

CSCE 590-1: From Data to Decisions with Open Data: A Practical Introduction to Al

Lecture 24: Text – Sentiments, Visualization

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 8TH APR, 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 24

- Introduction Segment
 - Recap/ Discussion of Lecture 23
- Main Segment
 - Sentiment Analysis
 - Problem of bias
 - · Using sentiment in business setting
 - Text visualization
- Concluding Segment
 - About Next Lecture Lecture 25
 - Ask me anything

Introduction Segment

Recap of Lecture 23

- We discussed word representation
 - Discrete words
 - Contextual word representation
- Looked at sentiment models

Main Segment

Sentiment Area Terminology

- Affect/ Affective computing: general area of finding feeling, emotion and mood. From psychology [1]
- Emotions: estimate of what the subject may feel from textual and not-textual input. See [2, 3]
- Sentiment: **valence** subjective spectrum of positive-to-negative evaluation of an experience an individual may have had [1]

References

- https://en.wikipedia.org/wiki/Affect (psychology)
- 2. https://emojify.info/menu
- 3. https://www.theguardian.com/technology/2021/apr/04/online-games-ai-emotion-recognition-emojify

Exercise: Explore Emotion Survey Tool

https://emojify.info/menu

Sentiment and Bias

- Consider example:
 - 'This man made me feel angry'
 - 'This woman made me feel angry'
- Authors find bias based on gender and race in 219 automatic systems that participated in SemEval-2018 competition

Template	#sent.	
Sentences with emotion words:		
1. <person> feels <emotional state="" word="">.</emotional></person>	1,200	
2. The situation makes <person> feel</person>		
<emotional state="" word="">.</emotional>	1,200	
3. I made <person> feel <emotional state="" word="">.</emotional></person>		
4. <person> made me feel <emotional state="" word="">.</emotional></person>		
5. <person> found himself/herself in a/an</person>		
<emotional situation="" word=""> situation.</emotional>	1,200	
6. <person> told us all about the recent</person>		
<emotional situation="" word=""> events.</emotional>	1,200	
7. The conversation with <person> was</person>		
<emotional situation="" word="">.</emotional>	1,200	
Sentences with no emotion words:		
8. I saw <person> in the market.</person>	60	
9. I talked to <person> yesterday.</person>	60	
10. <person> goes to the school in our neighborhood.</person>	60	
11. <person> has two children.</person>	60	
Total	8,640	

Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems,
Svetlana Kiritchenko and Saif M. Mohammad, https://www.aclweb.org/anthology/S18-2.pdf
Download data from: http://saifmohammad.com/WebPages/Biases-SA.html

Examples of Variations Use

African American		European A	European American	
Female	Male	Female	Male	
Ebony	Alonzo	Amanda	Adam	
Jasmine	Alphonse	Betsy	Alan	
Lakisha	Darnell	Courtney	Andrew	
Latisha	Jamel	Ellen	Frank	
Latoya	Jerome	Heather	Harry	
Nichelle	Lamar	Katie	Jack	
Shaniqua	Leroy	Kristin	Josh	
Shereen	Malik	Melanie	Justin	
Tanisha	Terrence	Nancy	Roger	
Tia	Torrance	Stephanie	Ryan	

this girl this bo my sister my bro my daughter my son my wife my hu	oy other n sband yfriend her cle
this woman this ma	an
this girl this botomy sister my brown my daughter my sort my wife my hu my girlfriend my botomy mother my fat my aunt my und	by other n sband yfriend her cle

Female she/her

Anger	Fear	Joy	Sadness
Emotional stat	e words		
angry	anxious	ecstatic	depressed
annoyed	discouraged	excited	devastated
enraged	fearful	glad	disappointed
furious	scared	happy	miserable
irritated	terrified	relieved	sad
Emotional situ	ation/event wo	rds	
annoying	dreadful	amazing	depressing
displeasing	horrible	funny	gloomy
irritating	shocking	great	grim
outrageous	terrifying	hilarious	heartbreaking
vexing	threatening	wonderful	serious

Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems, Svetlana Kiritchenko and Saif M. Mohammad,

https://www.aclweb.org/anthology/S18-2.pdf

Download data from: http://saifmohammad.com/WebPages/Biases-SA.html

Male

he/him

Problem of Bias with Sentiments

- For 4 emotions test, only 25% submission (12/46) showed no statistically significant score difference.
- 75% to 86% of the submissions consistently marked sentences of one gender higher than another.
- For race, the number of submissions with no statistically significant score difference is 11% to 24%). Lower than gender. [See paper]

Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems, Svetlana KiritchenkoandSaif M. Mohammad, https://www.aclweb.org/anthology/S18-2.pdf

Task		Avg. score diff.	
Bias group	#Subm.	F↑–M↓	F↓–M↑
Anger intensity prediction			
F=M not significant	12	0.042	-0.043
F↑–M↓ significant	21	0.019	-0.014
F↓–M↑ significant	13	0.010	-0.017
All	46	0.023	-0.023
Fear intensity prediction			
F=M not significant	11	0.041	-0.043
F↑–M↓ significant	12	0.019	-0.014
F↓–M↑ significant	23	0.015	-0.025
All	46	0.022	-0.026
Joy intensity prediction			
F=M not significant	12	0.048	-0.049
F↑–M↓ significant	25	0.024	-0.016
F↓–M↑ significant	8	0.008	-0.016
All	45	0.027	-0.025
Sadness intensity prediction			
F=M not significant	12	0.040	-0.042
F↑–M↓ significant	18	0.023	-0.016
F↓–M↑ significant	16	0.011	-0.018
All	46	0.023	-0.023
Valence prediction			
F=M not significant	5	0.020	-0.018
F↑–M↓ significant	22	0.023	-0.013
$F\downarrow -M\uparrow$ significant	9	0.012	-0.014
All	36	0.020	-0.014

T-test: The null hypothesis that the true mean difference between the paired samples is zero can be rejected if the calculated p-value falls below 0.05/438.

Sentiment Detection from Multimodal Media

- Multiple genre / tasks
 - blog posts, news headlines, and movie reviews
 - https://github.com/shabnamt/jointMultitaskEmo/tree/master/data/emo multigenre
- Multiple media / data types
 - Combine text and numeric score
 - https://stackabuse.com/python-for-nlp-creating-multi-data-type-classification-models-with-keras/

Business Case Study for Sentiment

Clarity: Data-Driven Competitive Analysis

Sheema Usmani, Mariana Bernagozzi, Yufeng Huang, Michelle Morales, Amir Sabet Sarvestani, Biplav Srivastava, Clarity: Data-driven Automatic Assessment of Product Competitiveness, IAAI/AAAI 2020, **Deployed Application Award**

Competitive Analysis: Before & After

Today's Manual Process

Identify top competitor(s) for product X, e.g. product Y

Read through thousands of reviews on product X and Y

Keep track of topics/themes of interest for each product

Decide whether a mention represented positive/negative feedback by manually annotating each mention

Use the gathered data to make a decision on whether or not product X is more competitive than product Y, along the dimensions/themes considered.

Repeat: for every data source, theme, and timeframe

New Process

Steps

- 1. Prepare review data of products p_1 to p_N from sources d_1 to d_M (offline)
- 2. Process request for analysis for product p (online)
- 3. Visualize analysis results (online, optional)

Illustrative Output and Demo Video

Clarity Score and Trends

Impact and Evaluation

 Clarity has been running for more than a year and is used by over 4,500 people to perform over 200 competitive analyses involving over 1000 products.

- •In-lab evaluation
 - Clarity scores (CS) consistent with Gartner's Magic Quadrant
 - Products v/s Vendor ranking

Constraints to check:

$$CS(p_L) > CS(p_C) > CS(p_N)$$

$$CS(p_L) > CS(p_V) > CS(p_N)$$

Evaluation

- In-field evaluation
 - High user satisfaction
 - Net Promoter Score (NPS) of 52;
 Scale -100 to 100

Net Promoter Score: used in customer satisfaction research.

- People asked: How likely is it that you would recommend this product?
- The answer is based on a 0 to 10 scale.
- Promoters: score of 9 or 10
- Passives: between 7 and 8
- Detractors: scores between 0 and 6

The NPS is the difference between the percentage of promoters and detractors

Text Visualization

Reason to Visualize Documents

- Get an idea about the Corpus, inter-relationship among documents
- Issue: Convert high dimension (D: words in the dictionary) to low-dimension (2-3 D)

Common Methods

- Principal Components Analysis (PCA): 1933
- t-Distributed Stochastic Neighbor Embedding (t-SNE): 2008

References:

- https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1
- https://distill.pub/2016/misread-tsne/

TextHero

- A library to pre-process, clean, visualize text data
 - Reference: https://texthero.org/
- Support Principal Component Analysis
 - linear dimension reduction
 - Maximize variance, preserves large pairwise distances

- Sample code:
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l24-viz/Text-Visualization.ipynb

t-Distributed Stochastic Neighbor Embedding: t-SNE

- · A method to visualize high-dimension data
- Informally
 - measure similarities between points in the high dimensional space
 - measure similarities between points in the low dimensional space
 - Learns a mapping for distances in two space
 - measure the difference between the probability distributions using Kullback-Liebler divergence (KL)
 - use gradient descent to minimize KL cost function

References:

- https://distill.pub/2016/misread-tsne/
- https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1

Lecture 20: Concluding Comments

- •We discussed sentiment models further
 - Problem of bias
 - How to use in business applications
- Visualization of documents useful in practice

Concluding Segment

Upcoming Classes

Upcoming Classes

21	Mar 25 (Th)	Review: project presentations, Discussion	
	Mar 30 (Tu)	Wellness Holiday	
22	Apr 1 (Th)	Text: Text Summarization	
23	Apr 6 (Tu)	Text: Representation, Sentiment	←
24	Apr 8 (Th)	Text: Sentiment, Visualization	
25	Apr 13 (Tu)	Advanced: Bias and Trust Issues	Quiz 4
26	Apr 15 (Th)	Paper presentations – Graduate students	Final assignment for Graduate students
27	Apr 20 (Tu)	Invited Guest – Javid Huseynov – Case Study: Finance	
28	Apr 22 (Th)	Project presentations	
	Apr 27 (Tu)	Reading day	Reading day
29	Apr 29 (Th)	Project presentations	Final assignment given (undergrad)
30	May 4 (Tu)	Course Recap	Final assignment due (undergrad), Paper summary due (grad)

About Next Lecture – Lecture 25

Lecture 25: Bias and Trust Issues

- The problem of trust fairness/ bias
- Methods
 - Detection
 - Remediation