```
In [2]:
         H
            import warnings
            warnings.filterwarnings('ignore')
            import os
            from datetime import date
            import dateutil.relativedelta
            import pandas as pd
                                                                    # panda's nickname is
            import numpy as np
                                                                    # numpy as np
            from pandas import DataFrame, Series
                                                                    # for convenience
            import matplotlib.pyplot as plt
            %matplotlib inline
            import pandas as pd
            import fbprophet
            from fbprophet import Prophet
            import statsmodels
            import statsmodels.api as sm
            import statsmodels.formula.api as smf
            from statsmodels.tsa.seasonal import seasonal decompose
            from datetime import datetime
            import tensorflow as tf
            from tensorflow.contrib.timeseries.python.timeseries import NumpyReader
            import tensorflow.python.util.deprecation as deprecation
            deprecation. PRINT DEPRECATION WARNINGS = False
```

import time

Out[3]:

		issue_number	OriginationPhase	DetectionPhase	Category	Priority	Status
	0	1	Requirements	Coding	Bug	Critical	Approved
	1	2	Design	Testing	Enhancement	High	Approved
	2	3	Requirements	Design	Inquiry	Low	Rejected
	3	4	Testing	Field	Bug	High	Completed
	4	5	Documentation	Field	Enhancement	Major	pendingReview
19	95	1996	Design	Coding	Inquiry	Low	Rejected
19	96	1997	Testing	Field	Bug	Medium	Completed
19	97	1998	Documentation	Field	Enhancement	Major	Rejected
19	98	1999	Design	Coding	Inquiry	High	pendingReview
19	99	2000	Design	Coding	Inquiry	High	Completed

2000 rows × 9 columns

In [4]: ► df.tail()

Out[4]:

	issue_number	OriginationPhase	DetectionPhase	Category	Priority	Status
1995	1996	Design	Coding	Inquiry	Low	Rejected
1996	1997	Testing	Field	Bug	Medium	Completed
1997	1998	Documentation	Field	Enhancement	Major	Rejected
1998	1999	Design	Coding	Inquiry	High	pendingReview
1999	2000	Design	Coding	Inquiry	High	Completed
4						

```
In [5]: DailyIssue = df.groupby(['created_at']).created_at.count()
DailyIssue.plot(figsize= (25, 10))
#Data = DataFrame(DailyIssue)
```

Out[5]: <AxesSubplot:xlabel='created_at'>


```
In [6]: M df1 = df.groupby(['created_at'], as_index = False).count()
    dataFrame = df1[['created_at','issue_number']]
    dataFrame.columns = ['ds', 'y']
    dataFrame
    dataFrame
    dataFrame.to_csv (r'github_data.csv', index = None, header=True)
```

```
In [7]:  #facebook prophet
    dataFrame = pd.read_csv('github_data.csv')
    m = Prophet()
    m.fit(dataFrame)
```

INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_season ality=True to override this.

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonal
ity=True to override this.

Out[7]: <fbprophet.forecaster.Prophet at 0x293c9419e88>

```
In [8]:  #facebook
    #make predict
    future = m.make_future_dataframe(periods=365)
    future.tail()
```

Out[8]:

```
ds
648 2018-12-18
649 2018-12-19
650 2018-12-20
651 2018-12-21
652 2018-12-22
```

```
In [9]:  #facebook prophet
forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
```

Out[9]:

	ds	yhat	yhat_lower	yhat_upper
648	2018-12-18	-8.736755	-19.272354	1.602213
649	2018-12-19	-8.929065	-19.320022	2.073831
650	2018-12-20	-8.640544	-18.768626	1.641611
651	2018-12-21	-8.546741	-19.332849	2.062546
652	2018-12-22	-9.360859	-19.960743	1.213743

In [10]: #facebook prophet
forcast_fig1 = m.plot(forecast)


```
In [12]:
             # Q2 : The day of the week maximum number of issues closed
             # and
             # Q3 : The month of the year that has maximum number of issues closed
             DailyIssue = df.groupby(['closed_at']).created_at.count()
             DailyIssue.plot(figsize= (25, 10))
             df1 = df.groupby(['closed_at'], as_index = False).count()
             dataFrame = df1[['closed_at','issue_number']]
             dataFrame.columns = ['ds', 'y']
             dataFrame
             dataFrame.to_csv (r'github_data.csv', index = None, header=True)
             dataFrame = pd.read_csv('github_data.csv')
             m = Prophet()
             m.fit(dataFrame)
             future = m.make_future_dataframe(periods=365)
             future.tail()
             forecast = m.predict(future)
             forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
             forcast fig2 = m.plot components(forecast)
```

INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_season ality=True to override this.

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonal
ity=True to override this.

In [13]:

answer 2 : day when maximum issues were closed is Friday

answer 3 : Maximum issues were closed in March - 2017.

INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_season ality=True to override this.

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonal ity=True to override this.


```
In [15]:
          ▶ #5. Plot the closed issues forecast; use the Prophet.plot components method.
             # see the trend, yearly seasonality, and weekly
             # seasonality of the time series. If you include holidays, you'll see those h
             DailyIssue = df.groupby(['closed_at']).created_at.count()
             DailyIssue.plot(figsize= (25, 10))
             df1 = df.groupby(['closed_at'], as_index = False).count()
             dataFrame = df1[['closed_at','issue_number']]
             dataFrame.columns = ['ds', 'y']
             dataFrame
             dataFrame.to_csv (r'github_data.csv', index = None, header=True)
             dataFrame = pd.read_csv('github_data.csv')
             m = Prophet()
             m.fit(dataFrame)
             future = m.make_future_dataframe(periods=365)
             future.tail()
             forecast = m.predict(future)
             forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
             forcast_fig2 = m.plot_components(forecast)
             #answer 5
```

INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_season ality=True to override this.

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonal
ity=True to override this.

In]]:	H	
In	[]:	H	
In	[]:	H	