EP0276675 (A:

EP0276675 (A: DE3701302 (A

MANUFACTURE OF DEUTERIZED ORGANIC COMPOUND

Patent number:

JP63198638

Publication date:

1988-08-17

Inventor:

BEETERU UEEGENERU

Applicant:

HOECHST AG

Classification:

B01J23/44; B01J23/74; C07B59/00; C07C5/00; C07C13/39;

C07C15/46; C07C29/00; C07C31/38; C07C37/00; C07C39/04;

C07C57/04; C07C69/54; C07C121/48

- european:

Application number: JP19880006732 19880114 Priority number(s): DE19873701302 19870117

Report a data error he

Also published as:

Abstract not available for JP63198638 Abstract of corresponding document: **EP0276675**

The process for the preparation of deuterated acrylic acid or methacrylic acid by direct exchange of hydrogen by deuterium from D2O in the presence of a catalyst, which is hitherto known, is time-consuming and requires a large excess of D2O. Deuterated compounds are obtained in good yield with small amounts of D2O in a very short reactic time by using hydrogenation or (de)hydrating catalysts based on palladium, nickel and copper and high reaction temperature. The novel process can also be used for readily-polymerisable monomers without it being necessary for a polymerisation inhibitor to be present.

Data supplied from the esp@cenet database -Worldwide

BEST AVAILABLE COPY

(B) 日本国特許庁(JP)

⑩ 特 許 出 顧 公 開

⑩ 公 開 特 許 公 報 (A)

昭63 - 198638

@Int_Cl_4

識別記号

庁内整理番号

@公開 昭和63年(1988)8月17日

C 07 B 59/00 23/44 23/74 B 01

7457-4H Z-7918-4G Z-7918-4G ×

審査請求 未請求 請求項の数 4 (全7頁)

国発明の名称

重水素化した有機化合物の製造方法

昭63-6732 ②特 願

29出 願 昭63(1988) 1月14日

優先権主張

図1987年1月17日90西ドイツ(DE)のP3701302.5

②発 明 老 ベーテル・ウエーゲネ

IV

ドイツ連邦共和国、ケーニツヒシュタイン/タウヌス、ア

ム・アイヒコブフ、4

砂出 願

ヘキスド・アクチエン

ドイツ連邦共和国、フランクフルト・アム・マイン(番地

ゲゼルシヤフト

なし) 外1名

の代 理 人 弁理士 江崎 光好

最終頁に続く

明編書

1. 発明の名称 重水素化した有機化合物の製 造方法

2. 特許請求の範囲

)

- 1) 水素を触媒の存在下に液相または気相中で重 水素に変えることによって食水素化した有機化 合物を製造するに当たって、この変換を 150~ 350 ℃の温度のもとで、水素化または(脱) 水 和化反応で触媒作用をする能力のある金属を基 礎とする金属触媒または金属担持触媒の存在下 にDeO によって実施することを特徴とする、上 配方法.
- 2) 変換を気相中で 200~300 てで実施する請求 項 1に記載の方法。
- 3) 変換をパラジウム、ニッケル、銅または銅/ クロム- 酸化物を基礎とする担持触媒の存在下 に実施する請求項 1に記載の方法。
- 4) アクリル酸、メタクリル酸、そのエステル、 ビシクロヘブテン、ビシクロヘプタジェン、フ ェノール、スチレンおよびそれらの誘導体並び

に弗素化アルコール類を重水素化する請求項 1 に配載の方法。

3. 発明の詳細な説明

本発明は、不飽和有機化合物において水素を 重水素に重水素酸化物によって接触的に変換す る方法並びにこの方法によって製造される特定 の化合物に関する。

白金族の元素の接触的作用のもとでメタクリ レートまたはメチルメタクリレートにおいて水 素を重水素酸化物からの重水素に直接的に変換 することができることは公知である(ヨーロッ パ特許第186,106 号明相書参照)。この変換は 好ましくは50~150 ℃の温度のもとで液相中で 16~62時間の間に重合抑制剤の添加下に行い、 そしてメチルメタクリレートの場合に24倍モル 量過剰の重水素酸化物の場合に58%の重水素化 度が得られる。

本発明の課題は迅速でありそしてそれ故に経 済的である重水素化方法を見出すことである。 かいる方法はできるだけ安価な触媒を用いて実 施することができるべきである。

本発明者はこの課題が、重水素化を液相または気相中で 150でより高い温度のもとで、金属-、合金-または担持触媒の存在下に実施した場合に解決できることを見出した。

従って本発明は、水素を触媒の存在下に液相または気相中で重水素に変えることによって重水素化した有機化合物を製造するに当たって、この変換を 150~350 ℃の温度のもとで、水素化または(脱)水和化反応で触媒作用をする能力のある金属を基礎とする金属触媒または金属担持触媒の存在下に0±0 によって実施することを特徴とする、上記方法に関する。

更に本発明はこの方法によって製造される重 水素化化合物に関する。

本発明の方法は、重水素化するべき化合物を重水素酸化物と一緒に触媒と接触させるようにして実施する。これは液相または気相、殊に気相中で行う。反応成分は反応容器中に集めるかまたは加熱された管に案内する。その際触媒を

反応パッチ中に分散させてもよいしまたは固体 状態の相として反応容器または反応管中に配置 してもよい。反応温度は 150~350 で、殊に20 0 ~300 でである。

本発明で用いる触媒は金属触媒、合金触媒または、金属が担体に担持されている担持触媒である。適する金属は、(脱)水和化反応または水素化反応で接触的作用をすることのできる金属、例えばパラジウム、ニッケル、調または延クロム酸網でありそして担体はSiO₂、カーボンブラック、活性炭および珪酸塩である。合金としては例えば真鍮が適している。

担持触媒は例えば金属塩の溶液に担体を浸漬させ、固体に乾燥しそして担体に担持された金属塩を金属に還元することによって製造できる。水素化の目的のこの種の担持触媒は市販されており、購入することができる。

反応温度での滞留時間は 5~120 秒、殊に10 ~20秒である。

重水素化剤としては、価格的に有利な重水素

顔であり且つ容易に入手できるDaO を用いる。

本発明の方法は簡単に且つ迅速に実施することができる。容易に重合できる化合物、例えばスチレン、アクリル- およびメタクリル酸およびそれらのエステル、または高い反応温度のもとで重合しないしまた――エステルの場合には――加水分解しないビニルアセテートの為に用いることができる。従って重合抑制剤の存在は必要ない。重水素化された化合物が高收率で得られる。

反応条件のもとでの触媒によるいずれの反応 の場合にも重水素化するべき化合物および水中 の全ての水素原子および重水素原子の合計につ いて、これらの原子がほど均一に分散するので、 一方においては重水素化された化合物が、もう 一方においては重水素の減少した水が得られる。 重水素の減少した水と新鮮な未重水業化有機化 合物との多数回の繰り返し反応によって重水の 含有重水素が消費され得る。

逆に、弱い重水素化度の有機化合物を更に高

いえ 含有量の $D_{\epsilon}O$ にて更に重水素化することもできる。

このようにして、90%以上の重水素を0±0か ら有機化合物に移動させることが可能である。

(メタ) アクリル酸、そのエステル並びにピンクロ-2.2.1- ヘプテン-2、ピンクロ-2.2.1- ヘプタジエン-2.5、フェノール、スチレンおよびそれらの誘導体および弗素化アルコール、例えばヘキサフルオルイソプロパノールを用いるのが有利である。

重水素化したアクリル酸およびメタクリル酸 並びにそれらと完全にまたは部分的に重水素化 されたアルコール類とのエステルは、透明な材料、特に光ファイバーに加工できる非晶質ポリ マーの為のモノマーとして非常に重要である。

本発明を以下の実施例によって更に詳糊に説明する。

実施例 1~15

全ての実験を以下のように実施した: 電気的に加熱できる長さ30cmで直径1cm のガ ラス製管に触媒を25cmの長さに渡って充塡し、 B₂O に溶解したまたは懸濁させた物質をこの管 に案内し、その後に冷却トラップに集める。

同じ体積の重水素化用化合物およびDェ0 を例えばメチル- メタクリレート(=MMA)の場合には、5.85倍モル量過剰のDェ0 を、ノルボルナジエン(=MBD)の場合には5.67倍モル量過剰にそしてメタクリル酸(=MA) の場合には4.7 倍モル量過剰に用いる。滞留時間は全ての実験において20秒である。

HAおよびフェノールはジメチルエーテルで抽出することによって反応溶液から分離する。 重水器化度は全ての場合に、相応する未重水素化化合物と比較することによる質量分析によって測定し、C-13合有量について補正する。

衷から、特にPd/CおよびNi/SiO。が良好な変 換速度を示すことが判る。

重水素化度はそれぞれの化合物における重水素に変換される水素原子の百分率である。理論 的重水素化度は0±0 のモル比に相応する最大限 に可能な重水素含有量を示している。

実施 番号	原料:	独 媒	進度(℃)	收率 (%)	D:O / 原料 - モル比	重水 測定値	秦化度 理論値
1	AMA	55%N1/S10.	200	70	5.8	40	59
2		12%Ni/SiO.	250	75		41	
3	*	30%Cu/ 担体	250	75		13	
4	メチルメタ クリレート	12%Ni/Sio.	250	82	4.7	27	61
5	•	5%Pd/C	350	50		58	
6		5%Pd/アスペロ	250	88		30	
7	スチレン	127N1/S10:	250	85	6.3	12	61
8	- "	30%Cu/ 担体	250	100		9	
9	フェノール	1%Pd/モレ**	300	100	4.8	39	60
10	ノルボルナ ジエソロ	127Ni/Sio.	250	90	5.6	35	58
11	•	32%Cu:30%Cr	250 .	90	•	18	
12	シアンノルボ ルナジエン	5%Pd/C	350	50	6.9	36	60
13	(CF ₃) ₂ CH-OH	•	250	90	5.8	. 5	85
14	アクリル酸	#	250	80	3,7	37	65
15	•	•	350	70		63	

¹⁾ ピシクロ-2,2,1- ヘブタジエン-2,5 、 2) アスペスト、 3) モレキュラシープ 。

第1頁の続き

@Int_Cl_1	識別記号	庁内整理番号
# C 87 C 5/00 13/39 15/46 29/00 31/38 37/00 39/04 57/04 69/54 121/48		6692-4H 6692-4H 6692-4H 7457-4H 7457-4H 7457-4H 7457-4H 6692-4H Z-6917-4H D-7327-4H

手統補正書

5. 補正の対象

(1) 明細書の全文

昭和63年 3月11日.

6. 補正の内容

特許庁長官 小川邦 夫 欧

1. 事件の渡示

2. 発明の名称

昭和63年特許關第6732号

(1) 明細各全文を別紙の通り補正致します (発明の名称は変更なし)

「重水素化した有機化合物の製造方法」

3. 補正をする者

事件との関係 出願人

名称 ヘキスト・アクチエンゲゼルシャフト

4. 代理人

住所 毎105 東京都港区虎ノ門二丁目8番1号

(虎の門電気ビル)

【電話03(502)1476(代表)】

氏名 弁理士(4013)江 崎 光 好阮河 63. 3.11

明細書

発明の名称 重水素化した有機化合物の製造方法

2. 特許請求の範囲

- 1)水素を触媒の存在下に被相または気相中で重水素に変えることによって重水素化した有機化合物を製造するに当たって、この変換を 150~350 での温度のもとで、水素化または(脱)水和化反応で触媒作用をする能力のある金属を基礎とする金属触媒または金属担持触媒の存在下にDaO によって実施することを特徴とする、上記方法。
- 2) 変換を気相中で 200~300 でで実施する請求 項 1に記載の方法。
- 3) 変換をパラジウム、ニッケル、網または網/ クロム-酸化物を基礎とする担持触媒の存在下 に実施する請求項 1に記載の方法。
- アクリル酸、メタクリル酸、それらのエステル、ビンクロヘブテン、ビンクロヘブタジエン、フェノール、スチレンおよびそれらの誘導体並

済的である重水素化方法を見出すことである。 かゝる方法はできるだけ安価な触媒を用いて実 施することができるべきである。

本発明者はこの課題が、重水素化を液相または気相中で 150でより高い温度のもとで、金属-、合金-または担持触媒の存在下に実施した場合に解決できることを見出した。

従って本発明は、水素を触媒の存在下に液相または気相中で重水素に変えることによって重水素化した有機化合物を製造するに当たって、この変換を 150~350 での温度のもとで、水素化または(脱)水和化反応で触媒作用をする能力のある金属を基礎とする金属触媒または金属担持触媒の存在下に0±0 によって実施することを特徴とする、上記方法に関する。

更に本発明はこの方法によって製造される<u>財</u> 水素化化合物に関する。

本発明の方法は、重水素化するべき化合物を 重水素酸化物と一緒に触媒と接触させるように して実施する。これは液相または気相、殊に気 びに弟常化アルコール類を取水素化する請求項 1に記載の方法。

- 5) ビシクロヘプテン-D。
- 6) ビシクロヘブタジエン-D。
- 3. 発明の詳細な説明

本発明は、不飽和有機化合物において水素を 重水素に重水素酸化物によって接触的に変換す る方法並びにこの方法によって製造される特定 の化合物に関する。

白金族の元素の接触的作用のもとでメタクリレートまたはメチルメタクリレートにおいて水 常を重水素酸化物からの重水素に直接的に変換することができることは公知である(ヨーロッパ特許第186,106 号明細書参照)。この変換は好ましくは50~150 での温度のもとで液相中で16~62時間の間に重合抑制剤の添加下に行い、そしてメチルメタクリレートの場合に24倍モル 環遇刺の電水素酸化物の場合に58% の重水素化度が得られる。

本発明の課題は迅速でありそしてそれ故に経

相中で行う。反応成分は反応容器中に集めるかまたは加熱された管に案内する。その際無謀を反応バッチ中に分散させてもよいしまたは固体状態の相として反応容器または反応管中に配置してもよい。反応温度は 150~350 で、殊に200~300 でである。

本発明で用いる触媒は金属触媒、合金触媒または、金属が担体に担持されている担持触媒である。適する金属は、(脱)水和化反応または水素化反応で接触的作用をすることのできる金属、例えばパラジウム、ニッケル、銅または亜クロム酸調でありそして担体はSiO₁、カーボンブラック、活性炭および珪酸塩である。合金としては例えば真鍮が適している。

担持触媒は例えば金属塩の溶液に担体を浸漬させ、固体に乾燥しそして担体に担持された金属塩を金属に還元することによって製造できる。 水素化の目的のこの種の担持触媒は市販されており、購入することができる。

反応温度での滞留時間は 5~120 秒、殊に10

~20秒である。

型水業化剤としては、価格的に有利な重水素 瀬であり且つ容易に入手できるD₂O を用いる。

本発明の方法は簡単に且つ迅速に実施することができる。容易に重合できる化合物、例えばスチレン、アクリル・およびメタクリル酸およびそれらのエステル、または高い反応温度のもとで重合しないしまた――エステルの場合には――加水分解しないビニルアセテートの為に用いることができる。従って重合即制剤の存在は必要ない。重水素化された化合物が高牧率で得られる。

反応条件のもとでの触媒によるいずれの反応の場合にも重水素化するべき化合物および水中の全ての水素原子および重水素原子の合計について、これらの原子がほゞ均一に分散するので、一方においては重水素化された化合物が、もう一方においては重水素の減少した水が得られる。 重水素の減少した水と新鮮な未重水素化有機化合物との多数国の繰り返し反応によって飲水の

全ての実験を以下のように実施した。

電気的に加熱できる長さ30cmで直径1cm のガラス製管に触媒を25cmの長さに渡って充填し、 D₂0 に溶解したまたは懸濁させた物質をこの管に案内し、その後に冷却トラップに集める。

同じ体積の重水素化用化合物およびD₂O を例えばメチル-メタクリレート(-MMA)の場合には、5.85倍モル援過期のD₂O を、ノルボルナジエン(-MBO)の場合には5.67倍モル景過剰にそしてメタクリル酸(-MA) の場合には4.7 倍モル最過剰に用いる。 滞留時間は全ての実験において20秒である。

MAおよびフェノールはジメチルエーテルで抽出することによって反応溶液から分離する。 重水素化度は全ての場合に、相応する未重水素化化合物と比較することによる質量分析によって 別定し、C-13含有量について補正する。

衷から、特にPd/CおよびNi/SiO。が良好な変 換速度を示すことが判る。

重水素化度はそれぞれの化合物における重水

含有低水素が消費され得る。

逆に、弱い重水素化度の有機化合物を更に高いた合有量の0.0 にて更に重水素化することもできる。

このようにして、90%以上の重水素をD₂0から有機化合物に移動させることが可能である。

(メタ) アクリル酸、モのエステル並びにビシクロ-2.2.1- ヘプテン-2、ビシクロ-2.2.1-ヘプタジエン-2.5、フェノール、スチレンおよびそれらの誘導体および弗素化アルコール、例えばヘキサフルオルイソプロバノールを用いるのが有利である。

重水素化したアクリル酸およびメタクリル酸 並びにそれらと完全にまたは部分的に重水素化 されたアルコール類とのエステルは、透明な材料、特に光ファイバーに加工できる非晶質ポリ マーの為のモノマーとして非常に重要である。

本発明を以下の実施例によって更に詳細に説明する。

実施例 1~15

素に変換される水素原子の百分率である。理論 的度水素化度は0x0 のモル比に相応する最大限 に可能な重水素含有最を示している。

特開昭63~198638(フ)

実筋例 番号	原料	触 媒	温 度 (て)	牧率 (%)	D:0 / 原料 - モル比	重水 測定値	素化度 理論値
1	нна	55%N1/S10.	200	70	5.8	40	59
2	•	12%N1/S10 =	250	· 75		41	_
3	•	30XCu/ 担体	250	75		13	-
4	メチルメタ. クリレート	12%N1/S10;	250	82	4.7	27	61
5	•	5%Pd/C	350	50 -		58	
6		5%Pd/アスペ**	250	88		30	
7	スチレン	12%Ni/SiO.	250	85	6.3	12	61
8	,	30%Cu/ 担体	250	100		9	
9	フェノール	1%Pd/モレ*)	300	100	4.8	39	60
10	ノルポルナ ジエン!!	12%Ni/SiO _#	250	90	5.6	35	58
11		32%Cq;30%Cr	250	90		18	•
12	シアンノルポ ルナジエン	5XP4/C	350	50	6.9	36	60
13	(CF ₂) 2CH-OH	•	250	90	5.8	5 .	85
14	アクリル酸	•	250 .	80	3.7	37	65
15		*	350	70	•	63	

ピシクロ-2,2,1- ヘプタジエン-2,5 、 2) アスペスト、 3) モレキュラシープ