MA327 Turma Z - 2S 2011 - Prova 2

Nome:	RA·	19/10/2011
	1071.	_ 13/10/2011

Existem 10 pontos extras. Respostas sem justificativas serão desconsideradas. Bom trabalho!

- 1. (10pts) Escreva as definições de autovalor, autovetor e de matriz diagonalizável.
- 2. Seja $V = \mathcal{P}_3(\mathbb{R})$ o espaço vetorial real dos polinômios de grau menor ou igual a 3 e considere as bases $\alpha = \{1, t, t^2, t^3\}$ e $\beta = \{t, t^2 1, t^3, 2t^2\}$ d de V.
 - (a) (10pts) Calcule as matrizes mudança de base de β para α e vice-versa.
 - (b) (05pts) Use uma das matrizes encontradas para calcular as coordenadas de $p(t) = t^2 2t^3$ na base β .
 - (c) (15pts) Encontre uma fórmula para $T(a+bt+ct^2+dt^3)$ onde T é a transformação linear $T: \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^3$ determinada por $T(t) = (1,1,2), T(t^2-1) = (0,-1,-1), T(t^3) = (-1,0,-1), e <math>T(2t^2) = (-1,1,0).$
 - (d) (15pts) Encontre bases para o núcleo e para a imagem de T.
 - (e) (10pts) Seja $S: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear dada por S(x,y,z) = (x+y,x-z). Calcule a matriz $[S \circ T]^{\beta}_{\gamma}$ onde γ é a base canônica do \mathbb{R}^2 (não é neecssário ter respondido nenhum dos ítens anteriores para conseguir responder este).
- 3. (15pts) Encontre uma base β do \mathbb{R}^3 na qual a matriz $[T]^{\beta}_{\beta}$ seja diagonal e calcule $[T]^{\beta}_{\beta}$, onde $T: \mathbb{R}^3 \to \mathbb{R}^3$ é a transformação linear dada por T(x,y,z) = (-3x-4y,2x+3y,-z).
- 4. Seja V um espaço vetorial de dimensão finita e $T:V\to V$ uma transformação linear. Escreva uma demonstração ou dê um contra exemplo para mostrar se as afirmações abaixo são verdadeiras ou falsas.
 - (a) (10pts) Se a imagem de T for igual ao núcleo de T a dimensão de V é par.
 - (b) (10pts) T possui pelo menos um autovetor.
 - (c) (10pts) Zero é autovalor de T se, e só se, T não é sobrejetora.