Expt. No: 3 Hariharan A Date: 14.2.2023 203002034

Design and Synthesis of Carry Lookahead Adders

Aim:

- To model a 4-bit Carry Lookahead Adder using Dataflow modeling.
- To compile, simulate and plot the results using Xilinx ISE Tools.
- To implement the proposed systems using Xilinx Tools and generate the synthesis report.

Software used:

Xilinx ISE Tools

Functional Description:

Full Adder:

Truth Table

A	В	Carry-in	Sum	Carry-out		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

Boolean Equation: Inputs: A, B & Cin

Outputs: Carry generate: Gi= A(i) & B(i)

Carry propagate: Pi= A(i) ^ B(i)

Sum: $Si = P(i) \land C(i)$

Carry output: C(i+1)=G(i)+P(i) &C(i)

where i-bit position

Full adder:

Block Diagram:

Logic Diagram:

4-Bit Carry Lookahead Adder:

Schematic Diagram:

4-Bit Carry Lookahead Adder:

Modeling using Verilog HDL:

4-Bit Carry Lookahead Adder:

Design module:

module CLA_Adder(a,b,cin,sum,cout);

input[3:0] a,b;

input cin;

output[3:0] sum;

output cout;

wire[3:0] p,g,c;

assign p[3:0]=a[3:0]^b[3:0];

assign g[3:0]=a[3:0]&b[3:0];

assign c[0]=cin;

assign c[3:1]=g[2:0]|(p[2:0]&c[2:0]);

assign cout=c[3];

assign sum[3:0]=p[3:0]^c[3:0];

```
endmodule
```

```
Stimulus file:
module test_cla;
       // Inputs
       reg [3:0] A;
       reg [3:0] B;
       reg CIN;
       // Outputs
       wire [3:0] SUM;
       wire COUT;
       // Instantiate the Unit Under Test (UUT)
       CLA_Adder uut(A,B,CIN,SUM,COUT);
       //Print statement
       initial begin
              $monitor($time," A= %b,B=%b,CIN= %b,COUT= %b, SUM= %b",A,
B, CIN, COUT, SUM);
       end
initial begin
              A = 4'd0; B = 4'd0; CIN = 1'b0;
              #100 A= 4'd3; B= 4'd4;
              #100 A= 4'd3; B= 4'd4;
              #100 A = 4'd5; B = 4'd5;
              #100 A = 4'd9; B = 4'd9;
              #100 A = 4'd3; B = 4'd12;
              #100 A = 4'd10; B = 4'd14; CIN = 1'b1;
end
```

endmodule

Simulation Results:

	Nan	ne	Value	0 ns	بيبيان	100 ns	200 ns	300	ns l	400 ns	500 ns	700 ns 800 n
1	Þ	🥉 SUM(3:0)	1001		0000	0111	1001	X	1010	0010	1111	1001
1	1	& соит	1									
1	Þ	ấ A[3:0]	1010		0000	0011	(0	101		1001	0011	1010
1	Þ	ÿ B[3:0]	1110		0000	01	100	X	0101	1001	1100	1110
-	٦	CIN	1									

RTL Schematic Diagram:

Design Summary:

Device Utilization Summary								
Logic Utilization	Used	Available	Utilization					
Number of 4 input LUTs	7	4,896	1%					
Number of occupied Slices	5	2,448	1%					
Number of Slices containing only related logic	5	5	100%					
Number of Slices containing unrelated logic	0	5	0%					
Total Number of 4 input LUTs	7	4,896	1%					
Number of bonded IOBs	14	158	8%					
Average Fanout of Non-Clock Nets	1.63							

Result:

Thus, a model for 4-bit Carry Lookahead Adder using Dataflow modelling was compiled, simulated, synthesized, and implemented.