9.1

B. Show that every subset of a discrete metric space is both open and closed.

We have a discrete metric d on a set X. Now we take $U \subset X$. For any $x \in U$ we have $B(x,r) \subset U$ if $r \leq 1$ because the ball will contain only the point x. Note that this is trivially true even if $U = \emptyset$ because there is no $x \in U$ that does not have a ball around it. Now because our choice of U was arbitrary we know that all subsets of X are open. And the complements of any subsets of X are themselves subsets of X, and so they are open. But they are the complement of an open set, and so they must be closed. Thus every subset of a discrete metric space is both open and closed.

D. Prove Theorem 9.1.7

Let f map a metric space (X, ρ) into a metric space (Y, ρ) . The following are equivalent:

- (1) f is continuous on X;
- (2) for every sequence (x_n) with $\lim_{n\to\infty} x_n = a \in X$, we have $\lim_{n\to\infty} f(x_n) = f(x)$; and
- (3) $f^{-1}(U) = \{x \in X : f(x) \in U\}$ is open in X for every open set U in Y.

We start by assuming that f is continuous on X. Now we know that for every $a \in X$ and $\varepsilon > 0$ there exists a $\delta > 0$ such that $\sigma(f(x), f(a)) < \varepsilon$ whenever $\rho(x, a) <$

delta. We also know that the limit of $\rho(x,a)$ is zero as $x \to a$. Now from the definition of limit, we know that we can find some $\delta > 0$ such that $\rho(x,a) < \delta$. But then from the definition of continuity we can have $\sigma(f(x),f(a)) < \varepsilon$ which means that the limit of $\sigma(f(x),f(a))$ is zero as $f(x) \to f(a)$ as required.

Now if we assume 1 is false, and f is discontinuous at some point a then we can find some number $\varepsilon > 0$

- H. Two metrics ρ and σ on a set X are **equivalent** if there are constants 0 < c < C such that $c\rho(x,y) \le \sigma(x,y) \le C\rho(x,y)$ for all $x,y \in X$
 - (a) Prove that equivalent metrics are topologically equivalent If we say $\sigma(x,y)=r$ and let s=r/c then we have $B_s^{\rho}(x)\subset B_r^{\sigma}(x)$, straight from the inequality in the definition of equivalence. Now if $\rho(x,y)=r$ then $\sigma(x,y)/C \leq r/c=s$ because C>c and so we see that $B_s^{\sigma}(x)\subset B_r^{\rho}$.
 - (b) Prove that equivalent metrics have the saame Cauchy sequences We begin with some Cauchy sequence $(x_n) \in \rho$. Then for every $\varepsilon/C > 0$ there exists some N such that $\rho(x_i, x_j) < \varepsilon/C$. But

 $\sigma(x_i, x_j) \leq C\rho(x_i, x_j) < \varepsilon$ and so the sequence is Cauchy in σ . Now let us assume that our sequence is Cauchy in σ . Then for every $c\varepsilon > 0$ there exists some N such that $c\rho(x_i, x_j) \leq \sigma(x_i, x_j) < c\varepsilon$ and so certainly $\rho(x_i, x_j) < \varepsilon$.

(c) Give examples of topologically equivalent metrics that are not equivalent

If we let $\sigma(x,y) = \min\{1, \rho(x,y)\}$ and $\rho(x,y) = |x-y|$ then, no matter how small we make c, we can make y = x + 1/c + 1 and then no matter our choice of c we can make y = x + 1/c + 1 and $\sigma(x,x+1/c+1) = 1$ but $c\rho(x,x+1/c+1) = c+1 > \sigma(x,x+1/c+1)$ so they are not equivalent. But if we choose any r for $B_r^{\sigma}(x)$ we will have either all real numbers or all real numbers in [-r,r]. Either way, we can certainly can say that $s = \min(1/2,r/2)$ and then $B_s^{\rho}(x) \subset B_r^{\sigma}(x)$ and $B_s^{\sigma}(x) \subset B_r \rho(x)$

- K. Recall the 2-adic metric of examples 9.1.2 (4) and 9.1.5 (4). Extend it to \mathbb{Q} by setting $\rho_2(a/b, a/b) = 0$ and, if $a/b \neq c/d$, then $\rho_2(a/b, c/d) = 2^{-e}$, where e is the unique integer such that $a/b c/d = 2^e(f/g)$ and both f and g are odd integers
 - (a) Prove that ρ_2 is a metric on \mathbb{Q} if $a/b \neq c/d$ then $a/b c/d = \frac{ad-cb}{db}$. Now $ad-cb = 2^i f$ for some odd f and $db = 2^j g$ for some odd g. Then $a/b c/d = 2^{i-j} (f/g)$. Of course 2^{i-j} is non-zero and so $\rho_2(a/b, c/d) \neq 0$.

Now we assume that $a/b - c/b = 2^e \frac{f}{g}$. Then $c/d - a/b = 2^e (-f/g)$ and so $\rho_2(x,y) = \rho(2(y,x))$.

And finally, if $\rho_2(a/b,c/d) = 2^{-i+l}$, $\rho_2(a/b,e/f) = 2^{-k+l}$ and $\rho_2(c/d,e/f) = 2^{-j+l}$ then a/b-c/d = (adf-bcf)/bdf and c/d-e/f = (bcf-bde)/bdf while a/b-e/f = (adf-bde)/bdf = (adf-bcf)/bdf + (bcf-bde)/bdf. Now we see that $\rho_2(a/b,e/f) = 2^{-i-j+l} \le 2^{-i-j+2l} = 2^{-i+l} + 2^{-j+l}$

(b) Show that the sequence of integers $a_n = (1 - (-2)^n)/3$ converges in (\mathbb{Q}, ρ_2)

 $(1-(-2)^n)/3-1/3=-(-1)^n2^n/3$ so $\rho_2((1-(-2)^n)/3,1/3)=2^{-n}$ which converges to zero, so (a_n) converges to $\frac{1}{3}$

(c) Find the limit of $\frac{n!}{n!+1}$ in this metric.

We know that n! is even for $n \geq 2$, so n! + 1 is odd for $n \geq 2$. We also know that every other term of n! adds at least one factor of 2 to n!. Thus $\rho_2(n!/(n!+1),0) \leq 2^{-n/2}$. And so we know that if we choose N large enough that $0 < 2^{N/2} \leq \varepsilon$ for any $\varepsilon > 0$ then $\rho_2(n!/(n!+1),0) \leq 2^{-n/2} \leq 2^{-N/2}$ for all n > N. We see that the limit must be 0.