Hau-rongua n hair- nanza croin xour see adconvorer encogenyn) One Hera $f: X \rightarrow IR$ u c Sf(x) f e or have superimere is connectu. Areo Sf(x), $X \in X$, injure make rancoureren (rummaren) exempt, son ce napora har-songha (nar narra) crod poet la of in f b X r ce ogravaba

Max f(x)

XEX

XEX

XEX flexe j'o [a,6]-> 12 u e renpertechain. Toroba jui - ronsuara u jan-naria cronsuar ra f ce rasurpa no cregnuer rarun 1) Ungleser e journeme rocke so fra f 2) Treconstat ce cronnoceure na fora f 3) Cpalonglow ve non youre crossour

Kouro ca crotherno Max f(x) u Minf(x) xE[a,B] xe[a,B]
$x \in [a, b]$ $x \in [a, b]$
Hexa f. (a,b) -> 12 e senjerocher (anb norat ga Jöget coorberno - do n + 00). Toraba
notat ga Tégét coorbetno - son + so). Toroba
jegunpare Formatan jan-narras
pannpare 50 ha rai-rongratan zan-narrain croinnect ha f (ave congectbyber) ce ochobaba re chequite crospanierna
creamise crospamenna
1) Onjegerat le jepurneme joeur se f-ra f n le nyélvatat conxochie à le rex 2) Hampat le ryammyre
2) Hanna a ce commune
$A = 4i \sim f(x) \times B = 4i \sim f(x)$ (and come x->6-0
by los
3) (pabrilleux ce Abru con succome re
B shringe Losm
Zowene waren ; 4-5a re nouve malea
Max f(x) (Min f(x)) & chegrute crycar xx(a18) t (xx(a18)
$x \in (\alpha_1 e)$ \downarrow $x \in (\alpha_1 e)$
A-+00 mm B-+00 (A00 um B2-00)

$$\begin{cases} y = 3 - 2\sqrt{x^{2}} & y \neq 0 \\ y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \\ (1 - x^{2})^{2} & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y = -4 & x = 3 \end{cases}$$

$$\begin{cases} y =$$

$$= \frac{6x - 6x^{3} - 4x^{3} + 4x^{5} + 12x^{3} - 4x^{5}}{(1 - x^{2})^{3}} = \frac{6x + 2x^{3}}{(1 - x^{2})^{3}} = \frac{2x(3 + x^{2})}{(1 - x^{2})^$$

Hotepopleane spafnin na tynny 1 Ongegenome na D.D ma fra n onjegement na assacte 20 C2, le rosso me le njonepa f-str 3. Nobegenne na f-sa l'apannya str na 20 n njorgbare za acumnon 25. Uz crég bone ja vzn. byrtobnosocs v MAGNETICH LOSK ju bischegleane za partiene, kanadabane u jes apelermre gorm c 6. Ongle 12 re our (ano ma famba). Your new more 7. Hansense ne nongressure gonn le ratinga.
9. Tipesperbane sparfurera na f-ra Onp. 1 Npobara x = a ce rapura bejonvanza acusentota sa spafusata sa fra f, ano appe egge of grogungerie ling (x) um XXX-OT

Or by
$$f(x) = +\infty$$
 w
 $x>1-0$ $f(x) = -\infty$ -2 $x = 1$ e by means
 $x>1+0$ $f(x) = -\infty$ $x = -1 = x$
 $x>1+\infty$ $x = -1 = x$
 $x>1+\infty$ $x = -1 = x$
 $x>1+\infty$ $x=0$ $x=0$
 $x=0$ $x=0$

$$fmh\left(-\sqrt{3}\right) = 3\sqrt{3}$$

$$\int (\sqrt{2}) = -3\sqrt{3}$$

fmar (\lambda_3) - - 3\lambda_3

$$\int_{-x^2}^{x^3} (x) = 0$$

Heonpegenek unserpan
Ang. Here $f:\Delta \to \mathbb{R}$. Lyxinguesa $F:\Delta \to \mathbb{R}$ ce rapica mpunionera su gran f b uxreplana Δ , and G e grapesa myngyera b Δ u $F'(x)=f(x)$, $x\in\Delta$
F:15-> R ce rapira nomontera su
d-ra f 6 unreplana s, and 59 e grifegen
mapyera le 15 n F/(x)-f(x), x e 1
INT A KO F e njumerbre Ma f la TO snomecrboso à bourin njumerbren de f e SF+(3, Köglso CER
10 mome coboso à bouzin nonnavbien de
fe &F+C3, région CEIR
Out. Monsectors of bourson njummerlessen
ren f-ren f BD a respira reconjège ren
unterpar et et-la f u ce ognataba CEC
chubione f(p)dx. Dévictoreto, c nomonyra na voero ce
Den croveto, a nouvergrana voere ce
naunga reongegenerne unvergan ka f-ra f
ce répure une propose
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

$$\int (x^{2} + 2x - 3) dx = \frac{x^{3}}{3} + 2x^{2} - 3x + \frac{6}{3}$$

$$\int (x^{3} + 2x - 3) dx = \frac{x^{3}}{3} + 2x^{2} - 3x + \frac{6}{3}$$

$$\int (x^{3} + 2x - 3) dx = \frac{x^{3}}{3} + 2x^{2} - 3x + \frac{1}{3}$$

$$\int (x^{3} + 2x - 3) dx = \frac{x^{2} + 2x - 3}{3}$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{2} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^{3} + 2x - 3x + 1) = x^{3} + 2x - 3$$

$$\int (x^$$

$$\frac{1}{2} \frac{1}{2} \frac{1$$

$$f'(x) \ge f'(\frac{1}{\sqrt{2}}) = 2\sqrt{2}$$

$$npn \quad 0 \le x = \frac{1}{\sqrt{2}} \qquad f'(x) \ge f'(\frac{1}{\sqrt{2}}) = 2\sqrt{2}$$

$$= > f \quad 6 \le 0, 1$$

$$3a \quad x = 1 \quad \text{mpolepsbase} \quad \text{ne-origination}$$

$$1 + 2 \ln x \le x^2 \quad x > 0 \quad x \neq 0$$

$$x^2 - 2 \ln x + 120$$

$$f(x) = x^2 - 2 \ln x - 1$$

$$f'(x) = 2x - 2 \cdot \frac{1}{x} = 2x^2 - 2$$

$$f'(x) = 0$$

X-20 e ~ m Or Stee 2x-2 = 0 X102 - 1 f((x) > 0 2x (X-1)(x+1) 70

