

Al Agent for Chinese Chess

- Human Mode + Simulations Mode
- Live Analysis
- ❖ Frontend: Angular2 + SemanticUI
- * Backend: Node.js
- ❖ OOP Design in Typescript

Motivation

- Popularity in China
- Scarcity of AI-powered Chinese Chess Engine

- Complex Game Rules
- **❖** Large branching factor (38)

Lill Evaluation Performance

Materials Value

- Piece Value
- Piece Position

Attacking Power

- Number of Threatening
- Number of Captures
- Number of Center Cannons
- Number of Aligned Cannons

Mobility

- Mobility of Rook
- Mobility of Cannon
- Mobility of Horse
- Mobility of Elephant

TD Learning

$$w^{t+1} := w^t + \eta \cdot r^t \cdot (A \cdot \overline{\phi^t} + B \cdot \phi^{t*} - w^t)$$

 w^t : weigh at game t

 $\overline{\phi^t}$: average feature vector across all states in game t

 ϕ^{t*} : last (win/lose)feature vector in game t

 r^t : reward in game t $r = \begin{cases} Win: 1 \\ Lose: -1 \\ Draw: 0 \end{cases}$

Strategy	Search Depth	Average Runtime for Each Move(ms)
Alpha-Beta Pruning	2	76
Greedy	1	3
Alpha-Beta Pruning	3	600
Alpha-Beta Pruning	4	7307
Alpha-Beta Pruning with Move Reorder (Type A)	2	72
Alpha-Beta Pruning with Move Reorder (Type A)	3	239
Alpha-Beta Pruning with Move Reorder (Type A)	4	3175
Temporal Difference Learning	2	393
Temporal Difference Learning	3	1176
Temporal Difference Learning	4	9568
Monte Carlo Tree Search	2	43
Monte Carlo Tree Search	3	105
Monte Carlo Tree Search	4	315

- ***** Greedy
- * MiniMax
- * Alpha-beta Pruning
- * Pruning with Move Reorder
- * Monte Carlo Tree Search
- * Temporal Difference Learning

Li Deng
dengl11@stanford.edu
Stanford CS221 2016 Autumn