## КОМП'ЮТЕРНА ОБРОБКА ЗОБРАЖЕНЬ

**Digital Image Processing - DIP** 

## МОДУЛЬ 3. Фільтрація зображень

- 3.1. Загальні відомості з цифрової фільтрації двовимірних сигналів. Базові маніпуляції
- 3.2. Лінійні фільтри. Фільтр Гауса.
- 3.3. Нелінійні фільтри
- 3.4. Морфологічні перетворення

# 3.3. Нелінійні фільтри. Фільтри сегментації

# 3.3. Нелінійні фільтри Фільтри сегментації зображень

Мета сегментації: виділення окремих областей зображення Базові умови:

- в результаті сегментації зображення розділяється на ряд областей таким образом, щоб кожен його піксель входив би хоча б в одну з областей;
- області, які виходять в результаті сегментації, не повинні пересікаються;
- всі пікселі, віднесені до однієї області, повинні володіти одними і тими ж властивостями.

#### Сегментація зображень

#### Використовують наступні властивості

- однорідність виділених областей щодо ознаки, за яким виконується сегментація, наприклад, однорідність по яскравості, за кольором, або по якомусь іншому ознакою
- наявність стрибкоподібного зміни якого-небудь ознаки, наприклад, стрибка яскравості, що відокремлює одну область зображення від іншого;
- зміну в часі будь-яких характеристик зображення, обумовлених, наприклад, його рухом.

#### Визначення окремих точок

Піксель i,j окрема точка ??

Піксель 
$$i,j$$
 окрема точка  $??$ 
Вікно — «квадрат»  $3*3$ .

 $I_{\Sigma}$   $(i,j) = 8*I(i,j) - \sum_{l\neq 0} \sum_{k\neq 0} I(i+l,j+k)$ 

-1 -1 -1 -1 
pixel is point = 
$$\begin{cases} True: |I_{\Sigma}| \geq \gamma \\ False: |I_{\Sigma}| < \gamma \end{cases}$$

$$egin{aligned} pixel \ is \ point = egin{aligned} True: \ |I_{\Sigma}| \geq \gamma \ False: |I_{\Sigma}| < \gamma \end{aligned}$$

$$\widehat{I}(i,j) = \begin{cases} I_{+} = 255 \colon |I_{\Sigma}| \geq \gamma \\ I_{-} = 0 \colon |I_{\Sigma}| < \gamma \end{cases}$$

 $\gamma$  — деякий поріг

### Визначення окремих точок



$$\gamma = 50$$

$$\gamma = 200$$

### Визначення окремих точок



$$\gamma = 20$$

$$\gamma = 40$$

Відрізок  $i,j-i\_P,j$  - однопіксельна лінія ?? Вікно – «квадрат» 3\*3.

$$I_{-1,-1} = I(i-1,j-1)$$
  $I_{-1,0} = I(i-1,j)$   $I_{-1,1} = I(i-1,j+1)$   $I_{0,-1} \neq I(i,j-1)$   $I_{0,0} = I(i,j)$   $I_{0,1} = I(i,j+1)$   $I_{1,-1} = I(i+1,j-1)$   $I_{1,-1} = I(i+1,j)$   $I_{1,1} = I(i+1,j+1)$ 

| ·····          |    |    | • |                | <u>:</u> | · · · · · · · · · · · · · · · · · · · |                  |    |    | ····í·····<br>· |                  |    |   |
|----------------|----|----|---|----------------|----------|---------------------------------------|------------------|----|----|-----------------|------------------|----|---|
| -1             | -1 | -1 |   | 2              | -1       | -1                                    | -1               | 2  | -1 |                 | -1               | -1 | 2 |
| 2              | -1 | -1 |   | -1             | 2        | -1                                    | -1               | -1 | 2  |                 | -1               | -1 | 1 |
| -1             | 2  | 2  |   | -1             | -1       | 2                                     | -1               | -1 | 2  |                 | 2                | -1 | 2 |
| -1             |    |    |   | -1             | -1       |                                       | -1               | -1 |    |                 |                  | -T |   |
| $I_{\Sigma,1}$ |    |    |   | $I_{\Sigma 2}$ |          |                                       | $I_{\Sigma   3}$ |    |    |                 | $I_{\Sigma   4}$ |    |   |

Відрізок  $i,j-i\_P,j$  - однопіксельна лінія ?? Вікно — «квадрат» 3\*3.

$$I_{\sum 1} = 2(L_{0,1} + L_{1,0} + L_{1,1})$$
 $-(L_{-1,-1} + L_{-1,0} + L_{-1,1} + L_{0,0} + L_{0,1} + L_{-1,-1})$ 
 $I_{\sum 2} = 2(L_{-1,-1} + L_{0,0} + L_{1,1})$ 
 $-(L_{-1,0} + L_{-1,1} + L_{0,-1} + L_{0,1} + L_{1,-1} + L_{1,0})$ 
 $I_{\sum 3} = 2(L_{-1,0} + L_{0,1} + L_{1,1})$ 
 $-(L_{-1,-1} + L_{-1,1} + L_{0,-1} + L_{0,0} + L_{1,-1} + L_{1,0})$ 
 $I_{\sum 4} = 2(L_{-1,1} + L_{1,-1} + L_{1,1})$ 
 $-(L_{-1,-1} + L_{-1,0} + L_{0,-1} + L_{0,0} + L_{0,1} + L_{1,0})$ 

Знаходиться  $I_{\sum i}$  для якої  $|I_{\sum i}| > |I_{\sum j}|, j=1,2,3,4. j \neq i$ 

$$pixel \in line = egin{cases} True: |I_{\sum i}| \geq \gamma \\ False: |I_{\sum i}| < \gamma \end{cases}$$
 $\widehat{I}(i,j) = egin{cases} I_{+} = 255: |I_{\Sigma}| \geq \gamma \\ I_{-} = 0: |I_{\Sigma}| < \gamma \end{cases}$ 

**у** – деякий поріг



$$\gamma = 50$$



$$\gamma = 200$$

# Перепади яскравості та виділення границь

#### Перепади яскравості:

- границя об'єктів,
- градієнтні зміни яскравості, викликані плавними змінами освітленості.
- !!! При сегментації важливі перепади яскравості, що обусловлені межами об'єктів. Такі перепади є різкі скачки яскравості. Два базових метода:
- градієнтні методи
- Лапласіан.

#### Градієнтний оператор Робертса

Вікно – «квадрат» 2 \* 2.

| I(i,j)   | I(i,j+1)   |  |  |  |  |
|----------|------------|--|--|--|--|
| I(i+1,j) | I(i+1,j+1) |  |  |  |  |

## Градієнтний оператор Робертса



#### Градієнтний оператор Превітта

Вікно – «квадрат» 3 \* 3.

$$I_{-1,-1} = I(i-1,j-1)$$
  $I_{-1,0} = I(i-1,j)$   $I_{-1,1} = I(i-1,j+1)$   $I_{0,-1} = I(i,j-1)$   $I_{0,0} = I(i,j)$   $I_{0,1} = I(i,j+1)$   $I_{1,-1} = I(i+1,j-1)$   $I_{1,-1} = I(i+1,j)$   $I_{1,1} = I(i+1,j+1)$ 



#### Градієнтний оператор Превітта

Вікно – «квадрат» 3 \* 3.

$$G_{x} = I_{-1,1} + I_{0,1} + I_{1,1} - I_{-1,-1} - I_{0,-1} - I_{1,-1}$$

$$G_{y} = I_{1,-1} + I_{1,0} + I_{1,1} - I_{-1,-1} - I_{-1,0} - I_{-1,1}$$

$$|G| = \sqrt{G_{x}^{2} + G_{y}^{2}}$$

$$\hat{I}(i,j) = \begin{cases} I_{+} = 255 : |G| \ge \gamma \\ I_{-} = 0 : |G| < \gamma \end{cases}$$

## Градієнтний оператор Превітта



#### Градієнтний оператор Собеля

Вікно – «квадрат» 3 \* 3.

## Градієнтний оператор Собеля



## Дискретний Лапласіан



#### Дискретний Лапласіан

Вікно – «квадрат» 3 \* 3.

$$\Delta_{x} = 4I_{0,0} - (I_{-1,-1} + I_{0,-1} + I_{0,1} + I_{1,0})$$

$$\Delta_{y} = 8I_{0,0} - (\dots \dots)$$

$$\hat{I}(i,j) = \begin{cases} I_{+} = 255 \colon |\Delta| \geq \gamma \\ I_{-} = 0 \colon |\Delta| < \gamma \end{cases}$$

### Лапласіан



## Порівняння









## The END 08