Two resistors A and B have resistances R_1 and R_2 respectively. The resistors are connected in series with a battery, as shown in Fig. 6.1. 6 Fig. 6.1 The battery has electromotive force (e.m.f.) *E* and zero internal resistance. (a) State the energy transformation that occurs in (i) the battery, (ii) the resistors.[1] **(b)** The current in the circuit is I. State the rate of energy transformation in (i) the battery, (ii) the resistor A.[1]

(c) The resistors are made from metal wires. Data for the resistors are given in Fig. 6.2.

resistor	Α	В
resistivity of metal	ρ	ho/2
length of wire	l	l
diameter of wire	d	2 <i>d</i>

Fig. 6.2

information from Fig. 6.2 to determine the ratio

 $\frac{\text{power dissipated in A}}{\text{power dissipated in B}}.$

ratio –	[3]
1au0 =	 JO!

(d) The resistors A and B are connected in parallel across the same battery of e.m.f. *E.* Determine the ratio

power dissipated in A power dissipated in B

ratio =	[2]
(2110) =	1/1