Monitora: Isabella Olivatti

LISTA UNIDADE 2 – Concentração, Velocidade e Fluxo

- 1. Assinale as afirmações a seguir como verdadeiro (V) ou falso (F).
 - a. [] A difusão molecular trata do transporte de matéria (na forma de átomos, moléculas ou íons) em um determinado meio líquido, sólido ou gasoso.
 - b. [] O transporte de massa independe do estado físico do meio.
 - c. [] A mobilidade das espécies do soluto depende da resistência do meio.
 - d. [] A polaridade das espécies envolvidas é irrelevante na análise de transferência de massa.
 - e. [] Os cálculos envolvendo transferência de massa podem ser feitos em base mássica ou molar.
- 2. Circule a opção que expressa as relações corretas de concentração molar e concentração mássica, respectivamente.

- a. $ho_i = \frac{m_i}{V}$ e $C_i = \frac{n_i}{V}$ b. $C_i = \frac{m_i}{V}$ e $\rho_i = \frac{p_i}{V}$ c. $C_i = \frac{n_i}{V}$ e $\rho_i = \frac{m_i}{V}$ d. $C_i = \frac{n_i}{(RT)}$ e $\rho_i = \frac{p_i}{(RT)}$
- 3. Circule a opção que expressa as relações corretas para fração mássica, fração molar de líquidos/sólidos e fração molar de gases, respectivamente. a. $w_i = \frac{\rho_i}{\rho}$, $y_i = \frac{c_i}{c}$ e $x_i = \frac{c_i}{c}$ b. $w_i = \frac{\rho_i}{\rho}$, $x_i = \frac{c_i}{c}$ e $y_i = \frac{c_i}{c}$ c. $x_i = \frac{c_i}{c}$, $y_i = \frac{c_i}{c}$ e $w_i = \frac{\rho_i}{\rho}$ d. $w_i = \frac{m_i}{\rho}$, $x_i = \frac{n_i}{c}$ e $y_i = \frac{p_i}{c}$

- 4. Determine a massa molar da seguinte mistura gasosa: 5 % (molar) de CO, 20 % de H₂O, 4 % de O₂ e 71 % N₂. Calcule também as frações mássicas das espécies que compõem a mistura. (CREMASCO, 3ed. 2015)
- 5. Sabendo que as velocidades absolutas das espécies químicas presentes na mistura gasosa

de 5 % (mol) de CO, 20 % de H₂O, 4 % de O₂ e 71 % N₂ são:
$$v_{CO,z} = 10 \frac{cm}{s}$$
; $v_{H_2O,z} = 19 \frac{cm}{s}$; $v_{O_2,z} = 13 \frac{cm}{s}$; $v_{N_2,z} = 11 \frac{cm}{s}$

Determine:

- a. Velocidade média molar da mistura
- b. Velocidade média mássica da mistura
- c. Velocidade de difusão do O2 na mistura tendo como referência a velocidade média molar da mistura
- d. Velocidade de difusão do O2 na mistura tendo como referência a velocidade média mássica da mistura.

(CREMASCO, 3ed. 2015)

6. Se a mistura gasosa de 5 % de CO, 20 % de H₂O, 4 % de O₂ e 71 % N₂ está a 1 atm e 105 °C, determine:

Departamento de Engenharia Química

ENQ060 - Fenômenos de Transferência de Massa Prof^a. Myriam Lorena M. N. Cerutti

- a. Fluxo difusivo molar de O₂ na mistura
- b. Fluxo difusivo mássica de O2 na mistura
- c. Contribuição do fluxo convectivo molar de O₂ na mistura
- d. Contribuição do fluxo convectivo mássico de O2 na mistura
- e. Fluxo mássico total de O2 referenciado a um eixo estacionário
- f. Fluxo molar total de O₂ referenciado a um eixo estacionário. (CREMASCO, 3ed. 2015)
- 7. Calcule as frações molares de cada componente em 100 kg de uma mistura com a seguinte composição mássica:

Componente	% mássica
O ₂	16
CO	4
CO ₂	17
N ₂	63

(Adaptado de BENITEZ, J.; 1ed. 2002)

- 8. A composição do ar é, muitas vezes, dada em termos das duas espécies principais na mistura de gases: y_{O2} = 0,21 e y_{N2} = 0,79. Determinar a fração mássica de O₂ e N₂ e o peso molecular médio do ar a 25 °C e a 1 atm. (WELTY et al., 5ed. 2015)
- 9. Uma mistura gasosa a 1 atm e 105 °C possui a seguinte composição em % molar:

CO = 15 %;

 $SO_2 = 8 \%$;

 $H_2O = 23 \%$;

 $N_2O = 54 \%$.

E as velocidades absolutas de cada espécie são 20 cm/s, 5 cm/s, 10 cm/s e 8 cm/s, respectivamente. Obtenha:

a. v_{z}

C. $j_{SO_2,Z}$

d. $J_{SO_{2},Z}$

e. $j_{SO_{2},Z}^{c}$

(CREMASCO, 3ed. 2015)

- 10. Demonstre:
 - a. $D_{AB} = D_{BA}$ (para sistemas gasosos)

b.
$$\vec{n} = \rho \vec{v}$$

$$\vec{N} + \vec{N} = \vec{N} = \vec{N}$$

c.
$$\vec{N}_A + \vec{N}_B = C\vec{V}$$

d. $dw_A = \frac{M_A M_B dx_A}{(x_A M_A + x_B M_B)^2}$
(CREMASCO, 3ed. 2015)

11. Denominando $\vec{j}_A^* = \mathcal{C}_A(\vec{v}_A - \vec{v})$, demostre para uma mistura binária que: $\vec{j}_A^* = \vec{N}_A - w_A \left(\vec{N}_A + \frac{M_B}{M_A} \vec{N}_B \right)$

$$\vec{J}_A^* = \vec{N}_A - w_A \left(\vec{N}_A + \frac{M_B}{M_A} \vec{N}_B \right)$$

(CREMASCO, 3ed. 2015)

12. A partir de $\vec{J}_1 = C_1(\vec{v}_1 - \vec{V})$, demostre:

a.
$$\vec{J}_1 = \sum_{j=1}^n (y_j \vec{N}_1 - y_1 \vec{N}_j)$$

b. Para uma mistura binária: $\vec{\nabla} y_1 = \sum_{j=2}^{n=2} \frac{1}{CD_{1j}} (y_1 \vec{N}_j - y_j \vec{N}_1)$

(CREMASCO, 3ed. 2015)

Departamento de Engenharia Química ENQ060 - Fenômenos de Transferência de Massa

Profa. Myriam Lorena M. N. Cerutti

Respostas

- 1. V, F, V, F, V.
- 2. c.
- 3. b.
- 4. 26,173 g/mol; 0,0535; 0,1377; 0,0489; 0,7599.
- 5. a) 12,63 cm/s; b) 12,15 cm/s; c) 0,37 cm/s; d) 0,85 cm/s.
- 6. a) $4,78x10^{-7}$ mol/cm²s; b) $3,5x10^{-5}$ g/cm²s; c) $1,63x10^{-5}$ mol/cm²s; d) $5,01x10^{-4}$ g/cm²s e) $5,36x10^{-4}$ g/cm²s; f) 1,635x10⁻⁵ mol/cm²s.
- 7. 0,153; 0,044; 0,118; 0,686.
- 8. 28,8 g/mol; 0,233; 0,768.
- 9. a) 9,164 cm/s; b) 10,02 cm/s; c) $-6,87 \times 10^{-4} \text{ g/cm}^2 \text{s}$; d) $-1,294 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; e) $1,512 \times 10^{-3} \text{ g/cm}^2 \text{s}$; f) $2,585 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; e) $1,512 \times 10^{-3} \text{ g/cm}^2 \text{s}$; f) $2,585 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; e) $1,512 \times 10^{-3} \text{ g/cm}^2 \text{s}$; f) $2,585 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; e) $1,512 \times 10^{-3} \text{ g/cm}^2 \text{s}$; f) $2,585 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; e) $1,512 \times 10^{-3} \text{ g/cm}^2 \text{s}$; f) $2,585 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; e) $1,512 \times 10^{-3} \text{ g/cm}^2 \text{s}$; f) $2,585 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; f) $2,585 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; e) $1,512 \times 10^{-3} \text{ g/cm}^2 \text{s}$; f) $2,585 \times 10^{-5} \text{ mol/cm}^2 \text{s}$; f) $2,585 \times 10^$ ⁵ mol/cm²s.