Matemática Computacional

Prof. MSc. Luis Gonzaga de Paulo

Lógica e Aritmética Binária

- Operações lógicas binárias:
 - Not / Não
 - And / E
 - Or/Ou
 - Xor / Ou Exclusivo
 - Shift
- Operações aritméticas binárias:
 - Soma / Adição
 - Multiplicação
 - Subtração
 - Divisão

É verdade que...

- As operações de um computador são executadas somente no sistema binário?
- As informações armazenadas e manipuladas pelos computadores são compostas de bits?
- Os circuitos eletrônicos de um computador operam somente com os dígitos zero e um?
- Todos os cálculos computacionais, por mais complexos que sejam, são realizados com a lógica binária?

NOT

 É a operação de negação (Não) ou inversão, também chamada de complemento;

- Utiliza somente um operador: o Bit;
- Apresenta na saída o inverso do valor da entrada;
- Representa o circuito ou porta lógica NOT;
- É representado por "~" ou "-";
- Tabela verdade:

A	Out
0	1
1	0

AND

É a operação de conjunção binária;

- Operação semelhante à multiplicação;
- Apresenta um valor na saída quando todos os operandos (entradas) têm valor "1";
- Representa o circuito ou porta lógica AND;
- É representada por "&";
- Tabela verdade:

A	8	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

É a operação de disjunção binária;

- Operação semelhante à soma;
- Somente apresenta um valor na saída quando qualquer dos operandos (entradas) tem valor "1";
- Representa o circuito ou porta lógica OR;
- É representada por "+";
- Tabela verdade:

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

XOR

É a operação de disjunção exclusiva;

- Detecta a desigualdade na entrada;
- Somente apresenta um valor na saída quando os operandos (entradas) têm valores diferentes;
- Representa o circuito ou porta lógica XOR;
- É representada por "⊕";
- Tabela verdade:

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Shift

- O deslocamento ou rotação de bits é uma operação binária que efetua a divisão ou multiplicação por 2;
- Deslocando-se os bits da direta para a esquerda, multiplica-se o operador por 2;
- Sendo o deslocamento da esquerda para a direita, divide-se o operador por 2;

Soma/Adição Binária

- É uma operação semelhante à soma decimal, incluindo o "vai-um", denominado Carry Out;
- Operação típica de uma porta lógica "OR";
- Um circuito somador simples, denominado meio somador, emprega duas portas lógicas (OR e AND);
- Tabela verdade:

A	B	Σ	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Soma/Adição Binária

Regras:

$$-0+0=0$$

$$-0+1=1$$

$$-1+0=1$$

$$-1+1=0$$
 e "vai um": *Carry Out* = 1

$$-1+1+1=1$$
 e "vai um": *Carry Out* = 1

Soma/Adição Binária

Exemplo:

Multiplicação Binária

Segue o mesmo modelo da multiplicação decimal;

- Operação típica de uma porta "AND";
- Como referência, o número maior deve ser colocado acima do número menor;
- Tabela verdade:

A	8	X
0	0	0
0	1	0
1	0	0
1	1	1

Multiplicação Binária

Regras:

$$-0 \times 0 = 0$$

$$-0 \times 1 = 0$$

$$-1 \times 0 = 0$$

$$-1 \times 1 = 1$$

Multiplicação Binária

Exemplo:

- 101 x 011

Subtração Binária

- Segue o mesmo processo da subtração decimal, incluindo o "pede emprestado" para o dígito de maior valor (a esquerda);
- Operação típica de uma porta XOR;
- Pode ser realizada através da "soma com complemento de base";
- Tabela verdade:

A	8	_
0	0	0
0	1	1
1	0	1
1	1	0

Subtração Binária

Regras:

$$-0-0=0$$

$$-$$
 0 - 1 = 1 e "pede emprestado" 1

$$-1-0=1$$

$$-1-1=0$$

Subtração Binária

Exemplo:

Divisão Binária

- Segue o mesmo processo da divisão decimal, com os deslocamentos e subtrações;
- Requer um circuito mais complexo para simulação;

Divisão Binária

Exemplo:

- 101010 / 110

Aplicação

- As operações básicas de um computador são realizadas por circuitos relativamente simples;
- As operações mais complexas são subdivididas ou realizadas em etapas à partir das operações elementares;
- Como os computadores fazem estas operações à altíssimas velocidades, é possível realizar grandes quantidades destas operações em curto espaço de tempo.

Síntese

- Nesta aula estudamos as operações lógicas elementares que possibilitam o funcionamento dos computadores, a saber: NOT, AND, OR, XOR e SHIFT;
- Também vimos como são realizadas as operações aritméticas básicas: Adição, Multiplicação, Subtração e Divisão com o sistema binário.