Kvotientrum

Benjamin Waziri - Mat S

Januar 2024 - Geotop

1 Kvotientrum

Definition 1 Givet en surjektiv funktion $q:(X,T)\to Y$ gående fra et topologisk rum til en vilkårlig mængde, definer kvotienttopologien til at være:

$$T_{kvot} = \{ V \subseteq Y | q^{-1}(V) \in T \}$$

Som resultat af definitionen er q kontinuert. Vi kalder så $q:(X,T)\to (Y,T_{kvot})$ for en kvotientafbildning.

Proposition 1 Lad $q:(X,T)\to (Y,T_{kvot})$ være en kvotientafbildning, $g:Y\to Z$ er vilkårlig funktion. Så er:

 $g: Y \to Z$ kontinuert $\iff g \circ q: X \to Z$ er kontinuert.

Bevis 1

 \Rightarrow : Antag g er kontinuert. Så er $g \circ q$ en sammensætning af kontinuerte funktioner, og dermed kontinuert.

 \Leftarrow : Antag $g \circ q$ er kontinuert. Lad $U \subseteq Z$ være åben i Z.

Så er $(g \circ q)^{-1}(U)$ åben i X.

Dvs. $q^{-1}(g^{-1}(U))$ er åben i X.

Det betyder, at $g^{-1}(U) \in T_{kvot}$ jf. definitionen på T_{kvot} . Dvs $g^{-1}(U)$ er åben i Y.

Så har vi vist, at g er kontinuert.

Eksempel 1 En torus T er homeomorf til kvadratet $S = [0, 2\pi] \times [0, 2\pi]$ udstyret med ækvivalensrelationen fra figur 15.2.

Bevis 2

Note, der ikke skrives op på tavlen: En torus med centrum (a,0,0) og radius r består af punkter på formen:

$$((a + r\cos\theta)\cos\psi, (a + r\cos\theta)\sin\psi, r\sin\theta), \quad 0 \le \theta \le 2\pi, \quad 0 \le \psi \le 2\pi$$

Vi definerer derfor $f: S \to T$:

$$f(s,t) = ((a + r\cos t)\cos s, (a + r\cos t)\sin s, r\sin t).$$

Vi bemærker, at vores ækvivalensrelation \sim er givet ved, at $(s_1, t_1) \sim (s_2, t_2)$ hvis og kun hvis en af følgende gældende:

- (1) $s_1 = s_2$, $t_1 = t_2$
- (2) $\{s_1, s_2\} = \{0, 2\pi\}, \quad t_1 = t_2$
- (3) $\{t_1, t_2\} = \{0, 2\pi\}, \quad s_1 = s_2$

$$(4) \{s_1, s_2\} = \{0, 2\pi\}, \quad \{t_1, t_2\} = \{0, 2\pi\}$$

Vi bemærker, at hvis $x \sim y$, implicerer dette, at f(x) = f(y). Det skyldes, at $f(0,t) = f(2\pi,t)$, samt at $f(s,0) = f(s,2\pi)$ og $f(0,0) = f(0,2\pi) = f(2\pi,0) = f(2\pi,2\pi)$.

Så inducerer fen veldefineret afbildning $g:S/\sim \to T.$

Vi vil anvende proposition 13.26. Det kræver, at vi viser, (1) g er bijektiv, (2) g er kontinuert, (3) S/\sim er kompakt, (4) T er Hausdorff.

(1) f er defineret ud fra, hvordan punkter på en torus T er givet. Derfor er f surjektiv. Da g respekterer identifikationerne på S, er g også surjektiv.

For at vise injektiviteten, skal vi vise, at:

$$f(x) = f(y) \Rightarrow x \sim y.$$

Antag f(x) = f(y). Så har vi, at:

(i)
$$(a + r \cos t_1) \cos s_1 = (a + r \cos t_2) \cos s_2$$

(ii)
$$(a+r\cos t_1)\sin s_1 = (a+r\cos t_2)\sin s_2$$

(iii) $r\sin t_1 = r\sin t_2$

Fra (iii) fås åbenlyst, at $\sin t_1 = \sin t_2$.

Summer vi $(i)^2 + (ii)^2$ får vi jf. idiotformlen:

$$(a + r\cos t_1)^2 + (a + r\cos t_2)^2$$
.

Ud fra dette må vi konkludere, at $\cos t_1 = \cos t_2$, da $a + r \cos t_1$ er positiv. Så er enten $t_1 = t_2$ eller så er $\{t_1, t_2\} = \{0, 2\pi\}$.

Da $t_1 = t_2$ kan vi så direkte ud fra (i) og (ii) konkludere, at $\cos s_1 = \cos s_2$ og $\sin s_1 = \sin s_2$. Så er enten $s_1 = s_2$ eller $\{s_1, s_2\} = \{0, 2\pi\}$.

I alle de tilfælde er $(s_1, t_1) \sim (s_2, t_2)$. (2) $i \circ f : S \to \mathbb{R}^3$ er kontinuert, da hver koordinatafbildning er kontinuert. $i \circ f$ er kontinuert hvis og kun hvis f er kontinuert, så f er kontinuert. Derfor er g også kontinuert.

- (3) S er lukket og begrænset i \mathbb{R}^2 , så kompakt. Kvotientafbildninger bevarer kompakthed, så S/\sim er også kompakt.
- (4) T er Hausdorff, da det er et delrum af \mathbb{R}^3 .

Så er $g:S/\sim \to T$ en homeomorfi.

Eksempel 2 (ikke del af præsentationen) Vis at S^1 (randen af en cirkel) ikke er homeomorf til S^2 (randen af en kugle).

AFM $f: S^1 \to S^2$ er en homeomorfi. Lad $a, b \in S^1, a \neq b$.

Så er

$$f:S^1\backslash\{a,b\}->S^2\backslash\{f(a),f(b)\}$$

også en homeomorfi.

Men: $S^1 \setminus \{a, b\}$ er ikke sammenhængende. $S^2 \setminus \{f(a), f(b)\}$ er sammenhængende.

Det er i modstrid med, at det at være sammenhængende er en topologisk egenskab.

Proposition 1 Lad X,Y være mængder, \sim en ækvivalensrelation på X. Lad $f:X\to Y$ opfylde, at:

$$x \sim y \Rightarrow f(x) = f(y)$$

Så er $g: X/\sim \to Y$, hvor vi sætter:

$$g([x]) = f(x)$$

en veldefineret funktion. Vi siger, at g er induceret af f.

Bevis 1 Vi skal vise, at $x \in [x'] \Rightarrow f(x) = f(x')$.

Lad $x' \in [x]$. Det betyder, at:

$$x \sim x'$$
.

Hvilket medfører jf. vores antagelse, at:

$$f(x) = f(x')$$