4. Бинарные отношения. Отношения эквивалентности

- 1. Найдите D_R , E_R , R^{-1} , $R \circ R$, $R \circ R^{-1}$, $R^{-1} \circ R$ для следующих бинарных отношений:
 - (a) $R = \{(x, y) : x, y \in \mathbb{N} \text{ if } x|y\};$
 - (6) $R = \{(x, y) : x, y \in \mathbb{N} \text{ и } y | x\};$
 - (B) $R = \{(x, y) : x, y \in \mathbb{R} \text{ и } x + y \leq 0\};$
 - (г) $R = \{(x,y) \colon x,y \in \mathbb{R} \text{ и } 2x \geqslant 3y\}.$
- 2. Пусть R, R_1 , R_2 бинарные отношения, определенные на паре множеств A и B; S, T – бинарные отношения, определенные на паре множеств B и C. Докажите, что:
 - (a) $(R^{-1})^{-1} = R$;
 - (6) $\overline{R^{-1}} = (\overline{R})^{-1}$
 - (B) $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1};$ (r) $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1};$

 - (A) $R \circ (S \cup T) = (R \circ S) \cup (R \circ T);$
 - (e) $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.
- 3. Выясните, для каких бинарных отношений R, определенных на паре множеств A и B, выполняется соотношение $R^{-1} = \overline{R}$.
- 4. Пусть $R \subseteq A^2$ и $E = \{(a, a) \colon a \in A\}$ диагональ множества A. Докажите, что:
 - (a) R рефлексивно тогда и только тогда, когда $E \subseteq R$;
 - (б) R симметрично тогда и только тогда, когда $R^{-1} = R$;
 - (в) R транзитивно тогда и только тогда, когда $R \circ R \subseteq R$;
 - (г) R антисимметрично тогда и только тогда, когда $R \cap R^{-1} \subseteq E$.
- 5. Докажите, что симметричное и антисимметричное бинарное отношение R на множестве A является транзитивным на этом множестве.
- 6. Установите, является ли каждое из перечисленных ниже отношений на множестве А отношением эквивалентности. Для каждого отношения эквивалентности найдите классы эквивалентности.
 - (a) $A = \mathbb{Z} \text{ M } R = \{(a, b) : a + b = 0\};$
 - (б) $A = \mathbb{Z} \text{ и } R = \{(a, b) : a + b \text{ четно}\};$
 - (B) $A = \mathbb{Z} \text{ M } R = \{(a, b) : a^2 = b^2\};$
 - (r) $A = \mathbb{Z} \text{ и } R = \{(a,b) : a^3 = b^3\};$
 - (д) $A = 2^{\{a,b,c,d\}}$ и $R = \{(X,Y) \colon |X| = |Y|\};$
 - (e) $A = \mathbb{Z} \text{ M } R = \{(a, b) : \exists k \in \mathbb{Z} \ (a b = 5k)\}.$
- 7. Пусть $A = \{1, 2, 3, 4, 5, 6, 7\}, B = \{x, y, z\}$ и $f: A \to B$ сюръективная функция вида $f = \{(1, x), (2, z), (3, x), (4, y), (5, z), (6, y), (7, x)\}$. Определим бинарное отношение R на множестве A следующим образом: aRb тогда и только тогда, когда f(a) = f(b). Докажите, что R – отношение эквивалентности и найдите классы эквивалентности.

4. Бинарные отношения. Отношения эквивалентности

- 1. Найдите D_R , E_R , R^{-1} , $R \circ R$, $R \circ R^{-1}$, $R^{-1} \circ R$ для следующих бинарных отношений:
 - (a) $R = \{(x, y) : x, y \in \mathbb{N} \text{ if } x|y\};$
 - (6) $R = \{(x, y) : x, y \in \mathbb{N} \text{ и } y | x\};$
 - (B) $R = \{(x, y) : x, y \in \mathbb{R} \text{ и } x + y \leq 0\};$
 - (г) $R = \{(x,y) \colon x,y \in \mathbb{R} \text{ и } 2x \geqslant 3y\}.$
- 2. Пусть R, R_1 , R_2 бинарные отношения, определенные на паре множеств A и B; S, T – бинарные отношения, определенные на паре множеств B и C. Докажите, что:
 - (a) $(R^{-1})^{-1} = R$;
 - (6) $\overline{R^{-1}} = (\overline{R})^{-1}$
 - (B) $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1};$ (r) $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1};$

 - (A) $R \circ (S \cup T) = (R \circ S) \cup (R \circ T);$
 - (e) $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.
- 3. Выясните, для каких бинарных отношений R, определенных на паре множеств A и B, выполняется соотношение $R^{-1} = \overline{R}$.
- 4. Пусть $R \subseteq A^2$ и $E = \{(a, a) \colon a \in A\}$ диагональ множества A. Докажите, что:
 - (a) R рефлексивно тогда и только тогда, когда $E \subseteq R$;
 - (б) R симметрично тогда и только тогда, когда $R^{-1} = R$;
 - (в) R транзитивно тогда и только тогда, когда $R \circ R \subseteq R$;
 - (г) R антисимметрично тогда и только тогда, когда $R \cap R^{-1} \subseteq E$.
- 5. Докажите, что симметричное и антисимметричное бинарное отношение R на множестве A является транзитивным на этом множестве.
- 6. Установите, является ли каждое из перечисленных ниже отношений на множестве А отношением эквивалентности. Для каждого отношения эквивалентности найдите классы эквивалентности.
 - (a) $A = \mathbb{Z} \text{ M } R = \{(a, b) : a + b = 0\};$
 - (б) $A = \mathbb{Z} \text{ и } R = \{(a, b) : a + b \text{ четно}\};$
 - (B) $A = \mathbb{Z} \text{ M } R = \{(a, b) : a^2 = b^2\};$
 - (r) $A = \mathbb{Z} \text{ и } R = \{(a,b) : a^3 = b^3\};$
 - (д) $A = 2^{\{a,b,c,d\}}$ и $R = \{(X,Y) \colon |X| = |Y|\};$
 - (e) $A = \mathbb{Z} \text{ M } R = \{(a, b) : \exists k \in \mathbb{Z} \ (a b = 5k)\}.$
- 7. Пусть $A = \{1, 2, 3, 4, 5, 6, 7\}, B = \{x, y, z\}$ и $f: A \to B$ сюръективная функция вида $f = \{(1, x), (2, z), (3, x), (4, y), (5, z), (6, y), (7, x)\}$. Определим бинарное отношение R на множестве A следующим образом: aRb тогда и только тогда, когда f(a) = f(b). Докажите, что R – отношение эквивалентности и найдите классы эквивалентности.