ANALYSIS WITH T FF UNIT -8

ANALYSIS WITH T FLIP-FLOPS

As with JK flip-flops, the next state values can be obtained either by using the Characteristic table.

	T FI	Flip-Flop				
	T	Q(t + 1)				
	0 1	Q(t) Q'(t)	No change Complement			
-						

$$Q(t+1) = T \oplus Q = T'Q + TQ'$$

Consider the following sequential circuit or by the characteristic

equation:

equation:

$$Q(t+1) = T \text{ X-OR } Q = T'Q + TQ'$$

It can be described algebraically by two input equations and an output

$$T_A = Bx$$

$$T_B = x$$

$$y = AB$$

The state table for this circuit is listed below.

K.CHIRANJEEVI,ECE,GMRIT

ANALYSIS WITH T FF UNIT -8

Present State		Input	Next State		Output
Α	В	×	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

The values for y are obtained from the output equation. The values for the next state can be derived from the state equations by substituting T_A and T_B in the

$$A(t+1) = (Bx)'A + (Bx)A' = AB' + Ax' + A'Bx$$

characteristic equations, yielding: $B(t+1) = x \oplus B$

The state diagram for the circuit is shown below.

As long as input x is equal to 1, the circuit behaves as a binary counter with a sequence of states 00,01, 10, 11, and back to 00. When x = 0, the circuit remains in the same state. Output y is equal to 1 when the present state is 11. The output depends on the present state only and is independent of the input. The two values inside each circle separated by a slash are for the present state and output.