STRUCTURE /

 NH_3 Ammonia $R-NH_2$ 1° Amine R_2NH 2° Amine R_3N 3° Amine

Pyramidal geometry

10.AMINES

PHYSICAL PROPERTIES

PHYSICAL STATE: Lower aliphatic amines are gases, intermediate members are liquid (fishy odour), while higher members are solid.

SOLUBILITY: Lower aliphatic amines are soluble in water due to H-bonding, while higher amines (> C₆) are insoluble in water.

Solubility
$$\propto \frac{1}{\text{Molecular weight}}$$

BOILING POINT: Primary and secondary amines forms intermolecular H-Bonding while tertiary does not.

1° Amine > 2° Amine > 3° Amine

CHEMICAL PROPERTIES

$$R-NH_2 + \begin{cases} CHCl_3 + KOH \\ Carbylamine test \end{cases} R-NC$$

$$R-NH_2 + \begin{cases} HNO_2 \\ RCOH \end{cases} R-OH$$

$$RX R-NH-R' O COH R-NH-R' O COH R-NH-C-R$$

$$R-NH-C-R$$

PREPARATION

Reduction of Nitro Compounds.

$$RNO_2 \xrightarrow{Sn/HCl \text{ or Fe/HCl}} R-NH_2$$

Ammonolysis

$$R-X \xrightarrow{NH_3} R_3N+HX^- \xrightarrow{NaoH} R-NH_2 + H_2O + Na+X^-$$

Reduction of Nitriles

$$R - C \equiv N \xrightarrow{H_2 /Ni} R - CH_2 - NH_2$$

Reduction of Amides

$$R - \overset{O}{C} - NH_2 \xrightarrow{\text{LiAlH}_4} R - CH_2 - NH_2$$

Hoffmann Bromamide Degradation reaction

one carbon less amine is formed as compared to amide

O

$$R - C - NH_2 + Br_2 + 4NaOH \longrightarrow R - NH_2 + Na_2CO_3 + 2NaBr + 2H_2O$$

Gabriel Phthalimide synthesis

$$\begin{array}{c|c}
O & O & O \\
II & O & O \\
C & N-H & RNH_2 \\
O & O & O \\
II & O & O \\
O & O & O \\
O$$

Aromatic primary amines cannot be prepared by this method

BASIC NATURE /

Due to the presence of lone pair on nitrogen amines are basic.

Factors affecting basicity

- (i) Inductive effect
- (ii) solvation effect
- (iii) Steric hinderance

In Gaseous Phase

 3° Amine > 2° Amine > 1° Amine > NH_3

In Aqueous Phase

 $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$ $(C_2H_5)_2NH > (C_2H_5)_3N > (C_2H_5)NH_2 > NH_3$

Overall Basicity Order

Aliphatic Amine > Ammonia > Aromatic Amine

TEST FOR AMINES / - HINSBERG'S TEST Secondary Amine SO_2 -NHR SO_2 -NHR $+ R_2$ NH2 $+ R_3$ N No Reaction ppt. soluble

in alkali

Primary Amine

in alkali

SO₂Cl

IMPORTANCE

In preparation of substituted aromatic compounds which cannot be prepared by direct substituion in benzene.