MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2017-18. Semestre de primavera

Pràctica 1: Estudi d'errors

Exercici 1 L'èpsilon de la màquina és el menor valor real u > 0 de la forma $u = 2^{-i}$, i > 0, que verifica 1 + u > 1.

Feu un programa (**epsilon.c**) que calculi l'epsilon de la màquina dels tipus **float** i **double**. Quina conclusió en traieu? El valor es correspon amb el que havieu pensat?

Exercici 2 Volem calcular
$$S(N) = \sum_{j=1}^{N} \frac{1}{j^2}$$
 per als valors $N = 10^3, 10^4, 10^5$ i 10^6 .

Feu un programa que calculi S(N), sumant els termes començant per j=1 fins a j=N i a l'inrevés. Compareu els resultats obtinguts, $S_{calc}(N)$.

Feu primer tots els càlculs en precisió simple. Després, en precisió doble. (**sumes.c**) Quines conclusions en traieu?

Exercici 3 Considerem l'esquema iteratiu següent:

Demostreu, per inducció a partir de $t_0 = 1$, que es verifica $t_n = 1$, per tot n.

- a) Feu un programa que calculi, en precisió simple, els 30 primers termes de la successió $\{t_n\}_{n\geq 0}$, a partir d'un valor de x_0 que s'ha de llegir. Executeu-lo per a diferents valors de x_0 . Per als valors $x_0=0.3$ i $x_0=0.8$, escriviu la sortida en els fitxers f03.res i f08.res, respectivament. Feu la gràfica d'aquests dos casos, mitjançant el programa gnuplot. Dibuixeu les gràfiques per als rangs de t següents: [0.5, 2.5] i [0.99, 1.01].
- b) Modifiqueu el programa anterior per treballar en precisió doble i calculant 60 termes de la successió. Executeu-lo per a diferents valors de x_0 ; en particular, podeu agafar els valors $x_0 = 0.35, 0.55, 0.75, 0.85$. Feu-ne la gràfica mitjançant el programa gnuplot.

Comenteu els resultats.

Exercici 4 a) Escriviu la sèrie de Taylor de la funció $\log(1+y)$ per y=x i y=-x (|y|<1) (la denotarem (L_1)).

- b) Determineu un valor aproximat de $\log(0.7)$, a partir del polinomi de Taylor de grau n de (L_1) per n = 7, 9, 11. Quin és l'error en S_{11} ? Quants termes de la sèrie són necessaris per tenir un error menor que 10^{-15} , per tot $0 < x < 10^{-3}$?
- c) De l'expressió (L_1) i la identitat $\log(a/b) = \log a \log b$, deduïu-ne una expressió per

$$(L_2) \qquad \qquad \log \frac{1+x}{1-x}.$$

Quin valor ha de tenir x en (L_2) per a aproximar $\log(0.7)$? Useu aquest x per calcular un valor aproximat de $\log(0.7)$, a partir del polinomi de Taylor de grau n de (L_2) per n=7,9,11. Quin és l'error en S_{11} ? Quants termes de (L_1) són necessaris per a assegurar aquesta mateixa exactitud?