Concurrency Reading: OS Concepts pp.243-266 Contents Introduction Prevention Avoidance Detection Reading: OS Concepts pp.243-266 Contents Introduction Prevention Avoidance Detection

ncurrency Problems	The problem We only have concurrency problems if	Introduction Prevention Avoidance Detection
Process Management, Topic 5, Concurrency Problems	■ The problems are made worse	
Process Ma	■ The main problems are	
2	•	

Problems	How OSes deal with it.	Introduction Prevention Avoidance Detection
Concurrency Problems	Resource Classes	
	■ Possible restictions (to simplify the pr	roblem):
Process Management, Topic 5,	■ Facilities provided for users & kernel	
	■ Solutions ■	
3	·	

Deadlock Characteristics.

Prevention Avoidance Detection

4 conditions required for deadlock:

1. Mutual exclusion:

2. Hold and wait:

3. No preemption: Prevention Avoidance Detection4. Circular wait: $P_0 \rightarrow R_a \rightarrow P_1 \rightarrow R_b \rightarrow ... \rightarrow P_n \rightarrow R_z \rightarrow P_0$

Concurrency Problems	Deadlock Prevention Prevent one of the four conditions Mutual exclusion	Introduction Prevention Avoidance Detection
Process Management, Topic 5, Concurrency Problems	2. Hold and wait	
8 Pr	•	

by Problems	Deadlock Prevention (contd) Introduction Prevention Avoidance Detection
urrenc	3. No preemption
Conc	•
Process Management, Topic 5, Concurrency Problems	•
Process Manag	4. Circular wait •
9	

Process Management, Topic 5, Co	Deadlock Prevention (contd) Prevention Avoidance Detection Deadlock prevention problems
---------------------------------	---

y Problems	Deadlock Avoidance.	Introduction Prevention Avoidance Detection
Process Management, Topic 5, Concurrency Problems	Attempts to be less restrictive than prevention	deadlock
nagement, Topi	=	
Process Ma	-	

Process Management, Topic 5, Concurrency Problems	Safe States	Introduction Prevention Avoidance Detection
Concurrenc	■ Deadlock avoidance always keeps in a safe state	the system
nt, Topic 5,		
Managemer		
Process]	$\blacksquare < P_1, P_2, \dots, P_n >$	deadlock unsafe
		sale
12		

cy Problems	Banker's Algorithm Theory	Introduction Prevention Avoidance Detection
Process Management, Topic 5, Concurrency Problems	-	
gement, Topic	■ Banker's algorithm evaluates requests by	
Process Mana	■ ■ If safe	
	•	
13		

Process Management, Topic 5, Concurrency Problems Introduction Banker's Safety Algorithm Prevention Avoidance Detection Using Total[m], Available[m] Using Max[n][m], Need[n][m], Allocation[n][m] Define Work[m] and Finish[n] 1. Initialize Work[m] and Finish[n] 2. Find any i such that (a) Finish [i] = false (b) $Need[i] \leq Work$ If no such i exists, go to step 4. 3. Work = Work + Allocation[i] Finish[i] = true go to step 2. 4. If Finish [i] = true for all i then ... else ...

y Problems	Testing Saf	e State Example	Introduction Prevention Avoidance Detection
Process Management, Topic 5, Concurrency Problems	$P_0 \dots P_4$ $A * 10, B * 5,$	C * 7	
Topi	■ State at T_0 :		
ent,	Allocation	<u>Max</u>	
ıgem	ABC	ABC	
Jana	P ₀ 010	753	
ess N	P ₁ 200	3 2 2	
Proc	P ₂ 302	902	
	P ₃ 211	222	
	P ₄ 002	4 3 3	
15			

5, Concurrency Problems	Banker's A	lgorith	m Exam	Introduction Prevention Avoidance Detection
urrenc	■ State at T_0 :			
onc	<u>Allocation</u>	<u>Max</u>	<u>Need</u>	<u>Available</u>
5, C	ABC	ABC	ABC	ABC
	P ₀ 010	753	7 4 3	3 3 2
t, To	P_1 200	3 2 2	122	
men	P ₂ 301	905	602	
lage	P_3^{-} 211	222	0 1 1	
Process Management, Topic	P ₄ 002	4 3 3	4 3 1	
soces				
P	■ Request:			
	■ T_1 : P_2 reques	sts (2, 0, 1)		
	\blacksquare T ₂ : P_4 reques	sts (1, 3, 0)		
16	■ T_3 : P_0 reques	sts (0, 2, 0)		

cy Problems	Detection & Recovery	Introduction Prevention Avoidance Detection
Topic 5, Concurren	Allow system to become deadlocked	
Process Management, Topic 5, Concurrency Problems	Recovery:	
17		

Process Management, Topic 5, Concurrency Problems Introduction Detection Algorithm Prevention Avoidance Detection Using Total[m], Available[m] Using Max[n][m], Need[n][m], Allocation[n][m], Request[n][m Define Work[m] and Finish[n] 1. Initialize Work[m] and Finish[n] 2. Find any i such that (a) Finish [i] = false (b) Request[i] ≤ Work If no such i exists, go to step 4. 3. Work = Work + Allocation[i] Finish[i] = true go to step 2. 4. If Finish [i] = true for all i then ... else ...

Process Management, Topic 5, Concurrency Problems	Testing Dete	ection Example	Introduction Prevention Avoidance Detection		
rrenc	$\blacksquare P_0 \dots P_4$				
onco	$\blacksquare A * 7, B * 2, C *$	* 6			
5, C					
Fopic	\blacksquare State at T_0 :				
ent,	<u>Allocation</u>	<u>Request</u>			
gem	ABC	ABC			
Aana	P ₀ 010	000			
ess N	P ₁ 200	201			
Proc	P ₂ 103	002			
	P ₃ 211	100			
	P ₄ 002	0 0 2			
19					

Problems	Summary
Process Management, Topic 5, Concurrency Problems	 The problem Resource Allocation Graphs Preventing Deadlock Avoiding dealock Detecting deadlock