

Engineering and Testing for EMC and Safety Compliance

Accredited under A2LA certificate # 2653.01

FCC Certification Report

Airorlite Communications, Inc.

17-01 Pollitt Drive Fair Lawn, NJ 07410 Contact: John Nashmy Phone: 201-301-6970

E-Mail: JNashmy@hbe-inc.com

Model: 50289-BAM-8-800-UL (806 – 824 MHz)

FCC ID: UT650289BAM8800UL

January 30, 2008

Standards Referenced for this Report			
Part 2: 2007 Frequency Allocations and Radio Treaty Matters; General Rules and Regulations			
Part 90: 2007	90: 2007 Private Land Mobile Radio Services		
ANSI/TIA-603-C-2004 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards			

Frequency Range(MHz)	Transmit Power (W)	Frequency Tolerance (ppm)	Emission Designator
806 - 824	0.6*	Amp	F8E

^{*} Power listed is conducted per carrier

Report Prepared by Test Engineer: Daniel Baltzell

Document Number: 2007314

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and Airorlite Communications, Inc. Test results relate only to the product tested.

Table of Contents

1		General Information	5
	1.1	Test Facility	
	1.2	Related Submittal(s)/Grant(s)	5
2		Tested System Details	6
3		FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplify	
_		Stage	_
4		FCC Rules and Regulations Part 90 §90.219 and Part 2 §2.1046(a): Peak Output Power	
•	4.1		
	4.2		
5		FCC Rules and Regulations Part 90 §90.210(b) and Part 2 §2.1049(c): Occupied Bandwidth	0
_		(Emissions Masks)	10
	5.1	Test Procedure	
	5.2		-
6		Bandwidth Rejection	
_	6.1	Test Procedure	
	6.2		
7		FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90	
		§90.210: Emissions Masks	17
	7.1	Test Procedure	
	7.2		
8		Intermodulated Spurious Emissions	
_	8.1	Test Procedure	
	8.2		
9		FCC Rules and Regulations Part 90 §90.210 and Part 2 §2.1053(a): Field Strength of Spurious	
		Radiation	24
	9.1	Test Procedure	
	9.2		
	9	9.2.1 CFR 47 Part 90.210 Requirements	
1(0	FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability	26
1 ·	1	Conclusion	26

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

Table of Tables

	140.00	
Table 2-1: Table 2-2: Table 2-3: Table 2-4: Table 4-1: Table 4-2: Table 5-1: Table 6-1: Table 7-1: Table 8-1: Table 9-1: Table 9-2: Table 9-3:	Test System Details Equipment Under Test (EUT) Ports and Cabling (EUT) Support Equipment RF Power Output: Carrier Output Power Test Equipment for RF Power Output - Conducted Test Equipment for Occupied Bandwidth Test Equipment for Bandwidth Rejection Test Equipment for Conducted Spurious Emissions Test Equipment for Intermodulated Spurious Emissions Field Strength of Spurious Radiation - 822.8750 MHz Horizontal Polarity Field Strength of Spurious Radiation - 822.8750 MHz Vertical Polarity Test Equipment for Field Strength of Spurious Radiation	7 7 9 13 16 19 23 24
	Table of Plots	
Plot 5-1:	Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 821.2125 MHz	10
Plot 5-2:	Occupied Bandwidth: Booster Output; 20 dB bandwidth - 821.2125 MHz	
Plot 5-3:	Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 822.8750 MHz	
Plot 5-4:	Occupied Bandwidth: Booster Output; 20 dB bandwidth - 822.8750 MHz	
Plot 5-5:	Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 823.9125 MHz	
Plot 5-6:	Occupied Bandwidth: Booster Output; 20 dB bandwidth - 823.9125MHz	
Plot 6-1:	Bandwidth Rejection - 806.2125 MHz	14
Plot 6-2:	Bandwidth Rejection - 815.0000 MHz	
Plot 6-3:	Bandwidth Rejection - 823.9125 MHz	
Plot 7-1:	Conducted Spurious Emissions - 806.2125 MHz	
Plot 7-2:	Conducted Spurious Emissions - 815.0000 MHz	
Plot 7-3:	Conducted Spurious Emissions - 823.7875 MHz	
Plot 8-1:	Intermodulated Spurious Emissions - Low Channels In-Band Intermodulation	
Plot 8-2:	Intermodulated Spurious Emissions - Low Channels Out-of-Band Intermodulation	
Plot 8-3:	Intermodulated Spurious Emissions - Low Frequencies	
Plot 8-4:	Intermodulated Spurious Emissions - High Channels In-Band Intermodulation	
Plot 8-5:	Intermodulated Spurious Emissions - High Channels Out-of-Band Intermodulation	
Plot 8-6:	Intermodulated Spurious Emissions - High Frequencies	23

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

Table of Figures

Figure 2-1:	Configuration of Tested System	8
	Table of Appendixes	
Appendix A:	RF Exposure Compliance	27
Appendix B:	Agency Authorization Letter	28
Appendix C:	Confidentiality Request Letter	
Appendix D:	Label Information	
Appendix E:	Operational Description	31
Appendix F:	Parts List	32
Appendix G:	Tune Up/Alignment Procedure	33
Appendix H:	Schematics	34
Appendix I:	Block Diagram	35
Appendix J:	Manual	
Appendix K:	Test Configuration Photographs	37
Appendix L:	External Photographs	39
Appendix M:	Internal Photographs	40
	Table of Photographs	
Photograph 1:	Radiated Emissions (Front View)	37
Photograph 2:	Radiated Emissions (Rear View)	

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

1 General Information

The following Certification Report is prepared on behalf of **Airorlite Communications**, **Inc.** in accordance with the Federal Communications Commission Part 90 Rules and Regulations. The Equipment Under Test (EUT) was the **Model 50289-BAM-8-800-UL**, **FCC ID: UT650289BAM8800UL**. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with the applicable FCC Rules and Regulations in CFR 47. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia, 20170. This site has been fully described in a report submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

1.2 Related Submittal(s)/Grant(s)

This is an original application report.

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

2 Tested System Details

The test sample was received on January 11, 2008. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.

The Airorlite Communications, Inc. Model 50289-BAM-8-800 800 MHz Low Time Delay Bi-Directional Amplifier is composed of a one directional 8 channel uplink amplifier and a one directional 8 channel downlink amplifier. Together, these two components form a full duplex Bi-Directional Amplifier system.

The multi-channel booster is divided into two independent 8 channel systems (8 high channels and 8 low channels) for full duplex operations. Downlink signals are received at the roof antenna, 8 selected frequencies are processed (filtering and amplification), and rebroadcast on a radiating cable (reference FCC ID: UT650289BAM8800DL). Conversely, uplink signals induced onto radiating cable are similarly processed and rebroadcast on the roof antenna. The uplink channels are the low band channels (806 - 824 MHz), and the 8 downlink channels are the high band (851 - 869 MHz). Note that the system as a whole is a "bi-directional booster"; this application is only for the uplink channels (the downlink channels are certified under FCC ID: UT650289BAM8800DL). We request that the grant notes reflect: "Part of booster system used with FCC ID: UT650289BAM8800DL."

Each system consists of a LNA/8-way splitter, 8 channel modules (down-up converters with synthesized LO) and 8 individual RF power amplifiers; the output of these 8 RF power amplifiers is combined in a single passive 8 channel combining device to produce a single RF power out. Typically these systems are used with an external duplexer which combines the uplink RF output and downlink RF input to a common "Off the Air" antenna.

The RF signal flow of the two systems is identical. RF band pass filters internal to the system modules determine high band or low band operations.

Note that the device does not translate frequencies, and therefore, the RF output will not change with temperature or voltage variation. Additionally, the device is designed to be used with FM input/output signals.

The system operates with an internal limiter set to the maximum output level and programmable attenuators are used to reduce this level to the desired output level for a particular application.

The EUT is a Class B signal booster which although it channelizes the signals, the level of channelization is such that the several channels of information may pass through a single channel of the bi-directional amplifier.

The input drive level was set to cause the limiter to operate at full value.

The device cannot operate in saturation. The channel card is band limited by crystal filters which prevent spectral regrowth. The channel cards are limited to a max output of -18 dBm and the power amplifier gain is fixed at a level that does not result in saturation.

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

Table 2-1: Test System Details

Model Tested	50289-BAM-8-800-UL (bi-directional booster (uplink))			
Frequency Band	806 - 824 MHz			
Maximum Output Power	0.6 W conducted per carrier			
Number of Channels	8			
Channel Bandwidth	25 kHz nominal			
Channel Spacing	25 kHz			
Primary Power	95-132 VAC, 45-64 Hz, 15 Amps, Maximum			
Duty Cycle	Continuous			

Table 2-2: Equipment Under Test (EUT)

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Bi-Directional Booster	Airorlite Communications, Inc.	50289-BAM- 8-800-UL	N/A	UT650289BAM8800UL	18250

Table 2-3: Ports and Cabling (EUT)

Port	Cable Type	Quantity	Length (feet)	Shield
RF In	N type	1	N/A	N/A
RF Out	N type	1	N/A	N/A

Table 2-4: Support Equipment

Part	Manufacturer	Model	PN/SN	FCC ID	RTL Bar Code
Notebook Computer	Dell	Inspiron 6400	N/A	N/A	901495
Serial Interface Cable	N/A	DB-9	N/A	N/A	N/A
12VDC power Supply	Airorlite Communications, Inc.	50483PS12	N/A	N/A	18252

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

Figure 2-1: Configuration of Tested System

3 FCC Rules and Regulations Part 2 §2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage

Nominal DC Voltage: 12 VDC

Current: 0.93 A

4 FCC Rules and Regulations Part 90 §90.219 and Part 2 §2.1046(a): Peak Output Power

4.1 Test Procedure

ANSI TIA-603-2004, section 2.2.1.

The EUT was connected to a coaxial attenuator having a 50 Ω load impedance. Any cable losses were accounted for. The maximum gain antenna to be used with the system is 11 dBi = 8.9 dBd.

4.2 Test Data

Table 4-1: RF Power Output: Carrier Output Power

Frequency (MHz)	Power Level Measured (dBm/carrier)	Antenna Gain (dBd)	ERP (W)	Limit §90.219 (W)
821.2125	27.70	8.9	4.6	5
822.8750	27.72	8.9	4.6	5
823.9125	27.78	8.9	4.6	5

^{*}Measurement accuracy: +/-0.3 dB

Table 4-2: Test Equipment for RF Power Output - Conducted

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901184	Agilent Technologies	E4416A	Power Meter	GB41050573	10/24/08
901356	Agilent Technologies	E9323A	Power Sensor	31764-264	10/24/08
901138	Weinschel Corp.	48-40-34 DC- 18GHz	Attenuator, 100W 40dB	BK5883	1/13/09
901157	Marconi Instruments	2022D	Signal Generator (10 kHz-1 GHz)	119161/056	12/12/08

Daniel Baltzell	Daniel W. Balgel	January 11, 2008
Test Engineer	Signature	Date Of Tests

5 FCC Rules and Regulations Part 90 §90.210(b) and Part 2 §2.1049(c): Occupied Bandwidth (Emissions Masks)

5.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.11.

The transmitter is terminated with a 50 Ω load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.

Full modulation was applied with 5 kHz deviation and a 2500 Hz tone.

5.2 Test Data

Bandwidth Limit: 1 MHz

Plot 5-1: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 821.2125 MHz

Plot 5-2: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 821.2125 MHz

Plot 5-3: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 822.8750 MHz

Plot 5-4: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 822.8750 MHz

Plot 5-5: Occupied Bandwidth: Input to Booster; 20 dB bandwidth - 823.9125 MHz

Plot 5-6: Occupied Bandwidth: Booster Output; 20 dB bandwidth - 823.9125MHz

Table 5-1: Test Equipment for Occupied Bandwidth

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz–12.8 GHz)	3826A00144	10/17/08
901057	Hewlett Packard	3336B	Synthesizer/Level 3336B Generator (100 Hz-20 MHz)		12/13/08
901118	Hewlett Packard	HP8901B	Modulation Analyzer (150 kHz-1300 MHz)	2406A00178	8/20/08
901307	Inmet	6N-10dB	Attenuator 10 dB	64671	1/11/09
900099	Marconi	52022-910E	Signal Generator, (10 kHz-1 GHz)	119044-189	3/28/08

Daniel Baltzell	Daniel W. Bolow	January 11, 2008
Test Technician/Engineer	Signature	Date of Tests

6 Bandwidth Rejection

6.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.11.

Bandwidth rejection was performed by sweeping below and through the channel band with the spectrum analyzer on max hold. The transmitter is terminated with a 50 Ω load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.

Full modulation was applied with 5 kHz deviation and a 2,500 Hz tone.

6.2 Test Data

Plot 6-1: Bandwidth Rejection - 806.2125 MHz

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

Plot 6-2: Bandwidth Rejection - 815.0000 MHz

Plot 6-3: Bandwidth Rejection - 823.9125 MHz

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

Table 6-1: Test Equipment for Bandwidth Rejection

RTL Asset #	Manufacturer	Model Part Type		Serial Number	Calibration Due
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz–12.8 GHz)	3826A00144	10/17/08
901057	Hewlett Packard	3336B	Synthesizer/Level Generator (100 Hz-20 MHz)	2514A02585	12/13/08
901118	Hewlett Packard	HP8901B	Modulation Analyzer (150 kHz-1300 MHz)	2406A00178	8/20/08
901424	Insulated Wire Inc.	KPS-1503- 360-KPS	RF cable 36"	NA	10/5/08
901425	Insulated Wire, Inc.	KPS-1503- 2400-KPS	RF cable, 20'	NA	10/5/08
901157	Marconi Instruments	2022D	Signal Generator	119161/056	12/12/08

Daniel Baltzell	Daniel W. Balgel	January 18, 2008
Test Engineer	Signature	Date Of Tests

FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; Part 90 §90.210: Emissions Masks

7.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.13.

The transmitter is terminated with a 50 Ω load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement.

7.2 Test Data

Frequency range of measurement per Part 2.1057: 9 kHz to 10xFc.

The worst case (unwanted emissions) channels are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

Plot 7-1: Conducted Spurious Emissions - 806.2125 MHz

Client: Airorlite Communications, Inc.
Model: 50289-BAM-8-800-UL
Standards: FCC Part 90
FCC ID: UT650289BAM8800UL
Report Number: 2007314

Plot 7-2: Conducted Spurious Emissions - 815.0000 MHz

Plot 7-3: Conducted Spurious Emissions - 823.7875 MHz

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

Table 7-1: Test Equipment for Conducted Spurious Emissions

RTL Asset #	Manufacturer	Model	Model Part Type		Calibration Due
901057	Hewlett Packard	3336B	Synthesizer/Level Generator (100 Hz-20 MHz)	2514A02585	12/13/08
901424	Insulated Wire Inc.	KPS-1503- 360-KPS	RF cable 36"	NA	10/5/08
901425	Insulated Wire, Inc.	KPS-1503- 2400-KPS	RF cable, 20'	NA	10/5/08
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz–12.8 GHz)	3826A00144	10/17/08
901157	Marconi Instruments	2022D	Signal Generator	119161/056	12/12/08

Daniel Baltzell	Daniel W. Balgel	January 18, 2007
Test Engineer	Signature	Date Of Tests

8 Intermodulated Spurious Emissions

8.1 Test Procedure

The transmitter is terminated with a 50 Ω load and interfaced with a spectrum analyzer. Cable losses were accounted for in measurement. Two signal generators were used to produce interference signals. Two signals were injected on the low end of band and two signals were injected on the high end of band.

Low end: Plots 8-1 to 8-3

806.2125 MHz – 5 kHz deviation, 2.5 kHz tone at -50 dBm 807.2125 MHz - 5 kHz deviation, 2.5 kHz tone at -50 dBm

High end: Plots 8-4 to 8-6

822.9125 MHz – 5 kHz deviation, 2.5 kHz tone at -50 dBm 823.9125 MHz - 5 kHz deviation, 2.5 kHz tone at -50 dBm

8.2 Test Data

Plot 8-1: Intermodulated Spurious Emissions - Low Channels In-Band Intermodulation

Plot 8-2: Intermodulated Spurious Emissions - Low Channels Out-of-Band Intermodulation

Plot 8-3: Intermodulated Spurious Emissions - Low Frequencies

Plot 8-4: Intermodulated Spurious Emissions - High Channels In-Band Intermodulation

Plot 8-5: Intermodulated Spurious Emissions - High Channels Out-of-Band Intermodulation

Plot 8-6: Intermodulated Spurious Emissions - High Frequencies

Table 8-1: Test Equipment for Intermodulated Spurious Emissions

RTL Asset #	Manufacturer	Model			Calibration Due
901215	Hewlett Packard	8596EM	EMC Analyzer (9 kHz–12.8 GHz)	3826A00144	10/17/08
900352	Werlatone	C1795	Directional Coupler	4989	06/06/08
901157	Marconi Instruments	2022D	Signal Generator	119161/056	N/A
900917	Hewlett Packard	8648C	Signal Generator	3537A01741	9/5/08
901057	Hewlett Packard	3336B	Synthesizer/Level Generator (100 Hz-20 MHz)	2514A02585	12/13/08
901118	Hewlett Packard	HP8901B	Modulation Analyzer (150 kHz–1300 MHz)	2406A00178	8/20/08
901425	Insulated Wire, Inc.	KPS-1503- 2400-KPS	RF cable, 20'	NA	10/5/08
901424	Insulated Wire Inc.	KPS-1503- 360-KPS	RF cable 36"	NA	10/5/08

Daniel Baltzell	Daniel W. Balgel	January 18, 2008
Test Engineer	Signature	Date Of Tests

9 FCC Rules and Regulations Part 90 §90.210 and Part 2 §2.1053(a): Field Strength of Spurious Radiation

9.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.12.

The EUT was placed on a floor-mounted turntable at a distance of 3 meters from the receiving antenna. The receiving antenna was varied between 1–4 meters to maximize emissions. The spurious emissions levels were measured and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna was further corrected to a half wave dipole.

The output was terminated with 50 Ω load.

9.2 Test Data

9.2.1 CFR 47 Part 90.210 Requirements

The worst-case emissions are shown.

Limit: P(dBm) - (43 + 10xLOG P(W))

Table 9-1: Field Strength of Spurious Radiation - 822.8750 MHz Horizontal Polarity

Frequency (MHz)	Measured Level (dBuv)	Signal Gen. Level (db)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBc)	Limit (dBc)	Margin (dB)
1645.750	30.3	-66.1	7.7	5.3	96.2	40.7	-55.5
2468.625	38.8	-53.8	9.6	7.1	84.0	40.7	-43.3
3291.500	26.9	-59.0	10.9	7.5	90.1	40.7	-49.4
4114.375	32.6	-45.0	12.2	7.6	77.3	40.7	-36.6
4937.250	31.4	-48.5	13.2	8.4	81.0	40.7	-40.3
5760.125	15.3	-65.2	14.1	8.6	98.4	40.7	-57.7
6583.000	16.9	-65.0	14.7	9.3	98.1	40.7	-57.4
7405.875	15.7	-63.7	15.4	8.8	98.0	40.7	-57.3
8228.750	16.3	-62.4	15.7	9.0	96.8	40.7	-56.1

^{*}This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

Table 9-2: Field Strength of Spurious Radiation - 822.8750 MHz Vertical Polarity

Frequency (MHz)	Measured Level (dBuv)	Signal Gen. Level (db)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBc)	Limit (dBc)	Margin (dB)
1645.750	35.7	-60.0	7.7	5.3	90.1	40.7	-49.4
2468.625	40.4	-47.7	9.6	7.1	77.9	40.7	-37.2
3291.500	26.7	-57.7	10.9	7.5	88.8	40.7	-48.1
4114.375	34.7	-46.9	12.2	7.6	79.2	40.7	-38.5
4937.250	24.9	-57.8	13.2	8.4	90.3	40.7	-49.6
5760.125	15.8	-66.0	14.1	8.6	99.2	40.7	-58.5
6583.000	15.9	-66.7	14.7	9.3	99.8	40.7	-59.1
7405.875	15.3	-65.1	15.4	8.8	99.4	40.7	-58.7
8228.750	17.0	-62.7	15.7	9.0	97.1	40.7	-56.4

^{*}This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

Table 9-3: Test Equipment for Field Strength of Spurious Radiation

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner- Chase	CBL6112	Antenna (25 MHz-2 GHz)	2648	12/20/08
901365	MITEQ	JS4- 00102600-41- 5P	Amplifier, 0.1-26 GHz, 30dB gain	N/A	10/8/08
901215	Hewlett Packard	8596EM	Portable Spectrum Analyzer (9 kHz–12.8 GHz)	3826A00144	10/17/08
900928	Hewlett Packard	HP 83752A	Synthesized Sweeper (.01–20 GHz)	3610A00866	12/7/08
900772	EMCO	3161-02	Horn Antenna (2-4 GHz)	9504-1044	6/14/10
900321	EMCO	3161-03	Horn Antenna (4–8 GHz)	9508-1020	6/14/10
900323	EMCO	3160-07	Horn Antenna (8.2-12.4 GHz)	9605-1054	6/14/10
900814	Electrometrics	RGA-60	Double Ridge Horn Antenna (1–18 GHz)	2310	3/30/09
901424	Insulated Wire Inc.	KPS-1503- 360-KPS	RF cable 36"	NA	10/5/08
901425	Insulated Wire, Inc.	KPS-1503- 2400-KPS	RF cable, 20'	NA	10/5/08
901426	Insulated Wire Inc.	KPS-1503- 3600-KPS	RF cable, 30'	NA	10/5/08

Daniel Baltzell	Daniel W. Bolow	January 16, 2008
Test Engineer	Signature	Date Of Tests

Client: Airorlite Communications, Inc. Model: 50289-BAM-8-800-UL Standards: FCC Part 90 FCC ID: UT650289BAM8800UL Report Number: 2007314

10 FCC Rules and Regulations Part 90 §90.213 and Part 2 §2.1055: Frequency Stability

There are no frequency determining elements, hence the EUT is not subject to frequency stability requirements.

11 Conclusion

The data in this measurement report shows that the **Airorlite Communications, Inc. Model 50289-BAM-8-800-UL, FCC ID: UT650289BAM8800UL,** complies with all the applicable requirements of FCC Parts 90 and 2.