Pressure Controller

Mastering Embedded System Online Diploma

- www.learn-in-depth.com
- First Term (Final Project 1)
- My Profile: my progress page (learn-in-depth-store.com)

By: Eng. Abdelrahman Matarawy

Table of Contents

1.	. S	System Architecting/Design Sequence:	2
	a.	Case Study:	2
	b.	Method:	3
	c.	Requirement:	3
	d.	Space Exploration/ partitioning:	4
	e.	System Analysis:	5
	1.	. Use Case Diagram:	5
	II	I. Activity Diagram:	6
	II	II. Sequence Diagram:	7
	f.	System Design (Modules):	8
	I.	. Pressure Sensor Module:	8
	II	I. Main Algorithm:	9
	II	II. Alarm Monitor:	9
	ľ	V. Alarm Actuator: 1	0
2.	. Е	By Run This Modules on TTool :(Analysis and Timing Diagram)1	1
3.		Simulation on Proteus:1	2
	a.	Case1:1	2
	b.	Case2:	3

1. System Architecting/Design Sequence:

a. Case Study:

- **4** The client Needs:
 - A pressure controller informs the crew of a cabin with an alarm when the pressure exceeds 20 bars in the cabin.
 - The alarm duration equals 60 seconds.

b. Method:

- 1. we Use V Method which is Suitable in Our Project
- 2. Software Testing Life Cycle
 - a. It consists of a series of activities carried out by Testers methodologically to test your software product.
- 3. Though STLC uses the term "testing"

c. Requirement:

- 1. Project Title Split into 2 Cases:
 - A pressure controller informs the crew of a cabin with an alarm when the pressure exceeds 20 bars in the cabin.
 - II. The alarm duration equals 60 seconds. "Each One Split to Its Refinement"

d. Space Exploration/ partitioning:

- ♣ By Searching For optimal solution:
 - We Found That STM32F103 Perfect Choice to Work On it as:
 - Low Cost
 - Power Consume
 - Make Our Task with Good performance.
 - It Has Debug Circuit Built On it.

e. System Analysis:

- I. Use Case Diagram:
 - System boundary and main functions.
- II. Activity Diagram:
 - Relations between main functions.
- III. Sequence Diagram:
 - Communications between main system entities and actors.

I. Use Case Diagram:

- 1. We Have Pressure Sensor as Actuator.
- 2. Reading This Value.
- 3. Send The Value to Main Code
- 4. Algorithm Of Main Send to Alarm Monitor If Pressure is Higher Than 20 Bar Or not.
- 5. If pressure High, The Alarm Monitor Will Send to Alarm Actuator to Start Alarm
- 6. While Alarm Starting It Continuous For 60 Sec
- 7. Then Alarm Actuator
 Off

II. Activity Diagram:

- 1. Reading Pressure Value from Pressure Sensor
- 2. Check If Pressure Value Greater than threshold Or Not
- 3. In Case Greater than Make Action with Start Alarm
- 4. Send signal to start alarm.
- 5. Waiting For Alarm Duration
- 6. Send Signal to Stop Alarm
- 7. Return To read Value again.

III. Sequence Diagram:

- 1. Sensor Read 12 and send it to main.
- 2. Main compare with threshold
- 3. Reading again
- 4. Sensor read 22 which greater than threshold.
- 5. Main send to start alarm.
- 6. Waiting for alarm duration
- 7. Main stop alarm
- 8. Polling to sensor again

f. System Design (Modules):

I. Pressure Sensor Module:

- 1. Start with Initialized Module.
- 2. In Reading State:
 - a. First Sensor Start to Polling to Read or Detect Pressure.
 - b. Second Sensor Send This Read to Second Module to Make Calculation and Check.
- 3. Set Timer to Polling on Reading Pressure

II. Main Algorithm:

- 1. First Receive Signal and Check Value:
 - a. In Case Pressure Value Greater Than Threshold (20 Bar), Send High Pressure Detected Signal to Alarm Monitor Modules and Back to Read Value Again.
 - b. In Case Pressure Value Smaller Than Threshold (20 Bar), Just Stay Reading Value Again.

III. Alarm Monitor:

- a. After Receive Signal with High Pressure:
 - i. Send Signal to Alarm Actuator to Start Alarming.
 - ii. Waiting For Period of Time (60 sec), Then Send Stop Signal.
- b. In Case of not Receiving High Pressure:
 - i. Send Signal to Alarm Actuator to Stop Alarming.

IV. Alarm Actuator:

- a. Stay in Waiting State Until Receive Signal.
 - i. If Signal Start Alarm Make Led on for 60 sec, Then Turn it Off and Back to Receive Another Signal Again.
 - ii. If Signal Off Alarm Just Make Led Off and Back to Receive Another Signal Again.

2. By Run This Modules on TTool: (Analysis and Timing Diagram)

3. Simulation on Proteus:

a. Case1:

If the pressure Value is less than Threshold (20 bar), the Led is off.

b. Case2:

If the Pressure is bigger than 20 bar, the LED is on for 60 Second and Off Again.

