Question Number	Answer		Mark
19(a)	The car (body) is driven/forced into oscillation at its natural frequency Or The driving/forcing frequency is the same as the natural frequency of the car (body) Or the driving/forcing frequency from the road is the same as the natural frequency (of the car body)	(1)	
	There is a maximum transfer of energy (to the car body)	(1)	2
	[Accept "similar" or "close to" for "the same as" in MP1]		
	[If neither MP is met, MAX 1 mark for a general statement such as "the driving frequency is equal to the natural frequency"]		
19(b)	Use of $F = mg$	(1)	
	Use of $\Delta F = (-)k\Delta x$	(1)	
	Use of $T = 2\pi \sqrt{\frac{m}{k}}$ [Allow use of $\omega = \sqrt{\frac{k}{m}}$ and $T = \frac{2\pi}{\omega}$]	(1)	
	Use of $s = ut$	(1)	
	$u = 17 \text{ m s}^{-1}$	(1)	5
	Example of calculation $k = \frac{65 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{2.5 \times 10^{-2} \text{ m}} = 2.55 \times 10^{4} \text{ N m}^{-1}$		
	$T = 2\pi \times \sqrt{\frac{1365 \text{ kg}}{2.55 \times 10^4 \text{ N m}^{-1}}} = 1.45 \text{ s}$		
	$u = \frac{25 \text{ m}}{1.45 \text{ s}} = 17.2 \text{ m s}^{-1}$		
19(c)	(Kinetic) energy is transferred from the car Or (Kinetic energy transferred to the suspension/dampers	(1)	
	[Accept "removed" for "transferred"]		
	[Accept reference to "oscillating system"]	(1)	2
	The energy is dissipated to the surroundings [so the vibration energy decreases]		
	Total for question 19		9