

HC89S003AF4 HC89S001AJ4

Datasheet

20/8Pin 8bit FLASH Microcontroller with ADC Peripheral function Ports total mapping

Contents

1 I	DESCRIPTION	
1.1	FEATURES	6
1.2		
1.3		
1.4		
1.5	PIN CONFIGURATION	9
1.6		
1.7	PERIPHERAL FUNCTION PORTS TOTAL MAPPING MODULE PTM	15
2 (CPU	17
2.1		
2.1		
3 N	MEMORY	19
3.1	THE PROGRAM MEMORY(FLASH)	19
3.2	Data storage (RAM)	28
3.3	SPECIAL FUNCTION REGISTERS (SFR)	29
4 1	THE SYSTEM CLOCK	33
4.1	CHARACTERISTICS OF THE SYSTEM CLOCK	33
4.2		
4.3		
4.4		
5 F	POWER MANAGEMENT	40
5.1		
5.2	IDLE MODE	40
5.3	POWER-DOWN MODE	40
5.4	POWER MANAGEMENT REGISTERS	41
6 F	RESET	42
6.1	RESET CHARACTERISTICS	42
6.2	POR (POWER-ON RESET)	42
6.3		
6.4		
6.5	EXTERNAL PORT LOW-VOLTAGE DETECTION RESET	42
6.6	SOFTWARE RESET	43
6.7		
6.8		
6.9	RESET REGISTERS	44
7 (GENERAL AND MULTIPLEXED I/O	47
7.1	GENERAL AND MULTIPLEXED I/O CHARACTERISTICS	47
7.1		

7.3	I/O FUNCTION BLOCK DIAGRAM	47						
7.4	I/O PORT REGISTERS							
7.5	PERIPHERAL FUNCTION PORTS TOTAL MAPPING CONTROL	52						
8 IN	NTERRUPT	55						
8.1	Interrupt characteristics	55						
8.2	INTERRUPT SUMMARY							
8.3	INTERRUPT VECTORS							
8.4	INTERRUPT PRIORITIES	55						
8.5	INTERRUPT HANDLING	56						
8.6	Interrupt response time	56						
8.7	External interrupt	57						
8.8	INTERRUPT REGISTERS	58						
9 TI	IMER/COUNTER	64						
9.1	TIMER/COUNTER CHARACTERISTICS	64						
9.2	TIMER/COUNTER $Tx(x=0,1)$	64						
9.3	TIMER 3	69						
9.4	Timer/Counter 4	71						
9.5	TIMER 5	75						
10 PU	ULSE WIDTH MODULATION PWM	79						
10.1	PWM CHARACTERISTICS	79						
10.2	PWM OUTPUT MODE	79						
10.3	PWM OUTPUT MODE	81						
10.4	PWM REGISTERS	84						
11 SI	INGLE 8 BIT PWM	96						
11.11	PWM CHARACTERISTICS	96						
11.2	PWM MODULE REGISTERS	96						
12 W	VATCHDOG TIMER WDT	98						
12.1	WDT CHARACTERISTICS	98						
12.2	WDT registers	98						
13 U	NIVERSAL ASYNCHRONOUS TRANSCEIVER UART	100						
13.1	UART CHARACTERISTICS	100						
13.2	Work mode	100						
13.3	BAUD RATE GENERATOR	106						
13.4	MULTIPROCESSOR COMMUNICATION	106						
13.5	Frame error detection	107						
13.6	UART1 registers	108						
13.7	UART2	111						
14 SI	ERIAL PERIPHERAL INTERFACE SPI	115						
14.1	SPI CHARACTERISTICS	115						
14.2								
14.3								

14.4	4 SPI FUNCTIONAL BLOCK DIAGRAM	116
14.:	5 SPI WORK MODE	116
14.0	6 SPI TRANSFER FORM	117
14.	7 SPI Error detection	118
14.8	8 SPI INTERRUPT	118
14.9	9 SPI CONFIGURATION TABLE	119
14.	.10 SPI registers	120
15 I	IIC BUS	122
15.	1 IIC CHARACTERISTICS	122
15.2		
15		
15.4		
15.		
15.0		
15.		
15.8		
15.9		
	ANALOG TO DIGITAL CONVERTER ADC	
16.		
16.2		
16.3	3 ADC registers	136
17 I	LOW VOLTAGE DETECTION LVD	142
17.	1 LVD CHARACTERISTICS	142
17.2		
1Q T	LCD REGISTERS	1/15
18.		
18.2		
18.3	3 LCD register	147
19 (CYCLIC REDUNDANCY CHECK CRC	148
19.	1 CRC CHARACTERISTICS	148
19.2	2 CRC registers	148
20 (CODE OPTIONS	150
	ELECTRICAL CHARACTERISTICS	
21.		
21.2		
21.3		
21.4		
21.:		
21.0		
21.	7 LVD/PLVD DETECTION VOLTAGE CHARACTERISTICS	155 155
	S HE BETT DECATE CHADACTED ISTERCY AND COMMON DATAD	

	2 1	11007500511700171				
21.9	SYSTEM POWER CONSUMPTION DURING POWER OFF	156				
21.10	21.10 Frequency - voltage characteristic curve					
21.11	FREQUENCY - TEMPERATURE CHARACTERISTIC CURVE	157				
21.12	21.12 ADC Internal parameters 2V- Temperature characteristic curve					
21.13	OTHER ELECTRICAL CHARACTERISTICS	158				
22 DE	VELOPMENT TOOLS	159				
22.1	EMULATOR CHARACTERISTICS	159				
22.2	22.2 Programmer tools					
22.3	ISP SERIAL PORT BURN					
22.4	SOFTWARE DOWNLOAD	159				
23 PA	CKAGE	160				
23.1	TSSOP20	160				
23.2	QFN20					
23.3	SOP8	162				
24 REVI	ERSION HISTORY	163				

1 Description

HC89S003A/001A is an enhanced 8 bit microcontroller with high frequency and low power consumption CMOS process. 16K bytes flash program memory, 256 bytes IRAM and 768 bytes XRAM, 18 bi-directional I/O, five 16-bit Timer/counters, 3 groups 12 bits complementary PWM with dead-time control, one 8bits PWM, 2 UART, 1 SPI, 1 IIC, 16 external interrupts, 16+2 channels 12 bits ADC, One low voltage detection module, 4 system work modes and multiple interrupt sources.

1.1 Features

- ◆ CPU
 - Enhanced 1T 8051 core
- ◆ ROM
 - 16K Bytes FLASH/128 Bytes EEPROM
 - Support IAP and ICP operation
 - Flexible code protection mode
- **♦** RAM
 - 256 bytes IRAM
 - 768 bytes XRAM
- ◆ Clock
 - Internal high precision 32MHz RC, software fine-tuning
 - Internal 44 KHz RC
 - External high frequency oscillator 4MHz-20MHz
 - External low frequency oscillator 32.768KHz
 - Multiple clock output
- **♦** RESET
 - Power on reset (POR)
 - Multistep low voltage reset (BOR)
 - 4.2/3.9/3.6/3.0/2.6/2.4/2.0/1.8V
 - Watchdog Timer reset
 - Software reset
 - Stack overflow reset
 - External pin low voltage reset
 - External pin voltage (1.2V) detection reset
- **♦ I/O**
 - 18 bi-directional IO
 - Multiple modes configurable: input, pull-up input, pull-down input, Schmitt input, analog input, strong push pull output, open drain output, open drain output with pull-up,
 - Peripheral function Ports total mapping module
 - All ports can be configured with 1/2 bias software LCD driver
- ♦ interrupt
 - 17 interrupt sources
 - 4 level interrupt priorities
 - 16 external interrupts
- **♦** Timer/Counter
 - T0/T1 compatible with standard 8051,

16-bit auto reload

- T3 can run in power-down mode
- T4 can be trigged by external signal
- T5 with capture function
- PWM
 - Up to 3 groups 12 bits complementary PWM with dead-time control
 - Configurable 6 channels independent output
 - Can used as Timer
 - Malfunction detection function
 - Edge or center alignment can be configured
 - 1 channel 8 bit PWM output

Communication interfaces

- 2 UART
- 1 SPI
- 1 IIC

◆ Analog to digital converter (ADC)

- 12 bit ADC, up to 16+2 multiple channels
- ADC reference voltage: internal VREF(1.3/2/3/4V), external VREF, and VDD
- Software trigger, external trigger, timer trigger
- **♦** Low voltage detection module
 - Comparator function
 - Multilevel voltage detection with interrupt

4.2/3.9/3.6/3.0/2.6/2.4/2.0/1.9V

- **♦** Cyclic redundancy check(CRC)
 - Power saving mode
 - IDLE mode
 - Power-down mode
- **♦** Operating conditions
 - Wide operating voltage 2.0V to 5.5V
 - Temperature range -40°C to +105°C
- **♦** Package
 - TSSOP20/QFN20
 - SOP8
- ◆ Support SWD, JTAG simulation and download

✓ Selection table

Product model	ROM Bytes	RAM Bytes	MAX Freq	I/O	ADC	Timer	PWM	INT	WDT
							12Bit*3		
HC89S003AF4P7M	16K	256+768	16MHz	18	16+2	5	groups	16	1
							8Bit*1		
							12Bit*3		
HC89S003AF4U7M	16K	256+768	16MHz	18	16+2	5	groups	16	1
							8Bit*1		
							12Bit*3		
HC89S001AJ4M7M	16K	256+768	16MHz	6	6+2	5	groups	6	1
							8Bit*1		

Product model	Voltag	TEMP	Package	Simulator	Programmer	Datasheet	DemoCode	DemoBoard
HC89S003AF4P7M	2.0~5.5V	-40∼+105°C	TSSOP20	HC-LINK	HC-PM51	√	$\sqrt{}$	\checkmark
HC89S003AF4U7M	2.0~5.5V	-40∼+105°C	QFN20	HC-LINK	HC-PM51	√	$\sqrt{}$	\checkmark
HC89S001AJ4M7M	2.0~5.5V	-40∼+105°C	SOP8	HC-LINK	HC-PM51	√	$\sqrt{}$	\checkmark

1.2 Naming rule

HC89	s	003	A	F	4	P	7	M
code	product type	product line	version	Pin number	ROM size	packaging	temperature	logo
Holychip 1T 8051	S: Standard form L: Low power consumption P: Op-amp type	0xx: Value type 1xx: Basic type 2xx: Enhanced type	Omitted: first edition A: The first upgrade B: The second upgrade	J: 8pin P: 16pin F: 20pin K: 32pin S: 44pin C: 48pin R: 64pin	3: 8KB 4: 16KB 5: 24KB 6: 32KB 7: 48KB 8: 64KB	P:TSSOP U:QFN M:SOP T:LQFP	6: -40°C to 85°C 7:-40°C to 105°C	M:Face printing

1.3 Use attentions

- 1. In order to ensure the system stability, user must connect a capacitor ($\geq 0.1 \mu F$) between VDD and GND.
- 2. You can burn HC89S003F4 files directly, but you need to upgrade the firmware version of HC-PM51 burner to the latest version.
- 3. P2.7 are reset pins by default, and the port mode is Schmidt input strip pull. You can configure this port to be a common IO pin through the configuration code option.
- 4. If FLASH IAP is required, read the Precautions in 3.1.4.1 carefully.
- 5. Do not respond to any interruption while IAP is in operation.
- 6. After ADCEN is set to 1 or conversion channel is switched, it is recommended to start ADC conversion after a delay of 20us. If the external input impedance is large, this time should be extended.
- 7. When the reference voltage of the ADC is VDD, the ADC conversion clock can be 8MHz, and only 15 ADC CLK are needed for one conversion, which can achieve the fastest ADC conversion speed.
- 8. The modes of ports P2.7, P2.5, P2.4, and P2.3 are different from those of other ports. For details, see section 7.4.6.
- 9. When UART2 uses full duplex, CPU frequency should be set to 16MHz or above, baud rate should be set to 9600 or below, and TI or RI should be cleared as soon as possible in UART2 interrupt service function, please refer to related register example.
- 10. The bonding pad in the middle of the QFN20 chip is connected to the VDD(PIN5).

1.4 System diagram

Figure 1-1 System diagram

1.5 Pin configuration

1.5.1 TSSOP20 Pin configuration

Figure 1-2 TSSOP20 pin configuration diagram

1.5.2 QFN20 Pin configuration

Figure 1-3 QFN20 pin configuration diagram (Bottom layer bonding pad is VDD)

1.5.3 SOP8 Pin configuration

Figure 1-4 SOP8 pin configuration diagram

1.6 Pin description

1.6.1 TSSOP20 Pin description

Pin	Name	Type	Introductions
	P2.0	I/O	Input/output port
1	AN8	AN	ADC8 input port
	INT8	I	External interrupt 8, input port
	P0.5	I/O	Input/output port
2	AN5	AN	ADC5 input port
	INT5	I	External interrupt 5, input port
	P0.4	I/O	Input/output port
3	AN4	AN	ADC4 input port
3	Vref	AN	ADC external reference voltage input/output port
	INT4	I	External interrupt 4, input port
	P0.3	I/O	Input/output port
4	AN3	AN	ADC3 input port
•	INT3	I	External interrupt 3, input port
	SCK	I	SWD mode clock input
	P0.2	I/O	Input/output port
5	AN2	AN	ADC2 input port
	INT2	I	External interrupt 2, input port
	FLT2	I	PWM2 fault detection of input pin
	P0.1	I/O	Input/output port
6	AN1 INT1	AN	ADC1 input port
	FLT1	I I	External interrupt 1, input port PWM1 fault detection of input pin
7	GND	<u> 1</u> Р	Power ground
/	P0.0	I/O	
	AN0	AN	Input/output port ADC0 input port
8	INTO	AIN I	External interrupt 0, input port
	FLT0	I	PWM0 fault detection of input pin
9	VDD	P	Power input
,	P1.1	I/O	Input/output port
	XOUT		External oscillator output
10	INT1_1	AN	Through the software configuration for external interrupt 1, input port
	_	I	Comparator positive end 3 input port
	CMP3+	AN	
	P1.0	I/O	Input/output port
11	XIN	AN	External oscillator input
11	INTO_1	I	Through the software configuration for external interrupt 0, input port
	CMP2+	AN	Comparator positive end 2 input port

	P2.7	I/O	Input/output port
10	AN15	AN	ADC15, input port
12	\overline{RST}	I	External reset input port
	INT15	I	External interrupt 15, input port
	P2.6	I/O	Input/output port
	AN14	AN	ADC14, input port
12	TMS	I	JTAG mode input
13	INT14	I	External interrupt 14, input port
	PLVD	AN	Port low voltage detection port
	CMP-	AN	Comparator negative input port
	P2.5	I/O	Input/output port
	AN13	AN	ADC13, input port
14	TCK	I	JTAG clock input
	INT13	I	External interrupt 13, input port
	CMP1+	AN	Comparator positive end 1 input port
	P2.4	I/O	Input/output port
15	AN12	AN	ADC12, input port
13	TDO	О	JTAG data output
	INT12	I	External interrupt 12, input port
	P2.3	I/O	Input/output port
16	AN11	AN	ADC11, input port
10	TDI	I	JTAG data input
	INT11	I	External interrupt 11, input port
	P2.2	I/O	Input/output port
17	AN10	AN	ADC10, input port
	INT10	I	External interrupt 10, input port
	P2.1	I/O	Input/output port
18	AN9	AN	ADC9, input port
10	INT9	I	External interrupt 9, input port
	SDA	I/O	SWD data input/output
	P0.6	I/O	Input/output port
19	AN6	AN	ADC6 input port
	INT6	I	External interrupt 6, input port
	P0.7	I/O	Input/output port
20	AN7	AN	ADC7 input port
	INT7	I	External interrupt 7, input port

Note: I = Input, O = Output, I/O = Input/ Output, P = Power, AN = Analog input/output.

1.6.2 QFN20 Pin description

Pin	Name	Type	Introductions
	P0.1	I/O	Input/output port
1	AN1	AN	ADC1 input port
1	INT1	I	External interrupt 1, input port
	FLT1	I	PWM1 fault detection of input pin
	P0.0	I/O	Input/output port
2	AN0	AN	ADC0 input port
2	INT0	I	External interrupt 0, input port
	FLT0	I	PWM0 fault detection of input pin
3	GND	P	Power ground
	P1.0	I/O	Input/output port
4	XIN	AN	External oscillator input
 4	INTO_0	I	Through the software configuration for external interrupt 0, input port
	CMP2+	AN	Comparator positive end 2 input port
5	VDD	P	Power input

			11C07S003A/001A
	P1.1	I/O	Input/output port
	XOUT	AN	External oscillator output
6	INT1 1	I	Through the software configuration for external interrupt 1, input port
	CMP3+	AN	Comparator positive end 3 input port
	P2.7	I/O	Input/output port
	RST	I	External reset input port
7	INT15	I	External interrupt 15, input port
	AN15	AN	ADC15, input port
	P2.6	I/O	Input/output port
			1 1 1
	TMS INT14	I I	JTAG mode input
8	PLVD	AN	External interrupt 14, input port
	AN14	AN	Port low voltage detection port
			ADC14, input port
	CMP-	AN	Comparator negative input port
	P2.5	I/O	Input/output port
0	TCK	I	JTAG clock input
9	INT13	I	External interrupt 13, input port
	AN13	AN	ADC13, input port
	CMP1+	AN	Comparator positive end 1 input port
	P2.4	I/O	Input/output port
10	TDO	O	JTAG data input
	INT12	I	External interrupt 12, input port
	AN12	AN	ADC12, input port
	P2.3	I/O	Input/output port
11	TDI	I	JTAG data input
11	INT11	I	External interrupt 11, input port
	AN11	AN	ADC11, input port
	P2.1	I/O	Input/output port
12	AN9	AN	ADC9 input port
12	INT9	I	External interrupt 9, input port
	SDA	I/O	SWD data input/output
	P2.2	I/O	Input/output port
13	AN10	AN	ADC10,input port
	INT10	I	External interrupt 10, input port
	P2.0	I/O	Input/output port
14	AN8	AN	ADC8 input port
	INT8	I	External interrupt 8, input port
	P0.7	I/O	Input/output port
15	AN7	AN	ADC7 input port
	INT7	I	External interrupt 7, input port
	P0.6	I/O	Input/output port
16	AN6	AN	ADC6 input port
	INT6	I	External interrupt 6, input port
	P0.5	I/O	Input/output port
17	AN5	AN	ADC5 input port
	INT5	I	External interrupt 5, input port
	P0.4	I/O	Input/output port
1.0	AN4	AN	ADC4 input port
18	Vref	AN	ADC external reference voltage input/output port
	INT4	I	External interrupt 4, input port
	P0.3	I/O	Input/output port
10	AN3	AN	ADC3 input port
19	INT3	I	External interrupt 3, input port
	SCK	I	SWD mode clock input
20	P0.2	I/O	Input/output port
20	AN2	AN	ADC2 input port
		•	

INT2	I	External interrupt 2, input port
FLT2	I	PWM2 fault detection of input pins

Note: The pad in the middle of QFN20 chip is connected with PIN5 (VDD).

Note: I = Input, O = Output, I/O = Input/Output, P = Power, AN = Analog input/output.

1.6.3 **SOP8 Pin description**

Pin	Name	Type	说明				
	P0.0	I/O	Input/output port				
1	AN0	AN	ADC0 input port				
1	INT0	I	External interrupt 0, input port				
	FLT0	I	PWM0 fault detection of input pins				
2	GND	P	Power ground				
	P2.1	I/O	Input/output port				
3	AN9	AN	ADC9 input port				
3	INT9	I	External interrupt 9, input port				
	SDA	I/O	SWD data input/output				
4	VDD	P	Power input				
	P0.4	I/O	Input/output port				
5	AN4	AN	ADC4 input port				
3	Vref	AN	ADC external reference voltage input/output port				
	INT4	I	External interrupt 4, input port				
	P0.3	I/O	Input/output port				
6	AN3	AN	ADC3 input port				
U	INT3	I	External interrupt 3, input port				
	SCK	I	SWD mode clock input				
	P0.2	I/O	Input/output port				
	AN2	AN	ADC2 input port				
7	INT2	I	External interrupt 2, input port				
	FLT2	I	PWM2 fault detection of input pins				
	ISP_TXD	O	ISP downloads TXD port (This port has no impact on the UART)				
	P0.1	I/O	Input/output port				
	AN1	AN	ADC1 input port				
8	INT1	I	External interrupt 1, input port				
	FLT1	I	PWM1 fault detection of input pins				
	ISP_RXD	I	ISP downloads RXD port (This port has no impact on the UART)				

Note: Solidify the chip of the original ISP program, ISP_TXD is on P0.2, ISP_RXD is on P0.1. Note: I = Input, O = Output, I/O = Input/ Output, P = Power, AN = Analog input/output.

1.7 Peripheral function Ports total mapping module PTM

HC89S003A/001A has peripheral function Ports total mapping module internal, by software user can configure most peripheral function to arbitrary port except power port (VDD, GND).

1.7.1 PTM module characteristics

- When set peripheral port as input (T0/1/3/5 external input, RXD and so on) function, system permit multi to one mapping, that is multi-input peripheral functions port are distributed the same IO, the method will optimize the user's system.
- When set peripheral port as output (T0/1/4 clock output, TXD and so on) function, if multi-output peripheral functions port are distributed the same IO, it will follow fixed priority, only one output is valid.
- Software operation, use flexible, when use design system, don't care the Pins layout of peripheral functions, it can reduce the development cost.
- When user meets layout errors of peripheral function Pins on PCB, user can re-distribute peripheral functions by PTM module, and shorten development period.
- When user changes the peripheral components during system design, only need minimum changes, it will reduce the cost of system maintenance.

1.7.2 PTM support peripheral function Ports total mapping

1.7.2 PTM support peripheral function Ports total mapping						
Peripheral	Name	Type	Instructions			
	T0	I/O	T0 external input or T0 clock scale output			
	T1	I/O	T1 external input or T1 clock scale output			
Timer	T3	Ι	T3 external input			
	T4	О	T4 ouput			
	T5	I	T5 external input			
	PWM0	О	PWM0 output port			
	PWM01	O	PWM01 output port			
	PWM1	O	PWM1 output port			
PWM	PWM11	О	PWM11 output port			
	PWM2	О	PWM2 output port			
	PWM21	O	PWM21 output port			
	PWM3	О	PWM3 output port			
CLK	CLKO	O	Clock output port			
	TXD	O	UART1 data transmission port			
UART	RXD	I/O	UART1 receive port			
UAKI	TXD2	O	UART2 data transmission port			
	RXD2	I	UART2 receive port			
	MOSI	I/O	SPI data port, master output and slave input			
SPI	MISO	I/O	SPI data port, master input and slave output			
51.1	SCK	I/O	SPI clock port			
	\overline{SS}	I	SPI chip select port			
IIC	SCL	I/O	IIC clock port			
IIC	SDA	I/O	IIC data port			

1.7.3 PTM dose not support peripheral function Ports total mapping

PTM does not support peripheral function Ports total mapping include power port(VDD, GND),PWM fault detection Pin (FLT0/1/2), ADC input, INT0-15 function port, oscillator Pin(XIN,XOUT),external reset Port(RST), LVD voltage detection port(PLVD). These ports are fixed and cannot be mapped arbitrarily.

2 CPU

2.1 CPU characteristics

HC89S003A/001A CPU is an enhanced 1T compatible with 8051 core, it run faster than traditional 8051 under the same system clock, and has better performance characteristics.

2.2 CPU registers

2.2.1 PC program counter PC

Program counter PC is independent physically, does not belong to SFR. PC word length is 16 bits, and used to control the execution sequence of instructions register. After microcontroller power on or reset, PC value is 0000H, program is executed from 0000H address, if second reset vector is enabled, then after power on or reset, microcontroller will execute program from the second reset vector address.

2.2.2 Accumulator ACC

Accumulator (ACC) as A in instruction system, and used to provide ALU operands and store the arithmetic result, it is CPU most frequent work register, most execution of the instructions via the accumulator ACC.

2.2.3 Register B

Register B is set for multiplication and division registers specifically, used to store the operands and result of the arithmetic of multiplication and division. at the time no multiplication or division, it can be used as a general purpose register.

2.2.4 Program state word register PSW

This register is used to save characteristics and the processing state of the ALU arithmetic result, and the characteristics and state as the condition of controlling program transfer, for program checking and querying, the bits are defined as follows:

_ 1001 / 1118, 0	query mg, the one are defined as follows.											
Bit	7	6	5	4	3	2	1	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R				
Reset values	0	0	0	0	0	0	0	0				
Flag	CY	AC	F0	RS[1:0]	OV	F1	P				

Bit	Flag	Introductions
7	CY	Carry/borrow flag 0: In arithmetic, no a carry or borrow 1: In arithmetic, carry or borrow has occurred
6	AC	Auxiliary carry/borrow flag 0: In arithmetic, no auxiliary carry or borrow 1: In arithmetic, auxiliary carry or borrow has occurred
5	F0	User-defined flag
4-3	RS[1:0]	register group selection flag 00:0 Group (00H ~ 07H) 01:1 Group (08H ~ 0FH) 10:2 Group (10H ~ 17H) 11:3 Group (18H ~ 1FH)
2	OV	Overflow flag 0: no overflow 1: Overflow has occurred
1	F1	User-defined flag
0	P	Parity bit 0: sum of 1 in ACC register is 0 or even 1: Sum of 1 in ACC register is odd

2.2.5 Stack pointer SP

SP is a 8 bits special register, it indicates the top of the stack in the internal RAM position. After MCU reset, SP value is 07H, the stack was actually performed from the 08H unit, considering the 08H~1FH units belong to work register 1~3 respectively, and if in the program user needs to use these areas, the SP value better should be set a large value. 51MCU stack is upward generated, such as: SP=30H,after CPU execute a instruction or response a interrupt,PC push stack, PCL protected to 31H,PCH protected to 32H, SP=32H.

2.2.6 Data pointer DPTR

Data pointer DPTR is a 16 bits special register, it is consists of two 8 registers DPH (high 8 bits) and DPL (low 8 Bits). The series MCU has two 16 bits data pointer of DPTR0 and DPTR1, they share the same address, user can set DPS (INSCON. 0) to select the data pointer.

2.2.7 Data pointer select register INSCON

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R/W	R	R	R	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	EEPROM	-		IAPS	-			DPS

Bit	Flag	Introductions
7	EEPROM	EEPROM operation area selection bit 0: EEPROM is not selected 1: Select EEPROM and set IAPS to 0
6-5	-	Reserved (read = 0b, write invalid)
4	IAPS	MOVC operation selection bit 0 : program area read/erase/write operation and set EEPROM to 0 1 : OPTION read operation
3-1	-	Keep (read = 0b, write invalid)
0	DPS	Data pointer selection bit 0: Data pointer DPTR0 1: Data pointer DPTR1

3 Memory

3.1 The program memory(FLASH)

3.1.1 Flash characteristics

- Support erase and program in all operating voltage
- In-circuit programming (ICP) support write, read, and erase operations
- > ICP mode supports 32 bits password protection
- > In-application programming (IAP) supports user-defined startup code
- > Flexible code protection mode
- > 100k erase times at least
- > 10 years data retention at least
- ➤ 16K Bytes FLASH:128 bytes for a sector, 8 sectors for a page, and 4 pages for a protection unit
- ➤ 128 Bytes EEPROM: 4 bytes for a sector

3.1.2 Flash data security

Flash operation is divided into two modes: first mode is flash read/erase/write through flash programmer, this is called in-circuit programming mode (ICP), JTAG is one of ICP; second mode is the user code run in flash code area, it can read/write/erase the other sectors of flash memory, but unable to erase the code in sector itself, which is called in-application programming mode (IAP).

3.1.2.1 ICP operation password protection

User can protect the ICP operation by setting password during PC software, password lengths are 4 bytes (32 bits), once password is set, only input the correct password, user can enter JTAG mode, otherwise any operation of flash is invalid, the password can protect the user's code availably.

3.1.2.2 ICP read/erase/write flash protection

ICP read protection unit is 4K bytes, when 4K bytes space read protection enabled, read data is all 0 by ICP read, but user can still do simulation by ICP operation.

ICP erase and write protection unit are 4K bytes too, when the corresponding 4K bytes erase and write protection enabled, ICP will not be able to erase and program 4K bytes, strong writing is disabled.

If the corresponding 4K bytes read protection is enabled, but erase and write operations are enabled, user can get read access after erase until reset or power-down.

ICP read, erase and write protections are configured by PC software, and the detail descriptions please see HC-LINK user manual.

3.1.2.3 IAP read/erase/write flash protection

IAP read flash by the instruction MOVC, IAP read protection unit is 4K bytes, if the 4K bytes space read protection is enabled, MOVC instruction in other 4K bytes space only read out data 0 from this 4K bytes, but MOVC instruction in this 4K bytes can read the data itself.

IAP erase and write flash steps are described in flash IAP operation, IAP erase and write protection unit is 4K bytes, before IAP erase and write, the corresponding sectors erase and write protection must be disabled.

If the corresponding 4K bytes read protection is enabled, but erase and write operations are enabled, user can to get read access after erase until reset or power-down.

IAP read, erase and write protections are configured by PC software, and the detail descriptions please see HC-LINK user manual.

3.1.3 EEPROM

The EEPROM of the HC89S003A/001A, independent of the 16K FLASH ROM, 128 bytes and divided into 32 sectors. The 4 bytes for a sector.

When an EEPROM is read/erase/write, set the 7th bit EEPROM of the INSCON register to 1 and the 4th bit IAPS to 0 so that the data pointer points to the EEPROM operation area.

Before writing, you must do an IAP erase, IAP erases one sector (4 bytes) at a time, and the address register for IAP erasure can be any address in the sector. IAP writes are single-byte writes, one byte at a time.

The time it takes IAP to erase a sector of EEPROM is 5ms, and the time it takes IAP to write a byte is 68µs.

3.1.4 OPTION

There is a read-only OPTION area besides 16K bytes ROM, storage data include: user setting data, user passwords, chip configurations data, the second reset vector data related. Address distribution in below table.

Address	Name	Address offset	Name	Address	Name	Address offset	Name
0x0000	SN_DATA0	0x0020	FLASH_SC0	0x0031	ERST_ENB	0x0100	CHIP_ID0
0x0001	SN_DATA1	0x0021	FLASH_SC1	0x0038	WAIT_TS	0x0101	CHIP_ID1
0x0002	SN_DATA2	0x0022	FLASH_SC2	0x0039	BORVS	0x0102	CHIP_ID2
0x0003	SN_DATA3	0x0023	FLASH_SC3	0x003B	-	0x0103	CHIP_ID3
0x0004	SN_DATA4	-	-	0x003E	RVCFG	0x0104	CHIP_ID4
0x0005	SN_DATA5	-	-	0x003F	nRVCFG	0x0105	CHIP_ID5
0x0006	SN_DATA6	-	-	-	-	0x0106	CHIP_ID6
0x0007	SN_DATA7	-	-	-	-	0x0107	CHIP_ID7
0x0008	ID_DATA0	-	-	-	-	-	-
0x0009	ID_DATA1	-	-	-	-	-	-
0x000A	ID_DATA2	-	-	-	-	-	-
0x000B	ID_DATA3	-	•	-	-	-	ı
0x000C	ID_DATA4	-	-	-	=	-	_
0x000D	ID_DATA5	-	-	-	-	-	-
0x000E	ID_DATA6	-	-	-	-	-	-
0x000F	ID_DATA7	-	-	-	-	-	-

HC89S003A/001A will be configured a 8 bytes CHIP_ID before leave the factory, the CHIP_ID is unique and not repeated, and never be eraseduser can read it by MOVC instruction in code. It can also be read by a tool.

SN_DATA and ID_DATA are user-defined data, FLASH_SC is user password, it is set by software tools, as well as setting code options, they can be erased or modified, and user can read them by MOVC instruction in code.

Note: 1. User must set register INSCON[IAPS] bit to 1 before read OPTION.

2. First character "n" is complement of the corresponding data.

```
// Read arbitrary length of data from FLASH
void Flash_ReadArr(unsigned int fui_Address,unsigned char fuc_Length,unsigned char *fucp_SaveArr)
{
    while(fuc_Length--)
        *(fucp_SaveArr++)=*((unsigned char code *)(fui_Address++));
}

// Read the value of the CHIP ID and save it to the Read CHIP ID array
unsigned char read_chip_id[8];
INSCON |= 0x10;
Flash_ReadArr(0x0100,8,read_chip_id); //CHIP_ID start address is 0x0100
INSCON &=~ 0x10;
To read SN_DATA or ID_DATA, you only need to change the read address.
```


3.1.4.1 External reset enabled (ERST_ENB)

Bit	7	6	5	4	3	2	1	0
Flag				-				ERST_ENB

Bit	Flag	Introductions					
7-1	-	Reserved bits					
0	ERST_ENB	Reset pin enable bit 0: External RST input 1: P2.7 as GPIO					

3.1.4.2 Wait time of reread OPTION after reset (WAIT_TS)

Bit	7	6	5	4	3	2	1	0
Flag	-	-	-	-	-	-	WAIT TS	

Bit	Flag	Introductions
7-2	-	Reserved bits
1-0	WAIT_TS	Wait time of reread option after reset selection bits 00: 8ms 01: 4ms 11: 16ms

3.1.4.3 BOR detection voltage selection (BORVS)

Bit	7	6	5	4	3	2	1	0
Flag	-	1	-	-	1		BORV	VS I

Bit	Flag	Introductions
7-3	1	Reserved bits
2-0	BORVS	BOR detection of voltage selection bits 000: 1.8V 001: 2.0V 010: 2.4V 011: 2.6V 100: 3.0V 101: 3.6V 110: 3.9V 111: 4.2V

3.1.4.4 Second reset vector configuration (RVCFG)

Bit	7	6	5	4	3	2	1	0
Flag	RVSEN		-			RVAD	PR[3:0]	

Bit	Flag	Introductions
		The second reset vector enable bit
7	RVSEN	0: disable the second reset vector
		1: enable the second reset vector
6-4	1	Reserved bits
		The second reset vector configuration values
		The second reset vector address = {RVADR[3:0],10'h000 }
3-0	RVADR[3:0]	Note:
3-0	KVADK[3:0]	1. When RVADR[3:0]=0, the second reset vector address coincide with
		0х0000Н.
		2. RVADR[3:0] configuration data only equal 1000, 1100, 1110, 1111 four

values, the second reset vector space only is 1K, 2K, 4K, 8K.

3.1.5 Flash IAP operation

The FLASH of HC89S003A/001A has 128 sectors. 128 Bytes constitute a sector. 8*128 Bytes = 1K Bytes constitute a page, and 1K Bytes*4 = 4KBytes constitute a block.

IAP must be erased before writing The IAP erases one sector at a time (128 bytes), and the address register can be any address in the sector. IAP writes are single-byte writes, one byte at a time.

It takes 5ms to erase a sector, and 68 μs to write a byte by IAP.

3.1.5.1 IAP operation precautions

HC89S003A/001A user program code can read, erase, write to the FLASH, as the user to update the code or storage data for use, to ensure the security of the FLASH operation, please note during use:

- 1. Before doing IAP erasing and writing in FLASH, the FREQ_CLK register in the extended SFR should be configured to indicate the current CPU clock frequency. The value of the FREQ_CLK register is equal to the CPU clock frequency value, and the minimum value is 1MHz. If the current CPU is running at 16MHz, configure register FREQ_CLK=0x10. It is recommended that the CPU clock frequency be divided into integers before IAP erase and write. When the CPU clock frequency is lower than 1MHz, IAP erase and write of FLASH cannot be implemented.
 - 2. The system will not respond to any interruption during IAP operation.
- 3. Set relevant IAP erasure protection in Option to enable the protection bit of the sector where the user program is located, which can effectively ensure that the program area will not be overwritten or erased by mistake.
- 4. Before IAP erase and write operation, it is recommended to turn off interrupt (EA=0) to ensure that it will not be affected by interruption during IAP operation. After the completion of IAP erase and write operation, the interruption will be resumed.
- 5. During IAP operation, it is inevitable that the power may fail before data is written after data erasure. Therefore, you are advised to save data in two areas. Even if data in one area is erased, data in the other area can be read normally.

3.1.5.2 IAP data register (IAP_DATA)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				IAP_DA	TA[7:0]			

Bit	Flag	Introductions
7-0	IAP DATA[7:0]	IAP data register

3.1.5.3 IAP address register IAP_ADDRL, IAP_ADDRH IAP_ADDRL

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	1	1	1	1	1	1	1	1
Flag				IAP_AD	DR[7:0]			

Bit	Flag	Introductions
7-0	IAP_ADDR[7:0]	Low 8 bits of the IAP operation address register

IAP_ADDRH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	1	1	1	1
Flag	-				IAP_AD	DR[13:8]		

Bit	Flag	Introductions
7-6	-	Reserved
5-0	IAP_ADDR[13:8]	High 6 bits of the IAP operation address register

Note: User can modify IAP address register only in unlocked status, and once operation is completed, IAP address is pointed to 0x3FFF automatically.

3.1.5.4 IAP Command register IAP_CMDH, IAP_CMDL

IAP_CMDH

Bit	7	6	5	4	3	2	1	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset values	0	0	0	0	0	0	0	0	
Flag	IAP CMDH[7:0]								

Bit	Flag	Introductions
7-0	IAP_CMDH[7:0]	Operation mode selection bit 0xF0: Unlock (22 CPU clock automatically locked, IAP_CMD[7:0] = 0x00) 0xE1: Trigger one time action 0xD2: Sector erase 0xB4: Byte program 0x87: Software reset, reset address 0000H, not reread codes options 0x78: Software reset, reset address 0000H, reread codes options Other values: lock

IAP_CMDL

Bit	7	6	5	4	3	2	1	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset values	1	1	1	1	1	1	1	1		
Flag		IAP CMDL[7:0]								

Bit	Flag	Introductions
7-0	IAP_CMDL[7:0]	IAP_CMDH[7:0] complement code Note: Write into IAP_CMDL[7:0] data must equal the complement of IAP_CMDH[7:0] data previous, otherwise operations will be locked, meanwhile operation will fail.

Examples:

```
1, Program space sector erase
```

IAP_CMDH = 0xF0; IAP_CMDL = 0x0F; IAP_ADDRL = 0x80;

IAP_ADDRH = 0x00; // Select first sector to be erased, a sector for 128 bytes

IAP CMDH = 0xD2; // Select operation mode, sector erase

IAP CMDL = 0x2D;

IAP_CMDH = 0xE1; // Trigger

IAP_CMDL = 0x1E; // After trigger IAP_ADDRL Links to 0xFF, IAP_ADDRH Links to 0x3F, meanwhile locked automatically

2, program space byte program

IAP DATA = 0x02; //Data ready to be programmed before writing data register must be unlocked

IAP_CMDH = 0xF0; IAP_CMDL = 0x0F; IAP_ADDRH = 0x00; IAP_ADDRL = 0x00;

IAP CMDH = 0xB4; // Select the mode of operation, byte program

IAP CMDL = 0x4B;

IAP CMDH = 0xE1; // Trigger

IAP_CMDL = 0x1E; // After the trigger IAP_ADDRL Links to 0xFF, IAP_ADDRH Links to 0x3F, IAP_DATA Links to 0x00, meanwhile locked automatically

Note: After unlocked, write address, select operation mode, trigger, between these three steps, any instruction cannot be inserted, and must be operated continuously.

3, Software reset (do not reread code options)


```
IAP_CMDH = 0xF0;

IAP_CMDL = 0x0F;

IAP_CMDH = 0x87;

IAP_CMDL = 0x78;

4, Software reset ( reread code options)

IAP_CMDH = 0xF0;

IAP_CMDL = 0x0F;

IAP_CMDH = 0x78;

IAP_CMDL = 0x87;
```


3.1.6 Flash ICP operation

3.1.6.1 JTAG mode

User can use HC-LINK emulator to program MCU, after MCU is already welded in the user board, if user uses power-on reset enter JTAG mode, only links 6 cables, and user must power-down the system, and power supplied by the emulator. When user does not want to power-down the system, it need 7 cables to enter the programming mode, add a reset Pin, detailed instructions of emulator, please see HC-LINK user manual.

In addition, because the programming signals are very sensitive, user needs to use 6 jumpers to separate programming Pins (VDD, TDO, TDI, TMS, TCK, RST) from the circuit, as shown in below figure.

Figure 3 - 1 HC-LINK programming hardware connection

3.1.6.2 SWD mode

User can use HC-LINK emulator to program MCU in SWD mode, after MCU is already welded in the user board, if user uses power-on reset, only links 4 cables, and user must power-down the system, and power supplied by the emulator. When user does not want to power-down the system, it need 5 cables to enter the programming mode, add a reset Pin, detailed instructions of emulator, please see HC-51LINK user manual.

In addition, because the programming signals are very sensitive, user needs to use 4 jumpers to separate programming Pins (VDD, SDA, SCK, \overline{RST}) from the circuit, as shown in below figure. In addition, if the external reset pin is used to enter, the external reset pin needs to be separated from the jumper.

Figure 3 - 2 HC-LINK programming hardware connection

When using ICP operation mode, it is recommended operation according to the following steps:

- 1, Disconnect jumpers (jumper) before start programming, , separate programming pins from the application circuit.
- 2, Connect the chip programming Pin flash program interface, then start programming.
- 3, After the program ends, disconnect flash Programming interfaces, connect jumper to application circuit.

3.1.7 Second reset vector operations

If the user has configured second reset vector enabled in the code options and the second reset vector address, then after the on-chip power-on reset, PC first point to the second vector address, and begin to implement user's startup program, if at the end of user code need place a un-reread code item of software reset program, that user program will be reset to 0x0000H, start to implement the user application program.

This feature can also be used to implement ISP functionality, where users write their own ISP bootloader, then download the ISP bootloader into FLASH starting with the second reset vector address, and enable the second reset vector operation. This allows users to update their applications through their own ISP bootstrap.

3.2 Data storage (RAM)

HC89S003A/001A provide user with a 256 bytes internal RAM and 768 bytes internal expansion RAM as data memory. Below is data memory space allocation.

Figure 3 - 3 Data memory map

Internal RAM high 128 bytes ($0x80 \sim 0xFF$) must use the register indirect addressing modes. Internal expansion RAM (XRAM) addresses range is $0x0000 \sim 0x02FF$, and access to internal extensions RAM methods same as traditional 8051 access external extensions RAM, but it does not affect I/O port. In assembly language, access internal expansion RAM through MOVX instruction, as MOVX @DPTP or MOVX @Ri.

3.3 Special function registers (SFR)

3.3.1 Special function registers list

3.3.1.1 Direct addressing, read and write SFR

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8	RSTFR	IAP_ADDRL	IAP_ADDRH	IAP_DATA	IAP_CMDL	IAP_CMDH	-	-
FO	В	PWM2EN	PWM2PL	PWM2PH	PWM2DL	PWM2DH	PWM2DTL	PWM2DTH
E8	-	PWM1EN	PWM1PL	PWM1PH	PWM1DL	PWM1DH	PWM1DTL	PWM1DTH
E0	ACC	PWM0EN	PWM0PL	PWM0PH	PWM0DL	PWM0DH	PWM0DTL	PWM0DTH
D8	-	-	PWM0C	PWM1C	PWM2C	PWM3C	PWM3P	PWM3D
D0	PSW	LCDCON	-	-	-	-	-	-
C8	-	T3CON	TL3	ТН3	T4CON	TL4	TH4	-
C0	-	T5CON	TL5	TH5	RCAP5L	RCAP5H	-	-
В8	IE1	IP2	IP3	LVDC	LVDCMP	WDTC	CRCL	CRCH
В0	-	IP4	-	-	ADCC0	ADCC1	ADCRL	ADCRH
A8	IE	IP0	IP1	SPDAT	SPCTL	SPSTAT	IICDAT	IICADR
A0	P2	•	INSCON	•	•	-	IICCON	IICSTA
98	SCON	SBUF	SADDR	SADEN		•	SCON2	-
90	P1				-	-	PINTF0	PINTF1
88	TCON	TMOD	TL0	TL1	TH0	TH1	CLKSWR	CLKCON
80	P0	SP	DPL	DPH	-	-	-	PCON

3.3.1.2 External extension XSFR

The method to access extension XSFR is the same as XRAM, use MOVX A, @DPTR and MOVX @DPTR,A to read and write.

For example: write XSFR at address 0xFE88, operation as below:

MOV A, #wdata MOV DPTR, #0xFE88 MOVX @DPTR, A

Read XSFR at address 0xFE89, operation as below:

MOV DPTR, #0xFE89 MOVX A, @DPTR

When programming in C, just #define ALLOCATE_EXTERN and #include "HC89s003af4.h" can be used to assign XSFR as if it were a direct addressing register, such as:

ADCC2 = 0x4D;

Extension XSFR (base address is 0xFE80)

	or it (base a						
Offset	XSFR	Offset	XSFR	Offset	XSFR	Offset	XSFR
address	110111	address	1401 14	address	11,511	address	120111
0x0000	TCON1	0x0010	•	0x0020	WDTCCR	0x0030	PITS0
0x0001	-	0x0011	CLKDIV	0x0021	-	0x0031	PITS1
0x0002	-	0x0012	FREQ_CLK	0x0022	CRCC	0x0032	PITS2
0x0003	-	0x0013	CLKOUT	0x0023	-	0x0033	PITS3
0x0004		0x0014	XTALCFG	0x0024	BORC	0x0034	-
0x0005	T5CON1	0x0015	SPOV_RSTEN	0x0025	BORDBC	0x0035	-
0x0006	T5CON2	0x0016	XTALCFG1	0x0026	-	0x0036	-
0x0007	-	0x0017	PORB_IAP	0x0027	LVDDBC	0x0037	-
0x0008	S2CON	0x0018	ADCWC	0x0028	-	0x0038	PINTE0
0x0009	S2CON2	0x0019	-	0x0029	-	0x0039	PINTE1
0x000A	S2BUF	0x001A	ADCC3	0x002A	RSTDBC	0x003A	-
0x000B	BRTSEL	0x001B	ADCC2	0x002B		0x003B	-
0x000C	-	0x001C	ADCDLYH	0x002C		0x003C	INT01_PINS
0x000D	-	0x001D	ADCDLYL	0x002D		0x003D	TRMEN
0x000E	-	0x001E		0x002E		0x003E	TRMV
0x000F	-	0x001F		0x002F		0x003F	

Extension XSFR (base address is 0xFFC0)

Offset	XSFR	Offset	XSFR	Offset	XSFR	Offset	XSFR
address	ASFK	address	ASFR	address	ASFK	address	ASFR
0x0000	-	0x0010	-	0x0020	-	0x0030	-
0x0001	-	0x0011	-	0x0021	-	0x0031	-
0x0002	-	0x0012	-	0x0022	-	0x0032	-
0x0003	-	0x0013	-	0x0023	-	0x0033	-
0x0004	-	0x0014	-	0x0024	-	0x0034	-
0x0005	-	0x0015	-	0x0025	-	0x0035	-
0x0006	-	0x0016	-	0x0026	-	0x0036	-
0x0007	-	0x0017	-	0x0027	-	0x0037	-
0x0008	-	0x0018	-	0x0028	-	0x0038	PWMENA
0x0009	-	0x0019	•	0x0029	-	0x0039	PWMCON0
0x000A	-	0x001A	-	0x002A	•	0x003A	-
0x000B	-	0x001B	•	0x002B	•	0x003B	-
0x000C	-	0x001C	-	0x002C	-	0x003C	-
0x000D	-	0x001D	-	0x002D	-	0x003D	-
0x000E	-	0x001E	-	0x002E	-	0x003E	-
0x000F	-	0x001F	-	0x002F	•	0x003F	-

Extension XSFR (base address is 0XFF00)

Offset	XSFR	Offset	XSFR	Offset	XSFR	Offset	XSFR
address	ASFK	address	ASFR	address	ASFK	address	ASFK
0x0000	P0M0	0x0010	P2M0	0x0020	-	0x0030	-
0x0001	P0M1	0x0011	P2M1	0x0021	-	0x0031	-
0x0002	P0M2	0x0012	P2M2	0x0022	-	0x0032	-
0x0003	P0M3	0x0013	P2M3	0x0023	-	0x0033	-
0x0004	-	0x0014	-	0x0024	-	0x0034	-
0x0005	P0LPU	0x0015	-	0x0025	-	0x0035	-
0x0006	•	0x0016	-	0x0026	•	0x0036	-
0x0007	-	0x0017	-	0x0027	-	0x0037	-
0x0008	P1M0	0x0018		0x0028	-	0x0038	-
0x0009	•	0x0019		0x0029	•	0x0039	-
0x000A	-	0x001A		0x002A	-	0x003A	-
0x000B	-	0x001B	-	0x002B	-	0x003B	-
0x000C	=	0x001C	=	0x002C	-	0x003C	-
0x000D	-	0x001D	-	0x002D	-	0x003D	-
0x000E	-	0x001E	-	0x002E	-	0x003E	-
0x000F	-	0x001F	-	0x002F	-	0x003F	-

Extension XSFR (base address is 0XFF40)

Offset address	XSFR	Offset address	XSFR	Offset address	XSFR	Offset address	XSFR
0x0000	P00DBC	0x0010	POOUT	0x0020	COMP0EN	0x0030	-
0x0001	P01DBC	0x0011	P1OUT	0x0021	COMP1EN	0x0031	-
0x0002	P02DBC	0x0012	P2OUT	0x0022	COMP2EN	0x0032	-
0x0003	-	0x0013	-	0x0023	-	0x0033	-
0x0004	-	0x0014	-	0x0024	-	0x0034	-
0x0005	-	0x0015	-	0x0025	-	0x0035	-
0x0006	-	0x0016	-	0x0026	-	0x0036	-
0x0007	-	0x0017	-	0x0027	-	0x0037	-
0x0008	-	0x0018	-	0x0028	-	0x0038	
0x0009	-	0x0019	-	0x0029	-	0x0039	-
0x000A	-	0x001A	-	0x002A	-	0x003A	-
0x000B	-	0x001B	-	0x002B	-	0x003B	-
0x000C	•	0x001C	•	0x002C	•	0x003C	-
0x000D	-	0x001D	-	0x002D	-	0x003D	-
0x000E	-	0x001E	-	0x002E	-	0x003E	-
0x000F	-	0x001F	•	0x002F		0x003F	-

Extension XSFR (base address is 0xFF80)

Offset address	XSFR	Offset address	XSFR	Offset address	XSFR	Offset address	XSFR
0x0000	T0_MAP	0x0010	PWM0_MAP	0x0020	TXD_MAP	0x0030	-
0x0001	T1_MAP	0x0011	PWM01_MAP	0x0021	RXD_MAP	0x0031	-
0x0002	-	0x0012	-	0x0022	SCL_MAP	0x0032	-
0x0003	T3_MAP	0x0013	-	0x0023	SDA_MAP	0x0033	-
0x0004	T4_MAP	0x0014	PWM1_MAP	0x0024	SS_MAP	0x0034	-
0x0005	T5_MAP	0x0015	PWM11_MAP	0x0025	SCK_MAP	0x0035	-
0x0006	-	0x0016	-	0x0026	MOSI_MAP	0x0036	-
0x0007	-	0x0017	-	0x0027	MISO_MAP	0x0037	-
0x0008		0x0018	PWM2_MAP	0x0028	TXD2_MAP	0x0038	-
0x0009		0x0019	PWM21_MAP	0x0029	RXD2_MAP	0x0039	-
0x000A		0x001A	-	0x002A	-	0x003A	-
0x000B		0x001B	-	0x002B	-	0x003B	-
0x000C	-	0x001C	PWM3_MAP	0x002C	-	0x003C	-
0x000D		0x001D	-	0x002D	-	0x003D	-
0x000E	-	0x001E	-	0x002E	-	0x003E	-
0x000F	CLKO_MAP	0x001F	-	0x002F	-	0x003F	-

4 The system clock

4.1 Characteristics of the system clock

HC89S003A/001A MCU system clock have 4 optional clock sources:

- 1.external high-frequency RC clock (4MHz~20MHz),
- 2.external low-frequency RC clock (32.768KHz),
- 3.internal high-frequency RC clock (32 MHz)
- 4.internal low frequency RC clock (44KHz).

Select the system clock (if user choose an internal high-frequency of RC, clock is divided after setting RC32M_DIV[1:0] as osc_clk, the frequency is F_{OSC} , period is T_{OSC} , mainly used for peripheral modules, osc_clk can be divided by any value between 1-255, clock divided as CPU clock, frequency is F_{CPU} , period is T_{CPU} .

After the chip is powered on and reset, the internal high frequency RC is selected as the system clock by default, and its F_{OSC} is 4MHz and F_{CPU} is 2MHz. You can configure relevant registers to change the frequency of osc_clk and cpu_clk.

CPU can run under 16MHz highest frequency, if frequency of clock selected is higher than 16MHz, the clock need to be divided to meet CPU Clock equal to or less than 16MHz .

Figure 4 - 1 System clock block diagram

4.2 Internal clock

There are two types of internal clock: RC32M (internal high frequency) and RC44K (internal low frequency). Users can choose by software.

Internal low frequency RC (RC44K) output clock marker as wdt_clk, for the watchdog timer count, and can also be used for the system clock, internal high frequency RC (RC32M) output marker as rc32m_clk, and it can be divided by 1/2/4/8.

4.3 External clock

There are two kinds of external clock: external high frequency crystal clock (4MHz~20MHz) and external low frequency crystal clock (32.768KHz). Select external oscillator marker as xtal_clk by setting XTALCFG register.

Figure 4 - 2 System clock block diagram

Usage note:

- 1,The recommended value of crystal vibration starting capacitor is 20pF, which can pass the basic crystal vibration and operation test ,but not optimal value.
- 2, The physical distance between external crystal oscillator and XIN and XOUT ports should be within 10mm.
- 3,before using external crystal oscillator, should fully understand the selected crystal oscillator related application parameters and requirements, in order to obtain the best performance.

4.4 System clock registers

4.4.1 Clock control register CLKCON

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R/W	R/W	R
Reset values	0	0	1	1	0	0	1	0
Flag	HXTALRDY	LXTALRDY	HSRCRDY	LSRCRDY	-	XTALEN	HSRCEN	-

Bit	Flag	Introductions
7	HXTALRDY	External high-frequency RC oscillator state bit 0: External high-frequency RC is not ready 1: External high-frequency RC is ready Note: The hardware automatically clear 0 or set 1
6	LXTALRDY	External low-frequency RC oscillator state bit 0: External low-frequency RC is not ready 1: External low-frequency RC is ready Note: The hardware automatically clear 0 or set 1
5	HSRCRDY	Internal high-frequency RC oscillator state bit 0: Internal high-frequency RC is not ready 1: Internal high-frequency RC is ready Note: the hardware automatically clear 0 or set 1
4	LSRCRDY	Internal low frequency RC oscillator state bit 0: Internal low frequency RC is not ready 1: Internal low frequency RC is ready Note: the bit hardware automatically clear 0 or set 1
3	-	Reserved bit
2	XTALEN	External oscillator enable bit 0: External oscillator close 1: External oscillator open Note: Shen enabled, need set the corresponding IO mode to analog channel by software.
1	HSRCEN	Internal high-frequency RC oscillator enable bit 0: Internal high-frequency RC close 1: Internal high-frequency RC open
0	-	Reserved bit

4.4.2 Select clock register CLKSWR

Bit	7	6	5	4	3	2	1	0	
R/W	R	R	R/W	R/W	R	R	R/W	R/W	
Reset values	0	1	0	1	0	0	1	1	
Flag	CLKSTA[1:0]		CLKSI	EL[1:0]	- R		RC32M	232M DIV[1:0]	

Bit	Flag	Introductions
7-6	CLKSTA[1:0]	System clock state bits 00: Current system clock is internal low-frequency RC 01: Current system clock is internal high-frequency RC 10: Current system clock is external low-frequency crystal oscillator 11: Current system clock is external high-frequency crystal oscillator Notes: system automatically switches state based on current system clock
5-4	CLKSEL[1:0]	System clock selection bit 00: Select system clock to internal low-frequency RC 01: Select system clock to internal high-frequency RC 1x: Current system clock is external crystal oscillator Note: corresponding clock source state bits must be set to 1 when select system clock, or use previous clock, after switching, the original clock does not automatically close; select the system clock marker as osc_clk, the frequency is Fosc, period is Tosc.
3-2	-	Reserved bit
1-0	RC32M_DIV[1:0]	Internal high-frequency RC scale bits 00 : rc32m_clk 01 : rc32m_clk /2 10 : rc32m_clk /4 11 : rc32m_clk /8(default)

4.4.3 Clock scale register (CLKDIV)

Bit	7	6	5	4	3	2	1	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset values	0	0	0	0	0	0	1	0	
Flag	CLKDIV[7:0]								

Bit	Flag	Introductions
7-0	CLUDIVE7.01	CPU clock division factor, default value is 2 Configuration values is 0 or 1, clock is not divided; in other condition, the configuration value is equal to the frequency factor; Note: Clock after divided is CPU clock, frequency is F _{cpu} , period is T _{cpu} .

4.4.4 Clock output register CLKOUT

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R/W	R	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-			CLKOEN	-	Cl	LKOSEL[2:0]]

Bit	Flag	Introductions
7-5	-	Reserved bit
4	CLKOEN	Clock output enable bit 0 : Disable clock output 1 : Enable clock output
3	-	Reserved bit
2-0	CLKOSEL[2:0]	output clock selection bits 000 : Select cpu_clk 001 : Select osc_clk 010 : Select wdt_clk 011 : Select xtal_clk 100 : Select rc32m_clk 101 : Select rc32m_clk/2 110 : Select rc32m_clk/4 111 : Select rc32m_clk/8

4.4.5 External oscillator configuration register XTALCFG

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	HXTAL	CNT[1:0]	LXTALC	NT[1:0]	HXTALM	ISEL[1:0]	RC_PD_EN	XTALSEL

Bit	Flag	Introductions
		External high-frequency oscillator warmup count value selection bit
		00: 2048
7-6	HXTALCNT[1:0]	01: 256
		10: 16384
		11: 65536
		External low-frequency oscillator warmup count value selection bit
		00: 16384
5-4	LXTALCNT[1:0]	01: 4096
		10: 1024
		11: 65536
		External high-frequency oscillator selection bit
		00: Select 4M/8M oscillator
3-2	HXTALMSEL[1:0]	01: Select 4M/8Moscillator strong drive mode, oscillator sartup time is
		short whenat low voltage, and power consumption is suitable.
		11: select 16M/20M oscillator

1	RC_PD_EN	Internal high-frequency RC closed when generate system BOR 0: Do not close internal high-frequency RC when system BOR generated 1: Close internal high-frequency RC when system BOR generated Note: this bit is used to BOR enabled, to reduce the system power consumption during VDD drops.
0	XTALSEL	External oscillator selection bit 0: External low frequency oscillator selection bit 32.768KHz 1: External high frequency oscillator

4.4.6 CPU clock frequency register FREQ_CLK

Before flash IAP erase and write, user need to configure extension SFR FREQ_CLK register, and indicates the current CPU frequency, FREQ_CLK configuration value is equal to CPU clock frequency, the minimum value is 1MHz, If CPU current frequency is 16MHz, user must configure the value in register FREQ_CLK=0x10.

FREQ_CLK

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	1	0
Flag				FREQ_C	CLK[7:0]			

Bit	Flag	Introductions					
7-0	FREQ_CLK[7:0]	Current CPU clock frequency register					
	_	Examples are as follows:					
		If the CPU frequency is 16MHz, the value is 0x10					
		If the CPU frequency is 8MHz, the value is 0x08					
		If the CPU frequency is 4MHz, the the value to 0x04					
		If the CPU frequency is 2MHz, the value is 0x02					
		If the CPU frequency is less than or equal to 1MHz, set this parameter to					
		0x01					

4.4.7 Internal high-frequency RC adjustment enable register TRMEN

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				-				RCTRMEN

Bit	Flag	Introductions
7-1	-	Reserved bit
0	RCTRMEN	Internal high-frequency RC adjustment enable bit 1: enable internal high-frequency RC adjustment 0: Disable internal high-frequency RC adjustment Note: After this register is enabled, the TRMV register must be configured immediately, otherwise the enabled register will be cleared after the next instruction, and the internal high frequency RC adjustment will be invalid.

4.4.8 Internal high-frequency RC adjustment configuration register TRMV

Bit	7	6	5	4	3	2	1	0	
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset values	0	X	Х	X	X	X	X	X	
Flag	-		RCTRMV						

Bit	Flag	说明
7	-	Reserved bit
6-0	RCTRMV	Internal high-frequency RC adjustment configuration value Note: 1. "x" is undefined value, and the power-on reset value of this register is the factory calibration value. 2. When configuring this register value, the internal high-frequency RC adjustment enable bit needs to be set to 1 first. 3. According to the calibration curve software, first to enable RCTRMEN, followed by the configuration of RCTRMV, after the adjustment of RCTRMEN automatically clear, to prevent repeated operation

5 Power management

5.1 Power management characteristics

- ➤ Provide idle mode (IDLE) and power-down mode (PD), as a power saving mode
- Provide a variety of ways to wake up from the IDLE/power-down mode
- Provide low frequency mode (it is clock division, described in the system clock chapter)

5.2 Idle mode

System power consumption can be reduced in idle mode, in this mode, the program terminate run, CPU clock stop, but external device clock continues to run. In idle mode, the CPU stop in determining state, and all CPU states was saved before entering idle mode, such as the PC, PSW, SFR, RAM and so on.

Set PCON register IDL bit to 1, then HC89S003A/001A enters idle mode. IDL bit set 1 is the last instruction executed before CPU enter IDLE mode.

Two ways to exit the idle mode:

- (1) All valid interrupts. When HC89S003A/001A detects a valid interrupt, CPU clock is recovered immediately, hardware clear PCON register IDL bit automatically, and then execute the interrupt service program, then jump to execute the instruction after enter idle mode instruction.
- (2) The reset signal (valid level on external reset Pin, WDT reset, BOR reset, low-voltage detection reset on external ports). After HC89S003A/001A detects a valid reset signal, IDL in PCON register is reset to 0, system program will start to run from the reset address 0000H, RAM remains unchanged, SFR value changes depend on the value of different function module.

5.3 Power-down mode

HC89S003A/001A will enter very low power consumption state in power-down mode. In power-down mode CPU and peripherals of all clock signal will stop, but if WDT and TIMER3 enabled and permits working in power down mode, then the WDT and TIMER3 module will continue to work. Before enter the power-down mode all the CPU states were saved, such as the PC, PSW, SFR, RAM and so on.

Set PCON register PD bit to 1, HC89S003A/001A will enter the power-down mode. PD set 1 is the last instruction executed by CPU before enter the power-down mode.

Note: If user set IDL and PD bits at the same time, HC89S003A/001A enter the power-down mode. After exit the power-down mode, CPU couldn't enter IDLE mode, and hardware will clear the IDL and the PD bits after exit from the power-down mode.

Multiple ways to exit the power-down mode:

- (1) Valid external interrupts, LVD interrupt, WDT interrupt and TIMER3(Count clock source select external low frequency crystal oscillator, external clock or RC44K) interrupt. Valid external interrupts and TIMER3 interrupt occur, internal high-frequency RC oscillator start up, CPU clock and the peripheral clock is immediately recovered, PCON register PD bit will be clear by hardware, and CPU running external interruption service program. After the completion of external interrupt service, and continue to run the instructions after jump to enter power-down mode.
- (2) The reset signal (valid level on external reset Pin, WDT reset, BOR reset or low voltage detection reset on external ports). Valid reset signal will reset PCON register PD bit to 0, oscillator restart, CPU clock and the peripheral clock immediately recovered, system program will start to run from the reset address 0000H, RAM remains unchanged, SFR value changes depend on the value of different function module.

5.4 Power management registers

5.4.1 Power control register PCON

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag			-		GF1	GF0	PD	IDL

Bit	Flag	Introductions
7-4	-	Reserved (read = 0b,, write invalid)
3	GF1	User normal flag 1
2	GF0	User normal flag 0
1	PD	Power-down mode control bit 0 : Normal mode 1 : Enter power-down mode (clear to 0 automatically after exit)
0	IDL	IDLE mode control bit 0: Normal mode 1: Enter idle mode (clear to 0 automatically after exit) Note: If set PD&IDL at the same time, the system will enter the power-down mode, meanwhile flag is clear after wake up.

6 Reset

6.1 Reset characteristics

- Provides multiple ways to reset
- > All reset methods are marked with specific flags

6.2 POR (Power-on reset)

During HC89S003A/001A power-on, a POR signal will be generated, this signal will reset the microcontroller, meanwhile PORF bit in RSTFR register will be set, and the user can read this flag to determine whether POR reset or not.

Note: After POR reset, RAM data is not stable, it is recommended that user need to reinitialize the RAM, other reset mode does not reset RAM.

6.3 BOR (Brown-out reset)

When VDD voltage drops below V_{BOR} , and continue time is more than T_{BOR} , the system generates undervoltage reset. when BOR reset , BORF bit in RSTFR register is set to 1, the user can read this flag to determine whether BOR reset or not.

User can select HC89S003A/001A BOR voltage detection value by code option or register. When the configuration of BOR gear is completed in the code options, user can also reconfigure BOR voltage through the configuration registers. BOR gear: 4.2V/3.9V/3.6V/3.0V/2.6V/2.4V/2.0V/1.8V.

BOR voltage detection circuit has a certain hysteresis, hysteresis voltage is about 0.1V. When VDD voltage drops to BOR voltage gear selected, BOR is valid; and VDD voltages needed to rise to BOR voltage +0.1V, BOR reset removed.

Undervoltage reset diagram shown below, T_{BOR} configuration by register used to voltage debouncing.

Figure 6 - 1 BOR schematic diagram

6.4 External reset

External \overline{RST} Pin reset is from outside to the \overline{RST} Pin applied a certain width pulse, so as to achieve the microcontroller reset, the Pin can be can be configured as I/O port when it is not used, the function need to be set in the code options.

When it as RST port, after \overline{RST} Pin need be set low level and keep the setting time at least (software configuration), microcontroller will enter the reset state, after set \overline{RST} Pin back to the high level, MCU exit reset state and the user program starts to run from 0000H. EXRSTF bit in RSTFR register is set to 1 when reset, the user can read this flag to determine whether external RST reset is generated or not.

Note:

1. P2.7 ports cannot be used as general I/O when as external reset \overline{RST} port.

6.5 External port low-voltage detection reset

When external voltage is too low, it cannot guarantee the normal system working. At this time, user can use the external port low voltage detection (PLVD) to reset the microcontroller, external port detection voltage equal 1.2V, the reset function can be disabled. When PLVD reset, PLVRSTF bit in RSTFR register is set to 1, and user can read the flag to determine whether the external ports low-voltage detection reset or not.

In addition, by setting registers user can also implement external port voltage debouncing.

6.6 Software reset

Write corresponding value into IAP_CMDH and IAP_CMDL register as flow, the system will generate software reset, SWRF bit in RSTFR register will be set to 1 after reset, and the user can read the flag to determine whether the software reset or not. Detail operations see FLASH IAP operation chapter.

It is recommended to switch system clock to internal high frequency RC before software reset. Software reset does not switch the system clock, but will reset RC32M_DIV[1:0] bits to 01B in CLKSWR register, and reset CLKDIV register to 08H.

6.7 Watchdog (WDT) reset

In order to prevent system interfered in abnormal circumstances, when MCU program is broken, and the system work in abnormal state for a long time, usually the watchdog will be used, if MCU program is not in operation as required within the stipulated time, the MCU is considered in a unexpected state, the watchdog will force MCU reset, and program will re-run from 0000H.

Note: To generate WDT reset, user must set WDTRST to 1, that is to say WDT reset function enabled, otherwise, even WDT is enabled, and it can only set the overflow flag, but not generate reset.

6.8 Stack overflow reset

When the stack overflows, the system will reset, and set SPOVF overflow flag, it must be cleared by software.

Stack overflow include instack overflow and outstack overflow, instack overflow is the current top of the stack address is 0xFF, and have instack action at this time; outstack overflow is the current top of the stack address equal to the bottom of the stack address setting by user, and have outstack action at this time.

Stack overflow reset is configured by enable registers, when it is enabled, and only stack overflow can reset the system.

6.9 Reset registers

6.9.1 Reset flag register (RSTFR)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
POR Reset	1	X	X	X	X	0	0	0
EXRST Reset	u	1	u	u	u	0	u	u
BOR Reset	u	u	1	u	u	0	u	u
WDT Reset	u	u	u	1	u	0	u	u
Soft reset	u	u	u	u	1	0	u	u
Stack overflow reset	u	u	u	u	u	0	1	u
PLVD Reset	u	u	u	u	u	0	u	1
Flag	PORF	EXRSTF	BORF	WDTRF	SWRF	-	SPOVF	PLVRSTF

Note: x is undefined value, u indicates the value is determined by the value before current reset, it is recommended to clear the registers after POR Reset.

Bit	Flag	Introductions
		Power-on reset flag
7	PORF	0 : No power-on reset
		1 : Power-on reset generated, software clear 0
		External RST reset flag
6	EXRSTF	0 :No external RST reset
		1 : External RST reset generated, software clear 0
		Under voltage reset flag
5	BORF	0 : No undervoltage reset
		1 : Undervoltage reset generated, software clear 0
		WDT Reset flag
4	WDTRF	0 : No WDT reset
		1: WDT reset generated, software clear 0
		Software Reset flag
3	SWRF	0 : No software reset
		1 : Software reset generated, software clear 0
2	-	Reserved
		Stack overflow flag
1	SPOVF	0 : No stack overflow reset
		1 : Stack overflow reset generated, software clear 0
		External port voltage detection reset flag
0	PLVRSTF	0 : External port voltage detection reset
		1 : External port voltage detection reset generated, software clear0

6.9.2 BOR voltage detection control register (BORC)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R	R	R	R/W	R/W	R/W
Reset values	1	0	0	0	0	0	0	0
Flag	BOREN	BOR_DBC_EN	BOR_PD_EN	_		BORVS[2:0])]

Bit	Flag	Introductions
_		BOR enable bit
7	BOREN	0 : Disable BOR
		1 : Enable BOR
		BOR debouncing enable bit
6	BOR_DBC_EN	0 : Disabled
		1 : Enabled
		BOR power enable bit
		0 : Disabled
5	BOR_PD_EN	1 : Enabled
		Note: After this bit is enabled, the chip enters the STOP mode when BOR is
		reset
4-3	-	Reserved (read = 0b, write invalid)
		BOR detection of voltage selection bit
		000:1.8V
		001 : 2.0V
		010 : 2.4V
2-0	BORVS[2:0]	011 : 2.6V
		100 : 3.0V
		101:3.6V
		110:3.9V
		111 : 4.2V

6.9.3 BOR voltage detection debouncing control register (BORDBC)

Bit	7	6	5	4	3	2	1	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset values	0	0	0	0	0	0	0	0			
Flag		BORDBC[7:0]									

Bit	Flag	Introductions
7-0	BORDBC[7:0]	BOR debouncing control bit Debouncing time = BORDBC[7:0] * 8T _{CPU} +2 T _{CPU} Note: need to enable BOR_DBC_EN, otherwise BOR no debouncing.

Note: In power-down mode BOR debouncing is turn off automatically, open it automatically when exit power-down mode.

6.9.4 External RST debouncing control register (RSTDBC)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	1	1	1	1	1	1	1	1
Flag				RSTDI	BC[7:0]			

Bit	Flag	Introductions
7-0	RSTDBC[7:0]	External RST debouncing control bit debouncing time = RSTDBC[7:0] * 8T _{CPU} +2 T _{CPU}

Note: System turns off the external RST debouncing functions automatically in power-down mode, opens automatically after exit the power-down mode.

6.9.5 Stack overflow reset enable registers (SPOV_RSTEN)

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				-				SPOV RSTEN

Bit	Flag	Introductions
7-1	-	Reserved (read = 0b,,write invalid)
0	SPOV_RSTEN	Stack overflow reset enable bit 0 : Disable the stack overflow reset bit 1 : Enable the stack overflow reset bit

6.9.6 PORB_IAP registers

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				-				PORB_IAP

Bit	Flag	Introductions
7-1	-	Reserved
0	PORB_IAP	PORB_IAP flag bit When this bit is 1, the voltage is higher than 1.6V, and the power-on reset is complete

7 General and multiplexed I/O

7.1 General and multiplexed I/O characteristics

- Provides 18 bi-directional I/O ports
- > Multiple modes configuration

7.2 I/O mode

All HC89S003A/001A I/O ports can be configured into one of many working types by the software, include: input, pull-up input, pull-down input, Schmitt input, analog input, strong push pull output, open drain output, open drain output with pull-up.

If P2.7 is configured as a reset pin, its port is in schmidt input pull-up state.

When HC89S003A/001A in input mode (does not include analog input), when execute any read operations, the data sources are from the Pin level. But in output mode, the read data sources distinguished by instructions, "read - modify - write" commands are used to read registers, and other commands is used to read the Pin level.

The HC89S003A/001A adds a set of read-only registers, including P0OUT, P1OUT, and P2OUT. In output mode, the values written to the port data registers can be obtained directly by reading this set of registers.

"Read - modify - write" instruction is the internal execution of the MCU, it occurs when writing IO port, when writing IO port, it first read the current state of IO back, according to the data to be written to modify the read back data, and then write IO port; The read pin is the current state of the direct read pin. If the current pin is high level, the read back is high level, and when the current pin is low, the read back is low level.

The read-modify-write command includes the following commands: INC direct, DEC direct, ANL direct, A, ANL direct, #data, ORL direct, A, ORL direct, Data, DJNZ direct, rel, MOV bit, C, CLR bit, SETB bit, CPL bit, JBC bit, rel See the instruction list in section 21

7.3 I/O function block diagram

Figure 7 - 1 I/O function block diagram

7.4 I/O port registers

7.4.1 P0 port data register P0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		P0 [7:0]						

Bit	Flag	Introductions
7-0	P0 [7:0]	P0 port data register

7.4.2 P1 port data register P1

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	-	-	-	-	-	P1 [1:0]

Bit	Flag	Introductions
1-0	P1 [1:0]	P1 port data register

7.4.3 P2 port data register P2

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
values								
Flag		P2 [7:0]						

Bit	Flag	Introductions
7-0	P2 [7:0]	P2 port data register

7.4.4 P0 port function select register P0M0,P0M1, P0M2, P0M3

P0M0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	0	0	1	1
Flag		P01N	1[3:0]		P00M[3:0]			

P0M1

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	0	0	1	1
Flag		P03N	1[3:0]		P02M[3:0]			

P0M2

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	0	0	1	1
Flag		P05N	I [3:0]			P04N	1[3:0]	

P0M3

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	0	0	1	1
Flag		P07N	[3:0]		P06M[3:0]			

Bit	Flag	Introductions
7-4 3-0	P0xM [3:0] (x = 07)	P0.x port mode configuration bit 0000: Input (no SMT) 0001: Pull-down input (no SMT) 0010: Pull-up input t (no SMT) 0010: Input (SMT) 0101: Pull-down input (SMT) 0101: Pull-down input (SMT) 0110: Pull-up input (SMT) 0111: Reserved (analog input) 1x00: Push-pull output 1x01: Open drain output with pull-up 1x11: Reserved (push-pull output) Note: x is 0 or 1

7.4.5 P1 port function select register P1M0

P1M0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	0	0	1	1
Flag		P11M[3:0]				P10N	1[3:0]	

Bit	Flag	Introductions
7-4 3-0	P1xM [3:0] (x = 01)	P1.x port mode configuration bit 0000: Input (no SMT) 0001: Pull-down input (no SMT) 0010: Pull-up input t (no SMT) 0010: Input (SMT) 0101: Pull-down input (SMT) 0101: Pull-down input (SMT) 0110: Pull-up input (SMT) 0111: Reserved (analog input) 1x00: Push-pull output 1x01: Open drain output with pull-up 1x11: Reserved (push-pull output) Note: x is 0 or 1

7.4.6 P2 port function select register P2M0, P2M1, P2M2, P2M3

P2M0

Bit	7	6	5	4	3	2	1	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset values	0	0	1	1	0	0	1	1	
Flag		P21N	1[3:0]			P20N	1[3:0]		

P2M1

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	0	0	1	1
Flag		P23N	I [3:0]		P22M[3:0]			

P2M2

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	0	0	1	1
Flag		P25N	I [3:0]			P24N	1[3:0]	

P2M3

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	1	1	0	0	1	1
Flag		P27N	1[3:0]			P26N	1[3:0]	

P2 group port P2.7, P2.5, P2.4, P2.3 support port pull-up and pull-down enable at the same time. The remained port of P2 group does not support the function described above. Detailed configuration as below:

Bit	Flag	Introductions
7-4 3-0	P2xM [3:0] (x = 0,1,2,6)	P2.x port mode configuration bit 0000: Input (no SMT) 0001: Pull-down input (no SMT) 0010: Pull-up input t (no SMT) 0011: Analog input 0100: Input (SMT) 0101: Pull-down input (SMT) 0110: Pull-up input (SMT) 0111: Reserved (analog input) 1x00: Push-pull output 1x01: Open drain output with pull-up 1x11: Reserved (push-pull output) Note: x is 0 or 1

Bit	Flag	Introductions
7-4 3-0	P2xM [3:0] (x = 3,4,5,7)	P2.x port mode configuration bit 0000, 0001, 0010: Input (no SMT) 0011: Analog input 0100: Input (SMT) 0101: Pull-down input (SMT) 0110: Pull-up input (SMT) 0111: Analog channels, pull-up and pull-down at the same time enable 1x00: Push-pull output 1101: Open drain output 1110: Open drain output with pull-up Other values: the system Reserved, forbid operation Note: x is 0 or 1

7.4.7 Port pull-up resistor selection register

POLPU

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R/W	R/W	R	R	R	R
Reset values	0	0	0	0	0	0	0	0
Flag	-	-	P02PU	J[1:0]		-	-	

Bit	Flag	Introductions			
7-6	-	Reserved bit			
5-4	P02PU[1:0]	Port pull-up resistance selection bit $00:50~\text{K}\Omega$ $01:100~\text{K}\Omega$ $10:150~\text{K}\Omega$ $11:300~\text{K}\Omega$ Note: Resistance is the reference value at VDD @5V.			
3-0	-	Reserved bit			

7.4.8 Ports debouncing control register P00DBC, P01DBC, P02DBC

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	P0xDBC	CLK[1:0]			P0xDB	CT[5:0]		

Bit	Flag	Introductions
7-6	P0xDBCLK [1:0]	Port debouncing clock select 00: F _{osc} /1 01: F _{osc} /4 10: F _{osc} /16 11: F _{osc} /64 Note: x is 0, 1 or 2.
5-0	P0xDBCT [5:0]	Port debouncing count number of clock, when configured as a 00, no debouncing. Time debouncing time is the time need to maintain for the level of its corresponding port when port input, in need of attention, assigned to the function foot of the three Pins, external interrupt input, fault detection Pin is affected by debouncing control, and P02DBC[7:0] is P0.2 debouncing control registers. Note: P0xDBCT [5:0] configuration for debouncing time is a range, scale factor * T_{osc} * P0xDBCT [5:0] - T_{osc} < debouncing time < scale factor * T_{osc} * (P0xDBCT [5:0] +1) - T_{osc} .

7.5 Peripheral function Ports total mapping control

7.5.1 Peripheral function Ports total mapping control registers

Extension SFR Address	Extension SFR	Extension SFR Address	Extension SFR	Extension SFR Address	Extension SFR	Extension SFR Address	Extension SFR
0xFF80	T0_MAP	0x0010	PWM0_MAP	0x0020	TXD_MAP	0x0030	-
0xFF81	T1_MAP	0x0011	PWM01_MAP	0x0021	RXD_MAP	0x0031	-
0xFF82	-	0x0012	-	0x0022	SCL_MAP	0x0032	-
0xFF83	T3_MAP	0x0013	-	0x0023	SDA_MAP	0x0033	-
0xFF84	T4_MAP	0x0014	PWM1_MAP	0x0024	SS_MAP	0x0034	-
0xFF85	T5_MAP	0x0015	PWM11_MAP	0x0025	SCK_MAP	0x0035	-
0xFF86	-	0x0016	-	0x0026	MOSI_MAP	0x0036	-
0xFF87	-	0x0017	-	0x0027	MISO_MAP	0x0037	-
0xFF88		0x0018	PWM2_MAP	0x0028	TXD2_MAP	0x0038	-
0xFF89		0x0019	PWM21_MAP	0x0029	RXD2_MAP	0x0039	-
0xFF8A		0x001A	-	0x002A	-	0x003A	-
0xFF8B		0x001B	-	0x002B	-	0x003B	-
0xFF8C		0x001C	PWM3_MAP	0x002C	-	0x003C	-
0xFF8D		0x001D	-	0x002D	-	0x003D	-
0xFF8E	-	0x001E	-	0x002E	-	0x003E	-
0xFF8F	CLKO_MAP	0x001F	-	0x002F	-	0x003F	-

Note: the above SFR are external extension XSFR, use MOVX to read and write.

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R/W	R/W	R	R/W	R/W	R/W
Reset values	0	0	1	1	0	1	1	1
Flag	-	-	FPORT	[1:0]	-		FPIN [2:0]	

Bit	Flag	Introductions			
7-6	1	Reserved bit			
5-4	FPORT[1:0]	Mapping port selection bit 00: P0 01: P1 10: P2 11: P3			
3	-	Reserved bit			
2-0	FPIN [2:0]	FPIN [2:0] Mapping port output pin selection bit FPIN [2:0] = $x(x = 0 7)$, the corresponding port name selected $x(x = 0 7)$ pin			

Note: As output function, many to one mapping will be prohibited by system, but as input function, system will enable many to one mapping.

Above registers reset value is 0x37, after reset All IO are GPIO, user must configure above registers before using the peripheral function Pin, otherwise the peripheral functions will not be available. For example:

UART1 TXD RXD map to P2.1 P2.2 pin, the user must do the following configuration before start to use UART1:

MOV A, #0x21 //TXD-->P2.1

MOV DPTR, #0XFFA0 MOVX @DPTR,A

MOV A, #0x22 //RXD-->P2.2

MOV DPTR, #0XFFA1 MOVX @DPTR,A

User need to map UART1 TXD RXD to P0.4 P0.5 pin in the next design, the user must do the following configuration:

MOV A, #0x04 //TXD-->P0.4

MOV DPTR, #0XFFA0 MOVX @DPTR,A

MOV A, #0x05 //RXD-->P0.5

MOV DPTR, #0XFFA1 MOVX @DPTR,A

When more than one outputs are mapped to a port, there can be only one valid output, the following is the default priorities:

Sequence of priority	Multiplexed port function
1	PWM0
2	PWM01
3	PWM1
4	PWM11
5	PWM2
6	PWM21
7	PWM3
8	CLKO
9	T0 OUT
10	T1 OUT
11	T4_OUT
12	TXD
13	RXD
14	SCK
15	MOSI
16	MISO
17	TXD2
18	SCL
19	SDA

For example: CLKO_MAP is configured to 0x01, select P0.1 as CLKO output port, T4_MAP also is configured to 0x01, as the priorities above, the hardware will configure P0.1 as CLKO output port, and T4 MAP configuration is invalid.

When all the port-mapped control registers is not equal 0x01, that is to say all function ports are not select P0.1 as the input/output port, and at this time the port output is first bit of P0 port data register.

Input can be configured as multiple functions from the entry of a PAD Pin, such as:

Configure T0_MAP to 0x23, need select P2.3 as T0 input port, T5_MAP is also configured to 0x23, and the signal into to P2.3 port is valid to T3 and T5 simultaneously..

When configure TXD and RXD to one port, and if the ports are set to output this time, TXD and RXD will connected together internally.

When as input, regardless of any functions of port, read port data register equal read the values on Pin.

8 Interrupt

8.1 Interrupt characteristics

- ➤ 17 interrupt sources
- ➤ 4 level interrupt priorities
- ➤ 16 external interrupts

8.2 Interrupt summary

interrupt sources	Vector address	Enable bit	Flag bit	Query priority	interrupt number (C Language)
INT0	0003H	EX0	INT0F	1(highest)	0
T0	000BH	ET0	TF0	2	1
INT1	0013H	EX1	INT1F	3	2
T1	001BH	ET1	TF1	4	3
UART1	0023H	ES1	TI/RI	5	4
WDT	002BH	EWDT	WDTRF	6	5
LVD	0033H	LVDIE	LVDF	7	6
UART2	003BH	ES2	TI/RI	8	7
SPI	0043H	ESPI	SPIF/MODF	9	8
Т3	004BH	ET3	TF3	10	9
T4	0053H	ET4	TF4	11	10
PWM	005BH	PWMxIE $(x = 03)$	PWMxIF $(x = 03)$	12	11
T5	0063H	ET5	TF5	13	12
ADC	006BH	EADC	ADCIF/AMWIF	14	13
INT2-INT7	0073H	EINx (x =27)	INTxF $(x = 27)$	15	14
INT8-INT15	007BH	EINx (x=815)	INTxF (x = 815)	16	15
IIC	0083H	EIIC	SI	17	16

Note: except the enable and flags bit above have been set, to respond to interrupts the interrupt switch bit EA is enabled, otherwise does not respond to any interrupt.

8.3 Interrupt vectors

When an interrupt occur, data in program counter is push to stack, the corresponding interrupt vector addresses are loaded in program counter. Entrance of the interrupt vector interrupt is described in interrupt summary chapter.

8.4 Interrupt priorities

Each interrupt source can be individually set to one of the 4 interrupt priorities, through the corresponding bit in IP0, IP1, IP2, IP3 to implementation. Interrupt priority service program description as below:

When system respond to an interrupt service program, can respond to higher-priority interrupts, but cannot respond another interrupt with same or low priority.

When system respond to the highest level interrupt service program, do not respond to any other interrupts. If different priorities interrupt sources in apply for interrupt at the same time, system will respond

to higher priority interrupt request.

If the same priority interrupt sources in apply for interrupt at the beginning of instruction cycle, the internal query priority decide the interrupt response sequence. Query priority detailed reference to interrupt summary.

interrupt priority						
Priority control (X for the						
function module)	Priority					
Px[1:0]						
00	Priority 0 (lowest)					
01	Priority 1					
10	Priority 2					
11	Priority 3 (highest)					

8.5 Interrupt handling

When an interrupt is generated and the CPU in response, the main program is interrupted, then execute the following operations:

- 1. Interrupts of the same level or higher priority are running.
- 2. The current period is not the last period of the executing instruction. In other words, any interrupt request will not be answered until the executing instruction completes.
- 3. An instruction is being executed to RETI or access the special registers IE/IE1 or IP0/IP1/IP2/IP3/IP4. In other words, an interrupt request is not answered immediately after RETI or IE/IE1 or IP0/IP1/IP2/IP3/IP4, but only after at least one other instruction is executed.

When an interrupt is responded, the value loaded into the program counter PC known as an interrupt vector, it is correspond to the starting address of the interrupt service program of the interrupt source. The entry address of the interrupt service program (interrupt vector) detail information, user can refer the interrupt summary.

Since the entry address of interrupt vector is located in the start of the program memory, so the main program first instruction is the jump instruction usually, over the interrupt vector area (LJMP MAIN).

Need to take attention, user can't use RET instead of RETI instruction, RET instruction can also control PC go back to where the original interrupt, but RET Instruction has not the function to clear interrupt priority level trigger, interrupt control system deem the interrupt is still in progress, the consequence is the same level or low-level interrupt request is not be responded.

If user executes the operation of push stack in the interrupt service program, the corresponding pop stack operation should be executed before RETI instruction, that is to say in the interrupt service program PUSH and POP Instruction must be used in pairs, otherwise the system cannot be returned correctly.

8.6 Interrupt response time

Each interrupt has a different response time, depending on the nature of the interrupt and the instructions being executed at the time of the interrupt. If an interrupt is detected, the interrupt request flag bit is set, the internal circuit holds the flag bit, and the CPU generates an interrupt during the second clock cycle. If the response is valid and conditions permit, the hardware LCALL instruction invokes the service routine requesting the interrupt when the next instruction executes, otherwise the interrupt is suspended. Three clock cycles are required to execute the LCALL command. Therefore, at least 5 clock cycles are required from the time the interrupt flag is set to the time the interrupt service routine starts executing.

When interrupt requests are blocked by any of the above three conditions, the interrupt response time increases. If interrupts of the same or higher priority are executing, the additional wait time depends on the length of the interrupt service routine being executed.

If the instructions are being executed is not in the last cycle, if is to execute commands RETI, complete RETI instructions are being executed, need four clock cycles, and for the longest time needed to complete the next instruction four clock cycles, if only one interrupt source in the system, plus LCALL call instruction 3 clock cycle, The maximum response time is 13 clock cycles.

Therefore, a simple interrupt system response time is always greater than 5 clock cycles and no more than 13 clock cycles.

8.7 External interrupt

HC89S003A/001A have 4 -external interrupt vector entrances, external interrupts $0 \sim 1$ has a separate entrance to the interrupt vector respectively, and external interrupts $2 \sim 7$ share a common interrupt vector entrance, external interrupts $8 \sim 15$ share a common interrupt vector entrance, thus the total have 16 external interrupt inputs, all interrupts can be set 4 trigger modes, namely the rising edge, falling edge, double edge and low level.

When user call the interrupt service program, external interrupt $0 \sim 15$ flags must be cleared by software. If interrupt service is completed and an external interrupt is still maintained, the next interrupt will be generated.

The function of external interrupt $0\sim2$ is on port $P0.0\sim P0.2$ respectively, when in the use of an external interrupt $0\sim2$, the user can set external interrupts $0\sim2$ to generate valid interrupt request that need the debouncing time, user can set debouncing time of $P0.0\sim P0.2$ port, detail description of ports debouncing control registers P00DBC, P01DBC, P02DBC.

8.8 Interrupt registers

8.8.1 Interrupt enable register IE,IE1

IE

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	EA	ES2	EWDT	ES1	BTV	EX1	ET0	EX0

Bit	Flag	Introductions			
7	EA	CPU total interruption enable control bit 0: Disable CPU interrupt 1: Enable CPU interrupt			
6	ES2	UART2 interrupt enable bit 0 : Disable UART2 interrupt 1 : Enable UART2 interrupt			
5	EWDT	WDT interrupt enable bit 0 : Disable WDT interrupt 1 : Enable WDT interrupt			
4	ES1	UART1 interrupt enable bit 0 : Disable UART1 interrupt 1 : Enable UART1 interrupt			
3	BTV	T1 interrupt enable bit 0 : Disable T1 interrupt 1 : Enable T1 interrupt			
2	EX1	Interrupt enable bit of external interrupt 1 0: Disable INT1 interrupt 1: Enable INT1 interrupt			
1	ET0	T0 interrupt enable bit 0 : Disable T0 interrupt 1 : Enable T0 interrupt			
0	EX0	Interrupt enable bit of external interrupt 0 0: Disable INT0 interrupt 1: Enable INT0 interrupt			

IE1

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	EX8_15	EX2_7	EADC	ET5	EIIC	ETS	ET3	ESPI

Bit	Flag	Introductions
7	EX8_15	External interrupt 8~15 interrupts enable bit 0: Disable INT8~INT15 interrupts 1: Enable INT8~INT15 interrupts
6	EX2_7	Note: INT8~INT15 share the same interrupt vector. External interrupt 2~7 interrupt enable bit 0: Disable INT2~INT7 interrupts 1: Enable INT2~INT7 interrupts Note: INT2~INT7 share the same interrupt vector.
5	EADC	ADC Conversion complete interrupt enable bit 0 : Disable ADC interrupt 1 : Enable ADC interrupt
4	ET5	T5 interrupt enable bit 0 : Disable T5 interrupt 1 : Enable T5 interrupt
3	EIIC	IIC interrupt enable bit 0 : Disable IIC interrupt 1 : Enable IIC interrupt
2	ETS	T4 interrupt enable bit 0 : Disable T4 interrupt 1 : Enable T4 interrupt
1	ET3	T3 interrupt enable bit 0: Disable T3 interrupt 1: Enable T3 interrupt
0	ESPI	SPI interrupt enable bit 0 : Disable SPI interrupt 1 : Enable SPI interrupt

8.8.2 Interrupt priority selection register IP0,IP1, IP2,IP3,IP4

IP0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PT1	[1:0]	PX 1	[1:0]	PT0	[1:0]	PX0	[1:0]

Bit	Flag	Introductions
7-6	PT1 [1:0]	T1 interrupt priority control bits
5-4	PX 1[1:0]	INT1 interrupt priority control bits
3-2	PT0 [1:0]	T0 interrupt priority control bits
1-0	PX0 [1:0]	INT0 interrupt priority control bits

TD 1

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PS2	[1:0]	PLVD	[1:0]	PWD	Γ[1:0]	PS1	[1:0]

Bit	Flag	Introductions
7-6	PS2 [1:0]	UART2 interrupt priority control bits
5-4	PLVD [1:0]	LVD interrupt priority control bits
3-2	PWDT [1:0]	WDT interrupt priority control bits
1-0	PS1 [1:0]	UART1 interrupt priority control bits

IP2

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PPWN	И [1:0]	PT4	[1:0]	PT3	[1:0]	PSPI	[1:0]

Bit	Flag	Introductions
7-6	PPWM [1:0]	PWM interrupt priority control bits
5-4	PT4 [1:0]	T4 interrupt priority control bits
3-2	PT3 [1:0]	T3 interrupt priority control bits
1-0	PSPI [1:0]	SPI interrupt priority control bits

IP3

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PX8_1	5 [1:0]	PX2_	7 [1:0]	PADO	C [1:0]	PT5	[1:0]

Bit	Flag	Introductions
7-6	PX8 15 [1:0]	INT8 15 interrupt priority control bits
5-4	PX2_7 [1:0]	INT2_7 interrupt priority control bits
3-2	PADC [1:0]	ADC interrupt priority control bits
1-0	PT5 [1:0]	T5 interrupt priority control bits

IP4

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag							PIIC	[1:0]

Ī	Bit	Flag	Introductions
	7-2	-	Reserved bit
	1-0	PIIC [1:0]	IIC interrupt priority control bits

	interrupt priority						
Priority control (x for the function module) Px[1:0]	Priority						
00	Priority 0 (lowest)						
01	Priority 1						
10	Priority 2						
11	Priority 3 (highest)						

8.8.3 External interrupt level selection registers PITSx (x=0~3)

PITS0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	IT3[[1:0]	IT2[[1:0]	IT1[[1:0]	IT0[[1:0]

PITS1

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	IT7[[1:0]	IT6[[1:0]	IT5	[1:0]	IT4[[1:0]

PITS2

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	IT11	[1:0]	IT10	[1:0]	IT9[[1:0]	IT8[[1:0]

PITS3

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	IT15	[1:0]	IT14	[1:0]	IT13	[1:0]	IT12	[1:0]

Bit	Flag	Introductions
7-6 5-4 3-2 1-0	ITx[1:0] $(x = 0 15)$	External interrupt trigger edge selection bits 00 : Low level interrupts or falling edge interrupts 01 : Falling edge interrupts 10 : Rising edge interrupts 11 : Double edge interrupts

8.8.4 External interrupt 2-15 enable control register PINTE0, PINTE1

PINTE0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Reset values	0	0	0	0	0	0	0	0
Flag	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2		-

Bit	Flag	Introductions
7-2	EINTx (x =27)	External interrupt control bits (INT2~INT7) 0: Disable the port interrupts 1: Enable the port interrupts Note: As long as the corresponding EINTx (x =27) bits are enabled, the corresponding interrupt flags can be set to 1, otherwise, corresponding flags will not be set to 1.
1-0	-	Reserved (read is 0, write invalid)

PINTE1

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	EINT15	EINT14	EINT13	EINT12	EINT11	EINT10	EINT9	EINT8

Bit	Flag	Introductions
7-0	EINTx (x =815)	External interrupt control bits (INT8~INT15) 0: Disable the port interrupts 1: Enable the port interrupts Note: 1. As long as the corresponding EINTx (x =815) bits are enabled, the corresponding interrupt flags can be set to 1, otherwise, corresponding flags will not be set to 1.

8.8.5 External interrupt flag register PINTF0, PINTF1

PINTF0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	INT7F	INT6F	INT5F	INT4F	INT3F	INT2F	INT1F	INT0F

Bit	Flag	Introductions
7-2	INTxF (x =27)	INT2-INT7 interrupt request flags 0: Software clear 0 1: When external interrupts occur, hardware set 1
1-0	INTxF (x = 0,1)	INT0 and INT1 interrupt request flags 0: When interrupt responded, hardware clear 0 automatically or software clear 0 1: When external interrupts occur, hardware set 1

PINTF1

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	INT15F	INT14F	INT13F	INT12F	INT11F	INT10F	INT9F	INT8F

Bit	Flag	Introductions
7-0	INTxF (x =815)	INT8-INT15 interrupt request flag bits 0: Software clear 0 1: When external interrupts occur, hardware set 1

8.8.6 External interrupt 01 Pin selection register INT01_PINS

INT01_PINS

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag			-				INT1_PINS	INTO_PINS

Bit	Flag	Introductions				
7-2	-	Reserved				
1	INT1_PINS	INT1 Pin selection bit 0: P0.1 1: P1.1				
0	INTO_PINS	INTO Pin selection bit 0 : P0.0 1 : P1.0				

9 Timer/Counter

9.1 Timer/Counter characteristics

- ➤ Timer/Counter T0&T1 is not fully compatible with standard 8051, the difference mainly of function definition in the mode0.
- > Timer/Counter T0&T1 support 16 bit automatic reload

9.2 Timer/Counter Tx(x = 0,1)

9.2.1 Timer/Counter Tx(x = 0,1) work mode

Two data of each Timer register (THx & TLx (x = 0, 1)) can be used as a 16 bit register to access, they are controlled by the register TCON TMOD. IE registers ET0 ET1 bits will enable Timer0 and Timer1 interrupt (See interrupt section chapter).

Select the Counter/Timer operation mode by selecting Mx[1:0] bit in counter/Timer mode register (TMOD).

Mx[1:0]	mode	Description
00	mode 0	16bit auto reload Timer/Counter
01	mode1	16 -bit Timer/Counter
10	mode2	8 Automatically reload Timer/Counter
11	mode 3	T0 divided into two (TL0/TH0) independent 8 -bit Timer/Counter (T1 no the mode)

9.2.1.1 Mode0: 16 bit auto reload Timer/Counter

Figure 9 - 1 Timer0 mode0 function block diagram

Mode0 is not compatible with the standard 8051, it is a 16 bit automatically reload Timer/Counter, when THx & TLx(x = 0, 1) was written, it is used as a Timer reload register, when be read, it is used as count register. When TRx (x = 0, 1) value is 0, write THx & TLx (x = 0, 1) two registers sequentially, the write value is written into the reloaded register and count register at the same time, when TRx (x = 0, 1) is set to 1, the count register value increments the count from the written data, after count to 0xFFFF, count counter will overflow after an additional clock, TFx (x = 0, 1) is set to 1, while 16 Data of reloaded registers is automatically reloaded into the counter register, counter starts to increment the count from the reload value.

When TRx(x = 0,1) is 1, THx & TLx(x = 0,1) write operations will not affect the value of the counter, can only change the value for reload registers, this changed value is reloaded into the count register after the next overflow. Only when TRx(x = 0, 1) is 0, write operation of THx & TLx(x = 0, 1) will also change the count register and reload register value at the same time.

Because of the TLx (x = 0,1) THx (x = 0,1) write operation require 2 instructions to complete, in order to ensure the accurate count, THx(x = 0,1) TLx(x = 0,1) register write operation with the TLx(x = 0,1) register write operations as a baseline. When user write reloaded registers, write THx (x = 0,1) register does not valid immediately, but store in a buffer register temporarily, only the TLx (x = 0,1) register write operations will enable THx(x = 0,1) and TLx(x = 0,1) registers at the same time.

Therefore, THx (x = 0, 1) TLx (x = 0, 1) read and write operations flow the following sequence:

Write: high bit first then low Read: high bit first then low

User need to take attention is during a write operation, when TRx(x=0,1) is 0, start with high bit then low, reload data will directly reloaded to the counter register, when TRx(x=0,1) is 1, start with high bit then low, reload data only will be reloaded to the count register in the next overflow . If user write low bit then high, high data is invalid (invalid: indicates that the data cannot be updated when an reload occur), until the next write operation to the low data, previously written high data to be valid (valid indicates reload data can be updated when an reload occur). If only write low bit, low data will also be available, for example, when T0 is executed as the following operation:

```
(1) TH0 = 0x05;

(2) TL0 = 0x08; // In case of reload, reload to the counter data is 0x0508

(3) TH0 = 0x06; // In case of reload, reload to the counter data is still 0x0508

(4) TL0 = 0x08; // In case of reload, reload to the counter data is 0x0608

(5) TL0 = 0x09; // In case of reload, reload to the counter data is 0x0609
```

Apparently as long as modifying data reload, low bit has to be written once again, it is recommended they are modified at the same time every time.

Note: model, 2, 3 no this requirement.

9.2.1.2 Mode1: 16 bit Timer/Counter

Figure 9 - 2 Timer0 mode1 function block diagram

In mode1, the Timer Tx (x = 0, 1) is 16 -bit counter/Timer. THx(x = 0, 1) register store high 8 bits data of 16 -bit counter/Timer, TLx (X = 0, 1) store low 8 bits. When 16 -bit Timer register increments to overflow, the system set Timer overflow flag TFx(x = 0, 1). If Timer x interrupt is enabled, it will generate an interrupt.

 $C/\overline{T}x$ (x = 0,1) bit select Counter/Timer function, if $C/\overline{T}x$ (X = 0, 1) = 1,that will work in the external counter mode, when an external count clock falling edge occur, the Timer Tx data register will increment 1. If $c/\overline{T}x$ (x = 0, 1) = 0, select the system clock as the clock source of Timer Tx (x = 0, 1).

When GATEx (x = 0, 1) = 0, TRx set 1, open the Timer.

When GATEx (x = 0, 1) = 1, only when the external input signal INTx (x = 0, 1) is high level, TRx (x = 0, 1) will be set to 1, the Timer Tx will count, which can be measured positive pulse width of INTx (x = 0, 1). TRx(x = 0, 1) bit set 1 does not forcibly reset Timer, this means if TRx is set to 1, the Timer registers start to count from the value of TRx(x = 0, 1) is cleared to 0 last time. So before enable Timer, user should set the initial value of Timer registers.

9.2.1.3 Mode2: 8 bit auto reload Timer/Counter

Figure 9 - 3 Timer0 mode2 Function block diagram

In mode2, the Timer Tx(x=0,1) is 8 bit auto reload counter/Timer. TLx (x=0,1) store the count value, THx (x=0,1) store the reload value. When TLx (x=0,1) counter increments to 0x00, Timer overflow flag TFx (x=0,1) is set, value in register THx (x=0,1) is reloaded into register TLx (x=0,1). If the Timer interrupt enabled, when TFx (x=0,1) bits are set to 1, an interrupt will generated, but the reload value in THx (x=0,1) do not change. Before enable Timer start counting, TLx (x=0,1) must be initialized to the value that user want.

In addition to auto reload function, in mode2, enable and configure to the counter/Timer mode0 is consistent with mode1. Configure TxX12 (x = 0, 1) bits in register TCON2 to select system clock or 1/12 system clock as clock source of Timer Tx (x = 0, 1).

When used as a Timer application, configure TxOUT[1:0](x = 0,1) bits in register $TCON1 \ Tx(x = 0,1)$ to enable Timer Tx(x = 0,1) overflow, Pin of Timer Tx(x = 0,1) flip automatically.

9.2.1.4 Mode3: Two 8 bit Timer/Counter (T1 no this mode)

Figure 9 - 4 Timer0 mode 3 function block diagram

In mode3 the Timer T0 as two independent 8 -bit counter/Timers, it is controlled by TL0 TH0 respectively. TL0 using Timer0 control (in TCON) and state (in TMOD) bits TR0, $C/\overline{T}0$, GATE0 and TF0. TL0 can use system clock or external input signals as clock source.

TH0 can only be used as a Timer function, clock source is from the system clock. TH0 is controlled enable by Timer T1 control bit TR1, Timer T1 overflow flag TF1 is set to 1 when overflow, and control Timer T1 interrupt.

When Timer0 work in mode3, Timer1 can work in mode 0/1/2, but can't set TF1 and generate interrupt.

It can be used to generate the baud rate of serial port. TH1 and TL1 can only be used as a Timer, clock source from the system clock, and GATE1 bit is invalid. The pull-up resistance on T1 input pin is invalid. Timer1 is controlled enable or not by mode, because TR1 is occupied by Timer0. Timer1 is enabled in mode0/1/2, and is closed in mode3.

Configure TxX12(x = 0, 1) bits in register TCON1 to select the system clock or 1/12 of system clock as clock source of Timer Tx(x = 0, 1).

9.2.2 Timer/Counter Tx(x = 0,1) registers

9.2.2.1 Timer Tx(x = 0,1) control register TCON, TCON1

TCON

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R	R	R	R
Reset values	0	0	0	0	0	0	0	0
Flag	TF1	TR1	TF0	TR0			-	

Bit	Flag	Introductions
7, 5	TFx (x = 0,1)	Tx(x = 0,1) overflow flag 0: Hardware clear 0 automatically when interrupt response, or software clear 0 1: Hardware set 1 when Counter overflow
6, 4	$TRx \\ (x = 0,1)$	Tx(x = 0,1) operation control bit 0 : Stop Tx 1 : Start Tx
3-0	-	Reserved bit

TCON1

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R/W	R/W	R	R	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		_	T10UT	T1X12		_	T0OUT	T0X12

Bit	Flag	Introductions
7, 6, 3, 2	-	Reserved (read = 0b,, write invalid)
5, 1	$ \begin{array}{c} \text{TxOUT} \\ (x = 0, 1) \end{array} $	Tx(x = 0,1) comparison output enable bits 0: Disable Timer Tx comparison output function 1: Enable Timer Tx comparison output function
4, 0	TxX12 $(x = 0,1)$	$Tx(x = 0,1)$ Timer system clock scale frequency selection bits $0: Tx$ Timer clock $F_{osc}/12$ $1: Tx$ Timer clock F_{osc}

9.2.2.2 Timer Tx(x = 0, 1) mode register TMOD

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	GATE1	C/T1	M1[1:0]	GATE0	C/T0	M0[1:0]

Bit	Flag	Introductions
7, 3	GATEx (x = 0,1)	Tx(x = 0,1) gate control bit 0: Just need a software set TRx can start the Tx 1: Only set TRx 1 when the INTx port is high level, Tx can work

6, 2	$C/\overline{T}x$ $(x = 0,1)$	Tx(x = 0,1) Timer/Count function selection bits 0: Tx for internal Timer 1: Tx for external count
5-4 1-0	Mx[1:0] (x = 0,1)	Tx(x = 0,1) mode selection bits 00: mode 0, 16-bit reload Timer/Counter 01: mode 1, 16-bit Timer/Counter 10: mode 2, 8 auto reload initial value Timer/Counter 11: mode 3, T0 divided into two (TL0/TH0) independent 8-bit Timer/Counter; T1 stop count Note: T1 occupied the bits TR1/TF1 of T1 and interrupt source of in mode 3, because TR1 is occupied by T1, and needs to close T1 at this time, and user can set T1 to mode3.

9.2.2.3 Timer Tx(x=0,1) Data register TLx (x=0,1), THx (x=0,1) TLx (x=0,1)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		TLx[7:0] (x = 0,1)						

	Bit	Flag	Introductions
,	7-0	TLx[7:0] $(x = 0,1)$	Tx(x = 0,1) low bytes of data register

THx (x = 0,1)

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		THx[7:0] (x = 0,1)						

Bit	Flag	Introductions
7-0	THx[7:0] (x = 0,1)	Tx(x = 0,1) high bytes of data register

9.3 Timer 3

Timer 3 is 16bit auto reload Timer, using two data register TH3 TL3 to access, and controlled by T3CON register. Set bit ET3 to 1 in IE1 registers enables Timer 3 interrupt (see interrupt chapter).

Timer 3 only has one mode: 16bit auto reload counter/Timer, user can set the prescaler ratio, and work in power-down mode.

Timer 3 has a 16-bit counter/Timer register (TH3, TL3). When TH3 and TL3 are written, is used a reload Timer register; when are read, is used as a counter register. TR3 set 1 then Timer 3 start to increment count, from 0xFFFF to 0x0000 an overflow occurred, overflow will set the TF3 bit, and 16-bit data in reload register is reloaded to count register at the same time.

When TR3 value is 1, write operation of TH3/TL3 will not affect the value of counter, and only change the reloaded register value, the changed value will be reloaded into count register at next overflow time. Only when TR3 is 0, write operation of TH3/TL3 will change the value of count and reload register synchronously.

Read or write operation of TH3 TL3 follow the following order: high bit first then low.

If T3CLKS[1:0] value is 00, the Timer 3 cannot work in power-down mode. If T3CLKS[1:0] value is 01,T3 port input an external clock, Timer 3 can work in normal mode or power-down mode. When T3CLKS[1:0] is 10 or 11, that is, timer 3's counting clock source is 32.768KHz low-frequency crystal oscillator or RC44K, timer 3 can also work in normal mode or power off mode. T3PD_EN should be set to 1 when timer 3 is required to work in power-down mode.

When T3PD_EN is 1 and T3CLKS[1:0] is 10, the low-frequency crystal oscillator does not turn off in power-off mode, so timer 3 can continue to work in power-off mode. When timing overflow occurs, the chip is awakened from power down mode and, if interruption is allowed, the awakened chip is interrupted into timer 3.

Note: When reading TH3 TL3, make sure TR3 = 0. (When TR3=1, because T3 is counting, read out TH3 and TL3 value is inaccurate).

Figure 9 - 5 Timer3 function block diagram

Timer/Counter T3 registers 9.3.1

9.3.1.1 Timer T3 control register T3CON T3CON

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	TF3	T3PD_EN	T3P	S[1:0]	-	TR3	T3CLK	S [1:0]

Bit	Flag	Introductions			
7	TF3	Timer 3 overflow flag 0: Without overflow (hardware clear 0),software can also clear 0 1: Overflow (hardware set 1)			
6	T3PD_EN	Timer 3 Operation control bit in power-down mode 0: Disable Timer power-down mode 3 1: Enable Timer power-down mode 3, at this time T3CLKS [1:0] is 01			
5-4	T3PS[1:0]	Timer 3 prescaler ratio selection bit 00: 1/1 01: 1/8 10: 1/64 11: 1/256			
3	-	Reserved bit			
2	TR3	Timer 3 control enable bit 0: Disable Timer 3 1: Enable Timer 3			
1-0	T3CLKS [1:0]	Timer 3 count clock source selection bits 00: The system clock F _{osc} 01: T3 input an external clock			

9.3.1.2 Timer T3 Data register TL3, TH3 TL3

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	TL3							

Bit	Flag	Introductions
7-0	TL3	T3 low bytes of data registers

TH3

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	TH3							

Bit	Flag	Introductions
7-0	TH3	T3 high bytes of data register

9.4 Timer/Counter 4

Timer 4 is 16 bit auto reload Timer. Two data registers TH4 and TL4 as a 16 -bit register to access, is controlled by T4CON register. Set IE1 register ET4 bit to 1 enables Timer 4 interrupt (see interrupt chapter).

When TH4 and TL4 are written, it is used as reload Timer register, when read, is used as count register. TR4 set 1 then Timer 4 start to increment count, from 0xFFFF to 0x0000 an overflow occurred, overflow will set the TF4 bit, and 16 –bit data in reload register is reloaded to count register at the same time.

TH4 TL4 Read or write operation follow the following order: high first then low.

9.4.1 Timer/Counter T4 work mode

Timer 4 there are three kinds of work mode: 16-bit auto reload Timer, serial port baud rate generator, and T4 edge trigger 16-bit auto reload Timer. The modes selection by T4CON register T4M[1:0] setting.

9.4.1.1 Mode0: 16 bit auto reload Timer/Counter

Timer 4 is 16 bit auto reload Timer. TH4 register store 16 -bit Timer high 8 bits, TL4 store low 8 bits. When TR4 = 0, write TH4 and TL4 two registers sequentially, write the value is written into reload and count registers. TR4 set 1, the count register value increments the count from the written data, after count to 0xFFFF, count counter will overflow after an additional clock, TF4 is set to 1, the same time 16 bits data of reloaded register is reloaded into count register automatically, counter starts to increment the count from the reload value. The interrupt will be generated If Timer 4 interrupt enabled.

When TR4 value is 1, write operation of TH4/TL4 will not affect the value of counter, and only change the reloaded register value, the changed value will be reloaded into count register at next overflow time. Only when TR4 is 0, write operation of TH4/TL4 will change the value of count and reload register synchronously.

T4CON.0 register T4CLKS bit select clock source. When T4CLKS = 1, Timer 4 clock source is external clock, after prescaler, counter data register increment. When T4CLKS = 0, clock source of Timer 4 is the system clock.

In comparison mode, T4 port is need be set output by software. Timer 4 counts to 0xFFFF from the default value in TH4 and TL4, when counter overflows, T4 port output level flips, and Timer 4 interrupt flag is set to 1. In comparison mode, Timer 4 has to work in Timer mode (T4CLKS = 0).

Figure 9 - 6 TIMER4 0 functional block diagram

9.4.1.2 Mode1: UART1 baud rate generator

By setting the T4CON register T4M[1:0] = 01 to select the Timer 4 as the baud rate generator. The mode is similar to auto reload mode. Overflow of Timer 4 will cause the 16-bit value in software Timer 4 reloads register load to Timer 4 counter, and generate overflow interrupt at the same time. If user does not want to generate interrupt, he can close ET4. UART1 baud rate in mode1 and 3 is calculated by the following formula:

BaudRate = $\frac{1}{16} \times \frac{f_{T4}/PRESCALER}{65536-[TH4.TL4]}$, use Timer 4 as the baud rate generator.

In the formula, f_{T4} is Timer 4 Count selected clock source, PRESCALER Timer 4 prescaler ratio, TH4 and TL4 are Timer 4 data register.

When TC4=1, user can set the baud rate output from T4, frequency of the output waveform is 1/2 of baud rate, at this time Timer 4 must work in Timer mode(T4CLKS = 0).

9.4.1.3 Mode2/3: with edge-trigger 16 bit auto reload Timer

Timer 4 in mode 2/3 are 16 bit auto reload Timer. T4CLKS bit in T4CON. 0 registers keep 0 always, user can only select the system clock as clock source of Timer 4, and the other settings are same as mode 0.

In mode2, when TR4 is set to 1, Timer 4 wait for the trigger signal on T4 port (control rising/falling edge by T4M[1:0]), a valid trigger signal starts Timer 4. When the Timer 4 overflows from 0xFFFF to 0x0000, TF4 (T4CON.7) will be set, If Timer 4 interrupt enabled, Timer 4 interrupt will be generated. With overflow, 16 bits data in Timer reload register is reloaded into the count registers TH4 and TL4, Timer 4 maintains the state and wait for the next trigger.

If TC4=0, when Timer 4 is counting, a trigger signal will not stop counter for counting, the counter will reload after overflow and maintain the state, and waiting for the next valid trigger signal;

If TC4=1, when Timer 4 is counting, a trigger signal will cause 16 bits data in reload register is reloaded into the count registers TH4 and TL4, and begin to count, but it will not generate an interrupt, interrupt occur only after the counter overflow.

TR4 set 1 don't clear Timer 4 counter, before enable the Timer, user write an initial value expected to reload register.

Figure 9 - 7 Timer4 mode2/3 functional block diagram

Note:

(1) When the Timer 4 working as a Timer (TR4 = 1) in baud rate generator mode, TH4 or TL4 cannot be read or written. Because the Timer increment all the time, read or write the results are not accurate. So before access TH4/TL4, Timer 4 must be closed (TR4 = 0).

(2) When the Timer 4 used as counter, input signal frequency of T4 pin must less than half of system clock.

9.4.2 Timer/Counter T4 registers

9.4.2.1 Timer T4 control register T4CON

T4CON

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	TF4	TC4	T4PS	[1:0]	T4M	[1:0]	TR4	T4CLKS

Bit	Flag	Introductions
7	TF4	Timer 4 overflow flag 0: No overflow (hardware clear 0), software can also clear 0 1: Overflow (hardware set 1)
6	TC4	Compare function enable bit When T4M[1:0] = 00 or 01 0: Disable Timer 4 Compare function 1: Enable Timer 4 Compare function When T4M[1:0] = 10 or 11 0: Timer 4 not be triggered again 1: Timer 4 can be triggered again
5-4	T4PS[1:0]	Timer 4 prescaler ratio (PRESCALER) selection bit 00 : 1/1 01 : 1/8 10 : 1/64 11 : 1/256
3-2	T4M [1:0]	Timer 4 mode selection bit 00: Mode0, 16bit auto reload Timer 01: Mode1, UART1 baud rate generator 10: Mode2, T4 port rising edge triggered (only the system clock, T4CLKS invalid) 11: Mode3, T4 port falling edge triggered (only the system clock, T4CLKS invalid)
1	TR4	Timer 4 Enable control bit 0: Disable Timer 4 1: Enable Timer 4
0	T4CLKS	Timer 4 Counting clock source selection bit 0: The system clock F _{osc} 1: T4 input an external clock

9.4.2.2 Timer T4 data register TL4, TH4

TL4

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				TJ	L4			

Bit	Flag	Introductions
7-0	TL4	T4 data register low byte

TH4

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				TI	1 4			

Bit	Flag	Introductions
7-0	TH4	T4 data register high byte

Timer 5 is 16 bit auto reload Timer. T5CON register control to access the two data registers TH5 and TL5. IEN1 register ET5 bitset 1 enables Timer 5 interrupt (see interrupt chapter).

Timer T5 work mode 9.5.1

9.5.1.1 Mode0: 16 bit auto reload Timer/Counter

When Timer 5 in mode0, TH5 register stores high 8 bits of 16-bit Timer, TL5 stores low 8 bits. When EXEN5=0, 16bit Timer register is increased form 0xFFFF to 0x0000 and overflow, set TF5, Timer will automatically load 16bit value in registers RCAP5H and RCAP5L to TH5 and TL5 registers, if enable Timer 5 interrupt, it will be generated.

If EXEN5=1, overflow or external input T5(selected by Reload Sel for the edge of T5 input) can trigger a 16-bit overload, which also sets the EXF5 bits. If ET5 is enabled, both the TF5 and EXF5 bits can generate interrupts. (Edge of T5 can trigger overload interrupt).

T5CON.1 register TR5 bit set 1 can enable Timer 5, and don't clear counter of Timer 5. Before enable Timer5, user should write an initial value to reload register user want.

Figure 9 - 8 Timer5 Mode0 functional block diagram

9.5.1.2 Mode1: baud rate generator

By setting the T5CON register T5M to 01, Select Timer 5 as UART2's baud rate generator. The mode is similar to auto reload mode. Overflow of Timer 5 will cause the 16 -bit value in software Timer 5 reload register load to Timer 5 counter, but overflow cannot generate interrupt.

When EXEN5=1 at this time, the falling edge of/rising edge on T5 pins will set EXF5, but not causes reload. So when the Timer 5 as baud rate generator, T5 pins can be used as an additional external interrupt. baud rate is calculated by the following formula: BaudRate = $\frac{1}{16} \times \frac{f_{T5}/PRESCALER}{65536-[RCAP5H,RCAP5L]}$, use Timers 5 as baud rate generator. In the formula, f_{T5} is Fosc, PRESCALER is Timer 5 prescale ratio, RCAP5H and RCAP5L are Timer 5

reload capture register.

9.5.1.3 Mode2: 16 bit rising edge capture

In capture mode, EXEN5 of T5CON has two options.

EXEN5 = 0 The Timer T5 16 Timer, if ET5 Permitting, Timer T5 user can set TF5 Spillovers generate an interrupt. After the overflow count will not be reloaded, from 0 to count.

EXEN5 = 1 The Timer T5 Do the same thing, but External input T5 (Available from the T5CON1 To select the capture input types) the rising edge can cause TH5 TL5 Current value is captured RCAP5H RCAP5L And, in addition, T5 On the rising edge can also result in T5CON EXF5 Is set. ET5 enabled EXF5 like TF5 also generate an interrupt.

9.5.1.4 Mode3: 16 bit falling edge capture

In capture mode, EXEN5 of T5CON has two options.

EXEN5 = 0 the Timer T5 16 Timer, if ET5 Permitting, Timer T5 user can set TF5 spillovers generate an interrupt. After the overflow count will not be reloaded, from 0 to count.

EXEN5 = 1 the Timer T5 Do the same thing, but External input T5 (available from the T5CON1 to select the capture input types) can cause the falling edge TH5 TL5 Current value is captured RCAP5H RCAP5L And, in addition, T5 on the falling edge can also result in T5CON EXF5 Is set. ET5 Enabled EXF5 like TF5 also generates an interrupt.

9.5.1.5 Mode4: 16 bit rising or falling edge capture

In capture mode, EXEN5 of T5CON has two options.

EXEN5 = 0 the Timer T5 16 Timer, if ET5 Permitting, Timer T5 user can set TF5 spillovers generate an interrupt. After the overflow count will not be reloaded, from 0 to count.

EXEN5 = 1 the Timer T5 Do the same thing, but External input T5 (available from the T5CON1 to select the capture input types) can cause the rising or falling edge TH5 TL5 Current value is captured RCAP5H RCAP5L And, in addition, T5 on the rising or falling edge can also result in T5CON EXF5 Is set. ET5 Enabled EXF5 like TF5 also generates an interrupt.

9.5.2 Timer/Counter T5 registers

9.5.2.1 Timer T5 control register T5CON,T5CON1

T5CON

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	TF5	EXF5	T5PS	[1:0]	T5M	[1:0]	TR5	EXEN5

Bit	Flag	Introductions
7	TF5	Timer 5 overflow flag 0 : No overflow 1 : Hardware reset on overflow 1 Must be software clearance 0
6	EXF5	T5 flag pin external input event occur 0: No external input event occur, must be cleared to 0 b software 1: Detection of external input event and EXEN5= 1, hardware set 1, alse as interrupt request flag
5-4	T5PS[1:0]	Timer 5 prescaler frequency ratio (PRESCALER) selection bit 00 : 1/1 01 : 1/8 10 : 1/64 11 : 1/256
3-2	T5M [1:0]	Timer 5 mode selection flag 00 : Mode0, 16bit auto reload Timer 01 : Mode1, baud rate generator 10 : Mode2, 16 rising edge captured 11 : Mode3, 16 falling edge capture
1	TR5	Timer 5 enable control flag 0 : Disable Timer 5 1 : Enable Timer 5
0	EXEN5	T5 external event input as the reload on the Pin/capture trigger enable/disable control bit 0: Ignore events on T5 Pin 1: EXEN5 has different effects depending on the mode

When Timer 5 is used as a 16-bit autoreload timer, EXEN5=1, a fall edge or rise edge on the T5 pin generates a load. If EXF5 is set, T5 interrupt will occur if interrupt is enabled.

When Timer 5 is used as baud rate generator, EXEN5=1, a falling edge or rising edge of T5 pin will be set EXF5. If interrupt is enabled, T5 interrupt will occur, and an additional external interrupt can be made.

When Timer 5 is used as rising edge capture, when EXEN5=1, a rising edge on T5 pin will generate a capture, and EXF5 will be set at the same time. If interrupt is enabled, T5 interrupt will occur.

When Timer 5 is used as falling edge capture, when EXEN5=1, a falling edge on T5 pin will generate a capture, and EXF5 will be set at the same time. If interrupt is enabled, T5 interrupt will occur.

When Timer 5 is used as rising edge and falling edge capture, when EXEN5=1, a rising edge and falling edge on T5 pin will generate a capture, and EXF5 will be set at the same time. If the interrupt is enabled, T5 interrupt will occur.

Note: When capturing internal low frequency RC or RXD pins, EXEN5 also needs to be enabled, and rising edge capture, falling edge capture or double edge capture should also should be configured.

T5CON1

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				CAPN	И[1:0]			

Bit	Flag	Introductions
7-2	-	Reserved
1-0	CAPM[1:0]	Timer 5 capture type selection bit 00 : Edge of T5 change 01 : Internal low frequency RC, that is count clock of watchdog 10 : RXD1 Pin of UART1 11 : RXD2 Pin of UART2

T5CON2

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R/W	R	R/W
Reset values	0	0	0	0	0	0	0	0
Flag			-			T5_MODE	-	T5CAPCR

Bit	Flag	Introductions			
7-3	-	Reserved (Read as 0, write invalid)			
		T5 extension mode selection			
2	T5_MODE	0: determined by T5M[1:0]			
		1: rising edge or falling edge capture			
1	-	Reserved (Read as 0, write invalid)			

77

0

9.5.2.2 Timer T5 data registers TL5, TH5

TL5

Bit	7	6	5	4	3	2	1	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset values	0	0	0	0	0	0	0	0		
Flag	TL5									

Bit	Flag	Introductions
7-0	TL5	T5 low byte of data registers

TH5

Bit	7	6	5	4	3	2	1	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset values	0	0	0	0	0	0	0	0				
Flag		TH5										

Bit	Flag	Introductions
7-0	TH5	T5 Data register high byte

9.5.2.3 Timer T5 reload capture registers RCAP5L, RCAP5H

RCAP5L

Bit	7	6	5	4	3	2	1	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset values	0	0	0	0	0	0	0	0			
Flag		RCAP5L									
Bit	Flag		Introductions								
7-0	RCAP5L T5 reload capture registers low byte										

RCAP5H

Bit	7	6	5	4	3	2	1	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset values	0	0	0	0	0	0	0	0			
Flag		RCAP5H									

Bit	Flag	Introductions
7-0	RCAP5H	T5 reload capture register high byte

78

10 Pulse width modulation PWM

10.1 PWM Characteristics

- > 3 complementary PWM outputs with dead-time insertion.6 Independent PWM outputs
- ➤ 12bit PWM
- Provides each PWM a period overflow interrupt, but share the same interrupt vector
- > output polarity is selectable
- Provides an error frame detection function to close PWM output immediately
- > PWM clock can be set prescaler ratio
- PWM can be used as Timer/Counter

HC89S003A/001A integrated three 12 bit PWM module of PWM0, PWM1, and PWM2, each module has a Counter, PWM0 Counter is controlled by PWM0_EN, the Counter start to count when PWM0_EN is enabled, the counter clock source is selected by CK0 bits in PWM0C register.

When user need to output PWM waveform from MCU Pin, user need to enable PWM0_OEN or PWM01_OEN, and need to set port at strong push-pull mode. No PWM waveform output when PWM0_OEN or PWM01_OEN disabled. And this time PWM0 Counter can be used as a Timer, when counter overflow, PWM interrupt occur when interrupt is enabled.

Set EFLT0 to 1, PWM0 output and its complementary output can be closed by input signal variation on FLT0 pin automatically. Once detected valid input on FLT0 pin,PWM output will closed immediately, but PWM internal Counter continue to run, after the error signal removed from FLT0 , the PWM output continued. During FLT0 input signal valid period, FLT0S cannot be cleared. Only when the FLT0 input signal invalid, FLT0S status can be cleared by software, and PWM return to output.

PWM0 fault detection port FLT0 (P0.0 port) has debouncing function, user can set the appropriate debouncing time. Configure FLT0 debouncing time equal configure port P0.0 debouncing time, setting method in ports debouncing control register P00DBC, P01DBC and P02DBC chapter.

Three PWM modules function and operation are exactly the same. User can control register to 3 roads with dead complementary PWM or six roads single PWM output.

3 PWM modules share an interrupt vector entrance, but have their own control bit and flag. It is used for user modify the PWM module cycles or duty cycle of the next cycle.

10.2 PWM output mode

The PWM output of the HC89S003A/001A consists of two types: edge alignment and center alignment. Decide by setting TYPx (PWMCON0[7:5]) (x=0,1,2).

10.2.1 Edge alignment mode

In edge-aligned mode, the module generates edge-aligned PWM signals. The cycle of PWM output signal is determined by [PWM0PH:PWM0PL], and its duty cycle is determined by the corresponding duty cycle register (in the case of PWM independent output, the duty cycle registers of PWM01, PWM11, and PWM21 are their dead-time registers).

The 12-bit counter is in single-cycle mode, counting upward from 0000H, and all enabled PWM output is driven to a valid state at the beginning of the PWM cycle. When the value of the counter matches the value of the PWM duty cycle register, the PWM output is driven to an invalid state. The counter continues until it matches [PWM0PH:PWM0PL], and then starts counting upwards again from 0000H.

PWMx period = [PWM0PH: PWM0PL] * PWM0 Period of the working clock source

PWMx duty cycle = [PWMxDH: PWMxDL] * PWM0 Working clock period

PWMx1 duty cycle = [PWMxDTH: PWMxDTL] * PWM0 Working clock period

Figure 10-1 PWM edge alignment waveform

10.2.2 Center alignment mode

In center aligned mode, the module generates a center aligned PWM signal. The cycle of PWM output signal is determined by [PWM0PH:PWM0PL], and its duty cycle is determined by the corresponding duty cycle register (in the case of PWM independent output, the duty cycle registers of PWM01, PWM11, and PWM21 are their dead-time registers).

The 12-bit counter is in dual-cycle mode, counting up from 0000H to [PWM0PH:PWM0PL] and down from [PWM0PH:PWM0PL] to 0000H, which is a full cycle of PWM. All enabled PWM outputs are driven to a valid state at the start of the PWM cycle. In the process of counting up, the PWM output is driven to an invalid state when the value of the counter matches the value of the PWM duty ratio register. The PWM output is not driven to a valid state until the counter is converted to a downward count and the value of the counter matches the value of the PWM duty ratio register.

PWMx period = [PWM0PH:PWM0PL] * PWM0 Working clock source period *2

PWMx duty cycle = [PWMxDH:PWMxDL] * PWM0 Working clock period *2

PWMx1 duty cycle = [PWMxDTH:PWMxDTL] * PWM0 Working clock period *2

Figure 10-2 PWM center alignment waveform

10.3 PWM output mode

PWM module contains 3 independent waveform generate modules, the corresponding 3 PWM output are PWM0/PWM01,PWM11,PWM2/PWM21, by controlling the associated registers to provide each pair PWM output configured as a complementary output mode or independent mode.

10.3.1 Complementary output mode

Set PWMxM(x = 0,1,2) to 0 : PWM will be working in complementary output mode, enable PWMx&PWMx (x = 0,1,2) 1 output, and control the cycle registers, duty registers and dead-time registers to output the complementary waveform. The PWMx&PWMx1(x = 0,1,2) polarity can be selected in complementary output mode. It is easy to user multiple level driven request.

PWM0S=00& PWM0M=0: PWM0 and PWM01 work in complementary mode and are high level valid

PWM0S=00& PWM0M=0: PWM0 and PWM01 work in complementary mode (with dead zone) and are highly level valid

PWM0S=01& PWM0M=0: PWM0 and PWM01 work in complementary mode and PWM0 is high level valid

PWM0S=01& PWM0M=0: PWM0 and PWM01 work in complementary mode (with dead zone) and PWM0 is high efficiency and PWM01 is low level valid

PWM0S=10& PWM0M=0: PWM0 and PWM01 work in complementary mode and PWM0 is low level valid and PWM01 is high level valid

PWM0S=10& PWM0M=0: PWM0 and PWM01 work in complementary mode (with dead zone) and PWM0 is low level valid and PWM01 is high level valid

PWM0S=11& PWM0M=0: PWM0 and PWM01 work in complementary mode and both PWM0 and PWM01 have low level valid

PWM0S=11& PWM0M=0: PWM0 and PWM01 work in complementary mode (with dead zone) and both PWM0 and PWM01 have low level valid

10.3.2 Independent output mode

Set PWMxM to 1: PWM will be working in independent mode, user can control PWMx&PWMx1 single or both output. their cycle time are same but the duty cycle can be set individually. Duty cycle register control PWMx duty cycle, dead-time control registers control PWMx1 duty cycle,

The PWMx&PWMx1 polarity can be selected in independent output mode. It is easy to user multiple level driven request(x = 0, 1, 2).

PWM0S=00& PWM0M=1: PWM0 and PWM01 work in independent mode, and both PWM0 and PWM01 are highly level valid

PWM0S=01& PWM0M=1: PWM0 and PWM01 work in independent mode .PWM0 is high level valid and PWM01 is low level valid

PWM0S=10& PWM0M=1: PWM0 and PWM01 work in independent mode and PWM0 is low level valid and PWM01 is high level valid

PWM0S=11& PWM0M=1: PWM0 and PWM01 work in independent mode and both PWM0 and PWM01 are low level valid

10.4 PWM registers

10.4.1 PWM control register PWMCON0

PWMCON0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset values	0	0	0	1	1	1	0	0
Flag	TYP2	TYP1	TYP0	RLOAD2	RLOAD1	RLOAD0	-	PENCTRL

位编号	位符号	说明					
_		PWM2 Output type selection bit					
7	TYP2	0: PWM2 edge alignment					
		1: PWM2 center alignment					
		PWM1 Output type selection bit					
6	TYP1	0: PWM1 edge alignment					
		1: PWM1 center alignment					
		PWM0 Output type selection bit					
5	TYP0	0: PWM0 edge alignment					
		1: PWM0 center alignment					
		PWM2 Auto overload enable bit					
		0: Disable automatic reloading					
		1: Enable automatic reloading					
		Note: The default value is 1. After the parameters are modified in the					
	RLOAD2	default state, the parameters are automatically loaded and the PWM2					
4		period, duty cycle, and dead zone are modified in the next period.					
		Prohibit automatic overload before modifying parameters, enable after					
		modifying parameters, can realize the synchronization between mul					
		groups of PWM, before the output state during the prohibition.					
		Suitable for three groups of PWM period is the same, later want to					
		modify the PWM period or duty cycle, if the three groups of PWM					
		period is different, then the pwm_ov signal is different.					
		PWM1 Auto overload enable bit					
3	RLOAD1	0: Disable automatic reloading					
		1: Enable automatic reloading					
		PWM0 Auto overload enable bit					
2	RLOAD0	0: Disable automatic reloading					
		1: Enable automatic reloading					
1	-	Reserved bit (read as 0, write invalid)					
		PWM0/1/2 Module enables the control bit					
0	DENICTRI	0: The value is controlled by PWM0_EN, PWM1_EN, or PWM2_EN					
0	PENCTRL	1: The PWMENA register controls the module status and output of					
		PWM0/1/2, and the PWM0_EN, PWM1_EN, and PWM2_EN bits will					

not be affected. Note: When closed, the PWM0 count stops and the output closes
immediately. When turned on, the PWM0 counter starts counting
again from 1, and the output is controlled by PWM0_OEN and PWM01 OEN.

10.4.2 PWM enable registerPWMENA

PWMENA

Bit	7	6	5	4	3	2	1	0
R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	PWM21EN	PWM11EN	PWM01EN	-	PWM2EN	PWM1EN	PWM0EN

位编号	位符号	说明				
7	-	Reserved bit				
		PWM21 Output control bit				
6	PWM21EN	0: Disable the output of PWM21				
		1: PWM21 output is allowed				
		PWM11 Output control bit				
5	PWM11EN	0: Disable the output of PWM11				
		1: PWM11 output is allowed				
		PWM01 Output control bit				
4	PWM01EN	0: Disable the output of PWM01				
		1: PWM01 output is allowed				
3	-	Reserved bit				
		PWM2 Output control bit				
2	PWM2EN	0: Disable the output of PWM2				
		1: PWM2 output is allowed				
		PWM1 Output control bit				
1	PWM1EN	0: Disable the output of PWM1				
		1: PWM1 output is allowed				
		PWM0 Output control bit				
		0: Disable the output of PWM0				
		1: PWM0 output is allowed				
		Note: PWM allows output (output port must be set to output mode),				
0	PWM0EN	must map pin in THE PWM pin, otherwise it is PWM output off state				
		(output level state is related to the output mode selection bit); Even if				
		the output is disabled, as long as the relevant bit is enabled, THE PWM				
		can overflow interrupt, that is, the PWM can be used as a timer, this				
		control bit modification takes effect immediately.				

85

10.4.3 PWM0 module

10.4.3.1 PWM0 enable register PWM0EN

Bit	7	6	5	4	3	2	1	0
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	FLT0_	MODE	EFLT0	PWM0M	PWM01_OEN	PWM0_OEN	PWM0_EN

Bit	Flag	Introductions
7	-	Reserved bit
6-5	FLT0_MODE	PWM0 fault output book status selection bit 00: PWM0&PWM01 low level both during failure 01: PWM0 low level during failure, PWM01 high level during failure 10: PWM0 high level during failure, PWM01 low level during failure 11: PWM0&PWM01 high level both during failure
4	EFLT0	PWM0 FLT0 control pin enable bit 0: Disable fault detection, GPIO function or other functions 1: Enable fault detection, PWM0 fault detection of input pins Note: the complementary and independent output mode can be controlled by the foot fault detection.
3	PWM0M	PWM0 working mode selection bit 0: PWM0&PWM01 working in complementary output mode 1: PWM0&PWM01 working in independent mode Note: Recommended closing PWM0 module before modify PWM0 working mode Note: In standalone mode, the duty cycle register of PWM0 is larger than that of PWM01.
2	PWM01_OEN	PWM01 output control bit 0: Disable PWM01 output 1: Enable PWM01 output
1	PWM0_OEN	PWM0 output control bit 0:Disable PWM0 output 1:Enable PWM0 output Note: PWM0 output is enabled when PWM0_EN is set to 1, otherwise PWM0 output disable. (the port output must be set output mode); Even prohibit output, as long as PWM0_EN is enabled, the PWM0 can occur overflow interrupt, PWM0 can be used as a Timer and the control bit is valid immediately when changed.
0	PWM0_EN	PWM0 module control enable bit 0: Close PWM0 module 1: Open PWM0 module (re-count) Note: When PWM0 close, counter stopped and output close immediately .When PWM0 open, PWM0 re-count from 1, output controlled by PWM0_OEN and PWM01_OEN bits.

10.4.3.2 PWM0 control register PWM0C

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PWM0IE	PWM0IF	FLT0S	FLT0C	PW]	M0S	CI	Κ0

86

Bit	Flag	Introductions
		PWM0 interrupt enable bit
7	PWM0IE	0 : Disable PWM0 interrupt
		1 : Enable PWM0 interrupt
		PWM0 interrupt flag
6	PWM0IF	0 : Software clear 0
		1 : PWM0 cycle counter overflow, hardware set 1
		PWM0 FLT status bit
5	FLT0S	0: PWM normal status, software clear 0
		1 : PWM output off, hardware set 1
		PWM0 FLT pin configuration bit
4	FLT0C	0 : FLT0 low level, PWM output off
		1 : FLT0 high level, PWM output off
		PWM0 PWM01 output mode selection bits
		00 : PWM0 and PWM01 high level valid
		01 : PWM0 high level valid, PWM01 low level valid
		10 : PWM0 low level valid, PWM01 high level valid
3-2	PWM0S	11 : PWM0 and PWM01 are both of low level valid
		Note: For independent mode, the output mode selection bits is also valid, but
		different with complementary mode is: valid period is duty cycle period, but
		in complementary mode, valid period of PWM0 is duty cycle period, valid
		period of PWM01 is complementary duty cycle period.
		PWM0 clock source selection bits
		$00: F_{\rm osc}/1$
1-0	CK0	$01:F_{\rm osc}/8$
		$10: F_{osc}/32$
		11: F _{osc} /128

10.4.3.3 PWM0 period register PWM0PL,PWM0PH PWM0PL

Bit	7	6	5	4	3	2	1	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset values	0	0	0	0	0	0	0	0		
Flag		PWM0PL[7:0]								

Bit	Flag	Introductions
7-0	PWM0PL[7:0]	PWM0 period register low 8 bits

PWM0PH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	-	-	-	PWM0PH[3:0]			

Bit	Flag	Introductions
7-4	-	Reserved (read = 0b,, write invalid)
3-0	PWM0PH[3:0]	PWM0 period register high 4 bits

Note: modify high bits firstly when modify PWM0 cycle, then modify low bits, read as not restricted, such as:

(1) PWM0PH = 0x05;

(2) PWM0PL = 0x08; // PWM Counter overflow, the cycle data is 0x0508 from the next cycle

(3) PWM0PH = 0x06; // PWM Counter overflow, the cycle data is 0x0508 from the next cycle

(4) PWM0PL = 0x08; // PWM Counter overflow, the cycle data is 0x0608 from the next cycle

(5) PWM0PL = 0x09; // PWM Counter overflow, the cycle data is 0x0609 from the next cycle

As long as PWM Period modified, regardless of whether the low registers need to be modified, low bits has to be written one time, and cycle changes will valid only from the next PWM cycle.

PWM0 cycle = [PWM0PH : PWM0PL] * PWM0 Clock cycle

10.4.4 PWM0 duty cycle register PWM0DL,PWM0DH

PWM0DL

Bit	7	6	5	4	3	2	1	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset values	0	0	0	0	0	0	0	0		
Flag		PWM0DL[7:0]								

Bit	Flag	Introductions
7-0	PWM0DL[7:0]	PWM0 Duty cycle register low 8 bits

PWM0DH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	-	-	-	PWM0DH[3:0]			

Bit	Flag	Introductions
7-4	-	Reserved (read as 0,write invalid)
3-0	PWM0DH[3:0]	PWM0 duty cycle registers high 4 bits

Note: modify PWM0 Duty cycle registers, similar to modify PWM0 cycle register, both are required to modify the high level first then low, and changes will valid from the next cycle.

PWM0 Duty cycle = [PWM0DH : PWM0DL] * PWM0 Clock cycle

10.4.5 PWM0 dead time register PWM0DTL, PWM0DTH

PWM0DTL

Bit	7	6	5	4	3	2	1	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset values	0	0	0	0	0	0	0	0			
Flag		PWM0DTL[7:0]									

Bit	Flag	Introductions
7-0	PWM0DTL[7:0]	PWM0 Dead time register low 8 bits

PWM0DTH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	-	-	-	PWM0DTH[3:0]			

Bit	Flag	Introductions
7-4	-	Reserved (read = 0b,,write invalid)

3-0 PWM0DTH[3:0] PWM0 Dead time register high 4

When PWM0M=1, PWM0 work in 2 road independent mode, dead time register is used as the PWM01 Duty cycle registers, namely independent mode PWM0 can output 2 road PWM waveform with the same cycle, but different duty cycle.

Complementary mode: PWM0 Dead time = [PWM0DTH:PWM0DTL] * PWM0 clock cycle.

Complementary mode: dead time must be less than the duty cycle time, sum of dead time and duty cycle time must be less than PWM0 cycle.

Independent mode: PWM01 Duty cycle time = [PWM0DTH:PWM0DTL] * PWM0 Clock cycle.

10.4.6 PWM1 module

10.4.6.1 PWM1 enable register PWM1EN

Bit	7	6	5	4	3	2	1	0
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	FLT1_	MODE	EFLT1	PWM1M	PWM11_OEN	PWM1_OEN	PWM1_EN

Bit	Flag	Introductions
7	-	Reserved bit
6-5	FLT1_MODE	PWM1 fault output predetermined status selection bits 00: PWM1&PWM11 are low level during the fault 01: PWM1 low level is during fault, PWM11 is high level during fault 10: PWM1 high level is during fault, PWM11 is low level during fault 11: PWM1&PWM11 are high level during fault
4	EFLT1	PWM1 FLT1 control pin enable bit 0: Disable fault detection, GPIO function or other functions 1: Enable fault detection, PWM1 fault detection input pin Note: the complementary output mode and independent output mode are controlled by the fault detection pin.
3	PWM1M	PWM1 work mode selection bit 0: PWM1&PWM11 work in complementary output mode 1: PWM1&PWM11 work in independent mode Note: Recommended to close PWM1 module when modifying PWM1 work mode
2	PWM11_OEN	PWM11 output control bit 0 : Disable PWM11 output 1 : Enable PWM11 output
1	PWM1_OEN	PWM1 output control 0: Disable PWM1 output 1: Enable PWM1 output Note: PWM1 output is valid only when PWM1_EN is set to 1, otherwise PWM1 output off (the corresponding output port must be set output mode); even output is disabled, as long as PWM1_EN I\(\) is enabled, the PWM1 can occur overflow interrupt, that is to say PWM1 can be used as a Timer, this control bit is valid immediately once changed.
0	PWM1_EN	PWM1 module control bit 0: Close PWM1 module 1: Open PWM1 module (re-count) Note: When closed, PWM1 count stopped, the output is closed immediately. When opened, PWM1 counter re-count from 1, output is controlled by the PWM1_OEN and PWM11_OEN bits.

10.4.6.2 PWM1 control register PWM1C

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PWM1IE	PWM1IF	FLT1S	FLT1C	PWI	M1S	CI	X1

Bit	Flag	Introductions
		PWM1 interrupt enable bit
7	PWM1IE	0 : Disable PWM1 interrupt
		1 : Enable PWM1 interrupt
		PWM1 interrupt flag
6	PWM1IF	0 : Software clearance 0
		1 : PWM1 cycle counter overflow, set 1 by hardware
		PWM1 FLT state bits
5	FLT1S	0 : PWM normal state, software clear 0
		1 : PWM output off, hardware set 1
		PWM1 FLT pin configuration bit
4	FLT1C	0: When FLT1 is low level, PWM output off
		1: When FLT1 is high level, PWM output off
		PWM1 and PWM11 output mode selection bits
		00: PWM1 and PWM11 are active high
		01: PWM1 is active high, PWM11 is active low
		10: PWM1 is active low, PWM11 is active high
3-2	PWM1S	11 : PWM1 and PWM11 are active low
		Note: for independent mode, the output mode selections bit is also valid, but
		different with complementary mode is: the valid period is duty cycle period,
		and in complementary mode, the valid period of PWM1 is duty cycle period,
		the valid period of PWM11 is complementary duty cycle period.
		PWM1 clock source selection bits
		00: F _{osc} /1
1-0	CK1	01: F _{osc} /8
		10: $F_{osc}/32$
		11: F _{osc} /128

10.4.6.3 PWM1 period register PWM1PL, PWM1PH

PWM1PL

Bit	7	6	5	4	3	2	1	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset values	0	0	0	0	0	0	0	0		
Flag	PWM1PL[7:0]									

Bit	Flag	Introductions
7-0	PWM1PL[7:0]	PWM1 cycle register low 8 bits

PWM1PH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	-	-	-	PWM1PH[3:0]			

Bit	Flag	Introductions
7-4	-	Reserved (read = 0b, write invalid)
3-0	PWM1PH[3:0]	PWM1 cycle register high 4 bits

Note: Modify PWM1 cycle register high bits first, then modify low bits, read is not unlimited, such as: (6) PWM1PH = 0x05;

(7) PWM1PL = 0x08; //PWM counter overflow, the cycle data is 0x0508 form the next cycle

(8) PWM1PH = 0x06; //PWM counter overflow, the cycle data is 0x0508 form the next cycle

(9) PWM1PL = 0x08; //PWM counter overflow, the cycle data is 0x0608 form the next cycle

(10) PWM1PL = 0x09; //PWM counter overflow, the cycle data is 0x0609 form the next cycle

As long as PWM period is modified, regardless of whether the low registers need to be modified, low bits has to be written once, and cycle changes are valid only from the next PWM cycle.

PWM1 cycle = [PWM1PH : PWM1PL] * PWM1 work clock source cycle

10.4.6.4 PWM1 duty register PWM1DL, PWM1DH PWM1DL

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		PWM1DL[7:0]						

Bit	Flag	Introductions			
7-0	PWM1DL[7:0]	PWM1 duty register low 8 bits			

PWM1DH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	-	-	-	PWM1DH[3:0]			

Bit	Flag	Introductions
7-4	-	Reserved (read = 0b, write invalid)
3-0	PWM1DH[3:0]	PWM1 duty registers high 4 bits

Note: Modify PWM1 duty registers, similar to modify PWM1 cycle register, are required to modify the high then low bits, and changes are valid only from the next cycle.

PWM1 Duty cycle = [PWM1DH : PWM1DL] * PWM1 work clock source cycle

10.4.6.5 PWM1 dead time register PWM1DTL, PWM1DTH PWM1DTL

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PWM1DTL[7:0]							

Bit	Flag	Introductions
7-0	PWM1DTL[7:0]	PWM1 dead time register low 8 bits

PWM1DTH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag			-		PWM1DTH[3:0]			

Bit	Flag	Introductions
7-4	-	Reserved (read = 0b, write invalid)
3-0	PWM1DTH[3:0]	PWM1 dead time register high 4 bits

When PWM1M=1, PWM1 is worked in 2 independent mode, dead time register is used as the PWM11 duty cycle registers, namely independent mode PWM1 can generate 2 ways same cycle, but different duty cycle PWM waveform.

In complementary mode: PWM1 dead time = [PWM1DTH: PWM1DTL] * PWM1 work clock cycle; In complementary mode: dead time must be less than the duty cycle time, sum of dead time and duty time must be less than PWM1 cycle;

In independent mode: PWM11 duty cycle time = [PWM1DTH: PWM1DTL] * PWM1 work clock cycle;

10.4.7 PWM2 module

10.4.7.1 PWM2 enable register PWM2EN

Bit	7	6	5	4	3	2	1	0
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	-	FLT2	MODE	EFLT2	PWM2M	PWM21_OEN	PWM2_OEN	PWM2_EN

Bit	Flag	Introductions
7	-	Reserved bit
6-5	FLT2_MODE	PWM2 fault output predetermined selection bits 00: PWM2&PWM21 are low level during fault 01: PWM2 is low level during fault, PWM21 is high level during fault 10: PWM2 is high level during fault, PWM21 is low level during fault 11: PWM2&PWM21 are high level during fault
4	EFLT2	PWM2 FLT2 control pin enable bit 0: Disable fault detection, GPIO function or other functions 1: Enable fault detection, PWM2 fault detection input pins Note: the complementary output mode and independent output mode are controlled by the fault detection pin.
3	PWM2M	PWM2 work mode selection bit 0: PWM2&PWM21 work in complementary output mode 1: PWM2&PWM21 work in independent mode Note: Recommended to close PWM2 module when modifying PWM2 work mode
2	PWM21_OEN	PWM21 output control bit 0 : Disable PWM21 output 1 : Enable PWM21 output
1	PWM2_OEN	PWM2 output control bit 0: Disable PWM2 output 1: Enable PWM2 output Note: PWM2 output is valid only when PWM2_EN is set to 1, otherwise PWM2 output off (the corresponding output port must be set output mode); even output is disabled, as long as PWM2_EN I\(\) is enabled, the PWM2 can occur overflow interrupt, that is to say PWM2 can be used as

		a Timer, this control bit is valid immediately once changed.
	PWM2 module control bit	
		0 : Closed PWM2 module
0	PWM2 EN	1 : Open PWM2 module (re-count)
U	P W IVIZ_EIN	Note: When closed, PWM2 count stopped, the output is closed
		immediately. When opened, PWM1 counter re-count from 1, output is
		controlled by the PWM2_OEN and PWM21_OEN bits.

10.4.7.2 PWM2 control register PWM2C

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PWM2IE	PWM2IF	FLT2S	FLT2C	PWI	M2S	CI	Κ2

Bit	Flag	Introductions
7	PWM2IE	PWM2 interrupt enable bit 0 : Disable PWM2 interrupt 1 : Enable PWM2 interrupt
6	PWM2IF	PWM2 interrupt flag 0 : Software clearance 0 1 : PWM2 cycle counter overflow, set 1 by hardware
5	FLT2S	PWM2 FLT state bit 0: PWM normal state, software clear 0 1: PWM output off, hardware set 1
4	FLT2C	PWM2 FLT pin configuration bit 0: When FLT1 is low level, PWM output off 1: When FLT1 is high level, PWM output off
3-2	PWM2S	PWM2 and PWM21 output mode selection bits 00: PWM2 and PWM21 are active high 01: PWM2 is active high, PWM21 is active low 10: PWM2 is active low, PWM21 is active high 11: PWM2 and PWM21 are active low Note: for independent mode, the output mode selections bit is also valid, but different with complementary mode is: the valid period is duty cycle period, and in complementary mode, the valid period of PWM2 is duty cycle period, the valid period of PWM21 is complementary duty cycle period.
1-0	CK2	PWM2 Clock source selection bits $00: F_{osc}/1$ $01: F_{osc}/8$ $10: F_{osc}/32$ $11: F_{osc}/128$

10.4.7.3 PWM2 period register PWM2PL, PWM2PH PWM2PL

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		PWM2PL[7:0]						

Bit	Flag	Introductions
7-0	PWM2PL[7:0]	PWM2 cycle register low 8 bits

93

PWM2PH

7-4

3-0

PWM2PH[3:0]

Bit	7	6	5	4	3	2	1	0	
R/W	R	R	R	R	R/W	R/W	R/W	R/W	
Reset values	0	0	0	0	0	0	0	0	
Flag	-	-	-	-	PWM2PH[3:0]				
Bit	Flag	-	Introductions						

Reserved (read = 0b, write invalid)

PWM2 cycle register high 4 bits

Note: Modify PWM2 cycle register high bits first, then modify low bits, read is not unlimited, such as: (6) PWM2PH = 0x05;

- (7) PWM2PL = 0x08; //PWM counter overflow, the cycle data is 0x0508 form the next cycle
- (8) PWM2PH = 0x06; //PWM counter overflow, the cycle data is 0x0508 form the next cycle
- (9) PWM2PL = 0x08; //PWM counter overflow, the cycle data is 0x0608 form the next cycle
- (10) PWM2PL = 0x09; //PWM counter overflow, the cycle data is 0x0609 form the next cycle

As long as PWM period is modified, regardless of whether the low registers need to be modified, low bits has to be written once, and cycle changes are valid only from the next PWM cycle.

PWM2 cycle = [PWM2PH : PWM2PL] * PWM2 work clock source cycle

10.4.7.4 PWM2 duty register PWM2DL, PWM2DH PWM2DL

Bit	7	6	5	4	3	2	1	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset values	0	0	0	0	0	0	0	0	
Flag		PWM2DL[7:0]							

Bit	Flag	Introductions
7-0	PWM2DL[7:0]	PWM2 duty register low 8 bits

PWM2DH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		-	-			PWM2I	DH[3:0]	

Bit	Flag	Introductions
7-4	-	Reserved (read = 0b, write invalid)
3-0	PWM2DH[3:0]	PWM2 duty register high 4 bits

Note: Modify PWM2 duty registers, similar to modify PWM2 cycle register, are required to modify the high then low bits, and changes are valid only from the next cycle.

PWM2 Duty cycle = [PWM2DH : PWM2DL] * PWM2 work clock source cycle

10.4.7.5 PWM2 dead time register PWM2DTL, PWM2DH PWM2DTL

Bit	7	6	5	4	3	2	1	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset values	0	0	0	0	0	0	0	0	
Flag		PWM2DTL[7:0]							

Bit	Flag	Introductions
7-0	PWM2DTL[7:0]	PWM2 dead time register low 8 bits

PWM2DTH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag						PWM2D	TH[3:0]	

Bit	Flag	Introductions
7-4	-	Reserved (read = 0b,write invalid)
3-0	PWM2DTH[3:0]	PWM2 dead time register high 4 bits

When PWM2M=1, PWM2 is worked in 2 independent mode, dead time register is used as the PWM21 duty cycle registers, namely independent mode PWM2 can occur 2 ways same cycle, but different duty cycle PWM waveform.

In complementary mode: PWM2 dead time = [PWM2DTH: PWM2DTL] * PWM2 work clock cycle; In complementary mode: dead time must be less than the duty cycle time, sum of dead time and duty time must be less than PWM2 cycle;

In independent mode: PWM21 duty cycle time = [PWM2DTH: PWM2DTL] * PWM2 work clock cycle;

11 Single 8 bit PWM

11.1PWM characteristics

- > 8 bits PWM output
- Provides PWM cycle overflow interrupt, but the interrupt share the same vector with PWM0, PWM1 and PWM2.
- > output polarity is selectable
- > PWM can be used as Timer/Counter, namely cycle register used as Timer when write, read as counter when read.

11.2 PWM module registers

11.2.1 PWM3 control register PWM3C

PWM3C

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	PWM3EN	PWM3IE	PWM3IF	PWM30EN	PWM3S	PTCK3[2:0]		

Bit	Flag	Introductions
7	PWM3EN	PWM3 module enable control bit 0 : Close PWM3 module 1 : Open PWM3 module (re-count) Note: When PWM close, counter stopped and output close immediately .When PWM open, PWM re-count from 1, output controlled by PWM3OEN bit.
6	PWM3IE	PWM3 interrupt enable bit 0 :Disable PWM3 interrupt 1 :Enable PWM3 interrupt
5	PWM3IF	PWM3 interrupt flag 0: Software clear 0 1: Hardware set 1, only set to 1 when the PWM3 Counter overflow (greater than PWM3P)
4	PWM30EN	PWM3 output enable bit 0: PWM3 Disable output 1: PWM3 Enable output Note: PWM3 output is enabled when PWM3EN is set to 1, otherwise PWM3 output disable. (the port output must be set output mode); Even prohibit output, as long as PWM3EN is enabled, the PWM3 can occur overflow interrupt, PWM3 can be used as a Timer and the control bit is valid immediately when changed.
3	PWM3S	PWM3 output polarity selection bit 0: PWM3 high level during valid period 1: PWM3 low level during valid period Note: modify the control bit will be effective immediately, valid period is duty cycle period
2-0	PTCK3[2:0]	$\begin{array}{l} \text{PWM3 clock source selection bits} \\ 000: F_{osc}/1 \\ 001: F_{osc}/2 \\ 010: F_{osc}/4 \\ 011: F_{osc}/8 \\ 100: F_{osc}/16 \\ 101: F_{osc}/32 \\ 110: F_{osc}/64 \\ 111: F_{osc}/128 \\ \text{Note: modify the control bit will be effective immediately, modify is not} \end{array}$

recommended during output.

11.2.2 PWM3 period register PWM3P

PWM3 cycle register PWM3P

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				PWM3	3P[7:0]			

Bit	Flag	Introductions			
7-0	PWM3P[7:0]	PWM3 cycle register			

11.2.3 PWM3D duty register PWM3D

PWM3 Duty register PWM3D

Bit	7	6	5	4	3	2	1	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset values	0	0	0	0	0	0	0	0	
Flag		PWM3D[7:0]							

Bit	Flag	Introductions				
7-0	PWM3D[7:0]	PWM3 duty cycle register PWM3P ≤ PWM3D, the duty cycle 100%; PWM3D = 0x00, the duty cycle 0%				

97

12 Watchdog timer WDT

12.1 WDT characteristics

- > Can be configured for overflow reset
- > Configurable idle/power-down mode enable or not
- > Flexible configure overflow time

HC89S003A/001A watchdog Timer is an incremental counter, the clock source is internal low frequency RC, You can configure register to select run or not in idle/power-down mode. When WDT overflow, user can get the chip reset or not by WDTRF in RSTFR register. If WDTRST is 1, the system will reset when WDT overflow, if WDTRST is 0, and WDT interrupt is enabled, then WDT interrupt occur.

Due to the internal low frequency RC Oscillator frequency has deviation with process. The real frequency of it can be measured via Timer 5 capture, and calculate the overflow time according to the actual frequency value.

HC89S003A_001A watchdog Timer has overflow flag after overflow, reset has a special reset flag, frequency division and overflow value can be set, clear WDT only need to set the corresponding control bit, operation is flexible.

12.2 WDT registers

12.2.1 WDT control register WDTC

Bit	7	6	5	4	3	2	1	0
R/W	R	R/W	R/W	W	R/W	R/W	R/W	R/W
Reset values	0	1	0	0	1	1	1	1
Flag	1	WDTRST	WDTF	WDTCLR	WDTPD	1	WDTPS[2:0]	

Bit	Flag	Introductions
7	-	Reserved bit
6	WDTRST	WDT reset enable bit 0: Disable WDT reset 1: Enable WDT reset Note: Disable WDT reset, interrupt request flag can still set when WDT Count overflow
5	WDTF	WDT interrupt request flag 0: No WDT count overflow, when interrupt response software clear 0 1: WDT count overflow, WDTF hardware reset 1, can be used for interrupt request
4	WDTCLR	Watchdog clear 0 Set 1 can clear WDT counter, hardware clear 0 automatically
3	WDTPD	WDT idle/power-down mode control bit 0: Enable WDT in idle/power-down mode, if WDTRST=1 will reset wakeup the system, if WDTRST=0 and EA=1, EWDT=1 Will interrupt to wake up the system. 1: disable WDT in idle/power-down mode
2-0	WDTPS[2:0]	The watchdog Timer clock source frequency division selection bits 000 : 1/8 001 : 1/16 010 : 1/32 011 : 1/64 100 : 1/128 101 : 1/256 110 : 1/512 111 : 1/1024

12.2.2 WDT count compare register WDTCCR

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	1	1	1	1	1	1	1	1
Flag		WDTCCR[7:0]						

Bit	Flag	Introductions
7-0	WDTCCR[7:0]	WDT Count compare register flags Note: When WDT Counter match with WDTCCR[7:0], overflow and counter clear 0 then Count again. Write 0 will be turned off WDT Function (don't close the internal low frequency RC), namely disable WDT. Write non-0 data, will start the WDT.

Below results is calculated under 44KHz, the real frequency of it can be measured via Timer 5 capture. Overrun time = (WDT frequency division coefficient * (WDTCCR [7:0] + 1))/real internal low frequency RC frequency.

WDTCCR[7:0] = 0xFF Watchdog overflow time table as below.

PS2	PS1	PS0	WDT Frequency division coefficient	Adjusting the step value	WDT Maximum overflow time @44K
0	0	0	8	0.182ms	46.55ms
0	0	1	16	0.364ms	93.09ms
0	1	0	32	0.728ms	186.18ms
0	1	1	64	1.456ms	372.36ms
1	0	0	128	2.912ms	744.73ms
1	0	1	256	5.824ms	1489.45ms
1	1	0	512	11.648 ms	2978.91ms
1	1	1	1024	23.296ms	5957.82ms

13 Universal asynchronous transceiver UART

13.1 UART characteristics

- ➤ 2 UART
- ➤ Multiple work modes
- > Multiple errors detection

13.2 Work mode

UART has 4 kinds of work modes, in all modes, any SBUF write operations as a destination register will start transmission. In mode0 RI = 0 and REN = 1 used to initializes receiver. TXD Pin generates a clock signal, and RXD Pin shift 8 -bits data. In other modes the start bit of input initializes receiver (if RI = 0 and REN = 1). The communication of external transmitter started when sending the start bit. TXD pin must be set as output high before transmission.

SM0	SM1	Work mode	Туре	Baud rate
0	0	0	Synchronous	The baud rate is $F_{osc}/12 \times 6^{UX6}$
0	1	1	Asynchronous	Timer 4 overflow rate /16
1	0	2	Asynchronous	$(2^{\text{SMOD}}/64) \times F_{\text{osc}}$
1	1	3	Asynchronous	Timer 4 overflow rate /16

13.2.1 Mode0: Synchronous half-duplex communication

Mode0 support synchronous communication of external devices, RXD pin send and receive serial data, TXD Pin send shift clock. HC89S003A/001A provides the shift clock on TXD pin, so this mode is half-duplex serial communications. In the mode, each frame receives 8 -bits, low bit received or sent first.

By set UX6 to 0 or 1, baud rate fix $1/12*F_{osc}$ or $1/2*F_{osc}$. When UX6=0, serial port with f_{OSC} 1/12 running when UX6 1 Shi, serial port F_{osc} 1/2 Running. The only difference with Standard 8051 is that HC89S003A/001A has variable baud rate in mode0.

Function block diagram is shown as below figure, data RXD pin moves into and out of the serial port, the shift clock by TXD pin output.

Figure 13 - 1 UART mode0 function block diagram

Any write operation with SBUF as a destination register will start transmission. TX control module start to transmit at next system clock. Data switch take place at the falling edge of the clock, data in shift register ordinal shifted from left to right, empty position set 0. When all 8 bits are sent, TX control modules send operation is stopped, and then TI set to 1 at the rising edge of next system clock.

Figure 13 - 2 Mode0 data send timing diagram

REN set 1 and RI clear 0 to initialize receiver. The next system clock start to receive, latch data at rising edge of the shift clock, and data in receive conversion register ordinal shifted to left. After all 8 -bit data moved to the shift register, and RX control module stop receiving, RI is set at the rising edge of next system clock, until it is cleared by software to enable the next reception.

Figure 13 - 3 Mode0 Data receive timing diagram

13.2.2 Mode1: 8 UART, variable baud rate, asynchronous full duplex

Model provides 10 bits communication of full duplex asynchronous, 10 bits consist of a start bit (logical 0), 8 data bits (low bit first) and one stop bit (logic 1). When receiving, 8 data bits stored in SBUF and stop bit stored in RB8. Model baud rate equals Timer 4 overflow rate /16.

Function block diagram is shown in the following figure:

Figure 13 - 4 UART model functional block diagram

Any SBUF write operations as a destination register will start transmission. Actually sending is started from the system clock after 16 scale frequency counter's next jump. So bit time is synchronous with 16 frequency division counter, but out-sync with SBUF write operation. Start bit shift out from TXD Pin first, and then shift 8 bits data. After all the 8 bits data in send shift register is sent, the stop bit shift out from TXD Pin, at the same time TI flag set.

Note: In this mode, when receiving data via UART1, RI cannot be set normally, but user can query RB8 by software for data reception.

Figure 13 - 5 mode1 send the data time series block diagram

Receive is enabled only when REN set 1. UART start to receive data when the falling edge of RXD is detected. The CPU need to sample RXD pin continuously, sampling rate equal 16 times of baud rate. When detecting falling edge, 16 division frequency counter reset immediately to help 16 frequency counter and RXD pin serial data synchronization. 16 frequency counter's every bit time is divided into 16 states, at the 7, 8, and 9 states, the bit detector sample the level on RXD pin. To restrain noise, in this 3 sample states, at least 2 samples data are same, the data will be received. If first received bit is not 0, indicates that this is not a start of frame, this bit is ignored, the receive circuit is reset, wait for the RXD pin of another falling rise. If start bit is valid, then move into the shift register, and then move the other bits to shift register. 8 data bits and 1 stop bit (stop bits contain errors, as described in the description of register SM2) ,after moving, the data of the shift register and the stop bit (stop bits that contain errors) is loaded into SBUF and RB8 respectively,RI set 1, but it must meet the following conditions:

- (1) RI = 0
- (2) SM2 = 0 or stop bit received = 1

If these conditions are met, then stop bit (contain the error stop bit) id loaded into RB8, 8 data is loaded into SBUF, RI is set to 1. Otherwise the receive frame is lost. At this time, the receiver will return to detect RXD port if there has another falling edge. User must use the software to clear RI, and receive again.

Figure 13 - 6 mode1 data receive timing diagram

13.2.3 Mode2: 9 bits UART, fixed baud rate, asynchronous full duplex

In this mode, frame is 11 bits by asynchronous full duplex communication. A frame consists of a start bit (logic 0), 8 data bits (low in front), a programmable 9th data bit and one stop bit (logic 1). Mode2 support for multiprocessor communication and hardware address recognition (see multiprocessor communication chapter). At the time of data transmission, the 9th bits (TB8) can be written 0 or 1, for example, it can be written the parity bit P of PSW, or as a multiprocessor communication of data/address flag. When data is received, the 9th data is moved into RB8 and stop bits are not saved. Baud rate selection SMOD bit equal 1/32 or 1/64 of system work frequency. Function block diagram is shown below.

Figure 13 - 7 UART mode2 functional block diagram

Any SBUF write operations as a destination register will start transmission. Meanwhile TB8 is loaded into the sending shift register's 9th bits. Actually sending is started from the system clock after 16 scale frequency counter's next jump. So bit time is synchronous with 16 frequency division counter, but out-sync with SBUF write operation. A Start bit shift out from TXD Pin first, and then shift 9 bits data. After all the 9 bits data in send shift register is sent, the stop bit shift out from TXD Pin, at the same time TI flag set.

Figure 13 - 8 Mode2 Send the data time series block diagram

Receive is enabled only when REN set 1. UART start to receive data when the falling edge of RXD is detected. The CPU need to sample RXD pin continuously, sampling rate equal 16 times of baud rate. When detecting falling edge, 16 division frequency counter reset immediately to help 16 frequency counter and RXD pin serial data synchronization. 16 frequency counter's every bit time is divided into 16 states, at the 7, 8, and 9 states, the bit detector sample the level on RXD pin. To restrain noise, in this 3 sample states, at least 2 samples data are same, the data will be received. If first received bit is not 0, indicates that this is not a start of frame, this bit is ignored, the receive circuit is reset, wait for the RXD pin of another falling rise. If start bit is valid, then move into the shift register, and then move the other bits to shift register. 9 data bits and 1 stop bit after moving, the data of the shift register and the stop bit is loaded into SBUF and RB8 respectively, RI set 1, but it must meet the following conditions:

- (1) RI = 0
- (2) SM2 = 0 or 9th received bit= 1

If these conditions are met, then the 9th is loaded into RB8, 8 bits data is loaded into SBUF, RI is set to 1. Otherwise the receive frame is lost.

Among the stop bit, the receiver will return to detect RXD port if there has another falling edge. User must use the software to clear RI, and receive again.

Figure 13 - 9 Mode2 receive data timing diagram

13.2.4 Mode3: 9 bit UART, variable baud rate, asynchronous full duplex

Mode3 uses the transmission protocols of mode 2 and baud rate generation method of mode1.

Note: When receive data by using interrupt in mode2/3, one time interrupt request will occur several times breaks. Avoid method: Delay some time before cleared RI flag in the interrupt service routine, delay time is up to one of the current length of the communication baud rate at least.

Figure 13 - 10 UART mode3 function block diagram

13.3 Baud rate generator

Timer 4 UART1/UART2 is used as the baud rate generator. Select Timer 4 work mode: as the baud rate generator. The mode is similar to automatic reload mode. Overflow of Timer 4 will cause 16 -bit value in Timer 4 reload register load into Timer 4 counter via software, and will generate overflow interrupt. If user does not want to generate interrupt, user can close ET4. The baud rate of UART1 mode1 and mode3 is calculated by the formula as below:

 $BaudRate = \frac{1}{16} \times \frac{f_{T4}/PRESCALER}{65536-[TH4,TL4]}$ Timer 4 is the baud rate generator. In the last formula, TH4 and TL4 are data register of Timer 4.

Following table is common Fosc frequency and baud rate corresponding to the Timer 4 count values:

Commonly	Fosc						
used baud rate	4MHz	8MHz	16MHz	32MHz			
1200	FF2F	FE5F	FCBF	F97D			
2400	FF98	FF2F	FE5F	FCBF			
4800	FFCC	FF98	FF2F	FE5F			
9600	FFE6	FFCC	FF98	FF30			
19200	FFF3	FFE6	FFCC	FF98			
38400	/	FFF3	FFE6	FFCC			
57600	/	/	FFEF	FFDD			
115200	/	/	/	FFEF			

13.4 Multiprocessor communication

13.4.1 **Software address recognition**

Mode 2 and mode 3 have applied to communication functions. In both modes, receive data is a 9 -bit data, after the 9th bit data is moved into RB8, next bit is stop. You can set UART: when receiving a stop bit and RB8 = 1, serial port interrupt is valid (request flag RI is set). This moment set SM2, UART work in multiprocessor communication mode.

In multiprocessor communication system, please use the functions as described below. When a host sends a data block to one of several slaves, first send an address byte for addressing the target slave. You can use the 9th bits to distinguish between address byte and data byte, the 9th bit of address byte is 1, and the 9th bit of data byte is 0.

If slave SM2 is 1, it cannot response the interrupt of data byte. Address bytes can enable the interrupt of all slaves, each received address byte is checked by slave, and distinguish whether or not this slave is the target slave. The slave is addressed clear SM2 to 0, and ready to receive incoming data bytes. When finished, once again slave set SM2. The slaves have not been addressed, reserved SM2 bit as 1, do not respond to the data bytes.

Note: in mode 1, SM2 is used to detect whether or not the stop bit is valid, if SM2 = 1, and receive interrupt does not respond until it receives a valid stop bit.

13.4.2 **Automatic (hardware) address recognition**

In mode 2 and mode 3, SM2 is set, UART operation state is as follows: it receives the stop bit, the 9th bit is 1 (address byte), and the data bytes received in accordance with UART slave address, UART generate an interrupt. Slave clear SM2 to 0, the data bytes received subsequently.

The 9th is 1 indicates that the byte is address, not data. When a host sends a group of data to one of slaves, it must be sent the target slave address first. All slaves wait to receive the address byte, in order to ensure interrupt occur only when the receiving address byte, SM2 bit must be set to 1. Automatic address recognition is only the address matched can generate interrupt, and comparison is completed by hardware.

After interrupt, the address matched slave clear SM2, continue to receive data bytes. The slave address does not matched is not affected, and will continue to wait to receive its matched address byte. After all information received, the addresses matched slave must set SM2 again, and ignore all non-address bytes

transmission, until receiving the next address byte.

When user use automatic address recognition, by calling the appointed slave address the host select one or more slaves for communication. Host uses the broadcast address can address all slaves. There are two special function registers, the slave address (SADDR) and address shield (SADEN). Slave address is an 8 bits byte, saved in the SADDR register. SADEN defines SADDR bits is valid or not, if one bit in SADEN is 0, SADDR corresponding bit is ignored, if one bit in SADEN is 1, SADDR corresponding bit will be used to produce the appointed address. This user can flexible address more than one slaves without changing the slave address in SADDR register.

	From the slave1	From the slave2
SADDR	10100100	10100111
SADEN	11111010	11111001
Contract address	10100x0x	10100xx1
Broadcast address	1111111x	11111111

The slave1 and 2 address lowest bit is different. Slave1 the lowest bit is ignored, and slave2 lowest bit is 1. When only slave1 in communication, the host must send the lowest bit is 0 as address (10100000). Similarly, the slave1 lowest bit is 0, slave2 lowest bit is ignored. Therefore, only slave2 in communication, the host must send the lowest bit is 1 as address (10100011). If the host will need to communicate with the two slaves, the bit0 equal 1, bit1 equal 0, bit2 is ignored by the two slaves, and two different addresses for the slave selection (1010 0001 and 1010 0101).

Host uses the broadcast address to communicate with all slaves at the same time. This address is equal bitwise or of the SADDR and SADEN, 0 in result indicates that the bits are ignored. In most cases, the broadcast address is 0xff, the address can be responded by all slaves.

After system reset, SADDR and SADEN registers are initialized to 0, these two results set the appointed address and broadcast address xxxxxxxx (all bits are ignored). By this way the characteristic of communication is removed effectively, and disable the automatic addressing mode. The UART will respond any address, and compatible with the 8051 controller that does not support automatic address recognition. User can implement software address recognition of multiprocessor communication in accordance with the methods above.

13.5 Frame error detection

After 3 error flags are set, only clear to 0 through software, although subsequent frames received without any errors and are not automatically cleared.

13.5.1 Send conflict

If one of the data send is in progress, when user writing data to SBUF, send conflict bit (TXCOL Bit) is set to 1. If send conflict occur, the new data will be ignored, and cannot be written to the send buffer (that do not affect the transmission).

13.5.2 Receive overflow

RI set 1, the data in the receive buffer is not being read, RI is cleared to 0, receive new data again, if user has not read the received data in the buffer before the new data is not received completion (RI set 1), then receive overflow bits (RXROV bit) is set. If receive overflow occur, does not affect the original data in the receive buffer, but subsequent data is lost.

13.5.3 Frame error

If it detects an invalid (low) stop bit, then frames error bit (FE bit) is set to 1.

13.6 UART1 registers

13.6.1 UART1 control register SCON, SCON2

SCON

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	FE	RXROV	TXCOL	REN	TB8	RB8	TI	RI

Bit	Flag	Introductions			
7	FE	Frame error detection bit 0: No frame errors, or software of clearance 0 1: Frame errors, hardware set 1			
6	RXROV	Receive overflow flag 0: without receiving overflow or software of clearance 0 1: Receive overflow, hardware set 1			
5	TXCOL Sending conflict flag 0: No send conflict or software of clearance 0 1: Send conflict, hardware set 1				
4	REN Serial receive enable control bit 0: Disable serial receive 1: Enables serial receive				
3	TB8	In mode2/3, It is the 9th of send data, software set 1 or clear 0			
2	RB8	In mode2/3, It is the 9th of send data, as frame flag of a parity bit or address frame/data			
1	TI	send interrupt request flags bit 0: Software clear 0 1: In mode0, at the end of sending serial send 8th data, the hardware auto set 1, in other mode, when at start of sending stop bit, hardware set 1			
0	RI receive interrupt request flags bit 0: Software clear 0 1: In mode0, at the end of receiving serial send 8th data, the hardware auto sother mode, when at start of receiving stop bit, hardware set 1				

SCON2

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R	R/W	R	R	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	SMOD	-	UX6		-	SM0	SM1	SM2

Bit	Flag	Introductions					
		Double baud rate control bit					
7	SMOD	0 : In mode2, the baud rate = system clock F_{osc} 1/64					
		1 : In mode2, the baud rate = system clock F_{osc} 1/32					
6	1	Reserved (read = 0b, write invalid)					
		Serial port mode0 communication speed bit					
5	UX6	0 : Serial port mode $0 \cdot \text{Clock} = F_{\text{osc}}/12$					
		1 : Serial port mode0 Clock = F _{osc} /2					
4-3	1	Reserved (read = 0b, write invalid)					
2-1	SM0:SM1	Serial mode, see the following table					

0	SM2	Multiprocessor communication enable control bit (9th bit "1" validator) 0: In mode1, does not detect stop bit, set RI whatever stop bit is 0 or 1 In mode2 and 3, not detect 9th bit, set RI whatever any bytes 1: In mode1, enable stop checked, only a valid stop bit= "1" can set RI In mode2 and 3, only the address byte (9th bit = "1") can set RI
---	-----	--

SM0	SM1	Work method	Function description	Baud rate
0	0	0	Synchronous shift transfer serial mode: shift register	When UX6 = 0, the baud rate is $F_{osc}/12$ When UX6 = 1, the baud rate is $F_{osc}/2$
0	1	1	8 bit UART, variable baud rate	Timer4/5 overflow rate /16
1	0	2	9 bit UART	$(2^{\text{SMOD}}/64) \times F_{\text{osc}}$
1	1	3	9 bit UART, variable baud rate	Timer4/5 overflow rate /16

13.6.2 UART1 data buffer register SBUF

Bit	7	6	5	4	3	2	1	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset values	0	0	0	0	0	0	0	0				
Flag		SBUF[7:0]										
Bit	Flag				Introduction	ons						
7-0	SBUF[7:0	There a and one and is s	Serial buffer register: Write as the sent data needed, read as the received data There are actually two separate registers on this address, one for receiving data and one for sending data. When data is written to SBUF, this is a send register and is shifted for serial transmission. When data is read from SBUF, this is a receive register									

13.6.3 UART1 automatic address recognition SADDR, SADEN

Slave address register SADDR

Bit	7	6	5	4	3	2	1	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset values	0	0	0	0	0	0	0	0		
Flag	SADDR[7:0]									

Bit	Flag	Introductions
7-0	SADDR[7:0]	Slave address register

Slave address mask register SADEN

Bit	7	6	5	4	3	2	1	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset values	0	0	0	0	0	0	0	0		
Flag	SADEN [7:0]									

Bit	Flag	Introductions
7-0	SADEN [7:0]	slave address mask register

109

13.6.4 Baud rate selection registerBRTSEL

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag							UART2_BRT_SEL	UART1_BRT_SEL

位编号	位符号	说明			
7-2	-	Reserved bit			
		UART2 Baud rate selection bit			
1	1 UART2_BRT_SEL	0: indicates the overflow rate of timer 5			
		1: indicates the overflow rate of timer 4			
		UART1 Baud rate selection bit			
0	UART1_BRT_SEL	0: indicates the overflow rate of timer 4			
		1: indicates the overflow rate of timer 5			

13.7 UART2

UART2 control and work with UART1 The same register please refer to UART1 Differences:

- 1. UART2 registers deposited in the extended SFR;
- 2. UART2 Only two works;
- 3. UART2 No error detection;
- 4. UART2 No automatic hardware address recognition.

13.7.1 UART2

13.7.1.1 Mode0: 8 bit UART variable baud rate that asynchronous full duplex

Mode0 provides 10 bits full duplex asynchronous communication, 10 bits consist of a start bit (logical 0), 8 data bits (low bit first) and one stop bit (logic 1). When receiving, 8 data bits stored in SBUF and stop bit stored in RB8. Mode1 baud rate equals Timer 4 overflow rate /16.

Any S2BUF write operations as a destination register will start transmission. Actually sending is started from the system clock after 16 scale frequency counter's next jump. So bit time is synchronous with 16 frequency division counter, but out-sync with S2BUF write operation. Start bit shift out from TXD Pin first, and then shift 8 bits data. After all the 8 bits data in send shift register is sent, the stop bit shift out from TXD Pin, at the same time TI flag set.

Figure 13 - 11 Send timing of mode0

Receive is enabled only when REN set 1. UART start to receive data when the falling edge of RXD is detected. The CPU need to sample RXD pin continuously, sampling rate equal 16 times of baud rate. When detecting falling edge, 16 division frequency counter reset immediately to help 16 frequency counter and RXD pin serial data synchronization. 16 frequency counter's every bit time is divided into 16 states, at the 7, 8, and 9 states, the bit detector sample the level on RXD pin. To restrain noise, in this 3 sample states, at least 2 samples data are same, the data will be received. If first received bit is not 0, indicates that this is not a start of frame, this bit is ignored, the receive circuit is reset, wait for the RXD pin of another falling rise. If start bit is valid, then move into the shift register, and then move the other bits to shift register. 8 data bits and 1 stop bit (stop bits contain errors, as described in the description of register SM2) ,after moving, the data of the shift register and the stop bit (stop bits that contain errors) is loaded into SBUF and RB8 respectively,RI set 1, but it must meet the following conditions:

- (1) RI = 0
- (2) SM2 = 0 don't judge stop bit or SM2=1 judge stop bit, and stop bit must be 1

If these conditions are met, then stop bit (contain the error stop bit) id loaded into RB8, 8 data is loaded into SBUF, RI is set to 1. Otherwise the receive frame is lost. At this time, the receiver will return to detect RXD port if there has another falling edge. User must use the software to clear RI, then receive again.

Figure 13 - 12 Receive timing of mode0

13.7.1.2 Mode1: 9 bit UART variable baud rate, asynchronous full duplex

In this mode, frame is 11 bits by asynchronous full duplex communication. A frame consists of a start bit (logic 0), 8 data bits (low in front), a programmable 9th data bit and one stop bit (logic 1). Model support multiprocessor communication. At the time of data transmission, the 9th bits (TB8) can be written 0 or 1, for example, it can be written the parity bit P of PSW, or as a multiprocessor communication of data/address flag. When data is received, the 9th data is moved into RB8 and stop bits are not saved.

Any SBUF write operations as a destination register will start transmission. Meanwhile TB8 is loaded into the sending shift register's 9th bits. Actually sending is started from the system clock after 16 scale frequency counter's next jump. So bit time is synchronous with 16 frequency division counter, but out-sync with SBUF write operation. A Start bit shift out from TXD Pin first, and then shift 9 bits data. After all the 9 bits data in send shift register is sent, the stop bit shift out from TXD Pin, at the same time TI flag set.

Figure 13 - 13 Send Timing of model

Receive is enabled only when REN set 1. UART start to receive data when the falling edge of RXD is detected. The CPU need to sample RXD pin continuously, sampling rate equal 16 times of baud rate. When detecting falling edge, 16 division frequency counter reset immediately to help 16 frequency counter and RXD pin serial data synchronization. 16 frequency counter's every bit time is divided into 16 states, at the 7, 8, and 9 states, the bit detector sample the level on RXD pin. To restrain noise, in this 3 sample states, at least 2 samples data are same, the data will be received. If first received bit is not 0, indicates that this is not a start of frame, this bit is ignored, the receive circuit is reset, wait for the RXD pin of another falling rise. If start bit is valid, then move into the shift register, and then move the other bits to shift register. 9 data bits and 1 stop bit after moving, the data of the shift register and the stop bit is loaded into SBUF and RB8 respectively, but it must meet the following conditions:

(1) RI = 0

(2) SM2 = 0

If these conditions are met, then the 9th is loaded into RB8, 8 bits data is loaded into SBUF. But need to detect stop bit, only stop bit is 1, RI can be set, if stop bit is 0,RI will not be set.

Figure 13 - 14 Receive timing of mode1

13.7.2 UART2 control register S2CON, S2CON2

S2CON

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	FE			REN	TB8	RB8	TI	RI

Bit	Flag	Introductions
7	FE	Frame error detection bit 0: No frame errors, or software of clearance 0 1: Frame errors, hardware set 1
6-5	-	Reserved (read = 0b, write invalid)
4	REN	Serial receive enable control bit 0: Disable serial receive 1: Enables serial receive
3	TB8	In mode1, It is the 9th of send data, software set 1 or clear 0
2	RB8	In model, It is the 9th of send data, as frame flag of a parity bit or address frame/data
1	TI	send interrupt request flags bit 0: Software clear 0 1: when at start of sending stop bit, hardware set 1
0	RI	receive interrupt request flags bit 0: Software clear 0 1: when at start of serial receiving stop bit, hardware set 1

S2CON2

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				-			SM1	SM2

Bit	Flag	Introductions
7-2	-	Reserved (read = 0b, write invalid)
1	SM1	0: 8 UART the Timer 5 overflow rate /16 1: 9 UART the Timer 5 overflow rate /16 Note: 1, UART2 Sets the baud rate as described in Timer 5 mode 1: UART2 Baud rate generator Chapters.

113

		2, UART2 maximum communication baud rate can be achieved 38400Bd.
0	SM2	The 9th bit detection enable bit 0: In mode0, does not detect stop bit, set RI whatever stop bit is 0 or 1 In mode1, not detect 9th bit, set RI whatever the 9th bit is 0 or 1 1: In mode0, enable stop checked, only stop bit is 1 can set RI In mode1, only the 9th bit is 1 can set RI

13.7.3 UART2 data buffer register S2BUF

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				S2BU	F[7:0]			

Bit	Flag	Introductions
7-0	S2BUF[7:0]	Serial buffer register: Write as the sent data needed, read as the received data. There are actually two separate registers on this address, one for receiving data and one for sending data. When data is written to S2BUF, this is a send register and is shifted for serial transmission. When data is read from S2BUF, this is a receive register

114

14 Serial peripheral interface SPI

14.1 SPI characteristics

- Full duplex, three/Four-wire synchronous transmission
- ➤ Master and slave operation
- Level programmable master clock frequency
- Polar and phase programmable serial clock
- Selectable data transfer direction
- Write conflict and receive the overflow flag
- ➤ MCU interrupt main mode conflict detection
- MCU interrupt transmission end flag
- ightharpoonup Host mode supports up to 8Mbps transmission rate (F_{osc} =32MHz), slave mode speed must equal F_{osc} /16 or below F_{osc} /16

14.2 SPI signal description

Master output and slave input (MOSI): the signal connected master and a slave, data from master serial sent to the slave by MOSI, and master output, slave input.

Master input and slave output (MISO): the signal connected master and a slave, data from slave serial sent to the master by MISO, and slave output, master input. When the device is slave and has not been selected, MISO pin of slave in a high impedance state.

Serial clock (SCK): the signal used for control MOSI MISO synchronous operations of the input and output data, each 8 clock cycles MOSI and MISO transmits a byte, if the salve is not selected, SCK signal will be ignored. Note: only the master device can generate the SCK signal.

Slave device select pin (\overline{SS}) : each slave devices is selected by pin (\overline{SS}) . When the signal is low level, indicating that the slave is selected. Master can control the pin (\overline{SS}) port level of slave device by software to select each of slaves, clearly that only a master device can drive total transmission network. In order to avoid the MISO bus conflict, only enable one slave device to communicate with master device at the same time. In master **mode**, the (\overline{SS}) Pin state is associated MODF flag in SPI state register SPSTAT to avoid more than one master device driver MOSI and SCK.

The following conditions, (\overline{SS}) pin can be used as normal port or other functions:

- (1) Device as the master equipment, SSIG flag in SPI control register SPCTL is set to 1. This configuration only support one master device in the communication network, therefore, the MODF flag in SPI state register SPSTA will not be set to 1.
- (2) Device as the slave device, CPHA and SSIG flags in SPI control register SPCTL are set to 1. This configuration only support one master and one slave device in the communication network, therefore, the device are always selected, master device does not need to control the slave device (\overline{SS}) pin as the communication goal.

When the slave device (\overline{SS}) pin is enabled, other devices can enable the pin to maintain a low level to select the device. In order to avoid the MISO bus conflict, in principle, don't enables two or more devices are selected.

When the master device (SS) pin is enabled, If (SS) is pulled down will set the mode error flag MODF (interrupt), and MSTR bit will also be cleared to 0, the device will be switched to slave device compulsorily.

When MSTR = 0 (slave model) and CPHA = 0, SSIG must be 0, because the data transmission need cooperation with (\overline{SS}) pin at this time.

14.3 SPI clock rate

In the master mode, SPI transmission rate have 4 levels, namely the internal clock 4, 16, 64, 128 frequency division, user can select by SPR[1:0] bit in SPCTL register.

14.4 SPI functional block diagram

Figure 14 - 1 SPI functional block diagram

14.5 SPI work mode

SPI can be configured in master mode or slave mode. SPI module configuration and initialization by setting the register related. Further setting that is used to complete the data transfer.

During SPI communication, data is moved serial in and out synchronously, serial clock (SCK) is used to keep data movement and sample synchronization on two serial data lines (MOSI & MISO). The slave device $\overline{(SS)}$ pin can be selected slave device independently, if the device is not selected, user cannot participate in the SPI activity on the bus.

When SPI master device transmits data to the slave device by MOSI, as response the slave device send data to master device by MISO, and achieve the data at the same clock sending and receiving of synchronous full duplex transmission. Send shift register and receive register use the same SFR address, the write operation of SPI data register SPDAT will write into send shift register, the read operation will get the receive shift register data.

Note: the data written does not affect the read data needed.

Figure 14 - 2 Full-duplex master/slave interconnect diagram

Master mode

(1) Mode startup

SPI master control the startup of all data transfer on the SPI bus. Only one master device can enable transfer on one SPI bus.

(2) Send

SPI master mode, when write a byte of data to the SPI data register SPDAT, data will be written to the send shift buffer. If one data already in the send shift register or is being transferring, SPI will generates a

WCOL signal to indicate that writing is too fast. But the data in send shift register will not be affected, send is not disrupted.

(3) Receive

When SPI master device transmits data to the slave device by MOSI, via MISO pin, data in sent shift register of it can also be transfer to the receive shift register of the master device, and achieve full-duplex operation. So SPIF flag is set to 1 indicates the data sent completed and the data received is complete also. The SPI module is receive double buffer, that is to say, data can be read out after SPIF is set to 1, but it must be read out before the next byte of data receive completed, otherwise it will reset the receiver overflow flag RXOV, If receive the overflow occur, subsequent data will not be moved into the receive registers, when receive overflow, SPIF could properly set to 1.

Slave mode

(1) Mode start up

Set MSTR to 0 (If (\overline{SS}) is enabled it must be pulled low), the device run in slave **mode**, **mode** cannot be changed during data transfer ((\overline{SS}) pins must maintain low level), or the data transfer will fail (SPIF will not be set to 1).

(2) Send

SPI slave the device cannot start the data transfer, so SPI salve device must write the data is transmitted to master into send shift register before the master starts a new data transfer of data. If they are not data be written to a send shift register before sending, slave device will transfer data "0x00" to the master device. If the shift register has data when writing data (or in transmitting), the WCOL flag of SPI slave device will be set to 1, indicates the SPDAT writing is conflicted. But the data in shift register will not be affected, transmission is not disrupted. SPIF will be set to 1 when transfer is done.

(3) Receive

IN Slave mode, it is controlled by SCK signal of master device, data shift via MOSI, when the counter count SCK Edge to 8, represents a byte of data is received, SPIF will be set to 1, data can be read from SPDAT register, but it must be read out before next data receive completion, otherwise the receiver overflow flag RXOV will be set, if receiving overflow has occurred, subsequent data will not be moved into the receive registers, when receive overflow, SPIF could properly set to 1.

14.6 SPI transfer form

By software setting the CPOL and CPHA bit in register, the user can choose SPI the four combinations of clock polarity and phase. CPOL bit define clock polarity and that the level of free time. CPHA bit define clock phase, as define the sampling clock edge that enables data transfer. In two master and slave devices communication, clock polarity and phase settings should keep consistent.

Figure 14 - 3 Data transfer form (CPHA=0)

If CPHA = 0, data is captured at the SCK first edge, so the slave device must be ready before SCK first edge, so the slave device start to sample data from the falling edge of (\overline{SS}) pin. (\overline{SS}) pin must be pulled high after one byte transmit every time, and be pulled down before sending the next byte again, so when CPHA = 0, SSIG is not valid, that is to say, (\overline{SS}) pin is forced to enabled.

Figure 14 - 4 Send form data (CPHA=1)

If CPHA = 1, Master device output data to MOSI at SCK first edge, the slave device keep the SCK first edge as a start signal. User must complete the SPDAT write operation during first 2 edges of first clock,. Transfer each other modes cannot be changed, or the sending and receiving of data will fail, the mode changed of register data (send data), and state (receive empty) are unchanged. This form of data transfer is the first forms of a single between master-slave communication devices.

Figure 14 - 5 CPHA/ (\overline{SS}) timing sequence

14.7 SPI Error detection

The flags in SPSTA register define SPI communication errors:

(1) Mode fault (MODF)

Mode fault in SPI master mode shows (\overline{SS}) Pin level is inconsistent with the actual mode of device, MODF flag will be set to 1 (can occur interrupt), and indicates there have multi-master devices conflict in SPI control system, this moment the hardware clear the SPEN bit automatically, namely close SPI modules first and hardware clear MSTR bits automatically. If need to restart the SPI module, MODF must be written 1 and cleared 0 by software, then set SPEN.

(2) Write conflict (WCOL)

When data is not being sent or in sending, continue write data operation to SPDAT will cause a write conflict, WCOL bit will be set to 1, but sending does not terminate. Need software write 1 and clear 0.

(3) Receive the overflow (RXOV)

When before the completion receive of the second data, if previous received data SPIF flag has not been cleared, the receive overflow flag RXOV will be set, when SPIF is set to 1, later received data will not be saved in register, so before saving the receive data into SPDAT, SPIF must be cleared, RXOV need software write 1 and clear 0.

14.8 SPI interrupt

SPI state flags SPIF&MODF can generate a CPU interrupt request.

Serial data transmission completion flag SPIF: hardware set to 1 after one byte of data sent/receive is

completed.

Fault mode flag MODF: the bit is set to 1 is the device mode (master) is inconsistent with (\overline{SS}) pin levels, SSIG bit is 1 ((\overline{SS}) has not been enabled), no MODF interrupt request.

Figure 14 - 6 SPI interrupt request generation

14.9 SPI configuration table

SPEN	SSIG	- SS	MSTR	Master or slave mode	MISO	MOSI	SCK	Notes
0	X	I/O	X	SPI function disable	I/O	I/O	I/O	SPI disable
1	0	0	0	Slave mode	Output	Input	Input	Select slave
1	0	1	0	Slave mode not selected	High impedance	Input	Input	Not selected. MISO is high impedance to avoid bus conflict
1→0	0	0	1→0	Close SPI	Output	Input	Input	SS configured as input, SSIG is 0. If SS is driven as low level, the device is selected as slave. This moment MSTR clear 0 and set the mode error flag MODF, and it can be used to interrupt request.
1	0	1	1	Master (free)	Input	High impedance	High impedance	When the master is idle, MOSI and SCK are high impedance state to avoid a bus conflict. User must pull up or pull down SCK (according to CPOL value) to avoid SCK in floating. As a master in
				Master (active)		Output	Output	active, the MOSI and SCK are push-pull output.
1	1	I/O	0	Slave	Output	Input	Input	CPHA Cannot be 0
1	1	I/O	1	Master	Input	Output	Output	-

14.10 SPI registers

14.10.1 SPI control register SPCTL

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	SSIG	SPEN	DORD	MSTR	CPOL	СРНА	SPR[1:0]	

Bit	Flag	Introductions
		(SS) pin enable bit
7	SSIG	$0: (\overline{SS})$ pin is used to determine the device is master or slave
		1 : MSTR determine the device is master or slave, (SS) pin as normal I/O
		SPI enable bit
6	SPEN	0 : Disable SPI module, related pins are general I/O (recommended I/O set
		high impedance)
		1 : Enable SPI module, related pins are SPI communication pins Transfer direction selection bit
5	DORD	0: MSB send first
3	DOKD	1: LSB send first
		Master/slave mode selection bit
4	MSTR	0 : Slave mode
		1 : Master mode
		SPI Clock polarity selection bit
3	CPOL	0 : Low level when SCK idle
		1 : High level when SCK idle
		SPI Clock phase selection bit
		0: Data sample at the SPI the first edge of the clock
2	СРНА	1 : Data sample at the SPI the second edge of the clock
		Note: When $SSIG = 0$ &CPHA = 0, at (\overline{SS}) low the data is driven; and when
		CPHA = 1, the data is driven at the edge of the previous SCK.
		SPI clock rate selection control bit 00 : F _{osc} /4
1-0	SPR[1:0]	$00 : F_{osc} / 4$ $01 : F_{osc} / 16$
1-0	51 K[1.0]	$10: F_{osc} / 10$
		$11: F_{osc} / 128$

14.10.2 SPI state register SPSTAT

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R	R	R	R
Reset values	0	0	0	0	0	0	0	0
Flag	SPIF	WCOL	RXOV	MODF			-	·

Bit	Flag	Introductions
7	SPIF	SPI transfer complete flag 0 : Software write 1 clear 0 1 : One time transfer is completed, the hardware set 1,and also as interrupt request flag
6	WCOL	SPI write conflict flag 0: Software write 1 clear 0 1: Implement SPDAT writing operation during transfer, hardware set 1, (the data being transmitted is not affected)
5	RXOV	SPI receive overflow flag 0: Software write 1 clear 0 1: Received overflow occur, hardware set 1 Note: receive is double BUFF and receive overflow occur at the time of previous received data SPIF flag has not been cleared before the completion receive of the second data. So SPIF must be cleared before ready to receive next data every time, otherwise RXOV will be set to 1, it does not affect the SPI receive.
4	MODF	Fault mode flag 0: Software write 1 clear 0 1: When (SS) pin level is inconsistent with SPI mode, hardware set 1 (and switch to slave mode immediately), as interrupt request flag.
3-0	-	Reserved (read = 0b, write invalid)

14.10.3 SPI data register SPDAT

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				SPDA	T[7:0]			

Bit	Flag	Introductions
7-0	SPDAT[7:0]	SPI data register

15 IIC bus

15.1 IIC characteristics

- > Double line communication
- > Support master mode and slave mode
- Support multi-master communication with clock arbitration function
- Support address programmable
- Support standard data rate (up to 100kbps) and fastest data rate (up to 400kpbs)

Figure 15-1 IIC function diagram

15.2 IIC bus work principle

In physical architecture, IIC system is consist of a serial data line SDA and clck line SCL. Master transmit information as regular communication protocal, during data transmission, the initialization is cpmpleted by master. Master transmit data via SDA, meanwhile transmit clock via SCL. Transmission target and direction, start and end of transmission are all determined by master.

Every device has a unique address, and it could be single receiver or transceiver device. Transmitter or receiver could be operated in master or slave mode. It is determined whether or not the chip must be start up data transmission or be addressed only.

Below is general, typical IIC bus connection mode.

Figure 15-2 IIC bus connection diagram

15.3 Bus data availability

IIC bus transmits data by serial. High bit of byte is transmitted first, each bit has a corresponding clock edgeon SCL. A stable logic level must be maintained on data line during clock high level, high level is data 1, low level is data 0, the level of data line is permitted to change only during clock is low. As figure 15-3 below:

Figure 15-3 IIC bus data availability

15.4 Bus signal

IIC bus data transmission includes 4 types signal, they are: start signal, stop signal, restart signal, acknowledge signal.

Start signal (START): As Figure 15-4 shown, when SCL is high level, SDA transition from high level to low, it is start signal. When bus is idle, for example, no device is using the bus(SDA and SCL are high), master send start signal to establish communication.

Figure 15-4 Start, restart, stop signal

Stop signal (STOP): as figure 15-4 shown, when SCL is high level, SDA transition from low level to

high, it is stop signal. Master end the data communication by sending a stop signal.

Restart signal (repeated START): on IIC bus, master send a start signal to start-up one time communication, before first time sending stop signal, by sending a repeated start, master can change the communication mode with current slave or switch to communicate with other slaves. As figure 15-5 shown, when SCL is high, SDA transition from high to low, a repeated start signal is generated, it is a start signal essentially.

Figure 15-5 IIC bus acknowledge signal

Acknowledge signal (A): after slave received 8 bit data, it will send to master a special low level. Every byte must be followed by a acknowledge bit to indicates data has been received. Acknowledge appeared at the 9th clock cycle, the master must release data line at this time, and slave pull down the SDA line to generate acknowledge signal, or slave maintain the SDA line as high to generate a no acknowledge(A), as Figure 15-5 shown. So one byte transmission needs 9 clock cycle. If slave as receiver send no acknowledge signal to master, the slave will end the transmission, and release SDA line. Any above cases will end the data transmission. At this time master sends stop signal to release bus, or generates repeated start signal to restart a new transmission. Start signal, repeated start and stop signal are all controlled by master, acknowledge signal is generated by receiver.

15.5 Bus data Initialization format

In general, a standard IIC communication is consist of 4 parts: start signal, slave address transmission, data transmission, stop signal.

Master send a start signal to start up one time IIC communication; after master address slave, then transmit data on bus. Every data is 8 bits, high bit sent first, and every byte must be followed by a acknowledge bit. The lengths of data are not limited; after end of all data transmission, master send a stop signal to end the communication.

Figure 15-6 IIC Bus data transmission format

As Figure 15-6 shown, data transmission will be stopped when clock is low. After one byte received, this case can be used to the receiver need some other operation but cannot receive next data immediately, and force bus to idle status, until the receiver ready to receive new data, it will release clock signal to enable transmission again. For example, when receiver got one byte from master, system will generate and enter interrupt processing, after the interrupt next byte can be received, and in interrupt procedure the receiver will maintain low level of SCL until the interrupt end.

15.6 IIC bus addressing appointment

Slave device on IIC bus has a special 7 bits slave address usually, it has up to 128 coded space when use 7 bits slave address, so based on original 7 bits address, 10 bits address code format. It is match IIC bus protocol too.

"Broadcast call" is an exception, it can address all devices by writing 0 to the first byte. Broadcast call is used to the case that master need send the same information to several slaves. When the address is using, the other devices will respond or ignore as software configuration. If device responds broadcast call, the operation is same as slave receive mode.

15.7 Process of master write one byte to slave

As Figure 15-7 shown, when master send one byte to slave, first master send a start signal, and a slave address followed, the address has 7bits, then the 8th bit followed is data direction bit(R/W), 0 indicates master send data (write), 1 indicates master receive data (read), this time master wait slave give a acknowledge(A), when master received an acknowledge signal, send the address will be accessed, and wait slave give an acknowledge again, then master will send one byte data after received an acknowledge, and continuous to wait slave give an acknowledge, when master received the acknowledge, it will generate a stop signal, and end the transmission.

125

Figure 15-7 Master write one byte data to slave

As Figure 15-8 shown, master read one byte data from slave, first master sends a START signal, then follows a slave address, the 8th bit of the address is 0, it is indicates a write command to slave, the master wait slave give an acknowledge(A) at this time, when master received an acknowledge signal, send the address will be accessed, and wait slave give an acknowledge again, then master will change the communication mode(master changed from transmitter to receiver, slave changed from receiver to transmitter) after received an acknowledge. So master send a restart signal, then follows a slave address, the 8th bit is 1, it is indicates master has been set receive mode and start to receive data, this time master wait an acknowledge from slave, when master received acknowledge signal, then it can receive one byte data, when receive is completed, master send a no acknowledge signal, it is indicates receive end, master generates a stop signal, and end the transmission.

Figure 15-8 Master read one byte data from slave

15.8 IIC work mode

15.8.1 Master send mode

In master send mode, master send data to slave as next steps. Master write CR[2:0] to set expected clock rate and set IICEN bit to enable IIC bus, set STA bit to enter master send mode, as long as bus is idle, hardware will test bus and generates start signal, after the start signal is generated, SI bit will be set and status code of IICSTA is 08H, then load target address and data direction it "write" (SLA + W) into IICDAT, SI bit must be clear to 0 when SLA +W start to transmit.

Figure 15-9 Master send mode flow and status

15.8.2 Master receive mode

In master receive mode, master receive data from slave as next steps. Start of transmission is same as master send mode, the target address and data direction it "read" (SLA + R) will be loaded into IICDAT, after SLA + R byte is sent, and return an acknowledge, reset SI bit and read IICSTA as 40H, SI bit must be cleared to 0 to receive data from slave, if AA is set, master receiver will respond slave transmitter, if AA is cleared, master receiver will not respond slave, and release slave receiver as no-addressed slave, then master generates stop signal, repeat start signal to terminate transmission or start another transmission.

Figure 15-10 Master receive mode flow and status

15.8.3 Slave send mode

In slave send mode, slave send some data to master as next steps: after configure IICADR and IICCON register value, IIC wait itself address is addressed "read" (SLA + R). if arbitration fails, it can enter slave transmit mode.

After slave is addressed by SLA+W, user should clear SI flag to transmitt data to master transmitter, in general, master receiver return repoonse after slave send every byte, if the acknowledge is not been received, and if the transmission continuous it will send all "1", it will become no-addressed slave, if AA flag is cleared during transmission, slave send the last byte, next time the transmission data are all "1", slave is no-addressed.

Figure 15-11 Slave send mode flow and status

15.8.4 Slave receive mode

In slave receive mode, slave receive some data from master as next steps: before starting, IICADR must be loaded reponse device address to addressed by master, AA bit must set to enable repond itself slave address or broadcast call, and after above initialization completed, IIC wait itself address is addressed and data direction bit "write" (SLA + W) or addressed by broadcast call. If arbitration fails, it can enter slave receive mode.

After slave is addressed by SLA + W, user should clear SI flag to receive data from master, During transmission, if AA flag equal 0, slave will return no-acknowledge after the data received next time, slave is no-addressed and separate from master, cannot receive any data in IICDAT, and maintain the current data received.

Figure 15-12 Slave receive mode flow and status

15.8.5 Broadcast call

Broadcast call is one of special slave receive modes, that is slave address and data direction bit are all 0, the slave is addressed by broadcast call has different status code in IICSTA register of normal slave receive mode, arbitration fails, it can generate broadcast call.

Figure 15-13 Broadcast call mode flow and status

15.8.6 Other status

There have 2 status code different with 24 defined status, that are 0F8H and 00H mentioned above.

The first status code 0F8H indicates no remated information is got during transmission, meanwhile, SI flag is 0 and no IIC interrupt request.

The other status code 00H indicates errors occur during transmission, bus error is generated when START or stop signal appeared at illegal positon temporarily, for example the second bit change to 8th bit in address byte, or data byte and reponse bit error on bus, SI is set immediately, when IIC bus error is detected, the device immediately change to no-addressed slave mode, and release SDA and SCL line, set SI flag, load 00H to IICSTA. User want recover from bus error status, STO bit must be set logic 1 and SI must be cleared to 0, then STO is cleared by hardware and release IIC bus when no stop signal.

Special case: if no successful generation of START or repeated start signal, IIC bus is resisted by low level of SDA, for example one slave CPU clock has not synchronization bit, user can send extra clock pulse on SCL to solve the problem. When STA is set, IIC hardware send extra clock pulse, but because SDA is pull down to 0, it can not generate start signal, shen SDA bus is released finally and send a normal START

condition, then enter status 08H, continuous to excute serial transmission. Shen SDA is low, if send repeated start signal, IIC hardware will excute the same operation above. Under this condition, after successfully send start signal, bus will enter status 08H, and not 10H.

Note: software can not solve these kind of bus problem.

15.9 IIC bus registers

15.9.1 IICcontrol register IICCON

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	CR2	IICEN	STA	STO	SI	AA	CR1	CR0

Bit	Flag	Introductions
7	CR2	IIC communication clock selection bit 2
		IIC module enble bit
6	IICEN	0: diable IIC module
		1: start up IIC module
		Start bit
		0: Don't send start signal
5	STA	1: When bus idle generate start signal. When busy, wait stop signal then generate a start
		signal. In master mode, when IIC prepare transmit or receive one or multi-bytes, set 1
		to generate a repeated start signal.
		Stop bit
		0: Don't send stop signal
	STO	1: Master mode generates stop signal, when detect stop signal apppeared on bus, IIC
4		hardware clear STO flag. STO flag is used to recover IIC device from error status
-		(IICSTA is 00H). Under this condition, no stop is sent on IIC bus. If STA and STO is
		set 1 all, and in master mode the device is original, IIC bus will generate stop signal
		followed with a start signal immediately, If the device in slave mode, set STO will
		return to no-addressed slave, STO will be cleared by hardware.
		IIC serial interrupt flag
3	SI	0: no IIC serial interrupto ccur
	51	1: Set 1 when generate IIC communication status code except 0F8H, must be cleared
		0 by software.
		Acknowledge flag
2	AA	0: Respond NACK (SDA is high)
		1: Repond ACK (SDA is low)
1	CR1	IIC communication selection bit 1
0	CR0	IIC communication selection bit 0

CR[2:0] IIC communication clock selection bit:

CR2	CR1	CR0		分频系数			
CKZ	CKI	CKU	6MHz	12 M Hz	16 M Hz	24 M Hz	刀侧苯蚁
0	0	0	23KHz	47KHz	63KHz	92KHz	256
0	0	1	27KHz	54KHz	71KHz	108KHz	224
0	1	0	31KHz	63KHz	83KHz	124KHz	192
0	1	1	37KHz	75KHz	100KHz	148KHz	160
1	0	0	6.25KHz	12.5KHz	17KHz	25KHz	960
1	0	1	50KHz	100KHz	133KHz	200KHz	120
1	1	0	100KHz	200KHz	266KHz	400KHz	60
1	1	1	T5 ove	rflow rate /8(N	eed to configure	e timer 5 as baud rate	generator)

15.9.2 IIC state register IICSTA

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R	R
Reset values	1	1	1	1	1	0	0	0
Flag			IICSTA[7:3]				-	

Bit	Flag	Introductions
7-3	IICSTA[7:3]	IIC status code, total have 26 possible status codes, SI bit can be set except status
		code 0F8H
2-0	-	Reserved

15.9.3 IIC data register IICDAT

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				IICDA	T[7:0]			

Bit	Flag	Introductions
		IIC data
		IICDAT include one byte will be transmitted or received IIC data just
		now. only SI = 1, data in IICDAT will maintain, during IIC send/receive,
7:0	7:0 IICDAT[7:0]	the result to read or write IICDAT are all uncertain.
		When data in IICDAT is removed, data on bus is updated to IICDAT
		synchronously. IICDAT shows current last byte on IIC bus. So when lost
		arbitration, IICDAT original value will be changed after transmission.

133

15.9.4 IIC address register IICADR

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag]	ICADR[7:1]]			GC

Bit	Flag	Introductions
7 1	HCADD[7.1]	Slave mode: IIC device slave address itself
/-1	7-1 IICADR[7:1]	Master mode: no effect
		Broadcast call bit
		0: Broadcast call is ignored
0	CC	1: If AA flag is1, broadcast call is recognized, if AA is 0, it is ignored.
0	GC	Note: the bit is valid in slave mode only, and no effect to master mode. When as
		slave, and set AA flag, in idle mode, if other master addressing address matchs
		to slave address, and slave will be woken up.

16 Analog to digital converter ADC

16.1 ADC characteristics

- > Up to 16 external channels and 2 internal channels (include GND) 12/10 bits ADC detection
- > Optional internal reference voltage 2V,3V,4V, VDD and external Vref
- Optional convert data align orientation
- > Optional convert data bit
- ADC Conversion complete interrupt
- Single channel (P0.2 port) ADC wakeup interrupt

Figure 16 - 1 ADC functional block diagram

16.2 ADC power saving wakeup

After chip enters IDLE or PD mode, ADC power saving wakeup function can wake chip from the mode, operation as below:

- 1. ADC wakeup control register configuration can enable wakeup
- 2. Configure P0.2 as an analog channel
- 3. Configure the wakeup resistance by select P0.2 pull-up resistor register
- 4. Enter PD mode
- 5. When the key is pressed, if the voltage on port is less than 4.2V (@VDD=5V), Chip will be woken up from power-down mode, and set AMWIF Flag, ADC interrupt occur if the interrupt enabled
- 6. After wake up, turn off the wakeup module and output a high level on P0.2, R1 is used to equivalent internal wakeup resistance
- 7. Open ADC, sampling the voltage on wakeup channel, then distinguish the different buttons depend on different voltage.

Figure 15 - 2 ADC power saving wakeup function block diagram

Figure 15 - 3 ADC series resistor key input application reference circuit

16.3 ADC registers

16.3.1 ADC control register ADCC0,ADCC1

ADCC0

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	1	1
Flag	ADCEN	ADCST	ADCIF	-	VREFO	VREFS	INREF	S[1:0]

Bit	Flag	Introductions
7	ADCEN	ADC module power control bit 0 : Close ADC conversion power 1 : Open ADC conversion power Note: 1. ADCEN set 1 or after switch conversion channel, recommended start ADC

		Conversion after delay some time. 2. In power-down mode, ADCEN force to 0.
		3. When start ADC conversion, ADC power saving wakeup function must be closed.
6	ADCST	ADC start control bit 0: After the conversion is complete, hardware clear 0 automatically, during the conversion, software clear 0 will stop the conversion. 1: Start conversion Note: ADCIF need to clear 0 before start conversion, when ADCIF equal 1, set ADCST cannot start a new conversion.
5	ADCIF	ADC interrupt flag 0: No ADC conversion interrupt 1: After conversion, hardware set 1, can be used for interrupt request (must be software clear 0)
4	-	Reserved (read = 0b, write invalid)
3	VREFO	VREF output enable bit 0: VREF no output 1: From P0.4 output VREF. (this moment P0.4 mast be set analog input, and VREFS Must be 0)
2	VREFS	VREF selection bit 0: Select internal VREF 1: Select external VREF (this moment P0.4 as ADC reference voltage input only, and port must be set analog input)
1-0	INREF_S	ADC internal reference voltage selection bit 00: VDD 01: Internal 4V 10: Internal 3V 11: Internal 2V Note: when the internal reference voltage is 1.3V, the VDD voltage must be higher than 2V; When the internal reference voltage is 2V, the VDD voltage must be higher than 2.7V; When the internal reference voltage is 3/4V, the VDD must be more than 0.5V higher than the internal reference voltage. Before the system enters the power failure mode, it is recommended to set the ADC reference voltage to non-VDD to further reduce the power consumption of the system.

ADCC1

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	ICHS[1:0]		-	-	XCHS[3:0]			

Bit	Flag	Introductions
7-6	ICHS[1:0]	ADC internal input channel selection bits 00 : Disable internal channel 01 : 1/4VDD as ADC input channel 10 : Reserved 11 : GND
5-4	-	Reserved (read = 0b, write invalid)
3-0	XCHS[3:0]	ADC external input channel selection bits $XCHS[3:0] = x(x = 015)$, x defines the current test channel as ANx, such as $XCHS[3:0] = 3$, the current test channel is external channel AN3. Except external channel must be set $XCHS[3:0]$, corresponding Pin need be set analog input.

137

16.3.2 ADC control register ADCC2、ADCC3

ADCC2

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	ADCL	ALIGN	A	ADCTS [2:0		I	ADCS[2:0]	

Bit	Flag	Introductions
7	ADCL	ADC conversion data length control bit 0: ADC conversion result is 12 bit data 1: ADC conversion result is 12 bit data (get 12 bits high 10 bits)
6	ALIGN	ADC data alignment direction control bit Refer to the ADC conversion data format description table below
5-3	ADCTS [2:0]	When ADC clock is 4MHZ configure the 3bits to 000b, one time conversion needs 22 ADC_CLK When ADC Clock is 2MHZ&1MHZ, configure the 3bits to 001b or 010b, one time conversion needs 19 ADC_CLK When ADC clock <1MHZ, configure the 3bits to 011b/100b/101b/110b/111b, one time conversion needs 15 ADC_CLK Note: This configuration bit only applies to internal reference voltage 1.3/2/3/4V. If VDD is selected as the reference voltage, 15 ADC_CLK can be selected regardless of the number of ADC clock
2-0	ADCS[2:0]	ADC clock selection bit 000: F _{osc} /2 001: F _{osc} /4 010: F _{osc} /6 011: F _{osc} /8 100: F _{osc} /12 101: F _{osc} /16 110: F _{osc} /24 111: F _{osc} /32

ADC conversion data format description table:

ADCI	ALICN		ADCRH					ADCRL									
ADCL	ALIGN	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	0	D11	D10	D9	D8	D7	D6	D5	D4	/	/	/	/	D3	D2	D1	D0
0	1	/	/	/	/	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	D11	D10	D9	D8	D7	D6	D5	D4	/	/	/	/	/	/	D3	D2
1	1	/	/	/	/	/	/	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2

ADCC3

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	IVREFS	FCLKEN	-		TR	IGSEL[4:	0]	

Bit	Flag	Introductions
		ADC 1.3V Internal reference selection bits
7	IVREFS	0: Determined by INREF_S in the ADCC0 register
		1: Internal reference is 1.3V
		Acceleration of ADC conversion when internal reference voltage is selected
6	FCLKEN	0: An ADC with internal parameters can operate at a maximum frequency of
0	FCLKEN	2MHz
		1: An ADC with internal parameters can work at a frequency of up to 4MHz
5	-	Reserved bit
		ADC Trigger signal selection bit
		00000: ADC conversion start is controlled only by ADCST(ADCC0.6)
		00001: PWM0 Rising edgev
		00010: PWM0 Falling edge
		00011: PWM0 midpoint
		00100: PWM0 destination
		00101: PWM1 Rising edge
		00110: PWM1 Falling edge
		00111: PWM1 midpoint
		01000: PWM1 destination
4-0	TRIGSEL[4:0]	01001: PWM2 Rising edge
		01010: PWM2 Falling edge
		01011: PWM2 midpoint
		01100: PWM2 destination
		10001: An input capture event occurred on channel T5 of timer 5
		Other values: Reserved
		Note: 1. PWM midpoint trigger is only applicable to PWM output in center
		aligned mode
		2. When ADCST is 1 (during conversion), the external trigger signal will not
		affect the ADC until the end of the conversion when the ADCST is cleared by
		the hardware

16.3.3 ADC trigger delay timer ADCDLYH, ADCDLYL

ADCRLYH

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag			-		ADCDLY[11:8]			

Bit	Flag	Introductions				
7-4	-	Reserved bit				
3-0	ADCDLY[11:8]	ADC external triggers the high 4 bits of the delay start timer				

ADCDLYL

Bit	7	6	5	4	3	2	1	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset values	0	0	0	0	0	0	0	0	
Flag		ADCRH[7:0]							

Bit	Flag	Introductions						
7-0	ADCDLY[7:0]	The lower 8 bits of the ADC external trigger delay start timer, used to insert a delay before the external trigger starts the ADC to start the ADC conversion at the end of the delay timer Delay time = ADCDLY[11:0]* ADC clock						

16.3.4 ADC wakeup control register ADCWC

ADCWC

Bit	7	6	5	4	3	2	1	0
R/W	W	W	W	W	W	W	W	W
Reset values	0	0	0	0	0	0	0	0
Flag	AMWEN	AMWIF			-			

Bit	Flag	Introductions
		ADC wakeup module enable bit
7	AMWEN	0 : Disable ADC wakeup module
,	AWWEN	1 : Enable ADC wakeup module
		Note: when enable ADC wake up module, ADC must be closed.
6	AMWIF	ADC wakeup module interrupt flag(the same interrupt vector with the ADC conversation) 0: No ADC wakeup module is interrupted, software clear 0 1: ADC wakeup module is interrupted, hardware set 1 Note: when the corresponding wakeup module is prohibited, even if the conditions are met, the corresponding flag will not be set 1 . must enable EADC .
5-0	-	Reserved bit

Note: Wake-up resistance is configured by port pull-up resistance.

16.3.5 ADC conversion result register ADCRL, ADCRH

ADCRL

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		ADCRL[7:0]						

ADCRH

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		ADCRH[7:0]						

Bit	Flag	Introductions
7-0	ADCRH[7:0]	When ALIGN = 0 ADCRH[7:0] is ADC conversion high 8 bits, ADCRL[3:0] is ADC conversion of low 4/2 bits
7-0	ADCRL[7:0]	When ALIGN = 1 ADCRH[3:0] is ADC conversion high 4/2 bits, ADCRL[7:0] is ADC conversion of low 8 bits

Start ADC conversion steps:

- (1) Enable ADC module;
- (2) Select analog input channel, voltage reference, conversion clock, conversion result align orientation;
- (3) Set 1 ADCST to start ADC conversion;
- (4) Waiting for ADCST = 0 or ADCIF = 1, if ADC interrupt is enabled, ADC interrupt will be generated, user need to clear ADCIF by software;
- (5) Get conversation data from ADCRH/ADCRL;
- (6) Repeat steps 3-5 to start another conversion.

17 Low voltage detection LVD

17.1 LVD characteristics

- > Support internal VDD multi-level voltage detection, and can generate an interrupt
- > Support port voltage detection, and can generate an interrupt or reset
- > LVD point: 4.2V/3.9V/3.6V/3.0V/2.6V/2.4V/2.0V/1.9V

Same as BOR, the internal voltage detection is used to detect VDD voltage, but independent to BOR, so it can detect multi-level voltage that are above BOR voltage, by register, user can set the voltage point, start/stop work, enable/disable interruptions.

LVD voltage detection circuit has a certain hysteresis, hysteresis voltage equal 0.1V or so. When detection voltage drops to the LVD voltage selected, LVD will generates an interrupt request or reset, then only the detection voltage needed to rise to LVD voltage +0.1V, the LVD interrupt request or reset be removed.

LVD detect the voltage on port P2.6, when the voltage is below 1.2V to detection voltage, set the corresponding flag, if the interrupt enable, an interrupt request is generated, if the interruption disable, port voltage detection will generate reset. Port voltage detection will generate valid interrupt and reset, it can wake up the chip from PD and IDLE mode.

When LVD detecting VDD voltage, no reset occur, but user can wake up chip from PD and IDLE mode by valid interrupt.

Figure 17-1 LVD/Comparator function diagram

17.2 Low voltage detection/comparator related register

17.2.1 LVD control register LVDC

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag	LVDEMPEN	LVDS	LVDIE	-	LVDF		LVDV	

Bit	Flag	Introductions						
_		LVD/Comparator enable bit						
7	LVDEMPEN	0 : Disable LVD/Comparator						
		1 : Enable LVD/Comparator LVD detect selection bit						
6	LVDS	0 : Detect VDD Voltage						
	LVDS	1 : Detect VBB Voltage						
		LVD interrupt enable bit						
		0 : Disable LVD interrupt						
		1 : Enable LVD interrupt						
5	LVDIE	Note: when disable interrupt, as long as detection enabled, LVDF can also be set 1,						
	LVDIL	but even if EA is set to 1 at this time, no interrupt request is generated.						
		When LVDS is 1, detect P2.6 port voltage:						
		LVDIE=0 : port voltage detection reset						
		LVDIE=1 : port voltage detection interrupt						
4	-	Reserved bit						
		Low-voltage detection flag						
		0 : Must software clear 0						
		1: When VDD voltage is lower than detection voltage, hardware set 1, also as						
		interrupt request Note: When VDD voltage below detection voltage, the time is more than the						
3	LVDF	debouncing time set in LVDDBC register, LVDF will be set; VDD is higher than						
		detection voltage, LVDF do not automatically clear, the bit must be software clear,						
		only VDD is higher than detection voltage continuously, software clear is valid, if						
		VDD is lower than detection voltage continuously, software is unable to clear						
		LVDF.						
		VDD voltage detection voltage selection bit						
		000 : 1.9V						
		001 : 2.0V						
		010 : 2.4V						
2-0	LVDV[2:0]	011 : 2.6V						
2-0	LVDV[2:0]	100 : 3.0V						
		101 : 3.6V						
		110:3.9V						
		111 : 4.2V						
		Note: Only setting LVD detection voltage above BOR voltages is valid.						

17.2.2 Compare function control register LVDCMP

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R/W	R	R/W	R/W	R/W	R/W
Reset values	0	0	1	0	0	0	0	0
Flag	-	-	DBEN	CMPSTA	CMPII	M[1:0]	CMP	PS[1:0]

Bit	Flag	Introductions
7-6	-	Reserved bit
		debouncing enable bit
		0: not debouncing
		1: debouncing
5	DBEN	Note:
3	DBEN	1. Both LVD and CMP are applicable;
		2. In power-down mode and idle mode, chattering will not be eliminated
		automatically. When exiting power-down mode and idle mode, DBEN will
		control whether chattering will be eliminated
		Comparator output state
4	4 CMPSTA	0: the positive voltage of the comparator is less than the negative voltage
		1: the positive voltage of the comparator is greater than the negative voltage
		When CMPPS[1:0] does not select 00, this register needs to be configured:
		00: no LVDF
3-2	CMPIM[1:0]	01: WHEN CMP+ is smaller than CMP- to greater than CMP-, LVDF will be set;
3-2	CMPIM[1.0]	10: LVDF will be set when CMP+ is greater than CMP- and less than CMP-;
		11: CMP+ from smaller than CMP- to greater than CMP- or CMP+ from greater
		than CMP- to less than CMP- are set to LVDF
		Positive-end selection bit of comparator
		00: 1.2V
1-0	CMPPS[1:0]	01: CMP1 pin is the positive input of the comparator
		10: CMP2 pin is the positive input of the comparator
		11: CMP3 pin is the positive input of the comparator

17.2.3 LVD debouncing control register LVDDBC

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag		LVDDBC[7:0]						

Bit	Flag	Introductions
7-0	LVDDBC[7:0]	LVD debouncing control bit Debouncing time = LVDDBC[7:0] * 8T _{CPU} +2T _{CPU}

Note: In power-down and idle mode automatically turns off, and opens automatically when exit the power-down and idle mode.

18 LCD registers

18.1 LCD speciality

- ➤ Supports 1/2 BIAS LCD dot matrix
- > The driver capability is configurable
- > The number of COM ports and SEG ports can be set arbitrarily
- > LCD control signal (COM and SEG) is realized by software program
- ➤ An accurate pull-down or pull-up resistance can be obtained by closing LCDENU or LCDEND
- > Internal connection of multiple ports can be achieved by closing LCDENU and LCDEND simultaneously

Figure 18-1 LCD system chart

18.2 LCD Frame

A complete LCD waveform cycle consists of two frames, namely Frame0 and Frame1.

Frame 0

On Frame0, the COM signal output can be VDD, or VBIAS=1/2VDD;

On Frame0, the SEG signal output can be GND or VDD.

When the dropout voltage between COM port and SEG port is VDD, the LCD is on.

Frame 1

On Frame1, the COM signal output can be GND or VBIAS= 1/2vDD;

On Frame1, the SEG signal output can be VDD or GND.

When the dropout voltage between COM port and SEG port is VDD, the LCD is on.

COM port can output VDD, GND or 1/2VDD. Among them, 1/2VDD is output to IO through the partial voltage of the LCD module. At this time, the IO mode is configured as analog input, and the corresponding COMPxEN is enabled. VDD and GND are realized through the strong push-pull output 1 and 0 of the IO port.

Determine VDD or GND output of SEG port by software. VDD and GND are implemented through the strong push-pull output 1 and 0 of the IO port.

The waveform diagram below shows a typical 1/2 BIAS LCD waveform generated by an application. Write "1" to light the LCD. The COM and SEG signal polarities (0 or 1) generated on COMn and SEGm pins are generated by the corresponding port data register bits.

Note: The logical value in the figure is the bit value of the port data register corresponding to COM or SEG.

Figure 18-2 waveform of 2 1/2 BIAS LCD

18.3 LCD register

18.3.1 LCD control register LCDCON

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R	R	R
Reset values	0	0	0	0	0	0	0	0
Flag	LCDENU	LCDEND	RLCD1	RLCD0			-	

Bit	Flag	Introductions
		LCD UP-Enable control bit
7	LCDENU	0: Disable
		1: Enable
		LCD DOWN-Enable control bit
6	LCDEND	0: Disable
		1: Enable
		Software LCD resistance selection bit
		00: 10kΩ
5-4	RLCD[1:0]	01: 25kΩ
		10: 75kΩ
		11: 175kΩ
3-0	-	Reserved

18.3.2 COM port enable control register COMP0EN-COMP3EN

Bit	7	6	5	4	3	2	1	0
R/W	W	W	W	W	W	W	W	W
Reset values	0	0	0	0	0	0	0	0
Flag				COMPx	EN[7:0]			

Bit	Flag	Introductions			
		Software LCD COM function enable bit			
7.0	COMPAENA	0: Disable, standard IO			
7-0	COMPxENy	1: Enable			
		Note: $x = 0 \sim 2$ $y = 0.7$			

19 Cyclic redundancy check CRC

19.1 CRC characteristics

- ➤ 16 bit CRC
- ➤ CRC check compliance with CRC-CCITT polynomials, that is 0x1021
- \triangleright The initial value can be set 0x0000 or 0xFFFF
- > Calculation and results share the same registers

Every write to data register CRCL, the calculated result is a previous CRC results combination of the new results.

Each time the read data from register [CRCH: CRCL], its value is the last CRC calculation results.

User can set CRCRSV bit of register CRCC to select initial calculation value, but not effects the CRC calculating data, only set CRCRST bit of register CRCC can reset CRC calculator, then write data will use new initial value to calculate CRC results.

Figure 19 - 1 CRC functional block diagram

19.2 CRC registers

19.2.1 CRC control register CRCC

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R/W	R/W	W
Reset values	0	0	0	0	0	0	0	0
Flag			-			CRCBIT	CRCRSV	CRCRST

Bit	Flag	Introductions
7-3	-	Reserved (read as 0, write invalid)
2	CRCBIT	CRC BIT flip control bits 0: MSB first 1: LSB first
1	CRCRSV	CRC reset initial value selection bit 0 : reset initial value as 0x0000 1 : reset initial value as 0xFFFF
0	CRCRST	CRC calculator reset control bit Set 1 reset CRC calculator, hardware clear 0 automatically

19.2.2 CRC data register CRCL, CRCH

CRCL

Bit	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset values	0	0	0	0	0	0	0	0
Flag				CRCI	L[7:0]			

Bit	Flag	Introductions
7-0	CRCL[7:0]	As CRC calculator input data when write data As low bytes of CRC result when read data Note: when write data, start CRC calculated automatically, then close automatically when finished.

CRCH

Bit	7	6	5	4	3	2	1	0
R/W	R	R	R	R	R	R	R	R
Reset values	0	0	0	0	0	0	0	0
Flag				CRCI	H[7:0]			

Bit	Flag	Introductions
7-0	CRCH[7:0]	Write data to the register is invalid As high bytes of CRC result when read data

Note: every time write data to be calculated, the calculation results are generated by common with previous results together.

20 Code options

1. External reset enable

- ➤ P2.7 as external reset Pin (default). When the port as external reset Pin, it cannot as a normal I/O.
- ➤ P2.7 as normal IO Pin

2. BOR detection voltage point

- ➤ 1.8V(Default)
- > 2.0V
- > 2.4V
- > 2.6V
- > 3.0V
- > 3.6V
- > 3.9V
- > 4.2V

3. Wait time after reset

- ➤ 4ms
- ➤ 8ms (Default)
- ➤ 16ms

4. The second reset vector configuration

User can define the startup code address by the configuration, configuration values must be 1K bytes as a unit, so the second reset vector address lower 10 bits must be zero, the second reset vector is disabled default.

21 Electrical characteristics

Unless otherwise noted, the following data test conditions are: VDD=5.0V, GND=0V, 25°C.

21.1 Limit parameter

Parameter	Symbol	Min	Typical	Max	unit
DC power supply voltage	VDD	-0.3	-	+ 6.0	V
Input/output voltage	$V_{\rm I}/V_{\rm O}$	GND-0.3	-	VDD+0.3	V
Operating environment temperature	T_{OTG}	-40	-	+105	°C
Storage temperature	T_{STG}	-55	-	+125	°C

Note: (1) Maximum current through VDD <100mA @25°C VDD=5V. (2) Maximum current through GND <150mA @25°C VDD=5V.

21.2 DC characteristics

Parameter	Symbol	Condition (VDD=5V)	Min	Typical	Max	Unit
Operating voltage	VDD	F _{CPU} =16MHz 44KHz, ADC module closed	2.0	5.0	5.5	V
		F _{OSC} =32MHz, F _{CPU} =16MHz, No load, no floating input pins, execute NOP instructions, close the other modules	-	2.8	-	
		Fosc =32MHz, F _{CPU} =8MHz, No load, no floating input pins, execute NOP instructions, close the other modules	-	2.2	-	
		Fosc =32MHz, F _{CPU} =4MHz, No load, no floating input pins, execute NOP instructions, close the other modules	-	1.7	-	
		F _{OSC} =32MHz, F _{CPU} =2MHz, No load, no floating input pins, execute NOP Instructions, close the other modules	-	1.5	-	
		F _{OSC} =32MHz, F _{CPU} =1MHz, No load, no floating input pins, execute NOP Instructions, close the other modules	-	1.3	-	
	I _{OP1}	Fosc =32MHz, F _{CPU} =500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules	-	1.2	-	
Operating current		Fosc =16MHz, F _{CPU} =16MHz, No load, no floating input pins, execute NOP instructions, close the other modules		2.2		mA
		F _{OSC} =16MHz, F _{CPU} =8MHz, No load, no floating input pins, execute NOP instructions, close the other modules		1.5		
		F _{OSC} =16MHz, F _{CPU} =4MHz, No load, no floating input pins, execute NOP instructions, close the other modules		1.1		
		F _{OSC} =16MHz, F _{CPU} =2MHz, No load, no floating input pins, execute NOP Instructions, close the other modules		0.9		
	Fosc =16MHz, F _{CPU} =1MHz, No load, no floating input pins, execute NOP Instructions, close the other modules	0.8				
		F _{OSC} =16MHz, F _{CPU} =500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules		0.8		
		F _{OSC} =8MHz, F _{CPU} =8MHz, No load, no floating input pins, execute NOP instructions, close the other modules		1.3		
		Fosc =8MHz, F _{CPU} =4MHz, No load, no		0.9		

Dosting input pins, execute NOP						100750031	
Forc = 3MHz, Foru = 10MHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 8MHz, Foru = 10MHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 400KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 400KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 400KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 400KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 3MHz, Foru = 400KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Forg = 400KHz, Foru = 400KHz, Enter the idle mode, no load, no floating input pins, execute NOP Instructions, close all modules Forg = 400KHz, Foru = 400KHz, Enter the idle mode, no load, no floating input pins, execute NOP Instructions, close all modules							
Hooting input pins, execute NOP 0.7			·				
Fost = SMHL, Fost = IMHZ, No load, no 0.6			floating input pins, execute NOP		0.7		
Hosting input pins, execute NOP 0.6			,				
Instructions, close the other modules Fogs = 8MHz, Fog = 950KHz, No load, no floating input pins, execute NOP 0.5					0.6		
floating input pins, execute NOP 0.5			Instructions, close the other modules				
Instructions, close the other modules					0.5		
Fosc =4MHz, Feru =4MHz, No load, no floating input pins, execute NOP instructions, close the other modules					0.5		
India Ind			·				
Fosc =4MHz, Fepr = 1MHz, No load, no floating input pins, execute NOP Instructions, close the other modules					0.8		
Rosting input pins, execute NOP 0.6							
Fosc =4MHz, Fcru =1MHz, No load, no floating input pins, execute NOP enstructions, close to other modules			floating input pins, execute NOP		0.6		
floating input pins, execute NOP 0.5							
Instructions, close the other modules Fosc =4MHz, Fcru =500KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Fosc =4KHz, Fcru =4KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Fosc =4KHz, Fcru =4KHz, No load, no floating input pins, execute NOP Instructions, close the other modules Fosc =4KHz, Fcru =4KHz, No load, no floating input pins, close the other modules Fosc =32MHz, Fcru =16MHz, Enter the power-down mode, no load, no floating input pins, close all modules Fosc =32MHz, Fcru =16MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Fcru =4KMtz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close O.5 MA Ma Industry Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close O.5 O.5 Ma Ma Industry Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close O.5 O.5 Ma Ma Industry Fosc =4MHz, Fcru =4MHz, Enter the idle mode, no load, no floating input pins, close O.5 O.5 Ma Ma Industry O.5 O.					0.5		
Thotating input pins, execute NOP					0.0		
Instructions, close the other modules							
Iop2					0.4		
IoP2 floating imput pins, execute NOP - 70 - μA							
IpDI		I _{OP2}	floating input pins, execute NOP	-	70	-	μΑ
PP1 floating input pins, close all modules - 12 - μA							
IPD2 Enter the power-down mode, no load, no - 6 - μA		I_{PD1}		-	12	-	μΑ
Fosc = 32MHz, Fcpu = 16MHz, Enter the idle mode, no load, no floating input pins, close all modules		I _{PD2}	Enter the power-down mode, no load, no	-	6	_	μA
IIDLE1 idle mode, no load, no floating input pins, close all modules Fosc =16MHz, Fcpu =16MHz, Enter the idle mode, no load, no floating input pins, close all modules		-152					F
Close all modules Fosc = 16MHz, Fcpt = 16MHz, Enter the idle mode, no load, no floating input pins, close all modules		I _{IDLE1}		-	1.2	-	mA
IIDLE2 idle mode, no load, no floating input pins, close all modules Fosc =8MHz, Fcpu =8MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Fcpu =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =44MHz, Fcpu =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =44KHz, Enter the idle mode, no load, no floating input pins, all closed, internal high-frequency RC Clock close Fcpu =16MHz, close the BOR, TIMER3 count clock source select external low-frequency crystal oscillator, the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S int							
Close all modules Fosc =8MHz, FCPU =8MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, FCPU =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =44MHz, FCPU =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =44KHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =44KHz, Enter the idle mode, no load, no floating input pins, all closed, internal high-frequency RC Clock close FCPU =16MHz, close the BOR, TIMER3 count clock source select external low-frequency crystal oscillator, the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system - 10 - μA μΑ Input low voltage 1 VIL1 I/O port non-Schmitt input GND - 0.3*VDD V Input low voltage 2 VIL2 I/O port Schmitt input GND - 0.2*VDD V Input low voltage 2 VIL2 I/O port Schmitt input O.8*VDD - V V Input leakage current IILC I/O port input mode, VIN = VDD or GND -1 0 1 μΑ		T			0.7		A
Indles Fosc =8MHz, Foru =8MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4MHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =44KHz, Enter the idle mode, no load, no floating input pins, all closed, internal high-frequency RC Clock close Foru =16MHz, close the BOR, TIMER3 count clock source select external low-frequency crystal oscillator, the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system O.7*VDD V		TIDLE2		-	0.7	-	ША
All modules Fosc =4MHz, Fcpu =4MHz,Enter the idle mode, no load, no floating input pins, close all modules Fosc =4KHz, Enter the idle mode, no load, no floating input pins, close all modules Fosc =4KHz, Enter the idle mode, no load, no floating input pins, all closed, internal high-frequency RC Clock close Fcpu =16MHz, close the BOR, TIMER3 count clock source select external low-frequency crystal oscillator, the system enter power-down mode, the average current with TIMER3 timing IS interrupts to wake up the system 10							
IIDLE4 Fosc =4MHz, Fcpu =4MHz, Enter the idle mode, no load, no floating input pins, close all modules - 0.4 - mA		I _{IDLE3}		-	0.5	-	mA
IIDLE4 mode, no load, no floating input pins, close all modules - 0.4 - mA							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$I_{\rm IDLE4}$		-	0.4	-	mA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		IIDLE5		_	63	_	uА
power-down Timer interrupt wakeup current I_{PW} count clock source select external low-frequency crystal oscillator, the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system-10- μ AInput low voltage 1 V_{IL1} I/O port non-Schmitt inputGND-0.3*VDDVInput high voltage 1 V_{IH1} I/O port non-Schmitt input0.7*VDD-VDDVInput low voltage 2 V_{IL2} I/O port Schmitt inputGND-0.2*VDDVInput high voltage 2 V_{IH2} I/O port Schmitt input0.8*VDD-VDDVInput leakage currentIILCI/O port input mode, $V_{IN} = V$ DD or GND-101 μ A		15223					•
power-down Timer interrupt wakeup current I_{PW} low-frequency crystal oscillator, the system enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system - 10 - μA Input low voltage 1 voltage 1 voltage 1 V_{IL1} I/O port non-Schmitt input GND - 0.3*VDD V Input high voltage 2 V_{IL2} I/O port non-Schmitt input 0.7*VDD - VDD V Input high voltage 2 V_{IL2} I/O port Schmitt input GND - 0.2*VDD V Input leakage current I_{ILC} I/O port input mode, $V_{IN} = VDD$ or GND -1 0 1 μ A							
Inmer interrupt wakeup current Ipw enter power-down mode, the average current with TIMER3 timing 1S interrupts to wake up the system 1 1 - μA Input low voltage 1 voltage 1 V _{IL1} I/O port non-Schmitt input GND - 0.3*VDD V Input high voltage 2 V _{IL2} I/O port Schmitt input 0.7*VDD - VDD V Input high voltage 2 V _{IL2} I/O port Schmitt input GND - 0.2*VDD V Input leakage current I _{ILC} I/O port input mode, V _{IN} = VDD or GND -1 0 1 μA							
Input low voltage 1 V_{IL1} I/O port non-Schmitt input I_{II} GND - 0.3*VDD V Input high voltage 1 I_{II} I/O port non-Schmitt input I_{II} O port non-Schmitt input I_{II} O port non-Schmitt input I_{II} O port Schmitt input I_{II} O port Input leakage current I_{II} O port input mode, I_{II} O port GND I_{II} O I_{II} I_{II} O port input mode, I_{II} O port GND I_{II} O I_{II} I_{II} I_{II} I_{II} O port input mode, I_{II} I_{II} O I_{II} I		I_{PW}		-	10	-	μA
Input low voltage 1 V_{IL1} I/O port non-Schmitt input GND - 0.3*VDD V Input high voltage 1 V_{IH1} I/O port non-Schmitt input 0.7*VDD - VDD V Input low voltage 2 V_{IL2} I/O port Schmitt input GND - 0.2*VDD V Input high voltage 2 V_{IH2} I/O port Schmitt input 0.8*VDD - VDD V Input leakage current I_{ILC} I/O port input mode, $V_{IN} = VDD$ or GND -1 0 1 μ A	wakeup current						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input low voltage		to wake up the system				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	V _{IL1}	I/O port non-Schmitt input	GND	-	0.3*VDD	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	voltage 1	V_{IH1}	I/O port non-Schmitt input	0.7*VDD	-	VDD	V
Voltage 2 V _{IH2} I/O port Schmitt input 0.8 VDD - VDD V Input leakage current I _{ILC} I/O port input mode, V _{IN} = VDD or GND -1 0 1 μA	2	$V_{\rm IL2}$	I/O port Schmitt input	GND	-	0.2*VDD	V
current IILC I/O port input mode, $V_{IN} = VDD$ OF GND -1 0 1 μA	voltage 2	V_{IH2}	I/O port Schmitt input	0.8*VDD	-	VDD	V
output leakage Iolc I/O port output mode $V_{OUT} = VDD$ Or -1 0 1 μA		I _{ILC}	I/O port input mode, V _{IN} = VDD Or GND	-1	0	1	μΑ
	output leakage	Iolc	I/O port output mode $V_{OUT} = VDD$ Or	-1	0	1	μΑ

current		GND				
Sink	I_{OL}	Vout=GND+0.6	-	25	-	A
Current	Іон	Vout=VDD-0.6	-	21	-	mA
	R _{PU1}	P0.2 port, VIN=GND	-	50	-	
	R_{PU2}	P0.2 port, VIN=GND	-	100	-	
Pull-up resistor	R _{PU3}	P0.2 port, VIN=GND	-	150	-	
R _{PU4}	R _{PU4}	P0.2 port, VIN=GND	-	300	-	kΩ
	R _{PU5}	Common port, VIN=GND	-	50	-	
Pull-down resistance	R_{PD}	Common port, VIN=VDD	-	50	-	
ADC Wake up	V_{AW1}	room temperature, $VDD = 5V$	4.0	4.2	4.4	
voltage	V_{AW2}	room temperature, $VDD = 3V$	2.3	2.5	2.6	v
RAM maintain voltage	V_{RAM}	-	-	0.7	-]

Note: Subject to general operating conditions for VDD=5.0V GND=0V, 25 °C unless otherwise specified.

21.3 AC characteristics

Parameter	Symbol	Conditions	Min	Typical	Max	Unit
Internal RC 32M Startup time	Tset1	room temperature, VDD=5V	-	1	5	μs
Internal RC 44M Startup time	Tset2	room temperature, VDD=5V	-	-	150	μs
External high-frequency oscillator startup time	Tset3	16MHz, room temperature, VDD=5V	-	200	-	μs
high-frequency oscillator work volatge	Vset3	16MHz	2.5	-	5.5	V
External low-frequency oscillator startup time	Tset4	room temperature, VDD=5V	-	2	1	S
Internal RC 44K startup time	Tset2	room temperature, VDD=5V	-	-	150	μs
	FIRC1	VDD=2V~5.5V, 25°C	32 (1-1%)	32	32 (1+1%)	MHz
Frequency accuracy	FIRC2	VDD=5.0V,-20°C ~+85°C	32 (1-2%)	32	32 (1+2%)	MHz
requeries accuracy	FIRC2	VDD=5.0V,-40°C ~+105°C	32 (1-4%)	32	32 (1+4%)	MHz
	FWRC	-	31	44	58	KHz

21.4 Flash memory characteristics

Parameter	Symbol	Conditions	Min	Typical	Max	Unit
Write and Read Test	Nendur	-	100000	-	-	Cycle
PaUSe Test	Tret	T=25°C	-	10	-	year
FLASH sector erase	T _{ERASE1}	1 sector (128 bytes)	-	5	-	
time						ms
EEPROM sector erase	Terase2	1 sector (32 bytes)	-	5	-	
time						ms
Byte write time	T _{PROG}	1 bytes	-	68	-	μs
Consumption Current	I_{DD1}	Fcpu=16MHz	-	4	-	mA

153

by Read						
Consumption Current	I_{DD2}	-	-	4	-	mΛ
by writing						mA
Consumption Current	I_{DD3}	-	-	2	-	A
by erases						mA

21.5 ADC characteristics

Parameter	Symbol	Conditions	Min	Typical	Max	Unit	
power supply voltage	VAD	-	2.0	5.0	5.5	V	
Precision	NR	GND≤VAIN≤Vref	-	10	12	bit	
ADC input voltage	VAIN	-	GND	-	Vref	V	
ADC input resistance	RAIN	VAIN: 5V	2	-	-	ΜΩ	
Analog voltage sources recommended impedance	ZAIN	-	-	-	10	kΩ	
ADC switching current	IAD	Open the ADC module, VDD: 5.0V	-	0.6	1	mA	
ADC input current	IADIN	VDD: 5.0V	-	-	10	μΑ	
Differential nonlinearity error	DLE	VDD: 5.0V	-	-	±2	LSB	
		VDD=5.0V, Vref =1.3V	-	-	-5~2		
		VDD=5.0V, Vref =2V	-	-	-5~2		
Integral nonlinearity error		VDD=5.0V, Vref =3V	-	-	-4~2		
(1MHz switching	ILE	VDD= $5.0V$, Vref = $4V$	-	-	-3~2	LSB	
frequency)		VDD=5.0V, Vref =VDD	-	-	±2		
		VDD=5.0V, Vref =External parameters	-	-	±2		
Full scale error	EF	VDD=5.0V	-	-	±5	LSB	
Offset error	EZ	VDD=5.0V	-	-	±3	LSB	
Total error	EAD	VDD=5.0V	-	-	±5	LSB	
Total conversion time 1	TCON1	VDD=5.0V Vref =2/3/4V	10	-	-	μs	
Total conversion time 2	TCON2	VDD=5.0V Vref =VDD	2	-	-	μs	
Internal reference voltage	VADREF	VDD=5.0V, Vref =2V	2(1-1%)	2	2(1+1%)	V	

21.6 BOR detection voltage characteristics

Parameter	Symbo 1	Condition	Min	Тур	Max	Unit
BOR Set voltage 1	VBOR1		1.7	1.8	1.9	V
BOR Set voltage 2	VBOR2		1.9	2.0	2.1	V
BOR Set voltage 3	VBOR3		2.3	2.4	2.5	V
BOR Set voltage 4	VBOR4	DOD :	2.5	2.6	2.7	V
BOR Set voltage 5	VBOR5	BOR is enabled, VDD=2V~5.5V	2.9	3.0	3.1	V
BOR Set voltage 6	VBOR6		3.5	3.6	3.7	V
BOR Set voltage 7	VBOR7		3.8	3.9	4.0	V
BOR Set voltage 8	VBOR8		4.1	4.2	4.3	V

154

21.7 LVD/PLVD detection voltage characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
LVD Set voltage 0	VPLVD		-	1.2	-	V
LVD Set voltage 1	VLVD1		1.8	1.9	2.0	V
LVD Set voltage 2	VLVD2		1.9	2.0	2.1	V
LVD Set voltage 3	VLVD3		2.3	2.4	2.5	V
LVD Set voltage 4	VLVD4	LVD is enabled, VDD=2V~5.5V	2.5	2.6	2.7	V
LVD Set voltage 5	VLVD5		2.9	3.0	3.1	V
LVD Set voltage 6	VLVD6		3.5	3.6	3.7	V
LVD Set voltage 7	VLVD7		3.8	3.9	4.0	V
LVD Set voltage 8	VLVD8		4.1	4.2	4.3	V

21.8 Electrical characteristics of comparator

Parameter	Symbol		Test Co	ondition	Min	Тур	Max	Unit
Parameter		VDD	T	Condition				Unit
Input offset voltage	Vos	5V	1	-	1	±2	±4	mV
Input common mode voltage range	VICM	5V	-	-	0	-	VDD-1.2V	V
Comparator operating power consumption	Ісомр	-	-	-	-	200	400	nA
Small signal response time	TRS1	5V	-	CMPP=1.25V CMPN=1.2V	-	1	2	us
Large signal response time	TRS2	5V	1	CMPP=3V CMPN=1V	1	0.3	0.5	us
Signal source output impedance	Rin	5V	-	-	-	-	1	МΩ

21.9 System power consumption during power off

1, System shutdown BOR and enter the power-down mode

Figure 21 - 1 system power consumption 1 during power off

2,System enable BOR and enter power-down mode, enable/disable BOR PD EN

Figure 21 - 2 system power consumption 2 during power off

21.10 Frequency - voltage characteristic curve

Figure 21-3 Internal high-frequency / 128-voltage characteristic curve

21.11 Frequency - temperature characteristic curve

Figure 21-4 Internal high-frequency RC32M/500 -Temperature characteristic curve

21.12 ADC Internal parameters 2V- Temperature characteristic

curve

Figure 21-5 Internal reference voltage 2V - Temperature characteristic curve

21.13 Other electrical characteristics

1, ESD (HBM) : CLASS 3A (≥5500V)

2, ESD (MM): CLASS C(≥400V) end level

3, ESD (CDM) : Class C3 (\geq 1000V) end level

 $4, Latch_up:800Ma$

5, EFT: ±4800V

22 Development tools

22.1 Emulator characteristics

HC89S003A/001A use HC-LINK/HC-LINK emulator to program download and simulation, By JTAG or SWD Interface emulator implement the enhanced 8051 MCU of Holychip program download simulation. About the emulator, please refer the emulator's user manual.

Emulator characteristics

- Support Keil C51 integration build environment (uVision4.0 and above Ver.)
- Support all Holychip 8051 MCU
- Support FLASH erase, program and verify
- Support encryption bit and code option program
- > Get power from USB directly, no external power supply

22.2 Programmer tools

HC-PM51 is Holychip new programmer for mass production, supports the program of all the enhanced 8051 MCU of Holychip. About the programmer, please refer the HC-PM51's user manual.

Programmer characteristics:

- USB port connection
- > Support signal channel off-line programming

22.3 ISP serial port burn

HC-LINK V4.0 and HC-PM51 support offline curing of ISP programs. After curing ISP programs to HC89S003A/001A, users can download and update programs using TXD/RXD pins.

Users can use the HC-link V4.0 tool, with the host software HC-ISP, through the serial port to solidified ISP program FLASH microcontroller to achieve one-click download function. In addition, users can use HC-PM51's ISP mode for offline download of user programs.

Figure 22-1 ISP serial port burn block diagram

22.4 Software download

Software downloads address: http://www.holychip.cn

23 Package

23.1 TSSOP20

Figure 23 - 1 TSSOP20 package size

23.2 QFN20

Dimensions In Millimeters Dimensions In Inches Symbol Min. Min. Max. Max. 0.800/0.900 0.028/0.031 0.700/0.800 0.031/0.035 Α Α1 0.000 0.050 0.000 0.002 АЗ 0.203REF. 0.008REF. D 2.924 3.076 0.115 0.121 Ε 2.924 3.076 0.115 0.121 1.600 0.055 D1 1.400 0.063 Ε1 1.400 1.600 0.055 0.063 0.200MIN. 0.008MIN. k b 0.150 0.250 0.006 0.010 0.400TYP. 0.016TYP. е 0.324 0.476 0.013 0.019 L

Figure 23-2 QFN20 package size

23.3 SOP8

Figure 23-3 SOP8 package size

24 Reversion history

Document revision history

Version	Date	Description
Ver1.00	2021-06-16	First version
Ver1.01	2021-08-12	 Add the description of naming rules. Improve part of the description;
Ver1.02	2021-12-16	Modify some errors. Modify the accuracy of RC32M at full temperature; Modification of EEPROM related error description; A QFN20 pin description error modification;

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Holychip reserves the right to make change without further notice to any products herein to improve reliability, function or design. Holychip does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Holychip products are not designed, intended, or authorized for us as components in system intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Holychip product could create a situation where personal injury or death may occur. Should Buyer purchase or use Holychip products for any such unintended or unauthorized application. Buyer shall indemnify and hold Holychip and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that Holychip was negligent regarding the design or manufacture of the part.

Holychip
In June 2021