Functional analysis course by Dodonov N.U.

Sugak A.M.

Fall 2015 — Spring 2016

1 Bartor spaces.

§1.1 Metric spaces.

$$X, \rho: X \times X \to \mathbb{R}_+$$

Definition. ρ — metric

1.
$$\rho(x,y) \ge 0, = 0 \iff x = y$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x, y) \le \rho(x, z) + \rho(y, z)$$

Definition. (X, ρ) — Metric space.

Definition. $x = \lim x_n \iff \rho(x_n, x) \to 0$

$$X, \tau = \{G \subset X\}$$

1.
$$\varnothing, X \in \tau$$

2.
$$G_{\alpha} \in \tau, \alpha \in \mathcal{A} \implies \bigcup_{\alpha} G_{\alpha} \in \tau$$

3.
$$G_1, \ldots, G_n \in \tau \implies \bigcap_{j=1}^n G_j \in \tau$$

Definition. (X,τ) — Topological space.

$$x = \lim x_n \quad \forall G \in \tau : x \in G \quad \exists N : \forall n > N \implies x_n \in G$$

G — open in
$$\tau$$

$$F = X \setminus G$$
 — closed

Definition. $B_r(a) = \{x : \rho(x, a) < r\}$ — open ball

$$\tau = \bigcup B_r(a)$$

Statement 1.1. $b \in B_{r_1}(a_1) \cap B_{r_2}(a_2) \implies \exists r_3 > 0 : B_{r_3}(a_3) \subset B_{r_1}(a_1) \cap B_{r_2}(a_2)$

In this sense metric space is just a special case of topological space.

Example 1.
$$\mathbb{R}, \rho(x, y) = |x - y|, MS$$

Example 2.
$$\bar{x} = (x_1, \dots, x_n) \in \mathbb{R}^n, \rho(\bar{x}, \bar{y}) = \sqrt{\sum_{j=1}^n (x_j - y_j)^2}, MS$$

Example 3.
$$\bar{x} = (x_1, \dots, x_n, \dots) \in \mathbb{R}^{\infty}$$

 $\alpha \bar{x} = (\alpha x_1, \dots, \alpha x_n, \dots)$
 $\bar{x} + \bar{y} = (x_1 + y_1, \dots, x_n + y_n, \dots)$
 $\lim_{m \to \infty} \bar{x}_m$?

in
$$\mathbb{R}^n$$
 $\bar{x}_n \to \bar{x} \iff \forall j = 1 \dots n \quad x_j^{(m)} \underset{m \to \infty}{\to} x_j$
in \mathbb{R}^∞ $\bar{x}_m \to \bar{x} \iff \forall j = 1, 2, 3, \dots \quad x_j^{(m)} \underset{m \to \infty}{\to} x_j$

Definition. $\rho(\bar{x}, \bar{y}) \stackrel{def}{=} \sum_{n=1}^{\infty} \frac{1}{2^n} \underbrace{\frac{|x_n - y_n|}{1 + |x_n - y_N|}}_{\frac{def}{def} = \frac{1}{2^n}} \underbrace{-\text{Urysohn metric.}}_{\frac{def}{def} = \frac{1}{2^n}}$

$$\begin{split} \phi(t) &= \frac{t}{1+t} \\ \phi(t_1 + t_2) &\leq \phi(t_1) + \phi(t_2) \\ \rho(\bar{x_m}, \bar{x}) &\underset{m \to \infty}{\to} 0 \iff x_j^{(m)} \to x_j \; \forall j \end{split}$$
 In this way \mathbb{R}^{∞} is a metrizable space.

Example 4. $X, \rho(x,y) \stackrel{def}{=} \begin{cases} 0, x = y \\ 1, x \neq y \end{cases}$ — Discrete metric. $x_n \to x \ \mathcal{E} = \frac{1}{2} \ \exists M: \ m > M \implies \rho(x_m,x) < \frac{1}{2} \implies$

$$x_n \to x \ \mathcal{E} = \frac{1}{2} \ \exists M : m > M \implies \rho(x_m, x) < \frac{1}{2} \implies \rho(x_m, x) = 0 \implies x_m = x$$

Definition. (X, τ) ; $\forall A \subset X$;

$$Int(A) \stackrel{def}{=} \bigcup_{G \subset A} G - \text{open};$$

$$Cl(A) \stackrel{def}{=} \bigcap_{A \subset G} G - \text{closed};$$

$$Cl(A) \stackrel{def}{=} \bigcap_{A \subseteq C} G - closed$$

$$\operatorname{Fr}(A) = \operatorname{Cl}(A) \setminus \operatorname{Int}(A)$$

 (X, ρ) ; Having a metric space one can describe closure of a set.

$$\rho(x,A) \stackrel{def}{=} \inf_{a \in A} \rho(x,a)$$

$$\rho(A, B) = \inf_{\substack{a \in A \\ b \in B}} \rho(a, b)$$
$$\rho(x, A) = f(x), x \in X$$

Statement 1.2. Function f(x) is continuous.

Proof.
$$\forall x, y \in X$$

$$f(x) = \rho(x, A) \leq \rho(x, \alpha) \leq \rho(x, y) + \rho(y, \alpha)$$

$$\forall \mathcal{E} > 0 \ \exists \alpha_{\epsilon} \in A : \ \rho(y, \alpha_{\epsilon}) < \rho(y, A) + \mathcal{E} = f(y) + \mathcal{E}$$

$$f(x) \leq f(y) + \mathcal{E} + \rho(x, y), \ \mathcal{E} \to 0$$

$$\begin{cases} f(x) \leq f(y) + \rho(x, y) \\ f(y) \leq f(x) + \rho(x, y) \end{cases} \implies |f(x) - f(y)| \leq \rho(x, y) \quad \blacksquare$$

Statement 1.3.
$$x \in Cl(A) \iff \rho(x,A) = 0$$

Let's look at the metric spaces in terms of separation of sets from each other by open sets.

$$x, y$$

 $r = \rho(x, y) > 0$
 $B_{\frac{r}{3}}(x), B_{\frac{r}{3}}(y)$

In any metric space separability axiom is true.

Theorem 1.1.

Any metric space is a normal space,

i.e. \forall closed disjoint $F_1, F_2 \in X$, \exists open disjoint $G_1, G_2 \colon F_j \in G_j$, j = 1, 2

Proof.
$$g(x) = \frac{\rho(x,F_1)}{\rho(x,F_1) + \rho(x,F_2)}$$
 - continuous on X $x \in F_1$, $Cl(F_1) = F_1$, $\rho(x,F_1) = 0$, $g(x) = 0$ $x \in F_2$, $g(x) = 1$

Let's look at $(-\infty; \frac{1}{3}), (\frac{2}{3}, \infty)$ — by continuity their inverse images under g are open.

$$G_1 = g^{-1}(-\infty; \frac{1}{3})$$

 $G_2 = g^{-1}(\frac{2}{3}; \infty)$

Definition. Metric space is **complete** if $\rho(x_n, x_m) \to 0 \implies \exists x = \lim x_n$ \mathbb{R}^{∞} – complete (by completeness of the rational numbers). In complete metric spaces the nested balls principle is true.

Theorem 1.2.

X – complete metric space, \overline{V}_{r_n} – system of closed balls.

1.
$$\overline{V}_{r_{n+1}} \subset \overline{V}_{r_n}$$
 – the system is nested.

$$2. r_n \to 0$$

Then:
$$\bigcap_{n} \overline{V}_{r_n} = \{a\}$$

Proof. Let b_n be centers of \overline{V}_{r_n} , $m \ge n$, $b_m \in \overline{V}_{r_n}$, $\rho(b_m, b_n) \le r_n \to 0 \ \forall m \ge n$ $\rho(b_m, b_n) \to 0 \Longrightarrow \exists a = \lim b_n \text{ Since the balls are closed } a \in \text{ every ball.}$ $r_n \to 0 \Longrightarrow \text{ there is only one common point } \blacksquare$.

$$(X, \tau)$$
 — topological space $A \subset X$, $\tau_a = \{G \cap A, G \in \tau\}$

Definition. X— metric space, $A \subset X$, Cl(A) = X

Then: $A - \mathbf{dense}$ in X

 $\underline{\text{If}} \operatorname{Int}(\operatorname{Cl}(A)) = \emptyset \text{ A - nowhere dense in X}.$

It is easy to understand, that in metric spaces nowhere density means the following: $\forall \ ball \ V \ \exists V' \subset V : V'$ contains no points from A.

X is called **first Baire category set**, if it can be written as at most countable union of x_n each nowhere dense in X.

Theorem 1.3 (Baire category theorem).

Complete metric space is second Baire category set in itself.

Proof. Let X be first Baire category set.

 $X = \bigcup X_n \quad \forall \overline{V} \ X_1$ is nowhere dense.

$$\begin{array}{ll} \overline{V}_1 \subset \overset{n}{\overline{V}} \colon \ \overline{V}_1 \cap X_1 &= \varnothing \\ X_2 \text{ is nowhere dense } \overline{V}_2 \subset \overline{V}_1 \colon \overline{V}_2 \cap X_2 = \varnothing \\ r_2 \leq \frac{r_1}{2} \end{array}$$

:

$$\overline{\{\overline{V}_n\}}, \ r_n \to 0, \ \bigcap_n \overline{V}_n = \{a\}, \ X = \bigcup X_n, \ \exists n_0 \colon a \in X_{n_0} \\
X_{n_0} \cap \overline{V}_{n_0} = \varnothing \to \leftarrow \ a \in \overline{V}_{n_0} \quad \blacksquare$$

Corollary 1.3.1. Complete metric space without isolated points is uncountable.

Proof. No isolated points are present \implies every point in the set is nowhere dense in it. Let X be countable: $X = \bigcup \{X_n\}$, then it is first Baire category

set. $\rightarrow \leftarrow$

Definition. K — compact if

1.
$$K = \operatorname{Cl}(K)$$

2.
$$x_n \in K \exists n_1 < n_2 < \dots \ x_{n_i}$$
 – converges in X.

If only ?? is present, the set is called **precompact**.

Theorem 1.4 (Hausdorff).

Let X — metric space, K — closed in X.

<u>Then:</u> $K - compact \iff K - totally bounded,$

i.e.
$$\forall \mathcal{E} > 0 \ \exists a_1, \dots, a_p \in X \colon \ \forall b \in K \ \exists a_j \colon \ \rho(a_j, b) < \mathcal{E}$$

 $(a_1, \dots, a_p - finite \ \mathcal{E} - net)$

Proof.

K— totally bounded, $x_n \in K$ $n_1 < n_2 < \ldots < n_k < \ldots$

 x_n – converges in K

$$\mathcal{E}_k \downarrow \to 0 \ \mathcal{E}_1 \quad K \subset \bigcup_{j=1}^p \overline{V}_j, \ rad = \mathcal{E}_1 \ (\mathcal{E}_1 - net)$$

n is finite \implies one ball will contain infinetely many x_n elements. Let's look at $\overline{V}_{j_0} \cap K$ — totally bounded $= K_1$, diam $(K_1) \leq 2\mathcal{E}_1$

$$\mathcal{E}_2$$
 $K_1 \subset \bigcup_{j=1}^n \overline{V'}_j$, $rad = \mathcal{E}_2$, then one of $\overline{V'}$

contains infinitely many elements of the sequence contained in K_1

contains infinitely many elements of the sequence contained in
$$K_1$$

$$\overline{V'}_{j_0} \cap K_1 = K_2, \text{ diam}(K_2) \leq 2\mathcal{E}_2 \text{ and so on.}$$

$$K_n \supset K_{n+1} \supset K_{n+2} \supset \dots, \text{ diam}(K_N) \leq 2\mathcal{E}_n \overset{by \ space \ comp.}{\Longrightarrow} \bigcap_{n=1}^{\infty} K_n \neq \emptyset$$
Take we fixed $K_n = K_n$ from $K_n = K_n$

Take x_{n_1} from K_1, x_{n_2} from $K_2 \dots$

K — compact $\forall \mathcal{E} \exists$ finite \mathcal{E} net?

By contradiction: $\exists \mathcal{E}_0 > 0$: finite \mathcal{E}_0 -net is impossible to construct.

 $\forall x_1 \in K \ \exists x_2 \in K \colon \ \rho(x_1, x_2) > \mathcal{E}_0 \ (\text{or else system of } x_1 - \text{finite } \mathcal{E}\text{-net})$

 $\{x_1, x_2\}$ - choose $x_3 \in K : \rho(x_3, x_i) > \mathcal{E}_0, i = 1, 2$ and so on.

 $x_n \in K$: $n \neq m \ \rho(x_n, x_m) > \mathcal{E}_0$ — contains no converging subsequence \implies set is not a compact. $\rightarrow \leftarrow$

§1.2 Normed spaces

Definition. X — linear set, x + y, $\alpha \cdot x$, $\alpha \in \mathbb{R}$

The purpose of norm definition, is to construct a topology on X, so that 2 linear operations are continuous on it.

$$\phi: X \to \mathbb{R}$$
:

1.
$$\phi(x) \ge 0, = 0 \iff x = 0$$

2.
$$\phi(\alpha x) = |\alpha|\phi(x)$$

3.
$$\phi(x+y) \le \phi(x) + \phi(y)$$

Definition. ϕ — **norm** on X, $\phi(x) = ||x||$

$$\rho(x,y) \stackrel{def}{=} ||x-y||$$
 — metric on X.

Definition.

 $(X, \|\cdot\|)$ — **normed space** — special case of metrical space.

$$x = \lim x_n \stackrel{def}{\Longrightarrow} \rho(x_n, x) \to 0 \iff ||x_n - x|| \to 0$$

Statement 1.4. In the topology of a normed space linear operations are continuous on X.

Proof. 1.
$$x_n \to x$$
, $y_n \to y$; $\|(x_n + y_n) - (x + y)\| = \|(x_n - x) + (y_n - y)\| \le \underbrace{\|x_n - x\|}_{\downarrow} + \underbrace{\|y_n - y\|}_{\downarrow} \implies x_n + y_n \to x + y$

2.
$$\alpha_n \to \alpha$$
, $x_n \to x$; $\|\alpha_n x_n - \alpha x\| = \|(\alpha_n - \alpha)x_n + \alpha(x_n - x)\| \le \underbrace{|\alpha_n - \alpha|}_{\text{bounded}} \cdot \underbrace{\|x_n\|}_{\text{bounded}} + \underbrace{\alpha\|x_n - x\|}_{\text{0}}$

$$x_n \to x \implies ||x_n||$$
 — bounded.
 $\alpha_r x_n \to \alpha x$

Statement 1.5. From the triangle inequality $|||x|| - ||y|| \le ||x - y||$ $x_n \to x \implies ||x_n|| \to ||x||$ Norm is continious.

Example 5. \mathbb{R}^n

1.
$$\|\bar{x}\| = \sqrt{\sum_{k=1}^{n} x_k^2}$$

2.
$$\|\bar{x}\|_1 \stackrel{def}{=} \sum_{k=1}^n |x_k|$$

- 3. $\|\bar{x}\|_2 \stackrel{def}{=} \max\{|x_1|\dots|x_n|\}$
- 4. C[a, b] functions continuous on [a, b]; $||f|| = \max_{x \in [a, b]} |f(x)|$

5.
$$L_p(E) = \{f - \text{measurable}, \int_E |f|^p < +\infty \}$$

 $p \ge 1, ||f||_p = (\int_E |f|^p)^{\frac{1}{p}}$

Because the set of points is the same, arises the question about convergence comparison.

$$\|\cdot\|_1 \sim \|\cdot\|_2, \ x_n \stackrel{\|\cdot\|_1}{\to} x \iff x_n \stackrel{\|\cdot\|_2}{\to}$$

Statement 1.6.

$$\|\cdot\|_1 \sim \|\cdot\|_2 \iff \exists a,b>0 \colon \forall x \in X \implies a\|x_1\|_1 \leq \|x\|_2 \leq b\|x\|_1$$

Theorem 1.5 (Riesz).

X, dim $X < +\infty$ — linear set.

<u>Then:</u> Any pair of norms in X are equivalent.

Proof. l_1, \ldots, l_n — linearly independent from X. $\forall x \in X = \sum_{k=1}^n \alpha_k l_K$

$$\bar{x} \leftrightarrow (l_1, \dots, l_n) = \bar{l} \in \mathbb{R}^n$$

Let $\|\cdot\|$ — some norm in X.

$$||x|| \le \sum_{k=1}^{n} ||l_k|| ||\alpha_k|| \le \sum_{Cauchy} \underbrace{\sqrt{\sum_{1}^{n} ||l_k||^2}}_{constB} \sqrt{\sum_{1}^{n} ||\alpha_k||^2} ||\alpha_k||^2$$

$$||x||_1 = \sqrt{\sum_{1}^{n} ||alpha_k||^2}, \ x = \sum_{1} \alpha_k l_k$$

$$||x|| \le b||x||_1$$

Let
$$f(\alpha_1, \dots, \alpha_n) = \left\| \sum_{k=1}^n \alpha_k l_k \right\|$$

$$|f(\bar{\alpha} + \Delta \bar{\alpha}) - f(\bar{\alpha}) = \left\| \sum_{1}^{k} \alpha_{k} l_{k} + \sum_{1}^{n} \Delta \alpha_{k} l_{K} \right\| - \left\| \sum_{1}^{n} \alpha_{k} l_{k} \right\| \leq \left\| \sum_{1}^{n} \Delta \alpha_{k} l_{k} \right\| \leq \sum_{1} \|l_{k}\| |\Delta \alpha_{k}| \implies f - \text{continuous on } \mathbb{R}^{n}$$

$$S_1 = \{\sum_{1}^{n} \alpha_k | ^2 = 1\} \subset \mathbb{R}^m, \text{ f } -\text{continuous on } S_1, \bar{\alpha}^* \in S_1 \\ \forall \alpha \in S_1 \implies f(\bar{\alpha}^*) \leq f(\bar{\alpha}) \\ f(\bar{\alpha}^*) = 0 \\ \left\| \sum_{1}^{n} \alpha_k^* l_k \right\| = 0 \\ \sum_{1}^{n} \alpha_k^* l_k = 0, \ \bar{\alpha}^* \in S_1 \\ l_1 \dots l_n -\text{ linearly independent } \rightarrow \leftarrow \\ \min_{S_1} f = m > 0$$

$$||x|| = \left\| \sum_{1}^{n} \alpha_{K} l_{K} \right\| = f(\bar{\alpha}) = \sqrt{\sum_{1}^{n} \alpha_{k}^{2}} \cdot \left\| \sum_{1} \frac{\alpha_{k}}{\sqrt{\sum_{1}^{n} \alpha_{k}^{2}}} l_{k} \right\|, \ \bar{\beta} = (\beta_{1} \dots \beta_{n}) \in S_{1}$$

$$\geq m \cdot ||x||_{1}, \ a = m \quad \blacksquare$$