-Solution of ODE is

$$v(t; v_0) = v_0 e^{-\frac{t}{\tau}} + I - I e^{-\frac{t}{\tau}}$$

where $v(t) = v_0$. Then, the natural period of the neuron T is

$$T = -\tau \ln \left(1 - \frac{1}{I} \right).$$

We associate phase of the neuron $\phi \in [0,1]$ and time $0 \le t$ by

$$\phi = t \mod T$$
.

When $0 \le t \le T$, ϕ equals $\frac{t}{T}$. We can parameterize the voltage by using phase by

$$v(\phi; v_0) = v_0 e^{-\frac{\phi T}{\tau}} + I - I e^{-\frac{\phi T}{\tau}}.$$

-To determine PRC of the leaky integrate and fire neuron, we assume that, at time $0 \le t^{'} \le T$, a pulse input $I(t-t^{'}) = \mathcal{S}(t-t^{'})$ is injected into the neuron, phase of which is $\phi^{'} = \frac{t^{'}}{T}$: the voltage of the neuron will jump from $v(\phi^{'};0)$ to $v(\phi^{'};0) + \varepsilon$. Subsequently, the phase jumps from $\phi^{'}$ to $\phi^{''}:\phi^{''}$ is determined by

$$v(\phi'';0) = v(\phi';0) + \varepsilon.$$

As a function of phase of the neuron $\phi^{'}$ and magnitude of the pulse input $\,arepsilon$,PRC is given by

$$PRC(t',\varepsilon) = \phi'' - \phi'$$

where
$$\phi^{"} = -\frac{\tau}{T} \ln \left(e^{-\frac{\phi^{T}}{\tau}} - \frac{\varepsilon}{I} \right)$$
.

-Due to symmetry of the problem, we assume that the asymptotic phase $\,\theta\,$ equals $\,\phi+f(R)$: we can determine $\,f(R)$ by

$$1 = \frac{d\phi}{dt} + \frac{df}{dR} \frac{dR}{dt}.$$

Then f(R) equals $\ln[R/(1+R)]+c$ where c is a constant. Because f(1) equals 0, c equals $\ln(2)$. Therefore, the asymptotic phase $\theta(\phi,R)=\phi+\ln[2R/(1+R)]$

-We assume that an input arrives when phase of the system is ϕ and causes change only in the first component of the system, i.e. Δx . Then, the new \widetilde{R} is $\sqrt{1+2\Delta x\cos(2\pi\phi)+\Delta x^2}$ and new $\widetilde{\phi}$ is $\tan^{-1}[\sin(2\pi\phi)/(\cos(2\pi\phi)+\Delta x)]$. With \widetilde{R} and $\widetilde{\phi}$ we can determine a new phase of the system that is equal $\theta(\widetilde{\phi},\widetilde{R})$. Then, PRC is $\theta(\widetilde{\phi},\widetilde{R})-\phi$.