CS420

Introduction to the Theory of Computation

Lecture 12: Turing Machines

Tiago Cogumbreiro

Today we will learn...

- Introduce Turing Machines
- Design Turing Machines
- Define Turing machines
- Configuration
- Configuration history

Section 3.1

You might enjoy this...

A Mind for Numbers, Barbara Oakley. (audio book is free @ UMB Library)

1. Recap

- Deterministic Finite Automaton that recognize Regular Languages
- Pushdown Automaton that recognize Context-Free Languages

2. Turing Machines

- Introduced to research into the foundations of mathematics
- characterizes computation
- can represent any computable machine unbounded by time and space

In general, describes problems of the form:

Decide for any given x whether or not x has property P

Next lecture

Historical background on Turing machines

The big picture

Recall DFA operation

- Automaton processes a finite input string (acceptance)
- Transition moves the cursor forward
- Final state accepts the string if the cursor is at the end

Recall PDA operation

- Automaton processes a finite input string (acceptance) and a stack
- Transition may move the cursor forward and may push/pop the stack
- Final state accepts the string if the cursor is at the end

Turing Machine operation

- Automaton processes an infinite tape
- Transition may move the cursor forward or backward
- Elements of the tape may be written or read (tape combines the input string and the stack)
- Tapes may contain a special character called black, notation _ (akin to NULL)

Turing Machine operation

- The **tape head** (or cursor) points to a position in the tape (akin the instruction pointer in a processor)
- Transition: read \rightarrow write, move direction $q \xrightarrow{a \rightarrow b, \mathsf{R}} q'$

Turing Machine control

- The automaton (the turing machine) is known as the **control** or the **program**
- The automaton is deterministic (nondeterminism has same expressiveness!)
- A single initial state
- A single accept state
- A reject state

Turing Machines acceptance

Given a tape (with an

) and a Turing machine, there are three kinds of answers:

Accept

Whenever the machine reaches the accept state, the automaton halts and the input string is accepted.

Reject

Whenever the machine reaches the reject state, the automaton halts and the input string is rejected.

Loop forever

The machine keeps doing transitions in a loop, never accepting nor rejecting the input string.

While a PDA and a DFA can either accept or reject a string, a Turing machines can also loop forever!

$$L=01^{\star}0$$

- Deterministic (only one outgoing edge **per input**)
- Convention: missing transitions go to reject state (hidden).

Example

State	Таре
S	<u>0</u> 1110
B	x <u>1</u> 110
B	ху <u>1</u> 10
B	хуу <u>1</u> 0
B	хууу <u>0</u>
C	хууух_
q_{accept}	хууух _

<u>Simulate</u>

$$L_1 = \{0^n 1^n \mid n \geq 0\}$$

Mark 0 seek and mark 1 and cycle back.

- Start (S): if 0 {write X; move right; goto B}; if Y {skip right; goto D}
- Seek O (B): while 1 or X {skip right}; if 1 {write Y; move right; goto C}
- Seek 1 (C): while 0 or Y {skip left}; if X {skip; move right; goto S}
- Check valid (D): while Y {skip right}; if _ {skip; move right; goto accept}

Tape	State	Rule
<u>0</u> 011	S	read 0; write X; move right; goto B
XO <u>1</u> 1	В	skip right while 1 or x; if 1 {write Y; move right; goto C}
<u>X</u> 0Y1	С	skip left while 0 or y; if x {skip; move right; goto S}
X <u>O</u> Y1	S	read 0; write x; move right; goto B
XXY <u>1</u>	В	skip right while 1 or x; if 1 {write Y; move right; goto C}
X <u>X</u> YY	С	skip left while 0 or y; if x {skip; move right; goto S}
XX <u>Y</u> Y	S	read y; skip right; goto D
XXYY	D	read _, goto accept

State	Tape
S	0011
B	X <mark>O</mark> 11
B	X0 1 1
C	XOY1

State	Tape
S	0011
B	X <mark>0</mark> 11
B	X0 <mark>1</mark> 1
C	X <mark>O</mark> Y1

State	Tape
C	XOY1
S	XOY1
B	XX <mark>Y</mark> 1
B	XXY1

State	Tape
S	0011
B	X <mark>0</mark> 11
B	X0 <mark>1</mark> 1
C	X <mark>O</mark> Y1

State	Tape
C	XOY1
S	X <mark>O</mark> Y1
B	XX <mark>Y</mark> 1
B	XXY <mark>1</mark>

State	Таре
C	XX <mark>Y</mark> Y
C	XXYY
S	XXYY
D	XXYY

State	Tape
S	0011
B	X <mark>0</mark> 11
B	X0 <mark>1</mark> 1
C	X <mark>O</mark> Y1

State	Tape
C	XOY1
S	XOY1
B	XX <mark>Y</mark> 1
B	XXY <mark>1</mark>

State	Таре
C	XXYY
C	XXYY
S	XX <mark>Y</mark> Y
D	XXYY

State	Таре
D	XXYY

Accept!

<u>Simulate</u>

$$L_3=\{a^nb^nc^n\mid n\geq 0\}$$

$$L_3 = \{a^nb^nc^n \mid n \geq 0\}$$

- START: Skip marks **right** until we: i) read a; mark it; go to A; ii) read blank, accept.
- A: Skip **right** until read b; mark it; go to Bs
- B: Skip **right** until read c; mark it; go to Cs
- C: Skip **right** until read blank; move left; go to REWIND
- REWIND: Skip left until we reach blank, go to START

<u>Simulate</u>

Turing Machines

Definition 3.3

A Turing machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

- 1. Q set of states
- 2. Σ input alphabet not containing the blank symbol \Box
- 3. Γ the tape alphabet, where ${}_{f \sqcup} \in \Gamma$ and $\Sigma \subseteq \Gamma$
- 4. $\delta: Q imes \Gamma o Q imes \Gamma imes \{\mathsf{L},\mathsf{R}\}$ transition function
- 5. $q_0 \in Q$ is the start state
- 6. q_{accept} is the accept state
- 7. q_{reject} is the reject state ($q_{reject} \neq q_{accept}$)

Configuration

A configuration is a snapshot of a computation. That is, it contains all information necessary to resume (or replay) a computation from any point in time.

A configuration consists of

- the tape
- the head of the tape
- the current state

Configuration

Textual notation

We write the table and place the current state **before** (left of) where the head of the tape points to:

In the following example, the head points to position no.5, the tape is 0130045, and the current state is q_3 :

Recall example 1

State	Таре	Configuration
S	<u>0</u> 1110	S 01110
B	x <u>1</u> 110	
B	ху <u>1</u> 10	
B	хуу <u>1</u> 0	
B	хууу <u>0</u>	
B	хууух_	

Fill in the configuration...

State	Таре	Configuration
S	<u>0</u> 1110	S 01110
B	x <u>1</u> 110	x B 1110
B	ху <u>1</u> 10	xy B 110
B	xyy <u>1</u> 0	xyy B 10
B	xyyy <u>0</u>	хууу В 0
B	хууух_	хууух В

Configuration history

The configuration history (sequence of configurations), describes all configurations from the initial state until a current state.

Definition

We say that C_1 yields C_2

Configuration history		
S 01110		
x B 1110		
xy B 110		
xyy B 10		
хууу В 0		
хууух В		

More examples

- $ullet \ L_5 = \{ w \# w \mid w \in \{a,b\}^\star \}$
- $L_6 = \{w \mid w \text{ is a palindrome}\}$
- $ullet \ L_7=\{a^nb^{2n}\mid n\geq 0\}$