Лекции курса «Алгебра», лектор Р. С. Авдеев

 Φ КН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2015/2016 учебный год

Лекция 1

Полугруппы и группы: основные определения и примеры. Группы подстановок и группы матриц. Подгруппы. Порядок элемента и циклические подгруппы. Смежные классы и индекс подгруппы. Теорема Лагранжа и её следствия.

Определение 1. *Множество с бинарной операцией* — это множество M с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

Определение 2. Множество с бинарной операцией (M, \circ) называется *полугруппой*, если данная бинарная операция accouuamusna, т. е.

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a, b, c \in M$.

Не все естественно возникающие операции ассоциативны. Например, если $M=\mathbb{N}$ и $a\circ b:=a^b$, то

$$2^{(1^2)} = 2 \neq (2^1)^2 = 4.$$

Другой пример неассоциативной бинарной операции: $M=\mathbb{Z}$ и $a\circ b:=a-b$ (проверьте!).

Полугруппу обычно обозначают (S, \circ) .

Определение 3. Полугруппа (S, \circ) называется *моноидом*, если в ней есть *нейтральный элемент*, т.е. такой элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Во Франции полугруппа $(\mathbb{N},+)$ является моноидом, а в России нет.

Замечание 1. Если в полугруппе есть нейтральный элемент, то он один. В самом деле, $e_1 \circ e_2 = e_1 = e_2$.

Определение 4. Моноид (S, \circ) называется *группой*, если для каждого элемента $a \in S$ найдется *обратный* элемент, т. е. такой $b \in S$, что $a \circ b = b \circ a = e$.

Упражнение 1. Докажите, что если обратный элемент существует, то он один.

Обратный элемент обозначается a^{-1} . Группу принято обозначать (G, \circ) или просто G, когда понятно, о какой операции идёт речь. Обычно символ \circ для обозначения операции опускают и пишут просто ab.

Определение 5. Группа G называется коммутативной или абелевой, если групповая операция коммутативна, т. е. ab = ba для любых $a, b \in G$.

Если в случае произвольной группы G принято использовать мультипликативные обозначения для групповой операции -gh, e, g^{-1} , то в теории абелевых групп чаще используют аддитивные обозначения, т. е. a+b, 0, -a.

Определение 6. *Порядок* группы G — это число элементов в G. Группа называется *конечной*, если её порядок конечен, и *бесконечной* иначе.

Порядок группы G обозначается |G|.

Приведём несколько серий примеров групп.

- 1) Числовые аддитивные группы: $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, $(\mathbb{Z}_n,+)$.
- 2) Числовые мультипликативные группы: $(\mathbb{Q}\setminus\{0\},\times)$, $(\mathbb{R}\setminus\{0\},\times)$, $(\mathbb{C}\setminus\{0\},\times)$, $(\mathbb{Z}_p\setminus\{\overline{0}\},\times)$, p—простое.
- 3) Группы матриц: $GL_n(\mathbb{R}) = \{A \in Mat(n \times n, \mathbb{R}) \mid \det(A) \neq 0\}; SL_n(\mathbb{R}) = \{A \in Mat(n \times n, \mathbb{R}) \mid \det(A) = 1\}.$
- 4) Группы подстановок: симметрическая группа S_n все подстановки длины $n, |S_n| = n!$; знакопеременная группа A_n чётные подстановки длины $n, |A_n| = n!/2$.

 $Упраженение\ 2.\ Докажите,$ что группа S_n коммутативна $\Leftrightarrow n \leq 2$, а A_n коммутативна $\Leftrightarrow n \leq 3$.

Определение 7. Подмножество H группы G называется noderpynnoй, если выполнены следующие три условия: (1) $e \in H$; (2) $ab \in H$ для любых $a, b \in H$; (3) $a^{-1} \in H$ для любого $a \in H$.

Упраженение 3. Проверьте, что H является подгруппой тогда и только тогда, когда H непусто и $ab^{-1} \in H$ для любых $a,b \in H$.

В каждой группе G есть *несобственные* подгруппы $H = \{e\}$ и H = G. Все прочие подгруппы называются собственными. Например, чётные числа $2\mathbb{Z}$ образуют собственную подгруппу в $(\mathbb{Z}, +)$.

Предложение 1. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого целого неотрицательного k.

Доказательство. Пусть H — подгруппа в \mathbb{Z} . Если $H = \{0\}$, положим k = 0. Иначе пусть k — наименьшее натуральное число, лежащее в H (почему такое есть?). Тогда $k\mathbb{Z} \subseteq H$. С другой стороны, если $a \in H$ и a = qk + r — результат деления a на k с остатком, то $0 \leqslant r \leqslant k - 1$ и $r = a - qk \in H$. Отсюда r = 0 и $H = k\mathbb{Z}$.

Определение 8. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порождённой элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\}$ в G.

Циклическая подгруппа, порождённая элементом g, обозначается $\langle g \rangle$. Элемент g называется noposedano- mum или ofpasyromum для подгруппы $\langle g \rangle$. Например, подгруппа $2\mathbb{Z}$ в $(\mathbb{Z},+)$ является циклической, и в качестве порождающего элемента в ней можно взять g=2 или g=-2. Другими словами, $2\mathbb{Z}=\langle 2 \rangle=\langle -2 \rangle$.

Определение 9. Пусть G — группа и $g \in G$. Порядком элемента g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности.

Порядок элемента обозначается $\operatorname{ord}(g)$. Заметим, что $\operatorname{ord}(g)=1$ тогда и только тогда, когда g=e.

Следующее предложение объясняет, почему для порядка группы и порядка элемента используется одно и то же слово.

Предложение 2. Пусть G — группа u $g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Доказательство. Заметим, что если $g^k = g^s$, то $g^{k-s} = e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы g^n , $n \in \mathbb{Z}$, попарно различны, и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же порядок элемента g равен m, то из минимальности числа m следует, что элементы $e = g^0, g = g^1, g^2, \ldots, g^{m-1}$ попарно различны. Далее, для всякого $n \in \mathbb{Z}$ мы имеем n = mq + r, где $0 \le r \le m-1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно, $\langle g \rangle = \{e,g,\ldots,g^{m-1}\}$ и $|\langle g \rangle| = m.$

Определение 10. Группа G называется $uu\kappa nuveckou$, если найдётся такой элемент $g \in G$, что $G = \langle g \rangle$.

Ясно, что любая циклическая группа коммутативна и не более чем счётна. Примерами циклических групп являются группы $(\mathbb{Z},+)$ и $(\mathbb{Z}_n,+)$, $n\geq 1$.

Перейдем ещё к одному сюжету, связанному с парой группа-подгруппа.

Определение 11. Пусть G — группа, $H \subseteq G$ — подгруппа и $g \in G$. Левым смеженым классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\}.$$

Лемма 1. Пусть G — группа, $H\subseteq G$ — $e\ddot{e}$ подгруппа u $g_1,g_2\in G$. Тогда либо $g_1H=g_2H$, либо $g_1H\cap g_2H=\varnothing$.

Доказательство. Предположим, что $g_1H\cap g_2H\neq\varnothing$, т.е. $g_1h_1=g_2h_2$ для некоторых $h_1,h_2\in H$. Нужно доказать, что $g_1H=g_2H$. Заметим, что $g_1H=g_2h_2h_1^{-1}H\subseteq g_2H$. Обратное включение доказывается аналогично.

Лемма 2. Пусть G — группа и $H \subseteq G$ — конечная подгруппа. Тогда |gH| = |H| для любого $g \in G$.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в |gH| элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножаем слева на g^{-1} и получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Определение 12. Пусть G — группа и $H \subseteq G$ — подгруппа. Индексом подгруппы H в группе G называется число левых смежных классов G по H.

Индекс группы G по подгруппе H обозначается [G:H].

Теорема Лагранжа. Пусть G — конечная группа и $H \subseteq G$ — подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своём) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (лемма 1) и каждый из них содержит по |H| элементов (лемма 2).

Следствие 1. Пусть $G - \kappa$ онечная группа и $H \subseteq G - nod$ группа. Тогда |H| делит |G|.

Следствие 2. Пусть G — конечная группа $u g \in G$. Тогда $\operatorname{ord}(g)$ делит |G|.

Доказательство. Это вытекает из следствия 1 и предложения 2.

Следствие 3. Пусть G — конечная группа u $g \in G$. Тогда $g^{|G|} = e$.

Доказательство. Согласно следствию 2, мы имеем $|G| = \operatorname{ord}(g) \cdot s$, откуда $g^{|G|} = (g^{\operatorname{ord}(g)})^s = e^s = e$.

Следствие 4. Пусть G — группа. Предположим, что |G| — простое число. Тогда G — циклическая группа, порождаемая любым своим неединичным элементом.

Доказательство. Пусть $g \in G$ — произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$. \square

Наряду с левым смежным классом можно определить npasuic смежный класс элемента g группы G по подгруппе H:

$$Hg = \{hg \mid h \in H\}.$$

Повторяя доказательство теоремы Лагранжа для правых смежных классов, мы получим, что для конечной группы G число правых смежных классов по подгруппе H равно числу левых смежных классов и равно |G|/|H|. В то же время равенство gH=Hg выполнено не всегда. Разумеется, оно выполнено, если группа G абелева. Подгруппы H (неабелевых) групп G, для которых gH=Hg выполнено для любого $g\in G$, будут изучаться в следующей лекции.

Список литературы

- [1] Э. Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 4, § 1,3,5)
- [2] А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994 (глава 4, § 1-2)
- [3] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 1, § 2)
- [4] Сборник задач по алгебре под редакцией А.И.Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 13, § 54-56)