Week 12 Tutorial

1. Give an adjacency-list representation for a complete binary tree T on 7 vertices, as shown on the figure. Give also an equivalent adjacency –matrix representation.

Adj[1]={2,3} Adj[2]={4,5} Adj[3]={6,7} Adj[4]= \emptyset Adj[5]= \emptyset Adj[6]= \emptyset

 $Adj[7] = \emptyset$

T	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0
2	1	0	0	1	1	0	0
3	1	0	0	0	0	1	1
4	0	1	0	0	0	0	0
5	0	1	0	0	0	0	0
6	0	0	1	0	0	0	0
7	0	0	1	0	0	0	0

2. The transpose $G^T = (V, E^T)$ of a directed graph G = (V, E) is the graph such that $(u, v) \in E^T$ just in case $(v, u) \in E$. Thus, G^T is the graph with all edges reversed. Describe efficient algorithms for computing G^T from G first for adjacency lists and then adjacency-matrix representations.

Adjacency list: For each vertex v go through its adjacency set Adj[v] adding v to the adjacency set of every member u in Adj[v].

Adjacency matrix: Simply transpose the matrix.

3. A graph G = (V, E) is **bipartite** if the set of vertices V can be split in two disjoint sets A and B such that every edge in E has one vertex in A and the other in B. Design an efficient algorithm which tests if a given graph is bipartite.

Simply do breath first search of the graph, colouring all discovered and of even degree d[v] vertices v red and all discovered of odd degree d[v] vertices v blue. If in the process we never encounter an edge with both ends of same colour, the graph is bipartite.

- **4. Euler tour** of a connected, directed graph G = (V, E) is a cycle that traverses each edge exactly once (vertices can be visited several times). *in-degree* (v) of a vertex v is the number of edges coming into v, and *out-degree*(v) is the number of edges leaving v.
 - a. Show that G = (V, E) has an Euler tour if and only if *in-degree* (v) = out-degree(v) for every $v \in V$.
 - b. Describe an O(E) algorithm to find an Euler tour if one exists.
- **a.** Clearly, if there exists an Euler tour, each time we visit an edge we must also leave it; thus in-degree(v) = out-degree(v). Opposite, if for every v we have in-degree(v) = out-degree(v) we can proceed by induction on the number of

vertices. Assume the statement is true for all graphs with n vertices and consider a graph with n+1 vertices. Remove any vertex, merging pairs of outgoing and incoming edges into a single edge. Find an Euler's tour for such graph with n vertices. Get the corresponding tour for the original graph by splitting back the edges:

Euler tour found for n vertex graph

Euler tour for n+1 vertex graph found by splitting back edges and adding $n+1^{st}$ vertex.