Diagrame Voronoi

Mihai-Sorin Stupariu

Sem. I, 2018-2019

Problematizare

Se consideră o mulțime de puncte (oficiile poștale) din plan. Care este cel mai apropiat?

Problematizare

- Se consideră o mulțime de puncte (oficiile poștale) din plan. Care este cel mai apropiat?
- ▶ Ideea de a delimita "zone de influență" a apărut cu multă vreme în urmă (de exemplu în lucrările lui Descartes, dar și în legătură cu alte probleme; este utilizată în mod curent în varii domenii. În plus, astfel de "împărțiri" apar în natură.

► Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 , numite **situri**.

- Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 , numite **situri**.
- ▶ **Diagrama Voronoi** a lui \mathcal{P} (notată $Vor(\mathcal{P})$) este o divizare a planului \mathbb{R}^2 în n celule $\mathcal{V}(P_1), \ldots, \mathcal{V}(P_n)$ cu proprietatea că

$$P \in \mathcal{V}(P_i) \Leftrightarrow d(P, P_i) \leq d(P, P_j), \ \forall j = 1, \ldots, n.$$

- Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 , numite **situri**.
- ▶ **Diagrama Voronoi** a lui \mathcal{P} (notată $Vor(\mathcal{P})$) este o divizare a planului \mathbb{R}^2 în n celule $\mathcal{V}(P_1), \ldots, \mathcal{V}(P_n)$ cu proprietatea că

$$P \in \mathcal{V}(P_i) \Leftrightarrow d(P,P_i) \leq d(P,P_j), \ \forall j = 1,\ldots,n.$$

 Două celule adiacente au în comun o muchie sau un vârf (punct de intersecție a muchiilor).

- Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 , numite **situri**.
- ▶ **Diagrama Voronoi** a lui \mathcal{P} (notată $Vor(\mathcal{P})$) este o divizare a planului \mathbb{R}^2 în n celule $\mathcal{V}(P_1), \ldots, \mathcal{V}(P_n)$ cu proprietatea că

$$P \in \mathcal{V}(P_i) \Leftrightarrow d(P,P_i) \leq d(P,P_j), \ \forall j = 1,\ldots,n.$$

- Două celule adiacente au în comun o muchie sau un vârf (punct de intersecție a muchiilor).
- ▶ **Atenție!** Vârfurile lui Vor(P) sunt diferite de punctele din P.

- Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 , numite **situri**.
- ▶ **Diagrama Voronoi** a lui \mathcal{P} (notată $Vor(\mathcal{P})$) este o divizare a planului \mathbb{R}^2 în n celule $\mathcal{V}(P_1), \ldots, \mathcal{V}(P_n)$ cu proprietatea că

$$P \in \mathcal{V}(P_i) \Leftrightarrow d(P, P_i) \leq d(P, P_j), \ \forall j = 1, \ldots, n.$$

- Două celule adiacente au în comun o muchie sau un vârf (punct de intersecție a muchiilor).
- ▶ **Atenție!** Vârfurile lui Vor(P) sunt diferite de punctele din P.
- Uneori, prin abuz de limbaj, este precizată doar împărțirea în muchii / vârfuri.

- Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 , numite **situri**.
- ▶ **Diagrama Voronoi** a lui \mathcal{P} (notată $Vor(\mathcal{P})$) este o divizare a planului \mathbb{R}^2 în n celule $\mathcal{V}(P_1), \ldots, \mathcal{V}(P_n)$ cu proprietatea că

$$P \in \mathcal{V}(P_i) \Leftrightarrow d(P, P_i) \leq d(P, P_j), \ \forall j = 1, \ldots, n.$$

- Două celule adiacente au în comun o muchie sau un vârf (punct de intersecție a muchiilor).
- ▶ **Atenție!** Vârfurile lui Vor(P) sunt diferite de punctele din P.
- Uneori, prin abuz de limbaj, este precizată doar împărțirea în muchii / vârfuri.
- ▶ Diagrame Voronoi pot fi construite pentru diverse funcții distanță (e.g. distanța Manhattan); forma celulelor depinde de forma "cercului" în raport cu funcția distanță respectivă.

Proprietăți elementare

► Celula asociată unui punct este o intersecție de semiplane:

$$\mathcal{V}(P_i) = \bigcap_{j \neq i} h(P_i, P_j),$$

unde $h(P_i, P_j)$ este semiplanul determinat de mediatoarea segmentului $[P_iP_j]$ care conține punctul P_i .

Proprietăți elementare

► Celula asociată unui punct este o intersecție de semiplane:

$$\mathcal{V}(P_i) = \bigcap_{j \neq i} h(P_i, P_j),$$

unde $h(P_i, P_j)$ este semiplanul determinat de mediatoarea segmentului $[P_iP_j]$ care conține punctul P_i .

▶ În particular: fiecare celulă este o mulțime convexă.

Proprietăți elementare

► Celula asociată unui punct este o intersecție de semiplane:

$$\mathcal{V}(P_i) = \bigcap_{j \neq i} h(P_i, P_j),$$

unde $h(P_i, P_j)$ este semiplanul determinat de mediatoarea segmentului $[P_iP_i]$ care conține punctul P_i .

- ▶ În particular: fiecare celulă este o mulțime convexă.
- Aplicabilitate: algoritm (lent) de determinare a diagramei Voronoi.

▶ Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 .

- ▶ Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 .
- ▶ Dacă toate punctele sunt coliniare, atunci diagrama Voronoi asociată $Vor(\mathcal{P})$ conține n-1 drepte paralele între ele (în particular, pentru $n \geq 3$, ea nu este conexă).

- ▶ Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 .
- ▶ Dacă toate punctele sunt coliniare, atunci diagrama Voronoi asociată $Vor(\mathcal{P})$ conține n-1 drepte paralele între ele (în particular, pentru $n \geq 3$, ea nu este conexă).
- ▶ În caz contrar, diagrama este conexă, iar muchiile sale sunt fie segmente, fie semidrepte (cui corespund acestea?).

- ▶ Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de puncte din planul \mathbb{R}^2 .
- ▶ Dacă toate punctele sunt coliniare, atunci diagrama Voronoi asociată $Vor(\mathcal{P})$ conține n-1 drepte paralele între ele (în particular, pentru $n \geq 3$, ea nu este conexă).
- ▶ În caz contrar, diagrama este conexă, iar muchiile sale sunt fie segmente, fie semidrepte (cui corespund acestea?).
- ▶ **Propoziție.** Fie o mulțime cu *n* situri. Atunci, pentru diagrama Voronoi asociată au loc inegalitățile

$$n_{\nu} \leq 2n-5, \quad n_{m} \leq 3n-6,$$

unde n_v este numărul de vârfuri ale diagramei și n_m este numărul de muchii al acesteia.

Construcție:

- Construcție:
 - Mulţime de puncte ${\mathcal P}$ în planul ${\mathbb R}^2 \Longrightarrow$

- Construcție:
 - Mulţime de puncte ${\mathcal P}$ în planul ${\mathbb R}^2 \Longrightarrow$
 - Diagrama Voronoi $\mathrm{Vor}(\mathcal{P}) \Longrightarrow$

- Construcție:
 - Mulţime de puncte ${\mathcal P}$ în planul ${\mathbb R}^2 \Longrightarrow$
 - Diagrama Voronoi $Vor(\mathcal{P}) \Longrightarrow$
 - Graful dual $\mathcal{G}(\mathcal{P})$. **Noduri:** fețele diagramei Voronoi (siturile). **Arce:** dacă celulele (fețele diagramei Voronoi corespunzătoare) au o muchie comună \Longrightarrow

- Construcție:
 - Mulțime de puncte $\mathcal P$ în planul $\mathbb R^2 \Longrightarrow$
 - Diagrama Voronoi $Vor(\mathcal{P}) \Longrightarrow$
 - Graful dual $\mathcal{G}(\mathcal{P})$. **Noduri:** fețele diagramei Voronoi (siturile). **Arce:** dacă celulele (fețele diagramei Voronoi corespunzătoare) au o muchie comună \Longrightarrow
 - Triangulare $\mathcal{T}_{\mathcal{P}}$ (numită **triangulare Delaunay**)

- Construcție:
 - Mulţime de puncte $\mathcal P$ în planul $\mathbb R^2 \Longrightarrow$
 - Diagrama Voronoi $Vor(\mathcal{P}) \Longrightarrow$
 - Graful dual $\mathcal{G}(\mathcal{P})$. **Noduri:** fețele diagramei Voronoi (siturile). **Arce:** dacă celulele (fețele diagramei Voronoi corespunzătoare) au o muchie comună \Longrightarrow
 - Triangulare $\mathcal{T}_{\mathcal{P}}$ (numită **triangulare Delaunay**)
- ▶ **Propoziție.** Fie T o triangulare a lui P. Atunci T este o triangulare Delaunay dacă și numai dacă pentru orice triunghi din T cercul circumscris nu conține în interiorul său niciun punct al lui P.

- Construcție:
 - Mulţime de puncte ${\mathcal P}$ în planul ${\mathbb R}^2 \Longrightarrow$
 - Diagrama Voronoi $Vor(\mathcal{P}) \Longrightarrow$
 - Graful dual $\mathcal{G}(\mathcal{P})$. **Noduri:** fețele diagramei Voronoi (siturile). **Arce:** dacă celulele (fețele diagramei Voronoi corespunzătoare) au o muchie comună \Longrightarrow
 - Triangulare $\mathcal{T}_{\mathcal{P}}$ (numită **triangulare Delaunay**)
- ▶ **Propoziție.** Fie T o triangulare a lui P. Atunci T este o triangulare Delaunay dacă și numai dacă pentru orice triunghi din T cercul circumscris nu conține în interiorul său niciun punct al lui P.
- ► **Teoremă.** O triangulare este legală dacă și numai dacă este o triangulare Delaunay.

- Construcție:
 - Mulțime de puncte $\mathcal P$ în planul $\mathbb R^2 \Longrightarrow$
 - Diagrama Voronoi $Vor(\mathcal{P}) \Longrightarrow$
 - Graful dual $\mathcal{G}(\mathcal{P})$. **Noduri:** fețele diagramei Voronoi (siturile). **Arce:** dacă celulele (fețele diagramei Voronoi corespunzătoare) au o muchie comună \Longrightarrow
 - Triangulare $\mathcal{T}_{\mathcal{P}}$ (numită **triangulare Delaunay**)
- ▶ **Propoziție.** Fie T o triangulare a lui P. Atunci T este o triangulare Delaunay dacă și numai dacă pentru orice triunghi din T cercul circumscris nu conține în interiorul său niciun punct al lui P.
- ► **Teoremă.** O triangulare este legală dacă și numai dacă este o triangulare Delaunay.
- ▶ **Teoremă.** Orice triangulare unghiular optimă este o triangulare Delaunay. Orice triangulare Delaunay maximizează cel mai mic unghi, comparativ cu toate triangulările lui 𝑃.

- Construcție:
 - Mulţime de puncte \mathcal{P} în planul $\mathbb{R}^2 \Longrightarrow$
 - Diagrama Voronoi $Vor(\mathcal{P}) \Longrightarrow$
 - Graful dual $\mathcal{G}(\mathcal{P})$. **Noduri:** fețele diagramei Voronoi (siturile). **Arce:** dacă celulele (fețele diagramei Voronoi corespunzătoare) au o muchie comună \Longrightarrow
 - Triangulare $\mathcal{T}_{\mathcal{P}}$ (numită **triangulare Delaunay**)
- ▶ **Propoziție.** Fie T o triangulare a lui P. Atunci T este o triangulare Delaunay dacă și numai dacă pentru orice triunghi din T cercul circumscris nu conține în interiorul său niciun punct al lui P.
- ► **Teoremă.** O triangulare este legală dacă și numai dacă este o triangulare Delaunay.
- ► Teoremă. Orice triangulare unghiular optimă este o triangulare Delaunay. Orice triangulare Delaunay maximizează cel mai mic unghi, comparativ cu toate triangulările lui P.
- ▶ Întrebare: Cum "funcționează" această construcție când punctele din 𝒫 sunt (de exemplu) vârfurile unui pătrat?

► Complexitate: $O(n \log n)$.

- ▶ Complexitate: $O(n \log n)$.
- ▶ Principiu (paradigmă): sweep line / linie de baleiere.

- ▶ Complexitate: $O(n \log n)$.
- Principiu (paradigmă): sweep line / linie de baleiere.
- ▶ **Inconvenient:** la întâlnirea unui vârf al diagramei, linia de baleiere nu a întâlnit încă toate siturile (puncte din 𝒫) care determină acest vârf!

- ▶ Complexitate: $O(n \log n)$.
- ▶ Principiu (paradigmă): sweep line / linie de baleiere.
- ► Inconvenient: la întâlnirea unui vârf al diagramei, linia de baleiere nu a întâlnit încă toate siturile (puncte din P) care determină acest vârf!
- ▶ Adaptare: nu reținem informația legată de intersecția dintre linia de baleiere și diagramă, ci doar informația legată de partea diagramei care <u>nu</u> mai poate fi influențată de punctele situate de dincolo de linia de baleiere.

- ▶ Complexitate: $O(n \log n)$.
- ▶ Principiu (paradigmă): sweep line / linie de baleiere.
- ▶ Inconvenient: la întâlnirea unui vârf al diagramei, linia de baleiere nu a întâlnit încă toate siturile (puncte din 𝒫) care determină acest vârf!
- Adaptare: nu reținem informația legată de intersecția dintre linia de baleiere și diagramă, ci doar informația legată de partea diagramei care <u>nu</u> mai poate fi influențată de punctele situate de dincolo de linia de baleiere.
- Concepte:

- ▶ Complexitate: $O(n \log n)$.
- ▶ Principiu (paradigmă): sweep line / linie de baleiere.
- ▶ Inconvenient: la întâlnirea unui vârf al diagramei, linia de baleiere nu a întâlnit încă toate siturile (puncte din 𝒫) care determină acest vârf!
- ▶ Adaptare: nu reținem informația legată de intersecția dintre linia de baleiere și diagramă, ci doar informația legată de partea diagramei care <u>nu</u> mai poate fi influențată de punctele situate de dincolo de linia de baleiere.
- ► Concepte:
 - beach line / linie parabolică

- ▶ Complexitate: $O(n \log n)$.
- ▶ Principiu (paradigmă): sweep line / linie de baleiere.
- ► Inconvenient: la întâlnirea unui vârf al diagramei, linia de baleiere nu a întâlnit încă toate siturile (puncte din P) care determină acest vârf!
- Adaptare: nu reținem informația legată de intersecția dintre linia de baleiere și diagramă, ci doar informația legată de partea diagramei care <u>nu</u> mai poate fi influențată de punctele situate de dincolo de linia de baleiere.
- ► Concepte:
 - ▶ beach line / linie parabolică
 - site event / eveniment de tip locație (apare un arc de parabolă)

- ▶ Complexitate: $O(n \log n)$.
- ▶ Principiu (paradigmă): sweep line / linie de baleiere.
- ► Inconvenient: la întâlnirea unui vârf al diagramei, linia de baleiere nu a întâlnit încă toate siturile (puncte din P) care determină acest vârf!
- Adaptare: nu reținem informația legată de intersecția dintre linia de baleiere și diagramă, ci doar informația legată de partea diagramei care <u>nu</u> mai poate fi influențată de punctele situate de dincolo de linia de baleiere.
- ► Concepte:
 - ▶ beach line / linie parabolică
 - site event / eveniment de tip locație (apare un arc de parabolă)
 - circle event / eveniment de tip cerc (dispare un arc de parabolă)

Algoritmul

Input. O mulțime de situri $\mathcal{P} = \{p_1, \dots, p_n\}$ de situri în plan. **Output.** Diagrama Voronoi $Vor(\mathcal{P})$ în interiorul unui *bounding box*, descrisă printr-o listă dublu înlănțuită \mathcal{D} .

1. Iniţializări: coada de evenimente $\mathcal{Q} \leftarrow \mathcal{P}$ (preprocesare: ordonare după y), statut (arbore balansat) $\mathcal{T} \leftarrow \emptyset$; listă dublu înlănţuită $\mathcal{D} \leftarrow \emptyset$.

Algoritmul

Input. O mulțime de situri $\mathcal{P} = \{p_1, \dots, p_n\}$ de situri în plan. **Output.** Diagrama Voronoi $\mathrm{Vor}(\mathcal{P})$ în interiorul unui *bounding box*, descrisă printr-o listă dublu înlănțuită \mathcal{D} .

- 1. Iniţializări: coada de evenimente $\mathcal{Q} \leftarrow \mathcal{P}$ (preprocesare: ordonare după y), statut (arbore balansat) $\mathcal{T} \leftarrow \emptyset$; listă dublu înlănţuită $\mathcal{D} \leftarrow \emptyset$.
- 2. while $Q \neq \emptyset$

Algoritmul

Input. O mulțime de situri $\mathcal{P} = \{p_1, \dots, p_n\}$ de situri în plan. **Output.** Diagrama Voronoi $Vor(\mathcal{P})$ în interiorul unui *bounding box*, descrisă printr-o listă dublu înlănțuită \mathcal{D} .

- 1. Iniţializări: coada de evenimente $\mathcal{Q} \leftarrow \mathcal{P}$ (preprocesare: ordonare după y), statut (arbore balansat) $\mathcal{T} \leftarrow \emptyset$; listă dublu înlănţuită $\mathcal{D} \leftarrow \emptyset$.
- 2. while $Q \neq \emptyset$
- 3. **do** elimină evenimentul cu cel mai mare y din Q

- 1. Iniţializări: coada de evenimente $\mathcal{Q} \leftarrow \mathcal{P}$ (preprocesare: ordonare după y), statut (arbore balansat) $\mathcal{T} \leftarrow \emptyset$; listă dublu înlănţuită $\mathcal{D} \leftarrow \emptyset$.
- 2. while $Q \neq \emptyset$
- 3. **do** elimină evenimentul cu cel mai mare y din Q
- 4. **if** evenimentul **ev** este un eveniment de tip sit

- 1. Iniţializări: coada de evenimente $\mathcal{Q} \leftarrow \mathcal{P}$ (preprocesare: ordonare după y), statut (arbore balansat) $\mathcal{T} \leftarrow \emptyset$; listă dublu înlănţuită $\mathcal{D} \leftarrow \emptyset$.
- 2. while $Q \neq \emptyset$
- 3. **do** elimină evenimentul cu cel mai mare y din Q
- 4. **if** evenimentul **ev** este un eveniment de tip sit
- 5. **then** ProcessEvSit(p_i), cu p_i =**ev**

- 1. Iniţializări: coada de evenimente $\mathcal{Q} \leftarrow \mathcal{P}$ (preprocesare: ordonare după y), statut (arbore balansat) $\mathcal{T} \leftarrow \emptyset$; listă dublu înlănţuită $\mathcal{D} \leftarrow \emptyset$.
- 2. while $Q \neq \emptyset$
- 3. **do** elimină evenimentul cu cel mai mare y din Q
- 4. **if** evenimentul **ev** este un eveniment de tip sit
- 5. **then** ProcessEvSit(p_i), cu p_i =**ev**
- 6. else ProcessEvCerc(γ), cu $\gamma = arc(\mathbf{ev}) \in \mathcal{T}$

- 1. Iniţializări: coada de evenimente $\mathcal{Q} \leftarrow \mathcal{P}$ (preprocesare: ordonare după y), statut (arbore balansat) $\mathcal{T} \leftarrow \emptyset$; listă dublu înlănţuită $\mathcal{D} \leftarrow \emptyset$.
- 2. while $Q \neq \emptyset$
- 3. **do** elimină evenimentul cu cel mai mare y din Q
- 4. **if** evenimentul **ev** este un eveniment de tip sit
- 5. **then** ProcessEvSit(p_i), cu p_i =**ev**
- 6. else ProcessEvCerc(γ), cu $\gamma = arc(ev) \in \mathcal{T}$
- 7. Nodurile interne încă prezente în \mathcal{T} corespund semidreptelor diagramei Voronoi. Consideră un bounding box care conține toate vârfurile diagramei Voronoi în interiorul să și leagă semidreptele de acest bounding box, prin actualizarea corespunzătoare a lui \mathcal{D} .

- 1. Iniţializări: coada de evenimente $\mathcal{Q} \leftarrow \mathcal{P}$ (preprocesare: ordonare după y), statut (arbore balansat) $\mathcal{T} \leftarrow \emptyset$; listă dublu înlănţuită $\mathcal{D} \leftarrow \emptyset$.
- 2. while $Q \neq \emptyset$
- 3. **do** elimină evenimentul cu cel mai mare y din Q
- 4. **if** evenimentul **ev** este un eveniment de tip sit
- 5. **then** ProcessEvSit(p_i), cu p_i =**ev**
- 6. **else** ProcessEvCerc(γ), cu $\gamma = arc(ev) \in \mathcal{T}$
- 7. Nodurile interne încă prezente în T corespund semidreptelor diagramei Voronoi. Consideră un bounding box care conține toate vârfurile diagramei Voronoi în interiorul să și leagă semidreptele de acest bounding box, prin actualizarea corespunzătoare a lui D.
- 8. Traversează muchiile pentru a adăuga celulele diagramei și pointeri corespunzători.

1. Dacă \mathcal{T} este vidă, inserează p_i și revine, dacă nu continuă cu 2.-5.

- 1. Dacă \mathcal{T} este vidă, inserează p_i și revine, dacă nu continuă cu 2.-5.
- 2. Caută în \mathcal{T} arcul α situat deasupra lui p_i . Dacă frunza reprezentând α are un pointer către un eveniment de tip cerc **ev** din \mathcal{Q} , atunci **ev** este o alarmă falsă și trebuie șters.

- 1. Dacă \mathcal{T} este vidă, inserează p_i și revine, dacă nu continuă cu 2.-5.
- 2. Caută în \mathcal{T} arcul α situat deasupra lui p_i . Dacă frunza reprezentând α are un pointer către un eveniment de tip cerc **ev** din \mathcal{Q} , atunci **ev** este o alarmă falsă și trebuie șters.
- 3. Înlocuiește frunza lui \mathcal{T} care reprezintă α cu un subarbore cu trei frunze: cea din mijloc reține situl p_i și celelalte două situl p_j asociat lui α . Memorează perechile reprezentând punctele de racord în două noduri interne. Efectuează rebalansări în \mathcal{T} , dacă este necesar.

- 1. Dacă \mathcal{T} este vidă, inserează p_i și revine, dacă nu continuă cu 2.-5.
- 2. Caută în \mathcal{T} arcul α situat deasupra lui p_i . Dacă frunza reprezentând α are un pointer către un eveniment de tip cerc **ev** din \mathcal{Q} , atunci **ev** este o alarmă falsă și trebuie șters.
- Înlocuieşte frunza lui T care reprezintă α cu un subarbore cu trei frunze: cea din mijloc reține situl p_i şi celelalte două situl p_j asociat lui α. Memorează perechile reprezentând punctele de racord în două noduri interne. Efectuează rebalansări în T, dacă este necesar.
- 4. Generează noi înregistrări de tip semi-muchie în structura diagramei Voronoi (\mathcal{D}) , pentru muchiile care separă celulele $V(p_i)$ și $V(p_j)$, corespunzând celor două noi puncte de racord.

- 1. Dacă \mathcal{T} este vidă, inserează p_i și revine, dacă nu continuă cu 2.-5.
- 2. Caută în \mathcal{T} arcul α situat deasupra lui p_i . Dacă frunza reprezentând α are un pointer către un eveniment de tip cerc **ev** din \mathcal{Q} , atunci **ev** este o alarmă falsă și trebuie șters.
- Înlocuieşte frunza lui T care reprezintă α cu un subarbore cu trei frunze: cea din mijloc reține situl p_i şi celelalte două situl p_j asociat lui α. Memorează perechile reprezentând punctele de racord în două noduri interne. Efectuează rebalansări în T, dacă este necesar.
- 4. Generează noi înregistrări de tip semi-muchie în structura diagramei Voronoi (\mathcal{D}) , pentru muchiile care separă celulele $V(p_i)$ și $V(p_j)$, corespunzând celor două noi puncte de racord.
- 5. Verifică tripletele de arce consecutive nou create, pentru a verifica dacă muchiile corespunzătoare punctelor de racord se întâlnesc. Dacă da, inserează evenimente de tip cerc în Q și adaugă pointeri de la nodurile lui T la evenimentele corespunzătoare din Q.

Procedura ProcessEvCerc (γ)

1. Șterge frunza $\gamma \in \mathcal{T}$ care corespunde arcului de cerc α care dispare. Actualizează în nodurile interne perechile care corespund punctelor de racord. Efectuează rebalansări în \mathcal{T} , dacă este necesar. Șterge toate evenimentele de tip cerc care îi corespund lui α (cu ajutorul pointerilor de la predecesorul și succesorul lui γ în \mathcal{T} .

Procedura ProcessEvCerc (γ)

- 1. Şterge frunza $\gamma \in \mathcal{T}$ care corespunde arcului de cerc α care dispare. Actualizează în nodurile interne perechile care corespund punctelor de racord. Efectuează rebalansări în \mathcal{T} , dacă este necesar. Șterge toate evenimentele de tip cerc care îi corespund lui α (cu ajutorul pointerilor de la predecesorul și succesorul lui γ în \mathcal{T} .
- 2. Adaugă centrul cercului care determină evenimentul ca înregistrare de tip vârf în \mathcal{D} . Creează înregistrări de tip semi-muchie corespunzând noului punct de racord de pe linia parabolică și asignează pointeri corespunzători.

Procedura ProcessEvCerc (γ)

- 1. Şterge frunza $\gamma \in \mathcal{T}$ care corespunde arcului de cerc α care dispare. Actualizează în nodurile interne perechile care corespund punctelor de racord. Efectuează rebalansări în \mathcal{T} , dacă este necesar. Șterge toate evenimentele de tip cerc care îi corespund lui α (cu ajutorul pointerilor de la predecesorul și succesorul lui γ în \mathcal{T} .
- Adaugă centrul cercului care determină evenimentul ca înregistrare de tip vârf în D. Creează înregistrări de tip semi-muchie corespunzând noului punct de racord de pe linia parabolică și asignează pointeri corespunzători.
- 3. Verifică tripletele de arce consecutive nou create (care au foștii vecini ai lui α în centru), pentru a verifica dacă muchiile corespunzătoare punctelor de racord se întâlnesc. Dacă da, inserează evenimente de tip cerc în $\mathcal Q$ și adaugă pointeri de la nodurile lui $\mathcal T$ la evenimentele corespunzătoare din $\mathcal Q$.

Rezultate principale

► **Teoremă**. Diagrama Voronoi a unei mulțimi de n situri poate fi determinată cu un algoritm de tip line sweep de complexitate $O(n \log n)$, folosind O(n) spațiu de memorie.

Rezultate principale

- ► **Teoremă**. Diagrama Voronoi a unei mulțimi de n situri poate fi determinată cu un algoritm de tip line sweep de complexitate O(n log n), folosind O(n) spațiu de memorie.
- ▶ **Teoremă**. Triangularea Delaunay a unei mulțimi de n situri poate fi determinată cu un algoritm de tip line sweep de complexitate O(n log n), folosind O(n) spațiu de memorie.