5 Spurtopologie, Initiale und Finale Topologie

41. Eigenschaften der Spurtopologie (vgl. Vo. Prop. 5.4).

Beweise Proposition 5.4 aus der Vorlesung, d.h. zeige folgende Eigenschaften der der Spurtopologie $\mathcal{O}|_Y$ auf der Teilmenge Y des topologischen Raumes (X, \mathcal{O}) .

- (i) $U \in \mathcal{U}_x^Y \iff \exists W \in \mathcal{U}_x : U = W \cap Y$
- (ii) A abgeschlossen bzgl. $\mathcal{O}|_Y \Leftrightarrow \exists B$ abgeschlossen bezgl. $\mathcal{O}: A = B \cap Y$
- (iii) $\forall A \subseteq Y : \bar{A}^Y = \bar{A}^X \cap Y$
- (iv) Sei $(x_{\lambda})_{\lambda}$ ein Netz in Y und $x \in Y$, dann gilt

$$x_{\lambda} \to x$$
 bzgl. $\mathcal{O}|_{Y} \Leftrightarrow x_{\lambda} \to x$ bzgl. \mathcal{O}

- (v) $f:(X,\mathcal{O}_X)\to (Z,\mathcal{O}_Z)$ stetig $\Rightarrow f|_Y:(Y,\mathcal{O}_Y)\to (Z,\mathcal{O}_Z)$ stetig
- 42. Innerers, Äußeres, Rand, Häufungs- und isolierte Punkte (vgl. Vo. Bem. 2.48). Betrachte als topologischen Raum $X = [-1,2] \cup \{3\}$ mit der Spurtopologie von $(\mathbb{R}, \mathcal{O}_n)$. Zeige für eine geeignete Teilmenge $A \subseteq X$, etwa $A = (0,1] \cup \{2\} \cup \{3\}$, dass sämtliche mögliche Teilmengen der von A, A^C , A', Isol(A), ∂A induzierten Partition (vgl. Vo. 2.48) nichtleer sind. Gib für jede der Teilmengen einen ihrer Punkte an.
- 43. Spurtopologie im Niemytzki-Raum (vgl. Vo. 2.26(iii)). Wie sieht die von der Niemytzki-Toplogie induzierte Toplogie auf der x-Achse aus?
- 44. Vererbung topologischer Eigenschaften.

Eine Eigenschaft (E) eines toplogischen Raumes (X, \mathcal{O}) heißt "erblich" falls sie mit (X, \mathcal{O}) auch jeder Teilraum $(Y, \mathcal{O}|_Y)$ hat. Zeige

- (i) AA1 und AA2 sind erblich, Separabilität ist nicht erblich (Hinweis: Aufgabe 43).
- (ii) Separabilität vererbt sich auf alle $(Y, \mathcal{O}|_Y)$ mit Y offen in X.
- 45. Produkttopologie.

Seien (X_i, \mathcal{O}_i) topologische Räume $(i \in I)$, p r_k die Projektion von $X := \prod_{i \in I} X_i$ auf X_k $(k \in I; pr_k : (x_i)_i \mapsto x_k)$ und (Y, \mathcal{O}_Y) ein weiterer topologischer Raum.

Zeige, dass eine Abbildung $f: Y \to X$ genau dann stetig bzgl. \mathcal{O}_Y und der Produkttopologie auf X ist, wenn alle $\operatorname{pr}_k \circ f$ stetig sind.

Anmerkung: Die $\operatorname{pr}_k \circ f$ sind gerade die "Komponentenfunktionen" f_k von f, wenn die Schreibweise $f(y) = (f_i(y))_i$ verwendet wird. Obige Eigenschaft ist neben Vo. Prop. 5.12 gerade der "Witz" der Produkttopologie! Überlege, was beim Beweis schiefgeht, falls X statt mit der Produkttopologie mit der Boxtopologie versehen wird.