9 'פתרון תרגיל בית מס'

ועבור $\binom{1/\sqrt{2}}{-1/\sqrt{2}}$, $\binom{1/\sqrt{2}}{1/\sqrt{2}}$ א. הע"ע הינם: 0,2 להם מתאימים הוקטורים העצמיים -0,2 ועבור .1

.
$$P^{\varepsilon}AP = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$
 נקבל $P = 1/\sqrt{2}\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

ועבור $\begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$, $\begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$ ב. הע"ע הינם: -1.3 להם מתאימים הוקטורים העצמיים -1.3

.
$$P^{\varepsilon}AP = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$$
 נקבל $P = 1/\sqrt{2}\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

- 2. נבחר $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ זו אינה נורמלית (היא אינה לכסינה היא כבר בצורת ז'ורדן וצורת $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ ז'ורדן שלה יחידה). אך $A=\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ נורמלית.
- עבור מטריצה אוניטרית מלכסנת עבור $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & B \end{pmatrix}$ אוניטרית מלכסנת עבור 3

. אלכסונית.
$$P^{\pm}AP = \begin{pmatrix} 1 & * & * \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
נקבל
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & P_1 \end{pmatrix}$$
 אלכסונית.
$$P_1 = 1/\sqrt{2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

 $D=P^tAP$ ממשית אורתגונלית עבורה P ממשית (הרמיטית) ולכן קיימת אורתגונלית עבורה 4.

נקבל
$$(P \quad D'P^{\mathfrak k})^3 = P \quad D'^3P^{\mathfrak k} = D$$
 ולכן $D'^3 = D$ נקבל $D' = \begin{pmatrix} \sqrt[5]{\lambda_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sqrt[5]{\lambda_k} \end{pmatrix}$

 $\mathcal{B}^3=A$ ממשיות נקבל כי $\mathcal{B}=P$ ממשית סימטרית עבורה $\mathcal{B}'=P$ ממשיות נקבל כי

אלכסונית עם ערכים עצמיים. אי $D=P^{\dagger}AP$ אוניטרית אוניטרית אוניטרית שלילית אי שלילית אוניטרית עבורה

שליליים. נניח
$$D'=\begin{pmatrix} \sqrt[2]{\lambda_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sqrt[2]{\lambda_k} \end{pmatrix}$$
 אז עבור $D=\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_k \end{pmatrix}$ נקבל $D=\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_k \end{pmatrix}$

ינקבל כי $(P \quad D'P^t)^2=P \quad D'^2P^t=D$ ולכן $D'^2=D$ ולכן $B^2=A$ אי שלילית עבורה $B=P \quad D'P^t$

$$f(T) = P^{-1} f(P^{\dagger}TP)P^{-1} = PD^*P^* = (PDP^*)^* = T^*$$