TTL 与非门参数测量

1 实验目的

- (1) 了解 TTL 与非门参数的意义和使用注意事项;
- (2) 学习 TTL 非门参数的测量方法。

2 实验器材

直流稳压电源、示波器、信号发生器、万用表、面包板、电阻、电位器、TTL芯片。

3 实验原理

3.1 电压传输特性及干扰能力

与非门的输出电压 V_o 随输入电压 V_i 的变化关系,称为电压传输特性如图所示:

图 1: 电压传输特性曲线

其中, V_{iL} 为输入低电压, V_{iH} 为输入高电压, V_{oL} 为输出低电压, V_{oH} 为输出高电压, V_{off} 为关门电压, V_{on} 为开门电压, V_{T} 为门限电压, V_{NL} 为低电平容限, V_{NH} 为高电平容限。电平传输特性描述了与非门的静态特性, V_{off} 和 V_{on} 的差值愈小,则表明与非门的电压传输特性愈陡直,静态开关性能愈好,其抗干扰能力愈强。

3.2 空载功耗

空载功耗是与非门不接外部负载时,电源电流 I_o 与电源电压 E_c 的乘积,它是估算电路内耗的参量。通常只测定静态功耗,即在输入端全开路时的功耗 P_{on} 和短路时的功耗 P_{off} ,前者为空载导通功率,后者为空载截止功率,测试电路如下图所示:

图 2: P_{on}, P_{off} 的测试电路

3.3 输入短路电流

 I_{is} 是指与非门的一个输入端接地,其余输入端接高电平或开路时,流向接地端的电流, I_{is} 称为输入短路电流,测试电路如下图所示:

图 3: Iis 的测试电路

3.4 输入交叉漏电流

 I_{iH} 是指与非门的一个输入端接高电平,其余输入端接地时,流入高电平输入端的电流,测试电路如下图所示:

图 4: IiH 的测试电路

3.5 输出低电平 V_{oL} 和输出高电平 V_{oH}

 V_{oL} 是指当输入为高电平,输出端接额定灌电流负载时(相当于八个与非门的 I_{is}),与非门的输出电压值。 V_{oH} 是指当输入为低电平、输出端接额定拉电流负载时(相当于八个与非门的 I_{iH}),与非门的输出电压值。

3.6 扇出系数 N_c

扇出系数 N_c 定义为前级门低电平最大输出电流(灌电流)和后级门低电平最大输入电流的比值。 N_c 是说明与非门输出端负载能力的参数,它表示能驱动同类门的数目,测试电路如下图所示:

图 5: V_{oL} 和 N_c 的测试电路

3.7 平均传输延迟时间 t_{pd}

传输延迟时间是指与非门的输出信号的延时, t_{pd} 是门电路的重要参量,由于存在延迟时间,一方面可能产生"冒险"等有害的伪信号,另一方面也可利用延时的效应,组成某些电路(如环形振荡器)。

4 实验内容

4.1 验证与非门的逻辑功能

各门输入端悬浮,测得各输出端的电压为: $U_1=0.1700V, U_2=0.1670V, U_3=0.1528V, U_4=0.1672V$,与非门输出全为低电平。

各门输入端接地,测得各输出端的电压为: $U_1 = 4.4857V$, $U_2 = 4.4897V$, $U_3 = 4.4917V$, $U_4 = 4.4872V$, 与非门输出全为高电平。

4.2 空载功耗 P_{ON} 和 P_{OFF}

测量电路如图 2,我们可以测得 $I_{ON}=2.1768mA, I_{OFF}=0.2124mA, U=5V$ 所以 $P_{ON}=UI_{ON}=10.884mW, P_{OFF}=UI_{OFF}=1.062mW$

4.3 输入短路电流 I_{is}

测量电路如图 3,我们可以测得 $I_{is}=0.2340mA$

4.4 交叉漏电流 I_{iH}

测量电路如图 4,由于测量精度的原因,我们未能测得交叉漏电流 I_{iH} ,即 $I_{iH} \leq 10^{-4} mA$.

4.5 扇出系数 N_c

测量电路如图 5,我们可以测得 $I_L = 7.2683mA$,因此我们可得 $N_c = \frac{I_L}{I_{is}} \approx 31.06$

4.6 三级环形振荡器

图 6: 三级环形振荡器波形图

由图中我们可以得到振荡频率 $f \approx 36.2722MHz$

4.7 利用计数器电路分频

图 7: QA 和 QD 波形图

图 8: Q_B 和 Q_D 波形图

图 9: Q_B 和 Q_D 波形图

由 Q_A 和 Q_D 的波形图我们可得 $\tau_A = 52.0ns, \tau_D = 427.6ns$ 因此我们由 Q_A 可得 $t_{pd} = \frac{\tau_A}{12} \approx 4.33ns$, 由 Q_D 可得 $t_{pd} = \frac{\tau_D}{96} \approx 4.45ns$

5 思考题

1. 测量与非门的空载功耗有何实际意义? 为什么门电路的功耗与输入信号频率有关?

答: TTL 集成门电路工作时,器件本身要消耗一定的功率,功耗也是门电路的特性指标之一。由于功耗随负载的不同而变化,为了简便起见,通常以空载功耗来表征。空载功耗是与非门空载时的电源总电流与电源电压的乘积。当输出为低电平时的空载功耗称为导通功耗,用 P_{ON} 表示;当输出为高电平时的空载功耗称为截止功耗,用 P_{OFF} 表示。与非门的平均功耗与门电路的工作频率有关,工作频率越高,平均功耗就越大。这是由于与非门由低电平快速转变为高电平时, T_3 退出饱和状态之前 T_4 就导通了,会在很短的瞬间使电源和地之间出现一个低阻回路,形成一个尖峰电流,这个电流将增加与非门的平均功耗。

2. 与非门的噪声容限与哪些参量有关?

答:高电平噪声容限 = 最小输出高电平电压-最小输入高电平电压,低电平噪声容限 = 最大输入低电平电压-最大输出低电平电压,与非门的噪声容限 = min 高电平噪声容限,低电平噪声容限。与非门的噪声容限与环境温度,电路级联状态,电源电压,数字电路的反应速度,传输延迟时间,施加干扰波形,以及器件的阈值电压等因素有关。

3. 本实验的环形振荡器是由三级与非门组成的直耦反馈环路,如果由一级或偶数级与非门组成直耦反馈环路,能否产生振荡?为什么?

答:如果只有一级,可以产生振荡,但因为 $T = 2t_{pd}$,而 t_{pd} 很小,所以会导致振荡频率非常高:但是偶数级不能形成振荡,因为这样会形成一个稳定的状态而不会振荡。