Описание множества операторов для алгоритмов оптимизации. v. 1.0

А. Б. Сергиенко

8 октября 2013 г.

Аннотация

В данном документе дано собрано множество всяких операторов, которые используются автором в своих исследований. В первую очередь это операторы модификаций генетического алгоритма, а также классические операторы алгоритма.

Содержание

1	Введение	2
2	Условные обозначения	2
3	Операторы селекции	3
	3.1 Пропорциональная селекция	3
4	Операторы скрещивания	4
5	Иные операторы	4
Cı	писок литературы	4

1 Введение

Это своеобразная «свалка» операторов, которые используются автором. На данный документ можно ссылаться в своих работах, чтобы указать, что та или иная модификация операторов подробно описана в этом документе. Тут нет исследований эффективности алгоритмов с данными операторами — это задача иных проектов. Здесь представлено только описание операторов.

Например, в работе может быть написано следующее: «Модифицированный генетический алгоритм основан на стандартном генетическом алгоритме (https://github.com/Harrix/Standard-Genetic-Algorithm). Предложенный алгоритм отличается только оператором скрещивания, и вместо двухточечного скрещивания используется двухточечное скрещивание с возможностью точек разрыва по краям хромосомы (подробное описание смотрите в https://github.com/Harrix/HarrixSetOfOperatorsAlgorithms)».

Данный документ представляет его версию 1.0 от 8 октября 2013 г.

Последнюю версию документа можно найти по адресу:

https://github.com/Harrix/HarrixSetOfOperatorsAlgorithms

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix.

Сайт автора, где публикуются последние новости: http://blog.harrix.org/, а проекты располагаются по адресу http://harrix.org/.

2 Условные обозначения

```
a \in A — элемент a принадлежит множеству A.
```

 \bar{x} — обозначение вектора.

 $\arg f(x)$ — возвращает аргумент x, при котором функция принимает значение f(x).

Random(X) — случайный выбор элемента из множества X с равной вероятностью.

 $Random\left(\{x^i\mid p^i\}\right)$ — случайный выбор элемента x^i из множества X, при условии, что каждый элемент $x^i\in X$ имеет вероятность выбора равную p^i , то есть это обозначение равнозначно предыдущему.

random(a,b) — случайное действительное число из интервала [a;b].

int(a) — целая часть действительного числа a.

 $\mu(X)$ — мощность множества X.

Замечание. Оператор присваивания обозначается через знак «=», так же как и знак равенства.

Замечание. Индексация всех массивов в документе начинается с 1. Это стоит помнить при реализации алгоритма на С-подобных языках программирования, где индексация начинается с нуля.

Замечание. Вызывание трех функций: Random(X), $Random(\{x_i \mid p_i\})$, random(a, b) – происходит каждый раз, когда по ходу выполнения формул, они встречаются. Если формула итерационная, то нельзя перед ее вызовом один раз определить, например, random(a,b) как константу и потом её использовать на протяжении всех итераций неизменной.

Замечание. Надстрочный индекс может обозначать как возведение в степень, так и индекс элемента. Конкретное обозначение определяется в контексте текста, в котором используется формула с надстрочным индексом.

Замечание. Если у нас имеется множество векторов, то подстрочный индекс обозначает номер компоненты конкретного вектора, а надстрочный индекс обозначает номер вектора во множестве, например, $\bar{x}^i \in X$ ($i=\overline{1,N}$), $\bar{x}^i_j \in \{0;1\}$, ($j=\overline{1,n}$). В случае, если вектор имеет свое обозначение в виде подстрочной надписи, то компоненты вектора проставляются за скобками, например, (\bar{x}_{max}) $_i = 0$ ($j=\overline{1,n}$).

Замечание. При выводе матриц и векторов элементы могут разделяться как пробелом, так и точкой с запятой, то есть обе записи $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}^T$ и $\begin{pmatrix} 1;1;1;1;1;1;1;1 \end{pmatrix}^T$ допустимы.

Замечание. При выводе множеств элементы разделяются только точкой с запятой, то есть допустима только такая запись: $\{1; 1; 1; 1; 1; 1; 1; 1\}^T$.

3 Операторы селекции

Селекция — оператор случайного выбора одного индивида из популяции, основываясь на значениях функции пригодности всех индивидов текущей популяции, для использования его в операторе скрещивания. При этом вероятность выбора у индивидов с более высокой пригодностью выше, чем у индивидов с более низкой пригодностью.

3.1 Пропорциональная селекция

Вероятность выбора элемента пропорциональна значению пригодности индивида. Данный вид селекции может работать только с неотрицательными значениями пригодности.

Пропорциональная селекция определяется формулой:

$$Selection (Population, Fitness, DataOfSel) = Random (\{\bar{x}^i | p^i\}), \tag{1}$$

$$p^{i} = \begin{cases} \frac{f_{fit}\left(\bar{x}^{i}\right)}{\sum_{j=1}^{N} f_{fit}\left(\bar{x}^{j}\right)}, \text{ если } \exists f_{fit}\left(\bar{x}^{k}\right) \neq 0 \left(k = \overline{1, N}\right); \\ \frac{1}{N}, \text{ иначе.} \end{cases}$$
 (2)

где $\bar{x}^i \in Population, i = \overline{1, N}.$

Как видим, формула определения вероятности выбора индивида имеет составной вид. Второе условие предназначено для маловероятного случая, когда в популяции все индивиды будут иметь пригодность равную нулю. **Пример.** Пусть $Fitness = \{0, 5; 0, 2; 0, 1; 0, 6; 0, 2; 0, 4\}$. Тогда вероятности выбора индивидов равны:

$$\begin{aligned} p_1 &= \frac{0,5}{0,5+0,2+0,1+0,6+0,2+0,4} = 0,25; \\ p_2 &= \frac{0,2}{0,5+0,2+0,1+0,6+0,2+0,4} = 0,1; \\ p_3 &= \frac{0,1}{0,5+0,2+0,1+0,6+0,2+0,4} = 0,05; \\ p_4 &= \frac{0,6}{0,5+0,2+0,1+0,6+0,2+0,4} = 0,3; \\ p_5 &= \frac{0,2}{0,5+0,2+0,1+0,6+0,2+0,4} = 0,1; \\ p_6 &= \frac{0,4}{0,5+0,2+0,1+0,6+0,2+0,4} = 0,2. \end{aligned}$$

Рисунок 1. Механизм работы пропорциональной селекции

4 Операторы скрещивания

111

5 Иные операторы

111