

THE BASIC BIT OPERATIONS

- Recall CSC/EEE 120 Digital Design and Logic:
 - AND → '&' like **a & b**
 - OR \rightarrow '|' like $a \mid b$
 - XOR \rightarrow '^' like a \wedge b
 - NOT → '~' like ~a
- Bit operations in programming languages apply to ALL bits for a particular integer type. [IE **int** is 32 bits so a & b will do an AND operation on all 32 bits.]

QUICK REVIEW OF THE TRUTH TABLES

AND Truth Table

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

OR Truth Table

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

XOR Truth Table

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

NOT Truth Table

Α	В
0	1
1	0

AND, OR, XOR OPERATIONS IN ACTION

AND	1011	6 & 11 (decimal (decimal (decimal	6) 11)	OR	0 101 0 011	5 3 (decimal (decimal (decimal	5) 3)	XOR	0 01 1	5 A 3 (decimal (decimal (decimal	3)
AND	0110 0001	6 & 1 (decimal (decimal (decimal	6) 1)	OR	100 0	2 8 (decimal (decimal (decimal	8)	XOR	0 010 1 010	2 ^ 10 (decimal (decimal (decimal	2) 10)

GETTING STARTED WITH BASICS

- Setting a bit:
 - $a \mid = b$; (b can be either a number, a variable, or expression)
 - Ex: $a \mid = 2$; \rightarrow this sets the 2nd bit index to 1, even if it's already 1.
 - a $|= 3; \rightarrow \text{ sets } 2^{\text{nd}}$ and 1^{st} bit indexes to 1 at the same time.
- Testing/Checking a bit:
 - a & b; \rightarrow if 0, the bit is 0. if non-zero, the bit is 1.
 - Usually used in if-statements with boolean condition: if((a & b) > 0)
 - Ex: a & $2 \rightarrow$ value > 0 because I set 'a"s 2^{nd} bit index to 1.
- Toggling a bit:
 - a ^ b;
 - Recall that XORing a number with the same number always yields 0.
 - $a \wedge a = 0$
- Clearing a bit:
 - a &= \sim b; \rightarrow Combination of using AND with NOT.
 - Ex: $a \&= \sim 2$; This will set the 2nd bit index to 0 even if it's already 0, exact opposite of setting a bit.
 - Go programming language (Golang) has special operator for clearing bits: $\& \land \rightarrow a \& \land b$.

EXTENDED BASICS

- a & 1 → Checks if a number is even or odd.
 - Result of 0 means it's even. Result > 0 means it's odd.
 - a &= ~ 1 ; \rightarrow make the data even.
 - $a \mid = 1; \rightarrow \text{ make the data odd.}$
- a & $0 \times 800000000 \rightarrow$ Checks if a 32-bit integer/float is negative [is the sign bit on]. Result > 0 \rightarrow sign bit is on.
 - a & $0x8000 \rightarrow$ checks for 16-bit integer/float.
 - a & $0x80 \rightarrow$ checks for byte integer/float.
- a & $(a 1) \rightarrow$ Checks if a number is a power of 2. If result is 0, it's a power of 2.
- a & $(2^{n} 1) \rightarrow a \% 2^{n}$, a mod 2^{n} .
 - Modulo'ing with a power of 2 is the same as ANDing with the power of 2 minus 1.
 - a % 32 is the same as doing a & 31.
- Alphabet bit twiddling:
 - ORing with space character (a | ' ') converts letter to lowercase.
 - ANDing with underscore (a & '_') converts letter to uppercase.
 - XORing with space character (a ^ ') toggles the letters case.
 - ANDing with 31 (a & 31) gives letter's position in alphabet (regardless of letter case).
 - ANDing with question mark (a & '?') gets uppercase letter's position in alphabet.
 - XORing with backtick (a ^ '`') gets lowercase letter's position in alphabet.

BITSHIFTING

- Not in CSC120:
- Bit Shifting → << , >> , >>> (Java uses >>>)
 - Example: a >> b, a << b, a >>> b
 - Moves/Shifts over bits to the right or to the left.
 - Three kinds: Arithmetic, Logical, Circular/Rotational.

BASIC BIT-SHIFTING

- a << b; → left logical & arithmetic shift.
- 1 << $n \rightarrow 2^n$ (very useful for quickly making powers of 2)
- a << $n \rightarrow a * 2^n$, a >> $n \rightarrow \frac{a}{2^n}$ aka $a * 2^{-n}$ (right <u>logical</u> shift)
 - For Java + others, >>> is for right logical shifting where >> is an arithmetic shift.
 - Recall: If last bit is 1, arithmetic shift copies the 1 down over.
- a << 1; $\rightarrow 2a$, a >> 1; $\rightarrow \frac{a}{2}$
- Circular Shifts:
 - Circular Shift Left: (a << b) | (a >> (-b & (bits_in_type 1)));
 - Circular Shift Right: (a >> b) | (a << (-b & (bits_in_type 1)));

MORE COMPLEX TRICKS

- Aligning a number to a certain multiple of a number.
 - (a + (b 1)) & \sim (b 1); where a is the number and b is the multiples you want to align a to. Works best when aligning numbers to multiples of powers of 2.
- Bitwise Ceiling: flips all trailing bits to 1.
 - If you add 1 to the result, it's a power of 2!
 - Bitwise ceiling result + 1 = gets next power of 2.
- x |= x >> 4; x |= x >> 8; x |= x >> 16;

 $X = X \gg 1;$

 $x = x \gg 2;$

- Bit-Scan Reverse (start at highest set bit, count its bit index)
 - XOR result with bits-1 gives Number of Leading Zeroes.
 - Performs log base-2!

```
/// C
int BitScanReverse(int n) {
        int bit_index = 0;
        for( int i = (unsigned)(n) >> 1; i > 0; i >>= 1 ) {
            bit_index++;
        }
        return bit_index;
}
```

Secret: 1 << BitScanReverse(x);
Gives previous power of 2!</pre>

```
/// Java
public static int BitScanReverse(int n) {
        int bit_index = 0;
        for( int i = n >>> 1; i > 0; i >>>= 1 ) {
            bit_index++;
        }
        return bit_index;
}
```

MORE COMPLEX TRICKS PT. 2

- $x = a \land b \land x$; \rightarrow if(x==a) x=b; else if(x==b) x=a; equivalent
- $(x \land y) >= 0; \rightarrow$ checks if two values have the same sign.
- $(x + y) \gg 1$; \rightarrow gets the average of two integer numbers.
 - Likewise: $(x + y + z + w) >> 2; \rightarrow$ get average of four integer numbers.
- Using bits as individual, simultaneous Boolean values (Bit Flags):
 - Good for representing states \rightarrow good for making state machines.
 - 8-bit NES used bit flags to check what buttons were pressed.
 - Chess games use an array of size 8 of 64-bit integers called a Bit Board.
 - Used in RPGs for quest steps.
- What if Bit Flags were combined with arrays of integers?
 - Bit Sets.
 - Can be treated as a giant variable of N*(number of bits in an int)
 - Bit index can be converted to an array index (slot) and bitflag using bitwise ops.
 - bit_index & (bits_in_integer_type 1); → gives us the bitflag (Notice anything here?)
 - bit_index (logical right shift) log2(bits_in_integer_type); → gives us the array slot
 - Array length can be statically computed by the desired number of bits divided by the number of bits in integer type.
 - Converting bitflag and array slot back to the bit index → (slot << log2(bits_in_integer_type)) + bitflag;

```
Enum: Actions

Nothing = 0 = 000

Breathing = 1 = 001

Walking = 2 = 010

Talking = 4 = 100
```

FAST INTEGER DIVISION

- Integer division → <u>Slow</u>...
 - Can be Faster but takes a lot of physical space for the processor. This means more \$\$\$
 - Taking up less space means slower division, cheaper but processor takes more cycles to complete.
 - Space-Time tradeoff in physical hardware.
- How can we do faster integer division?
 - Not much you can do unfortunately.
 - However,... You can do faster integer division if you're dividing by a constant.
- Here's how to do it.
 - Figure out what constant you want to make a reciprocal of, we'll call it **b**.
 - Follow this formula: $\left[2^{16}/b\right] + 1$. Using 3 as an example. $\left(\frac{2^{16}}{3}\right) + 1 = 21846$.
 - Whatever you want to divide by 3, multiply it with the constant you made: a * 21846 = c
 - Divide **c** by 2^{16} (by shifting **c** with 16) and it'll give you the integer division of $\frac{a}{3}$

CONCLUSION

- In your career, you'll come across many situations where mathematically, you will have to implement formulas and operations in code or make it work from a computer.
- Bitwise operations will help make those formulas perform faster.
- Have a good break & see you guys next year.
- Next Semester 1st Workshop:
- Text input calculator:
 - We will make a calculator read: '1 + In e' and reply '2'.