Lineaire Algebra en differentiaalvergelijkingen

College 9: Complex inwendig product op \mathbb{C}^n . Abstracte vectorruimten

J. Vermeer Les 9

Faculteit EWI

De unitaire ruimte \mathbb{C}^n

We bespreken blz. 566-570 uit het boek. De opgaven 1-17 moet u zelf doen.

Behalve de lineaire structuur (optelling + complexe scalaire vermenigvuldigig) bezit \mathbb{C}^n een inwendig product.

Definitie: Als
$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 en $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ dan is: $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{u_1}v_1 + \cdots + \overline{u_n}v_n$.

Boek gebruikt notatie $\mathbf{u} \cdot \mathbf{v}$ i.p.v. $\langle \mathbf{u}, \mathbf{v} \rangle$.

Les 9

Rekenregels inwendigproduct \mathbb{C}^n

- $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$
- $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
- $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$
- $\langle \mathbf{u}, \mathbf{u} \rangle \in \mathbb{R}$ en $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$.

Bovendien: $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ als en slechts als $\mathbf{u} = \mathbf{0}$.

Ook geldt:

- $\langle \mathbf{u} + \mathbf{w}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle$
- $\langle c\mathbf{u}, \mathbf{v} \rangle = \overline{c} \langle \mathbf{u}, \mathbf{v} \rangle$

Faculteit EWI

Lengte of norm van een vector, orthogonaliteit

Definitie: $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$ Dus: $\|\mathbf{u}\| = \sqrt{|u_1|^2 + \cdots + |u_n|^2}$.

Merk op: $\|\mathbf{u}\| \in \mathbb{R}$, zelfs $\|\mathbf{u}\| \ge 0$. Rekenregels: $\|\mathbf{u}\| = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$ en $\|\mathbf{c}\mathbf{u}\| = |c|\|\mathbf{u}\|$.

Cauchy-Schwarz geldt: $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \, ||\mathbf{v}||$.

De afstand tussen vectoren wordt: $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$.

Definitie: De vectoren \mathbf{u} en \mathbf{v} heten orthogonaal als $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

TUDelft

Geconjugeerd transponeren

Evenals het dotproduct geschreven kan worden als matrixproduct $(\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y})$ geldt op \mathbb{C}^n :

$$\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\mathbf{u}^T} \mathbf{v}.$$

De Hermitisch getransponeerde of geconjugeerd getransponeerde van A (notatie A^*) is de matrix: $(\overline{A})^T = \overline{(A^T)}$.

- $(A^*)^* = A$,
- $(A+B)^* = A^* + B^*$,
- $(cA)^* = \overline{c}A^*$ voor ieder complex getal c,
- $(AB)^* = B^*A^*$.

Les 9

Faculteit EWI

Hermitische matrices

A heet een Hermitische matrix als $A^* = A$.

Merk op: A Hermitisch dan op de diagonaal $a_{i,i} \in \mathbb{R}$.

De complexe Hermitische matrices gedragen zich als de reële symmetrische matrices. U mag (moet) bewijzen in opgave 10,11: Stelling: Laat A een Hermitische matrix zijn. Dan:

- 1. Alle eigenwaarden A zijn reëel.
- 2. Eigenvectoren bij verschillende eigenwaarden zijn orthogonaal.

Hint: copiëer de bewijzen van de analoge resultaten over reëel symmetrische matrices.

Unitaire matrices

Stelling: Als $A = [\mathbf{a}_1, \dots, \mathbf{a}_k]$ dan geldt:

$$A^*A = \begin{bmatrix} \langle \mathbf{a}_1, \mathbf{a}_1 \rangle & \cdots & \langle \mathbf{a}_1, \mathbf{a}_k \rangle \\ \vdots & & \vdots \\ \langle \mathbf{a}_k, \mathbf{a}_1 \rangle & \cdots & \langle \mathbf{a}_k, \mathbf{a}_k \rangle \end{bmatrix}$$

Gevolg: 1. De kolommen van A zijn orthogonaal als en slechts als A^*A een diagonaalmatrix is.

2. De kolommen van A zijn orthonormaal als en slechts als A^*A een eenheidsmatrix is.

Definitie Een matrix U heet een unitaire matrix als de matrix vierkant is met kolommen orthonormaal!

Stelling: Een matrix U is unitair als en slechts als $U^{-1} = U^*$. \square

Les 9

Faculteit EWI

Faculteit EWI

Unitair diagonaliseerbare matrices

Definitie: Een matrix A heet unitair diagonaliseerbaar als $A = UDU^{-1}$ met U unitair en D een diagonaalmatrix. Stelling: ledere Hermitische matrix is unitair diagonaliseerbaar. Het omgekeerde geldt niet. Een unitair diagonaliseerbare matrix hoeft niet Hermitisch te zijn. Wel geldt: een unitair diagonaliseerbare matrix met reële eigenwaarden is Hermitisch. (Toon aan!!) Maar er bestaan ook unitair diagonaliseerbare matrices met complexe eigenwaarden.

Probleem: wat zijn precies de complexe matrices die unitair diagonaliseerbaar zijn? Een makkelijke vraag met een lastig antwoord!

Normale matrices

Definitie: Een matrix A heet normaal als $AA^* = A^*A$ Stelling: Een matrix A is normaal als en slechts als A een unitaire diagonalisering heeft. We besparen u het bewijs.

Voorbeeld Beschouw de matrix $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

- 1. Heeft deze matrix een (reëel) orthogonale diagonalisering?
- 2. Heeft deze matrix een unitaire diagonalisering? □

Les 9

Faculteit EWI

Faculteit EWI

Vectorruimten

Om precies vast te leggen wanneer we kunnen spreken over vectoren, hebben we de volgende definitie (Peano, 1888), waarin sprake is van twee verzamelingen: het scalairen lichaam (meestal $\mathbb R$ of $\mathbb C$) en de verzameling V waarvan de elementen vectoren genoemd worden.

Definitie: Een reële (complexe) vectorruimte is een \it{niet} lege verzameling \it{V} waarop twee operaties gedefinieerd zijn:

- Een optelling die bij elk tweetal $\mathbf{v}, \mathbf{w} \in V$ een element $\mathbf{v} + \mathbf{w} \in V$ maakt;
- Een scalaire vermenigvuldiging die bij elk tweetal $c \in \mathbb{R}$ (\mathbb{C}) en $\mathbf{v} \in V$ een element $c\mathbf{v} \in V$ maakt.

Deze optelling en scalaire vermenigvuldiging moeten voldoen aan de "acht axioma's van een vectorruimte".

De acht axioma's van een vectorruimte

Voor iedere \mathbf{u} , \mathbf{v} en \mathbf{w} in V en voor iedere c, d in \mathbb{R} (of \mathbb{C}) geldt

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $\bullet \ (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- Er is een element e in V met de eigenschap dat e + v = v voor alle $v \in V$
- Bij ieder element $\mathbf{v} \in V$ bestaat een element \mathbf{w} in V zo dat $\mathbf{v} + \mathbf{w} = \mathbf{e}$
- $c(d\mathbf{v}) = (cd)\mathbf{v}$
- $1\mathbf{v} = \mathbf{v}$
- $(c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$
- $c(\mathbf{v} + \mathbf{w}) = c\mathbf{v} + c\mathbf{w}$

Les 9 11

Faculteit EWI

De axioma's van een vectorruimte (vervolg)

Definitie:

- De vector e uit de derde rekenregel wordt vaak de nulvector van V genoemd en genoteerd met e0.
- De vector w uit de vierde rekenregel wordt vaak de tegengestelde van v genoemd en genoteerd met -v.

Opmerking: Om na te gaan of een gegeven verzameling met twee operaties een vectorruimte is, moeten elf zaken worden nagegaan (naast de acht "rekeneisen" moet je namelijk laten zien dat V niet leeg is en dat de optelling en de scalaire vermenigvuldiging goed gedefinieerd zijn).

Les 9

Rekenregels van een vectorruimte

Stelling: Zij V een vectorruimte over \mathbb{L} . Dan gelden de volgende regels voor willekeurige $\mathbf{v} \in V$ en $c \in \mathbb{L}$.

- (a) De nulvector is uniek.
- (b) Elke vector heeft precies één tegengestelde
- (c) Voor elke vector \mathbf{v} uit V geldt $-(-\mathbf{v}) = \mathbf{v}$
- (d) Voor elk drietal vectoren \mathbf{v} , \mathbf{x} en \mathbf{y} uit V geldt: uit $\mathbf{v} + \mathbf{x} = \mathbf{v} + \mathbf{y}$ volgt $\mathbf{x} = \mathbf{y}$
- (e) $0\mathbf{v} = \mathbf{0}$ en (f) $c\mathbf{0} = \mathbf{0}$,
- $(g) (-1) \cdot \mathbf{v} = -\mathbf{v},$
- (h) $c\mathbf{v} = \mathbf{0} \Longrightarrow c = 0$ of $\mathbf{v} = \mathbf{0}$.

Les 9 1

Faculteit EWI TUDelft

Standaard reële/complexe vectorruimten

De volgende verzamelingen zijn, met de voor de hand liggende optelling en scalaire vermenigvuldiging, reële vectorruimten:

- $\bullet \mathbb{R}^n$.
- $M_{m \times n}(\mathbb{R})$: alle reële $m \times n$ matrices.
- \mathbb{R}^{∞} : alle oneindige reële rijtjes.
- $\mathcal{F}(D,\mathbb{R})$: alle functies van een vast domein D naar \mathbb{R} .

De volgende verzamelingen zijn, met voor de hand liggende optelling en scalaire vermenigvuldiging, complexe vectorruimten:

- \bullet \mathbb{C}^n .
- $M_{m \times n}(\mathbb{C})$: alle complexe $m \times n$ matrices.
- \mathbb{C}^{∞} : alle oneindige complexe rijtjes.
- $\mathcal{F}(D,\mathbb{C})$: alle functies van een vast domein D naar \mathbb{C} .

TUDelft

Lineaire combinaties, lineaire opspanning

laat V een vectorruimte zijn en laat $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ een verzameling vectoren zijn in V.

Definitie: Een vector van de vorm:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$$

heet een een lineaire combinatie van het stelsel genoemd en de scalairen c_1, c_2, \ldots, c_n de gewichten van de lineaire combinatie. Definitie: De verzameling U van alle lineaire combinaties van een (eindig, oneindig of leeg) stelsel S uit een vectorruimte V over $\mathbb L$ heet het lineaire omhulsel (of het lineaire opspansel of kortweg de span) van S.

Notatie: Span(S) of Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_n,\ldots\}$.

We zeggen vaak dat het stelsel de verzameling U voortbrengt of opspant. $\hfill\Box$

Les 9 15

Faculteit EWI

Deelruimten

We definiëren:

Definitie: Een deelverzameling W van een vectorruimte V (over \mathbb{L}) heet een (lineaire) deelruimte van V als:

- W bevat de nulvector van V.
- $\mathbf{x} + \mathbf{y} \in W$ voor elke keuze van \mathbf{x} en \mathbf{y} uit W
- $c\mathbf{x} \in W$ voor elke keuze van \mathbf{x} uit W en c uit \mathbb{L}

Stelling Een deelruimte W van een vectorruimte (over \mathbb{L}) is op zich zelf ook een vectorruimte (over \mathbb{L}).

Merk op: $\operatorname{Span}(S)$ is een deelruimte van V. Dit geeft ons vele nieuwe vectorruimten!

Voorbeelden van deelruimten I

Voorbeeld: 1. $W=\{\mathbf{0}\}\subset V$ is een deelruimte van V, de nulvectorruimte

Voorbeeld: $W=V\subset V$ is een deelruimte van V. Deelruimten van $\mathcal{F}([a,b],\mathbb{L})$:

- de ruimte $C([a,b],\mathbb{L})$ van continue functies op [a,b]
- de ruimte $D([a,b],\mathbb{L})$ van differentieerbare functies op [a,b]
- de ruimte $C^1([a,b],\mathbb{L})$ van continu-differentieerbare functies op [a,b], dat wil zeggen, differentieerbare functies met continue afgeleide,
- de ruimte $C^n([a,b],\mathbb{L})$ van n-maal continu-differentieerbare functies op [a,b], dat wil zeggen, tweemaal differentieerbare functies met continue n^{de} afgeleide.

Les 9

17

Faculteit EWI

Voorbeelden van deelruimten II

Deelruimten van $\mathcal{F}([a,b],\mathbb{L})$ (vervolg):

- de ruimte $C^{\infty}([a,b],\mathbb{L})$ van de oneindig vaak differentieerbare functies op [a,b].
- de ruimte $Pol_n([a,b],\mathbb{L})$ van alle polynomen van de graad tenhoogste n op [a,b].
- de ruimte $Pol([a, b], \mathbb{L})$ van alle polynomen op [a, b].

Les 9

Faculteit EWI

Aanbevolen opgaven

College 3	behandeld	aanbevolen opgaven
	blz 566-570	1-17
	§6.1	1-17, 24-41, 51-64
	aanbevolen	1,5,14,28,33,34,35,37,38,40,41,51,53,55-57

10

Faculteit EWI

