

Kiberfizikai rendszerek

Kajdocsi László kajdocsi.laszlo@sze.hu https://github.com/kajdocsilaszlo/kiberfizikai-rendszerek

Folytatás...

LPWAN-hálózatok

Mesh-hálózatok

Szösszenet

Nem lesz olyan cég a 21. században, amely a globális verseny hatására ne kényszerülne – legalábbis bizonyos mértékig – arra, hogy hálózatépítéssel, hálózatirányítással, vagy hálózatfejlesztéssel ne foglalkozna."

> Forrás: Miles, C. C., Snow, R. E., and Coleman, H. J., Jr. 1992. Managing 21st century network organizations.

> > Organizational Dynamics 19: 5 – 20.

LPWAN-hálózatok

Az LPWAN technológiák – IoT számára:

- cellás IoT technológiák licencköteles frekvenciákon működnek (EC-GSM-IoT, LTE-M, NB-IoT)
- szabadon felhasználható frekvenciatartományok (Sigfox, LoRaWAN, Weightless, Ingenu)

LPWAN alkalmazások

LPWA use cases

Office/factory/warehouse

Remote maintenance/control, Operation optimization, staff management

Home/school/elderly care

Child/elderly tracking, smart meter (Electricity, Gas, Water)

Mountains/rivers

Natural disasters (mudslide, flood warning, earthquake)

Public infrastructure

Infrastructure/street lighting.
Predictive maintenance

Transportation

Cargo/palette management, Logistics management & optimization, smart parking

Agriculture

Water quality/temperature & humidity, live stock trucking

Licencelt frekvenciasávú megoldások

Minden nemzet saját frekvenciaszabályozó szerve, MO-n az NMHH pályázatokat ír ki a frekvenciasávok használati jogáról, amelyeket meg lehet pályázni. Aki megnyeri a pályázatot, az a szerződés leteltéig használhatja az adott spektrumtartományt. Ennek előnye, hogy mások eszközei nem üzemelhetnek a nyertes frekvenciasávján, így sokkal kevesebb interferencia fog fellépni, biztosabb lesz az adatátvitel. Hátránya azonban a frekvenciasávok ára. A frekvenciasávok száma korlátozott, ezért használati joguk is sokba kerül. A használatban lévő spektrumtartomány legnagyobb részét ezek a frekvenciasávok teszik ki, melyeket licencelt frekvenciasávoknak nevezünk.

Cellás LPWAN technológiák

- Extended Coverage GSM for the IoT (EC-GSM-IoT)
- Narrow-band IoT (NB-IoT)
- Long Range Radio (LoRa)

EC-GSM-IoT

Extended Coverage GSM for the IoT

- eGPRS/EDGE hálózaton alapul (2.5G).
- A mobilinternet korai szakaszában lett kifejlesztve (3G, Facebook, Youtube ekőtt).
- Szoftverfrissítéssel átalakítható a régi GSM új EC-GSM-loT hálózattá.
- Nem csak visszafele kompatibilis a 2G-vel, de 3G és 4G hálózatokkal is működik.
- Kis energiafogyasztás, széles lefedettség (WAN).

8

LTE-M

Long Term Evolution for Machines

- LTE-alapú kis energiafogyasztású WAN technológia, kifejezettek gépek és loT eszközök számára.
- Nevezik még: LTE-MTC vagy LTE CatM1
- Együtt "létezik" a 2G, 3G, 4G hálózatokkal, és kihasználja azok biztonsági és adatvédelmi előnyeit.
- 2017/2018-ban kezdett elterjedni.

NB-IoT

Narrow-Band IoT

- 2017 IP-alapú, keskenysávú, un. NB-loT rendszerek kereskedelmi megjelenése.
- egymással kommunikáló okos eszközök,
- 4G LTE-infrastruktúrát használják, de új fizikai réteget és csatornákat alakítanak ki:
 - GSM, GPRS-nél egyszerűbb felépítés,
 - sokkal keskenyebb sávszélesség, 180 KHz
 - átviteli sebesség max. fel: 250 kbps, le: 170 Kbps
 - egy időben kis adatmennyiség továbbítható
- Kis energiafogyasztás hosszú élettartam
- Olcsó jelismétlők, egyszerű telepítés "foltok" lefedhetők
- Biztonságos adatátvitel

Melyiket?

Mobile

Connected car

Video security

Environment monitoring

Smart buildings

Scaling up in performance and mobility Scaling down in complexity and power LTE Advanced LTE Cat-0 LTE-M **NB-IOT** 10s of kbps up to 1 Mbps Up to 10s of kbps >10 Mbps Up to 1 Mbps n x 20 MHz -1 MHz narrowband -200 kHz narrowband 20 MHz Release 12 Today+ Release 13 & beyond Release 13 & beyond Sample use cases

Object Tracking

Connected healthcare

Utility metering

City infrastructure

Weerables

Energy Management

Nem licencelt frekvenciasávú megoldások

LPWAN:

- LoRa/LoRaWAN
- Sigfox

Mesh:

- Wi-Fi
- RFID
- IQRF
- Bluetooth

LoRa - LoRaWAN

- Long Range Radio
- Szórt spektrumú modulációs eljárás (Chirp spread spectrum)
- Távközlési feladatok ellátása
- A LoRaWAN egy nyílt hálózati szabvány LoRa eszközök számára

LoRa - Hogy működik?

- Rövid adatcsomagok gyors továbbítása
- Pár dollár értékű rádió chip
- Pár száz dollár értékű adatkoncentrátor
- Egy koncentrátor 50 végberendezést kezel egyidejűleg

Mi a LoRaWAN?

- LoRa modulációra épülő IoT hálózati megoldás
- Szabad frekvenciák (433/868MHz)
- Csillag topológia
- Végberendezések között nincs kommunikáció
- Kis teljesítmény, alacsony fogyasztás
- Nyugtázás nélküli és nyugtázásos adatátvitel

LoRaWAN topológia

LoRa végberendezések

Battery Lifetime

A

Battery powered sensors

- Most energy efficient
- Must be supported by all devices
- Downlink available only after sensor TX

B

Battery powered actuators

- Energy efficient w/ latency controlled downlink
- Slotted communication synchronized with a beacon

C

Mains powered actuators

- Devices which can afford to listen continuously
- No latency for downlink communication

Downlink Network Communication Latency

LoRa átjárók

LoRa - hálózati szerver

- Authentikáció
- Új eszközök beléptetése a rendszerbe
- Átjárók kiszolgálása
- Hálózati monitorozás
- Letöltési útvonal meghatározása
- Alkalmazás szerver interfész

LoRa - alkalmazás szerver

ID	† Heard	EUI	Font	Port	Freq	S/N	RSSI	DR
493271	2016-11-11 15:13:21	0004A30B001B05C8	534	202	868.1	-8.0	-121	SF12 BW125 4/5
493270	2016-11-11 15:12:52	0004A30B001B05C8	533	202	867.9	-6.0	-119	SF12 BW125 4/5
493269	2016-11-11 15:11:58	0004A30B001B05C8	531	202	868.1	-7.8	-114	SF12 BW125 4/5
493267	2016-11-11 15:11:45	0004A30B001ABFC4	0	209	867.5	3.0	-103	SF12 BW125 4/5
493266	2016-11-11 15:11:31	0004A30B001B05C8	530	202	867.7	-2.8	-114	SF12 BW125 4/5
493265	2016-11-11 15:11:05	0004A30B001A953E	17440	202	867.9	-6.0	-117	SF12 BW125 4/5
493263	2016-11-11 15:10:36	0004A30B001B05C8	528	202	868.3	-13.2	-114	SF12 BW125 4/5
493264	2016-11-11 15:10:36	0004A30B001A953E	17439	202	868.1	-10.5	-118	SF12 BW125 4/5
493260	2016-11-11 15:10:08	0004A30B001B05C8	527	202	867.7	-10.2	-114	SF12 BW125 4/5
493261	2016-11-11 15:10:08	0004A30B001A953E	17438	202	867.3	-10.5	-117	SF12 BW125 4/5

LoRa - alkalmazási területek

Monitoring / Control Smart Agriculture **Light Control**

Smart Energy

Smart City Smart Home and Security

LoRa - üzleti modell

- Gyártó független szolgáltatás
- Havi előfizetés, nincs elkötelezettség
- Eszköz mennyiség alapú havi számlázás

 Fejlesztési projektek támogatása: INGYENES (1 átjáró és 10 végberendezés)

Sigfox

- Ultra keskeny-sávú moduláció (UNB ultra narrow-band)
- "Pehelysúlyú" (lightweight) üzenetküldő protokoll
- Kis adatok kezelése
- Csillag topológia

Sigfox - Moduláció

Sigfox - Hogy működik?

- Rövid üzenetek, naponta néhány
- Kis energiafogyasztás, hosszú élettartam
- Kis eszközköltség, nagy hálózati kapacitás
- LPWAN és szabad frekvenciasávok

Sigfox - Mit (nem) csinál?

- A Sigfox nem árul chipeket
- A Sigfox nem épít kapcsolati megoldásokat, hálózatokat
- A Sigfox kifejlesztett egy rádió-alapú protokollt
- A Sigfox globális hálózattal üzemel (mobil)

Sigfox - Adatátvitel

- Detektálni valami küldendőt (ez a legnehezebb része)
- Elindítani a kommunikációs modult
- Küldeni
- A hálózat elkapja az üzenetet
- Az adat megérkezik a szerverre

Sigfox - Fizikai réteg

- A teljes spektrum 200kHz-es részét monitorozza
- Minden üzenet kb. 600Hz széles

Sigfox - Üzenetek

sigfox

12 messages

Conventional

6 messages

Sigfox - Üzenetek

Hasznos átvitel:

Akár 12 byte/üzenet

Sűrűsség:

Akár 140 alkalommal naponta (szerződésfüggő)

Sebesség: 600bps

Sigfox - Mire elég?

- GPS koordináta: 6 byte
- Hőmérséklet: 2 byte
- Állapotjelzés: 1 byte
- Szívverés, pulzus: 0 byte

Sigfox - Hatótávolság

Ideális esetben:

+100km az adó és a vevő között

Valóságban:

 Néhánytól több tíz kilométerig, topológiától függően

Sigfox - Architektúra

Sigfox - Hardver

- A Sigfox nem egy hardver fejlesztő cég
- A fejlesztést a partnerekre bízza, a végberendezések gyártóföggetlenek

Sigfox - Hardver

- Kb. 2 dollártól kezdődő kütyük
- Lehetővé teszik a Sigfox kombinálását más technológiákkal
- Akár otthon is készíthető egy ilyen modul
- Arduino és Raspbery Pi által is támogatott

Sigfox - Biztonság

- Nincs kulcs csere hálózaton keresztül
- Nincs kézfogás
- Az üzenet kódolható vagy összekeverhető
- Minden üzenet egy egyedi kulccsal van aláírva

Sigfox - Frekvenciák

	RC1	RC2	RC3	RC4	
Frequency	868 MHz	902 MHz	923 MHz	920 MHz	
Power output	14 dBm	22 dBm	14 dBm	22 dBm	
Countries					

Sigfox - Felhő

Sigfox - Felhő szolgáltatók

- AWS IoT
- AWS Kinesis
- Microsoft Azure Event Hub
- Microsoft Azure IoT Hub
- IBM Watson IoT Platform

Bluetooth

- 1994 L. M. Ericsson társaság
- Megalakul a SIG (Special Interest Group) –
 Ericsson, IBM, Nokia, Intel és Toshiba
- Elkezdődik a "Bluetooth" projekt, névadója II. Harald Blaatand "Kékfogú" viking király
- 1999 július: kiadták a Bluetooth 1.0-t
- 2004: Bluetooth 2.0
- 2009: Bluetooth 3.0
- 2010: Bluetooth 4.0 → 2013: Bluetooth 4.1 → 2014: Bluetooth 4.2
- 2016: Bluetooth 5 → 2019: Bluetooth 5.1

Bluetooth - Stackek

- 1.Bluetooth Classic
- 2.Bluetooth Low Energy

BLE Core Stack

Generic Access Profile (GAP)	PUID	Remote Control	Proximity		Heart Rate	Host	
Generic Attribute Profile (GATT) Attribute Protocol (ATT)			Security Manager Protocol (SMP)			riost	
Logical Link Cont							
Host Controller Interface (HCI)						}-Interface	
Link Layer (LL)						Controller	
F							

BLE csatornakiosztás

- 40db 2MHz-es csatorna
- 2.4GHz-es ISM sáv
- 3 hirdető csatorna
- 37 adatátviteli csatorna

BLE - Piconet

- 1 Master
- 7 Slave (aktív)
- 255 Slave (várakozó)

BLE - Alkalmazási réteg

BLE - Attribútumok

- Szerver
- Kliens

BLE - Szerepkörök

- Broadcaster
- Observer
- Central
- Peripheral

BLE - Biztonság

- Párosítás
- Kulcs kiosztás

BLE - Párosítás

Fázisok:

- Párosítási tulajdonságok cseréje
- STK generálás / LTK generálás
- Transport Specific Key kiosztása

BLE - PDU

PDU típusok:

- Adat (Data)
- Hirdetés (Advertising)

Változó méretű PDU:

• min. 80bit - max. 376bit

Változó intervallum:

• 80µs - 0.3ms

Preamble	Access Address	PDU Header	PDU Payload	CRC
1 byte	4 bytes	2 bytes	variable (0 – 37 bytes)	3 bytes

Bluetooth 5

- 2x sebesség
- 4x hatótáv
- 8x több adat
- Nagyobb létjogosultság

Bluetooth Mesh

- Many-to-Many
- Publish-Subscribe
- Közvetítők
- Optimalizáltság

Az IQRF...

- Nem csak egy modul, vagy termék
- Nem csak egy protokoll, vagy demo
- Nem csak egy limitált alkalmazás
- Nem csak egy marketing fogás

Egy teljesen vezetéknélküli Mesh-hálózati technológia!!!

IQRF - Jellemzők

- Vezetéknélküli csomagorientált rádiófrekvenciás kommunikáció
- Pont-pont és multipont-multipont hálózat
- Egy adó egység, saját operációs rendszerrel
- · Kis energiafogyasztás, kis sebesség
- Kis adategységek, 64byte/csomag
- Akár 65.000 végberendezés egy hálózatban
- 868 MHz, 916 MHz (szoftverrel választható), vagy 433 MHz
- Nincs licenc költség

IQRF - Fizikai réteg

$$E_{BD} = \sum_{m=1}^{M_n} E_R \sin \left(\phi_{zp} + \frac{\pi}{2} \right) \sum_{i=1}^{I} \sum_{l=1}^{K_{wi}} L_{wik} \sum_{j=1}^{J} \sum_{k=1}^{K_{fj}} L_{fjk}$$

IQRF - Spektrum

IQRF - Architektúra

IQRF - Útválasztás

Kevesebb ugrás, nagyobb megbízhatóság. Mindig megtalálja a legrövidebb útvonalat.

Redundancy can highly increase reliability.

IQRF - A technológia

IQRF - Átjárók

IQRF - Alkalmazások

- Irányítás
- Telemetria
- Monitoring
- Automatizálás

- Okos otthonok, okos városok
- Egyéb IoT, stb.

To be continued...