\} \cup Y) - f(Y) \ge \frac{1}{(1+\epsilon')} (f(\{a\} \cup Y) - f(Y)) \quad \forall a \in U$$

Algorithm Overview

- Solution set $Y = \emptyset$
- Find maximum additional value possible

$$v = \max_{x} f(\{x\})$$

In ith phase pick elements until

$$\max_{x} \{f(\{x\} \cup Y) - f(Y)\} < \frac{v}{(1+\epsilon')^i}$$

Logarithmic rounds:

$$O(\log_{1+\epsilon'}(v))$$

- Solution the same as the approximate sequential greedy algorithm's solution
 - Only choose elements that could be chosen by the greedy algorithm

Sampling

- Sample $\Theta(kn^{\epsilon})$ elements to get a set S
- Pick elements of value greater than $\frac{v}{(1+\epsilon')^i}$
- \bullet Y_i current solution
- Remove all elements x with value less than $\frac{v}{(1+\epsilon')^i}$
- Recurse until all points are removed

- A factor of roughly n^{ϵ} elements removed each iteration
 - \mathcal{E}_{Y_i} : Event that the solution is Y_i
 - High value elements would change the solution if sampled

$$\Pr[\mathcal{E}_{Y_i}] \le (1 - \frac{k}{n^{1 - \epsilon}})^{2n^{1 - \epsilon} \log n} \le e^{-2k \log n} = \frac{1}{n^{2k}}$$

- Same guarantees as the greedy algorithm
- Number of rounds is $O(\frac{1}{\epsilon} \log_{1+\epsilon'}(v))$
- Memory: $\tilde{\Theta}(kn^{\epsilon})$
- Machines: $\tilde{\Theta}(n^{1-\epsilon})$

Extensions

- Constant round algorithms?
- Tailor the sampling algorithm
 - Ensure only non-important elements are discarded

Extensions

- Constant round algorithms!
 - Optimal algorithm for a modular function subject to one matroid
 - Approximation for cardinality constraint
 - Approximation for d matroids
 - Approximation for d knapsacks

Streaming Algorithm for the Cardinality Constraint

- Select a set S of size k to maximize f(S)
- Let OPT denote the optimal solution
- Streaming Algorithm
 - Set $S = \emptyset$
 - Consider elements in any order e_1, e_2, \dots, e_n
 - ullet Add e_i to S if $f(S \cup \{e_i\}) f(S) \geq rac{OPT}{2k}$

• $\frac{1}{2}$ -approximation

- Say k elements are added to S
 - Each gave incremental value at least

$$\frac{OPT}{2k}$$

• Total value is at least
$$k \cdot \frac{OPT}{2k} = \frac{OPT}{2}$$

- Say |S| < k
- Let S^* denote the optimal solution
- For elements $e \in S^*$ it is the case that

$$f(S \cup \{e\}) - f(S) < \frac{OPT}{2k}$$

Thus, we have

$$f(S \cup S^*) - f(S) \le \frac{OPT}{2k} |S^* \setminus S|$$

• We know:

$$f(S \cup S^*) - f(S) \le \frac{OPT}{2k} |S^* \setminus S|$$

• Which implies
$$f(S \cup S^*) - \frac{OPT}{2k} |S^* \setminus S| \leq f(S)$$

Using monotonicity

$$OPT = f(S^*) \le f(S \cup S^*)$$

Putting this together

$$OPT - \frac{OPT}{2} \le f(S)$$

MapReduce: Sampling

- Set $Y = \emptyset$
- Sample $\Theta(kn^{\epsilon})$ elements
- Pick elements of value greater than $\frac{OPT}{2k}$
- \bullet Y_i current solution
- Remove all elements x with value less than $\frac{OPT}{2k}$
- Recurse until all points are removed

- A factor of roughly n^{ϵ} elements removed each iteration
 - \mathcal{E}_{Y_i} : Event that the solution is Y_i
 - High value elements would change the solution if sampled

$$\Pr[\mathcal{E}_{Y_i}] \le (1 - \frac{k}{n^{1 - \epsilon}})^{2n^{1 - \epsilon} \log n} \le e^{-2k \log n} = \frac{1}{n^{2k}}$$

- $\frac{1}{2}$ -approximation
- Number of rounds is $O(\frac{1}{\epsilon})$
- Memory: $\tilde{\Theta}(kn^{\epsilon})$
- Machines: $\tilde{\Theta}(n^{1-\epsilon})$

Abstracting the Idea: Sample-and-Prune

- Let \mathcal{G} be an algorithm which
 - Returns a set of size at most k
 - $\mathcal{G}(A) \subseteq \mathcal{G}(B)$ for all $A \subseteq B$

Abstracting the Idea: Sample-and-Prune

- Sample $\Theta(kn^{\epsilon})$ elements to get a set S
- Set $Y = \mathcal{G}(S)$
- Remove all elements x where

$$x \notin \mathcal{G}(Y \cup \{x\})$$

Abstracting the Idea: Sample-and-Prune

- Key theorem
 - An n^{ϵ} fraction of the elements are removed with high probability

Application: Maximal Matching

- Maximal matching
 - No two edges incident to the same node
 - No edge can be added to the solution

Application: Maximal Matching

- Sequential algorithm
 - Consider edges in an arbitrary order
 - Add an edge if it is feasible

- Let this algorithm be \mathcal{G}
- $\mathcal{G}(A) \subseteq \mathcal{G}(B)$ for all $A \subseteq B$
- Only discards edges incident to chosen edges

Conclusion

- Algorithmic techniques for MR
 - Sampling
 - Greedy algorithms

Thank You! Questions?