

LÓGICA MATEMÁTICA

AULA - DEMONSTRAÇÃO CONDICIONAL

Objetivos: Nesta aula identificaremos na proposição condicional a hipótese e a tese. Faremos a reescrita de uma proposição condicional na forma contrapositiva e recíproca. Diferenciaremos exemplo de contraexemplo de uma proposição. Também apresentaremos o método de demonstração condicional.

1. HIPÓTESE, TESE, EXEMPLOS E CONTRAEXEMPLOS

Utilizaremos proposições condicionais abertas (sentenças abertas) para analisar os valores lógicos do seu antecedente e do seu consequente. Assim, estabeleceremos quando um caso particular para a variável da proposição aberta é exemplo e quando este valor é contraexemplo. Também queremos reescrever a proposição para estabelecer a sua recíproca e a contrapositiva. Faremos este estudo mediado por algumas questões.

1.1. Questão resolvida

Considere a seguinte proposição aberta para $x \in \mathbb{R}$:

Se
$$\frac{2x+1}{x-1} > 1$$
, então $x > -2$

- a. Qual é a hipótese e qual é a tese desta proposição?
- b. x=-1 é um exemplo para a proposição?
- c. x=-1 é um contraexemplo para a proposição?
- d. x=-3 é um contraexemplo para a proposição?
- e. x=2 é um exemplo para a proposição?
- f. Escreva a recíproca da proposição.
- g. Escreva a contrapositiva da proposição.
- h. A proposição é verdadeira?
- i. A recíproca é verdadeira?

Resolução:

a. Na forma condicional, a hipótese é o antecedente e a tese é o consequente.

Hipótese:
$$\frac{2x+1}{x-1} > 1$$

Tese:
$$x > -2$$

b. Um valor para a variável é um exemplo quando faz a hipótese ser Verdadeira e também faz a tese ser Verdadeira.

Neste caso, x=-1 não é exemplo, pois x=-1 não faz a hipótese da proposição ser Verdadeira.

c. Um valor para a variável é contraexemplo quando faz a hipótese ser Verdadeira mas faz a tese ser Falsidade.

Neste caso x=-1 não é contraexemplo, pois x=-1 não faz a hipótese da proposição ser Verdadeira.

- d. Sim. Para x=-3 temos a hipótese verdadeira e a tese falsidade.
- e. Sim. Para x=2 temos a hipótese e a tese verdadeiras, ou seja, a proposição tem valor lógico Verdade.
- f. Na forma condicional, $p \rightarrow q$, a recíproca é escrita na forma $q \rightarrow p$. Portanto, a recíproca será:

Se
$$x > -2$$
, então $\frac{2x+1}{x-1} > 1$.

g. Na forma condicional de uma proposição, $p \rightarrow q$, a contrapositiva é escrita na forma $\sim q \rightarrow \sim p$. Observe que essas duas formas de escrita são equivalentes (as tabelas Verdade são idênticas).

Portanto, a contrapositiva será:

Se
$$x \le -2$$
, então $\frac{2x+1}{x-1} \le 1$.

h. Para uma proposição ser Verdadeira é preciso que tenha valor lógico verdadeiro para todos os valores da variável. Enquanto que para ser falsa, basta que exista um contraexemplo.

Neste caso a proposição é falsa. Como já vimos, x=-3 *é um contraexemplo.*

i. A recíproca também é falsa. Um contraexemplo é x=0. Note que x=0 satisfaz a hipótese x>-2, mas torna a tese $\frac{2x+1}{x-1}>1$ falsidade.

1.2. Questão para ser resolvida

Considere a seguinte proposição aberta para $x \in \mathbb{R}$:

Se
$$-2 < x \le 3$$
, então $\frac{-1}{2} < x < 3$

a. Qual é a hipótese e qual é a tese desta proposição?

b. x=-1 é um contraexemplo para a proposição?

c. x=3 é um exemplo para a proposição?

d. x=0 é um exemplo para a proposição?

e. Escreva a recíproca da proposição.

f. Escreva a contrapositiva da proposição.

g. A proposição é verdadeira?

h. A recíproca é verdadeira?

2. MÉTODOS DE DEMONSTRAÇÃO

2.1. Questão resolvida

Considere a proposição a seguir.

P1: Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$.

Pede-se:

- a. Identifique a hipótese e a tese da proposição.
- b. Como proceder para demonstrar a proposição pelo método de **demonstração condicional?**

Resolução:

Proposição P1.

a. Hipótese: $A \subseteq B$ e $B \subseteq C$. Tese: $A \subseteq C$.

- b. Procedimento da demonstração direta:
- 1º. Assuma que a hipótese é verdadeira.
- 2°. Utilize a hipótese para concluir que a tese é verdadeira.

Observe que queremos deduzir a tese a partir da hipótese, ou seja, construir um argumento válido.

Para a proposição P1 teremos:

1°. Assuma que $A \subseteq B$ e $B \subseteq C$ como verdadeiros.

 2° . A partir da premissas $A \subseteq B$ e $B \subseteq C$ se constrói um argumento válido para concluir que $A \subseteq C$.

2.2. Questões para serem resolvidas

Considere as seguintes proposições:

P2: Se f é uma função real derivável num ponto a de seu domínio, então f é contínua em a.

P3: Para todo $x \in \mathbb{R}$ temos $sen^2 x + cos^2 x = 1$.

P4: Dados os pontos P=(a,b) e Q=(c,d) do plano cartesiano, a distância do ponto P ao ponto Q é dada por:

$$d(P,Q) = \sqrt{(a-c)^2 + (b-d)^2}$$

P5: Se a sequencia $(a_1, a_2, ..., a_n, ...)$ é uma progressão geométrica, então a soma dos n primeiros termos é $S_n = \frac{n}{2}(a_1 + a_n)$.

P6: No triângulo retângulo de lados *a*, *b* e *h* (lado oposto ao ângulo reto), é válida a equação

$$h^2 = a^2 + b^2$$

Pede-se para cada proposição:

a. Identifique a hipótese e a tese em cada proposição.

b. Como proceder para demonstrar a proposição pelo método de **demonstração** condicional (direta)?

2.3. Questões para serem resolvidas

Considere as proposições a seguir.

Q1: Se $x^2 - 2 = 0$ possui solução, então x é irracional.

Q2: Se $tg(\alpha) = sen(\alpha)/cos(\alpha)$, com $0^{\circ} < \alpha < 90^{\circ}$, então $tg^{2}(\alpha)$ é diferente de 0.

Q3: Se o determinante da matriz A é diferente de zero, então a equação matricial A.X = B possui uma única solução.

Q4: Para todo $x \in \mathbb{R}$ temos $sen^2x + cos^2x = 1$.

Q5: É válido que sen(α) = cos(β) sempre que α + β =90°.

Pede-se para cada proposição:

- a. Identifique a hipótese e a tese.
- b. Escreva a recíproca e a contrapositiva da proposição.