1. Define the region of operation for the 2N5457 JFET using the range of I DSS and V P provided. That is, sketch the transfer curve defined by the maximum I DSS and V P and the transfer curve for the minimum I DSS and V P. Then, shade in the resulting area between the two curves.

ANSWER:

From Fig. 6.22:
$$-0.5 \text{ V} < V_P < -6 \text{ V}$$
 1 mA < $I_{DSS} < 5 \text{ mA}$
For $I_{DSS} = 5 \text{ mA}$ and $V_P = -6 \text{ V}$:
$$V_{GS} = 0 \text{ V}, I_D = 5 \text{ mA}$$

$$V_{GS} = 0.3 V_P = -1.8 \text{ V}, I_D = 2.5 \text{ mA}$$

$$V_{GS} = V_P / 2 = -3 \text{ V}, I_D = 1.25 \text{ mA}$$

$$V_{GS} = V_P = -6 \text{ V}, I_D = 0 \text{ mA}$$
 For $I_{DSS} = 1 \text{ mA}$ and $V_P = -0.5 \text{ V}$:
$$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$$

$$V_{GS} = 0.3 V_P = -0.15 \text{ V}, I_D = 0.5 \text{ mA}$$

$$V_{GS} = V_P / 2 = -0.25 \text{ V}, I_D = 0.25 \text{ mA}$$

$$V_{GS} = V_P / 2 = -0.5 \text{ V}, I_D = 0 \text{ mA}$$

$$V_{GS} = V_P / 2 = -0.5 \text{ V}, I_D = 0 \text{ mA}$$

$$V_{GS} = V_P / 2 = -0.5 \text{ V}, I_D = 0 \text{ mA}$$

$$V_{GS} = V_P / 2 = -0.5 \text{ V}, I_D = 0 \text{ mA}$$

2. For the 2N5457 JFET, what is the power rating at a typical operating temperature of 45°C using the 5.0 mW/°C derating factor.

ANSWER

At 25°C,
$$P_D = 625 \text{ mW}$$

 45 °C $- 25$ °C $= 20$ °C
 20 ° \cancel{C} $\frac{5 \text{ mW}}{^{\circ}\cancel{C}} = 100 \text{ mW}$
 $P'_D = 625 \text{ mW} - 100 \text{ mW}$
 $= 525 \text{ mW}$

.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Units	
V _{DS}	Drain-Source Voltage	25	V	
V_{DG}	Drain-Gate Voltage	25	V	
V _{GS}	Gate-Source Voltage	-25	V	
I_{GF}	Forward Gate Current	10	mA	
T _j , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C	

THERMAL CHARACTERISTICS

Symbol	Characteristic	M	Units	
	Characteristic	2N5457	•MMBF5457	Units
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CHARACTERISTICS						
$V_{(BR)GSS}$	Gate-Source Breakdown Voltage	$I_G = 10 \mu A, V_{DS} = 0$	-25			V
I _{GSS}	Gate Reverse Current	$V_{GS} = -15 \text{ V}, V_{DS} = 0$ $V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$			-1.0 -200	nA nA
V _{GS(off)}	Gate-Source Cutoff Voltage	V _{DS} = 15 V, I _D = 10 nA 5457	-0.5		-6.0	V
V _{GS}	Gate-Source Voltage	$V_{DS} = 15 \text{ V}, I_D = 100 \mu A$ 5457		-2.5		v

ON CHARACTERISTICS

I _{DSS} Zero-Gate Voltage Drain Current	$V_{DS} = 15 \text{ V}, V_{GS} = 0$ 545	1.0	3.0	5.0	mA
--	---	-----	-----	-----	----

SMALL SIGNAL CHARACTERISTICS

g _{fs}	Forward Transfer Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz} - 5457$	1000		5000	μ mhos
g _{os}	Output Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		10	50	μ mhos
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		4.5	7.0	pF
Crss	Reverse Transfer Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		1.5	3.0	pF
NF	Noise Figure	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz},$			3.0	dB
		$R_G = 1.0$ megohm, $BW = 1.0$ Hz				

3. Define the region of operation for the JFET below, if $VDS_{max} = 30 \text{ V}$ and $PD_{max} = 100 \text{ mW}$.

ANSWER:

$$V_{DS} = V_{DS_{\text{max}}} = 25 \text{ V}, I_D = \frac{P_{D_{\text{max}}}}{V_{DS_{\text{max}}}} = \frac{100 \text{ mW}}{25 \text{ V}} = 4 \text{ mA}$$

$$I_D = I_{DSS} = 10 \text{ mA}, V_{DS} = \frac{P_{D_{\text{max}}}}{I_{DSS}} = \frac{100 \text{ mW}}{10 \text{ mA}} = 10 \text{ V}$$

$$V_D = 20 \text{ V}, I_D = 6.67 \text{ mA}$$

$$V_D = 15 \text{ V}$$
, $I_D = 5 \text{ mA}$

4. a. Given $V_{GS(Th)} = 4 \text{ V}$ and $I_{D(on)} = 4 \text{ mA}$ at $V_{GS(on)} = 6 \text{ V}$, determine k and write the general expression for I_D in the format of

$$I_D = k (V_{GS} - V_T)^2$$

- **b.** Sketch the transfer characteristics for the device of part (a).
- **c.** Determine ID for the device of part (a) at VGS = 2, 5, and 10 V.

ANSWER:

(a)
$$k = \frac{I_{D(\text{on})}}{\left(V_{GS(\text{on})} - V_T\right)^2} = \frac{4 \text{ mA}}{(6 \text{ V} - 4 \text{ V})^2} = 1 \text{ mA/V}^2$$

 $I_D = k(V_{GS} - V_T)^2 = 1 \times 10^{-3}(V_{GS} - 4 \text{ V})^2$

(b)
$$V_{GS}$$
 I_D For $V_{GS} < V_T = 4 \text{ V}$, $I_D = 0 \text{ mA}$
 5 V 1 mA
 6 V 4 mA
 7 V 9 mA
 8 V 16 mA

(c)
$$V_{GS}$$
 I_D $(V_{GS} < V_T)$
 $\begin{array}{ccc}
 & & & & & & & \\
 & 2 & V & & & 0 \text{ mA} \\
 & 5 & V & & 1 \text{ mA} \\
 & & & 10 & V & & 36 \text{ mA}
\end{array}$

Given the transfer characteristics of Fig. 6.55 , determine $V \tau$ and k and write the general equation for ID.

6:38

ANSWER

From Fig. 6.58,
$$V_T = 2.0 \text{ V}$$

At
$$I_D = 6.5 \text{ mA}$$
, $V_{GS} = 5.5 \text{ V}$:

$$I_D = 5.31 \times 10^{-4} (V_{GS} - 2)^2$$

At
$$I_D = 6.5 \text{ mA}$$
, $V_{GS} = 5.5 \text{ V}$:

Choose the I_D in the linear region

$$I_D = k(V_{GS} - V_T)^2$$

$$6.5 \text{ mA} = k(5.5 \text{ V} - 2 \text{ V})^2$$

$$k = 5.31 \times 10^{-4}$$

- 6. For the network determine:
 - **a.** *I* D.
 - **b.** V DS.
 - **c.** *V D* .
 - **d.** *V*s.

ANSWER

(a)
$$V_{GS} = 0 \text{ V}$$

 $\therefore I_D = I_{DSS} = 4.5 \text{ mA}$

(b)
$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$

= 20 V + 4 V - (4.5 mA)(2.2 k Ω + 0.68 k Ω)
= 24 V - 12.96
= **11.04** V

(c)
$$V_D = V_{DD} - I_D R_D$$

= 20 V - (4.5 mA)(2.2 k Ω)
= **10.1** V

(d)
$$-4 \text{ V} + I_S R_S - V_S = 0$$

 $V_S = I_S R_S - 4 \text{ V} = I_D R_S - 4 \text{ V} = (4.5 \text{ mA})(0.68 \text{ k}\Omega) - 4 \text{ V}$
 $= 3.06 \text{ V} - 4 \text{ V}|$
 $= -0.94 \text{ V}$

7. Determine the value of R s for the network to establish $V_D = 10 \text{ V}$.

FIG. 7.87

ANSWER

- 8. For the combination network of, determine:
 - a. VBand VG.
 - **b.** *VE*.
 - c. IE, Ic, and I D.
 - **d.** / B.
 - e. Vc, Vs, and VD.
 - f. V CE.
 - g. V DS.

ANSWER:

$$βR_E \ge 10R_2$$

(100)(1.2 kΩ) ≥ 10(10 kΩ)
120 kΩ > 100 kΩ (satisfied)

(a)
$$V_B = V_G = \frac{R_2 V_{DD}}{R_1 + R_2} = \frac{10 \text{ k}\Omega(16 \text{ V})}{40 \text{ k}\Omega + 10 \text{ k}\Omega}$$

= 3.2 V

(b)
$$V_E = V_B - V_{BE} = 3.2 \text{ V} - 0.7 \text{ V} = 2.5 \text{ V}$$

(c)
$$I_E = \frac{V_E}{R_E} = \frac{2.5 \text{ V}}{1.2 \text{ k}\Omega} = 2.08 \text{ mA}$$

 $I_C \cong I_E = 2.08 \text{ mA}$
 $I_D = I_C = 2.08 \text{ mA}$

(d)
$$I_B = \frac{I_C}{\beta} = \frac{2.08 \text{ mA}}{100} = 20.8 \,\mu\text{A}$$

(e)
$$V_C = V_G - V_{GS}$$

 $V_{GS} = V_P \quad 1 - \sqrt{\frac{I_D}{I_{DSS}}}$
 $= (-6 \text{ V}) \quad 1 - \sqrt{\frac{2.08 \text{ mA}}{6 \text{ mA}}}$
 $= -2.47 \text{ V}$
 $V_C = 3.2 - (-2.47 \text{ V})$
 $= 5.67 \text{ V}$
 $V_S = V_C = 5.67 \text{ V}$
 $V_D = V_{DD} - I_D R_D$
 $= 16 \text{ V} - (2.08 \text{ mA})(2.2 \text{ k}\Omega)$
 $= 11.42 \text{ V}$

(f)
$$V_{CE} = V_C - V_E = 5.67 \text{ V} - 2.5 \text{ V}$$

= 3.17 V

(g)
$$V_{DS} = V_D - V_S = 11.42 \text{ V} - 5.67 \text{ V}$$

= 5.75 V