IBM Capstone

Introduction

In this notebook, I want to examine the neighborhoods in Los Angeles and cluster them based on similarities in terms of location and nearby services. Finally, with this information, I want to determine the following questions:

- 1. Which part of Los Angeles has the most venues
- 2. What category of venue is most common in LA
- 3. If I cluster LA venues into 5 groups, what does the clusters look like

Data

The data I will use include:

- FourSquare location data
- A list of Postal Codes in Los Angeles: https://www.geonames.org/postal-codes/US/CA/california.html

The postal code dataset contains a list of locations in Los Angeles, their postal codes, and their longitudes and latitudes. From these information, I composed a Pandas dataframe, which, after applying data wrangling, contains 200 locations in Los Angeles and looks as the

following:

	Place	Code	Country	State	City	latitudes(degree North)	longitudes(degree East)
0	Beverly Hills	90210	United States	California	Los Angeles	34.090	-118.406
1	Los Angeles	90002	United States	California	Los Angeles	33.950	-118.246
2	Los Angeles	90003	United States	California	Los Angeles	33.965	-118.273
3	Los Angeles	90004	United States	California	Los Angeles	34.076	-118.303
4	Los Angeles	90006	United States	California	Los Angeles	34.049	-118.292
195	Inglewood	90311	United States	California	Los Angeles	33.962	-118.353
196	Inglewood	90312	United States	California	Los Angeles	33.962	-118.353
197	Santa Monica	90402	United States	California	Los Angeles	34.035	-118.503
198	Santa Monica	90406	United States	California	Los Angeles	34.019	-118.491
199	Santa Monica	90407	United States	California	Los Angeles	34.019	-118.491

Methodology

To better understand the data, I first applied exploratory data analysis to it and then did a clustering analysis using K-means algorithm to determine how the venues will be grouped.

Locations of each data point

K-Means Clustering:

Result

We see that most venues are located in LA and then in Inglewood and then other places. And in fact LA surpasses other places by a lot. Also, the above map illustrates how the cluster looks like

Discussion

We see that most venues are located in LA and then in Inglewood and then other places. And in fact LA surpasses other places by a lot. Also, the above map illustrates how the cluster looks like

Conclusion

From this analysis, we see that

- 1. Most venues are located in Los Angeles, then Inglewood, then other places
- 2. Although the category for each venue isn't general enough, it seems like restaurant is the most common venue in LA
- 3. The above map illustrates how the cluster looks like