Содержание

1	Теорема о выражении меры множества через интеграл от меры сечений. Теорема Фу- бини	4
	1.1 Теорема о выражении меры множества через интеграл от меры сечений	4
	1.2 Теорема Фубини	4
2	Теорема о замене переменных в кратном интеграле	4
3	Теорема о построении криволинейной системы координат исходя из её части	5
4	Гладкие подмногообразия пространства R^N . Теорема о гладком подмногообразии пространства R^N , заданном системой уравнений 4.1 Гладкие подмногообразия пространства R^N	5 5 5
5	Геометрический касательный вектор к подмножеству пространства \mathbb{R}^n . Теоремы о структуре множества $T_P(M)$ геометрических касательных векторов к гладкому подмногообразию M пространства \mathbb{R}^n в общем случае и в случае, когда M заданно системой уравнений	5
	5.1 Геометрический касательный вектор к подмножеству пространства \mathbb{R}^n	5
	уравнений	Э
6	Необходимые условия безусловного экстремума. Достаточные условия безусловного экстремума	6
	6.1 Необходимые условия безусловного экстремума	6
7	Метод Лагранжа нахождения точек условного экстремума. Необходимые условия условного экстремума. Достаточные условия условного экстремума 7.1 Метод Лагранжа нахождения точек условного экстремума 7.2 Необходимые условия условного экстремума	6 6
	7.3 Достаточные условия условного экстремума	7
8	Топологическое пространство. Индуцированная топология. Карта и атлас на топологическом пространстве. Общие (абстрактные) определения многообразия и гладкого многобразия. Классы гладкости C^k отображений из одного гладкого многообразия в другое	7
	8.1 Топологическое пространство	7
	8.2 Индуцированная топология	8 8 8
9	Непрерывность интеграла как функции верхнего предела. Существование первообразной для непрерывной на отрезке функции. Формула Ньютона-Лейбница. Формулы замены переменных в интеграле и интегрирования по частям	8
	9.1 Непрерывность интеграла как функции верхнего предела	8
	9.3 Формула Ньютона-Лейбница	9
10	Мера декартова произведения двух конечно измеримых множеств. Выражение меры множества под графиком интегрируемой функции через интеграл. Площадь круга. Выражение объема тела вращения и длины кривой через интегралы. Связь интегрируемости по Риману и интегрируемости по Лебегу. Интегрируемость по Риману непре-	
	рывной на отрезке функции 10.1 Мера декартова произведения двух конечно измеримых множеств	9
	10.2 Выражение меры множества под графиком интегрируемой функции через интеграл	9 10 10

10.5 Связь интегрируемости по Риману и интегрируемости по Лебегу	11
	12 12 12
Несобственный интеграл. Связь сходимости несобственного интеграла и интегрируемости функции по Лебегу. Критерий Коши. Признаки Дирихле и Абеля сходимости несобственных интегралов 12.1 Несобственный интеграл	13 13 13 13
Связь поточечной и равномерной сходимостей для функциональной последовательности. Критерий Коши равномерной сходимости функциональной последовательности. Обобщенный признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда. Признаки Дирихле и Лейбница равномерной сходимости функционального ряда. Признак Абеля равномерной сходимости функционального ряда. Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми. Почленное интегрирование функциональных последовательностей и рядов. Дифференцирование предельной функции и почленное дифференцирование функци-	
онального ряда 13.1 Связь поточечной и равномерной сходимостей для функциональной последовательности	14 14 14 15 15 15 15
Степенные ряды. Формула Коши-Адамара для радиуса сходимости. Теорема о круге сходимости степенного ряда. Первая теорема Абеля. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сохранение радиуса сходимости при почленном дифференцировании степенного ряда. Теоремы о почленном интегрировании и дифференцировании степенного ряда. Единственность разложения функции в степенной ряд, ряд Тейлора. Достаточное условие аналитичности функции. Пример бесконечно дифференцируемой, но неаналитической функции. Представление экспоненты комплексного аргумента степенным рядом. Формулы Эйлера. Формула Тейлора с остаточным членом в интегральной форме. Представление степенной и логарифмической функций степенными рядами 14.1 Степенные ряды 14.2 Формула Коши-Адамара для радиуса сходимости 14.3 Теорема о круге сходимости степенного ряда 14.4 Первая теорема Абеля	
14.4 Первая теорема Аоеля 14.5 Теорема о равномерной сходимости степенного ряда 14.6 Вторая теорема Абеля 14.7 Сохранение радиуса сходимости при почленном дифференцировании степенного ряда 14.8 Теоремы о почленном интегрировании и дифференцировании степенного ряда 14.9 Единственность разложения функции в степенной ряд, ряд Тейлора 14.10Достаточное условие аналитичности функции 14.11Пример бесконечно дифференцируемой, но неаналитической функции 14.12Представление экспоненты комплексного аргумента степенным рядом	17 17 18 18 18 19 19

14.13Формулы Эйлера	20
14.14Формула Тейлора с остаточным членом в интегральной форме	20
14.15Π редставление степенной и логарифмической функций степенными рядами	20

1 Теорема о выражении меры множества через интеграл от меры сечений. Теорема Фубини

1.1 Теорема о выражении меры множества через интеграл от меры сечений

 $\Pi 1$

Пусть есть счётный набор конечно измеримых убывающих вложенных множеств X_i . Мера множества, являющегося счётным пересечением есть предел мер

 $\Pi 2$

Если интеграл неотрицательной функции по множеству равен нулю, то сама функция равна нулю почти на всём множестве

Тһ О выражении меры множества через интеграл от меры сечений

- 1. Для начала докажем для клетки. Её сечение будет принимать простой вид, в зависимости от принадлежности x, что даёт простое интегрирование и доказывает теорему
- 2. Теперь докажем для счётного набора (объединения) клеток. Задача сводится к предыдущей
- 3. Найдём меру множества, являющегося счётным пересечением объединения счётного числа клеток
- 4. Определим убывающую последовательность множеств
- 5. Далее считаем меры составляющих, по ходу дела используя теорему Лебега об ограниченной сходимости
- 6. Теперь рассмотрим случай множества нулевой меры и с помощью всяких сравнений и пределов докажем требуемое
- 7. В конце рассмотрим общий случай конечно измеримого множества
- 8. Используем все предыдущие леммы и случаи и получаем требуемое при почти всех x

1.2 Теорема Фубини

Тһ О геометрическом смысле интеграла

 $\mathbf{Th} \ \Phi y$ бини

2 Теорема о замене переменных в кратном интеграле

 $\mathbf{Omp}\ C^k$ -глад κ ий диффеоморфизм

Опр Носитель функции

Тh О замене переменных в кратном интеграле

 ${f M2}$ Теорема справедлива, если функция f непрерывна на Y, а её носитель компактен и лежит в Y

- 1. Убрав условие 3, мы сделали теорему локальной (для каждой точки существует окрестность, где выполнено условие 3)
- 2. Воспользуемся теоремой о расщеплении отображений, о неявной функции, критерием компактности, теоремой о разбиении единицы
- 3. Это позволяет разбить функцию на сумму. Утверждение для фиксированного индекса (на его области значений) верно по предыдущей лемме

${f \Pi4}$ Теорема справедлива, если функция f непрерывна на Y

- 1. Рассмотрим неотрицательно значные функции и введём хитрые множества Y_k и функции f_k
- 2. Докажем, что $\subset f_k$ исходя из определения f_k . Получили ограниченность и замкнутость f_k
- 3. Из построения множеств следуют включения, а за ними и неравенства
- 4. Теперь покажем, что f_k стремятся к f через определения и построения условий
- 5. Запишем следствия из предела и перейдём и завершим доказательство с помощью теоремы Б. Леви
- 6. В общем случае разобьём f на f_{+} и f_{-} и получим искомое равенство

3 Теорема о построении криволинейной системы координат исходя из её части

Опр Криволинейная система координат на множестве А

Опр Координатный набор

Тһ О построении криволинейной системы координат исходя из ее части

- 1. Рассмотрим отображение из известного набора функций и матрицу Якоби этого отображения
- 2. Рассмотрим координатные строки и матрицу в точке и применим теорему о ранге матрицы
- 3. Определим новые гладкие функции и всеобъемлющее отображение, рассмотрим новую матрицу Якоби
- 4. Применим теорему об обратном отображении и получим требуемое

4 Гладкие подмногообразия пространства R^N . Теорема о гладком подмногообразии пространства R^N , заданном системой уравнений

 ${f 4.1}$ - Гладкие подмногообразия пространства R^N

Опр Гладкое n-мерное подмногообразием пространства \mathbb{R}_p^N в точке $P \in M$

Опр Канонический и выпрямляющий диффеоморфизм

Утв Гладкое п-мерное подмногообразие пространства

4.2 Теорема о гладком подмногообразии пространства \mathbb{R}^N , заданном системой уравнений

Тһ О гладком подмногообразии, заданном системой уравнений

- 1. Сначала достроим отображения до гладкого диффеоморфизма по теореме о построении криволинейной системы координат, исходя из её части
- 2. Докажем, что выпрямляемость обратного диффеоморфизма. Это делается через анализ множеств и из их свойств
- 5 Геометрический касательный вектор к подмножеству пространства \mathbb{R}^n . Теоремы о структуре множества $T_P(M)$ геометрических касательных векторов к гладкому подмногообразию M пространства \mathbb{R}^n в общем случае и в случае, когда M заданно системой уравнений
- 5.1 Геометрический касательный вектор к подмножеству пространства \mathbb{R}^n

Опр Геометрический касательный вектор к множеству в точке

Опр Геометрическое касательное пространство

5.2 Теоремы о структуре множества $T_P(M)$ геометрических касательных векторов к гладкому подмногообразию M пространства \mathbb{R}^n в общем случае и в случае, когда M заданно системой уравнений

Тһ. 1 О структуре множества геометрических касательных векторов к гладкому подмногообразию

- 1. Воспользуемся определением канонического диффеоморфизма, леммой о $T_P(M)$ к линейному пространству и о локальности $T_P(M)$
- 2. Запишем вид $T_P(M)$ и перейдём к локальной параметризации (из-за правил умножения матриц)

3. Итого, касательные векторы есть л.к. столбцов матрицы Якоби, а само $T_P(M)$ является n-мерным линейным подпространством \mathbb{R}^N

Th. 2 О структуре множества геометрических касательных векторов к подмногообразию, заданному системой уравнений

- 1. Пишем те же рассуждениями, что и в теореме о гладком подмногообразии, заданном системой уравнений
- 2. Введём новую переменную и воспользуемся предыдущей теоремой

6 Необходимые условия безусловного экстремума. Достаточные условия безусловного экстремума

6.1 Необходимые условия безусловного экстремума

Опр Точка экстремума

Опр Точка (не)строгого локального минимума (максимума) функции на множестве

Опр Сумма ряда Предел частичных сумм

Опр (*Pac*)ходящийся ряд Предел частичных сумм (бес)конечен

Th Необходимое условие экстремума

Для доказательства воспользуемся определением градиента и рассмотрим функцию одной переменной, где применим теорему Ферма

6.2 Достаточные условия безусловного экстремума

Опр Стационарная точка

Тh Достаточные условия экстремума

- 1. Разложим Δf по формуле Тейлора с использованием определения стационарной точки
- 2. Воспользуемся леммой и определением о-малого и предела
- 3. Теперь перепишем Δf и получим требуемое. В случае отрицательной определённости рассуждения аналогичны (f меняется на -f)
- 4. В знаконе
определённом случае рассмотрим выделенные направления и запише
м Δf
- 5. Воспользуемся определением предела и выберем достаточно малые t_i для построения противоречия
- 6. В последнем случае приводятся два контрпримера $f = x^4$ и $f = x^3$

7 Метод Лагранжа нахождения точек условного экстремума. Необходимые условия условного экстремума. Достаточные условия условного экстремума

7.1 Метод Лагранжа нахождения точек условного экстремума

Опр Функция Лагранжа

Опр Множители Лагранжа

7.2 Необходимые условия условного экстремума

Тһ Необходимые условия экстремума

Сделаем общие построения для доказательства теорем

- 1. Воспользуемся теоремой о построении криволинейной системы координат, исходя из её части и введём новые обозначения для обратных функций
- 2. Тогда можно расписать обратную функцию Лагранжа и показать, что новая задача эквивалентна старой

Теперь докажем саму теорему

1. Воспользуемся теоремой о необходимом условии безусловного экстремума и выберем специальные множители Лагранжа

- 2. Вернёмся к исходным переменным, воспользовавшись теоремой о дифференцировании сложной функции и значениями $\frac{\partial L}{\partial \lambda_i}$
- 3. Вышеперечисленное показывает, что x_0 стационарная точка функции Лагранжа, как и нашей исходной функции

7.3 Достаточные условия условного экстремума

Тһ Достаточные условия экстремума

- 1. Перейдём к обратной функции Лагранжа, для которой точка y_0 стационарна
- 2. Исходная точка будет стационарной, если в этой точке обратная функция совпадёт с обратной функцией Лагранжа, то есть k' для обратной функции Лагранжа будет отрицательная определена
- 3. Покажем, что это эквивалентно отрицательной определённости k. Для этого воспользуемся инвариантностью первого дифференциала, распишем второй и воспользуемся стационарностью точки
- 4. Согласно теореме о структуре множества геометрических касательных векторов к подмногообразию, заданному системой уравнений, получаем эквивалентность структур форм, что нам и требуется
- 8 Топологическое пространство. Индуцированная топология. Карта и атлас на топологическом пространстве. Общие (абстрактные) определения многообразия и гладкого многобразия. Классы гладкости C^k отображений из одного гладкого многообразия в другое

8.1 Топологическое пространство

 $\mathbf{O}\pi\mathbf{p}$ Топологическое пространство

Опр Топология

Опр Открытое в топологическом пространстве множество

Опр Семейство всех открытых подмножеств метрического пространства с метрикой

Опр Окрестность точки

Опр Внутренность множества

Опр Замыкание множества

8.2 Индуцированная топология

Опр Индуцированная топология

 $\Pi 1$

Доказывается по определению, с привлечением старых множеств, породивших новую топологию

Опр Хаусдорфово топологическое пространство

Опр Предел по топологическому пространству

Заметим, что у хаусдорфова пространства не может быть двух различных пределов; иначе может лг2

Доказывается выбором специальных окрестностей, которые не пересекаются

Опр База топологического пространства

 $\Pi 3$

Возьмём пересечения открытых шаров с рациональными радиусами и координатами

Опр Непрерывное отображение

Опр Секвенциально непрерывное в точке отображение

Опр (Секвенциально) непрерывное в точке отображение

Опр Гомеоморфизм

 $\Pi 4$

Докажем от частного к общему с помощью непрерывности и открытости объединения открытых

Опр Компактное топологическое пространство

Опр Секвенциально компактное топологическое пространство

Опр Секвенциально компактное множество

 $\Pi 5$

Возьмём открытое покрытие множества, перейдём к прообразам, выберем там открытое покрытие и конечное подпокрытие

Опр Гомеоморфные множества

Опр Топологический инвариант

Опр Линейно-связное топологическое пространство

Компактность и линейная связность являются топологическими инвариантами, поскольку они сохраняются при любом непрерывном отображении

8.3 Карта и атлас на топологическом пространстве

Опр п-мерная карта на топологическом пространстве

Опр Гомеоморфизм карты

Опр Район действия карты

Опр Область параметров карты

Опр Атлас на топологическом пространстве

8.4 Общие (абстрактные) определения многообразия и гладкого многобразия

Опр п-мерное абстрактное многообразие

Опр Замена координат, отображение перехода, отображение склейки

8.5 Классы гладкости C^k отображений из одного гладкого многообразия в другое

Опр Гладкий диффеоморфизм

Опр Гладкий атлас

Атлас на многообразии, состоящий из одной карты, считается гладким

Опр Эквивалентные гладкие атласы

Опр Гладкая структура, определяемая атласом

Опр Гладкое п-мерное многообразие

Опр Карта на гладком многообразии

Опр Локальная система координат карты

Опр Kласс C^k -глад κ их отображений

Опр Координатное представление отображения

Опр Диффеоморфные гладкие многообразия

9 Теорема о гладком атласе на гладком подмногообразии пространства \mathbb{R}^N . Достаточное условие гладкости подмногообразия пространства \mathbb{R}^N в терминах карты

9.1 Теорема о гладком атласе на гладком подмногообразии пространства \mathbb{R}^N

Тһ О гладком атласе на гладком подмногообразии

- 1. По лемме, $\forall P$ найдется карта на топологическом пространстве M, порожденная каноническим диффеоморфизмом, район действия которой содержит точку P. Семейство всех таких карт составляет атлас; покажем, что он гладкий
- 2. Фиксируем $\forall P$, вводим новые обозначения и рассматриваем отображения замены координат
- 3. Они будут состоять из суперпозиции гладких диффеоморфизмов, что докажет и диффеоморфность замены координат

9.2 Достаточное условие гладкости подмногообразия пространства \mathbb{R}^N в терминах карты

Опр Порождённая каноническим диффеоморфизмом карта

Опр Порождённая каноническим диффеоморфизмом в некоторой окрестности точки карта

Тh.1 Достаточное условие гладкости подмногообразия в терминах карты

- 1. Считаем V открытым подмножеством согласно лемме и воспользуемся теоремой о ранге матрицы
- 2. От исходного отображения перейдём к f(x) с новыми обозначениями и запишем Матрицу Якоби отображения
- 3. Увидим, что в x_0 матрица невырождена, что позволяет использовать теорему об обратном отображении
- 4. M будет задано простой системой уравнений, то есть имеет вид подпространства или полуподпространства
- 5. Теперь докажем, что M подмногообразие. В случае внутренней точки рассматриваем сужения и пересечения, вводя новые обозначения
- 6. Осталось показать, что параметры находились в линейной части пространства. В случае внутренней точки доказываем сначала прямое, а потом и обратное включения с помощью шаманства
- 7. Случай граничной точки следует заменой подпространства на полуподпространство
- 8. Согласно определению отображения f, справедливо равенство, которое и завершает доказательство
- 10 Мера декартова произведения двух конечно измеримых множеств. Выражение меры множества под графиком интегрируемой функции через интеграл. Площадь круга. Выражение объема тела вращения и длины кривой через интегралы. Связь интегрируемости по Риману и интегрируемости по Лебегу. Интегрируемость по Риману непрерывной на отрезке функции

10.1 Мера декартова произведения двух конечно измеримых множеств

Th Если два множества конечно измеримы в своих надмножествах, то их декартово произведение конечно измеримо в соотвествующем надмножестве с мерой, равной произведению мер

- 1. В тривиальном случае клеток равенство следует из определения
- 2. В случае, если конечно измеримые множества представимы в виде счетного дизъюнктного объединения клеток, разобьём их на эти клетки, а потом, в силу теоремы о перемножении абсолютно сходящихся рядов, получим требуемое
- 3. Покажем, что для любых конечно измеримых множеств мера их декартового произведения не превосходит произведения мер. Для этого зафиксируем $\forall \varepsilon > 0$ и счётные покрытия наших множеств клетками (они найдутся по определению верхней меры), притом разность мер покрытия и наших множеств не будет превосходить ε . Тогда распишем неравенство для верхней меры декартова произведения и, устремив $\varepsilon \to 0$, получим требуемое неравенство
- 4. Теперь покажем, что если существуют множества, сходящиеся по мере к нашим (с конечной верхней мерой), то их декартово произведение также будет сходиться к декартову произведению наших. Действительно, для этого надо расписать неравенство для верхней меры симметрической разности, используя предыдущий пункт и понять, что она стремится к нулю
- 5. В общем случае по определению конечно измеримого множества найдутся последовательности клеточных множеств, сходящиеся по мере к нашим. Тогда надо последовательно воспользоваться п.4 и п.1, а затем перейти к пределу

Из теоремы следует, тчо декартово произведение множества нулевой меры и произвольного имеет нулевую меру

10.2 Выражение меры множества под графиком интегрируемой функции через интеграл

Лемма Теорема о трёх последовательностях для конечно измеримых множеств

Если задано наше множество и существуют конечно измеримые последовательности миномажорант для него, которые в пределе имеют одинаковую меру, то наше множество измеримо и имеет ту же меру

Для доказательства нам потребуется перейти от верхней меры (заданной для всех, в том числе для неизвестного нашего множества) к клеточным множествам, для которых уже есть понятие предела по мере. Иначе наши рассуждения могли бы быть неприменимы

- 1. Рассмотрим верхнюю меру симметрической разность нашего и последовательности миноранты. Из неравенств будет следовать, что она стремится к нулю
- 2. Теперь рассмотрим симметрическую разность клеточных множеств A_{ik} , покрывающих A_k , и саму A_k . Применив неравенство треугольника, получим, что клеточные множества A_{ik} сходятся по мере к нашему
- 3. Аналогичные рассуждения для мажорант доказывают теорему

Тh О геометрическом смысле интеграла

Если область определения интегрируемой функции X измерима, то площадь под графиком функции в соотвествующем надмножестве конечно измерим с мерой равной интегралу лебега этой функции по X

- 1. В тривиальном случае СС функции можно разбить график на дизъюнктное объединение множеств и в силу счётной аддитивности интеграла Лебега получить требуемое утверждение
- 2. В общем случае обозначим интеграл как J и зафиксируем $\forall \varepsilon > 0$
- 3. Воспользуемся определением верхних интегралов и запишем две серии неравенств (для СС-функций и их интегралов)
- 4. При необходимости заменим значения миномажорант-СС-функций на множестве нулевой мере (чтобы доказываемое утверждение было справедливо для всего X)
- 5. На предыдущем шаге записываем меру площадей графиков функции под миномажорантами и приходим к очевидному двойному вложению
- 6. Так как в силу произвольности $\varepsilon>0$ их площади стремятся к J , то в силу леммы, площадь под графиком измерима с мерой J

10.3 Площадь круга

Лемма Круг измерим с площадь πr^2

- 1. Напишем множество верхнего полукруга и после преобразований выразим y: $0 \le y \le \sqrt{r^2 x^2}$
- 2. По предыдущей теореме верхний полукруг измерим с интегралом в половину искомого (интеграл считается через замену). Аналогично для нижнего полукруга
- 3. Так как две части круга имеют нулевую меру пересечения, то по формуле включений-исключений, мера круга равна πr^2

10.4 Выражение объема тела вращения и длины кривой через интегралы

Опр *Тело вращения вокруг оси* Если на отрезке задана неотрицательная функция, то множество ... **Тh.1** Если неотрицательная функция измерима и ограничена, то тело вращения измеримо...

- 1. Зафиксируем супремум ограниченной функции, число $N \in \mathbb{N}$, на которое мы разобьём наш отрезок множествами X_k и измеримые конечно-ступенчатые функции-миномажаронты
- 2. Распишем объём тел вращения для миноранты в терминах декартова произведения площади круга на меру X_k с помощью определения интеграла для СС-функции
- 3. Запишем неравенства для полученных объёмов и устремим $N \to +\infty$
- 4. Аналогично распишем для мажоранты

5. В силу вложенности и стремления по мере в пределе получим объём тела вращения для нашей функции

Тһ.2 Вычисление длины кривой

Если кривая параметризована непрерывно дифференицируемой вектор-функцией, то её длина выражается формулой ...

Для доказательства достаточно рассмотреть переменную длину дуги, вспомнить теорему о производной переменной длины дуги и применить формулу Ньютона-Лейбница

10.5 Связь интегрируемости по Риману и интегрируемости по Лебегу

Опр Разбиение отрезка, отрезки разбиения Конечный набор точек

Опр Выборка Набор точек из отрезков разбиения

Опр *Интегральная сумма Римана* Сумма конечного числа слагаемых, зависит от функции, разбиения и выборки

Опр Мелкость разбиения Максимальный отрезок разбиения

Опр Интеграл Римана Предел интегральных сумм Римана

Заметим, что этот интеграл всегда конечен в силу работы на компакте (отрезке)

Опр *Интегрируемая по Риману функция* ∃ интеграл Римана для этой функции на этом отрезке

Тh.1 Достаточное условие интегрируемости

Если функция непрерывна на компакте, то она интегрируема на нём

- 1. Так как для любого $C \in \mathbb{R}$ $L_<$ замкнуто (а значит, измеримо), то функция измерима на компакте
- 2. В силу теоремы Вейерштрасса функция ограничена на компакте некоторой константой
- 3. Так как константа интегрируема на компакте, то по признаку сравнения функция тоже интегрируема

Th.2 Если функция интегрируема по Риману, то она интегрируема и по Лебегу и интегралы совпадают

- 1. Зафиксируем $\forall \varepsilon > 0$ и достаточно мелкое разбиение отрезка
- 2. Перепишем предельное неравенство в терминах инфимума и введём новые обозначения, чтобы ввести конечно-ступенчатую функцию
- 3. Тогда интеграл для минорант будет интегралом Римана функции (записанным в терминах инфимума). Поэтому нижний интеграл будет не меньше Риманова
- 4. Аналогично верхний интеграл не больше Риманова
- 5. Объединив все полученные неравенства в одну строку, получим равенство крайних интегралов и интеграл Лебега по определению

10.6 Интегрируемость по Риману непрерывной на отрезке функции

Th Для непрерывной на отрезке функции f интеграл Римана существует и совпадает с интегралом Лебега

- 1. Сначала надо воспользоваться теоремой Кантора, определением равномерной непрерывности
- 2. Затем зафиксировать разбиение и выборку, определить конечно-ступенчатую функцию
- 3. Вспомнить определение интеграла для СС функции и модуля непрерывности
- 4. По Th.1 f интегрируема по Лебегу, как и разность f и CC функции в силу линейности интеграла
- 5. Переходя к пределу при мелкости разбиения, получаем что интеграл Римана существует по определению, притом из рассуждений следует, что он совпадает с интегралом Лебега

11 Теорема Б. Леви о монотонной сходимости. Теорема Лебега об ограниченной сходимости

Отличие следующих теорем от непрерывности интеграла по множествам состоит в том, что теперь предельный переход выполняется для функций, а не множеств

11.1 Теорема Б. Леви о монотонной сходимости

Th Если последовательность измеримых функций $f_k \ge 0$ монотонна и сходится к f, то f измерима с интегралом, равным пределу интегралов f_k

- 1. Измеримость функции следует из леммы о поточечной сходимости, а интегрируемость в силу существования интеграла от неотрицательной измеримой функции (интеграл может быть бесконечным)
- 2. Рассмотрим случай конечного интеграла, предварительно выкинув множества нулевой меры, на котором он бесконечен
- 3. Зафиксируем $\forall \varepsilon > 0$ и рассмотрим множества X_k с $(1-\varepsilon)$ внутри
- 4. В силу монотонности функции, X_k будут монотонны по включению и покрывать всю область определения
- 5. Вспомним про непрерывность интеграл по множествам и определение предела
- 6. Затем распишем неравенства, устремим $\varepsilon \to 0$ и получим доказываемое соотношение
- 7. В случае бесконечного интеграла фиксируем $\forall C>0$ и миноранту, чей интеграл на том же множестве будет > C (она существует из определения нижнего интеграла) и выкинем множества нулевой меры, на которых миноранта больше f
- 8. Рассмотри измеримые функции $g_k = \min(f_k, g)$, которые в пределе равны миноранте (показывается через определения предела для f и минимума)
- 9. Как показано в конечном случае, предел для миноранты будет больше > C, а в силу неравенства, для f тоже. В силу произвольности C получаем необходимое равенство

11.2 Теорема Лебега об ограниченной сходимости

Th Если последовательность интегрируемых функций f_k , каждый член которой ограничен по модулю интегрируемой функцией φ почти всюду на X и поточечно сходится к f, то f интегрируема с интегралом, равным пределу интегралов f_k

- 1. Измеримость f следует из леммы о поточечной сходимости, а интегрируемость в силу предельного перехода и признака сравнения
- 2. Выкинем множества нулевой меры, на которых условие теоремы не выполняется
- 3. Зафиксируем $\forall \varepsilon > 0$ и рассмотрим множества X_k с $\varepsilon \varphi(x)$ внутри
- 4. X_k будут покрывать X (включение в одну сторону очевидно, а в другое надо рассмотреть два случая для $\varphi(x)$, расписать определение предела). Также X_k будут монотонны по включению
- 5. Распишем предел для $\int_{X_k} \varphi$ с помощью непрерывности и аддитивности интеграла по множествам
- 6. Теперь распишем неравенство для разности интегралов f и f_k , воспользовавшись неравенством треугольника, определением X_k и конечностью интеграла для φ
- 7. В итоге, устремив $\varepsilon \to 0$, завершим доказательство теоремы

12 Несобственный интеграл. Связь сходимости несобственного интеграла и интегрируемости функции по Лебегу. Критерий Коши. Признаки Дирихле и Абеля сходимости несобственных интегралов

12.1 Несобственный интеграл

- Опр Несобственный интеграл, особенность Односторонний предел интегрального конца
- Опр (Рас)ходящийся несобственный интеграл Если (не)существует конечный предел
- **Опр** *Собственный интеграл* Интеграл Лебега, который был до этого
- Опр Абсолютно сходящийся несобственный интеграл Аналогично рядам
- **Опр** (Сходящийся) несобственный интеграл с двумя особенностями Разбить на два интеграла с одной особеностью (и утверждать сходимость только в случае сходимости обоих интегралов)

12.2 Связь сходимости несобственного интеграла и интегрируемости функции по Лебегу

Th.1 Если f интегрируема по Лебегу, на любом открытом промежутке, она интегрируема на всём промежутке \Leftrightarrow соответсвующих несобственный интеграл сходится абсолютно

- $1. \Rightarrow$: согласно лемме об интегрируемости на подмножестве f интегрируема на любом открытом промежутке, как и её модуль (по эквивалентности)
- 2. Из аддитивности интеграла по множествам следует нестрогое возрастание функции $F(b^{'})=\int_{a}^{b^{'}}|f(x)|dx$
- 3. По теореме существует предел слева, поэтому несобственный интеграл сходится абсолютно
- 4. \Leftarrow : зафиксируем возрастающую последовательность $\{b_k\} \to b$
- 5. Определим индикаторную последовательность функций $f_k(x)$. Она сходится к f, что докажет измеримость f на всём интервале
- 6. Затем введём новую функциональную последовательность $g(x) = |f_k(x)|$. Она будет возрастать и в пределе равна |f(x)|, поэтому применима теорема о монотонной сходимости
- 7. Из неё следует интегрируемость |f(x)| на интервале, то есть и f

 ${f Th.2}$ Если f интегрируема в собственном смысле, то несобственный интеграл сходится и его значение равна интегралу Лебега на том же интервале

Доказательство состоит в применении теоремы о непрерывности интеграла как функции верхнего предела

12.3 Критерий Коши

Th Kpumepuŭ Komu

Если на числовом промежутке f интегрируема по Лебегу на любом открытом промежутке, то несобственный интеграл этой функции сходится \Leftrightarrow выполняется условие Коши

- 1. Определим $F(t) = \int_a^t f(x) dx$. Несобственный интеграл с особенностью в верхнем конце будет сходиться, если у этой функции существует конечный предел при $t \to b-0$
- 2. Далее сведём задачу к KK существования предела функции и воспользуемся формулой Ньютона Лейбница

12.4 Признаки Дирихле и Абеля сходимости несобственных интегралов

Смотреть в рукописном конспекте

Связь поточечной и равномерной сходимостей для функциональной последовательности. Критерий Коши равномерной сходимости функциональной последовательности. Обобщенный признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда. Признаки Дирихле и Лейбница равномерной сходимости функционального ряда. Признак Абеля равномерной сходимости функционального ряда. Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми. Почленное интегрирование функциональных последовательностей и рядов. Дифференцирование предельной функции и почленное дифференцирование функционального ряда

13.1 Связь поточечной и равномерной сходимостей для функциональной последовательности

Опр Поточечный предел функциональной последовательности Предел в привычном понимании

Опр *Равномерный предел функциональной последовательности* $N \in \mathbb{N}$ не зависит от аргумента

Из равномерной сходимости следует поточечная, но не наоборот

Опр *Равномерно ограниченная функциональная последовательность* $N \in \mathbb{N}$ не зависит от аргумента

13.2 Критерий Коши равномерной сходимости функциональной последовательности

Тһ Критерий Коши

Последовательность сходится равномерно \Leftrightarrow выполняется условие Коши

- ⇒: дважды применить определение равномерной сходимости и воспользоваться неравенством треугольника
- 2. \Leftarrow : требуется доказать равномерную сходимость из выполнения условия Коши числовой последовательности для любого фиксированного $x \in X$. В силу КК для числовой последовательности $\lim_{k \to \infty} f_k = f$
- 3. Далее надо в силу $\forall p \in \mathbb{N}$ устремить его к $+\infty$ и по теореме о предельном переходе в неравенствах получить определение равномерной сходимости

13.3 Обобщенный признак сравнения для функциональных рядов

Опр Поточечный предел функционального ряда Сходимость ряда в привычном понимании

Опр *Равномерный предел функционального ряда* Если последовательность его частичных сумм сходится равномерно на том же множестве

Опр *Остаток поточечно сходящегося функционального ряда* Разность суммы и частичной суммы ряда

Ть Обобщенный признак сравнения

Если каждый член нашего ряда по модулю не превосходит члена равномерно сходящегося на том же множестве ряда, то и наш ряд сходится равномерно

Доказательство состоит в двукратном применении КК

Из признака следует, что из равномерной абсолютной сходимости ряда следует равномерная сводимость ряда на том же множестве

13.4 Признак Вейерштрасса равномерной сходимости функционального ряда

 ${f Th}$ Признак Вейерштрасса

Если каждый член нашего ряда по модулю не превосходит члена сходящегося ряда, то наш ряд сходится равномерно на том же множестве

Доказательство состоит в применении обобщенного признака сравнения. Заметьте, что мы не требуем равномерной сходимости от ряда-мажоранты

13.5 Признаки Дирихле и Лейбница равномерной сходимости функционального ряда

Смотреть в рукописном конспекте

13.6 Признак Абеля равномерной сходимости функционального ряда

Смотреть в рукописном конспекте

13.7 Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми

Th.1 О непрерывности предельной функции

Если последовательность f_k непрерывных на множестве X функций сходится равномерно на множестве X, то f непрерывна на X

- 1. Зафиксируем $\forall \varepsilon > 0$ и $x_0 \in X$
- 2. Далее для доказательства достаточно дважды записать определения равномерной сходимости и один раз непрерывности функции $f_N(x)$ для нужных долей ε и воспользоваться неравенством треугольника

Th.2 О непрерывности суммы ряда

Если функциональный ряд u_k непрерывных на множестве X функций сходится равномерно на множестве X, то сумма ряда непрерывна на X

Доказательство состоит в применение Тh.1 последовательности частичных сумм ряда

13.8 Почленное интегрирование функциональных последовательностей и рядов

Тh.1 Об интегрировании предельной функции

Если последовательность f_k интегрируемых на конечно измеримом множестве X функций сходится равномерно на множестве X к интегрируемой функции f, то интеграл этой функции есть предел интегралов

- 1. Воспользуемся sup-критерием для $\varepsilon=1$. Тогда из неравенства следует интегрируемость f по признаку сравнения
- 2. Расписав супремум для разности интегралов в пределе получим 0, что завершает доказательство

Следствие Если последовательность непрерывных на компакте X функций f_k сходится равномерно к функции f, то интеграл этой функции есть предел интегралов

Непрерывность f следует из теоремы предыдущей темы, а интегрируемость из достаточного условия интегрируемости, что позволяет применить предыдущую теорему и доказать утверждение

Тh.2 Об почленном интегрировании ряда

Если функциональный ряд u_k непрерывных на компакте X функций сходится равномерно, то сумма интеграла есть интеграл суммы

Доказательство состоит в применение следствия из предыдущей теоремы к последовательности частичных сумм ряда с использованием линейности интеграла

13.9 Дифференцирование предельной функции и почленное дифференцирование функционального ряда

Тһ.1 О дифференцировании предельной функции

Если последовательность f_k непрерывно дифференцируемых на отрезке [a,b] функций сходится хотя бы в одной точке x_0 , а последовательность производных $f_k^{'}$ сходится равномерно на [a,b], то последовательность f_k сходится равномерное на [a,b] к некоторой непрерывно дифференицируемой функции f, притом производная предела есть предел производных

- 1. Обозначим предельную функцию для $f_k^{'}$ за $\varphi(x)$, непрерывную по теореме, и предел $f_k(x_0)$ за A
- 2. Далее определим $f(x)=A+\int_{x_0}^x \varphi(t)dt$ и $f_k(x)=f_k(x_0)+\int_{x_0}^x f_k^{'}(t)dt$
- 3. Затем пара хитрых замечаний, работа с супремумом, использование sup-критерия
- 4. В итоге получаем равномерную сходимость f_k и требуемое равенство с учётом построения f(x)

Тh.2 О почленном дифференцировании ряда

Если функциональный ряд u_k непрерывно дифференцируемых на отрезке [a,b] функций сходится хотя бы в одной точке x_0 , а ряд производных u_k сходится равномерно на [a,b], то справделива формула почленного дифференицрования ряда, то есть производная суммы ряда есть сумма производных

Доказательство состоит в применение Тh.1 к последовательности частичных сумм ряда

14 Степенные ряды. Формула Коши-Адамара для радиуса сходимости. Теорема о круге сходимости степенного ряда. Первая теорема Абеля. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сохранение радиуса сходимости при почленном дифференцировании степенного ряда. Теоремы о почленном интегрировании и дифференцировании степенного ряда. Единственность разложения функции в степенной ряд, ряд Тейлора. Достаточное условие аналитичности функции. Пример бесконечно дифференцируемой, но неаналитической функции. Представление экспоненты комплексного аргумента степенным рядом. Формулы Эйлера. Формула Тейлора с остаточным членом в интегральной форме. Представление степенной и логарифмической функций степенными рядами

14.1 Степенные ряды

Опр *Предел последовательности комплексных чисел* Предел модуля разности равен нулю Заметим, что комплексный предел эквивалентен двум вещественным (для действительной и мнимой части)

Опр *Сходящийся комплексный ряд* Существует конечный предел последовательности частичных сумм этого ряда

Опр Абсолютно сходящийся комплексный ряд Сходится вещественный ряд модулей членов ряда И вновь сходимость комплексного ряда эквивалентна сходимости двух вещественных рядов

Опр *Равномерно сходящийся комплекснозначная функциональная последовательность* Вещественнозначная последовательность модулей разности предельной функции и элементов последовательности равномерно сходится к нулю на том же множестве

Опр *Равномерно сходящийся комплексный функциональный ряд* Последовательность частичных сумм этого ряда равномерно сходится к сумме этого ряда на том же множестве

Опр Cmenehhoù psd Если задана последовательность комплексных чисел и комплексное число, то ... Однако удобнее (и мы в дальнейшем будем так делать) работать с рядом без степенной разности, сделав замену комплексной переменной

14.2 Формула Коши-Адамара для радиуса сходимости

Опр *Радиус сходимости степенного ряда* Неотрицательное число (или бесконечность), определяемое формулой Коши-Адамара

Притом для этой формулы мы расширили операцию деления

14.3 Теорема о круге сходимости степенного ряда

Опр *Круг сходимости степенного ряда* Круг на комплексной плоскости с центром в $w_0(0)$ и радиусом равным радиусу сходимости

Если радиус сходимости бесконечен, то кругом сходимости считается вся комплексная плоскость

Th O $\kappa pyre$ cxodumocmu

Степенной ряд абсолютно сходится внутри круга сходимости и расходится вне его

- 1. Зафиксируем произвольное комплексное число $z_0 \neq 0$, обозначим $q = \frac{z_0}{R}$ и исследуем сходимость с помощью обобщённого признака Коши
- 2. В тривиально случае $z_0 = 0$ ряд сходится абсолютно
- 3. В случае $0 < |z_0| < R$ в силу обобщённого признака Коши ряд сходится абсолютно
- 4. В случае $|z_0| > R$ в силу обобщённого признака Коши члены абсолютного ряда не стремятся к нулю, как и исходного ряда, а значит, он расходится по отрицанию необходимого условия

14.4 Первая теорема Абеля

Тһ Первая теорема Абеля

Если степенной ряд сходится в точке z_0 , то он сходится абсолюто в любой точке по модулю меньшей Доказательство следует от противного в силу п.4 теоремы о круге сходимости

14.5 Теорема о равномерной сходимости степенного ряда

Тһ О равномерной сходимости степенного ряда

 $\forall r \in (0,R)$ ряд $\sum_{\mathbb{N}} {}_0 c_k z^k$ сходится равномерно в круге радиуса r

Доказывается через неравенство, применением теоремы о круге сходимости и по признаку Вейерштрасса равномерной сходимости комплексного ряда

- 1. Зафиксируем произвольное комплексное число $z_0 \neq 0$, обозначим $q = \frac{z_0}{R}$ и исследуем сходимость с помощью обобщённого признака Коши
- 2. В тривиально случае $z_0 = 0$ ряд сходится абсолютно
- 3. В случае $0 < |z_0| < R$ в силу обобщённого признака Коши ряд сходится абсолютно
- 4. В случае $|z_0| > R$ в силу обобщённого признака Коши члены абсолютного ряда не стремятся к нулю, как и исходного ряда, а значит, он расходится по отрицанию необходимого условия

14.6 Вторая теорема Абеля

Тh Вторая теорема Абеля

Если степенной ряд сходится в точке z_0 , то он сходится равномерно на отрезке $[0, z_0]$

- 1. Разобьём члены ряда на произведение членов произведения с помощью параметра $t \in [0,1]$
- 2. Первый ряд сходится по условию (а значит, по предыдущей теореме, ещё и равномерно)
- 3. Второй ряд равномерно ограничен на отрезке и монотонен по индексу
- 4. Поэтому два вещественных ряда сходятся равномерно на [0,1], как и исходный ряд на $[0,z_0]$

14.7 Сохранение радиуса сходимости при почленном дифференцировании степенного ряда

Th Радиусы сходимости степенных рядов, полученные формальным дифференцированием и интегрированием исходного, совпадают с его радиусом сходимости

- 1. Радиусы сходимости исходного и продифференцированного рядов совпадают в силу формулы Коши-Адамара
- 2. Также они сходятся или расходятся одновременно, потому как при z=0 это очевидно, а в противном случае они отличаются на ненулевую константу (как и их пределы)
- 3. Так как исходный ряд получается почленным дифференцированием интегрального, то и их радиусы сходимости совпадают

14.8 Теоремы о почленном интегрировании и дифференцировании степенного ряда

Тһ Об интегрировании и дифференцировании степенного ряда

Если вещественный степенной ряд имеет ненулевой радиус сходимости, то внутри интервала сходимости

- справедливы формулы почленного интегрирования
- функция ряда имеет производные любого порядка, получаемые почленным дифференцированием ряда
- коэффициенты степенного ряда однозначно определяются по обрывку формулы Тейлора
- 1. Для почленного интегрирования достаточно ввести новую переменную и воспользоваться теоремами о равномерной сходимости степенного ряда и о почленном интегрировании равномерно сходящегося функционального ряда
- 2. Для производных достаточно ввести новую переменную и воспользоваться теоремами о сохранении радиуса сходимости, о равномерной сходимости степенного ряда и о почленном дифференцировании функционального ряда
- 3. Проводя те же рассуждения по индукции, доказываем второе утверждение теоремы
- 4. Доказывается аналогично лемме первого семестра перед формулой Тейлора

14.9 Единственность разложения функции в степенной ряд, ряд Тейлора

Опр *Бесконечно дифференцируемая функция в точке* В этой точке существуют производные функции любого порядка

Опр Ряд Тейлора Ряд бесконечно дифференцруемой функции в точке с членами ...

Опр *Регулярная функция в точке* z_0 Ряд Тейлора функции в точке z_0 сходится к функции в некоторой окрестности z_0

Из теоремы об интегрировании и дифференцировании степенного ряда следует, что если функция может быть представлена как сумма степенного ряда $\sum_{\mathbb{N}_0} a_k (z-z_0)^k$ с ненулевым радиусом сходимости, то этот ряд является рядом Тейлора функции в точке z_0 . В этом случае функция является регулярной в точке z_0

Опр *Остаточный член формулы Тейлора* Разность *п* раз дифференцируемой функции и формулы Тейлора

Непосредственно из определений следует, что функция является регулярной в точке $\Leftrightarrow \lim_{n\to\infty} r_n(x) = 0$. Притом для доказательства регулярности недостаточно показать ненулевой радиус сходимости функции, надо ещё проверить её остаток

14.10 Достаточное условие аналитичности функции

Тһ Достаточное условие регулярности

Если $\exists U_{\delta}(x_0)$, где функция бесконечно дифференцируема и последовательность её производных равномерно ограничена константой C>0, то функция регулярна в точке и $\forall x\in U_{\delta}(x_0)$ раскладывается в ряд Тейлора

- 1. Применим формулу Тейлора с остаточным членом в форме Лагранжа. Тогда остаточный член формулы Тейлора $\leq M \frac{\delta^{n+1}}{(n+1)!}$
- 2. Так как факториал растёт быстрее показательной (доказывается через принцип Архимеда, определение факториала, цепочку неравенств и предельный переход), то остаточный член стремится к нулю
- 3. Поэтому функция регулярна, потому как раскладывается в ряд Тейлора в x_0

14.11 Пример бесконечно дифференцируемой, но неаналитической функции

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Ряд Тейлора этой бесконечно дифференцируемой в точке $x_0=0$ сходится не к функции f(x), а к некоторой другой функции, не совпадающей с f(x) в сколь угодно малой окрестности точки

$$\forall k \in \mathbb{N} \lim_{x \to 0} \frac{1}{x^k} e^{-\frac{1}{x^2}} = \lim_{t \to +\infty} t^{\frac{k}{2}} e^{-t} = 0$$

По индукции легко показать, что если $P_{3n}(t)$ – многочлен степени 3n от t, то

$$f^{(n)}(x) = \begin{cases} P_{3n}(\frac{1}{x})e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Следовательно, все коэффициенты ряда Тейлора функции f(x) в точке $x_0=0$ равны нулю. Поэтому сумма ряда Тейлора функции f(x) в точке x_0 равна нулю и не совпадает с функцией f(x) в сколь угодно малой окрестности точки x_0 . Таким образом, хотя функция и бесконечно дифференцируема, она не является регулярной в нуле

14.12 Представление экспоненты комплексного аргумента степенным рядом

Опр Ряд Маклорена Ряд Тейлора функции в нуле

Th.1 Ряды маклорена функций e^x , $\sin(x)$, $\cos(x)$, $\sinh(x)$, $\cosh(x)$ сходятся к этим функциям на всей числовой прямой

- 1. $\forall \delta > 0 \ \forall x \in U_{\delta}(0) \ e^x < e^{\delta}$, поэтому выполнено достаточное условие регулярности
- 2. Аналогично, используя ограниченность последовательности всех производных оставшихся функций доказываем их разложения

Тh.2 Для комплексной экспоненты её ряд Тейлора не отличается от вещественного

- 1. В силу предыдущей теоремы радиус сходимости степенного ряда-претендента сходится на всём \mathbb{C} , поэтому по теореме о круге сходимости он сходится абсолютно для любого $z \in \mathbb{C}$
- 2. Зафиксируем произвольное комплексное число в алгебраической форме и воспользуемся определением экспоненты комплексного числа, чтобы зафиксировать доказываемое равенство
- 3. Покажем, что функция-ряд-претендент обладает свойством экспоненты. Для этого воспользуемся теоремой о перемножении абсолютно сходящихся рядов, которая для комплексных рядов доказывается точно так же, как и для вещественных (только здесь надо использовать метод "диагоналей")
- 4. В результате преобразований получим сумму сумм, которую распределим по этим суммам, и применим формулу бинома Ньютона, завершив доказательство свойства
- 5. Далее рассмотрим функцию кандидат на чисто мнимом аргументе и путём разложения на чётную и нечётную суммы получим выражение для чисто мнимой экспоненты
- 6. В итоге, применив свойство экспоненты и убедившись, что функция работает на вещественных аргументах, получим разложение комплексной экспоненты в ряд Тейлора в силу единственности

14.13 Формулы Эйлера

Лемма Для любого $z \in \mathbb{C}$ справедливы формулы Эйлера Они используют новопостроенные комплексные функции и подравнивают комплексную тригонометрию к вещественной гиперболике

- 1. Для доказательства формулы гиперкомплексной экспоненты достаточно разделить сумм на чётную и нечётную, а затем воспользоваться $i^2 = -1$
- 2. Остальные формулы следуют из первой

14.14 Формула Тейлора с остаточным членом в интегральной форме

Тһ Формула Тейлора с остаточным членом в интегральной форме

Если функция в $U_{\delta}(x_0)$ имеет непрерывные производные по n+1 порядок, то для остаточного члена формулы Тейлора справедливо представление в интегральной форме: $r_n(x) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{n+1}(t) dt \forall x \in U_{\delta}(x_0)$

- 1. При n=0 теорема справедлива в силу формулы Ньютона Лейбница
- 2. Пусть теорема справедлива для n=s-1. Тогда проинтегрируем r_{s-1} по частям
- 3. Затем, расписав r_s по определению, подставим проинтегрированное выражение и получим требуемое равенство
- 4. Таким образом, теорема доказана по индукции

14.15 Представление степенной и логарифмической функций степенными рядами

Th Ряд Маклорена степенной функции сходится к этой функции на интервале единичного радиуса

- 1. Зафиксируем $x \in (-1;1)$ и учитывая выражение для f^n распишем остаточный член в интегральной форме, походу дела вынося константы, вводя новые обозначения и переменные интегрирования
- 2. Затем воспользуемся ограниченностью x для оценки. Осталось показать, что $\lambda_n \to 0$
- 3. В тривиальных случаях x=0 и $\alpha=m\in\mathbb{N}_0, m< n$ утверждение очевидно
- 4. В общем случае найдём предел отношения и воспользуемся схожими рассуждениями с доказательством признака Даламбера (сравнение с геометрической прогрессией)

Заметим, что при $m \geq n$ ряд Маклорена совпадает с конечной суммой

Из доказанного и теоремы о почленном интегрировании степенного ряда при |x| < 1 (не забывая про замену индекса суммирования) получаем ряд Маклорена для логарифма. Данное разложение справедливо и при x=1. Действительно, данный ряд будет сходиться по признаку Лейбница. Следовательно, в силу второй теоремы Абеля этот ряд сходится равномерно на отрезке [0;1]. Согласно теореме о непрерывности суммы равномерно сходящегося функционального ряда частичные суммы этого ряда будет непрерывны на отрезке [0;1]. Поэтому существует требуемый предел