MSO201A: Probability and Statistics 2021 (2nd Semester) Assignment-VIII

- 1. In 1000 tosses of a coin, 560 heads and 440 tails appear. Is it reasonable to assume that the coin is fair? Justify your answer.
- 2. In a city it is assumed that the number of automobile accidents in a given year follows a Poisson distribution. In past years the average number of accidents per year was 15 and this year it was 10. Is it justified to claim that the accident rate has dropped?
- 3. For a random sample X_1, \ldots, X_n of Bernoulli(p) variables, it is desired to test

$$H_0: p = .49$$
 versus $H_1: p = .51$.

Use the Central Limit Theorem to determine, approximately, the sample size needed so that the two probabilities of error are both about .01. Use a test function that rejects H_0 if $\sum_{i=1}^{n} X_i$ is large.

4. Show that for a random sample X_1, \ldots, X_n from a $N(0, \sigma^2)$ population, the most powerful test of $H_0: \sigma = \sigma_0$ versus $H_1: \sigma = \sigma_1$, where $\sigma_1 > \sigma_0$ is given by

$$\phi\left(\Sigma X_i^2\right) = \begin{cases} 1 & \text{if } \Sigma X_i^2 > c \\ 0 & \text{if } \Sigma X_i^2 \le c. \end{cases}$$

Show how the value of c is explicitly determined for a level α test. Given $\sigma_0 = 2$, $\alpha = 0.10$ and n = 15, compute c (use the table appended below).

- 5. The random variable X has pdf $f(x) = e^{-x}$ for x > 0. One observation is obtained on the random variable $Y = X^{\theta}$, and a test of $H_0: \theta = 1$ versus $H_1: \theta = 2$ needs to be constructed. Find the UMP level $\alpha = .10$ test and compute the Type II Error probability.
- 6. Let X be a random variable whose pmf under H_0 and H_1 is given by

Use the Neyman-Pearson Lemma to find the most powerful test for H_0 versus H_1 with size $\alpha = .04$. Compute the probability of Type II Error for this test.

- 7. Let X_1, \ldots, X_{10} be i.i.d. Bernoulli(p). Find the most powerful test of size $\alpha = .0547$ of the hypotheses $H_0: p = \frac{1}{2}$ versus $H_1: p = \frac{1}{4}$. Find the power of this test.
- 8. Suppose X is one observation from a population with Beta(θ , 1) distribution. Find the most powerful level α test of H_0 : $\theta = 1$ versus H_1 : $\theta = 2$.

Tables of distributions

	Normal CDF at z				χ^2 -distribution quantiles					t-distribution quantiles		
	z	+0.00	+0.05		n=d.f	$\chi_n^2(0.10)$	$\chi_n^2(0.90)$		n=d.f	$t_n(0.10)$	$t_n(0.05)$	$t_n(0.025)$
_	0	0.5	0.51994		1	2.7055	0.015791		1	3.0777	6.3138	12.706
	0.1	0.53983	0.55962		2	4.6052	0.21072		2	1.8856	2.92	4.3027
	0.2	0.57926	0.59871		3	6.2514	0.58437		3	1.6377	2.3534	3.1824
	0.3	0.61791	0.63683		4	7.7794	1.0636		4	1.5332	2.1318	2.7764
	0.4	0.65542	0.67364		5	9.2364	1.6103		5	1.4759	2.015	2.5706
	0.5	0.69146	0.70884		6	10.645	2.2041		6	1.4398	1.9432	2.4469
	0.6	0.72575	0.74215		7	12.017	2.8331		7	1.4149	1.8946	2.3646
	0.7	0.75804	0.77337		8	13.362	3.4895		8	1.3968	1.8595	2.306
	0.8	0.78814	0.80234		9	14.684	4.1682		9	1.383	1.8331	2.2622
	0.9	0.81594	0.82894		10	15.987	4.8652		10	1.3722	1.8125	2.2281
	1	0.84134	0.85314		11	17.275	5.5778		11	1.3634	1.7959	2.201
	1.1	0.86433	0.87493		12	18.549	6.3038		12	1.3562	1.7823	2.1788
	1.2	0.88493	0.89435		13	19.812	7.0415		13	1.3502	1.7709	2.1604
	1.3	0.9032	0.91149		14	21.064	7.7895		14	1.345	1.7613	2.1448
	1.4	0.91924	0.92647		15	22.307	8.5468		15	1.3406	1.7531	2.1314
	1.5	0.93319	0.93943		16	23.542	9.3122		16	1.3368	1.7459	2.1199
	1.6	0.9452	0.95053		17	24.769	10.085		17	1.3334	1.7396	2.1098
	1.7	0.95543	0.95994		18	25.989	10.865		18	1.3304	1.7341	2.1009
	1.8	0.96407	0.96784		19	27.204	11.651		19	1.3277	1.7291	2.093
	1.9	0.97128	0.97441		20	28.412	12.443		20	1.3253	1.7247	2.086
	2	0.97725	0.97982		21	29.615	13.24		21	1.3232	1.7207	2.0796
	2.1	0.98214	0.98422		22	30.813	14.041		22	1.3212	1.7171	2.0739
	2.2	0.9861	0.98778		23	32.007	14.848		23	1.3195	1.7139	2.0687
	2.3	0.98928	0.99061		24	33.196	15.659		24	1.3178	1.7109	2.0639
	2.4	0.9918	0.99286		25	34.382	16.473		25	1.3163	1.7081	2.0595
	2.5	0.99379	0.99461		26	35.563	17.292		26	1.315	1.7056	2.0555
	2.6	0.99534	0.99598		27	36.741	18.114		27	1.3137	1.7033	2.0518
	2.7	0.99653	0.99702		28	37.916	18.939		28	1.3125	1.7011	2.0484
	2.8	0.99744	0.99781		29	39.087	19.768		29	1.3114	1.6991	2.0452
	2.9	0.99813	0.99841		30	40.256	20.599		30	1.3104	1.6973	2.0423