2. How many element are in M2 (Z2)? How many are writs?

Since $\mathbb{Z}_2 = \mathcal{L}[Q]_2$, $[U]_2$, $[\mathbb{Z}_2]_2 = 2$ For each of C_1 , b_1 , C_2 , there are 2 choices So by combination, there are $4^2 = 16$ elements

Deliate one elements with multiplicative inverse.

Since any combination of

[0], [1] can only multiply to get

[0] [1],

And modular arithmetic with results ≤ n is

the same as integer arithmetiz.

the multiplication is just the same rule as in M2(60,13). So the problem is to find invertible matrices (i.e. $\det \neq 0$) in M2({0,13})

O Pe, le ESAT

(3) SAT is closed under addition.

(3) SAT is closed under additive inverses.

(4) S is closed under multiplication.

Since S, T are submiss of R, $I_S = I_R$, $Q_S = Q_R$, $I_T = I_R$, $Q_T = Q_R$ So $I_R \in S$, $I_R \in T$, $Q_R \in S$, $Q_R \in T$ Therefore $I_R \in S$ M, $Q_R \in S$ M, we have proved Q

Let a, b be arbitrary elements in SNT

so a, b \in S, \and b \in T

Then \arb \in S, \arb \in T, \ab \in S, \ab \in T

since S, T \are rings (colditation and

So \arb \in SNT, \ab \in SNT \quad multiplication are
clared

we have proved \(\theta\), \(\phi\)

det \$0 (invertible, unit):

All other 6 matrices.

([' |], [0], [0 |], [0 |],

[| 0], [0 |], [0 |],

So 6 units

3. T/F: Let R be a ring,
S,7 be submiss of R

Time,
SOT is a submiss of R.

H. By worksheet 7, it suffices to show that

Since $\alpha+b=0$ s = 0R for some $b\in S$ a+c=07 = 0R for some $c\in T$ b=c=0R-a=-a in RSo $-a\in S$ NT, we have proved BConclusion: SNT is a subving of R