High-Level Vision 4

Week 11

High-level Vision: Object Detection

High-level Vision: Image Segmentation

Announcements

- **Drop-in Sessions:** Please bring your assignment/exam questions to the following locations
 - 14:00-16:00 Wednesday 15 and 22 May, 1.23 Hanna Neumann (Hoang)
 - 15:00-17:00 Friday 17 and 24 May, 1.23 Hanna Neumann (Yiran)

Announcements

- Assignment 3 due 11:59pm this Friday (17 May)
 - **Zero** marks if either report or code submitted late (unless extension)
 - Submit early; you can always resubmit an updated version later
 - Depending on your internet connection and load on the TurnItIn servers, uploading can sometimes be slow, so please factor this into your submission schedule
 - Submit your report (PDF) and code (ZIP file) **separately under the correct tab** in the submission box, or you will receive a mark of zero
 - Follow the instructions under Submission Requirements
 - Assignment figures/screenshots: must be sufficient resolution for the markers to read and interpret

Weekly Study Plan: Overview

Starting	Lecture	Lab	Assessment
19 Feb	Introduction	Х	
26 Feb	Low-level Vision 1	1	
4 Mar	Low-level Vision 2	1	
	Mid-level Vision 1		
11 Mar	Mid-level Vision 2	1	CLab1 report due Friday
	High-level Vision 1		
18 Mar	High-level Vision 2	2	
25 Mar	High-level Vision 3 ¹	2	
1 Apr	Teaching break	Х	
8 Apr	Teaching break	X	
15 Apr	3D Vision 1	2	CLab2 report due Friday
22 Apr	3D Vision 2	3	
29 Apr	3D Vision 3	3	
6 May	3D Vision 4	3	
	Mid-level Vision 3		
13 May	High-level Vision 4	Х	CLab3 report due Friday
20 May	Course Review	Х	
	19 Feb 26 Feb 4 Mar 11 Mar 18 Mar 25 Mar 1 Apr 8 Apr 15 Apr 22 Apr 29 Apr 6 May	19 Feb Introduction 26 Feb Low-level Vision 1 4 Mar Low-level Vision 2 Mid-level Vision 1 11 Mar Mid-level Vision 2 High-level Vision 1 18 Mar High-level Vision 2 25 Mar High-level Vision 3 1 Apr Teaching break 8 Apr Teaching break 15 Apr 3D Vision 1 22 Apr 3D Vision 2 29 Apr 3D Vision 3 6 May 3D Vision 4 Mid-level Vision 3 13 May High-level Vision 4	19 Feb Introduction 26 Feb Low-level Vision 1 4 Mar Low-level Vision 2 11 11 Mar Mid-level Vision 2 12 13 High-level Vision 1 14 Mar High-level Vision 2 25 Mar High-level Vision 3 2 1 Apr Teaching break 3 Apr Teaching break 4 4 3 Apr Teaching break 4 4 4 4 5 Apr Teaching break 5 Apr Teaching break 6 Apr Teaching break 7 8 Apr Teaching break 8 Apr Teaching break 8 Apr Teaching break 9 15 Apr Teaching break 16 Apr Teaching break 17 Apr Teaching break 18 Apr Teach

Weekly Study Plan: Part B

Wk	Starting	Lecture	Ву
7	15 Apr	3D vision: introduction, camera model, single-view	Dylan
8	22 Apr	geometry 3D vision: camera calibration, two-view geometry (homography)	Dylan
9	29 Apr	3D vision: two-view geometry (epipolar geometry, triangulation, stereo)	Dylan
10	6 May	- · · · · · · · · · · · · · · · · · · ·	Weijian Dylan
11	13 May	High-level vision: self-supervised learning, detection, segmentation	Dylan
12	20 May	Course review	Dylan

Photometric Stereo: Student Question

$$\begin{bmatrix} I_1 & \dots & I_n \end{bmatrix} = \rho N^{\top} \begin{bmatrix} L_1 & \dots & L_n \end{bmatrix}$$

$$\begin{matrix} I & G & L \\ mxn & mx3 & 3xn \end{matrix}$$

- More than 1 pixel? Stack into a system and solve as before $G = (IL^{\mathsf{T}})(LL^{\mathsf{T}})^{-1}$
- Question: What happens if you have more pixels than lights?
 - This is entirely okay, so long as you have at least 3 (linearly independent) lights

Assignment 3 Homographies

- Why can we compute a homography? Mountains aren't planar...
 - Camera is rotating but not translating (approx): translation is zero (t = 0)
 - Points are on the "plane at infinity"

$$\begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} \propto \begin{bmatrix} \alpha & \gamma & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{H} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

- While we are here:
 - γ : "skew" parameter zero unless you have a strange camera

Object Detection

High-level Vision

- Redmon et al., You Only Look Once: Unified, Real-Time Object Detection, CVPR 2016
- Defines detection as a regression problem
- Also, a general model for handling regression problems

- Divides image into an SxS grid
- Each grid cell predicts whether an object centre is in cell
 - Uses whole image to predict bounding box for each object
 - All classes predicted at once
- Each cell predicts:
 - B bounding boxes (x,y,w,h) and confidences (c) for all classes
 - Centre, width, height
 - C class probabilities
 - If no object, all classes predict 0

- Output encoding
- Predicted tensor: SxSx(Bx5+C)
 - B bounding boxes: p_b = p(object)
 - C class probabilities: $p_c = p(class | object)$
 - $[(p_{c1}, p_{c2}, p_{c3}, ..., p_{cC}), (p_{b1}, x_1, y_1, w_1, h_1), ..., (p_{bB}, x_B, y_B, w_B, h_B)]^T$
- Example: empty cell
 - [(?,?,?,...?), (0,?,?,?,?),..., $(0,?,?,?,?),...]^T$

Single-stage Detector: YOLO – Losses

 $\mathbb{1}_{i}^{obj} = 1$ if an object appears in cell i, otherwise 0.

 $\hat{p}_i(c)$ denotes the conditional class probability for class c in cell i.

 \hat{C}_i is the box confidence score of the box j in cell i.

Square root: power normalisation

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Single-stage Detector: YOLO – Losses

- Sum squares
- Square root:
 - Partially normalise for box size
 - Don't want big bounding boxes to dominate
- Different weight for classification vs localization
 - λ_{coord} is larger
- Different loss if objects present
 - Avoid training null coordinates, just probability
 - λ_{noobj} is smaller

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Single-stage Detector: YOLO – NMS

- Non-maximal suppression (NMS) on output
- Each grid cell only gives best two bounding boxes
- Ignore all low probability bounding boxes
- For each class (e.g., pedestrian):
 - Use NMS on final outputs (limit per class overall)

- General approach of bounding boxes is common to all detection architectures
- General approach of regression to estimate continuous numbers in networks
- A good baseline for understanding detection and regression tasks

Intersection over Union (IoU)

$$IoU = \frac{|X \cap Y|}{|X \cup Y|}$$

All ground-truth dog boxes

Car AP = 0.65Cat AP = 0.80Dog AP = 0.86mAP@0.5 = 0.77

Image Segmentation

High-level Vision

Image Segmentation: Outline

- Motivation and applications
- Segmentation as a clustering problem
 - K-means
 - Mean shift
- Segmentation as a graph partitioning problem [not covered]
 - Graph-cut (see e.g., Szeliski 5.4-5.5)

Image Segmentation

- Goal: break up the image into semantically-meaningful or perceptually-similar regions
- "Semantic segmentation"

Image Segmentation: Examples

Image Segmentation: Examples

Image Segmentation: Examples

Image Credit: Uni Bonn

Applications: Photo Editing

Applications: Photo Montage

Image Segmentation

- Uses low- and mid-level visual cues for segmentation
- Partitions the image pixels into groups with perceptually homogeneous or similar pixel properties (e.g., intensity, colour, texture, or similar spatial location)
 - Grouping pixels into perceptually homogeneous regions

Approaches: Histogram – Image Binarisation

Approaches: Histogram – Ohlander Algorithm

- 1. Input a colour image of a scene
- 2. Start with the whole image
- 3. Select the R, G, or B histogram with the largest peak and find clusters from that histogram
- 4. Convert to regions on the image and create masks for each
- 5. Push each mask onto a stack for further histogram clustering

Approaches: Histogram – Ohlander Algorithm

- Recursive histogram-directed spatialclustering scheme
- The original image has four regions: grass, sky and two trees
- The current mask (upper left) identifies the region containing the sky and the trees
- Clustering its histogram leads to two clusters in color space, one for the sky and one for the trees
- The sky cluster yields one connected component, while the three cluster yields two
- Each of the three connected components become masks that are pushed onto the mask stack for possible further segmentation

Approaches: Histogram – Ohlander Algorithm

• Histogram for 3 cluster

Segmentation as Clustering

Cluster similar pixels using colour features only

Segmentation as Clustering

• Cluster similar pixels using colour + position features (RGB+XY)

 "Guess" the number of clusters K before start

• Start with 3 random positions of the cluster centres

Iteration = 0

- Start with 3 random positions of the cluster centres
- By computing the distance, assign each data point to the closest centre

Iteration = 1

- Start with 3 random positions of the cluster centres
- By computing the distance, assign each data point to the closest centre
- Re-compute the centres after the assignments

Iteration = 1

- Start with 3 random positions of the cluster centres
- By computing the distance, assign each data point to the closest centre
- Re-compute the centres after the assignments
- Iterate until no points are reassigned

Iteration = 3

What have we optimised?

- We have selected the means and membership which minimise the sum of squared distances to the centre means (centroids)
- The sum of squared distances to the means is the **variance** of the cluster

Spherical variance is used

- Q: What about the elongated variances?
 - We can have multivariate Gaussians, or Gaussian mixture clustering
 - e.g., colour vs pixel distance

- 1. Select a value of K
- 2. Select a feature vector for every pixel (colour, texture, position, or combination of these)
- 3. Define a similarity measure between feature vectors (usually Euclidean distance)
- 4. Apply the K-means algorithm to all the feature vectors

Approaches: K-means Clustering – Colour

Input image (I)

Three-cluster image using the gray levels of *input image*

"Segment Anything"

Approaches: K-means Clustering – Colour

Segmented on color

Approaches: K-means Clustering – Pros/Cons

Advantages

- Finds cluster centres that minimise variance (good representation of data)
- Simple to implement
- Widespread applications

Disadvantages

- All clusters have a spherical distribution (isotropic)
- Hard membership/assignment (i.e., 1 or 0 membership)
- Prone to local minima
- Need to choose K
- Can be very slow: each iteration is O(KN) for Ndimensional points

- An advanced and versatile technique for clustering-based segmentation
- The mean shift algorithm seeks a mode or local maximum of density of a given distribution
- Perform by computing the colour histogram, looking for modes

- 1. Choose a search window (width and location)
- 2. Compute the mean of the data in the search window
- 3. Centre the search window at the new mean location
- 4. Repeat until convergence

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

Approaches: Mean-Shift Tracking

Approaches: CNNs

- Label each pixel with a category label
- No difference for instances

Badrinarayanan et al, SegNet: A Deep Convolutional Encoder-Decoder Architecture for image segmentation, 2015

Approaches: Fully Convolutional Networks

- Rather than convolution layers yielding an image classification
- Convert to the spatial representation of a heat map giving classification probabilities, and upsample
- Maps are highly overlapping: cost amortised

Approaches: Fully Convolutional Networks

- Take classification maps and output a heatmap
- Reconstruct a segmentation map from this downsampled map
- Upsampling back up to image size

- A general approach for dense prediction tasks
- Encoder-decoder architecture

- We want large spatial fields for classification, detection and segmentation in order to include the spatial context of an object
- For classification, done by layers of convolution and pooling
 - Do not require fine spatial information; a global prediction
- This has been directly applied to segmentation
 - E.g., FCN, DeConvNet, U-Net use this, then up-sample
- Instead, replace pooling by Dilated Convolution:
 - No pooling or subsampling
 - Specifically for pixel-based, dense prediction tasks

- Rather than downsample explicitly, space the kernel elements
 - A sample only
- Same number of parameters, larger field of view or spatial context
- For segmentation: dilated convolution rather than convolution and max pooling, then fractionally-strided convolution
 - Same effect, less parameters and memory

- For location *i* in the output map feature map, *y*
- Convolution filter w
- Input feature map x

$$y[i] = \sum_{m{k}} x[i + r \cdot k] w[k]$$

- r is the dilation rate
- Standard filter has a dilation rate of 1

Approaches: DeepLab

- Dilated convolution = atrous convolution
- Atrous spatial pyramid pooling
 - Similar to multi-scale dilated convolution
- Improve localisation of object boundaries
 - Performs smoothing with a Conditional Random Field

Approaches: U-Net

- U-Net: segmentation model
 - Encoder-decoder
 - Multi-level U-shaped
 - Bottleneck
 - Up-convolutions
 - Skip connections

Image Segmentation: Summary

 Goal: break up the image into semantically-meaningful or perceptually-similar regions

- Classic: histograms, K-means, mean-shift
- \rightarrow
- Deep learning: CNNs, encoder–decoder, atrous convolutions
 - Transformers (e.g., Mask2former, Segment Anything)

Next Week

- Course review
- Practice exam questions
- Q&A