OGUN DIGICLASS

CLASS: SECONDARY SCHOOL

SUBJECT: MATHEMATICS

TOPIC: MENSURATION

OBJECTIVES

Define mensuration and identity types of mensuration

State properties of plane and solid mensuration

Calculate the perimeter, area and volume of plane and solid mensuration

What is mensuration?

- It implies measurement.
- It is a mathematical operation involving measurement
- •Geometry applied to the computation of lengths, areas, or volumes from given dimensions or angles.

TYPES OF MENSURATION

SOLID MENSURATION

Cuboid

Square based pyramid

Cone

Triangular prism

Triangular based pyramid

Cylinder

Sphere

LIFE EXAMPLES OF MENSURATION

3-Dimensional Geometric Shapes

Name	We See	It looks like a
Cone	Circle Base A Point Curve to connect	₹ <u>&</u> A
Cube	6 square faces 8 vertices (corners)	
Cylinder	2 circle bases Big curve wrapped around	
Sphere	No flat areas A ball	
Pyramid	4 square base 4 triangle faces	250
Rectangular Prism	2 sqare faces 4 rectangle faces	

PERIMETER OF PLANE MENSURATION

SQUARE

→ Has four equal side

Opposite sides are equal and parallel

All angles are right angles

PERIMETER OF SQUARE = L+ L+L+L = 4L

AREA = L X L =
$$L^2$$

RECTANGLE

RECTANGLE

TRIANGLE

PERIMETER = A + B + C
AREA =
$$\frac{1}{2}$$
(BASE X HEIGHT)

CIRCLE

Area of a circle = π x radius²

Circumference of a circle = $\pi \times \text{diameter}$

remember that the diameter = 2 x radius

CIRCLE

The area of a circle

Use π = 3.14 to find the area of the following circles:

$$A = \pi r^2$$

= 3.14 × 2²
= **12.56** cm²

$$A = \pi r^2$$

= 3.14 × 5²
= 78.5 m²

$$A = \pi r^2$$

= 3.14 × 23²
= **1661.06** mm²

$$A = \pi r^2$$

= 3.14 × 39²
= 4775.94 cm²

Mr Adebayo bought a field

he wanted to build a fence around

Area of Field = $1070m^2$

Perimeter of Field= 135.4m

Mr Adebayo bought a field:

Area of Field = 1070m²

CLASSWORK

WASSCE PAST QUESTION

The diagram below is a rectangle. If the perimeter is 36m, find the area of the rectangle.

$$(2x + 5)m$$

SOLUTION 1

AREA OF RECTANGLE
PERIMETER =
$$2(L + B)$$
= $2[(2x + 5) + (x + 1)]$
= $2(2x + 5 + x + 1)$
= $2(3x + 6) = 6x + 12$
 $6x+12 = 36$
Collect the like term
 $6x = 36-12$
 $6x = 24$
 $x = 4$
 $L = 2x + 5, B = x + 1$
 $L = 13m \text{ and } B = 5m$
Therefore, Area = $13m \times 5m = 65m^2$

WASSCE 2001

The sides of a rectangular floor are xm and (x + 7)m. the diagonal is (x + 8)m,

Calculate, in metre.

(a) The value of x;

(b) The area of the floor

SOLUTION 2

Using Pythagoras theorem to find the missing side

$$(hyp)^{2} = (Opp)^{2} + (Adj)^{2}$$

$$(x + 8)^{2} = (x + 7)^{2} + (x)^{2}$$

$$(x + 8)^{2} = (x + 7)^{2} + (x)^{2}$$

$$(x + 8) (x + 8) = (x + 7) (x + 7) + x^{2}$$

$$x^{2} - 2x - 15 = 0$$

$$x = -3 \text{ or } 5$$
Therefore, $x = 5m$

$$Area = (x + 7) \times 5m$$

$$= (5 + 7) \times 5m$$

$$= 12 \times 5m = 60m$$

Therefore, Area = 60m

SUMMARY ON PLANE MENSURATION

NET OF A SOLID MENSURATION

CUBE

A cube has six faces of equal dimension. This means that it has length, breadth (width) and height all of which are equal to each other

CUBOID

A Cuboids is a solid shape with rectangular base and side. It has six rectangular faces if all sides are closed

EXAMPLE ON CUBE

$$V_{\text{cube}} = a^3 = a \times a \times a$$

where a is the edge of the cube.

Surface Area = $6a^2$ Lateral Surface Area = $4a^2$

EXAMPLE CONT..

The side of a cube is 5cm. Find its total surface area.

Solution:

Total surface area of cube $= 6a^2$.

Where a is side.

Given that $\mathbf{a} = 5$ cm.

Total surface area of cube = 6×5^2

- $= 6 \times 25$
- $= 150 \text{cm}^2$

$$V_{\text{cube}} = 5^3$$

$$V_{\text{cube}} = 5 \text{cm} \times 5 \text{cm} \times 5 \text{cm}$$

$$V_{\text{cube}} = 125 \text{ cm}^3$$

EXAMPLE ON CUBOID

Find the total surface area of a cuboid with dimensions 8 cm by 6 cm by 5 cm.

$$V_{cuboid} = L x W x H$$

$$V_{cuboid} = 8cm x 6cm x 5cm$$

$$V_{cuboid} = 240cm^3$$

CYLINDER

A cylinder is prism whose cross-section is a circle

- a) Curved surface Area
 - =Base circumference x Height
 - $=2\pi rh$ square unit
- a) Total Surface Area
 - = Areas of all the faces
- I. When both top are closed
 - = area of base + area of top + curved surface area

$$=\pi r^2 + \pi r^2 + 2\pi rh$$

$$=2\pi r^2 + 2\pi rh$$

$$=2\pi r(r + h)$$
 square unit

- II. When one top is opened
 - =Area of base + Curved Surface Area

$$=\pi r^2 + 2\pi rh$$

$$=\pi r(r + 2h)$$
 square units

EXAMPLE ON CYLINDER

Find the total surface area of a cylindrical tin of radius 17 cm and height 3 cm.

$$TSA = 2\pi r(r+h)$$

= 2×3.142×17(17+3) {EODMAS}
= 2×3.142×17×20
= 2136.56

So, the total surface area is $2136.56 \, \mathrm{cm}^2$.

SUMMARY

Cuboid

$$TSA = 2(lw + wh + hl)$$

$$CSA = 2\pi rh$$

 $TSA = 2\pi r(r+h)$