Termination analysis of first order programs

Oleksandr Shturmov

January 26, 2012

$H(M, x) = \begin{cases} true & M \text{ halts on } x, \\ false & M \text{ does not halt on } x. \end{cases}$

$$H(M, x) = \begin{cases} true & M \text{ halts on } x, \\ false & M \text{ does not halt on } x. \end{cases}$$

 $F(M) = \begin{cases} true & H(M,M) \rightsquigarrow false, \\ false & H(M,M) \rightsquigarrow true. \end{cases}$

Consider F(F).

 $H(M,x) = \begin{cases} true & M \text{ halts on } x, \\ false & M \text{ does not halt on } x, \\ unknown & M \text{ may or may not halt on } x. \end{cases}$

 $H(M,x) = \begin{cases} true & M \text{ halts on } x, \\ unknown & M \text{ may or may not halt on } x. \end{cases}$

always prove termination."

An untyped, call-by-value, functional first-order language.

Δ , values and shapes

 $b\in\mathbb{B}$

Δ , shapes and shapes

Disjoint shapes

$$s_1 \cap s_2 = \emptyset$$
 iff $B_1 \cap B_2 = \emptyset$ where

$$s_1, s_2 \in \mathbb{S} \land B_1 = \{b \mid b \in \mathbb{B} \land b \succ s_1\} \land B_2 = \{b \mid b \in \mathbb{B} \land b \succ s_2\}$$

Given a shape $s_i \in S$, we define the sibling set S_i^d , to be the pairwise disjoint set o shapes disjoint with s_i .	f

rightInit = map (\s -> PNode s rightP) leftS

interleaveSiblings name leftS rightS

leftInit ++ rightInit ++

[PNil] ++

T(1) = 4

 $T(n) = 1 + T(n-1) + T(n-1) + T(n-1) \cdot T(n-1)$

 $2^{\lceil log(n) \rceil} \cdot \left(4 + \frac{25}{2} + \frac{676}{4} + \frac{458239}{8} + \ldots\right)$

$$S_1 \uplus S_2 = \left\{ s \,\middle|\, \begin{array}{c} \left(s \in S_1 \land \left(\exists \, s' \in S_2 \, s \cap s' \neq \varnothing \longrightarrow s \succ s' \right) \right) \\ (s \in S_2 \land \left(\exists \, s' \in S_1 \, s \cap s' \neq \varnothing \longrightarrow s \succ s' \right) \right) \end{array} \right\}.$$

 Δ , syntax

```
(14)
```

Δ , sample programs

```
reverse 0 := 0
reverse left.right := (reverse right).(reverse left)
reverse input
fibonacci n = fibonacci-aux (normalize n) 0 0
fibonacci-aux 0 x y := 0
fibonacci-aux 0.0 x y := y
fibonacci-aux 0.n x y := fibonacci-aux n y (add x y)
fibonacci input
ackermann 0 n := 0.n
ackermann a.b 0 := ackermann (decrease a.b) 0.0
ackermann a.b c.d :=
  ackermann (decrease a.b) (ackermann a.b (decrease c.d))
ackermann input input
```

Description	Instance	Finite list	Space
Expression	x	X	X
Element (of an expression)	e	E	E
Function	f	F	${ m I\!F}$
Clause	С	С	\mathbb{C}
Pattern	p	P	${ m I\!P}$
Value (think "binary")	\dot{b}	B	${ m I}\!{ m B}$
Name (think "variable")	v	V	\mathbb{V}
Program (<i>p</i> was taken)	r	R	\mathbb{R}
Shape	S	S	S

 Δ , syntax (14)

 Δ , syntax (14)

$$f = \langle v, C \rangle$$
 s.t. $\forall \langle v', _, _ \rangle \in C \ (v' = v)$

Pattern matching is ensured **exhaustive** at compile time, i.e.

$$\forall b \in \mathbb{B} \ \exists \ c \in C \ c \succ b.$$

WLOG,
$$c = \langle p, x \rangle$$
.

Patterns and shapes

(15)

f (_.0).0 := ...


```
ENSURE-EXHAUSTIVE (c:C)
```

```
1 P_{siblings} = Get-Siblings(c)
2 C' = [c]
```

2
$$C = [c]$$

3 **for** $c' \in C$
4 $(P_{success}, P_{fail}) = MATCH-CLAUSE-TO-SIBLINGS(c, P_s)$

for $p \in P_{success}$ c'' = CLONE(c')

MERGE-PATTERN
$$(c'', p)^*$$

 $C' = c' : C'$

 $P_{siblings} = P_{fail}$

Invariants:

return C'

6

8 9

10

- P_{siblings} is always a list of siblings that wasn't matched by any forthcoming clause.
 - $P_{success}$ and P_{fail} are always sibling lists.

$$\left\{ s\right\}$$

$$\begin{cases} s \end{cases}$$

 $S_1 \uplus S_2 = \left\{ s \middle| \begin{array}{c} (s \in S_1 \land (\exists s_2 \in S_2 \ s \cap s_2 \neq \emptyset \longrightarrow s \succ s_2)) \\ (s \in S_2 \land (\exists s_1 \in S_1 \ s \cap s_1 \neq \emptyset \longrightarrow s \succ s_1)) \end{array} \right\}$

There's a small detail missing...

Programs in Δ

$$r = \langle F, x \rangle$$

WLOG, $r = \langle C, x \rangle$

"The size-change termination principle for a first-order functional language with well-founded data is: a program terminates on all inputs if <i>every infinite call sequence</i> (following program control flow) would cause an infinite descent in some data values." [Lee et al., 2001]		
[Lee et al., 2001]	well-founded data is: a program terminates on all inputs if every infinite call sequence	e
	[Lee et al., 20	01]

Call graph for
$$r = \langle C, x \rangle$$

$$G = \langle C, E \rangle$$

$$E = \left\{ \langle v_s^c, v_t^c, v_s, v_t, x \rangle \middle| \begin{array}{c} \langle v_s^c, ..., x_s^c \rangle, \langle v_t^c, p_t, ... \rangle \in C \\ \wedge \langle v_t^c, x \rangle \subseteq x_s^c \\ \wedge v_s \subseteq x_s \\ \wedge v_t \subseteq p_t \end{array} \right\}$$

$$\Phi = \left\{ \langle e,
ho
angle \left| egin{array}{c} e \in E \ \land &
ho \in \{\bot, <, \le\} \end{array}
ight.
ight.$$

Initially, let $\forall e \in E \Phi(e) = \bot$.

For each $e = \langle v_s^c, v_t^c, v_s, v_t, x \rangle \in E$, let p_x represent x as a pattern where all calls have been replaced by _, and let p_t be the pattern of the clause v_t^c ...

(30)

$$\frac{(p_x = 0 \lor (p_x = v \land v \neq v_s)) \land \Phi \to \Phi_1}{\langle A, p_x, p_t, \Phi \rangle \to \Phi_1}$$

(30)

$$\frac{(p_t = 0 \lor p_t = _) \land \Phi \to \Phi_1}{\langle B, p_x, p_t, \Phi \rangle \to \Phi_1}$$

(30)

$$\frac{p_{t}=v_{t}\wedge p_{x}=v_{s}\wedge\langle\Phi\left(e\right)\mapsto\leq\rangle\rightarrow\Phi_{1}}{\langle\mathsf{C},p_{x},p_{t},\Phi\rangle\rightarrow\Phi_{1}}$$

f a := f a

$$\frac{p_t = p_{t_1} \cdot p_{t_2} \wedge p_x = v_s \wedge \langle \Phi(e) \mapsto < \rangle \rightarrow \Phi_1}{\langle D, p_x, p_t, \Phi \rangle \rightarrow \Phi_1}$$

$$f a.b := f a$$

$$\frac{p_t = p_{t_1} \cdot p_{t_2} \wedge p_s = p_{x_1} \cdot p_{x_2} \wedge \langle p_{t_1}, p_{x_1}, \Phi \rangle \rightarrow \Phi_2 \wedge \langle p_{t_2}, p_{x_2}, \Phi_2 \rangle \rightarrow \Phi_1}{\langle E, p_{x_1}, p_{t_1}, \Phi \rangle \rightarrow \Phi_1}$$

Size-change termination

```
1 f 0.a := f a;
2 f a := a;
3 (f (0.0).0).0
```


Shape-change termination

Observed mistakes

List indexing

- Lists are sometimes 0-indexed rather than 1-indexed.
- $\forall \{i \mid 0 \ge i < |P|\}$ should obviously be $\forall \{i \mid 0 < i \le |P|\}$.

A few type errors, like e.g. $S \subseteq p$, where $S \subset S \land p \in \mathbb{P}$.

The $\ensuremath{\mbox{$\uplus$}}$ relation is flawed.

Superflous conditions.

References

[Cook et al., 2011] B. Cook, A. Podelski & A. Rybalchenko, *Proving program termination*, Communications ACM Vol. 54(5), 2011, 88–98.

[Lee et al., 2001] Chin Soon Lee, Neil D. Jones & Amir M. Ben-Amram, *The size-change principle for program termination*, POPL '01, 81–92.