COUNTING SOLDIERS

A general lines her troops in rows of 9, then 10, then 11. Each time, there are leftovers: 1, 2, and 4, respectively.

Can the general tell just from this information exactly how many soldiers she has?

Compute: 1234567 (mod 10) 1027581 (mod 2) 624897 (mod 3) 169 (mod 24)

Compute: 101 × 122 (mod 3) 4¹⁵⁷ (mod 3) 149728 × 51 (mod 3)

MULTIPLICATIVE INVERSES

Does every number have a multiplicative inverse mod n?

Solve:
$$2x \equiv 1 \pmod{9}$$

CHINESE REMAINDER THEOREM

Solve:
$$X \equiv 1 \pmod{3}$$

 $X \equiv 3 \pmod{5}$
 $X \equiv 2 \pmod{7}$

Solve:
$$X = 1 \pmod{9}$$
 Hint: 6.90 - 49.11 = 1
 $X = 2 \pmod{10}$
 $X = 4 \pmod{11}$

CHINESE REMAINDER THEOREM

Solve:
$$X = 1 \pmod{9}$$
 Hint: 6.90 - 49.11 = 1
 $X = 2 \pmod{10}$
 $X = 4 \pmod{11}$

First solve just the first two, mod 90. Since 1.10-1.9=1

We have: $1 \cdot (1 \cdot 10) - 2(1 \cdot 9) = -8 = 82 \pmod{90}$

Now solve: $X \equiv 82 \pmod{90}$ $X \equiv 4 \pmod{11}$

Since 6.90 - 49.11 = 1

we have: $4(6.90) - 82(49.11) = -42,038 \equiv 532 \pmod{990}$