16. Interrupts

This section describes the specifics of the interrupt handling of the device. For a general explanation of the AVR interrupt handling, refer to the description of *Reset and Interrupt Handling*.

- Each Interrupt Vector occupies two instruction words .
- Reset Vector is affected by the BOOTRST fuse, and the Interrupt Vector start address is affected by the IVSEL bit in MCUCR

16.1. Interrupt Vectors in ATmega328/P

Table 16-1. Reset and Interrupt Vectors in ATmega328/P

Vector No	Program Address ⁽²⁾	Source	Interrupts definition
1	0x0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 0
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2
7	0x000C	WDT	Watchdog Time-out Interrupt
8	0x000E	TIMER2_COMPA	Timer/Counter2 Compare Match A
9	0x0010	TIMER2_COMPB	Timer/Coutner2 Compare Match B
10	0x0012	TIMER2_OVF	Timer/Counter2 Overflow
11	0x0014	TIMER1_CAPT	Timer/Counter1 Capture Event
12	0x0016	TIMER1_COMPA	Timer/Counter1 Compare Match A
13	0x0018	TIMER1_COMPB	Timer/Coutner1 Compare Match B
14	0x001A	TIMER1_OVF	Timer/Counter1 Overflow
15	0x001C	TIMER0_COMPA	Timer/Counter0 Compare Match A
16	0x001E	TIMER0_COMPB	Timer/Coutner0 Compare Match B
17	0x0020	TIMER0_OVF	Timer/Counter0 Overflow
18	0x0022	SPI STC	SPI Serial Transfer Complete
19	0x0024	USART_RX	USART Rx Complete
20	0x0026	USART_UDRE	USART Data Register Empty
21	0x0028	USART_TX	USART Tx Complete
22	0x002A	ADC	ADC Conversion Complete
23	0x002C	EE READY	EEPROM Ready
24	0x002E	ANALOG COMP	Analog Comparator

Vector No	Program Address ⁽²⁾	Source	Interrupts definition
25	0x0030	TWI	2-wire Serial Interface (I ² C)
26	0x0032	SPM READY	Store Program Memory Ready

Note:

- 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see "Boot Loader Support Read-While-Write Self- Programming"
- 2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.

The table below shows reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the Boot section or vice versa.

Table 16-2. Reset and Interrupt Vectors Placement

BOOTRST ⁽¹⁾	IVSEL	Reset Address	Interrupt Vectors Start Address
1	0	0x000	0x002
1	1	0x000	Boot Reset Address + 0x0002
0	0	Boot Reset Address	0x002
0	1	Boot Reset Address	Boot Reset Address + 0x0002

Note: 1. For the BOOTRST Fuse "1" means unprogrammed while "0" means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address	Labels	Code		Comments
0x0000		qmp	RESET	; Reset
0x0002		qmj	INTO	; IROO
0x0004		qmţ	INT1	; IRO1
0x0006		jmp	PCINTO	; PCINTO
0x0008		qmţ	PCINT1	; PCINT1
0x000A		qmj	PCINT2	; PCINT2
0x000C		jmp	WDT	; Watchdog Timeout
0x000E		jmp	TIM2 COMPA	; Timer2 CompareA
0x0010		qmj	TIM2 COMPB	; Timer2 CompareB
0x0012		qmţ	TIM2 OVF	; Timer2 Overflow
0x0014		jmp	TIM1 CAPT	; Timer1 Capture
0x0016		jmp	TIM1 COMPA	; Timer1 CompareA
0x0018		qmp	TIM1 COMPB	; Timer1 CompareB
0x001A		jmp	TIM1 OVF	; Timer1 Overflow
0x001C		jmp	TIMO COMPA	; TimerO CompareA
0x001E		jmp	TIMO COMPB	; TimerO CompareB
0x0020		jmp	TIMO OVF	; TimerO Overflow
0x0022		qmţ	SPI STC	; SPI Transfer Complete
0x0024		qmp	USART RXC	; USART RX Complete
0x0026		jmp	USART UDRE	; USART UDR Empty
0x0028		jmp	USART TXC	; USART TX Complete
0x002A		jmp	ADC —	; ADC Conversion Complete
0x002C		jmp	EE RDY	; EEPROM Ready
0x002E		jmp	ANA COMP	; Analog Comparator
0x0030		jmp	TWI	; 2-wire Serial
0x0032		qmp	SPM RDY	; SPM Ready
;			_	
0x0034	RESET:	ldi	r16, high (RAMEND)	; Main program start
0x0035		out	SPH,r16	; Set Stack Pointer to top of RAM
0x0036		ldi	r16,low(RAMEND)	•
0x0037		out	SPL,r16	
0x0038		sei		; Enable interrupts

