Wprowadzenie do RL 10

Zadanie 1

Zaimplementuj algorytm **Q-learning** w środowisku *FrozenLake* wykorzystując **sieć neuronową jako aproksymator funkcji Q**.

Sprawdź czy po nauczeniu **strategia zachłanna** polegająca na wybieraniu akcji o największej przewidywanej wartości zwrotu (o największej wartości Q) pozwala dotrzeć do stanu 15.

Zadanie 2

Zaimplementuj algorytm **Q-learning** w środowisku *CartPole* wykorzystując **sieć neuronową jako aproksymator funkcji Q**.

- Przetestuj działanie algorytmu dla różnych architektur sieci neuronowej (możesz dodawać/odejmować warstwy sieci oraz zmieniać ilość neuronów w warstwach)
- Jak na proces uczenia wpływa zmiana wartości ε oraz ilości epizodów treningowych?
- Porównaj wyniki uzyskane dla stałej wartości ε oraz dla ε zmniejszanego po każdym epizodzie według formuły:

```
epsilon = epsilon - (1/train episodes)
```

gdzie $train_{pisodes}$ to ilość epizodów w czasie których agent się uczy. Przyjmij wartość początkową $\varepsilon=1$.

UWAGA: w przypadku obu zadań wygeneruj wykres zmiany błędu w kolejnych epizodach oraz wykres sumy nagród zdobytych w kolejnych epizodach.