Kapitel 1

Ereignisse und Wahrscheinlichkeiten

In der Stochastik werden zufallsabhängige Phänomene mathematisch modelliert und analysiert. (z.B. würfeln)

 $\Omega = \text{Ergebnisraum} (z.B. \Omega = \{1, 2, 3, 4, 5, 6\})$

 $A \subset \Omega$ Ereignis (z.B. A={2,4,6} $\hat{=}$ gerade Zahl fällt)

Ist $\omega \in \Omega$, so heißt $\{\omega\}$ Elementarereignis

Beispiel 1.1

a) Zuerst wird eine Münze geworfen. Fällt Kopf, wird mit einem Würfel geworfen, fällt Zahl so wird nochmal mit der Münze geworfen.

$$\Omega = \{K1, K2, K3, K4, K5, K6, ZZ, ZK\}$$

b) Rotierender Zeiger

 $\Theta = 2\pi x$, $0 \le x < 1$ sei der Winkel beim Stillstand

 $\Omega = [0, 1)$

 $A = (0, \frac{1}{4})$ ist das Ereignis: "Zeiger stoppt im I. Quadranten"

Verknüpfungen von Ereignissen werden durch mengentheoretische Operationen beschrieben.

Definition 1.1

a) Seien $A, B \subset \Omega$ Ereignisse. So heißt $A \cap B = AB = \{\omega \in \Omega | \omega \in A \text{ und } \omega \in B\} = \{\omega \in \Omega | \omega \in A, \omega \in B\}$ Durch-

schnitt von A und B.

 $A \cup B = \{\omega \in \Omega | \omega \in A \text{ oder } \omega \in B\}$ Vereinigung von A und B. Sind A und B disjunkt, dh. $A \cap B = \emptyset$ dann schreiben wir auch A + B

 $A \backslash B = \{ \omega \in \Omega | \omega \in A, \omega \notin B \}$

Gesprochen: A ohne B. Spezialfall $A = \Omega$ Dann ist $\Omega \backslash B = B^c$

 B^c heißt **Komplement von** B.

b) Sind $\Omega_1, \Omega_2, \ldots, \Omega_n$ Ergebnisräume, so ist $\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n = \{(a_1, \ldots, a_n) | a_i \in \Omega_i, i = 1, \ldots, n\}$ das Kartesische Produkt.

Beispiel 1.2 2x würfeln

$$\Omega = \{(i, j) \in \{1 \dots 6\}\}$$

A = Erster Würfel ist eine
$$6 = \{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\} = \{(6,j)|j \in \{1...6\}\}$$

B = Augensumme ist max 4 =
$$\{(i,j)|i+j \le 4\}$$
 = $\{(1,1),(1,2),(1,3),(2,2),(3,1)\}$ $A \cap B = \emptyset$

 B^c = Augensumme ist mindestens 5

Mit $\mathcal{P}(\Omega)$ bezeichnen wir die **Potenzmenge von** Ω , d.h. die Menge aller Teilmengen von Ω . (dazu gehören auch Ω und \emptyset). Wir wollen nun Ereignissen Wahrscheinlichkeiten zuordnen.

Es sei $\mathcal{A} \subset \mathcal{P}(\Omega)$ die Menge aller Mengen (Ereignisse) denen wir Wahrscheinlichkeiten zuordnen wollen. Um eine sinnvolle math. Theorie zu bekommen, können wir im Allgemeinen nicht $\mathcal{A} = B \setminus \Omega$ wählen. Jedoch sollte das Mengensystem \mathcal{A} gewisse Eigenschaften haben.

Definition 1.2

- a) $A \subset \mathcal{P}(\Omega)$ heißt **Algebra über** Ω , falls gilt:
 - (i) $\Omega \in \mathcal{A}$
 - (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
 - (iii) $A_1, A_2 \in \mathcal{A} \Rightarrow A_1 \cup A_2 \in \mathcal{A}$
- b) $A \subset \mathcal{P}(\Omega)$ heißt σ -Algebra über Ω , falls A eine Algebra ist und

(iv)
$$A_1, A_2, \ldots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$$

Bemerkung 1.1

- a) Das Paar (Ω, \mathcal{A}) mit \mathcal{A} σ -Algebra über Ω heißt **Messraum**
- b) $\mathcal{P}(\Omega)$ ist stets eine σ -Algebra. Ist Ω endlich oder abzählbar unendlich, so kann $\mathcal{A} = \mathcal{P}(\Omega)$ gewählt werden. Ist Ω nicht abzählbar (siehe Beispiel 1.1), so muss eine kleinere σ -Algebra betrachtet werden. (Kapitel 4).

Wir wollen noch die folgenden Mengenverknüpfungen betrachten.

Definition 1.3 Seien $A_1, A_2, ... \subset \Omega$ Dann heißt

$$\limsup_{n \to \infty} A_n = \limsup_{n \to \infty} A_n := \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$$

der Limes Superior der Folge $\{A_n\}$ und

$$\liminf_{n \to \infty} A_n = \liminf_{n \to \infty} A_n := \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$$

heißt der Limes Inferior der Folge $\{A_n\}$

Bemerkung 1.2 Es gilt:

$$\omega \in \limsup_{n \to \infty} A_n \Leftrightarrow \forall k \in \mathbb{N} \ \exists n \ge k : w \in A_n \Leftrightarrow |\{n \in \mathbb{N} | \omega \in A_n\}| = \infty$$

 $\limsup_{n\to\infty}A_n$ ist das Ereignis "unendlich viele A_n 's treten ein "

$$\omega \in \liminf_{n \to \infty} A_n \Leftrightarrow \exists k \in \mathbb{N}$$
, so dass $\forall n \ge k \ \omega \in A_n$

 $\liminf_{n\to\infty} A_n$ ist also das Ereignis "alle bis auf endlich viele der A_n 's treffen eini

Lemma 1.1 Seien $A_1, A_2, \ldots, \subset \Omega$.

a) Falls $\{A_n\}$ wachsend ist, d.h. $A_1 \subset A_2 \subset \ldots$, dann gilt:

$$\limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

b) Falls $\{A_n\}$ fallend ist, d.h. $A_1 \supset A_2 \supset \ldots$, dann gilt:

$$\limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Bemerkung 1.3

- a) Für $A_1 \subset A_2 \subset A_3 \subset \ldots$ schreiben wir $A_n \uparrow$, für $A_1 \supset A_2 \supset \ldots$ schreiben wir $A_n \downarrow$
- b) Falls

$$\limsup_{n\to\infty} A_n = \liminf_{n\to\infty} A_n \text{ schreiben wir kurz: } \lim_{n\to\infty} A_n$$

Beweis a) Sei

$$A := \bigcup_{n=1}^{\infty} A_n$$

Es gilt

$$\bigcup_{n=k}^{\infty} A_n = A \quad \forall k \in \mathbb{N} \Rightarrow \limsup_{n \to \infty} A_n = A$$

Andererseits:

$$\bigcap_{n=k}^{\infty} A_n = A_k \text{ , d.h. } \liminf_{n \to \infty} A_n = A$$

Ereignissen ordnen wir jetzt Zahlen zwischen 0 und 1 zu, die wir als Wahrscheinlichkeiten interpretieren. Damit dies sinnvoll ist, soll die Zuordnung gewissen AXIOMEN genügen.

Definition 1.4 (Axiomensystem von Kolmogorov 1933)

Gegeben sei ein Messraum (Ω, A) . Eine Abbildung $P: A \to [0, 1]$ heißt Wahrscheinlichkeitsmaß auf A, falls

(i) $P(\Omega) = 1$ "Normiertheit"

(ii)

$$P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) \quad \forall \text{ paarweise disjunkten } A_1, A_2, \ldots \in \mathcal{A}$$

$$(d.h. A_i \cap A_j = \emptyset \quad \forall i \neq j) \text{ "}\sigma - Additivit"$$

 (Ω, \mathcal{A}, P) heißt **Wahrscheinlichkeitsraum**.

Beispiel 1.3

Ist $\Omega \neq \emptyset$ eine endliche Menge und $\mathcal{A} = P(\Omega)$, so wird durch $P(A) = \frac{|A|}{|\Omega|} \forall A \subset \Omega$ ein Wahrscheinlichkeitsmaß auf (Ω, \mathcal{A}) definiert.

 (Ω, \mathcal{A}, P) nennt man Laplace'schen Wahrscheinlichkeitsraum. Jedes Elementarereignis hat hier die gleiche Wahrscheinlichkeit $\frac{1}{|\Omega|}.$

Wir betrachten den gleichzeitigen Wurf zweier Würfel. Wie groß ist die Wahrscheinlichkeit, dass die Augensumme 11 bzw. 12 ist?

2 Würfel

$$\Omega = \{(i, j) | i, j = \{1 \dots 6\}\}$$

$$|\Omega| = 36$$

A = Augensumme 11

B = Augensumme 12

$$P(A) = P(\{(5,6),(6,5)\}) = \frac{2}{36}$$

 $P(B) = P(\{(6,6)\}) = \frac{1}{36}$

$$P(B) = P(\{(6,6)\}) = \frac{1}{36}$$

Satz 1.2

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $A, B, A_1, A_2, \ldots \in \mathcal{A}$. Dann gilt:

a)
$$P(A^c) = 1 - P(A)$$

b) Monotonie:
$$A \subset B \Rightarrow P(A) \leq P(B)$$

c)

Endliche Additivität
$$P(\sum_{k=1}^n A_k) = \sum_{k=1}^n (P(A_k))$$
 für paarweise disjunkte $A_1 \dots A_n$

d)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

e) Boole'sche Ungleichung:

$$P(\bigcup_{k=1}^{n} A_k) \le \sum_{k=1}^{n} P(A_k) \quad \forall n \in \mathbb{N}$$

Beweis a) Es gilt:

$$1 = P(\Omega) = P(A + A^c) = P(A + A^c + \emptyset + \emptyset \dots) \stackrel{(ii)}{=} P(A) + P(A^c) + P(\emptyset) + P(\emptyset) \dots$$

$$\Rightarrow P(\emptyset) = 0 \text{ und } P(A^c) = 1 - P(A)$$

b)
$$P(B) = P(A + B \setminus A) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0} \geq P(A)$$

c) Setze $A_{n+1} = A_{n+2} = \cdots = \emptyset$ und verwende die $\sigma - Additivit at$.

d) Es gilt:
$$A \cup B = A + B \setminus A \Rightarrow P(A \cup B) = P(A) + P(B \setminus A)$$

 $B = B \setminus A + A \cap B \Rightarrow P(B) = P(B \setminus A) + P(A \cap B)$
Es folgt: $P(A \cup B) = P(A) + P(B) - P(AB)$

e) Für n=2 folgt die Aussage aus Teil d), da $P(AB) \ge 0$ Induktion: $n \to n+1$:

$$P(\bigcup_{k=1}^{n+1} A_k) = P(\bigcup_{k=1}^{n} A_k \cup A_{n+1}) \le P(\bigcup_{k=1}^{n} A_k) + P(A_{n+1}) \le \sum_{k=1}^{n} P(A_k) + P(A_{n+1})$$

Satz 1.3 (Siebformel)

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, dann gilt für $A_1 \dots A_n \in \mathcal{A}$:

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} (-1)^{k-1} \cdot \sum_{1 \le i_1 \le i_2 \dots \le i_k \le n} P(A_{i1} \cap \dots \cap A_{ik})$$

Bemerkung 1.4

a) Die Formel ist auch unter dem Namen: Formel von Poincare-Sylvester oder Formel des Ein- und Ausschließens bekannt.

b)
$$n=2$$
 $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$

Die σ -Additivität ist äquivalent zu einer gewissen Stetigkeit des Wahrscheinlichkeitsmaßes.

Satz 1.4 Sei (Ω, A) ein Messraum und sei $P : A \to [0, 1]$ eine beliebige additive Mengenfunktion, d.h. P(A + B) = P(A) + P(B) gelte für disjunkte $A, B \in A$. Außerdem sei $P(\Omega) = 1$. Dann sind die folgenden Aussagen äquivalent:

- a) P ist σ -additiv (und damit ein Wahrscheinlichkeitsma β)
- b) P ist stetig von unten, d.h. für $A_n \in \mathcal{A}$ mit $A_n \uparrow gilt$:

$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n)$$

c) P ist stetig von oben, d.h. für $A_n \in \mathcal{A}$ mit $A_n \downarrow$ gilt:

$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n)$$

d) P ist stetig in \emptyset , d.h. für $A_n \in \mathcal{A}$ mit $A_n \downarrow \emptyset$ gilt:

$$\lim_{n \to \infty} P(A_n) = 0$$

Beweis $a) \Rightarrow b)$ Es sei $A_0 := \emptyset$. Dann gilt:

$$P(\lim_{n\to\infty} A_n) \stackrel{L=1}{=} P(\bigcup_{k=1}^{\infty} A_k) = P(\sum_{k=1}^{\infty} (A_k \backslash A_{k-1})) = \sum_{k=1}^{\infty} P(A_k \backslash A_{k-1}) =$$

$$= \lim_{n\to\infty} \sum_{k=1}^{\infty} P(A_k \backslash A_{k-1}) = \lim_{n\to\infty} P(A_n)$$

 $(b) \Rightarrow c) A_n \downarrow \Rightarrow A_n^c \uparrow \text{ und}$

$$\lim_{n\to\infty}P(A_n)=\lim_{n\to\infty}1-P(A_n^c)=1-\lim_{n\to\infty}P(A_n^c)\stackrel{b)}{=}1-P(\bigcup_{n=1}^{\infty}A_n^c)\stackrel{\text{d'Morgan}}{=}P(\bigcap_{n=1}^{\infty}A_n)$$

Mit Lemma 1.1 folgt die Behauptung

- $(c) \Rightarrow (d)$ klar (d) Spezialfall von c)
- $(d) \Rightarrow a$) Seien $A_1, A_2, \ldots \in \mathcal{A}$ paarweise disjunkt. Dann gilt

$$\bigcup_{k=n+1}^{\infty} A_k \downarrow \emptyset \qquad \text{für } n \to \infty$$

Also

$$P(\sum_{k=1}^{\infty} A_k) = P(\sum_{k=1}^{n} A_k + \sum_{k=n+1}^{\infty} A_k) \stackrel{\text{P endl. Add.}}{=} \sum_{k=1}^{n} P(A_k) + P(\sum_{k=n+1}^{\infty} A_k)$$

Für
$$n \to \infty$$
 gilt: $P(\underbrace{\sum_{k=n+1}^{\infty} A_k}) \to 0$ und die Behauptung folgt.