2023 CSP七连测-day06

题目名称	快速移动	多项式	坦克	殊途同归
题目类型	传统型	传统型	传统型	传统型
英文题目名称	move	poly	tank	together
输入文件名	move.in	poly.in	tank.in	together.in
输出文件名	move.out	poly.out	tank.out	together.out
每个测试点时限	2s	1s	2s	2s
内存限制	256MB	256MB	512MB	256MB
提交的源文件名	move.cpp	poly.cpp	tank.cpp	together.cpp

【C++编译选项】 -lm -std=c++14 -Wl,--stack=1000000000 -02

【提交文件夹格式】

--准考证号\ **(平时训练用中文姓名)**

T1 快速移动 (move)

题目描述

小 W 有一个机器人 R ,初始在**一个平面直角坐标系的原点**,即 (0,0)。

小 W 有一个长度为 n 的命令串 S ,每个字符都是 wasp 之一,分别表示向上、左、下、右移动一个单位长度。

小 W 决定让 R "快速移动" m 次,每次给定 l,r $(l \le r)$,R会依次考虑 S[l,r] 中的每条命令,自由选择执行这条命令或不执行这条命令,使得处理完**每一次**的 S[l,r] 后,离原点的距离最大(若有多种方案,选择使 x 坐标最大的条件下 y 坐标最大的)。

m 次"快速移动"完成后,请输出 R 的最终坐标。

输入格式

第一行两个正整数 n, m。

第二行一个长度为 n 的命令串 S。

接下来 m 行,每行两个整数 l,r,表示这次"快速移动"中机器人要考虑 S[l,r]。

输出格式

两个整数, 表示 R 的最终坐标。

5 3

WWAAD

1 4

2 5

2 2

-4 4

样例解释

第一次移动中,最优方案是, $1\sim 4$ 均执行,移动到 (-2,2),距离为 $2\sqrt{2}$ 。

第二次移动中,最优方案是,执行 2,3,4,不执行 5,移动到 (-4,3),距离为 5。

第三次移动中,最优方案是,执行 2,移动到 (-4,4),距离为 $4\sqrt{2}$ 。

数据范围

对于 40% 的数据, $n \le 8, m \le 8$.

对于 80% 的数据, $n \leq 2000, m \leq 2000$.

对于 100% 的数据, $n \le 10^5, m \le 10^5$ 。

T2 多项式 (poly)

题目描述

给出 a,b,c,求有多少个系数为**非负整数**的多项式 F(x),满足 F(a)=b,F(b)=c。

输入格式

第一行一个整数 T, 表示有 T 组数据。

接下来 T 行,每行三个整数,分别表示 a,b 和 c 的值。

输出格式

T 行,每行一个整数,表示多项式有多少种可能,如果有无穷多种则输出-1。

```
4
2 2 2
2 3 3
```

1
 1
 2
 3

2

1

-1

1

样例解释

对于第一组,有 F(x) = 2 和 F(x) = x 满足条件。

对于第二组,有F(x)=3满足条件。

对于第三组,有 $F(x) = x^t$ 满足条件,其中 t 是任意非负整数。

对于第四组,有 F(x) = 1 + x 满足条件。

数据范围

对于 20% 的数据, $a, b, c \leq 10$ 。

对于 50% 的数据, $a, b, c \leq 10^6$ 。

对于 100% 的数据, $1 \le T \le 5, 1 \le a, b, c \le 10^{18}$ 。

T3 坦克(tank)

题目描述

有一种特殊的坦克,它的一次移动只能从四个方向向量 $e_1=(a,b), e_2=(-a,-b), e_3=(b,-a), e_4=(-b,a)$ 中选择一个。然后在这个方向上移动任意实数长度。

给出 n 个平面上的点 P_1, P_2, \cdots, P_n ,记 dis(i) 表示坦克到达第 i 个点所需移动的最小距离。

你需要回答 Q 次询问,每次询问形如(1 r p q),表示将坦克放在 (p,q) 位置后,dis(i) 的最大值,其中 $l \leq i \leq r$ 。

你的回答形如 $\frac{x}{y}$, 其中 x,y 是互质的非负整数,表示答案为 $\frac{x}{y}\sqrt{a^2+b^2}$, 若 x=0 , 则 y=1 。可以证明这种表示唯一存在。

输入格式

第一行四个整数,分别为n, m, a, b,含义见题面描述部分。

接下来的 n 行,每行两个整数 x_i, y_i ,表示 P_i 的横纵坐标。

再接下来的 m 行,每行四个整数 l_i, r_i, p_i, q_i 表示一组形如 (l_i, r_i, p_i, q_i) 的询问。

输出格式

输出共m行。第i行一个形如x/y的有理数,表示第i组询问的答案。

3 2 2 2

0 0

1 1

1 3

1 3 0 0

1 2 1 1

3/2

1/2

数据范围

对于 30% 的数据, $n, m \leq 10^3$.

对于另外 20% 的数据,保证 $l_i=1, r_i=n$ 。

对于所有数据, $1 \le n, m \le 3 \times 10^5, 0 \le a, b \le 10^5, -10^9 \le x_i, y_i, p_i, q_i \le 10^9, 1 \le l_i \le r_i \le n$ 。不存在a = b = 0的数据。

T4 殊途同归 (together)

题目描述

小 W 预测了未来的 n 个事件,第 i 个有一个关键度 a_i 。小W有一个满意度 v,初始为 0。

小 W 会依次面对这 n 个事件,当他面对事件 i 时,v 将会异或上 $[0,a_i]$ 间的一个整数。

小 W 希望你帮他求出,有多少种可能的情况,能使得最终的满意度恰好为给定的非负整数 m? 答案可能很大,你只需求出其对 998244353 取模的结果。

输入格式

第一行两个非负整数 n, m。

第二行 n 个非负整数 a_i 。

输出格式

一行一个整数, 表示答案模 998244353 的结果。

3 1

3 3 1

8

10 905

742 736 738 167 5 101 412 234 804 709

287896304

数据范围

测试点编号	$n \le$	$m,a_i \leq$	特殊性质
1, 2	100	$2^{7}-1$	无
3, 4, 5	1000	$2^{30}-1$	$a_i = 2^{30} - 1$
$6\sim12$	1000	$2^{30}-1$	无
$13\sim16$	10^{5}	$2^{30}-1$	无
$17\sim 20$	$2 imes10^6$	$2^{30}-1$	无

对于所有数据, $n\in[1,2 imes10^6],m\in[0,2^{30}-1],a_i\in[0,2^{30}-1]$ 。