Lesson 6: Spatial Weights and Applications

Dr. Kam Tin Seong

Assoc. Professor of Information Systems(Practice)

School of Computing and Information Systems, Singapore Management University

12 Feb 2023

Content

- Introduction to Spatial Weights
- Contiguity-Based Spatial Weights
 - Rook's
 - Queen's
- Distance-Band Spatial Weights
- Applications of Spatial Weights

What is geographically referenced attribute?

```
Rows: 323
Columns: 12
                <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HENDERS...
$ SUBZONE N
$ SUBZONE C
                <fct> MSSZ01, OTSZ01, SRSZ03, BMSZ08, BMSZ03, BMSZ07, BMSZ0...
                <fct> MARINA SOUTH, OUTRAM, SINGAPORE RIVER, BUKIT MERAH, B...
$ PLN AREA N
$ PLN AREA C
                <fct> MS, OT, SR, BM, BM, BM, SR, QT, QT, QT, BM, ME, R...
$ REGION N
                 <fct> CENTRAL REGION, CENTRAL REGION, CENTRAL REGION, CENTR...
$ REGION C
                <dbl> NA, 1100, 0, 2620, 2840, 2910, 2850, 0, 1120, 30, NA,...
$ YOUNG
$ `ECONOMY ACTIVE` <dbl> NA, 3420, 50, 7500, 6260, 7560, 8340, 50, 2750, 210, ...
                 <dbl> NA, 2110, 20, 3260, 1630, 3310, 3590, 10, 560, 50, NA...
$ AGED
                 <dbl> NA, 6630, 70, 13380, 10730, 13780, 14780, 60, 4430, 2...
$ TOTAL
            <dbl> NA, 0.9385965, 0.4000000, 0.7840000, 0.7140575, 0.822...
$ DEPENDENCY
          <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULTIPOL...
$ geometry
```

Describing attribute distribution

The dependency ratio values by planning subzone are normally distributed.

Geographical distribution question

Are the planning subzones with high proportion of dependency ratio randomly distributed over space?

Geographical distribution question

Are the planning subzones with high proportion of dependency ratio randomly distributed over space?

What are Spatial Weights (wij)

• A way to define spatial neighbourhood.

Defining Spatial Weights

Adjacency criterion:

1 if location j is adjacent to i,

 $\mathbf{w}_{ij} = \{$

o if location j is not adjacent to i.

Distance criterion:

1 if location j is within distance d from i,

 $w_{ij}(d) = {$

0 otherwise.

Distance: discrete features

A general spatial distance weight matrices:

$$w_{ij}(d) = d_{ij}^{-a} \cdot \beta^b$$

Distance: contiguous features

Contiguity Neighbours

- Contiguity (common boundary)
- What is a "shared" boundary?

Rooks Case

Bishops Case

Queen's (Kings) Case

Beyond the basic contiguity neighbours

There are also second-order, third-order, forth-order, etc contiguity

Measuring Contiguity: Lagged Contiguity Should we include second order contiguity?

Weights matrix: Adjacency-based neighbours

Quiz: With reference to the figure below, list down the neighbour(s) of area 1202 using Rook case.

Weights matrix for an adjacency-based neighborhood

	1101	1201	1301	1102	1202	1302	1000	0901	0902
1101	0	1	0	1	1	0	0	0	0
1201	1	0	1	1	1	1	0	0	0
1301	0	1	0	0	1	1	0	0	0
1102	1	1	0	0	1	0	1	0	0
1202	1	1	1	1	0	1	1	1	0
1302	0	1	1	0	1	0	0	1	0
1000	0	0	0	1	1	0	0	1	1
0901	0	0	0	0	1	1	1	0	1
0902	0	0	0	0	0	0	1	1	0

Weights Matrix: Distance-based neighbours

Quiz: With reference to the figure below, create a weights matrix for d = 650.

Weights matrix for a distance-based neighborhood

	А	В	С	D	Е
Α	0	353	516	641	757
В	353	0	357	837	1025
С	516	357	0	659	901
D	641	837	659	0	263
E	757	1025	901	263	0

Weights matrix: Measured distances

Weights matrix with inverse distances

Row standardisation

In practice, row-standardised weights instead of spatial weights will be used.

Binary W matrix:

Row standardized W matrix:

$$\tilde{W} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 \end{bmatrix}$$

Applications of Spatial Weights

Formally, for observation i, the spatial lag of yi, referred to as [Wy]i (the variable Wy observed for location i) is:

$$[Wy]_i = w_{i1}y_1 + w_{i2}y_2 + \cdots + w_{in}y_n,$$

$$[Wy]_i = \sum_{j=1}^n w_{ij}y_j,$$

where the weights wij consist of the elements of the i-th row of the matrix W, matched up with the corresponding elements of the vector y.

Spatially Lagged Variables

Spatial lag with row-standardized weights.

Spatial window sum

The spatial window sum uses and includes the diagonal element.

References

- Chapter 2. Codifying the neighbourhood structure of Handbook of Spatial Analysis: Theory and Application with R.
- François Bavaud (2010) "Models for Spatial Weights: A Systematic Look" *Geographical Analysis*, Vol. 30, No.2, pp 153-171.
- Tony H. Grubesic and Andrea L. Rosso (2014) "The Use of Spatially Lagged Explanatory Variables for Modeling Neighborhood Amenities and Mobility in Older Adults", *Cityscape*, Vol. 16, No. 2, pp. 205-214.