Chapter 3:

Mortgage Foundations Time Value of Money

Financial Calculators

"Sign" convention (+,-). Enter outflows as negative numbers; inflows as positive numbers.

- Compound Interest
 - Earning Interest on Interest
- Basic Components
 - PV = Initial Deposit
 - i = Interest Rate
 - n = Number of Years (or periods)
 - FV_n = Value at a specified future period

General equation:

$$FV_n = PV(1+i)^n$$

Invest \$1 for 1 year @ 6%
=
$$1(1+.06)^1$$

= \$1.06

- Example 3-1:
 - What is the value at the end of year 5 of \$100 deposited today if the interest rate is 10% compounded annually?

```
FV_5 = $100(1.10)^5
= $100(1.61051)
= $161.05
```

• Example 3-1 Using a Financial Calculator:

- Monthly Compounding
 - In Example 3-1, what if interest were paid (compounded) <u>monthly</u> instead of annually?
 - There would be **12** compounding periods in each year.
 - There would be a periodic rate to match the multiple compounding periods.
 - Most importantly, the future value would be <u>higher</u>.
 Additional compounding periods will affect the final result.

Monthly compounding

```
= -100
= 60 (5years x 12 periods)
= 10% ÷ 12 (or .8333% per period)
= $0 (no entry)
        = $164.53
```

 Notice the difference in Future Value when multiple compounding periods are used:

\$164.53 vs. \$161.05

This shows the effect of earning interest on interest.
 The more compounding periods there are per year,
 the higher the future value will be.

Compounding

Nominal versus Effective

Rate	Interval	Effective Annual Rate
6%	Annual	6.00%
6%	Semi-annual	6.09%
6%	Quarterly	6.14%
6%	Monthly	6.17%
6%	Daily	6.18%

Note on Quoted Rates

• Bankers quote Annual Percentage Rate (APR) on their loans and credit cards. This *excludes* compounding making them appear lower than the true "effective rate".

The same bankers quote Annual Percentage Yield
 (APY)* rates on their CD's. This includes the effect of
 compounding – thus making them higher than the
 "nominal rate".

^{*} Roughly equivalent to "effective rate" but, as a legal term, may require adjustment for fees.

- Discounting: Converting Future Cash Flows to the Present
- General Equation

$$PV = FV_n \frac{1}{(1+i)^n}$$

- Same equation as $FV_n = PV(1+i)^n$
- This is important

Discounting Brings Future Values Back Down the Compounding Curve

- Example 3-2:
 - What is the value today of \$2,000 you will receive at end of year 3 if the interest rate is 8% (compounded annually)?

$$PV = 2000 \left[\frac{1}{(1.08)^3} \right]$$
= 2000(.79383)
= \$1587.66

• Example 3-2 Using a Financial Calculator:

With monthly compounding

PV & Compounding

Note the effect of compounding on the PV calculation.

Annual compounding PV \$1587.66

Monthly compounding PV \$1574.51

Thus: DCF calculations using monthly compounding will *discount* results more severely than using annual numbers.

Annuity

- Level Cash Flow Stream (Periodic)
- Terminates at some point (otherwise called a perpetuity)
- Ordinary Annuity
 - Cash flows occur at the end of each period
 - Thus cash flows begin one period from today
 - Used by convention in most valuation analysis
- "Annuity Due"
 - Cash flows occur at the beginning of each period
 - Thus cash flows begin immediately

Annuity: Present Value

• Example 3-4:

• If you had the opportunity to purchase a ten-year, \$1200 annuity, what would it be worth today at an interest rate of 8%.

$$PVA = 1200 \cdot \frac{(1 - \frac{1}{1.08^{10}})}{.08}$$

= 1200(6.71008)

= \$8,052.10

Easily done on a calculator

Annuity: Present Value

Using the Financial Calculator:

Annuity: Present Value

- What if \$100 per month instead of \$1200 annually?
- (the same money but a slightly different flow)

- Given the basic equations that we have discussed, we can solve for any missing single variable.
- Some common applications
 - Solve for the interest rate (or yield)
 - Compute payments on an amortizing loan
 - Compute a future balance (loan balance for payoff)
 - Compute payments to accumulate a future sum

- Rate of Return or Discount Rate
- Example 3-5:
 - Jones Real Estate is financing a new building
 - Loan: \$1,000,000
 - Term: 30 years (fully amortizing)
 - Payments: \$7,337.65 monthly
 - What annual interest rate is the company paying?

```
= $1,000,000
         = 360 (30 \times 12)
         = (7337.65)
PMT
         = $0 (fully amortized)
               = .6667/mo
                           (8% annually)
```

Another Example

- Example 3-6:
 - A bank makes a \$100,000 loan and will receive payments of \$805 each month for 30 years as repayment. What is the rate of return to the bank for making this loan?
 - This is also the cost to the borrower (ignoring fees and closing costs).

Sinking (Escrow) Fund Example

- Example 3-7: Accumulating a Future Sum*
 - MegaREIT Inc has issued general obligation bonds for \$10 million due in 15 years at 9%. The indenture requires semi-annual interest-only payments and requires the firm to create a secured sinking fund which will grow to an amount sufficient to pay off the principal at the end of 15 years. If the firm can earn 7% on deposits, how much do they need to pay into the Sinking Fund semi-annually.

^{*} This example contains information beyond what is required to solve the problem as real world scenarios are not usually presented as a simple set of variables.

Sinking Fund Example

```
= $10,000,000
= 30 (15 \times 2)
= $0
= 7 \div 2
PMT = -$193,713.32
```

Spreadsheet Functions

For complex analysis, Excel is much better than the financial calculator. It is far more powerful.

Internal Rate of Return

Simply a way of expressing the return or yield on an investment if you are given all the cash flows.

For a single receipt or a series of <u>even</u> cash flows (annuity)

For uneven cash flows, you can use cash flow registers on calculator – but better to use Excel.

Example 3-8

You represent an investment company and have been offered a right to purchase a new, performing real estate loan. For this risk, you decide you need a yield of 7.5%. How much should you "bid" for this loan?

- Loan Principal: \$10,000,000
- Loan Interest rate: 7.0 % (monthly compounding)
- Terms: 30 year amortizing
- Payments: Monthly

Example 3-8

Step 1. What is the payment stream you are buying?

FV = 0

n = 360

PV = 10,000,000

i =
$$7 \div 12$$
 Contract loan rate

CPT PMT = $-$66,530.25$

Example 3-8

Step 2. Calculate Maximum Price you can pay.

"required" rate of return

