Time Series Analysis - Gas

Muthu Pandian G January 28, 2020

Time Series Analysis

Project Objective:

This project is to analyze Australian Monthly Gas production dataset "Gas" in package "Forecast". Monthly gas production of Australia between year 1956-1995 is released by Australian Bureau of Statistics which is in time series format. This dataset is available by default in Forecast package in R.

The package contains methods and tools for displaying and analyzing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling.

- 1. Explore the gas (Australian monthly gas production) dataset in Forecast package to do the following: Read the data as a time series object in R.
- 2. Plot the data What do you observe? Which components of the time series are present in this dataset?
- 3. What is the periodicity of dataset? HINT: Please use the dataset from January 1970 for your analysis. Please partition your dataset in such a way that you have the data for only 1994 in the test data.
- 4. Is the time series Stationary? Inspect visually as well as conduct an ADF test? Write down the null and alternate hypothesis for the stationarity test? Deseasonalise the series if seasonality is present?
- 5. Develop an initial forecast for next 20 periods. Check the same using the various metrics, after finalising the model, develop a final forecast for the 12 time periods. Use both manual and auto.arima (Show & explain all the steps) HINT: You can apply auto.arima(Train_data (refers to the train data set), seasonal=TRUE if seasonality is present in the data, FALSE is seasonality is not present.)
- 6. Report the accuracy of the model

Set the Working Directory

Reading Data into R

```
library(forecast)
## Warning: package 'forecast' was built under R version 3.6.2
                               S3
                                                                                           'xts':
##
           Registered
                                           method
                                                           overwritten
                                                                               by
##
                                method
                                                                                           from
## as.zoo.xts zoo
##
          Registered
                             S3
                                       method
                                                      overwritten
                                                                                    'quantmod':
                                                                         by
##
                  method
                                                                                          from
##
    as.zoo.data.frame zoo
##
          Registered
                             S3
                                       methods
                                                        overwritten
                                                                           by
                                                                                      'forecast':
##
                 method
                                                                                          from
                                  fitted.fracdiff
                                                                                        fracdiff
##
## residuals.fracdiff fracdiff
gas <- window(gas)
```

Let's check the class, start of the series, end of the series, Frequency of the dataset to be sure that it is a time series data set.

About the Dataset

- 1. Given timeseries is univariate, has only one variable and 476 observations
- 2. This series starts from 1956 January and ends in 1995 August.
- 3. This series is a Monthly series, as the frequency of this dataset is 12.
- 4. Monthly periodicity from Jan 1956 to Aug 1995

Exploratory Data Analysis (EDA)

Summary

```
summary(gas)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1646 2675 16788 21415 38629 66600
```

Inference

• On an average, 30,394 units of gas is produced during 1956 (Jan) - 1995 (Aug)

Plotting the Time Series

plot(gas,main = "Australian Monthly Gas Production",xlab= "Years", ylab = "Gas Production")

Australian Monthly Gas Production

We can see from the above time plot, that before 1970 there isn't much gas production. This may be due to change in some market conditions, change in company's strategy or due to some other factor.

Hence, it's clear that the data before 1970 won't have much of an impact in forecasting the future. So, we can eliminate the data (1955-1969(December))

```
gas1 <- window(gas,start = c(1970,1), end = c(1994,12), frequency = 12) plot(gas1,main = "Australian Monthly Gas Production",xlab= "Years", ylab = "Gas Production")
```

Australian Monthly Gas Production

From the above time series plot, it's evident that there is a increasing linear trend in the series that starts from 1970 - 1994 and this time series could probably be described using an additive model, since the random fluctuations in the data are roughly constant in size over time.

Let's confirm it with the help of seasonal plots

Seasonal Plots

ggseasonplot(gas1,main = "Australian Monthly Gas Production",xlab= "Seasons", ylab = "Gas
Production")

We can see from this time series that there seems to be seasonal variation in the Gas production per month, there is a peak every winter (June - August), and a drop very Summer.

Again, it seems that this time series could probably be described using an additive model, as the seasonal fluctuations are roughly constant in size over time and do not seem to depend on the level of the time series

Split data into train and test sets

gas1.train
$$\leftarrow$$
 window(gas1,start = $c(1970,1)$,end = $c(1993,12)$,frequency = 12) gas1.test \leftarrow window(gas1,start = $c(1994,1)$,frequency = 12)

Decomposing Time Series

Decomposing Seasonal Data

Decomposition of additive time series

anc	۸ dditi،	/ocomponento	*cooconal				
yas	_Additiv	vecomponents	5 ⊅ S€aS∪⊓ai				
##		Jan	Feb	Mar	Apr	May	Jun
##	1970	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1971	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1972	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1973	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1974	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1975	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1976	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1977	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1978	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1979	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1980	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1981	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1982	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1983	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1984	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1985	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1986	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1987	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1988	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1989	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1990	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1991	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1992	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766
##	1993	-5749.8068	-5132.1419	-3068.5477	-2602.7560	2485.6715	5272.2766

##		Jul	Aug	Sep	Oct	Nov	Dec
##	1970	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1971	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1972	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1973	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1974	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1975	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1976	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1977	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1978	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1979	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1980	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1981	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1982	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1983	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1984	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1985	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1986	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1987	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1988	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1989	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1990	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1991	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1992	7284.8889	5919.4233	2010.1045	233.8273	-2141.1999	-4511.7397
##	1993 7	284.8889 5919.	.4233 2010.10	045 233.8273	-2141.1999 -4	511.7397	

gas_Additivecomponents\$trend

##		Jan	Feb	Mar	Apr	May	Jun	Jul
##	1970	NA	NA	NA	ŇA	NĂ	NA	6177.417
##	1971	7201.042	7365.625	7506.875	7596.000	7689.583	7820.000	7975.208
##	1972	9315.042	9646.458	9962.250	10307.458	10646.167	10902.958	11172.375
##	1973	12592.583	12841.250	13044.667	13196.375	13339.292	13472.583	13537.542
##	1974	14431.583	14513.958	14637.875	14769.042	14867.833	14953.458	15016.500
##	1975	15292.833	15398.042	15483.875	15595.250	15718.917	15819.167	15906.750
##	1976	17087.167	17355.667	17657.375	17928.875	18126.792	18296.000	18464.458
##	1977	19491.250	19789.833	20006.333	20077.333	20160.000	20340.167	20511.667
##	1978	21649.625	21787.542	21845.000	21981.500	22230.292	22400.458	22521.417
##	1979	23060.375	23311.417	23616.750	23906.250	24072.750	24200.208	24397.250
##	1980	26813.958	27260.750	27648.458	27999.333	28347.958	28693.583	29094.208
##	1981	32262.917	32862.667	33276.417	33598.125	34050.708	34566.208	34990.458
##	1982	35931.792	36046.000	36170.917	36315.875	36337.542	36229.667	35884.125
##	1983	36118.125	35981.125	35953.792	36142.125	36348.542	36440.458	36614.125
##	1984	36811.583	36941.542	37179.625	37362.708	37477.000	37739.500	38071.708
##	1985	38648.958	38735.625	38781.333	38740.917	38678.875	38520.583	38369.458
##	1986	38819.625	39000.750	39076.333	39196.083	39286.875	39407.875	39586.583
##	1987	40715.708	41301.542	41906.167	42398.292	42731.958	43018.125	43262.083
##	1988	44416.000	44410.875	44462.875	44331.375	44332.333	44512.958	44680.083
##	1989	46013.958	46655.292	47083.167	47507.958	47985.750	48240.292	48467.417
##	1990	49058.083	48680.458	48295.875	47850.583	47437.208	46981.417	46507.292
##	1991	44608.083	44421.250	44452.042	44548.375	44536.792	44683.583	44935.792

##	1992	46285	.375	46606.458	3 47050	.917	47457.08	3 475	79.667	47622.667	47581.167
##	1993	46469.	417	46177.667	45786.2	208 4	15625.000	45822	2.250 4	16160.250	NA
##				Aug	,	Sep		Oct		Nov	Dec
##	197	0	636	66.458	6519.9	917	6650	.958	67	797.375	7006.958
##	197	1	810	03.458	8250.4	158	8482	.208	87	756.583	9021.500
##	19	972	11	455.125	11729	.500	1197	1.583	12	172.500	12372.750
##	19	973	13	621.417	13749	.750	1388	8.167	14	084.042	14291.333
##	19	974	15	060.542	15096	.083	1515	2.458	15	173.750	15196.292
##	19	975	16	040.667	16213	.250	1636	3.875	16	590.583	16855.875
##	19	976	18	586.333	18720	.917	1888	1.875	19	018.542	19203.958
##	19	977	20	693.000	20872	.792	2106	1.167	21:	261.250	21462.875
##	19	978	22	613.250	22663	.458	2274	2.875	22	851.917	22929.792
##	19	979	24	650.208	24948	.417	2525	5.625	25	639.875	26207.750
##	19	980	29	567.208	30118	.708	3068	7.125	31:	200.250	31739.000
##	19	981	35	238.833	35311	.458	3525	7.583	35	385.625	35644.208
##	19	982	35	707.792	35870	.792	3615	4.542	36	305.833	36269.333
##	19	983	36	820.458	36927	.333	3688	1.833	36	817.208	36788.167
##	19	984	38	237.000	38311	.375	3841	7.667	38	470.292	38562.708
##	19	985	38	273.542	38152	.667	3823	7.417	38	488.917	38628.292
##	19	986	39	732.292	39987	.375	4025	0.583	40	354.375	40393.583
##	19	987	43	523.167	43801	.542	4388	8.167	43	989.458	44323.458
##	19	988	44	744.875	44704	.875	4478	7.708	44	999.500	45405.208
##	19	989	48	714.750	48939	.208	4908	0.875	49	246.542	49318.375
##	19	990	46	112.083	45741	.208	4552	3.750	45	393.875	44992.875
##	19	991	45	201.792	45324	.333	4535	4.000	45	376.875	45743.542
##	19	992	47	471.542	47076	.708	4667	7.458	46	651.958	46611.708
##	1993	NA	1	NA NA	NA	N	Α				

gas_Additivecomponents\$random

##		Jan	Feb	Mar	Apr	May
##	1970	NA	NA	NA	NA	NA
##	1971	4467.765097	3949.516908	2155.672705	1495.756039	-2135.254831
##	1972	4212.765097	2887.683575	2009.297705	2037.297705	-1759.838164
##	1973	4726.223430	2687.891908	2516.881039	1368.381039	-1850.963164
##	1974	3022.223430	2893.183575	2125.672705	1915.714372	-798.504831
##	1975	2810.973430	2416.100242	1725.672705	1996.506039	-2045.588164
##	1976	1922.640097	2766.475242	1386.172705	1443.881039	-793.463164
##	1977	1375.556763	1400.308575	1199.214372	996.422705	-1247.671498
##	1978	1343.181763	1628.600242	1449.547705	1524.256039	-947.963164
##	1979	1528.431763	712.725242	274.797705	908.506039	-1482.421498
##	1980	368.848430	240.391908	-76.910628	508.422705	-228.629831
##	1981	1216.890097	-306.524758	2476.131039	370.631039	922.620169
##	1982	533.015097	-513.858092	-1651.368961	-2407.118961	1768.786836
##	1983	-4230.318237	-103.983092	2132.756039	1009.631039	2145.786836
##	1984	-2260.776570	1224.600242	1182.922705	-1578.952295	834.328502
##	1985	-405.151570	-295.483092	1092.214372	-1917.160628	-144.546498
##	1986	-1830.818237	-1607.608092	-1056.785628	1515.672705	1395.453502
##	1987	-2174.901570	-1963.399758	290.381039	453.464372	-1698.629831
##	1988	-3099.193237	-1582.733092	924.672705	-2591.618961	243.995169
##	1989	-2723.151570	-4246.149758	-2236.618961	-3239.202295	-855.421498

##	1990	-2849.276570	-3253.316425	-1080.327295	-2550.827295	2638.120169
##	1991	-3266.276570	-3612.108092	-1519.493961	-184.618961	3357.536836
##	1992	-1572.568237	-2784.316425	-4190.368961	-2309.327295	79.661836
##	1993	-3660.609903		-11674.660628	-1310.243961	2058.078502
##	4070	Jun	Jul	Aug	Sep	Oct
##	1970	N/			-1092.021135	-5.785628
##	1971	-3377.276570	-5546.097222	-4266.881643	-1665.562802	-855.035628
##	1972	-3434.234903	-4724.263889	-3683.548309	-1500.604469	296.589372
##	1973	-3799.859903	-4017.430556	-2953.839976	-1534.854469	35.006039
##	1974	-2886.734903	-4524.388889	-3387.964976	-912.187802	-50.285628
##	1975	-2815.443237	-4034.638889	-3223.089976	-1114.354469	496.297705
##	1976	-2585.276570	-3748.347222	-2168.756643	18.978865	853.297705
##	1977	-1758.443237	-1771.555556	-1133.423309	-78.896135	-1675.993961
##	1978	-1349.734903	-1768.305556	-1756.673309	-1787.562802	-163.702295
##	1979	-2588.484903	-1071.138889	-341.631643	-196.521135	395.547705
##	1980	1018.140097	680.902778	-984.631643	-335.812802	-1645.952295
##	1981	1221.515097	1282.652778	1239.743357	-3494.562802	-529.410628
##	1982	2631.056763	4217.986111	-317.214976	32.103865	-2033.368961
##	1983	1156.265097	1122.986111	-2352.881643	-757.437802	1492.339372
##	1984	-656.776570	741.402778	-1726.423309	1529.520531	679.506039
##	1985	557.140097	518.652778	242.035024	780.228865	797.756039
##	1986	866.848430	2696.527778	-264.714976	-192.479469	796.589372
##	1987	-2153.401570	6162.027778	2863.410024	3585.353865	1378.006039
##	1988	824.765097	2492.027778	3770.701691	1801.020531	-1796.535628
##	1989	4280.431763	6131.694444	7765.826691	-129.312802	1801.297705
##	1990	4318.306763	3065.819444	6331.493357	-2124.312802	-135.577295
##	1991	-826.859903	2845.319444	4549.785024	1723.562198	-1084.827295
##	1992	5269.056763	4168.944444	6017.035024	6901.187198	409.714372
##	1993	5544.473430	NA	NA	NA	NA
## ##		1970	4.0	Nov 32.824879		Dec 3792.781401
##		1970		37.616546		3644.239734
##		1971		209.699879		2967.989734
##		1972		109.099679 173.158213		2473.406401
## ##		1974 1975	11	75.449879 968.616546		2431.448068 1967.864734
##		1976		415.658213		1805.781401
##		1977		506.949879		1536.864734
##		1978	16	500.949679 593.283213		1376.948068
##		1979		675121		233.989734
##		1980	-170.0	-754.050121		-1979.260266
##		1981		235.574879		1312.531401
##		1982		442.36654	6	-3028.593599
##		1983		631.99154		-2042.426932
##		1984	00	98.908213	.0	463.031401
##		1985	98	-446.716787		-1974.551932
##		1986		2145.175121		-1002.843599
##		1987		1991.258454		-1853.718599
##		1988		703.300121		-898.468599
##		1989		1374.341787		-2278.635266
##		1990		1948.675121		-4465.135266
πĦ		1990	-	1070.010141		7700.100200

##	1991		-1090.675121	-2533.801932
##	1992		-2241.758454	-2493.968599
## 1993	NΔ	NΔ		

The plot above shows the original time series (top), the estimated trend component (second from top), the estimated seasonal component (third from top), and the estimated irregular component (bottom).

gas	gas_multiplicativecomponents\$seasonal										
##		Jan	Feb	Mar	Apr	May	Jun	Jul			
##	1970	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1971	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1972	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1973	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1974	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1975	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1976	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1977	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1978	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			
##	1979	0.8132660	0.8304488	0.9045982	0.9183493	1.0757490	1.1666776	1.2415807			

	4000	0.0400000	0.0004400	0.0045000	0.0400400	4 07574	~~	4 4000770	4.0445007
##	1980	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1981	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1982	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1983	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1984	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1985	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1986	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1987	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1988	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1989	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1990	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1991	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1992	0.8132660	0.8304488	0.9045982	0.9183493	1.07574		1.1666776	1.2415807
##	1993	0.8132660	0.8304488	0.9045982	0.9183493	1.07574	90	1.1666776	1.2415807
##			Aug	Sep		Oct		Nov	Dec
##			938198	1.0653672	1.00668			282892	0.8551699
##			938198	1.0653672	1.00668			282892	0.8551699
##			938198	1.0653672	1.00668			282892	0.8551699
##			938198	1.0653672	1.00668			282892	0.8551699
##	19		938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##			938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##			938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	977 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	978 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##			938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	980 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	981 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	982 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	983 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	984 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	985 1.1	938198	1.0653672	1.00668	845	0.92	282892	0.8551699
##	19	986 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	987 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	988 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##	19	989 1.1	938198	1.0653672	1.00668	345	0.92	282892	0.8551699
##			938198	1.0653672	1.00668			282892	0.8551699
##			938198	1.0653672	1.00668			282892	0.8551699
##			938198	1.0653672	1.00668			282892	0.8551699
##			0653672 1.0						

gas_multiplicativecomponents\$trend

##		Jan	Feb	Mar	Apr	May	Jun	Jul
##	1970	NA	NA	NA	NA	NA	NA	6177.417
##	1971	7201.042	7365.625	7506.875	7596.000	7689.583	7820.000	7975.208
##	1972	9315.042	9646.458	9962.250	10307.458	10646.167	10902.958	11172.375
##	1973	12592.583	12841.250	13044.667	13196.375	13339.292	13472.583	13537.542
##	1974	14431.583	14513.958	14637.875	14769.042	14867.833	14953.458	15016.500
##	1975	15292.833	15398.042	15483.875	15595.250	15718.917	15819.167	15906.750
##	1976	17087.167	17355.667	17657.375	17928.875	18126.792	18296.000	18464.458
##	1977	19491.250	19789.833	20006.333	20077.333	20160.000	20340.167	20511.667

##	1978 2164	19.625	21787.542	21845.000	21981.500	22230.292	22400.458	22521.417
##	1979 2306	0.375	23311.417	23616.750	23906.250	24072.750	24200.208	24397.250
##	1980 2681	3.958	27260.750	27648.458	27999.333	28347.958	28693.583	29094.208
##	1981 3226	32.917	32862.667	33276.417	33598.125	34050.708	34566.208	34990.458
##	1982 3593	31.792	36046.000	36170.917	36315.875	36337.542	36229.667	35884.125
##	1983 3611	8.125	35981.125	35953.792	36142.125	36348.542	36440.458	36614.125
##		1.583	36941.542	37179.625	37362.708	37477.000	37739.500	38071.708
##		18.958	38735.625	38781.333	38740.917	38678.875	38520.583	38369.458
##		9.625	39000.750	39076.333	39196.083	39286.875	39407.875	39586.583
##		5.708	41301.542	41906.167	42398.292	42731.958	43018.125	43262.083
##		6.000	44410.875	44462.875	44331.375	44332.333	44512.958	44680.083
##		3.958	46655.292	47083.167	47507.958	47985.750	48240.292	48467.417
##		8.083	48680.458	48295.875	47850.583	47437.208	46981.417	46507.292
##		8.083	44421.250	44452.042	44548.375	44536.792	44683.583	44935.792
##		35.375	46606.458	47050.917	47457.083	47579.667	47622.667	47581.167
##		9.417				45822.250 4		NA
##	1000 1010	0.117	Aug	Sep		Oct	Nov	Dec
##	1970	636	66.458	6519.917	6650.9		97.375	7006.958
##	1971		03.458	8250.458	8482.2		56.583	9021.500
##	1972		455.125	11729.500	11971.		172.500	12372.750
##	1973		621.417	13749.750	13888.		084.042	14291.333
##	1974		060.542	15096.083	15152.		173.750	15196.292
##	1975		040.667	16213.250	16363.		590.583	16855.875
##	1976		586.333	18720.917	18881.		018.542	19203.958
##	1977		693.000	20872.792	21061.		261.250	21462.875
##	1977		613.250	22663.458	21001.		351.917	22929.792
	1976		650.208	24948.417	25255.		639.875	26207.750
## ##	1979		567.208	30118.708	20200. 30687.		200.250	31739.000
	1980		238.833	35311.458			385.625	
##					35257.			35644.208
##	1982		707.792	35870.792	36154.		305.833 317.208	36269.333 36788.167
##	1983		820.458	36927.333	36881.			
##	1984		237.000	38311.375	38417.		170.292	38562.708
##	1985		273.542	38152.667	38237.		188.917	38628.292
##	1986		732.292	39987.375	40250.		354.375	40393.583
##	1987		523.167	43801.542	43888.		989.458	44323.458
##	1988		744.875	44704.875	44787.		999.500	45405.208
##	1989		714.750	48939.208	49080.		246.542	49318.375
##	1990		112.083	45741.208	45523.		393.875	44992.875
##	1991		201.792	45324.333	45354.		376.875	45743.542
##	1992		471.542	47076.708	46677.	458 466	651.958	46611.708
##	1993 NA	4 I	NA NA	NA N	Α			
gas	_multiplicati	vecom	ponents \$ ran	dom				
##		Jan	Feb	Mar	Apr	May	Jun	Jul
	1970	NA	NA	NA	NA			1.0426661
##		06957	1.0108269	0.9710331		0.9719464	1.0648420	0.9810273
##		67165		0.9879233	1.0291736		1.0046420	
##		96617				0.9929020		
##			1.0104102					

1974 0.9972125 1.0184103 1.0342566 1.0382552 1.0350720 0.9938745 0.9534871 ## 1975 0.9933151 0.9917665 1.0095894 1.0465799 0.9556105 0.9902542 0.9699986

##	1976	0.9542032	2 1.0400339	1.0001359	1.0185260	1.0163654	0.9830159	0.9596898
##	1977	0.9536595			1.0103200	0.9866695	1.0052078	1.0219151
##	1978	0.9793318			1.0354840	0.9938859	1.0032076	1.00273131
##	1979	1.0045207			1.0117385	0.9683260	0.9521907	1.0105590
##	1980	0.9828550			1.0074604	1.0035977	1.0450422	1.0259446
##	1981	1.0568507			1.0165674	1.0226313	1.0181607	1.0026361
##	1982	1.0510879			0.9386921	1.0384222	1.0441148	1.0636088
##	1983	0.8898454			1.0409117	1.0480307	1.0083439	0.9903784
##	1984	0.9620341			0.9670373	1.0119347	0.9619615	0.9752249
##	1985	1.0337911			0.9618667	0.9858501	0.9868472	0.9692314
##	1986	0.9894941	1 0.9960750	0.9887582	1.0587099	1.0214180	0.9906629	1.0085059
##	1987	0.9902847	7 0.9972940	1.0321766	1.0337103	0.9467061	0.9192783	1.0557707
##	1988	0.9846348	3 1.0220993	1.0521609	0.9613210	0.9868221	0.9745385	0.9816683
##	1989	1.0031910	0.9621155	0.9809035	0.9550091	0.9611663	1.0268676	1.0283798
##	1990	1.0140794	4 0.9967441	1.0104980	0.9716329	1.0299913	1.0321066	0.9846810
##	1991	0.9810841	1 0.9671297	0.9913647	1.0207776	1.0515460	0.9424082	0.9869978
##	1992	1.0350850		0.9349147	0.9762017	0.9797049	1.0468626	0.9993084
##	1993	0.9806045	0.9899556				.0579876	NA
##			Aug	Sep		Oct	Nov	Dec
##			.9898158	1.0708159	1.0274		283791	1.0493747
##			.0084692	0.9778416	0.9206		537879	1.0569138
##		_	.0011441	0.9794159	1.0373		948139	1.0234573
##			.0200156	0.9710871	1.0125		955588	1.0025760
##			.9784437	1.0069097	1.0053		086877	1.0092794
##			9784505	0.9905017	1.0376		011130	0.9928797
##			.0066821	1.0403793	1.0505		795121	1.0045884
##			.0313835	1.0254894	0.9253		944474	1.0072787
##			.9918453	0.9478605	0.99642		561355	1.0094923
##			.0271883	1.0068767	1.0181		801179	0.9784903
##			.9774514	0.9908225	0.9476		772862	0.9302107
##			.0078249	0.8991839	0.9850		192372	1.0644038
## ##			.9690662	0.9920827	0.9439		268435	0.9262507 0.9610259
##			.9187845	0.9704846	1.0398		330919 452639	1.0465871
##			.9295023 .9724959	1.0253657 1.0072922	1.0169 ⁻ 1.0201		452639 048183	0.9730048
##			.9568615	0.9813095	1.0201		628267	1.0097160
##			.0066819	1.0585512	1.01076		760514	1.0097100
##			.0190516	1.0383312	0.9587		091555	1.0300247
##			.0729645	0.9747167	1.0345		003493	1.0300247
##			.0601910	0.9362999	0.9955		801929	0.9360506
##			.0316553	1.0159658	0.9747		005255	0.9892506
##			.0482692	1.1163222			760426	0.9936046
##		NA					-	

Still the same pattern, hence series is additive.

Components Present and Periodicity of the Dataset

- 1. Trend Linear Trend as the gas production increases over time
- 2. Seasonality Based on seasons (Summer, Winter)
- 3. Monthly periodicity from Jan 1970 to Aug 1994

Simple Exponential Smoothing on gas production

Exponential smoothing are used to make short-term forecasts for time series data. If we have a time series that can be described using an additive model with constant level and no seasonality, we can use simple exponential smoothing to make short-term forecasts but we have additive model with seasonality, so let's see how the forecasts turns out.

ses.gas <- ses(gas1.train, alpha = 0.2, h=12)
autoplot(ses.gas)

Forecasts from Simple exponential smoothing

It Gives the forecast for a year, a 80% prediction interval for the forecast, and a 95% prediction interval for the forecast. For example, the forecasted gas production for 1994 is about 47804.79 units, with a 95% prediction interval of (37442.12, 58167.47).

accuracy(ses.gas, gas1.test)										
##			ME	RMSE	MAE	MPE	MAPE	MASE		
##	Training	set	737.2333	5268.785	3999.333	1.524847	12.93317	1.517094		
##	Test set		3231.0385	8979,490	7750.868	3.656030	14.93589	2.940188		

```
## ACF1 Theil's U
## Training set 0.7686942 NA
## Test set 0.6184060 1.415467
```

Holt winters Model

Forecasts from ETS(A,A,A)


```
summary(gas.hw)
##
                                                                              ETS(A,A,A)
##
##
                                                                                     Call:
##
                  ets(y
                                         gas1.train,
                                                           model
                                                                                  "AAA")
##
##
                                                   Smoothing
                                                                              parameters:
##
                                                                                  0.3409
                                                       alpha
                                                                                   1e-04
##
                                                 beta
##
                                                                                  0.5937
                                                     gamma
##
##
                                                           Initial
                                                                                  states:
##
                                                        I
                                                                               6253.2029
                                                                                119.5505
##
                                              234.0436 2010.202 5919.329
##
                      -4511.743 -2141.073
                                                                                7284.466
```

```
##
                        5272.425 2485.985 -2602.642 -3068.389 -5131.983 -5750.62
##
##
                                           sigma:
                                                                            2109.357
##
                           AIC
##
                                                   AICc
                                                                                 BIC
                                                                            6119.525
##
                     6057.255
                                                6059.521
##
##
                 Training
                                                                           measures:
                                       set
                                                        error
##
                       ME
                                RMSE
                                            MAE
                                                        MPE
                                                                  MAPE
                                                                               MASE
##
                    78.6797
                              2049.926
                                         1551.876
                                                    0.4622781
                                                                7.506005
                                                                           0.5886835
    Training
##
                                                                               ACF1
## Training set 0.2737321
#
             forecast
                                the
                                               next
                                                                12
                                                                              months
gas.hw.forecast
                                   forecast(gas.hw,
                                                            h
                                                                                  12)
accuracy(gas.hw.forecast, gas1.test)
##
                       ME
                                RMSE
                                            MAE
                                                         MPE
                                                                  MAPE
                                                                               MASE
                                         1551.876
                                                                7.506005
##
    Training
              set
                     78.6797
                              2049.926
                                                   0.46227811
                                                                           0.5886835
##
                      228.9429
   Test set
                               3568.067 2541.069 0.07409708
                                                                5.297855 0.9639204
##
                                                                  ACF1
                                                                          Theil's
                                                                                   U
##
       Training
                                0.2737321
                                                                                  NA
                   set
## Test set -0.1659001 0.7087554
```

Stationarity

Let's look whether the time series are stationary or not by using ADF Test for Level Stationarity. Null Hypothesis - unit root is present in a time series sample. Alternate Hypothesis - series is stationary

```
library(tseries)
## Warning: package 'tseries' was built under R version 3.6.2
adf.test(gas1, alternative = "stationary")
                     adf.test(gas1,
                                     alternative
                                                       "stationary"):
##
     Warning
                                                                      p-value
                                                                                 smaller
                                                                                           than
## printed p-value
##
                                                              Dickey-Fuller
##
                                  Augmented
                                                                                           Test
##
##
                              data:
                                                                                          gas1
##
       Dickey-Fuller
                              -4.4805,
                                           Lag
                                                   order
                                                                   6.
                                                                         p-value
                                                                                           0.01
## alternative hypothesis: stationary
```

Since the p-value = 0.01, we reject null hypothesis i.e series is non-stationary.which means the series is stationary. In other words, correlation exist in the dataset.

Though exponential smoothing does well in such cases but if we want to make prediction intervals for forecasts made using exponential smoothing methods, the prediction intervals require that the forecast errors are uncorrelated and are normally distributed with mean zero and constant variance.

ACF and PACF plots

We use ACF and PACF to determine if corrections(AR and MA terms) are required before building an ARIMA model.

acf(gas1)

Series gas1

acf(gas1, lag.max = 50)

Series gas1

pacf(gas1, lag.max = 50)

Series gas1

There are significant autocorrelations with many lags in our gas time series, as shown by the ACF plot.

PACF plot shows that there could be monthly seasonality.

Seasonally Adjusting

Since we have a seasonal time series that can be described using an additive model, we need to seasonally adjust the time series by estimating the seasonal component, and subtracting the estimated seasonal component from the original time series.

We can do this using the estimate of the seasonal component calculated by the "decompose ()" function.

```
decomp = stl(gas1, s.window = "periodic")
deseasonal_gas=seasadj(decomp)
plot(decomp)
```



```
diff_gas = diff(gas1, differences = 1)
plot(diff_gas,main = "Differenced Series")
```

Differenced Series


```
adf.test(diff_gas, alternative = "stationary")
      Warning
                  in
                       adf.test(diff_gas,
                                            alternative
                                                               "stationary"):
                                                                                p-value
                                                                                           smaller
## than printed p-value
##
                                   Augmented
                                                                Dickey-Fuller
                                                                                              Test
##
##
##
                              data:
                                                                                          diff_gas
##
       Dickey-Fuller
                               -15.847,
                                            Lag
                                                     order
                                                                     6,
                                                                            p-value
                                                                                              0.01
## alternative hypothesis: stationary
```

From the plot, we can see that the time series of first differences appears to be stationary in mean and variance, By, taking the time series of first differences, we have removed the trend component of the time series.

Dickey- Fuller = -15.847 has increased after deseasonality, this means that we will be more accurate than before. Now, let's check the Acf and Pacf for the Differenced time series. We can now examine whether there are correlations between successive terms of this irregular component.

Acf and Pacf for difference time series

ACF for Differenced Series

Pacf(diff_gas,lag.max = 50, main='PACF for Differenced Series')

PACF for Differenced Series

From the ACF plot, there is a cut off after lag 2. This implies that q=2. PACF cuts off after lag 2. Hence p=2.

Splitting into training and test sets

Splitting into training and test sets

```
gasTstrain = window(deseasonal_gas, start=c(1970,1), end=c(1993,12),frequency = 12) gasTStest= window(deseasonal_gas, start=c(1994,1))
```

After multiple Trial and error with p,d,q the following ordered values (p=2,d=1,q=2) are taken as best fit for arima.

```
arima(gasTstrain,order
                                                                                    c(0,1,2)
gasarima
                     <-
gasarima
##
                                                                                        Call:
##
##
         arima(x
                                gasTstrain,
                                                                      c(0,
                                                                                1,
                                                                                         2))
                                                 order
##
##
                                                                                Coefficients:
##
                                                          ma1
                                                                                        ma2
##
                                                             -0.0647
                                                                                     0.0957
                                                      0.0588
##
                                                                                     0.0611
              s.e.
##
## sigma^2 estimated as 4820422: log likelihood = -2615.48, aic = 5236.96
tsdisplay(residuals(gasarima), lag.max=50, main='Model Residuals')
```

Model Residuals

There are no significant autocorrelations present. If, the model is not correctly specified, that will usually be reflected in residuals in the form of trends, skeweness, or any other patterns not captured by the model.

Ideally, residuals should look like white noise, meaning they are normally distributed. Residuals plots show a smaller error range, more or less centered around 0.

Fitting an Auto-ARIMA Model

Model Residuals

Auto ARIMA also fits the same p and q parameters for the model, but has a slightly lower AIC.

Ljung box test

H0: Residuals are independent

Ha: Residuals are not independent

```
library(stats)
Box.test(gasarima$residuals)

##

##

Box-Pierce

test

##

##

data:

gasarima$residuals

## X-squared = 0.037439, df = 1, p-value = 0.8466
```

Here, p-value = 0.84 which is greater than 0.05. i.e., Residuals are independent.

Forecasting Using an Manual- ARIMA Model

After the best candidate ARIMA(p = 2, d = 1, q = 2) model for our time series data is selected, we can estimate the parameters of that ARIMA model, and use that as a predictive model for making forecasts for future values of our time series.

```
Manual_gasarima_Forecast <- forecast(gasarima,
                                                                          12)
accuracy(Manual_gasarima_Forecast,gasTStest)
##
                      ME
                             RMSE
                                        MAE
                                                   MPE
                                                            MAPE
                                                                       MASE
##
   Training set
                   133.2453 2191.731 1611.161
                                               -0.9451071
                                                          8.995565
                                                                    0.6111723
## Test set
                   2327.1572 4789.675 4204.189
                                                3.8888709 8.100992 1.5948027
##
                                                            ACF1
                                                                   Theil's
                                                                           U
##
      Training
                  set
                         -0.01140157
                                                                          NA
## Test set 0.45842534 1.316523
```

Forecasting Using an Auto-ARIMA Model

```
Auto_gasarima_Forecast
                                     forecast(Fit1,
                                                                          12)
                            <-
accuracy(Auto_gasarima_Forecast,gasTStest)
                      ME
                              RMSE
                                         MAE
                                                    MPE
                                                             MAPE
##
                                                                        MASE
##
   Training set
                  -79.12886 1820.459 1260.205 -0.3450597 4.192233 0.4780418
                  2370.16919 4226.614 3487.633
## Test set
                                                 4.2382629 6.782591 1.3229869
##
                                                            ACF1
                                                                    Theil's
                                                                           U
##
                                                                          NA
      Training
                  set
                         -0.005840643
## Test set -0.049336280 1.246271
```

Model Accuracy Report

Manual Arima												
Manual Arima	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U				
Training set	133.2453	2191.731	1611.161	-0.94511	8.995565	0.611172	-0.0114	NA				
Test set	2327.157	4789.675	4204.189	3.888871	8.100992	1.594803	0.458425	1.316523				
Auto Arima												
Auto Arima	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U				
Training set	-79.129	1820.46	1260.21	-0.3451	4.19223	0.47804	-0.0058	NA				
Test set	2370.17	4226.61	3487.63	4.23826	6.78259	1.32299	-0.0493	1.24627				
Exponential Smoothing												
Exponential												
Smoothing	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U				
Training set	737.233	5268.79	3999.33	1.52485	12.9332	1.51709	0.76869	NA				
Test set	3231.04	8979.49	7750.87	3.65603	14.9359	2.94019	0.61841	1.41547				
Holt's Winter Model												
Holt's Winter Model	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U				
Training set	78.6797	2049.93	1551.88	0.46228	7.50601	0.58868	0.27373	NA				
Test set	228.943	3568.07	2541.07	0.0741	5.29786	0.96392	-0.1659	0.70876				

- We have forecasted the Australian gas production by using the following techniques
 - Exponential Smoothing technique
 - Holt's Winter Model
 - Manual Arima
 - Auto Arima
- All these techniques have done well in forecasting the gas production for the year 1994 based on the past data (1970-1993).
- Except, Exponential smoothing all these techniques have accuracy more than 90% in forecasting
- Both Auto arima and Holt's Winter Model done extremely well in both training and test dataset
- But Auto Arima is the only model which forecasts with the accuracy of 96% in training dataset and 94% in Test Dataset

+

Conclusion:

In this project we analyzed Australian Monthly Gas production dataset "Gas" which is available in the package "Forecast".

Monthly gas production of Australia between year 1956-1995 is released by Australian Bureau of Statistics which is in time series format. The data is in Univariate time series format

During our initial exploration of the dataset we figured out that there was a sudden rise in production of gas from 1970 Jan and the trend keeps on increase. The 1970 Oil crisis could be one of the major reasons behind this radical change. We figured that from 1970 Jan the oil production has increased by double and this positive trend have been followed till the end (1995).

Therefore, we removed the data before 1970 Jan as it won't help much in forecasting the future. We then identified the key components of the present in the time series and founded out during every year's Australian winter has produced a ton of gas than in the summer. This clearly showed the presence of the seasonal and trend component in the series

Then we decomposed the time series and figured out it follows additive series. After Decomposition we did Simple Exponential Smoothing and Holt's Winter model on both training and test dataset.

We understood that correlation can be one of the reasons behind the lack of model's accuracy. So, we thought of fitting ARIMA model on this time series and check out how it performs.

In order to do ARIMA model we need to stationarize and deseasonlize the Time series so that we will have constant mean, Variance, Covariance which is basic requirement to perform ARIMA model.

After trial and error method we figured out the optimal ARIMA (p,d,q) order and build manual arima model on the same. We then ensured that Auto ARIMA also had the same order.

In the end we figured out that **Auto Arima** model has the **best accuracy** in forecasting the Monthly Production than the other 3 Models.