Fonte: FLEMMING, Diva Marília; WAGNER, Christian. Conjuntos e Elementos da Análise Real. Palhoça: Unisul Virtual, 2015.

Capítulo 1

Seção 1

Definição. m < n se existe um $p \in \mathbb{N}$ tal que n = m + p.

Definição. Um conjunto X é finito se é vazio ou se, para algum n, existe uma bijeção $f: I_n \to X$. X é infinito se não é vazio e, para qualquer $n \in \mathbb{N}$, não existe uma bijeção $f: I_n \to X$.

Definição. A cardinalidade de X é n se X tem n elementos.

A bijeção $f: I_n \to X$ é a contagem dos elementos de X.

n é o número de elementos ou número cardinal de X.

Definição. Um conjunto X é enumerável se é finito ou se existe uma bijeção $f: \mathbb{N} \to X$.

Seção 2

Definição. Corte de Dedekind é um par (E,D) de conjuntos não vazios de números racionais, cuja união é \mathbb{Q} , e tais que todo elemento de E é menor que todo elemento de D.

Definição. Corpo é um conjunto K munido de uma operação de adição, associativa ((x+y)+z=x+(y+z)), comutativa (x+y=y+x), com elemento neutro $(x+0=x \ \forall x \in K)$ e simétrica $(x+(-x)=0 \ \forall x \in K)$; de uma operação de multiplicação, associativa, comutativa, com elemento neutro e com inverso multiplicativo $(x \cdot x^{-1}=1 \ \forall x \in K)$; e com uma propriedade distributiva entre as duas operações $(x \cdot (y+z)=x \cdot y+x \cdot z)$.

Definição. K é um corpo ordenado se existe um subconjunto $P \subset K$ (conjunto dos elementos positivos de K) tal que:

```
1. x, y \in P \Rightarrow x + y \in P \ e \ x \cdot y \in P;
```

2. Para um $x \in K$, x = 0, $x \in P$, ou $-x \in P$.

O conjunto dos elementos negativos de $K \notin -P = \{-x \text{ tais que } x \in P\}.$

Definição. Na relação de ordem < em um corpo ordenado K, $x < y \Leftrightarrow y - x \in P \Leftrightarrow y = x + z (z \in P)$.

A relação é transitiva $(x < y \land y < z \Rightarrow x < z)$, tricotômica (x = y ou x < y ou y < x), monótona para adição $(x < y \Rightarrow x + z < y + z)$ e monótona para multiplicação $(x < y \Rightarrow x \cdot z < y \cdot z, \text{ se } z > 0, e \ x \cdot z > y \cdot z, \text{ se } z < 0)$.

Definição. Seja K um corpo ordenado $e \ x \in K$. O módulo ou valor absoluto de $x \ é \ x, \ se \ x > 0;$ $0, \ se \ x = 0; \ ou \ -x, \ se \ x < 0.$

Equivalentemente, $|x| = \max(x, -x)$; ou $|x| = \sqrt{x^2}$.

Em um corpo ordenado K, para qualquer x, y, z:

- 1. $|x+y| \leq |x| + |y|$;
- 2. $|x \cdot y| = |x| \cdot |y|$;
- 3. $|x| |y| \le ||x| |y|| \le |x y|$;
- 4. $|x-z| \leq |x-y| + |y-z|$.

Definição. Seja K um corpo ordenado e $X \subset K$.

X é limitado superiormente se existe uma cota superior de X tal que $x \le b$ para todo $x \in X$. Neste caso, $X \subset (-\infty, b]$.

X é limitado inferiormente se existe uma cota inferior de X tal que $x \geqslant a$ para todo $x \in X$. Neste caso, $X \subset [a, \infty)$.

X é limitado se é limitado superiormente e inferiormente.

Definição. Seja K um corpo ordenado e $X \subset K$ um conjunto limitado superiormente.

O supremo de X (sup X) é a menor das cotas superiores de X, ou:

Um elemento $b \in K$ é supremo de X se $x \leq b$ para todo $x \in X$; e $b \leq c$ se $x \leq c$ para todo $c \in K$ e $x \in X$.

O ínfimo de X (inf X) é a maior das cotas inferiores de X, ou:

Um elemento $a \in K$ é ínfimo de X se $a \leq x$ para todo $x \in X$; e $c \leq a$ para todo $c \in K$ e $x \in X$.

Seção 3

Definição. Um corpo ordenado K é completo quando todo subconjunto não vazio, limitado superiormente, $X \subset K$, possui supremo em K.

Em um conjunto completo, todo subconjunto limitado inferiormente possui ínfimo.

Axioma. O corpo dos números reais \mathbb{R} é o corpo ordenado completo que contém \mathbb{Q} e preenche as lacunas de \mathbb{Q} .

O conjunto dos números irracionais é o complemento de \mathbb{Q} em \mathbb{R} $(\mathbb{R} - \mathbb{Q})$.

Definição. Seja $X \subset \mathbb{R}$. X é denso em \mathbb{R} se todo intervalo aberto $(a,b) \subset \mathbb{R}$ contém um ponto de X.

Capítulo 2

Seção 1

Definição. Seja A um subconjunto de números reais. A é aberto se para todo $x \in A$, $\exists \ \varepsilon > 0$ tal que $(x - \varepsilon, x + \varepsilon) \subset A$.

Definição. Seja $x \in \mathbb{R}$. Uma vizinhança $V \subseteq \mathbb{R}$ de x é um subconjunto de \mathbb{R} que contém um intervalo aberto de centro x.

Definição. Seja A um subconjunto de números reais e $x \in A$; x é um ponto interior de A se existe uma vizinhança de x contida em A.

O conjunto de todos os pontos interiores de A é chamado interior de A e denotado por int A.

Definição. Um conjunto $F \in \mathbb{R}$ é fechado se o seu complementar é aberto.

Definição. a é ponto aderente do conjunto $X \subseteq \mathbb{R}$ quando a é o limite de uma sequência de pontos $x_n \in X$, ou seja, $a = \lim x_n$, $x_n \in X$.

Definição. O fecho de A, denotado por \bar{A} , é o conjunto de todos os pontos aderentes de A.

Seção 2

Definição. Um ponto $b \in \mathbb{R}$ é um ponto de acumulação de $A \subset \mathbb{R}$ se existe uma sequência $\{x_n\}$ de pontos de $A - \{b\}$ que converge para b.

O conjunto de todos os pontos de acumulação do conjunto A é denotado por A'.

Definição. Seja $A \subset \mathbb{R}$. O ponto $a \in A$ é ponto isolado de A se não é ponto de acumulação de A.

Equivalentemente, a é um ponto isolado de A se, e somente se, existe uma vizinhança V de a tal que $V \cap A = \{a\}$ (ou seja, a intersecção é um conjunto unitário contendo apenas a).

Seção 3

Definição. Uma família $C = \{C_{\alpha}\}, \ \alpha \in L, \ de \ conjuntos \ C_{\alpha} \subset \mathbb{R} \ \'e \ uma \ cobertura \ de \ X \ se \ X \subset \bigcup_{\alpha \in L} C_{\alpha}.$ Se cada C_a \'e aberto, C \'e cobertura aberta de X.

Uma subcobertura de C é uma subfamília $C' = \{C_{\alpha}\}, \ \alpha \in L, \ onde \ L' \subset L \ e \ X \subset \bigcup_{\alpha \in L'} C_{\alpha}.$

Definição. Quando $K \subset \mathbb{R}$, K é compacto se toda cobertura aberta de K contém uma subcobertura finita.

Definição. Seja $A \subseteq \mathbb{R}$. $b \in \mathbb{R}$ é ponto de fronteira de A se todo conjunto aberto que contém b tem intersecção não vazia com o conjunto A e intersecção não vazia com o conjunto complementar $\mathbb{R} - A$.

O conjunto de todos os pontos de fronteira de A é chamado fronteira de A e denotado por fr A.

Seção 4

Definição. Uma função $f: A \to \mathbb{R}$, definida no conjunto $A \subset \mathbb{R}$, é contínua no ponto $a \in \mathbb{R}$ quando para todo $\varepsilon > 0$ existe um $\delta > 0$ tal que $x \in A$ e $|x - a| < \delta$ implica que $|f(x) - f(a)| < \varepsilon$.

Uma função $f: A \to \mathbb{R}$ é descontínua se existe um $\varepsilon > 0$ tal que para todo $\delta > 0$ possa-se achar um x_0 de A de modo que $|x_0 - a| < \delta$ implique que $|f(x_0) - f(a)| \ge \varepsilon$.

Definição. Uma função $f: A \to \mathbb{R}$ é contínua quando é contínua em todos pontos $a \in A$.

Definição. Se $a \in A \cap A'$ (ou seja, $a \in A$ é ponto de acumulação de A), então $f: A \to \mathbb{R}$ é contínua no ponto a se $\lim_{x\to a} f(x) = f(a)$.

Capítulo 3

Seção 1

Definição. Se $f: A \to \mathbb{R}$ e $a \in A \cap A'$ (a é ponto de acumulação), a derivada da função f no ponto a é o limite

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Se o limite existir, a função é derivável no ponto a.

Se a derivada existe em todos os pontos $x \in A \cap A'$, a função é derivável no conjunto A e obtemos a nova função $f': A \cap A' \to \mathbb{R}$ chamada de derivada de f.

Definição. Quando $a \in A \cap A'_+$ (a é ponto de acumulação à direita de A) e a ele pertence, a derivada à direita de f no ponto a é

$$f'(a^+) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h},$$

 $quando\ o\ limite\ existe,\ e\ a\ derivada\ \grave{a}\ esquerda\ de\ f\ no\ ponto\ a\ \acute{e}$

$$f'(a^{-}) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h},$$

quando o limite existe.

Se $a \in A$ é ponto de acumulação à direita e à esquerda (como, por exemplo, se a é ponto interior de A), a derivada no ponto a existe se e somente se as derivadas laterais existem e são iguais.