40

(1)

F = ma より、 (運動方程式) おもりAにおいて、 $F = m_1 g - T_1$ を代入して、 $m_1 g - T_1 = m_1 a$ $T_1 = m_1 g - m_1 a$ …①

おもりBにおいて、

 $F = T_1 - T_2 - m_2 g$ を代入して、 $T_1 - T_2 - m_2 g = m_2 a$ $T_1 - T_2 = m_2 a + m_2 g$ …②

おもりCにおいて、

 $F = T_2 - m_3 g$ を代入して、 $T_2 - m_3 g = m_3 a$ $T_2 = m_3 a + m_3 g$ …③ ①,②,③式より、 $(m_1 g - m_1 a) - (m_3 a + m_3 g) = m_2 a + m_3 g$

 $(m_1g - m_1a) - (m_3a + m_3g) = m_2a + m_2g$ $(m_1 + m_2 + m_3)a = (m_1 - m_2 - m_3)g$ $\therefore a = \frac{m_1 - m_2 - m_3}{m_1 + m_2 + m_3}g$ ····(4)

(2)

①,④式より、

$$T_{1} = m_{1}g - m_{1}\frac{m_{1} - m_{2} - m_{3}}{m_{1} + m_{2} + m_{3}}g$$

$$= \left(1 - \frac{m_{1} - m_{2} - m_{3}}{m_{1} + m_{2} + m_{3}}\right)m_{1}g$$

$$= \frac{2m_{1}(m_{2} + m_{3})}{m_{1} + m_{2} + m_{3}}g$$

(3)

③,④式より、

$$T_2 = m_3 \frac{m_1 - m_2 - m_3}{m_1 + m_2 + m_3} g + m_3 g$$

$$= \left(\frac{m_1 - m_2 - m_3}{m_1 + m_2 + m_3} + 1\right) m_3 g$$

$$= \frac{2m_1 m_3}{m_1 + m_2 + m_3} m_3 g$$