Master d'Informatique spécialité DAC

BDLE (Bases de Données Large Echelle)
-Seconde Partie-

$\begin{array}{c} Cours \ 2 : Requêtes \ relationnelles \ en \\ M/R \end{array}$

Mohamed-Amine Baazizi – email: prénom.nom@lip6.fr http://dac.lip6.fr/master/ues-2014-2015/bdle-2014-2015/

Objectifs

- 1. Traduction des requêtes relationnelles en MR
- 2. Estimation du coût d'un programme MR

Coût d'un programme MR

Rappel: architecture en grappe

Deux facteurs:

- 1. <u>Communication</u>: transfert des données entre noeuds
- 2. <u>Calcul</u>: exécution des *maps* et des *reduces* (accés disque)

Différents modèles de coût

Facteur \ Modèle	Orienté communication	Orienté calcul
Communication	/	Х
Calcul	Х	1
	[Afrati et al.]	[Suciu et al.]
	Ignorer les calculs car considérés simples Considérer les transferts car hiérarchie des mémoires	Fixer les transferts → coût de communication constant

Hiérarchie des mémoires

Différents modèles de coût

Facteur \ Modèle	Orienté communication	Orienté calcul
Communication	/	х
Calcul	Х	/
	[Afrati et al.] Ignorer les calculs car considérés simples Considérer les transferts car	[Suciu et al.][??] Fixer les transferts → coût communication constant
	hiérarchie des mémoires	

Modèle orienté communication Rappel Communication = transfert données entre les noeuds Transfert de données : - Maps vers reduces : les paires clés valeurs	
 Reduces vers maps: résultat d'une étape MR Remarque Les maps s'exécutent localement, pas de transfert 	
Modèle orienté communication Illustration Jointure naturelle R(A, B) et S(B, C) Rappel: Map pour chaque (a, b) de R produire (b, (R, a)) pour chaque (b, c) de S produire (b, (S, c)) Reduce Produire (b, $\{a_1,,a_k\} \times \{b\} \times \{c_1,,c_m\}$) Coût = $ R + S = c$ oût pour mettre à disposition les données aux reduces	
Modèle orienté communication opérateurs algébriques • Opérateurs ensemblistes: - Union: \cup - Intersection: \cap - Différence: $-$ - Renommage: $\varrho_{A > B}$ - Renommage: $\varrho_{A > B}$	

– Division : ÷

Coût : |R| si opérateur unaire |R|+|S| si opérateur binaire Question : opérateurs n-aires?

Modèle orienté communication opérateurs algébriques n-aires Objectif : une seule passe MR

Hypothèse : $R_1...R_n$ n schémas de relations Opérateurs ensemblistes : $sch(R_i)$ identiques

$$\begin{split} &- \text{Union} & \text{coût} = \Sigma \mid R_i \mid \\ &- \text{Intersection} & \text{coût} = \Sigma \mid R_i \mid \\ &\text{Jointure}: & R(A,B) \bowtie S(B,C) \bowtie T(C,D) \end{split}$$

 $-\operatorname{coût} = ? \Sigma |R_i|$

- Généralisation de la jointure à 2 relations?

Jointure à n relations

Objectif: une seule passe MR

Hypothèse : n=3 et R(A,B), S(B,C) , T(C,D)

Exemple

r0: a1 b0 s0: b1 c1 r1: a1 b2 r2: a0 b1 t0: c1 d0

t2 : c2 d2 t3 : c1 d0 Entrée

Reduce

Jointure à n relations

Objectif: une seule passe MR

Hypothèse : n=3 et R(A,B), S(B,C), T(C,D)

Tentative 1 : généralisation 'naïve'

Map pour chaque (a, b) de R produire (b, (R, a))
pour chaque (b, c) de S produire (b, (S, c))
pour chaque (c, d) de T produire (c, (T, d))

 $\begin{array}{c} \text{(b, (R,a)) (b, (S,c)) } \underline{\text{(b, [(R,a)..(S,c)])}} \text{(c, (T,d))} \\ \\ \text{Constat ?} \end{array}$

Jointure à n relations

Objectif: une seule passe MR

Hypothèse : n=3 et R(A,B), S(B,C), T(C,D)Tentative 2 : généralisation **moins** 'naïve'

 $\label{eq:map} \textbf{Map} \qquad \text{pour chaque (a, b) de R produire (b, (R, a))} \\ \text{pour chaque (b, c) de S produire (b, (S, c))}$

pour chaque (c, d) de T produire (c, (T, d))pour chaque (b, c) de S produire (c, (S, b))

 $\begin{array}{c} (b,(R,a))\,(b,(S,c))\,\underline{(b,[(R,a)..(S,c)])}\,(c,(T,d))\ \ \underline{(c,[(S,b)..(T,d)])}\\ \\ Constat\ ? \end{array}$

Jointure à n relations

Objectif: une seule passe MR

Hypothèse : n=3 et R(A,B), S(B,C), T(C,D)

Tentative 3: la bonne!

Question : que doit-on avoir du côté Reduce? **Réponse** : les tuples de R, S et T correspondant à une combinaison de valeur de B et de C

Mise en œuvre : deux fonctions de hachage h et g

 $\begin{aligned} h: \{b_0..b_n\} & \rightarrow D_B \text{ et } g: \{c_0..c_m\} \rightarrow D_C \\ \text{avec } |D_B| \times |D_C| = |reduces| = k \end{aligned}$

Jointure à n relations

Objectif: une seule passe MR

Hypothèse : n=3 et R(A,B), S(B,C), T(C,D)

Tentative 3: la bonne! (suite)

Map chaque (a, b) de R, r_i → les $|D_C|$ buckets (h(b), y) chaque (b, c) de S, s_j → les eul bucket (h(b), g(c)) chaque (c, d) de T, t_l → les $|D_B|$ buckets (x, g(c))

 \boldsymbol{Reduce} considérer les buckets où il y a des tuples de \boldsymbol{S}

Jointure à n relations

Objectif: une seule passe MR

Hypothèse : n=3 et R(A,B), S(B,C), T(C,D)

Tentative 3 : la bonne! (suite)

Map chaque (a, b) de R, $r_i \rightarrow les |D_C|$ buckets (h(b), y) chaque (b, c) de S, s $_{\rm j}$ \rightarrow le seul bucket (h(b), g(c)) chaque (c, d) de T, $t_1 \rightarrow les |D_B|$ buckets (x, g(c))Reduce considérer les buckets où il y a des tuples de S **Coût** du reduce $|S| + |D_C| \times |R| + |D_B| \times |T|$

Jointures circulaire

Objectif: une seule passe MR

Hypothèse : n=3 et R(A,B), S(B,C), T(C,A) Questions : généraliser la solution précédente. Formule de coût?

Jointures à n relations

- Solution 'mono-passe' vs solution deux à deux
 - Comparaison de coûts
 - Coût jointure n-aire mono-passe $\begin{aligned} |\mathbf{S}| + |\mathbf{D}_{\mathbf{B}}| \times |\mathbf{R}| + |\mathbf{D}_{\mathbf{C}}| \times |\mathbf{T}| \\ \text{avec } |\mathbf{D}_{\mathbf{B}}| \times |\mathbf{D}_{\mathbf{C}}| = |reducers| = k \end{aligned}$

Question: partitionner k pour avoir coût minimum?

Réponse: équations de Lagrange $C=|S|+|D_B|\times|R|+|D_C|\times|T|-\lambda(|D_B|\times|D_C|-k)=0$ Solutions à partir de $dC/d|D_B|$ et $dC/d|D_C|$ $|D_B| = (k|R|/|T|)^{1/2}$ et $|D_C| = (k|T|/|R|)^{1/2}$

_		

Jointures à n relations

- Solution 'mono-passe' vs solution deux à deux
 - Comparaison de coûts
 - Coût jointure n-aire mono-passe
 - Coût jointure n-aire deux à deux $p_{rs}(p_{st})$ proba que tuples R et S (S et T) joignables selon ordre : si R,S puis T alors $|R|+|S|+p_{rs}|R||S|+|T|$

Jointures	à	n	re	lati	ons

Considérons R=S=T avec R(u,v) et $R \bowtie R \bowtie R$ (jointure pour trouver chemins de longueur 3) $|\pi_u R|=3.10^8$ et à chaque u correspond 300 v donc, $|R|=9.10^{10}$.

Solution 1. Jointure en mono-passe $|R|(k)^{1/3}$ jointure circulaire mono-passe Solution 2. deux jointures : $R\bowtie R=R_1$ puis $R_1\bowtie R$ $|R|^2$ p avec p proba que les tuples de R joignables ...

Jointure à n relations

Objectif: une seule passe MR

Hypothèse : R(A,B,C), S(A,B,D), T(A,D,E), U(D,F) **Question**: déterminer le partitionnement de k? **Réponse**: résoudre l'équation de Lagrange |R| def + |S| cef + |T| bcf + |U| abce

- $\lambda(abcdef - k)$

Problème : n'admet pas de solution non nulle

Solution : Régle du Dominant

Règle du dominant

Définition:

Etant donné un schéma de relations R, S, ... ayant des attributs X, Y, ...

« X domine Y si chaque relation contenant Y alors elle contient aussi X »

Quels attributs sont dominants/dominés? R(A,B,C), S(A,B,D), T(A,D,E), U(D,F)

Règle du dominant

Utilisation:

- La taille des partition pour les attributs dominés peut être égale à 1.
- Il reste à partager k entre les attributs dominants

Exemple repris : R(A,B,C), S(A,B,D), T(A,D,E), U(D,F) $|R| \ def + |S| \ cef + |T| \ bcf + |U| \ abce - \lambda(abcdef - k)$ devient $|R| \ d + |S| + |T| + |U| \ a$

Suite exemple

Exemple repris: R(A,B,C), S(A,B,D), T(A,D,E), U(D,F) $|R| \ def + |S| \ cef + |T| \ bcf + |U| \ abce - \lambda(abcdef - k)$ devient $|R| \ d + |S| + |T| + |U| \ a - \lambda(ad - k)$ et admet comme solution $|R| \ d = \lambda k \ et \ |U| \ a = \lambda k$ comme ad = k $a = (k|R|/|U|)^{1/2} \ et \ d = (k|U|/|R|)^{1/2}$

8

Suite et fin exemple

Exemple repris : R(A,B,C), S(A,B,D), T(A,D,E), U(D,F) $a=(k|R|/|U|)^{1/2} \text{ et } d=(k|U|/|R|)^{1/2}$

- Map:
 - ❖ chaque r va dans les d buckets (h(A), j) j=1..d
 - ❖ chaque u va dans les a buckets (g(D), i) i=1..a
 - ❖ chaque s et t vont dans <u>le seul bucket</u> (h(A),g(D))

Illustration

$$\begin{split} &R(A,B,C),S(A,B,D)\,,T(A,D,E),U(D,F)\\ &a=(k|R|/|U|)^{1/2}\ \text{et}\ d=(k|U|/|R|)^{1/2}\\ &R=\{(a0,b1,c2),\,(a1,b0,c2),\,(a0,b3,c3)\}\\ &S=\{(a1,b1,d0),\,(a0,b1,d1)\}\\ &T=\{(a1,d0,e1),\,(a0,d1,e3)\}\\ &U=\{(d1,f3),\,(d0,f3)\} \end{split}$$

Préalable : déterminer *a* et *d* (valeur entière si nécessaire)

Références

[Afrati et al.] Optimizing joins in a map-reduce environment, in Proceedings of EDBT 2010

[Cours1] https://www.cs.rutgers.edu/~badri/211dir/notes/w11-four.pdf

[Mem] en.wikipedia.org/wiki/Random-access_memory

[Suciu et al.] Parallel evaluation of conjunctive queries, in Proceedings of PODS 2011

_		