Final Project Progress Report 2

Rahul Rengan Ramakrishnan, Yusi Yao

2025-04-21

1. Project Overview

We are modeling how temperature affects the mosquito biting rate a(T), a critical factor in malaria transmission dynamics. Using a Bayesian framework, we apply a custom Metropolis-Hastings MCMC algorithm to estimate the posterior distributions of parameters in the Brière function:

$$a(T) = cT(T - T_0)\sqrt{T_m - T}$$

Our goal is to quantify uncertainty in biological parameters and understand how temperature shifts could influence mosquito-related disease spread.

2. Work Completed (April 23–29)

2.1 MCMC Execution on Synthetic Data

We successfully completed a 10,000-iteration run of Metropolis-Hastings MCMC using synthetic data generated to mimic realistic mosquito trait-temperature relationships.

2.1.1 Previously Defined Functions

```
briere <- function(T, c, T0, Tm) {
  result <- ifelse(
    T > T0 & T < Tm,
    c * T * (T - T0) * sqrt(pmax(0, Tm - T)),
    0
  )
  return(result)
}</pre>
```

We define the Brière function, clamping negative values inside the square root using pmax(0, Tm - T) to avoid NaN issues during simulation.

```
log_likelihood <- function(data_temp, data_obs, c, T0, Tm, sigma = 1) {
  preds <- briere(data_temp, c, T0, Tm)
  log_lik <- dnorm(data_obs, mean = preds, sd = sigma, log = TRUE)
  return(sum(log_lik))
}</pre>
```

This function calculates the log-likelihood of observing the data given a set of model parameters assuming normal errors.

```
mcmc_briere <- function(data_temp, data_obs, n_iter = 10000) {</pre>
  samples <- matrix(NA, nrow = n_iter, ncol = 3)</pre>
  colnames(samples) <- c("c", "T0", "Tm")</pre>
  c <- 0.0001
  TO <- 10
  Tm <- 40
  for (i in 1:n_iter) {
    c_prop <- abs(c + rnorm(1, 0, 0.00001))</pre>
    T0_{prop} \leftarrow T0 + rnorm(1, 0, 0.5)
    Tm_prop \leftarrow Tm + rnorm(1, 0, 0.5)
    if (TO_prop >= Tm_prop) {
      samples[i, ] \leftarrow c(c, T0, Tm)
      next
    }
    ll_current <- log_likelihood(data_temp, data_obs, c, T0, Tm)</pre>
    ll_proposed <- log_likelihood(data_temp, data_obs, c_prop, T0_prop, Tm_prop)</pre>
    alpha <- exp(ll_proposed - ll_current)</pre>
    if (runif(1) < alpha) {</pre>
      c <- c_prop
      TO <- TO_prop
      Tm <- Tm_prop
    samples[i, ] \leftarrow c(c, T0, Tm)
  return(as.data.frame(samples))
}
```

We implement a Metropolis-Hastings MCMC algorithm that iteratively proposes new parameter values and accepts or rejects based on likelihood improvement.

2.1.2 Generating Synthetic Data

```
set.seed(42)
synthetic_data <- data.frame(
   temp = seq(10, 40, length.out = 100),
   trait_value = briere(seq(10, 40, length.out = 100), c = 0.0002, T0 = 10, Tm = 40) + rnorm(100, 0, 1)
)
head(synthetic_data)

##   temp trait_value
## 1 10.00000  1.37095845
## 2 10.30303 -0.56129537
## 3 10.60606  0.37009835
## 4 10.90909  0.64356065
## 5 11.21212  0.41885205
## 6 11.51515 -0.08750096</pre>
```

We generate synthetic data points to mimic trait-temperature relationships, adding random noise for realism.

2.1.3 Running the MCMC

```
mcmc_samples <- mcmc_briere(
  data_temp = synthetic_data$temp,
  data_obs = synthetic_data$trait_value,
  n_iter = 10000
)
head(mcmc_samples)</pre>
```

```
## c T0 Tm

## 1 0.0001120097 10.52238 39.49840

## 2 0.0001116232 10.20022 39.69089

## 3 0.0001103997 10.29432 39.75047

## 4 0.0001009224 11.17831 40.20913

## 5 0.0001094966 11.74135 40.10995
```

We run the MCMC sampler to generate a large set of posterior samples of c, T_0 , and T_m .

2.2 Diagnostics: Trace Plots and Posterior Summaries

```
library(ggplot2)
mcmc_samples$iteration <- 1:nrow(mcmc_samples)

# Trace plot for c
p1 <- ggplot(mcmc_samples, aes(x = iteration, y = c)) +
    geom_line(color = "blue") +
    labs(title = "Trace Plot for c", x = "Iteration", y = "c")

# Trace plot for TO
p2 <- ggplot(mcmc_samples, aes(x = iteration, y = T0)) +
    geom_line(color = "green") +
    labs(title = "Trace Plot for TO", x = "Iteration", y = "TO")

# Trace plot for Tm
p3 <- ggplot(mcmc_samples, aes(x = iteration, y = Tm)) +
    geom_line(color = "red") +
    labs(title = "Trace Plot for Tm", x = "Iteration", y = "Tm")
p1</pre>
```


Trace Plot for T0

Trace Plot for Tm

We visualize the sampling history for each parameter to check convergence. Ideally, the traces should appear as "random walks" around stable means.

3. Problems Encountered

- Slow Convergence: Trace plots showed some initial wandering, suggesting tuning of proposal standard deviations is necessary.
- Parameter Drift: Occasionally unrealistic values for T_0 and T_m were proposed, suggesting the need for biologically informed soft bounds.
- Synthetic Bias: Our synthetic dataset was idealized, so real-world data may require stronger priors or adjustments for higher variability.

4. Timeline Update

Week	Dates	Status	Notes
Week 3	April 23–29	Completed	Full MCMC run, synthetic results, diagnostics
Week 4	April 30–May 7	In Progress	Final tuning, real data integration, posterior predictive checking

5. Next Steps

- Tune MCMC proposal distributions for faster convergence
- $\bullet\,$ Implement biologically-informed soft bounds on parameters
- Transition from synthetic to real trait data
- $\bullet\,$ Finalize posterior prediction plots and statistical summaries
- Begin drafting the final project report and poster presentation