Definiciones y convenciones notacionales

Combo 1

Defina:

- 1. Cuándo un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivo (no hace falta que defina "función Σ -recursiva")
- 2. $\langle s_1, s_2, \dots \rangle$
- 3. "f es una función Σ -mixta"
- 4. "familia Σ -indexada de funciones"
- 5. $R(f,\mathcal{G})$

Resolución

- 1. Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es Σ -recursivo si su función característica $\chi_S^{\omega^n\times\Sigma^{*m}}$ es Σ -recursiva.
- 2. Dada una infinitupla $(s_1,s_2,\dots)\in\omega^{[N]}$, se usa $\langle s_1,s_2,\dots
 angle$ para denotar al número $x=\prod_{i=1}^\infty pr(i)^{s_i}$
- 3. Sea Σ un alfabeto finito y sea f una función, diremos que es Σ -mixta si $\exists n,m\geq 0: D_f\subseteq \omega^n\times \Sigma^{*m}$ e $I_f\subseteq O$ donde $O\in\{\omega,\Sigma^*\}$
- 4. Dado un alfabeto Σ , una familia Σ -indexada de funciones es una función \mathcal{G} tal que $D_{\mathcal{G}} = \Sigma$ y $\forall a \in D_{\mathcal{G}}$, $\mathcal{G}(a)$ es una función.
- 5. La recursión primitiva para el caso de *variable alfabética* se define de forma distinta para los casos de *valores numéricos* o *alfabéticos*. Por ello, veamos cada uno:
 - Valores numéricos: Sea Σ un alfabeto finito, y sean f una función y \mathcal{G} una familia Σ -indexada de funciones tales que:

$$f: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$$

$$\mathcal{G}_a:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\times\Sigma^*
ightarrow\omega$$

para cada $a \in \Sigma$, y con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ conjuntos no vacíos, entonces definimos

$$R(f,\mathcal{G}): S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \omega$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\varepsilon) = f(\vec{x},\vec{\alpha})$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha)$$

y decimos que $R(f, \mathcal{G})$ es obtenida por recursión primitiva a partir de f y \mathcal{G} .

• Valores alfabéticos: Sea Σ un alfabeto finito, y sean f una función y \mathcal{G} una familia Σ -indexada de funciones tales que:

$$f: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$$

$$\mathcal{G}_a: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \times \Sigma^* \to \Sigma^*$$

para cada $a \in \Sigma$, y con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ conjuntos no vacíos, entonces definimos

$$R(f,\mathcal{G}): S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* o \Sigma^*$$

$$R(f,\mathcal{G})(\vec{x},\vec{lpha},arepsilon)=f(\vec{x},\vec{lpha})$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(\vec{x},\vec{\alpha},\alpha,R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha))$$

y decimos que $R(f, \mathcal{G})$ es obtenida por recursión primitiva a partir de f y \mathcal{G} .

Combo 2

Defina:

- 1. $d \stackrel{n}{\vdash} d'$ (no hace falta que defina \vdash)
- 2. L(M)
- 3. H(M)
- 4. "f es una función de tipo (n, m, s)"
- 5.(x)
- 6. $(x)_i$

- 1. Para $d,d'\in Des, n\geq 0$, escribiremos $d\stackrel{n}{\vdash} d'$ si $\exists d_1,\dots,d_{n+1}$ tales que $d=d_1,d'=d_{n+1}$ y $d_i\vdash d_{i+1} \forall i=1,\dots,n.$
 - Notar que $d \overset{0}{\vdash} d' \Leftrightarrow d = d'$
- 2. Diremos que una palabra $\alpha \in \Sigma^*$ es aceptada por M por alcance de estado final cuando $\lfloor q_0 B \alpha \rfloor \stackrel{*}{\vdash} d$, con $d: St(d) \in F$. Luego, el lenguaje aceptado por M por alcance de estado final se define como
 - $L(M) = \{ lpha \in \Sigma^* : lpha ext{ es aceptada por } M ext{ por alcance de estado final} \}$
- 3. Diremos que una palabra $\alpha \in \Sigma^*$ es aceptada por M por detención cuando M se detiene partiendo de $\lfloor q_0 B \alpha \rfloor$. Luego, el *lenguaje aceptado por M por detención* se define como $H(M) = \{\alpha \in \Sigma^* : \alpha \text{ es aceptada por } M \text{ por detención}\}$
- 4. Si f es una función Σ-mixta y $n, m \in \omega : D_f \subseteq \omega^n \times \Sigma^{*m}$,
 - Si $I_f\subseteq \omega$, decimos que f es de tipo (n,m,#)
 - Si $I_f \subseteq \Sigma^*$, decimos que f es de tipo (n,m,*)
- 5. Dado $x\in N$, usaremos (x) para denotar a la única infinitupla $(s_1,s_2,\dots)\in\omega^{[N]}$ tal que $x=\langle s_1,s_2,\dots\rangle=\prod_{i=1}^\infty pr(i)^{s_i}$

6. Para cada $i \in N$, usaremos $(x)_i$ para denotar a s_i de la anterior infinitupla. Es decir, $(x)_i$ es el exponente de pr(i) en la única factorización prima de x

Combo 3

Defina:

- 1. Cuándo un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivamente enumerable (no hace falta que defina "función Σ -recursiva")
- 2. *s*≤
- 3. ∗≤
- 4. #≤

Resolución

1. Diremos que un conjunto $S\subseteq\omega^n imes \Sigma^{*m}$ es Σ -recursivamente enumerable cuando sea vacío o haya una función $F:\omega\to\omega^n imes \Sigma^{*m}$ tal que $I_F=S$ y $F_{(i)}$ sea Σ -recursiva $\forall i\in\{1,\ldots,n+m\}$

Los siguientes puntos se definen en base a Σ alfabeto no vacío y \leq orden total sobre Σ , siendo $\Sigma = \{a_1, \ldots, a_n\}$ con $a_1 < a_2 < \ldots < a_n$. Luego:

2. La función siguiente se define como

$$egin{aligned} s^\leq : \Sigma^* &
ightarrow \Sigma^* \ &s^\leq ((a_n)^m) = (a_1)^{m+1} \ orall m \geq 0 \ &s^\leq (lpha a_i (a_n)^m) = lpha a_{i+1} (a_1)^m \ orall lpha \in \Sigma^*, \ i \in \{1,\dots,n-1\}, \ m \geq 0 \end{aligned}$$

3. Función que asigna a cada $n \in \omega$ la n + 1-ésima palabra de la lista:

$$st^{\leq}:\omega
ightarrow\Sigma^{st}$$
 $st^{\leq}(0)=arepsilon$ $st^{\leq}(n+1)=s^{\leq}(st^{\leq}(n))$

4. Inversa de la anterior:

$$egin{aligned} \#^\leq &: \Sigma^* o \omega \ \ \#^\leq (arepsilon) = 0 \ \ \ \#^\leq (a_{i_k} \ldots a_{i_0}) = \sum_{j=0}^k i_j n^j \end{aligned}$$

Defina cuándo una función $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es llamada Σ -efectivamente computable y defina "el procedimiento $\mathbb P$ computa a la función f".

Resolución

Una función Σ -mixta $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ (para $O \in \{\omega, \Sigma^*\}$) es Σ -efectivamente computable si hay un procedimiento $\mathbb P$ tal que:

- El conjunto de datos de entrada de $\mathbb P$ es $\omega^n imes \Sigma^{*m}$
- El conjunto de datos de salida está contenido en O
- Si $(\vec{x}, \vec{\alpha}) \in D_f$, entonces $\mathbb P$ se detiene partiendo de $(\vec{x}, \vec{\alpha})$ y da como salida $f(\vec{x}, \vec{\alpha})$
- Si $(\vec{x}, \vec{\alpha}) \notin D_f$, entonces \mathbb{P} no se detiene partiendo de $(\vec{x}, \vec{\alpha})$

En estos casos, diremos que este \mathbb{P} computa a la función f.

Combo 5

Defina cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -efectivamente computable y defina "el procedimiento efectivo $\mathbb P$ decide la pertenencia a S".

Resolución

Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente computable cuando la función $\chi_S^{\omega^n \times \Sigma^{*m}}$ es Σ -efectivamente computable.

Es decir, S es Σ -efectivamente computable si existe un procedimiento \mathbb{P} tal que:

- El conjunto de datos de entrada de \mathbb{P} es $\omega^n \times \Sigma^{*m}$, siempre termina y da como dato de salida un elemento de $\{0,1\}$
- Dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, \mathbb{P} se detiene partiendo de $(\vec{x}, \vec{\alpha})$ y da como salida 1 si $(\vec{x}, \vec{\alpha}) \in S$ y 0 en caso contrario.

En este caso, decimos que el procedimiento efectivo \mathbb{P} decide la pertenencia a S.

Combo 6

Defina cuándo un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivamente enumerable y defina "el procedimiento efectivo $\mathbb P$ enumera a S".

Resolución

Un conjunto $S\subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente enumerable si es vacío o $\exists F:\omega \to \omega^n \times \Sigma^{*m}$ tal que $I_F=S$ y $F_{(i)}$ es Σ -efectivamente computable $\forall i\in\{1,\ldots,n+m\}$.

Es decir, $S \neq \emptyset$ es Σ -efectivamente enumerable si existe un procedimiento efectivo $\mathbb P$ tal que:

- El conjunto de datos de entrada de $\mathbb P$ es ω
- $\mathbb P$ se detiene para cada $x \in \omega$
- El conjunto de datos de salida de $\mathbb P$ es igual a S

En este caso, decimos que el procedimiento efectivo \mathbb{P} enumera a S.

Combo 7

Defina cuándo una función $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es llamada Σ -Turing computable y defina "la máquina de Turing M computa a la función f".

Resolución

Diremos que $f:D_f\subseteq\omega^n imes\Sigma^{*m}\to\omega$ es Σ -Turing computable si existe una máquina de Turing con *unit* $M=(Q,\Sigma,\Gamma,\delta,q_0,B,\mathbf{1},F)$ tal que:

- $\begin{array}{l} \bullet \ \ \mathsf{Si} \ (\vec{x},\vec{\alpha}) \in D_f, \, \mathsf{entonces} \ \exists p \in Q : \lfloor q_0 B \, |^{x_1} \, B \ldots B \, |^{x_n} \, B \alpha_1 B \ldots B \alpha_m \rfloor \overset{*}{\vdash} \lfloor p B \, |^{f(\vec{x},\vec{\alpha})} \rfloor \, \mathsf{y} \\ | \, p B \, |^{f(\vec{x},\vec{\alpha})} \, | \not \vdash d \forall d \in Des \end{array}$
- Si $(\vec{x},\vec{lpha})\in (\omega^n imes \Sigma^{*m})-D_f$, entonces M **no** se detiene partiendo de $\lfloor q_0B \mid^{x_1}B\dots B\mid^{x_n}Blpha_1B\dots Blpha_m
 floor$

En este caso, diremos que la máquina de Turing M computa a la función f.

Combo 8

Defina:

- 1. M(P)
- 2. *Lt*
- Conjunto rectangular
- 4. "S es un conjunto de tipo (n, m)"

1. Este caso se trata de **minimización de variable numérica**. Sea Σ un alfabeto finito y sea $P:D_P\subseteq\omega\times\omega^n\times\Sigma^{*m}\to\omega$ un predicado, dado $(\vec x,\vec\alpha)\in\omega^n\times\Sigma^{*m}$, cuando exista al menos un $t\in\omega:P(t,\vec x,\vec\alpha)=1$, usaremos $\min_t P(t,\vec x,\vec\alpha)$ para denotar al menor de tales t's. Con ello, definimos

$$M(P) = \lambda ec{x} ec{lpha} \left[\min_t P(t,ec{x},ec{lpha})
ight]$$

El cual cumple que:

$$D_{M(P)} = \{(\vec{x}, \vec{lpha}) \in \omega^n imes \Sigma^{*m} : (\exists t \in \omega) P(t, \vec{x}, \vec{lpha})\}$$

$$M(P)(ec{x},ec{lpha}) = \min_t P(t,ec{x},ec{lpha}), \ orall (ec{x},ec{lpha}) \in D_{M(P)}$$

Y diremos que M(P) se obtiene por *minimización de variable numérica* a partir de P.

2. Definimos la función del mayor factor primo como

$$Lt:N o\omega$$

$$Lt(x) = egin{cases} \max\{i \in N: (x)_i
eq 0\} & ext{si } x
eq 1 \ 0 & ext{si } x = 1 \end{cases}$$

- 3. Sea Σ un alfabeto finito, un conjunto Σ -mixto S es llamado *rectangular* si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$
- 4. Dado un conjunto Σ-mixto S y $n, m \in \omega : S \subseteq \omega^n \times \Sigma^{*m}$, entonces S es de tipo (n, m)

Combo 9

Defina:

- 1. "I es una instrucción de S^{Σ} "
- 2. " ${\mathcal P}$ es un programa de S^{Σ} "
- 3. $I_i^{\mathcal{P}}$
- 4. $n(\mathcal{P})$
- 5. *Bas*

- 1. Una instrucción de S^{Σ} es ya sea una instrucción básica de S^{Σ} , o una palabra de la forma αI , donde $\alpha \in \{L\bar{n} : n \in N\}$ e I es una instrucción básica de S^{Σ} .
 - Cuando I es de la forma $L\bar{n}J$ con J una instrucción básica, diremos que $L\bar{n}$ es la label de I
 - Una instrucción básica de S^{Σ} es una palabra $(\Sigma \cup \Sigma_P)^*$ la cual es de alguna de las siguientes formas (donde $a \in \Sigma; \ k, n \in N$):

•
$$N\bar{k} \leftarrow N\bar{k} + 1$$

- $N\bar{k} \leftarrow N\bar{k}\dot{-}1$
- $Nar{k} \leftarrow Nar{n}$
- $N\bar{k} \leftarrow 0$
- $P\bar{k} \leftarrow P\bar{k}$. a
- $P\bar{k} \leftarrow {}^{\smallfrown}P\bar{k}$
- $P\bar{k} \leftarrow P\bar{n}$
- $P\bar{k} \leftarrow \varepsilon$
- IF $Nar{k}
 eq 0$ GOTO $Lar{n}$
- IF $Par{k}$ BEGINS a GOTO $Lar{n}$
- GOTO $Lar{n}$
- SKIP
- 2. Un *programa* de \mathcal{S}^Σ es una palabra de la forma $I_1I_2...I_n$ donde $n \geq 1, I_1,...,I_n \in Ins^\Sigma$ y además se cumple la *ley de los GOTO*: $\forall i \in \{1,...,n\}$, si GOTO $L\bar{m}$ es un tramo final de I_i , entonces $\exists j \in \{1,...,n\}$ tal que I_j tiene label $L\bar{m}$
- 3. Definimos $I_i^{\mathcal{P}}$ como la i-ésima instrucción de \mathcal{P} y, además, $I_i^{\mathcal{P}}=\varepsilon$ cuando i=0 o $i>n(\mathcal{P})$
- 4. Definimos $n(\mathcal{P})$ como la cantidad de instrucciones de \mathcal{P}
- 5. Definimos $Bas: Ins^{\Sigma} \to (\Sigma \cup \Sigma_p)^*$ dada por

$$Bas(I) = egin{cases} J & ext{si } I ext{ es de la forma } Lar{k}J ext{ con } J \in Ins^{\Sigma} \ I & ext{en otro caso} \end{cases}$$

Defina, relativo al lenguaje S^{Σ} :

- 1. "Estado"
- 2. "Descripción instantánea"
- $3. S_{\mathcal{P}}$
- 4. "Estado obtenido luego de t pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$ "
- 5. " $\mathcal P$ se detiene (luego de t pasos), partiendo del estado $(\vec s, \vec \sigma)$ "

- 1. Un estado es un par $(\vec{s}, \vec{\sigma}) = ((s_1, s_2, \dots), (\sigma_1, \sigma_2, \dots)) \in \omega^{[N]} \times \Sigma^{*[N]}$ y, si $i \geq 1$, entonces diremos que s_i es el contenido o valor de la variable $N\bar{i}$ en el estado $(\vec{s}, \vec{\sigma})$ y σ_i es el contenido o valor de la variable $P\bar{i}$ en el estado $(\vec{s}, \vec{\sigma})$
- 2. Una descripción instantánea es una terna $(i, \vec{s}, \vec{\sigma})$ tal que $(\vec{s}, \vec{\sigma})$ es un estado e $i \in \omega$. Intuitivamente, $(i, \vec{s}, \vec{\sigma})$ nos dice que las variables están en el estado $(\vec{s}, \vec{\sigma})$ y que la instrucción que debemos realizar es $I_i^{\mathcal{P}}$

- 3. Dado un programa \mathcal{P} , definimos $S_{\mathcal{P}}: \omega \times \omega^{[N]} \times \Sigma^{*[N]} \to \omega \times \omega^{[N]} \times \Sigma^{*[N]}$ como la función que asignará a una descripción instantánea $(i, \vec{s}, \vec{\sigma})$ la descripción instantánea sucesora de $(i, \vec{s}, \vec{\sigma})$ con respecto a \mathcal{P} . Es decir, hay varios casos posibles:
 - Si $i \notin \{1, ..., n(\mathcal{P})\}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i, \vec{s}, \vec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}})=Nar{k}\leftarrow Nar{k}\dot{-}1$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(i+1,(s_1,\ldots,s_{k-1},s_k\dot{-}1,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^\mathcal{P}) = Nar{k} \leftarrow Nar{k}+1$, entonces $S_\mathcal{P}(i,ec{s},ec{\sigma}) = (i+1,(s_1,\ldots,s_{k-1},s_k+1,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = Nar{k} \leftarrow Nar{n}$, entonces $S_{\mathcal{P}}(i, ec{s}, ec{\sigma}) = (i+1, (s_1, \ldots, s_{k-1}, s_n, s_{k+1}, \ldots), ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = Nar{k} \leftarrow 0$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, (s_1, \ldots, s_{k-1}, 0, s_{k+1}, \ldots), \vec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = \text{IF } N\bar{k} \neq 0 \text{ GOTO } L\bar{m}$, entonces hay dos posibilidades:
 - Si el valor contenido en $N\bar{k}$ es 0, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma})=(i+1,\vec{s},\vec{\sigma})$
 - Si el valor contenido en $N\bar{k}$ es no nulo, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (\min\{l:I_{l}^{\mathcal{P}} \text{ tiene label } L\bar{m}\},\vec{s},\vec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow {}^{\curvearrowright}P\bar{k}$, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i+1,\vec{s},(\sigma_1,\ldots,\sigma_{k-1},\,{}^{\curvearrowright}\sigma_k,\sigma_{k+1},\ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = Par{k} \leftarrow Par{k}.\,a$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma}) = (i+1,ec{s},(\sigma_1,\ldots,\sigma_{k-1},\sigma_k a,\sigma_{k+1},\ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = Par{k} \leftarrow Par{n}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, (\sigma_1, \ldots, \sigma_{k-1}, \sigma_n, \sigma_{k+1}, \ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = Par{k} \leftarrow arepsilon$, entonces $S_{\mathcal{P}}(i, ec{s}, ec{\sigma}) = (i+1, ec{s}, (\sigma_1, \ldots, \sigma_{k-1}, arepsilon, \sigma_{k+1}, \ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = ext{IF } P ar{k} ext{ BEGINS } a ext{ GOTO } L ar{m}, ext{ entonces hay dos posibilidades:}$
 - Si la palabra contenida en $Par{k}$ comienza con a, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l: I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$
 - Si la palabra contenida en $Par{k}$ no comienza con a, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma})=(i+1,\vec{s},\vec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = \operatorname{GOTO} L\bar{m}$, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (\min\{l:I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = ext{SKIP}$, entonces $S_{\mathcal{P}}(i, ec{s}, ec{\sigma}) = (i+1, ec{s}, ec{\sigma})$
- 4. Diremos que $S_{\mathcal{P}}(S_{\mathcal{P}}(\dots(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))\dots)) = (j,\vec{u},\vec{\eta})$ con $S_{\mathcal{P}}$ aplicado t veces, es la descripción instantánea obtenida luego de t pasos partiendo del estado $(\vec{s},\vec{\sigma})$, y $(\vec{u},\vec{\eta})$ es el estado obtenido luego de t pasos partiendo del estado $(\vec{s},\vec{\sigma})$
- 5. Cuando la primer coordenada de $S_{\mathcal{P}}(S_{\mathcal{P}}(\dots(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))\dots))$ (con $S_{\mathcal{P}}$ aplicado t veces) es $n(\mathcal{P})+1$, diremos que \mathcal{P} se detiene (luego de t pasos), partiendo desde el estado $(\vec{s},\vec{\sigma})$

Defina:

- 1. $\Psi^{n,m,\#}_{D}$
- 2. "f es Σ -computable"
- 3. " \mathcal{P} computa a f"

Resolución

1. Dado $\mathcal{P} \in Pro^{\Sigma}$, definimos $\Psi^{n,m,\#}_{\mathcal{P}}$ como:

$$D_{\Psi^{n,m,\#}_{\mathcal{D}}} = \{(\vec{x},\vec{\alpha}) \in \omega^n \times \Sigma^{*m} : \mathcal{P} \text{ termina partiendo de } ||\vec{x},\vec{\alpha}||\}$$

$$\Psi^{n,m,\#}_{\mathcal{P}}(ec{x},ec{lpha})= ext{valor de N1 cuando}\,\mathcal{P}$$
 termina partiendo de $||ec{x},ec{lpha}||$

- 2. Una función Σ-mixta $f:S\subseteq \omega^n imes \Sigma^{*m} o \omega$ es Σ-computable si existe un programa $\mathcal{P}\in \mathcal{S}^\Sigma$ tal que $f=\Psi^{n,m,\#}_\mathcal{P}$
 - Se define de forma análoga para funciones Σ -mixtas $f:S\subseteq \omega^n imes \Sigma^{*m} o \Sigma^*$ con $f=\Psi^{n,m,*}_{\mathcal D}$
- 3. En el caso anterior, decimos que f es *computada* por \mathcal{P}
- 4. Sea $\Sigma \neq \emptyset$ un alfabeto con \leq un orden total sobre este, y sea $P: D_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^* \to \omega$ un predicado, dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $\alpha \in \Sigma^*$ tal que $P(\vec{x}, \vec{\alpha}, \alpha) = 1$, usaremos $\min_{\alpha} P(\vec{x}, \vec{\alpha}, \alpha)$ para denotar al menor de tales α 's. Con ello, definimos:

$$M^{\leq}(P) = \lambda ec{x} ec{lpha}[min_{lpha}^{\leq} P(ec{x},ec{lpha},lpha)]$$

El cual cumple que:

$$D_{M^{\leq}(P)} = \{(\vec{x}, \vec{lpha}) \in \omega^n imes \Sigma^{*m} : (\exists lpha \in \Sigma^*) P(\vec{x}, \vec{lpha}, lpha) = 1\}$$

$$M^{\leq}(P)(ec{x},ec{lpha})=min_{lpha}^{\leq}P(ec{x},ec{lpha},lpha), orall (ec{x},ec{lpha})\in D_{M^{\leq}(P)}$$

Y diremos que $M^{\leq}(P)$ se obtiene por *minimización de variable alfabética* a partir de P.

Combo 12

Defina cuándo un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -computable, cuándo es llamado Σ -enumerable y defina "el programa $\mathcal P$ enumera a S".

- Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -computable si $\chi_S^{\omega^n \times \Sigma^{*m}}$ es Σ -computable. Es decir, es Σ -computable si y solo si hay un programa $\mathcal{P} \in Pro^{\Sigma}$ que computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$:
 - Si $(\vec{x}, \vec{\alpha}) \in S$, entonces \mathcal{P} se detiene partiendo de $||x_1, \dots, x_n, \alpha_1, \dots, \alpha_m||$ y la variable N1 queda con contenido igual a 1
 - Si $(\vec{x}, \vec{\alpha}) \notin S$, entonces \mathcal{P} se detiene partiendo de $||x_1, \dots, x_n, \alpha_1, \dots, \alpha_m||$ y la variable N1 queda con contenido igual a 0

Decimos que ${\mathcal P}$ decide la pertenencia a S respecto al conjunto $\omega^n imes \Sigma^{*m}$

- Un conjunto $S\subseteq\omega^n imes \Sigma^{*m}$ es Σ -enumerable si es vacío o existe una función $F:\omega\to\omega^n imes \Sigma^{*m}$ tal que $I_F=S$ y $F_{(i)}$ sea una función Σ -computable para todo $i\in 1,\ldots,n+m$
- Por *propiedad*, sabemos que: Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío, entonces son equivalentes:
 - S es Σ -enumerable
 - Hay un programa $\mathcal{P} \in Pro^{\Sigma}$ tal que
 - $\forall x \in \omega$, \mathcal{P} se detiene partiendo de ||x|| y llega a un estado de la forma $((x_1,\ldots,x_n,y_1,\ldots),(\alpha_1,\ldots,\alpha_m,\beta_1,\ldots))$ con $(x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m) \in S$
 - $\forall (x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m)\in S,\ \exists x\in\omega\ ext{tal que }\mathcal{P}\ ext{se detiene partiendo de }||x||\ ext{y}$ llega a un estado de la forma $((x_1,\ldots,x_n,y_1,\ldots),(\alpha_1,\ldots,\alpha_m,\beta_1,\ldots))$

Decimos que \mathcal{P} enumera a S

Combo 13

Defina:

- 1. $i^{n,m}$
- 2. $E_{\#}^{n,m}$
- 3. $E_*^{n,m}$
- 4. $E_{\#j}^{n,m}$
- 5. $E_{*j}^{n,m}$
- 6. $Halt^{n,m}$
- 7. $T^{n,m}$
- 8. $AutoHalt^{\Sigma}$
- 9. Los conjuntos A y N

Resolución

• Sean $n, m \in \omega$, definimos las siguientes funciones:

$$egin{aligned} i^{n,m} : \omega imes \omega^n imes \Sigma^{*m} imes Pro^\Sigma
ightarrow \omega \ E^{n,m}_\# : \omega imes \omega^n imes \Sigma^{*m} imes Pro^\Sigma
ightarrow \omega^{[N]} \ E^{n,m}_* : \omega imes \omega^n imes \Sigma^{*m} imes Pro^\Sigma
ightarrow \Sigma^{[N]} \end{aligned}$$

de modo que $(i^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{\#}(t,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{*}(t,\vec{x},\vec{\alpha},\mathcal{P}))$ es la descripción instantánea que se obtiene luego de correr \mathcal{P} una cantidad t de pasos partiendo del estado $||x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m||$.

Si las definimos formalmente, podemos hacerlo de forma recursiva:

$$egin{aligned} (i^{n,m}(0,ec{x},ec{lpha},\mathcal{P}),E^{n,m}_{\#}(0,ec{x},ec{lpha},\mathcal{P}),E^{n,m}_{*}(0,ec{x},ec{lpha},\mathcal{P})) = \ & (1,(x_{1},\ldots,x_{n},0,\ldots),(lpha_{1},\ldots,lpha_{m},arepsilon,\ldots)) \end{aligned} \ (i^{n,m}(t+1,ec{x},ec{lpha},\mathcal{P}),E^{n,m}_{\#}(t+1,ec{x},ec{lpha},\mathcal{P}),E^{n,m}_{*}(t+1,ec{x},ec{lpha},\mathcal{P})) = \ & S_{\mathcal{P}}(i^{n,m}(t,ec{x},ec{lpha},\mathcal{P}),E^{n,m}_{\#}(t,ec{x},ec{lpha},\mathcal{P}),E^{n,m}_{*}(t,ec{x},ec{lpha},\mathcal{P})) \end{aligned}$$

Definimos también las funciones

$$egin{aligned} E_{\#j}^{n,m}: \omega imes \omega^n imes \Sigma^{*m} imes Pro^\Sigma
ightarrow \omega \ E_{*j}^{n,m}: \omega imes \omega^n imes \Sigma^{*m} imes Pro^\Sigma
ightarrow \Sigma^* \end{aligned}$$

que marcan el valor de la j-ésima componente de $E^{n,m}_{\#}$ y $E^{n,m}_{*}$, respectivamente. Es decir:

$$E_{\#j}^{n,m} = p_j^{n,m} \circ E_\#^{n,m} \ E_{*j}^{n,m} = p_j^{n,m} \circ E_*^{n,m}$$

- Dados $n,m\in\omega$, definimos $Halt^{n,m}=\lambda t\vec{x}\vec{lpha}\mathcal{P}[i^{n,m}(t,\vec{x},\vec{lpha},\mathcal{P})=n(\mathcal{P})+1]$
 - Básicamente, $Halt^{n,m}$ es un predicado que dice si \mathcal{P} se detiene luego de t pasos partiendo del estado $||x_1, \dots, x_n, \alpha_1, \dots, \alpha_m||$.
- Definimos $T^{n,m} = M(Halt^{n,m})$
 - $D_{T^{n,m}} = \{(\vec{x}, \vec{\alpha}, \mathcal{P}) : \mathcal{P} \text{ se detiene partiendo de } ||x_1, \dots, x_n, \alpha_1, \dots, \alpha_m||\}$
 - Para $(\vec{x}, \vec{\alpha}, \mathcal{P}) \in D_{T^{n,m}}, T^{n,m}(\vec{x}, \vec{\alpha}, \mathcal{P})$ indica la cantidad de pasos necesarios para que \mathcal{P} se detenga partiendo de $||x_1, \dots, x_n, \alpha_1, \dots, \alpha_m||$.
- Cuando $\Sigma \supseteq \Sigma_p$, podemos definir $AutoHalt^\Sigma = \lambda \mathcal{P}[(\exists t \in \omega) Halt^{0,1}(t,\mathcal{P},\mathcal{P})]$
 - Notar que $D_{AutoHalt^{\Sigma}} = Pro^{\Sigma}$ y que $\forall \mathcal{P} \in Pro^{\Sigma}, AutoHalt^{\Sigma}(\mathcal{P}) = 1$ sii \mathcal{P} se detiene partiendo del estado $||\mathcal{P}||$.
- Supongamos $\Sigma \supseteq \Sigma_p$. Entonces $A = \{\mathcal{P} \in Pro^\Sigma : AutoHalt^\Sigma(\mathcal{P}) = 1\}$ y $N = \{\mathcal{P} \in Pro^\Sigma : AutoHalt^\Sigma(\mathcal{P}) = 0\}.$

Combo 14

Explique en forma detallada la notación lambda.

- Una expresión es *lambdificable* con respecto a Σ si cumple las siguientes características:
 - Involucra variables numéricas (que se valuaran en números de ω), y variables alfabéticas (que se valuaran en palabras del alfabeto previamente fijado)

- En cuanto a notación, las numéricas son con letras latinas minúsculas (x, y, z)) y las alfabéticas con letras griegas minúsculas (α, β, γ)
- Para ciertas valuaciones de sus variables la expresión puede *no* estar definida (por ejemplo, $Pred(|\alpha|)$ para $\alpha = \varepsilon$)
- Sea E la expresión, los valores que asuma cuando hayan sido asignados los valores de ω a sus variables numéricas y valores de Σ^* a sus variables alfabéticas, deberán ser *siempre* elementos de $O \in \{\omega, \Sigma^*\}$ (es decir, no puede tomar valores mixtos)
- La expresión puede involucrar lenguaje coloquial castellano (i.e., no únicamente operaciones matemáticas). Por ejemplo, "el menor número primo que es mayor que x"
- A las expresiones booleanas (como x=0), se les considerará que asumen valores de $\{0,1\}\subseteq\omega$
- *Definición*: sea Σ un alfabeto finito fijo, E una expresión lambdificable respecto a Σ y $x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m$ variables distintas tales que las numéricas que ocurren en E están en $\{x_1,\ldots,x_n\}$ y las alfabéticas en $\{\alpha_1,\ldots,\alpha_m\}$, entonces $\lambda x_1\ldots x_n\alpha_1\ldots\alpha_m[E]$ denota la función definida por:
 - $D_{\lambda x_1..x_n\alpha_1..\alpha_m[E]}=\{(k_1,\ldots,k_n,eta_1,\ldots,eta_m)\in\omega^n imes\Sigma^{*m}:E ext{ está definida cuando}$ asignamos a cada x_i el valor k_i , y a cada $lpha_i$, el valor $eta_i\}$
 - $\lambda x_1 \dots x_n \alpha_1 \dots \alpha_m[E](k_1, \dots, k_n, \beta_1, \dots, \beta_m) = \text{valor que asume o representa } E \text{ cuando}$ asignamos a cada x_i el valor k_i , y a cada α_i , el valor β_i

Dada una función $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro:

$$[V2 \leftarrow f(V1, W1)]$$

Resolución

Dada la función $f:D_f\subseteq\omega\times\Sigma^*\to\omega$, el macro $[V2\leftarrow f(V1,W1)]$ es un objeto de tipo **PALABRA**.

Para que el macro $[V2 \leftarrow f(V1,W1)]$ sea válido (i.e., exista en el lenguaje S^{Σ}), debe cumplir las siguientes propiedades:

- Las variables oficiales de M son V1, V2, W1
- M no tiene labels oficiales
- Si reemplazamos:
 - las variables oficiales de M por variables concretas $N\overline{k_1}, N\overline{k_2}, P\overline{j_1}$,

- las variables auxiliares de M por variables concretas distintas de a dos y NO pertececientes a $\{N\overline{k_1}, N\overline{k_2}, P\overline{j_1}\}$,
- los labels auxiliares de M por labels concretos distintos de a dos, entonces la palabra obtenida es un programa de \mathcal{S}^{Σ} que denotaremos con $[N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})]$ y tiene la siguiente propiedad:
- Si corremos $[N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})]$ partiendo de un estado e que asigne a $N\overline{k_1}, P\overline{j_1}$ los valores x_1, α_1 respectivamente, entonces independientemente de los valores que les asigne e a las demás variables, se dará que:
 - Si $(x_1, \alpha_1) \notin D_f$, entonces $[N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})]$ no se detiene partiendo de e
 - Si $(x_1, \alpha_1) \in D_f$, entonces $[N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})]$ se detiene partiendo de e y llega a un estado e' que cumple que:
 - e' le asigna a $N\overline{k_2}$ el valor $f(x_1, \alpha_1)$
 - e' solo puede diferir de e en los valores que le asigna a $N\overline{k_2}$ o a las variables que fueron a reemplazar a las variables auxiliares de M

Dado un predicado $P: D_P \subseteq \omega^n \times \Sigma^{*m} \to \omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro:

Resolución

Dado el predicado $P: D_P \subseteq \omega \times \Sigma^* \to \omega$, el macro [IF P(V1, W1) GOTO A1] es un objeto de tipo **PALABRA**.

Para que el macro $[IF\ P(V1,W1)\ GOTO\ A1]$ sea válido (i.e., exista en el lenguaje S^Σ), debe cumplir las siguientes propiedades:

- Las variables oficiales de M son V1, W1
- A1 es el único label oficial de M
- Si reemplazamos:
 - las variables oficiales de M por variables concretas $N\overline{k_1}, P\overline{j_1},$
 - el label oficial A1 por el label concreto $L\bar{k}$,
 - las variables auxiliares de M por variables concretas distintas de a dos y NO pertececientes a $\{N\overline{k_1}, P\overline{j_1}\}$,
 - los labels auxiliares de M por labels concretos distintos de a dos y ninguno de ellos igual a $L\bar{k}$, entonces la palabra obtenida es un programa de \mathcal{S}^{Σ} que denotaremos con $[IF\ P(N\overline{k_1},P\overline{j_1})\ GOTO\ L\bar{k}]$ y tiene la siguiente propiedad:

- Si corremos $[IF\ P(N\overline{k_1},P\overline{j_1})\ GOTO\ L\overline{k}]$ partiendo de un estado e que asigne a $N\overline{k_1},P\overline{j_1}$ los valores x_1,α_1 respectivamente, entonces independientemente de los valores que les asigne e a las demás variables, se dará que:
 - Si $(x_1, \alpha_1) \notin D_P$, entonces $[\operatorname{IF} P(N\overline{k_1}, P\overline{j_1}) \operatorname{GOTO} L\overline{k}]$ no se detiene partiendo de e
 - Si $(x_1,\alpha_1)\in D_P$ y $P(x_1,\alpha_1)=1$, entonces, luego de una cantidad finita de pasos, $[\operatorname{IF} P(N\overline{k_1},P\overline{j_1})\operatorname{GOTO} L\overline{k}]$ direcciona al label $L\overline{k}$ quedando en un estado e' que solo puede diferir de e en los valores que le asigna a las variables que fueron a reemplazar a las variables auxiliares de M
 - Si $(x_1,\alpha_1)\in D_P$ y $P(x_1,\alpha_1)=0$, entonces, luego de una cantidad finita de pasos, $[\operatorname{IF} P(N\overline{k_1},P\overline{j_1})\operatorname{GOTO} L\overline{k}]$ se detiene partiendo de e quedando en un estado e' que solo puede diferir de e en los valores que le asigna a las variables que fueron a reemplazar a las variables auxiliares de M