Exam I Study Guide

Table of Contents

Genetics & Genomics

Mitosis

Meiosis

Mendelian Inheritance

Non/ Mendelian Inheritance

Aneuploidy & Chromosomal Rearrangements (Ch.12,13)

Genetic Diseases (Ch.12,22)

Mitochondrial Genetics (Pg.753-63,800-11)

Pedigree Shortcuts

Abbreviation Glossary

Genetics & Genomics

- Genetics
 - Study of inherited traits and their variation and transmission
 - \circ Levels: DNA \rightarrow gene \rightarrow chrom \rightarrow genome \rightarrow indiv \rightarrow fam \rightarrow pop
- Definitions
 - Exons: how DNA encodes proteins
 - o Genes: units of inheritance
 - Chrom: long DNA molecule with part/ all of gen mat
 - o Genome: complete gen instruc for organism
 - Euchromatin = light part of chrom, swappable dna
 - Heterochromatin = dark part of chrom filled with tandem repeats, telomeres/ centromere
 - Somatic cells: 23 chrom pairs (22 auto, 1 gamete cell)
 - Exome = entire exon genome (1.5% of genome, 21k genes); great for revealing rare mut since its more sensitive than GWAS
- Important Info
 - ~50% of genes are tandem repeats
 - Mutations cause disease via loss/ gain of fx, creating lethal, suppressive, blocked, or non-active genes
- Biotechnology
 - DNA info can be considered with other info types to learn about health/ diseases

- Precision medicine is a medical approach that consults DNA info to select drugs that are most likely to work/ have least side effects in an indiv
- Genome editing: remove, replace, and or add specific genes; practical apps include food biotech, agric, cell therapy, disease models

Mitosis

- Cell Cycle
 - Cells must divide in order for organism to grow
 - Monitored using cyclins which signal cell to divide
- Phases
 - 1. Interphase
 - G1: grow/ multiply org (goes to G0 or S from here)
 - S: dna rep, create mitotic spindles
 - G2: grow, MT assemble, 2 centrosomes/centrioles form
 - 2. Prophase: DNA coiling, MT organize into spindles, nuc mem breakdown
 - 3. Metaphase
 - 4. Anaphase
 - 5. Telophase: spindle breakdown, reformation of nuc
 - 6. Cytokinesis
- Definitions
 - Centromere: joint part of chromatids
 - o Kinetochore: prot piece at site of centromere
 - o Mitotic spindle: MT that connect to kinetochore
 - o Centriole: org formed from MT
 - Centrosome: centriole + MTOC (MT organizing center)

Ploidy

Phase (Mitosis)	# Chromosomes		# Chromatids	
Prophase	25	46	92	
Metaphase	211	46	92	
Anaphase	4n	92	92	
Telophase	711	92	92	
End of Mitosis (separated cells)	2n	46	46	

Endoreduplication: incr cell size/ DNA content by repeating interphase (skipping mitosis)

Meiosis

- Purpose of Meiosis: genetic diversity; enable survival from enviro challenges
- Homologs: same genes, *not same alleles* (unidentical)
- Meiosis I
 - 1. Prophase I: (Stages of Crossing Over)
 - Leptotene (S1): "thin ribbon", sis chromatids coalesce
 - Zygotene (S2): "fused", synaptonemal complex formed by bridging chrom 2gthr
 - Pachytene (S3): "thick", bivalent formeg (actual cross over bridge)

- Diplotene (S4): "two", synaptonemal complex disassembles leaving a chiasma
- Diakinesis (stage 5): nuc disappears, DNA coil, centrosomes reach pole

- 2. Metaphase I
- Homo pairs on equator (indep assort)
- Possibilities: 2ⁿ (n = #chrom); 2²³ = 8mil possible indep assort
- Anaphase I
- 4. Telophase I: partial formation of nuc, spindles disappear

Phase (Meiosis I)	# Chromosomes		# Chromatids	
Prophase I		46	92	
Metaphase I	2n	46	92	
Anaphase I	211	46	92	
Telophase I		46	92	
End of Meiosis I (separated cells)	n	23	46	

Meiosis II

- 1. Prophase II: disassembly of nuc
- 2. Metaphase II
- 3. Anaphase II: sep by centromere; 2n after this
- 4. Telophase II

Phase (Meiosis II)	# Chromosomes		# Chromatids
Prophase II		23	46
Metaphase II	n	23	46
Anaphase II	2n	46	46
Telophase II	211	46	46
End of Meiosis II (separated cells)	n	23	23

- Comparison between mitosis and meiosis
 - Mitosis: sis chromatids sep
 - Meiosis I: homo chrom sep
 - Meiosis (overall): 27 crossovers in spermatogenesis; 42 in oogenesis
- XY Recombination
 - Purpose: remove possible mutations/ maintain genetic integrity
 - No need for X recombo bc of x inactiv

 Y recombo: hairpin that replaces alleles using identical palindromic set on other side of pin

Mendelian Inheritance

- Monogenics: single gene inheritance (rare) allows for disease prediction/ rx
- Work of Gregor Mendel
 - Observations: plant traits (plant color/ shape, stem location/ length, seed/ coat color)
 - Findings: certain traits appeared more freq (dom) and others less (rec)
 - Significance: genes (elementens) are hereditary/ inheritable
- Mendelian Laws
 - 1. Segregation: each allele inherited from parent is separated during meiosis (each daughter cell has one copy of allele which further leads to gen diversity)
 - 2. Independent Assortment: genes of diff traits on diff chrom (or far apart on same chrom) don't influence the chance of inheriting the other
 - 3. Dominance: dom alleles will display gene expression and mask rec allele
- Gain/ Loss of Function
 - o Gain: dom trait; usually forms toxic prot
 - o Loss: rec trait; no prot made which is usually why rec prod more severe diseases
- Genetic Problem Sets
 - Probability for dihybrid: RRrr x YYyy → do each as monohybrid → get ratios → multiply ratios together
 - Autosomal Dom: no generational skips

Autosomal Rec: generational skips; ex: albinism

Non/ Mendelian Inheritance

• Factors that alter single-gene phenotypic ratios

Factor	Effect	Example
Lethal alleles	Allele kills organism (homo dom)	Achondroplasia
Multiple alleles	Two germline gene mut (compound hetero) causing disease (auto rec) $Rr \times Rr \rightarrow rr$	Cystic Fibrosis
Incomplete dominance	Hetero pheno is in between (pink flowers from red/ white ones)	Familial hypercholesterolemia (lacks half of needed choles receptors)
Codominance	Hetero pheno is indistinct (polka dotted flowers from red/ white ones)	ABO blood type (A/B codom to each other and dom to O)
Epistasis	One gene masks another phenotypically	Bombay pheno (hh causes O no matter parents type)
Penetrance	Indiv with geno doesn't express assoc pheno; all or none expression (auto dom) $Pen. = \frac{\# \ showing \ pheno}{\# \ total \ with \ geno} \ x \ 100\%$	Polydactyly
Expressivity	Gen assoc with pheno of var intensity	Repeat expansion diseases
Pleiotropy	Pheno has many sx; one gen has many fx ('pleio' = many; 'tropy' = change)	Marfan syndrome Freidreich's ataxia
Phenocopy	Trait appears to be inherited but is from enviro	Infection (i.e. HIV)
Genetic heterogeneity	Diff geno cause same pheno	Osteogenesis imperfecta

• Y Chromosomes

- o Encodes 70-200 genes; many palindromes which destabilize DNA rep
- o 95% male specific region (MSY) with palindromes, SRY, and AZF
- o 5% pseudoautosomal regions (PAR1 and PAR2) where crossover occurs
- SRY: sex-determining region Y located at Yp11.3 and encodes transcr factor
- o Y-linked traits rare bc few coding regions on Y
- X Chromosomes

- Encodes 900-1,400 genes
- mtDNA prone to free radical exposure leading to more mut (also no DNA repair or crossing over)
- X-Linked Dom:
- Expressed in females in one copy
- More severe in males
- Passed from fathers to daughters (no sons)

- X-Linked Rec:
- Expressed in males (always), Xh Xh female, and rarely in XH Xh female
- Passed from mothers to sons or from fathers and Xh Hh or XH Xh mothers to daughters
- Usually skips generation

- Sex-Limited/Influenced Traits
 - Limited: only seen in one sex (ex. preeclampsia)
 - Influenced: dominant in one sex and recessive in other (ex. baldness)

X-inactivation

- Needed to balance inequality of gene expression (aka dosage compensation)
- Lyon hypothesis: either X chrom randomly selected/ activated in each cell creating a genetic mosaic in females
- Is an ex of epigenetic change where gen is same but pheno diff
- XIST (x inactiv specific transcript) transcribed at XIC (x inactiv center) to prod non coding RNA to silence x chrom
- XA expressed in one cell Xa in other creating a manifesting heterozygote

- Genomic imprinting (parent-of-origin effects)
 - Gene expression dep on parent who transmits gene
 - Silence specific genes in allele-dep manner (can silence dom allele)
 - Epigenetic phenomenon that occurs via cytosine methylation
 - Maintained in mitosis but disrupted in meiosis (so it becomes dep on indiv, not indiv's parent)

Aneuploidy & Chromosomal Rearrangements (Ch.12,13)

- Chromosome features: replication origins, centromeres, and telomeres (TTAGGG)
- Centromere position:

- Chromosome Visualization
 - Obtained: fetal (amniocentesis) and adult tissue (WBC or cheek swab)
 - Prepped: metaphase spread, then staining
 - Viewed:
 - Banding (dye applied to highlight diff b/w chrom)
 - Ideogram (shows cytogenetic bands using B/W diagrams)
 - FISH (fluoro in situ hybrid that labels cDNA to identify indiv genes & differentiate chrom)
 - Karyotype (displays by length and shows chrom # per set)
- Ploidy
 - Polyploidy: multiple fertiliz or diploid gametes leading to extra chrom sets
 - Aneuploidy
 - Extra or missing *indiv* chrom from nondisjunction
 - Usually lethal; trisomy 21, turner (XO), jacobs (XYY), and klinefelter (XXY) are ex
- Structural Abnormality Causes
 - Chrom breakage (deletion, inversion, duplication, translocation)
 - Illegitimate crossing-over
- Translocation Types
 - Reciprocal: two nonhomo change parts (ex: ABCD WXYZ → ACYZ WXCD)
 - Robertsonian: two nonhomo acrocentric chrom break at centromere and fuse long (p) arms 2gthr (break a leg Robert)

- Inversion Types
 - Pericentric: inverted region with centromere (peri = around, centric = center)

- Paracentric: inverted region without centromere (para = beside)
- Alternate Chromosome Types
 - Isochromosomes: "iso" = equal; duplicated chrom from mitotic or meiotic error

 Ring chromosomes: telomeres lost (from radiation), so sticky ends of chrom fuse to form ring; can be inherited or sporadic, but neither affects health

Genetic Diseases (Ch.12,22)

- Chrom # Aberrations
 - Down Syn (trisomy 21)
 - Edwards Syn (trisomy 18)
 - Patuau Syn (trisomy 13)
 - Sex Chrom: XXX (triple x), XO, (turner), XXY(klinefelter), XYY (jacobs), XXYY syn
- Subchrom Aberrations
 - Cri du Chat: short arm deletion in chrom 5
- Gene Aberrations
 - Copy Num Var: num of copies (duplic or del) varies b/w indiv
 - Ex: Charchot marie tooth
 - CGH (comparative genomic hybridization) array used for testing how many copies you have
- Identify and understand types of mutations and processes responsible for mutations.
- Know the definitions and classification of genetic diseases with examples presented during lecture and in the textbook.
- Understand the importance of genetic testing with appropriate, discussed examples.

- Know examples of modern approaches towards treatment of genetic diseases.
- •

•

Mitochondrial Genetics (Pg.753-63,800-11)

- Learn about mitochondria structure.
- Roles of mitochondria in the cell.
- Mitochondria as energy factories learn basic steps in energy production from different substrates.
- Electron chain and oxidative phosphorylation.
- ATP as a "power currency."
- Mitochondria origin and dynamics.
- Mitochondrial inheritance and heteroplasmy.
- Disorders caused by mitochondrial DNA mutations.
 - MERRF → caused by heteroplasmy (diff mtDNA types in cell)

Pedigree Shortcuts

Condition	Diagram	Notes
Autosomal Dominant		Auto bc seen in both fe/males Dom bc no generation skips
Autosomal Recessive		Auto bc seen in both fe/males Rec bc not expressed in every generation
X-Linked Dominant		X bc fathers always pass to daughters/ mothers to sons Dom bc no

Abbreviation Glossary

Auto: autosomal
Div: division
Det: determine
Dom: dominant
Eu: eukaryote

Enviro: environment

Fx: function
Freq: frequent(ly)
Gen: genetic
Geno: genotype
Homo: homozygous

Hetero: heterozygous Indep: independent Incr: increases Mem: membrane

Multinuc: multinucleated

Molec: molecule
MT: microtubules
Nuc: nucleus
Org: organelle
Pro: prokaryote
Prot: protein
Prod: produce
PRC: red blood cel

RBC: red blood cell Rec: recessive Ribo: ribosomes Rxn: reaction Rx: treatment

Sx: symptoms Sig: signal Seq: sequence

Sim: simultaneously

Stim: stimulus Syn: synthesis Transc: transcribe Transl: translate Trans: transport

Var: variable/ varying