MA 205 Tutorial Batch 3 Recap-5

Siddhant Midha

10th September 2022

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}.$

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let γ be any positively oriented simple closed contour around p lying in the annulus.

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let γ be any positively oriented simple closed contour around p lying in the annulus. Then,

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let γ be any positively oriented simple closed contour around p lying in the annulus. Then,

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

holds for all $z \in \mathcal{A}(p, r_1, r_2)$.

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let γ be any positively oriented simple closed contour around p lying in the annulus. Then,

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

holds for all $z \in \mathcal{A}(p, r_1, r_2)$. Where,

$$a_n := rac{1}{2\pi\iota} \int_{\gamma} rac{f(\eta)}{(\eta-p)^{n+1}} \ orall n \in \mathbb{Z}$$

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let γ be any positively oriented simple closed contour around p lying in the annulus. Then,

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

holds for all $z \in \mathcal{A}(p, r_1, r_2)$. Where,

$$a_n := rac{1}{2\pi\iota} \int_{\gamma} rac{f(\eta)}{(\eta-p)^{n+1}} \ orall n \in \mathbb{Z}$$

• The **principal part** of the Laurent Series of f at p is

$$\sum_{n\leq -1}a_n(z-p)^n$$

$$(2) f(z) = 1/z(z+1) in \{z: 0 < |z| < 1\},$$

②
$$f(z) = 1/z(z+1)$$
 in $\{z: 0 < |z| < 1\}, \{z: |z| > 1\}$

②
$$f(z) = 1/z(z+1)$$
 in $\{z: 0 < |z| < 1\}, \{z: |z| > 1\}$

$$(z) = 1/(z^2 + 1) \text{ in } \{z : |z| < 1\},$$

②
$$f(z) = 1/z(z+1)$$
 in $\{z: 0 < |z| < 1\}, \{z: |z| > 1\}$

$$f(z) = 1/(z^2+1) \text{ in } \{z: |z|<1\}, \{z: |z-\iota|<1\}$$

②
$$f(z) = 1/z(z+1)$$
 in $\{z: 0 < |z| < 1\}, \{z: |z| > 1\}$

$$f(z) = e^{1/z}$$

②
$$f(z) = 1/z(z+1)$$
 in $\{z: 0 < |z| < 1\}, \{z: |z| > 1\}$

$$f(z) = e^{1/z}$$

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}.$

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series.

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series. Then,

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series. Then,

1 If has a pole at $p \Leftrightarrow a_n = 0$ for all but finitely many n < 0, and $a_k \neq 0$ for some k < 0.

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series. Then,

- If has a pole at $p \Leftrightarrow a_n = 0$ for all but finitely many n < 0, and $a_k \neq 0$ for some k < 0.
- ② f has an essential singularity at $p \Leftrightarrow a_n \neq 0$ for **infinitely many** n < 0.

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series. Then,

- If has a pole at $p \Leftrightarrow a_n = 0$ for all but finitely many n < 0, and $a_k \neq 0$ for some k < 0.
- ② f has an essential singularity at $p \Leftrightarrow a_n \neq 0$ for **infinitely many** n < 0.

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series. Then,

- f has a pole at $p \Leftrightarrow a_n = 0$ for all but finitely many n < 0, and $a_k \neq 0$ for some k < 0.
- ② f has an essential singularity at $p \Leftrightarrow a_n \neq 0$ for **infinitely many** n < 0.

Thus,

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series. Then,

- f has a pole at $p \Leftrightarrow a_n = 0$ for all but finitely many n < 0, and $a_k \neq 0$ for some k < 0.
- ② f has an essential singularity at $p \Leftrightarrow a_n \neq 0$ for **infinitely many** n < 0.

Thus,

• The singularity is removable iff the principal part is zero.

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series. Then,

- f has a pole at $p \Leftrightarrow a_n = 0$ for all but finitely many n < 0, and $a_k \neq 0$ for some k < 0.
- ② f has an essential singularity at $p \Leftrightarrow a_n \neq 0$ for **infinitely many** n < 0.

Thus,

- The singularity is removable iff the principal part is zero.
- The singularity is a pole iff the principal part has a finite (not zero) number of non-zero terms.

Theorem

Suppose f is analytic in the annulus $\mathcal{A}(p, r_1, r_2) := \{z : r_1 < |z - p| < r_2\}$. Let a_n be the coefficients of its Laurent Series. Then,

- If has a pole at $p \Leftrightarrow a_n = 0$ for all but finitely many n < 0, and $a_k \neq 0$ for some k < 0.
- ② f has an essential singularity at $p \Leftrightarrow a_n \neq 0$ for **infinitely many** n < 0.

Thus,

- The singularity is removable iff the principal part is zero.
- The singularity is a pole iff the principal part has a finite (not zero) number of non-zero terms.
- The singularity is essential iff the principal part has an infinite number of non-zero terms.

Definition (Residue at a point)

Suppose f is analytic in the annulus $\mathcal{A}(p, 0, r_2) := \{z : 0 < |z - p| < r_2\}.$

Definition (Residue at a point)

Suppose f is analytic in the annulus $\mathcal{A}(p,0,r_2) := \{z : 0 < |z-p| < r_2\}$. Let

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

Definition (Residue at a point)

Suppose f is analytic in the annulus $\mathcal{A}(p, 0, r_2) := \{z : 0 < |z - p| < r_2\}$. Let

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

be the Laurent Series expansion of f in this annulus.

Definition (Residue at a point)

Suppose f is analytic in the annulus $\mathcal{A}(p, 0, r_2) := \{z : 0 < |z - p| < r_2\}$. Let

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

be the Laurent Series expansion of f in this annulus. Then, we define,

$$Res(f, p) := a_{-1}$$

Definition (Residue at a point)

Suppose f is analytic in the annulus $\mathcal{A}(p, 0, r_2) := \{z : 0 < |z - p| < r_2\}$. Let

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

be the Laurent Series expansion of f in this annulus. Then, we define,

$$Res(f, p) := a_{-1}$$

Definition (Residue at a point)

Suppose f is analytic in the annulus $\mathcal{A}(p,0,r_2) := \{z : 0 < |z-p| < r_2\}$. Let

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - p)^n$$

be the Laurent Series expansion of f in this annulus. Then, we define,

$$Res(f, p) := a_{-1}$$

As an immediate consequence, see that

$$\int_C f(z)dz = 2\pi\iota \times Res(f,p)$$

Residues of Meromorphic functions

Theorem

If f is analytic in $D^*(p,r)$ for some r and has a pole of order k at p, then,

Residues of Meromorphic functions

Theorem

If f is analytic in $D^*(p,r)$ for some r and has a pole of order k at p, then,

$$Res(f, p) = \lim_{z \to p} \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \left((z-p)^k f(z) \right)$$

• Find residue at 0 of $1/(z+z^2)$.

- Find residue at 0 of $1/(z+z^2)$.
- ② Find residue at 0 of $1/(z^2(1-z))$ using both methods.

- Find residue at 0 of $1/(z+z^2)$.
- ② Find residue at 0 of $1/(z^2(1-z))$ using both methods.

- Find residue at 0 of $1/(z+z^2)$.
- ② Find residue at 0 of $1/(z^2(1-z))$ using both methods.
- $\int_{|z|=1} e^{1/z^2} dz$

- Find residue at 0 of $1/(z+z^2)$.
- ② Find residue at 0 of $1/(z^2(1-z))$ using both methods.
- $\int_{|z|=1} \frac{1}{\sin 1/z} dz$ Uh? What? CRT? No!

The Cauchy Residue Theorem

This is a formal restatement of the earlier conclusion.

Theorem (CRT)

Let γ be a simple closed contour.

The Cauchy Residue Theorem

This is a formal restatement of the earlier conclusion.

Theorem (CRT)

Let γ be a simple closed contour. Let f be analytic inside and on γ except for a finite number of isolated singularities p_k ,

The Cauchy Residue Theorem

This is a formal restatement of the earlier conclusion.

Theorem (CRT)

Let γ be a simple closed contour. Let f be analytic inside and on γ except for a finite number of isolated singularities p_k , then,

$$\int_{\gamma} f(z)dz = 2\pi \iota \sum_{k} Res(f, p_{k})$$

(Recall)

Theorem (The Order of a Pole)

Let f have a pole at $p \in \mathbb{C}$.

(Recall)

Theorem (The Order of a Pole)

Let f have a pole at $p \in \mathbb{C}$. Then, there exists some $k \in \mathbb{N}$ such that for some r > 0 we have,

(Recall)

Theorem (The Order of a Pole)

Let f have a pole at $p \in \mathbb{C}$. Then, there exists some $k \in \mathbb{N}$ such that for some r > 0 we have,

$$f(z) = (z - p)^{-k}H(z)$$

(Recall)

Theorem (The Order of a Pole)

Let f have a pole at $p \in \mathbb{C}$. Then, there exists some $k \in \mathbb{N}$ such that for some r > 0 we have,

$$f(z) = (z - p)^{-k}H(z)$$

where, H is holomorphic on D(p, r) and $H(p) \neq 0$.

(Recall)

Theorem (The Order of a Pole)

Let f have a pole at $p \in \mathbb{C}$. Then, there exists some $k \in \mathbb{N}$ such that for some r > 0 we have,

$$f(z) = (z - p)^{-k}H(z)$$

where, H is holomorphic on D(p, r) and $H(p) \neq 0$. We say that k is the order of the pole.

(Recall)

Theorem (The Order of a Pole)

Let f have a pole at $p \in \mathbb{C}$. Then, there exists some $k \in \mathbb{N}$ such that for some r > 0 we have,

$$f(z) = (z - p)^{-k}H(z)$$

where, H is holomorphic on D(p, r) and $H(p) \neq 0$. We say that k is the order of the pole.

And similarly, we define,

And similarly, we define,

Definition (Multiplicity of a zero)

And similarly, we define,

Definition (Multiplicity of a zero)

Given a function f,

And similarly, we define,

Definition (Multiplicity of a zero)

Given a function f, we say that $z_0 \in \mathbb{C}$ is a zero of multiplicity m of f, if

And similarly, we define,

Definition (Multiplicity of a zero)

Given a function f, we say that $z_0 \in \mathbb{C}$ is a zero of multiplicity m of f, if

$$f^{(n)}(z_0) = 0 \ \forall n \leq m-1 \ \text{and} \ f^{(m)}(z_0) \neq 0$$

And similarly, we define,

Definition (Multiplicity of a zero)

Given a function f, we say that $z_0 \in \mathbb{C}$ is a zero of multiplicity m of f, if

$$f^{(n)}(z_0) = 0 \ \forall n \leq m-1 \ \text{and} \ f^{(m)}(z_0) \neq 0$$

We have that,

And similarly, we define,

Definition (Multiplicity of a zero)

Given a function f, we say that $z_0 \in \mathbb{C}$ is a zero of multiplicity m of f, if

$$f^{(n)}(z_0) = 0 \ \forall n \leq m-1 \ \text{and} \ f^{(m)}(z_0) \neq 0$$

We have that,

$$f(z) = (z - z_0)^m g(z)$$

for some holomorphic g which does not vanish in a neighbourhood of z_0 .

And similarly, we define,

Definition (Multiplicity of a zero)

Given a function f, we say that $z_0 \in \mathbb{C}$ is a zero of multiplicity m of f, if

$$f^{(n)}(z_0) = 0 \ \forall n \leq m-1 \ \text{and} \ f^{(m)}(z_0) \neq 0$$

We have that,

$$f(z) = (z - z_0)^m g(z)$$

for some holomorphic g which does not vanish in a neighbourhood of z_0 .

This is a nice application of the CRT.

This is a nice application of the CRT.

This is a nice application of the CRT.

Theorem

Let f be a meromorphic function on and inside some closed contour γ ,

This is a nice application of the CRT.

Theorem

Let f be a meromorphic function on and inside some closed contour γ , and has no poles or zeros on γ .

This is a nice application of the CRT.

Theorem

Let f be a meromorphic function on and inside some closed contour γ , and has no poles or zeros on γ . Then,

$$\frac{1}{2\pi\iota}\int_{\gamma}\frac{f'(z)}{f(z)}dz=Z-P$$

This is a nice application of the CRT.

Theorem

Let f be a meromorphic function on and inside some closed contour γ , and has no poles or zeros on γ . Then,

$$\frac{1}{2\pi\iota}\int_{\gamma}\frac{f'(z)}{f(z)}dz=Z-P$$

This is a nice application of the CRT.

Theorem

Let f be a meromorphic function on and inside some closed contour γ , and has no poles or zeros on γ . Then,

$$\frac{1}{2\pi\iota}\int_{\gamma}\frac{f'(z)}{f(z)}dz=Z-P$$

where, Z is the number of zeros of f inside γ counted with multiplicites

This is a nice application of the CRT.

Theorem

Let f be a meromorphic function on and inside some closed contour γ , and has no poles or zeros on γ . Then,

$$\frac{1}{2\pi\iota}\int_{\gamma}\frac{f'(z)}{f(z)}dz=Z-P$$

where, Z is the number of zeros of f inside γ counted with multiplicites and P is the number of poles of f inside γ counted with order.

Why did the mathematician name his dog Cauchy?

■ Why did the mathematician name his dog Cauchy? -?

● Why did the mathematician name his dog Cauchy? —? Because he left a residue at each pole!

- Why did the mathematician name his dog Cauchy? -? Because he left a residue at each pole!
- What is the contour integral over the Western Europe?

- Why did the mathematician name his dog Cauchy? -? Because he left a residue at each pole!
- What is the contour integral over the Western Europe?

- Why did the mathematician name his dog Cauchy? -? Because he left a residue at each pole!
- What is the contour integral over the Western Europe?

Zero! All the poles are in Eastern Europe.

credit: MA 205 2021 Lectures

And that is all

And that is all

 \dots for the recap's of MA 205!