

Acta Scientiarum. Technology

ISSN: 1806-2563 eduem@uem.br

Universidade Estadual de Maringá

Brasil

Coelho Barros, Emílio Augusto; Mazucheli, Josmar Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon Acta Scientiarum. Technology, vol. 27, núm. 1, enero-junio, 2005, pp. 23-32 Universidade Estadual de Maringá Maringá, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=303226513002



Número completo

Mais artigos

Home da revista no Redalyc



# Um estudo sobre o tamanho e poder dos testes t-Student e Wilcoxon

## Emílio Augusto Coelho Barros\* e Josmar Mazucheli

Departamento de Estatística, Universidade Estadual de Maringá, Av. Colombo, 5790 – Bl. F-67, 87020-900, Maringá, Paraná, Brasil. \*Autor para correspondência. e-mail: emilioaugusto@pop.com.br

**RESUMO.** Um dos problemas mais comuns em estatística consiste em testar a hipótese  $\mu_0: \mu=\mu_0$  versus a alternativa  $\mu_1: \mu\neq\mu_0$ , em que  $\mu_0$  é algum valor específico do parâmetro  $\mu$ . A partir de uma amostra aleatória, sob a suposição de que a mesma é proveniente de uma distribuição Normal com média  $\mu$  e desvio padrão  $\sigma$ , ambos desconhecidos, pode-se aplicar o bem conhecido teste *t-Student*. Como alternativa, sob a suposição de simetria da distribuição dos dados, pode-se utilizar o teste não-paramétrico conhecido na literatura como teste de *Wilcoxon* (Conover, 1971). Neste artigo, é conduzido um estudo de simulação Monte-Carlo com o intuito de avaliar o tamanho e o poder dos testes *t-Student* e de *Wilcoxon* sob diferentes instâncias. Para o cálculo do tamanho de ambos os testes, foram realizadas B=100.000 simulações Monte-Carlo com 10 diferentes tamanhos de amostras,  $n=10,20,\ldots,90,100$ . Cada uma das B=100.000 amostras foram geradas das distribuições Normal, Laplace, Uniforme, t-Student e Logística sob a hipótese nula, sem perda de generalizades, com  $\mu$  = 0. Para o cálculo do poder, novamente  $\mu$  =  $\mu$ 0. Para o cálculo do poder, novamente  $\mu$ 0. Para o cálculo do poder, novamente  $\mu$ 0. Para o cálculo do poder, novamente  $\mu$ 0. Para

Palavras-chave: tamanho do teste, poder do teste, simulação Monte-Carlo, teste t-Student, teste de Wilcxon.

**ABSTRACT.** A study about the size and power of *t-Student* and *Wilcoxon* tests. A typical problem in statistics data analysis consists in testing a null hypothesis  $\mu_0: \mu=\mu_0$  versus an alternative  $\mu_1: \mu\neq\mu_0$ , where  $\mu_0$  is some specific value of the true parameter  $\mu$ . From a random sample with normal distribution with mean  $\mu$  and variance  $\sigma^2$ , both unknown, we might use the well known t-student test. As an alternative to the usual t-student test, under the symmetric supposition, we can use the nonparametric *Wilcoxon on* test (Conover, 1971). In this paper, a Monte-Carlo simulation study was conducted to calculate the empirical size and power of the t-student and *Wilcoxon* tests. In this study, several instances were considered. For the size of both tests, we considered sample sizes equal to n=1020...90100 simulated from Normal, Laplace, Uniform, *t-Student* and Logistic distributions, under the null hypothesis with  $\mu=0$ . In the power study, from the same sample sizes and for all distributions, random samples were simulated from the alternative hypothesis considering  $\mu_0=-1.0,-0.9,...,0.9,1.0$ .

Key words: empirical size, power of tests, Monte-Carlo simulation, t-Student test, Wilcoxon test.

#### Introdução

Seja  $(x_1,...,x_n)$  uma amostra aleatória proveniente de uma população com distribuição simétrica escrita na forma  $f\left(\frac{x-\mu}{\sigma}\right)$  (Casella e Berger, 1990), com parâmetro de locação  $\mu$  e escala  $\sigma$ , ambos desconhecidos. Suponha o interesse em testar a hipótese  $\mu_0: \mu=\mu_0$  versus a alternativa  $\mu_1: \mu\neq\mu_0$ , em que  $\mu_0$  é algum valor especificado do parâmetro  $\mu$ . Sob a suposição de que  $(x_1,...,x_n)$  é proveniente de uma distribuição Normal com média  $\mu$  e desvio padrão

 $\sigma$  ,  $_{X \sim N(\mu,\sigma)}$ , é bem conhecida que a estatística definida na forma:

$$T = \frac{\sqrt{n(x-\mu_0)}}{s}$$

tem distribuição *t-Student* com (n-1) graus de liberdade; em que  $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$  e  $s = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2}$  são, respectivamente, a média e o desvio padrão amostral. Para hipóteses alternativas da forma  $H_1 : \mu \neq \mu_0$ , rejeita-se  $H_0 : \mu = \mu_0$ , em nível de significância  $\alpha$ ,  $(0 < \alpha < 1)$ , se  $|T| > t_{(n-1;\alpha/2)}$ , em que  $t_{(n-1;\alpha/2)}$  é o  $100 \times \alpha/2$  percentil

da distribuição t-Student com (n-1) graus de liberdade. Quando não é possível garantir a suposição de normalidade, na presença de amostras suficientemente grandes, o Teorema Central do Limite garante que se os dados são provenientes de uma população com média  $\mu$  e variância finita  $\sigma^2$ , então a variável aleatória T pode ser aproximada por uma distribuição normal para  $n \to \infty$  (ver, por exemplo, Ferguson, 1967; Graybill, 1974; Casella e Berger, 1990). Na ausência da suposição de normalidade e assumindo que os dados são provenientes de uma distribuição simétrica, uma alternativa ao teste t-Student é o teste de Wilcoxon (Conover, 1971). O teste de Wilcoxon é baseado nos postos de  $(x_1,...,x_n)$ , cuja estatística é escrita na forma:

$$W = \sum_{i=1}^{n^+} R_i^+ - \frac{n_t (n_t + 1)}{4},$$

em que  $R_i^+$  é o posto de  $|x_i - \mu_0|$  para  $X_i \neq \mu_0$ ,  $n_t$  e  $n^+$  são, respectivamente, o número de observações em que  $x_i \neq \mu_0$  e  $(x_i - \mu_0) > 0$ . Na presença de empates, a média dos postos é utilizada. Por exemplo, se  $x_1 = x_2$  e o posto de  $|x_1 - \mu_0| = 1$  e o posto de  $|x_2 - \mu_0| = 2$ , então os postos dessas diferenças são  $R_1^+ = 1.5$  e  $R_2^+ = 1.5$ , respectivamente. Para  $n_t \leq 20$ , a distribuição amostral de W é obtida a partir da enumeração de todas as possíveis amostras sob  $H_0$  (Conover, 1971; Hollander e Wolfe, 1973). Para  $n_t > 20$ , a estatística:

$$W^* = \frac{W\sqrt{n_t - 1}}{\sqrt{n_t V - W^2}},$$

tem aproximadamente distribuição t-Student , com  $\binom{n-1}{2}$  graus de liberdade, em que

$$V = \frac{1}{24} n_t (n_t + 1)(2n_t + 1) - 0.5 \sum_{i=1}^{n^-} t_i^* (t_i + 1)(t_i - 1),$$

 $n^{\mathbb{Z}}$  é o número de grupos com empates e  $t_i$  é o número de empates no *i-ésimo* grupo (Iman, 1974).

Em problemas reais, quando não é razoável assumir que os dados são provenientes de uma distribuição simétrica ou normal, pode-se recorrer ao teste do sinal como alternativa aos testes *Wilcoxon* e *t-Student*. Vale lembrar que na prática, em geral, é mais fácil garantir a simetria do que a normalidade, o que torna o teste de *Wilcoxon* uma boa alternativa não paramétrica ao teste *t-Student* (Conover, 1971).

Neste artigo, um estudo de simulação Monte-Carlo avalia o comportamento dos testes t-Student e Wilcoxon com relação ao tamanho e poder. Para o cálculo do tamanho empírico de ambos os testes, para várias distribuições, valores pseudo-aleatórios são gerados sob a hipótese nula com  $\mu$ =0 . Na avalia-

ção do poder, são gerados valores sob a hipótese alternativa atribuindo-se valores a  $\mu$ , que variam entre -1 e 1, com passo igual a 0.1.

Na Seção "Estudo de Simulação", são discutidas as diferentes instâncias avaliadas no estudo de simulação. A Seção "Tamanho dos Testes" avalia o comportamento de ambos os testes com relação ao tamanho dos mesmos. O poder é avaliado na Seção "Poder dos Testes". A Seção "Conclusões" finaliza este artigo com algumas conclusões.

#### Estudo de simulação

O poder de um teste estatístico é definido como a probabilidade de rejeitar a hipótese nula, dado que a mesma é falsa. Na prática, é importante que se tenham testes com nível de significância próximos do nível de significância nominal e que o poder seja alto, mesmo em situações de amostras pequenas. Na suposição de amostras provenientes de uma distribuição Normal, hipóteses da forma  $H_0: \mu=0$  versus  $H_1: \mu \neq 0$  podem ser avaliadas a partir da estatítica t-Student, como descrito na Seção "Introdução". Alternativamente, na suposição de simetria, pode-se utilizar o teste não-paramétrico de Wilcoxon. Para ambos, os testes, quando essas suposições estão satisfeitas, espera-se que o erro Tipo I seja próximo do nível de significância nominal e que o poder seja alto. Por outro lado, quando ocorre a quebra de alguma dessas suposições, é importante avaliar o comportamento da taxa de rejeição de Ho quando a mesma é verdadeira. Essa taxa de rejeição é definida como o tamanho empírico do teste e pode ser calculada via simulação Monte-Carlo, gerando-se amostras sob a hipótese nula. Por outro lado, gerando-se valores sob a hipótese alternativa, tem-se que a proporção de vezes em que Ho é rejeitada define o poder de um teste estatístico.

Para os testes *t-Student* e *Wilcoxon*, o tamanho e o poder dos mesmos foram calculados considerando-se a distribuição Normal, Laplace, Uniforme, *t-Student* e Logística (Tabela 1).

Para todas as instâncias descritas a seguir, foram adotados níveis de significância nominais  $\alpha = 0.01$ e $\alpha = 0.05$ . As simulações foram conduzidas utilizando macros desenvolvidas no software SAS, nos quais os valores das estatísticas t-Student e Wilcoxon foram calculadas utilizando o procedimento univariate.

#### Tamanho dos testes

No cálculo dos tamanhos de ambos os testes, t-Student e Wilcoxon, para cada uma das distribuições apresentadas na Tabela 1, foram geradas sob a hipótese nula,  $H_0: \mu = 0$ , B = 100.000 amostras de

tamanhos n=10,20,...,90,100. Para cada n e cada uma das distribuições apresentadas na Tabela 1, a proporção de vezes, entre as B=100,000 amostras, em que os testes levam a falsa rejeição de  $\mu_0$  define o tamanho empírico dos testes. Os resultados do estudo de simulação estão apresentados nas Tabelas 2 a 6. A Figura 1 apresenta o comportamento dos tamanhos dos testes em relação aos tamanhos de amostra.

Uma vez que o número de vezes em que  $H_0$  é rejeitada tem distribuição Binomial, a hipótese nula para avaliar se o tamanho empírico é estatisticamente igual ao tamanho nominal foi testada em nível de significância de 5%. Utilizou-se o teste Binomial exato, sendo que esses resultados também são apresentados nas Tabelas 2 a 6.

**Tabela 1.** Distribuições consideradas no estudo de simulação Monte-Carlo.

| Distribuição | Expressão da Densidade                                                                         |
|--------------|------------------------------------------------------------------------------------------------|
| Normal       | $f(x \mid \mu, \sigma = 1) = \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2}(x - \mu)^2\right]$  |
| Laplace      | $f(x \mid \mu, \sigma = 1) = \frac{1}{2\pi} \exp( x - \mu )$                                   |
| Uniforme     | $f(x \mid \mu) = \frac{1}{2+2\mu}, -1 \le x \le 1 + 2\mu$                                      |
| t-Student    | $f(x \mid \mu) = \frac{2}{\sqrt{5  \mu  \Gamma(2.5)}} \left(1 + \frac{(x-\mu)}{5}\right)^{-3}$ |
| Logistica    | $f(x \mid \mu, \sigma = 1) = \frac{\exp(x-\mu)}{[1+\exp(x-\mu)]^2}$                            |

**Tabela 2.** Taxas de Rejeição de  $H_0$  para  $X \sim N (\mu = 0, \sigma = 1)$ 

|     | $\alpha = 5\%$ |          | $\alpha = 1 \%$ |              |
|-----|----------------|----------|-----------------|--------------|
| n   | t-Student      | Wilcoxon | t-Student       | Wilcoxon     |
| 10  | 0.0509         | 0.0500   | 0.0108          | 0.0103       |
| 20  | 0.0506         | 0.0495   | 0.0101          | $0.0094^{+}$ |
| 30  | 0.0491         | 0.0495   | 0.0097          | 0.0111       |
| 40  | 0.0499         | 0.0499   | 0.0097          | 0.0104       |
| 50  | 0.0501         | 0.0513   | 0.0098          | 0.0104       |
| 60  | 0.0505         | 0.0507   | 0.0102          | 0.0104       |
| 70  | 0.0496         | 0.0511   | 0.0101          | 0.0107       |
| 80  | 0.0493         | 0.0490   | 0.0098          | 0.0102       |
| 90  | 0.0497         | 0.0499   | 0.0100          | 0.0104       |
| 100 | 0.0494         | 0.0493   | 0.0102          | 0.0101       |

<sup>\*</sup>Significante ao nível de 5%.

**Tabela 3.** Taxas de Rejeição de  $H_0$  para  $X \sim Laplace$  ( $\mu = 0$ ,  $\sigma = 1$ )

| n   | $\alpha = 5 \%$ |          | $\alpha = 1 \%$ |              |
|-----|-----------------|----------|-----------------|--------------|
|     | t-Student       | Wilcoxon | t-Student       | Wilcoxon     |
| 10  | 0.0414+         | 0.0484   | 0.0057+         | 0.0097       |
| 20  | $0.0467^{+}$    | 0.0496   | 00072+          | 0.0094       |
| 30  | $0.0479^{+}$    | 0.0493   | $0.0084^{+}$    | $0.0120^{+}$ |
| 40  | 0.0487          | 0.0510   | $0.0085^{+}$    | 0.0102       |
| 50  | 0.0490          | 0.0506   | $0.0090^{+}$    | 0.0105       |
| 60  | $0.0479^{+}$    | 0.0502   | $0.0084^{+}$    | 0.0099       |
| 70  | 0.0488          | 0.0511   | 0.0092          | 0.0107       |
| 80  | 0.0491          | 0.0501   | 0.0094          | 0.0104       |
| 90  | 0.0492          | 0.0496   | $0.0090^{+}$    | 0.0103       |
| 100 | 0.0500          | 0.0508   | $0.0092^{+}$    | 0.0101       |

<sup>\*</sup>Significante ao nível de 5%.

**Tabela 4.** Taxas de Rejeição de  $H_0$  para  $X \sim U$  (a = -1, b = 1) ·

| n   | $\alpha = 5\%$ |          | α = 1 %      |              |
|-----|----------------|----------|--------------|--------------|
|     | t-Student      | Wilcoxon | t-Student    | Wilcoxon     |
| 10  | 0.0526+        | 0.0479+  | 0.0134+      | 0.0093       |
| 20  | $0.0527^{+}$   | 0.0495   | $0.0118^{+}$ | 0.0095       |
| 30  | 0.0513         | 0.0499   | $0.0112^{+}$ | $0.0114^{+}$ |
| 40  | 0.0507         | 0.0518   | 0.0108       | $0.0109^{+}$ |
| 50  | 0.0515         | 0.0513   | $0.0109^{+}$ | 0.0107       |
| 60  | 0.0499         | 0.0499   | 0.0100       | 0.0101       |
| 70  | 0.0497         | 0.0498   | 0.0104       | 0.0104       |
| 80  | 0.0505         | 0.0507   | 0.0108       | $0.0110^{+}$ |
| 90  | 0.0497         | 0.0497   | 0.0100       | 0.0100       |
| 100 | 0.0515         | 0.0517   | 0.0106       | 0.0107       |

<sup>\*</sup>Significante ao nível de 5%

**Tabela 5.** Taxas de rejeição de  $H_0$  para  $X \sim t_4$ 

| n   | $\alpha = 5\%$ |              | $\alpha = 1 \%$     |              |
|-----|----------------|--------------|---------------------|--------------|
|     | t-Student      | Wilcoxon     | t-Student           | Wilcoxon     |
| 10  | $0.0440^{+}$   | 0.0500       | 0.0075 <sup>+</sup> | 0.0102       |
| 20  | $0.0461^{+}$   | $0.0482^{+}$ | $0.0078^{+}$        | 0.0095       |
| 30  | $0.0456^{+}$   | 0.0486       | $0.0082^{+}$        | $0.0113^{+}$ |
| 40  | $0.0474^{+}$   | 0.0517       | $0.0081^{+}$        | 0.0108       |
| 50  | 0.0486         | 0.0513       | $0.0087^{+}$        | $0.0109^{+}$ |
| 60  | $0.0479^{+}$   | 0.0496       | $0.0085^{+}$        | $0.0109^{+}$ |
| 70  | $0.0471^{+}$   | 0.0498       | $0.0089^{+}$        | 0.0105       |
| 80  | $0.0477^{+}$   | 0.0505       | $0.0092^{+}$        | 0.0105       |
| 90  | 0.0487         | 0.0496       | $0.0086^{+}$        | 0.0097       |
| 100 | 0.0483         | 0.0509       | $0.0089^{+}$        | 0.0101       |

<sup>&</sup>lt;sup>+</sup>Significante ao nível de 5%

**Tabela 6.** Taxas de Rejeição de  $H_0$  para  $X \sim Logistica$   $(\mu = 0, \sigma = 1)$ 

|     | $\alpha = 5\%$ |          | $\alpha = 1\%$ |              |
|-----|----------------|----------|----------------|--------------|
| n   | t-Student      | Wilcoxon | t-Student      | Wilcoxon     |
| 10  | 0.0455+        | 0.0479+  | 0.0087+        | 0.0093       |
| 20  | 0.0489         | 0.0495   | $0.0095^{+}$   | 0.0095       |
| 30  | 0.0490         | 0.0499   | 0.0095         | $0.0114^{+}$ |
| 40  | 0.0496         | 0.0518   | 0.0095         | $0.0109^{+}$ |
| 50  | 0.0508         | 0.0513   | 0.0098         | 0.0107       |
| 60  | 0.0488         | 0.0499   | $0.0089^{+}$   | 0.0101       |
| 70  | 0.0496         | 0.0498   | 0.0096         | 0.0104       |
| 80  | 0.0497         | 0.0507   | 0.0100         | $0.0110^{+}$ |
| 90  | 0.0495         | 0.0497   | 0.0096         | 0.0100       |
| 100 | 0.0509         | 0.0517   | 0.0103         | 0.0107       |

<sup>+</sup>Significante ao nível de 5%.

### Poderdo teste

No cálculo do poder, para ambos os testes e para cada uma das distribuições apresentadas na Tabela 1, também foram geradas B = 100.000 amostras de tamanhos  $n = 10, 20, \dots, 90, 100$ , sob a hipótese alternativa com  $\mu = -1.0, -0.9, \dots, 0.9, 1.0$ . Em cada uma das  $T = 5 \times 10 \times 100.000$  simulações, foram calculados os *pvalores* associados a ambos os testes. A proporção de vezes em que  $\mu_0$  foi corretamente rejeitada definiu o poder dos testes. Os resultados são apresentados nas Figuras 2 a 6. As curvas internas às figuras, representadas por (-o-), mostram o poder exato para o teste *t-Student*. Para cada uma das distribuições, os níveis de significância adotados foram os próprios tamanhos dos testes apresentados nas Tabelas 2 a 6.



**Figura 1.** Tamanho dos testes; (—): Teste *t-Student*, (\*\*\*\*): Teste de *Wilcoxon*; (a): Distribuição Normal; (b): Distribuição de Laplace; (c): Distribuição Uniforme; (d): Distribuição *t-Student*; (e): Distribuição Logística.



**Figura 2.** Valores da hipótese alternativa versus o poder dos testes para a distribuição Normal; α = 0.05: (—) *t-Student*, (---) *Wilcoxon*; α = 0.01: (··) *t-Student*, (---) *Wilcoxon*.



**Figura 3.** Valores da hipótese alternativa versus o poder dos testes para a distribuição Laplace; α = 0.05: (—) *t-Student*, (---) *Wilcoxon*; α = 0.01: (··) *t-Student*, (---) *Wilcoxon*.



**Figura 4.** Valores da hipótese alternativa versus o poder dos testes para a distribuição Uniforme;  $\alpha = 0.05$ : (—) *t-Student*, (---) *Wilcoxon*;  $\alpha = 0.01$ : (··) *t-Student*, (---) *Wilcoxon*.



**Figura 5.** Valores da hipótese alternativa versus o poder dos testes para a distribuição *t-Student*; α = 0.05: (—) *t-Student*, (---) *Wilcoxon*; α = 0.01: (··) *t-Student*, (---) *Wilcoxon*.



**Figura 6.** Valores da hipótese alternativa versus o poder dos testes para a distribuição Logística;  $\alpha = 0.05$ : (—) *t-Student*, (---) *Wilcoxon*;  $\alpha = 0.01$ : (··) *t-Student*, (---) *Wilcoxon*.

#### Conclusão

A partir dos resultados apresentados nas Tabelas 2 a 6, observa-se para a distribuição Normal que os valores das taxas de erro tipo I dos testes t-Student e Wilcoxon se comportam de maneira similar e estão sempre próximos dos níveis de significância nominais, ( $\alpha = 5\%$  e  $\alpha = 1\%$ ), independente do tamanho da amostra. Para a distribuição Logística, em ambos os testes, as taxas de erro tipo I se aproximam do nível de significância à medida que o tamanho da amostra aumenta. Para  $n \le 30$ , ambos os testes são conservativos; entretanto seus comportamentos são similares para amostras geradas da distribuição Normal. O comportamento das taxas de erro tipo I do teste de Wilcoxon para a distribuição de Laplace é bem diferente do teste t-Student principalmente para  $n \le 60$  em que a hipótese de que o tamanho empírico é igual ao tamanho nominal sempre é rejeitada em nível de significância de 5% (Tabela 3). Um comportamento similar é observado quando os dados são gerados das distribuições t-Student e Uniforme.

Como observação, as taxas de erro tipo I do teste de *Wilcoxon* estão na maioria das instâncias próximas do nível de significância nominal para qualquer distribuição, independentemente do tamanho da amostra. Esse fato está relacionado com o fato de que o teste de *Wilcoxon* é baseado na suposição de simetria.

Em relação ao poder, a partir das Figuras 2 a 6, observa-se que a medida que a hipótese alternativa se

afasta de  $\mu = 0$ , e o tamanho da amostra aumenta, o poder dos testes se aproximam de 1. Ambos os testes se comportam similarmente quando a distribuição é Normal e Logística, porém, para as demais distribuições, o teste de *Wilcoxon* apresenta um poder maior do que o teste *t-Student*.

#### Referências

CASELLA, G.; BERGER, R.L. Statistical inference. The Wadsworth & Brooks/Cole Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990.

CONOVER, W.J. Practical Nonparametric Statistics. New York: John Wiley and Sons, 1971.

FERGUNSON, T.S. Mathematical statistics. New York: Academic Press, 1967.

IMAN, R.L. Use of a t-statistic as an approximation to the exact distribution of the *Wilcoxon* signed ranks test statistic. *Comunications in Statistic*, v. 3, p. 795-806, 1974.

GRAYBILL, A M. et al. *Introduction to the Theory of Statistics*. São Paulo: McGraw-Hill, 1974.

HOLLANDER, M.; WOLFE, D.A. W. Nonparametric statistical inference. New York: John Wiley & Sons, 1973.

Received on January 10, 2005. Accepted on June 15, 2005.