Lesson Review

Learning Objectives

Please list the learning objectives of this module that you have achieved: I certified that I am able to:

- Formulate complex statements using quantifiers and predicates.
- Nest and compound quantified statements.
- Prove or disprove quantified statements.

Learning Review

Please complete the table below (refer to the attached Learning Process table).

Concept	Step	Strategy	Resource	Reflection	Learning
What concept / keyword did you focus on?		apply? Why did you choose this? How did you apply it? Did it	use? Why did you choose this? Did it work well?	strategy and resource	Generalise: what you learned that could be applied in the future in a different context
	Identify	Identify Concepts and make a list of re- sources needed	Unit Site Content		
Formulate complex statements using quantifiers and pred- icates.	Making Sense	Read Text and Site Content, watch lec- ture videos, watch and follow external videos	Prescribed Text Book		
			Recorded Lectures		
	Making Meaning	Attempt practical questions, verify answers against online tools to identify any mistakes and try again	External Videos		
	What concept / keyword did you focus on? Formulate complex statements using quantifiers and pred-	What concept / keyword did you focus on? Identify Formulate complex statements using quantifiers and predicates. Making Sense	What concept / keyword did you focus on? What strategy did you apply? Why did you choose this? How did you apply it? Did it work well? How do you know? Identify	What strategy did you apply? Why did you use? Why did you choose this? How did you apply it? Did it work well? How do you know? Identify Identif	What concept / keyword did you focus on? What concept / keyword did you focus apply? Why did you choose this? How did you apply it? Did it work well? How do you know? Identify Concepts and make a list of resources needed Formulate complex statements using quantifiers and predicates. Making Meaning Making Meaning What resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this strategy and resource work work well? Why? In hindsight, was this strategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this strategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this strategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this strategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this strategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this strategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this strategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this strategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this trategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this trategy and resource did you use? Why did you choose this? Did it work well? Why? In hindsight, was this trategy and resource deal appropriate? Why? In hindsight provides? Why did you choose this? Did it work well? Why? In hindsight provides? Why? In hindsight provides? Why did you choose this? In hindsight provides? Why? In hindsight provides? Why did you choose this? In hindsight provides? Why did you choose this?

	Nest and compound quantified state-ments.	Identify	Identify Concepts and make a list of re- sources needed		
Compound State- ments		Making Sense	Read Text and Site Content, watch lec- ture videos, watch and follow external videos	Unit Site content Prescribed Text Book Recorded Lectures	
		Making Meaning	Attempt practical questions, verify answers against online tools to identify any mistakes and try again	External Videos	
		Identify	Identify Concepts and make a list of re- sources needed		
Compound State- ments	Prove or disprove quantified state- ments.	Making Sense	Read Text and Site Content, watch lec- ture videos, watch and follow external videos	Unit Site content Prescribed Text Book Recorded Lectures	
		Making Meaning	Attempt practical questions, verify answers against online tools to identify any mistakes and try again	External Videos	

Learning Evidence

Predicate Logic pores V = Universal quantifier - for all members of e person of Disclosive of R, N, 2, 9) F = Existential QUANTIfier of Pisciosus (R,n,2,8) Sets/ Domains O CONTAINS NO Clemants 4 SET of PATIONAL NUMBES 4 universal (All elements) P(A) power sexts N NATURAL NUMBER (0,1,2, ETC) 2 INTegas (-2,-1,0,1,2...) Any set (A) is The subset Clements I entrayers contains No elevery Sevalar To creteral a varies but includes regative. UniversA1 All elements in a portuge of parious numbers context of theory. Armyor intreformed to is petral where for one narrol numbers integers = gractions is Those sad por simple country of 9,0,1,2,3 R Reducupers irrational willed patienal invatoral. water out, surger = all very for 5

PCA) Power Set set of all susets of eset NOTATION E3 (correy proces) to anciose orget : " Euch 43" Z: X >2 The set of all X such That I is greater man 2 6 "element" 2 € € 1,2,3 } 2 is an element of € 1,2,3 } É "NOT an element" 4 € {1,2,7} 4 is dot on element el (1,2,7)

:	Wether example
•	(4 (2) he the state west x +172x if Domain of is Real numbers
•	
•	-Q (0) = 0+1782x0
•	
•	960) = 0+1 > 2x0 = #170 = True
•	Q(1) = 1+172x1 = 272 = FAISE
•	YXQ(2) = FAISE for All vaives for X Q(1) Disposes TI
•	· one example næded ·
9	
•	Ix Q(z) = Time. "Q(o) Proves The - for Exists at regst
•	ore.
•	3x 7Q(x) = EASE. by aQ(x) = Forse.) regaring
)	3x 7Q(x) = EASE. by aQ(x) = Forse ?) reporting
•	
•	∀2 70(2) € the. Ix 10(0) € me. I SE HOWEL
9	$\exists x(x^2=2)$
•	Post varues
3,	x (x2=-1) weed general organist po not show transfer
	for EXETENTIAL QUINTIES
•	as falge.
V3	c (2+2 31)
	unitersal to the very general Argunant.
	Any son regetire number + 2 will
	Always we frest from Tuon 1

negral quantifing WX31: 24 =4 =14:x4=4. +x=4. (xxx=y) YX ZY = & STORT insul to outside. (Right to left) after refing the quantitions (ox ond ay) gini (bx - 3y: xxy = y) Thind 3y - xy = y) seemd ONE PRANTIGUE at a time * Tifs V mirersAI True = general exam Agrimant & universal false = Example. 3 Existensal The = Example. I Exigienceal forge = general organist.

Predicate capie @ PV7(PV9) = PV70 LHS PV7(QVQ), PV (-P1 -Q) Demorgans (PV7P), 1 (PV1Q) DIST TI(PV1Q) Logial oc PV7Q=. 1000T @ (P1Q) -> (PVQ)=T LHS= (PNQ)->(PUQ) 7(19) V (PVQ) EQUIV OF -> 7 PJQ V PVQ Demorgas (7PUP) V (7QUQ), comes & 1550c TVFBT Logical

PU(PAQ) = P LHS = PU(PNQ)

=(PNT) V (PNQ) IDENT = PA(TVQ) Dist. = POT Down KHS IDON (PAQ) -> Q = T LHS = CPAQ) -> Q T(PAQ)VQ Equit of >

7 PV 19 VQ, Dist 7 PVT, Log equiv Tom @ PN7(PNQ) = PN79

LHS = P17(P19), = P1(7PV,70)

=(Pn-P) V (Pn-Q) DIST

De mozais

= Fv ((179) Log equi

= PA-Q IDent

1.5.1 Predicte cogic 1. notes For All Univers 41 (AND) elle most be me. EXISTONIAL E exists some. (51) AT LEOST I MUSTLE Exigrential EXAMPLE. P(4)::= 3x=x<Y X < 3 The if x =1 X < 1 Trueig x =0. O X FO FAISE NOT THE for Any X in Posine Universal EXAMPLE. R(y):= +x=x<1. X < 1 FAISE if X = 5 x < 8 (A18e ig x =12.

Self-Assessment evidence

I quickly typed this up to make it easier to read, I did include the handwritten originals

Exercise: 3	Prove or Disprove: $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} : x - y^3 = 0$						
Quantifiers	Variables Domain Predicate						
∀ - Universal	х	N	$P(x) \equiv \exists y \in N : x - y^3 = 0$				
∃ - Existential	У	y N $Q(x,y) \equiv x - y^3 = 0$					
Statement is FALSE							
	X is Universally Quantified therefore to prove the statement false a coun-						
	ter argument is needed to show P(x) false, in this case x =4						
	Y is Existentially Quantified therefore a general argument is required to						
	show the argument is false, in this case the cubed root of x is not a natural						
	number						

Exercise: 5	Prove or Disprove: $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} : (x + y)^2 = x^2 + 6x + y^2$						
Quantifiers	Variables	Variables Domain Predicate					
∀ - Universal	х	x N $P(x) \equiv \exists y \in N : (x + y)^2 = x^2 + 6x + y^2$					
∃ - Existential	У	y N $Q(x,y) \equiv (x + y)^2 = x^2 + 6x + y^2$					
Statement is TRUE							
	Y is Existent	Y is Existentially Quantified therefore an example is required					
	X=12	X=12					
	Y=3	Y=3					
	$(12+3)^2 = 255 \equiv (12+3)^2 = 12^2 + (6 \times 12) + 3^2 = 255$						

Exercise: 7	Prove or Disprove: $\exists y \in N, \exists x \in N : x - y = 0$					
Quantifiers	Variables	Domain	Predicate			
∃ - Existential	У	Ν	$P(y) \equiv \exists x \in N : x - y = 0$			
∃ - Existential	X $Q(x,y) \equiv x - y = 0$					
Statement is TRUE						
	Both variables are Existentially Quantified therefore to prove the state-					
	ment is true an example is need					
	X=0, Y=0					
	$X - y = 0 \equiv 0 - 0 = 0$					

Exercise: 9	Prove or Disprove: $\forall y \in N, \forall x \in N : x - y = 0$				
Quantifiers	Variables Domain Predicate				
∀ - Universal	У	N	$P(y) \equiv \forall x \in N : x - y = 0$		
∀ - Universal	X N $Q(x,y) \equiv x - y = 0$				
Statement is FALSE					
	Both variables are Universally Quantified therefore to prove the state-				
	ment is False an example is need				
	X=0, Y=1				
	$X - y = 0 \neq 0 - 1 = -1$				

word Progra-() YX EB, BY ER: X-y3=0 Quantifors DomAin Predicare VANS JYER: X-9 =0 Vivings, a Exercanon QCX,y) = x-y=0 for all I That exist in Real numbers form There exists at wealt one of in part winters VX ER P(X) = 234 ER 2-y=0. $\exists f \in \mathbb{R} \quad q(x, f) = x - g^3 = 0$ There is at 1808T one of in real numbers for one of I is unesself QUANTIFIED Threfore out a general Statement is sequent PCD Threforey 2 L'is exestantly augustoful. To from the or X-y3=8-2=0 1=2 - Self asswert Aurses Shen

Exersise 3 YIEN, JYEN: X-9°=0 armagers vos pour Predicte = 1 cn: x-y3=0 y n Q(xy) = 2-y3=0 for all & that Big in & Cathol number 3) at least one of conigs in natural visites (2) at least one of exists in natural numers for I is universely generalist to have the statust. Julye a courted example is needed 2 =4 J'is existence Quantiff to home false a general affinit is need 3/ The will not all ways requirem a natural number Courter example. NOT normalt 1= 1/2 x-3=3-1.5874=0

THEN, AJEN: (x+y) = IX + 6x + 3x (x+y) = (2xx) + (6xx) + (1x) (x+y) = (x	txs	reje 9				
(I+y) = (Ixx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (1xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (6xx) + (6xx) (Ixx) = (Ixx) + (6xx) + (6xx) + (6xx) + (6xx) (Ixx) = (Ixx) + (6xx) +	t	rzen,	196N: (X+)	132 = 1	X + 62.	t 3 *
Predictes If I Partier (2+4)2-22+6x If I Partier (2+4)2-22+6x If I Partier (2+4)2-22+6x For all X part exist in 11 (normal number at legstone of exist in 11 (1) at least one y for all 2 is 11						
for all & That exist in 1 (normal numbers at legs tone of exist in 11) (3) at least one of for all is in 11			$(\chi + \chi)$) x = (2	72) + (6x2	c) + (In)
for all & That exist in 11 Charrel numbers at legs tone of exist in 11 (2) at least one of for all is in 11	Antl	fors VARS	Domain	J	Predicar	<u> </u>
for all & That exist in 11 Charrel numbers at legs tone of exist in 11 (2) at least one of for all is in 11	d	I	n po	OZ JJEN	: (2+x)2=2	-2+6x ty
for all & That exist in 11 Charrel numbers at legs one of exist in 11 (2) at least one of for all is in 11	3	J	n		(x+y)2 = x2	+6x ty
(1) at Leustone y for all is in						
(3) at Leustone y for all 2 is n	·	for	all & Trust	exist in ,	1 Cnarrol	numbers)
	<u>.</u>	at leg	stone fexist	ins		
	B) at Lew	3Tone & for a	uz in		
	- O		0-0			
I is unrusuly augusted. P(x) is me for ay ?	· .	a is	mirasuly augu	speed. PC	z) is me f	rayI

rades Examples

 $\frac{2-3}{(12+3)^2} = 255$ $12^2 + (6\times12) + 3^2 = 255$

 $\exists y \in n, \exists x \in n : x-y=0$

QUANT VAX POMAIN Predictive: $\exists y N N(y) \equiv \exists x \in \mathbb{N}: x-y=0$ $\exists x N Q(x,y) \equiv x-y=0$

at least one in y

Both vars one existential armorphil. So regive on example of 0 $\mathcal{X} = 0$ $\mathcal{X} = 0$ $\mathcal{X} = 0 = 0 - 0 = 0$

ADATOR OF THE ONE WILLIAM IS THE IS

> BOTH Unioble are universely QUANTIfent Perefore we need a conten example. J=1 Z=0

> > x-y=0 + 0-1=-1