

Nome: Pei Ping Kao - 47515________ Data: 8 de maio de 2019

1. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 2 e 3), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre $20^{\circ}C$ e $26^{\circ}C$. Determine a incerteza no cálculo de R com 95.45% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp}) / (I_a + I_{resol} + I_{calib} + I_{temp}), \text{ sendo:}$$

N	1	2	3	4	5	6	7	8
$V_a(V)$	8.05	8.1	11.32	9.16	10.88	8.34	11.31	9.93
$I_a (mA)$	79.545	80.24	112.659	91.112	109.125	82.762	113.891	98.725

Tabela 1: Medições simultâneas de voltagem e corrente

Faixa	Precisão		
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$		
1000V	$\pm (1.0\% + 5D)$		

Tabela 2: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza
20mA	$\pm (0.8\% + 3D)$
200mA	$\pm (1.2\% + 4D)$
20A	$\pm (2.0\% + 5D)$

Tabela 3: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.