

计算机与信息学院

关系数据库之父

❖美国 IBM 公司的 E.F.Codd

- ☞埃德加·弗兰克·科德 (Edgar Frank Codd, 1923-2003)
- ☞1970年提出关系数据模型
 - "A Relational Model of Data for Large Shared Data Banks",

《Communication of the ACM》.1970

- 一之后,提出了关系代数和关系演算的概念
- ☞1972年提出了关系的第一、第二、第三范式
- ☞1974年提出了关系的BC范式

第2章 关系模型

主要内容:

2.1关系模型的数据结构及形式化定义

2.2 关系模型的数据操作

2.3 关系模型的完整性约束

2.4关系代数语言

第2章 关系模型

2.1 关系模型的数据结构及形式化定义

2.1.1 关系

● 单一的数据结构-关系

现实世界的实体以及实体间的各种联系均用关系来表示

● 逻辑结构-二维表

从用户角度,关系模型中数据的逻辑结构是一张二维表

● 建立在集合代数的基础上

2.1 数据结构及形式化定义

● 相关定义

- (1) 域 (Domain): 一组具有相同数据类型的值的集合。 例如: 整數、实數、介于某个取值范围的整數、指定长度的字符串集合、{ '男', '女'}等。
- (2) 笛卡尔积 (Cartesian Product) 基于域的一种集合运算

给定一组城Di, D2, …, Dm, 这些城中可以有相同的。

D₁, D₂, ..., D_n的笛卡尔积为:

2.1 数据结构及形式化定义

- 所有域的所有取值的一个组合
- ✓ 不能重复
- ✓ 笛卡尔积中每一个元素(d₁, d₂, ..., d₂) 叫作一个n元组或简称元组。
- ✓ 笛卡尔积元素 $(d_1, d_2, ..., d_n)$ 中的每一个值 d_1 叫作一个分量。
- ✓ 基数: 若D_i (i=1, 2, ..., n) 为有限集,其基数为m_i (i=1, ..., n), 则 $D_1 \times D_2 \times ... \times D_n$ 的基数M为:

$$M = \prod_{i=1}^{n} m$$

2.1 数据结构及形式化定义

■ 关系中每一列必须起一个名字, 称为属性(<mark>属性满足交换律!</mark>)

✓ 码

◆候选码 (Candidate key)

若关系中的某一属性组的值能唯一地标识一个元组,且没有多余的 属性,则称该属性组为候选码。(解释:超码!)

- ◆主码 (Primary key) 若一个关系有多个候选码,则选定其中一个为主码。
- ◆ 全码 (All-key)

所有属性组共同组成的候选码,称为全码(All-key)

2.1 数据结构及形式化定义

✓ 主属性与非主属性

包含在任一候选码中的属性均为主属性,否则为非主属性或非码属性。

✓ 三类关系

- 基本关系(基本表):实际存在的表,是实际存储数据的逻辑表示。
- 查询表: 查询结果对应的表。
- 视图表: 由基本表或其他视图表导出的表,是虚表。

2.1 数据结构及形式化定义

✓ 基本关系的性质

- ① 列是同质的;
- ② 不同的列可出自同一个域;
- ③ 列的顺序无所谓,即列的次序可以任意交换;
- ④ 任意两个元组的候选码不能取相同的值;
- ⑤ 行的顺序无所谓,即行的次序可以任意交换;
- ⑥ 分量必须取原子值,即每一个分量都必须是不可分的数据项。

2.1 数据结构及形式化定义

2.1.2 关系模式

关系模式是对关系的描述(关系模式是型,关系是值)。包括:

■ 元组集合的结构:

属性构成;

属性来自的域;

属性与域之间的映象关系。

- 元组语义以及完整性约束条件
- 属性间的<mark>数据依赖</mark>关系集合

2.1 数据结构及形式化定义

✓ 关系模式的形式化表示:

关系模式可以形式化地表示为:

R (U, D, DOM, F)

- R 关系名
- U 组成该关系的属性名集合
- D 属性组U中属性所来自的域
- DOM 属性向域的映象集合
- F 属性间的数据依赖关系集合

2.1 数据结构及形式化定义

✓ 关系模式的简化形式:

R(U) \overrightarrow{R} $R(A_1, A_2, ..., A_n)$ R(U, F)

- R: 关系名
- A₁, A₂, ..., A_n:属性名
- 注:域名及属性向域的映象常常直接说明为属性的类型、长度。

2.1 数据结构及形式化定义

☞ 关系模式与关系

- ✓ 关系模式(型)
 - 对关系的描述,静态的、稳定的。
- ✓ 关系(值)
 - 关系模式在某一时刻的状态或内容;
 - 动态的、随时间不断变化的。
- ✓ 关系模式和关系往往统称为关系,通过上下文加以区别

2.1 数据结构及形式化定义

2.1.3 关系数据库

- 在一个给定的应用领域中,所有关系的集合构成一个关系 数据库。
- 理解: 关系数据库的型与值。

第2章 关系模型

2.2 关系模型的数据操作

- ❖ 关系操作的特点
 - √ 集合操作方式: 操作的对象和结果都是集合,一次一集合的方式。
- ❖ 常用的关系操作
 - ✓ 查询: 选择、投影、连接、除、并、交、差、笛卡尔积
 - ✓ 数据更新:插入、删除、修改
 - ✓ 选择、投影、并、差、笛卡尔积是5种基本操作

2.2 关系模型的数据操作

❖ 关系操作语言的分类

关系代数语言

- ◆用对关系的运算来表达查询要求。如: ISBL
- **关系演算语言:** 用谓词来表达查询要求
 - ◆元组关系演算语言: 谓词变元的基本对象是元组变量。如: APLHA, QUEL
 - ◆域关系演算语言: 谓词变元的基本对象是域变量。如: QBE

具有关系代数和关系演算双重特点的语言 如: SQL (Structured Query Language)

第2章 关系模型

2.3 关系模型的完整性约束

- > 关系的三类完整性
 - ✓实体完整性
 - ✓参照完整性
 - ✓用户定义的完整性

2.3 关系模型的完整性约束

❖ 实体完整性

若属性A是基本关系R的主属性,则属性A取值必须唯一且不能取空值。

❖ 参照完整性

若属性(或属性组)F是基本关系R的外码,它与基本关系S的主码K_s相 对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F 上的值必须为:

- 或者取空值(F的每个属性值均为空值)
- 或者等于5中某个元组的主码值

2.3 关系模型的完整性约束

❖ 用户定义的完整性

- √ 针对某一具体关系数据库的约束条件,反映某一具体应用所涉及的 数据必须满足的语义要求;
- ✓ 关系模型应提供定义和检验这类完整性的机制,以便用统一的系统 的方法处理它们,而不要由应用程序承担这一功能。

第2章 关系模型

2.4 关系代数语言

❖ 传统的集合运算

并(U)、交(∩)、差(-)、笛卡尔积(×)

❖ 专门的关系运算

选择(σ)、投影(π)、连接(**≥**)、除(÷)

❖ 运算符: 算术运算符、逻辑运算符

 $R \cup S = \{ t | t \in R \lor t \in S \}$ 问题: 并操作对关系R和S的要求?

 $R \cup S$ A a_1 b_1 b_2 a_1 C_2 a_2 c_1

CAB b_2 a_1 c_2 a_1 b_3 C_2

 a_2

 b_2

 c_2

Hefei University of Technology

 $R \cap S$

A

 a_1

 a_2

2.4 关系代数语言

 $R \cap S = \{ t | t \in R \land t \in S \}$

В

 b_2

C a_1 b_1 c_1 a_1 b_2 c_2 c_1 S CAВ a_1 b_2 c_2 b_3 a_1

 c_2

2.4 关系代数语言

(3) 差运算 (-):

 $R-S = \{t | t \in R \land t \notin S\}$

R– S		
A	В	С
a_1	b_1	c_1

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1

S		
A	В	С
a_1	b ₂	c_2
a_1	b_3	c_2
a_2	b ₂	c_1

2.4 关系代数语言

R.B R.C

R.A

(4) 广义笛卡尔积 (×):

设: R: n目关系, k_1 个元组

$S: m$ 目关系, k_2 个元组						a_1	b ₁	c_1	a ₁	b ₂	
×	S = {t	t7)t =1	$R \wedge t_s \in S$	1		a_1	b_1	c_1	a_1	b_3	
						a_1	b_1	c_1	a ₂	b_2	
Į	5打结;	米分析:	行、列	14		a_1	b_2	c_2	a_1	b_2	
			S			a_1	b ₂	c_2	a ₁	b ₃	
	В	С	A	В	С	a_1	b ₂	c ₂	a ₂	b ₂	
	b_1	c_1	<i>a</i> ₁	b_2	c_2	a_2	b ₂	c ₁	a ₁	b ₂	
	6	_									

2.4 关系代数语言

2.4.2 专门的关系运算

▶ 符号说明:

✓ R, t∈R, A={A₁,A₂, ..., A_n}, t[A_i], t[A], $\widehat{t_r} t_s$

给定一个关系R(X, Z),X和Z为属性组。 当t[X] = x时,x在R中的**象**集(Images Set)为:

 $Z_{\circ} = \{ t[Z] \mid t \in R, t[X] = x \}$

它表示R中属性组X上值为x的诸元组在Z上分量的集合。

2.4 关系代数语言

✓ x_1 在R中的象集

 $Z_{x1} = \{Z1, Z2, Z3\},$

✓ x2在R中的象集

 $Z_{x2} = \{Z2, Z3\},$

✓ x3在R中的象集

 $Z_{v3} = \{Z1, Z3\}$

2.4 关系代数语言

(5) 选择 (σ):

在关系R中选择满足给定条件的元组。

 $\sigma_F(R) = \{t \mid t \in R \land F(t) = '\overline{\mathbf{q}}'\}$

F: 选择条件,基本形式为: $X_1\theta Y_1$

2.4 关系代数语言

[例1] 查询计算机专业('01')全体学生。

 $\sigma_{mno = '01'}$ (Students) 或 $\sigma_{5='01'}$ (Students)

[例2] 查询软件工程专业全体男生信息。

 $\sigma_{mno='03' \land ssex='\#'}$ (Students)

2.4 关系代数语言

A	В	C	E
a ₁	<i>b</i> ₁	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
NULL	b_5	NULL	2

自然连接

右外连接

2.4 关系代数语言

(8) 除 (÷)

给定关系 R(X, Y)和 S(Y, Z), 其中X, Y, Z为属性组。

R 与 S 中Y 可以有不同的属性名,但必须出自相同的域集。

 $R \ni S$ 的除运算得到一个新的关系 P(X), $P \ni R$ P(X) $P \mid R$ P(X) $P \mid$

元组在 ℓ 上分量值x(x的象集 Y_x 包含S 在 ℓ 上投影)的集合,记作: $R \div S = \{ t_x[X] \mid t_x \in R \land \pi_X(S) \subseteq Y_x \}$

 Y_x : x在R中的象集, $x = t_r[X]$

2.4 关系代数语言

设关系R、S分别为下图的(a)和(b), R÷S的结果为图(c)

A	В	C
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	C ₆
a_1	b_2	c_3
a_4	b_6	C ₆
a_2	b_2	c_3
a_1	b_2	c_1

Hefei University of Technology 计算机与信息学院

2.4 关系代数语言

√ 在关系R中,A可以取四个值{a1,a2,a3,a4}

 a_1 的象集为 $\{(b_1, c_2), (b_2, c_3), (b_2, c_1)\}$

 a_2 的象集为 $\{(b_3, c_7), (b_2, c_3)\}$

a₃的象集为{(b₄, c₆)}

a₄的象集为{(b₆, c₆)}

✓ S在(B,C)上的投影为:

{(b1, c2), (b2, c1), (b2, c3)}

✓ 只有a1的象集包含了S在(B, C)属性组上的投影,所以:

R ÷ S = { a1 }

Hefei University of Technology 计算机与信息学院

2.4 关系代数语言

☞ 聚集函数

count,sum,avg,min,max

 $\mathbf{G}_{\text{sum(Grade)},\text{max(Grade)}}(SC)$

☞ 分组聚集

cno **G** sum(Grade),max(Grade)(SC)

2.4 关系代数语言

愛数据修改操作

✓ 插入: r←r∪E

sc ← sc ∪ {("20090109","2006",null)}

✓ 删除: r←r−E

students \leftarrow students — $\sigma_{\text{ sno="20090109"}}^{\circ} (\text{ students })$

 \checkmark 更新: $r \leftarrow \pi_{F1,F2,\dots,Fn}(r)$, $r \leftarrow \pi_{F1,F2,\dots,Fn}(\sigma p(r)) \cup (r - \sigma p(r))$ sc $\leftarrow \pi_{sno,cno,Grade+20}(sc)$

 $sc \leftarrow \pi_{sno, cno, Grade+10}(\sigma_{Grade \geq 50 \land Grade < 60}(sc))$ $\cup (sc - \sigma_{Grade \geq 50 \land Grade < 60}(sc))$

广义投影

■ 本章思考题:

从仓库管理中理解关系模型的完整性约束。

■ 本章作业:

P70 习题5、习题6(只要求用关系代数完成查询!)

