Unsupervised Learning I

Roberta De Vito

Until now...

Until now...

Until now...

Q2 on prismia

Fitting the p-dimensional Point Cloud

Fitting the p-dimensional Point Cloud

Fitting the *p*-dimensional Point Cloud

What is the measure to represent the association between two variables?

The vector u_1 which minimizes the LS is the eigenvector of XX^{\top} associated with the largest eigenvalue λ_1 of XX^{\top} .

The first factorial axis

The first factorial axis

What about the second? The second factorial axis u_2 is the

eigenvector of XX^{\top} corresponding to the second largest eigenvalue λ_2 of XX^{\top} .

Principal Component Analysis: the direction

Principal Component Analysis: the direction

Principal Component Analysis: the direction

Principal Component Analysis: the theorem

For a given $X \sim (\mu, \Sigma)$ let $Y = \Gamma(X - \mu)$ be the PC transformation then

- 1. $E[Y_i] = 0$
- 2. $Var[Y_j] = \lambda_j$
- 3. $Cov[Y_i, Y_j] = 0$
- 4. $Var(Y_1) \ge Var[Y_2] \ge \cdots \ge Var[Y_p] \ge 0$
- 5. $\sum_{j=1}^{p} Var(Y_j) = tr(\Sigma)$

- ▶ 200 observations: 100 genuine and 100 counterfeit old Swiss 1000-franc bank notes.
- The variables

 X_1 : Length of the bank note

 X_2 : Height of the bank note, measured on the left

 X_3 : Height of the bank note, measured on the right

 X_4 : Distance of inner frame to the lower border

 X_5 : Distance of inner frame to the upper border

 X_6 : Length of the diagonal

Length	Height (left)	Height (right)	Inner Frame (lower)	Inner Frame (upper)	Diagonal
014.0	101.0	101.1	0.0	0.7	1.41.0
214.8	131.0	131.1	9.0	9.7	141.0
214.6	129.7	129.7	8.1	9.5	141.7
214.8	129.7	129.7	8.7	9.6	142.2
214.8	129.7	129.6	7.5	10.4	142.0
215.0	129.6	129.7	10.4	7.7	141.8
215.7	130.8	130.5	9.0	10.1	141.4

$$\begin{array}{rcl} y_1 & = & -0.044x_1 + 0.112x_2 + 0.139x_3 + 0.768x_4 + 0.202x_5 - 0.579x_6 \\ y_2 & = & 0.011x_1 + 0.071x_2 + 0.066x_3 - 0.563x_4 + 0.659x_5 - 0.489x_6 \end{array}$$

Another example: The wine

Type The type of wine, into one of three classes

1 (59 obs), 2(71 obs), and 3 (48 obs)

Alcohol Alcohol Malic Malic acid

Ash Ash

Alcalinity Alcalinity of ash Magnesium Magnesium Total phenols

Flavanoids Flavanoids

Nonflavanoids Nonflavanoid phenols

Proanthocyanins Proanthocyanins Color Color intensity

Hue Hue

Dilution D280/OD315 of diluted wines

Proline Proline

How many PCA will you consider?

Cv1 (black), Cv2 (red), Cv3(green)

Cv1 (black), Cv2 (red), Cv3(green)

 X_1 : per capita crime rate,

 X_2 : proportion of residential land zoned for large lots,

 X_3 : proportion of nonretail business acres,

 X_4 : Charles River (1 if tract bounds river, 0 otherwise),

 X_5 : nitric oxides concentration,

 X_6 : average number of rooms per dwelling,

 X_7 : proportion of owner-occupied units built prior to 1940, X_8 : weighted distances to five Boston employment centers,

 X_8 : weighted distances to five Boston employment X_9 : index of accessibility to radial highways,

 X_{10} : full-value property tax rate per \$10,000,

 X_{11} : pupil/teacher ratio,

 X_{12} : $1000(B-0.63)^2 I(B<0.63)$ where B is the proportion of African American,

 X_{13} : % lower status of the population,

 X_{14} : median value of owner-occupied homes in \$1000.

eigenvalue	percentages	cumulated percentages
7.2852	0.5604	0.5604
1.3517	0.1040	0.6644
1.1266	0.0867	0.7510
0.7802	0.0600	0.8111
0.6359	0.0489	0.8600
0.5290	0.0407	0.9007
0.3397	0.0261	0.9268
0.2628	0.0202	0.9470
0.1936	0.0149	0.9619
0.1547	0.0119	0.9738
0.1405	0.0108	0.9846
0.1100	0.0085	0.9931
0.0900	0.0069	1.0000

