

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

# Метод построения поисковых индексов в реляционной базе данных на основе глубоких нейронных сетей

Студент: Маслова Марина Дмитриевна ИУ7-83Б

Руководитель: Оленев Антон Александрович

# Актуальность

#### Цель и задачи

**Цель:** разработка метода построения поисковых индексов в реляционной базе данных на основе глубоких нейронных сетей.

#### Задачи:

- рассмотреть и сравнить известные методы построения индексов;
- привести описание построения индексов с помощью нейронных сетей;
- разработать метод построения индексов в реляционной базе данных на основе глубоких нейронных сетей;
- разработать программное обеспечение, реализующее данный метод;
- провести исследование (по времени и памяти) операций поиска и вставки с использованием индекса, построенного разработанным методом, при различных объемах данных.

### Сравнение методов построения индексов

| Метод                  |         | В-дерево | Хеш-таблица | Фильтр<br>Блума | Обученные<br>индексы |
|------------------------|---------|----------|-------------|-----------------|----------------------|
| Временная<br>сложность | поиска  | O(log N) | O(1) / O(N) | O(k)            | O(1) / O(N)          |
|                        | вставки | O(log N) | O(1) / O(N) | O(k)            | (*)                  |
| Память                 |         | Высокая  | Средняя     | Низкая          | Средняя              |
| Поиск в диапазоне      |         | +        | -           | -               | +                    |
| Поиск единичного ключа |         | +        | +           | -               | +                    |
| Проверка существования |         | +        | +           | +               | +                    |

<sup>(\*)</sup> — вставка в обученный индекс требует переобучения, сложность которого зависит от архитектуры используемой модели машинного обучения.

#### Постановка задачи



Ограничение: ключи — целые уникальные числа.

#### Структура индекса



$$p = F(K) \cdot N,$$

где p — искомая позиция; K — ключ поиска; F(K) — функция распределения; N — количество ключей.

#### Функциональная схема построения индекса



# Архитектура нейронной сети



## Функциональная схема поиска



#### Функциональная схема вставки



#### Структура программного обеспечения



## Исследование времени построения



#### Исследование времени поиска (распределения)



## Исследование времени поиска (модели)



## Исследование времени поиска (этапы)



## Исследование времени вставки



#### Исследование памяти, занимаемой индексом



#### Заключение

В ходе данной работы:

- проанализированы известные методы построения индексов;
- приведено описание построения индексов с помощью нейронных сетей;
- разработан метод построения индексов в реляционной базе данных на основе глубоких нейронных сетей;
- разработано программное обеспечение, реализующее данный метод;
- провестно исследование (по времени и памяти) операций поиска и вставки с использованием индекса, построенного разработанным методом, при различных объемах данных.

Поставленная цель достигнута.

### Дальнейшее развитие

- 1. Оптимизация алгоритма вставки с учетом распределения ключей.
- 2. Добавление возможности построения индекса по ключам других типов данных.
- 3. Построение многомерных обученных индексов.