Data-Driven Tuning of Proximal Gradient Descent Algorithms for Signal Recovery Problems

Tadashi WADAYAMA

wadayama@nitech.ac.jp

Nagoya Institute of Technology

This work was partly supported by JSPS Grant-in-Aid for Scientific Research

(A) Grant Number 17H01280 and (B) 19H02138

Physical layer wireless comm + ML

 Wireless communications + Machine Learning (ML) is becoming a hot research topic, recently

Arise of deep learning (DL)

Deep learning became a key technology for image recognition, speech recognition, and natural text processing

Next generation signal processing is required for 5G/6G mmWave massive MIMO, blind channel estimation, error correction, terminal localization, beam forming

Fusion of AI/ML and wireless communications in near future AI/ML becomes a key task for next gen. wireless comm: e.g., distributed learning, federated learning

Physical layer wireless comm + ML

Type	idea/concept
Black box modeling	Simulation of channel / detector by deep neural networks, no prior knowledge
Deep unfolding	Applying standard DL technique to optimize parameterized iterative algorithms
Learning to optimize	Simulation of convex/non-convex solver by neural networks
Distributed learning	Independent training and gradient aggregation
Reinforcement learning	Learning optimal strategy to control of an agent based on rewards

Deep neural networks

Training of deep neural networks

In a training process, the trainable parameters in Θ is optimized to minimize the value of the loss function

Deep unfolding

A recent survey: A. Balatsoukas-Stimming and C. Studer, arXiv:1906.05774, 2019.

Goal and outline

Goal

To present the basic concept of deep unfolding for proximal gradient descent algorithm

- Preliminaries
 - Compressed sensing
 - Lasso
 - Proximal gradient and ISTA
- Concept of deep unfolding
 - LISTA
 - Toy examples
- Brief review of TISTA

Compressed sensing

Goal: from the knowledge of A and y, estimate the source signal x as correct as possible

of unknown vars. > # of equations : under determined problem

Applications of CS in wireless comm.

- Channel estimation
- Angle of Arrival estimation
- Spectrum sensing
- NOMA

A User's Guide to Compressed Sensing for Communications Systems K.HAYASHI, M. NAGAHARA and T. TANAKA IEICE TRANS. COMMUN., VOL.E96–B, NO.3 MARCH 2013

LASSO formulation for CS

LASSO

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_1$$

Squared error term

- (1) Prefers a vector x satisfying y = Ax
- (2) Differentiable

L1-regularization term

- (1) Prefers a sparse vector
- (2) non-differentiable

- Convex problem
- A plain gradient descent method cannot be applied to LASSO because of the non-differentiable term

Proximal operator

Proximal operator

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$\operatorname{Prox}_{\gamma f}(x) := \arg\min_{u \in \mathbb{R}^n} \left[f(u) + \frac{1}{2\gamma} ||x - u||_2^2 \right]$$

- (1) Similar to projection operation
- (2) Smoothness can be added to a non-differentiable function

Example: Proximal operator of L1-norm

$$f(x) := |x| \ (f \colon \mathbb{R} \to \mathbb{R})$$

$$\mathbf{Prox}_{\gamma f}(x) := \mathbf{sign}(x) \max\{ |x| - \gamma, 0 \} =: \eta(x; \gamma)$$

i.e., Soft thresholding function

Proximal gradient method

Goal
$$\min_{x \in \mathbb{R}^n} [f(x) + g(x)]$$

f(x): differentiable

g(x): has simple proximal operator

Proximal gradient method

$$x^{n+1} := \mathbf{prox}_{\gamma g}(x^n - \gamma \nabla f(x^n))$$

- $\nabla f(x^n)$: gradient of f
- $x^n \gamma \nabla f(x^n)$: gradient descent step

ISTA: proximal gradient for LASSO

LASSO

$$\hat{x} = \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_1$$

ISTA (Daubechies et.al, 2004)

$$r_t = s_t + \beta A^T (y - As_t)$$
 : gradient descent step

$$S_{t+1} := \eta(r_t; \tau)$$
 : proximal step

- (1) simple but slow to converge
- (2) choice of hyper parameters are very critical

Birth of deep unfolding

Gregor and LeCun first proposed this concept:

K. Gregor, and Y. LeCun,

`Learning fast approximations of sparse coding," Proc. 27th Int. Conf. Machine Learning, pp. 399--406, 2010.

Recursive formula of LISTA

Original ISTA:
$$r_t = S_t + \beta A^T(y - AS_t)$$

 $S_{t+1} := \eta(r_t; \tau)$

LISTA

$$r_t = Bs_t + Sy$$

$$s_{t+1} = \eta(r_t; \tau_t)$$

What is main benefit of deep unfolding?

- Simple quadratic function (convex)
- Naive gradient descent with random initial value

$$f(x_1, x_2) = x_1^2 + qx_2^2$$

Gradient descent (GD)

$$s_{t+1} = s_t - \gamma \nabla f(s_t)$$

Trainable gradient descent (TGD)

$$s_{t+1} = s_t - \underline{\gamma_t} \nabla f(s_t).$$

Minimization of quadratic function

Squared errors v.s. iterations

Values of γ_t

- Trainable GD shows faster convergence than GD with the fixed step size
- Iteration dependent step size is beneficial to accelerate the convergence

Deep unfolding: projected gradient

Problem: recover x from y

Projected gradient method

Gradient descent step

$$\boldsymbol{r}_t = \boldsymbol{s}_t + \gamma \boldsymbol{A}^T (\boldsymbol{y} - \boldsymbol{A} \boldsymbol{s}_t),$$

Projection step

$$s_{t+1} = \varphi\left(\xi r_t\right)$$

Experiments: Trainable projected gradient

Gradient descent step
$$r_t = s_t + \gamma_t A^T (y - As_t),$$

Projection step

$$oldsymbol{s}_{t+1} = arphi\left(\xioldsymbol{r}_{t}
ight)$$

TISTA (Ito, Takabe, W)

D. Ito, S. Takabe, and T. Wadayama, ``Trainable ISTA for sparse signal recovery," IEEE Trans. Signal Processing, vol. 67, no. 12, pp. 3113-3125, Jun., 2019.

$$r_{t} = s_{t} + \gamma_{t}W(y - As_{t}),$$

$$s_{t+1} = \eta_{MMSE}(r_{t}; \tau_{t}^{2}),$$

$$v_{t}^{2} = \max\left\{\frac{\|y - As_{t}\|_{2}^{2} - M\sigma^{2}}{\operatorname{trace}(A^{T}A)}, \epsilon\right\},$$

$$\tau_{t}^{2} = \frac{v_{t}^{2}}{N}(N + (\gamma_{t}^{2} - 2\gamma_{t})M) + \frac{\gamma_{t}^{2}\sigma^{2}}{N}\operatorname{trace}(WW^{T})$$

- W is the Moore-Penrose pseudo inverse of A
- Only scalar step size parameter becomes trainable

TISTA (Ito, Takabe, W,2019)

Trainable parameter

$$r_{t} = s_{t} + \gamma_{t} W(y - As_{t}),$$

$$s_{t+1} = \eta_{MMSE}(r_{t}; \tau_{t}^{2}),$$

$$r_{t}^{2} = \max \left\{ \frac{||y - As_{t}||_{2}^{2} - M\sigma^{2}}{\operatorname{trace}(A^{T}A)}, \epsilon \right\},$$

$$\tau_{t}^{2} = \frac{v_{t}^{2}}{N} (N + (\gamma_{t}^{2} - 2\gamma_{t})M) + \frac{\gamma_{t}^{2}\sigma^{2}}{N} \operatorname{trace}(WW^{T})$$

Estimation of error variance

Proximal mapping based on MMSE estimator

An iteration of TISTA

Recovery performance of TISTA

10% of elements in a sparse vector are nonzero

Figure 7: Sparse signal recovery for (n, m) = (300, 150), p = 0.1 and SNR= 50 dB. (Left) MSE performances as a function of iteration steps. (Right) Trained values of γ_t under three different mesurement matrices. The initial value is set to 1.0.

Number of trainable parameters

	TISTA	LISTA	LAMP
# of params	T	$T(N^2 + MN + 1)$	T(NM+2)

[2] M. Borgerding and P. Schniter, "Onsager-corrected deep learning for sparse linear inverse problems," 2016 IEEE Global Conf. Signal and Inf. Proc. (GlobalSIP), Washington, DC, Dec. 2016, pp. 227-231.

Deep unfolding for proximal algorithms

Automatic

Training with SGD

Embedding
trainable parameters
(step size/regularization
constant/proximal parameter)

Mathematical

Proximal methods:
Proximal gradient /ADMM/Primal-dual/
Projected gradient

"Neural-net friendly" hardware

Massive parallelism with GPU, TPU (Tensor processing units) Matrix-vector product Gradient step **Proximal map** Proximal step Matrix-vector product End of iteration? **Proximal map**

Our contributions based on TISTA

Currently ranked in popular Items 50 of IEEE Trans.on Signal Processing

Name of Algorithm	Journal/Conference
Trainable ISTA (TISTA) for sparse signal recovery	ICC Workshop 2018 IEEE Trans. on Signal Processing, 2019
Trainable projected gradient detector for massive overloaded MIMO	ICC 2019, IEEE Access (accepted), 2019
Complex-field TISTA(MIMO, OFDM, CS···)	Globecom 2019 (submitted)
Trainable projected gradient decoder for LDPC codes	ISIT 2019 (to be presented in next week)

On going projects:

Sparse CDMA (simplest NOMA)

Quantized MIMO, Phase retrieval

Combinatorial optimization based on proximal methods

Conclusion

- Concept of deep unfolding is introduced
- Ideas of compressed sensing, LASSO, ISITA, proximal gradient descent are explained
- TISTA for sparse signal recovery
 - Fast: Shows fastest convergence among most of known sparse signal recovery algorithms
 - Simple: Number of trainable parameters is small
 - Massive parallelism: Suitable for neural-net friendly hardware (like GPU, TPU)

Model-based v.s. Blackbox-based

Model-based approach

DNN-based blackbox approach

Pros:

Domain knowledge can be used Many algorithms induced from mathematical principles

No domain knowledge needed Powerful new algorithm can be constructed

Cons: How can we improve known algorithms further?

Interpretability problem Scalability

Model-based v.s. Blackbox-based

Deep unfolding

Model-bas approach NN-based blackbox approach

Pros:

Domain knowledge can be used Many algorithms induced from mathematical principles

No domain knowledge needed Powerful new algorithm can be constructed

Cons: How can we improve known algorithms further?

Interpretability problem Scalability

TISTA vs OAMP (1)

Figure 8: (Left) MSE performance of OAMP and TISTA for (n, m) = (300, 150), p = 0.18 and SNR= 30 dB. (Right) MSE performances for (n, m) = (300, 150), p = 0.1 and SNR= 30 dB with binary sensing matrix $\mathbf{A} \in \{1, -1\}^{m \times n}$ as a function of iteration steps.

TISTA vs OAMP (2)

TISTA t = 5, MSE=0.0258

OAMP t = 5, MSE=0.0335

TISTA t = 10, MSE=0.0065

OAMP t = 10, MSE=0.0165

TISTA t = 20, MSE=0.0014

_

Original

TISTA

t=20 OAMP

