Modeling Crime: A Bayesian Hierarchical Approach to Modeling Minneapolis Crime Rates

Andrew DiLernia

Division of Biostatistics University of Minnesota

May 1, 2019

Andrew DiLernia Modeling Crime May 1, 2019 1 /

Minneapolis Neighborhoods

Andrew DiLernia Modeling Crime May 1, 2019 2 / 19

Data

Crime Data

- Crime data for Minneapolis in 2011 and neighborhood shape files were obtained from the web site *Open Minneapolis* (2019).
- Consists of types of crimes committed, the dates and times of crimes, and also the location of crimes in longitude and latitude.
- Overall crime frequency was aggregated by day within each neighborhood for analysis.

Data

Neighborhood Data

- Data on Minneapolis neighborhoods from the 2010 US Census was obtained from *Minneapolis 2010 Census Results* (2019).
- Population size and percent of vacant housing units were used for analysis.

Weather Data

- Data on Minneapolis weather was obtained from Minnesota DNR (2019).
- Consisted of average daily temperature (daily max daily min), amount of rain (inches), snow (inches), and snow accumulation (inches).

4 / 19

Crime Types

Andrew DiLernia Modeling Crime May 1, 2019 5 / 19

Temperature and Crime

Andrew DiLernia

Crime by Day of the Week

Andrew DiLernia Modeling Crime May 1, 2019 7 / 19

Spatial Dependence

Neighborhood Crime Rates 2011 Unadjusted for Population

Crime Frequency

8 / 19

Andrew DiLernia Modeling Crime May 1, 2019

Temporal Dependence

May 1, 2019

9 / 19

Andrew DiLernia Modeling Crime

Method

- Given the clear temporal and also possibly spatial dependence, I fit a spatio-temporal generalized linear mixed model using the CARBayesST package in R (Lee et al. 2018).
- Model assumes a spatio-temporal first-order auto-regressive process for areal unit data with a Poisson response as proposed by Rushworth et al. (2014).

$$Y_{kt} \sim \mathsf{Poisson}(\lambda_{kt}) \text{ and } \log(\lambda_{kt}) = \mathbf{x}_{kt}^{\mathsf{T}} \boldsymbol{\beta} + \phi_{kt}$$

where:

- 1 k = 1, ..., K indexes the areal units (neighborhoods)
- 2 $t=1,\ldots,T$ indexes the discrete time points (dates i.e. October 10th, 2011)
- 3 ϕ_{kt} are random effects which induce temporal correlation through its mean, and spatial correlation through its covariance.

 University of Minnesota

Method

Specifically, the method assumes the following:

- **1** $\phi_t | \phi_{t-1} \sim \mathcal{N}_K \left(\rho_T \phi_{t-1}, \tau^2 \mathbf{Q}(\mathbf{W}, \rho_s)^{-1} \right)$ for t = 2, ..., T
- $\mathbf{Q} \ \phi_1 \sim \mathcal{N}_{\mathcal{K}} \left(\mathbf{0}, au^2 \mathbf{Q}(\mathbf{W},
 ho_s)^{-1}\right)$
- $au^2 \sim \text{Inverse-Gamma}(a, b)$
- $\rho_s, \rho_\tau \sim \mathsf{Uniform}(0,1)$
- ρ_s is a spatial correlation parameter, ρ_{τ} is a temporal correlation parameter, and **W** is a $K \times K$ adjacency matrix for the areal units (Minneapolis neighborhoods).
- The precision matrix **Q** is of the form proposed by Leroux et al. (2000), and is motivated by the CAR model.

11 / 19

Andrew DiLernia Modeling Crime May 1, 2019

Non-Spatial Model

Table 1: Coefficient estimates, exponentiated estimates, and standard errors for non-spatial Poisson GLM.

	Estimate	exp(Estimate)	SE
(Intercept)	-11.037	< 0.001	0.111
Friday	0.104	1.110	0.019
Sunday	-0.086	0.918	0.021
Temp	0.005	1.005	< 0.001
Snow	-0.037	0.964	0.011
Snow Accum.	-0.016	0.984	0.003
% Vacant	0.090	1.094	0.001
log(Pop)	1.142	3.134	0.012

Andrew DiLernia Modeling Crime May 1, 2019 12 / 19

Spatio-Temporal Model

Table 2: Summary of posterior coefficient estimates from Metropolis sampling. The acceptance rate for the 9,000 β draws was about 45% (10,000 total with a 1,000 burn-in).

	Median	exp(Median)	2.5%	97.5%
(Intercept)	-10.834	< 0.001	-11.170	-10.493
Friday	0.105	1.110	0.064	0.144
Sunday	-0.087	0.917	-0.128	-0.046
Temp	0.005	1.005	0.004	0.006
Snow	-0.032	0.969	-0.055	-0.009
Snow Accum.	-0.007	0.993	-0.016	-0.001
% Vacant	0.083	1.087	0.079	0.087
log(Pop)	1.108	3.029	1.070	1.150

Trace Plots

Trace Plots

Correlation Estimates

Table 3: Summary of posterior correlation estimates.

-	Median	2.5%	97.5%
$\rho_{spatial}$	0.040	0.001	0.173
$ ho_{\sf time}$	0.989	0.892	0.993

16 / 19

Andrew DiLernia Modeling Crime May 1, 2019

Discussion

- Overall the non-spatial and spatio-temporal models yielded very similar estimates.
- The 95% credible intervals for the correlation parameters indicate a strong temporal dependence in the data, and a weak but still present spatial dependence.

Andrew DiLernia Modeling Crime May 1, 2019 17 / 19

Discussion

- Fridays have increased rates of crime, and Sundays have deflated crime rates.
- More vacant housing units in neighborhoods is associated with higher rates of crime.
- More snow is negatively associated with crime rates for a given day.

Andrew DiLernia Modeling Crime May 1, 2019 18 / 19

References I

- Lee, D., Rushworth, A. & Napier, G. (2018), 'Spatio-temporal areal unit modeling in R with conditional autoregressive priors using the CARBayesST package', *Journal* of Statistical Software 84(9), 1–39.
- Leroux, B. G., Lei, X. & Breslow, N. (2000), Statistical Models in Epidemiology, the Environment, and Clinical Trials, Springer-Verlag, New York, chapter Estimation of Disease Rates in Small Areas: A new Mixed Model for Spatial Dependence, pp. 179–191.

URL: http://dx.doi.org/10.1007/978-1-4612-1284-3₄

Minneapolis 2010 Census Results (2019).

URL: http://www.minneapolismn.gov/census/2010/index.htm

Minnesota DNR (2019).

URL: https://www.dnr.state.mn.us/climate/twincities/listings.html

Open Minneapolis (2019).

URL: http://opendata.minneapolismn.gov/

Rushworth, A., Lee, D. & Mitchell, R. (2014), 'A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London', Spatial and Spatio-temporal Epidemiology 10, 29–38.

Andrew DiLernia Modeling Crime May 1, 2019 19 / 19