Review:

- 1) Device switching varies in S.M.R. with fixed hysteresis band current control.
- 2) Magnitude of reference current / D is determined by comparing the desired output voltage with actual V_0 .
- ⇒ Closed loop control is a must.
- 3) D.C. link V_0 has 2^{nd} order ripple.
- 4) In bi-directional power converter, power can be controlled by controlling δ .

$$P = \frac{V_i \ V_{AB1}}{X} \sin \delta.$$

OR Change the in-phase component of 'is'.

If V_i & V_{AB1} are in phase, $|V_i| \neq |V_{AB1}|$.

- \Rightarrow Active power transferred = 0.
- \Rightarrow If $|V_i| < |V_{AB1}|$, $\angle_{V_i}^{I_s} = 90^\circ$ leading.
- and if $|V_i| > |V_{AB1}|$, $\angle_{V_i}^{l_s} = 90^{\circ}$ lagging.

VAR Compensator & Harmonic Filter

 $I_{L} = I_{P} - jI_{Q}$ Assume load to be Non-Linear

- ⇒ Has harmonics
- ⇒ Source is made to supply only the ACTIVE COMPONENT.

⇒ Remaining current has to come from P.E. converter.

In the previous case (only S_4 is closed in the +ve half),

Near the Zero crossings, v_i is low

$$\frac{di}{dt} = \frac{v_i}{L}$$

- ⇒Forcing function is low.
- ⇒It may be difficult to force the current.

Instead:

In the + ve half, close $S_4 \& S_3$

$$\frac{\mathbf{di}}{\mathbf{dt}} = \frac{\mathbf{v_i} + \mathbf{v_0}}{\mathbf{L}}$$

- ⇒ Capacitor voltage aids the current rise.
- ⇒ Current waveform improves.
- ⇒ Switching frequency increases if current control is used.

 \Rightarrow Open $S_1 \& S_3$:

EQ. CKT.

$$V_{AB} = V_0$$

In the – ve half Close S_1 & S_2

Regenerative mode:

Source is receiving power at UPF.

Summary of AC/DC conversion:

- 1) a. Half wave
 - b.Half controlled
 - c. Fully controlled
 - P.F. & Harmonic Spectrum are poor.

 V_0 Ripple frequency= 2F for 1ϕ Bridge. = 6F for 3ϕ Bridge.

Filtering requirement for $V_0 \downarrow$ in 3ϕ .

2)PWM Converter:

$$V_0 \propto m_i$$
 & $|V_0| < |V_m|$

 \Rightarrow Has large number of pulses in V_0 & I_s .

3) S.M.R (Switched Mode Rectifier):

$$|V_0| > |V_m|$$

Source I ≈ Sinusoidal.

 $P.F. \approx 1$

4)Bi – Directional Power Transfer:

Using bridge with self commutating devices

- \Rightarrow Bi Directional power transfer at UPF.
- $\Rightarrow \pm VAR$ supply to the load.
- ⇒ Active filtering.