	on belove evice	ring your candidate information
Candidate surname		Other names
Centre Number Candidate No		
Pearson Edexcel Inter Thursday 8 June 202		al GCSE
Tharsaay o June 202		
Morning (Time: 2 hours)	Paper reference	4PM1/02R
Further Pure Mat PAPER 2R	hema	tics

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

P74284A
©2023 Pearson Education Ltd.
N:1/1/1/1/1/1/1/1/

DO NOT WRITE IN THIS AREA

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle *ABC*: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	$f(x) = 2x^2 + (k+8)x + k$	
	Show that for all values of k , the equation $f(x) = 0$ has distinct real roots.	
		(4)
	(Total for Question 1 is	4 marks)

DO NOT WRITE IN THIS AREA

2	Find	the	set	of	values	of <i>x</i>	for	which

(a)
$$2(x+1) < 5x - 2$$

(2)

(b)
$$3x^2 - x \le 10$$

(3)

(c) **both**
$$2(x+1) < 5x - 2$$
 and $3x^2 - x \le 10$

(1)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
|
 |

ı								
ı	 							
ı								
ı								
ı								
ı								
ı								
ı	 							
ı								
ı								
ı								
ı								
ı								
ı								
ı			 	 				
ı								
ı								
I								
п								

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 2 continued
(Total for Question 2 is 6 marks)
(Total for Question 2 is o marks)

DO NOT WRITE IN THIS AREA

(5)

Figure 1

0

 θ rad

Figure 1 shows the sector *OAB* of a circle with centre *O*.

The radius of the circle is r cm and the angle AOB is θ radians.

 $r \, \mathrm{cm}$

The area of the sector is 675 cm²

(a) Show that the perimeter of the sector, P cm, is given by

$$P = 2r + \frac{1350}{r} \tag{3}$$

Given that r can vary,

(b) find, using calculus, the minimum value of PGive your answer in the form $a\sqrt{b}$ where a is an integer and b is a prime number.

(c) Justify that the value of P you found in (b) is a minimum. (2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 3 continued
(Total for Question 3 is 10 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

4	O, A and B	are fixed	points	such that

$$\overrightarrow{OA} = 5\mathbf{i} + 7\mathbf{j}$$
 $\overrightarrow{AB} = a\mathbf{i} + 16\mathbf{j}$ and $\left| \overrightarrow{OB} \right| = 5\sqrt{29}$

(a) Find the possible values of a

(4)

Given that a > 0

(b) find a unit vector that is parallel to \overrightarrow{AB}

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 4 continued
(Total for Question 4 is 6 marks)
(Total for Question 4 is o marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

5	A particle <i>P</i> is moving along the <i>x</i> -axis.	
	At time t seconds, $t \ge 0$, the velocity, v m/s, of P is given by	
	$v = 2t^2 - 19t + 35$	
	(a) Find the acceleration of P when $t = 5$	
		(2)
	The particle comes to instantaneous rest at the points A and B at times t_1 seconds and t_2 seconds respectively, where $t_1 < t_2$	
	(b) Find the value of t_1 and the value of t_2	
		(2)
	(c) Use calculus to find the distance AB	(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 5 continued
(Total for Question 5 is 7 marks)
· · · · · · · · · · · · · · · · · · ·

 $f(x) = 2x^2 + 5x - p$

The equation f(x) = 0 has roots α and β

Given that $\alpha^3 + \beta^3 = -\frac{215}{8}$

(a) find the value of p

(5)

Without solving the equation f(x) = 0

(b) form a quadratic equation, with integer coefficients, that has roots

$$\frac{\alpha+\beta}{\alpha^2}$$
 and $\frac{\alpha+\beta}{\beta^2}$

(5)

I	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
I	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 6 continued	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 6 continued
(Total for Question 6 is 10 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7

Figure 2

Figure 2 shows part of the curve S with equation $y = \left(\cos 3\theta + \sqrt{3}\sin 3\theta\right)^{\frac{1}{2}}$

where $m \le \theta \le n$

The curve S meets the x-axis at the point with coordinates (m, 0) and at the point with coordinates (n, 0)

(a) Find the exact value of m and the exact value of n

(3)

The finite region R, shown shaded in Figure 2, is bounded by the curve S, and the x-axis in the region $m \le \theta \le n$

The region R is rotated through 2π radians about the theta-axis.

(b) Use calculus to find the exact volume of the solid generated.

- /	/II \
- 1	41
- 1	- /

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 7 continued		

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 7 continued
(Total for Question 7 is 7 marks)

DO NOT WRITE IN THIS AREA

- 8 The points A and B have coordinates (1,5) and (9,9) respectively.
 - (a) Find an equation of line AB, giving your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(3)

The line l is perpendicular to AB and passes through the point X which lies on AB such that AX: XB = 3:1

(b) Show that an equation of *l* is y = -2x + 22

(5)

The point C has coordinates (6, p)

Given that C lies on l

(c) find the value of p

(1)

ABCD is a parallelogram where the x coordinate of D is negative.

(d) Find the coordinates of the point D

(3)

(e) Find the area of the parallelogram ABCD

(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 8 continued	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 8 continued	
	(Total for Question 8 is 16 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- 9 A curve C has equation $y = \frac{3-2x}{x+6}$ where $x \neq -6$
 - (a) Write down an equation of the asymptote to C that is parallel to the
 - (i) x-axis
- (ii) y-axis

(2)

- (b) Find the coordinates of the point where C crosses the
 - (i) x-axis
- (ii) y-axis

(2)

(c) Using the axes opposite, sketch the graph of C, showing clearly its asymptotes and the coordinates of the points where C crosses the coordinate axes.

(3)

(d) Show that the gradient of the tangent to C is always negative.

(3)

A tangent to C has equation $y = -\frac{3}{5}x + k$ where k > 0

(e) Find the value of k

(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 9 continued	
<i>y</i> 4	
0	x

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 9 continued
(Total for Question 9 is 15 marks)

$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$

× 100
\times v
$\times $
DO NOT WRITE IN THIS AREA
×£
$\times \times$
\propto
\times
\times
$\times 2$
\times
\sim 0
×ã
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
× 1313
IN THIS AREA
\bowtie
$\times =$
×ш
H
21.12
WRITE
WRITE
T WRITE
OT WRITE
NOT WRITE
O NOT WRITE
DO NOT WRITE
DO NOT WRITE
DO NOT WRITE
DO NOT WRITE IN
DO NOT WRITE
A DO NOT WRITE
A DO NOT WRITE
REA DO NOT WRITE
REA DO NOT WRITE
AREA DO NOT WRITE
IS AREA DO NOT WRITE
HIS AREA DO NOT WRITE
THIS AREA DO NOT WRITE
I THIS AREA DO NOT WRITE
IN THIS AREA DO NOT WRITE
E IN THIS AREA DO NOT WRITE
IN THIS AREA DO NOT WRITE
ITE IN THIS AREA DO NOT WRITE
RITE IN THIS AREA DO NOT WRITE
RITE IN THIS AREA DO NOT WRITE
T WRITE IN THIS AREA DO NOT WRITE
RITE IN THIS AREA DO NOT WRITE
T WRITE IN THIS AREA DO NOT WRITE
NOT WRITE IN THIS AREA DO NOT WRITE
OO NOT WRITE IN THIS AREA DO NOT WRITE
NOT WRITE IN THIS AREA DO NOT WRITE

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

10 Solve the equation	
$\log_4 x^3 + 8\log_x 64 = 22$	(7)
	(7)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 10 continued
(Total for Question 10 is 7 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(3)

(b) Show that
$$\sin^4 x + \cos^4 x = \frac{3 + \cos 4x}{4}$$

(5)

(c) Hence solve, in degrees to one decimal place, the equation

$$8\sin^4\left(\frac{\theta}{2}\right) + 8\cos^4\left(\frac{\theta}{2}\right) = 5\sin(2\theta) + 6 \quad \text{for} \quad 0^\circ \leqslant \theta < 180^\circ$$
(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 11 continued

