Levy processes

Hyunwoo Gu

1 Introduction to the theory of Levy processes

Here we will be able to:

- understand the main properties of Levy processes
- construct ta Levy process from an infinitely

1.1 Definition of a Levy process

Levy processes are widely used for modelings of jump dynamics.

N_t	W_t	Levy
$N_0 = 0$	$W_0 = 0$	$L_0 = 0$
inpt. incr.	inpt. incr.	inpt. incr.
sta. incr.	sta. incr.	sta. incr.
$N_t - N_s \sim Pois(\lambda(t-s))$	$W_t - W_s \sim N(0, t - s)$	$L_t - L_s \sim P(t - s)$

where $P(\cdot)$: **infinite divisible** distribution.

1.2 Stochastic continuity and cadlag paths

 L_t is stochastically continuous if $L_{t+h} \stackrel{P,h\to 0}{\to} L_t$, or $\forall \epsilon > 0$

$$P[|L_{t+h} - L_t] > \epsilon] \stackrel{h \to 0}{\to} 0$$

The sample path of Levy process follows a cadlag path.

1.3 Examples of Levy processes

The class of infinitely divisible distributions.

Definition. An RV ξ is a **infinitely divisible distribution**, if

$$\xi \stackrel{d}{\equiv} Y_1 \oplus \cdots \oplus Y_n$$

It is not true that the distribution is stable iff it is infinitely divisible.

Example 1.

Example 2.

1.4 Characteristic Exponent

Proposition. For \forall Levy process L_t

 $\exists \psi : \mathbb{R} \to \mathbb{C} \text{ such that }$

$$\phi_{L_t}(u) = \mathbb{E}\left[e^{iuL_t}\right] = e^{t\psi(u)}$$

1.5 Properties of Levy Characteristic Exponent

Levy measure.

Definition.

$$\nu(B) = \mathbb{E}[\#t \in [0,1] : \Delta X_t \in B]$$

for any $B \subset \mathbb{R} - \{0\}$

1.6 Levy-Khintchine theorem

$$\phi_{X_t}(u) = exp \left[t(iu\mu - \sigma^2 u^2/2) + \int_{\mathbb{R}} \left(e^{iux} + 1 - iux \mathbf{1}_{|x|<1} \right) \nu(dx) \right]$$

Example 1. For X_t : of bounded variation,

$$\sum_{k=1}^{n} |X_{t_k} - X_{t_{k-1}}| \xrightarrow{\max|t_i - t_{i-1}| \to 0} < \infty$$

Note that the Brownian motion is not a process of bounded variation. X_t is of bounded variation iff

$$\sigma = 0, \int_{|x|<1} x\nu(dx) < \infty$$

By letting $\sigma \equiv 0$, we have

$$\phi_{X_t}(u) = exp\left\{t\left(iu\tilde{\mu} + \int (e^{iux} - 1)\nu(dx)\right)\right\}$$

where $\tilde{\mu} := \mu - \int_{|x|<1} x d\nu(dx)$.

Example 2. For X_t : compound Poisson process,

$$\sigma = 0, \int_{\mathbb{R}} \nu(dx) = \nu(\mathbb{R}) < \infty$$

Example 3. For X_t : Subordinators,

$$X_t \ge 0$$
 a.s. $\Leftrightarrow X_t \ge X_s$ a.s.

Properties.

We have the following property:

$$\int_{|x|<1} x^2 \nu(dx) < \infty, \int_{|x|>1} \nu(dx) < \infty$$

$$J := \int_{|x| < 1} \left(e^{iux} - 1 - 0 \right)$$

1.7 Modeling of jump-type dynamics

How to estimate that the Levy measure of a Levy process from the following data?

$$X_t: X_{\Delta}$$

CIR model for the stochastic volatility is

$$c\sqrt{V_t}dW_t$$

Levy process can be used to model the properties of jobs.

Let X_t be of bounded variation, and

$$\phi_{X_{\Delta}}(u) := exp\left\{\Delta\left(iu\mu + \int_{\mathbb{R}}(e^{iux} - 1)S(x)dx\right)\right\}$$

Note that

$$\phi_{X_{\Delta}}(u) := exp\left\{\Delta\left(iu\mu + \int_{\mathbb{R}}(e^{iux} - 1)S(x)dx\right)\right\}$$

Let X_t be a Levy process of bounded variation with Levy triplet (μ, σ^2, ν) and Levy density s(x). The correct form of the characteristic exponent is given as

$$\psi(u) = iu\left(\mu - \int_{|x|<1} xs(x)dx\right) + \int_{\mathbb{R}} (e^{iux} - 1)s(x)dx$$

with μ probably equal to zero. Note that it is also true that nonzero μ can be of bounded variation.

1.8 Time-changed stochastic processes. Monroe theorem

The following are the **stylized facts** of financial data.

1. Stochastic time change

For $\{X_t\}$: Levy process, and a subordinator T(s), and thus $X_{T(s)}$. The **Monroe's theorem** states the equivalence of the set of $W_{T(s)}$ types and the set of submartingales, where W, T are possibly dependent.

Assume that $W \perp T$. Note that

$$\phi_{X_{T(s)}}(u) = \mathcal{L}_{T(s)}\left(-\psi(u)\right)$$

where $\psi(u)$ is the characteristic exponent of process X.

2. Stochastic volatility

For Black-Scholes,

$$d(\ln S_t) = (\mu - \sigma^2/2) dt + \sigma dW_t$$

where the volatility parameter $\sigma \to V_t \ge 0$. For example, Cox-Ingersoll-Ross is defined as the SDE

$$dV_t = (a - bV_t)dt + c\sqrt{V_t}dW_t$$

Quizzes

(Quiz 1-3). $X_t := bt + \sigma W_t + cN_t$, where W_t : Brownian motion, N_t : a Poisson process with λ , and W_t , N_t independent, $b, c \in \mathbb{R}$, $\sigma \geq 0$. Denote the Levy measure of this process by ν .

(Quiz 1). Find the characteristic function of this process.

(Answer).
$$exp\{iubt + \lambda t(e^{icu} - 1) - \frac{t(\sigma u)^2}{2}\}$$

(Quiz 2). What is measure ν of a Borel set B?

(Answer). $\nu(B) = \lambda$, if $1 \in B$ and 0 otherwise.

Considering that the jump part of the Levy process discussed is

- \bullet c: real number
- N_t : Poisson process with λ

Thus $\nu(B) = \lambda \mathbf{1}_{c \in B}$. Computing the integral in the characteristic exponent, returns a pointwise evaluation in the point c, $\lambda(e^{iuc} - 1)$.

(Quiz 3). Let X_t be a Levy process. What is the correct expression for $Var(X_t)$ in terms of characteristic exponent ψ ?

(Answer).
$$Var(X_t) = -t\psi''(0)$$

(Quiz 4). Let X_t be a Levy process, assuming $X_1 \sim N(0,1)$. Find the mean and the variance of X_t

(Answer). It is just the Brownian motion. Therefore, $\mathbb{E}[X_t] = 0$, $Var(X_t) = t$.

(Quiz 5). Let $X_t = bt + N_t$, where N_t is a Poisson process with λ and $b \in \mathbb{R}$. Find the Levy triplet of this process.

(Answer). $(b + \lambda, 0, \nu)$, where $\nu(B) = \lambda \mathbf{1}_{1 \in B}$ for any Borel set B.

The first term of a Levy triplet should correspond to the coefficient of the drift term, i.e. b, if X is of the form

$$X_t = bt + \sigma W_t + cN_t$$