Machine Learning 4771

Instructor: Tony Jebara

Topic 2

- Regression
- Empirical Risk Minimization
- Least Squares
- Higher Order Polynomials
- Under-fitting / Over-fitting
- Cross-Validation

Regression

Classification

Density/Structure Estimation

Feature Selection

Anomaly Detection

Unsupervised

Supervised

Function Approximation

Start with training dataset

$$\mathcal{X} = \left\{\!\!\left(\boldsymbol{x}_{\!\scriptscriptstyle 1}, \boldsymbol{y}_{\!\scriptscriptstyle 1}\right),\!\!\left(\boldsymbol{x}_{\!\scriptscriptstyle 2}, \boldsymbol{y}_{\!\scriptscriptstyle 2}\right),\!\ldots,\!\!\left(\boldsymbol{x}_{\!\scriptscriptstyle N}, \boldsymbol{y}_{\!\scriptscriptstyle N}\right)\!\!\right\} \quad \boldsymbol{x} \in \mathbb{R}^{\scriptscriptstyle D} = \right|$$

- Have N (input, output) pairs
- •Find a function f(x) to predict y from x That fits the training data well

- •Example: predict the price of house in dollars y using x = [#rooms; latitude; longitude; ...]
- Need: a) Way to evaluate how good a fit we have
 - b) Class of functions in which to search for f(x)

Empirical Risk Minimization

- •Idea: minimize 'loss' on the training data set
- •Empirical = use the training set to find the best fit
- •Define a loss function of how good we fit a single point: L(y,f(x))•Empirical Risk = the average loss over the dataset

$$R = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$$

•Simplest loss: squared error from y value

$$L\!\left(\boldsymbol{y}_{\boldsymbol{i}}, f\!\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right) = \frac{1}{2}\!\left(\boldsymbol{y}_{\boldsymbol{i}} - f\!\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right)^{2}$$

$$L(y_{i}, f(x_{i})) = |y_{i} - f(x_{i})|$$

Linear Function Classes

Linear is simplest class of functions to search over:

$$f(x;\theta) = \theta^T x + \theta_0 = \sum_{d=1}^D \theta_d x(d) + \theta_0$$

•Start with x being 1-dimensional (D=1):

$$f(x;\theta) = \theta_1 x + \theta_0$$

ullet Plug in the above & minimize empirical risk over θ

$$R(\theta) = \frac{1}{2N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0 \right)^2$$

- •Note: minimum occurs when $R(\theta)$ gets flat (not always!)
- •Note: when R(θ) is flat, gradient $\nabla_{\theta} R = 0$

Min by Gradient=0

•Gradient=0 means the partial
$$\nabla_{\theta} R = \begin{bmatrix} \frac{\partial R}{\partial \theta_0} \\ \frac{\partial R}{\partial \theta_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
•Take partials of empirical risk:

•Take partials of empirical risk:

$$R(\theta) = \frac{1}{2N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0 \right)^2$$

 $\begin{array}{l} \text{Min by Gradient=0} \\ \text{•Gradient=0 means the partial} \\ \nabla_{\theta} R = \begin{bmatrix} \frac{\partial R}{\partial \theta_0} \\ \frac{\partial R}{\partial \theta_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{array}$

•Take partials of empirical risk:

$$\begin{split} R\left(\theta\right) &= \tfrac{1}{2N} \sum\nolimits_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right)^2 \\ &\tfrac{\partial R}{\partial \theta_0} = \tfrac{1}{N} \sum\nolimits_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right) \left(-1\right) = 0 \end{split}$$

 $\begin{array}{l} \text{Min by Gradient=0} \\ \text{•Gradient=0 means the partial} \\ \text{•derivatives are all 0} \end{array} \quad \nabla_{\theta} R = \begin{bmatrix} \frac{\partial R}{\partial \theta_0} \\ \frac{\partial R}{\partial \theta_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

•Take partials of empirical risk:

$$\begin{split} R\left(\theta\right) &= \frac{1}{2N} \sum\nolimits_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right)^2 \\ &\frac{\partial R}{\partial \theta_0} = \frac{1}{N} \sum\nolimits_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right) \left(-1\right) = 0 \\ &\frac{\partial R}{\partial \theta_1} = \frac{1}{N} \sum\nolimits_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right) \left(-x_i\right) = 0 \end{split}$$

Min by Gradient=0

•Gradient=0 means the partial $\nabla_{\theta}R=\begin{bmatrix} \frac{\partial R}{\partial \theta_0} \\ \frac{\partial R}{\partial \theta} \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$abla_{\scriptscriptstyle{0}}R = \left[egin{array}{c} rac{\partial R}{\partial heta_{\scriptscriptstyle{0}}} \ rac{\partial R}{\partial heta_{\scriptscriptstyle{0}}} \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

• Take partials of empirical risk:

$$\begin{split} R\left(\theta\right) &= \frac{1}{2N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right)^2 \\ \frac{\partial R}{\partial \theta_0} &= \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right) \left(-1\right) = 0 \\ \frac{\partial R}{\partial \theta_1} &= \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right) \left(-x_i\right) = 0 \\ \theta_0 &= \frac{1}{N} \sum y_i - \theta_1 \frac{1}{N} \sum x_i \end{split}$$

Min by Gradient=0

•Gradient=0 means the partial derivatives are all 0
$$\nabla_{\theta} R = \begin{bmatrix} \frac{\partial R}{\partial \theta_0} \\ \frac{\partial R}{\partial \theta_0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• Take partials of empirical risk:

$$\begin{split} R\left(\theta\right) &= \frac{1}{2N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right)^2 \\ \frac{\partial R}{\partial \theta_0} &= \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right) \left(-1\right) = 0 \\ \frac{\partial R}{\partial \theta_1} &= \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0\right) \left(-x_i\right) = 0 \\ \theta_0 &= \frac{1}{N} \sum y_i - \theta_1 \frac{1}{N} \sum x_i \\ \theta_1 \sum x_i^2 &= \sum y_i x_i - \theta_0 \sum x_i \end{split}$$

Min by Gradient=0

•Gradient=0 means the partial derivatives are all 0
$$\nabla_{\theta} R = \begin{bmatrix} \frac{\partial R}{\partial \theta_0} \\ \frac{\partial R}{\partial \theta_0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• Take partials of empirical risk:

$$\begin{split} R\left(\theta\right) &= \frac{1}{2N} \sum\nolimits_{i=1}^{N} \left(y_{i} - \theta_{1}x_{i} - \theta_{0}\right)^{2} \\ &\frac{\partial R}{\partial \theta_{0}} = \frac{1}{N} \sum\nolimits_{i=1}^{N} \left(y_{i} - \theta_{1}x_{i} - \theta_{0}\right) \left(-1\right) = 0 \\ &\frac{\partial R}{\partial \theta_{1}} = \frac{1}{N} \sum\nolimits_{i=1}^{N} \left(y_{i} - \theta_{1}x_{i} - \theta_{0}\right) \left(-x_{i}\right) = 0 \\ &\theta_{0} = \frac{1}{N} \sum y_{i} - \theta_{1} \frac{1}{N} \sum x_{i} \\ &\theta_{1} \sum x_{i}^{2} = \sum y_{i}x_{i} - \theta_{0} \sum x_{i} \\ &\theta_{1} = \frac{\sum y_{i}x_{i} - \frac{1}{N} \sum y_{i} \sum x_{i}}{\sum x_{i} \sum x_{i}} \end{split}$$

Properties of the Solution

- •Setting θ^* as before gives least squared error
- Define error on each data point as:

$$e_{i} = y_{i} - \theta_{_{1}}^{*} x_{_{i}} - \theta_{_{0}}^{*}$$

•Note property #1:

$$\frac{\partial R}{\partial \theta_0} = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0 \right) = 0$$

...average error is zero $\frac{1}{N}\sum e_i=0$

•Note property #2:

$$\frac{\partial R}{\partial \theta_1} = \frac{1}{N} \sum\nolimits_{i=1}^N \left(y_i - \theta_1 x_i - \theta_0 \right) x_i = 0$$

...error not correlated with data

$$\frac{1}{N}\sum e_i x_i = \frac{1}{N}e^T x = 0$$

- •More elegant/general to do $\nabla_{\bf p} R = 0$ with linear algebra
- •Rewrite empirical risk in vecţor-matrix notation:

$$R(\theta) = \frac{1}{2N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0 \right)^2$$

$$= \frac{1}{2N} \sum\nolimits_{i=1}^{N} \left[y_i - \left[\begin{array}{cc} 1 & x_i \end{array} \right] \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array} \right] \right]^2$$

$$= \frac{1}{2N} \left\| \begin{array}{c} y_1 \\ \vdots \\ y_N \end{array} \right] - \left[\begin{array}{cc} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{array} \right] \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array} \right] \right\|^2$$

$$= rac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \mathbf{\theta} \right\|^2$$

- •More elegant/general to do $\nabla_{\bf p} R = 0$ with linear algebra
- •Rewrite empirical risk in vecţor-matrix notation:

$$R(\theta) = \frac{1}{2N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0 \right)^2$$

$$=rac{1}{2N}{\sum}_{i=1}^{N}egin{bmatrix} y_i - \left[egin{array}{cc} 1 & x_i \end{array}
ight] \left[egin{array}{cc} heta_0 \ heta_1 \end{array}
ight]
ight]^2$$

$$= \frac{1}{2N} \left[\begin{array}{c} y_1 \\ \vdots \\ y_N \end{array} \right] - \left[\begin{array}{cc} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{array} \right] \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array} \right] \right]^2$$

$$= \frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \mathbf{\theta} \right\|^2$$

Can add more dimensions by adding columns to X matrix and rows to θ vector

- •More elegant/general to do $\nabla_{_{\mathbf{n}}}R=0$ with linear algebra
- •Rewrite empirical risk in vector-matrix notation:

$$R(\theta) = \frac{1}{2N} \sum_{i=1}^{N} \left(y_i - \theta_1 x_i - \theta_0 \right)^2$$

$$=rac{1}{2N}{\sum}_{i=1}^{N}egin{bmatrix} y_i - \left[egin{array}{cc} 1 & x_i \end{array}
ight] \left[egin{array}{cc} heta_0 \ heta_1 \end{array}
ight] ^2$$

$$=\frac{1}{2^N} \left[\begin{array}{c} y_1 \\ \vdots \\ y_N \end{array} \right] - \left[\begin{array}{ccc} 1 & x_1(1) & \dots & x_1(D) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_N(1) & \dots & x_N(D) \end{array} \right] \left[\begin{array}{c} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_D \end{array} \right] \left[\begin{array}{c} \text{Can add more dimensions by adding columns to X matrix and} \end{array} \right]$$

$$=rac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \mathbf{\theta} \right\|^2$$

rows to θ vector

- More realistic dataset: many measurements
- Have N apartments each with D measurements
- •Each row of X is [#rooms; latitude; longitude,...]

$$\mathbf{X} = \left[\begin{array}{cccc} 1 & x_{_{\!1}}\big(1\big) & \dots & x_{_{\!1}}\big(D\big) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{_{\!N}}\big(1\big) & \dots & x_{_{\!N}}\big(D\big) \end{array} \right]$$

1	1212 Fifth Avenue PENTHOUSE	\$7,995,000
	Condo, Upper Carnegie Hill Listed by Nancy Packes Inc.	3 beds 3.5 baths 2,689 ft ²
	210 East 73rd Street #PHB Co-op, Upper East Side Listed by Brown Harris Stevens	\$3,495,000 2 beds 3 baths
	66 East 11th Street Building, Greenwich Village Listed by Douglas Elliman	\$120,000,000
	150 West 56th Street #PH Condo, Midtown Listed by Douglas Elliman	\$100,000,000 6 beds 9 baths 8,000 ft ²
	50 Central Park South #PH34/35 Condo, Central Park South Listed by Halstead Property	\$95,000,000 3 beds 3.5 baths
	15 Central Park West #35S Condo, Lincoln Square Listed by CORE	\$95,000,000 5 beds 5+ baths
	828 Fifth Avenue #XXX Co-op, Lenox Hill Listed by Stribling	\$72,000,000 8 beds 10.5 baths
	785 Fifth Avenue #PH1718 Co-op, Lenox Hill Listed by Corcoran	\$65,000,000 IN CONTRACT 7 beds 11 baths

•Solving gradient=0

$$\nabla_{\mathbf{p}}R=0$$

$$\nabla_{\theta} \left(\frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \theta \right\|^2 \right) = 0$$

•Solving gradient=0
$$\nabla_{\boldsymbol{\theta}} R = 0$$

$$\nabla_{\boldsymbol{\theta}} \left(\frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right\|^2 \right) = 0$$

$$\frac{1}{2N} \nabla_{\boldsymbol{\theta}} \left(\left(\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right)^T \left(\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right) \right) = 0$$

•Solving gradient=0
$$\nabla_{\theta} R = 0$$

$$\nabla_{\theta} \left(\frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \theta \right\|^{2} \right) = 0$$

$$\frac{1}{2N} \nabla_{\theta} \left(\left(\mathbf{y} - \mathbf{X} \theta \right)^{T} \left(\mathbf{y} - \mathbf{X} \theta \right) \right) = 0$$

$$\frac{1}{2N} \nabla_{\theta} \left(\mathbf{y}^{T} \mathbf{y} - 2 \mathbf{y}^{T} \mathbf{X} \theta + \theta^{T} \mathbf{X}^{T} \mathbf{X} \theta \right) = 0$$

Solving gradient=0

$$\nabla_{\theta} R = 0$$

$$\nabla_{\theta} \left(\frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \theta \right\|^2 \right) = 0$$

$$\frac{1}{2N} \nabla_{\theta} \left(\left(\mathbf{y} - \mathbf{X} \theta \right)^{T} \left(\mathbf{y} - \mathbf{X} \theta \right) \right) = 0$$

$$\frac{1}{2N} \nabla_{\theta} \left(\mathbf{y}^{T} \mathbf{y} - 2 \mathbf{y}^{T} \mathbf{X} \theta + \theta^{T} \mathbf{X}^{T} \mathbf{X} \theta \right) = 0$$

$$\frac{1}{2N} \left(-2\mathbf{y}^T \mathbf{X} + 2\theta^T \mathbf{X}^T \mathbf{X} \right) = 0$$

$$\frac{\partial \vec{u}^T \vec{\theta}}{\partial \vec{\theta}} = \vec{u}^T$$

$$\frac{\partial \vec{\theta}^T \vec{\theta}}{\partial \vec{\theta}} = 2 \vec{\theta}^T$$

$$\frac{\partial \vec{\theta}^T A \vec{\theta}}{\partial \vec{\theta}} = \vec{\theta}^T \left(A + A^T \right)$$

•Solving gradient=0

$$\nabla_{\theta} R = 0$$

$$\nabla_{\theta} \left(\frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \theta \right\|^{2} \right) = 0$$

$$\frac{1}{2N} \nabla_{\theta} \left(\left(\mathbf{y} - \mathbf{X} \theta \right)^{T} \left(\mathbf{y} - \mathbf{X} \theta \right) \right) = 0$$

$$\frac{1}{2N} \nabla_{\theta} \left(\mathbf{y}^{T} \mathbf{y} - 2 \mathbf{y}^{T} \mathbf{X} \theta + \theta^{T} \mathbf{X}^{T} \mathbf{X} \theta \right) = 0$$

$$\frac{1}{2N} \left(-2 \mathbf{y}^{T} \mathbf{X} + 2 \theta^{T} \mathbf{X}^{T} \mathbf{X} \right) = 0$$

$$\mathbf{X}^T\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^T\mathbf{y}$$

$$\frac{\partial \vec{u}^T \vec{\theta}}{\partial \vec{\theta}} = \vec{u}^T$$

$$\frac{\partial \vec{\theta}^T \vec{\theta}}{\partial \vec{\theta}} = 2 \vec{\theta}^T$$

$$\frac{\partial \vec{\theta}^T A \vec{\theta}}{\partial \vec{\theta}} = \vec{\theta}^T \left(A + A^T \right)$$

Solving gradient=0

$$\nabla_{_{\boldsymbol{\theta}}} R = 0$$

$$\nabla_{\theta} \left(\frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \theta \right\|^2 \right) = 0$$

$$\frac{1}{2N} \nabla_{\theta} \left(\left(\mathbf{y} - \mathbf{X} \theta \right)^{T} \left(\mathbf{y} - \mathbf{X} \theta \right) \right) = 0$$

$$\frac{1}{2N}\nabla_{\theta}\left(\mathbf{y}^{T}\mathbf{y}-2\mathbf{y}^{T}\mathbf{X}\mathbf{\theta}+\mathbf{\theta}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{\theta}\right)=0$$

$$\frac{1}{2N} \left(-2\mathbf{y}^T \mathbf{X} + 2\theta^T \mathbf{X}^T \mathbf{X} \right) = 0$$

$$\mathbf{X}^T \mathbf{X} \mathbf{\theta} = \mathbf{X}^T \mathbf{y}$$

$$\theta^* = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

•In Matlab: "t=pinv(X)*y'' or " $t=X\setminus y''$ or "t=inv(X'*X)*X'*y''

$$rac{\partial ec{u}^T ec{ heta}}{\partial ec{ heta}} = ec{u}^T$$

$$rac{\partial ec{ heta}^T ec{ heta}}{\partial ec{ heta}} = 2 ec{ heta}^T$$

$$\frac{\partial \vec{\theta}^T A \vec{\theta}}{\partial \vec{\theta}} = \vec{\theta}^T \left(A + A^T \right)$$

Solving gradient=0

$$\mathbf{X}^{T}\mathbf{X}\mathbf{\theta} = \mathbf{X}^{T}\mathbf{y}$$
 $\mathbf{\theta}^{*} = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{y}$

- •In Matlab: "t=pinv(X)*y'' or " $t=X\setminus y''$ or "t=inv(X'*X)*X'*y''
- •If the matrix X is skinny, the solution is probably unique
- •If X is fat (more dimensions than points) we get multiple solutions for theta which give zero error.
- •The pseudeoinverse (pinv(X)) returns the theta with zero error and which has the smallest norm.

$$\min_{\theta} \|\theta\|^2 \quad such \quad that \quad \mathbf{X}\theta = \mathbf{y}$$

2D Linear Regression

•Once best θ^* is found, we can plug it into the function:

$$f(x; \theta^*) = \theta_2^* x(2) + \theta_1^* x(1) + \theta_0^*$$

•What would a fat X look like?

Polynomial Function Classes

- Back to 1-dim x (D=1) BUT Nonlinear
- •Polynomial: $f(x;\theta) = \sum_{p=1}^{P} \theta_p x^p + \theta_0$

•Writing Risk:
$$\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} 1 & x_1^1 & \dots & x_1^P \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_N^1 & \dots & x_N^P \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_P \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_P \end{bmatrix}$$

- •Order-P polynomial regression fitting for 1D variable is same as P-dimensional linear regression!
- •Construct a multidim $\mathbf{x}_i = \left[\begin{array}{ccc} x_i^0 & x_i^1 & x_i^2 & x_i^3 \end{array} \right]^T$ x-vector from x scalar
- $\bullet \text{More generally any} \quad \mathbf{x}_{i} = \left[\begin{array}{ccc} \varphi_{0} \left(x_{i} \right) & \varphi_{1} \left(x_{i} \right) & \varphi_{2} \left(x_{i} \right) & \varphi_{3} \left(x_{i} \right) \end{array} \right]^{T}$

Underfitting/Overfitting

- •Try varying P. Higher P fits a more complex function class
- •Observe $R(\theta^*)$ drops with bigger P

Evaluating The Regression

- Unfair to use empirical to find best order P
- •High P (vs. N) can overfit, even linear case!
- •min $R(\theta^*)$ not on training but on future data
- •Want model to Generalize to future data

True loss:
$$R_{true}\left(\theta\right)=\int P\left(x,y\right)L\left(y,f\left(x;\theta\right)\right)dx\,dy$$

One approach: split data into training / testing portion

$$\left\{\!\left(\boldsymbol{x}_{\!\scriptscriptstyle 1},\boldsymbol{y}_{\!\scriptscriptstyle 1}\right)\!,\ldots,\!\left(\boldsymbol{x}_{\!\scriptscriptstyle N},\boldsymbol{y}_{\!\scriptscriptstyle N}\right)\!\right\}$$

$$\left\{ \! \left(x_{\!_{1}}, y_{\!_{1}} \right), \ldots, \! \left(x_{\!_{N}}, y_{\!_{N}} \right) \! \right\} \qquad \qquad \left\{ \! \left(x_{\!_{N+1}}, y_{\!_{N+1}} \right), \ldots, \! \left(x_{\!_{N+M}}, y_{\!_{N+M}} \right) \! \right\}$$

•Estimate θ^* with training loss: $R_{train}\left(\theta\right) = \frac{1}{N}\sum_{i=1}^{N}L\left(y_i,f\left(x_i;\theta\right)\right)$

• Evaluate P with testing loss:
$$R_{test}\left(\theta\right) = \frac{1}{M}\sum_{i=N+1}^{N+M}L\left(y_i,f\left(x_i;\theta\right)\right)$$

Crossvalidation

- Try fitting with different polynomial order P
- •Select P which gives lowest $R_{test}(\theta^*)$

- Think of P as a measure of the complexity of the model
- Higher order polynomials are more flexible and complex

Machine Learning 4771

Instructor: Tony Jebara

Topic 3

- Additive Models and Linear Regression
- •Sinusoids and Radial Basis Functions
- Classification
- Logistic Regression
- Gradient Descent

Polynomial Basis Functions

- To fit a P'th order polynomial function to multivariate data: concatenate columns of all monomials up to power P
- •E.g. 2 dimensional data and 2nd order polynomial (quadratic)

Sinusoidal Basis Functions

 More generally, we don't just have to deal with polynomials, use any set of basis fn's:

$$f(x;\theta) = \sum_{p=1}^{P} \theta_p \phi_p(x) + \theta_0$$

- These are generally called Additive Models
- Regression adds linear combinations of the basis fn's
- •For example: Fourier (sinusoidal) basis $\varphi_{2k} \Big(x_i \Big) = \sin \Big(k x_i \Big) \quad \varphi_{2k+1} \Big(x_i \Big) = \cos \Big(k x_i \Big)$
- Note, don't have to be a basis per se, usually subset

Radial Basis Functions

Can act as prototypes of the data itself

$$f(\mathbf{x}; \mathbf{\theta}) = \sum_{k=1}^{N} \theta_k \exp\left(-\frac{1}{2\sigma^2} \left\| \mathbf{x} - \mathbf{x}_k \right\|^2\right)$$

•Parameter σ = standard deviation σ^2 = covariance

controls how wide bumps are what happens if too big/small?

Called RBF for short

Radial Basis Functions

Each training point leads to a bump function

$$f(\mathbf{x}; \theta) = \sum_{k=1}^{N} \theta_k \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}_k\|^2\right)$$

•Reuse solution from linear regression: $\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ •Can view the data instead as X, a big matrix of size N x N

$$\mathbf{X} = \begin{bmatrix} \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_1 - \mathbf{x}_3\right\|^2\right) \\ \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_2 - \mathbf{x}_3\right\|^2\right) \\ \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_1\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_2\right\|^2\right) & \exp\left(-\frac{1}{2\sigma^2} \left\|\mathbf{x}_3 - \mathbf{x}_3\right\|^2\right) \end{bmatrix}$$

•For RBFs, X is square and symmetric, so solution is just

$$\nabla_{\boldsymbol{\theta}} R = 0 \rightarrow \mathbf{X}^T \mathbf{X} \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y} \rightarrow \mathbf{X} \boldsymbol{\theta} = \mathbf{y} \rightarrow \boldsymbol{\theta}^* = \mathbf{X}^{-1} \mathbf{y}$$

Evaluating Our Learned Function

- •We minimized empirical risk to get θ^*
- •How well does $f(x;\theta^*)$ perform on future data?
- •It should *Generalize* and have low True Risk:

$$R_{true}\left(\theta\right) = \int P(x,y)L(y,f(x;\theta))dx dy$$

- •Can't compute true risk, instead use Testing Empirical Risk
- We randomly split data into training and testing portions

$$\left\{\!\left(\boldsymbol{x}_{\!\scriptscriptstyle 1},\boldsymbol{y}_{\!\scriptscriptstyle 1}\right),\ldots,\!\left(\boldsymbol{x}_{\!\scriptscriptstyle N},\boldsymbol{y}_{\!\scriptscriptstyle N}\right)\!\right\} \qquad \qquad \left\{\!\left(\boldsymbol{x}_{\!\scriptscriptstyle N+1},\boldsymbol{y}_{\!\scriptscriptstyle N+1}\right),\ldots,\!\left(\boldsymbol{x}_{\!\scriptscriptstyle N+M},\boldsymbol{y}_{\!\scriptscriptstyle N+M}\right)\!\right\}$$

- •Find θ^* with training data: $R_{train}\left(\theta\right) = \frac{1}{N}\sum_{i=1}^{N}L\left(y_i,f\left(x_i;\theta\right)\right)$
- •Evaluate it with testing data: $R_{test}\left(\theta\right) = \frac{1}{M}\sum_{i=N+1}^{N+M}L\left(y_{i},f\left(x_{i};\theta\right)\right)$

Crossvalidation

- Try fitting with different sigma radial basis function widths
- •Select sigma which gives lowest $R_{test}(\theta^*)$

- Think of sigma as a measure of the simplicity of the model
- •Thinner RBFs are more flexible and complex

Regularized Risk Minimization

- Empirical Risk Minimization gave overfitting & underfitting
- We want to add a penalty for using too many theta values
- This gives us the Regularized Risk

$$\begin{split} R_{regularized}\left(\theta\right) &= R_{empirical}\left(\theta\right) + Penalty\left(\theta\right) \\ &= \frac{1}{N} \sum\nolimits_{i=1}^{N} L\left(y_i, f\left(x_i; \theta\right)\right) + \frac{\lambda}{2N} \left\|\theta\right\|^2 \end{split}$$

Solution for Regularized Risk with Least Squares Loss:

$$\nabla_{\theta} R_{regularized} = 0 \implies \nabla_{\theta} \left(\frac{1}{2N} \left\| \mathbf{y} - \mathbf{X} \theta \right\|^{2} + \frac{\lambda}{2N} \left\| \theta \right\|^{2} \right) = 0$$

$$\theta^{*} = \left(\mathbf{X}^{T} \mathbf{X} + \lambda I \right)^{-1} \mathbf{X}^{T} \mathbf{y}$$

Regularized Risk Minimization

- •Have D=16 features (or P=15 throughout)
- •Try minimizing $R_{regularized}(\theta)$ to get θ^* with different λ
- •Note that λ =0 give back Empirical Risk Minimization

Crossvalidation

- Try fitting with different lambda regularization levels
- •Select lambda which gives lowest $R_{test}(\theta^*)$

- Lambda measures simplicity of the model
- Models with low lambda are more flexible

From Regression To Classification

Classification is another important learning problem

$$\begin{array}{ll} \text{Regression} & \mathcal{X} = \left\{ \left(\mathbf{x}_1, y_1\right), \left(\mathbf{x}_2, y_2\right), \dots, \left(\mathbf{x}_N, y_N\right) \right\} & \mathbf{x} \in \mathbb{R}^D \quad y \in \mathbb{R}^1 \\ & \text{Classification} & \mathcal{X} = \left\{ \left(\mathbf{x}_1, y_1\right), \left(\mathbf{x}_2, y_2\right), \dots, \left(\mathbf{x}_N, y_N\right) \right\} & \mathbf{x} \in \mathbb{R}^D \quad y \in \left\{0, 1\right\} \end{array}$$

- •E.g. Given x = [tumor size, tumor density]
 Predict y in {benign,malignant}
- •Should we solve this as a least squares regression problem?

Classification vs. Regression

- a) Classification needs binary answers like {0,1}
- b) Least squares is an unfair measure of risk here e.g. Why penalize a correct but large positive y answer? e.g. Why penalize a correct but large negative y answer?
- •Example: not good to use regression output for a decision $f(x)>0.5 \rightarrow Class 1$ $f(x)<0.5 \rightarrow Class 0$ if f(x)=-3.8 & correct class=0, squared error penalizes it...

We pay a hefty squared error loss here even if we got the correct classification result. The thick solid line model makes two mistakes while the dashed model is perfect

Classification vs. Regression

We will consider the following four steps to improve from naïve regression to get better classification learning:

- 1) Fix functions f(x) to give binary output (logistic neuron)
- 2) Fix our definition of the Risk we will minimize so that we get good classification accuracy (logistic loss)

...and later on...

- 3) Make an even better fix on f(x) to binarize (perceptron)
- 4) Make an even better risk (perceptron loss)

Logistic Neuron (McCullough-Pitts)

•To output binary, use squashing function g().

$$f(\mathbf{x}; \mathbf{\theta}) = \mathbf{\theta}^T \mathbf{x}$$

Linear neuron

$$egin{aligned} f\left(\mathbf{x}; \mathbf{ heta}
ight) &= g\left(\mathbf{ heta}^T\mathbf{x}
ight) \ g\left(z
ight) &= \left(1 + \exp\left(-z
ight)
ight)^{-1} \end{aligned}$$

Logistic Neuron

This squashing is called sigmoid or logistic function

Given a classification problem with binary outputs

$$\mathcal{X} = \left\{\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 1}, y_{\!\scriptscriptstyle 1}\right),\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 2}, y_{\!\scriptscriptstyle 2}\right),\!\ldots,\!\!\left(\mathbf{x}_{\!\scriptscriptstyle N}, y_{\!\scriptscriptstyle N}\right)\!\!\right\} \quad \mathbf{x} \in \mathbb{R}^{\scriptscriptstyle D} \quad y \in \left\{0,1\right\}$$

•Use this function and output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x}; \theta) = \left(1 + \exp(-\theta^T \mathbf{x})\right)^{-1}$$

Short hand for Linear Functions

•What happened to adding the intercept?

$$f(\mathbf{x};\theta) = \theta^T \mathbf{x} + \theta_0$$

$$= \begin{bmatrix} \theta(1) \\ \theta(2) \\ \vdots \\ \theta(D) \end{bmatrix}^T \begin{bmatrix} \mathbf{x}(1) \\ \mathbf{x}(2) \\ \vdots \\ \mathbf{x}(D) \end{bmatrix} + \theta_0 = \begin{bmatrix} \theta_0 \\ \theta(1) \\ \theta(2) \\ \vdots \\ \theta(D) \end{bmatrix}^T \begin{bmatrix} 1 \\ \mathbf{x}(1) \\ \mathbf{x}(2) \\ \vdots \\ \mathbf{x}(D) \end{bmatrix} = \vec{\theta}^T \vec{\mathbf{x}}$$

Given a classification problem with binary outputs

$$\mathcal{X} = \left\{\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 1}, y_{\!\scriptscriptstyle 1}\right),\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 2}, y_{\!\scriptscriptstyle 2}\right),\!\ldots,\!\!\left(\mathbf{x}_{\!\scriptscriptstyle N}, y_{\!\scriptscriptstyle N}\right)\!\!\right\} \quad \mathbf{x} \in \mathbb{R}^{\scriptscriptstyle D} \quad y \in \left\{0,1\right\}$$

•Fix#1: use f(x) below, output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x}; \theta) = \left(1 + \exp\left(-\theta^T \mathbf{x}\right)\right)^{-1}$$

Squared Loss Logistic Loss

Logistic Regression

Given a classification problem with binary outputs

$$\mathcal{X} = \left\{\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 1}, y_{\!\scriptscriptstyle 1}\right),\!\!\left(\mathbf{x}_{\!\scriptscriptstyle 2}, y_{\!\scriptscriptstyle 2}\right),\!\ldots,\!\!\left(\mathbf{x}_{\!\scriptscriptstyle N}, y_{\!\scriptscriptstyle N}\right)\!\!\right\} \quad \mathbf{x} \in \mathbb{R}^{\scriptscriptstyle D} \quad y \in \left\{0,1\right\}$$

•Fix#1: use f(x) below, output 1 if f(x)>0.5 and 0 otherwise

$$f(\mathbf{x}; \mathbf{\theta}) = (1 + \exp(-\mathbf{\theta}^T \mathbf{x}))^{-1}$$

•Fix#2: instead of squared loss, use Logistic Loss

- This method is called Logistic Regression.
- •But Empirical Risk Minimization has no closed-form sol'n:

$$R_{emp}\left(\boldsymbol{\theta}\right) = \frac{_{1}}{^{N}} \sum\nolimits_{i=1}^{N} \! \left(\boldsymbol{y}_{i} - 1\right) \! \log \! \left(1 - f\!\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)\right) - \boldsymbol{y}_{i} \log \! \left(f\!\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)\right)$$

•With logistic squashing function, minimizing $R(\theta)$ is harder

$$\begin{split} R_{emp}\left(\theta\right) &= \tfrac{1}{N} \sum\nolimits_{i=1}^{N} \left(y_{i} - 1\right) \log\left(1 - f\left(\mathbf{x}_{i}; \theta\right)\right) - y_{i} \log\left(f\left(\mathbf{x}_{i}; \theta\right)\right) \\ \nabla_{\theta} R &= \tfrac{1}{N} \sum\nolimits_{i=1}^{N} \left(\frac{1 - y_{i}}{1 - f\left(\mathbf{x}_{i}; \theta\right)} - \frac{y_{i}}{f\left(\mathbf{x}_{i}; \theta\right)}\right) f'\left(\mathbf{x}_{i}; \theta\right) = 0 \end{aligned} ???$$

- Can't minimize risk and find best theta analytically!
- Let's try finding best theta numerically.
- Use the following to compute gradient

$$f(\mathbf{x}; \theta) = (1 + \exp(-\theta^T \mathbf{x}))^{-1} = g(\theta^T \mathbf{x})$$

•Here, g() is the logistic squashing function

$$g(z) = (1 + \exp(-z))^{-1} \quad g'(z) = g(z)(1 - g(z))$$

Gradient Descent

- Useful when we can't get minimum solution in closed form
- Gradient points in direction of fastest increase
- •Take step in the opposite direction!
- Gradient Descent Algorithm

choose scalar step size η , & tolerance ε initialize $\theta^0 = \text{small random vector}$

$$\begin{array}{l} \theta^{1}=\theta^{0}-\eta \, \nabla_{\theta}R_{emp}\big|_{\theta^{0}}\,,\quad t=1\\ \text{\it while}\, \left\|\theta^{t}-\theta^{t-1}\right\|\geq \in \quad \{\\ \theta^{t+1}=\theta^{t}-\eta \, \nabla_{\theta}R_{emp}\big|_{\theta^{t}}\,,\quad t=t+1 \end{array}$$

•For appropriate η , this will converge to local minimum

- Logistic regression gives better classification performance
- Its empirical risk is

$$R_{emp}\left(\theta\right) = \frac{_{1}}{^{N}} \sum\nolimits_{i=1}^{N} \left(y_{_{i}} - 1\right) \log \left(1 - f\left(\mathbf{x}_{_{i}}; \theta\right)\right) - y_{_{i}} \log \left(f\left(\mathbf{x}_{_{i}}; \theta\right)\right)$$

- This R(θ) is convex so gradient descent always converges to the same solution
- Make predictions using

$$f(\mathbf{x}; \mathbf{\theta}) = (1 + \exp(-\mathbf{\theta}^T \mathbf{x}))^{-1}$$

- •Output 1 if f > 0.5
- Output 0 otherwise

