MTP 290 - Problem set 6

- 1. Calculate the Lagrange interpolating polynomial $p_2(x)$ for the following given values of the function $y = \sin(x)$: $\sin(0) = 0$, $\sin(\pi/4) = 0.70711$ and $\sin(\pi/2) = 1.0$. From $p_2(x)$, find the approximate value of $\sin(\pi/6)$.
- 2. Find the unique interpolating polynomial $p_3(x)$ of degree less or equal to 3 of a function f(x), that agrees with the following data: f(0) = 0, f(1) = 1, f(2) = 8, f(4) = 64. Then use $p_3(x)$ to find the approximate value of f(3).
- 3. Evaluate the integral $\int_0^4 (x^2 + \cos x) dx$ by using midpoint formula.
- 4. Use Trapezoidal rule with n = 8 to estimate

$$\int_{1}^{5} \sqrt{1+x^2} \ dx.$$

5. The following points were found empirically.

X	2.1	2.4	2.7	3.0	3.3	3.6
у	3.2	2.7	2.9	3.5	4.1	5.2

Use composite Trapezoidal rule to evaluate $\int_{2.1}^{3.6} y \ dx$.

- 6. Approximate the integral of $f(x)=x^3$ on the interval [1,2] by using composite trapezoidal method
 - (a) with four sub intervals,
 - (b) with eight sub intervals, (Which approximation is much closer to the correct answer)
 - (c) Compute the true error in both the cases.
- 7. Use Simpson rule to evaluate
 - (a) $\int_0^{\pi/3} \cos^2 x \, dx$.
 - (b) Use your answer to part (a) to deduce an approximate value of integral $\int_0^{\pi/3} \sin^2 x \ dx$.
- 8. Use Simpson's rule with 5 ordinates to find an approximate value for the integral

$$\int_{4}^{6} \frac{1}{3 - \sqrt{x}} dx.$$

- 9. Redo Problem 6 by using Composite Simpson's rule.
- 10. Using Trapezoidal Rule and Simpson's rule with n=4 to approximate the value of the following integral and compute the true errors and approximation errors

1

$$\int_0^2 e^{x^2} dx.$$

11. Evaluate the following integral by using one point Gauss quadrature and compute the true error.

$$\int_0^{\pi/2} x \sin x \, dx$$

12. Redo Problem 11 by using two point Gauss quadrature formula.