71. Условия для магнитного поля на границе двух магнетиков.

12.3. Условия на границе раздела двух магнетиков

Вблизи поверхности раздела 2-х магнетиков поля векторов \vec{B} и \vec{H} должны удовлетворять определенным условиям, вытекающим из (12.14) и (11.22).

В изотропных магнетиках \vec{B}_1 , \vec{H}_1 и \vec{B}_2 и \vec{H}_2 лежат в одной плоскости, в которой введем ортонормированный базис: \vec{n} – единичный вектор нормали к границе раздела, направленный от первого магнетика (μ_1) ко второму (μ_2);

 $\vec{\tau}$ – единичный вектор касательной к границе раздела.

$$\vec{B}_1 = B_{1n} \cdot \vec{n} + B_{1\tau} \cdot \vec{\tau}, \tag{12.18}$$

$$\vec{B}_2 = B_{2n} \cdot \vec{n} + B_{2\tau} \cdot \vec{\tau}, \tag{12.19}$$

$$\vec{H}_{1} = H_{1n} \cdot \vec{n} + H_{1\tau} \cdot \vec{\tau}, \tag{12.20}$$

$$\vec{H}_2 = H_{2n} \cdot \vec{n} + H_{2\tau} \cdot \vec{\tau}, \tag{12.21}$$

где $B_{1n} \cdot \vec{n}$ — нормальная составляющая вектора \vec{B}_1 (где B_{1n} — проекция вектора \vec{B}_1 на нормаль \vec{n});

 $B_{1\tau}$: $\vec{\tau}$ — тангенциальная составляющая вектора \vec{B}_1 (где $B_{1\tau}$ — проекция вектора \vec{B}_1 на касательную $\vec{\tau}$).

Вблизи поверхности раздела 2-х изотропных магнетиков (при отсутствии токов проводимости) поля вектора \vec{B} и \vec{H} удовлетворяют *граничным условиям*:

$$B_{2n} = B_{1n}, H_{2\tau} = H_{1\tau},$$

$$\frac{B_{2\tau}}{B_{1\tau}} = \frac{\mu_2}{\mu_1}, \frac{H_{2n}}{H_{1n}} = \frac{\mu_1}{\mu_2},$$
(12.22)

из которых следует, что на границе раздела 2-х магнетиков:

- нормальная составляющая \overrightarrow{B} и тангенциальная составляющая \overrightarrow{H} непрерывны,
- тангенциальная составляющая \vec{B} и нормальная составляющая \vec{H} претерпевают разрыв.

Силовые линии поля вектора \vec{B} и \vec{H} на границе раздела 2-х магнетиков испытывают излом (преломляются).

Из рисунка:

$$tg\alpha_1 = \frac{B_{1\tau}}{B_{1n}}, \quad tg\alpha_2 = \frac{B_{2\tau}}{B_{2n}}.$$

Учитывая (12.22), получаем:

$$\frac{\operatorname{tg}\alpha_{1}}{\operatorname{tg}\alpha_{2}} = \frac{B_{1\tau}}{B_{2\tau}} = \frac{\mu_{1}}{\mu_{2}},$$

$$\frac{\operatorname{tg}\alpha_{1}}{\operatorname{tg}\alpha_{2}} = \frac{\mu_{1}}{\mu_{2}}$$
(12.23)

- закон преломления силовых линий поля вектора \overrightarrow{B} (или \overrightarrow{H}).