MLP-Mixer: An all-MLP Architecture for Vision

Google Research, Brain Team CVPR 2021

Motivation

- architecture entirely based on multi-layer perceptrons(MLPs)
 - MLP that are repeatedly applied across spatial locations/feature channels
 - relies only on basic matrix multiplication routines & changes to data layout & scalar nonlinearities
- On Image classification task
- Modern deep vision architectures mix features
 - given spatial location & per-location(channel-mixing) operation
 - 1x1 convolutions
 - self-attention layers
 - MLP-block
 - btw different spatial locations or both at once & cross-section(token-mixing) operation
 - NxN(larger kernels) convolutions and pooling
 - self-attention layer <- separate per-location operation and cross-location operation (by MLP layer)

Architecture

3. Classifier head(생략)

<u>2. Mixer Layer ☆</u> (MLP 존재)

1. Per-patch linear embedding

<u>Tokens</u> (<u>patches × channels</u>) Transformer와 비슷

1. Per-patch linear embedding

<u>Tokens</u> (patches × channels)

- S non-overlapping image patches ($S = \overline{HW/P^2}$), hidden dimension C
- Input table $X \in \mathbb{R}^{S \times C}$

2. Mixer Layer

- MLP = [Fully Connected] [GELU] [Fully Connected]
- Token-mixing MLP
 - Allow communication btw different spatial locations(tokens)
 - Operate on each channel independently (take individual column of the table)
- Channel-mixing MLP
 - Allow communication btw different channels
 - Operate on each token independently (take individual row of the table)

2. Mixer Layer

- Token-mixing MLP
 - Allow communication btw different spatial locations(tokens)
 - Operate on each channel independently (take individual column of the table)

$$\mathbf{U}_{*,i} = \mathbf{X}_{*,i} + \mathbf{W}_2 \, \sigma(\mathbf{W}_1 \, \text{LayerNorm}(\mathbf{X})_{*,i}), \quad \text{ for } i = 1 \dots C,$$

- Channel-mixing MLP
 - Allow communication btw different channels
 - Operate on each token independently (take individual row of the table)
 - Provide positional invariance (CNN과 비슷)

$$\mathbf{Y}_{j,*} = \mathbf{U}_{j,*} + \mathbf{W}_4 \, \sigma \big(\mathbf{W}_3 \, \text{LayerNorm}(\mathbf{U})_{j,*} \big), \quad \text{for } j = 1 \dots S.$$

Pyramidal structure (Pyramidal ViT나 isotropic ResNet 등의 Typical Design)

Code

```
1 import einops
2 import flax.linen as nn
3 import jax.numpy as jnp
5 class MlpBlock(nn.Module):
    mlp_dim: int
    @nn.compact
    def __call__(self, x):
      y = nn.Dense(self.mlp_dim)(x)
      y = nn.gelu(y)
      return nn.Dense(x.shape[-1])(y)
11
12
13 class MixerBlock(nn.Module):
    tokens_mlp_dim: int
    channels_mlp_dim: int
    @nn.compact
    def __call__(self, x):
      y = nn.LayerNorm()(x)
18
      y = jnp.swapaxes(y, 1, 2)
      y = MlpBlock(self.tokens_mlp_dim, name='token_mixing')(y)
20
      y = jnp.swapaxes(y, 1, 2)
22
      x = x + y
      y = nn.LayerNorm()(x)
23
      return x+MlpBlock(self.channels_mlp_dim, name='channel_mixing')(y)
24
25
26 class MlpMixer(nn.Module):
    num_classes: int
    num_blocks: int
    patch_size: int
    hidden_dim: int
    tokens_mlp_dim: int
    channels_mlp_dim: int
    @nn.compact
33
    def __call__(self, x):
34
      s = self.patch_size 1. Per-patch linear embedding
      x = nn.Conv(self.hidden_dim, (s,s), strides=(s,s), name='stem')(x)
      x = einops.rearrange(x, 'n h w c -> n (h w) c')
      for _ in range(self.num_blocks):
38
        x = MixerBlock(self.tokens_mlp_dim, self.channels_mlp_dim)(x)
39
      x = nn.LayerNorm(name='pre_head_layer_norm')(x)
40
                                                       3. Classifier head
      x = jnp.mean(x, axis=1)
41
      return nn.Dense(self.num_classes, name='head',
42
                       kernel_init=nn.initializers.zeros)(x)
43
```


2. Mixer Layer

Results

	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days
Pre-trained on ImageNet-21k (public)						
• HaloNet [51]	85.8	_	_	_	120	0.10k
Mixer-L/16	84.15	87.86	93.91	74.95	105	0.41k
 ViT-L/16 [14] 	85.30	88.62	94.39	72.72	32	0.18k
BiT-R152x4 [22]	85.39	_	94.04	70.64	26	0.94k
Pre-trained on JFT-300M (proprietary)						
NFNet-F4+ [7]	89.2	_	_	_	46	1.86k
Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k
BiT-R152x4 [22]	87.54	90.54	95.33	76.29	26	9.90k
• ViT-H/14 [<u>14]</u>	88.55	90.72	95.97	77.63	15	2.30k
Pre-trained on unlabelled or weakly labelled data (proprietary)						
• MPL [34]	90.0	91.12	_		_	20.48k
• ALIGN [21]	88.64	_	_	79.99	15	14.82k

