

AN4746 应用笔记

利用 STM32L4 系列微控制器优化功耗和性能

前言

STM32L4 系列的微控制器采用新型结构制造,得益于其高度灵活性和高级外设集,实现了一流的超低功耗性能。 STM32L4 系列产品的性能为应用提供最佳能量效率,在超低功耗领域首屈一指。

STM32L4xx 器件基于 Cortex[®]-M4,具有 FPU 内核。它们的工作频率可达 80 MHz,并实现了在 80 MHz 频率下具有 100 DMIPS 的性能,由于集成了 ART Accelerator™,还能同时保持尽可能小的动态功耗。

STM32L4 系列产品具有 FlexPowerControl,它提高了功耗模式管理上的灵活性,同时降低了应用的总体功耗。

为了能最大限度地使用电池并/或降低其成本,处理器工作模式的选择是很重要的。除了功耗考虑,还必须考虑应用约束条件。因此,微控制器需要能提供多种工作模式,以支持所有的应用,同时要使功耗性能始终接近最佳。

在许多超低功耗应用中,微控制器长期处于睡眠中,随后有很短时间的密集工作。

本应用笔记提供了定性和定量信息,以便能在开始实现和优化应用之前配置每个工作点 (频率、范围、低功耗模式)。

本应用笔记采用了来自 EEMBC 工业标准的 ULPBench™ 基准作为参考实例,将计算和仿真与测量结果关联起来。

相关文档:

STM32L4 系列产品核心文档,特别是:

- [1]. 参考手册: STM32L4x6 基于 ARM® 的高级 32 位 MCU (RM0351)
- [2]. 应用笔记: STM32L4 超低功耗特性概览 (AN 4621)
- [3]. STM32L476xx 数据手册

目录 AN4746

目录

1	低功:	耗应用简介
	1.1	要考虑的关键参数5
	1.2	ULPBench™ 说明6
2	STM	
	2.1	多种低功耗模式
		2.1.1 低功耗运行和低功耗睡眠模式
		2.1.2 停止模式
		2.1.3
		2.1.4 关机模式
	2.2	运行模式功耗 9
3	低功:	耗模式选择方法11
	3.1	PROCESS 阶段
	3.2	INACTIVE 阶段
	3.3	
	3.4	运行模式选择影响14
	3.5	转换的影响
	3.6	电压和温度的影响
	3.7	获取更精确的仿真 21
4	ULP	
	4.1	应用约束条件 24
	4.2	PROCESS 阶段优化
	4.3	INACTIVE 阶段优化
	4.4	STM32L476xx 测量结果
	4.5	电压范围内的性能演变 26
	4.6	峰值电流性能
5	结论	
•	= 1 1C	
6	版本	历史29

AN4746 表格索引

表格索引

	唤醒能量对待机的影响	15
表 2.	唤醒能量对 Stop 2 的影响	15
表 3.	文档版本历史	29
	中文文档版本历史	

图片索引 AN4746

图片索引

图 1.	应用简介	5
图 2.	运行模式电流消耗	
图 3.	运行模式功率效率	10
图 4.	应用时序和参数	11
图 5.	低功耗模式对平均电流消耗的影响	13
图 6.	运行模式和频率对平均电流消耗的影响	14
图 7.	Stop 2 与待机 (具有 SRAM2)的比较	
图 8.	待机 (无 SRAM2 保持)与关机的比较	17
图 9.	针对电压和温度的运行模式修正	
图 10.	对于 VDD 电压的低功耗模式修正	
图 11.	对于温度的低功耗模式修正	
图 12.	放大 ULPBench™ 序列来显示这些转换	22
图 13.	ULPBench™ 序列的 PCC 仿真	23
图 14.	ULPBench™ 测量与运行模式和频率的关系	
图 15.	为电源电压的函数时的等效得分	26
图 16	ULPRench™ 得分与修值由流测量结里的关系	27

AN4746 低功耗应用简介

1 低功耗应用简介

在关注电池寿命的应用中,必须优化系统,以在最小功耗下提供最大性能和反应性。 这类应用通常包括两个不同阶段:

- PROCESS 阶段,其中,在规定时间间隔(RTC)或外部事件(GPIO,中断……)
 下,需要处理一些传感器或无线电信息。
- INACTIVE 阶段,其中,系统处于睡眠,并等待 RTC 或 GPIO 唤醒。

1.1 要考虑的关键参数

两个阶段具有不同的性能标准 (除了功耗以外):

- PROCESS 阶段要求在给定时间帧内执行一定数量的指令。
- INACTIVE 阶段要求能保持一定的最少内容 (数据 RAM 保持)和唤醒能力 (外设, GPIO, RTC.....),同时使功耗尽可能低。

而且, 两个阶段之间的转换须支持不同的约束条件:

- 睡眠到运行的转换要求在转换时具有快速唤醒时间且峰值电流 (也称为浪涌电流)最小,以便能够设置外部电源。
- 运行到睡眠的转换不太关心其时间,但需要进行优化以节约能源。

低功耗应用简介 AN4746

当面临这样突发型操作时,需要考虑四个参数:

- 平均功耗。该参数 (Pavg, 以 μW 表示)决定了电池大小,以支持所预期的自主性。
- 最大峰值电流。该参数 (Ipeak, 以 μA 表示)决定了可用的电池类型,以及需添加到板上的外部元件的数量和尺寸 (去耦电容)。
- PROCESS 阶段的处理性能。该参数以 DMIPS 表示,它与 CPU 频率 (Freq)成比例。
- 反应时间。它是唤醒信号源激活和第一条指令执行之间的时间,通常在中断服务程序 (ISR)内、上下文被恢复后(Power,数据空间上下文,时钟.....)。

1.2 ULPBench™ 说明

EEMBC ULPBench™ 基准非常适合用来评估超低功耗性能。它是一种标准化测试,支持任何 8 位、 16 位和 32 位微控制器的特性。

至今,只有 CoreProfile 已经标准化。它支持对下列资源的能效进行评估:

- CPU, RAM 和闪存
- RTC 定时器和唤醒机制
- 32 kHz LSE
- 电源管理电路

PROCESS 阶段中, EEMBC ULPBench™ CoreProfile 实现:

- 数据数组操作,包括置换和排序
- 利用 8 位和 16 位数学计算进行简单滤波
- 简单状态机
- 简化的 RTOS, 称为 TES, 能够测试实时事件。

用来比较不同的微控制器时, ULPBench™ 结果以得分表示, 它由平均功耗 (以 µW 表示)除以 1000 得到。

$$Score = \frac{1000}{Avg_current \times 3.0 \text{ V}}$$

其中 Avg_current (μ A) 是电流消耗 I_{DD} , 在 V_{DD} = 3.0 V 时测得。

更多关于 ULPBench™ 的信息,请浏览 http://www.eembc.org。

本应用笔记中, 无论代码大小, 都从闪存运行。

2 STM32L4 系列产品低功耗特性

2.1 多种低功耗模式

STM32L4 系列的微控制器可实现多种不同的功耗模式,其中7种是低功耗的。

除了这些模式,通过选择不同的时钟源和频率,以及关闭不用的外设的时钟,可调节功耗。

在所有这些方法中,除了关机之外,安全功率监测欠压复位 (BOR)和 IWDG 可保持激活,以保证能够安全运行。

AN4621 中提供了更多详细内容。

2.1.1 低功耗运行和低功耗睡眠模式

除了那些能在 STM32Fx 系列产品上实现的模式 (睡眠,停止和待机)外,有两种低功耗活动模式可在 STM32L4 系列产品上使用,它们是低功耗运行和低功耗睡眠。

它们为应用提供了具有极低电流消耗的运行和睡眠模式功能,这种情形下一些外设不能关闭,或者 CPU 持续低速工作以使电流变化最小。

已经实现了多种功能来降低电流消耗:

- 内核逻辑由低功耗稳压器供电,以降低静态电流;
- 在低功耗睡眠模式下,可关闭闪存(掉电模式和时钟门控)。当处理器从SRAM1或 SRAM2执行时,它还可在低功耗运行模式下关闭;
- 系统时钟频率最大限于 2 MHz。可选择 MSI 内部 RC 振荡器, 因为它支持多种频率范围, 低功耗睡眠闪存关闭时 MCU 总消耗很小, 在 100 kHz 可低至 18 μA。

批采集子模式(BAM)

STM32L4 微控制器支持功率高效批采集子模式 (BAM), 其中数据利用通信外设传输,器件其他部分处于低功耗模式。

这可通过利用以下配置进入睡眠或低功耗睡眠模式来实现:

- 睡眠 (或低功耗睡眠)模式下,仅 DMA、通信外设和 SRAM1 或 SRAM2 时钟使能;
- 睡眠 (或低功耗睡眠)模式下闪存关闭:闪存掉电,且闪存时钟门控关闭;
- 如果系统时钟可限制于 2 MHz 内,则主稳压器关闭 (以进入低功耗睡眠)。

低功耗睡眠模式下, I2C 和 USART/LPUART 外设仍然可由 16 MHz HSI 提供时钟。这允许支持 BAM,且 I2C 或 USART 速度可达 1 Mbps。

2.1.2 停止模式

STM32L4 系列产品实现了两个停止模式,具有完全 SRAM 和外设保持能力,并且由于使用了高达 48 MHz 的 MSI,能够在 4 µs 内唤醒。

在这些停止模式下,所有高速振荡器(HSE, MSI, HSI)都停止,而低速振荡器(LSE, LSI)可保持活动。外设可设置为活动的,需要时可使用 HSI 时钟,能够在一些特定事件(如 UART 字符接收或 I2C 地址识别)下唤醒设备。

Stop2 模式可实现专门机制,使保持电流尽可能低,同时允许非常快速的唤醒,从 SRAM 唤醒需要 5 µs,或从闪存唤醒需要 8 µs。

2.1.3 待机模式

待机模式下, BOR 始终使能,这保证了在供电电压低于所选功能阈值时器件处于复位。

默认待机模式下 SRAM 内容丢失。但是,可以保持 SRAM2 的内容 (有 230 nA 的额外电流消耗)。

在待机模式下可在每个 I/O 上独立地施加上拉和下拉,这能够保持外部器件配置。

借助某一个(共五个)唤醒引脚、复位引脚或独立看门狗,能够从该模式唤醒。由低速振荡器(LSE或 LSI)定时的 RTC 在此模式下也是起作用的,具有唤醒功能。

2.1.4 关机模式

在 STM32L4xx 器件上实现了新的关机模式,以延长电池供电应用中的电池寿命。

通过关闭内部稳压器,以及禁用耗电监控,该模式可实现最低电流消耗 (3 V 时消耗为 60 nA)。借助某一个 (共五个)唤醒引脚或复位引脚,能够从该模式唤醒。由低速外部振荡器 (LSE)定时的 RTC 在此模式下也是起作用的,具有唤醒功能。

2.2 运行模式功耗

图 2, 摘自 [2]., 给出了 STM32L476 在 25 °C 时对于不同 CPU 频率的典型电流消耗值,此时在 3.0 V 供电下运行 Fibonacci 算法:

此曲线可转化为功率效率,将其除以电流消耗、乘以 V_{DD} 得到该 CPU 频率下的功率图,见图 3。

在运行 Range 2 的最大频率 26 MHz 时可得到最佳效率。

低功耗模式选择方法 3

考虑一个简化的应用模型,其中应用每个 Tperiod 唤醒一次,始终执行一些相同操作并将指 令数视为常数 (无等待循环,无数据依赖)。这样我们可作如下近似:

- PROCESS 阶段持续时间 (Tprocess) 可由每个周期要执行的循环次数 (NOC) 来定 义。将 F_{CLK} 定义为 CPU 系统时钟频率, PROCESS 阶段的持续时间等于 Tprocess = NOC / F_{CLK}。此阶段的平均电流消耗等于 Iprocess。
- INACTIVE 阶段持续时间为 Tperiod Tprocess, 其平均电流消耗为 linactive。

要得到平均电流消耗,我们必须将 PROCESS 阶段和 INACTIVE 阶段的消耗加合起来。

$$laverage = Iprocess \times \frac{Tprocess}{Tperiod} + linactive \times \frac{Tperiod - Tprocess}{Tperiod}$$

PROCESS 阶段持续时间与要执行的循环次数 (在我们的示例中为常数)成比例:

$$laverage = linactive + (lprocess - linactive) \times \frac{NOC}{F_{CLK} \times Tperiod}$$

值 NOC/(FCIK x Tperiod) 通常称为占空比。

该模型不考虑从 INACTIVE 到 PROCESS 阶段转换过程中的功耗,该转换在*第 3.5 节:转* 换的影响中描述。

需要选择两个参数来优化平均功耗:

- 将要用于 PROCESS 阶段的运行模式和时钟频率。
- 将要用于 INACTIVE 阶段的低功耗模式。

3.1 PROCESS 阶段

根据处理要求 (DMIPS), 我们可以使用下列不同运行模式中的某一种:

- Run1: 具有 Range 1 电压的运行模式,在 80 MHz 运行时最大可达 100 DMIPS。
- Run2: 具有 Range 2 电压的运行模式,在 26 MHz 运行时最大可达 32.5 DMIPS。
- LP 运行: 低功耗运行模式,在 2 MHz 运行时最大可达 2.5 DMIPS。

选择频率时另一个需要考虑的参数是支持相关外设(如果有的话)的能力。

3.2 INACTIVE 阶段

STM32L4 系列产品提供了可用于 INACTIVE 阶段的不同低功耗模式:

- 睡眠或低功耗 (LP) 睡眠
- Stop 1 (具有稳压器,处于低功耗模式)
- Stop 2
- 待机 (具有 RTC 和 SRAM2 保持)
- 关机(具有RTC)

根据唤醒源和睡眠周期持续时间,可选择下述某一种模式:

- 睡眠或 LP 睡眠:如果反应性是关键参数 (这种情况下唤醒时间仅为 6 个系统时钟周期)。
- Stop 1: 如果有多个外设需保持唤醒且系统有多种唤醒源,包括 USB 挂起 (这种情况下应用必须能够容许约 6.3 μs 的从闪存唤醒的时间)。
- Stop 2: 如果有少数外设需保持唤醒且能产生唤醒事件如 LPUART 接收, LPTIM1 或 I²C 从设备地址识别 (这种情况下应用必须能够容许约 8.2 μs 的从闪存唤醒的时间)。
- 待机:如果除了RTC外无其他外设需要保持唤醒,以及需要 32 字节的数据保持时 (这种情况下应用必须能够容许约 14 μs 的从闪存唤醒的时间)。注意,这种模式下LPUART 和 I2C 能够非常快速地唤醒系统,这样不会发生信息丢失。
- 关机:如果只有 RTC 和备份寄存需要保持唤醒 (这种模式下应用必须容许约 256 μs 的 唤醒时间)。

注: 唤醒时间取决于代码位置 (闪存或 SRAM1)、系统时钟源和频率,详细情况请参考 [3].。上述从停止唤醒的图形对应于 24 MHz 时的 MSI 且代码在闪存中。

3.3 睡眠模式选择

下面的数值结果基于来自 STM32L476xx 数据手册 [3]. 的典型规格参数: 25 °C (典型值)下,使用 32.768 kHz 晶体 LSE 振荡器且 RTC 始终激活。

如前面章节所示,使用运行 Range 2 模式在 24 MHz (几乎是最大频率,以 MSI 作为时钟源)时可获得最佳功率效率。

图 5 给出了对于不同的低功耗模式选择(低功耗睡眠, Stop 1, Stop 2, 待机且具有 RTC 和 SRAM2 保持,或关机),且 RTC 处于 INACTIVE 阶段的理论功耗,它是 PROCESS 阶段所需的平均处理周期数的函数,假设唤醒周期为 1 秒。

供最佳性能。它还显示了,当占空比增加(> 1Mega 周期每秒)时, Stop 2 可具有与待机 几乎相同的结果。

יארובינונייונון ניטי

丢弃了关机模式 (虚线), 因为对这类应用它不能提供足够的数据保持能力。

但是低功耗模式的选择不只是由总体功耗决定的,还与连接到该应用的其他唤醒考虑有关。 **图** 5 还显示出 STM32L4 系列产品 Stop 2 模式非常接近待机低功耗模式,同时提供了更强大、更简单的唤醒设置。

3.4 运行模式选择影响

在 INACTIVE 阶段使用待机模式时,图 6显示了 PROCESS 阶段中所采用的运行模式对平均功耗的影响。

图 6对应于 PROCESS 阶段中 10 Kcycle 操作。不同的三条线段对应于 LP 运行 (左图部分)、运行 Range 2 (中部)和运行 Range 1 (右部)。

图 6证明,运行 Range 2在 26 MHz 时提供最佳性能。但是,由于存在三种运行模式,STM32L4系列产品在 1 MHz 至 80 MHz 内性能非常类似。对于其他的循环次数 (从 100 至 10M)也进行了仿真其他周期,它们给出了相同的最优点。

3.5 转换的影响

在不考虑转换阶段中消耗的能量时(唤醒和不活动阶段)进行此研究。

得益于其内置无电容稳压器,当电压关断且器件需要唤醒时, STM32L4 系列产品仅需要极低电流来重载其内部结点。

根据 [3]., $V_{DD} = 3.0 \text{ V}$ 时,离开低功耗模式所消耗的能量约为:

- 32 nJ, 对于从 Stop 1 (具有 LPR) 到运行 Range 2 的转换。
- 50 nJ, 对于从 Stop 2 到运行模式 Range 2 的转换。
- 100 nJ,对于从待机到运行模式 Range 1 的转换,在 4 MHz 下使用 MSI。
- 460 nJ,对于从关机到运行模式 Range 1 的转换。

要将转换过程中的能量消耗计入总体消耗中,我们需要考虑系统唤醒周期。

下表给出了根据 Tperiod 和 PROCESS 阶段的平均循环次数对总体电流消耗的估计,其中 Stop 2 和待机均是 SRAM2 为保持模式。

収 ・ 大性化 主/ リケルにリポバー									
-	Tperiod								
每秒循环次数	1 ms	5 ms	10 ms	50 ms	100 ms	500 ms	1 s	5 s	10 s
1000			4.40	1.68	1.34	1.07	1.03	1.01	1.00
10k	36.02	8.82	5.42	2.70	2.36	2.08	2.05	2.02	2.02
100k	46.17	18.97	15.57	12.85	12.51	12.24	12.21	12.18	12.17
1M	148	121	117	114	114	114	114	114	114
10M	1163	1135	1136	1133	1130	1129	1129	1129	1129

表 1. 唤醒能量对待机的影响(1)

表 2. 唤醒能量对 Stop 2 的影响⁽¹⁾

水 2. 小田田主/1 000 2 HJ水(円)									
-		Tperiod							
每秒循环次数	1 ms	5 ms	10 ms	50 ms	100 ms	500 ms	1 s	5 s	10 s
1000			3.42	2.11	1.95	1.82	1.80	1.79	1.78
10k	19.20	6.08	4.44	3.13	2.96	2.83	2.81	2.80	2.80
100k	29.35	16.23	14.59	13.28	13.11	12.98	12.97	12.95	12.95
1M	131	118	116	115	115	114	114	114	114
10M	1146	1133	1131	1130	1130	1130	1130	1130	1130

^{1.} 所有数值均以 µA 为单位。条件: 典型值, 25°C, 3.0 V。

^{1.} 所有数值均以 μA 为单位。条件: 典型值, 25 °C, 3.0 V。

图 7给出了表 1和表 2之间的比值:

注: 当温度提高时,待机的优势明显了,例如交叉点在 25 °C 时为 20 ms,但是在 85 °C 时仅为 2 ms (并且在 -20 °C 时为 70 ms)。

水平轴对应于系统唤醒周期,垂直轴对应于 Stop 2 和待机(具有 SRAM2)情况下平均功耗的比。不同的曲线,对应于 PROCESS 阶段的不同周期数。

唤醒周期小于 20 ms 时, Stop 2 比待机更令人期待。如果 PROCESS 阶段的循环次数比较高(例如 1 百万次及以上),则由于功耗主要用于 PROCESS 阶段的运行模式,待机的好处降低。

关机和待机下具有相似的功耗,交叉点在2秒范围内。

注: 此理论研究中,假设考虑了PROCESS 阶段中重载上下文的指令数量。实际实现中,从关机、待机重启,比从停止模式重启需要更多的指令。

3.6 电压和温度的影响

前面的数据是在 V_{DD} = 3.0 V 和 25 °C 结温下提供的。

PROCESS 阶段电流消耗在该电压和温度下变化非常小。 89 9 给出了 24 MHz 下运行 Range 2 值在 V_{DD} 电压和温度变化时的修正因子:

低功耗模式对电压和温度的依赖性更大。

图 10 显示了不同低功耗模式和电源电压下对功耗施加的修正因子:

5/

图 11 给出了不同低功耗模式和温度下在 1.8 V 和 3.0 V 时对功耗施加的修正因子:

45°C 以上时,可考虑一个近似:低功耗模式功耗每 17°C 翻倍。

在整个温度范围内进行了类似的理论优化分析。结论仍然是不变的。

降低电压不会明显降低 PROCESS 阶段的电流消耗 (在 1.8 V 时比在 3.0 V 时有 2 % 的增加)。不过由于下述原因,应当考虑降低电压:

- INACTIVE 阶段电流会明显降低 (对于待机模式几乎降低 30 %)。
- 由于系统消耗的功率是电流和电压的乘积,因此功耗至少会降低 40 %(1.8 V 时比 3.0 V 时)。

下面的示例中, PROCESS 阶段的功耗是总功耗的 60 %。如果电压从 3.0 V 降低至 1.8 V:

- 则电流消耗会降低 12 %
- 总功耗会降低 53 %。

3.7 获取更精确的仿真

执行任务所需的循环次数 (NOC)关于 CPU 频率是不变的,这种近似不完全正确。当 CPU 频率降低时,它会降低,因为:

- 频率降低时访问闪存所需要的等待状态数减少
- 处理器在等待循环中所花费的周期数减少。

处理周期数还依赖于低功耗模式的选择。相比于其他低功耗模式,使用待机模式且 SRAM2 保持时要花费更多的指令周期来恢复上下文。

最后,还应当考虑在激活阶段外设配置所需要的功耗。

为了帮助用户微调其应用并做出选择,意法半导体在 STM32CubeMX 中提供了一个功耗计算器 (Power Consumption Calculator, PCC) 模块,它可以免费从 http://www.st.com/stm32cube 下载。

PCC 可精确计算一个复杂处理序列的平均和峰值功耗,并根据不同的处理阶段来帮助选择合适的模式。

下面对 PCC 工具的截图对应于有 10 K 指令的 PROCESS 阶段,与 ULPBench™ 类似,采用待机和运行 Range 2 模式在 24 MHz 时执行序列。它使我们能够考虑从待机到运行 Range 1 然后到运行 Range 2 的转换。

PCC 工具接口提供了:

- 一个表格,显示每个处理步骤的配置参数
- 一张图表,显示每个阶段对总体功耗的贡献。

ULPBench™ 用例优化 AN4746

4 ULPBench™ 用例优化

4.1 应用约束条件

ULPBench™ 规定了下列约束条件:

- 该应用每秒唤醒一次,基于精确RTC在一组数据上执行某些操作。
- 从一个处理周期到下一个处理周期时,数据需要保持。这要求在 INACTIVE 阶段中能够保持数据。
- 利用编译器最强优化选项进行编译时,应用所需的处理周期数约为每秒 10000 周期。

对于系统反应性没有特别的约束,这样能够服务外部事件或 RTC 周期中断。

4.2 PROCESS 阶段优化

由于计算载荷相当小 (在 10 Kcycle 每秒的范围内),三种运行模式的任意一种都可在一秒时间限制内执行 PROCESS 阶段,频率降至 10 kHz。同样地,对于最大峰值电流无特殊限制,因此对可用的最大时钟频率也没有限制。

由于在实时性方面没有限制 (服务 ISR 时具有最小延迟),因此我们不必选择非常快的时钟或唤醒时间。

因此我们可以利用在运行 Range 2 下 24 MHz 时 (使用内部 MSI) 所对应的功耗最优点。 当使用 MSI 在 24 MHz 额定频率时,使用 PLL 比使用其他解决方案消耗 (的能量)更少,可达到运行 range 2 的 26 MHz 限制。

注: 在 Range 2 模式下,预计在 24 MHz、 16 MHz 甚至 12 MHz 时效率图几乎是相同的。

4.3 INACTIVE 阶段优化

ULPBench™ 基准要求从一次运行到下一次运行时能够保持数据变量无变化。因此,不可使用关机模式,因为它不能为该应用提供足够的数据保持能力。

最节能的解决方案是使用待机模式并且具有 RTC、在 SRAM2 中可保持 (数据)。

4.4 STM32L476xx 测量结果

图 14 给出了 ULPBench™ 得分,测量取决于 PROCESS 阶段所用的运行模式和系统时钟频 率。对于 INACTIVE 阶段,使用了待机模式,且 SRAM2 可保持并具有 RTC。

给出了不同时钟配置下的结果:

- 频率低于 48 MHz 时,使用 MSI。这是因为从待机唤醒时 MSI 可自动启动。
- 频率大于 48 MHz 时, 使用 HSI (为 16 MHz) 和 PLL。由于我们需要使用 PLL 并等待直 至它锁定,因此最好使用 16 MHz 的 HSI (精确度更好)。这种情况下,当 PLL 开始时 MSI 停止。
- 使用 16 MHz 的 HSI 时会有一个特殊点, 无任何 PLL。
- 注: 频率小于或等于 2 MHz 时,使用 LP 运行模式,而在 2 MHz 至 24 MHz 范围内,使用 Range 2, 频率大于 24 MHz 时使用 range 1。

在理论研究中已经看到,运行 Range 2 下在 24 MHz 和 16 MHz 时,使用 MSI 会有最佳结 果。

ULPBench™ 用例优化 AN4746

4.5 电压范围内的性能演变

EEMBC 仅定义了 3.0 V 时的 ULPBench™,但是此电压对于低功耗应用所用的电池不是很有代表性。如理论研究中所说明的那样,与具有 DC/DC 转换器的系统不同,相比于 3.0 V 的电压,当电压变低时功耗会明显增加。

图 15 显示了 ULPBench™ 等效得分测量,这是在不同电压下利用相同公式计算得出的:

上述曲线对应于运行 Range 2 下 24MHz MSI 模式,它清晰地显示出电压降低所带来的优势。

4.6 峰值电流性能

这类具有极低平均功耗的应用可能具有很高的峰值电流。频率越高,电流峰值越高。它会成为 PROCESS 阶段中所用频率和工作模式选择的主要参数。

图 16 显示了峰值电流的测量结果,为 ULPBench™ 得分的函数。

上面的测量在 Nucleo-L476RG 板上进行,假设频率低于 48 MHz 时阻抗源为 200 Ω 的,而 频率高于 48 MHz 时为 100 Ω 。如果源阻抗变低,峰值电流会增加,直到相应的运行模式最大值。

注: 来自电池系统的峰值电流很大程度上依赖于电池内部电阻和 PCB 上的去耦电容。老化的电 池或极端温度条件会使该电阻明显增加,使峰值因素成为最优模式选择的决定性因素。

降低峰值电流的一个简单方法是增加输入去耦电容。在 Nucleo-L476RG 板上,考虑到 PCB 尺寸和材料成本,可使用最大 4.7μF 的箱式电容。

结论 AN4746

5 结论

28/30

STM32L4系列产品为各种应用优化性能和功耗提供了多种选择。

基于实验和定量结果,本文档提供了相关指南,帮助根据终端用户应用的特点和约束条件,快速选择最佳运行模式和低功耗模式。

ULPBench™ 基准^(a) 的情况下,唤醒周期为 1 秒,处理载荷约为 10 Kcycle 每秒时,最佳选择是在 INACTIVE 阶段使用待机低功耗模式,在 PROCESS 阶段使用运行 Range 2 模式且频率为 24 MHz(来自 MSI)。 range 1 中 80 MHz 范围内的其他频率也能给出很好的结果。

对于实际应用,根据唤醒周期,可使用下面的准则:

- 如果唤醒周期长于几十 ms,则使用待机模式实现,可具有更好的功耗性能。
- 如果唤醒周期较短,则使用 Stop 2 的实现将有更好的结果。
- 如果温度较高,则最好使用待机模式。

低功耗模式的选择不仅依赖于功耗,还与唤醒时间要求 (系统反应性)和数据保持要求有关。

对于 STM32L4 系列产品,如果操作可适应低于 24 MHz 的频率,则最优点为 (会降低功率效率):

- 待机模式:如果唤醒转换时间长于 20 μs,而保留区很小,可至 32 KB。
- Stop 2: 如果唤醒转换时间长于 8 μs, 而应用需要大于 32 KB 的保留

第二种情况下的功耗代价比第一种少了 1.8 倍。

任意情况下,降低 V_{DD} 电压都会明显提高功耗。

最后,如果唤醒周期长于几秒且无需保留内存,则关机模式下会有最好的功耗性能。这种情况下唤醒时间典型值为 256 µs。

为了帮助用户微调其应用并做出选择,意法半导体在 STM32CubeMX 中提供了一个功耗计算器 (PCC) 模块,它可以免费从 http://www.st.com/stm32cube 下载。

DocID028138 Rev 1 [English Rev 1]

a. 此应用笔记使用了此后改进的 ULPBench™ 结果,请参考存储在 http://www.eembc.org (搜索 ULPBench™)上的官方得分。

AN4746 版本历史

6 版本历史

表 3. 文档版本历史

日期	版本	变更
2015年9月16日	1	初始版本。

表 4. 中文文档版本历史

日期	版本	变更
2015年12月18日	1	中文初始版本。

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对 ST 产品和 / 或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。 ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定,将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利 2015

