De Moivre's Theorem

7A De Moivre's Theorem

Recall that in the section on multiplication of complex numebrs we derived the result for the argument of a product, viz

$$arg(wz) = arg(w) + arg(z)$$
.

Put $w = z = \operatorname{cis} \theta$, that is both are equal with modulus 1, to get

$$z^{2} = z \times z$$

$$= \operatorname{cis}(\theta + \theta)$$

$$= \operatorname{cis} 2\theta.$$

Next put $w = z^2$, so that

$$z^{3} = z^{2} \times z$$
$$= \operatorname{cis}(2\theta + \theta)$$
$$= \operatorname{cis} 3\theta.$$

These simple calculations should make it obvious that $z^n = \operatorname{cis} n\theta$, at least for positive integers n. In fact the result is true for all integers, which we now prove.

de Moivre's Theorem: Let $z = \cos \theta + i \sin \theta$. It can be proven that

$$z^n = \cos n\theta + i\sin n\theta$$

for all integers n. The proof comes in two parts, beginning with a proof by induction for $n \geq 0$. Conjugates are then used to extend the proof to negative integers.

PROOF: As always with proof by induction, we first prove the result true for the starting value.

A. When n = 0

$$\begin{split} \text{LHS} &= z^0 \\ &= 1 \,, \\ &= 1 + 0i \\ &= \text{LHS} \,. \end{split}$$

Hence the statement is true for n = 0.

B. Suppose that the result is true for some integer $k \geq 0$, that is

$$z^k = \cos k\theta + i\sin k\theta. \tag{**}$$

We now prove the statement for n = k + 1, that is, we prove that

1

$$\begin{split} z^{k+1} &= \cos(k+1)\theta + i\sin(k+1)\theta \,. \\ \text{LHS} &= z^k \times z \\ &= (\cos k\theta + i\sin k\theta) \times (\cos \theta + i\sin \theta) \quad \text{by (***)} \\ &= \cos(k+1)\theta + i\sin(k+1)\theta \quad \text{by the sum of arguments} \\ &= \text{RHS} \,. \end{split}$$

Hence the result is true for n = k + 1.

- C. It follows from parts A and B by mathematical induction that the statement is true for all integers $n \geq 0$.
- D. Recall from Chapter 1 that if |w| = 1 then $w^{-1} = \overline{w}$. Now consider z^{-n} for some positive integer n.

$$z^{-n} = (z^n)^{-1}$$

$$= (\cos n\theta + i \sin n\theta)^{-1}$$
 (by part C.)
$$= \overline{(\cos n\theta + i \sin n\theta)}$$
 (since $|\sin n\theta| = 1$)
$$= \cos(-n\theta) + i \sin(-n\theta)$$
,

and the proof is now complete.

De moivre's theorem: Let $z=\cos\theta+i\sin\theta$ be a complex number with modulus 1, then for all integers n,

$$z^n = \cos n\theta + i\sin n\theta.$$

One immediate consequence of the above theorem is that if $z = r \operatorname{cis} \theta$ then $z^n = r^n \operatorname{cis} n\theta$. Thus if r > 1 and $\theta > 0$ then as n increases so too does the modulus and argument of z^n . That is, the points representing z^n lie on an anticlockwise spiral.

WORKED EXERCISE: Let $z = i\sqrt{2}$. Plot the points corresponding to z^n for values of n in the domain $-4 \le n \le 4$, and draw the spiral that these points lie on.

SOLUTION: Here is the table for z^n .

n	-4	-3	-2	-1	0	1	2	3	4
z^n	$\frac{1}{4}$	$i\frac{1}{2\sqrt{2}}$	$-\frac{1}{2}$	$-i\frac{1}{\sqrt{2}}$	1	$i\sqrt{2}$	-2	$-i2\sqrt{2}$	4

Notice that in the graph the spiral does not cut the axes at right angles.

A more practical application is to quickly simplify integer powers of complex numbers, as in the following example.

Worked Exercise: (a) Write $z = -\sqrt{3} + i$ in modulus-argument form.

(b) Hence express z^7 in factored real-imaginary form.

Solution: (a) It should be clear that $z = 2(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6})$.

(b) Using de Moivre's theorem,

$$z^{7} = 2^{7} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}\right)^{7}$$

$$= 128 \left(\cos \frac{35\pi}{6} + i \sin \frac{35\pi}{6}\right)$$

$$= 128 \left(\cos \frac{-\pi}{6} + i \sin \frac{-\pi}{6}\right)$$

$$= 64 (\sqrt{3} - i).$$

WORKED EXERCISE: For which values of k is $(1+i)^k$ imaginary?

SOLUTION: Now $(1+i) = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$

 $(1+i)^k = \sqrt{2^k} \left(\cos\frac{k\pi}{4} + i\sin\frac{k\pi}{4}\right)$ (by de Moivre)

which is imaginary when $\frac{k\pi}{4}$ is an odd multiple of $\frac{\pi}{2}$.

 $\frac{k\pi}{4} = \frac{(2n+1)\pi}{2}$ k = 4n+2, where n is an integer, Thus

that is

 $k = \dots, -6, -2, 2, 6, 10, \dots$ hence

Exercise **7A**

46

- 1. Write each expression in the form $\operatorname{cis} n\theta$:
 - (a) $(\cos \theta + i \sin \theta)^5$
- (c) $(\cos 2\theta + i \sin 2\theta)^4$
- (e) $(\cos \theta i \sin \theta)^{-7}$

- (b) $(\cos \theta + i \sin \theta)^{-3}$
- (d) $\cos \theta i \sin \theta$
- (f) $(\cos 3\theta i \sin 3\theta)^2$

2. Simplify as fully as possible

(a)
$$\frac{(\cos \theta + i \sin \theta)^6 (\cos \theta + i \sin \theta)^{-3}}{(\cos \theta - i \sin \theta)^4}$$

(a) $\frac{(\cos\theta + i\sin\theta)^6(\cos\theta + i\sin\theta)^{-3}}{(\cos\theta - i\sin\theta)^4}$ (b) $\frac{(\cos3\theta + i\sin3\theta)^5(\cos2\theta - i\sin2\theta)^{-4}}{(\cos4\theta - i\sin4\theta)^{-7}}$

- **3.** Write each expression in the form a + ib, where a and b are real:
 - (a) $(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})^4$
- (c) $(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})^5$ (e) $(\cos \frac{3\pi}{8} i \sin \frac{3\pi}{8})^{-6}$ (d) $(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})^{-2}$ (f) $(\cos \frac{5\pi}{12} i \sin \frac{5\pi}{12})^4$
- (b) $(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})^3$

- **4.** (a) Write 1 + i in the form $r(\cos \theta + i \sin \theta)$.
 - (b) Hence, or otherwise, find $(1+i)^{17}$ in the form a+ib, where a and b are integers.
- **5.** Let $z = 1 + i\sqrt{3}$.
 - (a) Express z in mod-arg form.
 - (b) Express z^{11} in the form a + ib, where a and b are real.
- **6.** Let $z = -\sqrt{3} + i$.
 - (a) Find the values of |z| and arg z.
 - (b) Hence, or otherwise, show that $z^7 + 64z = 0$.
- 7. (a) Express $\sqrt{3} i$ in mod-arg form.
 - (b) Express $(\sqrt{3}-i)^7$ in mod-arg form.
 - (c) Hence express $(\sqrt{3}-i)^7$ in the form x+iy, where x and y are real.
- **8.** (a) Express $-1 i\sqrt{3}$ in mod-arg form.
 - (b) Express $(-1 i\sqrt{3})^5$ in mod-arg form.
 - (c) Hence express $(-1 i\sqrt{3})^5$ in the form x + iy, where x and y are real.
- 9. (a) Express $z = \sqrt{2} i\sqrt{2}$ in mod-arg form.
 - (b) Hence write z^{22} in the form a + ib, where a and b are real.
- **10.** Show that:
 - (a) $(1+i)^{10}$ is purely imaginary,
 - (b) $(1 i\sqrt{3})^9$ is real,
 - (c) -1 + i is a fourth root of -4,
 - (d) $-\sqrt{3}-i$ is a sixth root of -64.

- **11.** If k is a multiple of 4, prove that $(-1+i)^k$ is real.
- 12. (a) Find the minimum value of the positive integer m for which $(\sqrt{3}+i)^m$ is:
 - (i) real,
 - (ii) purely imaginary.
 - (b) Evaluate $(\sqrt{3}+i)^m$ for each of the above values of m.
- 13. (a) Prove that $(1+i)^n + (1-i)^n$ is real for all positive integer values of n.
 - (b) Determine the values of n for which $(1+i)^n + (1-i)^n = 0$.
- 14. Use de Moivre's theorem to prove that:

$$(-\sqrt{3}+i)^n - (-\sqrt{3}-i)^n = 2^{n+1} \sin \frac{5\pi n}{6}i$$

- **15.** (a) Show that the expression $(1+\sqrt{3}i)^{2n}+(1-\sqrt{3}i)^{2n}$ simplifies to 2^{2n+1} if n is divisible by 3.
 - (b) Simplify the expression if n is not divisible by 3.

16. Show that
$$\left(\frac{1+\cos 2\theta+i\sin 2\theta}{1+\cos 2\theta-i\sin 2\theta}\right)^n=\cos 2n\theta$$
.

- 17. Prove that $(1 + \cos \alpha + i \sin \alpha)^k + (1 + \cos \alpha i \sin \alpha)^k = 2^{k+1} \cos \frac{1}{2} k\alpha \cos^k \frac{1}{2} \alpha$.
- **18.** Let $z = \operatorname{cis} \frac{\pi}{n}$, where *n* is a positive integer. Show that:
 - (a) $1+z+z^2+\cdots+z^{2n-1}=0$
 - (b) $1+z+z^2+\cdots+z^{n-1}=1+i\cot\frac{\pi}{2n}$

7B Trigonometric Identities

De Moivre's theorem is particularly useful when combined with the binomial theorem to obtain various trigonometric identities.

Worked Exercise: (a) Express $\cos 3\theta$ in terms of powers of $\cos \theta$.

- (b) Hence show that $x = \cos \frac{\pi}{9}$ is a solution of $8x^3 6x 1 = 0$.
- (c) Find the value of $\cos \frac{\pi}{9} \cos \frac{5\pi}{9} \cos \frac{7\pi}{9}$.

SOLUTION: (a) Let $z = \cos \theta + i \sin \theta$, then

$$z^3 = (\cos\theta + i\sin\theta)^3$$

so by de Moivre's theorem we have

$$\cos 3\theta + i\sin 3\theta = \cos^3 \theta + 3i\cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i\sin^3 \theta.$$

Take the real part to get

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta \sin^2 \theta$$
$$= \cos^3 \theta - 3\cos\theta (1 - \cos^2 \theta)$$
$$= 4\cos^3 \theta - 3\cos\theta.$$

(b) Put $\theta = \frac{\pi}{9}$ in this result to get

$$\cos \frac{\pi}{3} = 4 \cos^3 \frac{\pi}{9} - 3 \cos \frac{\pi}{9}$$
or
$$\frac{1}{2} = 4x^3 - 3x \quad \text{where } x = \cos \frac{\pi}{9},$$
thus
$$8x^3 - 6x - 1 = 0.$$

(c) Since $\cos 3\theta = \frac{1}{2}$ for $\theta = \frac{\pi}{9}, \frac{5\pi}{9}$, and $\frac{7\pi}{9}$, it follows that the given expression is the product of the roots of the equation in part (b). Hence

$$\cos\frac{\pi}{9}\cos\frac{5\pi}{9}\cos\frac{7\pi}{9}=\frac{1}{8}$$
.

Worked Exercise: (a) Let $z = \cos \theta + i \sin \theta$. Show that $z^n - z^{-n} = 2i \sin n\theta$.

- (b) Expand $(z z^{-1})^5$.
- (c) Use parts (a) and (b) to show that $16\sin^4\theta = \sin 5\theta 5\sin 3\theta + 10\sin \theta$.
- (d) Hence find $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^5 \theta \, d\theta$.

Solution: (a)
$$z^n - z^{-n} = z^n - \overline{z^n}$$
 (since $|z| = 1$)
$$= 2i \operatorname{Im}(z^n)$$
$$= 2i \sin n\theta$$
.

- (b) $(z-z^{-1})^5 = z^5 5z^3 + 10z 10z^{-1} + 5z^{-3} z^{-5}$.
- (c) Rearranging part (b),

$$(z - z^{-1})^5 = (z^5 - z^{-5}) - 5(z^3 - z^{-3}) + 10(z - z^{-1})$$
so
$$(2i\sin\theta)^5 = 2i\sin 5\theta - 10i\sin 3\theta + 20i\sin\theta \quad \text{by part (a)}$$
thus
$$16\sin^5\theta = \sin 5\theta - 5\sin 3\theta + 10\sin\theta.$$

(d) Dividing by 16 and integrating yields

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^5 \theta \, d\theta = \frac{1}{16} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin 5\theta - 5 \sin 3\theta + 10 \sin \theta \, d\theta$$

$$= \frac{1}{16} \left[-\frac{\cos 5\theta}{5} + \frac{5 \cos 3\theta}{3} - 10 \cos \theta \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= 0 - \frac{1}{16} \left(\frac{1}{5\sqrt{2}} - \frac{5}{3\sqrt{2}} - \frac{10}{\sqrt{2}} \right)$$

$$= \frac{43\sqrt{2}}{120} \qquad \text{(you should check this.)}$$

Exercise **7B**

- 1. (a) Use the identity $\cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^3$ to show that:
 - (i) $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$
 - (ii) $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$
 - (b) Show that $\tan 3\theta = \frac{3 \tan \theta \tan^3 \theta}{1 3 \tan^2 \theta}$.
- 2. Use similar methods to the previous question to show that:
 - (a) $\cos 4\theta = 8\cos^4 \theta 8\cos^2 \theta + 1$
 - (b) $\sin 4\theta = 4\sin\theta\cos\theta(\cos^2\theta \sin^2\theta)$
 - (c) $\tan 4\theta = \frac{4 \tan \theta 4 \tan^3 \theta}{1 6 \tan^2 \theta + \tan^4 \theta}$
- **3.** Let $z = \cos \theta + i \sin \theta$.
 - (a) Use de Moivre's theorem to show that $z^n + z^{-n} = 2\cos n\theta$.
 - (b) Show that $(z+z^{-1})^4 = (z^4+z^{-4}) + 4(z^2+z^{-2}) + 6$.
 - (c) Hence show that $\cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$.

4. Repeat the methods of the previous question to show that:

$$\sin^4\theta = \frac{1}{8}\cos 4\theta - \frac{1}{2}\cos 2\theta + \frac{3}{8}$$

(Start by showing that $z^n - z^{-n} = 2i \sin n\theta$.)

5. (a) Use the methods of questions 1 and 2 to show that:

$$\cos 6\alpha = 32 \cos^6 \alpha - 48 \cos^4 \alpha + 18 \cos^2 \alpha - 1$$

- (b) Hence show that the polynomial equation $32x^6 48x^4 + 18x^2 1 = 0$ has roots of the form $x = \cos \frac{n\pi}{12}$, where n = 1, 3, 5, 7, 9, 11.
- (c) Use the product of these six roots to deduce that $\cos \frac{\pi}{12} \cos \frac{5\pi}{12} = \frac{1}{4}$.
- **6.** (a) Use the methods of question 3 to show that:

$$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$$

- (b) Hence evaluate $\int_0^{\frac{\pi}{2}} \cos^5 \theta \, d\theta$.
- 7. (a) Use de Moivre's theorem to show that:

$$\sin 5\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta$$

- (b) Hence show that the equation $16x^5 20x^3 + 5x 1 = 0$ has roots x = 1, $\sin \frac{\pi}{10}$, $\sin \frac{9\pi}{10}$, $\sin \frac{13\pi}{10}$, $\sin \frac{17\pi}{10}$.
- (c) By equating coefficients, or otherwise, find the values of b and c for which $16x^4 + 16x^3 4x^2 4x + 1 = (4x^2 + bx + c)^2$, and hence explain why the equation $16x^4 + 16x^3 4x^2 4x + 1 = 0$ has two double roots.
- (d) Use part (b) to show that the equation $16x^4 + 16x^3 4x^2 4x + 1 = 0$ has roots $x = \sin \frac{\pi}{10}$, $\sin \frac{9\pi}{10}$, $\sin \frac{13\pi}{10}$, $\sin \frac{17\pi}{10}$. Does this contradict part (c) which asserts that the equation has two double roots?
- (e) Hence find exact values for $\sin \frac{\pi}{10}$ and $\sin \frac{3\pi}{10}$.
- **8.** (a) Show that $\sin^5 \theta = \frac{1}{16} (\sin 5\theta 5\sin 3\theta + 10\sin \theta)$.
 - (b) Hence solve the equation $16\sin^5\theta = \sin 5\theta$ for $0 \le \theta < 2\pi$.
- **9.** (a) Use de Moivre's theorem to show that $\tan 5\theta = \frac{5 \tan \theta 10 \tan^3 \theta + \tan^5 \theta}{1 10 \tan^2 \theta + 5 \tan^4 \theta}$.
 - (b) Hence show that the equation $x^4 10x^2 + 5 = 0$ has roots $x = \pm \tan \frac{\pi}{5}$, $\pm \tan \frac{2\pi}{5}$.
 - (c) Deduce that $\tan \frac{\pi}{5} \tan \frac{2\pi}{5} = \sqrt{5}$ and that $\tan^2 \frac{\pi}{5} + \tan^2 \frac{2\pi}{5} = 10$.
- **10.** Let $z = \cos \theta + i \sin \theta$.
 - (a) Show that $2\cos n\theta = z^n + \frac{1}{z^n}$ and that $2i\sin n\theta = z^n \frac{1}{z^n}$.
 - (b) Hence show that:

$$128\cos^3\theta\sin^4\theta = \left(z^7 + \frac{1}{z^7}\right) - \left(z^5 + \frac{1}{z^5}\right) - 3\left(z^3 + \frac{1}{z^3}\right) + 3\left(z + \frac{1}{z}\right)$$

- (c) Deduce that $\cos^3 \theta \sin^4 \theta = \frac{1}{64} (\cos 7\theta \cos 5\theta 3\cos 3\theta + 3\cos \theta)$.
- 11. Consider the polynomial equation $5z^4 11z^3 + 16z^2 11z + 5 = 0$, which has four complex roots with modulus one.

Let $z = \operatorname{cis} \theta$.

- (a) Show that $5\cos 2\theta 11\cos \theta + 8 = 0$.
- (b) Hence determine the four roots of the equation in the form a + ib, where a and b are real.

- **12.** (a) Use de Moivre's theorem to express $\frac{\sin 8\theta}{\sin \theta \cos \theta}$ as a polynomial in s, where $s = \sin \theta$.
 - (b) Hence solve the equation $x^6 6x^4 + 10x^2 4 = 0$, leaving the roots in trigonometric form.
- 13. Let n be a positive integer.
 - (a) Use de Moivre's theorem to show that:

$$\sin(2n+1)\theta = {}^{2n+1}C_1\cos^{2n}\theta\sin\theta - {}^{2n+1}C_3\cos^{2n-2}\theta\sin^3\theta + \dots + (-1)^n\sin^{2n+1}\theta$$

- (b) Hence show that the polynomial $P(x) = {}^{2n+1}C_1 x^n {}^{2n+1}C_3 x^{n-1} + \dots + (-1)^n$ has roots of the form $\cot^2\left(\frac{k\pi}{2n+1}\right)$ where $k=1, 2, 3, \dots, n$.
- (c) Deduce that $\cot^2\left(\frac{\pi}{2n+1}\right) + \cot^2\left(\frac{2\pi}{2n+1}\right) + \dots + \cot^2\left(\frac{n\pi}{2n+1}\right) = \frac{n(2n-1)}{3}$.
- (d) Use the fact that $\cot \theta < \frac{1}{\theta}$ for $0 < \theta < \frac{\pi}{2}$ to show that:

$$\left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}\right) \frac{(2n+1)^2}{2n(2n-1)} > \frac{\pi^2}{6}$$

7C Roots of Unity

Recall from a previous worked exercise that the points in the Argand diagrm which represent z^n , where n is an integer, lie on a spiral whenever $|z| \neq 1$. When |z| = 1, it should be clear that the points lie on the unit circle. Further, if $z = \cos \theta + i \sin \theta$ then the angle at the origin subtended by successive points is

$$\arg(z^n) - \arg(z^{n-1}) = \arg\left(\frac{z^n}{z^{n-1}}\right)$$
$$= \arg(z)$$
$$= \theta.$$

That is, the angle is constant. Thus successive points are regularly spaced about the unit circle.

For example, the sketch on the right shows the points z^n for n=1,2,3,4,5,6, where $z=\cos\frac{1}{2}+i\sin\frac{1}{2}$. Note that

$$\arg(z) = \frac{1}{2} = 28^{\circ}39',$$

which is the angle subtended at the origin by any pair of successive points. It should be clear that $2\pi \div \frac{1}{2} = 4\pi$ is irrational, and hence none of the points coincide, even for larger values of n. In that sense, this is not a very interesting example.

Significant configurations of points arise when we solve equations of the form $z^n=w$, where |w|=1. There are always n solutions and the points are equally spaced about the unit circle. Further, if z=1 is a solution and if α is another solution, then α^k will always coincide with one of the points, regardless of the integer value of k.

Worked Exercise: (a) Solve $z^6 = 1$.

- (b) Plot the solutions on the unit circle in the complex plane.
 - (i) What is the angle subtended at the origin by successive roots?
 - (ii) What regular polygon has these points as vertices?
- (c) Let $\alpha = \operatorname{cis}(-\frac{\pi}{2})$. Show that the list 1, α , α^2 , α^3 , α^4 and α^5 includes all six roots of $z^6 = 1$.
- (d) Let $\beta = \operatorname{cis} \frac{2\pi}{3}$. Which roots of $z^6 = 1$ can be written in the form β^k , where k is an integer?

SOLUTION:

(a) Let $z = \operatorname{cis} \theta$ and note that $1 = \operatorname{cis} 2n\pi$, where n is an integer. Thus

$$cis 6\theta = cis 2n\pi$$
 (by de Moivre)

so
$$6\theta = 2n\pi$$

 $\theta = \frac{n\pi}{3}$. hence

Apply the restriction $-\pi < \theta \le \pi$ to obtain all the distinct solutions. Thus

$$-\pi < \frac{n\pi}{3} \le \pi$$
$$-3 < n \le 3.$$

Hence the six roots of $z^6 = 1$ are $\operatorname{cis}(-\frac{2\pi}{3})$, $\operatorname{cis}(-\frac{\pi}{3})$,

- (b) The graph on the right shows these six roots.
 - (i) Clearly the angle at the centre is $\frac{\pi}{3}$.
 - (ii) These are the vertices of a regular hexagon.
- (c) Using de Moivre's theorem, the given list is:

$$\begin{array}{l} 1\,, \mathrm{cis}(-\frac{\pi}{3})\,, \mathrm{cis}(-\frac{2\pi}{3})\,, \mathrm{cis}(-\frac{3\pi}{3}) = -1\,,\\ \mathrm{cis}(-\frac{4\pi}{3}) = \mathrm{cis}\,\frac{2\pi}{3} \ \ \mathrm{and} \ \ \mathrm{cis}(-\frac{5\pi}{3}) = \mathrm{cis}\,\frac{\pi}{3}\,. \end{array}$$

This is the same list as given in the answer to part (a), but simply in a different order.

(d) Now $\beta^k = \operatorname{cis} \frac{2k\pi}{3}$ by de Moivre's theorem. Hence $\operatorname{arg}(\beta^k)$ is a multiple of $\frac{2\pi}{3}$. Thus the possible values that β^k may take are:

$$\operatorname{cis}(-\frac{2\pi}{3}), 1 \text{ and } \operatorname{cis}\frac{2\pi}{3}.$$

That is, only these three roots can be written as a power of β .

WORKED EXERCISE: Consider the equation $z^5 + 1 = 0$.

- (a) Find the roots of this equation and show them on the Argand diagram.
- (b) Factorise $z^5 + 1$:
 - (i) as a product of linear factors,
 - (ii) as a product of linear and quadratic factors with real coefficients.
- (c) Evaluate $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}$.
- (d) Let α be a complex root of $z^5 + 1 = 0$, that is $\alpha \neq 1$.
 - (i) Show that $1 \alpha + \alpha^2 \alpha^3 + \alpha^4 = 0$.
 - (ii) Find a quadratic equation with roots $(\alpha^4 \alpha)$ and $(\alpha^2 \alpha^3)$.
- (e) Put $\alpha = \operatorname{cis} \frac{\pi}{5}$ in part (d), and hence evaluate $\operatorname{cos} \frac{\pi}{5}$.

SOLUTION:

52

(a) Let $z = \operatorname{cis} \theta$ and note that $-1 = \operatorname{cis}(2n+1)\pi$, where n is an integer. Thus

$$\operatorname{cis} 5\theta = \operatorname{cis}(2n+1)\pi$$
 (by de Moivre)
 $5\theta = (2n+1)\pi$

hence
$$\theta = \frac{(2n+1)\pi}{5}$$
.

Apply the restriction $-\pi < \theta \le \pi$ to obtain all the distinct solutions. Thus

$$-\pi < \frac{(2n+1)\pi}{5} \le \pi$$

so $-5 < (2n+1) \le 5$
or $-3 < n \le 2$.

Hence the five roots are:

 $\operatorname{cis}(-\frac{3\pi}{5}), \operatorname{cis}(-\frac{\pi}{5}), \operatorname{cis}\frac{\pi}{5}, \operatorname{cis}\frac{3\pi}{5} \text{ and } -1,$ or in conjugate pairs,

 $\operatorname{cis} \frac{\pi}{5}, \, \overline{\operatorname{cis} \frac{\pi}{5}}, \, \operatorname{cis} \frac{3\pi}{5}, \, \overline{\operatorname{cis} \frac{3\pi}{5}} \text{ and } -1.$

(b) Using the roots of the given equation,

$$z^{5} + 1 = (z+1)(z - \operatorname{cis} \frac{\pi}{5})(z - \overline{\operatorname{cis} \frac{\pi}{5}})(z - \operatorname{cis} \frac{3\pi}{5})(z - \overline{\operatorname{cis} \frac{3\pi}{5}})$$
$$= (z+1)(z^{2} - 2z \cos \frac{\pi}{5} + 1)(z^{2} - 2z \cos \frac{3\pi}{5} + 1).$$

(c) By the sum of the roots

that is

(d) (i) Since α is a complex root,

$$\alpha^5 + 1 = 0$$
so $(\alpha + 1)(1 - \alpha + \alpha^2 - \alpha^3 + \alpha^4) = 0$
thus $1 - \alpha + \alpha^2 - \alpha^3 + \alpha^4 = 0$ (since $\alpha \neq -1$)

(ii) The sum of the roots is $-\alpha + \alpha^2 - \alpha^3 + \alpha^4 = -1$ from part (i). The product of the roots is

$$(\alpha^4 - \alpha)(\alpha^2 - \alpha^3) = \alpha^6 - \alpha^7 - \alpha^3 + \alpha^4$$

$$= -\alpha + \alpha^2 - \alpha^3 + \alpha^4 \qquad \text{(since } \alpha^5 = -1\text{)}$$

$$= -1.$$

Hence the required quadratic is $z^2 + z - 1 = 0$.

(e) With $\alpha = \operatorname{cis} \frac{\pi}{5}$ the roots of the equation in part (d) are

$$\alpha^4 - \alpha = -\alpha^{-1} - \alpha \qquad \text{(since } \alpha^5 = -1\text{)}$$

$$= -(\overline{\alpha} + \alpha) \qquad \text{(since } |\alpha| = 1\text{)}$$

$$= -2\cos\frac{\pi}{5},$$
and $\alpha^2 - \alpha^3 = \alpha^2 + \alpha^{-2} \qquad \text{(since } \alpha^5 = -1\text{)}$

$$= \alpha^2 + \overline{\alpha^2} \qquad \text{(since } |\alpha| = 1\text{)}$$

$$= 2\cos\frac{2\pi}{5}.$$

Also, by direct calculation we have

$$z=\frac{-1-\sqrt{5}}{2} \text{ or } \frac{-1+\sqrt{5}}{2},$$
 hence $\cos\frac{\pi}{5}=\frac{1+\sqrt{5}}{4}$ and $\cos\frac{2\pi}{5}=\frac{-1+\sqrt{5}}{4}$.

Exercise **7C**

- 1. (a) Find the three cube roots of unity, expressing the complex roots in both $r \operatorname{cis} \theta$ and x + iy form.
 - (b) Show that the points in the complex plane representing these three roots form an equilateral triangle.
 - (c) If ω is one of the complex roots, show that the other complex root is ω^2 .
 - (d) Write down the values of:
 - (i) ω^3 (ii) $1 + \omega + \omega^2$
 - (e) Show that:
 - (i) $(1+\omega^2)^3 = -1$
 - (ii) $(1 \omega \omega^2)(1 \omega + \omega^2)(1 + \omega \omega^2) = 8$
 - (iii) $(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^5) = 9$
- **2.** (a) Solve the equation $z^6 = 1$, expressing the complex roots in the form a + ib, where a and b are real.
 - (b) Plot these roots on an Argand diagram, and show that they form a regular hexagon.
 - (c) If α is the complex root with smallest positive principal argument, show that the other three complex roots are α^2 , α^{-1} and α^{-2} .
 - (d) Show that $z^6 1 = (z^2 1)(z^4 + z^2 + 1)$.
 - (e) Hence write $z^4 + z^2 + 1$ as a product of quadratic factors with real coefficients.
- **3.** (a) Find, in the form a + ib, the four fourth roots of -1.
 - (b) Hence write $z^4 + 1$ as a product of two quadratic factors with real coefficients.
- **4.** (a) Find, in the form a+ib, the six roots of the equation $z^6+1=0$.
 - (b) Hence show that $z^6 + 1 = (z^2 + 1)(z^2 \sqrt{3}z + 1)(z^2 + \sqrt{3}z + 1)$.
 - (c) Divide both sides of this identity by z^3 , and then let $z = \operatorname{cis} \theta$ to show that:

$$\cos 3\theta = 4\cos\theta(\cos\theta - \cos\frac{\pi}{6})(\cos\theta - \cos\frac{5\pi}{6})$$

- **5.** (a) Find, in mod-arg form, the five fifth roots of i.
 - (b) Find, in mod-arg form, the four fourth roots of -i.
 - (c) Find, in the form a + ib, the four fourth roots of $-8 8\sqrt{3}i$.
 - (d) Find, in mod-arg form, the five fifth roots of $16\sqrt{2} 16\sqrt{2}i$.

- **6.** (a) Find the five fifth roots of -1, writing the complex roots in mod-arg form.
 - (b) If α is the complex root with least positive principal argument, show that α^3 , α^7 and α^9 are the other three complex roots.
 - (c) Show that $\alpha^7 = -\alpha^2$ and that $\alpha^9 = -\alpha^4$.
 - (d) Use the sum of the roots to show that $\alpha + \alpha^3 = 1 + \alpha^2 + \alpha^4$.
- 7. (a) Find the seven seventh roots of unity.
 - (b) By considering the sum of the real parts of these seven roots, show that:

$$\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = -\frac{1}{2}$$

(c) Write $z^7 - 1$ as a product of one linear and three quadratic factors, all with real coefficients.

- (d) If α is the complex seventh root of unity with the least positive principal argument, show that α^2 , α^3 , α^4 , α^5 and α^6 are the other five complex roots.
- (e) By considering the relationships between the roots and the coefficients, show that the cubic equation $x^3 + x^2 2x 1 = 0$ has roots $\alpha + \alpha^6$, $\alpha^2 + \alpha^5$ and $\alpha^3 + \alpha^4$.
- 8. (a) (i) Find the five fifth roots of unity, writing the complex roots in mod-arg form.
 - (ii) Show that the points in the complex plane representing these roots form a regular pentagon.
 - (iii) By considering the sum of these five roots, show that $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$.
 - (b) (i) Show that $z^5 1 = (z 1)(z^4 + z^3 + z^2 + z + 1)$.
 - (ii) Hence show that $z^4 + z^3 + z^2 + z + 1 = (z^2 2\cos\frac{2\pi}{5}z + 1)(z^2 2\cos\frac{4\pi}{5}z + 1)$.
 - (iii) By equating the coefficients of z in this identity, show that $\cos \frac{\pi}{5} = \frac{1+\sqrt{5}}{4}$.
 - (c) (i) Use the substitution $x = u + \frac{1}{u}$ to show that the equation $x^2 + x 1 = 0$ has roots $2\cos\frac{2\pi}{\pi}$ and $2\cos\frac{4\pi}{\pi}$.
 - $2\cos\frac{2\pi}{5} \text{ and } 2\cos\frac{4\pi}{5}.$ (ii) Deduce that $\cos\frac{\pi}{5}\cos\frac{2\pi}{5}=\frac{1}{4}.$
- 9. (a) Find the ninth roots of unity.
 - (b) Hence show that:

$$z^{6} + z^{3} + 1 = (z^{2} - 2\cos\frac{2\pi}{9}z + 1)(z^{2} - 2\cos\frac{4\pi}{9}z + 1)(z^{2} - 2\cos\frac{8\pi}{9}z + 1)$$

(c) Deduce that:

$$2\cos 3\theta + 1 = 8(\cos\theta - \cos\frac{2\pi}{9})(\cos\theta - \cos\frac{4\pi}{9})(\cos\theta - \cos\frac{8\pi}{9})$$

- 10. Let $\omega = \operatorname{cis} \frac{2\pi}{9}$.
 - (a) Show that ω^k , where k is an integer, is a solution of the equation $z^9 = 1$.
 - (b) Show that $\omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 + \omega^7 + \omega^8 = -1$.
 - (c) Hence show that $\cos \frac{2\pi}{9} + \cos \frac{4\pi}{9} = \cos \frac{\pi}{9}$.
 - (d) Deduce that $\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{4\pi}{9} = \frac{1}{8}$.
- 11. Let $\rho = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$. The complex number $\alpha = \rho + \rho^2 + \rho^4$ is a root of the quadratic equation $x^2 + ax + b = 0$, where a and b are real.
 - (a) Prove that $1 + \rho + \rho^2 + \ldots + \rho^6 = 0$.
 - (b) The second root of the quadratic equation is β . Express β in terms of positive powers of ρ . Justify your answer.
 - (c) Find the values of the coefficients a and b.
 - (d) Deduce that $-\sin\frac{\pi}{7} + \sin\frac{2\pi}{7} + \sin\frac{3\pi}{7} = \frac{\sqrt{7}}{2}$

___ EXTENSION ____

- **12.** (a) Show that the equation $(z+1)^8 z^8 = 0$ has roots $z = -\frac{1}{2}, -\frac{1}{2} \left(1 \pm i \cot \frac{k\pi}{8}\right)$, where k = 1, 2, 3.
 - (b) Hence show that:

$$(z+1)^8 - z^8 = \frac{1}{8}(2z+1)(2z^2+2z+1)(4z^2+4z+\csc^2\frac{\pi}{8})(4z^2+4z+\csc^2\frac{3\pi}{8})$$

(c) By making a suitable substitution into this identity, deduce that:

$$\cos^{16}\theta - \sin^{16}\theta = \frac{1}{16}\cos 2\theta(\cos^2 2\theta + 1)(\cos^2 2\theta + \cot^2 \frac{\pi}{8})(\cos^2 2\theta + \cot^2 \frac{3\pi}{8})$$

13. Suppose that $\omega^3 = 1$, and $\omega \neq 1$.

Let k be a positive integer.

- (a) What are the two possible values of $1 + \omega^k + \omega^{2k}$?
- (b) Use the binomial theorem to expand $(1 + \omega)^n$ and $(1 + \omega^2)^n$, where n is a positive integer.
- (c) Let ℓ be the largest integer for which $3\ell \leq n$. Show that:

$$\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \dots + \binom{n}{3\ell} = \frac{1}{3} \left(2^n + (1+\omega)^n + (1+\omega^2)^n \right)$$

(d) If n is a multiple of 6, show that:

$$\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \dots + \binom{n}{n} = \frac{1}{3}(2^n + 2)$$

- **14.** Consider the equation $(z+1)^{2n} + (z-1)^{2n} = 0$, where n is a positive integer.
 - (a) Show that every root of the equation is purely imaginary.
 - (b) Let the roots be represented by the points $P_1, P_2, ..., P_{2n}$ in the Argand diagram, and let O be the origin.

Show that:

$$OP_1^2 + OP_2^2 + \dots + OP_{2n}^2 = 2n(2n-1)$$

Chapter Seven

Exercise **7A** (Page 46) _

1(a)
$$\cos 5\theta$$
 (b) $\cos (-3\theta)$ (c) $\cos 8\theta$ (d) $\cos (-\theta)$

(e)
$$cis 7\theta$$
 (f) $cis(-6\theta)$

2(a)
$$cis 7\theta$$
 (b) $cis(-5\theta)$

3(a)
$$-1$$
 (b) $-i$ (c) $-\frac{\sqrt{3}}{2}+\frac{1}{2}i$ (d) $-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ (e) $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ (f) $\frac{1}{2}+\frac{\sqrt{3}}{2}i$

4(a)
$$\sqrt{2} \operatorname{cis} \frac{\pi}{4}$$
 (b) $256 + 256i$

5(a)
$$2 \operatorname{cis} \frac{\pi}{3}$$
 (b) $1024 - 1024\sqrt{3}i$

6(a) 2,
$$\frac{5\pi}{6}$$

56

7(a)
$$2 \operatorname{cis} \left(-\frac{\pi}{6}\right)$$
 (b) $128 \operatorname{cis} \frac{5\pi}{6}$ **(c)** $-64\sqrt{3} + 64i$

8(a)
$$2 \operatorname{cis} \left(-\frac{2\pi}{3}\right)$$
 (b) $32 \operatorname{cis} \frac{2\pi}{3}$ **(c)** $-16 + 16\sqrt{3}i$

9(a)
$$2 \operatorname{cis} \left(-\frac{\pi}{4}\right)$$
 (b) $2^{22}i$

12(a)(i)
$$6$$
 (ii) 3 (b) $-64, 8i$

13(b)
$$n = 2, 6, 10, \dots$$

15(b)
$$-2^{2n}$$

Exercise **7B** (Page 48) _

6(b)
$$\frac{8}{15}$$

7(c)
$$b=2, c=-1$$

(d) No, since
$$\sin \frac{\pi}{10} = \sin \frac{9\pi}{10}$$
 and $\sin \frac{13\pi}{10} = \sin \frac{17\pi}{10}$
(e) $\sin \frac{\pi}{10} = \frac{\sqrt{5}-1}{4}$, $\sin \frac{3\pi}{10} = \frac{\sqrt{5}+1}{4}$
8(b) $\theta = 0$, $\frac{\pi}{6}$, $\frac{5\pi}{6}$, π , $\frac{7\pi}{6}$, $\frac{11\pi}{6}$
11(b) $z = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ or $\frac{3}{5} \pm \frac{4}{5}i$

(e)
$$\sin \frac{\pi}{10} = \frac{\sqrt{5}-1}{4}$$
, $\sin \frac{3\pi}{10} = \frac{\sqrt{5}+1}{4}$

8(b)
$$\theta = 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{11\pi}{6}$$

11(b)
$$z = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$
 or $\frac{3}{5} \pm \frac{4}{5}i$

12(a)
$$8(1-10s^2+24s^4-16s^6)$$

(b)
$$x = 2\sin\frac{n\pi}{8}$$
 for $n = 1, 2, 3, 5, 6, 7$

Exercise **7C** (Page 53)
$$\frac{1}{1} \text{(a) } 1, \text{ cis } \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \text{ cis } \frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i$$

2(a)
$$z = \pm 1, \ \frac{1}{2} + \frac{\sqrt{3}}{2}i, \ \frac{1}{2} - \frac{\sqrt{3}}{2}i, \ -\frac{1}{2} + \frac{\sqrt{3}}{2}i,$$

$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
 (e) $(z^2 - z + 1)(z^2 + z + 1)$

$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i \quad \text{(e)} \quad (z^2 - z + 1)(z^2 + z + 1)$$

$$3(a) \quad \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \quad \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$

$$(b) \quad (z^2 - \sqrt{2}z + 1)(z^2 + \sqrt{2}z + 1)$$

$$4(a) \quad i, -i, \quad \frac{\sqrt{3}}{2} + \frac{1}{2}i, \quad \frac{\sqrt{3}}{2} - \frac{1}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i$$

$$5(a) \quad \text{cis} \left(-\frac{7\pi}{10}\right), \quad \text{cis} \left(-\frac{3\pi}{10}\right), \quad \text{cis} \quad \frac{\pi}{10}, \quad \text{cis} \quad \frac{\pi}{2} = i, \quad \text{cis} \quad \frac{9\pi}{10}$$

(b)
$$(z^2 - \sqrt{2}z + 1)(z^2 + \sqrt{2}z + 1)$$

4(a)
$$i, -i, \frac{\sqrt{3}}{2} + \frac{1}{2}i, \frac{\sqrt{3}}{2} - \frac{1}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i$$

5(a)
$$\operatorname{cis}\left(-\frac{7\pi}{10}\right)$$
, $\operatorname{cis}\left(-\frac{3\pi}{10}\right)$, $\operatorname{cis}\frac{\pi}{10}$, $\operatorname{cis}\frac{\pi}{2}=i$, $\operatorname{cis}\frac{9\pi}{10}$

(b)
$$\operatorname{cis}\left(-\frac{5}{8}\right)$$
, $\operatorname{cis}\left(-\frac{\pi}{8}\right)$, $\operatorname{cis}\frac{3\pi}{8}$, $\operatorname{cis}\frac{7\pi}{8}$

(c)
$$1 + \sqrt{3}i$$
, $-1 - \sqrt{3}i$, $\sqrt{3} - i$, $-\sqrt{3} + i$

(d)
$$2 \operatorname{cis} \left(-\frac{17\pi}{20}\right)$$
, $2 \operatorname{cis} \left(-\frac{9\pi}{20}\right)$, $2 \operatorname{cis} \left(-\frac{\pi}{20}\right)$, $2 \operatorname{cis} \frac{7\pi}{20}$, $2 \operatorname{cis} \frac{3\pi}{4}$

6(a)
$$-1$$
, $\cos \frac{\pi}{5}$, $\cos \left(-\frac{\pi}{5}\right)$, $\cos \frac{3\pi}{5}$, $\cos \left(-\frac{3\pi}{5}\right)$

7(a) 1, cis
$$\left(\pm \frac{2\pi}{7}\right)$$
, cis $\left(\pm \frac{4\pi}{7}\right)$, cis $\left(\pm \frac{6\pi}{7}\right)$

(c)
$$(z-1) \times (z^2 - 2\cos\frac{2\pi}{7}z + 1) \times$$

$$(z^2 - 2\cos\frac{4\pi}{7}z + 1) \times (z^2 - 2\cos\frac{6\pi}{7}z + 1)$$

8(a)(i) 1,
$$\cos \frac{2\pi}{5}$$
, $\cos \left(-\frac{2\pi}{5}\right)$, $\cos \frac{4\pi}{5}$, $\cos \left(-\frac{4\pi}{5}\right)$

9(a) cis $\frac{2k\pi}{9}$ for k = -4, -3, -2, -1, 0, 1, 2, 3, 413(a) 3, when k is a multiple of 3, 0 otherwise.

(b)
$$(1+\omega)^n = \sum_{r=0}^n \binom{n}{r} \omega^r$$
 and

$$(1+\omega^2)^n = \sum_{r=0}^n \binom{n}{r} \omega^{2r}$$

14(a) The roots are
$$-i \cot \frac{(2k-1)\pi}{4n}$$
 for $k = 1, 2, 3, ..., 2n$.