MP Programme de colle n° 14

Exercices: Séries entières / Variables aléatoires

Avis aux colleurs : donner au moins un exercice sur les séries entières et un exercice sur les variables aléatoires. Merci !

Cours:

Chapitre 10

Variables aléatoires discrètes

- 1. Variables aléatoires discrètes
- 2. Lois de probabilité discrètes usuelles
- 3. Espérance (sauf § 3.5 Inégalité de Markov)

Les démos à connaître (en rouge les plus conséquentes ou délicates)

1.1

<u>Propriété</u> Si X est une v.a.d. sur Ω , alors $\forall A \in \mathcal{P}(X(\Omega)): X^{-1}(A) \in \mathcal{T}$

1.2

Propriété 1

 $P_{\!\scriptscriptstyle X}$ est une probabilité sur l'espace probabilisable $(X(\Omega),\mathcal{P}(X(\Omega)))$

1.4

<u>Proposition</u> Soit X une variable aléatoire sur discrète sur (Ω, \mathcal{T}, P) .

Soit une application $u: X(\Omega) \to \mathbb{R}$

Alors $u \circ X$ est une variable aléatoire réelle discrète notée abusivement u(X) et dont la loi de probabilité est définie par :

$$\forall y \in (u \circ X)(\Omega): \quad P(u(X) = y) = \sum_{x \in u^{-1}(\{y\})} P(X = x)$$

2.2.a

Proposition caractérisation comme loi sans mémoire

Soit X une variable aléatoire à valeurs dans \mathbb{N}^* . Il est équivalent d'écrire :

- $\bigstar X$ suit une loi géométrique
- ❖ $\forall (n,k) \in \mathbb{N}^2 : P(X = n + k \mid X > n) = P(X = k)$

2.2.b

Théorème approximation de la loi binomiale par une loi de Poisson

Si pour tout $n\in\mathbb{N}\,,\;X_{\scriptscriptstyle n}$ est variable aléatoire qui suit une loi binomiale

$$\mathcal{B}(n,p_n) \text{ avec } p_n \underset{n \to +\infty}{\sim} \frac{\lambda}{n} \text{ (où } \lambda \in \mathbb{R}_+^*), \text{ alors}$$

$$\forall k \in \mathbb{N} : \lim_{n \to +\infty} (P(X_n = k)) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$\forall k \in \mathbb{N} : \lim_{n \to +\infty} (P(X_n = k)) = e^{-\lambda} \frac{\lambda^k}{k!}$$

3.3.b

<u>Proposition</u>: **Positivité** (améliorée)

Soit X une variable aléatoire discrète et <u>positive</u> admettant une espérance finie. Alors:

- $E(X) \geqslant 0$
- $[E(X) = 0] \Leftrightarrow [P(X = 0) = 1]$ (X est dite presque sûrement nulle »

3.4 Espérance des lois usuelles suivantes

Loi suivie par X	Notation	$X(\Omega)$	Espérance de X
binomiale	$\mathcal{B}(n,p)$	$\llbracket 0, n \llbracket $	E(X) = np
géométrique	$\mathcal{G}(p)$	N_*	$E(X) = \frac{1}{p}$
de Poisson	$\mathcal{P}(\lambda)$	N	$E(X) = \lambda$