STAT 31210: Homework 7

Caleb Derrickson

February 23, 2024

Collaborators: The TA's of the class, as well as Kevin Hefner, and Alexander Cram.

Contents

1	Problem 8.12	2
2	Problem 8.13	3
3	Problem 8.14	4
4	Problem 8.17	6
5	Problem 8.18	7
6	Problem 8.20	8

Suppose that $A: \mathcal{H} \to \mathcal{H}$ is a bounded, self-adjoint, linear operator such that there is a constant c > 0 with

$$c||x|| \le ||Ax||$$
 for all $x \in \mathcal{H}$.

Prove that there is a unique solution x of the equation Ax = y for every $y \in \mathcal{H}$.

Solution:

For this proof, we have to show two things: that there is a solution for all $x \in \mathcal{H}$ and that solution is unique. First, we wish to show that range(A) is closed, which we can then apply Theorem 8.18, which will give us that Ax has a solution for y orthogonal to $\ker(A^*)$, which is $\ker(A)$ since A is self-adjoint. To show range(A) is closed, take a Cauchy sequence $Ax_n \in \mathcal{H}$. Then, by the property given of A, we have that

$$||x_n - x_m|| \le \frac{1}{c} ||Ax_n - Ax_m||$$

Since Ax_n is Cauchy, we have that $||x_n - x_m|| \to 0$ as $n, m \to \infty$. Therefore, x_n is a Cauchy sequence in \mathcal{H} . Since \mathcal{H} is complete, then $x_n \to x \in \mathcal{H}$, as $n \to \infty$. Note then that

$$||x_n - x|| = \frac{||A||}{||A||} ||x_n - x|| \ge \frac{1}{||A||} ||Ax_n - Ax||$$

The last step is an application of Cauchy Schwartz. The multiplication and division of the norm of A can be done since A is bounded (and assumed not the 0-matrix)¹. The line above then implies that $||Ax_n - Ax|| \to 0$ as $n \to \infty$, since it is bounded by $||x_n - x||$. Therefore, $x \in \text{range}(A)$, so it is closed. By Theorem 8.18, we have that Ax = y as solutions for all y orthogonal to $\ker(A)$, since A is self adjoint. I claim that $\ker(A) = \{0\}$, since if it weren't, then there would exist some $x \in \mathcal{H}$ nonzero such that Ax = 0. But,

$$||x|| \le c||Ax|| = 0 \implies ||x|| = 0 \iff x = 0.$$

Therfore, we see a contradiction on x, so $\ker(A) = \{0\}$. Therefore, Ax = y has a solution for all $y \in \mathcal{H}$, since all of \mathcal{H} is orthogonal to the zero set. Finally, we need to show that the solution is unique for all $x \in \mathcal{H}$. Suppose there were $x_1, x_2 \in \mathcal{H}$ such that $Ax_1 = Ax_2 = y$. But then $A(x_1 - x_2) = 0$, which implies that $x_1 - x_2 = 0$, since the kernel of A is the zero set. Therefore, $x_1 = x_2$, so the solution is unique for all $x \in \mathcal{H}$, proving the statement.

¹Even if we assumed that A could be the zero-matrix, then the solutions of Ax would not be unique, therefore we exclude this case.

Prove that an orthogonal set of vectors $\{u_{\alpha} : \alpha \in \mathcal{A}\}$ in a Hilbert space \mathcal{H} is an orthonormal basis if and only if

$$\sum_{\alpha \in \mathcal{A}} u_{\alpha} \otimes u_{\alpha} = \mathbb{I}.$$

Solution: I am most familiar with the notation used by physicists, so instead of $u_{\alpha} \otimes u_{\alpha}$, I will use $|u_{\alpha}\rangle\langle u_{\alpha}|$. For simplicity, denote A as the operator given.

<u></u>:

Here we will assume that $\{u_{\alpha}\}$ is an orthonormal basis, and I will show the forward implication holds. Let $x \in \mathcal{H}$. Then by since $\{u_{\alpha}\}$ is an orthonormal subset of \mathcal{H} (it is an orthonormal basis for \mathcal{H} so this should hold), then by Theorem 6.26, we can write x as

$$|x\rangle = \sum_{\alpha \in A} \langle u_{\alpha} | x \rangle |u_{\alpha}\rangle$$

By the definition of the orthogonal projection on page 190 in the book, for any $v, y \in \mathcal{H}$, $(|v\rangle\langle v|)|y\rangle = \langle v|y\rangle|v\rangle$. Applying this, we have that

$$|x\rangle = \sum_{\alpha \in A} (|u_{\alpha}\rangle\langle u_{\alpha}|) |x\rangle$$

Therefore, in terms of A, we have that x = Ax, implying that $A = \mathbb{I}$. This then shows the forward implication.

⇐=:

Suppose false. That is, $\{u_{\alpha}\}$ is not an orthonormal set (still orthogonal, just $||u_{\alpha}|| \neq 1$), yet

$$\sum_{\alpha \in A} |u_{\alpha}\rangle\langle u_{\alpha}| = \mathbb{I}.$$

In terms of matrix language, this would imply that for any $\alpha \in \mathcal{A}$,

$$|u_{\alpha}\rangle\langle u_{\alpha}| = |e_{\alpha}\rangle\langle e_{\alpha}|,$$

where e_{α} is the standard basis vector. This implies the rank one matrix generated by $|u_{\alpha}\rangle\langle u_{\alpha}|$ is the same as the rank one matrix generated by $|e_{\alpha}\rangle\langle e_{\alpha}|$. Note that both have only one nonzero element, the index (α,α) , since both are orthogonal. This implies that $||u_{\alpha}||^2 = ||e_{\alpha}||^2 = 1$, therefore, $||u_{\alpha}||^2 = \langle u_{\alpha}|u_{\alpha}\rangle = 1$, which is a contradiction. Therefore, $\{u_{\alpha}\}$ is an orthonormal basis for \mathcal{H} .

Suppose that $A, B \in \mathfrak{B}(\mathcal{H})$ satisfy

$$\langle x|Ay\rangle = \langle x|By\rangle$$
 for all $x, y \in \mathcal{H}$.

Prove that A = B. Use a polarization type identity to prove that if \mathcal{H} is a complex Hilbert space and

$$\langle x|Ax\rangle = \langle x|Bx\rangle$$
 for all $x \in \mathcal{H}$,

then A = B. What can you say about A and B for real Hilbert spaces?

Solution:

We will show that A=B when $\langle x|Ay\rangle=\langle x|By\rangle$. Note that this implies $\langle x|(A-B)y\rangle=0$, therefore, $x\perp \operatorname{range}(A-B)$ for all $x\in \mathcal{H}$. Since this is for all $x\in \mathcal{H}$, then it must mean $\operatorname{range}(A-B)=\{0\}$, therefore, A-B is the zero mapping. This implies that A-B=0, so A=B.

In using a polarization identity, we can see when expanding out the inner product that

$$\langle x|Ax\rangle = \frac{1}{4} \left[\langle x + Ax|x + Ax\rangle - \langle x - Ax|x - Ax\rangle + i \langle x + Ax|x + Ax\rangle - i \langle x - Ax|x - Ax\rangle \right].$$

Similarly, for B,

$$\langle x|Bx\rangle = \frac{1}{4} \left[\langle x+Bx|x+Bx\rangle - \langle x-Bx|x-Bx\rangle + i \, \langle x+Bx|x+Bx\rangle - i \, \langle x-Bx|x-Bx\rangle \right].$$

Since $\langle x|Ax\rangle = \langle x|Bx\rangle$ for all x, we have that

$$\langle x|Ax\rangle - \langle x|Bx\rangle = 0$$

$$\implies \langle x + Ax | x + Ax \rangle + \langle x - Ax | x - Ax \rangle - \langle x + Bx | x + Bx \rangle - \langle x - Bx | x - Bx \rangle$$

$$= i \langle x - Ax | x - Ax \rangle - i \langle x + Ax | x + Ax \rangle - i \langle x + Bx | x + Bx \rangle + i \langle x - Bx | x - Bx \rangle$$

Since the right side is complex and the left side is real valued, we have that

$$\langle x + Ax | x + Ax \rangle + \langle x - Ax | x - Ax \rangle - \langle x + Bx | x + Bx \rangle - \langle x - Bx | x - Bx \rangle = 0$$

$$\langle x - Ax|x - Ax \rangle - \langle x + Ax|x + Ax \rangle - \langle x + Bx|x + Bx \rangle + \langle x - Bx|x - Bx \rangle = 0$$

From the first line, we can group terms together to get

$$\langle x + Ax|x + Ax \rangle - \langle x + Bx|x + Bx \rangle + \langle x + Ax|x + Ax \rangle - \langle x - Bx|x - Bx \rangle = 0$$

$$\langle (A-B)x|(A-B)x\rangle + \langle (B-A)x|(B-A)x\rangle = 0$$

Therefore, ||(A-B)x|| = -||(B-A)x|| for all x. Since we are free to multiply by a negative 1 inside the norm, we have that

$$||(A - B)x|| = -||(A - B)x||$$

Therefore, (A - B)x = 0 for all x, meaning A - B is the zero mapping, so A = B. This result only hinged on the real part, where the complex part is not necessary. So the A and B for real Hilber spaces must equal as well.

Prove that strong convergence implies weak convergence. Also prove that strong and weak convergence are equivalent in a finite-dimensional Hilbert space.

Solution:

Strong \implies weak:

Let $x, y \in \mathcal{H}$, and suppose there exists a sequence x_n which converges to x strongly. Then, $\lim_{n \to \infty} ||x_n - x|| = 0$. Let $\varepsilon > 0$; there exists an $N \in \mathbb{N}$ such that when $n \geq N \implies ||x_n - x|| < \frac{\varepsilon}{||y||}$ for $y \neq 0$. Therefore, when analyzing the definition of the weak topology, we see that

$$|\langle x_n|y\rangle - \langle x|y\rangle| = |\langle x_n - x|y\rangle| \le ||x_n - x|| ||y|| < \frac{\varepsilon}{||y||} ||y|| = \varepsilon.$$

This will hold for any $y \in \mathcal{H}$, therefore, if $x_n \to x$ strongly, then $x_n \to x$ weakly.

Weak \implies strong (in finite dimensions.):

Suppose $|\mathcal{H}| = n$. Since any Hilbert space has an orthonormal basis, let $\{u_j\}_{j=1}^n$ be such basis. Let $\varepsilon > 0$; there exists an $N \in \mathbb{N}$ such that when $k \geq N \implies |\langle x_k | y \rangle - \langle x | y \rangle| < \frac{\varepsilon}{\sqrt{n}}$ for any $y \in \mathcal{H}$. By linearity of the inner product, we have

$$|\langle y|x_k-x\rangle|<\frac{\varepsilon}{\sqrt{n}}.$$

Since this should hold for any $y \in \mathcal{H}$, it should hold then for the bases. Then $|\langle u_j | x_k - x \rangle| < \frac{\varepsilon}{\sqrt{n}}$ for any $u_j \in \{u_j\}_{j=1}^n$. By Theorem 6.26, we have that

$$||x_k - x||^2 = \sum_{j=1}^n |\langle u_j | x_k - x \rangle|^2.$$

But since each term is less than $\frac{\varepsilon}{n}$,

$$||x_k - x||^2 = \sum_{j=1}^n |\langle u_j | x_k - x \rangle|^2 < \sum_{j=1}^n \left(\frac{\varepsilon}{\sqrt{n}}\right)^2 = \varepsilon^2.$$

Therefore, $||x_k - x|| < \varepsilon$ for sufficiently large k, implying weak convergence is equivalent to strong convergence in a finite dimensional Hilbert space.

²If y=0, then weak topology is already satisfied, since $\langle x_n|y\rangle - \langle x|y\rangle = 0 < \varepsilon$.

Let u_n be a sequence of orthonormal vectors in a Hilbert space. Prove that $u_n \rightharpoonup 0$ weakly.

Solution:

Let $y \in \mathcal{H}$. To show that $u_n \rightharpoonup 0$ weakly, we need to show that $|\langle u_n | y \rangle| \to 0$ as $n \to \infty$. By Bessel's Inequality, we have that

$$\sum_{n=1}^{\infty} |\langle u_n | y \rangle|^2 \le ||y||^2$$

Since this is then a converging sum, we have that $|\langle u_n|y\rangle|^2 \to 0$ as $n \to \infty$. This then implies that $|\langle u_n|y\rangle| \to 0$ as $n \to \infty$, showing weak convergence.

Let \mathcal{H} be a real Hilbert space and $\varphi \in \mathcal{H}^*$. Define the quadratic functional $f: \mathcal{H} \to \mathbb{R}$ by

$$f(x) = \frac{1}{2} ||x||^2 - \varphi(x).$$

Prove that there is a unique element $\bar{x} \in \mathcal{H}$ such that

$$f(\bar{x}) = \inf_{x \in \mathcal{H}} f(x).$$

Solution:

Suppose \bar{x} is the value at which the minimum is obtained. By the Riesz Representation Theorem, (Theorem 8.12), there exists a unique vector $x_0 \in \mathcal{H}$ such that $\varphi(x) = \langle x | x_0 \rangle$ for all $x \in \mathcal{H}$. Then, since \bar{x} is the minimum of f, we then have, for any $x \in \mathcal{H}$,

$$f(\bar{x}) \le f(\bar{x} + x) \implies \frac{1}{2} ||\bar{x}||^2 - \langle \bar{x} | x_0 \rangle \le \frac{1}{2} ||\bar{x} + x||^2 - \langle \bar{x} + x | x_0 \rangle.$$

By rearranging, we have that

$$\frac{1}{2} \|\bar{x}\|^2 \le \frac{1}{2} \|\bar{x} + x\|^2 - \langle x | x_0 \rangle$$

By using the definition of the norm on a Hilbert space, we can expand the norm to get

$$\frac{1}{2} \|\bar{x}\|^2 \le \frac{1}{2} (\|x\|^2 + 2 \langle \bar{x}|x \rangle + \|\bar{x}\|^2) - \langle x|x_0 \rangle.$$

Simplifying, we get

$$\langle x_0 - \bar{x} | x \rangle \le \frac{1}{2} ||x||^2 \, \forall \, x \in \mathcal{H}.$$

Set $x = x_0 - \bar{x}$. Then,

$$\langle x_0 - \bar{x} | x_0 - \bar{x} \rangle \le \frac{1}{2} ||x_0 - \bar{x}|| \implies \frac{1}{2} ||x_0 - \bar{x}|| \le 0$$

Since the norm function is positive, we have that $x_0 - \bar{x} = 0$, therefore, $x_0 = \bar{x}$. Since the function given is quadratic, its minimum is then uniquely attained.