DS $N^{o}6$ (le 17/01/2009)

Objectifs : On note F la fonction zeta alternée de Riemann, définie par

$$F(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x},$$

et ζ la fonction zeta de Riemann, définie sur $]1, +\infty[$ par

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

Ce problème propose une étude croisée de quelques propriétés de F et ζ .

Mise à part la partie IV. qui utilise des résultats de la partie II., les parties sont, dans une très large mesure, indépendantes.

I. Calcul de F(1) et F(2)

- 1°) Déterminer l'ensemble de définition de F.
- **2°)** Pour tout entier naturel n, on pose $J_n = \int_0^{\pi/4} (\tan t)^n dt$.
 - a) Préciser une primitive de la fonction $t \mapsto \tan t$ et calculer J_1 .
 - **b)** Montrer que la suite (J_n) est convergente. Soit l sa limite.
 - c) Calculer $J_n + J_{n+2}$ pour tout entier naturel n. En déduire la valeur de l.
 - d) En utilisant la relation précédente, établir (par exemple par récurrence), pour tout entier naturel n non nul, la relation : $\sum_{k=1}^{n} \frac{(-1)^{k+1}}{2k} = J_1 + (-1)^{n+1} J_{2n+1}.$
 - e) En déduire la valeur de F(1).
- 3°) En admettant le résultat : $\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, calculer F(2).

II. Quelques propriétés de F

- 1°) Continuité de F
 - a) Démontrer que la série de fonctions $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n^x}$ converge normalement sur tout intervalle de la forme $[a, +\infty[$, où a>1.
 - b) En déduire la limite de F en $+\infty$.

- c) En déduire également que F est continue sur $]1, +\infty[$.
- d) Démontrer plus précisément que la série de fonctions $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n^x}$ converge uniformément sur tout intervalle de la forme $[a,+\infty[$, où a>0. En déduire que F est continue sur $]0,+\infty[$.

2°) Dérivabilité de F

- a) Soit x > 0. Étudier les variations sur $]0, +\infty[$ de la fonction $t \mapsto \frac{\ln t}{t^x}$ et en déduire que la suite $\left(\frac{\ln n}{n^x}\right)_{n\geqslant 1}$ est monotone à partir d'un certain rang (dépendant de x) que l'on précisera.
- b) Pour $n \ge 1$, on pose $f_n : x \mapsto \frac{(-1)^{n-1}}{n^x}$. Si a est un réel strictement positif, démontrer que la série des dérivées $\sum_{n \ge 1} f'_n$ converge uniformément sur $[a, +\infty[$. En déduire que F est une fonction de classe \mathcal{C}^1 sur $]0, +\infty[$.
- 3°) Lien avec ζ Calculer, pour x > 1, $F(x) - \zeta(x)$ en fonction de x et de $\zeta(x)$. En déduire que :

$$F(x) = (1 - 2^{1-x})\zeta(x).$$

Puis en déduire la limite de ζ en $+\infty$.

III. Produit de Cauchy de la série alternée par elle-même

On rappelle que le produit de Cauchy de deux séries $\sum_{n\geqslant 1} a_n$ et $\sum_{n\geqslant 1} b_n$ est la série $\sum_{n\geqslant 2} c_n$, où

 $c_n = \sum_{k=1}^{n-1} a_k b_{n-k}$. Dans cette partie, on veut déterminer la nature, selon la valeur de x, de la série

$$\sum_{n\geq 2} c_n(x)$$
, produit de Cauchy de $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n^x}$ par elle-même.

Cette étude va illustrer le fait que le produit de Cauchy de deux séries convergentes n'est pas nécessairement une série convergente.

Dans toute cette partie, n désigne un entier supérieur ou égal à 2 et x un réel strictement positif.

- 1°) Étude de la convergence
 - a) Indiquer sans aucun calcul la nature et la somme, en fonction de F, de la série produit $\sum_{n\geqslant 2} c_n(x) \text{ lorsque } x>1.$
 - **b)** Démontrer que, pour x > 0, $|c_n(x)| \ge \frac{4^x(n-1)}{n^{2x}}$. En déduire, pour $0 < x \le \frac{1}{2}$, la nature de la série $\sum_{n \ge 2} c_n(x)$.
- **2°)** Cas où x = 1On suppose, dans cette question, que x = 1.

- a) Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(n-X)}$. En déduire une expression de $c_n(x)$ en fonction de $\frac{H_{n-1}}{n}$, où $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ (somme partielle de la série harmonique).
- **b)** Déterminer la monotonie de la suite $\left(\frac{H_{n-1}}{n}\right)_{n\geq 2}$.
- c) En déduire la nature de la série $\sum_{n\geq 2} c_n(x)$.

IV. Calcul de la somme d'une série à l'aide d'une étude de ζ au voisinage de 1

- 1°) Développement asymptotique en 1
 - a) Écrire en fonction de $\ln 2$ et de F'(1) le développement limité à l'ordre 1 et au voisinage de 1 de la fonction F, puis déterminer le développement limité à l'ordre 2 et au voisinage de 1 de la fonction $x \mapsto 1 2^{1-x}$.
 - b) En déduire deux réels a et b, qui s'écrivent éventuellement à l'aide de $\ln 2$ et F'(1), tels que l'on ait, pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{a}{x-1} + b + o(1).$$

2°) Développement asymptotique en 1 (bis) On considère la série de fonctions $\sum_{n\geqslant 1} v_n$, où v_n est définie sur [1, 2] par

$$v_n(x) = \frac{1}{n^x} - \int_{r}^{r+1} \frac{\mathrm{d}t}{t^x}.$$

a) Justifier que, pour $n \ge 1$ et $x \in [1, 2]$, on a :

$$0 \le v_n(x) \le \frac{1}{n^x} - \frac{1}{(n+1)^x}.$$

- **b)** Justifier que, pour $x \in [1, 2]$, la série $\sum_{n \ge 1} v_n(x)$ converge. On note alors $\gamma = \sum_{n=1}^{+\infty} v_n(1)$ (c'est la constante d'Euler).
- c) Exprimer, pour $x \in]1,2]$, la somme $\sum_{n=1}^{+\infty} v_n(x)$ à l'aide de $\zeta(x)$ et 1-x.
- d) Démontrer que la série de fonctions $\sum_{n\geqslant 1}v_n$ converge uniformément sur [1,2] (on pourra utiliser le reste de la série).
- e) En déduire que l'on a, pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{1}{x-1} + \gamma + o(1).$$

3°) Application

Déduire des résultats précédents une expression, à l'aide de $\ln 2$ et γ , de la somme

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln n}{n}.$$

V. Étude d'une fonction à l'aide de F.

Pour tout entier naturel n et tout nombre réel x, on note $u_n(x) = \ln(1 + e^{-nx})$.

Pour tout réel x tel que la série $\sum_{n\geqslant 0}u_n(x)$ converge, on note $f(x)=\sum_{n=0}^{+\infty}u_n(x)$ sa somme.

On se propose ici d'étudier quelques propriétés de f.

- 1°) Montrer que f est définie sur $]0, +\infty[$.
- **2°)** Montrer que f est continue sur $]0, +\infty[$.
- 3°) Montrer que f est strictement monotone sur $[0, +\infty[$.
- **4°)** Montrer que f admet une limite finie λ , que l'on calculera, en $+\infty$.
- 5°) Pour tout x > 0, on désigne par ψ_x la fonction définie sur $[0, +\infty[$ par :

$$\psi_x(t) = \ln(1 + e^{-tx})$$

a) Établir, pour tout réel x > 0, la double inégalité :

$$\int_0^{+\infty} \psi_x(t)dt \leqslant f(x) \leqslant \ln 2 + \int_0^{+\infty} \psi_x(t)dt$$

(on justifiera soigneusement l'existence de l'intégrale ci-dessus).

b) On rappelle le résultat suivant vu en classe :

$$\forall y \in]-1,1], \ln(1+y) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{y^n}{n}$$

En déduire la valeur de l'intégrale $\int_0^1 \frac{\ln(1+y)}{y} dy$ en fonction de F(2).

6°) a) Montrer qu'il existe une constante μ , que l'on précisera, telle que, pour tout nombre réel x>0 on ait :

$$\frac{\mu}{x} \leqslant f(x) \leqslant \lambda + \frac{\mu}{x}$$

b) En déduire la limite de xf(x) lorsque x tend vers 0.

Fin de l'énoncé (d'après CCP 2008 MP et PSI)