Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 3

Bokmål

Faglig kontakt under eksamen: Øyvind Bakke

Telefon: 73598126, 99041673

MA0301 Elementær diskret matematikk

Tirsdag 1. juni 2010 kl. 9–13

Hjelpemidler: Ingen trykte eller skrevne hjelpemidler tillatt. Kalkulator HP 30s eller Citizen ${\rm SR\text{-}}270{\rm X}$

Sensur: 22. juni 2010

I vurderingen teller hver av de ti oppgavene likt.

I tillegg til avsluttende eksamen teller midtsemesterprøve med 20 % hvis dette er til fordel for kandidaten.

Om ikke annet er sagt, **skal alle svar begrunnes** (for eksempel ved at mellomregning tas med eller ved henvisning til teori eller eksempler fra pensum).

Oppgave 1

På hvor mange måter er det mulig å fylle ut en tabell med 2 rader og 3 kolonner med heltall større enn eller lik 0 slik at summen av tallene i første rad er 5 og summen av tallene i andre rad er 6? Her er to ulike eksempler på slike tabeller:

Oppgave 2

Er $((p \to r) \land (\neg q \to p) \land \neg r) \to q$ en tautologi?

Oppgave 3

La $A_i = \{k \in \mathbb{Z} \mid 1 \le k \le i\}$, det vil si $A_1 = \{1\}$, $A_2 = \{1, 2\}$, $A_3 = \{1, 2, 3\}$, Finn $\bigcup_{i=2}^8 A_i$, $\bigcap_{i=2}^8 A_i$, $\bigcup_{i=1}^\infty A_i$ og $\bigcap_{i=1}^\infty A_i$,

Oppgave 4

Vis $ved\ induksjon$ at enhver mengde av kardinalitet n (det vil si at mengden har n elementer), der n er et positivt heltall, har 2^n forskjellige delmengder.

Oppgave 5

La $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$ og $B = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Funksjonen $f: A \to B$ er definert ved at $f(x) = \lfloor 5x/4 \rfloor$ for alle $x \in A$ ($\lfloor y \rfloor$ er største heltall mindre enn eller lik y). Er f énentydig (injektiv)? Er f på B (surjektiv)?

Oppgave 6

Gitt språket $A = \{1, 00\}$. Finn A^n for n = 0, 1, 2 og 3.

Oppgave 7

Gitt relasjonen $\mathcal{R} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a=b \text{ eller } a=-b\}$ på \mathbb{Z} . Avgjør om \mathcal{R} er refleksiv, symmetrisk, antisymmetrisk og/eller transitiv. Finn ekvivalensklassene til \mathcal{R} hvis \mathcal{R} er en ekvivalensrelasjon.

Oppgave 8

Avgjør hvilke av de tre grafene (om noen) som er planare (hjørnene er de markerte punktene).

Oppgave 9

Finn et utspennende tre for grafen ved dybde-først-søk. Ordningen av hjørnene er alfabetisk. Start med hjørne a. Svaret skal ikke begrunnes, men hjørnene skal navngis med samme navn som nedenfor.

Oppgave 10

Finn korteste vei fra a til f og lengden av denne ved å bruke Dijkstras algoritme. Svaret skal ikke begrunnes, men alle merkene som settes ved hjørnene skal oppgis (fra venstre til høyre eller ovenfra og ned for hvert hjørne).

