

Tutorial: Answering Unions of Conjunctive Queries with Ideal Time Guarantees

Nofar Carmeli

ENS, PSL University

Focus

- Data: general relational databases
- Tasks: enumeration & related tasks
- Queries: joins → CQs → UCQs
- Tractability: "ideal" time guarantees
- Goal: classify cases into tractable/not

Content

Join Queries	 Acyclicity Complexity measures Model subtleties Lower bounds Self-joins
Conjunctive Queries	Handling projectionsFree-connexityLower bounds
Unions of Conjunctive Queries	 Easy U easy Easy U hard Cheater's Lemma Linear partial time Hard U hard
Related Problems	 Ordered enumeration Direct & ranked access Direct access for UCQs Connections between problems

Join Queries

Join Query Example

authors:

schedule:

Author	Affiliation	Title	Title	Day
Shay Gershtein	Tel Aviv Univ.	On the Hardness	On the Hardness of	Tue
Uri Avron	Tel Aviv Univ.	On the Hardness	Linear programs	Tue
Florent Capelli	Univ. Lille	Linear programs	Answering Unions	Tue
Nicolas Crosetti	Univ. Lille	Linear programs	On an Information	Wed

Author	Affiliation	Title	Day
Shay Gershtein	Tel Aviv Univ.	On the Hardness	Tue
Uri Avron	Tel Aviv Univ.	On the Hardness	Tue
Florent Capelli	Univ. Lille	Linear programs	Tue
Nicolas Crosetti	Univ. Lille	Linear programs	Tue

 $Q_1(Author, Affiliation, Title, Day) \leftarrow$ authors(Author, Affiliation, Title), schedule(Title, Day)

Challenges

- Many answers
- Many intermediate answers

$$Q_1(x,y,z) \leftarrow R(x,y), S(y,z)$$

x	У	Z
a1	b1	c 1
a1	b1	c2
a2	b1	c 1
a2	b1	c2
a3	b1	c1
a3	b1	c2

$$Q_2(x, y, z) \leftarrow R(x, y), S(y, z), T(x, z)$$

$$\begin{array}{c|cccc} x & y & z \\ \hline a2 & b1 & c1 \end{array}$$

Acyclicity

• A query that has a join tree is called <u>acyclic</u>

3. For every variable:2. tree the nodes containing it form a subtree

1. a node for every atom

Query: $Q_1(x, y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), U(w)$

acyclic

Query: $Q_2(x, y, z) \leftarrow R(x, y), S(y, z), T(x, z)$

Acyclic Joins

- An efficient algorithm for acyclic joins
- 1. Find a join tree and set a root
- 2. Remove dangling tuples
 - 3. Join

1. Leaf-to-root:

 $r_{parent} \leftarrow r_{parent} \ltimes r_{child}$

2. Root-to-leaf:

 $r_{child} \leftarrow r_{child} \bowtie r_{parent}$

Acyclic Joins

- An efficient algorithm for acyclic joins
 - 1. Find a join tree and set a root
 - 2. Remove dangling tuples
- 3. Join

for t1 in relation 1:

for t2 in relation 2 matching t1:

for t3 in relation 3 matching t1,t2:

for t4 in relation 4 matching t1,t2,t3:

output t1,t2,t3,t4

Complexity Guarantees

- Data complexity
 - input = database
 - query size = constant
- Possibly: output ≫ input
- Minimal requirements:
 - Linear time (to read input)
 - Constant time per answer (to print output)

Complexity Guarantees

- Worst-case-optimal total time [Atserias, Grohe, Marx; FOCS 08]
 - Linear in input + worst-case output

- Instance-optimal total time (also relevant)
 - Linear in input + output

- Enumeration ("ideal"; our focus)
 - Preprocessing linear in input
 - delay constant

Acyclic Joins

- An efficient algorithm for acyclic joins
 - 1. Find a join tree and set a root (constant time)
 - 2. Remove dangling tuples (linear preprocessing)
 - 3. Join (constant delay)

RAM Model Subtleties

- Constant time in the RAM model, what does it mean?
- Assumptions:
 - Length of registers: $\theta(\log n)$
 - Basic operations in O(1)
 - Available memory: $O(n^c) / O(n)$
 - Modified memory: everything / O(n)
 - Modified memory during enumeration: everything $/ \dots / O(1)$
- Implications:
 - Domain values $\leq n^c$
 - Sorting the input in O(n)
- "saves" Radix Sort handles k integers, each bounded by n^c , in time O(ck + cn)
- \log factors If $O(n^c)$ available memory,
 - Lookup table with k elements: construction in O(k), search in O(1)

"saves" log factors

RAM Model Subtleties

- Constant time in the RAM model, what does it mean?
- Assumptions:
 - Length of registers: $\theta(\log n)$
 - Basic operations in O(1)
 - Available memory: $O(n^c) / O(n)$
 - Modified memory: **everything** / O(n)
 - Modified memory during enumeration: everything $/ \dots / O(1)$
- Implications:
 - Domain values $\leq n^c$
 - Sorting the input in O(n)
- "saves" Radix Sort handles k integers, each bounded by n^c , in time O(ck + cn)
- \log factors If $O(n^c)$ available memory,
 - Lookup table with k elements: construction in O(k), search in O(1)
 - In this talk, assume the relaxed model

"saves" log factors

Join Queries

When it doesn't work out

Acyclic Joins

- An efficient algorithm for acyclic joins
 - 1. Find a join tree and set a root
- 2. Remove dangling tuples
 - 3. Join

only works with join trees

 $r_{parent} \leftarrow r_{parent} \bowtie r_{child}$

2. Root-to-leaf:

 $r_{child} \leftarrow r_{child} \bowtie r_{parent}$

Acyclic Joins

- An efficient algorithm for acyclic joins
 - 1. Find a join tree and set a root

Assumption: cannot detect triangles in a graph in linear time

Cyclic: $Q_2(x, y, z) \leftarrow R_1(x, y), R_2(y, z), R_3(x, z)$

first answer in linear time \Rightarrow triangle in linear time \Rightarrow not possible

Lower Bound: Cyclic Joins

[Brault-Baron 13]

Assumption: k-Hypercliques cannot be found in time O(m) m = number of edges of size k-1

Cyclic: $Q_2(x, y, z) \leftarrow R_1(x, y), R_2(y, z), R_3(x, z)$

For every cyclic query, we can preform a similar reduction!

Joins Queries

Given a join query Q,

If Q is acyclic, it is solvable in linear preprocessing and constant delay

If Q is cyclic, a first answer cannot be found in linear time *

^{*} assuming hardness of k-hyperclique detection

^{*} assuming no self-joins

Assumption: cannot detect triangles in a graph in linear time

Cyclic: $Q_2(x, y, z) \leftarrow R_1(x, y), R_2(y, z), R_3(x, z)$

first answer in linear time \Rightarrow triangle in linear time \Rightarrow not possible

Lower Bound: Cyclic Joins

[Brault-Baron 13]

Assumption: cannot detect triangles in a graph in linear time

Cyclic: $Q_2(x, y, z, u, v) \leftarrow R_1(x, y), R_2(y, z, v), R_3(u, x, z)$

first answer in linear time \implies triangle in linear time \implies not possible

Lower Bound: Cyclic Joins

[Brault-Baron 13]

Assumption: cannot detect triangles in a graph in linear time

Cyclic: $Q_2(x, y, z, u, v) \leftarrow R_1(x, y), R_2(y, z, v), R_2(u, x, z)$

first answer in linear time \implies triangle in linear time \implies not possible

Self-Joins

- Lower bounds do not apply with self-joins
- Can they be easier?
 - Yes! [Berkholz, Gerhardt, Schweikardt; SIGLOG News 20]
- Example: [C, Segoufin; 22]

e: [C, Segoufin; 22]
$$Q_{1}(x, y, z, w) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(x, w), R_{4}(w, z)$$

$$Q_2(x, y, z, w) \leftarrow R_1(x, y), R_2(y, z), R_1(x, w), R_2(z, w)$$
Constant delay

Conjunctive Queries

(Introducing Projections)

CQ Example

authors:

schedule:

Author	Affiliation	Title	Title
Shay Gershtein	Tel Aviv Univ.	On the Hardness	On the Hardness of
Uri Avron	Tel Aviv Univ.	On the Hardness	Linear programs
Florent Capelli	Univ. Lille	Linear programs	Answering Unions
Nicolas Crosetti	Univ. Lille	Linear programs	On an Information

ormation	Wed	
	Affiliation	Day
	Tel Aviv Univ.	Tue
	Univ. Lille	Tue

Day

Tue

Tue

Tue

 $Q_1(Affiliation, Day) \leftarrow authors(Author, Affiliation, Title), schedule(Title, Day)$

Handling Projection

works
$$Q_1(y, z, w) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w), R_4(w)$$

Solution:

- 1. Find a join tree
- 2. Remove dangling tuples
- 3. Ignore existential variables
- 4. Join

x	У	Z	w			
x1	v1	z1	w1		У	Z
1	•			_	y1	z1
	y1	Z2	W2		v1	z1 z2
1	y2	z2	w2			
	v 2	77	w2	-	y2	z2
K	y Z	LZ	vv Z			

Handling Projection

$$Q_{1}(y,z,w) \leftarrow R_{1}(x,y), R_{2}(y,z), R_{3}(z,w), R_{4}(w)$$

$$Q_{2}(x,y,w) \leftarrow R_{1}(x,y), R_{2}(y,z), R_{3}(z,w), R_{4}(w)$$

Solution:

- 1. Find a join tree
- 2. Remove dangling tuples
- 3. Ignore existential variables
- 4. Join

х	у	Z	w		X	У	w
x1	y1	z1	w1		x1	y1	w1
x1	y1	z2	w2		x1	y1	w2
x 1	y2	z2	w2		x1	y2	w2
x2	y2	z2	w2		x2	y2	w2

An acyclic CQ has a graph with:

A free-connex CQ also requires:

1. a node for every atom possibly also subsets

w, v

2. tree

3. for every variable: the nodes containing it form a subtree

4. a subtree with exactly the free variables $Q_2(x,y,z) \leftarrow R_1(x,y), R_2(y,z,w), R_3(w,v)$

Eliminating Projection

given a **free-connex** CQ and an input DB, we can construct **in linear time** an equivalent **full acyclic** CQ and input DB

Conjunctive Queries (CQs)

[Brault-Baron 13]

Given a conjunctive query Q,

[Bagan, Durand, Grandjean; CSL 07]

If Q is free-connex, $Q \in \langle lin, const \rangle$

If Q is acyclic not free-connex, Q ∉ <lin,const>*

If Q is cyclic, Q ∉ <lin,const>**

^{*} no self-joins, assuming hardness of matrix multiplication

^{**} no self-joins, assuming hardness of k-hyperclique detection

Lower Bound: acyclic non-free-connex

Hard due to duplicates

Q 1 1

R₂12131

Acyclic non-free-connex: $Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$

Lower Bound: acyclic non-free-connex

[Bagan, Durand, Grandjean; CSL 07]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

Acyclic non-free-connex: $Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$

Intractability cause:

x - y - z

 $O(n^2)$ preprocessing + O(1) delay = $O(n^2)$ total \implies not possible

Unions of Conjunctive Queries

(Introducing Unions)

UCQ Example

authors:

sch	ned	ul	e:
00.		٠.	- .

Author	Affiliation	Title	Title	Day
Shay Gershtein	Tel Aviv Univ.	On the Hardness	On the Hardness of	Tue
Uri Avron	Tel Aviv Univ.	On the Hardness	Linear programs	Tue
Florent Capelli	Univ. Lille	Linear programs	Answering Unions	Tue
Nicolas Crosetti	Univ. Lille	Linear programs	On an Information	Wed

talks:

Speaker	Affiliation	Title
Nofar Carmeli	ENS, PSL	Answering Unions
Hung Ngo	RelationalAI	On an Information

$$Q_3 = Q_1 \cup Q_2$$

Affiliation	Day
Tel Aviv Univ.	Tue
Univ. Lille	Tue
Affiliation	Day
ENS, PSL Univ.	Tue
RelationalAI	Wed

 $Q_1(Affiliation, Day) \leftarrow authors(Author, Affiliation, Title), schedule(Title, Day)$ $Q_2(Affiliation, Day) \leftarrow talks(Speaker, Affiliation, Title), schedule(Title, Day)$

Cases for UCQs

Some Easy, Some Hard

All CQs are Hard

Easy U Easy Is Always Easy

Generated (lookup): a b c d x

```
Queue:
a
c
b
d
x
```


Enumeration: union of easy CQs

[Durand, Strozecki; CSL 11]

```
while A.hasNext():
                         a = A.next()
                         if a \notin B:
                         \rightarrow print a
prints A \setminus B
                         else:
                            print B.next()
                      while B.hasNext():
                                                           prints B
                         print B.next() *
              A \setminus B and B are a partition of A \cup B
```


All CQs are Hard

Lower Bound: acyclic non-free-connex

[Bagan, Durand, Grandjean; CSL 07]

Assumption: Boolean $n \times n$ matrices cannot be multiplied in time $O(n^2)$

Intractability cause: x - y - z

Acyclic non-free-connex: $Q(x,z) \leftarrow R_1(x,y), R_2(y,z)$

 $O(n^2)$ preprocessing + O(1) delay = $O(n^2)$ total \implies not possible

Why this isn't hard

not free connex
$$Q_1(x, z, w) \leftarrow R_1(x, y), R_2(y, z), R_3(z, w)$$

$$U$$

$$Q_2(x', y', z') \leftarrow R_1(x', y'), R_2(y', z')$$

Q_1		
1	2	Τ
2	2	T
Q_2		
1	1	2
1	2	2
2	2	2

 $O(n^3)$ solutions: The computation does not contradict the assumption

R_1		R_2			R_3	
1	1	1	2		2	1
1	2	2	2			
2	2			-		

The hardness results do not hold within a union

Hard U Easy Can Be Easy

[C, Kröll; PODS 19]

If an enumeration problem can be solved with:

- Usually constant delay
- Almost no duplicates

constant number of linear delay steps

Then*, it is easy

constant number of duplicates per answer Can be solved in:
linear preprocessing,
constant delay,
no duplicates

Complexity Measures

[C, Kröll; TODS 21]

- Linear total time
 - Total time O(n+m)

- Linear partial time
 - Time before the *i*th answer is O(n + i)

equivalent assuming using polynomial space

- Linear preprocessing and constant delay
 - Time before the first answer O(n)
 - Time between successive answers O(1)

[C, Kröll; PODS 19]

• CQs with isomorphic bodies.

hard part
$$Q_{1}(x, z, w, u) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(z, w), R_{4}(w, u)$$

$$Q_{2}(x, y, z, u) \leftarrow R_{1}(x, y), R_{2}(y, z), R_{3}(z, w), R_{4}(w, u)$$
hard part

	Step	Output	Side Effect
1	Solve ${Q_2}^\prime$	$\subseteq Q_2$	Find $R_1 \bowtie R_2$
2	Solve Q_1^+	Q_1	Find $R_3 \bowtie R_4$
3	Solve Q_2^+	Q_2	

Related Problems

Example

Q(Session, AttendanceA, AttendanceB)

← runA(Session, AttendanceA), runB(Session, AttendanceB)

runA:

Session	AttendanceA
Tutorial	123
Optimization	85
Learning	123
Streaming	74

runB:

Session	AttendanceB
Tutorial	32
Optimization	71
Learning	78
Streaming	29

Session	AttendanceA	AttendanceB
Tutorial	123	29
Optimization	85	78
Learning	123	71
Streaming	74	32

- What can we learn before the enumeration is done?
- The answer order may be important
 - Random (sampling without repetitions)
 - Sorted (lexicographically / by sum of weights)

Ordered Enumeration

- With arbitrary order:
 - Free-connex: linear preprocessing, constant delay
- With order guarantees:
 - Free-connex: linear preprocessing, logarithmic delay

Random (sampling without repetitions)

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

Sorted (lexicographically / by sum of weights)

[Tziavelis, Gatterbauer, Riedewald; VLDB 21]

Algorithm for Random Enumeration

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

Find the number N of answers

6

Find a random permutation of 1,...,N

1 5 3 2 6 4

Direct access to answers

answers

a1

a2

a3

a4

a5

a6

a1 a5 a3 a2 a6 a4

Direct Access + Binary Search

Modified Fisher-Yates Shuffle [Durstenfeld 1964]

Direct Access
[Brault-Baron 2013]

Direct and Ranked Access

Example: get the median number of total attendees in a session

runA:

Session	AttendanceA
Tutorial	123
Optimization	85
Learning	131
Streaming	74

runB:

Session	AttendanceB
Tutorial	32
Optimization	71
Learning	78
Streaming	29

- Solution 1: join, sort, access the middle
- Solution 2: count, ranked enumeration until the middle
- Solution 3: count, ranked access to the middle

	Session	AttendanceA	AttendanceB	SUM
	Learning	123	71	194
	Optimization	85	78	163
7	Tutorial	123	29	152
	Streaming	74	32	106

- Direct Access: simulate an answers array
- Ranked Access: simulate a sorted answers array

Connection between problems

Connection between problems

[C, Tziavelis, Gatterbauer, Kimelfeld, Riedewald; PODS 21]

Can be solved efficiently* for all free-connex CQs?

^{*} with **polylog** time per answer after linear preprocessing

CQ Enumeration & Lex. Access

[C, Tziavelis, Gatterbauer, Kimelfeld, Riedewald; PODS 21]

Enumerate

$$Q_1(v_1, v_2) \leftarrow R(v_1, v_3), S(v_3, v_2)$$
 Not free-connex using

Lexicographic access

$$Q_2(v_1, v_2, v_3) \leftarrow R(v_1, v_3), S(v_3, v_2)$$
Disruptive trio

Log number of direct-access calls between answers

 Q_1 has no enumeration with polylog delay

 Q_2 has no lexicographic access with polylog access time

Related Work

Other settings

- Sparsity [Schweikardt, Segoufin, Vigny; PODS 18]
- Functional dependencies [C, Kröll; ICDT 18]
- Dynamic data [Berkholz, Keppeler, Schweikardt; ICDT 18]
- Theta-joins [Idris, Ugarte, Vansummeren, Voigt, Lehner; VLDB 18]
- Signed CQs [Brault-Baron 13]

Other surveys

- Written tutorial [Berkholz, Gerhardt, Schweikardt; SIGLOG News 20]
- Tutorial talk and paper [Durand; PODS 20]
- Surveys [Segoufin; STACS 14] [Segoufin; SIGMOD Rec. 15]

Focus

- Data: general relational databases
- Tasks: enumeration & related tasks
- Queries: joins → CQs → UCQs
- Tractability: "ideal" time guarantees
- Goal: classify cases into tractable/not