CÁLCULO

FICHA 8 2011/2012

Aplicações do integral definido:

áreas em coordenadas polares, comprimentos de arcos de curvas, áreas e volumes de sólidos de revolução

1. Use coordenadas polares para determinar a área da região

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \left(x - \frac{1}{2} \right)^2 + y^2 \le \frac{1}{4} \wedge x^2 + \left(y - \frac{1}{2} \right)^2 \le \frac{1}{4} \right\}.$$

2. Determine a área da região que é simultaneamente interior à circunferência $\rho = \sqrt{2} \sin \theta$ e à lemniscata $\rho^2 = \sin 2\theta$.

3. Seja \mathcal{A} a região limitada pelas curvas de equação $y = \cosh x$ e $y = \cosh 2$. Determine a medida da área de \mathcal{A} e o comprimento do arco de curva que contorna \mathcal{A} .

4. Calcule o comprimento do arco de curva definido na alínea seguinte:

- a) $y = \arcsin e^{-x}$, para $\frac{1}{2} \le x \le 1$;
- b) $y = \sqrt{1 x^2}$, para $0 \le x \le 1$;
- c) $y = \ln(\cos x)$, para $\frac{\pi}{6} \le x \le \frac{\pi}{4}$.

5. Determine o volume do sólido que se obtém pela rotação em torno de OX da região limitada pelas curvas:

- a) $y = x^2 e y = \sqrt{x}$, para $0 \le x \le 1$;
- b) $y = x e x = 4y y^2$.

6. Calcule o integral que permite calcular a área das superfícies de revolução obtidas pela rotação em torno de OX das seguintes curvas:

- (a) $y = x^3$, $x \in [0, 1]$;
- (b) $y = \sqrt{r^2 x^2}$, $-r \le x \le r$.

7. Indique o integral que permite calcular a área das superfícies de revolução obtidas pela rotação em torno de OX das seguintes curvas:

- (a) $\{(x,y) \in \mathbb{R}^2 : y = x^{\frac{3}{2}}, \ 0 \le x \le 1\};$
- (b) $\{(x,y) \in \mathbb{R}^2 : y = \frac{x^3}{12} + \frac{1}{x}, \ 1 \le x \le 4\};$
- (c) $\{(x,y) \in \mathbb{R}^2 : y = \cos x, -\frac{\pi}{4} \le x \le \frac{\pi}{2}\}.$

Soluções:

1.
$$\frac{\pi}{8} - \frac{1}{4}$$

2.
$$\frac{\pi}{8}$$

1.
$$\frac{\pi}{8} - \frac{1}{4}$$
 2. $\frac{\pi}{8}$ 3. $4 \cosh 2 - 2 \sinh 2$; $4 + 2 \sinh 2$

a)
$$\ln\left(e + \sqrt{e^2 - 1}\right) - \ln\left(\sqrt{e} + \sqrt{e - 1}\right)$$

b)
$$\frac{\pi}{2}$$

4. a)
$$\ln\left(e + \sqrt{e^2 - 1}\right) - \ln\left(\sqrt{e} + \sqrt{e - 1}\right)$$
 b) $\frac{\pi}{2}$ c) $\ln\left|\frac{2}{\sqrt{3}} + \frac{\sqrt{3}}{3}\right| - \ln\left|\frac{2}{\sqrt{2}} + 1\right|$

5. a)
$$\frac{3\pi}{10}$$
 b) $\frac{81\pi}{6}$

6. a)
$$\frac{10\sqrt{10}}{27} - \frac{1}{27}$$
 b) $4\pi r^2$

b)
$$4\pi r^2$$

a)
$$2\pi \int_0^1 x^{\frac{3}{2}} \sqrt{1 + \frac{9x}{4}} dx$$

a)
$$2\pi \int_0^1 x^{\frac{3}{2}} \sqrt{1 + \frac{9x}{4}} dx$$
 b) $2\pi \int_1^4 \left(\frac{x^3}{12} + \frac{1}{x}\right) \sqrt{1 + \left(\frac{x^2}{4} - \frac{1}{x^2}\right)^2} dx$

c)
$$2\pi \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x \sqrt{1 + \sin^2 x} \, dx$$