WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT

- (51) International Patent Classification ⁶:

 G01N 33/574, C12Q 1/48, A61K 31/55, 31/275, 31/35, 39/395, 38/00, 31/70, G01N 33/573, C12Q 1/68, C12N 9/12, 15/11
- (11) International Publication Number:
 (43) International Publication Date:
- 19 January 1995 (19.0

(21) International Application Number:

(22) International Filing Date:

PCT/GB94/01480

(22) International Tra

8 July 1994 (08.07.94)

(30) Priority Data: 9314271.9

9 July 1993 (09.07.93) GB

- (71) Applicants (for all designated States except US): THE IN-STITUTE OF CANCER RESEARCH (GB/GB): 17A Onslow Gardens, London SW7 3AL (GB). THE WELLCOME FOUNDATION LIMITED (GB/GB): Unicorn House, 160 Euston Road, London NW1 2BP (GB).
- (72) Inventors; and
- (72) Inventors/Applicants (for US only): GUSTERSON, Barry, Austin (GB/GB); Institute of Cancer Research, Royal Cancer Hospital, Haddow Laboratories, 15 Coiswold Road, Sutton, Surrey SM2 SNG (GB). CROMPTON, Mark, Roger (GB/GB); Institute of Cancer Research, Royal Cancer Hospital, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 SNG (GB). MITCHELL, Philip, John (GB/GB); Institute of Cancer Research, Royal Cancer Hospital, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 SNG (GB). BARKER, Karen, Tracey (GB/GB); Institute of Cancer Research, Royal Cancer Hospital, Haddow Laboratories, Royal Cancer Hospital, Haddow Laboratories.

tories, 15 Cotswold Road, Sutton, Surrey SM2 5NG MARTINDALE, Jane, Elizabeth [GB/GB]; Institute of cer Research, Royal Cancer Hospital, Haddow Laborat 15 Cotswold Road, Sutton, Surrey SM2 5NG (GB). P Martin, John [GB/GB]; The Wellcome Research Labries, Langley Court, South Eden Park Road, Becket Reta BR3 3BS (GB). SPENCE, Paul [GB/GB]; The come Research Laboratories, Langley Court, South Park Road, Beckenbark, Kent BR3 3BS (GB).

- (74) Agent: MARCHANT, James, Ian; Elkington and Fife, Pri House, 8 Pembroke Road, Sevenoaks, Kent TN13 (GB).
- (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA CN, CZ, DE, DK, ES, FI, GB, GE, HU, FP, KE, KK, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NI NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UZ, VN, European pattent (AT, BE, CH, DE, DK, E GB, GR, EE, IT, LU, MC, NL, PT, SE), OAPI pates BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TT

Published

With international search report.

Before the expiration of the time limit for amendi claims and to be republished in the event of the rec amendments.

(54) Title: CELL GROWTH FACTOR RECEPTORS

(57) Abstract

The invention relates to a method of screening a substance for potential utility as a therapeutic agent in the treatment of cancer comprises providing a standard system in which a protein tyrosine kinase or an active fragment thereof is able to develop a measure effect, allowing the protein tyrosine kinase to develop that effect in the presence and absence of the said substance and measuris effect, ability to produce significant inhibition of the effect being taken as an indication of potential utility as a therapeutic agent, we the protein tyrosine kinase is characterised by the amino acid sequence of SEQ in No. 1 or an amino acid sequence showing a sign degree of homology thereto. The invention also relates to a therapeutic agent thus identified, to a method for detecting the protein tyrosine kinase and an enzyme substrate complex comprising the protein tyrosine kinase and a therapeutic agent capable of modulating the soft the protein tyrosine kinase.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MOR	Mauritania
ΑŪ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	HU	Hungary	NO	Norway
BG	Bulgaria	DE	Ireland	NZ	New Zealand
BJ	Benin	п	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belanus	KE	Kenya	RO	Romania
CÁ	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
ČĞ	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
cī	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	ш	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Laxembourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trimidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascer	US	United States of America
ñ	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		
			·		

9502187A1 I >

CELL GROWTH FACTOR RECEPTORS

The present invention relates to cell growth factor receptors. More particularly the invention relates to the use of a tyrosine kinase growth factor receptor in the development of diagnostic and therapeutic approaches to cancer, for example breast cancer.

10 Protein tyrosine kinases are enzymes which show the property of catalysing the transfer of phosphate groups from donor molecules (ATP) to the hydroxyl groups of tyrosine residues in polypeptides. Known tyrosine kinases can be classified into two broad groups. Transmembrane tyrosine 15 kinases traverse cellular membranes so that they possess extracellular and intracellular domains. Cytoplasmic tyrosine kinases are located only intracellularly. A general feature of transmembrane (also referred to as receptor) tyrosine kinases is that they possess extracellular ligand-binding 20 hydrophobic transmembrane sequences, domains, and intracellular portions which include the tyrosine kinase domains (for a review see Ullrich & Schlessinger Cell, 61, 203-212 (1990)).

25 Tyrosine kinases can induce cell proliferation, cell transformation and regulate developmental events (see reviews by Hanks et al, Science, 241, 42-75 (1988) and Cantley et al, Cell 64, 281-302 (1991)). In general, where functional assays have been available (e.g. mitogenesis or transformation), it has been shown that the biological functions of tyrosine 30 kinases are usually dependent on intact enzyme activity and that through autophosphorylation and the phosphorylation of other proteins, they alter the subcellular localisation and activities of various components of the intracellular signalling pathways. 35

Analysis of the oncogenes of many acutely transforming animal retroviruses has revealed that their frequently manifest tyrosine kinase activity, as do the

products of their cellular proto-oncogene counterparts. Other genes encoding tyrosine kinases have been found to be altered by DNA rearrangements in cancer cells, the result being a presumed acquisition of cellular transforming activity (for example c-abl, c-met). Some cellular proto-oncogenes encoding tyrosine kinases have been cloned independently by virtue of the fact that they encode growth factor receptors, for example the epidermal growth factor receptor. On the other hand, the genes for other growth factor receptors which have tyrosine kinase activities, such as those for platelet-derived growth factor and insulin-like growth factors, have been well characterised, but have never been found to be transduced by retroviruses.

15 The c-erbB-2/HER2/c-new gene encodes a transmembrane receptor-like tyrosine kinase which is structurally very similar to the EGF/TGF alpha receptor. The c-erbB-2 gene has been found to be overexpressed in 20 to 30% of human breast tumours, often in association with gene amplification, and 20. this phenotype is now generally accepted as predictive of poor disease free and overall survival (for reviews see Sunderland & McGuire in Regulatory Mechanisms in Breast Cancer, Lippman & Dickson (Eds.), Kluwer Academic Publishers, Boston, pages 3 to 22 (1991) and Gusterson et al., J. Clin. Oncol., 10, 1049-1056 (1992)). Overexpression of the gene in fibroblasts 25 induces transformation (di Fiore et al., Science, 237, 178-182 (1987) and Hudziak et al. Proc. Natl. Acad. Sci. (USA), 84, 7159-7162 (1987)), and ligands which bind to the c-erbB-2 gene product (human and rodent) and activate its tyrosine kinase 30 activity have been identified (Lupu et al, Science, 249, 1552-1555 (1990), Dobashi et al, Proc. Natl. Acad, Sci. (USA), 88. 8582-8586 (1991). Wen et al. Cell. 69, 559-572 (1992) and Holmes et al. Science 256, 1205-1210 (1992)). Some of these ligands increase the rate of proliferation of cells expressing 35 the c-erbB-2 protein. The strong implication of these and other findings is that overexpression of this tyrosine kinase in some breast tumour cells is one of the important steps in their progression towards tumourigenicity, and therefore that c-erbB-2 can function as an oncogene.

A variety of other receptor tyrosine kinases, including those for the IGFs and the FGFs, are expressed in breast tumours (Stewart et al, J. Biol. Chem., 265 21172-21178 (1990) and Wellstein & Lippman in Molecular Foundations of Oncology, Broder (Ed.), Williams and Wilkins, Baltimore, pages 403-418 (1991)), and the EGF/TGF alpha receptor is overexpressed in some cases (for example Horak et al, Oncogene, 6, 2277-2284 (1991)). As with c-erbB-2, overexpression of EGFs has been correlated with poor prognosis. Since the ligands of some of these receptors can be detected in breast tumour samples, it may be that breast tumour development is also regulated by these molecules (for a review see van de Vijver & Nusse, Biochim, Biophys. Acta, 1072, 35-50 (1991)).

The features which are ideally required in a molecular target for tumour therapies include preferential expression in the tumours, a role in the development of the tumours (rather than merely being a marker), and a knowledge of the mechanism of its action as a starting point for the rational design of activity modulators. It appears that all of these three criteria are satisfied, at least to some extent, in the case of c-erbB-2 and breast cancer and a considerable research effort is currently being directed to this molecule.

25 It has recently been found that the alkaloid K252a, at appropriate concentrations, selectively inhibits the tyrosine kinase and biological activities of the trk-class of neurotrophin receptors, but has no effect on the activities of <u>v-src</u>, <u>v-fms</u> or the receptors for EGF and PDGF, and also does not affect general cell viability or proliferation 30 (Tapley et al, Oncogene, 7, 371-381 (1992)). Members of another class of molecules, the tyrphostins, may be selective inhibitors of the EGFr/c-erbB-2 class of tyrosine kinases (Gazit et al, J. Med. Chem., 34, 1896-1907 (1991)). An antibody which inhibits the proliferation of human tumour 35 cells by binding to the c-erbB-2 protein is currently under evaluation as a potential cancer therapy (Carter et al, Proc. Natl. Acad. Sci. (USA), 89, 4285-4289 (1992)).

If the transformation of a significant minority of breast tumour cells is due, at least in part, to the disregulated activity of the c-erbB-2 tyrosine kinase, then it seems likely that other breast tumours owe aspects of their transformed phenotype to the activity of other tyrosine kinases. The identification of further tumour associated tyrosine kinases would allow the development of novel diagnostic and therapeutic approaches to cancer and in particular breast tumours.

10

15

20

25

30

35

in

The cDNA cloning of a previously novel receptor tyrosine kinase from breast carcinoma cells has recently been reported (Johnson et al., Proc. Natl. Acad. Sci. USA, 90, 5679-5681 (June 1993)) and the DNA and predicted amino acid sequence of this protein are set out in

SEO ID NO. 1.

The predicted amino acid sequence is set out separately

SEO ID NO. 2.

The authors designated this protein tyrosine kinase DDR (Discoidin domain receptor) and detected the transcription product of the DNA sequence in other human breast carcinoma cell lines and the translation product (protein) was also detected in breast carcinoma cell lines. However, the authors do not suggest that the protein tyrosine kinase plays any role as a tumour causative agent and no potential utility is suggested in the therapy or diagnosis of cancer, in particular human breast cancer.

Another recent disclosure suggests that the same protein tyrosine kinase has been detected in an epithelial ovarian cancer cell line (Laval et al, American Association for Cancer Research, Meeting, May 1993, Abstract No. 3144).

It has now been found that the receptor tyrosine kinase referred to above is expressed at a much higher level in human breast tumour cells than in normal breast. This suggests an

involvement of the tyrosine kinase in the transformation of breast cells. The present invention relates to the use of the tyrosine kinase as defined above in the diagnosis and/or therapy of cancer, particularly human breast tumours.

5

10

20

()

The present invention involves the use of a DNA isolate encoding a protein tyrosine kinase having the amino acid sequence shown in

SEQ ID NO. 1

or an amino acid sequence showing a significant degree of homology thereto, preferably at least 60% homology in the catalytic domain and at least 40% homology in the remainder of the molecule, more preferably at least 90% homology overall, for example at least 95% homology, or a fragment thereof.

15 thereof

According to one embodiment, the DNA isolate encodes all of the amino acid sequence shown in the SEQ ID NO. 1 or an amino acid sequence showing a significant degree of homology thereto. According to another embodiment the DNA isolate encodes a fragment of the amino acid sequence of the protein tyrosine kinase or an amino acid sequence showing a significant degree of homology thereto. DNA sequence encoding fragments of the protein tyrosine kinase preferably encodes those parts of the amino acid sequence which characterise the enzyme, i.e. those parts which are most distinct from other protein tyrosine kinases. Most preferably the DNA sequence encodes all or part of the catalytic domain of the enzyme, i.e. amino acid residues 617 to 907 as shown in SEQ ID NO. 1.

30

25

The DNA isolate may have the base sequence defined in SEQ ID NO. 1 to encode the relevant amino acid sequence. Alternatively the DNA isolate may have any other DNA sequence encoding the relevant amino acid sequence.

35

050210741 | -

The DNA isolate may take the form of a cloning vector or an expression vector preferably a plasmid vector, including DNA as defined above. In the case of an expression vector the DNA will be under control of an appropriate promoter and will

15

20

25

include regulatory elements required for expression in a suitable host cell.

The present invention also involves the use of a recombinant cell line transformed with an expression vector as defined above and capable of expressing a recombinant protein tyrosine kinase having amino acid sequence shown in SEO ID NO. 1

or an amino acid sequence showing a significant degree of homology thereto or a fragment thereof.

Suitable host cells include mammalian cells, insect cells, yeast cells and bacterial cells and the expression vector will include a promoter and other regulatory elements appropriate to the host cell in question. Preferred host cells include CHO cells, myeloma cells, primary immortalised human breast cells, rodent fibroblast cell lines, baculovirus cells, yeast and E. coli cells. General techniques for manipulating DNA coding sequences and expressing such sequences in various types of cells are well known to those skilled in the art and are described for example in Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory.

The present invention also involves the use of a protein tyrosine kinase having the amino acid sequence shown in SEQ ID NO. 1

or an amino acid sequence showing a significant degree of homology thereto or a fragment thereof.

30

35

The protein tyrosine kinase or a fragment thereof may be a recombinant polypeptide produced as the expression product of a coding sequence as defined above in a recombinant cell line. Alternatively the protein tyrosine kinase may be produced in a human tumour cell line. In either case the protein may be extracted and purified by standard techniques, for example antibody affinity chromatography. The glycosylation of the protein (if any) will depend on the cells in which it is produced and protein produced in human tumour

()

15

20

25

cells in culture should have glycosylation equivalent to that produced in vivo in human tumours.

Part of the DNA sequence encoding the protein tyrosine kinase set out in SEQ ID NO. 1 was isolated in the manner described in more detail in the example set out below but which involves briefly the following steps:

- i) isolation of mRNA from tumour metastatic tissue:
- ii) preparation of cDNA from the isolated mRNA;
- 10 iii) PCR amplification using degenerate oligonucleotide primers designed to amplify sequence associated with protein tyrosine kinases;
 - iv) subcloning PCR products;
 - v) identification of protein tyrosine kinase products amplified at higher levels from tumour bearing tissue;
 - vi) DNA sequencing and identification of novel protein tyrosine kinase sequence;
 - vii) isolation of cDNA sequence 3' of the region amplified by $\mbox{3'}$ RACE PCR.

Application of the above protocol identified part of the DNA sequence for the protein tyrosine kinase which was designated PTK22 and which corresponds to the protein tyrosine kinase designated DDR by Johnson et al (Supra). As already noted, the enzyme has now been shown to be overexpressed in certain human breast tumours as compared to normal breast tissue.

The present invention thus relates to the application of
the tyrosine kinases for the development of therapeutic,
prognostic and diagnostic approaches to cancer. The invention
is particularly applicable to breast cancer, however, the same
approaches may also be applicable to other cancers and
research data suggests a connection between breast cancer and
ovarian cancer and also between these two cancers and gastric
cancer.

In terms of therapy, the involvement of the tyrosine kinase in tumours means that beneficial clinical effects in

the treatment of tumours can be obtained by modulating the tyrosine kinase activity and/or the functionality of the receptor. There are a number of ways in which such modulation could be achieved.

5

10

15

20

25

30

35

DIEDOCID: -WO

050046741 | -

The activity of the protein tyrosine kinase could be significantly impaired or inhibited by small chemical molecules and screens to identify suitable small molecular weight inhibitors can be developed as described in more detail below. This approach is analogous to that proposed for other tyrosine kinases (see "Drugs of the Future", 17(2), 119-131, (1992)). A further embodiment of this approach would be to derive nmr spectra or crystal structures for the protein tyrosine kinases or domains thereof and use the structural information so obtained to synthesise chemical structures denove which could be similarly screened for activity as inhibitors.

The approach described above could be extended to encompass small peptides which are either competitive for signalling action of the tyrosine kinase receptor, or which demonstrate useful binding thereto, such that the receptor function is inhibited. This would include, for example, peptides which are capable of blocking substrate binding to the receptor, including but not limited to those which bear SH2 domains. An additional approach is to use small molecules or peptides to block or interfere with ligand activation or dimerisation of the tyrosine kinase. Both of these events are generally required to effect a biological signal so that blocking or inhibition thereof could be used to therapeutic effect.

Macromolecules, such as antibodies, could also be used as inhibitory molecules to block receptor function. This would be particularly applicable to antibodies raised against the extracellular domain of the protein tyrosine kinase where antibodies could promote internalisation or interfere with ligand binding. Either of these situations could produce significant modulation (positive or negative) of the activity

10

15

30

(1

9

of the protein.

Protein tyrosine kinase function could also be blocked by expressing or administering a peptide which is a truncated or altered version of the protein. These are typically referred to as dominant negative proteins and are believed to sequester the active protein in a non-functional complex. Protein tyrosine kinase function could also be modulated by blocking translation of the mRNA encoding the protein using antisense oligonucleotides.

A further regulatory role of the protein tyrosine kinase could be manipulated by controlling expression or activity of specific phosphatases which control the degree of protein phosphorylation. It is recognised that the phosphorylation of specific residues, particularly tyrosine, threonine and serine residues, play an important role in transmitting a biological signal from the tyrosine kinase.

Use of the above therapeutic approaches depends on the identification and/or development of suitable agents for modulating, for example inhibiting, particular functions or activities of the protein tyrosine kinase. The present invention thus relates to assays or screens by which such agents can be identified.

The present invention provides a method of screening a substance for potential utility as a therapeutic agent in the treatment of cancer, in particular breast cancer, which comprises providing a standard system in which a protein tyrosine kinase or an active fragment thereof is able to develop a measurable effect, allowing the protein tyrosine kinase to develop that effect in the presence and absence of the said substance and measuring that effect, ability to produce significant inhibition of the effect being taken as an indication of potential utility as a therapeutic agent, wherein the protein tyrosine kinase is characterised by the amino acid sequence shown in

SEQ ID NO. 1

or an amino acid sequence showing a significant degree of homology thereto.

In accordance with this general principle, screens for 5 potential therapeutic agents can take a number of forms. For example an initial screen to determine whether or not a substance merits further investigation as a potential inhibitor of the protein tyrosine kinase will usually be biochemical and should preferably be simple, rapid and capable of high through-put. Such screens will often make use of the 10 protein expressed in a recombinant expression system or derived from a cellular source in which the protein is overexpressed. Particularly suitable recombinant expression systems include insect baculovirus, and the use of primary immortalised human breast cell lines, or rodent fibroblast 15 cell lines as host cells. The protein is then used directly in an in vitro assay with and without the potential inhibitor. This gives rapid data on the performance of the substance as an inhibitor often providing direct evidence that the 20 substance can inhibit the enzymic activity of the protein tyrosine kinase and thus merits further study. This type of isolated system can also provide data on specificity but will not generally provide any information on bioavailability. The enzymic activity of the protein tyrosine kinase in vitro can 25 be measured, for example, by measuring autophosphorylation or phosphorylation of a model substrate, by following incorporation of radioactive phosphate or by using anti-phosphotyrosine antibodies.

Further information concerning potential inhibitors can be provided by cell based screens which make use of a phenotypic alteration, e.g. a change in morphology and/or tumorigenicity, conferred by expression of the protein tyrosine kinase in a recombinant cell line or overexpression in any other available cell line. Particularly suitable recombinant cell lines again use primary immortalised human breast cell lines or rodent fibroblast cell lines as host cells. The cells can be used in proliferation or tumorigenicity assays with and without the potential inhibitor

30

35

10

15

20

25

(1

looking for substances able to halt growth of and/or morphologically de-transform the cells. A control for substances which are generally cytotoxic can be provided by the same parental cell line engineered to express another oncogene which transforms the cells at a signalling point downstream of the protein tyrosine kinase. Assays of this sort can be very informative and they may provide data on mode of action of inhibitors.

The final stage of screening is the development of animal screens. These are time consuming and expensive and for these and ethical reasons their use is kept to a minimum, however they can give vital information regarding metabolism, clearance and performance of a substance in a true in vivo system which cannot be obtained in other ways. Animal screens ideally use the same recombinant or other cell lines as described above which express the protein tyrosine kinase. The cells are used as xenografts in animals, for example, nude mice, to give tumours whose growth is controlled by expression of the protein tyrosine kinase. The mice are then given inhibitors to determine whether they are capable of causing the selective regression of the xenografts without blocking the growth of a control xenograft. Alternatively transgenic animals which develop tumours by virtue of the appropriate tissue specific expression of the target protein tyrosine kinase can be used in a similar manner.

The invention also extends to therapeutic agents identified by use of any or all of the screens referred to above. Preferably the therapeutic agent is a chemical molecule of relatively low molecular weight, for example, less than about 1000. Examples of suitable classes of molecule include staurosporine analogues, tyrphostins and flavenoids. Alternatively, the therapeutic agent can be a macromolecule, for example an antibody raised against the extracellular domain of the protein tyrosine kinase. The therapeutic agent can also be a peptide or an antisense oligonucleotide capable of blocking translation of the mRNA encoding the protein tyrosine kinase.

The invention also extends to an enzyme-substrate complex which comprises a protein tyrosine kinase characterised by the amino acid sequence shown in

SEO ID NO. 1

or an amino acid sequence showing a significant degree of homology thereto and a therapeutic agent capable of modulating the activity of the said protein tyrosine kinase.

The protein tyrosine kinases can also be used in

10 prognostic and diagnostic applications. Thus antibodies raised against the protein tyrosine kinase or nucleic acid encoding the tyrosine kinase can be used as the basis for screening tissue, in particular tumour tissue, for the presence of the protein tyrosine kinases. If, as in the case 15 of c-erbB-2, the expression of the tyrosine kinase correlates with poor prognosis, then treatment of the patient could be Similarly, again as with c-erbB-2, modified accordingly. there may be situations where parts of the receptor are "shed" into the bloodstream. In this case, the presence of the 20. receptor could be detected, for example, by use of an ELISA assay, and this would be a useful diagnostic tool for the identification of patients predisposed to develop or liable

25 Accordingly the present invention provides a method for detecting a tyrosine kinase having an amino acid sequence as defined in

to develop tumours, in particular breast cancer.

SEO ID NO. 1

30

35

or a fragment thereof which comprises reacting a test sample with a specific antibody raised against an antigen from the said amino acid sequence and determining whether there is any antigen-antibody binding within the test sample. The test sample may be for example a tissue sample, such as a tumour sample, or a blood sample and presence of abnormal amounts of the protein tyrosine kinase may indicate development of or susceptibility to develop a tumour.

The invention also provides a method for the detection in a sample of DNA a nucleic acid sequence encoding a tyrosine

kinase which comprises subjecting the sample or nucleic acid isolated therefrom to a method capable of detecting a nucleic acid sequence therein identical or substantially homologous to a defined nucleic acid sequence and identifying any sequence identical or substantially homologous to all or part of the DNA sequence defined in

SEQ ID NO. 1,

or mRNA which would be the transcription product of such DNA.

Again, presence of abnormal amounts of nucleic acid encoding
the protein tyrosine kinase may indicate development of or
susceptibility to develop a tumour.

Suitable methods for the detection of specific DNA sequences include Southern blotting and/or PCR using 15 appropriate primers. Suitable methods for detecting mRNA include Northern blotting, RNAse protection studies and direct nucleic acid in situ hybridisation.

EXAMPLE

20

17

Experimental work on which the invention is based is described in more detail in this Example in which reference is made to the accompanying drawings in which:

25 Figure 1 shows a Northern blot to examine expression of DDR mRNA in human axillary lymph nodes. 5µg of total RNA were loaded per lane. Approximately 4 kb DDR transcript (upper panel). Ethidium bromide staining of 28S rRNA, to demonstrate RNA loading, is shown (bottom panel).

30

HEDDEID: -WO

Figure 2 shows in situ hybridisation to examine DDR expression in an involved lymph node. Light and dark field images are on the left and right respectively. Specific probe (DDR) and control (Cont.) are shown. Oligonucleotide probes were used.

35 Magnification x 200.

Figure 3 shows a Northern blot to examine DDR expression in human breast tissue. $10\mu g$ of total RNA per lane. Upper panel shows DDR transcript, lower panel ethidium bromide stained 28S

rRNA.

10

25

Figure 4 shows DDR expression in murine mammary development. $2\mu g$ Poly (A)+ RNA per lane. DDR transcript shown in upper panel. Blot was hybridised with GAPDH to demonstrate RNA loading (lower panel).

Figure 5 shows Norther blot analysis of DDR expression in human cell lines performed as for Figure 1. DDR transcript (upper panel), ethidium bromide stained 28S rRNA (lower panel).

Figure 6 shows in situ hybridisation analysis of DDR expression in human breast tumour tissue. Tissues were from three different individuals: a, b and c. In each panel, light and dark field images are on the left and right respectively. Specific probes are shown (DDR), and controls (Cont.). ile infiltrating lymphocytes, tue tumour and nee normal epithelium. Experiments 6a and 6b used oligonucleotides probes, and 6c used RNA probes. Magnification x 200.

Figure 7 shows DDR expression in normal tissues. a) human multiple tissue Norther blot containing $2\mu g$ poly (A)+ RNA per lane. DDR transcript shown in upper panel. Blot was stripped and rehybridised with human GAPDH probe to demonstrate RNA loading (lower panel). b) Total RNA Northern blot, $10\mu g$ RNA per lane, DDR transcript upper panel, ethidium bromide stained 28S rRNA lower panel.

30 MATERIALS AND METHODS

Tissues

Human tumour bearing or non-involved lymph nodes, tumour and normal tissue samples were obtained from surgery and rapidly frozen in liquid nitrogen. Normal breast tissue was obtained from reduction mammoplasty. Murine mammary tissue was obtained by excision of the fourth gland, removal of the associated lymph node, and rapid freezing in liquid nitrogen. All tissues were stored at -70°C or in liquid nitrogen.

060010741 1 -

BNEDOCID -WO

10

(}

Histopathological examination determined the presence or absence of metastases in the lymph nodes.

Cell lines

5 CAL 51, a human breast carcinoma cell line, was isolated and described by Gioanni et al (Br. J. Cancer, 62, 8-13 (1990)). The fibrosarcoma cell line HT1080, and the other breast cancer cell lines were purchased from the American Type Culture Collection. Cells were cultured according to conditions

RNA extraction

method of Chomczynski and Sacchi (Anal. Biochem., <u>162</u>, 156-159

15 (1987)). Poly (A)+ RNA was isolated from murine mammary gland total RNA samples using the Poly A+ Tract Kit (Promega) according to the manufacturer's instructions, except that mRNA was eluted with three washes (2 x 200µl, 1 x 100µl) of water.

Total RNA was extracted from all tissues and cell lines by the

20 RT-PCR and PTK differential screen

recommended by the suppliers.

5μg of total RNA purified from involved or non-involved lymph nodes was digested with 10 units of RNase free DNase 1 (Pharmacia) using the manufacturer's recommended conditions in the presence of 40 units of RNase inhibitor (Boehringer

25 Mannheim). Samples were heated to 100°C for 1 minute (min) to inactivate the DNase, extracted with phenol/chloroform and precipitated with ethanol. For cDNA synthesis, 2.5μg of RNA was resuspended in water and denatured at 65°C for 3 min in the presence of 40 ng pd(N), random hexamers (Pharmacia) and cooled on ice. Reverse transcription was carried out using

1 mM dNTPs (Pharmacia), 40 units RNase inhibitor, 30 units of AMV reverse transcriptase SL (Life Sciences) and the buffer provided by the manufacturer at 41°C for 1 hour. Control reactions were performed as above but omitting the reverse

35 transcriptase enzyme (RT-control). To inactivate the inhibitory properties of reverse transcriptase on Taq polymerase, samples were heated to 100°C for 1 min.

Degenerate oligonucleotides were designed to amplify by PCT

15

20

25

30

an approximately 200 bp region encoding part of the catalytic domain of PTKs. The highly conserved amino acid sequence shown in

SEO ID NO. 3

was used for designing the 5' oligonucleotide shown in 5 SEO ID NO. 4

and the highly conserved amino acid sequence shown in SEO ID NO. 5

was used for designing the 3' oligonucleotide shown in SEQ ID NO. 6.

0.5µg of original RNA in 60 mM KCl, 15mM Tris-HCl, 1.1mM MqCl,, 200 µM of each dNTP, 0.5 ng of each primer and 2 units of Tag polymerase (Cetus). The reaction mixtures were cycled 30 times at 94°C for 1 min, 55°C for 2 min and 72°C for 1 min. For each sample. PCR was carried out on cDNA and the relevant The amplified products were electrophoresed through 3% agarose gels, the approximately 200 bp band excised and purified using a Mermaid kit (Bio 101). PCR products from involved nodes were subcloned into the pCR II vector (Invitrogen) according to the manufacturer's instructions. Clones were picked, grown in liquid culture, pelleted, resuspended in denaturing solution (0.5M NaOH, 1.5M NaCl) and aliquots were gridded onto duplicate Hybond-N membranes (Amersham). Filters were then neutralised in 3M NaCl, 0.5M Tris-HCl (pH 7.4). Duplicate filers were hybridised with 32P labelled randomly primed (Feinberg & Vogelstein, Anal. Biochem, 132, 6-13 (1983); and Feinberg & Vogelstein, Anal.

Amplifications were carried out using cDNA derived from

involved or non-involved node. Clones containing PTK fragments that hybridised more strongly with the involved node-derived probe compared with the non-involved node derived probe were chosen for sequence analysis.

Biochem, 137, 266-267 (1984)) PCR products from either the

35 DNA sequencing

Templates for sequencing were prepared by the rapid method of Yie et al (Nucleic Acids Res., 21, 361(1993)) and were sequenced by the dideoxy method of Sanger et al, (Proc. Natl. Acad. Sci. (USA), 74, 5463-5467 (1977)) using a Sequenase

Version 2.0 kit (United States Biochemicals).

3' RACE-PCR

To isolate cDNA sequences 3' to the region amplified by the 5 PTK PCR, a modification of the RACE protocol described by Frohman et al (Proc. Natl. Acad. Sci. (USA), 85, 8998-9002

(1988)) was used. RNA from human breast carcinoma cell line MDA MG 468 was reverse transcribed using the tagged oligo d(T) primer shown in

10 SEQ ID NO. 7.

Two nested sense oligonucleotides were used in consecutive PCR reactions. The upstream sense primer was as shown in

SEQ ID NO. 8

and the downstream sense primer was as shown in

15 SEQ ID NO. 9.

transcription was used as the antisense primer in both amplifications. The reaction buffer was as described for the PTK PCR except MgCl₂ was used at 1.5mM, cycling parameters were 94°C for 1 min 15 seconds, 56°C for 2 min and 72°C for 2 min.

The tag sequence used with oligo d(T) for the reverse

Northern blots

20

30

35

Human total RNA samples were electrophoresed through
formaldehyde/agarose gels, transferred to Hybond-N membranes
(Amersham) and fixed by U.V. illumination. The human multiple
tissue Northern blot was purchased from Clontech. Murine Poly

(A)+ RNA samples were fractionated in agarose gels containing glyoxal/DMSO, transferred to ZetaProbe membranes (Biorad) and fixed by baking at 80°C for 2 hours. ³²P labelled probes were

prepared as described by Feinberg & Vogelstein (supra). Hybridisations were carried out according to the manufacturer's instructions, membranes were washed to a final stringency of 0.1 x SSC, 0.1% SDS at 65°C.

Probe generation for in situ hybridisation

Riboprobes: The DDR RACE PCR fragment was sub-cloned into pBluescript $KS^*(Stratagene)$ and sense and antisense RNAs labelled with ^{35}S -UTP (Amersham) were synthesised. The

transcription reactions were carried out using a Stratagene Transcription kit according to the manufacturer's instruction. Probes were subject to limited alkaline hydrolysis at 65°C for 100 min (Cox et al., Developmental Biology, 101, 485-502 (1984)) to achieve a final length of between 100-200 bases. Full length and hydrolysed probes were examined on formaldehyde/agarose gels.

Oligonucleotide probes: Antisense 30mer oligonucleotides as
10 follows were synthesised to the 3' untranslated and catalytic
domain encoding regions of DDR:-

SEQ ID NO. 10

SEQ ID NO. 11

SEQ ID NO. 12

15 SEQ ID NO. 13.

20

25

A 30mer random oligonucleotide ${\rm N}_{\rm 30}$ was also synthesised (randomer).

The oligonucleotides were 3'-labelled with ³³P-dATP (Amersham) using terminal transferase according to manufacturer's instructions (Boehringer Mannheim). Probes were purified by passing through Chroma-spin 10 columns (Clontech) to remove unincorporated label. Tail lengths were analysed on a DNA sequencing gel. The four specific oligonucleotides were then mixed equally to form a cocktail.

Labelling efficiency of all probes was assessed by scintillation counting.

30 In situ hybridisation

Except those used in post-hybridisation steps, all solutions were diethylpyrocarbonate treated and all glassware was baked.

7μm cryostat sections were cut from snap frozen human tumour material which had been excised during surgery, and stored in either liquid nitrogen or at -80°C. Sections were dried onto APTES (3-aminopropyltriethoxysilane) treated slides (Rentrop et al., Histochem. J., 18, 271-276 (1986)) over dry ice, and fixed at 4°C in 4% paraformaldehyde, phosphate buffered saline (PBS) for 15 min, followed by two 15 min washes in PBS. The sections were dehydrated through ethanols from 30%-100%, air dried, and stored at -80°C until required.

a) With riboprobes

Sections were equilibrated to room temperature for 5 min, quickly rehydrated though ethanols from 100% to 30%, and washed twice for 5 min in PBS. Sections were acetylated for 10 min in 0.1M triethanalomine, 0.25% acetic anhydride while stirring. After washing in 2xSSC for 2 min, denaturation of tissue RNAs was carried out in 50% formamide, 2xSSC for 10 min at 60°C. Sections were then dehydrated and air dried.

15 Hybridisation was performed overnight in buffer (50% formamide, 0.3M NaCl, 10mM Tris- HCl pH8, 2mM EDTA pH8, 10% dextran sulphate, 10mM sodium phosphate pH8, 50µgml'1ssDNA) with comparable counts per minute (cpm) of either antisense or sense riboprobes, in a humid chamber at 50°C.

20

10

After hybridisation, two 30 min washes in 2xSSC, 50% formamide at 60°C were followed by treatment with $20\mu gml^{-1}$ RNAse A in 0.5M NaCl, 10mM Tris HCl pH7.5, 5mM EDTA pH 7.5 for 30 min at 37°C. Sections were washed for 15 min in 2xSSC at 60°C, followed by two final washes at a stringency of 0.1xSSC for 30 min at 60°C. Sections were dehydrated and air dried before autoradiography.

b) With oligonucleotide probes.

30

25

Sections were equilibrated to room temperature, rehydrated, washed and acetylated as described for sections hybridised with riboprobes. After washing twice for 5 min with PBS they were dehydrated and air dried.

35

Sections were overlaid with $10\mu l$ of hybridisation buffer (6x SSC, 50% formamide, 5x Denhardt's solution (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Edn., Cold Spring Harbor Laboratory Press, USA (1989)), 10% dextran sulphate)

10

containing 20µgml⁻¹ unlabelled random oligonucleotide, and prehybridised for 3 hours at 37°C in a sealed humid chamber. After prehybridisation, a further 10µl of hybridisation buffer containing comparable cpm of either the labelled oligonucleotide cocktail or labelled randomer were added to each section and gently mixed with prehybridisation solution. The sections were incubated overnight at 37°C (Lathe, *In Situ* Hybridisation Principles and Practice, Polak & McGee (eds.) Oxford Scientific Publications, Oxford pp71-80 (1989)) in a sealed humid chamber.

Sections were removed from the chamber, and the hybridisation solution was rinsed off with prewarmed 5xSSC gently pipetted over the slide. The area around the sections was dried and the sections were then overlaid with 20µl prehybridisation solution (20µgml¹ randomer) and incubated for 60 min as before. This process might help reduce background by replacing non-specifically bound oligonucleotide with random oligonucleotide. This step was repeated once. Slides were washed to a final stringency of 60% formamide, 5x SSC at 37°C. Sections were dehydrated in 70% and 100% ethanol and air dried.

Autoradiography on tissues

microscopy.

25 This process was the same for both riboprobe oligonucleotide methods. In order to give a guideline of the length of time of exposure to photographic emulsion required, slides were placed against autoradiography film overnight. Slides were dipped in K.5 (Ilford) photographic emulsion 30 diluted 1:1 with 2% glycerol, following manufacturer's quidelines. Slides were dried in an air-tight container with desiccant at room temperature for 2 hours and stored dry at 4°C, in a light-tight box for the required length of time. Slides were developed in D19 (Kodak), stopped in 1% acetic 35 acid, 1% glycerol and fixed in 30% sodium thiosulphate. Sections were counter stained in 0.02% toluidine blue, mounted in DPX (Fisons) and examined by light and darkfield

RESULTS

Identification of PTKs in a differential screen of involved and non-involved lymph nodes

- 5 RNA was isolated from involved and non-involved axillary lymph nodes from patients with metastatic breast tumours. RT-PCR was performed on the RNA using degenerate oligonucleotides encoding the amino acid sequences shown in SEQ ID NO. 3 and SEQ ID NO. 5, sequences highly conserved in PTKs (Hanks,
- Science, 241, 42-52 (1988)). The resultant pools of approximately 200bp PTK cDNA fragments from the involved nodes were subcloned, and clones screened with mixed pools of radiolabelled PTK fragments from both involved and non-involved nodes. Clones amplified preferentially from the
- involved nodes were sequenced. For each of five involved lymph nodes, 50 or 100 clones were screened; differentially amplified cDNAs were found in four of five nodes. A novel kinase was detected as the major differentially amplified PTK-encoding cDNA; it showed similarities with trk A (Martin-Zanca
- 20 et al, Nature, 319, 743-748 (1986)) and the rat PCR generated fragment tyro 10 (Lai & Lemke, Neuron, 6, 691-704 (1991)). The receptor PTK c-erb-B2 was found at high levels in three nodes.
- The trk A/tyro 10-like PTK is identical to DDR
 To study the expression patterns of the trk-like kinase, a 3'
 Rapid Amplification of cDNA Ends (RACE)-PCR fragment was
 generated using two specific nested oligonucleotides
 corresponding to the sequence between the two degenerate
 primers. Dideoxy sequencing of this 1.2 kilo base (kb) 3'
- RACE-FCR fragment revealed 384 nucleotides of predicted coding sequence. This comprised sequences encoding part of a putative PTK catalytic domain, which showed similarity to trk A, followed by a short C terminal domain of 8 amino acids
- after subdomain XI. While analysing this fragment, a report was published describing a receptor PTK found in cultured breast carcinoma cells lines with an extracellular discoidin 1-like domain (DDR) (Johnson et al, Proc. Natl. Acad. Sci. (USA), 90, 5677-5681 (1993)). Comparison of the DDR sequence

with the 3' RACE-PCR fragment revealed them to be identical, the 3' RACE-PCR fragment begins at nucleotide position 2500 of the published DDR sequence.

- 5 Expression of DDR mRNA in lymph nodes
- DDR was detected in a PCR based differential screen designed to identity PTKs expressed at higher levels in tumour containing compared with tumour free lymph nodes. In order to examine whether higher levels of DDR mRNA were present in the involved compared with the non-involved lymph node, the 3' RACE-PCR fragment radiolabelled with \$3P\$ was used as a probe to hybridise with Northern blots of lymph node RNA.
- This probe recognised a single band of approximately 4kb on Northern blots. DDR mRNA was undetectable in the non-involved lymph node and present in four of six metastasis-containing nodes (Figure 1). In situ hybridisation on a section of
- nodes (Figure 1). In situ hybridisation on a section of involved lymph node showed specific hybridisation over the metastasised tumour cells (Figure 2).
- 20 Expression of DDR mRNA in breast tumours, breast carcinoma cell lines and mammary development
 - The expression patterns of DDR in a panel of breast tumour RNAs and a number of breast carcinoma cell lines were examined by hybridising Northern blots with the ³²P labelled 3' RACE-PCR fragment. DDR mRNA was present in normal breast tissue
- 25 PCR fragment. DDR mRNA was present in normal breast tissue and in all the breast tumours tested (figure 3). Elevated levels of expression were detected in samples of 'normal' breast and carcinoma, both surgically removed from a pregnant woman. To examine DDR expression in mammary gland
- development, a Northern blot of murine mammary gland poly (A)+
 RNA was hybridised with the 3' RACE-PCR derived probe. Figure
 4 shows that murine DDR mRNA (NEP, Zerlin et al, Oncogene, 8,
 2731-2739 (1983)), see discussion) was detected in all stages
- of development. Expression was moderate in virgin glands, a

 35 slight increase was seen in mid-pregnancy, during lactation
 very low levels of DDR mRNA were detected, and moderate levels
 reappeared during involution. During lactation casein mRNA

comprises a large proportion of the total, this effectively dilutes the levels of other mRNAs; glyceraldehyde 3-phosphate

10

BNSDOCID: #WO

dehydrogenase (GAPDH) mRNA levels were decreased in these samples also. DDR mRNA expression was also detected in fat pad samples. The fat pad represents mammary tissue which has developed in the absence of epithelial cells due to the cauterisation of the nipple and surrounding tissue prior to epithelial outgrowth. Varying amounts of DDR mRNA were detected in the breast cancer cell lines examined, the highest were in MCF 7 and T47D and the lowest were in MDA MB:157 and BT 474. Expression was not detected in the fibrosarcoma cell line HT1080 (Figure 5).

Northern blot analysis revealed that DDR mRNA was present in

normal breast and breast tumour tissue. In situ hybridisation was, therefore, performed on normal breast tissue and primary 15 breast carcinoma samples to determine which cell types express In sections from three tumour samples, (Figures 6 a. b and c) hybridisation was predominantly over the tumour cells. DDR mRNA was undetectable in normal breast tissue adjacent to the tumour (Figure 6c top panel), and in all normal breast 2.0 samples examined (data not shown). Figure 6c (top panel), shows a mass of invasive carcinoma surrounded by stromal cells in the top right of the field, with normal epithelial tissue in the bottom left of the field; hybridisation specifically over the tumour cells, and DDR mRNA was 25 undetectable in the normal epithelium and stromal cells. Figure 6c (middle panel) shows DDR positive cancer cells which have replaced the normal epithelial cells in the breast lobules. The malignant epithelial elements are surrounded by a dense lymphocytic infiltrate in which DDR was undetectable. 30 comparable result to Figure 6c was obtained oligonucleotide probes, (date not shown). Figures 6a and c (lower panels) show results obtained with the random oligonucleotide probe and the sense riboprobe respectively, with no specific hybridisation. These controls were carried 35 out for all in situ hybridisations (not shown in all cases).

Patterns of DDR expression in normal human tissues

A human poly (A)+ RNA multiple tissue Northern blot was
screened with the 3' RACE-PCR probe (Figure 7a). DDR was

expressed at high levels in kidney and placental tissue, low levels were detected in the heart and lung, and expression was undetectable in the liver. A more extensive panel of human tissues was examined on total RNA Northern blots (Figure 7b).

DDR was examined on total RNA Northern blots (Figure 7b).

DDR was expressed in a wide range of tissues, with relatively high levels in the kidney cortex and thyroid. By this analysis, the haematopoeitic tissues bone marrow and spleen did not have detectable levels of DDR mRNA.

10 DISCUSSION

15

20

The initial differential screen identified DDR as a PTK expressed in involved but not in non-involved lymph nodes from breast cancer patients. Further studies revealed varying levels of DDR mRNA in both normal breast and all of the breast carcinomas analysed. Elevated mRNA levels, relative to normal breast tissue, were found in both apparently normal breast tissue and breast carcinoma taken from the same pregnant patient. However, an examination of murine mammary gland development revealed only a moderate increase in DDR mRNA in pregnancy. The higher levels of DDR in the human pregnant breast could be due to a focus of infiltrating carcinoma, as the specimen was taken from the tissue adjacent to a tumour. Alternatively, the murine mammary gland may differ from human

with respect to DDR expression during pregnancy. Unfortunately material was not available from the human pregnant breast for histophthalogical examination or in situ hybridisation studies to resolve this issue. In situ hybridisation studies were performed to determine which cells in a particular tissue sample express DDR mRNA, and to give an indication of the relative abundance of mRNA expressed by

different cell types. In situ hybridisation of a heavily infiltrated lymph node revealed DDR mRNA at high levels in the metastasising tumour cells and undetectable levels in the adjacent cells. DDR mRNA was also shown to be present in tumour cells in primary breast carcinomas by in situ hybridisation. Where a direct comparison could be made, high

levels of DDR mRNA were detected in the tumour cells but not in adjacent normal epithelial cells nor in tumour infiltrating

35

lymphocytes. By Northern analysis, DDR mRNA was present in normal human breast tissue, but by in situ hybridisation on human mammary tissue DDR has only been detected in tumour cells, which are epithelial in origin, and not in normal human breast epithelial or stromal cells. The question of the site of DDR expression in normal human mammary tissue is therefore unanswered; most likely cellular mRNA levels are too low for detection by in situ hybridisation. Nonetheless over expression of DDR occurs in some breast tumour cells when compared with normal mammary epithelium. Having demonstrated the presence of DDR mRNA in several sources of breast tumour tissue (in primary tumours, metastatic cells and carcinoma-

derived cell lines) the expression in normal tissues was examined by Northern blotting. A wide range of levels were observed, ranging from high in the kidney cortex and thyroid, moderate in breast and lung, to undetectable amounts in the bond marrow, spleen, and liver. DDR expression is not restricted to any one tissue type, therefore, its role is not

20 thus a housekeeping function is unlikely and a cell specific role is probable.

tissue specific. However, it is not ubiquitously expressed,

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
	(i) APPLICANT: (A) NAME: The Institute of Cancer Research (B) STREET: 17A, Onslow Gardens (C) CITY: London	
10	(E) COUNTRY: Great Britain (F) POSTAL CODE (ZIP): SW7 3AL	
15	(A) NAME: The Wellcome Foundation Limited (B) STREET: Unicorn House, 160 Euston Road (C) CITY: London (E) COUNTRY: Great Britain (F) POSTAL CODE (ZIP): NW1 2BP	
20	(ii) TITLE OF INVENTION: Cell Growth Factor Receptors	
	(iii) NUMBER OF SEQUENCES: 13	
25	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPPRATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPO)	
30	(2) INFORMATION FOR SEQ ID NO: 1:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3754 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
40	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1422883	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	CCCGGGTCGG ACCGCCTGGG TCTGCCGGGA AGAGCGATGA GAGGTGTCTG AAGGTGGCTA	60
50	TTCACTGAGC GATGGGGTTG GACTTGAAGG AATGCCAAGA GATGCTGCCC CCACCCCTT	120
55	AGGCCCGAGG GATCAGGAGC T ATG GGA CCA GAG GCC CTG TCA TCT TTA CTG Het Gly Pro Glu Ala Leu Ser Ser Leu Leu 1 10	171
22	CTG CTG CTC TTG GTG GCA AGT GGA GAT GCT GAC ATG AAG GGA CAT TTT Leu Leu Leu Val ala Ser Gly Asp Ala Asp Met Lys Gly His Phe 25	219
60	GAT CCT GCC AAG TGC CGC TAT GCC CTG GGC ATG CAG GAC CGG ACC ATC Asp Pro Ala Lys Cys Arg Tyr Ala Leu Gly Met Gln Asp Arg Thr Ile 30 40	267
65	CCA GAC ACT GAC ATC TCT GCT TCC AGC TCC TGG TCA GAT TCC ACT GCC Pro Asp Ser Asp Ile Ser Ala Ser Ser Ser Trp Ser Asp Ser Thr Ala 45 50 55	315

	GCC	CGC Arg 60	CAC	AGC Ser	AGG Arg	TTG Leu	GAG Glu 65	Ser	AGT Ser	GAC Asp	GGG	GAT Asp 70	Gly	GCC / Ala	TGG Tr	TGC Cys	363
5 . :							Pro				GAG Glu 85	Tyr				GAT Asp 90	411
10	CTA Leu	CAA Gln	CGA Arg	CTC Leu	CAC His 95	CTG Leu	GTG Val	GCT Ala	CTG Leu	GTG Val 100	GGC Gly	ACC Thr	CAG Glr	GGA Gly	CGG Arc	His	459
15	GCC Ala	GGG	GIY	CTG Leu 110	GGC Gly	AAG Lys	GAG Glu	TTC Phe	TCC Ser 115	CGG Arg	AGC Ser	TAC Tyr	CGG	CTG Leu 120	Arc	TAC Tyr	507
20	TCC Ser	CGG Arg	GAT Asp 125	GGT Gly	CGC Arg	CGC Arg	TGG Trp	ATG Met 130	Gly	TGG Trp	AAG Lys	GAC Asp	CGC Arg 135	Trp	GGT Gly	CAG Gln	555
	GAG Glu	GTG Val 140	ATC Ile	TCA Ser	GGC Gly	AAT Asn	GAG Glu 145	GAC Asp	CCT Pro	GAG Glu	GGA Gly	GTG Val 150	Val	CTG Leu	AAG Lys	GAC Asp	603
25											CGC Arg 165						651
30	GAC Asp	CGG Arg	GTC Val	ATG Met	AGC Ser 175	GTC Val	TGT Cys	CTG Leu	CGG Arg	GTA Val 180	GAG Glu	CTC Leu	TAT Tyr	GGC	TGC Cys 185	CTC Leu	699
35	TGG Trp	AGG Arg	GAT Asp	GGA Gly 190	CTC Leu	CTG Leu	TCT Ser	TAC Tyr	ACC Thr 195	GCC Ala	CCT Pro	GTG Val	GGG Gly	CAG Gln 200	Thr	ATG Met	747
40											TCC Ser			Asp			795
	ACC Thr	GTG Val 220	GGC Gly	GGA Gly	CTG Leu	CAG Gln	TAT Tyr 225	GGG Gly	GGT Gly	CTG Leu	GGC Gly	CAG Gln 230	Leu	GCA Ala	GAT Asp	GGT Gly	843
45	GTG Val 235	GTG Val	GGG Gly	CTG Leu	GAT Asp	GAC Asp 240	TTT Phe	AGG Arg	AAG Lys	AGT Ser	CAG Gln 245	GAG Glu	CTG Leu	CGG Arg	GTC Val	TGG Trp 250	891
50	CCA Pro	GGC Gly	TAT Tyr	GAC Asp	TAT Tyr 255	GTG Val	GGA Gly	TGG Trp	AGC Ser	AAC Asn 260	CAC	AGC Ser	TTC Phe	TCC Ser	AGT Ser 265	GGC Gly	939
55											CTG Leu				Gln		987
60	ATG Met	CAG Gln	GTC Val 285	CAC His	TGT Cys	AAC Asn	AAC Asn	ATG Met 290	His	ACG Thr	CTG Leu	GGA Gly	GCC Ala 295	CGT Arg	CTG Leu	Pro	1035
2 -											Pro						1083
65	GGG Gly 315	GAG Glu	CCC Pro	ATG Met	cgc Arg	CAC His 320	AAC Asn	CTA Leu	GGG Gly	GGC Gly	AAC Asn 325	CTG Leu	GGG Gly	GAC Asp	Pro	AGA Arg 330	1131

											Arg				TTT Phe 345	Leu	1179
5															GAA Glu	ATC Ile	1227
10									Asn					Leu	GGA Gly	GGC	1275
15													Pro		ACC Thr	AAC Asn	1323
												Pro			GTG Val	GCC Ala 410	1371
20	AAG Lys	GCC Ala	GAG Glu	GGG	AGC Ser 415	CCG Pro	ACC Thr	GCC Ala	ATC Ile	CTC Leu 420	Ile	GCC	TGC Cys	CTG Leu	GTG Val 425	Ala	1419
25																CTG Leu	1467
30									Ala					Leu	GAA Glu	GAG Glu	1515
35													Ile		ATC Ile	AAC Asn	1563
												Gln			CGG Arg	Pro 490	1611
40															TCT Ser 505	Ala	1659
45															TAC Tyr	GCC Ala	1707
50														Ala	AAA Lys		1755
55	ACC Thr	AAC Asn 540	ACC Thr	CAG Gln	GCC Ala	TAC Tyr	AGT Ser 545	GGG Gly	GAC Asp	TAT Tyr	ATG Met	GAG Glu 550	Pro	GAG Glu	AAG Lys	CCA Pro	1803
												Ser			CAT His		1851
60	GCC Ala	GAG Glu	GCT Ala	GAC Asp	ATT Ile 575	GTT Val	ACC Thr	CTG Leu	CAG Gln	GGC Gly 580	GTC Val	ACC Thr	GGG Gly	GJ Y GGC	AAC Asn 585	Thr	1899
65															CCC Pro		1947

	AGA Arg	GTG Val	GAT Asp 605	TTC Phe	CCT Pro	CGA Arg	TCT Ser	CGA Arg 610	Leu	CGC	TTC Phe	AAG Lys	GAG Glu 615	1 Lys	CTT Lev	GGC Gly	1995
5	GAG Glu	GGC Gly 620	Gln	TTT Phe	GGG	GAG Glu	GTG Val 625	His	CTG Leu	т <u>с</u> т	GAG Glu	GTC Val 630	Asp	AGC Ser	CCT	CAA Gln	2043
10	GAT Asp 635	Leu	GTT Val	AGT Ser	CTT	GAT Asp 640	Phe	CCC Pro	CTT Leu	AAT Asn	GTG Val 645	. Arç	AAG Lys	GGA Gly	CAC His	CCT Pro 650	2091
15	TTG Leu	CTG Leu	GTA Val	GCT Ala	GTC Val 655	Lys	ATC Ile	TTA Leu	CGG Arg	CCA Pro 660	Asp	GCC Ala	ACC Thr	AAG Lys	AAT Asr 665	Ala	2139
20	AGG Arg	AAT Asn	GAT Asp	TTC Phe 670	CTG Leu	AAA Lys	GAG Glu	GTG Val	AAG Lys 675	Ile	ATG Met	TCG Ser	AGG Arg	CTC Leu 680		GAC Asp	2187
	CCA Pro	AAC Asn	ATC Ile 685	ATT Ile	CGG Arg	CTG Leu	CTG Leu	GGC Gly 690	Val	TGT Cys	GTG Val	CAG Gln	GAC Asp 695	Asp	CCC Pro	CTC Leu	2235
25	TGC Cys	ATG Met 700	ATT	ACT Thr	GAC Asp	TAC Tyr	ATG Met 705	GAG Glu	AAC Asn	Gly	GAC Asp	CTC Leu 710	Asn	CAG Gln	TTC Phe	CTC Leu	2283
30	AGT Ser 715	GCC Ala	CAC His	CAG Gln	CTG Leu	GAG Glu 720	GAC Asp	AAG Lys	GCA Ala	GCC Ala	GAG Glu 725	Gly	GCC Ala	CCT	GCG	GAC Asp 730	2331
35	GGG	CAG Gln	GCT Ala	GCG Ala	CAG Gln 735	GGG Gly	CCC Pro	ACC Thr	ATC Ile	AGC Ser 740	Tyr	CCA Pro	ATG Met	CTG Leu	CTG Leu 745	His	2379
40	GTG Val	GCA Ala	GCC Ala	CAG Gln 750	ATC Ile	GCC Ala	TCC Ser	G17 GGC	ATG Met 755	CGC Arg	TAT Tyr	CTG Leu	GCC Ala	ACA Thr 760	CTC Leu	AAC Asn	2427
•••	TTT Phe	GTA Val	CAT His 765	CGG Arg	GAC Asp	Len CIC	GCC Ala	ACG Thr 770	CGG Arg	AAC Asn	TGC Cys	CTA Leu	GTT Val 775	Gly	GAA Glu	TAA Asn	2475
45	TTC Phe	ACC Thr 780	ATC Ile	AAA Lys	ATC Ile	GCA Ala	GAC Asp 785	TTT Phe	GGC Gly	ATG Met	AGC Ser	CGG Arg 790	AAC Asn	CTC Leu	TAT Tyr	GCT Ala	2523
50															cgc Arg		2571
55															AGT Ser 825		2619
60	GTG Val	TGG Trp	GCC Ala	TTT Phe 830	GGT Gly	GTG Val	ACC Thr	CTG Leu	TGG Trp 835	GAG Glu	GTG Val	CTG Leu	ATG Met	CTC Leu 840	TGT Cys	AGG Arg	2667
80	GCC Ala	CAG Gln	CCC Pro 845	TTT Phe	GGG	CAG Gln	CTC Leu	ACC Thr 850	GAC Asp	GAG Glu	CAG Gln	GTC Val	ATC Ile 855	GAG Glu	AAC Asn	GCG Ala	2715
65															CGG Arg		2763

BRIGHOUSIN- 1410

	CCT GCC TGC CCG CAG GGC CTA TAT GAG CTG ATG CTT CGG TGC TGG AGC Pro Ala Cys Pro Gln Gly Leu Tyr Glu Leu Met Leu Arg Cys Trp Ser 875 880 885 890	2811
5	CGG GAG TCT GAG CAG CGA CCC TTT TCC CAG CTG CAT CGG TTC CTG Arg Glu Ser Glu Gln Arg Pro Pro Phe Ser Gln Leu His Arg Phe Leu 895 900	2859
10	GCA GAG GAT GCA CTC AAC ACG GTG TGAATCACAC ATCCAGCTGC CCCTCCCTCA Ala Glu Asp Ala Leu Asn Thr Val 910	2913
	GGGAGCGATC CAGGGGAAGC CAGTGACACT AAAACAAGAG GACACAATGG CACCTCTGCC	2973
15	CCTTCCCCTC CCGACAGCCC ATCACCTCTA ATAGAGGCAG TGAGACTGCA GGCTGGGCCC	3033
	ACCCAGGGAG CTGATGCCCC TTCTCCCCTT CCTGGACACA CTCTCATGTC CCCTTCCTGT	3093
20	TCTTCCTTCC TAGAAGCCCC TGTCGCCCAC CCAGCTGGTC CTGTGGATGG GATCCTCTCC	3153
20	ACCCACCTCT AGCCATCCCT TGGGGAAGGG TGGGGAGAAA TATAGGATAG ACACTGGACA	3213
	TGGCCCATTG GAGCACCTGG GCCCCACTGG ACAACACTGA TTCCTGGACA GGTGGCTGCG	3273
25	CCCCCAGCTT CTCTCCCCT GTCACACACT GGACCCCACT GGCTGAGAAT CTGGGGGTGA	3333
	GGAGGACAAG AAGGAGAGA AAATGTTTCC TTGTGCCTGC TCCTGTACTT GTCCTCAGCT	3393
	TGGGCTTCTT CCTCCTCCAT CACCTGAAAC ACTGGACCTG GGGGTAGCCC CGCCCCAGCC	3453
30	CTCAGTCACC CCCCACTTCC CACCTGCAGT CTTGTAGCTA GAACTTCTCT AAGCCTATAC	3513
	GTTTCTGTGG AGTAAATATT GGGATTGGGG GGAAAGAGGG AGCAACGGCC CATAGCCTTG	3573
35	GGGTTGGACA TCTCTAGTGT AGCTGCCACA TTGATTTTTC TATAATCACT TGGGTTTGTA	3633
	CATTTTTGGG GGGAGAGACA CAGATTTTTA CACTAATATA TGGACCTAGC TTGAGGCAAT	3693
	TTTAATCCCC TGCACTAGGC AGGTAATAAT AAAGGTTGAG TTTTCCACAA AAAAAAAAA	3753
40	Α	3754
45	(2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 914 amino acids	
50	(B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
55	Met Gly Pro Glu Ala Leu Ser Ser Leu Leu Leu Leu Leu Leu Val Ala 1 1 10 15	
	Ser Gly Asp Ala Asp Met Lys Gly His Phe Asp Pro Ala Lys Cys Arg	
60	20 25 30	
	Tyr Ala Leu Gly Met Gln Asp Arg Thr Ile Pro Asp Ser Asp Ile Ser 35 40 45	
65	Ala Ser Ser Ser Trp Ser Asp Ser Thr Ala Ala Arg His Ser Arg Leu $50 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	Glu Ser Ser Asp Gly Asp Gly Ala Trp Cys Pro Ala Gly Ser Val Phe	

	Pro	Lys	Glu	Glu	Glu 85	Tyr	Leu	Gln	Val	Asp 90	Leu	Gln	Arg	Leu	His 95	Leu
5	Val.	Ala	Leu	Val 100	Gly	Thr	Gln	Gly	Arg 105	His	Ala	Gly	Gly	Leu 110	Gly	Lys
1.	Glu	Phe	Ser 115	Arg	Ser	Tyr	Arg	Leu 120	Arg	Tyr	Ser	Arg	Asp 125	Gly	Arg	Arg
10	Trp	Met 130	Gly	Trp	Lys	Asp	Arg 135	Trp	Gly	Gln	Glu	Val 140	Ile	Ser	Gly	Asn
15	Glu 145	Asp	Pro	Glu	Gly	Val 150	Val	Leu	Lys	Asp	Leu 155	Gly	Pro	Pro	Met	Val 160
15	Ala	Arg	Leu	Val	Arg 165	Phe	Tyr	Pro	Arg	Ala 170	Asp	Arg	Val	Met	ser 175	Val
20	Сув	Leu	Arg	Val 180	Glu	Leu	Tyr	Gly	Cys 185	Leu	Trp	Arg	Asp	Gly 190	Leu	Leu
	Ser	Tyr	Thr 195	Ala	Pro	Val	Gly	Gln 200	Thr	Met	Tyr	Leu	Ser 205	Glu	Ala	Val
25	Tyr	Leu 210	Asn	Asp	Ser	Thr	Tyr 215	Asp	Gly	His	Thr	Val 220	Gly	Gly	Leu	Gln
30	Tyr 225	Gly	Gly	Leu	Gly	Gln 230	Leu	Ala	Asp	Gly	Val 235	Val	Gly	Leu	Asp	Asp 240
30	Phe	Arg	Lys	Ser	Gln 245	Glu	Leu	Arg	Val	Trp 250	Pro	Gly	Tyr	Asp	Tyr 255	Val
35	Gly	Trp	Ser	Asn 260	His	Ser	Phe	Ser	ser 265	Gly	Tyr	Val	Glu	Met 270	Glu	Phe
	Glu	Phe	Asp 275	Arg	Leu	Arg	Ala	Phe 280	Gln	Ala	Met	Gln	Val 285	His	Cys	Asn
40	Asn	Met 290	His	Thr	Leu	Gly	Ala 295	Arg	Leu	Pro	Gly	Gly 300	Val	Glu	Cys	Arg
45	Phe 305	Arg	Arg	Gly	Pro	Ala 310	Met	Ala	Trp	Glu	Gly 315	Glu	Pro	Met	Arg	His 320
	Asn	Leu	Gly	Gly	Asn 325	Leu	Gly	Asp	Pro	Arg 330	Ala	Arg	Ala	Val	Ser 335	Val
50	Pro	Leu	Gly	Gly 340	Arg	Val	Ala	Arg	Phe 345	Leu	Gln	Cys	Arg	Phe 350	Leu	Phe
	Ala	Gly	Pro 355	Trp	Leu	Leu	Phe	Ser 360	Glu	Ile	Ser	Phe	11e 365	Ser	Asp	Val
55	Val	Asn 370	Asn	Ser	ser	Pro	Ala 375	Leu	Gly	Gly	Thr	Phe 380	Pro	Pro	Ala	Pro
60	Trp 385	Trp	Pro	Pro	Gly	Pro 390	Pro	Pro	Thr	Asn	Phe 395	Ser	Ser	Leu	Glu	Leu 400
	Glu	Pro	Arg	Gly	Gln 405	Pro	Arg	Pro	Val	Ala 410	Lys	Ala	Glu	Gly	Ser 415	Pro
65	Thr	Ala	Ile	Leu 420	Ile	Gly	Cys	Leu	Val 425	Ala	Ile	Ile	Leu	Leu 430	Leu	Leu
	Leu	Ile	11e 435	Ala	Leu	Met	Leu	Trp 440	Arg	Leu	His	Trp	Arg 445	Arg	Leu	Leu

	Ser	Lys 450	Ala	Glu	Arg	Arg	Val 455	Leu	Glu	Glu	Glu	Leu 460	Thr	Val	His	Leu
5	Ser 465	Val	Pro	Gly	Asp	Thr 470	Ile	Leu	Ile	Asn	Asn 475	Arg	Pro	Gly	Pro	Arg 480
	Glu	Pro	Pro	Pro	Tyr 485	Gln	Glu	Pro	Arg	Pro 490	Arg	Giy	Asn	Pro	Pro 495	His
10	Ser	Ala	Pro	Cys 500	Val	Pro	Asn	Gly	Ser 505	Ala	Leu	Leu	Leu	Ser 510	Asn	Pro
15	Ala	Tyr	Arg 515	Leu	Leu	Leu	Ala	Thr 520	Tyr	Ala	Arg	Pro	Pro 525	Arg	Gly	Pro
	Gly	Pro 530	Pro	Thr	Pro	Ala	Trp 535	Ala	Lys	Pro	Thr	Asn 540	Thr	Gln	Ala	Tyr
20	ser 545	Gly	Asp	Tyr	Met	Glu 550	Pro	Glu	Lys	Pro	Gly 555	Ala	Pro	Leu	Leu	Pro 560
	Pro	Pro	Pro	Gln	Asn 565	Ser	Val	Pro	His	Tyr 570	Ala	Glu	Ala	Asp	Ile 575	Val
25	Thr	Leu	Gln	Gly 580	Val	Thr	Gly	Gly	Asn 585	Thr	Tyr	Ala	Val	Pro 590	Ala	Leu
30	Pro	Pro	Gly 595	Ala	Val	GJA	Asp	Gly 600	Pro	Pro	Arg	Val	Asp 605	Phe	Pro	Arg
	Ser	Arg 610	Leu	Arg	Phe	Lys	Glu 615	Lys	Leu	Gly	Glu	Gly 620	Gln	Phe	Gly	Glu
35	Val 625	His	Leu	Cys	Glu	Val 630	Asp	Ser	Pro	Gln	Asp 635	Leu	Val	Ser	Leu	Asp 640
	Phe	Pro	Leu	Asn	Val 645	Arg	Lys	Gly	His	Pro 650	Leu	Leu	Val	Ala	Val 655	Lys
40	Ile	Leu	Arg	Pro 660	Asp	Ala	Thr	Lys	Asn 665	Ala	Arg	Asn	Asp	Phe 670	Leu	Lys
45	Glu	Val	Lys 675	Ile	Met	Ser	Arg	Leu 680	Lys	Asp	Pro	Asn	11e 685	Ile	Arg	Leu
	Leu	Gly 690	Val	Cys	Val	Gln	Asp 695	Asp	Pro	Leu	Cys	Met 700	Ile	Thr	Asp	Tyr
50	Met 705	Glu	Asn	Gly	Asp	Leu 710	Asn	Gln	Phe	Leu	Ser 715	Ala	His	Gln	Leu	Glu 720
	Asp	Lys	Ala	Ala	Glu 725	Gly	Ala	Pro	Gly	Asp 730	Gly	Gln	Ala	Ala	Gln 735	GIA
55	Pro	Thr	Ile	5er 740	Tyr	Pro	Met	Leu	Leu 745	His	Val	Ala	Ala	Gln 750	Ile	Ala
60	Ser	Gly	Met 755	Arg	Tyr	Leu	Ala	Thr 760	Leu	Asn	Phe	Val	His 765	Arg	Asp	Leu
	Ala	Thr 770	Arg	Asn	Cys	Leu	Val 775	Gly	Glu	Asn	Phe	Thr 780	Ile	Lys	Ile	Ala
65	Asp 785	Phe	Gly	Met	Ser	Arg 790	Asn	Leu	Tyr	Ala	Gly 795	Asp	Tyr	Tyr	Arg	Val 800
	Gln	Gly	Arg	Ala	Val 805	Leu	Pro	Ile	Arg	Trp 810	Met	Ala	Trp	Glu	Cys 815	Ile

									-	, ,						
	Leu	Met	Gly	Lys 820	. Phe	Thr	Thr	Ala	Ser 825	Asp	Val	Trp	Ala	Phe 830	Gly	Val
5	Thr	Leu	Trp 835	Glu	Val	Leu	Met	Leu 840	Cys	Arg	Ala	Gln	Pro 845	Phe	Gly	Gln
	Leu	Thr 850	Asp	Glu	Gln	Val	11e 855	Glu	Asn	Ala	Gly	61u 860	Phe	Phe	Arg	Asp
10	Gln 865	GJĀ	Arg	Gln	Val	Tyr 870	Leu	Ser	Arg	Pro	Pro 875	Ala	Cys	Pro	Gln	Gly 880
15	Leu	Tyr	Glu		Met 885	Leu	Arg	Сув	Trp	Ser 890	Arg	Glu	ser	Glu	Gln 895	Arg
	Pro	Pro	Phe	Ser 900	Gln	Leu	His	Arg	Phe 905	Leu	Ala	Glu	Asp	Ala 910	Leu	Asn
20	Thr	Val														
	(2)	INFO	RMA	noi	FOR	SEQ	ID I	10: 3	3:							
25		(i)	, (I	1) LI		i: 7	amir no ac									
30					LE TI		-	ide ON: S	· FO 1	rn Ne						
								Ası Ası		ID NO	J: 3:	•				
35																
	(2)	INFO	RMAT	поп	FOR	SEQ	ID 1	10: 4	1 2							
40		(i)	() ()	A) LE 3) TY 2) S7	ENGT:	nucl	2 bas leic ESS:	se pa acio sino sar	irs							
45		(11)	MOI	ECUI	E T	PE:	CDN	Ą								
		(xi)	SEÇ	QUENC	E DE	SCR	PTIC	ON: S	EQ I	D NO): 4:	:				

GGAATTCTAG AMGSGACYTG GCVGCBAGRA AC

50

	(2)	INFORMATION FOR SEQ ID NO: 5:	
5		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
:		(ii) MOLECULE TYPE: peptide	
10		<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 5one-of(2) (D) OTHER INFORMATION: /note= "Xaa at position 5 is Tyr or Phe"</pre>	
20		(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 7one-of(2) (D) OTHER INFORMATION: /note= "Xaa at position 7 is Val or Ile"	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
25		Asp Val Trp Ser Xaa Gly Xaa 1	
	(2)	INFORMATION FOR SEQ ID NO: 6:	
30		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: sincle	
35		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: cDNA	
40		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	_
40	GGA	ATTCTAG ACACSCCRWA RSWCCASACR TC	3
	(2)	INFORMATION FOR SEQ ID NO: 7:	
45		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50		(ii) MOLECULE TYPE: cDNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
55	GACT	CGAGTC GACATCGATT TTTTTTTT TTTTT	3!

()

		(2) INFORMATION FOR SEQ ID NO: 8:	
	5	(i) SPQUENCE CHARACTERISTICS: (A) LENGTH 21 base pairs (B) TYPE: neleic acid (C) STRANDENESS: single (D) TOPOLOGY: linear	
	10	(ii) MOLECULE TYPE: cDNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
		GTTGGGGAAA ATTTCACCAT C	
	15	(2) INFORMATION FOR SEQ ID NO: 9:	
	20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TIPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	25	(ii) MOLECULE TYPE: cDNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	30	GGCATGAGCC GGAACCTC	3
		(2) INFORMATION FOR SEQ ID NO: 10:	
	35.	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TIPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	40	(ii) MOLECULE TYPE: cDNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
		TCTCGATGAC CTGCTCGTCG GTGAGCTGCC	3
	45	(2) INFORMATION FOR SEQ ID NO: 11:	
	50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	55	(ii) MOLECULE TYPE: cDNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
		CAGTCTCACT GCCTCTATTA GAGGTGATGG	3
	<i>-</i> 0		

	(2) INFORMATION FOR SEQ ID NO: 12:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
	AAGCTGAGGA CAAGTACAGG AGCAGGCACA	
15	(2) INFORMATION FOR SEQ ID NO: 13:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
2.5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	TCAATGTGGC AGCTACACTA GAGATGTCCA	

CLAIMS:

1. A method of screening a substance for potential utility as a therapeutic agent in the treatment of cancer which comprises providing a standard system in which a protein tyrosine kinase or an active fragment thereof is able to develop a measurable effect, allowing the protein tyrosine kinase to develop that effect in the presence and absence of the said substance and measuring that effect, ability to produce significant inhibition of the effect being taken as

an indication of potential utility as a therapeutic agent, wherein the protein tyrosine kinase is characterised by the amino acid sequence shown in

SEQ ID NO. 1

phosphotyrosine antibodies.

- or an amino acid sequence showing a significant degree of homology thereto.
- A method as claimed in Claim 1 wherein the protein tyrosine kinase or an active fragment thereof is derived from
 a recombinant expression system or a cellular source in which the protein is overexpressed.
- A method as claimed in claim 2 wherein the recombinant expression system is an insect baculovirus, an immortalised human breast cell line or a rodent fibroblast cell line.
 - 4. A method as claimed in claim 2 or 3 wherein the measurable effect is protein tyrosine kinase activity which is measured by measuring autophosphorylation or phosphorylation of a model substrate, by following incorporation of radioactive phosphate or by using anti-
- 5. A method as claimed in Claim 1 wherein the measurable effect is a phenotypic alteration conferred by expression of the protein tyrosine kinase or an active fragment thereof in a recombinant or non-recombinant cell line.

30

()

- 6. A method as claimed in Claim 1 wherein the measurable effect is the tumorogenic effect of a recombinant or non-recombinant cell line expressing the protein tyrosine kinase or an active fragment thereof when used as a xenograft in an animal.
- 7. A method as claimed in Claim 5 or 6 wherein the recombinant cell line is a primary immortalised human breast cell line or a rodent fibroblast cell line.

10

- 8. A therapeutic agent identified by a method as claimed in any of Claims 1 to 7.
- A therapeutic agent as claimed in Claim 8 which is a
 chemical molecule of relatively low molecular weight.
 - 10. A therapeutic agent as claimed in Claim 9 which is a staurosporine analogue, a tyrphostin or a flavenoid.
- 20 11. A therapeutic agent as claimed in Claim 8 which is a macromolecule.
 - 12. A therapeutic agent as claimed in Claim 11 which is an antibody.

25

- 13. A therapeutic agent as claimed in claim 8 which is a peptide.
- 14. A therapeutic agent as claimed in claim 8 which is an 30 antisense oligonucleotide capable of blocking translation of the mRNA encoding the protein tyrosine kinase.
 - 15. A method for detecting a tyrosine kinase having an amino acid sequence as defined in

35 SEQ ID NO. 1

or a fragment thereof which comprises contacting a test sample with a specific antibody raised against an antigen from the

()

20

said amino acid sequence and determining whether there is any antigen antibody binding within the test sample.

- 16. A method for the detection in a sample of a nucleic acid sequence encoding a tyrosine kinase which comprises subjecting the sample or nucleic acid isolated therefrom to a method capable of detecting a nucleic acid sequence therein identical or substantially homologous to a defined nucleic acid sequence and identifying any sequence identical or substantially
- 10 homologous to all or part of the DNA sequence defined in SEQ ID NO. 1,

or mRNA which would be the transcription product of such DNA.

- 17. A method as claimed in Claim 16 wherein DNA is detected by Southern blotting and/or PCR using appropriate primers.
 - 18. A method as claimed in Claim 16 wherein RNA is detected by Northern blotting, RNAse protection studies and direct nucleic acid in situ hybridisation.
 - 19. An enzyme-substrate complex which comprises a protein tyrosine kinase characterised by the amino acid sequence shown in

SEQ ID NO. 1

- or an amino acid sequence showing a significant degree of homology thereto and a therapeutic agent capable of modulating the activity of said protein tyrosine kinase.
- 20. A complex as claimed in Claim 19 wherein the therapeutic 30 agent is a chemical molecule of relatively low molecular weight.
 - 21. A complex as claimed in Claim 20 wherein the therapeutic agent is a staurosporine analogue, a tyrphostin or a flavenoid.
 - 22. A complex as claimed in Claim 19 wherein the therapeutic

35

agent is a macromolecule.

23. A complex as claimed in Claim 22 wherein the therapeutic agent is an antibody.

5

- 24. A complex as claimed in Claim 19 wherein the therapeutic agent as a peptide.
- 25. A complex as claimed in Claim 19 wherein the therapeutic 10 agent is an antisense oligonucleotide capable of blocking translation of the mRNA encoding the protein tyrosine kinase.

FIG. 1

FIG.2

()

 \bigcirc

()

FIG.5

FIG.6a

SUBSTITUTE SHEET (RULE 26)

FIG.6b

FIG.6c

()

FIG.7a

Heart Brain Placenta Lung Liver Skeletal Muscle Kidney Pancreas

FIG.7b

Oesophagus Stomach Gall Bladder lleum Caecum Colon Tonsil Thyroid Spleen Kidney Pelvis Kidney Medulla Kidney Cortex Lung Skin Testis Prostate Myometrium

Endometrium Breast Bone Marrow

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

				/GB 94/0		
	A61K39/395 A61K38/00 A61 C12N9/12 C12N15/11	K31/70 G	61K31/275 01N33/573	A61K3: C12Q1,		
According to	o International Patent Classification (IPC) or to both nation	nal classification and	IPC			
B. FIELDS	S SEARCHED Ocumentation searched (classification system followed by	classification symbols				
IPC 6	GOIN CIZU ABIK CIZN					
Documenta	tion searched other than minimum documentation to the e	stent that such docume	ents are included in	the fields scar	ched	
				•		
Electronic o	data base consulted during the international scarch (name	of data base and, when	e praetical, scarch t	erms used)	1	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriat	e, of the relevant pass	ages		Relevant to claim No.	
Υ	PROCEEDINGS OF THE NATIONAL SCIENCES OF USA,				1-25	
Y	vol.90, June 1993, WASHINGI pages 5677 - 5681 JEFFREY D. JOHNSON ET AL. tyrosine kinase found in br cells has an extracellular I-like domain' cited in the application see the whole document DRUGS OF THE FUTURE, vol. 17, no.2, 1992	A receptor east carcino discoidin		÷	1-25	
	pages 119 - 131 TERRENCE R. BURKE, JR. 'Pro kinase inhibitors' cited in the application see the whole document	otein-tyrosi -/	ne			
X Fu	urther documents are listed in the continuation of box C.	X P	atent family membe	rs are listed in	n annex.	
considered to be of particular relevance Fe earlier document but published on or after the international filling date 1. document which may throw doubts on priority claim(s) or which is cited to crabbish the publication date of another or lation or other special reason (as specific of a specific of a comment referring to an oral disclosure, use, exhibition or other mental reason (as specific of a comment referring to an oral disclosure, use, exhibition or other mental published prior to the international filling date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Date of mailing of the				nternational search report		
Name	25 October 1994 and mailing address of the ISA	Auth	0 8. 12. 9			
Name an	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk ——Tel. (+-31-70) 340-2040, Tx. 31.651.epo nl.		-DönferK=	·P		

INTERNATIONAL SEARCH REPORT

Intern isl Application No PCT/GR 94/01480

CICARI	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/GB 94/01480
Category *		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
Y : ,	JOURNAL OF MEDICINAL CHEMISTRY, vol.34, 1991, WASHINGTON US pages 1896 - 1907 AVIV GAZIT ET AL. 'Tyrphostins. 2. Heterocyclic and alpha-substituted Benzylidenmalononitrile Tyrphostins as Potent Inhibitors of EGF Receptor and ErbB2/neu Tyrosine Kinases' cited in the application see the whole document	1-10, 19-21
Y	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol.89, May 1992, WASHINGTON US pages 4285 - 4289 PAUL CARTER ET AL. 'Humanization of an anti-pla5(HER2) antibody for human cancer therapy' cited in the application see the whole document	1-7, 11-13, 15, 19, 22-25
P,A	ONCOGENE, vol.8, no.12, December 1993, BASINGSTOKE GB pages 3433 - 3440 THOMAS KARN ET AL. 'Stzructure, expression and chromosomal mapping of TKT from man and mouse: a new subclass of receptor	1-8, 11-19, 22-25
	tyrosine kinases with a factor VIII-like domain' see the whole document	
P,A	ONCOGENE, vol.9, no.1, January 1994, BASINGSTOKE GB pages 211 - 219 JOSE L. PEREZ ET AL. 'Identification and chromosomal mapping of a receptor tyrosine kinase with a putative phospholipid binding sequence inits ectodomain' see the whole document	1-8, 11-19, 22-25
P, A	ONCOGENE, vol.8, no.10, October 1993, BASINGSTOKE GB pages 2731 - 2739 MARIELBA ZERLIN ET AL. 'NEP: a novel receptor-like tyrosine kinase expressed in proliferating epithelia' cited in the application see the whole document	1-8, 11-19, 22-25
`	EP,A,O 504 914 (E.R. SQUIBB & \$ONS, INC.) 23 September 1992 see the whole document	1-8, 11-19, 22-25

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

Intern al Application No

	;	PCT/GB 9	04/01480
Category *	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No
Category	Citation of document, with management, where appropriate, or the revenue passagement		
A	WO,A,90 10234 (EURO-DIAGNOSTICS B.V.) 7 September 1990 see the whole document	•	1,4
A	SCIENCE, vol.241, no.4861, 1 July 1988, LANCASTER,PA, US pages 42 - 52 STEVEN H. HANKS,ANNE MARIE QUINN, TONY HUNTER 'The Protein Kinase Family: Conserved Features and Deduced Phylogeny of the Catalytic Domaines' cited in the application	*	
A	JOURNAL OF CLINICAL ONCOLOGY, vol.10, no.7, July 1992, NEW YORK, NY, US pages 1049 - 1056 B.A. GUSTERSON ET AL. 'Prognostic Importance of c-erbB-2-Expression in Breast Cancer' cited in the application		
	* ÷		
		•	
	*		
	1		
	·		
	+		
	171		

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

NTERNATIONAL SEARCH REPORT

alformation on patent family members

Inter nal Application No PCT/GB 94/01480

Patent document cited in search report	Publication date	Patent family member(s)		Publication date		
EP-A-0504914	23-09-92	JP-A-	5273208	22-10-93		
WO-A-9010234	07-09-90	NL-A- AU-A- EP-A- JP-T-	8900529 5263190 0461174 4504171	01-10-90 26-09-90 18-12-91 23-07-92		