Animas River Arrastra Gulch to Bakers Bridge

Ecological Risk Assessment

4/25/2016

Overview

- Ecological Risk Assessment (ERA) Process
- Ecological Risk Assessment Tools
- Results
 - Benthic Macroinvertebrates
 - Fish
 - Wildlife; Not discussed in detail today
- Conclusions

Ecological Risk Assessment (ERA)

- Evaluates the likelihood that adverse ecological effects may occur or are occurring as a result of exposure to site contamination.
- ERA is designed to support decision making to mitigate risk where needed.
- Risks may include survival, reproductive impairment, growth impairment and loss of habitat.
- Risks are estimated at the population level (populations on site).

4/25/2016

U.S. Environmental Protection Agency

Exposure Units

- Cement Creek
 Not discussed in detail today
- Mineral Creek
 Not discussed in detail today
- Animas Upstream of Cement Creek to Arrastra Data averaged across entire reach
- Animas from Cement Creek to Mineral Creek
 Not discussed in detail today
- Animas downstream of Cement Creek
 Data evaluated at individual stations due to distance between each location.

4/25/2016

U.S. Environmental Protection Agency

Exposure Point Concentrations

- Reasonable Maximum Exposure (RME)
 - 95% upper confidence level of the mean if dataset allows
 - Otherwise maximum value is used
 - Hardness dependent metals use 95% lower confidence limit of the mean.
- Central Tendency (CT)
 - Arithmetic or geometric mean

Measurement Endpoints or Lines of Evidence

- HQ Approach
- Site Specific Toxicity Testing
- Community or Population Surveys

Hazard Quotient (HQ)

HQ = Exposure / Benchmark

HQ<1 = Acceptable risk

HQ>1 = Further evaluation warranted *or* unacceptable risk

Toxicity Testing

Community Surveys

4/25/2016

U.S. Environmental Protection Agency

Community Surveys-Habitat

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	(Valvita)	Condition Congery			
	Parameter	Optimal	Subaptimal	Marginal	Peer
	6. Channel Atterstion	Channelization or dividging absent or mittings: stream with necessal pastern.	Same channelozation present usually in useus of bridge abustineras; evidence of past channelizations, i.e., directions, present than past 20 yr may be present, but receive channelizations is not present present.	Characlization may be extensive, enduntaments on sharing securates present on both banks, and 40 to 80% of stream reach charactized and disrupted.	Banks shored with gabins or coment; over 80% of the stream track channelized and disrupted. Instrum habitat greatly altered or ressoved entirely.
	SCORE	20 19 18 17 16	15 14 13 12/31/	10 9 8 7 6	5 4 3 2 1 0
ang reach	7. Frequency of Riffles (or heads)	Cocurence of eiffics scatteredy frequent; ratio of distance between riffic divided by width of the stream *7.5 (generally 5 to 7), writery of habitat is key. In streams where riffics are continuous, phacement of beaders or other large, manual obstruction is supportant.	Occumence of ridfles infrequent, distance to between ridfles divided by the width of she stream is between 7 to 15.	Occasional riffle or bend; buttons connect provide stone facility, definace between riffles divided by the width of the speam is between 15 to 25.	Generally all flat water or shallow ridine; poor habitat, distance between rifles divided by the width of the stellows is a exten of >25.
duse	SCORE (C	26 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	3 4 3 2 1 0
THE PARTY OF TAXON OF PARTY OF THE PARTY OF	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of enosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Modernisely stable; infrequent, small areas of erosion mostly bealed over, 5-30% of bank in result has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of crosses; high crosses potential during floods	Unstable, many emoded stream, "raw" areas frequent along straight socious and bends; obvious basis sloughing; 60-100% of basis has emptional scass.
	SCORE (LB)	Left Bunk 10 👂	8 7 . 6	5 4 3	2 8 0
	SCORE (RB)	Right Back 10 (4)	8 7 . 6	5 4 3	2 1 0
	9. Vegetative Protestion (score each hank)	More than 90% of the streambank surfaces and immediate reparison zone covered by native vegetation, including trees, understory abrubs, or homoody macrophytes, vegetative disruption through greating or moving minimal or not evident; almost all plants allowed to grow notangity.	70-90% of the streambank surfaces convered by easilive vegetation, but one class of plants is not well-represented; disruption evident but not affecting fall plant growth potential to any great extent, more than one-half of the pattential plant scabble height remaining.	SH-70% of the streambank surfaces covered by sugatation; disruption obvious; parches of born soil or closely cropped vegetation comman; less than orenhelf of the processoil plans stubble height remaining.	Less than \$0% of the societies with an \$0% of the societies with a societies of covered by registration, disruption of secratobase, disruption of secratobase, deposition in surely high; vegetation has been exmare and to sometime to the societies of less in average stubble height.
- 8	SCORE (L/(LB)	Left Bank (19 9	1 7 6	5 4 3	2 1 8
	SCORE /[/(RB)	Right Bank (19/9	8 7 6	5 6 3	2 1 0
- Section Control of the Control of	10. Réparian Vegetative Zane Width (score each bank ripsrises zene)	Width of riparian zone >18 meters, human activities (i.e. parking fors, relativeds, there exis, forens, or crops) have not ampacted zone.	Width of riperion zone 12-13 meters; human activities have impacted zone only minimally.	12 meters; human activities bave impacted zone a great deal.	Width of rigarian zone <6 meters: Intle or ao rigarian vegetation due to human activities.
	SCORE(LB)	Left Bank 10 9	8 (2) 6	5 4 3	2 1 0
4.	SCORE 1 (RB)	Right Bank 10 - 79)	8 7 6	5 4 3	2 1 6

Tutal Score 167

U.S. Environmental Protection Agency

Upper Animas Assessment and Measurement Endpoints

- Maintain a stable and healthy benthic invertebrate community.
 - Hazard Quotient (effect and no effect)
 - Toxicity Tests
 - Community Survey
- Maintain a stable and healthy fish community.
 - Hazard Quotient
 - Toxicity Tests
 - > Community Survey
- Maintain stable and healthy insectivorous, omnivorous, piscivorous bird populations.
 - Hazard Quotient-Food Chain modelling
- Maintain stable and healthy herbivorous mammal populations
 - Hazard Quotient-Food Chain modelling

Results

- Maintain a stable and healthy benthic invertebrate community.
 - Hazard Quotient (effect and no effect)
 - Sediment and Porewater
 - Foxicity Tests
 - > Community Survey
- Maintain a stable and healthy fish community.
 - > Hazard Quotient
 - > Toxicity Test
 - > Community Survey

Sediment Data Evaluation

- Organized by river reach (EU)
- Not enough data to organize by flow regime
- No effect and effect benchmarks
- Sediment concentrations evaluated as RME and CTE.

Zinc Sediment Concentrations and Animas River Elevation

4/25/2016

U.S. Environmental Protection Agency

Sediment HQ Conclusions

- Primary Risk Drivers to benthic community
 - Lead, Manganese and Zinc
 - Elevated risk in all reaches of the mainstem
- Secondary Risk Drivers
 - Cadmium and Copper
 - Varies by reach
- Some metals increase thru canyon
- Bulk metals concentrations highly variable

Pore Water Data Evaluation

- Organized by river reach (EU)
- Not enough data to organize by flow regime
 - 11 samples upstream, 1 or 2 samples/station downstream of Cement Creek
- Hardness evaluated at mean and 95% LCL
- Compared to chronic water quality standards (TVS)
 - Aluminum, pH, dissolved

Sediment Porewater HQs Average Concentration and Average Hardness

Porewater HQ Conclusions

- Risks generally low to moderate
- Risk drivers Al, Cd, Mn and Zn
 - Variable by location
- Upstream risks are substantially higher
 - Driven largely by A61
- Uncertainties
 - Data set is small
 - Aluminum results uncertain (dissolved, no pH)

4/25/2016

U.S. Environmental Protection Agency

Results

- Maintain a stable and healthy benthic invertebrate community.
 - Hazard Quotient (effect and no effect)
 - Sediment and Porewater
 - Toxicity Tests
 - > Community Survey
- Maintain a stable and healthy fish community.
 - > Hazard Quotient
 - > Toxicity Test
 - > Community Survey

4/25/2016

U.S. Environmental Protection Agency

2012 Sediment Toxicity Test Results

All locations statistically different from Control-N

4/25/2016

U.S. Environmental Protection Agency

2014 Sediment Toxicity Test Results

■ Survival (%) ■ Biomass (ug/org)

^{*}statistically different from Control-N for Survival results. All Biomass results statistically less than Control-N. 73EC-statistically different than station A73EC 75CC- statistically different that station A75CC

4/25/2016

U.S. Environmental Protection Agency

Survival vs Mn HQs in Porewater?

Sediment Toxicity Test Conclusions

- Survival results variable between 2012 and 2014
 - -2012:
 - All locations showed low survival and biomass compared to lab control.
 - -2014:
 - Upstream locations had low survival compared to lab control.
 - Most locations had low biomass compared to Elk and Cascade creek locations
 - All locations had low biomass compared to lab control
- Responses not obviously correlated to bulk metals
- Responses suggest Mn playing a role in toxicity

Results

- Maintain a stable and healthy benthic invertebrate community.
 - Hazard Quotient (effect and no effect)
 - Sediment and Porewater
 - > Toxicity Tests
 - Community Survey
- Maintain a stable and healthy fish community.
 - > Hazard Quotient
 - > Toxicity Test
 - > Community Survey

4/25/2016

U.S. Environmental Protection Agency

Benthic Community Survey Methods

4/25/2016

U.S. Environmental Protection Agency

Historic Data Uncertainty

- Multiple methods listed in the datasheets and reports
- CO Multi-Metric Index (MMI) recalibrated
 - Comprised of different metrics
 - Different identification requirements
 - Different classification of organisms
- Comparisons with historic data
 - 2014 calculated to match historic data
 - Historic data reclassified to match current requirements where possible
- Consider as qualitative estimates

4/25/2016

U.S. Environmental Protection Agency

2014 MMI

4/25/2016

U.S. Environmental Protection Agency

Adjusted MMI

Benthic Community Survey Conclusions

- 2014 results scored as impaired at several locations.
 - Impairment greatest below Cement Creek
 - Recovery evident downstream
 - Upstream not consistently or severely impaired
- Historic trends
 - Results are uncertain
 - A72,A73 consistently impaired
 - A68 inconsistently and moderately impaired

4/25/2016

U.S. Environmental Protection Agency

Benthic Invertebrate Risk Conclusions

- Evidence shows strong likelihood of risk to invertebrates in the Animas River.
- Severity decreases downstream.
- Chemistry variable by location.
- Effects not obviously attributable to single metal.
- Chemistry vs Effect not consistent across lines of evidence

Results

- Maintain a stable and healthy benthic invertebrate community.
 - Hazard Quotient (effect and no effect)
 - Sediment and Porewater
 - > Toxicity Tests
 - Community Survey
- Maintain a stable and healthy fish community.
 - > Hazard Quotient
 - > Toxicity Test
 - > Community Survey

Surface Water HQ Assessment

- Two approaches
 - 1) Averaging over a reach and flow regime
 - Metals concentrations-95%UCL (or maximum) and mean
 - Hardness-95%LCL (or minimum) and mean
 - RME and CTE for both mean and low hardness
 - 2) Scatter plot across reach and flow regime
 - HQs from paired hardness and metal concentration
 - Benchmark normalized to sample hardness
- Flow regime (where data is adequate)
 - Pre-runoff (Feb-April), Runoff (May-June), Post-runoff (July-Nov)

4/25/2016

U.S. Environmental Protection Agency

Zinc Surface Water HQs

4/25/2016

Zinc Surface Water HQs

Aluminum Surface Water HQs

4/25/2016

U.S. Environmental Protection Agency

Aluminum Surface Water HQs

4/25/2016

U.S. Environmental Protection Agency

Mini-Sipper

Thomas Chapin, USGS

MiniSipper: A new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring.

Science of the Total Environment 439 (2012) 343–353

Mini-Sipper Data

- 2013 (mid April-July)
 - A72, A73, A75D
- 2014 (mid April-July)
 - A55, A56, A68, A72, A73, A75D, BB
- 2015 (mid Nov-mid April)
 - LA2, A45, A55, A68, A72, BB

4/25/2016

U.S. Environmental Protection Agency

Use of Mini-Sipper data in BERA

- Several limitations
 - 10um filter
 - Limited QA
 - Subject to smearing
- Screening level data
- Consistent with grab samples trends?

4/25/2016

2013 Mini-Sipper data (Zn HQ)

4/25/2016

U.S. Environmental Protection Agency

2014 Mini-Sipper data (Zn HQ)

Zinc HQ(A73) — Zinc HQ (A75D) — Zinc HQ (BB)

5

6

3

U.S. Environmental Protection Agency

42

4/25/2016

Surface Water HQs Conclusions

- Animas Upstream of Cement Creek
 - Elevated risk most flow regimes
 - Risk driven by Al, Cd and Zn
 - Seasonally (pre-runoff) significant risk from primarily Zn
- Animas downstream of Cement Creek
 - High HQs during almost all flow regimes
 - Risk driven by Aluminum and to a lesser degree by Zinc
 - Effects expected down to at least Bakers Bridge
 - Effects lessen downstream
- Mini-sipper results are consistent with grab samples.

Results

- Maintain a stable and healthy benthic invertebrate community.
 - > Hazard Quotient (effect and no effect)
 - Sediment and Porewater
 - > Toxicity Tests
 - > Community Survey
- Maintain a stable and healthy fish community.
 - Hazard Quotient
 - > Toxicity Tests
 - > Community Survey

Toxicity Tests

- Test Dates
 - Oct 2012, Nov 2012 and April 2013
- Dilution Series
 - Establish dose response
- Profile Tests
 - Test individual stations
- Rainbow trout
- 96hr-standard methods

Example SW Toxicity Test Results

4/25/2016

U.S. Environmental Protection Agency

SW Toxicity Test Results

- Acute toxicity observed
 - M34, CC48, A72 (~0% survival)
- Acute toxicity observed seasonally
 - A68 (67.5% survival)
- No acute toxicity observed downstream of A72
 - A73, A73B, A75B, Bakers Bridge

Trout Survival vs Zinc HQs pooled toxicity test data

Results

- Maintain a stable and healthy benthic invertebrate community.
 - Hazard Quotient (effect and no effect)
 - Sediment and Porewater
 - > Toxicity Tests
 - > Community Survey
- Maintain a stable and healthy fish community.
 - > Hazard Quotient
 - Foxicity Tests
 - Community Survey

4/25/2016

U.S. Environmental Protection Agency

Fish Community Survey Results

Colorado Parks and Wildlife Data

4/25/2016

U.S. Environmental Protection Agency

2014 Fish Survey Results

Animas at Cascade Creek (Tefts Spur)

2014

- 9 brook trout and 2 brown trout (~2.4 lbs/acre)
- 1 juvenile and 10 adults
- Brook trout Wr = 96%, brown trout Wr = 100%

4/25/2016

2014 Fish Survey Results

Animas at Howardsville above Cunningham Creek

2014

- 162 brook (~17 lbs/acre)
- Multiple age classes
- Brook trout Wr = 102%, up from 85% in 2010

4/25/2016

Fish Survey Results

- 2014 Survey Results at Cascade Creek
 - Fishery significantly impaired
 - 30% reduction from 2010
 - Poor age class structure, low body condition
 - 2 Brown trout present
- 2014 Survey Results above Howardsville
 - Less fish than 2010 but biomass is about the same
 - Good body condition
- Time trend
 - Animas fishery below Cement Creek has dramatically declined since 2005

4/25/2016

U.S. Environmental Protection Agency

BERA Conclusions

- Aquatic community is impaired from Cement Creek to Bakers Bridge.
 - Surface water and sediment
 - Aluminum, zinc, cadmium, manganese, pH
- Elevated risk upstream
 - Surface water and sediment
 - Seasonally influenced
 - Aluminum, zinc and cadmium
- Risks to wildlife using Animas River is low

4/25/2016

U.S. Environmental Protection Agency

4004232

ED_000552D_00000549-00055

Zinc Hazard Quotients in Sediments*

*geometric means. High seasonal variability at some locations.

4/25/2016

U.S. Environmental Protection Agency

Zinc Hazard Quotients in Sediments*

*geometric means. High seasonal variability at some locations.

4/25/2016

U.S. Environmental Protection Agency

Vertical line represents high end

4/25/2016

U.S. Environmental Protection Agency

4/25/2016

U.S. Environmental Protection Agency

Survival v Biomass

2013 Flows

2013 Mini-Sipper Results

Pb 2013

2013 Mini-Sipper Results

2014 Additional Sediment Toxicity Test Results

*statistically different from Control N for Survival results All Biomass results statistically less than Control N

4/25/2016

U.S. Environmental Protection Agency

Biomass v Mn HQs in Porewater?

Species Sensitivity

		Calculated Values at Hardness of 50 mg/L CaCO ₃		
Species	Metal	LC50 Toxicity Thresholds (f)	Acute Toxicity Thresholds (g)	Chronic Toxicity Thresholds (h)
Brown Trout	Cadmium	2.43	1.21	0.99
Rainbow Trout	Cadmium	2.67	1.33	1.30
Brook Trout	Cadmium	2.31	1.15	ACR (i)
Brook Trout	Copper	45.44	22.72	ACR (i)
Brown Trout	Copper	36.09	18.05	16.61
Cutthroat Trout	Copper	48.81	24.41	ACR (i)
Rainbow Trout	Copper	26.72	13.36	10.78
Brook Trout	Zinc	1464.91	732.46	627.29
Brown Trout	Zinc	565.83	282.91	346.50
Cutthroat Trout	Zinc	281.93	140.96	107.07
Rainbow Trout	Zinc	242.39	121.19	129.76

4/25/2016

Where the pH is equal to or greater than 7.0 in the receiving water after mixing, the chronic hardness-dependent equation will apply. Where pH is less than 7.0 in the receiving water after mixing, either the 87 µg/l chronic total recoverable aluminum criterion or the criterion resulting from the chronic hardness-dependent equation will apply, whichever is more stringent

4/25/2016

U.S. Environmental Protection Agency

Assessment Endpoints

Definition

".....explicit expressions of the environmental values to be protected."

- EPA 1992

Ecological relevance Sensitivity Exposure Management relevance

Measurement Endpoint

Definition

".....a quantifiable ecological characteristic that reflects....effects on the assessment endpoint."

- EPA 1992

Relevance to assessment endpoints Ecological relevance Mechanism of toxicity