reature Extration: In Feature Extration we have (higher) n dimensional feature we want to map it to a lower dimentional space. Expose there are two features of and seg and in that Space you have these bostones me mant to map 2 dimensional Space en to a one dimentional, feature feerture Sperce this is persible axis. (2) out of these two possible projections-Idhich ene would yen prefer? Here we notice that in a there is a larger variation; this is a larger variance among the features so me would prefer (1) axis. Principle Component Analysis s

the overfilting Prablem we use Principle
Component Analysis. To reduce Extra attorbulus. PC1 PRCZ

NO OF Principal, Compenent Com be less than D or Equal to Nomber of Attributes given In a data for building a Model.

PCS	Attributes

Covariance Matrix.

Covariance Matrix.
$$Cov = \underbrace{S}(2G-5C)(Ji-J)$$
wis is fex
$$(2G-5C)(Ji-J)$$

$$(2G-5C)(Ji-J)$$

$$(2G-5C)(Ji-J)$$

$$(2G-5C)(Ji-J)$$

	11	x;-50]	y: -9 1	(x;-x)(y; 4)	(X1-3C)	(Ar-2)
X	9	(A)	(B)	(AB)	AZ	B
		(1)		2.8125	2:25	3-5156
2	4	1-5	1.875	1	0.25	0.7656
^	3	0.5	0-815	0.4313	1.00	1.2656
1		-0.5	-1.125	0.5625		
-1	0.5	-1.5	-1.625	2.4375	2.25	2-6406
				6.25	5	8-1874
$\bar{x} = 2 + 1 + 0 - 1 = 0.5$ Sum						
	l	1	* or a supplementary in a larger			

y = 4+3+1+0.5 3 2-125

$$(av(x,y)) = \sum_{i=1}^{n} (x_i-x_i) (x_i-x_i)^2 = \sum_{i=1}^{n} (x_i-x_i)^2$$

$$(ov (y,y)) = \underbrace{\frac{y_1 - y^2}{3}}_{1=1} = \underbrace{\frac{y_1 - y^2}{3}}_{2-13} \underbrace{\frac{y_2 - y^2}{3}}_{2-13} \underbrace{$$

for A1 = 4.3 994 $\begin{bmatrix} 1.67 - 4.3494 \\ 2.083 \\ 2.73 - 4.3494 \end{bmatrix} \begin{bmatrix} 912 \\ 912 \end{bmatrix} = 0$ 2.083 $\left[\begin{array}{c} q_{11} \\ q_{12} \end{array}\right] = 0$ -2-6794 2-083 → -2.6794a1+2.083a12=0 ≥ 2.83.91 -1.6194 9r2 = 0 -(2) $\left[\frac{\alpha_{1}^{2} + \alpha_{2}^{2} = 1}{3} \right] = \frac{3}{3}$ from Equation 1 $\alpha_{12} = \frac{2.6794}{2.083} \times \alpha_{11}$ Cy2 => 1.2867 X Cy1 but walno of a12 in Equation (3) (Cu) = 0.61) ay2 = 0.79 for 12 = 0.0506 $\begin{bmatrix} 1.67 - 0.0506 & 2.083 & | 421 \\ 2.083 & 2.73 - 0.0506 & | 422 \end{bmatrix} = 0$ Q21 + 922 = 1 a22 = 0.61 Q21 = 0.79

The Principal Component ore $\frac{7}{4} = \frac{4}{12} \times \frac{1}{12} \times \frac{$