|                 | Н                         | istory               |                        |
|-----------------|---------------------------|----------------------|------------------------|
| Type            | Author                    | Citation             | Literature Cutoff Date |
| Full Evaluation | C. W. Reich, Balraj Singh | NDS 111, 1211 (2010) | 12-Apr-2010            |

 $Q(\beta^{-}) = -5.53 \times 10^{3} \text{ 4}; S(n) = 1.003 \times 10^{4} \text{ 8}; S(p) = 2.25 \times 10^{3} \text{ 4}; Q(\alpha) = 3.35 \times 10^{3} \text{ 4}$ 

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=-5510 \ 40$ ;  $S(n)=10030 \ 80$ ;  $S(p)=2250 \ 30$ ;  $Q(\alpha)=3350 \ 40$ 2009AuZZ,2003Au03

Additional information 1.

Mass measurement: 2000Ra23.

<sup>163</sup>Lu has been the object of numerous studies of wobbling excitations In nuclei. For recent theoretical studies and analyses of this phenomenon In <sup>163</sup>Lu and related nuclides, see, e.g., 2007Ca08, 2006Al30, 2006Sh25, 2006Sh26, 2005Ha24.

## 163Lu Levels

Labelling Scheme for the Quasiparticle Orbitals (2004Je03):

A: v5/2[642],  $\alpha = +1/2$ .

B: v5/2[642],  $\alpha = -1/2$ .

C: v3/2[651],  $\alpha = +1/2$ .

D: v3/2[651],  $\alpha = -1/2$ .

E: v5/2[523],  $\alpha = +1/2$ .

F: v5/2[523],  $\alpha = -1/2$ .

G: v3/2[521],  $\alpha = +1/2$ .

H: v3/2[521],  $\alpha = -1/2$ .

a:  $\pi 1/2[411]$ ,  $\alpha = +1/2$ .

b:  $\pi 1/2[411]$ ,  $\alpha = -1/2$ .

c:  $\pi 7/2[404]$ ,  $\alpha = +1/2$ . d:  $\pi 7/2[404]$ ,  $\alpha = -1/2$ .

e:  $\pi 7/2[523]$ ,  $\alpha = +1/2$ .

f:  $\pi 7/2[523]$ ,  $\alpha = -1/2$ .

g:  $\pi 9/2[514]$ ,  $\alpha = +1/2$ .

h:  $\pi 9/2[514]$ ,  $\alpha = -1/2$ .

k:  $\pi 5/2[402]$ ,  $\alpha = +1/2$ . 1:  $\pi 5/2[402]$ ,  $\alpha = -1/2$ .

m:  $\pi 1/2[660]$ ,  $\alpha = +1/2$ .

n:  $\pi 1/2[541]$ ,  $\alpha = +1/2$ .

#### Cross Reference (XREF) Flags

 $^{163}$ Hf  $\varepsilon$  decay (40.0 s) A

 $^{139}$ La( $^{28}$ Si,4n $\gamma$ )  $^{139}$ La( $^{29}$ Si,5n $\gamma$ ) В

C

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$ | $T_{1/2}^{\#}$     | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|--------------------|--------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 <i>f</i>            | 1/2 <sup>(+)</sup> | 3.97 min <i>13</i> | ABC  | $%ε+%β^+=100$<br>μ=+0.0769 10 (1998Ge13,2005St24)<br>$Δ(^{170}Lu-^{163}Lu)=-0.835$ fm² (Laser spectroscopy, 1998Ge13).<br>from an evaluation of nuclear rms charge radii, 2004An14 report $^{1/2}=5.258$ fm 9.<br>μ: collinear fast beam laser spectroscopy (1998Ge13).<br>$J^π$ : spin from LASER hyperfine spectroscopy (1998Ge13). Parity from probable $π1/2[411]$ bandhead.<br>$T_{1/2}$ : from 1983Ge08. Others: 4.1 min 2 (1980Be39), $<3$ min (1975Ad09). |
| 16.84 <mark>8</mark> 22 | $(3/2^{+})$        |                    | ABC  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| E(level) <sup>†</sup>                                        | $J^{\pi \ddagger}$                         | T <sub>1/2</sub> #        | XREF       |                                          | Comments |
|--------------------------------------------------------------|--------------------------------------------|---------------------------|------------|------------------------------------------|----------|
| 62.22 <sup>q</sup> 23<br>124.36 <sup>e</sup> 24              | (5/2 <sup>+</sup> )<br>(7/2 <sup>+</sup> ) |                           | ABC<br>ABC | $J^{\pi}$ : M1 $\gamma$ to $1/2^{(+)}$ . |          |
| 190.87 <sup>f</sup> 20                                       | $(7/2^+)$ $(5/2^+)$                        |                           | BC         |                                          |          |
| 195.31 <sup>c</sup> 24                                       | $(7/2^{-})$                                |                           | ABC        |                                          |          |
| 210.1 <sup>b</sup> 4<br>224.5 <sup>r</sup> 3                 | $(9/2^{-})$<br>$(7/2^{+})$                 |                           | BC<br>ABC  |                                          |          |
| 250.09 <sup>g</sup> 23                                       | $(7/2^+)$                                  |                           | ABC        |                                          |          |
| 280.2? <i>3</i><br>295.5 <sup>c</sup> <i>4</i>               | (11/2-)                                    |                           | A<br>BC    |                                          |          |
| 310.5 <sup>d</sup> 3                                         | $(9/2^+)$                                  |                           | BC         |                                          |          |
| 414.2 <sup>q</sup> 5<br>492.1 <sup>b</sup> 4                 | (9/2 <sup>+</sup> )                        |                           | C          |                                          |          |
| 492.1° 4<br>520.5° 3                                         | $(13/2^{-})$<br>$(11/2^{+})$               |                           | BC<br>BC   |                                          |          |
| 520.85 <sup>f</sup> 22                                       | $(9/2^+)$                                  |                           | BC         |                                          |          |
| 620.94 <sup>g</sup> 24<br>642.2 <sup>r</sup> 7               | $(11/2^+)$<br>$(11/2^+)$                   |                           | BC<br>C    |                                          |          |
| 644.7° 4                                                     | $(11/2^{-})$ $(15/2^{-})$                  | 5.6 <sup>@</sup> ps +6-11 | ВС         |                                          |          |
| 691.4 3                                                      |                                            | •                         | A          |                                          |          |
| 715.6 <i>3</i> 730.6 <i>4</i>                                |                                            |                           | A<br>A     |                                          |          |
| 754.8 <sup>d</sup> 3                                         | $(13/2^+)$                                 |                           | BC         |                                          |          |
| 875.2 <sup>q</sup> 7<br>883.6 3                              | $(13/2^+)$                                 |                           | C<br>A     |                                          |          |
| 937.4 <mark>b</mark> 4                                       | $(17/2^{-})$                               | 1.4 <sup>@</sup> ps +8-7  | BC         |                                          |          |
| 967.86 <sup>f</sup> 24<br>1008.2 <sup>e</sup> 3              | $(13/2^+)$                                 |                           | BC         |                                          |          |
| 1106.91 <sup>8</sup> 25                                      | $(15/2^+)$<br>$(15/2^+)$                   |                           | BC<br>BC   |                                          |          |
| 1115.4° 4                                                    | $(19/2^{-})$                               | 1.9 <sup>@</sup> ps +2-4  | ВС         |                                          |          |
| 1152.4 <sup>r</sup> 8<br>1282.5 <sup>d</sup> 3               | $(15/2^+)$ $(17/2^+)$                      |                           | C<br>BC    |                                          |          |
| 1286.0? 10                                                   | $(13/2^+)$                                 |                           | C          |                                          |          |
| 1417.0 <sup>q</sup> 7<br>1485.8 <sup>b</sup> 4               | $(17/2^+)$                                 | 0.9 <sup>@</sup> ps 3     | C          |                                          |          |
| $1485.8^{\circ}$ 4 $1501.71^{\circ}$ 25                      | $(21/2^{-})$<br>$(17/2^{+})$               | 0.9 - ps 3                | BC<br>BC   |                                          |          |
| 1562.1 <sup>e</sup> 3                                        | $(19/2^+)$                                 |                           | BC         |                                          |          |
| 1669.9 <sup>8</sup> <i>3</i><br>1677.4 <sup>c</sup> <i>4</i> | $(19/2^+)$<br>$(23/2^-)$                   | 1.0 <sup>@</sup> ps +2-3  | BC<br>BC   |                                          |          |
| 1730.1 <sup>r</sup> 7                                        | $(19/2^+)$                                 | 1.0 ps 12 5               | C          |                                          |          |
| $1739.9^{t}$ 10                                              | $(13/2^+)$                                 |                           | BC         |                                          |          |
| 1867.7 <sup>d</sup> 3<br>1936.5 <sup>t</sup> 8               | $(21/2^+)$<br>$(17/2^+)$                   |                           | BC<br>BC   |                                          |          |
| 2009.0 6                                                     | $(21/2^+)$                                 |                           | C          |                                          |          |
| 2020.6 <sup>q</sup> 7<br>2087.6 <sup>f</sup> 3               | $(21/2^+)$ $(21/2^+)$                      |                           | C<br>C     |                                          |          |
| 2104.4 <sup>b</sup> 4                                        | $(25/2^{-})$                               |                           | ВС         |                                          |          |
| 2139.8 <sup>e</sup> 3                                        | $(23/2^+)$                                 |                           | BC         |                                          |          |
| 2199.6 <sup>t</sup> 4<br>2228.4 6                            | $(21/2^+)$<br>$(23/2^+)$                   |                           | BC<br>C    |                                          |          |
| 2276.7 <sup>8</sup> 3                                        | $(23/2^+)$                                 |                           | ВС         |                                          |          |

| E(level) <sup>†</sup>                                     | $J^{\pi \ddagger}$           | T <sub>1/2</sub> #                       | XREF    |
|-----------------------------------------------------------|------------------------------|------------------------------------------|---------|
| 2307.6 <sup>c</sup> 4<br>2339.7 <sup>r</sup> 10           | $(27/2^{-})$                 | $1.2^{\textcircled{0}} \text{ ps } +3-5$ | ВС      |
| $2400.5^{d}$ 3                                            | $(23/2^+)$<br>$(25/2^+)$     |                                          | C<br>BC |
| $2400.3 \ 3$ $2410.8^{j} \ 9$                             | $(23/2^{+})$ $(21/2^{+})$    |                                          | С       |
| 2437.1 <sup>k</sup> 4                                     | $(23/2^+)$                   |                                          | C       |
| 2488.6 7                                                  | $(25/2^+)$                   |                                          | Č       |
| 2514.5 <sup>t</sup> 4                                     | $(25/2^+)$                   | $3.3^{\&}$ ps +7-5                       | ВС      |
| 2540.8 <sup>j</sup> 4                                     | $(25/2^+)$                   |                                          | C       |
| 2614.6° 3                                                 | $(27/2^+)$                   |                                          | BC      |
| 2681.1 <sup>k</sup> 4                                     | $(27/2^+)$                   |                                          | C       |
| 2685.7 <i>6</i><br>2748.3 <sup><i>b</i></sup> <i>4</i>    | $(27/2^+)$<br>$(29/2^-)$     |                                          | C       |
| 2748.3° 4<br>2773.5 <sup>8</sup> 4                        | $(29/2)$ $(27/2^+)$          |                                          | BC<br>C |
| $2803.7^{d}$ 3                                            | $(29/2^+)$                   |                                          | ВС      |
| 2855.4 <sup>h</sup> 7                                     | $(29/2^{-})$                 |                                          | BC      |
| 2861.2 <sup>j</sup> 4                                     | $(29/2^+)$                   |                                          | C       |
| 2900.8 <sup>t</sup> 4                                     | $(29/2^+)$                   | $2.3^{\&}$ ps +5-4                       | ВС      |
| 2925.0° 4                                                 | $(31/2^{-})$                 |                                          | BC      |
| 3004.1 <sup>e</sup> 3                                     | $(31/2^+)$                   |                                          | BC      |
| $3021.5^{i}$ 6                                            | $(31/2^{-})$                 |                                          | ВС      |
| 3078.4 <sup>k</sup> 4<br>3079.3 <sup>u</sup> 9            | $(31/2^+)$<br>$(27/2^+)$     |                                          | C<br>C  |
| 3079.3 <sup>h</sup> 9 3123.4 <sup>b</sup> 4               | $(27/2^{+})$ $(33/2^{-})$    |                                          | BC      |
| 3123.4° 4<br>3130.78 7                                    | $(33/2)$ $(31/2^+)$          |                                          | С       |
| 3245.2 <sup>d</sup> 3                                     | $(33/2^+)$                   |                                          | BC      |
| 3320.8 <sup>c</sup> 4                                     | $(35/2^{-})$                 | $4.2^{\textcircled{0}}$ ps $+5-6$        | ВС      |
| 3323.9 <i>j</i> 4                                         | $(33/2^+)$                   |                                          | С       |
| 3351.1 <sup>t</sup> 4                                     | $(33/2^+)$                   | 0.9 <sup>&amp;</sup> ps +5−3             | BC      |
| 3418.8 <sup>h</sup> 7                                     | $(33/2^{-})$                 |                                          | C       |
| 3483.8° 3                                                 | $(35/2^+)$                   |                                          | ВС      |
| 3486.6 <sup><i>u</i></sup> 7 3551.9 <sup><i>b</i></sup> 4 | $(31/2^+)$                   |                                          | C       |
| 3551.9 <sup>b</sup> 4 3572.1 <sup>k</sup> 4               | $(37/2^{-})$<br>$(35/2^{+})$ |                                          | ВС      |
| 3635.8 <sup>m</sup> 7                                     | $(35/2^+)$ $(35/2^+)$        |                                          | C<br>C  |
| 3667.8 <sup>i</sup> 7                                     | $(35/2^{-})$                 |                                          | C       |
| 3789.9 <sup>d</sup> 3                                     | $(37/2^+)$                   |                                          | ВС      |
| 3822.7 <sup>c</sup> 4                                     | $(39/2^{-})$                 |                                          | BC      |
| 3863.6° 8                                                 | $(33/2^+)$                   | 0                                        | C       |
| 3866.4 <sup>t</sup> 5                                     | $(37/2^+)$                   | $0.31^{\&}$ ps $+14-11$                  | BC      |
| 3892.6 <sup>j</sup> 7<br>3958.3 <sup>u</sup> 7            | $(37/2^+)$                   |                                          | C       |
| 3958.3 <sup>h</sup> / 3996.0 <sup>h</sup> 8               | $(35/2^+)$<br>$(37/2^-)$     |                                          | C       |
| 4068.3 <sup>e</sup> 4                                     | (37/2)<br>$(39/2^+)$         |                                          | C<br>BC |
| 4103.9 <sup>b</sup> 4                                     | $(41/2^{-})$                 |                                          | BC      |
| 4150.8 <sup>k</sup> 4                                     | $(39/2^+)$                   |                                          | C       |
| 4253.8 <sup>i</sup> 8                                     | $(39/2^{-})$                 |                                          | C       |
| 4255.6 <sup>m</sup> 7                                     | $(39/2^+)$<br>$(37/2^-)$     |                                          | C       |
| 4309.3° 7                                                 | $(37/2^{-})$                 |                                          | С       |
|                                                           |                              |                                          |         |

| E(level) <sup>†</sup>                          | $J^{\pi \ddagger}$       | T <sub>1/2</sub> #                        | XREF   | Comments                                                                            |
|------------------------------------------------|--------------------------|-------------------------------------------|--------|-------------------------------------------------------------------------------------|
| 4369.2 <sup>v</sup> 7                          | $(37/2^+)$               |                                           | C      |                                                                                     |
| 4405.9 <sup>d</sup> 4                          | $(41/2^+)$               |                                           | ВС     |                                                                                     |
| 4431.4 <sup>c</sup> 4                          | $(43/2^{-})$             |                                           | BC     |                                                                                     |
| 4445.0 <sup>t</sup> 5                          | $(41/2^+)$               | $0.25^a \text{ ps } +5-7$                 | ВС     | $T_{1/2}$ : other: 0.15 ps +6-5 (1993Sc13,1992ScZL). $Q_t$ =9.9 +11-10 (2004Go14).  |
| 4492.6 <sup>u</sup> 7                          | $(39/2^+)$               |                                           | C      |                                                                                     |
| 4529.5 <sup>j</sup> 8                          | $(41/2^+)$               |                                           | C      |                                                                                     |
| 4556.6 <sup>h</sup> 7                          | $(41/2^{-})$             |                                           | С      |                                                                                     |
| 4579.0 <mark>P</mark> 7                        | $(39/2^{-})$             |                                           | C      |                                                                                     |
| 4719.7 <sup>e</sup> 4                          | $(43/2^+)$               |                                           | BC     |                                                                                     |
| 4760.7 <sup>b</sup> 5                          | $(45/2^{-})$             |                                           | BC     |                                                                                     |
| 4817.3 <sup>k</sup> 5                          | $(43/2^+)$               |                                           | C      |                                                                                     |
| 4831.2° 7                                      | $(41/2^{-})$             |                                           | C      |                                                                                     |
| 4849.0 <sup>i</sup> 7                          | $(43/2^{-})$             |                                           | C      |                                                                                     |
| 4904.1 <sup>m</sup> 7                          | $(43/2^+)$               |                                           | C      |                                                                                     |
| $4937.2^{V}$ 7                                 | $(41/2^+)$               |                                           | C      |                                                                                     |
| 5057.5 <sup>d</sup> 4<br>5084.0 <sup>t</sup> 5 | $(45/2^+)$               | 1720 6 . 24 27                            | BC     | T (1 0.10 . // 2./10020 12.10020 7I.)                                               |
| 5084.0° 5                                      | $(45/2^+)$               | $173^{a}$ fs $+24-27$                     | BC     | $T_{1/2}$ : other: 0.10 ps +4-3 (1993Sc13,1992ScZL).<br>$Q_t$ =9.3 +7-6 (2004Go14). |
| 5088.3 <sup>u</sup> 7                          | $(43/2^+)$               |                                           | C      | Q[-9.5 +7-0 (200 <del>10</del> 014).                                                |
| 5116.1 <sup>P</sup> 7                          | $(43/2^{-})$             |                                           | Č      |                                                                                     |
| 5131.8 <sup>c</sup> 5                          | $(47/2^{-})$             | 0.15 <sup>@</sup> ps 5                    | ВС     |                                                                                     |
| 5168.8 <sup>h</sup> 7                          | $(45/2^{-})$             | 1                                         | С      |                                                                                     |
| 5209.6 <sup>l</sup> 7                          | $(45/2^+)$               |                                           | С      |                                                                                     |
| 5243.4 <sup>j</sup> 10                         | $(45/2^+)$               |                                           | С      |                                                                                     |
| 5387.9 <sup>e</sup> 4                          | $(47/2^+)$               |                                           | BC     |                                                                                     |
| 5419.5° 7                                      | $(45/2^{-})$             |                                           | C      |                                                                                     |
| 5496.2 <sup>i</sup> 8                          | $(47/2^{-})$             |                                           | C      |                                                                                     |
| 5505.1 <sup>b</sup> 5                          | $(49/2^{-})$             | $0.11^{\textcircled{0}} \text{ ps } +5-3$ | BC     |                                                                                     |
| 5557.4 <sup>m</sup> 7                          | $(47/2^+)$               |                                           | C      |                                                                                     |
| 5559.5 <sup>k</sup> 5                          | $(47/2^+)$               |                                           | C      |                                                                                     |
| 5564.2 <sup>v</sup> 5                          | $(45/2^+)$               |                                           | С      |                                                                                     |
| 5720.1 <sup>d</sup> 4                          | $(49/2^+)$               | 140/16 26 22                              | BC     | 0.05.10.5.00045.10                                                                  |
| 5742.9 <sup>u</sup> 8<br>5757.0 <sup>p</sup> 8 | $(47/2^+)$<br>$(47/2^-)$ | $149^{a}$ fs $+26-33$                     | C<br>C | $Q_t = 8.5 + 10 - 7 (2004 \text{Go} 14).$                                           |
| 5781.0 <sup>t</sup> 5                          | $(49/2^+)$               | 140 <sup>a</sup> fs +15-16                | ВС     | $T_{1/2}$ : other: 0.08 ps +4-3 (1993Sc13,1992ScZL). $Q_t$ =8.3 +5-4 (2004Go14).    |
| 5853.1 <sup>h</sup> 8                          | $(49/2^{-})$             |                                           | С      |                                                                                     |
| 5898.2 <sup>l</sup> 8                          | $(49/2^+)$               |                                           | C      |                                                                                     |
| 5916.9 <sup>c</sup> 5                          | $(51/2^{-})$             | $0.12^{\text{@}} \text{ ps } +3-6$        | BC     |                                                                                     |
| 6006.1 <sup>j</sup> 8                          | $(49/2^+)$               | 0.12 ps 15 0                              | C      |                                                                                     |
| 6065.3 <sup>e</sup> 4                          | $(51/2^+)$               |                                           | ВС     |                                                                                     |
| 6108.2° 9                                      | $(49/2^{-})$             |                                           | C      |                                                                                     |
| 6223.5 <sup>i</sup> 10                         | $(51/2^{-})$             |                                           | С      |                                                                                     |
| 6246.5 <sup>m</sup> 8                          | $(51/2^+)$               |                                           | C      |                                                                                     |
| 6249.3 <sup>v</sup> 8                          | $(49/2^+)$               |                                           | C      |                                                                                     |
| $6319.9^{W}9$                                  | $(47/2^{-})$             | 0                                         | C      |                                                                                     |
| 6334.1 <sup>b</sup> 5                          | (53/2-)                  | $0.09^{\textcircled{0}}$ ps $+6-4$        | BC     |                                                                                     |
| 6355.9 <sup>k</sup> 10                         | $(51/2^+)$               |                                           | С      |                                                                                     |

| E(level) <sup>†</sup>                            | $J^{\pi \ddagger}$           | T <sub>1/2</sub> #      | XREF   | Comments                                                                                                    |
|--------------------------------------------------|------------------------------|-------------------------|--------|-------------------------------------------------------------------------------------------------------------|
| 6415.1 <sup>d</sup> 4                            | $(53/2^+)$                   |                         | ВС     |                                                                                                             |
| 6454.2 <sup>u</sup> 8                            | $(53/2^+)$ $(51/2^+)$        | $100^{a}$ fs $+12-15$   | C      | $Q_t = 8.7 + 7 - 5 (2004 \text{Go} 14).$                                                                    |
| 6502.7 <sup>p</sup> 10                           | $(51/2^{-})$                 | 100 15 112 15           | Č      | Q 6.7 17 3 (250 160 17).                                                                                    |
| 6533.6 <sup>t</sup> 5                            | $(53/2^+)$                   | $82^a \text{ fs } +6-7$ | ВС     | $T_{1/2}$ : others: 55 fs +2 <i>I</i> -28 (1993Sc13,1992ScZL), 0.10 ps (2002Sc11). $Q_t$ =8.9 4 (2004Go14). |
| 6616.5 <sup>1</sup> 10                           | $(53/2^+)$                   |                         | С      |                                                                                                             |
| 6618.0 <mark>h</mark> 10                         | $(53/2^{-})$                 |                         | C      |                                                                                                             |
| 6719.1 <sup>j</sup> 10                           | $(53/2^+)$                   |                         | C      |                                                                                                             |
| 6788.9 <sup>e</sup> 4                            | $(55/2^+)$                   |                         | BC     |                                                                                                             |
| 6790.0° 8                                        | $(55/2^{-})$                 |                         | BC     |                                                                                                             |
| 6907.4° 11                                       | $(53/2^{-})$                 |                         | C      |                                                                                                             |
| 6965.0 <sup>w</sup> 9                            | $(51/2^{-})$                 |                         | C      |                                                                                                             |
| 6980.1 <sup>m</sup> 11                           | $(55/2^+)$                   |                         | C      |                                                                                                             |
| 6990.5 <sup>v</sup> 8                            | $(53/2^+)$                   |                         | C      |                                                                                                             |
| 7035.4 <sup>i</sup> 11                           | $(55/2^{-})$                 |                         | С      |                                                                                                             |
| 7133.1 <sup>k</sup> 11                           | $(55/2^+)$                   |                         | С      |                                                                                                             |
| 7174.2 <sup>d</sup> 4                            | $(57/2^+)$                   |                         | ВС     |                                                                                                             |
| 7179.1 <sup>s</sup> 10                           | $(55/2^+)$                   |                         | C      |                                                                                                             |
| 7220.4 <sup>u</sup> 9                            | $(55/2^+)$                   | $66^{a}$ fs +9-12       | C      | $Q_t = 8.9 + 8 - 6 (2004 \text{Go} 14).$                                                                    |
| 7246.9 <sup>b</sup> 9                            | $(57/2^{-})$                 |                         | ВС     |                                                                                                             |
| 7339.1 <sup>t</sup> 5                            | (57/2+)                      | 66 <sup>a</sup> fs 8    | ВС     | $T_{1/2}$ : others: 0.04 ps 3 (1993Sc13,1992ScZL), 67 fs (2002Sc11). $Q_t$ =8.4 5 (2004Go14).               |
| 7351.2 <sup>p</sup> 12                           | $(55/2^{-})$                 |                         | C      |                                                                                                             |
| 7391.0 <sup>l</sup> 12                           | $(57/2^+)$                   |                         | С      |                                                                                                             |
| 7466.8 <mark>h</mark> 12                         | $(57/2^{-})$                 |                         | С      |                                                                                                             |
| 7507.0 <sup>j</sup> 12                           | $(57/2^+)$                   |                         | С      |                                                                                                             |
| 7584.4 <sup>e</sup> 4                            | $(59/2^+)$                   |                         | BC     |                                                                                                             |
| 7667.2 <sup>w</sup> 9                            | $(55/2^{-})$                 |                         | C      |                                                                                                             |
| 7729.3 <sup>c</sup> 10                           | $(59/2^{-})$                 |                         | BC     |                                                                                                             |
| 7785.3 <sup>m</sup> 12                           | $(59/2^+)$                   |                         | C      |                                                                                                             |
| 7786.4 <sup>v</sup> 9                            | $(57/2^+)$                   |                         | C      |                                                                                                             |
| 7813.9° 13                                       | $(57/2^{-})$                 |                         | С      |                                                                                                             |
| 7903.4 <sup>i</sup> 13                           | $(59/2^{-})$                 |                         | C      |                                                                                                             |
| 7955.9 <sup>k</sup> 13                           | $(59/2^+)$                   |                         | C      |                                                                                                             |
| 8011.1 <sup>d</sup> 4                            | $(61/2^+)$                   |                         | BC     |                                                                                                             |
| 8040.3 <sup>u</sup> 9                            | $(59/2^+)$                   | $60^{a}$ fs +18-26      | C      | $Q_t = 7.8 + 17 - 12 (2004 \text{Go} 14).$                                                                  |
| 8046.1 <sup>s</sup> 10                           | $(59/2^+)$                   |                         | C      |                                                                                                             |
| 8196.9 <sup>t</sup> 10                           | $(61/2^+)$                   | $61^{a}$ fs +7-8        | BC     | $T_{1/2}$ : others: 53 fs (2002Sc11), 34 fs +35-33 (1992ScZL).                                              |
| 8222.8 <sup>b</sup> 11                           | $(61/2^{-})$                 |                         | BC     |                                                                                                             |
| 8237.3 <sup>l</sup> 13                           | $(61/2^+)$                   |                         | C      |                                                                                                             |
| 8291.2 <sup>p</sup> 14                           | $(59/2^{-})$                 |                         | C      |                                                                                                             |
| 8379.8 <mark>h</mark> 16                         | $(61/2^{-})$                 |                         | C      |                                                                                                             |
| 8387.2 <sup>j</sup> 16                           | $(61/2^+)$                   |                         | C      |                                                                                                             |
| 8421.8 <sup>w</sup> 10                           | $(59/2^{-})$                 |                         | C      |                                                                                                             |
| 8459.4 <sup>e</sup> 8                            | $(63/2^+)$                   |                         | BC     |                                                                                                             |
| 8636.2 <sup>v</sup> 9                            | $(61/2^+)$                   |                         | C      |                                                                                                             |
| 8668.7 <sup>m</sup> 14                           | $(63/2^+)$                   |                         | C      |                                                                                                             |
| 8713.6 <sup>c</sup> 12<br>8790.3 <sup>o</sup> 15 | $(63/2^{-})$<br>$(61/2^{-})$ |                         | C<br>C |                                                                                                             |
| 8845.6 <sup>i</sup> 17                           | $(63/2^{-})$                 |                         | C      |                                                                                                             |
| 0043.0 1/                                        | (03/2 )                      |                         | C      |                                                                                                             |

| E(level) <sup>†</sup>                              | $J^{\pi \ddagger}$           | $T_{1/2}^{\#}$           | XREF    | Comments                                   |
|----------------------------------------------------|------------------------------|--------------------------|---------|--------------------------------------------|
| 8855.7 <sup>k</sup> 17                             | $(63/2^+)$                   | 449 6 . 0 . 15           | C       | 0.70.43.0(00047.14)                        |
| 8913.2 <sup>u</sup> 11<br>8927.0 <sup>d</sup> 9    | $(63/2^+)$<br>$(65/2^+)$     | 44 <sup>a</sup> fs +9-15 | C       | $Q_t = 7.9 + 13 - 8 (2004 \text{Go} 14).$  |
| 8927.0° 9<br>8974.2 <sup>8</sup> 14                | $(63/2^+)$                   |                          | BC<br>C |                                            |
| 9106.6 <sup>t</sup> 14                             | $(65/2^+)$                   | $46^{a}$ fs +7-10        | ВС      | $Q_t = 7.4 + 8 - 6 (2004 \text{Go} 14).$   |
| 9154.2 <sup>l</sup> 15                             | $(65/2^+)$                   |                          | C       |                                            |
| 9231.8 <sup>w</sup> 14                             | $(63/2^{-})$                 |                          | C       |                                            |
| 9252.8 <mark>b</mark> 13                           | $(65/2^{-})$                 |                          | С       |                                            |
| 9284.6 <sup>p</sup> 17                             | $(63/2^{-})$                 |                          | C       |                                            |
| 9331.0 <sup><i>j</i></sup> 19                      | $(65/2^+)$                   |                          | C       |                                            |
| 9376.3 <sup>h</sup> 19                             | $(65/2^{-})$                 |                          | C       |                                            |
| 9408.7 <sup>e</sup> 10                             | $(67/2^+)$                   |                          | BC      |                                            |
| 9538.7 <sup>v</sup> 14                             | $(65/2^+)$                   |                          | C       |                                            |
| 9625.5 <sup>m</sup> 15<br>9709.0 <sup>c</sup> 14   | $(67/2^+)$                   |                          | C       |                                            |
| 9805.3° 18                                         | $(67/2^{-})$<br>$(65/2^{-})$ |                          | C<br>C  |                                            |
| 9816.2 <sup>k</sup> 20                             | $(67/2^+)$                   |                          | C       |                                            |
| 9839.7 <sup>u</sup> 15                             | $(67/2^+)$                   | $52^{a}$ fs +12-17       | C       | $Q_t = 6.7 + 11 - 8 (2004 \text{Go} 14).$  |
| 9916.8 <sup>d</sup> 11                             | $(69/2^+)$                   |                          | ВС      |                                            |
| 10069.2 <sup>t</sup> 14                            | $(69/2^+)$                   | $33^a$ fs +12-8          | BC      | $Q_t = 7.6 + 15 - 9 (2004 \text{Go} 14).$  |
| 10097.2 <sup>w</sup> 17                            | $(67/2^{-})$                 |                          | C       |                                            |
| 10138.5 <sup>l</sup> 16                            | $(69/2^+)$                   |                          | C       |                                            |
| 10314.7 <mark>b</mark> 16                          | $(69/2^{-})$                 |                          | С       |                                            |
| 10333.9 <sup>j</sup> 21                            | $(69/2^+)$                   |                          | С       |                                            |
| 10428.3 <sup>e</sup> 12                            | $(71/2^+)$                   |                          | BC      |                                            |
| 10494.5 <sup>v</sup> 17                            | $(69/2^+)$                   |                          | С       |                                            |
| 10653.5 <sup>m</sup> 17                            | $(71/2^+)$                   |                          | C       |                                            |
| 10714.9 <sup>c</sup> 17<br>10819.9 <sup>u</sup> 18 | $(71/2^{-})$<br>$(71/2^{+})$ | $39^{a}$ fs $+12-20$     | C       | 0 -67 +17 10 (2004Co14)                    |
| 10819.9 18<br>10876.3 21                           | (71/2)<br>$(69/2^{-})$       | 39" 18 +12-20            | C<br>C  | $Q_t = 6.7 + 17 - 10 (2004 \text{Go} 14).$ |
| 10978.4 <sup>d</sup> 13                            | $(73/2^+)$                   |                          | ВС      |                                            |
| 11017.7 <sup>w</sup> 20                            | $(73/2^{-})$ $(71/2^{-})$    |                          | C       |                                            |
| 11085.7 <sup>t</sup> 18                            | $(73/2^+)$                   |                          | C       |                                            |
| 11186.8 <sup>1</sup> 19                            | $(73/2^+)$                   |                          | С       |                                            |
| 11503.7° 20                                        | $(73/2^+)$                   |                          | C       |                                            |
| 11505.4 <sup>e</sup> 14                            | $(75/2^+)$                   |                          | BC      |                                            |
| 11729.9 <sup>n</sup> 20                            | $(75/2^{-})$                 |                          | C       |                                            |
| 11749.0 <sup>m</sup> 20<br>11781.4 <sup>c</sup> 20 | $(75/2^+)$<br>$(75/2^-)$     |                          | C<br>C  |                                            |
| 11781.4 20<br>11854.6 <sup>u</sup> 21              | $(75/2^+)$                   |                          | C       |                                            |
| 11993.4 <sup>w</sup> 22                            | $(75/2^{-})$                 |                          | c       |                                            |
| 12098.1 <sup>d</sup> 16                            | $(77/2^+)$                   |                          | ВС      |                                            |
| 12156.8 <sup>t</sup> 20                            | $(77/2^+)$                   |                          | C       |                                            |
| 12266.9 <sup>l</sup> 21                            | $(77/2^+)$                   |                          | C       |                                            |
| 12566.7 <sup>v</sup> 22                            | $(77/2^+)$                   |                          | C       |                                            |
| 12627.2 <sup>e</sup> 17                            | $(79/2^+)$                   |                          | BC      |                                            |
| 12745 <sup>n</sup> 3                               | $(79/2^{-})$                 |                          | C       |                                            |
| 12862.4 <sup>m</sup> 22<br>12866.0 <sup>c</sup> 22 | $(79/2^+)$                   |                          | C<br>C  |                                            |
| 12800.0 22                                         | $(79/2^{-})$                 |                          | C       |                                            |

#### <sup>163</sup>Lu Levels (continued)

| E(level) <sup>†</sup>    | $J^{\pi \ddagger}$ | XREF | E(level) <sup>†</sup>   | $J^{\pi \ddagger}$ | XREF | E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | XREF |
|--------------------------|--------------------|------|-------------------------|--------------------|------|-----------------------|--------------------|------|
| 12943.5 <sup>u</sup> 23  | $(79/2^+)$         | С    | 14086.5 <sup>u</sup> 25 | $(83/2^+)$         | С    | 16024 <sup>n</sup> 4  | $(91/2^{-})$       | С    |
| 13025.0 <sup>w</sup> 25  | $(79/2^{-})$       | C    | 14110? <sup>w</sup> 3   | $(83/2^{-})$       | C    | 16531 <sup>u</sup> 3  | $(91/2^+)$         | C    |
| 13198.3? <sup>d</sup> 19 | $(81/2^+)$         | C    | 14462.3 <sup>t</sup> 25 | $(85/2^+)$         | C    | 16958 <sup>t</sup> 3  | $(93/2^+)$         | C    |
| 13283.0 <sup>t</sup> 23  | $(81/2^+)$         | C    | 14826 <sup>v</sup> 5    | $(85/2^+)$         | C    | 17204 <sup>n</sup> 4  | $(95/2^{-})$       | C    |
| 13679.1 <sup>v</sup> 25  | $(81/2^+)$         | C    | 14890 <sup>n</sup> 4    | $(87/2^{-})$       | C    | 18262 <sup>t</sup> 3  | $(97/2^+)$         | C    |
| 13746.8 <sup>e</sup> 20  | $(83/2^+)$         | C    | 15284 <sup>u</sup> 3    | $(87/2^+)$         | C    | 18436 <sup>n</sup> 4  | $(99/2^{-})$       | C    |
| 13798 <sup>n</sup> 3     | $(83/2^{-})$       | C    | 15689 <sup>t</sup> 3    | $(89/2^+)$         | C    |                       |                    |      |

- <sup>†</sup> From least-squares fit to E $\gamma$ 's, assuming  $\Delta$ (E $\gamma$ )=0.3 keV for each  $\gamma$  ray, except for uncertain  $\gamma$  rays, for which 1 keV is assumed.
- <sup>‡</sup> The assignments are as proposed by 2002Je05, 1999Do34 and 1992Sc03 in (HI,xn $\gamma$ ) which are based on  $\gamma\gamma(\theta)$  (DCO) data and associated band structures. The parentheses are added by the evaluators on account of lack of firm evidence for  $J^{\pi}$ 's of low-lying levels and bandheads. It is assumed that multipolarities are M1(+E2) for  $\Delta$ J=1 and E2 for  $\Delta$ J=2 transitions.
- # For excited states, values are from DSAM or RDDS (1992ScZL,1993Sc13,2002Sc11 and 2004Go14) in (HI,xny) studies.
- @ From RDDS (1992ScZL).
- & From RDDS (1993Sc13,1992ScZL).
- <sup>a</sup> From DSAM (2004Go14).
- <sup>b</sup> Band(A):  $\pi7/2[523]$ ,  $\alpha=+1/2$ . Strongly-coupled band (1993Sc13,1999Do34,2002Je05,2004Je03). Of the two possible choices (1992Sc03),  $\pi7/2[523]$  and  $\pi9/2[514]$ ,  $\pi7/2[523]$  is preferred (1993Sc13,1999Do34), based on the experimental Q<sub>t</sub> pattern with K=7/2 or 9/2 and a comparison of experimental and calculated B(M1) values. AB crossing at  $\hbar\omega\approx0.26$  MeV.
- <sup>c</sup> Band(a):  $\pi$ 7/2[523],  $\alpha$ =−1/2. Strongly-coupled band (1993Sc13,1999Do34,2002Je05,2004Je03). See the comment for the signature=+1/2 partner of this band. AB crossing at  $\hbar\omega$ ≈0.26 MeV.
- <sup>d</sup> Band(B):  $\pi$ 7/2[404],  $\alpha$ =+1/2. Strongly-coupled band (1992Sc03,1999Do34,2002Je05,2004Je03). AB crossing at  $\hbar\omega\approx$ 0.26 MeV; changes to ( $\pi$ 7/2[523]) $\otimes$ AEBC after AB crossing.
- <sup>e</sup> Band(b):  $\pi$ 7/2[404],  $\alpha$ =−1/2. Strongly-coupled band (1992Sc03,1999Do34,2002Je05,2004Je03). AB crossing at  $\hbar\omega$ ≈0.26 MeV; changes to  $(\pi$ 7/2[523])⊗AEBC after AB crossing.
- <sup>f</sup> Band(C):  $\pi 1/2[411]$ ,  $\alpha = +1/2$ . (1999Do34,2002Je05,2004Je03).
- <sup>g</sup> Band(c):  $\pi 1/2[411]$ ,  $\alpha = -1/2$ . (1999Do34,2002Je05,2004Je03).
- <sup>h</sup> Band(D): Band based on (29/2<sup>-</sup>),  $\alpha$ =+1/2. Possible continuation of the  $\pi$ 7/2[523] band into ( $\pi$ 7/2[523])⊗BC. EF and AD could also be involved at higher spins.
- <sup>i</sup> Band(d): Band based on  $(31/2^-)$ ,  $\alpha$ =−1/2. Possible continuation of the  $\pi$ 7/2[523] band into  $(\pi$ 7/2[523])⊗BC. EF and AD could also be involved at higher spins.
- <sup>j</sup> Band(E):  $(\pi7/2[404])⊗$ AB at low spins, α=+1/2.  $(\pi9/2[514])⊗$ AEBC at high spins.
- <sup>k</sup> Band(e):  $(\pi 7/2[404]) \otimes AB$  at low spins,  $\alpha = -1/2$ .  $(\pi 9/2[514]) \otimes AEBC$  at high spins.
- <sup>1</sup> Band(F):  $(\pi 7/2[523])$ ⊗AHBC, α=+1/2.
- <sup>m</sup> Band(f):  $(\pi 7/2[523])$ ⊗AHBC, α=-1/2.
- <sup>n</sup> Band(G):  $(\pi 1/2[660])$ ⊗AEBC, α=−1/2.
- $^{o}$  Band(H): (π9/2[514])⊗AB, α=+1/2.
- $^{p}$  Band(h): (π9/2[514])⊗AB, α=-1/2.
- <sup>q</sup> Band(I):  $\pi 5/2[402]$ ,  $\alpha = +1/2$ . (2002Je05,2004Je03).
- <sup>r</sup> Band(i):  $\pi 5/2[402]$ ,  $\alpha = -1/2$ . (2002Je05,2004Je03).
- <sup>s</sup> Band(J): Band based on  $55/2^+$ ,  $\alpha = -1/2$ .
- <sup>t</sup> Band(K): Triaxial SD-1 band. (2004Je03,2004Go14,2002Je05,2002Sc11,2001Od03,1999Do34,1995Sc39). Qt varies from 9.9 to 7.6 (2004Go14) from the 41/2 to the 69/2 levels. Others: Qt over the entire band: 8.2 +10−6 (2002Sc11); 7.4 +7−4 or 7.7 +23−13 (2002Sc47); 10.7 7 (1993Sc13). Possible configuration= $\pi$ i<sub>13/2</sub>, 1/2[660],  $\alpha$ =+1/2;  $\beta$ 2≈0.42 (1993Sc13,1992Sc03). Percent population (relative to normal-deformed yrast band)≈10 (2004Je03,1999Do34), 14 (2002Je05).
- <sup>u</sup> Band(L): One-phonon wobbling-mode. Triaxial SD-2 band (2004Je03,2004Go14,2002Je05,2001Od03,1999Do34). One-phonon

# <sup>163</sup>Lu Levels (continued)

wobbling mode excitation built on yrast  $\pi i_{13/2}$  triaxial SD-1 band.  $Q_t$  varies from 8.5 to 6.7 (2004Go14) from the 47/2 to the 71/2 levels. Percent population (relative to normal-deformed yrast band) $\approx 3$  (2004Je03),  $\approx 2.0$  (2002Je05),  $\approx 2.5$  (1999Do34).

- $^{\nu}$  Band(M): Two-phonon wobbling-mode. Triaxial SD-3 band,  $\alpha$ =+1/2 (2004Je03,2002Je05). Two-phonon wobbling mode excitation built on yrast triaxial SD-1 band. Percent population (relative to normal-deformed yrast band)≈1.2 (2004Je03), ≈0.7 (2002Je05).
- <sup>w</sup> Band(N): Triaxial SD-4 band.  $\alpha$ =−1/2 (2004Je03,2002Je05). Possibly negative-parity yrast band. This band cannot be interpreted as a wobbling phonon excitation since its nature is different from SD-1 to SD-3 bands. Probable configuration=  $\pi i_{13/2} \otimes (\nu i_{13/2}, \alpha$ =−1/2)  $\otimes (\nu i_{13/2}, \alpha$ =−1/2) Percent population (relative to normal-deformed yrast band)≈0.9 (2004Je03), ≈0.35 (2002Je05).

# $\gamma$ (163Lu)

| $E_i(level)$    | $\mathtt{J}_i^{\pi}$   | $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\ddagger}$        | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$ | Mult.@                 | $\delta^{@}$ | $\alpha^d$    | Comments                                                   |
|-----------------|------------------------|-------------------------------------|--------------------------------|------------------|----------------------|------------------------|--------------|---------------|------------------------------------------------------------|
| 62.22           | (5/2+)                 | 45.39 <sup>#</sup> 8                | 100 <sup>#</sup>               | 16.84            | (3/2+)               | M1 <sup>#</sup>        | ·            | 6.12          |                                                            |
| 124.36          | $(7/2^+)$              | 62.14 <sup>#</sup> 5                | 100 <sup>#</sup>               | 62.22            | $(5/2^+)$            | M1#                    |              | 2.43          |                                                            |
| 190.87          | $(5/2^+)$              | 173.87 10                           | 42 9                           | 16.84            |                      | $D^a$                  |              |               |                                                            |
|                 |                        | 190.90 20                           | 100 7                          |                  | $1/2^{(+)}$          |                        |              |               |                                                            |
| 195.31          | $(7/2^{-})$            | 70.98 <mark>#</mark> 8              | 100#                           | 124.36           |                      | E1 <sup>#</sup>        |              | 0.849         |                                                            |
|                 |                        | 133.08 <sup>#</sup> 10              | 24 <sup>#</sup> 1              | 62.22            |                      | c                      |              |               |                                                            |
| 210.1           | $(9/2^{-})$            | 85.9 10                             | 100                            | 124.36           |                      |                        |              |               | - a 163-ra                                                 |
| 224.5<br>250.09 | $(7/2^+)$<br>$(7/2^+)$ | 162.25 <i>15</i><br>188.2 <i>10</i> | 100<br>47 <i>10</i>            | 62.22<br>62.22   |                      | $D^a$                  |              |               | $E_{\gamma}$ : from <sup>163</sup> Hf $\varepsilon$ decay. |
| 230.09          | (7/2)                  |                                     |                                |                  |                      | (Q) &                  |              |               | E . c 163116 - 4                                           |
| 280.2?          |                        | 233.35 <i>10</i><br>84.9 <i>1</i>   | 100 10                         | 16.84<br>195.31  |                      | (Q)                    |              |               | $E_{\gamma}$ : from <sup>163</sup> Hf $\varepsilon$ decay. |
| 295.5           | $(11/2^{-})$           | 85.4 <i>10</i>                      | 100                            |                  | $(9/2^{-})$          |                        |              |               |                                                            |
| 310.5           | $(9/2^+)$              | 186.15 <i>10</i>                    | 100 14                         | 124.36           |                      |                        |              |               |                                                            |
|                 |                        | 247.6 <sup>e</sup> 5                | 5.4 22                         | 62.22            |                      |                        |              |               |                                                            |
| 414.2           | $(9/2^+)$              | 189.8 10                            | 100 35                         |                  | $(7/2^+)$            |                        |              |               |                                                            |
| 492.1           | $(13/2^{-})$           | 352.0 <i>10</i><br>196.6 <i>10</i>  | 52 <i>14</i><br>100 8          | 62.22<br>295.5   | $(5/2^+)$ $(11/2^-)$ | (D) <i>a</i>           |              |               | $\delta(Q/D) = +0.03 \ 2.$                                 |
| 492.1           | (13/2)                 | 282.00 10                           | 39 5                           | 210.1            | $(9/2^{-})$          | (D) $(Q)$              |              |               | $0(Q/D) = \pm 0.03 2.$                                     |
| 520.5           | $(11/2^+)$             | 106.2 10                            | 16.5 17                        | 414.2            | $(9/2^{+})$          | (Q)                    |              |               |                                                            |
|                 | (/- )                  | 210.0 10                            | 58 6                           | 310.5            | $(9/2^+)$            |                        |              |               |                                                            |
|                 |                        | 296.1 5                             | 4.4 14                         | 224.5            | $(7/2^+)$            | _                      |              |               |                                                            |
|                 |                        | 396.5 10                            | 100 9                          | 124.36           |                      | (Q) <b>b</b>           |              |               |                                                            |
| 520.85          | $(9/2^+)$              | 270.87 17                           | 69 11                          | 250.09           |                      | $D^a$                  |              |               |                                                            |
|                 |                        | 296.5 <sup>e</sup> 5                | 22 4                           |                  | $(7/2^+)$            | (D) &r                 |              |               |                                                            |
| 620.94          | $(11/2^+)$             | 329.85 <i>10</i> 207.0 <i>10</i>    | 100 <i>14</i><br>4.4 <i>32</i> | 190.87<br>414.2  |                      | (Q)&                   |              |               |                                                            |
| 020.94          | (11/2)                 | 370.93 9                            | 100 14                         | 250.09           | $(9/2^+)$            | (Q) <mark>&amp;</mark> |              |               |                                                            |
|                 |                        | 370.93 9<br>396.3 <sup>e</sup> 5    | 65 10                          | 224.5            | $(7/2^+)$            | (Q)**                  |              |               |                                                            |
| 642.2           | $(11/2^+)$             | 228.0 10                            | 67 16                          | 414.2            | $(9/2^+)$            |                        |              |               |                                                            |
|                 |                        | 417.8 10                            | 100 13                         | 224.5            | $(7/2^+)$            |                        |              |               |                                                            |
| 644.7           | $(15/2^{-})$           | 152.7 10                            | 56 <i>4</i>                    | 492.1            | $(13/2^{-})$         | $(M1+E2)^{a}$          | +0.22 1      | 1.08 <i>3</i> | B(M1)(W.u.)=(0.27 +6-4); B(E2)(W.u.)=(2.7 +7-5)            |
|                 |                        | 349.21 10                           | 100 3                          | 295.5            | $(11/2^{-})$         | E2&                    |              | 0.0490        | B(E2)(W.u.)=166 +34-16                                     |
| 691.4           |                        | 496.07 10                           | 100                            | 195.31           |                      |                        |              |               |                                                            |
| 715.6<br>730.6  |                        | 520.32 <i>10</i> 535.25 <i>20</i>   | 100<br>100                     | 195.31<br>195.31 |                      |                        |              |               |                                                            |
| 750.6<br>754.8  | $(13/2^+)$             | 234.3 10                            | 37 <i>3</i>                    |                  | $(1/2)$ $(11/2^+)$   |                        |              |               |                                                            |
| , , , , , ,     | (10,2)                 | 444.35 10                           | 100 7                          | 310.5            | $(9/2^+)$            |                        |              |               |                                                            |
| 875.2           | $(13/2^+)$             | 233.0 10                            | 91 <i>15</i>                   | 642.2            | $(11/2^+)$           |                        |              |               |                                                            |
| 002 (           |                        | 461.0 10                            | 100 20                         | 414.2            | $(9/2^+)$            |                        |              |               |                                                            |
| 883.6           |                        | 688.25 10                           | 100                            | 195.31           | $(7/2^{-})$          |                        |              |               |                                                            |

# $\gamma(\frac{163}{\text{Lu}})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{\ddagger}$       | $E_f$ $J_f^{\pi}$                                           | Mult.@                      | $\delta^{@}$ | $\alpha^d$      | Comments                                                            |
|---------------|----------------------|-----------------------------------|-------------------------------|-------------------------------------------------------------|-----------------------------|--------------|-----------------|---------------------------------------------------------------------|
| 937.4         | $(17/2^{-})$         | 292.64 10                         | 100 7                         | 644.7 (15/2 <sup>-</sup> )                                  | $(M1+E2)^a$                 | +0.03 1      | 0.183           | B(M1)(W.u.)=(0.31 +16-18); B(E2)(W.u.)=(1.6 6)                      |
| 0.4           | (10/04)              | 445.30 10                         | 83 5                          | 492.1 (13/2 <sup>-</sup> )                                  | E2 <sup>b</sup>             |              | 0.0251          | $B(E2)(W.u.)=1.8\times10^2 +9-11$                                   |
| 967.86        | $(13/2^+)$           | 347.08 17                         | 32 7                          | 620.94 (11/2+)                                              | D<br>(Q) <mark>&amp;</mark> |              |                 |                                                                     |
| 1008.2        | $(15/2^+)$           | 446.91 <i>10</i> 253.37 <i>10</i> | 100 <i>11</i> 26.8 22         | 520.85 (9/2 <sup>+</sup> )<br>754.8 (13/2 <sup>+</sup> )    | (Q) <b>~</b>                |              |                 |                                                                     |
| 1000.2        | (13/2 )              | 487.69 10                         | 100 8                         | 520.5 (11/2+)                                               |                             |              |                 |                                                                     |
| 1106.91       | $(15/2^+)$           | 486.00 10                         | 100                           | 620.94 (11/2+)                                              | (Q) <mark>&amp;</mark>      |              |                 |                                                                     |
| 1115.4        | $(19/2^{-})$         | 177.97 <i>10</i>                  | 24 3                          | 937.4 (17/2 <sup>-</sup> )                                  | $(M1+E2)^a$                 | +0.15 2      | 0.710 11        | $B(M1)(W.u.)=(0.34 +9-6); B(E2)(W.u.)=(1.2\times10^2 +5-4)$         |
| 1150 4        | (1.5.0+)             | 470.63 10                         | 100 8                         | 644.7 (15/2 <sup>-</sup> )                                  | E2&                         |              | 0.0217          | $B(E2)(W.u.)=1.7\times10^2 +4-3$                                    |
| 1152.4        | $(15/2^+)$           | 277.2 <i>10</i> 510.2 <i>10</i>   | 92 <i>17</i><br>100 <i>17</i> | 875.2 (13/2 <sup>+</sup> )<br>642.2 (11/2 <sup>+</sup> )    |                             |              |                 |                                                                     |
| 1282.5        | $(17/2^+)$           | 274.31 10                         | 24.2 25                       | 1008.2 (15/2+)                                              |                             |              |                 |                                                                     |
|               |                      | 527.77 10                         | 100 10                        | 754.8 (13/2 <sup>+</sup> )                                  |                             |              |                 |                                                                     |
| 1286.0?       | $(13/2^+)$           | 990.6 <sup>e</sup> 10             | 100                           | 295.5 (11/2 <sup>-</sup> )                                  |                             |              |                 |                                                                     |
| 1417.0        | $(17/2^+)$           | 264.6 <i>10</i> 541.8 <i>10</i>   | 27 <i>10</i><br>100 <i>15</i> | 1152.4 (15/2 <sup>+</sup> )<br>875.2 (13/2 <sup>+</sup> )   |                             |              |                 |                                                                     |
| 1485.8        | $(21/2^{-})$         | 370.50 10                         | 84 8                          | 1115.4 (19/2 <sup>-</sup> )                                 | (M1+E2) <sup>a</sup>        | +0.05 3      | 0.0972          | B(M1)(W.u.)=(0.21 8); B(E2)(W.u.)=(1.8 +23-18)                      |
|               | . , ,                | 548.49 10                         | 100 7                         | 937.4 (17/2-)                                               | (E2) <b>b</b>               |              | 0.0147 6        | $B(E2)(W.u.)=1.2\times10^2 5$                                       |
| 1501.71       | $(17/2^+)$           | 394.90 <i>16</i>                  | 54 8                          | 1106.91 (15/2+)                                             |                             |              |                 | $I\gamma(395)/I\gamma(534)=0.11\ 2\ (1999Do34)$ is in disagreement. |
|               |                      | 533.81 10                         | 100 13                        | 967.86 (13/2+)                                              | (Q) <mark>&amp;</mark>      |              |                 |                                                                     |
| 1562.1        | $(19/2^+)$           | 279.58 <i>10</i> 553.85 <i>10</i> | 25.9 22<br>100 7              | 1282.5 (17/2 <sup>+</sup> )<br>1008.2 (15/2 <sup>+</sup> )  |                             |              |                 | $I\gamma(280)/I\gamma(554)=0.13\ 3\ (1992Sc03)$ is in disagreement. |
| 1669.9        | $(19/2^+)$           | 562.96 10                         | 100 /                         | 1106.91 (15/2+)                                             |                             |              |                 |                                                                     |
| 1677.4        | $(23/2^{-})$         | 191.54 <i>10</i>                  | 13.7 12                       | 1485.8 (21/2-)                                              | (M1+E2) <sup>a</sup>        | +0.18 9      | 0.576 13        | B(M1)(W.u.)= $(0.338 \ II)$ ; B(E2)(W.u.)= $(1.5 \times 10^2 \ I4)$ |
|               |                      | 562.00 10                         | 100 7                         | 1115.4 (19/2-)                                              | E2&                         |              | 0.0139 <i>1</i> | $B(E2)(W.u.)=1.6\times10^2 +5-4$                                    |
| 1730.1        | $(19/2^+)$           | 313.1 10                          | 44 33                         | 1417.0 (17/2+)                                              |                             |              |                 |                                                                     |
| 1739.9        | $(13/2^+)$           | 577.7 10<br>453.9 <sup>e</sup> 10 | 100 <i>56</i><br>100          | 1152.4 (15/2 <sup>+</sup> )<br>1286.0? (13/2 <sup>+</sup> ) |                             |              |                 |                                                                     |
| 1867.7        | $(21/2^+)$           | 305.65 10                         | 26 4                          | 1562.1 (19/2 <sup>+</sup> )                                 |                             |              |                 |                                                                     |
|               |                      | 585.17 <i>10</i>                  | 100 9                         | $1282.5  (17/2^+)$                                          |                             |              |                 |                                                                     |
| 1936.5        | $(17/2^+)$           | 196.7 10                          | 100 56                        | 1739.9 (13/2 <sup>+</sup> )                                 | (Q)                         |              |                 |                                                                     |
| 2009.0        | $(21/2^+)$           | 1292.0 <i>10</i> 592.0 <i>10</i>  | 6 <i>4</i><br>100 29          | 644.7 (15/2 <sup>-</sup> )<br>1417.0 (17/2 <sup>+</sup> )   |                             |              |                 |                                                                     |
| 2007.0        | (21/2 )              | 893.7 10                          | 43 29                         | 1115.4 (19/2 <sup>-</sup> )                                 |                             |              |                 |                                                                     |
| 2020.6        | $(21/2^+)$           | 290.5 <sup>e</sup> 10             | 8 7                           | 1730.1 (19/2+)                                              |                             |              |                 |                                                                     |
| •00= <        | (24/21)              | 603.5 10                          | 100 17                        | 1417.0 (17/2+)                                              | ₽ <sub>r</sub>              |              |                 |                                                                     |
| 2087.6        | $(21/2^+)$           | 585.86 17                         | 100                           | 1501.71 (17/2+)                                             | &<br>&                      |              |                 | ((O.F))                                                             |
| 2104.4        | $(25/2^{-})$         | 426.95 10                         | 97 <i>7</i>                   | 1677.4 (23/2 <sup>-</sup> )                                 | (D) <sup>b</sup><br>Q&      |              |                 | $\delta(Q/D) = +0.07 5.$                                            |
| 2139.8        | $(23/2^+)$           | 618.72 <i>10</i> 272.02 <i>10</i> | 100 8<br>15.3 <i>18</i>       | 1485.8 (21/2 <sup>-</sup> )<br>1867.7 (21/2 <sup>+</sup> )  | Que                         |              |                 |                                                                     |
| 2137.0        | (23/2 )              | 577.73 10                         | 100 8                         | 1562.1 (19/2 <sup>+</sup> )                                 |                             |              |                 |                                                                     |

# $\gamma$ (163Lu) (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$                 | $I_{\gamma}^{\ddagger}$       | $E_f$            | $\mathbf{J}_f^{\pi}$         | Mult. @                | $\delta^{@}$ | $\alpha^{d}$ | Comments                                                     |
|---------------|----------------------|-------------------------------------------------|-------------------------------|------------------|------------------------------|------------------------|--------------|--------------|--------------------------------------------------------------|
| 2139.8        | $(23/2^+)$           | 653.8 10                                        | 15.2 20                       | 1485.8           | $(21/2^{-})$                 |                        |              |              |                                                              |
| 2199.6        | $(21/2^+)$           | 263.3 10                                        | 100 10                        | 1936.5           | $(17/2^+)$                   | (Q) <mark>&amp;</mark> |              |              |                                                              |
|               |                      | 529.8 10                                        | 29 4                          | 1669.9           | $(19/2^+)$                   | (D) &                  |              |              |                                                              |
|               |                      | 697.8 10                                        | 47 26                         | 1501.71          | $(17/2^+)$                   | . ,                    |              |              |                                                              |
| 2228.4        | $(23/2^+)$           | 666.3 10                                        | 100 38                        | 1562.1           | $(19/2^+)$                   |                        |              |              |                                                              |
| 22565         | (22 (2±)             | 742.5 10                                        | 80 20                         | 1485.8           | $(21/2^{-})$                 |                        |              |              |                                                              |
| 2276.7        | $(23/2^+)$           | 606.85 10                                       | 100                           | 1669.9           | $(19/2^+)$                   | h                      |              |              |                                                              |
| 2307.6        | $(27/2^{-})$         | 203.23 10                                       | 13.7 20                       | 2104.4           | $(25/2^{-})$                 | $(M1+E2)^{b}$          | +0.30 8      | 0.476 13     | $B(M1)(W.u.)=(0.227 \ 10); B(E2)(W.u.)=(2.4\times10^2 \ 12)$ |
|               |                      | 630.14 10                                       | 100 5                         | 1677.4           | $(23/2^{-})$                 | E2&                    |              | 0.01060      | B(E2)(W.u.)=74 +32-20                                        |
| 2339.7        | $(23/2^+)$           | 319.1 <sup>e</sup> 10                           | 50 38                         | 2020.6           | $(21/2^+)$                   |                        |              |              |                                                              |
| 2400.5        | $(25/2^+)$           | 609.6 <i>10</i><br>172.2 <i>10</i>              | 100 88<br>20.5 25             | 1730.1<br>2228.4 | $(19/2^+)$<br>$(23/2^+)$     |                        |              |              |                                                              |
| 2400.3        | (23/2)               | 260.84 10                                       | 100 8                         | 2139.8           | $(23/2^+)$                   |                        |              |              |                                                              |
|               |                      | 379.9 10                                        | 31 3                          | 2020.6           | $(21/2^+)$                   |                        |              |              |                                                              |
|               |                      | 391.5 10                                        | 12.1 25                       | 2009.0           | $(21/2^+)$                   |                        |              |              |                                                              |
|               |                      | 532.82 10                                       | 53 5                          | 1867.7           | $(21/2^+)$                   |                        |              |              |                                                              |
|               |                      | 723.1 10                                        | 57 <i>5</i>                   | 1677.4           | $(23/2^{-})$                 | $D^a$                  |              |              |                                                              |
| 2410.8        | $(21/2^+)$           | 680.7 10                                        | 100                           | 1730.1           | $(19/2^+)$                   |                        |              |              |                                                              |
| 2437.1        | $(23/2^+)$           | 706.9 10                                        | 100 88                        | 1730.1           | $(19/2^+)$                   |                        |              |              |                                                              |
| 2488.6        | $(25/2^+)$           | 951.2 <i>10</i><br>479.5 <sup>e</sup> <i>10</i> | 62 <i>62</i><br>8 <i>7</i>    | 1485.8<br>2009.0 | $(21/2^{-})$<br>$(21/2^{+})$ |                        |              |              |                                                              |
| 2400.0        | (23/2)               | 620.9 10                                        | 100 13                        | 1867.7           | $(21/2^+)$                   |                        |              |              |                                                              |
| 2514.5        | $(25/2^+)$           | 314.85 10                                       | 100 13                        | 2199.6           | $(21/2^+)$                   | (E2)&                  |              | 0.0662       | $B(E2)(W.u.)=7.7\times10^2 +18-21$                           |
| 2311.3        | (23/2 )              | 426.8 3                                         | 23 4                          | 2087.6           | $(21/2^+)$                   | (E2)&                  |              | 0.0281       | B(E2)(W.u.)=39+10-12                                         |
|               |                      | 505.8 10                                        | 5.1 26                        | 2009.0           | $(21/2^+)$                   | (L2)                   |              | 0.0201       | D(L2)(W.u.) = 37 + 10 - 12                                   |
| 2540.8        | $(25/2^+)$           | 103.76 10                                       | 54 8                          | 2437.1           | $(23/2^+)$                   |                        |              |              |                                                              |
|               |                      | 130.0 10                                        | 69 15                         | 2410.8           | $(21/2^+)$                   |                        |              |              |                                                              |
|               |                      | 140.3 10                                        | 77 <i>7</i>                   | 2400.5           | $(25/2^+)$                   |                        |              |              |                                                              |
|               |                      | 863.38 10                                       | 100 46                        | 1677.4           | $(23/2^{-})$                 |                        |              |              |                                                              |
| 2614.6        | $(27/2^+)$           | 214.00 10                                       | 100 9                         | 2400.5           | $(25/2^+)$                   |                        |              |              |                                                              |
|               |                      | 386.2 <i>10</i><br>474.73 <i>10</i>             | 11.6 <i>17</i><br>58 <i>5</i> | 2228.4<br>2139.8 | $(23/2^+)$<br>$(23/2^+)$     |                        |              |              |                                                              |
|               |                      | 510.1 10                                        | 27 <i>3</i>                   | 2104.4           | $(25/2^{-})$                 |                        |              |              |                                                              |
| 2681.1        | $(27/2^+)$           | 140.26 10                                       | 100 12                        | 2540.8           | $(25/2^+)$                   |                        |              |              |                                                              |
|               | (1-)                 | 244.02 10                                       | 32 5                          | 2437.1           | $(23/2^+)$                   |                        |              |              |                                                              |
|               |                      | 280.5 10                                        | 17.5 <i>17</i>                | 2400.5           | $(25/2^+)$                   |                        |              |              |                                                              |
|               |                      | 541.4 10                                        | 17.5 17                       | 2139.8           | $(23/2^+)$                   |                        |              |              |                                                              |
| 2685.7        | $(27/2^+)$           | 545.9 10                                        | 100 12                        | 2139.8           | $(23/2^+)$                   |                        |              |              |                                                              |
|               |                      | 581.2 10                                        | 13 7                          | 2104.4           | $(25/2^{-})$                 | b                      |              |              |                                                              |
| 2748.3        | $(29/2^{-})$         | 440.61 <i>10</i>                                | 69 7                          | 2307.6           | $(27/2^{-})$                 | (D) <b>b</b>           |              |              | $\delta(Q/D) = -0.01 \ 13.$                                  |
|               |                      | 643.81 <i>10</i>                                | 100 9                         | 2104.4           | $(25/2^{-})$                 | (Q) <mark>&amp;</mark> |              |              |                                                              |

|                  |                              |                                     |                               |                                                            |                   | γ( Lu) (     | continued)   |                                                     |
|------------------|------------------------------|-------------------------------------|-------------------------------|------------------------------------------------------------|-------------------|--------------|--------------|-----------------------------------------------------|
| $E_i(level)$     | $\mathrm{J}_i^{\pi}$         | $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\ddagger}$       | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                   | Mult.@            | $\delta^{@}$ | $\alpha^{d}$ | Comments                                            |
| 2773.5           | $(27/2^+)$                   | 496.72 19                           | 100                           | 2276.7 (23/2+)                                             |                   |              |              |                                                     |
| 2803.7           | $(29/2^+)$                   | 117.9 <i>10</i>                     | 3.8 16                        | 2685.7 (27/2+)                                             |                   |              |              |                                                     |
|                  |                              | 188.99 <i>10</i>                    | 100 14                        | $2614.6 \ (27/2^+)$                                        |                   |              |              |                                                     |
|                  |                              | 314.9 10                            | 9.1 21                        | 2488.6 (25/2+)                                             |                   |              |              |                                                     |
| 2055 4           | (20/2=)                      | 403.20 10                           | 70 6                          | 2400.5 (25/2 <sup>+</sup> )                                |                   |              |              |                                                     |
| 2855.4<br>2861.2 | $(29/2^{-})$<br>$(29/2^{+})$ | 751.2 <i>10</i> 180.2 <i>10</i>     | 100<br>100 <i>9</i>           | 2104.4 (25/2 <sup>-</sup> )<br>2681.1 (27/2 <sup>+</sup> ) |                   |              |              |                                                     |
| 2001.2           | (29/2)                       | 246.7 10                            | 10.2 10                       | 2614.6 (27/2 <sup>+</sup> )                                |                   |              |              |                                                     |
|                  |                              | 320.44 10                           | 42 9                          | 2540.8 (25/2 <sup>+</sup> )                                |                   |              |              |                                                     |
| 2900.8           | $(29/2^+)$                   | 386.31 10                           | 100                           | $2514.5 (25/2^+)$                                          | (E2)&             |              | 0.0368       | $B(E2)(W.u.)=5.2\times10^2 +9-12$                   |
| 2925.0           | $(29/2^{-})$ $(31/2^{-})$    | 176.85 10                           | 14.1 16                       | 2748.3 (29/2 <sup>-</sup> )                                | $(D)^{a}$         |              | 0.0308       | $D(L2)(W.u.) = 3.2 \times 10^{-49} = 12$            |
| 2723.0           | (31/2)                       | 617.48 10                           | 100 7                         | 2307.6 (27/2 <sup>-</sup> )                                | Q&                |              |              |                                                     |
| 3004.1           | $(31/2^+)$                   | 200.42 10                           | 100 /                         | 2803.7 (29/2 <sup>+</sup> )                                | Q                 |              |              |                                                     |
| 3001.1           | (31/2)                       | 318.4 10                            | 1.6 13                        | 2685.7 (27/2 <sup>+</sup> )                                |                   |              |              |                                                     |
|                  |                              | 389.66 11                           | 46 4                          | 2614.6 (27/2+)                                             |                   |              |              |                                                     |
| 3021.5           | $(31/2^{-})$                 | 166.1 <i>10</i>                     | 7.3 18                        | 2855.4 (29/2-)                                             |                   |              |              |                                                     |
|                  |                              | 714.0 10                            | 100 14                        | 2307.6 (27/2-)                                             |                   |              |              |                                                     |
| 3078.4           | $(31/2^+)$                   | 217.17 <i>10</i>                    | 100 10                        | 2861.2 (29/2+)                                             |                   |              |              |                                                     |
|                  |                              | 304.6 <i>10</i>                     | 28 3                          | $2773.5 (27/2^{+})$                                        |                   |              |              |                                                     |
| 2050.2           | (07/0±)                      | 397.34 10                           | 93 10                         | 2681.1 (27/2+)                                             | (F2 141)          | 2.1.4        | 0.0155.6     |                                                     |
| 3079.3<br>3123.4 | $(27/2^+)$<br>$(33/2^-)$     | 564.8 10                            | 100                           | 2514.5 (25/2 <sup>+</sup> )                                | (E2+M1)           | -3.1 4       | 0.0155 6     |                                                     |
| 3123.4           | (33/2)                       | 102.0 <i>10</i><br>198.56 <i>10</i> | 6.3 <i>8</i><br>100 <i>12</i> | 3021.5 (31/2 <sup>-</sup> )<br>2925.0 (31/2 <sup>-</sup> ) | (D) <sup>a</sup>  |              |              |                                                     |
|                  |                              | 268.1 10                            | 100 12                        | 2855.4 (29/2 <sup>-</sup> )                                | (D)               |              |              |                                                     |
|                  |                              | 374.74 10                           | 20.2 25                       | 2748.3 (29/2 <sup>-</sup> )                                |                   |              |              | $E_{y}$ : poor fit, level-energy difference=375.07. |
| 3130.7           | $(31/2^+)$                   | 357.1 <i>10</i>                     | 100                           | 2773.5 (27/2+)                                             |                   |              |              | Zyr poor m, never energy americans zyrozov.         |
| 3245.2           | $(33/2^{+})$                 | 241.1 10                            | 99 8                          | 3004.1 (31/2+)                                             |                   |              |              |                                                     |
|                  |                              | 441.54 10                           | 100 8                         | 2803.7 (29/2+)                                             |                   |              |              |                                                     |
| 3320.8           | $(35/2^{-})$                 | 197.29 <i>10</i>                    | 100 17                        | 3123.4 (33/2 <sup>-</sup> )                                | (M1) <sup>a</sup> |              | 0.538        | B(M1)(W.u.)=0.39 +11-10                             |
|                  |                              | 299.3 10                            | 0.8 6                         | 3021.5 (31/2 <sup>-</sup> )                                | [E2]              |              | 0.0771 14    | B(E2)(W.u.)=6 4                                     |
|                  | (0.0 (0.±)                   | 395.99 10                           | 20 3                          | 2925.0 (31/2 <sup>-</sup> )                                | [E2]              |              | 0.0344       | B(E2)(W.u.)=30 3                                    |
| 3323.9           | $(33/2^+)$                   | 245.48 10                           | 100 24                        | $3078.4 (31/2^+)$                                          |                   |              |              |                                                     |
| 3351.1           | $(33/2^+)$                   | 462.66 10                           | 82 29                         | 2861.2 (29/2+)                                             | [E2]              |              | 0.0243       | $B(E2)(W.u.)=6.3\times10^2 +2I-35$                  |
| 3418.8           | $(33/2^{-})$ $(33/2^{-})$    | 450.30 <i>10</i> 397.3 <i>10</i>    | 100<br>100 <i>15</i>          | 2900.8 (29/2 <sup>+</sup> )<br>3021.5 (31/2 <sup>-</sup> ) | [E2]              |              | 0.0243       | $B(E2)(W.u.)=0.3\times10^{-} +21-33$                |
| 3410.0           | (33/2)                       | 563.4 10                            | 38 10                         | 2855.4 (29/2 <sup>-</sup> )                                |                   |              |              |                                                     |
|                  |                              | 670.7 10                            | 96 15                         | 2748.3 (29/2 <sup>-</sup> )                                |                   |              |              |                                                     |
| 3483.8           | $(35/2^+)$                   | 238.6 10                            | 70 6                          | 3245.2 (33/2 <sup>+</sup> )                                |                   |              |              |                                                     |
|                  | ` ' '                        | 479.68 <i>10</i>                    | 100 8                         | 3004.1 (31/2 <sup>+</sup> )                                |                   |              |              |                                                     |
| 3486.6           | $(31/2^+)$                   | 407.4 10                            | 69 26                         | 3079.3 (27/2+)                                             |                   |              |              |                                                     |
|                  |                              | 585.9 10                            | 100 35                        | 2900.8 (29/2+)                                             | (E2+M1)           | -3.14        | 0.0142 5     | $\alpha(K)=0.0116 \ 4; \ \alpha(L)=0.00216 \ 5$     |
| 3551.9           | $(37/2^{-})$                 | 231.04 10                           | 100 7                         | 3320.8 (35/2-)                                             | $(D)^a$           |              |              | $\delta(Q/D) = +0.25 5.$                            |
|                  |                              | 428.44 10                           | 27.8 22                       | 3123.4 (33/2 <sup>-</sup> )                                |                   |              |              |                                                     |
|                  |                              |                                     |                               |                                                            |                   |              |              |                                                     |

# $\gamma(\frac{163}{\text{Lu}})$ (continued)

| $\frac{J_i^{\pi}}{35/2^+)}$ | $\mathrm{E}_{\gamma}^{\dagger}$                                                                                                                                                                                                                                                                             | $I_{\gamma}^{\ddagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ε Ιπ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>@</b>                                                                                                                                                                                                                                                                                                                                                              | 1                |                                                                                                        |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------|
| 35/2 <sup>+</sup> )         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mult.@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\delta^{@}$                                                                                                                                                                                                                                                                                                                                                          | $\alpha^d$       | Comments                                                                                               |
| 00,2 )                      | 248.20 <i>10</i><br>441.3 <i>10</i>                                                                                                                                                                                                                                                                         | 37 8<br>57 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3323.9 (33/2 <sup>+</sup> )<br>3130.7 (31/2 <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 35/2+)                      | 493.68 <i>10</i><br>312.0 <i>10</i><br>505.0 <i>10</i>                                                                                                                                                                                                                                                      | 100 <i>14</i><br>100 <i>17</i><br>67 <i>13</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3078.4 (31/2 <sup>+</sup> )<br>3323.9 (33/2 <sup>+</sup> )<br>3130.7 (31/2 <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 35/2-)                      | 557.4 <i>10</i> 249.0 <i>10</i>                                                                                                                                                                                                                                                                             | 83 <i>20</i> 25 <i>5</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3078.4 (31/2 <sup>+</sup> )<br>3418.8 (33/2 <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 27/2+\                      | 742.9 10                                                                                                                                                                                                                                                                                                    | 37 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2925.0 (31/2-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
|                             | 544.72 10                                                                                                                                                                                                                                                                                                   | 87 <i>7</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3245.2 (33/2+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\mathcal{D})^{\mathcal{A}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |                  | S(O/D) = +0.22.2                                                                                       |
|                             | 501.93 10                                                                                                                                                                                                                                                                                                   | 41 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3320.8 (35/2-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(D)^{\alpha}$ $(Q)^{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |                  | $\delta(Q/D) = +0.22 \ 3.$<br>I $\gamma(502)/I\gamma(271) = 0.70 \ 6 \ (1992Sc03)$ is in disagreement. |
|                             | 962.8 10                                                                                                                                                                                                                                                                                                    | 100 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2900.8 (29/2+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [E2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                       | 0.01722          | $D(E2)/W_{12} = 0.E + 2 + 4.5$                                                                         |
| 37/2 <sup>+</sup> )         | 320.4 10                                                                                                                                                                                                                                                                                                    | 100 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3572.1 (35/2 <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [E2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                       | 0.01/22          | B(E2)(W.u.)=9.E+2+4-5                                                                                  |
| 35/2+)                      | 471.60 <i>17</i>                                                                                                                                                                                                                                                                                            | 100 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3486.6 (31/2+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (E2+M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.1 4                                                                                                                                                                                                                                                                                                                                                                | 0.0130 5         |                                                                                                        |
| 37/2-)                      | 328.2 <i>10</i><br>577.2 <i>10</i>                                                                                                                                                                                                                                                                          | 100 <i>14</i><br>88 <i>14</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3667.8 (35/2-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (==::::)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       | *********        |                                                                                                        |
| 39/2+)                      | 278.40 <i>10</i> 584.45 <i>10</i>                                                                                                                                                                                                                                                                           | 64 <i>5</i><br>100 <i>8</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3789.9 (37/2 <sup>+</sup> )<br>3483.8 (35/2 <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 41/2-)                      | 552.09 10                                                                                                                                                                                                                                                                                                   | 100 <i>7</i> 59 <i>4</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3551.9 (37/2-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(D)^{a}$ $(Q)^{\&}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                       |                  | $I\gamma(552)/I\gamma(281)=0.91\ 14\ (1992Sc03)$ is in disagreement.                                   |
| 39/2+)                      | 258.2 <i>10</i> 578.71 <i>10</i>                                                                                                                                                                                                                                                                            | 11 <i>4</i><br>100 <i>13</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3892.6 (37/2 <sup>+</sup> )<br>3572.1 (35/2 <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 39/2-)                      | 257.8 <i>10</i> 586.0 <i>10</i>                                                                                                                                                                                                                                                                             | 100 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3996.0 (37/2 <sup>-</sup> )<br>3667.8 (35/2 <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 39/2 <sup>+</sup> )         | 619.8 <i>10</i>                                                                                                                                                                                                                                                                                             | 100 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3635.8 (35/2 <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 37/2-)                      | 757.6 10                                                                                                                                                                                                                                                                                                    | 100 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3551.9 (37/2 <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                       | 0.01539          |                                                                                                        |
| 37/2+)                      | 410.9 <sup>e</sup> 10                                                                                                                                                                                                                                                                                       | 19 <i>15</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3958.3 (35/2 <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 41/2+)                      | 1018.1 <i>10</i> 337.7 <i>10</i>                                                                                                                                                                                                                                                                            | 69 23<br>58 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3351.1 (33/2 <sup>+</sup> )<br>4068.3 (39/2 <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q <mark>&amp;</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
| 43/2-)                      | 327.58 10                                                                                                                                                                                                                                                                                                   | 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4103.9 (41/2 <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(D)^a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                        |
|                             | 35/2 <sup>-</sup> ) 37/2 <sup>+</sup> ) 39/2 <sup>-</sup> ) 33/2 <sup>+</sup> ) 37/2 <sup>+</sup> ) 37/2 <sup>+</sup> ) 37/2 <sup>-</sup> ) 39/2 <sup>+</sup> ) 31/2 <sup>-</sup> ) 39/2 <sup>+</sup> ) 31/2 <sup>-</sup> ) 39/2 <sup>+</sup> ) 37/2 <sup>-</sup> ) 37/2 <sup>-</sup> ) 37/2 <sup>-</sup> ) | 312.0 10<br>505.0 10<br>505.0 10<br>557.4 10<br>249.0 10<br>646.3 10<br>742.9 10<br>306.06 10<br>544.72 10<br>39/2-) 270.87 10<br>501.93 10<br>377.0° 10<br>962.8 10<br>37/2+) 320.4 10<br>568.6 10<br>37/2+) 320.4 10<br>568.6 10<br>37/2-) 281.18 10<br>577.2 10<br>39/2-) 278.40 10<br>584.45 10<br>41/2-) 281.18 10<br>552.09 10<br>39/2+) 258.2 10<br>578.71 10<br>39/2-) 257.8 10<br>586.0 10<br>39/2-) 257.8 10<br>586.0 10<br>39/2-) 257.8 10<br>586.0 10<br>39/2-) 257.8 10<br>586.0 10<br>39/2-) 363.0 10<br>619.8 10<br>683.6° 10<br>37/2-) 757.6 10<br>988.6 10<br>37/2-) 757.6 10<br>988.6 10<br>37/2-) 337.7 10<br>616.17 10 | 35/2+)       312.0 10       100 17         505.0 10       67 13         557.4 10       83 20         35/2-)       249.0 10       25 5         646.3 10       100 14         742.9 10       37 5         37/2+)       306.06 10       100 8         544.72 10       87 7         39/2-)       270.87 10       100 6         501.93 10       41 3         33/2+)       377.0e 10       33 27         962.8 10       100 47         37/2+)       515.30 10       100         37/2+)       320.4 10       100 27         568.6 10       41 14         45/2+)       471.60 17       100 7         607.1 10       83 6         37/2-)       328.2 10       100 14         577.2 10       88 14         49/2+)       278.40 10       64 5         584.45 10       100 8         41/2-)       281.18 10       100 7         59/2+)       258.2 10       11 4         578.71 10       100 13         49/2-)       257.8 10       53 8         586.0 10       100 15         49/2+)       363.0 10       80 32 | 35/2+)       312.0 10       100 17       3323.9 (33/2+)         505.0 10       67 13       3130.7 (31/2+)         557.4 10       83 20       3078.4 (31/2+)         55/2-)       249.0 10       25 5       3418.8 (33/2-)         646.3 10       100 14       3021.5 (31/2-)         742.9 10       37 5       2925.0 (31/2-)         57/2+)       306.06 10       100 8       3483.8 (35/2+)         544.72 10       87 7       3245.2 (33/2+)         59/2-)       270.87 10       100 6       3551.9 (37/2-)         501.93 10       41 3       3320.8 (35/2-)         53/2+)       377.0e 10       33 27       3486.6 (31/2+)         962.8 10       100 47       2900.8 (29/2+)         57/2+)       515.30 10       100       3351.1 (33/2+)         57/2+)       320.4 10       100 27       3572.1 (35/2+)         568.6 10       41 14       3323.9 (33/2+)         57/2+)       328.2 10       100 14       3667.8 (35/2-)         577.2 10       88 14       3418.8 (33/2-)         59/2+)       278.40 10       64 5       3789.9 (37/2+)         584.45 10       100 8       3483.8 (35/2-)         59/2+)       258 | 15/2+   312.0   10   100   17   3323.9   (33/2+)   505.0   10   67   13   3130.7   (31/2+)   557.4   10   83   20   3078.4   (31/2+)   646.3   10   100   14   3021.5   (31/2-)   742.9   10   37   5   2925.0   (31/2-)   742.9   10   37   5   2925.0   (31/2-)   544.72   10   87   7   3245.2   (33/2+)   59/2-   270.87   10   100   6   3551.9   (37/2-)   (0)& | 15/2+   312.0 10 | 15/2+   312.0 10                                                                                       |

# $\gamma(\frac{163}{\text{Lu}})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$        | $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\ddagger}$       | $E_f$            | $\mathbf{J}_f^{\pi}$ | Mult.@    | $\delta^{@}$ | $\alpha^d$ | Comments                                                                |
|--------------|-----------------------------|-------------------------------------|-------------------------------|------------------|----------------------|-----------|--------------|------------|-------------------------------------------------------------------------|
| 4445.0       | $(41/2^+)$                  | 578.65 10                           | 100                           | 3866.4           |                      | [E2]      |              | 0.01296    | $B(E2)(W.u.)=6.5\times10^2 +19-13$                                      |
| 4492.6       | $(39/2^+)$                  | 534.3 10                            | 100 7                         | 3958.3           |                      |           |              |            |                                                                         |
|              |                             | 626.2 10                            | 49 3                          | 3866.4           |                      | (E2+M1)   | -3.14        | 0.0121 5   |                                                                         |
| 4529.5       | $(41/2^+)$                  | 636.8 10                            | 100                           | 3892.6           |                      |           |              |            |                                                                         |
| 4556.6       | $(41/2^{-})$                | 302.8 10                            | 100 <i>17</i>                 | 4253.8           |                      |           |              |            |                                                                         |
|              |                             | 560.6 10                            | 96 <i>17</i>                  | 3996.0           |                      |           |              |            |                                                                         |
|              |                             | 1004.8 10                           | 75 25                         | 3551.9           |                      |           |              |            |                                                                         |
| 4579.0       | $(39/2^{-})$                | 269.7 10                            | 100 23                        | 4309.3           |                      | 2.543     |              | 001715     |                                                                         |
|              |                             | 756.4 10                            | 91 2 <i>1</i>                 | 3822.7           |                      | (M1)      |              | 0.01546    |                                                                         |
| 4710.7       | (40/0±)                     | 1027.1 10                           | 16 7                          | 3551.9           |                      |           |              |            |                                                                         |
| 4719.7       | $(43/2^+)$                  | 313.68 10                           | 35 <i>3</i>                   | 4405.9           |                      |           |              |            |                                                                         |
| 47.60.7      | (45/0=)                     | 651.30 10                           | 100 7                         | 4068.3           |                      | a         |              |            |                                                                         |
| 4760.7       | $(45/2^{-})$                | 329.22 10                           | 60 9                          | 4431.4           |                      |           |              |            |                                                                         |
|              | ( 4 <b>2</b> ( <b>2</b> ± : | 656.60 10                           | 100 8                         | 4103.9           |                      | &         |              |            |                                                                         |
| 4817.3       | $(43/2^+)$                  | 666.54 10                           | 100                           | 4150.8           |                      |           |              |            |                                                                         |
| 4831.2       | $(41/2^{-})$                | 252.2 10                            | 100 25                        | 4579.0           |                      |           |              |            |                                                                         |
|              |                             | 522.0 10                            | 73 17                         | 4309.3           |                      | 0.51)     |              | 0.01506    |                                                                         |
| 10.10.0      | (42/2=)                     | 727.3 10                            | 48 10                         | 4103.9           |                      | (M1)      |              | 0.01706    |                                                                         |
| 4849.0       | $(43/2^{-})$                | 292.4 10                            | 73 10                         | 4556.6           |                      |           |              |            |                                                                         |
|              |                             | 595.2 10                            | 100 17                        | 4253.8           |                      |           |              |            |                                                                         |
| 4904.1       | $(43/2^+)$                  | 1026.3 <i>10</i><br>374.5 <i>10</i> | 57 <i>10</i><br>100 <i>30</i> | 3822.7<br>4529.5 |                      |           |              |            |                                                                         |
| 4904.1       | (43/2)                      | 648.5 10                            | 100 30                        | 4255.6           | (41/2)               |           |              |            |                                                                         |
| 4937.2       | $(41/2^+)$                  | 444.6 10                            | 19 6                          | 4492.6           |                      |           |              |            |                                                                         |
| 7731.2       | (41/2)                      | 568.0 10                            | 100 19                        | 4369.2           |                      |           |              |            |                                                                         |
|              |                             | 1070.8 10                           | 31 9                          | 3866.4           |                      |           |              |            |                                                                         |
| 5057.5       | $(45/2^+)$                  | 337.83 10                           | 60 13                         | 4719.7           |                      |           |              |            |                                                                         |
| 5057.5       | (15/2)                      | 652.59 21                           | 100 8                         | 4405.9           |                      |           |              |            | $E_{\gamma}$ : poor fit, level-energy difference=651.59.                |
| 5084.0       | $(45/2^+)$                  | 638.96 10                           | 100                           | 4445.0           |                      | [E2]      |              | 0.01026    | B(E2)(W.u.)= $5.7 \times 10^2 + 9 - 8$                                  |
| 5088.3       | $(43/2^+)$                  | 595.8 10                            | 100 7                         | 4492.6           |                      | [22]      |              | 0.01020    | 2(22)(1141) 217712 17 3                                                 |
|              | (,- )                       | 643.3 10                            | 35.8 25                       | 4445.0           |                      | (E2+M1)   | -3.14        | 0.0113 4   |                                                                         |
| 5116.1       | $(43/2^{-})$                | 285.1 10                            | 100 26                        | 4831.2           |                      | (==:-:-+) |              |            |                                                                         |
|              | \ =1 )                      | 537.3 10                            | 91 22                         | 4579.0           |                      |           |              |            |                                                                         |
|              |                             | 684.3 10                            | 22 17                         | 4431.4           |                      |           |              |            |                                                                         |
|              |                             | 1012.2 10                           | 30 13                         | 4103.9           |                      | D         |              |            |                                                                         |
| 5131.8       | $(47/2^{-})$                | 370.95 10                           | 100 12                        | 4760.7           |                      | [M1]      |              | 0.100      | $\alpha(K)=0.083 \ 3; \ \alpha(L)=0.0125 \ 4; \ \alpha(M)=0.00281 \ 9;$ |
|              |                             |                                     |                               |                  |                      |           |              |            | $\alpha(N+)=0.00086 \ 3$                                                |
|              |                             |                                     |                               |                  |                      |           |              |            | B(M1)(W.u.)=1.4 6                                                       |
|              |                             | 700.67 10                           | 89 8                          | 4431.4           | $(43/2^{-})$         | [E2]      |              | 0.00831    | $B(E2)(W.u.)=1.9\times10^2 7$                                           |
| 5168.8       | $(45/2^{-})$                | 319.8 <i>10</i>                     | 81 <i>19</i>                  | 4849.0           | $(43/2^{-})$         |           |              |            |                                                                         |
|              |                             | 612.1 10                            | 100 19                        | 4556.6           |                      |           |              |            |                                                                         |
|              |                             | 1064.9 <i>10</i>                    | 81 <i>19</i>                  | 4103.9           |                      |           |              |            |                                                                         |
| 5209.6       | $(45/2^+)$                  | 305.6 10                            | 30 22                         | 4904.1           | $(43/2^+)$           |           |              |            |                                                                         |

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$      | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$            | Mult.@ | $\delta^{@}$   | $\alpha^{d}$ | Comments                                                                                      |
|---------------|----------------------|---------------------------------|------------------------------|-----------------------------------------------------|--------|----------------|--------------|-----------------------------------------------------------------------------------------------|
| 5209.6        | $(45/2^+)$           | 392.4 10                        | 100 30                       | 4817.3 (43/2+                                       |        |                |              |                                                                                               |
|               |                      | 680.1 <i>10</i>                 | 63 19                        | 4529.5 (41/2+                                       | )      |                |              |                                                                                               |
| 5243.4        | $(45/2^+)$           | 713.8 10                        | 100                          | 4529.5 (41/2 <sup>+</sup>                           | )      |                |              |                                                                                               |
| 5387.9        | $(47/2^+)$           | 330.37 10                       | 64 7                         | 5057.5 (45/2 <sup>+</sup>                           |        |                |              |                                                                                               |
|               |                      | 667.97 10                       | 100 10                       | 4719.7 (43/2 <sup>4</sup>                           |        |                |              |                                                                                               |
| 5419.5        | $(45/2^{-})$         | 303.3 10                        | 84 22                        | 5116.1 (43/2                                        |        |                |              |                                                                                               |
|               |                      | 588.4 <i>10</i>                 | 100 25                       | 4831.2 (41/2                                        |        |                |              |                                                                                               |
|               |                      | 658.8 10                        | 16 <i>16</i>                 | 4760.7 (45/2                                        |        |                |              |                                                                                               |
| 5496.2        | $(47/2^{-})$         | 327.5 10                        | 67 19                        | 5168.8 (45/2                                        |        |                |              |                                                                                               |
|               |                      | 647.2 10                        | 100 19                       | 4849.0 (43/2                                        |        |                |              |                                                                                               |
|               | (40.40-)             | 1064.7 10                       | 33 14                        | 4431.4 (43/2                                        |        |                | 0.0070       | Barton 1                                                                                      |
| 5505.1        | (49/2 <sup>-</sup> ) | 373.35 14                       | 86 7                         | 5131.8 (47/2                                        | ) [M1] |                | 0.0953       | B(M1)(W.u.)=1.7 +5-8 $I_{\gamma}(373)/I_{\gamma}(744)=0.41$ 11 (1992Sc03) is in disagreement. |
|               |                      | 744.31 10                       | 100 8                        | 4760.7 (45/2                                        |        |                | 0.00727      | B(E2)(W.u.)= $2.2 \times 10^2 + 7 - 11$                                                       |
| 5557.4        | $(47/2^+)$           | 347.9 10                        | 58 <i>39</i>                 | 5209.6 (45/2                                        |        |                |              |                                                                                               |
|               |                      | 653.4 10                        | 68 16                        | 4904.1 (43/24                                       |        |                |              |                                                                                               |
| 5550.5        | (45/0±)              | 740.0 <i>10</i>                 | 100 16                       | 4817.3 (43/24                                       |        |                |              |                                                                                               |
| 5559.5        | $(47/2^+)$           | 655.4 10                        | 17 11                        | 4904.1 (43/2*                                       |        |                |              |                                                                                               |
| 55640         | (45/0±)              | 742.20 10                       | 100 19                       | 4817.3 (43/2 <sup>+</sup>                           |        | -3.6 + 10 - 19 | 0.0222.19    |                                                                                               |
| 5564.2        | $(45/2^+)$           | 475.9 <i>10</i> 626.8 <i>10</i> | 14 <i>4</i><br>100 <i>20</i> | 5088.3 (43/2 <sup>4</sup> 4937.2 (41/2 <sup>4</sup> |        | -3.0 +10-19    | 0.0232 18    |                                                                                               |
|               |                      | 1119.2 3                        | 25 6                         | 4445.0 (41/2 <sup>+</sup>                           |        |                |              |                                                                                               |
| 5720.1        | $(49/2^+)$           | 332.1 10                        | 57 6                         | 5387.9 (47/2                                        | ) (Q)  |                |              |                                                                                               |
| 3720.1        | (49/2)               | 662.85 10                       | 100 11                       | 5057.5 (45/2+                                       |        |                |              |                                                                                               |
| 5742.9        | $(47/2^+)$           | 654.6 10                        | 100 6                        | 5088.3 (43/24                                       |        |                | 0.00970      | $B(E2)(W.u.)=4.8\times10^2 +12-10$                                                            |
| 3172.7        | (47/2)               | 658.9 10                        | 24.3 21                      | 5084.0 (45/2 <sup>4</sup>                           |        | -3.1 4         | 0.00770      | B(M1)(W.u.) = (0.0094 22); B(E2)(W.u.) = (101.4 25)                                           |
| 5757.0        | $(47/2^{-})$         | 337.4 10                        | 74 18                        | 5419.5 (45/2                                        |        | 3.1 7          | 0.0107 7     | D(M1)(W.d.)=(0.0071 22), D(D2)(W.d.)=(101.1 23)                                               |
| 5757.0        | (17/2)               | 640.7 10                        | 100 26                       | 5116.1 (43/2                                        |        |                |              |                                                                                               |
|               |                      | 996.4 10                        | 15 12                        | 4760.7 (45/2                                        |        |                |              |                                                                                               |
| 5781.0        | $(49/2^+)$           | 696.97 10                       | 100                          | 5084.0 (45/2+                                       |        |                | 0.00841      | $B(E2)(W.u.)=4.6\times10^2 +6-5$                                                              |
| 5853.1        | $(49/2^{-})$         | 356.9 <i>10</i>                 | 65 24                        | 5496.2 (47/2                                        |        |                | 0.000.1      | 2(22)(*********************************                                                       |
|               | ( - / /              | 684.3 10                        | 100 24                       | 5168.8 (45/2                                        |        |                |              |                                                                                               |
|               |                      | 1092.4 10                       | 12 6                         | 4760.7 (45/2                                        |        |                |              |                                                                                               |
| 5898.2        | $(49/2^+)$           | 338.8 10                        | 75 <i>13</i>                 | 5559.5 (47/2                                        | )      |                |              |                                                                                               |
|               |                      | 340.8 10                        | 63 <i>38</i>                 | 5557.4 (47/2                                        |        |                |              |                                                                                               |
|               |                      | 688.5 10                        | 100 44                       | 5209.6 (45/2 <sup>4</sup>                           | )      |                |              |                                                                                               |
| 5916.9        | $(51/2^{-})$         | 411.55 10                       | 91 <i>10</i>                 | 5505.1 (49/2                                        |        |                | 0.0737       | B(M1)(W.u.)=1.2 +7-4                                                                          |
|               |                      | 785.18 <i>10</i>                | 100 11                       | 5131.8 (47/2                                        | ) [E2] |                | 0.00647      | $B(E2)(W.u.)=1.5\times10^2 +8-5$                                                              |
| 6006.1        | $(49/2^+)$           | 446.6 10                        | 21 13                        | 5559.5 (47/2+                                       |        |                |              |                                                                                               |
|               |                      | 762.7 10                        | 6 4                          | 5243.4 (45/2+                                       |        |                |              |                                                                                               |
|               |                      | 796.4 10                        | 100 32                       | 5209.6 (45/2 <sup>+</sup>                           |        |                |              |                                                                                               |
| 6065.3        | $(51/2^+)$           | 345.44 10                       | 62 7                         | 5720.1 (49/2                                        |        |                |              |                                                                                               |
|               |                      | 677.14 <i>10</i>                | 100 <i>10</i>                | 5387.9 (47/2 <sup>4</sup>                           | )      |                |              |                                                                                               |

# $\gamma(\frac{163}{\text{Lu}})$ (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                                | $I_{\gamma}^{\ddagger}$                        | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$                                                       | Mult.@               | $\delta^{@}$ | $\alpha^d$        | Comments                                                                |
|--------------|----------------------|-------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------|--------------|-------------------|-------------------------------------------------------------------------|
| 6108.2       | (49/2-)              | 351.2 <i>10</i> 688.7 <i>10</i>                       | 50 <i>13</i> 100 <i>25</i>                     | 5757.0 (47/2 <sup>-</sup> )<br>5419.5 (45/2 <sup>-</sup> )                                |                      |              |                   |                                                                         |
| 6223.5       | (51/2-)              | 370.4 <i>10</i> 727.3 <i>10</i>                       | 56 <i>19</i> 100 <i>25</i>                     | 5853.1 (49/2 <sup>-</sup> )<br>5496.2 (47/2 <sup>-</sup> )                                |                      |              |                   |                                                                         |
| 6246.5       | $(51/2^+)$           | 348.3 <i>10</i><br>686.8 <i>10</i><br>689.1 <i>10</i> | 78 29<br>17 <i>14</i><br>100 22                | 5898.2 (49/2 <sup>+</sup> )<br>5559.5 (47/2 <sup>+</sup> )<br>5557.4 (47/2 <sup>+</sup> ) |                      |              |                   |                                                                         |
| 6249.3       | $(49/2^+)$           | 685.1 <i>10</i>                                       | 100 19                                         | 5564.2 (45/2+)                                                                            | Q <mark>&amp;</mark> |              |                   |                                                                         |
| 6319.9       | $(47/2^{-})$         | 1165.3 <i>10</i> 1235.9 <i>10</i>                     | 24 <i>6</i><br>100                             | 5084.0 (45/2 <sup>+</sup> )<br>5084.0 (45/2 <sup>+</sup> )                                | (D)                  |              |                   |                                                                         |
| 6334.1       | $(53/2^{-})$         | 417.20 <i>10</i> 829.00 <i>10</i>                     | 64 <i>8</i><br>100 <i>10</i>                   | 5916.9 (51/2 <sup>-</sup> )<br>5505.1 (49/2 <sup>-</sup> )                                | [M1]<br>[E2]         |              | 0.0711<br>0.00575 | B(M1)(W.u.)=1.3 +6-9<br>$B(E2)(W.u.)=1.8\times10^2 +9-13$               |
| 6355.9       | $(51/2^+)$           | 796.4 10                                              | 100                                            | 5559.5 (47/2+)                                                                            | [152]                |              | 0.00373           |                                                                         |
| 6415.1       | $(53/2^+)$           | 349.62 <i>10</i> 694.96 <i>10</i>                     | 65 <i>6</i><br>100 <i>10</i>                   | 6065.3 (51/2 <sup>+</sup> )<br>5720.1 (49/2 <sup>+</sup> )                                |                      |              |                   | $I_{\gamma}(350)/I_{\gamma}(695)=0.37$ 7 (1992Sc03) is in disagreement. |
| 6454.2       | $(51/2^+)$           | 673.2 10                                              | 25 7                                           | 5781.0 (49/2+)                                                                            | (E2+M1)              | -3.1 4       | 0.0102 4          | $B(M1)(W.u.)=(0.013 3); B(E2)(W.u.)=(1.4\times10^2 4)$                  |
| 6502.7       | (51/2-)              | 711.2 <i>10</i> 394.5 <i>10</i> 745.7 <i>10</i>       | 100 <i>15</i><br>51 <i>14</i><br>100 <i>26</i> | 5742.9 (47/2 <sup>+</sup> )<br>6108.2 (49/2 <sup>-</sup> )<br>5757.0 (47/2 <sup>-</sup> ) | [E2]                 |              | 0.00804           | B(E2)(W.u.)= $4.7 \times 10^2 + 12 - 11$                                |
| 6533.6       | $(53/2^+)$           | 743.7 <i>10</i> 752.61 <i>10</i>                      | 100 20                                         | 5757.0 (47/2 <sup>-</sup> )<br>5781.0 (49/2 <sup>+</sup> )                                | [E2]                 |              | 0.00709           | $B(E2)(W.u.)=5.4\times10^2 +5-4$                                        |
| 6616.5       | $(53/2^+)$           | 370.0 <i>10</i><br>718.4 <i>10</i>                    | 73 <i>40</i> 100 <i>27</i>                     | 6246.5 (51/2 <sup>+</sup> )<br>5898.2 (49/2 <sup>+</sup> )                                |                      |              |                   |                                                                         |
| 6618.0       | $(53/2^{-})$         | 394.5 10                                              | 50 21                                          | 6223.5 (51/2-)                                                                            |                      |              |                   |                                                                         |
| 6719.1       | $(53/2^+)$           | 764.9 <i>10</i> 363.3 <i>10</i>                       | 100 29<br>71 43                                | 5853.1 (49/2 <sup>-</sup> )<br>6355.9 (51/2 <sup>+</sup> )                                |                      |              |                   |                                                                         |
| (700.0       | (55/0±)              | 713.0 10                                              | 100 57                                         | 6006.1 (49/2+)                                                                            |                      |              |                   | I (274) II (724) 1 2 4 (10020 02) ; ; I'                                |
| 6788.9       | $(55/2^+)$           | 373.74 <i>10</i> 723.69 <i>10</i>                     | 43 <i>4</i><br>100 <i>10</i>                   | 6415.1 (53/2 <sup>+</sup> )<br>6065.3 (51/2 <sup>+</sup> )                                |                      |              |                   | $I_{\gamma}(374)/I_{\gamma}(724)=1.2$ 4 (1992Sc03) is in disagreement.  |
| 6790.0       | $(55/2^{-})$         | 456.0 <i>10</i><br>872.8 <i>10</i>                    | 100 <i>11</i><br>100 <i>11</i>                 | 6334.1 (53/2 <sup>-</sup> )<br>5916.9 (51/2 <sup>-</sup> )                                |                      |              |                   |                                                                         |
| 6907.4       | $(53/2^{-})$         | 404.7 10                                              | 42 12                                          | 6502.7 (51/2-)                                                                            |                      |              |                   |                                                                         |
| 6965.0       | $(51/2^{-})$         | 799.2 <i>10</i> 645.0 <i>10</i>                       | 100 <i>23</i><br>100 <i>27</i>                 | 6108.2 (49/2 <sup>-</sup> )<br>6319.9 (47/2 <sup>-</sup> )                                |                      |              |                   |                                                                         |
| 6980.1       | (55/2 <sup>+</sup> ) | 1184.0 <i>10</i><br>363.6 <i>10</i>                   | 100 <i>33</i> 64 <i>21</i>                     | 5781.0 (49/2 <sup>+</sup> )<br>6616.5 (53/2 <sup>+</sup> )                                | D                    |              |                   |                                                                         |
|              |                      | 733.5 10                                              | 100 <i>21</i>                                  | 6246.5 (51/2+)                                                                            |                      |              |                   |                                                                         |
| 6990.5       | $(53/2^+)$           | 741.2 <i>10</i> 1209.5 <i>10</i>                      | 100 <i>19</i><br>25 <i>9</i>                   | 6249.3 (49/2 <sup>+</sup> )<br>5781.0 (49/2 <sup>+</sup> )                                | Q&                   |              |                   |                                                                         |
| 7035.4       | $(55/2^{-})$         | 417.5 10                                              | 47 27                                          | 6618.0 (53/2-)                                                                            | •                    |              |                   |                                                                         |
| 7133.1       | $(55/2^+)$           | 811.9 <i>10</i><br>414.0 <i>10</i>                    | 100 <i>33</i> 62 <i>38</i>                     | 6223.5 (51/2 <sup>-</sup> )<br>6719.1 (53/2 <sup>+</sup> )                                |                      |              |                   |                                                                         |
| 7174.2       | (57/2 <sup>+</sup> ) | 777.3 <i>10</i> 385.54 <i>10</i>                      | 100 88<br>49 <i>10</i>                         | 6355.9 (51/2 <sup>+</sup> )<br>6788.9 (55/2 <sup>+</sup> )                                |                      |              |                   |                                                                         |

# $\gamma(\frac{163}{\text{Lu}})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$ $\mathbf{J}_j^r$ | Mult. @ | $\delta^{@}$ | $\alpha^{d}$    | Comments                                                                   |
|---------------|----------------------|---------------------------------|-------------------------|---------------------------------|---------|--------------|-----------------|----------------------------------------------------------------------------|
| 7174.2        | $(57/2^+)$           | 758.85 12                       | 100 11                  | 6415.1 (53/                     | 2+)     |              |                 |                                                                            |
| 7179.1        | $(55/2^+)$           | 823.19 <i>10</i>                | 100                     | 6355.9 (51/                     |         |              |                 |                                                                            |
| 7220.4        | $(55/2^+)$           | 686.8 10                        | 15 <i>4</i>             | 6533.6 (53/                     |         | -3.14        | 0.0097 4        | $B(M1)(W.u.)=(0.013 3); B(E2)(W.u.)=(1.2\times10^2 2)$                     |
|               | (//                  | 766.2 10                        | 100 18                  | 6454.2 (51/                     |         |              | 0.00682         | $B(E2)(W.u.)=5.3\times10^2 +16-15$                                         |
| 7246.9        | $(57/2^{-})$         | 456.8 10                        | 16 8                    | 6790.0 (55/                     |         |              | 0.00002         | B(B2)(**********************************                                   |
|               | (= //= /             | 913.0 <i>10</i>                 | 100 11                  | 6334.1 (53/                     |         |              |                 |                                                                            |
| 7339.1        | $(57/2^+)$           | 805.57 10                       | 100                     | 6533.6 (53/                     |         |              | 0.00612         | $B(E2)(W.u.)=4.7\times10^2 6$                                              |
| 7351.2        | $(55/2^{-})$         | 443.8 10                        | 53 26                   | 6907.4 (53/                     |         |              | 0.00012         | B(B2)(W.d.)=1.77/10 0                                                      |
| 7551.2        | (33/2)               | 848.5 10                        | 100 26                  | 6502.7 (51/                     |         |              |                 |                                                                            |
| 7391.0        | $(57/2^+)$           | 410.9 10                        | 68 14                   | 6980.1 (55/                     |         |              |                 |                                                                            |
|               | (01/2)               | 774.5 10                        | 100 14                  | 6616.5 (53/                     |         |              |                 |                                                                            |
| 7466.8        | $(57/2^{-})$         | 431.4 10                        | 36 27                   | 7035.4 (55/                     |         |              |                 |                                                                            |
|               | (0.72)               | 848.9 10                        | 100 27                  | 6618.0 (53/                     |         |              |                 |                                                                            |
| 7507.0        | $(57/2^+)$           | 373.9 10                        | 100 80                  | 7133.1 (55/                     |         |              |                 |                                                                            |
|               | (01/2)               | 787.9 10                        | 100 60                  | 6719.1 (53/                     |         |              |                 |                                                                            |
| 7584.4        | $(59/2^+)$           | 410.21 11                       | 51 5                    | 7174.2 (57/                     |         |              |                 | $I_{\gamma}(410)/I_{\gamma}(795)=1.01\ I7\ (1992Sc03)$ is in disagreement. |
|               | (= - / = )           | 795.48 15                       | 100 10                  | 6788.9 (55/                     |         |              |                 | -/(·//-/(·/·/ (-///                                                        |
| 7667.2        | $(55/2^{-})$         | 702.2 10                        | 100 64                  | 6965.0 (51/                     |         |              |                 |                                                                            |
|               | (//                  | 1133.6 10                       | 44 16                   | 6533.6 (53/                     |         |              |                 |                                                                            |
| 7729.3        | $(59/2^{-})$         | 482.4 10                        | 14 11                   | 7246.9 (57/                     |         |              |                 |                                                                            |
|               | (/ )                 | 939.2 10                        | 100 29                  | 6790.0 (55/                     |         |              |                 |                                                                            |
| 7785.3        | $(59/2^+)$           | 394.3 10                        | 47 13                   | 7391.0 (57/                     |         |              |                 |                                                                            |
|               | . , ,                | 805.3 10                        | 100 <i>13</i>           | 6980.1 (55/                     |         |              |                 |                                                                            |
| 7786.4        | $(57/2^+)$           | 795.9 10                        | 100 20                  | 6990.5 (53/                     |         |              |                 |                                                                            |
|               | ` ' '                | 1252.8 10                       | 20 7                    | 6533.6 (53/                     |         |              |                 |                                                                            |
| 7813.9        | $(57/2^{-})$         | 462.7 10                        | 29 18                   | 7351.2 (55/                     |         |              |                 |                                                                            |
|               |                      | 906.5 10                        | 100 24                  | 6907.4 (53/                     |         |              |                 |                                                                            |
| 7903.4        | $(59/2^{-})$         | 436.6 10                        | 36 27                   | 7466.8 (57/                     |         |              |                 |                                                                            |
|               |                      | 868.0 10                        | 100 27                  | 7035.4 (55/                     | 2-)     |              |                 |                                                                            |
| 7955.9        | $(59/2^+)$           | 448.8 10                        | 80 80                   | 7507.0 (57/                     |         |              |                 |                                                                            |
|               |                      | 822.7 10                        | 100 80                  | 7133.1 (55/                     |         |              |                 |                                                                            |
| 3011.1        | $(61/2^+)$           | 426.45 <i>14</i>                | 48 5                    | 7584.4 (59/                     |         |              |                 |                                                                            |
|               |                      | 837.45 22                       | 100 10                  | 7174.2 (57/                     |         |              |                 |                                                                            |
| 3040.3        | $(59/2^+)$           | 701.1 10                        | 12 4                    | 7339.1 (57/                     |         | -3.14        | 0.0093 <i>3</i> | $B(M1)(W.u.)=(0.011 +7-6); B(E2)(W.u.)=(1.0\times10^2 +6-5)$               |
|               | . , ,                | 819.9 <i>10</i>                 | 100 16                  | 7220.4 (55/                     |         |              | 0.00589         | $B(E2)(W.u.)=4.3\times10^2 +21-16$                                         |
| 3046.1        | $(59/2^+)$           | 867.05 10                       | 100                     | 7179.1 (55/                     |         |              |                 | × × × × × × × × × × × × × × × × × × ×                                      |
| 3196.9        | $(61/2^+)$           | 857.7 10                        | 100                     | 7339.1 (57/                     |         |              | 0.00535         | $B(E2)(W.u.)=3.8\times10^2 \ 3$                                            |
| 3222.8        | $(61/2^{-})$         | 493.5 10                        | 20 16                   | 7729.3 (59/                     |         |              | 3.00000         | _(,(, 0.0,0 0                                                              |
|               | (01/2)               | 975.9 10                        | 100 52                  | 7246.9 (57/                     |         |              |                 |                                                                            |
| 3237.3        | $(61/2^+)$           | 452.0 10                        | 57 13                   | 7785.3 (59/                     |         |              |                 |                                                                            |
|               | (/ <b>-</b> /        | 846.3 10                        | 100 13                  | 7391.0 (57/                     |         |              |                 |                                                                            |
| 3291.2        | $(59/2^{-})$         | 477.3 10                        | 38 31                   | 7813.9 (57/                     |         |              |                 |                                                                            |
|               | (/- /                | 940.0 10                        | 100 23                  | 7351.2 (55/                     |         |              |                 |                                                                            |

# $\gamma(\frac{163}{\text{Lu}})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$  | $\mathrm{E}_{\gamma}{}^{\dagger}$  | $I_{\gamma}^{\ddagger}$ | $E_f$                  | $\mathbf{J}_f^{\pi}$ | Mult.@  | $\alpha^{d}$ | Comments                                |
|---------------|-----------------------|------------------------------------|-------------------------|------------------------|----------------------|---------|--------------|-----------------------------------------|
| 8379.8        | $(61/2^{-})$          | 913.0 10                           | 100                     | 7466.8 (5              | 57/2-)               |         |              |                                         |
| 8387.2        | $(61/2^+)$            | 880.2 10                           | 100                     | 7507.0 (5              |                      |         |              |                                         |
| 8421.8        | $(59/2^{-})$          | 754.6 10                           | 100 50                  | 7667.2 (5              |                      |         |              |                                         |
|               | ` ' '                 | 1082.6 <i>10</i>                   | 30 10                   | 7339.1 (5              | 57/2 <sup>+</sup> )  | D       |              |                                         |
| 8459.4        | $(63/2^+)$            | 447.9 10                           | 51 <i>13</i>            | 8011.1 (6              |                      |         |              | $I_{\gamma}$ : other: 23 13 (1992Sc03). |
|               |                       | 875.5 10                           | 100 11                  | 7584.4 (5              | $59/2^{+}$ )         |         |              |                                         |
| 8636.2        | $(61/2^+)$            | 849.8 10                           | 100 22                  | 7786.4 (5              |                      |         |              |                                         |
|               |                       | 1297.0 <sup>e</sup> 10             | 22 14                   | 7339.1 (5              | $57/2^{+}$ )         |         |              |                                         |
| 8668.7        | $(63/2^+)$            | 431.4 10                           | 57 14                   | 8237.3 (6              |                      |         |              |                                         |
|               |                       | 883.4 10                           | 100 19                  | 7785.3 (5              |                      |         |              |                                         |
| 8713.6        | $(63/2^{-})$          | 490.8 10                           | 36 29                   | 8222.8 (6              | $51/2^{-}$ )         |         |              |                                         |
|               |                       | 984.3 10                           | 100 43                  | 7729.3 (5              |                      |         |              |                                         |
| 8790.3        | $(61/2^{-})$          | 499.1 <i>10</i>                    | 44 33                   | 8291.2 (5              |                      |         |              |                                         |
|               |                       | 976.4 <i>10</i>                    | 100 33                  | 7813.9 (5              |                      |         |              |                                         |
| 8845.6        | $(63/2^{-})$          | 942.2 10                           | 100                     | 7903.4 (5              |                      |         |              |                                         |
| 8855.7        | $(63/2^+)$            | 899.9 <i>10</i>                    | 100                     | 7955.9 (5              |                      |         |              |                                         |
| 8913.2        | $(63/2^+)$            | 716.3 10                           | 10 5                    | 8196.9 (6              |                      | [M1+E2] | 0.013 5      |                                         |
|               |                       | 872.9 10                           | 100 23                  | 8040.3 (5              |                      | [E2]    | 0.00516      | $B(E2)(W.u.)=4.3\times10^2 +21-17$      |
| 8927.0        | $(65/2^+)$            | 467.7 10                           | 56 <i>13</i>            | 8459.4 (6              |                      |         |              |                                         |
|               |                       | 915.6 <i>10</i>                    | 100 24                  | 8011.1 (6              |                      |         |              |                                         |
| 8974.2        | $(63/2^+)$            | 928.1 <i>10</i>                    | 100                     | 8046.1 (5              |                      |         |              |                                         |
| 9106.6        | $(65/2^+)$            | 909.7 10                           | 100                     | 8196.9 (6              |                      | [E2]    | 0.00473      | $B(E2)(W.u.)=3.7\times10^2 +8-6$        |
| 9154.2        | $(65/2^+)$            | 485.5 10                           | 71 29                   | 8668.7 (6              |                      |         |              |                                         |
|               |                       | 916.8 <i>10</i>                    | 100 29                  | 8237.3 (6              |                      |         |              |                                         |
| 9231.8        | $(63/2^{-})$          | 810.1 <i>10</i>                    | 100                     | 8421.8 (5              |                      |         |              |                                         |
| 9252.8        | $(65/2^{-})$          | 539.2 10                           | 57 43                   | 8713.6 (6              |                      |         |              |                                         |
| 0004          | ( < 2 (2 - )          | 1030.0 10                          | 100 57                  | 8222.8 (6              |                      |         |              |                                         |
| 9284.6        | $(63/2^{-})$          | 993.4 10                           | 100                     | 8291.2 (5              |                      |         |              |                                         |
| 9331.0        | $(65/2^+)$            | 943.8 10                           | 100                     | 8387.2 (6              |                      |         |              |                                         |
| 9376.3        | $(65/2^{-})$          | 996.5 10                           | 100                     | 8379.8 (6              |                      |         |              |                                         |
| 9408.7        | $(67/2^+)$            | 481.7 10                           | 95 33                   | 8927.0 (6              |                      |         |              |                                         |
| 9538.7        | $(65/2^+)$            | 949.4 <i>10</i><br>902.5 <i>10</i> | 100 <i>33</i><br>100    | 8459.4 (6<br>8636.2 (6 |                      |         |              |                                         |
| 9538.7        | $(63/2^+)$ $(67/2^+)$ | 471.3 <i>10</i>                    | 100 50                  | 9154.2 (6              |                      |         |              |                                         |
| 9023.3        | (07/2)                | 956.8 10                           | 63 37                   | 8668.7 (6              |                      |         |              |                                         |
| 9709.0        | $(67/2^{-})$          | 456.2 <i>10</i>                    | 20 10                   | 9252.8 (6              |                      |         |              |                                         |
| 9709.0        | (07/2)                | 995.4 10                           | 100 50                  | 8713.6 (6              |                      |         |              |                                         |
| 9805.3        | $(65/2^{-})$          | 1015.0 10                          | 100 50                  | 8790.3 (6              |                      |         |              |                                         |
| 9816.2        | $(67/2^+)$            | 960.5 10                           | 100                     | 8855.7 (6              |                      |         |              |                                         |
| 9839.7        | $(67/2^+)$            | 926.5 10                           | 100                     | 8913.2 (6              |                      | [E2]    | 0.00455      | $B(E2)(W.u.)=3.0\times10^2 +10-7$       |
| 9916.8        | $(69/2^+)$            | 508.0 10                           | 24 14                   | 9408.7 (6              |                      |         | 0.00433      | D(D2)(11.u.)-J.U^1U T1U-/               |
| 7710.0        | (0)/2)                | 989.8 10                           | 100 33                  | 8927.0 (6              |                      |         |              |                                         |
| 10069.2       | (69/2+)               | 962.53 14                          | 100 55                  | 9106.6 (6              |                      | [E2]    | 0.00421      | $B(E2)(W.u.)=3.9\times10^2 +10-15$      |
| 10009.2       | (0)/2 )               | 702.33 14                          | 100                     | 7100.0 (U              | ,5/2 )               | ر عصا   | 0.00421      | D(D2)(11.0.)-3.7/10 110 13              |

# $\gamma(\frac{163}{\text{Lu}})$ (continued)

| $E_i(level)$ | $\mathtt{J}_{i}^{\pi}$   | $\mathrm{E}_{\gamma}^{\dagger}$      | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$     | $\mathbf{J}_f^{\pi}$ | Mult.@ | $\alpha^d$ | Comments                            |
|--------------|--------------------------|--------------------------------------|-------------------------|--------------------|----------------------|--------|------------|-------------------------------------|
| 10097.2      | $(67/2^{-})$             | 865.3 10                             | 100                     | 9231.8             | $(63/2^{-})$         |        |            |                                     |
| 10138.5      | $(69/2^+)$               | 513.0 <i>10</i>                      | 50 30                   |                    | $(67/2^+)$           |        |            |                                     |
|              |                          | 984.4 10                             | 100 50                  |                    | $(65/2^+)$           |        |            |                                     |
| 10314.7      | $(69/2^{-})$             | 1061.9 <i>10</i>                     | 100                     | 9252.8             | $(65/2^{-})$         |        |            |                                     |
| 10333.9      | $(69/2^+)$               | 1002.9 <i>10</i>                     | 100                     |                    | $(65/2^+)$           |        |            |                                     |
| 10428.3      | $(71/2^+)$               | 511.6 <i>10</i>                      | 50 40                   |                    | $(69/2^+)$           |        |            |                                     |
|              |                          | 1019.6 <i>10</i>                     | 100 70                  |                    | $(67/2^+)$           |        |            |                                     |
| 10494.5      | $(69/2^+)$               | 955.8 <i>10</i>                      | 100                     |                    | $(65/2^+)$           |        |            |                                     |
| 10653.5      | $(71/2^+)$               | 515.0 <i>10</i>                      | 50 50                   | 10138.5            |                      |        |            |                                     |
| 40=440       |                          | 1028.0 10                            | 100 50                  |                    | $(67/2^+)$           |        |            |                                     |
| 10714.9      | $(71/2^{-})$             | 1005.9 <i>10</i>                     | 100                     |                    | $(67/2^{-})$         |        |            | 2                                   |
| 10819.9      | $(71/2^+)$               | 980.2 10                             | 100                     |                    | $(67/2^+)$           | [E2]   | 0.00406    | $B(E2)(W.u.)=3.0\times10^2 +16-10$  |
| 10876.3      | $(69/2^{-})$             | 1071.0 <i>10</i>                     | 100                     |                    | $(65/2^{-})$         |        |            |                                     |
| 10978.4      | $(73/2^+)$               | 550.1 10                             | 50 40                   | 10428.3            |                      |        |            |                                     |
| 11017.5      | (71/0-)                  | 1061.6 10                            | 100 70                  |                    | $(69/2^+)$           |        |            |                                     |
| 11017.7      | $(71/2^{-})$             | 920.5 10                             | 100                     | 10097.2            |                      |        |            |                                     |
| 11085.7      | $(73/2^+)$               | 1016.5 10                            | 100                     | 10069.2            |                      |        |            |                                     |
| 11186.8      | $(73/2^+)$               | 1048.3 10                            | 100                     | 10138.5            |                      |        |            |                                     |
| 11503.7      | $(73/2^+)$               | 1009.2 10                            | 100                     | 10494.5            |                      |        |            |                                     |
| 11505.4      | $(75/2^+)$               | 527.0 10                             | 50 38                   | 10978.4            |                      |        |            |                                     |
| 11729.9      | (75/2-)                  | 1077.1 <i>10</i><br>1015.0 <i>10</i> | 100 <i>75</i><br>100    | 10428.3            |                      | E2     | 0.00378    |                                     |
| 11729.9      | $(75/2^{-})$             |                                      |                         | 10714.9            |                      | EZ     | 0.00378    |                                     |
| 11749.0      | $(75/2^+)$<br>$(75/2^-)$ | 1095.5 <i>10</i><br>1066.5 <i>10</i> | 100<br>100              | 10653.5<br>10714.9 |                      |        |            |                                     |
| 11761.4      | $(75/2^+)$               | 1034.7 10                            | 100                     | 10714.9            |                      |        |            |                                     |
| 11993.4      | $(75/2^{-})$             | 975.7 10                             | 100                     | 11017.7            |                      |        |            |                                     |
| 12098.1      | $(77/2^+)$               | 1119.7 10                            | 100                     | 10978.4            |                      |        |            | E <sub>γ</sub> : 1117.4 (1992Sc03). |
| 12156.8      | $(77/2^+)$               | 1071.1 10                            | 100                     | 11085.7            |                      |        |            | Ly. 1117.4 (1)/23c03).              |
| 12266.9      | $(77/2^+)$               | 1080.1 10                            | 100                     | 11186.8            |                      |        |            |                                     |
| 12566.7      | $(77/2^+)$               | 1063.0 10                            | 100                     | 11503.7            |                      |        |            |                                     |
| 12627.2      | $(79/2^+)$               | 1121.8 10                            | 100                     | 11505.4            |                      |        |            |                                     |
| 12745        | $(79/2^{-})$             | 1015.0 20                            | 100                     | 11729.9            |                      |        |            |                                     |
| 12862.4      | $(79/2^+)$               | 1113.4 10                            | 100                     | 11749.0            |                      |        |            |                                     |
| 12866.0      | $(79/2^{-})$             | 1084.6 <i>10</i>                     | 100                     | 11781.4            |                      |        |            |                                     |
| 12943.5      | $(79/2^+)$               | 1088.9 <i>10</i>                     |                         | 11854.6            |                      |        |            |                                     |
| 13025.0      | $(79/2^{-})$             | 1031.6 <i>10</i>                     |                         | 11993.4            | $(75/2^{-})$         |        |            |                                     |
| 13198.3?     | $(81/2^+)$               | 1100.2 <sup>e</sup> 10               | 100                     | 12098.1            |                      |        |            |                                     |
| 13283.0      | $(81/2^+)$               | 1126.2 10                            | 100                     | 12156.8            |                      |        |            |                                     |
| 13679.1      | $(81/2^+)$               | 1112.4 10                            | 100                     | 12566.7            |                      |        |            |                                     |
| 13746.8      | $(83/2^+)$               | 1119.6 <i>10</i>                     | 100                     | 12627.2            | $(79/2^+)$           |        |            |                                     |
| 13798        | $(83/2^{-})$             | 1052.8 10                            | 100                     | 12745              | $(79/2^{-})$         |        |            |                                     |
| 14086.5      | $(83/2^+)$               | 1143.0 <i>10</i>                     |                         | 12943.5            |                      |        |            |                                     |
| 14110?       | $(83/2^{-})$             | 1085.5 <sup>e</sup> 10               | 100                     | 13025.0            | $(79/2^{-})$         |        |            |                                     |
|              |                          |                                      |                         |                    |                      |        |            |                                     |

# $\gamma$ (163Lu) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbb{E}_f$ | $\mathbf{J}_f^{\pi}$ | $E_i(level)$ | $\mathtt{J}_{i}^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f$ | $J_f^\pi$    |
|--------------|----------------------|------------------------|-------------------------|----------------|----------------------|--------------|------------------------|------------------------|-------------------------|----------------|--------------|
| 14462.3      | $(85/2^+)$           | 1179.3 10              | 100                     | 13283.0        | $(81/2^+)$           | 16531        | $(91/2^+)$             | 1247.5 10              | 100                     | 15284          | $(87/2^+)$   |
| 14826        | $(85/2^+)$           | 1147 <i>4</i>          | 100                     | 13679.1        | $(81/2^+)$           | 16958        | $(93/2^+)$             | 1269.0 <i>10</i>       | 100                     | 15689          | $(89/2^+)$   |
| 14890        | $(87/2^{-})$         | 1092.2 <i>10</i>       | 100                     | 13798          | $(83/2^{-})$         | 17204        | $(95/2^{-})$           | 1179.5 <i>10</i>       | 100                     | 16024          | $(91/2^{-})$ |
| 15284        | $(87/2^+)$           | 1197.3 <i>10</i>       | 100                     | 14086.5        | $(83/2^+)$           | 18262        | $(97/2^+)$             | 1303.5 <i>10</i>       | 100                     | 16958          | $(93/2^+)$   |
| 15689        | $(89/2^+)$           | 1227.0 <i>10</i>       | 100                     | 14462.3        | $(85/2^+)$           | 18436        | $(99/2^{-})$           | 1232.4 10              | 100                     | 17204          | $(95/2^{-})$ |
| 16024        | $(91/2^{-})$         | 1134.5 10              | 100                     | 14890          | $(87/2^{-})$         |              |                        |                        |                         |                |              |

<sup>&</sup>lt;sup>†</sup> From  $^{139}$ La( $^{29}$ Si,5n $\gamma$ ) unless otherwise stated. These values, in general, agree within 0.3 keV with those from  $^{139}$ La( $^{28}$ Si,4n $\gamma$ ). <sup>‡</sup> Most values are from  $^{139}$ La( $^{29}$ Si,5n $\gamma$ ), where a more complete set of values is given than in earlier  $^{139}$ La( $^{28}$ Si,4n $\gamma$ ) study.

 $<sup>^{\</sup>text{\#}}$  From  $^{163}$ Hf  $\varepsilon$  decay.

<sup>&</sup>lt;sup>@</sup> From  $\gamma(\theta)$ ,  $\gamma\gamma(\theta)$  and  $\gamma(\text{lin pol})$  in (HI,xn $\gamma$ ) studies, except as noted.

<sup>&</sup>amp;  $\gamma\gamma(\theta)$  (DCO ratio) in (HI,xn $\gamma$ ) is consistent with  $\Delta J=2$ , stretched quadrupole. When  $T_{1/2}$ (level) is known, RUL further limits the multipolarity to E2.

 $<sup>^{</sup>a}$   $\gamma\gamma(\theta)$  (DCO) in (HI,xn $\gamma$ ) is consistent with  $\Delta J=1$ , dipole, but  $\Delta J=2$  does not seem to be ruled out.

<sup>&</sup>lt;sup>b</sup> From  $\gamma(\theta)$  in (HI,xn $\gamma$ ) (1983RoZW).

<sup>&</sup>lt;sup>c</sup> From comparison to RUL. Isotropic distribution in (<sup>19</sup>F,4nγ).

<sup>&</sup>lt;sup>d</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>&</sup>lt;sup>e</sup> Placement of transition in the level scheme is uncertain.

Legend

## Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)



 $^{163}_{\ 71}Lu_{92}$ 

## Level Scheme (continued)



Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

---- 

γ Decay (Uncertain)



 $^{163}_{\,71}Lu_{92}$ 

## Level Scheme (continued)



 $^{163}_{71}Lu_{92}$ 

#### Level Scheme (continued)



## Level Scheme (continued)



#### Legend

#### Level Scheme (continued)



 $^{163}_{71}Lu_{92}$ 

#### Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



## Level Scheme (continued)



Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

---- →  $\gamma$  Decay (Uncertain)



Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



Legend

# Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)



 $^{163}_{71}Lu_{92} \\$ 





## Band(G): $(\pi 1/2[660])$ $\otimes$ AEBC, $\alpha$ =-1/2



Band(H):  $(\pi 9/2[514]) \otimes AB$ ,  $\alpha = +1/2$ 



Band(J): Band based on  $55/2^+, \alpha = -1/2$ 





$$^{163}_{\ 71}Lu_{92}$$



$$^{163}_{71} Lu_{92}$$

### <sup>163</sup>Hf ε decay (40.0 s) 1982Sc15

| ы | 4 | a. | ١'n | ١, | ** 7 |
|---|---|----|-----|----|------|
|   |   |    |     |    |      |

| Type            | Author                    | Citation             | Literature Cutoff Date |
|-----------------|---------------------------|----------------------|------------------------|
| Full Evaluation | C. W. Reich, Balraj Singh | NDS 111, 1211 (2010) | 12-Apr-2010            |

Parent:  $^{163}$ Hf: E=0.0;  $T_{1/2}$ =40.0 s 6;  $Q(\varepsilon)$ =5510 40;  $\%\varepsilon+\%\beta^+$  decay=100.0

<sup>163</sup>Hf-T<sub>1/2</sub>: From the <sup>163</sup>Hf Adopted Levels.

<sup>163</sup>Hf-Q(ε): From 2009AuZZ, 2003Au03.

<sup>163</sup>Hf-%ε+%β<sup>+</sup> decay: %α<0.0001 (1995Hi12).

Additional information 1.

1982Sc15:  $^{142}$ Nd( $^{24}$ Mg,3n) E=105-133 MeV. He-jet. Measured x-rays,  $\gamma$ 's,  $\gamma\gamma$ -coin,  $\gamma$ (t), and  $\alpha$ 's. Identification by cross-bombardment ( $^{141}$ Pr( $^{24}$ Mg,X) E=110-130 MeV) and excitation functions.

Others

1995Hi12:  $^{163}$ Hf produced by  $^{135}$ Ba( $^{32}$ S,xn) E=172 MeV. Measured  $\gamma$ ,  $\alpha$ . Authors state that the decay scheme proposed by 1982Sc15 is confirmed and  $\%\alpha$ (measured)<0.0001.

1982Br31 (also 1989Br19,1987Es08,1981Br30):  $^{147}$ Sm( $^{20}$ Ne,4n) E=110, 139 MeV. Chem separation. Measured  $\gamma$ 's and  $T_{1/2}$ . Identification by  $^{163}$ Lu  $^{163}$ V.

1981LiZM: Yb( $^3$ He,xn). On-line separation; fluoride compounds. Measured x-rays,  $\gamma'$ s, and K x ray(t).

#### 163Lu Levels

| E(level) <sup>†</sup>         | $J^{\pi \ddagger}$ | Comments                                                                                                        |
|-------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| 0.0                           | 1/2 <sup>(+)</sup> |                                                                                                                 |
| 17.0                          | $(3/2^+)$          | E(level): level proposed based on $(^{29}\text{Si},5\text{n}\gamma)$ results of 1999Do34, 2002Je05.             |
| 62.39 <sup>#</sup> 8          | $(5/2^+)$          |                                                                                                                 |
| 124.5 <sup>#</sup>            | $(7/2^+)$          | E(level): order of $62\gamma$ - $71\gamma$ cascade is from 1999Do34 and 2002Je05 in ( $^{29}$ Si,5n $\gamma$ ). |
| 195.47 <sup>#</sup> <i>13</i> | $(7/2^{-})$        | $J^{\pi}$ : parity is based on the present ordering of $71\gamma$ -62 $\gamma$ cascade.                         |
| 224.64 17                     | $(7/2^+)$          |                                                                                                                 |
| 250.35 10                     | $(7/2^+)$          |                                                                                                                 |
| 280.37? 17                    |                    |                                                                                                                 |
| 691.54 <i>17</i>              |                    |                                                                                                                 |
| 715.79 <i>17</i>              |                    |                                                                                                                 |
| 730.72 24                     |                    |                                                                                                                 |
| 883.72 17                     |                    |                                                                                                                 |

<sup>&</sup>lt;sup>†</sup> The level scheme from 1982Sc15 is now built on the top of the 17.0 level, as proposed in the ( $^{29}$ Si,5n $\gamma$ ) study of 1999Do34 and 2002Je05 from the observation of parallel  $\gamma$  rays of 191.0 and 174.0 from a level at 191 keV.

#### $\gamma(^{163}Lu)$

All gammas are observed in coincidence with Lu x-rays and  $\gamma^{\pm}$  and, except for the 688.2 $\gamma$ , measured  $T_{1/2}$ 's are consistent with the mean value of  $^{163}$ Hf ground state  $T_{1/2}$ . In addition excitation function measured for all  $\gamma$ 's except the three weakest  $\gamma$  rays in the ( $^{24}$ Mg,3n) reaction are in agreement with those expected for a three-particle evaporation reaction.

| $E_{\gamma}$ | $I_{\gamma}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | $\alpha^{\ddagger}$ | Comments                                                                                                                                                                                                                                             |
|--------------|--------------|---------------|----------------------|----------------|----------------------|--------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.39 8      | 48 2         | 62.39         | (5/2+)               | 17.0           | (3/2+)               | M1                 | 6.12                | $\alpha(L)$ =4.76 8; $\alpha(M)$ =1.071 16; $\alpha(N+)$ =0.293 5 $\alpha(N)$ =0.253 4; $\alpha(O)$ =0.0374 6; $\alpha(P)$ =0.00230 4                                                                                                                |
| 62.14 5      | 64 5         | 124.5         | (7/2+)               | 62.39          | (5/2+)               | M1                 | 2.43                | $\alpha(L)=1.89 \ 3; \ \alpha(M)=0.426 \ 6; \ \alpha(N+)=0.1163 \ 17$<br>$\alpha(N)=0.1005 \ 15; \ \alpha(O)=0.01488 \ 22; \ \alpha(P)=0.000917 \ 13$<br>$I_{\gamma}$ : from comparison with $I_{\gamma}(71\gamma)$ in $\gamma\gamma$ spectrum gated |

<sup>&</sup>lt;sup>‡</sup> From Adopted Levels.

<sup>#</sup> Width of prompt peak (FWHM) is <30 ns.

#### <sup>163</sup>Hf ε decay (40.0 s) 1982Sc15 (continued)

| $E_{\gamma}$                                                                                                   | $I_{\gamma}$                                                                     | $E_i(level)$                                                                  | $\mathbf{J}_i^{\pi}$                                              | $\mathbb{E}_f$                                                 | $\mathbf{J}_f^{\pi}$                                                                                            | Mult. <sup>†</sup> | $\alpha^{\ddagger}$ | Comments                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 70.98 8                                                                                                        | 100                                                                              | 195.47                                                                        | (7/2 <sup>-</sup> )                                               | 124.5                                                          | (7/2+)                                                                                                          | E1                 | 0.849               | on 45 $\gamma$ .  Additional information 2. $\alpha(K)$ =0.689 10; $\alpha(L)$ =0.1244 18; $\alpha(M)$ =0.0281 4; $\alpha(N+)$ =0.00736 11 $\alpha(N)$ =0.00646 10; $\alpha(O)$ =0.000861 13; $\alpha(P)$ =3.56×10 <sup>-5</sup> 5  Also assigned to <sup>163</sup> Hf decay by 1982Br31. |
| 84.9 <sup>#</sup> 1<br>133.08 10<br>162.25 15<br>233.35 10<br>496.07 10<br>520.32 10<br>535.25 20<br>688.25 10 | <1.6 24 <i>I</i> 16 <i>I</i> 17 <i>I</i> 13 <i>I</i> 19 <i>I</i> 4 <i>I</i> 33 4 | 280.37?<br>195.47<br>224.64<br>250.35<br>691.54<br>715.79<br>730.72<br>883.72 | (7/2 <sup>-</sup> )<br>(7/2 <sup>+</sup> )<br>(7/2 <sup>+</sup> ) | 195.47<br>62.39<br>62.39<br>17.0<br>195.47<br>195.47<br>195.47 | (5/2 <sup>+</sup> )<br>(3/2 <sup>+</sup> )<br>(7/2 <sup>-</sup> )<br>(7/2 <sup>-</sup> )<br>(7/2 <sup>-</sup> ) |                    |                     | Also assigned to Till deedy by 19625131.                                                                                                                                                                                                                                                  |

<sup>&</sup>lt;sup>†</sup> From a comparison of experimental intensity ratios in  $\gamma\gamma$  with the predicted values using  $\alpha$ 's (for M1 and E1). Based on width of prompt peak, multipolarities higher than E1, M1, E2 are excluded.

 $<sup>^{\</sup>ddagger}$  Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>#</sup> Placement of transition in the level scheme is uncertain.

## <sup>163</sup>Hf ε decay (40.0 s) 1982Sc15

#### 



 $\begin{array}{c|c} & 0.0 & 40.0 \text{ s } 6 \\ \%\varepsilon + \%\beta^{+} = 100 & Q^{+} = 5510 \ 40 & \\ & 163 \\ & 72 \\ \end{array}$ 



### $^{139}$ La( $^{28}$ Si,4n $\gamma$ ) 1992Sc03

History

Type Author Citation Literature Cutoff Date
Full Evaluation C. W. Reich, Balraj Singh NDS 111, 1211 (2010) 12-Apr-2010

Includes reactions  $^{122}$ Sn( $^{45}$ Sc, $^{4n}\gamma$ );  $^{147}$ Sm( $^{19}$ F, $^{3n}\gamma$ );  $^{148}$ Sm( $^{19}$ F, $^{4n}\gamma$ ).

1992Sc03, 1992ScZL: <sup>139</sup>La(<sup>28</sup>Si,4nγ) E=150 MeV. Measured Eγ, Iγ, γγ, γγ(θ) (DCO) with an array of 12-Compton suppressed Ge detectors and 48 BGO detectors. Cranked shell-model and total-Routhian surface calculations. See 1995Sc39 for theoretical analysis of π1/2[660], large deformation (triaxial superdeformed) band.

1993Sc13, 1992ScZL: <sup>147</sup>Sm(<sup>19</sup>F,3nγ) E=85 MeV. Measured lifetimes by DSAM (Doppler-shift attenuation) and RDDS (recoil-distance Doppler shift) methods. The detector array for the DSAM experiment consisted of 12 Compton-suppressed Ge detectors and 10 BaF<sub>2</sub> detectors. For the RDDS method, the detector array contained 19 Ge detectors and 30 BaF<sub>2</sub> detectors. Others:

1992Li13:  $^{148}$ Sm( $^{19}$ F,4n $\gamma$ ) E=92 MeV. Measured  $\gamma$ ,  $\gamma\gamma$  with three Compton-suppressed Ge detectors and two other Ge detectors. Two bands, each with a signature partner, were reported. No  $\gamma$ -ray intensities reported.

1994Ch77, 1990Gr18:  $^{122}$ Sn( $^{45}$ Sc,4n $\gamma$ ) E=192 MeV. Description of a computer code for analysis of 2-dimensional  $\gamma\gamma$  data. Earlier measurements:

1986HoZD: <sup>122</sup>Sn(<sup>45</sup>Sc,4nγ) E=192 MeV. Measured γ, γγ, γγ(θ) (DCO at 24° and 63°) with an array of five Compton-suppressed Ge detectors and three additional Ge detectors. The inner ball consisted of 72 NaI detectors. γ-ray intensities were not reported. Three bands, two with signature partners, were reported.

1983RoZW:  $^{148}$ Sm( $^{19}$ F,4n $\gamma$ ) E=80-105 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma(\theta)$ , excitation functions. One band with a signature partner reported.

1983WaZO:  $^{148}$ Sm( $^{19}$ F,4n $\gamma$ ). Measured  $\gamma$ ,  $\gamma\gamma$  with an array of five Ge detectors and a multiplicity filter of NaI detectors. Evidence for  $h_{11/2}$  band (to  $47/2^-$ ) and  $g_{7/2}$  band found. Details of this study are not available.

#### <sup>163</sup>Lu Levels

The present level scheme is from 1992Sc03 with modifications as suggested by 2002Je05 (also 1999Do34). See also 1992Li13 and 1993Sc13. The detailed results from 2002Je05 and 1999Do34 are given in a separate <sup>139</sup>La(<sup>29</sup>Si,5ny) data set.

| E(level) <sup>†</sup>       | $J^{\pi \#}$                  | $T_{1/2}^{\ddagger}$          | Comments                  |
|-----------------------------|-------------------------------|-------------------------------|---------------------------|
| $0.0^{j}$                   | 1/2+c                         |                               |                           |
| 16.8 <i>dk</i> 3            | 3/2+c                         |                               | Additional information 1. |
| 62.19 8                     | 5/2+                          |                               |                           |
| 124.32 <sup>g</sup> 10      | 7/2+                          |                               |                           |
| 190.7 <sup>j</sup> 8        | 5/2 <sup>+</sup> <sup>C</sup> |                               |                           |
| 195.29 <sup>i</sup> 11      | $7/2^{-}$                     |                               |                           |
| 210.2 <sup>h</sup> 3        | $9/2^{-}$                     |                               |                           |
| 223.8 6                     | 7/2+                          |                               |                           |
| 249.4 <sup>k</sup> 5        | 7/2+c                         |                               |                           |
| 294.8 <sup>i</sup> 4        | $11/2^{-}$                    |                               |                           |
| 310.51 <sup>f</sup> 25      | 9/2+                          |                               |                           |
| 491.3 <mark>h</mark> 4      | $13/2^{-}$                    |                               |                           |
| 520.3 <sup>j</sup> 9        | 9/2+c                         |                               |                           |
| 520.41 <sup>8</sup> 25      | $11/2^{+}$                    |                               |                           |
| 620.0 <sup>k</sup> 6        | 11/2+c                        |                               |                           |
| 643.8 <i>i</i> 4            | $15/2^{-}$                    | 5.6 <sup>&amp;</sup> ps +6-11 |                           |
| 754.5 <sup><i>f</i></sup> 3 | $13/2^{+}$                    |                               |                           |
| 936.3 <sup>h</sup> 5        | $17/2^{-}$                    | 1.4 <sup>&amp;</sup> ps +8-7  |                           |
| 967.3 <sup>j</sup> 10       | 13/2+c                        |                               |                           |
| 1007.7 <sup>8</sup> 3       | 15/2+                         |                               |                           |
|                             |                               |                               |                           |

| E(level) <sup>†</sup>                                         | $J^{\pi \#}$                   | T <sub>1/2</sub> ‡        | E(level) <sup>†</sup>                             | $J^{\pi \#}$                           | $T_{1/2}^{\ddagger}$                      |
|---------------------------------------------------------------|--------------------------------|---------------------------|---------------------------------------------------|----------------------------------------|-------------------------------------------|
| 1105.7 <sup>k</sup> 8                                         | 15/2+c                         |                           | 4442.7 <sup>l</sup> 13                            | $(41/2^+)$                             | 0.15 ps +6-5                              |
| 1114.4 <sup>i</sup> 5                                         | 19/2-                          | 1.9 kg ps +2-4            | 4717.4 <mark>8</mark> 7                           | 43/2+                                  | •                                         |
| 1281.9 <sup>f</sup> 4                                         | 17/2+                          |                           | 4757.8 <sup>h</sup> 7                             | 45/2-                                  |                                           |
| 1484.6 <sup>h</sup> 5                                         | 21/2-                          | 0.9 <sup>&amp;</sup> ps 3 | 5055.0 <sup>f</sup> 7                             | 45/2 <sup>+</sup>                      |                                           |
| 1501.2 <sup>j</sup> 11                                        | 17/2+°C                        | •                         | 5081.4 <sup>l</sup> 14                            | $(45/2^+)$                             | 0.10  ps  +4-3                            |
| 1561.1 <mark>8</mark> 4                                       | 19/2 <sup>+</sup>              |                           | 5129.0 <sup>i</sup> 7                             | $47/2^{-}$                             | 0.15 <sup>@</sup> ps 5                    |
| 1668.5 <sup>k</sup> 9                                         | 19/2+c                         |                           | 5385.6 <mark>8</mark> 7                           | 47/2 <sup>+</sup>                      |                                           |
| 1676.0 <sup>i</sup> 4                                         | $23/2^{-}$                     | $1.0^{\&}$ ps $+2-3$      | 5502.0 <sup>h</sup> 7                             | $49/2^{-}$                             | $0.11^{\textcircled{0}} \text{ ps } +5-3$ |
| 1738.3 <sup>l</sup> 13                                        | $(13/2^+)$                     |                           | 5717.1 <sup>f</sup> 7                             | 49/2+                                  |                                           |
| 1866.7 <sup>f</sup> 4                                         | $21/2^{+}$                     |                           | 5778.4 <sup>l</sup> 14                            | $(49/2^+)$                             | 0.08  ps  +4-3                            |
| 1935.0 <sup>l</sup> 13                                        | $(17/2^+)$                     |                           | 5913.4 <sup>i</sup> 8                             | $51/2^{-}$                             | 0.12 <sup>@</sup> ps +3-6                 |
| 2102.6 <sup>h</sup> 5                                         | $25/2^{-}$                     |                           | 6062.4 <mark>8</mark> 7                           | $51/2^{+}$                             |                                           |
| 2138.6 <sup>g</sup> 4                                         | $23/2^{+}$                     |                           | 6330.3 <sup>h</sup> 8                             | 53/2-                                  | 0.09 <sup>@</sup> ps +6-4                 |
| 2199.0 <i>el 12</i>                                           | $(21/2^+)$                     |                           | 6412.3 <sup>f</sup> 7                             | 53/2+                                  |                                           |
| 2275.4 <sup>j</sup> 11                                        | 23/2 <sup>+</sup> <sup>C</sup> |                           | 6530.4 <sup>l</sup> 14                            | $(53/2^+)$                             | 0.055  ps  +21-28                         |
| 2305.9 <sup>i</sup> 5                                         | $27/2^{-}$                     | $1.2^{\&}$ ps +3-5        | 6785.7 <sup>i</sup> 8                             | 55/2-                                  |                                           |
| 2399.1 <i>f</i> 4                                             | $25/2^{+}$                     |                           | 6785.9 <mark>8</mark> 8                           | 55/2+                                  |                                           |
| 2513.7 <sup>l</sup> 12                                        | $(25/2^+)$                     | $3.3^{a}$ ps +7-5         | 7171.5 <sup>f</sup> 8                             | 57/2 <sup>+</sup>                      |                                           |
| 2613.3 <sup>8</sup> 5                                         | $27/2^{+}$                     |                           | 7243.4 <sup>h</sup> 8                             | $57/2^{-}$                             |                                           |
| 2746.2 <sup>h</sup> 5                                         | $29/2^{-}$                     |                           | 7335.6 <sup>l</sup> 15                            | $(57/2^+)$                             | 0.04 ps 3                                 |
| $2802.3^{f}$ 5                                                | 29/2+                          |                           | 7581.5 <mark>8</mark> 8                           | 59/2 <sup>+</sup>                      |                                           |
| 2853.5 9                                                      | $(29/2^{-})$                   |                           | 7725.3 <sup>i</sup> 9                             | 59/2-                                  |                                           |
| 2899.7 <sup>l</sup> 12                                        | $(29/2^+)$                     | $2.3^{a}$ ps +5-4         | 8008.8 <sup>f</sup> 8                             | $61/2^{+}$                             | 0                                         |
| 2923.2 <sup>i</sup> 6                                         | $31/2^{-}$                     |                           | 8193.3 <sup>l</sup> 15                            | $(61/2^+)$                             | $0.034^{\textcircled{0}}$ ps $+35-33$     |
| 3002.78 5                                                     | 31/2+                          |                           | 8219.1 <sup>h</sup> 9                             | 61/2-                                  |                                           |
| 3020.0 8                                                      | $(31/2^{-})$                   |                           | 8457.08 8                                         | 63/2+                                  |                                           |
| $3121.6^{h} 6$                                                | 33/2-                          |                           | 8924.4 <sup>f</sup> 9                             | 65/2+                                  |                                           |
| $3243.8^{f}$ 5                                                | 33/2+                          | 1.28                      | 9101.7 <sup>l</sup> 16                            | $(65/2^+)$                             |                                           |
| 3318.7 <sup><i>i</i></sup> 6<br>3349.7 <sup><i>l</i></sup> 13 | 35/2-                          | $4.2^{\&}$ ps $+5-6$      | 9405.6 <sup>g</sup> 9                             | 67/2+                                  |                                           |
|                                                               | $(33/2^+)$                     | $0.9^a \text{ ps } +5-3$  | 9914.7 <sup>f</sup> 9                             | 69/2 <sup>+</sup>                      |                                           |
| 3482.4 <sup>8</sup> 5<br>3549.6 <sup>h</sup> 6                | 35/2+                          |                           | 10063.6 <sup>l</sup> 17                           | $(69/2^+)$                             |                                           |
| $3549.6^{h} 6$ $3788.2^{f} 6$                                 | 37/2-                          |                           | 10423.8 <sup>g</sup> 9<br>10976.8 <sup>f</sup> 10 | 71/2+                                  |                                           |
| $3/88.2^{j}$ 6 $3820.3^{i}$ 7                                 | 37/2+                          |                           | 11500.78 10                                       | 73/2 <sup>+</sup>                      |                                           |
| 3820.3 <sup>l</sup> / 3864.6 <sup>l</sup> 13                  | 39/2-                          | 0.21 . 14 11              | 11500.78 10<br>12094.2 <sup>f</sup> 14            | 75/2 <sup>+</sup>                      |                                           |
| 4066.6 <sup>8</sup> 6                                         | $(37/2^+)$ $39/2^+$            | 0.31  ps  +14-11          | 12094.25 14<br>12621.6 <sup>8</sup> 14            | 77/2 <sup>+</sup><br>79/2 <sup>+</sup> |                                           |
| 4101.4 <sup>h</sup> 7                                         | 41/2                           |                           | 13254.6? <sup>bf</sup> 17                         | 81/2 <sup>+</sup>                      |                                           |
| $4403.9^{f}$ 6                                                | 41/2+                          |                           | 14480.0? <sup>bf</sup> 20                         | 85/2 <sup>+</sup>                      |                                           |
| 4428.8 <sup>i</sup> 7                                         | 43/2                           |                           | 20.00.0                                           | JU, 2                                  |                                           |

<sup>&</sup>lt;sup>†</sup> From least-squares fit to E $\gamma$ 's. Note that the lowest state in 1992Sc03 is now placed at 17.0 keV by 2002Je05. The level scheme given by 1992Sc03 is modified in accordance with results from 2002Je05. This results in shifting the energies of the low-lying levels upwards by ≈17 keV, moving lower by ≈54 keV the positions of the  $\pi$ 7/2[404] and  $\pi$ 7/2[523] band members, and the lowest  $\gamma$  at 264 in SD band from 1484, (17/2<sup>+</sup>) to 1220, (13/2<sup>+</sup>) (1992Sc03) is now placed from a 2200, 21/2<sup>+</sup> to 1936, 17/2<sup>+</sup> level (2002Je05,1999Do34). Thus all the higher members of the SD band as shown by 1992Sc03 are pushed up in energy by ≈715 keV and in spin by two units.

#### <sup>163</sup>Lu Levels (continued)

- <sup>‡</sup> From DSAM (1993Sc13,1992ScZL), unless otherwise stated.
- # The assignments are as proposed by 1992Sc03, based on  $\gamma\gamma(\theta)$  (DCO) data and associated band structures. It is assumed that multipolarities are M1(+E2) for ΔJ=1 and E2 for ΔJ=2 transitions.
- @ From DSAM (1992ScZL).
- & From RDDS (1992ScZL).
- <sup>a</sup> From RDDS (1993Sc13,1992ScZL).
- <sup>b</sup> Level proposed by 1992Sc03 in the  $\pi$ 7/2[404] band is considered as uncertain since it is not given in the high-statistics experiment of 2002Je05 and 2004Je03. The level is not included in the 'Adopted Levels'.
- <sup>c</sup> From 2002Je05.
- <sup>d</sup> From <sup>139</sup>La(<sup>29</sup>Si,5nγ).
- <sup>e</sup> A 533.9γ from this level proposed by 1992Sc03 is now placed from 1500 level (2002Je05).
- <sup>f</sup> Band(A):  $\pi$ 7/2[404] band,  $\alpha$ =+1/2. Strongly coupled proton band (1992Sc03).
- <sup>g</sup> Band(B):  $\pi$ 7/2[404] band,  $\alpha$ =-1/2. Strongly coupled proton band (1992Sc03).
- <sup>h</sup> Band(C):  $\pi$ 7/2[523] band,  $\alpha$ =+1/2. Strongly coupled proton band (1993Sc13). Of the two possible choices (1992Sc03) of  $\pi$ 7/2[523] and  $\pi$ 9/2[514],  $\pi$ 7/2[523] is preferred (1993Sc13,1999Do34), based on the experimental Q<sub>t</sub> pattern with K=7/2 or 9/2 and a comparison of experimental and calculated B(M1) values.
- <sup>i</sup> Band(D):  $\pi 7/2$ [523] band,  $\alpha = -1/2$ . Strongly coupled proton band (1993Sc13). See comments on signature partner of this band.
- $^{j}$  Band(E):  $\pi$ 1/2[411] band,  $\alpha$ =+1/2. Band adopted from 2002Je05, 1999Do34.
- <sup>k</sup> Band(e):  $\pi 1/2[411]$  band,  $\alpha = -1/2$ .
- <sup>1</sup> Band(F): Triaxial SD-1 band (1995Sc39,1992Sc03). The lowest  $\gamma$  at 264 in SD-1 band from 1484, (17/2<sup>+</sup>) to 1220, (13/2<sup>+</sup>) (1992Sc03) is now placed from a 2200, 21/2<sup>+</sup> to 1936, 17/2<sup>+</sup> level (2002Je05,1999Do34). Thus all the higher members of the SD-1 band as shown by 1992Sc03 are pushed up in energy by ≈715 keV and in spin by two units. Configuration= $\pi$ i<sub>13/2</sub>, 1/2[660],  $\alpha$ =+1/2.  $\beta$ 2≈0.42 (1993Sc13,1992Sc03); Q<sub>t</sub>=10.7 7 (1993Sc13, lifetime data). This value is about twice as large as that for other deformed bands for <sup>163</sup>Lu and in this mass region. See 1995Sc39 for discussion of this band and for a detailed comparison with population of a similar 1/2[660] large deformation (triaxial superdeformed) band in <sup>165</sup>Lu.

## $\gamma(^{163}Lu)$

DCO ratios (1992Sc03) refer to  $I\gamma(30^\circ)/I\gamma$  (90°), where  $I\gamma(30^\circ)$  is intensity along the 30° axis (in 30° x 90°  $\gamma\gamma$  matrix) when gates are set on stretched  $\Delta J=2$  transitions on the 90° axis.  $I\gamma(90^\circ)$  is the intensity on the 90° axis while the gates are set on stretched  $\Delta J=2$  transitions on the 30° axis. DCO ratio is  $\approx 1.0$  for stretched  $\Delta J=2$  (E2) and  $\approx 0.7$  for  $\Delta J=1$ , dipole transitions.

| Intensities | in <sup>148</sup> | <sup>3</sup> Sm( | $^{19}$ F, $4$ n $\gamma$ | ) (1           | 983RoZW)    |    |
|-------------|-------------------|------------------|---------------------------|----------------|-------------|----|
| Εγ          | Ιγ                |                  | E                         | <br>Ξγ         | Ιγ          |    |
| 132.90 15   | 35                | 4                |                           | 349.3 1        | 105         | 5  |
| 152.70 15   | 74                | 8                |                           | 370.6 1        | 71          | 7  |
| 177.00 15   |                   |                  | 39                        | 06.10 15       | 71 <i>7</i> |    |
| 177.80 15   | 61                | 6                |                           | 426.90 1       | 5 32        | 3  |
| 180.00 15   | 13                | 2                |                           | 440.90 15      | 5 21        | 2  |
| 191.50 15   | 28                | 3                |                           | 445.10 15      | 5 99        | 5  |
| 196.80 15   | 242               | 12               | b                         | 470.8 1        | 168         | 8  |
| 198.80 15   | 69                | 7                | b                         | 501.90 15      | 5 15        | 2  |
| 203.00 15   | 47                | 5                | a                         | 548.20 15      | 5 44        | 5  |
| 231.0 1     | 47                | 5                |                           | 562.1 <i>1</i> | 180         | 9  |
| 270.9 1     | 37                | 4                |                           | 609.10 1       | 5 26        | 3  |
| 281.50 15   | 53                | 6                |                           | 617.8 1        | 131         | 7  |
| 292.8 1     | 81                | 4                |                           | 618.00 1       | 5 14        | 2  |
| 327.70 15   | 18                | 2                |                           | 630.2 1        | 146         | 10 |
| 329.10 15   | 12                | 1                |                           | 644.10 15      | 39          | 4  |
|             |                   |                  |                           |                |             |    |

- a: possible contamination from <sup>163</sup>Yb
- b: intensity is uncertain due to <sup>19</sup>F line

| $E_{\gamma}^{\dagger}$        | ${\rm I}_{\gamma}^{ \ddagger}$ | $E_i(level)$     | $\mathbf{J}_i^{\pi}$                   | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$                   | Mult.              | Comments                                                                                   |
|-------------------------------|--------------------------------|------------------|----------------------------------------|------------------|----------------------------------------|--------------------|--------------------------------------------------------------------------------------------|
| 45.39 <sup>#</sup> 8          |                                | 62.19            | 5/2+                                   | 16.8             | 3/2+                                   |                    | Placement based on the proposed 16.8 level as the first excited state (1999Do34,2002Je05). |
| 62.14 <sup>#</sup> 5          |                                | 124.32           | $7/2^{+}$                              | 62.19            | 5/2+                                   |                    | ,                                                                                          |
| 70.98 <sup>#</sup> 8          |                                | 195.29           | 7/2-                                   | 124.32           |                                        |                    |                                                                                            |
| 84.5 5                        | 17 8                           | 294.8            | 11/2-                                  | 210.2            | 9/2-                                   |                    |                                                                                            |
| 85.9 <sup>b</sup>             |                                | 210.2            | 9/2-                                   | 124.32           | 7/2+                                   |                    |                                                                                            |
| 101.6 10                      | <4                             | 3121.6           | 33/2-                                  | 3020.0           | $(31/2^{-})$                           |                    |                                                                                            |
| 133.08 <sup>#</sup> <i>10</i> |                                | 195.29           | $7/2^{-}$                              | 62.19            |                                        | 0-                 |                                                                                            |
| 152.5 3                       | 38 <i>3</i>                    | 643.8            | 15/2-                                  | 491.3            | 13/2-                                  | (D)&               | $R(DCO)=0.80 \ 18.$<br>$\delta(Q/D)=+0.22 \ 1 \ (1983RoZW).$                               |
| 161.9 <i>10</i>               | < 2.0                          | 223.8            | 7/2+                                   | 62.19            |                                        |                    |                                                                                            |
| 173.8 10                      | <1.0                           | 190.7            | 5/2 <sup>+</sup>                       | 16.8             | 3/2+                                   | 0-                 |                                                                                            |
| 177.0 <i>3</i>                | 13.5 20                        | 2923.2           | 31/2-                                  | 2746.2           | 29/2-                                  | (D)&               | $R(DCO)=0.74\ 20.$                                                                         |
| 178.1 <i>3</i>                | 23 4                           | 1114.4           | 19/2-                                  | 936.3            | 17/2-                                  | D&                 | $R(DCO)=0.74 \ 20.$<br>$\delta(Q/D)=+0.15 \ 2 \ (1983RoZW).$                               |
| 186.2 3                       | 42.0 25                        | 310.51           | 9/2+                                   | 124.32           |                                        |                    |                                                                                            |
| 189.0 <i>3</i>                | 17.4 11                        | 2802.3           | 29/2 <sup>+</sup>                      | 2613.3           | 27/2+                                  | (D. O)&            | P/DCO\ 0.0/ 10                                                                             |
| 191.4 <i>3</i>                | 14.0 <i>15</i>                 | 1676.0           | 23/2-                                  | 1484.6           | 21/2-                                  | (D+Q)&             | $R(DCO)=0.86 \ 18.$<br>$\delta(Q/D)=+0.18 \ 9 \ (1983RoZW).$                               |
| 196.5 <i>3</i>                | 36.2 20                        | 491.3            | 13/2-                                  | 294.8            | 11/2-                                  | (D) &              | $R(DCO)=0.76\ 20.$                                                                         |
|                               | 30.2 20                        | 771.3            |                                        | 254.0            | 11/2                                   | (D)                | $\delta(Q/D) = +0.03 \ 2 \ (1983\text{RoZW}).$                                             |
| 196.7 <mark>6</mark>          |                                | 1935.0           | $(17/2^+)$                             | 1738.3           | $(13/2^+)$                             | 0                  |                                                                                            |
| 197.1 <i>5</i>                | 61 22                          | 3318.7           | 35/2-                                  | 3121.6           | $33/2^{-}$                             | (D) &              | R(DCO)=0.76 20.                                                                            |
| 198.4 5                       | 42 15                          | 3121.6           | 33/2-                                  | 2923.2           | 31/2-                                  | (D)&               | $R(DCO)=0.76\ 20.$                                                                         |
| 200.4 3                       | 15.6 8                         | 3002.7           | 31/2 <sup>+</sup><br>27/2 <sup>-</sup> | 2802.3<br>2102.6 | 29/2 <sup>+</sup>                      | (D+O)              | Mult.: $\Delta J=1$ , D+Q transition from $\gamma(\theta)$                                 |
| 203.3 3                       | 8.0 10                         | 2305.9           | 21/2                                   | 2102.0           | 25/2-                                  | (D+Q)              | (1983RoZW).<br>$\delta(Q/D) = +0.30 \ 8 \ (1983RoZW)$ .                                    |
| 209.9 <i>3</i>                | 13.3 10                        | 520.41           | 11/2+                                  | 310.51           | 9/2+                                   |                    | $0(Q/D) = \pm 0.30 \ 0 \ (1703 \text{K0ZW}).$                                              |
| 214.1 3                       | 17.2 9                         | 2613.3           | 27/2+                                  | 2399.1           | 25/2+                                  |                    |                                                                                            |
| 230.9 3                       | 48.4 20                        | 3549.6           | 37/2-                                  | 3318.7           | 35/2-                                  | (D)&               | R(DCO)=0.71 18. $\delta$ (Q/D)=+0.25 5 (1983RoZW).                                         |
| 232.6 5                       | 5 3                            | 249.4            | 7/2+                                   | 16.8             | 3/2+                                   |                    |                                                                                            |
| 234.1 3                       | 6.4 12                         | 754.5            | 13/2+                                  | 520.41           | 11/2+                                  |                    |                                                                                            |
| 238.6 <i>3</i> 241.1 <i>3</i> | 10.8 <i>7</i> 11.3 <i>10</i>   | 3482.4<br>3243.8 | 35/2 <sup>+</sup><br>33/2 <sup>+</sup> | 3243.8<br>3002.7 | 33/2 <sup>+</sup><br>31/2 <sup>+</sup> |                    |                                                                                            |
| 253.2 3                       | 8.0 13                         | 1007.7           | 15/2 <sup>+</sup>                      | 754.5            | 13/2+                                  |                    |                                                                                            |
| 260.6 <i>3</i>                | 15.4 15                        | 2399.1           | 25/2+                                  | 2138.6           | 23/2+                                  |                    |                                                                                            |
| 264.0 5                       | 3.0 10                         | 2199.0           | $(21/2^+)$                             | 1935.0           | $(17/2^+)$                             |                    |                                                                                            |
| 268.1 10                      | <4                             | 3121.6           | 33/2-                                  | 2853.5           | (29/2-)                                | <i>&amp;</i> r     |                                                                                            |
| 270.7 3                       | 34.5 15                        | 3820.3           | 39/2-                                  | 3549.6           | 37/2-                                  | (D)&               | $R(DCO)=0.80 \ 15.$<br>$\delta(Q/D)=+0.22 \ 3 \ (1983RoZW).$                               |
| 271.9 3                       | 3.7 5                          | 2138.6           | 23/2+                                  | 1866.7           | 21/2+                                  |                    |                                                                                            |
| 274.2 <i>3</i> 278.3 <i>5</i> | 4.6 9<br><12                   | 1281.9<br>4066.6 | 17/2 <sup>+</sup><br>39/2 <sup>+</sup> | 1007.7<br>3788.2 | 15/2 <sup>+</sup><br>37/2 <sup>+</sup> |                    |                                                                                            |
| 279.2 5                       | 3.0 6                          | 1561.1           | 19/2 <sup>+</sup>                      | 1281.9           | 17/2 <sup>+</sup>                      |                    |                                                                                            |
| 281.0 5                       | 10.5 15                        | 491.3            | 13/2                                   | 210.2            | 9/2-                                   | (Q) <mark>@</mark> | R(DCO)=0.92 13.                                                                            |
| 281.1 5                       | 33 4                           | 4101.4           | 41/2-                                  | 3820.3           | 39/2-                                  | (D)&               | R(DCO)=0.92 13.                                                                            |
| 292.5 3                       | 43.0 15                        | 936.3            | 17/2                                   | 643.8            | 15/2                                   | D&                 | R(DCO)=0.99 24.<br>$\delta(Q/D)=+0.03 1 (1983RoZW).$                                       |
| 296.5 10                      | < 2.0                          | 520.3            | 9/2+                                   | 223.8            | 7/2+                                   |                    | (V)D) = 10.03 1 (1705R02111).                                                              |
| 298.7 10                      | <4                             | 3318.7           | 35/2-                                  | 3020.0           | $(31/2^{-})$                           |                    |                                                                                            |
| 305.6 5                       | 7.7 15                         | 1866.7           | 21/2+                                  | 1561.1           | 19/2+                                  |                    |                                                                                            |

| $\mathrm{E}_{\gamma}^{\dagger}$     | $I_{\gamma}^{\ddagger}$          | $E_i(level)$     | $\mathbf{J}_i^{\pi}$                   | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$                   | Mult.             | Comments                                                                                                    |
|-------------------------------------|----------------------------------|------------------|----------------------------------------|------------------|----------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------|
| 305.9 5                             | 8.0 20                           | 3788.2           | 37/2+                                  | 3482.4           | 35/2+                                  |                   |                                                                                                             |
| 313.7 <i>3</i>                      | 6.9 8                            | 4717.4           | 43/2+                                  | 4403.9           | 41/2+                                  |                   |                                                                                                             |
| 314.7 <i>3</i>                      | 8.1 9                            | 2513.7           | $(25/2^+)$                             | 2199.0           | $(21/2^+)$                             |                   |                                                                                                             |
| 327.4 5                             | 12 4                             | 4428.8           | 43/2-                                  | 4101.4           | $41/2^{-}$                             | (D)&              | R(DCO)=0.80 18.                                                                                             |
| 329.0 5                             | 11.5 12                          | 4757.8           | $45/2^{-}$                             | 4428.8           | 43/2-                                  | &                 | R(DCO)=0.80 18.                                                                                             |
| 329.6 5                             | 2.5 15                           | 520.3            | 9/2+                                   | 190.7            | 5/2+                                   |                   |                                                                                                             |
| 330.5 5                             | 6.0 20                           | 5385.6           | 47/2+                                  | 5055.0           | 45/2+                                  |                   |                                                                                                             |
| 331.5 5                             | 5.5 20                           | 5717.1           | 49/2+                                  | 5385.6           | 47/2+                                  |                   |                                                                                                             |
| 337.4 5                             | 7.9 10                           | 4403.9           | 41/2+                                  | 4066.6           | 39/2 <sup>+</sup>                      |                   |                                                                                                             |
| 337.7 <i>5</i> 345.3 <i>3</i>       | 7.0 <i>10</i><br>6.1 <i>5</i>    | 5055.0<br>6062.4 | 45/2 <sup>+</sup><br>51/2 <sup>+</sup> | 4717.4<br>5717.1 | 43/2 <sup>+</sup><br>49/2 <sup>+</sup> |                   |                                                                                                             |
|                                     |                                  |                  |                                        |                  |                                        | (E2) <b>@</b>     | D(DCO) 0.02.17                                                                                              |
| 349.0 <i>3</i><br>349.9 <i>3</i>    | 60.0 <i>20</i><br>3.8 <i>7</i>   | 643.8<br>6412.3  | 15/2 <sup>-</sup><br>53/2 <sup>+</sup> | 294.8<br>6062.4  | 11/2 <sup>-</sup><br>51/2 <sup>+</sup> | (E2) <sup>@</sup> | R(DCO)=0.82 17.                                                                                             |
| 370.2 3                             | 24.2 25                          | 1484.6           | 21/2                                   | 1114.4           | 19/2                                   | (D)&              | R(DCO)=0.82 18.                                                                                             |
| 310.2 3                             | 24.2 23                          | 1404.0           |                                        | 1114.4           |                                        | (D)               | $\delta(Q/D) = +0.05 \ 3 \ (1983RoZW).$                                                                     |
| 370.5 5                             | 5 3                              | 620.0            | $11/2^{+}$                             | 249.4            | $7/2^{+}$                              |                   |                                                                                                             |
| 371.2 <i>3</i>                      | 10.9 25                          | 5129.0           | $47/2^{-}$                             | 4757.8           | $45/2^{-}$                             |                   |                                                                                                             |
| 373.0 <i>3</i>                      | 9.0 20                           | 5502.0           | 49/2-                                  | 5129.0           | 47/2-                                  |                   |                                                                                                             |
| 373.6 <i>3</i>                      | 6.3 5                            | 6785.9           | 55/2 <sup>+</sup>                      | 6412.3           | 53/2+                                  |                   |                                                                                                             |
| 375.4 5                             | 8 3                              | 3121.6           | 33/2-                                  | 2746.2           | 29/2-                                  |                   |                                                                                                             |
| 385.6 <i>3</i>                      | 3.5 <i>3</i><br>9.5 <i>10</i>    | 7171.5           | 57/2 <sup>+</sup>                      | 6785.9           | 55/2 <sup>+</sup>                      |                   |                                                                                                             |
| 386.0 <i>3</i><br>389.4 <i>3</i>    | 9.5 <i>10</i><br>8.6 <i>5</i>    | 2899.7<br>3002.7 | $(29/2^+)$ $31/2^+$                    | 2513.7<br>2613.3 | $(25/2^+)$<br>$27/2^+$                 |                   |                                                                                                             |
| 395.5 5                             | 12 4                             | 3318.7           | 35/2                                   | 2923.2           | 31/2                                   |                   |                                                                                                             |
| 396.1 <i>3</i>                      | 22.1 20                          | 520.41           | 11/2+                                  |                  |                                        | (Q)               | Mult.: $\Delta J=2$ , O from $\gamma(\theta)$ (1983RoZW).                                                   |
| 396.2 5                             | <2                               | 620.0            | 11/2+                                  | 223.8            | 7/2+                                   | (4)               | 2, Q nom /(0) (15051102 11).                                                                                |
| 403.1 <i>3</i>                      | 14.0 12                          | 2802.3           | 29/2+                                  | 2399.1           | 25/2+                                  |                   |                                                                                                             |
| 410.1 <i>3</i>                      | 7.1 10                           | 7581.5           | 59/2+                                  | 7171.5           | 57/2+                                  |                   |                                                                                                             |
| 411.4 3                             | 10.4 12                          | 5913.4           | $51/2^{-}$                             | 5502.0           | $49/2^{-}$                             |                   |                                                                                                             |
| 416.9 <i>3</i>                      | 9.5 12                           | 6330.3           | 53/2-                                  | 5913.4           | $51/2^{-}$                             |                   |                                                                                                             |
| 426.6 <i>3</i>                      | 19 3                             | 2102.6           | 25/2-                                  | 1676.0           | 23/2-                                  | (D)               | Mult.: $\Delta J=1$ , D(+Q) transition from $\gamma(\theta)$ (1983RoZW). $\delta(Q/D)=+0.07$ 5 (1983RoZW).  |
| 427.3 3                             | 4.8 5                            | 8008.8           | 61/2+                                  | 7581.5           | 59/2+                                  |                   |                                                                                                             |
| 428.0 <i>3</i>                      | 18.0 22                          | 3549.6           | 37/2-                                  | 3121.6           | 33/2-                                  | (D)               | M 1 A 1 1 D( O) ( ''' C (0) (1002D 7W)                                                                      |
| 440.3 3                             | 14 4                             | 2746.2           | 29/2-                                  | 2305.9           | 27/2                                   | (D)               | Mult.: $\Delta J=1$ , D(+Q) transition from $\gamma(\theta)$ (1983RoZW). $\delta(Q/D)=-0.01$ 13 (1983RoZW). |
| 441.5 3                             | 13.0 20                          | 3243.8           | 33/2+                                  | 2802.3           | 29/2+                                  |                   |                                                                                                             |
| 444.0 3                             | 23.7 <i>20</i><br>39.0 <i>16</i> | 754.5            | 13/2+                                  | 310.51           | 9/2+                                   |                   |                                                                                                             |
| 445.0 <i>3</i><br>447.0 <i>5</i>    | 3.5 10                           | 936.3<br>967.3   | 17/2 <sup>-</sup><br>13/2 <sup>+</sup> | 491.3<br>520.3   | 13/2 <sup>-</sup><br>9/2 <sup>+</sup>  |                   |                                                                                                             |
| 448.2 5                             | 2.0 10                           | 8457.0           | 63/2+                                  | 8008.8           | 61/2+                                  |                   |                                                                                                             |
| 450.0 <i>3</i>                      | 9.5 12                           | 3349.7           | $(33/2^+)$                             | 2899.7           | $(29/2^+)$                             |                   |                                                                                                             |
| 470.6 <i>3</i>                      | 100.0 20                         | 1114.4           | 19/2-                                  | 643.8            | 15/2-                                  | E2 <sup>@</sup>   | R(DCO)=1.16 <i>12</i> .                                                                                     |
| 474.7 <i>3</i>                      | 10.3 8                           | 2613.3           | 27/2+                                  | 2138.6           | 23/2+                                  |                   |                                                                                                             |
| 479.7 <i>3</i>                      | 12.3 6                           | 3482.4           | $35/2^{+}$                             | 3002.7           | $31/2^{+}$                             |                   |                                                                                                             |
| 485.7 <i>5</i>                      | 6.0 25                           | 1105.7           | 15/2+                                  | 620.0            | $11/2^{+}$                             |                   |                                                                                                             |
| 487.3 <i>3</i><br>x492 <sup>a</sup> | 23 3                             | 1007.7           | 15/2+                                  | 520.41           | 11/2+                                  |                   |                                                                                                             |
| 501.6 <i>3</i>                      | 24.2 20                          | 3820.3           | 39/2-                                  | 3318.7           | 35/2-                                  | $(Q)^{@}$         | R(DCO)=0.94 11.                                                                                             |
| 514.9 <i>3</i>                      | 10.0 10                          | 3864.6           | $(37/2^+)$                             | 3349.7           | $(33/2^+)$                             |                   |                                                                                                             |
| 527.4 <i>3</i>                      | 18.8 19                          | 1281.9           | 17/2+                                  | 754.5            | 13/2+                                  |                   |                                                                                                             |
| 532.5 <i>3</i> 533.9 <i>5</i>       | 6.5 <i>6</i><br>5.0 <i>15</i>    | 2399.1           | 25/2 <sup>+</sup>                      | 1866.7           | 21/2+                                  |                   | Placement from 20021c05                                                                                     |
| 533.9 <i>3</i><br>544.5 <i>3</i>    | 3.0 <i>13</i><br>11.4 <i>10</i>  | 1501.2<br>3788.2 | 17/2 <sup>+</sup><br>37/2 <sup>+</sup> | 967.3<br>3243.8  | 13/2 <sup>+</sup><br>33/2 <sup>+</sup> |                   | Placement from 2002Je05.                                                                                    |
| 517.55                              | 11.7 10                          | 3100.2           | 21/2                                   | 2212.0           | 33/2                                   |                   |                                                                                                             |

| $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{\ddagger}$      | $E_i$ (level)    | $\mathtt{J}_{i}^{\pi}$                 | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                | Mult.                   | Comments                                                  |
|-----------------------------------|------------------------------|------------------|----------------------------------------|---------------------------------------------------------|-------------------------|-----------------------------------------------------------|
| 548.3 <i>3</i>                    | 26 3                         | 1484.6           | 21/2-                                  | 936.3 17/2-                                             | (E2)                    | Mult.: $\Delta J=2$ , Q from $\gamma(\theta)$ (1983RoZW). |
| 551.8 <i>3</i>                    | 30.0 25                      | 4101.4           | $41/2^{-}$                             | 3549.6 37/2-                                            | (Q) <sup>@</sup>        | R(DCO)=0.82 21.                                           |
| 553.4 <i>3</i>                    | 23.2 15                      | 1561.1           | 19/2+                                  | 1007.7 15/2+                                            |                         | ( /,                                                      |
| 561.6 <i>3</i>                    | 105.9 22                     | 1676.0           | $23/2^{-}$                             | 1114.4 19/2-                                            | E2@                     | $R(DCO)=1.01 \ 11.$                                       |
| 562.8 5                           | 4.0 20                       | 1668.5           | 19/2+                                  | 1105.7 15/2+                                            |                         |                                                           |
| 577.5 3                           | 20.1 18                      | 2138.6           | $23/2^{+}$                             | 1561.1 19/2+                                            |                         |                                                           |
| x578 <sup>a</sup>                 | 10.5.10                      | 1110 7           | (41/0±)                                | 20(4 ( (27/2+)                                          |                         |                                                           |
| 578.1 <i>3</i> 584.2 <i>5</i>     | 10.5 <i>10</i> <15           | 4442.7<br>4066.6 | $(41/2^+)$ $39/2^+$                    | 3864.6 (37/2 <sup>+</sup> )<br>3482.4 35/2 <sup>+</sup> |                         |                                                           |
| 584.8 5                           | 25 3                         | 1866.7           | 21/2+                                  | 1281.9 17/2 <sup>+</sup>                                |                         |                                                           |
| 606.9 5                           | 3.5 23                       | 2275.4           | 23/2+                                  | 1668.5 19/2+                                            |                         |                                                           |
| 608.5 5                           | 17 <i>4</i>                  | 4428.8           | 43/2-                                  | 3820.3 39/2-                                            | $Q^{@}$                 | R(DCO)=1.16 14.                                           |
| 615.7 3                           | 11.0 15                      | 4403.9           | 41/2+                                  | 3788.2 37/2+                                            |                         |                                                           |
| 617.3 5                           | 90 15                        | 2923.2           | $31/2^{-}$                             | 2305.9 27/2-                                            | $Q^{@}$                 | R(DCO)=0.95 10.                                           |
| 618.0 5                           | 24 <i>4</i>                  | 2102.6           | 25/2-                                  | 1484.6 21/2-                                            | $Q^{@}$                 | R(DCO)=0.95 10.                                           |
| 629.9 <i>3</i>                    | 86.3 22                      | 2305.9           | 27/2-                                  | 1676.0 23/2-                                            | E2 <sup>@</sup>         | R(DCO)=1.21 10.                                           |
| 638.7 <i>3</i>                    | 9.5 10                       | 5081.4           | $(45/2^+)$                             | 4442.7 (41/2+)                                          |                         |                                                           |
| 643.6 <i>3</i>                    | 23.9 12                      | 2746.2           | 29/2-                                  | 2102.6 25/2-                                            | $(Q)^{\textcircled{0}}$ | $R(DCO)=1.0 \ 3.$                                         |
| 650.6 5                           | 15 4                         | 4717.4           | 43/2+                                  | 4066.6 39/2+                                            |                         |                                                           |
| 650.9 5                           | 15 4                         | 5055.0           | $45/2^{+}$                             | 4403.9 41/2+                                            |                         |                                                           |
| 656.4 <i>3</i>                    | 17.6 <i>15</i>               | 4757.8           | 45/2-                                  | 4101.4 41/2                                             | @                       | R(DCO)=1.0 3.                                             |
| 662.0 <i>3</i>                    | 10.8 11                      | 5717.1           | 49/2+                                  | 5055.0 45/2+                                            |                         |                                                           |
| 668.2 3                           | 11.1 12                      | 5385.6           | 47/2 <sup>+</sup>                      | 4717.4 43/2 <sup>+</sup>                                |                         |                                                           |
| 676.8 <i>3</i><br>695.2 <i>3</i>  | 10.3 <i>6</i> 10.2 <i>9</i>  | 6062.4<br>6412.3 | 51/2 <sup>+</sup><br>53/2 <sup>+</sup> | 5385.6 47/2 <sup>+</sup><br>5717.1 49/2 <sup>+</sup>    |                         |                                                           |
| 697.0 <i>3</i>                    | 9.0 10                       | 5778.4           | $(49/2^+)$                             | 5081.4 (45/2+)                                          |                         |                                                           |
| 697.8 <mark>b</mark>              |                              | 2199.0           | $(21/2^+)$                             | 1501.2 17/2+                                            |                         |                                                           |
| 700.2 3                           | 15.2 20                      | 5129.0           | 47/2-                                  | 4428.8 43/2                                             |                         |                                                           |
| 714.1 10                          | <4                           | 3020.0           | $(31/2^{-})$                           | 2305.9 27/2-                                            |                         |                                                           |
| 723.1 <i>3</i>                    | 9.0 10                       | 2399.1           | $25/2^{+}$                             | 1676.0 23/2-                                            | $D^{\&}$                | R(DCO)=0.58 22.                                           |
| 723.5 5                           | 5.5 20                       | 6785.9           | 55/2+                                  | 6062.4 51/2+                                            |                         |                                                           |
| 744.2 3                           | 22 3                         | 5502.0           | 49/2-                                  | 4757.8 45/2                                             |                         |                                                           |
| 750.9 <i>10</i><br>752.0 <i>3</i> | <4<br>7.0 8                  | 2853.5<br>6530.4 | $(29/2^{-})$<br>$(53/2^{+})$           | 2102.6 25/2 <sup>-</sup><br>5778.4 (49/2 <sup>+</sup> ) |                         |                                                           |
| 759.2 <i>3</i>                    | 8.6 6                        | 7171.5           | 57/2+                                  | 6412.3 53/2+                                            |                         |                                                           |
| 784.5 <i>3</i>                    | 14.3 15                      | 5913.4           | 51/2                                   | 5129.0 47/2                                             |                         |                                                           |
| 795.7 <i>3</i>                    | 7.0 6                        | 7581.5           | 59/2+                                  | 6785.9 55/2+                                            |                         |                                                           |
| 805.2 <i>3</i>                    | 5.2 6                        | 7335.6           | $(57/2^+)$                             | $6530.4 (53/2^+)$                                       |                         |                                                           |
| 828.3 3                           | 16.0 18                      | 6330.3           | 53/2-                                  | 5502.0 49/2 <sup>-</sup>                                |                         |                                                           |
| 837.3 <i>3</i><br>857.7 <i>3</i>  | 8.5 <i>8</i><br>3.3 <i>5</i> | 8008.8<br>8193.3 | $61/2^+$ $(61/2^+)$                    | 7171.5 57/2 <sup>+</sup><br>7335.6 (57/2 <sup>+</sup> ) |                         |                                                           |
| 872.2 <i>3</i>                    | 11.9 10                      | 6785.7           | 55/2                                   | 5913.4 51/2                                             |                         |                                                           |
| 875.5 <i>3</i>                    | 8.6 10                       | 8457.0           | 63/2+                                  | 7581.5 59/2+                                            |                         |                                                           |
| 908.4 5                           | 1.4 8                        | 9101.7           | $(65/2^+)$                             | 8193.3 (61/2+)                                          |                         |                                                           |
| 913.1 <i>3</i>                    | 9.8 10                       | 7243.4           | 57/2-                                  | 6330.3 53/2                                             |                         |                                                           |
| 915.6 3                           | 4.0 5                        | 8924.4           | 65/2 <sup>+</sup>                      | 8008.8 61/2+                                            |                         |                                                           |
| 939.6 <i>3</i><br>948.6 <i>3</i>  | 10.0 <i>17</i> 5.0 <i>5</i>  | 7725.3<br>9405.6 | 59/2 <sup>-</sup><br>67/2 <sup>+</sup> | 6785.7 55/2 <sup>-</sup><br>8457.0 63/2 <sup>+</sup>    |                         |                                                           |
| 948.0 <i>5</i> 961.9 <i>5</i>     | 2.6 10                       | 10063.6          | $(69/2^+)$                             | 9101.7 (65/2 <sup>+</sup> )                             |                         |                                                           |
| 975.7 3                           | 7.0 8                        | 8219.1           | $61/2^{-}$                             | 7243.4 57/2                                             |                         |                                                           |
| 990.3 <i>3</i>                    | 4.1 4                        | 9914.7           | 69/2+                                  | 8924.4 65/2+                                            |                         |                                                           |
| 1018.2 3                          | 2.7 5                        | 10423.8          | 71/2+                                  | 9405.6 67/2+                                            |                         |                                                           |
| 1062.1 <i>3</i>                   | 3.3 4                        | 10976.8          | 73/2+                                  | 9914.7 69/2+                                            |                         |                                                           |

### $\gamma(^{163}\text{Lu})$ (continued)

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_f^{\pi}$ |
|------------------------|-------------------------|--------------|----------------------|----------|----------------------|
| 1076.9 3               | 4.1 7                   | 11500.7      | 75/2+                | 10423.8  | 71/2+                |
| 1117.4 <i>10</i>       | 1.5 15                  | 12094.2      | $77/2^{+}$           | 10976.8  | $73/2^{+}$           |
| 1120.8 <i>10</i>       | 1.5 15                  | 12621.6      | $79/2^{+}$           | 11500.7  | $75/2^{+}$           |
| 1160.4 <i>10</i>       | 2.0 15                  | 13254.6?     | $81/2^{+}$           | 12094.2  | $77/2^{+}$           |
| 1225.4 10              |                         | 14480.0?     | $85/2^{+}$           | 13254.6? | $81/2^{+}$           |

<sup>&</sup>lt;sup>†</sup> Uncertainties are 0.3 for strong and well resolved lines, 0.5 for doublets and when intensity uncertainty is ≥25%, and 1.0 for weak or uncertain lines.

<sup>&</sup>lt;sup>‡</sup> Uncertainties are 5-10%, but a few intense Iy's (230.9γ, 292.5γ, 349.0γ, 445.0γ, 470.6γ, 561.6γ, 629.9γ) are quoted (1992Sc03) with 2-4% uncertainty.

<sup>#</sup> From Adopted Gammas.

<sup>&</sup>lt;sup>@</sup> DCO ratio is consistent with  $\Delta J=2$  (E2).

<sup>&</sup>amp; DCO ratio is consistent with  $\Delta J=1$  (dipole), but  $\Delta J=2$  does not seem to be ruled out by the quoted R(DCO).

<sup>&</sup>lt;sup>a</sup> A possible 492-578 cascade proposed by 1992Sc03 above the 486-563-607 cascade is given in the level scheme of 2002Je05 also, but higher up in the 1/2[411] band.

<sup>&</sup>lt;sup>b</sup> From 2002Je05.

 $<sup>^{</sup>x}$   $\gamma$  ray not placed in level scheme.

#### 









#### 



# $^{139}$ La( $^{28}$ Si,4n $\gamma$ ) 1992Sc03

## Level Scheme (continued)

Intensities: Relative  $I_{\gamma}$ 



 $^{163}_{71} Lu_{92}$ 

#### $^{139}$ La( $^{28}$ Si,4n $\gamma$ ) 1992Sc03



Band(F): Triaxial SD-1 band (1995Sc39,1992Sc03)



$$^{163}_{71}Lu_{92}$$

### $^{139}$ La( $^{29}$ Si,5n $\gamma$ ) **2004Je03,2002Je05**

History

Type Author Citation Literature Cutoff Date
Full Evaluation C. W. Reich, Balraj Singh NDS 111, 1211 (2010) 12-Apr-2010

Includes <sup>123</sup>Sb(<sup>44</sup>Ca,4ny) from 2004Go14 and <sup>124</sup>Sn(<sup>45</sup>Sc,6ny) from 2002Sc47.

2004Je03 (also 2004JeZZ, 2004Ha21,2002Je10): E=157 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma(\theta)$ (DCO),  $\gamma\gamma(\text{lin pol})$  with Euroball detector array which consisted of 15 Cluster, 25 Clover, and 27 Tapered Ge detectors. The numerical data are from the RADWARE file in 2004JeZZ,

2002Je05, 2002Od01, 2001Od03 (also 2001Od02,2001Ha54): E=152 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma(\theta)$  (DCO),  $\gamma(\text{lin pol})$  using the EUROBALL IV array with 15 Cluster detectors, 25 Clover detectors and 26 tapered single-element Ge detectors. Deduced four SD bands in addition to other normal deformed bands. In 2002Od01, the data were analyzed to investigate properties of the nucleus at excitations above the energy of the resolvable discrete bands using fluctuation analysis of E $\gamma$ -E $\gamma$  spectrum. About 40 two-step paths were found for triaxial strongly deformed bands, about half of which feed normal-deformed structures.

Others

2004Go14:  $^{123}$ Sb( $^{44}$ Ca, $^{4n}\gamma$ ) E=190 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ , lifetimes by DSAM for two TSD bands; deduced Q $_t$ .

2002Sc11: E=145 MeV. Measured lifetimes of members in SD-1 band by Doppler-shift attenuation method, deduced transition quadrupole moment.

2002Sc47: <sup>124</sup>Sn(<sup>45</sup>Sc, <sup>6</sup>nγ) E=217 MeV. Measured Eγ, Iγ, γγ using GAMMASPHERE array with 100 Compton-suppressed Ge detectors. Measured lifetimes by DSA for (yrast) SD-1 band and deduced transition quadrupole moment.

1999Do34: E=145 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma g(\theta)$ (DCO) using EUROBALL array with 13 Cluster detectors, 25 Clover detectors and 28 tapered single-element Ge detectors. Deduced two SD bands and several normal deformed bands.

All data are from 2004Je03 unless otherwise stated. The experiments reported In 2004Je03 and 2002Je05 are by the same group using the same reaction and detector arrangement, but the counting statistics In 2004Je03 is about 2.5 times higher than In 2002Je05 with the result that several new bands have been found In 2004Je03 In addition to extending some of the bands by several transitions to higher spins.

#### <sup>163</sup>Lu Levels

Q<sub>t</sub> values are from 2004Go14, unless otherwise stated. Labelling Scheme for the Quasiparticle Orbitals (2004Je03):

A: v5/2[642],  $\alpha = +1/2$ .

B: v5/2[642],  $\alpha = -1/2$ .

C: v3/2[651],  $\alpha = +1/2$ .

D: v3/2[651],  $\alpha = -1/2$ .

E: v5/2[523],  $\alpha = +1/2$ .

F: v5/2[523],  $\alpha = -1/2$ .

G: v3/2[521],  $\alpha = +1/2$ .

H: v3/2[521],  $\alpha = -1/2$ .

a:  $\pi 1/2[411]$ ,  $\alpha = +1/2$ . b:  $\pi 1/2[411]$ ,  $\alpha = -1/2$ .

c:  $\pi 7/2[404]$ ,  $\alpha = +1/2$ .

d:  $\pi 7/2[404]$ ,  $\alpha = -1/2$ .

e:  $\pi 7/2[523]$ ,  $\alpha = +1/2$ .

f:  $\pi 7/2[523]$ ,  $\alpha = -1/2$ .

g:  $\pi 9/2[514]$ ,  $\alpha = +1/2$ .

h:  $\pi 9/2[514]$ ,  $\alpha = -1/2$ .

k:  $\pi 5/2[402]$ ,  $\alpha = +1/2$ .

l:  $\pi 5/2[402]$ ,  $\alpha = -1/2$ . m:  $\pi 1/2[660]$ ,  $\alpha = +1/2$ .

n:  $\pi 1/2[541]$ ,  $\alpha = +1/2$ .

Continued on next page (footnotes at end of table)

| E(level) <sup>†</sup>             | $\mathrm{J}^{\pi \ddagger}$ | E(level) <sup>†</sup>                          | $J^{\pi \ddagger}$ |
|-----------------------------------|-----------------------------|------------------------------------------------|--------------------|
| 0.0 <sup>c</sup>                  | 1/2+                        | 2399.3 <sup>a</sup> 6                          | 25/2+              |
| 16.95 <sup>d</sup> 23             | 3/2+                        | 2409.7 <mark>8</mark> 10                       | 21/2+              |
| 61.2 <sup>n</sup> 7               | 5/2+                        | 2435.9 <sup>h</sup> 6                          | 23/2+              |
| 123.1 <sup>b</sup> 6              | 7/2+                        | 2487.5 9                                       | 25/2 <sup>+</sup>  |
| 190.83° 20                        | 5/2 <sup>+</sup>            | 2514.0 <sup>q</sup> 4                          | 25/2 <sup>+</sup>  |
| 193.9 <mark>&amp;</mark> 9        | 7/2-                        | 2539.7 <mark>8</mark> 6                        | 25/2+              |
| 209.0 <sup>@</sup> 6              | 9/2-                        | 2613.4 <sup>b</sup> 6                          | 27/2+              |
| 223.4° 9                          | 7/2+                        | 2680.0 <sup>h</sup> 6                          | 27/2+              |
| $249.7^{d}$ 3                     | 7/2 <sup>+</sup>            | 2684.5 8                                       | 27/2 <sup>+</sup>  |
| 294.3 <sup>&amp;</sup> 6          | 11/2                        | 2747.1 <sup>@</sup> 6                          | 29/2-              |
| $309.3^a 6$                       | 9/2+                        | $2773.0^{d} 4$                                 | 27/2+              |
| 413.3 <sup>n</sup> 7              | 9/2 <sup>+</sup>            | $2802.5^{a}$ 6                                 | 29/2 <sup>+</sup>  |
| 490.9 <sup>@</sup> 6              | 13/2-                       | 2854.2 <sup>e</sup> 8                          | 29/2-              |
| 519.3 <sup>b</sup> 6              | 11/2+                       | 2860.1 <sup>8</sup> 6                          | 29/2 <sup>+</sup>  |
| 520.64 <sup>c</sup> 23            | 9/2+                        | 2900.3 <sup>q</sup> 4                          | 29/2+              |
| $620.6^{d}$ 3                     | 11/2+                       | 2923.8 <sup>&amp;</sup> 6                      | 31/2-              |
| 641.3° 9                          | 11/2+                       | $3002.9^{b}$ 6                                 | 31/2+              |
| 643.6 <sup>&amp;</sup> 6          | 15/2                        | $3020.3^{f} 8$                                 | 31/2               |
| $753.7^a 6$                       | 13/2+                       | $3077.2^{h} 6$                                 | 31/2+              |
| 874.2 <sup>n</sup> 9              | 13/2+                       | 3078.8 <sup>r</sup> 9                          | 27/2 <sup>+</sup>  |
| 936.2 <sup>@</sup> 6              | 17/2                        | 3122.2 <sup>@</sup> 6                          | 33/2-              |
| 967.58 <sup>c</sup> 25            | 13/2+                       | 3129.8 <sup>d</sup> 8                          | 31/2+              |
| $1007.0^{b} 6$                    | 15/2 <sup>+</sup>           | 3244.0 <sup>a</sup> 6                          | 33/2+              |
| $1106.5^{d}$ 3                    | 15/2 <sup>+</sup>           | 3319.6 <sup>&amp;</sup> 6                      | 35/2               |
| 1114.1 <mark>&amp;</mark> 6       | 19/2                        | 3319.0 0<br>3322.7 <mark>8</mark> 6            | 33/2+              |
| 1151.4° 9                         | 15/2+                       | $3350.6^{q}$ 5                                 | 33/2 <sup>+</sup>  |
| 1281.3 <sup>a</sup> 6             | 17/2 <sup>+</sup>           | 3417.6 <sup>e</sup> 8                          | 33/2-              |
| 1285.0? 10                        | $(13/2^+)$                  | 3482.7 <sup>b</sup> 6                          | 35/2 <sup>+</sup>  |
| 1416.0 <sup>n</sup> 8             | 17/2+                       | 3486.2 <sup>r</sup> 7                          | 31/2+              |
| 1484.6 <sup>@</sup> 6             | $21/2^{-}$                  | 3550.6 <sup>@</sup> 6                          | $37/2^{-}$         |
| 1501.4 <sup>c</sup> 3             | $17/2^{+}$                  | 3570.9 <sup>h</sup> 6                          | $35/2^{+}$         |
| 1560.9 <sup>b</sup> 6             | 19/2 <sup>+</sup>           | 3634.7 <sup>j</sup> 8                          | $35/2^{+}$         |
| 1669.5 <sup>d</sup> 3             | 19/2 <sup>+</sup>           | 3666.7 <sup>f</sup> 8                          | $35/2^{-}$         |
| 1676.2 <mark>&amp;</mark> 6       | 23/2-                       | 3788.7 <mark>a</mark> 6                        | 37/2+              |
| 1729.1° 8                         | 19/2 <sup>+</sup>           | 3821.5 <del>&amp;</del> 6                      | 39/2-              |
| 1738.9 <del>9</del> 11            | 13/2+                       | 3863.2 <sup>s</sup> 8                          | 33/2+              |
| 1866.6 <sup>a</sup> 6             | 21/2+                       | 3865.9 <sup>q</sup> 5                          | 37/2+              |
| 1935.7 <sup>q</sup> 8             | 17/2+                       | 3891.4 <sup>8</sup> 8                          | 37/2+              |
| 2008.0 7<br>2019.5 <sup>n</sup> 9 | 21/2+                       | 3957.8 <sup>r</sup> 7<br>3994.8 <sup>e</sup> 9 | 35/2 <sup>+</sup>  |
|                                   | 21/2+                       | 3994.8° 9<br>4067.1 <sup>b</sup> 7             | 37/2-              |
| 2087.3° 3                         | 21/2+                       |                                                | 39/2+              |
| 2103.2 <sup>@</sup> 6             | 25/2-                       | 4102.7 <sup>@</sup> 6                          | 41/2-              |
| 2138.6 <sup>b</sup> 6             | 23/2+                       | 4149.7 <sup>h</sup> 6                          | 39/2+              |
| 2199.2 <del>9</del> 4             | 21/2+                       | 4252.7 <sup>f</sup> 9                          | 39/2-              |
| 2227.2 8                          | 23/2+                       | 4254.5 <sup>j</sup> 8                          | 39/2+              |
| $2276.3\frac{d}{s}$ 3             | 23/2+                       | 4308.1 8                                       | 37/2-              |
| 2306.4 <sup>&amp;</sup> 6         | 27/2-                       | 4368.7° 7                                      | 37/2+              |
| 2338.6° 11                        | $23/2^{+}$                  | 4404.8 <sup>a</sup> 7                          | $41/2^{+}$         |

```
J^{\pi \ddagger}
                                               T_{1/2}^{\#}
 E(level)
                                                                                                                                     Comments
4430.2<sup>&</sup> 6
                       43/2^{-}
4444.6<mark>9</mark> 5
                       41/2+
                                           0.25 \text{ ps } +5-7
                                                                     Q_t = 9.9 + 11 - 10.
4492.1°7
                       39/2+
4528.4<mark>8</mark> 8
                       41/2^{+}
4555.4e 9
                       41/2^{-}
4577.7<sup>m</sup> 8
                       39/2^{-}
4718.6<sup>b</sup> 7
                       43/2^{+}
4759.5<sup>@</sup> 6
                       45/2^{-}
4816.1<sup>h</sup> 6
                       43/2^{+}
4830.0<sup>l</sup> 8
                       41/2-
4847.8<sup>f</sup> 9
                       43/2^{-}
4903.0<sup>j</sup> 8
                       43/2^{+}
4936.8<sup>s</sup> 7
                       41/2^{+}
5056.4<sup>a</sup> 7
                       45/2^{+}
5083.5q 5
                       45/2+
                                       173 fs +24-27
                                                                     Q_t = 9.3 + 7 - 6.
5087.9<sup>r</sup> 7
                       43/2+
5114.9<sup>m</sup> 8
                       43/2^{-}
5130.6<sup>&</sup> 6
                       47/2^{-}
5167.6e 9
                       45/2^{-}
5208.5<sup>i</sup> 8
                       45/2^{+}
5242.2<mark>8</mark> 11
                       45/2^{+}
5386.8<sup>b</sup> 7
                       47/2^{+}
5418.3<sup>l</sup> 9
                       45/2^{-}
5495.0<sup>f</sup> 9
                       47/2^{-}
5503.9<sup>@</sup> 6
                       49/2^{-}
5556.3<sup>j</sup> 8
                       47/2^{+}
5558.3<sup>h</sup> 6
                       47/2^{+}
5563.7<sup>s</sup> 6
                       45/2+
5719.0<sup>a</sup> 7
                       49/2+
5742.5<sup>r</sup> 8
                       47/2^{+}
                                       149 \text{ fs} + 26 - 33
                                                                     Q_t = 8.5 + 10 - 7.
5755.8<sup>m</sup> 9
                       47/2^{-}
                       49/2^{+}
5780.5<sup>q</sup> 5
                                       140 fs +15-16
                                                                     Q_t = 8.3 + 5 - 4.
5851.9<sup>e</sup> 9
                       49/2^{-}
5897.1<sup>i</sup> 9
                       49/2^{+}
5915.7<sup>&</sup> 6
                       51/2^{-}
6005.08 9
                       49/2^{+}
6064.2<sup>b</sup> 7
                       51/2^{+}
6106.9<sup>l</sup> 10
                       49/2-
6222.3^{f} 11
                       51/2^{-}
6245.3<sup>j</sup> 9
                       51/2^{+}
6248.8<sup>s</sup> 8
                       49/2^{+}
6319.5<sup>t</sup> 9
                       47/2^{(-)}
6332.9<sup>@</sup> 6
                       53/2^{-}
6354.7<sup>h</sup> 10
                       51/2^{+}
6414.0<mark>a</mark> 7
                       53/2^{+}
                       51/2+
6453.7<sup>r</sup> 8
                                       100 \text{ fs} + 12 - 15
                                                                     Q_t = 8.7 + 7 - 5.
6501.4<sup>m</sup> 11
                       51/2^{-}
6533.1q 5
                       53/2^{+}
                                         82 \text{ fs } +6-7
                                                                     T_{1/2}: other: 100 fs (2002Sc11).
                                                                     Q_t = 8.9 \ 4 \ (2004 \text{Go} 14), \ 8.1 + 10 - 11 \ (2002 \text{Sc} 11).
```

```
J^{\pi \ddagger}
                                              T_{1/2}^{\#}
  E(level)
                                                                                                                                  Comments
6615.4<sup>i</sup> 11
                        53/2^{+}
6616.7<sup>e</sup> 11
                        53/2
6718.0<sup>8</sup> 11
                       53/2^{+}
6787.7<sup>b</sup> 7
                        55/2^{+}
6788.8<del>&</del> 9
                        55/2-
6906.2<sup>l</sup> 12
                        53/2^{-}
6964.5<sup>t</sup> 9
                        51/2^{(-)}
6978.9<sup>j</sup> 11
                        55/2^{+}
6990.0<sup>s</sup> 8
                        53/2^{+}
7034.2<sup>f</sup> 12
                        55/2^{-}
7131.9<sup>h</sup> 12
                        55/2^{+}
7173.0<sup>a</sup> 7
                        57/2^{+}
7177.9<sup>P</sup> 10
                        55/2^{+}
7219.9<sup>r</sup> 9
                        55/2^{+}
                                        66 \text{ fs } +9-12
                                                                  Q_t = 8.9 + 8 - 6.
7245.7<sup>@</sup> 10
                        57/2^{-}
7338.7<del>9</del> 5
                        57/2^{+}
                                        66 fs 8
                                                                 T_{1/2}: other: 67 fs (2002Sc11).
                                                                  Q_t = 8.45 (2004Go14), 8.3 +19-18 (2002Sc11).
7350.0<sup>m</sup> 13
                        55/2^{-}
7389.8<sup>i</sup> 12
                        57/2+
7465.6<sup>e</sup> 13
                        57/2-
7505.8<sup>g</sup> 13
                       57/2+
7583.3<sup>b</sup> 7
                        59/2^{+}
7666.7<sup>t</sup> 9
                        55/2^{(-)}
7728.0<sup>&</sup> 11
                        59/2^{-}
7784.2<sup>j</sup> 13
                        59/2+
7785.9<sup>$</sup> 9
                        57/2^{+}
7812.7<sup>l</sup> 14
                        57/2^{-}
7902.2<sup>f</sup> 14
                        59/2-
7954.7<sup>h</sup> 14
                        59/2+
8010.0<mark>a</mark> 7
                        61/2^{+}
8039.8<sup>r</sup> 9
                        59/2+
                                        60 \text{ fs} + 18 - 26
                                                                 Q_t = 7.8 + 17 - 12.
8044.9P 10
                        59/2^{+}
8196.4q 10
                        61/2^{+}
                                                                  Q_t = 7.5 + 5 - 4 (2004 Go 14), 8.0 + 16 - 15 (2002 Sc 11).
                                        61 \text{ fs} + 7 - 8
                                                                  T_{1/2}: other: 53 fs (2002Sc11).
8221.5<sup>@</sup> 12
                       61/2^{-}
8236.2<sup>i</sup> 14
                        61/2^{+}
8290.0<sup>m</sup> 15
                        59/2^{-}
8378.6<sup>e</sup> 17
                       61/2^{-}
8386.1<mark>8</mark> 16
                       61/2^{+}
8421.3<sup>t</sup> 10
                        59/2^{(-)}
8458.3<sup>b</sup> 9
                        63/2^{+}
8635.7<sup>s</sup> 10
                       61/2^{+}
8667.5<sup>j</sup> 15
                        63/2^{+}
8712.3<sup>&</sup> 13
                       63/2^{-}
8789.1<sup>1</sup> 16
                       61/2^{-}
8844.4<sup>f</sup> 17
                        63/2^{-}
8854.6<sup>h</sup> 17
                       63/2^{+}
8912.7<sup>r</sup> 11
                       63/2^{+}
                                        44 fs +9-15
                                                                  Q_t = 7.9 + 13 - 8.
8925.8<sup>a</sup> 10
                       65/2^{+}
```

| E(level) <sup>†</sup>                              | Jπ‡                                    | T <sub>1/2</sub> # | Comments                                                                                        |
|----------------------------------------------------|----------------------------------------|--------------------|-------------------------------------------------------------------------------------------------|
| 8973.0 <sup>p</sup> 14                             | 63/2+                                  |                    |                                                                                                 |
| 9106.1 <sup>q</sup> 14                             | $65/2^{+}$                             | 46 fs +7-10        | $Q_t = 7.4 + 8 - 6.$                                                                            |
| 9153.0 <sup>i</sup> 15                             | $65/2^{+}$                             |                    |                                                                                                 |
| 9231.4 <sup>t</sup> 14                             | $63/2^{(-)}$                           |                    |                                                                                                 |
| 9251.6 <sup>@</sup> 14                             | $65/2^{-}$                             |                    |                                                                                                 |
| 9283.4 <sup>m</sup> 18                             | 63/2                                   |                    |                                                                                                 |
| 9329.8 <sup>g</sup> 19<br>9375.1 <sup>e</sup> 19   | 65/2 <sup>+</sup>                      |                    |                                                                                                 |
| 9373.1° 19<br>9407.6 <sup>b</sup> 11               | 65/2 <sup>-</sup><br>67/2 <sup>+</sup> |                    |                                                                                                 |
| 9407.6° 11<br>9538.2° 14                           | 65/2 <sup>+</sup>                      |                    |                                                                                                 |
| 9624.3 <sup>j</sup> 16                             | 67/2 <sup>+</sup>                      |                    |                                                                                                 |
| 9707.7 <mark>&amp;</mark> 15                       | 67/2 <sup>-</sup>                      |                    |                                                                                                 |
| 9804.1 19                                          | 65/2-                                  |                    |                                                                                                 |
| 9815.1 <sup>h</sup> 20                             | 67/2 <sup>+</sup>                      |                    |                                                                                                 |
| 9813.1 <sup>r</sup> 20<br>9839.2 <sup>r</sup> 15   | 67/2 <sup>+</sup>                      | 52 fs +12-17       | $Q_t = 6.7 + 11 - 8.$                                                                           |
| 9915.6 <sup>a</sup> 12                             | 69/2 <sup>+</sup>                      | 32 13 112 17       | Q[=0.7 +11 0.                                                                                   |
| 10068.6 <del>9</del> 14                            | 69/2+                                  | 33 fs +12-8        | $Q_t = 7.6 + 15 - 9.$                                                                           |
| 10096.7 <sup>t</sup> 17                            | $67/2^{(-)}$                           |                    |                                                                                                 |
| 10137.4 <sup>i</sup> 17                            | 69/2+                                  |                    |                                                                                                 |
| 10313.5 <sup>@</sup> 17                            | $69/2^{-}$                             |                    | E(level): In 2002Je05, the $69/2^-$ member was proposed At 10265 decaying by a $1012.3\gamma$ . |
| 10332.8 <mark>8</mark> 22                          | $69/2^{+}$                             |                    |                                                                                                 |
| 10427.1 <sup>b</sup> 13                            | 71/2+                                  |                    |                                                                                                 |
| 10494.0 <sup>s</sup> 17                            | 69/2+                                  |                    |                                                                                                 |
| 10652.4 <sup>j</sup> 17                            | 71/2+                                  |                    |                                                                                                 |
| 10713.7 <sup>&amp;</sup> 18                        | $71/2^{-}$                             | 20 f- + 12 20      | 0 67 17 10                                                                                      |
| 10819.4 <sup>r</sup> 18<br>10875.1 <sup>l</sup> 21 | 71/2 <sup>+</sup><br>69/2 <sup>-</sup> | 39 fs +12-20       | $Q_t = 6.7 + 17 - 10.$                                                                          |
| 10875.1° 21<br>10977.2 <mark>a</mark> 14           | 73/2 <sup>+</sup>                      |                    |                                                                                                 |
| $11017.2^{t}$ 20                                   | $71/2^{(-)}$                           |                    |                                                                                                 |
| 11085.2 <sup>q</sup> 18                            | 73/2+                                  |                    |                                                                                                 |
| 11185.6 <sup>i</sup> 19                            | $73/2^{+}$                             |                    |                                                                                                 |
| 11503.2 <sup>s</sup> 20                            | $73/2^{+}$                             |                    |                                                                                                 |
| 11504.2 <sup>b</sup> 15                            | $75/2^{+}$                             |                    |                                                                                                 |
| 11728.7 <sup>k</sup> 20                            | 75/2-                                  |                    |                                                                                                 |
| 11748.0 <sup>j</sup> 20                            | $75/2^{+}$                             |                    |                                                                                                 |
| 11780.2 <mark>&amp;</mark> 20                      | 75/2-                                  |                    |                                                                                                 |
| 11854.1 <sup>r</sup> 21                            | 75/2+                                  |                    |                                                                                                 |
| 11992.9 <sup>t</sup> 22<br>12096.9 <sup>a</sup> 17 | 75/2 <sup>(-)</sup>                    |                    |                                                                                                 |
| 12096.9 <sup>a</sup> 17<br>12156.2 <sup>q</sup> 20 | 77/2 <sup>+</sup><br>77/2 <sup>+</sup> |                    |                                                                                                 |
| $12150.21 \ 20$ $12265.7^{i} \ 22$                 | 77/2 <sup>+</sup>                      |                    |                                                                                                 |
| 12566.2 <sup>s</sup> 22                            | 77/2 <sup>+</sup>                      |                    |                                                                                                 |
| $12626.0^{b}$ 18                                   | 79/2 <sup>+</sup>                      |                    |                                                                                                 |
| $12744^{k}$ 3                                      | 79/2-                                  |                    |                                                                                                 |
| $12862^{j}$ 11                                     | 79/2 <sup>+</sup>                      |                    |                                                                                                 |
| 12864.8 <mark>&amp;</mark> 23                      | 79/2-                                  |                    |                                                                                                 |
| 12943.0 <sup>r</sup> 23                            | 79/2 <sup>+</sup>                      |                    |                                                                                                 |
| 13024.5 <sup>t</sup> 25                            | $79/2^{(-)}$                           |                    |                                                                                                 |
| 13197.1 <mark>a</mark> 20                          | 81/2+                                  |                    |                                                                                                 |
|                                                    |                                        |                    |                                                                                                 |

| E(level) <sup>†</sup>       | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>     | $J^{\pi \ddagger}$  | E(level)             | Jπ‡        | E(level) <sup>†</sup> | $J^{\pi}$ |
|-----------------------------|--------------------|---------------------------|---------------------|----------------------|------------|-----------------------|-----------|
| 13282.5 <del>9</del> 23     | 81/2+              | 14110 <sup>t</sup> 3      | 83/2 <sup>(-)</sup> | 15689 <del>9</del> 3 | 89/2+      | 18261 <del>9</del> 3  | 97/2+     |
| 13678.6 <sup>s</sup> 25     | $81/2^{+}$         | 14461.8 <mark>9</mark> 25 | 85/2+               | 16023 <sup>k</sup> 4 | $91/2^{-}$ | 18435 <sup>k</sup> 4  | 99/2-     |
| 13745.7 <sup>b</sup> 21     | $83/2^{+}$         | 14826 <sup>s</sup> 5      | 85/2+               | 16531 <sup>r</sup> 3 | $91/2^{+}$ |                       |           |
| 13797 <sup>k</sup> <i>3</i> | $83/2^{-}$         |                           |                     | 16958 <del>9</del> 3 |            |                       |           |
| 14086.0 <sup>r</sup> 25     | 83/2+              | 15283 <sup>r</sup> 3      | 87/2+               | 17203 <sup>k</sup> 4 | 95/2-      |                       |           |

- <sup>†</sup> From least-squares fit to E $\gamma$ 's. The levels at 10265, (69/2<sup>-</sup>) decaying by a 1012.3 $\gamma$  and 10346, (69/2<sup>-</sup>) decaying by a 1062.0 $\gamma$  proposed in 2002Je05 have been omitted here since they are not confirmed by 2004Je03.
- <sup>‡</sup> The assignments are As proposed by 2004Je03 based on band assignments and  $\gamma\gamma(\theta)$  data (2004Je03,2002Je05,1999Do34) for selected transitions. In the 'Adopted Levels', the assignments are the same except that parentheses are added by the evaluators since  $J^{\pi\prime}s$  of some of the bandheads are not defined by strong rules for spin-parity assignments.
- # From DSAM (2004Go14), unless otherwise stated.
- <sup>®</sup> Band(A):  $\pi7/2[523]$ ,  $\alpha=+1/2$ . Strongly-coupled band (1993Sc13,1999Do34,2002Je05,2004Je03). Of the two possible choices (1992Sc03),  $\pi7/2[523]$  and  $\pi9/2[514]$ ,  $\pi7/2[523]$  is preferred (1993Sc13,1999Do34), based on the experimental Q<sub>t</sub> pattern with K=7/2 or 9/2 and a comparison of experimental and calculated B(M1) values. AB crossing at  $\hbar\omega\approx0.26$  MeV.
- & Band(a):  $\pi 7/2[523]$ ,  $\alpha = -1/2$ . Strongly-coupled band (1993Sc13,1999Do34,2002Je05,2004Je03). See also the comment for the signature=+1/2 component of this band. AB crossing at  $\hbar\omega\approx0.26$  MeV.
- <sup>a</sup> Band(B):  $\pi$ 7/2[404],  $\alpha$ =+1/2. Strongly-coupled band (1992Sc03,1999Do34,2002Je05,2004Je03). AB crossing at  $\hbar\omega$ ≈0.26 MeV; changes to ( $\pi$ 7/2[523])⊗AEBC after AB crossing.
- <sup>b</sup> Band(b):  $\pi$ 7/2[404],  $\alpha$ =−1/2. Strongly-coupled band (1992Sc03,1999Do34,2002Je05,2004Je03). AB crossing at  $\hbar\omega$ ≈0.26 MeV; changes to  $\pi$ 7/2[523]⊗AEBC after AB crossing.
- <sup>c</sup> Band(C):  $\pi 1/2$ [411],  $\alpha = +1/2$ . (1999Do34,2002Je05,2004Je03).
- <sup>d</sup> Band(c):  $\pi 1/2[411]$ ,  $\alpha = -1/2$ . (1999Do34,2002Je05,2004Je03).
- <sup>e</sup> Band(D): Band based on (29/2<sup>-</sup>),  $\alpha$ =+1/2. Possible continuation of the  $\pi$ 7/2[523] band into ( $\pi$ 7/2[523])⊗BC. EF and AD could also be involved at higher spins (2004Je03).
- <sup>f</sup> Band(d): Band based on (31/2<sup>-</sup>),  $\alpha$ =−1/2. Possible continuation of the  $\pi$ 7/2[523] band into ( $\pi$ 7/2[523])⊗BC. EF and AD could also be involved at higher spins (2004Je03).
- <sup>g</sup> Band(E):  $(\pi 7/2[404]) \otimes AB$  at low spins,  $\alpha = +1/2$ .  $(\pi 9/2[514]) \otimes AEBC$  at high spins (2004Je03,2002Je05).
- <sup>h</sup> Band(e):  $(\pi7/2[404])$ ⊗AB at low spins, α=−1/2. 9/2[514]⊗AEBC at high spins (2004Je03,2002Je05).
- $^{i}$  Band(F): ( $\pi$ 7/2[523])⊗AHBC,  $\alpha$ =+1/2. (2004Je03).
- $^{j}$  Band(f): (π7/2[523])⊗AHBC, α=−1/2. (2004Je03).
- <sup>k</sup> Band(G):  $(\pi 1/2[660])$ ⊗AEBC,α=−1/2. (2004Je03).
- <sup>1</sup> Band(H):  $(\pi 9/2[514]) \otimes AB$ ,  $\alpha = +1/2$ . (2004Je03,2002Je05). This band has spins less by one unit in 2002Je05 than in 2004Je03.
- <sup>m</sup> Band(h):  $(\pi 9/2[514])$ ⊗AB, α=-1/2. (2004Je03,2002Je05). This band has spins less by one unit in 2002Je05 than in 2004Je03.
- <sup>n</sup> Band(I):  $\pi$ 5/2[402],  $\alpha$ =+1/2. (2002Je05,2004Je03).
- $^{o}$  Band(i):  $\pi$ 5/2[402],  $\alpha$ =-1/2. (2002Je05,2004Je03).
- <sup>p</sup> Band(J): Band based on  $55/2^+$ ,  $\alpha = -1/2$ .
- <sup>q</sup> Band(K): Triaxial SD-1 band (2004Je03,2004Go14,2002Je05,2002Sc11, 2001Od03,1999Do34,1995Sc39). Qt varies from 9.9 to 7.6 (2004Go14) from the 41/2 to the 69/2 levels. Others: Qt over the entire band: 8.2 +10−6 (2002Sc11); 7.4 +7−4 or 7.7 +23−13 (2002Sc47); 10.7 7 (1993Sc13). Possible configuration= $\pi i_{13/2}$ , 1/2[660],  $\alpha$ =+1/2;  $\beta$ 2≈0.42 (1993Sc13,1992Sc03). Percent population (relative to normal-deformed yrast band)≈10 (2004Je03,1999Do34), 14 (2002Je05).
- <sup>r</sup> Band(L): One-phonon wobbling-mode Triaxial SD-2 band (2004Je03,2004Go14,2002Je05,2001Od03,1999Do34). One-phonon wobbling mode excitation built on yrast  $\pi i_{13/2}$  triaxial SD-1 band. Qt varies from 8.5 to 6.7 (2004Go14) from the 47/2 to the 71/2 levels. Percent population (relative to normal-deformed yrast band)≈3 (2004Je03), ≈2.0 (2002Je05), ≈2.5 (1999Do34).
- <sup>s</sup> Band(M): Two-phonon wobbling-mode Triaxial SD-3 band,  $\alpha$ =+1/2 (2004Je03,2002Je05). Two-phonon wobbling mode excitation built on yrast triaxial SD-1 band. Percent population (relative to normal-deformed yrast band)≈1.2 (2004Je03), ≈0.7 (2002Je05).
- <sup>t</sup> Band(N): Triaxial SD-4 band,  $\alpha = -1/2$  (2004Je03,2002Je05). Possibly negative-parity yrast band. This band cannot be interpreted

## <sup>163</sup>Lu Levels (continued)

as a wobbling phonon excitation since its nature is different from SD-1 to SD-3 bands. Probable configuration=  $\pi i_{13/2} \otimes (\nu i_{13/2}, \alpha = -1/2) \otimes (\nu h_{9/2}, \alpha = -1/2)$  Percent population (relative to normal-deformed yrast band)  $\approx 0.9$  (2004Je03),  $\approx 0.35$  (2002Je05).

## $\gamma$ (163Lu)

 $\begin{array}{l} POL = & (I_{vertical} - I_{horizontal}) / (I_{vertical} + I_{horizontal}) \ \, (2004 Je 03). \\ DCO = & I^{\gamma_1} \ _{25^{\circ}} (gate^{\gamma_2} \ _{90^{\circ}}) / I^{\gamma_1} \ _{90^{\circ}} \ (gate^{\gamma_2} \ _{25^{\circ}}) \ (2004 Je 03). \end{array}$ 

| $\mathrm{E}_{\gamma}^{\dagger}$                  | $I_{\gamma}^{\ddagger}$         | $E_i(level)$     | $\mathbf{J}_i^{\pi}$                   | $E_f$            | $\mathbf{J}_f^{\pi}$                   | Mult. | Comments                                                                      |
|--------------------------------------------------|---------------------------------|------------------|----------------------------------------|------------------|----------------------------------------|-------|-------------------------------------------------------------------------------|
| (45.39 8)                                        |                                 | 61.2             | 5/2+                                   | 16.95            | 3/2+                                   |       | E <sub>y</sub> : from the 'Adopted Gammas'.                                   |
| 62.1 10                                          | 5.6 20                          | 123.1            | 7/2+                                   | 61.2             | 5/2+                                   |       | $E_{\gamma}$ : 61.5 (1999Do34).                                               |
| 70.7 10                                          | 4.3 30                          | 193.9            | $7/2^{-}$                              | 123.1            | $7/2^{+}$                              |       |                                                                               |
| 85.4 <i>10</i>                                   | 5.5 12                          | 294.3            | 11/2-                                  | 209.0            | 9/2-                                   |       |                                                                               |
| 85.9 10                                          | 13.5 27                         | 209.0            | 9/2-                                   | 123.1            | 7/2+                                   |       |                                                                               |
| 102.0 <i>10</i><br>103.76 <sup>@</sup> <i>10</i> | 2.5 3                           | 3122.2           | 33/2-                                  | 3020.3           | 31/2                                   |       |                                                                               |
| 103.76° 10<br>106.2 10                           | 0.70 <i>10</i><br>4.9 <i>5</i>  | 2539.7<br>519.3  | 25/2 <sup>+</sup><br>11/2 <sup>+</sup> | 2435.9<br>413.3  | 23/2 <sup>+</sup><br>9/2 <sup>+</sup>  |       |                                                                               |
| 117.9 <i>10</i>                                  | 0.7 3                           | 2802.5           | 29/2 <sup>+</sup>                      | 2684.5           | 27/2 <sup>+</sup>                      |       |                                                                               |
| 130.0 10                                         | 0.90 20                         | 2539.7           | 25/2 <sup>+</sup>                      | 2409.7           | 21/2+                                  |       |                                                                               |
| 132.8 10                                         | 6.5 22                          | 193.9            | $7/2^{-}$                              | 61.2             | 5/2+                                   |       |                                                                               |
| 140.26 <sup>@</sup> 10                           | 5.7 7                           | 2680.0           | 27/2+                                  | 2539.7           | $25/2^{+}$                             |       |                                                                               |
| 140.3 10                                         | 1.00 10                         | 2539.7           | 25/2+                                  | 2399.3           | 25/2+                                  |       |                                                                               |
| 152.7 10                                         | 40 3                            | 643.6            | $15/2^{-}$                             | 490.9            | 13/2                                   |       |                                                                               |
| 162.2 10                                         | 10.2 22                         | 223.4            | 7/2+                                   | 61.2             | 5/2+                                   |       | E <sub>γ</sub> : 161.6 (1999Do34).                                            |
| 166.1 <i>10</i><br>172.2 <i>10</i>               | 1.6 <i>4</i><br>4.9 <i>6</i>    | 3020.3<br>2399.3 | 31/2 <sup>-</sup><br>25/2 <sup>+</sup> | 2854.2<br>2227.2 | 29/2 <sup>-</sup><br>23/2 <sup>+</sup> |       |                                                                               |
| 173.87 10                                        | 7.7 <i>18</i>                   | 190.83           | 5/2 <sup>+</sup>                       |                  | 3/2+                                   | D     | DCO=0.38 8 (1999Do34)                                                         |
| 173.07 10                                        | 7.7 10                          | 170.03           | 3/2                                    | 10.75            | 3/2                                    | Ъ     | $I\gamma(174)/I\gamma(191)=8.4\ 13/3.4\ 4\ (1999Do34)$ is in                  |
|                                                  |                                 |                  |                                        |                  |                                        |       | disagreement.                                                                 |
| 176.85 <sup>@</sup> 10                           | 12.1 <i>14</i>                  | 2923.8           | $31/2^{-}$                             | 2747.1           | $29/2^{-}$                             |       |                                                                               |
| 177.97 <sup>@</sup> <i>10</i>                    | 19.0 22                         | 1114.1           | $19/2^{-}$                             | 936.2            | $17/2^{-}$                             |       |                                                                               |
| 180.2 10                                         | 9.8 9                           | 2860.1           | 29/2+                                  | 2680.0           | 27/2+                                  |       |                                                                               |
| 186.15 <sup>@</sup> <i>10</i>                    | 18.4 26                         | 309.3            | 9/2+                                   | 123.1            | 7/2+                                   |       |                                                                               |
| 188.2 10                                         | 5.0 9                           | 249.7            | $7/2^{+}$                              | 61.2             | $5/2^{+}$                              | D     | DCO=0.60 9 (1999Do34).                                                        |
|                                                  |                                 |                  |                                        |                  |                                        |       | $I\gamma(188)/I\gamma(233)=6.9\ 10/18.0\ 18\ (1999Do34)$ is in                |
| <b>@</b>                                         |                                 |                  |                                        |                  |                                        |       | disagreement.                                                                 |
| 188.99 <sup>@</sup> 10                           | 18.6 26                         | 2802.5           | 29/2+                                  | 2613.4           | 27/2 <sup>+</sup>                      |       |                                                                               |
| 189.8 <i>10</i><br>190.90 <i>20</i>              | 8.8 <i>31</i><br>18.2 <i>12</i> | 413.3<br>190.83  | 9/2 <sup>+</sup><br>5/2 <sup>+</sup>   | 223.4            | 7/2 <sup>+</sup><br>1/2 <sup>+</sup>   |       |                                                                               |
| 190.90 20<br>191.54 <sup>@</sup> 10              | 16.2 12                         | 1676.2           | $\frac{3/2}{23/2^{-}}$                 | 1484.6           | 21/2                                   |       |                                                                               |
| 191.54 * 10<br>196.6 10                          | 10.0 <i>14</i><br>49 <i>4</i>   | 490.9            | $\frac{23/2}{13/2^{-}}$                | 294.3            | $\frac{21/2}{11/2^{-}}$                |       |                                                                               |
| 196.7 10                                         | 9# 5                            | 1935.7           | 17/2+                                  | 1738.9           | 13/2+                                  | (0)   | DCO=0.8 4 (1999Do34)                                                          |
|                                                  |                                 |                  |                                        |                  |                                        | (Q)   | $I_{\gamma}$ : $I_{\gamma}(197)/I_{\gamma}(386)=3.4$ 4/100 (1999Do34).        |
| 197.29 <sup>@</sup> 10                           | 48 8                            | 3319.6           | 35/2-                                  | 3122.2           | 33/2-                                  |       |                                                                               |
| 198.56 <sup>@</sup> 10                           | 40 5                            | 3122.2           | $33/2^{-}$                             | 2923.8           | $31/2^{-}$                             |       |                                                                               |
| 200.42 <sup>@</sup> 10                           | 31 3                            | 3002.9           | $31/2^{+}$                             | 2802.5           | $29/2^{+}$                             |       |                                                                               |
| 203.23 <sup>@</sup> 10                           | 13.7 20                         | 2306.4           | 27/2-                                  | 2103.2           | 25/2-                                  |       |                                                                               |
| 207.0 10                                         | 1.1 8                           | 620.6            | 11/2+                                  | 413.3            | 9/2+                                   |       | $I\gamma(207)/I\gamma(371)=4.2 \ 8/9.4 \ 14 \ (1999Do34)$ is in disagreement. |
| 210.0 10                                         | 17.2 <i>17</i>                  | 519.3            | $11/2^{+}$                             | 309.3            | 9/2+                                   |       |                                                                               |

| $E_{\gamma}^{\dagger}$             | $I_{\gamma}^{\ddagger}$          | $E_i(level)$     | $\mathbf{J}_i^{\pi}$                   | $E_f$            | $\mathbf{J}_f^{\pi}$                   | Mult. | Comments                                                                                                                                                     |
|------------------------------------|----------------------------------|------------------|----------------------------------------|------------------|----------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 214.00 <sup>@</sup> 10             | 29.4 28                          | 2613.4           | 27/2+                                  | 2399.3           | 25/2+                                  |       |                                                                                                                                                              |
| 217.17 <sup>@</sup> 10             | 13.6 <i>13</i>                   | 3077.2           | 31/2+                                  | 2860.1           | 29/2+                                  |       |                                                                                                                                                              |
| 228.0 10                           | 7.1 17                           | 641.3            | 11/2+                                  | 413.3            | 9/2+                                   |       |                                                                                                                                                              |
| 231.04 <sup>@</sup> 10             | 87 6                             | 3550.6           | $37/2^{-}$                             | 3319.6           | 35/2-                                  |       |                                                                                                                                                              |
| 232.9 10                           | 8.7 22                           | 249.7            | 7/2+                                   | 16.95            |                                        | (Q)   | DCO=0.75 11 (1999Do34).                                                                                                                                      |
| 233.0 10                           | 8.0 13                           | 874.2            | 13/2+                                  | 641.3            | 11/2+                                  |       |                                                                                                                                                              |
| 234.3 <i>10</i><br>238.6 <i>10</i> | 16.5 <i>15</i><br>18.4 <i>15</i> | 753.7<br>3482.7  | 13/2 <sup>+</sup><br>35/2 <sup>+</sup> | 519.3<br>3244.0  | 11/2 <sup>+</sup><br>33/2 <sup>+</sup> |       |                                                                                                                                                              |
| 241.1 10                           | 26.8 21                          | 3244.0           | 33/2 <sup>+</sup>                      | 3002.9           | 33/2<br>31/2 <sup>+</sup>              |       |                                                                                                                                                              |
| 244.02 <sup>@</sup> 10             | 1.8 3                            | 2680.0           | 27/2 <sup>+</sup>                      | 2435.9           | 23/2+                                  |       |                                                                                                                                                              |
| 245.48 <sup>@</sup> 10             | 3.8 9                            | 3322.7           | 33/2+                                  | 3077.2           | 31/2+                                  |       |                                                                                                                                                              |
| 246.7 10                           | 1.00 10                          | 2860.1           | 29/2 <sup>+</sup>                      | 2613.4           | 27/2+                                  |       |                                                                                                                                                              |
| 247.6 <sup>&amp;b</sup> 5          | 1.0 4                            | 309.3            | 9/2+                                   | 61.2             | 5/2+                                   |       | $I_{\gamma}$ : deduced from $I_{\gamma}(248)/I_{\gamma}(488)=1.6~6/100~(1999Do34)$ .                                                                         |
| 248.20 <sup>@</sup> 10             | 1.8 4                            | 3570.9           | 35/2 <sup>+</sup>                      | 3322.7           | 33/2+                                  |       |                                                                                                                                                              |
| 249.0 10                           | 5.5 11                           | 3666.7           | 35/2                                   | 3417.6           | 33/2                                   |       |                                                                                                                                                              |
| 252.2 10                           | 5.2 13                           | 4830.0           | $41/2^{-}$                             | 4577.7           | 39/2-                                  |       |                                                                                                                                                              |
| 253.37 <sup>@</sup> 10             | 16.9 <i>14</i>                   | 1007.0           | $15/2^{+}$                             | 753.7            | $13/2^{+}$                             |       |                                                                                                                                                              |
| 257.8 10                           | 2.8 4                            | 4252.7           | 39/2-                                  | 3994.8           | 37/2-                                  |       |                                                                                                                                                              |
| 258.2 10                           | 2.0 8                            | 4149.7           | 39/2+                                  | 3891.4           | 37/2+                                  |       |                                                                                                                                                              |
| 260.84 <sup>@</sup> 10             | 23.9 19                          | 2399.3           | 25/2+                                  | 2138.6           | 23/2+                                  |       |                                                                                                                                                              |
| 263.3 10                           | 3.8 <sup>#</sup> 20              | 2199.2           | 21/2+                                  | 1935.7           | 17/2+                                  | (Q)   | DCO=0.78 11 (1999Do34)<br>Ιγ(263)/Ιγ(386)=18.7 19/100 (1999Do34).                                                                                            |
| 264.6 10                           | 2.5 9                            | 1416.0           | 17/2 <sup>+</sup>                      | 1151.4           | 15/2+                                  |       |                                                                                                                                                              |
| 268.1 <i>10</i><br>269.7 <i>10</i> | 4.0 <i>11</i><br>4.3 <i>10</i>   | 3122.2<br>4577.7 | 33/2 <sup>-</sup><br>39/2 <sup>-</sup> | 2854.2<br>4308.1 | 29/2 <sup>-</sup><br>37/2 <sup>-</sup> |       |                                                                                                                                                              |
| 270.87 17                          | 12.9 20                          | 520.64           | 9/2 <sup>+</sup>                       | 249.7            | 7/2 <sup>+</sup>                       | D     | DCO=0.59 8 (1999Do34).                                                                                                                                       |
|                                    |                                  |                  | - /                                    |                  | - /                                    |       | $I\gamma(271)/I\gamma(330)=9.3\ 11/16.3\ 16\ (1999Do34).$                                                                                                    |
| 270.87 <sup>@</sup> 10             | 63 4                             | 3821.5           | 39/2-                                  | 3550.6           | $37/2^{-}$                             |       |                                                                                                                                                              |
| 272.02 <sup>@</sup> 10             | 9.3 11                           | 2138.6           | 23/2+                                  | 1866.6           | $21/2^{+}$                             |       |                                                                                                                                                              |
| 274.31 <sup>@</sup> 10             | 9.7 10                           | 1281.3           | $17/2^{+}$                             | 1007.0           | $15/2^{+}$                             |       |                                                                                                                                                              |
| 277.2 10                           | 6.5 12                           | 1151.4           | 15/2+                                  | 874.2            | $13/2^{+}$                             |       |                                                                                                                                                              |
| 278.40 <sup>@</sup> 10             | 23.0 17                          | 4067.1           | $39/2^{+}$                             | 3788.7           | $37/2^{+}$                             |       |                                                                                                                                                              |
| 279.58 <sup>@</sup> 10             | 18.9 <i>16</i>                   | 1560.9           | $19/2^{+}$                             | 1281.3           | $17/2^{+}$                             |       |                                                                                                                                                              |
| 280.5 10                           | 1.00 10                          | 2680.0           | 27/2+                                  | 2399.3           | $25/2^{+}$                             |       |                                                                                                                                                              |
| 281.18 <sup>@</sup> 10             | 57 4                             | 4102.7           | $41/2^{-}$                             | 3821.5           | 39/2-                                  |       |                                                                                                                                                              |
| 282.00 <sup>@</sup> 10             | 19.1 22                          | 490.9            | 13/2                                   | 209.0            | 9/2-                                   |       |                                                                                                                                                              |
| 285.1 <i>10</i> 287.7 <i>10</i>    | 2.3 <i>6</i><br>1.0 <i>4</i>     | 5114.9<br>4816.1 | 43/2 <sup>-</sup><br>43/2 <sup>+</sup> | 4830.0<br>4528.4 | 41/2 <sup>-</sup><br>41/2 <sup>+</sup> |       |                                                                                                                                                              |
| $290.5^{b}$ 10                     | 0.5 4                            | 2019.5           | 21/2 <sup>+</sup>                      | 1729.1           | 41/2<br>19/2 <sup>+</sup>              |       |                                                                                                                                                              |
| 290.3 10                           | 2.2 3                            | 4847.8           | 43/2-                                  | 4555.4           | 41/2                                   |       |                                                                                                                                                              |
| 292.64 <sup>@</sup> 10             | 45 3                             | 936.2            | 17/2                                   | 643.6            | 15/2                                   |       |                                                                                                                                                              |
| $296.1 \frac{\&b}{5}$              | 1.3 4                            | 519.3            | 11/2+                                  | 223.4            | 7/2+                                   |       | $I_{\gamma}$ : deduced from $I_{\gamma}(296)/I_{\gamma}(488)=2.1 \ 7/100 \ (1999Do34)$ .                                                                     |
| $296.5 \frac{\&b}{5}$              | 4.5 9                            | 520.64           | 9/2+                                   | 223.4            | 7/2 <sup>+</sup>                       |       | $I_{\gamma}$ : deduced from $I_{\gamma}(296)/I_{\gamma}(490)=2.17/100$ (1777) $I_{\gamma}$ : deduced from $I_{\gamma}(296)/I_{\gamma}(330)=3.67/16.3$ 16 and |
| 299.3 10                           |                                  | 3319.6           |                                        |                  | 31/2                                   |       | Iy. deduced from Fy(290)/Fy(330)=3.6 7/10.3 10 and $Iy(296)/Iy(271)=3.6$ 7/9.3 11 (1999Do34).                                                                |
| 302.8 <i>10</i>                    | 0.4 <i>3</i><br>2.4 <i>4</i>     | 3319.6<br>4555.4 | 35/2 <sup>-</sup><br>41/2 <sup>-</sup> | 3020.3<br>4252.7 | 31/2<br>39/2 <sup>-</sup>              |       |                                                                                                                                                              |
| 303.3 10                           | 2.7 7                            | 5418.3           | 45/2                                   | 5114.9           | 43/2                                   |       |                                                                                                                                                              |
| 304.6 10                           | 3.8 4                            | 3077.2           | 31/2+                                  | 2773.0           | 27/2+                                  |       |                                                                                                                                                              |
| 305.6 10                           | 0.8 6                            | 5208.5           | 45/2+                                  | 4903.0           | 43/2+                                  |       |                                                                                                                                                              |
| 305.65 <sup>@</sup> 10             | 9.1 13                           | 1866.6           | 21/2+                                  | 1560.9           | 19/2+                                  |       |                                                                                                                                                              |

| $\mathrm{E}_{\gamma}^{\dagger}$                  | $I_{\gamma}^{\ddagger}$        | $E_i(level)$     | $\mathbf{J}_i^{\pi}$                   | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$                   | Mult. | Comments                                                                        |
|--------------------------------------------------|--------------------------------|------------------|----------------------------------------|------------------|----------------------------------------|-------|---------------------------------------------------------------------------------|
| 306.06 <sup>@</sup> 10                           | 27.1 21                        | 3788.7           | 37/2+                                  | 3482.7           | 35/2+                                  |       |                                                                                 |
| 312.0 <i>10</i><br>313.1 <i>10</i>               | 3.0 <i>5</i> 1.2 <i>9</i>      | 3634.7<br>1729.1 | 35/2 <sup>+</sup><br>19/2 <sup>+</sup> | 3322.7<br>1416.0 | 33/2 <sup>+</sup><br>17/2 <sup>+</sup> |       |                                                                                 |
| 313.68 <sup>@</sup> 10                           | 15.9 12                        | 4718.6           | 43/2+                                  | 4404.8           | 41/2+                                  |       |                                                                                 |
| 314.85 10                                        | 77 <sup>#</sup> 10             | 2514.0           | 25/2 <sup>+</sup>                      | 2199.2           | 21/2+                                  | (Q)   | DCO=0.88 13 (1999Do34)                                                          |
|                                                  |                                |                  | •                                      |                  |                                        |       | $I_{\gamma}$ : $I_{\gamma}(315)/I_{\gamma}(386)=68 \ 7/100 \ (1999Do34)$ .      |
| 314.9 <i>10</i><br>318.4 <i>10</i>               | 1.7 <i>4</i><br>0.5 <i>4</i>   | 2802.5<br>3002.9 | 29/2 <sup>+</sup><br>31/2 <sup>+</sup> | 2487.5<br>2684.5 | 25/2 <sup>+</sup><br>27/2 <sup>+</sup> |       |                                                                                 |
| 319.1 <sup>b</sup> 10                            | 0.3 4                          | 2338.6           | 23/2+                                  | 2019.5           | 21/2+                                  |       |                                                                                 |
| 319.8 10                                         | 1.7 4                          | 5167.6           | $45/2^{-}$                             | 4847.8           | 43/2-                                  |       |                                                                                 |
| 320.4 10                                         | 2.2 6                          | 3891.4           | $37/2^{+}$                             | 3570.9           | $35/2^{+}$                             |       |                                                                                 |
| 320.44 <sup>@</sup> 10                           | 4.1 9                          | 2860.1           | 29/2+                                  | 2539.7           | 25/2+                                  |       |                                                                                 |
| 327.5 <i>10</i><br>327.58 <sup>@</sup> <i>10</i> | 1.4 <i>4</i><br>24.0 <i>24</i> | 5495.0<br>4430.2 | 47/2 <sup>-</sup><br>43/2 <sup>-</sup> | 5167.6<br>4102.7 | 45/2 <sup>-</sup><br>41/2 <sup>-</sup> |       |                                                                                 |
| 328.2 10                                         | 4.3 6                          | 3994.8           | 37/2 <sup>-</sup>                      | 3666.7           | 35/2                                   |       |                                                                                 |
| 329.22 <sup>@</sup> 10                           | 13.3 20                        | 4759.5           | 45/2-                                  | 4430.2           | 43/2-                                  |       |                                                                                 |
| 329.85 <sup>@</sup> 10                           | 18.7 26                        | 520.64           | 9/2+                                   | 190.83           | 5/2+                                   | (Q)   | DCO=0.79 17 (1999Do34)                                                          |
| 330.37 15                                        | 14.3 15                        | 5386.8           | 47/2 <sup>+</sup>                      | 5056.4           | 45/2 <sup>+</sup>                      |       |                                                                                 |
| 332.1 <i>10</i> 337.4 <i>10</i>                  | 9.9 <i>10</i><br>2.5 <i>6</i>  | 5719.0<br>5755.8 | 49/2 <sup>+</sup><br>47/2 <sup>-</sup> | 5386.8<br>5418.3 | 47/2 <sup>+</sup><br>45/2 <sup>-</sup> |       |                                                                                 |
| 337.7 10                                         | 16 4                           | 4404.8           | 41/2+                                  | 4067.1           | 39/2+                                  |       |                                                                                 |
| 337.83 <sup>@</sup> 10                           | 19 4                           | 5056.4           | 45/2+                                  | 4718.6           | 43/2+                                  |       |                                                                                 |
| 338.8 <i>10</i> 340.8 <i>10</i>                  | 1.20 <i>20</i><br>1.0 <i>6</i> | 5897.1<br>5897.1 | 49/2 <sup>+</sup><br>49/2 <sup>+</sup> | 5558.3<br>5556.3 | 47/2 <sup>+</sup><br>47/2 <sup>+</sup> |       |                                                                                 |
| 345.44 <sup>@</sup> 10                           | 9.1 10                         | 6064.2           | 51/2 <sup>+</sup>                      | 5719.0           | 49/2 <sup>+</sup>                      |       |                                                                                 |
| 347.08 17                                        | 7.4 15                         | 967.58           | 13/2+                                  | 620.6            | 11/2+                                  | D     | DCO=0.76 16 (1999Do34).                                                         |
| 247.0.10                                         | 1.0.10                         | 55560            | 47.04                                  | 5000 <b>5</b>    | 45.00                                  |       | $I_{\gamma}$ : $I_{\gamma}(347)/I_{\gamma}(447)=7.1 \ 11/36 \ 4 \ (1999Do34)$ . |
| 347.9 <i>10</i> 348.3 <i>10</i>                  | 1.8 <i>12</i><br>4.5 <i>17</i> | 5556.3<br>6245.3 | 47/2 <sup>+</sup><br>51/2 <sup>+</sup> | 5208.5<br>5897.1 | 45/2 <sup>+</sup><br>49/2 <sup>+</sup> |       |                                                                                 |
| 349.21 <sup>@</sup> 10                           | 72 4                           | 643.6            | 15/2                                   | 294.3            | 11/2                                   |       |                                                                                 |
| 349.62 <sup>@</sup> 10                           | 10.6 10                        | 6414.0           | 53/2+                                  | 6064.2           | 51/2+                                  |       |                                                                                 |
| 349.7 10                                         | 1.5 7                          | 6354.7           | 51/2+                                  | 6005.0           | 49/2+                                  |       |                                                                                 |
| 351.2 <i>10</i><br>352.0 <i>10</i>               | 2.4 <i>6</i><br>4.6 <i>12</i>  | 6106.9<br>413.3  | 49/2 <sup>-</sup><br>9/2 <sup>+</sup>  | 5755.8<br>61.2   | 47/2 <sup>-</sup><br>5/2 <sup>+</sup>  |       |                                                                                 |
| 356.9 <i>10</i>                                  | 1.1 4                          | 5851.9           | 49/2-                                  | 5495.0           | 47/2 <sup>-</sup>                      |       |                                                                                 |
| 357.1 10                                         | 2.7 6                          | 3129.8           | 31/2+                                  | 2773.0           | 27/2+                                  |       |                                                                                 |
| 363.0 <i>10</i> 363.3 <i>10</i>                  | 2.0 8<br>0.5 <i>3</i>          | 4254.5<br>6718.0 | 39/2 <sup>+</sup><br>53/2 <sup>+</sup> | 3891.4<br>6354.7 | 37/2 <sup>+</sup><br>51/2 <sup>+</sup> |       |                                                                                 |
| 363.6 10                                         | 0.9 3                          | 6978.9           | 55/2 <sup>+</sup>                      | 6615.4           | 53/2+                                  |       |                                                                                 |
| 370.0 10                                         | 1.1 6                          | 6615.4           | 53/2+                                  | 6245.3           | 51/2+                                  |       |                                                                                 |
| 370.4 <i>10</i><br>370.50 <sup>@</sup> <i>10</i> | 0.9 3                          | 6222.3           | 51/2                                   | 5851.9           | 49/2-                                  |       |                                                                                 |
| 370.30 ° 10<br>370.93 <sup>@</sup> 10            | 24.8 <i>24</i> 25.0 <i>35</i>  | 1484.6<br>620.6  | 21/2 <sup>-</sup><br>11/2 <sup>+</sup> | 1114.1<br>249.7  | 19/2 <sup>-</sup><br>7/2 <sup>+</sup>  | (Q)   | DCO=0.83 12 (1999Do34).                                                         |
| 370.95 <sup>@</sup> 10                           | 17.2 21                        | 5130.6           | 47/2                                   | 4759.5           | 45/2                                   | (Q)   | DCO=0.03 12 (1777D034).                                                         |
| 373.35 14                                        | 16.0 14                        | 5503.9           | 49/2-                                  | 5130.6           | 47/2                                   |       |                                                                                 |
| 373.74 <sup>@</sup> 10                           | 6.0 6                          | 6787.7           | 55/2+                                  | 6414.0           | 53/2+                                  |       |                                                                                 |
| 373.9 10                                         | 0.5 4                          | 7505.8           | 57/2 <sup>+</sup>                      | 7131.9           | 55/2 <sup>+</sup>                      |       |                                                                                 |
| 374.5 <i>10</i><br>374.74 <i>10</i>              | 3.0 <i>9</i><br>8.0 <i>10</i>  | 4903.0<br>3122.2 | 43/2 <sup>+</sup><br>33/2 <sup>-</sup> | 4528.4<br>2747.1 | 41/2 <sup>+</sup><br>29/2 <sup>-</sup> |       | $E_{\gamma}$ : poor fit; level-energy difference=375.08.                        |
| $377.0^{b}$ 10                                   | 0.5 # 4                        | 3863.2           | 33/2+                                  | 3486.2           | 31/2+                                  |       | Ly. poor in, lever-energy difference-373.00.                                    |
| 378.8 10                                         | 2.0 7                          | 4528.4           | 41/2+                                  | 4149.7           | 39/2+                                  |       |                                                                                 |
|                                                  |                                |                  |                                        |                  |                                        |       |                                                                                 |

| $\mathrm{E}_{\gamma}{}^{\dagger}$   | ${\rm I}_{\gamma}^{\sharp}$    | $E_i(level)$     | $\mathbf{J}_i^{\pi}$                   | $E_f$            | $\mathbf{J}_f^{\boldsymbol{\pi}}$      | Mult. | Comments                                                                                   |
|-------------------------------------|--------------------------------|------------------|----------------------------------------|------------------|----------------------------------------|-------|--------------------------------------------------------------------------------------------|
| 379.9 10                            | 7.3 8                          | 2399.3           | 25/2+                                  | 2019.5           | 21/2+                                  |       |                                                                                            |
| 385.54 <sup>@</sup> 10              | 4.9 10                         | 7173.0           | 57/2+                                  | 6787.7           | 55/2+                                  |       |                                                                                            |
| 386.2 10                            | 3.4 5                          | 2613.4           | $27/2^{+}$                             | 2227.2           | 23/2+                                  |       |                                                                                            |
| 386.31 <i>10</i>                    | 100 5                          | 2900.3           | 29/2+                                  | 2514.0           | 25/2+                                  | Q     | DCO=0.95 13 (1999Do34)                                                                     |
| 389.66 11                           | 14.4 14                        | 3002.9           | 31/2+                                  | 2613.4           | 27/2+                                  |       |                                                                                            |
| 391.5 10                            | 2.9 6                          | 2399.3           | 25/2 <sup>+</sup>                      | 2008.0           | 21/2+                                  |       |                                                                                            |
| 392.4 <i>10</i><br>394.3 <i>10</i>  | 2.7 8<br>1.4 <i>4</i>          | 5208.5<br>7784.2 | 45/2 <sup>+</sup><br>59/2 <sup>+</sup> | 4816.1<br>7389.8 | 43/2 <sup>+</sup><br>57/2 <sup>+</sup> |       |                                                                                            |
| 394.5 <i>10</i>                     | 3.4 9                          | 6501.4           | 51/2                                   | 6106.9           | 49/2-                                  |       |                                                                                            |
| 394.5 10                            | 0.7 3                          | 6616.7           | 53/2-                                  | 6222.3           | 51/2-                                  |       |                                                                                            |
| 394.90 <i>16</i>                    | 7.5 11                         | 1501.4           | 17/2+                                  | 1106.5           | 15/2+                                  |       | $I_{\gamma}$ : $I_{\gamma}(395)/I_{\gamma}(534)=4.1$ 6/37 4 (1999Do34) is in disagreement. |
| 395.99 <sup>@</sup> <i>10</i>       | 9.5 15                         | 3319.6           | $35/2^{-}$                             | 2923.8           | $31/2^{-}$                             |       |                                                                                            |
| 396.3 <sup>&amp;b</sup> 5           | 16 <i>4</i>                    | 620.6            | 11/2+                                  | 223.4            | 7/2+                                   |       | $I_{\gamma}$ : deduced from $I_{\gamma}(396)/I_{\gamma}(371)=6.1 \ 9/9.4 \ 14$ (1999Do34). |
| 396.5 10                            | 29.7 28                        | 519.3            | $11/2^{+}$                             | 123.1            | 7/2+                                   |       |                                                                                            |
| 397.3 10                            | 5.2 8                          | 3417.6           | 33/2-                                  | 3020.3           | $31/2^{-}$                             |       |                                                                                            |
| 397.34 <sup>@</sup> 10              | 12.7 13                        | 3077.2           | $31/2^{+}$                             | 2680.0           | $27/2^{+}$                             |       |                                                                                            |
| 403.20 <sup>@</sup> 10              | 13.1 12                        | 2802.5           | 29/2+                                  | 2399.3           | $25/2^{+}$                             |       |                                                                                            |
| 404.7 10                            | 1.1 3                          | 6906.2           | 53/2-                                  | 6501.4           | 51/2                                   |       |                                                                                            |
| 407.4 10                            | 5.0 <sup>#</sup> 19            | 3486.2           | 31/2+                                  | 3078.8           | 27/2+                                  |       |                                                                                            |
| 410.21 11                           | 4.5 4                          | 7583.3           | 59/2+                                  | 7173.0           | 57/2+                                  |       |                                                                                            |
| 410.9 <sup>b</sup> 10<br>410.9 10   | 0.5 <sup>#</sup> 4<br>1.5 3    | 4368.7<br>7389.8 | 37/2 <sup>+</sup><br>57/2 <sup>+</sup> | 3957.8<br>6978.9 | 35/2 <sup>+</sup><br>55/2 <sup>+</sup> |       |                                                                                            |
| 411.55 <sup>@</sup> 10              | 8.5 9                          | 5915.7           | 51/2                                   | 5503.9           | 49/2-                                  |       |                                                                                            |
| 414.0 10                            | 0.5 3                          | 7131.9           | 55/2+                                  | 6718.0           | 53/2+                                  |       |                                                                                            |
| 417.20 <sup>@</sup> 10              | 6.7 8                          | 6332.9           | 53/2-                                  | 5915.7           | 51/2-                                  |       |                                                                                            |
| 417.5 10                            | 0.7 4                          | 7034.2           | 55/2 <sup>-</sup>                      | 6616.7           | 53/2 <sup>-</sup>                      |       |                                                                                            |
| 417.8 <i>10</i><br>426.45 <i>14</i> | 10.6 <i>14</i><br>3.5 <i>4</i> | 641.3<br>8010.0  | 11/2 <sup>+</sup><br>61/2 <sup>+</sup> | 223.4<br>7583.3  | 7/2 <sup>+</sup><br>59/2 <sup>+</sup>  |       |                                                                                            |
| 426.8 3                             | 18 <sup>#</sup> 3              | 2514.0           | 25/2 <sup>+</sup>                      | 2087.3           | 21/2+                                  | (Q)   | DCO=0.84 12 (1999Do34)                                                                     |
|                                     | 10 5                           | 2314.0           | 23/2                                   | 2007.3           | 21/2                                   | (Q)   | $I_{\gamma}$ : $I_{\gamma}(427)/I_{\gamma}(386)=12.5 \ 19/100 \ (1999Do34).$               |
| 426.95 <sup>@</sup> 10              | 37.8 26                        | 2103.2           | 25/2-                                  | 1676.2           | $23/2^{-}$                             |       |                                                                                            |
| 428.44 <sup>@</sup> 10              | 24.2 19                        | 3550.6           | $37/2^{-}$                             | 3122.2           | $33/2^{-}$                             |       |                                                                                            |
| 431.4 10                            | 0.4 3                          | 7465.6           | 57/2-                                  | 7034.2           | 55/2-                                  |       |                                                                                            |
| 431.4 10                            | 1.2 3                          | 8667.5           | 63/2+                                  | 8236.2           | 61/2+                                  |       |                                                                                            |
| 436.6 10                            | 0.4 3                          | 7902.2           | 59/2-                                  | 7465.6           | 57/2-                                  |       |                                                                                            |
| 440.61 <sup>@</sup> 10<br>441.3 10  | 14.4 <i>15</i><br>2.8 <i>5</i> | 2747.1<br>3570.9 | 29/2 <sup>-</sup><br>35/2 <sup>+</sup> | 2306.4<br>3129.8 | 27/2-                                  |       |                                                                                            |
| 441.54 <sup>@</sup> 10              | 2.8 <i>3</i><br>27.0 <i>21</i> | 3244.0           | 33/2 <sup>+</sup>                      | 2802.5           | 31/2 <sup>+</sup><br>29/2 <sup>+</sup> |       |                                                                                            |
| 443.8 10                            | 1.0 5                          | 7350.0           | 55/2 <sup>-</sup>                      | 6906.2           | 53/2 <sup>-</sup>                      |       |                                                                                            |
| 444.35 <sup>@</sup> 10              | 44 3                           | 753.7            | 13/2+                                  | 309.3            | 9/2 <sup>+</sup>                       |       |                                                                                            |
| 444.6 10                            | 0.60# 20                       | 4936.8           | 41/2+                                  | 4492.1           | 39/2 <sup>+</sup>                      |       |                                                                                            |
| 445.30 <sup>@</sup> 10              | 37.4 21                        | 936.2            | $17/2^{-}$                             | 490.9            | 13/2                                   |       |                                                                                            |
| 446.6 10                            | 1.0 6                          | 6005.0           | 49/2 <sup>+</sup>                      | 5558.3           | 47/2 <sup>+</sup>                      |       |                                                                                            |
| 446.91 <sup>@</sup> 10              | 22.9 25                        | 967.58           | 13/2+                                  | 520.64           |                                        | (Q)   | DCO=0.82 18 (1999Do34)                                                                     |
| 447.9 <sup>@</sup> 10               | 2.3 6                          | 8458.3           | 63/2+                                  | 8010.0           | 61/2+                                  | (4)   |                                                                                            |
| 448.8 10                            | 0.4 4                          | 7954.7           | 59/2 <sup>+</sup>                      | 7505.8           | 57/2 <sup>+</sup>                      |       |                                                                                            |
| 450.30 <i>10</i>                    | 96 <sup>#</sup> 9              | 3350.6           | 33/2+                                  | 2900.3           | 29/2+                                  |       |                                                                                            |
| 452.0 10                            | 1.3 3                          | 8236.2           | 61/2+                                  | 7784.2           | 59/2 <sup>+</sup>                      |       |                                                                                            |
| 453.9 <sup>b</sup> 10               | 0.20 <sup>#</sup> 20           | 1738.9           | 13/2+                                  | 1285.0?          | $(13/2^+)$                             |       |                                                                                            |
|                                     |                                |                  |                                        |                  | •                                      |       |                                                                                            |

| $E_{\gamma}^{\dagger}$                           | $I_{\gamma}^{\ddagger}$        | $E_i(level)$       | $\mathbf{J}_i^{\pi}$                   | $\mathbb{E}_f$    | $\mathbf{J}_f^{\pi}$                   | Mult.     | δ                            | Comments                                                                                                                                                      |
|--------------------------------------------------|--------------------------------|--------------------|----------------------------------------|-------------------|----------------------------------------|-----------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 456.0 10                                         | 8.5 9                          | 6788.8             | 55/2-                                  | 6332.9            | 53/2-                                  |           |                              |                                                                                                                                                               |
| 456.2 <i>10</i><br>456.8 <i>10</i>               | 0.20 <i>10</i><br>1.2 <i>6</i> | 9707.7<br>7245.7   | 67/2 <sup>-</sup><br>57/2 <sup>-</sup> | 9251.6<br>6788.8  | 65/2 <sup>-</sup><br>55/2 <sup>-</sup> |           |                              |                                                                                                                                                               |
| 461.0 <i>10</i>                                  | 8.8 18                         | 874.2              | 13/2+                                  | 413.3             | 9/2+                                   |           |                              |                                                                                                                                                               |
| 462.66 <sup>@</sup> 10                           | 3.1 11                         | 3322.7             | 33/2 <sup>+</sup>                      | 2860.1            | 29/2 <sup>+</sup>                      |           |                              |                                                                                                                                                               |
| 462.7 <i>10</i><br>467.7 <i>10</i>               | 0.5 <i>3</i> 2.5 <i>6</i>      | 7812.7<br>8925.8   | 57/2 <sup>-</sup><br>65/2 <sup>+</sup> | 7350.0<br>8458.3  | 55/2 <sup>-</sup><br>63/2 <sup>+</sup> |           |                              |                                                                                                                                                               |
| 470.63 <sup>@</sup> 10                           | 79 6                           | 1114.1             | 19/2-                                  | 643.6             | $15/2^{-}$                             |           |                              |                                                                                                                                                               |
| 471.3 10                                         | 0.8 4                          | 9624.3             | $67/2^{+}$                             | 9153.0            | $65/2^{+}$                             |           |                              |                                                                                                                                                               |
| 471.60 <i>17</i>                                 | 10.6 <sup>#</sup> 7            | 3957.8             | 35/2+                                  | 3486.2            | 31/2+                                  |           |                              |                                                                                                                                                               |
| 474.73 <sup>@</sup> 10                           | 16.9 <i>14</i>                 | 2613.4             | 27/2+                                  | 2138.6            | 23/2+                                  | 0.61 (FO) | 2 ( 10 10                    | N. I. C. J. (250) T. (200) . 0.40.10                                                                                                                          |
| 475.9 10                                         | 0.70# 20                       | 5563.7             | 45/2+                                  | 5087.9            | 43/2+                                  | (M1+E2)   | -3.6 + <i>10</i> - <i>19</i> | Mult., $\delta$ : $I\gamma(25^\circ)/I\gamma(90^\circ)=0.49$ 10 (2002Je10); $\delta$ =-0.19 +8-12 is also possible but less likely from model considerations. |
| 477.3 10                                         | 0.5 4                          | 8290.0             | 59/2-                                  | 7812.7            | 57/2-                                  |           |                              |                                                                                                                                                               |
| 479.5 <sup>b</sup> 10                            | 0.9 8                          | 2487.5             | 25/2+                                  | 2008.0            | 21/2+                                  |           |                              |                                                                                                                                                               |
| 479.68 <sup>@</sup> 10<br>481.7 10               | 26.2 22<br>2.0 7               | 3482.7<br>9407.6   | 35/2 <sup>+</sup><br>67/2 <sup>+</sup> | 3002.9<br>8925.8  | 31/2 <sup>+</sup><br>65/2 <sup>+</sup> |           |                              |                                                                                                                                                               |
| 482.4 10                                         | 0.5 4                          | 7728.0             | 59/2-                                  | 7245.7            | 57/2-                                  |           |                              |                                                                                                                                                               |
| 485.5 10                                         | 1.0 4                          | 9153.0             | 65/2+                                  | 8667.5            | 63/2+                                  | (0)       |                              | D. G. C. T. (1000D - 01)                                                                                                                                      |
| 486.00 <sup>@</sup> 10<br>487.69 <sup>@</sup> 10 | 15.8 20                        | 1106.5             | 15/2 <sup>+</sup>                      | 620.6             | 11/2+                                  | (Q)       |                              | DCO=0.78 11 (1999Do34)                                                                                                                                        |
| 487.69 10                                        | 63 <i>5</i><br>0.5 <i>4</i>    | 1007.0<br>8712.3   | 15/2 <sup>+</sup><br>63/2 <sup>-</sup> | 519.3<br>8221.5   | 11/2 <sup>+</sup><br>61/2 <sup>-</sup> |           |                              |                                                                                                                                                               |
| 493.5 10                                         | 0.5 4                          | 8221.5             | 61/2                                   | 7728.0            | 59/2-                                  |           |                              |                                                                                                                                                               |
| 493.68 <sup>@</sup> 10                           | 4.9 7                          | 3570.9             | 35/2+                                  | 3077.2            | 31/2+                                  |           |                              |                                                                                                                                                               |
| 496.72 <i>19</i><br>499.1 <i>10</i>              | 3.4 8<br>0.4 <i>3</i>          | 2773.0<br>8789.1   | 27/2 <sup>+</sup><br>61/2 <sup>-</sup> | 2276.3<br>8290.0  | 23/2 <sup>+</sup><br>59/2 <sup>-</sup> |           |                              |                                                                                                                                                               |
| 501.93 <sup>@</sup> 10                           | 26.0 19                        | 3821.5             | 39/2-                                  | 3319.6            | 35/2                                   |           |                              |                                                                                                                                                               |
| 505.0 10                                         | 2.0 4                          | 3634.7             | $35/2^{+}$                             | 3129.8            | 31/2+                                  |           |                              |                                                                                                                                                               |
| 505.5 10                                         | 2.6 <sup>#</sup> 10            | 4368.7             | 37/2+                                  | 3863.2            | 33/2+                                  |           |                              |                                                                                                                                                               |
| 505.8 <i>10</i><br>508.0 <i>10</i>               | 3.9 <sup>#</sup> 20<br>0.5 3   | 2514.0<br>9915.6   | 25/2 <sup>+</sup><br>69/2 <sup>+</sup> | 2008.0<br>9407.6  | 21/2 <sup>+</sup><br>67/2 <sup>+</sup> |           |                              |                                                                                                                                                               |
| 510.1 <i>10</i>                                  | 0.3 3<br>7.9 8                 | 2613.4             | 27/2 <sup>+</sup>                      | 2103.2            | $\frac{67/2}{25/2^{-}}$                |           |                              |                                                                                                                                                               |
| 510.2 10                                         | 7.1 12                         | 1151.4             | $15/2^{+}$                             | 641.3             | 11/2+                                  |           |                              |                                                                                                                                                               |
| 511.6 <i>10</i><br>513.0 <i>10</i>               | 0.5 <i>4</i><br>0.5 <i>3</i>   | 10427.1<br>10137.4 | 71/2 <sup>+</sup><br>69/2 <sup>+</sup> | 9915.6<br>9624.3  | 69/2 <sup>+</sup><br>67/2 <sup>+</sup> |           |                              |                                                                                                                                                               |
| 515.0 10                                         | 0.5 5                          | 10652.4            | $71/2^{+}$                             | 10137.4           | 69/2+                                  |           |                              |                                                                                                                                                               |
| 515.30 <i>10</i>                                 | 87 <sup>#</sup> 8              | 3865.9             | $37/2^{+}$                             | 3350.6            | $33/2^{+}$                             |           |                              |                                                                                                                                                               |
| 522.0 <i>10</i><br>527.0 <i>10</i>               | 3.8 <i>9</i><br>0.4 <i>3</i>   | 4830.0<br>11504.2  | 41/2 <sup>-</sup><br>75/2 <sup>+</sup> | 4308.1<br>10977.2 | 37/2 <sup>-</sup><br>73/2 <sup>+</sup> |           |                              |                                                                                                                                                               |
| 527.0 10<br>527.77 <sup>@</sup> 10               | 40 <i>4</i>                    | 1281.3             | 17/2 <sup>+</sup>                      | 753.7             | 13/2 <sup>+</sup>                      |           |                              |                                                                                                                                                               |
| 529.8 10                                         | 0.5# 4                         | 2199.2             | 21/2+                                  | 1669.5            | 19/2+                                  | (D)       |                              | DCO=0.97 14 (1999Do34)<br>I <sub>γ</sub> : I <sub>γ</sub> (530)/I <sub>γ</sub> (386)=5.4 8/100<br>(1999Do34).                                                 |
| 532.82 <sup>@</sup> 10                           | 12.7 12                        | 2399.3             | 25/2+                                  | 1866.6            | $21/2^{+}$                             |           |                              |                                                                                                                                                               |
| 533.81 <sup>@</sup> 10                           | 13.9 18                        | 1501.4             | 17/2+                                  | 967.58            |                                        | (Q)       |                              | DCO=0.85 12 (1999Do34)                                                                                                                                        |
| 534.3 <i>10</i><br>537.3 <i>10</i>               | 11.5 <sup>#</sup> 8<br>2.1 5   | 4492.1             | 39/2 <sup>+</sup><br>43/2 <sup>-</sup> | 3957.8            | 35/2 <sup>+</sup>                      |           |                              |                                                                                                                                                               |
| 537.3 10 539.2 10                                | 2.1 3<br>0.4 <i>3</i>          | 5114.9<br>9251.6   | 43/2<br>65/2 <sup>-</sup>              | 4577.7<br>8712.3  | 39/2 <sup>-</sup><br>63/2 <sup>-</sup> |           |                              |                                                                                                                                                               |
| 541.4 10                                         | 1.00 10                        | 2680.0             | 27/2+                                  | 2138.6            | 23/2+                                  |           |                              |                                                                                                                                                               |

| $\mathrm{E}_{\gamma}^{\dagger}$    | $I_{\gamma}^{\ddagger}$      | $E_i(level)$     | $\mathbf{J}_i^{\pi}$                   | $\mathbf{E}_f$   | $\mathbf{J}_f^{\boldsymbol{\pi}}$ | Mult.   | δ      | Comments                                                                       |
|------------------------------------|------------------------------|------------------|----------------------------------------|------------------|-----------------------------------|---------|--------|--------------------------------------------------------------------------------|
| 541.8 10                           | 9.2 14                       | 1416.0           | 17/2+                                  | 874.2            | 13/2+                             |         |        |                                                                                |
| 544.72 <sup>@</sup> 10             | 23.5 18                      | 3788.7           | 37/2+                                  | 3244.0           |                                   |         |        |                                                                                |
| 545.9 10                           | 13.6 16                      | 2684.5           | $27/2^{+}$                             | 2138.6           |                                   |         |        |                                                                                |
| 548.49 <sup>@</sup> 10             | 29.5 22                      | 1484.6           | $21/2^{-}$                             | 936.2            | $17/2^{-}$                        |         |        |                                                                                |
| 550.1 10                           | 0.5 4                        | 10977.2          | $73/2^{+}$                             | 10427.1          | $71/2^{+}$                        |         |        |                                                                                |
| 552.09 <sup>@</sup> 10             | 33.8 25                      | 4102.7           | $41/2^{-}$                             | 3550.6           | $37/2^{-}$                        |         |        |                                                                                |
| 553.85 <sup>@</sup> 10             | 73 5                         | 1560.9           | $19/2^{+}$                             | 1007.0           |                                   |         |        |                                                                                |
| 557.4 10                           | 2.5 6                        | 3634.7           | 35/2+                                  | 3077.2           |                                   |         |        |                                                                                |
| 560.6 10                           | 2.3 4                        | 4555.4           | 41/2-                                  | 3994.8           |                                   |         |        |                                                                                |
| 562.00 (a) 10                      | 117 8                        | 1676.2           | 23/2-                                  | 1114.1           |                                   |         |        |                                                                                |
| 562.96 <i>10</i> 563.4 <i>10</i>   | 16.4 22<br>2.0 5             | 1669.5<br>3417.6 | 19/2 <sup>+</sup><br>33/2 <sup>-</sup> | 1106.5<br>2854.2 |                                   |         |        |                                                                                |
| 564.8 10                           | 5.3 <sup>#</sup> 20          | 3078.8           | 27/2 <sup>+</sup>                      | 2514.0           |                                   |         |        |                                                                                |
| 568.0 10                           | 3.2 <sup>#</sup> 6           | 4936.8           | 41/2+                                  | 4368.7           |                                   |         |        |                                                                                |
| 568.6 10                           | 0.9 3                        | 3891.4           | 37/2+                                  | 3322.7           |                                   |         |        |                                                                                |
| 577.2 10                           | 3.8 6                        | 3994.8           | 37/2-                                  | 3417.6           |                                   |         |        |                                                                                |
| 577.7 10                           | 2.7 15                       | 1729.1           | 19/2+                                  | 1151.4           | $15/2^{+}$                        |         |        |                                                                                |
| 577.73 <sup>@</sup> 10             | 61 5                         | 2138.6           | $23/2^{+}$                             | 1560.9           | $19/2^{+}$                        |         |        |                                                                                |
| 578.65 10                          | 79 <sup>#</sup> 8            | 4444.6           | $41/2^{+}$                             | 3865.9           | $37/2^{+}$                        |         |        |                                                                                |
| 578.71 <sup>@</sup> 10             | 18.2 23                      | 4149.7           | $39/2^{+}$                             | 3570.9           | $35/2^{+}$                        |         |        |                                                                                |
| 581.2 10                           | 1.8 10                       | 2684.5           | $27/2^{+}$                             | 2103.2           | $25/2^{-}$                        |         |        |                                                                                |
| 584.45 <sup>@</sup> 10             | 36 <i>3</i>                  | 4067.1           | $39/2^{+}$                             | 3482.7           | $35/2^{+}$                        |         |        |                                                                                |
| 585.17 <sup>@</sup> 10             | 35 <i>3</i>                  | 1866.6           | $21/2^{+}$                             | 1281.3           |                                   |         |        |                                                                                |
| 585.86 <i>17</i>                   | 18.3 21                      | 2087.3           | 21/2+                                  | 1501.4           |                                   |         |        |                                                                                |
| 585.9 <i>10</i>                    | 7.2 <sup>#</sup> 25          | 3486.2           | 31/2+                                  | 2900.3           |                                   |         |        |                                                                                |
| 586.0 <i>10</i><br>588.4 <i>10</i> | 5.3 8<br>3.2 8               | 4252.7<br>5418.3 | 39/2 <sup>-</sup><br>45/2 <sup>-</sup> | 3666.7<br>4830.0 |                                   |         |        |                                                                                |
| 592.0 10                           | 2.8 8                        | 2008.0           | 21/2+                                  | 1416.0           |                                   |         |        |                                                                                |
| 595.2 10                           | 3.0 5                        | 4847.8           | 43/2-                                  | 4252.7           |                                   |         |        |                                                                                |
| 595.8 10                           | 12.0 <sup>#</sup> 8          | 5087.9           | 43/2+                                  | 4492.1           |                                   |         |        |                                                                                |
| 603.5 10                           | 6.0 10                       | 2019.5           | $21/2^{+}$                             | 1416.0           | 17/2+                             |         |        |                                                                                |
| 606.85 <sup>@</sup> 10             | 9.7 14                       | 2276.3           | $23/2^{+}$                             | 1669.5           | $19/2^{+}$                        |         |        |                                                                                |
| 607.1 10                           | 8.8 <sup>#</sup> 6           | 3957.8           | $35/2^{+}$                             | 3350.6           | $33/2^{+}$                        | (E2+M1) | -3.14  | Mult., $\delta$ : from I $\gamma(25^{\circ})$ /I $\gamma(90^{\circ})$ =0.42 2, |
|                                    |                              |                  |                                        |                  |                                   |         |        | DCO=0.34 6, POL=+0.05 5                                                        |
|                                    |                              |                  |                                        |                  |                                   |         |        | (2002Je05,2001Od03).                                                           |
| 608.77 <sup>@</sup> 10<br>609.6 10 | 23.8 19                      | 4430.2           | 43/2-                                  | 3821.5           |                                   |         |        |                                                                                |
| 612.1 10                           | 0.8 <i>7</i><br>2.1 <i>4</i> | 2338.6<br>5167.6 | 23/2 <sup>+</sup><br>45/2 <sup>-</sup> | 1729.1<br>4555.4 |                                   |         |        |                                                                                |
| 616.17 <sup>@</sup> 10             | 27.7 22                      | 4404.8           | 41/2+                                  | 3788.7           |                                   |         |        |                                                                                |
| 617.48 <sup>@</sup> 10             | 86 6                         | 2923.8           | 31/2                                   | 2306.4           |                                   |         |        |                                                                                |
| 618.72 <sup>@</sup> 10             | 39 <i>3</i>                  | 2103.2           | $25/2^{-}$                             | 1484.6           |                                   |         |        |                                                                                |
| 619.8 10                           | 2.5 12                       | 4254.5           | 39/2 <sup>+</sup>                      | 3634.7           |                                   |         |        |                                                                                |
| 620.9 10                           | 10.7 14                      | 2487.5           | 25/2 <sup>+</sup>                      | 1866.6           |                                   |         |        |                                                                                |
| 626.2 10                           | 5.6 <sup>#</sup> 4           | 4492.1           | 39/2+                                  | 3865.9           |                                   | (E2+M1) | -3.1 4 | Mult., $\delta$ : from I $\gamma$ (25°)/I $\gamma$ (90°)=0.47 2,               |
|                                    |                              |                  | •                                      |                  | •                                 | . ,     |        | DCO=0.33 6, POL=+0.12 5                                                        |
|                                    | n n                          |                  |                                        |                  |                                   |         |        | (2002Je05,2001Od03).                                                           |
| 626.8 10                           | 5.1 <sup>#</sup> <i>10</i>   | 5563.7           | 45/2+                                  | 4936.8           | •                                 |         |        |                                                                                |
| 630.14 <sup>@</sup> 10             | 100 5                        | 2306.4           | 27/2-                                  | 1676.2           |                                   |         |        |                                                                                |
| 636.8 10                           | 3.8 8                        | 4528.4           | 41/2+                                  | 3891.4           |                                   |         |        |                                                                                |
| 638.96 10                          | 63 <sup>#</sup> 6            | 5083.5           | 45/2 <sup>+</sup>                      | 4444.6           | 41/2+                             |         |        |                                                                                |
|                                    |                              |                  |                                        |                  |                                   |         |        |                                                                                |

| $E_{\gamma}^{\dagger}$              | ${\rm I}_{\gamma}^{ \ddagger}$  | $E_i$ (level)    | $\mathbf{J}_i^{\pi}$                   | $\mathbf{E}_f$ .         | $\mathbf{J}_f^{\pi}$ Mult. | δ      | Comments                                                                                                                           |
|-------------------------------------|---------------------------------|------------------|----------------------------------------|--------------------------|----------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------|
| 640.7 10                            | 3.4 9                           | 5755.8           | 47/2-                                  | 5114.9 43/               | /2-                        |        | -                                                                                                                                  |
| 643.3 10                            | 4.3 <sup>#</sup> 3              | 5087.9           | 43/2+                                  | 4444.6 41,               | $/2^{+}$ (E2+M1            | -3.1 4 | Mult.,δ: from DCO=0.32 6, POL=+0.11 5 (2002Je05,2001Od03).                                                                         |
| 643.81 <sup>@</sup> 10              | 21.0 18                         | 2747.1           | 29/2-                                  | 2103.2 25/               | 7/2-                       |        | ,                                                                                                                                  |
| 645.0 10                            | 1.5 <sup>#</sup> 4              | 6964.5           | $51/2^{(-)}$                           | 6319.5 47                | $1/2^{(-)}$                |        |                                                                                                                                    |
| 646.3 10                            | 22 3                            | 3666.7           | $35/2^{-}$                             | 3020.3 31/               |                            |        |                                                                                                                                    |
| 647.2 10                            | 2.1 4                           | 5495.0           | 47/2-                                  | 4847.8 43/               |                            |        |                                                                                                                                    |
| 648.5 10                            | 3.0 8                           | 4903.0           | 43/2+                                  | 4254.5 39/               |                            |        |                                                                                                                                    |
| 651.30 <sup>@</sup> 10<br>652.59 21 | 46 <i>3</i> 31.4 <i>24</i>      | 4718.6           | 43/2 <sup>+</sup><br>45/2 <sup>+</sup> | 4067.1 39,<br>4404.8 41, |                            |        | $E_{\gamma}$ : Poor fit. Level-energy difference=651.6.                                                                            |
| 653.4 10                            | 2.1 5                           | 5056.4<br>5556.3 | 43/2<br>47/2 <sup>+</sup>              | 4903.0 43                |                            |        | $E_{\gamma}$ : Poor III. Level-energy difference=051.6.                                                                            |
| 653.8 10                            | 9.3 12                          | 2138.6           | 23/2+                                  | 1484.6 21,               |                            |        |                                                                                                                                    |
| 654.6 10                            | 14.0 <sup>#</sup> 9             | 5742.5           | 47/2+                                  | 5087.9 43                |                            |        |                                                                                                                                    |
| 655.4 10                            | 0.8 5                           | 5558.3           | 47/2+                                  | 4903.0 43                |                            |        |                                                                                                                                    |
| 656.60 <sup>@</sup> 10              | 22.2 18                         | 4759.5           | $45/2^{-}$                             | 4102.7 41,               | /2-                        |        |                                                                                                                                    |
| 658.8 10                            | 0.5 5                           | 5418.3           | 45/2-                                  | 4759.5 45/               | /2-                        |        |                                                                                                                                    |
| 658.9 10                            | 3.4 <sup>#</sup> 3              | 5742.5           | 47/2+                                  | 5083.5 45/               | $1/2^{+}$ (E2+M1)          | -3.1 4 | Mult., $\delta$ : from I $\gamma$ (25°)/I $\gamma$ (90°)=0.47 2,<br>DCO=0.30 $\delta$ , POL=+0.17 $\theta$<br>(2002Je05,2001Od03). |
| 662.85 <sup>@</sup> 10              | 17.5 20                         | 5719.0           | 49/2 <sup>+</sup>                      | 5056.4 45/               | 7/2+                       |        |                                                                                                                                    |
| 666.3 10                            | 4.0 15                          | 2227.2           | $23/2^{+}$                             | 1560.9 19                | /2+                        |        |                                                                                                                                    |
| 666.54 <sup>@</sup> 10              | 11.9 <i>14</i>                  | 4816.1           | $43/2^{+}$                             | 4149.7 39/               | /2+                        |        |                                                                                                                                    |
| 667.97 <sup>@</sup> 10              | 22.5 22                         | 5386.8           | $47/2^{+}$                             | 4718.6 43/               |                            |        |                                                                                                                                    |
| 670.7 10                            | 5.0 8                           | 3417.6           | 33/2-                                  | 2747.1 29/               | •                          |        |                                                                                                                                    |
| 673.2 10                            | 3.4 <sup>#</sup> 10             | 6453.7           | 51/2+                                  | 5780.5 49                | )/2 <sup>+</sup> (E2+M1    | -3.1 4 | Mult.,δ: from Iγ(25°)/Iγ(90°)=0.46 2,<br>DCO=0.38 6, POL=+0.18 9<br>(2002Je05,2001Od03).                                           |
| 677.14 <sup>@</sup> <i>10</i>       | 14.7 15                         | 6064.2           | 51/2+                                  | 5386.8 47                |                            |        |                                                                                                                                    |
| 680.1 <i>10</i>                     | 1.7 5                           | 5208.5           | 45/2+                                  | 4528.4 41,               |                            |        |                                                                                                                                    |
| 680.7 10                            | 1.4 11                          | 2409.7           | 21/2+                                  | 1729.1 19/               |                            |        |                                                                                                                                    |
| 683.6 <sup>b</sup> 10               | 1.2 8                           | 4254.5           | 39/2 <sup>+</sup>                      | 3570.9 35/               |                            |        | I (25%)/I (00%) 1.72 25 (2004I 02)                                                                                                 |
| 684.3 10                            | 0.5 4                           | 5114.9           | 43/2-                                  | 4430.2 43                | /2                         |        | $I\gamma(25^{\circ})/I\gamma(90^{\circ})=1.73\ 35\ (2004Je03).$<br>Mult.: $\Delta J=0$ transition.                                 |
| 684.3 10                            | 1.7 4                           | 5851.9           | 49/2-                                  | 5167.6 45                | 1/2-                       |        | with $\Delta J = 0$ transition.                                                                                                    |
| 685.1 <i>10</i>                     | 6.2 <sup>#</sup> 12             | 6248.8           | 49/2+                                  | 5563.7 45                |                            |        |                                                                                                                                    |
| 686.8 10                            | 1.0 8                           | 6245.3           | 51/2+                                  | 5558.3 47                |                            |        |                                                                                                                                    |
| 686.8 10                            | 1.7 <sup>#</sup> 5              | 7219.9           | 55/2 <sup>+</sup>                      | 6533.1 53/               | /2+                        |        |                                                                                                                                    |
| 688.5 10                            | 1.6 7                           | 5897.1           | $49/2^{+}$                             | 5208.5 45                |                            |        |                                                                                                                                    |
| 688.7 10                            | 4.8 12                          | 6106.9           | 49/2-                                  | 5418.3 45/               |                            |        |                                                                                                                                    |
| 689.1 <i>10</i><br>694.96 <i>10</i> | 5.8 <i>13</i><br>16.4 <i>17</i> | 6245.3<br>6414.0 | 51/2 <sup>+</sup><br>53/2 <sup>+</sup> | 5556.3 47,<br>5719.0 49, |                            |        |                                                                                                                                    |
| 696.97 11                           | 48 <sup>#</sup> 5               | 5780.5           | 49/2 <sup>+</sup>                      | 5083.5 45                |                            |        |                                                                                                                                    |
| 697.8 10                            | 1.8 <sup>#</sup> 10             | 2199.2           | 49/2<br>21/2 <sup>+</sup>              | 1501.4 17                | •                          |        | I . I. (607)/I. (296) - 22 5/100 (1000D 224)                                                                                       |
| 097.8 10                            | 1.8" 10                         | 2199.2           | 21/2                                   | 1301.4 17                | 12.                        |        | $I_{\gamma}$ : $I_{\gamma}(697)/I_{\gamma}(386)=23$ 5/100 (1999Do34) for an unresolved 697 peak.                                   |
| 700.67 <sup>@</sup> 10              | 15.3 14                         | 5130.6           | $47/2^{-}$                             | 4430.2 43/               | /2-                        |        | -                                                                                                                                  |
| 701.1 <i>10</i>                     | 1.1 <sup>#</sup> 4              | 8039.8           | 59/2+                                  | 7338.7 57                |                            |        |                                                                                                                                    |
| 702.2 10                            | 2.5 <sup>#</sup> 16             | 7666.7           | 55/2 <sup>(-)</sup>                    | 6964.5 51                |                            |        |                                                                                                                                    |
| 706.9 10                            | 0.8 7                           | 2435.9           | 23/2+                                  | 1729.1 19                |                            |        |                                                                                                                                    |
| 711.2 10                            | 13.4 <sup>#</sup> 20            | 6453.7           | 51/2+                                  | 5742.5 47                |                            |        |                                                                                                                                    |
| 713.0 10                            | 0.7 4                           | 6718.0           | 53/2+                                  | 6005.0 49/               |                            |        |                                                                                                                                    |
| 713.8 10                            | 1.0 6                           | 5242.2           | 45/2 <sup>+</sup>                      | 4528.4 41,               | [2]                        |        |                                                                                                                                    |
|                                     |                                 |                  |                                        |                          |                            |        |                                                                                                                                    |

| $\mathrm{E}_{\gamma}^{\dagger}$                  | $I_{\gamma}^{\ddagger}$                   | $E_i$ (level)    | $\mathbf{J}_i^{\pi}$                   | $\mathbf{E}_f$   | $\mathbf{J}_f^{\pi}$ | Mult.  | Comments                                                                                                                                                                                                                                                |
|--------------------------------------------------|-------------------------------------------|------------------|----------------------------------------|------------------|----------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 714.0 10                                         | 22 3                                      | 3020.3           | 31/2-                                  | 2306.4           | 27/2-                |        |                                                                                                                                                                                                                                                         |
| 716.3 10                                         | 0.6 <sup>#</sup> 3                        | 8912.7           | 63/2+                                  | 8196.4           |                      |        |                                                                                                                                                                                                                                                         |
| 718.4 10                                         | 1.5 4                                     | 6615.4           | 53/2+                                  | 5897.1           |                      |        |                                                                                                                                                                                                                                                         |
| 723.1 10                                         | 13.7 13                                   | 2399.3           | 25/2 <sup>+</sup>                      | 1676.2           |                      |        |                                                                                                                                                                                                                                                         |
| 723.69 <sup>@</sup> 10<br>727.3 10               | 14.0 <i>14</i> 2.5 <i>5</i>               | 6787.7<br>4830.0 | 55/2 <sup>+</sup><br>41/2 <sup>-</sup> | 6064.2<br>4102.7 |                      | (M1)   | DCO=0.99 18, POL= $-0.22$ 4, $I\gamma(25^{\circ})/I\gamma(90^{\circ})=1.61$ 31                                                                                                                                                                          |
| 727.3 10                                         | 2.3 3                                     | 1030.0           | 11/2                                   | 1102.7           | 11/2                 | (1411) | (2004Je03).                                                                                                                                                                                                                                             |
| 727.3 10                                         | 1.6 4                                     | 6222.3           | 51/2-                                  | 5495.0           | 47/2-                |        | Mult.: $\Delta J=0$ transition.<br>$E_{\gamma}$ : 1999Do34 erroneously placed this $\gamma$ from 43/2 <sup>-</sup> member of this band defining a level At 4981.                                                                                        |
| 733.5 10                                         | 1.4 3                                     | 6978.9           | 55/2+                                  | 6245.3           |                      |        |                                                                                                                                                                                                                                                         |
| 740.0 10                                         | 3.1 <i>5</i><br>4.7 <sup>#</sup> <i>9</i> | 5556.3           | 47/2 <sup>+</sup>                      | 4816.1           |                      |        |                                                                                                                                                                                                                                                         |
| 741.2 <i>10</i><br>742.20 <sup>@</sup> <i>10</i> | 4.7" 9<br>4.7 9                           | 6990.0           | 53/2 <sup>+</sup><br>47/2 <sup>+</sup> | 6248.8<br>4816.1 | -                    |        |                                                                                                                                                                                                                                                         |
| 742.5 10                                         | 3.2 8                                     | 5558.3<br>2227.2 | 23/2 <sup>+</sup>                      | 1484.6           |                      |        |                                                                                                                                                                                                                                                         |
| 742.9 10                                         | 8.1 12                                    | 3666.7           | 35/2-                                  | 2923.8           |                      |        |                                                                                                                                                                                                                                                         |
| 744.31 <sup>@</sup> <i>10</i>                    | 18.7 <i>15</i>                            | 5503.9           | $49/2^{-}$                             | 4759.5           |                      |        |                                                                                                                                                                                                                                                         |
| 745.7 <i>10</i><br>751.2 <i>10</i>               | 6.6 17                                    | 6501.4           | 51/2-                                  | 5755.8           |                      |        |                                                                                                                                                                                                                                                         |
| 751.2 10<br>752.61 10                            | 6.2 <i>12</i><br>37 <sup>#</sup> <i>4</i> | 2854.2<br>6533.1 | 29/2 <sup>-</sup><br>53/2 <sup>+</sup> | 2103.2<br>5780.5 |                      |        |                                                                                                                                                                                                                                                         |
| 754.6 10                                         | 3.0 <sup>#</sup> 15                       | 8421.3           | 59/2 <sup>(-)</sup>                    | 7666.7           |                      |        |                                                                                                                                                                                                                                                         |
| 756.4 10                                         | 3.9 9                                     | 4577.7           | 39/2                                   | 3821.5           |                      | (M1)   | DCO=1.22 24; POL=-0.12 3 for 757.6+756.4 (2004Je03).                                                                                                                                                                                                    |
| 757.6 10                                         | 5.6 4                                     | 4308.1           | 37/2-                                  | 3550.6           | 37/2-                | (M1)   | I $\gamma$ (25°)/I $\gamma$ (90°)=1.68 34 for doublet (2004Je03).<br>Mult.: ΔJ=0 transition.<br>DCO=1.22 24; POL=-0.12 3 for 757.6+756.4<br>(2004Je03).<br>I $\gamma$ (25°)/I $\gamma$ (90°)=1.68 34 for doublet (2004Je03).<br>Mult.: ΔJ=0 transition. |
| 758.85 12                                        | 10.0 11                                   | 7173.0           | 57/2+                                  | 6414.0           | 53/2+                |        | Watt. 23-0 transition.                                                                                                                                                                                                                                  |
| 762.7 10                                         | 0.30 20                                   | 6005.0           | 49/2 <sup>+</sup>                      | 5242.2           |                      |        |                                                                                                                                                                                                                                                         |
| 764.9 <i>10</i><br>766.2 <i>10</i>               | 1.4 <i>4</i><br>11.1 <sup>#</sup> 20      | 6616.7<br>7219.9 | 53/2 <sup>-</sup><br>55/2 <sup>+</sup> | 5851.9<br>6453.7 |                      |        |                                                                                                                                                                                                                                                         |
| 774.5 10                                         | 2.2 3                                     | 7219.9           | 57/2 <sup>+</sup>                      | 6615.4           | ,                    |        |                                                                                                                                                                                                                                                         |
| 777.3 10                                         | 0.8 7                                     | 7131.9           | 55/2+                                  | 6354.7           | 51/2+                |        |                                                                                                                                                                                                                                                         |
| 785.18 <i>10</i>                                 | 9.3 10                                    | 5915.7           | 51/2 <sup>-</sup>                      | 5130.6           |                      |        |                                                                                                                                                                                                                                                         |
| 787.9 <i>10</i><br>795.48 <i>15</i>              | 0.5 <i>3</i><br>8.9 <i>9</i>              | 7505.8<br>7583.3 | 57/2 <sup>+</sup><br>59/2 <sup>+</sup> | 6718.0<br>6787.7 |                      |        |                                                                                                                                                                                                                                                         |
| 795.9 10                                         | 4.1 <sup>#</sup> 8                        | 7785.9           | 57/2 <sup>+</sup>                      | 6990.0           |                      |        |                                                                                                                                                                                                                                                         |
| 796.4 10                                         | 4.7 15                                    | 6005.0           | 49/2+                                  | 5208.5           | 45/2+                |        |                                                                                                                                                                                                                                                         |
| 796.4 <i>10</i><br>799.2 <i>10</i>               | 4.7 <i>9</i><br>2.6 <i>6</i>              | 6354.7<br>6906.2 | 51/2 <sup>+</sup><br>53/2 <sup>-</sup> | 5558.3<br>6106.9 |                      |        |                                                                                                                                                                                                                                                         |
| 805.3 10                                         | 3.0 4                                     | 7784.2           | 59/2 <sup>+</sup>                      | 6978.9           |                      |        |                                                                                                                                                                                                                                                         |
| 805.57 10                                        | 29 <sup>#</sup> 3                         | 7338.7           | 57/2+                                  | 6533.1           |                      |        |                                                                                                                                                                                                                                                         |
| 810.1 <i>10</i>                                  | 2.5 10                                    | 9231.4           | $63/2^{(-)}$                           | 8421.3           |                      |        |                                                                                                                                                                                                                                                         |
| 811.9 10                                         | 1.5 5                                     | 7034.2           | 55/2 <sup>-</sup>                      | 6222.3           |                      |        |                                                                                                                                                                                                                                                         |
| 819.9 <i>10</i><br>822.7 <i>10</i>               | 9.0 <sup>#</sup> <i>14</i> 0.5 <i>4</i>   | 8039.8<br>7954.7 | 59/2 <sup>+</sup><br>59/2 <sup>+</sup> | 7219.9<br>7131.9 |                      |        |                                                                                                                                                                                                                                                         |
| 822.7 10<br>823.19 <sup>@</sup> 10               | 1.3 6                                     | 7177.9           | 55/2 <sup>+</sup>                      | 6354.7           |                      |        |                                                                                                                                                                                                                                                         |
| 829.00 <sup>@</sup> 10                           | 10.4 10                                   | 6332.9           | 53/2                                   | 5503.9           |                      |        |                                                                                                                                                                                                                                                         |
| 837.45 22                                        | 7.3 7                                     | 8010.0           | $61/2^{+}$                             | 7173.0           | 57/2+                |        |                                                                                                                                                                                                                                                         |
| 846.3 10                                         | 2.3 3                                     | 8236.2           | 61/2+                                  | 7389.8           |                      |        |                                                                                                                                                                                                                                                         |
| 848.5 10                                         | 1.9 5                                     | 7350.0           | 55/2-                                  | 6501.4           | 51/2                 |        |                                                                                                                                                                                                                                                         |

| $\mathrm{E}_{\gamma}^{\dagger}$    | ${\rm I}_{\gamma}{^{\ddag}}$   | $E_i$ (level)     | $\mathbf{J}_i^{\pi}$                   | $\mathrm{E}_f$   | $\mathbf{J}^{\pi}_f$                   |
|------------------------------------|--------------------------------|-------------------|----------------------------------------|------------------|----------------------------------------|
| 848.9 10                           | 1.1 3                          | 7465.6            | 57/2-                                  | 6616.7           | 53/2-                                  |
| 849.8 10                           | 3.6 <sup>#</sup> 8             | 8635.7            | 61/2+                                  | 7785.9           | 57/2+                                  |
| 857.7 10                           | 16.9 <sup>#</sup> 23           | 8196.4            | 61/2+                                  | 7338.7           | 57/2+                                  |
| 863.38 <sup>@</sup> 10             | 1.3 6                          | 2539.7            | 25/2+                                  | 1676.2           | 23/2-                                  |
| 865.3 10                           | 2.0 <sup>#</sup> 10            | 10096.7           | $67/2^{(-)}$                           | 9231.4           | 63/2 <sup>(-)</sup>                    |
| 867.05 <sup>@</sup> 10             | 0.4 3                          | 8044.9            | 59/2 <sup>+</sup>                      | 7177.9           | 55/2+                                  |
| 868.0 10                           | 1.1 3                          | 7902.2            | 59/2-                                  | 7034.2           | 55/2-                                  |
| 872.8 10                           | 8.5 9                          | 6788.8            | 55/2-                                  | 5915.7           | $51/2^{-}$                             |
| 872.9 10                           | 6.0 <sup>#</sup> <i>14</i>     | 8912.7            | 63/2+                                  | 8039.8           | 59/2+                                  |
| 875.5 10                           | 4.5 5                          | 8458.3            | 63/2+                                  | 7583.3           | 59/2 <sup>+</sup>                      |
| 880.2 <i>10</i><br>883.4 <i>10</i> | 0.5 <i>3</i> 2.1 <i>4</i>      | 8386.1<br>8667.5  | 61/2 <sup>+</sup><br>63/2 <sup>+</sup> | 7505.8<br>7784.2 | 57/2 <sup>+</sup><br>59/2 <sup>+</sup> |
| 893.7 <i>10</i>                    | 1.2 8                          | 2008.0            | 21/2+                                  | 1114.1           | 19/2 <sup>-</sup>                      |
| 899.9 <i>10</i>                    | 0.5 3                          | 8854.6            | 63/2+                                  | 7954.7           | 59/2 <sup>+</sup>                      |
| 902.5 10                           | 2.5 <sup>#</sup> 6             | 9538.2            | 65/2+                                  | 8635.7           | 61/2+                                  |
| 906.5 10                           | 1.7 4                          | 7812.7            | 57/2-                                  | 6906.2           | 53/2-                                  |
| 909.7 10                           | 13.5 <sup>#</sup> <i>19</i>    | 9106.1            | $65/2^{+}$                             | 8196.4           | $61/2^{+}$                             |
| 913.0 <i>10</i>                    | 7.3 8                          | 7245.7            | 57/2-                                  | 6332.9           | 53/2-                                  |
| 913.0 10                           | 0.9 <i>4</i><br>4.5 <i>11</i>  | 8378.6            | 61/2-                                  | 7465.6           | 57/2 <sup>-</sup>                      |
| 915.6 <i>10</i><br>916.8 <i>10</i> | 4.3 11<br>1.4 <i>4</i>         | 8925.8<br>9153.0  | 65/2 <sup>+</sup><br>65/2 <sup>+</sup> | 8010.0<br>8236.2 | 61/2 <sup>+</sup><br>61/2 <sup>+</sup> |
| 920.5 10                           | 1.5# 9                         | 11017.2           | $71/2^{(-)}$                           | 10096.7          | 67/2 <sup>(-)</sup>                    |
| 926.5 10                           | 4.5 <sup>#</sup> 12            | 9839.2            | 67/2 <sup>+</sup>                      | 8912.7           | 63/2+                                  |
| 928.1 <i>10</i>                    | 0.4 3                          | 8973.0            | 63/2+                                  | 8044.9           | 59/2 <sup>+</sup>                      |
| 939.2 10                           | 3.5 10                         | 7728.0            | 59/2-                                  | 6788.8           | 55/2-                                  |
| 940.0 10                           | 1.3 3                          | 8290.0            | 59/2-                                  | 7350.0           | 55/2-                                  |
| 942.2 10                           | 0.7 4                          | 8844.4            | 63/2-                                  | 7902.2           | 59/2 <sup>-</sup>                      |
| 943.8 <i>10</i><br>949.4 <i>10</i> | 0.20 <i>10</i><br>2.1 <i>7</i> | 9329.8<br>9407.6  | 65/2 <sup>+</sup><br>67/2 <sup>+</sup> | 8386.1<br>8458.3 | 61/2 <sup>+</sup><br>63/2 <sup>+</sup> |
| 951.2 <i>10</i>                    | 0.5 5                          | 2435.9            | 23/2+                                  | 1484.6           | $21/2^{-}$                             |
| 955.8 10                           | 1.7 <sup>#</sup> 5             | 10494.0           | 69/2+                                  | 9538.2           | 65/2+                                  |
| 956.8 10                           | 0.5 3                          | 9624.3            | 67/2+                                  | 8667.5           | $63/2^{+}$                             |
| 960.5 10                           | 0.10 5                         | 9815.1            | 67/2+                                  | 8854.6           | 63/2+                                  |
| 962.53 <i>14</i>                   | 7.0 <mark>#</mark> <i>12</i>   | 10068.6           | 69/2+                                  | 9106.1           | 65/2+                                  |
| 962.8 10                           | 1.5# 7                         | 3863.2            | 33/2+                                  | 2900.3           | 29/2+                                  |
| 975.7 10                           | 1.2# 5                         | 11992.9           | 75/2 <sup>(-)</sup>                    | 11017.2          | 71/2 <sup>(-)</sup>                    |
| 975.9 <i>10</i><br>976.4 <i>10</i> | 2.5 <i>13</i> 0.9 <i>3</i>     | 8221.5            | 61/2 <sup>-</sup><br>61/2 <sup>-</sup> | 7245.7<br>7812.7 | 57/2 <sup>-</sup><br>57/2 <sup>-</sup> |
| 980.2 10                           | 0.9 3<br>2.0 <sup>#</sup> 8    | 8789.1<br>10819.4 | 71/2+                                  | 9839.2           | 67/2 <sup>+</sup>                      |
| 984.3 <i>10</i>                    | 1.4 6                          | 8712.3            | 63/2                                   | 7728.0           | 59/2 <sup>-</sup>                      |
| 984.4 10                           | 1.0 5                          | 10137.4           | 69/2+                                  | 9153.0           | 65/2+                                  |
| 988.6 <i>10</i>                    | 0.5 4                          | 4308.1            | 37/2-                                  | 3319.6           | $35/2^{-}$                             |
| 989.8 10                           | 2.1 7                          | 9915.6            | 69/2+                                  | 8925.8           | $65/2^{+}$                             |
| 990.6 <sup>b</sup> 10              | 0.4 <sup>#</sup> 3             | 1285.0?           | $(13/2^+)$                             | 294.3            | 11/2                                   |
| 993.4 10                           | 0.5 4                          | 9283.4            | 63/2-                                  | 8290.0           | 59/2 <sup>-</sup>                      |
| 995.4 <i>10</i><br>996.4 <i>10</i> | 1.0 <i>5</i> 0.5 <i>4</i>      | 9707.7<br>5755.8  | 67/2 <sup>-</sup><br>47/2 <sup>-</sup> | 8712.3<br>4759.5 | 63/2 <sup>-</sup><br>45/2 <sup>-</sup> |
| 996.5 10                           | 0.6 4                          | 9375.1            | 65/2                                   | 8378.6           | $61/2^{-}$                             |
| 1002.9 10                          | 0.10 10                        | 10332.8           | 69/2+                                  | 9329.8           | 65/2+                                  |
| 1004.8 10                          | 1.8 6                          | 4555.4            | 41/2-                                  | 3550.6           | 37/2-                                  |
| 1005.9 10                          | 1.0 6                          | 10713.7           | 71/2                                   | 9707.7           | 67/2-                                  |

| $\mathrm{E}_{\gamma}^{\dagger}$                                                                                                                                                                                                        | $I_{\gamma}^{\ddagger}$                                                                                                                                                                         | $E_i$ (level)                                                                                                                                                                                                    | $\mathbf{J}_i^{\pi}$                                                                                                                                                                                 | $\mathbf{E}_f$                                                                                                                                     | $\mathbf{J}_f^{\pi}$                                                                                                                                                                                                                                                                                                                           | Mult. | Comments                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------|
| 1009.2 <i>10</i><br>1012.2 <i>10</i>                                                                                                                                                                                                   | 1.2 <sup>#</sup> 4<br>0.7 3                                                                                                                                                                     | 11503.2<br>5114.9                                                                                                                                                                                                | 73/2 <sup>+</sup><br>43/2 <sup>-</sup>                                                                                                                                                               | 10494.0<br>4102.7                                                                                                                                  | 41/2-                                                                                                                                                                                                                                                                                                                                          | D     | DCO=0.72 20 (2004Je03)<br>$I\gamma(25^{\circ})/I\gamma(90^{\circ})=1.03$ 20 (2004Je03).<br>Mult.: $\Delta J=1$ transition. |
| 1015.0 <i>10</i><br>1015.0 <sup>a</sup> <i>10</i>                                                                                                                                                                                      | 0.5 <i>4</i><br>0.40 <sup><i>a</i></sup> 20                                                                                                                                                     | 9804.1<br>11728.7                                                                                                                                                                                                | 65/2 <sup>-</sup><br>75/2 <sup>-</sup>                                                                                                                                                               | 8789.1<br>10713.7                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                | E2    | POL=+0.11 3, $I_{\gamma}(25^{\circ})/I_{\gamma}(90^{\circ})=1.43 \ 25 \ (2004Je03)$ .                                      |
| 1015.0 <sup>a</sup> 20                                                                                                                                                                                                                 | 0.30 <sup>a</sup> 20                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                |       | Mult.: $\Delta J=2$ transition.                                                                                            |
| 1015.0~ 20                                                                                                                                                                                                                             | 5.0 <sup>#</sup> 12                                                                                                                                                                             | 12744<br>11085.2                                                                                                                                                                                                 | 79/2 <sup>-</sup><br>73/2 <sup>+</sup>                                                                                                                                                               | 11728.7<br>10068.6                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                            |
| 1018.1 10                                                                                                                                                                                                                              | 1.8 <sup>#</sup> 6                                                                                                                                                                              | 4368.7                                                                                                                                                                                                           | 37/2 <sup>+</sup>                                                                                                                                                                                    | 3350.6                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                              | Q     | Mult.: $I\gamma(25^{\circ})/I\gamma(90^{\circ})=1.41\ 15$ consistent with $\Delta J=2$ , Q (2002Je10).                     |
| 1019.6 10<br>1026.3 10<br>1027.1 10<br>1028.0 10<br>1030.0 10<br>1031.6 10<br>1034.7 10<br>1048.3 10<br>1052.8 10<br>1061.6 10<br>1061.9 10<br>1064.7 10<br>1064.9 10<br>1064.9 10<br>1071.0 10<br>1071.1 10<br>1077.1 10<br>1080.1 10 | 1.0 7<br>1.7 3<br>0.7 3<br>1.0 5<br>0.7 4<br>0.7# 3<br>1.2# 5<br>0.20 10<br>0.30 10<br>1.0 7<br>0.30 10<br>1.0# 4<br>0.7 3<br>1.7 4<br>0.30 20<br>1.0# 3<br>0.4 3<br>3.5# 10<br>0.8 6<br>0.10 5 | 10427.1<br>4847.8<br>4577.7<br>10652.4<br>9251.6<br>13024.5<br>11854.1<br>11185.6<br>13797<br>10977.2<br>10313.5<br>12566.2<br>5495.0<br>5167.6<br>11780.2<br>4936.8<br>10875.1<br>12156.2<br>11504.2<br>12265.7 | 71/2+<br>43/2-<br>39/2-<br>71/2+<br>65/2-<br>79/2(-)<br>75/2+<br>73/2+<br>83/2-<br>73/2+<br>69/2-<br>77/2+<br>47/2-<br>45/2-<br>75/2-<br>41/2+<br>69/2-<br>77/2+<br>75/2+<br>77/2+<br>75/2+<br>77/2+ | 9407.6 3821.5 3550.6 9624.3 8221.5 11992.9 10819.4 10137.4 12744 9915.6 9251.6 11503.2 4430.2 4102.7 10713.7 3865.9 9804.1 11085.2 10427.1 11185.6 | 39/2 <sup>-</sup><br>37/2 <sup>-</sup><br>67/2 <sup>+</sup><br>61/2 <sup>-</sup><br>75/2 <sup>(-)</sup><br>71/2 <sup>+</sup><br>69/2 <sup>+</sup><br>69/2 <sup>+</sup><br>65/2 <sup>-</sup><br>73/2 <sup>+</sup><br>41/2 <sup>-</sup><br>71/2 <sup>-</sup><br>37/2 <sup>+</sup><br>65/2 <sup>-</sup><br>73/2 <sup>+</sup><br>71/2 <sup>+</sup> |       |                                                                                                                            |
| 1082.6 10<br>1084.6 10<br>1085.5 <sup>b</sup> 10<br>1088.9 10<br>1092.2 10<br>1092.4 10<br>1095.5 10<br>1100.2 <sup>b</sup> 10<br>1112.4 10<br>1113.4 10                                                                               | 0.9# 3<br>0.10 10<br>0.20# 10<br>1.0# 5<br>0.20 10<br>0.5 3<br>0.20 10<br>0.7# 3<br>0.30 10                                                                                                     | 8421.3<br>12864.8<br>14110<br>12943.0<br>14889<br>5851.9<br>11748.0<br>13197.1<br>13678.6<br>12862                                                                                                               | 59/2 <sup>(-)</sup><br>79/2 <sup>-</sup><br>83/2 <sup>(-)</sup><br>79/2+<br>87/2-<br>49/2-<br>75/2+<br>81/2+<br>81/2+<br>79/2+                                                                       | 7338.7<br>11780.2<br>13024.5<br>11854.1<br>13797<br>4759.5<br>10652.4<br>12096.9<br>12566.2<br>11748.0                                             | 57/2 <sup>+</sup><br>75/2 <sup>-</sup><br>79/2 <sup>(-)</sup><br>75/2 <sup>+</sup><br>83/2 <sup>-</sup><br>45/2 <sup>-</sup><br>71/2 <sup>+</sup><br>77/2 <sup>+</sup>                                                                                                                                                                         | D     | $I_{\gamma}(25^{\circ})/I_{\gamma}(90^{\circ})=0.71\ 13\ (2004Je03).$                                                      |
| 1119.2 <i>3</i> 1119.6 <i>10</i> 1119.7 <i>10</i> 1121.8 <i>10</i> 1126.2 <i>10</i>                                                                                                                                                    | 1.3# 3<br>0.30 20<br>0.5 4<br>0.5 4<br>1.2# 5                                                                                                                                                   | 5563.7<br>13745.7<br>12096.9<br>12626.0<br>13282.5                                                                                                                                                               | 45/2 <sup>+</sup><br>83/2 <sup>+</sup><br>77/2 <sup>+</sup><br>79/2 <sup>+</sup><br>81/2 <sup>+</sup>                                                                                                | 4444.6<br>12626.0<br>10977.2<br>11504.2<br>12156.2                                                                                                 | 41/2 <sup>+</sup> 79/2 <sup>+</sup> 73/2 <sup>+</sup> 75/2 <sup>+</sup>                                                                                                                                                                                                                                                                        | (Q)   | Mult.: $I\gamma(25^\circ)/I\gamma(90^\circ)=1.49~8~(2002Je10)$ consistent with $\Delta J=2$ .                              |
| 1133.6 <i>10</i><br>1134.5 <i>10</i><br>1143.0 <i>10</i><br>1147 <i>4</i>                                                                                                                                                              | 1.1# 4<br>0.10 5<br>0.8# 4<br>0.5# 4                                                                                                                                                            | 7666.7<br>16023<br>14086.0<br>14826                                                                                                                                                                              | 55/2 <sup>(-)</sup><br>91/2 <sup>-</sup><br>83/2 <sup>+</sup><br>85/2 <sup>+</sup>                                                                                                                   | 6533.1<br>14889<br>12943.0<br>13678.6                                                                                                              | 53/2 <sup>+</sup><br>87/2 <sup>-</sup><br>79/2 <sup>+</sup>                                                                                                                                                                                                                                                                                    | (D)   | $I_{\gamma}(25^{\circ})/I_{\gamma}(90^{\circ})=0.75\ 22\ (2004Je03).$                                                      |

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f$ $\mathbf{J}_f^{\pi}$ | Mult. | Comments                                                                                                                    |
|------------------------|-------------------------|--------------|----------------------|-------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------|
| 1165.3 10              | 1.5# 4                  | 6248.8       | 49/2+                | 5083.5 45/2                         | + Q   | Mult.: DCO=1.01 15, $I\gamma(25^{\circ})/I\gamma(90^{\circ})=1.44$ 10 (2002Je10,2002Je05).                                  |
| 1179.3 10              | 1.1 <sup>#</sup> 5      | 14461.8      | 85/2+                | 13282.5 81/2                        |       |                                                                                                                             |
| 1179.5 <i>10</i>       | 0.10 5                  | 17203        | 95/2-                | 16023 91/2                          | _     |                                                                                                                             |
| 1184.0 <i>10</i>       | 1.5 <sup>#</sup> 5      | 6964.5       | $51/2^{(-)}$         | 5780.5 49/2                         | + D   | DCO=0.58 17, $I\gamma(25^{\circ})/I\gamma(90^{\circ})=0.66\ 20\ (2004Je03)$ .                                               |
| 1197.3 <i>10</i>       | 0.6 <sup>#</sup> 3      | 15283        | 87/2+                | 14086.0 83/2                        | +     |                                                                                                                             |
| 1209.5 10              | 1.2 <sup>#</sup> 4      | 6990.0       | 53/2+                | 5780.5 49/2                         | + Q   | Mult.: DCO=1.04 15, $I\gamma(25^{\circ})/I\gamma(90^{\circ})=1.46$ 10 (2002Je10) consistent with $\Delta J=2$ , quadrupole. |
| 1227.0 10              | 1.1 <sup>#</sup> 5      | 15689        | 89/2+                | 14461.8 85/2                        | +     |                                                                                                                             |
| 1232.4 10              | 0.10 5                  | 18435        | 99/2-                | 17203 95/2                          | -     |                                                                                                                             |
| 1235.9 10              | 0.6 <sup>#</sup> 3      | 6319.5       | $47/2^{(-)}$         | 5083.5 45/2                         | + (D) | $I\gamma(25^{\circ})/I\gamma(90^{\circ})=0.70\ 21.$                                                                         |
| 1247.5 10              | 0.40 <sup>#</sup> 20    | 16531        | 91/2+                | 15283 87/2                          | +     |                                                                                                                             |
| 1252.8 10              | 0.8 <sup>#</sup> 3      | 7785.9       | 57/2+                | 6533.1 53/2                         | +     |                                                                                                                             |
| 1269.0 <i>10</i>       | 0.9 <sup>#</sup> 5      | 16958        | 93/2+                | 15689 89/2                          | +     |                                                                                                                             |
| 1292.0 10              | 0.5 <sup>#</sup> 4      | 1935.7       | $17/2^{+}$           | 643.6 15/2                          | -     |                                                                                                                             |
| 1297.0 <sup>b</sup> 10 | 0.8 <sup>#</sup> 5      | 8635.7       | $61/2^{+}$           | 7338.7 57/2                         | +     |                                                                                                                             |
| 1303.5 10              | 0.7 <sup>#</sup> 4      | 18261        | 97/2+                | 16958 93/2                          | +     |                                                                                                                             |

<sup>&</sup>lt;sup>†</sup> From RADWARE file (2004JeZZ) received from the authors of 2004Je03. The energy uncertainties for 105  $\gamma$  transitions were found to be too small to give an acceptable least-squares fit. A large number of gamma-ray energies deviated from the fitted values by more than two times the quoted uncertainties. The evaluators have assigned a minimum uncertainty of 0.1 keV. This results in a better least-squares fit of the level scheme. Uncertainty of 1.0 keV assigned in the RADWARE file is a default value. Many E $\gamma$  values are the same as in 2002Je05.

<sup>&</sup>lt;sup>‡</sup> From RADWARE file supplied by D.R. Jensen (Feb. 6, 2004) (2004JeZZ). The values are relative to 100 for 630γ from 2307 level for normal-deformed bands and relative to 100 for 386γ from 2900 level for SD band transitions. Many Iγ values are the same as in 2002Je05. To obtain intensities for SD bands relative to 100 for 630γ, divide each intensity by 7.25 (2002Je05).

<sup>#</sup> Relative to 100 for 386γ from 2900 level in SD-1 band. To obtain intensity relative to 100 for 630γ from 2307 level in normal-deformed structure, divide by 7.25 (factor given by 2002Je05).

<sup>&</sup>lt;sup>®</sup> ΔEγ increased to 0.1 keV (by the evaluators). Uncertainty quoted by 2004Je03 in the authors' RADWARE file (2004JeZZ) is from 0.03-0.09 keV, which fails to give an acceptable least squares fit to the level scheme.

<sup>&</sup>amp; From 1999Do34 only, treated As uncertain by the evaluators since it is not confirmed In the high-statistics data of 2004Je03.

<sup>&</sup>lt;sup>a</sup> Multiply placed with intensity suitably divided.

<sup>&</sup>lt;sup>b</sup> Placement of transition in the level scheme is uncertain.





#### <sup>139</sup>La(<sup>29</sup>Si,5nγ) **2004Je03,2002Je05**

#### 



$$^{163}_{71}Lu_{92}$$

#### Level Scheme (continued)





$$^{163}_{71}Lu_{92}$$

#### 



### 



 $^{163}_{71}Lu_{92}$ 

#### 



 $^{163}_{\,71}Lu_{92}$ 



#### Level Scheme (continued)

 $\label{eq:continuous} Intensities: Relative \ I_{\gamma}$  @ Multiply placed: intensity suitably divided



Legend



 $^{163}_{71}Lu_{92}$ 

### 



 $^{163}_{71}Lu_{92} \\$ 

#### Level Scheme (continued)

 $\label{eq:continuous} \mbox{Intensities: Relative } I_{\gamma} \\ @ \mbox{Multiply placed: intensity suitably divided}$ 





 $^{163}_{71}Lu_{92}$ 

#### Level Scheme (continued)

 $\label{eq:continuous} Intensities: Relative \ I_{\gamma}$  @ Multiply placed: intensity suitably divided





### Level Scheme (continued)

 $\label{eq:continuous} Intensities: \ Relative \ I_{\gamma}$  @ Multiply placed: intensity suitably divided





 $^{163}_{\,71}Lu_{92}$ 



## <sup>139</sup>La(<sup>29</sup>Si,5nγ) 2004Je03,2002Je05 (continued)



 $^{163}_{\ 71}Lu_{92}$ 

## <sup>139</sup>La(<sup>29</sup>Si,5nγ) 2004Je03,2002Je05 (continued)





Band(H):  $(\pi 9/2[514]) \otimes AB$ ,  $\alpha = +1/2$ 



Band(J): Band based on  $55/2^+$ ,  $\alpha=-1/2$ 





$$^{163}_{\ 71}Lu_{92}$$

### <sup>139</sup>La(<sup>29</sup>Si,5nγ) **2004Je03,2002Je05** (continued)

Band(K): Triaxial SD-1 band (2004Je03,2004Go14, 2002Je05,2002Sc11, 2001Od03,1999Do34, 1995Sc39)



 $^{163}_{71}Lu_{92}$