**Table 17 - Hole Basis System** 



| Over | Up to | H11 | C11 | Н9 | d10 | Н9 | e9 | H8 | f7 | H7 | g6 | H7 | h6 | H7 | k6 | H7 | n6 | H7 | p6 | H7 | s6 |
|------|-------|-----|-----|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|      |       | +   | -   | +  | -   | +  | -  | +  | -  | +  | -  | +  | -  | +  | +  | +  | +  | +  | +  | +  | +  |
| -    | 3     | 60  | 60  | 25 | 20  | 25 | 14 | 14 | 6  | 10 | 2  | 10 | 0  | 10 | 6  | 10 | 10 | 10 | 12 | 10 | 20 |
|      |       | 0   | 120 | 0  | 60  | 0  | 39 | 0  | 16 | 0  | 6  | 0  | 6  | 0  | 0  | 0  | 4  | 0  | 6  | 0  | 14 |
| 3    | 6     | 75  | 70  | 30 | 30  | 30 | 20 | 18 | 10 | 12 | 4  | 12 | 0  | 12 | 9  | 12 | 16 | 12 | 20 | 12 | 27 |
|      |       | 0   | 145 | 0  | 78  | 0  | 50 | 0  | 28 | 0  | 12 | 0  | 8  | 0  | 1  | 0  | 8  | 0  | 12 | 0  | 19 |
| 6    | 10    | 90  | 80  | 36 | 40  | 36 | 25 | 22 | 13 | 15 | 5  | 15 | 0  | 15 | 10 | 15 | 19 | 15 | 24 | 15 | 32 |
|      |       | 0   | 170 | 0  | 98  | 0  | 61 | 0  | 28 | 0  | 14 | 0  | 9  | 0  | 1  | 0  | 10 | 0  | 15 | 0  | 23 |
| 10   | 18    | 110 | 95  | 43 | 50  | 43 | 32 | 27 | 16 | 18 | 6  | 18 | 0  | 18 | 12 | 18 | 23 | 18 | 29 | 18 | 39 |
|      |       | 0   | 205 | 0  | 120 | 0  | 75 | 0  | 34 | 0  | 17 | 0  | 11 | 0  | 1  | 0  | 12 | 0  | 18 | 0  | 28 |

| Over | Up to | H11 | C11 | Н9  | d10 | H9  | е9  | Н8 | f7 | H7 | g6 | H7 | h6 | H7 | k6 | H7 | n6 | H7 | р6 | H7 | s6  |
|------|-------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
|      |       | +   | -   | +   | -   | +   | -   | +  | -  | +  | -  | +  | -  | +  | +  | +  | +  | +  | +  | +  | +   |
| 18   | 30    | 130 | 110 | 52  | 65  | 52  | 40  | 33 | 20 | 21 | 7  | 21 | 0  | 21 | 15 | 21 | 28 | 21 | 35 | 21 | 48  |
|      |       | 0   | 240 | 0   | 149 | 0   | 92  | 0  | 41 | 0  | 20 | 0  | 13 | 0  | 2  | 0  | 15 | 0  | 22 | 0  | 35  |
| 30   | 40    |     | 120 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|      |       | 160 | 280 | 62  | 80  | 62  | 50  | 39 | 25 | 25 | 9  | 25 | 0  | 25 | 18 | 25 | 33 | 25 | 42 | 25 | 59  |
| 40   | 50    | 0   | 130 | 0   | 180 | 0   | 112 | 0  | 50 | 0  | 25 | 0  | 16 | 0  | 2  | 0  | 17 | 0  | 26 | 0  | 43  |
|      |       |     | 290 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
| 50   | 65    |     | 140 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 72  |
|      |       | 190 | 330 | 74  | 100 | 74  | 60  | 46 | 30 | 30 | 10 | 30 | 0  | 30 | 21 | 30 | 39 | 30 | 51 | 30 | 53  |
| 65   | 80    | 0   | 150 | 0   | 220 | 0   | 134 | 0  | 60 | 0  | 29 | 0  | 19 | 0  | 2  | 0  | 20 | 0  | 32 | 0  | 78  |
|      |       |     | 340 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 59  |
| 80   | 100   |     | 170 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 93  |
|      |       | 220 | 390 | 87  | 120 | 87  | 72  | 54 | 36 | 35 | 12 | 35 | 0  | 35 | 26 | 35 | 45 | 35 | 59 | 35 | 71  |
| 100  | 120   | 0   | 180 | 0   | 260 | 0   | 159 | 0  | 71 | 0  | 34 | 0  | 22 | 0  | 3  | 0  | 23 | 0  | 37 | 0  | 101 |
|      |       |     | 400 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 79  |
| 120  | 140   |     | 200 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 117 |
|      |       |     | 450 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 92  |
| 140  | 160   | 250 | 210 | 100 | 145 | 100 | 84  | 63 | 43 | 40 | 14 | 40 | 0  | 40 | 28 | 40 | 52 | 40 | 68 | 40 | 125 |
|      |       | 0   | 460 | 0   | 305 | 0   | 185 | 0  | 83 | 0  | 39 | 0  | 25 | 0  | 3  | 0  | 27 | 0  | 43 | 0  | 100 |
| 160  | 180   |     | 230 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 133 |
|      |       |     | 480 |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 108 |

| Over | Up to | H11 | C11 | Н9  | d10 | Н9  | e9  | Н8 | f7  | H7 | g6 | H7 | h6 | H7 | k6 | H7 | n6 | H7 | р6 | H7 | s6  |
|------|-------|-----|-----|-----|-----|-----|-----|----|-----|----|----|----|----|----|----|----|----|----|----|----|-----|
|      |       | +   | -   | +   | -   | +   | -   | +  | -   | +  | -  | +  | -  | +  | +  | +  | +  | +  | +  | +  | +   |
| 180  | 200   |     | 240 |     |     |     |     |    |     |    |    |    |    |    |    |    |    |    |    |    | 151 |
|      |       |     | 530 |     |     |     |     |    |     |    |    |    |    |    |    |    |    |    |    |    | 122 |
| 200  | 225   | 290 | 260 | 115 | 170 | 115 | 100 | 72 | 50  | 46 | 14 | 46 | 0  | 46 | 33 | 46 | 60 | 46 | 79 | 46 | 159 |
|      |       | 0   | 550 | 0   | 355 | 0   | 215 | 0  | 96  | 0  | 44 | 0  | 29 | 0  | 4  | 0  | 31 | 0  | 50 | 0  | 130 |
| 225  | 250   |     | 280 |     |     |     |     |    |     |    |    |    |    |    |    |    |    |    |    |    | 169 |
|      |       |     | 570 |     |     |     |     |    |     |    |    |    |    |    |    |    |    |    |    |    | 140 |
| 250  | 280   |     | 300 |     |     |     |     |    |     |    |    |    |    |    |    |    |    |    |    |    | 190 |
|      |       | 320 | 620 | 130 | 190 | 130 | 110 | 81 | 56  | 52 | 17 | 52 | 0  | 52 | 36 | 52 | 66 | 52 | 88 | 52 | 158 |
| 280  | 315   | 0   | 330 | 0   | 400 | 0   | 240 | 0  | 108 | 0  | 49 | 0  | 32 | 0  | 4  | 0  | 34 | 0  | 56 | 0  | 202 |
|      |       |     | 650 |     |     |     |     |    |     |    |    |    |    |    |    |    |    |    |    |    | 170 |
| 315  | 355   |     | 360 |     |     |     |     |    |     |    |    |    |    |    |    |    |    |    |    |    | 226 |
|      |       | 360 | 720 | 140 | 210 | 140 | 125 | 89 | 62  | 57 | 18 | 57 | 0  | 57 | 40 | 57 | 73 | 57 | 98 | 57 | 190 |
| 355  | 400   | 0   | 400 | 0   | 440 | 0   | 265 | 0  | 119 | 0  | 54 | 0  | 36 | 0  | 0  | 0  | 37 | 0  | 62 | 0  | 244 |
|      |       |     | 760 |     |     |     |     |    |     |    |    |    |    |    |    |    |    |    |    |    | 208 |

**Table 18 - Shaft Basis System** 



| Over | Up to | C11 | h11 | D10 | h9 | E9 | h9 | F8 | h7 | G7 | h6 | H7 | h6 | K7  | h6 | N7 | h6 | P7 | h6 | S7 | h6 |
|------|-------|-----|-----|-----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|
|      |       | +   | -   | +   | -  | +  | -  | +  | -  | +  | -  | +  | -  | +&- | -  | -  | -  | -  | -  | -  | -  |
| -    | 3     | 120 | 0   | 60  | 0  | 39 | 0  | 20 | 0  | 12 | 0  | 10 | 0  | 0   | 0  | 4  | 0  | 6  | 0  | 14 | 0  |
|      |       | 60  | 60  | 20  | 25 | 14 | 25 | 6  | 10 | 2  | 6  | 0  | 6  | -10 | 6  | 14 | 6  | 16 | 6  | 24 | 6  |
| 3    | 6     | 145 | 0   | 78  | 0  | 50 | 0  | 28 | 0  | 16 | 0  | 12 | 0  | 3   | 0  | 4  | 0  | 8  | 0  | 15 | 0  |
|      |       | 70  | 75  | 30  | 30 | 20 | 30 | 10 | 12 | 4  | 8  | 0  | 8  | -9  | 8  | 16 | 8  | 2  | 8  | 27 | 8  |
| 6    | 10    | 170 | 0   | 98  | 0  | 61 | 0  | 35 | 0  | 20 | 0  | 15 | 0  | 5   | 0  | 4  | 0  | 9  | 0  | 17 | 0  |
|      |       | 80  | 90  | 40  | 36 | 25 | 36 | 13 | 15 | 5  | 9  | 0  | 9  | -10 | 9  | 19 | 9  | 24 | 9  | 32 | 9  |
| 10   | 18    | 205 | 0   | 120 | 0  | 75 | 0  | 43 | 0  | 24 | 0  | 18 | 0  | 6   | 0  | 5  | 0  | 11 | 0  | 21 | 0  |
|      |       | 95  | 110 | 50  | 43 | 32 | 43 | 16 | 18 | 6  | 11 | 0  | 11 | -12 | 11 | 23 | 11 | 29 | 11 | 39 | 11 |
| 18   | 30    | 240 | 0   | 149 | 0  | 92 | 0  | 53 | 0  | 28 | 0  | 21 | 0  | 6   | 0  | 7  | 0  | 14 | 0  | 27 | 0  |
|      |       | 110 | 130 | 65  | 52 | 40 | 52 | 20 | 21 | 7  | 13 | 0  | 13 | -15 | 13 | 28 | 13 | 35 | 13 | 48 | 13 |

MEM09209A - Detail bearings, seals and other componentry in mechanical drawings.

| Over | Up to | C11 | h11 | D10 | h9  | E9  | h9  | F8  | h7 | G7 | h6 | H7 | h6 | K7  | h6 | N7 | h6 | P7 | h6 | S7  | h6 |
|------|-------|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|-----|----|----|----|----|----|-----|----|
| 30   | 40    | 280 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    |     |    |
|      |       | 120 | 160 | 180 | 0   | 112 | 0   | 64  | 0  | 34 | 0  | 25 | 0  | 7   | 0  | 8  | 0  | 17 | 0  | 34  | 0  |
| 40   | 50    | 290 | 0   | 80  | 62  | 50  | 62  | 25  | 25 | 9  | 16 | 0  | 16 | -18 | 16 | 33 | 16 | 42 | 16 | 59  | 16 |
|      |       | 130 | 160 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    |     |    |
| 50   | 65    | 330 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 42  | 0  |
|      |       | 140 | 190 | 220 | 0   | 134 | 0   | 76  | 0  | 40 | 0  | 30 | 0  | 9   | 0  | 9  | 0  | 21 | 0  | 72  | 19 |
| 65   | 80    | 340 | 0   | 100 | 74  | 60  | 74  | 30  | 30 | 10 | 19 | 0  | 19 | -21 | 19 | 39 | 19 | 51 | 19 | 48  | 0  |
|      |       | 150 | 190 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 78  | 19 |
| 80   | 100   | 390 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 58  | 0  |
|      |       | 170 | 220 | 260 | 0   | 159 | 0   | 90  | 0  | 47 | 0  | 35 | 0  | 10  | 0  | 10 | 0  | 24 | 0  | 93  | 22 |
| 100  | 120   | 400 | 0   | 120 | 87  | 72  | 87  | 36  | 35 | 12 | 22 | 0  | 22 | -25 | 22 | 45 | 22 | 59 | 22 | 66  | 0  |
|      |       | 180 | 220 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 101 | 22 |
| 120  | 140   | 450 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 77  | 0  |
|      |       | 200 | 250 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 117 | 25 |
| 140  | 160   | 460 | 0   | 305 | 0   | 185 | 0   | 106 | 0  | 54 | 0  | 40 | 0  | 12  | 0  | 12 | 0  | 28 | 0  | 85  | 0  |
|      |       | 210 | 250 | 145 | 100 | 85  | 100 | 43  | 40 | 14 | 25 | 0  | 25 | -28 | 25 | 52 | 25 | 68 | 25 | 125 | 25 |
| 160  | 180   | 480 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 93  | 0  |
|      |       | 230 | 250 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 133 | 25 |

MEM09209A - Detail bearings, seals and other componentry in mechanical drawings.

| Over | Up to | C11 | h11 | D10 | h9  | E9  | h9  | F8  | h7 | G7 | h6 | H7 | h6 | K7  | h6 | N7 | h6 | P7 | h6 | S7  | h6 |
|------|-------|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|-----|----|----|----|----|----|-----|----|
| 180  | 200   | 530 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 105 | 0  |
|      |       | 240 | 290 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 151 | 29 |
| 200  | 225   | 550 | 0   | 355 | 0   | 215 | 0   | 122 | 0  | 61 | 0  | 46 | 0  | 13  | 0  | 14 | 0  | 33 | 0  | 113 | 0  |
|      |       | 260 | 290 | 170 | 115 | 100 | 115 | 50  | 46 | 15 | 29 | 0  | 29 | -33 | 29 | 60 | 29 | 79 | 29 | 159 | 29 |
| 225  | 250   | 570 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 123 | 0  |
|      |       | 280 | 290 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 169 | 29 |
| 250  | 280   | 620 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 138 | 0  |
|      |       | 300 | 320 | 400 | 0   | 240 | 0   | 137 | 0  | 62 | 0  | 52 | 0  | 16  | 0  | 14 | 0  | 36 | 0  | 190 | 32 |
| 280  | 315   | 650 | 0   | 190 | 130 | 110 | 130 | 56  | 52 | 17 | 32 | 0  | 32 | -36 | 32 | 66 | 32 | 88 | 32 | 150 | 0  |
|      |       | 330 | 320 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 202 | 32 |
| 315  | 355   | 720 | 0   |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 169 | 0  |
|      |       | 360 | 360 | 440 | 0   | 265 | 0   | 151 | 0  | 75 | 0  | 57 | 0  | 17  | 0  | 16 | 0  | 41 | 0  | 226 | 36 |
| 355  | 400   | 760 | 0   | 210 | 140 | 125 | 140 | 62  | 57 | 18 | 36 | 0  | 36 | -40 | 36 | 73 | 36 | 98 | 36 | 187 | 0  |
|      |       | 400 | 360 |     |     |     |     |     |    |    |    |    |    |     |    |    |    |    |    | 244 | 36 |

| 0.025                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                   | 0.4                                                                                                                                                                                                                                                                                    | 8.0                                                                                                                                                                                                                                                                    | 1.6                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                       | 6.3                                                                                                                                                                                                                                                                                                                                                    | 12.5                                                                                                                                                                      | 25                                                                                                                                                                                                                                             | 50  | Roughness<br>Value           | Table 1                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------|---------------------------------------------------------|
| Z <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                     | N2                                                                                                                                                                                                                                                                                                                                                                                       | SN                                                                                                                                                                                                                                                                                                                                                                 | N <sub>4</sub>                                                                                                                                                                                        | N5                                                                                                                                                                                                                                                                                     | 9N                                                                                                                                                                                                                                                                     | N7                                                                                                                                                                                                                                                                                                                                                                                        | N8                                                                                                                                                                                                                                                                                                                                                                                                        | 6N                                                                                                                                                                                                                                                                                                                                                     | N10                                                                                                                                                                       | N11                                                                                                                                                                                                                                            | N12 | Roughness<br>Grade<br>Number | .9 – Typi                                               |
| Very smoothly finished surfaces produced by honing, lapping, buffing or super finishing machines. The surfaces may have a satin or highly polished appearance depending on the finishing operation and material. Extremely expensive finishes to produce that are rarely required but can be specified on fine or sensitive instrument parts or other laboratory items and precision gauge blocks. | Very smoothly finished surfaces produced by honing, lapping, buffing or super finishing machines. The surfaces may have a satin or highly polished appearance depending on the finishing operation and material. Expensive finishes to produce that are rarely required but can be specified on fine or sensitive instrument parts or other laboratory items and precision gauge blocks. | Very refined surfaces require this degree of finish that are produced by honing, lapping and buffing methods and are expensive to produce. The finish is specified for surfaces on instrument and gauge work, and where packings and rings must slide across the direction of surface grain such as chrome-plated piston rods where lubrication is not dependable. | A fine surface produced by honing, lapping and buffing methods. The finish could be specified on precision gauge and instrument work on high speed shafts and bearings. Cost of construction is high. | A fine quality surface that can be produced by fine cylindrical grinding, coarse honing, buffing and lapping methods. The finish is specified where smoothness is of primary importance, such as rapidly rotating shaft bearings, heavily loaded bearings and extreme tension members. | A first class machine finish which can be easily produced on cylindrical surface and centerless grinders but requires great care on lathes and milling machines. It is satisfactory for bearings and shafts carrying light loads and running at medium to slow speeds. | A good machine finish that can be maintained on production lathes and milling machines using sharp tools, fine feeds and high cutting speeds. It may be specified for close fits and used for all stress parts except fast rotating shafts, axels and parts subject to severe vibration or extreme tension. It is also suitable for bearing surfaces when motion is slow and loads light. | A medium commercial finish easily produced on lathes, milling machines and shapers. The finish is commonly used in general engineering machining operations, which is economical to produce and of reasonable appearance. This is the roughest surface recommended for parts subject to loads, vibration and high stress; it is also permitted for bearing surfaces when motion is slow with light loads. | A coarse production finish obtained by using coarse feeds on lathes, millers, shapers, boring and drilling machines and is acceptable when tool marks have no bearing on performance and quality. The surface can be produced economically and is used on parts where stress requirements, appearance and conditions of operations, and design permit. | A very rough coarse surface obtained by sand casting saw cutting, chipping, rough forging, and oxy cutting. Suitable for clearance areas on machinery, Jigs and fixtures. | A very rough surface produced by lathes, millers and other machine tools using heavy cuts and very coarse feeds. Other processes such as filing, snagging, disc grinding, sand casting and rough forging also produce a texture of this value. |     | Process and Application      | Table 19 - Typical Surface Roughness Height Application |



The ranges shown above are typical of the processes listed.

Higher or lower values may be obtained under special conditions.







All dimensions are in millimetres

applications. The use of smaller key sections transmitted. In cases such as stepped shafts when larger diameters are required, for Therefore, dimension  $d-t_1$  and  $d+t_2$  should be recalculated to maintain the h/2 relationship. The use of larger key sections is not permitted. key than nominal, an unequal disposition of key in shaft with relation to the hub results example to resist bending, and when fans, gears and impellers are fitted with a smaller NOTE: The relations between shaft diameter and key section given above are for general applications. The use of smaller key sections is permitted if suitable for the torque

| 1     | 2             | 3                       | 4   | 5             | 6            | 7             | 8            | 9                      | 10      | 11   | 12  | 13                   | 14   | 15   |
|-------|---------------|-------------------------|-----|---------------|--------------|---------------|--------------|------------------------|---------|------|-----|----------------------|------|------|
| Sh    | aft           | Key                     |     |               |              |               |              | Keyway                 |         |      |     |                      |      |      |
|       |               |                         |     |               | Toleran      | ce for clas   | ss of fit    |                        |         | de   | pth |                      | rad  | lius |
| nom   | n dia         | Section b x h           |     | fre           | ee           | nor           | mal          | close                  | sh<br>t | aft  |     | ub<br>: <sub>2</sub> | 1    | -    |
| see r | note <i>d</i> | Width<br>x<br>thickness | nom | shaft<br>(H9) | hub<br>(D10) | shaft<br>(N9) | Hub<br>(J9)* | shaft &<br>Hub<br>(F9) | Nom     | Tol  | nom | tol                  | max  | min  |
| 6     | 8             | 2 x 2                   | 2   | +0.025        | +0.060       | -0.004        | +0.012       | -0.006                 | 1.2     |      | 1   |                      | 0.16 | 0.08 |
| 8     | 10            | 3 x 3                   | 3   | 0             | +0.020       | -0.029        | -0.012       | -0.031                 | 1.8     |      | 1.4 |                      | 0.16 | 0.08 |
| 10    | 12            | 4 x 4                   | 4   | +0.030        | +0.078       | 0             | +0.015       | -0.012                 | 2.5     | +0.1 | 1.8 | +0.1                 | 0.16 | 0.08 |
| 12    | 17            | 5 x 5                   | 5   | 0             | +0.030       | -0.030        | -0.015       | -0.042                 | 3       | 0    | 2.3 | 0                    | 0.25 | 0.16 |
| 17    | 22            | 6 x 6                   | 6   |               |              |               |              |                        | 3.5     |      | 2.8 |                      | 0.25 | 0.16 |
| 22    | 30            | 8 x 7                   | 8   | +0.036        | +0.098       | 0             | +0.018       | -0.015                 | 4       |      | 3.3 |                      | 0.25 | 0.16 |
| 30    | 38            | 10 x 8                  | 10  | 0             | +0.040       | -0.036        | -0.018       | -0.051                 | 5       |      | 3.3 |                      | 0.40 | 0.25 |
| 38    | 44            | 12 x 8                  | 12  |               |              |               |              |                        | 5       |      | 3.3 |                      | 0.40 | 0.25 |
| 44    | 50            | 14 x 9                  | 14  | +0.043        | +0.120       | 0             | +0.021       | -0.018                 | 5.5     |      | 3.8 |                      | 0.40 | 0.25 |
| 50    | 58            | 16 x 10                 | 16  | 0             | +0.050       | -0.043        | -0.021       | -0.061                 | 6       | +0.2 | 4.3 | +0.2                 | 0.40 | 0.25 |
| 58    | 65            | 18 x 11                 | 18  |               |              |               |              |                        | 7       | 0    | 4.4 | 0                    | 0.40 | 0.25 |
| 65    | 75            | 20 x 12                 | 20  |               |              |               |              |                        | 7.5     |      | 4.9 |                      | 0.60 | 0.40 |
| 75    | 85            | 22 x 14                 | 22  | +0.052        | +0.149       | 0             | +0.026       | -0.022                 | 9       |      | 5.4 |                      | 0.60 | 0.40 |
| 85    | 95            | 25 x 14                 | 25  | 0             | +0.065       | -0.052        | -0.026       | -0.074                 | 9       |      | 5.4 |                      | 0.60 | 0.40 |
| 95    | 110           | 28 x 16                 | 28  |               |              |               |              |                        | 10      |      | 6.4 |                      | 0.60 | 0.40 |

| 1     | 2             | 3                       | 4   | 5             | 6            | 7             | 8            | 9                      | 10  | 11   | 12   | 13   | 14   | 15   |
|-------|---------------|-------------------------|-----|---------------|--------------|---------------|--------------|------------------------|-----|------|------|------|------|------|
| Sh    | naft          | Key                     |     |               |              |               |              | Keyway                 |     |      |      |      |      |      |
|       |               |                         |     |               | Toleran      | ce for clas   | ss of fit    |                        |     | de   | pth  |      | rac  | lius |
|       |               | Section                 |     | fre           | 26           | nor           | mal          | close                  | sh  | aft  | hı   | ub   |      | r    |
| non   | n dia         | b x h                   |     |               |              | 1101          | mai          | Close                  | t   | 1    | t    | 2    |      |      |
| see r | note <i>d</i> | Width<br>x<br>thickness | nom | shaft<br>(H9) | hub<br>(D10) | shaft<br>(N9) | Hub<br>(J9)* | shaft &<br>Hub<br>(F9) | Nom | Tol  | nom  | tol  | max  | min  |
| 110   | 130           | 32 x 18                 | 32  |               |              |               |              |                        | 11  |      | 7.4  |      | 0.60 | 0.40 |
| 130   | 150           | 36 x 20                 | 36  | +0.062        | +0.180       | 0             | +0.031       | -0.026                 | 12  |      | 8.4  |      | 1.00 | 0.70 |
| 150   | 170           | 40 x 22                 | 40  | 0             | +0.080       | -0.062        | -0.031       | -0.088                 | 13  |      | 9.4  |      | 1.00 | 0.70 |
| 170   | 200           | 45 x 25                 | 45  |               |              |               |              |                        | 15  |      | 10.4 |      | 1.00 | 0.70 |
| 200   | 230           | 50 x 28                 | 50  |               |              |               |              |                        | 17  |      | 11.4 |      | 1.00 | 0.70 |
| 230   | 260           | 56 x 32                 | 56  |               |              |               |              |                        | 20  | +0.3 | 12.4 | +0.3 | 1.60 | 1.20 |
| 260   | 290           | 63 x 32                 | 63  | +0.074        | +0.220       | 0             | +0.037       | -0.032                 | 20  | 0    | 12.4 | 0    | 1.60 | 1.20 |
| 290   | 330           | 70 x 36                 | 70  | 0             | +0.100       | -0.074        | -0.037       | -0.106                 | 22  |      | 14.4 |      | 1.60 | 1.20 |
| 330   | 380           | 80 x 40                 | 80  |               |              |               |              |                        | 25  |      | 15.4 |      | 2.50 | 2.00 |
| 380   | 440           | 90 x 45                 | 90  | +0.087        | +0.260       | 0             | +0.043       | -0.037                 | 28  |      | 17.4 |      | 2.50 | 2.00 |
| 440   | 500           | 100 x 50                | 100 | 0             | +0.120       | -0.087        | -0.043       | -0.124                 | 31  |      | 19.5 |      | 2.50 | 2.00 |