TRIGONOMETRY **Chapter 19 Session 1**

del ángulo doble

HISTORIA Y APLICACIONES DE LA TRIGONOMETRÍA

Identidad trigonométrica del ángulo doble

Para el seno:

$$sen 2x = 2 sen x cos x$$

Para el coseno:

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\cos 2x = 1 - 2\sin^2 x$$

$$\cos 2x = 2\cos^2 x - 1$$

Ejemplos

- \bullet sen 20° = 2sen 10° cos 10°
- $\cos 6\alpha = \cos^2 3\alpha \sin^2 3\alpha$
- $2 \text{sen}^2 15^\circ = 1 \cos 30^\circ$

Identidades de degradación

$$2\sin^2 x = 1 - \cos 2x$$

$$2\cos^2 x = 1 + \cos 2x$$

Identidad trigonométrica del ángulo doble

Para la tangente

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

EjemplSi tan x = 2; calcule: tan 2x

Resolución

Dato tan x = 2

Pidentan
$$2x = \frac{2\tan x}{1-\tan^2 x}$$

$$\Rightarrow \tan 2x = \frac{2(2)}{1 - (2)^2}$$

$$\therefore \tan 2x = -\frac{4}{3}$$

$$\therefore \tan 2x = -\frac{2}{3}$$

Si $\cos x = \frac{2}{3}$, donde $0^{\circ} < x < 90^{\circ}$ calcule $\sin 2x$

Resolución:

Del dato:

$$\cos x = \frac{2}{3} \frac{C.A.}{H.}$$

$$senx = \frac{\sqrt{5}}{3}$$

Piden: sen2x = 2senxcosx

$$sen2x = 2 \cdot \left(\frac{\sqrt{5}}{3}\right) \cdot \left(\frac{2}{3}\right)$$

$$\therefore \text{ sen2x} = \frac{4\sqrt{5}}{9}$$

Si sen
$$\beta$$
 – $\cos\beta = \frac{1}{5}$, calcule

sen2ß Resolución:

Del dato:
$$\operatorname{sen}\beta - \operatorname{cos}\beta = \frac{1}{5}...()^2$$

$$(\operatorname{sen}\beta - \cos\beta)^2 = \left(\frac{1}{5}\right)^2$$

$$sen^2 β + cos^2 β - 2sen β cos β = $\frac{1}{25}$$$

1 - 2sen
$$\beta$$
.cos β = $\frac{1}{25}$

$$(a-b)^{2} = a^{2} + b^{2} - \frac{2a^{2}}{5}$$

$$= -\frac{1}{25} = \frac{1}{25} = \frac{25}{5}$$

$$= \frac{24}{25} = \frac{24}{25} = \frac{24}{25}$$

$$\therefore \operatorname{sen2\beta} = \frac{24}{25}$$

Si $\cos 2\theta = \frac{3}{4}$, calcule $\sec \theta$, $\sin \theta \in IC$.

Resolución:

Del dato:
$$\cos 2\theta = \frac{3}{4}$$

Por identidades de degradación:

$$2sen^{2}\theta = 1 - cos2\theta$$

$$2sen^{2}\theta = 1 - \frac{3}{4}$$

$$2\operatorname{sen}^2\theta = \frac{1}{4} \implies \operatorname{sen}^2\theta = \frac{1}{8}$$

Como
$$\theta \in IC$$
 sen $\theta = \frac{1}{\sqrt{8}}$

Racionalizando:

$$sen\theta = \frac{1}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

∴ sen
$$\theta = \frac{\sqrt{2}}{4}$$

5 Simplifique:

$$K = \frac{\text{sen2x} + \text{senx}}{2\text{cosx} + 1}$$

Resolución:

$$K = \frac{\text{sen2x} + \text{senx}}{2\text{cosx} + 1}$$

$$K = \frac{2.\text{senx.cosx+ senx}}{2\text{cosx + 1}}$$

$$K = \frac{\text{senx} (2\cos x + 1)}{(2\cos x + 1)}$$

Si $x = \frac{\pi}{16}$, determine el valor de: $P = 8 \cdot \text{sen} x \cdot \cos^3 x - 8 \cdot \text{sen}^3 x \cdot \cos x$

Resolución:

$$2. senx. cosx = sen2x$$

$$\cos^2 x - \sin^2 x = \cos 2x$$

P
=
$$8 \cdot \text{senx} \cdot \cos^3 x - 8 \cdot \text{sen}^3 x \cdot \cos x$$

= $8 \cdot \text{senx} \cdot \cos x (\cos^2 x - \sin^2 x)$
P = $4 \cdot 2 \cdot \text{senx.cos} x (\cos^2 x - \sin^2 x)$
P = $2 \cdot 2 \cdot \text{sen}^2 x \cos^2 x$
 $\Rightarrow P = 2 \cdot \text{sen}^4 x$

Piden:
P
=
$$2 \cdot \text{sen} \left(4 \cdot \frac{\pi}{16}\right)$$
 = $2 \cdot \text{sen} \left(\frac{\pi}{4}\right)$
P = $2 \cdot \text{sen}(45^{\circ})$

$$P = 2 \cdot \frac{\sqrt{2}}{2}$$

$$\therefore P = \sqrt{2}$$

Observe el siguiente diagrama y determine el espacio disponible

del USB de 16 GB.

Donde:

$$A = \frac{8tan22°30'}{1 - tan^222°30'}, B$$

$$= 10 (cos18°30' + sen18°30') (cos18°30' - sen18°30')$$

Resolución:

Piden:

$$C$$
= 16 - (A + B)
 C
= 16 - (4 + 8)
 $C = 4 GB$

A partir del gráfico, determine el valor de x.

Resolución:

Del gráfico:

$$\tan\theta = \frac{2}{x}$$
; $\tan 2\theta = \frac{7}{x}$

tan2θ

$$2 \cdot tan\theta$$

Reemplazando:

$$\frac{7}{x} = \frac{2 \cdot \left(\frac{2}{x}\right)}{1 - \left(\frac{2}{x}\right)^2} \stackrel{7}{\downarrow} \frac{7}{x}$$

$$\frac{7}{x'} = \frac{4x^2}{x(x^2 - 4)}$$

$$7x^2 - 28 = 4x$$

$$\Rightarrow 3x^2 = 28 \Rightarrow x^2 = \frac{28}{3} \Rightarrow x = \sqrt{\frac{28}{3}}$$

$$\Rightarrow x \\ = \frac{2\sqrt{7}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$$

$$\therefore x = \frac{2\sqrt{21}}{3}m$$