

Mathematik

Übungen Lineare Algebra

BGW 16

ANR

Hinweis: Wir verstehen in dieser Serie unter der Vektordarstellung eines Punktes P(x|y) den Spaltenvektor $p = \begin{pmatrix} x \\ y \end{pmatrix}$.

Aufgabe 1

Die Spiegelung an der Abszisse ist eine lineare Abbildung, die mithilfe einer Matrix beschrieben werden kann. Dabei wird jeder Punkt P(x|y) auf den Punkt P'(x|-y) agebildet.

- (a) Bestimmen Sie eine Matrix A so, dass $A \cdot p = p'$.
- (b) Bilden Sie den Punkt $p = \binom{2}{3}$ auf seinen Spiegelpunkt p' ab.
- (c) Entscheiden Sie begründet, ob die Matix A invertierbar ist.

Aufgabe 2

Betrachten Sie die Abbildungsmatrix $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, die einen Punkt P(x|y) auf einen anderen Punkt P' abbildet.

- (a) Berechnen Sie, auf welchen Punkt P(2|7) abgebildet wird.
- (b) Bestimmen Sie, welcher Punkt auf das Bild P'(-3|0) abgebildet wird.
- (c) Beschreiben Sie die Wirkung der Abbildung A.
- (d) Ermitteln Sie die Elemente der Menge \mathcal{F} , die die Fixpunkte der Abbildung A enthält.

Aufgabe 3

Sei g(x) = 2x + 3 eine Gerade in der Ebene \mathbb{R}^2 mit dem Koeffizientenvektor $v_g = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

- (a) Geben Sie den Koeffizentenvektor $v_{g'}$ der ersten Ableitung von g an. (Er ist ebenfalls vom Typ 2×1 .)
- (b) Bestimmen Sie die Differentialmatrix D so, dass $D \cdot v_g = v_{g'}$.
- (c) Weisen Sie nach, dass $D^T \cdot v_{g'} + \begin{pmatrix} 0 \\ 3 \end{pmatrix} = v_g$.
- (d) Sei $G = \left\{ \begin{pmatrix} 0 \\ 3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix} | \lambda \in \mathbb{R} \right\}$. Begründen Sie, dass G genau die Vektordarstellungen aller Punkte auf der Geraden g enthält.
- (e) Sei h(x) = mx + b mit $m, b \in \mathbb{R}, m \neq 0$ eine lineare Funktion. Geben Sie die Menge H an, die genau die Vektordarstellungen aller Punkte auf der Geraden h enthält.

Mathematik

Übungen Lineare Algebra

BGW 16

ANR

Aufgabe 4

Gegeben seien die Matrix $A=\begin{pmatrix}1&-2&1\\0&1&3\\-2&4&2\end{pmatrix}$ der Vektor $b=\begin{pmatrix}0\\4\\0\end{pmatrix}.$

Kreuzen Sie jeweils an, ob die Aussage entweder wahr oder falsch ist.

Treazen bie jewens an, ob die Hassage entweder want oder laisen ist.		
Aussage	K	F
$b \cdot A = \begin{pmatrix} -8\\4\\16 \end{pmatrix}$		
$det(A) \neq 0$		
Das LGS $A \cdot x = b$ ist eindeutig lösbar. (x hat passenden Typ.)		
Die Inverse A^{-1} existiert.		
$rg(A) \neq 3$		
$x = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ ist Lösung des LGS } A \cdot x = b.$		

Aufgabe 5

Sei $M = \begin{pmatrix} a & b \\ 1-a & 1-b \end{pmatrix}$ mit $a, b \in \mathbb{R}$ eine stochastische Matrix. Zeigen Sie, dass dann auch M^2 stochastisch ist.

Aufgabe 6

Gegeben ist eine stochastische Matrix M mit der Eigenschaft: $M^2 = \begin{pmatrix} 0.2 & a \\ 0.8 & b \end{pmatrix}^2 = \begin{pmatrix} 0.44 & d \\ c & 0.65 \end{pmatrix}$.

- (a) Bestimmen Sie die fehlenden Matrixelemente a, b, c und d.
- (b) Überprüfen Sie, ob die Matrix M^2 auch eine stochastische Matrix ist.

Aufgabe 7

Ein Unternehmen hat drei Niederlassungen N_1 , N_2 und N_3 , die nach dem Leontief-Modell y = x - Ax mit dem Markt verflochten sind. Für die Technologiematrix A gilt dabei $A = \begin{pmatrix} 0.2 & 0.2 & 0.2 \\ 0 & 0.6 & 0.2 \\ 0.4 & 0 & 0.4 \end{pmatrix}$.

- (a) Zeichnen und beschriften Sie das zugehörige Übergangsdiagramm für eine Marktabnahme von $y = \begin{pmatrix} 18 & 36 & 54 \end{pmatrix}^T$.
- (b) Bestimmen Sie den Produktionsvektor x für die genannte Marktabnahme.
- (c) Das Verhältnis der Produktionsmengen zwischen N_1 , N_2 und N_3 soll 2:3:3 betragen. Ermitteln Sie die Marktabnahme, wenn in N_3 genau 180 ME produziert werden.