Foundations of NLP

CS3126

Lecture-7

Encoder-decoder models, Attention mechanism

Recap

- Language modeling
- Recurrent Neural Network and Implementation
- Applications of Recurrent Neural Network
- Language modeling using Long Short-term Memory

Encoder-Decoder model

Problem- Bottleneck in Encoder-decoder

Requiring the **context c** to be only the encoder's final hidden state forces all the information from the entire source sentence to pass through this representational bottleneck

Problems with Sequence to Sequence models

- fixed-length context vector design
 - incapability of remembering long sentences

Imagine the whole universe in all its beauty - try to visualize everything you can find there and how you can describe it in words. Then imagine all of it is compressed into a single vector of size e.g. 512. Do you feel that the universe is still ok?

Not only it is hard for the encoder to put all information into a single vector - this is also hard for the decoder.

The decoder sees only one representation of source. However, at each generation step, different parts of source can be more useful than others.

Solution to bottleneck problem: Attention

Allow the decoder to get information from all the hidden states of the encoder, not just the last hidden state.

Issues with Recurrent models: Linear interaction distance

O(sequence length) steps for distant word pairs to interact means:

- Hard to learn long-distance dependencies (because gradient problems!)
- Linear order of words is "baked in"; we already know sequential structure"
 doesn't tell the whole story...

Info of *chef* has gone through O(sequence length) many layers!

Lack of Parallelizability in RNN

- Forward and backward passes have O(seq length) unparallelizable operations
 - GPUs (and TPUs) can perform many independent computations at once!
 - But future RNN hidden states can't be computed in full before past RNN hidden states have been computed
 - Inhibits training on very large datasets!
 - Particularly problematic as sequence length increases, as we can no longer batch many examples together due to memory limitations

Numbers indicate min # of steps before a state can be computed

LET'S HAVE **A MOMENT** OF SILENCE **FOR ALL THOSE PEOPLE DYING FOR ATTENTION**

Attention

A Shiba Inu in a men's outfit. The credit of the original photo goes to Instagram @mensweardog. Source: https://lilianweng.github.io/posts/2018-06-24-attention/

Attention

Attention Visuals/Animated

Refer to separately uploaded Attention slides

"Noa can be annoying but she is a great cat.

cannot blindly use proximity

"Noa can be annoying but she is a great cat.

cannot blindly use

proximity

$$W_{11}V_1 + W_{12}V_2 + W_{13}V_3 + W_{14}V_4 = Y_1$$

$$W_{11}V_1 + W_{12}V_2 + W_{13}V_3 + W_{14}V_4 = Y_1$$

The converge all vectors towards V_1

$$W_{11}V_{1} + W_{12}V_{2} + W_{13}V_{3} + W_{14}V_{4} = Y_{1}$$

$$W_{21}V_{1} + W_{22}V + W_{23}V_{3} + W_{24}V_{4} = Y_{2}$$

$$W_{31}V_{1} + W_{32}V_{2} + W_{33}V_{3} + W_{34}V_{4} = Y_{3}$$

$$W_{41}V_{1} + W_{42}V_{2} + W_{43}V_{3} + W_{44}V_{4} = Y_{4}$$

$$W_{11}V_{1} + W_{12}V_{2} + W_{13}V_{3} + W_{14}V_{4} = Y_{1}$$

$$W_{21}V_{1} + W_{22}V + W_{23}V_{3} + W_{24}V_{4} = Y_{2}$$

$$W_{31}V_{1} + W_{32}V_{2} + W_{33}V_{3} + W_{34}V_{4} = Y_{3}$$

$$W_{41}V_{1} + W_{42}V_{2} + W_{43}V_{3} + W_{44}V_{4} = Y_{4}$$

- I've not trained any weights
- Order has no influence
- Proximity has no influence
- Shape independant

SELF ATTENTION

Key, Value and Query

• The major component in the transformer is the unit of multi-head self-attention mechanism.

Acknowledgments

These slides were adapted from the book

SPEECH and LANGUAGE PROCESSING: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

and

some modifications from presentations and resources found in the WEB by several scholars mentioned in references.

References

- https://slds-lmu.github.io/seminar_nlp_ss20/attention-and-self-attention-for-nlp.html
- Attention? Attention! | Lil'Log (lilianweng.github.io)

Reference materials

- https://vlanc-lab.github.io/mu-nlp-course/teachings/fall2024-Al-schedule.html
- Lecture notes
- (A) Speech and Language Processing by Daniel Jurafsky and James H. Martin
- (B) Natural Language Processing with Python. (updated edition based on Python 3 and NLTK 3) Steven Bird et al. O'Reilly Media

