STA6625 (AU2016) Homework #3

Ezgi Karaesmen

09/21/16

Chapter 10

Problem 10.8

Total genotype counts for both SNP 1 and SNP 2 loci are given below:

		SNP 2			
		CC	CT	TT	Total
	GG	1	4	0	5
SNP 1	GA	3	3	1	7
	AA	0	2	1	3
	Total	4	9	2	15

10.8.1

Assuming that HWE holds for this population, the genome frequencies were calculated as follows:

$$\hat{P}_{GG} = \frac{5}{15} = 0.333$$

$$\hat{P}_{CC} = \frac{4}{15} = 0.266$$

$$\hat{P}_{GA} = \frac{7}{15} = 0.466$$

$$\hat{P}_{CT} = \frac{9}{15} = 0.60$$

$$\hat{P}_{AA} = \frac{3}{15} = 0.20$$

$$\hat{P}_{TT} = \frac{2}{15} = 0.133$$

And the allele frequencies were computed as follows:

$$\hat{P}_{G} = \sqrt{\hat{P}_{GG}} = \sqrt{0.333} = 0.577$$

$$\hat{P}_{C} = \sqrt{\hat{P}_{CC}} = \sqrt{0.266} = 0.516$$

$$\hat{P}_{A} = \sqrt{\hat{P}_{AA}} = \sqrt{0.20} = 0.447$$

$$\hat{P}_{T} = \sqrt{\hat{P}_{TT}} = \sqrt{0.133} = 0.365$$

10.8.2

The haplotypes can be determined only for individuals that carry at least one homozygous genotype for either one of the loci. A table for the allele counts for both loci (excluding individuals that are heterogenous for both loci) is shown below:

		SNP 2		
		C	${ m T}$	Total
	G	9	5	14
SNP 1	A	5	5	10
	Total	14	10	24

10.8.3

Similarly the haplotype frequencies can be calculated as follows and are shown below:

		SN		
		C	T	Total
	G	9/24 = 0.375	5/24 = 0.208	14/24 = 0.583
SNP 1	A	5/24 = 0.208	5/24 = 0.208	10/24 = 0.416
	Total	14/24 = 0.583	10/24 = 0.416	24/24 = 1

Therefore, LD measures D, D' and Δ^2 between SNPs 1 and 2 can be determined as follows:

$$D = D_{GC} = D_{AC} = D_{GT} = D_{AT}$$
$$\hat{D} = \hat{D}_{GC} = \hat{P}_{GC} - \hat{P}_{G} \cdot \hat{P}_{C}$$
$$= 0.375 - 0.583 \cdot 0.583$$
$$= 0.035$$

$$D'_{GC} = \begin{cases} \frac{D_{GC}}{max\{-P_A P_T, -P_G P_C\}} & \text{if } D < 0, \\ \frac{D_{GC}}{min\{P_G P_T, P_A P_C\}} & \text{if } D > 0. \end{cases}$$

$$\begin{split} \hat{D'}_{GC} &= \frac{\hat{D}_{GC}}{\min\{\hat{P}_{G}\hat{P}_{T}, \hat{P}_{A}\hat{P}_{C}\}} \\ &= \frac{0.035}{\min\{0.583 \cdot 0.416, 0.416 \cdot 0.583\}} \\ &= \frac{0.035}{0.243} = 0.145 \end{split}$$

$$\begin{split} r_{GC}^2 &= \Delta^2 = \frac{D_{GC}^2}{P_G P_A P_C P_T} \\ &= \frac{0.035^2}{0.583 \cdot 0.416 \cdot 0.583 \cdot 0.416} \\ &= \frac{0.0012}{0.0588} = 0.0204 \end{split}$$

Extra Problems

Problem 1

The LD coefficient of the current generation can be determined by the function $D_t = (1 - \theta)^t D_0$, where D_0 is the LD coefficient at the time mutation was introduced, t is the number of generations since the mutation and θ is the recombination fraction. An R function was generated to compute the D_t for different number of generations and recombination fractions:

```
Dt_foo = function(D0, theta, t){round((1-theta)^t * D0,4)}
Dt_foo(D0 = 0.999, theta = 0.0001, t = 200)
Dt_foo(D0 = 0.999, theta = 0.01, t = 200)
Dt_foo(D0 = 0.999, theta = 0.05, t = 200)

Dt_foo(D0 = 0.999, theta = 0.0001, t = 100)
Dt_foo(D0 = 0.999, theta = 0.01, t = 100)
Dt_foo(D0 = 0.999, theta = 0.05, t = 100)
```

 D_t results for different number of generations and recombination fractions are shown in a tabular form:

		Generations		
		200	100	
Recombination	0.0001	0.9792	0.9891	
fractions	0.01	0.1338	0.3657	
	0.05	0	0.0059	

Therefore,

- 1. For an original LD coefficient of 0.999, recombination fraction of 0.0001 and 200 generations $D_{200} = 0.9792$.
- 2. For an original LD coefficient of 0.999, recombination fraction of 0.01 and 200 generations $D_{200}=0.1338$.
- 3. For an original LD coefficient of 0.999, recombination fraction of 0.05 and 100 generations $D_{100} = 0.0059$.

Problem 2

For the given haplotype and allele probabilities:

$$\hat{P}_{ab} = 0.60$$
 $\hat{P}_b = 0.60 + 0.10 = 0.70$ $\hat{P}_{aB} = 0.25$ $\hat{P}_B = 0.25 + 0.05 = 0.30$ $\hat{P}_{Ab} = 0.10$ $\hat{P}_a = 0.60 + 0.25 = 0.85$ $\hat{P}_{AB} = 0.05$ $\hat{P}_A = 0.10 + 0.05 = 0.15$

Part a: Calculate the linkage disequilibrium coefficient D

$$D = D_{AB} = D_{Ab} = D_{aB} = D_{ab}$$
$$\hat{D} = \hat{D}_{AB} = \hat{P}_{AB} - \hat{P}_{A} \cdot \hat{P}_{B}$$
$$= 0.05 - 0.15 \cdot 0.30$$
$$= 0.005$$

Part b: Determine the range of \hat{D}

$$\begin{split} \max\{-P_a\ P_b\ , -P_A\ P_B\} &\leq D_{AB} \leq \min\{P_A\ P_b\ , P_a\ P_B\} \\ \max\{-0.85 \cdot 0.70\ ,\ -0.15 \cdot 0.30\} &\leq D_{AB} \leq \min\{0.15 \cdot 0.70\ ,\ 0.85 \cdot 0.30\} \\ \max\{-0.595\ ,\ -0.045\} &\leq D_{AB} \leq \min\{0.105\ ,\ 0.255\} \\ -0.045 &\leq D_{AB} \leq 0.105 \end{split}$$

Part c: Calculate the standardized coefficient D'

$$\begin{split} D' &= \begin{cases} \frac{D}{\max\{-P_a P_b \,, -P_A P_B\}} & \text{if } D < 0, \\ \frac{D}{\min\{P_A P_b \,, P_a P_B\}} & \text{if } D > 0. \end{cases} \\ D &> 0 \;; \\ \hat{D}' &= \frac{\hat{D}}{\min\{\hat{P}_A \hat{P}_b \,, \hat{P}_a \hat{P}_B\}} \\ &= \frac{0.005}{\min\{0.15 \cdot 0.70, 0.85 \cdot 0.30\}} \\ &= \frac{0.005}{0.105} = 0.476 \end{split}$$

Part d: Calculate the linkage disequilibrium measure r^2 (Δ^2)

$$r^{2} = \Delta^{2} = \frac{D^{2}}{P_{A}P_{a}P_{B}P_{b}}$$

$$= \frac{0.005^{2}}{0.15 \cdot 0.0.85 \cdot 0.30 \cdot 0.70}$$

$$= 0.00093$$

Part e: Determine whether there is significant evidence of LD by using the asymptotic score test.

For $H_0: D=0$ $H_a: D\neq 0$, where rejecting H_0 indicates that the loci are in linkage disequilibrium. The function for the asymptotic score test statistis is given below:

$$T_s = \frac{D}{\sqrt{\frac{1}{2n}(P_A P_a P_B P_b)}}$$

 T_s has asymptotic standard normal under H_0 . Therefore, the p-value is obtained via pnorm() function in R.

$$T_s = \frac{0.005}{\sqrt{\frac{1}{2 \cdot 100} (0.15 \cdot 0.85 \cdot 0.30 \cdot 0.70)}}$$
$$= \frac{0.0050}{0.0116}$$
$$= 0.4321$$

The p-value of $T_s = 0.4321$ was determined with the following **R** function:

P-value was determined to be 0.3328 and the H_0 could not be rejected, indicating that the loci Locus 1 and Locus 2 are not in LD.