

- An m-stage LFSR can generate test seq. of length 2^m-1
 - ☐ Such sequence are called maximal length sequence.
 - ☐ Such an LFSR is called a maximum-length LFSR.
- When only a fraction of the 2^m-1 can be applied, (because m is too large), LFSR is better than counters.

Counter		LFSR
$0 \ 0 \ 0$	100	
$0\ 0\ 1$	110	
010	111	
011	011	
100	101	
101		
110	010	
111	$0\ 0\ 1$	

- Sequences of LFSR is more random
 - ☐ Every bit is random

Application of Linear machines to BIST

ECE252A

3

An LFSR can be expressed by its Characteristic Polynomial f(x)

- The characteristic polynomial of a maximum-length LFSR is called primitive polynomial.
- Several listings of such polynomials (up to degree 300) exist in the literature.
 - \Box Given a CUT with m inputs, pick a primitive polynomial of degree m and construct the corresponding LFSR as a TPG.
 - □ Ref: "Built-In Test for VLSI", Paul H. Bardell et al., John Wiley & Sons, 1987

Application of Linear machines to BIST

ECE252A

Characteristics of Maximun-Length LFSR

• The state diagram contains two components: one contains the all-zero state, the other contains the other 2^m-1 states.

Application of Linear machines to BIST

ECE252A

5

- For every bit, the number of 1's differs from the number of 0's by one.
- The number of transitions between 1 and 0 that an m-sequence makes in one period is (m+1)/2.
- Autocorrelation between different bits:
 - Autocorrelation function is defined as:

$$C(i,j) = \frac{1}{2^{m} - 1} \sum_{n=1}^{2^{m} - 1} b_{i}(n)b_{j}(n)$$
where
$$\begin{cases} b_{i}(t) = 1 & \text{where } a_{i}(t) = 0 \\ b_{i}(t) = -1 & \text{where } a_{i}(t) = 1 \end{cases}$$

Application of Linear machines to BIST

ECE252A

Ex:	D_1	D_2	D_3 k=3	
	1	0 2	0 3	C(1,2)=-1/7
	1	1	0	
	1	1	1	C(1,3)=-1/7
(0	1	1	C(1,0) 1/7
	1	0	1	
	0	1	0	C(2,3)=-1/7
	0	0	1	, , ,
	1	Ω	Û	

- The autocorrelation function of every maximumlength LFSR of period p=2^m-1 is:
 - C(i,i)=1
 - C(i,j)=-1/p $i \neq j$

Application of Linear machines to BIST

ECE252A

7

Test Response Compression Techniques

- The signature & its collection algorithm should meet the following guideline:
- 1. The algorithm must be simple enough to be implemented as part of the built-in test circuitry.
- 2. The implementation must be fast enough to remove it as a limiting factor in test time.
- The compression method should minimize the loss of information. Specifically it should minimize the loss of evidence of a fault indicated by a wrong response from the circuit under test.

Application of Linear machines to BIST

ECE252A

Use of LFSRs for Polynomial Division

- Suppose we are interested in modulo 2 division. $P(x)/G(x) = (x^7+x^3+x)/(x^5+x^3+x+1)$
- The longhand division can be conducted in terms of the detached coefficients only:

$$\begin{array}{c|c}
101 & Q(x)=x^2+1 \\
101011 & 10001010 \\
\underline{101011} & 00100110 \\
\underline{101011} & 001101=R & R(x)=x^3+x^2+1
\end{array}$$

• This division process can be mechanized using a LFSR.

Application of Linear machines to BIST

ECE252A

c

Ex: LFSR implementing division by

$$f(X)=x^5+x^3+x+1$$

- When a shift occurs, x^5 is replaced by $x^3+x^1+x^0$.
- Thus, whenever a quotient coefficient(the x^5 term) is shifted off the right-most stage, $x^3+x^1+x^0$ is added to the register (or subtracted from the register since addition is the same as subtraction modulo 2). Effectively, the dividend has been divided by x^5+x^3+x+1 .

Application of Linear machines to BIST

ECE252A

• If the LFSR is initialized to zero & the message word (or dividend) P(x) is serially streamed to the LFSR input, high-order coefficient first, the content of the LFSR after the last message bit is the <u>remainder</u> from the division of the message polynomial by the divisor G(x).

Application of Linear machines to BIST

ECE252A

- Any data, such as the test response results from a circuit, can be compressed into a "code word" by an LFSR.
- This code word, the remainder from the division process, is called the "signature" of the input data stream.
- The LFSR itself is called a "signature analyzer".

LFSR polynomial

Application of Linear machines to BIST

ECE252A

13

- If P(x) is the polynomial of the correct data
 => P'(x)=P(x)+M(x)G(x) will have the same signature as P(x) for any M(x).
- Example: $P(x)=x^7+x^3+x$

$$G(x)=x^5+x^3+x+1$$

signature $R(x)=x^3+x^2+1$

$$P'(x)=P(x)+G(x)=x^7+x^5+1$$

$$P''(x)=P(x)+x \cdot G(x)=x^7+x^6+x^4+x^3+x^2$$

P'(x) and P''(x) have same signature x^3+x^2+1 .

- Aliasing: condition in which a faulty circuit with erroneous response produces the same signature as a good circuit.
- Aliasing probability is usually used to measure the quality of a data compressor.

Application of Linear machines to BIST

ECE252A

What is the aliasing probability of using LFSR as a data compressor?

- Suppose the input string is m-bit long. There are 2^m -1 possible wrong bit streams.
- If the divisor polynomial G(x) is of degree r, then it has 2^{m-r} -1 nonzero multiples that result in a polynomial of degree less than m.
 - => There are 2^{m-r} -1 wrong m-bit streams that can map into the same signature as the correct bit stream.
 - $=> Aliasing prob. P(M)=(2^{m-r}-1)/(2^m-1)$
 - => For large m, P(M) \cong 1/2 r .

Application of Linear machines to BIST

ECE252A

15

Multiple-Input Signature Register (MISR)

- For built-in testing of multiple-output circuits, the overhead of a single-input signature analyzer on every output would be high.
- A multiple-input signature register (MISR) is used for multiple-output circuits.

Application of Linear machines to BIST

ECE252A

• It can be proved that the aliasing probability of a MISR is:

$$(2^{n-1}-1)/(2^{m+n-1}-1)\cong 1/2^m$$

m: the number of stages in MISR n: length of data to be compressed.

Ref: "Built-In Test for VLSI", Chapter 5, Paul H. Bardell et al, 1987.

Application of Linear machines to BIST

ECE252A