Se as matrizes A e B podem ser multiplicadas, mostre que

$$^{t}(AB) = {}^{t}B^{t}A.$$

Resolução:

Sejam
$$A = (a_{ij})_{m \times n}$$
 e $B = (b_{jk})_{n \times r}$. ${}^tA = (a'_{ji})_{n \times m}$ e ${}^tB = (b'_{kj})_{r \times n}$.

O elemento da posição (k,i) de ${}^tB \cdot {}^tA$ é

$$\sum_{j=1}^{n} b'_{kj} a'_{ji}.$$

Como $a'_{ji} = a_{ij} e b'_{kj} = b_{jk}$,

$$\sum_{j=1}^{n} b'_{kj} a'_{ji} = \sum_{j=1}^{n} b_{jk} a_{ij} = \sum_{j=1}^{n} a_{ij} b_{jk},$$

que é o elemento na posição (k, i) de $^{t}(AB)$.

Quod Erat Demonstrandum.

Documento compilado em Wednesday 12th March, 2025, 23:28, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".