computer science & mathematics Review Limit

Fakultas Ilmu Komputer, Universitas Indonesia

TABLE OF CONTENTS

01 Definisi Limit

Teorema Limit

03 Limit dan Kontinuitas

02

04

Limit Melibatkan Fungsi Trigonometri

05

Limit di Tak Terhingga; Limit Tak Terhingga

06

Asimtot Datar dan Tegak

Masalah yang Mengarah ke Konsep Limit

Bagaimana cara menyelesaikan: $f(x) = (x^3 - 1) / (x - 1)$; x = 1

Masalah yang Mengarah ke Konsep Limit

Bagaimana cara menyelesaikan: $f(x) = (x^3 - 1) / (x - 1)$; x = 1

- a) Menghitung beberapa nilai f(x); $x \to 1$
- b) Memetakan nilai f(x) untuk $x \rightarrow 1$ dalam diagram
- c) Menggambarkan nilai f(x) untuk $x \rightarrow 1$ dalam suatu graf
- **Kesamaan**: $f(x) \rightarrow 3$ untuk $x \rightarrow 1$

x	$v = x^3 - 1$
	x-1
1.25	3.813
1.1	3.310
1.01	3.030
1.001	3.003
1	1
1.000	?
1	1
0.999	2.997
0.99	2.970
0.9	2.710
0.75	2.313

Masalah yang Mengarah ke Konsep Limit

Bagaimana cara menyelesaikan: $f(x) = (x^3 - 1) / (x - 1)$; x = 1

- a) Menghitung beberapa nilai f(x); $x \to 1$
- b) Memetakan nilai f(x) untuk $x \rightarrow 1$ dalam diagram
- c) Menggambarkan nilai f(x) untuk $x \rightarrow 1$ dalam suatu graf
- **Kesamaan**: $f(x) \rightarrow 3$ untuk $x \rightarrow 1$

Secara intuisi:

 $\lim_{x\to c} f(x) = L$ berarti untuk x mendekati c tapi bukan x = c, f(x) dekat ke L.

x	$y = \frac{x^3 - 1}{x - 1}$
1.25	3.813
1.1	3.310
1.01	3.030
1.001	3.003
1	↓
1.000	?
1	1
0.999	2.997
0.99	2.970
0.9	2.710
0.75	2.313

Definisi Limit secara formal:

Mengatakan bahwa lim f(x) = L, berarti bahwa untuk tiap

 ϵ > 0 yang diberikan (betapapun kecilnya), terdapat δ > 0 yang berpadanan sedemikian rupa sehingga $|f(x) - L| < \epsilon$ asalkan bahwa 0 < $|x - c| < \delta$; yakni,

$$0 < |x - c| < \delta \Longrightarrow |f(x) - L| < \varepsilon$$

atau dapat ditulis juga sebagai:

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$: $0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$

Latihan:

- 1. Buktikan: $\lim_{x \to 2} 5x 2 = 9$ adalah salah
- 2. Buktikan bahwa $\lim_{x\to 4} (2x 7) = 1$ benar
- 3. Buktikan: $\lim_{x \to 3} 3x 1 = 7$ adalah salah

Limit Satu Sisi

Limit Kiri

Limit kiri suatu fungsi $\lim_{x\to c^-} f(x) = L$ didefinisikan sebagai, untuk setiap nilai $\varepsilon > 0$ yang diberi terdapat $\delta > 0$ sedemikian sehingga: $0 < (c - x) < \delta \Longrightarrow |f(x) - L| < \varepsilon$.

Limit Kanan

Limit kanan suatu fungsi $\lim_{x\to c^+} f(x) = L$ didefinisikan sebagai, untuk setiap nilai $\varepsilon > 0$ yang diberi terdapat $\delta > 0$ sedemikian sehingga: $0 < (x - c) < \delta \Longrightarrow |f(x) - L| < \varepsilon$.

2. Teorema Limit

Teorema Limit Utama (Teorema 2.1)

Misalkan n bilangan bulat positif, k konstanta, serta f & g adalah fungsi yang berlimit di c, maka

$$\lim_{x \to c} k = k,$$

$$\lim_{x \to c} x = c,$$

3.
$$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x),$$

4.
$$\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x),$$

5.
$$\lim_{x \to c} [f(x), g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

5.
$$\lim_{x \to c} [f(x). g(x)] = \lim_{x \to c} f(x). \lim_{x \to c} g(x),$$
6.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}; \text{ di mana } \lim_{x \to c} g(x) \neq 0,$$

7.
$$\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n,$$

8.
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$$
; di mana $\lim_{x \to c} f(x) > 0$ jika n genap.

2. Teorema Limit

Teorema Limit (Teorema 2.2)

Jika f merupakan fungsi polinomial atau fungsi rasional, maka : lim f(x) = f(c), $x \rightarrow c$ di mana f(c) terdefinisi.

Teorema Limit (Teorema 2.3)

Jika f(x) = g(x) untuk semua nilai x di selang terbuka yang memuat c, kecuali mungkin pada c.

Dan jika $\lim_{x\to c} f(x)$ ada, maka : $\lim_{x\to c} g(x)$ ada, dan $\lim_{x\to c} f(x) = \lim_{x\to c} g(x)$.

2. Teorema Limit

Teorema Apit (Squeeze Theorem)

Misalkan f, g, dan h merupakan fungsi yang memenuhi $f(x) \le g(x) \le h(x)$ untuk semua nilai x mendekati c, kecuali mungkin pada c. Jika $\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = L$, maka :

$$\lim_{x \to c} g(x) = L.$$

Definisi dan Teorema Limit

```
1. \lim_{t \to 7} (t^3 - 5t^2 - 13t - 7) / (t - 7) = ...
```

- 2. $\lim_{x \to 2} [[x]] = ...$ Petunjuk. [[x]]: \to bilangan bulat terbesar lebih kecil dari x; atau
 - \rightarrow bilangan bulat terbesar sama dengan x.

Definisi dan Teorema Limit

1. Selesaikan pengerjaan soal berikut dengan juga turut menuliskan nama teorema yang digunakan.

a.
$$\lim_{y \to 2} \left(\frac{4y^3 + 8y}{y + 4} \right)^{\frac{1}{3}}$$
.

b.
$$\lim_{x \to -1} \frac{x^2 - 2x - 3}{x + 1}$$
.

2. Berdasarkan teorema apit, tentukan penyelesaian dari lim $x \sin(1/x)$. $x \to 0$

Limit Satu Sisi

a. Diberikan fungsi
$$f(x) = \begin{cases} -x & jika \ x < 0 \\ x & jika \ 0 \le x < 1 \\ 1+x & jika \ x \ge 1 \end{cases}$$
Carilah nilai $\lim_{x \to 0} f(x)$ dan $\lim_{x \to 1} f(x)$.

b. Diberikan fungsi $f(x) = \begin{cases} -x & jika \ x < 1 \\ x - 1 & jika \ x < 1 \\ x - 1 & jika \ 1 < x < 2 \\ 5 - x^2 & jika \ x \ge 2 \end{cases}$
Carilah nilai $\lim_{x \to 1} f(x)$ dan $\lim_{x \to 2} f(x)$.

Limit Satu Sisi

a. Diberikan fungsi
$$f(x) = \begin{cases} -x & jika \ x < 0 \\ x & jika \ 0 \le x < 1 \\ 1+x & jika \ x \ge 1 \end{cases}$$
Carilah nilai $\lim_{x \to 0} f(x)$ dan $\lim_{x \to 1} f(x)$.

b. Diberikan fungsi
$$f(x) = \begin{cases} -x + 1 & jika \ x < 1 \\ x - 1 & jika \ 1 < x < 2 \\ 5 - x^2 & jika \ x \ge 2 \end{cases}$$
Carilah nilai $\lim_{x \to 1} f(x)$ dan $\lim_{x \to 2} f(x)$.

a. Diberikan fungsi
$$f(x) = \begin{cases} -x & jika \ x < 0 \\ x & jika \ 0 \le x < 1 \\ 1+x & jika \ x \ge 1 \end{cases}$$
Carilah nilai $\lim_{x \to 0} f(x)$ dan $\lim_{x \to 1} f(x)$.

a.a>
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} -x = 0 \\ \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} -x = 0$$
a.b>
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} -x = -1 \\ \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} -x = -1 \\ \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x = 1 \end{cases}$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} -x = 1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} -x = 1$$

Definisi

Fungsi f dikatakan kontinu di x=c jika:

- 1. f(c) ada; dan
- 2. $\lim_{x\to 0} f(x)$ ada; dan
- 3. $\lim_{x \to 0} f(x) = f(c)$

Contoh

Apakah fungsi berikut dikatakan kontinu:

- 1. $f(x) = x^2$
- 2. $f(x) = x^3$
- 3. f(x) = [[x]]

Removable Discontinuity

Jika lim f (x) ada dan f tidak kontinu di lim x = c tetapi kita bisa membuat f menjadi kontinu $x \to 0$

dengan cara memilih f (c) = $\lim_{x\to 0} f(x)$, maka f bisa disebut removable discontinuity

Contoh

Apakah fungsi berikut dapat dikatakan removable discontinuity:

1.
$$f(x) = \begin{cases} -x & jika \ x < 0 \\ x & jika \ 0 \le x < 1 \\ 1 + x & jika \ x \ge 1 \end{cases}$$

2.
$$f(x) = [[x]]$$

Removable Discontinuity

Jika lim f (x) ada dan f tidak kontinu di lim x = c tetapi kita bisa membuat f menjadi kontinu $x \to 0$

dengan cara memilih f (c) = $\lim_{x\to 0} f(x)$, maka f bisa disebut removable discontinuity

Contoh

Apakah fungsi berikut dapat dikatakan removable discontinuity:

1.
$$f(x) = \begin{cases} -x & jika \ x < 0 \\ x & jika \ 0 \le x < 1 \\ 1 + x & jika \ x \ge 1 \end{cases}$$

2. $f(x) = [[x]] \Rightarrow jump discontinuity$

Kontinuitas

1. Diberikan fungsi
$$f(x) = \begin{cases} -x + 1 & jika \ x < 1 \\ x - 1 & jika \ 1 < x < 2 \\ 5 - x^2 & jika \ x \ge 2 \end{cases}$$
Carilah nilai $\lim_{x \to 1} f(x)$ dan $\lim_{x \to 2} f(x)$.

Diberikan fungsi:
$$f(x) = \begin{cases} -2x, & x < 0 \\ r, x = 0 \\ x, & x > 0 \end{cases}$$

- Carilah nilai lim f(x) x → 0
- Berapa nilai r agar f kontinu di x=0.

Kontinuitas Fungsi Pada Suatu Interval

Fungsi f dikatakan kontinu pada interval [a,b] jika f kontinu di sembarang titik di dalam [a,b]. Dalam hal f kontinu di setiap titik pada domain, maka f dikatakan fungsi kontinyu.

Dengan kata lain, jika f memenuhi:

- a) $\lim_{x\to a^+} f(x) = f(a) \to f$ kontinu kanan pada a
- b) $\lim_{x\to b^{-}} f(x) = f(b) \to f$ kontinu kiri pada b
- c) f kontinu pada setiap titik dari interval f kontinu pada sebuah interval terbuka

maka f kontinu pada interval tertutup.

contoh fungsi polinomial

Teorema Nilai Antara (Intermediate Value Theorem)

Untuk f terdefinisi pada [a,b] dan W=bilangan antara f(a) dan f(b). Jika f kontinu di [a,b], maka ada paling sedikit sebuah bilangan c di antara a dan b sehingga f(c) = W.

Contoh:

Gunakan Intermediate Value Theorem untuk menunjukkan bahwa persamaan x – $\cos x$ = 0 memiliki solusi pada interval $[0, \pi/2]$

Teorema Limit Fungsi Trigonometri

- 1. $\lim_{t\to c} \sin t = \sin c$
- 2. $\lim_{t\to c} \tan t = \tan c$
- 3. $\lim_{t\to c} \sec t = \sec c$
- 4. $\lim_{t\to c} \cos t = \cos c$
- 5. $\lim_{t\to c} \cot t = \cot c$
- 6. $\lim_{t \to c} \csc t = \csc c$

Teorema Limit Trigonometri Khusus

1.
$$\lim_{t o 0} \, rac{\sin t}{t} \, = \, 1$$

$$2. \lim_{t \to 0} \frac{1 - \cos t}{t} = 0$$

$$3. \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$$

1.
$$\lim_{ heta o 0}rac{\cos heta-1}{\sin heta}=\ldots$$

2.
$$\lim_{t o 0}rac{1-\cot t}{1/t}\,=\,\ldots$$

1.
$$\lim_{x o 0} rac{\cos\left(x^2+3
ight)-\cos\left(3
ight)}{x^2} =$$

2.
$$\lim_{x o 0} rac{\sin{(2x-k)} - rac{1}{2}\sin{(3x-k)} - rac{1}{2}\sin{(x-k)}}{2x^2 - kx} =$$

3.
$$\lim_{x o 0} rac{e^x \sec{(y+x)} - \sec{(y+x)} - e^x \sec{(y)} + \sec{(y)}}{x^2} =$$

4.
$$\lim_{x \to 0} \frac{-e^{x+k}-2+2e^x+e^k}{x} =$$

1.
$$\lim_{x o 0} rac{\cos\left(x^2+3
ight)-\cos\left(3
ight)}{x^2} = -\sin\left(3
ight)$$

2.
$$\lim_{x \to 0} rac{\sin{(2x-k)} - rac{1}{2}\sin{(3x-k)} - rac{1}{2}\sin{(x-k)}}{2x^2 - kx} =$$

3.
$$\lim_{x \to 0} \frac{e^x \sec(y+x) - \sec(y+x) - e^x \sec(y) + \sec(y)}{x^2} = \tan y \sec y$$

$$4. \ \lim_{x \to 0} \frac{-e^{x+k}-2+2e^x+e^k}{x} \ = \ \lim_{x \to 0} \frac{(e^x-1)\big(2-e^k\big)}{x} \ = \ \lim_{x \to 0} \frac{e^x-1}{x}. \ \lim_{x \to 0} (2-e^k) \\ = \ 1. \ (2-e^k) \ = \ 2-e^k$$

Limit di Tak Terhingga

Definisi Limit Ketika $x \to \infty$

$$\forall \varepsilon > 0, \exists M \gg 1, x > M \rightarrow |f(x) - L| < \varepsilon \implies \lim_{x \to \infty} f(x) = L$$

Definisi Limit Ketika $x \rightarrow -\infty$

$$\forall \varepsilon > 0, \ \exists M \ll -1, \ x < M \rightarrow |f(x) - L| < \varepsilon \implies \lim_{x \to -\infty} f(x) = L$$

Teorema:

$$\lim_{x \to \pm \infty} \frac{1}{x^k} = 0, k > 0$$

1.
$$\lim_{x o\infty}rac{x^4-3x^2+1}{3x^4+1}$$

2.
$$\lim_{x o\infty}rac{3x^5-1}{x^5+1}$$

3.
$$\lim_{x o\infty}rac{2x^5-1}{x^4-1}$$

Latihan Soal

1.
$$\lim_{x o\infty}rac{x^4-3x^2+1}{3x^4+1}$$

2.
$$\lim_{x \to \infty} \frac{3x^5 - 1}{x^5 + 1}$$

$$\text{3. } \lim_{x \to \infty} \frac{2x^5-1}{x^4-1} \, = \, \lim_{x \to \infty} \frac{\frac{2x^5-1}{x^5}}{\frac{x^4-1}{x^5}} \, = \, \lim_{x \to \infty} \frac{2\,-\,\frac{1}{x^5}}{\frac{1}{x}\,-\,\frac{1}{x^5}}$$

Berdasar teorema pada limit di tak terhingga, maka yang didapatkan adalah pembagian dengan 0.

... Tidak terdefinisi

Jika dibagi dengan x⁴, maka terbentuk: $\lim_{x o\infty}rac{2x-rac{1}{x^4}}{1-rac{1}{x^4}}$

Terjadi operasi dengan *infinity* yang kita tidak tahu hasilnya apa.

... Tidak terdefinisi

Limit Tak Terhingga

Definisi Limit Tak Terhingga

- $\lim_{x \to c} f(x) = \infty \text{ jika } \forall \varepsilon > 0, \exists \delta > 0, |x c| < \delta, f(x) \gg 1$
- $\lim_{x\to c} f(x) = -\infty \text{ jika } \forall \varepsilon > 0, \exists \delta > 0, |x-c| < \delta, f(x) \ll -1$

1.
$$\lim_{x o 1} rac{x^4 - 3x^2 + 1}{3x - 3}$$

2.
$$\lim_{x \to 2} \frac{3x^5 - 1}{x^5 - 32}$$

Latihan Soal

2. $\lim_{x \to 2} \frac{3x^5 - 1}{x^5 - 32}$

6. Asimtot Datar dan Tegak

Pengenalan Asimtot

Ingat kembali tentang fungsi (relasi bilangan x terhadap y). Jika kita mendapatkan fungsi seperti:

$$g(x) = 2x / (x - 1)$$

dan kita gambarkan dalam bentuk grafik (buat tabel nilai, gambar titik yang berkorespondensi, hubungkan titik-titik ini dengan sebuah kurva mulus), maka kita dapat melihat sesuatu yang dramatis terjadi saat x mendekati 1.

Hal tersebut lebih diperjelas saat menarik garis tegak putus-putus (asimtot) di x = 1 atau garis tegak putus-putus (asimtot) di y = 2.

6. Asimtot Datar dan Tegak

Asimtot Tegak

Garis x = c disebut **asimtot tegak**, jika:

$$\lim_{x\to c} f(x) = \pm \infty$$

Asimtot Datar

Garis y = b disebut *asimtot datar*, jika:

$$\lim_{x \to \pm \infty} f(x) = b$$

6. Asimtot Datar dan Tegak

Latihan Soal

Tentukan asimtot datar dan/atau tegak untuk:

1.
$$f(x) = \frac{3}{(x+1)^2}$$

$$2. \quad g(x) = \frac{2x}{\sqrt{x^2 + 5}}$$

