

华润微电子(重庆)有限公司

Features

- Uses CRM(CQ) advanced SkyMOS2 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Applications

- Synchronous Rectification for AC/DC Quick Charger
- Battery management
- UPS (Uninterrupible Power Supplies)

Product Summary

V_{DS}	60V
R _{DS(on)@10V typ}	8.4mΩ
R _{DS(on)@4.5V typ}	11.5mΩ
I_{D}	80A

100% Avalanche Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRST100N06L2	CRST100N06L2	TO-220	Tube	N/A	N/A	50pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	60	V
Continuous drain current			
T _C = 25°C (Silicon limit)	т т	118	Α
T _C = 25°C (Package limit)	I_{D}	80	
T _C = 100°C (Silicon limit)		75	
Pulsed drain current ($T_A = 25$ °C, t_p limited by T_{jmax})	${ m I}_{ m D\ pulse}$	320	Α
Avalanche Current (L=0.3mH)	I_{AS}	16	Α
Avalanche energy, single pulse (L=0.3mH, Rg=25 Ω)	E _{AS}	38	mJ
Repeative avalanche Current (L=0.3mH)*	I_{AR}	12	Α
Repeative avalanche (L=0.3mH)*	E _{AR}	22	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25^{\circ}C$)	P _{tot}	227.3	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

^{*}Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ=25°C.

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	0.55	°C/W
Thermal resistance, junction – ambient(min. footprint)	R _{thJA}	62	- C/ W

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Parameter	Symbol	Value			Unit	Test Condition	
	Syllibol	min.	typ.	max.	Oilit	lest condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	60	-	-	V	V _{GS} =0V, I _D =250uA	
Gate threshold voltage	V _{GS(th)}	1.4	1.7	2	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	
						V_{DS} =60V, V_{GS} =0V	
Zero gate voltage drain current	I_{DSS}	-	0.05	1	μΑ	T _j =25°C	
		-	-	10		T _j =125°C	
Gate-source leakage current	I_{GSS}	-	10	100	nA	V _{GS} =±20V,V _{DS} =0V	
Drain-source on-state	R _{DS(on)}	-	8.4	10.1	mΩ	V _{GS} =10V, I _D =20A	
resistance		-	11.5	14.4		V _{GS} =4.5V, I _D =20A	
Transconductance	g_{fs}	-	102	-	S	$V_{DS}=5V,I_{D}=50A$	

Dynamic Characteristic

•						
Input Capacitance	C _{iss}	-	1038	-		V_{GS} =0V, V_{DS} =30V, f =1MHz
Output Capacitance	C _{oss}	-	309	-	pF	
Reverse Transfer Capacitance	C _{rss}	-	39	-		
Gate Total Charge	Q_{G}	-	17.7	-		
Gate-Source charge	Q_{gs}	-	4.7	-	nC	V_{GS} =10V, V_{DS} =30V, I_{D} =35A, f=1MHz
Gate-Drain charge	Q_{gd}	-	2.7	-		
Turn-on delay time	t _{d(on)}	-	7	-		
Rise time	t _r	-	50	1	nc	V_{GS} =10V, V_{DD} =30V, R_{G_ext} =2.7 Ω
Turn-off delay time	t _{d(off)}	-	16	-	ns	
Fall time	t _f	-	54	-		
Gate resistance	R_G	-	1.4	-	Ω	V_{GS} =0V, V_{DS} =0V, f =1MHz

Body Diode Characteristic

华润微电子(重庆)有限公司

SkyMOS2 N-MOSFET 60V, $8.4m\Omega$, 80A

Parameter	Symbol	Value			Unit	Test Condition
Parameter	Symbol	min.	typ.	max.	Oilit	rest Condition
Body Diode Forward Voltage	V_{SD}	ı	0.95	1	V	V_{GS} =0V, I_{SD} =35A
Body Diode Reverse Recovery Time	t _{rr}	-	27	-	ns	I _F =35A, dI/dt=100A/μs
Body Diode Reverse Recovery Charge	Q _{rr}	-	17.8	-	nC	

Typical Performance Characteristics

Fig 2: Transfer Characteristics 100 90 $V_{DS}=5V$ 80 70 60 **€** 50 125°C 40 25°C 30 20 10 0 0 1 2 3 5 V_{GS} (V)

Fig 3: Rds(on) vs Drain Current and Gate Voltage 16.0 14.0 R_{DS(on)} (mΩ) $V_{GS} \neq 4.5V$ 12.0 10.0 V_{GS}=10V 8.0 6.0 5 15 25 35 45 $I_D(A)$ Fig 5: Rds(on) vs. Temperature

1.7 I_D=35A 1.6 V_{GS}=10V 1.5 R_{DS(on)}_Normalized 1.4 $V_{GS}=6.0V$ 1.3 1.2 V_{GS}=4.5V 1.1 1.0 0.9 0.8 0.7 25 50 75 100 125 150 Tj - Junction Temperature (°C)

Fig 8: Body-diode Forward Characteristics

Fig 9: Power Dissipation

Fig 10: Drain Current Derating

Fig 11: Safe Operating Area

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: TO-220-3L

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	4.30	4.80	0.169	0.189
A1	1.20	1.45	0.047	0.057
A2	2.20	2.90	0.087	0.114
b	0.69	0.95	0.027	0.037
b2	1.00	1.60	0.039	0.063
С	0.33	0.65	0.013	0.026
D	14.70	16.20	0.579	0.638
D1	8.59	9.65	0.338	0.380
D2	11.75	13.60	0.463	0.535
е	2.54 BSC.		0.10	0 BSC.
Е	9.60	10.60	0.378	0.417
E1	7.00	8.46	0.276	0.333
H1	6.20	7.00	0.244	0.276
L	12.60	14.80	0.496	0.583
L1	2.70	3.80	0.106	0.150
L2	12.13	16.50	0.478	0.650
Q	2.40	3.10	0.094	0.122
Р	3.60	3.90	0.142	0.154

Revision History

Revison	Date	Major changes
1.0	2018-10-11	Release of formal version.
2.0	2019-05-27	Supplement package outline info.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.

