0

Oct. 3/17

From previous problem:

 $X: (10)(3)\cos(30^{\circ}) = (10 + 24) \nu_2$

U2 = 0.742 m15

b) Pockage

(0 < t < st)

x: (10)(3) cos 30° - Fx Dt = (10)(0.742)

FxAt = 18.56 N.S

9: -(10)(3) sin30. + Fyst = 0

Fyst = 15 N.S

: Fat = -18.56 2 + 153 N.S

:. $F\Delta E = \sqrt{(18.56)^2 + (15)^2} = 23.9 \text{ N} \cdot \text{S}$

(only considering impulsive forces)

C)
$$\Delta T = \frac{1}{2}(10)(3^2) - \frac{1}{2}(10 + 24)(0.742^2) = 45 - 9.63$$

 $\Delta T = 45 - 9.63 = 98.6\%$

 $\Delta T = \frac{45-9.63}{7.} = \frac{48.6\%}{45}$

13.12 Impact

Impact (collision between two bodies) is an event, that usually occurs in a very brief interval of time.

Impuisive Force

deformation (elastic, plastic)

Energy (mechanical) converted to Sound, heat

Central impact: the mass center of both body are on the line of impact; 2) the initial velocities of the bodies are along the line of impact.

Oblique Impact: 1) the mass center of both bodies are on the line of impact (LOI); 2) the initial velocities of the impacting bodies are not along the LOI.

Eccentric Impact: the mass center of one or both bodies does not lie on the LOI.

$$M_A V_A + M_B V_B = M_A V_A' + M_B V_B'$$

Conservation of energy

Oct.4/17

Example:

DYWAKICS

- 1° Find the velocity of each block ofter conision.
- 2° Find the distance between the blocks when they stop sliding.

Solution 1° UA = 2 ; UB = 0

After the coursion, Da', DB' (=>)

- The conservation of linear momentum $M_{A}V_{A} + M_{B}V_{B} = M_{A}V_{A}' + M_{B}V_{B}'$ $(3)(2) + (2)(0) = 3V_{A}' + 2V_{B}' \quad (1)$
- Using the relation $\begin{pmatrix}
 e = -\frac{V_A' V_B'}{V_A V_B} = \frac{V_{B'} V_{A'}}{V_A V_B}$

$$l = -\left(\frac{V_{R'} - V_{B'}}{2 - \varnothing}\right) \tag{2}$$

=> Up' = 0.400 mis => Up' = 2.40 mis

Solution 2° Position 1: UB; = 2.40 m/s

B | WB = MB9 | Position 2: UB2 = 0

Anne 2 pumps 72 58

$$T_1 + U_{1+2} = T_2$$

$$\frac{1}{2} p_1^2 U_{8}^2 + (-\mu_{K} p_8^2 g_8 d_8) = 0$$

$$\frac{1}{2} \mu_{K} g$$

$$dA = \frac{V_{A}^{12}}{2\mu_{K}g} = \frac{0.400^{2}}{2\times0.3\times9.81} = 0.0872$$

$$d = d_{B} - d_{A} = 0.8786 - 0.0872 = 0.051 \text{ m}$$

Find the max. compression imparted to the spring.

Solution: 1° Free Falling | We = 516

 $0 + 5 \times 6 = \frac{1}{2} \left(\frac{5}{32.2} \right) \left(\frac{U_{B_1}}{2} \right)^2 + 0$ (mg h)

UB. = 17.94 FH/S

$$\frac{5}{32.2}$$
 (17.94) + \emptyset = $\frac{5}{32.2}$ 0_{8} + $\frac{10}{32.2}$ 0_{p}

$$C = \emptyset.6 = -\left(\frac{v_{8'} - v_{p'}}{17.94 - \emptyset}\right) \quad \therefore \quad v_{8'} = -1.196$$

3° Plate + Spr:ng

Oct. 5/17

KSo = Mg =) So = Mg/H =
$$\frac{10}{30}$$
 = 0.3333 FI
T₁ + V₁ = T₂ + V₂
 $\frac{1}{2}(\frac{10}{32.2})(9.568)^2$ + $(-10)(0.3533)$ + $\frac{1}{2}(30)(0.3333)^2$ = ···
··· 0 + $(-10)(0.3833 + 5)$ + $\frac{1}{2}(30)(0.3833 + 5)^2$
⇒ 5 = 0.9740 FF
the max compression = 0.3333 + 0.9740 = 1.31 FF

A (LOI)

Example:

Find the velocity of each ball after impact-

Solution:

 $\triangle ABC : 5:n\theta = \frac{BC}{AB} = \frac{2}{2.37} = 0.57.552$

$$C = \emptyset.7 = -\left(\frac{Vai - Vbi}{Van - Von}\right) = -\left(\frac{Vai - Vbi}{VoCos\theta - \emptyset}\right)$$

 $M_{A}V_{AA} + M_{B}V_{BA} = M_{A}V_{A'A} + M_{B}V_{B'A}$ $M_{A}V_{A}cos\theta + \emptyset = M_{B}V_{A'A} + M_{B}V_{B'A}$ $V_{0} Cos\theta = V_{A'A} + V_{B'A}$ $=> \int V_{A'A} = 0.08048 V_{0}$ $=> U_{B'A} = 0.45605 V_{0}$

O. 84333 V.

0. 08048 V.

- Up = 10 m/s m = 0.5 kg e = 0.5
- 1) The velocity at which it Strikes the Wall at B
- 2) The velocity at which it rebounds from the wall.
- 3) The distance 5 From the wall to Where it strikes the ground at C.

Solution: 1) Horizontal

$$V_{Ax} = V_{A}Cos30^{\circ} = 10 cos30^{\circ} = 8.88 mis$$
 $S = V_{Axt}$
 $t = S = 3 = 0.3484 s$

1.602 MIS

⊙ → 8.6 mis

$$M_{B}(8.66) + 0 = M_{B}(-)_{Bx} + (0.0)$$

$$C = 0.5 = -\left(\frac{-v_{sx'} - v_{\omega'}}{v_{ex} - v_{\omega}}\right)$$
$$= v_{ex}'$$

CAN'T USE

$$3)$$
 $5 = 3.96 m$