Italian (ITA)

Data Centers

Nome	DataCenters
File di input	standard input
File di output	standard output
Limite di tempo	2 secondi
Limite di memoria	256 megaottetti

GoncaSoft gestisce molti servizi ed ha n datacenter nel mondo. Ogni datacenter ha un certo numero di macchine disponibili. Per ragioni di sicurezza e ridondanza, vengono eseguite una o più copie dello stesso servizio in contemporanea. Ogni copia viene eseguita in un datacenter diverso, e richiede un certo numero di macchine in ciascun datacenter per funzionare. Tutte le copie di ciascun servizio richiedono lo stesso numero di macchine.

Quando GoncaSoft pianifica di lanciare un nuovo servizio i (che richiede c_i copie, ciascuna delle quali in esecuzione su m_i macchine), ordina i datacenter in ordine decrescente di macchine disponibili, e usa m_i macchine in ciascuno dei primi c_i datacenter.

Aiutali a calcolare, dopo aver avviato s servizi nell'ordine dato, il numero di macchine rimanenti nei vari datacenter.

Input

La prima riga dell'input contiene due interi separati da spazio, n ed s, rappresentanti il numero di datacenter e il numero di servizi da lanciare.

La riga successiva contiene n interi separati da spazio, rappresentanti il numero di macchine inizialmente disponibili in ciascuno degli n datacenter.

Le successive s righe descrivono i servizi che verranno eseguiti: la i-esima riga contiene due numeri m_i e c_i separati da spazio, rappresentanti il numero di macchine per ciascuna copia e il numero di copie dell'i-esimo servizio.

Output

L'output contiene una riga con n interi separati da spazio, ordinati <u>in ordine decrescente</u>, rappresentanti il numero di macchine ancora disponibili in ciascun datacenter dopo aver eseguito tutti i servizi.

Assunzioni

- $1 \le n \le 100\,000$ e $0 \le s \le 5\,000$.
- Ogni datacenter ha al più 10^9 macchine.
- $1 \le m_i \le 10^9$, per ogni servizio i tale che $1 \le i \le s$.
- $1 \le c_i \le n$, per ogni servizio i tale che $1 \le i \le s$.
- I datacenter hanno abbastanza macchine per tutti i nuovi servizi.

Sottoproblemi

- Subtask 1 (12 punti): $n \le 100$, s = 0.
- Subtask 2 (12 punti): $n \leq 100$, $s \leq 10$.
- Subtask 3 (9 punti): $n \le 50\,000$, $s \le 100$.
- Subtask 4 (26 punti): Ogni datacenter ha inizialmente al più $1\,000$ macchine.
- Subtask 5 (18 punti): $c_i=1$ per tutti i servizi da 1 a s.
- Subtask 6 (23 punti): Nessuna limitazione aggiuntiva.

Esempio

standard input	standard output
5 4	11 10 10 9 8
20 12 10 15 18	
3 4	
4 1	
1 3	
4 2	

Spiegazione

Step	Macchine disponibili	Operazione
Inizio	20 12 10 15 18	
Servizio #1: prima del lancio	20 18 15 12 10	Ordina i datacenter in ordine decrescente.
Servizio #1: dopo il lancio	17 15 12 9 10	Usa 3 macchine in ciascuno dei primi 4 datacenter.
Servizio #2: prima del lancio	17 15 12 10 9	Ordina i datacenter in ordine decrescente.
Servizio #2: dopo il lancio	13 15 12 10 9	Usa 4 macchine dal primo datacenter.
Servizio #3: prima del lancio	15 13 12 10 9	Ordina i datacenter in ordine decrescente.
Servizio #3: dopo il lancio	14 12 11 10 9	Usa 1 macchina in ciascuno dei primi 3 datacenter.
Servizio #4: prima del lancio	14 12 11 10 9	Ordina i datacenter in ordine decrescente.
Servizio #4: dopo il lancio	10 8 11 10 9	usa 4 macchine nei primi 2 datacenter.
Fine	11 10 10 9 8	Ordina i datacenter in ordine decrescente.