Processos

Introdução

- Processador não conhece programas
 - Conhece instruções!
- SO deve gerenciar execução concorrente
 - Compartilhamento de UCP, E/S, memória principal, etc.
- Necessidade de algo que identifique a execução de um programa:
 - Tarefa, Job, Processo.

Processo

Processo - Estrutura

- Processo
 - Programa em execução
 - Ambiente de execução desse programa.
- Troca de processos → Compartilhamento
 - Necessidade de salvar o contexto
- Formado por três partes:
 - Contexto de Hardware
 - Contexto de Software
 - Espaço de Endereçamento

Processo – Estrutura - Contexto

Processo – Troca de Contexto

Processo – Bloco de Controle

- Bloco de Controle do Processo (BCP)
 - Estrutura de dados
 - Informações sobre contextos
 - Implementação
 - Memória principal,
 - Área exclusiva do SO
 - System calls
 - Usadas na criação, alteração, eliminação, sincronismo, etc.

Estados dos Processos

- Execução (running)
- Pronto (ready)
 - Lista de prontos
- Espera (wait)
 - Lista de espera

Mudança de Estados

Podem ocorrer:

Por eventos voluntários
ou involuntários.

Políticas de escalonamento dependem do SO

Estado de Execução

Estado de Espera

Estado de Pronto

Mudança de Estados

- Processos em Espera ou Pronto:
 - Swap out
 - Processos são retirados da memória principal.
 - Liberação de espaço.
 - Swap In

 Retorno do processo para a memória principal.

residente

não residente

Estado de Execução

Criação e Eliminação de Processos

Criação:

- Sistema Operacional cria o PCB e aloca memória para uso do processo
- A partir desse momento o processo já "existe" para o sistema Operacional

Eliminação:

- Todos os recursos alocados são desalocados
- Exclusão do PCB.

Criação e Eliminação de Processos

Processos Independentes e Subprocessos

- Processos independentes
 - Sem vínculos com o criador.
 - Possui todos os contextos
- Subprocessos
 - Hierarquia de processos
 - Dependência entre processos
 - Compartilhamento de quotas
- Overhead na comunicação entre processos

Processos Independentes e Subprocessos

Threads

Redução do overhead

 Um processo → várias linhas de execução.

 Contexto de Software e endereçamento do processo.

Maior desempenho na comunicação.

Compartilhamento de CPU

Contexto de hardware próprio

Processos Foreground e Background

- Canais de comunicação (I/O)
- Foreground
 - Permite interação com o usuário
 - Canais: Dispositivos de E/S
- Background
 - Não há interação
 - Canais: arquivos, outros processos

Processos Foreground e Background

(a) Processo Foreground

(b) Processo Background

Pipe

- Saída de um processo ligado à entrada de outro.
- Muito usado nos interpretadores de comandos Unix.

Processos do Sistema Operacional

- Não só aplicações usam processos
- Arquitetura Microkernel
 - Núcleo estável
 - Flexibilidade de ativar/desativar recursos
 - Ex: Serviços de Rede
 - Ex: Auditoria e segurança
 - Ex: Gerência de impressão

Processos CPU/IO - Bound

- Classificação de processos de acordo com sua utilização.
- CPU-Bound
 - Estado de execução
 - Aplicações que efetuam muitos cálculos (científicas, processamento de imagens, etc.)
- IO-Bound
 - Estado de espera
 - Aplicações comerciais (muitas leituras e gravações)

Processos CPU/IO - Bound

 Comparação entre processos CPU-Bound e processos IO-Bound.

Sinais

- Sinais
 - Notificação de processos
 - Usados com temporizadores para execução periódica
 - Notificação no PCB
 - Alteração de bits
 - Verificação apenas na execução.
 - Tratamento semelhante ao de interrupções/exceções
 - Ex.: Ctrl+C, Término do processo

