Approximation Algorithms for Steiner Tree, TSP and Multiway Cut

https://xkcd.com/399/

Given: A graph *G*

Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^+$

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of terminals

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of terminals and a set S of Steiner vertices.

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$

and a partition of V(G) into a set T of terminals

and a set S of Steiner vertices.

Find: A subtree *B* of *G* that

contains all terminals (i.e., $T \subseteq V(B)$) and

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$

and a partition of V(G) into a set T of terminals

and a set S of Steiner vertices.

Find: A subtree *B* of *G* that

contains all terminals (i.e., $T \subseteq V(B)$) and

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of terminals and a set S of Steiner vertices.

Find: A subtree *B* of *G* that

- contains all terminals (i.e., $T \subseteq V(B)$) and
- has minimum cost $c(B) := \sum_{e \in E(B)} c(e)$ among all subtrees with this property.

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of terminals and a set S of Steiner vertices.

Find: A subtree *B* of *G* that

- contains all terminals (i.e., $T \subseteq V(B)$) and
- has minimum cost $c(B) := \sum_{e \in E(B)} c(e)$ among all subtrees with this property.

valid solution with cost 4
optimum solution
with cost 3

2
1
2
• terminal
• Steiner vertex

Given: A graph G with edge weights $c: E(G) \to \mathbb{Q}^+$ and a partition of V(G) into a set T of terminals and a set S of Steiner vertices.

Find: A subtree *B* of *G* that

contains all terminals (i.e., $T \subseteq V(B)$) and

has minimum cost $c(B) := \sum_{e \in E(B)} c(e)$ among all subtrees with this property.

valid solution with cost 4 optimum solution with cost 3

Special cases:

T = V: MST in P

 $T = \{s, t\}$: shortestPath in P

Restriction of SteinerTree where the graph G is complete and the cost function is metric,

not complete

not complete not metric

not complete not metric

not complete not metric

complete metric

Let Π_1 , Π_2 be minimization problems.

Let Π_1 , Π_2 be minimization problems.

problems Π_1 Π_2

Let Π_1 , Π_2 be minimization problems. An approximation- preserving reduction from Π_1 to Π_2 is a tuple (f,g) of poly-time computable functions with the following properties.

For each instance I_1 of Π_1 ,

problems

 Π_1

 Π_2

Let Π_1 , Π_2 be minimization problems. An approximation- preserving reduction from Π_1 to Π_2 is a tuple (f,g) of poly-time computable functions with the following properties.

For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$.

problems Π_1 Π_2

Let Π_1 , Π_2 be minimization problems. An approximation- preserving reduction from Π_1 to Π_2 is a tuple (f,g) of poly-time computable functions with the following properties.

For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$.

problems Π_1 Π_2 instances I_1

Let Π_1 , Π_2 be minimization problems. An approximation- preserving reduction from Π_1 to Π_2 is a tuple (f,g) of poly-time computable functions with the following properties.

For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$.

problems
$$\Pi_1$$
 Π_2 instances I_1

- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$.
- For each feasible solution t of I_2 , $s = g(I_1, t)$ is a feasible sol. of I_1 with $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t)$.

problems
$$\Pi_1$$
 Π_2 instances I_1 I_2

- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$.
- For each feasible solution t of I_2 , $s = g(I_1, t)$ is a feasible sol. of I_1 with $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t)$.

- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$.
- For each feasible solution t of I_2 , $s = g(I_1, t)$ is a feasible sol. of I_1 with $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t)$.

- For each instance I_1 of Π_1 , $I_2 = f(I_1)$ is an instance of Π_2 with $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$.
- For each feasible solution t of I_2 , $s = g(I_1, t)$ is a feasible sol. of I_1 with $\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t)$.

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor-? approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor-? approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $I_2 := t := and s :=$

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $I_2 := f(I_1), t :=$ and s :=

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $I_2 := f(I_1)$, $t := A(I_2)$ and s :=

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $I_2 := f(I_1)$, $t := A(I_2)$ and $s := g(I_1, t)$.

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s := g(I_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1,s) \leq$$

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set $I_2 := f(I_1)$, $t := A(I_2)$ and $s := g(I_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t) \leq$$

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s := g(I_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1,s) \leq \operatorname{obj}_{\Pi_2}(I_2,t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq$$

Theorem. Let Π_1 , Π_2 be minimization problems with an approximation-preserving reduction (f,g) from Π_1 to Π_2 . Then there is a factor- α approximation algorithm of Π_1 for each factor- α approximation algorithm of Π_2 .

Proof.

Let A be a factor- α approx. alg. for Π_2 .

Let I_1 be an instance of Π_1 .

Set
$$I_2 := f(I_1)$$
, $t := A(I_2)$ and $s := g(I_1, t)$.

$$\operatorname{obj}_{\Pi_1}(I_1, s) \leq \operatorname{obj}_{\Pi_2}(I_2, t) \leq \alpha \cdot \operatorname{OPT}_{\Pi_2}(I_2) \leq \alpha \cdot \operatorname{OPT}_{\Pi_1}(I_1).$$

Reduction to MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Theorem. There is an approximation-preserving reduction from STEINERTREE to METRICSTEINERTREE.

Proof. (1) Mapping $f \longrightarrow I_2$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f $I_1 \xrightarrow{f} I_2$ Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 f_2$

Instance I_1 of STEINERTREE:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f $I_1 \xrightarrow{f} I_2$ Instance I_1 of SteinerTree: Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$ Metric instance $I_2 := f(I_1)$: Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping f $I_1 \longrightarrow I_2$ Instance I_1 of STEINERTREE:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f I_1 I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \longrightarrow I_1 \longrightarrow I_2$

Instance I_1 of SteinerTree:

Graph $G_1 = (V, E_1)$, edge weights c_1 , partition $V = T \cup S$

Metric instance $I_2 := f(I_1)$:

Complete graph $G_2 = (V, E_2)$, partition T, S as in I_1

 $c_2(u, v) := \text{Length of a shortest } u - v \text{ path in } G_1.$

 $c_2(u, v) \le c_1(u, v)$ for every edge $(u, v) \in E_1$.

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. $OPT(I_2) \leq OPT(I_1)$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

 $E_1 \subseteq E_2$ and the vertex sets V, T, S are the same.

 $OPT(I_2)$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

$$OPT(I_2) \leq c_2(B^*)$$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

$$OPT(I_2) \le c_2(B^*) \le c_1(B^*)$$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
$$OPT(I_2) \leq OPT(I_1)$$

Let B^* be an optimal Steiner tree for I_1 .

Note that B^* is also a feasible solution for I_2 :

$$OPT(I_2) \le c_2(B^*) \le c_1(B^*) = OPT(I_1)$$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v path in G_1 . Keep ≤ 1 copy per edge.

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v path in G_1 . Keep ≤ 1 copy per edge.

$$c_1(G_1') \leq c_2(B_2)$$

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G'_1) \leq c_2(B_2)$; G'_1 connects all terminals

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G'_1) \le c_2(B_2)$; G'_1 connects all terminals; maybe not a tree.

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of G'_1

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of G'_1

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of $G'_1 \sim$ Steiner tree B_1 of G_1

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (2) Mapping g $s \leftarrow g$ t

Let B_2 be a Steiner tree of G_2 .

Construct $G'_1 \subseteq G_1$ from B_2 by replacing each edge (u, v) of B_2 by a shortest u–v path in G_1 . Keep ≤ 1 copy per edge.

 $c_1(G_1') \le c_2(B_2)$; G_1' connects all terminals; maybe not a tree.

Consider spanning tree B_1 of $G_1' o ext{Steiner tree } B_1$ of G_1

Thus $c_1(B_1) \le c_1(G_1') \le c_2(B_2)$, i.e. $\operatorname{obj}_{\Pi_1}(I_1, s) \le \operatorname{obj}_{\Pi_2}(I_2, t)$

Algorithm: Compute a minimum spanning tree (MST) B in the subgraph G[T] induced by the terminal set T.

Algorithm: Compute a minimum spanning tree (MST) B in the subgraph G[T] induced by the terminal set T.

Algorithm: Compute a minimum spanning tree (MST) B in the subgraph G[T] induced by the terminal set T.

Algorithm: Compute a minimum spanning tree (MST) B in the subgraph G[T] induced by the terminal set T.

Algorithm: Compute a minimum spanning tree (MST) B in the subgraph G[T] induced by the terminal set T.

Algorithm: Compute a minimum spanning tree (MST) B in the subgraph G[T] induced by the terminal set T.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in B'

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot \text{OPT}$.

Find a Eulerian tour T' in $B' \implies c(T') = c(B') = 2 \cdot OPT$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \implies c(T') = c(B') = 2 \cdot OPT$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \implies c(T') = c(B') = 2 \cdot OPT$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \implies c(T') = c(B') = 2 \cdot OPT$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and already visited terminals.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and already visited terminals.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and already visited terminals.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \implies c(T') = c(B') = 2 \cdot OPT$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and already visited terminals. $\Rightarrow c(H) \le c(T') = 2 \cdot \text{OPT}$ since G is metric.

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and already visited terminals. $\Rightarrow c(H) \le c(T') = 2 \cdot \text{OPT}$ since G is metric.

MST B of G[T] has cost $c(B) \le c(H)$

Consider an optimal Steiner tree B^* i.e., $c(B^*) = OPT$.

Duplicate all edges of $B^* \Rightarrow$ Eulerian (multi-)graph B' with cost $c(B') = 2 \cdot OPT$.

Find a Eulerian tour T' in $B' \Rightarrow c(T') = c(B') = 2 \cdot OPT$

Find a Hamiltonian path H in G[T] by "short-cutting" Steiner vertices and already visited terminals. $\Rightarrow c(H) \le c(T') = 2 \cdot \text{OPT}$ since G is metric.

MST B of G[T] has cost $c(B) \le c(H) \le 2 \cdot OPT$ since H is a spanning tree of G[T].

terminal

terminal

MST of G[T] with cost 2(n-1)

MST of G[T] with cost 2(n-1)Optimal solution with cost n

MST of G[T] with cost 2(n-1)Optimal solution with cost n

$$\frac{2(n-1)}{n} \to 2$$

- terminal
- Steiner vertex
- ____ cost 1
- —— cost 2

MST of G[T] with cost 2(n-1)Optimal solution with cost n

$$\frac{2(n-1)}{n} \to 2$$

- terminal
- Steiner vertex
- ____ cost 1
- —— cost 2

MST of G[T] with cost 2(n-1)Optimal solution with cost n

The best known approximation factor for SteinerTree is $ln(4) + \varepsilon \approx 1.39$

$$\frac{2(n-1)}{n} \to 2$$

- terminal
- Steiner vertex
- ____ cost 1
- ____ cost 2

[Byrka, Grandoni, Rothvoß & Sanità, J. ACM'13]

MST of G[T] with cost 2(n-1)Optimal solution with cost n

$$\frac{2(n-1)}{n} \to 2$$

- terminal
- Steiner vertex
- ____ cost 1
- —— cost 2

Can we do better?

The best known approximation factor for SteinerTree is $ln(4) + \varepsilon \approx 1.39$

[Byrka, Grandoni, Rothvoß & Sanità, J. ACM'13]

SteinerTree cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless P=NP) [Chlebík & Chlebíková, TCS'08]

Given: A complete graph G with edge weights $c: E(G) \to \mathbb{Q}^+$

Find: A Hamilton cycle C of G of minimum cost $c(C) := \sum_{e \in E(C)} c(e)$.

Can we use similar ideas for TSP?

Given: A complete graph G with edge weights $c: E(G) \to \mathbb{Q}^+$

Find: A Hamilton cycle C of G of minimum cost $c(C) := \sum_{e \in E(C)} c(e)$.

Can we use similar ideas for TSP?

Yes, and we nearly already saw how to construct a TSP from an MST.

Given: A complete graph G with edge weights $c: E(G) \to \mathbb{Q}^+$

A Hamilton cycle C of G of minimum cost $c(C) := \sum_{e \in E(C)} c(e)$. Find:

Can we use similar ideas for TSP?

Yes, and we nearly already saw how to construct a TSP from an MST.

For SteinerTree: skip non-terminals and repeated vertices

Given: A complete graph G with edge weights $c: E(G) \to \mathbb{Q}^+$

Find: A Hamilton cycle C of G of minimum cost $c(C) := \sum_{e \in E(C)} c(e)$.

Can we use similar ideas for TSP?

Yes, and we nearly already saw how to construct a TSP from an MST.

Given: A complete graph G with edge weights $c: E(G) \to \mathbb{Q}^+$

Find: A Hamilton cycle C of G of minimum cost $c(C) := \sum_{e \in E(C)} c(e)$.

Can we use similar ideas for TSP?

Yes, and we nearly already saw how to construct a TSP from an MST.

But this will only work for metric TSP (non-metric TSP is hard to approximate)

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in *E* to get a tour *C*

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Proof of Approximation factor:

 $cost(T) \leq OPT$

removing one edge from a TSP tour gives a spanning tree

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Proof of Approximation factor:

 $cost(T) \le OPT$ removing one edge from a TSP tour gives a spanning tree

$$cost(E) = 2cost(T) \le 2OPT$$

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Proof of Approximation factor:

 $cost(T) \le OPT$ removing one edge from a TSP tour gives a spanning tree

 $cost(C) \le cost(E) = 2cost(T) \le 2OPT$

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Is the analysis tight?

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Is the analysis tight? Yes!

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Is the analysis tight? Yes!

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Is the analysis tight? Yes!

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for METRICTSP.

Is the analysis tight? Yes!

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in *E* to get a tour *C*

Theorem. The algorithm is a 2-approximation for METRICTSP.

Is the analysis tight? Yes!

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Can we improve this algorithm?

Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 2-approximation for MetricTSP.

Can we improve this algorithm? Yes!

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- double the edges in T to get T' add mincost matching M to $T \to T'$
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Can we improve this algorithm? Yes! instead of doubling the edges in T add a mincost perfect matching of all odd degree vertices

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Can we improve this algorithm? Yes! instead of doubling the edges in T

add a mincost perfect matching of all odd degree vertices

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in *E* to get a tour *C*

Can we improve this algorithm? Yes! instead of doubling the edges in T

add a mincost perfect matching of all odd degree vertices

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Why does a perfect matching always exist?

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Why does a perfect matching always exist?

By handshaking lemma the total sum of degrees is even, hence the number of odd degree vertices must be even.

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

What is the cost of such a mincost matching?

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

What is the cost of such a mincost matching?

 $cost(M) \le OPT/2$ half the cost of a cycle

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

What is the cost of such a mincost matching?

$$cost(M) \le OPT/2$$
 half the cost of a cycle

Hence the total cost is

$$cost(C) \le cost(E) = cost(T) + cost(M) \le 3/2 \text{ OPT}$$

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Is the analysis tight?

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

What is OPT?

What does the algorithm compute?

Is the analysis tight? Yes!

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Is the analysis tight? Yes!

What is OPT? n

What does the algorithm compute?

$$n-1+\lceil n/2 \rceil$$

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Can we do better?

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour E in T'
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Can we do better?

metric TSP cannot be approximated within $123/122 \approx 1.008$ unless P = NP, and in 2020 the first α -approximation algorithm with $\alpha < 1.5 - 10^{-36}$

Computer Scientists Break Traveling Salesperson Record

After 44 years, there's finally a better way to find approximate solutions to the notoriously difficult traveling salesperson problem.

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Can we do better?

metric TSP cannot be approximated within $123/122 \approx 1.008$ unless P = NP, and in 2020 the first α -approximation algorithm with $\alpha < 1.5 - 10^{-36}$

for Euclidean TSP there are $(1 + \varepsilon)$ -approximation algorithms for any fixed $\varepsilon > 0$ ("polynomial-time approximation scheme" (PTAS))

Christofides Algorithm:

- Compute a minimum spanning tree (MST) T in G,
- lacksquare add mincost perfect matching M on odd degree vertices to get T'
- find an Eulerian tour *E* in *T'*
- shortcut repeated vertices in E to get a tour C

Theorem. The algorithm is a 3/2-approximation for TravelingSalespersonProblem.

Can we do better?

metric TSP cannot be approximated within $123/122 \approx 1.008$ unless P = NP, and in 2020 the first α -approximation algorithm with $\alpha < 1.5 - 10^{-36}$

for Euclidean TSP there are $(1+\varepsilon)$ -approximation algorithms for any fixed $\varepsilon>0$ ("polynomial-time approximation scheme" (PTAS))

general TSP cannot be approximated within any factor $\alpha(n)$ unless P = NP

Assume "for the sake of contradiction": r-approximation algorithm A for TSP

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Define TSP instance G' = (V, E') with edge costs $w(\{i, j\}) = \begin{cases} 1 & \text{falls } \{i, j\} \in E \\ r \cdot n + 1 & \text{otherwise} \end{cases}$

Observation: opt. tour for G' has cost

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Define TSP instance G' = (V, E') with edge costs $w(\{i, j\}) = \begin{cases} 1 & \text{falls } \{i, j\} \in E \\ r \cdot n + 1 & \text{otherwise} \end{cases}$

Observation: opt. tour for G' has cost $\begin{cases} n & \text{if } G \in \mathsf{HC} \\ \geq (r \cdot n + 1) + (n - 1) & \text{if } G \notin \mathsf{HC} \end{cases}$

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Define TSP instance G' = (V, E') with edge costs $w(\{i, j\}) = \begin{cases} 1 & \text{falls } \{i, j\} \in E \\ r \cdot n + 1 & \text{otherwise} \end{cases}$

Observation: opt. tour for G' has cost $\begin{cases} n & \text{if } G \in \mathsf{HC} \\ \geq (r \cdot n + 1) + (n - 1) & \text{if } G \notin \mathsf{HC} \end{cases}$

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Observation: opt. tour for
$$G'$$
 has cost
$$\begin{cases} n & \text{if } G \in \mathsf{HC} \\ \geq (r \cdot n + 1) + (n - 1) & \text{if } G \notin \mathsf{HC} \end{cases}$$

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Define TSP instance G' = (V, E') with edge costs $w(\{i, j\}) = \begin{cases} 1 & \text{falls } \{i, j\} \in E \\ r \cdot n + 1 & \text{otherwise} \end{cases}$

Observation: opt. tour for
$$G'$$
 has cost $\begin{cases} n & \text{if } G \in \mathsf{HC} \\ \geq (r \cdot n + 1) + (n - 1) & \text{if } G \notin \mathsf{HC} \end{cases}$

 $G \in \mathsf{HC} \Leftrightarrow \mathsf{cost}(A(G')) \leq r \cdot n$

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Observation: opt. tour for
$$G'$$
 has cost
$$\begin{cases} n & \text{if } G \in \mathsf{HC} \\ \geq (r \cdot n + 1) + (n - 1) & \text{if } G \notin \mathsf{HC} \end{cases}$$

$$G \in \mathsf{HC} \Leftrightarrow \mathsf{cost}(A(G')) \leq r \cdot n$$

 $G \notin \mathsf{HC} \Leftrightarrow \mathsf{cost}(A(G')) > r \cdot n$

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Observation: opt. tour for
$$G'$$
 has cost
$$\begin{cases} n & \text{if } G \in \mathsf{HC} \\ \geq (r \cdot n + 1) + (n - 1) & \text{if } G \notin \mathsf{HC} \end{cases}$$

$$G ∈ HC ⇔ cost(A(G')) ≤ r · n$$

$$G ∉ HC ⇔ cost(A(G')) > r · n$$

$$G ∉ HC ⇔ cost(A(G')) > r · n$$

$$G ∉ HC ⇔ cost(A(G')) > r · n$$

Assume "for the sake of contradiction": r-approximation algorithm A for TSP Given G = (V, E) instance of Hamiltonian Cycle Problem (HC)

Observation: opt. tour for
$$G'$$
 has cost
$$\begin{cases} n & \text{if } G \in \mathsf{HC} \\ \geq (r \cdot n + 1) + (n - 1) & \text{if } G \notin \mathsf{HC} \end{cases}$$

$$G \in \mathsf{HC} \Leftrightarrow \mathsf{cost}(A(G')) \leq r \cdot n$$
 $\Rightarrow r$ -Approx. for TSP *implies* $\mathsf{HC} \in P$ $G \notin \mathsf{HC} \Leftrightarrow \mathsf{cost}(A(G')) > r \cdot n$ $\Rightarrow P = NP$

MultiwayCut

MultiwayCut

Given: A connected graph *G*

MULTIWAYCUT

Given: A connected graph *G*

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$

Given: A connected graph G with edge costs $c \colon E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

Given: A connected graph G with edge costs $c: E(G) \to \mathbb{Q}^+$ and a set $T = \{t_1, \ldots, t_k\} \subseteq V(G)$ of **terminals**.

A multiway cut of T is a subset E' of edges such that no two terminals in the graph (V(G), E(G) - E') are connected.

An isolating cut for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

An isolating cut for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

An **isolating cut** for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:

An isolating cut for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:

An isolating cut for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:

An isolating cut for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:

An isolating cut for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:

An isolating cut for a terminal t_i is a set of edges that disconnects t_i from all other terminals.

A minimum-cost isolating cut for t_i can be computed efficiently:

Add dummy terminal s and find a minimum-cost s– t_i cut.

```
For i = 1, \ldots, k:
```

For i = 1, ..., k:

Compute a minimum-cost isolating cut C_i for t_i .

```
For i = 1, ..., k:
```

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union C of the k-1 cheapest such isolating cuts.

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union C of the k-1 cheapest such isolating cuts.

In other words:

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C)$$
 ? $\sum_{i=1}^{K} c(C_i)$

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union $\mathbb C$ of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C) \leq \sum_{i=1}^{k} c(C_i)$$

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

$$\Rightarrow c(C) \le \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

For i = 1, ..., k:

- Compute a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(C) \le \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have

$$c(C_1) \geq$$

For i = 1, ..., k:

- **Compute** a minimum-cost isolating cut C_i for t_i .
- Return the union \mathcal{C} of the k-1 cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_1, \ldots, C_k .

$$\Rightarrow c(C) \le \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$
 because:

for the most expensive cut of C_1, \ldots, C_k , say C_1 , we have

$$c(C_1) \geq \frac{1}{k} \sum_{i=1}^k c(C_i).$$

Theorem. This algorithm is a factor-

approximation algorithm for MultiwayCut.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

```
Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.
```

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Observation. $\mathcal{A} =$

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Observation.
$$\mathcal{A} = \bigcup_{i=1}^k A_i$$

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Observation.
$$\mathcal{A} = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(\mathcal{A}) = 2 \cdot \text{OPT}$.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Observation.
$$\mathcal{A} = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(\mathcal{A}) = 2 \cdot OPT$.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Observation.
$$\mathcal{A} = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(\mathcal{A}) = 2 \cdot OPT$.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Observation.
$$\mathcal{A} = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(\mathcal{A}) = 2 \cdot OPT$.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

$$c(C) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(C_i)$$

$$\leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} c(A_i)$$

$$= \left(1 - \frac{1}{k}\right) \cdot 2 \cdot c(\mathcal{A})$$

$$A_i = \{uv \in \mathcal{A} : u \in \kappa_i, v \notin \kappa_i\}$$

Observation.
$$\mathcal{A} = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(\mathcal{A}) = 2 \cdot OPT$.

Theorem. This algorithm is a factor-(2 - 2/k) approximation algorithm for MultiwayCut.

Observation.
$$\mathcal{A} = \bigcup_{i=1}^k A_i$$
 and $\sum_{i=1}^k c(A_i) = 2 \cdot c(\mathcal{A}) = 2 \cdot OPT$.

 K_k

 K_k

 K_k

$$ALG = (k-1)(k-1)$$

$$ALG = (k-1)(k-1)$$

$$ALG = (k-1)(k-1)$$

$$ALG = (k-1)(k-1)$$

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i$ =

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT =

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k}$ =

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$

Can we do better?

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$

Can we do better?

The best known approximation factor for MultiwayCut is $1.2965 - \frac{1}{k}$.

[Sharma & Vondrák, STOC'14]

ALG =
$$(k-1)(k-1)$$

OPT = $\sum_{i=1}^{k-1} i = \frac{k \cdot (k-1)}{2}$
ALG/OPT = $\frac{2(k-1)}{k} = 2 - \frac{2}{k}$

Can we do better?

The best known approximation factor for MultiwayCut is $1.2965 - \frac{1}{k}$.

[Sharma & Vondrák, STOC'14]

MultiwayCut cannot be approximated within factor 1.20016 - O(1/k) (unless P = NP).

[Bérczi, Chandrasekaran, Király & Madan, MP'18]

2-approximation for (Metric) Steiner Tree Problem and Metric TSP ingredients: Eulerian tours, minimum spanning trees, triangle inequality (and Hamiltonian paths)

- 2-approximation for (Metric) Steiner Tree Problem and Metric TSP ingredients: Eulerian tours, minimum spanning trees, triangle inequality (and Hamiltonian paths)
- 1.5-approximation for Metric TSP additional ingredient: min-cost perfect matching (instead of Eulerian tour)

- 2-approximation for (Metric) Steiner Tree Problem and Metric TSP ingredients: Eulerian tours, minimum spanning trees, triangle inequality (and Hamiltonian paths)
- 1.5-approximation for Metric TSP additional ingredient: min-cost perfect matching (instead of Eulerian tour)

Approximation-Preserving Reduction from Steiner tree problem to Metric Steiner Tree Problem

- 2-approximation for (Metric) Steiner Tree Problem and Metric TSP ingredients: Eulerian tours, minimum spanning trees, triangle inequality (and Hamiltonian paths)
- 1.5-approximation for Metric TSP additional ingredient: min-cost perfect matching (instead of Eulerian tour)
- Approximation-Preserving Reduction from Steiner tree problem to Metric Steiner Tree Problem
- (2-2/k)-approximation algorithm for MultiwayCut based on k-1 isolating cuts realized by s-t-cuts