Метрики качества классификации.

Даулбаев Талгат

7 марта 2018 г.

Задача классификации

 \mathbb{X} — множество объектов, \mathbb{Y} — множество признаков.

$$\{(x_1,y_1),\ldots,(x_\ell,y_\ell)\}$$
, где $x_i\in\mathbb{X}\subset\mathbb{R}^d$.

Здесь ℓ — количество объектов в выборке, d — количество признаков.

Если задача бинарной классификации, то $\mathbb Y$ обычно кодируется как $\{+1,-1\}$ или $\{1,0\}$.

Один класс считается положительным (positive), другой — отрицательным (negative).

Задача классификации

Хотим:

ullet алгоритм a(x), который каждому новому объекту x ставит в соответствие класс из $\mathbb Y$

или

• алгоритм b(x), который каждому новому объект x ставит в соответствие оценку вероятности принадлежности положительному классу.

Если
$$\mathbb{Y} = \{1,0\}$$
, то

$$a(x) = [b(x) > t],$$

где t — это порог, выбираемый нами.

Метрики качества a(x)

Чем плоха Accuracy (доля правильных ответов)?

Пусть мы решаем задачу, в которой два несбалансированных класса. Например, здоровые и больные очень редкой болезнью.

Классификатор, который говорит, что все люди здоровы, имеет высокую долю правильных ответов, но не решает задачу.

Матрица ошибок

	y = +1	y = -1
a(x) = +1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Таблица 1: Матрица ошибок

Ошибки I и II рода

Мнемонические правила и смешные картинки часто помогают запоминать материал

Точность и полнота

Со слайдов лекции:

- ullet Точность (precision) можно ли доверять алгоритму, если a(x)=+1
- ullet Полнота (recall) как много положительных ответов находит a(x)

Упражнение

	y = +1	y = -1
a(x) = +1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Выпишите формулу через элементы матрицы ошибок:

- accuracy = ?
- precision = ?
- recall = ?

Упражнение

	y = +1	y = -1
a(x) = +1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

$$\bullet \ \ \text{accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

$$\bullet \ \ \text{precision} = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

$$\bullet \ \ \text{recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

F1-мера

И точность, и полноту хотим максимизировать.

Из них можно получить единую характеристику, которая называется F1-мера:

$$\text{F1} = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Пример: метрики качества a(x) в sklearn'е

```
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, \
    recall_score, f1_score
v_{pred} = np.array([-1, -1, -1, -1, -1, -1, 1, 1, -1, -1,
                   -1, -1, -1, -1, -1, -1, -1, -1, -1])
y_{true} = np.array([1, -1, -1, 1, -1, -1, 1, -1, -1, 1,
                   -1, 1, 1, -1, -1, 1, -1, 1, 1)
print("Accuracy:", accuracy_score(y_true, y_pred))
                                                      # 0.55
print("Precision:", precision_score(y_true, y_pred))
                                                       # 0.667
print("Recall:", recall_score(y_true, y_pred))
                                                       # 0.2
print("F1:", f1_score(y_true, y_pred))
                                                       # 0.308
```

Матрица ошибок для предыдущего примера

	y = +1	y = -1
a(x) = +1	TP = 2	FP = 1
a(x) = -1	FN = 8	TN = 9

Убедитесь, что ответы на предыдущем слайде правильные :)

TPR u FPR

Введём дополнительно две характеристики: True Positive Rate и False Positive Rate.

Для примера с предыдущих слайдов TPR = 0.2 и FPR = 0.1.

График TPR и FPR

Ничего не мешает нам изобразить алгоритм в виде точки на графике с осями (FPR, TPR).

Каким алгоритмам соответствуют точки $(0,0),\ (1,0),\ (0,1)$?

Метрики качества b(x):

ROC-кривая

Пусть мы обучили алгоритм, вызвали метод predict_proba и получили вектор y_proba:

Бинаризуем по всем возможным порогам, отметим точки на графике и соединим — получится ROC-кривая.

Строим ROC-кривую на компьютере

```
from sklearn.metrics import roc_curve
fpr, tpr, threshold = roc_curve(y_true, y_proba, pos_label=1)
plt.plot(fpr, tpr)
plt.title('ROC')
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.ylabel('TPR')
plt.gca().set_aspect('equal', adjustable='box')
```


AUC-ROC

Площадь под ROC-кривой — метрика качества алгоритма b(x).

AUC-ROC совсем плохого алгоритма ≈ 0.5 , у лучшего -1.

```
from sklearn.metrics import roc_auc_score
print('AUC-ROC:', roc_auc_score(y_true, y_pred))
```

У нашего алгоритма 0.55, то есть он не очень хорош.

Строим ROC-кривую своими руками

1. Сортируем ответы по значению вероятности:

2. Стартуем в точке (0,0). Идём по массиву у_true слева-направо:

- ullet Видим +1- «идём вверх» на $\dfrac{1}{ ext{число positive объектов}}$
- ullet Видим -1- «идём вправо» на $\dfrac{-}{}$ число negative объектов
- (Особый случай: одинаковые значения у_proba и разные классы идём «по диагонали»)

Метрики качества b(x): Log Loss

Log Loss

Логарифмической функцией потерь называется

$$-\sum_{i=1}^{\ell}igg([y_i=+1]\log b(x_i) + [y_i=-1]\log \left(1-b(x_i)
ight)igg).$$

Чем она меньше, тем лучше алгоритм.

Кстати, минимизация Log Loss по $oldsymbol{w}$ при

$$b(x) = \frac{1}{1 + \exp\{-\langle w, x \rangle\}}$$

даст в точности логистическую регрессию.