

Введение

Традиционно под гидрофобными понимают материалы и покрытия, угол смачивания которых водой и водными растворами превышает 90°. Особенностью таких материалов является неустойчивость тонких смачивающих водных слоев на их поверхностях. Гидрофобность - свойство, которое определяется не столько характеристиками материала в целом, сколько свойствами и структурой приповерхностного слоя толщиной в несколько нанометров.

Практический интерес представляют высокогидрофобные материалы с краевыми углами натекания воды > 120°. Особое место среди таких материалов занимают супергидрофобные материалы и покрытия, характеризующиеся высокими краевыми углами (> 150°) и малым углом наклона поверхности к горизонту, при котором капля воды скатывается (соскальзывает) с поверхности.

Факторы, определяющие смачивание поверхностей материалов

Более двухсот лет назад Т.Юнг впервые рассмотрел и описал силы, действующие на жидкую каплю. В этой работе рассматривалась идеальная, т.е. химически инертная по отношению к тестовой жидкости, гладкая и однородная поверхность (рис. 1,a,6,). Равновесный макроскопический краевой угол θ_0 между мениском объемной жидкости и подложкой определяется соотношением

$$\cos \theta_0 = \frac{\sigma_{sv} - \sigma_{sl}}{\sigma_{lv}},\tag{1}$$

где σ_{sv} и σ_{sl} - поверхностные энергии на границах твердое тело/пар и твердое тело/жидкость, σ_{lv} - поверхностное натяжение жидкости. В общем случае σ_{sv} отличается от поверхностной энергии на границе твердое тело/вакуум из-за присутствия на поверхности твердого тела тонкой смачивающей/адсорбционной пленки жидкости, находящейся в равновесии с коплей и паром. Анализ соотношения Юнга (1) показал, что гидрофобность можно наблюдать лишь на твердых поверхностях с низкими значениями σ_{sv} .

С понижением σ_{sv} возрастает краевой угол. В качестве иллюстрации такой корреляции в табл. 1 представлены значения поверхностной энергии и краевых углов на гладких поверхностях некоторых материалов.

Рис. 1. Капля на подложке.

a — гладкая гидрофобная подложка, b — гладкая гидрофильная подложка, c — гомогенный режим смачивания на шероховатой подложке, d — гетерогенный режим смачивания на шероховатой подложке. l-3 — см. текст, θ — эффективный краевой угол.

Таблица 1. Значения поверхностной энергии твердых тел и краевых углов натекания воды на гладких поверхностях некоторых материалов.

Материал	Поверхностная энергия, $M / M \cdot M^{-2}$	Краевой угол, град	Ссыл- ки
Поли(метилпропенокси- фторалкилсилоксан) с числом			
CF_2 -групп (n)			
n=3	14.2	105	2
n=5	16.4	102.4	2
n = 7	12.6	106.7	2
n = 9	12.2	109.3	2
Политетрафторэтилен	21	110	2, 3
Октадекантиол	20	117	4
Перфторэйкозан	6.7	122	5

На рис. 2 представлены зависимости краевых углов воды и поверхностной энергии золотой подложки. покрытой монослоем, состоящим из смеси молекул алкантиолов с метильными и карбоксильными концевыми группами, от концентрации гидроксильной компоненты. Монослоя алкантиола с метильными концевыми группами достаточно для придания поверхности гидрофобных свойств.

Рис. 2. Зависимости краевых углов воды (1) и поверхностной энергии (2) золотой подложки, покрытой самоорганизованным монослоем, состоящим из молекул алкантиолов с метильными и карбоксильными концевыми группами, от концентрации гидрофильной компоненты (x).⁴

Другой подход к описанию смачивания гладкой однородной поверхности предложен Дерягиным и Фрумкиным. Развитая ими теория смачивания позволяет связать макроскопический краевой угол θ_0 (рис. 1,6) с изотермой расклинивающего давления $\Pi(h)$, характеризующей зависимость сил взаимодействия фаз 1 и 2, ограничивающих смачивающую/адсорбционную пленку жидкости 3, от ее толщины h

$$\cos \theta_0 = 1 + \frac{1}{\sigma_{lv}} \Pi(h_e) h_e + \frac{1}{\sigma_{lv}} \int_{h_e}^{\infty} \Pi(h) dh \approx 1 + \frac{1}{\sigma_{lv}} \int_{h_e}^{\infty} \Pi(h) dh, \tag{2}$$

где h_e - равновесная толщина смачивающей пленки при расклинивающем давлении равном капиллярному давлению в капле. Радиусы кривизны менисков и капель, используемых для экспериментального измерения краевых углов, как правило, находятся в пределах от 1 до 20 мм, что не превышающим 1м Π а. В этом случае h_e практически не отличается от толщины h_0 , соответствующей на изотерме точке с нулевым расклинивающем давлением (рис. 3).

Анализ особенностей трехфазного равновесия показал, что смачивание зависит от вида изотермы расклинивающего давления (рис. 3), который в свою очередь, определяется природой поверхностных сил, действующих в рассматриваемой системе. В случае изотермы типа 1 интеграл будет положительным, следовательно такие трехфазные системы будут характеризоваться полным смачиванием с нулевым краевым углом. Неполному смачиванию отвечают изотермы типа 2 и 3.

Рис. 3. Виды изотерм расклинивающего давления.

Принципиальное раздичие между системами с двумя последними типами изотерм связано с особенностями смачивания, характеризующего трехфазное равновесие. В системах с изотермой типа 2 ≪сидящая≫ капля жидкости будет находиться в равновесии с ≪сухой≫ подложкой, свободной от молекул жидкости, в то время как для систем с S-образной изотермой расклинивающего давления (типа 3) характерно равновесия между каплей и подложкой, покрытой смачивающей/адсорбционной пленкой конечной толщины. Кроме того, значение интеграла в соотношении (2) для систем с изотермой 2 всегда оказывается отрицательным, чем обусловлена отличная от нуля величина краевого угла. Фор-

мально большие краевые углы для капель воды на гидрофобных и супергидрофобных поверхностях могут быть достигнуты в системах, характеризуемых как изотермой типа 2, так и изотермой типа 3. Необходимым условием здесь является наличие в системе значительных сил притяжения той или иной природы, например структурных.