1 Random Variables

If a real variable X is associated with an outcome of a random experiment, it is called a $random\ variable$ or a $stochastic\ variable$ or simply a variate.

Types of Random Variables:

- Discrete Random Variables
- Continuous Random Variables

1.1 Probability Distribution Function (pdf)

This is a function that denotes the probability of a given event as a continuous/discrete function of f(x) where $x \in \mathbb{R}$.

1.2 Cumulative Distribution Function (cdf)

This is a function that denotes the sum of probability of a given event as a continuous/discrete function of F(X) where X will be $\leq x$.

1.3 Statistical Terminologies

- Mean (Expectation of x): Denoted by E(x)
- Variance: Denoted by V(x) or σ^2
- \bullet Standard Deviation: Denoted by $\boxed{\sigma}$

	Discrete Random Variables	Continuous Random Variables		
μ or $E(x)$	$\sum_{i=1}^{n} x_i P(x_i)$	$\int_{-\infty}^{\infty} x P(x) dx$		
$E(x^2)$	$\sum_{i=1}^{n} x_i^2 P(x_i)$	$\int_{-\infty}^{\infty} x^2 P(x) dx$		
$E(x-\mu)^2$ or σ^2	$V(x) = E(x^2) - E(x)^2$			

1.4 Chebyshev's Inequality

Let x be a random variable with $E(x) = \mu$ and c be any real number, then if $E(x-c)^2$ is finite and is any positive number,

$$P\{|x-c| \ge \varepsilon\} \le \frac{E(x-c)^2}{\varepsilon^2}$$

OR

$$P\{|x-c| \le \varepsilon\} \ge 1 - \frac{E(x-c)^2}{\varepsilon^2}$$

If $c = \mu$ then,

$$P\{|x-c| \ge \varepsilon\} \le \frac{V(x)}{\varepsilon^2}$$

If $c = \mu$ & $\varepsilon = k\sigma$ then,

$$P\{|x-c| \ge \varepsilon\} \le \frac{1}{k^2}$$

1.5 Markov's Inequality

For a > 0,

$$P\{x \ge a\} \le \frac{E(x)}{a}$$

1.6 Uniform Distribution

If X is a continuous random variable defined over an interval [a, b] and having probability distribution function

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{elsewhere} \end{cases}$$

then we say X has uniform distribution. Denoted as follows: $X \sim \mathbf{U}(a,b)$

We define the mean, variance as follows:

- $\bullet \ E(x) = \frac{a+b}{2}$
- $E(x^2) = \frac{1}{3}(a^2 + b^2 + ab)$
- $V(x) = \frac{(b-a)^2}{12}$

1.7 Two Dimensional Random Variables

Let x, y be 2 random variables distributed in a 2 dimensional space S.

 $x, y \to \text{random variable}$

$$x(S) = x_1, x_2 \dots x_n$$
 $y(S) = y_1, y_2 \dots y_m$

then we define $P(x=x_i,y=y_j) = P_{ij}$ such that,

- $P_{ij} \ge 0$
- $\bullet \sum_{i=1}^{n} \sum_{j=1}^{m} P_{ij} = 1$

1.7.1 Joint Probability Function

also known as Joint Probability Mass Function is function on the set (x_i, y_j, P_{ij}) .

x_i y_j	y_1	y_2	 y_m	
x_1	P_{11}	P_{12}	 P_{1m}	$f(x_1)$
x_2	P_{21}	P_{22}	 P_{2m}	$f(x_2)$
:	:	÷	 ÷	:
:	:	:	 :	•
x_n	P_{n1}	P_{n2}	 P_{nm}	$f(x_n)$
	$g(y_1)$	$g(y_2)$	 $g(y_m)$	1

We define a few terms such as $f(x_i)$ and $g(y_j)$ for the probability function of two variables f(x, y).

$$f(x_i) = \sum_{j=1}^{m} P_{ij}$$
 ; $f(y_j) = \sum_{i=1}^{n} P_{ij}$

Based on the terms mentioned above, we have following formulae,

	Discrete Random Variables	Continuous Random Variables
E(x)	$\sum_{i=1}^{n} x_i P f x_i)$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy$
E(y)	$\sum_{j=1}^{m} y_j g(y_j)$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy$
E(xy)	$\sum_{1 \le i \le n, 1 \le j \le m}^{n} x_i y_i P_{ij}$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dx dy$
$E(x^2)$	$\sum_{i=1}^{n} x_i^2 P f x_i)$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 f(x, y) dx dy$
$E(y^2)$	$\sum_{j=1}^{m} y_j^2 g(y_j)$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y^2 f(x, y) dx dy$

For a crv, (x, y) is associated with function f(x, y) such that,

•
$$f(x,y) \ge 0$$

$$\bullet \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

f(x,y) is known as the joint probability density function.

1.7.2 Covariance and Correlation Coefficient

The relation of the two variables x and y can be defined by covariance which when +ve means that they are directly proportional and when -ve means inversely proportional. When the covariance is 0, it means that the 2 variable are completely unrelated.

$$Cov(x, y) = E(xy) - E(x) E(y)$$

This is called Measure of Correlation.

Correlation Coefficient

The numerical measure of correlation is called the coefficient of correlation and is defined by the relation:

$$r(x,y) = r_{xy} = \frac{Cov(x,y)}{\sigma_x \sigma_y} = \frac{E(xy) - E(x) E(y)}{\sqrt{V(x) V(y)}}$$