Ejercicios2_algoritmos

Tania Gonzalo Daniel Parra

WORKSHEET

Ejercicio 1 (4 puntos)

En este ejercicio probarás el algoritmo Needleman-Wunsch en una secuencia corta de partes de hemoglobina (código PDB 1AOW) y mioglobina 1 (código PDB 1AZI). Aquí alineará la secuencia HGSAQVKGHG con la secuencia KTEAEMKASEDLKKHGT.

Las dos secuencias están dispuestas en una matriz en la Tabla 1. Las secuencias comienzan en la esquina superior derecha, y las penalizaciones por desfase inicial se enumeran en cada posición inicial de desfase. La penalización por desfase se considera -8. Las puntuaciones de similitud Si,j procedentes de la búsqueda de coincidencias proceden de la tabla BLOSUM40.

Figure 1: Matriz y alineamientos obtenidos

Como se puede observar, La puntuación obtenida es -21 y se han encontrado dos alineamientos globales posibles.

Ejercicio 2 (6 puntos)

Dado el conjunto de secuencias múltiples:

• S1: PPGVKSDCAS

• S2: PADGVKDCAS

• S3: PPDGKSDS

• S4: GADGKDCCS

• S5: GADGKDCAS

Utilice el popular método de alineación progresiva para alinear globalmente el conjunto anterior de secuencias. Genere el árbol guía por unión de vecinos. Compare su resultado (alineamiento) con el de Clustal-Omega.

Con el alineamiento final representa el logo. Para este proposito los caracteres nulos o gap son ignorados y no cuentan para el número de observaciones de una columna.

Para este ejercicio decidimos utilizar EMBOSS Needle, Pairwise Sequence Alignment (PSA) para realizar los distintos alineamientos dos a dos; y Clustal Omega (1.2.4), Multiple Sequence Alignment (MSA) para el alineamiento múltiple.

Alineamientos dos a dos

Los parámetros que utilizamos para realizar este proceso son:

Figure 2: Parámetros para el alineamiento dos a dos

Obtivimos los siguientes alineamientos son sus scores correspondientes, calculados dividiendo el número de coincidencias entre el número de residuos sin tener en cuenta los gaps:

Figure 3: Alineamiento dos a dos de S1 v
s S2, con 10 aa cada secuencia y 8 coincidencias, tiene un score
 $8/10\,$

Figure 4: Alineamiento dos a dos de S1 vs S3, con 10 a
a en S1 y 8 aa en S3; y 5 coincidencias, tiene un score 5/9

Figure 5: Alineamiento dos a dos de S1 v
s S4, con 10 aa en S1 y 9 aa en S4; y 4 coincidencias, tiene un score
 8/19

Figure 6: Alineamiento dos a dos de S1 vs S5, con 10 aa en S1 y 9 aa en S5; y 5 coincidencias, tiene un score 10/19

S2	1 PADGVKDCAS	10
	1.111.	
S3	1 PPDGKSDS	8

Figure 7: Alineamiento dos a dos de S2 vs S3, con 10 aa en S2 y 8 aa en S3; y 4 coincidencias, tiene un score 4/9

Figure 8: Alineamiento dos a dos de S2 v
s S4, con 10 aa en S2 y 9 aa en S4; y 7 coincidencias, tiene un score
 14/19

Figure 9: Alineamiento dos a dos de S2 v
s S5, con 10 aa en S2 y 9 aa en S5; y 8 coincidencias, tiene un score
 16/19

Figure 10: Alineamiento dos a dos de S3 v
s S4, con 8 aa en S3 y 9 aa en S4; y 4 coincidencias, tiene un score
 8/17

S3	1 PPDGKSDS-	8
	:	
S5	1 GADGKDCAS	9

Figure 11: Alineamiento dos a dos de S3 v
s S5, con 8 aa en S3 y 9 aa en S5; y 3 coincidencias, tiene un scor
e6/17

Figure 12: Alineamiento dos a dos de S4 v
s S5, con 9 aa cada secuencia y 8 coincidencias, tiene un score
 8/9

Y construímos la matriz de distancias, para la cual hacemos 1 - el score de similitud del alinemaiento:

Finalmente, construímos el guide tree:

Y el alineamiento ¿forward?: ¿Lo hacemos también?

Alineamiento múltiple

Los parámetros utilizados para realizar este proceso fueron:

Figure 13: Parámetros para el alineamiento múltiple

Obtivos el siguiente guide tree:

Figure 14: Guide tree del alineamiento múltiple por Clustal Omega

Y este alineamiento múltiple:

Figure 15: Alineamiento múltiple por Clustal Omega

Comparación y logo

Observamos que los guide tree obtenidos por ambos procesos son mmmmmmmmm El logo que se obtiene utilizando el alineamiento múltiple mediante Clustal Omega es:

Figure 16: Logo del MSA

 $\label{thm:condition} Utilizamos la herramienta proporcionada en este enlace: \ https://weblogo.berkeley.edu/logo.cgi$