Course:- FOUNDATIONS OF ARTIFICIAL INTELLIGENCE
Tutor- Niyazi Sorkunlu.
Author- Rishabh Manish Sahlot(rs3655@rit.edu)

Assumptions

Assuming minimum time required to speed up to maximum speed from rest is 1 second. So maximum net acceleration (after considering air viscosity and friction) (a_{max}) is $\frac{v_{max}-u}{t} = \frac{v_{max}-0}{1} = \frac{v_{max}}{1}$ and hence maximum force (F_{max}) the person with mass m can exert is m $a_{max} = \frac{m \ v_{max}}{1}$.

For all purposes, we assume we are supplying a maximum force, until v_{max} is reached, or until net forces cancel out. We assume that water viscosity is not changing with temperature and only consider a constant swimming speed. We assume that the wind speed in different weathers do not affect the speed of the runner. We assume that the orienteer is not a mountain-climber. We don't assume the effect of buoyancy on the orienteer in case of walking in water. We consider height of a water body will be constant. Also there is no snow accumulation in winter and no rains in any season.

Calculations

Average sprinting speed is 20-30 km/hr (Source1), selecting 25 km/hr which is 6.94 m/sec. Therefore, maximum acceleration is 6.94 m/s^2 Average swimming speed of a human is $2 \text{ mile per hour}(\underline{\text{Source2}})$ i.e. 0.89 m/s.

Let $F = m a_{leg}$.

When in static equilibrium. (x & y are respective to ground surface)

$$\sum F_{v} = 0$$

Normal Force = $mg \cos \theta$.

Frictional Force = μ x Normal Force = μ x (mg cos θ).

 $\sum F_x = 0$ (Adding fake force for accelerating frame of reference)

 $mg \sin \theta$ + Net Force = Frictional Force

mg sin θ + m a _{net} = μ mg cos θ.

Course:- FOUNDATIONS OF ARTIFICIAL INTELLIGENCE Tutor- Niyazi Sorkunlu. Author- Rishabh Manish Sahlot(rs3655@rit.edu)

 $g \sin \theta + a_{net} = \mu (g \cos \theta)$ $a_{net} = g (\mu \cos \theta - \sin \theta). ... (1)$

(Here a net would be just enough to maintain constant velocity)

To avoid slipping condition let net torque about ankle equal to 0. (Consider height of runner a h, where center of mass is from h/2 and height of ankle = 0) Friction passes through the pivot hence has 0 effect on the torque, while pseudo force (-F_{net}) and gravity both act at center of mass of the human body.)

(mg cos $(\theta + \alpha)$) h/2 - m a _{net} sin α) h/2 =0

g cos $(\theta + \alpha)$ = a_{net} sin α

 $a_{net} = g \cos (\theta + \alpha)/\sin \alpha$

 $g(\mu \cos \theta - \sin \theta) \le g \cos (\theta + \alpha)/\sin \alpha$

 $(\mu \cos \theta - \sin \theta) \le (\cos \theta \cos \alpha - \sin \theta \sin \alpha)/\sin \alpha$

 $(\mu \cos \theta - \sin \theta) \le (\cos \theta \cot \alpha - \sin \theta)$

 $\mu \cos \theta \le \cos \theta \cot \alpha$

 $\cos \theta (\mu - \cot \alpha) \le 0$

i.e. $(\cos \theta \ge 0 \text{ and } \mu - \cot \alpha \le 0) \text{ or } (\cos \theta \le 0 \text{ and } \mu - \cot \alpha \ge 0)$

i.e. $(\cos \theta \ge 0 \text{ and } \cot^{-1} \mu \ge \alpha) \text{ or } (\cos \theta \le 0 \text{ and } \cot^{-1} \mu \le \alpha)$

suppose (for an average body, since leaning depends of mass distribution so we take minimum lean range) we take a minimum of 35° while leaning forward and minimum of 80° (i.e. $180-80 = 100^{\circ}$ from front) while leaning backward. i.e. $35^{\circ} \le \theta + \alpha \le 100^{\circ}$ i.e. $35^{\circ} - \theta \le \alpha \le 100^{\circ} - \theta$.

i.e. $(\cos \theta \ge 0 \text{ and } \cot^{-1} \mu > 35^{\circ} - \theta) \text{ or } (\cos \theta \le 0 \text{ and } \cot^{-1} \mu < 100^{\circ} - \theta)$

Also, if the above conditions are not satisfied we change to the new speed such that

 $v_{new}^2 = v_{parent/actual}^2 - 2 * distance travelled in the pixel * g * [cos (\theta + \alpha)/sin \alpha - (\mu cos \theta - sin \theta)]$

We use v_{parent} if we are in the same terrain & v_{actual} if we are going to a new terrain.

(Such that $\alpha = 35$ -theta)

In general, we assume speed α Coefficient of static friction of that terrain. We use maximum speed as the proportionality constant. 1.2 * k = 6.94, therefore k = 5.783 –we multiple this value by static coefficient to get speed in a terrain. i.e k x μ = 5.783 x μ .

Course: FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

Tutor- Niyazi Sorkunlu.

Author- Rishabh Manish Sahlot(rs3655@rit.edu)

Distance Calculations:

For each case I assume we start from the middle.

For Most Terrain types (Except those involving a forest) we take distance as the Euclidean distance, which is calculated as $(\frac{W}{2})^2 + (\frac{L}{2})^2 = (\frac{7.55}{2})^2 + (\frac{10.29}{2})^2 = 3.775^2 + 5.145^2 = 14.251 + 26.471 = 40.722$. Therefore, the answer is $\sqrt[2]{40.722} = 6.381$

For Forest Types we calculate distance considering there can be at most 4 obstructions (standing or fallen tree, shrub etc.) per pixel, one for each side. We consider that for

- 1) Easy Movement Forest the chance of that happening is $\frac{1}{4}$. So, we add $\frac{1}{4}$ of the excess distance from the normal case for an average case. (7.312)
- 2) Slow Movement Forest the chance of that happening is $\frac{1}{2}$. So, we add $\frac{1}{2}$ of the excess distance from the normal case for an average case. (8.244)
- 3) Walk Forest has 100% chance of needing to do that. (10.107)

Using Pythagoras's Theorem,

$$R^{2} = (R - \frac{W}{2})^{2} + (\frac{L}{2})^{2} = R^{2} - Rw + (\frac{W}{2})^{2} + (\frac{L}{2})^{2}$$

$$Rw = (\frac{W}{2})^2 + (\frac{L}{2})^2 = 40.722$$
 i.e. $R = \frac{40.722}{3.775} = 10.787$

Length of the arc =
$$R \tan^{-1} \left(\frac{R - \frac{W}{2}}{\frac{L}{2}} \right) = 10.787 \tan^{-1} \left(\frac{10.787 - 3.775}{5.145} \right) = 10.787 \tan^{-1} (1.362) = 10.107$$

Final distance is calculated as

 $\sum_{i=1}^{2} \sqrt{(distance_for_each_terrain_\&_pixel^2 \ x \ (no \ of \ cells \ travelled \ in \ x \ direction + no \ of \ cells \ travelled \ in \ y \ direction)^2) + \ change \ in \ height^2)}$

Course:- FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

Tutor- Niyazi Sorkunlu.

Author- Rishabh Manish Sahlot(rs3655@rit.edu)

	Static Friction Coefficient	Distance	Changes in seasons			
Terrain type	(coefficients source)		Summer	Fall	Winter	Spring
		Calculations				
Open land	0.85 (Packed & oiled gravel)	6.381				
Rough meadow	0.45 (Grass)	6.381				
Easy movement forest	0.75 (Rock Crushed)			(2)		
Slow run forest	0.75 (Rock Crushed)			(2)		
Walk forest	0.75 (Rock Crushed)			(2)		
Impassible vegetation	0.00000001 (to make in impassible)	6.381				
Lake/Swamp/Marsh	0.128	6.381			(3)	(4)
Paved road	1.2(New Sharp Portland cement)	6.381				
Footpath	0.8 (Travelled Asphalt or Tar)	6.381				
Ice Path	0.25 (Ice)	6.381			(5)	
Out of bounds	0.0000001(It should be 0 but instead we take a very small positive value)					

- (1) For lakes/swamps and marsh I have found the adjusted frictional coefficient to give speed by doing 0.89/6.94 = 0.128.
- (2) Reduce coefficient by 0.5.(Arbitrary change, since detecting speed(friction) when travelling on leaf-filled grounds is difficult).
- (3) 7 pixels of ice layer formed near the edges, so we convert it to (5)
- (4) Max of 15 pixels of water, such that it is atmost 1 m above water level, & as water level decreases, speed approaches that of μ =0.8(Since it is the most common μ). But if it is more than 1m for example a depression near the lake, we would μ =0.128(same as that of water).
 - i.e. When water level diffn. h_w less than 1 m, Speed_{muddy_water} = $5.783*(\mu_{lake}*h_w+0.8*(1-h_w))$ Otherwise, Speed_{muddy_water} = $5.783*(\mu_{lake}*h_w+0.8*(1-h_w))$