

Week 5: Shrinkage Methods and Model Selection

Al 539: Machine Learning for Non-Majors

Alireza Aghasi

Oregon State University

What are Shrinkage Methods and Why Useful?

You would probably hear Ridge Regression and LASSO quite often

- The subset selection methods use least squares to fit a linear model that contains a subset of the predictors
- As an alternative, we can fit a model containing all <u>p</u> predictors using a technique that constrains or regularizes the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero
- It may not be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimates can significantly reduce the model variance

Ridge Regression

- Recall that the least squares fitting procedure estimates $\beta_0, \beta_1, \cdots, \beta_p$ using the values that minimize

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

- In contrast, the ridge regression coefficient estimates $\hat{\boldsymbol{\beta}}^R$ are the values that minimize

$$RSS_{Ridge} = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

- Here, λ is a tuning parameter

2

Ridge Regression

- As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small
- However, the second term, $\lambda \sum_{j=1}^{p} \beta_{j}^{2}$, called a shrinkage penalty, encourages solutions that are close to zero, and so it has the effect of shrinking the estimates of β_{j} towards zero
- The tuning parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates (trade off between bias and variance)
- Selecting a good value for λ is critical; often cross-validation is used for this

Using CV to select Λ λ also controls the variance

Effect of Increasing λ on the β

 The figure below shows how increasing the Ridge penalty pushes the minimizers of the mixed RSS objective to zero

Adding NB2 is pushing the stationary point to 0

pured to ≥=a

Shrinkage Example

- Previously from the homework assignments you remember that the least squares solution to fit data point $(x_1, y_1), \dots, (x_n, y_n)$ was obtained via the minimization:

$$\min_{\beta} \sum_{i=1}^{N} (y_i - \beta x_i)^2 \quad \therefore \quad \hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

- We can show that if we run the Ridge regression problem

$$\min_{\beta} \sum_{i=1}^{N} (y_i - \beta x_i)^2 + \lambda \beta^2$$

the new estimate becomes

$$\hat{\beta}^R = \frac{\sum_{i=1}^n x_i y_i}{\lambda + \sum_{i=1}^n x_i^2}$$

- Note how increasing λ pushes $\hat{\beta}^R$ towards zero

5

$$RR(\beta) = \sum_{i=1}^{n} (y_i - \beta \chi_i)^2 + \lambda \beta^2, \quad \begin{cases} Var(\epsilon) = \delta^2 \\ Var(y_i) = \delta^2 \end{cases}$$
to minimize $\beta \Rightarrow \frac{dRR}{d\beta} = 2\sum_{i=1}^{n} (\beta \chi_i - y_i) + 2\lambda \beta = 0$

$$\Rightarrow \beta = \frac{\sum_{i=1}^{n} \chi_{i} \psi_{i}}{\lambda + \sum_{i=1}^{n} \chi_{i}^{2}}$$

$$V_{ar}(\vec{\beta}) = V_{ar}(\frac{\sum_{\vec{\lambda}}^{y} \chi_{\vec{\lambda}} y_{\vec{\lambda}}}{\lambda + \sum_{\vec{k}=1}^{y} \chi_{\vec{\lambda}}^{z}}) = \frac{1}{(\lambda + \sum_{\vec{\lambda}}^{y} \chi_{\vec{\lambda}}^{z})^{2}} = \frac{1}{\hat{\lambda}^{z_{1}}} (\chi_{\vec{\lambda}})^{2} \cdot V_{ar}(y_{\vec{\lambda}})$$

$$\frac{\operatorname{dr}\left(\beta\right) = \operatorname{Var}\left(-\frac{1}{\lambda + \sum_{i=1}^{n} \chi_{i}^{2}}\right) = \frac{1}{\left(\lambda + \sum_{i=1}^{n} \chi_{i}^{2}\right)^{2}} \frac{\operatorname{Var}\left(-\frac{1}{\lambda + \sum_{i=1}^{n} \chi_{i}^{2}}\right)^{2}}{\left(\lambda + \sum_{i=1}^{n} \chi_{i}^{2}\right)^{2}}$$

 $=\frac{\sum_{k=1}^{n}(\chi_{k})^{2}}{(\lambda+\sum_{k=1}^{n}\chi_{k}^{2})^{2}}\cdot\delta^{2}$

In Class Exercise

- For the simple regression problem of fitting $(x_1, y_1), \dots, (x_n, y_n)$, to the model $y = \beta_0 + \beta_1 x$ show that the least-squares estimates for the Ridge regularized objective

$$\sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i)^2 + \lambda (\beta_0^2 + \beta_1^2)$$

are

$$\hat{\beta}_{1}^{R} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{n^{2}}{n+\lambda} \bar{x} \bar{y}}{\lambda + \sum_{i=1}^{n} x_{i}^{2} + \frac{n^{2}}{n+\lambda} \bar{x}^{2}}, \quad \hat{\beta}_{0}^{R} = \frac{1}{n+\lambda} \left(\sum_{i=1}^{n} y_{i} - \hat{\beta}_{1}^{R} \sum_{i=1}^{n} x_{i} \right)$$

6

What Happens in Multiple Regression?

- In this case we previously had

$$RSS = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

which led to

$$\hat{\boldsymbol{eta}} = (\boldsymbol{X}^{ op} \boldsymbol{X})^{-1} \boldsymbol{X}^{ op} \boldsymbol{y}$$

- In the case of regularized problem (||.|| denotes the L-2 norm)

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|^2$$

we will have

$$\hat{\boldsymbol{\beta}}^R = (\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^\top \boldsymbol{y}$$

where *I* is the identity matrix

$$\lambda = \emptyset \Rightarrow \beta = 0$$

$$y = \beta_0 + \beta_1 \chi_1 + \beta_2 \chi_2 + \dots + \beta_p \chi_p , \quad \overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_p \end{bmatrix}, \quad \overrightarrow{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}$$

$$\Rightarrow \quad \overrightarrow{\chi} = \overrightarrow{\beta} \cdot \overrightarrow{\chi} \quad \text{If multiple features}, \quad \chi \text{ is a motrix of data with}$$

$$RR = (y - \beta x)^{T} (y - \beta x) + \lambda \|\beta\|^{2}$$

$$\frac{dRR}{d\beta} = \frac{d}{d\beta} \left(y^{T}y - 2y^{T}X\beta + \beta^{T}X^{T}X\beta + \lambda\beta^{T}\beta \right)$$

$$- 0 - 2X^{T}Y + 2X^{T}XB + 2XB = 0 \Rightarrow [X^{T}X - 1]$$

$$= 0 - 2X^{T}y + 2X^{T}X\beta + 2\lambda\beta = 0 \Rightarrow (X^{T}X + \lambda I)\beta = X^{T}y$$

$$\Rightarrow \hat{\beta} = (X^{T}X + \lambda I)^{-1} X^{T}Y$$

$$\lambda \text{ is very large } \Rightarrow (X^{T}X + \lambda I)^{-1} \simeq \frac{1}{\lambda} I$$

$$\Rightarrow \hat{\beta} \simeq \frac{1}{\lambda} X^{T} y$$

Credit Data Example

- Left: each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function of λ
- The right-hand panel displays the same ridge coefficient estimates as the left-hand panel, but instead of displaying λ on the x-axis, we display $\|\hat{\boldsymbol{\beta}}^R\|/\|\hat{\boldsymbol{\beta}}\|$ (how much **shrinkage** happens by increasing λ)

Scaling of the Predictors

- In the standard least-squares if we scale a feature value by c, the corresponding coefficient scales by c^{-1}
- However when we have the Ridge regularized objective, this is no more the case
- To see a consistent behavior, for the Ridge regularized problem we often work with standardized features:

$$\tilde{x}_{i,j} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2}}$$

Ridge $y = \beta_0 + \beta_1(2\chi_1) + \beta_2\chi_2 + \dots + \beta_p\chi_p \longrightarrow Something different.$

Bias-Variance Trade-Off

- A toy example: squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}^R\|/\|\hat{\beta}\|$. The horizontal dashed lines indicate the minimum possible MSE (the standard least squares, $\lambda=0$ in nowhere close). The purple crosses indicate smallest ridge regression model MSE values

Remember (test error = bias + variance + noise variance)

LASSO (Least Absolute Selection and Shrinkage Operator)

- Ridge regression does have one obvious disadvantage: unlike subset selection, which will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model (none of the model coefficients become explicitly zero)
- The Lasso is a relatively recent alternative to ridge regression that overcomes this disadvantage. The lasso coefficients minimize the quantity

$$RSS_{LASSO} = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = \underbrace{RSS + \lambda \|\beta\|_1}_{\text{Turns out to be}}$$
- We call $\|\beta\|_1$ the L-1 norm of β

LASSO

LASSO also shrinks B to 0

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero
- However, in the case of the lasso, the L1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large
- Technically the lasso performs the training and variable selection together
- We say that the lasso yields sparse models that is, models that involve only a subset of the variables
- As in ridge regression, selecting a good value of λ for the lasso is critical; cross-validation is again the method of choice

ightarrow Which means drop some features !!

Example: Credit Data

Why LASSO promotes Sparsity?

- From a convex optimization perspective, one can show that the lasso and ridge regression coefficient estimates solve the problems

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \quad \text{subject to} \quad \underline{\|\beta\|_1 \le \tau}$$

and

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \quad \text{subject to} \quad \|\beta\|_2 \leq \tau'$$

Add constraints?

The Geometry of the Two Problems

The Geometry of the Two Problems In Higher Dimension

See the MATLAB code attached:

LASSO or Ridge?

- Neither ridge regression nor the lasso will universally dominate the other
- In general, one might expect the lasso to perform better when the response is a function of only a relatively small number of predictors
- However, the number of predictors that is related to the response is never known a priori for real data sets
- A technique such as cross-validation can be used in order to determine which approach is better on a particular data set

Example

Previous example using all features (LASSO:Solid, Ridge: Dashed):

Using only two features:

How to Determine λ ?

- As for subset selection, for ridge regression and lasso we require a method to determine which of the models under consideration is the best
- That is, we require a method selecting a value for the tuning parameter $\boldsymbol{\lambda}$
- Cross-validation provides a simple way to tackle this problem. We choose a grid of λ values, and compute the cross-validation error rate for each value of λ
- We then select the tuning parameter value for which the cross-validation error is the smallest
- Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter

CV and Ridge Example

Determining λ via cross validation for the Ridge problem (credit data)

CV and LASSO Example

Determining λ via cross validation for the LASSO problem (simulated data)

References

J. Friedman, T. Hastie, and R. Tibshirani.

The elements of statistical learning.

Springer series in statistics, 2nd edition, 2009.

G. James, D. Witten, T. Hastie, and R. Tibshirani. https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/cv_boot.pdf, 2013.

G. James, D. Witten, T. Hastie, and R. Tibshirani. https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/model_selection.pdf, 2013.

G. James, D. Witten, T. Hastie, and R. Tibshirani.
An introduction to statistical learning: with applications in R, volume 112.
Springer, 2013.