11-CHEMISTRY

SOME BASIC CONCEPTS OF CHEMISTRY

- 1. Calculate the mass percent of different elements present in sodium sulphate (Na₂SO₄).
- **2**. Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.
- **3**. Calculate the amount of carbon dioxide that could be produced when
 - i) 1 mole of carbon is burnt in air.
 - ii) 1 mole of carbon is burnt in 16 g of dioxygen.
 - iii) 2 moles of carbon are burnt in 16 g of dioxygen.
- **4**. How much copper can be obtained from 100 g of copper sulphate (CuSO₄)?
- 5. In three moles of ethane (C₂H₆), calculate the following:
 - (i) Number of moles of carbon atoms.
 - (ii) Number of moles of hydrogen atoms.
 - (iii) Number of molecules of ethane.
- **6**. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:

$$N_{2(q)} + H_{2(q)} \rightarrow 2NH_{3(q)}$$

- (i) Calculate the mass of ammonia produced if 2.00 × 10³ g dinitrogen reacts with
 - 1.00 ×10³ g of dihydrogen.
- (ii) Will any of the two reactants remain unreacted?
- (iii) If yes, which one and what would be its mass?
- **7**. Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.040 (assume the density of water to be one).
- **8**. What will be the mass of one 12C atom in g?
- **9**. Calculate the number of atoms in each of the following
 - (i) 52 moles of Ar
- (ii) 52 u of He
- (iii) 52 g of He.
- **10**. Calcium carbonate reacts with aqueous HCl to give CaCl₂ and CO₂ according to the reaction, CaCO₃(s) + 2 HCl_(aq) \rightarrow CaCl_{2(aq)} + CO_{2(g)} + H2O_(l)

What mass of CaCO₃ is required to react completely with 25 mL of 0.75 M HCl?

THERMODYNAMICS

- **1**. The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are, –890.3 kJ mol⁻¹ –393.5 kJ mol⁻¹, and –285.8 kJ mol⁻¹ respectively. Enthalpy of formation of CH₄(g) will be
 - (i) -74.8 kJ mol⁻¹ (ii) -52.27 kJ mol⁻¹
 - (iii) +74.8 kJ mol⁻¹ (iv) +52.26 kJ mol⁻¹.
- **2**. In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?
- **3**. The reaction of cyanamide, NH₂CN(s), with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be -742.7 kJ mol⁻¹ at 298 K. Calculate enthalpy change for the reaction at 298 K.

- **4**.The equilibrium constant for a reaction is 10. What will be the value of ΔG^0 ? (R = 8.314 JK-1 mol-1, T = 300 K.)
- **5**. Calculate the entropy change in surroundings when 1.00 mol of H₂O(l) is formed under standard conditions. $\Delta_f H^0 = -286$ kJ mol-. Calculate $\Delta r G^0$ for conversion of oxygen to ozone, 3/2 O₂(g) \rightarrow O₃(g) at 298 K. if K_p for this conversion is 2.47 \times 10⁻²⁹.
- **6**. For an isolated system, $\Delta U = 0$, what will be ΔS ?
- 7. State II law of thermodynamics.
- **8.** When $\Delta H > 0$ and $\Delta S < 0$, reaction is never spontaneous. Explain.
- 9. State III lae of thermodynamics.
- 10. How can you justify q and w are not state functions, yet (q+w) is a state function?.
- 11. Derive an expression for the work of expansion of a gas ($w = P\Delta V$)
- **12**. Derive $\Delta H = \Delta U + \Delta ngRT$.
- 13. Define Hess's law.
- 14. Define Lattice energy.
- **15**. Predict in which of the following, entropy increases/decreases:
- (i) A liquid crystallizes into a solid.
- (ii) Temperature of a crystalline solid is raised from 0 K to 115 K.
- iii $2NaHCO_{3(s)} \rightarrow Na_2CO_{3(s)} CO_{2(g)} H_2O_{(g)}$ (iv) $H_{2(g)} \rightarrow 2H(g)$