CONTENTS

Int	roduc	ction .		ΧI
1.	The	Magic	of Quantum Mechanics	1
	1.1		y of a revolution	4
	1.2		ates	15
	1.3		eisenberg uncertainty principle	34
	1.4		openhagen interpretation	37
	1.5		o disprove the Heisenberg principle? The Einstein–Podolsky–Rosen	
			,	38
	1.6		world real?	40
			tion	40
	1.7		ell inequality will decide	43
	1.8		ing results of experiments with photons	46
	1.9		ortation	47
	1.10		um computing	49
2.	The	Schröd	inger Equation	55
	2.1	Symm	etry of the Hamiltonian and its consequences	57
		2.1.1	The non-relativistic Hamiltonian and	
			conservation laws	57
		2.1.2	Invariance with respect to translation	61
		2.1.3	Invariance with respect to rotation	63
		2.1.4	Invariance with respect to permutation of identical particles (fermi-	
			ons and bosons)	64
		2.1.5	Invariance of the total charge	64
		2.1.6	Fundamental and less fundamental invariances	65
		2.1.7	Invariance with respect to inversion – parity	65
		2.1.8	Invariance with respect to charge conjugation	68
		2.1.9	Invariance with respect to the symmetry of the nuclear framework	68
		2.1.10	Conservation of total spin	69
		2.1.11	Indices of spectroscopic states	69
	2.2	Schröd	linger equation for stationary states	70
		2.2.1	Wave functions of class Q	73
		2.2.2	Boundary conditions	73
		2.2.3	An analogy	75

VIII

		2.2.4	Mathematical and physical solutions	76
	2.3		ime-dependent Schrödinger equation	76
		2.3.1	Evolution in time	77
		2.3.2	Normalization is preserved	78
		2.3.3	The mean value of the Hamiltonian is preserved	78
		2.3.4	Linearity	79
	2.4	Evolu	tion after switching a perturbation	79
		2.4.1	The two-state model	81
		2.4.2	First-order perturbation theory	82
		2.4.3	Time-independent perturbation and the Fermi golden rule	83
		2.4.4	The most important case: periodic perturbation	84
3.	Roye	and the	Schrödinger Equation	90
Э.	-			
	3.1		npse of classical relativity theory	93
		3.1.1	The vanishing of apparent forces	93
		3.1.2	The Galilean transformation	96
		3.1.3	The Michelson–Morley experiment	96
		3.1.4	The Galilean transformation crashes	98
		3.1.5	The Lorentz transformation	100
		3.1.6	New law of adding velocities	102
		3.1.7	The Minkowski space-time continuum	104
	3.2	3.1.8	How do we get $E = mc^2$?	106 109
	3.3			111
	3.3	3.3.1	Dirac equation	111
		3.3.2	The Dirac equations for electron and positron	111
		3.3.3	Spinors and bispinors	115
		3.3.4	What next?	117
		3.3.5	Large and small components of the bispinor	117
		3.3.6	How to avoid drowning in the Dirac sea	118
		3.3.7	From Dirac to Schrödinger – how to derive the non-relativistic	110
		3.3.7	Hamiltonian?	119
		3.3.8	How does the spin appear?	120
		3.3.9	Simple questions	122
	3.4		sydrogen-like atom in Dirac theory	123
	٥	3.4.1	Step by step: calculation of the ground state of the hydrogen-like	120
		01.112	atom within Dirac theory	123
		3.4.2	Relativistic contraction of orbitals	128
	3.5		er systems	129
	3.6		nd the Dirac equation	130
		3.6.1		
		3.6.2	A few words about quantum electrodynamics (QED)	132
4.	Eve	ot Salm	tions – Our Beacons	142
٦.				
	4.1		particle	144
	4.2		cle in a box	145
		4.2.1	Box with ends	145
		4.2.2	Cyclic box	149

		4.2.3 Comparison of two boxes: hexatriene and benzene	152
	4.3	Tunnelling effect	
		4.3.1 A single barrier	153
		4.3.2 The magic of two barriers	158
	4.4	The harmonic oscillator	164
	4.5	Morse oscillator	169
		4.5.1 Morse potential	169
		4.5.2 Solution	170
		4.5.3 Comparison with the harmonic oscillator	172
		4.5.4 The isotope effect	172
		4.5.5 Bond weakening effect	174
		4.5.6 Examples	174
	4.6	Rigid rotator	176
	4.7	Hydrogen-like atom	178
	4.8	Harmonic helium atom (harmonium)	185
	4.9	What do all these solutions have in common?	188
		Beacons and pearls of physics	189
	1.10	beacons and pears of physics	10)
5.	Two	Fundamental Approximate Methods	195
	5.1	Variational method	196
	5.1	5.1.1 Variational principle	196
		5.1.2 Variational parameters	200
		5.1.3 Ritz Method	202
	5.2	Perturbational method	203
	3.2	5.2.1 Rayleigh–Schrödinger approach	
		5.2.2 Hylleraas variational principle	
		5.2.3 Hylleraas equation	
		5.2.4 Convergence of the perturbational series	
		5.2.1 Convergence of the perturbational series	210
6.	Sepa	aration of Electronic and Nuclear Motions	217
	6.1	Separation of the centre-of-mass motion	221
		6.1.1 Space-fixed coordinate system (SFCS)	221
		6.1.2 New coordinates	
		6.1.3 Hamiltonian in the new coordinates	
		6.1.4 After separation of the centre-of-mass motion	
	6.2	Exact (non-adiabatic) theory	
	6.3	Adiabatic approximation	
	6.4	Born–Oppenheimer approximation	
	6.5	Oscillations of a rotating molecule	
	0.5	6.5.1 One more analogy	
		6.5.2 The fundamental character of the adiabatic approximation – PES	233
	6.6	Basic principles of electronic, vibrational and rotational spectroscopy	235
	0.0	6.6.1 Vibrational structure	235
		6.6.2 Rotational structure	236
	67		238
	6.7	Approximate separation of rotations and vibrations	230
	6.8	Polyatomic molecule	
			241
		6.8.2 Simplifying using Eckart conditions	243

X Contents

		6.8.3 Approximation: decoupling of rotation and vibrations 2	44
			45
			46
	6.9		47
		, , , , , , , , , , , , , , , , , , , ,	52
	6.11		55
			55
			57
	6.12	•	60
			62
		J I	64
	6.13	, 11	68
			68
		6.13.2 "Russian dolls" – or a molecule within molecule 2	70
7.	Moti	on of Nuclei	75
	7.1	Rovibrational spectra - an example of accurate calculations: atom - di-	
			78
			79
		1, 1	80
			81
			82
			83
	7.2		84
	7.3		90
			90
			91
	7.4		92
		1	92
		ϵ	93
	7.5		94
		· · · · · · · · · · · · · · · · · · ·	95
		<i>C</i> ;	03
	7.6		04
			04
			06
			07
		1 1	08
		7.6.5 Quantum-classical MD	
	7.7	Simulated annealing	
	7.8	• .	10
	7.9	J control of the cont	11
			14
	7.11	Cellular automata	17
8.	Elec	ronic Motion in the Mean Field: Atoms and Molecules	24
	8.1	Hartree–Fock method – a bird's eye view	29
		3	20

Contents XI

	8.1.2	Variables	330
	8.1.3	Slater determinants	332
	8.1.4	What is the Hartree–Fock method all about?	333
8.2	The F	ock equation for optimal spinorbitals	334
	8.2.1	Dirac and Coulomb notations	334
	8.2.2	Energy functional	334
	8.2.3	The search for the conditional extremum	335
	8.2.4	A Slater determinant and a unitary transformation	338
	8.2.5	Invariance of the \hat{J} and \hat{K} operators	339
	8.2.6	Diagonalization of the Lagrange multipliers matrix	340
	8.2.7	The Fock equation for optimal spinorbitals (General Hartree–Fock	
		method – GHF)	341
	8.2.8	The closed-shell systems and the Restricted Hartree-Fock (RHF)	
		method	342
	8.2.9	Iterative procedure for computing molecular orbitals: the Self-	
		Consistent Field method	350
8.3	Total e	energy in the Hartree–Fock method	351
8.4		utational technique: atomic orbitals as building blocks of the molecu-	
	lar wa	ve function	354
	8.4.1	Centring of the atomic orbital	354
	8.4.2	Slater-type orbitals (STO)	355
	8.4.3	Gaussian-type orbitals (GTO)	357
	8.4.4	Linear Combination of Atomic Orbitals (LCAO) Method	360
	8.4.5	Basis sets of Atomic Orbitals	363
	8.4.6	The Hartree–Fock–Roothaan method (SCF LCAO MO)	364
	8.4.7	Practical problems in the SCF LCAO MO method	366
RES	ULTS	OF THE HARTREE-FOCK METHOD	369
8.5	Back t	to foundations	369
	8.5.1	When does the RHF method fail?	369
	8.5.2	Fukutome classes	372
8.6	Mend	eleev Periodic Table of Chemical Elements	379
	8.6.1	Similar to the hydrogen atom – the orbital model of atom	379
	8.6.2	Yet there are differences	380
8.7	The n	ature of the chemical bond	383
	8.7.1	H_2^+ in the MO picture	384
	8.7.2	Can we see a chemical bond?	388
8.8	Excita	tion energy, ionization potential, and electron affinity (RHF approach)	
	8.8.1	Approximate energies of electronic states	389
	8.8.2	Singlet or triplet excitation?	391
	8.8.3	Hund's rule	392
	8.8.4	Ionization potential and electron affinity (Koopmans rule)	393
8.9	Locali	zation of molecular orbitals within the RHF method	396
	8.9.1	The external localization methods	397
	8.9.2	The internal localization methods	398
	8.9.3	Examples of localization	400
	8.9.4	Computational technique	401
	8.9.5	The σ , π , δ bonds	403
	8.9.6	Electron pair dimensions and the foundations of chemistry	404
	8.9.7	Hybridization	407

XII Contents

	8.10	A minimal model of a molecule	417 419
9.	Elec	tronic Motion in the Mean Field: Periodic Systems	428
	9.1	Primitive lattice	431
	9.2	Wave vector	433
	9.3	Inverse lattice	436
	9.4	First Brillouin Zone (FBZ)	438
	9.5	Properties of the FBZ	438
	9.6	A few words on Bloch functions	439
	٥.0	9.6.1 Waves in 1D	439
		9.6.2 Waves in 2D	442
	9.7	The infinite crystal as a limit of a cyclic system	445
	9.8	A triple role of the wave vector	448
	9.9	Band structure	449
		9.9.1 Born–von Kármán boundary condition in 3D	449
		9.9.2 Crystal orbitals from Bloch functions (LCAO CO method)	450
		9.9.3 SCF LCAO CO equations	452
		9.9.4 Band structure and band width	453
		9.9.5 Fermi level and energy gap: insulators, semiconductors and metals .	454
	9.10	Solid state quantum chemistry	460
		9.10.1 Why do some bands go up?	460
		9.10.2 Why do some bands go down?	462
		9.10.3 Why do some bands stay constant?	462
		9.10.4 How can more complex behaviour be explained?	462
	9.11	The Hartree–Fock method for crystals	468
		9.11.1 Secular equation	468
		9.11.2 Integration in the FBZ	471
		9.11.3 Fock matrix elements	472
		9.11.4 Iterative procedure	474
		9.11.5 Total energy	474
	9.12	Long-range interaction problem	475
		9.12.1 Fock matrix corrections	476
		9.12.2 Total energy corrections	477
		9.12.3 Multipole expansion applied to the Fock matrix	479
		9.12.4 Multipole expansion applied to the total energy	483
		Back to the exchange term	485
	9.14	Choice of unit cell	
		9.14.1 Field compensation method	490
		9.14.2 The symmetry of subsystem choice	492
10.	Corı	relation of the Electronic Motions	498
	VAR	IATIONAL METHODS USING EXPLICITLY CORRELATED WAVE FUNC-	
		TION	502
	10.1	Correlation cusp condition	503
	10.2		506
	10.3	•	506
	10.4	· · · · · · · · · · · · · · · · · · ·	507

	10.5	James-Coolidge and Kołos-Wolniewicz functions	
		10.5.1 Neutrino mass	511
	10.6	Method of exponentially correlated Gaussian functions	513
	10.7	Coulomb hole ("correlation hole")	
	10.8	Exchange hole ("Fermi hole")	
	VARI	ATIONAL METHODS WITH SLATER DETERMINANTS	520
	10.9	Valence bond (VB) method	520
		10.9.1 Resonance theory – hydrogen molecule	520
		10.9.2 Resonance theory – polyatomic case	523
	10.10	Configuration interaction (CI) method	
		10.10.1 Brillouin theorem	
		10.10.2 Convergence of the CI expansion	
		10.10.3 Example of H ₂ O	528
		10.10.4 Which excitations are most important?	529
		10.10.5 Natural orbitals (NO)	531
		10.10.6 Size consistency	532
	10.11	Direct CI method	533
	10.12	Multireference CI method	533
	10.13	Multiconfigurational Self-Consistent Field method (MC SCF)	535
		10.13.1 Classical MC SCF approach	535
		10.13.2 Unitary MC SCF method	536
		10.13.3 Complete active space method (CAS SCF)	538
	NON-	VARIATIONAL METHODS WITH SLATER DETERMINANTS	539
	10.14	Coupled cluster (CC) method	
		10.14.1 Wave and cluster operators	540
		10.14.2 Relationship between CI and CC methods	542
		10.14.3 Solution of the CC equations	543
		10.14.4 Example: CC with double excitations	545
		10.14.5 Size consistency of the CC method	547
	10.15	Equation-of-motion method (EOM-CC)	548
		10.15.1 Similarity transformation	548
		10.15.2 Derivation of the EOM-CC equations	549
	10.16	Many body perturbation theory (MBPT)	551
		10.16.1 Unperturbed Hamiltonian	551
		10.16.2 Perturbation theory – slightly different approach	552
		10.16.3 Reduced resolvent or the "almost" inverse of $(E_0^{(0)} - \hat{H}^{(0)})$	553
		10.16.4 MBPT machinery	555
		10.16.5 Brillouin–Wigner perturbation theory	556
		10.16.6 Rayleigh–Schrödinger perturbation theory	557
	10 17	Møller–Plesset version of Rayleigh–Schrödinger perturbation theory	
	10.17	10.17.1 Expression for MP2 energy	558
		10.17.2 Convergence of the Møller–Plesset perturbation series	559
		10.17.3 Special status of double excitations	560
		10.17.5 Opecial status of double excitations	500
11.	Electr	onic Motion: Density Functional Theory (DFT)	567
	11.1	Electronic density – the superstar	569
	11.2	Bader analysis	571
		11.2.1 Overall shape of ρ	571
			- , -

XIV

		11.2.2	Critical points	571
		11.2.3	Laplacian of the electronic density as a "magnifying glass"	575
	11.3	Two im	portant Hohenberg–Kohn theorems	579
		11.3.1		579
		11.3.2	Existence of an energy functional minimized by ρ_0	580
	11.4	The Ko	ohn–Sham equations	584
		11.4.1	The Kohn–Sham system of non-interacting electrons	584
		11.4.2	Total energy expression	585
		11.4.3	Derivation of the Kohn–Sham equations	586
	11.5	What t	o take as the DFT exchange–correlation energy E_{xc} ?	590
		11.5.1	Local density approximation (LDA)	590
		11.5.2	Non-local approximations (NLDA)	591
		11.5.3	The approximate character of the DFT vs apparent rigour of ab	
			initio computations	592
	11.6	On the	physical justification for the exchange correlation energy	592
		11.6.1	The electron pair distribution function	592
		11.6.2	The quasi-static connection of two important systems	594
		11.6.3	Exchange–correlation energy vs Π_{aver}	596
		11.6.4	Electron holes	597
		11.6.5	Physical boundary conditions for holes	598
		11.6.6	Exchange and correlation holes	599
		11.6.7	Physical grounds for the DFT approximations	601
	11.7	Reflect	tions on the DFT success	602
12.	The M		e in an Electric or Magnetic Field	615
	12.1		ann–Feynman theorem	618
			PHENOMENA	620
	12.2		olecule immobilized in an electric field	620
		12.2.1	The electric field as a perturbation	621
		4000		
		12.2.2	The homogeneous electric field	627
		12.2.2 12.2.3	The homogeneous electric field	
	12.2	12.2.3	The homogeneous electric field	632
	12.3	12.2.3 How to	The homogeneous electric field	632 633
	12.3	12.2.3 How to 12.3.1	The homogeneous electric field	632 633 633
	12.3	12.2.3 How to 12.3.1 12.3.2	The homogeneous electric field	632 633 634
		12.2.3 How to 12.3.1 12.3.2 12.3.3	The homogeneous electric field	632 633 634 635
	12.3	12.2.3 How to 12.3.1 12.3.2 12.3.3 How to	The homogeneous electric field	632 633 633 634 635
		How to 12.3.1 How to 12.3.2 How to 12.4.1	The homogeneous electric field	632 633 634 635 635
		12.2.3 How to 12.3.1 12.3.2 12.3.3 How to 12.4.1 12.4.2	The homogeneous electric field	632 633 633 634 635 635 635
	12.4	12.2.3 How to 12.3.1 12.3.2 12.3.3 How to 12.4.1 12.4.2 12.4.3	The homogeneous electric field	632 633 634 635 635 635 644
	12.4	12.2.3 How to 12.3.1 12.3.2 12.3.3 How to 12.4.1 12.4.2 12.4.3 A mole	The homogeneous electric field	632 633 634 635 635 635 639 644
	12.4 12.5 MAG	How to 12.3.1 12.3.2 12.3.3 How to 12.4.1 12.4.2 12.4.3 A mole NETIC	The homogeneous electric field	632 633 634 635 635 639 644 645
	12.4	How to 12.3.1 12.3.2 12.3.3 How to 12.4.1 12.4.2 12.4.3 A mole NETIC Magne	The homogeneous electric field	632 633 633 634 635 635 639 644 645 647
	12.4 12.5 MAG	How to 12.3.1 12.3.2 12.3.3 How to 12.4.1 12.4.2 12.4.3 A mole NETIC Magne 12.6.1	The homogeneous electric field	632 633 633 634 635 635 639 644 645 648
	12.4 12.5 MAG	How to 12.3.1 12.3.2 12.3.3 How to 12.4.1 12.4.2 12.4.3 A mole NETIC Magne 12.6.1 12.6.2	The homogeneous electric field	632 633 634 635 635 635 644 645 647 648 649
	12.4 12.5 MAG	How to 12.3.1 12.3.2 12.3.3 How to 12.4.1 12.4.2 12.4.3 A mole NETIC Magne 12.6.1 12.6.2 12.6.3	The homogeneous electric field	632 633 633 634 635 635 639 644 645 648

		12.8.1	Choice of the vector and scalar potentials	654
		12.8.2		654
	12.9	Effectiv	ve NMR Hamiltonian	658
		12.9.1	Signal averaging	658
		12.9.2	Empirical Hamiltonian	659
		12.9.3	Nuclear spin energy levels	664
	12.10	The Ra	msey theory of the NMR chemical shift	666
			Shielding constants	667
			Diamagnetic and paramagnetic contributions	668
	12.11		msey theory of NMR spin–spin coupling constants	668
			Diamagnetic contributions	669
			Paramagnetic contributions	670
		12.11.3	Coupling constants	671
			The Fermi contact coupling mechanism	672
	12.12		invariant atomic orbitals (GIAO)	673
		12.12.1	London orbitals	673
			Integrals are invariant	674
13.	Interr	nolecula	r Interactions	681
	THE	DRY OF	INTERMOLECULAR INTERACTIONS	684
	13.1		tion energy concept	684
	1011		Natural division and its gradation	684
			What is most natural?	685
	13.2		g energy	687
	13.3		ation energy	687
	13.4		ation barrier	687
	13.5		olecular approach	689
		13.5.1	Accuracy should be the same	689
		13.5.2	Basis set superposition error (BSSE)	690
		13.5.3	Good and bad news about the supermolecular method	691
	13.6	Perturb	ational approach	692
		13.6.1	Intermolecular distance – what does it mean?	692
		13.6.2	Polarization approximation (two molecules)	692
		13.6.3	Intermolecular interactions: physical interpretation	696
		13.6.4	Electrostatic energy in the multipole representation and the pene-	
			tration energy	700
		13.6.5	Induction energy in the multipole representation	703
		13.6.6	Dispersion energy in the multipole representation	704
	13.7	Symme	try adapted perturbation theories (SAPT)	710
		13.7.1	Polarization approximation is illegal	710
		13.7.2	Constructing a symmetry adapted function	711
		13.7.3	The perturbation is always large in polarization approximation	712
		13.7.4	Iterative scheme of the symmetry adapted perturbation theory	713
		13.7.5	Symmetry forcing	716
		13.7.6	A link to the variational method – the Heitler–London interaction	
			energy	720
		13.7.7	When we do not have at our disposal the ideal $\psi_{A,0}$ and $\psi_{B,0}$	720
	13.8	Conver	gence problems	72.1

XVI

	13.9	Non-ad	Iditivity of intermolecular interactions	726
		13.9.1	Many-body expansion of interaction energy	727
		13.9.2	Additivity of the electrostatic interaction	730
		13.9.3	Exchange non-additivity	731
		13.9.4	Induction energy non-additivity	735
		13.9.5	Additivity of the second-order dispersion energy	740
		13.9.6	Non-additivity of the third-order dispersion interaction	741
	ENGI	NEERI	NG OF INTERMOLECULAR INTERACTIONS	741
			gas interaction	741
	13.11		r Waals surface and radii	742
			Pauli hardness of the van der Waals surface	743
		13.11.2	Quantum chemistry of confined space – the nanovessels	743
	13.12		ns and supramolecular chemistry	744
			Bound or not bound	745
			Distinguished role of the electrostatic interaction and the valence	
			repulsion	746
		13.12.3	Hydrogen bond	746
		13.12.4	Coordination interaction	747
		13.12.5	Hydrophobic effect	748
		13.12.6	Molecular recognition – synthons	750
		13.12.7	"Key-lock", template and "hand-glove" synthon interactions	751
14.	Intern	nolecula	r Motion of Electrons and Nuclei: Chemical Reactions	762
	14.1	Hypers	urface of the potential energy for nuclear motion	766
		14.1.1	Potential energy minima and saddle points	767
		14.1.2	Distinguished reaction coordinate (DRC)	768
		14.1.3	Steepest descent path (SDP)	769
		14.1.4	Our goal	769
		14.1.5	Chemical reaction dynamics (a pioneers' approach)	770
	14.2	Accura	te solutions for the reaction hypersurface (three atoms)	775
		14.2.1	Coordinate system and Hamiltonian	775
		14.2.2	Solution to the Schrödinger equation	778
		14.2.3	Berry phase	780
	14.3	Intrinsi	c reaction coordinate (IRC) or statics	781
	14.4	Reactio	on path Hamiltonian method	783
		14.4.1	Energy close to IRC	783
		14.4.2	Vibrationally adiabatic approximation	785
		14.4.3	Vibrationally non-adiabatic model	790
		14.4.4	Application of the reaction path Hamiltonian method to the reac-	
			tion $H_2 + OH \rightarrow H_2O + H$	792
	14.5	Accepte	or-donor (AD) theory of chemical reactions	798
		14.5.1	Maps of the molecular electrostatic potential	798
		14.5.2	Where does the barrier come from?	803
		14.5.3	MO, AD and VB formalisms	803
		14.5.4	Reaction stages	806
		14.5.5	Contributions of the structures as reaction proceeds	811
		14.5.6	Nucleophilic attack H^- + ETHYLENE \rightarrow ETHYLENE + H^-	816

	14.5	.8 Nucleophilic attack on the polarized chemical bond in the VB pic-	010
	14.5	ture	818
	14.5		821
		.10 Role of symmetry	822
		.11 Barrier means a cost of opening the closed-shells	826
		rier for the electron-transfer reaction	828
	14.6	· · · · · · · · · · · · · · · · · · ·	828
	14.6	.2 Marcus theory	830
15.	Informatio	on Processing – the Mission of Chemistry	848
	15.1 Con	nplex systems	852
	15.2 Self-	organizing complex systems	853
	15.3 Coo	perative interactions	854
		sitivity analysis	855
		abinatorial chemistry – molecular libraries	855
		-linearity	857
		actors	858
		it cycles	859
		reations and chaos	860
		astrophes	862
		ective phenomena	863
		1.1 Scale symmetry (renormalization)	863
		1.2 Fractals	865
		mical feedback – non-linear chemical dynamics	866
		2.1 Brusselator – dissipative structures	868
		2.2 Hypercycles	873
			875
		ctions and their space-time organization	
		measure of information	875
		mission of chemistry	877
	15.16 Mol	ecular computers based on synthon interactions	878
ΑP	PENDICES		887
Α.	A REMAIN	NDER: MATRICES AND DETERMINANTS	889
		s	889
			892
	Z. Determ	inants	092
В.	A FEW WO	ORDS ON SPACES, VECTORS AND FUNCTIONS	895
	1. Vector s	space	895
	2. Euclide	an space	896
		space	897
		space	898
		lue equation	900
c.	GROUP T	HEORY IN SPECTROSCOPY	903
	1 Group		903
		entations	913
	/ Represe	entations	,

XVIII Contents

	3. Group theory and quantum mechanics4. Integrals important in spectroscopy	924 929
D.	A TWO-STATE MODEL	948
E.	DIRAC DELTA FUNCTION	951
	1. Approximations to $\delta(x)$	951 953 953
F.	TRANSLATION vs MOMENTUM and ROTATION vs ANGULAR MOMENTUM	955
	1. The form of the $\hat{\mathcal{U}}$ operator	955 957 958 960 960
G.	VECTOR AND SCALAR POTENTIALS	962
н.	OPTIMAL WAVE FUNCTION FOR A HYDROGEN-LIKE ATOM	969
I.	SPACE- AND BODY-FIXED COORDINATE SYSTEMS	971
J.	ORTHOGONALIZATION	977
	1. Schmidt orthogonalization	977 978
K.	DIAGONALIZATION OF A MATRIX	982
L.	SECULAR EQUATION $(H - \varepsilon S)c = 0$	984
М.	SLATER-CONDON RULES	986
N.	LAGRANGE MULTIPLIERS METHOD	997
o.	PENALTY FUNCTION METHOD	1001
P.	MOLECULAR INTEGRALS WITH GAUSSIAN TYPE ORBITALS 1s	1004
Q.	SINGLET AND TRIPLET STATES FOR TWO ELECTRONS	1006

R.	THE HYDROGEN MOLECULAR ION IN THE SIMPLEST ATOMIC BASIS SET
S.	POPULATION ANALYSIS
T.	THE DIPOLE MOMENT OF A LONE ELECTRON PAIR
U.	SECOND QUANTIZATION
V.	THE HYDROGEN ATOM IN THE ELECTRIC FIELD – VARIATIONAL AP- PROACH
w.	NMR SHIELDING AND COUPLING CONSTANTS – DERIVATION 1032
	1. Shielding constants10322. Coupling constants1035
X.	MULTIPOLE EXPANSION
Y.	PAULI DEFORMATION
Z.	ACCEPTOR-DONOR STRUCTURE CONTRIBUTIONS IN THE MO CONFIGURATION
Name Index	
Subject Index 1077	