Дифференциальные уравнения

Гуревич

Содержание

1	Однородное уравнение	2
2	Обобщенно-однородное уравнение	3
3	Уравнение в полных дифференциалах 3.0.1 Геометрический смысл решения уравнения в полных	3
	дифференциалах	4
4	Уравнения и ряды Тейлора	6
5	Практика	6
6	Уравнение первого порядка 6.1 Метод Лагранжа	7 8

1 Однородное уравнение

$$\frac{dx}{dt} = f(\frac{x}{t})$$

Как искать его решение? Заменой $u(t) = \frac{x}{t}$. Тогда уравнение перепишется в виде $\frac{dx}{dt} = \frac{du}{dt}t + u$. В нем переемные разделяются: $\frac{du}{f(u)-u} = \frac{dt}{t}$. Итак, типы уравнений:

- 1. С разделяющимися переменными
- 2. Приводящиеся к виду $\frac{dx}{dt} = f(ax + bx + c)$
- 3. Првиодящиеся к виду $(a_1x + b_1t + c_1)dx + (a_2x + b_2x + c_2)dt = 0$

Подумаем, можно ли это последнее привести к однородному. Добавим условие $c_1^2+c_2^2\neq 0$ (иначе система уже однородна). В общем, если эти две прямые пересекаются в точке (x_*,t_*) , то можно ввести новые переменные, передвинув эту точку в начало координат: $x\mapsto x-x_*,\ t\mapsto t-t_*$. Тогда система перепишется без $c_1,\ c_2,\$ и таким образом будет однородной. Если прямые не пересекаются, то прямые лиюо совпадают, либо параллельны. Тогда введем замену (для любой прямой) $z(t)=a_1x+b_1t+c_1$. Так как прямые параллельны, то $\frac{a_1}{a_2}=\frac{b_1}{b_2}=k$, значит, мы можем выразить вторую прямую: $a_2x+b_2t+c_2=\frac{1}{k}(a_1x+b_1t+kc_2)=\frac{1}{k}(z-c_1+kc_2)$. Уравнение приводится к виду $z(t)dx+\frac{1}{k}(z-c_1+kc_2)dt=0$. Но у нас все равно многовато переменны. Выразим dx через z:

$$z(\frac{dz - b_1 dt}{a_1}) + \frac{1}{k}(z - c_1 + kc_2) = 0$$

Умножим на a_1k :

$$kzdz = kb_1zdt - a_1zdt - a_1(kc_2 - c_1)dt$$

Домножим на $\frac{1}{kzdt}$:

$$\frac{dz}{dt} = ((b_1 - \frac{a_1}{k})z - a_1(kc_2 - c_1))\frac{1}{z}$$

Finally, уравнение с разделяющимися переменными! ПОБЕДА!

2 Обобщенно-однородное уравнение

Определение 1 Обобщенно-однородное уравнение - уравнение вида

$$M(x,t)dx + N(x,t)dt = 0$$

причем M, N - такие. что $\exists n \in \mathbb{R}$: если $x = z^n(t)$, то уравнение $M(z^n, t)nz^{n-1}dz + N(z^n, t)dt = 0$ однородно.

Пример. Испортим однородное уравнения, чтобы сделать его обощеннооднородным. Роман придумал, чел харош.

Сведем и этого зверя к разделяющимся переменным.

$$\begin{cases} n(kz)^{n-1}M((kz)^n, kt) = k^m M(z^n, t)nz^{n-1} \\ N((kz)^n, kt) = k^m N(z^n, t) \end{cases}$$

3 Уравнение в полных дифференциалах

Напомним, что полный дифференциал dF(x,y) C^1 -гладкой функции равен $\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy$.

Определение 2 Уравнение в полных дифференциалах - уравнение вида

$$dF(x,y) = 0, F \in C^2(\Omega), \Omega \subset \mathbb{R}^2$$

Если мы знаем саму функцию, то решение находится мгновенно: dF(x,y) = const. Правда, оно неявное. Выразим y = y(x) по теореме о неявной функции.

Пример. $x^2 \sin t dt + 2x \cos t dx = 0$

Уравнение является уравнение в полных дифференциалах, если существуют такие функции, что $M=\frac{\partial F}{\partial x},~N=\frac{\partial F}{\partial y}$

Теорема 1 (необходимое условие представления в полных дифференциалах)

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial u}$$

Достаточное условие - $M_y = N_x$ в односвязной области

Доказательство. □

Как подбирать такие функции? Мы знаем, что $\frac{\partial F}{\partial x} = M(x,y)$. Проинтегрируем это равенство по x. Имеем $F = \int M(x,y)dx + \varphi(y)$. Проделаем то же самое по переменной y: $\frac{\partial F}{\partial y} = \frac{\partial}{\partial y}(\int M(x,y)dx) + \varphi' = N(x,y)$, откуда $\varphi = \int \left(N - \frac{\partial}{\partial y}(\int Mdx)\right)dy$. Чтобы проверить себя при решении, помним, что φ не зависит от x! Итак,

$$F = \int M(x,y)dx + \int \left(N - \frac{\partial}{\partial y} \left(\int Mdx\right)\right) dy$$

3.0.1 Геометрический смысл решения уравнения в полных дифференциалах

Так как z=z(x,y) - какая-то поверхность, то запись z=const - это линии уровня, которые можно спроецировать на плокость переменных и получить интегральные кривые.

Пример (модель Лотки-Вольтерра). Пусть x(t) - плотность карасей, y(t) - плотность щук в некотором пруду. Щуки сдерживают рост карасей, но от количества карасей зависит также и количество щук. Запишем систему:

$$\begin{cases} \dot{x} = x(a - by) \\ \dot{y} = y(-c + ex) \end{cases}$$

Лотка придумал эту систему для биоценозов, а Вольтерра - для химических реакций.

Давайте решим эту систему. Её расширенное фазовое пространство, вообще говоря, трехмерное, поэтому будем рассматривать фазовые кривые - проекции интегральных на плоскость независимых параметров. Они ориентированы в направлении роста параметра t. Найдем эти кривые, найдя решение уравнения $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-cy+exy}{ax-bxy}$. Переменные разделяются:

$$\frac{(a-by)dy}{y} = \frac{(-c+ex)dx}{x}$$

Представим его в полных дифференциалах:

$$d\left(a\ln y - by + c\ln x - ex\right) = 0$$

Значит, решение имеет вид $a \ln y - by + c \ln x - ex = h = const$. Выглядит очень сложно, но давайте попробуем построить изолинии. Введм функцию $F = \ln (y^a x^c) - by - ex$, и поищем её изолинии. Сначала найдем критические точки: $(x_*, y_*) = (\frac{c}{e}, \frac{a}{b})$ (получилась единственная точка). Определим тип критической точки (составим гессиан, посчитаем его знакоопределенность); получим, что это точка максимума. Линии уровня - какие-то окружности/эллипсы.

Упражнение. Доказать, что фазовые кривые замкнуты.

Теперь нам надо понять, куда закручиваются эти линии, как они ориентированы. Они закручиваются против часовой стрелки вокруг критической точки, кстати, область решения - первая координатная четверть. Чтобы избежать проблем с дискретностью, наши переменные - это плотность населения пруда.

Определение 3 Автономное $\mathcal{A}Y$ - дифференциальное уравнение, правая часть которого не зависит от времени.

Автономные уравнения не могут быть динамическими системами, так как они не зависят от времени, но можно искусственно этого достичь.

Пример. Нелинейный консервативный осциллятор. Рассмотрим маятник с координатами φ - отклонение от положения равновесия. Рассмотрим плоские колебания маятника массой m и длиной l. При повороте на малый угол движение можно представить как прямолинейное движение по касательной. Запишем второй закон Ньютона в проекции на касательную:

$$\vec{\tau}: m\frac{d^2x}{dt^2} = -mg\sin\varphi$$

Пусть Δx - длина дуги окружности, примерно равная малой части касательной. Тогда $\Delta x = l\Delta \varphi + o(\Delta \varphi)$. Получим уравнение $\frac{fx}{dt} = l\frac{d\varphi}{dt}$. Finally,

$$ml\frac{d^2\varphi}{dt^2} = -mg\sin\varphi$$

- уравнение колебания маятника. Оно нелинейное из-за синуса. Оно имеет порядок 2, значит, нам надо зафиксировать начальные условия: $\varphi(0)$, $\dot{\varphi}(0)$. Уравнение тогда превратится в систему

$$\begin{cases} \dot{\varphi} = \psi \\ \dot{\psi} = -\omega^2 \sin \varphi \end{cases}$$

Кстати, если мы напишем функцию Лагранжа и напишем уравнение Лагранжа для него, то получим это же уравнение.

Начнем решение. Сделаем замену $\dot{\varphi} = \psi$. Теперь введем фазовое пространство угол-скорость таким образом, чтобы близкие точки были близки. В угловых координатах мы склеим точки $\pi, -\pi$ у координат углов (точнее, создадим факторпространство по отношению $(\varphi, \psi) \sim (\varphi + 2\pi k, \psi)$). Получим, что фазовое пространство - цилиндр. Любая замкнутая кривая - это некоторая траектория (вообще говоря, определляемая уравнением). На цилиндре есть два типа замкнутых кривых - стягиваемые в точку и нестягиваемые. Вторые отвечают за движение через верх.

Продолжаем решение. Из системы имеем $\frac{d\psi}{d\varphi} = -\frac{\omega^2 \sin \varphi}{\psi}$. Полная энергия равна константе: $\frac{m\psi^2}{2} + \frac{mg}{l}(1 - \cos \varphi) = h$. Это мы вывели из формы уранвения в полных диференциалах. В общем, решаем. Получим

$$\varphi = \pm \sqrt{\frac{2}{m} \left(h - \frac{mg}{l} (1 - \cos \varphi) \right)}$$

Нарисуем фазовые траектории, и ещё функцию $F(\varphi) = \frac{mg}{l}(1-\cos\varphi)$. Уровни постоянной энергии - одномерные торы. Как и обычно с функцией Гамильтона. Из анализа фазовых траекторий можно выяснить, что период колебаний растет по мере увеличения энергии. Также есть два состояния равновесия: верхнее (неустойчивое) и нижнее (устойчивое).

4 Уравнения и ряды Тейлора

Пусть $\frac{dx}{dt} = f(t,x)$. Рассмотрим $x(t_0) = x_0$. Разложим в ряд Тейлора: $x(t) = x(t_0) + \frac{dx}{dt}(t_0)(t-t_0) + o(t-t_0)$. Отбросив члены высшего порядка (прямо как топовые физики), получим приближенное решение. Приближенные решение можно итерировать, и это будет широко известный **метод Эйлера** (первого порядка). $t_{k+1} = t_k + h$, $x_{k+1} = x_k + f(t_k, x_k)h$

5 Практика

Пример (№111). $(y+\sqrt{xy})dx=xdy$. Уравнение однородно (проверим умножением на k). Значит, делаем замену $u(x)=\frac{y}{x}$. Имеем $dy=u\cdot dx+du\cdot x$. Переменные разделяются: $\frac{dx}{x}=\frac{du}{\sqrt{u}}$

Пример (№113). (2x - 4y + 6)dx + (x + y - 3)dy. Переносим начало координат в точку пересечения.

Пример (№126). $y'=y^2-\frac{2}{x^2}$. Это - обобщенно-однородное уравнение, то есть приводится к однородному заменой $y=z^m(x)$. $y'=mz^{m-1}z$ Далее $mz^{m-1}z=z^{2m}-\frac{2}{x^2}$ Теперь уравнение однородно. Введем замену $\frac{z}{x}=u,\ z=ux$. Получим $u'x+u=-1+2u^2$

Пример (№128). $\frac{2}{3}xyy' = \sqrt{x^6 - y^4} + y^2$. Пусть $y = z^m$. Идея: сделать так, чтобы под корнем степень у x и y была одинаковой.

Пример (№) $2xydx + (x^2 - y^2)dy = 0$. Подберем функцию, полным дифференицалом которого является это выражение; получим $F(x,y) = x^2y - \frac{1}{3}y^3$. Решние: F = C = const

Пример (№192). $(1 + y^2 \sin 2x) dx - 2y \cos^2 x dy$. Мы должны показать, что вторые производные равны. Тогда это значит, что $F_{xy} = F_{yx}$, и такая функция вообще существует на некотором диске (где правая часть не обращается в ноль). Интегируем два раза, и найдем эту функцию: $F(x,y) = x - y^2 \frac{1}{2} \cos 2x - \frac{y^2}{2} + C_0$. Итак, ответ: F = const Пример (№202). $y^2 dx + (xy + \operatorname{tg} xy) dy = 0$. Является ли однородным, в

Пример (№202). $y^2dx + (xy + \operatorname{tg} xy)dy = 0$. Является ли однородным, в полных дифференциалах? Давайте раскроем скобки и сгруппируем: $y(ydx + xdy) + \operatorname{tg} xydy$. Это то же, что и $\frac{d(xy)}{\operatorname{tg} xy} + \frac{dy}{y} = 0$. Домножим на $\frac{1}{y\operatorname{tg} xy}$ и хаваем уравнение в полных дифференицалах бесплатно. То, на что домножили - интегрирующий множитель.

6 Уравнение первого порядка

Определение 4 Уравнение

$$\frac{dx}{dt} + a(t)x = b(t) \tag{1}$$

где a, b непрерывны на $t \in (\alpha, \beta)$ (интервал непрерывности), называется линейным ДУ первого порядка. Если при этом $b(t) \not\equiv 0$, то оно называется неоднородным.

Как следствие из теоремы Коши-Пикара, для $\forall t_0 \in (\alpha, \beta), \ \forall x_0 \in \mathbb{R}$ существует и единственно решение задачи Коши.

Замечание. Решение задачи Коши для 1 можно продолжить на весь интервал (α, β) . Если этот интервал конечен, то функции a(t), b(t) ограниченны на нём, то есть $|a(t)x+b(t)| \leq Ax+B$, и решениене выйдет за конус, образованный этой прямой.

Определение 5 Линейныйй ператор - отображение $A: X \to Y$ такое, что $A(x+y) = A(x) + A(y), \ A(\lambda x) = \lambda A(x).$

Пусть $X = C^1(\alpha, \beta), C^0(\alpha, \beta)$ - пространства дифференцируемых и непрерывных функций. Положим $A(x) = \frac{dx}{dt} + a(t)x$. В силу линейности производной, это - линейный оператор. Также и любая линейная комбинация производных (любого порядка) является линейным оператором.

Итак, уравнение 1 в операторной записи эквивалентно Ax = b(t). Обозначим за $x_{o.n.}$ множество решений неоднородного уравнения, $x_{o.o.}$ - множество решений однородного уравнения, $x_{o.n} + x_{o.o}$ - множество вида x + x

Теорема 2 (о структуре решения линейного уравнения) Решение неоднородного уравнения - сумма общего решения однородного уравнения и частного решения.

Доказательство. Пусть $\varphi(t)$ - частное решение однородного уравнения, x_p - частное решение неоднородного уравнения. Применим оператор A к их сумме: $A(\varphi(t)+x_p)=A\varphi(t)+Ax_p=0+b(t)$. Значит, сумма этих функций обращает уравнение в тождество, значит, $\varphi(t)+x_p\in x_{o.n.}$.

Докажем, что других решений нет. Допустим, $\psi(t) \in x_{o.n.}$ таков, что его нельзя представить суммы решений однородного и неоднородного. Рассмотрим $\psi - x_p$ - вычтем частное решение неоднородного. Подставляя в уравнение, получаем $A(\psi - x_p) \equiv 0$, значит, их разность - решение однородного уравнения. Но это противоречит предположению. \square

Как решать линейные уравнения? Сначале решаем однородное уравнение: $\frac{dx}{dt} = -a(t)x, \ x = C(t)e^{-\int_{t_0}^t a(\tau)d\tau}$. Решать неоднородное 3мя способами:

- 1. Угадайка
- 2. Метод Лагранжа вариации постоянных
- 3. Формула Коши (см. справочник).

6.1 Метод Лагранжа

Мы знаем, что $x = Ce^{-\int a(t)dt}$ - решение однородного уравнения. Будем её варьировать, чтобы в уравнении было бы тождество:

$$\frac{d}{dt} \left(C(t)e^{-\int_{t_0}^t a(\tau)d\tau} \right) + a(t)C(t)e^{-\int_{t_0}^t a(\tau)d\tau} = b(t)$$

Дифференцируя, получаем $C'=b(t)e^{-\int\limits_{t_0}^t a(\tau)d\tau},$ откуда

$$C = e^{-\int_{t_0}^t a(\tau)d\tau} \int_{t_0}^t \left(b(s)e^{-\int_{s_0}^s a(\tau)d\tau} \right) ds + C_0 e^{-\int_{t_0}^t a(\tau)d\tau}$$

Значит, мы нашли семейство всех решений неоднородного уравнения, произвольно выбирая C_0 . По предыдущей теореме, этим все решения исчерпываются.

То, что мы получили - это и есть формула Коши. Она нужна в основном для всяких теоретических свойств.

Пример. $\frac{dx}{dt} + \frac{x}{t} = t^2$. Интервал непрерывности - $\mathbb{R} \setminus \{0\}$, поэтому вообщето надо рассматривать два интервала. Решение однородного уравнения: $\frac{dx}{dt} = -\frac{x}{t}, \ x = \frac{C}{t}$. Подумаем, как можно подобрать частное неоднородного уравнения. Поищем в виде $x = at^3$. Тогда при подстановке $3at^2 + t^2 = t^2$, откуда $a = \frac{1}{4}$. Ответ: $x = \frac{t^3}{4} + \frac{C}{t}$.

6.2 Уравнения, приводящееся к линейному

Испортрим уравнение 1, добавив нелинейности:

$$\frac{dx}{dt} + a(t)x = b(t)x^k, \ k \in \mathbb{R} \setminus \{0, 1\}$$

Это - уравнение Бернулли. Если разделим на x^k , получим

$$x^{-k}\frac{dx}{dt} + a(t)x^{1-k} = b(t)$$

Значит, оно сводится к линейному уравнению заменой $z = x^{1-k}$:

$$\frac{1}{1-k}\frac{dz}{dx} + a(t)z = b(t)$$

Рассмотрим уравнение Риккати:

$$\frac{dx}{dt} + a(t)x = b(t)x^2 + c(t), \ c(t) \neq 0, c(t) \in C^0(\alpha, \beta)$$

В общем виде не решается, но можно частное решение угадать. Пусть $x=z+x_p$, где x_p - частное решение. Получим

$$\frac{dz}{dt} + a(t)z + \frac{dx_p}{dt} + a(t)x_p = b(t)x_t^2 + 2zx_pb(t) + c(t)$$

Свели к уравнению Бернулли

$$\frac{dz}{dt} + [a(t) - 2x_p b(t)]z = b(t)z^2$$

Ну зато можно численно и приближенно решать.

Пример (№136). $xy' - 2y = 2x^4$, $x \neq 0$. Разделим на x, свели к линейному (делить на x можно, ибо x не является решением):

$$\frac{dy}{dx} - \frac{y}{x} = 2x^3$$

Общее решение неоднородного уравнения:

$$\int \frac{dy}{2y} = \int \frac{dx}{x}$$

откуда $y=x^2$. Подберем частное решение: $y=ax^4$. Подставляя в уравнение, получим a=1, откуда общее решение $y=x^4+Cx^2$.

Теперь решим методом Лагранжа. Пусть $y = c(x)x^2$. Имеем $c'x^2 + 2xc - 2cx = 2x^3$, откуда $c(x) = x^2 + C_0$. Значит, ответ $y = x^4 + C_0x^2$.

Пример (№149). $y' = \frac{y}{3x-y^2}$. Приведем к линейному (перевернем): $\frac{dx}{dy} = \frac{3x-y^2}{y}$. Общее решение однородного уравнения: $x = Cy^3$. Частное решение поищем в виде $x = ay^2$. Отсюда a = 1, общее решение $x = Cy^3 + y^2$.

Пример (№158). $2y' - \frac{x}{y} = \frac{xy}{x^2 - 1}$. Домножим на y: $2y'y - x = \frac{xy^2}{x^2 - 1}$. Замена: $z = y^2$. Тогда уравнение линеаризуется:

$$\frac{dz}{dx} - \frac{xz}{x^2 - 1} = x$$

Общее решение однородного уравнения $z=C\sqrt{x^2+1}$. Метод внимательного взгляда: $z=x^2-1$ - частное решение. Итак, ответ: $z=x^2-1+C\sqrt{x^2+1}$, $y=\sqrt{x^2-1+C\sqrt{x^2+1}}$.

Пример (№164). $(x^2-1)y'\sin y + 2x\cos y = 2x-2x^3$. Наша нейросетка заметила, что здесь есть тригонометрическая замена. Именно, пусть $z = \cos x$. Тогда $(x^2-1)(-z') + 2xz = 2x-2x^3$. Делим на x^2-1 получим однородное.

Пример (№163). $x(e^y - y') = 2$. Введем замену $t = e^y$, получаем $1 - \frac{dt}{dx} \cdot \frac{1}{t^2} = \frac{2}{xt}$. Далее $z = \frac{1}{t}$, и наконец получаем линейное уравнение:

$$1 + \frac{dz}{dx} = \frac{2z}{x}$$

Пример (№167). Уравнение Риккати: $x^2y' + xy + x^2y^2 = 4$. Частное решение $y = \frac{a}{x}$. Тогда $-a + a + a^2 = 4$, $a = \pm 2$. Пусть $y = \frac{2}{x}$. Общее решение тогда $y = z + \frac{2}{x}$, $y' = z' - \frac{2}{x^2}$. Имеем уравнение Бернулли

$$-z^2 = \frac{5z}{x} + z'$$

Сделаем замену $u=\frac{1}{z}$, получим $\int \frac{du}{u}$