OCCUPANT RESTRAINT AND PROTECTING DEVICE

Publication number: JP2001130376

Publication date:

2001-05-15

Inventor:

FUJII HIROAKI

Applicant:

TAKATA CORP

Classification:

- international:

B60R22/48; B60R22/30; B60R22/44; B60R22/00;

B60R22/30; B60R22/34; (IPC1-7): B60R22/48

- european:

Application number: JP19990314723 19991105 Priority number(s): JP19990314723 19991105

Report a data error here

Abstract of JP2001130376

PROBLEM TO BE SOLVED: To lock and protect an occupant even when a seat belt winder operated only by motor drive for winding webbing is cut off from a power source for a vehicle. SOLUTION: In a usual condition when the power source for a vehicle is in a normal condition and normally connected to a seat belt winder 1, power is supplied to the seat belt winder 1 from the power source for a vehicle via a vehicle power source connecting connector 45, and the seat belt winder 1 is operated normally. If power supply from the power source is cut off and the seat belt winder 1 is not operated normally, an openable door 53 is opened and a receptacle for a connector 52 for an alternative power source is exposed, and then, the alternative power source prepared separately is connected to the receptacle. In this way, the seat belt winder 1 is operated by the power from the alternative power source so as to wind up webbing and to apply predetermined tension to it for surely locking an occupant.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-130376 (P2001-130376A)

(43)公開日 平成13年5月15日(2001.5.15)

(51) Int.Cl. ⁷		識別記号	FΙ		Ŧ	-7]- *(多考)
B60R	22/48		B 6 0 R	22/48	В	3D018
	22/30			22/30		
	22/44			22/44	Z	

審査請求 未請求 請求項の数7 ○Ⅰ、(全 12 頁)

		著堂蘭求	未請求 請求項の数7 UL (全 12 貝)		
(21)出願番号	特顧平11-314723	(71) 出願人	000108591 タカタ株式会社		
(22)出顧日	平成11年11月5日(1999.11.5)	(72)発明者	東京都港区六本木1丁目4番30号 タカタ 株式会社内		
		(74)代理人 Fターム(参	100094787 弁理士 青木 健二 (外7名) □ 3D018 BA05 CA05 PA01		

(54) 【発明の名称】 乗員拘束保護装置

(57)【要約】

【課題】モータ駆動のみによりウェビングの巻取を行う シートベルト巻取装置が車両用電源から遮断されても、 乗員を拘束保護できるようにする。

【解決手段】車両用電源が正常でありかつシートベルト巻取装置1に正常に接続されている通常状態では、車両用電源から電力が車両用電源接続用コネクタ45を介してシートベルト巻取装置1に供給され、シートベルト巻取装置1は正常に作動する。車両用電源から電力供給が遮断されて、シートベルト巻取装置1が正常に作動しないときは、開閉扉53を開いて別電源用コネクタ51の差し込み口を露出させ、この差し込み口に別に用意した別電源を接続する。これにより、この別電源からの電力でシートベルト巻取装置1は作動してウェビングを巻き取ってこのウェビングに所定のテンションを付与し、乗員を確実に拘束する。

【特許請求の範囲】

【請求項1】 車両に搭載されている車両用電源に接続 されたモータの駆動のみによりウェビングを巻き取るよ うになっているシートベルト巻取装置を備えた乗員拘束 保護装置であって、

1

前記モータが前記車両用電源から遮断されたときに、前 記ウェビングに所定のテンションを付与して乗員を拘束 する乗員拘束手段を備えていることを特徴とする乗員拘 束保護装置。

前記乗員拘束手段は前記車両用電源とは 【請求項2】 別個の別電源であり、前記モータが前記車両用電源から 遮断されたときに、この別電源の電力で前記モータを駆 動して前記ウェビングに所定のテンションを付与し乗員 を拘束することを特徴とする請求項1記載の乗員拘束保 護装置。

前記シートベルト巻取装置に、前記別電 【請求項3】 源が接続可能な別電源接続用コネクタが設けられてお り、前記モータが前記車両用電源から遮断されたとき に、この別電源接続用コネクタに前記別電源を接続し、 この別電源の電力で前記モータを駆動して前記ウェビン グに所定のテンションを付与し乗員を拘束することを特 徴とする請求項2記載の乗員拘束保護装置。

【請求項4】 前記乗員拘束手段は、前記ウェビングの 長さを調節するウェビング長さ調節具で構成されてお り、前記モータが前記車両用電源から遮断されたとき に、前記シートベルト巻取装置から前記ウェビングを全 量引き出した状態で前記ウェビング長さ調節具でこのウ ェビングの長さを調節して前記ウェビングに所定のテン ションを付与し乗員を拘束することを特徴とする請求項 1記載の乗員拘束保護装置。

【請求項5】 前記ウェビング長さ調節具は前記ウェビ ングを巻き取る所定数のバーを備えており、これらのバ ーで前記ウェビングを巻き取ることによりこのウェビン グの長さを調節して、前記ウェビングに所定のテンショ ンを付与し乗員を拘束することを特徴とする請求項4記 載の乗員拘束保護装置。

前記所定数のバーのうち、いくつかのバ 【請求項6】 ーを支持部材で支持して1つの長さ調節具部材を形成す るとともに、前記所定数のバーのうち、残りのバーを別 の支持部材で支持してもう1つの長さ調節具部材を形成 し、一方の長さ調節具部材のバーにウェビングを巻き付 けた状態で、他方の長さ調節具部材をこの一方の長さ調 節具部材に分離可能に組み付け、この他方の長さ調節具 部材のバーで前記ウェビングをガイドすることを特徴と する請求項5記載の乗員拘束保護装置。

【請求項7】 前記両長さ調節具部材の組み付け時、前 記一方の長さ調節具部材の支持部材に支持された前記バ ーの自由端が前記他方の長さ調節具部材の支持部材に穿 設された貫通孔に嵌合支持されるとともに、前記他方の 長さ調節具部材の支持部材に支持された前記バーの自由 端が前記一方の長さ調節具部材の支持部材に穿設された 貫通孔に嵌合支持されるようになっており、更にこれら のバーはいずれも嵌合された貫通孔から抜け出るのを防 止する抜け止めがされていることを特徴とする請求項6 記載の乗員拘束保護装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両シートに付設 されてウェビングを巻取引出可能に巻き取るシートベル ト巻取装置により乗員を拘束保護する乗員拘束保護装置 の技術分野に属し、特に、ウェビングの巻取をモータの みにより行うシートベルト巻取装置を備えた乗員拘束保 護装置の技術分野に属するものである。

[0002]

【従来の技術】従来、自動車等の車両に装備されている シートベルト巻取装置を備えた乗員拘束保護装置は、衝 突時等の車両に大きな車両減速度が作用した場合のよう な緊急時に、ウェビングで乗員を拘束することにより乗 員のシートからの飛び出しを阻止して、乗員を保護して 20 いる。

【0003】このような乗員拘束保護装置のシートベル ト巻取装置は、ウェビングを巻き取るリールを常時巻取 方向に付勢するうず巻きばね等のスプリング手段を備え ており、このスプリング付与手段の付勢力により、ウェ ビングは、その非装着時にはリールに巻き取られている が、装着時にはスプリング手段のばね力に抗して引き出 されて、乗員に装着される。そして、シートベルト巻取 装置は、前述のような緊急時にロック機構が作動してリ ールの引出方向の回転を阻止することにより、ウェビン グの引出が阻止される。これにより、緊急時にウェビン グは乗員を確実に拘束し、保護するようになる。

【0004】更に、近年シートベルト巻取装置は、前述 のような緊急時の乗員の拘束保護の機能に加えて、通常 のウェビング装着時における快適性(コンフォート 性)、車両走行時の車両走行状態に応じてシートベルト のテンションを制御することで、より適確に乗員を拘束 保護することが求められている。このようなことから、 コンフォートモード、緊急の度合いに応じて設定され、 乗員にシートベルトのテンションでその緊急性を体感的 に知らせる警告モードや乗員を拘束保持する保持モード 等の種々のモードを設定し、車両の運転状況に応じて、 モータによりシートベルトのテンション制御を行うよう にしたシートベルト巻取装置が特開平9-132113 号公報により提案されている。

[0005]

【発明が解決しようとする課題】ところで、この公開公 報のシートベルト巻取装置では、不使用時の通常のウェ ビングの巻取はスプリング手段で行うとともに、車両の 運転状況に応じたシートベルトのテンション制御時に は、モータによるウェビングの巻取、引出が行われるよ

10

50

うになっている。しかしながら、このようなシートベルト巻取装置では、スプリング手段によるウェビングの巻取とモータによるウェビングの巻取、引出とが行われるようになる。このため、モータの駆動が正逆転させる必要があり、制御回路が複雑にならざるを得ないばかりでなく、コストが高くならざるを得なかった。しかも、ウェビングの巻取がスプリング手段とモータとにより2系統になっているため、その切替がなめらかに行うことは難しかった。

【0006】そこで、本出願人は、シンプルな制御回路 および駆動機構を用いたモータ駆動のみでウェビングを 巻き取るようにすることで、乗員のシートベルト装着状 態や車両の走行状態に応じてウェビングの巻取モードを 幅広く設定することができ、しかもコストを抑えたシー トベルト巻取装置を提案し、特許出願している(特願平 11-010184号)。ところで、このようなウェビ ングの巻取をモータ駆動のみで行うシートベルト巻取装 置においては、モータは車両に搭載されている車両用電 源から電力を供給することで駆動されるようになってい る。しかし、シートベルト巻取装置が車両用電源から遮 20 断されると、このシートベルト巻取装置はウェビングの 巻取を行うことができなくなることが考えられる。しか し、例えば車両用電源が損傷して自力走行ができない自 動車を牽引して移動するような場合などには、ウェビン グを巻き取って乗員を拘束保護できるようにすることが 望ましい。

【0007】本発明は、このような事情に鑑みてなされたものであって、その目的は、モータ駆動のみによりウェビングの巻取を行うシートベルト巻取装置が車両用電源から遮断されても、乗員を拘束保護することのできる乗員拘束保護装置を提供することである。

[0008]

【課題を解決するための手段】前述の課題を解決するために、請求項1の発明は、車両に搭載されている車両用電源に接続されたモータの駆動のみによりウェビングを巻き取るようになっているシートベルト巻取装置を備えた乗員拘束保護装置であって、前記モータが前記車両用電源から遮断されたときに、前記ウェビングに所定のテンションを付与して乗員を拘束する乗員拘束手段を備えていることを特徴としている。また、請求項2の発明は、前記乗員拘束手段が前記車両用電源から遮断されたときに、この別電源の電力で前記モータを駆動して前記ウェビングに所定のテンションを付与し乗員を拘束することを特徴としている。

【0009】更に、請求項3の発明は、前記シートベルト巻取装置に、前記別電源が接続可能な別電源接続用コネクタが設けられており、前記モータが前記車両用電源から遮断されたときに、この別電源接続用コネクタに前記別電源を接続し、この別電源の電力で前記モータを駆

動して前記ウェビングに所定のテンションを付与し乗員を拘束することを特徴としている。更に、請求項4の発明は、前記乗員拘束手段が、前記ウェビングの長さを調節するウェビング長さ調節具で構成されており、前記・一タが前記車両用電源から遮断されたときに、前記・レートベルト巻取装置から前記ウェビングを全量引き出した状態で前記ウェビングを全量引き出りったが表達でである。更に、対してが長さいる。更に、対してが長さいる。更に、対してが表達を対している。で前記ウェビングを巻き取るによりこのウェビングを巻き取る所定数のバーを備えており、これらのバーで前記ウェビングを巻き取ることを特徴としている。を付与し乗員を拘束することを特徴としている。

【0010】更に、請求項6の発明は、前記所定数のバ ーのうち、いくつかのバーを支持部材で支持して1つの 長さ調節具部材を形成するとともに、前記所定数のバー のうち、残りのバーを別の支持部材で支持してもう1つ の長さ調節具部材を形成し、一方の長さ調節具部材のバ ーにウェビングを巻き付けた状態で、他方の長さ調節具 部材をこの一方の長さ調節具部材に分離可能に組み付 け、この他方の長さ調節具部材のバーで前記ウェビング をガイドすることを特徴としている。 更に、 請求項7の 発明は、前記両長さ調節具部材の組み付け時、前記一方 の長さ調節具部材の支持部材に支持された前記バーの自 由端が前記他方の長さ調節具部材の支持部材に穿設され た貫通孔に嵌合支持されるとともに、前記他方の長さ調 節具部材の支持部材に支持された前記バーの自由端が前 記一方の長さ調節具部材の支持部材に穿設された貫通孔 に嵌合支持されるようになっており、更にこれらのバー はいずれも嵌合された貫通孔から抜け出るのを防止する 抜け止めがされていることを特徴としている。

[0011]

30

【作用】このように構成された本発明にかかる乗員拘束 保護装置においては、車両用電源が正常でありかつシートベルト巻取装置に正常に接続されている通常状態で は、車両用電源から電力がシートベルト巻取装置に供給 され、シートベルト巻取装置は正常に作動する。何らか の原因で、車両用電源から電力供給が遮断されて、シートベルト巻取装置が正常に作動しないときは、乗員拘束 手段により、ウェビングに所定のテンションが付与され て、乗員が拘束されるようになる。こうして、シートベルト巻取装置は車両用電源から電力供給が遮断されて も、シートベルト巻取装置として確実に機能するように なる。

[0012]

【発明の実施の形態】以下、図面を用いて、本発明の実施の形態を説明する。図1ないし図4は、本発明にかかる乗員拘束保護装置の実施の形態の一例に使用されるシートベルト巻取装置を示し、図1はこの例のシートベル

ト巻取装置の分解斜視図、図2はこの例のシートベルト 巻取装置における減速機構を示す分解斜視図、図3は図 2に示す減速機構の正面図、図4は図3に示す減速機構 の各ギアの中心を通る線に沿う縦断面図である。

【0013】図1に示すように、この例の乗員拘束保護 装置は、モータの駆動力のみでウェビングを巻き取るシ ートベルト巻取装置1を備えており、このシートベルト 巻取装置1は、コ字状のフレーム2と、このフレーム2 に回転可能に支持された、ウェビング3を巻き取るリー ル4と、必要時にこのリール4の少なくともウェビング 引出方向の回転をロック作動するロック機構5と、リー ル4と一体回転可能に設けられたリール回転軸6と、リ ール4をウェビング巻取方向に回転するための駆動力を 発生する駆動源であるDCモータや超音波モータ等の可 変速制御可能なモータ7と、このモータ7の駆動力を減 速してリール回転軸6を介してリール4に伝達する減速 機構8と、ウェビング3の引出を検知するウェビング引 出検知手段9と、リール4の回転量を検知するリール回 転検知手段10とを備えている。この例のシートベルト 巻取装置1の前述の構成のうち、フレーム2、リール 4、およびロック機構5の構成は、従来の周知の一般的 なスプリング手段でリールをウェビング巻取方向に付勢 する従来のシートベルト巻取装置の構成と同じであるの で、それらの具体的な構造および作用の説明は省略する (なお、上記特許出願にも簡単に記載されている)。

【0014】図2ないし図4に示すように、減速機構8は、モータ7の駆動力がモータギア11を介して伝達されるこのモータギア11より大径の第1ギア12を備えている。また、この第1ギア12には、第1ギア12より小径の第2ギア13が同心状にかつ一体回転可能に設30けられている。更に、第1ギア12より大径の第3ギア14が第2ギア13に常時噛合するようにして設けられており、この第3ギア14の中心部に断面正六角形の貫通孔14aを有するボス14bが形成されている。

【0015】リール回転軸6の突出軸部6aにはブッシ ュ15が相対回転可能に支持されており、このブッシュ 15は第3ギア14の貫通孔14aに嵌合されて回転的 に連結される断面正六角形の回転連結部15aと一端部 に同心状に設けられたサンギア16とを有している。ま た、リール回転軸6の突出軸部6aの端に形成されたス プライン溝6bには、第4ギア17が同心状にスプライ ン嵌合されていて、減速されたモータ7の駆動力をリー ル回転軸6に伝達するようになっている。第3ギア14 の側面にはロータリダンパ18が固定されているととも に、このロータリダンパ18はローター軸18aを有し ている。ローター軸18aには、内部に封入されたオイ ルの粘性抵抗により回転速度に応じて設定された所定の 設定抵抗トルクが付与されるようになっている。このロ ーター軸18aには第5ギア19が一体回転可能に取り 付けられており、この第5ギア19は第4ギア17に常

時噛合している。そして、ロータリダンパ18および第5ギア19により滑り機構20が構成されている。

【0016】次に、この滑り機構20の作動について説 明する。まず、モータ7の低速回転によるウェビング3 の巻取時には、後述するように第3ギア14も低速回転 するため、この第3ギア14の回転トルクはローター軸 18 a の設定抵抗トルク以下となる。このため、図5 (a) に示すように第4ギア17は第3ギア14に対し て相対回転しなく、この第3ギア14と一体的に回転す るようになる。すなわち、モータ17の低速回転では滑 り機構20は作動しない。また、モータ7の高速回転に よるウェビング3の巻取時には、第3ギア14も高速回 転するため、この第3ギア14の回転トルクはローター 軸18aの設定抵抗トルク以上なる。このため、図5 (b) に示すように第4ギア17は第5ギア19を介し てローター軸 1 8 a に付与されている設定抵抗トルクを 受けながら第3ギア14に対して相対的に制動回転する ようになる。すなわち、モータ7の高速回転では滑り機 構20が作動し、第3ギア14と第4ギア17との間に 滑りが生じて、第3ギア14から第4ギア17への回転 トルクの伝達が遮断されるようになる。

【0017】更に、図6に示すように、モータ7の低速 回転でリール4によりウェビング3が巻き取られている 最中に、乗員がウェビング3を押さえてその巻取を阻止 したり、あるいは逆にウェビング3を引き出したりする と、第4ギア17は回転停止するかあるいはウェビング 3の引出方向に回転する。すると、第3ギア14も回転 停止するかあるいはウェビング3の引出方向に回転する ため、ウェビング巻取方向に回転駆動しているモータ7 に逆方向の負荷がかかる。そして、モータ7にこの負荷 がかかった瞬間に、第4ギア17の回転トルクがロータ リーダンパ18のローター軸18aの設定抵抗トルクを 上まわるため、第4ギア17はモータ7の回転方向とは 反対向きに回転し、ローター軸18aに連結された第5 ギア19との間に滑りが生じるようになる。これによ り、後述するようにウェビング引出検知手段9によりウ ェビング3の引出が検知されてモータ7の回転が停止す ることと相俟って、乗員はウェビング3を容易に引き出 すことができるようになる。

【0018】円板状のキャリア21が、ブッシュ15に設けられたサンギア16と同心状にかつこのサンギア16に対し相対回転可能に設けられている。このキャリア21の中央部には、リール回転軸6の断面六角形の動力伝達部6cが内嵌されてリール回転軸6とウェビング3の巻取および引出のの両方向に回転的に連結されるとともに、リール4が外嵌されてリール4とウェビング3の巻取および引出のの両方向に回転的に連結される断面六角形の筒状のソケット部21aが設けられている。また、キャリア21の側面に突設された一対の支軸21bには、それぞれ2枚の大小径からなるプラネタリピニオ

ンギア22,22が回転可能に支持されており、これらのプラネタリピニオンギア22,22の大径側はともにサンギア16に常時噛合している。更に、リングギア23がサンギア16と同心状にかつこのサンギア16に対し相対回転可能に設けられており、このリングギア23には、その内周側に2枚のプラネタリピニオンギア22,22の小径側が常時噛合する内歯23aが形成されているとともに、その外周側にラチェット歯23bが形成されている。そして、サンギア16、キャリア21、プラネタリピニオンギア22,22およびリングギア23によって遊星歯車減速機構24が構成されている。

7

【0019】更に、リングギア23の回転の許容および 阻止を制御するリングギア回転制御装置25が設けられ ている。このリングギア回転制御装置25は、回転可能 に設けられたレバーストッパ26と、このレバーストッ パ26を作動するソレノイド27と、レバーストッパ2 6を常時付勢するスプリング28とからなっている。レ バーストッパ26は、回転可能に設けられた二股状の駆 動レバー29と、この駆動レバー29に所定の角度を置 いて一体に設けられた回転可能な従動レバー30と、駆 20 動レバー29および従動レバー30の回転軸と偏心して 相対回転可能に枢支されているとともにL字状に折れ曲 げられて先端に係合解除部31aが形成された、ラチェ ット歯23bに係止可能な係止爪31と、レバーストッ パ26の回転軸部に周回して装着され、ソレノイド27 の非励磁時に係止爪31を従動レバー30に押圧して従 動レバー30と一体化した状態に保持する線材ばね32 とからなっている。また、ソレノイド27はその励磁時 にソレノイド27内に引き込まれるプランジャ33を有 しており、このプランジャ33の先端に二股状の駆動レ バー29が係合している。更に、スプリング28が駆動 レバー29をプランジャ33の引き込み力に対抗するよ うにして常時付勢している。そして、通常時のソレノイ ド27の非励磁時には、スプリング28のばね力で駆動 レバー29が付勢されてソレノイド27のプランジャ3 3が伸長する方向に回転し、また、ソレノイド27の励 磁時にはプランジャ33が引き込まれることで、駆動レ バー29がスプリング28のばね力に抗して回転するよ うになっている。

【0020】このリングギア回転制御装置25の作動について説明する。図7(a)に示すソレノイド27の非励磁の通常状態では、スプリング28のばね力で駆動レバー29が図7(a)において時計方向に回転し、プランジャ33が最大に伸長した状態に保持されている。このとき、線材ばね32のばね力で従動レバー30と係止爪31とが一体化した状態に保持されているとともに、係止爪31がリングギア23のラチェット歯23bに係合しない状態となっている。

【0021】この状態で、ソレノイド27が励磁されると、図7(b)に示すようにプランジャ33が最大に引

50

き込まれ、駆動レバー29がスプリング28のばね力に 抗して図7(b)において反時計方向に回転する。この とき、駆動レバー29の反時計方向の回転で従動レバー 30も反時計方向に回転するので、係止爪31は従動レ バー30に押されて同様に反時計方向に回転し、その折 曲部が所定の押圧力でラチェット歯23bに係合した状 態となる。この係止爪31がラチェット歯23bに係合 した状態では、リングギア23がウェビング引出方向の 回転がロックされる。このリングギア23がロックされ 10 た状態から、ソレノイド27が非励磁にされると、スプ リング28のばね力で駆動レバー29が図7(b)にお いて時計方向に回転し、この駆動レバー29の回転で、 図7 (c)に示すようにプランジャ33が伸長するとと もに、従動レバー30も時計方向に回転する。しかし、 このとき係止爪31はその折曲部が所定の押圧力でラチ ェット歯23bに係合しているので、従動レバー30が 時計方向に回転しても、係止爪31は従動レバー30に 追従して回転しなく、係止爪31とラチェット歯23b との係合状態が保持されている。このとき、従動レバー 30は線材ばね32のばね力に抗して回転するようにな る。

【0022】駆動レバー29および従動レバー30が更 に時計方向に回転すると、係止爪31の枢支点も同方向 に回転するようになるので、係止爪31はその係合解除 部31aとラチェット歯23bの頂部との接触部を中心 に図7 (c) において反時計方向に回転し、これによ り、係止爪31とラチェット歯23bとの係合が解除さ れる。そして、プランジャ33が再び最大に伸長した状 態となると、駆動レバー29および従動レバー30の回 転もともに停止するとともに、線材ばね32のばね力で 係止爪31が従動レバー30に押圧されて一体化された 状態となり、リングギア回転制御装置25は図7(a) に示す非作動状態となる。図8に示すように、このリン グギア回転制御装置25の作動制御により、減速機構8 は、モータ7の駆動力を小減速比でリールに伝達する第 1動力伝達経路 DT とモータ7の駆動力を大減速比で リールに伝達する第2動力伝達経路DT2とが形成され るようになる。モータギア11、第1ギア12、第2ギ ア13、第3ギア14、ブッシュ15の回転連結部15 a、第4ギア14、滑り機構20およびリングギア回転 制御装置25は減速機構8のケーシング34内に収納さ れている。

【0023】次に、このように構成された減速機構8の作動について説明する。まず、ソレノイド27が非励磁でリングギア回転制御装置25が作動していない状態では、係止爪31がラチェット歯23bに係合しない図7(a)に示す位置に設定されてリングギア23が回転自由となり、減速機構8は第1動力伝達経路に設定される。この状態でモータ7が低速回転でウェビング3の巻取方向に回転駆動されると、モータギア11、第1ギア

10

12および第2ギア13を介して第3ギア4が所定の減 速比でウェビング3の巻取方向に低速回転する。このと き、第3ギア4の回転トルクが滑り機構20のロータリ - ダンパ18のローター軸18aの設定抵抗トルク以下 であるので、滑り機構20は滑り作動を行わず、前述の ように第4ギア17が第3ギア4と一体的に回転する。 第4ギア17の回転は、この第4ギア17とスプライン 嵌合されているリール回転軸6、リール回転軸6の動力 伝達部6cおよびキャリア21のソケット部21aを介 してリール4に伝達され、リール4がウェビング3の巻 取方向回転し、ウェビング3が巻き取られる。この第1 動力伝達経路では減速比が小さいので、リール4にウェ ビング巻取方向の小さな回転トルクが付与され、リール 4はこの小さなトルクでウェビング3を巻き取るように なる。なお、第3ギア14が回転すると、サンギア16 が第3ギア14と一体回転するが、第1動力伝達経路で はリングギア23が回転自由となっているため、結局、 リール回転軸6、第3ギア14、サンギア16、第4ギ ア17、キャリア21、リングギア23およびリール4 が互いに相対回転しないで一体的にウェビング巻取方向 20 に回転するようになる。

【0024】一方、ソレノイド27が励磁されてリング ギア回転制御装置25が作動すると、係止爪31がラチ ェット歯23bに係合する図7(b)に示す位置に設定 されてリングギア23のベルト引出方向の回転がロック され、減速機構8は第2動力伝達経路に設定される。こ の状態でモータ7が高速回転でウェビング3の巻取方向 に回転駆動されると、モータギア11、第1ギア12お よび第2ギア13を介して第3ギア4が所定の減速比で ウェビング3の巻取方向に高速回転する。第3ギア4が 30 回転すると、サンギア16も同方向に一体的に回転す る。すると、このサンギア16の回転でプラネタリピニ オンギア22,22がウェビング引出方向に自転し、こ のプラネタリピニオンギア22,22の自転でリングギ ア23がベルト引出方向に回転付勢される。しかし、リ ングギア23のベルト引出方向の回転がロックされてい るため、リングギア23は回転しない。このため、プラ ネタリピニオンギア22,22がサンギア16のまわり を公転するようになり、その結果、キャリア21がウェ ビング3の巻取方向に大きく減速回転する。このキャリ ア21の大きな減速回転でソケット部21aを介してリ ール4にウェビング巻取方向の大きな回転トルクが付与 され、リール4はこの大きなトルクでウェビング3を巻 き取るようになる。

【0025】同時に、第3ギア14の回転トルクがロー タリー軸 18 a の設定抵抗トルクより大きくなっている ため、前述のように滑り機構20が作動して第3ギア1 4と第4ギア17との間に滑りが生じ、第4ギア17は 第5ギア19を介してローター軸18aに付与されてい る設定抵抗トルクを受けながら第3ギア14に対して相 50

対的に制動回転する。これにより、第3ギア14から第 1動力伝達経路の第4ギア17への回転トルクの伝達が 遮断される。したがって、この第2動力伝達経路の設定 時に、第1動力伝達経路と第2動力伝達経路とが直結す ることが回避される。

【0026】図1、図3、図4および図9に示すよう に、ウェビング引出検知手段9はケーシング34内に第 4ギア17に隣接して配設されており、扇形形状を有す るスイッチプレート35と、このスイッチプレート35 を扇の要の位置で軸支する回動ピン36と、スイッチプ レート35の扇の要からスイッチプレート35と逆方向 に延設された接点アーム37と、この接点アーム37に よりON、OFF制御されるリミットスイッチ38とか ら構成されている。スイッチプレート35の扇の円弧状 縁辺35aの両端に、それぞれ一対のガイド35b,3 5 c が周方向に所定の間隔を置いて径方向外方に突設さ れている。このスイッチプレート35は、第4ギア17 のリング状突部 1 7 a が一対のガイド 3 5 b, 3 5 c の 間に位置しかつ円弧状縁辺35aに当接するようにして 設けられている。これにより、スイッチプレート35の 回動角度は、一方のガイド35bがリング状突部17a に当接する位置から他方のガイド35cがリング状突部 17aに当接する位置までの回動角度に規制されてい る。更に、スイッチプレート35には、円弧状孔35d が円弧状縁辺35aに沿って穿設されており、円弧状縁 辺35aがリング状突部17aに当接したとき、この円 弧状孔35dと円弧状縁辺35aとの間の部分35eに 押圧力が付与されてこの部分35aが若干撓んでいる。 これにより、リング状突部17aの回転にともなって、 スイッチプレート35が滑ることなく回動できるように なっている。

【0027】このように構成されたウェビング引出検知 手段9においては、図9に示すようにスイッチプレート 35が二点鎖線で示す非作動位置からリール4のウェビ ング引出方向の回転にともなって回動ピン36を中心に ウェビング巻取方向に回動する。すると、接点アーム3 7も同方向に回転してリミットスイッチ38に当接し、 リミットスイッチ38がONに設定される。このリミッ トスイッチ38のONにより、ウェビング3の引出がウ ェビング引出検知手段9によって検知される。そして、 図10に示すようにウェビング引出検知手段9によりウ ェビング3が引き出された瞬間が検知されることで、モ ータ7を制御する中央処理装置(CPU)39の電源4 OがONされるようになる。この電源40は車両に搭載 された車両用電源である。

【0028】更に、図1、図3、図4および図9に示す ように、リール回転検知手段10はロック機構5の外側 に配設されており、リール回転軸6のスプライン溝6b と反対側の縮径された端部6 dに取り付けられた回転取 出ギア41と、この回転取出ギア41から得られたリー

ル4の回転を減速して伝達するギアトレイン42と、減速された伝達される回転角を可変抵抗の電気抵抗変化量として検出する回転角検出器43とから構成されている。このように構成されたリール回転検知手段10においては、リール4が回転したとき、その回転が減速されて回転角検出器43に伝達され、その可変抵抗の電気抵抗値が変化することで、その可変抵抗にかかる電圧が変化する。そして、その電圧変化量を検出することで、リール4の回転状態、すなわちリール4の回転および停止、リール4の回転方向(つまり、ウェビング3の引出 10方向および巻取方向)を検出する。

【0029】そして、この例のシートベルト巻取装置1 では、これらのウェビング引出検知手段9およびリール 回転検知手段10により、乗員のウェビング3の引出時 のモータ7の駆動を制御するようになっている。 すなわ ち、通常のモータ7の駆動でウェビング3の巻取が行わ れているときに、乗員がウェビング3をつかんでその巻 取を阻止したりあるいはウェビング3を逆に引き出した りすると、スイッチプレート35がウェビング巻取方向 に若干回動してリミットスイッチ38が0Nしてウェビ ング3の引出を検出するか、および/または回転角検出 器43により電圧の変化を検出してウェビング3の引出 を検出するかして、モータ7の駆動が停止する。これに より、乗員はウェビング3を軽い力で引き出すことがで きるようになる。乗員によるウェビング3の引出が終了 しウェビング3が停止すると、ウェビング引出検知手段 9 およびリール回転検知手段 1 0 の少なくとも一方によ りこのウェビング引出終了が検出されてモータ7が再び 駆動されて、ウェビング3の巻取が再開される。

【0030】このシートベルト巻取装置1は、図11 (a)に示すように自動車の例えばセンターピラー44 内に設けられている。また、モータ7やCPU等を駆動するための電源として、この例のシートベルト巻取装置1は自動車に搭載された車両用電源を用いている。そのために、図11(a)に示すようにシートベルト巻取装置1には車両用電源接続用コネクタ45が設けられており、この車両用電源接続用コネクタ45に、車両用電源(図11には不図示)に接続された配線46が接続されている。

【0031】そして、通常運転時にウェビング3を乗員に圧迫感を与えない程度にフィットさせた状態のコンフォートモード、車両前後方の、例えば他車等の障害物が設定距離接近したことを乗員に体感的に知らせて警告する程度にウェビング3をコンフォートモードから所定量巻き取った状態の警告モード、衝突の可能性あり警告モードより緊急性が高く、ウェビング3を警告モードより更に大きく巻き取って乗員の身体を拘束保持(ホールド)した状態のホールドモード、衝突を予知した場合や設定減速度を超える急減速を検知した場合に衝突に先立ってウェビング3を所定量巻き取って乗員拘束効果を高

めた状態のプリテンションモード、およびウェビング3を所定量巻き取ってチャイルドシートを車両シートに固定した状態のチャイルドシート固定モード等の予め設定された種々のモードに応じて、CPUが、図10に示すようにウェビング引出検知手段9、リール回転検知手段10、トング47がバックル48に挿入係合されたことを検知するバックルスイッチ49、および自車の前後方向の他車との車間距離を検知する車間検知センサ等の車両の種々の状態を検知する所定数の外部信号センサ50からの各検知信号によりモータ7を駆動制御するようになっている。

【0032】ところで、このようなモータ7のみによる ウェビング3の巻取を行うシートベルト巻取装置1にお いては、シートベルト巻取装置1が車両用電源から遮断 されると、このシートベルト巻取装置1はウェビング3 の巻取を行うことができなくなり、巻取装置として機能 しなくなってしまう。しかし、例えば車両用電源が損傷 して自力走行ができない自動車を牽引して移動するよう な場合などには、シートベルト巻取装置1はその機能を 十分にかつ確実に発揮できるようにすることが望まし い。そこで、この例の乗員拘束保護装置においては、図 11(a)に示すようにシートベルト巻取装置1に更に 別電源用コネクタ51が設けられている。この別電源用 コネクタ51には、車両用電源とは別に用意された、例 えば乾電池等の別電源が接続されるようになっている。 そして、この別電源用コネクタ51はその差し込み口5 1 aが車室内側に向くようにしてセンタピラー 4 4の下 部に取り付けられている。また、図11(b)に示すよ うに、センタピラー44の車室内側カバーの下部の別電 源用コネクタ51に対応する位置に、別電源用コネクタ 51を露出させる接続用窓52およびこの接続用窓52 を開閉する開閉扉53がそれぞれ設けられている。

【0033】したがって、車両用電源が正常でありかつシートベルト巻取装置1に正常に接続されている通常状態では、車両用電源から電力がシートベルト巻取装置1に供給され、シートベルト巻取装置1は正常に作動する。何らかの原因で、車両用電源から電力供給が遮断されて、シートベルト巻取装置1が正常に作動しないときは、開閉扉53を開いて別電源用コネクタ51の差し込み口を露出させ、この差し込み口に別に用意した別電源を接続する。これにより、この別電源からの電力でシートベルト巻取装置1は作動してウェビング3を巻き取ってこのウェビング3に所定のテンションを付与することができ、これによりその機能を確実に発揮して乗員を確実に拘束できるようになる。

【0034】図12は、シートベルト巻取装置1が車両用電源から遮断されて巻取装置として機能しなくなった場合に対処するための他の例を示し、(a)はその斜視図、(b)はその分解斜視図、(c)は(a)におけるXIIC-XIIC線に沿う断面図、(d)はその使用状態を示

50

す断面図である。図12(a)に示すように、この例の 乗員拘束装置1では、前述の例で用意された別電源に代 えて、ウェビング3の長さを調節するウェビング長さ調 節具54が用意されている。このウェビング長さ調節具 54は、4本のバー55,56,57,58とこれらのバー55,56,57,58の左右両端を支持固定する支持 部材59,60とから構成されている。図12(b)に 示すように、ウェビング長さ調節具54は、外側の2本 のバー55,58の左端を支持部材59支持固定した第 1調節具部材61と、内側の2本のバー56,57の右 端を支持部材60で支持固定した第2調節具部材62と の2つの部材に分割構成されている。

13

【0035】第1調節具部材61の支持部材55には、2本のバー55,58の間に第2調節具部材62の2本のバー56,57の左の自由端が嵌合されることでこれらの左端をそれぞれ支持する支持孔63,64が穿設されている。また、第2調節具部材62の支持部材60には、2本のバー56,57の間に第1調節具部材61の2本のバー55,58の右の自由端端が嵌合されることでこれらの左端をそれぞれ支持する支持孔65,66が穿設されている。更に、図12(c)に示すように、バー55の右端には、この右端が第2調節具部材62の支持孔65に嵌合支持されたとき、この支持孔65から抜け出るのを防止する抜け止め溝67が設けられている。図示しないが、他のバー56,57の左端およびバー58の右端にも、この抜け止め溝67と同様の抜け止め溝が設けられている。

【0036】そして、図12(b)に示すように、第1 および第2調節具部材61,62の各バー55,56,5 7.58の自由端がそれぞれ対応する支持孔65,63, 64,66に嵌合されかつ各抜け止め溝が各支持孔65, 63,64,66の内周縁に係合することで、ウェビング 長さ調節具54が構成されている。このように構成され たウェビング長さ調節具54においては、車両用電源か ら電力供給が遮断されて、シートベルト巻取装置1が正 常に作動しないときは、ウェビング長さ調節具54を図 12(b)に示すように分解し、図12(d)に示すよ うに第2調節具部材62の2本のバー56,57にウェ ビング3を巻き付けて乗員を拘束する程度にウェビング 3の長さを調節してウェビング3に所定のテンションを 付与し、その後、第1および第2調節具部材61.62 を互いに分離可能に組み付ける。そして、第1調節具部 材 6 1 のバー 5 5, 5 8 でウェビング 3 をガイドする。 これにより、シートベルト巻取装置1の車両用電源から の電力で作動するモータ7等の電気作動部品が作動しな い状態であっても、乗員拘束保護装置としての機能を確 実に発揮させて乗員を確実に拘束できるようになる。

[0037]

【発明の効果】以上の説明から明らかなように、本発明 にかかる乗員拘束保護装置によれば、車両用電源から電 50 力供給が遮断されて、シートベルト巻取装置が正常に作動しないときには、乗員拘束手段によりウェビングに所定のテンションを付与できるようにしているので、このようなことにも乗員を確実に拘束できるようになる。したがって、シートベルト巻取装置を車両用電源から電力供給が遮断されても、シートベルト巻取装置として確実に機能させることができる。

【0038】特に、請求項2および3の各発明によれば、乗員拘束手段を車両用電源とは別個の別電源で構成 10 しているので、車両用電源から電力供給が遮断されたときの対応を簡単にかつ安価に行うことができる。また、請求項4ないし7の各発明によれば、乗員拘束手段をウェビングの長さを調節するウェビング長さ調節具で構成し、このウェビング長さ調節具は簡単な構造に形成できるので、同様に、車両用電源から電力供給が遮断されたときの対応を簡単にかつ安価に行うことができる。

【図面の簡単な説明】

【図1】 本発明にかかる乗員拘束保護装置の実施の形態の一例に使用されるシートベルト巻取装置を示す分解 斜視図である。

【図2】 図1に示す例のシートベルト巻取装置における減速機構を示す分解斜視図である。

【図3】 図2に示す減速機構の正面図である。

【図4】 図3に示す減速機構の各ギアの中心を通る線に沿う縦断面図である。

【図5】 図1に示す例のシートベルト巻取装置における滑り機構のウェビング巻取時の作動を説明し、(a) は非作動状態を示す図、(b) は作動状態を示す図である。

0 【図6】 図1に示す例のシートベルト巻取装置における滑り機構のウェビング引出時の作動を説明する図である。

【図7】 図1に示す例のシートベルト巻取装置におけるリングギア回転制御装置の作動を説明する図である。

【図8】 図1に示す例のシートベルト巻取装置における減速機構の作動を説明し、(a) は第1動力伝達経路を示す図、(b) は第2動力伝達経路を示す図である。

【図9】 図1に示す例のシートベルト巻取装置におけるウェビング引出検知手段およびリール回転検知手段の40 各作動を説明する図である。

【図10】図1に示す例のシートベルト巻取装置におけるCPUによる減速機構の作動制御を説明する図である。

【図11】図1に示す例の乗員拘束保護装置における別電源を示し、(a) はセンタピラー内に取り付ける前の状態を示す図、(b) はセンタピラー内に取り付けた状態を示す図である。

【図12】図1に示す例の乗員拘束保護装置におけるウェビング長さ調節具を示し、(a) はその全体斜視図、(b) はその分解斜視図、(c) は(a) におけるXIIC

16

-XIIC線に沿う断面図、(d) はその使用状態を模式的に示す断面図である。

15

【符号の説明】

1…シートベルト巻取装置、3…ウェビング、4…リール、5…ロック機構、6…リール回転軸、7…モータ、8…減速機構、9…ウェビング引出検知手段、10…リ*

* ール回転検知手段、39…中央処理装置(CPU)、40…車両用電源、45…車両用電源接続用コネクタ、51…別電源接続用コネクタ、51a…差込口、52…窓、53…開閉扉、54…ウェビング長さ調節具、55,56,57,58…バー、67…抜け止め溝

【図2】

[図10]

