Graph Neural Networks

- Thrives in situations where it is challenging to defined rules by hand
- Algorithms that improve automatically through experience.
- •The algorithm has a (large) number of parameters whose values need to be learned from the data.

Nuerons

• Inspired by neurons in biology.

Perceptron

What does a Perceptron do? (1)

- Suppose a NN initialized to weight w be (0.1, 0.2, 0.3) & bias b = 0.05
- **Step0**: Take an input x (0.3, 0.6, 0.9)

What does a Perceptron do? (2)

• Step1: Calculate a weighted sum

$$z = w^T x + b$$
; $z = 0.1 \times 0.3 + 0.2 \times 0.6 + 0.3 \times 0.9 + 0.05$
= 0.47

What does a Perceptron do? (3)

• Step2: Apply an activation function

The Maths

Mathematically: the computation of a neuron is shown below:

$$z = w^T x + b$$

We use a simple step rule as the activation function here.

X ₁	X_2	X_3	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

Output Y is 1 if at least two of the three inputs are equal to 1.

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$
where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

- Model is an assembly of interconnected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t
- The sign function (activation function) outputs a value +1 if its argument is positive and -1 otherwise.

Perceptron Model

$$Y = I(\sum_{i} w_{i} X_{i} - t) \quad \text{or} \quad$$

$$Y = sign(\sum_{i} w_{i} X_{i} - t)$$

Perceptron Learning

- $\hat{y} = sign[w_d x_d + w_{d-1} x_{d-1} + \dots + w_1 x_1 + w_0 x_0]$ = $sign(\mathbf{w} \cdot \mathbf{d})$ where $w_0 = -t, x_0 = 1$.
- λ is a parameter known as the learning rate and is between 0 and 1.

```
Algorithm 5.4 Perceptron learning algorithm.

1: Let D = \{(\mathbf{x}_i, y_i) \mid i = 1, 2, ..., N\} be the set of training examples.

2: Initialize the weight vector with random values, \mathbf{w}^{(0)}

3: repeat

4: for each training example (\mathbf{x}_i, y_i) \in D do

5: Compute the predicted output \hat{y}_i^{(k)}

6: for each weight w_j do

7: Update the weight, w_j^{(k+1)} = w_j^{(k)} + \lambda (y_i - \hat{y}_i^{(k)}) x_{ij},

8: end for

9: end for

10: until stopping condition is met
```

Perceptron Decision Boundary

- The previous slide shows a perception model which is linear.
- The figure on the right shows the decision boundary by $\hat{y} = 0$.
- It is a linear hyperplane that separates the data into two classes, -1 and +1.

Nonlinear Hyperplane (XOR Problem)

 Consider an example of nonlinearly separable data by the XOR function. The linear perception model cannot fid the solution for it.

Two-Layers for XOR Problem

• It uses a two-layer, feed-forward ANN.

15

Classic Architecture

Multilayer Perceptrons (MLP)

$$z_1 = W_1^T X$$
, $h_1 = sigmoid(z_1)$ $z_2 = W_2^T h_1$, $h_2 = sigmoid(z_2)$

Classic Architecture

Activation Functions

Increased Expressive Power

From Perceptrons to NN

- Perceptrons are a basic unit of a neural network.
- 1-layered neural network on the right

Structure:

- Input layer, output layer,
- Middle are hidden layers.

Design Issues in NN Learning

- The number of nodes in the input layer should be determined.
- Generally, the number of nodes in the output layer can be 2 for binary classification, and k for k-class classification.
- The network topology
 - The number of hidden layers and hidden nodes
 - Feed-forward or recurrent network
 - Activation function
- Weights and biases need to be initialized

Recap: Node Embeddings

Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

Recap: Node Embeddings

Recap: Two Key Components

Encoder: maps each node to a low-dimensional vector
d-dimensional

$$ENC (v) = \boxed{\mathbf{z}_v} \quad embedding$$
node in the input graph

Cimilarity functions spec

 Similarity function: specifies how the relationships in vector space map to the relationships in the original network

similarity
$$(u, v)$$
 $\approx \mathbf{Z}_{v}^{\mathsf{T}} \mathbf{Z}_{u}$ Decoder of u and v in the dot product between node

embeddings

Similarity of u and v in the original network

Recap: "Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup

Recap: "Shallow" Encoding

- Limitations of shallow embedding methods:
 - O(|V|) parameters are needed:
 - No sharing of parameters between nodes
 - Every node has its own unique embedding
 - Inherently "transductive":
 - Cannot generate embeddings for nodes that are not seen during training
 - Do not incorporate node features:
 - Many graphs have features that we can and should leverage

Today: Deep Graph Encoders

Today: We will now discuss deep methods based on graph neural networks (GNNs):

$$ENC(v) =$$
 multiple layers of non-linear transformations based on graph structure

Modern ML Toolbox

Modern deep learning toolbox is designed for simple sequences & grids

Deep Graph Encoders

But networks are far more complex!

 Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Tasks on Networks

Tasks we will be able to solve:

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Setup

Assume we have a graph G:

- V is the vertex set
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{|M|}$ is a matrix of node features
- v: a node in V; N(v): the set of neighbors of v.

Node features:

- Social networks: User profile, User image
- When there is no node feature in the graph dataset:
 - •Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

A Naïve Approach

- Join adjacency matrix and features
- Feed them into a deep neural net:

- Issues with this idea:
 - O(|V|) parameters
 - Not applicable to graphs of different sizes
 - Sensitive to node ordering

CNN on an image:

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

What about Graphs?

What about Graphs?

$$\mathbf{y}_i = w_1 \mathbf{x}_{i,1} + \dots + w_4 \mathbf{x}_{i,4}$$

$$\mathbf{y}_i = w_1 \mathbf{x}_{i,1} + \dots + w_6 \mathbf{x}_{i,6}$$

What about Graphs?

$$\mathbf{y}_j = w_1 \mathbf{x}_{j,1} + \dots + w_4 \mathbf{x}_{j,4}$$

Constant number of neighbors

$$\mathbf{y}_j = w_1 \mathbf{x}_{j,1} + \dots + w_5 \mathbf{x}_{j,5}$$

Different number of neighbors

What about Graphs?

$$y_j = w_1 x_{j,1} + \cdots + w_4 x_{j,4}$$

- Constant number of neighbors
- Fixed ordering of neighbors

$$\mathbf{y}_j = w_1 \mathbf{x}_{j,5} + \dots + w_5 \mathbf{x}_{j,2}$$

- Different number of neighbors
- No ordering of neighbors

Graphs look like this

- No fixed notion of locality or sliding window on the graph
- 2. Graph is permutation invariant

Convolutional layer with 3x3 filter

Idea: transform information at the neighbors and combine it:

- Transform "messages" h_i from neighbors: $W_i h_i$
- Add them up: $\sum_i W_i h$

A Computation Graph

Determine node computation graph

Propagate and transform information

aggregator

aggregator:

Learn how to propagate information across the graph to compute node features

Aggregate Neighbors

Key idea: Generate node embeddings based on **local network neighborhoods**

Aggregate Neighbors

Intuition: Nodes aggregate information from their neighbors using neural networks

Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph

Deep: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node u is its input feature, x_u
 - Layer-k embedding gets information from nodes that are K hops away

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation

Basic approach: Average information from neighbors and apply a neural network

A GNN Layer

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

A Single GNN Layer

- Idea of a GNN Layer:
 - Compress a set of vectors into a single vector
 - Two step process:
 - (1) Message
 - (2) Aggregation

Message Computation

- (1) Message computation
 - Message function: $\mathbf{m}_u^{(l)} = \mathrm{MSG}^{(l)} \left(\mathbf{h}_u^{(l-1)} \right)$
 - Intuition: Each node will create a message, which will be sent to other nodes later
 - **Example:** A Linear layer $\mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$
 - lacktriangle Multiply node features with weight matrix $oldsymbol{W}^{(l)}$

Message Aggregation

- (2) Aggregation
 - Intuition: Each node will aggregate the messages from node v^\prime s neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$$

Example: Sum (\cdot) , Mean (\cdot) or Max (\cdot) aggregator

■
$$\mathbf{h}_{v}^{(l)} = \text{Sum}(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\})$$

Message Aggregation Issue

- Issue: Information from node v itself could get lost
 - Computation of $\mathbf{h}_{v}^{(l)}$ does not directly depend on $\mathbf{h}_{v}^{(l-1)}$
- **Solution:** Include $\mathbf{h}_{n}^{(l-1)}$ when computing $\mathbf{h}_{n}^{(l)}$
 - (1) Message: compute message from node v itself
 - Usually, a different message computation will be performed

$$\mathbf{m}_v^{(l)} = \mathbf{B}^{(l)} \mathbf{h}_v^{(l-1)}$$

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node $oldsymbol{v}$ itself
 - Via concatenation or summation

Then aggregate from node itself

$$\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right), \mathbf{m}_{v}^{(l)}\right)$$
First aggregate from neighbors

A Single GNN Layer

- Putting things together:
 - (1) Message: each node computes a message $\mathbf{m}_{u}^{(l)} = \mathrm{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right)$, $u \in \{N(v) \cup v\}$
 - (2) Aggregation: aggregate messages from neighbors $\mathbf{h}_v^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_u^{(l)}, u \in N(v)\right\}, \mathbf{m}_v^{(l)}\right)$
 - Nonlinearity (activation): Adds expressiveness
 - Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation

Activation (Non-linearity)

Apply activation to *i*-th dimension of embedding **x**

Rectified linear unit (ReLU)

$$ReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0)$$

Most commonly used

Sigmoid

$$\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}$$

 Used only when you want to restrict the range of your embeddings

PReLU(
$$\mathbf{x}_i$$
) = max(\mathbf{x}_i , 0) + a_i min(\mathbf{x}_i , 0)
 a_i is a trainable parameter

Empirically performs better than ReLU

Classical GNN Layers: GCN

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

How to write this as Message + Aggregation?

Classical GNN Layers: GCN

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$
(2) Aggregation
(1) Message

Message:

• Each Neighbor: $\mathbf{m}_u^{(l)} = \frac{1}{|N(u)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

- Aggregation:
 - **Sum** over messages from neighbors, then apply activation

•
$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

The Maths: Deep Encoder

Basic approach: Average neighbor messages and apply a neural network

Model Parameters

We can feed these **embeddings into any loss function** and run SGD to **train the weight parameters**

- h_{v}^{l} : the hidden representation of node v at layer l
- W_k : weight matrix for neighborhood aggregation
- B_k: weight matrix for transforming hidden vector of self

Matrix Formulation

Many aggregations can be performed efficiently by (sparse) matrix operations

- Let $H^{(l)} = [h_1^{(l)} \dots h_{|V|}^{(l)}]^T$ Then: $\sum_{u \in N_v} h_u^{(l)} = A_{v,i} H^{(l)}$
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
 - The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$
- Therefore,

Matrix Formulation

Re-writing update function in matrix form:

$$H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_l^{T} + H^{(l)}B_l^{T})$$
 where $\tilde{A} = D^{-1}A$
$$H^{(l)} = [h_1^{(l)} \dots h_{|V|}^{(l)}]^{T}$$

- Red: neighborhood aggregation
- Blue: self transformation
- In practice, this implies that efficient sparse matrix multiplication can be used (\tilde{A} is sparse)
- Note: not all GNNs can be expressed in matrix form, when aggregation function is complex

$$H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_l^{\mathrm{T}} + H^{(l)}B_l^{\mathrm{T}})$$

Compute the output of the first graph convolutional layer based on the above formula

$$H_0 = \begin{bmatrix} 0.20 & 0.60 & 0.30 & -0.40 \\ 0.40 & 0.30 & -0.20 & -0.60 \\ 0.20 & -0.60 & 0.50 & -0.30 \\ -0.40 & 0.20 & 0.20 & -0.40 \\ 0.70 & -0.90 & 0.10 & -0.50 \\ 0.30 & 0.50 & -0.30 & -0.70 \\ 0.90 & -0.60 & 0.20 & -0.80 \\ -0.10 & 0.70 & 0.10 & -0.90 \end{bmatrix}$$

$$H_0 = \begin{bmatrix} 0.20 & 0.60 & 0.30 & -0.40 \\ 0.40 & 0.30 & -0.20 & -0.60 \\ 0.20 & -0.60 & 0.50 & -0.30 \\ -0.40 & 0.20 & 0.20 & -0.40 \\ 0.70 & -0.90 & 0.10 & -0.50 \\ 0.30 & 0.50 & -0.30 & -0.70 \\ 0.90 & -0.60 & 0.20 & -0.80 \\ 0.10 & 0.70 & 0.10 & 0.00 \end{bmatrix} \quad W^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} B^0 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$H^{(l+1)} = \sigma (\tilde{A} H^{(l)} W_l^{\mathrm{T}} + H^{(l)} B_l^{\mathrm{T}})$$

The matrix D^{-1} :

Adjacent matrix A:

```
[[0 1 1 0 1 0 0 0]

[1 0 1 1 0 1 0 0]

[1 1 0 0 0 1 1 0]

[0 1 0 0 1 0 0 0]

[1 0 0 1 0 0 1 1]

[0 1 1 0 0 0 1 0]

[0 0 1 0 1 1 0 1]
```

[[0.33333	334 0.	0.	0.	0.	0.	0.	0.]
[0.	0.25	0.	0.	0.	0.	0.	0.	j
[0.	0.	0.25	0.	0.	0.	0.	0.]
[0.	0.	0.	0.5	0.	0.	0.	0.]
[0.	0.	0.	0.	0.25	0.	0.	0.]
[0.	0.	0.	0.	0.	0.33333334	0.	0.]
[0.	0.	0.	0.	0.	0.	0.25	0.]
[0.	0.	0.	0.	0.	0.	0.	0.5]]

The matrix $D^{-1}A$:

[[0.	0.33333334	0.33333334	0.	0.33333334	0.	0.	0.]
[0.25	0.	0.25	0.25	0.	0.25	0.	0.]
[0.25	0.25	0.	0.	0.	0.25	0.25	0.]
[0.	0.5	0.	0.	0.5	0.	0.	0.	j
[0.25	0.	0.	0.25	0.	0.	0.25	0.25]
[0.	0.33333334	0.33333334	0.	0.	0.	0.33333334	0.]
[0.	0.	0.25	0.	0.25	0.25	0.	0.25]
[0.	0.	0.	0.	0.5	0.	0.5	0.]]

$$H^{(l+1)} = \sigma (\tilde{A}H^{(l)}W_l^{\mathrm{T}} + H^{(l)}B_l^{\mathrm{T}})$$

Matrix H^0 :

0.20	0.60	0.30	-0.40
0.40	0.30	-0.20	-0.60
0.20	-0.60	0.50	-0.30
-0.40	0.20	0.20	-0.40
0.70	-0.90	0.10	-0.50
0.30	0.50	-0.30	-0.70
0.90	-0.60	0.20	-0.80
-0.10	0.70	0.10	-0.90

Matrix $D^{-1}A$:

[[0.	0.33333334	0.33333334	0.	0.33333334	0.	0.	0.]
[0.25	0.	0.25	0.25	0.	0.25	0.	0.]
[0.25	0.25	0.	0.	0.	0.25	0.25	0.]
[0.	0.5	0.	0.	0.5	0.	0.	0.]
[0.25	0.	0.	0.25	0.	0.	0.25	0.25]
[0.	0.33333334	0.33333334	0.	0.	0.	0.33333334	0.]
[0.	0.	0.25	0.	0.25	0.25	0.	0.25]
[0.	0.	0.	0.	0.5	0.	0.5	0.]]

Matrix $D^{-1}AH$:

```
0.43333335 -0.40000001 0.13333334 -0.46666668]
 0.075
             0.175
                        0.175
                                   -0.1
 0.45
             0.2
                                   -0.275
 0.55
            -0.3
                        -0.05
                                   -0.55
0.15
             0.225
                                   -0.625
0.50000001 -0.30000001 0.16666667 -0.56666668]
0.275
                        0.1
                                  -0.25
            -0.075
[ 0.8
            -0.75
                        0.15
                                   -0.65
```

$$H^{(l+1)} = \sigma (\tilde{A}H^{(l)}W_l^{\mathrm{T}}) + H^{(l)}B_l^{\mathrm{T}})$$

Matrix $D^{-1}AH$:

[[0.43333335	-0.40000001	0.13333334	-0.4666668]
[0.075	0.175	0.175	-0.1]
[0.45	0.2	0.	-0.275]
[0.55	-0.3	-0.05	-0.55]
[0.15	0.225	0.2	-0.625]
[0.50000001	-0.30000001	0.16666667	-0.56666668]
[0.275	-0.075	0.1	-0.25]
[0.8	-0.75	0.15	-0.65]]

Matrix W^0 :

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Matrix $D^{-1}AHW^T$:

]	0.43333335 0.075 0.45 0.55 0.15 0.50000001 0.275	0.03333333 0.25 0.65 0.25 0.375 0.20000001 0.2	0.425 0.65 0.2 0.575	-0.30000001 0.325 0.375 -0.35 -0.05 -0.20000001 0.05]]]
-	0.275 0.8	0.2 0.05	0.3 0.2	0.05 -0.45]]]

$$H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_l^{\mathsf{T}} + H^{(l)}B_l^{\mathsf{T}})$$

Matrix B^0 :

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Matrix H^0 :

$$\begin{bmatrix} 0.20 & 0.60 & 0.30 & -0.40 \\ 0.40 & 0.30 & -0.20 & -0.60 \\ 0.20 & -0.60 & 0.50 & -0.30 \\ -0.40 & 0.20 & 0.20 & -0.40 \\ 0.70 & -0.90 & 0.10 & -0.50 \\ 0.30 & 0.50 & -0.30 & -0.70 \\ 0.90 & -0.60 & 0.20 & -0.80 \\ -0.10 & 0.70 & 0.10 & -0.90 \end{bmatrix}$$

Matrix HB^T :

```
[[-0.2 0.5 -0.1 0.5]

[-0.2 0.2 -0.8 0.2]

[-0.1 0.7 0.2 0.7]

[-0.8 -0.2 -0.2 -0.2]

[ 0.2 0.8 -0.4 0.8]

[ 1. 0. 0.4 0. ]

[ 0.1 1.1 -0.6 1.1]

[-1. 0. -0.8 0. ]]
```

$$H^{(l+1)} = \sigma (\tilde{A}H^{(l)}W_l^{\mathrm{T}} + H^{(l)}B_l^{\mathrm{T}})$$

Matrix $D^{-1}AHW^T$:

]]	0.43333335	0.03333333	0.16666667	-0.30000001]
[0.075	0.25	0.425	0.325]
[0.45	0.65	0.65	0.375]
[0.55	0.25	0.2	-0.35]
[0.15	0.375	0.575	-0.05]
[0.50000001	0.20000001	0.36666668	-0.20000001]
[0.275	0.2	0.3	0.05]
[0.8	0.05	0.2	-0.45]]

Matrix HB^T :

```
[[-0.2 0.5 -0.1 0.5]

[-0.2 0.2 -0.8 0.2]

[-0.1 0.7 0.2 0.7]

[-0.8 -0.2 -0.2 -0.2]

[ 0.2 0.8 -0.4 0.8]

[ 1. 0. 0.4 0. ]

[ 0.1 1.1 -0.6 1.1]

[-1. 0. -0.8 0. ]]
```

Matrix $D^{-1}AHW^T + HB^T$:

[[0.23333335	0.53333333	0.06666667	0.19999999]
[-0.125	0.45	-0.375	0.525]
[0.35	1.35	0.85	1.075]
[-0.25	0.05	0.	-0.55]
[0.35	1.175	0.175	0.75]
[1.50000001	0.20000001	0.76666668	-0.20000001]
[0.375	1.3	-0.3	1.15]
[-0.2	0.05	-0.6	-0.45]]

55

$$H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_l^{\mathrm{T}} + H^{(l)}B_l^{\mathrm{T}})$$

Matrix $D^{-1}AHW^T + HB^T$:

```
[[ 0.23333335  0.53333333  0.06666667
                                      0.199999991
[-0.125
              0.45
                         -0.375
                                      0.525
  0.35
              1.35
                        0.85
                                      1.075
              0.05
 [-0.25
                          0.
                                     -0.55
                          0.175
                                      0.75
  0.35
              1.175
  1.50000001 0.20000001 0.76666668 -0.20000001]
                         -0.3
                                      1.15
 [ 0.375
              1.3
              0.05
[-0.2
                         -0.6
                                     -0.45
```

Matrix $\sigma(D^{-1}AHW^T + HB^T)$:

```
[[0.23333335 0.53333333 0.06666667 0.19999999]
 [0.
            0.45
                       0.
                                  0.525
 [0.35
            1.35
                       0.85
                                  1.075
 [0.
            0.05
 [0.35
            1.175
                                  0.75
                   0.175
 [1.50000001 0.20000001 0.76666668 0.
[0.375
            1.3
                                  1.15
                       0.
 [0.
            0.05
```

Train a GNN

- Node embedding z_v is a function of input graph
- Supervised setting: we want to minimize the loss £:

$$\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$$

- **y**: node label
- \mathcal{L} could be L2 if y is real number, or cross entropy if y is categorical
- Unsupervised setting:
 - No node label available
 - Use the graph structure as the supervision!

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

- Use cross entropy loss

Unsupervised Training

"Similar" nodes have similar embeddings

$$\mathcal{L} = \sum_{z_u, z_v} CE(y_{u,v}, DEC(z_u, z_v))$$

- Where $y_{u,v} = 1$ = when node u and v are similar
- CE is the cross entropy
- DEC is the decoder such as inner product
- Node similarity can be anything from previous lectures, e.g., a loss based on:
 - Random walks (node2vec, DeepWalk, struc2vec)
 - Node proximity in the graph

Model Design: Overview

Model Design: Overview

Model Design: Overview

Inductive Capability

- The same aggregation parameters are shared for all nodes:
 - The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: New Graphs

Inductive node embedding

Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: New Nodes

- Many application settings constantly encounter previously unseen nodes:
 - E.g., Reddit, YouTube, Google Scholar
- Need to generate new embeddings "on the fly"

Stacking GNN Layers

How to connect GNN layers into a GNN?

1. Stack layers sequentially

Stacking GNN Layers

- How to construct a Graph Neural Network?
 - The standard way: Stack GNN layers sequentially
 - Input: Initial raw node feature X_v
 - Output: Node embeddings $\mathbf{h}_{v}^{(L)}$ after L GNN layers

An Over-smoothing Problem

- The Issue of stacking many GNN layers
 - GNN suffers from the over-smoothing problem
- The over-smoothing problem: all the node embeddings converge to the same value
 - This is bad because we want to use node embeddings to differentiate nodes
- Why does the over-smoothing problem happen?

Receptive Field of a GNN

- Receptive field: the set of nodes that determine the embedding of a node of interest
 - In a K-layer GNN, each node has a receptive field of K-hop neighborhood

Receptive Field of a GNN

- Receptive field overlap for two nodes
 - The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

Receptive Field & Over-smoothing

- We can explain over-smoothing via the notion of receptive field
 - We knew the embedding of a node is determined by its receptive field
 - If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
 - Stack many GNN layers → nodes will have highly-overlapped receptive fields → node embeddings will be highly similar → suffer from the oversmoothing problem
- Next: how do we overcome over-smoothing problem?

Over-smoothing

Model	2-Layer	4-Layer	8-Layer	16-Layer	32-Layer	64-Layer
GCN-res	88.18±1.59	86.50±1.87	84.83±1.93	78.60±4.28	59.82±7.74	39.71±5.15
PairNorm	79.98±3.80	82.32 ± 2.79	81.52 ± 3.66	82.29 ± 2.62	81.91 ± 2.45	81.72 ± 2.82
NodeNorm	89.53 ±1.29	88.60±1.36	$88.02{\scriptstyle\pm1.67}$	$88.41{\scriptstyle\pm1.25}$	$88.30{\scriptstyle\pm1.30}$	87.40±2.06

Typical results of node classification accuracy on CoautorCS dataset

Design GNN Layer Connectivity

- What do we learn from the over-smoothing problem?
- Lesson 1: Be cautious when adding GNN layers
 - Unlike neural networks in other domains (CNN for image classification), adding more GNN layers do not always help
 - Step 1: Analyze the necessary receptive field to solve your problem. E.g., by computing the diameter of the graph
 - Step 2: Set number of GNN layers L to be a bit more than the receptive field we like. Do not set L to be unnecessarily large!

Expressive Power for Shallow GNNs

- Question: How to enhance the expressive power of a GNN, if the number of GNN layers is small?
- Solution 1: Increase the expressive power within each GNN layer
 - In our previous examples, each transformation or aggregation function only include one linear layer
 - We can make aggregation / transformation become a deep neural network!

If needed, each box could include a 3-layer MLP (2) Aggregation (1) Transformation

Learning Outcome

- Generate node embeddings by aggregating neighborhood information
- Key distinctions are in how different approaches aggregate information across the layers