?? **a)**
$$f'(x) = 20x^4$$
 b) $f(2) - f(0) = 128$

??
$$F(4) - F(1) = 8$$

??

a) Vi bruker kjerneregelen to ganger. Først setter vi $u(x) = \cos^2 x$ og $g(u) = e^u$. Deretter setter vi $h(x) = \cos x$ og $i(h) = h^2$. Vi får da at:

$$u'(x) = i'(h)h'(x)$$
$$= 2h \cdot (-\sin x)$$
$$= -2\cos x \sin x$$

Videre har vi da at:

$$f'(x) = g'(u)u'(x)$$

$$= e^{u} \cdot (-2\cos x \sin x)$$

$$= -2\cos x \sin x e^{\cos^{2} x}$$

b) Av (??) har vi at $2\cos x \sin x = \sin(2x)$, og derfor kan vi skrive:

$$\int -\sin(2x) e^{\cos^2 x} dx = \int -2\cos x \sin x e^{\cos^2 x} dx$$
$$= \int f'(x) dx$$
$$= f(x) + C$$
$$= e^{\cos^2 x} + C$$

Overgangen mellom andre og tredje linje følger av definisjonen av det ubestemte integralet.

??

a) Vi må vise at $(x^2e^x)'$ tilsvarer uttrykket i integranden.

$$(x^2e^x)' = 2xe^x + x^2e^x$$
$$= xe^x(2+x)$$

b) Vi må vise at $\left(e^{\cos x + x^2}\right)'$ tilsvarer uttrykket i integranden:

$$(e^{\cos x + x^2})' = e^{\cos x + x^2} \cdot (\cos x + x^2)'$$
$$= e^{\cos x + x^2} (-\sin x + 2x)$$
$$= -e^{\cos x + x^2} (\sin x - 2x)$$

?? Av (??) vet vi at perioden $\cos x$ er 2π . Dette betyr at hvis vi for en konstant c har at a=c, så er $b=a+2\pi$. Integralet blir da:

$$\int_{c}^{c+2\pi} (\cos x + k) dx = \left[\sin x + kx \right]_{c}^{c+2\pi}$$
$$= \left[\sin(c + 2\pi) + k(c + 2\pi) - (\sin c + kc) \right]$$
$$= 2k\pi$$

Mellom andre og tredje linje har vi brukt at $\sin(c+2\pi) = \sin c$. Gjennomsnittet kan altså skrives som

$$\frac{1}{(c+2\pi)-c} \cdot 2k\pi = k$$

??

a) Vi setter $u = x^2$ og $g(u) = e^u$. Siden u' = 2x får vi:

$$\int xe^{x^2} dx = \frac{1}{2} \int 2xe^{x^2}$$
$$= \frac{1}{2} \int u'e^u dx$$
$$= \frac{1}{2} \int e^u du$$
$$= \frac{1}{2}e^u + C$$
$$= \frac{1}{2}e^{x^2} + C$$

b) Vi starter med å finne det ubestemte integralet ved å bruke bytte av variabel. Vi setter $u=2x^2-3$ og $g(u)=e^u$, siden u'=4x får vi:

$$\int 8xe^{2x^2-3} dx = 2 \int 4xe^{2x^2-3} dx$$
$$= 2 \int u'e^u dx$$
$$= 2 \int e^u du$$
$$= 2e^u + C$$

Det bestemte integralet blir derfor:

$$\begin{aligned} \left[2e^{2x^2-3}\right]_1^2 &= 2\left[e^{2\cdot 2^2-3}-e^{2\cdot 1-3}\right] \\ &= 2\left[e^5-e^{-1}\right] \end{aligned}$$

c) Vi setter $u = \cos x$ og g(u) = u. Siden $u' = -\sin x$, får vi:

$$\int \frac{\sin x}{\cos x} dx = -\int \frac{u'}{u} dx$$
$$= -\int \frac{1}{u} du$$
$$= -\ln u + C$$
$$= -\ln(\cos x) + C$$

d) Vi setter $u = \cos x$ og $g(u) = \frac{1}{u^3}$. Siden $u' = -\sin x$, får vi:

$$\int \frac{\sin x}{\cos^3 x} dx = \int \frac{-u'}{u^3} dx$$
$$= -\int u^{-3} dx$$
$$= \frac{1}{2}u^{-2} + C$$

Siden $u(0) = \cos 0 = 1$ og $u(\frac{\pi}{3}) = \cos(\frac{\pi}{3}) = 2^{-1}$ blir det bestemte integralet:

$$\left[\frac{1}{2}u^{-2}\right]_{1}^{2^{-1}} = \frac{1}{2}\left[(2^{-1})^{-2} - 1^{-2}\right]$$
$$= \frac{1}{2}[4 - 1]$$
$$= \frac{3}{2}$$

e) Vi setter $u = 2x^2 + 5x$ og $g(u) = \frac{1}{u}$. Da er

$$\int \frac{4x+5}{2x^2+5x} dx = \int \frac{u'}{u} dx$$

$$= \int \frac{1}{u} du$$

$$= \ln u + C$$

$$= \ln(2x^2 + 5x) + C$$

f) Vi setter $u = 3x^2 + 4x + 3$ og $g(u) = \frac{1}{u}$, og får da:

$$\int \frac{3x+2}{3x^2+4x+3} dx = \frac{1}{2} \int \frac{6x+4}{3x^2+4x+3} dx$$
$$= \frac{1}{2} \int \frac{u'}{u} dx$$
$$= \frac{1}{2} \int u^{-1} du$$
$$= \frac{1}{2} \ln u$$
$$= \frac{1}{2} \ln \left(3x^2+4x+3\right)$$

??

Av (??) og (??) kan vi skrive:

$$\int \sin(2x)e^{1-\cos^2 x} dx = \int 2\sin x \cos x e^{\sin^2 x}$$

Vi setter så $u=\sin x$ og $g(u)=2ue^{u^2}$. Siden $u'=\cos x$ kan vi skrive:

$$\int 2\sin x \cos x e^{\sin^2 x} dx = 2 \int uu' e^{u^2} dx$$
$$= 2 \int ue^{u^2} dx$$

Vi setter nå $v=u^2$ og $h(v)=e^v$. Siden v'=2u får vi:

$$2 \int ue^{u^2} dx = \int v'e^v dx$$
$$= \int e^v dx$$
$$= e^v + C$$
$$= e^{u^2} + C$$
$$= e^{\sin^2 x} + C$$

??

b) Vi setter $u = \ln x$ og $v' = x^{\frac{1}{2}}$ og får da at $u' = x^{-1}$ og $v = \frac{2}{3}x^{\frac{3}{2}}$:

$$\int \sqrt{x} \ln x \, dx = \int uv' \, dx$$

$$= uv - \int u'v \, dx$$

$$= \ln x \cdot \frac{2}{3} x^{\frac{3}{2}} - \int x^{-1} \cdot \frac{2}{3} x^{\frac{3}{2}}$$

$$= \frac{2}{3} x^{\frac{3}{2}} \ln x - \frac{2}{3} \int x^{\frac{1}{2}}$$

$$= \frac{2}{3} x^{\frac{3}{2}} \ln x - \frac{2}{3} \cdot \frac{2}{3} x^{\frac{3}{2}} + C$$

$$= \frac{2}{9} x^{\frac{3}{2}} (3 \ln x - 2) + C$$

c) Vi setter $u = \ln x$ og $v' = x^{-2}$, og får da at $u' = x^{-1}$ og $v = -x^{-1}$.

$$\int \ln x \, x^{-2} \, dx = \int uv' \, dx$$

$$= uv - \int u'v \, dx$$

$$= \ln x \, (-x^{-1}) - \int x^{-1} (-x)^{-1} \, dx$$

$$= -\frac{\ln x}{x} + \int x^{-2} \, dx$$

$$= -\frac{\ln x}{x} - \frac{1}{x} + C$$

$$= -\frac{1}{x} (\ln x + 1) + C$$

Det bestemte integralet blir da:

$$\begin{split} \left[-\frac{1}{x} (\ln|x| + 1) \right]_{1}^{e} &= -\left[\frac{1}{e} (\ln e + 1) - \frac{1}{1} (\ln 1 + 1) \right] \\ &= -\left[\frac{2}{e} - 1 \right] \\ &= 1 - \frac{2}{e} \end{split}$$

?? Vi setter $u = \sin x$ og $v' = \sin x$, og får da at $u' = \cos x$ og $v = -\cos x$:

$$\int \sin^2 x \, dx = \sin x (-\cos x) - \int \cos x (-\cos x)$$
$$= -\sin x \cos x + \int \cos^2 x \, dx$$
$$= -\sin x \cos x + \int (1 - \sin^2 x) \, dx$$
$$2 \int \sin^2 x \, dx = -\sin x \cos x + \int 1 \, dx$$
$$\int \sin^2 x \, dx = \frac{1}{2} (x - \sin x \cos x) + C$$

?? a) Vi starter med å faktorisere nevneren i integranden:

$$x^2 - 5x + 6 = (x - 2)(x - 3)$$

Altså kan vi skrive:

$$\frac{13 - 4x}{x^2 - 5x + 6} = \frac{A}{x - 2} + \frac{B}{x - 3}$$
$$13 - 4x = A(x - 3) + B(x - 2)$$

Når x = 3 får vi:

$$13 - 4 \cdot 3 = B(3 - 2)$$
$$1 = B$$

Og når x = 2 får vi:

$$12 - 4 \cdot 2 = A(2 - 3)$$
$$5 = -A$$
$$-5 = A$$

Det ubestemte integralet vi ønsker å løse kan derfor skrives som:

$$\int \left(\frac{1}{x-3} - \frac{5}{x-2}\right) dx = \ln(x-3) - 5\ln(x-2) + C$$

Det bestemte integralet blir da:

$$\left[\ln|x-3| - 5\ln|x-2| \right]_4^5 = \ln|5-3| - 5\ln|5-2| - (\ln|4-3| - 5\ln|4-2|)$$

$$= \ln 2 - 5\ln 3 - \ln 1 + 5\ln 2$$

$$= 6\ln 2 - 5\ln 3$$

?? Se eksempel på side ??

??

a) Ut ifra figuren ser vi at

$$\int_{a}^{b} g dx = A + (b - a)k - B$$

$$\int_{a}^{b} f dx = A - B = \int_{a}^{b} g dx - (b - a)k$$

b) Vi har at

$$\int_{a}^{b} g \, dx = \int_{a}^{b} f + k \, dx$$

$$= \int_{a}^{b} f \, dx + [kx]_{a}^{b}$$

$$= \int_{a}^{b} f \, dx + (b - a)k$$

$$\int_{a}^{b} g \, dx - (b - a)k = \int_{a}^{b} f \, dx$$

??

a) Tverrsnittet langs x-aksen blir en sirkel med høyde $\sqrt{r^2 - x^2}$. Tverrsnittsareale blir derfor

$$A(x) = \pi \sqrt{r^2 - x^2}^2$$
$$= \pi (r^2 - x^2)$$

b)

$$V = \pi \int_{-r}^{r} A(x) dx$$

$$= \pi \int_{-r}^{r} (r^2 - x^2) dx$$

$$= \pi \left[xr^2 - \frac{1}{3}x^3 \right]_{-r}^{r}$$

$$= \frac{\pi}{3} \left(3rr^2 - r^3 - (3(-r)r^2 - (-r)^3) \right)$$

$$= \frac{\pi}{3} (3r^3 - r^3 + 3r^3 - r^3)$$

$$= \frac{4\pi}{3} r^3$$

??

Volumet V er gitt ved ligningen:

$$V = \pi \int_{0}^{1} f^{2} dx$$
$$= \pi \int_{0}^{1} (e^{x})^{2} dx$$
$$= \pi \int_{0}^{1} e^{2x} dx$$

Vi setter u = 2x og $g(u) = e^u$, da blir u' = 2:

$$\int e^{2x} dx = \frac{1}{2} \int 2e^{2x} dx$$
$$= \frac{1}{2} \int u'e^u du$$
$$= \frac{1}{2}e^u + C$$

Siden u(0) = 0 og u(1) = 2 blir det bestemte integralet

$$\left[\frac{1}{2} e^u \right]_0^2 = \frac{1}{2} \left[e^2 - e^0 \right]$$

$$= \frac{1}{2} \left[e^2 - 1 \right]$$

Altså er

$$V = \frac{\pi}{2}(e^2 - 1)$$

Gruble??

Vi har at

$$\int \sin^2 x \, dx = \int \sin x \cdot \sin x \, dx$$

Vi setter $u = \sin x$ og $v' = \sin x$. Da er

$$u' = \cos x \qquad \qquad v = -\cos x$$

Altså har vi at

$$\int \sin x \cdot \sin x \, dx = -\sin x \cos x + \int \cos^2 x \, dx$$
$$2 \int \sin^2 x \, dx = -\sin x \cos x + \int \cos^2 x \, dx + \int \sin^2 x \, dx$$

Ettersom $\cos^2 x + \sin^2 x = 1$, følger det at

$$2 \int \sin^2 x \, dx = -\sin x \cos x + \int 1 \, dx$$
$$2 \int \sin^2 x \, dx = -\sin x \cos x + x$$
$$\int \sin^2 x \, dx = \frac{1}{2} \left(x - \sin x \cos x \right)$$

Gruble??

a) Vi har at $f(x) = \tan x = \frac{\sin x}{\cos x}$. Da $(\sin x)' = \cos x$ og $(\cos x)' = -\sin x$ har vi av divisjonsregelen ved derivasjon (se TM1) at

$$f'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = 1 + \tan^2 x$$

b) Vi setter $u = \tan x$. Av oppgave a) har vi da at

$$\int \frac{1 + \tan^2 x}{\tan x} \, dx = \int \frac{u'}{u} \, dx = \int \frac{1}{u} \, dx = \ln|u| + C = \ln|\tan x|$$

Gruble??

Vi har at

$$\int_{-1}^{1} x^3 + 2x \, dx = \left[\frac{x^4}{4} + x^2 \right]_{-1}^{1} = \frac{1}{4} + 1 - \left(\frac{1}{4} - 1 \right) = 0$$

Svaret forteller at arealet avgrenset av $f(x) = x^3 + 2x$ og x-aksen for $f \ge 0$ er like stort som arealet avgrenset av f og x-aksen for $f \le 0$ på intervallet $x \in [-1, 1]$.

Gruble??

f og gskjærer hverandre når

$$\sin x = \cos x$$
$$\tan x = 1$$

Da atan $1 = \frac{\pi}{4}$, skjærer f og g hverandre når $x = \frac{\pi}{4} + \pi n$ for $n \in \mathbb{Z}$. De to skjæringspunktene i figuren må dermed være $x \in [-\frac{3}{4}\pi, \frac{\pi}{4}]$. Da f > g på dette intervallet, er arealet til det fargede området gitt som

$$\int_{-\frac{3}{4}\pi}^{\frac{\pi}{4}} \cos x - \sin x \, dx = \left[\sin x + \cos x\right]_{-\frac{3}{4}\pi}^{\frac{\pi}{4}}$$

$$= \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) - \left(\sin\left(-\frac{3}{4}\pi\right) + \cos\left(-\frac{3}{4}\pi\right)\right)$$

$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right)$$

$$= 2\sqrt{2}$$

Gruble??

For $i, n \in \mathbb{N}$ setter vi $x_{i+1} = x_i + \Delta x$, hvor $\lim_{n \to \infty} \Delta x = 0$. Da er $f(x_i + 1) - f(x_i) = f(x_i + \Delta)$. Avstanden mellom P_{i+1} og P_i er da gitt som

$$\sqrt{(\Delta x)^2 + [f(x_i + \Delta x) - f(x_i)]^2} = \Delta x \sqrt{1 + \left(\frac{f(x_i + \Delta x) - f(\Delta x)}{(\Delta x)^2}\right)^2}$$

I tilfellet der $\Delta x \to 0$ gjenkjenner vi brøken som $[f'(x_i)]^2$, og dermed er

$$\lim_{n \to \infty} \sum_{i=1}^{n} |P_{i+1} - P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta x \sqrt{1 + [f'(x_i)]^2}$$

Av (??) har vi da at

$$\lim_{n \to \infty} \sum_{i=1}^{n} |P_{i+1} - P_i| = \int_{a}^{b} \sqrt{1 + g^2} \, dx$$

Gruble??

Vi har at

$$\int x^2 dx = \lim_{n \to \infty} \sum_{i=1}^n (a + (i-1)\Delta x)^2 \Delta x$$
$$= \lim_{n \to \infty} \sum_{i=1}^n \left(a^2 \Delta x + 2a(i-1)(\Delta x)^2 + (i-1)^2 (\Delta x)^3 \right)$$

Vi har at

$$\lim_{n \to \infty} \sum_{i=1}^{n} a^{2} \Delta x = a^{2} \frac{b-a}{n} n = a^{2} b - a^{3}$$

Ved å bruke summen av en aritmetisk rekke får vi at

$$\lim_{n \to \infty} \sum_{i=1}^{n} 2a(i-1)(\Delta x)^2 = 2a \frac{(n-1)n}{2} \frac{(b-a)^2}{n^2} = a(b-a)^2$$

Ved å bruke bruke (??) finner vi at

$$\lim_{n \to \infty} \sum_{i=1}^{n} (i-1)^2 (\Delta x)^3 = \frac{(n-1)(2(n-1)+1)n}{6} \frac{(b-a)^3}{n^3} = \frac{1}{3} (b-a)^3$$

Dermed er

$$\int x^2 dx = a^2 b - a^3 + a(b-a)^2 + \frac{1}{3}(b-a)^3 = \frac{1}{3}(b^3 - a^3)$$

- a) Det er rett skrevet at $x_i = a + (a i)\Delta x$. Dette gjør at differansen mellom to naboliggende x_i -verdier er Δx , og det er denne differansen man ganger med $f(x_i)$.
- b) Det stemmer at kjerneregelen gir

$$f'(x) = g'(u)u'(x)$$

I teksten du viser til gir kjerneregelen

$$F'(x) = G'(u)u'(x)$$

Og da vi har definert F'(x) = f(x) og G'(u) = g'(u), kan vi skrive

$$f(x) = g(u)u$$