Target Environment

Введение

Цели

Предоставление списка объектов наблюдения. В качестве объектов наблюдения могут быть использованы спутники (низкой и средней орбиты), аэродинамические объекты (самолеты, вертолеты, БПЛА, крылатые ракеты, статичные объекты), баллистические ракеты с полным набором участков полета. В настоящий момент реализован только список спутников по TLE каталогу NORAD.

Соглашения о терминах

Объект наблюдения (ОН) – любой радиоотражающий объект, по которому возможно вести периодическое наблюдение.

Область обнаружения — совокупность геодезических координат (широта, долгота и высота) приемного поста и описания области (сектора шара, цилиндра, конуса и т.п) возможного сканирования радиолокатора относительно этих координат.

МПСК – местная прямоугольная система координат, с ориентацией осей соответствующей топоцентрической системе координат и с центром в центре полотна приемного поста антенной решетки.

Опорная точка — точка, относительно которой происходят измерения соответствующей ей (определяется контекстом) параметров.

Область применения

Применяется как для обеспечения возможности написания модуля аппаратной имитации приемного и передающего поста радиолокатора, так и для независимого использования.

Общее описание

Назначение и возможности продукта

Представляет собой пару клиент-сервер работающие по транспортному протоколу ТСР. Обмен сообщениями осуществляется в формате JSON. Состав и формат сообщений представлен в Приложении А. Список объектов наблюдения формируется по алгоритму, представленному в Приложении Б.

Среда функционирования продукта

Исполняется в среде операционных систем Windows и Ubuntu Linux. Модуль поставляется в качестве исходных текстов — заголовочные (.h) и компилируемые (.cpp) файлы или статической библиотеки — заголовочный (.h) файл и объектный код (.lib и .a) файл.

Допущения и зависимости

При реализация используются библиотеки:

- boost::asio (со своими зависимостями)
- eigen3
- rapidjson

Описание системы

Конфигурирование клиента и сервера осуществляется через файл конфигурации. Состав и формат конфигурационных файлов описан в Приложении В.

При вызове интерфейсных функций возможны следующие типы ошибок:

- ОК ошибки отсутствуют.
- SystemError ошибки, вызванные ошибками при работе с функциями операционной системы или сторонних библиотек.
- ConfigError ошибка при чтении файла конфигурации или файла каталога спутников. Не верный формат.
- RegisterFail ошибка подключения к серверу, вызванная превышением лимита подключений или неверным форматом сообщения.
- RequestFail ошибка обработки запроса от клиента, неверный формат сообщения.

Более детальное сообщение об ошибке выводится в файл <mark><Дата и время запуска></mark>.log в каталоге <mark><Исполняемый файл>/logs/</mark>.

Серверная подсистема

Описание

Подсистема предназначена для обслуживания запросов клиентов на предоставление списка ОН.

Функциональные требования

- ErrorCode load_config(config_manager).
 Загрузка конфигурации с помощью менеджера конфигураций. В случае успеха возвращает ОК. В случае ошибки возвращает SystemError или ConfigError. Вызов функции возможен только при остановленном сервере.
- ErrorCode start().

 Запуск сервера на исполнение согласно параметрам, представленным в файле конфигурации. Вызов неблокируемый. В случае успеха возвращает ОК. В случае ошибки возвращает SystemError или ConfigError.
- ErrorCode stop().
 - Остановка сервера и закрытие всех установленных соединений. В случае успеха возвращает ОК. В случае ошибки возвращает SystemError. В случае успешной остановки возможен повторный запуск сервера на исполнение.

Клиентская подсистема

Описание

Предназначена для взаимодействия с сервером и получения списка ОН.

Функциональные требования

- ErrorCode load_config(config_manager).
 Загрузка конфигурации с помощью менеджера конфигураций. В случае успеха возвращает
 ОК. В случае ошибки возвращает SystemError или ConfigError. Вызов функции возможен только до установки соединения с сервером.
- ErrorCode connect().

Установка соединения с сервером согласно параметрам представленным в файле конфигурации. В случае успеха возвращает ОК. В случае ошибки возвращает SystemError, RegisterFail или ConfigError.

- ErrorCode disconnect().
 - Отмена текущих операций приема или передачи данных и разрыв текущего соединения с сервером. В случае успеха возвращает ОК. В случае ошибки возвращает SystemError. В случае успешного разрыва соединения возможна повторная установка соединения с сервером.
- ErrorCode get_targets(targets_list, search_area, radar_location,time).
 Получение списка OH, где targets_list (выходной параметр) список в который попадут все OH, прошедшие фильтрацию по параметрам OO search_area, положения радиолокатора radar_location на момент времени time. В случае успеха возвращает OK. В случае ошибки возвращает SystemError или RequestFail.

Приложение А. Состав и формат сообщений обмена.

Состав сообщений

Сообщение запроса от клиента.

TE_Request					
Имя	Тип	Описание			
latitude*	double	Геодезическая широта радиолокатора,			
		градус. Диапазон от -180 до +180.			
longitude	double	Геодезическая долгота радиолокатора,			
		градус. Диапазон от -180 до +180.			
altitude	double	Высота над уровнем моря радиолокатора,			
dititude		метр. Диапазон от 0 до 12000.			
type**	string	Тип ОО. Типы: «spherical_sector»			
X	double	МПСК координата по оси Х опорной точки			
^		ОО, метр.			
Y	double	МПСК координата по оси Ү опорной точки			
'		ОО, метр.			
Z	double	МПСК координата по оси Z опорной точки			
		ОО, метр.			
	double	Дальность, метр. Диапазон определяется			
range		предельной дальностью работы			
		радиолокатора. Для сервера не определен.			
elevation_angle	double	Угол места центра ОО, градус. Диапазон от 0			
0.0144.014.18.0		до 90.			
elevation width	double	Ширина ОО по вертикали, градус. Диапазон			
		от 0 до 180.			
azimuth_angle	double	Азимут центра ОО, градус. Диапазон от 0 до			
		360.			
azimuth_width	double	Ширина ОО по горизонтали, градус.			
_		Диапазон от 0 до 180.			
	uint64	Время, на которое нужно сформировать			
time		список ОН, наносекунд. Эпоха – Unix Time			
		(POSIX).			

^{*}Примечание: В качестве координат радиолокатора выступает центр полотна приемного поста антенной решетки.

^{}**Примечание: Состав сообщения может менять в зависимости от типа (type) ОО.

Сообщение ответа от сервера.

		TE_TargetsList				
	Имя	Тип	Описание			
	size	uint32	Количество последующих ОН.			
size pas	id	uint32	Идентификатор ОН			
			Вектор параметров по оси Х в			
	x	double x 6	геоцентрической системе координат.			
			Размерности – метр, метр/сек, метр/с² и т.д.			
			Вектор параметров по оси Ү в			
	У	double x 6	геоцентрической системе координат.			
			Размерности – метр, метр/сек, метр/с² и т.д.			
		double x 6	Вектор параметров по оси Z в			
	Z		геоцентрической системе координат.			
			Размерности – метр, метр/сек, метр/с² и т.д.			

Формат сообщений

Сообщение запроса от клиента.

Сообщение ответа от сервера.

Сообщение об успешном соединении от сервера.

```
{
   "message" : "TE_RegisterSuccess"
}\n
```

Сообщение отказа в соединении от сервера.

```
{
    "message" : "TE_RegisterFail"
}\n
```

Сообщение ошибки при обработке запроса от сервера.

```
{
   "message" : "TE_RequestFail"
}\n
```

Приложение Б. Алгоритм формирования списка ОН в ОО.

Данный алгоритм используется только для фильтрации ОН в ОО в форме сектора шара.

Задано:

Описание ОО				
lat	Геодезическая широта опорной точки ОО.			
lon	Геодезическая долгота опорной точки ОО.			
alt	Высота над уровнем моря опорной точки ОО.			
R_s	Предельная дальность ОО.			
ε _c	Угол места центральной оси ОО.			
ϵ_{w}	Ширина ОО по вертикали.			
β_c	Азимут центральной оси ОО.			
β_{w}	Ширина ОО по горизонтали.			
t	Время, на которое формируется список ОН.			

Для каждого спутника из каталога на время t по алгоритму SGP4 вычисляются его положение в геоцентрической системе координат. Всего, для каждого спутника, вычисляется 6 точек (C_1 , C_2 , ... C_6) со смещением времени t на 10 секунд. Для каждой C_i проверяется условие попадания этой точки в OO, по следующему алгоритму:

- 1. Перевод точки С в сферическую систему координат (ϵ , β , R), с центром в опорной точке OO.
- 2. Проверяем условие попадания ОН по дальности: R < R_s. (1)
- 3. Проверяем условие попадания по углам: $|\epsilon \epsilon_c| < \epsilon_w$ и $|\beta \beta_c| < \beta_w$. (2)

В случае если хотя бы одна точка C_i спутника удовлетворяет условиям (1) и (2), то спутник попадет в OO.

Для получения 6 мерного вектора по каждой из осей, для попавшего в ОО спутника методом наименьших квадратов (аналитическое решение через нормальное уравнение) по точкам C_i определяются коэффициенты полиномиальной регрессии.

Приложение В. Состав и формат файла конфигурации.

Состав конфигурационных параметров

РМИ	Тип	Описание
Ip_address	string	Строка адреса сервера.
port	uint32	Номер порта для входящих соединений.
tle_catalog	string	Относительный путь и имя файла каталога спутников. Путь задается относительно
		каталога с исполняемым файлом.
max_connections	uint32	Максимальное количество соединений.

Формат конфигурационного файла

```
{
    "te_settings" :
    {
        "ip_address" : "XXX.XXX.XXX.XXX",
        "port" : XXXXX,
        "tle_catalog" : "XXX/XXX.tle",
        "max_connections" : XXX
    }
}\n
```