Esercizio 1. The language contains only the binary relations < and e. The theory T_0 says that < is a strict linear order and that e is an equivalence relation. Let $\mathfrak M$ consists of models of T_0 and partial isomorphisms. Do rich models exist? Can we axiomatize their theory? If so, does it have elimination of quantifiers? Is it λ -categorical for some λ ?

Si risponda sinteticamente.

Esercizio 2. In the language of graphs let T_0 say that there are no cycles (equivalently, there is at most one path between any two nodes). In combinatorics these graphs are called *forests*, their connected components are called *trees*. Let \mathcal{M} consists of models of T_0 and partial isomorphisms. Do rich models exist? Can we axiomatize their theory? If so, does it have quantifier elimination? Is it λ -categorical for some λ ?

Si risponda sinteticamente.