Université Dr.Moulay Tahar de Saida. Faculté des Sciences

DÉPARTEMENT DE MATHÉMATIQUES

Concours d'accès à l'Ecole doctorale Modèles stochastiques, Statistique et Applications 1^{ere} Epreuve: Statistique Para.-NonPara. Sujet 3

12 NOVEMBRE 2013

Durée: 1H30

Exercice 1. Soient $f \in L^1$ (une fonction intégrable) et K un noyau borné, intégrable et vérifiant $\int_{\mathbb{R}} K(x) dx = 1 \text{ et } |xK(x)| \longrightarrow 0 \text{ quand } x \longrightarrow \infty. \text{ Montrer que } f \text{ est continue en tout point de } x \text{ et}$

$$\lim_{h_n \longrightarrow 0} \left(f * K_h \right) (x) = f(x)$$

où
$$K_h(.) = \frac{1}{h}K\left(\frac{.}{h}\right)$$
 et $f * g(x) = \int g(x-y)f(y)dy$.

Exercice 2. Soit \mathbb{P} la loi de probabilité de densité $\exp(-x)$ sur \mathbb{R}^+ ; on désigne par \mathbb{P}_{θ} la loi déduite de \mathbb{P} par la translation θ .

Déterminer l'estimateur de maximum de vraisemblance de θ au vu d'un échantillon de taille n de la loi \mathbb{P}_{θ} ; étudier ses qualités.

Exercice 3. (10 points)

Soit $(X_1, Y_1) \dots (X_n, Y_n)$ un n-échantillon de (X, Y) dans \mathbb{R}^2 . On considère la fonction de répartition conditionnelle de Y, sachant X, définie par

$$\forall x \in \mathbb{R}$$
 $F(x,y) = \mathbb{E}(\psi_y(Y)|X=x)$

où $\psi_y(Y) = \mathcal{I}_{Y \leq y}$ avec \mathcal{I} est la fonction indicatrice. On suppose que la densité de la variable explicative X et la fonction $\mathbb{E}(\psi_y(Y)|X=x)$ vérifient la condition suivante:

$$\exists k > 0, \ \exists C < \infty, \ \forall z \in]x - \varepsilon, x + \varepsilon[, \ |\phi(x) - \phi(z)| \le C|x - z|^k,$$

où ϕ désigne indifféremment f ou $\mathbb{E}(\psi_{\nu}(Y)|X=x)$.

- (1) Estimer la fonction $F(x,y) = \mathbb{E}(\psi_y(Y)|X=x)$ par la méthode du noyau.
- (2) Montrer que, si:
 - (a) $\lim_{n \to \infty} h_n = 0$ et $\lim_{n \to \infty} \frac{nh_n}{\log n} = \infty$,
 - (b) Le noyau K est borné, intégrable et à support compact,
 - (c) La fonction f est telle que f(x) > 0, alors, l'estimateur construit converge presque complètement et que sa vitesse de convergence est

$$O(h_n^k) + O\left(\sqrt{\frac{\log n}{nh_n}}\right)$$
 en p.co.