Esercitazione di Laboratorio:

Misure su amplificatori

Coa Giulio Licastro Dario Montano Alessandra 23 dicembre 2019

1 Scopo dell'esperienza

.

2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

Strumento	Marca e Modello	Caratteristiche
Multimetro	Agilent 34401A	
Oscilloscopio	Rigol DS1054Z	4 canali,
		$B = 50 \mathrm{MHz},$
		$f_{\rm c} = 1 {\rm G} \frac{{\rm Sa}}{\rm s}$
		$R_{\rm i} = 1 \text{M} \stackrel{\circ}{\Omega},$
		$C_{\rm i} = 13 {\rm pF},$
		12 Mbps di profondità di memoria
Generatore di segnali	Rigol DG1022	2 canali,
		$f_{\rm uscita} = 20 {\rm MHz},$
		$Z_{ m uscita}$ = 50Ω
Alimentatore in DC	Rigol DP832	3 canali
Sonda	Rigol PVP215	$B = 35 \mathrm{MHz},$
		$V_{\text{nominale}} = 300 \text{V},$
		$L_{\rm cavo} = 1.2 \mathrm{m},$
		$R_{\rm s}$ = 1 M Ω ,
		Intervallo di compensazione: $10 \div 25 \mathrm{pF}$
Scheda premontata	A3	
Cavi coassiali		Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$
Connettori		111

3 Premesse teoriche

3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

3.2 Other

.

4 Esperienza in laboratorio

4.1 Amplificatore non invertente

Abbiamo connesso opportunamente i coccodrilli ai nodi d'ingresso ed uscita dell'amplificatore ed alla massa, abbiamo impostato i vari interruttori nel modo richiesto. Abbiamo impostato Vp=0.5V e f=2kHz, in seguito abbiamo misurato con l'oscilloscopio Vi e Vo

5 Risultati

5.1 Other

.