Национальный исследовательский университет информационных технологий, механики и оптики. Кафедра вычислительной техники.

Домашняя работа №3

по дисциплине:

«Конструкторско-техническое обеспечение производства ЭВМ» Графо-теоретический подход к синтезу топологии

Вариант 7

Студент: Куклина Мария, Р3401 Преподаватель: Поляков В.И.

1. Исходные данные

21 цепь, 13 модулей.

21 цень	, 10 MOZ	цулси.	
Цепь	Модул	ь/конта	KT
1	4/14	10/11	7/10
2	13/7	6/9	
3	7/9	11/7	
4	1/5	10/14	
5	5/12	8/9	3/5
6	11/9	12/14	5/13
7	13/2	12/12	2/5
8	13/3	7/8	1/6
9	13/9	12/9	8/10
10	1/8	8/14	5/1
11	13/10	13/8	
12	5/7	7/2	
13	13/5	7/13	
14	12/11	1/13	7/7
15	9/14	13/6	12/8
16	11/8	9/2	
17	12/5	13/1	5/11
18	13/12	5/2	
19	13/14	3/4	
20	7/3	7/14	
21	13/13	4/12	4/5

2. Ход работы

2.1. Представление исходных данных

2.1.1. Матрица комплексов

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
u_1	0	0	0	1	0	0	1	0	0	1	0	0	0
u_2	0	0	0	0	0	1	0	0	0	0	0	0	1
u_3	0	0	0	0	0	0	1	0	0	0	1	0	0
u_4	1	0	0	0	0	0	0	0	0	1	0	0	0
u_5	0	0	1	0	1	0	0	1	0	0	0	0	0
u_6	0	0	0	0	1	0	0	0	0	0	1	1	0
u_7	0	1	0	0	0	0	0	0	0	0	0	1	1
u_8	1	0	0	0	0	0	1	0	0	0	0	0	1
u_9	0	0	0	0	0	0	0	1	0	0	0	1	1
u_{10}	1	0	0	0	1	0	0	1	0	0	0	0	0

u_{11}	0	0	0	0	0	0	0	0	0	0	0	0	1
u_{12}	0	0	0	0	1	0	1	0	0	0	0	0	0
u_{13}	0	0	0	0	0	0	1	0	0	0	0	0	1
u_{14}	1	0	0	0	0	0	1	0	0	0	0	1	0
u_{15}	0	0	0	0	0	0	0	0	1	0	0	1	1
u_{16}	0	0	0	0	0	0	0	0	1	0	1	0	0
u_{17}	0	0	0	0	1	0	0	0	0	0	0	1	1
u_{18}	0	0	0	0	1	0	0	0	0	0	0	0	1
u_{19}	0	0	1	0	0	0	0	0	0	0	0	0	1
u_{20}	0	0	0	0	0	0	1	0	0	0	0	0	0
u_{21}	0	0	0	1	0	0	0	0	0	0	0	0	1

2.1.2. Матрица соединений

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}
e_1	0	0	0	0	1	0	2	1	0	1	0	1	1
e_2	0	0	0	0	0	0	0	0	0	0	0	1	1
e_3	0	0	0	0	1	0	0	1	0	0	0	0	1
e_4	0	0	0	0	0	0	1	0	0	1	0	0	1
e_5	1	0	1	0	0	0	1	2	0	0	1	2	2
e_6	0	0	0	0	0	0	0	0	0	0	0	0	1
e_7	2	0	0	1	1	0	0	0	0	1	1	1	2
e_8	1	0	1	0	2	0	0	0	0	0	0	1	1
e_9	0	0	0	0	0	0	0	0	0	0	1	1	1
e_{10}	1	0	0	1	0	0	1	0	0	0	0	0	0
e_{11}	0	0	0	0	1	0	1	0	1	0	0	1	0
e_{12}	1	1	0	0	2	0	1	1	1	0	1	0	4
e_{13}	1	1	1	1	2	1	2	1	1	0	0	4	0

2.2. Поиск гамильтонова цикла

2.2.1. Поиск цикла алгоритмом Робертса-Флореса

- 1. Включаем в S начальную вершину $S = \{e_1\}.$
- 2. Первая "возможная" вершина e_5 . Включаем её в множество $S=\{e_1,e_5\}.$
- 3. Так до конца: $S = \{e_1, e_5, e_3, e_8, e_{12}, e_2, e_{13}, e_4, e_7, e_{10}\}.$
- 4. У e_{10} нет "возможных "вершин. Удаляем её: $S=\{e_1,e_5,e_3,e_8,e_{12},e_2,e_{13},e_4,e_7\}.$
- 5. У e_7 есть "возможная" вершина e_{11} : $S = \{e_1, e_5, e_3, e_8, e_{12}, e_2, e_{13}, e_4, e_7, e_{11}\}.$
- 6. Так до конца: $S = \{e_1, e_5, e_3, e_8, e_{12}, e_2, e_{13}, e_4, e_7, e_{11}, e_9\}.$
- 7. У e_9 нет "возможных" вершин: $S = \{e_1, e_5, e_3, e_8, e_{12}, e_2, e_{13}, e_4, e_7, e_{11}\}.$
- 8. Удаляем все вершины, у которых нет "возможных": $S = \{e_1, e_5, e_3, e_8, e_{12}, e_2, e_{13}\}.$

- 9. Из анализа матрицы получаем, что в графе точно нет гамильтонова цикла, так как вершина e_6 связаны только с вершиной e_13 . Волевым решением удаляем вершину e_6 .
- 10. Получаем: $S = \{e_1, e_5, e_3, e_8, e_{12}, e_2, e_{13}, e_9, e_{11}, e_7, e_4, e_{10}\}.$
- 11. Есть ребро между e_1 и e_{10} , значит, гамильтонов цикл найден.

Новая матрица соединений без e_6 .

	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}	p_{11}	p_{12}
p_1	0	0	0	0	1	2	1	0	1	0	1	1
p_2	0	0	0	0	0	0	0	0	0	0	1	1
p_3	0	0	0	0	1	0	1	0	0	0	0	1
p_4	0	0	0	0	0	1	0	0	1	0	0	1
p_5	1	0	1	0	0	1	2	0	0	1	2	2
p_6	2	0	0	1	1	0	0	0	1	1	1	2
p_7	1	0	1	0	2	0	0	0	0	0	1	1
p_8	0	0	0	0	0	0	0	0	0	1	1	1
p_9	1	0	0	1	0	1	0	0	0	0	0	0
p_{10}	0	0	0	0	1	1	0	1	0	0	1	0
p_{11}	1	1	0	0	2	1	1	1	0	1	0	4
p_{12}	1	1	1	1	2	2	1	1	0	0	4	0

2.2.2. Перенумерация вершин

Перенумеруем вершины таким образом, чтобы его вершины были упорядочены по и позиции в гамильтоновом цикле.

Новая: e_2 e_3 e_4 e_5 e_6 e_7 e_8 e_9 e_{10} e_{11} e_{12} Старая: e_1 e_5 e_3 e_8 e_{12} e_2 e_{13} e_9 e_7 e_4 e_{11} e_{10}

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
e_1	0	1	0	1	1	0	1	0	0	2	0	1
e_2	1	0	1	2	2	0	2	0	1	1	0	0
e_3	0	1	0	1	0	0	1	0	0	0	0	0
e_4	1	2	1	0	1	0	1	0	0	0	0	0
e_5	1	2	0	1	0	1	4	1	1	1	0	0
e_6	0	0	0	0	1	0	1	0	0	0	0	0
e_7	1	2	1	1	4	1	0	1	0	2	1	0
e_8	0	0	0	0	1	0	1	0	1	0	0	0
e_9	0	1	0	0	1	0	0	1	0	1	0	0
e_{10}	2	1	0	0	1	0	2	0	1	0	1	1
e_{11}	0	0	0	0	0	0	1	0	0	1	0	1
e_{12}	1	0	0	0	0	0	0	0	0	1	1	0

2.3. Построение графа пересечений

Граф смежности рёбер:

Матрица соединений этого графа:

		$u_{1,4}$	$u_{1,5}$	$u_{1,7}$	$u_{1,10}$	$u_{2,4}$	$u_{2,5}$	$u_{2,7}$	$u_{2,9}$	$u_{2,10}$	$u_{3,7}$	$u_{4,7}$	$u_{5,7}$	$u_{5,8}$	$u_{5,9}$	$u_{5,10}$	$u_{7,10}$	$u_{7,11}$	$u_{10,12}$
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$u_{1,4}$	1	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
$u_{1,5}$	2	0	0	0	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0
$u_{1,7}$	3	0	0	0	0	0	0	0	1	1	0	0	0	1	1	1	0	0	0
$u_{1,10}$	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
$u_{2,4}$	5	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
$u_{2,5}$	6	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
$u_{2,7}$	7	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0
$u_{2,9}$	8	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
$u_{2,10}$	9	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
$u_{3,7}$	10	1	1	0	0	1	1	0	0	0	0	0	0	1	1	1	0	0	0
$u_{4,7}$	11	0	1	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	0
$u_{5,7}$	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$u_{5,8}$	13	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0
$u_{5,9}$	14	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0
$u_{5,10}$	15	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	0	1	0
$u_{7,10}$	16	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0
$u_{7,11}$	17	0	0	0	1	0	0	0	1	1	0	0	0	1	1	1	0	0	1
$u_{10,12}$	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

2.4. Нахождение максимальных внутрение устойчивых подмножеств

		$u_{1,4}$	$u_{1.5}$	$u_{1.7}$	$u_{1,10}$	$u_{2,4}$	$u_{2,5}$	$u_{2,7}$	$u_{2,9}$	$u_{2,10}$	$u_{3.7}$	$u_{4.7}$	$u_{5,7}$	$u_{5,8}$	$u_{5,9}$	<i>u</i> 5.10	<i>u</i> ₇₋₁₀	<i>u</i> _{7 11}	$u_{10,12}$
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$u_{1,4}$	1	1	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
$u_{1,5}$	2	0	1	0	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0
$u_{1,7}$	3	0	0	1	0	0	0	0	1	1	0	0	0	1	1	1	0	0	0
$u_{1,10}$	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
$u_{2,4}$	5	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
$u_{2,5}$	6	1	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0
$u_{2,7}$	7	1	1	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0
$u_{2,9}$	8	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0
$u_{2,10}$	9	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
$u_{3,7}$	10	1	1	0	0	1	1	0	0	0	1	0	0	1	1	1	0	0	0
$u_{4,7}$	11	0	1	0	0	0	1	0	0	0	0	1	0	1	1	1	0	0	0
$u_{5,7}$	12	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
$u_{5,8}$	13	0	0	1	0	0	0	1	0	0	1	1	0	1	0	0	1	1	0
$u_{5,9}$	14	0	0	1	0	0	0	1	0	0	1	1	0	0	1	0	1	1	0
$u_{5,10}$	15	0	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0
$u_{7,10}$	16	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0
$u_{7,11}$	17	0	0	0	1	0	0	0	1	1	0	0	0	1	1	1	0	1	1
$u_{10,12}$	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

Найдём семейство Ψ .

1. Нули в первой строке соответствуют элементам

$$J(j) = \{2, 3, 4, 11, 12, 13, 14, 15, 16, 17, 18\}$$

2. Для первого нулевого элемента 2 составляем дизъюнкцию:

$$M_{1,2} = r_1 \lor r_2 = 1100111111110000000.$$

(a) В строке $M_{1,2}$ находим номера нулевых элементов:

$$J'(j') = \{3, 4, 12, 13, 14, 15, 16, 17, 18\}.$$

і. Составляем дизъюнкцию для m_3 :

$$M_{1,2,3} = M_{1,2} \lor r_3 = 111011111111111000.$$

іі. Составляем дизъюнкцию для m_4 :

ііі. Составляем дизъюнкцию для m_{12} :

$$M_{1,2,3,4,12} = M_{1,2,3,4} \vee r_{12} = 11111111111111111111010.$$

iv. Составляем дизъюнкцию для m_{16} :

v. Составляем дизъюнкцию для m_{18} :

vi. В дизъюнкции все единицы, значит построено

$$\psi_1 = \{u_{1.4}, u_{1.5}, u_{1.7}, u_{1.10}, u_{5.7}, u_{7.10}, u_{10.12}\}$$

.

- (b) Рассматриваем следующий элемент из J'(j') 4.
 - i. $M_{1,2,4} = M_{1,2} \lor r_4 = 11011111111110000010$.
 - ii. m_{12} : $M_{1,2,4,12} = 11011111111111000010$
 - iii. m_{13} : $M_{1,2,4,12,13} = 1111111111111111100110$

 - vii. В дизъюнкции все единицы, значит построено

$$\psi_2 = \{u_{1,4}, u_{1,5}, u_{1,10}, u_{5,7}, u_{5,8}, u_{5,9}u_{5,10}, u_{10,12}, \}$$

.

- (c) Рассматриваем следующий элемент из J'(j') 12.
 - i. $M_{1,2,12} = M_{1,2} \lor r_{12} = 11001111111111000000$.
 - ii. m_{13} : $M_{1,2,12,13} = 1110111111111100110$.
 - iii. m_{14} : $M_{1,2,12,13,14} = 1110111111111111111110110$.
 - iv. m_{15} : $M_{1,2,12,13,14,15} = 1110111111111111110110$.
 - v. 1 в m_4 можно получить только с помощью вершины 17, которая не войдёт в дизъюнкцию, значит, этот элемент закрыть не получится.
- (d) Рассматриваем следующий элемент из J'(j') 13.
 - i. $M_{1,2,13} = M_{1,2} \vee r_{13} = 1110111111110100110.$
 - ії. Так как в m_{17} ноль, то уже ничего не закроет m_4 .
- (e) Элементы 14 и 15 также приводят к тому, что m_4 не закроется. Последующие элементы приведут к тому, что не закроектся m_3 .

По той же логике проводим дальнейшие вычисления и получаем результат:

- 1. $\psi_1 = \{1, 2, 3, 4, 12, 16, 18\}$
- 2. $\psi_2 = \{1, 2, 4, 12, 13, 14, 15, 18\}$
- 3. $\psi_3 = \{1, 3, 4, 11, 12, 16, 18\}$
- 4. $\psi_4 = \{1, 3, 11, 12, 16, 17\}$
- 5. $\psi_5 = \{2, 3, 4, 6, 12, 16, 18\}$
- 6. $\psi_6 = \{2, 3, 6, 12, 16, 17\}$

7.
$$\psi_7 = \{2, 4, 6, 12, 13, 14, 15, 18\}$$

8.
$$\psi_8 = \{3, 4, 5, 6, 7, 12, 16, 18\}$$

9.
$$\psi_9 = \{3, 4, 7, 10, 11, 12, 16, 18\}$$

10.
$$\psi_{10} = \{3, 5, 6, 7, 12, 16, 17\}$$

11.
$$\psi_{11} = \{3, 5, 7, 11, 12, 16, 17\}$$

12.
$$\psi_{12} = \{3, 7, 10, 11, 12, 16, 17\}$$

13.
$$\psi_{13} = \{4, 5, 6, 7, 8, 9, 12, 18\}$$

14.
$$\psi_{14} = \{4, 5, 7, 8, 9, 11, 12, 18\}$$

15.
$$\psi_{15} = \{4, 7, 8, 9, 10, 11, 12, 18\}$$

16.
$$\psi_{16} = \{4, 7, 9, 10, 11, 12, 16, 18\}$$

17.
$$\psi_{17} = \{7, 8, 10, 11, 12, 17\}$$

2.5. Поиск максимального двудольного подграфа

Высчитаем для каждой пары множеств из семейства Ψ значение $|\psi_i| + |\psi_j| - |\psi_i \cup \psi_j|$ и составим матрицу:

			v														
	ψ_1	ψ_2	ψ_3	ψ_4	ψ_5	ψ_6	ψ_7	ψ_8	ψ_9	ψ_{10}	ψ_{11}	ψ_{12}	ψ_{13}	ψ_{14}	ψ_{15}	ψ_{16}	ψ_{17}
$\overline{\psi_1}$	0	10	8	9	8	9	11	10	10	11	11	11	12	12	12	11	12
ψ_2		0	11	12	11	12	9	13	13	14	14	14	13	13	13	13	13
ψ_3			0	8	9	10	12	10	9	11	10	10	12	11	11	10	11
ψ_4				0	10	8	13	11	10	9	8	8	13	12	12	11	9
ψ_5					0	8	10	9	10	10	11	11	11	12	12	11	12
ψ_6						0	11	10	11	8	9	9	12	13	13	12	10
ψ_7							0	12	13	13	14	14	12	13	13	13	13
ψ_8								0	10	9	10	11	10	11	12	11	12
ψ_9									0	11	10	9	12	11	10	9	10
ψ_{10}										0	8	9	11	12	13	12	10
ψ_{11}											0	8	12	11	12	11	9
ψ_{12}												0	13	12	11	10	8
ψ_{13}													0	9	10	11	11
ψ_{14}														0	9	10	10
ψ_{15}															0	9	9
ψ_{16}																0	10
ψ_{17}																	0
D	••																

Возьмём множества

$$\psi_2 = \{1, 2, 4, 12, 13, 15, 18\} = \{u_{1,4}, u_{1,5}, u_{1,10}, u_{5,7}, u_{5,8}, u_{5,10}, u_{10,12}\}$$

$$\psi_{10} = \{3, 5, 6, 7, 12, 16, 17\} = \{u_{1,7}, u_{2,4}, u_{2,5}, u_{2,7}, u_{5,7}, u_{7,10}, u_{7,11}\}$$

 ψ_{10} — синие рёбра внутри гамильтонова цикла. ψ_2 — красные рёбра вне гамильтонова цикла.

Удалим из Ψ_G рёбра, вошедшие в ψ_2 и ψ_{10} .

- 1. $\psi_3' = \{11\}$
- 2. $\psi_9' = \{10, 11\}$
- 3. $\psi'_{12} = \{10, 11\}$
- 4. $\psi'_{13} = \{8, 9\}$
- 5. $\psi'_{14} = \{8, 9, 11\}$
- 6. $\psi'_{15} = \{8, 9, 10, 11\}$
- 7. $\psi'_{16} = \{9, 10, 11\}$
- 8. $\psi'_{17} = \{8, 10, 11\}$

Объединяем одинаковые множества.

	ψ_3'	ψ_9'	ψ'_{12}	ψ'_{13}	ψ'_{14}	ψ'_{15}	ψ'_{16}	ψ'_{17}
ψ_3'	0	2	2	3	3	4	3	3
ψ_9'		0	2	4	4	4	3	3
ψ_{12}'			0	4	4	4	3	3
ψ'_{13}				0	3	4	4	4
ψ'_{14}					0	4	4	4
ψ_{15}'						0	4	4
ψ_{16}'							0	4
$\frac{\psi'_{17}}{D}$								0

Выбираем

$$\psi_3' = \{11\} = \{u_{4,7}\}$$

И

$$\psi_{15}' = \{8, 9, 10, 11\} = \{u_{2,9}, u_{2,10}, u_{3,7}, u_{4,7}\}$$

Все рёбра графа реализованы.

2.6. Проверка изоморфизма графов

Проведём проверку на изоморфизм исходный граф и граф, полученный перенумеровыванием вершин после нахождения гамильтонова цикла.

Значение	G_1	G_2
Число вершин т	12	12
Число рёбер k	60	60
Компоненты связности р	1	1

По основным инвариантам графы совпадают.

Список вершин и соответствующих рангов:

Ранг	G_2	G_1
9	e_7	p_{12}
8	e_5	p_{11}
7	e_2, e_{10}	p_5, p_6
6	e_1	p_1
5	e_4	p_7
4	e_9	p_{10}
3	e_3, e_8, e_{11}, e_{12}	p_3, p_4, p_8, p_9
2	e_6	p_2

Распределение вершин по рангам совпадает.

Из таблицы видно соответствие следующих вершин графа:

G_2	G_1
e_7	p_{12}
e_5	p_{11}
e_1	p_1
e_4	p_7
e_9	p_{10}
e_6	p_2

Рассмотрим, с какими вершинами связаны оставшиеся вершины.

G_2		G_1	
e_2	$e_1, e_3, e_4, e_5, e_7, e_9, e_{10}$	p_5	$p_1, p_3, p_6, p_7, p_{10}, p_{11}, p_{12}$
e_{10}	$e_1, e_2, e_5, e_7, e_9, e_{11}, e_{12}$	p_6	$p_1, p_4, p_5, p_9, p_{10}, p_{11}, p_{12}$
e_3	e_2, e_4, e_7	p_3	p_5, p_7, p_{12}
e_8	e_5, e_7, e_9	p_4	p_6, p_9, p_{12}
e_{11}	e_7, e_{10}, e_{12}	p_8	p_{10}, p_{11}, p_{12}
e_{12}	e_1, e_{10}, e_{11}	p_9	p_1, p_4, p_6

Наблюдаем, что

Заменим известные нам вершины.

G_2		G_1	
e_2	$e_1, e_3, e_4, e_5, e_7, e_9, e_{10}$	p_5	$e_1, p_3, p_6, e_4, e_9, e_5, e_7$
e_{10}	$e_1, e_2, e_5, e_7, e_9, e_{11}, e_{12}$	p_6	$e_1, p_4, p_5, p_9, e_9, e_5, e_7$
e_3	e_2, e_4, e_7	p_3	p_5, e_4, e_7
e_8	e_5,e_7,e_9	p_4	p_6, p_9, e_7
e_{11}	e_7, e_{10}, e_{12}	p_8	e_5, e_7, e_9
e_{12}	e_1, e_{10}, e_{11}	p_9	e_1, p_4, p_6

Из анализа таблицы получаем:

G_2	G_1
e_8	p_8
e_3	p_3
e_2	p_5
e_{10}	p_6
e_{11}	p_4
e_{12}	p_9

Наблюдаем, что существует однозначное соответствие между вершинам первого и второго графов, следовательно, графы изоморфны.