Group Project

Abrie Le Roux, Ali Raza, Jordan Keelan 2022-10-19

```
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
    fortify.SpatialPolygonsDataFrame ggplot2
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
       count, do, tally
## The following object is masked from 'package:Matrix':
##
## The following object is masked from 'package:ggplot2':
##
## The following objects are masked from 'package:stats':
##
       binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
       quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
       max, mean, min, prod, range, sample, sum
library(tidyverse)
## — Attaching packages
## tidyverse 1.3.2 —
## \checkmark tibble 3.1.8 \checkmark purr 0.3.4
## \checkmark tidyr 1.2.1 \checkmark stringr 1.4.1 ## \checkmark readr 2.1.2 \checkmark forcats 0.5.2
## — Conflicts —
                                                           — tidyverse_conflicts() —
## X mosaic::count() masks dplyr::count()
## X purrr::cross() masks mosaic::cross()
## X mosaic::do() masks dplyr::do()
## X tidyr::expand() masks Matrix::expand()
## X dplyr::filter() masks stats::filter()
## X dplyr::lag()
                     masks stats::lag()
## X tidyr::pack() masks Matrix::pack()
## X mosaic::stat() masks ggplot2::stat()
## X mosaic::tally() masks dplyr::tally()
## X tidyr::unpack() masks Matrix::unpack()
library(dplyr)
library(ggplot2)
library(lubridate)
```

```
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

```
library(zoo)
```

```
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
```

shelter1.df = read.csv("https://open.alberta.ca/dataset/47f82be8-af8d-4994-8a97-2252d7643ff5/resource/b7080b66-25ea-4c30-ac47-02b64353637f/download/2013-2022-emergency-shelter-occupancy-machine-readable.csv")

Master Dataset

```
data = (shelter1.df %>% select(-City, -ShelterName, -Organization, -Shelter, -Capacity, -Daytime)) %>% na.omit() # remove un
needed columns
list(unique(data["ShelterType"]))
```

```
## [[1]]
##
                               ShelterType
## 1
                           Women Emergency
## 2
                                     Intox
## 3
                           Adult Emergency
## 4
                          Winter Emergency
                           Youth Emergency
## 7
                     Short Term Supportive
                         Family Emergency
## 31
## 81211
                      Long Term Supportive
## 96244
                  COVID19 Expanded Shelter
## 97797
                   COVID19 Isolation Site
## 97799 COVID19 Social Distancing Measures
```

data["Date"] <- as.Date(as.character(as.POSIXct(data\$Date, format="%m/%d/%Y"))) # convert date column to date type
data = filter(data, ShelterType =='Adult Emergency'|ShelterType =='COVID19 Expanded Shelter'|ShelterType =='COVID19 social D
istancing Measures'|ShelterType =='Daytime Shelter'|ShelterType =='Family Emergency'|ShelterType =='Intox'|ShelterType =='Lo
ng Term Supportive'|ShelterType =='Short Term Supportive'|ShelterType =='Winter Emergency'|ShelterType =='Women Emergency'|S
helterType =='Youth Emergency')
data</pre>

Date <date></date>	ShelterType <chr></chr>		(Overn	ight <int></int>		YEAR <int></int>	
2013-04-01	Women Emergency				65		2013	4
2013-04-01	Intox				74		2013	4
2013-04-01	Adult Emergency				253		2013	4
2013-04-01	Winter Emergency				152		2013	4
2013-04-01	Youth Emergency				51		2013	4
2013-04-01	Women Emergency				51		2013	4
2013-04-01	Short Term Supportive				143		2013	4
2013-04-01	Short Term Supportive				57		2013	4
2013-04-01	Short Term Supportive				21		2013	4
2013-04-01	Short Term Supportive				55		2013	4
1-10 of 10,000 rows		Previous	1	2	3	4	5	6 1000 Next

Simplify by aggregating on daily total occupancy

daily.df <-(aggregate(data\$Overnight, by=list(Date = data\$Date), FUN=sum)) # Sums total daily occupancy across all shelters colnames(daily.df)[2] ="SumOvernight" # Renames new daily sum column

Daily sum total occupancy in all types of emergency shelters

```
ggplot(daily.df, aes(x=Date, y=SumOvernight)) +
geom_line() +
ggtitle("Daily Sum Total Occupancy of all Reporting Emergency Shelters")
```

Daily Sum Total Occupancy of all Reporting Emergency Shelters

Sum occupancy on quarter to be used in linear regression

data2 <- data # new data frame
data2\$quarter <- as.yearqtr(data2\$Date) # Appends column that identifies quarter of entry
head(data2)</pre>

Date	ShelterType	Overnight	YEAR	MONTH	quarte
<date></date>	<chr></chr>	<int></int>	<int></int>	<int></int>	<yearqtr></yearqtr>
2013-04-01	Women Emergency	65	2013	4	2013 Q2
2013-04-01	Intox	74	2013	4	2013 Q2
2013-04-01	Adult Emergency	253	2013	4	2013 Q
2013-04-01	Winter Emergency	152	2013	4	2013 Q
2013-04-01	Youth Emergency	51	2013	4	2013 Q
2013-04-01	Women Emergency	51	2013	4	2013 Q
	<date> 2013-04-01 2013-04-01 2013-04-01 2013-04-01 2013-04-01</date>	<date> <chr> 2013-04-01 Women Emergency 2013-04-01 Intox 2013-04-01 Adult Emergency 2013-04-01 Winter Emergency 2013-04-01 Youth Emergency 2013-04-01 Women Emergency</chr></date>	<date><chr> <chr> 2013-04-01 Women Emergency 65 2013-04-01 Intox 74 2013-04-01 Adult Emergency 253 2013-04-01 Winter Emergency 152 2013-04-01 Youth Emergency 51</chr></chr></date>	<date> <chr> <int> <int> 2013-04-01 Women Emergency 65 2013 2013-04-01 Intox 74 2013 2013-04-01 Adult Emergency 253 2013 2013-04-01 Winter Emergency 152 2013 2013-04-01 Youth Emergency 51 2013</int></int></chr></date>	<date> <chr> <int> 2013-04-01 Women Emergency 65 2013 4 2013-04-01 Intox 74 2013 4 2013-04-01 Adult Emergency 253 2013 4 2013-04-01 Winter Emergency 152 2013 4 2013-04-01 Youth Emergency 51 2013 4</int></int></int></int></int></int></int></int></int></int></int></int></chr></date>

quartely.df <-(aggregate(data2\$Overnight, by=list(Quarter = data2\$quarter), FUN=sum)) # Sums total occupancy on quarter
colnames(quartely.df)[2] <- "SumOvernightQuarterly" # renames new summed column
quartely.df\$index <- seq.int(nrow(quartely.df)) # indexes data set
quartely.df <- filter(quartely.df, index > 3) # Removes quarters prior to 2014 Q1
quartely.df\$index <- seq.int(nrow(quartely.df)) # re-indexes data set
regression.df <- filter(quartely.df, index < 35) # Removed all quarters beyond 2019 Q4
regression.df # THIS IS OUR DATASET TO DO REGRESSION ON</pre>

Quarter	SumOvernightQuarterly	index
<yearqtr></yearqtr>	<int></int>	<int></int>

Quarter <yearqtr></yearqtr>	SumOvernightQuarterly <int></int>		index <int></int>
2014 Q1	340986		1
2014 Q2	314549		2
2014 Q3	289877		3
2014 Q4	319089		4
2015 Q1	319330		5
2015 Q2	298349		6
2015 Q3	287737		7
2015 Q4	300116		8
2016 Q1	300610		9
2016 Q2	267818		10
1-10 of 34 rows	Previous 1	2 3	4 Next

Ali Regression Code starts here

Below is the Linear Regression Model we are trying to prove

$$R_{SumOvernightQuarterly,i} = \beta_0 + \beta_1 * R_{Quarter,i} + e_i$$

ggplot(regression.df, aes(x = index, y = SumOvernightQuarterly)) + geom_point(col="blue", size = 2) + xlab("Quarterly 2014-2
019") + ylab("Overnight Stay") + ggtitle("Overnight Stays In Emergency through 2014-2019") + geom_smooth(method="lm", col="r
ed")

`geom_smooth()` using formula 'y ~ x'

computing correlation coefficient

cor(~SumOvernightQuarterly, ~index, data=regression.df)

[1] -0.8790499

r = -0.88323466989

Strong negative correlation..

Estimating the Model

```
predictovernight = lm(SumOvernightQuarterly ~ index, data=regression.df)
predictovernight$coef
```

```
## (Intercept) index
## 333653.599 -4793.291
```

 $\hat{R}_{SumOvernightQuarterly,i} = 2033.522347841533474 - 0.000059670087769 * \hat{R}_{Quarter,i}$

(Note: There is no e_i term on the estimate of the

#interpret the equation

Interpretation of b, estimate of B1:

As quarter decreases by 1 unit, then the for the occupancy rate will decrease by an average of -0.000059670087769.

Interpretation of b, estimate of B0: When the rate of the return of the market is 0 the rate of the overnight occupancy of shelters quarters stock is on average 2033.522347841533474.

```
summary(predictovernight)
```

```
## Call:
## lm(formula = SumOvernightQuarterly ~ index, data = regression.df)
##
## Residuals:
##
  Min 1Q Median 3Q Max
## -57524 -12146 4709 15919 47543
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 333653.6 9219.4 36.19 <2e-16 ***
         -4793.3 459.5 -10.43 8e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 26290 on 32 degrees of freedom
## Multiple R-squared: 0.7727, Adjusted R-squared: 0.7656
## F-statistic: 108.8 on 1 and 32 DF, p-value: 7.998e-12
```

Squared is 0.77010819 which tells us that approx 77% of the variability observed can be explained by the regression model.

Below I am checking is the linearity of the model is valid #Should this be less than 0 since we are seeing a negative slope

$$ext{H}_0: eta_1 = (\leq) 0 \qquad ext{H}_A: eta_1 < 0$$

computing our p value

coef(summary(predictovernight))

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 333653.599 9219.357 36.19055 1.550692e-27
## index -4793.291 459.534 -10.43077 7.998163e-12
```

```
pt(-8.8344246814, 22)
```

```
## [1] 5.47167e-09
```

P value is less than 0.05 we reject null, therefore we can agree with our h alternative

Compute a 95% confidence interval for beta 1

```
qt(p = 0.025,df =57,lower.tail = FALSE )
```

```
## [1] 2.002465
```

```
-3268.4026087 - 369.9621341*(2.0024654593)
```

```
## [1] -4009.239
```

```
-3268.4026087 + 369.9621341*(2.0024654593)
```

[1] -2527.566

$-4009.2390035 \le B_1 \le -2527.5662139$

normality of the residuals condition

predicted. values. overnight = predictovernight \$fitted. values #place the predicted values of y for each observed x into a vector

eison = predictovernight\$residuals #pull out the residuals

 ${\tt diagnosticdf2 = data.frame(predicted.values.overnight,\ eison)}\ \textit{\#create\ a\ data\ frame\ of\ fitted.values\ and\ residuals\ and\ resid$

diagnosticdf2

	predicted.values.overnight <dbl></dbl>	eison <dbl></dbl>
1	328860.3	12125.692
2	324067.0	-9518.016
3	319273.7	-29396.725
4	314480.4	4608.567
5	309687.1	9642.858
6	304893.9	-6544.851
7	300100.6	-12363.559
8	295307.3	4808.732
9	290514.0	10096.023
10	285720.7	-17902.685
1-10 of 34 rows		Previous 1 2 3 4 Next

ggplot(diagnosticdf2, aes(sample = eison)) + stat_qq(col='blue') + stat_qqline(col='red') + ggtitle("Normal Probability Pl
ot of Residuals")

Normal Probability Plot of Residuals

residuals are normal

To inspect the homoscedasticity condition

 $\label{eq:ggplot} $$ \gcd(x = \operatorname{predicted.values.overnight}, \ y = \operatorname{eison}) + \operatorname{geom_point}(\operatorname{size=2}, \operatorname{col='blue'}, \operatorname{position="jitter"}) + \operatorname{xlab}("\operatorname{Ovenight stays quarterly sum"}) + \operatorname{ylab}("\operatorname{Residuals"}) + \operatorname{ggtitle}("\operatorname{Plot of Fits to Residuals"}) + \operatorname{geom_hline}(\operatorname{yintercept=0}, \operatorname{color="red"}, \operatorname{linetype="dashed"})$

sum(diagnosticdf2\$eison)

```
## [1] -9.094947e-12
```

really small 0 so we can say it is a good model when talking about the normality of residuals.

Below we will predict the number of overnight stays in emergency shelters 2020 q1 by using the predict function with index =25

predict(predictovernight, data.frame(index=31))

```
## 1
## 185061.6
```

predict(predictovernight, newdata=data.frame(index = 25), interval="conf") #compute the 95% CI for mean Y when x = 25

```
## fit lwr upr
## 1 213821.3 202262.1 225380.6
```

95% confidence for the number of overnight stays in emergency shelters in the first quarter of 2020 will be between...

Below I am computing the r.boot, a.boot, b.boot, ymean.boot

```
Nbootstraps = 1000 #resample n = 200, 1000 times

cor.boot = numeric(Nbootstraps) #define a vector to be filled by the cor boot stat

a.boot = numeric(Nbootstraps) #define a vector to be filled by the a boot stat

b.boot = numeric(Nbootstraps) #define a vector to be filled by the b boot stat

ymean.boot = numeric(Nbootstraps) #define a vector to be filled by the predicted y boot stat
```

```
nsize = dim(regression.df)[1] #set the n to be equal to the number of bivariate cases, number of rows
xvalue = 25 #set x = 15% for first quarter of 2020 in a certain county
#start of the for loop
for(i in 1:Nbootstraps)
{    #start of the loop
    index = sample(nsize, replace=TRUE) #randomly picks a number between 1 and n, assigns as index
    demovote.boot = regression.df[index, ] #accesses the i-th row of the regression.df data frame
    #
    cor.boot[i] = cor(~SumOvernightQuarterly, ~index , data=demovote.boot) #computes correlation for each bootstrap sample
    votedemocrat.lm = lm(SumOvernightQuarterly ~ index, data=demovote.boot) #set up the linear model
    a.boot[i] = coef(votedemocrat.lm)[1] #access the computed value of a, in position 1
    b.boot[i] = coef(votedemocrat.lm)[2] #access the computed value of b, in position 2
    ymean.boot[i] = a.boot[i] + (b.boot[i]*xvalue)
}
#end the loop
#create a data frame that holds the results of teach of he Nbootstraps
bootstrapresultsdf = data.frame(cor.boot, a.boot, b.boot, ymean.boot)
```

$bootstrap results {\tt df}$

cor.boot <dbl></dbl>	a.boot <dbl></dbl>	b.boot <dbl></dbl>	ymean.boot <dbl></dbl>
-0.9021601	329470.4	-4993.819	204625.0
-0.9021272	342312.7	-5436.034	206411.9
-0.8737209	329071.9	-4458.081	217619.8
-0.8855634	336244.8	-4614.643	220878.7
-0.8339483	343839.1	-4917.620	220898.6
-0.8942921	340188.9	-5163.526	211100.7
-0.8702225	331678.5	-4773.617	212338.1
-0.8987139	340562.4	-5227.270	209880.7
-0.8862386	329816.7	-4159.038	225840.7
-0.8843109	334908.9	-5063.816	208313.5
1-10 of 1,000 rows		Previous 1 2 3	4 5 6 100 Next

 $ggplot(bootstrap results df, aes(x = cor.boot)) + geom_histogram(col="red", fill="blue", binwidth=0.01) + xlab("Values of the Bootstrap Statistic: Correlation Coefficient") + ylab("Count") + ggtitle("Distribution of Bootstrap Statistics: r") \\$

qdata(~cor.boot, c(0.025, 0.975), data=bootstrapresultsdf)

2.5% 97.5% ## -0.9303714 -0.8233200

 $-0.94398577475 <= r_{boot} <= -0.82093112577$

 $ggplot(bootstrap results df, aes(x = a.boot)) + geom_histogram(col="red", fill="blue") + xlab("Values of the Bootstrap Statist ic: y-Intercept Estimate") + ylab("Count") + ggtitle("Distribution of Bootstrap Statistics: a")$

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution of Bootstrap Statistics: a

qdata(~a.boot, c(0.025, 0.975), data=bootstrapresultsdf)

2.5% 97.5% ## 320365.6 347203.2

 $306333.75162 <= a_{boot} <= 330773.08508$

 $ggplot(bootstrapresultsdf, aes(x = b.boot)) + geom_histogram(col="red", fill="blue") + xlab("Values of the Bootstrap Statist ic: Slope Estimate") + ylab("Count") + ggtitle("Distribution of Bootstrap Statistics: b")$

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution of Bootstrap Statistics: b

 $\verb| qdata(~b.boot, c(0.025, 0.975), data=bootstrapresultsdf)| \\$

2.5% 97.5% ## -5834.702 -3823.762

 $-4062.4420309 <= b_{boot} <= -2466.1849029$

 ${\tt ggplot(bootstrapresultsdf, aes(x = ymean.boot)) + geom_histogram(col="red", fill="blue") + xlab("Values of the Bootstrap Standard Sta$ tistic: Mean of Y Given index = 25") + ylab("Count") + ggtitle("Distribution of Bootstrap Statistics: Mean of Y for index = 25")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

 $qdata(\sim ymean.boot, c(0.025, 0.975), data=bootstrapresultsdf)$

2.5% 97.5% ## ## 199977.8 228518.6

Set Data set up for women Shelters

```
data3 <- data

data3$Date <- floor_date(data3$Date, "month")

# Sum total occupants of womens shelters by month
womenData <- filter(data3, ShelterType=="Women Emergency")
data3.women <- aggregate(womenData$Overnight, by=list(Date=womenData$Date), FUN="sum")
colnames(data3.women)[2] <- "womenMonthOvernightSum"
data3.women</pre>
```

Date <date></date>	womenMonthOvernightSum <int></int>
2013-04-01	3584
2013-05-01	3408
2013-06-01	3210
2013-07-01	3401
2013-08-01	3514
2013-09-01	3334
2013-10-01	3220
2013-11-01	3371
2013-12-01	3441
2014-01-01	3846
1-10 of 112 rows	Previous 1 2 3 4 5 6 12 Next

Sum total occupants of all shelters by month
data3.all <- aggregate(data3\$Overnight, by=list(Date=data3\$Date), FUN="sum")
colnames(data3.all)[2] <- "totalMonthOvernightSum"
data3.all</pre>

	Date <date></date>	totalMonthOvernightSum <int></int>
	2013-04-01	107984
	2013-05-01	105422
	2013-06-01	94006
	2013-07-01	101196
	2013-08-01	101701
	2013-09-01	101431
	2013-10-01	109338
	2013-11-01	111655
	2013-12-01	112680
	2014-01-01	116572
1-10 of 112 rows		Previous 1 2 3 4 5 6 12 Next

```
# Combine Data Frames
data3.temp <- inner_join(data3.women,data3.all, by = "Date")
data3.temp$PropWomen <- data3.temp$womenMonthOvernightSum / data3.temp$totalMonthOvernightSum

# Remove Dates, splits data frame into one for each downturn
data3.downturn <- filter(filter(data3.temp, Date > "2014-09-01"), Date < "2016-10-01") #2014
data3.covid <- filter(filter(data3.temp, Date > "2020-03-01"), Date < "2022-04-01") #2020

# add indicator to each downturn
data3.downturn$Downturn = "2014-16"
data3.covid$Downturn = "2014-16"
data3.covid$Downturn = "2020-22"

# recombine
monthlywomen.df <- rbind(data3.downturn,data3.covid)
monthlywomen.df</pre>
```

Date <date></date>	womenMonthOvernightSum <int></int>	totalMonthOvernightSum <int></int>	PropWomen <dbl></dbl>	Downtur <chr></chr>	'n
2014-10-01	3504	103121	0.03397950	2014-16	
2014-11-01	3651	107224	0.03405021	2014-16	
2014-12-01	3785	108744	0.03480652	2014-16	
2015-01-01	4060	110720	0.03666908	2014-16	
2015-02-01	3626	99567	0.03641769	2014-16	
2015-03-01	3939	109043	0.03612336	2014-16	
2015-04-01	3644	102618	0.03551034	2014-16	
2015-05-01	3567	101802	0.03503860	2014-16	
2015-06-01	3249	93929	0.03458996	2014-16	
2015-07-01	3380	96643	0.03497408	2014-16	
1-10 of 48 rows		Previous	1 2 3	4 5	Nex

#keep dates for prop chart

favstats(~ PropWomen | Downturn, data=monthlywomen.df)

Downturn <chr></chr>	min <dbl></dbl>	Q1 <dbl></dbl>	median <dbl></dbl>	Q3 <dbl></dbl>	max <dbl></dbl>	mean <dbl></dbl>	sd <ldb></ldb>	n <int></int>	missing <int></int>
2014-16	0.02695498	0.03329420	0.03451880	0.03554781	0.03666908	0.03375491	0.002700619	24	0
2020-22	0.02013068	0.02384516	0.02662194	0.04661333	0.05487817	0.03410784	0.012489177	24	0
2 rows									

0.03666908-0.03329420

[1] 0.00337488

 $ggplot(data=monthlywomen.df, aes(x = Downturn, y = PropWomen)) + geom_violin(fill="blue") + geom_boxplot(width = 0.05, fill="orange") + xlab("Downturn") + ylab("Women Shelter to Total Shelter Occupant Proportion") + ggtitle("Monthly Overnight Shelter Occupancy (Women Proportion) in Alberta: 24 Month") + coord_flip()$

Monthly Overnight Shelter Occupancy (Women Proportion) in Alberta: 24 Mont


```
ggplot(data3.temp, aes(x=Date, y=PropWomen)) +
geom_line() +
ggtitle("Monthly Proportion of Women Shelter Occupants to Total")
```

Monthly Proportion of Women Shelter Occupants to Total


```
n.2014 = favstats(~totalMonthOvernightSum|Downturn, data=monthlywomen.df)$n[1]
n.2020 = favstats(~totalMonthOvernightSum|Downturn, data=monthlywomen.df)$n[2]
NsimsW = 100000
prop.2014 = numeric(NsimsW)
prop.2020 = numeric(NsimsW)
diff.props = numeric(NsimsW)

data.2014w = filter(monthlywomen.df, Downturn=="2014-16")
data.2020w = filter(monthlywomen.df, Downturn=="2020-22")
```

	prop.2020 <dbl></dbl>	prop.2014 <dbl></dbl>	diff.props <dbl></dbl>
1	0.03316998	0.03407852	-9.085393e-04
2	0.03614281	0.03351692	2.625884e-03
3	0.03277605	0.03422084	-1.444784e-03
4	0.03155652	0.03300916	-1.452637e-03
5	0.03605052	0.03361129	2.439232e-03
6	0.02751051	0.03400034	-6.489836e-03
7	0.03052253	0.03402383	-3.501306e-03
8	0.03735754	0.03360433	3.753202e-03
9	0.03501343	0.03366138	1.352045e-03
10	0.03365686	0.03354108	1.157823e-04
1-10 of 100 rows		Previous 1 2	2 3 4 5 6 10 Next

 $\label{eq:ggplot} $$ \gcd(\text{data=boot.women, aes}(x = \text{diff.props})) + \gcd(\text{ill='blue', col='red', binwidth=.0005}) + xlab("P_{womenShelter2020}) - P_{womenShelter2014}") + ggtitle("Bootstrap Distribution of P_{woman2020}) - P_{women2014}: 24 Month") $$$


```
qdata(~ diff.props, c(0.025, 0.975), data=boot.women)
```

```
## 2.5% 97.5%
## -0.004483631 0.005453888
```

 $95\%CI: -0.00452 < p_{womanShelter2020} - p_{womanShelter2014} < 0.0055$

Ali Permutation test code starts here on the prop of women proportion difference

favstats(~ totalMonthOvernightSum | Downturn, data=monthlywomen.df)

Downturn <chr></chr>	min <dbl></dbl>	Q1 <dbl></dbl>	median <dbl></dbl>	Q3 <dbl></dbl>	max <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	n <int></int>	missing <int></int>
2014-16	84400	93766.25	99446.5	102727.5	110720	98436.75	6911.490	24	0
2020-22	47140	50896.00	52167.0	57183.5	76434	56058.88	9317.918	24	0
2 rows									

 $favstats ($\sim$ totalMonthOvernightSum \mid Downturn, data=monthlywomen.df)[1,]$mean - favstats ($\sim$ totalMonthOvernightSum \mid Downturn, data=monthlywomen.df)[2,]$mean$

[1] 42377.88

favstats(~ PropWomen | Downturn, data=monthlywomen.df)

Downturn <chr></chr>	min <dbl></dbl>	Q1 <dbl></dbl>	median <dbl></dbl>	Q3 <dbl></dbl>	max <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	n <int></int>	missing <int></int>
2014-16	0.02695498	0.03329420	0.03451880	0.03554781	0.03666908	0.03375491	0.002700619	24	0
2020-22	0.02013068	0.02384516	0.02662194	0.04661333	0.05487817	0.03410784	0.012489177	24	0
2 rows									

[1] -0.0003529306

```
obMeanDiff = favstats(~ PropWomen | Downturn, data=monthlywomen.df)[2,]$mean - favstats(~ PropWomen | Downturn, data=monthlywomen.df)[1,]$mean #computes current difference of sample means obMeanDiff
```

[1] 0.0003529306

```
N = 100000 #2000 different permutations minus the difference we have observed
womenprop.2014=numeric(N)
womenprop.2020=numeric(N)
outcomeW = numeric(N) #create a vector to store differences of means
for(i in 1:N)
{ indexW = sample(48, 24, replace=FALSE)
    womenprop.2014[i] = mean(monthlywomen.df$PropWomen[indexW])
    womenprop.2020[i] = mean(monthlywomen.df$PropWomen[-indexW])
    outcomeW[i] = womenprop.2020[i] - womenprop.2014[i] #difference between means
}
diffWomen.df.12=data.frame(womenprop.2020,womenprop.2014,outcomeW)
diffWomen.df.12
```

outcomeW	womenprop.2014	womenprop.2020
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
4.080905e-04	0.03372733	0.03413542
9.260283e-04	0.03346836	0.03439439
2.260374e-03	0.03280119	0.03506156
1.482213e-03	0.03319027	0.03467248
4.661960e-04	0.03369828	0.03416447
-2.096790e-03	0.03497977	0.03288298
5.628647e-04	0.03364994	0.03421281
-5.411389e-03	0.03663707	0.03122568
-4.320344e-03	0.03609155	0.03177120

	womenprop.2020 <dbl></dbl>	womenprop.2014 <dbl></dbl>							outco	meW <dbl></dbl>
	0.03472698	0.03313577							1.59121	4e-03
1-10 of 10,000 rows		Previo	JS	1	2	3	4	5	6 1000	Next

hist(outcomeW, xlab="Diff of Mean Prop 2020-2014", ylab="Frequency", main="Permutation Distribution: 24 Month", col='blue', breaks=50)
abline(v = obMeanDiff, col="red")

Permutation Distribution: 24 Month

p.value = prop(outcomeW >= obMeanDiff)
p.value

prop_TRUE ## 0.44329

12 month test

Remove Dates, splits data frame into one for each downturn
data4.downturn <- filter(filter(data3.temp, Date > "2014-09-01"), Date < "2015-10-01") #2014
data4.covid <- filter(filter(data3.temp, Date > "2020-03-01"), Date < "2021-04-01") #2020</pre>

add indicator to each downturn
data4.downturn\$Downturn = "2014-2015"
data4.covid\$Downturn = "2020-2021"

recombine

monthly12women.df <- rbind(data4.downturn,data4.covid)
monthly12women.df</pre>

Date	womenMonthOvernightSum	totalMonthOvernightSum	PropWomen	Downturn
<date></date>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
2014-10-01	3504	103121	0.03397950	2014-2015
2014-11-01	3651	107224	0.03405021	2014-2015
2014-12-01	3785	108744	0.03480652	2014-2015
2015-01-01	4060	110720	0.03666908	2014-2015
2015-02-01	3626	99567	0.03641769	2014-2015
2015-03-01	3939	109043	0.03612336	2014-2015

Date <date></date>	womenMonthOvernightSum <int></int>	totalMonthOvernightSum <int></int>	PropWomen <dbl></dbl>	Downturn <chr></chr>
2015-04-01	3644	102618	0.03551034	2014-2015
2015-05-01	3567	101802	0.03503860	2014-2015
2015-06-01	3249	93929	0.03458996	2014-2015
2015-07-01	3380	96643	0.03497408	2014-2015
1-10 of 24 rows			Previous 1	2 3 Next

favstats(~ PropWomen | Downturn, data=monthly12women.df)

Downturn <chr></chr>	min <dbl></dbl>	Q1 <dbl></dbl>	median <dbl></dbl>	Q3 <dbl></dbl>	max <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	n <int></int>
2014-2015	0.03397950	0.03475238	0.03527447	0.03619695	0.03666908	0.03537220	0.0009391506	12
2020-2021	0.02156514	0.04033757	0.04728875	0.05025456	0.05487817	0.04359259	0.0110506349	12
2 rows 1-9 of	10 columns							

ggplot(data=monthly12women.df, aes(x = Downturn, y = PropWomen)) + geom_violin(fill="blue") + geom_boxplot(width = 0.05, fil l="orange") + xlab("Downturn") + ylab("Women Shelter to Total Proportion") + ggtitle("Monthly Overnight Shelter Occupancy (W omen Proportion) in Alberta: 12 month") + coord_flip()

Monthly Overnight Shelter Occupancy (Women Proportion) in Alberta: 12 mol


```
n.2014.12 = favstats(~totalMonthOvernightSum|Downturn, data=monthly12women.df)$n[1]
n.2020.12 = favstats(~totalMonthOvernightSum|Downturn, data=monthly12women.df)$n[2]
NsimsW = 100000
prop.12.2014 = numeric(NsimsW)
prop.12.2020 = numeric(NsimsW)
diff.props.12 = numeric(NsimsW)
data.2014.12 = filter(monthly12women.df, Downturn=="2014-2015")
data.2020.12 = filter(monthly12women.df, Downturn=="2020-2021")
```

	prop.12.2020 <dbl></dbl>	prop.12.2014 <dbl></dbl>	diff.props.12 <dbl></dbl>
1	0.04145027	0.03542064	0.0060296223
2	0.05069791	0.03525190	0.0154460063
3	0.03857398	0.03582774	0.0027462367
4	0.04524136	0.03505631	0.0101850482
5	0.04831944	0.03550066	0.0128187810
6	0.03978704	0.03544690	0.0043401467
7	0.04710368	0.03587725	0.0112264241
8	0.05049849	0.03544001	0.0150584856
9	0.04656586	0.03556172	0.0110041427
10	0.04558954	0.03558394	0.0100056003
1-10 of 100 rows		Previous 1 2 3	3 4 5 6 10 Next

qdata(~ diff.props.12, c(0.025, 0.975), data=boot.women.12)

2.5% 97.5% ## 0.001821467 0.013749273

Ali Permutation test code starts here on the prop of women proportion difference

favstats(~ totalMonthOvernightSum | Downturn, data=monthly12women.df)

Downturn <chr></chr>	min <dbl></dbl>	Q1 <dbl></dbl>	median <dbl></dbl>	Q3 <dbl></dbl>	max <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	n <int></int>	missing <int></int>
2014-2015	93929	96471.5	102210	107604.0	110720	102042.08	5904.136	12	0
2020-2021	47140	48688.0	51197	52520.5	71343	52340.75	6351.352	12	0
2 rows									

 $favstats ($\sim totalMonthOvernightSum \mid Downturn, data=monthly12women.df)[1,]$mean - favstats ($\sim totalMonthOvernightSum \mid Downturn, data=monthly12women.df)[2,]$mean - favstats ($\sim totalMonthOvernightSum \mid Downturn, data=monthly12women.df)[2,]$mean - favstats ($\sim totalMonthOvernightSum \mid Downturn, data=monthly12women.df)[2,]$mean - favstats ($\sim totalMonthOvernightSum \mid Downturn, data=monthly12women.df)[1,]$mean - favstats ($\sim totalMonthOvernightSum \mid Downturn, data$

```
## [1] 49701.33
```

favstats(~ PropWomen | Downturn, data=monthly12women.df)

Downturn <chr></chr>	min <dbl></dbl>	Q1 <dbl></dbl>	median <dbl></dbl>	Q3 <dbl></dbl>	max <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	n <int></int>
2014-2015	0.03397950	0.03475238	0.03527447	0.03619695	0.03666908	0.03537220	0.0009391506	12
2020-2021	0.02156514	0.04033757	0.04728875	0.05025456	0.05487817	0.04359259	0.0110506349	12
2 rows 1-9 of	10 columns							

 $favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [1,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,] $mean - favstats (\sim PropWomen \mid Downturn, \ data=monthly 12 women. df) [2,]$

[1] -0.008220392

```
obMeanDiff.12 = favstats(~ PropWomen | Downturn, data=monthly12women.df)[2,]$mean - favstats(~ PropWomen | Downturn, data=monthly12women.df)[1,]$mean #computes current difference of sample means obMeanDiff.12
```

[1] 0.008220392

```
N = 100000 #2000 different permutations minus the difference we have observed
womenprop.2014.12=numeric(N)
womenprop.2020.12=numeric(N)
outcomeW.12 = numeric(N) #create a vector to store differences of means
for(i in 1:N)
{ indexW.12 = sample(24, 12, replace=FALSE)
    womenprop.2014.12[i] = mean(monthly12women.df$PropWomen[indexW.12])
    womenprop.2020.12[i] = mean(monthly12women.df$PropWomen[-indexW.12])
    outcomeW.12[i] = womenprop.2020.12[i] - womenprop.2014.12[i] #difference between means
}
diffWomen.df.12=data.frame(womenprop.2020.12,womenprop.2014.12,outcomeW.12)
diffWomen.df.12
```

womenprop.2020.12 <dbl></dbl>	womenprop.2014.12 <dbl></dbl>	outcomeW.12 <dbl></dbl>
0.04049832	0.03846647	2.031850e-03
0.03853317	0.04043161	-1.898438e-03
0.03818821	0.04077657	-2.588361e-03
0.03945678	0.03950800	-5.122378e-05
0.04041250	0.03855229	1.860208e-03
0.04395100	0.03501379	8.937208e-03
0.03991554	0.03904925	8.662947e-04
0.03862889	0.04033590	-1.707014e-03
0.04076573	0.03819906	2.566674e-03
0.04032451	0.03864028	1.684229e-03
1-10 of 10,000 rows	Previous 1 2	3 4 5 6 1000 Next

```
hist(outcomeW.12, xlab="Diff of Mean Prop 2020-2014", ylab="Frequency", main="Permutation Distribution: 12 Month", col='blu e', breaks=50)
abline(v = obMeanDiff.12, col="red")
```

Permutation Distribution: 12 Month

p.value.12 = prop(outcomeW.12 >= obMeanDiff.12)
p.value.12

prop_TRUE ## 0.00896