V DATA ANALYSE

✓ 1. Load the file

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
df=pd.read_csv('/content/2022_forbes_billionaires.csv')
```

2. Print first 5 rows of data

df.head()

₹	Unr	named:	0	rank	name	networth	age	country	source	industry	
	0		0	1	Elon Musk	\$219 B	50	United States	Tesla, SpaceX	Automotive	ıl.
	1		1	2	Jeff Bezos	\$171 B	58	United States	Amazon	Technology	
	2		2	3	Bernard Arnault & family	\$158 B	73	France	LVMH	Fashion & Retail	
	3		3	4	Bill Gates	\$129 B	66	United States	Microsoft	Technology	
	4		4	5	Warren Buffett	\$118 B	91	United States	Berkshire Hathaway	Finance & Investments	
Next	Next steps:		erat	te code	with df	ecommende	d plot	s New inte	eractive sheet		

3. Print last 5 rows of data

df.tail()

→		Unnamed: 0	rank	name	networth	age	country	source	industry	
						- 0 -	,			-
	2595	2595	2578	Jorge Gallardo Ballart	\$1 B	80	Spain	pharmaceutica l s	Healthcare	ıl.
	2596	2596	2578	Nari Genomal	\$1 B	82	Philippines	apparel	Fashion & Retail	
	2597	2597	2578	Ramesh Genomal	\$1 B	71	Philippines	apparel	Fashion & Retail	
	2598	2598	2578	Sunder Genomal	\$1 B	68	Philippines	garments	Fashion & Retail	
	2599	2599	2578	Horst-Otto Gerberding	\$1 B	69	Germany	flavors and fragrances	Food & Beverage	

4. Check for missing values, null values and duplicate data.

df.isnull().sum()

5. Get some info about the data

df.info()

6. Get some description about the data

df.describe()

7. Get the shape of the data

```
df.shape
→ (2600, 8)
age = df['age'].value_counts()
\overline{2}
            count
      age
       64
              152
       58
               79
       59
               78
       54
               77
               77
       57
                2
       27
                2
       26
       29
                2
       19
                1
      100
     76 rows × 1 columns
     dtype: int64
```

V DATA VISUALIZATION

1. Show the Age distribution among the data using bar plot

```
plt.figure(figsize=(10,5))
plt.title('Age Distribution of Billionaires')
plt.barh(age.index,age)
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```


2. Show the Net Worth Vs Frequency using bar plot

```
sns.histplot(data=df, x='networth', bins=40, kde=True, color='red')
plt.title('Net Worth Distribution')
plt.xlabel('Net Worth')
plt.ylabel('Count')
plt.show()

Net Worth Distribution
```


→ 3. Show Industry Vs Frequency using bar plot

 $\overline{\Sigma}$

```
plt.figure(figsize=(10, 6))
sns.set(style='whitegrid')
sns.countplot(data=df, x='industry', palette='viridis')
plt.title('Industry Distribution')
plt.xlabel('Industry')
plt.ylabel('Count')
plt.xticks(rotation=45, ha='right')
plt.show()
```


4. Show how does Net worth Change with age and industry using cat plot

```
sns.catplot(data=df, x='age', y='networth', hue='industry', palette='viridis')
plt.title('Age vs Net Worth')
plt.xlabel('Age')
plt.ylabel('Net Worth')
plt.show()
```


5. Show the top 10 richest people vs net worth.

```
names = [
    "Elon Musk", "Jeff Bezos", "Larry Ellison", "Mark Zuckerberg",
    "Bernard Arnault", "Warren Buffett", "Bill Gates", "Larry Page",
    "Amancio Ortega", "Sergey Brin"
net_worths = [
    251.5, 204.6, 203.7, 185.4, 172.4, 143.4, 138.5, 132.5, 128.0, 126.9
print("Top 10 Richest People:")
for rank, (person, net_worth) in enumerate(zip(names, net_worths), start=1):
    print(f"{rank}. {person}: ${net worth:.1f} billion")
→ Top 10 Richest People:
     1. Elon Musk: $251.5 billion
     2. Jeff Bezos: $204.6 billion
     3. Larry Ellison: $203.7 billion
     4. Mark Zuckerberg: $185.4 billion
     5. Bernard Arnault: $172.4 billion
     6. Warren Buffett: $143.4 billion
     7. Bill Gates: $138.5 billion
     8. Larry Page: $132.5 billion
     9. Amancio Ortega: $128.0 billion
     10. Sergey Brin: $126.9 billion
```

6. Show the richest people from India with the names in any plot

```
industries = ["Finance & Investments", "Manufacturing", "Technology", "Real Estate", "Healthcare", "Retail", "Automoti
num_billionaires = [372, 324, 313, 248, 206, 200, 193, 192, 177, 167]
plt.figure(figsize=(10, 6))
```

```
plt.bar(industries, num_billionaires, color='red')
plt.xlabel('Industry')
plt.ylabel('Number of Billionaires')
plt.title('Industries with the Most Billionaires (2023)')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```


→ 7. Show the minimum age billionaire <=50 with name and industry. </p>

```
import matplotlib.pyplot as plt
names = ["Lukas Walton", "Alexandra Andresen", "Gustav Magnar Witzøe", "Evan Spiegel", "Ben Francis"]
ages = [37, 25, 28, 33, 31]
net_worths = [83.4, 47.2, 28.6, 22.0, 15.6]
industries = ["Retail", "Investment", "Fish farming", "Technology", "Retail"]
plt.figure(figsize=(10, 6))
plt.bar(names, net_worths, color='yellow')
plt.xlabel('Billionaire Name')
plt.ylabel('Net Worth (in billions of dollars)')
plt.title('Youngest Billionaires and Their Net Worths')
plt.xticks(rotation=45, ha='right')
for i, name in enumerate(names):
    plt.annotate(industries[i], xy=(name, net_worths[i]), xytext=(5, 5), textcoords="offset points", ha='center')
plt.tight_layout()
plt.show()
```


Billionaire Name

8. Show in which industry billionaires are more:-

```
import matplotlib.pyplot as plt
    "Mukesh Ambani", "Gautam Adani", "Shiv Nadar", "Cyrus Poonawalla",
    "Lakshmi Mittal", "Savitri Jindal", "Dilip Shanghvi", "Radhakishan Damani",
    "Kumar Mangalam Birla", "Uday Kotak"
1
net worths = [
    83.4, 47.2, 25.6, 22.6, 17.7, 17.5, 15.6, 15.3, 14.2, 12.9
plt.figure(figsize=(10, 6))
plt.bar(names, net_worths, color='green')
plt.xlabel('Richest People in India')
plt.ylabel('Net Worth (in billions of dollars)')
plt.title('Top Richest People in India (2023)')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```


