Problema 6. Mostrar que la cardinalidad del conjunto de todos los subconjuntos medibles del intervalo [0,1] es más grande que la cardinalidad del continuo.

Demostración.

Sean \mathcal{M} el conjunto de todos los subconjuntos medibles del intervalo [0,1] y $f: \mathcal{M} \to [0,1]$ definida como $f(A) = \inf(A)$ y $f(\emptyset) = 0$. Esta función está bien definida pues cualquier subconjunto no vacío y medible del intervalo [0,1] está acotado inferiormente por 0, por lo que existe su ínfimo y este es único.

Luego, para cualquier $x \in [0,1]$, se tiene que el intervalo $[x,1] \subseteq [0,1]$ es medible y $\inf([x,1]) = x$, es decir, f([x,1]) = x. Así, f es sobreyectiva lo cual implica que $|f(\mathcal{M})| \ge |[0,1]|$.

Después, dado que $f([0,1]) = 0 = f(\emptyset)$, se obtiene que f no es inyectiva. De esta manera, $|f(\mathcal{M})| > |[0,1]|$, que es lo que se quería demostrar.

Problema 7. Sea C un círculo de circunferencia 1, y sea α un número irracional. Supongamos que todos los puntos de C que se pueden obtener entre sí girando C a través de un ángulo $n\alpha\pi$ (donde n es cualquier número entero, positivo, negativo o cero) se asignan a la misma clase. Claramente, cada una de esas clases contiene incontables puntos. Sea Φ_0 cualquier conjunto que contenga un punto de cada clase. Demuestre que Φ_0 no es medible.

Demostración.

Para cada $c \in C$, se denotará al ángulo de c como θ_c .

Sea Φ_0 un conjunto que contenga un punto de cada clase. Para cada $z \in \mathbb{Z}$, se define Φ_z un conjunto formado por los puntos de Φ_0 rotados en un ángulo $z\alpha\pi$. Es inmediato que para todo $z \in \mathbb{Z}$, $\Phi_z \subseteq C$. Luego, sea $c \in C$, existe $c' \in \Phi_0$, tal que $\theta_c + z_0\alpha\pi$ es el ángulo de c', para algún $z_0 \in \mathbb{Z}$. De este modo, se tiene que $c \in \Phi_{-z_0}$. De lo anterior se obtiene que:

$$C = \bigcup_{z \in \mathbb{Z}} \Phi_z$$

Afirmación: Si $x, y, w \in C$ son tales que x y y se obtienen al rotar w en un ángulo de $m\alpha\pi$ y en otro de $n\alpha\pi$, con $m \neq n$, respectivamente, entonces $x \neq y$.

Suponiendo que x=y, se tiene que $\theta_x=\theta_y$, por lo que $\theta_w+m\alpha\pi=\theta_w+n\alpha\pi$ lo cual implica que m=n, lo cual es una contradicción. Por lo tanto, $x\neq y$.

Lo anterior demuestra que dos elementos que pertenecen a una misma clase y se obtienen al de rotar un punto en distintos múltiplos de $\alpha\pi$, son distintos.

Ahora, suponiendo que existen $m, n \in \mathbb{Z}$ distintos tales que $\Phi_m \cap \Phi_n \neq \emptyset$, entonces sea $x \in \Phi_m \cap \Phi_n$, existen $y_1, y_2 \in \Phi_0$ tales que $\theta_x = \theta_{y_1} + m\alpha\pi = \theta_{y_2} + n\alpha\pi$. Así, $\theta_{y_1} = \theta_{y_2} + (n-m)\alpha\pi$, por lo que y_1 y y_2 son de la misma clase y como ambos son resultado de rotar a x en distintos múltiplos de $\alpha\pi$, se obtiene que $y_1 \neq y_2$, por la afirmación anterior. Luego, como y_1 y y_2 son de la misma clase, existe $w \in C$ tal que $\theta_w + m_1\alpha\pi = \theta_{y_1}$ y $\theta_w + n_1\alpha\pi = \theta_{y_2}$, donde $m_1 \neq n_1$, pues $y_1 \neq y_2$. De esta forma, x se obtiene al rotar a w en un ángulo de $(m+m_1)\alpha\pi$ y en un ángulo de $(n+n_1)\alpha\pi$, los cuales son distintos pues $m \neq n$ y $m_1 \neq n_1$. Esto es una contradicción puesto que, por la afirmación, se tendría que $x \neq x$.

De esta manera, $\Phi_m \cap \Phi_n = \emptyset$ para cualesquiera $m, n \in \mathbb{Z}$, con $m \neq n$.

Por último, suponiendo que Φ_0 es medible, se tiene que para todo $z \in \mathbb{Z}$, Φ_z también lo es. Aun más, $\mu(\Phi_0) = \mu(\Phi_z)$ para todo $z \in \mathbb{Z}$. Así,

$$\sum_{z \in \mathbb{Z}} \mu(\Phi_0) = \sum_{z \in \mathbb{Z}} \mu(\Phi_z) = \mu\left(\bigcup_{z \in \mathbb{Z}} \Phi_z\right) = \mu(C) = 1$$

lo cual no puede ser, ya que $\mu(\Phi_0) \ge 0$, por lo que $\sum_{z \in \mathbb{Z}} \mu(\Phi_0)$ es cero o infinito.

Por lo tanto, Φ_0 no es medible.