# (12) 公開特許公報(A)

# (11)特許出願公開番号

# 特開平11-169690

(43)公開日 平成11年(1999)6月29日

| (51) Int.Cl. <sup>6</sup> |       | 識別記号 | FΙ      |       |     |
|---------------------------|-------|------|---------|-------|-----|
| B01D                      | 69/02 |      | B01D    | 69/02 |     |
| A 6 1 M                   | 1/16  | 500  | A 6 1 M | 1/16  | 500 |
| B 0 1 D                   | 71/40 |      | B 0 1 D | 71/40 |     |
|                           | 71/69 |      |         | 71/69 |     |

|          |                  | 審查請求          | 未請求 請求項の数4 FD (全 9 頁) |  |  |  |
|----------|------------------|---------------|-----------------------|--|--|--|
| (21)出願番号 | 特願平9-363136      | (71)出願人       | 000226242             |  |  |  |
|          |                  |               | 日機装株式会社               |  |  |  |
| (22)出顧日  | 平成9年(1997)12月15日 |               | 東京都渋谷区恵比寿3丁目43番2号     |  |  |  |
|          |                  | (72)発明者 中尾 通治 |                       |  |  |  |
|          |                  |               | 石川県金沢市北陽台3-1 日機装株式会   |  |  |  |
|          |                  |               | 社金沢製作所内               |  |  |  |
|          |                  | (72)発明者       | 堀 禎憲                  |  |  |  |
|          |                  |               | 石川県金沢市北陽台3-1 日機装株式会   |  |  |  |
|          |                  |               | 社金沢製作所内               |  |  |  |
|          |                  | (72)発明者       | 吉田 政司                 |  |  |  |
|          |                  |               | 石川県金沢市北陽台3-1 日機装株式会   |  |  |  |
|          |                  |               | 社金沢製作所内               |  |  |  |
|          |                  | (74)代理人       | 弁理士 津久井 照保            |  |  |  |
|          |                  |               | 最終頁に続く                |  |  |  |

# (54) 【発明の名称】 血液浄化膜

(57)【要約】

【課題】 親水性高分子の漏出阻止性と良好な血液適合性とを両立させ得る血液浄化膜を提供する。

【解終手段】 ボリアリレート樹脂とポリスルホン樹脂 とを主たる膜素材とした除水性高分子板の表面に、ポリ ビニルビコリドンの水溶液を破水性高分子板に接触さ せ、疎水性高分子板1平方メートルあたり3ミリグラム 以上50ミリグラム以下のポリビニルビコリドンを付着 保持せしめた。



### 【特許請求の範囲】

【請求項1】 親水性高分子を疎水性高分子膜に保持させた血液浄化膜であって.

疎水性高分子膜1平方メートルあたりの親水性高分子の 保持量を、3ミリグラム以上50ミリグラム以下とした ことを特徴とする血液浄化膜。

【請永項2】 前記製水性高分子がポリビニルセロリド であることを特徴とする請求項1記載の血液浄化膜。 【請永項3】 製水性高分子の溶液を疎水性高分子膜に 接触させることにより、誤水性高分子を疎水性高分子膜 に物理的に付着保持せしめたことを特徴とする請求項1 又は請求項2記載の血液浄化度。

【請求項4】 前記球水性高分子模は、ポリアリレート 樹脂とポリスルホン樹脂とを主たる模素材としているこ とを特徴とする請求項1から3のいずれかに記載の血液 冷化膜。

## 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、血液浄化療法に用いる血液浄化膜に関する。

### [0002]

【従来の技術】血液浄化療法は、血液中の不要物質(展 麻症物質等)を除去する治療方法である。この血液浄化 療法では、半透膜や限外薬油酸を血液浄化膜として用い ている。例えば、5000本~10000本程度の中空 条膜(血液浄化膜を中空条状に紡糸したもの)を東ねた 中空糸束を、ケーシング内に装填して構成した血液浄化 整を用いている。

【0003】この血液浄化療法には、血液活所療法、血液 液準過療法、あるいは血液活過透析療法等がある。血液 透析療法では、血液浄化器に対ける中空系膜の内表面側 に血液を流すとともに外表面側に透析液を液し、中空系 膜を介して血液と透析液とを接触させ、拡散により尿毒 症物質及び体内の過剰な水分を除去する。血液準過療法 では、血液液や化器に対ける中空系膜の内表面側に血液を 流すことにより、尿毒症物質を識別除去する。また、血 液液過過転療法では、血液液過解法 力の特性、即ち、濾過と拡散によって尿毒症物質と体内 の過剰な水分を除去する。

【0004】この血液学化療法で用いる血液学化療としては、セルロースに代表される親水性高分子や、ポリスルホン、ポリエステルに代表される親水性高分子やが好適に用いられている。機械的強度に優れ、生体への影響が少ないからである。しかしながら、一般的に、森水性材料(高分子)を血液浄化膜として使用するためには、この球水性材料に親水性を付りしている場合が多い。これは、疎水性材料のみから製造された膜の表面には、タンパク資や血小板等の血液成分の付着が起こりやすく、使用中における膜透過性能の低下等が問題になるからである。即ち、球水性材料のみから製造された膜では、良好

な血液適合性が得難いからである。

【0005】そして、森水柱杉採から、親水性の付与された膜を製造する方法としては、製膜原域やに親水性高分子を添加して製膜する方法が一般的になされている。この方法は、元果、森水性科料から血液或分が分離可能な関係して使用していたものが、結束的に森水性科性に選水性を付加して製膜することが出来たものである。この方法に、例えば、ボリビニルゼロリドンが可適に用いられている。即ち、このボリビニルゼロリドンを製態原液に添加る。即ち、このボリビニルゼロリドンを製態原液に添加る。即ち、このボリビニルゼロリドンを製態原液に添加して紡糸することにより、血液成分が適正に分離可能な腰構造を形成すると失に、線水性材料に限水性を付与す

【0006】この方法では、血液成分を適正に分離できるような膜精道を形成するために、比較的多量の親水性 あ分子を添加するを要がある。このため、件数した血液 浄化膜には比較的多量の親水性高分子が残存しており、 この残存した親水性高分子の渦出を阻止する処理が行わ れている。例えば、親水性高分子を熱、放射線、薬品等 で架橋させたりして細田を防いでいる。

#### [0007]

ることができる.

【発明が解決しようとする課題】しかしながら、上記したように、適割な観水性高分子が残存しているため、親 水性高分子の御出を阻止する処理を施したとしても、親 水性高分子の溜出を確実に阻止することが到限であっ た。従って、溜出した親水性恋分子が体内に混入する處 があった。そして、体内に混入した親水性高分子が生体 へ何らかの影響を与える可能性があるため、親水性高分 子の体内への混入をできる限り除去することが望まし

【0008】本発明は、この様な事情に鑑みてなされた ものであり、良好な血液適合性が得られ、尚且つ、親水 性高分子の漏出をも阻止し得る血液浄化膜を提供するこ とを目的とする。

#### [00009]

【課題を解決するための手段】上記した目的を達成する ため、本発明における請求項1記載のものは、現水性高 分子を排水性高分子膜に保持させた血液浄化限であっ て、疎水性高分子膜1平方メートルあたりの現水性高分 子の保持版を、3ミリグラム以上50ミリグラム以下と したことを智能とする。

【0010】また、請求項2記載のものは、請求項1記 載の構成に加えて、前記親水性高分子がポリビニルピロ リドンであることを特徴とする血液浄化膜である。

【0011】また、請求項3記載のものは、請求項1又 は請求項2記載の構成に加えて、親水性高分子の溶液を 球水性高分子膜に接触させることにより、親水性高分子 確成ない。 を球水性高分子膜に接触させるよとにより、親水性高分子 を球水性高分子膜に物理的に付着保持せしめたことを特 徴とする血液浄化膜である。

【0012】また、請求項4記載のものは、請求項1か ら3のいずれかに記載の構成に加えて、前記疎水性高分 子聴は、ポリアリレート樹脂とポリスルホン樹脂とを主 たる膜素材としていることを特徴とする血液浄化膜であ **5**.

## [0013]

【発明の実施の形態】以下、本発明の実施の形態を、図 面を参照して説明する。まず、本発明の血液浄化膜を用 いた血液浄化器について説明する。ここで、図1は、血 液浄化器1を断面にして示した図であり、図2は、ケー シング2の端部における中空糸束の切断面を示した図で ある。

【0014】図1に示すように、血液浄化器1は、ケー シング2と、このケーシング2に対して着脱自在に螺合 する注入側血液ポート3及び排出側血液ポート4とから 構成してある。ケーシング2は、ポリカーボネイトによ り形成された円筒状部材である。そして、このケーシン グ2の側面であって排出側血液ポート4側の端部には透 析液の流入口5を形成してあり、注入側血液ポート3側 の端部には透析液の排出口6を形成してある。

【0015】注入側血液ポート3及び排出側血液ポート 4は、ケーシング2の両端部にて開口を塞ぐように螺合 するもので、ケーシング2と同じくポリカーボネイトに より形成してある。そして、注入側血液ポート3には、 血液を注入するための注入口7が突設してあり、排出側 血液ポート4には、血液を排出するための排出口8を突 設してある。また、注入側血液ポート3とケーシング2 との接触部及び排出側血液ポート4とケーシング2との 接触部には、それぞれ水密性を保つためのOリング9、 9を配設してある。

【0016】ケーシング2の内部空間には中空糸東10 を装填してある。即ち、図2(a)に示すように、50 00本~10000本程度の中空糸膜11…(本実施形 熊における血液浄化原に相当)を東ねたものを装填して ある。なお、図2 (a) では、構成を判り易くするた め、各中空糸膜11…を実際のものよりも太く描いてあ

【0017】ケーシング2における両端の開口部には、

ウレタン系樹脂等のシーリング材12.12を充填して ある。そして、中空糸束10の端部は、開口した中空糸 膜11…が多数密集していると共に、図2(b)にも示 すように、各中空糸膜11…同士の隙間を水密性を確保 した状態でシーリング材12が塞いでいる。このシーリ ング材12、12は透析液の流入口5及び排出口6を塞 いでいない。このため、流入口5、排出口6は、それぞ れ、ケーシング2内における中空糸膜11の外表面側の 空間と連通している。従って、中空糸束10を装填した ケーシング2では、血液の流路である中空糸膜11の内 表面11a側と透析液の流路である中空糸膜11の外表 面側とが中空糸膜11により分離された状態となる。

【0018】次に、中空糸膜11について説明する。本 実施形態における中空糸膜11、即ち、血液浄化膜は、 ポリアリレート樹脂とポリスルホン樹脂とを主たる障素 材とした疎水性高分子膜を中空糸状に紡糸し、尚且つ、 その疎水性高分子膜に親水性高分子の一種であるポリビ ニルピロリドンを付着保持させたものである。

【0019】そして、このポリビニルビロリドンは、疎 水性高分子膜の単位面積当たりの保持量を所定量に調整 してある。具体的には、疎水性高分子膜1平方メートル あたりのポリビニルピロリドンの保持量を、3ミリグラ ム以上50ミリグラム以下の範囲内としてある。

【0020】その理由は、ポリビニルピロリドンの保持 量を70ミリグラム以上とした場合には、血液浄化器1 からのポリビニルピロリドンの湯出が確認され、また、 ポリピニルピロリドンの保持量を1ミリグラム以下とし た場合には、疑固した血液成分が中空糸膜11の内表面 11 a に付着し、この付着した血液成分により比較的短 時間で中空糸膜11の透過能が発揮できなくなってしま うことが確認され、ポリビニルピロリドンの保持量を3 ミリグラム以上50ミリグラム以下の範囲内とすると、 ポリビニルピロリドンの漏出や血液成分の付着がなくな ることが確認されたからである。

【0021】また、上記したポリエステル系樹脂は、 【0022】式 I/E 1.1



上記式中、R<sup>1</sup>及びR<sup>2</sup>は炭素数が1万至5の低級アルキル基であり、 それぞれ同一であっても相違していてもよい。

【0023】で表される繰り返し単位を有するポリアリ

【0024】式 【化2】

レート樹脂であり、ポリスルホン系樹脂は、

上記式中、R<sup>3</sup>及びR<sup>4</sup>は炭素数が1万至5の低級アルキル基であり、

[0025] で表される繰り返し単位数使用であっても相違してと誘動速度を規定する部分で、500オングストローム [0026]式 株満の平均凡能を有する礼、具体的には、孔半径30~ (化3] 10カングストロームの月光形成されている。また、

【0027】で表される繰り返し単位の少なくとも何れ かを有するポリスルホン樹脂である。

【0028】 次に、血液浄化駅の作成手順について説明 する。かお、本実施形態では、血液浄化器1を製造する 過程の中で血液浄化膜が作成されるため、血液浄化器1 の製造工程を説明することにする。ここで、図3は、血 液浄化器1の製造工程の戦略を示すフローチャートであ る。

【0029】最初に、陳水性筋分子を中空糸腹状に結束 まず製旗原族の調製を行う。具体的には、ボリエステル 系樹脂(A)とポリスルホン系樹脂(B)との混合産量 比(A/B)を0.1~10の範囲で定めると共に、両 樹脂の合計量(A+B)が10重量%~25重量%の割 合となるように有機溶媒に溶解する。なお、有機溶媒 は、ポリエステル系樹脂とポリスルホン系樹脂に対して 良溶媒であれば特に制限はないが、Nーメチルピロリド ンが最も好意に使用できる。

る。緻密層は、この膜において、物質の選択透過性並び

に誘誘性を発度する部分で、500オングストローム 未満の平均孔径を有する孔、具体的には、孔半径30~ 100オングストロームの孔が形成されている。また、 多孔質師は維密屋を支持し膜の強度を保つ支持場として 機能しており、報密層よりもかなり粗い孔が形成されて いる。なお、この政水性中空糸膜11~の厚さは、5~ 70マイクロメートル程度である。そして、この膜で は、分子量10000以上の物質は、ほぼ全量(10 の%)が透過できない。

【0032】次に、このように結系した疎水性中空糸膜 11~の東北処理を行う(東北処理工程、ステップ S 2)。この東北処理工程では、5000年~10000 本程度の疎水性中空糸膜11~を1つの東にするバンド ル化がなされる。この疎水性中空糸膜11~の東(中空 糸東10)は、円筒状のケーシング2の内径に応じた外 径に顕彰してある。

【0033】次に、中空糸東10をケーシング2内に装填する(装填工程、ステップ53)。この装填工程では、注入側面液ボート3及び禁出側血液ボート4が外れた状態のケーシング2内に、中空糸東10を製填する。このとき、中空糸東10の外周を予めシートで覆っておき、このシートごとケーシング2内に装填し、装填後にシートを被を取る。

【0034】次に、ボッティングを行う(ボッティング 工程、ステップS4)。このボッティング工程では、 ・シング2の間口部をシーリング材12により對止(シーリング)するとともに、中空糸東10におけるケーシング2の外部にはみ出した部分を、ケーシング2の開口 部と同一平面2 ′となるように切断する。この切断によ り、図2(a)で説明した部が待られる。

【0035】 次に、親水化処理を行う(親水化処理工 報、ステップS5)。この親水化処理工程では、ケーシ ング2の阿離衛に注入側血液ボート3及び排出側血液ボ ート4を装着(螺着)した後に、注入側血液ボート3の 注入口7から所定濃度に関製したポリビニルピロリドン の水溶液(親水性高分子の溶液の一般。 を所定減速でし 入し、血液体化器 1を通過したポリビニルピロリドンの 水溶液を排出側血液ボート4の排出口8から排出する。 そして、この処理を数十秒から数十分行い、ポリビニル ビコリドンとが基保除させる。

【0036】即ち、この親水化処理工程では、ポリビニ ルピロリドンの水溶液を血液浄化器1に接触させること により、ポリビニルピロリドンを付着保持させている。 なお、この根本化処理工程で用いる親本性高分子の溶液 を作製するにあたり、本実施形態では溶媒として精製水 を用いたが、精製水以外の液体を溶媒として使用しても 博わない。そして、この根本化処理工程を経ることによ り、緑水性中空糸披 11 「にはボリビニルビロリドンが 付着保持され、本実施形態における血液浄化膜 (即ち、 中空糸膜 11) が得られる。

【0037】 なお、この親水化処理工程では、親水性高 分子溶液の濃度を適宜変えることにより、付着保持さる 現水性高分子の量を制御できる。即ち、高濃度の親水 性高分子溶液を使用することにより親水性高分子を多く 付着保持させることができ、低濃度の親水性高分子溶液 を使用することにより少ない量の親水性高分子を付着保 持させることができる。

【0038】例えば、ポリビニルビロリドンの1 重量% の木溶液を用いて親木化処理を行うと、ポリアリレート 樹脂とポリスルホン樹脂から製造した緑水性高分子腰に おいては、緑水性高分子膜1平方メートルめたり705 おいては、緑水性高分子膜1平方メートルめたり705 歯外のボ汐ボと用いて破水化処理を行うことにより、稼 水性高分子膜1平方メートルあたり33リグラムのポリ ビニルビロリドンが付着保持された血破浄代数が作製で きる。また、付着保持されたポリビニルビロリドンの量 は、処理前のボリビニルビロリドン本溶液費と処理後 のボリビニルビロリドンが溶液膜皮が後速で表洗浄工 程で除去されたポリビニルビロリドンの量 (即ち、洗浄 液のボリビニルビロリドン流度)とを比較することで募 出できる。とれどゴリドン流度)とと比較することで募 出できる。

【0039】また、この親水化処理工程では、親水性高 分子の分子量を変えることで膜の厚さ方向の親水化の度 合いを変えることができる。即ち、低い分子量の親水性 高分子を使用することにより中空糸膜11の内表面11 a側から膝の厚さ方向の全体に亘って親水性高分子を付 着保持せしめることができ、高い分子量の親水性高分子 を使用することにより中空糸膜11の内表面11aにの み親水性高分子を付着保持せしめることができる。例え ば、ポリビニルピロリドンK-30(平均分子量約40 000) の水溶液を使用して親水化処理を行った場合に は、中空糸膜11の厚さ方向の全体に亘ってポリビニル ピロリドンを付着保持せしめることができ、ポリピニル ピロリドンK-90 (平均分子量約1200000) の 水溶液を使用して親水化処理行った場合には、中空糸膜 11の内表面11aにのみポリビニルピロリドンを付着 保持せしめることができる。

【0040】次に、水洗を行う (洗浄工程、ステップS 6)。この洗浄工程では、ボリビールビロリドン (親水 性商分子)を付着保持させた血液浄化器 1 について、余 刺な親水性高分子を洗浄液により除去する。具体的に は、洗浄液、例えば精製水を血液浄化器 1 内に流す。こ の洗浄工程により、血液浄化器1に付着保持している銀 水性高分子の内、所定の暖着力よりも低い吸着力で吸着 している余剰な銀水性高分子が洗浄除去される、なお、 この洗浄工程後においても血液浄化器1に付着保持され ている銀水性高分子は、血液浄化器1内を流れる血液に よっても鑑視しない。また、この洗浄工程で使用する洗 浄液は精製水に限定されるものではなく、余剰な親水性 高分子を除まできる液体であればよい。

【0041】そして、洗浄が終了した血液浄化器1に精製木を充填し(ステップS7)、この精製木が充填された状態の血液浄化器1に減塩処理を行う(ステップS8)。この減塩処理工程では、y線減塩、蒸気減歯等を除す。

[0042]ところで、以上説明した製造工程では、 旅浄化器 1を製造する過程の中で血液浄化模(中空糸模 11)をも製造するようにした例を示したが、紡糸した 球水性高分子販に対して直接的に親水性高分子の溶液を 接触させ、吸水性高分子を淋水性高分子販に付着保持さ せるようにしてもよい。

【0043】また、中空糸膜11から除去可能な開孔剤 をポリビニルピロリドン (親水性高分子の一種) と共に 製膜原液に添加し、紡糸後に開孔剤を除去することによ り、ポリビニルピロリドンの保持量を低く調整すること もできる。この方法で製造した血液浄化膜では、膜の厚 さ方向の全域に買って親水性が付与されているが、ポリ ビニルビロリドンの保持量が低く調整されているので、 ポリビニルピロリドンが漏出するのを防止することがで きる。但し、本実施形態の如く、予め製膜した疎水性高 分子膜に親水性高分子の溶液を接触させるようにする と、処理が容易であると共に、親水性高分子の付着量の 制御が容易であるという利点を有する。さらに、血液浄 化膜を透過できない高い分子量の親水性高分子(例え ば、ポリビニルピロリドンK-90)を使用することに より、血液浄化際における血液接触側の表面にのみ、滑 択的に親水性高分子を付着保持させることもできる。 【0044】また、上記した実施形態では中空糸膜11

【0044】また、上記した実施形態では中空糸膜1: を例示したが、シート状の膜でもよい。

【0045】また、上記した実施形態では、血液浄化較において使用可能な親水性高分子の内、代表的な親水性 高分子であるポリピニルピロリドンを倒示したが、この ポリピニルピロリドンと同様な性質を有する親水性高分 子であれば、これに限定されない。但し、本実施形態の ようにポリピニルピロリドンを用いた場合には、極く少 虚で高い血液適合性を発揮し得る血液浄化模を作製する ことができる。

【0046】また、緑水性高分子順に関し、本実施形態では、ボリアリレート樹脂とボリスルホン樹脂とを主たる膜素材とした疎水性高分子膜を何示したが、他の疎水性料料による膜でもよい。但し、本実施形態の如く、ボリアリレート樹脂とボリスルホン樹脂とを主たる膜素材

とした疎水性高分子膜を用いた場合には、親水性高分子 の溶液を接触させた際に、他の疎水性材料による膜より も好適に (確実に) 親水性高分子を付着保持させられ る。

### [0047]

【実施例】次に、本発明の実施例を示して、本発明を更 に具体的に説明する。なお、以下の説明では、親水性高 分子として血液浄化膜に好適に旧いられているポリビニ ルビロリドンK-90 (平均分子量約120000) を用いた場合について説明する。

【0048】まず、前記式(1)にて示されるポリアリ レート樹脂 [ (株) ユニチカ製、商品名; Uポリマー] と、前記式(3)にて示されるポリエーテルスルホン樹 脂 [住友化学工業(株)製、商品名;スミカエクセルP ES〕と、Nーメチルピロリドンとから製膜原液を調製 した。なお、ポリアリレート樹脂とポリエーテルスルホ ン樹脂との重量混合比は、1:1とした。また、N-メ チルピロリドン水溶液を凝固液並びに芯液とした。そし て、二重管紡糸口金を用いて製膜原液と芯液とを凝固液 中へ吐出して疎水性中空糸膜11 を作製し、この疎水 性中空糸膜11´を1万本程度東ねて中空糸東10を得 た。さらに、この中空糸東10を円筒状のボリカーボネ イト製のケーシング2内に装填した後に、ポリウレタン 樹脂をシーリング材12として用いて端部を接着し、ケ ーシング2の両端部に血液ポート3、4を接続して、膜 面積1.5平方メートルの血液浄化器1を試作した。

【0049】 (実施例1) 血液浄化器1にボリビニルゼロリドン (BASF製、商品名:コリドンK-9の)の の. 1重量をの水溶液を、常温下で、200mL/minの流量で約1分間流して製水化処理を行い、疎水性為テ光限1平万メートルあたり10ミリグラムのボリビニルビロリドンが付着保持された血液浄化度(中空来程度)を対した。 
なお、ボリビニルビロリドンの付着保持を減乏、酸水化処理前におけるボリビニルビロリドン水溶液の濃度と、駅水化処理前におけるボリビニルビロリドン水溶液の濃度と、吸水化処理がにおけるボリビニルビロリドン水溶液の濃度と、吸水化処理がにおけるボリビニルビロリドン水溶液の濃度及び疾浄液のボリビニルビロリドン水溶液の濃度及び疾浄液のボリビニルビロリドン水溶液の濃度と低、Mullerの方法(K. Muller, Pham. Acta, Helv. 43 (1968) 107-122)を肌いて行った。

【0050】そして、この血統浄化販におけるボリビールビロリドンの調出量(溶出量)を調べる試験を行った。具体的には、血液浄化器 1 内に充填し、70℃で3 時間 加温した後に、充填した液(血液液性溶)を抜き、充填した液(血液溶性溶)を抜き、取り、ボリビニルビロリドンの濃度を制定した。なお、この試験における血液ボート3、4 は、血液浄化膜からの溜出を剥定するためボリビニルビロリドンが付着されていないのを用いた。また、この血液浄化膜における限外減過量 (UFR、mL/hr・mmHg) の経時変

化を調べる影響を行った。具体的には、血酸浄化器 1を 精製木1Lで洗浄した後、牛血液(ヘマトクリット30 %、総質白色、5g/dL)を200mL/minの流 量で循環させるとともに濾過流量を90mL/minの流 線浄化機の表面(即ち、中空を終11の内表面11a) における血小板の付着状態を観察した。具体的には、限 外端過量の器呼変化を調べる影響を力た後の血液浄化 腰を、血液浄化器1から切り用けと共に平面状に切り間 き、この切り間いた血液浄化像を乾燥したものを測定サ ンプルとして、その血液接触面側の表面を電子顕微鏡 (SEM)で観察した。剥除約果及び機務結果を表1並 びに図4 (服存電量)をいいてに図4 (服存準過量の経解をで2)に示した。

【0051】(実施例2)ポリビニルビロリドンの0. 5重量%の水溶液を用いて親水化処理 (濃度以外の条件 は実施例1と同じ、以下同様)を行い、球水性高分子核 1平方メートルあたり50ミリグラムのポリビニルビロ リドンが付着保持された血液溶化核を代製した。

【0052】そして、この血液学化膜に対しても、ポリ ビニルピロリドンの潮出量を調べる試験並びに限外濾過 量の経時変化を調べる試験を行った(試験内容は、実施 例1と同じ)。各試験における試験結果を表1並びに図 4に示した。

【0053】(実施例3) ポリピニルピロリドンの0. 03 電量%の水溶液を用いて製水化処理を行い、疎水性 高分子機、甲ボケートル赤わり3ミリグラムのポリピニ ルピロリドンが付着保持された血液浄化膜を作製した。 【0054】そして、この血液浄化膜に対しても、ポリ ピニルピロリドンの濁出量を強べる試験並に肥外雑遇 量の経時変化を調べる試験を行った(試験内容は、実施 例1と同じ)。各試験における試験結果を表1並びに図 4に示した。

【0055】 (比較例1) ポリビニルビロリドンの1重 量%の水溶液を用いて親水化処理を行い、疎水性高分子 膜1平方メートルあたり70ミリグラムのポリビニルビ ロリドンが付着保持された血液浄化膜を作製した。

【0056】そして、この血液浄化膜に対しても、ポリ ビニルゼロリドンの湖出量を謂べる試験並びに限外濾過 量の経時変化を調べる試験を行った(試験内容は、実施 例1と同じ)。各試験における試験結果を表1並びに図 4に示した。

【0057】 (比較例2) ポリビニルビロリドンの0. 01 重量%の水溶液を用いて製水化処理を行い、疎水性 高分子膜 平方メートルあたり1ミリグラムのボリビニ ルビロリドンが付着保持された血液浄化膜を仲製した。 (0058] そして、この血液浄化膜に対しても、ボリ ビニルビロリドンの瀬田盤を調べる試験、保外部過量の 経時変化を調べる試験がに血小板の付着状態の観察を 行った(就験内容は、実達例1と同じ)。各試験におけ る試験結果を表1並びに血小板の付着状態の観察を

| PVP付着量     | PVPの溶出量(mg/l) | 牛血UFRの経時変化 | 血小板付着(SEM)    |
|------------|---------------|------------|---------------|
| PVP70mg/m² | 5             | 小さい        | _             |
| PVP50mg/mi | N. D.         | 小さい        | _             |
| PVP10mg/m² | N. D.         | 小さい        | 付着少ない         |
| PVP3mg/m³  | N. D.         | 小さい        |               |
| DVD1/-3    | N.D.          | +44.3      | <b>山地</b> 415 |

【表 1 】

【0060】まず、血液浄化膜における親水性高分子のN.D.ち、1良好吸血機関管庫曝累療を膨くいた。

【0060】まず、血液浄化既における機水性高分子の 側出について検討する。表1に示すように、ポリビニル ピロリドンの付着保持量を、疎水性高分子版 (平方メー トルあたり70ミリグラム (付着量70ミリグラムとい 5、以下同様)とした血液浄化版 (比較例1)では、1 リットルめたり5ミリグラムのポリビニルピロリドンの 瀬田が認められた。一方、付着量50ミリグラムの血液 学化版 (実施例2)では、ポリビニルピロリドンの 海出が認められなかった (即ち、検出限界以下であった)。 同様に、付着量10、3ミリグラムの血液砂化版 (実施 例1、3)でも、ポリビニルピロリドンの調出は認められなかった。

【0061】次に、血液浄化膜の透過量の安定性と血液 適合性について検討する。図4に示すように、付着量を 1ミリグラムとした血液浄化膜(比較例2)では、試験 開始直後に約90mL/hr・mmHgであった限外線 過量は、時間の経過に伴って急激に低くなり、50時間 経過後には約60mL/hr・mmHgであった。さら に、100時間経過後には約22mL/hr・mmHg となり、それ以後、限外濾過量は徐々に低くなる。そし て、240時間経過後には、約17mL/hr・mmH g となった。また、血小板の付着状態の観察結果におい ても、血液浄化膜における血液接触側の表面には、多量 の血小板の付着が認められている (表1参照)。従っ て、親水性高分子の付着量が少なすぎる血液浄化膜で は、血液を通じた直後から血液成分が凝固して血液接触 側の表面に付着し、膜の劣化が生じる。そして、この劣 化は急速に進行し、比較的短期間で使用が困難な状態に なることが判る。

化模 (実施例3) では、試験開始直後に約105mL/ hr・mmHgであった限外薬過量は、時間の経過に仲 って徐々に低くなり、50時間終過後には終り3mL/ hr・mmHgであった。それ以後、限外薬過量は緩や かに低くなるが、240時間終過後では、約85mL/ hr・mmHgの限外薬過量を維持していた。なお、付 着量10,50ミリグラムの血液浄化板(実施例1, 2)では、試験開始直後から終下までの期間に亘って約 100mL/hr・mmHg m版の限外薬過を維持していた。そして、付着量10ミリグラムの血液浄化板 (実施例1)では、血液浄化板に対ける血液浄板側の表 に近く低かの血水液の付着した製められなかるた。即 師には、低かの血水板の付着した製められなかった。即

【0062】一方、付着量を3ミリグラムとした血液浄

【0063】以上から、付着量を3ミリグラム以上にすることにより、血液成分の付着が極めて少水く安定した 活造量が得した、良好な血液液合性を長期間に至って発 弾できることが判る。さらに、付着量を10ミリグラム 以上にすることにより、血液溶合性をより一層高める (良好にする)ことがすることが判る。

【0064】そして、上記した親水性高分子の漏出、及 び血液適合性を総合すると、付着量10ミリグラムから 50ミリグラムの血液冷化膜であれば、親水性高分子の 漏出阻止と血液適合性をさらに高いレベルで両立させ得 ることが相る。

【0065】なお、親水性高分子の瀬出という親信から すれば、親水性高分子の使用重が少ないほど瀬田の可能 性が少ないので好ましい。後って、付着豊10ミリグラ ムの血液浄化膜であれば、親水性高分子の瀬田阻止と血 液竈合性とを高いレベルで両立させることができ、尚且 つ、瀬田阻止を一層検実に有失ることができ、尚且

# [0066]

【発明の効果】以上説明したように、本発明によれば、次の効果と奏する。即ち、請求項 1 記域の発明によれ は、親水性高分子を球水性高分子膜に保持させた血液浄 化膜であって、球水性高分子膜1 平方メートルあたりの 親水性高分子の保持量を、3 ミリグラム以上5 0 ミリグ ラム以下としたので、親水性高分子の洞出阻止と良好な 血液資合性と分析立ちせるとかできる。

【0067】請求項2記載の発明によれば、前記観水性 高分子がポリビニルビロリドンであるので、極く少量 で、良好な血液適合性を発揮し得る血液浄化膜が得られ る。

[0068] 請求項3記載の発明によれば、根水性高分 の溶液を球水性高分子線に接触させることにより、親 水性高分子を球水性高分子線に接触する たので、付着保持させるための処理が容易であると共 に、親水性高分子の付着重の制御を容易に行うことがで きる。

【0069】請求項4記載の発明によれば、前記疎水性 高分子膜は、ボリアリレート樹脂とポリスルホン樹脂と を主たる膜素材としているので、親水性高分子の溶液を 核触させるだけで、親水性高分子を確実に付着保持させ ることができる。

【図面の簡単な説明】

【図1】血液浄化器を断面にした説明図である。

【図2】ケーシングの端部における中空糸束の切断面を示した図で、(a) が切断面全体を示した図、(b) が一部を拡大して示した図である。

【図3】血液浄化器の製造工程の概略を示すフローチャートである。

【図4】ポリビニルピロリドンの付着量が異なる血液浄 化膜による限外濾過量の経時変化を示した図である。

# 【符号の説明】

- 1 血液浄化器
- 2 ケーシング
- 3 注入側血液ポート

- 4 排出側血液ポート
- 5 透析液の流入口
- 6 透析液の排出口
- 7 注入側血液ポートにおける注入口
- 8 排出側血液ポートにおける排出口
- 9 ロリング
- 10 中空糸束
- 11 中空糸膜(血液浄化膜)
- 11a 中空糸膜の内表面
- 12 シーリング材





# フロントページの続き

(72) 発明者 千葉 敏昭 石川県金沢市北陽台 3 - 1 日機装株式会 社金沢製作所内

# 1. PATENT ABSTRACTS OF JAPAN

(11)Publication number: 11-169690 (43)Date of publication of application: 29.06.1999

(51)Int.Cl. B01D 69/02

A61M 1/16 B01D 71/40

B01D 71/68

(21)Application number: 09-363136 (71)Applicant: NIKKISO CO LTD

(22)Date of filing: 15.12,1997 (72)Inventor: NAKAO MICHIHARU

HORI SADANORI YOSHIDA MASASHI CHIBA TOSHIAKI

## (54) HEMOCATHERSIS MEMBRANE

## (57)Abstract:

PROBLEM TO BE SOLVED: To make the diapedesis inhibition of a hydrophilic polymer with a hemoeathersis membrane consistent by carrying the polymer on a hydrophobic polymer membrane and the ensure good compatibility with blood by specifying the amt. of the hydrophilic polymer carried on 1 m2 of the membrane.

SOLUTION: A hydrophobic polymer membrane consisting essentially of a polyarylate resin and a polysulfone resin is formed as a hollow fiber membrane by spinning and polyvinylpyrrolidone as a hydrophilic polymer is stuck and carried on the hydrophobic polymer membrane by 3-50 mg/m2 to obtain the objective blood purification membrane. Good compatibility with blood is ensured and the leaching of the hydrophilic polymer is blocked.

## LEGAL STATUS

[Date of request for examination]

06.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3688109

[Date of registration]

17.06.2005

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

## \* NOTICES \*

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

## CLAIMS

# [Claim(s)]

[Claim 1] Blood purification film which is blood purification film which made the hydrophilic macromolecule hold to a hydrophobic poly membrane, and is characterized by making the amount of maintenance of the hydrophilic macromolecule per 1 square meter of hydrophobic poly membranes into 3mg or more 50mg or less.

[Claim 2] Blood purification film according to claim 1 characterized by said hydrophilic giant molecule being a polyvinyl pyrrolidone.

[Claim 3] Blood purification film according to claim 1 or 2 characterized by carrying out adhesion maintenance of the hydrophilic macromolecule physically to a hydrophobic poly membrane by contacting the solution of a hydrophilic macromolecule to a hydrophobic poly membrane.

[Claim 4] Said hydrophobic poly membrane is blood purification film given in either of claims 1-3 characterized by using polyarylate resin and polysulfone resin as main film raw material.

## DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the blood purification film used for a blood purification therapy.

100021

[Description of the Prior Art] A blood purification therapy is the therapy approach of removing the undesired substances in blood (uremia matter etc.). In this blood purification therapy, semipermeable membrane and ultrafiltration membrane are used as blood purification film. For example, the blood purifier which loaded with and constituted in casing the hollow filament bundle which bundled 5000 - about 10000 hollow fibers (what carried out spinning of the blood purification film to the shape of a hollow filament) is used.

[0003] There is a hemodialysis therapy, a hemofiltration therapy, or hemofiltration dialysis in this blood purification therapy. In a hemodialysis therapy, while pouring blood to the internal-surface side of the hollow fiber in blood purifier, dialysing fluid contacts blood and dialysing fluid to an outside-surface side through a sink and a hollow fiber, and diffusion removes the uremia matter and moisture with the superfluous inside of the body. In a hemofiltration therapy, the uremia matter is removed a \*\* exception by pouring blood to the internal-surface side of the hollow fiber in blood purifier. Moreover, in hemofiltration dialysis, the property of both a

hemofiltration therapy and a hemodialysis therapy, i.e., filtration and diffusion, removes moisture with superfluous uremia matter and inside of the body.

[0004] As blood purification film used by this blood purification therapy, the hydrophilic macromolecule represented by the cellulose and the hydrophobic macromolecule represented by polysulfone and polyester are used suitably. It excels in a mechanical strength and is because there is little effect on a living body. However, generally, in order to use a hydrophobic ingredient (macromolecule) as blood purification film, the hydrophilic property is given to this hydrophobic ingredient in many cases. This is because adhesion of constituents of blood, such as protein and a platelet, tends to take place to the front face of the film manufactured only from the hydrophobic ingredient and lowering of membrane permeability ability in use etc. becomes a problem. That is, by the film manufactured only from the hydrophobic ingredient, it is because good haemocompatibility is difficult to get.

[0005] And generally the approach of adding a hydrophilic macromolecule and producing a film in a film production undiluted solution, from a hydrophobic ingredient as an approach of manufacturing the film with which the hydrophilic property was given, is made. What was using the hydrophilic macromolecule as a puncturing agent can add a hydrophilic property to a hydrophobic ingredient as a result, and this approach can be produced, in order to form membrane structure with a disengageable constituent of blood from a hydrophobic ingredient originally. In this approach, the polyvinyl pyrrolidone is suitably used as a hydrophilic giant molecule added in a film production undiluted solution, for example. That is, a hydrophilic property can be given to a hydrophobic ingredient while a constituent of blood forms disengageable membrane structure proper by adding and carrying out spinning of this polyvinyl pyrrolidone to a film production undiluted solution.

[0006] By this approach, in order to form the membrane structure which can separate a constituent of blood proper, it is necessary to add comparatively a lot of hydrophilic macromolecules. For this reason, on the produced blood purification film, comparatively a lot of hydrophilic macromolecules remain, and processing which prevents a break through of this hydrophilic macromolecule that remained is performed. For example, the hydrophilic macromolecule was made to construct a bridge with heat, a radiation, a chemical, etc., and the break through is prevented.

## F00071

[Problem(s) to be Solved by the Invention] However, even if it performed processing which prevents a break through of a hydrophilic macromolecule since the superfluous hydrophilic macromolecule remained as described above, it was difficult to prevent a break through of a hydrophilic macromolecule certainly. Therefore, there was a possibility that the leaked hydrophilic macromolecule might mix in the inside of the body. And since the hydrophilic macromolecule mixed in the inside of the body may have a certain effect to a living body, it is desirable to remove mixing to the inside of the body of a hydrophilic macromolecule as much as possible.

[0008] this invention is made in view of such a situation, and good haemocompatibility obtains it -- having -- in addition -- and it aims at offering the blood purification film which can also prevent a break through of a hydrophilic macromolecule. [0009]

[Means for Solving the Problem] In order to attain the above-mentioned object, the thing according to claim 1 in this invention is the blood purification film which made the hydrophilic macromolecule hold to a hydrophobic poly membrane, and is characterized by making the

amount of maintenance of the hydrophilic macromolecule per 1 square meter of hydrophobic poly membranes into 3mg or more 50mg or less.

[0010] Moreover, a thing according to claim 2 is blood purification film which is characterized by said hydrophilic giant molecule being a polyvinyl pyrrolidone in addition to a configuration according to claim 1.

[0011] Moreover, a thing according to claim 3 is blood purification film characterized by carrying out adhesion maintenance of the hydrophilic macromolecule physically to a hydrophobic poly membrane by contacting the solution of a hydrophilic macromolecule to a hydrophobic poly membrane in addition to a configuration according to claim 1 or 2. [0012] Moreover, a thing according to claim 4 is blood purification film characterized by said hydrophobic poly membrane using polyarylate resin and polysulfone resin as main film raw material in addition to a configuration given in either of claims 1-3. [0013]

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained with reference to a drawing. First, the blood purifier using the blood purification film of this invention is explained. Here, <u>drawing 1</u> is drawing shown by making blood purifier 1 into a cross section, and <u>drawing 2</u> is drawing having shown the cutting plane of the hollow filament bundle in the edge of casing 2.

[0014] As shown in <u>drawing 1</u>, blood purifier 1 consists of an impregnation side blood port 3 screwed free [ attachment and detachment] to casing 2 and this casing 2, and a blowdown side blood port 4. Casing 2 is the cylindrical member formed of the polycarbonate. And it is the side face of this casing 2, the input 5 of dialysing fluid is formed in the edge by the side of the blowdown side blood port 4, and the exhaust port 6 of dialysing fluid is formed in the edge by the side of the impregnation side blood port 3.

[0015] The impregnation side blood port 3 and the blowdown side blood port 4 are screwed so that opening may be plugged up at the both ends of casing 2, and they are formed by the polycarbonate as well as casing 2. And the inlet 7 for pouring in blood has protruded in the impregnation side blood port 3, and the exhaust port 8 for discharging blood is protruded on the blowdown side blood port 4. Moreover, O rings 9 and 9 for maintaining watertightness, respectively are arranged in the contact section of the impregnation side blood port 3 and casing 2, and the contact section of the blowdown side blood port 4 and casing 2. [0016] The building envelope of casing 2 is loaded with the hollow filament bundle 10. That is,

[0016] The building envelope of casing 2 is loaded with the hollow filament bundle 10. That is, as shown in  $\frac{drawing 2}{dt}$  (a), it has loaded with what bundled 5000 - about 10000 hollow fiber 11 -- (equivalent to the blood purification film in this operation gestalt). In addition, in  $\frac{drawing 2}{dt}$  (a), in order to make a configuration intelligible, each hollow fiber 11 -- is drawn more thickly than a actual thing.

[0017] Opening of the ends in casing 2 is filled up with the sealing materials 12 and 12, such as urethane system resin. And the edge of the hollow filament bundle 10 is each hollow fiber 11, as it is shown in drawing 2 (b), while it is crowded with much hollow fiber 11 -- which carried out opening. -- Where watertightness is secured, the sealing material 12 has taken up the clearance between comrades. These sealing materials 12 and 12 have not plugged up the input 5 and the exhaust port 6 of dialysing fluid. For this reason, input 5 and an exhaust port 6 are open for free passage with the space by the side of the outside surface of the hollow fiber 11 in casing 2, respectively. Therefore, in the casing 2 which loaded with the hollow filament bundle 10, it will be in the condition that the outside-surface side of the hollow fiber 11 which is the passage of dialysing fluid was separated by the hollow fiber 11 the internal-surface 11a side of the hollow

fiber 11 which is the passage of blood.

[0018] Next, a hollow fiber 11 is explained, the hydrophobic poly membrane to which the hollow fiber 11 in this operation gestalt, i.e., the blood purification film, used polyarylate resin and polysulfone resin as main film raw material — the shape of a hollow filament — spinning — carrying out — in addition — and the hydrophobic poly membrane is made to carry out adhesion maintenance of the polyvinyl pyrrolidone which is a kind of a hydrophilic giant molecule [0019] And this polyvinyl pyrrolidone has adjusted the amount of maintenance per unit area of a hydrophobic poly membrane to the specified quantity. Specifically, the amount of maintenance of the polyvinyl pyrrolidone per I square meter of hydrophobic poly membranes is made into within the limits of 3mp or more 50mp or less.

[0020] When the amount of maintenance of a polyvinyl pyrrolidone is made into 70mg or more, the reason When a break through of the polyvinyl pyrrolidone from blood purifier 1 is checked and the amount of maintenance of a polyvinyl pyrrolidone is made into 1mg or less The solidified constituent of blood adheres to internal-surface 11a of a hollow fiber 11, and it is checked that it becomes impossible to demonstrate the penetrability of a hollow fiber 11 comparatively by this adhering constituent of blood for a short time. It is because it was checked that a break through of a polyvinyl pyrrolidone and adhesion of a constituent of blood are lost when the amount of maintenance of a polyvinyl pyrrolidone was made into within the limits of 3mg or more 50mg or less.

[0021] Moreover, the above-mentioned polyester system resin is [0022]. Formula [\*\* 1]

上記式中、R<sup>1</sup>及びR<sup>2</sup>は炭素数が1万至5の低級アルキル基であり、 それぞれ同一であっても相違していてもよい。

[0023] It is polyarylate resin which comes out and has the repeat unit expressed, and polysulfone system resin is [0024]. Formula [\*\* 2]

上記式中、R<sup>3</sup>及びR<sup>4</sup>に炭素数が1万至5の低級アルキル基であり、 それぞれ同一であっても相違していてもよい。

[0025] The repeat unit come out of and expressed, and [0026] Formula [\*\* 3]

[0027] It comes out and is polysulfone resin of the repeat unit expressed which has at least any

they are.

[0028] Next, the creation procedure of the blood purification film is explained. In addition, with this operation gestalt, since the blood purification film is created in the process in which blood purifier 1 is manufactured, the production process of blood purifier 1 will be explained. Here, drawing 3 is a flow chart which shows the outline of the production process of blood purifier 1. [0029] First, spinning of the hydrophobic macromolecule is carried out to the shape of a hollow fiber (a spinning process, step S1). At this spinning process, a film production undiluted solution is prepared first. While defining the mixed weight ratio (A/B) of polyester system resin (A) and polysulfone system resin (B) in 0.1-10, specifically, it dissolves in an organic solvent so that the total quantity (A+B) of both resin may serve as 10 % of the weight -25% of the weight of a rate. In addition, although there will be especially no limit if an organic solvent is a good solvent to polyester system resin and polysulfone system resin, N-methyl pyrrolidone can use it most suitably.

[0030] Spinning of this film production undiluted solution is carried out to the shape of discharge and a hollow filament into coagulation liquid with core liquid using a double pipe spinneret. In addition, by the following explanation, a polyvinyl pyrrolidone (a kind of a hydrophilic macromolecule) makes for convenience the hollow fiber in the condition that adhesion maintenance is not carried out hydrophobic hollow fiber 11'. Here, although core liquid and coagulation liquid are for fabricating a film production undiluted solution in the shape of a hollow filament, the mixed solvent of a water independent twist which mixed in water the organic solvent used for the resin dissolution is also more desirable. This is for being easy to form fibril structure with more uniform using a mixed solvent. In addition, although there will be especially no limit if it is a good solvent to resin as an organic solvent to mix, N-methyl pyrrolidone can use it most suitably.

[0031] Thus, a porous layer is formed so that hydrophobic hollow fiber 11' which carried out spinning may cover the outside of this compact layer while a compact layer is formed in that internal-surface 11a. A compact layer is the part which specifies a transmission rate in the permselectivity list of the matter in this film, and the hole radius 30-100 A hole is formed in the hole and concrete target which have a less than 500A average aperture. Moreover, the porous layer is functioning as supporters who support a compact layer and maintain membranous reinforcement, and the hole quite coarser than a compact layer is formed. In addition, the thickness of this hydrophobic hollow fiber 11' is about 5-70 micrometers. And by this film, the with a molecular weight of 100000 or more matter cannot penetrate the whole quantity (100%) mostly.

[0032] Next, it processes in the bundle of hydrophobic hollow fiber 11' which carried out spinning in this way (they are down stream processing and step S2 in a bundle). Bundle-ization which makes one bundle 5000 - about 10000 hydrophobic hollow fiber 11' by down stream processing in this bundle is made. The bundle (hollow filament bundle 10) of this hydrophobic hollow fiber 11' is adjusted to the outer diameter according to the bore of the cylinder-like casing 2.

[0033] Next, it loads with the hollow filament bundle 10 into casing 2 (a loading process, step S3). At this loading process, it loads with the hollow filament bundle 10 into the casing 2 in the condition that the impregnation side blood port 3 and the blowdown side blood port 4 separated. At this time, the periphery of the hollow filament bundle 10 is beforehand covered with the sheet, it loads into casing 2 this whole sheet, and a sheet is sampled after loading. [0034] Next, potting is performed (a potting process, step S4). At this potting process, while

closing opening of casing 2 with a sealing material 12 (sealing), the part overflowing into the exterior of the casing 2 in the hollow filament bundle 10 is cut so that it may become same flat-surface as opening of casing 2 2'. By this cutting, the cross section explained by  $\underline{\text{drawing 2}}$  (a) is obtained.

[0035] Next, hydrophilization processing is performed (hydrophilization down stream processing, step S5). In this hydrophilization down stream processing, after equipping the both ends of casing 2 with the impregnation side blood port 3 and the blowdown side blood port 4 (screwing), the water solution (a kind of the solution of a hydrophilic giant molecule) of a polyvinyl pyrrolidone prepared from the inlet 7 of the impregnation side blood port 3 to predetermined concentration is poured in by the predetermined flow rate, and the water solution of the polyvinyl pyrrolidone which passed blood purifier 1 is discharged from the exhaust port 8 of the blowdown side blood port 4. And this processing is performed from dozens of seconds for dozens minutes, and adhesion maintenance of the polyvinyl pyrrolidone is carried out. [0036] That is, in this hydrophilization down stream processing, adhesion maintenance of the polyvinyl pyrrolidone is carried out by contacting the water solution of a polyvinyl pyrrolidone to blood purifier 1. In addition, in producing the solution of the hydrophilic macromolecule used by this hydrophilization down stream processing, with this operation gestalt, purified water was used as a solvent, but liquids other than purified water may be used as a solvent. And by passing through this hydrophilization down stream processing, adhesion maintenance of the polyvinyl pyrrolidone is carried out, and the blood purification film (namely, hollow fiber 11) in this operation gestalt is obtained by hydrophobic hollow fiber 11'. [0037] In addition, the amount of the hydrophilic macromolecule which carries out adhesion

maintenance is controllable by this hydrophilization down stream processing by changing the concentration of a hydrophilic polymer solution suitably. That is, by using a hydrophilic highconcentration polymer solution, many adhesion maintenance of the hydrophilic macromolecule can be carried out, and adhesion maintenance of a small quantity of the hydrophilic macromolecule can be carried out by using a low-concentration hydrophilic polymer solution. [0038] For example, if hydrophilization processing is performed using 1% of the weight of the water solution of a polyvinyl pyrrolidone, in the hydrophobic poly membrane manufactured from polyarylate resin and polysulfone resin, the blood purification film with which adhesion maintenance of the 70mg [per 1 square meter of hydrophobic poly membranes ] polyvinyl pyrrolidone was carried out can be produced, and the blood purification film with which adhesion maintenance of the 3mg [per 1 square meter of hydrophobic poly membranes] polyvinyl pyrrolidone was carried out can be produced by performing hydrophilization processing using 0.03% of the weight of the water solution of a polyvinyl pyrrolidone. Moreover, the amount of the polyvinyl pyrrolidone by which adhesion maintenance was carried out is computable by measuring the amount (namely, polyvinyl-pyrrolidone concentration of a penetrant remover) of the polyvinyl pyrrolidone removed at the polyvinyl-pyrrolidone watersolution concentration before processing, the polyvinyl-pyrrolidone water-solution concentration after processing, and the washing process mentioned later. [0039] Moreover, in this hydrophilization down stream processing, the degree of the

[U039] Moreover, in this hydrophilization down stream processing, the degree of the hydrophilization of the membranous thickness direction is changeable by changing the molecular weight of a hydrophilic macromolecule. That is, by using the hydrophilic macromolecule of low molecular weight, it can continue in the membranous whole thickness direction from the internal-surface 11a side of a hollow fiber 11, adhesion maintenance of the hydrophilic macromolecule can be carried out, and only internal-surface 11a of a hollow fiber 11 carries out

adhesion maintenance of the hydrophilic macromolecule by using the hydrophilic macromolecule of high molecular weight. For example, when hydrophilization processing is performed using the water solution of Polyvinylpyrrolidone K30 (average molecular weight 40000 [ about ]), it can continue in the whole thickness direction of a hollow fiber 11, adhesion maintenance of the polyvinyl pyrrolidone can be carried out, and only internal-surface 11a of a hollow fiber 11 carries out adhesion maintenance of the polyvinyl pyrrolidone at a hydrophilization place Michiyuki \*\*\*\* case using the water solution of Polyvinylpyrrolidone K90 (average molecular weight 1200000 [ about ]).

[0040] Next, it rinses (a washing process, step S6). At this washing process, a hydrophilic surplus macromolecule is removed by the penetrant remover about the blood purifier 1 which carried out adhesion maintenance of the polyvinyl pyrrolidone (hydrophilic macromolecule). Specifically, a penetrant remover, for example, purified water, is passed in blood purifier 1. Washing clearance of the hydrophilic surplus macromolecule which is sticking to blood purifier 1 according to this washing process by the adsorption power lower than predetermined adsorption power among the hydrophilic macromolecules which are carrying out adhesion maintenance is carried out. In addition, the hydrophilic macromolecule by which adhesion maintenance is carried out after this washing process at blood purifier 1 does not secede from the inside of blood purifier 1 with the flowing blood, either. Moreover, the penetrant remover used at this washing process should just be the liquid from which it is not limited to purified water and a hydrophilic surplus macromolecule can be removed.

[0041] And sterilization processing is performed to the blood purifier 1 in the condition of having filled up with purified water the blood purifier 1 which washing ended (step \$7), and having filled up with this purified water (step \$8). Gamma ray sterility, wet sterilization, etc. are given in this sterilization down stream processing.

[0042] By the way, although the production process explained above showed the example which also manufactured the blood purification film (hollow fiber 11) in the process in which blood purifier 1 is manufactured, the solution of a hydrophilic macromolecule is directly contacted to the hydrophobic poly membrane which carried out spinning, and you may make it make a hydrophobic poly membrane carry out adhesion maintenance of the hydrophilic macromolecule. [0043] Moreover, the amount of maintenance of a polyvinyl pyrrolidone can also be low adjusted by adding a puncturing agent removable from a hollow fiber 11 to a film production undiluted solution with a polyvinyl pyrrolidone (a kind of a hydrophilic giant molecule), and removing a puncturing agent after spinning. Although it continues throughout the membranous thickness direction and the hydrophilic property is given by the blood purification film manufactured by this approach, since the amount of maintenance of a polyvinyl pyrrolidone is adjusted low, it can prevent that a polyvinyl pyrrolidone leaks out. However, if it is made to contact the solution of a hydrophilic macromolecule to the hydrophobic poly membrane which produced the film beforehand like this operation gestalt, while processing is easy, it has the advantage that control of the coating weight of a hydrophilic macromolecule is easy. Furthermore, only the front face by the side of the blood contact in the blood purification film can also be made to carry out adhesion maintenance of the hydrophilic giant molecule selectively by using the hydrophilic giant molecule (for example, Polyvinylpyrrolidone K90) of the high molecular weight which cannot penetrate the blood purification film.

[0044] Moreover, the sheet-like film is sufficient although the hollow fiber 11 was illustrated with the above-mentioned operation gestalt.

[0045] Moreover, although the polyvinyl pyrrolidone which is a typical hydrophilic giant

molecule among usable hydrophilic giant molecules was illustrated in the blood purification film with the above-mentioned operation gestalt, if it is the hydrophilic giant molecule which has the same property as this polyvinyl pyrrolidone, it will not be limited to this. However, when a polyvinyl pyrrolidone is used like this operation gestalt, the blood purification film which can demonstrate high haemocompatibility in \*\*\*\* small quantity can be produced.

[0046] Moreover, although the hydrophobic poly membrane which used polyarylate resin and polysulfone resin as main film raw material was illustrated with this operation gestalt about the hydrophobic poly membrane, the film by other hydrophobic ingredients is sufficient. However, when the hydrophobic poly membrane which used polyarylate resin and polysulfone resin as main film raw material like this operation gestalt is used and the solution of a hydrophilic macromolecule is contacted, adhesion maintenance of the hydrophilic macromolecule is carried out more suitably (certainly) than the film by other hydrophobic ingredients.

[Example] Next, the example of this invention is shown and this invention is explained still more concretely. In addition, the following explanation explains the case where Polyvinylpyrrolidone K90 (average molecular weight 1200000 [ about ]) used suitable for the blood purification film as a hydrophilic giant molecule is used.

[U0148] First, the film production undiluted solution was prepared from the polyarylate resin [Unitika Make and a trade name;U polymer] shown by said formula (1), the polyether sulphone resin [the Sumitomo Chemical Co., Ltd. make and trade name; SUMIKA Excel PES] shown by said formula (3), and N-methyl pyrrolidone. in addition, the weight of polyarylate resin and polyether sulphone resin -- the mixing ratio was set to 1:1. Moreover, N-methyl pyrrolidone water solution was used as core liquid at the coagulation liquid list. And a film production undiluted solution and core liquid were breathed out into coagulation liquid using the double pipe spinneret, hydrophobic hollow fiber 11' was produced, about 10,000 of this hydrophobic hollow fiber 11' were bundled, and the hollow filament bundle 10 was acquired. Furthermore, after loading with this hollow filament bundle 10 into the casing 2 made from a cylinder-like polycarbonate, polyurethane resin was used as a sealing material 12, the edge was pasted up, the blood ports 3 and 4 were connected to the both ends of casing 2, and the blood purifier 1 of 1.5 square meters of film surface products was made as an experiment.

[0049] (Example 1) 0.1% of the weight of the water solution of a polyvinyl pyrrolidone (the BASF make, a trade name; Kollidon K-90) was poured for about 1 minute by the flow rate of 200 mL/min under ordinary temperature to blood purifier 1, hydrophilization processing was performed, and the blood purification film (hollow fiber 11) with which adhesion maintenance of the 10mg [per 1 square meter of hydrophobic poly membranes ] polyvinyl pyrrolidone was carried out was produced. In addition, the amount of adhesion maintenance of a polyvinyl pyrrolidone was computed based on the concentration of the polyvinyl-pyrrolidone water solution before hydrophilization processing, and the concentration of the polyvinyl-pyrrolidone water solution at the time of hydrophilization processing termination and the polyvinyl-pyrrolidone concentration of a penetrant remover. Moreover, density measurement of a polyvinyl-pyrrolidone water solution was performed using the approach (KMuller, Pham.Acta, Helv.43 (1968) 107-122) of Muller.

[0050] And the trial which investigates the leak (elution volume) of the polyvinyl pyrrolidone in this blood purification film was performed. After being filled up with purified water after washing blood purifier 1 by purified water 1L in blood purifier 1 and specifically warming it at 70 degrees C for 3 hours, filled liquid (liquid by the side of the blood contact section) was

sampled, and the concentration of a polyvinyl pyrrolidone was measured. In addition, that which does not adhere to the polyvinyl pyrrolidone was used for the blood ports 3 and 4 in this trial in order to measure the break through from the blood purification film. Moreover, the trial which investigates aging of the amount of ultrafiltrations in this blood purification film (UFR, mL/hr-mmHg) was performed. After washing blood purifier 1 by purified water 1L, while circulating bovine blood liquid (hematocrit 30% and total protein 6.5 g/dL) by the flow rate of 200 mL/min, the filtration flow rate was adjusted to 90 mL/min, and, specifically, aging of the amount of ultrafiltrations was measured. Furthermore, the adhesion condition of the platelet in the front face (namely, internal-surface 11a of a hollow fiber 11) of the blood purification film was observed. While cutting down the blood purification film after specifically performing the trial which investigates aging of the amount of ultrafiltrations from blood purifier 1, it was cleared to the plane, and the front face by the side of that blood contact surface was observed with the electron microscope (SEM) by making what dried this cleared blood purification film into a measurement sample. The test result and the observation result were shown in the table 1 list at drawing 4 (aging of the amount of ultrafiltrations).

[0051] (Example 2) hydrophilization processing (conditions other than concentration — an example 1 — the same — the following — the same) was performed using 0.5% of the weight of the water solution of a polyvinyl pyrrolidone, and the blood purification film with which adhesion maintenance of the 50mg [ per 1 square meter of hydrophobic poly membranes ] polyvinyl pyrrolidone was carried out was produced.

[0052] And the trial which investigates aging of the amount of ultrafiltrations was performed in the trial list which investigates the leak of a polyvinyl pyrrolidone also to this blood purification film (the content of a trial is the same as an example 1). The test result in each trial was shown in the table 1 list at  $\underline{\text{drawing 4}}$ .

[0053] (Example 3) Hydrophilization processing was performed using 0.03% of the weight of the water solution of a polyvinyl pyrrolidone, and the blood purification film with which adhesion maintenance of the 3mg [per 1 square meter of hydrophobic poly membranes] polyvinyl pyrrolidone was carried out was produced.

[0054] And the trial which investigates aging of the amount of ultrafiltrations was performed in the trial list which investigates the leak of a polyvinyl pyrrolidone also to this blood purification film (the content of a trial is the same as an example 1). The test result in each trial was shown in the table 1 list at  $\frac{1}{2}$  drawing 4.

[0055] (Example 1 of a comparison) Hydrophilization processing was performed using 1% of the weight of the water solution of a polyvinyl pyrrolidone, and the blood purification film with which adhesion maintenance of the 70mg [ per 1 square meter of hydrophobic poly membranes ] polyvinyl pyrrolidone was carried out was produced.

[0056] And the trial which investigates aging of the amount of ultrafiltrations was performed in the trial list which investigates the leak of a polyvinyl pyrrolidone also to this blood purification film (the content of a trial is the same as an example 1). The test result in each trial was shown in the table 1 list at drawing 4.

[0057] (Example 2 of a comparison) Hydrophilization processing was performed using 0.01% of the weight of the water solution of a polyvinyl pyrrolidone, and the blood purification film with which adhesion maintenance of the Img [per 1 square meter of hydrophobic poly membranes] polyvinyl pyrrolidone was carried out was produced.

[0058] And the adhesion condition of a platelet was observed also to this blood purification film in the trial which investigates the leak of a polyvinyl pyrrolidone, and the trial list which

investigates aging of the amount of ultrafiltrations (the content of a trial is the same as an example 1). The test result in each trial was shown in the table 1 list at <u>drawing 4</u>. [0059]

# [A table 1]

| PVP付着量                | PVPの溶出量(mg/l) | 牛血UFRの経時変化 | 血小板付着(SEM) |
|-----------------------|---------------|------------|------------|
| PVP70mg/m²            | 5             | 小さい        | _          |
| PVP50mg/m²            | N. D.         | 小さい        | -          |
| PVP10mg/m³            | N. D.         | 小さい        | 付着少ない      |
| PVP3mg/m³             | N. D.         | 小さい        | -          |
| PVP1mg/m <sup>*</sup> | N. D.         | 大きい        | 付着多い       |

N. D. : 1. 5 mg/l 未満 (検出限界値未満)

[0060] First, a break through of the hydrophilic macromolecule in the blood purification film is considered. As shown in a table 1, by the blood purification film (example 1 of a comparison) which made the amount of adhesion maintenance of a polyvinyl pyrrolidone 70mg per 1 square meter of hydrophobic poly membranes (coating weight it is the same as that of the following which it says is 70mg), the break through of a 5mg [per l.] polyvinyl pyrrolidone was accepted. On the other hand, the break through of a polyvinyl pyrrolidone was not accepted by the blood purification film (example 2) with a coating weight of 50mg (that is, it was below limit of detection). Similarly, the break through of a polyvinyl pyrrolidone was not accepted by the blood purification film (examples 1 and 3) with a coating weight of 10 or 3mg, either.

[0061] Next, the stability and haemocompatibility of the amount of transparency of the blood purification film are examined. As shown in drawing 4, by the blood purification film (example 2 of a comparison) which made coating weight Img, the amount of ultrafiltrations which were about 90 mL/hr-mmHg became low rapidly in connection with the passage of time immediately after test initiation, and they were about 60 mL/hr-mmHg after 50-hour progress. Furthermore, after 100-hour progress, it becomes about 22 mL/hr-mmHg, and the amount of ultrafiltrations becomes low gradually after it. And after 240-hour progress, it became about 17 mL/hr-mmHg. Moreover, also in the observation result of the adhesion condition of a platelet, adhesion of a lot of platelets is accepted in the front face by the side of the blood contact in the blood purification film (table 1 reference). Therefore, by the blood purification film which has too little coating weight of a hydrophilic macromolecule, immediately after leading blood, a constituent of blood coagulates from from, it adheres to the front face by the side of blood contact, and degradation of the film arises. And this degradation advances quickly and it turns out that an activity will be in a difficult condition comparatively for a short period of time.

[0062] On the other hand by the blood purification film (example 3) which made coating weight 3mg, the amount of ultrafiltrations which were about 105 mL/hr-mmHg became low gradually in connection with the passage of time immediately after test initiation, and they were about 93 mL/hr-mmHg after 50-hour progress. After it, although the amount of ultrafiltrations became low gently, the amount of ultrafiltrations of about 85 mL/hr-mmHg was maintained also after 240-hour progress. In addition, by the blood purification film (examples 1 and 2) with a coating weight of 10 or 50mg, the amount of ultrafiltrations before and behind about 100 mL/hr-mmHg was maintained for the period from immediately after test initiation to termination. And by the blood purification film (example 1) with a coating weight of 10mg, only adhesion of few platelets was accepted in the front face by the side of the blood contact in the blood purification film. That is, good haemocompatibility was demonstrated.

[0063] As mentioned above, the amount of transparency by which adhesion of a constituent of blood was stabilized very few is obtained, and by making coating weight into 3mg or more shows that it continues and good haemocompatibility can be demonstrated at a long period of time. Furthermore, by making coating weight into 10mg or more shows that haemocompatibility can be raised further (it is made good).

[0064] And putting a break through of the above-mentioned hydrophilic macromolecule and haemocompatibility together, the coating weight of 10mg shows that break-through inhibition and haemocompatibility of a hydrophilic macromolecule may be reconciled on still higher level, if it is the 50mg blood purification film.

[0065] In addition, if it carries out from a viewpoint of a break through of a hydrophilic macromolecule, since there is so little possibility of a break through that there is little amount of the hydrophilic macromolecule used, it is desirable, therefore, compatible [ on high level ] in break-through inhibition and haemocompatibility of a hydrophilic giant molecule, if it is the blood purification film with a coating weight of 10mg -- it can make -- in addition -- and it turns out that break-through inhibition can much more be ensured.

[0066]

[Effect of the Invention] According to this invention, the following effectiveness is done so as explained above. That is, since according to invention according to claim 1 it is the blood purification film which made the hydrophilic macromolecule hold to a hydrophobic poly membrane and the amount of maintenance of the hydrophilic macromolecule per 1 square meter of hydrophobic poly membranes was made into 3mg or more 50mg or less, break-through inhibition of a hydrophilic macromolecule and good haemocompatibility can be reconciled. [0067] According to invention according to claim 2, since said hydrophilic giant molecule is a polyvinyl pyrrolidone, the blood purification film which can demonstrate good haemocompatibility in \*\*\*\* small quantity is obtained.

[0068] Since adhesion maintenance of the hydrophilic macromolecule is physically carried out to a hydrophobic poly membrane by contacting the solution of a hydrophilic macromolecule to a hydrophobic poly membrane according to invention according to claim 3, while the processing for carrying out adhesion maintenance is easy, the coating weight of a hydrophilic macromolecule is easily controllable.

[0069] According to invention according to claim 4, since polyarylate resin and polysulfone resin are used as main film raw material, said hydrophobic poly membrane can only contact the solution of a hydrophilic macromolecule, and can carry out adhesion maintenance of the hydrophilic macromolecule certainly.

TECHNICAL FIELD

[Field of the Invention] This invention relates to the blood purification film used for a blood purification therapy.

PRIOR ART

[Description of the Prior Art] A blood purification therapy is the therapy approach of removing the undesired substances in blood (uremia matter etc.). In this blood purification therapy,

semipermeable membrane and ultrafiltration membrane are used as blood purification film. For example, the blood purifier which loaded with and constituted in casing the hollow filament bundle which bundled 5000 - about 10000 hollow fibers (what carried out spinning of the blood purification film to the shape of a hollow filament) is used.

[0003] There is a hemodialysis therapy, a hemofiltration therapy, or hemofiltration dialysis in this blood purification therapy. In a hemodialysis therapy, while pouring blood to the internal-surface side of the hollow fiber in blood purifier, dialysing fluid contacts blood and dialysing fluid to an outside-surface side through a sink and a hollow fiber, and diffusion removes the uremia matter and moisture with the superfluous inside of the body. In a hemofiltration therapy, the uremia matter is removed a \*\* exception by pouring blood to the internal-surface side of the hollow fiber in blood purifier. Moreover, in hemofiltration dialysis, the property of both a hemofiltration therapy and a hemodialysis therapy, i.e., filtration and diffusion, removes moisture with superfluous uremia matter and inside of the body.

10041 As blood purification film used by this blood purification therapy, the hydrophilic

[1004] As blood purification film used by this blood purification therapy, the hydrophilic macromolecule represented by the cellulose and the hydrophobic macromolecule represented by polysulfone and polyester are used suitably. It excels in a mechanical strength and is because there is little effect on a living body. However, generally, in order to use a hydrophobic ingredient (macromolecule) as blood purification film, the hydrophilic property is given to this hydrophobic ingredient in many cases. This is because adhesion of constituents of blood, such as protein and a platelet, tends to take place to the front face of the film manufactured only from the hydrophobic ingredient and lowering of membrane permeability ability in use etc. becomes a problem. That is, by the film manufactured only from the hydrophobic ingredient, it is because good haemocompatibility is difficult to get.

[0005] And generally the approach of adding a hydrophilic macromolecule and producing a film in a film production undiluted solution, from a hydrophobic ingredient as an approach of manufacturing the film with which the hydrophilic property was given, is made. What was using the hydrophilic macromolecule as a puncturing agent can add a hydrophilic property to a hydrophobic ingredient as a result, and this approach can be produced, in order to form membrane structure with a disengageable constituent of blood from a hydrophobic ingredient originally. In this approach, the polyvinyl pyrrolidone is suitably used as a hydrophilic giant molecule added in a film production undiluted solution, for example. That is, a hydrophilic property can be given to a hydrophobic ingredient while a constituent of blood forms disengageable membrane structure proper by adding and carrying out spinning of this polyvinyl pyrrolidone to a film production undiluted solution.

[0006] By this approach, in order to form the membrane structure which can separate a constituent of blood proper, it is necessary to add comparatively a lot of hydrophilic macromolecules. For this reason, on the produced blood purification film, comparatively a lot of hydrophilic macromolecules remain, and processing which prevents a break through of this hydrophilic macromolecule that remained is performed. For example, the hydrophilic macromolecule was made to construct a bridge with heat, a radiation, a chemical, etc., and the break through is prevented.

EFFECT OF THE INVENTION

[Effect of the Invention] According to this invention, the following effectiveness is done so as explained above. That is, since according to invention according to claim 1 it is the blood purification film which made the hydrophilic macromolecule hold to a hydrophobic poly membrane and the amount of maintenance of the hydrophilic macromolecule per 1 square meter of hydrophobic poly membranes was made into 3mg or more 50mg or less, break-through inhibition of a hydrophilic macromolecule and good haemocompatibility can be reconciled. [0067] According to invention according to claim 2, since said hydrophilic giant molecule is a polyvinyl pyrrolidone, the blood purification film which can demonstrate good haemocompatibility in \*\*\*\* small quantity is obtained.

[0068] Since adhesion maintenance of the hydrophilic macromolecule is physically carried out to a hydrophobic poly membrane by contacting the solution of a hydrophilic macromolecule to a hydrophobic poly membrane according to invention according to claim 3, while the processing for carrying out adhesion maintenance is easy, the coating weight of a hydrophilic macromolecule is easily controllable.

[0069] According to invention according to claim 4, since polyarylate resin and polysulfone resin are used as main film raw material, said hydrophobic poly membrane can only contact the solution of a hydrophilic macromolecule, and can carry out adhesion maintenance of the hydrophilic macromolecule certainly.

## TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] However, even if it performed processing which prevents a break through of a hydrophilic macromolecule since the superfluous hydrophilic macromolecule remained as described above, it was difficult to prevent a break through of a hydrophilic macromolecule certainly. Therefore, there was a possibility that the leaked hydrophilic macromolecule might mix in the inside of the body. And since the hydrophilic macromolecule mixed in the inside of the body may have a certain effect to a living body, it is desirable to remove mixing to the inside of the body of a hydrophilic macromolecule as much as possible.

[0008] this invention is made in view of such a situation, and good haemocompatibility obtains it -- having -- in addition -- and it aims at offering the blood purification film which can also prevent a break through of a hydrophilic macromolecule.

## MEANS

[Means for Solving the Problem] In order to attain the above-mentioned object, the thing according to claim 1 in this invention is the blood purification film which made the hydrophilic macromolecule hold to a hydrophobic poly membrane, and is characterized by making the amount of maintenance of the hydrophilic macromolecule per 1 square meter of hydrophobic poly membranes into 3mg or more 50mg or less.

[0010] Moreover, a thing according to claim 2 is blood purification film which is characterized by said hydrophilic giant molecule being a polyvinyl pyrrolidone in addition to a configuration according to claim 1.

[0011] Moreover, a thing according to claim 3 is blood purification film characterized by

carrying out adhesion maintenance of the hydrophilic macromolecule physically to a hydrophobic poly membrane by contacting the solution of a hydrophilic macromolecule to a hydrophobic poly membrane in addition to a configuration according to claim 1 or 2. [0012] Moreover, a thing according to claim 4 is blood purification film characterized by said hydrophobic poly membrane using polyarylate resin and polysulfone resin as main film raw material in addition to a configuration given in either of claims 1-3.

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained with reference to a drawing. First, the blood purifier using the blood purification film of this invention is explained. Here, <u>drawing 1</u> is drawing shown by making blood purifier 1 into a cross section, and <u>drawing 2</u> is drawing having shown the cutting plane of the hollow filament bundle in the edge of casing 2.

[0014] As shown in <u>drawing 1</u>, blood purifier 1 consists of an impregnation side blood port 3 screwed free [ attachment and detachment] to casing 2 and this casing 2, and a blowdown side blood port 4. Casing 2 is the cylindrical member formed of the polycarbonate. And it is the side face of this casing 2, the input 5 of dialysing fluid is formed in the edge by the side of the blowdown side blood port 4, and the exhaust port 6 of dialysing fluid is formed in the edge by the side of the impregnation side blood port 3.

[0015] The impregnation side blood port 3 and the blowdown side blood port 4 are screwed so that opening may be plugged up at the both ends of casing 2, and they are formed by the polycarbonate as well as casing 2. And the inlet 7 for pouring in blood has protruded in the impregnation side blood port 3, and the exhaust port 8 for discharging blood is protruded on the blowdown side blood port 4. Moreover, O rings 9 and 9 for maintaining watertightness, respectively are arranged in the contact section of the impregnation side blood port 3 and casing 2, and the contact section of the blowdown side blood port 4 and casing 2. [0016] The building envelope of casing 2 is loaded with the hollow filament bundle 10. That is,

[0016] The building envelope of casing 2 is loaded with the hollow filament bundle 10. That is, as shown in  $\underline{\text{drawing 2}}$  (a), it has loaded with what bundled 5000 - about 10000 hollow fiber 11 -- (equivalent to the blood purification film in this operation gestalt). In addition, in  $\underline{\text{drawing 2}}$  (a), in order to make a configuration intelligible, each hollow fiber 11 -- is drawn more thickly than a actual thing.

[0017] Opening of the ends in casing 2 is filled up with the sealing materials 12 and 12, such as urethane system resin. And the edge of the hollow filment bundle 10 is each hollow fiber 11, as it is shown in drawing 2 (b), while it is crowded with much hollow fiber 11 — which carried out opening. — Where watertightness is secured, the sealing material 12 has taken up the clearance between comrades. These sealing materials 12 and 12 have not plugged up the input 5 and the exhaust port 6 of dialysing fluid. For this reason, input 5 and an exhaust port 6 are open for free passage with the space by the side of the outside surface of the hollow fiber 11 in casing 2, respectively. Therefore, in the casing 2 which loaded with the hollow fiber 11 which is the passage of dialysing fluid was separated by the hollow fiber 11 the internal-surface 11a side of the hollow fiber 11 which is the passage of dialysing fluid was separated by the hollow fiber 11 the internal-surface 11a side of the hollow fiber 11 which is the passage of blood.

[0018] Next, a hollow fiber 11 is explained, the hydrophobic poly membrane to which the hollow fiber 11 in this operation gestalt, i.e., the blood purification film, used polyarylate resin and polysulfone resin as main film raw material — the shape of a hollow filament — spinning — carrying out — in addition — and the hydrophobic poly membrane is made to carry out adhesion maintenance of the polyvinyl pyrrolidone which is a kind of a hydrophilic giant molecule

[0019] And this polyvinyl pyrrolidone has adjusted the amount of maintenance per unit area of a hydrophobic poly membrane to the specified quantity. Specifically, the amount of maintenance of the polyvinyl pyrrolidone per 1 square meter of hydrophobic poly membranes is made into within the limits of 3mg or more 50mg or less.

[0020] When the amount of maintenance of a polyvinyl pyrrolidone is made into 70mg or more, the reason When a break through of the polyvinyl pyrrolidone from blood purifier 1 is checked and the amount of maintenance of a polyvinyl pyrrolidone is made into 1 mg or less The solidified constituent of blood adheres to internal-surface 1 la of a hollow fiber 11, and it is checked that it becomes impossible to demonstrate the penetrability of a hollow fiber 11 comparatively by this adhering constituent of blood for a short time. It is because it was checked that a break through of a polyvinyl pyrrolidone and adhesion of a constituent of blood are lost when the amount of maintenance of a polyvinyl pyrrolidone was made into within the limits of 3 mg or more 50mg or less.

[0021] Moreover, the above-mentioned polyester system resin is [0022]. Formula [\*\* 1]

上記式中、R<sup>1</sup>及びR<sup>2</sup>は炭素数が1乃至5の低級アルキル基であり、 それぞれ同一であっても相違していてもよい。

[0023] It is polyarylate resin which comes out and has the repeat unit expressed, and polysulfone system resin is [0024]. Formula [\*\* 2]

上記式中、R<sup>3</sup>及びR<sup>4</sup>は炭素数が1万至5の低級アルキル基であり、 それぞれ同一であっても相違していてもよい。

[0025] The repeat unit come out of and expressed, and [0026] Formula [\*\* 3]

[0027] It comes out and is polysulfone resin of the repeat unit expressed which has at least any they are.

[0028] Next, the creation procedure of the blood purification film is explained. In addition, with this operation gestalt, since the blood purification film is created in the process in which blood purifier 1 is manufactured, the production process of blood purifier 1 will be explained. Here, drawing 3 is a flow chart which shows the outline of the production process of blood purifier 1. [0029] First, spinning of the hydrophobic macromolecule is carried out to the shape of a hollow

fiber (a spinning process, step S1). At this spinning process, a film production undiluted solution is prepared first. While defining the mixed weight ratio (A/B) of polyester system resin (A) and polysulfone system resin (B) in 0.1-10, specifically, it dissolves in an organic solvent so that the total quantity (A+B) of both resin may serve as 10 % of the weight - 25% of the weight of a rate. In addition, although there will be especially no limit if an organic solvent is a good solvent to polyester system resin and polysulfone system resin, N-methyl pyrrolidone can use it most suitably.

[0030] Spinning of this film production undiluted solution is carried out to the shape of discharge and a hollow filament into coagulation liquid with core liquid using a double pipe spinneret. In addition, by the following explanation, a polyvinyl pyrrolidone (a kind of a hydrophilic macromolecule) makes for convenience the hollow fiber in the condition that adhesion maintenance is not carried out hydrophobic hollow fiber 11'. Here, although core liquid and coagulation liquid are for fabricating a film production undiluted solution in the shape of a hollow filament, the mixed solvent of a water independent twist which mixed in water the organic solvent used for the resin dissolution is also more desirable. This is for being easy to form fibril structure with more uniform using a mixed solvent. In addition, although there will be especially no limit if it is a good solvent to resin as an organic solvent to mix, N-methyl pyrrolidone can use it most suitably.

[0031] Thus, a porous layer is formed so that hydrophobic hollow fiber 11' which carried out spinning may cover the outside of this compact layer while a compact layer is formed in that internal-surface 11a. A compact layer is the part which specifies a transmission rate in the permselectivity list of the matter in this film, and the hole radius 30-100 A hole is formed in the hole and concrete target which have a less than 500A average aperture. Moreover, the porous layer is functioning as supporters who support a compact layer and maintain membranous reinforcement, and the hole quite coarser than a compact layer is formed. In addition, the thickness of this hydrophobic hollow fiber 11' is about 5-70 micrometers. And by this film, the with a molecular weight of 100000 or more matter cannot penetrate the whole quantity (100%) mostly.

[0032] Next, it processes in the bundle of hydrophobic hollow fiber 11' which carried out spinning in this way (they are down stream processing and step S2 in a bundle). Bundle-ization which makes one bundle 5000 - about 10000 hydrophobic hollow fiber 11' by down stream processing in this bundle is made. The bundle (hollow filament bundle 10) of this hydrophobic hollow fiber 11' is adjusted to the outer diameter according to the bore of the cylinder-like casing 2

[0033] Next, it loads with the hollow filament bundle 10 into casing 2 (a loading process, step S3). At this loading process, it loads with the hollow filament bundle 10 into the casing 2 in the condition that the impregnation side blood port 3 and the blowdown side blood port 4 separated. At this time, the periphery of the hollow filament bundle 10 is beforehand covered with the sheet, it loads into casing 2 this whole sheet, and a sheet is sampled after loading.

[0034] Next, potting is performed (a potting process, step \$4). At this potting process, while closing opening of casing 2 with a sealing material 12 (sealing), the part overflowing into the exterior of the casing 2 in the hollow filament bundle 10 is cut so that it may become same flatsurface as opening of casing 2 2. By this cutting, the cross section explained by drawing 2 (a) is obtained.

[0035] Next, hydrophilization processing is performed (hydrophilization down stream processing, step S5). In this hydrophilization down stream processing, after equipping the both

ends of casing 2 with the impregnation side blood port 3 and the blowdown side blood port 4 (screwing), the water solution (a kind of the solution of a hydrophilic giant molecule) of a polyvinyl pyrrolidone prepared from the inlet 7 of the impregnation side blood port 3 to predetermined concentration is poured in by the predetermined flow rate, and the water solution of the polyvinyl pyrrolidone which passed blood purifier 1 is discharged from the exhaust port 8 of the blowdown side blood port 4. And this processing is performed from dozens of seconds for dozens minutes, and adhesion maintenance of the polyvinyl pyrrolidone is carried out. [0036] That is, in this hydrophilization down stream processing, adhesion maintenance of the polyvinyl pyrrolidone is carried out by contacting the water solution of a polyvinyl pyrrolidone to blood purifier 1. In addition, in producing the solution of the hydrophilic macromolecule used by this hydrophilization down stream processing, with this operation gestalt, purified water was used as a solvent, but liquids other than purified water may be used as a solvent. And by passing through this hydrophilization down stream processing, adhesion maintenance of the polyvinyl pyrrolidone is carried out, and the blood purification film (namely, hollow fiber 11) in this operation gestalt is obtained by hydrophobic hollow fiber 11'. [0037] In addition, the amount of the hydrophilic macromolecule which carries out adhesion maintenance is controllable by this hydrophilization down stream processing by changing the concentration of a hydrophilic polymer solution suitably. That is, by using a hydrophilic highconcentration polymer solution, many adhesion maintenance of the hydrophilic macromolecule can be carried out, and adhesion maintenance of a small quantity of the hydrophilic macromolecule can be carried out by using a low-concentration hydrophilic polymer solution. [0038] For example, if hydrophilization processing is performed using 1% of the weight of the

can be carried out, and adhesion maintenance of a small quantity of the hydrophilic macromolecule can be carried out by using a low-concentration hydrophilic polymer solution. [0038] For example, if hydrophilization processing is performed using 1% of the weight of the water solution of a polyvinyl pyrrolidone, in the hydrophobic poly membrane manufactured from polyarylate resin and polysulfone resin, the blood purification film with which adhesion maintenance of the 70mg [per 1 square meter of hydrophobic poly membranes] polyvinyl pyrrolidone was carried out can be produced, and the blood purification film with which adhesion maintenance of the 3mg [per 1 square meter of hydrophobic poly membranes] polyvinyl pyrrolidone was carried out can be produced by performing hydrophilization processing using 0.03% of the weight of the water solution of a polyvinyl pyrrolidone. Moreover, the amount of the polyvinyl pyrrolidone by which adhesion maintenance was carried out is computable by measuring the amount (namely, polyvinyl-pyrrolidone concentration of a penetrant remover) of the polyvinyl pyrrolidone removed at the polyvinyl-pyrrolidone water-solution concentration before processing, the polyvinyl-pyrrolidone water-solution concentration before processing, the polyvinyl-pyrrolidone water-solution concentration after processing, and the washing process mentioned later.

[0039] Moreover, in this hydrophilization down stream processing, the degree of the

[0039] Moreover, in this hydrophilization down stream processing, the degree of the hydrophilization of the membranous thickness direction is changeable by changing the molecular weight of a hydrophilic macromolecule. That is, by using the hydrophilic macromolecule of low molecular weight, it can continue in the membranous whole thickness direction from the internal-surface 11a side of a hollow fiber 11, adhesion maintenance of the hydrophilic macromolecule can be carried out, and only internal-surface 11a of a hollow fiber 11 carries out adhesion maintenance of the hydrophilic macromolecule by using the hydrophilic macromolecule of high molecular weight. For example, when hydrophilization processing is performed using the water solution of Polyvinylpyrrolidone K30 (average molecular weight 40000 [ about ]), it can continue in the whole thickness direction of a hollow fiber 11, adhesion maintenance of the polyvinyl pyrrolidone can be carried out, and only internal-surface 11a of a hollow fiber 11 carries out adhesion maintenance of the polyvinyl pyrrolidone at a

hydrophilization place Michiyuki \*\*\*\* case using the water solution of Polyvinylpyrrolidone K90 (average molecular weight 1200000 [ about ]).

[0040] Next, it rinses (a washing process, step S6). At this washing process, a hydrophilic surplus macromolecule is removed by the penetrant remover about the blood purifier 1 which carried out adhesion maintenance of the polyvinyl pyrrolidone (hydrophilic macromolecule). Specifically, a penetrant remover, for example, purified water, is passed in blood purifier 1. Washing clearance of the hydrophilic surplus macromolecule which is sticking to blood purifier 1 according to this washing process by the adsorption power lower than predetermined adsorption power among the hydrophilic macromolecules which are carrying out adhesion maintenance is carried out. In addition, the hydrophilic macromolecule by which adhesion maintenance is carried out after this washing process at blood purifier 1 does not secede from the inside of blood purifier 1 with the flowing blood, either. Moreover, the penetrant remover used at this washing process should just be the liquid from which it is not limited to purified water and a hydrophilic surplus macromolecule can be removed.

[0041] And sterilization processing is performed to the blood purifier 1 in the condition of having filled up with purified water the blood purifier 1 which washing ended (step 87), and having filled up with this purified water (step 88). Gamma ray sterility, wet sterilization, etc. are given in this sterilization down stream processing.

[0042] By the way, although the production process explained above showed the example which also manufactured the blood purification film (hollow fiber 11) in the process in which blood purifier 1 is manufactured, the solution of a hydrophilic macromolecule is directly contacted to the hydrophobic poly membrane which carried out spinning, and you may make it make a hydrophobic poly membrane carry out adhesion maintenance of the hydrophilic macromolecule, [0043] Moreover, the amount of maintenance of a polyvinyl pyrrolidone can also be low adjusted by adding a puncturing agent removable from a hollow fiber 11 to a film production undiluted solution with a polyvinyl pyrrolidone (a kind of a hydrophilic giant molecule), and removing a puncturing agent after spinning. Although it continues throughout the membranous thickness direction and the hydrophilic property is given by the blood purification film manufactured by this approach, since the amount of maintenance of a polyvinyl pyrrolidone is adjusted low, it can prevent that a polyvinyl pyrrolidone leaks out. However, if it is made to contact the solution of a hydrophilic macromolecule to the hydrophobic poly membrane which produced the film beforehand like this operation gestalt, while processing is easy, it has the advantage that control of the coating weight of a hydrophilic macromolecule is easy. Furthermore, only the front face by the side of the blood contact in the blood purification film can also be made to carry out adhesion maintenance of the hydrophilic giant molecule selectively by using the hydrophilic giant molecule (for example, Polyvinylpyrrolidone K90) of the high molecular weight which cannot penetrate the blood purification film.

[0044] Moreover, the sheet-like film is sufficient although the hollow fiber  $11\,$  was illustrated with the above-mentioned operation gestalt.

[0045] Moreover, although the polyvinyl pyrrolidone which is a typical hydrophilic giant molecule among usable hydrophilic giant molecules was illustrated in the blood purification film with the above-mentioned operation gestalt, if it is the hydrophilic giant molecule which has the same property as this polyvinyl pyrrolidone, it will not be limited to this. However, when a polyvinyl pyrrolidone is used like this operation gestalt, the blood purification film which can demonstrate high haemocompatibility in \*\*\*\* small quantity can be produced.

[0046] Moreover, although the hydrophobic poly membrane which used polyarylate resin and

polysulfone resin as main film raw material was illustrated with this operation gestalt about the hydrophobic poly membrane, the film by other hydrophobic ingredients is sufficient. However, when the hydrophobic poly membrane which used polyarylate resin and polysulfone resin as main film raw material like this operation gestalt is used and the solution of a hydrophilic macromolecule is contacted, adhesion maintenance of the hydrophobic macromolecule is carried out more suitably (certainly) than the film by other hydrophobic ingredients.

# **EXAMPLE**

[Example] Next, the example of this invention is shown and this invention is explained still more concretely. In addition, the following explanation explains the case where Polyvinylpyrrolidone K90 (average molecular weight 1200000 [ about ]) used suitable for the blood purification film as a hydrophilic giant molecule is used.

[0048] First, the film production undiluted solution was prepared from the polyarylate resin [Unitika Make and a trade name;U polymer] shown by said formula (1), the polyether sulphone resin (the Sumitomo Chemical Co., Ltd. make and trade name; SUMIKA Excel PES] shown by said formula (3), and N-methyl pyrrolidone, in addition, the weight of polyarylate resin and polyether sulphone resin -- the mixing ratio was set to 1:1. Moreover, N-methyl pyrrolidone water solution was used as core liquid at the coagulation liquid list. And a film production undiluted solution and core liquid were breathed out into coagulation liquid using the double pipe spinneret, hydrophobic hollow fiber 11" was produced, about 10,000 of this hydrophobic hollow fiber 11" was produced, about 10,000 of this hydrophobic hollow fiber 11" was produced, about 10,000 of this hydrophobic hollow fiber 11" was produced, about 10,000 of this hydrophobic hollow fiber 11" was produced, about 10,000 of this hydrophobic hollow fiber 3 and 4 were consected to the both ends of casing 2 made from a cylinder-like polycarbonate, polyurethane resin was used as a sealing material 12, the edge was pasted up, the blood ports 3 and 4 were connected to the both ends of casing 2, and the blood purifier 1 of 1.5 square meters of film surface products was made as an experiment.

[0049] (Example 1) 0.1% of the weight of the water solution of a polyvinyl pyrrolidone (the BASF make, a trade name; Kollidon K-90) was poured for about 1 minute by the flow rate of 200 mL/min under ordinary temperature to blood purifier 1, hydrophilization processing was performed, and the blood purification film (hollow fiber 11) with which adhesion maintenance of the 10mg [per 1 square meter of hydrophobic poly membranes ] polyvinyl pyrrolidone was carried out was produced. In addition, the amount of adhesion maintenance of a polyvinyl pyrrolidone was computed based on the concentration of the polyvinyl-pyrrolidone water solution before hydrophilization processing, and the concentration of the polyvinyl-pyrrolidone water solution at the time of hydrophilization processing termination and the polyvinyl-pyrrolidone concentration of a penetrant remover. Moreover, density measurement of a polyvinyl-pyrrolidone water solution was performed using the approach (KMuller, Pham.Acta, Helv.43 (1968) 107-122) of Muller.

[0050] And the trial which investigates the leak (elution volume) of the polyvinyl pyrrolidone in this blood purification film was performed. After being filled up with purified water after washing blood purifier 1 by purified water IL in blood purifier 1 and specifically warming it at 70 degrees C for 3 hours, filled liquid (liquid by the side of the blood contact section) was sampled, and the concentration of a polyvinyl pyrrolidone was measured. In addition, that which does not adhere to the polyvinyl pyrrolidone was used for the blood ports 3 and 4 in this trial in order to measure the exsorption from the blood purification film. Moreover, the trial which

investigates aging of the amount of ultrafiltrations in this blood purification film (UFR, mL/hrmmHg) was performed. After washing blood purifier 1 by purified water 1L, while circulating bovine blood liquid (hematocrit 30% and total protein 6.5 g/dL) by the flow rate of 200 mL/min, the filtration flow rate was adjusted to 90 mL/min, and, specifically, aging of the amount of ultrafiltrations was measured. Furthermore, the adhesion condition of the platelet in the front face (namely, intermal-surface 11a of a hollow fiber 11) of the blood purification film was observed. While cutting down the blood purification film after specifically performing the trial which investigates aging of the amount of ultrafiltrations from blood purification film the trial which investigates aging of the amount of ultrafiltrations from blood purification film into a delectron microscope (SEM) by making what dried this cleared blood purification film into a measurement sample. The test result and the observation result were shown in the table 1 list at drawing 4 (aging of the amount of ultrafiltrations).

[0051] (Example 2) hydrophilization processing (conditions other than concentration — an example 1 — the same — the following — the same) was performed using 0.5% of the weight of the water solution of a polyvinyl pyrrolidone, and the blood purification film with which adhesion maintenance of the 50mg [ per 1 square meter of hydrophobic poly membranes ] polyvinyl pyrrolidone was carried out was produced.

[0052] And the trial which investigates aging of the amount of ultrafiltrations was performed in the trial list which investigates the leak of a polyvinyl pyrrolidone also to this blood purification film (the contents of a trial are the same as an example 1). The test result in each trial was shown in the table 1 list at <u>drawing 4</u>.

[0053] (Example 3) Hydrophilization processing was performed using 0.03% of the weight of the water solution of a polyvinyl pyrrolidone, and the blood purification film with which adhesion maintenance of the 3mg [per 1 square meter of hydrophobic poly membranes] polyvinyl pyrrolidone was carried out was produced.

[0054] And the trial which investigates aging of the amount of ultrafiltrations was performed in the trial list which investigates the leak of a polyvinyl pyrrolidone also to this blood purification film (the contents of a trial are the same as an example 1). The test result in each trial was shown in the table 1 list at drawing 4.

[0055] (Example 1 of a comparison) Hydrophilization processing was performed using 1% of the weight of the water solution of a polyvinyl pyrrolidone, and the blood purification film with which adhesion maintenance of the 70mg [ per 1 square meter of hydrophobic poly membranes ] polyvinyl pyrrolidone was carried out was produced.

[0056] And the trial which investigates aging of the amount of ultrafiltrations was performed in the trial list which investigates the leak of a polyvinyl pyrrolidone also to this blood purification film (the contents of a trial are the same as an example 1). The test result in each trial was shown in the table 1 list at drawing 4.

[0057] (Example 2 of a comparison) Hydrophilization processing was performed using 0.01% of the weight of the water solution of a polyvinyl pyrrolidone, and the blood purification film with which adhesion maintenance of the Img [per 1 square meter of hydrophobic poly membranes] polyvinyl pyrrolidone was carried out was produced.

[0058] And the adhesion condition of a platelet was observed also to this blood purification film in the trial which investigates the leak of a polyvinyl pyrrolidone, and the trial list which investigates aging of the amount of ultrafiltrations (the contents of a trial are the same as an example 1). The test result in each trial was shown in the table 1 list at  $\underline{\text{drawing 4}}$ . [0059]

[Table 1]

| PVP付着量     | PVPの溶出量(mg/l) | 牛血UFRの経時変化 | 血小板付着(SEM) |
|------------|---------------|------------|------------|
| PVP70mg/m  | 5             | 小さい        | -          |
| PVP50mg/m² | N. D.         | 小さい        | -          |
| PVP10mg/m² | N. D.         | 小さい        | 付着少ない      |
| .PVP3mg/m  | N. D.         | 小さい        | -          |
| PVP1mg/m²  | N. D.         | 大きい        | 付着多い       |

N. D. : 1, 5 mg/l 未満 (検出限界値未満)

[0060] First, exsorption of the hydrophilic macromolecule in the blood purification film is considered. As shown in Table 1, by the blood purification film (example 1 of a comparison) which made the amount of adhesion maintenance of a polyvinyl pyrrolidone 70mg per 1 square meter of hydrophobic poly membranes (coating weight it is the same as that of the following which it says is 70mg), exsorption of a 5mg [ per 1. ] polyvinyl pyrrolidone was accepted. On the other hand, exsorption of a polyvinyl pyrrolidone was not accepted by the blood purification film (example 2) with a coating weight of 50mg (that is, it was below limit of detection). Similarly, exsorption of a polyvinyl pyrrolidone was not accepted by the blood purification film (examples 1 and 3) with a coating weight of 10 or 3mg, either

[0061] Next, the stability and haemocompatibility of the amount of transparency of the blood purification film are examined. As shown in drawing 4, by the blood purification film (example 2 of a comparison) which made coating weight Img, the amount of ultrafiltrations which were about 90 mL/hr-mmHg became low rapidly in connection with the passage of time immediately after test initiation, and they were about 60 mL/hr-mmHg after 50-hour progress. Furthermore, after 100-hour progress, it becomes about 22 mL/hr-mmHg and the amount of ultrafiltrations becomes low gradually after it. And after 240-hour progress, it became about 17 mL/hr-mmHg. Moreover, also in the observation result of the adhesion condition of a platelet, adhesion of a lot of platelets is accepted in the front face by the side of the blood contact in the blood purification film (refer to Table 1). Therefore, by the blood purification film which has too little coating weight of a hydrophilic macromolecule, immediately after leading blood, a constituent of blood coagulates from from, it adheres to the front face by the side of blood contact, and degradation of the film arises. And this degradation advances quickly and it turns out that use will be in a difficult condition comparatively for a short period of time.

[0062] On the other hand by the blood purification film (example 3) which made coating weight 3mg, the amount of ultrafiltrations which were about 105 mL/hr-mmHg became low gradually in connection with the passage of time immediately after test initiation, and they were about 93 mL/hr-mmHg after 50-hour progress. After it, although the amount of ultrafiltrations became low gently, the amount of ultrafiltrations of about 85 mL/hr-mmHg was maintained also after 240-hour progress. In addition, by the blood purification film (examples 1 and 2) with a coating weight of 10 or 50mg, the amount of ultrafiltrations before and behind about 100 mL/hr-mmHg was maintained for the period from immediately after test initiation to termination. And by the blood purification film (example 1) with a coating weight of 10mg, only adhesion of few platelets was accepted in the front face by the side of the blood contact in the blood purification film. That is, good haemocompatibility was demonstrated.

[0063] As mentioned above, the amount of transparency by which adhesion of a constituent of blood was stabilized very few is obtained, and by making coating weight into 3mg or more shows that it continues and good haemocompatibility can be demonstrated at a long period of time. Furthermore, by making coating weight into 10mg or more shows that haemocompatibility can be raised further (it is made good).

[0064] And putting exsorption of the above-mentioned hydrophilic macromolecule and haemocompatibility together, the coating weight of 10mg shows that exsorption inhibition and haemocompatibility of a hydrophilic macromolecule may be reconciled on still higher level, if it is the 50mg blood purification film.

[0065] In addition, if it carries out from a viewpoint of exsorption of a hydrophilic macromolecule, since there is so little possibility of exsorption that there is little amount of the hydrophilic macromolecule used, it is desirable, therefore, compatible [on high level] in exsorption inhibition and haemocompatibility of a hydrophilic giant molecule, if it is the blood purification film with a coating weight of 10mg -- it can make -- in addition -- and it turns out that exsorption inhibition can much more be ensured.

# DESCRIPTION OF DRAWINGS

# [Brief Description of the Drawings]

[Drawing 1] It is the explanatory view which made blood purifier the cross section.

[Drawing 2] It is drawing having shown the cutting plane of the hollow filament bundle in the edge of casing, and they are drawing in which (a) showed the whole cutting plane, and drawing in which (b) expanded and showed the part.

[Drawing 3] It is the flow chart which shows the outline of the production process of blood purifier.

<u>IDrawing 41</u> It is drawing having shown aging of the amount of ultrafiltrations by the blood purification film with which the coating weight of a polyvinyl pyrrolidone differs. [Description of Notations]

- 1 Blood Purifier
- I DIOOU FUIIII
- 2 Casing
- 3 Impregnation Side Blood Port
- 4 Discharge Side Blood Port
- 5 Input of Dialysing Fluid
- 6 Exhaust Port of Dialysing Fluid
- 7 Inlet in Impregnation Side Blood Port
- 8 Exhaust Port in Discharge Side Blood Port
- 9 O Ring
- 10 Hollow Filament Bundle
- 11 Hollow Fiber (Blood Purification Film)
- 11' Hydrophobic hollow fiber
- 11a The internal surface of a hollow fiber
- 12 Sealing Material

## DRAWINGS







