consider a function f: R -> R

6 din 8

e &; &(x) = 10g(x)

Z: B→ B

(00,0) = & mob

munican at probil the bonesna 2i noilogimity

or minimum value that & takes:

min flx) or max exists.

The min or max exists.

es; 3(x) = /08(x)

min fex) -> dues not exist

f(x) = 2 = 0 min f(x) = 0

xn= 10: 1021,2, ---

min an does not exist

o = nx fai tud

(08) Firding the & test gives the winimum or meximum volue of &

ardwin for ar ford wax for

arglmin f(x) or arg max f(x) e-8; f(x) = x2 min &(x) = 0 ong min f(x) = 0 g(x) = x2+1 $\min f(x) = 1$ arswin f(x) =0 $\beta(x) = (x-1)$ min &(x) = 0 ang min f(x) = 1Practically, the function f(x) represents some red-world Swantity that we save about and x EDM corresponds to n formaters of the problem that after the quantity of interest. $\chi = \begin{pmatrix} \chi_1 \\ \chi_2 \\ 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}$ Example: Portrolio optimisation x= x2 involvent in stock of

2 Abron 2 repla 280/ Hitarg 2
and max f(x)
Constains: Total bridget => Exi & B
グ じき 0
Example: Rouse optimization we reoper to minimization of
Line.
(2) -> (2) -> (3
B Option 3
E - D - D - D - D - D - D - D - D - D -
E(x) = Time needed to go from A to B
be encoding the both
\(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\) \(\frac{1}{2}\)
(x) Ri = 0 if ith edge is not taken
de 12 => = 1 18 ith edge is taken
$\begin{bmatrix} x_{6} \end{bmatrix}$ $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ \Rightarrow obtion $\sqrt{2}$
$\mathcal{Z}(x) = \frac{\partial (S+(1))}{\partial (x-Speed(1))} \times x_1 + \frac{\partial (S+(1))}{\partial (x-Speed(1))} \times x_2 +$
() () () () () () () () () ()
Co time taken to 4 Sist (9) x xg
francise edigi

This problem innolves oxidinizing a 9- dimen situal
birang reator x e 30,8°
argnin f(x) and min f(x)
Si,08 lle ver du si glentes eint d
We have constraints that X must correspond to a
X = \ x = x corresponds to a valid route \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ang min f(x) x eX Constraint set in obtinization
optimization.
Other Examples
10 10 ges: 8u jandent and romand et muses
@ Machine learning
3) Robot motion planning

Summer . Objuni3azion buoppens are Enalmpere a edopping the beoplen into an obtimisation grements Aldollos 27 Kente we have combinatorial, intezar, convex, stochastic optimization 2) Recognising the nature of the optimization framework Inear, first order, gradient discent?

Sing an appropriate numerical optimization method to help us solve the problem => Run-time > Theory mitudes at Jo 22 ankors at pribablish (4) praided by the Sprithm. Mathematical optimization: Foundational concepts O Unless otherwise Stated, &C-) is assumed to attein its minimum or meximum rolue. @ without 188 of generality, we will steek with min flx) or nex flx) rether then organistral er arguer for An optimization problem will be written as

xeor min f(x)
er max f(x)
stinu su part subvide ?? stopinos est mentes tud (x)? xem so (x)? nim
2 ⇒ Objective function
x => Optimization Variable
Onconstrained optimisation The diminisation The diminisation
L3 x Should be searched over the entire domain of
Solution \Rightarrow A solution to an optimization problem min $f(x)$'s often denoted by $x^* \in \mathbb{R}^n$ and it were?
Solishes: $2(x) + x \in \mathbb{R}^n$
x* :s referred to as a minimizer or an
Me Can have multiple Solutions; XX XX

Class Notes Page 6

