Time Series

Exercise 1

Rory Hetherington (200471193)

13 Feb 2017

Question 1

The provided code is ran in R. Summary statistics are generated (Table 1) and the data is plotted (Figure 1). It can be seen in Fig. 1 that there is seasonality in the data.

Spikes occur every 10 years, where for every 4 spikes, there is one large one. Large spikes occur with a period of roughly 40 years.

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
39.0	348.2	771.0	1538.0	2567.0	6991.0

Table 1: Summary statistics for the annual number of lynx trapped at Mackenzie River between 1821 and 1934.

Question 2

In order to obtain a 95% confidence interval, we use the following formulation

$$\hat{y} \pm 1.96\sqrt{\sigma^2},\tag{1}$$

here \hat{y} is the approximated average and σ^2 the variance, both at time t=2000. To estimate \hat{y} , a linear model is fitted to obtain an estimation for the mean \hat{y}

$$\hat{y} = \hat{\alpha} + \hat{\beta}t, \quad \text{for} \quad t = 2000. \tag{2}$$

$$\hat{\alpha} = \overline{X} - \hat{\beta}\overline{t}, \qquad \hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(t_i - \overline{t})}{\sum_{i=1}^{n} (t_i - \overline{t})^2}.$$
(3)

From (2) and (3) we find $\hat{y} = 34.1077$.

Figure 1: Annual number of lynx trapped at Mackenzie River between 1821 and 1934.