۱- الفS[n] یک فرآیند U[n] است که به صورت $S[n] = U[n] + b_1 U[n-1]$ تعریف می شود که در آن MA(1) نویز سفید با میانگین صفر است. $R_s[m]$ را بدست آورده و برای $0 < b_1 < 1$ و $0 < b_1 < 1$ رسم کنید.

ب) S[n] یک فرآیند MA(2) است که به صورت $S[n] = U[n] + b_1 U[n-1] + b_2 U[n-2]$ تعریف می شود که در آن S[n] نویز سفید با میانگین صفر است. $R_s[m]$ را بدست آورید.

پ) S[n] یک فرآیند I(n) است که به صورت $I(n) = U[n] - a_1 S[n-1]$ تعریف می شود که در آن I(n) نویز سفید با میانگین صفر است. I(n) برا بدست آورده و برای I(n) و I(n) و I(n) رسم کنید.

U[n] یک فرآیند $S[n] = U[n] + (p_1 + p_2)S[n-1] - (p_1p_2)S[n-2]$ تعریف می شود که در آن S[n] یک فرآیند $S[n] = S[n] + (p_1 + p_2)S[n-1] - (p_1p_2)S[n-2]$ تعریف می شود که در آن S[n] بدست نویز سفید با میانگین صفر است. نشان دهید S[n] = S[n] به فرم $S[n] + K_2(\beta)^{|m|} + K_2(\beta)^{|m|}$ به فرم S[n] = S[n] به فرم S[n] = S[n] باید گذاشته شود؟

 $S[n] = U[n] + 0.75U[n-1] + 0.25U[n-2], \quad \sigma_u^2 = 1:MR(2)$ یک فرآیند -۲

. و یک فرآیند $S[n] = U[n] + 0.81S[n-2], \quad \sigma_u^2 = 1 : AR(2)$ داریم

الف) میخواهیم فرآیند اول را با یک فرآیند MA(q) و فرآیند دوم را با یک AR(p) تقریب بزنیم. پارامترهای مدل را با تقریب چندجملهای ها بدست آورید.

ب) با سادهترین روش مقادیر $R_s[0]$ و $R_s[1]$ و $R_s[2]$ را برای هریک از دو فرآیند فوق بدست آورده و سپس با روش معرفی شده در مسئله ۱ ب و ت مقایسه کنید.

MA(2) و MA(2) و MA(3) و با جواب الف مقایسه کنید. MA(2) و با جواب الف مقایسه کنید. MA(2) با استفاده از مقادیر بدست آمده در ب، پارامترهای مدل MA(3) و MA(2) را برای فرایند دوم تخمین بزنید و با جواب الف مقایسه کنید.

S[n] در چند نقطه از روی تابع نمونه آن به صورت زیر تخمین زده شده است: S[n]

 $\hat{R}_s[0] = 64$, $\hat{R}_s[1] = -16$, $\hat{R}_s[2] = -2$

الف) فرآیند را یک $R_{s}[3]$ در نظر گرفته و ضرایب مدل را تخمین بزنید و سپس $R_{s}[3]$ را تخمین بزنید.

ب) فرآیند را یک ARMA(2,1) در نظر گرفته و با فرض $\sigma_u^2=1$ و ضرایب مدل را با بیشترین دقت ممکن تخمین زده و سپس $\hat{R}_s[3]=5$, $\sigma_u^2=1$ و ضرایب مدل را با بیشترین دقت ممکن تخمین زده و سپس $R_s[4]$

پ) فرآیند را یک ARMA(1,1) در نظر گرفته و با استفاده از روشی که ابتدا فرآیند را AR مرتبه بالاتر فرض می کند ضرایب مدل را تخمین زده و سپس $R_s[3]$ را تخمین بزنید.

ت) با فرض اینکه مقادیر همبستگی دقیق است، ضرایب چند جمله ای مخرج در قسمتهای الف و ب و ضرایب \widetilde{a}_1 و \widetilde{a}_2 در قسمت پ چه ارتباطی با هم دارند؟ همه باید مثل هم باشند؟ کدام دو دسته باید مثل هم باشند؟ بحث کنید.

ث) فرآیند را یک ARMA(1,1) در نظر گرفته و فرض کنید: $H(z) = \frac{b_0 + b_1 z^{-1}}{1 + a z^{-1}}$ نید و سپه $H(z) = \frac{b_0 + b_1 z^{-1}}{1 + a z^{-1}}$ در نظر گرفته و فرض کنید: و سپه کنید. خواب این قسمت را با قسمت پ مقایسه کنید.

ج) فرآیند را یک MA(2) در نظر گرفته و ضرایب مدل را تخمین بزنید. آیا ضرایب مدل حقیقی است؟ سپس $R_s[3]$ را تخمین بزنید.

۴- برای یک فرآیند MA(3) مقادیر همبستگی به صورت زیر تخمین زده شده است:

 $\hat{R}_x[0] = 30$, $\hat{R}_x[1] = 20$, $\hat{R}_x[2] = 11$, $\hat{R}_x[3] = 4$

پارامترهای مدل را با استفاده از چند روش بازگشتی مطرح شده در کلاس (همه حالتهای بحث شده) و به کمک Matlab محاسبه کرده و با هم مقایسه کنید.

 $X[n] = U[n] + \alpha \left(\sum_{k=1}^{+\infty} U[n-k] \right)$ ایستا است؟ چرا $X[n] = X[n] + \alpha \left(\sum_{k=1}^{+\infty} U[n-k] \right)$ ایستا است چرا $X[n] = X[n] + \alpha \left(\sum_{k=1}^{+\infty} U[n-k] \right)$ است.