OMNICOMM

Датчики уровня топлива Omnicomm LLS

Руководство по интеграции 13.11.2017

Содержание

- 3 Общая информация
- 3 Описание датчика уровня топлива Omnicomm
- 4 Требования к внешнему устройству
- 4 Описание протокола обмена
- 5 Описание команд бинарного протокола обмена
- 5 Формат сообщений для бинарного протокола
- 6 Однократное считывание данных (команда 06h)
- 7 Периодическая выдача данных (команда 07h)
- 9 Изменение интервала периодической выдачи (команда 13h)
- 10 Режим выдачи данных по умолчанию (команда 17h)
- 12 Установка глубины фильтрации (команда 0Eh)
- 13 Чтение истории изменений настроек датчика (0Fh)
- 16 Чтение текущих настроек датчика (команда 10h)
- 18 Описание команд для символьного протокола
- 18 Чтение данных
- 18 Периодическая выдача данных
- 19 Алгоритм вычисления контрольной суммы

Датчики уровня топлива Omnicomm LLS. Руководство по интеграции

Общая информация

Руководство по интеграции содержит рекомендации по внедрению датчиков уровня топлива Omnicomm LLS в системы мониторинга и контроля транспорта различных производителей (внешние устройства).

Описание датчика уровня топлива Omnicomm

Информационный обмен с датчиком осуществляется по интерфейсу RS-232 или RS-485. Датчик поддерживает скорость обмена от 1200 до 115200 бит/сек. Значение по умолчанию – 19200 бит/сек.

Датчик Omnicomm LLS может работать в двух режимах:

1. В режиме slave (ведомый) датчик Omnicomm LLS отвечает на запросы от ведущего (master) устройства в сети. Для каждого из датчиков Omnicomm LLS в сети должен быть задан сетевой адрес

Для включения режима slave в программе Omnicomm Configurator установите:

- Автоматическая выдача данных нет
- Сетевые адреса датчиков Omnicomm LLS
- 2. Режим master (ведущий) может осуществляться только в случае подключения к внешнему устройству одного датчика LLS. В этом режиме датчик самостоятельно, без запроса от внешнего устройства, отправляет пакеты с данными об измеренном уровне топлива и температуре

Для включения режима master в программе Omnicomm Configurator установите:

- Автоматическая выдача данных бинарный или символьный
- Интервал выдачи данный

Требования к внешнему устройству

Внешнее устройство должно иметь последовательный интерфейс RS-485 или RS-232 и поддерживать протокол Omnicomm LLS.

Описание протокола обмена

Протокол поддерживает два типа протокола обмена: в бинарном (НЕХ) виде и в символьном виде (передачей ASCII-последовательностей). Для работы рекомендуется использовать бинарный протокол обмена.

После подачи питания на датчик уровня топлива Omnicomm LLS и перед подачей первой команды запроса необходимо выждать время не менее 100 мс.

При работе с датчиками Omnicomm LLS, находящимися в режиме slave, после отправки команды запроса необходимо дождаться ответа от датчика. Время задержки ответа зависит от скорости обмена и типа протокола обмена (не более 100 мс).

Данные между датчиком и внешним устройством передаются в виде сообщений (пакетов байт). Передача каждого байта начинается СТАРТ битом, а завершается СТОП битом:

Данные передаются младшим байтом вперёд.

Интервал между последующими байтами в пакете (Тт) должен быть меньше длительности передачи 35 бит или меньше 1 мс (если 35/скорость<1 мс).

Тбайт – время передачи одного байта информации;

Тт – интервал между последовательными байтами в пакете.

Окончанием пакета байт считается, если последующий байт не приходит в течение времени (Тп), превышающего максимальный интервал (Тт) + 1 мс.

Описание команд бинарного протокола обмена

Формат сообщений для бинарного протокола

Все команды бинарного протокола обмена имеют одинаковый вид, представленный в Таблице:

Порядковый номер поля	Название поля	Размер поля, байт	Описание
1	Префикс	1	Поле является маркером начала сообщения Входящие сообщения должны иметь префикс 31h, а исходящие сообщения должны выдаваться программой с префиксом 3Eh
2	Сетевой адрес	1	Для префикса 31h сетевой адрес получателя сообщения Для префикса 3Eh сетевой адрес отправителя сообщения

Порядковый номер поля	Название поля	Размер поля, байт	Описание
3	Код операции	1	Для префикса 31h код операции, которую программа должна выполнить Для префикса 3Eh код операции, на которую выдаётся ответ
4	Данные	Зависит от кода операции	Состав данных и формат поля зависит от кода операции
5	Контрольная сумма	1	Поле используется для контроля целостности данных

Однократное считывание данных (команда 06h)

Команда предназначена для чтения текущих данных: относительный уровень, температура, частота. Данные передаются младшим байтом вперёд. Формат команды:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	31h	Префикс
+1	1	00hFFh	Сетевой адрес получателя
+2	1	06h	Код операции
+3	1	00hFFh	Контрольная сумма

Формат ответа:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	06h	Код операции
+3	1	-128127	Температура в градусах Цельсия
+4	2	0000hFFFFh	Относительный уровень
+6	2	0000hFFFFh	Значение частоты
+8	1	00hFFh	Контрольная сумма

Периодическая выдача данных (команда 07h)

Команда предназначена для включения периодической выдачи данных.

После обработки команды датчик Omnicomm LLS производит периодическую выдачу данных: уровня, температуры и частоты, с интервалом времени, заданным командой 13h.

Отключение периодической выдачи данных производится после получения любой достоверной команды, сброса процессора или отключения напряжения питания (если не установлен режим выдачи данных по умолчанию).

Формат команды:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	31h	Префикс
+1	1	00hFFh	Сетевой адрес получателя
+2	1	07h	Код операции
+3	1	00hFFh	Контрольная сумма

Формат ответа:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	07h	Код операции
+3	1	00h	Команда выполнена успешно
		01h	Команда не может быть выполнена
+4	1	00hFFh	Контрольная сумма

Формат периодически выдаваемых данных:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	07h	Код операции
+3	1	-128127	Температура в градусах Цельсия
+4	2	0000hFFFFh	Относительный уровень
+6	2	0000hFFFFh	Значение частоты
+8	1	00hFFh	Контрольная сумма

Изменение интервала периодической выдачи (команда 13h)

Команда предназначена для установки интервала периодической выдачи данных. Формат команды:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	31h	Префикс
+1	1	00hFFh	Сетевой адрес получателя
+2	1	13h	Код операции
+3	1	0255	Интервал выдачи данных в секундах

Смещение, байт	Размер поля, байт	Значение	Описание
+4	1	00hFFh	Контрольная сумма

Формат ответа:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	13h	Код операции
+3	1	00h	Команда выполнена успешно
		01h	Команда не может быть выполнена
+4	1	00hFFh	Контрольная сумма

Режим выдачи данных по умолчанию (команда 17h)

Команда определяет порядок выдачи данных после включения питания или сброса процессора.

После включения питания или сброса программа будет отправлять по интерфейсу данные периодически с интервалом времени, задаваемым командой 13h.

Формат команды:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	31h	Префикс
+1	1	00hFFh	Сетевой адрес получателя
+2	1	17h	Код операции
+3	1	00h	Данные не выдаются
		01h	Данные выдаются в бинарном виде
		02h	Данные выдаются в символьном виде
+4	1	00hFFh	Контрольная сумма

Формат ответа:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	17h	Код операции
+3	1	00h	Команда выполнена успешно
		01h	Команда не может быть выполнена
+4	1	00hFFh	Контрольная сумма

Установка глубины фильтрации (команда 0Eh)

Команда предназначена для установки значения длины фильтра в датчике Omnicomm LLS 30160.

Формат команды:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	31h	Префикс
+1	1	00hFFh	Сетевой адрес получателя
+2	1	0Eh	Код операции
+3	1	от 0 до 20	Длина фильтра
+4	1	00hFFh	Контрольная сумма

Формат ответа:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	0Eh	Код операции
+3	1	00h	Команда выполнена успешно

Смещение, байт	Размер поля, байт	Значение	Описание
		01h	Команда не может быть выполнена
+4	1	00hFFh	Контрольная сумма

Чтение истории изменений настроек датчика (0Fh)

Команда позволяет целиком скачать область памяти, которая содержит записи изменения настроек для датчика Omnicomm LLS 30160. Формат записей представлен в таблице. В ПЗУ зафиксированы только первые 5 записей, остальные переписываются по правилу кольцевого буфера.

Формат команды:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	31h	Префикс
+1	1	00hFFh	Сетевой адрес получателя
+2	1	0Fh	Код операции
+3	1	00hFFh	Контрольная сумма

Формат ответа:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	0Fh	Код операции
+3	2	00h FFFFh	Количество данных (байт), передаваемых за заголовком (length)
+5	length	00hFFh	Данные
+5+length	1	00hFFh	Контрольная сумма

Формат записи лога:

Смещение, байт	Размер поля, байт	Значение	Описание
0	4	0h FFFFFFFFh	Порядковый номер записи
+4	2	0	Изменение сетевого адреса
		1	Изменение скорости обмена

Смещение, байт	Размер поля, байт	Значение	Описание
		2	Изменение минимального значения Nmin
		3	Изменение максимального значения Nmax
		4	Изменение длины фильтра
		5	Изменение режима автоматической выдачи
		6	Изменение интервала выдачи данных
		7	Изменение CNT1 – пустой
		8	Изменение CNT2 – полный
		0Ah	Программирование датчика
+6	4	Oh FFFFFFFFh	Время изменения настройки (unix time)
+10	4	Oh FFFFFFFFh	Новое значение параметра
+14	1	00hFFh	Контрольная сумма

Формат ответа при ошибке:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	0Fh	Код операции
+3	1	01h	Команда не может быть выполнена
+4	1	00hFFh	Контрольная сумма

Чтение текущих настроек датчика (команда 10h)

Команда предназначена для чтения текущих настроек датчика Omnicomm LLS 30160.

Формат команды:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	31h	Префикс
+1	1	00hFFh	Сетевой адрес получателя
+2	1	10h	Код операции
+3	1	00hFFh	Контрольная сумма

Формат ответа:

Смещение, байт	Размер поля, байт	Значение	Описание
0	1	3Eh	Префикс
+1	1	00hFFh	Сетевой адрес отправителя
+2	1	10h	Код операции
+3	16	LLS 30160 ¹	Имя датчика. Тип – строковая константа. Значение устанавливается на заводе-изготовителе при прошивке платы
+19	11	LLS 1.0.0.0 ¹	Обозначение программы и ее версии
+30	1	00h03h	Режим выдачи данных
+31	1	00hFFh	Интервал выдачи результатов измерения
+32	1	020	Длина фильтра
+33	2	04095	Нижняя граница изменения уровня
+35	2	14095	Верхняя граница изменения уровня
+37	3	000000h	CNT1 – нижняя граница диапазона изменения периода входного сигнала
+40	3	000000h FFFFFFh	CNT2 – верхняя граница граница диапазона изменения периода входного сигнала

Описание команд для символьного протокола

Смещение, байт	Размер поля, байт	Значение	Описание
+43	1	00hFFh	Контрольная сумма

¹ - имя датчика, номер версии и обозначение ПО может отличаться от приведённого в таблице.

Описание команд для символьного протокола

Обмен по символьному протоколу заключается в приеме и посылке последовательности ASCII символов, воспринимаемых как команды запроса и ответа.

Чтение данных

Команда предназначена для чтения текущих данных: относительный уровень, температура и частота.

Команда представляет собой последовательность ASCII символов «D» и «О». После получения команды «DO» программа выдаст ответ в виде последовательности ASCII символов.

Например, F=0AF9 t=1A N=03FF.0 <CR><LF>,

где F – текущее значение частоты, t – текущее значение температуры в градусах по Цельсию, N – значение уровня. Все значения в шестнадцатеричном виде.

В случае если значение частоты больше FFFh, данные считаются невалидными.

Периодическая выдача данных

Команда предназначена для включения периодической выдачи данных. После обработки команды датчик производит периодическую выдачу в символьном виде (ASCII коды) следующих данных: относительный уровень, температура, частота.

Алгоритм вычисления контрольной суммы

Данные выдаются периодически с интервалом, заданным при настройке датчика (программой Omnicomm Configurator). В случае установки интервала выдачи данных равным нулю выдача данных производиться не будет.

Включение периодической выдачи данных производится отправкой строки символов «DP». После обработки команды будет получена строка символов.

```
Haпример, F=0AF9 t=1A N=03FF.0 <CR><LF>,
```

где F – текущее значение частоты, t – текущее значение температуры в градусах по Цельсию, N – значение уровня. Выключение периодической выдачи данных производится после получения любой достоверной команды, сброса процессора или отключения напряжения питания.

Алгоритм вычисления контрольной суммы

Контрольная сумма рассчитывается табличным методом Dallas APPLICATION NOTE 27: Understanding and Using Cyclic Redundancy Checks with Dallas Semiconductor iButton Products.

Также для расчета контрольной суммы с полиномом $a^8 + a^5 + a^4 + 1$ можно воспользоваться следующими алгоритмами (язык C):

Вариант 1:

```
1 U8 CRC8 (U8 b, U8 crc)
2 {
3 U8 i = 8;
4 do {
   if ( (b ^ crc) & 0x01) {
    crc = ((crc ^ 0x18) >> 1) | 0x80;
6
7
    } else {
8
   crc >>= 1;
}
   b >>= 1;
10
11 } while (--i);
12 return crc;
13 }
```

Вариант 2:

```
1 U8 CRC8(U8 data, U8 crc)
2 {
3    U8 i = data ^ crc;
4    crc = 0;
5    if(i & 0x01) crc ^= 0x5e;
6    if(i & 0x02) crc ^= 0xbc;
7    if(i & 0x04) crc ^= 0x61;
8    if(i & 0x08) crc ^= 0xc2;
9    if(i & 0x10) crc ^= 0x9d;
10    if(i & 0x20) crc ^= 0x23;
```

Алгоритм вычисления контрольной суммы

```
11  if(i & 0x40) crc ^= 0x46;
12  if(i & 0x80) crc ^= 0x8c;
13  return crc;
14 }
```

OMNICOMM

info@omnicomm.ru www.omnicomm.ru