Anxiang (Adam) Zhang

anxiangz@andrew.cmu.edu | 412-897-2635 | | Github: adam

PERSONAL STATEMENT

A dedicated and self-motivated student with research interest in natural language processing, knowledge mining and machine learning. I have built comprehensive knowledge of natural language processing and deep learning. I have proven abilities in problem solving and dream realizing. My dream is to automate and understand the knowledge distilling process using learning algorithm and data-driven method. Make real impact on the world!

EDUCATION

Carnegie Mellon University - School of Computer Science

Pittsburgh, PA

Master of Information Technology, GPA: 3.6/4

Expected 2020.12

Relevant Coursework: Introduction to Deep Learning(PhD Level), Introduction to Machine Learning (PhD Level), Machine Learning on Large Dataset, Introduction to Computer System, Parallel Computing Architecture, Devops, Distributed System

Southwestern University of Finance and Economics

Chengdu, China

Bachelor of Economics & Major in Finance, minor in Computer Science; GPA: 89/100

2015.09 - 2019.07

Relevant Coursework: Data Structure, Algorithm Analysis, Operation Systems

• National Award (Top 1%) in China Undergraduate Mathematical Contest in Modeling (2017);

SOFTWARE SKILLS

- Programming & Software Skills: Python, Pytorch, C/C++, CUDA, OpenMPI, OpenMP, Java, Spark
- Technologies: Linux, AWS, gRPC, Docker, Devops, Vagrant, Git

PUBLICATIONS

• Yu Zhao* and Anxiang Zhang*, "Connecting Embeddings for Knowledge Graph Entity Typing", *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, 6419-6428, July 2020

RESEARCH AND WORK EXPERIENCE

School of Computer Science, Carnegie Mellon University

Pittsburgh, PA

Graduate Teaching Assistant for Introduction to Deep Learning (Ph.D. Level) by Bhiksha Raj

2020.06 - Present

- Preparing recitations for regularization in deep learning. Topics include Batchnorm, Dropout, initialization, L1/L2 and data augmentation.
- o Mentoring Group Projects regarding Graph Neural Network, Music Generation and Super Resolution.

Southwestern University of Finance and Economics

Chengdu, China(Remote)

Research Assistant

2019.04 - Present

- Graph Attention Network and Keyphrase Extraction: Designing an Attention ranking algorithm to rank text
 phrases in a document. Combined Graph Attention Network and PageRank together to optimize the ranking
 performance.
- Knowledge Graph Completion: Built two distinct knowledge-driven models for entity type inference.
 Achieved SOTA performances in both Freebase and Yago KG datasets. Published Connecting Embeddings for Knowledge Graph Entity Typing as first co-author in 58-th Annual Meeting of the Association for Computational Linguistics(ACL).

Hong Kong University of Science and Technology

Hong Kong, China(Remote)

Research Assistant

2020.02 - 2020.05

- Designed a heuristic tree-based distributed Auto-ML training framework using Dask.distributed, a Python distributed framework.
- Implemented successive halving algorithm during hyper-parameter tuning to attain high parallelism; Results showed 5x speedup using two 4-core nodes and 94% prediction accuracy on KC1 dataset.

Explainable-Games, sponsored by David Garlan

Pittsburgh

Software Engineer, Institude of Software Research, Carnegie Mellon University

2020.02 - 2020.08

- Lead the meeting and collected requirements details with clients; iterated with clients to improve usability and extensibility of the application.
- Developed a game theory web visualization application using D3.js and Python flask. It could help researchers to understand the security attacks.
- Employed gRPC, a high-performance RPC framework, to connect our application with clients' architecture visualizer; Leveraged protocol buffers to make the interface language-neutral, platform-neutral and extensible enough for connecting any third-party visualizer.

COURSE PROJECTS

Speech Recognition Competition

2020.04 - 2020.06, Pittsburgh

- Built a character-level Listen, Attend and Spell model ans used beam search to improve prediction performance.
- Implemented teacher-forcing, variational-dropout and weight tying tricks to overcome overfitting problem; ranked 14/245.

Neural Network Pruning Competition

2020.04 - 2020.05, Pittsburgh

• Fine-tuned a simple 8-Layer CNN to get a 82% prediction rate after 50 epochs on CIFAR10 small dataset. Utilized individual weight pruning method to achieve 85% sparsity and 79% accuracy rate; Ranked 12/136.

Fraud Detection Competition

2019.09 - 2020.01, Pittsburgh

- o Applied LightGBM with hyper-parameter searching and feature engineering techniques to predict purchase fraud.
- Ensembled LightGBM, XGboost, Catboost to increase the performance; awarded with a Top 3% silver medal among 1800 participants.

Dual-Track Music Generation Using LSTM

2019.05 - 2020.01, Pittsburgh

Designed a novel (LSTM + MLP)-based dual-track architecture for generating classical piano music, which is able to model
the inter-dependency of left-hand and right-hand piano music; evaluated different models and training tricks in
Nottingham dataset.

Parallel Computing Projects

2019.08 - 2020.01, Pittsburgh

- Built a renderer to draw colored circles having sequential dependency. Utilized exclusive-scan to leverage shared memory in CUDA blocks, achieving 10 times improvement compared to benchmark.
- Applied message passing model using OpenMPI, CUDA to parallelize streaming histogram-based decision tree building
 process; applied OpenMPI gather, scatter collective operation to do decentralized ring allreduce synchronization to achieve
 better bandwidth usage and load balancing.
- Bundled 4 binned features into a 4-feature tuple to leverage locality of GPU memory access;

Stock Trend Prediction using Reddit Data

Apr. 2020 - June 2020, Pittsburgh

- Applied PCA and sentiment analysis to extract features from 1 TB Reddit comments using MapReduce. Created cluster on AWS EMR machine and used AWS S3 bucket to store the large data.
- Trained a logistic regressing to predict the stock market trend using PySpark; obtained 65% prediction accuracy.