

LogiCORE IP Utility Buffer (v2.1)

PB043 (2.1) April 5, 2017

LogiCORE IP Product Brief

Introduction

The LogiCORE™ IP Utility Buffer core generates corresponding buffers to bring off-chip signals into internal circuits or out from internal circuits. The core is intended as interconnect logic between off-chip signals and internal circuits.

Additional Information

See the <u>product page</u>

Features

- · Configurable size of the signal width
- Configurable buffer type

LogiCORE IP Facts Table				
Core Specifics				
Supported Device Family ⁽¹⁾	UltraScale+™, UltraScale™ Zynq®-7000 7 Series			
Supported User Interfaces	N/A			
	Provided with Core			
Design Files	VHDL			
Example Design	Not Provided			
Test Bench	Not Provided			
Constraints File	None			
Simulation Model	VHDL			
Supported S/W Driver	N/A			
•	Tested Design Flows(2)			
Design Entry	Vivado® Design Suite			
Simulation	For supported simulators, see the Xilinx Design Tools: Release Notes Guide			
Synthesis	N/A			
Support				
Provided by Xilinx at the Xilinx Support web page				

Notes:

- For a complete listing of supported devices, see the Vivado IP catalog.
- 2. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Overview

The Utility Buffer core generates corresponding buffers to bring off-chip signals into or out from internal circuits. Figure 1 illustrates the Utility Buffer in a system.

Figure 1: Utility Buffer in a System

Block Diagram

Figure 2: Utility Buffer Block Diagram

I/O Signals

The Utility Buffer I/O signals are listed and described in Table 1.

Table 1: Utility Buffer I/O Signals

Buffer Type	Signal	Interface	I/O	Default Value
	IBUF_DS_P	CLK_IN_D	I	Positive port of the differential input signal.
IBUFDS	IBUF_DS_N	CLK_IN_D	I	Negative port of the differential input signal.
	IBUF_OUT	None	0	Single ended output signal.
	OBUF_IN	None	I	Single ended input signal.
OBUFDS	OBUF_DS_P	None	0	Positive port of the differential output signal.
	OBUF_DS_N	None	0	Negative port of the differential output signal.
	IOBUF_IO_T	None	I	3-state enable input signal.
	IOBUF_IO_I	None	I	Single ended input signal.
IOBUFDS	IOBUF_DS_P	None	0	Positive port of the differential input/output signal.
	IOBUF_DS_N	None	0	Negative port of the differential input/output signal.
	IOBUF_IO_O	None	0	Single ended buffer output signal.
IBUFDSGTE	IBUF_DS_P	CLK_IN_D	I	Positive port of the differential input signal.
(UltraScale,	IBUF_DS_N	CLK_IN_D	I	Negative port of the differential input signal.
UltraScale+, and	IBUF_OUT	None	0	Single ended output signal.
7 series devices only)	IBUF_DS_ODIV2	None	0	DIV signal that can either output IBUF_OUT or a divide by 2 version of the IBUF_OUT signal.
BUFG	BUFG_I	None	I	Single ended clock input.
BUFG	BUFG_O	None	0	Single ended clock output.
	BUFGCE_I	None	I	Single ended clock input of the buffer.
BUFGCE	BUFGCE_CE	None	I	Clock enable input signal of the buffer.
	BUFGCE_O	None	0	Single ended clock output of the buffer.
	BUFG_GT_I	None	I	Buffer input
BUFG GT (UltraScale and UltraScale+ devices only)	BUFG_GT_CE	None	I	Buffer enable
	BUFG_GT_CEMASK	None	I	CE Mask
	BUFG_GT_CLR	None	I	Asynchronous clear forcing the output to zero.
	BUFG_GT_CLRMASK	None	I	CLR Mask.
	BUFG_GT_DIV	None	I	Specifies the value to divide the clock. Divide value is a value provided plus 1. For instance, setting 3'b000 will provide a divide value of 1 and 3'b111 will provide a divide value of 8.
	BUFG_GT_O	None	0	Buffer Output

Design Parameters

The Utility Buffer design parameters are listed and described in Table 2.

Table 2: Design Parameters

Parameter	Description	Туре
C_SIZE	The vector size of differential signal (valid value is 1 to 128)	Integer
C_BUF_TYPE	The buffer to be instantiated (valid values are IBUFDS, OBUFDS, IOBUFDS, IBUFDSGTE, BUFG, BUFGCE, and BUFG GT)	String

Parameter - Port Dependencies

The parameter and port dependencies are listed and described in Table 3.

Table 3: Parameter and Port Dependencies

Name	Affects	Depends	Relational Description		
Design Parameters					
C_Size	All signals	0 to C_SIZE-1	Scale width of all port signals		
Port Signals					
IBUF_*	All signals	C_BUF_TYPE	Valid for C_BUF_TYPE=IBUFDS or IBUFGDS, or IBUFDSGTXE, or IBUFDSGTE and not used for other cases		
0BUF_*		C_BUF_TYPE	Valid for C_BUF_TYPE=OBUFDS, not used for other cases		
IOBUF_*		C_BUF_TYPE	Valid for C_BUF_TYPE=IOBUFDS, not used for other cases		

Design Implementation

Design Tools

Note: This IP can only be used in the Vivado IP integrator. It is not designed to be used in an RTL-only design flow within the Vivado Design Suite.

The Utility Buffer design is handwritten.

Target Technology

The target technologies are UltraScale+, UltraScale, Zynq-7000, and 7 series devices.

Device Utilization and Performance Benchmarks

Table 4: Utility Buffer Resource Utilization

Parameter		Resources					
	Parameter		IBUFGDS	OBUFDS	IOBUFDS	IBUFDSGTXE	IBUFDSGTE
	C_BUF_TYPE=IBUFDS	n	0	0	0	0	0
	C_BUF_TYPE=IBUFGDS	0	n	0	0	0	0
C_SIZE=n	C_BUF_TYPE=OBUFDS	0	0	n	0	0	0
	C_BUF_TYPE=IOBUFDS	0	0	0	n	0	0
	C_BUF_TYPE=IBUFDSGTXE	0	0	0	0	n	0
	C_BUF_TYPE=IBUFDSGTE	0	0	0	0	0	n

Technical Support

Xilinx provides technical support at the Xilinx Support web page for this LogiCORE IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Licensing and Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado Design Suite under the terms of the Xilinx End User License. Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.

Revision History

The following table shows the revision history for this document:

Date	Version	Revision
04/05/2017	2.1	Added 7 series device support for IBUFDSGTE in Table 1 and to the Supported Device Family row in the IP Facts table.
		Added Automotive Applications disclaimer.
04/06/2016	2.1	Initial Xilinx release of this product brief.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.