Risk Management

Risk Definition

 Definition of Risk: 'an uncertain event or condition that, if it occurs has a positive or negative effect on a project's objectives'.

Risk Definition (cont'd)

 Risk definition: 'the chance of exposure to the adverse consequences of future events'.

Risk Key Elements

It involves a cause and an effect.

- Causes:

- The use of untrained staff.
- Poor specifications.
- An inaccurate estimate of effort.

- Effects:

- Cost over run.
- Low productivity.

Boundaries of Risk Management

 Every plan is based on <u>assumptions</u> and risk

management tries to plan for and control the situations where those assumptions become incorrect.

Risk planning is carried out at steps: 3
6

Risk Categories

- Project Risks: are risks that could prevent the achievement of the objectives given to the project manager and the project team.
- These objectives are formulated toward achieving project success.
- Project success factors:
 - On time.
 - Within budget.
 - Required functionality.
 - Quality.
- Project risks can be classified under these four categories.

Risk Categories (cont'd)

A different way to categorize risks:

 A sociotechnical model proposed by Kalle Lyytinen and his colleagues

Risk Categories (cont'd)

 Actors: refers to all people involved in the development of the application.

Risk:

- A high staff turnover, leads to expertise of value to the project being lost.
- Technology: encompasses both the technology:
 - Used to implement the application and
 - That embedded in the delivered products.

• Risk:

- Relating to the appropriateness of the technology and
- The possible faults in it.

Risk Categories (cont'd)

• **Structure:** describes the management structures and systems, including those affecting planning and control.

• Risk:

- Responsibility for managing the users involvement at the implementation stage might not be clearly allocated.
- Tasks: relates to the work planned.

• Risk:

• The complexity of work might lead to delays because of the additional time required integrate the large number of components.

- All boxes are interlinked.Why?
- Risks often arise from the relationships between factors.
- Example: between technology

and people: If the development technology is novel, and the developers are not experience in its use this could lead to delay of the results.

Risk Framework

Planning for risk includes these steps:

- 1. Risk identification.
- 2. Risk analysis and prioritization.
- 3. Risk planning.
- 4. Risk monitoring.
- When risks are identified, plans can be made to reduce or remove their effects.
- The plans are reassessed to ensure:
 - That the original risks are reduced sufficiently and
 - No new risks are inadvertently introduced.

Risk Identification

The two main approaches to identify risk are:

- The use of checklists.
- Brainstorming.

Checklists: are lists of the risks that have been found to occur regularly in software development projects.

- Those checklists often suggest some potential countermeasures for each risk.
- A group of representatives for a project examines a checklist identifying risks applicable to their project.
- PRINCE2, recommends that after completing a project, all the problems that were identified as risks during the project to be added to an organizational risk checklist to be used with new projects.

Software Project Risk Checklist

	V	a	m	n	
2000					

Risk	Risk reduction techniques		
Personnel shortfalls	Staffing with top talent; job matching; teambuilding; training and career development; early scheduling of key personnel		
Unrealistic time and cost estimates	Multiple estimation techniques; design to cost; incremental development; recording and analysis of past projects; standardization of methods		
Developing the wrong software functions	Improved software evaluation; formal specification methods; user surveys; prototyping; early user manuals		
Developing the wrong user interface	Prototyping; task analysis; user involvement		
Gold plating	Requirements scrubbing; prototyping; cost-benefit analysis; design to cost		
Late changes to requirements	Stringent change control procedures; high change threshold; incremental development (deferring changes		
Shortfalls in externally supplied components	Benchmarking; inspections; formal specifications; contractual agreements; quality assurance procedures and certification		
Shortfalls in externally performed tasks	Quality assurance procedures; competitive design or prototyping; contract incentives		
Real-time performance shortfalls	Simulation; benchmarking; prototyping; tuning; technica analysis		
Development technically too difficult	Technical analysis; cost-benefit analysis; prototyping; staff training and development		

Risk Identification (cont'd)

Brainstorming (thinking ahead):

Representatives of the main stakeholders of the project, are brought together, in order to use their individual knowledge of different parts of the project

→ to identify the problems that can occur (identify risks).

Risk Assessment (Risk analysis and prioritization)

In order to prioritize the risks that were identified, we need a way to distinguish:

• The likely and damaging risks from those identified in the previous step "risk identification".

One way of doing so is to calculate the <u>risk</u> <u>exposure</u> for each risk identified, using the following formula:

Risk Exposure (RE)= (potential damage)
×(probability of occurrence)

Ways of assessing the potential damage and probability of occurrence:

1. In money values and probabilities.

Say a project depended on a data center vulnerable to fire. It might be estimated that if fire occurred a new computer configuration could be established for \$500,000. it might also be estimated that there is a 1 in 1000 chance that a fire will occur.

The risk exposure (RE) in this case would be:

500,000 *0.001=\$500

*The higher the RE, the more attention or priority is given to the risk

Example (True or False):

A risk that has a potential damage of \$40,000 and a probability of occurrence of 12% will be given a higher priority than a risk having a potential damage of \$35,000 and a likelihood of 14%.

False

Risk Exposure = potential damage * probability of occurrence (likelihood)

Risk Exposure for risk1= 40,000 *0.12=\$4800

Risk Exposure for risk1= 35,000 *0.14= \$4900 this risk exposure is higher so it will be given more priority.

2. Relative scales from 0 to 10.

 Both risk loss (damage) and the likelihood (probability of occurrence) will be assessed using relative scales from 0 to 10.

• Then they will be multiplied together to get a notional risk exposure (RE).

Risk Exposure (RE)

Ref	Hazard	Likelihood	Impact	Risk	
R1	Changes to requirements specification during coding	8	8	64	
R2	Specification takes longer than expected	3	7	21	
R3	Significant staff sickness affecting critical path activities	5	7	35	
R4	Significant staff sickness affecting non-critical activities	10	3	30	
R5	Module coding takes longer than expected	4	5	20	
R6	Module testing demonstrates errors or deficiencies in design	4	8	32	

Risk in the table refers to the Risk Exposure (RE)

3. Qualitative descriptors.

Another approach is to use qualitative descriptions of the possible impact and the likelihood of each risk.

Qualitative Descriptors

Probability level	Range
High	Greater than 50% chance of happening
Significant	30-50% chance of happening
Moderate	10-29% chance of happening
Low	Less than 10% chance of happening

Qualitative descriptors for the "risk probability " and associated range values.

Impact level	Range	
High	More than 30% above budgeted expenditure	
Significant	20 to 29% above budgeted expenditure	
Moderate	10 to 19% above budgeted expenditure	
Low	Within 10% of budgeted expenditure.	

Qualitative descriptors of "impact on cost" and associated range values.

- Consider R5, which refers to that coding the module would take longer than planned. This risk has an impact on what?
 - Time (the planned completion date) and cost.
- What could be a response to such risk?
 - Option: Add software developers and split the remaining work between them.
 - This may increase the cost but will save the planned completion date.
 - Option: reduce time spent on software testing.
 - This will save both duration and staff costs but the price could be decreased quality in the project deliverable.

- The risk exposure cannot be calculated by multiplying the two factors when you are using <u>qualitative descriptors</u>.
- **The risk exposure** instead is indicated by the position of the risk in a matrix.
- The matrices used are called <u>probability impact grids</u> or <u>summary risk profiles</u>.
- Part of the matrix (some of the cells) is zoned off by a tolerance line.
- Risks appearing in that zone are given more attention than other risks (higher degree of seriousness).

Probability Impact Grid

Risk Planning

After:

- The major risks are identified and
- Prioritized.
- The task becomes "how to deal with them".
- The choices for dealing with them are:
- Risk acceptance.
- Risk avoidance.
- Risk reduction and mitigation.
- Risk transfer.

Risk Acceptance:

- This is deciding to do nothing about the risk. This means you will accept its consequences. Why?
- In order to concentrate on the more likely or damaging risks.
- The damage that those risks could cause would be less than the costs needed to act towards reducing their probability of occurrence.

Risk Avoidance:

- Some activities are so prone to accident that it is best to avoid them altogether.
- Example to avoid all the problems associated with developing software solutions from scratch, a solution could be to:
- Buy an off-the-shelf product.

- Risk Reduction and Mitigation:
- Risk Reduction: attempts to reduce the <u>likelihood</u> of the risk occurring.
 - e.g. **consider the following risk:** developers leaving a

company in the middle of a project for a better paid job.

In order to reduce the probability of such a risk occurring:

the developers could be promised to be paid generous bonuses on successful completion of the project.

 Risk Mitigation: is the action taken to ensure that the <u>impact</u> of the risk is reduced when it occurs.

Taking regular backups of data storage, is it a risk mitigation measure or a risk reduction measure?

Since it would reduce the <u>impact</u> of data corruption not its <u>likelihood</u> of happening, in this sense it is <u>a data mitigation</u> measure.

Risk Transfer:

- In this case the risk is transferred to another person or organization.
- Example: a software development task is outsourced for a fixed fee.
- Another example is when you buy insurance(e.g. for a car).

Risk Management

Contingency Plans:

- Although risk reduction measures try to reduce the probability or the likelihood of risks, they still could happen.
- Contingency plan is a planned action to be carried out if a risk materializes (occurs).

Example:

Consider the following risk:

Staff absence through illness.

One risk reduction measure taken:

- Employers will encourage their employees to live a healthy lifestyle.
- **Still,** any of the staff members can get sick by a flu.
- Such risks that will happen eventually no matter what

precautions can be taken to reduce their likelihood need a **contingency plan**.

A contingency plan in this case can be:

- To get other team members to cover on urgent tasks.
- What are the factors that will allow the above action to be worthwhile?
 - Intermediate steps were well documented.
 - There is a standard methodology for the way that work was carried out for the activity.
- Which one of the recommended approaches in the extreme programming would provide an alternative way to deal with

the problem of a team member being ill?

Pair programming.

Deciding on the risk actions:

- For each risk you will have a set of countermeasures or risk reduction actions.
- These risk reduction measures should be <u>cost-effective</u>.
- The cost effectiveness of a risk reduction action can be assessed by the risk reduction leverage (RRL).
- The risk reduction action with a RRL above 1 is worthwhile.

RRL= (RE before - RE after)/cost of risk reduction.

Say a project depended on a data center vulnerable to fire. It might be estimated that if fire occurred a new computer configuration could be established for \$500,000. it might also be estimated that there is a 1% chance that a fire will occur. Installing fire alarms at a cost of \$500 would reduce the chance of fire to 0.5%.

- Will the action of installing alarms be worthwhile.
- We will calculate the RRL for this action and then decide.
- RE = (potential damage) ×(probability of occurrence)
- RE before = \$500,000 * 0.01 = \$2000
- RE after= \$500,000 * 0.005 = \$1000
- Cost of risk reduction = \$500 (cost of installing the fire alarms)
- RRL= (2000-1000) / 500 = 2
- Since RRL value > 1 then the action is worthwhile.

Creating and maintaining the risk register:

- A risk register: it contains the findings of project planners of what appear to be the most threatening risks to the project.
- After work starts on a project more risks will appear and will be added to the register.
- Risk registers are reviewed and updated regularly.