

Теория вероятности и математическая статистика

Многомерный статистический анализ. Линейная регрессия

На этом уроке мы изучим:

- 1. Для чего применяют многомерный анализ
- 2. Что такое линейная регрессия
- 3. Коэффициент детерминации
- 4. F-критерий Фишера
- 5. t-статистика Стьюдента

Недостатки корреляционного анализа : нет интерсепта не знаем угла наклона прямой

GeekBrains

Линейная регрессия описывает связь признаков (причина) с результатом (следствие).

Площадь	Цена
27	1.2
37	1.6
42	1.8
48	1.8
54	2.5
56	2.6
77	3
80	3.3

Линейная регрессия

Если признак один, то такая линейная регрессия называется парной. Она описывает связь признака **х** с результирующим признаком **у**.

$$y = a + bx$$

y	=	3	+	2	Ϋ́
---	---	---	---	---	----

X	Y
0	3
1	5
2	7
3	9

$$y = 3 + 3*x$$

X	Y
0	3
1	6
2	9
3	12

```
import matplotlib.pyplot as plt
plt.scatter (X,y)
plt.show()
```


Как образуется линия y_hat?

- После того, как нашли коэффициенты β
 ,исходя из минимальной среднеквадратичной ошибки,
 получаем уравнение линейной регрессии
- 2) В это уравнение подставляем значения признака и получаем соответствующее значение у. Это оценочное значение у для тех же значений х, что были в измерениях

$$\mathbf{\hat{y}} = \beta_0 + \beta_1^* \mathbf{x}$$

Парная линейная регрессия

Предполагаем связь признаков х и у , которая описывается линейной функцией:

$$y = a + bx$$

где **а** и **b** – коэффициенты линейной регрессии.

- a показывает, где прямая пересекает ось у при x = 0
- b показывает угол наклона прямой

- 1. Набираем статистические данные (парные измерения х и у)
- 2 Предполагаем линейную связь между х и у

Теоретическое, которое мы изначально предположили

$$y = a + bx$$

- 3 Считаем коэффициенты, а и b, так, что линия проходит максимально близко к значениям (x,y)
- 4 Получаем линейную модель

$$\mathbf{\hat{y}} = \mathbf{a} + \mathbf{b}\mathbf{x}$$

GeekBrains

Формулы расчета коэффициентов **a** и **b**

*
$$b = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - (\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

*
$$a = \overline{y} - b\overline{x}$$

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$


```
In [56]: 1 X=np.array([27,37,42,48,54,56,77,80])
          2 | X
Out[56]: array([27, 37, 42, 48, 54, 56, 77, 80])
In [57]: 1 | y=np.array([1.2,1.6,1.8,1.8,2.5,2.6,3,3.3])
Out[57]: array([1.2, 1.6, 1.8, 1.8, 2.5, 2.6, 3. , 3.3])
In [59]:
         1 b= (np.mean(X^*y)-np.mean(X)^*np.mean(y))/(np.mean(X^*2)-np.mean(X)^*2)
          2 b
Out[59]: 0.03866213744447358
In [60]: 1 # 2nd way
In [61]: 1 import numpy as np
In [62]: 1 n=8
In [63]: 1 b=(n^*(np.sum(X^*y)) - (np.sum(X)^* np.sum(y)))/(n^*(np.sum(X^{**2})) - ((np.sum(X)^{**2})))
          2 b
Out[63]: 0.03866213744447358
In [64]:
          1 | a=np.mean(y)-b*np.mean(X)
Out[64]: 0.19040501698457746
          1 y_hat= 0.19+ 0.0387*X
In [65]:
          2 y_hat
Out[65]: array([1.2349, 1.6219, 1.8154, 2.0476, 2.2798, 2.3572, 3.1699, 3.286 ])
In [66]:
Out[66]:
         array([1.2, 1.6, 1.8, 1.8, 2.5, 2.6, 3., 3.3])
```

```
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(X,y)
plt.plot(X,0.19+0.0387*X)
plt.show()
```



```
1  y_hat= 0.19+ 0.0387*X
2  y_hat

array([1.2349, 1.6219, 1.8154, 2.0476, 2.2798, 2.3572, 3.1699, 3.286 ])

1  y

array([1.2, 1.6, 1.8, 1.8, 2.5, 2.6, 3. , 3.3])

1  mse=((y-y_hat)**2).sum()/n
2  mse
0.024967803750000017
```

Функция потерь- мера измерения ошибок, которая функция делает на нашем наборе данных Одна из самых распространенных функций называется средней квадратичной ошибкой

МАТРИЧНЫЙ МЕТОД ПОИСКА КОЭФФИЦИЕНТОВ

$$\mathbf{y} = \beta_0 + \beta_1^* \mathbf{x}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$$

$$\mathbf{\hat{B}} = (\mathbf{X}^{\mathsf{T}} \times \mathbf{X})^{-1} \times \mathbf{X}^{\mathsf{T}} \times \mathbf{Y}$$

```
1 ## матричный метод
    import seaborn as sns
 1 | X= X.reshape((8,1))
 2 X
array([[27],
       [37],
       [42],
       [48],
       [54],
       [56],
       [77],
       [80]])
 1 | y=y.reshape((8,1))
array([[1.2],
       [1.6],
       [1.8],
       [1.8],
       [2.5],
       [2.6],
       [3.],
       [3.3]])
```

$$y = \beta_0 + \beta_1^* x$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$$

$$\hat{\mathbf{B}} = (\mathbf{X}^\mathsf{T} * \mathbf{X})^{-1} * \mathbf{X}^\mathsf{T} * \mathbf{Y}$$

Градиентный спуск

```
1 | X=np.array([27,37,42,48,54,56,77,80])
array([27, 37, 42, 48, 54, 56, 77, 80])
1 y=np.array([1.2,1.6,1.8,1.8,2.5,2.6,3,3.3])
2 y
array([1.2, 1.6, 1.8, 1.8, 2.5, 2.6, 3., 3.3])
 1 | def mse (B1,y=y,X=X,n=8):
        return np.sum((B1*X-y)**2)/n
 1 \mid alpha = 1e-6
 2 alpha
1e-06
 1 \#mse=(1/n)*np.sum((B1*X-y)**2)
 1 \#mse p = (2/n) * np. sum((B1 *X-y) *X)
```

```
GeekBrains
```

```
1 B1=0.1
1 n=8
 1 | for i in range (10):
        B1 -=alpha*(2/n)*np.sum((B1*X-y)*X)
        print('B1={}'.format(B1))
B1=0.099643625
B1=0.09928943698428125
B1=0.09893742253186796
B1=0.09858756830414553
B1=0.09823986104435506
B1=0.09789428757709111
B1=0.0975508348078024
B1=0.09720948972229562
B1=0.09687023938624233
B1=0.0965330709446888
 1 | for i in range (100):
        B1 -=alpha*(2/n)*np.sum((B1*X-y)*X)
        if i%10==0:
            print('Iteration: {i}, B1={B1}, mse={mse}'.format(i=i, B1=B1, mse=mse (B1)))
Iteration: 0, B1=0.09619797162156898, mse=9.065656785336
Iteration: 10, B1=0.09295802461401302, mse=8.018824950239837
Iteration: 20, B1=0.08991150325539897, mse=7.093254327129224
Iteration: 30, B1=0.08704685998597309, mse=6.27489845597186
Iteration: 40, B1=0.08435323663819518, mse=5.551337967840769
Iteration: 50, B1=0.08182042327985041, mse=4.9115921085679695
Iteration: 60, B1=0.07943881951423788, mse=4.345952094816223
Iteration: 70, B1=0.07719939809074752, mse=3.845833773580402
Iteration: 80, B1=0.07509367068789481, mse=3.403647349079136
Iteration: 90, B1=0.0731136557391167, mse=3.0126822000119056
```

```
for i in range (3000):
    B1 -=alpha*(2/n)*np.sum((B1*X-y)*X)
    if i%500==0:
        print('Iteration: {i}, B1={B1}, mse={mse}'.format(i=i, B1=B1, mse=mse_(B1)))

Iteration: 0, B1=0.07125184817937577, mse=2.6670050391683473
Iteration: 500, B1=0.043278374706070176, mse=0.034094926138670725
Iteration: 1000, B1=0.04198994001494648, mse=0.028509348926302185
Iteration: 1500, B1=0.041930595795328034, mse=0.028497499424626857
Iteration: 2000, B1=0.04192786245042018, mse=0.028497474286546316
Iteration: 2500, B1=0.04192773655484964, mse=0.028497474233217256
```

0.028497474233104544

Тесноту линейной связи оценивает коэффициент корреляции r.

Чем больше по модулю коэффициент корреляции, тем сильнее связь между x и y.

Точность подобранной регрессионной модели показывает коэффициент детерминации \mathbb{R}^2

 R^2

показывает, какую часть изменчивости у описала регрессионная модель

$$R^2 = r_{xy}^2$$

$$R^2 = 0.947$$

GeekBrains

5. На этом этапе нам необходимо оценить значимость подобранной модели (т.е. подобранное уравнение линейной регрессии). Установим уровень значимости $\alpha = 0.05$

F-критерий Фишера позволяет оценить значимость модели линейной регрессии.

число измерений n= 8, число параметров p=2, $\alpha=0.05$

5.1 Находим число степеней свободы

$$df_1 = p-1 = 2-1 = 1$$

$$df_2 = n - p = 8 - 2 = 6$$

5.2 Рассчитываем объясненную (фактическую) сумму квадратных отклонений

$$SS_{\Phi} = \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2$$

5.3 Рассчитываем остаточную сумму квадратных отклонений

$$SSo = 1.35$$

SSo =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Площадь	Цена
27	1.2
37	1.6
42	1.8
48	1.8
54	2.5
56	2.6
77	3
80	3.3

5.4 Рассчитываем сумму квадратных отклонений в расчете на одну степень свободы

$$MS\varphi=SS\varphi/df1$$

 $MS\varphi=4.72 / 1=4.72$

5.5 Рассчитываем критерий Фишера F

$$Fp = MS\phi/MSo$$

 $Fp = 4.72/0.225 = 20.9$

5.6 При Fp > Fт подобранная модель считается значимой

 ${\it F}$ т зависит от df $_1$, df $_2$ и уровня значимости α (вероятность ошибочно отклонить гипотезу о том, что наша модель статистически незначимая)

$$F_{\rm T} = 5,99$$

20.9 > 5,99

Модель считается значимой на уровне значимости 0,05

n-m-1		Число независимых факторов								
	1	2	3	4	5	6	8	12	24	10
1	161,45	199,50	215,72	224,57	230,17	233,97	238,89	243,91	249,04	254,32
2	18,51	19:00	19,16	19,25	19,30	19,33	19,37	19,41	19,45	19,50
3	10.13	9,55	9,28	9,12	9,01	8,94	3,84	8,74	8,64	8.53
4	7,71	6,94	6,39	6.39	6,26	6,16	6,04	5,91	5,77	5,63
5	6,61	5,79	5,41	5,19	5,05	4,95	4,82	4,68	4,53	4,16
-6	5,99	5,84	4,76	4,53	4,39	4,28	4,15	4,00	3.84	3,67
7	5,59	4,74	4,35	4,12	3,97	3,87	3,73	3,57	3,41	3,23
8	5,32	4,46	4,07	3,84	3,69	3,58	3,44	3,28	3,12	2.93
9	5,12	4,26	3,86	3,63	3,48	3,37	3,23	3,07	2,90	2,71
10	4,96	4,10	3,71	3,48	3.33	3,22	3,07	2,91	2,74	2,54
11	4,54	3,96	3,59	3,36	3,20	3,09	2,95	2,79	2.68	2,40
12	4,75	3,88	3,49	3,26	3,11	3,00	2,85	2,69	2,50	2.30
73	2.65	7.60	2.41	3.19	3.02	7.07	2.77	2.60	2.42	221

F-критерий Фишера

Если фактическое значение F-критерия Фишера больше, чем табличное значение для данных двух степеней свобод и уровня значимости α, то уравнение регрессии признается статистически значимым.

t-статистика Стьюдента позволяет оценить значимость параметров линейной регрессии.

Итоги

- 1. Для чего применяют многомерный анализ
- 2. Что такое линейная регрессия
- 3. Коэффициент детерминации
- 4. F-критерий Фишера
- 5. t-статистика Стьюдента