MANE 6520 - Fluid Mechanics

Homework #5 - Thurs 27 October 2022, due Thurs 3 November

Consider an exponential slider bearing, $h = H \exp\left(m\frac{x}{L}\right)$. In this case the sliding of the lower surface is in the negative x-derection. Pressure is atmospheric at both ends x = 0, L.

The parameters are $H, L, W, V, \rho, g, \mu, p_{atm}$.

- a) Find an expression for the pressure p, in terms of x and the above parameters.
- b) Find an expression for the velocity profile v_x in terms of x, y, and the above parameters.
- c) Find an expression for the location x_m , where the viscosity gradient is zero, in terms of the above parameters.
- d) Find an expression for the force on the lower surface, in terms of the above parameters.

Now, use the following parameter values:

$$H = 1$$
 mm, $L = 100$ mm, $W = 1$ m, $V = -1$ m/s, $\rho = 850$ kg/m³, $g = 9.81$ m/s², $\mu = 0.020$ Pa-s, $p_{atm} = 0.1$ MPa.

Plot h/H, $0 \le x/L \le 1$ for m = 0.5 and m = 1.5. Two curves on the same plot. Plot p(x), $0 \le x \le L$ for m = 0.5 and m = 1.5. Two curves on the same plot. Plot $v_x(x, y)$, $0 \le y \le h$ for m = 1.5 and x = 0 and x = L. Two plots, each with one curve.