CONTROLUL UNUI PROCES INDUSTRIAL UTILIZÂND PROSIM -CONTROLUL UNUI AUTOMAT DE BĂUTURI CALDE-

AUTOR: GROZA DIANA

GRUPA: 30132

SCOPUL PROIECTULUI

În lucrarea de față se urmărește controlul unui aparat de băuturi calde de unde putem selecta dintre cele două băuturi (cafea sau ceai) și apoi ingredientele pe care dorim să le adăugăm. Când procesul este finalizat este semnalizat print-un bec, iar dacă paharul este înlăturat în timpul umplerii, acest eveniment este prevenit de un mecanism controlat de aparatul programabil.

OBIECTIVE

- Analiza și înțelegerea descrieri funcționale ale sistemului ales;
- Determinarea intrărilor, ieșirilor și zonelor de memorie ale sistemului;
- Determinarea succesivă a diagramei Grafcet pentru sistemul studiat;
- Transcrierea diagramei Grafcet la nivel de limbaj Ladder Logic;
- Implementarea ecuațiilor transcrise anterior la nivel de limbaj Ladder Logic în mediul de dezvoltare TIA Portal V16 pentru programarea PLC-urilor;
- Simularea proiectului rezultat din TIA PORTAL V16 cu ajutorul device-ului AP S7-1214C.
- Interpretarea rezultatelor.

IMPLEMENTARE DIAGRAMĂ GRAFCET

Ecuația de stare este:

$$Step_i = Step_{i-1} * Tranzitia_{i-1} + Step_i * \overline{Step_{i+1}}$$

Ecuațiile obținute sunt:

$$Step_0 = PlcFirstScan + Step_6 * UpCup + Step_0 * \overline{Step_1}$$
 $Step_1 = Step_0 * SenzorB2 + Step_1 * \overline{Step_2} + Step_1 * \overline{Step_3}$
 $Step_2 = Step_1 * ButtonS1 + Step_2 * \overline{Step_4}$
 $Step_3 = Step_1 * ButtonS2 + Step_3 * \overline{Step_4}$
 $Step_4 = Step_2 * ButtonS3 + Step_3 * ButtonS3 + Step_4 * \overline{Step_5}$
 $Step_5 = Step_4 * ButtonS4 + Step_5 * \overline{Step_6}$
 $Step_6 = Step_5 * SenzorB1 + Step_6 * \overline{Step_0}$

CONFIGURAȚIA HARDWARE

- ❖ PLC SIMATIC AP S7-1214C CPU 1214C-6ES7 214-1AE30-0XB0
- ❖ Modul pentru intrările digitale DI8/DO8 x 24VDC ->6ES7 223-1BH30-0XB0
- ❖ Modul pentru intrările analogice AI4 x13bits/AO2 x 14bits ->6ES7 234-4HE30-0XB0

LIMBAJUL LADDER LOGIC

Acest limbaj reprezintă o metodă de programare grafică cu simboluri de tip contact și bobină de releu:

- Contacul normal deschis (-- | |--) mărime activă pe "1" logic
- Contacul normal deschis (--|\|--) mărime activă pe "0" logic
- Semnal de bobină închis (--()--) rezultatul ecuației

Programul se va scrie în blocul OB1 (acest bloc se execută atât timp cât CPU se află în modul RUN).

Fig.1. Exemplificarea transpunerii în limbajul Ladder Logic a primei ecuații

TESTARE SI INTERPRETARE

Pentru testarea implementării de mai sus vom merge la secțiunea Online din bara de meniu și vom face conexiune cu PLC-ul.

Fig.2. Testarea functionalitații primului step

În lucrarea de față am studiat funcționalitatea unui automat de băuturi calde și pașii prin care acesta trebuie să treacă pentru a rezulta în final băutura dorită de către consumator. Am văzut de câți senzori este nevoie pentru a detecta starea în care se află paharul în anumite momente și care este întregul proces pentru facerea unei băuturi calde.

