Calculus by Spivak

Noah Lewis

September 9, 2025

1

Contents

1 Chapter 1 - Basic Properties of Numbers

Chapter 1 - Basic Properties of Numbers

Problem 1

Prove the following:

(i) If ax = a for some number $a \neq 0$, then x = 1.

(ii)
$$x^2 - y^2 = (x - y)(x + y)$$

(iii) If
$$x^2 = y^2$$
, then $x = y$ or $x = -y$.

(iv)
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

(v)
$$x^n - y^n = (x - y)(x^{(n-1)} + x^{(n-2)}y + \dots + xy^{(n-2)} + y^{(n-1)})$$

(ii) $x^2 - y^2 = (x - y)(x + y)$. (iii) If $x^2 = y^2$, then x = y or x = -y. (iv) $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$. (v) $x^n - y^n = (x - y)(x^{(n-1)} + x^{(n-2)}y + \dots + xy^{(n-2)} + y^{(n-1)})$ (vi) $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$. There is a particularly easy way to do this (iv), and it will show you how to find a factorization for $x^n + y^n$ whenever n is odd.

Proof.

$$ax = a$$

$$\iff a^{-1} \cdot ax = a^{-1} \cdot a$$

$$\iff 1x = 1$$

$$\iff x = 1$$
(P7)

Proof.

$$x^{2} - y^{2} = x^{2} - xy + xy - y^{2}$$

$$= x(x - y) + y(x - y)$$

$$= (x - y)(x + y)$$
(P2, P3)
(P9)

Proof.

$$x^{2} = y^{2}$$

$$\Leftrightarrow x^{2} - y^{2} = y^{2} - y^{2}$$

$$\Leftrightarrow x^{2} - y^{2} = 0$$

$$\Leftrightarrow (x - y)(x + y) = 0$$
(P3)
$$(1 \text{ ii})$$

It then follows that either x = y or x = -y.

Proof.

$$x^{3} - y^{3} = x^{3} - x^{2}y + x^{2}y - xy^{2} + xy^{2} - y^{3}$$

$$= x^{2}(x - y) + xy(x - y) + y^{2}(x - y)$$

$$= (x - y)(x^{2} + xy + y^{2})$$
(P2, P3)
(P9)

Proof.

$$(x-y)(x^{(n-1)} + x^{(n-2)}y + \dots + xy^{(n-2)} + y^{(n-1)})$$

$$= x^{(n-1)}(x-y) + x^{(n-2)}y(x-y) + \dots + xy^{(n-2)}(x-y) + y^{(n-1)}(x-y)$$

$$= x^{(n-1)} \cdot x - x^{(n-1)} \cdot y + x^{(n-2)}y \cdot x - x^{(n-2)}y \cdot y + \dots + xy^{(n-2)} \cdot x - xy^{(n-2)} \cdot y + y^{(n-1)} \cdot x - y^{(n-1)} \cdot y$$

$$= x^{n} - x^{n-1}y + x^{n-1}y - x^{n-2}y^{2} + \dots + x^{2}y^{n-2} - xy^{n-1} + xy^{n-1} - y^{n}$$

$$= x^{n} - y^{n}$$
(P3)

Proof.

$$x^{3} + y^{3} = x^{3} - (-y)^{3}$$

$$= (x - (-y))(x^{2} + x(-y) + (-y)^{2})$$

$$= (x + y)(x^{2} - xy + y^{2})$$
(1 iv)

Problem 3

Prove the following:

- (i) $\frac{a}{b} = \frac{ac}{bc}$, if $b, c \neq 0$.
- (ii) $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$, if $b, d \neq 0$. (iii) $(ab)^{-1} = a^{-1}b^{-1}$, if $a, b \neq 0$. (To do this you must remember the defining property of $(ab)^{-1}$.) (iv) $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}$, if $b, d \neq 0$. (v) $\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$, if $b, c, d \neq 0$.

- (vi) If b, $d \neq 0$, then $\frac{a}{b} = \frac{c}{d}$ if and only if ad = bc. Also determine when $\frac{a}{b} = \frac{b}{a}$.

Proof. Suppose $b, c \neq 0$. Then:

$$\frac{a}{b} = \frac{ac}{bc}$$

$$\Leftrightarrow ab^{-1} = ac(bc)^{-1}$$

$$\Leftrightarrow ab^{-1}(bc) = ac(bc)^{-1}bc$$

$$\Leftrightarrow ab^{-1}(bc) = ac \cdot 1$$

$$\Leftrightarrow ab^{-1}(bc) = ac$$

$$\Leftrightarrow a(b^{-1}b)c = ac$$

$$\Leftrightarrow a \cdot 1 \cdot c = ac$$

$$\Leftrightarrow ac = ac$$
P7

Proof. Suppose $b, d \neq 0$. Then:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\Leftrightarrow ab^{-1} + cd^{-1} = (ad + bc)(bd)^{-1}$$

$$\Leftrightarrow (bd)(ab^{-1} + cd^{-1}) = (ad + bc)(bd)^{-1}(bd)$$

$$\Leftrightarrow ab^{-1}(bd) + cd^{-1}(bd) = (ad + bc)(bd)^{-1}(bd)$$

$$\Leftrightarrow ab^{-1}(bd) + cd^{-1}(bd) = (ad + bc) \cdot 1$$
P7
$$\Leftrightarrow ab^{-1}(bd) + cd^{-1}(bd) = (ad + bc)$$

$$\Leftrightarrow a(b^{-1}b)d + cd^{-1}(bd) = (ad + bc)$$
P6
$$\Leftrightarrow a(b^{-1}b)d + cd^{-1}(db) = (ad + bc)$$
P8
$$\Leftrightarrow a(b^{-1}b)d + c(d^{-1}d)b = (ad + bc)$$
P9
$$\Leftrightarrow a(b^{-1}b)d + c(d^{-1}d)b = (ad + bc)$$
P1
$$\Leftrightarrow ad + cb = (ad + bc)$$
P6
$$\Leftrightarrow ad + bc = ad + bc$$
P8

Proof. Suppose $a, b \neq 0$. Then:

$$(ab)^{-1} = a^{-1}b^{-1}$$

$$\Leftrightarrow (ab)(ab)^{-1} = (ab)a^{-1}b^{-1}$$

$$\Leftrightarrow 1 = a(ba^{-1})b^{-1}$$

$$\Leftrightarrow 1 = a(a^{-1}b)b^{-1}$$

$$\Leftrightarrow 1 = (a \cdot a^{-1})b \cdot b^{-1}$$

$$\Leftrightarrow 1 = 1 \cdot b \cdot b^{-1}$$

$$\Leftrightarrow 1 = 1 \cdot 1$$

$$\Leftrightarrow 1 = 1$$
P7
$$\Leftrightarrow 1 = 1$$
P6

Proof. Suppose $b, d \neq 0$. Then:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}$$

$$\Leftrightarrow ab^{-1} \cdot cd^{-1} = ac(db)^{-1}$$

$$\Leftrightarrow ab^{-1} \cdot cd^{-1} = ac(bd)^{-1}$$

$$\Leftrightarrow acb^{-1}d^{-1} = ac(bd)^{-1}$$

$$\Leftrightarrow acb^{-1}d^{-1}(bd) = ac(bd)^{-1}(bd)$$

$$\Leftrightarrow acb^{-1}d^{-1}(bd) = ac \cdot 1$$

$$\Leftrightarrow acb^{-1}d^{-1}(bd) = ac$$

$$\Leftrightarrow acb^{-1}d^{-1}(db) = ac$$

$$\Leftrightarrow acb^{-1}d^{-1}(db) = ac$$

$$\Leftrightarrow acb^{-1}(d^{-1}d)b = ac$$

$$\Leftrightarrow acb^{-1}(d^{-1}d)b = ac$$

$$\Leftrightarrow acb^{-1} \cdot 1 \cdot b = ac$$

$$\Leftrightarrow acb^{-1} \cdot 1 \cdot b = ac$$

$$\Leftrightarrow acb^{-1}b = ac$$

$$\Leftrightarrow ac \cdot 1 = ac$$

Proof. Suppose $b, c, d \neq 0$. Then:

$$\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$$

$$\Leftrightarrow \frac{a}{b} \left(\frac{c}{d}\right)^{-1} = \frac{ad}{bc}$$

$$\Leftrightarrow \frac{a}{b} \left(\frac{c}{d}\right)^{-1} = \frac{a}{b} \cdot \frac{d}{c}$$
Part (iv)
$$\Leftrightarrow \frac{a}{b} \left(\frac{c}{d}\right)^{-1} \cdot \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \cdot \frac{c}{d}$$

$$\Leftrightarrow \frac{a}{b} \cdot 1 = \frac{a}{b} \cdot \frac{d}{c} \cdot \frac{c}{d}$$
P7
$$\Leftrightarrow \frac{a}{b} = \frac{a}{b} \cdot \frac{dc}{c} \cdot \frac{c}{d}$$
P6
$$\Leftrightarrow \frac{a}{b} = \frac{a}{b} \cdot \frac{dc}{dc}$$
Part (iv)
$$\Leftrightarrow \frac{a}{b} = \frac{a}{b} \cdot \frac{dc}{dc}$$
P8
$$\Leftrightarrow \frac{a}{b} = \frac{a}{b} \cdot dc(dc)^{-1}$$

$$\Leftrightarrow \frac{a}{b} = \frac{a}{b} \cdot 1$$
P7
$$\Leftrightarrow \frac{a}{b} = \frac{a}{b} \cdot 1$$
P6

Proof. Suppose $b, d \neq 0$. Then:

$$\frac{d}{dc} = \frac{c}{d}$$

$$\iff ab^{-1} = cd^{-1}$$

$$\iff ab^{-1}d = cd^{-1}d$$

$$\iff ab^{-1}d = c \cdot 1$$

$$\iff ab^{-1}d = c$$

$$\iff adb^{-1} = c$$

$$\iff adb^{-1}b = cb$$

$$\iff ad \cdot 1 = cb$$

$$\iff ad = cb$$

$$\iff ad = bc$$
P7

Suppose $b, a \neq 0$ and $\frac{a}{b} = \frac{b}{a}$. Then:

$$\frac{a}{b} = \frac{b}{a}$$

$$\iff a^2 = b^2$$

$$\iff |a| = |b|$$
By previous answer

Therefore $\frac{a}{b} = \frac{b}{a}$ iff |a| = |b|.

Problem 5

Prove the following:

- (i) If a < b and c < d, then a + c < b + d.
- (ii) If a < b, then -b < -a.
- (iii) If a < b and c > d, then a c < b d.
- (iv) If a < b and c > 0, then ac < bc.
- (v) If a < b and c < 0, then ac > bc.
- (vi) If a > 1, then $a^2 > a$.
- (vii) If 0 < a < 1, then $a^2 < a$.
- (viii) If $0 \le a < b$ and $0 \le c < d$, then ac < bd.
- (ix) If $0 \le a < b$, then $a^2 < b^2$. (Use (viii).)
- (x) If $a, b \ge 0$ and $a^2 < b^2$, then a < b. (Use (ix) backwards.)

Proof. Suppose a < b and c < d. Then b - a is in P and d - c is in P. Therefore (b - a) + (d - c) is in P. It follows that (b - a) + (d - c) > 0 and therefore a + c < b + d.

Proof. Suppose a < b. Clearly b - a is in P. It follows that -(-b - (-a)) is in P. Now -b - (-a) < 0 so -b < -a.

Proof. Since d < c by (ii) -c < -d. Since -c < -d and a < b by (i) a + (-c) < b + (-d) therefore a - c < b - d.

Proof. Suppose a < b and c > 0. Since a < b it follows b - a is in P. Since b - a and c are in P it follows that c(b - a) is in P. Then c(b - a) = bc - ac is in P so ac < bc.

Proof. Suppose a < b and c < 0 it follows that -c > 0. Then by (iv) a(-c) < b(-c) so -ac < -bc. Then by (ii) it follows that ac > bc.

Proof. Suppose a > 1. It follows that a - 1 > 0. Since a > 1 and 1 > 0 it follows that a > 0. Since 0 < a - 1 and a > 0 it follows that 0(a) < (a - 1)a so $0 < a^2 - a$ and therefore $a^2 > a$.

Proof. Suppose 0 < a < 1. It follows that a - 1 < 0. Since a - 1 < 0 and a > 0 it follows by (iv) that a(a - 1) < 0(a). Therefore $a^2 - a < 0$ and $a^2 < a$.

Proof. Suppose $0 \le a < b$ and $0 \le c < d$. If a = 0 or c = 0 then ac = 0. Now since b > 0 and d > 0 it follows that bd > 0 so 0 = ac < bd. Suppose a > 0 and c > 0. Since a < b and d > 0 it follows that ad < bd. Since c < d and a > 0 it follows that ac < ad. Then ac < ad < bd so ac < bd.

Proof. Suppose $0 \le a < b$. By part (viii) it follows that $a \cdot a < b \cdot b$ so $a^2 < b^2$.

Proof. Suppose $a, b \ge 0$ and $a^2 < b^2$. Since $a^2 < b^2$ by (ix) it follows that $0 \le a < b$ so a < b.

Problem 7

Prove that if 0 < a < b, then

$$a < \sqrt{ab} < \frac{a+b}{2} < b$$

Notice that the inequality $\sqrt{ab} \le (a+b)/2$ holds for all $a, b \ge 0$. A generalization of this fact occurs in Problem 2-22.

Proof. Suppose 0 < a < b. Now let $x^2 = a$ and $y^2 = b$. By Problem 5 part (ix) since $x^2 < y^2$, x < y so $\sqrt{a} < \sqrt{b}$. It then follows that $\sqrt{a} - \sqrt{b} < 0$. Since $\sqrt{a} > 0$ it follows that $\sqrt{a}(\sqrt{a} - \sqrt{b}) < 0$. Then $\sqrt{a}(\sqrt{a} - \sqrt{b}) < 0 \iff a - \sqrt{ab} < 0$ so $a < \sqrt{ab}$. Since $\sqrt{b} > 0$ it follows that $\sqrt{b}(\sqrt{a} - \sqrt{b}) < 0$. Then $\sqrt{b}(\sqrt{a} - \sqrt{b}) < 0 \iff \sqrt{ab} - b < 0$ so $\sqrt{ab} < b$.

Problem 12

Prove the following:

- (i) $|xy| = |x| \cdot |y|$
- (ii) $\left|\frac{1}{x}\right| = \frac{1}{|x|}$, if $x \neq 0$. (The best way to do this is to remember what $|x|^{-1}$ is.)
- (iii) $\frac{|x|}{|y|} = |\frac{x}{y}|$, if $y \neq 0$.
- (iv) $|x y| \le |x| + |y|$. (Give a very short proof.)
- (v) $|x| |y| \le |x y|$. (A very short proof is possible, if you write things in the right way.)
- (vi) $|(|x| |y|)| \le |x y|$. (Why does this follow immediately from (v)?)
- (vii) $|x + y + z| \le |x| + |y| + |z|$. Indicate when equality holds, and prove your statement.

Proof. There are four cases to consider:

- 1. $x \le 0$ and $y \le 0$
- 2. $x \le 0$ and $y \ge 0$
- 3. $x \ge 0$ and $y \le 0$
- 4. $x \ge 0$ and $y \ge 0$

Suppose $x \le 0$ and $y \le 0$. Then $xy \ge 0$ so |xy| = xy. Now |x| = -x and |y| = -y so $|x| \cdot |y| = (-x)(-y) = xy = |xy|$.

Suppose $x \le 0$ and $y \ge 0$. Then $xy \le 0$ so |xy| = -xy. Now |x| = -x and |y| = y so $|x| \cdot |y| = -xy = |xy|$.

Suppose $x \ge 0$ and $y \le 0$. Then $xy \le 0$ so |xy| = -xy. Now |x| = x and |y| = -y so $|x| \cdot |y| = -xy = |xy|$.

Suppose $x \ge 0$ and $y \ge 0$. Then $xy \ge 0$ so |xy| = xy. Now |x| = x and |y| = y so $|x| \cdot |y| = xy = |xy|$.

Since these cases were exhaustive |x||y| = |xy|.

Proof. Suppose $x \neq 0$. So $\left|\frac{1}{x}\right| |x| = \left|\frac{x}{x}\right|$ part (i) $= 1 = \frac{|x|}{|x|} = \frac{1}{|x|} \cdot |x|$. Then dividing by $|x| \neq 0$ it follows that $\left|\frac{1}{x}\right| = \frac{1}{|x|}$.

Proof. Suppose $y \neq 0$. So $\left|\frac{x}{y}\right| |y| = \left|\frac{xy}{y}\right|$ part (i) $= |x| = \frac{|x||y|}{|y|}$. Then dividing by $|y| \neq 0$ it follows that $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$.

Proof. So
$$|x - y| = |x + (-y)| \le |x| + |-y|$$
 triangle inequality $= |x| + |y|$.

Proof. So $|x| = |x + y - y| = |(x - y) + y| \le |x - y| + |y|$ triangle inequality = |x + y| + |y|. Then subtracting |y| on both sides gives $|x| - |y| \le |x - y|$.

Proof. So
$$|(|x| - |y|)| \le ||x - y||$$
 part $(v) = |x - y|$.

Proof. So

$$|x + y + z| \le |(x + y) + z|$$

 $\le |x + y| + |z|$ triangle inequality
 $\le |x| + |y| + |z|$ triangle inequality.

Now let us discover when |x+y+z| = |x|+|y|+|z|. Equality occurs when |x+y| = |x|+|y| and |x+y+z| = |x+y|+|z|. Clearly |x+y| = |x|+|y| when x, y are both non-positive or non-negative. We can take |x+y|+|z| = |x|+|y|+|z| subtract |z| from both sides and get |x+y| = |x|+|y| which we already showed requires that |x| and |y| both be non-positive or non-negative. Now |x+y|+|z| = |x|+|y|+|z| requires x+y and z to be both non-positive or non-negative. If x and y have the same sign then x+y also has this sign. Thus, |x+y+z| = |x|+|y|+|z| if x, y, z are all non-positive or non-negative.

Problem 13

The maximum of two numbers x and y is denoted by max(x, y). Thus max(-1, 3) = max(3, 3) = 3 and max(-1, -4) = max(-4, -1) = -1. The minimum of x and y is denoted by min(x, y). Prove that

$$max(x,y) = \frac{x+y+|y-x|}{2}$$

$$min(x,y) = \frac{x+y-|y-x|}{2}$$

Derive a formula for max(x, y, z) and min(x, y, z), using, for example

$$max(x, y, z) = max(x, max(y, z))$$

Proof. Lets analyze $\frac{x+y}{2} + \frac{|y-x|}{2}$. Now if y-x > 0 then $y \ge x$ and |y-x| = y-x. Then $\frac{x+y}{2} + \frac{y-x}{2} = \frac{x+y+y-x}{2} = \frac{2y}{2} = y$ as expected. If y-x < 0 then x > y and |y-x| = -(y-x). Then $\frac{x+y}{2} + \frac{-(y-x)}{2} = \frac{x+y-y+x}{2} = \frac{2x}{2} = x$ as expected. The *min* equation simply negates |y-x| and following similarly to our *max* computation would result in y if y < x and x if $x \le y$.

Formula for max(x, y, z):

$$max(x, y, z) = max(max(x, y), z)$$

$$= max\left(\frac{x + y + |y - x|}{2}, z\right)$$

$$= \frac{(x + y + |y - x|) + z + |z - (x + y + |y - x|)|}{2}$$

Formula for min(x, y, z):

$$min(x, y, z) = min(min(x, y), z)$$

$$= min\left(\frac{x + y - |y - x|}{2}, z\right)$$

$$= \frac{(x + y - |y - x|) + z - |z - (x + y - |y - x|)|}{2}$$

Problem 14

- (a) Prove that |a| = |-a|. (The trick is not to become confused by too many cases. First prove the statement $a \ge 0$. Why is it then obvious for $a \le 0$?)
- (b) Prove that $-b \le a \le b$ if and only if $|a| \le b$. In particular, it follows that $-|a| \le a \le |a|$.
- (c) Use this fact to give a new proof that $|a + b| \le |a| + |b|$.

Proof. Suppose
$$a \ge 0$$
 so $-a \le 0$. So $|a| = a$ and $|-a| = -(-a)$. Then $|-a| = -(-a) = a = |a|$. Suppose $a < 0$ so $-a > 0$. So $|a| = -a$ and $|-a| = -a$. Then $|a| = -a = |-a|$. ▮

Proof. Suppose $-b \le a \le b$. Suppose $a \ge 0$ then |a| = a. So $-b \le a \le b \iff -b \le |a| \le b$. Suppose a < 0 then |a| = -a So $-b \le a \le b \iff b \ge -a \ge -b \iff b \ge |a| \ge -b$. Therefore $|a| \le b$.

Supose $|a| \le b$. Suppose $a \ge 0$ then $|a| \le b \iff a \le b$. Suppose a < 0 then $|a| \le b \iff -a \le b \iff -b \le a$. Since $-b \le a$ and $a \le b$ then $-b \le a \le b$.

Letting
$$b = a$$
 gives us $-|a| \le a \le |a|$.

Proof. Trivially $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. Taking the sum of these gives $-|a| + (-|b|) \le a + b \le |a| + |b| \iff -(|a| + |b|) \le a + b \le |a| + |b|$. Then by part (ii) we get $|a + b| \le |a| + |b|$.

Problem 16

(a) Show that

$$(x + y)^2 = x^2 + y^2$$
 only when $x = 0$ or $y = 0$
 $(x + y)^3 = x^3 + y^3$ only when $x = 0$ or $y = 0$ or $x = -y$

(b) Using the fact that

$$x^2 + 2xy + y^2 = (x + y)^2 \ge 0$$

show that $4x^2 + 6xy + 4y^2 > 0$ unless x and y are both 0.

- (c) Use part (b) to find out when $(x + y)^4 = x^4 + y^4$.
- (d) Find out when $(x+y)^5 = x^5 + y^5$. Hint: From the assumption $(x+y)^5 = x^5 + y^5$ you should be able to derive the equation $x^3 + 2x^2 + 2xy^2 + y^3 = 0$, if $xy \ne 0$. This implies that $(x+y)^3 = x^2y + xy^2 = xy(x+y)$. You should now be able to make a good guess as to when $(x+y)^n = x^n + y^n$; the proof is contained in Problem 11 57.

Proof. First $(x + y)^2 = x^2 + 2xy + y^2$. Then $x^2 + 2xy + y^2 = x^2 + y^2 \iff 2xy = 0 \iff xy = 0$. Therefore x = 0 or y = 0.

Now $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$. Then $x^3 + 3x^2y + 3xy^2 + y^3 = x^3 + y^3 \iff 3x^2y + 3xy^2 = 0 \iff 3xy(x+y) = 0$. So either 3xy = 0 in which case x = 0 or y = 0, or x + y = 0 in which case x = -y.

Proof. Now $4x^2 + 2xy + 4y^2 = 4(x^2 + 2xy + y^2) - 6xy = 4(x+y)^2 - 6xy$. Then $(x+y)^2 \ge 0 \iff x^2 + 2xy + y^2 \ge 0 \iff x^2 + y^2 \ge 2xy$. Similarly $(x-y)^2 \ge 0 \iff x^2 - 2xy + y^2 \ge 0 \iff x^2 + y^2 \ge 2xy$. Now since $x^2 + y^2 \ge -2xy$ it follows that $-(x^2 + y^2) \le 2xy$. Since $-(x^2 + y^2) \le 2xy$ and $x^2 + y^2 \ge 2xy$, it follows that $-(x^2 + y^2) \le 2xy \le x^2 + y^2$. and therefore $|2xy| \le x^2 + y^2 \iff 2|xy| \le x^2 + y^2$. Now expanding, $4(x+y)^2 - 6xy > 0 \iff 4(x^2 + 2xy + y^2) - 6xy > 0 \iff 4x^2 + 8xy + 4y^2 - 6xy > 0 \iff 4x^2 + 4y^2 + 2xy > 0$. Now since $-(x^2 + y^2) \le 2xy \le x^2 + y^2$ it follows that $4x^2 + 4y^2 + 2xy > 4x^2 + 4y^2 - (x^2 + y^2) \iff 4(x^2 + y^2) - (x^2 + y^2) > 0 \iff 3(x^2 + y^2) > 0$. Which is clearly true if $x, y \ne 0$, since $x^2 \ge 0$ and $y^2 \ge 0$ therefore $3(x^2 + y^2) > 0$. Therefore $4x^2 + 2xy + 4y^2 > 0$ if x, y are not both zero.

Problem 18

(a) Suppose that $b^2 - 4c \ge 0$. Show that the numbers

$$\frac{-b + \sqrt{b^2 - 4c}}{2}$$
, $\frac{-b - \sqrt{b^2 - 4c}}{2}$

both satisfy the equation $x^2 + bx + c = 0$.

(b) Suppose that $b^2 - 4c < 0$. Show that there are not numbers x satisfying $x^2 + bx + c = 0$; in fact, $x^2 + bx + c > 0$ for all x. Hint: Complete the square.

(c) Use this fact to give another proof that if \hat{x} and y are not both 0, then $x^2 + xy + y^2 > 0$.

(d) For which numbers α is it true that $x^2 + \alpha xy + y^2 > 0$ whenever x and y are not both 0?

(e) Find the smallest possible value of $x^2 + bx + c$ and of $ax^2 + bx + c$, for a > 0.

Problem 19

The fact that $a^2 \ge 0$ for all numbers a, elementary as it may seem, is nevertheless a fundamental idea upon which most important inequalities are ultimately based. The great-granddaddy of all inequalities is the *Schwarz inequality*:

$$x_1 y_1 \le \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}$$

(A more general form occurs in Problem 2 – 21.) The three proofs of the Schwarz inequality outlined below have one thing in common - their reliance on the fact that $a^2 \ge 0$ for all a.

(a) Prove taht if $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$ for some number λ , then equality holds in the Schwarz inequality. Prove the same thing if $y_1 = y_2 = 0$. Now suppose that y_1 and y_2 are not both 0, and that there is no λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$ Then

$$0 < (\lambda y_1 - x_1)^2 + (\lambda y_2 - x_2)^2$$

= $\lambda^2 (y_1^2 + y_2^2) - 2\lambda (x_1 y_1 + x_2 y_2) + (x_1^2 + x_2^2)$

Using Problem 18, complete the proof of the Schwarz inequality.

(b) Prove the Schwarz inequality by using $2xy \le x^2 + y^2$ (how is this derived) with

$$x = \frac{x_i}{\sqrt{x_1^2 + x_2^2}}, \quad y = \frac{y_i}{\sqrt{y_1^2 + y_2^2}}$$

first show for i = 1 then for i = 2.

(c) Prove the Scwarz inequality by first proving that

$$(x_1^2 + x_2^2)(y_1^2 + y_2^2) = (x_1y_1 + x_2y_2)^2 + (x_1y_2 - x_2y_1)^2$$

9

(d) Deduce, from each of these three proofs, that equality holds only when $y_1 = y_2 = 0$ or when there is a number λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$.

In our later work, three facts about inequalities will be crucial. Although proofs will be supplied at the appropriate point in the text, a personal assault on these problems is infinitely more enlightening than a persual of a completely worked-out proof. The statements of these propositions involve some weird numbers, but their basic message is very simple: if x is close enough to x_0 , and y is close enough to y_0 then x + y will be close to $x_0 + y_0$, and xy will be closer to x_0y_0 , and $\frac{1}{y}$ will be close to $\frac{1}{y_0}$. The symbol " ϵ " which appears in these propositions is the fith letter of the Greek alphabet ("epsilon"), and could just as well be replaced by a less intimidating Roman letter; however, tradition has made the use of the ϵ almost sacrosanet in the contexts to which these theorems apply.

Problem 20

Prove that if

$$|x-x_0|<rac{\epsilon}{2}$$
 and $|y-y_0|<rac{\epsilon}{2}$

then

$$|(x+y)-(x_0+y_0)|<\epsilon$$

$$|(x-y)-(x_0-y_0)|<\epsilon$$

Problem 21

Prove that if

$$|x-x_0| < min\left(\frac{\epsilon}{2(|y_0|+1)},1\right)$$
 and $|y-y_0| < \frac{\epsilon}{2(|x_0|+1)}$

then $|xy - x_0y_0| < \epsilon$

(The notion "min" was defined in Problem 13, but the formula provided by that problem is irrevelant at the moment; the first inequality in the hypothesis just means that

$$|x-x_0|<rac{\epsilon}{2(|y_0|+1)}$$
 and $|x-x_0|<1$;

at one point in the argument you will need the first inequality, and at another point you will need the second. One more word of advice: since the hypotheses only provide information about $x - x_0$ and $y - y_0$, it is almost a forgone conclusion taht the proof will depend up writing $xy - x_0y_0$ in a way that involves $x - x_0$ and $y - y_0$.)

Problem 22

Prove that if $y_0 \neq 0$ and

$$|y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\epsilon|y_0|^2}{2}\right)$$

Problem 23

Replace the question marks in the following statement by expressions involving ϵ , x_0 , and y_0 so that the conclusion will be true:

If $y_0 \neq 0$ and

$$|y - y_0| < ?$$
 and $|x - x_0| < ?$

then
$$y \neq 0$$
 and

$$\frac{x}{y} - \frac{x_0}{y_0} < \epsilon$$

This problem is trivial in the sense that its solution follows from Problem 21 and 22 with almost now work at all (notice that $\frac{x}{y} = x \cdot \frac{1}{y}$). The crucial point is not to become confused; decide which of the two problems should be used first, and don't panic if your answer looks unlikely.