The Mutual Information Diagram for Uncertainty Visualization

Carlos D. Correa and Peter Lindstrom

Center for Applied Scientific Computing - CASC

Lawrence Livermore National Lab

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Visualization should help compare models with observations

Average annual temperature 1900-2000 as predicted by various climate models.

Which model is more **similar** to a reference model or observations?

Trend plots often do not expose these aspects.

Visualization should help find correlations of similar outputs – important for uncertainty quantification

Divide ensembles in 6 latitude zones and 3 temporal averages

- •Are there correlations across seasons or latitudes?
- •Are there large discrepancies in the different outputs?

Visualization should help find correlations of similar outputs – important for uncertainty quantification

Visual Summaries

- Represent directly summary quantities, e.g., mean, standard deviation, entropy.
- Box-plots and their many variants
- One plot per ensemble may result in clutter
- Visualizing several statistics simultaneously in a metric space: Taylor diagram

The Taylor Diagram

Applications of the Taylor Diagram

Anscombe's Trio

Variables B,C,D: same standard deviation and same correlation w.r.t. A

Information Theory Primer

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

- Entropy H(X)
 - Measure of information uncertainty of X
- Joint Entropy H(X,Y)
 - Uncertainty of X,Y
- Conditional Entropy H(X|Y)
 - Uncertainty of X given thatI know Y
- Mutual Information I(X;Y)
 - How much knowing X reduces the uncertainty of Y

Variation of Information $VI=H(X \mid Y) + H(Y \mid X)$

X and Y are the same

X and Y are different but dependent

X and Y are independent

The Variation of Information VI: a measure of distance in information theory

$$VI(X,Y) = H(X) + H(Y) - 2I(X;Y)$$

$$RVI = \sqrt{VI}$$
 $h_X = \sqrt{H(X)}$ $h_Y = \sqrt{H(Y)}$

$$RVI(X,Y)^2 = h_X^2 + h_Y^2 - 2I(X;Y)$$

$$RVI(X,Y)^2 = h_X^2 + h_Y^2 - 2h_X h_Y \frac{I(X;Y)}{h_X h_Y}$$

The Variation of Information VI: a measure of distance in information theory

$$VI(X,Y) = H(X) + H(Y) - 2I(X;Y)$$

$$RVI = \sqrt{VI}$$

$$h_X = \sqrt{H(X)}$$

$$RVI = \sqrt{VI}$$
) $\left(h_X = \sqrt{H(X)} \right) \left(h_Y = \sqrt{H(Y)} \right)$

$$RVI(X,Y)^2 = h_X^2 + h_Y^2 - 2I(X;Y)$$

$$RVI(X,Y)^2 = h_X^2 + h_Y^2 - 2h_X h_Y \frac{I(X;Y)}{h_X h_Y}$$

Normalized Mutual Information (NMI)

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

RVI Diagram

Correla

 $\sigma_{\scriptscriptstyle Y}$

 $acos(R_{xy})$

NRMS

Statistics \iff Information Theory

$$RMS(X,Y) \iff RVI \sqrt{VI(X,Y)}$$

Variance $\sigma_X^2 \iff \text{entropy } H(X)$

Covariance $cov(X,Y) \iff$ mutual information I(X;Y)

Correlation
$$R_{XY} = \frac{cov(X,Y)}{\sqrt{\sigma_X^2 \sigma_Y^2}} \iff NMI_{XY} = \frac{I(X;Y)}{\sqrt{H(X)H(Y)}}$$

0.00

VI Diagram

$$VI(X,Y)^2 = H(X)^2 + H(Y)^2 - 2H(X)H(Y)c_{XY}$$

Experiment of 2D distributions with outliers

MI diagram is more resilient to outliers

Computing Entropy and Mutual Information *may* require estimation of underlying probability functions

Intercomparison Studies

Annual mean temperature 1900-2000

290

Intercomparison Studies

Annual mean temperature 1900-2000

290

Intercomparison Studies

Annual mean temperature 1900-2000

290

MID applies to discrete data: useful when comparing Clustering Results

- Summarize study in clustering [Filippone et al. 2009]
- 8 different methods
- 4 classification problems

Concluding Remarks

Taylor diagram:

- easy to compute.
- Well understood in geophysical sciences, climate.

MI diagram:

- Counterpart using information theory.
- requires an estimation step that may introduce additional uncertainties.
- extends nicely to categorical data, multi-variate distributions.
- exposes non-linearities, difficult to see via (linear) correlation.
- More informed decisions when combining both diagrams.

Thanks!

Questions?