1. Determine the eigenfunctions and eigenvalues of the operator

$$\hat{Q} = \frac{\mathrm{d}^2}{\mathrm{d}\phi^2}$$

where ϕ is the angle in polar coordinates. Due to the rotational symmetry of the problem, your eigenfunctions, f, should satisfy the boundary condition

$$f(\phi) = f(\phi + 2\pi).$$

The eigenvalue equation

$$\hat{Q}f = qf,$$

where q is the eigenvalue, has the general solution

$$f = Ae^{q^b\phi}.$$

Then,

$$\frac{\mathrm{d}^2 f}{\mathrm{d}\phi^2} = \left(q^b\right)^2 A e^{q^b \phi} = \left(q^b\right)^2 f,$$

where $\left(q^{b}\right)^{2}$ is the eigenvalue yielding the condition

$$\left(q^b\right)^2 = q.$$

Thus, b = 1/2. Thusly the eigenfunction f is given by

$$f = A \exp\left(\sqrt{q}\phi\right).$$

We apply the boundary condition by letting $\phi = 0$. Thus, having neglected the amplitudes which are constant,

$$1 = \exp\left(\sqrt{q}2\pi\right).$$

This is satisfied for

$$\sqrt{q}2\pi = in2\pi.$$

Thus,

$$q = -n^2.$$

Is the spectrum of eigenvalues degenerate or non-degenerate?

The spectrum of eigenvalues, $n \in \mathbb{Z}$, is degenerate for $n \neq 0$.

- 2. Suppose that f(x) and g(x) are both eigenfunctions of an operator \hat{Q} . The spectrum is degenerate such that both f(x) and g(x) have the same eigenvalue, q.
 - (a.) Prove that any linear combination of f(x) and g(x) is also an eigenfunction of Q. What is its eigenvalue?

Proof. Let f(x) and g(x) be defined as eigenfunctions of an operator \hat{Q} such that

$$\hat{Q}f = qf, \quad \hat{Q}q = qq.$$

Furthermore let $a, b \in \mathbb{R}$ be given. Then, let j(x) be a function defined as a linear combination of f and g such that

$$j(x) = af(x) + bg(x).$$

Then,

$$\hat{Q}j = \hat{Q} [af + bg]$$

$$= \hat{Q}af + \hat{Q}bg$$

$$= a\hat{Q}f + b\hat{Q}g$$

$$= aqf + bqg$$

$$= q (af + bg)$$

$$= qj.$$

That is, a linear combination of eigenfunctions of \hat{Q} , each with eigenvalue q, is also an eigenfunction of \hat{Q} with eigenvalue q.

(b.) An anti-hermitian operator obeys the following condition:

$$\hat{Q}^{\dagger} = -\hat{Q}.$$

Show that the expectation value of an anti-hermitian operator is imaginary.

$$\begin{aligned} \langle Q \rangle &= \langle f | \hat{Q} | f \rangle \\ &= \langle \hat{Q}^{\dagger} f | f \rangle \\ &= -\langle \hat{Q} f | f \rangle \\ &= -\left(\langle f | \hat{Q} f \rangle \right)^* \\ &= -\langle Q \rangle^*. \end{aligned}$$

(c.) Show that the commutator of two hermitian operators is anti-hermitian. Let \hat{A} and \hat{B} be hermitian operators. The commutator of \hat{A} and \hat{B} is given by

$$\begin{split} \left[\hat{A}, \hat{B} \right] &= \hat{A}\hat{B} - \hat{B}\hat{A} \\ &= \hat{A}^{\dagger}\hat{B}^{\dagger} - \hat{B}^{\dagger}\hat{A}^{\dagger} \\ &= \left(\hat{B}\hat{A} \right)^{\dagger} - \left(\hat{A}\hat{B} \right)^{\dagger} \\ &= - \left(\hat{A}\hat{B} - \hat{B}\hat{A} \right)^{\dagger} \\ &= - \left[\hat{A}, \hat{B} \right]^{\dagger}. \end{split}$$

(d.) Show that the commutator of two anti-hermitian operators is also anti-hermitian. Let \hat{A} and \hat{B} be anti-hermitian operators. The commutator of \hat{A} and \hat{B} is given by

$$\begin{aligned} \left[\hat{A}, \hat{B} \right] &= \hat{A}\hat{B} - \hat{B}\hat{A} \\ &= \hat{A}^{\dagger}\hat{B}^{\dagger} - \hat{B}^{\dagger}\hat{A}^{\dagger} \\ &= \left(\hat{B}\hat{A} \right)^{\dagger} - \left(\hat{A}\hat{B} \right)^{\dagger} \\ &= - \left(\hat{A}\hat{B} - \hat{B}\hat{A} \right)^{\dagger} \\ &= - \left[\hat{A}, \hat{B} \right]^{\dagger}. \end{aligned}$$

Because the commutator is the product of two operators if both are antihermitian the minus-sign has no effect. Thus this has the same form as in part (c.). 3. We have two operators \hat{A} and \hat{B} each with two eigenstates. The eigenstates and corresponding eigenvalues are characterized by the equations

$$\hat{A}\psi_1 = a_1\psi_1,$$

$$\hat{A}\psi_2 = a_2\psi_2,$$

$$\hat{B}\phi_1 = b_1\phi_1,$$

$$\hat{B}\phi_2 = b_2\phi_2.$$

Suppose we know that the eigenstates for each operator are related by

$$\psi_1 = \frac{1}{5} (3\phi_1 + 4\phi_2),$$

$$\psi_2 = \frac{1}{5} (4\phi_1 - 3\phi_2).$$

- (a.) If observable A is measured and we obtain a value of a_1 , what is the state of the system in the instant after the measurement was made?
 - To measure a_1 the system must be in state ψ_1 . Therefore, a measurement of a_1 puts the system in state ψ_1 .
- (b.) If B is now measured following the measurement in part (a.), what are the possible results and what are their associated probabilities?

Before measurement the system is in state ψ_1 which is a linear combination of the states ϕ_1 and ϕ_2 . The probability of measuring each of these states, $P(\phi_n)$, is given by the square of their amplitudes. Thus,

$$P(\phi_1) = \left| \frac{3}{5} \right|^2 = \frac{9}{25},$$

$$P(\phi_2) = \left| \frac{4}{5} \right|^2 = \frac{16}{25}.$$

(c.) If we measure A again immediately following the measurement of B in part (b.), what is the probability of obtaining a_1 ? This is tricky because we do not know what value of B we obtained in part (b.).

Expressing ϕ_1 and ϕ_2 as linear combinations of ψ_1 and ψ_2 we have

$$\phi_1 = \frac{3}{5}\psi_1 + \frac{4}{5}\psi_2,$$

$$\phi_2 = \frac{4}{5}\psi_1 - \frac{3}{5}\psi_2.$$

Futhermore, we can define a new quantum state, ξ , based on the unknown outcome of measuring the observable B. This quantum state will be a superposition of outcomes of a measurement of B with amplitudes given by the root of the probability of measuring that quantum state. That is,

$$\xi = \frac{3}{5}\phi_1 + \frac{4}{5}\phi_2$$

$$= \frac{3}{5}\left(\frac{3}{5}\psi_1 + \frac{4}{5}\psi_2\right) + \frac{4}{5}\left(\frac{4}{5}\psi_1 - \frac{3}{5}\psi_2\right)$$

$$= \psi_1.$$

This, however, is wrong¹. For as cool of a result as this would be it neglects the fact that measurement of B changes the wavefunction so we cannot construct ξ in this way. I kept this in the response because I thought it was neat. We instead must consider the probability of measuring ψ_1 given ϕ_1 or ϕ_2 , $P(\psi_1 \mid \phi_n)$. This is simply the product of the probability of making the first measurement, ϕ_n , and the probability of making the measurement ψ_1 .

$$P(\psi_1 \mid \phi_1) = \frac{9}{25} \left| \frac{3}{5} \right|^2 = \frac{81}{625},$$

$$P(\psi_1 \mid \phi_2) = \frac{16}{25} \left| \frac{4}{5} \right|^2 = \frac{256}{625}.$$

We then sum these two probabilities to find the probability of measuring ψ_1 after making some measurement of observable B:

$$P(\psi_1) = \frac{81}{625} + \frac{256}{625} = \frac{337}{625}.$$

¹Realization that this was wrong required a lot of "this cant be right" type thoughts followed by a probability tree from my prior stats class. I feel like there is some interpretation to be had here given that I returned ψ_1 which was the wavefunction I started with.