Measure of Dispersion (Measure of variability)

MD. MAHFUZUR RAHMAN SENIOR LECTURER, STATISTICS

Contents

- Range
- Variance & Standard deviation (for grouped and ungrouped data)
- Coefficient of Variation (CV)
- Shape characteristics: Skewness & Kurtosis
- Exploratory data analysis: Boxplot

Measures of dispersion measure how spread out a set of data is, how much variability there has in the data.

- Statistics deals with data that has some variability
- Measure of location (Central tendency) can not always adequately describe a set of observations or performance of a group of individuals
- Two data with same mean, can have different variability (i.e. can disperse differently)

▶ Consider two data sets-

Data 1: 30, 40, 60, 80, 90

Data 2: 50, 55, 60, 65, 70

Measure	Data 1	Data 2
Mean	60	60
Range	90-30=60	70-50=20

Characteristics of a good measure of variation or dispersion:

The following are the characteristics of an ideal measure of variation or dispersion

- It should be easy to understand.
- It should be easy to calculate.
- It should be based upon all observations.
- It should be rigidly defined.
- It should be unduly affected by extreme values.
- It should be suitable for further algebraic treatment.
- It should be less affected by sampling fluctuation.

Purpose of measure of dispersion or variation:

Measure of dispersion is important for the following purpose.

- To determine the reliability of an average.
- To compare the variability.
- To compare two or more series with regard to their variability.
- To facilitate the use of other statistical measures.
- It is one of the most important quantities used to characterize a frequency distribution.

Important and most commonly used measures of dispersion-

- Absolute Measures
 - 1. The Range
 - 2. The Mean Deviation (MD) or Average Deviation
 - 3. The Interquartile Range (IQR) or Quartile Deviation (QD)
 - 4. The Variance
 - The Standard Deviation (SD)

Important and most commonly used measures of dispersion-

Relative Measure:

- Coefficient of Variation (CV)
- Coefficient of range
- Coefficient of quartile deviation
- 4. Coefficient of mean deviation

Range

Difference between highest and lowest value.

Range= Highest value (H)- Lowest value (L)

Notes:

- 1. The unit of the range is the same as the unit of the data.
- 2. The usefulness of the range is limited. The range is poor measure of the dispersion because it only takes into account two of the values; however, it plays a significant role in many application.

Range

Example:

Below given the weight of 10 newly born babies (in pounds)-7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

Range

Example:

Below given the weight of 10 newly born babies (in pounds)-7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

$$Range = Highest \ value - Lowest \ value$$

= 10.1 - 4.5 = 5.6 pounds

Interpretation: The difference of weights between the healthiest baby and leanest baby is 5.6 pounds

Mean Deviation (MD) or Average Deviation

The mean of the absolute deviations of each individual value from the average of a set of values, is called the average deviations.

Let x1, x2,...xn be a set of n values, then its mean deviation is denoted by,

$$A.D = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|; \text{ for raw data}$$

$$A.D = \frac{1}{n} \sum_{i=1}^{\kappa} f_i |x_i - \bar{x}| ; for group data$$

Variance

Calculates variability or dispersion from mean.

Variance

Formulas:

For raw or ungrouped data-

For Population: let, X_1 , X_2 , ..., X_N are values of a variable from a population of size N. Then,

Population variance, $\sigma^2 = Var(X)$

$$= \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

(Parameter)

For Sample: let, $x_1, x_2, ..., x_n$ are values of a variable from a sample of size n. Then,

Sample variance, $s^2 = var(X)$

$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

(Statistic)

Variance

Formulas:

For grouped data-

For Population: let, X_1 , X_2 , ..., X_K are values of a variable from a population of size N and they occurred f_1 , f_2 , ..., f_K times respectively. Then,

Population variance, $\sigma^2 = Var(X)$

$$= \frac{\sum_{i=1}^{K} f_i (X_i - \mu)^2}{N}$$

(Parameter)

For Sample: let, $x_1, x_2, ..., x_k$ are values of a variable from a sample of size n and they occurred $f_1, f_2, ..., f_k$ times respectively. Then,

Sample variance, $s^2 = var(X)$

$$= \frac{\sum_{i=1}^{k} f_i (x_i - \bar{x})^2}{n-1}$$

(Statistic)

Standard Deviation (SD)

- Average variation of the data or observations from mean
- Can be obtained by taking square root of variance.

Standard Deviation (SD)

Formulas:

For raw or ungrouped data-

For Population: let, X_1 , X_2 , ..., X_N are values of a variable from a population of size N. Then,

Population SD, $\sigma = SD(X) = \sqrt{Var(X)}$

$$= \sqrt{\left(\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}\right)} \quad unit$$

(Parameter)

For Sample: let, $x_1, x_2, ..., x_n$ are values of a variable from a sample of size n. Then,

Sample SD,
$$s = sd(X) = \sqrt{var(X)}$$

$$= \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \ uni$$

(Statistic)

Standard Deviation (SD)

Formulas:

For grouped data-

For Population: let, X_1 , X_2 , ..., X_K are values of a variable from a population of size N and they occurred f_1 , f_2 , ..., f_K times respectively. Then,

Population SD,
$$\sigma = SD(X) = \sqrt{Var(X)}$$

$$= \sqrt{\frac{\sum_{i=1}^{K} f_i (X_i - \mu)^2}{N}}$$
 unit

(Parameter)

For Sample: let, $x_1, x_2, ..., x_k$ are values of a variable from a sample of size n and they occurred $f_1, f_2, ..., f_k$ times respectively. Then,

Sample SD,
$$s = sd(X) = \sqrt{var(X)}$$

$$= \sqrt{\frac{\sum_{i=1}^{k} f_i (x_i - \bar{x})^2}{n-1}} \quad unit$$

(Statistic)

Below given the weight of 10 newly born babies (in pounds)-

7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

Find SD for the above data. Interpret the result.

Below given the weight of 10 newly born babies (in pounds)-

7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

Find SD for the above data. Interpret the result.

$$mean, \bar{x} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{7.5 + 4.5 + 10.1 + 9.6 + 5.5 + 6.6 + 7.8 + 5.9 + 6.0 + 5.5}{10} = 6.9$$

$$variance, var(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

$$= \frac{(7.5 - 6.9)^2 + (4.5 - 6.9)^2 + (10.1 - 6.9)^2 + (9.6 - 6.9)^2 + (5.5 - 6.9)^2}{10-1}$$

$$= \frac{+(6.6 - 6.9)^2 + (7.8 - 6.9)^2 + (5.9 - 6.9)^2 + (6.0 - 6.9)^2 + (5.5 - 6.9)^2}{10-1}$$

$$= \frac{(.6)^2 + (-2.4)^2 + (3.2)^2 + (2.7)^2 + (-1.4)^2}{9}$$

$$= \frac{-(3.6 + 5.76 + 10.24 + 7.29 + 1.96 + 0.09 + 0.81 + 1 + 0.81 + 1.96}{9}$$

$$= \frac{30.28}{9} = 3.36$$

$$sd, s = \sqrt{var(X)} = \sqrt{3.36} = 1.83 \ pounds$$

Interpretation: The average variation of the weights of the newly born babies from the mean weight is 1.83 pounds

Consider the following data-

Monthly income ('000 tk)	No. of respondents (f _i)
5-30	7
30-55	10
55-80	6
80-105	4
105-130	3
Total	30

Find SD and interpret the result.

Monthly income ('000 tk)	No. of respondents (f _i)	Class Midpoint (x _i)	$f_i x_i$	$(x_i - \overline{x})$	$f_i(x_i-\overline{x})^2$
5-30	7	17.5	122.5	-38.33	10284.32
30-55	10	42.5	425	-13.33	1776.89
55-80	6	67.5	405	11.67	817.13
80-105	4	92.5	370	36.67	5378.76
105-130	3	117.5	352.5	61.67	11409.57
Total	30	C//,	1675		29666.67

$$\bar{x} = \frac{\sum f_i x_i}{n} = \frac{1675}{30} = 55.83 \text{ thousand taka}$$

Monthly income ('000 tk)	No. of respondents (f _i)	Class Midpoint (x _i)	$f_i x_i$	$(x_i - \overline{x})$	$f_i(x_i-\overline{x})^2$
5-30	7	17.5	122.5	-38.33	10284.32
30-55	10	42.5	425	-13.33	1776.89
55-80	6	67.5	405	11.67	817.13
80-105	4	92.5	370	36.67	5378.76
105-130	3	117.5	352.5	61.67	11409.57
Total	30	C//,	1675		29666.67

$$SD, s = \sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{29666.67}{30-1}} = 31.98 \text{ thousand taka}$$

Interpretation: Average variation of the monthly incomes of the respondents from mean income is 31.98 thousand taka

Coefficient of Variation (CV)

The coefficient of variation (CV) is defined as the ratio of the standard deviation σ to the mean μ :

Population CV,
$$C_v = \frac{\sigma}{\mu}$$

Sample CV, $c_v = \frac{s}{\bar{x}}$

- It shows the extent of variability in relation to the mean of the population
- The coefficient of variation should be computed only for data measured on a ratio scale
- For comparison between data sets with different units or widely different means, one should use the coefficient of variation instead of the standard deviation

Relative Measures (Others)

- ► Coefficient of range = $\frac{L-S}{L+S} \times 100$
- Coefficient of mean deviation from A = $\frac{MD(A)}{A} \times 100$
- Coefficient of quartile deviation = $\frac{Q_3 Q_1}{Q_3 + Q_1} \times 100$
- Inter-relationship:

$$Mean \ deviation = \frac{4}{5} \times standard \ deviation$$

$$Quartile \ Deviation = \frac{2}{3} \times standard \ deviation$$

Shape characteristics

Shape of a distribution can be identified by using two characteristics-

- 1. Skewness
- 2. Kurtosis

A measure of the asymmetry (lack of symmetry) of a distribution

Note:

- ► The normal distribution is symmetric and has a skewness = 0. Here, Mean=Median=Mode
- A distribution with a significant positive skewness has a long right tail and has skewness>0. Here, Mean>Median>Mode
- A distribution with a significant negative skewness has a long left tail and has skewness<0. Here, Mean<Median<Mode</p>

Formulas:

1. Pearson's coefficient of skewness = $\frac{3(mean - median)}{Standard Deviation} = \frac{mean - mode}{Standard Deviation}$

2. Bowley's coefficient of skewness =
$$\frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}$$

Example:

For a distribution we have-

mean= 30.892, median= 30.58, SD= 2.219, Q₁= 29.50, Q₃= 32.1

Is the distribution is positively skewed? How? What is the value of coefficient of skewness?

Pearson's coefficient of skewness =
$$\frac{3(mean - median)}{Standard Deviation} = \frac{3(30.892 - 30.58)}{2.219} = 0.42$$

Bowley's coefficient of skewness =
$$\frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}$$
$$= \frac{(32.1 - 30.58) - (30.58 - 29.50)}{32.1 - 29.50}$$
$$= 0.17$$

Yes, the distribution is positively skewed. Because the coefficient of skewness is greater than 0. The value of skewness is 0.42.

Kurtosis

A measure of the extent to which observations cluster around a central point. A provides a measure of peakedness i.e. how peak the distribution is.

Five number summary-

- 1. Lowest value
- 2. Q₁
- 3. Median (Q_2)
- 4. Q_3
- 5. Highest value

Example:

For a distribution, Lowest value= 25, Highest value= 40, Q1= 29.50, Q3= 32.1, and Median= 30.58. Show these information in a boxplot.

Example:

For a distribution, Lowest value= 25, Highest value= 40, Q1= 29.50, Q3= 32.1, and Median= 30.58. Show these information in a boxplot.

Outliers:

Interquartile Range, $IQR = Q_3 - Q_1$

Lower fence =
$$Q_1 - 1.5 * IQR$$

Upper fence = $Q_3 + 1.5 * IQR$

Any observation having value out of (beyond) these two fences is called outliers and represented by '*' sign on the boxplot. (One * for each outlier)

Outliers:

Class task

Question:

A random sample of 20 people was taken to know the time passed on Facebook during last two weeks (in hours). The recorded data were as follows-

67, 76, 85, 42, 93, 48, 93, 46, 52, 72, 77, 53, 41, 48, 86, 78, 56, 80, 70, 66

Show this data in a boxplot. Measure the coefficient of skewness. Comment on your findings.