Soundness: Part II

LOGIC I Benjamin Brast-McKie December 5, 2023

Soundness of QD

Assume: $\Gamma \vdash_{QD} \varphi$, so there is a QD proof X of φ from Γ .

Lines: Let φ_i be the i^{th} line of X.

Dependencies: Let Γ_i be the undischarged assumptions at line *i*.

Proof: The proof goes by induction on length of *X*:

BASE: $\Gamma_1 \vDash \varphi_i$.

HYPOTHESIS: Assume $\Gamma_k \vDash \varphi_k$ for all $k \le n$.

INDUCTION: If φ_{n+1} follows by the proof rules for QD from sentences in Γ_{n+1} ,

then $\Gamma_{n+1} \vDash \varphi_{n+1}$.

Finite: Since *X* is finite, there is some *m* where $\Gamma_m = \Gamma$ and $\varphi_m = \varphi$, so $\Gamma \vDash \varphi$.

SD Lemmas

- **L12.1** If $\Gamma \vDash \varphi$ and $\Gamma \subseteq \Gamma'$, then $\Gamma' \vDash \varphi$.
- **L12.2** For any QD proof *X*, if φ_k is live at line *n* where $k \leq n$, then $\Gamma_k \subseteq \Gamma_n$.
- **L12.3** If $\Gamma \vDash \varphi$ and $\Gamma \vDash \neg \varphi$, then Γ is unsatisfiable.
- **L12.4** If $\Gamma \cup \{\varphi\}$ is unsatisfiable, then $\Gamma \vDash \neg \varphi$.
- **L12.5** $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{T}}^{\hat{c}}(\varphi)$ if $\hat{a}(\alpha) = \hat{c}(\alpha)$ for all free variables α in a wff φ .
- **L12.6** $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ just in case $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = 1$ for every v.a. \hat{a} over \mathbb{D} .
- **L12.7** If $\Gamma \cup \{\varphi\} \models \psi$, then $\Gamma \models \varphi \supset \psi$.

SD Rules

- (R) $\varphi_k = \varphi_{n+1}$ for live $k \le n$. Thus $\Gamma_k \vDash \varphi_k$ by hypothesis and $\Gamma_k \subseteq \Gamma_{n+1}$ by **L12.2**. Thus $\Gamma_{n+1} \vDash \varphi_k$ by **L12.1**, and so $\Gamma_{n+1} \vDash \varphi_{n+1}$.
- (\neg I) There is a proof of ψ at line h and $\neg \psi$ at line j from φ on line i.
 - By hypothesis $\Gamma_h \vDash \psi$ and $\Gamma_i \vDash \neg \psi$, where $\Gamma_h, \Gamma_i \subseteq \Gamma_{n+1} \cup \{\varphi_i\}$.
 - By L12.1, $\Gamma_{n+1} \cup \{\varphi_i\} \vDash \psi$ and $\Gamma_{n+1} \cup \{\varphi_i\} \vDash \neg \psi$.
 - So $\Gamma_{n+1} \cup \{\varphi_i\}$ is unsatisfiable by L12.3, so $\Gamma_{n+1} \vDash \varphi_{n+1}$ by L12.4.

- $(\land E)$ $\varphi_{n+1} \land \psi$ is live on line $i \le n$.
 - By hypothesis, $\Gamma_i \vDash \varphi_{n+1} \land \psi$ where $\Gamma_i \subseteq \Gamma_{n+1}$ by **L12.2**
 - Thus $\Gamma_{n+1} \vDash \varphi_{n+1} \land \psi$ by **L12.1**, and so $\Gamma_{n+1} \vDash \varphi_{n+1}$ by semantics.
- (\supset I) There is a proof of ψ at line j from φ on line i.
 - By hypothesis $\Gamma_i \vDash \psi$, where $\Gamma_i \subseteq \Gamma_{n+1} \cup \{\varphi\}$.
 - So $\Gamma_{n+1} \cup \{\varphi\} \vDash \psi$, and so $\Gamma_{n+1} \vDash \varphi \supset \psi$ by **L12.7**.

QD Lemmas

L12.8 $\mathcal{V}_{\tau}^{\hat{a}}(\varphi) = \mathcal{V}_{\tau}^{\hat{a}}(\varphi[\beta/\alpha])$ if $\mathcal{V}_{\tau}^{\hat{a}}(\alpha) = \mathcal{V}_{\tau}^{\hat{a}}(\beta)$ and β is free for α in φ .

Base: Assume φ is $\mathcal{F}^n \alpha_1, \ldots, \alpha_n$ or $\alpha_1 = \alpha_2$ where $\mathcal{V}^{\hat{a}}_{\tau}(\alpha) = \mathcal{V}^{\hat{a}}_{\tau}(\beta)$.

- Let $\gamma_i = \beta$ if $\alpha_i = \alpha$ and otherwise $\gamma_i = \alpha_i$.
- $\bullet \ \langle \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_1), \ldots, \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_n) \rangle \in \mathcal{I}(\mathcal{F}^n) \ \text{iff} \ \langle \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\gamma_1), \ldots, \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\gamma_n) \rangle \in \mathcal{I}(\mathcal{F}^n).$
- $\bullet \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_1) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_n) \ \ \text{iff} \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\gamma_1) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\gamma_2).$

Induction: If $Comp(\varphi) \leq n$, $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi[\beta/\alpha])$ whenever $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\beta)$.

Case 2: Assume $\varphi = \psi \wedge \chi$ where $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\beta)$ for all \hat{a} .

• So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi)=1$ iff $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\psi\wedge\chi)=1$ iff $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\psi)=\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\chi)=1$ iff ...

Case 6: Assume $\varphi = \forall \gamma \psi$ where $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\beta)$.

- If $\gamma = \alpha$, then $\varphi = \varphi[\beta/\alpha]$.
- If $\gamma \neq \alpha$, $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\forall \gamma \psi) = 1$ iff $\mathcal{V}_{\mathcal{T}}^{\hat{e}}(\psi) = 1$ for all γ -variants \hat{e} of \hat{a} iff...
- Let \hat{e} be an arbitrary γ -variant of \hat{a} .
- Since $\gamma \neq \alpha$, $\hat{e}(\alpha) = \hat{a}(\alpha)$ if α is a variable, so $\mathcal{V}_{\mathcal{I}}^{\hat{e}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha)$.
- Thus $\mathcal{V}_{\mathcal{T}}^{\hat{e}}(\alpha) = \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\beta)$ follows from the assumption.
- Since β is free for α in $\forall \gamma \psi$, we know that $\gamma \neq \beta$.
- If β is a variable, then $\hat{e}(\beta) = \hat{a}(\beta)$ since \hat{e} is a γ -variant of \hat{a} .
- Thus $\mathcal{V}_{\mathcal{I}}^{\hat{e}}(\beta) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\beta)$, and so $\mathcal{V}_{\mathcal{I}}^{\hat{e}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{e}}(\beta)$.
- By hypothesis, $\mathcal{V}_{\mathcal{I}}^{\hat{e}}(\psi) = \mathcal{V}_{\mathcal{I}}^{\hat{e}}(\psi[\beta/\alpha])$, where \hat{e} was arbitrary.
- ... iff $\mathcal{V}_{\mathcal{I}}^{\hat{e}}(\psi[\beta/\alpha]) = 1$ for all γ -variants \hat{e} of \hat{a} iff $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi[\beta/\alpha]) = 1$.
- **L12.9** If $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ and $\mathcal{M}' = \langle \mathbb{D}, \mathcal{I}' \rangle$ where \mathcal{I} and \mathcal{I}' agree about every constant α and n-place predicate \mathcal{F}^n that occurs in φ , it follows that $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{I}'}^{\hat{a}}(\varphi)$ for any variable assignment \hat{a} over \mathbb{D} .

 $\textit{Base: } \langle \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_1), \ldots, \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_n) \rangle \in \mathcal{I}(\mathcal{F}^n) \textit{ iff } \langle \mathcal{V}_{\mathcal{I}'}^{\hat{a}}(\alpha_1), \ldots, \mathcal{V}_{\mathcal{I}'}^{\hat{a}}(\alpha_n) \rangle \in \mathcal{I}'(\mathcal{F}^n).$

- $\mathcal{I}(\mathcal{F}^n) = \mathcal{I}'(\mathcal{F}^n)$ is immediate from the assumption.
- $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_i) = \mathcal{I}(\alpha_i) = \mathcal{I}'(\alpha_i) = \mathcal{V}_{\mathcal{I}'}^{\hat{a}}(\alpha_i)$ if α_i is a constant.
- $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_i) = \hat{a}(\alpha_i) = \mathcal{V}_{\mathcal{I}'}^{\hat{a}}(\alpha_i)$ if α_i is a variable.

- **L12.10** For any constant β that does not occur in $\forall \alpha \varphi$ or in any sentence $\psi \in \Gamma$, if $\Gamma \models \varphi[\beta/\alpha]$, then $\Gamma \models \forall \alpha \varphi$.
 - 1. Assume $\Gamma \vDash \varphi[\beta/\alpha]$ for constant β not in $\forall \alpha \varphi$ or Γ .
 - 2. Assume $\Gamma \nvDash \forall \alpha \varphi$, and so \mathcal{M} satisfies Γ but $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\forall \alpha \varphi) \neq 1$.
 - 3. So $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi) \neq 1$ for some α -variant \hat{c} of \hat{a} .
 - 4. Let \mathcal{M}' by like \mathcal{M} but for $\mathcal{I}'(\beta) = \hat{c}(\alpha)$.
 - 5. By **L12.9**, \mathcal{M}' satisfies Γ since β does not occur in Γ.
 - 6. So \mathcal{M}' satisfies $\varphi[\beta/\alpha]$ since $\Gamma \vDash \varphi[\beta/\alpha]$.
 - 7. By **L12.6**, $\mathcal{V}_{\tau'}^{\hat{c}}(\varphi[\beta/\alpha]) = 1$ for all \hat{c} , and so for \hat{c} in particular.
 - 8. Since β is not in $\forall \alpha \varphi$, we know β is not in φ .
 - 9. So $\mathcal{V}_{T'}^{\hat{c}}(\varphi) \neq 1$ by **L.12.9** given (3) above.
 - 10. By (4) above, $\mathcal{V}_{\mathcal{I}'}^{\hat{c}}(\alpha) = \mathcal{V}_{\mathcal{I}'}^{\hat{c}}(\beta)$ where β is free for α .
 - 11. By **L12.8**, $\mathcal{V}_{T'}^{\hat{c}}(\varphi) = \mathcal{V}_{T'}^{\hat{c}}(\varphi[\beta/\alpha])$.
 - 12. Thus $\mathcal{V}_{\tau'}^{\hat{c}}(\varphi[\beta/\alpha]) \neq 1$, contradicting the above.
- **L12.11** $\forall \alpha \varphi \models \varphi[\beta/\alpha]$ where α is a variable and $\varphi[\beta/\alpha]$ is a sentence.
 - Let \mathcal{M} satisfy $\forall \alpha \varphi$, so $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\forall \alpha \varphi) = 1$ for some \hat{a} .
 - So $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi)=1$ where $\hat{c}(\alpha)=\mathcal{I}(\beta)$ for an α -variant \hat{c} of \hat{a} .
 - By L12.8, $\mathcal{V}_{\mathcal{T}}^{\hat{c}}(\varphi) = \mathcal{V}_{\mathcal{T}}^{\hat{c}}(\varphi[\beta/\alpha])$, and so $\mathcal{V}_{\mathcal{T}}^{\hat{c}}(\varphi[\beta/\alpha]) = 1$.
- **L12.12** If $\Gamma \vDash \varphi$ and $\Sigma \cup \{\varphi\} \vDash \psi$, then $\Gamma \cup \Sigma \vDash \psi$.
- **L12.13** $\varphi[\beta/\alpha] \models \exists \alpha \varphi$ where α is a variable and $\varphi[\beta/\alpha]$ is a sentence.
- **L12.14** For any constant β that does not occur in $\exists \alpha \varphi$, ψ , or in any sentence $\chi \in \Gamma$, if $\Gamma \vDash \exists \alpha \varphi$ and $\Gamma \cup \{\varphi[\beta/\alpha]\} \vDash \psi$, then $\Gamma \vDash \psi$.
- **L12.15** If α and β are constants, then $\varphi[\alpha/\gamma]$, $\alpha = \beta \vDash \varphi[\beta/\gamma]$.

QD Rules

- (\forall I) $\varphi_i = \varphi[\beta/\alpha]$ for $i \le n$ live at n+1 where β is not in φ_{n+1} or Γ_{n+1} .
 - So $\Gamma_i \vDash \varphi_i$ by hypothesis, and $\Gamma_i \subseteq \Gamma_{n+1}$ by **L12.2**.
 - Thus $\Gamma_{n+1} \vDash \varphi_i$ by **L12.1**, so $\Gamma_{n+1} \vDash \varphi[\beta/\alpha]$.
 - So $\Gamma_{n+1} \vDash \forall \alpha \varphi$ by **L12.10** since β not in $\forall \alpha \varphi$ or Γ_{n+1} .
 - Equivalently, $\Gamma_{n+1} \vDash \varphi_{n+1}$.
- $(\forall E) \quad \bullet \quad \varphi_i = \forall \alpha \varphi \text{ for } i \leq n \text{ live at } n+1 \text{ where } \varphi_{n+1} = \varphi[\beta/\alpha].$
 - So $\Gamma_i \vDash \varphi_i$ by hypothesis, and $\Gamma_i \subseteq \Gamma_{n+1}$ by **L12.2**.
 - Thus $\Gamma_{n+1} \vDash \varphi_i$ by **L12.1**, so $\Gamma_{n+1} \vDash \forall \alpha \varphi$.
 - By L12.11 $\forall \alpha \varphi \vDash \varphi[\beta/\alpha]$, and so $\Gamma_{n+1} \vDash \varphi[\beta/\alpha]$ by L12.12.
 - Equivalently, $\Gamma_{n+1} \vDash \varphi_{n+1}$.