WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL APPLICATION	(11) International Publication Numbe	r: WO 99/47497
(51) International Patent Classification ⁶ : C07C 315/00	(43) International Publication Date:	
CO/C SIGNS	 L	MATUAZ DA BR BG BR.

PCT/CA99/00212 (21) International Application Number: 12 March 1999 (12.03.99) (22) International Filing Date:

(30) Priority Data: 13 March 1998 (13.03.98) US 60/077,990 GB 21 July 1998 (21.07.98) 9815856.1

(71) Applicant (for all designated States except US): MERCK FROSST CANADA & CO. [CA/CA]; 16711 Trans-Canada Highway, Kirkland, Quebec H9H 3L1 (CA).

(72) Inventors; and GAREAU, Yves (75) Inventors/Applicants (for US only): (CA). LABELLE, Marc [CA/CA]; [CA/CA];

JUTEAU, Helene [CA/CA]; (CA). GALLANT, Michel [CA/CA]; (CA). LACHANCE, Nicolas [CA/CA]; (CA). BELLEY, Michel [CA/CA]; 16711 Trans-Canada Highway, Kirkland, Quebec H9H 3L1 (CA).

(74) Agent: MURPHY, Kevin, P.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College, Montreal, Quebec H3A 2Y3 (CA).

(81) Designated States: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

(CA).

Without international search report and to be republished upon receipt of that report.

(54) Title: CARBOXYLIC ACIDS AND ACYLSULFONAMIDES, COMPOSITIONS CONTAINING SUCH COMPOUNDS AND METHODS OF TREATMENT

Compounds of formula (I), as well as pharmaceutically acceptable salts, hydrates and esters thereof, are disclosed. The compounds (57) Abstract are useful for treating or preventing prostaglandin mediated diseases. Pharmaceutical compositions containing such compounds and methods of treatment are also included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA.	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT/CA99/00212

5

10

15

20

25

CARBOXYLIC ACIDS AND ACYLSULFONAMIDES, COMPOSITIONS CONTAINING SUCH COMPOUNDS AND METHODS OF TREATMENT

BACKGROUND OF THE INVENTION

The present invention relates to compounds which are useful for treating or preventing prostaglandin mediated diseases, methods of treatment and pharmaceutical compositions containing such compounds. The compounds are structurally different from conventional NSAIDs and opiates, and are antagonists of the pain and inflammatory effects of E-type prostaglandins.

Two review articles describe the characterization and therapeutic relevance of the prostanoid receptors as well as the most commonly used selective agonists and antagonists: *Eicosanoids: From Biotechnology to Therapeutic Applications*, Folco, Samuelsson, Maclouf, and Velo eds, Plenum Press, New York, 1996, chap. 14, 137-154 and Journal of Lipid Mediators and Cell Signalling, 1996, 14, 83-87. An article from *The British Journal of Pharmacology* (1994, 112, 735-740) suggests that Prostaglandin E₂ (PGE₂) exerts allodynia through the EP₁ receptor subtype and hyperalgesia through EP₂ and EP₃ receptors in the mouse spinal cord.

Thus, selective prostaglandin ligands, agonists or antagonists, depending on which prostaglandin E receptor subtype is being considered, have anti-inflammatory, antipyretic and analgesic properties, and in addition inhibit hormone-induced uterine contractions. Moreover, the compounds have anti-cancer effects.

The compounds have a reduced potential for gastrointestinal toxicity, a reduced potential for renal side effects, a reduced effect on bleeding times and a lessened ability to induce asthma attacks in aspirin-sensitive asthmatic subjects.

35

30

15

20

25

30

35

5 SUMMARY OF THE INVENTION

The present invention relates to compounds represented by formula I:

as well as pharmaceutically acceptable salts, hydrates and esters thereof, wherein:

HET represents a 5-12 membered monocyclic or bicyclic aromatic ring system containing 0-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$ wherein m is 0 or 1 and n is 0, 1 or 2;

A is a one or two atom moiety and is selected from the group consisting of: -W-, -C(O)- , -C(R⁷)₂-W- , -W-C(R⁷)₂- , -CR⁷(OR²⁰)- , -C(R⁷)₂- , -C(R⁷)₂-C(OR²⁰)R⁷- , -C(R⁷)₂- C(R⁷)₂- or -CR⁷=CR⁷- , wherein W represents O, S(O)_n or NR¹⁷, with n as previously defined and R¹⁷ as defined below;

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$, and optionally substituted with R^{14} and R^{15} , and A and B are attached to the aryl or heteroaryl group ortho relative to each other;

Y represents O, $S(O)_n$, NR^{17} , a bond or $-CR^{18} = CR^{18}$.; B represents $-(C(R^{18})_2)_p$ -Y- $(C(R^{18})_2)_q$.

wherein p and q are independently 0-3, such that when Y represents O, $S(O)_n$, NR17 or -CR18 = CR18., p+q=0-6, and when Y represents a bond, p+q is 1-6;

Z is OH or NHSO₂R¹⁹;

 R^1 R^2 and R^3 independently represent H, halogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkenyl-HET(R^a)₄₋₉, - $(C(R^4)_2)_pSR^5$, - $(C(R^4)_2)_pOR^8$, - $(C(R^4)_2)_pN(R^6)_2$, CN, NO_2 , - $(C(R^4)_2)_pC(R^7)_3$, - CO_2R^9 , - $CON(R^6)_2$ or - $(C(R^4)_2)_pS(O)_nR^{10}$, wherein n and p are as previously defined;

each R4 is independently H, F, CF3 or lower alkyl,

or two R⁴ groups are taken in conjunction and represent a ring of up to six atoms, optionally containing one heteroatom selected from O, S(O)_n or N(O)_m;

each R^5 is independently lower alkyl, lower alkenyl, lower alkynyl, CF_3 , lower alkyl-HET, lower alkenyl-HET or $-(C(R^{18})_2)_p Ph(R^{11})_0$.

10 2

15

20

25

30

35

each R^6 is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 , Ph, Bn and when two R^6 groups are attached to N they may be taken in conjunction and represents a ring of up to 6 atoms, optionally containing an additional heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^7 is independently H, F, CF_3 or lower alkyl, and when two R^7 groups are presents, they may be taken in conjunction and represent an aromatic or aliphatic ring of 3 to 6 members containing from 0-2 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$;

each R8 represents H or R5;

each R⁹ is independently H, lower alkyl, lower alkenyl, lower alkynyl, Ph or Bn;

each R^{10} is independently lower alkyl, lower alkenyl, lower alkynyl, $CF_3,\,Ph(R^{11})_{0\text{--}3},\,CH_2Ph(R^{11})_{0\text{--}3}$ or $N(R^6)_2$;

each R^{11} is independently lower alkyl, SR^{20} , OR^{20} , $N(R^6)_2$, $-CO_2R^{12}$, $-CON(R^6)_2$, $-C(O)R^{12}$, CN, CF_3 , NO_2 or halogen;

each R¹² is independently H, lower alkyl or benzyl; each R¹³ is independently H, halo, lower alkyl, O-lower alkenyl, S-lower alkyl, N(R⁶)₂, CO₂R¹², CN, CF₃ or NO₂;

 R^{14} and R^{15} are independently lower alkyl, halogen, CF_3 , OR^{16} , S(O), R^{16} or $C(R^{16})$, OR^{17} ;

each R^{16} is independently H, lower alkyl, lower alkenyl, Ph, Bn or $CF_{3;}$

each R^{17} is independently H, lower alkyl or Bn;

each R¹⁸ is independently H, F or lower alkyl, and when two R¹⁸ groups are present, they may be taken in conjunction and represent a ring of 3 to 6 members comprising carbon atoms and optionally one heteroatom chosen from O, S(O)_n or N;

each R^{19} is lower alkyl, lower alkenyl, lower alkynyl, CF_3 , $HET(R^a)_{4-9}$, lower alkyl- $HET(R^a)_{4-9}$ or lower alkenyl- $HET(R^a)_{4-9}$; each R^{20} is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 or $Ph(R^{13})_2$ and

each Ra is independently selected from the group consisting of:

H, OH, halo, CN, NO2, amino, C1-6alkyl, C2-6alkenyl, C2-6alkynyl,
C1-6 alkoxy, C2-6alkenyloxy, C2-6alkynyloxy, C1-6alkylamino,
di-C1-6alkylamino, CF3, C(O)C1-6alkyl, C(O)C2-6alkenyl, C(O) C26alkynyl, CO2H, CO2C1-6alkyl, CO2C2-6alkenyl, and CO2C2-6alkynyl,

said alkyl, alkenyl, alkynyl and the alkyl portions of alkylamino and dialkylamino being optionally substituted with 1-3 of: hydroxy, halo, aryl, C1-6 alkoxy, C2-6alkenyloxy, C2-6alkynyloxy, CF3, C(O)C1-6alkyl, C(O)C2-6alkenyl, C(O)C2-6alkynyl, CO2H, CO2C1-6alkyl, CO2C2-6alkenyl, NH2, NHC1-6alkyl and N(C1-6alkyl)2.

Pharmaceutical compositions are also included which are comprised of a compound of formula I in combination with a pharmaceutically acceptable carrier.

A method of treating or preventing a prostaglandin mediated disease is also included which is comprised of administering to a mammalian patient in need thereof, a compound of formula I in an amount which is effective for treating or preventing a prostaglandin mediated disease.

30 DETAILED DESCRIPTION OF THE INVENTION

20

25

35

The present invention relates to carboxylic acids and acylsulfonamides, which are ligands at prostaglandin receptors, as well as a method for treating or preventing a prostaglandin mediated disease comprising administering to a patient in need of such a treatment of an amount of compound of Formula I which is effective for treating or preventing a prostaglandin mediated disease.

The invention described in this patent application is described using the following definitions unless otherwise indicated.

HET represents a 5-12 membered aromatic ring system containing 0-3 heteroatoms selected from O, S(O)_n and N wherein n is 0, 1 or 2. HET may be substituted with up to three substituents on the aromatic ring system, R¹, R² and R³. "Aromatic ring systems" as used herein includes aryl and heteroaryl groups such as benzene, naphthalene, biphenyl, pyridine, quinoline, isoquinoline, furan, benzofuran, thiophene, benzothiophene, oxazole, thiazole, imidazole, benzothiazole, triazole, 1,2,5-thiadiazole, thienopyridine, indole, tetrazole, imidazole, benzoxazole, 1,2-methylenedioxybenzene and pyrrole.

HET² is a subset of HET and represents a member selected from the group consisting of: phenyl, thienyl, naphthyl, furanyl, thiazolyl, imidazolyl and indolyl.

15

20

25

30

35

Aryl refers to aromatic 6-10 membered groups having 1-2 rings and alternating (resonating) double bonds. Examples include phenyl, biphenyl and naphthyl.

Heteroaryl refers to aromatic 5-12 membered groups having alternating (resonating) double bonds and containing from 1-4 heteroatoms selected from O, S(O)_n and N. Examples include the following: : quinoline, furan, benzofuran, thiophene, benzothiophene, thiazole, benzothiazole, 1,2,5-thiadiazole, thienopyridine, oxazole, indole, isoindole, pyridine, isoquinoline, imidazole, thiazole, triazole, 1,3-methylene dioxobenzene, pyrrole and naphthyridine,

Heterocyclyl refers to non-aromatic 5-12 membered cyclic groups having 1-4 heteroatoms selected from O, $S(O)_n$ and N. Examples of heterocyclic groups are piperidine, piperazine, pyrrolidine, tetrahydrofuran, tetrahydropyran and morpholine.

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$, and optionally substituted with R14 and R15, and A and B are attached to the aryl or heteroaryl group X in positions which are orthorelative to each other. Examples are selected from the group consisting of: phenyl, naphthyl, biphenyl, quinoline, furan, benzofuran, pyridyl, pyrrole, thiophene, benzothiophene, thiazole, benzothiazole, 1,2,5-

5 thiadiazole, triazole, 1,2-methylenedioxybenzene, thienopyridine, oxazole and indole.

The terms alkyl, alkenyl, and alkynyl mean linear, branched, and cyclic structures and combinations thereof.

"Lower alkyl" means alkyl groups of from 1 to 7 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, cyclopropyl, isopropyl, butyl, s- and t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, heptyl, and the like. When propyl and butyl are recited without the isomeric form being specified, these include all isomers thereof.

"Lower alkenyl" means alkenyl groups of 2 to 7 carbon atoms. Examples of lower alkenyl groups include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, cyclopropen-1-yl, cyclohexen-3-yl and the like. When cis or trans is not specified, both are intended in pure form as well as in the form of a mixture of isomers.

"Lower alkynyl" means alkynyl groups of 2 to 7 carbon atoms. Examples of lower alkynyl groups include ethynyl, propargyl, 3-methyl-1-pentynyl, 2-heptynyl, 2-(cyclopropyl)ethenyl, 3-(cyclobutyl)-1-propynyl and the like.

25 Halogen (halo) includes F, Cl, Br and I.

15

20

The following abbreviations have the indicated meanings:

		·	bioviaciono navo encimarcatea meanings
	AIBN	=	2.2'-azobisisobutyronitrile
	B.P.	=	benzoyl peroxide
	Bn	=	benzyl
30	CCl_4	=	carbon tetrachloride
	D	=	-O(CH ₂) ₃ O-
	DAST	=	diethylamine sulfur trifluoride
	DCC	=	dicyclohexyl carbodiimide
	DCI	=	1-(3-dimethylaminopropyl)-3-ethyl
35			carbodiimide
	DEAD	=	diethyl azodicarboxylate
	DIBAL	=	diisobutyl aluminum hydride
	\mathbf{DME}	=	ethylene glycol dimethylether
	DMAP	=	4-(dimethylamino)pyridine
40	DMF	=	N,N-dimethylformamide
	DMSO	=	dimethyl sulfoxide
	Et3N	=	triethylamine
	LDA	=	lithium diisopropylamide

51015	m-CPBA NBS NSAID PCC PDC Ph 1,2-Ph Pyr Qn Rs r.t. rac. THF THP		metachloroperbenzoic acid N-bromosuccinimide non-steroidal anti-inflammatory drug pyridinium chlorochromate pyridinium dichromate phenyl 1,2-benzenediyl pyridinediyl 7-chloroquinolin-2-yl -CH2SCH2CH2Ph room temperature racemic tetrahydrofuran tetrahydropyran-2-yl
20	Alkyl group abbreviation	<u>ns</u>	
	Me Et n-Pr	= = =	methyl ethyl normal propyl
25	i-Pr n-Bu i-Bu s-Bu t-Bu	= = = = = =	isopropyl normal butyl isobutyl secondary butyl tertiary butyl
30	c-Pr c-Bu c-Pen c-Hex	= = =	cyclopropyl cyclopentyl cyclohexyl

It is intended that the definition of any substituent (e.g., R^5 , 35 R^6 , etc.) in a particular molecule be independent of its definition elsewhere in the molecule. Thus, $-N(R^6)_2$ represents -NHH, -NHCH₃, -NHC₆H₅, and the like.

In one aspect of the invention, the invention relates to a compound represented by formula I:

40

1

as well as pharmaceutically acceptable salts, hydrates and esters thereof, wherein:

HET represents a 5-12 membered monocyclic or bicyclic aromatic ring system containing 0-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$ wherein m is 0 or 1 and n is 0, 1 or 2;

A is a one or two atom moiety and is selected from the group consisting of: -W-, -C(O)- , -C(R⁷)₂-W- , -W-C(R⁷)₂- , -CR⁷(OR²⁰)- , -C(R⁷)₂- , -C(R⁷)₂-C(OR²⁰)R⁷- , -C(R⁷)₂- C(R⁷)₂ or CR⁷=CR⁷, wherein W represents O, S(O)_n or NR17, with n as previously defined and R17 as defined below;

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$, and optionally substituted with R14 and R15, and A and B are attached to the aryl or heteroaryl group ortho relative to each other;

Y represents O, $S(O)_n$, NR^{17} , a bond or $-CR^{18} = CR^{18}$; B represents $-(C(R^{18})_2)_p$ -Y- $(C(R^{18})_2)_q$.

wherein p and q are independently 0-3, such that when Y represents O, $S(O)_n$, NR^{17} or $-CR^{18} = CR^{18}$ -, p+q=0-6, and when Y represents a bond, p+q is 1-6;

Z is OH or NHSO₂R¹⁹;

10

15

20

25

30

 $R^1\;R^2$ and R^3 independently represent H, halogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkenyl-HET(R^a)_4-9 , -

 $(C(R^4)_2)_pSR^5$, $-(C(R^4)_2)_pOR^8$, $-(C(R^4)_2)_pN(R^6)_2$, CN, NO_2 , $-(C(R^4)_2)_pC(R^7)_3$, $-CO_2R^9$, $-CON(R^6)_2$ or $-(C(R^4)_2)_2C(R^7)_3$, $-(C(R^4)_2)_2$, $-(C(R^4)_2$

- $(C(R^4)_2)_pS(O)_nR^{10}$, wherein n and p are as previously defined;

each R^4 is independently H, F, CF_3 or lower alkyl, or two R^4 groups are taken in conjunction and represent a ring of up to six atoms, optionally containing one heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^5 is independently lower alkyl, lower alkenyl, lower alkynyl, CF_3 , lower alkyl-HET, lower alkenyl-HET or - $(C(R^{18})_2)_pPh(R^{11})_0$ -2;

each R⁶ is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF₃, Ph, Bn and when two R⁶ groups are attached to N they may be taken in conjunction and represents a ring of up to 6 atoms,

optionally containing an additional heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^7 is independently H, F, CF_3 or lower alkyl, and when two R^7 groups are presents, they may be taken in conjunction and represent an aromatic or aliphatic ring of 3 to 6 members containing from 0-2 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$;

each R8 represents H or R5;

10

each \mathbf{R}^9 is independently H, lower alkyl, lower alkenyl, lower alkynyl, Ph or Bn;

each R^{10} is independently lower alkyl, lower alkenyl, lower 15 alkynyl, CF_3 , $Ph(R^{11})_{0-3}$, $CH_2Ph(R^{11})_{0-3}$ or $N(R^6)_2$;

each R^{11} is independently lower alkyl, SR^{20} , OR^{20} , $N(R^6)_2$, $-CO_2R^{12}$, $-CON(R^6)_2$, $-C(O)R^{12}$, CN, CF_3 , NO_2 or halogen;

each R^{12} is independently H, lower alkyl or benzyl; each R^{13} is independently H, halo, lower alkyl, O-lower

20 alkenyl, S-lower alkyl, N(R⁶)₂, CO₂R¹², CN, CF₃ or NO₂;

 R^{14} and R^{15} are independently lower alkyl, halogen, $CF_3,$ $OR^{16},$ $S(O)_{_{1}}R^{16}$ or $C(R^{16})_{_{2}}OR^{17}$;

each R^{16} is independently H, lower alkyl, lower alkenyl, Ph, Bn or CF_3

each R¹⁷ is independently H, lower alkyl or Bn;
each R¹⁸ is independently H, F or lower alkyl, and when two
R¹⁸ groups are present, they may be taken in conjunction and represent
a ring of 3 to 6 members comprising carbon atoms and optionally one
heteroatom chosen from O, S(O)_n or N;

ach R^{19} is lower alkyl, lower alkenyl, lower alkynyl, CF_3 , $HET(R^a)_{4-9}$, lower alkyl- $HET(R^a)_{4-9}$ or lower alkenyl- $HET(R^a)_{4-9}$; each R^{20} is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 or $Ph(R^{13})_2$ and

each Ra is independently selected from the group consisting of: H, OH, halo, CN, NO2, amino, C1-6alkyl, C2-6alkenyl, C2-6alkynyl,

5 C₁₋₆ alkoxy, C₂₋₆alkenyloxy, C₂₋₆alkynyloxy, C₁₋₆alkylamino, di-C₁₋₆alkylamino, CF₃, C(O)C₁₋₆alkyl, C(O)C₂₋₆alkenyl, C(O) C₂₋₆alkynyl, CO₂H, CO₂C₁₋₆alkyl, CO₂C₂₋₆alkenyl, and CO₂C₂₋₆alkynyl,

said alkyl, alkenyl, alkynyl and the alkyl portions of alkylamino and dialkylamino being optionally substituted with 1-3 of: hydroxy, halo, aryl, C1-6 alkoxy, C2-6alkenyloxy, C2-6alkynyloxy, CF3, C(O)C1-6alkyl, C(O)C2-6alkenyl, C(O)C2-6alkynyl, CO2H, CO2C1-6alkyl, CO2C2-6alkenyl, NH2, NHC1-6alkyl and N(C1-6alkyl)2.

In another embodiment of the invention, the invention relates to compounds represented by formula I:

10

20

25

30

I

as well as pharmaceutically acceptable salts, hydrates and esters thereof, wherein:

HET represents a 5-12 membered monocyclic or bicyclic aromatic ring system containing 0-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$ wherein m is 0 or 1 and n is 0, 1 or 2;

A is a one or two atom moiety and is selected from the group consisting of: -W-, -C(O)- , -C(R⁷)₂-W- , -W-C(R⁷)₂- , -CR⁷(OR²⁰)- , -C(R⁷)₂- , -C(R⁷)₂-C(OR²⁰)R⁷- , -C(R⁷)₂- C(R⁷)₂ or CR⁷=CR⁷, wherein W represents O, S(O)_n or NR¹⁷, with n as previously defined and R¹⁷ as defined below;

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$, and optionally substituted with R14 and R15, and A and B are attached to the aryl or heteroaryl group ortho relative to each other;

Y represents O, $S(O)_n$, NR17, a bond or -CR18 = CR18.; B represents $-(C(R18)_2)_p-Y-(C(R18)_2)_q$.

wherein p and q are independently 0-3, such that when Y represents O, $S(O)_n$, NR17 or -CR18 = CR18-, p+q=0-6, and when Y represents a bond, p+q is 1-6;

Z is OH or NHSO₂R¹⁹;

 $R^1~R^2$ and R^3 independently represent H, halogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkenyl-HET(Ra)_4-9 , $-(C(R^4)_2)_pSR^5, -(C(R^4)_2)_pOR^8, -(C(R^4)_2)_pN(R^6)_2, CN, NO_2, -(C(R^4)_2)_pC(R^7)_3, \\ -CO_2R^9, -CON(R^6)_2 \ or \ -(C(R^4)_2)_pS(O)_nR^{10}, \ wherein \ n \ and \ p \ are \ as previously defined;$

each R^4 is independently H, F, CF_3 or lower alkyl, or two R^4 groups are taken in conjunction and represent a ring of up to

six atoms, optionally containing one heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^5 is independently lower alkyl, lower alkenyl, lower alkynyl, CF_3 , lower alkyl-HET, lower alkenyl-HET or - $(C(R^{18})_2)_pPh(R^{11})_0$ -

20 2.

25

30

35

15

each R^6 is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 , Ph, Bn and when two R^6 groups are attached to N they may be taken in conjunction and represents a ring of up to 6 atoms, optionally containing an additional heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^7 is independently H, F, CF_3 or lower alkyl, and when two R^7 groups are presents, they may be taken in conjunction and represent an aromatic or aliphatic ring of 3 to 6 members containing from 0-2 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$;

each R8 represents H or R5;

each R^9 is independently H, lower alkyl, lower alkenyl, lower alkynyl, Ph or Bn;

each R^{10} is independently lower alkyl, lower alkenyl, lower alkynyl, CF_3 , $Ph(R^{11})_{0-3}$, $CH_2Ph(R^{11})_{0-3}$ or $N(R^6)_2$;

each R¹¹ is independently lower alkyl, SR²⁰, OR²⁰, N(R⁶)₂,
-CO₂R¹², -CON(R⁶)₂, -C(O)R¹², CN, CF₃, NO₂ or halogen;
each R¹² is independently H, lower alkyl or benzyl;

each R^{13} is independently H, halo, lower alkyl, O-lower alkenyl, S-lower alkyl, $N(R^6)_2$, CO_2R^{12} , CN, CF_3 or NO_2 ; R^{14} and R^{15} are independently lower alkyl, halogen, CF_3 , OR^{16} , $S(O)_nR^{16}$ or $C(R^{16})_2OR^{17}$;

each R^{16} is independently H, lower alkyl, lower alkenyl, Ph, 10 Bn, CHF2 or CF $_{3:}$

15

20

each R17 is independently H, lower alkyl or Bn;

each R^{18} is independently H, F or lower alkyl, and when two R^{18} groups are present, they may be taken in conjunction and represent a ring of 3 to 6 members comprising carbon atoms and optionally one heteroatom chosen from O, $S(O)_n$ or N;

each R^{19} is lower alkyl, lower alkenyl, lower alkynyl, CF_3 , $HET^2(R^a)_{4-9}$, lower alkyl- $HET^2(R^a)_{4-9}$ or lower alkenyl- $HET^2(R^a)_{4-9}$, wherein HET^2 represents a member selected from the group consisting of: phenyl, thienyl, naphthyl, furanyl, thiazolyl, imidazolyl and indolyl;

each $\rm R^{20}$ is independently H, lower alkyl, lower alkenyl, lower alkynyl, $\rm CHF_2$, $\rm CF_3$ or $\rm Ph(R^{13})_2$ and

each Ra is independently selected from the group consisting of:

25 H, OH, halo, CN, NO₂, amino, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl, C₁-6 alkoxy, C₂-6alkenyloxy, C₂-6alkynyloxy, C₁-6alkylamino, di-C₁-6alkylamino, CF₃, C(O)C₁-6alkyl, C(O)C₂-6alkenyl, C(O) C₂-6alkynyl, CO₂H, CO₂C₁-6alkyl, CO₂C₂-6alkenyl, and CO₂C₂-6alkynyl,

said alkyl, alkenyl, alkynyl and the alkyl portions of

alkylamino and dialkylamino being optionally substituted with 1-3 of:
hydroxy, halo, aryl, C1-6 alkoxy, C2-6alkenyloxy, C2-6alkynyloxy, CF3,
C(O)C1-6alkyl, C(O)C2-6alkenyl, C(O)C2-6alkynyl, CO2H, CO2C1-6alkyl,
CO2C2-6alkenyl, CO2C2-6alkynyl, NH2, NHC1-6alkyl and N(C1-6alkyl)2.

An embodiment of the present invention which is of particular interest is represented by formula I wherein HET represents a member selected from the group consisting of: benzene, naphthalene, biphenyl, pyridine, quinoline, isoquinoline, furan, benzofuran,

thiophene, benzothiophene, oxazole, thiazole, imidazole, benzothiazole, triazole, 1,2,5-thiadiazole, thienopyridine, indole, tetrazole, imidazole, benzoxazole, 1,2-methylenedioxybenzene and pyrrole.

More particularly, an embodiment of the present invention is represented by formula I wherein HET is selected from the group consisting of: benzene, biphenyl, naphthylene, indole, thiophene, benzofuran and quinoline. Within this subset of compounds of the invention, all other variables are as originally described with respect to formula I.

10

15

20

25

30

35

Another embodiment of the present invention that is of particular interest is represented by formula I wherein A represents a one or two atom moiety and is selected from the group consisting of: S, S(O), SO₂, CH₂, -C(O)-, -OCH₂-, -CHOH-, -C(OH)(CH₃)- and -CH₂-O-. More particularly, A is selected from the group consisting of: : S, S(O), SO₂, CH₂, -C(O)-. Within this subset of compounds of the invention, all other variables are as originally described with respect to formula I.

Another embodiment of the present invention that is of particular interest is represented by formula I wherein X represents phenyl optionally substituted with R¹⁴ and R¹⁵. Within this subset of compounds of the invention, all other variables are as originally described with respect to formula I. More particularly, X represents phenyl and R¹⁴ and R¹⁵ are absent or represent halo. Within this subset of compounds of the invention, all other variables are as originally described with respect to formula I.

Another embodiment of the present invention that is of particular interest is represented by formula I wherein B is CH=CH or 1,2-cyclopropyl, and in particular, where B is CH=CH in the E-isomeric form. Within this subset of compounds of the invention, all other variables are as originally described with respect to formula I.

Another embodiment of the present invention that is of particular interest is represented by formula I wherein Z is $NHSO_2R^{19}$. Within this subset of compounds of the invention, all other variables are as originally described with respect to formula I.

Another embodiment of the present invention that is of particular interest is represented by formula I wherein Z is NHSO₂R¹⁹ and R¹⁹ represents a member selected from the group consisting of: lower alkyl and HET(Ra)3. Within this aspect of the invention, HET is selected from the group consisting of: phenyl, thienyl, naphthyl, furanyl, thiazolyl, imidazolyl and indolyl.

Another embodiment of the present invention that is of particular interest is represented by formula I wherein Z is $NHSO_2R^{19}$ and R^{19} represents benzene or thiophene, substituted with $R^1R^2R^3$.

Another embodiment of the present invention that is of particular interest is represented by formula I wherein Z represents OH. Within this subset, all other variables are as originally defined.

A subset of compounds that is of particular interest is defined with respect to formula I wherein:

HET represents a member selected from the group consisting of: phenyl, naphthalene, biphenyl, pyridine, quinoline, isoquinoline, furan, benzofuran, thiophene, benzothiophene, oxazole, thiazole, imidazole, benzothiazole, 1,2,5-thiadiazole, thienopyridine, indole, tetrazole, imidazole, benzoxazole and pyrrole;

A represents a one or two atom moiety and is selected from the group consisting of: S, S(O), SO2, CH2, -C(O)- , -OCH2- , -CHOH- , -C(OH)(CH3)- and -CH2-O-;

X represents phenyl optionally substituted with R^{14} and R^{15} ; B is CH=CH;

Z is NHSO₂R¹⁹ and

 ${
m R}^{19}$ represents a member selected from the group consisting of: lower alkyl and HET(Ra)3.

Examples of compounds of the present invention are shown in Tables I and II below.

35

30

15

20

25

Table I

$$R^1R^2R^3$$
—HET O A NHSO₂ R^{19} Ia (Compounds 1-323 and 347-454)

5

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
1-naphthyl	CH_2	1,2-Ph	CH=CH	$Ph(F)_5$	1
2-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	$Ph(F)_5$	2
3-methylindol -1-yl	CH_2	1,2-Ph	CH=CH	2-thienyl	3
2-naphthyl	CH_2	1,2-Ph	CH=CH	2-thienyl	4
2-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	phenyl	5
3-methylindol -1-yl	S(O) ₂	1,2-Ph	CH=CH	2-thienyl	6
2-naphthyl	S(O) ₂	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	7
3,4-dichloro phenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	8
2-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	2-thienyl	9
2,4-dichloro phenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	10
1-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	Ph(F) ₅	11
1-naphthyl	S(O) ₂	1,2-Ph	CH=CH	3.5 -di- (CF_3) phenyl	12
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		13
3,4-chloro fluoro phenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	14
1-naphthyl	CH_2	1,2-Ph	CH=CH	2-thienyl	15
3,4-dichloro phenyl	S(O) ₂	1,2-Ph	CH=CH	2-thienyl	16
4-methylthio phenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	17
4-chlorophenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	18
2-naphthyl	S	1,2-Ph	CH=CH	2-thienyl	19
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	2-thienyl	20
2-naphthyl	S(O)	1,2-Ph	CH=CH	2-thienyl	21
1-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	phenyl	22
2-benzofuranyl	CH_2	1,2-Ph	CH=CH	2-thienyl	23

R ¹ R ² R ³ -Het	A	X	В	\mathbb{R}^{19}	Cpd
3,5-dichloro	CH_2	1,2-Ph	CH=CH	2-thienyl	24
phenyl	0.0				
1-naphthyl	S(O) ₂	1,2-Ph	CH=CH	3.5 -di- (CF_3) phenyl	25
1-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	2-thienyl	26
3-(1,2-(methylene	CH_2	1,2-Ph	CH=CH	2-thienyl	27
dioxy)benzene)		1.0.70	077		
2-naphthyl	0	1,2-Ph	CH=CH	2-thienyl	28
Rs-2-phenyl	CH ₂	1,2-Ph	CH ₂ -O	2-thienyl	29
Rs-2-phenyl	CH_2	1,2-Ph	CH_2 - CH_2	2-thienyl	30
2-naphthyl	$S(O)_2$	1,2-Ph	CH ₂ -O	2-thienyl	31
3-((2-(Qn)vinyl)) phenyl	CH_2	1,2-Ph	CH ₂ -O	2-thienyl	32
2-(6-benzyloxy) naphthyl	CH_2	1,2-Ph	CH=CH	2-thienyl	33
3-((2-(Qn)vinyl))	SO	1,2-Ph	CH ₂ -O	2-thienyl	34
phenyl					
3-((2-(Qn)vinyl)) phenyl	-CHOH	1,2-Ph	CH ₂ -O	2-thienyl	35
3-((2-(Qn)vinyl)) phenyl	$S(O)_2$	1,2-Ph	CH ₂ -O	phenyl	36
3-((2-(Qn)vinyl))	O-CH ₂	1,2-Ph	CH ₂ -O	2-thienyl	37
phenyl	0 0**				
3-tolyl-D-3-phenyl	O-CH ₂	1,2-Ph	CH ₂ -O	2-thienyl	38
3-((2-(Qn)vinyl)) phenyl	CH(OH) CH ₃ -	-1,2-Ph	CH ₂ -O	phenyl	39
3-((2-(Qn)vinyl)) phenyl	S	1,2-Ph	$\mathrm{CH_2 ext{-}O}$	2-thienyl	40
3-((2-(Qn)vinyl)) phenyl	0	1,2-Ph	CH ₂ -O	phenyl	41
3-((2-(Qn)vinyl))	C=O	1,2-Ph	CH ₂ -O	2-thienyl	42
phenyl					
3-((2-(Qn)vinyl)) phenyl	0	1,2-Ph	$C(CH_3)_2$ -O	2-thienyl	43
3-((2-(Qn)vinyl))	0	1,2-Ph	CH ₂ -O	2-thienyl	44
phenyl	CH	1 0 D	10	0.11	
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl		45
2-(6-benzyloxy) naphthyl	$\mathrm{CH_2}$	1,2-Ph	CH=CH	2-methoxy-5- bromophenyl	46
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3,4-dichloro	47
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	phenyl 4-fluoro	48
				phenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-chloro	49
				phenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-propyl	50
				phenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	2,5-dichloro	51
				thienyl	-
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	styryl	52
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3-chloro-4-	53
				fluorophenyl	"
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-methoxy	54
			7 1 13-	phenyl	01
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		55
			, 1 13	phenyl	50
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	2,5-dimethyl	56
			, , ,	phenyl	~
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	2-nitro-4-chloro	57
				phenyl	0.
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	2-carbomethoxy	58
			/ 113-	phenyl	~
2-naphthyl	CH,	1,2-Ph	1.2-c-propyl	2,4-difluoro	59
			, , ,	phenyl	<u>.</u>
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl	4-butyl-phenyl	60
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl		61
2-naphthyl	CH,	1,2-Ph		2,5-dimethoxy	62
	1 -		_,_ c p=opj-	phenyl	02
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3-trifluoro	63
	"		_,_ · P_ • PJ ·	methylphenyl	ω
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3,5-difluoro	64
			, F-4FJ-	phenyl	🍑
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3,5-dichloro	65
			, 1-1-1-1	phenyl	~
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-((1-hydroxy-1-	66
	_		' ' ' ' '	methyl)ethyl)	~
				phenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		67
				methyl)phenyl	ŭ.
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		68
			' ' '	methyl)phenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-(methyl	69
				sulfonyl)phenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3-(methyl	70
	<u> </u>			sulfonyl)phenyl	
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl	4-(propyl	71
				sulfonyl)phenyl	· -

R1R2R3-Het	A	X	В	\mathbb{R}^{19}	Cpd
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-((bis-trifluoro-	72
				methyl)-hydroxy	
				methyl)phenyl	
2-naphthyl	$\mathrm{CH_2}$	1,2-Ph	1,2-c-propyl		73
0	CTT	1.0.5		phenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-((1-methoxy-1-	74
		1		methyl)	
2-naphthyl	CH ₂	1,2-Ph		ethyl)phenyl	
2-naphthyi		1,2-Ph	1,2-c-propyl		75
2-naphthyl	CH,	1,2-Ph	190	aminophenyl	=-
2-naphthyl	CH,	1,2-Th	1,2-c-propyl		76
2-naphthyl	CH ₂	1,2-Th		cyclopentyl	77
2-naphthyl	CH _o	1,2-1 h		4-morpholinyl	78
2-naphthyl	CH ₂	1,2-Th		2-naphthyl	79
2-naphthyl	CH ₂	1,2-Th	1,2-c-propyl		80
2-naphthyl	CH,	1,2-Th		1-imidazolyl	81
2-naphthyl	CH,	1,2-Ph	1,2-c-propyl		82
		1,2-1 11	1,2-c-propyi	3-(2-chloro)-	83
2-naphthyl	CH _o	1,2-Ph	1 2-c-propyd	furanyl	04
2-naphthyl	CH,	1,2-Ph	1,2-c-propyl	2-pyridinyi 2-(4-chloro)	84
		1 -,2 - 11	1,2-c-propyr	pyridinyl	85
2-naphthyl	CH,	1,2-Ph	1,2-c-propyl		86
2-naphthyl	CH,	1,2-Ph		4-nitrophenyl	87
2-naphthyl	CH,	1,2-Ph		4-cyanophenyl	88
2-naphthyl	S(O),	1,2-Ph		4-((1-hydroxy-1-	89 89
		-,	_,_ o propyr	methyl)ethyl)	09
				phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-(hydroxy	90
				methyl)phenyl	-
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	3-(hydroxy	91
0 111 1	7(0)			methyl)phenyl	Î
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	2,5-dimethyl	92
O mambabaal	10(0)			phenyl	
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl		93
2-naphthyl	S(O)	1.0.10		phenyl	
2-naphtnyi	S(O) ₂	1,2-Ph	1,2-c-propyl		94
2-naphthyl	S(O) ₂	1 0 Db		phenyl	
~ mapming		1,2-Ph	1,2-c-propyl		95
2-naphthyl	S(O) ₂	1,2-Ph	100	sulfonyl)phenyl	
- impirmiyi		1,4-FI	1,2-c-propyl		96
2-naphthyl	S(O) ₂	1,2-Ph	120	sulfonyl)phenyl	
		1,2-111			97
				sulfonyl)phenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-butyl-phenyl	98
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl		99
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	4-((bis-trifluoro methyl)-hydroxy methyl)phenyl	100
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	3-bromophenyl	101
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl		102
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		103
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl		104
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl		105
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-methoxy phenyl	106
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	4-dimethyl aminophenyl	107
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	3,4-dichloro phenyl	108
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		109
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-fluorophenyl	110
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		111
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		112
2-naphthyl	$S(O)_2$	1,2-Ph		4-morpholinyl	113
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		114
2-naphthyl	$S(O)_2$	1,2-Ph		4-chlorophenyl	115
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-propylphenyl	116
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	2-naphthyl	117
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	2-thiazolyl	118
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	1-imidazolyl	119
2-naphthyl	S(O) ₂	1,2-Ph		2,5-dimethoxy phenyl	120
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	3-trifluoro methylphenyl	121
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	2,5-dichloro-3- thienyl	122
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		123
2-naphthyl	$S(O)_2$	1,2-Ph		3-(2-chloro)- furanyl	124
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		125

R ¹ R ² R ³ ·Het	A	X	В	\mathbb{R}^{19}	Cpd
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propy	2-styryl	126
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propy		127
0	0(0)	10.70		phenyl	
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propy	3,5-dichloro-	128
2-naphthyl	S(O) ₂	1,2-Ph	1 2 0 2222	phenyl	100
- maphiniyi		1,2-1 11	1,2-c-propyl	2-(4-chloro) pyridinyl	129
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		130
2-naphthyl	$S(O)_2$	1,2-Ph		4-nitrophenyl	131
2-naphthyl	$S(O)_2$	1,2-Ph		4-cyanophenyl	132
2-naphthyl	$S(O)_2$	1,2-Ph		3-chloro-4-	133
0 42 3: 11	CTT		<u> </u>	fluorophenyl	
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	3,5-di-(CF ₃)-	134
3-methylindol	CH_2	1,2-Ph	10 - 1	phenyl	
-1-yl		1,2-FII	1,2-c-propyl	4-isopropyl phenyl	135
3-methylindol	CH,	1,2-Ph	1 2-c-propyl	3,4-dichloro	136
-1-yl		-,	1,2 o propyr	phenyl	100
3-methylindol	CH_2	1,2-Ph	1,2-c-propyl	3,4-difluoro	137
-1-yl				phenyl	
3-methylindol	CH_2	1,2-Ph	1,2-c-propyl	4-fluorophenyl	138
-1-yl 3-methylindol	CH ₂	1,2-Ph	10		
-1-yl		1,2-F11	1,2-c-propyl	4-chlorophenyl	139
3-methylindol	CH ₂	1,2-Ph	1.2-c-propyl	4-propylphenyl	140
-1-yl		-,		r propyrphenyr	140
3-methylindol	CH_2	1,2-Ph	1,2-c-propyl	2,5-dichloro-3-	141
-1-yl				thienyl	
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2-styryl	142
3-methylindol	CH_2	1,2-Ph	190	0 -1-1 4 (1	1.40
-1-yl		1,2-111	1,2-c-propyl	3-chloro-4-fluoro phenyl	143
3-methylindol	$\mathrm{CH_2}$	1,2-Ph	1.2-c-propyl	4-methoxy	144
-1-yl			-,- v propji	phenyl	7.2.5
3-methylindol	CH_2	1,2-Ph	1,2-c-propyl	3-bromophenyl	145
-1-yl	OTT				
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2,5-dimethyl	146
3-methylindol	CH,	1,2-Ph	190	phenyl	
-1-yl	U11 ₂	1,4-11	1,2-c-propyl	2-nitro-4-chloro phenyl	147
3-methylindol	CH_2	1,2-Ph	1.2-c-propyl	2-carbomethoxy	148
-1-yl		, · = 		phenyl	740
3-methylindol	$\mathrm{CH_2}$	1,2-Ph	1,2-c-propyl	2,4-difluoro	149
-1-yl				phenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-butylphenyl	150
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		151
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2,5-dimethoxy phenyl	152
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	methylphenyl	153
3-methylindol -1-yl	CH ₂	1,2-Ph		3,5-difluoro phenyl	154
3-methylindol	CH ₂	1,2-Ph		3,5-dichloro phenyl	155
3-methylindol -1-yl	$ hootnote{CH}_2$	1,2-Ph	1,2-c-propyl	methyl)ethyl) phenyl	156
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	methyl)phenyl	157
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	3-(hydroxy methyl)phenyl	158
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	sulfonyl)phenyl	159
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	3-(methyl sulfonyl)phenyl	160
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	4-(propyl sulfonyl)phenyl	161
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	methyl)hydroxy methyl)phenyl	162
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	phenyl	163
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	4-((1-methoxy-1-methyl) ethyl)phenyl	164
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-dimethyl aminophenyl	165
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	cyclohexyl	166
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	cyclopentyl	167
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-morpholinyl	168
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2-naphthyl	169

R ¹ R ² R ³ -Het	A	X	В	\mathbb{R}^{19}	Cpd
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2-thiazolyl	170
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	1-imidazolyl	171
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2-furanyl	172
3-methylindol -1-yl	CH ₂	1,2-Ph		3-(2-chloro)- furanyl	173
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	2-pyridinyl	174
3-methylindol -1-yl	CH_2	1,2-Ph		2-(4-chloro) pyridinyl	175
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		176
3-methylindol -1-yl	CH_2	1,2-Ph		4-nitrophenyl	177
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	4-cyanophenyl	178
3-methylindol -1-yl	SO_2	1,2-Ph		$3,5$ -di- (CF_3) phenyl	179
3-methylindol -1-yl	SO ₂	1,2-Ph		4-isopropyl phenyl	180
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	phenyl	181
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	phenyl	182
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	4-fluorophenyl	183
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-chlorophenyl	184
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-propylphenyl	185
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	2,5-dichloro-3- thienyl	186
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl		187
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3-chloro-4- fluorophenyl	188
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		189
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		190
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	2,5-dimethyl phenyl	191

R ¹ R ² R ³ -Het	A	X	В	\mathbb{R}^{19}	Cpd
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	2-nitro-4-chloro phenyl	192
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		193
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	2,4-difluoro phenyl	194
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-butylphenyl	195
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	n-butyl	196
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	2,5-dimethoxy phenyl	197
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		1-198
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3,5-difluoro phenyl	199
1-(3-methyl) indolyl	SO_2	1,2-Ph	1,2-c-propyl	3,5-dichloro phenyl	200
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-((1-hydroxy-1- methyl)ethyl) phenyl	201
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-(hydroxy methyl)phenyl	202
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		203
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-(methyl sulfonyl)phenyl	204
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3-(methyl sulfonyl)phenyl	205
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-(propyl sulfonyl)phenyl	206
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	4-((bis-trifluoro methyl)hydroxy methyl)phenyl	207
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-(benzyloxy) phenyl	208
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-((1-methoxy-1-methyl)ethyl)-phenyl	209
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl		210
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	cyclohexyl	211

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propy	cyclopentyl	212
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propy	4-morpholinyl	213
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propy	2-naphthyl	214
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propy	2-thiazolyl	215
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propy	1-imidazolyl	216
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propy	2-furanyl	217
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3-(2-chloro)- furanyl	218
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	2-pyridinyl	219
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	2-(4-chloro) pyridinyl	220
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		221
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	4-nitrophenyl	222
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	4-cyanophenyl	223
2-naphthyl	CH_2	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	224
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-isopropyl phenyl	225
2-naphthyl	CH_2	1,2-Ph	CH=CH	2,3-dichloro phenyl	226
2-naphthyl	CH_2	1,2-Ph	CH=CH	3,4-difluoro phenyl	227
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-chlorophenyl	228
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-fluorophenyl	229
2-naphthyl	CH_2	1,2-Ph	CH=CH	2,5-dichloro-3- thienyl	230
2-naphthyl	CH ₂	1,2-Ph	СН=СН	3-chloro-4-fluoro phenyl	231
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-methoxy phenyl	232
2-naphthyl	CH_2	1,2-Ph	CH=CH	butyl	233
2-naphthyl	CH ₂	1,2-Ph	CH=CH	3-trifluoro methylphenyl	234

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-((1-hydroxy-1-	235
İ				methyl)ethyl)	
				phenyl	1
2-naphthyl	CH ₂	1,2-Ph	CH=CH	4-(methyl	236
				sufonyl)phenyl	
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-(benzyloxy)	237
0	OTT	100	-	phenyl	
2-naphthyl	CH ₂	1,2-Ph	CH=CH	cyclohexyl	238
2-naphthyl	CH ₂	1,2-Ph	CH=CH	4-morpholinyl	239
2-naphthyl	CH ₂	1,2-Ph	CH=CH	2-thiazolyl	240
2-naphthyl	CH ₂	1,2-Ph	CH=CH	2-furanyl	241
2-naphthyl	CH ₂	1,2-Ph	CH=CH	2-pyridinyl	242
2-naphthyl	CH ₂	1,2-Ph	CH=CH	4-cyanophenyl	243
2-naphthyl	SO ₂	1,2-Ph	CH=CH	$3,5$ -di- (CF_3)	244
0	100	1.0 5		phenyl	
2-naphthyl	SO ₂	1,2-Ph	CH=CH	4-isopropyl	245
2-naphthyl	100	1.0.70	-	phenyl	
Z-naphtnyi	SO ₂	1,2-Ph	CH=CH	2,3-dichloro	246
2-naphthyl	SO ₂	1,2-Ph	OII OII	phenyl	
Z-naphthyi		1,2-Pn	CH=CH	3,4-difluoro	247
2-naphthyl	SO ₂	1,2-Ph	OIT OIT	phenyl	
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-chlorophenyl	248
2-naphthyl			CH=CH	4-fluorophenyl	249
2-naphtinyi	SO_2	1,2-Ph	CH=CH	2,5-dichloro-3-	250
2-naphthyl	SO ₂	1,2-Ph	CH=CH	thienyl	0.53
2 maphiniyi		1,2-111	CH=CH	3-chloro-4-	251
2-naphthyl	SO ₂	1,2-Ph	CH=CH	fluorophenyl	050
- maphony:		1,2-111	CH=CH	4-methoxy phenyl	252
2-naphthyl	SO,	1,2-Ph	CH=CH		050
2-naphthyl	SO ₂	1,2-Ph	CH=CH	butyl 3-trifluoro	253
		1,2-111	011-011	methylphenyl	254
2-naphthyl	SO ₂	1,2-Ph	CH=CH	4-((1-hydroxy-1-	OFF
		-,	011=011	methyl)ethyl)	255
				phenyl	ı
2-naphthyl	SO ₂	1,2-Ph	CH=CH	4-(methyl	256
	1 -		Jan 1911	sufonyl)phenyl	200
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-(benzyloxy)	257
				phenyl	~'
2-naphthyl	SO_2	1,2-Ph	CH=CH	cyclohexyl	258
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-morpholinyl	259
2-naphthyl	SO_2	1,2-Ph	CH=CH	2-thiazolyl	260
2-naphthyl	SO ₂	1,2-Ph	CH=CH	2-furanyl	261
2-naphthyl	SO_2	1,2-Ph	CH=CH	2-pyridinyl	262

R ¹ R ² R ³ -Het	A	X	В	\mathbb{R}^{19}	Cpd
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-cyanophenyl	263
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	264
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	4-isopropyl phenyl	265
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	2,3-dichloro phenyl	266
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	3,4-difluoro phenyl	267
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	268
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	4-isopropyl phenyl	269
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	2,3-dichloro phenyl	270
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	3,4-difluoro phenyl	271
2-naphthyl	S	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	272
2-naphthyl	S	1,2-Ph	CH=CH	4-isopropyl phenyl	273
2-naphthyl	S	1,2-Ph	CH=CH	2,3-dichloro phenyl	274
2-naphthyl	S	1,2-Ph	CH=CH	3,4-difluoro phenyl	275
2-(6-benzyloxy) naphthyl	SO_2	1,2-Ph	CH=CH	2-thienyl	276
2-(6-benzyloxy) naphthyl	S	1,2-Ph	CH=CH	2-thienyl	277
2-(6-benzyloxy) naphthyl	SO ₂	1,2-Ph	1,2-c-propyl	2-thienyl	278
2-(6-benzyloxy) naphthyl	S	1,2-Ph	1,2-c-propyl	2-thienyl	279
2-(5-benzyloxy) naphthyl	SO_2	1,2-Ph	CH=CH	2-thienyl	280
2-(5-benzyloxy) naphthyl	S	1,2-Ph	СН=СН	2-thienyl	281
2-(5-benzyloxy) naphthyl	SO_2	1,2-Ph	1,2-c-propyl	2-thienyl	282
2-(5-benzyloxy) naphthyl	S	1,2-Ph	1,2-c-propyl	2-thienyl	283
2-(6-(4-trifluoro methyl)benzyloxy) naphthyl	SO ₂	1,2-Ph	СН=СН	2-thienyl	284

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpc
2-(6-(4-trifluoro	CH_2	1,2-Ph	CH=CH	2-thienyl	285
methyl)benzyloxy	·))			- 0111011111	1200
naphthyl					
2-(6-(4-trifluoro	CH_2	1,2-Ph	1,2-c-propy	l 2-thienyl	286
methyl)benzyl	_		, Prop		1200
oxy))naphthyl					
2-(6-(4-trifluoro	CH_2	1,2-Ph	1,2-c-propy	l 2-thienyl	287
methyl)benzyl	-	1 '	-,- · propy	- Childry	201
oxy))naphthyl		•			
1-(6-benzyloxy)	SO ₂	1,2-Ph	CH=CH	2-thienyl	288
naphthyl		,	011	2-differiyi	200
1-(6-benzyloxy)	CH,	1,2-Ph	CH=CH	2-thienyl	289
naphthyl	1 4			2-tiffelly!	209
2-(6-(3,4-difluoro	SO_2	1,2-Ph	CH=CH	2-thienyl	290
benzyloxy))	2	-,	011-011	2-tinenyi	290
naphthyl					-
2-(6-(3,4-difluoro	CH ₂	1,2-Ph	CH=CH	2-thienyl	001
benzyloxy))			0112011	2-timenyi	291
naphthyl					1
2-(6-(4-fluoro	CH,	1,2-Ph	1,2-c-propy	O thional	
benzyloxy))	2	1 -,2 - 1 - 1	1,2-c-propy	z-menyi	292
naphthyl					
2-(7-benzyloxy)	SO ₂	1,2-Ph	CH=CH	2-thienyl	
naphthyl	2	-,	011-011	2-unenyi	293
2-(6-(3,4-difluoro	SO ₂	1,2-Ph	CH=CH	3,4-difluoro	1004
benzyloxy))	2	-,	011-011	phenyl	294
naphthyl		·		phenyi	i
2-(6-(3,4-difluoro	CH_2	1,2-Ph	CH=CH	3,4-difluoro	005
benzyloxy))			011-011	phenyl	295
naphthyl				phenyi	
2-(6-(4-fluoro	CH_2	1,2-Ph	1,2-c-propyl	3,4-difluoro	1000
benzyloxy))	2	-,	1,2 c-propyr	phenyl	296
naphthyl				phenyi	
2-(7-benzyloxy)	SO_2	1,2-Ph	CH=CH	3,5-di-(CF ₃)	007
naphthyl	2	-,	CII-CII	phenyl	297
2-(6-(3,4-difluoro	SO_2	1,2-Ph	CH=CH		1000
benzyloxy))	202	1,2111	011-011	3,5-di-(CF ₃)	298
naphthyl				phenyl	
2-(6-(3,4-difluoro	CH ₂	1,2-Ph	CH=CH	25 4: (073)	1000
benzyloxy))	0112	1,2-111	OII=OII	3.5 -di- (CF_3)	299
naphthyl				phenyl	
2-(7-benzyloxy)	SO ₂	1,2-Ph	12.0 2	2 4 3/6	100=
naphthyl	₂	1,4-111	1,2-c-propyl	3,4-difluoro	300
2-naphthyl	CH_2	1,2-Ph	CH=CH	phenyl	
=p	\smile 112	1,4-111	OH=CH	2-methoxy-5-	301
				bromophenyl	1 1

R ¹ R ² R ³ -Het	A	X	В	$\mathbf{R}^{\mathbf{Ig}}$	Cpd
2-naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	302
'				bromophenyl	1 002
2-naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	303
2-naphthyl	SO	1,2-Ph	CH=CH	2-methoxy-5-	304
		'		bromophenyl	301
2-naphthyl	SO_2	1,2-Ph	CH=CH	2-methoxy-5-	305
				bromophenyl	
2-naphthyl	О	1,2-Ph	CH=CH	2-methoxy-5-	306
				bromophenyl	
2-(5-benzyloxy)	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	307
naphthyl				bromophenyl	
2-(5-benzyloxy)	SO ₂	1,2-Ph	CH=CH	2-methoxy-5-	308
naphthyl				bromophenyl	
2-(5-benzyloxy)	S	1,2-Ph	CH=CH	2-methoxy-5-	309
naphthyl				bromophenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		310
1 0 DI				bromophenyl	
1,2-Ph	SO ₂	1,2-Ph	1,2-c-propyl	2-methoxy-5-	311
0 1/1 1	 	105		bromophenyl	
2-naphthyl	S	1,2-Ph	1,2-c-propyl		312
01-411	GILO	1077		bromophenyl	
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	2-methoxy-5-	313
0	 	10.72		bromophenyl	
2-naphthyl	S	1,2-Ph	CH=CH	2-methoxy-5-	314
3-methyl	100	100		bromophenyl	
indol-1-yl	SO_2	1,2-Ph	1,2-c-propyl	2-methoxy-5-	315
3-methyl	S	100	1.0	bromophenyl	
indol-1-yl	م	1,2-Ph	1,2-c-propyl	2-methoxy-5-	316
3-methyl	CH ₂ -O	1,2-Ph	OII OII	bromophenyl	_
indol-1-yl		1,2-Ff	CH=CH	2-methoxy-5-	317
3-methyl	+s	1,2-Ph	CILOIT	bromophenyl	-
indol-1-yl		1,2-111	CH=CH	2-methoxy-5-	318
3-methyl	O-CH ₂	1,2-Ph	100	bromophenyl	010
indol-1-yl	0-0112	1,2-1 11	1,2-c-propyl	2-methoxy-5-	319
3-methyl	SO	1,2-Ph	1,2-c-propyl	bromophenyl	200
indol-1-yl	150	1,2-1 11	1,2-c-propyr		320
3-methyl	CH ₂ -O	4-Cl-1,2-Ph	CH-CH	bromophenyl	201
indol-1-yl	2	2 01-1,2-1 11	011-011	2-methoxy-5- bromophenyl	321
3-methyl	S	4-Cl-1,2-Ph	CH-CH		200
indol-1-yl		1,2-1 11	011-011	2-methoxy-5- bromophenyl	322
3-methyl	SO ₂	4-Cl-1 2-Ph	1,2-c-propyl	2-methoxy-5-	200
indol-1-yl		- 01 1,2-1 11	1,2-c-propyr	bromophenyl	323
		<u></u>		promophenyi	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-(7-fluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	347
naphthyl					
2-(7-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	348
naphthyl					
2-(7-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	349
naphthyl					
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	350
naphthyl					
2-(7-fluoro)	CH ₂	6-Cl-1,2-Ph	CH=CH	2-thienyl	351
naphthyl					
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-thienyl	352
naphthyl					
2-(7-fluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-thienyl	353
naphthyl					
2-(7-fluoro)	SO ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	354
naphthyl				bromophenyl	<u> </u>
2-(7-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	355
naphthyl				bromophenyl	
2-(7-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	356
naphthyl				bromophenyl	
2-naphthyl	CH_2	4,5-Cl ₂ .	CH=CH	2-methoxy-5-	357
		1,2-Ph		bromophenyl	
2-(7-fluoro)	CH_2	6-Cl-1,2-Ph	CH=CH	2-methoxy-5-	358
naphthyl				bromophenyl	
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	359
naphthyl				bromophenyl	
2-(7-fluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-methoxy-5-	360
naphthyl	22			bromophenyl	
2-(7-fluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-trifluoro	361
naphthyl				methoxy-5-	
0 (7 (7)		4 (0) 1 0 D)	OIL OIL	chlorophenyl	
2-(7-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-trifluoro	362
naphthyl				methoxy-5-	
2-(7-fluoro)	S	4 Cl 1 0 Db	OIL OIL	chlorophenyl	000
naphthyl	3	4-Cl-1,2-Ph	OH=CH	2-trifluoro	363
паришуі				methoxy-5-	
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	CH-CH	chlorophenyl 2-trifluoro	2024
naphthyl		- 1 -01-1,2-PN	OH=CH	methoxy-5-	364
maparony i]			chlorophenyl	
2-(7-fluoro)	CH ₂	6-Cl-1,2-Ph	CH-CH	2-trifluoro	365
naphthyl		0-01-1,2-1 II	011-011	methoxy-5-	200
				chlorophenyl	
L		<u> </u>		Cimorobitettàt	

R1R2R3-Het	A	X	В	\mathbf{R}^{19}	Cpd
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-trifluoro	366
naphthyl				methoxy-5-	
				chlorophenyl	
2-(7-fluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-trifluoro	367
naphthyl] -			methoxy-5-	
				chlorophenyl	
2-(7-fluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	368
naphthyl					
2-(7-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	369
naphthyl			,		000
2-(7-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	370
naphthyl					0.0
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	371
naphthyl	"	1			0.1
2-(7-fluoro)	CH_2	6-Cl-1,2-Ph	CH=CH	2-thienyl	372
naphthyl	1 -	1		_ = ===================================	10.2
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	1.2-c-Pr	2-thienyl	373
naphthyl		/			10.0
2-(7-fluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-thienyl	374
naphthyl	1	, , , , , ,			0,4
2-(7-fluoro)	SO ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	375
naphthyl				bromophenyl	0.0
2-(6-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	376
naphthyl	•		011-011	bromophenyl	1010
2-(6-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	377
naphthyl			011	bromophenyl	011
2-(6-fluoro)	CH ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	378
naphthyl	2		011 - 011	bromophenyl	10,0
2-(6-fluoro)	CH ₂	6-Cl-1,2-Ph	CH=CH	2-methoxy-5-	379
naphthyl	2	, , , , , , , , , , , , , , , , , , , ,	011	bromophenyl	10.5
2-(6-fluoro)	CH ₂	4-Cl-1,2-Ph	1.2-c-Pr	2-methoxy-5-	380
naphthyl	2		_,	bromophenyl	1000
2-(6-fluoro)	CH,	3-Cl-1,2-Ph	CH=CH	2-methoxy-5-	381
naphthyl	2	,		bromophenyl	001
2-(7-chloro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	382
naphthyl		,		2 0111011111	302
2-(7-chloro)	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	383
naphthyl		[-/]			335
2-(7-chloro)	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	384
naphthyl		,			50.
2-(7-chloro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	385
naphthyl			J U11		505
2-(7-chloro)	CH_2	6-Cl-1,2-Ph	CH=CH	2-thienyl	386
naphthyl	2			~ unterly!	300
					

R ¹ R ² R ³ -Het	A	X	В	\mathbb{R}^{19}	Cpd
2-(7-chloro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-thienyl	387
naphthyl	<u> </u>				
2-(7-chloro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-thienyl	388
naphthyl					
2-(6,7-difluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	389
naphthyl					
2-(6,7-difluoro)	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	390
naphthyl		1 0) 1 0 5)			
2-(6,7-difluoro)	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	391
naphthyl	OTT	4 01 1 0 70	ATT		<u> </u>
2-(6,7-difluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	392
naphthyl 2-(6,7-difluoro)	CH ₂	6 (C) 1 0 D)	OIL OIL	0.11: 1	1
naphthyl	CH_2	6-Cl-1,2-Ph	CH=CH	2-thienyl	393
2-(6,7-difluoro)	CH,	4-Cl-1,2-Ph	1 0 a D-	0.41-11	1004
naphthyl		4-01-1,2-F11	1,2-C-PT	2-thienyl	394
2-(6,7-difluoro)	CH ₂	3-Cl-1,2-Ph	CH-CH	2-thienyl	395
naphthyl		0-01-1,2-111	011=011	2-unenyi	990
2-(6,7-difluoro)	SO ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	396
naphthyl	2	,,, -	011	bromophenyl	550
2-(6,7-difluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	397
naphthyl		,		bromophenyl	30.
2-(6,7-difluoro)	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	398
naphthyl				bromophenyl	
2-(6,7-difluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	399
naphthyl				bromophenyl	
2-(6,7-difluoro)	CH_2	6-Cl-1,2-Ph	CH=CH	2-methoxy-5-	400
naphthyl	~==			bromophenyl	
2-(6,7-difluoro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	401
naphthyl	OTT	0.07.1.0.77	OTT OTT	bromophenyl	
2-(6,7-difluoro) naphthyl	CH_2	3-Cl-1,2-Ph	CH=CH	2-methoxy-5-	402
2-(5,7-difluoro)	CH,	4-Cl-1,2-Ph	OII OII	bromophenyl	100
naphthyl		4-CI-1,2-Pn	CH=CH	2-methoxy-5-	403
2-(5,7-difluoro)	S	4-Cl-1,2-Ph	CH_CH	bromophenyl	404
naphthyl		4-01-1,2-1 11	CH=CH	2-methoxy-5- bromophenyl	404
2-(5,7-difluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	405
naphthyl		- 0. 2,2 111	011-011	bromophenyl	400
2-(5,7-difluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	406
naphthyl	"			bromophenyl	1 200
2-(6-fluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	407
quinolinyl	*	-, - -		bromophenyl	301
2-(6-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	408
quinolinyl				bromophenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-(6-fluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	409
quinolinyl	-	,		bromophenyl	1 200
2-(6-fluoro)	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	410
quinolinyl				bromophenyl	110
2-(6-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	411
quinolinyl				bromophenyl	1111
2-(6-fluoro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	412
quinolinyl			'	bromophenyl	
2-(5,7-difluoro)-	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	413
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	414
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	415
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	416
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	417
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	CH ₂	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	418
quinolinyl				bromophenyl	
3,4-dichloro	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	419
phenyl	 			bromophenyl	
3,4-dichloro	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	420
phenyl	-			bromophenyl	
3,4-dichloro	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	421
phenyl	CTT	1 0 71		bromophenyl	
3,4-dichloro	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	422
phenyl	 	4 01 4 0 70		bromophenyl	
3,4-dichloro phenyl	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	423
3,4-dichloro	CII	4 Cl 1 0 Dl	10 5	bromophenyl	
phenyl	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	424
3,4-dichloro	CH_2	5 Cl 1 0 Dl	OTT OTT	bromophenyl	
phenyl	CH_2	5-Cl-1,2-Ph	CH=CH	2-methoxy-5-	425
4-chloro	SO ₂	4 Cl 1 0 Db	OII OII	bromophenyl	
phenyl	150 ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	426
4-chloro	S	4-Cl-1,2-Ph	CII CII	bromophenyl	1
phenyl	15	4-CI-1,2-Ph	CH=CH	2-methoxy-5-	427
4-chloro	CH ₂	4-Cl-1,2-Ph	CII CII	bromophenyl	
phenyl		4-01-1,2-Ph	CH=CH	2-methoxy-5-	428
4-chloro	CH ₂	1,2-Ph	CH CH	bromophenyl	
phenyl		1,2-11	CH=CH	2-methoxy-5-	429
4-chloro	0	4-Cl-1,2-Ph	CH_CII	bromophenyl	
phenyl		2-01-1,2-FN	On=OH	2-methoxy-5-	430
F				bromophenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
4-chloro	CH_2	4-Cl-1,2-Ph	1.2-c-Pr	2-methoxy-5-	431
phenyl	*	'	-,	bromophenyl	101
4-chloro	CH,	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	432
phenyl				bromophenyl	102
3,4-dichloro	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	433
phenyl		·			
3,4-dichloro	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	434
phenyl					
3,4-dichloro	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	435
phenyl					
3,4-dichloro	CH_2	1,2-Ph	CH=CH	2-thienyl	436
phenyl					
3,4-dichloro	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	437
phenyl					
3,4-dichloro	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	438
phenyl					
3,4-dichloro	CH_2	5-Cl-1,2-Ph	CH=CH	2-thienyl	439
phenyl					
4-chloro	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	440
phenyl					
4-chloro	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	441
phenyl					
4-chloro	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	442
phenyl	~				
4-chloro	CH_2	1,2-Ph	CH=CH	2-thienyl	443
phenyl	CTT				
1-(5-chloro)	CH_2	3,2-Pyr	CH=CH	2,4-(Me) ₂ -	444
indolyl				thiazol-5-yl	
1-(5-chloro)	$\overline{\mathrm{CH}}_{2}$	3,2-Pyr	CH=CH	2-thienyl	445
indolyl		· · · ·			
1-(6-(4-chloro)	CH_2	4-F-1,2-Ph	CH=CH	3-chloro-4-	446
phenyl)indolyl				fluorophenyl	
2-(6-difluoro	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	447
methoxy)				bromophenyl	
naphthyl	ATT.	1360			<u> </u>
2-naphthyl	CH_2	4-MeO-	CH=CH	2-methoxy-5-	448
0 141 1	I	1,2-Ph		bromophenyl	
2-naphthyl	CH ₂	5-Cl-1,2-Ph	CH=CH	2-methoxy-5-	449
2 (6 ablas	OTT.	4 (0) 4 (0.75)	011	bromophenyl	
2-(6-chloro	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	450
naphthyl)	CIT	4 17 4 6 75		bromophenyl	
1-(5-phenyl	CH ₂	4-F-1,2-Ph	CH=CH	2-methoxy-5-	451
methoxy) indolyl	ļ	İ		bromophenyl	
muutyt					

R ¹ R ² R ³ -Het	Α	X	В	${f R}^{19}$	Cpd
2-(benzo[b] thiophenyl	CH_2	4-F-1,2-Ph		2-methoxy-5- bromophenyl	452
5-(1-benzyl) indolyl	CH_2	4-F-1,2-Ph		2-methoxy-5- bromophenyl	453
1-(6-(4-chloro) phenyl)indolyl	CH ₂	4-F-1,2-Ph	CH=CH	2-methoxy-5- bromophenyl	454

5

R ¹ R ² R ³ -Het	A	X	В	Cpd
2-naphthyl	$S(O)_2$	1,2-phenyl	CH=CH	324
2-naphthyl	S	1,2-phenyl	CH=CH	325
4-methylthiophenyl	CH_2	1,2-phenyl	CH=CH	326
3-methylindol-1-yl	CH_2	1,2-phenyl	CH=CH	327
3-chloro-4-fluorophenyl	CH_2	1,2-phenyl	CH=CH	328
4-chlorophenyl	CH_2	1,2-phenyl	CH=CH	329
2-naphthyl	CH_2	1,2-phenyl	CH=CH	330
2-naphthyl	$S(O)_2$	1,2-phenyl	1,2-c-propyl	331
2-naphthyl	$S(O)_2$	1,2-phenyl	CH ₂ -CH ₂	332
2-naphthyl	S	1,2-phenyl	CH=CH	333
3,4-dichlorophenyl	$S(O)_2$	1,2-phenyl	CH ₂ -CH ₂	334
3,4-dichlorophenyl	CH_2	1,2-phenyl	CH=CH	335
2-(6-benzyloxy)naphthyl	CH_2	1,2-phenyl	CH=CH	336
2-(6-benzyloxy)naphthyl	CH_2	1,2-phenyl	1,2-c-propyl	337
2-(6-benzyloxy)naphthyl	SO_2	1,2-phenyl	1,2-c-propyl	338
2-(6-benzyloxy)naphthyl	CH ₂ -O	1,2-phenyl	1,2-c-propyl	339
2-(6-benzyloxy)naphthyl	O-CH ₂	1,2-phenyl	1,2-c-propyl	340
2-(6-benzyloxy)naphthyl	SO_2	1,2-phenyl	CH=CH	341
2-(6-benzyloxy)naphthyl	CH ₂ -O	1,2-phenyl	CH=CH	342

R1R2R3-Het	A	X	В	Cpd
2-(6-benzyloxy)naphthyl	O-CH ₂	1,2-phenyl	CH=CH	343
2-(6-benzyloxy)naphthyl	S	1,2-phenyl	CH=CH	344
2-(7-benzyloxy)naphthyl	SO ₂	1,2-phenyl	CH=CH	345
2-(6-(4-trifluoromethyl)	CH ₂	1,2-phenyl	CH=CH	346
benzyloxy))naphthyl	1 -			0.20
2-(6-fluoro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	455
2-(6-fluoro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	456
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	457
2-(6-fluoro)naphthyl	CH_2	1,2-Ph	CH=CH	458
2-(6-fluoro)naphthyl	0	4-Cl-1,2-Ph	CH=CH	459
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	460
2-(7-fluoro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	461
2-(7-fluoro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	462
2-(7-fluoro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	463
2-(7-fluoro)naphthyl	CH ₂	1,2Ph	CH=CH	464
2-(7-fluoro)naphthyl	0	4-Cl-1,2-Ph	CH=CH	465
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	466
2-(6-chloro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	467
2-(6-chloro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	468
2-(6-chloro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	469
2-(6-chloro)naphthyl	CH ₂	1,2-Ph	CH=CH	470
2-(6-chloro)naphthyl	0	4-Cl-1,2-Ph	CH=CH	471
2-(6-chloro)naphthyl	CH ₂	4-Cl-1,2-Ph	1,2-c-Pr	472
2-(7-chloro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	473
2-(7-chloro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	474
2-(7-chloro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	475
2-(7-chloro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	476
2-(7-chloro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	477
2-(7-chloro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	478
2-(6,7-difluoro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	479
2-(6,7-difluoro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	480
2-(6,7-difluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	481
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	482
2-(6,7-difluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	483
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	1,2-c-Pr	484
2-(6,7-difluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	485
2-(6,7-difluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	486
2-(6,7-difluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	487
2-(6,7-difluoro)naphthyl	CH ₂	1,2-Ph	CH=CH	488
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	489
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	1,2-c-Pr	490
3-methyl-5-fluoro	SO ₂	4-Cl-1,2-Ph	CH=CH	491
indol-1-yl		,=		101

R ¹ R ² R ³ -Het	A	X	В	Cpd
3-methyl-5-fluoro	S	4-Cl-1,2-Ph	CH=CH	492
indol-1-yl				
3-methyl-5-fluoro	CH_2	4-Cl-1,2-Ph	CH=CH	493
indol-1-yl				
3-methyl-5-fluoro	CH_2	1,2-Ph	CH=CH	494
indol-1-yl	-			
3-methyl-5-fluoro indol-1-yl	CH_2	4-Cl-1,2-Ph	CH=CH	495
3-methyl-5-fluoro	CH ₂	4 Cl 1 0 Di	OTT OTT	
indol-1-yl	Cn_2	4-Cl-1,2-Ph	CH=CH	496
2-(6-fluoro)quinolinyl	SO ₂	4-Cl-1,2-Ph	CH=CH	407
2-(6-fluoro)quinolinyl	S	4-Cl-1,2-Ph	CH=CH	497
2-(6-fluoro)quinolinyl	CH ₂	4-Cl-1,2-Ph	CH=CH	498
2-(6-fluoro)quinolinyl	CH ₂	4-Cl-1,2-Ph	CH=CH	499 500
2-(6-fluoro)quinolinyl	0	4-Cl-1,2-Ph	CH=CH	501
2-(6-fluoro)quinolinyl	CH,	4-Cl-1,2-Ph	CH=CH	502
2-(6-difluoromethoxy)-	SO ₂	4-Cl-1,2-Ph	CH=CH	503
naphthyl		1 01 1,2 1 11	OHEOH	303
2-(6-difluoromethoxy)-	SO ₂	4-Cl-1,2-Ph	CH=CH	504
naphthyl		, , , , ,	511	001
2-(6-difluoromethoxy)-	SO_2	4-Cl-1,2-Ph	CH=CH	505
naphthyl				
2-(6-difluoromethoxy)-	SO_2	4-Cl-1,2-Ph	CH=CH	506
naphthyl	<u> </u>			
2-(6-difluoromethoxy)-	SO ₂	4-Cl-1,2-Ph	CH=CH	507
naphthyl 2-(6-difluoromethoxy)-	00	4 61 4 6 70		
naphthyl	SO_2	4-Cl-1,2-Ph	CH=CH	508
2-(7-difluoromethoxy)-	SO,	4 Cl 1 0 Dl	OIL OIL	
naphthyl	150 ₂	4-Cl-1,2-Ph	CH=CH	509
2-(7-difluoromethoxy)-	S	4-Cl-1,2-Ph	CH=CH	F10
naphthyl		4-01-1,2-111	CH=CH	510
2-(7-difluoromethoxy)-	CH_2	4-Cl-1,2-Ph	CH=CH	511
naphthyl	12	1 01 1,2 1 11	011-011	211
2-(7-difluoromethoxy)-	CH ₂	4-Cl-1,2-Ph	CH=CH	512
naphthyl				012
2-(7-difluoromethoxy)-	0	4-Cl-1,2-Ph	CH=CH	513
aphthyl				
2-(7-difluoromethoxy)-	CH_2	4-Cl-1,2-Ph	CH=CH	514
naphthyl				
2-(6-methoxy)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	515
2-(6-methoxy)naphthyl	S	4-Cl-1,2-Ph	CH=CH	516
2-(6-methoxy)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	517
2-(6-methoxy)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	518

R ¹ R ² R ³ -Het	A	X	В	Cpd
2-(6-methoxy)naphthyl	0	4-Cl-1,2-Ph	CH=CH	519
2-(6-methoxy)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	520
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	521
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	522
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	523
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	524
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	525
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	526
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	527
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	528
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	529
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	530
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	531
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	532
2-naphthyl	CH_2	4,5-Cl ₂ -1,2-Ph		533
2-naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	534
3,4-dichlorophenyl	CH_2	4-Cl-1,2-Ph	CH=CH	535
2-naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	536
4-chlorophenyl	CH_2	4-Cl-1,2-Ph	CH=CH	537
1-(5-phenylmethoxy)	CH_2	4-F-1,2-Ph	CH=CH	538
indolyl				
2-(benzo[b]thiophenyl)	CH_2	4-F-1,2-Ph	CH=CH	539
5-(1-benzyl)indolyl	CH_2	4-F-1,2-Ph	CH=CH	540
1-(6-(4-chloro)phenyl) indolyl	CH_2	4-F-1,2-Ph	CH=CH	541
1-(5-chloro)indolyl	CH_2	3,2-Pyr	CH=CH	542

10

15

Some of the compounds described herein contain one or more asymmetric centers and may thus give rise to diastereomers and optical isomers. The present invention is meant to comprehend such possible diastereomers as well as their racemic and resolved, enantiomerically pure forms and pharmaceutically acceptable salts thereof.

Some of the compounds described herein contain olefinic double bonds, and unless specified otherwise, are meant to include both E and Z geometric isomers.

The pharmaceutical compositions of the present invention comprise a compound of Formula I as an active ingredient or a pharmaceutically acceptable salt, thereof, and may also contain a

pharmaceutically acceptable carrier and optionally other therapeutic 5 ingredients. The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, 10 potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic 15 amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethylenediamine, diethylamine, 2diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, 20 methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.

When the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, ptoluenesulfonic acid, and the like. Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.

25

30

35

It will be understood that in the discussion of methods of treatment which follows, references to the compounds of Formula I are meant to also include the pharmaceutically acceptable salts.

The magnitude of prophylactic or therapeutic dose of a compound of Formula I will, of course, vary with the nature and the

severity of the condition to be treated and with the particular compound of Formula I and its route of administration. It will also vary according to a variety of factors including the age, weight, general health, sex, diet, time of administration, rate of excretion, drug combination and response of the individual patient. In general, the daily dose from about 0.001 mg to about 100 mg per kg body weight of a mammal, preferably 0.01 mg to about 10 mg per kg. On the other hand, it may be necessary to use dosages outside these limits in some cases.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for oral administration to humans may contain from about 0.5 mg to about 5 g of active agent compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95 percent of the total composition. Dosage unit forms will generally contain from about 1 mg to about 2 g of an active ingredient, typically 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 1000 mg.

15

20

25

30

35

For the treatment of any of the prostanoid mediated diseases compound I may be administered orally, topically, parenterally, by inhalation spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. The term parenteral as used herein includes subcutaneous, intravenous, intramuscular, intrasternal injection or infusion techniques. In addition to the treatment of warm-blooded animals such as mice, rats, horses, cattle, sheep, dogs, cats, etc., the compound of the invention is effective in the treatment of humans.

The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, solutions, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents

25

30

35

selected from the group consisting of sweetening agents, flavouring agents, colouring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets.

These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example, magnesium stearate,

stearic acid or talc. The tablets may be upgested on the corners to the started on the corners to th

stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated by the technique described in the U.S. Patent 4,256,108; 4,166,452; and 4,265,874 to form osmotic therapeutic tablets for control release.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredients is mixed with water-miscible solvents such as propylene glycol, PEGs and ethanol, or an oil medium, for example peanut oil, liquid paraffin, or olive oil.

Aqueous suspensions contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or

5

10

15

20

25

30

35

condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate, one or more colouring agents, one or more flavouring agents, and one or more sweetening agents, such as sucrose, saccharin or aspartame.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavouring and colouring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of an oil-in-water emulsion. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavouring agents.

5

10

15

20

25

30

35

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavouring and colouring agents. The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butane diol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. Cosolvents such as ethanol, propylene glycol or polyethylene glycols may also be used. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic monoor diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

Compound I may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ambient temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.

For topical use, creams, ointments, gels, solutions or suspensions, etc., containing the compound of Formula I are employed. (For purposes of this application, topical application shall include mouth washes and gargles.) Topical formulations may generally be comprised of a pharmaceutical carrier, cosolvent, emulsifier, penetration enhancer, preservative system, and emollient.

The ability of the compounds of Formula I to interact with prostaglandin receptors makes them useful for treating, preventing or reversing undesirable symptoms caused by prostaglandins in a mammalian, especially human subject. This mimicking or antagonism

5

10

15

20

25

30

35

of the actions of prostaglandins indicates that the compounds and pharmaceutical compositions thereof are useful to treat, prevent or ameliorate prostaglandin mediated diseases and conditions in mammals and especially in humans: Pain, fever and inflammation of a variety of conditions including rheumatic fever, symptoms associated with influenza or other viral infections, common cold, low back and neck pain, skeletal pain, post-partum pain, dysmenorrhea, headache, migraine, toothache, sprains and strains, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries, sunburns, pain following surgical and dental procedures as well as immune and autoimmune diseases. In addition, such a compound may inhibit cellular neoplastic transformations and metastic tumor growth and hence can be used in the treatment of cancer. Compound I may also be of use in the treatment and/or prevention prostaglandin-mediated proliferation disorders such as may occur in diabetic retinopathy and tumor angiogenesis. Compound I will also inhibit prostanoid-induced smooth muscle contraction by antagonizing contractile prostanoids or mimicking relaxing prostanoids and hence may be use in the treatment of dysmenorrhea, premature labor, asthma and eosinophil related disorders. It will also be of use in the treatment of Alzheimer's disease, the treatment of glaucoma, for the prevention of bone loss (treatment of osteoporosis) and for the promotion of bone formation (treatment of fractures) and other bone diseases such as Paget's disease.

By virtue of its prostanoid or prostanoid antagonist activity, compound I will prove useful as an alternative to NSAID'S particularly where such non-steroidal anti-inflammatory drugs may be contraindicated such as in patients with peptic ulcers, gastritis, regional enteritis, ulcerative colitis, diverticulitis or with a recurrent history of gastrointestinal lesions; GI bleeding, coagulation disorders including anemia such as hypoprothrombinemia, haemophilia or other bleeding problems; kidney disease; thrombosis, occlusive vascular diseases; those prior to surgery or taking anti-coagulants. Compound I

5 will also be useful as a cytoprotective agent for patients under chemotherapy.

10

15

20

25

30

35

Compound of Formula I, will be useful as a partial or complete substitute for conventional antiinflammatory or analgesic compounds in preparations wherein they are presently co-administered with other agents or ingredients. Thus in further aspects, the invention encompasses pharmaceutical compositions for treating prostaglandin E_2 mediated diseases as defined above comprising a non-toxic therapeutically effective amount of the compound of Formula I as defined above and one or more ingredients such as another pain reliever including acetaminophen or phenacetin; a COX-2 selective NSAID; a conventional NSAID; a potentiator including caffeine; an H2-antagonist, aluminum or magnesium hydroxide, simethicone, a decongestant including phenylephrine, phenylpropanolamine, pseudophedrine, oxymetazoline, ephinephrine, naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine; an antiitussive including codeine, hydrocodone, caramiphen, carbetapentane, or dextramethorphan; another prostaglandin ligand including misoprostol, enprostil, rioprostil, ornoprostol or rosaprostol; a diuretic; a sedating or non-sedating antihistamine. In addition, the invention encompasses a method of treating prostaglandin E2 mediated diseases comprising: administration to a patient in need of such treatment a non-toxic therapeutically effective amount of the compound of Formula I, optionally co-administered with one or more of such ingredients as listed immediately above.

Compounds of the present invention can be prepared according to the following methods. Temperatures are in degrees Celsius.

Boronic acids and esters can be prepared from the corresponding halide according to literature procedure and reference cited therein (Charette, A.B.; Giroux, A. J. Org. Chem. 1996, 61, 8718; Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508; Miyaura, N.; Suzuki, A. Chem. Rev, 1995, 95, 2457; Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458; Watanabe, T.

Miyaura, N.; Suzuki, A. Synlett, 1992, 207; Maddaford, S.; Keay, B.A. J. Org. Chem. 1994, 59, 6501; Cristofoli, W.A.; Keay, B.A. Tetrahedron Lett. 1991, 32, 5881; Passafaro, M.S.; Keay, B.A. . Tetrahedron Lett. 1996, 37, 429; Serafin, B.; Makosza, M. Tetrahedron, 1963, 19, 821). In some cases, the triflate, the tin or the zinc derivatives may be used instead of the boronic acid.

Method A

15

20

Cinnamic ester 1 is treated with a brominating agent such as NBS in a refluxing inert solvent such as CCl₄, with the use of an initiator like benzoyl peroxide or light. The resulting benzylic bromide is reacted in a Suzuki coupling reaction with the appropriate boronic acid or ester, a catalyst such as tetrakis(triphenylphosphine) palladium and cesium fluoride or Na₂CO₃ or a base in an inert refluxing solvent such as DME at 80-90° C. The new cinnamic ester 3 is hydrolyzed with aqueous sodium hydroxide to afford the acid 4 that is converted to the cinnamic sulfonamide 5 with a coupling reagent such as DCC or DCI in CH₂Cl₂ at r.t.

5 Method B

10

Cinnamic ester 2 is treated with an aryl or heteroaryl mercaptan, alcohol or amine, and with a base such as a hydride or an amine in benzene or THF at 0-23° C. The resulting cinnamic ester 6 is converted to 7 according to Method A.

If W= sulfur, it is oxidized to the sulfoxide or sulfone 8 with hydrogen peroxide, m-CPBA or other peracetic acid. The cinnamic ester 8 is converted to 9 according to Method A.

Method C

The aldehyde 11 is prepared by an addition-elimination of a mercapto, hydroxy or amino aryl or heteroaryl with a base such as K_2CO_3 in refluxing CHCl₃. If needed a higher boiling point solvent can be used. This type of rection can also be performed with CuO in DMF. An Emmons-Horner type reaction (or Wittig) in toluene at r.t. followed by Method A (or oxidation as described in Method B) results in the cinnamic sulfonamide 13.

Method D

25

30

35

Acetal 14 that came from an acetalization from a suitably substituted bromo benzaldehyde is converted to the Grignard reagent with magnesium in an etheral solvent at reflux and quenched with an aryl or heteroaryl ketone. The alcohol 16 is reacted with an halide and a base (or protected as the o-nitrobenzyl, and removed at the end of the sequence) to furnish the compound 17. Deprotection of the acetal under standard conditions followed by Method C gives 18.

Method E

Alcohol 16 is converted to an acetate with acetyl chloride (or acetic anhydride and an amine base) and coupled with a Grignard reagent and a copper salt at low temperature. The alcohol 16 could also be converted to the bromide and treated in a similar way to yield 20. Alternatively the tetrametyl acetal (R = methyl) version of alcohol 16 can be treated with $TiCl_4/Me_2Zn$ (or R^7_2Zn) at -30 °C. Compound 20 is then

converted to the cinnamic sulfonamide 21 according to Method D. Also, 22 can be treated with Al(R⁷)₃ in toluene at 80 °C for 24h and 23 converted to the aldehyde with n-BuLi/DMF followed by an Emmons-Horner reaction and Method A to yield compound 21.

10 Method F

A suitably substituted bromo toluene 24 is treated with n-Buli at low temperature and quenched with an aryl or heteroaryl aldehyde. The resulting alcohol is oxidized to the ketone with PDC, PCC, MnO₂ or other typical oxidizing agent. The carbonyl is treated with SF₄, MoF₆-BF₃ (or converted to a thioacetal and treated with nitrosonium BF₄-pyridinium•HF) to yield the difluoride. Benzylic bromination with NBS followed by oxidation with N-methylmorpholine N-oxide at 100 °C in dioxane for 4 h, yielded compound 25 that is converted to cinnamic sulfonamide 26 with Method C.

20

15

Method G

The appropriately substituted methyl bromo(or triflate) benzoate 27 is converted to compound 28 by a Suzuki coupling reaction followed by hydrogenation. A Stille coupling reaction could also be used. Benzylic bromination or benzylic oxidation followed by treatment with a brominating agent such as CBr₄/triphenylphosphine gives compound 29 which can be treated with a boronic acid, or a tin compound (Stille) to furnish compound 30. Reduction of the ester with DIBAL, oxidation with MnO₂ and Method C gives compound 31.

30

35

25

Method H

Compound 29 (one R⁷ = H) is treated with triphenyl phosphine to give the salt and, with a base such as LDA, is converted to compound 32 with the aryl or heteroaryl ketone. The halide 29 can also be converted the Grignard reagent and added to the ketone. Dehydration under acidic conditions results in compound 32. Reduction of the double bond under standard conditions, followed by Methods G and C gives compound 33. From compound 32, cyclopropanation with

5 diazomethane and palladium (0) followed by Methods G, C and A gives compound 34.

5 Method I

10

15

The (heterocyclic) vinylic bromide 35 is reacted in a Suzuki coupling reaction with an aryl or hetero aryl boronic acid and converted to a new borane by 9-BBN addition followed by a second Suzuki reaction with compound 14. Compound 37 thus formed is reduced by hydrogenolysis (H₂/metal or diimide) and deprotection followed by Method C gives cinnamic sulfonamide 39.

Method J

Ketone 40 which comes from oxidation of the corresponding alcohol is reacted with a phosphonium salt or phosphono ester with a base such as LDA to give the cinnamic ester 41. Method A yields 42 and reduction of the double bond by the previously mentioned method gives the acyl sulfonamide 43.

20 Method K

Cinnamic ester 3 is reduced to 44 by the previously mentioned method. α Alkylation with a base such as LDA followed by an alkylating agent results in 45 after conversion to the acyl sulfonamide.

25 Method L

30

35

Cinnamic ester 3 is reduced to 46 with DIBAL and the double bond converted to a cyclopropane by a Simmons-Smith reaction, or similar reactions recently described in the literature. Compound 47 is then oxidized and the cinnamic sulfonamide 48 is prepared according to Method A.

Method M

Ester 49 which can come from the homologation of the appropriately substituted methyl ortho-toluate, is treated with a base and with an alkylating agent to furnish compound 50. Benzylic bromination and Suzuki coupling gives an intermediate ester. Homologation according to J. Amer. Chem. Soc.; 1985, 1429; J. Org. Chem. 1992, 7194,

followed by alkylation with a base such as LDA and an alkylating agent furnishes acylsulfonamide 51 by Method A.

Compound **50** can also be converted to the benzylic bromide and to compound **52** by Method A.

10 Method N

Suitably substituted compound 53 is treated with a boronic acid to give compound 54 which is reduced with LDA to the alcohol 55. Treatment with phosgene followed with the appropriate sulfonamide gives compound 56. This can also be prepared by mixing phosgene and the sulfonamide at 140°C to generate the isocyanate.

Compound **54** is treated with a Grignard reagent to give the corresponding alcohol and as previously described, converted to compound **57**.

20 Method O

15

Ester 58 is treated with Lawesson's reagent, DAST and light to give the benzylic alcohol 59. The procedure according to Method N yields compound 60.

25 Method P

Compound 59 is brominated as described earlier (or iodinated) and reacted in a $S_N 2$ type reaction with an ester and a base such as LDA to furnish ester 61. Method A gives the acylsulfonamide 62.

Method Q

30

35

Compound 55 is treated with NH₃/Ph₃P/DEAD (or treated with CBr₄/Ph₃P and the bromide converted to the amine 63 with ammonia). Treatment with phosgene followed by sulfonamide yields 64, treatment of which with a base and an alkyl or benzylic halide gives compounds 65.

Method R

Aldehyde 10 is treated with a silylated source of hydroxyl or thiol at 80-130 °C, and the silyl group removed by fluoride treatment.

Compound 66 is then treated with an aryl or heteroaryl methylene bromide with a base such as a tertiary amine in CHCl₃ or benzene to yield aldehyde 67. Emmons-Horner (or Wittig reaction) with LDA results in compound 68 via Method A.

Method S

In the case of an amine an alternative to method R can be used. A suitably substituted nitro aldehyde 69 is converted to compound 70 as described earlier and the nitro group reduced with standard methods. Mono-alkylation followed by displacement with an aryl or heteroaryl methylene bromide and processing by Method A yields cinnamic sulfonamide 71.

20 Method T

15

25

A suitably substituted bromo toluene 24 is converted to the anion in an etheral solvent at low temperature and trapped with an aldehyde of an aryl or heteroaryl. The resulting alcohol is oxidized with MnO₂, Jones' reagent, PDC, PCC or any other oxidant. Benzylic bromination followed by oxidation with N-methyl morpholine N-oxide, yields a ketoaldehyde. Emmons-Horner and Method A gives the cinnamic sulfonamides 72.

Generic structures 4, 5, 7, 9, 13, 18, 21, 26, 31, 33, 34, 39, 42, 33, 43, 45, 48, 51, 52, 56, 57, 60, 62, 64, 65, 68, 71 and 72 are representative of the compounds of the present invention. It is also noted that where the chemistry allows in the generic schemes, alternate embodiments of -A-, such as heteroaryl groups, can be substituted for phenyl in the schemes.

Method A

5

Method B

5

Method C

Method D

R= H, Methyl

$$R^7$$
 R^{20}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{16}
 R^{17}
 R^{17}
 R^{18}
 R^{17}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{19}
 R^{15}
 R^{15}
 R^{15}

5

Method E

R¹⁵

tol/80 ⁰C/24h

- 55 -

WO 99/47497

Method F

Method G

HET
$$R^7$$
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

5

Method H

Method I

Method J

Method K

Method L

Method M

Method N

Method O

5

Method P

Method Q

Method R

Method S

R14
$$\frac{1}{1!}$$
 CHO Emmons-Horner LDA R^{14} $\frac{1}{1!}$ R^{15} #### Method T

ASSAYS FOR DETERMINING BIOLOGICAL ACTIVITY

Biological activity and thus utility for the compounds of formula I as modulators of prostaglandin mediated diseases can be demonstrated in accordance with the following assayswhich demonstrate prostanoid antagonist or agonist activity in vitro and in vivo and their selectivity. The prostaglandin receptors investigated were DP, EP₁, EP₂, EP₃, EP₄, FP, IP and TP.

 R^{15}

72

15 Stable expression of prostanoid receptors in the human embryonic kidney (HEK) 293(ebna) cell line

Prostanoid receptor cDNAs corresponding to full length coding sequences were subcloned into the appropriate sites of mammalian expression vectors and transfected into HEK 293(ebna) cells. HEK 293(ebna) cells expressing the individual cDNAs were grown under selection and individual colonies were isolated after 2-3 weeks of growth using the cloning ring method and subsequently expanded into clonal cell lines.

Prostanoid receptor binding assays

5

10

15

20

25

30

35

HEK 293(ebna) cells are maintained in culture, harvested and membranes are prepared by differential centrifugation, following lysis of the cells in the presence of protease inhibitors, for use in receptor binding assays. Prostanoid receptor binding assays are performed in 10 mM MES/KOH (pH 6.0) (EPs, FP and TP) or 10 mM HEPES/KOH (pH 7.4) (DP and IP), containing 1 mM EDTA, 10 mM divalent cation and the appropriate radioligand. The reaction is initiated by addition of membrane protein. Ligands are added in dimethylsulfoxide which is kept constant at 1 % (v/v) in all incubations. Non-specific binding is determined in the presence of 1 μM of the corresponding non-radioactive prostanoid. Incubations are conducted for 60 min at room temperature or 30 °C and terminated by rapid filtration. Specific binding is calculated by subtracting non specific binding from total binding. The residual specific binding at each ligand concentration is calculated and expressed as a function of ligand concentration in order to construct sigmoidal concentration-response curves for determination of ligand affinity.

Prostanoid receptor agonist and antagonist assays

Whole cell second messenger assays measuring stimulation (EP₂, EP₄, DP and IP in HEK 293(ebna) cells) or inhibition (EP₃ in human erythroleukemia (HEL) cells) of intracellular cAMP accumulation or mobilization of intracellular calcium (EP₁, FP and TP in HEK 293(ebna) cells stably transfected with apo-aequorin) are performed to determine whether receptor ligands are agonists or

antagonists. For cAMP assays, cells are harvested and resuspended in HBSS containing 25 mM HEPES, pH 7.4. Incubations contain 100 μ M RO-20174 (phosphodiesterase type IV inhibitor, available from Biomol) and, in the case of the EP $_3$ inhibition assay only, 15 μ M forskolin to stimulate cAMP production. Samples are incubated at 37°C for 10 min,

the reaction is terminated and cAMP levels are then measured. For calcium mobilization assays, cells are charged with the co-factors reduced glutathione and coelenterazine, harvested and resuspended in Ham's F12 medium. Calcium mobilization is measured by monitoring luminescence provoked by calcium binding to the intracellular

photoprotein aequorin. Ligands are added in dimethylsulfoxide which is kept constant at 1 % (v/v) in all incubations. For agonists, second messenger responses are expressed as a function of ligand concentration and both EC₅₀ values and the maximum response as compared to a prostanoid standard are calculated. For antagonists, the ability of a ligand to inhibit an agonist response is determined by Schild analysis and both K_B and slope values are calculated.

Rat Paw Edema Assay

The method is the same as described in Chan et al (J. Pharmacol. Exp. Ther. 274: 1531-1537, 1995).

LPS-Induced Pyrexia in Conscious Rats

The method is the same as described in Chan $et\ al\ (J.$ Pharmacol. Exp. Ther. 274: 1531-1537, 1995).

30

25

LPS-Induced Pyrexia in Conscious Squirrel Monkeys

The method is the same as described in Chan et al (Eur. J. Pharmacol. 327: 221- 225, 1997).

35 Acute Inflammatory Hyperalgesia Induced by Carrageenan in Rats
The method is the same as described in Boyce et al
(Neuropharmacology 33: 1609-1611, 1994).

5 Adjuvant-Induced Arthritis in Rats

10

15

20

25

30

35

Female Lewis rats (body weight ~146-170 g) were weighed, ear marked, and assigned to groups (a negative control group in which arthritis was not induced, a vehicle control group, a positive control group administered indomethacin at a total daily dose of 1 mg/kg and four groups administered with a test compound at total daily doses of 0.10-3.0 mg/kg) such that the body weights were equivalent within each group. Six groups of 10 rats each were injected into a hind paw with 0.5 mg of Mycobacterium butyricum in 0.1 mL of light mineral oil (adjuvant), and a negative control group of 10 rats was not injected with adjuvant. Body weights, contralateral paw volumes (determined by mercury displacement plethysmography) and lateral radiographs (obtained under Ketamine and Xylazine anesthesia) were determined before (day -1) and 21 days following adjuvant injection, and primary paw volumes were determined before (day -1) and on days 4 and 21 following adjuvant injection. The rats were anesthetized with an intramuscular injection of 0.03 - 0.1 mL of a combination of Ketamine (87 mg/kg) and Xylazine (13 mg/kg) for radiographs and injection of adjuvant. The radiographs were made of both hind paws on day 0 and day 21 using the Faxitron (45 kVp, 30 seconds) and Kodak X-OMAT TL film, and were developed in an automatic processor. Radiographs were evaluated for changes in the soft and hard tissues by an investigator who was blinded to experimental treatment. The following radiographic changes were graded numerically according to severity: increased soft issue volume (0-4), narrowing or widening of joint spaces (0-5) subchondral erosion (0-3), periosteal reaction (0-4), osteolysis (0-4) subluxation (0-3), and degenerative joint changes (0-3). Specific criteria were used to establish the numerical grade of severity for each radiographic change. The maximum possible score per foot was 26. A test compound at total daily doses of 0.1, 0.3, 1, and 3 mg/kg/day, indomethacin at a total daily dose of 1 mg/kg/day, or vehicle (0.5% methocel in sterile water) were administered per os b.i.d. beginning post injection of adjuvant and continuing for 21 days. The compounds were

5 prepared weekly, refrigerated in the dark until used, and vortex mixed immediately prior to administration.

The invention is illustrated in connection with the following non-limiting Examples. All the end products of the formula I were analyzed by NMR, TLC and mass spectrometry.

Intermediates were analyzed by NMR and TLC.

Most compounds were purified by flash chromatography on silica gel. Recrystallization and/or swish (suspension in a solvent followed by filtration of the solid) with a solvent such as ether:hexane 1:1.

The course of reactions was followed by thin layer chromatography (TLC) and reaction times are given for illustration only.

Temperatures are in degrees Celsius.

The compounds of the examples are numbered in accordance with the compounds that appear in Tables I and II.

20

30

35

10

15

EXAMPLE 1

N-((E)-3-{2-[4-(METHYLTHIO)BENZYL]PHENYL}-2-PROPENOYL)-2-THIOPHENESULFONAMIDE (17)

25 Step 1: Methyl (E)-3-(2-methylphenyl)-2-propenoate

To 2-methylcinnamic acid (100g; 617 mmol) in 1.2 L of DMF was added DBU (112.6 g; 740 mmol) and 15 min later methyl iodide (131.3 g; 925 mmol) and left overnight. The solution was diluted in ether and washed with HCl (10%), $\rm H_2O$ and brine. The solvent was removed to give 106.8 g of the title compound.

 ^{1}H NMR (CDCl₃) δ 2.4 (3H, s), 3.8 (3H, s), 6.35 (1H, d), 7.15 (1H, t), 7.22 (1H, t), 7.5 (1H, d) and 7.95 (1H, d).

The ethyl ester can be prepared as well in the same way or from the 2-methyl benzaldehyde ($5.00~\rm g;~41.6~\rm mmol$) and triethyl phosphonoacetate ($9.9~\rm mL;~50.0~\rm mmol$) in $150~\rm mL$ ot toluene at 0 °C, to which was added portionwise NaH ($63.0~\rm mmol$). After 2 h of stirring the mixture was quenched with NH₄OAc (25%) and extracted with EtOAc. The solvent was removed to give $7.1~\rm g$ of the ethyl cinnamate.

5 Step 2: Ethyl (E)-3-[2-(bromomethyl)phenyl]-2-propenoate

10

To the previous ethyl cinnamate (20.0 g; 105 mmol) and NBS (19.64 g; 110.3 mmol) in refluxing $\mathrm{CCl_4}$ was added benzoyl peroxide (1.27 g) and the mixture was stirred for 12 h. The solution was cooled to r.t. and filtered. The solvent was removed and the crude oil purified by silica gel chromatography (5% EtOAc in hexane) to yield 14.18 g of the title compound.

 1H NMR (CDCl $_3$) δ 1.30 (3H, t), 4.25 (2H, q), 4.60 (2H, s), 6.45 (1H, d), 7.30 (3H, m), 7.57 (1H, m) and 8.05 (1H, d).

5 Step 3: Ethyl (E)-3-{2-[4-(methylthio)benzyl]phenyl}-2-propenoate

10

15

20

30

35

A mixture of the previous benzyl bromide (0.50 g; 1.86 mmol), 4-(methylthio)benzeneboronic acid (0.63 g; 3.7 mmol) CsF (1.13 g) and (Ph₃P)₄Pd (0.11 g) in 10 mL of DME was heated to reflux for 10 h. The mixture was cooled to r.t. and quenched with NH₄OAc (25%) and extracted with EtOAc. The organic phases were combined, dried and the solvent removed. Purification by silica gel chromatography (10% EtOAc in hexane) yielded 0.35 g of the title compound.

¹H NMR (CDCl₃) δ 1.27 (3H, t), 2.41 (3H, s), 4.08 (2H, s), 4.21 (2H, q), 6.30 (1H, d), 7.00 (1H, d), 7.1-7.4 (6H, m), 7.55 (1H, d) and 7.97 (1H, d).

Step 4: (E)-3-{2-[4-Methylthio]benzyllphenyl}-2-propenoic acid

Hydrolysis of the previous ester $(0.34~\rm g;~1.1~mmol)$ was run in THF/MeOH $(6~\rm mL/3~\rm mL)$ with 2 equivalent of a 2N NaOH solution for 4 h. The solution was diluted with EtOAc and quenched with HCl (10%). The organic phase was dried over Na₂SO₄ and the solvent removed. Purification was done by a swish in hexane to yield 0.21 g of the title compound.

 $^1\!H$ NMR (CDCl₃) δ 2.42 (3H, s), 4.09 (2H, s), 6.31 (1H, d), 7.00-25 $\,$ 7.35 (7H, m), 7.50 (1H, d) and 8.07 (1H, d).

Step 5: N-((E)-3-{2-[4-(methylthio)benzyl]phenyl}-2-propenoyl)-2-thiophenesulfonamide (17)

2-Thiophenesulfonamide was prepared from the corresponding sulfonyl chloride with 2.2 equivalent of NH₄OH in THF at 0 °C. The solution was brought to r.t. and left 2 h. It was then quenched with NaHCO₃ and extracted with EtOAc. The organic phase was dried over Na₂SO₄ and the solvent removed. The crude product was crystallized in toluene/EtOAc.

To the previous acid (100 mg; 0.35 mmol), 2-thiophenesulfonamide (60 mg; 0.37 mmol), DMAP (86 mg; 0.7 mmol) in 2 mL of $\mathrm{CH_2Cl_2}$ was added DCI (134 mg; 0.7 mmol) and the mixture was stirred overnight. The solution was diluted with EtOAc and quenched

with HCl (10%). The organic phase was dried over Na₂SO₄ and the solvent removed. Purification by silica gel chromatography (5% MeOH in CH₂Cl₂) yielded 87 mg of the title compound.

 1H NMR (CDCl₃) δ 2.40 (3H, s), 4.01 (2H, s), 6.33 (1H, d), 6.9-7.3 (8H, m), 7.49 (1H, d), 7.61 (1H, s), 7.89 (1H, s) and 8.03 (1H, d). The product was converted to the sodium salt with 1 equivalent of NaOH and freeze dried.

Elemental analysis calcd. for $C_{21}H_{18}NNaO_3S_3.1/2H_2O$: C, 54.77; H, 4.13; N, 3.04; S, 20.88; Found: C, 54.55; H, 4.01; N, 3.06; S, 20.58.

15

20

25

30

35

260mg of the title compound.

10

EXAMPLE 2

N-((E)-3-{2-[(3-METHYL-1H-1-INDOLYL)METHYL]PHENYL}-2-PROPENOYL)-2-THIOPHENESULFONAMIDE (3)

Step 1: Ethyl (E)-3-{2-[(3-methyl-1H-1-indolyl)methyl]phenyl}-2-propenoate

To benzylic bromide (400 mg, 1.49 mmol) of step 2 in example 1 and skatole (200mg, 1.51 mmol) in 6 mL of DMF was added portionwise 1.6 equivalent of NaH. The reaction mixture was left for 6 h and quenched with NH₄OAc (25%) and diluted with EtOAc. The organic phase was dried over Na₂SO₄, filtered and the solvent removed. Purification by silica gel chromatography (10% EtOAc inhexane) yielded

 1H NMR (CDCl₃) δ 1.2 (3H, t), 2.3 (3H, s), 4.25 (2H, q), 5.4 (2H, s), 6.35 (1H, d), 6.65 (1H, d), 6.8 (1H, s), 7.1-7.3 (5H, m), 7.56 (2H, d) and 7.97 (1H, d).

Step 2: (E)-3-{2-[(3-methyl-1H-1-indolyl)methyl]phenyl}-2-propenoic acid The hydrolysis of the previous ester (260 mg) was done according to Step 4 of example 1 to yield 212 mg of the title compound. HRMS calcd. for $C_{19}H_{17}NO_3 + H^* = 292.1337$; Found: 292.1337.

Step 3: N2-((E)-3-{2-[(3-methyl-1H-1-indolyl)methyl]phenyl}-2-propenoyl)-2-thiophenesulfonamide (3)

The coupling reaction of the previous acid (196 mg; 0.67 mmol) was done according to step 5 of example 1 to yield 134 mg of the title compound.

 1 H NMR (acetone-d₆) δ 2.39 (3H, s), 5.57 (2H, s), 6.65 (2H, m), 7.03 (3H, m), 7.27 (4H, m), 7.5 (1H, d), 7.63 (1H, d), 7.87 (1H, d), 7.95 (1H, s) and 8.14 (1H, d).

HRMS calcd. for $C_{23}H_{20}N_2O_3S_2 + H^+ = 437.0994$; Found: 437.0992.

EXAMPLE 3

15 N-{(E)-3-[2-(2-NAPHTHYLMETHYL)PHENYL]-2-PROPENOYL}-2-THIOPHENESULFONAMIDE (4)

Step 1: Ethyl (E)-3-[2-(2-naphthylmethyl)phenyll-2-propenoate

The benzyl bromide (500 mg) of example 1, step 2 was treated with 2-naphthylboronic acid according to the same procedure previously described to yield 360 mg of the title compound.

 1H NMR (CDCl $_3$) δ 1.30 (3H, t), 4.27(2H, q), 4.33 (2H, s), 6.48 (1H, d), 7.2-7.4 (4H, m), 7.45 (2H, m), 7.55 (1H, s), 7.62 (1H, d), 7.8 (3H, m) and 8.15 (1H, d).

25

20

10

Step 2: (E)-3-[2-(2-naphthylmethyl)phenyll-2-propenoic acid

The hydrolysis of the previous ester (300 mg) was done according to Step 4 of example 1 to yield 202 mg of the title compound.

¹H NMR (CDCl₃) δ 4.29 (2H, s), 6.32 (1H, d), 7.2-7.4 (6H, m),

30 7.5 (1H, s), 7.62 (1H, d), 7.73 (3H, m) and 8.19 (1H, d).

Step3: $N-\{(E)-3-[2-(2-naphthylmethyl)phenyl]-2-propencyl\}-2-thiophenesulfonamide (4)$

The coupling reaction of the previous acid (100 mg; 0.35 mmol) was done according to step 5 of example 1 to yield 60 mg of the title compound.

 ^{1}H NMR (CDCl₃) δ 4.24 (2H, s), 6.31 (1H, d), 7.02 (1H, m), 7.15-7.8 (12H, m), 7.84 (1H, m) and 8.08 (1H, d).

The acid was converted to the sodium salt with 1 equivalent of NaOH.

Elemental analysis calcd. for $C_{24}H_{18}NNaO3S_2.H_2O$: C, 60.87; H, 4.22; N, 2.96; S, 13.54; Found: C, 60.36; H, 4.25; N, 3.29; S, 12.53.

5

10

20

25

30

EXAMPLE 4

N-{(E)-3-[2-(3,4-DICHLOROBENZYL)PHENYL]-2-PROPENOYL}-2-THIOPHENESULFONAMIDE (8)

Step 1: Ethyl (E)-3-[2-(3,4-dichlorobenzyl)phenyl]-2-propenoate

The benzyl bromide (500 mg) of example 1, step 2 was treated with 3,4-dichlorobenzeneboronic acid according to the same procedure described in step 3 of example 1 to yield 410 mg of the title compound.

¹H NMR (CDCl₃) δ 1.30 (3H, t), 4.03 (2H, s), 4.23 (2H, q), 6.28 (1H, d), 6.90 (1H, dd), 7.1-7.4 (5H, m), 7.57 (1H, d) and 7.89 (1H, d).

Step 2: (E)-3-[2-(3,4-dichlorobenzyl)phenyl]-2-propenoic acid

The hydrolysis of the previous ester (400 mg) was done according to Step 4 of example 1 to yield 296 mg of the title compound.

 $^1\!H$ NMR (CDCl₃) δ 4.07 (2H, s), 6.31 (1H, d), 6.93 (1H, dd), 7.1-7.4 (5H, m), 7.50 (1H, d) and 7.99 (1H, d).

Step 3: N-{(E)-3-[2-(3,4-dichlorobenzyl)phenyl]-2-propencyl}-2-thiophenesulfonamide (8)

The coupling reaction of the previous acid (170 mg; 0.55 mmol) was done according to step 5 of example 1 to yield 110 mg of the title compound.

 1H NMR (CDCl₃) δ 4.07 (2H, s), 6.33 (1H, d), 6.85 (1H, d), 7.07 (3H, m), 7.24 (2H, m), 7.32 (1H, t), 7.53 (1H, d), 7.63 (1H, d), 7.88 (1H, d) and 7.97 (1H, d).

The acid was converted to the sodium salt with 1 equivalent of NaOH.

Elemental analysis calcd. for $C_{20}H_{14}Cl_2NNaO_3S_2.1/2H_2O$: C, 49.7; H, 3.1; N, 2.9; S, 13.27; Found: : C, 49.46; H, 2.9; N, 2.86; S, 13.73;

35

5

10

15

EXAMPLE 5

N-((E)-3-{2-[(2-NAPHTHYLOXY)METHYL]PHENYL}-2-PROPENOYL)-2-THIOPHENESULFONAMIDE (20)

Step 1: Ethyl (E)-3-{2-[naphthyloxy)methyl]phenyl}-2-propenoate

The benzyl bromide (250 mg, 0.93 mmol) of step 2 in example 1 and 2-naphthol (147 mg) in 5 mL of DMF were treated with cesium carbonate (394 mg) at 40 °C for 12 h. The mixture was diluted with EtOAc and washed with water and brine. The organic phase was dried over Na₂SO₄, filtered and the solvent removed. Purification by silica gel chromatography (10% EtOAc in hexane) yielded 245 mg of the title compound.

 1H NMR (CDCl₃) δ 1.2 (3H, t), 4.22 (2H, q), 5.28 (2H, s), 6.41 (1H, d), 7.22 (2H, m), 7.3-7.5 (4H, m), 7.55 (1H, m), 7.64 (1H, m), 7.75 (3H, m) and 8.05 (1H, d).

20

25

30

35

Step 2: (E)-3-{2-[naphthyloxy)methyl]phenyl}-2-propenoic acid

Hydrolysis of the previous ester (245 mg, 0.74 mmol) was done according to step 4 of example 1 to yield 185 mg of the title compound.

 1H NMR (CDCl₃) δ 5.27 (2H, s), 6.45 (1H, d), 7.15-7.25 (2H, m), 7.32 (1H, t), 7.42 (3H, m), 7.55 (1H, d), 7.67 (1H, d), 7.77 (3H, m) and 8.11 (1H, d).

Step 3: N-((E)-3-{2-l(2-naphthyloxy)methyl]phenyl}-2-propenoyl)-2-thiophenesulfonamide (20)

The coupling reaction of the previous acid (150 mg; 0.49 mmol) was done according to step 5 of example 1 to yield 77 mg of the title compound.

 1H NMR (CDCl₃) δ 5.2 (2H, s), 6.39 (1H, d), 7.02 (1H, s), 7.1-7.2 (2H, m), 7.3-7.4 (4H, m), 7.53 (3H, m), 7.71 (3H, m), 7.83 (1H, s) and 8.07 (1H, d).

The product was converted to the sodium salt with 1 equivalent of NaOH.

5 Elemental analysis calcd. for $C_{24}H_{28}NNaO_4S_2.3/2H_2O$: C, 57.82; H,4.21; N, 2.81; Found: : C, 58.31; H, 3.96; N, 2.91.

EXAMPLE 6

N-{(E)-3-[2-(2-NAPHTHYLSULFINYL)PHENYL]-2-PROPENOYL}-2-THIOPHENESULFONAMIDE (21)

Step 1: 2-(2-naphthylthio)benzaldehyde

10

15

20

35

A mixture of 2-thionaphthol (5.29 g; 33 mmol), 2-fluorobenzaldehyde (3.73 g; 33 mmol) and potassium carbonate (4.57 g; 33 mmol) in 28 mL of iso-propanol was heated to reflux for 12 h. The mixture was cooled to r.t., diluted with water and filtered. The solution was diluted with EtOAc and washed with water, brine and dry over MgSO₄. The crude product (7.9 g) was used as is for the next step.

¹H NMR (CDCl₃) δ 7.07 (1H, d), 7.32 (2H, m), 7.42 (1H, d), 7.51 (2H, m), 7.78 (1H, m), 7.83 (2H, d), 7.88 (1H, s), 7.95 (1H, s) and 10.39 (1H, s).

Step 2: Ethyl (E)-3-[2-(2-naphthylthio)phenyl]-2-propenoate

The previous aldehyde (7.72 g; 29.2 mmol) was converted to the ethyl ester according to step 1 of example 1 to furnish 6.36 g of the title compound.

¹H NMR (CDCl₃) δ 1.24 (3H, t), 4.21 (2H, q), 6.36 (1H, d), 7.28 (4H, m), 7.42 (2H, m), 7.61 (1H, d), 7.72 (4H, m) and 8.28 (1H, d).

30 Step 3: Ethyl (E)-3-[2-(2-naphthylsulfinyl)phenyll-2-propenoate

The previous ester (3.00 g; 8.97 mmol) in 45 mL of dichloromethane was treated with 1.1 equivalent of mCPBA at 0 °C for 1 h. The mixture was quenched with sodium thiosulfite and extracted with EtOAc. The organic phase was dry over Na₂SO₄ and the crude purified by silica gel chromatography (30% EtOAc in hexane) to yield 2.35 g of the title compound.

 1H NMR (CDCl₃) δ 1.34 (3H, t), 4.27 (2H, q), 6.26 (1H, d), 7.42 (2H, m), 7.53 (4H, m), 7.77 (2H, m), 7.88 (2H, m), 8.07 (2H, d), 8.22 (1H, s) and 8.28 (2H, m).

5

Step 4: Ethyl (E)-3-[2-(2-naphthylsulfinyl)phenyl]-2-propenoic acid The previous ester (1.20 g; 3.43mmol) was hydrolyzed according to the procedure of step 4 of example 1 to yield 1.08 g of the title compound.

¹H NMR (methanol-d₆) δ 6.23 (1H, d), 7.33 (1H, dd), 7.45 (3H, m), 7.53 (1H, t), 7.62 (1H, d), 7.8 (3H, m), 7.98 (1H, d), 8.05 (1H, d) and 8.27 (1H, s).

Step 5: 2-{(E)-3-[2-(2-naphthylsulfinyl)phenyl]-2-propenoyl}-2-thiophenesulfonamide (21)

The coupling reaction of the previous acid (500 mg; 1.55 mmol) was done according to step 5 of example 1 to yield 416 mg of the title compound.

¹H NMR (methanol- d_6) δ 6.19 (1H, d), 7.1 (1H, m), 7.22 (1H, dd), 7.45 (3H, m), 7.55 (2H, m), 7.67 (1H, d), 7.72-7.85 (4H, m), 7.99 (1H, d), 8.1 (1H, d) and 8.17 (1H, s).

The sodium salt was prepared with 1N NaOH. Elemental analysis calcd. for $C_{23}H_{16}NNaO_4S_3.1/2H_2O$: C, 55.36; H,3.40; N, 2.81; S, 19.27; Found: : C,55.00; H, 3.62; N, 2.81; S, 18.18.

25

35

15

20

EXAMPLE 7

N-{(E)-3-[2-(2-NAPHTHYLOXY)PHENYL]-2-PROPENOYL}-2-THIOPHENESULFONAMIDE (28)

30 Step 1: Ethyl (E)-3-[2-(2-naphthyloxy)phenyll-2-propenoate

2-fluoro benzaldehyde (3.0 g; 24.2 mmol), 2-naphthol (24.2 mmol) and potassium carbonate (26.6 mmol) were heated at reflux in dimethyl acetamide for 2 h. The mixture was cooled to r.t., diluted with EtOAc and washed with water and brine. The organic phase was dried over $\mathrm{Na_2SO_4}$, filtered and the solvent removed. Purification by silica gel chromatography (10% EtOAc in hexane) yielded 3.4 g of the title compound.

 1 H NMR (CDCl₃) δ 6.93 (1H, d), 7.17-7.23 (1H, m), 7.28 (1H, dd), 7.37 (1H, s), 7.37 (3H, m), 7.7 (1H, d), 7.84 (2H, m), 7.94 (1H, d) and 10.53 (1H, s).

Step 2: Ethyl (E)-3-[2-(2-naphthyloxy)phenyl]-2-propenoate

The previous aldehyde (2.00 g; 8.0 mmol) was converted to the title compound according to step 1 of example 1 to yield 2.52 g.

 1H NMR (CDCl₃) δ 1.25 (3H, t), 4.21 (2H, q), 6.55 (1H, d), 6.9 (1H, d), 7.15 (1H, t), 7.25 (3H, m), 7.42 (2H, m), 7.65 (2H, m), 7.83 (2H, t) and 8.02 (1H, d).

15

20

10

Step 3: (E)-3-[2-(2-naphthyloxy)phenyl]-2-propenoic acid

The previous ester (2.52 g; 7.9 mmol) was hydrolyzed according to the procedure of step 4 of example 1 to yield 1.57 g of the title compound.

¹H NMR (CDCl₃) δ 6.62 (1H, d), 7.03 (1H, d), 7.2-7.5 (6H, m), 7.78 (1H, d) and 7.88-8.03 (4H, m). HRMS calcd. for $C_{19}H_{14}O_3 + H^+ = 291.1021$; Found: 291.1022.

$\underline{Step~4:~N-\{(E)-3-[2-(2-naphthyloxy)phenyl]-2-propenoyl\}-2-propenoyl}-2-propenoyl}-2-propenoyl-2-pr$

25 <u>thiophenesulfonamide (28)</u>

The coupling reaction of the previous acid $(1.00~\mathrm{g}; 3.4~\mathrm{mmol})$ was done according to step 5 of example 1 to yield 790 mg of the title compound.

¹H NMR (CDCl₃) δ 6.91 (1H, d), 6.97 (1H, d), 7.15(1H, dd), 7.24 (1H, t), 7.29 30 1H, dd), 7.37 (1H, d), 7.40-7.55 (3H, m), 7.74-7.83 (2H, m), 7.92 (2H, m) and 7.99 (2H, m).

The sodium salt was prepared with 1N NaOH. HRMS calcd. for $C_{23}H_{16}NNaO_4S_2 + H^+ = 458.0497$; Found:458.0497.

35

EXAMPLE 8

THIOPHENE-2-SULFONYL CARBAMIC ACID [2-(2-NAPHTHYLSULFONYL)PHENYL]METHYL ESTER (31)

Step 1: [2-(2-naphthylthio)phenyl]methanol

To 2-(2-naphthylthio) benzaldehyde (7.24 g; 27.4 mmol from Example 6, step 1) in 70 mL of methanol and 30 mL of THF at 0 °C was added NaBH₄ (54.8 mml) portionwise. After 1h at 0 °C, the solution was brought to r.t. and quenched with water. After dilution with EtOAc, the solution was washed with water and brine. The organic phase was dry over Na₂SO₄, filtered and the crude purified by silica gel chromatography to yield 6.71 g of the title compound.

 1 H NMR (acetone-d₆) δ 4.29 (1H, t), 4.7 (2H, d), 7.29 (2H, m), 7.35-7.52 (4H, m), 7.71 (2H, m), 7.77 (1H, m) and 7.83 (2H, m).

15 Step 2: [2-(2-Naphthylsulfonyl)phenyl]methanol

To the previous sulfide (500 mg; 1.88 mmol) in 8 mL of dichloromethane at 0 °C was added m-CPBA (5.64 mmol) and let stirred for 2 h. The mixture was diluted with EtOAc and washed with NaOH (1N) and brine. The organic phase was dry over Na₂SO₄, filtered and the crude purified by silica gel chromatography (40% EtOAc in hexane) to yield 390 mg of the title compound.

 1 H NMR (acetone-d_e) δ 4.37 (1H, t), 4,9 (2H, d), 7.57 (1H, dt), 7.65-7.80 (4H, m), 7.82 (1H, d), 8.0-8.1 (2H, m), 8.2 (2H, m) and 8.63 (1H, s).

Step 3: 2-Thiophenesulfonyl isocyanate

A mixture of 2-thiophenesulfonylamide (1.5 g) and oxalyl chloride (6 mL) in 10 mL of 1,2-dichloroethane was refluxed for 14h. The solvent was removed under vacuum and the crude used as is for the next step.

<u>Step 4:</u>

5

10

20

25

30

35

To the alcohol of step 2 (250 mg; 0.84 mmol) in ether at 0 °C was added the previous isocyanate (2 equivalent) and let stirred 1h at 0 °C. The solution was quenched with water and extracted with EtOAc. The organic phase dry over Na_2SO_4 , filtered and the crude purified by silica gel chromatography (5% CH_3OH in CH_2Cl_2) to yield 300 mg of the title compound.

 $\begin{array}{lll} 5 & ^{1}\text{H NMR (CDCl}_{3}) \ \delta \ 5.55 \ (2\text{H, s}), \ 7.08 \ (1\text{H, m}), \ 7.55\text{-}7.72 \ (6\text{H,} \\ \text{m}), \ 7.82 \ (2\text{H, m}), \ 8.0 \ (1\text{H, d}), \ 8.07 \ (1\text{H, d}), \ 8.2 \ (2\text{H, m}) \ \text{and} \ 8.66 \ (1\text{H, s}). \\ & \text{The sodium salt was prepared with 1N NaOH.} \\ & \text{Elemental analysis calcd. for } C_{22}H_{16}\text{NNaO}_{6}S_{3}.2H_{2}\text{O} \text{: C, } 48.44; \\ & \text{H,3.67; N, 2.57; S, } 17.63; \end{array}$

10 Found: : C,48.86; H, 3.13; N, 2.63; S, 16.46.

5

10

15

20

25

30

35

EXAMPLE 9

N-({2-[2-(2-NAPHTHYLMETHYL)PHENYL]CYCLOPROPYL} <u>CARBONYL-2-THIOPHENESULFONAMIDE</u> (45)

Step 1: Ethyl 2-[2-(2-naphthylmethyl)phenyl]-1-cyclopropanecarboxylate

The ethyl ester (300 mg; 0.95 mmol) of step 1 in example 3 and Pd(OAc)₂ (10 mg) were treated with diazomethane at 0° C for 1h. The solvent was removed and the crude oil purified by silica gel chromatography (5% EtOAc in hexane) to yield 300 mg of the title compound.

 1 H NMR (CDCl₃) δ 1.1 (3H, t), 1.27 (1H, m), 1.45 (1H, m), 1.7 (1H, m), 2.53 (1H, m), 3.98 (2H, m), 4.29 (2H, s), 7.0 (1H, m), 7.18 (3H, m), 7.27 (1H, m), 7.39 (2H, m), 7.48 (1H, s) and 7.75 (3H, m).

Step 2: 2-[2-(2-naphthylmethyl)phenyl]-1-cyclopropanecarboxylic acid

The previous ester (300 mg; 0.91 mmol) was hydrolyzed according to the procedure of step 4 of example 1 to yield 230 mg of the title compound.

 1H NMR (CDCl₃) δ 1.45 (1H, m), 1.6 (1H, m), 1.8 (1H, m), 2.67 (1H, m), 4.33 (2H, s), 7.1 (1H, m), 7.24 (4H, m), 7.41 (2H, m), 7.58 (1H, s) and 7.78 (3H, m).

Step 3: N-({2-[2-(2-naphthylmethyl)phenyllcyclopropyl}carbonyl-2-thiophenesulfonamide (45)

The coupling reaction of the previous acid (230 mg; 0.76 mmol) was done according to step 5 of example 1 to yield 100 mg of the title compound.

 1 H NMR (CDCl₃) δ 1.32 (1H, m), 1.48 (1H, m), 1.63 (1H, m), 2.6 (1H, m), 4.13 (2H, s), 6.97 (2H, m), 7.12 (4H, m), 7.38 (3H, m), 7.52 (1H, d), 7.65 (2H, m) and 7.79 (2H, m). The sodium salt was prepared with 1N NaOH. Elemental analysis calcd. for $C_{25}H_{20}NNaO_{3}S_{2}.1/2H_{2}O$: C, 62.75; H, 4.39; N, 2.93; S, 13.4; Found: : C,62.25; H, 4.24; N, 3.02; S, 12.15.

5

10

15

20

25

35

EXAMPLE 10

N-((E)-3-(2-(6-BENZYLOXY-2-NAPHTHYL)METHYL)PHENYL)-2-PROPENOYL)-5-BROMO-2-METHOXYBENZENESULFONAMIDE (46)

(E)-3-(2-(6-benzyloxy-2-naphthyl)methyl)phenyl)-2-propenoic acid Step 1: [(6-bromo-2-naphthyl)oxy](phenyl)methane

To a mixture of 6-bromo-2-naphthol (1.99 g, 8.9 mmol) and benzyl bromide (1.2 ml, 1.1 equiv.) in DMF (18 ml) at 0°C was added a suspension of NaH 80% in oil (324 mg, 1.2 equiv.) and the mixture was stirred at 0°C for an hour and at r.t. for another hour. After addition of half saturated NH₄Cl, the product was extracted in i-PrOAc, washed with 1 N HCl, dried over Na₂SO₄ and concentrated to yield 2.84 g of an oil.

Step 2: 6-benzyloxy-2-naphthaleneboronic acid

d), 7.90 (1H, d), 8.36 (1H, s).

To a solution of the previous bromide (940 mg, 3.00 mmol) in THF (15 ml) at -78°C was added n-BuLi 1.6 M in hexanes (2.2 ml, 1.2 equiv.) and the mixture was stirred at -78°C for 15 min. Tri-isopropyl borate (0.97 ml, 1.4 equiv.) was added and the reaction mixture was warmed to r.t. After addition of 2 N HCl, the product was extracted in EtOAc, dried over Na₂SO₄ and concentrated to yield a solid. This solid was washed with ether:hexane 1:1 to yield 679 mg of pure material.

14 NMR (Acetone-d₆:DMSO-d₆) δ 5.27 (2H, s), 7.22 (1H, dd), 7.33 (1H, dd), 7.40 (3H, m), 7.54 (2H, d), 7.63 (2H, s), 7.72 (1H, d), 7.83 (1H,

30 <u>Step 3: Ethyl (E)-3-(2-{[6-benzyloxy)-2-naphthyl]methyl}phenyl)-2-propenoate</u>

A mixture of the previous boronic acid (1.05 g, 3.8 mmol), $Pd(Ph_3P)_4$ (185 mg), the benzylic bromide of step 2 in example 1 (1.07 g, 4.0 mmol), 2 M aq. Na_2CO_3 (4 ml) and toluene (8 ml) was degazed and stirred at 100° C under nitrogen for 4 h. After addition of half saturated NH_4Cl , the product was extracted in EtOAc, dried over Na_2SO_4 and concentrated. Purification by flash chromatography with EtOAc:toluene:hexane 2.5:75:25 yielded 1.17 g of the title compound as an oil.

5

Step 4: (E)-3-(2-{[6-(benzyloxy)-2-naphthyl]methyl}phenyl)-2-propenoic acid

The previous ester was hydrolyzed according to the procedure of step 4 of example 1 to yield the title compound.

10

15

20

25

30

Step 5: 5-Bromo-2-methoxybenzenesulfonamide

To 5-bromo-2-methoxybenzenesulfonyl chloride (45g; 157.6 mmol, from Lancaster Chemical) at 0°C in THF, was added concentrated NH₄OH (42.5 mL) and the reaction mixture was brought to r.t. for 2 h. The reaction mixture was diluted with EtOAc, extracted with NaHCO₃ (2X), brine, and the organic phase was dried over MgSO₄. The solvent was removed to give the title compound.

Step 6: N-((E)-3-(2-(6-benzyloxy-2-naphthyl)methyl)phenyl)-2-propenoyl)-5-bromo-2-methoxybenzenesulfonamide (46)

To the acid from step 5 (190 mg, 0.482 mmol) in CH_2Cl_2 was added DMF (10 μ L) and oxalyl chloride (60 μ L) at 0°C and the mixture was warmed to r.t. for an hour and concentrated to dryness. The resulting acid chloride was redissolved in CH_2Cl_2 :THF 1:1 (10 mL) and 5-bromo-2-methoxybenzenesulfonamide (154 mg, 1.2 equiv., from step 6) and Et_3N (135 μ L, 2 equiv.) were added at 0°C. The mixture was then warmed to r.t. for an hour, 0.5 N HCl was added and the product was extracted in i-PrOAc, dried over Na_2SO_4 and purified by flash chromatography with EtOAc:toluene:acetic acid 20:80:1 to yield 93 mg of a white solid.

¹H NMR (CDCl₃) δ MS (APCI, neg.) 643.3, 641.8, 640.0 (M-1), 393.2.

EXAMPLE 11

35

N-{(E)-3-[2-NAPHTHYLMETHYL)PHENYL)]-2-PROPENOYL}-5-BROMO-2-METHOXY-1-BENZENESULFONAMIDE (301)

 $\underline{Step~1:~N-\{(E)-3-[2-naphthylmethyl)phenyl\}]-2-propenoyl\}-5-bromo-2-methoxy-1-benzenesulfonamide~(301)}$

The carboxylic acid (400 mg; 1.22 mmol) of example 3 step 2 was coupled with 5-bromo-2-methoxy-1-benzenesulfonyl chloride according to the procedure of step 5 in example 1 to yield 284 mg of the title compound.

¹H NMR (acetone-d₆-DMSO-d₆) δ 3.85 (3H, s), 4.31 (2H, s), 10 6.65 (1H, d), 7.15 (1H, d), 7.3 (1H, m), 7.35-7.50 (4H, m), 7.55-7.65 (2H, m), 7.7-7.9 (5H, m) and 8.01 (1H, d).

The acid was converted to the sodium salt with 1 equivalent of NaOH. Elemental analysis calcd. for C₂₇H₂₁BrNNaO₄S.1/2H₂O: C, 57.15; H,3.88; N, 2.47; Found: : C, 56.88; H, 3.73; N, 2.52.

15

EXAMPLE 12

N-{(E)-3-[5-CHLORO-2-(2-NAPHTHYLMETHYL)PHENYL]-2-PROPENOYL}-2-THIOPHENESULFONAMIDE (303)

20 Step 1: 5-chloro-2-methylbenzaldehyde

To a solution of 2-bromo-4-chlorotoluene ($20.0~g;\,97.3~mmol$) in 300 mL of THF at -78 °C was added dropwise a 2.5 M solution of n-BuLi (102.2 mmol). After 30 min of stirring at that temperature, 1-formylpiperidine (11.4 mL) in 10 mL of THF was added and the solution left for 1 h. It was brought to 0 °C , quenched with NH₄OAc (25%) and diluted with EtOAc. The organic phase was dried over Na₂SO₄, filtered and the solvent removed to yield 13.3 g of the title compound.

 1H NMR (CDCl₃) δ 2.6 (3H, s), 7.15 (1H, d), 7.4 (1H, d), 7.75 (1H, s) and 10.2 (1H, s).

30

25

Step 2: Ethyl (E)-3-(5-chloro-2-methylphenyl)-2-propenoate

The previous aldehyde (13.3 g; 86.0 mmol) was converted to the ethyl cinnamate according to step 1 of example 1 to yield 16.67 g. 1 H NMR (CDCl $_{3}$) δ 1.2 (3H, t), 2.26 (3H, s), 4.15 (2H, q), 6.21

35 (1H, d), 6.99 (1H, d), 7.13 (2H, m), 7.39 (1H, s) and 7.73 (1H, d).

Step 3: Ethyl (E)-3-[2-(bromomethyl)-5-chlorophenyl]-2-propenoate

The previous ester (16.66 g; 74.1 mmol) was converted to the benzylic bromide according to step 2 of example 1 to yield 9.0 g of the title compound.

 1 H NMR (CDCl₃) δ 1,2 (3H, t), 4.25 (2H, q), 4.5 (2H, s), 6.4 (1H, d), 7.28 (2H, s), 7.55 (1H, s) and 7.95 (1H, d).

10

15

20

Step 4: Ethyl (E)-3-[5-chloro-2-(2-naphthylmethyl)phenyl]-2-propenoate

The previous benzylic bromide was coupled in a Suzuki type reaction with 2-naphthylboronic acid according to step 3 of example 1 to yield 1.14 g of the title compound.

 1 H NMR (CDCl₃) δ 1.15 (3H, t), 4.09 (2H, q), 4.12 (2H, s), 6.2 (1H, d), 7.03 (1H, d), 7.15 (2H, m), 7.3 (2H, m), 7.37 (1H, s), 7.45 (1H, s), 7.65 (3H, m) and 7.87 (1H, d).

Step 5: (E)-3-[5-chloro-2-(2-naphthylmethyl)phenyll-2-propenoic acid

The hydrolysis of the previous ester (1.14 g) was done
according to Step 4 of example 1 to yield 0.99 g of the title compound.

¹H NMR (CDCl₃) δ 4.23 (2H, s), 6.31 (1H, d), 7.12 (1H, d), 7.22
(1H, m), 7.3 (1H, m), 7.42 (2H, m), 7.48 (1H, s), 7.59 (1H, s), 7.75 (3H, m)

25

30

35

and 8.05 (1H, d).

<u>Step 6: N-{(E)-3-[5-chloro-2-(2-naphthylmethyl)phenyl]-2-propenoyl}-2-thiophenesulfonamide (303)</u>

The coupling reaction of the previous acid (400 mg; 1.22 mmol) was done according to step 5 of example 1 to yield 272 mg of the title compound.

 ^{1}H NMR (acetone-d₆) δ 4.25 (2H, s), 6.58 (1H, d), 7.0 (1H, t), 7.23 (2H, m), 7.33 (1H, m), 7.39 (2H, m), 7.5-7.6 (2H, m), 7.55 (5H, m) 7.86 (1H, m) and 8.04 (1H, d).

The product was converted to the sodium salt with 1 equivalent of NaOH. Elemental analysis calcd. for $C_{24}H_{17}ClNNaO_3S_2.1/2H_2O$: C, 57.76; H,3.64; N, 2.81; S, 12.84; Found: : C, 57.78; H, 3.62; N, 2.86; S, 12.85.

5

25

30

EXAMPLE 13

(E)-3-{4-CHLORO-2-[6-FLUORO-2-NAPHTHYL)METHYL]PHENYL}-2-PROPENOIC ACID SODIUM SALT (457)

Step 1: Ethyl (E)-3-(5-chloro-2-methylphenyl)-2-propenoate

To 2-bromo-4-chloro toluene (20.0g; 97.3 mmol) in 300 10 mL of THF at -78 oC was added n-BuLi 2.5 M (40.8 mL) dropwise. After 20 min. 1-formylpiperidine (11.4 mL; 103.0 mmol) in 10 mL of THF was added dropwise. After 30 min the reaction mixture was brought to 0°C and quenched with HCl (10%) and diluted with EtOAc. The organic phase was collected, dry and the solvent evaporated to yield 13.3g (89%) 15 of 5-chloro-2-methylbenzaldehyde. This crude aldehyde was mixed with 1.1 equivalent of triethyl phosphonoacetate in THF. Sodium hydride 80% (1.3 equivalent) was added portionwise and 1 h later the reaction was quenched with 25% NH4Cl. The reaction mixture was diluted with EtOAc and the organic phase collected, dried and the solvent removed. 20 The crude oil was purified on a short pad of silica gel using 5% EtOAc in hexane to afford 16.67 g of the title compound.

Alternatively, this procedure can be done in one reaction vessel. At the end of the first step, the flask is brought to rt and the phosphonoacetate in THF is added.

1H NMR (CDCl3) δ 1.21 (3H, t), 2.27 (3H, s), 4.15 (2H, q), 6.22 (1H, d), 6.95-7.15 (3H, m), 7.40 (1H, s) and 7.75 (1H, d).

Step 2: Ethyl(E)-3-[2-(bromomethyl)-5-chlorophenyl]-2-propenoate

The bromination was done according to step 2 of example 1 to provide the title compound in 45% yield.

 $^1\!H$ NMR (CDCl₃) δ 1.32 (3H, t), 4.27 (2H, q), 4.52 (2H, s), 6.43 (1H, d), 7.30 (2H, s), 7.55 (1H, s) and 7.93 (2H, d).

35 Step 3: 6-Fluoro-2-naphthol

A solution of 2-(4-fluorophenyl)acetyl chloride (5.0g; 29 mmol) in $\mathrm{CH_2Cl_2}$ was added to $\mathrm{AlCl_3}$ (7.73g;58 mmol) in $\mathrm{CH_2Cl_2}$ at -20 °C over 30 min. Trimethylsilyl acetylene (9.96g; 101.43 mmol) was added also over 30 min and stirred at -10 °C for 1h. The mixture was poured in

ice and extracted with EtOAc. The organic phase was washed with water, NaHCO₃ and brine. After purification by gel silica chromatography (10% EtOAc in hexane) 2.43 g (36%) of 3-(trimethylsilyl)-6-chloro-2-naphthol was collected. The desylilation was done with TFA in CH₂Cl₂ at rt overnight. Purification by gel silica chromatography (10% EtOAc in hexane) afforded the title compound in 69% yield.

 1H NMR (CDCl₃) δ 7.10-7.20 (3H, m), 7.37 (1H, dd) and 7.65 (2H, m).

Step 4: Ethyl (E)-3-{4-chloro-2-[(6fluoro-2-naphthyl)methyl]phenyl}-2-propenoate

15

20

30

The naphthol of Step 3 was converted to the triflate with triflic anhydride/pyridine in CH₂Cl₂ at 0 °C. This was coupled with the organozinc of the benzyl bromide of step 2 in example 13, with dppf and Pd(dba)₂. This yielded the title compound in 47% yield after purification by silica gel chromatography (10% EtOAc in hexane).

 1H NMR (CDCl₃) δ 1.25 (3H, t), 4.20 (2H, q), 6.30 (1H, d), 7.10-7.27 (4H, m), 7.38 (1H, dd), 7.48 (1H, s), 7.57 (1H, dd), 7.66 (2H, m) and 7.95 (1H, d).

25 <u>Step 5: (E)-3-{4-Chloro-2-[(6-fluoro-2-naphthyl)methyl]phenyl}-2-propenoic acid, sodium salt</u>

The hydrolysis of the ester of Step 4 (1.03g; 2.7 mmol) was done according to step 4 of example 1 to yield 800mg (87%) of the title compound. The sodium salt was prepared with 1N NaOH.

1H NMR (CDCl3) δ 4.21 (2H, s), 6.30 (1H, d), 7.10-7.40 (4H, m), 7.38 (1H, dd), 7.45 (1H, s), 7.58 (1H, d), 7.68 (2H, m) and 8.05 (1H, d). LRMS for M-1= 339.

EXAMPLE 14

5-BROMO-N((E)-3-{5-CHLORO-2-[(6-FLUORO-2-NAPHTHYL-2)METHYL]PHENYL}-2-PROPENOYL)-2-METHOXYBENZENESULFONAMIDE SODIUM SALT (378)

PCT/CA99/00212

Step 1: 5-Bromo -N-((E)-3-{5-chloro-2-[(6-fluoro-2-naphthyl)methyl]phenyl}-2-propenoyl)-2-methoxybenzenesulfonamide

The coupling reaction of the acid of Example 1 Step 5 with 5-bromo-2-methoxybenzesulfonamide (500 mg; 1.47 mmol) was done according to step 5 of example 1 to yield 662 mg (77%) of the title
compound. The sodium salt was prepared with 1N NaOH.

1H NMR (DMSO-d6) δ 3.78 (3H, s), 4.22 (2H, s), 6.53 (1H, d), 7.17 (1H, d), 7.27 (1H, d), 7.35 (2H, m), 7.47 (1H, dd), 7.51 (1H, s), 7.58 (1H, d), 7.64 (1H, dd) and 7.75-7.90 (5H, m).

LRMS for M-1=588.

15

EXAMPLE 15

(E)-3-{5-CHLORO-2-[(6-CHLORO-2-NAPHTHYL)METHYL]PHENYL}-2-PROPENOIC ACID SODIUM SALT (469)

20 Step 1: 6-Chloro-2-naphthol

The title compound was prepared from 2-(4-fluorophenyl)acetyl chloride according to step 3 of example 13. ^{1}H NMR (CDCl₃) δ 7.10 (2H, m), 7.34 (1H, dd), 7.55-7.67 (2H, m) and 7.72 (1H, s).

25

35

Step 2: Ethyl (E)-3-{5-chloro-2-[(6-chloro-2-naphthyl)methyl]phenyl}-2-propenoate

The title compound was prepared according to step 4 of example 13 in 30% yield.

 1 H NMR (CDCl₃) δ 1.23 (3H, t), 4.20 (4H, m), 6.29 (1H, d), 7.10 (1H, d), 7.22 (2H, m), 7.33 (1H, dd), 7.42 (1H, s), 7.53 (1H, d), 7.61 (2H, d), 7.70 (1H, s) and 7.91 (1H, d).

Step 3: (E)-3-{5-Chloro-2-[(6-chloro-2-naphthyl)methyl]phenyl}-2-propenoic acid, sodium salt

The hydrolysis of the ester of Step 2 (620 mg; 1.6 mmol) was done according to step 4 of example 1 to yield 500mg (87%) of the title compound.

5 1 H NMR (CDCl₃) δ 4.22 (2H, s), 6.30 (1H, d), 7.15 (1H, d), 7.20-7.39 (3H, m), 7.43 (1H, s), 7.56 (1H, s), 7.62 (2H, t), 7.75 (1H, s) and 8.02 (1H, d).

Elemental analysis calcd for $\rm C_{20}H_{13}Cl_2NaO_2$.H $_2O$: C, 60.48; H, 3.78; Found C, 60.68, H, 3.63.

10

PCT/CA99/00212

5

15

EXAMPLE 16

5-BROMO-N((E)-3-{5-CHLORO-2-[(6-CHLORO-2-NAPHTHYL-2)METHYL]PHENYL}-2-PROPENOYL)-2-<u>METHOXYBENZENESULFONAMIDE</u>, SODIUM SALT (450)

10 Step 1: 5-Bromo -N-((E)-3-{5-chloro-2-[(6-chloro-2-

The sodium salt was prepared with 1N NaOH.

naphthyl)methyllphenyl}-2-propenoyl)-2-methoxybenzenesulfonamide
The coupling reaction of the acid of Example 15 Step 3 (500 mg; 1.4 mmol) was done according to step 5 of example 1 with 5-bromo-2-methoxybenzesulfonamide to yield 662 mg (74%) of the title compound.

1H NMR (DMSO-d6) δ 3.78 (3H, s), 4.22 (2H, s), 6.53 (1H, d), 7.20 (1H, d), 7.30-7.40 (2H, m), 7.45 (2H, m), 7.55 (1H, s), 7.59 (1H, s), 7.79 (3H, m), 7.85-7.92 (2H, m) and 7.98 (1H, d).

Elemental analysis calcd for C27H19BrCl2NNaO4S .2H2O : 20 C, 49.01; H, 3.33; N, 2.14; Found C, 48.89, H, 3.47; N, 2.11.

EXAMPLE 17

(E)-3-(5-CHLORO-2-{[6-DIFLUOROMETHOXY)-2-NAPHTHYL]PHENYL-2-PROPENOIC ACID, SODIUM SALT (505)

Step 1: 6-Bromo-2-difluoromethoxynaphthalene

Methyl chlorodifluoroacetate (5.3 mL) was added dropwise to 6-bromonaphthol (10.25 g; 45.9 mmol) and potassium carbonate (7.61g; 55.1 mmol) at 90 0C in 160 mL of DMF for 6 h. Purification by gel silica chromatography (3% EtOAc in hexane) gave 4.80 g (38%) of the title compound.

 $1H\ NMR\ (CDCl3)\ \delta\ \ 6.61\ (1H,\ t),\ 7.31\ (1H,\ dd),\ 7.48\ (1H,\ d),$ $7.56\ (1H,\ dd),\ 7.67\ (1H,\ d),\ 7.72\ (1H,\ d)\ and\ 8.01\ (1H,\ d).$

35

25

30

Step 2: Ethyl (E)-3-(5-chloro-2-{[6-difluoromethoxy)-2-naphthyl]methyl}phenyl)-2-propenoate

The corresponding boronic acid of the previous halide was coupled according to step 3 of example 1 of the title compound in 57% yield.

1H NMR (CDCl3) δ 1.25 (3H, t), 4.22 (4H, m), 6.28 (1H, d), 6.53 (1H, t), 7.11 (1H, d), 7.25 (2H, m), 7.45 (2H, d), 7.55 (1H, d), 7.72 (2H, t) and 7.92 (1H, d).

Step 3: (E)-3-(5-Chloro-2-{[6-difluoromethoxy)-2-naphthyl]methyl}phenyl)-2-propenoic acid, sodium salt

The hydrolysis of the ester of Step 2 (1.9 g; 4.7 mmol) was done according to step 4 of example 1 to yield 600mg of the title compound.

1H NMR of sodium salt (DMSO-d6) δ 4.20 (2H, s), 6.29 (1H, d), 7.10-7.40 (6H, m), 7.58 (3H, m) and 8.84 (2H, t).

HRMS calc'd for $C_{21}H_{14}O_{3}F_{2}ClNa + H = 411.0575$; Found:

20 411.0577.

25

30

35

10

EXAMPLE 18

5-BROMO-N-[(E)-3-(5-CHLORO-2-{[6-DIFLUOROMETHOXY)-2-NAPHTHYL_METHYL)-2-PROPENOYL]-2-METHOXYBENZENESULFONAMIDE, SODIUM SALT (447)

 $\underline{Step~1:~5\text{-}Bromo~-N\text{-}[(E)\text{-}3\text{-}(5\text{-}chloro\text{-}2\text{-}\{[6\text{-}difluoromethoxy)\text{-}2\text{-}}\\ \underline{naphthyl]methyl}\\\underline{phenyl}\text{-}2\text{-}propenoyl]\text{-}2\text{-}methoxybenzennesulfonamide}$

The coupling reaction of the acid of Example 17 Step 3 (1.00g; 2.57 mmol) was done according to step 5 of example 1 with 5-bromo-2-methoxybenzesulfonamide to yield 915 mg (56%) of the title compound. The sodium salt was prepared with 1N NaOH.

1H NMR of sodium salt DMSO-d6) δ 3.66 (3H, s), 4.18 (2H, s), 6.36 (1H, d), 6.92 (1H, d), 7.20-7.35 (5H, m), 7.48 (2H, m), 7.55-7.65 (3H, m) and 7.80 (3H, m).

LRMS for M-1=634.

PCT/CA99/00212

5

10

15

EXAMPLE 19

(E)-3-[2-(3,4-DICHLOROBENZYL)-5-CHLOROPHENYL]-2-PROPENOIC <u>ACID, SODIUM SALT (535)</u>

Step 1: Ethyl (E)-3-[2-(3,4-dichlorobenzyl)-5-chlorophenyl)-2-propenoate

The benzyl bromide of step 2 of example 13 was treated with 3,4-dichlorobenzeneboronic acid according to the procedure described in step 3 of example 1 to yield the title compound in 67% yield.

1H NMR (CDCl3) δ 1.30 (3H, t), 4.00 (2H, s), 4.23 (2H, q), 6.30 (1H, d), 6.90 (1H,dd), 7.09 (1H, d), 7.15 (1H, s), 7.28 (1H, m), 7.32 (1H, d), 7.55 (1H, d) and 7.79 (1H, d).

Step 2: (E)-3-[2-(3,4-Dichlorobenzyl)-5-chlorophenyl)-2-propenoic acid, sodium salt

The hydrolysis of the ester of Step 1 (1.00 g; 2.7 mmol) was done according to step 4 of example 1 to yield 907 mg (98%) of the title compound.

1H NMR (CDCl3) δ 3.95 (2H, s), 6.30 (1H, d), 6.86 (1H, d), 7.08 (2H, m), 7.32 (2H, m), 7.55 (1H, s) and 7.90 (1H, d). LRMS for M-1= 339.

25

EXAMPLE 20

5-BROMO-N-{(E)-3-[5-CHLORO-2-(3,4-DICHLOROBENZYL)PHENYL]-2-PROPENOYL}-2-METHOXYBEZENESULFONAMIDE, SODIUM SALT

30

35

(421)

Step 1: 5-Bromo-N-{(E)-3-[5-chloro-2-)3,4-dichlorobenzyl)phenyl]-2-propenoyl}-2-methoxybenzenesulfonamide

The coupling reaction of the acid of Example 19 Step 2 (0.600 g; 1.75 mmol) was done according to step 5 of example 1 with 5-bromo-2-methoxybenzesulfonamide to yield 548 mg (53%) of the title compound. The sodium salt was prepared with 1N NaOH.

10 EXAMPLE 21

5-BROMO-N-{(E)-3-[4-CHLORO-2-(2-NAPHTHYLMETHYL)PHENYL]-2-PROPENOYL}-2-METHOXYBENZENESULFONAMIDE, SODIUM SALT (449)

- Step 1: Ethyl (E)-3-(4-chloro-2-[(2-naphthylmethyl)phenyl]-2-propenoate

 2-Bromo-5-chloro toluene (20.0 g) was converted to the
 corresponding aldehyde and then to the cinnamate according to step 1 of
 example 13. This cinnamate was converted to the benzylic bromide
 according to step 2 of example 1 and coupled via a Suzuki coupling
 reaction according to step 3 of example 1 with naphthalene boronic acid
 to yield the title compound.
 - ¹H NMR (CDCl₃) δ 1.30 (3H, t), 4.22 (4H, m), 6.29 (1H, d), 7.15-7.27 (3H, m), 7.42 (2H, m), 7.52 (2H, m), 7.75 (3H, m) and 7.99 (1H, d).
- 25 Step 2: (E)-3-{4-Chloro-2-[(2-naphthylmethyl)phenyl}-2-propenoic acid (530)

The hydrolysis of the ester of Step 1 (0.56 g; 1.57 mmol) was done according to step 4 of example 1 to yield 450 mg (88%) of the title compound.

Step 3: 5-Bromo-N-[[(E)-3-[4-chloro-2-(2-

35 naphthylmethyl)phenyllpropenoyl}-2-methoxybenzenesulfonamide
The coupling reaction of the acid of Step 2 (0.296 g; 0.89 mmol) was done according to step 5 of example 1 with 5-bromo-2-methoxybenzesulfonamide to yield 213 mg (42%) of the title compound. The sodium salt was prepared with 1N NaOH.

 $^{1}H\ NMR\ (ACETONE-MEOH-d_{e})\ \delta\ 3.70\ (3H,\ s),\ 4.20\ (2H,\ s),$ $6.44\ (1H,\ d),\ 6.95\ (2H,\ m),\ 7.25\ (3H,\ m),\ 7.40\ (2H,\ m),\ 7.55\ (3H,\ m),\ 7.75$ $(3H,\ m),\ 7.95\ (1H,\ d)\ and\ 8.02\ (1H,\ d).$ $LRMS\ for\ M-1=568.$

5

10

25

30

35

EXAMPLE 22

(E)-3-[5-METHOXY-2-(2-NAPHTHMETHYL)PHENYL]-2-PROPENOIC ACID, SODIUM SALT (534)

Step 1: (2-Bromo-4-methoxyphenyl)(2-naphthyl)methanone

AlCl3 (17.48 g; 131.1 mmol) was added portionwise to a mixture of 3-bromocresol (16.04 g; 87.4 mmol) and 2-naphthoyl chloride (25.00 g; 131.1 mmol) in 50 mL of CHCl3 gave 14.0 g (47%) of the title compound.

1H NMR (CDCl3) δ 3.78 (3H, s), 6.92 (1H, dd), 7.19 (1H, d), 7.38 (1H, d), 7.50 (1H, t), 7.59 (1H, t), 7.89 (3H, m), 7.95 (1H, dd) and 8.18 (1H, s).

Step 2: 2-(2-Bromo-4-methoxybenzyl)naphtalene

To the methanone of Step 1 (14.0 g) and triethylsilane (15 mL) in 15 mL of CHCl3 was added TFA and was heated to 50°C overnight. The solution was cooled and quenched with NaOH (2N) to provide the title compound in 82% yield.

1H NMR (CDCl3) δ 3.75 (3H, s), 4.20 (2H, s), 6.75 (1H, dd), 7.07 (1H, d), 7.12 (1H, s), 7.30 (1H, d), 7.42 (2H, m), 7.58 (1H, s) and 7.76 (3H, m).

Step 3: Ethyl (E)-3-[5-methoxy-2-(2-naphthylmethyl)phenyl]-2-propenoate

The naphthalene of Step 2 was converted to the corresponding aldehyde according to the step 1 of example 13 in 98% yield. This aldehyde was then converted to the cinnamate according to step 1 of example 13 in 90% yield.

1H NMR (CDCl3) δ 3.70 (3H, s), 4.11 (4H, m), 6.20 (1H, d), 6.77 (1H, dd), 6.99 (1H, d), 7.03 (1H, d), 7.15 (1H, d), 7.30 (2H, m), 7.39 (1H, s), 7.60-7.70 (3H, m) and 7.90 (1H, s).

Step 4: (E)-3-[5-Methoxy-2-(2-naphthmethyl)phenyll-2-propenoic acid

The hydrolysis of the ester of Step 3 (2.83 g; 8.2 mmol) was done according to step 4 of example 1 to yield 2.16 g (83%) of the title compound. The sodium salt was prepared with 1N NaOH.

1H NMR (CDCl3) δ 3.70 (3H, s), 4.13 (2H, s), 6.20 (1H, d), 6.80 (1H, dd), 7.02 (2H, m), 7.15 (1H, d), 7.29 (2H, m), 7.39 (1H, s), 7.62 (3H, m) and 8.03 (1H, d).

LRMS calcd for M-1=317.

15

EXAMPLE 23

5-BROMO-2-METHOXY-N-{(E)-3-[5-METHOXY-2-(2-NAPHTHYLMETHYL)PHENYL]-2-PROPENOYL}BENZENESULFONAMIDE SODIUM SALT (448)

20 <u>Step 1: 5-Bromo-2-methoxy-N-{(E)-3-[5-methoxy-2-(2-naphthylmethyl)phenyll-2-propencyl}benzenesulfonamide</u>

The coupling reaction of the acid of Example 22 Step 4 (0.600 g; 1.88 mmol) was done according to step 5 of example 1 with 5-bromo-2-methoxybenzesulfonamide to yield 573 mg (57%) of the title compound.

25 The sodium salt was prepared with 1N NaOH.

1H NMR (CDCl3) δ 3.72 (3H, s), 3.77 (3H, s), 4.13 (2H, s), 6.40 (1H, d), 6.70 (1H, d), 6.85 (1H, dd), 7.02 (1H, d), 7.10-7.20 (2H, m), 7.37 (3H, m), 7.57 (1H, dd), 7.60-7.80 (3H, m),7.95 (1H, d), 8.15 (1H, d) and 9.12 (1H, broad s).

LRMS calcd for M-1= 564.

30

35

EXAMPLE 24

(E)-3-[5-CHLORO-2-(4-CHLOROBENZYL)PHENYL]-2-PROPENOIC <u>ACID_SODIUM_SALT_(537)</u>

Step 1: Ethyl(E)-3-[5-chloro-2-(4-chlorobenzyl)phenyl]-2-propenoate

5	The benzyl bromide of step 2 of example 13 was coupled in a
	Suzuki coupling reaction with 4-chlorobenzene boronic acid according to
	the procedure of step 2 example 1 to yield 69% of the title compound.
	1H NMR (CDCl3) δ 1.30 (3H, t), 4.02 (2H, s), 4.22 (2H, q), 6.29
	(1H, d), 6.99 (2H, d), 7.08 (1H, d), 7.20-7.30 (3H, m), 7.52 (1H, s) and 7.83
0	(1H, d).

Step 2: (E)-3-[5-Chloro-2-(4-chlorobenzyl)phenyl]-2-propenoic acid

The hydrolysis of the ester of Step 1 (1.14 g; 3.4 mmol) was done according to step 4 of example 1 to yield 860 mg (83%) of the title compound. The sodium salt was prepared with 1N NaOH.

1H NMR (CDCl3) δ 4.04 (2H, s), 6.30 (1H, d), 7.00 (2H, d), 7.10 (1H, d), 7.23 (2H, d), 7.29 (1H, d), 7.55 (1H, s) and 7.95 (1H, d). LRMS calcd for M-1= 305.

20

15

10

EXAMPLE 25

(E)-3-{2-[(5-(PHENYLMETHOXY)INDOLYL)METHYL]-5-FLUOROPHENYL}-N-[(5-BROMO-2-METHOXYPHENYL)SULFONYL]-2-PROPENAMIDE (451)

25

30

35

Step 1: Ethyl (E)-3-(5-fluoro-2-methylphenyl)-2-propenoate

5-Fluoro-2-methylbenzaldehyde (40.58 g; 294 mmol) was converted to the ethyl cinnamate according to step 1 of example 1 to yield 40.81 g. of the title compound.

 1 H NMR (acetone-d₆) δ 1.29 (3H, t), 2.40 (3H, s), 4.23 (2H, q), 6.49 (1H, d), 7.07 (1H, td), 7.29 (1H, dd), 7.46 (1H, dd) and 7.87 (1H, dd).

Step 2: Ethyl (E)-3-[2-(bromomethyl)-5-fluorophenyl]-2-propenoate

The ester of Step 1(40.80 g; 196 mmol) was converted to the benzylic bromide according to step 2 of example 1 to yield 24.17 g of the title compound.

 $^1\!H$ NMR (acetone-d₆) δ 1.30 (3H, t), 4.24 (2H, q), 4.81 (2H, s), 6.62 (1H, d), 7.18 (1H, td), 7.58 (2H, m) and 8.02 (1H, dd).

PCT/CA99/00212

10

5 Step 3: Ethyl (E)-3-{2-[(5-(phenylmethoxy)indolyl)methyl]-5fluorophenyl}-2-propenoate

The benzylic bromide of Step 2 (3.16 g; 11.0 mmol) was coupled with 5-(phenylmethoxy)indole according to the same procedure described in step 1 of example 2 to yield 2.27 g of the title compound.

 ^{1}H NMR (acetone-d₆) δ 1.27 (3H, t), 4.20 (2H, q), 5.11 (2H, s), 5.59 (2H, s), 6.43 (1H, dd), 6.52 (1H, d), 6.80 (1H, dd), 6.86 (1H, dd), 7.08 (1H, td), 7.19 (1H, d), 7.22 (1H, d), 7.31 (2H, m), 7.38 (2H, m), 7.50 (2H, m), 7.55 (1H, dd) and 8.01 (1H, dd).

15 Step 4: (E)-3-{2-[(5-(Phenylmethoxy)indolyl)methyl]-5-fluorophenyl}-2propenoic acid (493)

The hydrolysis of the ester of Step 3 (2.27 g) was done according to step 4 of example 1 to yield 2.07 g of the title compound. 1 H NMR (acetone-d₆) δ 5.11 (2H, s), 5.62 (2H, s), 6.43 (1H, dd),

- 6.53 (1H, d), 6.75 (1H, dd), 6.86 (1H, dd), 7.08 (1H, td),), 7.19 (1H, d), 7.25 20 (1H, d), 7.31 (2H, m), 7.38 (2H, m), 7.50 (2H, m), 7.56 (1H, dd) and 8.04 (1H, dd). Elemental analysis calcd. for C₂₅H₂₀FNO₃.2H₂O: C, 68.64; H, 5.53; N, 3.20; Found: C, 68.16; H, 4.95; N, 3.06.
- Step 5: (E)-3-{2-[(5-(Phenylmethoxy)indolyl)methyl]-5-fluorophenyl}-N-25 [(5-bromo-2-methoxyphenyl)sulfonyl]-2-propenamide

The acid of Step 5 (2.06; 5.13 mmol) was coupled with 5bromo-2-methoxybenzenesulfonamide of example 10, step 5 according to step 5 of example 1 to yield 2.44 g of the title compound.

 1 H NMR (acetone- d_{6}) δ 3.93 (3H, s), 5.10 (2H, s), 5.59 (2H, s), 30 6.39 (1H, dd), 6.73 (1H, dd), 6.78 (1H, d), 6.81 (1H, dd), 7.09 (1H, td),), 7.18 (1H, d), 7.24 (3H, m), 7.32 (1H, m), 7.39 (3H, m), 7.49 (2H, m), 7.82 (1H, dd), 8.01 (1H, dd) and 8.09 (1H, d). Elemental analysis calcd. for C₃₂H₂₆BrFN₂O₅S₂: C, 59.17; H, 4.03; N, 4.31; S, 4.94; Found: C, 59.07; H, 4.01; N, 4.34; S, 5.16.

35

EXAMPLE 26

5 (E)-3-[2-(BENZO[B]THIOPHEN-2-YLMETHYL)-5-FLUOROPHENYL]-N[(5-BROMO-2-METHOXYPHENYL)SULFONYL]-2-PROPENAMIDE <u>SODIUM SALT (452)</u>

Step 1: Ethyl (E)-3-[2-(benzo[b]thiophen-2-ylmethyl)-5-fluorophenyl]-2-propenoate

10

15

20

25

30

35

The ester (901 mg, 3.14 mmol) of example 13, step 2 was coupled with benzo[b]thiophene-2-boronic acid (from Lancaster Chemical) in DME according to the same procedure described in step 3 of example 10 to yield 657 mg of the title compound.

¹H NMR (acetone-d₆) δ 1.22 (3H, t), 4.16 (2H, q), 4.43 (2H, s), 6.50 (1H, d), 7.03 (1H, s), 7.15-7.35 (3H, m), 7.47 (1H, dd), 7.56 (1H, dd), 7.69 (1H, dd), 7.78 (1H, dd) and 8.00 (1H, dd).

Step 2: (E)-3-[2-(benzo[b]thiophen-2-ylmethyl)-5-fluorophenyl]-2-propenoic acid (539)

The hydrolysis of the ester of Step 1 (657 mg) was done according to step 4 of example 1 to yield 345 mg of the title compound. $^{1}\text{H NMR (acetone-d}_{6}) \ \delta \ 4.45 \ (2\text{H, s}), 6.51 \ (1\text{H, d}), 7.04 \ (1\text{H, d}), 7.2-7.3 \ (3\text{H, m}), 7.49 \ (1\text{H, dd}), 7.57 \ (1\text{H, dd}), 7.70 \ (1\text{H, d}), 7.80 \ (1\text{H, m}) \ \text{and} \\ 8.01 \ (1\text{H, dd}). \ \ Elemental analysis calcd. for $C_{18}H_{13}FO_{2}S$: $C, 69.21$; $H, 4.19$; Found: $C, 68.96$; $H, 4.15$.}$

Step 3: (E)-3-[2-(Benzo[b]thiophen-2-ylmethyl)-5-fluorophenyl]-N-[(5-bromo-2-methoxyphenyl)sulfonyl]-2-propenamide

The previous acid (264 mg; 0.85 mmol) was coupled with 5-bromo-2-methoxybenzenesulfonamide of example 10, step 5 according to step 5 of example 1 to yield 287 mg of the title compound.

¹H NMR (acetone-d₆) δ 3.83 (3H, s), 4.43 (2H, s), 6.77 (1H, d), 7.00 (1H, d), 7.13 (1H, d), 7.2-7.3 (3H, m), 7.41 (1H, dd), 7.49 (1H, dd), 7.65 (1H, dd), 7.78 (2H, m), 7.96 (1H, dd)HH and 8.05 (1H, d).

The acid was converted to the sodium salt with 1 equivalent of NaOH. Elemental analysis calcd. for C₂₅H₁₈BrFNNaO₄S₂.H₂O: C, 50.01; H, 3.36; N, 2.33; Found: C, 49.84; H, 3.22; N, 2.41.

5

20

30

35

EXAMPLE 27

N-(E)-[(5-BROMO-2-METHOXYPHENYL)SULFONYL]-3-(5-FLUORO-2-{[1-BENZYLINDOL-5-YL]METHYL}PHENYL)-2-PROPENAMIDE SODIUM SALT (453)

Step 1: Ethyl (E)-3-[5-fluoro-2-(indol-5-ylmethyl)phenyll-2-propenoate

The ester (1.83 g, 6.37 mmol) of example 13, step 2 was coupled with 5-indolyl boronic acid and NaHCO₃ in DME according to the procedure described in step 3 of example 10 to yield 1.08 g of the title compound.

¹H NMR (acetone-d₆) δ 1.26 (3H, t), 4.17 (2H, q), 4.21 (2H, s), 6.37 (1H, m), 6.44 (1H, d), 6.94 (1H, dd), 7.14 (1H, td), 7.27-7.37 (4H, m), 7.51 (1H, dd), 8.05 (1H, dd) and 10.13 (1H, s).

Step 2: Ethyl (E)-3-(5-fluoro-2-{[1-benzylindol-5-yl]methyl}phenyl)-2-propenoate

The indole of Step 1 (621 mg; 1.92 mmol) was coupled with benzyl bromide according to the procedure described in step 1 of example 2 to yield 678 mg of the title compound.

¹H NMR (acetone-d₆) δ 1.26 (3H, t), 4.17 (4H, m), 5.32 (2H, s), 6.43 (2H, m), 6.95 (1H, dd), 7.1-7.4 (11H, m), 7.49 (1H, dd) and 8.08 (1H, dd).

Step 3: (E)-3-(5-Fluoro-2-{[1-benzylindol-5-yl]methyl}phenyl)-2-propenoic acid) (540)

The hydrolysis of the ester of Step 2 (678 mg) was done according to step 4 of example 1 to yield 276 mg of the title compound.

¹H NMR (acetone-d₆) δ 4.20 (2H, s), 5.38 (2H, s), 6.39 (1H, d), 6.45 (1H, d), 6.95 (1H, d), 7.1-7.3 (10H, m), 7.48 (1H, d) and 8.04 (1H, dd). Elemental analysis calcd. for $C_{25}H_{20}FNO_2$: C, 77.91; H, 5.23; N, 3.63; Found: C, 78.52; H, 5.46; N, 3.66.

Step 4: N-(E)-[(5-Bromo-2-methoxyphenyl)sulfonyl]-3-(5-fluoro-2-{[1-benzylindol-5-yllmethyl}phenyl)-2-propenamide

10

5 The acid of Step 3 (219 mg; 0.57 mmol) was coupled with 5-bromo-2-methoxybenzenesulfonamide of example 10, step 5 according to step 5 of example 1 to yield 149 mg of the title compound.

 1H NMR (acetone-d₆) δ 3.82 (3H, s), 4.18 (2H, s), 5.38 (2H, s), 6.36 (1H, dd), 6.72 (1H, d), 6.90 (1H, dd), 7.1-7.4 (12H, m), 7.78 (1H, dd), 7.98 (1H, dd) and 8.05 (1H, d).

The acid was converted to the sodium salt with 1 equivalent of NaOH. Elemental analysis calcd. for $C_{32}H_{25}BrFN_2NaO_4S.1/2H_2O$: C, 57.84; H, 3.94; N, 4.22; Found: C, 57.61; H, 3.86; N, 4.16.

PCT/CA99/00212

5

10

15

20

25

35

EXAMPLE 28

N-(E)-[(2,4-DIMETHYL(1,3-THIAZOL-5-YL))SULFONYL]-3-{3-[(5-CHLOROINDOLYL)METHYL](2-PYRIDYL)}-2-PROPENAMIDE (444)

Step 1: Ethyl (E)-3-(3-methyl-2-pyridyl)-2-propenoate

To a solution of 2-bromo-3-methylpyridine (10.36 g; 60.2 mmol) in 120 mL of THF at -100 °C was added dropwise a 1.6 M solution of n-BuLi (65.6 mmol). After 20 min of stirring at that temperature, 1-formylpiperidine (7.65 g) in 10 mL of THF was added and the solution was warmed to r.t.. After 30 min of stirring at r.t., triethyl phosphonoacetate (13.7 mL; 69.1 mmol) was added dropwise below 30 °C. After 1 h of stirring, the mixture was quenched with NH₄OAc (25%) and extracted with EtOAc. The solvent was removed and the crude oil was purified by silica gel chromatography (25% EtOAc in hexane) to yield 10.32 g of the title compound.

 1 H NMR (acetone-d₆) δ 1.29 (3H, t), 2.46 (3H, s), 4.22 (2H, q), 6.99 (1H, d), 7.27 (1H, dd), 7.64 (1H, dt), 7.90 (1H, d) and 8.45 (1H, m).

Step 2: Ethyl (E)-3-[3-(bromomethyl)-2-pyridyl]-2-propenoate

The ester of Step 1 (5.93 g; 31.0 mmol) was converted in benzene to the benzylic bromide according to the procedure described in step 2 of example 1 to yield 1.83 g of the title compound.

 1 H NMR (acetone-d₆) δ 1.30 (3H, t), 4.25 (2H, q), 4.88 (2H, s), 7.10 (1H, d), 7.41 (1H, dd), 7.91 (1H, dd), 8.03 (1H, d) and 8.60 (1H, dd).

30 Step 3: Ethyl (E)-3-{3-{(5-chloroindolyl)methyll-2-pyridyl}-2-propenoate The benzylic bromide of Step 2 (1.33 g; 4.91 mmol) was coupled with 5-chloroindole according to the procedure described in step 1 of example 2 to yield 1.22 g of the title compound.

 1 H NMR (acetone-d₆) δ 1.28 (3H, t), 4.22 (2H, q), 5.78 (2H, s), 6.57 (1H, d), 6.94 (1H, d), 7.04 (1H, d), 7.11 (1H, dd), 7.27 (1H, dd), 7.43 (2H, m), 7.63 (1H, d), 7.99 (1H, d) and 8.53 (1H, d).

Step 4: (E)-3-{3-[(5-Chloroindolyl)methyl]-2-pyridyl}-2-propenoic acid (542)

The hydrolysis of the ester of Step 3 (283 mg) was done according to step 4 of example 1 to yield 291 mg of the title compound.

¹H NMR (acetone-d₆) δ 5.81 (2H, s), 6.57 (1H, d), 6.88 (1H, d), 7.05 (1H, d), 7.11 (1H, dd), 7.26 (1H, dd), 7.43 (2H, m), 7.63 (1H, d), 8.02 (1H, d) and 8.54 (1H, d). Elemental analysis calcd. for C₁₇H₁₃ClN₂O₂.1/4H₂O: C, 64.36; H, 4.29; N, 8.83; Found: C, 64.63; H, 4.43; N, 8.65.

Step 5: N-(E)-[(2,4-Dimethyl(1,3-thiazol-5-yl))sulfonyl]-3-{3-[(5-chloroindolyl)methyl](2-pyridyl)}-2-propenamide

The acid of Step 4 (283 mg; 0.90 mmol) was coupled with 2,4-dimethyl-1,3-thiazole-5-sulfonamide (from Maybridge Chemical) according to step 5 of example 1 to yield 315 mg of the title compound.

 1 H NMR (acetone-d₆) δ 2.64 (3H, s), 2.69 (3H, s), 5.81 (2H, s), 6.56 (1H, d), 6.84 (1H, d), 7.09 (1H, dd), 7.26 (1H, dd), 7.31 (1H, d), 7.41 (2H, m), 7.62 (1H, d), 8.05 (1H, d) and 8.51 (1H, d). Elemental analysis calcd. for $C_{22}H_{19}ClN_4O_3S_2$: C, 54.26; H, 3.93; N, 11.50; S, 13.17; Found: C, 54.69; H, 4.03; N, 11.18; S, 12.89.

EXAMPLE 29

N-{(E)-3-[5-CHLORO-2-(2-NAPHTHYLMETHYL)PHENYL]-2-PROPENOYL-2-METHOXYBENZENESULFONAMIDE (302)

The coupling reaction of the acid (3.00 g; 9.1 mmol) of Step 5 in Example 12 was done with 5-bromo-2-methoxybenzesulfonamide (2.56g; 9.6 mmol) according to Step 5 of Example 1 to yield 4.13g (79 %) of the title compound. The sodium salt was prepared with 1N NaOH.

¹H NMR (DMSO-d₆) d 3.76 (3H, s), 4.25 (2H, s), 6.52 (1H, d), 7.15 (1H, d), 7.26 (1H, d), 7.36 (1H, d), 7.41-7.52 (4H, m), 7.58 (1H, s), 7.69 (1H, m), 7.78 (1H, d), 7.82 (3H, m), 7.89 (1H, d) and 12.38 (1H, br s).

Elemental analysis:

15

20

25

30

35

Calcd. for C27H20BrClNNaO4S.H2O: C, 53.08; H, 3.64; N, 2.29;

Found: C, 53.25; H, 3.89; N, 2.91.

6717.

5 These intermediates were prepared according to the literature:

5-fluoro-2-methylbenzaldehyde:

Servis, K. L.; Fang, K.-N. J. Am. Chem. Soc. 1968, 90, 6712-

10 5-indolyl boronic acid:

Yang, Y.; Martin, A. R. Heterocycles 1992, 34, 1395-1398.

5 WHAT IS CLAIMED IS:

1. A compound represented by formula I:

or a pharmaceutically acceptable salt, hydrate or ester thereof, wherein:

HET represents a 5-12 membered monocyclic or bicyclic aromatic ring system containing 0-3 heteroatoms selected from O, S(O)_n and N(O)_m wherein m is 0 or 1 and n is 0, 1 or 2;

A is a one or two atom moiety and is selected from the group consisting of: -W-, -C(O)- , -C(R⁷) $_2$ -W- , -W-C(R⁷) $_2$ - , -CR⁷(OR²⁰)- , -C(R⁷) $_2$ - , -C(R⁷) $_2$ -C(OR²⁰)R⁷- , -C(R⁷) $_2$ - Or -CR⁷=CR⁷- , wherein W represents O, S(O) $_n$ or NR¹⁷, with n as previously defined and R¹⁷ as defined below;

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$, and optionally substituted with R^{14} and R^{15} , and A and B are attached to the aryl or heteroaryl group ortho relative to each other;

Y represents O, $S(O)_n$, NR17, a bond or -CR18 = CR18; B represents $-(C(R18)_2)_p-Y-(C(R18)_2)_q$.

wherein p and q are independently 0-3, such that when Y represents O, $S(O)_n$, NR17 or -CR18 = CR18-, p+q=0-6, and when Y represents a bond, p+q is 1-6;

Z is OH or NHSO₂R¹⁹;

 $R^1~R^2$ and R^3 independently represent H, halogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkenyl-HET(Ra)_4-9 , - $(C(R^4)_2)_p SR^5, -(C(R^4)_2)_p OR^8, -(C(R^4)_2)_p N(R^6)_2, CN, NO_2, -(C(R^4)_2)_p C(R^7)_3, - CO_2 R^9, -CON(R^6)_2 \ or -(C(R^4)_2)_p S(O)_n R^{10}, \ wherein n and p are as previously defined;$

each R4 is independently H, F, CF3 or lower alkyl,

or two R^4 groups are taken in conjunction and represent a ring of up to six atoms, optionally containing one heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^5 is independently lower alkyl, lower alkenyl, lower alkynyl, CF_3 , lower alkyl-HET, lower alkenyl-HET or $-(C(R^{18})_2)_pPh(R^{11})_0-2$:

each R^6 is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 , Ph, Bn and when two R^6 groups are attached to N they may be taken in conjunction and represents a ring of up to 6 atoms, optionally containing an additional heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^7 is independently H, F, CF_3 or lower alkyl, and when two R^7 groups are presents, they may be taken in conjunction and represent an aromatic or aliphatic ring of 3 to 6 members containing from 0-2 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$;

each R8 represents H or R5;

10

15

20

25

30

35

each R^9 is independently H, lower alkyl, lower alkenyl, lower alkynyl, Ph or Bn;

each R^{10} is independently lower alkyl, lower alkenyl, lower alkynyl, CF3, Ph(R^{11})0-3, CH2Ph(R^{11})0-3 or N(R^6)_2 ;

each R^{11} is independently lower alkyl, SR^{20} , OR^{20} , $N(R^6)_2$, $-CO_2R^{12}$, $-CON(R^6)_2$, $-C(O)R^{12}$, CN, CF_3 , NO_2 or halogen;

each R¹² is independently H, lower alkyl or benzyl; each R¹³ is independently H, halo, lower alkyl, O-lower alkenyl, S-lower alkyl, N(R⁶)₂, CO₂R¹², CN, CF₃ or NO₂;

 R^{14} and R^{15} are independently lower alkyl, halogen, CF_3 , OR^{16} , S(O), R^{16} or $C(R^{16})$, OR^{17} ;

each R^{16} is independently H, lower alkyl, lower alkenyl, Ph, Bn or ${\rm CF_{3:}}$

each R17 is independently H, lower alkyl or Bn;

each R^{18} is independently H, F or lower alkyl, and when two R^{18} groups are present, they may be taken in conjunction and represent a ring of 3 to 6 members comprising carbon atoms and optionally one heteroatom chosen from O, $S(O)_n$ or N;

each R^{19} is lower alkyl, lower alkenyl, lower alkynyl, CF_3 , $HET(R^a)_{4-9}$, lower alkyl- $HET(R^a)_{4-9}$ or lower alkenyl- $HET(R^a)_{4-9}$; each R^{20} is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 or $Ph(R^{13})_2$ and

each Ra is independently selected from the group consisting of:
H, OH, halo, CN, NO2, amino, C1-6alkyl, C2-6alkenyl, C2-6alkynyl,
C1-6 alkoxy, C2-6alkenyloxy, C2-6alkynyloxy, C1-6alkylamino, di-C1-6alkylamino, CF3, C(O)C1-6alkyl, C(O)C2-6alkenyl, C(O) C2-6alkynyl,
CO2H, CO2C1-6alkyl,
CO2C2-6alkenyl, and CO2C2-6alkynyl, said alkyl, alkenyl, alkynyl and the alkyl portions of alkylamino and dialkylamino being optionally substituted with 1-3 of: hydroxy, halo, aryl, C1-6 alkoxy, C2-6alkenyloxy, C2-6alkynyloxy, CF3, C(O)C1-6alkyl, C(O)C2-6alkenyl, C(O)C2-6alkynyl,
CO2H, CO2C1-6alkyl, CO2C2-6alkenyl, CO2C2-6alkynyl, NH2, NHC1-6alkyl and N(C1-6alkyl)2.

2. A compound represented by formula I:

R¹R²R³—HET

25

30

35

I

or a pharmaceutically acceptable salt, hydrate or ester thereof, wherein: HET represents a 5-12 membered monocyclic or bicyclic aromatic ring system containing 0-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$ wherein m is 0 or 1 and n is 0, 1 or 2;

A is a one or two atom moiety and is selected from the group consisting of: -W-, -C(O)-, -C(R⁷)₂-W-, -W-C(R⁷)₂-, -CR⁷(OR²⁰)-, -C(R⁷)₂-, -C(R⁷)₂-C(OR²⁰)R⁷-, -C(R⁷)₂- C(R⁷)₂- or -CR⁷=CR⁷-, wherein W represents O, S(O)_n or NR¹⁷, with n as previously defined and R¹⁷ as defined below;

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$, and optionally substituted with R^{14} and R^{15} , and A and B are attached to the aryl or heteroaryl group ortho relative to each other;

Y represents O, $S(O)_n$, NR17, a bond or -CR18 = CR18.

B represents $-(C(R18)_2)_{p}-Y-(C(R18)_2)_{q}$

wherein p and q are independently 0-3, such that when Y represents O, $S(O)_n$, NR^{17} or $-CR^{18} = CR^{18}$ -, p+q=0-6, and when Y represents a bond, p+q is 1-6;

Z is OH or NHSO, R¹⁹;

10

15

20

25

30

35

 R^1 R^2 and R^3 independently represent H, halogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkenyl-HET(R^a)₄₋₉, -($C(R^4)_2$)_pSR⁵, -($C(R^4)_2$)_pOR⁸, -($C(R^4)_2$)_pN(R^6)₂, CN, NO₂, -($C(R^4)_2$)_pC(R^7)₃, -CO₂ R^9 , -CON(R^6)₂ or -($C(R^4)_2$)_pS(O)_nR¹⁰, wherein n and p are as previously defined;

each R^4 is independently H, F, CF_3 or lower alkyl, or two R^4 groups are taken in conjunction and represent a ring of up to six atoms, optionally containing one heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^5 is independently lower alkyl, lower alkenyl, lower alkynyl, CF_3 , lower alkyl-HET, lower alkenyl-HET or $-(C(R^{18})_2)_pPh(R^{11})_0$ -2;

each R^6 is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 , Ph, Bn and when two R^6 groups are attached to N they may be taken in conjunction and represents a ring of up to 6 atoms, optionally containing an additional heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^7 is independently H, F, CF_3 or lower alkyl, and when two R^7 groups are presents, they may be taken in conjunction and represent an aromatic or aliphatic ring of 3 to 6 members containing from 0-2 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$;

each R8 represents H or R5;

each R^9 is independently H, lower alkyl, lower alkenyl, lower alkynyl, Ph or Bn;

PCT/CA99/00212

10

20

25

35

each R^{10} is independently lower alkyl, lower alkenyl, lower alkynyl, $CF_3,\,Ph(R^{11})_{0\text{--}3},\,CH_2Ph(R^{11})_{0\text{--}3}$ or $N(R^6)_2$;

each R^{11} is independently lower alkyl, $SR^{20},\,OR^{20},\,N(R^6)_2,$ -CO $_2R^{12},$ -CON($R^6)_2,$ -C(O) $R^{12},\,CN,\,CF_3,\,NO_2$ or halogen;

each R^{12} is independently H, lower alkyl or benzyl;

each R^{13} is independently H, halo, lower alkyl, O-lower alkenyl, S-lower alkyl, $N(R^6)_2$, CO_2R^{12} , CN, CF_3 or NO_2 ;

 R^{14} and R^{15} are independently lower alkyl, halogen, $CF_{\rm 3}$, $OR^{16},\,S(O)_{\rm n}R^{16}$ or $C(R^{16})_{\rm 2}OR^{17}$;

each R^{16} is independently H, lower alkyl, lower alkenyl, Ph, Bn, CHF2 or $CF_{3;}$

each R¹⁷ is independently H, lower alkyl or Bn;
each R¹⁸ is independently H, F or lower alkyl, and when two
R¹⁸ groups are present, they may be taken in conjunction and represent
a ring of 3 to 6 members comprising carbon atoms and optionally one
heteroatom chosen from O, S(O)_n or N;

each R^{19} is lower alkyl, lower alkenyl, lower alkynyl, CF_3 , $HET^2(R^a)_{4-9}$, lower alkyl- $HET^2(R^a)_{4-9}$ or lower alkenyl- $HET^2(R^a)_{4-9}$, wherein HET^2 represents a member selected from the group consisting of: phenyl, thienyl, naphthyl, furanyl, thiazolyl, imidazolyl and indolyl;

each R^{20} is independently H, lower alkyl, lower alkenyl, lower alkynyl, CHF_2 , CF_3 or $\text{Ph}(R^{13})_2$ and

each Ra is independently selected from the group consisting of:

H, OH, halo, CN, NO₂, amino, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl, C₁-6 alkoxy, C₂-6alkenyloxy, C₂-6alkynyloxy, C₁-6alkylamino, di-C₁-6alkylamino, CF₃, C(O)C₁-6alkyl, C(O)C₂-6alkenyl, C(O) C₂-6alkynyl, CO₂H, CO₂C₁-6alkyl, CO₂C₂-6alkenyl, and CO₂C₂-6alkynyl,

said alkyl, alkenyl, alkynyl and the alkyl portions of alkylamino and dialkylamino being optionally substituted with 1-3 of: hydroxy, halo, aryl, C1-6 alkoxy, C2-6alkenyloxy, C2-6alkynyloxy, CF3, C(O)C1-6alkyl, C(O)C2-6alkenyl, C(O)C2-6alkynyl, CO2H, CO2C1-6alkyl, CO2C2-6alkynyl, NH2, NHC1-6alkyl and N(C1-6alkyl)2.

WO 99/47497

10

35

- 3. A compound in accordance with claim 1 wherein: HET represents a member selected from the group consisting of: benzene, naphthalene, biphenyl, pyridine, quinoline, isoquinoline, furan, benzofuran, thiophene, benzothiophene, oxazole, thiazole, imidazole, benzothiazole, triazole, 1,2,5-thiadiazole, thienopyridine, indole, tetrazole, imidazole, benzoxazole, 1,3-methylenedioxobenzene and pyrrole.
- 4. A compound in accordance with claim 3 wherein:

 HET is selected from the group consisting of: phenyl,
 biphenyl, naphthyl, indole, thiophene, benzofuran and quinoline.
- 5. A compound in accordance with claim 1 wherein:
 A represents a one or two atom moiety and is selected from
 the group consisting of: S, S(O), SO₂, CH₂, -C(O)-, -OCH₂-, -CHOH-,
 -C(OH)(CH₃)- and -CH₂-O-.
- 6. A compound in accordance with claim 5 wherein:
 A is selected from the group consisting of: S, S(O), SO2,

 25 CH2 and -C(O)-.
 - 7. A compound in accordance with claim 1 wherein: X represents phenyl optionally substituted with R^{14} and R^{15} .
- 30 8. A compound in accordance with claim 7 wherein X represents phenyl and R¹⁴ and R¹⁵ are absent or represent halo.
 - 9. A compound in accordance with claim 1 wherein: B represents CH=CH or 1,2-cyclopropyl.
 - 10. A compound in accordance with claim 9 wherein: B represents CH=CH in the E-isomeric form.

PCT/CA99/00212

5

20

30

35

11.	Α	C
		•

- 11. A compound in accordance with claim 9 wherein: $Z ext{ is NHSO}_2R^{19}$.
- 12. A compound in accordance with claim 11 wherein: Z is NHSO₂R¹⁹ and R¹⁹ represents a member selected from the group consisting of: lower alkyl and HET(R^a)₃.
- 13. A compound in accordance with claim 12 wherein:
 R19 represents HET(Ra)3 and HET is selected from the
 group consisting of: phenyl, thienyl, naphthyl, furanyl, thiazolyl,
 imidazolyl and indolyl.
 - 14. A compound in accordance with claim 12 wherein: $Z ext{ is NHSO}_2R^{19}$ and R^{19} represents benzene or thiophene, substituted with (Ra)3.

15. A compound in accordance with claim 1 wherein: Z represents OH.

16. A compound in accordance with claim 1 wherein:

HET represents a member selected from the group
consisting of: phenyl, naphthalene, biphenyl, pyridine, quinoline,
isoquinoline, furan, benzofuran, thiophene, benzothiophene, oxazole,
thiazole, imidazole, benzothiazole, 1,2,5-thiadiazole, thienopyridine,
indole, tetrazole, imidazole, benzoxazole and pyrrole;

A represents a one or two atom moiety and is selected from the group consisting of: S, S(O), SO₂, CH₂, -C(O)-, -OCH₂-, -CHOH-, -C(OH)(CH₃)- and -CH₂-O-;

X represents phenyl optionally substituted with R^{14} and R^{15} ; B is CH=CH;

Z is NHSO₂R¹⁹ and

R¹⁹ represents a member selected from the group consisting of: lower alkyl and HET(Ra)3.

10

15

17. A compound in accordance with claim 1 wherein: HET represents a member selected from the group consisting of: phenyl, naphthalene, biphenyl, pyridine, quinoline, isoquinoline, furan, benzofuran, thiophene, benzothiophene, oxazole, thiazole, imidazole, benzothiazole, 1,2,5-thiadiazole, thienopyridine, indole, tetrazole, imidazole, benzoxazole and pyrrole;

A represents a one or two atom moiety and is selected from the group consisting of: S, S(O), SO_2 , CH_2 , -C(O)-, $-OCH_2$ -, -CHOH-, $-C(OH)(CH_3)$ - and $-CH_2$ -O-;

X represents phenyl optionally substituted with R^{14} and R^{15} ; B is CH=CH; Z is OH.

18. A compound represented in one of the following tables:

20

Table I

$$R^1R^2R^3$$
—HET

 A
 X —B

 $NHSO_2R^{19}$

Ia

(Compounds 1-323 and 347-454)

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
1-naphthyl	CH_2	1,2-Ph	CH=CH	Ph(F) ₅	1
2-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	$Ph(F)_5$	2
3-methylindol -1-yl	CH_2	1,2-Ph	CH=CH	2-thienyl	3
2-naphthyl	CH_2	1,2-Ph	CH=CH	2-thienyl	4
2-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	phenyl	5
3-methylindol -1-yl	S(O) ₂	1,2-Ph	CH=CH	2-thienyl	6

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	S(O) ₂	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	7
3,4-dichloro phenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	8
2-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	2-thienyl	9
2,4-dichloro phenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	10
1-naphthyl	$S(O)_{2}$	1,2-Ph	CH=CH	$Ph(F)_5$	11
1-naphthyl	S(O) ₂	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	12
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	2-thienyl	13
3,4-chloro fluoro phenyl	CH_2	1,2-Ph	СН=СН	2-thienyl	14
1-naphthyl	CH_2	1,2-Ph	CH=CH	2-thienyl	15
3,4-dichloro phenyl	S(O) ₂	1,2-Ph	CH=CH	2-thienyl	16
4-methylthio phenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	17
4-chlorophenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	18
2-naphthyl	S	1,2-Ph	CH=CH	2-thienyl	19
2-naphthyl	$O-CH_2$	1,2-Ph	CH=CH	2-thienyl	20
2-naphthyl	S(O)	1,2-Ph	CH=CH	2-thienyl	21
1-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	phenyl	22
2-benzofuranyl	CH_2	1,2-Ph	CH=CH	2-thienyl	23
3,5-dichloro phenyl	$\mathrm{CH_2}$	1,2-Ph	CH=CH	2-thienyl	24
1-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	25
1-naphthyl	$S(O)_2$	1,2-Ph	CH=CH	2-thienyl	26
3-(1,2-(methylene dioxy)benzene)	$\mathrm{CH_2}$	1,2-Ph	CH=CH	2-thienyl	27
2-naphthyl	0	1,2-Ph	CH=CH	2-thienyl	28
Rs-2-phenyl	CH_2	1,2-Ph	CH ₂ -O	2-thienyl	29
Rs-2-phenyl	CH_2	1,2-Ph	$\mathrm{CH_2\text{-}CH_2}$	2-thienyl	30
2-naphthyl	$S(O)_2$	1,2-Ph	CH ₂ -O	2-thienyl	31
3-((2-(Qn)vinyl)) phenyl	CH_2	1,2-Ph	CH ₂ -O	2-thienyl	32
2-(6-benzyloxy) naphthyl	CH_2	1,2-Ph	CH=CH	2-thienyl	33
3-((2-(Qn)vinyl)) phenyl	SO	1,2-Ph	CH ₂ -O	2-thienyl	34
3-((2-(Qn)vinyl)) phenyl	-СНОН-	1,2-Ph	CH ₂ -O	2-thienyl	35

R ¹ R ² R ³ -Het	A	X	В	${f R}^{19}$	Cpd
3-((2-(Qn)vinyl))	$S(O)_2$	1,2-Ph	CH ₂ -O	phenyl	36
phenyl					
3-((2-(Qn)vinyl))	$O-CH_2$	1,2-Ph	CH ₂ -O	2-thienyl	37
phenyl					
3-tolyl-D-3-phenyl	O-CH ₂	1,2-Ph	CH ₂ -O	2-thienyl	38
3-((2-(Qn)vinyl))	CH(OH)	-1,2-Ph	CH ₂ -O	phenyl	39
phenyl	CH ₃ -	4.0.70			
3-((2-(Qn)vinyl))	S	1,2-Ph	CH ₂ -O	2-thienyl	40
phenyl		1 0 D	OII O		<u> </u>
3-((2-(Qn)vinyl))	0	1,2-Ph	CH ₂ -O	phenyl	41
phenyl	C=O	1 0 Dk	OTT O	0.41 1	10
3-((2-(Qn)vinyl)) phenyl	C=0	1,2-Ph	CH ₂ -O	2-thienyl	42
3-((2-(Qn)vinyl))	0	1,2-Ph	C(CH) O	0.41.11	40
phenyl		1,2-111	$C(CH_3)_2$ -O	2-thienyl	43
3-((2-(Qn)vinyl))	0	1,2-Ph	CH ₂ -O	2-thienyl	44
phenyl	Ŭ	1,2-111	0112-0	2-unenyi	444
2-naphthyl	CH,	1,2-Ph	1,2-c-propyl	2-thienyl	45
2-(6-benzyloxy)	CH ₂	1,2-Ph	CH=CH	2-methoxy-5-	46
naphthyl	2	_,	011-011	bromophenyl	1 TO
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3,4-dichloro	47
	<i>-</i>	•	, 1 -1-5-	phenyl	-
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-fluoro	48
				phenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		49
				phenyl	
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl		50
0 1 1	CTT	107		phenyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		51
O nonbabal	CII	1 0 D)	1.0	thienyl	
2-naphthyl	$\frac{\mathrm{CH}_2}{\mathrm{CH}}$	1,2-Ph	1,2-c-propyl		52
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		53
2-naphthyl	CH ₂	1,2-Ph	1 9 0	fluorophenyl	5.4
Z-maphunyi		1,2-111	1,2-c-propyl	4-methoxy phenyl	54
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl		55
		1,2-111	1,2-c-propyr	phenyl	၁၁
2-naphthyl	CH ₂	1,2-Ph	1.2-c-propyl	2,5-dimethyl	56
	1 2	-,	_,_ v propyr	phenyl	ω
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl	2-nitro-4-chloro	57
• "	' [, · = 	_, Propyi	phenyl	٥,
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propvl	2-carbomethoxy	58
_ •		Í	, FFJ-	phenyl	~

R ¹ R ² R ³ -Het	A	X	В	${f R}^{19}$	Cpd
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	2,4-difluoro phenyl	59
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-butyl-phenyl	60
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		61
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		62
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3-trifluoro methylphenyl	63
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		64
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3,5-dichloro phenyl	65
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		66
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-(hydroxy methyl)phenyl	67
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	3-(hydroxy methyl)phenyl	6 8
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		69
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl		70
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		71
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		72
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		73
2-naphthyl	CH ₂	1,2-Ph	1,2-c-propyl		74
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-dimethyl aminophenyl	75
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		76
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		77
2-naphthyl	CH_2	1,2-Ph		4-morpholinYL	78
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		79
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		80
2-naphthyl	CH_2	1,2-Ph		1-imidazolyl	81
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		82
2-naphthyl	CH_2	1,2-Ph		3-(2-chloro)- furanyl	83

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	2-pyridinyl	84
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		85
				pyridinyl	
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl		86
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-nitrophenyl	87
2-naphthyl	CH_2	1,2-Ph	1,2-c-propyl	4-cyanophenyl	88
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-((1-hydroxy-1-	89
				methyl)ethyl)	
	((0)	4 0 701		phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-(hydroxy	90
0	G(O)	1.0.00	10	methyl)phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	3-(hydroxy	91
O mambabal	G(O)	1 0 DL	10	methyl)phenyl	-
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	2,5-dimethyl	92
2-naphthyl	$S(O)_2$	1,2-Ph	1.0	phenyl	
2-naphunyi	$S(O)_2$	1,2-FII	1,2-c-propyl		93
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	phenyl	04
Z-naphonyi		1,2-111	1,2-c-propyi	2,4-difluoro phenyl	94
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl		95
2-naphory		1,2-1 11	1,2-c-propyr	sulfonyl)phenyl	30
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	3-(methyl	96
		1,2 1 11	1,2-c-propyr	sulfonyl)phenyl	30
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		97
	1 - (- /2	-,	v propy:	sulfonyl)phenyl	01
2-naphthyl	S(O),	1,2-Ph	1.2-c-propyl	4-butyl-phenyl	98
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		99
			, · PFJ-	phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-((bis-trifluoro	100
	_	-		methyl)-hydroxy	
				methyl)phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	3-bromophenyl	101
2-naphthyl	$S(O)_2$	1,2-Ph		4-(benzyloxy)	102
				phenyl	
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	2-nitro-4-chloro	103
				phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-isopropyl	104
				phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-((1-methoxy-1-	105
				methyl)	
0 1-41 1	0(0)	10.00		ethyl)phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		106
				phenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	4-dimethyl	107
				aminophenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	3,4-dichloro	108
				phenyl	J
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	3,4-difluoro	109
2 111 1	(0)	2 2 50		phenyl	<u> </u>
2-naphthyl	$S(O)_2$	1,2-Ph		4-fluorophenyl	110
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl	1	111
2-naphthyl	$S(O)_2$	1,2-Ph		cyclopentyl	112
2-naphthyl	$S(O)_2$	1,2-Ph		4-morpholinyl	113
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		114
2-naphthyl	$S(O)_2$	1,2-Ph		4-chlorophenyl	115
2-naphthyl	$S(O)_2$	1,2-Ph		4-propylphenyl	116
2-naphthyl	$S(O)_2$	1,2-Ph		2-naphthyl	117
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		118
2-naphthyl	$S(O)_2$	1,2-Ph		1-imidazolyl	119
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl	2,5-dimethoxy	120
0	(0)	1 0 DI		phenyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		121
2-naphthyl	8(0)	1 0 Dk	10 1	methylphenyl	100
Z-naphtnyi	S(O) ₂	1,2-Ph	1,2-c-propyl	2,5-dichloro-3-	122
2-naphthyl	S(O) ₂	1,2-Ph	1 2 0 propert	thienyl	100
2-naphthyl	$S(O)_2$	1,2-Fh	1,2-c-propyl		123
2-naphtinyi	5(0)2	1,2-1 11	1,2-c-propyi	3-(2-chloro)- furanyl	124
2-naphthyl	S(O) ₂	1,2-Ph	1 2-c-propyl	2-pyridinyl	125
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		126
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		127
		-,	1,2-c-propyr	phenyl	121
2-naphthyl	S(O) ₂	1,2-Ph	1,2-c-propyl		128
		-,	2,2 0 propy:	phenyl	
2-naphthyl	S(O) ₂	1,2-Ph	1.2-c-propyl	2-(4-chloro)	129
			, , , ,	pyridinyl	
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		130
2-naphthyl	$S(O)_2$	1,2-Ph		4-nitrophenyl	131
2-naphthyl	$S(O)_2$	1,2-Ph		4-cyanophenyl	132
2-naphthyl	$S(O)_2$	1,2-Ph	1,2-c-propyl		133
				fluorophenyl	
3-methylindol	CH_2	1,2-Ph	1,2-c-propyl	3,5-di-(CF ₃)-	134
-1-yl	<u> </u>			phenyl	
3-methylindol	CH_2	1,2-Ph	1,2-c-propyl	4-isopropyl	135
-1-yl				phenyl	
3-methylindol	CH_2	1,2-Ph	1,2-c-propyl	3,4-dichloro	136
-1-yl				phenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	3,4-difluoro phenyl	137
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-fluorophenyl	138
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-chlorophenyl	139
3-methylindol -1-yl	$ m CH_{2}$	1,2-Ph	1,2-c-propyl	4-propylphenyl	140
3-methylindol -1-yl	CH ₂	1,2-Ph		2,5-dichloro-3- thienyl	141
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2-styryl	142
3-methylindol -1-yl	CH_2	1,2-Ph		3-chloro-4-fluoro phenyl	143
3-methylindol -1-yl	CH ₂	1,2-Ph		phenyl	144
3-methylindol -1-yl	CH_2	1,2-Ph		3-bromophenyl	145
3-methylindol -1-yl	CH_2	1,2-Ph		2,5-dimethyl phenyl	146
3-methylindol -1-yl	$\mathrm{CH_2}$	1,2-Ph		2-nitro-4-chloro phenyl	147
3-methylindol -1-yl	$\mathrm{CH_2}$	1,2-Ph		2-carbomethoxy phenyl	148
3-methylindol -1-yl	$\mathrm{CH_2}$	1,2-Ph		2,4-difluoro phenyl	149
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-butylphenyl	150
3-methylindol -1-yl	$\mathrm{CH_2}$	1,2-Ph	1,2-c-propyl	n-butyl	151
3-methylindol -1-yl	CH_2	1,2-Ph		2,5-dimethoxy phenyl	152
3-methylindol -1-yl	$\mathrm{CH_2}$	1,2-Ph	1,2-c-propyl	3-trifluoro methylphenyl	153
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	3,5-difluoro phenyl	154
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		155
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl		156
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		157

R1R2R3-Het	Α	X	В	$\mathbf{R}^{_{19}}$	Cpd
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	3-(hydroxy methyl)phenyl	158
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		159
3-methylindol -1-yl	$\mathrm{CH_2}$	1,2-Ph	1,2-c-propyl	3-(methyl sulfonyl)phenyl	160
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		161
3-methylindol -1-yl	$\mathrm{CH_2}$	1,2-Ph	1,2-c-propyl		162
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-(benzyloxy) phenyl	163
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	4-((1-methoxy-1-methyl) ethyl)phenyl	164
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-dimethyl aminophenyl	165
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		166
3-methylindol -1-yl	$\mathrm{CH_2}$	1,2-Ph	1,2-c-propyl	cyclopentyl	167
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-morpholinyl	168
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2-naphthyl	169
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2-thiazolyl	170
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	1-imidazolyl	171
3-methylindol -1-yl	CH ₂	1,2-Ph	1,2-c-propyl	2-furanyl	172
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	3-(2-chloro)- furanyl	173
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		174
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	2-(4-chloro) pyridinyl	175
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl		176
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-nitrophenyl	177
3-methylindol -1-yl	CH_2	1,2-Ph	1,2-c-propyl	4-cyanophenyl	178

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	$3,5$ -di- (CF_3) phenyl	179
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-isopropyl phenyl	180
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3,4-dichloro phenyl	181
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3,4-difluoro phenyl	182
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-fluorophenyl	183
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-chlorophenyl	184
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-propylphenyl	185
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	2,5-dichloro-3- thienyl	186
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		187
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3-chloro-4- fluorophenyl	188
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl		189
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl		190
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		191
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl		192
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	2-carbomethoxy phenyl	193
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl		194
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	4-butylphenyl	195
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	n-butyl	196
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	2,5-dimethoxy phenyl	197
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3-trifluoromethy phenyl	1-198
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	3,5-difluoro phenyl	199
1-(3-methyl) indolyl	SO ₂	1,2-Ph	1,2-c-propyl	3,5-dichloro phenyl	200

R ¹ R ² R ³ -Het	A	X	В	${f R}^{19}$	Cpd
3-methylindol	SO_2	1,2-Ph	1,2-c-propyl		201
-1-yl				methyl)ethyl)	
3-methylindol	SO ₂	1,2-Ph	1.9	phenyl	000
-1-yl	1502	1,2-FII	1,2-c-propyl	4-(hydroxy methyl)phenyl	202
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl		203
-1-yl	2		_,_ o propy:	methyl)phenyl	
3-methylindol	SO_2	1,2-Ph	1,2-c-propyl		204
-1-yl				sulfonyl)phenyl	
3-methylindol	SO_2	1,2-Ph	1,2-c-propyl		205
-1-yl 3-methylindol	SO_2	1 0 DL	101	sulfonyl)phenyl	000
-1-yl	SO_2	1,2-Ph	1,2-c-propyl	4-(propyl sulfonyl)phenyl	206
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl		207
-1-yl	1 2	_,		methyl)hydroxy	201
				methyl)phenyl	
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl		208
-1-yl	00	100		phenyl	
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl		209
-1-y1				methyl)ethyl)- phenyl	
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl		210
-1-yl			,- 1 [11-]	aminophenyl	
3-methylindol	SO_2	1,2-Ph	1,2-c-propyl	cyclohexyl	211
-1-yl 3-methylindol	SO ₂	1,2-Ph	1 2-c-propyl	cyclopentyl	212
-1-yl		1,2-111	1,2-c-propyr	cyclopentyl	212
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl	4-morpholinyl	213
-1-yl					
3-methylindol -1-yl	SO_2	1,2-Ph	1,2-c-propyl	2-naphthyl	214
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl	2-thiogolyl	215
-1-yl		1,2 111	1,2-c-propy1	Z-unazoryi	210
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl	1-imidazolyl	216
-1-yl					
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl	2-furanyl	217
-1-yl	80	1 0 D	10	0 (0 11	
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	3-(2-chloro)-	218
3-methylindol	SO ₂	1,2-Ph	1,2-c-propyl	furanyl	219
-1-yl		-,- · ·	1,2-c-propyi	2-pyriumyi	719
3-methylindol	SO_2	1,2-Ph	1,2-c-propyl	2-(4-chloro)	220
-1-yl				pyridinyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	3-indolyl	221
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	4-nitrophenyl	222
3-methylindol -1-yl	SO ₂	1,2-Ph	1,2-c-propyl	4-cyanophenyl	223
2-naphthyl	CH_2	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	224
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-isopropyl phenyl	225
2-naphthyl	CH_2	1,2-Ph	CH=CH	2,3-dichloro phenyl	226
2-naphthyl	CH_2	1,2-Ph	CH=CH	3,4-difluoro phenyl	227
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-chlorophenyl	228
2-naphthyl	CH ₂	1,2-Ph	CH=CH	4-fluorophenyl	229
2-naphthyl	CH_2	1,2-Ph	CH=CH	2,5-dichloro-3- thienyl	230
2-naphthyl	CH_2	1,2-Ph	CH=CH	3-chloro-4-fluoro phenyl	231
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-methoxy phenyl	232
2-naphthyl	CH_2	1,2-Ph	CH=CH	butyl	233
2-naphthyl	CH ₂	1,2-Ph	CH=CH	3-trifluoro methylphenyl	234
2-naphthyl	CH ₂	1,2-Ph	CH=CH	4-((1-hydroxy-1- methyl)ethyl) phenyl	235
2-naphthyl	CH ₂	1,2-Ph	CH=CH	4-(methyl sufonyl)phenyl	236
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-(benzyloxy) phenyl	237
2-naphthyl	CH_2	1,2-Ph	CH=CH	cyclohexyl	238
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-morpholinyl	239
2-naphthyl	CH_2	1,2-Ph	CH=CH	2-thiazolyl	240
2-naphthyl	CH_2	1,2-Ph	CH=CH	2-furanyl	241
2-naphthyl	CH_2	1,2-Ph	CH=CH	2-pyridinyl	242
2-naphthyl	CH_2	1,2-Ph	CH=CH	4-cyanophenyl	243
2-naphthyl	SO_2	1,2-Ph	CH=CH	3,5-di-(CF ₃) phenyl	244
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-isopropyl phenyl	245
2-naphthyl	SO ₂	1,2-Ph	СН=СН	2,3-dichloro phenyl	246

R ¹ R ² R ³ -Het	A	X	В	\mathbb{R}^{19}	Cpd
2-naphthyl	SO ₂	1,2-Ph	CH=CH	3,4-difluoro phenyl	247
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-chlorophenyl	248
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-fluorophenyl	249
2-naphthyl	SO_2	1,2-Ph	CH=CH	2,5-dichloro-3- thienyl	250
2-naphthyl	SO ₂	1,2-Ph	CH=CH	3-chloro-4- fluorophenyl	251
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-methoxy phenyl	252
2-naphthyl	SO_2	1,2-Ph	CH=CH	butyl	253
2-naphthyl	SO_2	1,2-Ph	CH=CH	3-trifluoro methylphenyl	254
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-((1-hydroxy-1-methyl)ethyl)phenyl	255
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-(methyl sufonyl)phenyl	256
2-naphthyl	SO ₂	1,2-Ph	CH=CH	4-(benzyloxy) phenyl	257
2-naphthyl	SO ₂	1,2-Ph	CH=CH	cyclohexyl	258
2-naphthyl	SO ₂	1,2-Ph	CH=CH	4-morpholinyl	259
2-naphthyl	SO ₂	1,2-Ph	CH=CH	2-thiazolyl	260
2-naphthyl	SO_2	1,2-Ph	CH=CH	2-furanyl	261
2-naphthyl	SO_2	1,2-Ph	CH=CH	2-pyridinyl	262
2-naphthyl	SO_2	1,2-Ph	CH=CH	4-cyanophenyl	263
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	264
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	4-isopropyl phenyl	265
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	2,3-dichloro phenyl	266
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	3,4-difluoro phenyl	267
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	268
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	4-isopropyl phenyl	269
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	2,3-dichloro phenyl	270
2-naphthyl	O-CH ₂	1,2-Ph	CH=CH	3,4-difluoro phenyl	271
2-naphthyl	S	1,2-Ph	CH=CH	$3,5$ -di- (CF_3) phenyl	272

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	S	1,2-Ph	CH=CH	4-isopropyl phenyl	273
2-naphthyl	S	1,2-Ph	CH=CH	2,3-dichloro phenyl	274
2-naphthyl	S	1,2-Ph	CH=CH	3,4-difluoro phenyl	275
2-(6-benzyloxy) naphthyl	SO_2	1,2-Ph	CH=CH	2-thienyl	276
2-(6-benzyloxy) naphthyl	S	1,2-Ph	CH=CH	2-thienyl	277
2-(6-benzyloxy) naphthyl	SO_2	1,2-Ph	1,2-c-propyl	2-thienyl	278
2-(6-benzyloxy) naphthyl	S	1,2-Ph	1,2-c-propyl	2-thienyl	279
2-(5-benzyloxy) naphthyl	SO_2	1,2-Ph	CH=CH	2-thienyl	280
2-(5-benzyloxy) naphthyl	S	1,2-Ph	CH=CH	2-thienyl	281
2-(5-benzyloxy) naphthyl	SO ₂	1,2-Ph	1,2-c-propyl	2-thienyl	282
2-(5-benzyloxy) naphthyl	S	1,2-Ph	1,2-c-propyl	2-thienyl	283
2-(6-(4-trifluoro methyl)benzyloxy) naphthyl	SO ₂	1,2-Ph	CH=CH	2-thienyl	284
2-(6-(4-trifluoro methyl)benzyloxy) naphthyl	$ m CH_2$	1,2-Ph	CH=CH	2-thienyl	285
2-(6-(4-trifluoro methyl)benzyl oxy))naphthyl	$\overline{\mathrm{CH}_2}$	1,2-Ph	1,2-c-propyl	2-thienyl	286
2-(6-(4-trifluoro methyl)benzyl oxy))naphthyl	CH_2	1,2-Ph	1,2-c-propyl	2-thienyl	287
1-(6-benzyloxy) naphthyl	SO ₂	1,2-Ph	CH=CH	2-thienyl	288
1-(6-benzyloxy) naphthyl	CH_2	1,2-Ph	CH=CH	2-thienyl	289
2-(6-(3,4-difluoro benzyloxy)) naphthyl	SO_2	1,2-Ph	CH=CH	2-thienyl	290
2-(6-(3,4-difluoro benzyloxy)) naphthyl	CH_2	1,2-Ph	СН=СН	2-thienyl	291

R ¹ R ² R ³ -Het	A	X	В	$ m R^{19}$	Cpd
2-(6-(4-fluoro	CH_2	1,2-Ph	1,2-c-propyl	2-thienvl	292
benzyloxy))					
naphthyl					
2-(7-benzyloxy)	SO ₂	1,2-Ph	CH=CH	2-thienyl	293
naphthyl	_	`			
2-(6-(3,4-difluoro	SO_2	1,2-Ph	CH=CH	3,4-difluoro	294
benzyloxy))	1 -	·		phenyl	-01
naphthyl				F	j
2-(6-(3,4-difluoro	CH_2	1,2-Ph	CH=CH	3,4-difluoro	295
benzyloxy))	1 1	'		phenyl	200
naphthyl				F-1011/J	
2-(6-(4-fluoro	CH_2	1,2-Ph	1,2-c-propyl	3,4-difluoro	296
benzyloxy))	*	_,,_	-,- · propy:	phenyl	200
naphthyl				pitony	ĺ
2-(7-benzyloxy)	SO_2	1,2-Ph	CH=CH	3,5-di-(CF ₃)	297
naphthyl	'	_,	011	phenyl	201
2-(6-(3,4-difluoro	SO ₂	1,2-Ph	CH=CH	$3,5$ -di- (CF_3)	298
benzyloxy))	1	_,	011 011	phenyl	200
naphthyl				piichyi	
2-(6-(3,4-difluoro	CH_2	1,2-Ph	CH=CH	3,5-di-(CF ₃)	299
benzyloxy))	2	_,	011-011	phenyl	233
naphthyl				piichyi	
2-(7-benzyloxy)	SO_2	1,2-Ph	1,2-c-propyl	3,4-difluoro	300
naphthyl	2	,	-,- · propji	phenyl	1 000
2-naphthyl	CH,	1,2-Ph	CH=CH	2-methoxy-5-	301
. ,	2	,		bromophenyl	1001
2-naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	302
• •	2			bromophenyl	1002
2-naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	2-thienyl	303
2-naphthyl	SO	1,2-Ph	CH=CH	2-methoxy-5-	304
• •			011-011	bromophenyl	100-
2-naphthyl	SO_2	1,2-Ph	CH=CH	2-methoxy-5-	305
• •	2	-,		bromophenyl	000
2-naphthyl	0	1,2-Ph	CH=CH	2-methoxy-5-	306
• •		_,,_	011-011	bromophenyl	1500
2-(5-benzyloxy)	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	307
naphthyl	2	_,	011-011	bromophenyl	307
2-(5-benzyloxy)	SO,	1,2-Ph	CH=CH	2-methoxy-5-	200
naphthyl	2	-, 11	011-011	bromophenyl	308
2-(5-benzyloxy)	S	1,2-Ph	CH=CH	2-methoxy-5-	200
naphthyl	~	-,	011-011		309
2-naphthyl	CH_2	1,2-Ph	190	bromophenyl	
- napniniyi		1,4-II	1,2-c-propyl		310
1,2-Ph	80	1.0 Dl-	10	bromophenyl	<u> </u>
1,4-111	SO_2	1,2-Ph	1,2-c-propyl	2-methoxy-5-	311
				bromophenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	S	1,2-Ph	1,2-c-propyl	2-methoxy-5-	312
				bromophenyl	
2-naphthyl	CH ₂ -O	1,2-Ph	CH=CH	2-methoxy-5-	313
				bromophenyl	
2-naphthyl	S	1,2-Ph	CH=CH	2-methoxy-5-	314
				bromophenyl	1
3-methyl	SO ₂	1,2-Ph	1,2-c-propyl	2-methoxy-5-	315
indol-1-yl				bromophenyl	ļ
3-methyl	S	1,2-Ph	1,2-c-propyl	2-methoxy-5-	316
indol-1-yl				bromophenyl	
3-methyl	CH ₂ -O	1,2-Ph	CH=CH	2-methoxy-5-	317
indol-1-yl				bromophenyl	
3-methyl	S	1,2-Ph	CH=CH	2-methoxy-5-	318
indol-1-yl				bromophenyl	
3-methyl	O-CH ₂	1,2-Ph	1,2-c-propyl	2-methoxy-5-	319
indol-1-yl				bromophenyl	
3-methyl	SO	1,2-Ph	1,2-c-propyl	2-methoxy-5-	320
indol-1-yl				bromophenyl	
3-methyl	CH ₂ -O	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	321
indol-1-yl	~			bromophenyl	<u> </u>
3-methyl	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	322
indol-1-yl				bromophenyl	
3-methyl	SO_2	4-Cl-1,2-Ph	1,2-c-propyl	2-methoxy-5-	323
indol-1-yl	~~			bromophenyl	
2-(7-fluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	347
naphthyl		4 67 1 5 5			
2-(7-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	348
naphthyl	~	1 01 1 0 5			
2-(7-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	349
naphthyl 2-(7-fluoro)	CII	4 (C) 1 0 TO	OTT OTT		
naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	350
2-(7-fluoro)	CH_2	C (1 1 0 D)	OTT OTT	0.11.	
naphthyl	Cn_2	6-Cl-1,2-Ph	CH=CH	2-thienyl	351
2-(7-fluoro)	CH	4 Cl 1 0 Dl	10 0	0./1:	
naphthyl	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-thienyl	352
2-(7-fluoro)	CH_2	2 (V) 1 0 D)	OII OII	<u> </u>	
naphthyl		3-Cl-1,2-Ph	CH=CH	2-thienyl	353
2-(7-fluoro)	SO ₂	4 Cl 1 0 Db	OII OII	0 11	
naphthyl	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	354
2-(7-fluoro)	0	4 Cl 1 0 DL	CU CU	bromophenyl	0.55
naphthyl)	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	355
2-(7-fluoro)	S	4 Cl 10 Di	CII CII	bromophenyl	252
naphthyl	٥	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	356
Maphonyi				bromophenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-naphthyl	CH_2	4,5-Cl ₂ -	CH=CH	2-methoxy-5-	357
		1,2-Ph		bromophenyl	
2-(7-fluoro)	CH_2	6-Cl-1,2-Ph	CH=CH	2-methoxy-5-	358
naphthyl				bromophenyl	
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	359
naphthyl				bromophenyl	
2-(7-fluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-methoxy-5-	360
naphthyl				bromophenyl	
2-(7-fluoro)	SO ₂	4-Cl-1,2-Ph	CH=CH	2-trifluoro	361
naphthyl				methoxy-5-	
	<u> </u>			chlorophenyl	
2-(7-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-trifluoro	362
naphthyl				methoxy-5-	
0 /7 0	 	1 (2) 1 (2.7)		chlorophenyl	
2-(7-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-trifluoro	363
naphthyl		l		methoxy-5-	
0 (7 0	CTT	1 01 1 0 5	ATT ATT	chlorophenyl	
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-trifluoro	364
naphthyl				methoxy-5-	
0 (7 0)	CII	C (1 1 0 D)	OTT OTT	chlorophenyl	
2-(7-fluoro)	CH ₂	6-Cl-1,2-Ph	CH=CH	2-trifluoro	365
naphthyl				methoxy-5-	
2-(7-fluoro)	CU	4 Cl 1 0 Db	10 - D	chlorophenyl	1000
naphthyl	CH ₂	4-Cl-1,2-Ph	1,2-c-Pr	2-trifluoro	366
паришуі				methoxy-5-	
2-(7-fluoro)	CH_2	3-Cl-1,2-Ph	CH_CH	chlorophenyl 2-trifluoro	007
naphthyl		3-C1-1,Z-F11	Cn=Cn	•	367
naphunyi				methoxy-5- chlorophenyl	
2-(7-fluoro)	SO ₂	4-Cl-1,2-Ph	CH-CH	2-thienyl	368
naphthyl		4-01-1,2-111	CII-CII	2-unenyi	300
2-(7-fluoro)	0	4-Cl-1,2-Ph	СН-СН	2-thienyl	369
naphthyl		1 01 1,2 11	011-011	2-cinenyi	309
2-(7-fluoro)	s	4-Cl-1,2-Ph	CH=CH	2-thienyl	370
naphthyl				a-unicity:	""
2-(7-fluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	371
naphthyl			J	- unonyi	"
2-(7-fluoro)	CH,	6-Cl-1,2-Ph	CH=CH	2-thienyl	372
naphthyl					5,2
2-(7-fluoro)	CH,	4-Cl-1,2-Ph	1.2-c-Pr	2-thienyl	373
naphthyl			-,- · - ·		[""]
2-(7-fluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-thienyl	374
naphthyl	"		V1		"
napntnyl					

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-(7-fluoro)	SO ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	375
naphthyl				bromophenyl	
2-(6-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	376
naphthyl		<u> </u>		bromophenyl	
2-(6-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	377
naphthyl				bromophenyl	
2-(6-fluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	378
naphthyl				bromophenyl	
2-(6-fluoro)	CH_2	6-Cl-1,2-Ph	CH=CH	2-methoxy-5-	379
naphthyl				bromophenyl	
2-(6-fluoro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	380
naphthyl				bromophenyl	
2-(6-fluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-methoxy-5-	381
naphthyl				bromophenyl	
2-(7-chloro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	382
naphthyl					1
2-(7-chloro)	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	383
naphthyl					
2-(7-chloro)	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	384
naphthyl					
2-(7-chloro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	385
naphthyl					
2-(7-chloro)	CH_2	6-Cl-1,2-Ph	CH=CH	2-thienyl	386
naphthyl					
2-(7-chloro)	CH ₂	4-Cl-1,2-Ph	1,2-c-Pr	2-thienyl	387
naphthyl					
2-(7-chloro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-thienyl	388
naphthyl	00	1 60			
2-(6,7-difluoro)	SO ₂	4-Cl-1,2-Ph	CH=CH	2-thienyl	389
naphthyl		(0) (0.7)			
2-(6,7-difluoro)	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	390
naphthyl	0	4 (2) 4 (2.73)	~		
2-(6,7-difluoro)	S	4-Cl-1,2-Ph	CH=CH	2-thienyl	391
naphthyl	CIT	4 61 4 6 73	ATT ATT		
2-(6,7-difluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	392
naphthyl 2-(6,7-difluoro)	CH	C (1 1 0 F)	OTT CTT		
	CH_2	6-Cl-1,2-Ph	CH=CH	2-thienyl	393
naphthyl 2-(6,7-difluoro)	CH	4 01 1 0 12	10.5		<u> </u>
	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-thienyl	394
naphthyl	CH	0.01 1.0 72	OTT CTT		
2-(6,7-difluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-thienyl	395
naphthyl	20	4 01 1 0 7	OTT 6==		
2-(6,7-difluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	396
naphthyl				bromophenyl	

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
2-(6,7-difluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	397
naphthyl				bromophenyl	
2-(6,7-difluoro)	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	398
naphthyl				bromophenyl	
2-(6,7-difluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	399
naphthyl				bromophenyl	
2-(6,7-difluoro)	CH_2	6-Cl-1,2-Ph	CH=CH	2-methoxy-5-	400
naphthyl				bromophenyl	
2-(6,7-difluoro)	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	401
naphthyl				bromophenyl	
2-(6,7-difluoro)	CH_2	3-Cl-1,2-Ph	CH=CH	2-methoxy-5-	402
naphthyl				bromophenyl	
2-(5,7-difluoro)	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	403
naphthyl				bromophenyl	
2-(5,7-difluoro)	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	404
naphthyl				bromophenyl	
2-(5,7-difluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	405
naphthyl				bromophenyl	
2-(5,7-difluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	406
naphthyl				bromophenyl	
2-(6-fluoro)	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	407
quinolinyl				bromophenyl	
2-(6-fluoro)	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	408
quinolinyl				bromophenyl	
2-(6-fluoro)	CH ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	409
quinolinyl				bromophenyl	
2-(6-fluoro)	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	410
quinolinyl				bromophenyl	
2-(6-fluoro)	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	411
quinolinyl				bromophenyl	
2-(6-fluoro)	CH ₂	4-Cl-1,2-Ph	1,2-c- Pr	2-methoxy-5-	412
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	413
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	414
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	CH ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	415
quinolinyl	077	1 0 7		bromophenyl	
2-(5,7-difluoro)-	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	416
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	417
quinolinyl				bromophenyl	
2-(5,7-difluoro)-	$ m CH_2$	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	418
quinolinyl				bromophenyl	<u> </u>

R ¹ R ² R ³ -Het	A	X	В	\mathbf{R}^{19}	Cpd
3,4-dichloro	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	419
phenyl				bromophenyl	
3,4-dichloro	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	420
phenyl				bromophenyl	
3,4-dichloro	CH ₂	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	421
phenyl				bromophenyl	
3,4-dichloro	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	422
phenyl				bromophenyl	l
3,4-dichloro	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	423
phenyl				bromophenyl	
3,4-dichloro	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	424
phenyl				bromophenyl	
3,4-dichloro	CH_2	5-Cl-1,2-Ph	CH=CH	2-methoxy-5-	425
phenyl				bromophenyl	
4-chloro	SO_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	426
phenyl				bromophenyl	
4-chloro	S	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	427
phenyl			<u></u> .	bromophenyl	
4-chloro	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	428
phenyl	~~~			bromophenyl	<u> </u>
4-chloro	CH_2	1,2-Ph	CH=CH	2-methoxy-5-	429
phenyl				bromophenyl	
4-chloro	0	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	430
phenyl	ATT -			bromophenyl	
4-chloro	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	2-methoxy-5-	431
phenyl	CTT	4 673		bromophenyl	
4-chloro	CH_2	4-Cl-1,2-Ph	CH=CH	2-methoxy-5-	432
phenyl	00	4 (2) 4 (2.72)	ATT ATT	bromophenyl	
3,4-dichloro	SO_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	433
phenyl 3,4-dichloro	S	4 (V) 1 0 D)	CIT CIT		
phenyl	0	4-Cl-1,2-Ph	CH=CH	2-thienyl	434
3,4-dichloro	CH,	4 (1) 1 0 D)	OTT OTT		
phenyl	CH_2	4-Cl-1,2-Ph	CH=CH	2-thienyl	435
3,4-dichloro	CH_2	1 0 Db	OII OII	0.11: 1	
phenyl		1,2-Ph	CH=CH	2-thienyl	436
3,4-dichloro	0	4-Cl-1,2-Ph	CH. OII	0.41.	405
phenyl		4-01-1,2-111	CH=CH	2-thienyl	437
3,4-dichloro	$\overline{\mathrm{CH}_2}$	4-Cl-1,2-Ph	CH-CH	0 th:	400
phenyl		1 -01-1,2-111	CH=CH	2-thienyl	438
3,4-dichloro	CH ₂	5-Cl-1,2-Ph	CH-CH	O thion-1	100
phenyl	-11 ₂	0-01-1,2 - FN	OH=OH	2-thienyl	439
4-chloro	$\overline{\mathrm{SO}_2}$	4-Cl-1,2-Ph	CH-CH	O thions!	440
phenyl	\mathcal{SO}_2		On=On	2-thienyl	440
F					

R ¹ R ² R ³ -Het	A	X	В	\mathbb{R}^{19}	Cpd
4-chloro phenyl	S	4-Cl-1,2-Ph		2-thienyl	441
4-chloro phenyl	CH_2	4-Cl-1,2-Ph		2-thienyl	442
4-chloro phenyl	CH_2	1,2-Ph	CH=CH	2-thienyl	443
1-(5-chloro) indolyl	CH_2	3,2-Pyr	CH=CH	2,4-(Me)2- thiazol-5-yl	444
1-(5-chloro) indolyl	CH_2	3,2-Pyr	CH=CH	2-thienyl	445
1-(6-(4-chloro) phenyl)indolyl	CH ₂	4-F-1,2-Ph	CH=CH	3-chloro-4- fluorophenyl	446
2-(6-difluoro methoxy) naphthyl	CH ₂	4-Cl-1,2-Ph		2-methoxy-5- bromophenyl	447
2-naphthyl	CH_2	4-MeO- 1,2-Ph	CH=CH	2-methoxy-5- bromophenyl	448
2-naphthyl	CH_2	5-Cl-1,2-Ph		2-methoxy-5- bromophenyl	449
2-(6-chloro naphthyl)	CH_2	4-Cl-1,2-Ph		2-methoxy-5- bromophenyl	450
1-(5-phenyl methoxy) indolyl	CH_2	4-F-1,2-Ph	CH=CH	2-methoxy-5- bromophenyl	451
2-(benzo[b] thiophenyl	CH_2	4-F-1,2-Ph	CH=CH	2-methoxy-5- bromophenyl	452
5-(1-benzyl) indolyl	CH_2	4-F-1,2-Ph	CH=CH	2-methoxy-5- bromophenyl	453
1-(6-(4-chloro) phenyl)indolyl	CH_2	4-F-1,2-Ph	CH=CH	2-methoxy-5- bromophenyl	454

Table II

R¹R²R³—HET

A

X—B

OH

I-b

(Compounds 324-346 and 455-542)

717070				
R ¹ R ² R ³ -Het	A	X	В	Cpd
2-naphthyl	$S(O)_2$	1,2-phenyl	CH=CH	324
2-naphthyl	S	1,2-phenyl	CH=CH	325
4-methylthiophenyl	CH_2	1,2-phenyl	CH=CH	326
3-methylindol-1-yl	CH_2	1,2-phenyl	CH=CH	327
3-chloro-4-fluorophenyl	CH_2	1,2-phenyl	CH=CH	328
4-chlorophenyl	$\mathrm{CH_2}$	1,2-phenyl	CH=CH	329
2-naphthyl	CH_2	1,2-phenyl	CH=CH	330
2-naphthyl	$S(O)_2$	1,2-phenyl	1,2-c-propyl	331
2-naphthyl	$S(O)_2$	1,2-phenyl	CH ₂ -CH ₂	332
2-naphthyl	S	1,2-phenyl	CH=CH	333
3,4-dichlorophenyl	$S(O)_2$	1,2-phenyl	CH ₂ -CH ₂	334
3,4-dichlorophenyl	CH_2	1,2-phenyl	CH=CH	335
2-(6-benzyloxy)naphthyl	CH_2	1,2-phenyl	CH=CH	336
2-(6-benzyloxy)naphthyl	CH_2	1,2-phenyl	1,2-c-propyl	337
2-(6-benzyloxy)naphthyl	SO ₂	1,2-phenyl	1,2-c-propyl	338
2-(6-benzyloxy)naphthyl	CH ₂ -O	1,2-phenyl	1,2-c-propyl	339
2-(6-benzyloxy)naphthyl	O-CH ₂	1,2-phenyl	1,2-c-propyl	340
2-(6-benzyloxy)naphthyl	SO ₂	1,2-phenyl	CH=CH	341
2-(6-benzyloxy)naphthyl	CH ₂ -O	1,2-phenyl	CH=CH	342
2-(6-benzyloxy)naphthyl	O-CH ₂	1,2-phenyl	CH=CH	343
2-(6-benzyloxy)naphthyl	S	1,2-phenyl	CH=CH	344
2-(7-benzyloxy)naphthyl	SO,	1,2-phenyl	CH=CH	345
2-(6-(4-trifluoromethyl)	CH ₂	1,2-phenyl	CH=CH	346
benzyloxy))naphthyl	1 -			010
2-(6-fluoro)naphthyl	SO_2	4-Cl-1,2-Ph	CH=CH	455
2-(6-fluoro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	456
2-(6-fluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	457
2-(6-fluoro)naphthyl	CH_2	1,2-Ph	CH=CH	458
2-(6-fluoro)naphthyl	0	4-Cl-1,2-Ph	CH=CH	459
2-(6-fluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	1,2-c-Pr	460
2-(7-fluoro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	461
2-(7-fluoro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	462
2-(7-fluoro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	463
2-(7-fluoro)naphthyl	CH ₂	1,2Ph	CH=CH	464
2-(7-fluoro)naphthyl	0	4-Cl-1,2-Ph	CH=CH	465
2-(7-fluoro)naphthyl	CH,	4-Cl-1,2-Ph	1,2-c-Pr	466
2-(6-chloro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	467
2-(6-chloro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	468
2-(6-chloro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	469
2-(6-chloro)naphthyl	CH,	1,2-Ph	CH=CH	470
2-(6-chloro)naphthyl	0	4-Cl-1,2-Ph	CH=CH	471

R ¹ R ² R ³ -Het	A	X	В	Cpd
2-(6-chloro)naphthyl	CH_2	4-Cl-1,2-Ph	1,2-c-Pr	472
2-(7-chloro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	473
2-(7-chloro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	474
2-(7-chloro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	475
2-(7-chloro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	476
2-(7-chloro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	477
2-(7-chloro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	478
2-(6,7-difluoro)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	479
2-(6,7-difluoro)naphthyl	S	4-Cl-1,2-Ph	CH=CH	480
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	481
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	482
2-(6,7-difluoro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	483
2-(6,7-difluoro)naphthyl	CH,	4-Cl-1,2-Ph	1,2-c-Pr	484
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	485
2-(6,7-difluoro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	486
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	487
2-(6,7-difluoro)naphthyl	CH,	1,2-Ph	CH=CH	488
2-(6,7-difluoro)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	489
2-(6,7-difluoro)naphthyl	CH ₂	4-Cl-1,2-Ph	1,2-c-Pr	490
3-methyl-5-fluoro	SO_2	4-Cl-1,2-Ph	CH=CH	491
indol-1-yl	2		011-011	101
3-methyl-5-fluoro	S	4-Cl-1,2-Ph	CH=CH	492
indol-1-yl				10-
3-methyl-5-fluoro	CH_2	4-Cl-1,2-Ph	CH=CH	493
indol-1-yl				
3-methyl-5-fluoro	CH_2	1,2-Ph	CH=CH	494
indol-1-yl				
3-methyl-5-fluoro	CH_2	4-Cl-1,2-Ph	CH=CH	495
indol-1-yl				
3-methyl-5-fluoro	CH ₂	4-Cl-1,2-Ph	CH=CH	496
indol-1-yl	GG.			
2-(6-fluoro)quinolinyl	SO ₂	4-Cl-1,2-Ph	CH=CH	497
2-(6-fluoro)quinolinyl	S	4-Cl-1,2-Ph	CH=CH	498
2-(6-fluoro)quinolinyl	CH ₂	4-Cl-1,2-Ph	CH=CH	499
2-(6-fluoro)quinolinyl	CH_2	4-Cl-1,2-Ph	CH=CH	500
2-(6-fluoro)quinolinyl	0	4-Cl-1,2-Ph	CH=CH	501
2-(6-fluoro)quinolinyl	$\frac{\mathrm{CH}_2}{\mathrm{CO}}$	4-Cl-1,2-Ph	CH=CH	502
2-(6-difluoromethoxy)-	SO_2	4-Cl-1,2-Ph	CH=CH	503
naphthyl	00			
2-(6-difluoromethoxy)-	SO_2	4-Cl-1,2-Ph	CH=CH	504
naphthyl 2-(6-difluoromethoxy)-	90	4.614.5.51		
naphthyl	SO_2	4-Cl-1,2-Ph	CH=CH	505
паршију				

R ¹ R ² R ³ -Het	A	X	В	Cpd
2-(6-difluoromethoxy)-	SO_2	4-Cl-1,2-Ph	CH=CH	506
naphthyl	-	,		
2-(6-difluoromethoxy)-	SO ₂	4-Cl-1,2-Ph	CH=CH	507
naphthyl				
2-(6-difluoromethoxy)-	SO_2	4-Cl-1,2-Ph	CH=CH	508
naphthyl	<u> </u>			
2-(7-difluoromethoxy)-	SO_2	4-Cl-1,2-Ph	CH=CH	509
naphthyl				
2-(7-difluoromethoxy)-	S	4-Cl-1,2-Ph	CH=CH	510
naphthyl	OTT	4 01 4 6 51		
2-(7-difluoromethoxy)- naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	511
2-(7-difluoromethoxy)-	CH,	4 (1) 1 0 D)	CIT CIT	
naphthyl	\cap CH ₂	4-Cl-1,2-Ph	CH=CH	512
2-(7-difluoromethoxy)-	0	4-Cl-1,2-Ph	CH=CH	F10
aphthyl	~	4-01-1,2-111	CH=CH	513
2-(7-difluoromethoxy)-	CH ₂	4-Cl-1,2-Ph	CH=CH	514
naphthyl	0222	1 01 1,2 1 11	OH-OH	514
2-(6-methoxy)naphthyl	SO ₂	4-Cl-1,2-Ph	CH=CH	515
2-(6-methoxy)naphthyl	S	4-Cl-1,2-Ph	CH=CH	516
2-(6-methoxy)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	517
2-(6-methoxy)naphthyl	CH,	4-Cl-1,2-Ph	CH=CH	518
2-(6-methoxy)naphthyl	0	4-Cl-1,2-Ph	CH=CH	519
2-(6-methoxy)naphthyl	CH ₂	4-Cl-1,2-Ph	CH=CH	520
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	521
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	522
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	523
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	524
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	525
2-(6-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	526
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	527
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	528
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	529
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	530
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	531
2-(7-fluoro)naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	532
2-naphthyl	$\mathrm{CH_2}$	4,5-Cl ₂ -1,2-Ph	CH=CH	533
2-naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	534
3,4-dichlorophenyl	CH_2	4-Cl-1,2-Ph	CH=CH	535
2-naphthyl	CH_2	4-Cl-1,2-Ph	CH=CH	536
4-chlorophenyl	CH_2	4-Cl-1,2-Ph	CH=CH	537
1-(5-phenylmethoxy)	$\mathrm{CH_2}$	4-F-1,2-Ph	CH=CH	538
indolyl				

15

R ¹ R ² R ³ -Het	A	X	В	Cpd	
2-(benzo[b]thiophenyl)	CH_2	4-F-1,2-Ph	CH=CH	539	
5-(1-benzyl)indolyl	CH_2	4-F-1,2-Ph	CH=CH	540	
1-(6-(4-chloro)phenyl) indolyl	CH ₂	4-F-1,2-Ph	CH=CH	541	
1-(5-chloro)indolyl	CH ₂	3,2-Pyr	CH=CH	542	

wherein $D=-O(CH_2)_3-O$, Qn=7-chloroquinolin-2-yl, 1,2-Ph = 1,2-benzenediyl, $R^s=-CH_2SCH_2CH_2Ph$, Pyr=pyridinediyl, c-pr=cyclopropyl and Bn=benzyl.

- 19. A pharmaceutical composition which is
 10 comprised of a compound in accordance with any one of claims 1 to 18 in combination with a pharmaceutically acceptable carrier.
 - 20. A method of treating or preventing a prostaglandin mediated disease which is comprised of administering to a mammalian patient in need of such treatment a compound in accordance with claim 1 in an amount which is effective for treating or preventing a prostaglandin mediated disease.
- 30 cellular neoplastic transformations or metastic tumor growth;

diabetic retinopathy, tumor angiogenesis;

prostanoid-induced smooth muscle contraction associated with dysmenorrhea, premature labor, asthma or eosinophil related disorders;

Alzheimer's disease;

glaucoma;

10 bone loss;

osteoporosis;

promotion of bone formation:

Paget's disease;

cytoprotection in peptic ulcers, gastritis, regional enteritis,

ulcerative colitis, diverticulitis or other gastrointestinal lesions; GI bleeding and patients undergoing chemotherapy;

coagulation disorders selected from hypoprothrombinemia, haemophilia and other bleeding problems;

kidney disease;

20

thrombosis:

occlusive vascular disease:

presurgery;

and anti-coagulation.

- 25. A method in accordance with claim 20 wherein the prostaglandin mediated disease is selected from the group consisting of: pain, fever or inflammation.
- 23. A method in accordance with claim 20 wherein the prostaglandin mediated disease is dysmenorrhea.
 - 24. A method in accordance with claim 20, wherein the compound is co-administered with other agents or ingredients.
- 25. A method in accordance with claim 24 wherein the compound I is co-administered with another agent or ingredient selected from the group consisting of: an analgesic selected from acetaminophen, phenacetin, aspirin, a narcotic;

5 a COX-2 selective NSAID and a conventional NSAID; caffeine; an H₂-antagonist; aluminum or magnesium hydroxide; simethicone;

10

15

a decongestant selected from phenylephrine,
phenylpropanolamine, pseudophedrine, oxymetazoline, ephinephrine,
naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine;
an antiitussive selected from codeine, hydrocodone,
caramiphen, carbetapentane and dextramethorphan;

another prostaglandin ligand selected from misoprostol, enprostil, rioprostil, ornoprostol and rosaprostol; a diuretic; and a sedating or non-sedating antihistamine.

- 26. Use of a compound, salt, hydrate or ester as defined in any one of claims 1 to 18 in the manufacture of a
 20 medicament for treatment or prevention of a prostaglandin mediated disease.
 - 27. A compound, salt, hydrate or ester as defined in any one of claims 1 to 18 for use in the treatment or prevention of a prostaglandin mediated disease.
- 28. A prostaglandin antagonist pharmaceutical composition comprising an acceptable prostaglandin antagonistic amount of a compound, salt, hydrate or ester as defined in any one of claims 1 to 18, in association with a pharmaceutically acceptable carrier.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07C 57/42, 59/68, 59/84, 311/51, C07D 209/10, 307/64, 307/79

A3

(11) International Publication Number:

WO 99/47497

(43) International Publication Date: 23 September 1999 (23.09.99)

(21) International Application Number:

PCT/CA99/00212

(22) International Filing Date:

12 March 1999 (12.03.99)

(30) Priority Data:

60/077,990

13 March 1998 (13.03.98)

US

9815856.1

21 July 1998 (21.07.98)

GB

(71) Applicant (for all designated States except US): MERCK FROSST CANADA & CO. [CA/CA]; 16711 Trans-Canada Highway, Kirkland, Quebec H9H 3L1 (CA).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): GAREAU, Yves (CA). LABELLE, Marc [CA/CA]; [CA/CA]; (CA). JUTEAU, Helene [CA/CA]; (CA). GALLANT, Michel [CA/CA]; (CA). LACHANCE, Nicolas [CA/CA]; (CA). BELLEY, Michel [CA/CA]; 16711 Trans-Canada Highway, Kirkland, Quebec H9H 3L1 (CA).
- (74) Agent: MURPHY, Kevin, P.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College, Montreal, Quebec H3A 2Y3 (CA).

(81) Designated States: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 28 October 1999 (28.10.99)

(1)

(54) Title: CARBOXYLIC ACIDS AND ACYLSULFONAMIDES, COMPOSITIONS CONTAINING SUCH COMPOUNDS AND METHODS OF TREATMENT

(57) Abstract

Compounds of formula (I), as well as pharmaceutically acceptable salts, hydrates and esters thereof, are disclosed. The compounds are useful for treating or preventing prostaglandin mediated diseases. Pharmaceutical compositions containing such compounds and methods of treatment are also included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

							••
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA.	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	
CA	Canada	IT	Italy	MX	Mexico	UZ	United States of America
CF	Central African Republic	JP	Japan	NE	Niger		Uzbekistan
CG	Congo	KE	Кепуа	NL	Netherlands	VN	Viet Nam
CH	Switzerland	KG	Кутдуzstan	NO	Norway	YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	ZW	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT			
CU	Cuba	KZ	Kazakstan		Portugal		
CZ	Czech Republic	LC	Saint Lucia	RO	Romania		
DE	Germany	LI	Liechtenstein	RU	Russian Federation		
DK	Denmark	LK	Sri Lanka	SD	Sudan		
EE	Estonia	LR		SE	Sweden		
	20101114	LR	Liberia	SG	Singapore		