ALGEBRA 1, Lista 7

Cwiczenia 19.11.2019, Konwersatorium 20.11.2019 i materiał na Kartkówkę 6 (26.11.2019).

- 0S. Materiał teoretyczny: Grupa ilorazowa, homomorfizm ilorazowy i zasadnicze twierdzenie o homomorfiźmie grup. Produkt grup: definicja, własności, przykłady. Twierdzenie o produkcie wewnętrznym podgrup grupy.
- 1S. Niech (A, +) będzie grupą przemienną i $k \in \mathbb{N}_{>0}$. Definiujemy:

$$kA := \{kx \mid x \in A\}$$

(x doda jemy do siebie k razy). Udowodnić, że kA jest dzielnikiem normalnym A.

- 2S. Znaleźć $k \in \mathbb{N}_{>0}$ takie, że:
 - (a) $\mathbb{Z}_{12}/3\mathbb{Z}_{12} \cong \mathbb{Z}_k$;
 - (b) $\mathbb{Z}_8/6\mathbb{Z}_8 \cong \mathbb{Z}_k$;
 - (c) $\mathbb{Z}_{12}/5\mathbb{Z}_{12} \cong \mathbb{Z}_k$.
 - 3. Czy następujące grupy są cykliczne?
 - (a)S $(\mathbb{Z}_3, +_3) \times (\mathbb{Z}_6, +_6);$
 - (b)S $(\mathbb{Z}_3, +_3) \times (\mathbb{Z}_4, +_4)$;
 - (c)K $(\mathbb{Z},+)\times(\mathbb{Z}_2,+);$
 - $(d)K (\mathbb{Z}, +) \times (\mathbb{Z}, +).$
- 4K. Załóżmy, że $k, n \in \mathbb{N}_{>0}$ oraz k|n. Udowodnić, że:
 - (a) istnieje jedyny homomorfizm $\varphi: \mathbb{Z}_n \to \mathbb{Z}_k$, taki że $\varphi(1) = 1$;
 - (b) dla homomorfizmu φ z punktu (a) powyżej mamy:

$$\ker(\varphi) = \langle k \rangle = k \mathbb{Z}_n \cong \mathbb{Z}_{\frac{n}{k}};$$

- (c) $\mathbb{Z}_n/k\mathbb{Z}_n \cong \mathbb{Z}_k$.
- 5. W grupie ilorazowej G/H wyznaczyć rząd elementu a+H, gdzie:

 - (a) $G = (\mathbb{Q}, +), H = (\mathbb{Z}, +), a = \frac{2}{3};$ (b) $G = (\mathbb{Z}_{12}, +_{12}), H = \{0, 3, 6, 9\}, a = 5;$ (c) $G = (\mathbb{Q}, +), H = (3\mathbb{Z}, +), a = \frac{2}{3};$

 - (d) $G = (\mathbb{R}, +), H = (\mathbb{Q}, +), a = \sqrt{2}.$
- 6. Rozważamy grupy G, H oraz dzielnik normalny $K \triangleleft G$. W każdym z poniższych przypadków udowodnić, że $G/K \cong H$ (wskazać epimorfizm $f: G \to H$, taki że $\ker(f) = K$ i skorzystać z zasadniczego twierdzenia o homomorfiźmie grup).
 - (a) $G = (\mathbb{C} \setminus \{0\}, \cdot), K = S^1 = \{z \in \mathbb{C} \mid |z| = 1\}, H = (\mathbb{R}_{>0}, \cdot).$
 - (b) $G = (\mathbb{R}^2, +), K = \text{Lin}\{(1, 2)\}, H = (\mathbb{R}, +).$
 - (c) $G = (\mathbb{C} \setminus \{0\}, \cdot), K = \{1, -1, i, -i\}, H = (\mathbb{C} \setminus \{0\}, \cdot).$
 - (d) $G = (\mathbb{R} \setminus \{0\}, \cdot), K = \{1, -1\}, H = (\mathbb{R}_{>0}, \cdot).$
 - (e) $G = (\mathbb{Z}, +) \times (\mathbb{Z}, +), K = \{(x, x) \mid x \in \mathbb{Z}\}, H = (\mathbb{Z}, +).$
- 7. Mamy funkcję

$$f: (\mathbb{R}^2, +) \to (\mathbb{R}, +), \quad f(x, y) = 4x - 2y;$$

która jest epimorfizmem grup (a nawet przestrzeni liniowych).

- (a) Znaleźć $\ker(f)$.
- (b) Wskazać podgrupę $H < (\mathbb{R}^2, +)$, taką że $(\mathbb{R}^2, +)$ jest produktem wewnętrznym podgrup $\ker(f)$ i H (w szczególności: $(\mathbb{R}^2, +) \cong \ker(f) \times H$).
- 8. Czy istnieje $H < (\mathbb{Q}, +)$, taka że $(\mathbb{Q}, +)$ jest produktem wewnętrznym podgrup \mathbb{Z} i H?
- 9. Czy grupa S_3 jest izomorficzna z produktem $G \times H$ dla pewnych nietrywialnych grup G i H?