

华中科技大学软件学院 万琳

- ① Liang-Barsky裁剪的思想
 - 2 Liang-Barsky裁剪的实例

Liang-Barsky裁剪的思想

裁剪问题:

要解决的问题: 对直线段p₁(x₁,y₁)p₂(x₂,y₂)进行裁剪

Liang-Barsky裁剪的思想

分析: I(x₁,y₁)和J(x₂,y₂)

将线段看成有方向性:外到内 内到外

Liang-Barsky裁剪的思想

分析: I(x₁,y₁)和J(x₂,y₂)

将线段看成有方向性:外到内 内到外

Liang-Barsky裁剪的思想

任意直线段 $I(X_1,Y_1)J(X_2,Y_2)$ 的参数方程:

$$x=x_1+u\cdot(x_2-x_1)$$

 $y=y_1+u\cdot(y_2-y_1)$ $0 \le u \le 1$

给定裁剪窗口:

Liang-Barsky裁剪的思想

如果任一点在窗口内则:

$$wxl \le x_1 + u \cdot (x_2 - x_1) \le wxr$$

 $wyb \le y_1 + u \cdot (y_2 - y_1) \le wyt$

$$u \cdot (x_1 - x_2) \le x_1 - wxl$$
 左边界 $u \cdot (x_2 - x_1) \le wxr - x_1$ 右边界 $u \cdot (y_1 - y_2) \le y_1 - wyb$ 下边界 $u \cdot (y_2 - y_1) \le wyt - y_1$ 上边界

$$p_1 = x_1-x_2$$
 $q_1 = x_1 - wxI$
 $p_2 = x_2-x_1$ $q_2 = wxr - x_1$
 $\Rightarrow : p_3 = y_1-y_2$ $q_3 = y_1 - wyb$
 $p_4 = y_2-y_1$ $q_4 = wyt - y_1$

$$u \cdot p_k \le q_k k = 1,2,3,4$$

Liang-Barsky裁剪的思想

u·p_k≤q_k 其中: k=1,2,3,4

- ❖ 取 "=" 时求得的u对应的是直线与窗口边界的交点
- ❖ 1、2、3、4分别对应左、右、下、上边界
- ❖ u=0和1时分别对应直线的起点和终点

那么,请问裁剪后的两端点是哪些点?

分析:裁剪的本质

 $U_{\text{one}} = \max(0, u_{k|pk<0}, u_{k|pk<0})$

 $U_{two} = \min(1, u_{k|pk>0}, u_{k|pk>0})$

例如:对于IJ

P₁、P₄小于0 U_{one}在0、u₁、u₄取大者

P₂、P₃大于0 U_{two}在1、u₂、u₃取小者

如果Uone≤ Utwo取可求得两端点

Liang-Barsky裁剪的思想

如果U_{one}> U_{two}表明什么?

Liang-Barsky裁剪的思想

如果U_{one}> U_{two}表明什么?

Liang-Barsky裁剪的思想

如果U_{one}> U_{two}表明什么?

如果U_{one}> U_{two}表明什么?

◆先离开

◆再进入

教室

如果Uone > Utwo表明什么?

Liang-Barsky裁剪的思想

特殊处理:P_K为0

Liang-Barsky裁剪的实例

实例: 试用liang-barsky算法裁剪图中的线段AB。

解:

直线段AB的参数方程为:

$$x=3+u\cdot(-2-3)$$
 $(0 \le u \le 1)$

即:

$$x=3-5u$$

y=3-4u (0 ≤ u ≤ 1)

这里:

Liang-Barsky裁剪的实例

实例: 试用liang-barsky算法裁剪图中的线段AB。

因此:

$$p_1 = x_1 - x_2 = 5 > 0$$
 $q_1 = x_1 - wxI = 3$

$$p_2 = x_2 - x_1 = -5 < 0$$
 $q_2 = wxr - x_1 = -1$

$$p_3 = y_1 - y_2 = 4 > 0$$
 $q_3 = y_1 - wyb = 3$

$$p_4 = y_2 - y_1 = -4 < 0$$
 $q_4 = wyt - y_1 = -1$

可见P均不为0

直线段与窗口边界的交点计算如下:

$$u_k \cdot p_k = q_k \quad k = 1, 2, 3, 4$$

则
$$u_1$$
=0.6, u_2 =0.2, u_3 =0.75, u_4 =0.25

Liang-Barsky裁剪的实例

实例:试用liang-barsky算法裁剪图中的线段AB。

由于有:

p₁、p₃大于0, p₂、 p₄小于0

 $U_{\text{one}} = \max(0, u_{k|pk<0}, u_{k|pk<0})$

 $U_{two} = min(1, u_{k|pk>0}, u_{k|pk>0})$

因此:

 $U_{\text{one}} = \max(0, u_2, u_4) = \max(0, 0.2, 0.25) = 0.25$

 $U_{two} = min(1, u_1, u_3) = min(1, 0.6, 0.75) = 0.6$

Liang-Barsky裁剪的实例

实例:试用liang-barsky算法裁剪图中的线段AB。

可见Uone < Utwo,它们分别对应输出直线段的

起点和终点

由于有:

x = 3 - 5u

y = 3 - 4u

因此:

Uone对应的交点为I(1.75,2)

U_{two}对应的交点为J(0,0.6)

裁剪后输出线段的端点即为I(1.75,2)和

J(0,0.6), 四舍五入后为I(2,2)和 J(0,1)。

