Дискретная математика

Лисид Лаконский

September 2023

Содержание

1	Пра	актическое занятие $-\ 26.09.2023$	2
	1.1	Нормальные формы: ДНФ, КНФ, СДНФ, СКНФ, АНФ	2
	1.2	Минимизация булевых функций: метод Куайна	:

1 Практическое занятие -26.09.2023

Импликацией, эквивалентностью, сложением по модулю два, коимпликацией, штрихом Шеффера и стрелкой Пирса называются функции, заданные, соответственно, следующими таблицами истинности:

x	y	$x \to y$	$x \sim y$	$x \bigoplus$	$x \leftarrow y$	x y	$x \downarrow y$
0	0	1	1	0	0	1	1
0	1	1	0	1	0	1	0
1	0	0	0	1	1	1	0
1	1	1	1	0	0	0	0

1.1 Нормальные формы: ДНФ, КНФ, СДНФ, СКНФ, АНФ

Можно составлять с помощью законов алгебры логики или таблицы истинности (или с помощью чего еще хочется). Допустим, имеем:

$$\begin{vmatrix} x & y & z & f \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

СД**НФ**
$$f = \overline{xy}z + x\overline{y}\overline{z} + x\overline{y}z + xyz$$

ДНФ
$$f = x\overline{y} + xz + \overline{y}z$$

CKHO
$$f = (x + y + z)(x + \overline{y} + z)(x + \overline{y} + \overline{z})(\overline{x} + \overline{y} + z)$$

KHO
$$f = (x+z)(x+\overline{y})(\overline{y}+z)$$

Полином Жегалкина (АНФ) Метод треугольника (часто называемый методом треугольника Паскаля) позволяет преобразовать таблицу истинности в полином Жегалкина путём построения вспомогательной треугольной таблицы в соответствии со следующими правилами:

- 1. Строится полная таблица истинности, в которой строки идут в порядке возрастания двоичных кодов от 000...00 до 111...11.
- 2. Строится вспомогательная треугольная таблица, в которой первый столбец совпадает со столбцом значений функции в таблице истинности.
- 3. Ячейка в каждом последующем столбце получается путём суммирования по модулю 2 двух ячеек предыдущего столбца стоящей в той же строкой ниже.
- 4. Столбцы вспомогательной таблицы нумеруются двоичными кодами в том же порядке, что и строки таблицы истинности.
- 5. Каждому двоичному коду ставится в соответствие один из членов полинома Жегалкина в зависимости от позиций кода, в которых стоят единицы. Например, ячейке 111 соответствует член ABC, ячейке 101 член AC, ячейке 010 член B, ячейке 000 член 1 и т. д.
- 6. Если в верхней строке какого-либо столбца стоит единица, то соответствующий член присутствует в полиноме Жегалкина.

АНФ для таблицы, представленной выше:

$$f = z \oplus yz \oplus x \oplus xz \oplus xy$$

1.2 Минимизация булевых функций: метод Куайна

Минимизировать СДНФ булевой функции методом Квайна и по карте Карно. Привести к скобочной форме, построить логическую схему. Пусть функция трех переменных, задана таблицей истинности:

Запишем СДНФ нашей функции:

$$f = \overline{xyz} \vee \overline{x}y\overline{z} \vee \overline{x}yz \vee x\overline{yz} \vee x\overline{yz}$$

Решим задачу методом Квайна (Квайна-Мак-Класки). Выпишем в двоичном коде слагаемые СДН Φ в нашем примере и объединим в блоки по числу единиц (весу Хэмминга). Склеиваются две элементарные конъюнкции в том случае, когда соответствующие наборы различаются ровно в одном разряде (расстояние Хэмминга равно 1). Из этого следует, что они принадлежат соседним блокам. При склейке вместо исчезнувшей переменной ставим прочерк (пример: $000 \lor 010 = 0 - 0$). Простые импликанты не участвуют в дальнейших склейках (не имеют потомков). В нашем примере это 0-0, -00, 10-, 01-.

Второй шаг — это поиск минимального покрытия строками таблицы Квайна (импликантной таблицы). Наиболее мощным и универсальным является метод функций Петрика, но его недостатком является большой объèм вычислений. В нашем случае таблица Квайна имеет вид:

		000	010	011	100	101
A	0-0	+	+			
В	-00	+			+	
C	01-		+	+		
D	10-				+	+

В первой строке таблицы стоят слагаемые СДН Φ , а в первом столбце перечислены простые импликанты. Знаки «+» стоят там, где простая импликанта содержит данное слагаемое СДН Φ . Составим и приведèм к дизъюнктивной форме в соответствии с правилами раскрытия скобок и поглощения функцию Петрика. Для составления функции Петрика надо для каждого столбца взять дизъюнкцию простых импликант, отмеченных «+», и перемножить получившиеся выражения:

$$K = (A \lor B)(A \lor C)C(B \lor D)D = (A \lor B)((A \lor C)C)((B \lor D)D) = (A \lor B)CD = ACD \lor BCD$$

Каждому слагаемому теперь соответствует тупиковая $ДН\Phi$, конъюнкции надо заменить на дизъюнкции. В нашем случае обе $ТДН\Phi$ являются минимальными:

МДН Φ 1= $A \lor C \lor D = \overline{xz} \lor \overline{x}y\overline{x}y$; МДН Φ 2= $B \lor C \lor D = \overline{yz} \lor \overline{x}y \lor x\overline{y}$

Запишем результат в скобочной форме: $\overline{xz} \vee \overline{xy} \vee x\overline{y} = \overline{x}(\overline{z} \vee y) \vee x\overline{y}, \ \overline{yz} \vee \overline{xy} \vee x\overline{y} = \overline{y}(\overline{z} \vee x) \vee \overline{xy}$