

About LIQOMICS

• Academic Spin-off from Cologne:

Focused on cutting-edge tumor diagnostics through liquid biopsy technology.

Key Service: LymphoVista

• What It Does:

Detects and monitors lymphomas and hematological cancers.

- How It Works:
 - Blood Sample Analysis: Detects cell-free DNA and circulating tumor DNA.
 - Disease Monitoring: Tracks Minimal Residual Disease (MRD) to assess treatment response.

Sensitive MRD Testing for Cancer Monitoring

Cell-Free DNA (cfDNA)

What Is cfDNA?

- Degraded Small DNA Fragments:
 - Size: **50 200 bp**, cleaved by **nucleases**.

Source of cfDNA:

- Released by Dead Cells:
 - Occurs via apoptosis, necrosis, or active secretion from living cells.

Key Molecular Features:

- Tissue-Specific Signatures:
 - **Fragment Size:** Reflects tissue-specific fragmentation patterns.
 - **Methylation Status:** Epigenetic modifications characteristic of cell types.
 - **End Motifs:** Specific DNA ends reflecting nuclease activity.

Chromatin Organization and Nuclease Activity Define cfDNA Signatures

Projects Overview

1. Hodgkin Lymphoma Project

- Data Source:
 - Cell-free DNA sequencing from **Hodgkin Lymphoma Patients**.
 - Samples collected **before** and **after two cycles of chemotherapy**.
 - Additional **relapse information** included.
- Goal:
 - Build a **Machine Learning Model** to **predict relapse** after treatment.
- Result:
 - **Challenge:** Insufficient sample size for a reliable predictive model.

Projects Overview

2. Solid Tumors (Finale_DB Project)

- Data Source:
 - Cell-free DNA sequencing from 4 Publications:
 - Jiang_2015, Cristiano_2019, Snyder_2016, Sun_2019.
 - >800 Samples: Includes both healthy and cancer samples.
- Goal:
 - Develop a Machine Learning Model to distinguish cancer from non-cancer for solid tumors.

Note: Detailed results from this project will be presented on the following slides.

Summary of Data Sources and Samples

Source	Diseases Covered	Total Samples
Cristiano_2019	Bile_duct_cancer Breast_cancer Colorectal_cancer Duodenal_cancer Gastric_cancer Healthy Lung_cancer Ovarian_cancer Pancreatic_cancer	536
Jiang_2015	Cirrhosis Healthy Hepatitis_B Liver_cancer	225

Source	Diseases Covered	Total Samples	
	Bladder_cancer		
	Breast_cancer		
	Colorectal_cancer		
	Esophageal_cancer		
	Head_and_neck_cancer		
	Healthy		
	Inflammatory_bowel_disease		
	Kidney_cancer		
Snyder_2016	Liver_cancer	58	
	Lung_cancer		
	Ovarian_cancer		
	Pancreatic_cancer		
	Prostate_cancer		
	Skin_cancer		
	Systemic_lupus_erythematosus		
	Testicular_cancer		
	Uterine_cancer		
C 2010	Colorectal_cancer	20	
Sun_2019	Liver_transplant	29	

Pipeline

- 1. Downsampling
- 2. Feature Normalization
- 3. Feature Selection
- 4. Machine learning (TPOT)

Downsampling Process

Key Steps:

- 1. Handling Coverage Variability:
 - Coverage between samples **varies significantly**, affecting comparability.
- 2. **Equalization:**
 - **Downsample all samples** to the same number of **DNA fragments** to ensure consistency in analysis.

Feature Normalization Process

Key Steps:

- 1. Window Sampling:
 - Process **5 million windows** on each chromosome for accurate feature representation.
- 2. Normalization:
 - Apply **feature normalization** to prepare data for **machine learning** models.
- 3. Data Readiness:
 - Ensure features are **scaled** and **standardized** for better model performance.

Feature Selection Process

Key Steps:

- 1. Sample Selection:
 - Use 5% of samples (42 out of 828) for feature selection to avoid overfitting.
- 2. Significance Testing:
 - Apply the Mann-Whitney U Test to remove non-significant features (p > 0.05).
- 3. Correlation Handling:
 - **Group correlated features** (threshold: |r| > 0.8) and retain the **most significant feature** from each group.

Result:

• Selected Features: 78 Features out of 76,801 Features (0.1% selected)

Classifier Performance on Training Data

BEST CLASSIFIERS AFTER TRAINING

Classifier	HP_count	Accuracy	Sensitivity	Specificity	Weighted_Score
BernoulliNB	475	0.581818	0.240984	0.928333	0.652825
ExtraTreesClassifier	55	0.788430	0.660656	0.918333	0.815049
RandomForestClassifier	228	0.814876	0.762295	0.868333	0.825830
XGBClassifier	459	0.806612	0.798361	0.815000	0.808331

SELECTED CLASSIFIERS FOR FULL TRAINING

Classifier	Count
RandomForestClassifier	151
XGBClassifier	8

KEY INSIGHTS:

- Best Performers: RandomForestClassifier and XGBClassifier
- Next Step: Evaluate the selected classifiers on the **blind test set** for performance validation.

Feature Importance for Training Data

OVERLAP OF TOP 10 IMPORTANT FEATURES BY CLASSIFIER

Feature	RandomForestClassifier_228	XGBClassifier_459
chr15-P60m-coverage	1	1
chr20-P5m-coverage	2	6
chr9-P125m-CT_bimers_starts	3	4
chr5-P65m-AG_bimers_ends	4	2
chr8-P40m-AG_bimers_ends	5	8
chr5-P100m-AG_bimers_ends	7	5
chr13-P95m-AG_166_250_bimers_starts	8	9
chr4-P180m-AG_bimers_ends	10	3

KEY INSIGHTS:

- Top Feature for Both Models: chr15-P60m-coverage
- Different Feature Rankings: Each classifier relies on slightly different features.
- Outlook: Analyze biological significance of top-ranked features.

VISUALIZING TOP 10 IMPORTANT FEATURES

Classifier Performance on Blind Test Set

RESULTS OVERVIEW:

The following classifiers achieved perfect performance in predicting blind test set samples.

Classifier	Accuracy	Sensitivity	Specificity	Confusion_Matrix
RandomForestClassifier_228	1.000000	1.000000	1.000000	[[81 0] [0 81]]
XGBClassifier_459	1.000000	1.000000	1.000000	[[81 0] [0 81]]

IMPORTANT NOTE:

• Testing on a larger sample size is needed to obtain more realistic accuracy values.

Internship Takeaways

What I Learned During My Internship

TECHNICAL & ANALYTICAL SKILLS:

- Python Development: Advanced proficiency in Python coding and pandas for data analysis.
- Linux Environment: Comfortable working in Linux-based systems for data processing.
- **NGS Pipeline Development:** Experience in next-generation sequencing (NGS) workflow design and implementation.
- **Fragmentomics & Feature Engineering:** Expertise in fragmentomics, feature extraction, and feature selection.
- **Machine Learning & Model Development:** Applied ML techniques using TPOT and scikit-learn for predictive modeling.

Internship Takeaways

What I Learned During My Internship

BUSINESS & PROFESSIONAL INSIGHTS:

• **Start-Up Environment:** Gained insights into start-up dynamics, project management, and business development in a biotech setting.

Takeaway:

This internship has significantly enhanced both my **technical** and **professional** skills, preparing me for future challenges in **computational biology**, **bioinformatics**, and **machine learning**.