LYCEE PILOTE BIZERTE

LES ISOMETRIES DU PLAN

4 MATHS

M. ZOGHBI Naoufel

I/Définition et Propriétés :

1) Définition

<u>Définition</u>: Une isométrie plane est une application du plan dans lui-même qui conserve les distances. Ce qui signifie : pour tout point M et N d'images respectives M' et N' on a MN=M'N'.

Activité I/1.1:

Soit f une isométrie du plan. Sur la figure ci-dessous on a placé deux points distincts A et B ainsi que le point A' l'image de A par une f. sur quelle ligne peut-on placer l'image B' de B par f. construire cet ensemble.

Application I/1.2:

Montrer que les images de deux points distincts par une isométrie sont deux points distincts.

Application I/1.3:

le plan est muni d'un repère orthonormé direct (O, u, v).

On considère l'application f du plan dans lui même qui à tout point M d'affixe z associe le point

M'd'affixe
$$z' = e^{i\frac{\pi}{4}}z$$
.

- a) montrer que f est une isométrie.
- b) Justifier que f est une rotation que l'on caractérisera.

2) Isométries et produit scalaire :

Activité I/2.1:

1) Soit f une isométrie, A, B et C trois points du plan d'images respectives A', B' et C' par f.

a) Compléter:
$$\begin{cases} BC^2 = \overline{BC}^2 = \left(\overline{AC} - ...\right)^2 = \\ B'C'^2 = \end{cases}$$
. Conclure.

b) Montrer que si f est une application qui conserve le produit scalaire alors f est une isométrie.

<u>Théorème</u>: Une application du plan dans lui-même est une isométrie si et seulement si elle conserve le produit scalaire: (f est isométrie du plan) ⇔

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{A'B'}.\overrightarrow{A'C'}$$
 où A', B' et C' sont les images respectives de A, B et C par f.)

Application I/2.1:

Soient A, B et C trois points distincts du plan d'image respectives A', B' et C' par une isométrie f.

1) Montrer que BAC = B' A'C'.

2) Montrer que les images par une isométrie de trois points non alignes sont trois points non alignes.

<u>Théorème</u>: Une isométrie conserve les mesures des angles géométriques. Conséquence:

Les images par une isométrie de trois points non alignes sont trois points non alignes.

Activité I/2.2:

Soit f une isométrie du plan. (O, OI, OJ) un repère orthonormé. Soit O'=f(O); I'=f(I) et J'=f(J).

- 1) Montrer que (O', O'I', O'J') est un repère orthonormé.
- 2) Prouver que si M(x,y) dans $(O,\overrightarrow{OI},\overrightarrow{OJ})$ et M'=f(M); alors (x,y) sont les coordonnées de M'dans $(O',\overrightarrow{O'I'},\overrightarrow{O'J'})$.

Théorème:

f une isométrie du plan P muni d'un repère orthonormé $(O, \overrightarrow{OI}, \overrightarrow{OJ})$; notons O'=f(O); l'=f(I) et J'=f(J); alors $(O', \overrightarrow{O'I'}, \overrightarrow{O'J'})$ est un repère orthonormé.

Si M(x,y) dans $(O,\overline{OI},\overline{OJ})$ et M'=f(M) alors M'(x,y) dans $(O',\overline{O'I'},\overline{O'J'})$.

3) Isométrie réciproque :

Application I/3.1: Soit f une isométrie du plan muni d'un repère orthonormé (O, OI, OJ).

On désigne par O'=f(O); l'=f(I) et J'=f(J); soit N(x,y) dans $(O', \overline{O'I'}, \overline{O'J'})$.

- 1) Montrer que N admet un unique antécédent M par f.
- 2) Soit g la réciproque de f (c'est-a-dire l'application qui à tout N du plan associe son unique antécédent M par f). Vérifier que g est une isométrie.

Théorème:

- Une isométrie f est une bijection du plan dans lui-même.
- L'application du plan dans lui-même qui a tout point N du plan associe son unique antécédent M par f est une isométrie appelée réciproque de f et note f ⁻¹.
- f(M) =N si et seulement si f ⁻¹(N)=M.

Conséquences:

- La réciproque d'une symétrie orthogonale est elle-même.
- La réciproque d'une translation de vecteur u est la translation de vecteur –u.
- La réciproque d'une rotation de centre I et d'angle α est la rotation de centre I et d'angle –α.

4) Isométrie et configuration :

Activité I/4.1:

Soit f une isométrie du plan muni d'un repère orthonormé (O,Oİ,OJ).

Soient $M(x_M\,;y_M)$ et $N(x_N\,;y_N)$ dans $(O,\overrightarrow{OI},\overrightarrow{OJ})$.

On désigne par O'=f(O); l'=f(I), J'=f(J), M'=f(M) et N'=f(N).

- 1) Montrer que $\overrightarrow{M'N'}$ est de composantes $\begin{pmatrix} x_N x_M \\ y_N y_M \end{pmatrix}$ dans $(O', \overrightarrow{O'I'}, \overrightarrow{O'J'})$.
- 2) Soient P,Q, R et S des points du plan d'images respectives P', Q',R' et S'par f. Montrer que si $\overrightarrow{MN} = a\overrightarrow{PQ} + b\overrightarrow{RS}$ alors $\overrightarrow{M'N'} = a\overrightarrow{P'Q'} + b\overrightarrow{R'S'}$.

Activité I/4.2:

A, B et C trois points d'images respectives A', B' et C' par une isométrie f.

- 1) Montrer que $\left(\overrightarrow{A'B'} \alpha \overrightarrow{A'C'}\right)^2 = \left(\overrightarrow{AB} \alpha \overrightarrow{AC}\right)^2 où \alpha \in \mathbb{R}$.
- 2) En déduire que si $\overrightarrow{AB} = \alpha \overrightarrow{AC}$ alors $\overrightarrow{A'B'} = \alpha \overrightarrow{A'C'}$.

Théorème:

f une isométrie du plan, A, B, C et D des points d'images respectives A', B', C' et D' par f. $\overrightarrow{AB} = \alpha \overrightarrow{CD}$ alors $\overrightarrow{A'B'} = \alpha \overrightarrow{C'D'}$ où $\alpha \in \mathbb{R}$.

Propriétés (Á démontrer):

- Une isométrie conserve le barycentre de deux points ; En particulier elle conserve le milieu d'un segment.
- L'image d'une droite par une isométrie est une droite.
- L'image d'un segment par une isométrie est un segment qui lui est isométrique.
- Les images de deux droites parallèles par une isométrie sont deux droites parallèles.
- L'image d'un parallélogramme par une isométrie est un parallélogramme.
- Les images de deux droites perpendiculaires par une isométrie sont deux droites perpendiculaires.
- L'image d'un cercle par une isométrie est un cercle qui lui est isométrique.
- L'image d'une tangente à un cercle en un point M est la tangente au cercle image au point image M'.(Conservation du contact)

Application I/4.1: Activité 2 p.40

II/ Composition d'isométries :

Activité II/.1:

f et g deux isométries ; montrer que fog est une isométrie.

Théorème : La composée de deux isométries est une isométrie.

Activité II/.2:

Soient f et g deux isométries.

- 1) Supposons que f⁻¹=g. soit N un point du plan et f(M)=N; déterminer fog(N); conclure.
- 2) Supposons que fog= Id_P . soit N un point du plan et g(N)=M; prouver que f(M)=N; conclure.

Théorème : f et g deux isométries. f ⁻¹=g si seulement si fog =ld.

Activité II/.3:

f g et h trois isométries.

- 1) Déterminer (fog)o(g-1 of -1); conclure.
- 2)a) Prouver que si f=g alors hof=hog.
 - b) Prouver que si hof=hog alors f=g
 - c) conclure.
- 3) Prouver que si h=fog alors f=hog -1.

Propriétés:

f, g et h trois isométries :

- $(fog)^{-1} = g^{-1} of^{-1}$.
- f=g si et seulement si hof=hog.
- si h=fog alors f=hog -1 et g=f -1oh.

Soit D et D' deux droites parallèles. H un point de D et H' son projeté orthogonale sur D'.

M un point du plan, on désigne par $M_1=S_D(M)$ et $M'=S_{D'}(M_1)$.

- 1) Déterminer S_D'oS_D(M).
- 2) Justifier que $t_{\overline{2}\overline{u}}(M) = M'où \overrightarrow{u} = \overrightarrow{HH'}$.
- 3) Conclure.
- 4) Préciser S_DoS_D,

<u>Théorème</u>: Soit D et D' deux droites strictement parallèles. La composée de la symétrie orthogonale S D d'axe D, par la symétrie orthogonale SD' d'axe D' est la translation de vecteur $\vec{u} = \vec{H}\vec{H}$,

H un point de D et H' son projeté orthogonales sur D' : $\mathbf{S}_{D'}\mathbf{oS}_{D} = \mathbf{t}_{2\vec{n}}$.

Application II/.1: Activité 5 p.42 Activité II/.5:

Soit t une translation de vecteur non nul \vec{u} .

Choisissons arbitrairement une droite D de vecteur normal \vec{u} .

- a) Tracer la droite D'= $t_{\frac{1}{2}u}(D)$.
- b) Préciser S_D'oS_D. Conclure.

Théorème:

Une translation est la composée de deux symétries orthogonales d'axes parallèles. Si t est la translation de vecteur non nul \vec{u} alors $t_{\vec{u}} = \mathbf{S}_{D}$, \mathbf{oS}_{D} où D une droite choisie arbitrairement de vecteur normale \vec{u} et D'= $t_{\frac{1}{2}\vec{u}}$ (D).

Remarque:

- On dit qu'on a décomposé t_{ii} en produits de deux symétries orthogonales.
- Il y a une infinité de décompositions possibles puisque la droite (D) peut être choisie sans contraintes.

Application II/.2: ABC un triangle équilatéral, I le milieu de [BC] ; Δ la droite perpendiculaire a (BC) en B. Montrer que $S_{(AI)}$ ot_{\overline{RC}} = S_{Δ} .

Activité II/.6:

D et D' deux droites sécantes en O et de vecteurs directeurs u et u'.

M un point du plan, $M_1 = S_D(M)$ et $M' = S_{D'}(M_1)$; on pose $(\vec{u}, \vec{u'}) \equiv \theta [2\pi]$.

- a) Déterminer S_D'oS_D(M).
- b) Montrer que OM=OM' et $(\overrightarrow{OM}, \overrightarrow{OM'}) \equiv 2\theta \ [2\pi \]$ en déduire: $r_{(O;2\theta)}(M)$.
- c) Conclure.
- d) Préciser S_DoS_D.

<u>Théorème</u>: Soit D et D' deux droites sécantes en O et de vecteurs directeurs \vec{u} et $\vec{u'}$. La composée de la symétrie orthogonale S D d'axe D, par la symétrie orthogonale SD d'axe D est la rotation de centre O et d'angle 20 où $(\vec{u}, \vec{u'}) \equiv \theta [2\pi]$: **S**D **O S**D = $r_{(0,2\theta)}$

Application II/.3: Activité 3 p:41

Activité II/.7:

Soit r une rotation de centre O et d'angle θ ; choisissons arbitrairement une droite D passant par O.

- a) Tracer la droite D'= $r_{\left(0;\frac{\theta}{2}\right)}$ (D).
- b) Préciser S_D, oS_D; conclure.

Théorème:

Une rotation est la composée de deux symétries orthogonales d'axes sécants. Si r est la rotation de centre O et d'angle θ alors r= $S_{D'} \circ S_D$; où D une droite choisie arbitrairement et D'= $r_{\left(0;\frac{\theta}{2}\right)}(D)$.

Remarque:

- On dit qu'on a décomposé $r_{\left(0;\frac{\theta}{2}\right)}$ en produits de deux symétries orthogonales.
- Il y a une infinité de décompositions possibles puisque la droite (D) peut être choisie sans contraintes.

Application II/.4:

Soit ABC un triangle équilatéral direct ; on considère la rotation r de centre B et d'angle $\frac{\pi}{3}$

On note I le milieu de [AC] et J son symétrique par la symétrie d'axe (BC). Déterminer les droite Δ_1 , Δ_2 et Δ_3 telles que : $r=S_{(BC)}oS_{\Delta_1}$; $r=S_{\Delta_2}oS_{(BI)}$; $r=S_{\Delta_3}oS_{(BC)}$.

Application II/.5:

Soit un carré ABCD de sens indirect, de centre I et soit J=A*B. Déterminer:

III/ Isométries et points fixes :

1) Isométries ayant des points fixes:

Activité III/1.1:

f une isométrie du plan différente de l'identité, A un point du plan et A'=f(A).

Montrer que si M est un point fixe par f alors M est un point de la médiatrice de [AA'].

Théorème:

Soit f une isométrie différente de l'identité, A un point du plan et A' son image par f. Les points fixes de f, s'ils existent, sont sur la médiatrice de [AA'].

Activité III/1.2:

Soit f une isométrie qui fixe deux points distincts A et B ; M appartenant à (AB) et M'=f(M). Montrer que M=M'. Conclure.

Théorème:

Si une isométrie fixe deux points distincts A et B alors elle fixe tout point de la droite (AB).

Activité III/1.3:

Soit f une isométrie qui fixe trois points non alignes A, B et C. M un point du plan et M'=f(M).

méthode 1:En remarquant que $\overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$. *M*ontrer que M=M'. Conclure.

méthode 2: Montrer, à l'aide d'un raisonnement par l'absurde, que M=M'.

Théorème:

Une isométrie fixe au moins trois points non alignes, si et seulement si c'est l'identité du plan.

Activité III/1.4:

A, B et C trois points non alignes. f et g deux isométries telles que f(A)=g(A)=A'; f(B)=g(B)=B' et f(C)=g(C)=C'.

On pose $h=f^{-1}$ og ; déterminer h(A) ; h(B) et h(C). Conclure.

<u>Théorème</u>: Deux isométries qui coïncident en trois points non alignes coïncident partout. On dit qu'une isométrie est parfaitement déterminée par la donnée de trois points non alignes et de leurs images.

Activité III/1.5:

Soit f une isométrie différente de l'identité et qui fixe deux points distincts A et B.

- 1) Soit M un point de (AB), justifier que M est invariant par f.
- 2) Soit M un point quelconque du plan n'appartenant pas à (AB).
- a. Justifier que le point M n'est pas invariant par f.
- b. Montrer que $f=S_{(AB)}$.

Théorème: Si une isométrie f fixe exactement deux points distincts A et B alors f est la symétrie orthogonale d'axe (AB).

Application III/1.1: Activité 2 p:44.

Application III/1.2: Soit ABC un triangle isocèle en A et non équilatéral et soit I=B*C.

Soit f une isométrie qui laisse globalement invariant le triangle ABC.

- 1) Montrer que les points A et I sont deux points invariants par f.
- 2) Déterminer l'ensemble des isométries qui laissent globalement invariants le triangle ABC.

Activité III/1.6:

Soit f une isométrie qui fixe un unique point I; A un point distinct de I et A'=f(A). on note Δ la médiatrice de [AA']. On pose $g=S_{\Delta}of$.

- 1)a. Justifier que $q \neq Id_P$.
 - b. Déterminer g(I) et g(A) ; en déduire la nature et les éléments caractéristiques de g.
- 2) En déduire la nature et les éléments caractéristiques de f.

Théorème :

Si une isométrie f fixe un unique point l alors f est une rotation de centre l et d'angle non nul.

Application III/1.3: Soit un triangle ABC non isocèle en A.

On suppose qu'il existe une isométrie f qui transforme la droite (AB) en (AC) et f (B)=C.

- 1) Prouver que A est un point non invariant par f.
- 2) Construire A' = f(A).
- 3) Construire le point M tel que f (M)=M.

Application III/1.4: Le plan complexe est muni d'un repère orthonormé direct (O;u;v)

La figure ci-contre représente :

- un triangle OAB de sens direct où M est le milieu de [AB],
- deux carrés OBCD et OFEA de sens direct.
- 1) On note a et b les affixes respectives des points A et B.

Calculer les affixes des points D et F en fonction de a et b..

2) Montrer que DF = 2OM et que les droites (OM) et (FD) sont perpendiculaires.

Application III/1.5:

Dans le plan orienté dans le sens direct, on considère deux droites (Δ) et (Δ ') sécantes en O.

- 1) Soit φ une isométrie qui fixe O et transforme (Δ) en (Δ '). Le cercle $\mathscr C$ de centre O et de rayon 1 coupe (Δ) en A et B et (Δ ') en C et D.
- a. Montrer que $\varphi(A)$ = C ou $\varphi(A)$ =D.
- b. En déduire toutes les isométries φ.
- 2) Soit f une isométrie du plan, on pose f(O)=O'.
- a. Montrer que f transforme (Δ) en (Δ ') si, et seulement si t_{\overline{\chi'}\overline{\chi'}\overline{\chi'}} of transforme (Δ) en (Δ ').et laisse} invariant le point O.
- b. En déduire l'ensemble des isométries qui transforment (Δ) en (Δ ').

2) Isométries sans points fixes:

Activité III/2.1:

O un point du plan, f une isométrie et f(O)=O'. soit $g=t_{O'O}$ of .

- 1)Vérifier que g est une isométrie qui fixe O.
- 2) Justifier que f se décompose de manière unique en la composée d'une translation et d'une isométrie qui fixe O.

Théorème:

Soit f une isométrie et O un point du plan. L'isométrie f se décompose de manière unique sous la forme t o g où g est une isométrie qui fixe O et $t_{\overline{OO}}$.

Application III/2.1: Soit (O, \vec{u}, \vec{v}) un repère orthonormé direct du plan et f l'application qui à tout

point M(x; y) associe le point M'(x'; y') tel que
$$\begin{cases} x' = y + 3 \\ y' = x - 3 \end{cases}.$$

- 1) Montrer que f est isométrie.
- 2) Déterminer l'ensemble des points invariants par f, en déduire la nature de f.
- 3) Déterminer un vecteur \vec{u} et une isométrie φ , tel que f= $t_{\vec{u}} \circ \varphi$ et φ (O)=O.

Activité III/2.2:

Soit f une isométrie sans points fixes ; il s'agit de montrer que f est soit une translation de vecteur non nul, soit la composée d'une translation de vecteur non nul \vec{u} et d'une symétrie orthogonale d'axe Δ de vecteur directeur \vec{u} .

O un point du plan et O'=f(O) ; on sait qu'il existe une unique isométrie g qui fixe O tel que $f=t_{\overline{\Omega\Omega'}}$ og ; g est donc :

- soit l'identité du plan,
- soit une rotation d'angle non nul,
- soit une symétrie orthogonale.
- 1) si g =id; identifier f.
- 2) si $g=r_{(O;\alpha)}$. Soit (D) la droite passant par O et orthogonale à $\overrightarrow{OO'}$. Déterminer les droite Δ et Δ' telles que : $t_{\overrightarrow{OO'}}=S_{\Delta}oS_{D}$ et $r_{(O;\alpha)}=S_{D}oS_{\Delta'}$. Identifier f et conclure.
- 3) si g = S_{Δ} . ($O \in \Delta$)
- a) on suppose que \overline{OO} 'est normal à Δ . Identifier f et conclure.
- b) on suppose que OO'est directeur de Δ . Montrer que f n'a pas de points fixes.
- c) on suppose que \overline{OO} 'n'est ni directeur, ni normal à Δ . Identifier f.

<u>Théorème</u>: Toute isométrie sans points fixes est soit une translation de vecteur non nul, soit la composée d'une translation de vecteur non nul \vec{u} et d'une symétrie orthogonale d'axe Δ de vecteur directeur \vec{u} .

Application III/2.2: Soit f l'application du plan dans lui même qui à tout point M d'affixe z associe le point M' d'affixe $z' = i \ \bar{z} - 2i + 3$.

- 1) Montrer que f est une isométrie et qu'elle n'admet pas de points fixes.
- 2) Montrer que fof est une translation dont on précisera le vecteur \vec{u} .

3) Soit
$$g = t_{\frac{1}{2}u} \text{ of } .$$

- a. Soient A et B les points d'affixes respectives $\left(2-\frac{i}{2}\right)$ et $\left(\frac{5}{2}\right)$. Déterminer g(A) et g(B).
- b. En déduire la nature de g.
- c. En déduire la nature et les éléments caractéristiques de f.

Théorème: Une isométrie se décompose en au plus trois symétries orthogonales.

Application III/2.3:

Dans le plan orienté, on considère un carré ABCD de centre O et de sens direct. On désigne par I et J les milieux respectifs des segments [AB] et [BC]. On note O' le symétrique du point O par rapport à (AB).

- 1)a. Caractériser les applications $f=S_{(OC)}\circ S_{(OJ)}$ et $g=S_{(OJ)}\circ S_{(DC)}$.
 - b. En déduire la nature et les éléments caractéristiques de l'application φ =fog.
- 2)Soit l'application $h=S_{(BD)}o \varphi$.
 - a. Vérifier que h(C)=A, h(D)=B puis prouver que h(O)=O'.
 - b. Montrer que h n'a pas de points invariants, puis déduire sa nature.
- 3) Soit l'application $S=S_{(BC)}$ o $t_{\overline{\Delta B}}$.
 - a. Caractériser S.
 - b. Montrer que h=g o S.

Application III/2.4:

Soit BCC' un triangle isocèle et rectangle en B de sens direct. On pose A= B*C'.

- 1) Déterminer l'ensemble J des isométries qui laissent globalement invariant l'ensemble {B, C, C'}.
- 2) On pose A'=R $_{(B,-\frac{\pi}{2})}$ (A) et soit Δ la parallèle à (BC) passant par C' et f =S $_{(AA')}$ oS $_{(AB)}$ oS $_{(CC')}$.

Montrer que $S_{(AB)} \circ S_{(CC)} = S_{(CC)} \circ S_{\Delta}$. En déduire que f est une symétrie glissante dont on précisera le vecteur et l'axe.

Application III/2.5: On considère un rectangle ABCD de centre O tel que AB ≠ AD.

- 1) Déterminer l'ensemble E des isométries qui laissent globalement invariant [AB].
- 2) Soit F l'ensemble des isométries qui transforment [AB] en [CD].
- a) Montrer que pour tout isométrie $f \in F$ on a $t_{\overline{DA}}$ of $\in E$.
- b) En déduire l'ensemble F.
- 3) Soit G l'ensemble des isométries qui transforment $\{A,B,D\}$ en $\{B,C,D\}$.
- a) Montrer que si $f \in G$ alors f(O)=O, f(A)=C et f(A)=C
- b) En déduire l'ensemble G.
- 4) Déterminer l'ensemble des isométries qui laissent globalement invariant ABCD.

Application III/2.6: Le plan est orienté dans le sens direct.

On considère un triangle ABC rectangle en C, inscrit dans un cercle (C) de centre O tel que

$$(\overrightarrow{AC}; \overrightarrow{AB}) \equiv \frac{\pi}{3} [2\pi].$$

On désigne par I le milieu de[BC], D le symétrique de C par rapport à (AB) et E le symétrique de O par rapport à I.

- 1) Montre que[DE] est un diamètre de (C).
- 2) Soit $k=S_{(BC)}\circ S_{(AB)}$ et $h=S_{(ED)}\circ S_{(OA)}$.
- a. Caractériser chacune des isométries k, h et hok-1
- b. Déterminer l'image de la droite (BD) par k.
- c. Soit M un point du plan n'appartenant pas à la droite (BD). On pose M'=k(M) et M"=h(M)
- i) Montrer que le quadrilatère BM'CM" est un parallélogramme.
- ii) Où faut-il placer M pour que BM'CM" soit un losange.
- 3) On se propose de déterminer les isométries f de P qui vérifient: f(E)=A et f(C)=D.
- a. Soit g l'isométrie telle que: $f = t_{\overline{EA}}$ og . Montrer que $g = R_{\left(E, -\frac{2\pi}{3}\right)}$ ou $g = S_{(ED)}$
- b. On suppose que g=R $_{\left(\mathsf{E},-\frac{2\pi}{3}\right)}$. Déterminer les droites Δ et Δ' tels que:

$$R_{\left(E,-\frac{2\pi}{3}\right)} = S_{(EB)} o S_{\Delta} \text{ et } t_{\overline{EA}} = S_{\Delta'} o S_{(EB)}.$$

Caractériser alors f.

c. On suppose que $g=S_{(ED)}$. Montrer que f est une symétrie glissante (On pourra considérer le point H projeté orthogonal de A sur (ED)).