LECTURE NO. 3

2.1 Area Between Curves

Wright State University

Area of a Region Between Two Curves

Find the area enclosed by the curves of $y = 3x^2$ and y = 6x.

First, we need to find the points of intersection. Set $3x^2 = 6x$ x = 2x x = 0 or x = 2

set
$$3x^2 = 6x$$

$$\chi^2 = 2 \times \qquad \chi = 0 \text{ or } \chi = 3$$

Area =
$$\int_{0}^{2} (x - 3x^{2} dx = 3x^{2} - x^{3})_{0}^{2}$$

= $(3(2)^{2} - 2^{3}) - 0 = 4$

$$\int_{0}^{2} 3x^{2} - 6x \, dx$$

$$\int_{0}^{3} 3x^{2} - 6x \, dx$$

$$\int_{0}^{3} 3x^{2} - 6x \, dx$$
Area = $|-4| = 4$

Find the area enclosed by the curves $y = x^3$ and y = 4x

First find points of intersection
$$\chi^3 = 4\chi$$
 $\chi^3 - 4\chi = 0$ $\chi(\chi^2 - 4) = 0$ $\chi = -2$, 0 , 2

we will set up two integrals.

$$\int_{-2}^{0} x^{3} - 4x \, dx = \frac{x^{4}}{4} - 2x^{2} \Big|_{-2}^{0} = (0) - (\frac{16}{4} - 8) = 4$$

$$\int_0^2 x^3 - 4x \, dx = \frac{x^4}{4} - 2x^2 \Big|_0^2 = \left(\frac{16}{4} - 8\right) - 0 = -4$$

$$Area = Sum of absolute values of the two integrals above$$

Find the area enclosed by the curves $y = x^2$, y = 2 - x and x-axis.

Set
$$x^2 = 2-x$$
 $x^2 + x - 2 = 0$ $(x - 1)(x + 2) = 0$
 $x = 1$ or $x = -2$

Area =
$$\int_{0}^{1} x^{2} dx + \int_{1}^{2} 2 - x dx$$

= $\left(\frac{x^{3}}{3}\Big|_{0}^{1}\right) + \left(2x - \frac{x^{2}}{2}\Big|_{1}^{2}\right)$
= $\frac{1}{3} + \left(2 - \left(2 - \frac{1}{2}\right)\right)$
= $\frac{1}{3} + \frac{1}{2} = \left(\frac{5}{6}\right)$ Funal Answer

Regions Defined with Respect to y

$$x=9(9)$$
 we may integrate wirt $\frac{y}{y}$

Area = $\int_{a}^{b} g(y) - h(y) dy$

Find the area enclosed by the curves $x = y^2$ and x = 9

Set
$$y^2 = 9$$
 $y = -3$ or $y = 3$

Area = $\begin{cases} 3 & 9 - y^2 & dy \\ -3 & 3 \end{cases}$

= $4y - \frac{y^3}{3} = \frac{3}{3}$

= $(27 - \frac{27}{3}) - (-27 - \frac{-27}{3})$

= $18 + 18 = 36$ & FUAL ANSWER.

(Redo a Previous Example using y) Find the area enclosed by the curves $y = x^2$, y = 2 - x and x-axis

