

Class **Recommendation Engines**

Topic **Introduction**

Collaborative Filtering

Predicting User Preferences

Recommender systems attempt to Use historical user preference data predict user preferences Instance of a familiar application of Popularized by online businesses recommendation engines Based on the browsing history, relevant amazon products are recommended to us Customers who bought this item also bought Important to cross Sell many < sell and up sell products their products Samsung On7 Pro Samsung On5 Pro

₹ 7,590.00 vprime

₹ 6,490.00 yprime

₹ 7,590.00 yprime

Collaborative Filtering

User item rating matrix

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7
User 1	3	5	1	2	4	3	3
User 2	2	4	1	2	?	3	2
User 3	3	?	5	?	4	1	1
User 4	4	5	1	?	?	?	?

Ratings for a user item pair

Collaborative filtering works on the premise

Users who are similar, select similar kind of products

Gauging how similar a product is to a set of products, relevant recommendations are made

Items - movies or TV series

User item rating matrix - user movie rating matrix

Collaborative Filtering

User item rating matrix

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7
User 1	3	5	1	2	4	3	3
User 2	2	4	1	2	?	3	2
User 3	3	?	5	?	4	1	1
User 4	4	5	1	?	?	?	?

Usually a **user item rating matrix is partially populated** as not all users tend to rate all items

Recommendation engines usually try to predict these missing ratings

Predicted value of these ratings of an item is high enough

The item is recommended to the user

Memory Based/ Neighbourhood Methods

Memory Based/ Neighbourhood Methods

User Based Collaborative Filtering

User item rating matrix

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

What is the rating for the Item 5 given by Alice?

Find users similar to Alice

Use any measures of similarity such as a **Pearson co-relation** or **Cosine similarity**

←--- Based on the most similar users

Predict the rating for item 5 by Alice

User Based Collaborative Filtering

User item rating matrix

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

The rating for item 5 by Alice will predicted based on how User 1 and User 2 have rated item 5

What is the rating for the Item 5 given by Alice?

Find users similar to Alice

Use any measures of similarity such as a **Pearson co-relation** or **Cosine similarity**

User 1 and User 2 are most similar users to Alice

Recap

- Predicting user preferences
- Collaborative filtering
- Memory based methods
- User based collaborative filtering

Class **Recommendation Engines**

Topic

Item Based Collaborative Filtering

Item Based Collaborative Filtering

User item rating matrix

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

What is the rating for the Item 5 given by Alice?

Find out the items similar to item 5 that are rated by Alice

Use either Co-relation or Cosine similarity to find the similar items

Based on the items that are more similar to item 5, rating of item 5 by Alice will be computed

Item Based Collaborative Filtering

User item rating matrix

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

What is the rating for the Item 5 given by Alice?

Find out the items similar to item 5 that are rated by Alice

Item 1 and Item 4 turn out to be the most similar items to Item 5

Based on Alice's rating of Item 1 and Item 4, the prediction about the rating for Item 5 would be made

Code Demo

Prediction

Prediction in a Recommender system, particularly the memory based Recommender systems, can be done in 2 ways:

1. Predict the rating based on just the ratings and similarities of items or users

$$\hat{r}_{ui} = rac{\sum\limits_{v \in N_i^k(u)} ext{sim}(u,v) \cdot r_{vi}}{\sum\limits_{v \in N_i^k(u)} ext{sim}(u,v)}$$

$$\hat{r}_{ui} = rac{\sum\limits_{j \in N_u^k(i)} ext{sim}(i,j) \cdot r_{uj}}{\sum\limits_{j \in N_u^k(j)} ext{sim}(i,j)}$$

2. Predict the rating based on the average effects of ratings of items and users as well

$$\hat{r}_{ui} = \mu_i + \frac{\sum\limits_{j \in N_u^k(i)} \sin(i,j) \cdot (r_{uj} - \mu_j)}{\sum\limits_{j \in N_u^k(i)} \sin(i,j)}$$

$$\hat{r}_{ui} = \mu_u + rac{\sum\limits_{v \in N_i^k(u)} ext{sim}(u,v) \cdot (r_{vi} - \mu_v)}{\sum\limits_{v \in N_i^k(u)} ext{sim}(u,v)}$$

Baseline Effects

Not all software libraries have the ability to take into account the baseline effects

Accuracy

The accuracy of a Recommender system can be measured by estimating the metrics

Root Mean Squared Error (RMSE)

Mean Absolute Error (MAE)

Computation of these quantities is quite straightforward since the actual ratings for many user and item pairs are already known

Hyperparameters

What would be the hyperparameters for neighborhood based recommendation systems?

2. Similarity metric

3. Prediction method

Grid Search using K-fold Cross Validation to figure out which values of these hyperparameters will be most suitable

Recap

- Item based collaborative filtering
- Code demo of item based collaborative filtering
- Prediction
- Baseline effects
- Accuracy
- Hyperparameters

Class **Recommendation Engines**

Topic

Model Based

Build recommendation engines using - user based and item based collaborative filtering

Another class of collaborative filtering recommendation engines that rely on the use

Matrix factorization algorithms

Singular Value Decomposition

Non Negative Matrix Factorization

User item rating matrix

	Star Trek	Avatar	Spiderman	Hulk
User 1	4	4	1	1
User 2	5	5	2	2
User 3	1	1	4	4
User 4	2	2	5	5

Assume – Ratings are on a scale of 1 to 5

In context of recommendation engines, matrix factorization indicates finding 2 matrices :

User item rating matrix

	Star Trek	Avatar	Spiderman	Hulk
User 1	4	4	1	1
User 2	5	5	2	2
User 3	1	1	4	4
User 4	2	2	5	5

Dim 1	Dim 2
0.5	-0.41
0.5	-0.57
-0.5	0.41
-0.5	0.57

What does each of these matrices signify?

	Star Trek	Avatar	Spiderman	Hulk
Dim 1	0.5	0.5	-0.5	-0.5
Dim 2	-0.2	-0.2	0.7	0.7

User item rating matrix

	Star Trek	Avatar	Spiderman	Hulk
User 1	4	4	1	1
User 2	5	5	2	2
User 3	1	1	4	4
User 4	2	2	5	5

Genre: Science Fiction (Sci-Fi)

Genre: Fantasy movies

User factor matrix

Dim 1	Dim 2
0.5	-0.41
0.5	-0.57
-0.5	0.41
-0.5	0.57

2 columns

Representing factors

Movie genres

Item factor matrix

	Star Trek	Avatar	Spiderman	Hulk
Dim 1	0.5	0.5	-0.5	-0.5
Dim 2	-0.2	-0.2	0.7	0.7

User item rating matrix

	Star Trek	Avatar	Spiderman	Hulk
User 1	4	4	1	1
User 2	5	5	2	2
User 3	1	1	4	4
User 4	2	2	5	5

High values corresponding to Sci-Fi genre

Sci-FiDim 20.5-0.410.5-0.57-0.50.41

0.57

User factor matrix

High rating to Sci-Fi movies in the original matrix

Numbers represent how much each factor, each of the items have Item factor matrix

-0.5

	Star Trek	Avatar	Spiderman	Hulk
Dim 1	0.5	0.5	-0.5	-0.5
Dim 2	-0.2	-0.2	0.7	0.7

User item rating matrix

	Star Trek	Avatar	Spiderman	Hulk
User 1	4	4	1	1
User 2	5	5	2	2
User 3	1	1	4	4
User 4	2	2	5	5

User factor matrix

Sci-Fi	Dim 2
0.5	-0.41
0.5	-0.57
-0.5	0.41
-0.5	0.57

Item factor matrix

	Star Trek	Avatar	Spiderman	Hulk
Sci-Fi	0.5	0.5	-0.5	-0.5
Dim 2	-0.2	-0.2	0.7	0.7

User item rating matrix

	Star Trek	Avatar	Spiderman	Hulk
User 1	4	4	1	1
User 2	5	5	2	2
User 3	1	1	4	4
User 4	2	2	5	5

User factor matrix

Sci-Fi	Fantasy
0.5	-0.41
0.5	-0.57
-0.5	0.41
-0.5	0.57

Item factor matrix

	Star Trek	Avatar	Spiderman	Hulk
Sci-Fi	0.5	0.5	-0.5	-0.5
Fantasy	-0.2	-0.2	0.7	0.7

Technical details of matrix factorization

k is determined by the user

Number of factors to be considered is always less than the number of rows, or columns or original rating matrix, whichever is minimum

Technical details of matrix factorization

Item Factor Matrix $k \times n$ **User Factor User Rating Matrix** Matrix $m \times n$ $m \times k$ q^{T} p

 $k < \min(m, n)$

Technical details of matrix factorization

User Rating Matrix $1000 \times 10{,}000$ User Factor Matrix $k \times n$ $m \times k$ Item Factor Matrix $k \times n$ q^{T}

 $20 < \min(1000, 10000)$

p

Technical details of matrix factorization

User Rating Matrix $1000 \times 10{,}000$ User Factor Matrix $k \times n$ q^T

 $20 < \min(1000, 10000)$

Technical details of matrix factorization

 $20 < \min(1000, 10000)$

Recap

Matrix factorization

Class **Recommendation Engines**

Topic

Model Based Methods: Prediction and Estimation Using SVD and NMF

$$\hat{r}_{ui} = \mu + b_{\mu} + b_i + p_u q_i^T$$

 μ – Average of all the ratings in the data

 b_{μ} – Estimate of average ratings considering each user

 b_i – Estimate of average ratings considering each item

 $oldsymbol{p_u}$ – User factor matrix obtained from matrix factorization

 q_i^T – Item factor matrix

$$\widehat{r}_{ui} = \mu + b_{\mu} + b_i + p_u q_i^T$$

	Star Trek	Avatar	Spiderman	Hulk
User 1	4	?	3	?
User 2	4	?	2	1
User 3	3	?	4	3
User 4	?	?	?	?

What will be the form of User factor and Item factor matrix?

If a given item or user doesn't have any rating history, then that item or user is dropped before doing matrix factorization

	٤
J	

p

Dim 1	Dim 2
0.8	0.4
0.6	-0.5
0.2	0.1

Each entry in this matrix talks about user preference for each of the 2 factors

Matrix Factorization

$$\widehat{r}_{ui} = \mu + b_{\mu} + b_i + p_u q_i^T$$

	Star Trek	Avatar	Spiderman	Hulk	b_u
User 1	4	?	3	?	1.75
User 2	4	?	2	1	1.75
User 3	3	?	4	3	2.5
User 4	?	?	?	?	0
b_i	2.75	0	2.75	1	

 $oldsymbol{b_i}$ - Computed the column averages

 $\boldsymbol{b_u}$ - Computed the row averages

r

Dim 1	Dim 2
0.8	0.4
0.6	-0.5
0.2	0.1

Star Trek Spiderman

Dim 1 0.6 0.8 -0.4 Dim 2 0.2 0.3 0.1

 2×3

Hulk

Matrix Factorization

$$\widehat{r}_{ui} = \mu + b_{\mu} + b_i + p_u q_i^T$$

	Star Trek	Avatar	Spiderman	Hulk	b_u
User 1	4	?	3	?	1.75
User 2	4	?	2	1	1.75
User 3	3	?	4	3	2.5
User 4	?	?	?	?	0
b_i	2.75	0	2.75	1	

Global average of ratings

$$\mu = 1.5$$

$$\hat{r}_{14} = 1.5 + 1.75 + 1 + p_1 q_4^T$$

$$p_1 q_4^T = [0.8, 0.4] \times [-0.4, 0.1]$$

$$p_1 q_4^T = [-0.32 + 0.8 - 0.16 + 0.4]$$

$$p_1 q_4^T = -0.36$$

 \boldsymbol{p}

Dim 1	Dim 2
0.8	0.4
0.6	-0.5
0.2	0.1

 Star Trek
 Spiderman
 Hulk

 Dim 1
 0.6
 0.8
 -0.4

 Dim 2
 0.2
 0.3
 0.1

 $\hat{r}_{14} = 1.5 + 1.75 + 1 - 0.36$

$$\hat{r}_{14} = 3.89$$

$$2 \times 3$$

Matrix Factorization

$$\widehat{r}_{ui} = \mu + b_{\mu} + b_i + p_u q_i^T$$

	Star Trek	Avatar	Spiderman	Hulk	b_u
User 1	4	?	3	?	1.75
User 2	4	?	2	1	1.75
User 3	3	?	4	3	2.5
User 4	?	?	?	?	0
b_i	2.75	0	2.75	1	

		p
Dim 1	Dim 2	
0.8	0.4	
0.6	-0.5	
0.2	0.1	

 Star Trek
 Spiderman
 Hulk

 Dim 1
 0.6
 0.8
 -0.4

 Dim 2
 0.2
 0.3
 0.1

 $\mu = 1.5$

$$\hat{r}_{22} = 1.5 + 1.75 + 0 + p_2 q_2^T$$

$$p_2 q_2^T = [0.6, -0.5] \times [0,0]$$

$$p_2 q_2^T = 0$$

$$\hat{r}_{22} = 1.5 + 1.75 + 0 + 0$$

$$\hat{r}_{22} = 3.25$$

Matrix factorization

How is the matrix factorization done?

How does Singular Value Decomposition work?

It will be discussed in the context of recommendation engines with an emphasis on providing an intuition on how things work

2 popular algorithms

Singular Value Decomposition (SVD)

Non Negative Matrix Factorization (NMF)

Rating matrix

	Star Trek	Avatar	Spiderman	Hulk
User 1	4	?	3	?
User 2	4	?	2	1
User 3	3	?	4	3
User 4	?	?	?	?

Rating matrix

	Star Trek	Spiderman	Hulk
User 1	4	3	?
User 2	4	2	1
User 3	3	4	3

It will be imputed with either the mean or 0 value

Depending on which implementation is being used to do the matrix factorization

Some implementations may not even impute the values

Rating matrix

	Star Trek	Spiderman	Hulk
User 1	4	3	3.5
User 2	4	2	1
User 3	3	4	3

$$\hat{r}_{ui} = \mu + b_{\mu} + b_i + p_u q_i^T$$

Predictions

	Star Trek	Spiderman	Hulk
User 1	3.2	2.9	3.3
User 2	3.8	2.5	1.2
User 3	2.9	3.8	3.4

Error =
$$(4-3.2)^2 + (3-2.9)^2 + \cdots + (3-3.4)^2$$

$$Error = \sum (r_{ui} - \hat{r}_{ui})^2$$

Minimizing the error can lead to overfit

Regularization is mostly used to guard against overfit

Commonly used cost function -

$$Error = \sum (r_{ui} - \hat{r}_{ui})^2 + \lambda (b_u^2 + b_i^2 + ||q_i||^2 + ||p_u||^2)$$

Hyperparameter - λ

Parameters of SVD - p_u , q_i , $b_{\mu,}$ and b_i

Non Negative Matrix Factorization

In the context of recommendation engines NMF is very similar to SVD

Only difference

Factors estimated in NMF are non negative

The same cost function is minimized as in the case of SVD

Error =
$$\sum (r_{ui} - \hat{r}_{ui})^2 + \lambda (b_u^2 + b_i^2 + ||q_i||^2 + ||p_u||^2)$$

With constraints that, p_u and q_i are positive

Cost Function

Minimize the cost functions

</r>

Stochastic Gradient Descent

Alternating Least Squares

Exact details of implementations can differ depending on the machine learning framework being used

Cost functions discussed here are only indicative of what is normally used by most implementations

Hyperparameters

The optimum values are found out using grid search and cross validation

Recap

- Matrix factorization
- Singular Value Decomposition
- Non Negative Matrix Factorization
- Cost Function
- Hyperparameters