MAKALAH BAB 3 FUZZY CLUSTERING

Disusun sebagai salah satu tugas mata kuliah Soft Computing

Fauzi Faruq Nabbani - 140810160007 M. Fa'izin Ahsan - 140810160032 Ibnu Ahsani - 140810160056 Shofiyyah Nadhiroh - 140810160057 Patricia Joanne - 140810160065

> Dikumpulkan tanggal 23 April 2019

PROGRAM STUDI S-1 TEKNIK INFORMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS PADJADJARAN
2019

Ukuran Fuzzy

Ukuran Fuzzy

Secara umum, ukuran kekaburan (fuzzy) dapat ditulis:

$$f:P(X) \rightarrow R$$

Dengan

P(X) = himpunan semua subset dari X

f(A) = fungsi yang memetakan subset A ke karakteristik fuzzynya

Syarat fungsi f dalam mengukur nilai fuzzy:

- f(A) = 0 jika dan hanya jika A himpunan crisp
- Jika A<B maka $f(A) \le f(B)$ --- A<B berarti A lebih tajam daripada B

Relasi ketajamannya:

$$\mu_{A}[x] \le \mu_{B}[x]$$
, jika $\mu_{B}[x] \le 0.5$

$$\mu_{A}[x] \ge \mu_{B}[x]$$
, jika $\mu_{B}[x] \ge 0.5$

• f(A) maksimum jika dan hanya jika A kabur maksimum.

Biasanya nilai fuzzy maksimal terjadi pada saat:

$$\mu_A[x] = 0.5$$
 untuk setiap x.

Indeks Kekaburan

Jarak antara suatu himpunan fuzzy A dengan himpunan crisp C yang terdekat. Dinotasikan sebagai:

 $\mu_{\rm C}[x] = 0$ jika $\mu_{\rm A}[x] \le 0.5$

$$\mu_{\rm C}[x] = 1$$
 jika $\mu_{\rm A}[x] \ge 0.5$

3 kelas yang sering digunakan untuk mencari indeks kekaburan:

• Hamming Distance

$$f(A) = \Sigma \mid \mu_A[x] - \mu_C[x] \mid atau$$

$$f(A) = \sum \min [\mu_A [x], 1 - \mu_A [x]]$$

• Euclidean Distance

$$f(A) = \{ \Sigma [\mu_A [x] - \mu_C [x]]^2 \}^{1/2}$$

Minkowski Distance

$$f(A) = \{ \Sigma [\mu_A [x] - \mu_C [x]]^w \}^{1/w} dengan \ w \in [1, \sim]$$

Fuzzy Entropy

Didefinisikan dengan fungsi:

$$f(A) = -\Sigma\{\mu_A[x] \log \mu_A[x] + [1 - \mu_A[x]] \log[1 - \mu_A[x]]\}$$

Ukuran Kesamaan

Digunakan untuk menunjukkan derajat perbedaan antara 2 himpunan fuzzy.

Perbedaan antara premis suatu aturan dengan input fuzzy dapat digunakan untuk menentukan nilai α pada suatu aturan.

Fuzzy C-Means (FCM)

Fuzzy C-Means

Fuzzy clustering = teknik untuk menentukan cluster optimal dalam suatu ruang vektor yang didasarkan pada bentuk normal Euclidian untuk jarak antar vektor.

FCM = salah satu algoritma clustering data yang mana keberadaan tiap titik data dalam suatu cluster ditentukan oleh derajat keanggotaan. Output FCM bukan merupakan fuzzy inference system, tapi deretan pusat cluster dan beberapa derajat keanggotaan untuk tiap titik data dimana dapat digunakan untuk membangun fuzzy inference system.

Algoritma FCM

1. Input data yang akan dicluster X berupa matriks $n \times m$ dimana n = jumlah sampel data dan m = atribut setiap data.

$$X_{ij}$$
 = data sampel ke-i $(1, 2, ..., n)$ dan atribut ke-j $(1, 2, ..., m)$.

- 2. Tentukan:
 - c (jumlah cluster)
 - w (pangkat)
 - MaxIter (maksimum iterasi)

- ξ (error terkecil yang diharapkan)
- $P_0 = 0$ (fungsi objektif awal)
- t = 1 (iterasi awal)
- 3. Bangkitkan bilangan random μ_{ik} dengan i=1,2,...,n dan k=1,2,...,c sebagai elemen matriks partisi awal U.

Hitung jumlah setiap kolom/atributnya dengan j = 1, 2, ..., m:

$$Q_j = \sum_{k=1}^c \mu_{ik}$$

Hitung:

$$\mu_{ik} = \frac{\mu_{ik}}{Q_j}$$

4. Hitung pusat cluster ke-k: V_{kj} dengan k = 1, 2, ..., c dan j = 1, 2, ..., m.

$$V_{kj} = \frac{\sum_{i=1}^{n} ((\mu_{ik})^{w} * X_{ij})}{\sum_{i=1}^{n} (\mu_{ik})^{w}}$$

5. Hitung fungsi objektif pada iterasi ke-t, Pt:

$$P_{t} = \sum_{j=1}^{n} \sum_{k=1}^{c} \left[\left[\sum_{j=1}^{m} (X_{ij} - V_{kj})^{2} \right] (\mu_{ik})^{w} \right]$$

6. Hitung perubahan matriks partisi dengan i = 1, 2, ..., n dan k = 1, 2, ..., c.

$$\mu_{ik} = \frac{\left[\sum_{j=1}^{m} (X_{ij} - V_{kj})^{2}\right]^{\frac{-1}{w-1}}}{\sum_{k=1}^{c} \left[\sum_{j=1}^{m} (X_{ij} - V_{kj})^{2}\right]^{\frac{-1}{w-1}}}$$

7. Cek kondisi berhenti:

Jika (| P_t - P_{t} -1 | < ξ atau (t > MaxIter) maka berhenti Jika tidak, t = t+1 lalu ulangi langkah ke-4

Fuzzy Subtractive Clustering

Subtractive Clustering

Subtractive clustering didasarkan atas ukuran densitas (potensi) titik-titik data dalam suatu ruang (variable).

Konsep dasar subtractive clustering:

- Menentukan daerah-daerah dalam suatu variabel yang memiliki densitas tinggi
- Titik dengan jumlah tetangga terbanyak akan dipilih sebagai pusat cluster
- Pusat cluster akan dikurangi densitasnya
- Memilih titik lain yang memiliki tetangga terbanyak
- Proses ini diulang hingga semua titik diuji

Densitas X_k

$$D_k = \sum_{j=1}^{N} exp\left(-\frac{\|X_k - X_j\|}{(r/2)^2}\right)$$

Dengan:

- $\|X_k X_j\| = jarak antara X_k dan X_j$
- r = jari-jari (*influence range*)

Densitas titik di sekitar X_k

$$D'_{k} = D_{k} - D_{C1} * exp\left(-\frac{\|X_{k} - X_{C1}\|}{(r_{b}/2)^{2}}\right)$$

Dengan:

- X_{C1} = titik yang terpilih sebagai pusat cluster
- D_{C1} = nilai densitas dari titik pusat cluster
- $r_b = konstanta positif$

Accept Ratio & Reject Ratio

Sebagai faktor pembanding, dapat digunakan dua pecahan, yaitu:

- Accept Ratio
 - Batas bawah di mana suatu kandidat pusat cluster diperbolehkan menjadi pusat cluster
- Reject Ratio
 - Batas atas di mana suatu kandidat pusat cluster tidak diperbolehkan menjadi pusat cluster
- Rasio

 X_k / D_k dengan:

- o X_k titik data dengan potensi tertinggi
- o D_k potensi tertinggi suatu titik di awal iterasi

Jika (Rasio > Accept Ratio): titik data tersebut diterima sebagai pusat cluster Jika (Reject Ratio < Rasio <= Accept Ratio):

• Jika (Rasio + jarak terdekat dengan pusat cluster lainnya >= 1): diterima sebagai pusat cluster

 Jika (Rasio + jarak terdekat dengan pusat cluster lainnya < 1): tidak diterima sebagai pusat cluster dan tidak akan dipertimbangkan untuk menjadi pusat cluster baru

Jika (Rasio <= Reject Ratio): iterasi diberhentikan karena sudah tidak ada lagi titik data yang akan dipertimbangkan untuk menjadi kandidat pusat cluster

Algoritma Subtractive Clustering

Menggunakan data berikut:

No.	Modal (Rp)	Rata-rata Penjualan per Bulan (Rp)	Lama Beroperasi (bulan)	Rata-rata Laba per Bulan (Rp)
1	15.000.000	25.000.000	42	5.000.000
2	20.000.000	26.420.000	72	5.230.000
3	17.820.000	22.052.000	35	5.200.000
4	16.205.000	18.500.000	12	4.250.000
5	8.000.000	15.200.000	5	3.500.000
6	14.260.000	19.640.000	15	4.023.000
7	7.025.000	15.230.000	19	5.000.000
8	25.032.000	34.000.000	28	8.000.000
10	24.320.100	35.100.000	39	12.500.000
11	25.602.100	38.200.000	43	13.250.000
12	19.872.000	28.000.000	27	10.500.000
13	19.000.000	25.000.200	41	6.350.000
14	16.540.200	30.000.200	29	7.525.000
15	28.920.000 15.870.200	41.000.000	58	15.620.000
16	26.840.320	26.750.000	19	4.025.000
17	24.601.200	39.000.200	47	13.025.000
18	21.650.000	38.450.000	64	11.000.250
19	18.602.000	37.525.000	60	9.850.000
20	35.024.000	30.500.000 52.000.000	74	11.230.000
21	39.024.300	52.050.000	73	18.230.000
22	27.500.000	36.500.000	26	15.725.000
23	32.500.500	45.600.000	6	10.560.000
24	27.963.000	40.250.000	10	16.583.000
25	37.250.020	51.000.000	38	13.670.000
26	16.523.000	26.750.000	68	18.530.000
27	25.690.000	39.565.000	48	8.500.000
28	34.500.000	51.065.000	37	15.250.000
29	9.850.000	1.350.000	13	21.500.000
30	16.950.000	24.580.000	18	2.000.000 4.500.000

1. Tentukan nilai:

- rj (jari-jari setiap atribut data) = 0,3
- q (squash factor) = 0.5
- Accept_ratio = 0,15
- Reject_ratio = 1,25
- XMin (minimum data diperbolehkan) = [0; 0; 0; 0]

- XMax (maksimum data diperbolehkan) = [50.000.000; 70.000.000; 120; 50.000.000]
- 2. Normalisasikan dengan rumus:

$$X_{ij} = \frac{X_{ij} - XMin_j}{XMax_j - XMin_j}$$

Hasil:

$$X_{11} = \frac{X_{11} - XMin_1}{XMax_1 - XMin_1} = \frac{15.000.000 - 0}{50.000.000} = 0,3$$

$$X_{12} = \frac{X_{12} - XMin_2}{XMax_2 - XMin_2} = \frac{25.000.000 - 0}{70.000.000} = 0,36$$

$$X_{13} = \frac{X_{13} - XMin_3}{XMax_3 - XMin_3} = \frac{42 - 0}{120} = 0,35$$

$$X_{14} = \frac{X_{14} - XMin_4}{XMax_4 - XMin_4} = \frac{5.000.000 - 0}{50.000.000} = 0,1$$

Data ternormalisasi:

Data Ter	normalisas	si =	
0,3000	0,3571	0,3500	0,1000
0,4000	0,3774	0,6000	0,1046
0,3564	0,3150	0,2917	0,1040
0,3241	0,2643	0,1000	0,0850
0,1600	0,2171	0,0417	0,0700
0,2852	0,2806	0,1250	0,0805
0,1405	0,2176	0,1583	0,1000
0,5006	0,4857	0,2333	0,1600
0,4864	0,5014	0,3250	0,2500
0,5120	0,5457	0,3583	0,2650
0,3974	0,4000	0,2250	0,2100
0,3800	0,3571	0,3417	0,1270
0,3308	0,4286	0,2417	0,1505
0,5784	0,5857	0,4833	0,3124
0,3174	0,3821	0,1583	0,0805
0,5368	0,5571	0,3917	0,2605
0,4920	0,5493	0,5333	0,2200
0,4330	0,5361	0,5000	0,1970
0,3720	0,4357	0,6167	0,2246
0,7005	0,7429	0,6083	0,3646
0,7805	0,7436	0,2167	0,3145
0,5500	0,5214	0,0500	0,2112
0,6500	0,6514	0,0833	0,3317
0,5593	0,5750	0,3167	0,2734
0,7450	0,7286	0,5667	0,3706
0,3305	0,3821	0,0750	0,1700
0,5138	0,5652	0,4000	0,3050
0,6900	0,7295	0,3083	0,4300
0,1970	0,0193	0,1083	0,0400
0,3390	0,3511	0,1500	0,0900

3. Tentukan posisi awal tiap titik data

i=1

Kerjakan hingga i=n,

o
$$T_i = X_{ii}$$
;

$$j=1,2,...,m$$

o Hitung:

Dist_{kj} =
$$\left(\frac{T_j - X_{kj}}{r}\right)$$
 j = 1, 2, ..., m; k = 1, 2, ..., n

o Potensi awal:

Jika m = 1, maka

$$D_i = \sum_{k=1}^n e^{-4\left(Dist_{k1}^2\right)}$$

Jika m > 1, maka

$$D_i = \sum_{k=1}^{n} e^{-4 \left(\sum_{j=1}^{m} Dist_{kj}^2 \right)}$$

Hasil:

Sebagai contoh, pada penghitungan potensi data pertama (D_{1):}

- $T = X_1$, yaitu $T_1 = 0.3$; $T_2 = 0.3571$; $T_3 = 0.35$; dan $T_4 = 0.1$.
- Hitung jarak setiap data terhadap T:
 - O Untuk data pertama, Dist_{1j} jelas sama dengan 0 untuk setiap j, karena $T = X_1$. DS₁ = 0 + 0 + 0 + 0 = 0.
 - Untuk data kedua, Dist_{2j} adalah

Dist_{2j} =
$$\left(\frac{T_j - X_{2j}}{0.3}\right)$$
 j = 1,2,...,4;

0 , 810

0,8104 0,0930 0,7992

1,5019 0,6343

0,9073 0,8222

0,8743 1,1979

0,4340

0,2260 2,1405

0,4227 1,3731

1,3534

1,0889 4,9545 4,9331

2,1317 3,7099

1,6206 5,0584

0,9120 1,4837

4,4598 2,0751

0,4629

Hitung D₁, yaitu densitas awal data pertama:

$$\begin{array}{lll} D_1 &=& \displaystyle \sum_{k=1}^{30} e^{-4(DS_k)} \\ D_1 &=& e^{-0} + e^{-4(0.8104)} + e^{-4(0.0930)} + ... + e^{-4(0.4629)} \\ &=& 3.6809 \\ \\ &\text{Potensi Awal (D)} &=& \\ 3.6809 \\ &\text{1.7769} \\ &\text{4.6405} \\ &\text{4.2568} \\ &\text{2.3675} \\ &\text{4.7687} \\ &\text{2.3954} \\ &\text{3.5980} \\ &\text{5.2200} \\ &\text{5.7401} \\ &\text{4.5479} \\ &\text{4.2964} \\ &\text{4.9656} \\ &\text{3.7196} \\ &\text{5.2287} \\ &\text{5.6897} \\ &\text{3.6701} \\ &\text{3.6565} \\ &\text{2.0471} \\ &\text{1.9550} \\ &\text{1.4435} \\ &\text{1.5351} \\ &\text{1.4189} \\ &\text{4.7056} \\ &\text{1.9782} \\ &\text{3.6881} \\ &\text{5.3289} \\ \end{array}$$

Dari ke-30 potensi tersebut, didapatkan:

• Vektor
$$V = X10$$

1,5155 1,3137 5,5315

•
$$V1 = X10-1 = 0,5120$$

•
$$V2 = X10-2 = 0,5457$$

•
$$V3 = X10-3 = 0,3583$$

•
$$V4 = X10-4 = 0,2650$$

•
$$M = 5,74$$

•
$$Z = 5,74$$

• Rasio = Z / M = 5,74 / 5,74 = 1

Karena rasio yang didapat (1) lebih dari accept ratio (0,5), maka calon pusat cluster akan diterima sebagai pusat cluster.

Potensi baru dihitung seperti cara sebelumnya, dengan terlebih dahulu mencari pengurangan potensi di tiap tiap titik data.

Potensi Baru(D) = 1.7532 1.5980 1,4584 0,0000 0.0000 0.7482 0,0000 148 482 100 100 0.2035 1.4203 1.2468 and purious statement of 1,7086 、各自動機 原外 法 1,8668 - 1 600 . W. . 1,3155 0,8688 · から議会 1,1652 0,0000 1,87791 0.0000 0,1370 1,1324 1,1954 0,0000 Potensi Tertinggi = 1,88 Potensi Tertinggi Terletak pada Data ke-25

Potensi tertinggi terletak pada data ke 25 yaitu sebesar 1,88.

Hal ini berarti data ke 25 terpilih menjadi calon pusat cluster.

- 4. Vektor $V = X_{25}$, yaitu:
 - $V_1 X_{25-1} = 0,7450$;
 - $V_2 = X_{25-2} = 0,7286$;
 - $V_3 = X_{25-3} = 0,5667$;
 - $V_4 = X_{25-4} = 0.3706$;
 - Z = 1.88

Iterasi ke-3:

Rasio = 0.33 [diperoleh dari Z/M = (1.88)/(5.74) = 0.33]

Rasio < accept ratio

Rasio > reject ratio

[karena rasio = 0.33 < Accept ratio = 0.5 dan rasio = 0.33 > Reject ratio - 0.15; maka calon pusat cluster (data ke 25) baru akan diterima sebagai pusat cluster yang sudah ada].

Untuk itu dikerjakan langkah langkah sebagai berikut:

- Md = -1;
- Kerjakan untuk i = 1 sampai i = 2:

$$G_{ij} = \frac{V_j - \text{Center}_{ij}}{r}; \quad j = 1, 2, ..., 4$$

$$Sd_i = \sum_{j=1}^4 (G_{ij})^2$$

- Jika (Md <0) atau (Sd_i < Md), maka Md = Sd;
- Dapat dihitung:

$$G_{11} = \frac{0.7450 - 0.5120}{0.3} = 0.7767$$

$$G_{12} = \frac{0.7286 - 0.5457}{0.3} = 0.6097$$

$$G_{13} = \frac{0.5667 - 0.3583}{0.3} = 0.6947$$

$$G_{14} = \frac{0.3706 - 0.2650}{0.3} = 0.3520$$

$$Sd_{1} = (0.7767)^{2} + (0.6097)^{2} + (0.6947)^{2} + (0.3520)^{2}$$

$$= 1.5815$$

5. Karena (Sd2 > Md), maka Md tidak berubah = 1,5815

Smd =
$$\sqrt{Md}$$
;

$$Smd = \sqrt{(1,5815)} = 1,2575$$

Jarak terdekat data ke-25 dengan pusat cluster (Mds) = 1,2575

Rasio + Mds
$$\geq$$
 1 --> Kondisi = 1

[Karena Rasio + Mds >= 1, maka data ke 25 diterima sebagai pusat kluster baru]

6. Jumlah Cluster = 3

Pusat Cluster:

```
0,51 0,55 0,36 0,27
0,34 0,35 0,15 0,09
0,75 0,73 0,57 0,37
```

Potensi baru dicari dengan cara yang sama dengan cara sebelumnya:

```
Potensi Baru (D) = 1,7532
1,5977
1,4584
0,1917
```

0,1332

Potensi Tertinggi = 1,81 Potensi Tertinggi Terletak pada Data ke-12

```
1,3583
        1,2314
        1,7071
        0,1889
        1,2650
1,4400
       0,8688
0,5015
1,3340 1,1637
0,0767
       0,0000
0,0000
       0,0000
0,0000
       0,0000
0,7481
       0,0599
1,8133
       0,8989
1,0094
       1,1954
0,4510
       0,0000
0,0000
```

Potensi tertinggi terletak pada data ke-12, yaitu sebesar 1,81 Maka data ke-12 menjadi calon pusat cluster.

Vektor $V = X_{12}$, yaitu:

• $V_1=X_{12-1}=0,3800$;

- $V_2 = X_{12-2} = 0.3571$;
- $V_3 = X_{12-3} = 0,3417$; dan
- $V_4 = X_{12-4} = 0,1270;$
- serta nilai Z = 1.81.

7. Iterasi ke 4

Rasio = 0.32

[diperoleh dari Z/M = (1,81)/(5,74) = 0,32]

Rasio < Accept Ratio

Rasio > Reject Ratio

Cari jarak terpendek data ke-12 atau V terhadap 3 pusat cluster yang sudah ada. Jarak terdekat data ke 12 dengan pusat cluster

$$(Mds) = 0.67 Rasio + Mds < 1 \rightarrow Kondisi = 2$$

Rasio + Mds < 1 maka,

- Data ke 12 selain tidak diterima sebagai pusat cluster
- Potensinya juga akan di set = 0

8. Cari lagi potensi baru

```
* Iterasi ke- 6

Rasio = 0.30

Rasio < Accept Ratio
Rasio > Reject Ratio
Jarak terdekat data ke-19 dengan pusat cluster (Mds) = 1.05

Rasio + Mds >= 1 ---> Kondisi = 1

Jumlah Cluster = 4

Pusat Cluster = 0.5% 0.55 0.36 0.27
0.34 0.35 0.15 0.09
```

```
0.75  0.73  0.57  0.37  0.37  0.37  0.37  0.44  0.62  0.22  

Potensi Baru (D) =  0.0000  0.5993  1.4217  0.1915  1.4400  0.5011  1.3338  0.0632  0.0000  0.0000  0.7277  0.0000  0.7277  0.0000  0.9839  0.3211  0.0000  0.0147  0.7141  0.4651  0.0000  0.1858  1.2650  0.8687  1.1637  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.00
```

```
0.37  0.44  0.62  0.22  0.16  0.22  0.04  0.07  

Potensi Baru (D) =  0.0000  0.5993  1.3618  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.1858  1.2650  0.8680  1.1637  0.0000  0.1858  1.2650  0.8680  1.1637  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
```

```
Rasio = 0,24

Rasio < Accept Ratio
Rasio > Reject Ratio
Jarak terdekat data ke- 3 dengan pusat cluster (Mds) = 0,49

Rasio + Mds < 1 ---> Kondisi = 2
Potensi pada data dengan potensi tertinggi (Data ke-3)
diset = 0

Potensi Baru (D) = 0,0000
0,5993
```

```
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0011
0.0011
0.0010
0.0000
0.0000
0.0000
0.0000
0.01321
0.0000
0.0147
0.7141
0.4651
0.0000
0.1858
1.2650
0.8660
1.1637
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.8988
0.8947
0.0000
0.8988
0.8947
0.8967
0.8968
0.8968
0.8968
0.8947
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.0
```

```
0.5993
0.0000
0.0000
0.0000
0.0000
0.0000
0.3911
0.0510
0.0000
0.0000
0.0000
0.7025
0.0000
0.0000
0.7025
0.0000
0.7123
0.0000
0.7123
0.0000
0.7123
0.0000
0.7123
0.0000
0.7123
0.0000
0.7123
0.0000
0.7123
0.0000
0.7123
0.0000
0.7123
0.0000
0.7123
0.0000
0.0000
0.7123
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
```

Iterasi terakhir adalah iterasi ke 11, **sudah tidak ada** lagi data yang berpotensi untuk menjadi pusat cluster.

 Sebagai hasil akhir, dengan: jari-jari = 0,3;

```
accept ratio = 0,5;

reject ratio = 0,15;

squash factor = 1,25;

batas bawah untuk X = [0\ 0\ 0\ 0];

dan batas atas untuk X = [50.000.000;\ 70.000.000;\ 120;\ 0\ 0\ ];

dan batas atas untuk X = [50.000.000;\ 70.000.000;\ 120;\ 50.000.000]
```

Diperoleh 6 cluster, dengan pusat (C) adalah

```
25.602.100 38.200.000 43 13.250.000

16.950.000 24.580.000 18 4.500.000

37.250.020 51.000.000 68 18.530.000

18.602.000 30.500.000 74 11.230.000

39.024.300 52.050.000 26 15.725.000
```

Dan sigma() sebagai:

Pusat cluster pertama adalah data ke $10(\mu_{1-10} = 1)$;

Pusat cluster kedua adalah data ke $30(\mu_{2-30} = 1)$;

Pusat cluster ketiga adalah data ke-25($\mu_{3-25} = 1$);

Pusat data cluster keempat adalah data ke-19($\mu_{4-19=1}$);

Pusat cluster kelima adalah data ke $5(\mu_{5-5} = 1)$;

Pusat cluster keenam adalah data ke $21(\mu_{6-21})$.

10. Mencari derajat dengan fungsi Gauss untuk masing-masing data:

Derajat keanggotaan data ke-i(i=1,2,...30) pada cluster ke-1:

$$\mu_{1i} = e^{-\left[\left(\frac{X_{i1} - 25.602.100}{\sqrt{2} * 5.303.300,86}\right)^2 + \left(\frac{X_{i2} - 38.200.000}{\sqrt{2} * 7.424.621,20}\right)^2 + \left(\frac{X_{i3} - 43}{\sqrt{2} * 12,73}\right)^2 + \left(\frac{X_{i4} - 13.250.000}{\sqrt{2} * 5.303.300,86}\right)^2\right]}$$

Derajat keanggotaan data ke-i(i=1,2,...30) pada cluster ke-2:

$$\mu_{2i} = e^{-\left[\left(\frac{X_{i1} - 16.950.000}{\sqrt{2} \cdot 5.303.300,86}\right)^2 + \left(\frac{X_{i2} - 24.580.000}{\sqrt{2} \cdot 7.424.621,20}\right)^2 + \left(\frac{X_{i3} - 18}{\sqrt{2} \cdot 12,73}\right)^2 + \left(\frac{X_{i4} - 4.500.000}{\sqrt{2} \cdot 5.303.300,86}\right)^2\right]}$$

Derajat keanggotaan data ke -i(1,2,...,30) pada cluster ke 3:

Derajat keanggotaan data ke
$$(1/2)$$

$$\mu_{3j} = e^{-\left[\left(\frac{X_{j3} - 37.250.020}{\sqrt{2} \cdot 5.303.300.86}\right)^2 + \left(\frac{X_{j3} - 51.000.000}{\sqrt{2} \cdot 7.424.621.20}\right)^2 + \left(\frac{X_{j3} - 68}{\sqrt{2} \cdot 12.73}\right)^2 + \left(\frac{X_{j4} - 18.530.000}{\sqrt{2} \cdot 5.303.300.86}\right)^2\right]}$$

Derajat keanggotaan data ke -i(1,2,...,30) pada cluster ke 4:

$$\mu_{4j} = e^{-\left[\left(\frac{X_{j1} - 18.602.000}{\sqrt{2} \cdot 5.303.300,86}\right)^2 + \left(\frac{X_{j2} - 30.500.000}{\sqrt{2} \cdot 7.424.621,20}\right)^2 + \left(\frac{X_{j3} - 74}{\sqrt{2} \cdot 12,73}\right)^2 + \left(\frac{X_{j4} - 11.230.000}{\sqrt{2} \cdot 5.303.300,86}\right)^2\right]}$$

Derajat keanggotaan data ke -i(1,2,...,30) pada cluster ke 5:

$$\mu_{5j} = e^{-\left[\left(\frac{X_{j1} - 8.000.000}{\sqrt{2} \cdot 5.303.300,86}\right)^2 + \left(\frac{X_{j2} - 15.200.000}{\sqrt{2} \cdot 7.424.621,20}\right)^2 + \left(\frac{X_{j3} - 5}{\sqrt{2} \cdot 12,73}\right)^2 + \left(\frac{X_{j4} - 3.500.000}{\sqrt{2} \cdot 5.303.300,86}\right)^2\right]}$$

Derajat keanggotaan data ke -i(1,2,...,30) pada cluster ke 6:

$$\mu_{6j} = e^{-\left[\left(\frac{X_{i3} - 39.024.300}{\sqrt{2} \cdot 5.303.300,86}\right)^2 + \left(\frac{X_{i2} - 52.050.000}{\sqrt{2} \cdot 7.424.621,20}\right)^2 + \left(\frac{X_{i3} - 26}{\sqrt{2} \cdot 12,73}\right)^2 + \left(\frac{X_{i4} - 15.725.000}{\sqrt{2} \cdot 5.303.300,86}\right)^2\right]}$$

11. Informasi mengenai kecendrungan suatu industri kecil untuk masuk ke kelompok (cluster) yang mana dapat dilihat pada Tabel 3.6.

Tabel 3.6 Derajat keanggotaan tiap data pada setiap cluster dengan subtractive clustering.

Data	調整節	Derajat kea	nggotaan (µ) data pada	Cluster ke	13.61
ke-	1.	2	3.	4	5	6
1	0,000	0,025	0,000	0,000	0,000	0,000
2	0,000	0,000	0,000	0,187	0,000	0,000
3	0,000	0,143	0,000	0,000	0,000	0,000
4	0,000	0,401	0,000	0,000	0,054	
5	0,000	0,004	0,000	0,000	1,000	0,000
6	0,000	0,466	0,000	0,000	0,093	0,000
7	0,000	0,006	0,000	0,000	0,266	0,000
8	0,067	0,007	0,000	0,000	0,000	0,000
9	0,704	0,000	0,000	0,000		0,000
10	1,000	0,000	0,000	0,000	0,000	0,000
80000				100	0,000	0,000

Data		Deraiath				
ke-	1	200	eanggotaan	(μ) data pa	da Clust	
11	0,007	0,101	G 43 - 6	104	5	200. Carling to the an
12	0,002	0,029	0,000	0,000	0,000	6
13	0,001	0,200	0,000	0,000	0,000	0,000
14	0,120	0,000	0,000	0,000	0,000	0,000
15	0,000	0,868	0,006	0,000	0,000	0,000
16	0,846	0,000	0,000	0,000	0,003	0,000
17	0,053	0,000	0,000	0,000	0,000	0,000
18	0,063	0,000	0,000	0,048	0,000	0,000
19	0,000	0,000	0,000	0,082	0,000	0,000
20	0,000	0,000	0,000	1,000	0,000	0,000
21	0,000	0,000	0,703	0,000	0,000	0,000
22	0,000	0,000	0,000	0,000	0,000	1,000
23	0,000	0,000	0,000	0,000	0,000	0,000
24	0,647	0,000	0,000	0,000	0,000	0,021
25	0,000	0,000	0,000	0,000	0,000	0,000
26	0,000	0,313	1,000	0,000	0,000	0,000
27	0,718	0,000	0,000	0,000	0,003	0,000
28	0,000	0,000	0,000	0,000	0,000	0,000
29	0,000	0,000	0.000	0,000	0,000	0,069
10	0,000	1,000	0,000	0,000	0,017	0,000

1	2	clust 3	4	5	6
	•	*********			
			٠		
				- I	
	.			•	
			- 1		

Dari Tabel 3.6 tersebut dapat disimpulkan bahwa:

- Kelompok pertama (Cluster ke-1) akan berisi industri-industri kecil ke: 8,9,10,14,16,17,24,27
- Kelompok kedua (Cluster ke-2) akan berisi industri-industri kecil ke: 1,3,4,6,11,12,13,15,22,26, dan 30

- Kelompok ketiga (Cluster ke-3) akan berisi industri-industri kecil ke: 20 dan
 25
- Kelompok keempat (Cluster ke-4) akan berisi industri-industri kecil ke 2,18,dan 19
- Kelompok kelima (Cluster ke- 5) akan berisi industri-industri kecil ke: 5, 7, dan 29
- Kelompok keenam(Cluster ke-6) akan berisi industri-industri kecil ke: 21, 23, dan 28
- 12. Apabila kasus tersebut kita selesaikan dengan jari jari yang berbeda (r = 0.5), sedangkan parameter yang lainnya sama, maka dengan cara yang sama akan diperoleh hasil:

```
Jumlah Cluster = 3
Pusat Cluster (sudah di-denormalisasi)
          35100000
 24320100
                          12500000
                     39
          19640000
14260000
                     15
                           4023000
37250020
          51000000
                     68
                         18530000
Sigma =
8838834,76 12374368,67 21,21 8838834,76
```

13. Iterasi terakhir adalah iterasi ke 4 pada iterasi ke 4 ini sudah tidak ada lagi data yang berpotensi untuk menjadi pusat cluster. Sebagai hasil akhir, dengan jari jari = 0,5; accept ratio = 0,5; reject ratio = 0,15; squash factor = 1,25; batas bawaj umtuk X = [0 0 0 0]; dan batas atas untuk X=[50.000.000; 70.000.000;120;50.000.000], diperoleh 3 cluster, dengan pusat (C) adalah:

```
C = \begin{pmatrix} 24.320.100 & 35.100.000 & 39 & 12.500.000 \\ 14.260.000 & 19.640.000 & 15 & 4.023.000 \\ 37.250.020 & 51.000.000 & 68 & 18.530.000 \end{pmatrix}
```

14. Pusat cluster pertama adalah data ke-9 ($\mu_{19} = 1$); pusat cluster kedua adalah data ke-6($\mu_{26} = 1$). Sedangkan pusat cluster ketiga adalah data ke-25 ($\mu_{3-25} = 1$).

```
\begin{array}{ll} \bullet & \text{Derajat keanggotaan data ke-i (i=1,2,...,30) pada cluster ke-1:} \\ \mu_{1i} = e^{-\left[\left(\frac{X_{11}-24.320.100}{\sqrt{2}*8.838.834.76}\right)^2 \cdot \left(\frac{X_{12}-35.100.000}{\sqrt{2}*12.374.368.67}\right)^2 \cdot \left(\frac{X_{13}-39}{\sqrt{2}*21.21}\right)^2 \cdot \left(\frac{X_{14}-12.300.000}{\sqrt{2}*8.838.834.76}\right)^2\right]} \\ \bullet & \text{Derajat keanggotaan data ke-i (i=1,2,...,30) pada cluster ke-2:} \\ \mu_{2i} = e^{-\left[\left(\frac{X_{11}-14.260.000}{\sqrt{2}*8.838.834.76}\right)^2 \cdot \left(\frac{X_{12}-19.640.000}{\sqrt{2}*12.374.368.67}\right)^2 \cdot \left(\frac{X_{13}-15}{\sqrt{2}*21.21}\right)^2 \cdot \left(\frac{X_{14}-4.023.000}{\sqrt{2}*8.838.834.76}\right)^2\right]} \\ \bullet & \text{Derajat keanggotaan data ke-i (i=1,2,...,30) pada cluster ke-3:} \\ -\left[\left(\frac{X_{11}-37.256.000}{\sqrt{2}*8.838.834.76}\right)^2 \cdot \left(\frac{X_{12}-53.000.000}{\sqrt{2}*12.374.366.67}\right)^3 \cdot \left(\frac{X_{13}-49}{\sqrt{2}*21.21}\right)^2 \cdot \left(\frac{X_{14}-16.530.000}{\sqrt{2}*16.838.034.76}\right)^2\right] \\ \mu_{3i} = e^{-\left(\frac{X_{11}-37.256.000}{\sqrt{2}*16.338.034.76}\right)^2} \cdot \left(\frac{X_{12}-33.000.000}{\sqrt{2}*16.338.034.76}\right)^2 \cdot \left(\frac{X_{14}-16.530.000}{\sqrt{2}*16.838.034.76}\right)^2 \right] \end{array}
```

- 15. Informasi yang bisa diperoleh dari ketiga pusat cluster ini adalah pada kabupaten tersebut, industry industry kecil dapat dikelompokan menjadi 5 kelompok:
 - Kelompok pertama (Cluster ke-1), berisi industry industry kecil yang memiliki modal awal sekitar Rp24.230.100; memiliki rata" penjualan per bulan sekitar Rp 35.100.00; sudah beroperasi sekitar 39 bulan; dan memiliki rata-rata laba per ulan sekitar Rp 12.500.000
 - Kelompok kedua (Cluster ke-2), berisi industry industry kecil yang memiliki modal awal sekitar Rp14.260.000; memiliki rata" penjualan per bulan sekitar Rp19.640.000; sudah beroperasi sekitar 15 bulan; dan memiliki rata" laba per bulan sekitar Rp 4.023.000
 - Kelompok ketiga(Cluster ke-3), berisi industry industry kecil yang memiliki modal awal sekitar Rp 37.250.020; memiliki rata" penjualan per bulan sekitar Rp 51.000.000; sudah beroperasi sekitar 68 bulan; dan memiliki rata" laba per bulan sekitar Rp 18.530.000
- 16. Informasi mengenai kecenderungan suatu indsutri kecil untuk masuk ke kelompok (cluster) yang mana dapat dilihat pada Tabel 3.7. seperti halnya dengan metode FM, suatu industri kecil memiliki derajat keanggotaan tertentu untuk

menjadi anggota suatu kelompok. Tentu saja derajat keanggotaan terbesar menunjukan kecenderungan tertinggi suatu industri untuk masuk menjadi anggota kelompok.

Data Ke-	Derajat i	keanggota: da Cluster	in (µ) data	Data ce	nderung m cluster ke-	asuk di
	1	2	3 3	1	2	3
1	0,081	0,161	0,000	0	*	343
2	0,022	0,000	0,000			
3	0,093	0,331	0,000			
4	0,006	0,925	0,000			
5	0,000	0,425	0,060		* 1	
6	0,006	1,000	0,000		•//	
7	0,000	0,430	0,000			
8	0,581	0,033	0,000	77.0		
9	1,000	0,006	0,002			
10	0,881	0,001	0,011			
11	0,385	0,180	0,000			
12	0,218	0,129	0,000	0.0		
3	0,227	0,257	0,000	500		
4	0,241	0,000	0,154			

Data	Derajat k	eanggotaa	n (μ) data	Data ce	nderung m cluster ke-	
Ke-	pac	la Cluster	3	1	2	2 3
15	0,042	0,671	0,000		3.5	
16	0,722	- 0,000	0,025			
17	0,225	0,000	0,022			
18	0.301	0,000	0,004			
19	0,037	0,000	0,000			
20	0.002	0,000	0,881			
21	0,006	0,000	0,017			
22	0,074	0,008	0,000			
23	0,026	0,000	0,000			
24	0,696	0,001	0,016			
25	0,002	0,000	1,000			
26	0,032	0,481	0,000			
27	0,650	0,000	0,028			
28	0,018	0,000	0,096			
29	9,000	0,083	0,000			10
30	0,040	0,760	0,000			

Dari tabel tersebut data disimpulkan bahwa:

- Kelompok pertama (Cluster ke-1) akan berisi industry industry kecil ke: 2,8,9,10,11,12,14,16,17,18,19,22,23,24 dan 27.
- Kelompok kedua (Cluster ke-2) akan berisi industry industry kecil ke: 1,3,4,5,6,7,13,15,26,19 dan 30.
- Kelompok ketiga (Cluster ke-3) akan berisi industry industry kecil ke: 20,21,
 25 dan 28
- 17. Apabila kasus tersebut kita selesaikan dengan jari jari yang berbeda(r=0,7) sedangkan parameter yang lainnya sama, maka dengan proses penclusteran yang sama akan diperoleh hasil sebagai berikut:

```
Jumlah Cluster = 2

Pusat Cluster (sudah di-denormalisasi) = 24.320.100 35.100.000 39 12.500.000

8.000.000 15.200.000 5 3.500.000

sigma = 12374368.67 17324116.14 29.70 12374368.67
```

18. Iterasi terakhir adalah iterasi ke-5, pada iterasi ke-5 ini sudah tidak ada lagi data yang berpotensi untuk menjadi pusat cluster. Sebagai hasil akhir, dengan

```
jari-jari =0,7;

accept ratio = 0,5;

reject ratio = 0,15;

squash factor = 1,25;

batas bawah untuk X = [0\ 0\ 0\ 0]; dan

batas atas untuk X = [50.000.000;\ 70.000.000;\ 120;\ 50.000.000],
```

Diperoleh 2 cluster, dengan pusat (c) adalah:

```
C = \begin{pmatrix} 24.320.100 & 35.100.000 & 39 & 12.500.000 \\ 8.000.000 & 15.200.000 & 5 & 3.500.000 \end{pmatrix}
```

$\sigma = (12.374.368,67\ 17.324.116,14\ 29,70\ 12.374.368,67)$

19. Pusat cluster pertama, adalah data ke-9($\mu_{1-9}=1$); sedangkan pusat cluster kedua adalah data ke-5($\mu_{2-5}=1$).

Apabila jari jari yang diberikan semakin besar, maka jumlah cluster yang terjadi akan semakin sedikit. Informasi mengenai kecenderungan suatu industri kecil untuk masuk ke kelompok (cluster) yang mana dapat dilihat pada table 3.8.

-	i,8 Derajat keanggotaan cur dengan subtractive clus Derajat keanggotaan (µ) data pada Cluster Kc		Data ce	nderung cluster ke
Data ke-	- pada Cit	THE REAL PROPERTY.	1	2
	1	2		
1	0,277	0,110		
2	0,142	0,002	-	
3	0.298	0,161	20.00	
4	0.073	0,586		
5	0,007	1,000		
6	0,076	0,646		
7	0,017	0,784	200	
8	0,758	0,022		
9	1,000	0,007		
10	0.937	0,002		
11	0,615	0,097		
12	0.460	0,072	3.0	
13	0,469	0,140	1 10	
14	0,483	0,000		
15	0,198	0,342		
16	0,847	0,001		
17	0,467	0.000	7/4	
18	0,542	0.001	100	
19	0.186	0.001		
20	0,040	0.000	7.	
21	0,072	0,000		
22	0,264	0.013	350	
23	0,155	0.000	1000	
24	0,831	0.001		
25	0,044	0,000	200	
26	0,173	0,333		
27	0,803	0,001		
28 29	0.128	0,000	23/6	
29	0.001		1 K • K	
30	0,194	0,473		8

Dari table tersebut dapat disimpulkan bahwa:

- Kelompok pertama (Cluster ke-1) akan berisi industri industri kecil ke: 1, 2, 3,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,27 dan 28
- Kelompok kedua (Cluster ke-2) akan berisi industry industry kecil ke: 4,5,6,7,15,26,19 dan 30

Kasus 3.5

Suatu perusahaan mempunyai beberapa agen yang ada di Kota X. Perusahaan membutuhkan gudang baru untuk melayani agen-agen tersebut. Lokasi agen dan

frekuensi pengiriman yang diharapkan tiap minggu ke masing-masing agen seperti terlihat pada gambar berikut:

Agen		rdinat ari (0,0)]	Frekuensi pengiriman
	X	Y	per minggu
A1	1	0	1
A2	2	5	3
A3	3	8	5
A4	1	6	5
A5	-5	-1	7
A6	-3	-3	2
A7	-1	2	6
A8	4	-2	5
A9	2	-1	7
A10	-2	3	1

Diketahui:

Jari-Jari = 0.94

Accept Ratio = 0.75

Reject Ratio = 0.5

Squash Factor = 1.25

Data ternormalisasi:

0,67	0,27
0,78	0,73
0,89	1,00
0,67	0,82
0,00	0,18
0,22	0,00
0,44	0,45
1,00	0,09
0,78	0,18
0,33	0,55

Frekuensi Ternormalisasi:

0,14
0,43
0,71
0,71
1,00
0,29
0,86
0,71
1,00
0,14

Potensi Awal

4,6769 4,1686 2,7111 3,9783 2,5563 2,8593 4,7507 2,7575 4,0723 4,0792

Potensi Awal * Frek. Ternormalisasi

Potensi Tertinggi = 4.07

Data ke-9

Iterasi – 1:

Potensi Tertinggi = 4.07

Rasio = 1.00

Rasio > Accept Ratio

Jumlah Cluster = 1

Pusat Cluster = 0.78 0.18

Potensi Baru

```
0,0000
0,0667
1,3715
1,6261
1,8505
0,0000
1,6928
0,0000
0,0000
```

Iterasi -2:

Potensi Tertinggi = 1.85

Rasio = 0.45

Rasio < Accept Ratio

Rasio < Reject Ratio

Iterasi Dihentikan

Lokasi Optimum

Agen	Derajat keanggotaan (µ _{DEKAT} [Di])
D1	0,911
D2	0,260
D3	0,046
D4	0,151
D5	0,065
D6	0,213
D7	0,432
D8	0,770
D9	1,000
D10	0,225

Membentuk FIS dengan Subtractive Clustering

Setelah variabel-variabel terbagi atas himpunan-himpunan fuzzy, dimana dalam menentukan derajat keanggotaan dalam setiap himpunan digunakan fuzzy clustering, maka selanjutnya dapat dibangun fuzzy inference system.

Untuk membentuk FIS dari hasil clustering ini , kita dapat menggunakan metode inferensi fuzzy sugeno orde satu.

[R1] IF (x1 is A11) o (x2 is A12) o ...o (Xn is A1m) THEN (z = k11x1 + ... + k1mXm + k10);

[R2] IF (x1 is A21) o (x2 is A22) o ...o (Xn is A2m) THEN (z = k21x1 + ... + k2mXm + k20);

[Rr] IF (x1 is Am1) o (x2 is Am2) o ...o (Xn is Arm) THEN (z = kr1x1 + ... + krmXm + kr0);

Jumlah aturan = r yang terbentuk, sama dengan jumlah cluster yang terbentuk.

Untuk mempermudah komputasi, matriks K yang berukuran r x (m+1):

$$K = \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1m} & k_{10} \\ k_{21} & k_{22} & \cdots & k_{2m} & k_{20} \\ \vdots & \vdots & & \vdots & \vdots \\ k_{r1} & k_{r2} & \cdots & k_{rm} & k_{r0} \end{bmatrix}$$

Disusun menjadi satu vektor k:

$$K = \left[k_{11} \, k_{12} \, \ldots \, k_{1m} \, k_{10} \, k_{21} \, k_{21} \, k_{22} \, \ldots \, k_{2m} \, k_{20} \, \ldots \, k_{21} \, k_{1r2} \, \ldots \, k_{rm} \, k_{r0} \, \right]^T$$

Mencari derajat keanggotaan setiap titik data i dalam setiap cluster k dengan menggunakan fungsi Gauss

$$\mu_{\mathsf{k}1} = e^{-\sum_{j=1}^{m} \frac{(xij - Ckj)^2}{2\sigma j^2}}$$

$$\begin{aligned} &\underline{d}^k_{ij} = \underline{X}_{ij} * \mu_{ki} \\ &\underline{d}^k_{i(m+1)} = \mu_{ki} \end{aligned}$$

Proses normalisasi dilakukan dengan cara membagi d^k_{ij} dan $d^k_{i(m+j)}$ dengan jumlah derajat keanggotaan setiap titik data I pada cluster k, diperoleh:

$$d_{ij}^{k} = \frac{d_{ij}^{k}}{\sum_{k=1}^{r} \mu_{ki}}$$

$$d_{i(m+1)}^{k} = \frac{d_{i(m+1)}^{k}}{\sum_{k=1}^{r} \mu_{ki}}$$

Langkah selanjutnya adalah membentuk matriks U yang berukuran n x $(r^*(m+1))$

•
$$U_{i1} = d^{1}_{i1}$$
;

•
$$U_{i2}$$
 = d^{1}_{i2} ;

•
$$U_{im} = d^1_{im}$$
;

•
$$U_{i(m+1)} = d^{1}_{i(m+j)}$$
;

•
$$U_{i(m+2)} = d^2_{i1}$$
;

•
$$U_{i(m+3)} = d^2_{i2}$$
;

•
$$U_{i(r^*(m+1)-m)} = d^r_{i1};$$

•
$$U_{i(r^*(m+1)-m+1)} = d^r_{12}$$
;

dst

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1m} & u_{1(m+1)} & u_{1(m+2)} & \dots & u_{1(r^*(m+1))} \\ u_{21} & u_{22} & \dots & u_{2m} & u_{2(m+1)} & x_{1(m+2)} & \dots & u_{2(r^*(m+1))} \\ \vdots & \vdots \\ u_{n1} & u_{n2} & \dots & u_{nm} & u_{n(m+1)} & u_{n(m+2)} & \dots & u_{n(r^*(m+1))} \end{bmatrix}$$

$$z = [z_1 \ z_2 \ \dots \ z_n]^T$$

Ukuran Persamaan Linear yang terbentuk: U*k = z

Himpunan ke k dirumuskan sebagai berikut:

$$\mu_{\text{var-j}}$$
;Himp $-k^{[xi]}=e^{-rac{(Xij-Ckj)^2}{2\sigma j^2}}$

[R1] IF (xi1 is V1H1) o (xi2 is V2H1) o ...o (Xim is VmH1) THEN Y = Z1 [R2] IF (xi1 is V1H2) o (xi2 is V2H2) o ...o (Xim is VmH2) THEN Y = Z2 [Rr] IF (xi1 is V1Hr) o (xi2 is V2Hr) o ...o (Xim is VmHr) THEN Y = Zr Dengan VpHq adalah variabel ke-p himpunan ke-1