

Model Development Phase Template

Date	4 August 2025
Student Name	Neha Ranjit Nalage
Project Title	Uncovering The Hidden Treasures of The Mushroom Kingdom: A Classification Analysis
Maximum Marks	5 Marks

Model Selection Report:

Model	Description					
Artificial Neural	ANNs are foundational deep learning models composed of multiple fully					
Network (ANN)	connected layers. They are well-suited for tabular data or feature-engineered inputs, and while they can be adapted for image data, they do not inherently capture spatial relationships.					
Convolutional	CNNs are powerful deep learning models specifically designed for image data.					
Neural Network	They automatically extract spatial features from images using convolutional layers,					
(CNN)	allowing effective classification of complex visual patterns. In this project, CNNs					
	are used to classify Boletus, Lactarius, and Russula mushrooms based on their images.					
Recurrent	RNNs are designed to model sequential data by maintaining a hidden state across					
Neural Network	time steps. While they are powerful for time series and language modeling, their					
(RNN)	utility in static image classification is limited.					
Inception v3	Inception v3 is a deep convolutional neural network architecture designed for					
	efficient image classification. It utilizes inception modules to capture multi-scale					
	features, allowing the model to learn both fine and coarse details. Pre-trained on					
	ImageNet, Inception v3 is suitable for transfer learning, offering a good balance of					
	accuracy and speed. In this project, it is used to classify Boletus, Lactarius, and					
	Russula mushrooms.					

Conclusion:

Model Selected				
Inception v3	Inception v3 is a deep convolutional neural network architecture designed for efficient image classification. It utilizes inception modules to capture multi-scale features, allowing the model to learn both fine and coarse details. Pre-trained on ImageNet, Inception v3 is suitable for transfer learning, offering a good balance of accuracy and speed. In this project, it is used to classify Boletus, Lactarius, and Russula mushrooms.			