

• Simple:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$J(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^2$$

Simple:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1, \theta_2, ..., \theta_n) = \theta_0 - \frac{\alpha}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_{1} = \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1}, \theta_{2}, \dots, \theta_{n}) = \theta_{1} - \frac{\alpha}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{1}^{(i)})$$

•

$$\theta_n = \theta_n - \alpha \frac{\partial}{\partial \theta_n} J(\theta_0, \theta_1, \theta_2, \dots, \theta_n) = \theta_1 - \frac{\alpha}{m} \sum_{i=1}^m \left((h_\theta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \right)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Sample #	SGLT1_linear (x1)	Blood glucose level (mg/dL)
1	3	155
2	8	55
3	12	101
4	2	200

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Sampl e #	SGLT1_lin ear (x1)	SGLT1_sq uare (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Minimal cost

Lines of equal $J(\theta_1,\theta_2)$ value

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Minimal cost

Lines of equal $J(\theta_1,\theta_2)$ value

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$\theta_n = \theta_n - \frac{\alpha}{m} \sum_{i=1}^m ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)})$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Minimal cost

Lines of equal $J(\theta_{\rm 1},\theta_{\rm 2})$ value

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

Range: 2-12

Range: 4-144

$$\theta_{n} = \theta_{n} - \frac{\alpha}{m} \sum_{i=1}^{m} \left(\left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \left(x_{n}^{(i)} \right) \right)$$
 Small steps

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Minimal cost

Lines of equal $J(\theta_{\rm 1},\theta_{\rm 2})$ value

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

Range: 2-12 Range: 4-144

$$\theta_n = \theta_n - \frac{\alpha}{m} \sum_{i=1}^m \left(\left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \left(x_n^{(i)} \right) \right)$$
Large

steps

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Minimal cost

Lines of equal $J(\theta_{\rm 1},\theta_{\rm 2})$ value

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$\theta_n = \theta_n - \frac{\alpha}{m} \sum_{i=1}^m ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)})$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Minimal cost

Lines of equal $J(\theta_{\rm 1},\theta_{\rm 2})$ value

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$\theta_n = \theta_n - \frac{\alpha}{m} \sum_{i=1}^m ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)})$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Minimal cost

Lines of equal $J(\theta_{\rm 1},\theta_{\rm 2})$ value

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$\theta_n = \theta_n - \frac{\alpha}{m} \sum_{i=1}^m ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)})$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	3	9	155
2	8	64	55
3	12	144	101
4	2	4	200

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$x_{j} = \frac{x_{j} - mean(x_{j})}{std.dev(x_{j})}$$

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	-0,70	-0,71	155
2	0,38	0,13	55
3	1,24	1,36	101
4	-0,91	-0,79	200

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$x_{j} = \frac{x_{j} - mean(x_{j})}{std.dev(x_{j})}$$

Sample #	SGLT1_linear (x1)	SGLT1_square (x2)	Blood glucose level (mg/dL)
1	-0,70	-0,71	155
2	0,38	0,13	55
3	1,24	1,36	101
4	-0,91	-0,79	200

Minimal cost

Lines of equal $J(\theta_{\rm 1},\theta_{\rm 2})$ value

Summary

- Easily extendable to multiple features and polynomials
- Normalisation to help gradient descent converge faster

Goal is not to fit the training data perfectly, but to generalise well

-the-bias-variance-tradeoff-165e6942b229

 Goal is not to fit the training data perfectly, but to generalise well

- High variance:
 - -how much our hypothesis function would change if we changed our training set
 - -used x^1-x^9 as features

- High variance:
 - -how much our hypothesis function would change if we changed our training set
 - -used x^1-x^9 as features
 - -If we add one point:

High variance:

- -Huge amount of possible functions that pass through all points: large hypothesis space, can basically fit all the training data we give perfectly!
- -Do great on this data, but will fare poorly when predicting unseen data

- High bias:
 - -error introduced by approximating a complex process with a simple model.
 - -Only 1 feature (intercept + theta1)

High bias:

- -error introduced by approximating a complex process with a simple model.
- -Only 1 feature (intercept + theta1)
- -Data clearly shows that a linear curve is not the best fit, yet we keep our preconception, or *bias*, that it should adhere to a univariate linear regression
- -Does poorly on this data and will also fare poorly when predicting unseen data

- Just right:
 - -Not fit too closely to known examples, probably generalises well.

What can we do to find a good model?

- Find a way to approximate generalisation error: how well do you do on unseen data?
- See how error on seen and unseen data changes with amount of training data (plot learning curves)
- Reduce dimensionality by using only certain features
- Automatically constrain the fitting by penalising the cost function for too many/too large parameters

What can we do to find a good model?

- Find a way to approximate generalisation error: how well do you do on unseen data?
- See how error on seen and unseen data changes with amount of training data (plot learning curves)
- Automatically constrain the fitting by penalising the cost function for too many/too large parameters

Approximate generalisation error: split data

- Split data into training data, validation data, and a test set
- Test set: completely untouched until you are done training
- Train set: train your classifier on this
- Validation set: test your trained classifier on this

Source: https://stackoverflow.com/questions/56099495/what-should-be-passed-as-input-parameter-when-using-train-test-split-function-tw

Approximate generalisation error: split data

K-fold cross-validation (often 10-fold):

Source:https://www.statology.org/k-fold-cross-validation/

Approximate generalisation error: split data

- Procedure:
 - -Shuffle the data
 - -Divide into k folds (e.g. 10 folds of 100 training examples each)

- For each fold:
 - -find parameters by minimising cost function on training set with gradient descent
 - -predict on validation data
 - -calculate cost on validation data (you know the true values)
- -Average validation cost over folds ~ generalisation error

Example 2-fold cv on linear regression

All data

Example 2-fold cv on linear regression: fold 1

$$f(x) = 1.14 x - 16.84$$

$$R^2 = 0.94$$
All data

$$J(\theta_0, \theta_1)_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = 41,66$$

Example 2-fold cv on linear regression: fold 1

$$f(x) = 1.14 x - 16.84$$

$$R^{2} = 0.94$$

$$0$$
All data

$$J(\theta_0, \theta_1)_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = 41,66$$

$$J(\theta_0, \theta_1)_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = 52,34$$

Example 2-fold cv on linear regression: fold 2

$$J(\theta_0, \theta_1)_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = 75,25$$

$$J(\theta_0, \theta_1)_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = 43$$

$$J(\theta_0, \theta_1)_{train} = 41,66$$

 $J(\theta_0, \theta_1)_{val} = 52,34$

Fold 1

Example 2-fold cv on linear regression

- Avg. train error: 58,5
- Avg. Validation error: 47,7
- Perform better on unseen than seen data:

generalises well.

 Finally: would train on all data and test that on test set.

All data

$$J(\theta_0, \theta_1)_{train} = 75,25 J(\theta_0, \theta_1)_{train} = 41,66$$

 $J(\theta_0, \theta_1)_{val} = 43 J(\theta_0, \theta_1)_{val} = 52,34$

Fold 2

Fold 1

What can we do to find a good model?

- Find a way to approximate generalisation error: how well do you do on unseen data?
- See how error on seen and unseen data changes with amount of training data (plot learning curves)
- Automatically constrain the fitting by penalising the cost function for too many/too large parameters

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Sample size m

Easy to fit few datapoints perfectly

$$J_{train} = \frac{1}{2m} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Sample size *m*

Harder and harder to fit everything perfectly

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Sample size m

Generalises poorly to new data

$$J_{train} = \frac{1}{2m} \sum_{train}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m} \sum_{m=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Generalises better to new data

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Keep pretty much the same line even as data increases

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Keep pretty much the same line even as data increases

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Keep pretty much the same line even as data increases

 If your learning algorithm is biased, getting more training data will not help!

Learning curves: high variance

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{val} = \frac{1}{2m} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Fit perfectly

Fit very well, but not perfect

Learning curves: high variance

$$J_{train} = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$1 \sum_{m_{val}} (1 - (i)) = (i) \cdot 2$$

$$J_{val} = \frac{1}{2m_{val}} \sum_{i=1}^{m_{val}} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Fit perfectly

Learning curves: high variance

- There's a trade-off between bias and variance
- Learning curves allow you to diagnose what your algorithm might be suffering from

Summary: cross-validation and learning curves

- Data is split into data to train on and a test set that you don't touch at all
- Training data is split into k folds, with (average) crossvalidation error as proxy for how your algorithm performs on unseen data

Summary: cross-validation and learning curves

- Data is split into data to train on and a test set that you don't touch at all
- Training data is split into k folds, with (average) cross-validation error as proxy for how your algorithm performs on unseen data
- Learning curves allow you to diagnose whether your algorithm suffers from high bias or high variance

Underfitting: use more complex model

Overfitting: use less complex model or supply more training data

What can we do to find a good model?

- Find a way to approximate generalisation error: how well do you do on unseen data?
- See how error on seen and unseen data changes with amount of training data (plot learning curves)
- Automatically constrain the fitting by penalising the cost function for too many/too large parameters

Regularisation

Change the cost function to apply a cost for complexity

Regularisation

Change the cost function to apply a cost for complexity

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^2$$

Change the cost function to apply a cost for complexity

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x) - y^{(i)})^2$$

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2$$

 Make J a function of both the error of predictions given some parameters and the magnitude of those parameters themselves

Change the cost function to apply a cost for complexity

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x) - y^{(i)})^2$$

$$J(\theta_0) \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^n (\theta_j)^2$$
 By convention: don't shrink bias/intercept term

 Make J a function of both the error of predictions given some parameters and the magnitude of those parameters themselves

Change the cost function to apply a cost for complexity

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2 \qquad h_{\theta}(x) = \theta_0 + \theta_1 x$$

 Add some bias (constrain hypothesis to a set with small parameter values) but reduces variance:

Change the cost function to apply a cost for complexity

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2 \qquad h_{\theta}(x) = \theta_0 + \theta_1 x$$

 Add some bias (constrain hypothesis to a set with small parameter values) but reduces variance:

Constrained how much the line may increase with Weight (biased) → generalises better to test set

Same idea, slightly different execution:

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2$$

Same idea, slightly different execution:

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2$$

Same idea, slightly different execution:

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

Same idea, slightly different execution:

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

 Ridge regression shrinks parameters/weights to 0, LASSO can make them 0 outright, i.e. simply removes uninformative features.

Same idea, slightly different execution:

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

 Ridge regression shrinks parameters/weights to 0, LASSO can make them 0 outright, i.e. simply removes uninformative features. → Why?

Regularisation: Ridge vs. LASSO regression

 Ridge regression shrinks parameters/weights to 0, LASSO can make them 0 outright, i.e. simply removes uninformative features. → Why?

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^{2}$$

Source: Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.

Regularisation: Ridge vs. LASSO regression

 Ridge regression shrinks parameters/weights to 0, LASSO can make them 0 outright, i.e. simply removes uninformative features. → Why?

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^{2}$$

Source: Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.

 Ridge regression shrinks parameters/weights to 0, LASSO can make them 0 outright, i.e. simply removes uninformative features. → Why?

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^{2}$$

 Ridge regression shrinks parameters/weights to 0, LASSO can make them 0 outright, i.e. simply removes uninformative features. → Why?

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^{2}$$

$$\lambda \sum_{j=1}^{n} |\theta_{j}|$$

 Ridge regression shrinks parameters/weights to 0, LASSO can make them 0 outright, i.e. simply removes uninformative features. → Why?

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^{2}$$

$$\lambda \sum_{j=1}^{n} |\theta_{j}|$$

 Optimum = best least squares fit given constraint = intersect red lines with blue area.

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^{2}$$

$$\lambda \sum_{j=1}^{n} |\theta_{j}|$$

$$\lambda \sum_{j=1}^{n} (\theta_{j})^{2}$$

- Optimum = best least squares fit given constraint = intersect red lines with blue area.
- LASSO: can be at tip of rhombus, where theta1 = 0.
- Ridge: intersection ellips with circle never where either = 0

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y^{(i)})^{2}$$

$$\lambda \sum_{j=1}^{n} |\theta_{j}|$$

$$\lambda \sum_{j=1}^{n} (\theta_{j})^{2}$$

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

- Lambda is another hyperparameter
- Intuition: higher lambda → constrain parameters more, i.e. increase bias.

lower lambda → constrain parameters less, i.e. increase **variance**

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

How to pick a good value?

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

- How to pick a good value?
- Cross-validation!

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

- How to pick a good value?
- Cross-validation!
 - Vary lambda over orders of magnitude (0.3, 1, 3, 7,10, 30, 100)

- For each lambda:
 - Train on training set using regularisation term

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

- How to pick a good value?
- Cross-validation!
 - Vary lambda over orders of magnitude (0.3, 1, 3, 7,10, 30, 100)
 - For each lambda:
 - Train on training set using regularisation term
 - · Calculate validation error without regularisation term

Don't care about parameter sizes, just care about how good your predictions are!

$$J(\theta_0, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x) - y^{(i)})^2 + \lambda \sum_{j=1}^n |\theta_j|$$

- How to pick a good value?
- Cross-validation!
 - Vary lambda over orders of magnitude (0.3, 1, 3, 7,10, 30, 100)

- For each lambda:
 - Train on training set using regularisation term
 - Calculate validation error without regularisation term
- Pick lambda that gives best (average) validation error!

What can we do to find a good model?

- Find a way to approximate generalisation error: how well do you do on unseen data?
- See how error on seen and unseen data changes with amount of training data (plot learning curves)
- Automatically constrain the fitting by penalising the cost function for too many/too large parameters

All done!

Summary

- We want our models to generalise well but have to contend with bias and variance
- We can measure (by proxy) how well we generalise using cross-validation
- We can plot learning curves for different subsamplings of the data to diagnose bias and variance
- To avoid overfitting we can use regularisation terms in the cost function, (slightly) increasing bias but decreasing variance
- Hyperparameters (such as λ) can be chosen by trying different ones and seeing what gives best results on the validation data