Package 'GREENeR'

February 1, 2024

```
Type Package
Title Geospatial Regression Equation for European Nutrient Losses
     (GREEN)
Version 1.0.0
Author A. Udias [aut],
     B. Grizzetti [aut],
     O. Vigiak [aut],
     J. Gomez [aut],
     C. Alfaro [aut, cre],
     A. Aloe [aut]
Maintainer C. Alfaro < c. alfarog@gmail.com>
Description Tools and methods to apply the model Geospatial Regression Equation
     for European Nutrient losses (GREEN);
     Grizzetti et al. (2005) <doi:10.1016/j.jhydrol.2004.07.036>;
     Grizzetti et al. (2008);
     Grizzetti et al. (2012) <doi:10.1111/j.1365-2486.2011.02576.x>;
     Grizzetti et al. (2021) <doi:10.1016/j.gloenvcha.2021.102281>.
License GPL-3
Encoding UTF-8
LazyData true
Imports FME (>= 1.3.6.1), data.table (>= 1.13.6), reshape2 (>= 1.4.4),
     ggplot2 (>= 3.3.5), graphics (>= 3.6.1), sf (>= 1.0-2), dplyr
     (>= 1.0.7), magrittr (>= 2.0.1), tmap (>= 3.3-2), gridExtra (>=
     2.3), tidyselect (>= 1.1.0), classInt (>= 0.4-3), grDevices (>=
     3.5), networkD3 (>= 0.4), parallelly (>= 1.30.0)
Depends R (>= 3.5.0)
RoxygenNote 7.2.3
URL https://github.com/calfarog/GREENeR
BugReports https://github.com/calfarog/GREENeR/issues
Suggests testthat, knitr, rmarkdown, codetools
VignetteBuilder knitr
```

2 GREENeR-package

NeedsCompilation no

Repository CRAN

Date/Publication 2024-02-01 12:30:03 UTC

R topics documented:

	GREENeR-package	2
	annual_data_TN	3
	annual_data_TP	4
	calib_boxplot	5
	calib_dot	6
	calib_green	7
	catch_data_TN	8
	catch_data_TP	8
	compare_calib	9
	green_shares	10
	input_maps	11
	input_plot	12
	input_Tserie	13
	input_Tserie_area	14
	LakeRetent_plot	15
	N4_sankey	16
	nutrient_maps	16
	nutrient_tserie	18
	nutrient_tserie_darea	19
	read_geometry	20
	read_NSdata	20
	references_plot	21
	region_nut_balance	22
	scatter_plot	23
	select_params	24
	shreve	25
	simobs_annual_plot	25
Index		27

GREENeR-package GREENeR

GREENeR: Geospatial Regression Equation for European Nutrient Losses

annual_data_TN 3

Description

The package provides tools and methods to apply the model Geospatial Regression Equation for European Nutrient losses (GREEN; Grizzetti et al. (2005); Grizzetti et al. (2012); Grizzetti et al. (2021)) to an area of interest in R environment. The package comprises functions for assessing annual nutrient (nitrogen and phosphorus) loads from a basin or region of interest, land and river retention, and contribution shares by sources. A brief description of the model, including sources and parameters, can be found at the end of this document. Further, the package includes functions for loading spatio-temporal data, calibrating basin parameters, performing an advanced sensitivity analysis to evaluate the calibration results, and visualizing model inputs and outputs through plots and maps. The package is parallel-capable to alleviate the computational burden in large basins.

References

Grizzetti, B., Bouraoui, F., De Marsily, G., & Bidoglio, G. (2005). A statistical method for source apportionment of riverine nitrogen loads. Journal of Hydrology, 304(1-4), 302-315. doi:10.1016/j.jhydrol.2004.07.036

Grizzetti, B., Bouraoui, F., De Marsily, G., (2008). Assessing nitrogen pressures on European surface water. Global Biogeochem. Cycles 22..

Grizzetti, B., Bouraoui, F., & Aloe, A. (2012). Changes of nitrogen and phosphorus loads to E uropean seas. Global Change Biology, 18(2), 769-782. doi:10.1111/j.13652486.2011.02576.x

Grizzetti, B., Vigiak, O., Udias, A., Aloe, A., Zanni, M., Bouraoui, F., Pistocchi, A., Dorati, C., Friedland, R., De Roo, A., others & Bielza, M. (2021). How EU policies could reduce nutrient pollution in European inland and coastal waters. Global Environmental Change, 69, 102281. doi:10.1016/j.gloenvcha.2021.102281

annual_data_TN

Annual data TN

Description

Defines the sources of nutrient (nitrogen) for each year and catchments.

Usage

annual_data_TN

Format

A data frame with 14 variables:

BasinID integer. The basin unique identifier.

YearValue integer. The year for which data are defined.

HydroID integer positive. Unique catchment identifier.

NextDownID integer. Unique identifier of the catchment to which the catchment goes.

Atm double. Annual nitrogen deposition from atmosphere (ton/yr).

4 annual_data_TP

Min double. Annual amount of nitrogen from mineral fertilisers (ton/yr).

Man double. Annual amount of nitrogen in manure fertilisers (ton/yr).

Fix double. Annual amount of nitrogen fixation by leguminous crops and fodder (ton/yr).

Soil double. Annual amount of nitrogen fixation by bacteria in soils (ton/yr).

Sd double. Nitrogen input from scattered dwellings (ton/yr).

Ps double. Nitrogen input from point sources (ton/yr).

YearlyMass double. Observed annual total nitrogen load (TN ton/yr) from monitoring station data.

ForestFraction double. Non-agricultural land cover in the catchment (fraction).

InvNrmRain double. Inverse of normalized rainfall.

annual_data_TP

Annual data TP

Description

Defines the sources of nutrient (phosphorus) for each year and catchments.

Usage

annual_data_TP

Format

A data frame with 12 variables:

BasinID integer. The basin unique identifier.

YearValue integer. The year for which data are defined.

HydroID integer positive. Unique catchment identifier.

NextDownID integer. Unique identifier of the catchment to which the catchment goes.

Bg double. Annual amount of phosphorus background losses (ton/yr).

Min double. Annual amount of phosphorus mineral fertilisers (ton/yr).

Man double. Annual amount of phosphorus in manure fertilisers (ton/yr).

Sd double. Phosphorus input from scattered dwellings (ton/yr).

Ps double. Phosphorus input from point sources (ton/yr).

YearlyMass double. Observed annual total phosphorus load (TP ton/yr) from monitoring station data.

ForestFraction double. Non-agricultural land cover in the catchment (fraction).

InvNrmRain double. Inverse of normalized rainfall.

calib_boxplot 5

calib_boxplot

Boxplot of best parameters

Description

Returns boxplots of best model parameters ranked according to different goodness-of-fit measures, and also boxplot with the distribution of the parameters values.

Usage

```
calib_boxplot(df_cb, rate_bs)
```

Arguments

df_cb data frame. Table with the result of the calibration process.

rate_bs numeric. Rate (%) of parameters selected from the whole set produced in the

calibration.

Value

Multiple boxplots

```
# the data of the TN scenario
data(catch_data_TP)
data(annual_data_TP)
# the parameter for the calibration of the model
n_iter <- 2 # number of iterations</pre>
# the lower limits for all params (alpha_P, alpha_L, sd_coef)
low <- c(10, 0.000, 0.1)
# the upper limits for all params (alpha_P, alpha_L, sd_coef)
upp <- c(70, 0.3, 0.9)
# years in which the model should be executed
years <- 1990:2018
# execution of the calibration
df_calib <- calib_green(catch_data_TP, annual_data_TP, n_iter, low, upp,</pre>
years)
# Generating the box plots
rateBS <- 5 # rate of best set of parameter to include in the plots
calib_boxplot(df_calib, rateBS)
```

6 calib_dot

calib_dot

Dot plot of goodness-of-fit metric vs parameter value

Description

Dot plot of goodness-of-fit metric vs parameters value

Usage

```
calib_dot(df_cb, param)
```

Arguments

```
df_cb data frame. A table with the result of the calibration process.

param character. Goodness of fit measures. See alternatives link "NSE" "rNSE", "NSE", "MAE", "PBIAS", "cp", "R2".
```

Value

Multiple dot plots

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the parameter for the calibration of the model
n_{iter} \leftarrow 2 \text{ # number of iterations}
# the lower limits for all params (alpha_P, alpha_L, sd_coef)
low <- c(10, 0.000, 0.1)
# the upper limits for all params (alpha_P, alpha_L, sd_coef)
upp <- c(70, 0.3, 0.9)
# years in which the model should be executed
years <- 1990:2018
# execution of the calibration
df_calib <- calib_green(catch_data_TN, annual_data_TN, n_iter, low, upp,</pre>
years)
# Generating the dot plots
gof_mes <- "NSE"
calib_dot(df_calib, gof_mes)
```

calib_green 7

calib_green	Calibration of the GREEN model	

Description

Runs GREEN model calibration

Usage

```
calib_green(catch_data, annual_data, n_iter, low, upp, years)
```

Arguments

catch_data	data frame. Definition of the topological sequence of catchments.
annual_data	data frame. Sources of nutrient for each year and catchments.
n_iter	numeric. Number of iterations for the calibration process.
low	numeric. Lower bounds of the calibration parameters.
upp	numeric. Upper bounds of the calibration parameters.
years	integer. Years to be used in the calibration. For sequences use c(yearini:yearend).

Value

One object, a data frame with the model calibration

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the parameter for the calibration of the model
n_iter <- 2 # number of iterations
# the lower limits for all params (alpha_P, alpha_L, sd_coef)
low <- c(10, 0.000, 0.1)
# the upper limits for all params (alpha_P, alpha_L, sd_coef)
upp <- c(70, 0.3, 0.9)
# years in which the model should be executed
years <- 1990:2018
# execution of the calibration
dF_calib <- calib_green(catch_data_TN, annual_data_TN, n_iter, low, upp, years)</pre>
```

8 catch_data_TP

catch_data_TN

Catch data TN

Description

Defines the topological sequence of catchments for nitrogen.

Usage

```
catch_data_TN
```

Format

A data frame with 5 variables:

HydroID integer positive. Unique catchment identifier.

To_catch integer. Unique identifier of the catchment to which the catchment goes. Note that for the outlet To_catch== -1.

Shreve integer. this indicates the Shreve order of the topological sequence in the stream network.

LakeFrRet fraction, 0-1. Lake retention fraction.

NrmLengthKm double. Normalized length of catchment reach.

catch_data_TP

Catch data TP

Description

Defines the topological sequence of catchments for phosphorus.

Usage

```
catch_data_TP
```

Format

A data frame with 5 variables:

HydroID integer positive. Unique catchment identifier.

To_catch integer. Unique identifier of the catchment to which the catchment goes. Note that for the outlet To_catch== -1.

Shreve integer, this indicates the Shreve order of the topological sequence in the stream network.

LakeFrRet fraction, 0-1. Lake retention fraction.

 ${\tt NrmLengthKm}\ double.\ Normalized\ length\ of\ catchment\ reach.$

compare_calib 9

compare_calib Plot comparing observed vs modeled loads for two set of parameter

Description

Returns a scatter plot comparing observed versus modeled loads obtained with two model parameter sets

Usage

```
compare_calib(
  catch_data,
  annual_data,
  alpha_p1,
  alpha_l1,
  sd_coef1,
  alpha_p2,
  alpha_l2,
  sd_coef2,
  years,
  name_basin,
  setPlabels
)
```

Arguments

catch_data	data frame. Definition of the topological sequence of catchments.
annual_data	data frame. Sources of nutrient for each year and catchments.
alpha_p1	numeric. The basin retention coefficient of the first set of parameters.
alpha_l1	numeric. The river retention coefficient of the first set of parameters.
sd_coef1	numeric. Fraction of domestic diffuse sources that reaches the stream network of the first set of parameters.
alpha_p2	numeric. The basin retention coefficient of the second set of parameters.
alpha_12	numeric. The river retention coefficient of the second set of parameters.
sd_coef2	numeric. Fraction of domestic diffuse sources that reaches the stream network of the second set of parameters.
years	numeric. Years to be shown in the plot.
name_basin	character. Name of the basin (title of the plot).
setPlabels	character. Labels identifying each set of parameter.

Value

A scatter plot and a list with two data frames with model GREEN applied to two model parameter sets

10 green_shares

Examples

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the first set of parameters to assess the basin model
alpha_p <- 35.09
alpha_1 <- 0.02
sd_coef <- 0.2
# the second set of parameters to assess the basin model
alpha_p2 <- 41.23
alpha_12 <- 0.0015
sd_coef2 <- 0.6
# years in which the plot will we shown
years <- 1990:2018
nameBasin <- "Lay"</pre>
# generating the scatter plot comparing two set of parameters observed
# versus modeled loads by year
setPlabels <- c("bestNSE","bestR2")</pre>
compare_calib(catch_data_TN, annual_data_TN, alpha_p , alpha_l, sd_coef,
alpha_p2, alpha_l2, sd_coef2, years, nameBasin, setPlabels)
```

green_shares

Geospatial Regression Equation parallel execution returning the source apportionment

Description

Run GREEN model with selected parameter set and returns the nutrient load by each source for all catchments in the Basin.

Usage

```
green_shares(catch_data, annual_data, alpha_p, alpha_l, sd_coef, loc_years)
```

Arguments

catch_data	data frame. Definition of the topological sequence of catchments.
annual_data	data frame. Sources of nutrient for each year and catchments.
alpha_p	numeric. First model parameter, the basin retention coefficient.
alpha_l	numeric. Second model parameter, the river retention coefficient.

input_maps 11

sd_coef numeric. Third model parameter, fraction of domestic diffuse sources that reaches

the stream network.

loc_years integer. Years in which the model should be executed.

Value

One object, a data frame with the nutrient load by each source for all catchments in the Basin

Examples

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the parameter to assess the basin model
alpha_p <- 35.09
alpha_1 <- 0.02
sd_coef <- 0.2
# year in which the model should be executed
loc_years <- 1990:2018
# Computing the source apportionment
basin_loads_s <- green_shares(catch_data_TN, annual_data_TN, alpha_p, alpha_l, sd_coef, loc_years)</pre>
```

input_maps

Map average load input by source

Description

Map showing the mean load input by source

Usage

```
input_maps(
  catch_data,
  annual_data,
  sh_file,
  plot.type,
  style_map = "fisher",
  scale_barTextS = 0.7,
  legend_position = 1
)
```

input_plot

Arguments

```
data frame. Definition of the topological sequence of catchments.
catch_data
                   data frame. Sources of nutrient for each year and catchments.
annual_data
sh_file
                   sf object. The spatial information.
plot.type
                   character. Alternatives of the map: input load (kt) by type divided by year and
                   catchment. "gr1": by km2; "gr2": by year/km2.
style_map
                   character. Alternatives to create the intervals in the maps. Chosen style: one of
                   "fixed", "sd", "equal", "pretty", "quantile", "kmeans", "hclust", "bclust", "fisher",
                   "jenks".
scale_barTextS numeric. To modify the size of the text in the legend.
legend_position
                   numeric. Legend position: 1 (default): "right", "bottom"; 2: "left", "up"; 3:
                   "right", "bottom"; 4: "right", "up".
```

Value

No return value, called for the side effect of drawing a plot

Examples

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
data(sh_file)
# the Input Load Map by source type 1 (lines)
input_maps(catch_data_TN, annual_data_TN, sh_file, plot.type = "gr1",
legend_position = 2)
# the Input Load Map by source type 2 (lines & area)
input_maps(catch_data_TN, annual_data_TN, sh_file, plot.type = "gr2",
legend_position = 2)
```

input_plot

Plot input load by source

Description

A grouped barplot representing the average input load by source for the whole basin or a three density plots showing the distribution of nutrient sources (7 for nitrogen, 5 for phosphorous).

Usage

```
input_plot(annual_data, sh_file, basin_name, plot.type, coef_SD = 1)
```

input_Tserie 13

Arguments

annual_data data frame. Sources of nutrient for each year and catchments.

sh_file sf object. The spatial information.
basin_name character. The title of the plot.

plot.type character. Possible values: Bar plot ("B") or Density plot ("D").

coef_SD numeric. The standard deviation coefficient.

Value

No return value, called for the side effect of drawing a plot

Examples

```
# the data of the TN scenario
data(annual_data_TN)
data(sh_file)
# The name of the basin
basin_name <- "Lay"
# the barplot
input_plot(annual_data = annual_data_TN, basin_name = basin_name, plot.type = "B")
# the density plots
input_plot(annual_data_TN, sh_file, basin_name, "D")</pre>
```

input_Tserie

Time series of annual load inputs by source

Description

Creates a time series plot showing basin inputs by source

Usage

```
input_Tserie(catch_data, annual_data, sh_file, basin_name, plot.type)
```

Arguments

catch_data data frame. Definition of the topological sequence of catchments.

data frame. Sources of nutrient for each year and catchments.

sh_file sf object. The spatial information.
basin_name character. The title of the plot

plot.type character. Alternative of the plot: "gr1": stacked area; "gr2": lines & area.

Value

A time-series plot

14 input_Tserie_area

Examples

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
data(sh_file)
# The title of the plot
plotTitle <- "Time series for the Lay Basin"
# the time serie plot 1 (lines)
input_Tserie(catch_data_TN, annual_data_TN, sh_file, plotTitle, "gr1")
# the time serie plot 2 (lines & area)
input_Tserie(catch_data_TN, annual_data_TN, sh_file, plotTitle, "gr2")</pre>
```

input_Tserie_area

Time series of annual load inputs by source and km2

Description

Creates a time series plot showing basin inputs by source

Usage

```
input_Tserie_area(catch_data, annual_data, sh_file, basin_name, plot.type)
```

Arguments

data frame. Definition of the topological sequence of catchments.

data frame. Sources of nutrient for each year and catchments.

sh_file sf object. The spatial information.

basin_name character. The title of the plot

plot.type character. Alternative of the plot: "gr1": stacked area by km2; "gr2" lines & area by km2 and Shreve.

Value

A time-series plot

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
data(sh_file)
# The title of the plot
```

LakeRetent_plot 15

```
plotTitle <- "Time series for the Lay Basin"
# the time serie plot 1 (by km2)
input_Tserie(catch_data_TN, annual_data_TN, sh_file, plotTitle, "gr1")
# the time serie plot 2 (by km2 and Shreve)
input_Tserie(catch_data_TN, annual_data_TN, sh_file, plotTitle, "gr2")
# catch_data <- The_Scen[[1]]
# annual_data <- The_Scen[[2]]
# sh_file <- The_Sf_shape</pre>
```

LakeRetent_plot

Lake retention values summary

Description

Summary of the reference values in the stations

Usage

```
LakeRetent_plot(catch_data_TN)
```

Arguments

catch_data_TN data frame. Sources of nutrient for each year and catchments.

Value

barplot & histogram-density

```
# the data of the TN scenario
data(catch_data_TN)
LakeRetent_plot(catch_data_TN)
```

16 nutrient_maps

N4_sankey

Nutrient balance flow plot

Description

Nutrient balance flow in Sankey plot

Usage

```
N4_sankey(Nbalance_out)
```

Arguments

Nbalance_out data frame. Nutrient balance result from the Nutbalance() function

Value

A Sankey diagram and a data frame with the some variable values

Examples

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the parameter to assess the basin model
alpha_p <- 35.09
alpha_l <- 0.02
sd_coef <- 0.2
# years in which the model should be executed
loc_years <- 1990:2018
# Computing the nutrient balance
nut_bal <- region_nut_balance(catch_data_TN, annual_data_TN, alpha_p, alpha_l, sd_coef, loc_years)
# Plot the sankey plot with the result of the balance
sank <- N4_sankey(nut_bal)</pre>
```

nutrient_maps

Map average load output by source

Description

Creates maps showing basin output total or by source loads

nutrient_maps 17

Usage

```
nutrient_maps(green_file, sh_file, plot.type, style, legend_position = 1)
```

Arguments

data frame of GREEN model results from green_shares() function. Nutrient Load by source apportionment of nutrient for each year and catchments.

sh_file sf object. The spatial information of the basin.

plot.type character. Alternatives of the map: "gr1": output load (kt/y) by source; "gr2": Total Load, log10 (kt/y); "gr3": Total Load by km2 (kt/year/km2).

style charater. The style of the plot.

legend_position

numeric. Legend position: 1 (default): "right", "bottom"; 2: "left", "up"; 3: "right", "bottom"; 4: "right", "up".

Value

No return value, called for the side effect of drawing a plot

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
data(sh_file)
# the parameter to assess the basin model
alpha_p <- 35.09
alpha_1 <- 0.02
sd_coef <- 0.2
# years in which the model should be executed
loc_years <- 1990:2018
# Computing the source apportionment
basin_sa <- green_shares(catch_data_TN, annual_data_TN, alpha_p, alpha_l,</pre>
sd_coef, loc_years)
# Basin Output Load Maps by source
Lpos <- 1
nutrient_maps(basin_sa, sh_file, plot.type = "gr1", style = "log10", legend_position = Lpos)
# Basin Output Specific Load Maps
nutrient_maps(basin_sa, sh_file, plot.type = "gr2", style = "log10", legend_position = Lpos)
# Basin Output Specific Load by km2 Maps
nutrient_maps(basin_sa, sh_file, plot.type = "gr3", style = "fisher", legend_position = Lpos)
```

nutrient_tserie

nutrient_tserie	Output load time series plot

Description

Creates a time series plot showing basin model results

Usage

```
nutrient_tserie(green_file, basin_name, plot.type, file_path = NULL)
```

Arguments

green_file	data frame. Nutrient Load by source apportionment of nutrient for each year and catchments.
basin_name	character. The title of the plot.
plot.type	character. Alternative of the plot: output load (t) by source; gr1: Basin average by Shreve (t/y/km2); gr2: Outlet total (kt/y).
file_path	character. The path to save the csv.

Value

No return value, called for the side effect of drawing a plot

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
data(sh_file)
# the parameter to assess the basin model
alpha_p <- 35.09
alpha_1 <- 0.02
sd_coef <- 0.2
# years in which the model should be executed
loc_years <- 1990:2018
# Computing the source apportionment
basin_sa <- green_shares(catch_data_TN, annual_data_TN, alpha_p, alpha_l,</pre>
sd_coef, loc_years)
# The title of the plot
plotTitle <- "Time series Load Output for the Lay Basin"</pre>
# Output Load Basin average time series (lines)
nutrient_tserie(basin_sa, basin_name = plotTitle, plot.type = "gr1")
# Total Load in the Basin Outlet time series (lines)
nutrient_tserie(basin_sa, basin_name = plotTitle, plot.type = "gr2")
```

nutrient_tserie_darea 19

```
nutrient_tserie_darea Output load time series plot
```

Description

Creates a time series plot showing basin model results

Usage

```
nutrient_tserie_darea(green_file, sh_file, basin_name)
```

Arguments

green_file data frame. Nutrient Load by source apportionment of nutrient for each year

and catchments.

sh_file sf object. The spatial information.
basin_name character. The title of the plot.

Value

No return value, called for the side effect of drawing a plot

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
data(sh_file)
# the parameter to assess the basin model
alpha_p <- 35.09
alpha_l <- 0.02
sd_coef <- 0.2
# years in which the model should be executed
loc_years <- 1990:2018
# Computing the source apportionment
basin_sa <- green_shares(catch_data_TN, annual_data_TN, alpha_p, alpha_l, sd_coef, loc_years)
basin_name <- "Visla Basin"
nutrient_tserie_darea(basin_sa, sh_file, basin_name)</pre>
```

20 read_NSdata

|--|

Description

Function to read the geometry file.

Usage

```
read_geometry(file)
```

Arguments

file

string. A string with the name and extension of the geometry file.

Value

One object, a sf file.

|--|

Description

Function to read the data and return the data frame for GREEN execution.

Usage

```
read_NSdata(path, tsn, obs, ff, rain, topo, lr, length)
```

Arguments

path	string. A string with the path of the CSV files.
tsn	file. A CSV file with nine variables YearValue (integer), HydroID (integer), Atm (float), Min (float), Man (float), Fix (float), Soil (float), Sd (float) and Ps (float).
obs	file. A CSV file with three variables YearValue (integer), HydroID (integer) and YearlyMass (float).
ff	file. A CSV file with three variables YearValue (integer), HydroID (integer) and ForestFraction (float).
rain	file. A CSV file with three variables YearValue (integer), HydroID (integer) and Rain (float).
topo	file. A CSV file with two variables HydroID (integer) and Next_HydroID (integer).
lr	file. A CSV file with three variables HydroID (integer), AvgDepth (float) and ResTime (float).
length	file. A CSV file with two variables HydroID (integer) and LengthKm (float).

references_plot 21

Value

One object, a list with two data frame. First position of the list contains the catch data and the second one the annual data.

Examples

```
path <- "https://raw.githubusercontent.com/calfarog/GREENeR_data/main/data/csv/"
ns_data <- read_NSdata(path, "TS_nutrients.csv", "Obs_monitoring.csv",
"ForestFr.csv", "Precipitation.csv", "Topology.csv", "LakeProperties.csv",
"Length.csv")</pre>
```

references_plot

Reference summary plot

Description

Summary of the reference values in the stations

Usage

```
references_plot(annual_data)
```

Arguments

annual_data

data frame. Sources of nutrient for each year and catchments.

Value

A barplot, a histogram-density and a boxplot

```
# the data of the TN scenario
data(annual_data_TN)
references_plot(annual_data_TN)
```

22 region_nut_balance

region_nut_balance	Nutrient balance based in the application of the Geospatial Regression
	Equation returning the diffuse, land retention, point sources

Description

Computes the basin nutrient balance.

Usage

```
region_nut_balance(
  catch_data,
  annual_data,
  alpha_p,
  alpha_l,
  sd_coef,
  loc_years,
  atm_coeff = 0.38
)
```

Arguments

catch_data	data frame. Definition of the topological sequence of catchments.
annual_data	data frame. Sources of nutrient for each year and catchments.
alpha_p	numeric. First model parameter, the basin retention coefficient.
alpha_l	numeric. Second model parameter, the river retention coefficient.
sd_coef	numeric. Third model parameter, fraction of domestic diffuse sources that reaches the stream network.
loc_years	integer. Years in which the model should be executed.
atm_coeff	numeric. A value for atmospheric attenuation coefficient.

Value

One object, a data frame with the basin nutrient balance

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the parameter to assess the basin model
alpha_p <- 35.09
alpha_l <- 0.02
sd_coef <- 0.2
# year in which the model should be executed</pre>
```

scatter_plot 23

```
loc_years <- 1990:2018
# Computing the nutrient balance
basin_loads_b <- region_nut_balance(catch_data_TN, annual_data_TN, alpha_p, alpha_l,
sd_coef, loc_years)</pre>
```

scatter_plot

Scatter plot of goodness-of-fit metric vs parameters

Description

Scatter plot of goodness-of-fit metric vs parameters

Usage

```
scatter_plot(df_cb, param)
```

Arguments

```
df_cb data frame. A table with the result of the calibration process.

param character. Goodness of fit metric:"NSE", "rNSE", "mNSE", "mNSE", "MAE", "PBIAS", "cp", "R2",...
```

Value

Multiple scatter plot

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the parameter for the calibration of the model
n_iter <- 2 # number of iterations
# the lower limits for all params (alpha_P, alpha_L, sd_coef)
low <- c(10, 0.000, 0.1)
# the upper limits for all params (alpha_P, alpha_L, sd_coef)
upp <- c(70, 0.3, 0.9)
# years in which the model should be executed
years <- 1990:2018
# execution of the calibration
df_calib <- calib_green(catch_data_TN, annual_data_TN, n_iter, low, upp,
years)
gof_mes <- "NSE"
scatter_plot(df_calib, gof_mes)</pre>
```

24 select_params

select_params

Selection of best calibration parameters

Description

Return the best calibration parameter set according to one goodness-of-fit metric

Usage

```
select_params(df_cb, param)
```

Arguments

```
df_cb data frame. The result of the calibration process.

param numeric. Goodness-of-fit measures. "NSE", "rNSE", "NSE", "MAE", "PBIAS", "cp", "R2",...
```

Value

A vector with the 3 parameters

```
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the parameter for the calibration of the model
n_{iter} \leftarrow 2 \text{ # number of iterations}
# the lower limits for all params (alpha_P, alpha_L, sd_coef)
low <- c(10, 0.000, 0.1)
# the upper limits for all params (alpha_P, alpha_L, sd_coef)
upp <- c(70, 0.3, 0.9)
# years in which the model should be executed
years <- 1990:2018
# execution of the calibration
df_calib <- calib_green(catch_data_TN, annual_data_TN, n_iter, low, upp,</pre>
years)
# Extract the best set of parameter according to a Goodnes of fit metric
gof_mes <- "NSE"</pre>
NSE_bestParams <- select_params(df_calib, gof_mes)</pre>
```

shreve 25

shreve

Shreve

Description

Function to read the data and return the data frame for GREEN execution.

Usage

```
shreve(the_SC)
```

Arguments

the_SC

table. A table with topology data.

Value

One object, a data frame with the shreve.

```
simobs_annual_plot
```

Facet year plot

Description

This function blah, blah, blah....

Usage

```
simobs_annual_plot(
  catch_data,
  annual_data,
  alpha_p,
  alpha_l,
  sd_coef,
  years,
  name_basin,
  maxvalue
)
```

26 simobs_annual_plot

Arguments

catch_data data frame. Definition of the topological sequence of catchments.

annual_data data frame. Sources of nutrient for each year and catchments.

alpha_p numeric. First model parameter, the basin retention coefficient.

alpha_l numeric. Second model parameter, the river retention coefficient.

sd_coef numeric. Third model parameter, fraction of domestic diffuse sources that reaches the stream network.

years integer. Years to be used in the calibration. For sequences use c(yearini:yearend).

name_basin character. The name of the basin

name_basin character. The name of the basin maxvalue numeric. The maximum value

Value

One object, a data frame

Index

```
* datasets
    annual_data_TN, 3
    annual_data_TP, 4
    catch_data_TN, 8
    catch_data_TP, 8
annual_data_TN, 3
annual_data_TP, 4
calib_boxplot, 5
calib_dot, 6
calib_green, 7
\verb|catch_data_TN|, \\ 8
catch_data_TP, 8
compare\_calib, 9
green_shares, 10
GREENeR (GREENeR-package), 2
GREENeR-package, 2
input_maps, 11
input_plot, 12
input_Tserie, 13
input_Tserie_area, 14
LakeRetent_plot, 15
N4_sankey, 16
nutrient_maps, 16
nutrient_tserie, 18
nutrient_tserie_darea, 19
read_geometry, 20
read_NSdata, 20
{\tt references\_plot}, {\tt 21}
region_nut_balance, 22
scatter_plot, 23
select_params, 24
shreve, 25
simobs_annual_plot, 25
```