整流と平滑化

3114 公文健太

目的

交流から直流に変換する基本原理を理解する オシロスコープを用いてリップルを観測する

実験1

半波整流 + コンデンサ

波形

AC

DC

半波整流 + π型1段

AC

DC

半波整流 + π型2段

AC

DC

実験2

全波整流 + L型1段

AC

DC

全波整流 + L型2段

AC

DC

検討

1. リップル率

		510	1k	2k	5.1k
	1-1	1.0504	1.0081	0.9766	0.9328
	1-2	1.0909	1.0870	1.0593	1.0331
	1-3	1.1538	1.1111	1.0909	1.0909
	2-1	0.3977	0.3726	0.2362	0.1279
	2-2	0.3371	0.2222	0.1476	0.0627

- 2. 平滑回路の段数を増やすことによって、出力電圧はどのように変化したか リップル電圧が減少することによってより安定し、その分出力電圧が増加する
- 3. 負荷抵抗を変えたことによる、出力電流とDC出力電圧の関係のグラフ

0 1-1

o 1-2

o 1-3

0 2-1

0 2-2

どちらの場合でも、出力電流が増加すると出力電圧は減少する

研究

図

図の上方向からくる電流が正の場合と負の場合で分けられる

- 正のときのはたらき D1が正の電流を通し、D3が負の電流を通す。
- 負のときのはたらき D4が正の電流を通し、D2が負の電流を通す。

結果として、正の部分は通常通り取り出され、負の部分は回路に逆方向に流されることにより結局正方向と して流される。よって正の電力のみになる。

感想

交流で送られてきた電流をダイオードを用いて整流し、コンデンサやコイルを用いて平滑化することができた。あまりきれいに平滑化はできなかったが、平滑化の原理を少し理解することができてよかった。