

Norwegian University of Science and Technology Department of Mathematical Sciences TMA4145 Linear Methods Fall 2017

Exercise set 13

Please justify your answers! The most important part is *how* you arrive at an answer, not the answer itself.

1 Given the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 2 \\ 2 & 1 \end{pmatrix}.$$

- a) Compute the singular value decomposition of A.
- b) Use the result of a) to find:
 - 1. Bases for the following vector spaces: ker(A), $ker(A^*)$, ran(A), $ran(A^*)$.
 - 2. The pseudo-inverse of A.
 - 3. Find the minimal norm solution of Ax = b for $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

Solution. a) We need to find matrices U, V, Σ with certain properties such that $A = U\Sigma V^*$. If we look back to the proof of the SVD in the lecture notes (theorem 7.12), we can deduce how we construct U, V and Σ . Note that since A is a 3×2 -matrix with rank 2, we will find that V is a 2×2 matrix, Σ a 3×2 -matrix and U a 3×3 -matrix.

- 1. V is picked as the matrix that diagonalizes A^*A , and therefore the columns of U are the normalized eigenvectors of A^*A .
- 2. Σ is the 3×2 matrix with the positive singular values of A (= the square roots of the positive eigenvalues of A^*A) along the diagonal, and zero elsewhere. ¹
- 3. The first 2 columns of the 3×3 U will be the vectors Av_1 and Av_2 , where v_1, v_2 are the columns of V. Since we need U to be a 3×3 matrix, we need one more column v_3 , which we find by picking a normalized vector v_3 that is orthogonal to v_1 and v_2 .

¹If we did not have enough singular values to fill the diagonal of Σ , we would just put zeros in the rest of the diagonal of Σ . This will not be an issue in this example.

Let us now find these matrices.

1. $A^*A = \begin{pmatrix} 9 & 8 \\ 8 & 9 \end{pmatrix}$ has as characteristic polynomial $x^2 - 18x + 17 = (x - 17)(x - 1)$. Hence the eigenvalues of A^*A are $\lambda_1 = 17$ and $\lambda_2 = 1$. The corresponding normalized eigenvectors are $v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Consequently, we have

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

2. The singular values of A are $\sigma_1 = \sqrt{17}$ and $\sigma_2 = 1$. Thus

$$\Sigma = \begin{pmatrix} \sqrt{17} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

3. The first two columns of U are given by

$$u_1 = \frac{1}{\sqrt{17}} \frac{1}{\sqrt{2}} A v_1 = \frac{1}{\sqrt{34}} \begin{pmatrix} 1 & 2 \\ 2 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{34}} \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$$

and by

$$u_2 = \frac{1}{1}Av_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 2\\ 2 & 2\\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1\\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}.$$

Consequently, U has the form

$$\begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{-1}{\sqrt{2}} & x_1 \\ \frac{4}{\sqrt{34}} & 0 & x_2 \\ \frac{3}{\sqrt{34}} & \frac{1}{\sqrt{2}} & x_3 \end{pmatrix}$$

The last column is determined by the assumption that it has to be orthogonal to the first two columns. The choice

$$u_3 = \frac{1}{\sqrt{17}} \begin{pmatrix} 2\\ -3\\ 2 \end{pmatrix}$$

satisfies these conditions, but there are many other ways to complete the first two columns to become an orthonormal basis for \mathbb{C}^3 ,

$$\begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{-1}{\sqrt{2}} & \frac{2}{\sqrt{17}} \\ \frac{4}{\sqrt{34}} & 0 & \frac{-3}{\sqrt{17}} \\ \frac{3}{\sqrt{34}} & \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{17}} \end{pmatrix}.$$

4. The SVD of A is

$$\begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{-1}{\sqrt{2}} & \frac{2}{\sqrt{17}} \\ \frac{4}{\sqrt{34}} & 0 & \frac{-3}{\sqrt{17}} \\ \frac{3}{\sqrt{34}} & \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{17}} \end{pmatrix} \begin{pmatrix} \sqrt{17} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

b)

1. This follows from proposition 7.4.3 in the notes (recall that r=2 in our case, by inspection):

$$\ker(A) = \{0\}, \ker(A^*) = \operatorname{span}(u_3), \operatorname{ran}(A) = \operatorname{span}(u_1, u_2), \operatorname{ran}(A^*) = \operatorname{span}(v_1, v_2).$$

2. By the discussion on page 104 in the notes, $A^{\dagger} = V \Sigma^{+} U^{*}$ where Σ^{+} is the matrix obtained from Σ by replacing the singular values σ_{i} with σ_{i}^{-1} and taking the transpose. Hence

$$A^{\dagger} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{17}} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{4}{\sqrt{34}} & \frac{3}{\sqrt{34}} \\ \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{17}} & \frac{-3}{\sqrt{17}} & \frac{2}{\sqrt{17}} \end{pmatrix} = \begin{pmatrix} \frac{-7}{17} & \frac{2}{17} & \frac{10}{17} \\ \frac{10}{17} & \frac{2}{17} & \frac{-7}{17} \end{pmatrix}.$$

3. By the discussion on page 104 of the notes, the least squares solution is given by

$$A^{\dagger}b = \begin{pmatrix} \frac{-7}{17} & \frac{2}{17} & \frac{10}{17} \\ \frac{10}{17} & \frac{2}{17} & \frac{-7}{17} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{27}{17} \\ \frac{-7}{17} \end{pmatrix}.$$

- 2 Let U be a $n \times n$ matrix with columns $u_1, ..., u_n$. Show that the following statements are equivalent:
 - 1. U is unitary.
 - 2. $\{u_1, ..., u_n\}$ is an orthonormal basis of \mathbb{C}^n .

Solution. Note that the column u_i is of the form $u_i = (u_{1,i}, u_{2,i}, \dots, u_{n,i})^T$, and the inner product between two columns is given by

$$\langle u_i, u_j \rangle = \sum_{k=1}^n u_{k,i} \overline{u_{k,j}}$$
$$= u_i \cdot u_j^*,$$

where $u_i \cdot u_j^*$ is the usual dot product for vectors in \mathbb{C}^n and

$$u_j^* = \begin{pmatrix} \overline{u_{1,j}} \\ \overline{u_{2,j}} \\ \vdots \\ \overline{u_{n,j}} \end{pmatrix}.$$

$1 \Rightarrow 2$

Assume that $U^*U = I$. Recall that element (i, j) of the matrix product U^*U is the dot product of row i of U^* with column j of U. Since row i of U^* is u_i^* , this means that element (i, j) of U^*U is $u_i^* \cdot u_j$. Furthermore $U^*U = I$, which implies that $u_i^*u_j = \delta_{i,j}$ for $i, j = 1, \ldots, n$. Then we have

$$\langle u_i, u_i \rangle = u_i^* \cdot u_i = \delta_{i,i},$$

hence (u_1, u_2, \ldots, u_n) is an orthonormal system of vectors in \mathbb{C}^n . To show that it is a basis for \mathbb{C}^n it is enough to note that \mathbb{C}^n has dimension n, and the system consists of n vectors. Hence the columns form a linearly independent subset of n vectors in an n-dimensional space, and it follows that the columns form a basis.

$2 \Rightarrow 1$

Assume that the columns u_1, u_2, \ldots, u_n of U are an orthonormal basis of \mathbb{C}^n , i.e.

$$\langle u_i, u_j \rangle = \delta_{i,j},$$

for $i, j = 1, \ldots, n$. Then we have

$$u_i \cdot u_i^* = \langle u_i, u_j \rangle = \delta_{i,j},$$

hence we have $U^*U = I$. One gets that $U^*U = I$ from exactly the same argument, or by knowing that a left inverse of matrix is also a two-sided inverse.

- $\boxed{\mathbf{3}}$ Let T be the shift operator on ℓ^2 defined by $T(x_1, x_2, ...) = (0, x_1, x_2, ...)$.
 - 1. Show that T has no eigenvalues.
 - 2. Does T^* have any eigenvalues?

Solution.

1. Assume that λ is an eigenvalue of T with eigenvector $y = (y_1, y_2, ...)$. Then $Ty = \lambda y$, and writing out both sides we find

$$(0, y_1, y_2, \dots) = (\lambda y_1, \lambda y_2, \lambda y_3 \dots). \tag{1}$$

In particular $\lambda y_1 = 0$, which implies that either $y_1 = 0$ or $\lambda = 0$. If $\lambda = 0$, then equality (1) becomes

$$(0, y_1, y_2, \dots) = (0, 0, \dots)$$

which shows that y=0, hence not an eigenvector. We may therefore assume that $y_1=0$ and $\lambda \neq 0$. In this case the equality (1) becomes

$$(0,0,y_2,\dots) = (0,\lambda y_2,\lambda y_3\dots),$$
 (2)

which implies that $y_2 = 0$. Inserting this back into the equation, we find

$$(0,0,0,\dots) = (0,0,\lambda y_3\dots),$$
 (3)

hence $y_3 = 0$. We may clearly continue like this to show that y is 0 in all coordinates, hence y = 0 and y is not an eigenvector.

2. We know from the lectures (and it is not difficult to show) that $T^*(x_1, x_2, ...) = (x_2, x_3, ...)$. This operator has eigenvalues. For instance, let $y = (1, \frac{1}{2}, \frac{1}{2^2}, ..., \frac{1}{2^{p-1}}, ...)$. Then

$$T^*y = (\frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^p}, \dots) = \frac{1}{2}y,$$

hence y is an eigenvector with eigenvalue $\frac{1}{2}$. Note that $y \in \ell^2$, which we needed since we defined T on ℓ^2 .

4 Let X be a finite dimensional vector space and $T: X \to X$ a linear transformation on X. Show that $X = \ker(T) \oplus \operatorname{ran}(T^*)$, where \oplus denotes the direct sum of the vector spaces.

Hint: Use that we know that $ker(T)^{\perp} = ran(T^*)$.

Solution. First note that any finite-dimensional vector space can be made into a Hilbert space: if $\{e_i\}_{i=1}^n$ is a basis for X and $x, y \in X$, then we may write

$$x = \sum_{i=1}^{n} x_i e_i \qquad \qquad y = \sum_{i=1}^{n} y_i e_i$$

for coefficients $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$. If we define the inner product $\langle x,y\rangle = \sum_{i=1}^n x_i \overline{y_i}$, then X becomes a Hilbert space. Any linear transformation on a finite-dimensional normed space is bounded, and by a previous exercise we then know that $\ker(T)$ is a closed subspace of X. By the projection theorem we get that $X = \ker(T) \oplus \ker(T)^{\perp}$, and since $\ker(T)^{\perp} = \operatorname{ran}(T^*)$ we have proved the result.

Note: If we look at the dimensions of $X = \ker(T) \oplus \operatorname{ran}(T^*)$, we see that the dimension of X must be the sum of the dimensions of $\ker(T)$ and $\operatorname{ran}(T^*)$. If we pick a basis to write $T = (T_{ij})$ as an $n \times n$ -matrix, this says that

$$n = \dim(\ker(T)) + \dim(\operatorname{ran}(T^*)) = \operatorname{nullity}(T) + \operatorname{rank}(T),$$

the familiar rank-nullity theorem (assuming that we know that $\dim(\operatorname{ran}(T^*)) = \dim(\operatorname{ran}(T))$, which is the statement that the row space and column space of a matrix have the same dimension).