

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA KHOA HỌC ỨNG DỤNG

-----000------

LUẬN VĂN TỐT NGHIỆP

THIẾT KẾ VÀ CHẾ TẠO GĂNG TAY THÔNG MINH DÙNG ĐỂ NHẬN DẠNG CỬ CHỈ TAY

Ngành: Vật lý Kỹ Thuật

SVTH MSSV
Nguyễn Minh Hiếu 1812182
Hồ Đình Quốc Huy 1812351

GVHD: TS. Nguyễn Trung Hậu

Thành phố Hồ Chí Minh, 02/06/2022

GIỚI THIỆU

Trẻ em câm thực hiện giao tiếp bằng cử chỉ [1].

^{[1].} J.Seladi-Schulman, "How deaf people learn to speak", Healthline, 02-Apr-2020. [Online]. Available: https://www.healthline.com/health/can-deaf-people-talk. [Accessed: 31-May-2022].

GIỚI THIỆU

Sử dụng găng tay thông minh để nhận dạng cử chỉ tay.

^[2] Nguyễn Thị Xuyên, Trần Quý Tường (2008), Giao tiếp với trẻ em giảm thính lực (khiếm thính), Nxb Y học Hà nội.

^[3] Huynh The Nhan, Pham Hong Phat, "Thiết bị nhận dạng ngôn ngữ ký hiệu cầm tay dành cho người khuyết tật", Luận văn tốt nghiệp, Trường ĐH Bách khoa – DHQG.HCM, 2021.

NỘI DUNG

1 Thiết kế, chế tạo găng tay thông minh

Tổng quan về găng tay thông minh, các linh kiện sử dụng trong găng tay, các phần mềm, ứng dụng sử dụng cho mục đích nhận dạng cử chỉ của găng tay.

2 Quy trình làm thí nghiệm

Quy trình tiến hành chế tạo, thiết kế và huấn luyện mô hình cho găng tay thông minh

3 Kết quả

Trình bày dữ liệu, trực quan dữ liệu và đưa ra kết quả so sánh giữa các mô hình học máy và học sâu.

4 Kết luận

1.1. Tổng quan về găng tay thông minh

1.2. Sơ đồ nguyên lý của các cảm biến

^{[4]. &}quot;Cảm biến GY-521 6DOF IMU MPU6050," Hshop.vn. [Online]. Available: https://hshop.vn/products/cam-bien-6-dof-bac-tu-do-gy-521-mpu6050. [Accessed: 31-May-2022].

^{[5].} Adafruit Industries, "Long Flex sensor," Adafruit.com. [Online]. Available: https://www.adafruit.com/product/182. [Accessed: 31-May-2022].

1.3. Sơ đồ mạch của găng tay thông minh

02/06/2022

1.4. Mạch in

a. Mặt trên

b. Mặt dưới

3D view của mạch thu tín hiệu

1.5. Sản phẩm hoàn chỉnh

2.1. Quy trình thu dữ liệu

2.2. Quy trình thu dữ liệu

2.3. Tiền xử lí dữ liệu và trích xuất đặc trưng

*

$$Z=\frac{x-\mu}{\sigma}$$

- x là giá trị dữ liệu gốc.
- μ là trung bình của tổng thể.
- Z là điểm số chuẩn hóa cho biết x cách xa trung
 bình một khoảng bằng mấy lần độ lệch chuẩn.
- σ là độ lệch chuẩn của tổng thể.

2.4. Mô hình học máy CNN 1D dùng để nhận dạng cử chỉ tay

Block	Lớp	Số lượng	Kích thước	Hàm kích
		bộ lọc	Bộ lọc	hoạt
Convolution Block	Conv1D	8	6	ReLu
	MaxPooling1D	3	6	
	Conv1D	16	6	ReLu
	GlobalAveragePooling1D	16	-	
Function Block	Flatten			
	Dense(32)			ReLu
	DroupOut(0.5)			
	Dense(7)			Softmax

2.5. Mô hình học máy CNN 2D dùng để nhận dạng cử chỉ tay

2.5. Mô hình học máy CNN 2D dùng để nhận dạng cử chỉ tay

Block	Lớp	Số lượng	Kích	Bộ đệm	Hàm
		bộ lọc	thước		kích
			bộ lọc		hoạt
Convolution Block	Conv2D	32	3 x 3	Same	ReLu
	MaxPooling2D	32	3 x 3		
	Conv2D	64	3 x 3	Same	ReLu
	AveragePooling2D	64	2 × 2		
Function Block	Flatten				
	Dense(32)				ReLu
	DroupOut(0.5)				
	Dense(7)				Softmax

3.1. Trực quan hóa dữ liệu đầu vào: 3 Gia tốc dài (ax ay az) + 5 cảm biến biến dạng

3.1. Trực quan hóa dữ liệu đầu vào

3.1. Trực quan hóa dữ liệu đầu vào

3.1. Trực quan hóa dữ liệu đầu vào

3.2. Trực quan hóa dữ liệu sau khi giảm chiều bằng PCA

Biểu diễn đặc trưng dữ liệu dưới dạng 2D

Biểu diễn đặc trưng dữ liệu dưới dạng 3D

3.3. Quá trình học của CNN 1D

3.3. Quá trình học của CNN 1D

Mô hình	Độ chính xác	Độ chuẩn xác	Độ nhạy	Chỉ số F1
CNN	99.1%	99.1%	99.1%	99.1%

02/06/2022

3.4. Quá trình học của CNN 2D

3.4. Quá trình học của CNN 2D

Mô hình	Độ chính xác	Độ chuẩn xác	Độ nhạy	Chỉ số F1
CNN 2D	99.6%	99.6%	99.6%	99.6%

02/06/2022

3.5. Kết quả phân chia các lớp sử dụng PCA kết hợp SVM

Trực quan phân lớp dữ liệu với PCA và SVM

Principal Component 1

3.6. So sánh mô hình CNN với các mô hình học máy cổ điển

Mô hình	Độ chính xác	Độ chuẩn xác	Độ nhạy	Chỉ số F1
CNN 1D	99.1%	99.1%	99.1%	99.1%
CNN 2D	99.6%	99.6%	99.6%	99.6%
KNN	94.4%	95.8%	94.4%	94.2%
SVM	99.1%	99.1%	99.1%	99.1%
Decision Tree	67%	73.8%	67.3%	65.0%
Random Forest	74.4%	81.1%	74.4%	71.0%
XGBoost	99.1%	99.1%	99.1%	99.1%
LSTM	90.0%	91.0%	90.0%	90.0%

Các nghiên cứu liên quan

						-
Tên bài báo	Năm xuất bản	Loại tín hiệu sử dụng	Tính chất cử chỉ	Số cử chỉ nhận diện	Mô hình sử dụng	Độ chính xác cao nhất
Designing a Sensor Glove using Deep Learning [6]	2021	Cảm biến uốn cong, cảm biến gia tốc dài, cảm biến gia tốc góc và cảm biến từ trường	cảm biến	31	LSTM	90%
Dynamic Hand Gestures Regconition Based on Signals From Specialized Data Glove and Deep Learning Algorithms[7]	2021	Cảm biến uống cong, cảm biến gia tốc dài	Động, dữ liệu thu từ cảm biến	20	CNN	92.8%
Hand Getures Regconition using flex sensor and Machine learning Algorithms[8]	2020	Cảm biến uốn cong	Tĩnh, dữ liệu thu từ cảm biến	72	SVM	82.42%
Portable Vietnames sign language recognition device for people with disabilities[3]	2021	Camera	Động, hình ảnh kết hợp thuật toán MHI	6	CNN	99.5%
Nghiên cứu của chúng tôi	2022	Cảm biến uốn cong, cảm biến gia tốc dài	Động, thu được từ cảm biến	7	CNN, LSTM, KNN, SVM, Decision Tree, Random Forest, XGBoost	99.6%

^[6] Jeremy Chan, Eduardo Veas, Jorg Simon, IUI '21, April 14–17, 2021, College Station, TX, USA [7] Dong, Jielong Liu, Wenjie Yan, IEEE, 2021

^[8] Akash Kumar Panda, Rommel Chakravarty, Soumen Moulik, IEEE 2020

4. Kết luận

Kết quả đạt được

- Chế tạo thành công găng tay thông minh nhận dạng cử chỉ tay dựa trên gia tốc dài và cảm biến biến dạng.
- Nhận dạng thành công 07 cử chỉ tay quan trọng và cần thiết trong cuộc sống hằng ngày.
- So sánh các thuật toán học máy khác nhau cho mô hình nhận dạng: CNN 2D cho kết quả về độ chính xác cao nhất với 99.6%.
- Nhận dạng cử chỉ trong thời gian thực trên máy tính
- Tính khả thi của găng tay thông minh trong nhận dạng ngôn ngữ cử chỉ.

Hướng tương lai

- Chế tạo thiết bị lên 2 găng tay để nhận dạng được nhiều cử chỉ hơn.
- Nhận dạng trên thời gian thực và nhận dạng trên điện thoại di động.

02/06/2022

OBS 27.2.1 (32-bit, windows) - Profile: Untitled - Scenes: Untitled

Chúng em vô cùng trân trọng và biết ơn khoảng thời gian mà trường Đại học Bách khoa – ĐHQG.HCM đã hỗ trợ và tạo điều kiện cho nghiên cứu này.

Nhóm xin tri ân TS. Nguyễn Trung Hậu, người đã tận tình dẫn dắt và luôn theo sát tiến độ và kết quả của nhóm.

Nhóm cũng xin cảm ơn các bạn tình nguyện viên đã hỗ trợ chúng em làm thí nghiệm.

Cảm ơn phòng thí nghiệm Vật lý Kỹ thuật Y sinh – ĐHBK đã tạo điều kiện cho chúng em thực hiện nghiên cứu này.

02/06/2022

Ho Chi Minh City University of Technology – VNU-HCMC Faculty of Applied Science

268 Ly Thuong Kiet St., ward 14, Dist. 10, Hochiminh City, Vietnam Tel: +84-28-3864-7256 / Fax: +84-28-3865-3823 http://www.fas.hcmut.edu.vn

OFFICIAL ACCEPTANCE LETTER

May 31, 2022

Authors Minh-Hieu Nguyen, Quoc-Huy Ho, Quang-Linh Huynh and Trung-Hau Nguyen:

1 Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10,

Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

² Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam

Dear Minh-Hicu Nguyen, Quoc-Huy Ho, Quang-Linh Huynh and Trung-Hau Nguyen,

On behalf of Faculty of Applied Science, it is my pleasure to welcome your attendance at the International Symposium on Applied Science (ISAS 2022), which will be held in the period of October 14 - 16, 2022 at Faculty of Applied Science (FAS), Ho Chi Minh City University of Technology located in Ho Chi Minh City, Victnam.

According to results of peer-review process, on behalf of the Organizers, we are pleased to include your technical paper for participation in the symposium. Your paper, 'Vietnamese sign language recognition using strain sensors and accelerometer for people with disabilities,' ISAS Paper number 22 is scheduled for presenting on 14 October, 2022.

The advance program for this symposium, which includes a full listing of technical presentations, conference registration, and hotel and travel information, is posted on the ISAS 2022 Web at https://www.fas.hcmut.edu.vn/isas2022

Faculty of Applied Science does not assume any financial responsibility for attendees of this symposium.

We would like to invite you also your co-authors to the next symposium and we expect that you and your co-authors will make research paper presentations at the symposium. We are looking forward to your participation. If you have any questions, please do not hesitate to contact me by email: fas@hemut.edu.vn

Congratulation! Yours sincerely,

ISAS 2022 Organizing Committee

Assoc. Prof. Tich Thien TRUONG (Dean of Faculty of Applied Science)

TÀI LIỆU THAM KHẢO

- [1]. J.Seladi-Schulman, "How deaf people learn to speak", Healthline, 02-Apr-2020. [Online]. Available:https://www.healthline.com/health/can-deaf-people-talk. [Accessed: 31-May-2022].
- [2]. Nguyễn Thị Xuyên, Trần Quý Tường (2008), *Giao tiếp với trẻ em giảm thính lực (khiếm thính)*, Nxb Y học Hà nội.
- [3]. Huynh The Nhan, Pham Hong Phat, "Thiết bị nhận dạng ngôn ngữ ký hiệu cầm tay dành cho người khuyết tật", Luận văn tốt nghiệp, Trường ĐH Bách khoa DHQG.HCM, 2021.
- [4]. "Cảm biến GY-521 6DOF IMU MPU6050," *Hshop.vn*. [Online]. Available: https://hshop.vn/products/cam-bien-6-dof-bac-tu-do-gy-521-mpu6050. [Accessed: 31-May-2022].
- [5]. Adafruit Industries, "Long Flex sensor," *Adafruit.com*. [Online]. Available: https://www.adafruit.com/product/182. [Accessed: 31-May-2022].
- [6]. Jeremy Chan, Eduardo Veas, Jorg Simon, IUI '21, April 14–17, 2021, College Station, TX, USA.
- [7]. Yong Feng Dong, Jielong Liu, Wenjie Yan, IEEE, 2021.
- [8]. Akash Kumar Panda, Rommel Chakravarty, Soumen Moulik, IEEE 2020.

CẢM ƠN QUÝ HỘI ĐỒNG ĐÃ LẮNG NGHE!

