KAIST, School of Computing, Spring 2024
Algorithms for NP-hard problems (CS492)
Lecture: Eunjung KIM

14 May 2024

Contents

	abinatorial Approximation for Cut Problems	2
1.1	Greedy $(2-\frac{2}{k})$ -approximation for EDGE MULTIWAY CUT	2
	Gomory-Hu Tree	
1.3	Greedy $(2-\frac{2}{k})$ -approximation for k -Cut	6

1 Combinatorial Approximation for Cut Problems

1.1 Greedy $(2-\frac{2}{k})$ -approximation for EDGE MULTIWAY CUT

Given an undirected graph G and a set of terminals $T \subseteq V(G)$, an *edge multiway cut* is a set of edges which pairwise separates T. In other words, in the graph G - X, there is no (x, y)-path for any pair of terminals $x, y \in T$.

EDGE MULTIWAY CUT

Instance: an undirected graph G=(V,E) and a set $T\subseteq V$ of k terminals, an edge weight $\omega:E\to O^+.$

Goal: Find a minimum weight edge set $X \subseteq E$ such that any two vertices of T are in distinct connected components of G - X.

When |T|=2, the problem is precisely finding a minimum weight (s,t)-cut. For $|T|\geq 3$, the (decision version of) EDGE MULTIWAY CUT is NP-complete. While finding a small multiway cut is hard, finding a small weighted cut between a fixed terminal t and the rest of the terminals $T\setminus t$ can be done efficiently using any of the polynomial-time algorithm for MINIMUM (s,t)-CUT. Let us call such a cut separating $t\in T$ and $T\setminus t$ an isolating cut for t. Clearly, the union of isolating cuts for all terminals is a multiway cut. In fact, you can skip an isolating cut for some arbitrary $t^o\in T$ in the union and the resulting set is still a multiway cut. It turns out that this greedy approach gives 10 approximation algorithm for EDGE MULTIWAY CUT already.

Algorithm 1 Algorithm for EDGE MULTIWAY CUT

- 1: procedure edgeMWC(G, T, ω)
- 2: **for** all $t \in T$ **do**
- 3: $W_t \leftarrow \text{minimum weight } (t, T \setminus t) \text{-cut of } G.$
- $\triangleright W_t$ can be found in polynomial time.
- 4: Let $t^o \in T$ be a terminal such that W_{t^o} is maximum.
- 5: **return** $\bigcup_{t \in T \setminus t^o} W_t$.

Analysis of the procedure edgeMWC(G, T, ω). Let $T = \{t_1, \dots, t_k\}$. Let $S^* \subseteq E$ be an optimal multiway cut and let $S_i^* \subseteq S^*$ be the minimal $(t_i, T \setminus t_i)$ -cut contained in S^* . Note

$$\sum_{i=1}^{k} \omega(S_i^*) = 2 \cdot \omega(S^*)$$

because each edge e of S^* appears in precise two isolating cuts S_i^* and S_j^* , $i \neq j$. This is because $G - S^*$ consists of k connected components V_1, \ldots, V_k with $t_i \in V_i$ for each $i \in [k]$ and an edge e = uv is contained in S^* if and only if $u \in V_i$ and $v \in V_j$ for some $i \neq j$. Note that e appears in S_i^* and S_j^* , and in no other isolating cut.

Let W_i be the isolating cut for t_i found in line 3. Observe

$$\omega(\bigcup_{i=1}^k W_i) \le \sum_{i=1}^k \omega(W_i) \le \sum_{i=1}^k \omega(S_i^*) = 2 \cdot \omega(S^*).$$

As we omitted the heaviest isolating set, say W_k , in the output solution and $\omega(W_k) \geq \frac{1}{k} \cdot \left(\sum_{i=1}^{k-1} \omega(W_i)\right)$,

$$\omega(\bigcup_{i=1}^{k-1} W_i) \le \sum_{i=1}^{k-1} \omega(W_i)$$

$$\le (1 - \frac{1}{k}) \cdot \sum_{i=1}^{k-1} \omega(W_i)$$

$$\le (1 - \frac{1}{k}) \cdot \sum_{i=1}^{k-1} \omega(S_i^*)$$

$$\le 2(1 - \frac{1}{k}) \cdot \omega(S^*).$$

1.2 Gomory-Hu Tree

Alternative views on cuts and submodularity. For vertex sets $X,Y\subseteq V$, the set of edges with one endpoint in X and another endpoint in Y is denoted by E(X,Y). Note that E(X,Y) also contains all edges whose both endpoints are in $X\cap Y$. When $Y=\bar{X}:=V\setminus X$, we write $E(X,\bar{X})$ as $\delta(X)$. Note that $\delta(X)=\delta(\bar{X})$.

A pair of vertex sets (X,Y) is a *cut* of G if $X \cup Y = V$ and $X \cap Y = \emptyset$. The *order* of a cut (X,\bar{X}) is the cardinality of $\delta(X)$. When the graph G at hand comes with an edge-weight $\omega: E \to \mathbb{R}$, the *weight* of the cut (X,\bar{X}) is defined as the value of $\omega(\delta(X))$. We say that a cut (X,\bar{X}) is an (x,y)-cut if $|X \cap \{x,y\}| = 1$, or equivalently the edge set $\delta(X)$ is an (x,y)-cut of G.

We say that two cuts (X, \bar{X}) and (A, \bar{A}) are *crossing* if all four sets $X \cap A$, $X \cap \bar{A}$, $\bar{X} \cap A$ and $\bar{X} \cap \bar{A}$ are non-empty. Two cuts are *non-crossing* if they are not crossing. The following observation is immediate from definition.

Observation 1. If two cuts (A_1, A_2) and (B_1, B_2) are non-crossing, for some $i, j \in [2]$ it holds $A_i \subseteq B_j$.

Note that a cut (X, \overline{X}) as a vertex bipartition can be uniquely determined by considering the vertex set X or $V \setminus X$. From this perspective, an essential property of cuts called *submodularity of cut functions* can be observed.

A set function $f: 2^E \to \mathbb{R}$ is *submodular* if for every sets $A, B \subseteq E$

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

holds. For an edge-weighted graph $(G=(V,E),\omega)$, the function $\delta^\omega:2^V\to\mathbb{R}$ defined as

$$\delta^\omega(S) := \omega(\delta(S)) \qquad \text{ for all } S \subseteq V,$$

often known as a cut function, is submodular.

Gomory-Hu tree.

Let $\alpha: \binom{V}{2} \to Q^+$ be the function mapping every pair (x,y) of vertices of V to the weight of a minimum (x,y)-cut. That is, $\alpha(x,y)$ is the weight of a min (x,y)-cut.

Definition 1. Let $(G = (V, E), \omega)$ be an edge-weighted graph. Consider a tree $(T, \alpha|_{E(T)})$ on the vertex set V(T) = V(G) with an edge-weight inheriting the weight function α restricted on the vertex pairs corresponding to E(T). We say that (T, α) is a Gomory-Hu Tree of (G, ω) if for every edge xy of T,

$$\omega(V_x, V_y) = \alpha(xy),$$

where V_x and V_y are the vertex sets of the two connected components of T-xy.

For a tree edge $xy \in T$, there is a corresponding cut (V_x, V_y) of G displayed by the tree edge xy, where V_x and V_y are the vertex sets of the two connected components of T-xy. Definition 1 says that for every edge xy of a Gomory-Hu tree, each cut displayed by a xy is a minimum (x,y)-cut of G. Especially, the (n-1) minimum cuts displayed by the tree edges pairwise non-crossing. Moreover, Theorem 1 says that these pairwise non-crossing n-1 cuts (as vertex bipartition) of Gomory-Hu tree describes minimum (x,y)-cuts for all pairs $(x,y) \in \binom{V}{2}$.

To summarize, there are two surprising facts about Gomory-Hu cut. First, if a Gomory-Hu tree exists, you know not only minimum cuts for n-1 vertex pairs, but also all possible $\binom{n}{2}$ min cuts of G. This is stated in Theorem 1. Second, Gomory-Hu tree actually exists, the result of Theorem 2.

Theorem 1. Let (T, α) be a Gomory-Hu tree of (G, ω) . Then for every vertex pair $(u, v) \in \binom{V}{2}$,

$$\alpha(u,v) =$$
the weight of a min (u,v) -cut of (T,α)

Proof: We first observe the following.

Claim 1. For any vertices $x, y, z \in V$, $\alpha(x, z) \ge \min\{\alpha(x, y), \alpha(y, z)\}$.

PROOF OF THE CLAIM: Consider a min (x,z)-cut (X,Z), where $x \in X$ and $z \in Z$. If $y \in X$, then (X,Z) is a (y,z)-cut and thus $\alpha(x,z) \geq \alpha(y,z)$ holds. Similarly if $y \in Z$, it holds $\alpha(x,z) \geq \alpha(x,y)$. The claimed inequality follows.

If uv is an edge of T, the statement holds by definition of Gomory-Hu tree. Suppose that $u = u_0$ and $v = u_\ell$ are non-adjacent in T and let u_0, u_1, \dots, u_ℓ be the (u, v)-path of T. By Claim 1,

$$\alpha(u, v) \ge \min \{ \alpha(u_i, u_{i+1}) : i = 0, \dots, \ell - 1 \}.$$

On the other hand, any cut (U_i, \bar{U}_i) is a (u, v)-cut by definition of Gomory-Hu cut, where (U_i, \bar{U}_i) the cut displayed by the tree edge $u_i u_{i+1}$. This in particular means

$$\alpha(u, v) \le \min\{\alpha(u_i, u_{i+1}) : i = 0, \dots, \ell - 1\},\$$

thus settling the claimed equation.

The next is an immediate consequence of Theorem 1.

Corollary 1. Let (T, α) be a Gomory-Hu tree of (G, ω) . Then for every vertex pair $(u, v) \in \binom{V}{2}$, $E(V_x, V_y)$ is a min (u, v)-cut, where xy is the lightest edge on the (u, v)-path of T.

Gomory-Hu tree exists.

Theorem 2. For any edge-weighted graph (G, ω) , a Gomory-Hu tree (T, α) exists. Moreover, a Gomory-Hu tree can be constructed in polynomial time.

We present a couple of technical lemmas that are essential for proving Theorem 2.

Lemma 1. Let $s, t \in V$ be two arbitrary vertices of G and (S, \bar{S}) be a minimum (s, t)-cut of G. Then for any $u, w \in S$, there exists a minimum (u, w)-cut (U, \bar{U}) which is non-crossing with (S, \bar{S})

Proof: Let (U, \bar{U}) be a min (u, w)-cut of G and without loss of generality we assume $u \in U, w \in \bar{U}, s \in S$ and $t \in \bar{S}$. If (U, \bar{U}) and (S, \bar{S}) are non-crossing, the statement vacuously holds. So, suppose they are crossing. Note that s either belongs to U or \bar{U} , and without loss of generality we may assume that $s \in U$ (otherwise we exchange the roles of u and w in the subsequent proof). To summarize, the setup is as follows.

- $u \in S \cap U$, $w \in S \setminus U$, and
- $s \in S \cap U, t \in \bar{S}$.

There are two possibilities depending on whether t belongs to U or not. Let $\delta^\omega:V\to Q^+$ be defined by $\delta^\omega(W):=\omega(\delta(W))$ and observe that δ^ω is submodular.

Case when $t \notin U$. By submodularity of δ^{ω} ,

$$\delta^{\omega}(S) + \delta^{\omega}(U) > \delta^{\omega}(S \cap U) + \delta^{\omega}(S \cup U).$$

Because $\delta(S \cap U)$ and $\delta(S \cap U)$ are a (u, v)-cut and an (s, t)-cut of G respectively, we have

$$\delta^{\omega}(S \cap U) \ge \delta^{\omega}(U)$$

and

$$\delta^{\omega}(S \cup U) \ge \delta^{\omega}(S)$$
.

This implies that $\delta^{\omega}(S \cap U) = \delta^{\omega}(U)$ (and $\delta^{\omega}(S \cup U) = \delta^{\omega}(S)$ as well), or equivalently, the cut $(S \cap U, S \cap U)$ is a minimum (u, v)-cut of G. It remains to observe that $(S \cap U, S \cap U)$ and (S, \bar{S}) are noncrossing.

Case when $t \in U$. In this case, we apply the submodularity to the sets S and \bar{U} . That is,

$$\delta^\omega(S) + \delta^\omega(\bar{U}) \geq \delta^\omega(S \cap \bar{U}) + \delta^\omega(S \cup \bar{U}).$$

Now that $\delta(S \cap \bar{U})$ and $\delta(S \cup \bar{U})$ are a (u,v)-cut and an (s,t)-cut of G respectively, and consequently $\delta^{\omega}(S \cap \bar{U}) = \delta^{\omega}(U)$. That is $(S \setminus U, S \setminus U)$ is a minimum (u,v)-cut, and it is non-crossing with (S,\bar{S}) . \square

Proof of Theorem 2:

To demonstrate the existence of a Gomory-Hu tree, we shall construct a sequence of trees T_i on a set $R_i \subseteq V$ of i nodes for i = 1 up to n while maintaining the following invariant:

- (†) there is a surjective mapping $\varphi_i: V \to R_i$ from the vertices of G onto R_i such that $\varphi(r) = r$ for every $r \in R_i$,
- (*) for each tree edge e = xy of T_i , the cut (U, \bar{U}) of G displayed by e is a minimum (x, y)-cut of G. Here, $U = \bigcup_{x \in K} \varphi^{-1}$ and $K \subseteq R_i$ is a connected component of $T_i - e$.

Clearly, $(T_n, \alpha|_{E(T)})$ is a Gomory-Hu tree of (G, ω) .

Let $R_1 = \{s\}$ where s is an arbitrary vertex of G. The trivial tree T_1 on $\{s\}$ with $\varphi_1(V) = \{s\}$ satisfies the invariants (\dagger) and (\star) trivially. Assume that T_i is a tree on $R_i \in V$ satisfying (\dagger) and (\star) with a mapping φ_i for i < n. Choose a vertex $x \in R_i$ such that $\varphi^{-1}(x)$ contains at least two vertices of G and let G be an arbitrary vertex of $\varphi_i^{-1}(x) \setminus x$. Let (U, \bar{U}) be a minimum (x, y)-cut of G.

We claim that there is a minimum (x,y)-cut (U^*,\bar{U}^*) which is non-crossing with each cut of G displayed by a tree edge in T_i incident with x. Once such an (x,y)-cut (U^*,\bar{U}^*) is found, we refine T_i into T_{i+1} as follows. Without loss of generality, we assume $x \in U^*$.

- 1. Let $w_1, \ldots, w_\ell \in R_i$ be the neighbors of x in T_i .
- 2. Let $W_j \subseteq V$ be the vertex set $\bigcup_{r \in K_j} \varphi_i^{-1}(r)$, where K_j is the connected component of $T_i x$ containing w_j . If we see T_i as a tree rooted at x and thus w_j 's as the children of x in T_i , W_j is the set of all vertices of V which are assigned to the subtree rooted at w_j .
- 3. Classify each vertex w_j into one of the two parts depending on whether the corresponding set W_j is fully contained in U^* or in \bar{U}^* . Recall that one of the two situations should occur, see Observation 1.
- 4. Let $J \subseteq [\ell]$ be the set of children w_i such that $W_i \in U^*$.
- 5. Let $R_{i+1} = R_i \cup \{y\}$.
- 6. T_{i+1} is obtained from T_i by substituting the node x by the edge xy and
 - each subtree rooted at w_i with $j \in J$ is a child of x, (recall $x \in U^*$ and $y \in \bar{U}^*$)
 - each subtree rooted at w_j with $j \in [\ell] \setminus J$ is a child of y.
- 7. Finally, $\varphi_{i+1}(v) = x$ for all $v \in \varphi_i^{-1}(x) \cap U^*$ and $\varphi_{i+1}(v) = y$ for all $v \in \varphi_i^{-1}(x) \setminus U^*$, and for all other vertices of G assigned to a tree node other than x by φ_i , we keep the same assignment in the new φ_{i+1} .

It is tedious to verify that the newly constructed structure $(R_{i+1}, T_{i+1}, \varphi_{i+1})$ meets the invariants (\dagger) and (\star) . Moreover, such a cut (U^*, \bar{U}^*) can be computed by a single application of minimum cut algorithm (How?). This complete the proof of the theorem.

Note that the proof is constructive and can be turned into an efficient algorithm, provided that a desired cut (U^*, \bar{U}^*) above can be found in polynomial time. This is left as an exercise for the readers.

1.3 Greedy $(2-\frac{2}{k})$ -approximation for k-Cut

k-Cut

Instance: an undirected graph G = (V, E), an edge weight $\omega : E \to Q^+$ and a positive integer k. **Goal:** Find a minimum weight edge set $X \subseteq E$ such that G - X consists of k connected components.

Using the result of the previous subsection, we present a greedy approximation algorithm for k-CuT with approximation ratio (2-2/k).

Analysis of the procedure $kCUT(G, T, \omega)$. Let $S^* \subseteq E$ be an optimal k-cut of G and

Algorithm 2 Algorithm for k-CUT

- 1: **procedure** k**CUT** (G, T, ω)
- 2: Compute a Gomory-Hu Tree T of G.
- 3: Let f_1, \ldots, f_{k-1} be a set of k-1 lightest edge in T.
- 4: Let W_1, \ldots, W_{k-1} be the edge sets of G displayed by f_1, \ldots, f_{k-1} .
- 5: **return** $\bigcup_{i=1}^{k-1} W_i$.
 - let V_i for $1 \le i \le k$ be the connected components of $G S^*$,
 - let $S_i^* := E(V_i, V \setminus V_i)$ for $1 \le i \le k$.

Without loss of generality, we assume that $\omega(S_i^*) \leq \omega(S_k^*)$ for every $i \in [k]$. Clearly, it holds that $\omega(S_k^*) \geq (1/k) \cdot \sum_{i=1}^k \omega(S^*i)$. For now, let us assume that G is connected. The case when G is not connected will be discussed at the end of the analysis.

Consider a Gomory-Hu tree (T, α) of (G, ω) . Because T spans the vertex set of G, one can greedily choose a subset $F \subseteq E(T)$ of k-1 tree edges so that the following holds:

- for every $i \in [k-1]$, F has exactly one edge $e_i = (v_i, v_i')$ such that $v_i \in V_i$ and $v_i' \in V \setminus V_i$, and
- the graph H obtained from (V, F) by identifying each V_i , $i \in [k]$, into a single vertex is a tree.

Now, the key fact here is that for each $i \in [k-1]$, S_i^* separates V_i and $V \setminus V_i$. This in particular means that S_i^* is a (v_i, v_i') -cut of G, and consequently, $\alpha(v_i, v_i') \leq \omega(S_i^*)$. As the edges e_i are all distinct edges of T, and W_1, \ldots, W_{k-1} chosen during the the procedure $k\mathbf{CUT}(G, T, \omega)$ are the k-1 lightest edges of T, we have the lower bound

$$\sum_{i=1}^{k-1} \omega(W_i) = \sum_{i=1}^{k-1} \alpha_T(f_i) \le \sum_{i=1}^{k-1} \alpha_T(e_i) \le \sum_{i=1}^{k-1} \omega(S_i^*).$$

From $\sum_{i=1}^k \omega(S_i^*) = 2 \cdot \omega(S^*)$ and $\omega(S_k^*) \geq (1/k) \cdot \sum_{i=1}^k \omega(S_i^*)$, we conclude

$$\omega(\bigcup_{i=1}^{k-1} W_i) \le \sum_{i=1}^k \omega(W_i) \le 2(1 - \frac{1}{k}) \cdot \omega(S^*).$$

Notice that the first equation holds by definition of Gomory-Hu tree.

It remains to see that $\bigcup_{i=1}^{k-1} W_i$ is indeed a k-cut of G. By definition of Gomory-Hu Tree, with each addition of W_i to the output solution we separate a new vertex pair, thus strictly increasing the number of connected components. Therefore, $G - \bigcup_{i=1}^{k-1} W_i$ has at least k connected components.

Remark on the case when G is not connected. Note that Gomory-Hu tree can be constructed regardless of whether G is connected or not, and distinct connected components are displayed by a tree edge with zero weight. The same analysis goes through in the presence of multiple connected components in G.