#### **Outline**

Poisson Regression with Offsets

② Generalized Linear Models

Overdispersion

### **Example: Poisson regression**

- Number of Children Ever Born (CEB) to Women of Indian Race By Marital Duration, Type of Place of Residence and Educational Level
- Each cell shows the mean, variance, and sample size.

| Marr.   | Suva  |            |         | Urban |       |            |       | Rural |       |            |      |      |
|---------|-------|------------|---------|-------|-------|------------|-------|-------|-------|------------|------|------|
| Dur.    | N     | $_{ m LP}$ | UP      | S+    | N     | $_{ m LP}$ | UP    | S+    | N     | $_{ m LP}$ | UP   | S+   |
| 0-4     | 0.50  | 1.14       | 0.90    | 0.73  | 1.17  | 0.85       | 1.05  | 0.69  | 0.97  | 0.96       | 0.97 | 0.74 |
|         | 1.14  | 0.73       | 0.67    | 0.48  | 1.06  | 1.59       | 0.73  | 0.54  | 0.88  | 0.81       | 0.80 | 0.59 |
|         | 8     | 21         | 42      | 51    | 12    | 27         | 39    | 51    | 62    | 102        | 107  | 47   |
| 5 - 9   | 3.10  | 2.67       | 2.04    | 1.73  | 4.54  | 2.65       | 2.68  | 2.29  | 2.44  | 2.71       | 2.47 | 2.24 |
|         | 1.66  | 0.99       | 1.87    | 0.68  | 3.44  | 1.51       | 0.97  | 0.81  | 1.93  | 1.36       | 1.30 | 1.19 |
|         | 10    | 30         | $^{24}$ | 22    | 13    | 37         | 44    | 21    | 70    | 117        | 81   | 21   |
| 10 - 14 | 4.08  | 3.67       | 2.90    | 2.00  | 4.17  | 3.33       | 3.62  | 3.33  | 4.14  | 4.14       | 3.94 | 3.33 |
|         | 1.72  | 2.31       | 1.57    | 1.82  | 2.97  | 2.99       | 1.96  | 1.52  | 3.52  | 3.31       | 3.28 | 2.50 |
|         | 12    | 27         | 20      | 12    | 18    | 43         | 29    | 15    | 88    | 132        | 50   | 9    |
| 15 - 19 | 4.21  | 4.94       | 3.15    | 2.75  | 4.70  | 5.36       | 4.60  | 3.80  | 5.06  | 5.59       | 4.50 | 2.00 |
|         | 2.03  | 1.46       | 0.81    | 0.92  | 7.40  | 2.97       | 3.83  | 0.70  | 4.91  | 3.23       | 3.29 | _    |
|         | 14    | 31         | 13      | 4     | 23    | 42         | 20    | 5     | 114   | 86         | 30   | 1    |
| 20 - 24 | 5.62  | 5.06       | 3.92    | 2.60  | 5.36  | 5.88       | 5.00  | 5.33  | 6.46  | 6.34       | 5.74 | 2.50 |
|         | 4.15  | 4.64       | 4.08    | 4.30  | 7.19  | 4.44       | 4.33  | 0.33  | 8.20  | 5.72       | 5.20 | 0.50 |
|         | 21    | 18         | 12      | 5     | 22    | 25         | 13    | 3     | 117   | 68         | 23   | 2    |
| 25 - 29 | 6.60  | 6.74       | 5.38    | 2.00  | 6.52  | 7.51       | 7.54  | _     | 7.48  | 7.81       | 5.80 | _    |
|         | 12.40 | 11.66      | 4.27    | _     | 11.45 | 10.53      | 12.60 | _     | 11.34 | 7.57       | 7.07 | _    |
|         | 47    | 27         | 8       | 1     | 46    | 45         | 13    | _     | 195   | 59         | 10   | -    |

- Sample unit: the individual women
- Response: the number of children she has borne.
- Predictors: the duration since her first marriage, the type of place where she resides, and education level, classified in 4 categories
- The mean-variance relationship for the data:



#### Offset in Poisson model

- $Y_{ijkl}$ ; the number of children borne by the l-th women in the (i, j, k)-th group, where i denotes marital duration, j residence, and k education
- $Y_{ijk} = \sum_{l} Y_{ijkl}$  denotes the group total.
- If  $Y_{ijkl}$  i.i.d.  $\sim \text{Poi}(\mu_{ijk})$ , then  $Y_{ijk} \sim \text{Poi}(n_{ijk}\mu_{ijk})$  where  $n_{ijk}$  is the number of observations in the (i, j, k)-th cell.

More precisely, if the individual mean  $\mathbb{E}(Y_{ijkl}) = \mu_{ijk}$  follows a log-linear poisson model,

$$\log(\mathbb{E}(Y_{ijkl})) = X'_{ijk}\beta,$$

then the group totals follows a log-linear model with exactly the same coefficients  $\beta$ :

$$\log(\mathbb{E}(Y_{ijk})) = \log(n_{ijk}\mu_{ijk}) = \underbrace{\log(n_{ijk})}_{\text{off set}} + X'_{ijk}\beta$$

We can analyze the data by fitting poisson model to either individual counts, or to the group totals.

# Poisson regression with offset

We consider additive log-linear model on the group total counts  $Y_{ijk}$ :

$$Y_{ijk} \sim \mathsf{Poi}(n_{ijk}\mu_{ijk})$$
 independently,

where

$$\log(\mathbb{E}(Y_{ijk})) = \underbrace{\log(n_{ijk})}_{\text{offset}} + \underbrace{\sum_{i=1}^{5} \beta_i \text{Duration}_i}_{\text{Duration}} + \underbrace{\sum_{j=1}^{2} \alpha_j \text{Residence}_j}_{\text{Residence}} + \underbrace{\sum_{k=1}^{3} \gamma_k \text{Education}_k}_{\text{Education}}$$

#### Additive model

Table 4.4: Estimates for Additive Log-Linear Model of Children Ever Born by Marital Duration, Type of Place of Residence and Educational Level

| Parameter |         | Estimate | Std. Error | z-ratio |
|-----------|---------|----------|------------|---------|
| Constant  |         | -0.1173  | 0.0549     | -2.14   |
| Duration  | 0-4     | _        |            |         |
|           | 5 - 9   | 0.9977   | 0.0528     | 18.91   |
|           | 10 - 14 | 1.3705   | 0.0511     | 26.83   |
|           | 15 - 19 | 1.6142   | 0.0512     | 31.52   |
|           | 20 – 24 | 1.7855   | 0.0512     | 34.86   |
|           | 25 - 29 | 1.9768   | 0.0500     | 39.50   |
| Residence | Suva    | _        |            |         |
|           | Urban   | 0.1123   | 0.0325     | 3.46    |
|           | Rural   | 0.1512   | 0.0283     | 5.34    |
| Education | None    | _        |            |         |
|           | Lower   | 0.0231   | 0.0227     | 1.02    |
|           | Upper   | -0.1017  | 0.0310     | -3.28   |
|           | Sec+    | -0.3096  | 0.0552     | -5.61   |

#### **Outline**

Poisson Regression with Offsets

② Generalized Linear Models

Overdispersion

### Exponential family of distributions

Exponential family of distributions has a density of the form

$$f(y) = \exp\left(\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right) \tag{1}$$

- $\mathbb{E}(Y) = b'(\theta)$  and  $Var(Y) = a(\phi)b''(\theta)$ .
- ullet heta is commonly called the canonical parameter.
- $\bullet \ \phi$  is a fixed (known) scale parameter, also called dispersion parameter.
- A canonical link function is a function g() such that

$$g(\mu) = \theta$$
, where  $\mu = \mathbb{E}(Y)$ 

• Variance function:  $V(\mu) = b''(\theta) = b''(g(\mu))$ .

### Example: normal distribution

Normal distribution:  $Y \sim N(\mu, \sigma^2)$ . The probability distribution of Y is

$$f(y) = (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}$$
$$= \exp\left\{\frac{y\mu - \mu^2/2}{\sigma^2} - \frac{1}{2}\left(y^2/\sigma^2 + \log(2\pi\sigma^2)\right)\right\}$$

- ②  $b(\theta) = \mu^2/2 = \theta^2/2$ ;  $b'(\theta) = \theta$ ;  $b''(\theta) = 1$ ;
- **3**  $g(\mu) = \mu$ ; the canonical link is identity;
- Note that  $Var(Y) = a(\phi)b''(\theta) = a(\phi)$ . We have

$$V(\mu) = 1.$$

**5**  $a(\phi) = \phi$ .

### Example: Binomial distribution

Binomial distribution:  $Y \sim Bin(n, \pi)$ . The probability distribution is

$$f(y) = \binom{n}{y} \pi^{y} (1 - \pi)^{n-y}$$
$$= \exp\left(y \log(\pi/(1 - \pi)) + n \log(1 - \pi) + \log(\binom{n}{y})\right)$$

- **1**  $\theta = \log(\pi/(1-\pi)); \phi = 1;$
- $b(\theta) = -n\log(1-\pi) = n\log(1+\exp(\theta));$
- Thus  $g(\mu) = \log(\mu/(n-\mu))$ ; the canonical link is logit
- **5** Because  $Var(Y) = a(\phi)b''(\theta) = a(\phi)n\pi(1-\pi)$ , we have

$$V(\mu) = n\pi(1-\pi) = n^{-1}\mu(1-\mu)$$

### **Example: Poisson distribution**

Poisson distribution:  $Y \sim Poi(\lambda)$ . The probability distribution of Y is

$$f(y) = \frac{\lambda^{y} \exp(-\lambda)}{y!} = \exp(y \log(\lambda) - \lambda - \log(y!)).$$

- $b(\theta) = \lambda = \exp(\theta);$
- Note that  $\theta = \log(\mu)$ . Then  $g(\mu) = \log(\mu)$ ; the canonical link is  $\log$
- **1** Note that  $Var(Y) = a(\phi)b''(\theta) = a(\phi) \exp(\theta)$ . We have

$$V(\mu) = \exp(\theta) = \mu = \lambda.$$

#### Generalized Linear Models

- Generalized linear models (GLM) is a class of models including linear and nonlinear regression.
- A GLM is formulated as follows.
  - $Y_1, \ldots, Y_n$  are n independent responses that follow a probability distribution in the exponential family of distributions with expected value  $\mathbb{E}(Y_i) = \mu_i$
  - ② A linear predictor based on the predictor variables  $X_{i1}, \ldots, X_{i,p-1}$  is utilized, denoted by  $X'_{i}\beta$ :

$$\mathbf{X}_{i}^{\prime}\boldsymbol{\beta} = \beta_{0} + \beta_{1}\mathbf{X}_{i,1} + \ldots + \beta_{p-1}\mathbf{X}_{i,p-1}$$

A link function g relates the linear predictor to the mean response

$$g(\mu_i) = \boldsymbol{X}_i' \beta$$

#### Generalized Linear Models

- In the linear regression,  $g(\mu_i) = \mu_i$  (identity link).
- In the logistic regression,  $\mu_i = \pi_i$ ,  $g(\pi_i) = log(\pi_i/(1 \pi_i))$  (logit link).
- In the Poisson regression,  $g(\mu_i) = log(\mu_i)$  (log link).
- MLEs of model parameters are often obtained by iteratively reweighted least squares.
- Hypothesis testing of model parameters are often based on likelihood ratio test.

# Measuring the goodness of fit

 The discrepancy of a fit is proportional to twice the difference betwen the maximum log likelihood achievable and that achieved by the model under investigation.

$$-2\{\log \mathcal{L}(R) - \log \mathcal{L}(F)\} = 2\sum_{i=1}^{n} \frac{\omega_i}{\phi} \left( Y_i(\tilde{\theta}_i - \hat{\theta}_i) - b(\tilde{\theta}_i) + b(\hat{\theta}_i) \right)$$
(2)

$$=\frac{D(\mathbf{Y};\hat{\mu})}{\phi} \tag{3}$$

where  $\tilde{\theta}_i$  and  $\hat{\theta}_i$  are the estimates of the canonical parameters of the full and reduced models.

- Write  $\log \mathcal{L}(R)$  as  $\ell(\hat{\mu}, \phi; \mathbf{Y})$ ; then  $\log \mathcal{L}(F) = \ell(\mathbf{Y}, \phi; \mathbf{Y})$
- D(Y; μ̂) is known as the deviance for the current model and is a function of the data only.
- Normal:  $D(Y; \hat{\mu}) = \sum_{i=1}^{n} (Y_i \hat{\mu}_i)^2$
- Binomial:  $D(Y; \hat{\mu}) = 2 \sum_{i=1}^{n} \{ Y_i \log(Y_i/\hat{\mu}_i) + (n_i Y_i) \log(\frac{n_i Y_i}{n_i \hat{\mu}_i}) \}$
- Poisson:  $D(Y; \hat{\mu}) = 2 \sum_{i=1}^{n} \{ Y_i \log(Y_i / \hat{\mu}_i) (Y_i \hat{\mu}_i) \}$

#### **Outline**

Poisson Regression with Offsets

Generalized Linear Models

3 Overdispersion

### Overdispersion in logistic regression

- Overdispersion: the variace of the response exceeds the nominal variance.
- For the binomial response  $Y_i \sim Bin(n_i, \pi_i)$ ,
  - Overdispersion means that the data show evidence that the variance of  $Y_i$  is greater than  $n_i\pi_i(1-\pi_i)$ .
- Overdispersion occurs when the data display more variability than is predicted by the variance-mean relationship for the assumed model.
- Underdispersion is also theoretically possible.

# Overdispersion in logistic regression

 To correct for overdispersion in a logit model with binomial response, we assume that

$$\mathbb{E}(Y_i) = n_i \pi_i, \quad Var(Y_i) = \sigma^2 n_i \pi_i (1 - \pi_i)$$

where  $logit(\pi_i) = \mathbf{X}'_i \beta$  and  $\sigma^2$  is a scale parameter.

- 1 If  $\sigma^2 \neq 1$ , the model is not binomial
- ② If  $\sigma^2 > 1$ , overdispersion
- $\bullet$  The Fisher-scoring procedure for estimating  $\beta$  does not change, but its variance-covariance matrix changes

$$Var(\hat{\beta}) \approx \sigma^2 (\mathbf{X}' \mathbf{W} \mathbf{X})^{-1}$$

 The most popular method for adjusting for overdispersion comes from the theory of quasi-likelihood.

```
glm(formula, family=quasibinomial("logit"), ...)
```

### Overdispersion in logistic regression

- Reasons for dispersion:
  - variation among the probabilities of success
  - correlation between the responses
- Suppose that  $Y_i|\pi_i \sim Bin(n_i, \pi_i)$ , for i = 1, ..., c.
- Assume a prior distribution on  $\pi_i$  such that  $\mathbb{E}(\pi_i) = p_i$  and  $Var(\pi_i) = \sigma^2 p_i (1 p_i)$ .
- Then  $\mathbb{E}(Y_i) = n_i p_i$  and  $Var(Y_i) = n_i p_i (1 p_i) [1 + (n_i 1)\sigma^2]$ .
- Example:  $\pi_i \sim Beta(a_i, b_i)$ , with pdf

$$f(\pi_i) \propto \pi_i^{a_i-1} (1-\pi_i)^{b_i-1}$$

This yields Beta-Binomial model.

# Overdispersion in Poisson regression

- One of the key features of the Poisson distribution is that the variance equals the mean.
- If  $Y_i \sim Poi(\mu_i)$ , then  $\mathbb{E}(Y_i) = Var(Y_i) = \mu_i$ .
- Overdispersion means that the data show evidence that the variance of  $Y_i$  is greater than  $\mu_i$ .
- Quasi-likelihood:  $Var(Y_i) = \sigma^2 \mathbb{E}(Y_i)$

```
glm(formula, family=quasipoisson, ...)
```

- Assume that  $Y_i|Z_i \sim Poi(Z_i)$  and a prior distribution on  $Z_i$  such that  $\mathbb{E}(Z_i) = \mu_i$ . Then  $\mathbb{E}(Y_i) = \mu_i$  and  $Var(Y_i) = Var(Z_i) + \mu_i$ .
- Negative-Binomial regression model:
  - $Z_i$  is Gamma with mean  $\mu_i$  and index  $\psi \mu_i$ ;  $Var(Z_i) = \frac{\mu_i^2}{(\psi \mu_i)}$ .
  - $Var(Y_i) = \mu_i(1 + 1/\psi)$