G_1

Tutorium 11

Aufgabe 1: Graph Isomorphismen

Gegeben seien die Graphen $G_1 := (V_1, E_1)$ $G_2 := (V_2, E_2)$, $G_3 := (V_3, E_3)$, $G_4 := (V_4, E_4)$:

 G_3

 G_4

Welche Graphen sind zueinander isomorph und welche nicht? Beweise Deine Aussage.

------Lösung

Alle $G \in \{G_1, G_2\}$ und G' aus $\{G_3, G_4\}$ sind nicht isomorph zueinander, da G 6 Knoten hat und G' nur 5 Knoten hat. Weiterhin sind G_1 und G_2 nicht isomorph, da G_1 drei Knoten vom Grad 3 hat, aber G_2 nur 2 Knoten vom Grad 3 hat.

Die Graphen G_3 und G_4 sind isomorph. Wir geben ein Isomorphismus $f: V_3 \to V_4$ an: $f(p_1) := q_4$, $f(p_2) := q_1$, $f(p_3) := q_2$, $f(p_4) := q_3$ und $f(p_5) := q_5$. Offensichtlich ist f injektiv, surjektiv und total und damit eine Bijektion. Nun ist zu zeigen, dass f ein Isomorphismus zwischen G_3 und G_4 ist, d.h. $\forall u, v \in V_3$. $\{u, v \} \in E_3 \Leftrightarrow \{f(u), f(v) \} \in E_4$. Dies gilt, da:

 G_2

Da wir in beiden Graphen keine Kanten mehr haben, die wir betrachten müssen, gilt $\forall u, v \in V_3$. $\{u, v\} \in E_3 \Leftrightarrow \{f(u), f(v)\} \in E_4$. Somit ist f ein Isomorphismus zwischen G_3 und G_4 .

\Lösung

Aufgabe 2: Ramsey Theorem

Gib an: Eine möglichst kleine Anzahl von Knoten, die ein vollständiger, rot-blau gefärbter Graph haben muss , damit er einen vollständigen monochromatischen Untergraphen mit 3 Knoten enthält? Beweise Deine Aussage.

Wir zeigen R(3) > 5 und $R(3) \le 6$ und erhalten so R(3) = 6.

• Wir zeigen, dass R(3) > 5 indem wir einen K^5 so blau und rot färben, dass er kein monochromatisches Dreieck enthält.

- Wir zeigen $R(3) \le 6$ indem wir zeigen, dass jeder blau-rot gefärbter K^6 ein monochromatisches Dreieck enthalten muss. Sei v ein beliebiger Knoten des K^6 . Dann gibt es laut Schubfachprinzip mindestens 3 gleichfarbige Kanten von v zu anderen Knoten. Sei die Farbe dieser Kanten o.B.d.A. rot. Nun gibt es 2 Fälle:
 - Mindestens 2 der Endknoten sind ebenfalls durch eine rote Kante verbunden. Dann gibt es zwischen diesen Knoten und v ein rotes Dreieck.
 - Alle Endknoten sind durch blaue Kanten verbunden. Dann bilden die Endknoten auch mindestens ein blaues Dreieck.

\Lösung

Aufgabe 3: Grapheigenschaften

3.a) Gegeben sei der folgende Graph G := (V, E):

Gib an:

3.a(i) Alle zentralen Knoten, den Radius und Durchmesser von G. ------Lösung Zentraler Knoten ist nur e. rad_G = 2, diam_G = 4 3.a(ii) Wie viele Zusammenhangskomponenten hat G? -------Lösung }-\Lösung 3.a(iii) Eine möglichst kleine Knotenmenge V_1 der Knoten, die man entfernen muss, so dass es keinen Pfad mehr zwischen s und t gibt (Ausgenommen s und t)?

-------Lösung ------

Z.B. $V_1 := \{ a, b \}$ \Lösung |

3.a(iv) Wie viele Zusammenhangskomponenten hat $G - V_1$? Zeichne den neuen Graphen.

 $G - V_1$ hat drei Zusammenhangskomponenten.

3.b) Gib an: Den Durchmesser eines vollständigen Graphen mit 26 Knoten.

______Lösung

Sei G ein beliebiger Graph. Zu zeigen: $\mathrm{rad}_G \leq \mathrm{diam}_G \leq 2\,\mathrm{rad}_G$ Für nicht zusammenhängende Graphen ist die Aussage trivialerweise erfüllt, denn dann ist $\mathrm{rad}_G = \mathrm{diam}_G = \infty$ (vgl. Großübung). Im folgenden nehmen wir daher an, dass G zusammenhängend ist.

$$\operatorname{rad}_{G} := \min_{x \in G} \max_{y \in G} d(x, y) \tag{1}$$

$$\operatorname{diam}_{G} := \max_{x \in G} \max_{y \in G} d(x, y) \tag{2}$$

• $rad_G \leq diam_G$

$$\operatorname{rad}_{G} \stackrel{1}{=} \min_{x \in G} \max_{y \in G} d(x, y)$$

$$\leq \max_{x \in G} \max_{y \in G} d(x, y)$$

$$\stackrel{2}{=} \operatorname{diam}_{G}$$

• $\operatorname{diam}_G \leq 2 \operatorname{rad}_G$

Es gibt einen Knoten $c \in V$, so dass für alle Knoten $y \in V$ gilt $d(c,y) \leq \operatorname{rad}_G$. Seien v_1 und v_2 die zwei am weitesten voneinander Knoten im Graph. Also gilt $\operatorname{diam}_G = d(v_1, v_2)$. Dann gibt es auch einen Pfad von v_1 zu c und von v_2 zu c. Da $d(v_1, v_2)$ die Länge des kürzesten Pfades zwischen v_1 und v_2 ist, kann $d(v_1, v_2)$ nicht größer sein als die Summe von $d(v_1, c)$ und $d(c, v_2)$. Das bedeutet, dass

$$\begin{aligned} \operatorname{diam}_G &= d(v_1, v_2) \\ &\leq d(v_1, c) + d(v_2, c) \\ &\leq \operatorname{rad}_G + \operatorname{rad}_G \\ &= 2\operatorname{rad}_G. \end{aligned}$$

\Lösung

Aufgabe 4: Bäume

4.a) Beweise: Jeder endliche Baum mit mindestens 2 Knoten enthält mindestens 2 Blätter.

Sei B:=(V,E) ein endlicher Baum mit mindestens 2 Knoten. Seien v_1 und v_n die am weitesten voneinander entfernten Knoten und sei $P=(v_1,v_2,\ldots,v_n)$ der Pfad zwischen ihnen. Wir zeigen per Widerspruch, dass v_1 und v_n Blätter sind.

Annahme: v_1 ist kein Blatt, d.h. $d_B(v) > 1$. Dann existiert eine Kante $e := \{v_1, v\}$, mit $v \neq v_2$. Dann gibt es zwei Fälle:

• Fall 1: $v = v_i$ liegt auf P. In diesem Fall gibt es zwei Pfade von v_1 nach v_i und zwar ein direkter und einer über $v_1, \ldots v_{i-1}$. D.h. insbesondere, dass B einen Zyklus enthält, was per Definition ein Widerspruch dazu ist, dass B ein Baum ist.

• Fall 2: v liegt nicht auf P. Dann können wir aber einen längeren Pfad definieren, indem wir v an P anhängen, d.h. $P' := (v, v_1, v_2, ..., v_n)$. Da P' ein Knoten mehr enthält als P, ist P' länger als P was der Annahme widerspricht, dass P der längste Pfad im P ist. Also erhalten wir in diesem Fall auch einen Widerspruch.

Da wir in beiden Fälle einen Widerspruch erhalten haben, gilt die Annahme nicht und v_1 ist ein Blatt. Analog zeigt man, dass v_n auch ein Blatt ist. Somit gibt es in jedem endlichen Baum mit mindestens 2 Knoten auch 2 B<u>lätter.</u>

\Lösung

4.b) *Beweise:* Für alle endlichen Bäume gilt: Auf dem längsten Pfad im Baum liegt immer ein zentraler Knoten.

Wir führen einen Widerspruchsbeweis. Sei B:=(V,E) ein beliebiger endlicher Baum. Seien $v_1,v_2\in V$ die zwei am weitesten entfernten Knoten und P der (eindeutige) Pfad zwischen v_1 und v_2 . Angenommen, in P ist kein zentraler Knoten. Sei c der zentrale Knoten von B, der am dichtesten zu P liegt (da es auch mehrere zentrale Knoten geben kann). Sei dann p auf P der dichteste Knoten, mit dem c verbunden ist und sei n:=d(c,p)>0. Sei V_P die Menge aller Knoten die entweder auf P oder auf dem eindeutigen Pfad zwischen p und c liegen. Dann haben wir zwei Fälle:

• Fall 1: Es gibt ein Knoten v, so dass $d(c,v) = \operatorname{rad}_B$ und kein Knoten aus V_P liegt auf dem Pfad von c nach v. Sei o.B.d.A. v_1 der Knoten, der weiter entfernt ist von p. Da $d(v_1,v_2) = \operatorname{diam}_B \leq 2\operatorname{rad}_B$, gilt, dass $d(p,v_2) \leq \operatorname{rad}_G$. Wir zeigen nun, dass $d(v,v_1) > d(v_1,v_2)$ was bedeuten würde, dass P nicht der längste Pfad ist. Da P der dichteste Knoten von P an C ist, gibt es ein Pfad von C über P zu V_1 . Da weiterhin auf dem Pfad zwischen C und C wein Knoten aus C0 liegt, gibt es ein Pfad zwischen C1 und C2 und C3 geht. D.h.

$$\begin{array}{cccc} d(v,v_1) & = & d(v,c) + d(c,p) + d(p,v_1) \\ & \stackrel{\mathrm{Def.}\ v}{=} & \mathrm{rad}_B + d(c,p) + d(p,v_1) \\ & \stackrel{\mathrm{rad}_B \geq d(p,v_2)}{\geq} & d(p,v_2) + d(c,p) + d(p,v_1) \\ & \stackrel{d(v_1,v_2) = d(p,v_2) + d(p,v_1)}{=} & d(v_1,v_2) + d(c,p) \\ & \stackrel{d(c,p) > 0}{>} & d(v_1,v_2) \end{array}$$

was ein Widerspruch dazu ist, dass v_1 und v_2 die am weitesten entfernten Knoten in B sind.

• Fall 2: Alle Knoten, die in $B - V_P$ sind, haben eine um mindestens 1 kürzere Distanz zu c, als rad_G . Sei v so ein Knoten mit $d(c,v) \leq \operatorname{rad}_B - 1$. Sei c_1 der direkte Nachbar von c, der auf dem Pfad von c nach p liegt. Dann ist $d(c_1,v) = d(c,v) + 1 \leq \operatorname{rad}_B$. Da c_1 auch dichter ist an v_1 und v_2 , sowie an allen Knoten aus V_P , ist c_1 auch ein zentraler Knoten, der unter anderem auch dichter an p liegt als c. Da aber per Annahme c der dichteste zentrale Knoten an p ist, erhalten wir ein Widerspruch.

Somit liegt mindestens ein zentraler Knoten in *P*.

\Lösung