

Ch2.5 Induction (Oscar)(Week 11)

Induction Proof Structure

Start by saying what the statement is that you want to prove: "Let P(n) be the statement..." To prove that P(n) is true for all $n \geq 0$, you must prove two facts:

- 1. Base case: Prove that P(0) is true. You do this directly. This is often easy.
- 2. Inductive case: Prove that $P(k) \to P(k+1)$ for all $k \ge 0$. That is, prove that for any $k \ge 0$ if P(k) is true, then P(k+1) is true as well. this is the proof of an *if... then...* statement, so you can assume P(k) is true (P(k) is called the *inductive hypothesis*). You must then explain why P(k+1) is also true, given that assumption.

Assuming you are successful on both parts above, you can conclude, "Therefore by the principle of mathematical induction, the statement P(n) is true for all $n \ge 0$."

▼ Example 2.5.3

Prove that $n^2 < 2^n$ for all integers $n \geq 5$.

Understand:

What if increase n by 1??

LHS → increase the base number, go to the next square number

RHS \rightarrow increase the power of 2, double the number.

How does doubling a number relate to increasing to the next square ??

The difference of two consecutive squares $\Rightarrow (n+1)^2 - n^2 = (n+1-n)(n+1+n) = 2n+1$.

But doubling RHS increases it by 2^n , since $2^{n+1} = 2^n + 2^n$. When n is large enough, $2^n > 2n + 1$.

Each time n increases, LHS grows by less than RHS (never catch up)

Proof:

Let P(n) be the statement $n^2 < 2n$. We will prove P(n) is true for all integers $n \geq 5$.

Base case: P(5) is the statement $5^2 < 2^5$. Since $5^2 = 25$ and $2^5 = 32$, we see that P(5) is indeed true.

Inductive case: Let $k \geq 5$ be an arbitrary integer. Assume, for induction that P(k) is true. That is, assume $k^2 < 2^k$. We will prove that P(k+1) is true, i.e., $(k+1)^2 < 2^{k+1}$. To prove such an inequality, start with LHS and work towards RHS:

$$(k+1)^2=k^2+2k+1$$
 $<2^k+2k+1$...by the inductive hypothesis $<2^k+2^k$...since $2k+1<2^k$ for $k\geq 5$ $=2^{k+1}$.

Following the equalities and inequalities through, we get $(k+1)^2 < 2^{k+1}$, in other words, P(k+1). Therefore by the principle of mathematical induction, P(n) is true for all n > 5. QED

Strong Induction Proof Structure

Again, start by saying what you want to prove: "Let P(n) be the statement..." Then establish two facts:

- 1. Base case: Prove that P(0) is true.
- 2. Inductive case: Assume P(k) is true for all k < n. Prove that P(n) is true.

Conclude, "therefore, by strong induction, P(n) is true for all n>0."

• Technically, strong induction doesn't require a separate base case, but when proving the inductive case, we must show that P(0) is true, assuming P(k) is true for all k < 0. We end up proving P(0) anyway, include the base case to be safe.

1