COSC 3337 : Data Science I

N. Rizk

College of Natural and Applied Sciences
Department of Computer Science
University of Houston

Outline

- ➤ The Linear Regression Model
 - **≻**Least Squares Fit
 - ➤ Measures of Fit
 - ➤ Inference in Regression
- ➤ Other Considerations in Regression Model
 - **→** Qualitative Predictors
 - ➤ Interaction Terms
- ➤ Potential Fit Problems

The Linear Regression Model

$$Y_i = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p + e$$

- The parameters in the linear regression model are very easy to interpret.
- > β_0 is the intercept (i.e. the average value for Y if all the X's are zero), β_j is the slope for the jth variable X_j
- $\triangleright \beta_j$ is the average increase in Y when X_j is increased by one and all other X's are held constant.

Least Squares Fit

➤ We estimate the parameters using least squares i.e. minimize

$$MSE = \frac{1}{n} \mathop{\stackrel{n}{\overset{n}{\circ}}}_{i=1} \left(Y_i - \hat{Y}_i \right)^2$$

$$= \frac{1}{n} \mathop{\stackrel{n}{\circ}}_{i=1} \left(Y_i - \hat{b}_0 - \hat{b}_1 X_1 - \dots - \hat{b}_p X_p \right)^2$$

Relationship between population and least squares lines

Population line

Least Squares line

$$Y_{i} = b_{0} + b_{1}X_{1} + b_{2}X_{2} + \dots + b_{p}X_{p} + \theta$$

$$\hat{Y}_{i} = \hat{b}_{0} + \hat{b}_{1}X_{1} + \hat{b}_{2}X_{2} + \dots + \hat{b}_{p}X_{p}$$

- \triangleright We would like to know β_0 through β_p i.e. the population line. Instead we know $\hat{\beta}_0$ through $\hat{\beta}_p$ i.e. the least squares line.
- \triangleright Hence we use $\hat{\beta}_0$ through $\hat{\beta}_p$ as guesses for β_0 through β_p and \hat{Y}_i as a guess for Y_i . The guesses will not be perfect just as X_i is not a perfect guess for μ.

The Model

The first order linear model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

y = dependent variable

x = independent variable

 β_0 = y-intercept

 β_1 = slope of the line

 ε = error variable

Estimating the Coefficients

- The estimates are determined by
 - drawing a sample from the population of interest,
 - calculating sample statistics.
 - producing a straight line that cuts into the data.

The Least Squares (Regression) Line

A good line is one that minimizes the sum of squared differences between the points and the line.

The Least Squares (Regression) Line

Sum of squared differences = $(2 - 2.5)^2 + (4 - 2.5)^2 + (1.5 - 2.5)^2 + (3.2 - 2.5)^2 = 3.99$

Let us compare two lines

The second line is horizontal

4 (2,4) Th 3 (4,3.2) 2.5 2 (1,2) (3,1.5)

The smaller the sum of squared differences the better the fit of the line to the data.

The Estimated Coefficients

To calculate the estimates of the slope and intercept of the least squares line, use the formulas:

$$b_{1} = \frac{SS_{xy}}{SS_{xx}}$$

$$b_{0} = \overline{y} - b_{1}\overline{x}$$

$$SS_{xy} = \sum x_{i}y_{i} - \frac{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n}$$

$$SS_{yy} = \sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n} = (n-1)s_{y}^{2}$$

Alternate formula for the slope b₁

$$b_1 = r \frac{s_y}{s_x}$$

The regression equation that estimates the equation of the first order linear model is:

$$\hat{y} = b_0 + b_1 x$$

The Simple Linear Regression Line

Example:

- A car dealer wants to find the relationship between the odometer reading and the selling price of used cars.
- A random sample of 100 cars is selected, and the data recorded.
- Find the regression line.

Car	Odometer	Price	
1	37388	14636	
2	44758	14122	
3	45833	14016	
4	30862	15590	
5	31705	15568	
6	34010	14718	
	Independe	nt Depende	ent
•	variable x	variable	у

The Simple Linear Regression Line

Solution

Solving by hand: Calculate a number of statistics

$$\overline{X} = 36,009.45;$$
 $SS_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n} = 43,528,690$

$$\overline{Y} = 14,822.823;$$
 $SS_{xy} = \sum (x_i y_i) - \frac{\sum x_i \sum y_i}{n} = -2,712,511$

where n = 100.

$$b_1 = \frac{SS_{xy}}{(n-1)s_x^2} = \frac{-2,712,511}{43,528,690} = -.06232$$

$$b_0 = \overline{y} - b_1 \overline{x} = 14,822.82 - (-.06232)(36,009.45) = 17,067$$

$$\hat{y} = b_0 + b_1 x = 17,067 - .0623 x$$

The Simple Linear Regression Line

SUMMARY	OUTPUT				
Regression	Statistics				
Multiple R	0.8063				
R Square	0.6501				
Adjusted F	0.6466				
Standard E	303.1				
Observatio	100		$\int \hat{\mathbf{v}} = 1$	7,067 -	.0623 x
		4		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	<mark>1</mark> 6734111	16734111	182.11	0.0000
Residual	98	9005450	91892		
Total	99	25739561			
C	coefficients	tandard Errc	t Stat	P-value	
		160	100.97	0.0000	
Intercept	17067	169	100.91	0.0000	

Interpreting the Linear Regression -Equation

The intercept is $b_0 = 17067 .

Do not interpret the intercept as the "Price of cars that have not been driven"

This is the slope of the line.

For each additional mile on the odometer, the price decreases by an average of \$0.0623

• To measure the strength of the linear relationship we use the coefficient of determination.

$$R^{2} = \frac{\left[\sum (x_{i} - \overline{x})(y_{i} - \overline{y})^{2}\right]}{s_{x}^{2}s_{y}^{2}}$$
or
$$R^{2} = 1 - \frac{SSE}{\sum (y_{i} - \overline{y})^{2}}$$

Note that the coefficient of determination is r²

 To understand the significance of this coefficient note:

• R² measures the proportion of the variation in y that is explained by the variation in x.

$$R^{2} = 1 - \frac{SSE}{\sum (y_{i} - \overline{y})^{2}} = \frac{\sum (y_{i} - \overline{y})^{2} - SSE}{\sum (y_{i} - \overline{y})^{2}} = \frac{SSR}{\sum (y_{i} - \overline{y})^{2}}$$

• R² takes on any value between zero and one.

 R^2 = 1: Perfect match between the line and the data points.

 R^2 = 0: There are no linear relationship between x and y.

- Example
 - Find the coefficient of determination for the used car price –odometer example. What does this statistic tell you about the model?
- Solution
 - Solving by hand;

$$R^{2} = \frac{\left[\sum (x_{i} - \overline{x})(y_{i} - \overline{y}\right]^{2}}{s_{x}^{2}s_{y}^{2}} = \frac{[-2,712,511]^{2}}{(43,528,688)(259,996)} = .6501$$

Using Excel

OLIMANA DV OLITOLIT

From the regression output we have

Regression S Multiple R	Statistics 0.8063									
R Square	0.6501				65% of the variation in the auct					
Adjusted R S	0.6466									
Standard Erre	303.1				selling price is explained by the					
Observations	100				variation in odometer reading.					
					rest (35%) remains unexplaine					
ANOVA					•					
71110 171					Thic model					
71110 771	df	SS	MS	F	this model.					
	df 1	SS 16734111	<i>M</i> S 16734111	<i>F</i> 182.11						
Regression	<i>df</i> 1 98			F 182.11						
Regression Residual	1	16734111	16734111	F 182.11						
Regression Residual	1 98	16734111 9005450	16734111	F 182.11						
Regression Residual Total	1 98 99	16734111 9005450	16734111	F 182.11 P-value						
Regression Residual Total	1 98 99	16734111 9005450 25739561	16734111 91892		0.0000					

20

Measures of Fit: R²

- ➤ Some of the variation in Y can be explained by variation in the X's and some cannot.
- \triangleright R² tells you the fraction of variance that can be explained by X.

$$R^2 = 1 - \frac{RSS}{\sum (Y_i - \overline{Y})^2} \approx 1 - \frac{\text{Ending Variance}}{\text{Starting Variance}}$$

R² is always between 0 and 1. Zero means no variance has been explained. One means it has all been explained (perfect fit to the data).

Inference in Regression

- The regression line from the sample is not the regression line from the population.
- What we want to do:
 - Assess how well the line describes the plot.
 - Guess the slope of the population line.
 - Guess what value Y would take for a given X value

Estimated (least squares) line.

True (population) line. Unobserved

Assessing the Model

- The least squares method will produces a regression line whether or not there is a linear relationship between x and y.
- Consequently, it is important to assess how well the linear model fits the data.
- Several methods are used to assess the model. All are based on the sum of squares for errors, SSE.

Sum of Squares for Errors

- This is the sum of differences between the points and the regression line.
- It can serve as a measure of how well the line fits the data. SSE is defined by

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
.

A shortcut formula

$$\overline{SSE} = \sum y_i^2 - b_0 \sum y_i - b_1 \sum x_i y_i$$

Standard Error of Estimate

- The mean error is equal to zero.
- If σ_{ϵ} is small the errors tend to be close to zero (close to the mean error). Then, the model fits the data well.
- Therefore, we can, use σ_{ϵ} as a measure of the suitability of using a linear model.
- An estimator of σ_{ϵ} is given by s_{ϵ}

S tan dard Error of Estimate

$$s_{\varepsilon} = \sqrt{\frac{SSE}{n-2}}$$

Standard Error of Estimate

- Example:
 - Calculate the standard error of estimate for the previous example and describe what it tells you about the model fit.
- Solution

$$SSE = 9,005,450$$

$$s_{\varepsilon} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{9,005,450}{98}} = 303.13$$

It is hard to assess the model based on s_{ϵ} even when compared with the mean value of y.

$$s_{\varepsilon} = 303.1 \ \overline{y} = 14,823$$

• When no linear relationship exists between two variables, the regression line should be horizontal.

Linear relationship.

Different inputs (x) yield different outputs (y).

The slope is not equal to zero

No linear relationship.

Different inputs (x) yield the same output (y).

The slope is equal to zero

• We can draw inference about β_1 from b_1 by testing

$$H_0$$
: $\beta_1 = 0$
 H_1 : $\beta_1 = 0$ (or < 0, or > 0)

• The test statistic is

$$t = \frac{b_1 - \beta_1}{s_{b_1}} \qquad \text{where} \qquad S_{b_1} = \frac{S_{\mathcal{E}}}{\sqrt{SS_{xx}}}$$
 The standard error of b_1 .

• If the error variable is normally distributed, the statistic is Student t distribution with d.f. = n-2.

Example

• Test to determine whether there is enough evidence to infer that there is a linear relationship between the car auction price and the odometer reading for all three-year-old Tauruses in the previous example . Use α = 5%.

- Solving by hand
 - To compute "t" we need the values of b_1 and s_{b1} .

$$b_1 = -.0623$$

$$s_{b_1} = \frac{s_{\varepsilon}}{\sqrt{(n-1)s_x^2}} = \frac{303.1}{\sqrt{(99)(43,528,690)}} = .00462$$

$$t = \frac{b_1 - \beta_1}{s_{b_1}} = \frac{-.0623 - 0}{.00462} = -13.49$$

• The rejection region is $t > t_{.025}$ or $t < -t_{.025}$ with v = n-2 = 98.

Approximately, $t_{.025} = 1.984$

Using Excel

Price	Odometer	SUMMARY (OUTPUT						
14636	37388								
14122	44758	Regression	Statistics						
14016	45833	Multiple R	0.8063						
15590	30862	R Square	0.6501						
15568	31705	Adjusted R S	0.6466						
14718	34010	Standard Err	303.1						
14470	45854	Observations	100						
15690	19057								
15072	40149	ANOVA			Tho	ro is over	wholmine	a ovida	nco to infor
14802	40237		df	SS			•		ence to infer
15190	32359	Regression	1	16734111	1 that	the odon	neter read	ding af	fects the
14660	43533	Residual	98	9005450	auct	ion sellin	a nrice		
15612	32744	Total	99	25739561	auci		g price.		
15610	34470								
14634	37720		Coefficients	tandard Err	t Stat	P-value			
14632	41350	Intercept	17067	169	100.97	0.0000			
15740	24469	Odometer	-0.0623	0.0046	▼ -13.49	0.0000			

Some Relevant Questions

1. Is β_j =0 or not? We can use a hypothesis test to answer this question. If we can't be sure that $\beta_j \neq 0$ then there is no point in using X_i as one of our predictors.

1. Can we be sure that at least one of our X variables is a useful predictor i.e. is it the case that $\beta_1 = \beta_2 = \cdots = \beta_p = 0$?

1. Is β_i =0 i.e. is X_i an important variable?

- > We use a hypothesis test to answer this question
- \rightarrow H₀: β_i =0 vs H_a: $\beta_i \neq 0$
- ➤ Calculate

$$t = \frac{\hat{\beta}_j}{SE(\hat{\beta}_j)}$$

Number of standard deviations away from zero.

 \triangleright If t is large (equivalently p-value is small) we can be sure that $\beta_i \neq 0$ and that there is a relationship

 β_1 is 17.67 SE's from 0

COSC 3337:DS 1

Testing Individual Variables

Is there a (statistically detectable) linear relationship between Newspapers and Sales after all the other variables have been accounted for?

Regression coefficie	nts						
	Coefficient	Std Err	t-value	p-value			
Constant	2.9389	0.3119	9.4223	0.0000			
TV	0.0458	0.0014	32.8086	0.0000			
Radio	0.1885	0.0086	21.8935	0.0000			
Newspaper	-0.0010	0.0059	-0.1767	0.8599 ←	No.	big p-value	
Regression coef	ficients					sig p value	
	Coefficient	Std Err	t-value	p-value		_	
Constant	12.3514	0.6214	19.8761	0.0000	Small	p-value in	
Newspape	er 0.0547	0.0166	3.2996	0.0011		e regression	

Almost all the explaining that Newspapers could do in simple regression has already been done by TV and Radio in multiple regression!

N.Rizk (University of Houston)
Linea Regression

2. Is the whole regression explaining anything at all?

>Test for:

• H_0 : all slopes = 0 $(\beta_1 = \beta_2 = \cdots = \beta_p = 0),$

H_a: at least one slope ≠ 0

ANOVA Table					
Source	df	SS	MS	F	p-value
Explained	2	4860.2347	2430.1174	859.6177	0.0000
Unexplained	197	556.9140	2.8270		

Answer comes from the F test in the ANOVA (ANalysis Of VAriance) table.

The ANOVA table has many pieces of information. What we care about is the F Ratio and the corresponding p-value.

Outline

- ➤ The Linear Regression Model
 - ➤ Least Squares Fit
 - ➤ Measures of Fit
 - ➤ Inference in Regression
- ➤ Other Considerations in Regression Model
 - **→** Qualitative Predictors
 - **►**Interaction Terms
- ➤ Potential Fit Problems

Qualitative Predictors

➤ How do you stick "men" and "women" (category listings) into a regression equation?

Code them as indicator variables (dummy variables)

For example we can "code" Males=0 and Females= 1.

Interpretation

- >Suppose we want to include income and gender.
- \succ Two genders (male and female). Let $|_{\text{Gender}_i}$

Gender_i =
$$\hat{i}$$
 0 if male \hat{i} 1 if female

>then the regression equation is

$$Y_i \gg b_0 + b_1 \text{Income}_i + b_2 Gender_i = \int_{\uparrow}^{\uparrow} b_0 + b_1 \text{Income}_i \text{ if male}$$

$$b_0 + b_1 \text{Income}_i + b_2 \text{ if female}$$

 $\triangleright \beta_2$ is the average extra balance each month that females have for given income level. Males are the "baseline".

Regression coefficients					
		Coefficient	Std Err	t-value	p-value
	Constant	233.7663	39.5322	5.9133	0.0000
	Income	0.0061	0.0006	10.4372	0.0000
	Gender_Female	24.3108	40.8470	0.5952	0.5521

Other Coding Schemes

- There are different ways to code categorical variables.
- Two genders (male and female). Let

$$Gender_{i} = \hat{1}$$

$$\uparrow$$
1 if male
1 if female

> then the regression equation is

$$Y_i \gg b_0 + b_1 \text{Income}_i + b_2 Gender_i = \begin{cases} \vdots \\ b_0 + b_1 \text{Income}_i - b_2, \text{ if male} \end{cases}$$

$$b_0 + b_1 \text{Income}_i + b_2, \text{ if female} \end{cases}$$

 $\triangleright \beta_2$ is the average amount that females are above the average, for any given income level. β_2 is also the average amount that males are below the average, for any given income level.

Other Issues Discussed

≻Interaction terms

➤ Non-linear effects

➤ Multicollinearity

➤ Model Selection

Interaction

 \triangleright When the effect on Y of increasing X_1 depends on another X_2 .

≻Example:

- \triangleright Maybe the effect on Salary (Y) when increasing Position (X₁) depends on gender (X₂)?
- For example maybe Male salaries go up faster (or slower) than Females as they get promoted.

➤ Advertising example:

- >TV and radio advertising both increase sales.
- ➤ Perhaps spending money on both of them may increase sales more than spending the same amount on one alone?

Interaction in advertising

$$Sales = b_0 + b_1 ´TV + b_2 ´Radio + b_3 ´TV ´Radio$$

$$Sales = b_0 + (b_1 + b_3 ´Radio) ´TV + b_2 ´Radio$$

Spending \$1 extra on TV increases average sales by 0.0191 Interaction Term + 0.0011Radio

$$Sales = b_0 + (b_2 + b_3 `TV) `Radio + b_2 `TV$$

> Spending \$1 extra on Radio increases average sales by 0.0289 + 0.0011TV

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	6.7502202	0.247871	27.23	<.0001*
TV	0.0191011	0.001504	12.70	<.0001*
Radio	0.0288603	0.008905	3.24	0.0014*
TV*Radio	0.0010865	5.242e-5	20.73	<.0001*

N.Rizk (University of Houston)

Linea Regression

Parallel Regression Lines

Expanded Estimates

Nominal factors expanded to all levels Term Estimate Std Error t Ratio Prob>|t| <.0001 112.77039 1.454773 77.52 Intercept Gender[female] 1.8600957 0.527424 3.53 0.0005 Gender[male] -1.860096 0.527424 -3.53 0.0005 Position 6.0553559 21.60 <.0001 0.280318

female: salary = $112.77+1.86+6.05\times$ position

males: salary = $112.77-1.86 + 6.05 \times position$

Parallel lines have the same slope. Dummy variables give lines different intercepts, but their slopes are still the same.

Should the Lines be Parallel?

Interaction between gender and position

Interaction Effects

➤Our model has forced the line for men and the line for women to be parallel.

➤ Parallel lines say that promotions have the same salary benefit for men as for women.

➤If lines aren't parallel then promotions affect men's and women's salaries differently.

Extensions of the Linear Model

Removing the additive assumption: interactions and nonlinearity

Interactions:

- In the analysis of the Advertising data, we assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media.
- For example, the linear model

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper$$

states that the average effect on sales of a one-unit increase in TV is always β_1 , regardless of the amount spent on radio.

Interactions — continued

- But suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases.
- In this situation, given a fixed budget of \$100,000, spending half on radio and half on TV may increase sales more than allocating the entire amount to either TV or to radio.
- In marketing, this is known as a *synergy* effect, and in statistics it is referred to as an *interaction* effect.

Interaction in the Advertising data?

When levels of either TV or radio are low, then the true sales are lower than predicted by the linear model.

But when advertising is split between the two media, then the model tends to underestimate sales.

N.Rizk (University of Houston)

Modelling interactions — Advertising data

Model takes the form

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + E$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + E$

Results:

	Coefficient Std. Error		t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
TVXradio	0.0011	0.000	20.73	< 0.0001

Interpretation

- The results in this table suggests that interactions are important.
- The p-value for the interaction term TV×radio is extremely low, indicating that there is strong evidence for $H_A: \beta_3 /= 0$.
- The R^2 for the interaction model is 96.8%, compared to only 89.7% for the model that predicts sales using TV and radio without an interaction term.

Interpretation — continued

- This means that (96.8 89.7)/(100 89.7) = 69% of the variability in sales that remains after fitting the additive model has been explained by the interaction term.
- The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of $(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$ units.
- An increase in radio advertising of \$1,000 will be associated with an increase in sales of $(\hat{\beta}_2 + \hat{\beta}_3 \times \text{TV}) \times 1000 = 29 + 1.1 \times \text{TV}$ units.

Hierarchy

- Sometimes it is the case that an interaction term has a very small p-value, but the associated main effects (in this case, TV and radio) do not.
- The hierarchy principle:

If we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficients are not significant.

N.Rizk (University of Houston)

Hierarchy — continued

- The rationale for this principle is that interactions are hard to interpret in a model without main effects their meaning is changed.
- Specifically, the interaction terms also contain main effects, if the model has no main effect terms.

Interactions between qualitative and quantitative

variables

Consider the Credit data set, and suppose that we wish to predict balance using income (quantitative) and student (qualitative).

Without an interaction term, the model takes the form

balance;
$$\approx \beta_0 + \beta_1 \times \text{income}_i + \frac{\beta_2}{0}$$
 if *i*th person is a student if *i*th person is not a student $= \beta_1 \times \text{income}_i + \frac{\beta_0 + \beta_2}{\beta_0}$ if *i*th person is a student if *i*th person is a student.

With interactions, it takes the form

balance;
$$\approx \beta_0 + \beta_1 \times \text{income}_i + \frac{\beta_2 + \beta_3 \times \text{income}_i}{0}$$
 if student if not student
$$= \frac{(\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \text{income}_i}{\beta_0^{\frac{55}{48}} + \beta_1 \times \text{income}_i}$$
 if not student if not student

N.Rizk (University of Houston)

COSC 3337:DS 1

Credit data; Left: no interaction between income and student. Right: with an interaction term between income and student.

N.Rizk (University of Houston)

COSC 3337:DS 1

Non-linear effects of predictors

polynomial regression on Auto data

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + E$$

may provide a better fit.

	Coefficient	Std. Error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
horsepower ²	0.0012	0.0001	10.1	< 0.0001

Generalizations of the Linear Model

In much of the rest of this course, we discuss methods that expand the scope of linear models and how they are fit:

- Classification problems: logistic regression, support vector machines
- Non-linearity: kernel smoothing, splines and generalized additive models; nearest neighbor methods.
- Interactions: Tree-based methods, bagging, random forests and boosting (these also capture non-linearities)
- Regularized fitting: Ridge regression and lasso

This is the analysis of variance table for a simple linear regression. The "simple" here means that exactly one predictor (call it X) is used to try to explain the dependent variable (call it Y).

The degrees of freedom number in the Regression line is the number of predictors used. Here that number is 1, and indeed the regression has a single predictor.

The F statistic asks whether the regression is statistically significant. As a quick approximation, F > 4 suggests that the slope β_1 is not zero.

MS

(89.64)

835.43

If the P value is provided, it should be used as the formal test of significance. If $P \le 0.05$, we can say that the sample slope b_1 is significantly different from zero.

Analysis of Variance

Source Regression Residual Error Total DF SS (1) 835.43 38 354.15 (39) 1189.57

Each mean square (MS) is computed as (SS)/(DF). Observe that $9.32 \approx \frac{354.15}{38}$. The MS in the Residual

Error line has the added use

 $\sqrt{\rm MS}_{\rm Residual Tanor} = s_{\rm E}$. Here that value is $\sqrt{9.32} \approx 3.0529$. Nearly all software reports this value separately.

 $\frac{\text{SS}_{\text{Regression}}}{\text{SS}_{\text{Total}}} = \frac{835.43}{1.189.57}$ ≈ 0.7023 . Nearly all software reports this value separately.

The total degrees of freedom is

Here n = 40 data points were

You can also find $R^2 =$

used.

n-1, where n is the sample size.

By convention, no number is reported in this position. If we followed the (SS)/(DF) pattern, this value would be $\frac{1,189.57}{39} \approx 30.5018$. The square root is the sample standard deviation of the dependent variable Y; $s_Y = \sqrt{30.5018} \approx 5.5228$.

Many programs report also the adjusted R^2 , given as

$$R_{\text{adj}}^2 = 1 - \left(\frac{s_e}{s_Y}\right)^2 = 1 - \left(\frac{3.0529}{5.5228}\right)^2 \approx 0.6944.$$

This can also be computed through $R_{\text{adj}}^2 =$

$$1 - \frac{n-1}{n-1-K}(1-R^2)$$
. Remember that $K = 1$ is the simple regression case.

Outline

- ➤ The Linear Regression Model
 - ➤ Least Squares Fit
 - ➤ Measures of Fit
 - ➤ Inference in Regression
- ➤ Other Considerations in Regression Model
 - **→** Qualitative Predictors
 - **➤**Interaction Terms
- ➤ Potential Fit Problems

Potential Fit Problems

There are a number of possible problems that one may encounter when fitting the linear regression model.

- 1. Non-linearity of the data
- 2. Dependence of the error terms
- 3. Non-constant variance of error terms
- 4. Outliers
- 5. High leverage points
- 6. Collinearity

Outliers

- An outlier is an observation that is unusually small or large.
- Several possibilities need to be investigated when an outlier is observed:
 - There was an error in recording the value.
 - The point does not belong in the sample.
 - The observation is valid.
- Identify outliers from the scatter diagram.
- It is customary to suspect an observation is an outlier if its |standard residual| > 2

An outlier

... but, some outliers may be very influential

The outlier causes a shift in the regression line

Procedure for Regression Diagnostics

- Develop a model that has a theoretical basis.
- Gather data for the two variables in the model.
- Draw the scatter diagram to determine whether a linear model appears to be appropriate.
- Determine the regression equation.
- Check the required conditions for the errors.
- Check the existence of outliers and influential observations
- Assess the model fit.
- If the model fits the data, use the regression equation.