Apellidos	Zafra Getino
Nombre	Carlos

Preguntas sobre grupos:

1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $GL(2, \mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .

(a) ($\frac{1}{2}$ punto) En el conjunto de vectores no nulos $X = (\mathbb{F}_3 \times \mathbb{F}_3) \setminus \{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v} \sim \vec{w}$ si y solo si $\vec{v} = \pm \vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$, comprobando que hay exactamente cuatro.

(b) (½ punto) Dada $A \in \mathrm{GL}(2,\mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A: \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

(c) (½ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in \mathrm{GL}(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.

(d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$

 $A \longmapsto \sigma_A$

es un homomorfismo de grupos.

(e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.

(f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $GL(2, \mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

0

a) マーズ らマ= ± ズ

Probar que es una relación de equivalencia:

- Nellexiva: $\vec{V} \sim \vec{V} = \vec{V}$, $\vec{V} = \vec{V} =$

-Simetrica: $\vec{V} \sim \vec{W} = \vec{V} \sim \vec{V}$, $\vec{V} \sim \vec{W} \Rightarrow \vec{V} = \vec{V} \Rightarrow \vec{W} = \vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} \sim \vec{V} / \vec{V} = -\vec{W} \Rightarrow \vec{W} = -\vec{V} \Rightarrow \vec{W} = -$

- Transitiva: V~W ~ W~ Z= V~Z, V~W ~ W~Z=

Reices de 1/3 = 10,1,2100

 $X = \{(0,1), (0,2), (1,1), (1,2), (1,0), (2,0), (2,1), (2,2)\}$ Parque (0,-1) (1,-1) (-1,0) (-1,1) (-1,-1)

Por la relación $\sim : (0,1) \sim (0,-1), (1,1) \sim (-1,-1), (1,-1) \sim (-1,1) y (1,0) \sim (-1,1)$ Por tanto $P^2 \mathcal{D}(t_3) = \chi /_{\chi} = \gamma (0,1), (1,1), (1,-1), (1,0) \gamma \gamma$ queda comprabado que son γ elementos.

b) A ∈ GL(2, 1 =). Ya: 1P(1 =) -> 1P(1 =) 1V] -> [A = 7]

Tomemos la natriz A como A= (ab) con a,5,c,d=10,1,-19
porque tiene entradas en Es
Tomemos los 4 elementos de P(Es) x comprobenos que van

 (ab) (1) = (a+b) => a+b ≤ 121 que en 13 es ignal a 1

=> a+b ≤ 111 es -1 ≤ a+b ≤ 1

y con c+d pasa lo mismo ya que
torra valorres entre -1 y 1=>

>> pertenece a IP2(15)

(ab)(1)=(a-b)=) a-b ≤ |Z|=) Hisavo razonamiento que el anterior=) pertenece a P(F,)

(c d) (o) = (a) e IP ([])

Y parto por tanto que está bien definida

c\ $[\vec{V}_1] = (0,1)$, $[\vec{V}_2] = (1,1)$, $[\vec{V}_3] = (1,-1)$, $[\vec{V}_4] = (1,0)$ Proban que y_A es biyectiva:

Para proban que una aplicación es biyectiva tenemos que proban que es inyectiva y sobre yectiva.

Par RA supongamos que $x_1 \neq x_2$ pero $f(x_1) = f(x_2)$ En el apartodo anterior hemos probado cual es la imagen de cada \vec{v}_i y podemos ver que la imagen de \vec{v}_2 , \vec{v}_3 y \vec{v}_4 son ignales si b=d=0 -reque es una contradicción porque A es invertible, es decir, que tiene determinante distinto de Oy por tanto si L=d=0 ad-bc=O=7 $f(\vec{v}_2) \neq f(\vec{v}_3) \neq f(\vec{v}_4)$ - someyectiva: Vx ex, 3y eY to lan = y.

En el grantado anterior hemos comprobado que todo vi tiene una imagen asociada que rentenece a P'(F) &

Por tanto y a es Siyectiva.

YA([V,]) = [Voa(i)]. Deducin que I! permutación.

Al probar que y es una aplicación biyectiva,
para cada v. 31 y mi y por tanto como no hace falle a biyectivided 4([Vi]) = [Va()] => 3! 54 e Sy

d) Demostrar que): GL(2, 153) -> Sq es homomorpisma de grupos.

Para prober que es homonor lismo de grayos => /(x*y)= /6x*/y)

existe union - Noes un organisation

(xy)= (AB) = (A) = (A) (y)

(Ejemple para compressor:

(10) (0111) = (0111) => 5/4 = (V2 VCL V3)

(c) (0) 1 1 1) => 0 = id

1(((0)(0)) = 1(10) = (12 /4 /8) y /(-11) - (12 /4 /3) /-11

e) Las trasposiciones (ij) & e Sy son 9(12), (13), (14), (23), (24), (34) } que en 13 que estamas trabajando= 19(1-1) (10) (11) (10) (11) (10) que pertenecen todas a R2(F3)

Dada una matriz $A \in GL(2, |F_3)$, entances $AFV_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} b & a+b & a-b & a \\ d & c+d & c-d & c \end{pmatrix}$ Cono estamos trabajando en IF_3 solo existen tenes

posibles valorres para a, b, c, d y por tanto siempre

habria dos elementos que queden fijos para tode

(ij) e S_4 .

Deducin) sobre.

Vx c X, 3 y e Y ta lan = y = 1 XA e GL le, 183), 3 of e Sy ta la = of.

Sabernos que para todo A, y a es biyectiva y por tanto que le corresponde un lij que está asociado a una permutación of = 1 XACHIF of e Sa ta la = of.

=) | sobneyectiva.)) Sy = CL(2,1F3)

El subgrayo que tomarmos es of para que las matrices estén definidas sobre sus permutaciones

Ron el Teoriema de Lagrange $|CL(2, |\overline{f_3})| = |GL(2, |\overline{f_3})| \cdot |\sigma_A|$ Como la galicación es biyectiva $|GL(2, |\overline{f_3})| = |S_4| = |4| = 24$ =) $24 = |GL(2, |\overline{f_3})| \cdot 4 - |GL(2, |\overline{f_3})| = 6$