Санкт-Петербургский Политехнический университет Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

ЛАБОРАТОРНАЯ РАБОТА №3

на тему
"Метод конечных объёмов для уравнений эллиптического типа"
по дисциплине
"Конечно-разностные и сеточные методы"

Выполнил студент гр. 3630102/60101 Лансков.Н.В.

 ${
m Cahkt-} \Pi$ етербург 2019

Содержание

1	Список иллюстраций	2				
2	Список таблиц	3				
3	Постановка задачи	4				
4	Метод конечных объёмов	4				
5	Метод Якоби	5				
6	Метод Зейделя					
7	Meтод SOR					
8	Результаты 8.1 Метод Якоби 8.2 Метод Зейделя 8.3 Метод SOR 8.4 Сравнение методов	6 6 7 8 9				
9	Выводы	9				
10	Приложения	9				

1 Список иллюстраций

1	Зависимость спектрального радиуса от числа итераций	6
2	Зависимость спектрального радиуса от числа итераций	7
3	Зависимость числа итераций $n(\varepsilon)$ от параметра релаксации ω	8
4	Зависимость числа итераций $n(\varepsilon)$ от параметра релаксации ω (приближе-	
	ние)	8

2	Список	таблиц	

3 Постановка задачи

Будем решать задачу:

$$\begin{cases} -\frac{\partial}{\partial x} \left(a(x,y) \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial x} \left(a(x,y) \frac{\partial u}{\partial x} \right) + q(x,y) u = f(x,y) \\ 0 < \alpha < a, b < \beta; 0 < q_m < q; \\ u|_{\partial\Omega} = g(x,y) \end{cases}$$

$$(x,y) \in [3,3.4] \times [1,1.4] = \Omega$$

В данной лабораторной исследуется задача со следующими параметрами:

$$\begin{cases} a(x,y) = x + y \\ b(x,y) = 1 + xy \\ q(x,y) = x^4 \end{cases}$$

$$\begin{cases} g(x,y) = \cos(2x) \cdot e^{-3y} \\ f(x,y) = 3x\cos(2x)e^{-3y} + 4x\sin(2x)e^{-3y} - 9\cos(2x)e^{-3y}(xy+1) + x^4\cos(2x)e^{-2y} + 4\cos(2x)e^{-3y}(x^2+y^2) \end{cases}$$

4 Метод конечных объёмов

Рассмотрим процесс нахождения коэффициентов по методу конечных объёмов.

Разобъём нашу область на конечные объёмы (с центрами во внутренних в узлах сетки). Тогда для каждой внутреней точки рассматриваем конечный объём Ω_{ij} . Далее приведём вычисления в общем виде для такого конечного объёма.

Проинтегрируем уравнение 1 по конечному объёму и домножим на -1:

$$\int_{\Omega_{ij}} \left[\frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(b \frac{\partial u}{\partial y} \right) \right] d\Omega - \int_{\Omega_{ij}} q u d\Omega = \int_{\Omega_{ij}} f d\Omega \tag{1}$$

Подробнее рассмотрим первое слагаемое из левой части. Под интегралом стоит дивергенция, применяем формулу Остроградского-Гаусса, получаем следующее выражение:

$$\oint_{\gamma_{ij}} \left[a \frac{\partial u}{\partial x} cos(n, x) + b \frac{\partial u}{\partial y} cos(n, y) \right] d\gamma = \left[\omega^x = a \frac{\partial u}{\partial x}; \omega^y = b \frac{\partial u}{\partial y} \right] =$$
(2)

$$= \left(w_{i+0.5,j}^x - w_{i-0.5,j}^x\right)h_y + \left(w_{i,j+0.5}^y - w_{i,j-0.5}^y\right)h_x \tag{3}$$

Тут мы произвели определённую замену переменных и раскрыли косинусы, появившиеся после применения формулы О-Г. С учётом данной замены, легко видеть, что выполнены следующие равенства:

$$\int_{\Omega'_{ij}} \frac{\omega^x}{a} d\Omega = \int_{A} \frac{\partial u}{\partial x} d\Omega \tag{4}$$

$$\int_{\Omega_{ij}''} \frac{\omega^y}{b} d\Omega = \int_{\Omega_{ij}''} \frac{\partial u}{\partial y} d\Omega \tag{5}$$

Рассмотрим подробнее (4). Применяя к правой части теорему О-Г., а левую часть преобразовав определённым образом, получаем уже конечно-разностное выражение.

$$(4) \iff \omega_{i+0.5,j}^{x} \cdot \int_{\Omega_{i,j}'} \frac{d\Omega}{a} = (v_{i+1,j} - v_{ij})h_{y}$$

Отсюда легко можно найти выражение для $\omega^x_{i+0.5,j}$, посчитав численно интеграл. Точно также рассматриваем (5), и сразу записываем итоговое выражение, сгруппировав слагаемые при соответствующих узновых точках.

$$\left(\frac{p_{i+0.5,j} + p_{i-0.5,j}}{h_x^2} + \frac{q_{i,j+0.5} + q_{i,j-0.5}}{h_y^2} + \frac{\rho_{ij}}{h_x h_y}\right) v_{ij} - \left(\frac{p_{i-0.5,j} v_{i-1,j} + p_{i+0.5,j} v_{i+1,j}}{h_x^2} + \frac{q_{i,j+0.5} v_{i,j+1} + q_{i,j-0.5} v_{i,j-1}}{h_y^2}\right) = g_{ij}$$
(6)

Все вышеперечисленные выражения я привёл в общем виде для упрощения восприятия. Теперь рассмотрим, чему равны коэффициенты в контексте конкретной задачи.

$$\begin{cases} p_{i+0.5,j} = \int\limits_{\Omega'_{ij}} \frac{d\Omega}{x+y} & p_{i-0.5,j} = \int\limits_{\Omega'_{i-1,j}} \frac{d\Omega}{x+y} \\ q_{i,j+0.5} = \int\limits_{\Omega''_{ij}} \frac{d\Omega}{1+xy} & q_{i,j-0.5} = \int\limits_{\Omega''_{i,j-1}} \frac{d\Omega}{1+xy} \\ \rho_{ij} = \int\limits_{\Omega_{ij}} x^4 d\Omega \\ g_{ij} = \int\limits_{\Omega_{ij}} f d\Omega \end{cases}$$

$$(7)$$

Замечание о численном вычислении интегралов. Я вычисляю интегралы по следующей формуле (Формула Гаусса для двумерного случая):

$$\int_{[x_0;x_1]\times[y_0;y_1]} \phi(x,y)d\Omega = \frac{(x_1-x_0)(y_1-y_0)}{4} \sum_{i=1}^4 \phi\left(x_0 + \frac{(\xi_i+1)(x_1-x_0)}{2}, y_0 + \frac{(\eta_i+1)(y_1-y_0)}{2}\right)$$
(8)

Где ξ_i и η_i представляют все пары вида $\left(\frac{\pm 1}{\sqrt{3}}; \frac{\pm 1}{\sqrt{3}}\right)$

5 Метод Якоби

Будем применять итерационную процедуру метода Якоби в следующем виде:

$$v_{i,j}^{k+1} = \frac{1}{A_{i,j}} \cdot (G_{i,j} - D_{i,j} v_{i-1,j}^k - C_{i,j} v_{i,j-1}^k - E_{i,j} v_{i,j+1}^k - B_{i,j} v_{i+1,j}^k)$$

$$(9)$$

6 Метод Зейделя

Будем применять итерационную процедуру метода Зейделя в следующем виде:

$$v_{i,j}^{k+1} = \frac{1}{A_{i,j}} \cdot (G_{i,j} - D_{i,j} v_{i-1,j}^{k+1} - C_{i,j} v_{i,j-1}^{k+1} - E_{i,j} v_{i,j+1}^{k} - B_{i,j} v_{i+1,j}^{k})$$
(10)

Заметим, что соответствующие значения v при коэффициентах C и D на момент расчёта $v_{i,j}$ уже известны.

7 Meтод SOR

Будем применять итерационную процедуру метода SOR в следующем виде:

$$v_{SOR}^{k+1} = v_{SOR}^k + \omega (v_Z^{k+1} - v_{SOR}^k)$$
(11)

Где v_Z - вычисляется по методу Зейделя

8 Результаты

8.1 Метод Якоби

Для достижения точности ε = 10^{-3} возьмём чило разбиений равным N = 100 и ε_{iter} = $\frac{10^{-4}\pi^2}{2N^2}$.

Рис. 1: Зависимость спектрального радиуса от числа итераций

При этом $\rho_J = \lim_{k \to \inf} \frac{\|v^{k+1} - v^k\|}{\|v^k - v^{k-1}\|} = 0.99945 \approx 0.99950$, что согласуется с теоретическим значением.

8.2 Метод Зейделя

Для достижения точности ε = 10^{-3} возьмём чило разбиений равным N = 100 и ε_{iter} = $\frac{10^{-4}\pi^2}{N^2}$.

Рис. 2: Зависимость спектрального радиуса от числа итераций

При этом $\rho_Z=\lim_{k\to\inf}\frac{||v^{k+1}-v^k||}{||v^k-v^{k-1}||}=0.99855\approx 0.9990=\rho_J^2$, что согласуется с теоретическим значением.

8.3 Метод SOR

Рис. 3: Зависимость числа итераций $n(\varepsilon)$ от параметра релаксации ω

Рис. 4: Зависимость числа итераций $n(\varepsilon)$ от параметра релаксации ω (приближение)

По графику видно, что оптимальным параметром релаксации будет $\omega=1.73$. Однако, из теории следует, что оптимальный параметр должен равняться: $\omega_{opt}=\frac{2}{1+\sqrt{1-\rho_Z}}\approx 1.9387$. Я пытался добиться большей точности от графического метода нахождения ω_{opt} изменяя N и ε_{iter} , но мои попытки не принесли результатов, так как схема начинала терять устойчивость. Я думаю, что всё дело в выбранной мной конкретной задаче, и можно было бы теоретически подобрать исходную задачу точнее, чтобы получить лучший результат. Я же буду далее использовать полученное мною значение $\omega_{opt}=1.73$.

8.4 Сравнение методов

Таблица 1: Сравнение методов

Метод	ρ	$arepsilon_{iter}$	$n(\varepsilon)$
Jacobi	0.99945	4.934802e-08	17712
Zeidel	0.99855	9.869604e-08	8858
SOR	0.9744	1.121997e-08	445

9 Выводы

10 Приложения

Исходные файлы лабораторной работы можно найти тут: https://github.com/LanskovNV/numerical/tree/master/net_methods/lab_3