|     | Spatial Domain <sup>†</sup> |                   | Frequency Domain <sup>†</sup> |
|-----|-----------------------------|-------------------|-------------------------------|
| 1)  | f(x, y) real                | $\Leftrightarrow$ | $F^*(u,v) = F(-u,-v)$         |
| 2)  | f(x, y) imaginary           | $\Leftrightarrow$ | $F^*(-u, -v) = -F(u, v)$      |
| 3)  | f(x, y) real                | $\Leftrightarrow$ | R(u, v) even; $I(u, v)$ odd   |
| 4)  | f(x, y) imaginary           | $\Leftrightarrow$ | R(u, v) odd; $I(u, v)$ even   |
| 5)  | f(-x, -y) real              | $\Leftrightarrow$ | $F^*(u,v)$ complex            |
| 6)  | f(-x, -y) complex           | $\Leftrightarrow$ | F(-u, -v) complex             |
| 7)  | $f^*(x, y)$ complex         | $\Leftrightarrow$ | $F^*(-u-v)$ complex           |
| 8)  | f(x, y) real and even       | $\Leftrightarrow$ | F(u, v) real and even         |
| 9)  | f(x, y) real and odd        | $\Leftrightarrow$ | F(u, v) imaginary and odd     |
| 10) | f(x, y) imaginary and even  | $\Leftrightarrow$ | F(u, v) imaginary and even    |
| 11) | f(x, y) imaginary and odd   | $\Leftrightarrow$ | F(u, v) real and odd          |
| 12) | f(x, y) complex and even    | $\Leftrightarrow$ | F(u, v) complex and even      |
| 13) | f(x, y) complex and odd     | $\Leftrightarrow$ | F(u, v) complex and odd       |

<sup>13)</sup> f(x, y) complex and odd  $\Leftrightarrow F(u, v)$  complex and odd

Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range [0, M-1], and y, and v in the range [0, M-1]. To say that a complex function is even means that its real and imaginary parts are even, and similarly for an odd complex function.

**TABLE 4.1** Some symmetry properties of the 2-D DFT and its inverse. R(u, v) and I(u, v) are the real and imaginary parts of F(u, v), respectively. The term *complex* indicates that a function has nonzero real and imaginary parts.

Figura 5: Propiedades de simetría de la DFT 2D

| Name                                                                                          | Expression(s)                                                                                     |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1) Discrete Fourier transform (DFT) of $f(x, y)$                                              | $F(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi(ux/M + vy/N)}$                     |
| <ol> <li>Inverse discrete         Fourier transform         (IDFT) of F(u, v)     </li> </ol> | $f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$           |
| 3) Polar representation                                                                       | $F(u,v) =  F(u,v) e^{j\phi(u,v)}$                                                                 |
| 4) Spectrum                                                                                   | $ F(u, v)  = [R^{2}(u, v) + I^{2}(u, v)]^{1/2}$<br>R = Real(F); I = Imag(F)                       |
| 5) Phase angle                                                                                | $\phi(u, v) = \tan^{-1} \left[ \frac{I(u, v)}{R(u, v)} \right]$                                   |
| 6) Power spectrum                                                                             | $P(u,v) =  F(u,v) ^2$                                                                             |
| 7) Average value                                                                              | $\overline{f}(x,y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) = \frac{1}{MN} F(0,0)$ |

TABLE 4.2 Summary of

Summary of DFT definitions and corresponding expressions.

(Continued)

Figura 7: Resumen: definiciones de la DFT 2D

| Name                                                                                      | Expression(s)                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8) Periodicity (k <sub>1</sub> and k <sub>2</sub> are integers)                           | $F(u, v) = F(u + k_1 M, v) = F(u, v + k_2 N)$<br>= $F(u + k_1 M, v + k_2 N)$                                                                                                                                                                                                                                                                         |
| 9) Convolution                                                                            | $f(x, y) = f(x + k_1 M, y) = f(x, y + k_2 N)$ $= f(x + k_1 M, y + k_2 N)$ $f(x, y) \star h(x, y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n)h(x - m, y - n)$ $= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n)h(x - m, y - n)$                                                                                                                            |
| 10) Correlation                                                                           | $f(x, y) \approx h(x, y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f^{*}(m, n) h(x + m, y + n)$                                                                                                                                                                                                                                                      |
| 11) Separability                                                                          | The 2-D DFT can be computed by computing 1-D DFT transforms along the rows (columns) of the image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.1.                                                                                                                                                            |
| 12) Obtaining the inverse<br>Fourier transform<br>using a forward<br>transform algorithm. | $MNf^*(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u, v) e^{-j2\pi(ux/M+vy/N)}$<br>This equation indicates that inputting $F^*(u, v)$ into an algorithm that computes the forward transform (right side of above equation) yields $MNf^*(x, y)$ . Taking the complex conjugate and dividing by $MN$ gives the desired inverse. See Section 4.11.2. |

TABLE 4.2 (Continued)

Figura 8: Resumen: definiciones de la DFT 2D

| Name                                                            | DFT Pairs                                                                                                                                                           |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symmetry properties                                             | See Table 4.1                                                                                                                                                       |
| 2) Linearity                                                    | $af_1(x, y) + bf_2(x, y) \Leftrightarrow aF_1(u, v) + bF_2(u, v)$                                                                                                   |
| 3) Translation<br>(general)                                     | $f(x, y) e^{j2\pi(u_0x/M + v_0y/N)} \Leftrightarrow F(u - u_0, v - v_0)$<br>$f(x - x_0, y - y_0) \Leftrightarrow F(u, v) e^{-j2\pi(ux_0/M + vy_0/N)}$               |
| 4) Translation to center of the frequency rectangle, (M/2, N/2) | $f(x, y)(-1)^{x+y} \Leftrightarrow F(u - M/2, v - N/2)$<br>$f(x - M/2, y - N/2) \Leftrightarrow F(u, v)(-1)^{u+v}$                                                  |
| 5) Rotation                                                     | $f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$<br>$x = r \cos \theta  y = r \sin \theta  u = \omega \cos \varphi  v = \omega \sin \varphi$ |
| 6) Convolution<br>theorem <sup>†</sup>                          | $\begin{split} f(x,y) \bigstar h(x,y) &\Leftrightarrow F(u,v) H(u,v) \\ f(x,y) h(x,y) &\Leftrightarrow F(u,v) \bigstar H(u,v) \end{split}$                          |
|                                                                 | (Continued)                                                                                                                                                         |

TABLE 4.3

Summary of DFT pairs. The closed-form expressions in 12 and 13 are valid only for continuous variables. They can be used with discrete variables by sampling the closed-form, continuous expressions.

Figura 9: Pares conocidos de la DFT 2D

|                                                                                                                                       | Name                                                                                                                                                                                                                                                               | DFT Pairs                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 7)                                                                                                                                    | Correlation<br>theorem <sup>†</sup>                                                                                                                                                                                                                                | $f(x, y) \stackrel{.}{\Rightarrow} h(x, y) \Leftrightarrow F^{*}(u, v) H(u, v)$<br>$f^{*}(x, y)h(x, y) \Leftrightarrow F(u, v) \stackrel{.}{\Rightarrow} H(u, v)$                                                                                                                                                                  |  |  |  |  |
| 8)                                                                                                                                    | Discrete unit<br>impulse                                                                                                                                                                                                                                           | $\delta(x, y) \Leftrightarrow 1$                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 9)                                                                                                                                    | Rectangle                                                                                                                                                                                                                                                          | $\operatorname{rect}[a,b] \Leftrightarrow ab \frac{\sin(\pi ua)}{(\pi ua)} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+vb)}$                                                                                                                                                                                                         |  |  |  |  |
| 10)                                                                                                                                   | Sine                                                                                                                                                                                                                                                               | $\sin(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                       |                                                                                                                                                                                                                                                                    | $j\frac{1}{2}\Big[\delta(u+Mu_0,v+Nv_0)-\delta(u-Mu_0,v-Nv_0)\Big]$                                                                                                                                                                                                                                                                |  |  |  |  |
| 11)                                                                                                                                   | Cosine                                                                                                                                                                                                                                                             | $\cos(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                       |                                                                                                                                                                                                                                                                    | $\frac{1}{2} \left[ \delta(u + Mu_0, v + Nv_0) + \delta(u - Mu_0, v - Nv_0) \right]$                                                                                                                                                                                                                                               |  |  |  |  |
| denc                                                                                                                                  | The following Fourier transform pairs are derivable only for continuous variables, denoted as before by $t$ and $z$ for spatial variables and by $\mu$ and $\nu$ for frequency variables. These results can be used for DFT work by sampling the continuous forms. |                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 12) Differentiation<br>(The expressions<br>on the right                                                                               |                                                                                                                                                                                                                                                                    | $ \left( \frac{\partial}{\partial t} \right)^m \left( \frac{\partial}{\partial z} \right)^n f(t, z) \Leftrightarrow (j2\pi\mu)^m (j2\pi\nu)^n F(\mu, \nu) $ $ \frac{\partial^m f(t, z)}{\partial r^m} \Leftrightarrow (j2\pi\mu)^m F(\mu, \nu); \frac{\partial^n f(t, z)}{\partial r^n} \Leftrightarrow (j2\pi\nu)^n F(\mu, \nu) $ |  |  |  |  |
| assume that $\frac{\partial t^m}{\partial t^m} = (f2\pi\mu) P(\mu, \nu),  \frac{\partial z^n}{\partial z^n} = (f2\pi\nu) P(\mu, \nu)$ |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 13) (                                                                                                                                 | Gaussian                                                                                                                                                                                                                                                           | $A2\pi\sigma^2 e^{-2\pi^2\sigma^2(t^2+z^2)} \Leftrightarrow Ae^{-(\mu^2+\nu^2)/2\sigma^2}$ (A is a constant)                                                                                                                                                                                                                       |  |  |  |  |

<sup>&</sup>lt;sup>†</sup>Assumes that the functions have been extended by zero padding. Convolution and correlation are associative, commutative, and distributive,

TABLE 4.3 (Continued)

