Tentamen Vektoralgebra MAA150 - TEN1 Datum: 2016-08-16 Hjälpmedel: inga

Lösningarna skall presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Alla svar skall motiveras. Avsluta varje lösning med ett tydligt angivet svar.

- Bestäm ekvationen för skärningslinjen, l, mellan de två planen $\Pi_1: 2x + y 3z = 3$ och $\Pi_2: x 2y + z = -1$, och visa att punkten (-1, -1, -2) tillhör l. (4p)
- **2** Bestäm konstanten b så att ekvationsystemet blir konsistent och bestäm sedan den allmänna (5p) lösningen för detta värde på b.

$$\begin{array}{rclcrcr}
x & - & y & + & = & 1 \\
& & y & + & z & = & b \\
2x & & & + & 2z & = & 1
\end{array}$$

3 Låt

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -4 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- **a.** Beräkna determinanten av A. (2p)
- **b.** Bestäm inversen till A och beräkna $(AB^{-1})^{-1}$. (4p)
- 4 Låt Π vara planet som ges av ekvationen x + 2y + 2z = -4 och Q vara punkten (2,2,1).
- a. Bestäm avståndet från Q till planet Π . (3p)
- **b.** Hitta den punkt i planet Π som ligger närmast Q. (3p)
- 5 Lös ekvationen $z^3 = -8i$. Svara på formen a + bi. (4p)

Divsion of Mathematics and applied mathematics Mälardalen University Examiner: Mats Bodin

Examination Vector algebra MAA150 - TEN1 Date: August 16, 2016 Exam aids: not any

All solutions should be presented so that calculations and arguments are easy to follow. All answers should be motivated. Each solution should end with a clearly stated answer.

- Find the equation of the line, l, of intersection between the two planes $\Pi_1 : 2x + y 3z = 3$ and $\Pi_2 : x 2y + z = -1$, and show that the point (-1, -1, -2) belong to l. (4p)
- 2 Determine the constant b such that the linear system is consistent and then find the general (5p) solution for that value of b.

3 Given

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -4 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- **a.** Evaluate the determinant of A. (2p)
- **b.** Find the inverse of A and compute $(AB^{-1})^{-1}$. (4p)
- 4 Let Π be the plane given by the equation x + 2y + 2z = -4 and let Q be the point (2,2,1).
- **a.** Find the distance from Q to the plane Π . (3p)
- **b.** Find the point belonging to the plane Π that is closest to Q. (3p)
- 5 Solve the equation $z^3 = -8i$. Give the answer in the form a + bi. (4p)

MAA150 Vektoralgebra, vt-16.

Assessment criterias for TEN1 2016-08-16

General assessment criteria

All solutions should be presented so that calculations and arguments are easy to follow. All answers should be motivated. Each solution should end with a clearly stated answer.

Assessment problems

1. [4 points]

Relevant method, e.g. row operations on the augmented matrix (2p), the correct line (1p), correctly checking that the point belong to the line (1p)

2. [5 points]

Relevant method for finding b (2p), the correct b (1p), solving the equation correctly for any b (1p) and the correct solution (1p)

3. [6 points]

- a. Computing the determinant (2p)
- **b.** Relevant row operations (2p), correct inverse (1p), motivation that $(AB^{-1})^{-1}$ is undefined since B^{-1} is undefined (1p)

4. [6 points]

- a. Relevant method maximum (2p), correct answer (1p)
- **b.** Relevant method maximum (2p), correct answer (1p)

5. [4 points]

Finding polar form of -8i (1p), setting $z = r(\cos(\theta) + i\sin(\theta))$ and obtaining the equations for r and θ (1p), finding the correct values of r and θ (1p), the correct solutions in form a + bi (1p)

MAAISO; TEN1

(1) $T_1: 2x+y-3z=3$ } Solve for general solution $T_2: x-2y+z=-1$ Set $z=t \Rightarrow y=1+t, x=-1+2y-z=-1+2(1+t)-t$ = 1+t = 1+t (tp)

(tp) The point $P=(-1,-1,2) \in L$ since taking t=-2 in (*) gives (1,1,0)-2(1,1,1)=(-1,-1,-2) (1p)Answer: 1: (x,y,z) = (1,1,0)+t.(1,1,1), tER

MAA150: TEN1 2016-08-16

											1		
(2)		1	~ 1	0	15	-2		-1	0				
		0	1	1	6	1	0	(I	6	(-2)		
		2	0	2	A	E-	0	2	2	-1	(-2) (-2)		
		r t	-1	0									
	N	0	1	1	b								. 1
(0	0	0	-1-	26	\Rightarrow		0 =	- (-2b<	(=) b	= - 2
	Th	e li	near	548	tem	is	cons	iste	nt	if	b=	- 6	/2)
	an	d In	nen	ha	s in	Snet	ely 1	mani	1 5	10104	ous,	2'	(3P)
	Wi	th	6=-	1/2	we	get	J	`	J				
	1	- (O	1									
	0) [l	-1/2		콘 =	t >>	9 =	-	2-6	1		+ER

0 | 1 - 1/2 | $z = t \Rightarrow y = -\frac{1}{2} - t$, $t \in \mathbb{R}$ 0 0 0 0 | $x = 1 + y = \frac{1}{2} - t$ 2 free variable

Answer: General solution for
$$b=-\frac{1}{2}$$
 is
$$\begin{cases}
x = \frac{1}{2} - t \\
y = -\frac{1}{2} - t
\end{cases}$$

$$\begin{cases}
y = -\frac{1}{2} - t
\end{cases}$$

$$\begin{cases}
y = -\frac{1}{2} - t
\end{cases}$$

MAAISO: TEN1 2016-08-16 1 2 1 = 0 3 1 = 1. 3 1 = ... $= 3 \cdot (-1) - 1 \cdot 1 = -4$

(AB) is undefined since B does not have an invers due to det(B) = 0. 2016-08-16

MAAISO: TENI

Take any $P \in II$, e.g $x = y = 0 \Rightarrow Z = -2$, i.e P = (0,0,-2)

 $\frac{1}{n} \int_{\mathbb{R}} \frac{1}{n} \left(\frac{2}{2}, \frac{2}{1}, \frac{1}{1} \right)$

In = (1,2,2) is a normal to Tthen $d = \|\bar{w}\| = \|proj_{\bar{n}} P\bar{Q}\|$

where $\overrightarrow{PQ} = (2,2,1) - (0,0,-2)$ = (2,2,3)

$$\bar{w} = proj_{n}(2,2,3) = (2,2,3) \cdot (1,2,2) \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 12 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{4}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$11(4,2,2)|^{2} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \frac{12}{9} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{4}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

(3p)

$$\hat{S}_{\alpha} d = ||\bar{w}|| = \frac{4}{3} \cdot ||U_{1}2,2\rangle|| = \frac{4}{3} \cdot 3 = 4$$
 (2p)

Auswer 4a: 4 l.u.

L: (x,y,z) = od+t·n, tER especially

 $R = (2,2,1) + t \cdot (1,2,2) = (2+t, 2+2t, 1+2t)$

RETT (=> (2+t)+2(2+2t)+2(1+2t) = -4

 $8 + 9t = -4 \iff t = -\frac{12}{9} = -\frac{4}{3}$

 $R = (2,2,1) - \frac{4}{3}(1,2,2) = (\frac{2}{3}, -\frac{2}{3}, -\frac{5}{3})$

Answer b: $(\frac{2}{3}, -\frac{2}{3}, -\frac{5}{3})$

(5)
$$Z^{3} = -8i = 8 \cdot (\cos(-\frac{\pi}{2}) + i \sin(-\frac{\pi}{2}))$$
polar form

Set
$$z = r \cdot (\cos \theta + i \sin \theta)$$
, then $z^3 = r^3 (\cos (3\theta) + i \sin (3\theta))$

$$\int r^3 = 8$$

$$\begin{cases} 3\theta = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z} \end{cases} \tag{2p}$$

which gives

$$\begin{cases} r = \lambda, \\ \theta = -\frac{\pi}{6} + \frac{2\pi}{3}; n, n \in \mathbb{Z} \end{cases}$$

We can take n = 0,1,2 since (x) has 3 solutions:

$$\Theta_{0} = -\frac{\pi}{6}, \, \theta_{1} = \frac{\pi}{2}, \, \theta_{2} = \frac{7\pi}{6}$$

$$Z_{1} = 2 \cdot \left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) = 2\left(\frac{\sqrt{3} - \frac{1}{2}i}{2}\right) = \sqrt{3} - i$$

$$Z_2 = 2 \cdot (\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})) = 2 \cdot i$$

$$Z_3 = 2 \cdot (\cos(\frac{2\pi}{6}) + i \sin(\frac{2\pi}{6})) = 2 \cdot (-\sqrt{3} - \frac{1}{2}i) = -\sqrt{3} - (-\sqrt{3} - \frac{1}{2}i)$$