DATA 201: Time Series Analysis Linear Regression Model Lecture 13: Trends In Time Series & Out of Sample Forecasting

Lulu Wang

Data Analytics Dickinson College

3/7/2025

The Auto-Regressive (AR) Model

Forecasting

Seasonality

Out-of-sample forecasts

Stationary

Trends in time series

Auto-Regressive (AR) Model

• In general, an AR(p) model is defined as:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \dots + \beta_p Y_{t-p} + \epsilon_t$$

where:

- $\beta_0, \beta_1, \dots, \beta_p$ are parameters to be estimated.
- ϵ_t is a white noise error term with mean zero and variance σ_{ϵ}^2 .

Conditional Expectation in AR(p) Model

Property 1: Conditional Expectation

$$E(Y_t|Y_{t-1},...,Y_{t-p}) = \beta_0 + \beta_1 Y_{t-1} + \cdots + \beta_p Y_{t-p}$$

It can be interpreted as a **forecast** since only past information is used to produce an expectation of the variable today.

Property 2: Unconditional Expectation

$$E(Y_t) = \frac{\beta_0}{1 - \sum_{j=1}^p \beta_j}$$

since:

The Auto-Regressive (AR) Model

$$E(Y_t) = \beta_0 + \beta_1 E(Y_{t-1}) + \cdots + \beta_p E(Y_{t-p}) + E(\epsilon_t)$$

Assuming that $E(Y_t) = E(Y_{t-k})$ for all values of k. It represents the long-run mean of Y_t

Variance of AR(p) Model

Property 3: Variance

$$Var(Y_t) = rac{\sigma_{\epsilon}^2}{1 - \sum_{j=1}^p \beta_j^2}$$

since:

$$Var(Y_t) = \beta_1^2 Var(Y_{t-1}) + \dots + \beta_p^2 Var(Y_{t-p}) + Var(\epsilon_t)$$

$$= \left(\sum_{i=1}^p \beta_i^2\right) Var(Y_t) + \sigma_{\epsilon}^2$$

This shows how past values contribute to the variance of the current value.

Persistence and Mean Reversion in AR(p)

Property 4: Persistence and Mean Reversion

$$\sum_{i=1}^{p} \beta$$

measures the **persistence** of the time series. Persistence can also be interpreted as **mean reversion**, which represents how quickly a time series reverts back to its mean.

- Low persistence ⇒ quick mean reversion.
- **High persistence** ⇒ slow mean reversion.

Key Insight: The closer the sum of β_i is to 1, the more persistent the process, meaning past values strongly influence future values.

Persistence and Mean Reversion in AR(1)

The plot below shows the **effect of persistence** in an **AR(1) process** with different values of β :

Forecasting with AR models

- The current period is time t, and we are interested in forecasting the value of the variable in future periods t+1, t+2, ...
- Statistically speaking, we want to calculate:

$$E(Y_{t+1}|Y_t), \quad E(Y_{t+2}|Y_t), \quad \dots$$

- We simplify by assuming an AR(1) model (p = 1).
- 1. Estimate the AR(1) model using OLS:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \varepsilon_t$$

2. Compute the forecast for t + 1:

The Auto-Regressive (AR) Model

$$E(Y_{t+1}|Y_t) = \hat{Y}_{t+1} = \hat{\beta}_0 + \hat{\beta}_1 Y_t$$

Forecasting with AR models (cont.)

3. Compute the forecast for t + 2:

The Auto-Regressive (AR) Model

$$E(Y_{t+2}|Y_t) = \hat{Y}_{t+2}$$

$$= \hat{\beta}_0 + \hat{\beta}_1 \hat{Y}_{t+1}$$

$$= \hat{\beta}_0 + \hat{\beta}_1 (\hat{\beta}_0 + \hat{\beta}_1 Y_t)$$

$$= \hat{\beta}_0 (1 + \hat{\beta}_1) + \hat{\beta}_1^2 Y_t$$

4. Compute the forecast for t + 3:

$$E(Y_{t+3}|Y_t) = \hat{Y}_{t+3}$$

$$= \hat{\beta}_0 + \hat{\beta}_1 \hat{Y}_{t+2}$$

$$= \hat{\beta}_0 + \hat{\beta}_1 (\hat{\beta}_0 (1 + \hat{\beta}_1) + \hat{\beta}_1^2 Y_t)$$

$$= \hat{\beta}_0 (1 + \hat{\beta}_1 + \hat{\beta}_1^2) + \hat{\beta}_1^3 Y_t$$

Forecasting with AR models (cont.): Forecasting daily returns

- Building a predictive time series model requires the following steps:
 - 1. Model selection: for AR models this means choosing p.
 - 2. Model estimation: estimating the parameters of the model.
 - **3.** Forecasting: producing the forecasts based on the model and the estimated parameters.
 - The function get_prediction() takes the fitted object and returns the point forecasts and confidence intervals.

	Predicted Values	CI Lower	CI Upper
6905	0.000433	-0.021425	0.022290
6906	0.000408	-0.021487	0.022302
6907	0.000333	-0.021581	0.022248
6908	0.000339	-0.021576	0.022253
6909	0.000342	-0.021573	0.022257
6910	0.000341	-0.021574	0.022256
6911	0.000341	-0.021574	0.022256
6912	0.000341	-0.021574	0.022256

The forecasts start from a different value but rapidly converge 10/27

The Auto-Regressive (AR) Model

Forecasting with AR models (cont.)

• The forecasting formula can be generalized to forecasting *k* steps ahead which is given by

$$\hat{E}(Y_{t+k}|Y_t) = \hat{\beta}_0(\sum_{i=1}^k \hat{\beta}_1^{k-1}) + \hat{\beta}_1^k \times Y_t$$

• Note, the The sum $\sum_{j=1}^k \hat{\beta_1}^{k-1} = 1 + \hat{\beta_1} + \hat{\beta_1}^2 + \ldots + \hat{\beta_1}^{k-1}$ is a geometric series with sum:

$$\sum_{i=1}^k \hat{eta_1}^{k-1} = rac{1-\hat{eta_1}^k}{1-\hat{eta_1}}, \mathit{for}|eta_1| < 1$$

• Substituting this into our forecast equation:

$$\hat{E}(Y_{t+k}|Y_t) = \hat{\beta}_0(\frac{1-\hat{\beta}_1^k}{1-\hat{\beta}_1}) + \hat{\beta}_1^k \times Y_t$$

The Auto-Regressive (AR) Model

Forecasting with AR models (cont.)

• Substituting this into our forecast equation:

$$\hat{E}(Y_{t+k}|Y_t) = \hat{\beta}_0(\frac{1-\hat{\beta}_1^k}{1-\hat{\beta}_1}) + \hat{\beta}_1^k \times Y_t$$

• Taking the limit as $k \to \infty$:

$$\lim_{k\to\infty} \hat{\mathcal{E}}(Y_{t+k}|Y_t) = \frac{\hat{\beta_0}}{1-\hat{\beta_1}}.$$

• This is the long-run mean of the process.

Visualizing the forecasts

 Visualizing the forecasts and the uncertainty around the forecast is a useful tool to understand the strength and the weakness of the forecasts.

Seasonality

- The term Seasonality refers to the characteristic of some time series to show a regular pattern related to the frequency of the variable (eg, daily, monthly, quarterly) that repeats over time.
- Below: Advance Retail Sales: Department Stores (FRED ticker RSDSELDN) at the monthly frequency

Seasonality: Department Stores Sales (Cont.)

• Let's assume that Y_t is the variable we are interested to model; seasonality can be accounted for as follows

$$\begin{aligned} Y_t &= \beta_0 + \beta_1 Y_{t-1} + \gamma_2 \textit{FEB}_t + \gamma_3 \textit{MAR}_t + \gamma_4 \textit{APR}_t + \gamma_5 \textit{MAY}_t + \\ \gamma_6 \textit{JUN}_t + \gamma_7 \textit{JUL}_t + \gamma_8 \textit{AUG}_t + \gamma_9 \textit{SEP}_t + \gamma_{10} \textit{OCT}_t + \gamma_{11} \textit{NOV}_t + \gamma_{12} \textit{DEC}_t + \varepsilon_t \end{aligned}$$

Seasonality: Department stores sales (cont.)

• The regression results are shown below:

Dep. Variable:		RSDSELDN	No. Ob	No. Observations:		397	
Model:		AutoReg-X(1)	Log Li	kelihood		-3421.039	
Method:	C	onditional MLE	S.D. o	of innovation	ons	1366.555	
Date:	Mo	n, 03 Mar 2025	AIC			6870.077	
Time:		19:48:05	BIC			6925.817	
Sample:		02-01-1992	HQIC			6892.160	
		- 01-01-2025					
=======	coef	std err	z	P> z	[0.025	0.975]	
const	-1.165e+04	630.140	-18.488	0.000	-1.29e+04	-1.04e+04	
RSDSELDN.L1	0.8966	0.022	40.145	0.000	0.853	0.940	
April	1.29e+04	428.435	30.108	0.000	1.21e+04	1.37e+04	
August	1.431e+04	431.669	33.161	0.000	1.35e+04	1.52e+04	
December	2.148e+04	380.459	56.467	0.000	2.07e+04	2.22e+04	
February	1.349e+04	464.055	29.068	0.000	1.26e+04	1.44e+04	
July	1.277e+04	426.582	29.935	0.000	1.19e+04	1.36e+04	
June	1.261e+04	418.674	30.124	0.000	1.18e+04	1.34e+04	
March	1.475e+04	454.657	32.443	0.000	1.39e+04	1.56e+04	
May	1.404e+04	431.543	32.541	0.000	1.32e+04	1.49e+04	
November	1.666e+04	422.558	39.427	0.000	1.58e+04	1.75e+04	
October	1.411e+04	437.120	32.273	0.000	1.33e+04	1.5e+04	
September	1.162e+04	415.192	27.994	0.000	1.08e+04	1.24e+04	
		R	oots				
========	Real	Imagi	nary	Modu	lus	Frequency	
AR.1	1.1153	+0.0	000j	1.1	153	0.0000	

Out-of-sample forecasts

- An out-of-sample exercise consists of the following:
 - 1. Select and estimate your model up to a certain date (eg, 2014-01-01)
 - 2. Forecast from that date forward (eg, 132 months ahead)
- In the graph below the red line is the 1 to 132 steps ahead forecast, while the shaded blue areas represent the 95% forecast interval
- The green line represents the actual realization of the variable.

Out-of-sample forecasts

Notice:

- We forecast a larger peak at the end of the year relative to what happened.
- In the other quarters, the red line is typically above the green one, indicating that we are overpredicting sales.
- Is our model *misspecified*, i.e., systematically wrong?

Stationary and Non-Stationary Time Series

- A time series is stationary if the statistical properties of its distribution (e.g., mean, variance, autocorrelation) are constant in the long-run.
- Example: if the returns are stationary, we expect that their distribution in 10 years will be the same as the distribution today; if they are non-stationary, their mean and/or variance will be different.

The Auto-Regressive (AR) Model

Stationary and Non-Stationary Time Series

- This does not imply that the short-run mean and variance of the time series should be constant, but can be a function of past lags, macroeconomic variables, etc.
- Let's consider an AR(1) model:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \epsilon_t$$
 (with $|\beta_1| < 1$)

- (Short-run) Conditional mean: $E(Y_t|Y_{t-1}) = \beta_0 + \beta_1 \cdot Y_{t-1}$
- (Long-run) **Unconditional mean**: $E(Y_t) = \frac{\beta_0}{1-\beta_1}$
- A time series is also stationary if the variance is constant in the long-run and, more generally, the complete distribution.

Simulated Time Series Models

- The Figure shows 10 time series simulated for 500 periods from the following models (with $\epsilon_t \sim N(0,1)$):
 - 1. $Y_t = 0.5 + 0.9Y_{t-1} + \epsilon_t$
 - 2. $Y_t = 0.5 + Y_{t-1} + \epsilon_t$
 - 3. $Y_t = Y_{t-1} + \epsilon_t$
- Who is who? Match models 1, 2, 3 to the plots A, B, C.
- Are these simulated series stationary? That is:
 - Does the mean seem approximately constant over time?
 - Does the variance seem approximately constant over time?

Economic and financial variables

- Variables that are expressed in \$ are often transformed using the logarithm
- One reason for log-transforming a variable is to linearize its exponential behavior

Trend-Stationary Model

- A characteristic of many economic and financial variables is that they grow over time.
- One approach to account for this behavior is to assume a model in which the variable fluctuates in a stationary manner around a deterministic **trend**.
- The trend-stationary model assumes that a time series Y_t follows the process:

$$Y_t = \beta_0 + \beta_1 \cdot t + d_t$$

where d_t is the deviation from the trend, which is assumed to be stationary.

- Two components:
 - **1.** Permanent (non-stationary): $\beta_0 + \beta_1 t$
 - **2.** Transitory (*stationary*): d_t (e.g., $d_t = \phi d_{t-1} + \epsilon_t$)

Estimation: Linear

- The trend-stationary model $Y_t = \beta_0 + \beta_1 \cdot t + d_t$ can be estimated using OLS() or AutoReg()command.
- where the estimate of $\hat{\beta_1}$ is 0.0077 and indicates that real GDP is expected to grow 0.77% every quarter. for the S&P 500 $\hat{\beta_1} = 0.0180$ and represents a quarterly growth of 1.8%.

	(Intercept)	trend
GDP	7.8059	0.0077
SP500	5.5394	0.0180

Linear trend

 These plots show the log of the variables considered above and the fitted linear trend

Nonlinear Trend

 The trend does not necessarily have to be linear, but could also be quadratic or cubic:

$$Y_t = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot t^2 + \beta_3 \cdot t^3 + d_t$$

where t^2 and t^3 are the square and cube of the trend variable.

Residuals

• The plots below show the deviations of the variables from the linear/ nonlinear trend (d_t): stationary or non-stationary?

