1

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 88111020.9

15/04 ht. Cl.4: C07H

2 Anmeldetag: 11.07.88

Priorität: 18.07.87 DE 3723826

Veröffentlichungstag der Anmeldung: 01.02.89 Patentblatt 89/05

Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI LU NL SE

Anmelder: Henkel Kommanditgesellschaft auf Aktien
Postfach 1100 Henkelstrasse 67
D-4000 Düsseldorf-Holthausen(DE)

② Erfinder: Blermann, Manfred, Dr. Markschelderhof 25 D-4330 Millhelm(DE) Erfinder: Hill, Kartheinz, Dr. Am Hasenbusch 1

D-4006 Eritrath(DE) Erfinder: Wust, Willi, Dr. Fasanenring 32 D-4030 Ratingen(DE)

Erfinder: Eskuchen, Rainer, Dr. Benrather Schlossaliee 36 D-4000 Düsseldorf-Benrath(DE)

Erfinder: Wollmann, Josef Kloster Strasse 112 D-5120 Herzogenrath 3(DE) Erfinder: Bruns, Andreas, Dr. Welssenstein 65

D-4018 Langenfeld(DE) Erfinder: Hellmann, Günter, Dr. Am Bruchhauser Kemp 15

D-4010 Hilden(DE)

D-4006 Erkrath(DE)

Erfinder: Ott, Karl-Heinz, Dr. Trilliser Graben 6

Erinder: Winkle, Walter, Dr. Krischer Strasse 81 D-4019 Monhelm(DE)

Erfinder: Wollmann, Klaus, Dr.

Röntgenstrasse 29 D-5657 Hean(DE)

verfahren zur Herstellung von Alkylgiykosiden.

To Das Verfahren nach der Umacetalisierungsmethode mit Butanoi führt zu einem neuen AikyigiykoLid als Verfahrensprodukt, das sich durch gute Farbstabilität im alkalischen Milieu auszeichnet: das Produkt enthält neben einem hohen Anteil an Alkyimonuglykosid auch Polyglykose bzw. Polyglykose und

Butylglykosid.

Xerox Copy Centre

Bei der Entwicklung neuer oberflächenaktiver Stoffe, die als industrielle Tenside für die Herstellung von Wasch- und Reinigungsmitteln geeignet sind, werden zur Herstellung in zunehmendem Maß nachwachsende R histoffe verwendet. Dafür kommen bisher hauptsächlich fettchemische Rohstoffe, wie z. B. Fettsäuren, Fettsäureester und Fettalkohole in Betracht. Ziel dieser Entwicklungen ist es, eine von der P trochemie unabhängige Basis auszubauen und damit aber auch zu besseren umweltverträglichen Produkten, die biologisch gut abbaubar sind, zu gelangen. Unter diesen Gesichtspunkten sind neuerdings die oberflächenaktiven Alkylglykoside, bei denen es sich um Acetale aus Zuckern und Fettalkoholen handelt, Interessant geworden.

im folgenden werden unter dem Begriff Alkylglykoside die Reaktionsprodukte aus Zuckern und Fettalkoholen verstanden, wobei als Zuckerkomponente die im folgenden als Glykosen bezeichneten Aldosen bzw. Ketosen Glucose, Fructose, Mannose, Galactose, Talose, Gulose, Aliose, Altrose, Idose, Arabinose, Xylose, Lyxose und Ribose in Betracht kommen. Die besonders bevorzugten Alkylglykoside sind wegen der leichten Zugänglichkeit der Glucose die Alkylglucoside. Der Begriff Alkyl in Alkylglykosid soll im weitesten Sinne den Rest eines aliphatischen Alkohols, der den hydrophoben Teil in das oberflächenaktive Alkylglykosid einbringt, d. h. einen Rest mit wenigstens 8 Kohlenstoffatomen,vorzugsweise den Rest eines primären aliphatischen Alkohols, und insbesondere den Rest eines Fettalkohols erhältlich aus natürlichen Fetten, also gesättigte und ungesättigte Reste und deren Gemische einschließlich solcher mit verschiedenen Kettenlängen, umfassen. Die Begriffe Alkyloligoglykosid, Alkyloligosaccharid und Alkylpolysaccharid beziehen sich auf solche alkylierten Gly kosen, in denen 1 Alkylrest in Form des Acetals an mehr als einen Glykoserest, also an einen Poly- oder-Oligosaccharidrest gebunden ist; diese Begriffe werden als untereinander gleichbedeutend angesehen. Entsprechend bedeutet Alkylmonoglykosid das Acetal eines Monosaccharids. Da die Reaktionsprodukte aus den Zuckern und den primären Alkoholen in der Regel Gemische darstellen, werden unter dem Begriff Alkylglykosid sowohl Alkylmonoglykoside als auch Alkylpoly(oligo)glykoside verstanden, sofern es nicht ausdrücklich auf die strukturellen Unterschiede ankommt.

Die oberflächenaktiven Alkylglykoside mit im wesentlichen C12- bis C12-Alkyl- bzw. Alkenyl-Resten gehören zum Typ der nichtlonischen Tenside. Während aber bei den üblichen nichtlionischen

Tensiden vom Typ der Alkylpolyglykolether allenfalls der hydrophobe Teil von nachwachsenden Rohstoffen stammt, wenn er sich von Fettalkoholen ableitet, und der hydrophile Teil aus Ethylenoxideinheiten und damit aus einem petrochemischen Rohstoff aufgebaut ist, können die Alkylglykoside als Fettalkylglykoside vollständig aus nachwachsenden Rohstoffen, nämlich Fett einerseits und Zuckern bzw. Stärken andererseits hergestellt werden. Die oberflächenaktiven Alkylglykoside sind als Waschmittelrohstoffe bereits selt über 50 Jahren bekannt. So beschreibt die österreichische Patentschrift Nr. 135 333 die Herstellung von Laurylgiucosid und Cetyigiucosid aus Acetobromgiucose und dem jeweiligen Fettalkohol in Gegenwart einer Base. Aber auch die Direktsynthese aus Glucose und Laurylaikohol mit Chiorwasserstoff als saurem Katalysator wird erwähnt. Nach der Lehre der deutschen Patentschrift 611 055 werden Alkylglucoside aus Pentaacetylglucose und dem Fettalkohol in Gegenwart von wasserfreiem Zinkchlorid hergestellt. Aus der deutschen Patentschrift Nr. 593 422 sind die Maltoside und Lactoside der aliphatischen Alkohole mit mehr als 8 Kohlenstoffatomen und ihre Verwendung als Emulgierungs-, Reinigungs- und Netzmittel bekannt. Beispielsweise wird durch Zusatz von Cetylmaltosid zu gewöhnlicher Seife, die damais der Hauptbestandteil der Waschmittel war, der Wascheffekt der Selfe verbessert, was mit der Wirkung des Cetylmaltosids als Kalkseifendispergator erklärt wird. Aus den 60er und 70er Jahren stammen mehrere Vorschläge zu verbesserten Herstellungsverfahren für Alkylglykoside entweder durch direkte Umsetzung der Glykose, meist in Form von Glucose, mit einem Überschuß des Fettalkohols und einer Säure als Katalysator (Direktsÿnthese), oder unter Mitverwendung eines niederen Alkohols oder Glykols als Lösungsmittel und Reaktionspartner (Umacetalisierung). So wird in der US-Patentschrift 3.547,828 (Mansfield et al) die Herstellung eines ternären Gemisches aus Alkyloligoglucosiden, Alkylmonoglucosiden und den entsprechenden C11-C32-Alkanolen nach dem Umacetalisierungsverfahren mit Butanol beschrieben. Dabei wird zunächst die Glucose mit Butanol und einem saurem Katalysator, z. B. Schwefelsäure, zu Butylglucosid umgesetzt, wobei das Reaktionswasser bei der Rückflußtemperatur abgeschieden wird. Man benutzt dabei 2 bis 6 Mol Butanol pro Mol Glucose. Danach wird der Fettalkohol in Mengen von 0.5 bis 4 Mol pro Mol Glucose hinzugegeben und das überschüssige Butanol sowie das bei der Umacetalisierungsreaktion gebildete Butanol abdestilliert. Die Umacetalisierungsreaktion wird gegebenenfalls abgebrochen, so daß noch Teile des

Butylglucosids im Reaktionsgemisch verbielben. Auf diese Weise lassen sich Produkte mit niedriger Viskosität herstellen. Anschließend wird der saure Katalysator durch Zugabe .von Natriumhydroxidlősung neutralisiert. Danach wird im Vakuum der überschüssige Fettalkohol zum größten Tell bis auf das gewünschte Niveau entfernt, meist auf Werte von weniger als 2 Gew.-%. Z. B. läßt sich so Laurylaikohol bel 150 °C und 2 mm Hg Valqum abdestillieren. Aus dem so erhaltenen Dreiergemisch aus Alkylmonoglucosid, Alkyloligoglucosid und Fettalkohol, gegebenenfalls mit Anteilen an Butylglucosid, läßt sich der Anteil an Alkyloligoglucosid durch Behandeln mit Aceton, in dem die Oligogiucoside unlöslich sind, isolieren. Nach einem Vorschlag der US-Patentschrift 3,450,690 (Gibbons et al) werden unerwünschte alkaliempfindliche. Verfärbungen hervorrufende Verunreinigungen von Alkviglucosiden auf Basis von C1-C2-Alkanolen, hergestellt nach der Methode der Direktsynthese, dadurch aus dem Reaktionsprodukt entiernt, daß man durch Zusatz von anorganischen oder organischen Basen, wie z. B. Natriumhydroxid, Natrium-Calciumhydroxdd. Barlumhydroxid, Bariummethylat oder stark basischen Aminen den sauren Katalysator nicht nur neutralisiert, sondern einen alkalischen pH-Wert von wenigstens B einstellt und dann auf Temperaturen zwischen 50 °C und 200 °C kurzzeitig erhitzt. Danach wird abfiltriert und der Alkohol-Überschuß entfernt. Durch diese Behandlung sollen die restlichen Mengen an reduzierendem Zucker, die für die Farbinstabilität des aunbehandelten Produkts verantwortlich gemacht werden, entfernt werden.

Ein weiteres Problem, das bei der Herstellung der oberflächenaktiven Alkylglykoside auf Basis der üblichen Fettalkohole mit 12 bis 18 Kohlenstoffatomen auftritt. liegt in der Schwierigkeit der destillativen Abtrennung des nichtumgesetzten Anteils dieser Fettalkohole aus dem Reaktionsprodukt. Dazu wird in der europäischen Patentanmeidung 32 252 (BASF, Klahr et al) vorgeschlagen, die destillative Abtrennung dieser nichtumgesetzten Fettalkohole in Gegenwart von solchen Glykolen durchzuführen, deren Siedepunkte die der abzutrennenden Alkohole um höchstens 10 C über- und um höchstens 30 C unterschreiten. Auf diese Weise kann die Destillation bei nicht mehr als 140 °C und einem Vakuum von etwa 8 mbar, d. h. in einer für das Produkt schonenden Weise durchgeführt werden.

Nach der Lehre der europäischen Patentanmeldung 92 875 (Procter & Gamble, Mao) wird das Umacetalisierungsverfahren mit Butanol zur Herstellung von langkettigen Alkylglucosiden so gesteuert, daß noch eine Restmenge an Butytglucosiden von weniger als 10 Gew.-% im Verfahrensprodukt enthalten sind. Auf diese Weise wird die Bildung der langkettigen Alkyloligoglucoside mit

höherem Oligomerisierungsgrad, d. h. mit 6 und mehr Glucoseeinhelten im Molekül verringert. Die so erhaltenen Produkte bestehen im wesentlichen aus Alkylmonoglucosid und Alkyloligoglucosiden, wobei der Mengenantell der Alkylmonoglucoside maximal 60 Gew.-% und der durchschnittliche Oligomerisierungsgrad 1,5 bis 3 beträgt. Der Antell an kurzkettigen Alkylglucosiden, insbesondere Butylglucosiden, liegt unterhalb 10 %, der Antell an nichtumgesetztem Fettalkohol soll unter 2 % liegen. Zur destillativen Entfernung des Fettalkohols wird die Benutzung eines Dünnschichtverdampters empfohlen.

Die europäische Patentanmeldung 92 876 (Procter & Gamble, Mao et al) beschreibt ebenfalls die Herstellung von langkettigen Alkylglucosiden mit einem Oligomeristerungsgrad von 1,5 bis 20 nach dem Umacetalisierungsverfahren mit Butanol, wobei der die Umacetalisierung bewirkende Katalysator (Paratoluoisulfonsäure) durch Neutralisation dann inaktiviert wird, wenn wenigstens 90 % des Butylglucosids reagiert haben, so daß noch höchstens 10 % Butyigiucosid im Reaktionsprodukt ver-Zur schonenden Entiernung Fettalkoholüberschusses wird hier ebenfalls die Verwendung eines Dünnschichtverdampfers empfohlen. Die Reaktionsprodukte sollen ebenfalls weniger als 60 Gew.-% Alkytmonoglucosid und weniper als 2 % freien Fettalkohol enthalten. Bei diesem bekannten Herstellungsverfahren wird ein möglichst geringer Überschuß an Fettalkohol verwendet, damit möglichst große Mengen des gewünschten Alkyloligoglucosids, d. h. möglichst in Mengen von mehr als 60 Gew.-%, anfallen.

Die europäische Patentanmeldung 96 917 (Procter & Gambie, Farris) beschreibt ein verbessertes Verfahren zu der säurekstalysierten Direktsynthese, wobei ein Monosaccharld, vorzugsweise Glucose, kontinuierlich oder portionsweise so zu der Mischung aus Fettalkohol und Katalysator bei 80 bis 150 °C hinzugefügt wird, daß nie mehr als 10 % nichtumgesetztes Monosaccharld im Reaktionsgemisch vorhanden sind. Die Monosaccharid-Zugabe wird so gesteuert, daß ständig eine im wesentlichen klare Phase vorliegt.

Vorzugsweise wird das Monosaccharld in fein vermahlenem Zustand in Mischung mit einem Teil des Fettalkohols eingesetzt. Gleichzeitig mit der Monosaccharid-Zugabe wird das entstehende Wasser abdestilliert, wobei man einen Unterdruck von 0,1 bis 300 mm Hg anwendet. Nach dem üblichen Aufarbeiten liefert das Verfahren ein Produkt, das 20 bis 70 % Alkylmonogiykosid, weniger als 10 % Mono- und Polysaccharide, weniger als 2 % treien Fettalkohol, und im übrigen Alkylpolygiykoside, d. h. im wesentlichen Di-, Tri- und Tetragiykoside enthält.

in der europäischen Patentanmeldung 132 048

das Alkali(Na.K.Li)-, Erdalkali(Ba,Ca)- oder Aluminiumsalz einer schwachen niedermolekularen Säure, z. B. Natriumacetat, oder das entsprechende Alkoholat, z. B. Natriumethylat, darstellt, verwendet. Dabei wird ein-enger pH-Wert-Bereich um d n Neutralpunkt (pH 6,6 bis 7, vorzugsweise 6,7 bis 6,8) eingestellt.

- N HAIR

In der europäischen Patentanm ldung 132 043 (Proct r & Gamble, Davis et al) wird als saurer Katalysator die Säuretorm eines anionischen T nsids verwendet, durch dessen Verwendung anstelle Üblicher Katalysatoren wie Schwefelsäure oder Paratoluolsulfonsäure, die Farbqualität des Produkts verbessert und ein Gehalt des Endprodukts an dem unerwünschten Polysaccharid herabgesetzt werden soll. Bei dem Verfahren dieser Literaturstelle werden vorzugsweise 2 Mol Fettalkohol pro Mol Glucose eingesetzt und bei der Neutralisierung des sauren Katalysators mit Natriumhydroxid oder Natriumcarbonat ebenfalls pH-Werte zwischen 6,8 und 7 eingestellt.

Um die Alkylglykoside als Tensidrohstoffe in Wasch- und Reinigungsmitteln in dem dafür erforderlichen technischen Maßstab einsetzen zu können, müssen 2 Voraussetzungen erfüllt sein: Zum einen müssen die Alkylglykoside unter alkalischen Bedingungen farbstabil sein, darnit sie in alkalischen Rezepturen verwendet werden können. Zum anderen aber müssen die Herstellungsverfahren für die Alkylglykoside so ausgelegt sein, daß diese Substanzen in großen Mengen problemlos hergestellt werden können. Beide Voraussetzungen aber werden durch die bekannten Herstellungsverfahren und die Eigenschaften der Verfahrensprodukte nicht erfüllt.

In der europäischen Patentanmeldung 77 167 (Rohm Haas, Arnaudis) wird zur Verbesserung der Farbqualität der oberflächenaktiven Alkylglykoside vorgeschlagen, daß bei deren Herstellung ein Üblicher Säurekatalysator zusammen mit einem sauren Reduktionsmittel aus der Gruppe der phosphorigen Säure, hypophosphorigen Säure, schwefligen Säure, hyposchwefligen Säure, salpetrigen Säure und/oder hyposalpetrigen Säure bzw. mit deren Salzen, verwendet wird.

Nach der Lehre der europäischen Patentanmeldung 102 558 (BASF, Loreriz et al) werden heitlarbige C₃-C₅-Alkylglucoside, die zu oberflächenaktiven höheren Alkylglucosiden umacetalisiert werden können, durch Herstellung in Gegenwart eines sauren Katalysators und mindestens äquivalenten Mengen eines Alkalimetalisalzes einer Borsäure, vorzugsweise Natriumperborat, erhalten.

Nach einem welteren Vorschlag der europäischen Patentanmeldung 165 721 (Staley, McDaniel

stoffperoxidlösung und anschließend mit einer Schwefeldioxidquelle, z. B. mit einer wäßrigen Lösung von Natriumbisulfit, behandelt. Die so erhaltenen Produkte bleiben auch nach längerem Lagern farbstabil.

5

Allen bekannten Herstellungsverfahren, die sich mit der Verbesserung der Farbqualität und der Lagerstabilität von Alkytglykosiden befassen, hattet der Nachteil an, daß, um diese Verbess rungen zu erreichen, entweder zusätzliche chemische Wirkstoffe während des Herstellungsverfahrens zugesetzt werden müssen, oder aber ein solcher Zusatz für eine Nachbehandlung des Reaktionsprodukts enforderlich ist.

Ziel der vorliegenden Erfindung ist es. für die Herstellung von oberflächenaktiven Alkylglykosiden ein neues Verfahren bereitzustellen, bei dem die Verfahrensprodukte in einer solchen Qualität anfallen, daß eine Nachbehandlung zur Verbesserung des farblichen Aussehens und der Lagerstabilität nicht erforderlich ist. Ein weiteres Ziel der Erfindung ist es, die Verfahrensabläufe bei dem neuen Herstellungsverfahren so zu führen, das man mit einem Minimum an chemischen Reaktionspartnem auskommt. Dabei sind außerdem die Verfahrensmerkmale so auszuwählen, daß eine Übertragung des Verfahrens in den großtechnischen Maßstab ohne Schwierigkeiten gelingt, und so die Herstellung von oberflächenaktiven Alkylglykosiden in solchen Mengen ermöglicht wird, daß diese Produkte als Tensid-Rohstoff von der Waschmittelindustrie in Wasch- und Reinigungsmitteln eingesetzt werden können.

Es wurde nun gefunden, daß sich diese und weltere Ziele durch eine neuerlöge Kombination von an sich bekannten sowie neuer Verfahrensmerkmalen zu einem Verfahren vom Typ des Umacetalisierungsverfahrens erreichen lassen.

Das erfindungsgemäße Verfahren zur Herstellung von oberflächenaktiven Alkylglykosiden mit im wesentlichen C₁₂- bis C₁₂-Alkyl- bzw. Alkenyl-Resten benutzt die Urnacetalisierungsmethode mit Butanol und urnfaßt die folgenden Verfahrensschritte:

- a) Butanol wird zusammen mit einem sauren Katalysator im Reaktionsgefäß vorgelegt;
- b) die Butanotmenge wird so gewählt, daß sie, bezogen auf 1 Mol der Glykose, 4 bis 10 Mol, vorzugsweise 6 bis 8 Mol, beträgt;
- c) von der Butanolmenge wird ein Teil, vorzugsweise etwa die Hälfte des Butanols zusammen mit dem Katalysator vorgelegt und die andere Hälfte zur Suspendierung der Glykose verwendet;

35

40

50

- d) als Katalysator wird eine sauer reagierende Verbindung, insbesondere eine Säure aus der Gruppe bestehend aus Schwefelsäure, Phosphorsäure, Paratoluolsulfoneäure und auffosauren lonenaustauscherharzen, in einer Menge von vorzugsweise 0,005 bls 0,02 Mol pro Mol der eingesetzten Glykose verwendet;
- e) Erhitzen des Butanol/Katalysator-Gemisches auf Rückflußternperatur;
- f) Zugabe einer vorzugsweise vorgewärmten Suspension des übrigen Butanols und der Glykose unter portionsweiser oder kontinuierlicher Zudosierung unter Rühren so, daß das Reaktionsgemisch praktisch klar bleibt;
- g) unmittélbares Abdestifieren des freiwerdenden Wassers als Butanol/Wasser-Gemisch;
- h) es wird vorzugsweise ein leichtes Vakuum von etwa 800 bis 950 mbar während oder nach der Zudosierung der Butanol/Glykose-Mischung angelegt und unter weiterer Wärmezufuhr und Rühren die Abdestillation des Reaktionswassers beendet:
- I) anschließend wird der vorgewärmte Fettalkohol in einer Menge von 2 bis 20 Mol pro Mol Glykose, vorzugsweise kontinuierlich zudosiert und gleichzeitig das Butanol im Vakuum abdestilliert;
- j) die Abdestlitation des Butanots wird so gesteuert, daß 0 bis 30 Mol-% Butytglykosid, bezogen auf 1 Mol der Glykose, im Reaktionsgemisch verbleiben;
- k) das Reaktionsgemisch wird auf eine Temperatur unterhalb 95 °C abgekühlt und der saure Katalysator mit einer organischen oder anorganischen basischen Alkali-, Erdalkali- oder Aluminiumbzw. Alkali/Aluminiumverbindung neutralisiert und darüber hinaus auf einen pH-Wert von wenigstens 8. vorzugsweise etwa 9. eingesteltt:
- i) vorzugsweise wird eine Filtration des Reaktionsgemisches durchgeführt, und zwar vorzugsweise bei einer Temperatur von 80 bis 90 °C;
- m) der Überschüssige Fettalkohol wird auf eine Übliche, das Reaktionsprodukt schonende Weise auf einen Wert von unterhalb 5 Gew.-% abdestilliert.

Das so erhaltene Reaktionsprodukt wird vorzugsweise in an sich bekannter Weise durch Zusatz von Wasser zu einer leicht handhabbaren, ca. 60 % Igen Paste verarbeltet. Das Reaktionsprodukt ist von gelblicher bis bräunlicher Färbung. Es wurde überraschenderweise gefunden, daß beim Lagern und insbesondere auch beim Weiterverarbeiten im alkalischen Milleu die ursprüngliche Farbqualität in ausreichender Weise erhalten bleibt. Für die meisten Anwendungszwecke des erfindungsgemäß hergestellten Alkylglykosids zur Herstellung von Wasch- und Reinigungsmitteln ist die direkt mit dem Verfahren erzielte Produktqualität völlig ausreichend; durch eine angeschlossene Bielchbehandlung mit Wasserstoffperoxid oder einer organi-

schen Persäure kann die Farbqualität und Alkalistabilität noch verbessert werden.

Als Glykose wird bei dem erfindungsgemäßen Verfahren vorzugsweise Glucose verwendet. Üblicherweise liegt Glucose bekanntlich mit 1 Mol Kristallwasser vor. Diese kristallwasserhaltige Glucose kann ohne welteres als Ausgangsmaterial bei dem erfindungsge mäßen Verfahren verwendet werden: allerdings ist es dann erforderlich, zusätzlich dieses Kristallwasser aus dem Reaktionsmilieu zu entiernen. Nachdem jedoch wasserfreie Glucose in gro-Ben Mengen als Ausgangsmaterial zugänglich ist, wird besonders bevorzugt wasserfreie Glucose als feintelliges Pulver verwendet. Als saurer Katalysator wird vorzugsweise wegen Ihrer im Vergleich zu Schwefelsäure geringeren korrodierenden Wirkung gegenüber Geräten und Leitungen aus Stahl die Paratoluoisulfonsäure verwendet. Prinzipieli sind aber als Katalysatoren alle sauren Verbindungen. einschließlich der sogenannten Lewis-Säuren, welche die Acetalisierungsreaktion zwischen Fettalkohol und Zuckermolekül katalysieren, geeignet.

Für eine sofortige, d. h. unmittelbar nach der Freisetzung erfolgende Abdestillation des Reaktionswassers, ist die Einstellung eines Temperaturgleichgewichts im Reaktionsgefäß erforderlich. Dazu wird vor der Urnsetzung mit der Glykose das im Reaktionspefäß vorgelegte Butanol auf Rückflußtemperatur gebracht und die Destillationskolonne bei unendlichem Rücklauf betrieben. Im Falle des erfindungsgemäß verwendeten n-Butanots beträgt die Rückflußtemperatur 118 °C; mit der Bildung des niedriger siedenden Butanol/Wasser-Gemisches stellt sich eine Brüdentemperatur von 95 bis C ein. Nach Phasentrennung des Butano/Wasser-Destillats kann die butanoireiche Phase wieder in den Kolonnenraum zurückgeführt werden, obwohl sie gelöstes Wasser enthält. Bei der Durchführung des Verfahrens im Labormaßstab ist es allerdings einfacher, die abdestillierte Butanolmenge wieder durch frisches Butanol zu ersetzen. Bei der Durchführung des Verfahrens im proßtechnischen Maßstab kann die wasserenthaltende Butanolphase ohne welteres wieder in die Kolonne zurückgeführt werden; dort bleibt das Wasser der Butanolphase quasi stationär und kommt nicht mehr mit dem Reaktionsgemisch in Kontakt. Ein leichtes Vakuum von etwa 800 bis 950 mbar kann auch bereits während des Aufheizens des Butanots angewendet werden, um so die Rückflußtemperatur auf die Höhe der Butanol/Wasser-Brüdentemperatur einzustellen.

Beim Zuführen der Wärmeenergie, die zur Entfernung des Butanol/Wasser-Gemisches und zur Aufrechterhaltung der Reaktionstemperatur benötigt wird, ist es wesentlich, daß zwischen Reaktorwand und Reaktionsgemisch nur eine geringe Temperaturdifferenz vorhanden ist, damit Überhit-

zen im Labor, ein übliches Ol-Bad mit Thermostat zu verwenden und gleichzeltig das Reaktionsgemisch kräftig zu rühren. Bei Ansätzen im technischen Maßstab hat sich als besonders vorteilhaft erwiesen, die Wärmeenergie über einen externen Kreislauf, vorzugsweise bestehend aus einer Pumpe und inem Wärmeaustauscher, vorzunehmen. Zu diesem Zweck wird ständig in Teil Reaktionsgemisches über eine Rohrleitung abgezogen, im Wärmeaustauscher in wärmt und wieder in den Reaktor zurückgeführt. Auf diese Weise ist es möglich, hohe Reaktorwandtemperaturen, d. h. solche von mehr als 125 °C zu vermeiden und damit eine negative Auswirkung der Temperaturführung auf die Farbwerte des Endproduktes zu verhindern.

Die Suspension der Glykose in Butanol, vorzugsweise wird wasserfreie Glucose verwendet. wird nach einer bevorzugten Ausführungsform des Verfahrens einer Vorbehandlung im Sinne einer Feindispergierung unterworfen. Für Laboransätze haben sich dafür die Verwendung eines hochtourigen üblichen Laborrührers oder aber eine Ultraschallbehandlung als geeignet erwiesen. Bei großtechnischen Ansätzen wird zur feinen Dispergierung mit Vorteil ein Inline-Mischer, beispielsweise ein Stator/Rotor-Mischer verwendet. Diese Feindispergierungsmaßnahme hat den erwünschten Nebenefiekt, daß sich dabei die Suspension erwärmt. Die Zugabe der Glykose-Suspension in das Reaktionsgefäß erfolgt entweder portionsweise oder kontinuierlich, wobel man im Falle von Laboransätzen der portionsweisen Zugabe und im Falle von großtechnischen Ansätzen der kontinuierlichen Zugabe den Vorteil gibt. In beiden Fällen sind die Dosierungsraten bzw. die Zeitintervalle zwischen den Dosierportionen so zu wählen, daß das Reaktionsgemisch praktisch klar bleibt, d. h. eine homogene Phase bildet. Dieser Begriff ist hier so zu verstehen, daß bei portionsweiser Zugabe zunächst eine kurze Periode auftritt, in der das Reaktionsgemisch getrübt ist, daß diese Trübung jedoch als Folge der Veretherungsreaktion bzw. Lösung wieder verschwindet. Zweckmäßigerweise wird erst danach die nächste Glykoseportion hinzugegeben. Bei der Varlante der kontinuierlichen Zugabe der Glykose tritt während der gesamten Zugabezeit eine geringe Trübung des Reaktionsgemisches auf, da ständig geringe Mengen von nichtumgesetzter Glykose vorliegen. Hier ist darauf zu achten, daß die Zugaberate so gesteuert wird, daß der Grad der Trübung gleichmäßig bleibt und jedenfalls sich nicht verstärkt, bzw. daß die Trübung beim Abbrechen der Zudosierung rasch unter Bilden einer klaren Phase verschwindet.

Vorzugsweise wird die Acetalisierung mit dem

Anstelle des n-Butanols können im Prinzip für die Acetalisierung auch andere kurzk ttige Alkanole oder Alkandiole ähnlicher Molekülgröße wie z. B. Propanol, Pentanol, Hexanol oder Propylenglykol verwendet werden; doch ist n-Butanol wegen der Summe seiner vorteilhalten Eigenschaften wie z. B. Siedepunkt, Abtrennbarkeit von den Fettalkoholen, Vermischbarkeit des Butylglykosids mit den Fettalkoholen die bevorzugte Substanz.

Nach dem Ausreagieren der Glykose, was man an dem Aufhören der Bildung von Reaktionswasser erkennen kann, wird der vorzugsweise auf Reaktionstemperatur vorgewärmte Fettalkohol in der gewählten Menge, die vorzugsweise 5 bis 7 Mol pro Mol Glykose beträgt, so unter Vakuum in das Reaktionsgefäß hinzudosiert, daß man gleichzeitig das freiwerdende Butanol abdestillieren kann.

Als primäre Alkohole werden insbesondere die Fettalkohole, d. h. die höheren aliphatischen primären C12- bis C18-Alkohole verwendet, wobei es sich vorzugsweise um gesättigte und insbesondere um geradkettige Alkohole, wie sie durch die Hydrierung von nativen Fettsäuren im technischen Maßstab erhalten werden können, handelt. Typische Vertreter der höheren aliphatischen Alkohole, die nach dem erfindungsgemäßen Verfahren verwendet werden können, sind z.B. die Verbindungen n-Dodecylalkohol, n-Tetradecylalkohol, n-Hexadecylalkohol, n-Octadecylalkohol, n-Octylalkohol, n-Decylalkohol, Undecylalkohol, Tridecylalkohol. Da die Fettalkohole bevorzugt aus natürlichen Fettquellen stammen, kommen üblicherweise auch Gemische technischer Fettalkohole als Reaktionspartner in Betracht, beispielsweise ein technisches Gemisch aus etwa 3 Gewichtstellen Laurylalkohol und 1 Gewichtstell Myristylalkohol. Zwar ist im Prinzip jeder längerkettige Alkohol, der eine primäre Alkoholgruppe enthält, für die Umsetzung geeignet. also auch primäre Alkohole mit Anteilen an verzweigten Kohlenstoffketten, wie z. B. die sogenannten Oxoalkohole; jedoch liegt der Schwerpunkt des Verlahrens bei der Herstellung von Tensiden, die ausschließlich aus nachwachsenden Rohstoffen herstellbar sind.

Als Vakurum werden hier Unterdrücke bis herab zu 10 mbar eingestellt. Durch diesen synchronen Austausch von Fettalkohol gegen Butanol erzielt man nicht nur eine erwünschte hohe Raum/Zelt-Ausbeute, weil man so die Reaktionsgefäße relativ klein dimensionieren kann, sondern es hat sich gezeigt, daß man auf diese Weise auch den Anteil an Alkylmonoglykosiden im Reaktionsprodukt in Richtung des Entstehens höherer Anteile beeinflussen kann. Nach einer bevorzugten Variante wird dieses Verfahrensmerkmal der Fettalkoholzugabe so gestaltet, daß man unterge ordnete Mengen des

55

Fettalkohols, worunter 0,5 bls 10 Gew:-% des pesamten Fettalkohols der zum Einsatz gelangt. verstanden werden, bereits mit der feindispergierten Butanol/Glykose-Suspension in die Reaktion einführt. Auf diese Weise läßt sich die Stabilisierung der Glykose/Butanol-Dispersion verbessern. Nach Beendigung der Fettalkohol-Zudoslerung wird im allgemeinen noch nachgerührt, um auf diese Weise die Umacetallsierungsreaktion bis zu dem jewells gewünschten Umsetzungsgrad zu steuern. Dabel ist es nach diesem Verlahren prinzipiell möglich, die Umacetalisierungsreaktion so zu führen, daß praktisch kein Butylglykosid mehr im Reaktionsgemisch vorhanden ist, worunter man versteht, daß die Butylglykosidanteile unterhalb von 1 Gew.-% liegen. In vielen Fällen ist es jedoch erwünscht, daß das Endprodukt noch bestimmte Anteile an Butylglykosid enthält.

Es hat sich gezeigt, daß die Anwesenheit von Butylglykosid im Reaktionsendprodukt in mehrfacher Hinsicht von Vorteil ist, so daß man nach einer bevorzugten Ausführungsform das Verfahren so lenkt, daß wenigstens 2 und maximal 30 Gew.-% Butylglykosid im Reaktionsgemisch verbielben. Durch den Butylgiykosid-Anteil wird die Fließfähigkelt des Reaktionsgemisches verbessert, so daß sich der Fettalkohol-Überschuß leichter abdestillieren läßt. Auch die Hellfarbigkeit und Alkalistabilität des Endprodukts wird durch die Anwesenheit des Butyigiykosids vorteilhaft beeinflußt; schließlich sich der Butylglykosidantell anwendungstechnisch vorteilhaft bemerkbar.

Um die gewünschten Butylglykosidantelle zu erhalten, wird nach dem Abdestillieren des Butanols und vor der Neutralisation des Katalysators vorzugsweise noch eine Nachrührzeit von bis zu ca. 1 Stunde vorgesehen, während der man das Reaktionsgemisch bei Normaldruck und einer Temperatur zwischen 100 und 115 °, insbesondere bei ca. 110 °, rührt. Auf diese Weise kann die Umsetzung des Butylglykosids mit dem Fettalkohol gezielt weitergeführt werden. Der Restgehalt an Butylglykosid kann durch Bestimmung der abdestillierten Butanolmenge oder durch Analysen von Produktproben ermittelt werden.

Für die Neutralisation des Katalysators eignen sich prinzipiell alkalisch reagierende organische oder anorganische Verbindungen, deren Neutralisationsprodukte die weltere Aufarbeitung bzw. Anwendung nicht beeinträchtigen. Vorzugsweise werden solche alkalischen Verbindungen benutzt, deren Neutralisationsprodukte die Filtrierbarkeit des schwachalkalisch (wenigstens pH 8) eingestellen Reaktionsgemisches nicht beeinträchtigen bzw. verbessern. Besonders bevorzugt sind solche alkalischen Verbindungen, die bei der Neutralisation kein freies Neutralisationswasser bilden. Geelgnete anorganische und organische alkalische Vergeneten der Neutralisationswasser bilden.

bindungen sind beispielsweise Calciumhydroxid, Magnesiumhydroxid, Magnesiumoxid oder - carbonat, Natriumcarbonat, Kaliumcarbonat, Natriummethylat oder -ethylat, Magnesiummethylat oder -ethylat, Natrium- bzw. Magn siumpropylat oder -butylat, vorzugsweise die Magnesiumalkoholate oder Magnesiumoxid, sowie die Zeolithe NaA und NaX, bzw. NaA in Mischung mit Calciumhydroxid (Verhältnis 10 : 1 bis 1 : 1), wobei der Zeolith NaA vorzugsw ise weniger gebundenes Wasser als dem Gleichgewichtswert entspricht, enthält.

Nach der Zugabe der alkalischen Verbindung unter Rühren und Einstellen des leicht alkalischen pH-Wertes von wenigstens pH 8, vorzugsweise pH 9 bis 10, wird vorzugsweise das Reaktionsgemisch bei ca. 80 bis 100 °C filtriert, wobei für Laboransätze die Üblichen Filternutschen verwendet werden. Für die Filtration technischer Ansätze werden im aligemeinen Gewebefilter benutzt. Nach einer weniger bevorzugten Ausführungsform des Vertahrens wird das Reaktionsgemisch nach der Stufe der Neutralisation und des Alkalischmachens nicht filtriert. In diesem Fall sind zweckmäßigerweise sowohl der saure Katalysator als auch die alkalische Verbindung zum Desaktivieren des Katalysators so zu wählen, daß ihre Umsetzungsprodukte im Reaktionsgemisch dessen Anwendung nicht beeinträchtigen. Beispielsweise kommen dann saure tonenaustauscherharze als Katalysatoren und basische Calciumverbindungen bzw. Sllikate weniger bzw. nicht in Betracht.

Für die Abdestillation des Fettalkoholüberschusses sind produktschonende Vakuumdestiliations-Methoden zu wählen, bei denen die sogenannte Sumpftemperatur bei solchen Werten gehalten werden kann, bei denen das Alkylglykosid thermisch stabil ist. Dies bedeutet. daß die Sumpftemperatur den Wert von 160 °C möglichst nicht überschreiten soll. Für Destillationen von Laboransätzen können die dafür üblichen Vakuumsdestillationsgeräte bei einem Vakuum von ca. 0.01 mbar benutzt werden. Bel technischen Ansätzen im Produktionsmaßstab wird die Abdestillation des Esttalkohols vorzugsweise nach einem bezweistufigen Verfahren durchgeführt, wobel in einer ersten Stufe eine Abreicherung des Fettalkoholanteils auf Werte von ca. 40 bis ca. 20 % mit einem Dünnschichtverdampfer oder einem Fallfilmverdampler durchgeführt wird. Diese erste Stufe dient auch der Entgasung des Reaktionsgemisches. In einer zweiten Stufe wird mit einem Kurzwegverdampfer die weltere Fettalkohol-Abreicherung auf den gewünschten Endwert eingestellt. Dieser Endwert kann, bezogen auf das Endprodukt, bei Werten unterhalb 0,5 Gew.-% liegen, wenn das Produkt praktisch frei von Fettalkohol sein soll. Für den Fall, daß gezielt Fettalkoholantelle im Endprodukt erwünscht sind, können die Werte bei 3 bis 5

von 3 bis 5 Gew.-% anwendungstechnische Vorteile bringen.

Für die schonende Auftrennung von temperaturempfindlichen Substanzgemischen gilt generall. daß sich zur schonenden Verdampfung bei reduziertem Druck Fallfilmverdampfer und insbesondere Dünnschichtverdampfer besonders gut ignen, weil sich in diesen Geräten xtrem kurze Verweilzeiten bei den rfordertichen höheren Temperaturen erreichen lassen. In dem vorliegenden Fall eignet sich zur Abreicherung des Überschüssigen Fettalkohols mlt 10 bis 18 Kohlenstoffatomen vom Alkylglykosid ats eigentlichem Produkt besonders der Dünnschichtverdampfer. Als Dünnschichtverdampfer bezeichnet man solche Verdampfer, in denen ein hochviskoses schwer siedendes Gemisch auf eine beheizte Wand aufgegeben und dort durch rotlerende Wischelemente mechanisch verteilt wird. Dabei werden dünne Flüssigkeitsschichten bzw. Flüssigkeitsfilme erzeugt, und die Filmoberflächen werden ständig erneuert. Die entstehenden Dämpfe strömen entgegen dem Fluß des Produktfilms und verlassen den Verdampfer in den außen angeordneten Kondensator. lm schichtverdampfer wird ļπ aligemeinen bei Drucken von nur einigen mbar gearbeitet und die Verwelldauer für das Produkt beträgt nur wenige Sekunden.

In einer 2-stufigen Anlage, wie sie in dem erfindungsgemäßen Verfahren bevorzugt benutzt wird, fungiert der Dünnschichtverdampfer auch als Vorentgaserstufe für den in zweiter Stufe benutzten Kurzwegverdampfer. Permanente Gase, die in der viskosen Flüssigkelt gelöst sind, werden so im Zuge der Abreicherung des Reaktionsproduktes an überschüssigem Fettalkohol im Dünnschichtverdampfer aus der Flüssigkelt entfernt.

Bei den bevorzugt eingesetzten Kurzwegverdampfern handelt es sich im Prinzip um Wischfilmverdampfer mit einem im Verdampfer eingebauten Kondensator. Diese Geräte eignen sich zur Destillation hochsiedender und temperaturempfindlicher Produkte im Bereich 10" bis 10" mbar. Ähnlich wie bei dem Dünnschlichtverdampfer wird auch bei dem Kurzwegverdampfer die Flüssigkeit mechanisch auf der Heizfläche durch Wischer verteilt. Erfindungsgemäß wird im Kurzwegverdampfer als zweiter Stufe der überschüssige Alkohol auf praktisch beliebige Restgehalte, die unter 1 % liegen können, entlernt. Die 2-Stulen-Anordnung mit Dünnschichtverdampfer und Kurzwegverdampfer gestattet hohe Durchsätze in Verbindung mit der gezielten Einstellung des erwünschten Restgehaltes an Fettalkohol im Endprodukt. Für technische Zwecke lassen sich Dünnschicht- und KurzwegverDulinschichtverdampfer, ohne weiteres möglich sind. Die erfindungspemäß bevorzugte Verfahrensvariante mit der 2-stufigen Fettalkoholabreicherungsanlage läßt sich prinzipiell auch in der passenden Dimensionierung für die Aufarbeitung von Laboransätzen verwenden.

Im Anschluß an das eigentliche Alkylglykosid-Herstellungsverfahren und nach Entlemung des Fettalkohol-Überschusses wird das Reaktions-Endprodukt, das im erkalteten Zustand eine schwach g ibliche wachsartige Masse bildet, vorzugsweise wegen der besseren Handhabbarkeit in eine wäßrige Paste mit ca. 60 % Wirkstoffgehalt übergeführt, in besonderen Fällen, wenn hohe Ansprüche an die Farblosigkeit des Endprodukts gestellt werden, kann gleichzeitig mit der Herstellung der wäßrigen Paste eine Bleiche mit Wasserstoffperoxid oder einer organischen Persäure, wie z. B. Dodecandipersäure vorgenommen werden. Bei korrekter Durchführung des erfindungsgemäßen Verfahrens ist jedoch im allgemeinen eine Bleichung des Endprodukts nicht erforderlich.

Gegenstand der vorliegenden Erfindung sind auch bestimmte Alkytglykosid-Gemische als neue Erzeugnisse, wie sie nach dem hier tieschriebenen und beanspruchten Verlahren erhalten werden können. Als Erzeugnis im weitesten Sinne wird eine oberflächenaktive Alkylglykosid-Spezies beansprucht, deren Menge an Alkylmonog ykosid, bezogen auf die Gesamtmenge an Alkylmonoglykosid und Alkytoligoglykosid, deutlich über 70 Gew.-%. vorzugsweise bei 70 bis 90 Gew.-%, und insbesondere bei 75 bis 90 Gew.-% liegt. Dabei setzt sich die Gesamtmenge aus Alkylmonoglykosid und Alkyl oligoglykosid so zusammen, daß rein rechnerisch der mittlere Oligomerisierungsprad maximal 1,35 beträgt. Als weitere wesentliche Komponente enthält das Alkylglykosid Polyglykosen, d. h. das neue Erzeugnis besteht in erster Linie im wesentlichen aus den drei Komponenten Alkylmonoglykosid. Alkyloligoglykosid und Polyglykose.

Der Ausdruck "das Erzeugnis besteht im wesentlichen aus 3 Komponenten" bedeutet im vorliegenden Fall, daß einerselts der Anteil an kurzkettigen Alkylglykosiden, beispielswuise Butylglykosid, durch die angepaßte Verfahrensführung so reduziert worden ist, daß im Erzeugnis weniger als 1 Gew.-% vorliegt und daß die Abdestillation des Überschüssigen Fettalkohols so well durchgeführt worden ist, daß davon weniger als 0.5 Gew.-% im Produkt verbleiben. Unter Alkyloligoglykosiden werden hier die Alkyldiglykoside, die Alkyltriglykoside und höhere Homologe verstanden, wie sie nach gängigen Analysenmethoden noch eindeutig erfaßt und zugeordnet werden können. Bei den nach dem erfindungsgemäßen Verfahren hergestellten Pro-

;

25

dukten bestanden diese Alkyloligogiykoside praktisch nur aus den Di- und Triglykosidverbindungen. Bei der dritten Komponente handelt es sich um Polyglykosen, die bei der Alkylierungsreaktion in einer Nebenreaktion durch Kondensation der Giykosernoleküle untereinander gebildet werden. Das durchschnittliche Molekulargewicht dieser Polyglykosen liegt bei 2000 bis 10 000. Es wurde überraschenderweise gefunden, daß die Anwesenheit dieser Polyglykosen die Lager- und Alkalibeständigkeit des Produkts nicht beeinträchtigt, und daß darüber hinaus die Tensidwirkung des Alkylglykosids, d. h. des Gemisches aus Alkylmonoglykosid und Alkyloligoglykosid nicht vermindert wird.

5

20

30

Vorzugsweise besteht das Alkylgiykosid-Gemisch im wesentlichen aus der Dreier-Kombination aus 50 bis 95 Gew.-%, vorzugsweise 85 bis 91 Gew.-% Alkylmonoglykosid, 2 bis 25 Gew.-%, vorzugs weise 4 bis 20 Gew.-% Alkyloligoglykosid, und 5 bis 30 Gew.-%, vorzugsweise 5 bis 25 Gew.-% Polyglykose.

Nach einer weiteren bevorzugten Ausführungsform umfaßt das erfindungsgemäße Erzeugnis eine Vierer-Kombination, bestehend im wesentlichen aus:

45 bis 90 Gew.-%, vorzugsweise 50 bis 90 Gew.-% Alkylmonoglykosid, 2 bis 22 Gew.-%, vorzugsweise 3 bis 20 Gew.-% Alkyloligoglykosid, 4 - 25 Gew.-% Polyglykose und 3 bis 30 Gew.-% Butylglykosid.

Der Ausdruck "bestehend im wesentlichen aus" soll auch hier bedeuten, daß Anteile an Überschüssigem Fettalkohol praktisch vollständig, d. h. auf Werte von weniger als 0,5 Gew.-% destillativ entiernt worden sind. Auch hier setzt sich die Gesamtmenge aus Alkytmono- und Alkytoligoglykosid so zusammen, daß rein rechnerisch der mittlere Oligomerisierungsrad maximal 1,35 beträgt. Die bevorzugte Glykose des Erzeugnisses ist die Glucose; es können aber in untergeordneten Mengen auch Isomerisierungsprodukte, die nicht zu den wesentlichen Bestandtellen zählen, vorliegen.

Schließlich umfaßt eine ebenfalls bevorzugte Form des Alkylglykosid-Gemisches eine Fünfer-Kombination, die zusätzlich als 5. Komponente noch 0.5 - 5. vorzugsweise 2.5 - 4 Gew.-% Fettalkohol enthält, wobel die Übrigen vier wesentlichen Bestandteile in einer entsprechend verminderten Menge vorliegen. Ein wesentlicher Anteil an freiem Fettalkohol mit 12 - 18 Kohlenstoffatomen kann in vielen Fällen aus anwendungstechnischen Gründen erwünscht sein. Dieser Fettalkoholanteil wird am einfachsten dadurch eingesteilt, daß man die destillative Abreicherung des Überschüssigen Fettalkohols nur bis zu der gewünschten Endmenge durchführt.

Für die Verfahrensprodukte wurde die Menge des überschüssigen Fettalischols gaschromatographisch bestimmt. Die Bestimmung

der Alkyimono- und Alkyioligogiucosid-Gehalte wurde entweder mittels Hochlelstungsflüssigchromatographie (HPLC) oder mittels Gaschromatographie (GC) durchgeführt. Die Peak-Zuordnung bei der GC-Methode erfolgte durch Kopplung mit dem Massenspektrometer und Vergleich mit Standardsubstanzen. Die HPLC-Peakzuordnung wurde durch Fraktionlerung und NMR-spektroskopische Identifizierung der Fraktionen sowie durch Vergleich mit Standards vorgenommen. Die Anteile an Polyglucose wurden mittels präparativer HPLC isoliert. Die analytische identifizierung der auf diese Weise isolierten Komponenten erfolgte NMRspektroskopisch sowie über enzymatische Zuckertests. Der molekulare Gewichtsbereich der Polyglucose wurde durch Gelpermeationschromatographie (GPC) bestimmt. Nebenprodukte, die beispielsweise durch isomerisierung der Glucose zu Fructose oder durch Reaktion der Fettalkohole mit sich selber entstanden sein konnten, bzw. die durch die Neutralisation des sauren Katalysators gebildeten Salze, wurden nicht näher identifiziert.

Beispiele

Die folgenden Beispiele wurden alle mit Glucose als der bevorzugten Glykose durchgeführt. In den meisten Beispielen wurde die Glucose in wasserfreier handelsüblicher Form verwendet. Prinzipiell kann jedoch auch die 1 Mol Wasser enthaltende übliche Dextrose eingesetzt werden.

Beispiel 1: Dieses Beispiel beschreibt das erfindungsgemäße Verfahren unter Verwendung von wasserfreier Glucose im Labormaßstab.

Normal-Butanol wurde in einer Menge von 222g (3 Mol) in einem 2 - Liter Mehrhalskolben mit Rührer, Thermometer und Tropftrichter und Destillationsaufsatz zur Wasserabscheidung vorgelegt und dazu 2.29 (11,2 mMoi) Paratoluoisultonsäure als Katalysator gegeben. Die Mischung wurde auf 110 °C erhitzt. Dann wurde eine Suspension von 180 g (1 Mol) wasserfreier Glucose in welteren 222 g (3 Mol) Normai-Butanol portionsweise, und zwar in 10 Portionen, in Abständen von 5 Minuten hinzu Dabel dosiert. bildete sich ein Reaktionsgemisch. Während des Dosierungsvorganges wurde die Hauptmenge des entstehenden Reaktionswassers zusammen mit Butanoi bei Normaldruck abdestilliert (Destillatmenge: 90,7 g, Wassergehalt 14,3 % bestimmt nach Karl Fischer). Anschließend wurden 1164 g (6 Mol) eines auf circa 80 °C vorgewärmten C12/C14 - Fettalkohols (Gemisch aus circa 75 Gew.-% Dodecanol und circa 25

grandizating water Butanol abdestillert wurde. Dazu wurde zunächst der Druck auf 800 mbar eingestellt und anschließend allmählich auf 10 mbar reduziert. (Destillatmenge 334 g). Nach dem Abdestillieren des Butanols wurde das Gemisch noch 30 Minuten lang bei 110 °C und Normaldruck gerührt und dann auf 90 °C abgekühlt. Anschließend wurde durch Zusatz von 1,93 g (16,9 mMol) Magnesiumethylat der Katalysator desaktiviert, wozu man weitere 30 Minuten bei 90 C rührte. Reaktionsgemisch hatte anschließend einen pH-Wert von 9-10. Nach Filtration bei 90 °C durch eine beheizte Nutsche wurde das Produkt zur Abtrennung des überschüssigen Fettalkohols im Vakuum bei 0,01 mbar und einer Sumpftemperatur von maximal 160 C destilliert. Die Destillatmenge betrug 1044 g, der Destillationsrückstand, also das Endprodukt, betrug 298 g. Dieser Rückstand wurde bei 70 bis 80 °C mlt Wasser zu einer 60-%igen Paste verarbeitet.

Produktkenndaten: OH-Zahl 691; Säurezahl 2.0; restlicher Fettalkohol 3,1 Gew.-%; Butylglucosid 18.0 Gew.-% Dodecyl/Tetradecylmonoglucosid 54 Gew.-%; Dodecyl/Tetradecyloligoglucosid (hauptsächlich Maltosid) 3,5 Gew.-%; Polyglucose circa 20 gew.-% (MG ca. 2500). Diese Werte wurden mit HPLC-Methoden bestimmt.

Farbwerte des Produktes (40 %ig in Wasser/Isopropylalkohol):

Lovibond-Farbzahlen 6 (gelb); 1,4 (rot). Eine Probe der wäßrigen Paste wurde mit 0,5 % H_2O_2 - (bezogen auf das Produkt) als 35 %ige Lösung versetzt. Dann wurde 1 Stunde tang bel 80 °C gerührt. Ein pH-Wert von ca. 8 wurde durch Zugabe von NaOH eingestellt. Lovibondzahlen nach der Bleiche: 0,8 (gelb); 0,3 (rot). Ein ähnliches Produkt wird erhalten, wenn man anstelle des C_{12}/C_{14} -Fettalkohols äquivalente Mengen eines C_{2}/C_{13} -Oxoalkohols mit ca. 25 % hauptsächlich 2-Methylverzweigung (Dobanol 23) einsetzt.

Beispiel 2: Dieses Beispiel beschreibt das Verfahren unter Verwendung von wasserheitiger Glucose.

Ansatz und Verfahrensdurchführung wie in Beispiel 1; die Glu

cose wurde jedoch als 198 g Dextrose (Glucose mit 1 Mol Wasser) eingesetzt. Außer daß bei der Acetalisierung mit Butanol die zu sätzliche Wassermenge von circa 18 g abdestilliert wurde, waren keine wesentlichen Abweichungen zum Beispiel 1 festzustellen.

gestellten Produkts.

Eine 60 %ige wäßrige Paste des Produkts wurde mit konz. NaOH auf pH 12 - 13 eingestellt und 0.5 Stunden lang auf 100 °C erhitzt. Nach dem Abkühlen auf Raumtemperatur wurde durch Zugabe von isopropylalkohol auf 40 Gew.-% Aktivsubstanzgehalt (Produktmenge) eingestellt. Dann wurden die Farbzahlen (rot und gelb) nach Lovibond gemessen. Es wurde eine 1-Zoll-Küvette verwendet (siehe DGF-Einheitsmethoden, Abteilung C, Fette, C-IV 48 (52), Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1984).

Das Produkt des Beispiels 1 wurde nach dieser Vorschrift behandett. Anschließend wurden die Lovibond-Farbzahlen mit 18 (gelb) und 3 (rot) ermittett.

Anwendungstechnische Versuche mit dem Produkt des Beispiels 1 haben gezeigt, daß für die meisten Verwendungszwecke das erfindungsgemäße Produkt mit dieser Farbqualität als Eigenschaft nach dem obigen Testverfahren ausreicht.

Mit dem gebleichten Produkt des Beispiels 1 wurde ebenfalls der Alkalistabilitätstest durchgeführt. Danach wurden die unveränderten Lovibond-Farbzahlen 0,8 (gelb) und 0,3 (rot) gemessen. Das besonders alkalistabile gebleichte Produkt empfiehlt sich für solche Einsatzzwecke, wo hohe Antorderungen an den Weißgrad einer Formulierung gestellt werden.

Beispiel 4: Dieses Beispiel beschreibt die Durchführung des Verfahrens im Produktionsmaßstab.

Es kamen die folgenden Stoffmengen zum Einatz:

Dodecyl/Tetradecylalkohol-Mischung (Lorol S) 1620 kg;

Butanol 871 kg;

30

Paratoluoisullonsäure 3.5 kg:

Magnesiumethylat 2.0 kg:

Glucose (wasserfrei) (Puridex feinkörnig) 250 kg.

In einer Reaktionseinheit bestehend aus einem 3.2 m³ Reaktor mit Destillationskolonne und einem externen Filüssigkeitskreislauf aus einer Pumpe und einem Wärmetauscher wurde die Hälfte der Butanolmenge zusammen mit dem Katalysator vorgelegt und auf 114 °C erhitzt. Dann wurde eine Suspension der Glucose in der restlichen Butanolmenge zunächst in einem Stator/Rotor-Mischer (Typ Supraton) felndispergiert, wobel sich diese Suspension auf 75 °C erwärmte. Die Zugabe der Glucose/Butanol-Suspension erfolgte kontinuierlich innerhalb von 1,3 Stunden. Während dieser Zeit wurden 65 kg eines Butanol/Wasser-Gemisches bei

einem Unterdruck von 900 mbar abdestilliert. Die zur Entfernung dieses Gemisches und zur Aufrechterhaltung der Reaktionstemperatur notwendige Energie wurde über einen externen Flüssigkeitskreistauf, bestehend aus einer Pumpe und einem Wärmetauscher, durch den das Reaktionspemisch geleitet wurde, gewährleistet. Die nach der Phasentrennung des Butanol/Wasser-Gemisches erhaltene wassergesättigte Butanolphase wurde auf den Kopf der Kolonne zurückgeführt. Nach der Bildung des Butylglucosids betanden sich 725 kg freies Butanol im Reaktionsgemisch. Im Anschluß an die Butylglucosid-Bildung wurde bei einem Unterdruck von 800 bis 10 mbar der auf Reaktionstemperatur vorgewärmte Fettalkohol kontinuierlich hinzugegeben und gleichzeitig das frei werdende Butanol abgetrennt. Für die Austauschreaktion Butanol/Fettalkohol und für die Abdestillation des Restbutanois wurden insgesamt 1,8 Stunden Reaktionszelt benötigt. Nach einer Nachreaktionszelt von 1 Stunde bel 110 °C und einem Druck von 1013 mbar wurde auf 90 °C abgekühlt und dann das Magnesiumethylat zur Desaktivierung des Katalysators hinzu gegeben. Nach 30 Minuten wurde ein pH-Wert des Reaktionsgemisches von 8.5 gemessen. Nach der Filtration bei 85 °C durch Beuteffilter wurden 1885kg des Reaktionsgemisches in einen Dünnschichtverdampfer Typ Sambay (0,75 qm Verdampferfläche, 8 mbar, ca. 170 °C) geleitet und der überschüssige Fettalkohol bis auf einen Abreicherungswert von ca. 32 % abgetrennt. Das bei 135 C gehaltene Produkt war niedrig viskos und konnte leicht in einen Kurzwegverdampfer mit Rollenwischer vom Typ KD 75, Fa. Leybold, übergeführt werden. Der Kurzwegverdampfer wurde unter den folgenden Bedingungen betrieben: Verdampferfläche 0.75 gm; Arbeitsdruck 0.075 mbar. im Verdampfer gemessen; Beheizungstemperatur 160 C; Sumpfablauftemperatur 152 C; ····· Das Produkt wog nach Verlassen des Kurzwegverdampfers 436 kg; Fettalkoholgehalt 4,9 Gew.-%. Lovibond-Farbwerte (des 40 %igen Produkts): 5,5 (gelb) und 1.3 (rot). Zusammensetzung des Produkts (mit GC und

HPLC ermittelt): Monoglucosid 55 Gew.-%, Oligo-

glucoside 18 Gew.-%, Oligomerisierungsgrad 1,3

(berechnet aufgrund der Gewichtsanteile). Polygiu-

cose 8 Gew.-%, Butylglucoside 12 Gew.-%., Fettal-

kohol 3 Gew.-%.

Ansprüche

10

- 1. Verfahren zur Herstellung von oberflächenaktiven Alkytglykosiden mit im wesentlichen C₁₂bis C₁₂-Alkyl- bzw. Alkenytresten nach der Umacetalisierungsmethode mit Butanol, umfassend die folgenden Verfahrensschritte:
- a) Butanol wird zusammen mit einem sauren Katalysator im Reaktionsgefäß vorgelegt:
- b) die Butanolmenge wird so gewählt, daß sie, bezogen auf 1 Mol der Glykose, 4 bis 10 Mol, vorzugsweise 6 bis 8 Mol, beträgt;
- c) von der Butanolmenge wird ein Tell, vorzugsweise etwa die Hälfte zusammen mit dem Katalysator vorgelegt und die andere Hälfte zur Suspendierung der Glykose verwendet;
- d) als Katalysator wird eine sauer reagierende Verbindung, insbesondere eine Säure aus der Gruppe bestehend aus Schwefelsäure, Phosphorsäure, Paratoluoisulfonsäure und sulfosauren lonenaustauscherharzen, in einer Menge von vorzugsweise. 0.005 bis 0,02 Mol pro Mol der eingesetzten Glykose verwendet;
- e) Erhitzen des Butanol/Katalysator-Gemisches auf Rückflußtemperatur;
- f) Zugabe einer vorzugsweise vorgewärmten Suspension des übrigen Butanots und der Glykose unter portionsweiser oder kontinulerlicher Zudosierung unter Rühren so, daß das Reaktionspernisch praktisch ktar bielbt;
- g) unmittelbares Abdestillieren des freiwerdenden Wassers als Butanol/Wasser-Gernisch;
- h) es wird vorzugsweise ein leichtes Vakuum von etwa 800 bis 950 mbar während oder nach der Zudosierung der Butanol/Glykose-Mischung angelegt und unter weiterer Wärmezufuhr und Rühren die Abdestillation des Reaktionswassers beendet:
- i) anschließend wird der vorgewärmte Fettalkohol in einer Menge von 2 bis 20 Mol pro Mol Glykose, vorzugsweise kontinuierlich zudosiert und gleichzeitig das Butanol im Vakuum abdestilliert:
- . j) die Abdestillation des Butanois wird so gesteuert, daß 0 bis 30 Mol-% Butytglykosid, bezogen auf 1 Mol der Glykose, im Reaktionsgemisch verbleiben;
- k) das Reaktionsgemisch wird auf eine Temperatur unterhalb 85 °C abgeklihit und der saure Katalysator mit einer organischen oder anorganischen basischen Alkali-, Erdalkali- oder Aluminiumbzw. Alkali/Aluminium verbindung neutralisiert und darüber hinaus auf einen pH-Wert von wenigstens 8, vorzugsweise etwa 9, eingestellt;
- i). vorzugsweise wird eine Filtration des Reaktionsgemisches durchgeführt, und zwar vorzugsweise bei einer Temperatur von 80 bis 90 °C;

abdestilliert.

- 2. Verfahren nach Anspruch 1, dadurch gekennz ichnet, daß man als Glykose die Glucose, insbesondere in Form der wasserfreien feintelligen Glucose verwendet.
- 3. Verlahren nach einem der Ansprüche 1 oder
 2. dadurch gekennzeichnet, daß man als sauren 10.
 Katalysator die Paratoluolsulfonsäure verwendet.
- Verfahren nach einem der Ansprüche 1 bis
 dadurch gekennzeichnet, daß man pro Mol Glykose 5 bis 7 Mol des Fettalkohols einsetzt.
- Verfahren nach einem der Ansprüche 1 bis
 dadurch gekennzeichnet, daß man die Suspension der Glykose in Butanol fein dispergiert, insbesondere durch Verwendung eines Inline-Mischers.
- 6. Verlahren nach einem der Ansprüche 1 bis 5. dadurch gekennzeichnet, daß man zur Neutralisation des Katalysators ein Magnesiumalkoholat, insbesondere Magnesiumethylat, oder Zeolith NaA, insbesondere in Mischungen mit Calciumhydroxid, verwendet.
- 7. Verlahren nach einem der Ansprüche 1 bis 6. dädurch gekennzeichnet, daß man die Abdestillation des Fettalkohols zweistufig durchführt und in einer ersten Stufe in einem Dünnschichtverdampter eine Abreicherung auf Werte von ca. 40 bis 20 % und in einer zweiten Stufe in einem Kurzwegverdampfer auf einen Endwert von unterhalb 0,5 Gew.-% Fettalkohol, vorzugsweise auf einen Endwert von 3 bis 5 Gew.-% Fettalkohol einstellt.
- 8. Erzeugnis erhältlich nach dem Verfahren nach einem der Ansprüche 1 bis 7. dadurch gekennzeichnet. daß es ein Alkylglykosid enthält, bei dem die Menge an Alkylmonoglykosid, bezogen auf die Gesamtmenge an Alkylmonoglykosid und Alkyloligoglykosid deutlich über 70 Gew.-%, vorzugsweise bei 70 bis 90 Gew.-% liegt.
- 9. Erzeugnis nach Anspruch 8, dadurch gekennzeichnet, daß diese Menge an Alkylmonoglykosid bei 75 bis 90 Gew.-% liegt.
- 10. Erzeugnis nach den Ansprüchen 8 oder 8, dadurch gekennzeichnet, daß die Gesamtmenge aus Alkylmonoglykosid und Alkyloligoglykosid sich so zusammensetzt, daß rein rechnerisch der mittlere Oligomerisierungsgrad maximal 1,35 beträgt.
- Erzeugnis nach einem der Ansprüche 8 bis
 dadurch gekennzeichnet, daß es im wesentlichen aus den drei Komponenten Alkytmonogiykosid, Alkyloligoglykosid und Polyglykose besteht.
- 12. Erzeugnis nach einem der Ansprüche 8 bis 11. dadurch gekennzeichnet, daß es im wesentlichen aus einer Dreierkombination von 50 bis 95 Gew.-%, vorzugsweise 85 bis 91 Gew.-% Alkylmonoglykosid, 2 bis 25 Gew.-%, vorzugsweise 4 bis

besteht.

- 13. Erzeugnis nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß es im wesentlichen aus einer Viererkombination aus 45 bis 90, vorzugsweise 50 bis 90 Gew.-% Alkytmonoglykosid, 2 bis 22, vorzugsweise 3 bis 20 Gew.-% Alkytoligoglykosid, 4 bis 25 Gew.-% Polyglykose und 3 bis 30 Gew.-% Butytglykosid besteht.
- 14. Erzeugnis nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, daß es zusätzlich als fünfte Komponente noch 0,5 bis 5, vorzugsweise 2,5 bis 4 Gew.-% Fettalkohol, enthält.
- 15. Erzeugnis nach einem der Ansprüche 8 bis
 14. dadurch gekennzeichnet, daß die Glykose die Glucose ist.

EP 88 11 1020

EINSCHLÄGIGE DOKUMENTE					
ategorie	Leuszeichnung des Dolaments mit As der maßgeblichen Teile		Betrifft Ampruch	ELASSIFIKATION DER ANMELDUNG (IEL CL4)	
X,Y	EP-A-0 092 875 (PROCTER * Insgesamt *	& GAMBLE)	1	C 07 H 15/04	
Y	US-A-3 974 138 (B.W. LEW * Insgesamt *)	1		
γ.	EP-A-0 132 046 (PROCTER * Ansprüche 1,2,7,8 *	& GAMBLE)	1		
:		:			
	•			RECHERCHIERTE SACHGERIETE (Ist. C.4)	
				C 07 H 15/00	
.					
				g en	
Der vor	Segende Recherchenbericht wurde für alle P				
	<u> </u>	Abstration for Actoria		Netr	
DEI		08-11-1988	BRENN	IAN J.	
X : von i Y : von i ander A : techa	ATEGORIE DER GENANNTEN DOKUMENT seconderer Bedestung ellein betrachtet seconderer Bedestung in Verbindung mit einer en Veröffestlichung derseiben Europerie ologischer Hintergrund schriftliche Offenberung		grande Hegende Ti kament, dar jedoch	ession oder Grandstize erst am oder	

ORN ISO CLAT (PO

. . -. . .