

PROBABILIDADE E ESTATÍSTICA

Prof^o Agnaldo Cieslak

- https://www.menti.com/hq6avp3wog
- 1- Que palavra lhe vem a mente quando se fala em Probabilidades?

 2- Exemplos de uso da probabilidade no cotidiano?

Qual a definição?

- Experimento aleatório, cujo resultado não pode ser previsto antes que a experiência ocorra.
- Embora o resultado do experimento seja imprevisível, existe uma regularidade presente, que permite descrever o comportamento aleatório do experimento.
- Estudo da aleatoriedade e da incerteza.

Exemplos de uso da probabilidade no cotidiano?

- os cálculos atuariais, especialmente os associados aos seguros de vida
- os estudos demográficos e, em especial, os estudos de incidência de doenças infecciosas e o efeito da vacinação (exemplo de grande repercussão na época sendo o da varíola)
- a construção das loterias nacionais e o estudo dos jogos de azar: carteados, roleta, lotos, etc

Método probabilístico

Esquema síntese de um estudo estatístico:

prova

- Introdução
 - Fenômenos estudados na Estatística, o resultado (mesmo em condições normais) variam a cada observação
 - Dificuldade de previsão de um resultado futuro
 - Para explicação desses fenômenos (aleatórios) ->modelo matemático
 - Cálculo de probabilidades

Caracterização

https://academico.rj.senac.br/mod/page/vie w.php?id=17119

- O que há de comum em:
- E1: retirar carta de baralho c/ 52 cartas e observar o "naipe"
- E2: Jogar moeda 10 vezes e observar o número de coroas
- E3: Retirar com ou sem reposição bolas de uma urna que contém 5 bolas brancas e 6 pretas
- E4: Jogar dado e observar o número de cima
- E5: Contar nº de peças defeituosas de uma produção diária da máquina A

prova

Análise

- Cada experimento pode ser repetido indefinidamente sob as mesmas condições;
- Não se conhece nenhum valor de ante mão mas se pode prever resultados possíveis – possibilidades;
- A repetição em grande nº de vezes, surgirá regularidade – estabilidade na fração f=r/n
 - F=freq. Relativa; n=nº de repetições; r=n°sucessos

Espaço Amostral

prova

 É o conjunto de todos os resultados possíveis de um experimento aleatório. Cada um desses resultados é chamado de *ponto amostral*. Normalmente, o espaço amostral é representado pela letra grega Ω ou S.

– Exemplos:

```
- Lançamento de um dado \Omega (S) = {
```

- Jogar 2 moedas
$$\Omega$$
 (S) = {(), (), (), ()}

prova

Espaço Amostral

- Método da contagem:
 - Recursos matemáticos para contar o número de resultados em um espaço amostral e permitir calcular a probabilidade de eventos.
- Caso: Um conjunto de 3 elementos A, B e C. Qual espaço amostral para selecionar 2 elementos?
- Permutação
 - Agrupamentos ordenados que podemos formar utilizando todos os elementos do conjunto; [P = n !]
- Com reposição e aceita repetição
 - $A_{n,x} = n^x$

prova

- Espaço Amostral
- Caso: Um conjunto de 3 elementos A, B e C. Qual espaço amostral para selecionar 2 elementos?
- Arranjo
 - Agrupamentos sem reposição e que se aceita ordem inversa, mas não reposição.
 - $[A_{n,x}=n! / (n-x)!]$

- Combinação
 - Agrupamento sem reposição e que não aceita repetição nem mesmo ordem inversa
 - $[A_{n,x}=n!/x!(n-x)!]$

prova

- Evento
 - É qualquer subconjunto do espaço amostral.
 Representamos os eventos por letras maiúsculas. O conjunto de todos esses eventos é chamado de espaço ou classe de eventos.
 - Exemplos:
 - Lança-se um dado, seja o evento A =
 elementos pares, então:

$$-\Omega = \{ \} A = \{ \}$$

- Evento
 - Usando operações de conjuntos, pode-se formar novos eventos:

 AUB -> evento que ocorre se A ocorre ou B ocorre ou ambos ocorrem

– A∩B -> evento ocorre se A e B ocorrerem

– Ā -> evento que ocorre se A não ocorre

Eventos

Tipo	Característica
Elementar	$S=\{1,2,3,4\} \rightarrow \text{Evento A}=\{2\}$
Composto	$S=\{1,2,3,4\} \rightarrow \text{Evento A}=\{2,3\}$
Complementar	$P(A')=1 - P(A) = P(A^c)=P(\tilde{A})$
Mutuamente excludentes	Exclusivos ou disjuntos, não ocorrem simultaneamente; sem elementos em comum.(moeda) AUB
Não mutuamente excludentes	Evento A e evento B ocorrem simultaneamente (interseção de conjuntos); A={1,2,3,4} , B={3,4,5} A∩B
Dependentes	A ocorrência (ou não) de um afeta a ocorrência (ou não) do outro; (retirada sem reposição) [10 peças, 6 conformes s/r, retirar 2 conformes]
Independentes	Contrário de dependentes; (retirada com repetição) [10 peças, 6 conformes c/r, retirar 2 conformes]

Probabilidades - Eventos mutuamente exclusivos

- Se A e B são eventos mutuamente exclusivos, não podem ocorrer simultaneamente (A∩B=0)
- Exemplo
 - Experimento: jogar um dado e observar o resultado
 - Então: S={1,2,3,4,5,6}
 - Evento A: ocorrer números pares
 - Evento B: ocorrer números ímpares
- Então: A={2,4,6} e B={1,3,5}, logo A∩B=0
- Ou seja, A e B são mutuamente exclusivos pois a ocorrência de um nº par e um nº impar não pode ser verificada como decorrência da mesma experiência.

- Exercícios
- 1- seja o experimento E: jogar 3 moedas e observar os resultados:
 - Então: S={(
- 2- Se A é o evento: ocorrer pelo menos 2 caras:
 - Então: S={(
- 3- E: lançar um dado e observar o nº de cima
 - Então: S={
- 4- Se B é o evento: ocorrer múltiplos de 2
 - Então: S={

Definição Clássica

prova

- Dado um experimento aleatório, sendo Ω ou S o seu espaço amostral, admitindo que todos os elementos de Ω ou S tenham a mesma chance de acontecer, ou seja, que Ω ou S é um conjunto equiprovável.
- Definimos probabilidade de um evento $A(A \subset \Omega)$ ao número real P(A). Assim:

$$P(A) = \frac{n \text{\'{u}mero de resultados favor\'{a}veis a } A}{n \text{\'{u}mero de resultados poss\'{i}veis}} = \frac{n(A)}{n(\Omega ouS)}$$

- Definição Clássica
- Deve satisfazer os seguintes axiomas:
 - $-0 \le P(A) \le 1$
 - -P(S)=1
 - Se A e B forem eventos mutuamente exclusivos, (A∩B=0), então P(AUB)= P(A) + P(B)

- Exemplo:
- Considerando o lançamento de um dado, qual a probabilidade de se obter o evento A "obter um número par".

```
• S = { }, logo n(S)=
```

- A = { }, logo n(A)=
- Então

- Exemplo:
- Então

$$P(A) = \frac{n \text{\'{u}mero de resultados favor\'{a}veis a } A}{n \text{\'{u}mero de resultados poss\'{i}veis}} = \frac{n(A)}{n(\Omega o u S)}$$

- P(A)=
- P(A)=

- Exercícios:
- Lançam-se dois dados. Calcular a probabilidade clássica dos seguintes eventos:
- a) Saída de faces iguais;
- b) Saída de faces cuja soma seja igual a 10;
- c) Saída de faces cuja soma seja menor que 15;
- d) Saída de faces onde uma face é o dobro da outra.

- Exercícios:
- Neste caso, o espaço amostral pode ser representado por uma tabela de dupla entrada:

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

- Tarefa 7 do moodle:
- 1) No lançamento de dois dados, calcule a probabilidade de se obter soma igual a 5.
- 2) Qual a probabilidade de sair uma figura quando retiramos uma carta de um baralho de 52 cartas?
- 3) Retira-se uma carta de um baralho completo de 52 cartas.
 - Qual a probabilidade de sair uma carta de copas ou de ouros?
 - Qual a probabilidade de sair um rei ou uma carta de espadas?
- 4) No lançamento de um dado, qual a probabilidade de se obter um número não inferior a 5?
- 5) Dois dados são lançados conjuntamente. Determine a probabilidade de a soma ser 10 ou maior que 10.