From Basics of Quantum Mechanics to 0-π Qubit

Defne Dilbaz

Outline

- 1. Objective
- 2. Background Information
- 3. Circuit Models
- 4. Future Steps

QUANTUM?

"Quantum fluctuation messes with the Planck scale, which then triggers the Deutsch proposition. Can we agree on that?"

- Tony Stark

Objective

Analyzing $0-\pi$ qubit structure, running simulations, and suggesting an improvement on current architecture for increased feasibility

Classical vs Quantum Computation

Classical

Data is stored as 0 or 1

Data representation depends on voltage measurement

Classical circuit models

Quantum

Data is stored as a superposition

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Data representation depends on the eigenvectors and eigenvalues of the qubit Hamiltonian

Superconducting circuits, iontraps, photonic devices, etc.

Quantum Mechanics Vocabulary

Hamiltonian: an analogy to the energy of a system which consists of kinetic and potential terms

2nd Postulate of Quantum Mechanics: The time evolution of a closed quantum system is described by the Schrödinger's Equation: [1]

$$i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle$$

Given initial condition $|\psi\rangle$, the Schrödinger's Equation determines all $|\psi(t)\rangle$ for any given future time (t).[2]

Algebra for Quantum Mechanics

Hami Itonian:

$$H = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{2}$$
 nxn matrix

example:
$$H = -\frac{1}{2} (\xi \hat{\sigma}_z + \Delta \hat{\sigma}_x)$$

$$\hat{\sigma}_{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \hat{\sigma}_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$H = -\frac{1}{2} \begin{bmatrix} \epsilon & \Delta \\ \Delta & -\epsilon \end{bmatrix}$$

States:

$$|4\rangle = alo\rangle + bl17$$
 where $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|11\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $|a|^2 = probabílity of $|0\rangle$, $|a|^2 + |b|^2 = 1$
 $|b|^2 = probabílity of $|1\rangle$$$

$$|a|^2 = probability of |a|^2 \Rightarrow |a|^2 + |b|^2 = 1$$

Algebra for Quantum Mechanics

Algebra for Quantum Mechanics

Schrödinger's Equation: it
$$\frac{d14}{dt} = H147$$
, where $t = \frac{Planch's}{Constant}$

$$\frac{d14}{dt} = \frac{H14}{it} = -i\frac{H14}{t} \implies \frac{d14}{14} = -i\frac{H}{t} dt$$

Here $t = \frac{H14}{t} = -i\frac{H}{t} = -i\frac{$

$$\frac{4t}{40} \frac{d147}{147} = \int_{0}^{-\frac{1}{1}} \frac{dt}{h} dt \implies \ln |4t| - \ln |40| = -\frac{1}{1} + t$$

$$\ln\left|\frac{v_t}{v_0}\right|^2 = -\frac{iH}{\hbar}t \implies \frac{v_t}{v_0} = e^{-\frac{iH}{\hbar}t}$$

Unitary Time Evolution Simulation

We have the following Hamiltonian*:

$$\hat{H} = -\frac{1}{2}(\epsilon \hat{\sigma}_z + \Delta \hat{\sigma}_x).$$

Start with basis |0>

Evolve the system for time $[0, 4\pi]$

Calculate the probability of obtaining state |0> - the original start state

Adiabatic Evolution

For time-dependent Hamiltonians, Schrödinger's Equation is valid for continuous time evolutions.

According to the quantum adiabatic theorem, a quantum system that begins in the non-degenerate ground state of a time-dependent Hamiltonian will

remain in the instantaneous ground state provided the Hamiltonian changes

sufficiently slowly.

Adiabatic Evolution

Adiabaticity depends on the energy gap between ground and first excited

states

Unitary Time Evolution with Time-Dependent Hamiltonian Simulations

Classical LC Circuits

$$\Phi(t) = \int_{-\infty}^{t} V(t')dt'$$

$$L=10 \text{ nH}, C=1 \text{ pF}$$

$$\omega_0/2\pi = \frac{1}{2\pi\sqrt{LC}} \simeq 1.6 \text{ GHz}$$

Quantum Circuit Requirements

- The temperature of the dilution refrigerator should be 20 mK.
- Thermal fluctuation energy should be smaller than quantum energy associated with the natural frequency of the circuit $\rightarrow k_BT \ll h\omega_0$

LC Oscillator Simulations

Josephson Junction

When there is voltage V, the supercurrent oscillates at frequency[1]:

$$\nu = 2eV/h$$

Quantum Tunneling: Cooper pairs can pass through a potential barrier even if they do not have enough energy. This is because of the phase difference between two superconductor layers.[2]

Josephson Junctions

Voltage-Current Relationship [1]

Josephson Inductance[2]:

$$L_J(\phi) = \frac{\Phi_0}{2\pi I_c \cos \phi} = \left(\frac{\Phi_0}{2\pi}\right)^2 \frac{1}{E_J \cos \phi} \quad E_J = \hbar I_c/(2e)$$

Single Cooper-Pair Box

Towards robust quantum hardware:

0-π Qubit

History of protected qubits

PHYSICAL REVIEW B 66, 224503 (2002)

Possible realization of an ideal quantum computer in Josephson junction array

L. B. Ioffe^{1,*} and M. V. Feigel'man²

¹Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854

> ²Landau Institute for Theoretical Physics, Kosygina 2, Moscow, 117940 Russia (Received 3 July 2002; published 11 December 2002)

Protected qubit based on a superconducting current mirror

Alexei Kitaev

Microsoft Project Q, UCSB, Santa Barbara, California 93106, USA California Institute of Technology, Pasadena, California 91125, USA

Figure 1: The superconducting current mirror.

Hamiltonian

$$H = H_{0-\pi} + H_{\zeta} + H_{\text{int}}$$

[1]: Groszkowski, Peter & Di Paolo, Agustín & L Grimsmo, Arne & Blais, Alexander & Schuster, David & Houck, Andrew & Koch, Jens. (2018). Coherence properties of the 0-π qubit. New Journal of Physics. 20. 10.1088/1367-2630/aab7cd.

[2]: Brooks, Peter & Kitaev, Alexei & Preskill, John. (2013). Protected gates for superconducting qubits. Physical Review A. 87. 10.1103/PhysRevA.87.052306.

Eigenspectrum And Energy

[1]: Groszkowski, Peter & Di Paolo, Agustín & L Grimsmo, Arne & Blais, Alexander & Schuster, David & Houck, Andrew & Koch, Jens. (2018). Coherence properties of the 0-π qubit. New Journal of Physics. 20. 10.1088/1367-2630/aab7cd.

[2]: Brooks, Peter & Kitaev, Alexei & Preskill, John. (2013). Protected gates for superconducting qubits. Physical Review A. 87. 10.1103/PhysRevA.87.052306.

Charge Noise Analysis

Future Steps

1

Reproducing open quantum system simulation results from [1]

Future Steps

Analyzing Holonomic Processes [2]: tuning parameters adiabatically to realize protected gates

3 Applying Fast-Holonomic Scheme on $0-\pi$ qubit and simulating results

Set of Holonomic and Protected Gates on Topological Qubits for Realistic Quantum Computer

Andrey R. Klots¹, Lev B. Ioffe^{1,2}

¹Department of Physics, University of Wisconsin – Madison, Madison, WI 53706 USA

²Google Inc., Venice, CA 90291 USA

Special Thanks

- Centre for Quantum Information and Quantum Control for Summer Prize Scholarship
- Prof. Alán Aspuru-Guzik
- Dr. Thi Ha Kyaw
- University of Toronto Computer Science and Chemistry Departments

Questions?

^{[1]: &}quot;The Scientific Cartoonist." The Scientific Cartoonist » The Quantum Mechanics of Love - Scientific Humor - Scientific Cartoons - Humor y Ciencia, www.thescientificcartoonist.com/?p=124.

DC-SQUID Calculations

Flux:

$$E_{J_2}$$
, C_{J_2} I_2 I_3 I_4 I_4 I_5 I_5 I_5 I_5 I_5 I_6 I_6

Single Cooper-Pair Box Calculations

0-π Qubit Calculations

$$H = H_{0-\pi} + H_{\zeta} + H_{\text{int}}$$
(a)
$$H_{0-\pi} = H_{\text{sym}} + 2E_{\text{Cs}} dC_{\text{J}} \partial_{\varphi} \partial_{\theta} + E_{\text{J}} dE_{\text{J}} \sin \theta \sin \left(\phi - \frac{\varphi_{\text{ext}}}{2}\right) + \mathcal{O}(dC^{2}, dC_{\text{J}}^{2}),$$

$$H_{\text{sym}} = -2E_{\text{CJ}} \partial_{\varphi}^{2} - 2E_{\text{Cs}} \partial_{\theta}^{2} - 2E_{\text{J}} \cos \theta \cos \left(\phi - \frac{r_{\text{ext}}}{2}\right) + E_{\text{L}} \phi^{2} + H_{\zeta},$$

$$H_{\zeta} = -2E_{\text{C}} \partial_{\zeta}^{2} + E_{\text{L}} \zeta^{2},$$

$$H_{\text{int}} = 2E_{\text{Cs}} dC \partial_{\theta} \partial_{\zeta} + E_{\text{L}} dE_{\text{L}} \phi \zeta + \mathcal{O}(dC^{2}, dC_{\text{J}}^{2}),$$

$$E_{\text{L}} = (\Phi_{0}/2\pi)^{2}/2L$$

$$E_{\text{C}} = e^{2}/2C, E_{\text{CJ}} = e^{2}/2C_{\text{J}} E_{\text{Cs}} = (1/E_{\text{C}} + 1/E_{\text{CJ}})^{-1} = e^{2}/2C_{\text{s}},$$

$$2\phi = (\varphi_{2} - \varphi_{3}) + (\varphi_{4} - \varphi_{1}), \quad 2\zeta = (\varphi_{2} - \varphi_{3}) - (\varphi_{4} - \varphi_{1}),$$

$$C_{\text{S}} = C + C_{\text{J}}.$$

0-π Qubit with Charge Noise Calculations

