Gram-Schmidt in 9 Lines of MATLAB

The Gram-Schmidt algorithm starts with n independent vectors a_1, \ldots, a_n (the columns of A). It produces n orthonormal vectors q_1, \ldots, q_n (the columns of Q). To find q_j , start with a_j and subtract off its projections onto the previous q's—and then divide by the length of that vector v to produce a unit vector.

The inner products $q_i^T a_j$ go into a square matrix R that satisfies A = QR. This R is upper triangular, because $q_i^T a_j = 0$ when i is larger than j (later q's are orthogonal to earlier a's, that is the point of the algorithm).

Here is a 9-line MATLAB code to build Q and R from A. Start with [m, n] = size(A); Q = zeros(m, n); R = zeros(n, n); to get the shapes correct.

for j=1:n	% Gram-Schmidt orthogonalization
v=A(:,j);	% v begins as column j of A
for i=1:j-1	
R(i,j)=Q(:,i)'*A(:,j);	% modify $A(:,j)$ to v for more accuracy
v=v-R(i,j)*Q(:,i);	% subtract the projection $(q_i^T a_j)q_i = (q_i^T v)q_i$
end	$\%$ v is now perpendicular to all of q_1, \ldots, q_{j-1}
R(j,j)=norm(v);	
Q(:,j)=v/R(j,j);	% normalize v to be the next unit vector q_j
end	

If you undo the last step and the middle steps, you find column j:

$$R(j,j)q_j = (v \text{ minus its projections}) = (\text{column } j \text{ of } A) - \sum_{i=1}^{j-1} R(i,j)q_i$$
.

Moving the sum to the far left, this is column j in the multiplication A = QR.

That crucial change from a_j to v in line 4 gives "modified Gram-Schmidt." In exact arithmetic, the number $R(i,j) = q_i^{\mathrm{T}} a_j$ is the same as $q_i^{\mathrm{T}} v$. (The current v has subtracted from a_j its projections onto earlier q_1, \ldots, q_{i-1} . But the new q_i is orthogonal to those directions.) In real arithmetic this orthogonality is not perfect, and computations show a difference in Q. Everybody uses v at that step in the code.

EXAMPLE A is 2 by 2. The columns of Q, normalized by $\frac{1}{5}$, are q_1 and q_2 :

$$A = \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 0 & 2 \end{bmatrix} = QR.$$

Starting with the columns a_1 and a_2 of A, Gram-Schmidt normalizes a_1 to q_1 and subtracts from a_2 its projection in the direction of q_1 . Here are the steps to the q's:

$$a_1 = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \quad q_1 = \frac{1}{5} \begin{bmatrix} 4 \\ 3 \end{bmatrix} \quad a_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \quad v = a_2 - (q_1^{\mathsf{T}} a_2) q_1 = \frac{1}{5} \begin{bmatrix} -6 \\ 8 \end{bmatrix} \quad q_2 = \frac{1}{5} \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$

Along the way, we divided by $||a_1|| = 5$ and ||v|| = 2. Then 5 and 2 go on the diagonal of R, and $q_1^T a_2 = -1$ is R(1, 2). This figure shows every vector:

