Глубокая последовательная модель для разбора дискурса о многосторонних диалогах

Аннотация

Абстрактные структуры дискурса полезны для различных задач НЛП, таких как понимание диалога, ответы на вопросы, анализ настроений и т. Д. В этой статье представлена глубокая последовательная модель для анализа структур дискурсивных зависимостей многосторонних диалогов. Предлагаемая модель направлена на построение дерева зависимостей дискурса путем прогнозирования отношений зависимостей и построения структуры дискурса совместно и поочередно. Он выполняет последовательное сканирование модулей элементарного дискурса (EDU)¹ в диалоге. Для каждого EDU модель определяет, с каким предыдущим EDU следует связать текущий, и каков соответствующий тип отношения. Затем предсказанная связь и тип отношения используются для постепенного построения структуры дискурса с помощью структурированного кодировщика. Во время прогнозирования ссылок и классификации отношений модель использует не только локальную информацию, которая представляет соответствующие EDU, но также и глобальную информацию, которая кодирует последовательность EDU и структуру дискурса, которая уже построена на текущем этапе. Эксперименты показывают, что предложенная модель превосходит все современные базовые показатели.

Введение

Разбор дискурса предназначен для выявления отношений между дискурсивными единицами и выявления структуры дискурса, которую они образуют (Li, Li, and Chang, 2016). Предыдущие исследования показали, что дискурсивные структуры полезны для различных задач НЛП, включая понимание диалога (Asher и др., 2016; Takanobu и др., 2018), ответы на вопросы (Verberne и др., 2007), поиск информации (Seo, Croft, Smith, 2009). и анализ настроений (Cambria et al., 2013; Bhatia, Ji, and Eisenstein, 2015). Было предложено множество подходов к синтаксическому анализу дискурса на основе теории риторической структуры (RST) (Mann and Thompson 1988). Тем не менее, RST разработан для письменного текста и допускает появление дискурсных отношений только между смежными дискурсивными единицами и, следовательно, неприменим для многосторонних диалогов (Afantenos и др., 2015), поскольку данные многостороннего диалога имеют более сложные структуры дискурса. RST *опирается на окружение*, где связанные смежные дискурсивные блоки объединяются для рекурсивного формирования более крупных блоков, что приводит к иерархической древовидной структуре (Li, Li, and Hovy, 2014). Напротив, структуры на основе зависимостей, где EDU напрямую связаны без образования структур верхнего уровня, более применимы для многосторонних диалогов. Причина в том, что многосторонние диалоги имеют непосредственные отношения между несмежными дискурсивными

¹ Дискурс можно сегментировать на единицы уровня предложения, называемые элементарными дискурсивными единицами (EDU), которые являются наиболее фундаментальными единицами дискурса при его синтаксическом анализе. Следуя предыдущим работам, таким как (Li и др., 2014; Li и Hovy, 2014), мы также предполагаем, что сегменты EDU предварительно обработаны.

единицами, а структуры дискурса обычно непроективны 2² (Morey, Muller, and Asher 2018). Поэтому основное внимание в данной статье уделяется разбору зависимых структур многосторонних диалогов. На рисунке 1 показан пример многостороннего диалога и его структуры зависимости, когда три говорящих (A, B, C) разговаривают в онлайн-игре.

Рис. 1. Пример многостороннего диалога с его структурой дискурса из корпуса STAC (Asher и др., 2016), где «Q-Elab» - это сокращение от «Вопрос-разработка», «QAP» для «пара вопрос-ответ». И« АСК. » для «Подтверждение».

Предыдущие современные подходы к синтаксическому анализу зависимостей дискурса обычно используют структуру конвейера: сначала оценивают локальную вероятность отношения зависимости между каждой комбинацией двух EDU, а затем конструируют структуру дискурса с алгоритмами декодирования, такими как максимальное остовное дерево или целочисленное линейное программирование (Muller et al. 2012; Li et al. 2014; Afantenos et al. 2015; Perret et al. 2016), основанное на оценках вероятностей.

Однако у этих подходов есть два недостатка:

Во-первых, оценка вероятности каждое отношение зависимости между двумя EDU основывается только на локальной информации этих двух рассматриваемых EDU.

Во-вторых, прогнозирование зависимости и построение структуры дискурса разделены на два этапа, поэтому прогнозирование зависимостей не может использовать информацию из прогнозируемой структуры дискурса для лучшего анализа зависимостей, и, в свою очередь, худшее прогнозирование зависимости ухудшает построение структуры дискурса.

Чтобы устранить эти недостатки, мы предлагаем глубокую последовательную модель для разбора дискурса по многосторонним диалогам. Эта модель создает структуру дискурса постепенно, прогнозируя отношения зависимости и создавая структуру совместно и поочередно. Он выполняет последовательное сканирование EDU в диалоге. Для каждого EDU модель решает, с каким предыдущим EDU следует связать текущий и каков тип связи. Такое предсказание зависимости основывается не только на локальной информации, которая кодирует два соответствующих EDU, но также и на глобальной информации, которая кодирует последовательность EDU и структуру беседы, которая уже построена на текущем этапе. В свою очередь, прогнозируемая ссылка и тип отношения используются для постепенного построения структуры с помощью структурированного кодировщика. Таким

² Структура дискурса *непроективна*, если невозможно построить отношения на одной стороне без пересечения (McDonald et al. 2005). В качестве непроективнго примера, показанном на рис. 1: $1 \rightarrow 4$ и $3 \rightarrow 5$, они должны быть нарисованы с двух сторон, чтобы избежать пересечения

образом, модель предсказывает отношения зависимости и строит структуру дискурса совместно и поочередно.

Таким образом, мы делаем следующие вклады:

- Мы предлагаем глубокую последовательную модель парсинга дискурса на многосторонние диалоги. Модель прогнозирует отношения зависимости и строит структуру дискурса совместно и поочередно.
- Мы разрабатываем модуль прогнозирования, который полностью использует локальную информацию, которая кодирует соответствующие блоки, а также глобальную информацию, которая кодирует последовательность EDU и построенную в настоящее время структуру.
- Мы разрабатываем структурированный кодировщик для представления структурированной глобальной информации и предлагаем механизм выделения говорящего, чтобы использовать информацию говорящего и улучшить понимание диалога.

Сопутствующие работы

Большинство предыдущих работ по синтаксическому анализу дискурса основано на PennDiscourse TreeBank (PDTB) (Prasad et al. 2007) или Rhetorical Structure Theory Discourse TreeBank (RST-DT) (Mannand Thompson 1988). PDTB фокусируется на неглубоких дискурсивных отношениях, но игнорирует общую структуру дискурса (Yangand Li 2018), в то время как в этой статье мы стремимся анализировать структуры дискурса. Что касается RST, существует множество подходов, включая методы, основанные на переходах (Braud, Coavoux, andSøgaard, 2017; Wang, Li, and Wang, 2017; Yu, Zhang, andFu, 2018), и подходы, использующие алгоритмы, подобные СҮК (Joty, Carenini и Ng 2015; Ли, Ли и Чанг, 2016; Лю, Лапата, 2017) или жадных восходящих алгоритмов (Feng and Hirst, 2014). Однако RST на основе округа не допускает несмежных отношений, что делает его неприменимым для многосторонних диалогов. В отличие от этого, в этой статье мы нацелены на анализ непроективных структур зависимостей, где отношения зависимости могут возникать между несмежными EDU. Были предложены некоторые подходы для разбора структур зависимостей в два этапа. Эти подходы сначала предсказывают локальную вероятность взаимосвязи зависимостей для каждой возможной комбинации пар EDU, а затем применяют алгоритм декодирования для построения окончательной структуры. (Muller et al., 2012; Li et al., 2014; Afantenos et al., 2015) использовали максимальные связующие деревья (MST) для построения дерева зависимостей, и (Muller et al. 2012) также попытались использовать алгоритм $A*^3$, но не достигли большей производительности, чем MST. . (Perret et al., 2016) далее использовали целочисленное линейное программирование (ILP) для построения графа зависимостей. Однако эти подходы предсказывают вероятность взаимосвязи зависимостей только с локальной информацией двух рассматриваемых EDU, в то время как построенная структура не задействована. Напротив, наша последовательная модель предсказывает взаимосвязи зависимостей и строит структуру дискурса совместно и все - и использует построенное в настоящее время прогнозирование независимости структур. Хотя (Jia et al. 2018a; 2018b) предложили основанные на переходах подходы для синтаксического анализа дискурсивных зависимостей, которые также создают структуры зависимостей постепенно, они все еще уступают подходу. с помощью MSTby (Ли и др., 2014). Это связано с тем, что эти основанные на переходах локальные подходы не исследуют другие возможные связи при прогнозировании отношения зависимости, как утверждается (Jia et al. 2018b), и они ограничены прогнозированием проективных структур. Следовательно, эти подходы неприменимы для многосторонних диалогов. Напротив, наша последовательная модель предсказывает родителя каждого EDU в дереве зависимостей путем сравнения всех

^{3 &}lt;a href="https://ru.wikipedia.org/wiki/A">https://ru.wikipedia.org/wiki/A* https://habr.com/ru/post/331192/

предшествующих EDU, и она может предсказать непроективные структуры, которые необходимы для многосторонних диалогов.

Более того, современные подходы к синтаксическому анализу зависимости дискурса, как упомянуто выше, по-прежнему полагаются на созданные вручную функции или внешние синтаксические анализаторы. Нейронные сети в последнее время широко применяются в различных задачах НЛП, включая анализ дискурса RST (Li, Li, and Chang, 2016; Braud, Coavoux, and Søgaard, 2017) и распознавание актов диалога (Kumar et al., 2018; Chen et al., 2018).). И (Jia et al. 2018a; 2018b) также применили нейронные сети в своих моделях анализа зависимостей на основе переходов. В этой статье мы используем иерархические кодеры Gated Recurrent Unit (GRU) (Cho et al., 2014) для вычисления репрезентаций дискурса.

Методология

Определение проблемы

Мы формулируем проблему синтаксического анализа зависимостей дискурса для многостороннего диалога следующим образом: для данного диалога, который был сегментирован на последовательность EDU $u_1, u_2, ..., u_n$, вместе с дополнительным фиктивным корнем u_0^4 , цель состоит в том, чтобы предсказать связи зависимостей и соответствующие типы отношений $\{(u_j, u_i, r_{ji}) \mid j \neq i\}$ между EDU, где (u_j, u_i, r_{ji}) обозначает связь тип отношений r_{ji} от u_j к u_i .

Предсказанные отношения зависимости должны составлять направленный ациклический граф (DAG) 5 , и не должно быть никакого отношения, связанного с u_0 . Структура дискурса, предсказываемая нашей моделью, представляет собой дерево зависимостей, которое является особым типом DAG 6 . Модель выполняет последовательное сканирование EDU u_1 , u_2 , ..., u_n . Для текущего EDU u_i модель предсказывает связь зависимостей, оценивая распределение вероятностей следующим образом:

$$\mathcal{P}(u_i|u_i,\,\mathcal{T}_i,\,0\leq j\leq i-1)\tag{1}$$

где $\mathcal{T}_i = \{(u_l, u_k, r_{lk}) \mid 0 \le l \le k \le i-1\}$ - это набор отношений зависимостей, которые уже предсказаны перед текущим шагом i. В нашей модели это так называемое *предсказание ссылки*. Аналогичным образом модель предсказывает тип отношения для предсказанной ссылки $u_j \to u_i$ (j < i) со следующим распределением:

$$\mathcal{P}(r_{ii}|u_i \to u_i, \mathcal{T}_i) \tag{2}$$

где $r_{ji} \in \{r_1, r_2, \cdots, r_K\}$, $r_k (1 \le k \le K)$ - тип отношения, а K - количество типов отношений. Это так называемая *классификация отношений*.

⁴ Фиктивный корень используется для удобства последующего определения проблемы (Li и др., 2014).

⁵ https://ru.wikipedia.org/wiki/Ориентированный_ациклический_граф

⁶ Мы обнаружили, что доля EDU с несколькими входящими связями довольно ограничена (менее 6,4%) в используемом нами наборе данных. Тем не менее, нашу модель можно легко расширить для прогнозирования более общего DAG, когда это необходимо.

Обзор модели

Наша модель сначала вычисляет неструктурированные представления EDU с помощью иерархических кодировщиков Gated Recurrent Unit (GRU)⁷ (Cho et al. 2014). Эти неструктурированные представления используются для прогнозирования отношений зависимости и кодирования структурированных представлений. Затем модель выполняет последовательное сканирование EDU и выполняет следующие три шага, как показано на рисунке 2, когда она обрабатывает EDU ui:

1.Прогнозирование связи: прогнозирование родительского узла p_i для EDU u_i с помощью предиктора связи, который использует не только неструктурированные представления, но также и структурированные представления, которые кодируют предсказанную структуру до u_i . В частности, мы вычисляем оценку между текущим EDU u_i и каждым связывающим кандидатом u_j (j < i) с MLP. Мы обнаружили, что доля EDU с несколькими входящими связями довольно ограничена (менее 6,4%) в используемом нами наборе данных. Тем не менее, нашу модель можно легко расширить для прогнозирования более общего DAG, когда это необходимо. Оценки затем нормализуются до распределения по предыдущие EDU { u_0 , u_1 , ..., u_{i-1} } с функией активации softmax, из которой мы можем взять EDU с наибольшей вероятностью связанности.

Рисунок 2: Иллюстрация модели, которая состоит из модулей для прогнозирования связей, классификации отношений и кодирования структурированного представления. Для текущего EDU u_i прогнозирование связи оценивает распределение по предыдущим EDU, классификация отношений оценивает распределение по типам связей, а структурированный кодер обновляет структурированное представление u_i , используя представления u_i и эмбеддинг прогнозируемого отношения r_{ji} . Кодирование неструктурированного представления выполняется перед процессом прогнозирования и на иллюстрации не показано.

- 2. **Классификация отношений**: прогнозирование типа связи между p_i (предположим, что $p_i = u_j$) и u_i с помощью классификатора отношений. Подобно предсказанию связи, классификатор отношений использует как неструктурированные, так и структурированные представления. Дискурные представления u_i и u_i подаются в MLP для получения распределения по типам отношений. Тип отношения r_{ji} берется с наибольшей вероятностью.
- 3. **Кодирование структурированного представления**: вычислить структурированное представление u_i с помощью кодера структурированного представления, который кодирует

⁷ https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be https://www.coursera.org/lecture/nlp-sequence-models/gated-recurrent-unit-gru-agZiL

предсказанную структуру дискурса. В частности, эмбеддинг отношения r_{ji} , неструктурированное представление u_i и структурированное представление $p_i = u_j$ подаются в кодировщик для получения структурированного представления ui.

После этого модель переходит к следующему EDUui + 1 и повторяет три вышеуказанных шага до конца диалога. Таким образом, прогнозирование зависимостей и построение структуры распределения выполняются совместно и поочередно, а структура дискурса строится постепенно.

Дискурсивные представления

В нашей модели мы используем две категории представления дискурса: локальные и глобальные. Локальные представления неструктурированы и индивидуально кодируют локальную информацию EDU. А глобальные представления кодируют глобальную информацию о последовательности EDU или предсказанной структуре дискурса. Эти представления принимаются в качестве входных данных для прогнозирования ссылок и классификации отношений. В свою очередь, предсказанные связи и типы отношений используются для постепенного построения структурированных глобальных представлений.

Локальные представления. Для каждого EDU u_i двунаправленный енкодер GRU (bi-GRU) применяется к последовательности слов, и последние скрытые состояния в двух направлениях объединяются в локальное представление u_i , обозначаемое как h_i .

Неструктурированные глобальные представления. Неструктурированные глобальные представления кодируют последовательность EDU в диалоге. Локальные представления EDU $h_0, h_1, ..., h_n$ принимаются в качестве входных данных для кодировщика GRU, а скрытые состояния рассматриваются как неструктурированные глобальные представления EDU, обозначаемые как $g_{NS0}, g_{NS1}, ..., g_{NS}$.

Рисунок 3: Пример дерева зависимостей (слева) и структурированного кодировщика (справа), где h_i - локальное представление EDU u_i , g_{Si} и g_{Sj} - структурированные представления, r_{ji} - вложение связи, а $u_j = p_i$ - родительский элемент u_i .

Структурированные глобальные представления Структурированные представления кодируют связи зависимостей и соответствующие типы отношений для полного использования глобальной информации предсказанной структуры. Обратите внимание, что

существует ровно один путь от корня к каждому EDU в предсказанном дереве зависимостей, и этот путь представляет собой развитие диалога. Мы применяем структурированный енкодер к этим путям, чтобы получить структурированные глобальные представления (или вкратце структурированные представления) EDU. Например, чтобы получить структурированное представление u_4 , как показано на рисунке 3, структурированный кодировщик применяется к пути $u_0 \to u_1 \to u_2 \to u_4$, а скрытое состояние на u_4 рассматривается как его структурированное представление. Структурированные представления вычисляются постепенно. Мы вычисляем структурированное представление u_i после того, как определены его родительский элемент и соответствующий тип отношения.

Кроме того, при прогнозировании отношения зависимости, связывающего u_j с u_i , полезно выделять предыдущие высказывания автора высказывания u_i . Потому что это помогает модели лучше понять развитие диалога с участием этого говорящего, что может улучшить предсказание зависимости, связанной с u_i . Например, если мы рассмотрим путь зависимости типа $\cdots \to u_k$ (a) $\to \cdots \to u_j$ (b) $\to u_i$ (a), где а и b - идентификаторы говорящих людей, при прогнозировании связи зависимости между u_j и u_i , полезно выделить предыдущую историю u_k от автора высказывания u_i , именнованного как а. Поэтому мы предлагаем механизм выделения выступающих (SHM), с помощью которого мы вычисляем | A | различных структурированных представлений для каждого EDU, так что каждый выделяет конкретного говорящего, где A - это набор всех говорящих в диалоге. Это особенно эффективно для многосторонних диалогов.

Пусть $g^{S}_{i,a}$ обозначает структурированное представление u_i при выделении говорящего $a, p_i = u_j$ - предсказанный родительский элемент u_i , а a_i — автор EDU u_i . Мы вычисляем структурированные представления следующим образом:

$$\boldsymbol{g}_{i,a}^{S} = \begin{cases} \mathbf{0} & i = 0\\ \mathbf{GRU}_{hl}(\boldsymbol{g}_{j,a}^{S}, \boldsymbol{h}_{i} \oplus \boldsymbol{r}_{ji}) & a_{i} = a, i > 0\\ \mathbf{GRU}_{gen}(\boldsymbol{g}_{j,a}^{S}, \boldsymbol{h}_{i} \oplus \boldsymbol{r}_{ji}) & a_{i} \neq a, i > 0 \end{cases}$$
(3)

где Φ обозначает конкатенацию векторов, GRU обозначает функции ячейки GRU, а r_{ji} обозначает вектор внедрения типа отношения r_{ji} , а hl и gen являются сокращениями от выделенных и общих соответственно.

В уравнении. (3), $g^{S}_{0,a}$ устанавливается в нулевой вектор, поскольку фиктивный корень u_0 не содержит реальной информации. Мы вычисляем $g^{S}_{i,a}$ (i>0) на основе структурированного представления его родительского $s_{j,a}$, которое также выделяет говорящего a, и мы используем две разные ячейки GRU: GRUhl и GRUgen, чтобы учитывать, выделен ли текущий говорящий a_i или нет. Для выбранной ячейки GRU, как показано на рисунке a_i 0, a_i 0 это предыдущее скрытое состояние, a_i 0 - вход на текущем шаге, а новое скрытое состояние - a_i 1, a_i 2, a_i 3.

Прогнозирование ссылок и классификация отношений

Для каждого EDU u_i предсказатель связи предсказывает его родительский узел p_i , а классификатор отношений классифицирует соответствующий тип отношения r_{ji} , если $p_i = u_j$. Для каждого EDU u_j (j < i), который предшествует u_i в диалоге, мы объединяем представления h_i , g^{NS}_i , g^{S}_j , g^S_j , a_i , чтобы получить входной вектор $H_{i,j}$ для предсказания связи и классификации отношений:

$$H_{i,j} = h_i \oplus g_i^{NS} \oplus g_j^{NS} \oplus g_{j,ai}^{S} \tag{4}$$

И для u_i , и для u_j их неструктурированные глобальные представления g_i^{NS} и g_j^{NS} включены во входные данные. Мы также добавляем $g_{j,ai}^{S}$, которое является структурированным представлением u_j при выделении говорящего u_i , а именно a_i . А поскольку на текущем шаге структурированное представление u_i недоступно, мы добавляем вместо него локальное представление u_i , названное h_i .

Взяв $H_{i, < i}$ ($H_{i, < i} = H_{i, 0}, ..., H_{i, i-1}$) в качестве входных данных предсказатель ссылки оценивает вероятность того, что каждый u_j (j < i) является родительским элементом u_i в дереве зависимостей. Затем классификатор отношений предсказывает тип отношения между u_i и u_i , если u_i является предсказанным родителем u_i .

Предсказание связи. Предиктор связи сначала проецирует входные векторы $H_{i,j}$ (j < i) в скрытое представление:

$$L^{link}_{i,j} = tanh(W_{link} \cdot H_{i,j} + b_{link})$$
 (5)

где $W_{link} \in R^{d_l \times d}_h$, а $b_{link} \in R^{d_h}$ - параметры, d_l и d_h размерности $L^{link}_{i,j}$ и $H_{i,j}$ соответсвенно. Затем предсказатель вычисляет вероятность того, что u_j является родительским элементом u_i в предсказанном дереве зависимостей, как показано ниже:

$$o^{linki,j} = U_{link} \cdot L^{link}_{i,j} + b_{link}$$
 (6)

$$P\left(p_{i} = u_{i} \mid H_{i, < i}\right) = \exp\left(o^{\operatorname{link}}_{i, i}\right) / \Sigma_{k < i} \exp\left(o^{\operatorname{link}}_{i, k}\right) \tag{7}$$

где $U^{link} \in R^{1 \times d}$ and $b_{link} \in R$ так же параметры.

Таким образом, прогнозируемый параметр выбран следующим образом:

$$p_i = \operatorname{argmax}_{u_j: j < i} P(p_i = u_j \mid H_{i, < i})$$
(8)

В отличие от локальных классификаторов в (Li et al. 2014; Afantenos et al. 2015; Perret et al. 2016), предсказание связи по $P\left(p_i=u_j\mid H_{i,< i}\right)$ зависит от всех родителей-кандидатов из-за коэффициента нормализации softmax в уравнении. (7). Во время обучения градиент каждого родителя-кандидата также зависит от всех родителей-кандидатов, от которых он может использовать больше информации для обучения, в то время как другие методы рассматривают каждого из кандидатов-родителей индивидуально.

Классификация отношений. Подобно предсказанию связи, классификатор отношений сначала проецирует входной вектор $H_{i,j}$ в скрытое представление следующим образом:

$$L^{rel}_{i,j} = tanh(W_{rel} \cdot H_{i,j} + b_{rel})$$
(9)

где $W_{rel} \in R_l^{d \times d}$, а $b_{link} \in R_l^{d}$ - параметры, d_l и d_h размерности L_l^{rel} ;

Затем классификатор предсказывает тип отношения r_{ji} по распределению вероятностей по всем типам, вычисляемому следующим образом:

$$P(r|H_{i,j}) = softmax(U_{rel} \cdot L^{rel}_{i,j} + b)_{rel}$$
(10)

где $U_{rel} \in R^{K \times d}_h$ and $b_{rel} \in R^K$ так же параметры.

Функция потерь. Мы принимаем отрицательную логарифмическую вероятность обучающих данных как функцию потерь:

$$L_{link}(\Theta) = -\sum_{d \in D} \sum_{i=1}^{n} \log P(p_i = p^*_i | H_{i, < i})$$
 (11)

$$L_{rel}(\Theta) = -\sum_{d \in D} \sum_{i=1}^{n} \log P \ (r_{ij} = r^*_{ij} \ | H_{i,i}, \ u_j = p^*_{i})$$
 (12)

$$L_{all}(\Theta) = L_{link}(\Theta) + L_{rel}(\Theta)$$
 (13)

где Θ - набор параметров, которые необходимо оптимизировать, D - данные обучения, d - диалог в D, p^*_i и r^*_{ji} - золотой родительский и соответствующий золотому тип отношения соответственно.

Поскольку золотая структура дискурса является графом зависимостей, а наша модель предсказывает дерево зависимостей, для определения золотого родителя p^*_i каждого EDU u_i для обучения мы берем самый ранний EDU с отношением, связанным с u_i . И если u_i не связан ни с одной предыдущей единицей, мы полагаем $p^*_i = u_0$. В $L_{rel}(\Theta)$ мы используем логарифмическую вероятность типа отношения между u_i и золотым родителем p^*_i , а не прогнозируемое число p_i , потому что предсказатель связи может предсказать неверно, например,из-за того что золотой тип отношения между p_i и u_i может быть недоступен.

Эксперименты

Подготовка данных

Мы приняли корпус STAC (Asher et al., 2016)⁸, который представляет собой корпус многосторонних диалогов, собранный из онлайн-игры. Его аннотации следуют теории представления сегментированного дискурса (SDRT) (Asher and Lascarides, 2003), где дискурсивная единица, связанная отношением зависимости, может быть EDU или группой согласованных дискурсивных единиц, названных Complex Discourse Unit (CDU) (Asher et al., 2016).

Предыдущие исследования по синтаксическому анализу дискурс-зависимостей показали, что обнаружение CDU остается сложной задачей, и, таким образом, они преобразовали структуры SDRT в структуры зависимостей, удалив CDU (Muller et al. 2012; Afantenoset al. 2015; Perret et al. 2016). Поэтому и в нашу задачу не входят CDU. Мы приняли стратегию, впервые предложенную (Muller et al. 2012) для рекурсивной замены CDU их головами, где голова CDU является самой ранней дискурсивной единицей в нем без входящих отношений. Эта стратегия также была принята (Afantenos et al. 2015; Перрет и др., 2016). Но мы не применяли другую стратегию, упомянутую (Perret et al., 2016), которая клонирует отношение, чтобы связать каждую дискурсивную единицу в CDU, поскольку мы обнаружили, что эта стратегия приносит много избыточных и несоответствующих отношений, как показано на рисунке 4, и, следовательно, это может ввести в заблуждение модели анализа.

После исключения CDU набор данных состоит из 1062 диалогов, 11711 EDU и 11350 отношений в обучающих данных; и 111 диалогов, 1156 EDU и 1126 отношений в тестовых данных. Мы оставили 10% обучающих диалогов для проверки. Как и в предыдущих исследованиях, для каждого диалога мы вручную добавляли отношение из фиктивного корня к каждому EDU без входящего отношения со специальным типом отношения ROOT. Более

^{8 &}lt;a href="https://www.irit.fr/STAC/corpus.html">https://www.irit.fr/STAC/corpus.html. Мы использовали версию от 21-03-2018.

того, мы отказались от аннотаций диалогов к EDU в исходном наборе данных, поскольку они не имеют отношения к нашей проблеме.

Рисунок 4: Пример исключения CDU, состоящего из u_2 и u_3 , из исходной структуры SDRT G_0 . " Count" это сокращение от «Continuation (Продолжение)» и «Alter.» для «Alternation (Чередования)». Существуют две стратегии: Стратегия I связывает u_1 с головой CDU ($u_1 \rightarrow u_2$), в результате чего получается G_α ; и Стратегия II дублирует ссылку на каждый блок CDU ($u_1 \rightarrow u_2$; $u_1 \rightarrow u_3$), в результате чего получается G_β . Отношение $u_1 \rightarrow u_3$ в G_β неуместно, поскольку u_3 не является прямым продолжением u_1 . Мы взяли Стратегию I, поскольку она в большинстве случаев кажется более разумной.

Baselines

Для сравнения мы приняли следующие базовые методики:

MST (Афантенос и др., 2015): двухэтапный подход, в котором используются максимальные связующие деревья (MST) для построения структуры дискурса. MST строит дерево зависимостей, используя вероятности из классификатора отношений зависимости, который использует только локальную информацию.

ILP (Perret et al., 2016): вариант MST, который заменяет алгоритм MST на целочисленное линейное программирование (ILP) для построения структуры дискурса.

Deep + MST: вариант MST, который использует представления дискурса от кодировщиков GRU вместо созданных вручную функций или внешних анализаторов. Эти представления аналогичны представлениям нашей глубокой последовательной модели, но включают только неструктурированные представления.

Deep+ILP: Вариант ILP с той же модификацией, что и с MST на Deep + MST.

Deep + Greedy: он похож на Deep + MST и Deep + ILP, но в этой модели используется жадный алгоритм декодирования, который напрямую выбирает родительский элемент для каждого EDU из предыдущих EDU с наибольшей вероятностью.

Мы оценили MST и ILP, используя открытый исходный код из (Afantenos et al. 2015; Perret et al. 2016)⁹. Что касается моделей с глубокой базовой линией, поскольку структурированные представления недоступны, мы заменили $g_{j, ai}^{S}$ в $H_{i, j}$ на h_{j} , и, таким образом, входными данными для прогнозирования зависимостей становится:

$$H_{i,j} = h_i \oplus g_i^{NS} \oplus h_j \oplus g_j^{NS}$$
(14)

где мы объединяем нетруктурированные представления EDU u_i и u_j вместе. Более того, для справедливого сравнения моделей размеры входного вектора во всех глубоких базовых моделях и в нашей последовательной модели сохраняются одинаковыми.

Детали реализации

Векторы слов инициализируются 100-мерными GloVe векторами(Pennington, Socher, and Manning, 2014) и настраиваются во время обучения. Размеры эмбеддингов отношений и представлений дискурса установлены на 100 и 256 соответственно. И размеры скрытых представлений в прогнозировании ссылок и классификации отношений установлены на 512. Dropout принимается перед вводом каждой ячейки GRU с вероятностью 0,5. Мы используем Stochastic GradientDescent (SGD) для обучения модели с размером mini-batch= 4. Начальная скорость обучения (learning rate) установлена на 0,1, и она затухает с постоянной скоростью 0,98 после каждой эпохи.

Кроме того, мы экспериментировали с двумя настройками нашей модели. Одна из них - это общая версия, в которой предиктор связи и классификатор отношений совместно используют один и тот же входной вектор $H_{i,j}$. Другая - неразделенная версия, где два входных вектора $H_{i,j}$ в уравнении (5) и (9) относятся к сетям с разными параметрами соответственно. Наконец, мы взяли последний и применили его к глубоким базовым моделям.

Результаты

Мы приняли micro-averaged F_1 в качестве показателя оценки. Результаты для различных моделей показаны в Таблице 1, где «Link» обозначает прогноз связи, а «Link & Rel» Обозначает, что правильный прогноз должен правильно прогнозировать связь зависимости и тип отношения одновременно.

Наша глубокая последовательная модель значительно превосходит все базовые показатели (bootstrap test, p < 0.05), демонстрируя преимущества совместного и попеременного прогнозирования отношений зависимости и построения структуры дискурса. Кроме того, мы заметили, что производительность падает, когда прогнозирование ссылок и классификация отношений используют одни и те же дискурсивные представления (Deep Sequential (Shared)). Вероятно, это связано с тем, что кодировщиков дискурса трудно обучить одновременно захватывать информацию, необходимую как для прогнозирования связи, так и для классификации отношений.

Более того, по сравнению с MST и ILP, которые полагаются на созданные вручную функции и внешние парсеры, глубокие базовые модели Deep + MST и Deep + ILP достигают более высоких баллов F_1 . Это демонстрирует, что дискурсивные представления от иерархических кодировщиков GRU более эффективны, чем традиционные функции. Deep+Greedy имеет более низкий балл F_1 по Link & Rel по сравнению с Deep+MST и Deep+ILP, что указывает на то, что более сложные алгоритмы декодирования помогают создавать лучшие структуры. Интересно, что наша глубокая последовательная модель, не имеющая какого-либо сложного алгоритма декодирования, по-прежнему превосходит эти базовые показатели. Это еще раз подтверждает эффективность нашей последовательной модели.

Model	Link	Link & Rel
MST	68.8	50.4
ILP	68.6	52.1
Deep+MST	69.6	52.1
Deep+ILP	69.0	53.1
Deep+Greedy	69.3	51.9
Deep Sequential (shared)	72.1	54.7
Deep Sequential	73.2	55.7

Таблица 1: Результаты F_1 (%) для разных моделей. Link означает предказание связей; а Link & Rel означает, что правильный прогноз должен правильно предсказывать связь и тип отношения одновременно.

Эффективность структурированных представлений

Чтобы оценить эффективность структурированных представлений, мы разработали следующие три варианта нашей глубокой последовательной модели для сравнения:

- **Deep Sequential (NS)**: мы удалили структурированные представления из нашей исходной глубокой последовательной модели. Подобно другим глубоким базовым уровням, входные данные для предиктора ссылки и классификатора типа отношения имеют только неструктурированные представления, как определено уравнением. (14).
- **Deep Sequential (Random)**: в этом варианте используются как нетруктурированные, так и структурированные представления, но структурированные представления кодируют случайную структуру. Для каждого EDU мы случайным образом выбираем родительский элемент из предыдущих EDU и случайный тип отношения, чтобы получить его структурированное представление.
- **Deep Sequential (без SHM)**: мы отключили механизм выделения говорящего в полной модели, чтобы оценить эффективность этого механизма.

Результаты в таблице 2 показывают следующие наблюдения:

- 1. Наша полная модель (Deep Sequential) превосходит Deep Sequential (NS) и Deep Sequential (Random), указывая на то, что структурированные представления, которые кодируют предсказанную структуру дискурса, имеют решающее значение для прогнозирования отношений зависимости.
- 2. Когда механизм выделения говорящего отключен (Deep Sequential (без SHM)), происходит заметное падение производительности, которое демонстрирует, что механизм выделения говорящего может улучшить прогнозирование отношений зависимости.
- 3. Случайная структура может немного помочь связать прогнозирование, как видно из сравнительных результатов между DeepSequential (Random) и Deep Sequential (NS) (71,8 против 71,0). Однако Deep Sequential намного лучше, чем Deep Sequential (Random), что указывает на то, что структурированные представления могут эффективно кодировать ценную информацию из предсказанной структуры дискурса.

Model	Link	Link & Rel
Deep+Greedy	69.3	51.9
Deep Sequential (NS)	71.0	53.7
Deep Sequential (Random)	71.8	53.7
Deep Sequential (w/o SHM)	71.7	54.5
Deep Sequential	73.2	55.7

Таблица 2: Результаты F1 (%) для разных моделей.

Пример использования

Мы приводим пример, чтобы показать, как структурированная информация помогает модели лучше понять развитие диалога, что важно для прогнозирования зависимостей.

Как показано на рисунке 5, Deep Sequential (NS) неверно предсказывает родительский элемент u_4 как u_1 , в то время как истинное значение - u_3 , но и Deep Sequential (без SHM), и

Deep Sequential делают правильные прогнозы. Ранее предсказанное отношение зависимости $u_1 \rightarrow u_3$ с типом QAP кодируется структурированными представлениями. Таким образом, это помогает модели понять, что на вопрос в u_1 ответил u_3 , и поэтому более вероятно, что u_4 отвечает на u_3 , а не уточняет исходный вопрос u_1 , на который уже ответили другие.

Более того, как *Deep Sequential (NS)*, так и *Deep Sequential (без SHM)* неверно предсказывают родительский объект u_6 , в то время как *Deep Sequential* делает правильный прогноз. Благодаря механизму выделения спикера при прогнозировании родительского элемента u_6 модель выделяет предыдущий EDU u_3 от того же спикера, что и спикер u_6 (то есть спикер B) в структурированных представлениях. Таким образом, чтобы предсказать отношение зависимостей $u_4 \rightarrow u_6$, модель имеет тенденцию использовать ту информацию, которая есть u_4 , которая отвечает на предыдущий EDU u_3 , представленный спикером u_6 .

Рисунок 5: Пример диалога трех говорящих вместе с золотой структурой дискурса и структурами дискурса, предсказанными различными моделями. «Elab.». сокращенно от «Проработка», «QAP» от «Пара вопрос-ответ», «Q-Elab» от «Пара Вопрос-Разработка» и «Ack.» для «Подтверждение». u_i на графиках соответствует i-му высказыванию на левой панели.

Заключение и дальнейшая работа

В этой статье мы предлагаем глубокую последовательную модель для разбора дискурса по многосторонним диалогам. Модель прогнозирует отношения зависимости и поочередно строит структуру дискурса. Она последовательно определяет связи зависимости между EDU и соответствующими типами отношений, используя структурированное представление каждого EDU, закодированного с помощью структурированного кодировщика, и, в свою очередь, предсказанные отношения зависимости используются для постепенного построения структуры дискурса. Эксперименты показывают, что наша последовательная модель значительно превосходит все современные базовые планы, а структурированные представления могут эффективно улучшать прогнозирование зависимостей.

Мы не только предлагаем подход к синтаксическому анализу структур дискурса, но также и подход к их использованию с помощью структурированного кодировщика. Мы также продемонстрировали преимущества структур дискурса. В будущем наш метод может быть усовершенствован и применен для улучшения подходов к другим задачам NLP многосторонних диалогов.