Reformer Efficient Attention: Ungraded Lab

The videos describe two 'reforms' made to the Transformer to make it more memory and compute efficient. The *Reversible Layers* reduce memory and *Locality Sensitive Hashing(LSH)* reduces the cost of the Dot Product attention for large input sizes. This ungraded lab will look more closely at LSH and how it is used in the Reformer model.

Specifically, the notebook has 3 goals

- review dot-product self attention for reference
- · examine LSH based self attention
- · extend our understanding and familiarity with Trax infrastructure

Outline

- Part 1: Trax Efficient Attention classes
- Part 2: Full Dot Product Self Attention
 - 2.1 Description
 - 2.1.1 our softmax
 - 2.2 our simple attend
 - 2.3 Class OurSelfAttention
- Part 3: Trax LSHSelfAttention
 - 3.1 Description
 - 3.2 our hash vectors
 - 3.3 Sorting Buckets
 - 3.4 Chunked dot product attention
 - 3.5 OurLSHSelfAttention

Part 1.0 Trax Efficient Attention classes

Trax is similar to other popular NN development platforms such as Keras (now integrated into Tensorflow) and Pytorch in that it uses 'layers' as a useful level of abstraction. Layers are often represented as *classes*. We're going to improve our understanding of Trax by locally extending the classes used in the attention layers. We will extend only the 'forward' functions and utilize the existing attention layers as parent classes. The original code can be found at github:trax/layers/Research/Efficient_attention (https://github.com/google/trax/blob/v1.3.4/trax/layers/research/efficient_attention.py). This link references release 1.3.4 but note that this is under the 'research' directory as this is an area of active research. When accessing the code on Github for review on this assignment, be sure you select the 1.3.4 release tag, the master copy may have new changes.:

Figure 1: Reference Tag 1.3.4 on github

While Trax uses classes liberally, we have not built many classes in the course so far. Let's spend a few moments reviewing the classes we will be using.

```
class EfficientAttentionBase(base.Layer):
    """Base class for efficient attention.
...
def forward_unbatched(self, *inputs, weights, state):
    """Perform attention for a single batch element and head.
    Subclasses should override this method.

def forward(self, inputs):
    """Computes this layer's output as part of a forward pass through the model.

for example_idx in range(batch_size):
    for head idx in range(self.n heads):
```

Starting on the right in the diagram below you see EfficientAttentionBase. The parent to this class is the base.layer which has the routines used by all layers. EfficientAttentionBase leaves many routines to be overridden by child classes - but it has an important feature in the *Forward* routine. It supports a use_reference_code capability that selects implementations that limit some of the complexities to provide a more easily understood version of the algorithms. In particular, it implements a nested loop that treats each *'example, head'* independently. This simplifies our work as we need only worry about matrix operations on one *'example, head'* at a time. This loop calls *forward_unbatched*, which is the child process that we will be overriding.

On the top left are the outlines of the two child classes we will be using. The SelfAttention layer is a 'traditional' implementation of the dot product attention. We will be implementing the *forward_unbatched* version of this to highlight the differences between this and the LSH implementation.

Below that is the LSHSelfAttention. This is the routine used in the Reformer architecture. We will override the *forward_unbatched* section of this and some of the utility functions it uses to explore its implementation in more detail.

The code we will be working with is from the Trax source, and as such has implementation details that will make it a bit harder to follow. However, it will allow use of the results along with the rest of the Trax infrastructure. I will try to briefly describe these as they arise. The Trax documentation (https://trax-ml.readthedocs.io/en/latest/) can also be referenced.

Part 1.2 Trax Details

The goal in this notebook is to override a few routines in the Trax classes with our own versions. To maintain their functionality in a full Trax environment, many of the details we might ignore in example version of routines will be maintained in this code. Here are some of the considerations that may impact our code:

- Trax operates with multiple back-end libraries, we will see special cases that will utilize unique features.
- 'Fancy' numpy indexing is not supported in all backend environments and must be emulated in other ways.
- Some operations don't have gradients for backprop and must be ignored or include forced re-evaluation.

Here are some of the functions we may see:

- Abstracted as fastmath, Trax supports multiple backend's such as <u>Jax (https://github.com/google/jax)</u> and <u>Tensorflow2</u> (https://github.com/tensorflow/tensorflow)
- <u>tie_in (https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.tie_in.html)</u>: Some non-numeric operations must be invoked during backpropagation. Normally, the gradient compute graph would determine invocation but these functions are not included. To force re-evaluation, they are 'tied' to other numeric operations using tie_in.
- <u>stop_gradient (https://trax-ml.readthedocs.io/en/latest/trax.fastmath.html)</u>: Some operations are intentionally excluded from backprop gradient calculations by setting their gradients to zero.
- Below we will execute from trax.fastmath import numpy as np, this uses accelerated forms of numpy functions. This is, however a subset of numpy

```
import os
In [1]:
        import trax
        from trax import layers as tl # core building block
        import jax
        from trax import fastmath # uses jax, offers numpy on steroids
        # fastmath.use_backend('tensorflow-numpy')
        import functools
        from trax.fastmath import numpy as np # note, using fastmath subset of numpy!
        from trax.layers import (
            tie_in,
            length normalized,
            apply_broadcasted_dropout,
            look_adjacent,
            permute_via_gather,
            permute_via_sort,
```

INFO:tensorflow:tokens_length=568 inputs_length=512 targets_length=114 noise_density=0.15 mean_noise_span_length=3.0

Part 2 Full Dot-Product Self Attention

Part 2.1 Description

Figure 3: Project datapath and primary data structures and where they are implemented

The diagram above shows many of the familiar data structures and operations related to attention and describes the routines in which they are implemented. We will start by working on *our_simple_attend* or our simpler version of the original *attend* function. We will review the steps in performing dot-product attention with more focus on the details of the operations and their significance. This is useful when comparing to LSH attention. Note we will be discussing a single example/head unless otherwise specified.

Figure 4: dot-product of Query and Key

The *attend* function receives *Query* and *Key*. As a reminder, they are produced by a matrix multiply of all the inputs with a single set of weights. We will describe the inputs as *embeddings* assuming an NLP application, however, this is not required. This matrix multiply very much like a convolutional network where a set of weights (a filter) slide across the input vectors leaving behind a map of the similarity of the input to the filter. In this case, the filters are the weight matrices W^Q and W^K . The resulting maps are Q and K. Q and K have the dimensions of (n_seq, n_q) where n_seq is the number input embeddings and n_q or n_k is the selected size of the Q or K vectors. Note the shading of Q and K, this reflects the fact that each entry is associated with a particular input embedding. You will note later in the code that K is optional. Apparently, similar results can be achieved using Query alone saving the compute and storage associated with K. In that case, the dot-product in *attend* is matmul(q,q). Note the resulting dot-product (*Dot*) entries describe a complete (n_seq,n_seq) map of the similarity of all entries of k. This is reflected in the notation in the dot-product boxes of w_n , w_m representing word_n, word_m. Note that each row of *Dot* describes the relationship of an input embedding, say w_0 , with every other input.

In some applications some values are masked. This can be used, for example to exclude results that occur later in time (causal) or to mask padding or other inputs.

The routine below *mask_self_attention* implements a flexible masking capability. The masking is controlled by the information in q_info and kv_info.

```
def mask_self_attention(
In [2]:
            dots, q_info, kv_info, causal=True, exclude_self=True, masked=False
        ):
             """Performs masking for self-attention."""
            if causal:
                mask = fastmath.lt(q_info, kv_info).astype(np.float32)
                dots = dots - 1e9 * mask
            if exclude_self:
                mask = np.equal(q_info, kv_info).astype(np.float32)
                dots = dots - 1e5 * mask
            if masked:
                zeros_like_kv_info = tie_in(kv_info, np.zeros_like(kv_info))
                mask = fastmath.lt(kv_info, zeros_like_kv_info).astype(np.float32)
                dots = dots - 1e9 * mask
             return dots
```

A SoftMax is applied per row of the *Dot* matrix to scale the values in the row between 0 and 1.

Figure 6: SoftMax per row of Dot

Part 2.1.1 our_softmax

This code uses a separable form of the softmax calculation. Recall the softmax:

$$softmax(x_i) = rac{\exp(x_i)}{\sum_j \exp(x_j)}$$
 (1)

This can be alternately implemented as:

$$logsumexp(x) = log (\sum_{j} exp(x_{j}))$$
 (2)

$$softmax(x_i) = \exp(x_i - logsumexp(x)) \tag{3}$$

The work below will maintain a copy of the logsumexp allowing the softmax to be completed in sections. You will see how this is useful later in the LSHSelfAttention class. We'll create a routine to implement that here with the addition of a passthrough. The matrix operations we will be working on below are easier to follow if we can maintain integer values. So, for tests, we will skip the softmax in some cases.

```
In [3]: def our_softmax(x, passthrough=False):
    """ softmax with passthrough"""
    logsumexp = fastmath.logsumexp(x, axis=-1, keepdims=True)
    o = np.exp(x - logsumexp)
    if passthrough:
        return (x, np.zeros_like(logsumexp))
    else:
        return (o, logsumexp)
```

Let's check our implementation.

```
In [4]: ## compare softmax(a) using both methods
    a = np.array([1.0, 2.0, 3.0, 4.0])
    sma = np.exp(a) / sum(np.exp(a))
    print(sma)
    sma2, a_logsumexp = our_softmax(a)
    print(sma2)
    print(a_logsumexp)

[0.0320586    0.08714432    0.2368828    0.6439142 ]
    [0.0320586    0.08714431    0.23688279    0.64391416]
    [4.44019]
```

The purpose of the dot-product is to 'focus attention' on some of the inputs. Dot now has entries appropriately scaled to enhance some values and reduce others. These are now applied to the V entries.

Figure 7: Applying Attention to ${\it V}$

V is of size (n_seq,n_v). Note the shading in the diagram. This is to draw attention to the operation of the matrix multiplication. This is detailed below.

The dot products in the matrix multiply are modulating the magnitude of the elements of v[:,0] – focusing 'attention'

Figure 7: The Matrix Multiply applies attention to the values of V

V is formed by a matrix multiply of the input embedding with the weight matrix W^v whose values were set by backpropagation. The row entries of V are then related to the corresponding input embedding. The matrix multiply weights first column of V, representing a section of each of the input embeddings, with the first row of Dot, representing the similarity of W_0 and each word of the input embedding and deposits the value in Z

Part 2.2 our_simple_attend

In this section we'll work on an implementation of *attend* whose operations you can see in figure 3. It is a slightly simplified version of the routine in efficient_attention.py (https://github.com/google/trax/blob/v1.3.4/trax/layers/research/efficient_attention.py). We will fill in a few lines of code. The main goal is to become familiar with the routine. You have implemented similar functionality in a previous assignment.

Instructions Step 1: matrix multiply (np.matmul) q and the k 'transpose' kr. Step 2: use our_softmax() to perform a softmax on masked output of the dot product, dots. Step 3: matrix multiply (np.matmul) dots and v.

```
In [9]: def our_simple_attend(
             k=None,
             v=None,
             mask fn=None,
             q info=None,
             kv info=None,
             dropout=0.0,
             rng=None,
             verbose=False,
             passthrough=False,
        ):
             """Dot-product attention, with masking, without optional chunking and/or.
           Args:
             q: Query vectors, shape [q_len, d_qk]
             k: Key vectors, shape [kv_len, d_qk]; or None
             v: Value vectors, shape [kv_len, d_v]
            mask_fn: a function reference that implements masking (e.g. mask_self_attention)
             q_info: Query-associated metadata for masking
             kv info: Key-associated metadata for masking
             dropout: Dropout rate
             rng: RNG for dropout
           Returns:
            A tuple (output, dots_logsumexp). The output has shape \lceil q \rceil len, d \rceil v \rceil, and
             dots_logsumexp has shape [q_len]. The logsumexp of the attention
            probabilities is useful for combining multiple rounds of attention (as in
            LSH attention).
             assert v is not None
             share qk = k is None
             if share qk:
                 k = q
                 if kv info is None:
                     kv info = q info
             if share qk:
                 k = length normalized(k)
             k = k / np.sqrt(k.shape[-1])
             # Dot-product attention.
             kr = np.swapaxes(k, -1, -2) # note the fancy transpose for later..
             ## Step 1 ##
             dots = np.matmul(q, kr)
             if verbose:
```

```
print("Our attend dots", dots.shape)
# Masking
if mask fn is not None:
    dots = mask fn(dots, q info[..., None], kv info[..., None, :])
# Softmax.
# dots Logsumexp = fastmath.Logsumexp(dots, axis=-1, keepdims=True) #original
# dots = np.exp(dots - dots logsumexp) #original
## Step 2 ##
# replace with our softmax()
dots, dots logsumexp = our softmax(dots, passthrough=passthrough)
if verbose:
    print("Our attend dots post softmax", dots.shape, dots logsumexp.shape)
if dropout > 0.0:
    assert rng is not None
    # Dropout is broadcast across the bin dimension
    dropout shape = (dots.shape[-2], dots.shape[-1])
    keep prob = tie in(dots, 1.0 - dropout)
    keep = fastmath.random.bernoulli(rng, keep prob, dropout shape)
    multiplier = keep.astype(dots.dtype) / tie in(keep, keep prob)
    dots = dots * multiplier
## Step 3 ##
# The softmax normalizer (dots Logsumexp) is used by multi-round LSH attn.
out = np.matmul(dots, v)
if verbose:
    print("Our attend out1", out.shape)
out = np.reshape(out, (-1, out.shape[-1]))
if verbose:
    print("Our attend out2", out.shape)
dots logsumexp = np.reshape(dots logsumexp, (-1,))
return out, dots logsumexp
```

```
In [10]: | seq len = 8
         emb len = 5
         d qk = 3
         d v = 4
         with fastmath.use_backend("jax"): # specify the backend for consistency
             rng attend = fastmath.random.get prng(1)
             q = k = jax.random.uniform(rng_attend, (seq_len, d_qk), dtype=np.float32)
             v = jax.random.uniform(rng_attend, (seq_len, d_v), dtype=np.float32)
             o, logits = our simple attend(
                  q,
                  k,
                  ٧,
                 mask fn=None,
                 q info=None,
                 kv info=None,
                 dropout=0.0,
                 rng=rng attend,
                 verbose=True,
         print(o, "\n", logits)
         Our attend dots (8, 8)
         Our attend dots post softmax (8, 8) (8, 1)
```

```
Our attend dots (8, 8)
Our attend dots post softmax (8, 8) (8, 1)
Our attend out1 (8, 4)
Our attend out2 (8, 4)

[[0.5606324  0.7290605  0.5251243  0.47101074]

[0.5713517  0.71991956  0.5033342  0.46975708]

[0.5622886  0.7288458  0.52172124  0.46318397]

[0.5568317  0.72234154  0.542236  0.4699722 ]

[0.56504494  0.72274375  0.5204978  0.47231334]

[0.56175965  0.7216782  0.53293145  0.48003793]

[0.56753993  0.72232544  0.5141734  0.46625748]

[0.57100445  0.70785505  0.5325362  0.4590797 ]]

[2.6512175  2.1914332  2.6630518  2.7792363  2.4583826  2.5421977  2.4145055  2.5111294]
```

▶ Expected Output

► completed code for reference

Part 2.3 Class OurSelfAttention

Here we create our own self attention layer by creating a class OurSelfAttention . The parent class will be the tl.SelfAttention layer in Trax. We will only override the forward_unbatched routine. We're not asking you to modify anything in this routine. There are some comments to draw your attention to a few lines.

```
In [11]: | class OurSelfAttention(tl.SelfAttention):
             """Our self-attention. Just the Forward Function."""
             def forward_unbatched(
                 self, x, mask=None, *, weights, state, rng, update_state, verbose=False
             ):
                 print("ourSelfAttention:forward_unbatched")
                 del update state
                 attend_rng, output_rng = fastmath.random.split(rng)
                 if self.bias:
                     if self.share qk:
                         w_q, w_v, w_o, b_q, b_v = weights
                     else:
                         w_q, w_k, w_v, w_o, b_q, b_k, b_v = weights
                 else:
                     if self.share qk:
                         w_q, w_v, w_o = weights
                     else:
                         w_q, w_k, w_v, w_o = weights
                 print("x.shape,w_q.shape", x.shape, w_q.shape)
                 q = np.matmul(x, w_q)
                 k = None
                 if not self.share qk:
                     k = np.matmul(x, w k)
                 v = np.matmul(x, w v)
                 if self.bias:
                     q = q + b q
                     if not self.share qk:
                         k = k + b k
                     v = v + b v
                 mask fn = functools.partial(
                     mask_self_attention,
                     causal=self.causal,
                     exclude_self=self.share_qk,
                     masked=self.masked,
                 q_info = kv_info = tie_in(x, np.arange(q.shape[-2], dtype=np.int32))
                 assert (mask is not None) == self.masked
                 if self.masked:
                     # mask is a boolean array (True means "is valid token")
                     ones_like_mask = tie_in(x, np.ones_like(mask, dtype=np.int32))
                     kv info = kv info * np.where(mask, ones like mask, -ones like mask)
```

```
# Notice, we are callout our vesion of attend
o, _ = our_simple_attend(
    q,
    k,
    v,
    mask_fn=mask_fn,
    q_info=q_info,
    kv_info=kv_info,
    dropout=self.attention_dropout,
    rng=attend_rng,
    verbose=True,
)

# Notice, wo weight matrix applied to output of attend in forward_unbatched
out = np.matmul(o, w_o)
out = apply_broadcasted_dropout(out, self.output_dropout, output_rng)
return out, state
```

```
In [12]: causal = False
         masked = False
         mask = None
         attention_dropout = 0.0
         n heads = 3
         d qk = 3
         d v = 4
         seq len = 8
         emb len = 5
         batch size = 1
         osa = OurSelfAttention(
             n_heads=n_heads,
             d_qk=d_qk
             d v=d v,
             causal=causal,
             use_reference_code=True,
             attention_dropout=attention_dropout,
             mode="train",
         rng osa = fastmath.random.get_prng(1)
         x = jax.random.uniform(
             jax.random.PRNGKey(0), (batch_size, seq_len, emb_len), dtype=np.float32
         _, _ = osa.init(tl.shapes.signature(x), rng=rng_osa)
```

```
In [13]: osa(x)
         ourSelfAttention:forward unbatched
         x.shape, w_q.shape (8, 5) (5, 3)
         Our attend dots (8, 8)
         Our attend dots post softmax (8, 8) (8, 1)
         Our attend out1 (8, 4)
         Our attend out2 (8, 4)
         ourSelfAttention:forward unbatched
         x.shape, w_q.shape (8, 5) (5, 3)
         Our attend dots (8, 8)
         Our attend dots post softmax (8, 8) (8, 1)
         Our attend out1 (8, 4)
         Our attend out2 (8, 4)
         ourSelfAttention:forward_unbatched
         x.shape, w_q.shape (8, 5) (5, 3)
         Our attend dots (8, 8)
         Our attend dots post softmax (8, 8) (8, 1)
         Our attend out1 (8, 4)
         Our attend out2 (8, 4)
Out[13]: DeviceArray([[[ 6.70414209e-01, -1.04319841e-01, -5.33822298e-01,
                         1.92711830e-01, -4.54187393e-05],
                       [ 6.64090097e-01, -1.01875424e-01, -5.35733163e-01,
                         1.88311756e-01, -6.30629063e-03],
                       [ 6.73380017e-01, -1.06952369e-01, -5.31989932e-01,
                         1.90056816e-01, 1.30271912e-03],
                       [ 6.84564888e-01, -1.13240272e-01, -5.50182462e-01,
                         1.95673436e-01, 5.47635555e-03],
                       [ 6.81435883e-01, -1.11068964e-01, -5.32343209e-01,
                         1.91912338e-01, 5.69400191e-03],
                       [ 6.80724978e-01, -1.08496904e-01, -5.34994125e-01,
                          1.96332246e-01, 5.89773059e-03],
                       [ 6.80933356e-01, -1.14087075e-01, -5.18659890e-01,
                          1.90674081e-01, 1.14096403e-02],
                       [ 6.80265009e-01, -1.09031796e-01, -5.38248718e-01,
                         1.94203183e-01, 4.23943996e-03]]], dtype=float32)
```

► Expected Output

Part 3.0 Trax LSHSelfAttention

Part 3.1 Description

The larger the matrix multiply in the previous section is, the more context can be taken into account when making the next decision. However, the self attention dot product grows as the size of the input squared. For example, if one wished to have an input size of 1024, that would result in 1024^2 or over a million dot products for each head! As a result, there has been significant research related to reducing the compute requirements. One such approach is Locality Sensitive Hashing(LSH) Self Attention.

You may recall, earlier in the course you utilized LSH to find similar tweets without resorting to calculating cosine similarity for each pair of embeddings. We will use a similar approach here. It may be best described with an example.

Figure 9: Example of LSH Self Attention

LSH Self attention uses Queries only, no Keys. Attention then generates a metric of the similarity of each value of Q relative to all the other values in Q. An earlier assignment demonstrated that values which hash to the same bucket are likely to be similar. Further, multiple random hashes can improve the chances of finding entries which are similar. This is the approach taken here, though the hash is implemented a bit differently. The values of Q are hashed into buckets using a randomly generated set of hash vectors. Multiple sets of hash vectors are used, generating multiple hash tables. In the figure above, we have 3 hash tables with 4 buckets in each table. Notionally, following the hash, the values of Q have been replicated 3 times and distributed to their appropriate bucket in each of the 3 tables. To find similarity then, one generates dot-products only between members of the buckets. The result of this operation provides information on which entries are similar. As the operation has been distributed over multiple hash tables, these results need to be combined to form a complete picture and this can be used to generate a reduced dot-product attention array. Its clear that because we do not do a compare of every value vs every other value, the size of *Dots* will be reduced.

The challenge in this approach is getting it to operate efficiently. You may recall from the earlier assignments the buckets were lists of entries and had varying length. This will operate poorly on a vector processing machine such as a GPU or TPU. Ideally, operations are done in large blocks with uniform sizes. While it is straightforward to implement the hash algorithm this way, it is challenging to managed buckets and variable sized dot-products. This will be discussed further below. For now, we will examine and implement the hash function.

Part 3.2 our_hash_vectors

our_hash_vectors, is a reimplementation of Trax hashvector. It takes in an array of vectors, hashes the entries and returns and array assigning each input vector to n_hash buckets. Hashing is described as creating random rotations, see Practical and Optimal LSH for Angular Distance (https://arxiv.org/pdf/1509.02897.pdf).

Figure 10: Processing steps in our_hash_vectors

Note, in the diagram, sizes relate to our expected input Q while our_nash_vectors is written assuming a generic input vector				

Instructions Step 1 create an array of random normal vectors which will be our hash vectors. Each vector will be hashed into a hash table and into rot_size//2 buckets. We use rot_size//2 to reduce computation. Later in the routine we will form the negative rotations with a simple negation and concatenate to get a full rot_size number of rotations.

* use fastmath.random.normal and create an array of random vectors of shape (vec.shape[-1],n_hashes, rot_size//2)

Step 2 In this step we simply do the matrix multiply. jax has an accelerated version of einsum (https://numpy.org/doc/stable/reference/generated/numpy.einsum.html). Here we will utilize more conventional routines.

Step 2x

```
* 2a: np.reshape random_rotations into a 2 dimensional array ([-1, n_hashes * (rot_size // 2)])
```

- * 2b: np.dot vecs and random_rotations forming our rotated_vecs
- * 2c: back to 3 dimension with np.reshape [-1, n_hashes, rot_size//2]
- * 2d: prepare for concatenating by swapping dimensions np.transpose (1, 0, 2)

Step 3 Here we concatenate our rotation vectors getting a fullrot_size number of buckets (note, n_buckets = rotsize)

```
* use np.concatenate, [rotated_vecs, -rotated_vecs], axis=-1
```

Step 4 This is the exciting step! You have no doubt been wondering how we will turn these vectors into bucket indexes. By performing np.argmax over the rotations for a given entry, you get the index to the best match! We will use this as a bucket index.

```
* np.argmax(...).astype(np.int32); be sure to use the correct axis!
```

Step 5 In this style of hashing, items which land in bucket 0 of hash table 0 are not necessarily similar to those landing in bucket 0 of hash table 1, so we keep them separate. We do this by offsetting the bucket numbers by 'n_buckets'.

• add buckets and offsets and reshape into a one dimensional array This will return a 1D array of size n hashes * vec.shape[0].

```
In [22]: def our_hash_vectors(vecs, rng, n_buckets, n_hashes, mask=None, verbose=False):
           Args:
              vecs: tensor of at least 2 dimension,
              rng: random number generator
             n_buckets: number of buckets in each hash table
             n hashes: the number of hash tables
             mask: None indicating no mask or a 1D boolean array of length vecs.shape[0], containing the location of padding val
         ue
              verbose: controls prints for debug
           Returns:
             A vector of size n hashes * vecs.shape[0] containing the buckets associated with each input vector per hash table.
              11 11 11
             # check for even, integer bucket sizes
              assert isinstance(n buckets, int) and n buckets % 2 == 0
              rng = fastmath.stop_gradient(tie_in(vecs, rng))
              rot size = n buckets
              ### Start Code Here
             ### Step 1 ###
             rotations_shape = (vecs.shape[-1], n_hashes, rot_size//2)
              random rotations = fastmath.random.normal(rng, rotations shape).astype(np.float32)
              if verbose:
                  print("random.rotations.shape", random_rotations.shape)
             ### Step 2 ###
              if fastmath.backend name() == "jax":
                  rotated_vecs = np.einsum("tf,fhb->htb", vecs, random_rotations)
                  print("using jax")
              else:
                  # Step 2a
                 random_rotations = np.reshape(random_rotations,(-1,n_hashes*(rot_size//2)))
                  if verbose:
                      print("random rotations reshaped", random rotations.shape)
                  # Step 2b
                  rotated vecs = np.dot(vecs, random rotations)
                  if verbose:
                      print("rotated_vecs1", rotated_vecs.shape)
                  # Step 2c
                 rotated_vecs = np.reshape(rotated_vecs,(-1, n_hashes, rot_size//2))
                  if verbose:
                      print("rotated_vecs2", rotated_vecs.shape)
                  # Step 2d
                 rotated_vecs = np.transpose(rotated_vecs,(1,0,2))
```

```
if verbose:
        print("rotated vecs3", rotated vecs.shape)
### Step 3 ###
rotated vecs = np.concatenate([rotated vecs, -rotated vecs], axis=-1)
if verbose:
    print("rotated vecs.shape", rotated vecs.shape)
buckets = np.argmax(rotated vecs, axis=-1).astype(np.int32)
if verbose:
    print("buckets.shape", buckets.shape)
if verbose:
    print("buckets", buckets)
if mask is not None:
    n_buckets += 1 # Create an extra bucket for padding tokens only
    buckets = np.where(mask[None, :], buckets, n_buckets - 1)
# buckets is now (n hashes, seqlen). Next we add offsets so that
# bucket numbers from different hashing rounds don't overlap.
offsets = tie_in(buckets, np.arange(n_hashes, dtype=np.int32))
offsets = np.reshape(offsets * n_buckets, (-1, 1))
### Step 5 ###
buckets = np.reshape(buckets + offsets, (-1,))
if verbose:
    print("buckets with offsets", buckets.shape, "\n", buckets)
### End Code Here
return buckets
```

```
In [23]: # example code. Note for reference, the sizes in this example match the values in the diagram above.
       ohv q = np.ones((8, 5)) # (seq Len=8, n q=5)
       ohv n buckets = 4 # even number
        ohv n hashes = 3
        with fastmath.use backend("tf"):
           ohv rng = fastmath.random.get prng(1)
           ohv = our_hash_vectors(
              ohv_q, ohv_rng, ohv_n_buckets, ohv_n_hashes, mask=None, verbose=True
           print("ohv shape", ohv.shape, "\nohv", ohv) # (ohv n hashes * ohv n buckets)
       # note the random number generators do not produce the same results with different backends
       with fastmath.use backend("jax"):
           ohv rng = fastmath.random.get prng(1)
           ohv = our hash vectors(ohv q, ohv rng, ohv n buckets, ohv n hashes, mask=None)
           print("ohv shape", ohv.shape, "\nohv", ohv) # (ohv n hashes * ohv n buckets)
       random.rotations.shape (5, 3, 2)
        random rotations reshaped (5, 6)
       rotated vecs1 (8, 6)
       rotated_vecs2 (8, 3, 2)
       rotated_vecs3 (3, 8, 2)
       rotated_vecs.shape (3, 8, 4)
       buckets.shape (3, 8)
       buckets ndarray<tf.Tensor(</pre>
       [[3 3 3 3 3 3 3 3]
        [3 3 3 3 3 3 3 3]
        [3 3 3 3 3 3 3]], shape=(3, 8), dtype=int32)>
       buckets with offsets (24,)
        2)>
       ohv shape (24,)
       t32)>
       using jax
       ohv shape (24,)
```

ohv [3 3 3 3 3 3 3 5 5 5 5 5 5 5 11 11 11 11 11 11 11 11]

► Expected Output

► Completed code for reference

Part 3.3 Sorting Buckets

Great! Now that we have a hash function, we can work on sorting our buckets and performing our matrix operations. We'll walk through this algorithm in small steps:

- sort_buckets we'll perform the sort
- softmax
- dotandv do the matrix math to form the dotproduct and output These routines will demonstrate a simplified version of the algorithm. We won't address masking and variable bucket sizes but will consider how they would be handled.

sort_buckets

At this point, we have called the hash function and were returned the associated buckets. For example, if we started with $q[n_seq,n_q]$, with $n_hash = 2$; $n_buckets = 4$; $n_seq = 8$ we might be returned: bucket = [0,1,2,3,0,1,2,3,4,5,6,7,4,5,6,7] Note that it is $n_hash^*n_seq$ long and that the bucket values for each hash have been offset by n_hash so the numbers do not overlap. Going forward, we going to sort this array of buckets to group together members of the same (hash,bucket) pair.

Instructions Step 1 Our goal is to sort q rather than the bucket list, so we will need to track the association of the buckets to their elements in q.

• using np.arange, create ticker, just a sequence of numbers (0..n hashed * seqlen) associating members of q with their bucket.

Step 2 This step is provided to you as it is a bit difficult to describe. We want to disambiguate elements that map to the same bucket. When a sorting routine encounters a situation where multiple entries have the same value, it can correctly choose any entry to go first. This makes testing ambiguous. This prevents that. We multiply all the buckets by seqlen and then add ticker % seqlen

Step 3 Here we are! Ready to sort. This is the exciting part.

Utilize <u>fastmath.sort_key_val (https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.sort_key_val.html#jax.lax.sort_key_val)</u> and sort_buckets_and_t and ticker.

Step 4 We need to be able to undo the sort at the end to get things back into their correct locations

sort sticker and ticker to for the reverse map

Step 5 create our sorted q and sorted v

• use np.take (nttps://numpy.org/doc/stable/reference/generated/numpy.take.html) and st to grab correct values in q for the sorted values, sq. Use axis=0.

Use the example code below the routine to check and help debug your results.

```
def sort_buckets(buckets, q, v, n_buckets, n_hashes, seqlen, verbose=True):
In [26]:
           Args:
             buckets: tensor of at least 2 dimension,
             n buckets: number of buckets in each hash table
             n hashes: the number of hash tables
             if verbose:
                 print("---sort buckets--")
             ## Step 1
             ticker = np.arange(len(buckets))
             if verbose:
                 print("ticker", ticker.shape, ticker)
             ## Step 2
             buckets and t = seglen * buckets + (ticker % seglen) # provided
             if verbose:
                 print("buckets_and_t", buckets_and_t.shape, buckets_and_t)
             # Hash-based sort ("s" at the start of variable names means "sorted")
             # Step 3
             sbuckets_and_t, sticker = fastmath.sort_key_val(buckets_and_t, ticker)
             if verbose:
                 print("sbuckets_and_t", sbuckets_and_t.shape, sbuckets_and_t)
             if verbose:
                 print("sticker", sticker.shape, sticker)
             # Step 4
             _, undo_sort = fastmath.sort_key_val(sticker, ticker)
             if verbose:
                 print("undo sort", undo sort.shape, undo sort)
             # Step 5
             st = sticker % seglen # provided
             sq = np.take(q, st, axis=0)
             sv = np.take(v, st, axis=0)
             return sq, sv, sticker, undo sort
```

```
In [27]: t_n_hashes = 2
         t n buckets = 4
         t_n_{eq} = t_{eq} = 8
         t_n_q = 3
         n_v = 5
         t_q = (np.array([(j \% t_n_buckets) for j in range(t_n_seq)]) * np.ones((t_n_q, 1))).T
         t_v = np.ones((t_n_seq, n_v))
         t_buckets = np.array(
                 (j % t_n_buckets) + t_n_buckets * i
                 for i in range(t_n_hashes)
                 for j in range(t_n_seq)
         print("q\n", t_q)
         print("t_buckets: ", t_buckets)
         t_sq, t_sv, t_sticker, t_undo_sort = sort_buckets(
             t_buckets, t_q, t_v, t_n_buckets, t_n_hashes, t_seqlen, verbose=True
         print("sq.shape", t_sq.shape, "sv.shape", t_sv.shape)
         print("sq\n", t_sq)
```

```
[[0. 0. 0.]
 [1. 1. 1.]
 [2. 2. 2.]
 [3. 3. 3.]
 [0. 0. 0.]
 [1. 1. 1.]
 [2. 2. 2.]
[3. 3. 3.]]
t_buckets: [0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7]
---sort_buckets--
ticker (16,) [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
buckets_and_t (16,) [ 0 9 18 27 4 13 22 31 32 41 50 59 36 45 54 63]
sbuckets_and_t (16,) [ 0 4 9 13 18 22 27 31 32 36 41 45 50 54 59 63]
sticker (16,) [ 0 4 1 5 2 6 3 7 8 12 9 13 10 14 11 15]
undo_sort (16,) [ 0 2 4 6 1 3 5 7 8 10 12 14 9 11 13 15]
sq.shape (16, 3) sv.shape (16, 5)
sq
[[0. 0. 0.]
[0. 0. 0.]
[1. 1. 1.]
 [1. 1. 1.]
 [2. 2. 2.]
 [2. 2. 2.]
 [3. 3. 3.]
 [3. 3. 3.]
 [0. 0. 0.]
 [0. 0. 0.]
 [1. 1. 1.]
 [1. 1. 1.]
 [2. 2. 2.]
 [2. 2. 2.]
[3. 3. 3.]
[3. 3. 3.]]
```

▶ Expected Output

► Completed code for reference

Part 3.4 Chunked dot product attention

Now let's create the dot product attention. We have sorted Q so that elements that the hash has determined are likely to be similar are adjacent to each other. We now want to perform the dot-product within those limited regions - in 'chunks'.

Figure 11: Performing dot product in 'chunks'

The example we have been working on is shown above, with sequences of 8, 2 hashes, 4 buckets and, conveniently, the content of Q was such that when sorted, there were 2 entries in each bucket. If we reshape Q into a (8,2,n_q), we can use numpy matmul to perform the operation. Numpy matmul (https://numpy.org/doc/stable/reference/generated/numpy.matmul.html) will treat the inputs as a stack of matrices residing in the last two indexes. This will allow us to matrix multiply Q with itself in *chunks* and later can also be used to perform the matrix multiply with v.

We will perform a softmax on the output of the dot product of Q and Q, but in this case, there is a bit more to the story. Recall the output of the hash had multiple hash tables. We will perform softmax on those separately and then must combine them. This is where the form of softmax we defined at the top of the notebook comes into play. The routines below will utilize the logsumexp values that the our_softmax routine calculates.

There is a good deal of <u>reshaping (https://numpy.org/doc/stable/reference/generated/numpy.reshape.html)</u> to get things into the right formats. The code has many print statements that match the expected values below. You can use those to check your work as you go along. If you don't do a lot of 3-dimensional matrix multiplications in your daily life, it might be worthwhile to open a spare cell and practice a few simple examples to get the hang of it! Here is one to start with:

Instructions Step 1 Reshaping Q

- np.reshape sq (sorted q) to be 3 dimensions. The middle dimension is the size of the 'chunk' specified by ky chunk 1en
- np.swapaxes to perform a 'transpose' on the reshaped sq, but only on the last two dimension
- np.matmul the two values.

Step 2

use our_softmax to perform the softmax on the dot product. Don't forget passthrough

Step 3

- np.reshape sv . Like sq , the middle dimension is the size of the 'chunk' specified by kv_chunk_len
- · np.matmul dotlike and the reshaped sv
- np.reshape so to a two dimensional array with the last dimension stays the same (so.shape[-1])
- logits also needs reshaping, we'll do that.

Step 4 Now we can undo the sort.

- use np.take (np.take (np.take (nttps://numpy.org/doc/stable/reference/generated/numpy.take.html) and undo_sort and axis = 0 to unsort so
- do the same with slogits.

Step 5 This step combines the results of multiple hashes. Recall, the softmax was only over the values in one hash, this extends it to all the hashes. Read through it, the code is provided. Note this is taking place *after* the matrix multiply with v while the softmax output is used before the multiply. How does this achieve the correct result?

```
In [35]: def dotandv(
             sq, sv, undo_sort, kv_chunk_len, n_hashes, seqlen, passthrough, verbose=False
         ):
             # Step 1
             rsq = np.reshape(sq, (-1, kv_chunk_len, sq.shape[-1]))
             rsqt = np.transpose(rsq, (0,2,1))
              if verbose:
                 print("rsq.shape, rsqt.shape: ", rsq.shape, rsqt.shape)
             dotlike = np.matmul(rsq, rsqt)
             if verbose:
                 print("dotlike\n", dotlike)
             # Step 2
             dotlike, slogits = our softmax(dotlike, passthrough=passthrough)
             if verbose:
                 print("dotlike post softmax\n", dotlike)
             # Step 3
             vr = np.reshape(sv, (-1,kv chunk len, sv.shape[-1]))
             if verbose:
                 print("dotlike.shape, vr.shape:", dotlike.shape, vr.shape)
             so = np.matmul(dotlike, vr)
             if verbose:
                 print("so.shape:", so.shape)
              so = np.reshape(so, (-1, so.shape[-1]))
             slogits = np.reshape(slogits, (-1,)) # provided
             if verbose:
                 print("so.shape, slogits.shape", so.shape, slogits.shape)
             # Step 4
             o = np.take(so, undo sort, axis=0)
             logits = np.take(slogits, undo sort, axis=0)
             if verbose:
                 print("o.shape,o", o.shape, o)
             if verbose:
                 print("logits.shape, logits", logits.shape, logits)
             # Step 5 (Provided)
             if n hashes > 1:
                 o = np.reshape(o, (n_hashes, seqlen, o.shape[-1]))
                 logits = np.reshape(logits, (n_hashes, seqlen, 1))
                 probs = np.exp(logits - fastmath.logsumexp(logits, axis=0, keepdims=True))
                 o = np.sum(o * probs, axis=0)
              return o
```

```
In [36]: t_kv_chunk_len = 2
         out = dotandv(
             t_sq,
             t_sv,
             t_undo_sort,
             t_kv_chunk_len,
             t_n_hashes,
             t_seqlen,
             passthrough=True,
             verbose=True,
         print("out\n", out)
         print("\n----With softmax enabled----\n")
         out = dotandv(
             t_sq,
             t_sv,
             t_undo_sort,
             t_kv_chunk_len,
             t_n_hashes,
             t_seqlen,
             passthrough=False,
             verbose=True,
         print("out\n", out)
```

```
rsq.shape,rsqt.shape: (8, 2, 3) (8, 3, 2)
dotlike
[[[ 0. 0.]
 [ 0. 0.]]
[[ 3. 3.]
 [ 3. 3.]]
[[12. 12.]
 [12. 12.]]
[[27. 27.]
 [27. 27.]]
[[ 0. 0.]
 [ 0. 0.]]
[[ 3. 3.]
 [ 3. 3.]]
[[12. 12.]
 [12. 12.]]
[[27. 27.]
 [27. 27.]]]
dotlike post softmax
[[[ 0. 0.]
 [ 0. 0.]]
[[ 3. 3.]
 [ 3. 3.]]
[[12. 12.]
 [12. 12.]]
[[27. 27.]
 [27. 27.]]
[[ 0. 0.]
 [ 0. 0.]]
[[ 3. 3.]
 [ 3. 3.]]
[[12. 12.]
 [12. 12.]]
```

```
[[27. 27.]
 [27. 27.]]]
dotlike.shape, vr.shape: (8, 2, 2) (8, 2, 5)
so.shape: (8, 2, 5)
so.shape, slogits.shape (16, 5) (16,)
o.shape,o (16, 5) [[ 0. 0. 0. 0. 0.]
[6. 6. 6. 6. 6.]
[24. 24. 24. 24. 24.]
[54. 54. 54. 54. 54.]
[0. 0. 0. 0. 0.]
[6. 6. 6. 6. 6.]
[24. 24. 24. 24. 24.]
[54. 54. 54. 54. 54.]
[ 0. 0. 0. 0. 0.]
[6. 6. 6. 6. 6.]
[24. 24. 24. 24. 24.]
[54. 54. 54. 54. 54.]
[0. 0. 0. 0. 0.]
[6. 6. 6. 6. 6.]
[24. 24. 24. 24. 24.]
[54. 54. 54. 54. 54.]]
out
[[0. 0. 0. 0. 0.]
[6. 6. 6. 6. 6.]
[24. 24. 24. 24. 24.]
[54. 54. 54. 54. 54.]
[ 0. 0. 0. 0. 0.]
[6. 6. 6. 6. 6.]
[24. 24. 24. 24. 24.]
[54. 54. 54. 54. 54.]]
----With softmax enabled----
rsq.shape, rsqt.shape: (8, 2, 3) (8, 3, 2)
dotlike
[[[ 0. 0.]
 [ 0. 0.]]
[[ 3. 3.]
 [ 3. 3.]]
[[12. 12.]
 [12. 12.]]
[[27. 27.]
 [27. 27.]]
```

```
[[ 0. 0.]
 [ 0. 0.]]
[[ 3. 3.]
 [ 3. 3.]]
[[12. 12.]
 [12. 12.]]
[[27. 27.]
 [27. 27.]]]
dotlike post softmax
[[[0.5
              0.5
 [0.5
             0.5
                       ]]
[[0.5
             0.5
 [0.5
             0.5
                       ]]
[[0.49999976 0.49999976]
 [0.49999976 0.49999976]]
[[0.49999976 0.49999976]
 [0.49999976 0.49999976]]
[[0.5
             0.5
                       ]]
 [0.5
             0.5
[[0.5
             0.5
 [0.5
             0.5
                       ]]
[[0.49999976 0.49999976]
 [0.49999976 0.49999976]]
[[0.49999976 0.49999976]
 [0.49999976 0.49999976]]]
dotlike.shape, vr.shape: (8, 2, 2) (8, 2, 5)
so.shape: (8, 2, 5)
so.shape, slogits.shape (16, 5) (16,)
o.shape,o (16, 5) [[1.
                             1.
                                                 1.
                                                           1.
                                       1.
                     1.
                                         1.
[1.
                               1.
           1.
[0.9999995 0.9999995 0.9999995 0.9999995]
 [0.9999995 0.9999995 0.9999995 0.9999995]
[1.
           1.
                     1.
                               1.
                                         1.
 [1.
           1.
                     1.
                               1.
 [0.9999995 0.9999995 0.9999995 0.9999995]
 [0.9999995 0.9999995 0.9999995 0.9999995]
                     1.
 [1.
           1.
                               1.
                                         1.
 [1.
           1.
                     1.
                               1.
                                         1.
```

```
[0.9999995 0.9999995 0.9999995 0.9999995]
[0.9999995 0.9999995 0.9999995 0.9999995]
 [1.
          1.
                   1.
                            1.
                                     1.
 [1.
          1.
                   1.
                            1.
                                     1.
[0.999995 0.999995 0.9999995 0.9999995]
[0.9999995 0.9999995 0.9999995 0.9999995]]
logits.shape, logits (16,) [ 0.6931472 3.6931472 12.693148 27.693148 0.6931472 3.6931472
12.693148 27.693148 0.6931472 3.6931472 12.693148 27.693148
 0.6931472 3.6931472 12.693148 27.693148 ]
out
[[1.
            1.
                      1.
                                1.
                                          1.
[1.
           1.
                     1.
                               1.
                                         1.
[0.99999905 0.99999905 0.99999905 0.99999905 0.99999905]
[0.99999905 0.99999905 0.99999905 0.99999905]
[1.
           1.
                     1.
                               1.
                                         1.
           1.
                     1.
                               1.
                                         1.
[1.
[0.99999905 0.99999905 0.99999905 0.99999905]
[0.99999905 0.99999905 0.99999905 0.99999905]]
```

▶ Expected Output

► Completed code for reference

Great! You have now done examples code for most of the operation that are unique to the LSH version of self-attention. I'm sure at this point you are wondering what happens if the number of entries in a bucket is not evenly distributed the way our example is. It is possible, for example for all of the seqlen entries to land in one bucket. Further, since the buckets are not aligned, our 'chunks' may be misaligned with the start of the bucket. The implementation addresses this by attending to adjacent chunks as was described in the lecture:

Figure 12: Misaligned Access, looking before and after

Hopefully, having implemented parts of this, you will appreciate this diagram more fully.

Part 3.5 OurLSHSelfAttention

You can examine the full implementations below. Area's we did not 'attend to' in our implementations above include variable bucket sizes and masking. We will instantiate a layer of the full implementation below. We tried to use the same variable names above to make it easier to decipher the full version. Note that some of the functionality we implemented in our routines is split between attend and forward_unbatched. We've inserted our version of hash below, but use the original version of attend.

```
In [37]: # original version from trax 1.3.4
         def attend(
              q,
              k=None,
              v=None,
              q chunk len=None,
              kv chunk len=None,
             n_chunks_before=0,
              n_chunks_after=0,
              mask fn=None,
              q info=None,
              kv info=None,
              dropout=0.0,
              rng=None,
         ):
              """Dot-product attention, with optional chunking and/or masking.
           Args:
              q: Query vectors, shape [q_len, d_qk]
             k: Key vectors, shape [kv_len, d_qk]; or None
              v: Value vectors, shape [kv_len, d_v]
              q_chunk_len: Set to non-zero to enable chunking for query vectors
              kv_chunk_len: Set to non-zero to enable chunking for key/value vectors
             n_chunks_before: Number of adjacent previous chunks to attend to
             n_chunks_after: Number of adjacent subsequent chunks to attend to
             mask_fn: TODO(kitaev) doc
              q_info: Query-associated metadata for masking
              kv_info: Key-associated metadata for masking
              dropout: Dropout rate
              rng: RNG for dropout
           Returns:
             A tuple (output, dots_logsumexp). The output has shape \lceil q \rceil len, d \rceil v \rceil, and
             dots logsumexp has shape [q len]. The logsumexp of the attention
             probabilities is useful for combining multiple rounds of attention (as in
              LSH attention).
              assert v is not None
              share qk = k is None
              if q info is None:
                  q_info = np.arange(q.shape[-2], dtype=np.int32)
             if kv_info is None and not share_qk:
                  kv_info = np.arange(v.shape[-2], dtype=np.int32)
             # Split q/k/v into chunks along the time axis, if desired.
```

```
if q chunk len is not None:
    q = np.reshape(q, (-1, q_chunk_len, q.shape[-1]))
    q_info = np.reshape(q_info, (-1, q_chunk_len))
if share qk:
    assert kv chunk len is None or kv chunk len == q chunk len
    k = q
    kv chunk len = q chunk len
    if kv info is None:
        kv info = q info
    elif kv chunk len is not None:
        # kv_info is not None, but reshape as required.
        kv_info = np.reshape(kv_info, (-1, kv_chunk_len))
elif kv chunk len is not None:
    k = np.reshape(k, (-1, kv_chunk_len, k.shape[-1]))
    kv_info = np.reshape(kv_info, (-1, kv_chunk_len))
if kv chunk len is not None:
    v = np.reshape(v, (-1, kv_chunk_len, v.shape[-1]))
if share qk:
    k = length normalized(k)
k = k / np.sqrt(k.shape[-1])
# Optionally include adjacent chunks.
if q_chunk_len is not None or kv_chunk_len is not None:
    assert q_chunk_len is not None and kv_chunk_len is not None
else:
    assert n chunks before == 0 and n chunks after == 0
k = look_adjacent(k, n_chunks_before, n_chunks_after)
v = look_adjacent(v, n_chunks_before, n_chunks_after)
kv_info = look_adjacent(kv_info, n_chunks_before, n_chunks_after)
# Dot-product attention.
dots = np.matmul(q, np.swapaxes(k, -1, -2))
# Masking
if mask fn is not None:
    dots = mask_fn(dots, q_info[..., :, None], kv_info[..., None, :])
# Softmax.
dots_logsumexp = fastmath.logsumexp(dots, axis=-1, keepdims=True)
dots = np.exp(dots - dots logsumexp)
if dropout > 0.0:
    assert rng is not None
    # Dropout is broadcast across the bin dimension
```

```
dropout_shape = (dots.shape[-2], dots.shape[-1])
#
    keep_prob = tie_in(dots, 1.0 - dropout)
    keep = fastmath.random.bernoulli(rng, keep_prob, dropout_shape)
    multiplier = keep.astype(dots.dtype) / tie_in(keep, keep_prob)
    dots = dots * multiplier

# The softmax normalizer (dots_logsumexp) is used by multi-round LSH attn.
    out = np.matmul(dots, v)
    out = np.reshape(out, (-1, out.shape[-1]))
    dots_logsumexp = np.reshape(dots_logsumexp, (-1,))
    return out, dots_logsumexp
```

```
In [38]: | class OurLSHSelfAttention(t1.LSHSelfAttention):
             """Our simplified LSH self-attention """
             def forward_unbatched(self, x, mask=None, *, weights, state, rng, update_state):
                 attend rng, output rng = fastmath.random.split(rng)
                 w q, w v, w o = weights
                 q = np.matmul(x, w_q)
                 v = np.matmul(x, w v)
                 if update state:
                      _, old_hash_rng = state
                     hash_rng, hash_subrng = fastmath.random.split(old_hash_rng)
                            buckets = self.hash vectors(q, hash subrnq, mask) # original
                     ## use our version of hash
                     buckets = our_hash_vectors(
                         q, hash_subrng, self.n_buckets, self.n_hashes, mask=mask
                     s buckets = buckets
                     if self._max_length_for_buckets:
                         length = self.n_hashes * self._max_length_for_buckets
                         if buckets.shape[0] < length:</pre>
                              s buckets = np.concatenate(
                                  [buckets, np.zeros(length - buckets.shape[0], dtype=np.int32)],
                                  axis=0,
                     state = (s_buckets, hash_rng)
                 else:
                     buckets, _ = state
                     if self. max length for buckets:
                         buckets = buckets[: self.n_hashes * x.shape[0]]
                 seglen = x.shape[0]
                 assert int(buckets.shape[0]) == self.n hashes * seqlen
                 ticker = tie_in(x, np.arange(self.n_hashes * seqlen, dtype=np.int32))
                 buckets and t = seglen * buckets + (ticker % seglen)
                 buckets and t = fastmath.stop gradient(buckets and t)
                 # Hash-based sort ("s" at the start of variable names means "sorted")
                 sbuckets and t, sticker = fastmath.sort key val(
                     buckets and t, ticker, dimension=-1
                 _, undo_sort = fastmath.sort_key_val(sticker, ticker, dimension=-1)
                 sbuckets_and_t = fastmath.stop_gradient(sbuckets_and_t)
                 sticker = fastmath.stop gradient(sticker)
                 undo_sort = fastmath.stop_gradient(undo_sort)
```

```
st = sticker % sealen
sq = np.take(q, st, axis=0)
sv = np.take(v, st, axis=0)
mask fn = functools.partial(
    mask self attention,
    causal=self.causal,
    exclude self=True,
   masked=self.masked,
q_info = st
assert (mask is not None) == self.masked
kv info = None
if self.masked:
    # mask is a boolean array (True means "is valid token")
    smask = np.take(mask, st, axis=0)
   ones_like_mask = tie_in(x, np.ones_like(smask, dtype=np.int32))
   kv info = q info * np.where(smask, ones like mask, -ones like mask)
## use original version of attend (could use ours but lacks masks and masking)
so, slogits = attend(
    sq,
    k=None,
    v=sv,
    q chunk len=self.chunk len,
   n chunks before=self.n chunks before,
   n_chunks_after=self.n_chunks_after,
    mask fn=mask fn,
   q_info=q_info,
   kv_info=kv_info,
    dropout=self.attention dropout,
    rng=attend rng,
# np.take(so, undo sort, axis=0); np.take(slogits, undo sort, axis=0) would
# also work, but these helpers include performance optimizations for TPU.
o = permute_via_gather(so, undo_sort, sticker, axis=0)
logits = permute_via_sort(slogits, sticker, buckets_and_t, axis=-1)
if self.n hashes > 1:
   o = np.reshape(o, (self.n_hashes, seqlen, o.shape[-1]))
   logits = np.reshape(logits, (self.n_hashes, seqlen, 1))
   probs = np.exp(logits - fastmath.logsumexp(logits, axis=0, keepdims=True))
    o = np.sum(o * probs, axis=0)
assert o.shape == (seqlen, w v.shape[-1])
```

```
out = np.matmul(o, w_o)
out = apply_broadcasted_dropout(out, self.output_dropout, output_rng)
return out, state
```

```
In [39]: # Here we're going to try out our LSHSelfAttention
         n_heads = 3
         causal = False
         masked = False
         mask = None
         chunk_len = 8
         n_chunks_before = 0
         n_chunks_after = 0
         attention_dropout = 0.0
         n_hashes = 5
         n_buckets = 4
         seq_len = 8
         emb_len = 5
         al = OurLSHSelfAttention(
             n_heads=n_heads,
             d_qk=3,
             d_v=4
             causal=causal,
             chunk_len=8,
             n_chunks_before=n_chunks_before,
             n_chunks_after=n_chunks_after,
             n_hashes=n_hashes,
             n_buckets=n_buckets,
             use_reference_code=True,
             attention_dropout=attention_dropout,
             mode="train",
         x = jax.random.uniform(jax.random.PRNGKey(0), (1, seq_len, emb_len), dtype=np.float32)
         al_osa = fastmath.random.get_prng(1)
         _, _ = al.init(tl.shapes.signature(x), rng=al_osa)
```

```
In [40]:
         al(x)
         using jax
         using jax
         using jax
Out[40]: DeviceArray([[[ 6.6842824e-01, -1.1364323e-01, -5.4430610e-01,
                         2.1126242e-01, -1.0988623e-02],
                       [ 7.0949769e-01, -1.5455185e-01, -5.9923315e-01,
                          2.2719440e-01, 1.3833776e-02],
                       [ 7.1442688e-01, -1.2046628e-01, -5.3956544e-01,
                         1.7320301e-01, -1.6552269e-02],
                       [ 6.7178929e-01, -7.6611102e-02, -5.9399861e-01,
                         2.1236290e-01, 7.9482794e-04],
                       [ 7.1518433e-01, -1.1359170e-01, -5.7821894e-01,
                         2.1304411e-01, 3.0598268e-02],
                       [ 6.8235350e-01, -9.3979925e-02, -5.5341840e-01,
                          2.1608177e-01, -6.6673756e-04],
                       [ 6.1286640e-01, -8.1027031e-02, -4.8148823e-01,
                         1.9373313e-01, 3.1555295e-02],
                       [ 7.2203505e-01, -1.0199660e-01, -5.5215168e-01,
                         1.7872262e-01, -2.2289157e-02]]], dtype=float32)
```

► Expected Output

Congratuations! you have created a custom layer and have become familiar with LSHSelfAttention.