

Programación dinámica: Weighted Interval Scheduling

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Weighted Interval Scheduling

P un conjunto de n pedidos $\{p_1, p_2, ..., p_n\}$

Cada pedido i tiene

un tiempo s_i donde inicia

Un tiempo t_i donde finaliza

un valor v_i

Si bien puedo seleccionar x e y con un valor de 7, es preferible z con un valor total de 8

V₌3

 p_{x}

Un par de tareas $p_x, p_y \in P$

Son compatibles entre si, si - y solo si – no hay solapamiento en el tiempo entre ellas

Queremos

Seleccionar el subconjunto P con tareas compatibles entre si y que con la suma de sus valores lo mayor posible

S_v

V₂=8

V_=4

¿Existe un algoritmo greedy para resolverlo?

Para el caso particular

 $V_i = 1$ para todo i

Se corresponde

al problema de maximizar la cantidad de tareas compatibles a realizar

En ese caso

Funcionaba una estrategia greedy

Sin embargo

No se conoce una para el problema general

Un orden inicial

¿Qué hacíamos en la solución greedy?

Ordenábamos en orden creciente en tiempo de finalización de la tarea

$$f_1 \le f_2 \le \ldots \le f_n$$

Con este orden, podemos decir

Que la tarea i viene antes que la j, si i<j

Para construir nuestra solución

Utilizaremos el mismo ordenamiento

Tareas compatibles anteriores

Para cada tarea i

Nos interesará conocer la primera tarea anterior con la que es compatible P(i)

Si nomenclamos las tareas utilizando el orden establecido

el indice de la tarea anterior compatible sera menor a la tarea → P(i)=x con x<i

Y todas las tareas con indice menor a x también serán compatibles

Tenemos:

P(6)=2 (y por lo tanto la tarea 1 también es compatible con la tarea 6)

$$P(5) = 3$$

P(3) = 0 (no hay ninguna tarea anterior compatible)

Pertenencia de una tarea al óptimo

Dada

Una instancia del problema

En la solución óptima O

Podrá pertenecer o no una determinada tarea i

Si pertenece

Entonces no podrán pertenecer aquellas incompatibles con ella

Recién P(i) podría pertenecer a la solución optima

Si no pertenece

Entonces la tarea i-1 podría pertenecer a la solución optima

 p_4

 p_3

 p_6

 p_{5}

 p_1

 p_2

Árbol de decisión

Podemos utilizar este criterio

Comenzando por la tarea n y descendiendo hasta la tarea 1

Tareas que pertenecen al óptimo (II)

¿Qué determina que una tarea i este o no en el óptimo?

Si conocemos el optimo de sus subproblemas: O(i-1) y O(p(i)) Elegimos el mayor valor entre v(pi)+O(i-1) y O(p(i)) p6 ∈0 p_4 p_1 p2 **p5** p_2 p4 p1 p_3 **p1** p2 p1 p2

p1

Memorización

¿Tenemos que recorrer (y calcular) todo el árbol?

Si observamos atentamente, algunos subproblemas se repiten Alcanza con calcularlos solo 1 vez (aplicar memorización) p6 ∈0 p_4 p_1 **p**5 p_2 p3 p4 p_3 **p1** p2

Recurrencia

Podemos expresar el problema como:

$$OPT(x)=0 , si x=0$$

$$OPT(x)=max\{V(x)+OPT(P(x)), OPT(x-1)\} , si X>0$$

El resultado con el máximo valor posibles será:

OPT(n)

Solución iterativa

Complejidad

Temporal O(n)

Espacial: O(n)

```
OPT[0]=0
Desde i=1 a n
    enOptimo = V[i] + OPT[P(i)]
    noEnOptimo = OPT[i-1]
    si enOptimo >= noEnOptimo
         OPT[i] = enOptimo
    sino
         OPT[i] = noEnOptimo
Retornar OPT[n]
```


Reconstruir las elecciones

Para cada subproblema i

almacenar si la tarea se eligió

Reconstruir para atrás

Partiendo de la tarea n

Iterar pasando por lo subproblemas seleccionados

```
OPT[0]=0
elegido[0]=false
Desde i=1 a n
    enOptimo = V[i] + OPT[P(i)]
    noEnOptimo = OPT[i-1]
    elegido[i]=(enOptimo >= noEnOptimo)
    si enOptimo >= noEnOptimo
         OPT[i] = enOptimo
    sino
         OPT[i] = noEnOptimo
Imprimir OPT[n]
i = n
Mientras i >0
    Si elegido[i]
         Imprimir i
         i = P(i)
    sino
```


Presentación realizada en Octubre de 2020