Department of Chemistry, IIT Madras

CY1001 (Chemistry: Structure, Bonding and Reactivity)

Semester: Aug - Nov 2014

Assignment 3: Chemical Kinetics (20/09/2014)

(Teachers: AKM / GRR / EP / RG)

- 1. The reaction $2NO_2 + F_2 \rightarrow 2NO_2F$, is first order wrt NO_2 as well as F_2 . Rationalize using a suitable mechanism.
- 2. $NO_2 + CO \rightarrow NO + CO_2$, Rate = $k[NO_2]^2$. Suggest a suitable mechanism and rationalize.
- 3. For a general reaction mechanism

$$A + B \xrightarrow{k_1} AB$$
 (pre-equilibrium)
 $AB \xrightarrow{k_3}$ Products

Compare the rate expressions using the concepts of pre-equilibrium and SSA.

4. For the reaction $CO + Cl_2 \rightarrow COCl_2$, the following mechanism is proposed. Show that the mechanism conforms to the experimental rate law:

$$\frac{d\left[COCl_{2}\right]}{dt} = k\left[CO\right]\left[Cl_{2}\right]^{3/2}$$

$$Cl_2 \xrightarrow{k_1} 2Cl$$
 (fast equilibrium)
 $Cl + CO \xrightarrow{k_2} COCl$ (fast equilibrium)
 $COCl + Cl_2 \xrightarrow{k_3} COCl_2 + Cl$ (slow)

- 5. The overall reaction $2NO + O_2 = 2NO_2$ is <u>exothermic</u>. 'k' of the reaction <u>decreases</u> with 'T'. How to rationalize using the following mechanism?
- 6. The temperature coefficient of a reaction is the ratio of rate constants at two temperatures differing by 10K. Find this value for the same reaction carried out at 300 K and 310 K. (2.8)
- 7. A dimerization reaction at 300 K follows Arrhenius equation, with $A = 10^{5.61}$ and $E_a = 65.4$ kJ. Calculate the thermodynamic parameters of activation.

$$\Delta S^{0\#} = -154.25 \text{ JK}^{-1} \text{ mol}^{-1}$$

$$\Delta H^{0\#} = 60.412 \text{ kJ mol}^{-1}$$

$$\Delta G^{0\#} = 106.692 \text{ kJ mol}^{-1}$$

- 8. For a first order reaction, $A \xrightarrow{k_1} B \xrightarrow{k_2} C$, show that the optimization of B leads to $t = \left(\frac{1}{k_2 k_1}\right) \ln \frac{k_2}{k_1}.$
- 9. For the opposing reactions, $A \xleftarrow{k_f \atop k_b} B$, show that when [A] and [B] are halfway to their equilibrium values, $t = \frac{\ln 2}{k_f + k_b}$.
- 10. Consider a reaction, $A \longrightarrow products$. If this reaction is one-half order with respect to A, integrate the rate expression and decide what function should be plotted from the data to determine the rate constant.
- 11. A reaction follows a complex mechanism involving multiple elementary steps with rate constant, $k = \frac{k_1 k_2 k_3}{k_4}$. What should be the activation energy of the overall reaction? Hint: Use Arrhenius expression.
- 12. Explain why the value of ΔS^{\ddagger} for the unimolecular decomposition of isopropyl nitrite in the gas phase is small and positive.
- 13. What is the unit of the rate constant of a zero order reaction? Derive the expression for the half life. (unit = $\sec^{-1} t_{\frac{1}{2}} = \frac{[A]_{0}}{2k}$)
- 14. Show that the following reaction is a third order reaction when pre- equilibrium assumption is valid.

$$2A \underset{k_2}{\overset{k_1}{\Longleftrightarrow}} I$$

$$I + B \xrightarrow{k_b} P$$

- 15. The half-life of radium is 1600 years. How much disintegration per second would be undergone by 1 g of radium? ($k=1.37\times10^{-11}$ s⁻¹)
- 16. N_2O_5 gas decomposes according to the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$. The rate of reaction at 328 K is found to be 0.75×10^{-4} mol L⁻¹s⁻¹. What are the values of

$$\frac{d[N_2O_5]}{dt}$$
, $\frac{d[NO_2]}{dt}$, $\frac{d[O_2]}{dt}$

$$\frac{d[N_2O_5]}{dt} = 1.5 \times 10^{-4} \, mol L^{-1} s^{-1}.$$

$$\frac{d[O_2]}{dt} = 0.75 \times 10^{-4} \, mol L^{-1} s^{-1}.$$

$$\frac{d[N_2]}{dt} = 3 \times 10^{-4} \, mol L^{-1} s^{-1}.$$

- 17. A first order reaction has activation energy of $104,600 \text{ J mol}^{-1}$ and a pre-exponential factor A = $5 \times 10^{13} \text{s}^{-1}$, at what temperature will the reaction have a half-life of 30 days? (T = 269.5 K)
- 18. The following reaction mechanism involves an intermediate A. Deduce the rate law for the reaction.

$$A_2 \underset{k_{-1}}{\overset{k_1}{\Leftrightarrow}} A + A(fast) \qquad A + B \xrightarrow{k_2} P(slow)$$

- 19. For a first order consecutive reaction, write down the rate expressions and obtain concentrations [A], [B] and [C] at time t in terms of [A]₀, k_1 and k_2 . Obtain the same for B and C under steady state conditions. If [A]₀ = 100 M, k_1 = 0.04 min⁻¹, k_2 = 0.006min⁻¹, Calculate the concentrations of A, B and C at 5 min. ([A] = 81.87, [B] = 17.85, [C] = 0.278)
- 20. N₂O₅ decomposes according to 1st order kinetics, and 10% of it decomposed in 30 s. Estimate k, $t_{\frac{1}{2}}$ and percent decomposed in 500 s. (k=0.00351 s⁻¹ $t_{\frac{1}{2}}$ = 197 s, 82.7 %)

21. The decomposition of A is first order, and [A] is monitored. The following data are recorded:

t/min 0 2 4 8

[A]/[M] 0.100 0.0905 0.0819 0.0670

Calculate k, half-life, t when [A] = 0.010 and [A] when t = 5 min. (k = 0.0499, Half life = 13.89)

22. Dimerization of butadiene is second order: $2 C_4H_6(g) = C_8H_{12}(g)$

The *rate constant k* at some temperature is 0.100. The initial concentration of butadiene [B] is 2.0 M. Calculate the time required for [B] = 1.0 and 0.5 M, and calculate concentration of butadiene when t = 1, 5, 10, and 30 min.

23. For the reaction: $2 \text{ NO}_2(g) ----> 2 \text{NO}(g) + O_2(g)$

The rate constant $k = 1.0e-10 \text{ s}^{-1}$ at 300 K and the activation energy $E_a = 111 \text{ kJ mol}^{-1}$. What are A, k at 273 K and T when k = 1e-11? (A = 2.13e9 s $^{-1}$), $k = 1.23e-12 \text{ s}^{-1}$, T = 285 K)

- 24. The rate constant for the first-order decomposition of a compound A in the reaction $2 \text{ A} \longrightarrow P$ is $k = 2.78 \times 10^{-7} \text{ s}^{-1}$ at 25°C. What is the half-life of A?
- 25. A reaction 2 A \longrightarrow P has a third-order rate law with $k = 3.50 \times 10^{-4}$ dm⁶mol⁻²s⁻¹. Calculate the time required for the concentration of A to change from 0.077 mol dm⁻³ to 0.021 mol dm⁻³. (t=1.5×10⁶s)
- 26. Deduce an expression for the time it takes for the concentration of a substance to fall to one-third its initial value in an nth order reaction.

$$t_{1/3} = \boxed{\frac{3^{n-1} - 1}{k(n-1)} [A]_0^{1-n}}$$

27. The reaction A⁻ + H⁺ \longrightarrow P has a rate constant given by the empirical expression k_2 = $(8.72 \times 10^{12})e^{-(6134K/T)}$ dm³mol⁻¹s⁻¹. Evaluate the energy and entropy of activation at 25°C. (Enthalpy of activation=48.52 kJ mol⁻¹, Entropy of activation=-32.2 kJ mol⁻¹).