## 1 Úvod

Tato dokumentace se zabývá popisem paralelní verze algoritmu K-means. Implementován byl v jazyce C++. Dokumentace je součástí projektu do předmětu PRL na VUT FIT v letním semestru 2023 a jejím autorem je Vojtěch Fiala (xfiala61).

## 2 Rozbor algoritmu

Tato část se zabývá analýzou nejprve sekvenční a poté paralelní verze algoritmu K-means. Vždy bude nejprve uvedena časová a poté prostorová složitost.

## 2.1 Sekvenční algoritmus

Sekvenční algoritmus vychází z několika kroků, které jsou uvedeny v zadání projektu. Zde jsou uvedeny v pořadí, v jakém mají být vykonány.

### Volba středů

Volba středů (V našem případě podle počátečních hodnot) – k, kde k je počet clusterů, tedy O(k). Prostorová složitost je také O(k).

### Rozřazení prvků

Rozřazení prvků do shluků podle středu, ke kterému mají nejblíže – pro n prvků je potřeba provést porovnání s k clustery, tedy  $O(k \cdot n)$ . Prostorová složitost je O(n), neboť samotné prvky se akorát přesouvají v rámci clusterů.

### Výpočet nových středů

Výpočet nových středů jako průměru přiřazených hodnot. Pokud nějaký střed nemá přiřazenu žádnou hodnotu, nic se nemění – teoreticky v jednom clusteru může být až *n* prvků a složitost výpočtu průměru je tedy O(n). Prostorová složitost je zde konstantní, neboť se akorát přepisují už existující středy.

### **Iterace**

Pokud se hodnota nějakého středu změnila, opakuj od bodu 2, jinak skonči – nelze přesně odhadnout kolik iterací bude potřeba provést, obecně lze řici, že jich bude

*i* a složitost tedy bude O(i). Prostorová složitost iterace je O(k), neboť je potřeba ukládat středy z předchozí iterace.

Celkově lze tedy určit, že časová složitost sekvenční verze algoritmu K-means je  $O(k) + O(i \cdot k \cdot n)$ , což lze zjednodušit na O(n). Prostorová složitost je O(k) + O(n) + O(k) = O(2k + n) = O(n).

Z prostorového hlediska je celková složitost O(k) + O(n) + O(1) + O(k) = O(n).

### 2.2 Paralelní algoritmus

V paralelní verzi se ze zadání předpokládá, že jeden proces řeší jednu hodnotu a tedy na n hodnot je potřeba p procesů, tedy p(n) = n. Jako první je opět uvedena v jednotlivých krocích časová složitost a poté prostorová složitost. Následuje analýza jednotlivých kroků paralelní verze algoritmu:

### Volba středů

Volba středů (V našem případě podle počátečních hodnot) –  $O(k \cdot \log p)$ , kde k je počet clusterů a p počet procesů – "kořenový" proces nejprve ze získaných náhodných hodnot určí k středů, uloží je do vektoru a procedurou Broadcast je předá ostatním procesům. Prostorová složitost je  $n \cdot O(k)$ , protože každý proces musí mít uloženy středy. Kořenový proces také musí data načíst ze souboru – složitost O(n).

### Rozřazení prvků

Rozřazení prvků do shluků podle středu, ke kterému mají nejblíže – v tomto projektu jeden proces pracuje s jedním číslem, tedy každý proces svůj prvek porovnává s k clustery, tedy O(k).

Kromě toho ovšem musí pracovat ještě s pomocným vektorem, který určuje, kolik prvků tento proces uložil do jednotlivých clusterů, což je další cyklus přes všechny clustery O(k) a tento krok má tedy celkovou složitost  $O(k^2)$ . Prostorová složitost jsou 2k pro každý proces, neboť musí ukládat hodnoty v clusterech a jejich počet.

### Výpočet nových středů

Výpočet nových středů jako průměru přiřazených hodnot. Pokud nějaký střed nemá přiřazenu žádnou hodnotu, nic se nemění – nejprve se procedurou Reduce spočítá celková suma všech hodnot v clusterech, což má časovou složitost  $O(k \cdot \log n)$ , kde k je počet clusterů a n počet prvků (a také procesů).

Následuje další volání Reduce, tentokrát pro pomocný vektor a určení kolik hodnot jednotlivé clustery obsahují. S těmito hodnotami pracuje pouze kořenový proces, který provede v čase O(k) výpočet nových středových bodů, které pak procedurou Broadcast opět rozdistribuje mezi ostatní procesy. Celková složitost tohoto kroku je tedy  $3 \cdot O(k \cdot \log n)$ . Prostorová složitost jsou 2k pro kořenový proces, neboť v něm dochází k alokaci nových vektorů do kterých se provádí redukce. Pro ostatní procesy je prostorová složitost této části konstantní.

#### **Iterace**

Pokud se hodnota nějakého středu změnila, opakuj od bodu 2, jinak skonči – zde platí totéž co u sekvenčního algoritmu – nelze přesně odhadnout kolik iterací bude potřeba provést, obecně lze řici, že jich bude *i* a složitost tedy bude O(i). Prostorová složitost pro každý proces je O(k) z důvodu uchovávání předchozích středů.

Na základě popsaných kroků lze usoudit, že složitost paralelního algoritmu je O(k · log p) + O(i · 3 · k · log p ·  $k^2$ ) = O(k · log p) + O(i · 3 ·  $k^3$  · log n).

Obecně lze usoudit, že zrychlení v závislosti na počtu prvků je veliké (log n versus n), což je ovšem zaplaceno vyšší režií a počtem potřebných procesorů. Celková cena algoritmu je  $O(k \cdot \log p) + O(i \cdot 3 \cdot k^3 \cdot n \cdot \log n)$ , což lze zjednodušit na  $O(n \cdot \log n)$ . Algoritmus tedy není optimální.

Z prostorového hlediska je celková složitost O(n, pouze kořenový) + O(k) + O(2k) + O(k) + O(2k, pouze kořenový) – lze tedy říci, že pro kořenový proces <math>O(n), pro ostatní konstantní a tedy zanedbatelná. Z prostorového hlediska je algoritmus srovnatelný se sekvenčním s tou výjimkou, že pomocné procesy mají prostorovou náročnost výrazně nížší než kořenový.

# 3 Komunikační protokol



## 4 Závěr

Bylo ukázáno, že paralelní algoritmus není z časového hlediska optimální, ovšem není ani příliš náročnější oproti sekvenční variantě. Z prostorového hlediska jsou obě varianty srovnatelné.

Paralelní algoritmus by se dal mírně urychlit tehdy, když by se namísto procedury Reduce použila procedura Allreduce a každý proces si středové body počítal sám namísto čekání na výpočet a předání dat od kořenového procesu. To by ovšem bylo za cenu mírného navýšení prostorové složitosti, kdy by si každý proces musel ukládat mezivýsledky pro výpočet středů.