Audio Sentiment Analysis Experiment Results

MOSI Dataset

Method	2-class	3-class	5-class	7-class
SOTA(%)	60.3	N/A	30.7	34.7
Our Method(%)	68.6	49.7	34.2	26.8

Reference

	Sentiment, on CMU-MOSI					
Modalities	Uni-SVM	Simple-LSTM		CAT-LSTM		
	feat-app	feat-app	AT-Fusion	feat-app	AT-Fusion	ATS-Fusion
A	58.1	59.5	-	60.1	-	-
V	53.4	54.9	-	55.5	_	_
T	75.5	77.2	-	79.1	_	_
A + V	58.6	61.4	61.8	62.4	62.9	59.1
A + T	75.8	78.5	79.1	79.5	80.1	76.3
V + T	76.7	78.7	79.1	79.6	79.9	77.5
A + V + T	77.9	80.1	80.6	81.0	81.3	78.3

TABLE III: Comparison of models mentioned in Section III-B. reports macro-fscore The table the of classification. feat-appen=fusion appending unimodal by Note: Multi-level framework is employed (See Section II-F2). A=Audio;V=Visual;T=Textual.

	MOSI			
Modality	hierarchical (%)	(%)		
	uni-SVM h-LSTM sc-LSTM bc-LSTM	non-hier (9		
T	75.5 77.4 77.6 78.1	1001		
V	53.1 55.2 55.6 55.8			
A	58.5 59.6 59.9 60.3			
T + V	76.7 78.9 79.9 80.2	78.5		
T + A	75.8 78.3 78.8 79.3	78.2		
V + A	58.6 61.5 61.8 62.1	60.3		
T + V + A	77.9 78.1 78.6 80.3	78.1		

Acoustic Baseline	Binary		5-class	Regression	
	Acc(%)	F1	Acc(%)	MAE	r
HL-RNN	63.4	64.2	25.9	1.21	0.34
Adieu-Net	59.2	60.6	25.1	1.29	0.31
SER-LSTM	55.4	56.1	24.2	1.36	0.23
CMKL-A	52.6	58.5	29.1	-	-
SAL-CNN-A	62.1	-	-	-	-
SVM-MD-A	56.3	58.0	24.6	1.29	0.28
$TFN_{acoustic}$	65.1	67.3	27.5	1.23	0.36
$\Delta_{acoustic}^{SOTA}$	↑ 1.7	↑ 3.1	↓ 1.6	↑ 0.02 ·	↑ 0.02

Table 5: Acoustic Sentiment Analysis. Comparison with state-of-the-art approaches for audio sentiment analysis and emotion recognition. $\Delta_{acoustic}^{SOTA}$ shows improvement.

	Bir	nary	Multiclass	Regre	Regression	
Method	A^2	F1	$\overline{A^7}$	MAE	Corr	
Majority	50.2	50.1	17.5	1.864	0.057	
RF	56.4	56.3	21.3	-	-	
SVM-MD	71.6	72.3	26.5	1.100	0.559	
THMM	50.7	45.4	17.8	-	-	
SAL-CNN	73.0	-	-	-	-	
C-MKL	72.3	72.0	30.2	-	-	
EF-HCRF _(*)	$65.3_{(h)}$	$65.4_{(h)}$	$24.6_{(1)}$	-	-	
MV-HCRF _(*)	$65.6_{(s)}$	$65.7_{(s)}$	$24.6_{(1)}$	-	-	
DF	72.3	72.1	26.8	1.143	0.518	
EF-LSTM(*)	$73.3_{(sb)}$	$73.2_{(sb)}$	32.4(-)	1.023(-)	$0.622_{(-)}$	
MV-LSTM	73.9	74.0	33.2	1.019	0.601	
BC-LSTM	73.9	73.9	28.7	1.079	0.581	
TFN	74.6	74.5	28.7	1.040	0.587	
MARN (no MAB)	76.5	76.5	30.8	0.998	0.582	
MARN (no A)	59.3(3)	36.0 ₍₃₎	22.0(3)	1.438(5)	$0.060_{(5)}$	
MARN	77.1 ₍₄₎	77.0(4)	34.7 ₍₃₎	0.968(4)	0.625(5)	
Human	85.7	87.5	53.9	0.710	0.820	

Table 1: Sentiment prediction results on CMU-MOSI test set using multimodal methods. Our model outperforms the previous baselines and the best scores are highlighted in bold.