

Conjuntos Numéricos y Desigualdades

En esta sección, aprenderemos sobre los conjuntos numéricos y cómo la calculadora científica nos facilita la realización de operaciones dentro de ellos.

1.1

Conjuntos Numéricos

1.1.1 Números Naturales

Los números naturales son aquellos que utilizamos de forma intuitiva para contar objetos o elementos de un conjunto. Son los primeros números que aprendemos a usar y forman la base de la aritmética.

Características principales:

- O **Empiezan en el 1:** El conjunto de los números naturales se inicia con el número 1 y continúa de forma infinita.
- O **Son enteros positivos:** No incluyen fracciones, decimales ni números negativos.
- O Se usan para contar y ordenar: Su función principal es cuantificar elementos y establecer un orden entre ellos.
- O **Son infinitos:** No existe un número natural "más grande", siempre hay un siguiente.

Representación:

El conjunto de los números naturales se representa con la letra \mathbb{N} y se puede expresar de la siguiente manera:

$$\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$$

Ejemplos de números naturales:

- O La cantidad de estudiantes en un aula.
- O El número de páginas de un libro.
- O Los días de la semana.
- O La cantidad de goles marcados en un partido de fútbol.

Con los números naturales, podemos realizar las siguientes operaciones básicas:

- O **Suma (Adición):** Combina dos o más números naturales para obtener un nuevo número natural que representa el total.
 - **D Ejemplo:** 3 + 5 = 8

- O **Resta (Sustracción):** Encuentra la diferencia entre dos números naturales. El resultado siempre será un número natural si el minuendo es mayor o igual que el sustraendo.
 - **□ Ejemplo:** 7 2 = 5

- O Multiplicación (Producto): Representa la suma repetida de un número natural un cierto número de veces.
 - \Box **Ejemplo:** $4 \times 3 = 12$ (es lo mismo que sumar 4 tres veces: 4 + 4 + 4)

O **División (Cociente):** Reparte un número natural en partes iguales. El resultado puede ser un número natural exacto o puede tener un residuo (resto).

 \Box **Ejemplo:** $15 \div 3 = 5$ (división exacta)

15÷3 5

 \Box **Ejemplo:** $16 \div 5 = 3$ con residuo 1

O **Potenciación:** Expresa la multiplicación repetida de un número natural por sí mismo un cierto número de veces.

 \Box **Ejemplo:** $2^3 = 8$ (es lo mismo que multiplicar 2 tres veces: $2 \times 2 \times 2$)

Propiedades importantes de estas operaciones:

O **Clausura:** El resultado de sumar, multiplicar o potenciar dos números naturales siempre será otro número natural. La resta solo es cerrada si el minuendo es mayor o igual que el sustraendo. La división no siempre es cerrada, ya que puede haber residuo.

O **Conmutatividad:** El orden de los números no afecta el resultado en la suma y la multiplicación $(a+b=b+a, a\times b=b\times a)$.

O **Asociatividad:** El agrupamiento de los números no afecta el resultado en la suma y la multiplicación (a+b)+c=a+(b+c), $(a\times b)\times c=a\times (b\times c)$

O **Elemento neutro:** El 0 es el elemento neutro de la suma (a + 0 = a) y el 1 es el elemento neutro de la multiplicación $(a \times 1 = a)$.

O **Distributividad:** La multiplicación se distribuye sobre la suma $(a \times (b+c) = (a \times b) + (a \times c))$

1.1.2 Números Enteros

Los números enteros son una ampliación del conjunto de los números naturales, que incluye:

- O Los números naturales: Usados para contar y ordenar (1, 2, 3, ...).
- O El cero (0): Representa la ausencia de cantidad.
- O **Los números negativos:** Son los opuestos de los naturales y se usan para representar deudas, temperaturas bajo cero, profundidades, etc. (-1, -2, -3, ...).

Los números enteros son todos aquellos números que no tienen parte decimal y pueden ser positivos, negativos o cero.

Representación:

El conjunto de los números enteros se representa con la letra $\mathbb Z$ y se puede expresar así:

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

Características principales:

O **Son infinitos:** Tanto en la dirección positiva como en la negativa. Incluyen a los naturales: Los números naturales son un subconjunto de los enteros.

O **Permiten realizar operaciones:** Se pueden sumar, restar, multiplicar y dividir (con ciertas restricciones en la división).

O **Se representan en la recta numérica:** Los enteros se ubican en una recta, con el cero en el centro, los positivos a la derecha y los negativos a la izquierda.

Ejemplos de números enteros:

O La temperatura de -5 grados Celsius.

O El saldo de una cuenta bancaria con -100 dólares.

O El piso 3 de un edificio.

O El año 0.

Con los números enteros, podemos realizar las siguientes operaciones:

O **Suma (Adición):** Combina dos o más números enteros para obtener un nuevo número entero. Se siguen las reglas de suma de números con signos iguales o distintos.

Ejemplo: 3 + (-5) = -2

O **Resta (Sustracción):** Encuentra la diferencia entre dos números enteros. Es equivalente a sumar el opuesto del sustraendo.

Ejemplo: 7 - 2 = 5

Ejemplo: -3 - (-6) = -3 + 6 = 3

O **Multiplicación (Producto):** Representa la suma repetida de un número entero un cierto número de veces. Se siguen las reglas de los signos para determinar el signo del resultado.

Ejemplo: $4 \times (-3) = -12$

Ejemplo: $(-2) \times (-5) = 10$

O **División (Cociente):** Reparte un número entero en partes iguales. El resultado puede ser otro número entero o puede tener un residuo (resto). Se siguen las reglas de los signos para determinar el signo del resultado.

Ejemplo: $15 \div 3 = 5$

Ejemplo: $-12 \div 4 = -3$

Ejemplo: $16 \div (-5) = -3$ con residuo 1

O **Potenciación:** Expresa la multiplicación repetida de un número entero por sí mismo un cierto número de veces. El signo del resultado depende de la base y del exponente.

Ejemplo: $2^3 = 8$

Ejemplo: $(-2)^3 = 8$

Ejemplo: $(-3)^2 = 9$

Propiedades importantes:

O **Clausura:** El resultado de sumar, restar, multiplicar o potenciar dos números enteros siempre será otro número entero. La división no siempre es cerrada en los enteros, ya que puede haber residuo.

- O **Conmutatividad:** El orden de los números no afecta el resultado en la suma y la multiplicación.
- O **Asociatividad:** El agrupamiento de los números no afecta el resultado en la suma y la multiplicación.
- O **Elemento neutro:** El 0 es el elemento neutro de la suma y el 1 es el elemento neutro de la multiplicación.
- O **Elemento opuesto:** Todo número entero tiene un opuesto (inverso aditivo), que al sumarse con él da como resultado 0.
- O **Distributividad:** La multiplicación se distribuye sobre la suma.

1.1.3 Números Racionales

Los números racionales son aquellos que pueden expresarse como el cociente (o fracción) de dos números enteros, donde el denominador es diferente de cero.

O **Formalmente:** Un número racional es cualquier número que se puede escribir en la forma $\frac{p}{q}$, donde p y q son números enteros y $q \neq 0$

O Representación:

El conjunto de los números racionales se representa con la letra Q.

Características principales:

- O **Incluyen a los enteros:** Todos los números enteros son racionales, ya que pueden expresarse como una fracción con denominador 1 (por ejemplo, $5 = \frac{5}{1}$).
- O **Incluyen fracciones y decimales:** Las fracciones propias e impropias, así como los decimales finitos o periódicos, son números racionales.
- O **Son densos:** Entre dos números racionales cualesquiera, siempre existe otro número racional.
- O **Se pueden operar:** Se pueden sumar, restar, multiplicar y dividir (excepto por cero).
- O Se representan en la recta numérica: Los racionales llenan los espacios entre los enteros en la recta numérica.

Ejemplos de números racionales:

- O $\frac{1}{2}$ (un medio)
- $O_{-\frac{3}{4}}$ (menos tres cuartos)
- O 7 (siete, que es igual a 7/1)
- O 0.25 (cero coma veinticinco, que es igual a $\frac{1}{4}$)
- O 2.3333... (dos coma tres periódico, que es igual a $\frac{7}{3}$)

Con los números racionales, podemos realizar las siguientes operaciones:

O **Suma:** Para sumar dos números racionales, se necesita encontrar un denominador común y luego sumar los numeradores.

Ejemplo: $\frac{1}{2} + \frac{2}{3} = \frac{7}{6} + \frac{4}{6} = \frac{11}{6}$

$$\frac{1}{2} + \frac{2}{3} + \frac{4}{6}$$
 $\frac{11}{6}$

O **Resta:** Similar a la suma, se encuentra un denominador común y luego se restan los numeradores

Ejemplo: $\frac{3}{4} - \frac{1}{3} = \frac{5}{12}$

O Multiplicación: Se multiplican los numeradores entre sí y los denominadores entre sí.

Ejemplo: $\frac{2}{5} \times \frac{3}{4} = \frac{6}{20} = \frac{3}{10}$

O **División:** Se multiplica el primer número racional por el inverso del segundo.

Ejemplo: $\frac{4}{7} \div \frac{2}{3} = \frac{6}{7}$

O **Potenciación:** Elevar un número racional a una potencia entera significa multiplicarlo por sí mismo ese número de veces. Si el exponente es negativo, se calcula la potencia del inverso del número racional y se cambia el signo del resultado.

Ejemplo:
$$(\frac{1}{2})^3 = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

Ejemplo:
$$\left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2 = \frac{4}{3} \times \frac{4}{3} = \frac{16}{9}$$

Propiedades importantes:

- O **Clausura:** El resultado de sumar, restar, multiplicar o dividir dos números racionales (excepto por cero en la división) siempre será otro número racional.
- O **Conmutatividad:** El orden de los números no afecta el resultado en la suma y la multiplicación.
- O **Asociatividad:** El agrupamiento de los números no afecta el resultado en la suma y la multiplicación
- O **Elemento neutro:** El 0 es el elemento neutro de la suma y el 1 es el elemento neutro de la multiplicación
- O **Elemento inverso:** Todo número racional (excepto el cero) tiene un inverso multiplicativo, que al multiplicarse con él da como resultado 1 Distributividad: La multiplicación se distribuye sobre la suma

1.1.4 Números Irracionales

Los números irracionales son aquellos números reales que no pueden ser expresados como una fracción de dos números enteros, es decir, no se pueden escribir en la forma $\frac{p}{q}$, donde p y q son enteros y $q \neq 0$.

Características principales:

- O **Su representación decimal es infinita y no periódica:** Esto significa que después del punto decimal, los dígitos continúan sin fin y no se repiten en un patrón predecible.
- O **Completan la recta real:** Junto con los números racionales, los irracionales forman el conjunto completo de los números reales.
- O **Son incontables:** No se pueden poner en correspondencia uno a uno con los números naturales, lo que significa que hay "más" números irracionales que racionales.
- O **Incluyen raíces no exactas:** Las raíces cuadradas, cúbicas, etc., de números que no son cuadrados perfectos, cubos perfectos, etc., son irracionales (por ejemplo, $\sqrt{2}$, $\sqrt{3}$, $\sqrt[3]{5}$).
- O **Incluyen números trascendentes:** Estos son números que no son solución de ninguna ecuación algebraica con coeficientes enteros (por ejemplo, π , e).
- O Ejemplos de números irracionales:
 - \Box π (pi): La relación entre la circunferencia de un círculo y su diámetro. Su valor aproximado es 3.14159...
 - \square e (número de Euler): La base de los logaritmos naturales. Su valor aproximado es 2.71828...
 - \Box $\sqrt{2}$ (raíz cuadrada de 2): La longitud de la diagonal de un cuadrado de lado 1.
 - \square El número áureo (φ) : $\frac{1+\sqrt{5}}{2}$. Aparece en diversas proporciones en la naturaleza y el arte.

Con los números irracionales, podemos realizar las mismas operaciones básicas que con otros números reales: suma, resta, multiplicación, división y potenciación. Sin embargo, es importante tener en cuenta algunas particularidades en los resultados:

- O **Suma y resta:** La suma o resta de dos números irracionales puede resultar en un número racional o irracional. La suma o resta de un número racional y un número irracional siempre resultará en un número irracional.
- O **Multiplicación y división:** La multiplicación o división de dos números irracionales puede resultar en un número racional o irracional. La multiplicación o división de un número racional (diferente de cero) y un número irracional siempre resultará en un número irracional.
- O **Potenciación:** La potenciación de un número irracional puede resultar en un número racional o irracional, dependiendo de la base y del exponente.
- O Ejemplos:
 - \Box $\sqrt{2} + \sqrt{3}$ = número irracional $\sqrt{2} \sqrt{2} = 0$ (número racional) $\pi \times 2 = 2\pi$ (número irracional) $\frac{\sqrt{3}}{\sqrt{3}} = 1$ (número racional) $(\sqrt{2})^2 = 2$ (número racional) $\pi^2 = 1$ número irracional

Consideraciones importantes:

Clase 1 Nociones de Lógica y Conjuntos

\mathbf{O}	Al operar con números	irracionales	, a menudo	trabajamos	con sus	aproximaciones	decimales.	Esto pu	ıede l	levar
	a resultados ligerament	te inexactos	debido al r	edondeo.						

- O Es fundamental recordar que la suma, resta, multiplicación o división de dos números irracionales no siempre resulta en un número irracional.
- O La calculadora puede ser útil para obtener aproximaciones decimales de los resultados de operaciones con números irracionales, pero es importante entender las propiedades y limitaciones de estos números para interpretar correctamente los resultados.

1.1.5 Números Reales

Los números reales son aquellos que pueden representar cualquier punto en una recta numérica continua. Incluyen tanto a los números racionales (aquellos que pueden expresarse como una fracción de dos enteros) como a los irracionales (aquellos que no pueden expresarse como una fracción).

Características principales:

O	Completitud: Los números reales "llenan" completamente la recta numérica, sin dejar huecos. Esto significa
	que cualquier punto en la recta corresponde a un número real, y cualquier número real corresponde a un punto
	en la recta.

- O **Orden:** Los números reales tienen un orden natural, lo que permite compararlos y ordenarlos.
- O **Operaciones:** Se pueden realizar todas las operaciones aritméticas básicas (suma, resta, multiplicación, división) y otras más avanzadas (potenciación, radicación, logaritmos, etc.) con números reales.
- O Representación decimal: Todos los números reales pueden expresarse en forma decimal, ya sea finita, infinita periódica o infinita no periódica.

O	Inclusión de otros conjuntos numéricos:	Los números reales	abarcan a todo	s los demás o	conjuntos ni	uméricos
	estudiados previamente:					

 \square Números naturales (\mathbb{N}): 1, 2, 3, ...

- \square Números enteros (\mathbb{Z}): ..., -2, -1, 0, 1, 2, ...
- \square Números racionales (\mathbb{Q}): Todas las fracciones de la forma $\frac{p}{q}$, donde p y q son enteros y $q \neq 0$.
- \square Números irracionales (\mathbb{I}): Números con representación decimal infinita y no periódica, como $\sqrt{2}, \pi, e$.

Representación:

El conjunto de los números reales se denota con la letra \mathbb{R} .

Ejemplos de números reales:

- O Números enteros: -3,0,5
- O Números racionales: $\frac{1}{3}$, $-\frac{3}{4}$, 0.25
- O Números irracionales: $\sqrt{2}$, π , e

1.1.5.1 Representación geométrica de los números reales

La representación geométrica de los números reales se realiza mediante la recta numérica o recta real. Esta es una línea recta en la que cada punto se asocia con un único número real y, a su vez, cada número real se corresponde con un punto único en la recta.

Características de la recta numérica:

- O **Infinita**: Se extiende infinitamente en ambas direcciones, representadas por flechas en los extremos.
- O **Continua:** No hay espacios o saltos entre los puntos, reflejando la densidad de los números reales (entre dos números reales siempre hay otro).
- O **Ordenada:** Los números se ubican en orden creciente de izquierda a derecha.
- O **Origen:** El punto cero (0) se marca como el origen o punto de referencia.
- O **Unidad de medida:** Se establece una unidad de medida para marcar distancias iguales entre los números enteros.

Ubicación de los números en la recta:

- O **Números enteros:** Se representan como puntos equidistantes a lo largo de la recta, con los positivos a la derecha del cero y los negativos a la izquierda.
- O **Números racionales:** Se ubican entre los enteros, encontrando su posición fraccionaria correspondiente. Por ejemplo, $\frac{1}{2}$ estaría a mitad de camino entre 0 y 1.

O **Números irracionales:** También se encuentran entre los enteros, pero su ubicación exacta puede ser más compleja de determinar, ya que sus decimales son infinitos y no periódicos. A menudo se utilizan aproximaciones o construcciones geométricas para representarlos.

Importancia de la recta numérica:

- O Visualización: Permite visualizar la relación de orden y magnitud entre los números reales.
- O **Operaciones:** Facilita la comprensión de operaciones como la suma (desplazamiento a la derecha) y la resta (desplazamiento a la izquierda).
- O **Solución de problemas:** Es útil para resolver problemas geométricos y algebraicos que involucran números reales.

1.1.6 Taller de la Sección

Realiza las siguientes operaciones de números reales usando tu calculadora.

- 1. $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$
 - O **Respuesta:** $\frac{223}{140} \approx 1.59286$
- 2. $\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7}$
 - O Respuesta Aproximada: ≈ 8.02808
- 3. $\frac{1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}{1+\frac{1}{3}+\frac{1}{6}+\frac{1}{27}+\frac{1}{81}}$
 - O **Respuesta:** $\frac{2511}{1936} \approx 1.297$
- 4. $\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{4}\right)^{-3} + \left(\frac{1}{8}\right)^{-5}$
 - O Respuesta: 32836
- 5. $\frac{\pi}{2} + \frac{\pi}{3} + \frac{\pi}{4} + \frac{\pi}{5} + \frac{\pi}{6} + \frac{\pi}{7}$ se puede también escribir como $\pi \sum_{i=2}^{7} \frac{1}{i}$
 - O Respuesta: $\frac{223\pi}{140} \approx 5.00411$
- 6. $1 + \frac{\frac{1}{2} + \frac{1}{3}}{\frac{1}{2} + \frac{1}{4}} + \left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2$
 - O Respuesta: $\frac{25}{9} \approx 2.77778$
- 7. $\frac{1}{\sqrt{2}} + \frac{2}{\sqrt{3}} + \frac{3}{\sqrt{4}} + \frac{4}{\sqrt{5}} + \frac{5}{\sqrt{6}} + \frac{6}{\sqrt{7}}$ se puede escribir tambien como $\sum_{i=1}^{6} \frac{i}{\sqrt{i+1}}$
 - O Respuesta Aproximada: 9.45969
- 8. $\frac{1}{4} + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \frac{1}{121}$
 - O Respuesta Aproximada 0.429784
- 9. $\frac{1}{2} + \frac{2}{3} + \frac{4}{5} + \frac{8}{8} + \frac{16}{13} + \frac{32}{21} + \frac{64}{34} + \frac{128}{55} + \frac{256}{89}$
 - O Respuesta Aproximada: ≈ 12.8073
- 10. $\left(\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{5}}\right)^{\frac{1}{7}}$
 - O Respuesta Aproximada: ≈ 1.00330615417
- 11. $4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21}-\frac{1}{23}+\frac{1}{25}-\frac{1}{27}+\frac{1}{29}-\frac{1}{31}\right)$
 - O Respuesta Aproximada: ≈ 3.07915
- 12. $16 \tan^{-1} \left(\frac{1}{5} \right) 4 \tan^{-1} \left(\frac{1}{239} \right)$
 - O Respuesta Aproximada: ≈ 3.14159
- 13. $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!}$
 - O Respuesta Aproximada: ≈ 2.71825
- 14. $\sqrt[7]{\sqrt[5]{\sqrt[3]{\sqrt[2]{1989}}}}$
 - O Respuesta Aproximada: ≈ 1.03683
- 15. $\pi^{e^{\pi}}$
 - **O Respuesta Aproximada:** $319442279626 \approx 3.19442 \times 10^{11}$
- $16. \left(\frac{2^7 \cdot \left(\pi \times 10^2 + e \times 10^3\right) \cdot 5^3}{221 \times 10^5 \cdot \left(\frac{1 + \sqrt{5}}{2}\right)} \right) \cdot \left(\frac{1}{3^2 (10e + \pi) \left(\sqrt{5} 1\right)} \right)$

O Respuesta: $\frac{8}{1989} \approx 0.0040221216691805$

17.
$$\ln\left(\frac{\pi^2 + 2\pi + 1}{e^2 + 2e + 1}\right)$$

O Respuesta aproximada: ≈ 0.215637

18.
$$\pi^7 - 58\pi^6 + 1349\pi^5 - 16186x^4 + 107315x^3 - 390238x^2 + 716167\pi - 510510$$

O Respuesta aproximada: ≈ -1244.3870832

19.
$$\frac{1+2^2}{6} + \frac{1+3^3}{29} + \frac{1+5^5}{3127} + \frac{1+7^7}{823545}$$

O Respuesta aproximada: ≈ 3.7985295651189

$$20.\ \frac{1+\sin\left(\frac{1+\sin\left(\frac{\pi}{4}\right)}{1+\cos\left(\frac{\pi}{4}\right)}\right)}{1+\cos\left(\frac{1+\sin\left(\frac{\pi}{4}\right)}{1+\cos\left(\frac{\pi}{4}\right)}\right)}$$

O Respuesta aproximada: ≈ 1.1955256950486

21.
$$\frac{1}{2}$$
 (7) $\left(1 + \tanh\left[\sqrt{\frac{2}{\pi}}\left(7 + 0.044715\left(7\right)^3\right)\right]\right)$

O Respuesta: 7

Desafio

Calcule que resultados se obtienen al reemplazar la x por 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 en la siguiente expresión

$$c_{13} = \frac{1213x^{12}}{479001600} - \frac{17371x^{11}}{79833600} + \frac{362767x^{10}}{43545600} - \frac{38867x^9}{207360} + \frac{5706469x^8}{2073600} - \frac{66963781x^7}{2419200} + \frac{8481952741x^6}{43545600} - \frac{1395663287x^5}{1451520} + \frac{35761373867x^4}{10886400} - \frac{1948933907x^3}{259200} + \frac{1287969941x^2}{118800} - \frac{241928479x}{27720} + 2914$$