Versuchsbericht P428 Rastertunnelmikroskopie

Gabriel Remiszewski und Christian Fischer ${\rm durchgef\"{u}hrt~am~15/16.11.2023}$

Inhaltsverzeichnis

3	Fazit	4
2	Bedienung des Rastertunnelmikroskops	2
1	Einleitung	1

1. Einleitung

2. Bedienung des Rastertunnelmikroskops

Tabelle 1: gemessene Energie und Höhe der charakteristischen Linien verschieder Metalle

Metall	Energie E/keV	Höhe in Detektionen
	6,4(7)	10700(600)
D-7	6,8(8)	4300(300)
FeZn	8,7(9)	1430(80)
	9,7(9)	200(300)
	3,5(6)	223(9)
	8,2(8)	72(17)
Ag1	9,2(9)	33(7)
	22,2(17)	240(14)
	24,9(19)	26(3)
	8,5(8)	248(14)
	10,0(9)	1170(90)
Au	12(1)	640(40)
	13,7(12)	53(7)
	8,2(8)	7900(400)
Cu		` ′
	9,0(9)	1080(80)
	3,8(6)	351(13)
т.	8,3(8)	206(19)
In	9,1(9)	43(14)
	24,1(19)	99(7)
	27(3)	11,8(17)
_	6,4(7)	13 600(1200)
Fe	6,8(8)	5200(600)
	9,9(9)	370(170)
Mo	17,7(14)	1050(60)
	19,8(16)	149(9)
	6,5(7)	310(30)
Ni	7,5(8)	6500(600)
	7,9(8)	4720(160)
	8,2(8)	320(30)
	9,2(9)	134(16)
Pb	11(1)	1210(80)
	12,9(11)	700(30)
	15,1(13)	$57(5)^{'}$
	4,0(6)	640(30)
a	8,3(8)	160(30)
Sn	9,0(9)	29(8)
	25,1(19)	58(4)
Titan	4,9(7)	8400(1200)
	5,7(7)	50(10)
	7,6(8)	112(15)
W	8,6(9)	1570(70)
**	9,9(9)	1600(500)
	12(1)	101(7)
	8,8(9)	7200(500)
Zn	9,7(9)	990(90)
	$\frac{9,7(9)}{12(1)}$	56(11)
7		
Zr	16,0(13)	1690(70)
	17,9(14)	230(30)

Tabelle 2: Energien der charakteristischen Linien von Unbekannt1

Energie E/keV	Höhe in Detektionen
5,5(7)	2800(400)
6,5(7)	8000(1000)
6,7(8)	3800(300)

Tabelle 3: Energien der charakteristischen Linien von Unbekannt2

Energie E/keV	Höhe in Detektionen
8,1(8)	4320(140)
8,7(9)	3530(80)

Tabelle 4: Energien der charakteristischen Linien von Unbekannt3

Energie E/keV	Höhe in Detektionen
8,1(8)	4500(400)
8,7(9)	2700(300)

Tabelle 5: Energien der charakteristischen Linien von Unbekannt4

Energie E/keV	Höhe in Detektionen
5,7(7)	520(80)
5,2(7)	200(70)
7,0(8)	6100(1300)
7,7(8)	2000(1200)

3. Fazit