Chapter 1

線形代数

線形代数は、高次元に立ち向かうための強力な道具となる。

どれだけ高次元に話を広げたとしても、「関係」を語る言葉の複雑さが増すことはない。 この章では、そんな状況を実現するための理論を追いかけていく。

1.1 ベクトルと座標

1.1.1 移動の表現としてのベクトル

平面上のある点の位置を表すのに、よく使われるのが**直交座標系**である。 直交座標系では、x 軸とy 軸を垂直に張り、

- 原点 O からの x 軸方向の移動量(x 座標)
- 原点 O からの y 軸方向の移動量(y 座標)

という2つの数の組で点の位置を表す。

座標とは、「x 軸方向の移動」と「y 軸方向の移動」という2回の移動を行った結果である。 右にどれくらい、上にどれくらい、という考え方で平面上の「位置」を特定しているわけだが、単 に「移動」を表したいだけなら、点から点へ向かう矢印で一気に表すこともできる。

ある地点から別のある地点への「移動」を表す矢印をベクトルという。

ベクトルが示す、ある地点からこのように移動すれば、この地点にたどり着く…といった「移動」 の情報は、相対的な「位置関係」を表す上で役に立つ。

平行移動してもベクトルは同じ

座標は「位置」を表すものだが、ベクトルは「移動」を表すものにすぎない。 座標は「原点からの」移動量によって位置を表すが、ベクトルは始点の位置にはこだわらない。

たとえば、次の2つのベクトルは始点の位置は異なるが、同じ向きに同じだけ移動している矢印 なので、同じベクトルとみなせる。

このような「同じ向きに同じだけ移動している矢印」は、平面内では平行な関係にある。 つまり、平行移動して重なる矢印は、同じベクトルとみなすことができる。

移動の合成とベクトルの分解

ベクトルは、各方向への移動の合成として考えることもできる。

純粋に「縦」と「横」に分解した場合は直交座標の考え方によく似ているが、必ずしも直交する 方向のベクトルに分解する必要はない。

1.1.2 高次元への対応:数ベクトル

2次元以上の空間内の「移動」を表すには、「縦」と「横」などといった 2 方向だけでなく、もっと多くの方向への移動量を組み合わせて考える必要がある。

また、4次元を超えてしまうと、矢印の描き方すら想像がつかなくなってしまう。それは、方向となる軸が多すぎて、どの方向に進むかを表すのが難しくなるためだ。

そこで、一旦「向き」の情報を取り除くことで、高次元に立ち向かえないかと考える。

移動を表す矢印は「どの方向に進むか」と「どれくらい進むか」という向きと大きさの情報を持っているが、その「どれくらい進むか」だけを取り出して並べよう。

こうして単に「数を並べたもの」もベクトルと呼ぶことにし、このように定義したベクトルを数 ベクトルという。

数を並べるとき、縦と横の2通りがある。それぞれ列ベクトル、行ベクトルとして定義する。

単に「ベクトル」と言った場合は、列ベクトルを指すことが多い。

行ベクトルは、列ベクトルを横倒しにしたもの(列ベクトルの転置)と捉えることもできる。

1.1.3 ベクトルの和

ベクトルによって数をまとめて扱えるようにするために、ベクトルどうしの演算を定義したい。

ベクトルどうしの足し算は、同じ位置にある数どうしの足し算として定義する。

i番目の数がaとbの両方に存在していなければ、その位置の数どうしの足し算を考えることはできない。

そのため、ベクトルの和が定義できるのは、同じ次元を持つ(並べた数の個数が同じ)ベクトル どうしに限られる。

移動の合成としてのイメージ

数ベクトルを「どれくらい進むか」を並べたものと捉えると、同じ位置にある数どうしを足し合わせるということは、同じ向きに進む量を足し合わせるということになる。

たとえば、x 軸方向に a_1 、y 軸方向に a_2 進んだ場所から、さらに x 軸方向に b_1 、y 軸方向に b_2 進む…というような「移動の合成」を表すのが、ベクトルの和である。

平行四辺形の法則

[Topo 1: 平行移動しても同じベクトルなので…]

ベクトルの差:逆向きにしてから足す

[Todo 2: irobutsu-linear-algebra 2.1.2 ベクトルの差]

矢に沿った移動で考える

[Topo 3: 手持ちの画像を参考に、和と差の両方について書く]

1.1.4 ベクトルのスカラー倍

「どれくらい進むか」を表す数たち全員に同じ数をかけることで、向きを変えずにベクトルを「引き伸ばす」ことができる。

ここで向きごとにかける数を変えてしまうと、いずれかの方向に多く進むことになり、ベクトルの向きが変わってしまう。そのため、「同じ」数をかけることに意味がある。

そこで、ベクトルの定数倍(スカラー倍)を次のように定義する。

1.1.5 一次結合

ベクトルを「引き伸ばす」スカラー倍と、「つなぎ合わせる」足し算を組み合わせることで、ある ベクトルを他のベクトルを使って表すことができる。

このように、スカラー倍と和のみを使った形を一次結合もしくは線形結合という。

1.1.6 基底:座標を復元する

3次元までのベクトルは、矢印によって「ある点を指し示すもの」として定義できる。 しかし、4次元以上の世界に話を広げるため、ベクトルを単に「数を並べたもの」として再定義した。「数を並べたもの」としてのベクトルを、数ベクトルと呼んでいる。

さて、2次元平面や3次元空間で点を指し示すためのもう一つの概念として、座標がある。 座標は、x 軸方向にこのくらい進み、y 軸方向にこのくらい進む…というように、「進む方向」と「進む長さ」によって表現される。 単なる数の並びである数ベクトルでは、「進む方向」については何も記述されていない。

3 2

しかし、「進む方向」を表すベクトル a_1 , a_2 を新たに用意すれば、一次結合によって「進む方向」と「進む長さ」を持つベクトルを作ることができる。

$$x = 3a_1 + 2a_2$$

 a_1 と a_2 のように、座標を復元するために向きの情報を付け加えるベクトルを、基底と呼ぶことにする。(厳密には「基底」と呼ぶための条件はいろいろあるが、それについては後々解説していく。)

基底が変われば座標が変わる

先ほどの例では、直交座標による点(3,2)をベクトルの一次結合 $x=3a_1+2a_2$ で表現するために a_1 と a_2 を用意した。

 a_1 を x 軸方向の長さ1のベクトル、 a_2 を y 軸方向の長さ1のベクトルとすれば、 a_1 を 3 倍、 a_2 を 2 倍して足し合わせることで、点 (5,4) を指し示すベクトル x を作ることができる。

ここで、一次結合の式 $x = 3a_1 + 2a_2$ は変えずに、 a_1 と a_2 を変更すると、x が指し示す点も変わってしまう。

 $x = 3a_1 + 2a_2$

(6, 8)

このことから、

座標は使っている基底の情報とセットでないと意味をなさない

ものだといえる。

1.1.7 標準基底による直交座標系の構成

座標という数値の組は、使っている基底とセットでないと意味をなさないものである。 逆にいえば、

「こういう基底を使えば、このようなルールで座標を表現できる」

という考え方もできる。つまり、基底によって座標系を定義するということだ。

前の章で見た例を一般化して考えてみよう。

 e_1 を x 軸方向の長さ1のベクトル、 e_2 を y 軸方向の長さ1のベクトルとすれば、 e_1 を x 倍、 e_2 を y 倍して足し合わせたベクトル xe_1+ye_2 で、2 次元直交座標系での点 (x,y) を指し示すことができる。

このとき、 e_1 と e_2 は、各方向の1目盛に相当する。

これらをまとめて \mathbb{R}^2 上の標準基底と呼び、 $\{e_1,e_2\}$ と表す。(\mathbb{R}^2 とは、実数の集合である数直線 \mathbb{R} を 2 本用意してつくった、2 次元平面を表す記号である。)

点 (x,y) を指し示す $xe_1 + ye_2$ というベクトルは、直交座標による点の表現が「x 軸方向の移動」と「y 軸方向の移動」という 2 回の移動を行った結果であることをうまく表現している。

直交座標系をベクトルの言葉で言い換えると、

直交座標系は、標準基底である各ベクトル e_1 と e_2 を軸として、平面上の点の位置を標準基底の一次結合の係数 x と y の組で表す仕組み

だといえる。

座標は点の位置を表す数の組のことで、座標系は点の位置を数の組で表すための仕組み(ルール)のことをいう。

基底を変えれば違う座標系を作れる

直交座標系は、標準基底という互いに直交するベクトルを基底に使っていたが、座標系を表現するにあたって必ずしも基底ベクトルが直交している必要はない。

座標系を基底ベクトルを使って捉え直しておくと、基底を取り替えることで、目的の計算に都合のいい座標系を作ることができる。

たとえば、次のように歪んだ空間を記述するための座標系を作ることも可能である。

1.2 基底にできるベクトルを探す

2次元座標系では、平面上のあらゆる点を表すことができ、それらの点はベクトルで指し示す形で も表現できる。

基底が「座標系を設置するための土台」となるなら、基底とは、あらゆるベクトルを表すための 材料とみなすことができる。

では、基底として使えるベクトルとは、どのようなベクトルだろうか?

1.2.1 基底とは過不足ない組み合わせ

不十分を考える

2次元座標系を表現するにあたって、必ずしも基底ベクトルが直交している必要はない。 しかし、平行なベクトルは明らかに基底(座標軸の土台)として使うことはできない。

x軸とy軸が平行だと、(x,y)の組で平面上の点を表すことはできない。

2 次元平面 ℝ² 上の点やベクトルは、2 つの方向を用意しないと表せないのだから、基底となるベクトルは互いに平行でない必要がある。

無駄を考える

平行な2つのベクトルは、互いに互いをスカラー倍で表現できてしまう。このようなベクトルの 組は基底にはできない。

$$a_2 = ka_1$$

この平行な 2 つのベクトル $\{a_1, a_2\}$ に加えて、これらに平行でないもう 1 つのベクトル a_3 を用意すれば、 a_1 と a_3 の一次結合か、 a_2 と a_3 の一次結合かのどちらかで、平面上の他のベクトルを表現できるようになる。

しかし、 a_2 は結局 a_1 のスカラー倍(a_1 と a_3 の一次結合の特別な場合)で表現できてしまうのだから、「他のベクトルを表す材料」となるベクトルの組を考える上で、 a_2 は無駄なベクトルだといえる。

2次元平面を表現するには2本の座標軸があれば十分なように、基底とは、「これさえあれば他のベクトルを表現できる」という、必要最低限のベクトルの組み合わせにしたい。

基底の候補の中に、互いに互いを表現できる複数のベクトルが含まれているなら、その中の1つ を残せば十分である。

* * *

ここまでの考察から、あるベクトルの組を基底として使えるかどうかを考える上で、「互いに互い を表現できるか」という視点が重要になることがわかる。

- 互いにスカラー倍で表現できるベクトルだけでは不十分
- 互いに一次結合で表現できるベクトルが含まれていると無駄がある

ベクトルの組の「互いに互いを表現できるか」に着目した性質を表現する概念として、一次従属と一次独立がある。

- 一次従属:互いに互いを表現できるベクトルが含まれていること
- 一次独立:互いに互いを表現できない、独立したベクトルだけで構成されていること

1.2.2 一次従属

ベクトルの組を考え、どれか1つのベクトルがほかのベクトルの一次結合で表せるとき、それら のベクトルの組は一次従属であるという。

個の係数
$$c_i = \{c_1, c_2, \dots, c_k\}$$
 を用意すれば、それらを使った一次結合を零ベクトル $\mathbf{0}$ にできることをいう。
$$\sum_{i=1}^{k-1} c_i \boldsymbol{a}_i = c_1 \boldsymbol{a}_1 + c_2 \boldsymbol{a}_2 + \dots + c_k \boldsymbol{a}_k = \mathbf{0}$$

たとえば、 c_1 が 0 でないとき、一次結合を零ベクトルにできるということは、次のような式変形ができることになる。

$$\boldsymbol{a}_1 = -\frac{c_2}{c_1} \boldsymbol{a}_2 - \frac{c_3}{c_1} \boldsymbol{a}_3 - \dots - \frac{c_k}{c_1} \boldsymbol{a}_k$$

つまり、ベクトル a₁ をほかのベクトルの一次結合で表せている。

「従属」という言葉を味わう

自分自身をほかのベクトルを使って表現できるということは、ほかのベクトルに依存している(従っている)ということになる。

たとえば、 a_1 と a_2 の一次結合で表せるベクトル a_3 は、 この 2 つのベクトル a_1 , a_2 に従っている といえる。

$$a_3 = 2a_1 + a_2$$

しかし、 $[a_3$ が a_1 , a_2 に従っている」という一方的な主従関係になっているわけではない。その逆もまた然りである。

なぜなら、次のような式変形もできるからだ。

$$a_2 = a_3 - 2a_1$$

この式で見れば、今度は a_2 が a_1 , a_3 に従っていることになる。

このように、一次従属とは、「どちらがどちらに従う」という主従関係ではなく、ベクトルの組の 中での相互の依存関係を表すものである。

1.2.3 一次独立

一次従属は、いずれかのベクトルをほかのベクトルで表現できること、つまり基底の候補として は無駄が含まれている。そこで、その逆を考える。 互いに互いを表現できるような無駄なベクトルが含まれておらず、各々が独立している(無関係である)ベクトルの組は一次独立であるという。

たとえば、係数 c_1 が0でないとすると、

$$\boldsymbol{a}_1 = -\frac{c_2}{c_1}\boldsymbol{a}_2 - \frac{c_3}{c_1}\boldsymbol{a}_3 - \cdots - \frac{c_k}{c_1}\boldsymbol{a}_k$$

のように、 a_1 をほかのベクトルで表現できてしまう。これでは一次従属である。

ほかの係数についても同様で、どれか1つでも係数が0でなければ、いずれかのベクトルをほかのベクトルで表現できてしまうのである。

このような式変形ができないようにするには、係数はすべて0でなければならない。

一次独立には、互いに互いを表現できないようにする条件が課されているため、一次独立なベクトルの組は無駄なベクトルを含まず、基底の候補となり得る。

1.3 ベクトルが作る空間

- 1. 線形性と線形空間
- 2. 一次結合で線形空間を作る
- 3. 基底が作るもの(基底の厳密な定義)

1.4 ベクトルの測り方

1	5	直交	ナス.	ベカ	Ь	11.
Ι.	.).	1 □ .′X∵	9 W	• • •	١,	ノレ

- 1. 内積
- 2. ノルム

1.5 直交するベクトル

Zebra Notes

1. 直交基底

Туре	Number	
todo	3	