<u>Introduction</u> to bioinformatics (NGS data analysis)

Alexander Jueterbock

May 2017

Got your sequencing data - now, what to do with it?

- File size: several Gb
- Number of lines: >1,000,000

```
QMO2443:17:000000000-ABPBW:1:1101:12675:1533 1:N:0:1
TCGATAATTCTTACTTTCTCTCTGGTCTGAGCGTTTCACATCAACGACAAGCTCGA
TTTTTTTTTCTTCTT
+
8B6-@-, CFFED9CFAE@@C6; @, CFEEF9<@6FGGF9F<CC, , CB, @::8CF, 6+
.,3733>>00,.,3880,,8*,773333,3,333738,*,,,,,76,,2,,2,,2
0*).1.))(0*)***
@MO2443:17:000000000-ABPBW:1:1101:18658:1535 1:N:0:1
TCCCTA A TTCTCTGTCTTCA A A TTTTCCTTCTCT A A A TCGTCCCTCGTTTCT A CCT
TTTCTTGTTTTTTTTTTTCCTCCTCTTCCTTTTTTTCCACCTTCTTTTCTGCC
TTTTCTTCTTTTTCT
+
-<<9-@CCEF9CE-<,,,,,;,,<C,=,6,C9,C<=C,,,;,86C,6:C,,,;<;,,
,,,,5,5:,,9++4,,,:,,,,,,,,38,853,5,,3,,7,,,6,,,,,7,,,,
+0.()+++)11.*)*
                                         4 D > 4 B > 4 B > 4 B > B
```

Before library preparation

What you need to know to steer your way through the analysis

- Research question
 - Identify adaptive genes
 - *De novo* genome assembly
 - Population genetic structure
 - Phylogenetic relation
- Experimental design
 - Number of individuals
 - Treatment of samples (e.g. heat stress)
- Sample collection
 - Samples degraded (e.g. stored in Formalin)
 - Tissue (reproductive, vegetative)

Library preparation

Background

0000000

- DNA-seq, RNA-seq, Bis-Seq, Chip-Seq...
 - RNA reads (which lack introns) require splice-aware mappers.
 - Bis-seq changes GC ratio (bisulphite converts cytosine to uracil, but leaves 5-methylcytosine unaffected)
 - Chip-Seq enriches binding-sites of DNA-associated proteins
- Pooled samples?
 - Demultiplexing
 - Remove barcodes
- Adapter sequences that have to be trimmed off?
- Targeted coverage

Single- or Paired end sequencing, read length

Background

0000000

Library fragment

Adapter
Flowcell/bead binding sequences
Amplification primers
Sequencing primers
Barcodes

Adapter
Flowcell/bead binding sequences
Amplification primers
Sequencing primers
Barcodes

Single- or paired-end sequencing, read length - why does it matter

Background

0000000

NGS platforms differ in throughput and read length

NGS platforms differ in throughput and read length

Background

0000000

Third Generation Sequencing

Background

000000

Primary analysis

Background

- Demultiplexing
- Adapter trimming
- Quality control

Demultiplexing of pooled samples (if barcoded inline)

AATTANNNNNNNNNNNNNN File 1

AGTCGNNNNNNNNNNNNNN File 2

AATTANNNNNNNNNNNNNN File 1

GCCATNNNNNNNNNNNNN File 3

AGTCGNNNNNNNNNNNNN File 2

Trimmig: Adapter removal

Background

Mostly 3'adapters disturb assembly and alignment

GATTTGGGGTTCAANNNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNNNNATTAGTATCGAT

TTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNNNNATTAGTATCGAT

ATTTGGGGTTCAANNNNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNNATTAGTATCGAT

Fastq file - 4 lines for each read

```
@HWI-ST141_0365:2:1101:2983:2114#TTAGGC/1
GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CC
```

- sequence id (specifications can differ slightly between sequencing platforms)
 - = @=instrument name : flowcell lane : tile number: flowcell x coordinate : flowcell y coordinates : #barcode sequence: pair number for paired-end sequencing
- 2 sequence

Background

- 3 + optionally followed by sequence identifier again
- 4 quality scores

Trimmig of low-quality bases

- Trim bases with a Phred quality score <20
- $Quality = -10 * log_{10} P$

Phred Score	Probability of incorrect base	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

Fastq file contains both sequence reads and base quality scores

Background

```
Fastq file

@SEQ_ID

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''**(((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>CC

Fasta file
>SEQ_ID

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
```

Base qualities are encoded in ascii format

Background

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

Dec	Н	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Hx	Oct	Html Cr	ar_
0	0	000	NUL	(null)	32	20	040	6#32;	Space	64	40	100	a#64;	0	96	60	140	`	8
1	1	001	01 SOH (start of heading)					6#33;		65	41	101	a#65;	A	97	61	141	6#97;	a
2	2	002	STX	(start of text)	34	22	042	6#34;	"	66	42	102	a#66;	В	98	62	142	6#98;	b
3	3	003	ETX	(end of text)	35	23	043	6#35;	#	67	43	103	a#67;	C	99	63	143	6#99;	C
4	4	004	EOT	(end of transmission)				6#36;					D					d	
5	5	005	ENQ	(enquiry)	37	25	045	6#37;	*				E					6#101;	
6	6	006	ACK	(acknowledge)				6#38;					6#70;					6#102;	
7				(bell)				6#39;					6#71;					6#103;	
8		010		(backspace)				(6#72;					h	
9		011		(horizontal tab))					6#73;					i	
10		012		(NL line feed, new line)				*					6#74;					a#106;	
11		013		(vertical tab)				6#43;					6#75;					6#107;	
12		014		(NP form feed, new page)				6#44;					6#76;					6#108;	
13		015		(carriage return)				6# 4 5;					6#77;					@#109;	
14		016		(shift out)				6#46;					6#78;					@#110;	
15		017		(shift in)				6#47;					6#79;					6#111;	
				(data link escape)				0					6#80;					p	
				(device control 1)				1					Q					q	
				(device control 2)				2					R					r	
				(device control 3)				6#51;					6#83;					s	
				(device control 4)				6#52;					6#84;					t	
				(negative acknowledge)				6#53;					6#85;					6#117;	
				(synchronous idle)				6#5 4 ;					V					@#118;	
				(end of trans. block)				6#55;					6#87;					w	
				(cancel)				8					X					x	
		031		(end of medium)				9					6#89;					y	
		032		(substitute)				:					Z					z	
		033		(escape)				6#59;					6#91;					6#123;	
		034		(file separator)				a#60;					6#92;					6#124;	
		035		(group separator)				G#61;					6#93;					6#125;	
30	1E	036	RS	(record separator)				>					@#94;					~	
31	1F	037	US	(unit separator)	63	3 F	077	@#63;	2	95	5F	137	6#95;	_	127	7F	177	@#127;	DEL

Comment and Tables of

Base qualities are encoded in ascii format

Background

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

<u>Dec</u>	Нх	Oct	Html	Chr
32	20	040	a#32;	Space
33			!	_
34	22	042	@#3 4 ;	rr
35	23	043	#	#
36	24	044	\$	ş
37	25	045	% ;	\$

ASCII encodings of sequencing platforms

Background

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijk
33
              59
                                      104
0.2......41
        Phred+33, raw reads typically (0, 40)
S - Sanger
X - Solexa
         Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Figure: Quality score encodings

Quality control tool: FastQC

Informs on:

Background

- Base quality
- Duplication
- Overrepresentation of sequences
 - contamination?
 - adapters?
- GC content (should be around 50%, in Bis-Seq lower)

Quality before trimming

Figure: Base-quality generally decreases with increasing sequencing length

Quality after trimming

Figure: Quality after trimming

Sequence bias

Background

For example in:

- First bases of Illumina RNAseq due to 'random' hexamer primers for reverse transcription
- RADseq fragments (cutting sites)

Hexamer primers for cDNA synthesis cause sequence bias

PCR Duplicates

Background

Duplicates are generally removed in quantitative analyses (e.g. RNA-seq)

Figure: Duplication levels (FastQC output)

De novo assembly

Task: Look for overlapping regions and create contigs (contiguous sequences)

- Genome assembly software
 - SOAP de NOVO
 - Velvet
 - MIRA (we use this one in the course)
- Transcriptome assembly software
 - Review: Martin and Wang, (2011)
 - Trinity
 - MIRA

De novo assembly: Step by step

Background

De novo assembly: The N50 metric

N50 is a single measure of the contig length size distribution in an assembly

- Sort contigs in descending length order
- Size of contig above which the assembly contains at least 50% of the total length of all contigs

Figure: From Kane, N.C.

Mapping against reference genome/transcriptome

- Main purposes:
 - Identify variants (SNPs, InDels)

Mapping against reference genome/transcriptome

■ Main purposes:

Quantify gene expression

Population 1

Population 2

Mapping: global alignment

Background

- Implemented in e.g. BWA, Bowtie2
- Needleman-Wunsch algorithm
- Aligns sequences in their full length
- Used for multiple sequence alignment when sequences are similar

Figure: Global alignment from rosalind.info

Mapping: local alignment

Background

- Smith-Waterman algorithm
- Clipping of terminal unmatched bases
- Only aligned bases contribute to the alignment's score
- Used to target smaller portions of genes with high similarity

 $\label{tccAGTTATGTCAGgggacacgagcatgcagagac} \texttt{|||||||||||}$ aattgccgccgtcgttttcagCAGTTATGTCAGatc

Figure: Local alignment from rosalind.info

Splice-aware alignment of RNAseq reads to the genome

Figure: Adapted from Haas and Zody, (2010)

Mapping: SAM/BAM files example

Background

Output format of most alignment programs

- Header lines preceded by @
- One tab-delimited line per read

Figure: Example from http://samtools.sourceforge.net/SAM1.pdf

- SAM files are large
- BAM: Compressed binary versions, not human-readable

Mapping: Mandatory fields in SAM files

Background

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	$_{ m Int}$	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	[0,2 ³¹ -1]	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	Int	[0,2 ³¹ -1]	Position of the mate/next read
9	TLEN	Int	[-2 ³¹ +1,2 ³¹ -1]	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Explanation of the flag field (click here: Link1, Link2)

References

Mapping: Easy decoding of SAM flags

Background

Mapping: CIGAR string in SAM files

Background

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

Mapping: CIGAR string example

Background

```
RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ref: C C A T A C T G A A C T G A C T
Read: A C T A G A A T G G C T
```

CIGAR: 3M1I3M1D5M

Variant calling

Consistent mismatches in the alignment indicate:

- Single Nucleotide Polymorphisms (SNPs)
- Insertions/Deletions (In Dels)

Background

Variant call format

- described in http://www.1000genomes.org/node/101
- informs on location and quality of each SNP

VCF file information

Background

Figure: VCF file info from http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

VCF file information

Background

Figure: VCF file info from http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

Identified SNPs vary between programs/algorithms

Background

Venn diagram of the number of SNPs (coverage >400) called with four programs from the same alignment file (ddRAD tags mapped against the genome of Guppy).

Differential gene expression analysis

Figure: Log2 fold-change of expression over the mean of counts normalized by size factors. Differentially expressed genes (p<0.1) are red.

From the DESeq2 R package documentation

Clustering

Figure: Multivariate grouping of stressed (W) and control (C) seagrass samples. Most variation is explained by the first principle component

Visualizing differential expression

Figure: Heatmap of functions that were differentially expressed between Atlantic and Mediterranean seagrass samples.

Outlier analysis

Based on Vitti2012

Outlier detection

Primary analysis Secondary analysis Tertiary analysis Plan References

○○○○○○○○○○○

OOOO○●○

OOOO●○

Gene ontologies

Background

Figure: GO terms of unigenes in a moth genome

(Jacquin-Joly et al., 2012)

Cloud of GO term enrichments

mitocoolid mentione operations
establisme of politic biological mentione operations
which contains a compared biological biological

response to stimulus

cell wall organization or biogenesis cell wall modification cellular carbohydrate biosynthetic proce. Proceedings of the control of the contr

Figure: Term cloud of heat-responsive functions in seagrass

Bioinformatics-Practical

Background

- Unix Tools
- Trimming and Quality Control
- Genome Assembly
- Mapping and Variant Calling

Background

References 1

- Haas, BJ and MC Zody (2010). "Advancing RNA-Seq analysis". In:

 Nat. Biotechnol. 28.5, pp. 421–423.
 - Jacquin-Joly, E, F Legeai, N Montagné, C Monsempes, MC François, J Poulain, et al. (2012). "Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis." In: Int. J. Biol. Sci. 8.7, pp. 1036–1050.
- Martin, JA and Z Wang (2011). "Next-generation transcriptome assembly". In: *Nat. Rev. Genet.* 12.10, pp. 671–682.