

Prof. Dr. Ir. Joost-Pieter Katoen

Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp

Klausur Datenstrukturen und Algorithmen SoSe 2012

Vorname:	
Nachname:	
Matrikelnummer:	
Studiengang (bitte genau einen markieren	n):
 Informatik Bachelor Informatik Lehramt	 Mathematik Bachelor Computational Engineering Science
o Sonstiges:	

	Anzahl Punkte	Erreichte Punkte
Aufgabe 1	20	
Aufgabe 2	20	
Aufgabe 3	20	
Aufgabe 4	20	
Aufgabe 5	20	
Aufgabe 6	20	
Summe	120	

Allgemeine Hinweise:

- Auf alle Blätter (inklusive zusätzliche Blätter) müssen Sie Ihren Vornamen, Ihren Nachnamen und Ihre Matrikelnummer schreiben.
- Geben Sie Ihre Antworten in lesbarer und verständlicher Form an.
- Schreiben Sie mit **dokumentenechten** Stiften, nicht mit roten oder grünen Stiften und nicht mit Bleistiften.
- Bitte beantworten Sie die Aufgaben auf den Aufgabenblättern (benutzen Sie auch die Rückseiten).
- Geben Sie für jede Aufgabe **maximal eine** Lösung an. Streichen Sie alles andere durch. Andernfalls werden alle Lösungen der Aufgabe mit **0 Punkten** bewertet.
- Werden **Täuschungsversuche** beobachtet, so wird die Klausur mit **0 Punkten** bewertet.
- Geben Sie am Ende der Klausur alle Blätter zusammen mit den Aufgabenblättern ab.
- Gehen Sie bei Codeanalysen davon aus, dass sämtliche Instruktionen wie arithmetische Operationen (+,-.*,/), Vergleiche usw. in konstanter Zeit $\mathcal{O}(1)$ ausgeführt werden.

Aufgabe 1 (\mathcal{O} -Notation):

(9 + 4 + 7 = 20 Punkte)

a) Geben Sie für die folgenden Paare von Mengen jeweils die Teilmengenbeziehung mit Hilfe der Symbole \subset , \supset und = an.

(1)
$$O(n^n)$$

$$o(n^n \cdot 2n + 3)$$

$$o(n^n \cdot 2n + 3)$$
 (2) $\Omega(\log_2(n^2))$

$$\Omega(\log_2 n)$$

(3)
$$O(n!)$$

$$\mathcal{O}(n^n)$$

(4)
$$\mathcal{O}(2^n)$$

$$\mathcal{O}(3^n)$$

(5)
$$\mathcal{O}(f(n)) \cap \Omega(f(n))$$
 für eine beliebige Funktion f

$$\Theta(f(n))$$
 (6) $\omega(n^2 + 3)$

$$\Omega(3n^2 + 2n + 4)$$

b) Beweisen oder widerlegen Sie die folgende Aussage:

$$\sum_{i=1}^n \frac{i}{n} \in \Theta(n)$$

c) Beweisen oder widerlegen Sie die folgende Aussage:

$$\left(\frac{n}{2}\right)^{\frac{n}{2}} \in \Theta(n!)$$

Aufgabe 2 (Sortieren):

$$(4 + 3 + 3 + 7 + 3 = 20 \text{ Punkte})$$

a) Sortieren Sie das folgende Array mittels des Quicksort-Algorithmus aus der Vorlesung (d. h. das Pivot-Element ist das jeweils letzte Element des aktuell zu sortierenden Array-Bereichs).

Geben Sie das vollständige Array nach jeder Partitionierung an (d. h. Sie dürfen nicht die Ergebnisse zweier rekursive Aufrufe in einem Schritt angeben) und kennzeichnen Sie das für diese Partitionierung gewählte Pivot-Element durch eine Umkreisung im vorhergehenden Array.

Beispiel:

Delopiel.													
Für das Array	1	3	2	wird die 2 a	ls Pivot-Elemei	nt markiert	(also	1	3 2)	und v	vir	erhalten	als
Ergebnisarray	1	2	3										

1	9	2	8	4	7	(5)		
		Г						

b) Geben Sie die asymptotische Worst-Case Laufzeit (Θ) von Quicksort an. Begründen Sie Ihre Antwort (ein Verweis darauf, dass dies in der Vorlesung gezeigt wurde, reicht nicht aus).

c) Füllen Sie die folgende Tabelle durch Angabe der entsprechenden Worst-Case Komplexitäten (Θ) aus. Sie brauchen Ihre Antworten **nicht** zu begründen.

Algorithmus	Laufzeit Worst-Case	Platz Worst-Case
Insertion-Sort		
Merge-Sort		
Heap-Sort		

d) Geben Sie die asymptotische Worst-Case Laufzeit (⊕) des Aufrufs pentaSort(E, start, end) für den folgenden Sortier-Algorithmus in Abhängigkeit der Differenz n = end - start an, wobei end ≥ start gilt. Geben Sie dazu zunächst eine Rekursionsgleichung basierend auf dem angegebenen Code an und lösen Sie diese anschließend auf.

Hinweis: Sie dürfen Bestandteile der Rekursionsgleichung, welche einer konstanten Laufzeit entsprechen, zu einer Konstanten c zusammenfassen (insbesondere Rundungen bzw. Gauß-Klammern) und müssen eventuell auftretende Logarithmen nicht ausrechnen.

e) Ist der pentaSort Sortier-Algorithmus mit dem initialen Aufruf pentaSort(E, 0, n) für ein Array E mit der Länge n stabil? Begründen Sie Ihre Antwort.

Aufgabe 3 (Bäume):

$$(5 + 6 + 5 + 4 = 20 \text{ Punkte})$$

a) Überführen Sie den folgenden Baum der Höhe 5 durch maximal 4 Rotationen in einen Baum der Höhe 3. Geben Sie dabei für jede Rotation an, um welchen Knoten rotiert wird, in welche Richtung rotiert wird und wie der resultierende Baum aussieht. Dabei dürfen der Knoten, um den rotiert wird, und die Rotationsrichtung für die erste Rotation im abgebildeten Baum markiert werden.

b) Ein AVL-Baum ist ein Binärbaum, bei dem sich für jeden Knoten die Höhe seiner Teilbäume höchstens um eins unterscheiden darf. Gegeben sei nun ein Binärbaum, der aus Instanzen der Klasse Node besteht:

```
class Node{
    Node left, right;
    int key;
}
```

Implementieren Sie eine Methode check (Node tree) in Pseudocode, welche überprüft, ob der durch den Wurzelknoten tree gegebene Baum ein AVL-Baum ist. Stellen Sie sicher, dass Ihre Methode eine Worst-Case Komplexität von $\Theta(n)$ besitzt, wobei n die Anzahl der Knoten des Baumes ist. Die Laufzeitschranke muss nicht bewiesen oder begründet werden.

Hinweis: Sie dürfen den Rückgabetyp der Methode frei wählen. Beispielsweise sind hier auch Tupel zulässig. Sie dürfen außerdem die Funktionen **max**, die das Maximum von zwei Zahlen bestimmt, und **abs**, welche eine Zahl auf ihren Absolutbetrag abbildet, benutzen.

c) Für einen Binärbaum T bezeichne $\ell(T)$ die Anzahl der Blätter des Baumes. Beweisen Sie per Induktion: Für einen Binärbaum T der Höhe h, dessen innere Knoten alle 2 Nachfolger haben, gilt $\ell(T) \ge h + 1$.

d) Beschreiben Sie ein Verfahren, welches einen Wert in einen existierenden Max-Heap mit n Elementen (repräsentiert durch seine Arraydarstellung) einfügt, so dass wieder ein Max-Heap entsteht. Ihr Verfahren soll eine Worst-Case Komplexität in $\mathcal{O}(\log n)$ besitzen. Gehen Sie dabei davon aus, dass das Array, welches den Heap enthält, die Länge n+1 besitzt und die ersten n Elemente die Einträge des Heaps enthalten. Die Laufzeitschranke muss nicht bewiesen oder begründet werden.

Hinweis: Achten Sie dabei darauf, die Stellen des Arrays, auf die zugegriffen wird, präzise anzugeben.

Aufgabe 4 (Hashing):

$$(2 + 8 + 6 + 4 = 20 \text{ Punkte})$$

Gegeben sei die Hashfunktion

$$h(k, i) = (k \mod 11 + 1 \cdot i + 2 \cdot i^2) \mod 11.$$

a) Um welche Art von Sondierung handelt es sich bei der gegebenen Hashfunktion?

b) Fügen Sie die Werte 11, 47, 39, 9, 58, 15, 7 unter Verwendung der obigen Hashfunktion nacheinander in eine anfangs leere Hash-Tabelle der Größe 11 ein:

0	1	2	3	4	5	6	7	8	9	10

c) Robin Hood Hashing ist eine Variante von Hashing, bei der im Falle einer Kollision immer das Schlüsselelement mit der kleineren Anzahl an Sondierungschritten weiter gehasht wird. D. h. gibt es mit einem Element k_1 nach i Sondierungsschritten eine Kollision mit einem Element k_2 nach j Sondierungsschritten (also $h(k_1, i) = h(k_2, j)$) und ist j < i, dann wird mit k_2 weiter sondiert, ansonsten mit k_1 .

Fügen Sie die Werte 22, 52, 40, 17, 13 nach Robin Hood Hashing mit der Hashfunktion

$$h(k, i) = ((k \mod 7) + i * (1 + k \mod 5)) \mod 7$$

in eine anfangs leere Hashtabelle der Größe 7 ein:

0	1	2	3	4	5	6

d) Beschreiben Sie die Vor- und Nachteile, welche entstehen, wenn man beim Robin Hood Hashing tauscht, falls $j \leq i$ gilt.

Aufgabe 5 (Graphen):

$$(5 + 7 + 5 + 3 = 20 \text{ Punkte})$$

a) Ermitteln Sie mit Hilfe des Dijkstra-Algorithmus die kürzesten Wege vom **Startknoten A** zu allen anderen Knoten des folgenden Graphen. Verwenden Sie dazu die folgende Tabelle. Notieren Sie für jeden Rechenschritt den aktuell gewählten Knoten zur Verbesserung der Wege und die Länge der bis zu diesem Zeitpunkt möglichen kürzesten Wege für jeden noch nicht abgeschlossenen Knoten ($D[\dots]$). Streichen Sie Felder der Tabelle, die nicht mehr benötigt werden, durch (dies geschieht, sobald ein Knoten als Baum-Knoten klassifiziert wurde).

Schritt	0	1	2	3	4	5
Knoten						
D[A]						
D[B]						
D[C]						
D[D]						
D[E]						

b) Beweisen oder widerlegen Sie: Sei (S, T) ein minimaler Schnitt in einem Flussnetzwerk G mit nur einer Quelle s und einer Senke t. Dann ist die Senke t von jedem Knoten in T erreichbar ohne Knoten aus S zu passieren.

c) Gegeben sei die folgende topologische Sortierung eines Graphen, der eine Menge voneinander abhängiger Aufgaben modelliert, wobei die Gewichte der Knoten unter diesen notiert sind. Tragen Sie in die unten stehende Tabelle den frühestmöglichen Beendigungszeitpunkt (eft) für jede der Aufgaben A bis G ein und geben Sie einen kritischen Pfad an.

kritischer Pfad:

d) Eine Firma möchte für eine gegebene Menge von Sprachen in der Lage sein, jede Sprache in jede andere zu übersetzen. Dazu möchte sie eine Menge von Übersetzern beschäftigen, die jeweils zwischen genau zwei Sprachen (in beide Richtungen) Texte übersetzen können. Die Übersetzer beziehen ein Monatsgehalt für ihre Tätigkeit.

Dieses Problem kann man als Graphen modellieren, in dem die Knoten den Sprachen entsprechen und die (ungerichteten) Kanten zwischen den Knoten die Übersetzungsmöglichkeiten darstellen. Die Monatsgehälter stehen als Kosten an den jeweiligen Kanten.

Nehmen Sie an, dass der Graph, der das Problem modelliert, zusammenhängend ist. Mit welchem Algorithmus aus der Vorlesung lässt sich herausfinden, welche Übersetzer die Firma beschäftigen muss, damit alle Eingabesprachen in alle Ausgabesprachen übersetzt werden können und dabei die Summe der monatlichen Gehälter minimal ist? Begründen Sie Ihre Antwort.

Aufgabe 6 (Dyn. Programmierung/Geom. Algorithmen):

(8 + 12 = 20 Punkte)

a) Füllen Sie die folgende Tabelle mit Zahlen und Pfeilmarkierungen gemäß dem Verfahren aus der Vorlesung zur Bestimmung der Longest-Common-Subsequence (LCS) für die Buchstabensequenzen FRAGE und DRANG. Geben Sie außerdem die LCS an und markieren Sie die Zellen in der Tabelle, welche zum Ablesen der LCS verwendet werden, durch Umkreisungen.

	F	R	А	G	Е
D					
R					
А					
N					
G					

LCS:

Name:

Matrikelnummer:

b) Betrachten Sie folgende Punkte im zweidimensionalen Raum:

$$(3,0)$$
; $(6,3)$; $(4,2)$; $(3,6)$; $(2,4)$; $(2,2)$; $(0,3)$

Diese Punkte sind bereits gemäß ihrer Polarkoordinaten bzgl. des Punktes (3,0) sortiert. Bestimmen Sie die konvexe Hülle dieser Punkte mit Hilfe des Graham-Scans. Geben Sie zu jeder Determinantenberechnung an,

- welche drei Punkte an der Berechnung beteiligt sind,
- zwischen welchen Vektoren die Determinante berechnet wird,
- welchen Wert die Determinante hat und
- wie der Stack nach der entsprechenden Push- oder Pop-Operation aussieht.

Hinweis: Da die Punkte bereits sortiert sind, brauchen Sie keine erneute Sortierung vorzunehmen. Falls keine Determinante berechnet wird, brauchen Sie keine Stackänderung anzugeben. Es ist nicht nötig, eine Determinante zu berechnen, wenn der Stack weniger als drei Elemente enthält.

Knoten	Vektoren und Determinante	Stack
	$\det(\begin{pmatrix} & \end{pmatrix}, \begin{pmatrix} & \end{pmatrix}) =$	
	$\det(\left(\begin{array}{c} \\ \end{array}\right),\left(\begin{array}{c} \\ \end{array}\right))=$	

Name:

Matrikelnummer:

Knoten

Vektoren und Determinante

Stack

