3. The number of students arriving late at five high schools on different days of week are given

RBD:

Days of week	High School				
	Α	В	С	D	
Monday	5	4	5	7	
Tuesday	4	5	3	2	
Wednesday	4	3	4	5	
Thursday	4	4	3	2	

Is there any significant difference in the number of late arrivals among different days of the week at the significance level $\alpha = 1\%$?

- Why Two-Way ?
 - + Goal: Difference between different days
- Randonize Block Design (RBD) 9
 - + Blocks are independent
- R. Complete. B. D (RCBD)?
 - + All Blocks has a value
- With or Without
 - -> Without: Only 1 result per method I black per column

- Remember we are really interested in SSC or column/group variance (cities) as a part of SST, but we need to account for variation between the secret shoppers.
- Anything that is not SSC is error; SSE. Introducing BLOCKS, allows us to potentially reduce SSE even more by splitting the original SSE (as in One-Way) into SSB and a smaller SSE (Two-Way).
- then there are likely group/column
- Comparing SSC to the *minimized* SSE makes the test more powerful and more sensitive; SSC relative to SSE.

Note:

With Replication

Industries	Districts					
moustres	1	2	3	4		
Refrigeration	2.5, 2.7, 2.0, 3.0	13.1, 3.5, 2.7	2.0, 2.4	5.0, 5.4		
Construction Materials	0.6, 10.4	15.0	9.5, 9.3, 9.1	19.5, 17.5		
Computer services	1.2, 1.0, 9.8, 1.8	2.0, 2.2, 1.8	1.2, 1.3, 1.2	5.0, 4.8, 5.2		

		Days of week	High School			
		Days of week	Α	В	С	D
		Monday	5	4	5	7
71 6	$ \leftarrow $	Tuesday	4	5	3	2
Bluck		- Wednesday	4	3	4	5
(pay)		Thursday	4	4	3	2
X						

(olumn (school)

Days of week	High School					
Days of week	Α	В	С	D	Total yis	Ave. yi.
Monday	5	4	5	7	21	5,25
Tuesday	4	5	3	2	14	3,5
Wednesday	4	3	4	5	16	4
Thursday	4	4	3	2	13	3,25
T-+ 1	17	12	1	1/		

|4,15| 4 3,75 4 |4| = 4 (Overall mean) $\geq = 4.16=64$

Independent

· blocks do not interact $\sum_{i=1}^{a} \tau_i = 0$ and $\sum_{i=1}^{b} \beta_i = 0$

We assume

13-4.1 Design and Statistical Analysis The appropriate linear statistical model:

 $Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij} \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \end{cases}$

· treatments and blocks are initially fixed effects

Average: 45 Assume $H_i: \tau_i \neq 0$

 H_0 : $T_1 = T_2 = T_3 = T_4 = 0$ (different days) \leq

$$S_{5+} = 5^2 + 4^2 + 5^2 + \dots + 2^2 - \frac{64^2}{10} = 24$$

$$SS_{\text{Regional}} = \frac{21^2 + 14^2 + 16^2 + 13^2}{16} - \frac{64^2}{16} - 9,5$$

a = 4 b = 4

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^2 - \frac{y_{ij}^2}{ab}$$
 (13-18)

$$SS_{T-1} = \frac{1}{2} \sum_{i=1}^{n} v_i^2 - \frac{y_i^2}{2}$$
 (13-19)

$$SS_{T} = \sum_{i=1}^{2} \sum_{j=1}^{2} y_{ij}^{2} - \frac{\delta 4^{2}}{ab}$$

$$SS_{T} = \sum_{i=1}^{2} \sum_{j=1}^{2} y_{ij}^{2} - \frac{\delta ab}{ab}$$

$$SS_{Treatments} = \frac{1}{b} \sum_{i=1}^{a} y_{i}^{2} - \frac{y^{2}}{ab}$$

$$SS_{\text{Treatments}} = \frac{1}{b} \sum_{i=1}^{a} y_i^2 \cdot -\frac{y_i^2}{ab}$$
 (13-19)

(13-18)

 $SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^2 - \frac{y_{ij}^2}{ab}$

$$SS_{Blecks} = \frac{17^2 + 16^2 + 15^2 + 16^2}{4} - \frac{64^2}{16} = 0,5$$

$$SS_{\text{Blocks}} = \frac{1}{a} \sum_{i=1}^{b} y^2_{ij} - \frac{y^2_{ii}}{ab}$$
 (13-20)

$$SS_{E} = 24 - 9,5 - 0,5 = 44$$

$$SS_E = SS_T - SS_{Treatments} - SS_{Blocks}$$
 (13-21)

$$\implies MS_{\text{Treatment}} = \frac{9.5}{3}$$

$$MS_{\text{Blacks}} = \frac{0.5}{3}$$

$$MS_{\text{Treatments}} = \frac{SS_{\text{Treatments}}}{a-1}$$

$$MS_{\text{Blocks}} = \frac{SS_{\text{Blocks}}}{b-1}$$

$$MS_E = \frac{SS_E}{(a-1)(b-1)}$$

$$MS_{F} = \frac{14}{9}$$

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F ₀
Treatments	SS _{Treatments}	a - 1	$\frac{SS_{\text{Treatments}}}{a-1}$	$\frac{MS_{\text{Treatments}}}{MS_E}$
Blocks	$SS_{ ext{Blocks}}$	b- 1	$\frac{SS_{\text{Blocks}}}{b-1}$	
Error	SS_E (by subtraction)	(a-1)(b-1)	$\frac{SS_E}{(a-1)(b-1)}$	
Total	SS_T	<i>ab</i> – 1		

is true. We would reject the null hypothesis at the α -level of significance if the computed value ---> Book /371 of the test statistic in Equation 13.23 is $f_0 > f_{\alpha,a-1,(a-1)(b-1)}$.

Is there any significant difference in the number of late arrivals among different days of the week at the significance level $\alpha = 1\%$?