Mathematisches Institut, Algebraische Geometrie, Prof. Dr. Stefan Kebekus

Klausur: "Mathematik I für Studierende des Ingenieurwesens und der Informatik" WS 2013/14

Nachname:				
Vorname:				
Matrikelnummer:				
Fach:				
Anonymisierungscode:				
Studiengang:	\square Bachelor	□ Master	☐ Lehramt	\square sonstiges
Unterschrift:				······
Anmerkungen:				
• Füllen Sie dieses D	eckblatt vollstä	indig aus.		
• Zusätzliche Blätter	sind nur einsei	itig zu beschre	iben.	
• Zusätzliche Blätter	sind mit dem	Anonymisierur	ngscode zu verseh	en.
• Für jede Aufgabe i	st eine neue Se	ite/Bogen zu l	peginnen.	
• Mobiltelefone müss	en ausgeschalte	et werden.		
• Elektronische Hilfs	mittel (Tascher	nrechner,) jeg	glicher Art sind n	icht zugelassen.
• Der persönliche Angeteilt.	onymisierungse	code wird jeder	n Studierenden w	ährend der Klausur mit-
• Alle Ergebnisse s	sind zu begrü	inden bzw. h	erzuleiten.	
Prüfungsunfähigkeit Durch den Antritt d sich während der Prüfun auch während der Prüfu verpflichtet, die für den l (innerhalb von 3 Tagen) schriftlich anzuzeigen un Internetseiten des Prüfun	ieser Prüfung g nicht prüfung ing von dieser Rücktritt oder o dem Prüfung id glaubhaft zu	gsfähig fühlen, zurücktreten. das Versäumni samt durch ei n machen. Wei	können Sie aus ge Gemäß der Prüf s geltend gemach n Attest mit der ter Informationer	esundheitlichen Gründen fungsordnungen sind Sie ten Gründe unverzüglich Angabe der Symptome
Note:				
Unterschrift des Prüfers	3:			

Mathematisches Institut, Algebraische Geometrie, Prof. Dr. Stefan Kebekus

Klausur: "Mathematik I für Studierende des Ingenieurwesens und der Informatik" WS 2013/14

Anonymisierungscode:	

Anmerkungen:

- Füllen Sie dieses Deckblatt vollständig aus.
- Zusätzliche Blätter sind nur einseitig zu beschreiben.
- Zusätzliche Blätter sind mit dem Anonymisierungscode zu versehen.
- Für jede Aufgabe ist eine neue Seite/Bogen zu beginnen.
- Mobiltelefone müssen ausgeschaltet werden.
- Elektronische Hilfsmittel (Taschenrechner,...) jeglicher Art sind nicht zugelassen.
- Der persönliche Anonymisierungscode wird jedem Studierenden während der Klausur mitgeteilt.
- Alle Ergebnisse sind zu begründen bzw. herzuleiten.

	Max. Anzahl Punkte	Erreichte Punkte	Bemerkung
Aufgabe 1	4		
Aufgabe 2	4	* *	
Aufgabe 3	4		
Aufgabe 4	4		
Aufgabe 5	4		
Aufgabe 6	4		•
Summe:	24		

Aufgabe 4 (4 = 2 + 2 Punkte)

Ist die Folge a_n beschränkt? Ist die Folge a_n konvergent? Geben Sie jeweils eine kurze Begründung an.

a)
$$a_n = \frac{n^2 + 3n - 7}{3n + 5}$$

b) $a_n = \sin\left(\frac{n\pi}{2}\right)$

b)
$$a_n = \sin\left(\frac{n\pi}{2}\right)$$

c)
$$a_n = \exp(n - n^2)$$

Aufgabe 2

Aufgabe 1: Beweise durch vollständige Induktion

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

(3 Punkte)

Aufgabe 3

Aufgabe 3

Berechnen Sie die komplexen Nullstellen des Polynoms.

$$X^3 + 4X + 5$$

Aufgabe 4

Berechnen Sie das Taylor-Polynom zweiten Grades von

$$f(x) = \frac{x}{\sqrt{1+x}}$$

im Entwicklungspunkt $x_0 = 0$.

Aufgabe 5 (3 = 1 + 1 + 1 Punkte)

Betrachten Sie für $k \in \mathbb{Z}$ die Integrale

$$a_k = \int_{-\pi}^{\pi} \cos^2(kx) dx$$
 und $b_k = \int_{-\pi}^{\pi} \sin^2(kx) dx$.

- (a) Berechnen Sie a_0 und b_0 .
- (b) Zeigen Sie $a_k = b_k$ für $k \in \mathbb{Z} \setminus \{0\}$ (z.B. mit partieller Integration).

Aufgabe 6

Betrachten Sie folgendes uneigentliches Integral, untesuchen sie es auf Existenz und rechnen sie es gegebenenfalls aus.

$$\int_{0}^{\pi} \frac{\sin x}{\sqrt{1 + \cos x}} dx$$

Aufgabe 7

Aufgabe 2:

a) Berechne

$$\lim_{x\to\infty}\frac{x^{16}+2x+3}{2x^{16}+x^6} \ \text{ und } \lim_{n\to\infty}\frac{\ln n}{n}.$$

Aufgabe 4

Die Funktion $f(x,y) = \frac{x}{y}$, sei definiert für $x \in \mathbb{R}$ und $y \in \mathbb{R} \setminus \{0\}$. Zeigen Sie, die Funktion $f(x,y) = \frac{x}{y}$ kann in (0,0) nicht stetig fortgesetzt werden, d.h konstruieren Sie Nullfolgen $x_n, y_n, \tilde{x}_n, \tilde{y}_n$, so

$$\lim_{n\to\infty} f(x_n, y_n) \neq \lim_{n\to\infty} f(\tilde{x}_n, \tilde{y}_n).$$

Folgern Sie, dass die Reihenfolge von Grenzwerten im Allgemeinen nicht vertauscht werden darf.

Aufgabe 9

Aufgabe 2 (3 Punkte)

(a) Seien $a, b \in \mathbb{R}$ mit a < b und $f: [a, b] \to [a, b]$ stetig. Beweisen Sie, dass f in [a, b] einen Fixpunkt hat, d.h. es existiert ein $\xi \in [a, b]$ mit $f(\xi) = \xi$.

Hinweis: Verwenden Sie den Zwischenwertsatz mit einer geeigneten Funktion h.

(b) Geben Sie eine stetige Funktion $q:(0,1)\to(0,1)$ an, die keinen Fixpunkt besitzt.

Hinweis: Beweisen Sie zunächst den Zwischenwertsatz.

Aufgabe 10

Aufgabe 2 (3 Punkte)

Zeigen oder widerlegen Sie die folgenden Aussagen:

- (a) Aus $0 \le x < \varepsilon$ für alle $\varepsilon > 0$ folgt, dass x = 0.
- (b) Aus $a < b + \varepsilon$ für alle $\varepsilon > 0$ folgt, dass a < b.
- (c) Jede streng monoton fallende Folge positiver Zahlen konvergiert gegen Null.
- (d) Konvergente Folgen sind Cauchy-Folgen.

Hinweis: Wählen Sie in a) und b) $\varepsilon = \frac{1}{n}$ und gehen Sie zum Grenzwert über.

Aufgabe 11

Aufgabe 2 (3 Punkte)

Sei $p: \mathbb{C} \to \mathbb{C}$ ein gerades Polynom vom Grad 4 mit Nullstellen bei z=1 und z=i. Zeigen Sie mit Hilfe von Aussagen der Vorlesung, dass p eindeutig bestimmt ist, d.h. es gibt nur ein Polynom mit diesen Eigenschaften. Geben Sie das Polynom p an.

Aufgabe 12

(3 Punkte) Aufgabe 1

Sei a_n eine Zahlenfolge. Zeigen Sie die folgenden Aussagen:

- (a) $a_n \to +\infty \implies \frac{1}{a_n} \to 0$. (b) $a_n \to 0, a_n > 0 \implies \frac{1}{a_n} \to +\infty$.

Aufgabe 3

- (a) Sei $x=re^{i\varphi}\in\mathbb{C}\setminus\{0\}$. Zeigen Sie, dass durch $a_k=\sqrt[n]{r}e^{i(\frac{\varphi+2k\pi}{n})},\ k=0,\ldots,n-1$ alle Lösungen der komplexen Gleichung $z^n=x$ gegeben sind.
- (b) Angenommen $a^n=1, n\geq 2$. Zeigen Sie, dass $\sum_{k=0}^{n-1}a^k=egin{cases} n, & \text{falls }a=1\\ 0, & \text{sonst} \end{cases}$.
- (c) Beweisen Sie, dass für $x\in\mathbb{R}$ und $n\geq 2$ gilt

$$\sum_{k=0}^{n-1} \cos\left(x + \frac{2k\pi}{n}\right) = 0 \quad \text{und} \quad \sum_{k=0}^{n-1} \sin\left(x + \frac{2k\pi}{n}\right) = 0.$$