Estimating dS and dN

Consider two aligned homologous sequences

ACA	ATA	ATC	TTT	AAT	CAA
T			H	Ν	Q
ACA	ATA	A C C	TTT	AAC	CAA
T		T	F	N	Q

Can one claim that dN/dS = 1, because there is one synonymous and one nonsynonymous substitution?

Estimating dS and dN

Consider two aligned homologous sequences

ACA	ATA	A T C	TTT	AAT	CAA
T			H	N	Q
ACA	ATA	A C C	TTT	AAC	CAA
T		T	F	N	Q

Can one claim that dN/dS = 1, because there is one synonymous and one non-synonymous substitution?

Universal genetic code

This genetic code has 61 sense (non-termination) codons

Substitution types

	Synonymous			Non-synonymous			To a stop codon
	Transitions	Transversions	Total I	Transitions	Transversions	Total	l Total
1st position:	8	0	8	140	26	166	9
2nd position:	0	0	0	148	28	176	7
3rd position:	58	68	126	2	48	50	7
Total	66	68	134	290	102	392	23

- Approximately 3:1(392 N : 134 S) ratio when mutations are generated and fixed completely at random
- Non-random distribution over codon positions
 - All second position mutations are non-synonymous
 - · Most (but not all) synonymous mutations are confined to the third position