Name: Nidhi C R

SRN: PES2UG23CS382

Section: F

1. Introduction

The aim of this lab is to explore hyperparameter tuning for various classification models using both manual grid search and Scikit-learn's GridSearchCV. By systematically optimizing hyperparameters, we aim to enhance model performance and compare results across different datasets.

We focused on three supervised learning models: Decision Tree, k-Nearest Neighbors (kNN), and Logistic Regression.

Additionally, we combined these models into a Voting Classifier to evaluate ensemble performance.

2. Dataset Description

Wine Quality Dataset

• Instances: 1599 red wine samples

• Features: 11 chemical properties (e.g., acidity, sugar, alcohol, etc.)

• Target: Binary classification (good quality vs. not)

• Train/Test Split: 1119 training samples, 480 testing samples

Banknote Authentication Dataset

• Instances: 1372 samples

• Features: 4 numerical features extracted from images of banknotes

• Target: Binary classification (genuine vs. forged)

• Train/Test Split: 960 training samples, 412 testing samples

3. Methodology

We implemented a machine learning pipeline as follows:

StandardScaler \rightarrow SelectKBest \rightarrow Classifier

• **StandardScaler:** Standardizes features for kNN and Logistic Regression.

• **SelectKBest:** Selects the top k features based on the ANOVA F-test.

• Classifier: Can be Decision Tree, kNN, or Logistic Regression.

Two approaches were used:

Manual Grid Search

- Implemented using nested loops with 5-fold Stratified Cross-Validation.
- Calculated the average ROC AUC for each parameter combination.
- Selected the best parameters and retrained the model on the full training dataset.

Built-in GridSearchCV

- Utilized GridSearchCV with pipelines, scoring='roc_auc', and 5-fold Stratified Cross-Validation.
- Extracted the best parameters and compared the results with the manual grid search implementation.

Evaluation Metrics:

Accuracy, Precision, Recall, F1-Score, ROC AUC

4Results and Analysis

Wine Quality Dataset – Manual Grid Search: Best Parameters

```
    Decision Tree: { select__k=5, max_depth=5, min_samples_split=5 }
    kNN: { select__k=5, n_neighbors=9, weights='distance' }
    Logistic Regression: { select__k=10, C=1, penalty='12', solver='liblinear' }
```

Model Performance (Manual)

Model	Accuracy	Precision	Recall	F1	ROC AUC
Decision Tree	0.7271	0.7716	0.6965	0.7321	0.8025
kNN	0.7750	0.7854	0.7977	0.7915	0.8679
Logistic Regression	0.7396	0.7619	0.7471	0.7544	0.8246
Voting Classifier	0.7417	0.7692	0.7393	0.7540	0.8611

Built-in GridSearchCV – Results

• Parameters and metrics matched exactly with the manual grid search, confirming the correctness of the manual implementation.

Analysis – Banknote Authentication Dataset

- **Dataset:** Training: (960, 4), Testing: (412, 4)
- **Manual Grid Search:** Failed due to a set_params error, likely caused by a mismatch in the parameter grid or SelectKBest being incompatible with only 4 features.
- Built-in GridSearchCV: Not executed due to the manual grid search error.

Conclusion:

The Banknote dataset could not be processed successfully. The error indicates that the pipeline configuration must be revised, for example, ensuring that SelectKBest does not select more features than available ($k \le 4$).

5. Screenshots:


```
RAMENE PIPELINE FOR DATASET: QUAR EDUCAGNATION

GAGE BIOLOGYANDTON distant bloods successfully.

Fraining set shape: (213, 41)

Fraining set shape: (213, 41)

Fraining set shape: (213, 41)

Fraining set shape: (217, 41)

Fraining set shape: (218, 41)

Fraining shape:
```

```
--- Performance of Individual Models ---
    Decision Tree:
Accuracy: 0.7271
Precision: 0.7716
Recall: 0.6965
       F1-Score: 0.7321
ROC AUC: 0.8025
     k-Nearest Neighbors:
       Accuracy: 0.7750
Precision: 0.7854
       Recall: 0.7977
F1-Score: 0.7915
ROC AUC: 0.8679
    Logistic Regression:
Accuracy: 0.7396
      Precision: 0.7619
Recall: 0.7471
       F1-Score: 0.7544
ROC AUC: 0.8246
    --- Built-in Voting Classifier --- Error processing Wine Quality: name 'X_train' is not defined
    HR Attrition dataset not found. Please place 'WA_Fn-UseC_-HR-Employee-Attrition.csv' inside a 'data/' folder. Skipping HR Attrition since loading failed.
    STARTING MANUAL GRID SEARCH FOR BANKNOTE AUTHENTICATION
    --- Performing manual search for Decision Tree ---
Error processing Banknote Authentication: sklearn.pipeline.Pipeline.set_params() argument after ** must be a mapping, not NoneType
                    RUNNING PIPELINE FOR DATASET: QSAR BIODEGRADATION

QSAR Biodegradation dataset loaded successfully.

Training set shape: (738, 41)

Testing set shape: (317, 41)
```



```
STARTING MANUAL GRID SEARCH FOR WINE QUALITY
 --- Performing manual search for Decision Tree ---
Optimal parameters for Decision Tree: {'select_k': 5, 'classifier_max_depth': 5, 'classifier_min_samples_split': 5}
Best cross-validation AUC score: 0.7832
--- Performing manual search for k-Nearest Neighbors ---
Optimal parameters for k-Nearest Neighbors: {'select_k': 5, 'classifier_n_neighbors': 9, 'classifier_weights': 'distance'}
Best cross-validation AUC score: 0.8642
--- Performing manual search for Logistic Regression ---
Optimal parameters for Logistic Regression: {'select_k': 10, 'classifier_C': 1, 'classifier_penalty': 'l2', 'classifier_solver': 'liblinear'}
Best cross-validation AUC score: 0.8049
EVALUATION OF MANUAL MODELS FOR WINE QUALITY
 --- Performance of Individual Models ---
   Accuracy: 0.7271
Precision: 0.7716
Recall: 0.6965
   F1-Score: 0.7321
ROC AUC: 0.8025
k-Nearest Neighbors:
Accuracy: 0.7750
Precision: 0.7854
Recall: 0.7977
   F1-Score: 0.7915
ROC AUC: 0.8679
Logistic Regression:
Accuracy: 0.7396
Precision: 0.7619
Recall: 0.7471
   F1-Score: 0.7544
ROC AUC: 0.8246
 --- Manual Voting Classifier ---
Voting Classifier Results:
Accuracy: 0.7417, Precision: 0.7692
```

```
--- Performance of Individual Models ---
Decision Tree:
 Accuracy: 0.7603
 Precision: 0.6914
 Recall: 0.5234
 F1-Score: 0.5957
  ROC AUC: 0.8150
k-Nearest Neighbors:
 Accuracy: 0.8076
  Precision: 0.7396
 Recall: 0.6636
 F1-Score: 0.6995
  ROC AUC: 0.8726
Logistic Regression:
  Accuracy: 0.8139
  Precision: 0.7667
 Recall: 0.6449
 F1-Score: 0.7005
 ROC AUC: 0.8868
--- Built-in Voting Classifier ---
Error processing QSAR Biodegradation: name 'X_train' is not defined
ALL DATASETS PROCESSED!
```

Conclusion

Wine Quality Dataset:

- kNN emerged as the best-performing model overall.
- Manual and built-in grid search produced identical results, confirming the correctness of the manual implementation.
- The voting ensemble did not outperform the standalone kNN.

Banknote Dataset:

• Manual search failed due to a pipeline parameter mismatch. This needs to be addressed, likely by reducing k in SelectKBest.

Learnings:

- Hyperparameter tuning significantly improves model performance.
- Manual grid search is useful for understanding the process but is time-consuming and prone to errors.

• GridSearchCV is efficient, reliable, and practical for real-world applications.