1 Gluing vertices

Example: glue the 1-dimensional quiver $\underbrace{a_1}_{a_2}$ to the 2-dimensional quiver $\underbrace{b_1}_{b_2}$ $\underbrace{b_3}_{b_4}$. There are 6 possible ways to do this.

• $v_1 = w_1$. In this case, we get the quiver: a_1 b_1 b_3

•
$$v_1 = w_3$$
 b_1 b_3 a_1 a_2

- $v_2 = w_1$ Similar to $v_1 = w_3$
- $v_2 = w_2$ Similar to $v_1 = w_2$
- $v_2 = w_3$ Similar to $v_1 = w_1$

Claim: joining 2 acyclic quivers by identifying a vertex yields an acyclic quiver

Let P, Q be two quivers, and S be the directed graph obtained by identifying vertex $p \in P$ with vertex $q \in Q$. Note that S is connected, and $S \setminus \{p = q\}$ is the disjoint union of sets $P' \subset P$ and $Q' \subset Q$.

Now, assume that there is indeed a cycle in S. Note that this cycle must contain the vertex p=q, (otherwise, we could isolate this cycle in either $P' \subset P$ or $Q' \subset Q$ and both of these quivers are, by assumption, acyclic)

Since, however, p = q is the only vertex connecting the two "lobes" of S, this means that the cycle containing p = q can be simplified to a cycle contained entirely in P or in Q. (BWOC, sps that the cycle contains loop components in both P and Q. Then since these two quivers are disjoint except for p = q, then they both must contain p = q, and the arrows and vertices for each loop component are contained entirely in the respective quivers P, Q. Thus P contains a cycle, as does Q. A contradiction)

Claim: dim(S) = dim(P) + dim(Q).

Recall: $dim(S) = |S_1| - |S_0| + 1$. Now, since this method of gluing results in a quiver with all of the arrows from both, and all vertices from both with two identified together, we have:

$$|S_1| = |P_1| + |Q_1|, \quad |S_0| = |P_0| + |Q_0| - 1$$

Then

$$|S_1| - |S_0| + 1 = (|P_1| + |Q_1|) - (|P_0| + |Q_0| - 1) + 1$$

Rearranging, we get:

$$dim(S) = |S_1| - |S_0| + 1 = (|P_1| - |P_0| + 1) + (|Q_1| - |Q_0| + 1) = dim(P) + dim(Q)$$

2 Gluing arrows

Example Glue the 1-dimesional quiver $\underbrace{a_1}_{a_2}$ to the 2-dimensional one by identifying an arrow. There are 8 possible gluings: $a_1 \in \{b_1, ..., b_4\}$ and $a_2 \in \{b_1, ... b_4\}$

For the case
$$a_1 = b_1$$
, we have then:
$$\begin{array}{c}
a_1 \\
b_2
\end{array}$$

$$\begin{array}{c}
b_3 \\
b_4
\end{array}$$

Claim: joining 2 acyclic quivers by identifying an arrow from each (following orientation) yields an acyclic quiver.

Let P, Q be two acyclic quivers, and S be the directed graph obtained by identifying arrow $a_1 \in P$ with arrow $a_2 \in Q$. For simplicity, we will now call this arrow as simply $a \in S_1 \cap P_1 \cap Q_1$.

Denote by a^+ and a^- the head and tail resp of arrow a.

Then if the ordered colletion of arrows $C = \{\alpha_1, \alpha_2, ...\}$ is a cycle in S with vertices $V = \{v_1,, v_{n-1}, v_n = v_1\}$, we have the following observation:

$$a^{\pm} \in V$$
.

Note: if only one of the a^{\pm} is contained in the cycle, then we are in a precisely similar situation as that with identifying a single vertex to glue.

Alternatively, if neither a^{\pm} is contained in the cycle, then we could write $C \subset S \setminus N_a$ where N_a is the set of all edges with endpoints one of a^{\pm} . Again, the acyclic nature of P and Q make this impossible $(S \setminus N_a)$ is composed of two disjoint quivers, one $\subset P$ and one $\subset Q$).

Therefore V must contain both the head and the tail of the arrow a.

WLOG assume that C contains no loops. Now, we can write the ordered vertices in C as:

$$a^-, p_1, ..., p_i, a^+, q_1, ..., q_j, a^-$$

where the $p_k \in P$ and $q_k \in Q$. (otherwise C would contain a loop). Then note that S also contains the cycle

$$a^{-}, a^{+}, q_{1}, ..., q_{i}, a^{-},$$

since $a \in S_1$. But note that $a^{\pm} \subset Q_0$, since $a \in Q_1$. Therefore Q contains the cycle given above, a contradiction.

Therefore S does not contain any cycle.

Claim: dim(S) = dim(P) + dim(Q).

By simple observation, we see that

$$|S_1| = |P_1| + |Q_1| - 1$$

and similarly, since the head of each arrow is identified together and the tail of each is identified together,

$$|S_0| = |P_0| + |Q_0| - 2$$

Therefore:

$$dim(S) = |S_1| - |S_0| + 1 = |P_1| + |Q_1| - 1 - |P_0| - |Q_0| + 2 + 1 = (|P_1| - |P_0| + 1) + (|Q_1| - |Q_0| + 1)$$