

www.4i2i.com

www.abdn.ac.uk

Benchmarking Tools For Fairly Comparing Watermarking Algorithms

Stewart Fraser and Alastair Allen

IASTED SPPRA, Innsbruck, Austria Feb. 13-15, 2008

Background

- Looking at Digital Image Watermarking
- Many published watermarking algorithms
 - No two algorithms are identical, they can operate in different domains using completely different insertion methods (some with ECC)
- Get algorithms from the web
- Code algorithms myself
- But which algorithm is the best? How can I measure which algorithm is best?
- Solution: Benchmarking tools.

- Many issues to consider when watermarking
 - Type of host image
 - Length and type of watermark
 - Parameters used (e.g. Embedding strength)
 - Attacks likely to be suffered
 - How to compare different watermarking systems?
 - Different parameters (e.g. JPEG quality factor, window size, wavelet levels, embedding strength)
 - For example, embedding strength of 5 may be strong in one algorithm and weak in another

Summary of the Problem

WM algorithm 1

- spatial domain
- block skip thresh?
- grids (what size?)

WM algorithm 2

- DCT domain
- JPEG value?
- block size?

How to compare these algorithms fairly?

WM algorithm 3

- wavelet domain
- wavelet levels?
- window size?

Blind. Copyright protection. Binary payload. Signal proc. attacks

The Watermarking Algorithms

- Bruyndonckx
 - Spatial domain
 - Non-overlapping 8x8 blocks
 - Perceptual calculations
 performed in blocks to
 classify pixels into zones of
 homogeneous luminance
 - One watermark bit embedded in the relationship between mean values in these zones of homogeneous luminance

- Koch
 - DCT
 - Non-overlapping 8x8 blocks
 - 2 Random DCT coefficients (mid frequency)
 - Relationship between 2 DCT coeffs altered to embed watermark bit
- Xie
 - Wavelet domain (LL sub-band)
 - Non-overlapping 1x3 window
 - Median of window quantised to embed watermark bit

Adding Error Correcting Codes

Message Generation

Message Generation

Watermark = **ECC** + Message

(ECC = BCH)

Message Insertion

Watermark Insertion

ATTACK (JPEG)

Message Recovery

Message Comparison

Message (no ECC)

Watermark Recovery

ECC Decode Message

Message Comparison

Message + ECC

Watermark

The Benchmarking Tools

Watson Metric

 Uses the Human Visual System (HVS) to rate the quality of a processed digital image compared to the unprocessed original (fair watermark insertion)

Normalised Correlation (NC)

 Gives a quantitative of measure between the embedded and recovered watermarks (measures watermark similarity)

Probability of false alarm calculation (Pfp)

 Computes the probability that an image that was NOT watermarked is flagged as being marked (detector thresholds for different message lengths)

Receiver Operating Characteristic (ROC) analysis

 Uses a continuously varying threshold value to evaluate the detector performance (measures reliability)

Visual Quality		Diff.	Same	Diff.
		•	•	
		PSNR		Embedding
Algorithm	Image	(dB)	TPE	strength
Bruyndonckx	Lena	46.75	0.002	7.50
	Fishingboat	46.18	0.002	7.50
	Pentagon	46.83	0.002	7.50
Koch	Lena	43.59	0.002	5.00
(JPEG quality	Fishingboat	43.05	0.002	7.50
setting of 90)	Pentagon	42.12	0.002	7.50
Xie	Lena	48.81	0.002	0.10
(4 wavelet levels)	Fishingboat	47.29	0.002	0.18
	Pentagon	50.55	0.002	0.25

Table 1: Visual Quality of Images Set Equal Using
The Watson Metric

Original

Koch

Bruyndonckx

Xie

	Coding	Detector	
Algorithm	strategy	threshold	P_{fp}
Bruyndonckx	uncoded	— 0.60	2.5×10^{-8}
	BCH(80,52,9)	— 0.75	3.5×10^{-8}
	BCH(80,38,13)	0.85	3.3×10^{-8}
	BCH(80,24,19)	— 1.00	6.0×10^{-8}
Koch	uncoded	— 0.60	2.5×10^{-8}
	BCH(80,52,9)	0.75	3.5×10^{-8}
1	BCH(80,38,13)	— 0.85	3.3×10^{-8}
	BCH(80,24,19)	— 1.00	6.0×10^{-8}
Xie	uncoded	- 0.60	2.5×10^{-8}
	BCH(80,52,9)	— 0.75	3.5×10^{-8}
	BCH(80,38,13)	— 0.85	3.3×10^{-8}
	BCH(80,24,19)	— 1.00	6.0×10^{-8}

Table 2: Different Detector Thresholds for Different Message Lengths

Different message lengths require different detector thresholds

Results

- JPEG attacks from quality 10% to 100% in steps of 5%
- Each JPEG attack run 50 times and averaged
- Different binary watermarks and different seeds each run
- Total of 950 runs for each watermark / ECC combination
- BCH (watermark length, message length, correct errors)

Results

- In general, as more ECC added, worse robustness
- Worse robustness, but higher NC values, an apparent increase in robustness
- Embedding strength (TPE of 0.002) and image specific!

Results: Lena

Results: Pentagon

ROC curves

		ROC Area			
Algorithm	Image	Uncoded	BCH	BCH	ВСН
			(80,52,9)	(80,38,13)	(80,24,19)
Bruyn-	Pent.	0.938	0.946	0.923	0.890
donckx	Fish.	0.883	0.845	0.832	0.811
	Lena	0.862	0.832	0.780	0.804
Koch	Pent.	0.995	0.991	0.977	0.962
	Fish.	0.990	0.982	0.973	0.950
	Lena	0.968	0.952	0.931	0.916
Xie	Pent.	0.933	0.913	0.893	0.927
	Fish.	0.949	0.915	0.967	0.929
	Lena	0.908	0.967	0.973	0.958

Table 3: Area Under ROC Curves

All systems reliable as areas under ROC curves closer to 1.0 than to 0.5

Conclusions

- Application of benchmarking tools
 - Watson Metric, NC, Pfp, ROC
 - Applied to three different images with and without ECCs
 - From graphs, appeared to be an increase in robustness
 - But using fair benchmarking tools, it was shown that there was a decrease in robustness
- This work formed part of a bigger project
 - More images, more attacks, more ECCs, bigger messages / watermarks
 - Webpage: www.abdn.ac.uk/~eng565

Caveat

- This work focuses on:
 - Blind watermarking for copyright protection
 - not tamper proofing nor reversible watermarking
 - Binary payloads
 - not 1-bit yes/no watermarks
 - Signal processing attacks
 - not geometrical attacks
 - assumes geometrical attacks have been corrected

	Same		Diff	•	
	↓				
		Embedding	Block	JPEG	Wavelet
Algorithm	TPE	strength	size	setting	levels
Bruyndonckx	0.006	7	8×8	1	-
Koch	0.006	5	8×8	90	-
Xie	0.006	0.3	1×3	-	3

Table 4: Visual Quality of Lena (320)

Original

Koch

WM Length 320

Bruyndonckx

Xie

	Coding	Detector	
Algorithm	strategy	threshold	P_{fp}
Bruyndonckx	uncoded	— 0.40	$< 2.3 \times 10^{-7}$
	BCH(320,203,27)	— 0.40	$< 2.3 \times 10^{-7}$
	BCH(320,113,51)	0.50	1.1×10^{-7}
	BCH(320,29,79)	0.90	8.1×10^{-7}
Koch	uncoded	0.40	$< 2.3 \times 10^{-7}$
	BCH(320,203,27)	0.40	$< 2.3 \times 10^{-7}$
	BCH(320,113,51)	— 0.50	1.1×10^{-7}
	BCH(320,29,79)	— 0.90	8.1×10^{-7}
Xie	uncoded	— 0.40	$< 2.3 \times 10^{-7}$
	BCH(320,52,9)	0.40	$< 2.3 \times 10^{-7}$
	BCH(320,38,13)	— 0.50	1.1×10^{-7}
	BCH(320,24,79)	 0.90	8.1×10^{-7}

Table 5: Different Detector Thresholds for Different Message Lengths (320)

Results: Lena (320)

Coding				
strategy	Image	Bruyndonckx	Koch	Xie
Uncoded	Lena	0.841	0.971	0.991
BCH(320,203,27)	Lena	0.748	0.925	0.960
BCH(320,113,51)	Lena	0.726	0.897	0.999
BCH(320,29,79)	Lena	0.717	0.864	0.909

Watson Metric

- TPE: Total Perceptual Error.
- HVS: Human Visual System
- Better than pixel based PSNR
- DCT based.
- TPE is a function of:

Contrast sensitivity

- Total luminance of display (background + image)
- Visibility of DCT basis functions as function of luminance
- Verified via substantial subjective tests

Luminance masking

Visual threshold increases with luminance (increase watermark in bright areas)

Contrast masking

 Visibility of one pattern is reduced in the presence of another patter (hide watermark in hetrogenous areas)

Normalised Correlation (NC)

$$NC = \frac{m^* \cdot m}{||m^*|| \cdot ||m||}$$

```
\begin{array}{ll} \mathbf{m} = \text{original watermark} \\ \mathbf{m}^* = \text{recovered watermark} \\ \text{Convert unipolar vectors } m \in \{0,1\} \\ \text{to bipolar vectors } m \in \{-1,1\} \end{array}
```

Code snippet

```
corr = 0;
for (i = 0; i < watermarkLength; i++){
    if recoveredWatermark[i] == embeddedWatermark[i]
        corr++;
    else
        corr--;
}
normalisedCorrelation = corr / watermarkLength;</pre>
```


What is the probability of randomly generating a vector that is similar enough to the watermark?

Based on binomial coefficients (Pascal's Triangle):

$$P_{fp} = \sum_{n = \lceil N_w(T+1)/2 \rceil}^{N_w} \begin{pmatrix} N_w \\ n \end{pmatrix} 0.5^{N_w} \qquad \begin{pmatrix} N_w \\ n \end{pmatrix} = \frac{N_w!}{n!(N_w - n)!}$$

Nw = message length, T = chosen detector threshold

Code snippet

```
function Pfp = falsePosCalc(T,Nw);
n = floor(Nw*(T+1)/2);
Pfp = 0.0;
for i = n:Nw
    factVal = factorial(Nw) / (factorial(i) * factorial(Nw-i));
    Pfp = Pfp + (factVal * (0.5 ^ Nw));
end; clear i;
```


ROC Curves

- Estimate the influence of threshold selection
- Calculating ROC curves experimentally
 - Feed detector with lots of original images (no watermark). Store results in C0
 - Feed detector with many watermarked images.
 Store results in C1
 - Chose some threshold values (T) between min(C0) and max(C1). For each T, count:
 - FPF = C0 > T (False Positive Fraction, Pfp)
 - TPF = C1 > T (True Positive Fraction, Pp)
 - Plot TPF (y-axis) against FPF (x-axis)

ROC Curves

Code snippet

ROC Curves

Ideal detector: Area under curve = 1.0

Random detector: Area under curve = 0.5

ROC curves

Image Specific: Picture Information Measure (PIM)

$$PIM = \left(\sum_{i=0}^{L-1} h(i)\right) - \max_{i}[h(i)]$$

L = number of gray levels in a block h(i) = histogram for grey level i in a block

	PIM values		
Image	Block size 4×4	Block size 8×8	
Baboon	27886	31899	
Pentagon	23043	28442	
Fishingboat	17291	21513	
Lena	14365	18848	
Peppers	14054	19852	

- Measures the complexity of an image
- Non-overlapping 4x4 and 8x8 blocks
- The higher the PIM value, the more heterogeneous an image is
- Bruyndonckx and Xie perform best in smooth images (sub-block mean values and wavelet LL subband)
- Koch performs best in busy images