Laboratório de Hardware - Placa-Mãe (estrutura) -

Prof. Renato Luiz Cardoso

Placas

- A maioria das placas de CPU modernas utiliza o padrão ATX. Existem ainda muitos modelos que usam os chamados Micro ATX e Flex ATX.
- Tratam-se de placas com características técnicas similares às do padrão ATX, porém com dimensões menores. Finalmente, encontramos ainda alguns poucos modelos novos no padrão AT.
- Para quem vai fazer manutenção e instalações em um PC um pouco antigo (anterior a 1999), existe a grande chance de que a placa de CPU encontrada seja do tipo AT.

Placas

Flex ATX

Bloco de Conectores de uma placa ATX

Formatos

Formato	Largura máxima	Comprimento máximo
Full AT	12" (305 mm)	13" (330 mm)
Baby AT	8,5" (216 mm)	13" (330 mm)
Full ATX	12" (305 mm)	9,6" (244 mm)
Mini-ATX	11,2" (288 mm)	8,2" (208 mm)
Micro ATX	9,6" (244 mm)	9,6"(244 mm)
Flex ATX	9" (229 mm)	7,5" (191 mm)

Tamanhos

Modelo ATX

Conexões para o gabinete

Furos de Fixação

Conector do Teclado (DIN 5)

Conector e Adaptador DIN

Conector PS/2

Pinos do conector

Conector DIN de 5 pinos fêmea, localizado na placa de CPU

Conector DIN de 6 pinos (padrão PS/2) fêmea, localizado na placa de CPU

Pino	Sinal	Função
1	CLK	Clock
2	Data	Dados
3	N/C	Não conectado
4	GND	Terra
5	VCC	Alimentação +5V

Pino	Sinal	Função
1	Data	Dados
2	N/C	Não conectado
3	GND	Terra
4	VCC	Alimentação +5V
5	CLK	Clock
6	N/C	Não conectado

Defeitos comuns?

- Falha na voltagem do conector
 - Normalmente ocasionada por falha de contato ou falha na solda.
 Solução: Refazer os pontos de solda do conector.
 - Conector espanado. Ocasionado por tentativa de encaixe errada.
 Solução: Trocar o conector.

Conector de Alimentação AT

Pinos do Conector de Alimentação AT

Pinos dos Conectores

Pino	Cor	Tensão
1	Laranja	Power Good (+5V)
2	Vermelho	+5V
3	Amarelo	+12V
4	Azul	-12V
5	Preto	GND
6	Preto	GND
7	Preto	GND
8	Preto	GND
9	Branco	-5V
10	Vermelho	+5V
11	Vermelho	+5V
12	Vermelho	+5V

Ligando corretamente a fonte AT

Conector ATX

Pinos de conexão ATX

Cores da conexão ATX

Pino	Sinal	Cor	Pino	Sinal	Cor
1	+3.3VDC	Laranja	11	+3.3VDC	Laranja
			[11]	[+3.3 V sense]	[Marrom]
2	+3.3VDC	Laranja	12	-12VDC	Azul
3	COM	Preto	13	COM	Preto
4	+5VDC	Vermelho	14	PS_ON#	Verde
5	COM	Preto	15	COM	Preto
6	+5VDC	Vermelho	16	COM	Preto
7	COM	Preto	17	COM	Preto
8	PWR_OK	Cinza	18	-5VDC	Branco
9	+5VSB	Roxo	19	+5VDC	Vermelho
10	+12VDC	Amarelo	20	+5VDC	Vermelho

Conectores Adicionais da ATX

Aux Power Connector

+12V Power Connector

Posicionamento do conector ATX auxiliar

Conectores do Gabinete

Exemplo de Instruções de Conexões

* Requires an ATX power supply.

Analisando os componentes

ASUS P5AD2-E Motherboard - http://www

S P5AD2-E Motherboard - http://www.computerhope.com

4-pin CPU fan connection

Motherboard model name

4x DIMM memory slots

Super I/O

Back panel and I/O connections Heat sink P35-158-19M9 P4 power connector Inductor (coil) Capacitors

Back panel and I/O connections ors Hea P35-158-19W9 P4 p Induc Cap

Componentes

Dual-Channel DDR3 2400+ N 8+2 Phase Power Design D-Sub Port Dual-Link **DVI Port HDMI Port** Display Port

Dual-Channel DDR3 2400+ MHz

D-Sub Port

Dual-Link DVI Port

HDMI Port

Display Port

O termo D-Sub significa "D-Subminiature", ou conector subminiatura em D. Esses conectores foram criados na década de 1950, e ainda são usados nos computadores modernos. Possuem o formato de uma letra D na horizontal, sendo que um dos lados é ligeiramente maior que o outro. Devido ao formato, há apenas um jeito de conectá-lo. Todos os conectores deste tipo possuem um escudo metálico que cerca duas ou mais fileiras de pinos (macho) ou buracos (fêmea). O número de pinos ou buracos dos conectores D-Sub varia entre nove e 100.

Dual-Link DVI Port

HDMI Port

Display Port

eSATA3 Port

8ch Audio with / Dolby Home Theater

2*PCI-E 2.0x16 Slot monitoring AMD CrossFireX O. Dual Graphics Support

High-Definition Multimedia Interface (HDMI) é uma interface digital que conduz áudio e vídeo entre equipamentos que trabalham com formato digital, capaz de transmitir dados não comprimidos, representando, por isso, uma alternativa melhorada aos padrões com formato analógico, tais como: Radio Frequência, Cabo coaxial, vídeo composto, S-Video, SCART, vídeo componente, Terminal D, e VGA. O HDMI fornece uma interface de comunicação entre qualquer fonte de áudio/vídeo digital - como Blu-ray, leitor de DVD, computador, consoles de videogame, Amplificadores Áudio/Vídeo [1], set-top box - para qualquer dispositivo de som ou vídeo digital, como monitor de computador e TV digital

Dual-Link DVI Port

HDMI Port

Display Port

eSATA3 Port

8ch Audio with / Dolby Home Theater

DisplayPort é uma interface de vídeo desenvolvida em 2006 pelo consórcio Video **Electronics Standards Association (VESA).** A Interface é usada para conectar uma fonte de vídeo ao dispositivo de exibição, apesar de também poder transmitir: Áudio, USB, e outras formas de dados. Sendo um padrão aberto, não há necessidade de um desenvolvedor pagar royalties para colocar uma interface DisplayPort em seu produto.

2*PCI-E 2.0x16 Slots for AMD CrossFireX or Dual Graphics Support

108dB SNR by ALC889 Audio Codec

2*PCI-E 2.0x16 Slots for AMD CrossFireX or Dual Graphics Support

Chamado "External SATA" ou "eSATA", é possível usar os comprimentos de cabo blindados até 2 metros fora do PC para aproveitar as vantagens dos benefícios que a interface de SATA traz para o armazenamento. O SATA agora está pronto para ser um padrão externo, com cabos, conectores e requisitos de sinal especificamente, lançados como novos padrões em meados de 2004. o eSATA oferece mais desempenho do que as soluções existentes e é Hot pluggable.

108dB SNR by ALC889 Audio Codec

Dual-Channel DDR3 2400+ MHz 8+2 Phase Power Design

Dual-Channel DDR3 2400+ M

Componentes

Vamos estudar!

Qual componente indicado pelo número 19?

Qual componente indicado pelo número 19?

Vamos para outra?

Como saber tudo isso?

Consultando o Manual da Placa – Mãe

Diagrama da Placa M598LMR

A7A266-E

G52-MA00353

Vamos analisar os manuais?

• Disponíveis no Teams