PyMCon Web Series

An introduction to Multi-output Gaussian processes using PyMC

Danh Phan

Feb 2023

1. Why multi-output Gaussian Processes?

There are many cases where several outputs are affected by the same uncertainty.

❖For examples:

- The temperatures or wind speed in nearby locations
- Stock prices of tech companies
- The currency exchange with respect to USD dollars
- The EEG recordings from human neonates on human brains
- The spatial variability of over one risk factor for cancer across a geographical map.
- the continuous-space multi-crime dataset
- Spatial prediction of soil pollutants

The Sensor Network from South Coast of England

Single-output Gaussian Process

$$f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, k(\mathbf{x}, \mathbf{x}'))$$

 $y(\mathbf{x}_i) = f(\mathbf{x}_i) + \epsilon_i$
 $\epsilon_i \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

$$\mathcal{D} = \{(\mathbf{x}_i, y(\mathbf{x}_i)) | i = 1, \dots, N\}$$

Single-output Gaussian Process

$$f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, k(\mathbf{x}, \mathbf{x}'))$$
 $y(\mathbf{x}_i) = f(\mathbf{x}_i) + \epsilon_i$ $\epsilon_i \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ $\mathcal{D} = \{(\mathbf{x}_i, y(\mathbf{x}_i)) | i = 1, \dots, N\}$

$$\begin{bmatrix} y(\mathbf{x}_1) \\ \vdots \\ y(\mathbf{x}_N) \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} + \sigma^2 \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \end{pmatrix}$$

Multiple-output Gaussian process

Multiple-output Gaussian process

Multiple-output Gaussian process

$$\mathcal{D}_1 = \{(\mathbf{x}_{i,1}, f_1(\mathbf{x}_{i,1})) | i = 1, \dots, N_1\}$$

$$\mathcal{D}_1 = \{(\mathbf{x}_{i,1}, f_1(\mathbf{x}_{i,1})) | i = 1, \dots, N_1\} \quad \mathcal{D}_2 = \{(\mathbf{x}_{i,2}, f_2(\mathbf{x}_{i,2})) | i = 1, \dots, N_2\}$$

$$\mathbf{K_{f,f}} = egin{bmatrix} \mathbf{K_1} & \mathbf{?} \\ \mathbf{?} & \mathbf{K_2} \end{bmatrix}$$

Build a cross-covariance function $cov[f_1(\mathbf{x}), f_2(\mathbf{x}')]$ such that $K_{f,f}$ is positive semi-definite.

2. Intrinsic coregionalization model (ICM)

Two outputs and one latent sample

Consider two outputs $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^p$.

- We assume the following generative model for the outputs
 - 1. Sample from a GP $u(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$ to obtain $u^1(\mathbf{x})$
 - 2. Obtain $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ by linearly transforming $u^1(\mathbf{x})$

$$f_1(\mathbf{x}) = a_1^1 u^1(\mathbf{x})$$

$$f_2(\mathbf{x})=a_2^1u^1(\mathbf{x})$$

ICM: samples

 \Box For a fixed value of **x**, we can group $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ in a vector $\mathbf{f}(\mathbf{x})$

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{bmatrix}$$

We refer to this vector as a vector-valued function.

 \Box The covariance for f(x) is computed as

$$\mathsf{cov}\left(\mathbf{f}(\mathbf{x}),\mathbf{f}(\mathbf{x}')\right) = \mathbb{E}\left\{\mathbf{f}(\mathbf{x})[\mathbf{f}(\mathbf{x}')]^{\top}\right\} - \mathbb{E}\left\{\mathbf{f}(\mathbf{x})\right\}\left[\mathbb{E}\left\{\mathbf{f}(\mathbf{x}')\right\}\right]^{\top}.$$

 \Box Putting the terms together, the covariance for f(x') follows as

$$\begin{bmatrix} (a_1^1)^2 & a_1^1 a_2^1 \\ a_1^1 a_2^1 & (a_2^1)^2 \end{bmatrix} \mathbb{E} \left\{ u^1(\mathbf{x}) u^1(\mathbf{x}') \right\} - \begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix} \begin{bmatrix} a_1^1 & a_2^1 \end{bmatrix} \mathbb{E} \left\{ u^1(\mathbf{x}) \right\} \mathbb{E} \left\{ u^1(\mathbf{x}') \right\}$$

$$\operatorname{cov}\left(\mathbf{f}(\mathbf{x}),\mathbf{f}(\mathbf{x}')\right) = \mathbf{a}\mathbf{a}^{\top}\mathbb{E}\left\{u^{1}(\mathbf{x})u^{1}(\mathbf{x}')\right\} - \mathbf{a}\mathbf{a}^{\top}\mathbb{E}\left\{u^{1}(\mathbf{x})\right\}\mathbb{E}\left\{u^{1}(\mathbf{x}')\right\}$$
$$= \mathbf{a}\mathbf{a}^{\top}\underbrace{\left[\mathbb{E}\left\{u^{1}(\mathbf{x})u^{1}(\mathbf{x}')\right\} - \mathbb{E}\left\{u^{1}(\mathbf{x})\right\}\mathbb{E}\left\{u^{1}(\mathbf{x}')\right\}\right]}_{k(\mathbf{x},\mathbf{x}')}$$
$$= \mathbf{a}\mathbf{a}^{\top}k(\mathbf{x},\mathbf{x}')$$

We define $\mathbf{B} = \mathbf{a}\mathbf{a}^{\top}$, leading to

$$\operatorname{cov}\left(\mathbf{f}(\mathbf{x}),\mathbf{f}(\mathbf{x}')\right) = \mathbf{B}k(\mathbf{x},\mathbf{x}') = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}k(\mathbf{x},\mathbf{x}')$$

ICM: two outputs and two latent samples

- We can introduce a bit more of complexity in the model before as follows.
- □ Consider again two outputs $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^p$.
- We assume the following generative model for the outputs
 - 1. Sample **twice** from a GP $u(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$ to obtain $u^1(\mathbf{x})$ and $u^2(\mathbf{x})$
 - Obtain f₁(x) and f₂(x) by adding a scaled transformation of u¹(x) and u²(x)

$$f_1(\mathbf{x}) = a_1^1 u^1(\mathbf{x}) + a_1^2 u^2(\mathbf{x})$$

$$f_2(\mathbf{x}) = a_2^1 u^1(\mathbf{x}) + a_2^2 u^2(\mathbf{x})$$

ICM: samples

 \Box The vector-valued function can be written as $\mathbf{f}(\mathbf{x})$

$$\mathbf{f}(\mathbf{x}) = \mathbf{a}^1 u^1(\mathbf{x}) + \mathbf{a}^2 u^2(\mathbf{x})$$

where $\mathbf{a}^1 = [a_1^1 \ a_2^1]^{\top}$ and $\mathbf{a}^2 = [a_1^2 \ a_2^2]^{\top}$.

 \Box The covariance for f(x) is computed as

$$\begin{aligned} \operatorname{cov}\left(\mathbf{f}(\mathbf{x}), \mathbf{f}(\mathbf{x}')\right) &= \mathbf{a}^{1}(\mathbf{a}^{1})^{\top} \operatorname{cov}(u^{1}(\mathbf{x}), u^{1}(\mathbf{x}')) + \mathbf{a}^{2}(\mathbf{a}^{2})^{\top} \operatorname{cov}(u^{2}(\mathbf{x}), u^{2}(\mathbf{x}')) \\ &= \mathbf{a}^{1}(\mathbf{a}^{1})^{\top} k(\mathbf{x}, \mathbf{x}') + \mathbf{a}^{2}(\mathbf{a}^{2})^{\top} k(\mathbf{x}, \mathbf{x}') \\ &= \left[\mathbf{a}^{1}(\mathbf{a}^{1})^{\top} + \mathbf{a}^{2}(\mathbf{a}^{2})^{\top}\right] k(\mathbf{x}, \mathbf{x}') \end{aligned}$$

lacksquare We define $\mathbf{B} = \mathbf{a}^1(\mathbf{a}^1)^\top + \mathbf{a}^2(\mathbf{a}^2)^\top$, leading to

$$\operatorname{cov}\left(\mathbf{f}(\mathbf{x}),\mathbf{f}(\mathbf{x}')\right) = \mathbf{B}k(\mathbf{x},\mathbf{x}') = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}k(\mathbf{x},\mathbf{x}')$$

$$\begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix} = \begin{bmatrix} f_1(\mathbf{x}_1) \\ \vdots \\ f_1(\mathbf{x}_N) \\ f_2(\mathbf{x}_1) \\ \vdots \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} b_{11}\mathbf{K} & b_{12}\mathbf{K} \\ b_{21}\mathbf{K} & b_{22}\mathbf{K} \end{bmatrix} \right)$$
The matrix $\mathbf{K} \in \mathbb{R}^{N \times N}$ has elements $k(\mathbf{x}_i, \mathbf{x}_j)$.

0.6

0.8

The Kronecker product between matrices

• If **A** is an $m \times n$ matrix and **B** is a $p \times q$ matrix, then the Kronecker product **A** \otimes **B** is the $pm \times qn$ block matrix

$$\mathbf{A}\otimes\mathbf{B}=egin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \ dots & \ddots & dots \ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

Example

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \times 0 & 1 \times 5 & 2 \times 0 & 2 \times 5 \\ 1 \times 6 & 1 \times 7 & 2 \times 6 & 2 \times 7 \\ 3 \times 0 & 3 \times 5 & 4 \times 0 & 4 \times 5 \\ 3 \times 6 & 3 \times 7 & 4 \times 6 & 4 \times 7 \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 & 10 \\ 6 & 7 & 12 & 14 \\ 0 & 15 & 0 & 20 \\ 18 & 21 & 24 & 28 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix} = \begin{bmatrix} f_1(\mathbf{x}_1) \\ \vdots \\ f_1(\mathbf{x}_N) \\ f_2(\mathbf{x}_1) \\ \vdots \\ f_n(\mathbf{x}_N) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \mathbf{B} \otimes \mathbf{K}\right)$$

The matrix $\mathbf{K} \in \mathbb{R}^{N \times N}$ has elements $k(\mathbf{x}_i, \mathbf{x}_i)$.

3. Linear model of coregionalization (LMC)

- The LMC corresponds to the sum of Q ICMs.
- Suppose we have D = 2, Q = 2 and $R_q = 2$. According to the LMC

$$f_1(\mathbf{x}) = a_{1,1}^1 u_1^1(\mathbf{x}) + a_{1,1}^2 u_1^2(\mathbf{x}) + a_{1,2}^1 u_2^1(\mathbf{x}) + a_{1,2}^2 u_2^2(\mathbf{x}),$$

$$f_2(\mathbf{x}) = a_{2,1}^1 u_1^1(\mathbf{x}) + a_{2,1}^2 u_1^2(\mathbf{x}) + a_{2,2}^1 u_2^1(\mathbf{x}) + a_{2,2}^2 u_2^2(\mathbf{x}),$$

□ For $\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}) \cdots f_D(\mathbf{x})]^\top$, the covariance $\text{cov}[\mathbf{f}(\mathbf{x}), \mathbf{f}(\mathbf{x}')]$ is given as

$$\mathsf{cov}[\mathbf{f}(\mathbf{x}),\mathbf{f}(\mathbf{x}')] = \sum_{q=1}^Q \mathbf{A}_q \mathbf{A}_q^\top \ k_q(\mathbf{x},\mathbf{x}') = \sum_{q=1}^Q \mathbf{B}_q \ k_q(\mathbf{x},\mathbf{x}'),$$

where
$$\mathbf{A}_q = [\mathbf{a}_q^1 \ \mathbf{a}_q^2 \cdots \mathbf{a}_q^{R_q}].$$

$$\mathcal{D}_1 = \{(\mathbf{x}_i, f_1(\mathbf{x}_i)) | i = 1, \dots, N\}$$

$$\mathcal{D}_2 = \{(\mathbf{x}_i, f_2(\mathbf{x}_i)) | i = 1, \dots, N\}$$

$$\begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix} = \begin{bmatrix} f_1(\mathbf{x}_1) \\ \vdots \\ f_1(\mathbf{x}_N) \\ f_2(\mathbf{x}_1) \\ \vdots \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \sum_{q=1}^{Q} \mathbf{B}_q \otimes \mathbf{K}_q \right)$$

The matrix $\mathbf{K}_q \in \mathbb{R}^{N \times N}$ has elements $k_q(\mathbf{x}_i, \mathbf{x}_i)$.

The matrix $\mathbf{B}_q \in \mathbb{R}^{D \times D}$ has elements b_{ij}^q .

References

- This slides are a short version of <u>"Multiple-output Gaussian processes"</u> presentation from Mauricio A. Alvarez
- ➤ Kronecker product: https://en.wikipedia.org/wiki/Kronecker_product