

Switching Básico

Slides do CCNA Routing & Switching revistos e atualizados por Luísa Caeiro, Jorge Martins e Teles Rodrigues

ESTSetúbal (v1)

Tipos de memórias dos Switches

- EPROM utilizada para armazenar o ROM Monitor
 Software, e o boot loader/helper software, que permite acessar o equipamento mesmo se ele estiver sem o IOS
- NVRAM armazena o startup-config e também o configuration-register.
- FLASH armazena o IOS e outros arquivo
- DRAM utilizada para manter a tabela de roteamento, o running-config (arquivo de configuração em uso), e o IOS, que é carregado nela quando o equipamento liga. Na segunda parte (shared) temos o buffer das interfaces de rede

Sequência de Boot dos Switches

- Teste de Power on Power-on self test (POST).
- Execução do software boot loader:
 - 1. inicialização de baixo nível do CPU;
 - 2. inicialização do sistema de ficheiros na flash;
 - 3. localização e carregamento em memória da imagem de software por omissão do sistema operativo Cisco IOS;
 - 4. Transferência do controlo do switch para o Cisco IOS.

Sequência de Boot dos Switches

- Para encontrar uma imagem adequada do Cisco IOS, o switch efetua os seguintes passos:
 - Tenta iniciar automaticamente usando a informação existente na variável de ambiente de BOOT.
 - 2. Se a variável não está definida, o switch faz uma procura em profundidade no sistema de ficheiros da flash. Se possível carrega e executa o primeiro ficheiro executável.
- O IOS inicializa então as interfaces usando os comandos Cisco IOS constantes do ficheiro de configuração file, startup-config, gravado na NVRAM.

Sequência de Boot dos Switches

O comando *boot system* pode ser usado para definir a varável de ambiente de BOOT.

Recuperação de um Crash

- O boot loader pode ser acedido através de uma ligação de consola, por ex., se o IOS não puder ser carregado.
- É usado o seguinte procedimento:
 - Ligar um PC através do cabo de consola à porta de consola do switch.
 - Desligar a alimentação do switch.
 - Voltar a ligar a alimentação do switch premindo o botão *Mode*.
 - O sistema de LEDs fica ambar por um período curto e em seguida fica verde.
 - Soltar o botão Mode.

Modos do Switch Cisco Catalyst 2960

- Cada porta do switch tem um LED que indica por omissão o seu estado de atividade.
- Ao premir o botão **Mode** pode alterar-se a indicação que os LEDs das portas fornecem (port speed, port duplex,...).

Gestão Básica do Switch

- Para gerir remotamente um switch Cisco, é necessário configurá-lo para acesso à rede. Para isso:
 - atribuir um endereço IP e uma máscara de sub-rede;
 - configurar o gateway por omissão se se pretender aceder de uma rede remota.
- A informação IP (endereço, máscara de sub-rede, gateway) são atribuídas a uma interface virtual do switch, Switch Virtual Interface (SVI).
- Estas definições IP permitem o acesso remoto ao switch, mas não permitem o encaminhamento de pacotes de nível 3.

Gestão Básica do Switch

Cisco Switch IOS Commands			
Enter global configuration mode.	S1# configure terminal		
Enter interface configuration mode for the SVI.	S1(config)# interface vlan99		
Configure the management interface IP address.	S1(config-if)# ip address 172.17.99.11		
Enable the management interface.	S1(config-if)# no shutdown		
Return to the privileged EXEC mode.	S1(config-if)# end		
Enter global configuration mode.	S1# configure terminal		
Configure the default gateway for the switch.	S1(config)# ip default-gateway 172.17.99.1		
Return to the privileged EXEC mode.	S1(config-if)# end		
Save the running config to the startup config.	S1# copy running-config startup- config		

9

Comunicação Duplex

Full-Duplex Communication

Half-Duplex Communication

Configurar Portas do Switch no Nível Físico

Configure Duplex and Speed

Cisco Switch IOS Commands		
Enter global configuration mode.	S1# configure terminal	
Enter interface configuration mode.	S1(config)# interface FastEthernet 0/1	
Configure the interface duplex.	S1(config-if)# duplex full	
Configure the interface speed.	S1(config-if)# speed 100	
Return to the privileged EXEC mode.	S1(config-if)# end	
Save the running config to the startup config.	S1# copy running-config startup-config	

Auto-MDIX

- Para ligar dispositivos entre si usam-se cabos de tipos diferentes (diretos ou cruzados) consoante os dispositivos.
- A funcionalidade de *automatic Medium-Dependent Interface Crossover* (auto-MDIX) elimina a necessidade de se utilizarem cabos de tipos diferentes.
- Quando o auto-MDIX está ativo, a interface automaticamente deteta e configura adequadamente a ligação.
- Ao usar auto-MDIX numa interface, esta deve estar definida em modo auto para speed e duplex.

Configuração Auto-MDIX

Cisco Switch IOS Commands		
Enter global configuration mode.	S1# configure terminal	
Enter interface configuration mode.	S1(config)# interface fastethernet 0/1	
Configure the interface to autonegotiate duplex with the connected device.	S1(config-if)# duplex auto	
Configure the interface to autonegotiate speed with the connected device.	S1(config-if)# speed auto	
Enable auto-MDIX on the interface.	S1(config-if)# mdix auto	
Return to the privileged EXEC mode.	S1(config-if)# end	
Save the running config to the startup config.	S1# copy running-config startup-config	

Verificação do Auto-MDIX

S1# show controllers ethernet-controller fa 0/1 phy | include Auto-MDIX

Auto-MDIX: On [AdminState=1 Flags=0x00056248]

S1#

Verificação da configuração do Switch

Cisco Switch IOS Command	ds
Display interface status and configuration.	S1# show interfaces [interface-id]
Display current startup configuration.	S1# show startup-config
Display current operating config.	S1# show running-config
Display information about flash file system.	S1# show flash
Display system hardware and software status.	S1# show version
Display history of commands entered.	S1# show history
Display IP information about an interface.	S1# show ip [interface-id]
Display the MAC address table.	S1# show mac-address-table OR
	S1# show mac address-table

Problemas do Nível de Acesso à Rede

Giants

Runts

Pacotes que são descartados por terem tamanho inferior ao mínimo permitido no meio.

Evample

Output Errors

Soma de todos os erros que não permitem a transmissão final de pacotes na interface examinada.

ado e estatísti

Ethernet0/1

line protocol is 22.91c4 0.01 (b)

Pacotes que são descartados excederem o máximo tamanho permitido no meio. Exemplo:

- Um pacote Ethernet maior que 1518 bytes é considerado **giant.**

Collisions

Número de mensagens retransmitidas devido a

Late collisions

dog, 68 multi st, ao fim.

64 packets output, 37 A843 bytes, 0 underruns

Input Errors

Número total de erros. Inclui runts, giants, no buffer CRC, frame, overrun e ignored counts. 790 coll ic

. 3055

roadcast

or a b

Erros de CRC são gerados quando se calcula o checksum e não é o mesmo que vem na frame.

CRC

ESTSetúbal

16

Resolução de Problemas do Nível de Acesso

Acesso Remoto Seguro - SSH

- Secure Shell (SSH) é um protocolo que fornece acesso seguro (cifrado - encrypted) a um dispositivo remoto através de uma ligação baseada em linha de comando.
- SSH é de utilização comum em sistemas UNIX.
- O software Cisco IOS também suporta SSH.
- É necessário uma versão de IOS que inclua recursos e capacidades de criptografia (*encrypted*) para ativar SSH nos switches Catalyst 2960.
- SSH deve substituir Telnet em ligações de gestão porque tem fortes capacidades de cifra.
- SSH usa o porto TCP 22, por omissão e Telnet usa o 23.

Operação do SSH

Configuração de SSH no Switch


```
S1 # configure terminal
S1(config) # ip domain-name cisco.com
S1(config) # crypto key generate rsa
The name for the keys will be: S1.cisco.com
. . .
How many bits in the modulus [512]: 1024
```

Gera um par de chaves **RSA** para ativar automaticamente o SSH.

Ativa SSH nas linhas vty. dmin password cona SI (CONIIG) # IINE VCV 0 15

S1(config-line) # transport input ssh S1(config-line)# login local

Configura autenticação.

Configura as linhas de terminal virtual (vty).

Exige autenticação local.

Verificação do SSH


```
S1# show ip ssh
SSH Enabled - version 2.0
Authentication timeout: 90 secs; Authentication retries: 2
Minimum expected Diffie Hellman key size : 1024 bits
IOS Keys in SECSH format(ssh-rsa, base64 encoded):
ssh-rsa
AAAAB3NzaC1vc2EAAAADAOABAAAAqOCdLksVz2O1REsoZt2f2scJHbW3aMDM8
/8jg/srGFNL
i+f+qJWwxt26BWmy694+6ZIQ/j7wUfIVN1QhI8GUOVIuKNqVMOMtLq8Ud4qAiLbGJfAa
P3fvrKmViPpO
eOZof6tnKgKKvJz18Mz22XAf2u/7Jq2JnEFXycGMO88OUJQL3Q==
S1# show ssh
Connection Version Mode Encryption Hmac State
                                                           Username
                       aes256-cbc hmac-shal Session started ricky
Ω
          2.0
          2.0
                  OUT aes256-cbc hmac-shal Session started ricky
%No SSHv1 server connections running.
S1#
```


Inundação (Flooding) de MAC Addresses

- Os Switches preenchem automaticamente as suas tabelas de CAM observando o tráfego que passa nos suas portas.
- Switches transferem o tráfego para todos as portas quando não encontrarem o MAC de destino na sua tabela CAM.
 - Nestas circunstâncas o switch comporta-se como um hub.
- Um attacker pode explorar este comportamento para ganhar acesso ao tráfego normalmente controlado pelo switch, usando um PC que execute uma ferramenta de MAC flooding.
- Esta ferramenta é um programa criado para gerar e enviar frames com endereços MAC de origem falsos para a porta do switch:
 - O switch adiciona estes endereços MAC falsos à sua tabela CAM, registando a porta das frames recebidas.

Inundação (Flooding) de MAC Addresses

- A tabela CAM ficará totalmente preenchida com os endereços MAC falsos e por isso:
 - deixa de ter espaço para os dispositivos legítimos presentes na rede
 - nunca encontrará os endereços MAC dos dispositivos legítimos na tabela CAM;
 - todas as frames passam a ser transferidas para todos as portas, permitindo ao attacker o acesso ao tráfego para outros hosts.

Inundação (Flooding) de MAC Addresses

Ataques DHCP

- O DHCP é um protocolo de rede usado para atribuir informação IP de modo automático.
- Existem dois tipos de ataque DHCP:
 - DHCP spoofing;
 - DHCP starvation.
- Nos ataques DHCP spoofing, o falso servidor de DHCP é colocado na rede para atribuir endereços DHCP aos clientes.
- DHCP *starvation* é muitas vezes usado antes de um ataque DHCP *spoofing* para negar serviço aos servidores de DHCP legítimos.

Ataque DHCP Spoofing

- 1. Um *attacker* ativa um servidor DHCP num segmento de rede.
- 2. O cliente envia um pedido de informação DHCP em difusão.
- 3. O falso servidor de DHCP responde antes do servidor DHCP legítimo enviando-lhe informação enganosa.
- 4. Os pacotes enviados pelo cliente são redirecionados para o endereço do attacker que emula um gateway por omissão para o falso endereço DHCP que este lhe forneceu.

Ataque DHCP Starvation

- Um attacker inunda o servidor DHCP com pedidos de DHCP para usar todos os endereços IP disponíveis na pool DHCP do servidor.
- 2. Depois dos endereços IP estarem esgotados, o servidor não pode atribuir mais endereços consistindo em um ataque *Denial-of-Service* (DoS), uma vez que novos clientes não conseguem obter acesso à rede.

Vulnerabilidades do Cisco Discovery Protocol

- Cisco Discovery Protocol é um protocolo de nível 2 proprietário da Cisco usado para descobrir outros dispositivos Cisco diretamente ligados.
- O Cisco Discovery Protocol foi desenhado para permitir que os dispositivos auto-configurem as suas ligações.
- Se um attacker intercetar as mensagens do Cisco Discovery Protocol, pode aprender informação importante sobre o modelo do dispositivo e a versão de software que está em execução.
- A Cisco recomenda a desativação do CDP quando este não estiver em uso.

Vulnerabilidades do Telnet

- O protocolo Telnet é inseguro e deve ser substituído por SSH.
- Um attacker pode usar Telnet para suporte a outros ataques:
 - Ataque Brute force password
 - Ataque Telnet DoS
- Os attackers quando não conseguem capturar passwords, tentam todas as combinações de carateres possíveis. Esta tentativa de adivinhar a password é conhecida como ataque Brute Force Password:
 - o Telnet pode ser usado para testar no sistema as passwords criadas deste modo.

Vulnerabilidades do Telnet

- Num ataque Telnet DoS, um attacker explora uma falha no software do servidor Telnet executado no switch, deixando o serviço Telnet indisponível.
- Este tipo de ataque impede que um administrador aceda remotamente ao switch para executar funções de gestão.
- O ataque Telnet DoS pode ser combinado com outros ataques diretos à rede, como parte de uma tentativa coordenada de impedir que o administrador da rede aceda a dispositivos de core durante uma violação de segurança.
- As vulnerabilidades do serviço Telnet que permitem a ocorrência de ataques de DoS são normalmente resolvidas por patches de segurança que estão incluídos em revisões mais recentes do Cisco IOS.

10 Regras de Boas Práticas

- 1. Ter uma política de segurança documentada para a organização.
- 2. Desativar portas e serviços não usados.
- 3. Usar passwords fortes e alterá-las frequentemente.
- 4. Controlar o acesso físico aos dispositivos.
- 5. Usar HTTPS em vez de HTTP.
- 6. Efetuar operações de backup numa base regular.
- 7. Educar os trabalhadores sobre os possíveis ataques.
- 8. Cifrar e proteger com passwords dados sensíveis.
- 9. Implementar firewalls.
- 10. Manter o software atualizado.

Ferramentas de Segurança na Rede: Opções

- Ferramentas de segurança na rede são importantes para os administradores da rede:
 - Permitem que o administrador teste a eficácia das medidas de segurança implementadas.
 - Um administrador pode desencadear um ataque à rede e analizar os resultados, podendo determinar como ajustar as políticas de segurança para evitar esses tipos de ataques.
- Os **auditos à segurança** e os **testes de penetração** são duas funções básicas que as ferramenta de segurança na rede executam.

Ferramentas de Segurança na Rede: Auditos

- As ferramentas de segurança na rede podem ser usadas para auditar a rede.
- Monitorando a rede, um administrador pode aceder a todo o tipo de informação que um attacker é capaz de recolher.
- Por examplo, através do ataque de inundação da tabela de CAM de um switch, um administrador determina quais as portas do switch que estão vulneráveis a ataques de MAC flooding e pode corrigir esse problema.

Ferramentas de Segurança na Rede: Auditos

- As ferramentas de segurança na rede podem ser usadas para simular ataques e ajudar a determinar quão vulnerável a rede é em caso de ataque.
- Podem ser identificadas fraquezas na configuração dos dispositivos de rede com base nos resultados dos testes de penetração.
- Podem ser feitas alterações para que os dispositivos sejam mais resistentes aos ataques.
- No entanto, estes testes podem deteriorar a rede e devem ser feitos sob condições bem controladas.
- Uma rede de teste offline que reproduza a rede de produção atual é o ideal.

Desativar as Portas não Usadas

Disable unused ports using the **shutdown** command.

```
S1# show run
                                                        172.17.99.11
Building configuration ...
version 15.0
hostname S1
interface FastEthernet0/4
 shutdown
interface FastEthernet0/5
 shutdown
                                                             172.17.99.21
interface FastEthernet0/6
description web server
interface FastEthernet0/7
 shutdown
```


DHCP Snooping

- O DHCP *Snooping* especifica que portas do switch podem responder a pedidos de DHCP:
 - Portas trusted podem enviar pedidos e confirmações de DHCP;
 - Portas untrusted podem enviar apenas pedidos de DHCP.
- O DHCP Snooping permite que o switch crie uma tabela que mapeia o endereço MAC, o enderço IP, a VLAN e o ID da porta para filtrar tráfego DHCP.

```
S1(config)# ip dhcp snooping
S1(config)# ip dhcp snooping vlan 10,20
S1(config)# interface fastethernet 0/1
S1(config-if)# ip dhcp snooping trust
S1(config)# interface fastethernet 0/2
S1(config-if)# ip dhcp limit rate 5
```


Attacker Rogue

DHCP

Operação do Port Security

- O Port security limita o número de endereços MAC permitidos numa porta.
- Os endereços MAC dos dispositivos legítimos têm acesso à rede, enquanto aos outros é-lhes negado o acesso.
- Qualquer tentativa de ligação adicional efetuada por um endereço MAC desconhecido gera uma violação de segurança.
- Endereços MAC seguros podem ser configurados como:
 - Endereços MAC estáticos;
 - Endereços MAC dinâmicos;
 - Endereços MAC aprendidos (Sticky).

Port Security: Modos de Violação

- O IOS considera uma violação de segurança quando ocorre uma destas situações:
 - O número máximo de endereços MAC seguros para uma dada interface foi adicionado à tabela CAM.
 - Um endereço aprendido ou configurado numa interface segura foi detetado numa outra interface da mesma VLAN.
- Existem três ações possíveis que se podem tomar quando é detetada uma violação:
 - Proteger (Protect) Não há notificação de violação;
 - Restringir (Restrict) Há notificação de violação;
 - Desativar (Shutdown).

Dynamic Port Security por Omissão

Feature	Default Setting
Port security	Disabled on a port.
Maximum number of secure MAC addresses	1
Violation mode	Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded, and an SNMP trap notification is sent.
Sticky address learning	Disabled.

Configuração do Dynamic Port Security

Cisco IOS CLI Commands	
S1(config)#interface fastethernet 0/18	Specify the interface to be configured for port security.
S1(config-if)#switchport mode access	Set the interface mode to access.
S1(config-if)#switchport port- security	Enable port security on the interface.

Configuração do Port Security Sticky

Cisco IOS CLI Commands			
S1(config)#interface fastethernet 0/18	Specify the interface to be configured for port security.		
S1(config-if)#switchport mode access	Set the interface mode to access.		
S1(config-if)#switchport port- security	- Enable port security on the interface.		
S1(config-if)#switchport port- security maximum 50	Set the maximum number of secure addresses allowed on the port.		
S1(config-if)#switchport port- security mac-address sticky	Enable sticky learning.		

Verificação do Port Security Stick


```
S1# show port-security interface fastethernet 0/19
Port Security: Enabled
Port Status: Secure-up
Violation Mode: Shutdown
Aging Time: 0 mins
Aging Type: Absolute
SecureStatic Address Aging: Disabled
Maximum MAC Addresses: 50
Total MAC Addresses: 1
Configured MAC Addresses: 0
Sticky MAC Addresses: 1
Last Source Address:Vlan: 0025.83e6.4b02:1
Security Violation Count: 0
```


Verificação do Port Security Stick


```
S1# show run | begin FastEthernet 0/19
interface FastEthernet0/19
switchport mode access
switchport port-security maximum 50
switchport port-security
switchport port-security mac-address sticky
switchport port-security mac-address sticky
switchport port-security mac-address sticky 0025.83e6.4b02
```


Verificação do Port Security

S1# show port-security address Secure Mac Address Table				
Vlan	Mac Address	Туре	Ports	Remaining Age (mins)
1	0025.83e6.4b01	SecureDynamic	Fa0/18	_
1	0025.83e6.4b02	SecureSticky	Fa0/19	-
	_	em (excluding one System (excluding	_	-

Portas no Estado Error Disabled

- Uma violação de segurança da porta pode colocá-la no estado de error disabled.
- Uma porta em error disabled está efetivamente desativada.
- O switch comunica estes eventos através de mensagens que envia para a consola.

```
Sep 20 06:44:54.966: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/18, putting Fa0/18 in err-disable state Sep 20 06:44:54.966: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred, caused by MAC address 000c.292b.4c75 on port FastEthernet0/18.

Sep 20 06:44:55.973: %LINEPROTO-5-PPDOWN: Line protocol on Interface FastEthernet0/18, changed state to down Sep 20 06:44:56.971: %LINK-3-UPDOWN: Interface FastEthernet0/18, changed state to down
```


Portas no Estado Error Disabled

 O comando show interface revela a porta do switch num estado de error disabled.

```
S1# show interface fa0/18 status
Port Name Status Vlan Duplex Speed Type
Fa0/18 err-disabled 1 auto
                                    auto
                                            10/100BaseTX
S1# show port-security interface fastethernet 0/18
Port Security
                          : Enabled
Port Status
                          : Secure-shutdown
Violation Mode
                          : Shutdown
                          : 0 mins
Aging Time
Aging Type
                          : Absolute
SecureStatic Address Aging : Disabled
Maximum MAC Addresses
Total MAC Addresses
Configured MAC Addresses
Sticky MAC Addresses
Last Source Address: Vlan : 000c.292b.4c75:1
Security Violation Count
                          : 1
```


Portas no Estado Error Disabled

 Para reativar a porta deve ser emitido um comando shutdown seguido de no shutdown na configuração da interface.

```
S1(config)# interface FastEthernet 0/18
S1(config-if)# shutdown
Sep 20 06:57:28.532: %LINK-5-CHANGED: Interface
FastEthernet0/18, changed state to administratively down
S1(config-if)# no shutdown
Sep 20 06:57:48.186: %LINK-3-UPDOWN: Interface
FastEthernet0/18, changed state to up
Sep 20 06:57:49.193: %LINEPROTO-5-UPDOWN: Line protocol on
Interface
FastEthernet0/18, changed state to up
```