

proof of Scott-Wiegold conjecture

Canonical name ProofOfScottWiegoldConjecture

Date of creation 2013-03-22 18:30:31 Last modified on 2013-03-22 18:30:31

Owner $\frac{1}{2}$ whm22 (2009) Last modified by $\frac{1}{2}$ whm22 (2009)

Numerical id 5

Author whm22 (2009)

Entry type Proof Classification msc 20E06

Suppose the conjecture were false. Then we have some $w \in C_p * C_q * C_r$ with $N(w) = C_p * C_q * C_r$. Let a, b, c denote the of w onto C_p , C_q , C_r respectively. Then a, b, c are all non-trivial as otherwise N(w) would be contained in the kernel of one of the.

For $0^{\circ} < \theta < 360^{\circ}$ we say that a spin through θ consists of a unit vector, $\vec{u} \in \mathbb{R}^3$ together with the rotation of \mathbb{R}^3 through the angle θ anticlockwise about \vec{u} . In we have a single spin through the angle 0° and a single spin through 360°. Thus the set of spins (usually denoted Spin(3)) naturally has the topology of a 3-sphere.

The spin through θ about a unit vector \vec{u} has the same underlying rotation as the spin through $360^{\circ} - \theta$ about $-\vec{u}$. Hence there are precisely two spins corresponding to each rotation of \mathbb{R}^3 about the origin.

is well defined on spins as you can compose the underlying rotations and continuity determines which of the two spins is the correct result. For example a 350° spin about \vec{u} composed with a 20° spin about \vec{u} is a 350° spin about $-\vec{u}$ (not a 10° spin about \vec{u} which would be at the other end of the 3-sphere).

Let \vec{n} denote the unit vector (0,0,1). Fix an arc, I, on the unit sphere connecting \vec{n} and $-\vec{n}$. Let \vec{t} be a vector on this arc. Let \vec{u} be an arbitrary unit vector. We may define a homomorphism $\phi_{\vec{t},\vec{u}} \colon F_{\{a,b,c\}} \to \mathrm{Spin}(3)$ by:

 $\phi_{\vec{t},\vec{u}} \colon a \mapsto \text{the spin through } (\frac{p-1}{2}) \frac{360^{\circ}}{p} \text{ (or } 180^{\circ} \text{ if } p=2) \text{ about } \vec{n}$ $\phi_{\vec{t},\vec{u}} \colon b \mapsto \text{the spin through } (\frac{q-1}{2}) \frac{360^{\circ}}{q} \text{ (or } 180^{\circ} \text{ if } q=2) \text{ about } \vec{t}$ $\phi_{\vec{t},\vec{u}} \colon c \mapsto \text{the spin through } (\frac{r-1}{2}) \frac{360^{\circ}}{r} \text{ (or } 180^{\circ} \text{ if } r=2) \text{ about } \vec{u}$

(Here $F_{\{a,b,c\}}$ denotes the free group on a,b,c).

So $\phi_{\vec{t},\vec{u}}(a),\ \phi_{\vec{t},\vec{u}}(b)$ and $\phi_{\vec{t},\vec{u}}(c)$ are spins of between 120° and 180°, all having non-trivial underlying rotations.

Let \tilde{w} be a word in $F_{\{a,b,c\}}$ representing w, such that a, b, c occur in it 1 $\operatorname{Mod}(2p)$ times, 1 $\operatorname{Mod}(2q)$ times and 1 $\operatorname{Mod}(2r)$ times, respectively.

We have a homomorphism $\phi': C_p * C_q * C_r \to SO(3)$ induced by ϕ . If $\phi_{\vec{t}\vec{u}}(\tilde{w})$ has a trivial underlying rotation for some \vec{t} and \vec{u} , then N(w)will only contain elements in the kernel of ϕ' . In particular, we would have $a, b, c \notin N(w)$. So we may assume we have a map:

$$h: I \times S^2 \to S^2$$

which maps (\vec{t}, \vec{u}) to the unit vector corresponding to $\phi_{\vec{t}, \vec{u}}(\tilde{w})$.

By we have $h(\vec{n}, R\vec{u}) = Rh(\vec{n}, \vec{u})$ for any rotation R about \vec{n} . Thus $h(\vec{n}, \cdot): S^2 \to S^2$ maps latitudes to latitudes (possibly rotating them and /

or moving them up or down).

Also $h(\vec{n}, \vec{n}) = -\vec{n}$, as $\phi_{\vec{n}, \vec{n}}(a)$, $\phi_{\vec{n}, \vec{n}}(b)$ and $\phi_{\vec{n}, \vec{n}}(c)$ are spins of between 120° and 180° anticlockwise about \vec{n} , so the sum of the angles will be greater than 360°. Similarly one may that $h(\vec{n}, -\vec{n}) = \vec{n}$. Thus, as h(n,) maps latitudes to latitudes, it must be homotopic to a reflection of S^2 .

Again by we have $h(-\vec{n}, R\vec{u}) = Rh(-\vec{n}, \vec{u})$ for all rotations R about \vec{n} . Hence $h(-\vec{n}, _) \colon S^2 \to S^2$ also maps latitudes to latitudes.

Further, $h(-\vec{n}, \vec{n}) = \vec{n}$ and $h(-\vec{n}, -\vec{n}) = -\vec{n}$. Thus $h(-\vec{n}, \cdot)$ is homotopic to the .

But h gives a homotopy from $h(\vec{n}, _)$ to $h(-\vec{n}, _)$, yielding the desired contradiction.