Fractal Geometry

Alex Rutar* University of Waterloo

Winter 2020[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: March 12, 2020

Contents

Chapte	r I	Topics in Fractal Geometry
1	Dime	nsion Theory
	1.1	Constructing Measures in Metric Spaces
	1.2	The Subdivision Method
	1.3	Hausdorff Measure and Dimension
	1.4	Box Dimensions 6
	1.5	Potential-Theoretic Methods
	1.6	Projections of Fractals
2	2 Iterated Function Systems	
	2.1	Invariant Sets and Measures
	2.2	Dimensional Properties of the Attractor
	2.3	Assouad Dimensions
3	Sizes	of Measures
4	Multi	fractal Analysis
	4.1	Coarse Theory
	4.2	Legendre Transform
	4.3	Fine Theory

I. Topics in Fractal Geometry

1 Dimension Theory

1.1 Constructing Measures in Metric Spaces

[TODO: fill in proofs and transfer to measure section] Let X be a metric space.

Definition. Given $A, B \subseteq X$, say $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$. Say A, B have **positive separation** if d(A, B) > 0.

If A, B are compact and disjoint, then they have positive separation. We say that an outer measure μ^* is a **metric outer measure** if $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ when A, B have positive separation.

Example. The Lebesgue outer measure is a metric outer measure. [TODO: prove]

1.1 Theorem. μ^* is a metric outer measure if and only if every Borel set is μ^* -measurable (in the sense of Caratheodory).

Proof [TODO: prove this (homework), and find a proof of the converse? (may not be true)]

Suppose $A \subseteq \mathcal{B}$ are both covers of X containing \emptyset and $\mathcal{C} : \mathcal{B} \to [0, \infty]$ with $\mathcal{C}(\emptyset)$. Let μ_A^* and μ_B^* be the corresponding extensions of \mathcal{C} and $\mathcal{C}|_A$. Then by definition, $\mu_B^*(E) \le \mu_A^*(E)$ for all $E \in \mathcal{P}(X)$.

Let X be a metric space, \mathcal{A} cover X containing \emptyset . Suppose for each $x \in X$ and $\delta > 0$, there exists $A \in \mathcal{A}$ such that $x \in A$ and diam $A \leq \delta$. Let $\mathcal{C} : \mathcal{A} \to [0, \infty]$ with $\mathcal{C}(\emptyset) = 0$. Set $\mathcal{A}_{\epsilon} = \{A \in \mathcal{A} : \operatorname{diam}(A) \leq \epsilon\}$, and define μ_{ϵ}^* by extending $\mathcal{C}|_{\mathcal{A}_{\epsilon}}$. In particular, as ϵ decreases, μ_{ϵ}^* increases, and define

$$\mu^*(E) = \sup_{\epsilon} \mu_{\epsilon}^*(E) = \lim_{\epsilon \to 0} \mu_{\epsilon}^*(E)$$

1.2 Theorem. As defined above, μ^* is a metric outer measure.

Proof [TODO: prove this, homework]

Example. The Lebesgue measure arises this way; in fact, the μ_{ϵ}^* are all the same outer measure.

1.2 The Subdivision Method

Definition. We say that a collection of subsets C is a **semi-algebra** if it contains \emptyset , is closed under finite intersections, and complements are finite disoint unions of sets in C. We then say that μ is a **measure on a semi-algebra** if $\mu: C \to [0, \infty]$ has

- (i) $\mu(\emptyset) = 0$
- (ii) If $E_1, ..., E_n \in \mathcal{C}$ are disjoint and $\bigcup_{i=1}^n E_i \in \mathcal{C}$, then $\mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i)$.

- (iii) If $\{E_i\}_{i=1}^{\infty} \in \mathcal{C}$ are pairwise disjoint and $\bigcup_{i=1}^{\infty} E_i \in \mathcal{C}$, then $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu(E_i)$. An **algebra** is a semi-algebra which is closed under finite unions and complements. Then a **measure on an algebra** is a map μ satisfying the same above constraints.
 - **1.3 Theorem.** Let μ be a measure on a semi-algebra C. Then μ has a unique extension to a measure on $A = \langle C \rangle$, the algebra generated by C.

PROOF It is easy to verify that \mathcal{A} is the set of all finite unions of elements in \mathcal{C} . Thus we extend μ to \mathcal{A} where if $A = \bigcup_{i=1}^{n} C_i$, set $\mu(A) = \sum_{i=1}^{n} \mu(C_i)$.

[TODO: prove] Check: well-defined and a measure

Let $\Sigma = \{1, ..., k\}$ and let Σ^* denote the set of all words on Σ . We then associate to Σ^* a heirarchy of subsets $\{X_{\sigma} : \sigma \in \Sigma^*\}$ with $X_{\sigma} \subseteq \mathbb{R}^n$. Set $\mathcal{E} = \{X_{\sigma} : \sigma \in \Sigma^*\}$. When we say heirarchy, we mean that for any $\sigma \in \Sigma^*$,

$$X_{\sigma} \supseteq \bigcup_{i=1}^{k} X_{\sigma i}$$

disjointly. We also assume that for every infinite sequence $(i_1, i_2, ...)$, with $\sigma | j = (i_1, ..., i_j)$, $\lim_{j \to \infty} |X_{\sigma|j}| = 0$ and $\lim_{j \to \infty} \mu_0(X_{\sigma|j}) = 0$ uniformly with respect to length.

Suppose $\mu_0 : \mathcal{E} \to [0, \infty]$ is any function such that $\mu(X_{\sigma}) = \sum_{i=1}^k \mu(X_{\sigma i})$. Set $E_k = \bigcup_{\omega \in \Sigma^n} X_{\omega}$ and $E = \bigcap_{i=k}^{\infty} E_k$. Let $\mathcal{C} = \{\emptyset\} \cup \{X_{\omega} \cap E : \omega \in \Sigma^*\}$ and extend μ_0 to a function $\mu : \mathcal{C} \to [0, \infty]$ by the rule $\mu(X_{\omega} \cap E) = \mu_0(X_{\omega})$. We then have the following result.

1.4 Proposition. In the above construction, C is a semialgebra and μ is a measure on a semialgebra.

PROOF Closure under finite intersections is immediate since the X_{σ} are either nested are disjoint. Moreover,

$$(X_{\omega} \cap E)^{c} = \bigcup_{\substack{\sigma \in \Sigma^{|\omega|} \\ \sigma \neq \omega}} X_{\sigma} \cap E$$

is closed under complementation.

Let's first see that μ is a measure on a semi-algebra. We have $\mu(\emptyset) = 0$ by definition. Suppose $\bigcup_{i=1}^{n} X_{\sigma_i} = X_{\tau}$ for some $\tau \in \Sigma^*$. Clearly τ is a prefix of each σ_i . Let's prove by induction on $m = \max\{|\sigma_i| - |\tau| : 1 \le i \le n\}$ that the formula holds.

If m=0, this is immediate since since the union is over a single element. Otherwise, suppose $m\in\mathbb{N}$ is arbitrary. Let $S=\{i:|\sigma_i|-|\tau|=m\}$ and partition S into classes S_1,\ldots,S_k where σ_i and σ_j are in the same class if they have the same parent. But then for any S_i with common parent τ_i , we must have $\bigcup_{i\in S_i}X_{\sigma_i}\cap E=X_{\tau_i}\cap E$ disjointly, so that $\mu(X_{\tau_i}\cap E)=\sum_{i\in S_i}\mu(X_{\sigma_i}\cap E)$ by assumption on μ_0 above. Let $S_0=\{1,\ldots,n\}\setminus\bigcup_{i=1}^kS_i$ denote the set of remainind indices. Then $X_{\tau}=\bigcup_{i\in S_0}X_{\sigma_i}\cup\bigcup_{i=1}^kX_{\tau_i}$ where $|\sigma_i|-|\tau|< m$ by definition of S_0 and $|\tau_i|-|\tau|< m$ since τ_i is a parent of some σ with $|\sigma|-|\tau|=m$. But then apply the induction hypothesis to get

$$\mu(X_{\tau}) = \sum_{i=1}^{k} \mu(X_{\tau_i} + \sum_{i \in S_0} X_{\sigma_i} = \sum_{i=1}^{k} \sum_{j \in S_i} \mu(X_{\sigma_i}) + \sum_{i \in S_0} X_{\sigma_i} = \sum_{i=1}^{n} \mu(X_{\sigma_i})$$

as required.

Finally, suppose $\bigcup_{i=1}^{\infty} X_{\sigma_i} = X_{\tau}$ for some $\tau \in \Sigma^*$. It suffices to show that $\mu(X_{\tau}) \leq \sum_{i=1}^{\infty} \mu(X_{\sigma_i}) + \epsilon$ for any $\epsilon > 0$. If $\sum_{i=1}^{\infty} \mu(X_{\sigma_i}) = \infty$, this inequality holds trivially. Otherwise, there exists sume N such that $\sum_{i=N+1}^{\infty} \mu(X_{\sigma_i}) < \epsilon$. Then $\bigcup_{i=1}^{N} X_{\sigma_i} \subseteq X_{\tau}$. Let $m = \max\{|\sigma_i|\}$, and for any ω with $|\omega| = m$ and $X_{\omega} \subseteq X_{\tau}$, either $X_{\omega} \subseteq X_{\sigma_i}$ for some i or X_{ω} is disjoint from each X_{σ_i} . Then let $\{X_{\omega_1}, \ldots, X_{\omega_m}\}$ be the maximal set of such ω such that X_{ω} is disjoint from each X_{σ_i} for all $1 \leq i \leq N$. But now $X_{\tau} = \bigcup_{i=1}^{N} X_{\sigma_i} \cup \bigcup_{i=1}^{m} X_{\omega_i}$, and apply the property proven earlier to get

$$\mu(X_{\tau}) \leq \sum_{i=1}^{N} \mu(X_{\sigma_i}) \leq \sum_{i=1}^{\infty} \mu(X_{\sigma_i}) + \epsilon$$

as required. Thus, μ is in fact a measure on a semi-algebra.

Thus, μ extends to the σ -algebra \mathcal{M} generated by \mathcal{C} . It remains to show that \mathcal{M} contains the Borel sets in E. To do this, it suffices to show that the outer measure μ^* is in fact a metric outer measure. Let $F_1, F_2 \subseteq E$ be arbitrary such that $\mathrm{dist}(F_1, F_2) \geq \delta > 0$. We wish to show for any $\epsilon > 0$ that

$$\mu^*(F_1) + \mu^*(F_2) \le \mu^*(F_1 \cup F_2) + \epsilon.$$

Get N such that whenever $|\omega| \ge N$, we have $|X_{\omega}| < \delta$. Write $E = \bigcup_{\omega \in \Sigma^N} X_{\omega}$. In particular, since $|X_{\omega}| < \delta$, we cannot have both $F_1 \cap X_{\omega} \ne \emptyset$ and $F_2 \cap X_{\omega} \ne \emptyset$.

Let $\{X_{\sigma_i}\}_{i=1}^{\infty}$ be a cover for $F_1 \cup F_2$ such that $\sum_{i=1}^{\infty} \mu(X_{\sigma_i}) < \mu^*(F_1 \cup F_2) + \epsilon$. By writing $X_{\sigma_i} = \bigcup_{\alpha \in \Sigma^N} X_{\sigma_i \alpha}$ (which does not change the value of the sum and still covers F_1), we may assume that $|X_{\sigma_i}| < \delta$. In particular, there exists a partition $\mathbb{N} = T_1 \cup T_2$ such that for each $i \in T_1$, X_{σ_i} intersects F_1 and not F_2 , and similarly for each $i \in T_2$. But then $\{X_{\sigma_i}\}_{i \in T_1}$ is a cover for F_1 , and $\{X_{\sigma_i}\}_{i \in T_2}$ is a cover for F_2 , so

$$\mu^*(F_1) + \mu^*(F_2) \le \sum_{i \in T_1} \mu(X_{\sigma_i}) + \sum_{i \in T_2} \mu(X_{\sigma_i}) = \sum_{i=1}^{\infty} \mu(X_{\sigma_i}) \le \mu^*(F_1 \cup F_2) + \epsilon$$

as required. Thus μ^* is a metric outer measure, and hence the σ -algebra contains the Borel sets.

1.3 Hausdorff Measure and Dimension

For the remainder of this chapter, if X is a metric space and $U \subseteq X$, we denote |U| = diam(U).

Definition. A δ -cover of a set $F \subseteq X$ is any countable collection $\{U_n\}_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} U_n \supseteq F$ and $|U_n| \le \delta$.

Let $A = \mathcal{P}(X)$, and $A_{\delta} = \{A \subseteq X : |A| \le \delta\}$. For $\delta \ge 0$, put $C_s(A) = |A|^s$. Then for $s \ge 0$, $\delta > 0$, and $E \subseteq$, we define

$$H_{\delta}^{s}(E) = \inf \left\{ \sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta - \text{cover of } E \right\}$$
$$= \inf \left\{ \sum_{n=1}^{\infty} C_{s}(U_{n}) : \bigcup_{n=1}^{\infty} U_{n} \supseteq E, U_{n} \in \mathcal{A}_{\delta} \right\}$$

This is the outer measure as constructed in $\ref{eq:thm:eq:constructed}$ in $\ref{eq:constructed}$ and function $\ref{eq:constructed}$. In particular, as $\delta \to 0$, H^s_δ increases; in particular, by Theorem 1.2, $H^s(E) = \sup_\delta H^s_\delta(E)$ is a metric outer measure. Then apply Caratheodory ($\ref{eq:constructed}$) to get the s-dimensional Hausdorff measure, which is a complete Borel measure.

Example. (i) H^0 is the counting measure on any metric space.

(ii) Take $X = \mathbb{R}$ and s = 1. Then H^1 is the Lebesgue measure (on Borel sets). To see this, we have

$$\lambda(E) = \inf \left\{ \sum_{n=1}^{\infty} |I_n| : \bigcup_{n=1}^{\infty} I_n \supseteq E, |I_n| \le \delta \right\}$$

$$\ge H_{\delta}^1(E)$$

for any $\delta > 0$; and conversely, take any δ -cover of E, say $\{U_n\}_{n=1}^{\infty}$ and set $I_n = \overline{\text{conv } U_n}$ so $|I_n| = |U_n| \le \delta$. Thus $\sum_{n=1}^{\infty} |U_n| = \sum_{n=1}^{\infty} |I_n| \ge \lambda(E)$ for any such cover, so $\lambda(E) = H_{\delta}^1(E)$ for any $\delta > 0$. Thus $\lambda(E) = H^1(E)$ for any Borel set E.

(iii) More generally, if $X = \mathbb{R}^n$ and s = n, then $\lambda = \pi_n \cdot H^n$ where π_n is the n-dimensional volume of the ball of diameter 1.

We will verify that $H^n \le m$ where m is n-dimensional Lebesgue measure on \mathbb{R}^n ; the general result is harder and left as an exercise. To see this, we have

$$m(E) = \inf \left\{ \sum_{i=1}^{\infty} \operatorname{vol}(C_i) : C_i \text{ cube, } \bigcup_{i=1}^{\infty} C_i \supseteq E, \text{ sides } \le \frac{1}{\sqrt{n}} \delta \right\}$$

$$= \inf \left\{ \sum_{i=1}^{\infty} \left(\frac{1}{\sqrt{n}} \right)^n |C_i|^n : \{C_i\} - \delta \text{-cover of cubes of } E \right\}$$

$$\geq c_n \inf \left\{ \sum_{i=1}^{\infty} |c_i|^n : \text{all } \delta \text{-covers of } E = c_n H_{\delta}^n(E) \right\}$$

where $c_n = (1/\sqrt{n})^n \le 1$.

(iv) If s < t, then $H^s(E) \ge H^t(E)$.

Suppose s < t. Clearly $H^s(E) \ge H^t(E)$, but we can in fact make stronger statements. Suppose we have some U_i where $|U_i| \le \delta$, and

$$\sum_{i=1}^{\infty} |U_i|^t = \sum_{i=1}^{\infty} |U_i|^s |U_i|^{t-s} \le \delta^{t-s} \sum_{i=1}^{\infty} |U_i|^s$$

so that

$$H^t_{\delta}(E) \le \delta^{t-s} \inf \left\{ \sum_{i=1}^{\infty} |U_i|^s : \{U_i\}_{i=1}^{\infty} \delta - \text{cover of } E \right\} = \delta^{t-s} H^s_{\delta}(E).$$

In particular, as $\delta \to 0$, $H^t_{\delta}(E) \to H^t(E)$ and $H^s_{\delta}(E) \to H^s(E)$ and $\delta^{t-s} \to 0$ since s < t. Thus if $H^s(E) \neq \infty$, then $H^t(E) = 0$ for all t > s. Similarly, if $H^t(E) > 0$, then $H^s(E) = \infty$ for all s < t. As a result, there exists some unique number $S_0 := \dim_H(E) \geq 0$ such that for all $s < S_0$, $H^s(E) = \infty$, and for all $t > S_0$, $H^t(E) = 0$. We call this value the **Hausdorff dimension** of E. Note that $H^{S_0}(E) \in [0,\infty]$ and all choices are possible.

Example. (i) Since
$$1 = m([0,1]) = H^1([0,1])$$
, $\dim_H[0,1] = 1$

- (ii) $\dim_H \mathbb{R} = 1$ but $m(\mathbb{R}) = H^1(\mathbb{R}) = \infty$.
- (iii) It is possible to have $S_0 = 1$ but m(E) = 0.
- (iv) There is a Cantor-like set with Hausdorff-dimension 0.
- (v) If *E* is countable and s > 0, $H^s_{\delta}(E) \le \sum_{x \in E} |\{x\}|^s = 0$. In particular, there exist compact countable sets, and in this case, $\dim_H C = 0$ while $H^0(C) = \infty$.

Here are some basic properties of Hausdorff dimension.

- **1.5 Proposition.** (Properties of Hausdorff Dimension) (i) If $A \subseteq B$, then $\dim_H A \le \dim_H B$.
 - (ii) If $F \subseteq \mathbb{R}^n$, then $\dim_H F \leq n$.
- (iii) If $U \subset \mathbb{R}^n$ is open, then $\dim_H U = n$.
- (iv) If $F = \bigcup_{i=1}^{\infty} F_i$, then $\dim_H(F) = \sup_{i \in \mathbb{N}} \dim_H F_i$.

PROOF (i) If $H^s(B) = 0$, then $H^s(A) = 0$ by monotonicity of measures so $\dim_H A \le \dim_H B$.

(ii) First consider the unit cube $I^n \subset \mathbb{R}^n$. Then

$$H^{s}_{\sqrt{n}\delta}(I^n) \le \left(\frac{2}{\delta}\right)^n (\sqrt{n}\delta)^s = 2^n \sqrt{n}^n \delta^{s-n}$$

so if s > n, then $\delta^{s-n} \to 0$ as $\delta \to 0$. Thus for all s > n, $H^s(I^n) = \lim_{\delta \to 0} H^s_{\sqrt{n}\delta}(I^n) = 0$ so that $\dim_H(I^n) \le n$. Moreover, \mathbb{R}^n is the countable union of unit cubes, so that $H^s(\mathbb{R}^n) = 0$ and $\dim_H(\mathbb{R}^n) \le n$. Then appeal to (i).

- (iii) Cubes have positive Hausdorff n-measure.
- (iv) If $s > \sup\{\dim_H F_i\}$, then $H^s(F_i) = 0$ for all i and by subadditivity $H^s(F) = 0$. Thus $s \ge \dim_H F$. By monotonicity, $\dim_H F \ge \dim_H F_i$ for all j.

Suppose $X = \mathbb{R}^n$, $E \subseteq \mathbb{R}^n$, $\lambda > 0$. Set $\lambda E = {\lambda e : e \in E}$: then $H^s(\lambda E) = \lambda^s H^s(E)$ since there is a bijection between δ -covers and $\lambda \delta$ -covers.

Definition. Let X, Y be metric spaces. A function $f: X \to Y$ is called **Lipschitz** if there exists C such that $d(f(x), f(y)) \le Cd(x, y)$.

Certainly if f is Lipschitz, then f is uniformly continuous. Functions $f : \mathbb{R} \to \mathbb{R}$ with bounded derivative are Lipschitz by the mean value theorem.

Definition. A function $f: X \to Y$ is **Hölder continuous** with exponent α if there exists c such that $d(f(x), f(y)) \le cd(x, y)^{\alpha}$.

Example. (i) If $\alpha = 1$, then f is Lipschitz, and if $\alpha = 0$, then f is bounded.

- (ii) If $f: \mathbb{R}^n \to \mathbb{R}^n$ and $\alpha > 0$, then f is constant (by considering derivatives). Thus the most interesting cases occur for $0 < \alpha \le 1$.
 - **1.6 Proposition.** If $f: X \to Y$ is Hölder continuous with exponent α . Then $H^{s/\alpha}(f(E)) \le cH^s(E)$ for some constant c.

PROOF If $\{U_i\}$ are a δ -cover of E, then $\{f(U_i)\}$ cover f(E). Then diam $f(U_i) = \sup\{d(f(x), f(y)) : x, y \in U_i\} \le c \sup\{d(x, y)^\alpha : x, y \in U_i\} = C \cdot (\operatorname{diam} U_i)^\alpha$. Thus if $\{U_i\}$ is a δ -cover of E, then $\{f(U_i)\}$ is a $c\delta^\alpha$ -cover of f(E). Passing through the definition, we get $H^{s/\alpha} \le c^{s/\alpha}H^s(E)$.

We then have the easy corollaries

1.7 Corollary. $\dim_H f(X) \leq \frac{1}{\alpha} \dim_H X$.

- **1.8 Corollary.** If f is an isometry, then $H^s(f(X)) = H^s(X)$.
- **1.9 Corollary.** If $f: X \to Y$ are bi-Lipschitz, then $\dim_H X = \dim_H Y$.

Example. Let C denote the Cantor set. Let's show that $\frac{1}{2} \le H^s(C) \le 1$ for $s = \frac{\log 2}{\log 3}$. In particular, this implies that $\dim_H C = \frac{\log 2}{\log 3}$.

Let $\delta = 3^{-n}$ and cover C with a δ -covering with generation n Cantor intervals. Then $H^s_{\delta}(C) \leq \sum_{I \in C_n} |I|^s = 2^n 3^{-ns} = 1$ by choice of s. Thus $\lim_{\delta \to 0} H^s_{\delta}(C) = \lim_{n \to \infty} H^s_{3^{-n}}(C) \leq 1$.

For the lower bound, take any δ -cover $\{U_i\}$ of C. Without loss of generality, we may assume that the U_i are open intervals. Since C is compact, get some finite subcover U_1, \ldots, U_N . For each i, get $k_i \in \mathbb{N}$ so that $3^{-(k_i+1)} \le |U_i| < 3^{-k_i}$; set $k = \max\{k_1, \ldots, k_N\}$. Since U_i intersects at most 1 interval in C_{k_i} , U_i intersects at most 2^{k-k_i} intervals of C_k . Thus $2^k \le \sum_{i=1}^N 2^{k-k_i}$ where $2^{k-k_i} = 2^k 3^{-sk_i} = 2^k 3^{-s(k_i+1)} \le 2^k |U_i|^s 3^s$. Thus

$$2^k \le \sum_{i=1}^N 2^k |U_i|^s 3^s$$

so $\frac{1}{2} = 3^{-s} \le \sum_{i=1}^{N} |U_i|^s \le \sum_{i=1}^{\infty} |U_i|^s$ so $H^s_{\delta}(C) \ge \frac{1}{2}$ so $H^s(C) \ge \frac{1}{2}$.

1.10 Proposition. Let (X,d) be a metric space. If $\dim_H X < 1$, then X is totally disconnected.

PROOF Let $x \in X$ and define $f: X \to [0, \infty)$ by f(z) = d(z,x). Then f is Lipschitz with constant 1 so $\dim_H f(X) \le \dim_H X < 1$ so m(f(X)) = 0. Then if $y \ne x$, d(y,x) = f(y) > 0 while f(x) = 0. In particular, $(0, f(y)) \not\subset f(X)$ so there exists 0 < r < f(y) such that $r \not\in f(X)$. Then $U_1 = \{z \in X : f(z) < r\}$ and $U_2 = \{z \in X : f(z) > r\}$ are disconnecting sets for X separating x and y.

1.4 Box Dimensions

Definition. Let $E \subseteq \mathbb{R}^n$ be a bounded Borel set, and for each $\delta > 0$, let $N_{\delta}(E)$ be the least number of closed balls of diameter δ . We then define the **upper box dimension** of E

$$\overline{\dim}_B E = \limsup_{\delta \to 0} \frac{\log N_{\delta}(E)}{|\log \delta|}$$

and similarly $\underline{\dim}_B E$ (the **lower box dimension**) with a liminf in place of limsup. If $\underline{\dim}_B E = \overline{\dim}_B E$, then we define the **box dimension** to be this shared quantity.

If *I* is any interval, it is easy to see that $\dim_B I = 1$. Note that if $N_{\delta}(E) \sim \delta^{-s}$, then $\dim_B E = S$.

Example. Let's show that the box dimension of $C_{1/3}$ exists, and compute it. Given some $\delta > 0$, let n be so that $3^{-n} \le \delta < 3^{-(n-1)}$. Certainly we can cover $C_{1/3}$ by Cantor intervals of level n, so that $N_{\delta}(C_{1/3}) \le 2^n$. Moreover, the endpoints of Cantor inversals of level n-1 are distance at least $3^{-(n-1)} > \delta$ apart. Thus $N_{\delta}(C_{1/3})$ is at least the number of endpoints of level n-1, i.e. $N_{\delta}(C_{1/3}) \ge 2^n$. Thus $N_{\delta}(C_{1/3}) = 2^n$, so that

$$\frac{\log 2}{\log 3} = \frac{\log 2^n}{\log 3^n} \le \frac{\log N_{\delta}(C_{1/3})}{|\log \delta|} \le \frac{\log 2^n}{\log 3^{n-1}} = \frac{n}{n-1} \cdot \frac{\log 2}{\log 3}$$

and, as $\delta \to 0$, $n \to \infty$ so that the dim_B $C_{1/3} = \frac{\log 2}{\log 3}$.

More generally, using the same technique, we may compute $\dim_B C_r = \frac{\log 2}{\log 1/r}$.

However, the box dimension has poor properties: for example, we may verify $\dim_B\{0, 1, 1/2, 1/3, \ldots\} = \frac{1}{2}$. In particular, the box dimension does not have countable stability (the box dimension of any singleton is 0). But this is very concerning from a measure theoretic perspective, since this is a countable set with larger "dimension" than some uncountable sets (e.g. C_r for small r).

- **1.11 Theorem.** The value of the various box dimensions are equal for all following definitions of $N_{\delta}(E)$:
 - 1. least number of open balls of radius δ that cover E
 - 2. least number of cubes of side length δ
 - 3. the number of δ -mesh cubes that intersect $E: [m_1\delta, (m_1+1)\delta] \times \cdots \times [m_n\delta, (m_n+1)\delta]$ for $(m_1, \dots, m_n) \in \mathbb{Z}^n$.
 - 4. the largest number of disjoint closed balls of radius δ with centers in E.

Proof Throughout, from the logarithms in the definition, it suffices to bound $N_{\delta}^{(i)}(E)$ with respect to $N_{\delta}(E)$ up to some constant factor either with respect to δ or with respect to N_{δ} .

- 1. Exercise.
- 2. Exercise.
- 3. In general, the diameter of a δ -cube in \mathbb{R}^n is $\sqrt{n}\delta$. Let $N_\delta^{(3)}(E)$ denote the number of δ -mesh cubes intersecting E. Then the cubes which intersect E cover E and these have diameter $\sqrt{n}\delta$, so $N_{\sqrt{n}\delta}(E) \leq N_\delta^{(3)}(E)$. Conversely, any set with diameter at most δ is contained in at most 3^n δ -mesh cubes. Thus $N_\delta^{(3)}(E) \leq 3^n N_\delta(E)$.
- 4. Let $N_{\delta}^{(4)}$ denote the largest number of disjoint balls of radius δ centred in E. Say $B_1,\ldots,B_{N_{\delta}^{(4)}(F)}$ are such balls. If $x\in F$, then $d(x,B_i)\leq \delta$ for some i, else $B(x,\delta)$ would be disjoint from all B_i , contradicting maximality. Thus the balls $B_1^1,\ldots,B_{N_{\delta}^{(4)}(E)}^1$ cover E and have diameter 4δ , so $N_{4\delta}(E)\leq N_{\delta}^{(4)}(E)$. Conversely, let $U_1,\ldots,U_{N_{\delta}(E)}$ be any collection of sets of diameter at most δ that cover E. Let B_1,\ldots,B_m be any disjoint balls with radius δ and centres $x_i\in E$. Since the U_j cover E, each $x_i\in U_{j(i)}$ for some j(i) so $U_{j(i)}\subseteq B_i$ and $U_{j(i)}\cap B_k=\emptyset$ for $k\neq i$. Thus $N_{\delta}(E)\geq N_{\delta}^{(4)}(E)$.

Note that, in the box dimension computation, it suffices to verify along a sequence of $(\delta_k)_{k=1}^{\infty} \to 0$ such that $\delta_{k+1} \ge c \cdot \delta_k$ for some c > 0 (i.e. not faster than exponentially).

1.12 Proposition. $\dim_H(E) \leq \underline{\dim}_R(E)$.

Proof Suppose we cover E by $N_{\delta}(E)$ sets of diameter at most δ . Then $\inf\{\sum |U_i|^s: \{U_i\}\delta$ -cover of $E\} \leq \delta^s N_{\delta}(E)$ so that $H^s_{\delta}(E) \leq \delta^s N_{\delta}(E)$. Suppose $s < \dim_H E$, so $H^s(E) > \lambda$ for some $\lambda > 0$. Then $\delta^s N_{\delta}(E) \geq \lambda$ so that $\frac{\log N_{\delta}(E)}{-\log \delta} \geq s + \frac{\log \lambda}{-\log \delta}$. Then as $\delta \to 0$, $\liminf \frac{\log N_{\delta}(E)}{-\log \delta} \geq s$. Thus $\dim_B E \geq \dim_H E$.

- 1.13 Proposition. (Properties of Box Dimension) (i) $\underline{\dim}_B E = \underline{\dim}_B \overline{E}$ and $\overline{\dim}_B E =$
 - (ii) $\dim_B E = n$ if E is dense in an open set in \mathbb{R}^n .
- (iii) $\dim_B(E \cup F) = \max(\dim_B E, \dim_B F)$. However, $\dim_B E \cup \dim_B F \ge \max\{\dim_B E, \dim_B F\}$ and the inequality can hold strictly.
- (iv) Box dimension is Lipschitz invariant.
- **1.14 Theorem.** (Mass Distribution Principle) Let μ be a finite Borel measure on F with $\mu(F) > 0$. Suppose there exists c > 0 and $\delta_0 > 0$ such that whenever $|U| \le \delta_0$, $\mu(U) \le c|U|^s$. Then $H^s(F) \ge \frac{\mu(F)}{c} > 0$.

Proof Let $\{U_i\}$ be a δ -cover of F with $\delta \leq \delta_0$. Then $\mu(F) \leq \mu(\bigcup_{i=1}^{\infty} U_i) \leq \sum_{i=1}^{\infty} \mu(U_i) \leq 1$ $c\sum_{i=1}^{\infty}|U_i|^s$. Thus $\inf\{\sum_{i=1}^{\infty}|U_i|^s:\{U_i\}\delta\text{-cover of }F\}\geq \frac{\mu(F)}{c}$ and let $\delta\to 0$.

Example. Let C(r) denote the Cantor set with contraction ratio r. Define $\mu(I_{\omega} \cap C) = r^{|\omega|}$, and extend to the uniform r-Cantor measure. We now apply the mass distribution principle. Let U be arbitrary with $r^{k+1} \leq |U| < r^k$. Then U cannot intersect 3 level k intervals (or *U* would have diameter greater than r^k). Thus $\mu(U) = \mu(U \cap C) \le c\mu(I_{\omega}) = 3^s...$ So $\dim_G(C_r) = \frac{\log 2}{|\log r|}$

- **1.15 Proposition.** Suppose μ is a finite Borel measure on \mathbb{R}^n and $F \subseteq \mathbb{R}^n$ is Borel. Let $0 < c < \infty$.
- $(i) \ \ If \ \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} \le c \ for \ all \ x \in F, \ then \ H^s(F) \ge \frac{\mu(F)}{c}$ $(ii) \ \ If \ \liminf_{r \to 0} \frac{\mu(B(x,r))}{r^s} \ge c \ for \ all \ x \in F, \ then \ \mathcal{P}^s(E) \le \frac{2^s \mu(F)}{c}.$ $(iii) \ \ If \ \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} \ge c \ for \ all \ x \in F, \ then \ H^s(F) \le \frac{10^s}{c} \mu(\mathbb{R}^n) < \infty.$ $(iv) \ \ If \ \liminf_{r \to 0} \frac{\mu(B(x,r))}{r^s} \le c \ for \ all \ x \in F, \ then \ \mathcal{P}^s(E) \ge \frac{10^s \mu(F)}{c}.$

(i) Fix $\epsilon > 0$. For each $\delta > 0$, let **Proof**

$$F_{\delta} = \{x \in X : \mu(B(x,r)) \le (c+\epsilon)r^{s} \text{ for all } 0 < r \le \delta\}.$$

By hypothesis, $F \subseteq \bigcup_{\delta > 0} F_{\delta}$; moreover, for $\delta_1 < \delta_2$, $F_{\delta_1} \supseteq F_{\delta_2}$. Fix some δ and take a δ -cover $\{U_i\}_{i=1}^{\infty}$ of $F \supseteq F_{\delta}$. If $x \in F_{\delta}$, since $|U_i| \le \delta$, $\mu(B(x, |U_i|)) \le$ $(c+\epsilon)|U_i|^s$. Moreover, since $U_i \subseteq B(x_i,|U_i|)$ for any $x_i \in U_i$, if $U_i \cap F_\delta \neq \emptyset$, take any $x_i \in U_i \cap F_\delta$ and $\mu(U_i) \le \mu(B(x_i, |U_i|)) \le (c + \epsilon)|U_i|^s$. Thus

$$\mu(F_{\delta}) \le \sum_{i:U_i \cap F_{\delta} \ne \emptyset} \mu(U_i) \le \sum_{i=1}^{\infty} (c + \epsilon) |U_i|^s$$

so that $\mu(F_{\delta}) \le (c + \epsilon)\mathcal{H}_{\delta}^{s}(F)$. Taking limits, we have $\mu(F) \le (c + \epsilon)\mathcal{H}^{s}(F)$; but $\epsilon > 0$ is arbitrary, so we are done.

(ii) For each $\delta > 0$, let

$$F_{\delta} = \{ x \in X : \mu(B(x, r)) \ge (c - \epsilon)r^s \text{ for all } 0 < r \le \delta \}.$$

By hypothesis, $F \subseteq \bigcup_{\delta>0} F_{\delta}$; moreover, for $\delta_1 < \delta_2$, $F_{\delta_1} \supseteq F_{\delta_2}$.

We first show that for any $\delta_0 \leq \delta$, $\mu(F) \geq \frac{(c-\epsilon)}{2^s} \mathcal{P}_{\delta_0}^s(F_{\delta})$. Fix a δ_0 -packing of F_{δ} , say $\{B_i\}_{i=1}^{\infty}$ where the $B_i = B(x_i, r_i)$ are disjoint, $r_i \leq \delta_0$, and $x_i \in F_{\delta}$. Then since the B_i are disjoint, we have

$$\mu(F) \ge \mu(F_{\delta}) \ge \sum_{i=1}^{\infty} \mu(B_i) \ge \sum_{i=1}^{\infty} (c - \epsilon) \frac{|B_i|^s}{2^s};$$

but this holds for any δ_0 -packing, so taking the supremum yields the inequality. In particular, we have as $\delta_0 \to 0$, $\mu(F) \ge \frac{(c-\epsilon)}{2^s} \mathcal{P}_0^s(F_\delta) \ge \frac{(c-\epsilon)}{2^s} \mathcal{P}^s(F_\delta)$. But this holds for any F_{δ} , and since \mathcal{P}^s is indeed a measure, we have $\mu(F) \geq \frac{(c-\epsilon)}{2^s} \mathcal{P}^s(F)$ as required.

(iii) Fix $\epsilon > 0$ and $\delta > 0$. Let $\mathcal{B} = \{B(x,r) : x \in F, 0 < r \le \delta, \mu(B(x,r)) \ge (c - \epsilon)r^s\}$. By assumption, $F \subseteq \bigcup_{B \in \mathcal{B}} B$. Use the Vitali covering lemma, so there exists disjoint balls $B_1, B_2, \ldots \in \mathcal{B}$ such that B_i' is the ball with the same centre and 5 times the radius, then $\bigcup_{i=1}^{\infty} B_i' \supseteq F$. Since diam B(x,r) = 2r, $|B_i'| \le 10r \le 10\delta$ so the $\{B_i'\}_{i=1}^{\infty}$ are a 10 δ -cover of *F*. Thus

$$H_{10\delta}^{s}(F) \leq \sum_{i=1}^{\infty} |B_{i}'|^{s} = \sum_{i=1}^{\infty} |B_{i}|^{s} 5^{s}$$

$$= \sum_{i=1}^{\infty} (2r_{i})^{s} 5^{s}$$

$$\leq 10^{s} \sum_{i=1}^{\infty} \frac{\mu(B_{i})}{c - \epsilon}$$

$$= \frac{10^{s}}{c - \epsilon} \mu \left(\bigcup_{i=1}^{\infty} B_{i} \right) \leq \frac{10^{s}}{c - \epsilon} \mu(\mathbb{R}^{n})$$

and taking $\delta \to 0$ and noting that $\epsilon > 0$ is arbitrary, we have $H^s(F) \ge \frac{10^s \mu(\mathbb{R}^n)}{c}$. (iv) Let $\{F_i\}_{i=1}^{\infty}$ be any cover of F. Since $\mathcal{P}_0(F_i') \le \mathcal{P}_0(F_i)$ when $F_i' \subseteq F_i$, we may assume $F_i \subseteq F$. It is enough to show that $\sum_{i=1}^{\infty} \mathcal{P}_0^s(F_i) \ge \frac{10^s}{c+\epsilon} \mu(F)$ for any fixed $\epsilon > 0$. Let $\delta > 0$ and let $\mathcal{B} = \{B(x,r) : x \in F_i, 0 < r \le \delta, \mu(B(x,r)) \le (c+\epsilon)r^s\}$ and let $\mathcal{C} = \{B(x,r) : x \in F_i, 0 < r \le \delta, \mu(B(x,r)) \le (c+\epsilon)r^s\}$ $\{B(x,r/5): B(x,r) \in \mathcal{B}.$ By assumption, $F_i \subseteq \bigcup_{B \in \mathcal{C}} C.$ By the Vitali covering theorem, there exists disjoint balls $\{B_i\}_{i=1}^{\infty} \subset \mathcal{C}$ with $B_i = B(x_i, r_i)$, such that $\bigcup_{i=1}^{\infty} B(x_i, 5r_i) \supseteq F_i$. Note that $B(x_i, 5r_i) \in \mathcal{B}$, so that

$$\mu(F_i) \le \sum_{i=1}^{\infty} \mu(B(x_i, 5r_i) \le \sum_{i=1}^{\infty} (c + \epsilon) 10^s |B_i|^s$$

where the B_i are disjoint with radius at most $\delta/5$ and thus $\frac{10^{-s}}{c+\epsilon}\mu(F_i) \leq \mathcal{P}^s_{\delta/5}(F_i)$. Then taking the limit as δ goes to zero gives $\frac{10^{-s}}{c+\epsilon}\mu(F_i) \leq \mathcal{P}_0^s(F_i)$. But then

$$\frac{10^s}{c+\epsilon}\mu(F) \le \sum_{i=1}^{\infty} \frac{10^s}{c+\epsilon}\mu(F_i) \le \sum_{i=1}^{\infty} \mathcal{P}_0^s(F_i)$$

but as above, the F_i are an arbitrary cover for F, and $\epsilon > 0$ was arbitrary, so that $\frac{10^s}{c}\mu(F) \leq \mathcal{P}^s(F).$

1.16 Proposition. Suppose F is Borel and $0 < H^s(F) < \infty$. Then there exists c and a compact $E \subseteq F$ such that $H^s(E) > 0$ and $H^s(B(x,r) \cap E) \le cr^s$ for all $x \in E$ and r > 0.

Proof Let

$$F_1 = \left\{ x : \limsup_{r \to 0} \frac{H^s(F \cap B(x, r))}{r^s} > 10^{s+1} \right\}$$

and apply (b) above with $\mu = H^s|_F$ so that

$$H^{s}(F_{1}) \le \frac{10^{s}}{10^{s+1}} \mu(\mathbb{R}^{n}) = \frac{1}{10} H^{s}(F).$$

In particular, $H^s(F \setminus F_1) \ge \frac{9}{10} H^s(F) > 0$. For all $x \in F \setminus F_1$, there exists $r_0(x)$ such that for all $r \le r_0$, then

$$\frac{H^s(F \cap B(x,r))}{r^s} \le 10 \cdot 10^{s+1} = 10^{s+2}.$$

Let

$$E_n = \left\{ x \in F \setminus F_1 : \frac{H^s(F \cap B(x, r))}{r^s} \le 10^{s+2} \text{ for all } r \le \frac{1}{n} \right\}$$

so that $\bigcup_{n=1}^{\infty} E_n = F \setminus F_1$. By continuity of measure, $H^s(E_n) \to H^s(F \setminus F_1) > 0$ so there exists N such that $H^s(E_N) > 0$. Since H^s is inner regular (TODO prove), get $E \subseteq E_N$ compact such that $H^s(E) > 0$. Then if $x \in E$, $x \in E_N$ so $H^s(E \cap B(x,r)) \le H^s(F \cap B(x,r)) \le 10^{s+2} r^s$ if $r \le 1/N$. For any r, $H^s(E \cap B(x,r)) \le H^s(F) = C_0$. If r > 1/N, then $C_0 \le C_0 N^s r^s$. Take $c = \max\{10^{s+2}, C_0 N^s\}$.

Remark. The assumption $H^s(F) < \infty$ can be removed when F is closed.

1.5 Potential-Theoretic Methods

Definition. For $s \ge 0$, the s-potential at x due to μ is

$$\phi_s(x) = \int_{\mathbb{R}^n} \frac{d\mu(y)}{\|x - y\|^s}$$

and the s-energy of μ

$$I_s(\mu) = \int_{\mathbb{R}^n} \phi_s d\mu = \int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{d\mu(x)d\mu(y)}{\|x - y\|^s}$$

Example. (i) If s = 0, then $\phi_0(x) = \mu(\mathbb{R}^n)$ and $I_0(\mu) = \mu(\mathbb{R}^n)^s < \infty$.

- (ii) If s > 0 and $\mu = \delta_0$, then $I_s(\delta_0) = \phi_s(0) = \infty$
- (iii) If n = 1 and $\mu = m|_{[0,1]}$, s < 1. Then $I_s(\mu) = \int_0^1 \int_0^1 \frac{dxdy}{|x-y|^s} < \infty$.
 - **1.17 Theorem.** Let F be a closed set, s > 0.
 - (i) If there exists a finite, non-zero measure μ supported on F such that $I_s(\mu) < \infty$, then $H^s(F) = \infty$ implies that $\dim_H F \ge s$.
 - (ii) If $H^s(F) > 0$, then there exists a finite non-zero measure μ on F such that $I_t(\mu) < \infty$ for all t < s.

Proof (i) Suppose $I_s(\mu) < \infty$ for μ a finite measure on F. We will show that $\limsup_{r\to 0} \frac{\mu(B(x,r))}{r^s} = 0$ for μ a.e. $x \in F$. Assuming this, then $H^s(F) \ge \frac{\mu(F \setminus N)}{\epsilon}$ for some μ -null N, but this holds for any $\epsilon > 0$, so $H^s(F) = \infty$.

Let $F_1 = \{x \in F : \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} > 0\}$. We want to show that $\mu(F_1) = 0$. We first show that $\phi_s(\mu) = \infty$ on F_1 . If $x \in F_1$, then there exists $\epsilon > 0$ and $\{r_i\}_{i=1}^\infty$ converging to 0 such that $(B(x,r_i)) \ge \epsilon r_i^s$. Since $I_s(\mu) < \infty$ for some s > 0, μ is not atomic so by downward continuity of meaure, $\mu(B(x,q)) \to \mu(\{x\}) = 0$ as $q \to 0$. Thus get q_i such that $\mu(B(x,q_i)) < \frac{\epsilon}{2} r_i^s$. Let $A_i = B(x,r_i) \setminus B(x,q_i)$, so that $\mu(A_i) \ge \frac{\epsilon}{2} r_i^s$. Relabelling the r_i if necessary, we may assume that $r_{i+1} < q_i$ so that the annuli are disjoint and nested. In particular,

$$\phi_{s}(x) = \int_{\mathbb{R}^{n}} \frac{d\mu(y)}{\|x - y\|^{s}}$$

$$\geq \sum_{i=1}^{\infty} \int_{A_{i}} \frac{d\mu(y)}{\|x - y\|^{s}}$$

$$\geq \sum_{i=1}^{\infty} \frac{1}{\max_{y \in A_{i}} \|x - y\|^{s}} \mu(A_{i})$$

$$\geq \sum_{i=1}^{\infty} \frac{1}{r_{i}^{s}} \mu(A_{i}) \geq \sum_{i=1}^{\infty} \frac{1}{r_{i}^{s}} \cdot \frac{\epsilon}{2} r_{i}^{s} = \infty$$

But now,

$$\infty > I_s(\mu) = \int_{\mathbb{R}^n} \phi_s d\mu \ge \int_{F_1} \phi_s d\mu$$

so if $\phi_s = +\infty$ on F_1 , then $\mu(F_1) = 0$.

(ii) Suppose $H^s(F) > 0$. By the previous proposition, there exists sompact $E \subseteq F$ with $0 < H^s(E) < \infty$ and $H^s(E \cap B(x,r)) \le cr^s$ for all $x \in E$ and r > 0. Put $\mu = H^s|_E$. Then $\mu(B(x,r)) \le cr^s$ for all $x \in E$. For $x \in E$,

$$\phi_i(x) = \int_{\|x-y\| \le 1} \frac{d\mu(y)}{\|x-y^t\|} + \int_{\|x-y\| > 1} \frac{d\mu(y)}{\|x-y\|^t}.$$

Certainly the second integral is finite independent of *x*. The first integral is finite since

$$\int_{\|x-y\| \le 1} \frac{d\mu(y)}{\|x-y^t\|} = \sum_{k=0}^{\infty} \int_{B(x,2^{-k}) \setminus B(x,2^{-(k+1)})} \frac{d\mu(y)}{\|x-y\|^t}$$

$$\le \sum_{k=0}^{\infty} \frac{1}{2^{-(k+1)t}} \mu(B(x,2^{-k}))$$

$$\le \sum_{k=0}^{\infty} \frac{c}{2^{-(k+1)t}} \cdot 2^{-ks} < \infty$$

since s > t. Again, this bound does not depend on x. Thus ϕ_t is a bounded function on E, so that $I_t(\mu) < \infty$.

"can't have both the measure and it's fourier transform small"

Suppose f is integrable on \mathbb{R}^n or $\mu \in M(\mathbb{R}^n)$ is a complex measure. We then define the **fourier transform**

$$\hat{f}(z) = \int_{\mathbb{R}^n} f(x)e^{-ix\cdot z} \, \mathrm{d}m(x)$$

$$\hat{\mu}(z) = \int_{\mathbb{R}^n} e^{-ix\cdot z} \, \mathrm{d}\mu(x)$$

If $f, g \in L^1$, then $f * g \in L^1$ by

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y) \, dy$$
$$f * \mu(x) = \int_{\mathbb{R}^n} f(x - y) \, d\mu(y)$$

By Fubini, $\|f * g\|_1 \le \|f\|_1 \|g\|_1$ and $\|f * \mu\| \le \|f\|_1 \|\mu\|_{M(\mathbb{R}^n)}$. One reason for doing this is that L^1 is not closed under pointwise multiplication. Importantly, we have

$$(f * g)(z) = \hat{f}(z)\hat{g}(z)$$
$$(f * \mu)(z) = \hat{f}(z)\hat{\mu}(z)$$

in other words that the fourier transform converts convolution to multiplication.

Now consider $g_s(t) = ||t||^{-s}$. Then

$$\phi_s(x) = \int_{\mathbb{R}^n} \frac{\mathrm{d}\mu(y)}{\|x - y\|^s} = \int_{\mathbb{R}^n} g_s(x - y) \,\mathrm{d}\mu(y) = g_s * \mu(x)$$

It is known that $\hat{g}_s(z) = c(n,s)||z||^{s-n}$ for 0 < s < n. In particular, $\hat{\phi}_s(z) = \hat{g}_s(z)\hat{\mu}(z) = c(n,s)||z||^{s-n}\hat{\mu}(z)$.

1.18 Theorem. (Parseval) We have

$$\int f \cdot \overline{g} \, \mathrm{d}x = (2\pi)^n \int \hat{f} \cdot \overline{\hat{g}} \, \mathrm{d}z$$

for $f,g \in L^2$ and thus $\int |f|^2 = (2\pi)^n \int |\hat{f}|^2$. When g is "nice",

$$\int g(x) d\mu(x) = (2\pi)^n \int \hat{g}(z) \overline{\hat{\mu}(z)} dz$$

In particular (with some technicalities ...)

$$I_s(\mu) = \int \phi_s(x) \, d\mu(x) = c_n \int \hat{\phi}_s(z) \overline{\hat{\mu}(z)} \, dz$$
$$= c'_n \int ||z||^{s-n} |\hat{\mu}(z)|^2 \, dz$$

Example. If $|\hat{\mu}(z)| \le C ||z||^{-t/z}$, then dim_H supp $\mu \ge t$.

PROOF We have since $\hat{\mu}(z)$ is bounded that

$$\begin{split} I_s(\mu) &= c \int ||z||^{s-n} |\hat{\mu}(z)|^2 \, \mathrm{d}z \\ &= c \left(\int_{||z|| \le 1} ||z||^{s-n} |\hat{\mu}(z)|^2 \, \mathrm{d}z + \int_{||z|| > 1} ||z||^{s-n} |\hat{\mu}(z)|^2 \, \mathrm{d}z \right) \\ &\le c \left(\int_{||z|| \le 1} C_0 \, ||z||^{s-n} \, \mathrm{d}z + \int_{||z|| \ge 1} ||z||^{s-n} \, ||z||^{-t} \, \mathrm{d}z \right) \\ &= c \left(c_1 \int_0^1 r^{s-n} r^{n-1} \, \mathrm{d}r + \int_1^\infty t^{s-t-1} \, \mathrm{d}r \right) < \infty \end{split}$$

as s < t. Thus $I_s(\mu) < \infty$ for any 0 < s < t, and apply the energy theorem.

1.6 Projections of Fractals

Let $F \subset \mathbb{R}^2$ be a region and consider the (orthogonal) projection onto some line through the origin. Write $\operatorname{proj}_{\theta}(f)$ to denote the projection onto the line L_{θ} . Note that $d(\operatorname{proj}_{\theta}(x),\operatorname{proj}_{\theta}(y)) \leq d_{\mathbb{R}^2}(x,y)$ so $\operatorname{proj}_{\theta}$ is Lipschitz and $\dim_H \operatorname{proj}_{\theta} F \leq \min\{1,\dim_H F\}$.

If L is a line segment, then for all values of θ (except for 2), then the projection has maximal dimension.

- **1.19 Theorem.** Let $F \subseteq \mathbb{R}^2$ be closed.
 - (i) If $\dim_H F \leq 1$, then $\dim_H \operatorname{proj}_{\theta} F = \dim_H F$ for a.e. θ .
 - (ii) If $\dim_H F > 1$, then $m(\operatorname{proj}_{\theta} F) > 0$ for a.e. θ .

PROOF (i) Choose $0 < s < \dim_H F$, so $H^s(F) > 0$. Thus there exists some μ on F such that $I_s(\mu) < \infty$. Write $x.\theta$ to denote the projection of x onto the line L_θ . Then define μ_θ on $\operatorname{proj}_\theta F$ by

$$\int_{-\infty}^{\infty} f(t) \, \mathrm{d}\mu_{\theta}(t) = \int f(x.\theta) \, \mathrm{d}\mu(x)$$

for all $f \in C_c(\mathbb{R})$ (Radon-Markov). Note that $\mu_{\theta}(S) = \mu(\operatorname{proj}_{\theta}^{-1}(S))$. We will show that $\int_0^{\pi} I_s(\mu_{\theta}) d\theta < \infty$, so that $I_s(\mu_{\theta}) < \infty$ for a.e. θ and we will be done.

We have since $|x.\theta - y.\theta| = ||x - y|| \cos(\theta - (x - y))$.

$$\begin{split} \int_0^\pi I_s(\mu_\theta) \, \mathrm{d}\theta &= \int_0^\pi \int_F \int_F \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{|x.\theta - y.\theta|^s} \\ &= \int_0^\pi \int_F \int_F \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{\left\|x - y\right\|^s |\cos(\theta - (x - y))|^s} \\ &= \int_F \int_F \left(\int_0^\pi \frac{\mathrm{d}\theta}{|\cos(\theta - (x - y))|^s}\right) \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{\left\|x - y\right\|^s} \\ &= \int_{F \times F} \left(\int_0^\pi \frac{\mathrm{d}\theta}{|\cos\theta|^s}\right) \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{\left\|x - y\right\|^s} \end{split}$$

Note that $\int_0^{\pi} \frac{d\theta}{|\cos\theta|^s} < \infty$, but the remaining term is just the *s*-energy of μ , which is finite.

(ii) Assume $\dim_H F > 1$, so there exists some t > 1 such that $H^t(F) > 0$. Get μ on F such that $I_1(\mu) < \infty$. Define μ_{θ} as above. We will show that μ_{θ} is absolutely continuous with density in L^2 for almost every θ . Then $f_{\theta} \neq 0$ in L^2 since $\mu_{\theta} \neq 0$ so that $m\{x: f_{\theta}(x) \neq 0\} > 0$ where $\{x: f_{\theta}(x) \neq 0\} \subseteq \text{supp } \mu_{\theta}$. Recall that $f \in L^2$ if and only if $\hat{f} \in L^2$. We have

$$|\hat{\mu_{\theta}}(z)|^{2} = \int e^{-ivz} d\mu_{\theta}(v) \overline{\int e^{-izw} d\mu_{\theta}(w)}$$

$$= \int_{\mathbb{R} \times \mathbb{R}} e^{-iz(v-w)} d\mu_{\theta}(v) d\mu_{\theta}(w)$$

$$= \int_{F \times F} e^{-iz(x-y).\theta} d\mu(x) d\mu(y)$$

so that

$$|\hat{\mu_{\theta}}(z)|^{2} + |\hat{\mu_{\theta+\pi}}(z)|^{2} = \int_{F \times F} \left(e^{-iz(x-y).\theta} + e^{-iz(x-y).(-\theta)} \right) d\mu(x) d\mu(y)$$

$$= 2 \int_{F \times F} \cos(z(x-y).\theta) d\mu(x) d\mu(y)$$

First note that

$$\int_{0}^{2\pi} |\hat{\mu}_{\theta}(z)|^{2} d\theta = \int_{0}^{\pi} |\hat{\mu}_{\theta}(z)|^{2} + |\hat{\mu}_{\theta+\pi}(z)|^{2} d\theta$$

$$= 2 \int_{0}^{\pi} \int_{f} \int_{F} \cos(z(x-y).\theta) d\mu(x) d\mu(y) d\theta$$

$$= 2 \int_{0}^{\pi} \int_{f} \int_{F} \cos(z||x-y|| \cos(\theta-(x-y))) d\mu(x) d\mu(y) d\theta$$

$$= \int_{F} \int_{F} \left(\int_{0}^{2\pi} \cos(z||x-y|| \cos(\theta)) d\theta \right) d\mu(x) d\mu(y)$$

$$= 2\pi \int_{F} \int_{F} \int_{F} J_{0}(z||x-y||) d\mu(x) d\mu(y).$$

We now have (concealing some technicalities in verifying the application of Fubini)

$$\begin{split} \int_{0}^{2\pi} \int_{-\infty}^{\infty} |\hat{\mu_{\theta}}(z)|^{2} \, \mathrm{d}z \, \mathrm{d}\theta < \infty &= \int_{-\infty}^{\infty} \int_{0}^{2\pi} |\hat{\mu_{\theta}}(z)|^{2} \, \mathrm{d}z \, \mathrm{d}\theta < \infty \\ &= 2\pi \int_{-\infty}^{\infty} \int_{F} \int_{F} J_{0}(z \, \big\| x - y \, \big\|) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \\ &= 2\pi \int_{F} \int_{F} \left(\int_{-\infty}^{\infty} J_{0}(z \, \big\| x - y \, \big\|) \, \mathrm{d}z \right) \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \\ &= 2\pi \int_{F} \int_{F} \left(\int_{-\infty}^{\infty} J_{0}(w) \, \mathrm{d}w \right) \frac{\mathrm{d}\mu(x) \, \mathrm{d}\mu(y)}{\|x - y\|} < \infty \end{split}$$

by the integral of the Bessel function and the fact that $I_1(\mu) < \infty$.

Bessel function: $J_0(\mu) = \frac{1}{2\pi} \int_0^{2\pi} \cos(u \cos \theta) d\theta$.

2 ITERATED FUNCTION SYSTEMS

2.1 Invariant Sets and Measures

Let X be a complete metric space and F_1, \ldots, F_m a family of contractions from X to X (i.e. functions with $0 < r_i < 1$ with $d(F_i(x), F_i(y)) \le r_i d(x, y)$). Then there exists $E \subseteq X$ with E compact such that $E = \bigcup_{i=1}^n F_i(E)$.

Let $\mathcal{K}(X)$ denote the set of non-empty compact subsets of X. For $A \subseteq X$, let $A_r = \{y \in X : d(a,y) < r \text{ for some } a \in A\}$. We then define the **Hausdorff metric** on $\mathcal{K}(X)$ as follows:

$$D(A, B) = \inf\{r > 0 : A \subseteq B_r, B \subseteq A_r\}$$

2.1 Proposition. D, as defined above, is in fact a metric and when X is complete, K(X) is also complete.

PROOF We verify the properties for D to be a metric:

- (i) Suppose D(A, B) = 0. Then get a sequence a_n in A converging to any $b \in B$, i.e. $b \in \overline{A} = A$ and $B \subseteq A$. Similarly, $B \subseteq A$.
- (ii) D(A,B) = D(B,A) is clear
- (iii) Fix $A, B, C \in \mathcal{K}(X)$, $d_1 = D(A, C)$, $d_2 = D(C, B)$. Fix $\epsilon > 0$ and let $a \in A$ be arbitrary. Get $c \in C$ so that $D(a, c) < d_1 + \epsilon/2$. Then get $b \in B$ so that $D(c, b) < d_2 + \epsilon/2$. Thus $d(a, b) < d_1 + d_2 + \epsilon$ so $A \subseteq B_{d_1 + d_2 + \epsilon}$ for all $\epsilon > 0$. Similarly, $B \subseteq A_{d_1 + d_2 + \epsilon}$. Thus $D(A, B) \le d_1 + d_2$.

Completeness is left as an exercise.

2.2 Theorem. Let $\{F_1, \ldots, F_m\}$ be an IFS on X. Then there exists a unique compact set $E \subseteq X$ such that $E = \bigcup_{i=1}^m F_i(E)$.

PROOF Define $F: \mathcal{K}(X) \to \mathcal{K}(X)$ by $F(A) = \bigcup_{i=1}^m F_i(A)$. Let $r = \max\{r_1, \dots, r_m\} < 1$. We will show that $D(F(A), F(B)) \leq rD(A, B)$. Set d = D(A, B); it suffices to show that $F_i(A) \subseteq (F_i(B))_{r(d+\epsilon)}$ for any $\epsilon > 0$. Indeed, take $a \in A$, so there exists $b \in B$ so that $d(a,b) \leq d+\epsilon$. Then $d(F_i(a), F_i(b)) \leq r(d+\epsilon)$.

Then *F* is a contraction map on $\mathcal{K}(X)$, so that $F^{(k)}(A) \to E$ for some unique *E*.

If $F_i(A) \subseteq A$, then $E = \bigcap_{k=0}^{\infty} F^{(k)}(A)$.

2.3 Lemma. If $(A_k)_{k=1}^{\infty} \subset \mathcal{K}(X)$ with $A_1 \supseteq A_2 \supseteq \cdots$, then $A_k \to \bigcap_{i=1}^{\infty} A_i$.

PROOF Let $A_0 = \bigcap_{k=1}^{\infty} A_k$. We want to prove that $D(A_{k_1}, A_0) \to 0$. Certainly $A_0 \subseteq A_k$. Conversely, we must check that for any r > 0, there exists n_r such that $A_k \subseteq (A_0)_r$. Note that $(A_0)_r$ is an open set. Then $\{(A_0)_r, A_n^c : n \in \mathbb{N}\}$ is an open cover for A_1 . Hence there exists a finite subcover $(A_0)_r, A_{n_1}^c, \ldots, A_{n_N}^c$. Thus for any $k > \max\{n_1, \ldots, n_N\}$, $A_k \subseteq (A_0)_r$, as required.

2.4 Theorem. Let $X \subseteq \mathbb{R}^n$ be compact and let $\{F_i\}_{i=1}^m$ be an IFS on X with attractor E. Assume we are given probabilities $\{p_i\}_{i=1}^m$ such that $\sum_{i=1}^m p_i = 1$. Then there exists a unique Borel probability measure μ such that

$$\mu(A) = \sum_{i=1}^{m} p_i \mu(F_i^{-1}(A))$$

for all Borel sets A. Moreover,

- (i) $\int g \, \mathrm{d}\mu = \sum_{i=1}^m p_i \int g(F_i(x)) \, \mathrm{d}\mu(x)$
- (ii) $supp(\mu) = E$
- (iii) If the IFS satisfies the strong separation condition, then $\mu(E_{\sigma}) = p_{\sigma}$.

Remark. In the case of an IFS of similarities, μ is called a **self-similar measure**.

PROOF Let $M_1(X)$ denote the set of all Borel probability measures on X. Define a metric on M(X) by

$$d(\mu,\nu) = \sup \left\{ \left| \int g \, \mathrm{d}\mu - \int g \, \mathrm{d}\nu \right| : |g(x) - g(y)| \le \|x - y\| \right\}.$$

Step 1: verify that this in fact a metric which makes M(X) a complete metric space. [TODO: Falconer Techniques Proposition 1.9]

Step 2: Define $H: M(X) \to M(X)$ where $H(v) = H_v$ is the measure that satisfies

$$H_{\nu}(A) = \sum_{i=1}^{m} p_i \nu(F_i^{-1}(A))$$

for all A Borel. Verify that H_{ν} is a Borel probability measure. We have

$$H_{\nu}(A) = \int \mathbf{1}A \, \mathrm{d}H_{\nu} = \sum_{i=1}^{m} p_i \int \mathbf{1}F_i^{-1}(A) \, \mathrm{d}\nu$$
$$= \sum_{i=1}^{m} p_i \int \mathbf{1}A(F_i(x)) \, \mathrm{d}\nu(x)$$

and extending by density of simple functions in L^1 , we have

$$\int g \, dH_{\nu} = \sum_{i=1}^{m} p_{i} \int g(F_{i}(x)) \, d\nu(x)$$

Step 3: Check that H_{ν} is a contraction. We have

$$\begin{split} d(H_{\mu}, H_{\nu}) &= \sup \left\{ \left| \int_{\mathcal{S}} \mathrm{d}H_{\mu} - \int_{G} \mathrm{d}H_{\nu} \right| : \mathrm{Lip}(g) \leq 1 \right\} \\ &= \sup_{\mathrm{Lip}(g) \leq 1} \left| \sum_{i=1}^{m} \left(\int g(F_{i}(x)) \, \mathrm{d}\mu(x) - \int g(F_{i}(x)) \, \mathrm{d}\nu(x) \right) \right| \\ &\leq \sup_{\mathrm{Lip}(g) \leq 1} \sum_{i=1}^{m} p_{i} r_{i} \left| \int r_{i}^{-1} g(F_{i}(x)) \, \mathrm{d}(\mu - \nu)(x) \right| \end{split}$$

where r_i is the contraction factor of F_i . Moreover, notice that

$$\left| r_i^{-1} g(F_i(x)) - r_i^{-1} g(F_i(y)) \right| \le r_i^{-1} \left\| F_i(x) - F_i(y) \right\|$$

$$\le \left\| x - y \right\|$$

so that $r_i^{-1}g \circ F_i$ is Lipschitz with constant at most 1. Thus

$$d(\mu,\nu) \ge \left| \int r_i^{-1} g \circ F_i d(\mu - \nu)(x) \right|$$

so that

$$d(H_{\mu}, H_{\nu}) \le \sum_{i=1}^{m} p_i r_i d(\mu, \nu) \le \max\{r_i : i = 1, ..., m\} d(\mu, \nu)$$

and thus *H* is in fact a contraction map.

Step 4: By the Banach contraction mapping principle, there exists a unique fixed point $\mu \in M_1(X)$. But then

$$\mu(A) = H(\mu)(A) = \sum_{i=1}^{m} p_i \mu(F_i^{-1}(A))$$

for any Borel A.

It remains to show the properties.

- (i) Set $S = \operatorname{supp}(\mu)$. Then $1 = \mu(S) = \sum_{i=1}^{m} p_i \mu(F_i^{-1}(S))$ which forces $\mu(F_i^{-1}(S)) = 1$. Thus $F_i^{-1}(S) \supseteq S$ since they are of full measure, so $S \supseteq F_i(S)$. If $\mu(A) > 0$, then $\sum_{i=1}^{m} p_i \mu(F_i^{-1}(A)) > 0$, so there exists i such that $F_i^{-1}(A) \cap S \neq \emptyset$. Thus $A \cap F_i(S) \neq \emptyset$. But $S \setminus \left(\bigcup_{i=1}^{m} F_i(S)\right) \cap F_j(S) = \emptyset$ for all j, so that $\mu(S \setminus \bigcup_{i=1}^{m} F_i(S)) = 0$ and thus $\mu(S) = 1$. Thus $S = \bigcup_{i=1}^{m} F_i(S)$ so that S = E.
- (ii) Assume the SSC. Then

$$\mu(E_{\sigma}) = \sum_{i=1}^{m} p_{i} \mu(F_{i}^{-1}(E_{\sigma}))$$

$$\geq p_{\sigma_{1}} \mu(E_{\sigma_{2}...\sigma_{k}})$$

$$= p_{\sigma_{1}} \left(\sum_{i=1}^{m} p_{i} \mu(F_{i}^{-1}(E_{\sigma_{2}...\sigma_{k}})) \right)$$

$$\geq \cdots \geq p_{\sigma}$$

On the other hand, since $E = \bigcup_{\sigma \in \Sigma^k} E_{\sigma}$ disjointly,

$$1 = \mu(E) = \sum_{\sigma \in \Sigma^k} \mu(E_{\sigma})$$

$$\geq \sum_{\sigma \in \Sigma^k} p_{\sigma} = \left(\sum_{i=1}^m p_i\right)^k = 1$$

Definition. If the attractor E of an IFS $\{F_1, \ldots, F_m\}$ has the property that the sets $F_i(E)$ are disjoint, we say E satisfies the **strong separation condition**. We say that the IFS satisfies the **open set condition** if there exists a non-empty bounded open V such that $\bigcup_{i=1}^m F_i(U) \subseteq U$.

The strong separation condition implies the open set condition by taking, say, $U = \{x : d(x, E) < \epsilon\}$ where $\epsilon = \frac{1}{2} \min_{i \neq j} (d(F_i(E), F_j(E))) > 0$.

2.2 Dimensional Properties of the Attractor

2.5 Theorem. Let F be the attractor of the IFS $\{F_i\}_{i=1}^m$ with contraction factors $\{r_1, \ldots, r_m\}$. If the IFS satisfies the SSC, then $\dim_H E = s$ where $\sum_{i=1}^m r_i^s = 1$. Moreover, $0 < H^s(E) < \infty$.

PROOF Write $A_{\sigma} = F_{\sigma}(A)$ for each $\sigma \in \Sigma^* = \{1, ..., m\}^*$. Fix $\delta > 0$ and pick k such that $r^k |E| < \delta$. Then the sets $\{E_{\sigma} : \sigma \in \Sigma^k\}$ is a δ -cover of E. Then

$$H_{\delta}^{s}(E) \leq \sum_{\sigma \in \Sigma^{k}} |E_{\sigma}|^{s} = \left(\sum_{\sigma \in \Sigma^{k}} r_{\sigma}^{s}\right) |E|^{s}$$
$$= \left(\sum_{i=1}^{m} r_{j}^{s}\right)^{k} |E|^{s} = |E|^{s}$$

so that $H^s(E) \leq |E|^s < \infty$.

To get a lower bound, intending to use the mass distribution principle, we will construct a measure μ on E such that $\mu(U) \le c|U|^s$ for all open E. Define a measure μ on E by the rule $\mu(E_\sigma) = r_\sigma^s$. Using the subdivision method, one may verify that this is in fact a measure. But then $E_\sigma = \bigcup_{j=1}^m E_{\sigma j}$, so

$$\sum_{j} \mu(E_{\sigma j}) = \sum_{j} (r_{\sigma j})^{s} = r_{\sigma}^{s} \sum_{j} r_{j}^{s} = r_{\sigma}^{s} = \mu(E_{\sigma}).$$

Now consider B(x,r) where $x \in E$. Let $r < d = \min_{i \neq j} d(F_i(E), F_j(E)) > 0$, and get $k \in \mathbb{N}$ such that $r_{\sigma} \cdot d \le r < r_{\sigma} - d$ for $\sigma \in \Sigma^k$. Suppose $\sigma \ne \sigma'$ with $\sigma, \sigma' \in \Sigma^k$, and let j be maximal such that $\sigma|j = \sigma'|j$. Then

$$d(F_{\sigma|j}\circ F_{\sigma'_{j+1}}(E),F_{\sigma|j}\circ F_{\sigma_{j+1}}(E))=r_{\sigma|j}\cdot d\geq r_{\sigma|k-1}\cdot d>r$$

so that $d(E_{\sigma'}, E_{\sigma}) > r$. If $y \in B(x, r) \cap E$, then $y \in E_{\sigma}$ so $B(x, r) \cap E \subseteq E_{\sigma}$. Thus $\mu(B(x, r) \cap E) \le \mu(E_{\sigma}) = r_{\sigma}^{s} \le \frac{r^{s}}{d^{s}} = c(\operatorname{diam} B(x, r))^{s}$.

But given any U such that $U \cap E \neq \emptyset$, we may take $U \subset B(x,|U|)$ for any choice of $x \in E \cap U$.

2.6 Theorem. Suppose E is a compact, non-empty subset of X and let $a, r_0 > 0$. Suppose for all closed balls B with centre in E and radius $r < r_0$, there exists a contraction map $g: E \to E \cap B$ such that $d(g(x), g(y)) \ge ar \cdot d(x, y)$ for all $x, y \in E$. Then if $s = \dim_H E$, then $H^s(E) \le 4^s a^{-s} < \infty$ and $\dim_B(E) = \dim_B(E) = s$.

Example. Let *E* denote the Cantor set under the IFS $\{S_1, S_2\}$, and let *B* be the Cantor interval C_{σ} . Then diam(*B*) = r_{σ} , and $g : E \to E \cap B$ is the map S_{σ} . Then $d(g(x), g(y)) = r_{\sigma} d(x, y)$.

PROOF Let $N_r(E)$ denote the maximum number of disjoint closed balls of radius r with centers in E. Assume for contradiction there exists $r < \min\{a^{-1}, r_0\}$ with $N_r(E) > a^{-s}r^{-s}$.

Get some r > s such that $N_r(E) > a^{-t}r^{-t}$, so we may get m disjoint closed balls B_1, \ldots, B_m with centres in E of radius r, and each of them gives rise to a map $g_i : E \to E \cap B_i$ such that $d(g_i(x), g_i(y)) \ge ard(x, y)$ for all x, y in E. Set $d_0 = \min_{i \ne j} d(B_i \cap E, B_j \cap E) > 0$. But then

$$d(g_{i_1} \circ \dots \circ g_{i_k}(x), g_{j_1} \circ \dots \circ g_{j_k}(y)) \ge (ar)^{q-1} d(g_{i_q} \circ \dots \circ g_{i_k}(x), g_{j_q} \circ g_{j_k}(y))$$

$$\ge (ar)^{q-1} d_0 \ge (ar)^k d_0 > 0.$$

On the other hand, diam $E_{\sigma} \leq (\max \text{ contraction factor})^k |E|$ which converges to 0 as k goes to infinity.

Intending to use the mass distribution principle, define a measure on μ by $\mu(E_{i_1...i_k}) = m^{-k}$ using the subdivision method. Take $U \cap E \neq \emptyset$ and diam $U < d_0$. Pick k such that $(ar)^{k+1}d_0 \leq |U| < (ar)^kd_0$. Then

$$\mu(U) \le \mu(E_{i_1...i_k}) = m^{-k} \le (ar)^{rk} \le |U|^t \frac{(ar)^t}{d_0}$$

and by the mass distribution principle, $\dim_H(E) \ge t > s$, a contradiction.

Therefore $N - r(E) \le a^{-s} r^{-s}$ for all small r. We may now compute

$$\overline{\dim}_B E = \limsup_{r \to 0} \frac{\log N_r(E)}{|\log r|} \le \limsup_{r \to 0} \frac{\log a^{-s} r^{-s}}{\log r^{-1}} = s$$

so that $\overline{\dim}_B E \ge \underline{\dim}_B E \ge \dim_H E = s$. In particular, $\mathcal{H}_{2r}^s(E)$ is bounded above by the sum of the covering balls of radius 2r, so $\mathcal{H}_{2r}^s(E) \le 4^s a^{-s}$.

2.7 Corollary. Let E be the attractor of similarities $\{F_i\}_{i=1}^m$. If $s = \dim_H E$, then $\mathcal{H}^s(E) < \infty$ and $\dim_B E = s$.

PROOF We need to produce continuous $g: E \to E \cap B$ for any ball B with radius r centred at $x \in E$. For $x \in E$ with r < |E|, there exists some infinite sequence (i_1, i_2, \ldots) representing x. Choose k so that $r_{i_1} \cdots r_{i_k} |E| \le r < r_{i_1} \cdots r_{i_{k-1}} |E|$. In particular,

$$r \cdot r_{\min} < r_{i_1} \cdots r_{i_k} |E|$$

so that $E_{i_1...i_k} \subseteq B(x,r)$. Now define $g: E \to E \cap B(x,r)$ by $g = F_{i_1} \circ \cdots \circ F_{i_k}$ has image contained in $E \cap B(x,r)$, and

$$d(g(x), g(y)) = r_{i_1} \cdots r_{i_k} d(x, y) \ge r \cdot r_{\min} |E|^{-1} d(x, y).$$

Take $a = r_{\min}|E|^{-1}$ and apply the previous theorem.

In fact, more is true in the strong separation case. Given 0 < r < |E|, let $\Lambda_r = \{\sigma \in \Sigma^k : r_\sigma \le r < r_{\sigma^-}\}$. Given $x \in E$, let $\Lambda_r(x) = \{\sigma \in \Lambda_r : B(x,r) \cap F_\sigma(E) \ne \emptyset\}$. Choose some $\sigma \in \Lambda_r(x)$ with maximal length. Pick some index i such that if $\lambda \in \Lambda_r(x)$, then $\lambda = (\sigma_1 \dots, \sigma_i, \lambda_{i+1}, \dots, \Lambda_N)$. But then

$$2r \ge d(F_{\sigma}(E), F_{\lambda}(E)) = r_{\sigma_1} \cdots r_{\sigma_k} d(F_{\sigma_{i+1}} \circ \cdots \circ F_{\sigma_L}(E), F_{\lambda_{i+1}} \circ \cdots \circ F_{\lambda_N})$$

$$\ge r_{\sigma_1} \cdots r_{\sigma_i} d_0$$

so that $2r \ge r_{\sigma_1} \cdots r_{\sigma_i} d_0$. But then combining the above inequalities, we have

$$r_{\sigma_1} \cdots r_{\sigma_i} \cdot r_{\sigma_{i+1}} \cdots r_{\sigma_{L-1}} > r \ge r_{\sigma_1} \cdots r_{\sigma_i} \frac{d_0}{2}$$

so there exists some C such that $L - i \le C$. Thus $|\Lambda_r(x)| \le m^C$ is a universal constant. **Definition.** We say that the IFS has the **weak separation condition** if there exists C suth that $|\Lambda_r(x)| \le C$.

2.8 Corollary. If E is a self-similar set from an IFS that has the WSC, then $\mathcal{H}^s(E) > 0$ for $s = \dim_H(E)$.

PROOF It is enough to check the setup of the assignment question. Let $N \subseteq E$ with |N| = r, $x \in E$. Then $B(x, r) \supseteq N$. Check that $E = \bigcup_{\sigma \in \Lambda_r} F_{\sigma}(E)$, so

$$B(x,r) \cap E \subseteq \bigcup_{\sigma \in \Lambda_r(x)} F_{\sigma}(E) = \bigcup_{j=1}^m N_j.$$

Let $m = \max_{r,x} \Lambda_r(x)$. Let $g_i = F_{\sigma}^{-1} : F_{\sigma}(E) \to E$, so that

$$d(g_{j}(z), g_{j}(y)) = d(F_{\sigma}^{-1}(z), F_{\sigma}^{-1}(y)) = r_{\sigma}^{-1}d(z, y)$$
$$= r_{\sigma}^{-1}d(z, y) \ge r^{-1}d(z, y)$$
$$= |N|^{-1}d(z, y)$$

for all z, y in E. By the homework, we have $\mathcal{H}^s(E) \ge m^{-1} > 0$.

2.9 Proposition. If E is the self-similar set from an IFS satisfying the weak separation condition, then there exists a, b > 0 such that

$$ar^s \le \mathcal{H}^s(E \cap B(x,r)) \le br^s$$

for all r < |E| and $x \in E$.

PROOF Without loss of generality |E|=1. Fix x,r and pick $\sigma \in \Lambda_r(x)$ such that $x \in F_\sigma(E)$ and $|F_\sigma(E)| \le r_\sigma \le r$. Thus $F_\sigma(E) \subseteq B(x,r) \cap E$. Thus

$$\mathcal{H}^s(B(x,r)\cap E) \ge \mathcal{H}^s(F_\sigma(E)) = r_\sigma^s \mathcal{H}^s(E) \ge r^s(r_{\min})^s \mathcal{H}^s(E)$$

so that $\mathcal{H}^s(B(x,r)\cap E) \leq \sum_{\sigma\in\Lambda_r(x)} r^s \mathcal{H}^s(E) \leq C\mathcal{H}^s(E) r^s$.

2.3 Assouad Dimensions

In some sense, the upper and lower assouad dimensions are a measurement of the smallest and largest local dimension of a set *E*. We define the **upper assouad dimension**

$$\dim_A E = \inf \left\{ \alpha : \exists C_1, C_2 > 0 \text{ s.t. } \forall 0 < r < R \le C_1 \sup_{x \in E} N_r(B(x, R) \cap E) \le C_2 \left(\frac{R}{r}\right)^{\alpha} \right\}$$

and the lower assouad dimension

$$\dim_L E = \sup \left\{ \alpha : \exists C_1, C_2 > 0 \text{ s.t. } \forall 0 < r < R \le C_1 \inf_{x \in E} N_r(B(x, R) \cap E) \ge C_2 \left(\frac{R}{r}\right)^{\alpha} \right\}.$$

If $E \subseteq \mathbb{R}^n$ is bounded, then $\dim_A E \le n$. To see this, fix $x \in E$ and look at the n-dimensional cube Y(x,R) centred at x with sides of length R. Then $N_r(Y(x,R) \cap E) \le (2R/r)^n$. Take $B(x,R) \subseteq Y(x,2R)$ so $N_r(B(x,R) \cap E) \le 4^n(R/r)^n$.

 \mathbb{R}^n has a property called **doubling**, which means there exists a constant M such that $N_{R/2}(B(x,R)) \leq M$. In fact, dim $_A E < \infty$ if and only if E is doubling.

Get M so that E is doubling, and show that α such that $M^{\alpha} = 2$ works. The other direction is easier.

2.10 Proposition. (i) $\dim_A E \ge \overline{\dim}_B E$. (ii) $\dim_L E \le \dim_B E$

PROOF If $\dim_A E = \infty$ we are done. Thus assume $d = \dim_A E$. Fix $\epsilon > 0$ and get C_1, C_2 such that $N_r(B(x,R)) \le C_2(R/r)^{d+\epsilon}$. Cover E by finitely many balls of radius C_1 centred at points of E, say B_1, \ldots, B_m . Then

$$N_r(E) \le \sum_{j=1}^m N_r(B_j) \le mC_2 \left(\frac{C_1}{r}\right)^{d+\epsilon}$$

so that

$$\limsup_{r \to 0} \frac{\log N_r(E)}{|\log r|} \le \limsup_{r \to 0} \frac{\log m C_2 C_1^{d+\epsilon} - (\log r)(d+\epsilon)}{-\log r} = d + \epsilon$$

and thus $\overline{\dim}_B E \le d + \epsilon$ for any $\epsilon > 0$.

(ii) is an exercise.

Remark. It is also known that $\dim_L E \leq \dim_H E$, but this is more difficult to prove. If E has an isolated point, then $\dim_L E = 0$. In fact,

2.11 Proposition. dim_L E > 0 if and only if E is **uniformly perfect**, which means there exists c > 0 such that $(B(z,R) \setminus B(z,cR)) \cap E \neq \emptyset$ whenever $B(z,R) \cap E \neq \emptyset$.

Example. Consider the Cantor set $C((r_j)_{j=1}^{\infty})$. Recall that

$$\overline{\dim}_B C((r_j)_{j=1}^{\infty}) = \limsup_{n \to \infty} \frac{\log 2}{\log(r_1 \cdots r_n)^{1/n}}$$

$$\dim_H C((r_j)_{j=1}^{\infty}) = \underline{\dim}_B C((r_j)_{j=1}^{\infty}) = \liminf_{n \to \infty} \frac{\log 2}{\log(r_1 \cdots r_n)^{1/n}}$$

Moreover, one can show that

$$\dim_A C((r_j)_{j=1}^{\infty}) = \limsup_{k \to \infty} \left(\sup_n \frac{\log 2}{\log(r_{n+1} \cdots r_{n+k})^{1/k}} \right)$$
$$\dim_L C((r_j)_{j=1}^{\infty}) = \liminf_{k \to \infty} \left(\inf_n \frac{\log 2}{\log(r_{n+1} \cdots r_{n+k})^{1/k}} \right)$$

In fact, given any $0 \le A < B < C < D \le 1$, it can be arranged so that $\dim_L(C) = A$, $\underline{\dim}_B = B$, $\underline{\dim}_B = C$, and $\dim_A(C) = D$.

2.12 Theorem. If E is a self-similar set satisfying the SSC, then $\dim_L E = \dim_A E$.

PROOF We say previously that E has the following property. Let $a, r_0 > 0$. Then for any U such that $U \cap E \neq \emptyset$ and $|U| \leq r_0$, there exists a map $f: E \cap U \to E$ with $a|U|^{-1}d(x,y) \leq d(f(x),f(y))$ for all $x,y \in E \cap U$. Similarly, for any closed ball B with centre in E and radius $r \leq r_0$, there exists a map $g: E \to E \cap B$ such that $ard(x,y) \leq d(g(x),g(y))$ for all $x,y \in E \cap B$.

We know that for all $\epsilon > 0$, there exists C_{ϵ} such that $\frac{1}{C_{\epsilon}} \leq N_r(E) \leq C_{\epsilon} r^{-s-\epsilon}$ for sufficiently small r. Fix 0 < r < R and $x \in E$. Then consider $B(x,R) \cap E$. and get $f: B(x,R) \cap E \to E$ with $a|U|^{-1}d(x,y) \leq d(f(x),f(y))$. Consider $f(B(x,R) \cap E)$. Suppose $\{U_i\}$ are a ar/(2R)-cover. Then $\{f^{-1}(U_i)\}$ cover $B(x,R) \cap E$ and diam $f^{-1}(U_i)$. Let $x,y \in f^{-1}(U_i)$, so that $f(x),f(y) \in U_i$ and $a|U|^{-1}(d(x,y)) \leq \text{diam } U_i$. Thus $d(x,y) \leq \frac{|U_i|}{a|U|^{-1}} \leq r$.

Thus

$$N_{r}(B(x,R) \cap E) \leq N_{ar/(2R)}(f(B(x,R) \cap E)) \leq N_{ar/(2R)}(E)$$

$$\leq C_{\epsilon} \left(\frac{ar}{2R}\right)^{-s-\epsilon}$$

$$= C_{\epsilon}' \left(\frac{R}{r}\right)^{s+\epsilon}$$

so that $\dim_A E \le s + \epsilon$. But $\dim_A E \ge \dim_B E = s$, so $\dim_A E = s$. For $\dim_L E = s$, use 2.

Example. Let $X = \{1/n : n \in \mathbb{N}\} \cup 0$. Then $\dim_L X = 0$, $\dim_B X = 1/2$, and $\dim_A X = 1$. If E is a self-similar set in \mathbb{R} that fails the WSC, then $\dim_A E = 1$.

2.13 Theorem. Let $X = \{x_j\}_{j=1}^{\infty} \cup \{0\} \subset \mathbb{R}$ where $\sum_{i=1}^{\infty} x_j < \infty$, $\{x_j\}$ is decreasing, and $\{x_j - x_{j+1}\}_j$ is decreasing. Then

- if $\{x_j\}$ is lacunary (there exists $\lambda > 0$ such that $x_j/x_{j+1} \ge \lambda$), then $\dim_A X = 0$, and
- $\dim_A X = 1$ otherwise.

PROOF Let $a_j = x_j - x_{j+1}$ so a_j is a decreasing sequence, and $x_j = \sum_{i=j}^{\infty} a_i$. Note that there exists $\epsilon > 0$ such that $a_j \ge \epsilon \sum_{j+1}^{\infty} a_i = \epsilon x_{j+1}$ if and only if $x_j \ge (1 + \epsilon) x_{j+1}$ if and only if (x_j) is lacunary with $\lambda = 1 + \epsilon$.

First suppose (x_j) not lacunary. Then for each $N_0 \in \mathbb{N}$, there exist infinitely many k such that $a_k/x_{k+1} < 1/N_0$. Given such k, choose $N \in \mathbb{N}$ such that

$$\frac{1}{N+1} \le \frac{a_k}{x_{k+1}} < \frac{1}{N}$$

Let $R = x_{k+1}$, $r = a_k$ so that $R/r \le N+1$ and $\frac{x_{k+1}}{N+1} \le a_k = r < R/N < R$. Look at $B(0,R) \cap X = \{x_j\}_{j=k+1}^{\infty} \cup \{0\}$. Then the intervals $\{[x_{k+1} - (s+1)r, x_{k+1} - sr]\}_{s=0}^{N-1}$ are each contained in $[0, x_{k+1}]$, and $x_{k+1} - Nr \ge 0$ as $x_{k+1}/N > r$. Since $r = a_k \ge a_i$, each interval contains some x_j , so $N_r(B(0,R) \cap X) \ge N/2$ and $R/r = x_{k+1}/a_k > N$.

Otherwise (x_j) is lacunary. Then there exists $\epsilon > 0$ such that $a_j \ge \epsilon \sum_{j+1}^{\infty} a_j = \epsilon x_{j+1}$. Choose 0 < r < R, $x \in X$, and look at B(x,R). If $x \le R$, then $B(x,R) \cap X = [0,x+R] \cap X = \{x_j\}_{j=k}^{\infty} \cup \{0\}$. Choose minimal k such that $x_k \le x + R$. If $r \le a_k$, pick i such that $a_i < r \le a_{i-1}$. Then $r > a_i \ge \epsilon x_{i+1}$. Thus $[0,x_{i+1}] \cap X$ can be covered by $1/\epsilon$ intervals of length r. Thus $N_r(B(x,R) \cap X) \le 1/\epsilon + i - k + 1 = C + i - k$.

Compare with R/r. Here, $2R \ge x_k$ since $[0, x_k] \subset B(x, R)$ and

$$R \ge \frac{x_k}{2} \ge \frac{\lambda}{2} x_{k+1} \ge \dots \ge \frac{\lambda^{i-k-1}}{2} x_{i-1}$$

and $r \le a_{i-1} = x_{i-1} - x_i \le x_{i-1}$ so that $R/r \ge C_1 \lambda^{i-k}$ since $\lambda > 1$. Thus

$$N_r(B(x,R)\cap X) \le C + i - k \le C'_\delta \lambda^{(i-k)\delta} \le C'_0 \left(\frac{R}{r}\right)^\delta$$

Otherwise, $r > a_k \ge \epsilon x_{k+1}$, then $[0, x_{k+1}] \cap X$ is covered by $\frac{1}{\epsilon}$ intervals of length r. Thus $B(x, R) \cap X = [0, x_{k+1}] \cap X \cup \{x_k\}$, so that

$$N_r(B(x,r) \cap X) \le \frac{1}{\epsilon} + 1 \le C_\delta \left(\frac{R}{r}\right)^\delta$$

for any $\delta > 0$.

If x > R, then $B(x, R) \cap X = \{x_i\}_{i=1}^k$ where

$$2R \ge x_k - x_I \ge \lambda^{k-J} x_I - x_I = (\lambda^{k-J} - 1) x_I.$$

Take r < R, so that $r \ge a_k \ge \epsilon x_{k+1}$ and $B(x,R) \cap X = [0,x_{k+1}] \cap X \cup \{x_k\}$, where $x_{k+1} < r/\epsilon$. Thus $N_r(B(x,R) \cap X) \le 1/\epsilon + 1 = c_1$. Since R/r > 1,

$$N_r(B(x,R)) \le C_\delta \left(\frac{R}{r}\right)^\delta$$

for all $\delta > 0$. Otherwise, $r \le a_J$ and $N_r(B(x,R) \cap X) \le J-k+1$, and $R/r \ge (\lambda^{J-k}-1)x_J/a_J \ge c\lambda^{J-k}$. Finally, if $a_J < r < a_k$, pick i such that $a_J \le a_i \le r < a_{i-1} \le a_j$ and

$$N_r(B(x,R) \cap X) \le N_r([0,x_{i+1}] \cap X \cup \{x_j\}_{j=k}^i) \le \frac{1}{\epsilon} + i - k + 1$$

and $R/r \ge c\lambda^{i-k}$ so $\dim_A X = 0$.

3 Sizes of Measures

We consider the space $M_+(\mathbb{R}^n)$, which is the set of finite, regular Borel measures on \mathbb{R}^n equipped with the convolution product. How can we compute sizes of measures? We might say $\dim_H(\text{supp }\mu)$.

Example. Consider the measure $\mu = \sum_{n=1}^{\infty} \frac{1}{2^n} \delta_{q_n}$ where $\{q_n\}$ is an enumeration of $\mathbb{Q} \cap [0,1]$. Then $\dim_H(\text{supp }\mu) = 1$, which is misleading since μ is singular with respect to Lebesgue measure.

Definition. We define the **Hausdorff dimension of a measure** $\dim_H \mu = \inf \{ \dim_H E : \mu(E) > 0 \}.$

However, this value can be misrepresentative of the measure since it assigns a global value.

Definition. We define the **upper local dimension** of μ at x by

$$\overline{\dim}_{\mathrm{loc}}\mu(x) = \limsup_{r \to 0} \frac{\log \mu(B(x,r))}{\log r}$$

and similarly for the **lower local dimension**. If these two values coincide, we call this the **local dimension** of μ at x.

Example. 1. Suppose $\mu = m|_{[0,1]^n}$. Then $\mu(B(x,r)) \sim r^n$, so $\dim_{loc} m(x) = 1$

- 2. If $\mu = \delta_0$, then $\dim_{loc} \mu(0) = 0$.
- 3. Let *E* be the self-similar set satisfying the WSC, and let $s = \dim_H E$. Then if $\mu = H^s|_E$, we saw $H^s(B(x,R) \cap E) \sim r^s$ where $0 < H^s(E) < \infty$. Then $\dim_{\mathrm{loc}} \mu(x) = s$ for all $x \in E$.

- 4. If $x \notin \text{supp } \mu$, then $\dim_{\text{loc}} \mu(x) = +\infty$.
- 5. Let μ be the uniform Cantor measure on C(1/3),=. If $x \in C_n$, then $\mu(B(x,3^{-n})) = \mu(C_n) = 2^{-n}$, so one may compute that the local dimension of μ at x to be $\log(2)/\log(3)$.

Example. If μ is the weight (p, 1-p) Cantor measure, given $x \in C(1/3)$ with symbolic representation $(x_i)_i$, one may show that $\dim_{\text{loc}} \mu(x) = \lim_{n \to \infty} \frac{p_{x_1} \cdots p_{x_n}}{n \log 1/3}$. In fact, one may show that the set of local dimensions is the interval $[\log p/\log(1/3), \log(1-p)/\log(1/3)]$ when p > 1-p.

Recall if $\mu(E) > 0$ and $\limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} \le c$, then for any $x \in E$, $\dim_H E \ge s$. Similarly, if $\limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} \ge c$, then for any $x \in E$, $\dim_H E \le s$. In particular, when $E = \operatorname{supp} \mu$, if $\underline{\dim}_{\operatorname{loc}} \mu(x) \ge s$ for each $x \in E$, then for any $\epsilon > 0$, there exists $r_{\epsilon} > 0$ so that for all $r \le r\epsilon$,

$$\frac{|\log \mu(B(x,r))|}{|\log r|} \ge s - \epsilon$$

so that $|\log \mu(B(x,r))| \ge (s-\epsilon)|\log r|$, so $\mu(B(x,r)) \le r^{s-\epsilon}$. Thus $\limsup_{r\to 0} \frac{\log \mu(B(x,r))}{r^{s-\epsilon}} \le 1$ for all $x \in E$, so $\dim_H E \ge s$. In fact, it suffices to show this for μ a.e. x. Recall

- **3.1 Proposition.** If $H^s(E) > 0$, then there exists c and $F \subseteq E$ compact with $0 < H^s < \infty$ and $H^s(F \cap B(x,r)) \le cr^s$ for all $x \in F$ and r > 0.
- **3.2** Corollary. If $\dim_H E > s$, then there exists a measure μ with $0 < \mu < \infty$ and $\underline{\dim}_{loc} \mu(x) \ge s$ for all $x \in E$.

PROOF Since $\dim_H E > s$, $H^s(E) > 0$. Get F from the proposition and take $\mu = H^s|_F$. Then

$$\frac{\log \mu(B(x,r))}{\log r} = \frac{\log H^s(B(x,r) \cap E)}{\log r} \ge \frac{\log cr^s}{\log r}.$$

Thus $\underline{\dim}_{loc}\mu(x) \ge s$ for all $x \in E$.

3.3 Corollary. $\dim_H E = \sup\{s : \exists \mu \text{ with } 0 < \mu(E) < \infty, \underline{\dim}_{\log} \mu(x) \ge s \forall \mu \text{ a.e. } x \in E\}.$

Recall that $\dim_H \mu = \inf \{ \dim_H E : \mu(E) > 0 \}$.

3.4 Proposition. $\dim_H \mu = \sup\{x : \underline{\dim}_{\log} \mu(x) \ge s \text{ for } \mu \text{ a.e. } x\}.$

PROOF Let $d = \dim_H \mu$ and D denote the value of the RHS. Suppose d < D, and get d < s < D. Then $\underline{\dim_{\mathrm{loc}}} \mu(x) \ge s$ for all $x \in E_s$. Let $\mu(E) > 0$, so $\mu(E \cap E_s) > 0$ and $\dim_H E \ge s$, a contradiction. Now suppose D < s < d, so $\underline{\dim_{\mathrm{loc}}} \mu(x) \ge s$ does not occur for a.e. x. Thus $\underline{\dim_{\mathrm{loc}}} \mu(x) \le s$ for all $x \in F_s$ where $\mu(F_s) > 0$, and $\dim_H F_s \le s < d$, a contradiction.

Example. If μ is the uniform Cantor measure, then $\dim_{\mathrm{loc}} \mu = \frac{\log 2}{\log 3}$ for all $x \in C(1/3)$. Thus $\dim_H \mu = \frac{\log 2}{\log 3}$. In particular, if $\mu(E) > 0$, then $\dim_H E = \frac{\log 2}{\log 3}$.

Example. Consider the IFS $F_1(x) = x/2$ and $F_2(x) = x/2 + 1/2$. Let $p_1 = p$ and $p_2 = 1 - p$, and μ_p the associated Hausdorff measure. However, since the images of [0,1] are not positively separated, it is more challenging to compute $\mu(B(x,2^{-n}))$ for $x \in [0,1]$ and $n \in \mathbb{N}$. Let

$$s(p) = \frac{-(p \log p + (1-p) \log(1-p))}{\log 2}.$$

Note that s(1/2) = 1 and as s(p) increases as p increases from 1/2.

3.5 Theorem. Let $0 and <math>\mu_p$ the described measure. Then $\dim_H \mu_p = s(p) = \dim_{\log} \mu_p(x)$ for μ_p -a.e. x.

PROOF Define $X_k(x) = 1$ if $x_k = 0$ and 0 if $x_k = 1$, there x_k is the kth digit in the binary expansion of x. These are i.i.d. random variables (with respect to any μ_p), so by the Strong Law of Large Numbers,

$$\frac{1}{n}\sum_{k=1}^{n}X_k(x)\xrightarrow{n\to\infty}\mathbb{E}[X_1]=\mu_p[0,1/2]=p.$$

Thus for μ_p -a.e. x, $\lim S_n^{(0)}(x)/n \to p$ where $S_n^{(0)}(x) = \#\{j \le n : x_j = 0\}$. Similarly, $\lim S_n^{(1)}(x)/n \to 1-p$.

Let $K_p = \{x \in [0,1] : \lim S_n^{(0)}(x)/n = p\}$, so $\mu_p(K_p) = 1$. Note that $K_p = \{x \in [0,1] : \lim S_n^{(1)}(x)/n = 1 - p\}$. Given $x \in [0,1]$ where $x = (x_j)_j$, $I_n(x) = I_{x_1x_2...x_n}$, $\mu_p(I_{x_1...x_n}) = p^{S_n^{(0)}(x)}(1 - p)^{S_n^{(1)}(x)}$. Thus

$$\frac{\log \mu_p(I_{x_1...x_n})}{\log 2^{-n}} = \frac{S_n^{(0)}(x)\log p + S_n^{(1)}(x)\log(1-p)}{n\log 1/2} \to \frac{-(p\log p + (1-p)\log(1-p))}{\log 2} = s(p)$$

Given some B(x, r) arbitrary, pick minimal k such that $I_k \subseteq B(x, r)$, where $2^{-(k-1)} = m(I_{k-1}) \ge r$ and $(k+1)\log 2 \ge |\log r| \ge (k-1)\log 2$, so that

$$\frac{|\log \mu_p(B(x,r))|}{|\log r|} \le \frac{|\log \mu_p(I_k(x))|}{(k-1)\log 2} \to s(p)$$

as $k \to \infty$ for μ_p -a.e. x.

3.6 Lemma. If $\limsup \frac{\mu(I_k(x))}{|I_k(x)|^t} \le c$ for all $x \in F$ with $\mu(F) > 0$, then $\dim_H F \ge t$.

Assuming this, we note that $\frac{\log \mu_p(I_k(x))}{\log |I_k(x)|} \to s(p)$, so for any $\epsilon > 0$ and $k \ge k_\epsilon$, $\mu_p(I_k(x)) \le |I_k(x)|^{s(p)-\epsilon}$ and $\limsup \frac{\mu_p(I_k(x))}{|I_k(x)|^{s(p)-\epsilon}} \le 1$. Thus $\dim_H K_p \ge s(p) - \epsilon$ for any $\epsilon > 0$, so $\dim_H K_p \ge s(p)$. This forces $\dim_H \mu_p \ge s(p)$.

Let's see a proof of the lemma. Our goal is to show that $H^t(F) > 0$ implies that $\dim_H F \ge t$. Let $\epsilon > 0$ and set $F_\delta = \{x \in F : \frac{\mu(I_k(x))}{|I_k(x)|^t} \le (c + \epsilon)\}$ for all k such that $2^{-k} \le \delta$.

Since F_{δ} increases to F as $\delta \to 0$. Let $\{\widehat{U_i}\}$ be a $\delta/4$ -cover of F and choose $x_i \in U_i \cap F_{\delta}$ and let $B_i = B(x_i, |U_i|) \supseteq U_i$. Choose the minimal integer k_i such that $I_{k_i}(x_i) \subseteq B_i$. Consider $B_i \setminus I_{k_i-1}(x_i)$, and suppose there exists $y_i \in F_{\delta} \cap (B_i \setminus I_{k_i-1}(x_i))$. Let $I_{k_i-1}(y_i)$ be the diadic unit interval of level $k_i - 1$ containing y. Then $I_{k_i-1}(x_i) \cup I_{k_i-1}(y_i) \supseteq B_i \cap F_{\delta}$, and $I_{k_i}(x_i) \subseteq B_i$. Then $2^{-k_i} \le 2|U_i| \le 2^{\delta}/4$, so $2^{-(k_i-1)} \le 4|U_i| \le \delta$. Thus

$$\mu(U_i \cap F_\delta) \le \mu(B_i \cap F_\delta) \le \mu(I_{k-1}(x_i) \cup I_{k-1}(y_i)) \le 2(2^{-(k_i-1)t})(c+\epsilon)$$

so that

$$\mu(F_\delta) \leq \sum \mu(F_\delta \cap U_i) \leq c' \sum 2^{-k_i t} \leq c'' \sum |U_i|^t.$$

Thus for ay cover (U_i) of F, $\mu(F_\delta) \le c'' H_{\delta/4}^t(F)$ so $0 < \mu(F)$. Thus $H^t(F) > 0$.

In fact, this also shows that $\dim_H K_p = s(p)$. Put $F_p = \bigcup_{q \le p} K_q$, so $\mu_p(F_p) = 1$. Then

$$\frac{1}{k} \log \left(\frac{\mu_p(I_k(x))}{2^{-kt}} \right) = \frac{1}{k} \left(\log \mu_p(I_k(x)) + lt \log 2 \right)
= \frac{1}{k} \left(S_k^{(0)} \log p + s_k^{(1)}(x) \log(1-p) \right) + t \log 2$$

If $x \in F_p$, then $x \in K_q$ for some $q \le p$, so as $k \to \infty$, $q \log p + (1-q) \log (1-p) + t \log 2 \ge -s(p) \log 2 + t \log 2$. Fix $\epsilon > 0$. For large k,

$$\frac{1}{k}\log\left(\frac{\mu_p(I_k(x))}{2^{-kt}}\right) \ge (t - s(p) - \epsilon)\log 2$$

In particular,

$$\frac{\mu_p(I_k(x))}{|I_k(x)|^t} \ge 2^{k(t-s(p)-\epsilon)} \to \infty$$

for $t > s(p) + \epsilon$. Take any $x \in F_p$, and get minimal k such that $B(x, r) \supseteq I_k(x)$.

Definition. Say that a measure μ has **exact lower dimension** s if $\underline{\dim}_{loc}\mu(x) = s$ for μ a.e. x.

Definition. We say that μ is **invariant** under $f: X \to X$ if whenever A is μ -measurable, then $f^{-1}(A)$ is also μ -measurable and $\mu(A) = \mu(f^{-1}(A))$. We say that μ is **ergodic under** f if whenever A is measurable and $f^{-1}(A) = A$, then $\mu(A) = 0$ or $\mu(A^c) = 0$.

Example. Let μ be a self-similar measure from an IFS $\{F_1, ..., F_m\}$ satisfying the strong separation condition. Define f by $f(x) = F_i^{-1}(x)$ if $x \in F_i(E)$. One can verify that μ is invariant and ergodic under f.

- **3.7 Theorem. (Mean Ergodic)** Let $f: X \to X$, μ a finite measure on X which is invariant and ergodic under f. Let $G \in L^1(\mu)$. Then $\lim_{k \to \infty} \frac{1}{k} \sum_{j=0}^{k-1} G(f^{(j)}(g)) = \frac{1}{\mu(X)} \int_X G(z) \, \mathrm{d}\mu(z)$.
- **3.8 Theorem.** Let $f: X \to X$ be Lipschitz and μ a finite Borel measure that is invariant and ergodic under f. Then μ has exact upper and lower dimensions.

PROOF Want to understand $\mu(B(x,r))$. Set $G(y) = \mathbf{1}B(x,r)(y) \in L^1(\mu)$. By the ergodic theorem,

$$\frac{1}{\mu(X)} \int_X \mathbf{1}B(x,r)(z) \, \mathrm{d}\mu(z) = \frac{\mu(B(x,r))}{\mu(X)} = \lim_{k \to \infty} \frac{1}{k} \sum_{i=1}^{k-1} \mathbf{1}B(x,r)(f^{(j)}(y))$$

for a.e. *g*. Assume $|f(x) - f(y)| \le c|x - y|$ for all $x, y \in X$. Then

$$|f(x) - f(f^{(j)}(y))| \le c|x - f^{(j)}(y)|.$$

Thus if $f^{(j)} \in B(x, r)$, then $f^{(j+1)}(y) \in B(f(x), cr)$ so that $\mathbf{1}B(x, r)(f^{(j)}(y)) \le \mathbf{1}B(f(x), cr)(f^{(j+1)}(y))$. Take $G_1 = \mathbf{1}B(f(x), cr)$. Then

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=0}^{k-1} \mathbf{1} B(f(x), cr)(f^{(j)}(f(x))) = \frac{1}{\mu(X)} \int_X G_1 = \frac{\mu(B(f(x), cr))}{\mu(X)}$$

for a.e. y by f invariance. Thus $\mu(B(x,r)) \le \mu(B(f(x),cr))$. In particular, $\underline{\dim}_{loc}\mu(f(x)) \le \underline{\dim}_{loc}\mu(x)$. Since μ is f-invariant, for any Borel function Φ , $\int \Phi(f) \, d\mu = \int \Phi \, d\mu$ so that

$$\int \underline{\dim_{\mathrm{loc}}} \mu(f(x)) \, \mathrm{d}\mu(x) = \int \underline{\dim_{\mathrm{loc}}} \mu(x) \, \mathrm{d}\mu(x)$$

so that $\underline{\dim}_{\mathrm{loc}}\mu(f(x)) = \underline{\dim}_{\mathrm{loc}}\mu(x)$ for μ a.e. x. Let $A_k^{(j)} = \{x \in X : \underline{\dim}_{\mathrm{loc}}\mu(x) \in [j/2^k, (j+1)/2^k)\}$ so that the $A_k^{(j)}$ are f-invariant. Then $\mu(A_k^{(j)}) = 0$ or $\mu((A_k^{(j)}) = \mu(X) < \infty$. Then $X = \bigcup_{j=-\infty}^{\infty} A_k^{(j)}$, so that $\mu(x) = \sum_j \mu(A_k^{(j)})$ for all k. Thus there exists a unique k such that $\mu(A_k^{(j)}) = \mu(x)$, so that $\underline{\dim}_{\mathrm{loc}}\mu(x) = \bigcap_{k=1}^{\infty} A_k^{(j(x)}$.

3.9 Corollary. Self-similar measures satisfying the SSC are exact.

4 Multifractal Analysis

In general, we are interested in the sets $E_{\alpha} = \{x : \dim_{\text{loc}} \mu(x) = \alpha\} \subseteq \text{supp } \mu$. We are interested in $\dim_H E_{\alpha} = f_H(\alpha)$. Clearly $0 \le f_H(\alpha) \le \dim_H \text{supp } \mu$. We have already seen if $\dim_{\text{loc}} \mu(x) \le \alpha$ for all $x \in F$, then $\dim_H F \le \alpha$; thus, $f_H(\alpha) \le \alpha$.

4.1 Coarse Theory

Let $N_r(\alpha)$ denote the number of r-mesh cubes A with $\mu(A) > r^{\alpha}$. The coarse multifractal spectrum of μ is given by

$$f_c(\alpha) = \lim_{\epsilon \to 0} \left(\lim_{r \to 0} \frac{\log^+(N_r(\alpha + \epsilon) - N_r(\alpha - \epsilon))}{-\log r} \right)$$

where $\log^+(x) = \max\{0, \log x\}$ and $f_c(\alpha) \ge 0$. For small $r, \epsilon > 0$, we have

$$r^{-(f_c(\alpha)-n)} \le N_r(\alpha+\epsilon) - N_r(\alpha-\epsilon) \le r^{-(f_c(\alpha)+n)}$$

which means roughly that the number of r-mesh cubes with measure $\approx r^{\alpha}$ is about $r^{-f_c(\alpha)}$. We write \underline{f}_c and \overline{f}_c with respect to the limit infimum / supremum.

4.1 Proposition. $f_H(\alpha) \leq \underline{f}_{\alpha}(\alpha)$.

PROOF We do this in \mathbb{R} . Assume $f_H(\alpha) > 0$. Let $0 < \epsilon < f_H(\alpha)$, $t = f_H(\alpha) - \epsilon$, so that $H^t(E_\alpha) = \infty$. Observe that $\lim_{r \to 0} \frac{\log \mu(B(x,r))}{\log r} = \alpha$ for all $x \in E_\alpha$. In particular, there exists r_ϵ such that for all $r \le r_\epsilon$

$$(\alpha - \epsilon) |\log k_2 r| \le |\log \mu(B(x, r))| \le (\alpha + \epsilon) |\log (k_1 r)|$$

so that $(k_2r)^{-\alpha-\epsilon} \ge \mu(B(x,r)) \ge (k_1r)^{\alpha+\epsilon}$, for fixed k_1,k_2 . In particular, take $k_1=3$ and $k_2=1/2$ so $3r^{\alpha+\epsilon} \le \mu(B(x,r)) \le 2^{\epsilon-\alpha}r^{\alpha-\epsilon}$ for sufficiently small r. Let

$$F_n = \left\{ x \in E_\alpha : 3r^{\alpha + \epsilon} \le \mu(B(x, r)) \le 2^{\epsilon - \alpha} r^{\alpha - \epsilon} \text{ for all } r \le \frac{1}{n} \right\}$$

so that $F_n \to E_\alpha$. Thus there exists N such that $H^t(F_N) > 1$. For δ sufficiently small, say $\delta \le 1/(2N)$, $H^t_\delta(F_N) \ge 1$. Think about the r-mesh intervals that intersect F_N . For some

fixed $x \in F_N$ and let A be the r-mesh interval containing x, with adjacent intervals A_R and A_L . Then $A \subseteq B(x,r) \subseteq A_R \cup A \cup A_L \subseteq B(x,r2)$ so that

$$3r^{\alpha+\epsilon} \le \mu(B(x,r)) \le \mu(A \cup A_R \cup A_L) \le \mu(B(x,2r)) \le r^{\alpha-\epsilon}.$$

Then there exists some $A_0 \in \{A, A_R, A_L\}$ such that $r^{\alpha+\epsilon} \le \mu(A_0) \le r^{\alpha-\epsilon}$. Thus the number of mesh intervals with μ -measure in $[r^{\alpha+\epsilon}, r^{\alpha-\epsilon}] \ge 1/3r^{-(f_H(\alpha)-\epsilon)}$. In particular,

$$\frac{\log^+(N_r(\alpha+\epsilon)-N_r(\alpha-\epsilon))}{-\log r} \ge \frac{\log(\frac{1}{3}r^{-(f_H(\alpha)-\epsilon)})}{-\log r} \to f_H(\alpha) - \epsilon$$

and let $\epsilon \to 0$.

4.2 Legendre Transform

Let $\beta: \mathbb{R} \to \mathbb{R}$ be convex. We define $f(\alpha) = \int_{q \in \mathbb{R}} (\beta(q) + \alpha q)$; we are interested in the case as $\beta \to 0$. When β is differentiable, $\beta'(q) + \alpha = 0$ if and only if $\alpha = -\beta'(q)$. This q gives the global minimum. Thus $f(\alpha) = \beta(q_{\alpha}) + \alpha q_{\alpha}$ where $\alpha = -\beta'(q_{\alpha})$. Equivalently, $f(\alpha)$ is the y-intercept to the curve β at q_{α} .

Let \mathcal{Q} denote the set of r-mesh cubes A with $\mu(A) > 0$, and let $M_r(q) = \sum_{A \in \mathcal{Q}} \mu(A)^q$. If $q \ge 0$ and $\mu(A) \ge r^{\alpha}$, then $\mu(A)^q \ge r^{\alpha q}$ so

$$M_r(q) \ge \begin{cases} r^{\alpha q} N_r(\alpha) & : q \ge 0 \\ r^{\alpha q} \cdot (\#r - \text{mesh cubes with } \mu(\cdot) \le r^{\alpha} & : q < 0 \end{cases}.$$

Put $\underline{\beta}(q) = \liminf_r \frac{\log M_r(q)}{-\log r}$.

4.2 *Proposition.* $f_C(\alpha) \leq \inf_q \{\beta(q) + \alpha q\}.$

PROOF First suppose $q \ge 0$ and fix n > 0. Then

$$M_r(q) \ge r^{(\alpha+\epsilon)q} N_r(\alpha+\epsilon) \ge r^{(\alpha+\epsilon)q} (N_r(\alpha+\epsilon) - N_r(\alpha-\epsilon))$$

$$\ge r^{(\alpha+\epsilon)q} r^{-(f_c(\alpha)-n)} = r^{(\alpha+\epsilon)q-f_c(\alpha)+n}.$$

In particular,

$$\frac{\log M_r(q)}{-\log r} \ge \frac{\left((\alpha + \epsilon)q - \underline{f}_c(\alpha) + n\right)\log r}{-\log r}$$
$$= -(\alpha + \epsilon)q + \underline{f}_c(\alpha) - n$$

so that $\underline{\beta}(q) \ge -(\alpha + \epsilon)q + \underline{f}_c(\alpha) - n$. Thus $\underline{f}_c(\alpha) \le \underline{\beta}(q) + \alpha q$. For q < 0,

$$M_r(q) \ge r^{q(\alpha - \epsilon)} (N_r(\alpha + \epsilon) - N_r(\alpha - \epsilon))$$

> $r^{q(\alpha - \epsilon)} r^{-(f_{-\epsilon}(\alpha) - n)}$

and the argument proceeds as before.

4.3 Fine Theory

Let E_{α} be as before. Suppose we are given similarities $\{F_i\}$, probabilities $\{p_i\}$, and contraction factors $\{r_i\}$ as i ranges over Λ . We also assume that this IFS satisfies the strong separation condition, i.e. its invariant compact set K satisfies $K = \bigcup_{i \in \Lambda} F_i(K)$. Define $\beta(q)$ by $\sum_{i \in \Lambda} p_i^q r_i^{\beta(q)} = 1$. By the implicit function theorem, β is well-defined and differentiable of all orders. Let $q \to -\infty$, so $\beta(q) \to +\infty$, and as $q \to +\infty$, $\beta(q) \to -\infty$. As well, β is a strictly decreasing function. Differentiating, we have

$$0 = \sum_{i} \log p_i p_i^q r_i^{\beta(q)} + p_i^q r_i^{\beta(q)} \log r_i beta'(q)$$
$$= \sum_{i} p_i^q r_i^{\beta(q)} (\log p_i + \beta'(q) \log r_i)$$

and differentiating again,

$$0 = \sum_{i} p_{i}^{q} r_{i}^{\beta(q)} (\log p_{i} + \beta'(q) \log r_{i})^{2} + p_{i}^{q} r_{i}^{\beta(q)} \beta''(q) \log r_{i}$$

so that

$$\beta''(q) \sum p_i^q r_i^{\beta(q)}(-\log r_i) = \sum p_i^q r_i^{\beta(q)}(\cdot)^2$$

so that $\beta''(q) > 0$ and β is convex. If there exists i such that $\log p_i + \beta'(q) \log r_i \neq 0$, then $\beta''(q) > 0$ for all q. This happens if $\frac{\log p_i}{\log r_i}$ is not constant over i, so we assume we are in this case

Recall that $q = (\beta')^{-1}(-\alpha)$ is continuous in alpha, so that

$$f(\alpha) = \beta(q(\alpha)) - \beta'(q(\alpha)) \cdot q(\alpha)$$

If $q(\alpha) = 0$, then $f(\alpha) = \beta(0)$ where $\sum_{i=1}^{m} r + i^{\beta(0)} = 1$, so that $\beta(0) = \dim_H X$. If $q(\alpha) = 1$, then $\beta(q) = 0$. Since $\sum p_i = 1$, we have $f(\alpha) = \beta(1) - \beta'(1) = -\beta'(1) = \alpha$.

4.3 Theorem. dim $_H E_{\alpha} = f(\alpha)$.

PROOF Our goal is to construct probability measures ν_{α} concentrated on E_{α} and having $\dim_{\text{loc}} \nu_{\alpha}(x) = f(\alpha)$ for all $x \in E_{\alpha}$, so $\dim_H E_{\alpha} = f(\alpha)$ from previous results. Fix α and take $q(\alpha)$ such that $\beta = \beta(q(\alpha))$. Define $\nu_{\alpha}(X_{i_1\cdots i_k}) = (p_{i_1}\cdots p_{i_k})^q(r_{i_1}\cdots r_{i_k})^{\beta(q)}$ where $X_{i_1\cdots i_k} = F_{i_1} \circ \cdots \circ F_{i_k}(E)$; one can use the subdivision method to see that this defines a measure.

We first note that for any $\sigma \in \Sigma^*$

$$\frac{\log \nu_{\alpha}(X_{\sigma})}{\log |X_{\sigma}|} = \frac{\log(p_{q_{r_{\sigma}}})}{\log r_{\sigma}} = \frac{q \log p_{\sigma} + \beta \log r_{\sigma}}{\log r_{\sigma}}$$
$$= q \frac{\log p_{\sigma}}{\log r_{\sigma}} + \beta = q \frac{\log \mu(X_{\sigma})}{\log |X_{\sigma}|} + \beta$$

so that $\frac{\log \mu(X_{\sigma})}{\log |X_{\sigma}|} \to \alpha$ if and only if $\frac{\log \nu_{\alpha}(X_{\sigma})}{\log r_{\sigma}} \to q\alpha + \beta = f(\alpha)$.

We now proceed with an argument from befre and show that $\frac{\log \mu(B(x,r))}{\log r} \to \alpha$ if and only if $\frac{\log \mu(X_k(x))}{\log |X_k(x)|} \to \alpha$ as $k \to \infty$, and similarly for ν_α . Given B(x,r), choose k minimal such that $X_k(x) \subseteq B(x,r)$. Then

$$\frac{|\log \mu(B(x,r))|}{|\log r|} \le \frac{|\log \mu(X_k(x))|}{|\log |X_{k-1}(x)||} \sim \frac{|\log \mu(X_k(x))|}{|\log |X_k(x)||}.$$

By the strong separation condition, $\min_{i \neq j} d(F_i(X), F_j(X)) = \lambda > 0$ so for $\sigma, \tau \in \Sigma^k$, for some I < k.

$$\begin{split} d(X_{\sigma}, X_{\tau}) &= d(F_{\sigma|J}(\cdot), F_{\sigma|J}(\cdot)) \\ &= r_{\sigma|J} d(F_{\sigma_{J+1}}(\cdot), F_{\sigma_{J+1}}(\cdot)) \geq \lambda r_{\sigma|J} \\ &\geq \lambda r_{\sigma|(k-1)} = \lambda |X_{k-1}(x)| \end{split}$$

Let $x \in X_k(x)$ and take $y \in B(x,r) \cap X$. Then $y \in X_\tau$ with $X_\tau \neq X_\sigma$, so

$$d(x, y) \ge d(X_k(x), X_{\sigma}) \ge \lambda |X_{k-1}(x)|$$

Given $x = (i_1, i_2, ...)$, pick maximal k such that $x \in X_{i_1 \cdots i_k}$. Then $r < \lambda | X_{k-1}(x) |$, so d(x, y) > r, a contradiction, so $y \in X_{i_1 \cdots i_k} = X_k(x)$. Thus $B(x, r) \cap X \subseteq I_k(x)$. We can then use this to show

$$\frac{|\log \mu(B(x,r))|}{\log r} \ge \frac{\log \mu(X_k(x))}{|\log X_k(y)|}$$

We now want to show that $\nu_{\alpha}(E_{\alpha}) = 1$. Note that if $x \in E_{\alpha}$, then $\frac{\log \mu(X_k(x))}{\log |X_k(x)|} \to \alpha$, so $\frac{\log \nu_{\alpha}(X_k(x))}{\log |X_k(x)|} \to f(\alpha)$ and $\dim_{\mathrm{loc}} \nu_{\alpha}(x) = f(\alpha)$ for all $x \in E_{\alpha}$.

Define $\Phi(q,\beta) = \sum_{i=1}^{m} p_i^q r_i^{\beta}$, and $\beta(q)$ is defined implicitly by $\Phi(q,\beta(q)) = 1$. Let $\epsilon > 0$ and $q = q(\alpha)$. Then there exists $\delta > 0$ such that

- (i) $\Phi(q + \delta, \beta(q) + (\epsilon \alpha)\delta) < 1$
- (ii) $\Phi(q \delta, \beta(q) + (\alpha + \epsilon)\delta) < 1$

Our last step is to show that $\nu_{\alpha}(E_{\alpha}) = 1$. We show that for any $\epsilon > 0$

$$\liminf_{k \to \infty} \frac{\log \mu(X_k(x))}{\log |X_k(x)|} \ge \alpha - \epsilon$$

and

$$\limsup_{k \to \infty} \frac{\log \mu(X_k(x))}{\log |X_k(x)|} \le \alpha + \epsilon$$

so that $\dim_{\mathrm{loc}} \mu = \alpha \ \nu_{\alpha}$ -a.e., and $\nu_{\alpha} \{x : \dim_{\mathrm{loc}} mu(x) = \alpha \}$. Then for δ sufficiently small so that the lemma applies,

$$\begin{split} \nu_{\alpha}\{x:\mu(X_{k}(x)) \geq |X_{k}(x)|^{\alpha-\epsilon}\} &= \nu_{\alpha}\{x:\mu(X_{k}(x))^{\delta} \geq |X_{k}(x)|^{\delta(\alpha-\epsilon)}\} \\ &= \nu_{\alpha}\{x:\mu(X_{k})^{\delta}|X_{k}|^{\delta(\epsilon-\alpha)} \geq 1\} \\ &\leq \int_{\{x:\mu(X_{k})^{\delta}|X_{k}|^{\delta(\epsilon-\alpha)} \geq 1\}} \mu(X_{j})^{\delta}|X_{k}|^{\delta(\epsilon-\alpha)} \\ &\leq \int_{X} \mu(X_{k}(x))^{\delta}|X_{k}(x)|^{\delta(\epsilon-\alpha)} \, \mathrm{d}\nu_{\alpha}(x) \\ &= \sum_{\sigma \in \Sigma^{k}} \int_{x \in X_{\sigma}} \mu(X_{\sigma})^{\delta}|X_{\sigma}|^{\delta(\epsilon-\alpha)} \, \mathrm{d}\nu_{\alpha} \\ &= \sum_{\sigma \in \Sigma^{k}} p_{\sigma}^{\delta+q} r_{\sigma}^{\beta(q)+\delta(\epsilon-\alpha)} = \left(\sum_{i=1}^{m} p_{i}^{\delta+q} r_{i}^{\beta(q)+\delta(\epsilon-\alpha)}\right)^{k} \\ &= (\Phi(q+\delta,\beta+\delta(\epsilon-\alpha)))^{k} = \gamma^{k} \end{split}$$

for some $\gamma < 1$. Thus $\sum_{k=1}^{\infty} \nu_{\alpha}\{x : \mu(X_k(x)) \ge |X_k(x)|^{\alpha-\epsilon}\} \le \sum_{i=1}^{\infty} \gamma^k$, and the result follows by the Borel-Cantelli lemma.

To attain the upper bound, the same argument works using (ii) of the lemma.