Resolution

Normal forms

Negation Normal Form (NNF)

- Every negation is used only on propositions
- E.g., $\neg p \lor \neg q$
- $\neg(\alpha_1 \land \alpha_2) \Rightarrow \neg\alpha_1 \lor \neg\alpha_2$
- Atomic p or $\neg p$ is called a literal

Conjunctive Normal Form (CNF)

- $\bigwedge_{i=1}^{m}(\bigvee_{j=1}^{n}l_{i,j})$
- E.g., $(p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor p_3)$
- $\alpha_1 \lor (\alpha_2 \land \alpha_3) \Rightarrow (\alpha_1 \lor \alpha_2) \land (\alpha_1 \lor \alpha_3)$
- Every $\bigvee_{j=1}^{n} l_{i,j}$ is called a clause/conjunct

Disjunctive Normal Form (DNF)

- $\bigvee_{i=1}^{m} \left(\bigwedge_{j=1}^{n} l_{i,j} \right)$
- The SAT problem becomes trivial!

Why normal form?

CNF-SAT: Given a propositional formula α in CNF, check if α is satisfiable

Theorem: there is no polynomial blow-up translation from wff to CNF/DNF.

Theorem: SAT \leq_P CNF-SAT

- Proof: Coming soon
- Is α satisfiable (Is $\neg \alpha$ a tautology?)
 - \rightarrow Is the equisatisfiable $f(\alpha) = D_1 \wedge D_2 \wedge \cdots \wedge D_k$ satisfiable?
- This is a preprocessing step for the resolution algorithm

Resolution algorithm

Resolution:
$$\frac{D \lor p \qquad D' \lor \neg p}{D \lor D'}$$

Apply resolution:

- If $D \lor p$ and $D' \lor \neg p$ are clauses, add $D \lor D'$ as a new clause
- Repeat until no more resolution can be done
- Resolution is *closed* if the empty clause is contained
- Return Unsatisfiable iff. Closed

Example

$$(p \lor q) \land (\neg p \lor r) \land (\neg q \lor r) \land (\neg r)$$

$$\Gamma = \{ \{p, q\}, \{\neg p, r\}, \{\neg q, r\}, \{\neg r\} \}$$

$$\{p,q\} \tag{1}$$

$$\{\neg p, r\} \tag{2}$$

$$\{\neg q, r\} \tag{3}$$

$$\{\neg r\}$$
 (4)

$$\{\neg p\}$$
 (5) (resolvent of 2 and 4)

$$\{q\}$$
 (6) (resolvent of 1 and 5)

$$\{r\}$$
 (7) (resolvent of 3 and 6)

Soundness

Theorem: the resolution algorithm is sound.

- If the resolution is closed, Γ is unsat.
- Easy to prove.

Completeness

Theorem: the resolution algorithm is complete.

- If Γ is unsat, show the resolution will be closed.
- Proof by induction on the number of propositions: if Γ involves n+1 propositions, resolution of Γ will produce Γ' involving n propositions, which is already unsat; hence the resolution will be closed.
- Pick a proposition p and have $\Gamma = \Gamma_1 \wedge \Gamma_2 \wedge \Gamma_3$
- Γ_1 are conjuncts containing p; Γ_2 are conjuncts containing $\neg p$; Γ_3 are conjuncts containing neither.
- $\Gamma_1 = \bigwedge_{i=1}^m (D_i \vee p)$ $\Gamma_2 = \bigwedge_{j=1}^n (E_j \vee \neg p)$
- $\Gamma_1 \times \Gamma_2 = \bigwedge_{i,j=1,1}^{m,n} (D_i \vee E_j)$
- Claim: $\Gamma' = \Gamma_1 \times \Gamma_2 \wedge \Gamma_3$ is already unsat!
- If Γ' is satisfiable, let $v \models \Gamma'$, then v[T/p] or v[F/p] will satisfy Γ
 - If v[T/p] does not, all D_i are satisfiable. Then v'=v[F/p] and $v'\models\Gamma$
 - Similarly if v[F/p] does not

Beyond Resolution: DPLL algorithm

Backtracking based search

- Assign a value to a proposition to simplify the CNF
- Stop if all propositions are assigned
- Backtrack if unsatisfiable
- Propositions are chosen heuristically

Most efficient SAT solving algorithm since 1960s

• Implementations: zChaff, Minisat, etc.