

# CS120: Computer Networks

Lecture 9. Internet Protocol

Zhice Yang



How to Further Extend the Network?

#### Limitation of Extended Ethernet

- Addressing Scalability
  - Spanning Tree does not scale
    - Switches store too many forwarding entries
    - Huge broadcasting overhead
- Network Heterogeneity
  - Cannot communicate with other networks
    - Cannot addressing nodes in other networks

### Internet Protocol (IP)

- Goal:
- Scalable Addressing Scheme
  - Support Heterogeneous Networks
- Service Model: Datagram (Connectionless)
  - Packets can be lost
  - Packets can be delivered out of order
  - Duplicate copies of a packet can be delivered
  - Packets can be delayed for a long time

#### Outline

- IP Address
  - IP Address
  - Subnet
  - Route Aggregation
  - IP Configuration: DHCP
  - IP to MAC Address Translation: ARP
- IP Packet
  - Fragmentation

### Addressing in Postal Service

- NAME => Ethernet MAC Address
  - Unique
  - but less informative in finding route to deliver
- In practice we use: Location Address + NAME







#### Hierarchical Address

- China
- Shanghai
- Pudong
- ShanghaiTech



#### IP Address

- IP Address: 32-bit identifier for network interface
  - Globally unique (original goal)
  - Hierarchical: network + host (original goal)



#### IP Address

- Dot notation
  - 10.3.2.4
  - 128.96.33.15
  - 192.12.69.77

10000000 01100000 00100010 00001111

128.

96.

33.

15



## Assigning IP Address

Each host has a unique IP address

Network 1

(Wireless)

Hosts in the same physical network have the same network part

Network 4 (Ethernet) H1: 200.155.11.5 H8: 210.168.1.10 H2: 200.155.11.3 H9: 210.168.1.200 H3: 200.155.11.2 R3 11010010.10101000.00000001.XXXXXXXX Network 2 (Ethernet) Network 3 11001000.10011011.00001011.XXXXXXXX (Point-point) R2 H4: 197.168.23.1 H5: 197.168.23.11 H6: 197.168.23.111 <u>110</u>00101.10101000.00010111.XXXXXXXX

H7: 197.168.23.2

## Assigning IP Address

Each router contains multiple network interfaces

Network 1

(Wireless)

Each port has the IP address of the connected network

Network 4 (Ethernet) H1: 200.155.11.5 H8: 210.168.1.10 H2: 200.155.11.3 H9: 210.168.1.200 H3: 200.155.11.2 11010010.10101000.00000001.XXXXXXXX Network 2 200.155.11.1 (Ethernet) Network 3 11001000.10011011.00001011.XXXXXXXX (Point-point) 197.168.23.22 H4: 197.168.23.1

H6: 197.168.23.111 <u>110</u>00101.10101000.00010111.XXXXXXXX

H5: 197.168.23.11

H7: 197.168.23.2

Network 1

(Wireless)

- Host Behavior
  - if IP.network == MyIP.network
    - forward to the host via L2 (How? ARP: IP->MAC)
  - else
    - forward to specified/default router

H1: 200.155.11.5

H2: 200.155.11.3

H3: 200.155.11.2

Network 4 (Ethernet) R3 Network 2 (Ethernet) Network 3 (Point-point)

H8: 210.168.1.10

H9: 210.168.1.200

11010010.10101000.00000001.XXXXXXXX

Next 200.155.11.5 H1 Н3 200.155.11.2 R1 **Others** 

H4: 197.168.23.1

H5: 197.168.23.11

H6: 197.168.23.111 <u>110</u>00101.10101000.00010111.XXXXXXXX

H7: 197.168.23.2

11001000.10011011.00001011.XXXXXXXX

- Router Behavior
  - if IP.network == PortX.IP.network
    - forward to the host connected to PortX
  - else
    - forward to other routers (Which one? determined by routing alg.)

H1: 200.155.11.5

H2: 200.155.11.3

H3: 200.155.11.2

R3 Network 2 (Ethernet) Network 3 (Point-point)

H8: 210.168.1.10

H9: 210.168.1.200

11010010.10101000.00000001.XXXXXXXX

Next 197.168.23.\* Interface 0 200.155.11.\* Interface 1 R2 210.168.1.\* H4: 197.168.23.1

NO need to check the host part

Network 4 (Ethernet)

11001000.10011011.00001011.XXXXXXXX

H5: 197.168.23.11

Network 1

(Wireless)

H6: 197.168.23.111 <u>110</u>00101.10101000.00010111.XXXXXXXX

H7: 197.168.23.2





• Each host has a default router

• Routers may also have default router



## Class Addressing

- Limitation
  - Address utilization is not efficient
    - 254 hosts
      - Class C: not enough
      - Class B: too many addresses are wasted
  - Forwarding table is still large
    - Proportional to the number of networks

#### IP Address

- IP Address: 32-bit identifier for network interface
  - Globally unique (original goal)
  - Hierarchical: network + host (original goal)



#### Subnet



141.155.255.254

10001101.10011011.111111111111111



10001101.10011011.00000001.111111110

10001101.10011011.00000011.11111110

#### Subnet Mask

• "and" IP address with network mask to determine the Subnet



#### Subnet Mask

Divide a Large Network Address into Small Subnet Addresses



## Route Aggregation

| SubnetNum   | SubnetMask    | NextHop |
|-------------|---------------|---------|
| 197.168.0.0 | 255.255.255.0 | R4      |
| 197.168.1.0 | 255.255.255.0 | R4      |
| 197.168.2.0 | 255.255.255.0 | R4      |
| 197.168.3.0 | 255.255.255.0 | R4      |



## Route Aggregation

| SubnetNum   | SubnetMask    | NextHop |
|-------------|---------------|---------|
| 197.168.0.0 | 255.255.252.0 | R4      |
|             |               |         |
|             |               |         |
|             |               |         |



## Classless InterDomain Routing (CIDR)

- Subnet portion of address is of arbitrary length
- Address format: a.b.c.d/x, where x is # bits in subnet portion of address

```
      141.155.0.1
      10001101.10011011.00000000.00000001

      |
      |

      141.155.1.254
      10001101.10011011.00000001.11111111
```



## Specific Routes?

 SubnetNum
 NextHop

 197.168.0.0/22
 R4

 197.168.3.0/24
 R7



## Longest Prefix Matching

 When looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

| SubnetNum      | NextHop |                                   |
|----------------|---------|-----------------------------------|
| 197.168.0.0/22 | R4      | 11000101.10101000.000000**.****** |
| 197.168.3.0/24 | R7      | 11000101.10101000.00000011.****** |
| 197.168.4.0/22 | R9      | 11000101.10101000.000001**.*****  |
|                |         |                                   |

197. 168. 3. 215 11000101.10101000.00000011.11010111

197. 168. 7. 215 11000101.10101000.00000111.11010111



## How to Assign IP Addresses?

- Hard-coded
- Dynamic Host Configuration Protocol (DHCP)
  - Dynamically get IP address from network server

## Dynamic Host Configuration Protocol (DHCP)

- Goal: allow host to dynamically obtain its IP address from network server when it joins the network
  - Reuse IP addresses
    - Release IP of unconnected host, e.g. power-off
    - Support for mobile hosts who want to join the network

## DHCP



#### DHCP

#### DHCP Server 223.1.2.1



#### discover

src MAC: MAC of client dest MAC: FF:FF:FF:FF:FF

src IP: 0.0.0.0

dest. IP: 255.255.255.255

yiaddr: 0.0.0.0

#### offer

src MAC: MAC of server dest MAC: MAC of client

src IP: 223.1.2.1

dest. IP: 255.255.255.255

yiaddr: 223.1.2.4

#### request

src MAC: MAC of client dest MAC: FF:FF:FF:FF:FF

src IP: 0.0.0.0

dest. IP: 255.255.255.255

ciaddr:223.1.2.4

#### ack

src MAC: MAC of server dest MAC: MAC of client

src: 223.1.2.1

dest.: 255.255.255.255

yiaddr: 223.1.2.4

#### Client







How to Determine the Interface's MAC Address, Knowing its IP address?

## Address Resolution Protocol (ARP)

- ARP table: each IP node (host, router)
   on LAN has IP/MAC address
   mappings for the LAN nodes within
   the same subnet
  - < IP address; MAC address; TTL>
- TTL (Time To Live)
  - Time after which address mapping will be forgotten

200.155.11.3; 58-23-D7-FA-20-B0 200.155.11.5; 1A-2F-BB-76-09-AD 200.155.11.2; 0C-C4-11-6F-E3-98

### Address Resolution Protocol (ARP)

- A wants to send datagrams to B
  - if B's IP address is in the same subnet and B's MAC address not in A's ARP table
    - A broadcasts ARP query packet, containing B's IP address
    - B receives ARP packet, replies to A with its (B's) MAC address
      - Frame is sent to A's MAC address (unicast)
    - A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)



#### Demo

- DHCP
  - Four handshake messages
    - ipconfig /release
    - ipconfig /renew
- ARP
  - Show arp table: arp -a
- Forwarding Table
  - Show Forwarding Table: route print

#### Outline

- IP Address
  - IP Address
  - Subnet
  - Route Aggregation
  - IP Configuration: DHCP
  - IP to MAC Address Translation: ARP
- ➤IP Packet
  - Fragmentation

#### Ethernet Frame

- Type
  - IPV4, ARP, RoCE, etc.
  - Length
- Body 46-1500 B
- CRC 32
- NO ACK



#### Format

- Version (4): currently 4
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service
- Length (16): number of bytes in this datagram
- Ident (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only
- DestAddr & SrcAddr (32)



### Fragmentation and Reassembly

- Network links have MTU (max.transfer size) largest possible linklevel frame
  - Different link types, different MTUs
- Large datagram is divided ("fragmented") within net
  - One datagram becomes several datagrams
  - "Reassembled" only at final destination

## Fragmentation and Reassembly



#### Identify the group of the fragments











### Reference

• Textbook 3.2