1. Spectrum

Y-axis= $E^2 \frac{dJ}{dE}$, means per **area** per **time** per **solid angle** per **energy**.

2. Solid Angles

• An "isotropic" distribution

$$\frac{dN}{d\Omega} = \mathbf{constant}$$

$$\frac{dN}{\sin\theta \, d\theta \, d\phi} = 1, \quad [\theta = 0, \pi], \ \phi = [0, 2\pi]$$

$$\frac{dN}{d\theta} = \sin \theta \int d\phi \frac{dN}{\sin \theta \, d\theta \, d\phi} = 2\pi \sin \theta \quad \text{Not a constant!}$$

$$\frac{dN}{dx} = \frac{dN}{d\cos\theta} = \int d\phi \frac{dN}{\sin\theta \, d\theta \, d\phi} = 2\pi, \quad \cos\theta = [-1, 1]$$

3. No directionality

- It is good to express in typical values
- Lamor Radius (Gyro-radius)

$$r_g = \frac{p_{\perp}}{|q|B}$$

$$r_g \simeq 3.3 \,\mathrm{m} \left(\frac{E}{\mathrm{GeV}}\right) \left(\frac{e}{|q|}\right) \left(\frac{1 \,\mathrm{T}}{B}\right)$$

- Size of the Galaxy $\sim 10~\rm kpc$
- pc $\simeq 3 \times 10^{16}$ m or about 3 lyr

4. CR Composition

- Right plot shows elemental abundance ratio (normalized at Carbon).
- Cosmic ray (CR) composition differs from Solar System abundance.

Reasons for the difference:

- 1. **Different origins:** CRs come mainly from supernova remnants and stellar winds, not the same material as the Solar System.
- 2. **Acceleration bias:** Elements with low first ionization potential (e.g. Mg, Si, Fe) or large charge |Z| are more efficiently accelerated \Rightarrow overrepresented in CRs.
- 3. **Propagation effect:** CRs interact with interstellar matter and produce secondary nuclei (Li, Be, B), leading to their high abundance.
- 4. **Conclusion:** CR composition reflects *acceleration and propagation physics*, not direct stellar nucleosynthesis.

5. Cross Section

One paritcle interaction,

- $\sigma_{AB}n_BL\ll 1$: very likely to pass through(**optically thin**)
- $\sigma_{AB}n_BL\gg 1$: very likely to interact(**optically thick**) Probability:

$$P = 1 - e^{-n\sigma L} \tag{1}$$

where $\tau = n\sigma L$ is called **Optical Depth**. Unit: Barn $1barn = 10^{-28}m^2$.

6. Diffusion Model

Diffusion-loss equation,

$$\frac{\partial n}{\partial t} = \nabla \cdot \left(D \vec{\nabla} n \right) - \frac{\partial}{\partial E} (n \dot{E}) + Q \tag{2}$$

Diffusion-Convection equation,

$$\frac{\partial}{\partial t}n = \nabla \cdot \left(D\vec{\nabla}n - \vec{V}n\right) - \frac{\partial}{\partial E}(n\dot{E}) + Q$$
 (3)

with momentum loss term $\dot{p} = -\frac{1}{3}(\nabla \cdot V)p$.

Rigity: $R = \frac{p}{q}$. Motivation: Lamor Radius is propotional to the rigity $r_g = \frac{p_{\perp}}{q}$.

Number of particles per phase space: $f = \frac{\mathrm{d}N}{\mathrm{d}^3p\mathrm{d}^3x}$. Differential number density of particles, $n = \frac{\mathrm{d}N}{\mathrm{d}p\mathrm{d}^3x} = 4\pi p^2 f$. From diffusion-loss equations, we can imply

$$D\frac{\partial f}{\partial r} + \frac{V_p}{3}\frac{\partial f}{\partial p} = 0 \implies \mathbf{d}f(r, p) = 0 \implies f(r_1, p_1) = f(r_1, p_1)$$

with definition of flux $I = vn/(4\pi) = vp^2f$, we have relation

$$\frac{I(p)}{vp^2} = \frac{I(p_{ILS})}{v_{LIS}p_{LIS}^2} \tag{4}$$

combining with solar modulation potential ϕ , we have

$$\frac{I(p)}{vp^2} = \frac{I(p+\phi)}{v_{lis}(p+\phi)^2} \tag{5}$$

7. CR Secondaries

The full propagation euqation,

$$\frac{\partial \psi(r,p,t)}{\partial t} = q(r,p,t) + \nabla \cdot (D_{xx}\nabla\psi - V\psi)$$

$$+ \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\dot{p}\psi - \frac{p}{3} (\nabla \cdot V)\psi \right]$$
Re-acceleration Continuous Energy Loss
$$- \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$
(6)

Fragmentation& Radi. decay Loss

For Fragmentation Loss, for the i-th species, it's loss by \rightarrow j-th species

$$\frac{\partial n_i}{\partial t} = -n_i (\frac{\rho}{m})_{ism} \sigma_{i \to j} v \tag{7}$$

For radioactive decay loss,

$$\frac{\partial n_i}{\partial t} = -n_i \frac{1}{\tau_i}, \tau_i \text{ is the lifetime}$$
 (8)

For simple case: Leaky box approx, one species dominates the production, Q=0. We have relation,

$$\frac{n_i}{T_e} = -\frac{n_i}{T_f} - \frac{n_i}{T_{dec}} + C_i \tag{9}$$

where C_i is the production of "i" due to other species, then we can get expression of n_i ,

$$n_i = \frac{C_i}{1/T_e + 1/T_f + 1/T_{dec}}$$
 (10)

8. Collision

We can use Lorentz Invariant s,

$$s = (p^{\mu} + p^{\nu})^2 \tag{11}$$

where $p^{\mu} = (\frac{E}{c}, p^1, p^2, p^3)$.

And definition of Differential cross section,

$$\frac{\mathrm{d}\sigma_{i\to j}}{\mathrm{d}T_i}(T_i, E_j) \tag{12}$$

Total corss section:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = n\sigma \tag{13}$$

and differential cross section,

$$\frac{\mathrm{d}P}{\mathrm{d}t\,\mathrm{d}T} = n\frac{\mathrm{d}\sigma}{\mathrm{d}T} \tag{14}$$

thus, using differential cross section, the number of \bar{p} in interaction $p+p\to \bar{p}+X$ can be expressed by

$$n_{\bar{p}}(T_{\bar{p}}) = \left(\int_{E_{th}} n_p \frac{\mathrm{d}\sigma_{pp \to \bar{p}X}}{\mathrm{d}T_{\bar{p}}} (E_p, T_p) \, \mathrm{d}E_p - n_{\bar{p}}\sigma_{\bar{p} \to X} \right) \frac{X}{m}$$
(15)

9. Electron-Matter Interaction

A particle interacts with stuff lower energy than itself causes energy loss through following mechanisms. In matter:

- Ionization: Kick off electrons from atoms
- Bremsstrahlung: curved trajectory emits photon
- In space:
- Inverse-Compton scattering
- Synchrotron radiation

With electrons/positrons:

- Moller/Bhabba scattering: $e^- + e^+ + e$ lectron scattering
- Positron annihilation: $e^- + e^+ \rightarrow \gamma + \gamma$

10. Inverse Compton Scattering

We assume it as the **Thomson**(elastic) scattering, because photon energy in CR frame $E_{ph} \sim kT \sim 10^{-4} eV$. In electron rest frame,

$$\begin{pmatrix} E'_{ph} \\ E'_{ph} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} E_{ph} \\ E_{ph} \end{pmatrix}$$
 (16)

$$\Longrightarrow E'_{ph} = \gamma (1+\beta) E_{ph} \simeq 2\gamma E_{ph} \tag{17}$$

$$\Rightarrow E_{\gamma} \simeq 2\gamma E_{\gamma}' \simeq 4\gamma^2 E_{ph} \tag{18}$$

Due to the same Lorentz transformation, we know the energy loss of Inverse Compton, is

$$-\frac{\mathrm{d}E_e}{\mathrm{d}t} = \frac{\mathrm{d}E_{\gamma}}{\mathrm{d}t} = \frac{\mathrm{d}E_{\gamma}'}{\mathrm{d}t} \tag{19}$$

Give the expression of power

$$\frac{\mathrm{d}E_{\gamma}'}{\mathrm{d}t} = \int E_{\gamma}' \frac{c \,\mathrm{d}\sigma}{\mathrm{d}E_{\gamma}'} \,\mathrm{d}E_{\gamma}' \,\mathrm{d}n_{\gamma}' \tag{20}$$

working in Thomson limit, th edifferential cross section is,

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E'_{\gamma}} = \sigma_t(E'_{ph} - E'_{\gamma}) \implies \frac{\mathrm{d}E'_{\gamma}}{\mathrm{d}t'} = c\sigma_t U'_{ph}$$
 (21)

where U'_{ph} is the photon energy density(in ERS).

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}E'_{\gamma}}{\mathrm{d}t} \tag{22}$$

11. Positrons

Positrons (e^+) are the antimatter counterparts of electrons (e^-) . They are a component of cosmic rays, but their measured flux is significantly lower than that of protons (p) and the combined electron/positron flux $(e^- + e^+)$ (Slide 2, 3). The key diagnostic tool for understanding their origin is the **positron fraction**:

Positron Fraction =
$$\frac{\Phi_{e^+}}{\Phi_{e^+} + \Phi_{e^-}}$$

12. The Standard Model: Secondary Production

Unlike primary cosmic rays (like protons or electrons) accelerated in sources, positrons are believed to be **secondary particles**. They are produced by the interaction of primary cosmic rays with the interstellar medium (ISM).

12.1 Hadronic Interaction Chain

The production mechanism is a multi-step decay process initiated by high-energy proton-proton collisions (Slide 4,

1. **Pion Production:** A high-energy proton (from cosmic rays) collides with a proton in the ISM (interstellar gas).

$$p + p \rightarrow \pi^{\pm} + X$$
 (where π^0 also produced)

2. **Pion Decay:** The charged pions (π^+ and π^-) decay into muons (μ^+ and μ^-).

$$\pi^+ \to \mu^+ + \nu_{\mu}$$

$$\pi^- \to \mu^- + \bar{\nu}_{\mu}$$

3. **Muon Decay:** The muons then decay, producing positrons and electrons.

$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_{\mu}$$

 $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

12.2 Predicted Positron Fraction

This secondary production model can be calculated (Slide 10). Because the initial protons have a falling energy spectrum, the resulting secondary positrons also have a falling spectrum. This model predicts that the positron fraction should **decrease** with increasing energy (Slide 11, 12 - black line).

13. The Positron Anomaly

The central puzzle in this field is the "positron anomaly," which is a major discrepancy between the theoretical prediction and experimental observation.

13.1 The PAMELA Discovery

PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) experiment published results showing that the positron fraction does not fall with energy. Instead, it **begins to rise** at energies above ~ 10 GeV (Slide 12). This was a significant anomaly.

13.2 Confirmation by AMS and Fermi

This anomalous rising fraction was not an error. It was subsequently confirmed with higher precision by two other major experiments (Slide 14):

- Fermi-LAT (Large Area Telescope): Confirmed the rise, even without a magnet, by cleverly using the Earth's magnetic field to separate e^+ and e^- (Slide 15).
- AMS-02 (Alpha Magnetic Spectrometer): Provided the most precise measurement to date, confirming the rise up to hundreds of GeV.

14. Interpretations and New Sources

The confirmed anomaly means there must be an **additional source** (or sources) of high-energy positrons that the secondary production model does not account for.

- **Astrophysical Sources:** The leading candidates are nearby **Pulsar Wind Nebulae (PWNs)** (Slide 17). These are rapidly rotating neutron stars (pulsars) that create a nebula of high-energy electron-positron pairs. These pairs can escape and propagate to Earth, adding to the positron flux.
- Exotic Sources: The anomaly also generated excitement for potential exotic sources, such as the annihilation or decay of **Dark Matter** particles, which could produce e^+e^- pairs.

The data from AMS-02 (shown in Slide 17) can be well-fitted by models that include both the standard secondary production (dashed line) and an additional component from pulsars (e.g., Monogem, Vela).

15. Gamma Ray

• Detection Methods

- Main Principle: Pair Production ($\gamma \rightarrow e^+ + e^-$)
- Space Telescopes (e.g., Fermi-LAT)
- * Orbit above atmosphere.
- * Use conversion foils to create e^+e^- pair.
- * Tracker reconstructs direction; Calorimeter measures energy.

- Ground Telescopes (e.g., LHAASO)

- * Detect "air showers" (particle cascades) in the atmosphere.
- * Sample particles that reach the ground.

Production Mechanisms

- Leptonic (from Electrons)
- * Bremsstrahlung: e^- "brakes" in a field, emits γ .
- * Inverse Compton: e^- "boosts" a low-energy photon to a γ .

- Hadronic (from Protons): The "smoking gun"

- * Proton-proton collision creates a **Neutral Pion** (π^0).
- * Pion instantly decays: $\pi^0 \to \gamma + \gamma$.

Key Discoveries

- The "Pion Bump":

- * Unique spectral signature of Hadronic (pion) decay.
- * Fermi-LAT saw this in Supernova Remnants (SNRs).
- * **Proof:** SNRs accelerate protons (cosmic rays).

- PeVatrons:

- * Discovered by **LHAASO** at PeV (quadrillion eV) energies.
- * These are the Galactic "factories" accelerating particles to the highest energies.

16. UHE Cosmic Ray

• UHECR Basics

- − Definition: Cosmic rays with energy above the "Knee" (> 1 PeV).
- Origin: Extragalactic.
- **Reason:** The Milky Way's magnetic field is too weak to contain them (based on Larmor Radius calculation).

• The Four Big Mysteries

- 1. Source: Unknown.
- 2. Direction: Mostly isotropic (uniform).
- * Pierre Auger Observatory found a "hotspot" (anisotropy), but no clear source.
- -3. Composition: Unknown (Protons? Iron?).
- * We measure it from air showers, which depends on interaction models.
- * "Muon Puzzle": Our models (e.g., QGSJET, SIBYLL) consistently predict fewer muons in the air shower than we actually observe. This implies our models or composition assumptions are wrong.

- 4. Energy Spectrum Features:

- * "Ankle": Point where the spectrum flattens, believed to be the transition from Galactic to Extragalactic cosmic rays.
- * GZK Cutoff: A sharp drop in particles observed above $\sim 10^{19.5}$ eV.

• The GZK Limit

- **Theory:** (Greisen-Zatsepin-Kuzmin) High-energy protons will interact with the Cosmic Microwave Background (CMB) photons $(p + \gamma_{CMB})$.
- Effect: This interaction causes the proton to lose energy, creating a "horizon." We can only see UHECR sources from relatively nearby (~ 100 Mpc).
- **The Catch:** This cutoff energy only works for protons. If UHECRs are heavy nuclei (like Iron), the cutoff energy is different.

Multi-Messenger Solution

- Cosmic Rays: Are charged, so they are bent by magnetic fields and don't point to their source.
- **Gamma Rays:** Are neutral, but they get absorbed by background light over long distances ($\gamma + \gamma \rightarrow e^+e^-$).
- **Neutrinos:** Are neutral and barely interact. They are the best tool to point directly back to the UHECR sources.

17. Acceleration

1. Fermi Acceleration (General Idea)

• After each encounter, particle gains energy:

$$E = \beta^k E_0, \quad N(>E) = N_0 P^k$$

• Eliminate *k*:

$$N(>E) \propto E^{\frac{\ln P}{\ln \beta}}, \quad \frac{dN}{dE} \propto E^{-1 + \frac{\ln P}{\ln \beta}}$$

• For first-order Fermi (shock acceleration):

$$\frac{dN}{dE} \propto E^{-2}$$

2. Shock Basics

- Upstream: (ρ_1, v_1, P_1) , Downstream: (ρ_2, v_2, P_2)
- Conservation:

$$\rho_1 v_1 = \rho_2 v_2, \quad \rho_1 v_1^2 = \rho_2 v_2^2 + P_2, \quad \frac{1}{2} \rho_1 v_1^3 = \frac{1}{2} \rho_2 v_2^3 + \frac{3}{2} P_2 v_2$$

• For strong shocks ($P_1 \simeq 0$):

$$\rho_2 = 4\rho_1, \quad v_1 = 4v_2$$

3. Particle Acceleration at Shocks

• Relative velocity between up/down stream:

$$V = \frac{3}{4}l$$

• Energy gain per crossing:

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{2}{3}V$$
, Round trip: $\left\langle \frac{\Delta E}{E} \right\rangle = \frac{4}{3}V$

- Energy gain factor: $\beta = 1 + \frac{4}{3}V$, Escape probability: P = 1 U
- \bullet For small U:

$$\frac{\ln P}{\ln \beta} \simeq -1 \Rightarrow \frac{dN}{dE} \propto E^{-2}$$

4. Observed Cosmic Ray Spectrum

- Intrinsic (source) index: $\gamma \approx 2.0 2.2$
- After propagation losses: $\gamma_{\rm obs} \approx 2.7 3.3$

5. Maximum Energy (Hillas Criterion)

- From Faraday's law: $\nabla imes \vec{\mathcal{E}} = -\partial_t \vec{B}$
- Dimensional estimate:

$$\mathcal{E} \sim BU, \quad E_{\text{max}} = ZeBUL$$

- Example: young SNR $B\sim 1\,\mu\text{G},\,U\sim 10^4\,\text{km/s},\,L\sim 1\,\text{pc}$ $\Rightarrow E_{\max}\sim 10^{16}\,\text{eV}$
- Hillas plot: $E_{\rm max} \approx ZBLU$ distinguishes feasible CR sources.

18. Neutrino

History & Discovery

- **Proposal (Pauli, 1930):** Solved the "missing energy" in beta decay ($n \rightarrow p^+ + e^-$). The electron's energy was a continuous spectrum, not a fixed value, implying a third, unseen particle (the neutrino) was present.
- **Discovery (Cowan & Reines, 1956):** Used a nuclear reactor (a powerful $\bar{\nu}_e$ source) to detect neutrinos via **Inverse Beta Decay** $(\bar{\nu}_e + p^+ \rightarrow n + e^+)$.

• Weak Interaction & Parity Violation

- Neutrinos only interact via the weak force.
- Wu Experiment (1956): Observed beta decay from aligned Cobalt-60.
- **Result:** Electrons were emitted asymmetrically (violating Parity/mirror symmetry).
- Conclusion: The weak force is "left-handed"—it only interacts with left-handed particles and right-handed anti-particles.

• The Solar Neutrino Problem

- Experiment (Homestake): Raymond Davis Jr. used 600 tons of cleaning fluid (C_2Cl_4) to count solar neutrinos ($\nu_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$).
- **Problem:** He only detected 1/3 of the neutrinos predicted by the Standard Solar Model.

• The Solution: Neutrino Mass

- **Neutrino Oscillation:** Discovered by Super-Kamiokande (1998) and confirmed by SNO (2001-02). Neutrinos change "flavor" as they travel (e.g., $v_e \rightarrow v_\mu$).

- **Implication:** This oscillation is only possible if neutrinos have **mass**.
- Significance: This is physics Beyond the Standard Model, which originally assumed neutrinos were massless.

19. GR& Cosmos

Principles & Observations

- Cosmological Principle: Universe is homogeneous and isotropic on large scales.
- Hubble's Law: Galaxies are moving away from us.

$$v = H_0 d$$

- **Redshift (z):** Caused by the expansion of space (stretching of light).

$$1 + z = \frac{\lambda_o}{\lambda_e} = \frac{1}{a(t)}$$

where a(t) is the scale factor (with a=1 today).

- CMB (Cosmic Microwave Background):

- * Discovered by Penzias & Wilson (1960).
- * Perfect blackbody spectrum with T=2.726 K.
- * Proves the early universe was hot and dense.

• Friedmann-Lemaître-Robertson-Walker (FLRW) Model

- **Einstein's Equation:** Connects spacetime geometry to energy/matter.

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

-FLRW Metric: The metric for a homogeneous, isotropic universe.

$$ds^{2} = -c^{2}dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega^{2} \right]$$

(Assuming flat, k = 0, for this course)

• Cosmic Dynamics (Friedmann Equations)

– 1. Friedmann Eq.: (Hubble parameter $H = \dot{a}/a$)

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2}$$

- 2. Conservation Eq.: (Fluid equation)

$$\dot{\rho} = -3H(\rho + P)$$

-3. Acceleration Eq.:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)$$

• Cosmic Inventory (Components of the Universe)

- Equation of State: $P = w\rho$
- Equation of State: $r = w\rho$ - Density Evolution: $\rho \propto a^{-3(1+w)}$
- * Matter (Dust): $w = 0 \implies \rho_m \propto a^{-3} \propto (1+z)^3$
- * Radiation: $w = 1/3 \implies \rho_r \propto a^{-4} \propto (1+z)^4$
- * Dark Energy (Λ): $w=-1 \implies \rho_{\Lambda} \propto a^0$ (constant)
- Critical Density: $\rho_{cr} = \frac{3H_0^2}{8\pi G}$. $\Omega_i = \rho_i/\rho_{cr}$.
 Full Friedmann Eq.:

$$H(z)^{2} = H_{0}^{2} \left[\Omega_{m} (1+z)^{3} + \Omega_{r} (1+z)^{4} + \Omega_{k} (1+z)^{2} + \Omega_{\Lambda} \right]$$

• Cosmological Probes

- Standard Candles (Type Ia Supernovae): Known luminosity (L). We measure flux (F) to find Luminosity Distance (d_L).

$$F = \frac{L}{4\pi d_L^2}$$
 where $d_L = (1+z) \int_0^z \frac{dz'}{H(z')}$

- **Key Discovery (1998):** Supernovae were dimmer (farther) than expected. This implies the expansion is **accelerating**.
- **Deceleration Parameter** (q_0): Found to be negative, proving acceleration.

$$q_0 = \frac{1}{2}\Omega_m + \Omega_r - \Omega_\Lambda \approx \frac{\Omega_m}{2} - \Omega_\Lambda < 0$$

– Hubble Tension: H_0 measured from the "local" universe (Supernovae) is ~ 73 . H_0 inferred from the "early" universe (CMB) is ~ 67 . This is a major unsolved problem.