Effect of beta and delta/theta frequencies of binaural beats on attention in a neutral and incongruent Stroop task or whatever

Data processing and reporting tools

A Ruby script was used to prepare for analysis the raw files returned by the EncephalApp. R was used to automatize the analysis of the data and R integrated with Sweave to build this report. Raw data and all R scripts used in the analysis and the reporting can be found at https://github.com/xdurana/R/tree/master/binaural-beats.

Analysis of the reaction time (RT)

- 1 Read the file with all the single measures and define the factors. For each group, calculate the descriptive statistics for the dependent variable RT: mean, standard deviation, median and median absolute deviation. A group is defined by a subject, a Stroop level (off, on) and a type of sound (a, b). The data file item.csv can be found at https://github.com/xdurana/R/blob/master/binaural-beats/items.csv.
- 2 Plot the histogram, the summary of the data and the QQPlot for each condition.

```
> hist(stroop$time, breaks=200)
> ddply(stroop, .(sound), summarise, mean=mean(time), sd=sd(time))
sound mean sd
1 a 1.305767 0.4511453
2 b 1.280535 0.4530630
> ddply(stroop, .(level), summarise, mean=mean(time), sd=sd(time))
```

```
level mean sd
1 off 1.238730 0.3848125
2 on 1.347572 0.5050838
```

Histogram of stroop\$time

> qqmath(~time|level*sound, groups=subject, data=stroop)

- 3 Boxplot for each group to see the outliers.
 - > boxplot(stroop\$time~stroop\$sound+stroop\$level+stroop\$subject)

- 4 Remove the outliers that are beyond the mean + 2*sd of each group, and plot the graphics.
 - > hist(stroop_without_outliers\$time, breaks=200)
 - > ddply(stroop_without_outliers, .(sound), summarise, mean=mean(time), sd=sd

```
sound mean sd
1 a 1.263362 0.3617619
```

- 2 b 1.229600 0.3344639

level mean sd

- 1 off 1.198798 0.2917018
- on 1.294286 0.3920836

Histogram of stroop_without_outliers\$time

> qqmath(~time|level*sound, groups=subject, data=stroop_without_outliers)

- 5 Another boxplot for each group.
 - > boxplot(stroop_without_outliers\$time~stroop_without_outliers\$sound+stroop_

- 6 Summarize the mean reaction time of each group and plot the boxplots for each level and condition
 - > interaction.plot(summary\$level, summary\$sound, summary\$time)


```
> bwplot(time ~ sound | level, data=summary, panel=f.mean, par.settings=bwth
> mean = ddply(summary, .(sound,level), summarise, mean=mean(time))
> ddply(summary, .(sound, level), summarise, mean=mean(time), sd=sd(time))
```

```
soundlevelmeansd1betaoff0.85358820.12236442betaon0.80504800.14209533delta/thetaoff0.86890460.11651054delta/thetaon0.81922600.1185384
```

- > boxplot(summary\$time~summary\$sound+summary\$level,
- + main = "Reaction time distribution for each condition",
- + xlab = "condition",
- + ylab = "reaction time (s)")

```
0.9 - 0.8 - 0.7 - 0.6 - beta delta/theta beta delta/theta
```

Reaction time distribution for each sound

Reaction time distribution for each Stroop level

Reaction time distribution for the sequence of sounds

7 Two-way repeated measures ANOVA

> print(anova.table, floating=FALSE)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Residuals	19	1.02	0.05		
sound	1	0.00	0.00	0.74	0.3999
Residuals1	19	0.11	0.01		
level	1	0.05	0.05	20.54	0.0002
Residuals2	19	0.04	0.00		
sound:level	1	0.00	0.00	0.01	0.9355
Residuals	19	0.02	0.00		

 $8\,$ Post-hoc comparison for the binaural beats

> print(test)

Paired t-test

data: mean by sound t = -0.8611, df = 19, p-value = 0.3999 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: $-0.05059156 \quad 0.02109713$ sample estimates: mean of the differences -0.01474721