

Baseball III

Produced by Dr. Mario | UNC STOR 538

Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \epsilon$$

Linear Weights

Baseball Application

- Y = Runs for the Season
- $\vec{X} = [BB + HBP, S, D, T, HR, SB, CS]'$
- $Y = \vec{X}'\vec{\beta} + \vec{\epsilon}$
- $\hat{Y} = Predicted Runs$
- $| \bullet \quad \hat{Y} = \vec{X}' \hat{\vec{\beta}} |$

S = Single

D = Double

T = Triple

HR = Home Run

BB = Walk

HBP = Hit-by-Pitch

SB = Stolen Base

CS = Caught

Stealing

Estimated Linear Weights Using Least Squares

Predictor	Estimate
Constant	-411.81
Single	0.46
Double	0.81
Triple	1.07
HR	1.43
BB+HBP	0.33
SB	0.25
CS	-0.25

$$n = 210$$

 $R^2 = 0.90$
 $Adj. R^2 = 0.90$

Used to Be Insignificant

Doesn't Add Marginal Value

Important Information From Linear Regression

	Coefficients	Standard Error	t Stat	P-value
Intercept	-411.8133561	33.00675506	-12.47663866	7.3423E-27
BB+HBP	0.326171191	0.026991877	12.08405016	1.1813E-25
1B	0.459107774	0.028209869	16.2747222	1.325E-38
2B	0.805141015	0.070539419	11.41405797	1.31E-23
3B	1.072129559	0.185083303	5.792686554	2.6244E-08
HR	1.428105264	0.052270693	27.32133795	9.1608E-70
SB	0.250044999	0.063490957	3.938277396	0.00011296
CS	-0.254380304	0.190576335	-1.334794818	0.18344599

- Important Information From Linear Regression
 - Removal of Insignificant Variables

	Coefficients	Standard Error	t Stat	P-value
Intercept	-422.3214856	32.11582993	-13.14994775	5.654E-29
BB+HBP	0.328427033	0.026990732	12.16814092	6.1158E-26
1B	0.462425312	0.028154216	16.4247273	3.9961E-39
2B	0.809004928	0.070615562	11.45646795	9.2244E-24
3B	1.056646807	0.185074775	5.709296723	3.9868E-08
HR	1.432093994	0.052285581	27.38984579	4.1936E-70
SB	0.204454976	0.05362427	3.812732098	0.00018226

• MAD = 17.15 (Now) vs. MAD = 26 (Bill James)

Historical Progression

	1916	1950-1960	1978	1989	Now
Event	Lane	Lindsay	Palmer	Boswell	
BB+HBP	.164	_	.33	.33	0.33
Single	.457	.41	.46	.47	0.46
2B	.786	.82	.8	.78	0.81
Triple	1.15	1.06	1.02	1.09	1.06
Home Runs	1.55	1.42	1.4	1.4	1.43
Outs	_	_	25	_	-
SB	_	_	.3	.3	0.20
CS	_	_	6	_	

- Evaluation of Hitters
 - Imagine if Team Had Only Mike Trout (2016)
 - Approximately, $26.72 \times 162 = 4329 \ Outs \ Per \ Season$
 - Trout Hit 29 HR and Had 366.118 Outs
 - Therefore, Trout Hit

$$\frac{29}{366.118} = 0.079 Home Runs Per Out$$

Scaling Up, We Expect a Team of Trouts to Hit on Average

$$4329 \times \frac{29}{366.118} = 342.9 \ Home \ Runs \ Per \ Season$$

 Using Linear Weights, We Expect 1,588.07 Runs Per Season which Can Be Thought of 9.80 Runs Per Game

- OBP, SLG, OPS, and Runs Created
 - Moneyball Highlights the Importance of OBP
 - From 2010-2016, Average OBP was 32%
 - Purpose of OPS = Value Power Hitters
 - Recall:

$$OPS = OBP + SLG$$

= $1 \times OBP + 1 \times SLG$

Equal Weights

Which Covariate (OBP or SLG) is Better for Predicting Runs?

- OBP, SLG, OPS, and Runs Created
 - Multiple Regression (2010-2016 Team Data)

$$Runs = \beta_0 + \beta_1(OBP) + \beta_2(SLG) + \epsilon$$

	Coefficients	Standard Error	t Stat	P-value
Intercept	-738.7520251	43.82154709	-16.85819133	1.04367E-40
OBP	2338.121668	191.8515917	12.18713719	4.14782E-26
SLG	1707.332494	92.94672979	18.3689356	2.39874E-45

$$n = 210 \& R^2 = 0.89 \& Adj. R^2 = 0.88$$

Summary: OBP is More Important Than SLG (1.4 Times More)

- Runs Created Above Average
 - How Many More Runs if Average Team Added a Player?
 - Average Team (2010-2016) Versus Bryant (2016)

Hit Type	Average Team	Bryant 2016
Single	939.83	99
Double	276.2	35
Triple 29.16		3
HR	159.36	39
BB+HBP	544.59	93
SB	95.08	8
Outs	4328.64	416.15

Runs Created Above Average

Hit Type	Average Team	Bryant	Bryant + Team
Single	939.83	99	948.48
Double	276.2	35	284.64
Triple	29.16	3	29.36
HR	159.36	39	183.04
BB+HBP	544.59	93	597.33
SB	95.08	8	93.94

- Runs Created Above Average
 - If Added, Rest of Players Will Cost an Approximate $4328.64 416.15 = 3912.49 \ Outs$
 - For the Rest of The Team, This is Equivalent to $\frac{3912.49}{4328.64} = 90.4\% \ of \ Total \ Outs$
 - Singles With Bryant Added to Roster

$$Singles = 0.904(Singles of Team) + (Singles of Bryant)$$

= $0.904(939.83) + (99) = 948.61$

- Runs Created Above Average
 - Predicted Runs of Average Team = 693.02
 - Predicted Runs of Bryant+Average Team = 751.08
 - Added Value of Bryant = 751.08-693.02 = 58 Runs Above Average

Final Inspiration

If you don't like sports, you may like baseball.

- Mahatma Mario