Projeto de Circuitos Fotônicos em Silício

Atividade - Interferômetro de Mach-Zehnder

Erick Cândido Sousa

E-mail: erick.sousa@ee.ufcq.edu.br

GitHub: https://github.com/EriCand-Ss

Primeira etapa – Cálculo de ΔL e x:

- Nesta etapa é utilizado o solver FDE, visto a facilidade para se obter o índice de grupo e índice efetivo para um dado comprimento de onda específico;
- n_{eff} obtido é igual a 2.35370 e n_g obtido é 4.33629, para $\lambda=1550$ nm; Obtém-se ΔL igual a 554.045 µm, 55.404 µm e 27.702 µm;
- É adotado um guia retangular menor com comprimento L_1 igual a 50 μ m;
- Considerando a topologia, para inverter o perfil de interferência, uma simulação é feita considerando o guia retangular maior com comprimento $L_{_{1}}$ + ΔL e outra simulação com o guia com comprimento $L_1 + \Delta L + x$, onde x = 0.329 µm.

Segunda etapa – Caso Ideal:

- Picos de transmissão em 0 dB (sem perdas);
- · Perfis de interferência com picos e vales alternados.

Figura 1 – Transmissão para cada FSR – Caso Ideal.

Terceira etapa – PDK SciPIC:

- PDK fornecido pela foundry SciPIC open-source;
- Os picos de transmissão não chegam a ser 0 dB, mas ainda assim possui uma resposta bem otimizada.

Figura 2 – Transmissão para cada FSR – PDK SciPIC.

Quarta etapa – Modelos próprios:

- Parâmetros S para Y-Branch não otimizado obtidos em atividades anteriores;
- Guias retangulares são lineares, logo basta o arquivo .ldf;
- Note que possui a pior das transmissões no pico, porém ainda assim acima de -3 dB.

Figura 3 – Transmissão para cada FSR - Modelos próprios.

Quinta etapa – FSR x Comprimento de Onda:

Figura 4 – FSR x Comprimento de onda, referente aos valores de ΔL calculados.