

a) Write the Markov process in matrix representation, that is, define the matrix $P \in \mathbb{R}^{3 \times 3}$ such that P_{ij} is the probability of transitioning from the node i to j.

In transition matrix, the left var represents the probabilities of transitioning from state 4 to 1,2,3. The 2nd var from state 2 to 1,2,3. And the 3rd var from state 3 to 1,2,3.

$$P = \begin{bmatrix}
P_{1:1} & P_{1:2} & P_{1:3} \\
P_{2:1} & P_{2:2} & P_{2:3} \\
P_{3:1} & P_{3:2} & P_{3:3}
\end{bmatrix} = \begin{bmatrix}
0.2 & 0.7 & 0.1 \\
0.2 & 0.5 & 0.3 \\
0.2 & 0.4 & 0.4
\end{bmatrix}$$

b) Compute theoretically the mean arrival time to the absorbing state and compare it with part a. To do so, notice that if T_i denotes the random variable associated to the arrival time starting from $X_0 = i$, then

$$\mu_i = 1 + \sum_{j=1}^{3} p_{ij} \mu_j, \tag{1}$$

with $\mu_i = \mathbb{E}[T_i]$. This is a linear system of equations that you can solve. Notice $T_3 = 0$.

Given our transition matrix P m mill set up and solve a system or equations to find M_1 and M_2 . Given $M_1 = 1 + \sum_{j=1}^{2} p_{ij} M_j$. Note that $M_2 = 0$ as state 3 is the absorbing state.

For
$$M_1$$
: $M_1 = 1 + (p_1, M_1) + (p_{12}M_2) + (p_{13}M_3)$
= $1 + (0.2 \cdot M_1) + (0.7 \cdot M_2) + (0.1 \cdot 0)$

For
$$M_2$$
: $M_2 = 1 + (p_2, M_1) + (p_2, M_2) + (p_2, M_3)$
= $1 + (0.2 M_1) + (0.5 M_2) + (0.3.0)$

so no get a system of equations:

$$M_1 = 1 + 0.2M_1 + 0.7M_2$$

 $M_2 = 1 + 0.2M_1 + 0.5M_2$

Combining like terms and rearranging no get.

WE WILL FIRST SOLVE (2) For M2

$$0.5M_2 = 1 + 0.2M_1$$
 $M_2 = \frac{1 + 0.2M_1}{0.5}$

Thun plug M_z into $0:0.8M_1-0.7\left(\frac{1+0.2M_1}{0.5}\right)=1$ $0.8M_1-1.4\left(1+0.2M_1\right)=1$ $0.8M_1-1.4-0.28M_1=1$ $0.52M_1=2.4$ $M_1\approx 4.415$

Now ping
$$M_1$$
 into M_2 to solve for M_2 : $M_2 = 1 + 0.2 [4.015) \approx 3.846$

And so me get $M_1 \approx 4.615$ and $M_2 \approx 3.846$. We observe that the theoretical mean arrival times are consistent with the simulation results no detained in parta. Thus, confirming the accuracy of any simulation.