

Computational modelling as an approach to neural mechanisms of Negative Priming

Jörg Behrendt 1,2, Hecke Schrobsdorff 1,3, Matthias Ihrke1,2, Michael Herrmann1,3, Marcus Hasselhorn1,2

Bernstein Center for Computatoinal Neuroscience Göttingen,
 Georg-Elias-Müller-Institute of Psychology, 3 Institut for Nonlinear Dynamics, Georg-August-University of Göttingen

Negative Priming (NP) = phenomenon of selective attention; slowing of reaction time (RT), if an presented target in trial n was congruent to the distractor in trial n-1.

Theoretical Problems:

- NP-effect is very universal; has been found in a wide variety of experimental contexts [3]
- Non of the current discussed models is able to explain all the effects, because the growing body of empirical evidence is very complex.

Perspective of the project:

- · Using a computational approach to NP to consider the neurophysiological basis of NP-processes and also aging effects at a later time
- Intergration of all relevant cognitive processes in one model
- Derive more specific and also quantitative predictions (than possible from the other more abstract models)
- Successive examination of new predictions in behavioral experiments

Negative Priming - Paradigm

Exampel of Negative Priming task – identity priming – voicekey RT-recording [4] • successive presentation of superimposed drawings – response to stimulus 500 ms

• Instruction: "Name the green target object while ignoring the red distractor obejct."

- Standard NP-effect = difference between NP- and CO-trials expected reaction time relations: NP > CO > PP > IN

- CO = control
- NP = negative priming
- PP = postitive priming
- NPIN = single object
- PPIN = single object (previous target)
- COIN = single object
- INCO = control (after single object)
 - (previous single target)

Imago-Semantic Action Model (ISAM) [2]

- Models processes in selective attention, yields good results when applied to hte negative priming paradigm
- Aspects that distinguish the ISAM from other models of selective attention involve an adaptive activity threshold as well as a semantic feedback loop

The ISAM was chosen because of: Specific assumptions refarding neuronal and

- adaptive threshold depending on the activity in the whole system
- · Not only negative priming but all sorts of priming effects (e.g. postitive priming) can be explained in terms of that model

Computational Implementation of ISAM

- Mechanisms of ISAM are implemented in terms of differential equations
- doubly-indexed variable for each object i (as target

 α dt

 $1 dx_i^{\nu}$

 β dt

 adaptation of represented stimuli-activation towards external activationlevel 1 dx!

• external stimulus-activation is influenced by the semantic feedback-loop:

 $= I_i^{\nu} - x_i^{\nu} \quad \text{if } x_i^{\nu} > I_i^{\nu}$

distractor
$$\delta: I_i^{\delta} = 1$$
, target $\tau: I_i^{\tau} = 1 + \xi \cdot \Delta t$

- Distractor-target interference between identical objects, eliciting $1 dx_i^T$ $= -x_i^{\tau} - \zeta \cdot x \delta_i$ β dt
- Adaptation of the global activity threshold (a weighted sum of all activations $1 d\theta$ present in the system)

$$\bar{\chi} = \frac{1}{2} \cdot \left(r^{\tau} + r^{\delta} + \sum_{i=1}^{n} (x_i^{\tau} + x_i^{\delta}) \right)$$
• global activity threshold successively cuts off irrelevant stimulus representations as it adapts toward the present activation, eventually leaving only one possible reaction

Predictions of the Computational Model

Predictions about settings e.g. absence of a distractor (single-object trials)

semantic representation of stimuli and contextual cues Quantifiable formulation of activation-response processes

 Systematic slowdown of reaction time after single object trials
 Possible consequences for "traditional" NP-dataanalysis systematically overestimation of CO-reaction time = underestiamtion of NP-effects, overestimation of PP-effects

Conclusions and Outlook

Successful Implementation of ISAM

 reproduce experimental data and priming effects in a wide range of settings (qualitatively and quantitatively)

Experimental Data confirm the predictions of the model only in part

slowdown of reaction time after single object trials - smaller than predicted
 Aging interaction effects of NP- and IN-trials - contrast to recent metaanalysis suggesting age-invariant negative priming [5]

Further optimization of the implementation:

- Calibration of the model to adapte the activation curves of single-object-trails to experimental findings
- Make the model more realistic basing the dynamic units of the model on neuronal network assumtions (dynamics of the threshold, process of feature detection) [1]
- · Consideration of intra- and interindividuell variance
- Implementaion of age releated variables to simulate the experimental aging effects

Experimental Data

Experiment Task:

Participants: Procedure:

identification priming - voicekey recording of reaction time 32 younger adults (19-35 years) and 32 older adults (60-78 years) 420 trials in 10 blocks; 30 seconds break after each block Displays were generated by 9 different objects (see above NP-paradigm)

Statistical Analysis - Repeated measures analysis of variance (ANOVA): Factors: priming condition (within subjects) x age group (between subjects)

- 1. Successive analysis of CO-reference vs. all other priming conditions
- overall RT main effect of age younger adults are faster than older adults e.g. NP: F (1,62) = 16.84; p = .001
 effect of CO vs. INCO is not sign.
 F (1,62) = 2.39; p = .127

- effects of CO vs. all other priming conditions (NP, PP, INPP, PPIN, NPIN) are sign. e.g. INPP: F (1,62) = 119.36; p = .000
- interaction of age group x priming condition in cases of NP, NPIN, PPIN and COIN e.g. NP: F (1,62) = 13.35; p = .001
- 2. Separate analysis of COIN-reference vs. NPIN and PPIN
 - effects of COIN vs. NPIN and PPIN are sign standard priming for single objects NPIN: F (1,62) = 20.66; p = .000; PPIN: F(1,62) = 58.86; p = .000
 - but no interaction of age group x trialcondition