2016 VLSI System Design and Implementation

Block Level APR Flow with SOC Encounter (v8.1)

A. Data Prepare:

Prepare required library (for IC contest) and user data for core-level APR.

Description	File of Directory
Working directory	./SOCE/run/
Layout Mapping File	./SOCE/run/streamOut.map
Gate Level Netlist	./SOCE/design_data/TOP_syn.v
Timing Constraint File	./SOCE/design_data/TOP_syn.sdc
MMMC View Definition File	./SOCE/design_data/TOP.view
Antenna Rules	./SOCE/lef/antenna_8.lef
Reference Library (Core)	./SOCE/lef/tsmc13fsg_8lm_cic.lef
	./SOCE/lib/fast.lib
Timing Library (Core)	./SOCE/lib/slow.lib
	./SOCE/lib/typical.lib

B. Design Import:

1. Launch SOC Encounter in the working directory:

unix% cd ./SOCE/run

unix% encounter

2. Set design mode(command line):

encounter > setDesignMode -process 130 -addPhysicalCell hier -flowEffort none

3. Design import:

"File → Import Design..."

Basic page:

F8	
Verilog Files	/design_data/TOP_syn.v
Top Cell	TOP
LEF Files	/lef/tsmc13fsg_8lm_cic.lef /lef/antenna_8.lef
MMMC View Definition File	/design_data/TOP.view

Be careful with the sequence of files in the "LEF Files" field.

"tsmc13fsg_8lm_cic.lef" must be the FIRST ONE!

Power

Power Nets	VDD
Ground Nets	VSS

Press Save, save configuration as TOP.conf

Press OK.

Note that we provide the "MMMC View Definition File" for this lab. However,

you have to configure Multi-Mode/Multi-Corner (MMMC) environment manually by yourself when you adopt other process technology. To configure the MMMC environment, press the button "Create Analysis Configuration" to see the wizard help.

An example of MMMC configuration is shown as follows:

C. Floor Plan:

1. Global net connection:

"Power → Connect Global Nets..."

Pin	Enable
Pin Name(s)	VDD
To Global Net	VDD

Press Add to List

Tie High	Enable
Pin Name(s)	VDD
To Global Net	VDD

Press Add to List

Pin	Enable
Pins Name(s)	VSS
To Global Net	VSS

Press Add to List

Tie Low	Enable
Pins Name(s)	VSS
To Global Net	VSS

Press Add to List

There will be four entries in "Connection List", press Apply, and then press Check, then press Cancel.

2. Specify scan chain: (Skip! Do this step only if your design has scan chains)
Type the following instructions in encounter terminal:
encounter> specifyScanChain scan1 -start si_1 -stop so_1
encounter> scantrace

3. Specify floor plan:

"Floorplan → Specify Floorplan..."

Ratio(H/W)	1
Core Utilization	0.9
Core to Left	30
Core to Top	30
Core to Right	30
Core to Bottom	30
All other options	Default value

Press OK.

4. Save Design:

"File → Save Design"

Encounter	enable
File name	Floorplan.enc

Press ok.

So far, you will see:

D. Power Plan:

1. Create power rings for **core**:

"Power → Power planning → Add Rings..."

Net(s)		VDD VSS (Press the
		browse button to select
		possible nets)
Ring Type		Core ring(s) contouring
Ring configurat	ion >	
Тор	Layer	METAL7 H
	Width	2
Bottom	Layer	METAL7 H
	Width	2
Left	Layer	METAL6 V

	Width	2
Right	Layer	METAL6 V
	Width	2
All other options		Default value

Press Update.

Switch to Advanced page:

	1 0
Use wire group	Enable
Interleaving	Enable
Number of bits	6

Press OK.

2. Create power stripes:

"Power → Power planning → Add Stripes..."

Add stripes along y-coordinate.

Net(s)	VSS VDD
Layer	METAL6
Width	1

Press Update.

Set-to-set distance	160
X from left	160
X from right	0

Switch to Advanced page:

Omit stripes inside block rings	Enable
Pad/Core ring connection → Allow jogging	Enable
Block ring connection → Allow jogging	Enable
Use wire group	Enable
Interleaving	Enable
Number of bits	2
All other options	Default value

Switch to Via Generation page:

Use exact overlap area on partially intersecting wires	Enable
Split vias while encounting Obs and different net	Enable
Wires/Pins	
Generate same-sized stack vias while encountering macro	Enable
Pins/Obs	
All other options	Default value

Press Apply.

Add stripes along x-coordinate.

	8
Net(s)	VSS VDD
Layer	METAL7
Width	1

Press Update

Set-to-set distance	160
Start from	top
Y from top	160
Y from bottom	0

Press OK.

3. Save Design:

"File → Save Design..."

File name Powerplan.enc

So far, you will see the following floorplan:

E. Placement & Pre-CTS Optimization:

1. Placement:

"Place → Place Standard Cell..."

Default value, Press OK.

2. Trial route:

"Route → Trial Route..."

Medium Effort E	Enable
-----------------	--------

Press OK.

3. Pre-CTS timing analysis:

"Timing → Extract RC..."

RC Corner to Output s	slow
-------------------------	------

Press OK.

"Timing → Report Timing..."

Design stage	Pre-CTS
All other options	Default value

Press OK.

4. Pre-CTS timing optimization:

"Optimize → Optimize Design..."

Design stage	Pre-CTS
All other options	Default value

Press OK.

Observe congestion distribution and optDesign summary.

WNS = ?

TNS = ?

Density = ?

5. Save Design:

"File → Save Design..."

File name	PreCTS.enc
1 He Haine	Ticcib.cnc

Press Save.

F. Clock Tree Synthesis & Post-CTS Optimization:

1. Add tie high / low cells:

Type the following instructions in encounter terminal:

encounter> setTieHiLoMode -maxFanout 10 -maxDistance 40

"Place \rightarrow Tie HI/LO \rightarrow Add..."

Press Select button at right of Cell Name field, and select TIEHI and TIELO.

Cell Name	TIEHI TIELO
-----------	-------------

Press OK.

2. Synthesis clock tree:

"Clock → Synthesize Clock Tree..."

Press Gen Spec...

Add "CLKBUFX2, CLKBUFX3, CLKBUFX4, CLKBUFX6, CLKBUFX8, CLKBUFX12, CLKBUFX16, CLKBUCX20, CLKINVX1, CLKINVX2,

CLKINVX3, CLKINVX4, CLKINVX6, CLKINVX8, CLKINVX12, CLKINVX16, CLKINVX20".

Press OK.

Press OK.

Observe the "Rise Phase Delay, Fall Phase Delay, Trig. Edgs Skew, Rise Skew, and Fall Skew" in the file clock_report/clock.postCTS.report.

3. Trial route:

"Route → Trial Route..."

Medium Effort	Enable
---------------	--------

Press OK.

4. Post-CTS timing analysis:

"Timing → Extract RC..."

RC Corner to Output	slow

Press OK.

"Timing → Report Timing..."

Design stage	Post-CTS
All other options	Default value

Press OK

WNS = ?

TNS = ?

Density = ?

5. Post-CTS timing optimization:

"Optimize → Optimize Design..."

-	
Design stage	Post-CTS
Hold	Enable
MaxFanout	Enable
All other options	Default value

Press OK.

Observe congestion distribution and optDesign summary.

Setup Mode:

WNS = ?

TNS = ?

Density = ?

Hold Mode:

WNS = ?

TNS = ?

Density = ?

6. Save Design:

"File → Save Design..."

File name	PostCTS.enc
1 He Hanne	1 OSIC 15.CHC

Press Save.

G. Global & Detail Routing:

1. Connect standard cell pins:

"Route → Special Route..."

Net(s)	VSS VDD
Block pins	Disable
Pad pins	Disable
Pad rings	Disable
Follow Pins	Enable
Floating Stripes	Disable
All other options	Default value

Press OK.

What's the difference before and after this step?

What are the blue bold lines?

2. Global & detail routing:

"Route → NanoRoute → Route..."

Global Route	Enable
Detail Route	Enable
Fix Antenna	Enable
Timing Driven	Enable
SI Driven	Enable
All other options	Default value

Press Attribute:

NetType(s)	Enable
Clock Nets	Enable
Weight	10
Spacing	1
Avoid Detour → True	Enable
All other options	Default value

Press OK.

Press OK.

Observe total number of violations.

Total number of DRC violations = ? (See the terminal)

3. Post-Route timing analysis:

"Option → Set Mode → Specify RC Extraction Mode ..."

PostRoute	Enable
All other options	Default value

Press OK.

"Option →Set Mode → Specify Analysis Mode ..."

On-Chip Variation	Enable
All other options	Default value

Press OK.

"Timing → Extract RC..."

RC Corner to Output	slow
---------------------	------

Press OK.

"Timing → Report Timing..."

Design stage	Post-Route
All other options	Default value

Press OK.

WNS = ?

TNS = ?

Density = ?

4. Post-Route timing optimization: (Run post-route timing optimization if WNS is negative)

"Optimize → Optimize Design..."

Design stage	Post-Route
All other options	Default value

Press OK.

Observe congestion distribution and optDesign summary.

WNS = ?

TNS = ?

Density = ?

If WNS is negative, perform post-route timing optimization again.

5. Verify DRC:

"Verify → Verify Connectivity..."

Press OK.

Verification Complete: ? Viols. ? Wrngs.

"Verify → Verify Geometry → check"

Geometry Antenna	Enable
All other options	Default value

Press OK.

Verification Complete: ? Viols. ? Wrngs.

"Verify → Verify Process Antenna..."

Press OK.

Verification Complete: ? Violations

"Tools → Violation Browser..."

Press Save to save violations report.

6. Save Design:

"File → Save Design..."

File name	PostRoute.enc

Press Save.

H. Export Data:

1. Add core filler:

"Place → Physical Cell → Add Filler..."

Press Select button at right of Cell Name(s) field, and select all size of filler.

Press OK.

What's the difference before and after adding filler?

Before adding filler:

After adding filler:

So far, you should see the following view

2. Save netlist:

"File → Save → Netlist..."

Netlist File	TOP_pr.v
All other options	Default value

Press OK.

3. Calculate delay:

"Timing → Write SDF..."

File Name	TOP_pr.sdf
ideal clock	Uncheck
All other options	Default value

Press OK.

4. Output stream:

"File → Save → GDS/OASIS..."

Output File	TOP.gds

Map File	streamOut.map
Units	1000
All other options	Default value

Press OK.

5. Exit:

"File → Exit"

I. Post-layout simulation:

- 1. Change directory to "run_sim": unix% cd ../../run_sim
- 2. Execute post-layout simulation: (you can reference the content of "Makefile") unix% make APR_SIM

You should see the following snapshot:

```
Pattern
                    0, correct.
                    1, correct.
Pattern
Pattern
                    2, correct.
Pattern
                    3, correct.
Pattern
                    4, correct.
Pattern
                    5, correct.
Pattern
                    6, correct.
                    7, correct.
8, correct.
Pattern
Pattern
Pattern
                    9, correct.
                   10, correct.
Pattern
Pattern
                   11, correct.
Pattern
                   12, correct.
Pattern
                   13, correct.
Pattern
                   14, correct.
                   15, correct.
Pattern
Pattern
                   16, correct.
Pattern
                   17, correct.
Pattern
                   18, correct.
Pattern 19, correct.
Simulation complete via $finish(1) at time 7305 NS + 0
../tbench/test.v:126
                               $finish;
ncsim> exit
make: warning: Clock skew detected. Your build may be incomplete.
[hwchien@ic28 run_sim]$ ■
```

3. The timing violation before reset can be ignored.