

Question 9

Given:
$$cosec\theta = \frac{AC}{BC} = \frac{2}{1}$$

Let AC = 2k and BC = 1k,

Where k is positive

Let us draw a $\triangle ABC$ in which $\angle B = 90^{\circ}$ and $\angle BAC = \theta$

By Pythagoras theorem, we have

$$AC^{2} = (AB)^{2} + (BC)^{2}$$

$$\Rightarrow (AB)^{2} = (AC)^{2} - (BC)^{2}$$

$$= \left[(2k)^{2} - (1k)^{2} \right] = \left(4k^{2} - 1k^{2} \right) = 3k^{2}$$

$$\Rightarrow (AB) = \sqrt{3}k$$

$$\sin \theta = \frac{BC}{AC} = \frac{1k}{2k} = \frac{1}{2}$$

$$\cos \theta = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \left(\frac{\sqrt{3}}{2} \times \frac{2}{1} \right) = \sqrt{3}$$

$$\Rightarrow \left[\cot \theta + \frac{\sin \theta}{1 + \cos \theta} \right] = \left[\sqrt{3} + \frac{1}{2 + \sqrt{3}} \right]$$

$$= \left(\sqrt{3} + \frac{1}{2 + \sqrt{3}} \right) = \left(\frac{2\sqrt{3} + 3 + 1}{2 + \sqrt{3}} \right)$$

$$= \left(\frac{2\sqrt{3} + 4}{2 + \sqrt{3}} \right) = 2 \left(\frac{\sqrt{3} + 2}{2 + \sqrt{3}} \right) = 2$$
Hence,
$$\left[\cot \theta + \frac{\sin \theta}{1 + \cos \theta} \right] = 2$$

********* END ********