Conferencia 4 - Grafo Hamiltoniano

25 de abril de 2025

**Definición** (Camino Hamiltoniano o Cadena Hamiltoniana). Un camino  $P = \langle v_1, v_2, ..., v_k \rangle$  es Hamiltoniano si P es simple y contiene a todos los vértices del grafo.



Figura 1: En el Grafo, el camino < 3, 2, 1, 6, 4, 5 >es Hamiltoniano.

**Definición** (Ciclo de Hamilton). Un ciclo  $C = \langle v_1, v_2, ... v_k, v_1 \rangle$  en un grafo G se dice de Hamilton (Hamiltoniano) si contiene a todos los vértices del grafo.



Figura 2: En el Grafo, el ciclo < 1, 2, 3, 4, 1 >es Hamiltoniano.

**Definición** (Grafo Hamiltoniano). Un grafo conexo es Hamiltoniano si tiene un ciclo de Hamilton.

Nota: Aunque las definiciones de Grafo Euleriano y Grafo Hamiltoniano son similares (el primero busca recorrer todas las aristas del grafo sin repetirlas y el segundo recorrer todos los vértices sin repetición) no existe ninguna relación entre estas clasificaciones en un grafo. Es decir un grafo G puede ser Hamiltoniano y no ser Euleriano y viceversa.





(a) Grafo Hamiltoniano y Euleriano (b) Grafo Euleriano y no Hamiltoniano





(c) Grafo Hamiltoniano y no Euleriano (d) Grafo ni Hamiltoniano ni Euleriano

**Lema.** Todo grafo completo G,  $|V(G)| \ge 3$ , es Hamiltoniano.

**Demostración** (Demostración por Inducción en n = |V(G)|).

Caso base: Para  $n=3,\ K_3$  tiene el ciclo  $< v_1, v_2, v_3, v_1>$  que es Hamiltoniano.

**Hipótesis**: Supongamos que el grafo completo de n vértices  $(K_n)$  posee un ciclo de Hamilton.

**Paso inductivo**: Sea G un grafo completo de n+1 vértices  $(K_{n+1})$ , si construimos G'=G-v (le quitamos un vértice a G), el grafo G' es  $K_n$ , es decir es un grafo completo de n vértices. En G' se cumple la hipótesis de inducción, luego en G' hay un ciclo de Hamilton. Sea el ciclo Hamiltoniano  $C=\langle v_1,v_2,\ldots,v_n,v_1\rangle$  de G', entonces si se añade nuevamente el vértice v y todas sus aristas se vuleve a obtener  $K_{n+1}$  y como v está enlazado a todos los demás vértices, sabemos que las aristas  $\{v,v_n\}$  y  $\{v,v_1\}\in E(G)$ , entonces se puede tener el ciclo  $C'=\langle v_1,v_2,\ldots,v_n,v,v_1\rangle$  que es un ciclo Hamiltoniano en  $K_{n+1}$   $\blacksquare$ .

**Teorema.** Si un grafo G es Hamiltoniano entonces para cualquier subconjunto no vacío de vértices S de G, el número de componentes conexas del subgrafo G - S es menor o igual que |S|.

Demostración (Demostración del Teorema).

Como G es Hamiltoniano, tiene un ciclo que es de Hamilton. Cuando se remueven los vértices del conjunto S de G, el ciclo Hamiltoniano se divide en a lo sumo |S| segmentos (cadenas de vértices consecutivos del ciclo que no contienen vértices de S). Cada segmento corresponde a una componente conexa de G-S si no existen aristas adicionales en G que estén fuera del ciclo y que conecten a estos segmentos. Si existieran estas aristas, entonces conectarían segmentos y, con ello, se reduciría el número de componentes conexas. Luego, el número de componente conexas del subgrafo G-S es menor o igual que |S|

**Definición** (Clausura de un Grafo). Dado un grafo G con |V(G)| = n, se define inductivamente la secuencia de grafos  $G_0, G_1, ..., G_k$ , donde  $G_0 = G$  y  $G_{i+1} = G_i + \{u,v\}$ , donde u,v son vértices no adyacentes de  $G_i$  tales que  $deg_{G_i}(v) + deg_{G_i}(u) \ge n$ . Tras aplicar este procedimiento, el último grafo que se ontiene es la clausura de G y se denota clausura(G)



Figura 4: Ejemplo del proceso de obtención de la clausura, en el ejemplo en grafo  $G_2$  es la clausura(G)

**Teorema.** La operación de clausura de un grafo, es una operación bien definida. (Sin importar el orden en que se adicionen las aristas durante la construcción de los  $G_i$  intermedios, el grafo final, que es la clausura de G es siempre el mismo)

Demostración (Reducción al absurdo).

Sean  $E = \{e_1, e_2, ...e_p\}$  y  $F = \{f_1, f_2, ..., f_r\}$ , dos formas de construir la clausura de un grafo G. Es decir, la primera es  $G_0 = G$ ,  $G_1 = G + e_1$ ,  $G_2 = G_1 + e_2$ ,...,  $clausura_E(G) = G_{p-1} + e_p$ ; y la otra forma seria  $G_0 = G$ ,  $G_1 = G_0 + f_1$ ,  $G_2 = G_1 + f_2$ ,...,  $clausura_F(G) = G_{r-1} + f_r$ . Para demostrar que  $clausura_E(G) = clausura_F(G)$ , basta con demostrar que E = F, para esto demostremos que  $E \subseteq F$  y  $F \subseteq E$ .

Para demostrar que  $E \subseteq F$  hagamos una reducción al absurdo, supongamos que esto no se cumple, entonces existen aristas en E que no pertenecen al conjunto F. Tomemos del conjunto E/F (que asumimos no vacío) la arista con menor índice, sea esta  $e_i$ . Como  $e_i$  se agrega a la clausura uniendo los vértices no adyacentes u, v donde  $deg_{G_{i-1}}(v) + deg_{G_{i-1}}(u) \ge n$ . De donde

$$deg_{G_{i-1}}(v) = deg_G(v) + X_v$$

con  $X_v \ge 0$  siendo la cantidad de aristas en el conjunto  $\{e_1, ... e_{i-1}\}$  que inciden en v, análogamente

$$deg_{G_{i-1}}(u) = deg_G(u) + X_u$$

Como todos los  $e_j, 1 \leq j \leq i-1$  pertenecen a F entonces el conjunto  $F = \{e_1, ..., e_{i-1}\} \cup \{f_1, f_2, ..., f_r\}/\{e_1, ..., e_{i-1}\}$ , de donde en la clausura construida por las aristas de conjunto F se tiene que:

$$deg_{clausura_F}(v) = deg_G(v) + X_v + Y_v$$

con  $Y_v \ge 0$  cantidad de aristas del conjunto  $\{f_1, f_2, ..., f_r\}/\{e_1, ..., e_{i-1}\}$  que inciden en v, analogamente para u:

$$deq_{clausura,r}(u) = deq_G(u) + X_u + Y_u$$

con  $Y_u \ge 0$  cantidad de aristas del conjunto  $\{f_1, f_2, ..., f_r\}/\{e_1, ..., e_{i-1}\}$  que inciden en u, de donde:

 $deg_{clausura_F}(v) + deg_{clausura_F}(u) = deg_G(v) + X_v + Y_v + deg_G(u) + X_u + Y_u \ge 0$ 

$$\geq deg_{G_{i-1}}(v) + deg_{G_{i-1}}(u) \geq n$$

Por tanto la arista  $\{u,v\}$  se puede agregar a la  $clausura_F$ , resultando en una iteración más en el algoritmo de obtención de la clausura, pero esto es una contradicción ya que el grafo  $clausura_F(G)$  tiene que ser el último que se obtenga, de donde lo supuesto es falso y todas las aristas de E pertenecen a F, es decir  $E \subseteq F$ .

La demostración de  $F \subseteq E$  es análoga a esta, por tanto E = F y  $clausura_E(G) = clausura_F(G)$ .

La clausura es una operación bien definida ■.

**Teorema** (Bondy-Chvátal). Sea G un grafo donde  $|V(G)| \ge 3$ , G es Hamiltoniano  $\Leftrightarrow$  clausura(G) es Hamiltoniano.

Demostrar este teorema es equivalente a demostrar que:  $G_i$  es Hamiltoniano  $\Leftrightarrow G_{i+1}$  es Hamiltoniano. Si se demuestra esto, entonces siguiendo la cadena de transitividad queda demostrado que: G es Hamiltoniano  $\Leftrightarrow clausura(G)$  es Hamiltoniano.

**Demostración**  $(\Rightarrow)$ . Si  $G_i$  es Hamiltoniano entonces  $G_{i+1}$  es Hamiltoniano

Como  $G_i$  es Hamiltoniano, entonces posee un ciclo de Hamilton. Sea  $C = \langle v_1, v_2, ..., v_k, v_1 \rangle$  el ciclo de Hamilton de  $G_i$ , este ciclo también está presente en  $G_{i+1}$ , porque  $G_{i+1}$  no es más que  $G_i$  con una arista agregada. Luego  $G_{i+1}$  es Hamiltoniano.

**Demostración** ( $\Leftarrow$ ). Si  $G_{i+1}$  Hamiltoniano  $\Rightarrow G_i$  Hamiltoniano

Sabemos que  $G_{i+1} = G_i + \{x, y\}$  donde x, y son vértices no adyacentes en  $G_i$  tales que  $deg_{G_i}(x) + deg_{G_i}(y) \ge n$ .

Como  $G_{i+1}$  es Hamiltomiano, si el ciclo Hamiltoniano de  $G_{i+1}$  no contiene a la arista  $\{x, y\}$  (la agregada que no estaba en  $G_i$ ), entonces este ciclo también aparecía en  $G_i$ , de donde  $G_i$  Hamiltoniano.

Si  $\{x, y\}$  sí aparece en el ciclo, en el grafo  $G_i$ , como no está  $\{x, y\}$ , pero si las restantes aristas, habrá un camino Hamiltoniano:

$$C = \langle v_0, v_1, \dots, v_{n-1} \rangle$$
 donde  $v_0 = x y v_{n-1} = y$ .

Construyamos entonces un ciclo Hamiltoniano que no utilice la arista  $\{x, y\}$ , nótese que en la cadena C, tiene que existir algún vértice  $v_j$  tal que  $v_j$  sea adyacente a x y  $v_{j-1}$  sea adyacente a y.



Supongamos que esto no ocurra, entonces por cada adyacente a x en la cadena, el vértice anterior a este no puede ser adyacente a y, como la cadena es Hamiltoniana, contiene a todos los adyacentes de x, de donde  $deg(y) \leq n-1-deg(x)$ , de donde  $deg(y)+deg(x) \leq n-1$ , pero sabemos que esto no es posible, puesto que la arista  $\{x,y\}$  se agrega a la clausura en el grafo  $G_{i+1}$  y esto solo se hace si los vértices no adyacentes x,y complen que  $deg(x)+deg(y) \geq n$ .

Entonces lo supuesto es falso, por tanto existe  $v_j$  en C tal que  $v_j$  es adyacente a x, y  $v_{j-1}$  es adyacente a y.

Por tanto se puede tomar el ciclo  $< v_0 = x, v_j, \dots, v_{n-1} = y, v_{j-1}, v_{j-2}, \dots, v_1, v_0 = x >$  que es un ciclo Hamiltoniano.

Luego G es Hamiltoniano si y solo si su clausura lo es ■.

**Teorema** (Dirac). Sea G un grafo donde  $|V(G)|=n\geq 3,$   $si\ \forall v\ deg(v)\geq \frac{n}{2}\ \Rightarrow G$  es Hamiltoniano

**Teorema** (Ore). Sea G un grafo donde  $|V(G)| = n \ge 3$ , si  $\forall u, v \ deg(u) + deg(v) \ge n \Rightarrow G$  es Hamiltoniano

Demostración (Directa).

Nótese que el cumplimiento del *Teorema de Ore* implica el cumplimiento del *Teorema de Dirac*. Si en un grafo todos los vértices tienen grado mayor o igual a  $\frac{n}{2}$ , entonces para cualquier pareja de vértices no adyacentes  $u, v, deg(u) + deg(v) \geq \frac{n}{2} + \frac{n}{2} = n$ , donde el grafo cumple la hipótesis de *Ore*.

Luego basta con demostrar el *Teorema de Ore*. Como en G todos los vértices u, v no adyacentes cumplen que  $deg(u) + deg(v) \ge n$  entonces la  $clausura(G) = K_n$ , que sabemos tiene un ciclo de Hamilton, luego por el **Teorema de Bondy-Chvátal**, G es Hamiltoniano.

**Nota:** Ambos teoremas son condiciones suficientes pero no necesarias, un grafo puede ser Hamiltoniano sin que sus vértices cumplan esta condición, por ejemplo:



Figura 5:  $C_6$  es Hamiltoniano y sin embargo todos sus vértices son de grado 2, por lo que la suma de los no adyacentes es 4 < 6.

Corolario (Corolario del Teorema de Ore). Si G es un grafo conexo, n vértices, con  $n \geq 3$ , en el cual  $deg(u) + deg(v) \geq n - 1$  para todo par de vértices no adyacentes u, v, entonces G posee un camino Hamiltoniano.

Demostración (Demostración del Corolario del Teorema de Ore).

Sabemos que G es conexo, y con n vértices. Creamos el grafo G' = G + w, a partir de añadir el vértice w y este lo conectamos con todos los vértices existentes. En G' se cumpliría que

$$deg(u) + deg(v) \ge n - 1 + 2 = n + 1$$

para todo par de vértices u, v no adyacentes, luego G' es Hamiltoniano por el **Teorema de Ore**.

Entonces existe un ciclo Hamiltoniano en G' y este tiene que pasar por el vértice w. Entonces basta con eliminar este vértice y se tendría para G un camino Hamiltoniano  $\blacksquare$ .