NSF/IUCRC CAC PROJECT

Monitoring Power Usage of Jobs Running on Quanah Cluster

Jie Li PhD Student, TTU 09/18/2019

Advisors:

Mr. Jon Hass, SW Architect, Dell Inc.

Dr. Alan Sill, Managing Director, HPCC, TTU

Dr. Yong Chen, Associate Professor, CS Dept, TTU

- Background
- Power Measurement Techniques
- Implementation
- Results and Future Work

Out-of-band Measurement	In-band Measurement
Use external equipment	Use device-level integrated measurement capabilities
Not provide easily accessible information to the running processes	Provide both CPU and memory subsystem energy measurement
Avoid perturbing the ongoing computation	Require active participation of the compute cores
Capture whole node energy profiles more easily	Not possible to capture whole node energy profiles

- Job-wide Aggregate Information
- Periodic Sampling
- Application Instrumentation
- Multi-Level Correlation

- Coarse-grained power and energy, total energy usage by each application.
- Information from each component is aggregated over an entire application run rather than point-in-time samples or per-node information.
- Help to understand how energy-to-solution changes for different application optimizations.
- It only provides insight into energy usage behavior in aggregate, not the varying rates of energy consumption throughout an application's execution.

- Fine-grained detail is provided by periodically sampling power levels and energy usage over time.
- Sampling may be implemented in-band or out-of-band.
- Information can be used to plot power usage versus time.
- Retain potentially large volume of point-in-time sample information

- A finer level, use application knowledge to interpret the recorded information
- Modify an application to instrument code regions of interest.
- Information can be analyzed to characterize each instrumented region's power and energy usage behavior.
- Require application modifications and may reduce performance due to instrumentation overhead.

- Cross-correlated information gathered from previous levels.
- Difficult to Align in-band and out-of-band periodic sampling measurements can be difficult.

L1: Aggregate Information

Pros: Easily obtainable, quick summary info

Cons: Coarse-grained information

L2: Periodic Sampling

Pros: In-band or out-of-band sampling

Cons: Retain large volume of information

L3: Application Instrumentation

Pros: Users mark app regions, more info

Cons: Degrade application performance

L4: Multi-level Correlation

Pros: Information Fusion, intra-region insight

Cons: Synchronize metrics

How to get/estimate the power usage of each job?

Assume power usage is proportional to the core usage!

Demo

Total Jobs: 144

Cores Used Per Job

Total Jobs: 144

Average Power Used Per Core of Each Job Total Jobs: 144

Total Power Consumed on Quanah Cluster

Total Power Consumed of Job 925590

Total Power Consumed of Some Random SelectedJobs

Total Power Consumed of Some Random SelectedJobs

- Work with data visualization team to nail down the data frame structure
- Implement the filters
- Research on reducing the latency of fetching BMC metrics

