Question 1

For graph G discribed as in the question, in order to find the relationship between $z_1^{(2)}$ and $z_4^{(2)}$, we can derive their values:

$$\begin{split} z_1^{(2)} &= \alpha_{12}^{(2)} z_2^{(1)} + \alpha_{13}^{(2)} z_3^{(1)} \\ z_4^{(2)} &= \alpha_{42}^{(2)} z_2^{(1)} + \alpha_{43}^{(2)} z_3^{(1)} \\ &= \alpha_{12}^{(2)} z_2^{(1)} + \alpha_{13}^{(2)} z_3^{(1)} \end{split}$$

However, we have $\alpha_{42}^{(2)}=\alpha_{12}^{(2)}.$ Thus, $z_1^{(2)}=z_4^{(2)}.$

Question 2

Question 3

Question 4

References