При помощи OMP (omp tasks) была реализована программа осуществляющая параллельное выполнение алгоритма FFT (Radix-2  $\mathrm{DIT}^1$ ). Корректность программы проверяется приложенным скриптом.

В последовательной версии базовый вариант этого алгоритма предполагает  $M = \log_2 N$  стадий, на каждой из которых вычисляется  $\frac{N}{2}$  бабочек. Каждая бабочка требует 1 комплексное умножение и 2 комплексных сложения. В результате выполняется  $\frac{N}{2}\log_2 N$  комплексных умножений и  $N\log_2 N$  комплексных сложений. В итоге имеем асимптотическую сложность  $\mathcal{O}(N\log N)$ .

Результаты моделирования представлены на рисунке 1. На нём изображены ускорение (S) и эффективность (E) параллельной версии алгоритма на нескольких процессах p. Стоит отметить, что как ускорение, так и эффективность увеличиваются при росте N, так как время вычисления задач, начинает сильно преобладать над временем распределения задач.



Рис. 1. Результаты моделирования.

<sup>1</sup>https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey\_FFT\_algorithm