HIGH-VOLTAGE MIXED-SIGNAL IC

UC8156

All-in-one driver IC w/ TCON for EPD Application

ES Specifications IC Version: c_D
Datasheet Revision: 0.7 December 21, 2016

Table of Content

Introduction	3
FEATURE HIGHLIGHTS	3
BLOCK DIAGRAM	4
ORDERING INFORMATION	5
PIN DESCRIPTION	6
COMMAND TABLE	8
COMMAND DESCRIPTION	10
MTP	27
HOST INTERFACES	37
POWER MANAGEMENT	38
ABSOLUTE MAXIMUM RATINGS	39
DC CHARACTERISTICS	40
AC CHARACTERISTICS	42
PHYSICAL DIMENSIONS	44
ALIGNMENT MARK INFORMATION	45
PAD COORDINATES	46
APPLICATION	51
TRAY INFORMATION	54
REVISION HISTORY	55

UC8156

All-in-one driver IC with TCON for EPD application

Introduction

The UC8156 is an all-in-one driver with timing controller for EPD displays. Its outputs are with 4 gray level resolutions per pixel. The timing controller provides control signals for the source and gate drivers.

The DC-DC controller allows it to generate the source output voltage VSH/VSL (+/-8~+/-15V). The chip also includes an output buffer for the supply of the COM electrode (AC-VCOM or DC-VCOM). The system is configurable through a 3-wire/4-wire SPI serial interface.

FEATURE HIGHLIGHTS

- System-on-chip (SOC) for EPD displays
- Support up to 240(sources)x160(gates) @ 300Hz
- Up to 2-bit grayscale waveforms (4 level grey-shades)
- Source driver: VSL -8 to -15V, VSH +8 to +15V
- Gate driver: VGL -20 to -27V, VGH +15 to +22V
- DC VCOM: -4V to +10V with a 30mV resolution
- AC VCOM: VCOML=VSL + VCOM_DC VCOMH=VSH + VCOM DC

- · Individual switches for power supplies.
- Transparency write support
- · Built-in temperature sensor
- Supports external LM75 Digital Temperature sensor and compatible devices
- MTP Memory for Waveform storage
- Power Management Integrated Circuit (PMIC)
- Serial peripheral interface (4-wire SPI)
- Built-in Frame memory (Max.): 240x160x2bitx2
- · Support UT1 waveform format
- IO interface supply voltage:1.7~ 3.6V
- Display frame rate: 1Hz ~ 300Hz
- Operating temperature range -30°C to 85°C
- Package: COG, COP (COF compatible)

Remark: Contact UltraChip for a visual inspection document (03-DOC-093).

BLOCK DIAGRAM

All-in-one driver IC with TCON for EPD Application

ORDERING INFORMATION

Part Number	Description
UC8156cGAD-M0P2-3	Gold Bump Die, 280uM thick, dry polish, and without PI
UC8156cGAD-M0PT-3	Gold Bump Die, 200uM thick, dry polish, and without PI
UC8156cGAD-M0P1-3	Gold Bump Die, 150uM thick, dry polish, and without PI

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their application in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER

UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by UltraChip for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of UltraChip Inc. UltraChip's terms and conditions of sale apply at all times.

CONTACT DETAILS

UltraChip Inc. (Headquarter) 4F, No. 618, Recom Road, Neihu District, Taipei 114, Taiwan, R. O. C. Tel: +886 (2) 8797-8947 Fax: +886 (2) 8797-8910

Sales e-mail: sales@ultrachip.com Web site: http://www.ultrachip.com

PIN DESCRIPTION

Type: I: Input, O: Output, I/O: Input/Output, P: Power, C: Capacitor pin

* Pin Count is based on 60uM PAD pitch.

Pin (Pad) Name	Pin Count *	Туре	Description					
			Power Supply					
VDDA	8	Р	Analog Power.					
VDD	6	Р	Core Logic Power.VDD can be regulated internally from VDDA. A capacitor should be connected between VDD and VSS.					
VDDIO	4	Р	Power Supply for the interface.					
VSSA	8	Р	Analog and Pump Ground.					
VSS	7	Р	Core Logic Ground.					
VDM	8	Р	Driver Ground.					
VPP	6	Р	MTP programming voltage input					
SERIAL COMMUNICATION INTERFACE								
SPI_CS	2	I	Serial communication chip select.					
SPI_CLK	2	I	Serial communication clock input.					
SPI_MOSI	2	I	Serial communication data input.					
SPI_MISO	2	0	Serial communication data output.					
CONTROL INTERFACE								
IRQ	2	0	This output pin is the Host IRQ.					
GPIO[03] (GPIO0~GPIO3)	2x4	I/O	These are the General Purpose Input/Output pins.					
EXTVDD	2	I	EXTVDD connected VSSA, internal regulator is on. EXTVDD connected VDDA, internal regulator is off, need an external 1.8V supply to VDD.					
EXTCLK	2	I	External clock input.					
RST_N	2	l (Pull-up)	Global reset pin. Low: reset. When RST_N become low, driver will reset. All register will be reset to default value, and all driver functions will be disabled. SD output and VCOM will base on previous condition; and they may have two cnditions: 0v or floating.					
BUSY_N	2	0	This pin indicates the driver status. L: Driver is busy, data/VCOM is transforming. H: non-busy. Host side can send command/data to driver.					
			OUTPUT DRIVER					
S[0239] (S<0>~S<239>)	240	0	Source driver output signals.					
G[0159] (G<0>~G<159>)	160	0	Gate driver output signals.					
VBD (VBD<0>~VBD<3>)	1x4	0	Border Output signal					
			VCOM GENERATOR					
TPCOM	12	0	TPCOM output signal.					
BPCOM	6	0	BPCOM output signal.					

Pin (Pad) Name	Pin Count *	Туре	Description	
			Power Circuit	
GDR_N	4	0	N-MOS gate control	
GDR_P	4	0	P-MOS gate control	
VGH	8	С	Positive Gate voltage.	
VGL	8	С	Negative Gate voltage.	
VSH	6	С	Positive Source voltage.	
VSL	6	С	Negative Source voltage.	
			Misc. Pins	
TEST0~7	2x8		Test pins. Reserved for testing. For TEST0~TEST2, connect to GND. For TEST3~TEST7, leave them open.	
TAI	2		Test pins. Reserved for testing. Leave them open.	
TAO	2		Test pins. Reserved for testing. Leave them open.	
Dummy	16		Dummy pins.	

COMMAND TABLE

Ndx: Index code, R/W: Read / Write RS: Reset Setting / Default values

#	Command	Ndx	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Action	RS
1.	Revision	00H	R	#	#	#	#	#	#	#	#	Read RevID [7:0]	56h
2.	Panel Setting	01H	RW	-	-	#	#	#	#	#	#	GVS[1:0], GSD, SOD, SOO, SFO	00h
	Dairean Valta an Cattina	0011	R/W	-	#	#	#	-	#	#	#	VGH_LV[2:0], VGL_LV[2:0]	50h
3.	Driver Voltage Setting	02H	R/W	#	#	#	#	#	#	#	#	VSH_LV[3:0], VSL_LV[3:0]	FFh
4.	Power Control Setting	03H	R/W	#	#	#	#	#	#	#	#	CLKSEL[1:0], CLKSRC, CLKEN, VPP_SEL, VSEXT, VGEXT, PWRON	C0h
5.	Boost Setting	04H	R/W	-	#	#	#	-	#	#	#	BSTNDC[2:0], BSTSDC[2:0]	32h
<u> </u>	2000 Colling	0	R/W	-	-	#	#	-	#	#	#	BSTFR[1:0], BSTSC[2:0]	24h
6.	VCOM and Data Interval	05H	R/W	-	-	#	#	#	#	#	#	FI[5:0]	11h
.	Setting	00	R/W	-	-	#	#	#	#	#	#	CDI[5:0]	01h
7.	TCOM Timing Setting	06H	R/W	#	#	#	#	#	#	#	#	GAP[7:0]	03h
	<u> </u>	0011	R/W	#	#	#	#	#	#	#	#	S2G[3:0], G2S[3:0]	11h
8.	Temperature Sensor Configuration	07H		-	-	-	-	#	#	#	#	TDSS[1:0], TAR, TRO	00h
9.	Temperature Value Register	08H		#	#	#	#	#	#	#	#	TV[7:0]	00h
10.	GPIO Configuration Register	09H	R/W	#	#	#	#	#	#	#	#	GDIR[3:0], GDATA[3:0]	00h
11.	GPIO Interrupt Register		R/W	#	#	#	#	#	#	#	#	GIS1[1:0], GIS0[1:0], GIT1[1:0], GIT0[1:0]	00h
12.	GPIO Port Type Register	0BH	R/W	#	#	#	#	#	#	#	#	GCN[3:0], GPH[3:0]	00h
			R/W	#	#	#	#	#	#	#	#	SRC_S[7:0]	00h
13	Panel Resolution Setting	0СН	R/W	#	#	#	#	#	#	#	#	SRC_E[7:0]	EFh
	T and Hosolation Soung	0011	R/W	#	#	#	#	#	#	#	#	GATE_S[7:0]	00h
			R/W	#	#	#	#	#	#	#	#	GATE_E[7:0]	9Fh
			R/W	#	#	#	#	#	#	#	#	X_S[7:0]	00h
14.	Write Pixel Rectangular	0DH	R/W	#	#	#	#	#	#	#	#	X_E[7:0]	EFh
	Setting	ODII	R/W	#	#	#	#	#	#	#	#	Y_S[7:0]	00h
			R/W	#	#	#	#	#	#	#	#	Y_E[7:0]	9Fh
15.	Pixel Access Position Setting	0EH	R/W	#	#	#	#	#	#	#	#	PAX[7:0]	00h
13.	Tixer Access T Osmori Setting	OLII	R/W	#	#	#	#	#	#	#	#	PAY[7:0]	00h
16.	Data Entry Mode Setting	0FH	R/W	-	-	#	#	-	#	#	#	SPIOEN, RAMSEL, DEM[2:0]	20h
17.	Write RAM	10H	W	#	#	#	#	#	#	#	#	PIXEL(n+3)[1:0], PIXEL(n+2)[1:0], PIXEL(n+1)[1:0], PIXEL(n)[1:0]	00h
18.	Read RAM	11H	R	#	#	#	#	#	#	#	#	PIXEL(n+3)[1:0], PIXEL(n+2)[1:0], PIXEL(n+1)[1:0], PIXEL(n)[1:0]	00h
19.	Bypass Update Setting	12H	R/W	-	-	#	#	#	#	#	#	BPRAM, BCRAM, PPLV[1:0], CPLV[1:0]	00h
20.	Initial Update Setting	13H	R/W	#	#	#	#	#	#	#	#	INITLC[3:0], INITTS[3:0]	30h
21.	Display Engine Control Register	14H	R/W	#	#	#	#	#	#	#	#	TKV[1:0], DM[1:0], TDEN, PART_DISP, WSS, DWTRG	00h
22.	Status Register	15H	R	-	-	-	#	#	#	#	#	MTPTO, MBUSY, PRDY, TBUSY, DBUSY	00h
23.	Interrupt Enable Register	16H	R/W	-	#	#	#	#	#	#	#	AMVIE, GPIO1IE, GPIO0IE, MIE, PIE, TIE, DIE	00h
24.	Interrupt Status Register	17H	R/W	1	#	#	#	#	#	#	#	AMVIS, GPIO1IS, GPIO0IS, MIS, PIS, TIS, DIS	00h

All-in-one driver IC with TCON for EPD Application

#	Command	Ndx	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Action	RS
٥٥	VCOM Configuration	4011	R/W	#	#	#	#	#	#	-	#	TPCOM_SEL[1:0], BPCOM_SEL[1:0], BPCOM_LV[1:0], VCOM_SEL	54h
25.	Register	18H	R/W	•	-	-	•	-	-	#	#	VG_SEL[1:0]	00h
			R/W	ı	-	#	#	#	#	#	#	SO_OTHER, SO_COMH, SO_COML	24h
			R/W	-	-	-	-	#	#	#	#	COM_SEL_NF, COM_SEL_IDLE	0Ah
26.	Auto Measure VCOM	19H	R/W	#	#	#	#	#	#	#	#	AMVT[5:0], AMVS, AMVE	14h
27.	VCOM Measure Value	1AH	R	#	#	#	#	#	#	#	#	VMV[7:0]	00h
21.	VCOW Weasure Value	IAH	R	-	-	-	-	-	-	#	#	VMV[9:8]	00h
28.	VCOM DC Setting	1BH	R/W	#	#	#	#	#	#	#	#	VCOM_DC[7:0]	-
20.	VCOW DC Setting	ПОП	R/W	-	-	-	-	-	#	#	#	VCOM_DC[10:8]	-
			R/W	#	#	#	#	#	#	#	#	SW1_0[7:0]	00h
			R/W	#	#	#	#	#	#	#	#	SW1_1[7:0]	00h
			R/W	#	#	#	#	#	#	#	#	SW1_2[7:0]	00h
			R/W	#	#	#	#	#	#	#	#	SW1_3[7:0]	00h
00	Way a favora LLIT Catting	1011	R/W	#	#	#	#	#	#	#	#	SW2_0[7:0]	00h
29.	Waveform LUT Setting	1CH	R/W	#	#	#	#	#	#	#	#		00h
			R/W	#	#	#	#	#	#	#	#	SW24_3[7:0]	00h
			R/W	#	#	#	#	#	#	#	#	VW1[3:0], FC1[3:0]	00h
			R/W	#	#	#	#	#	#	#	#		00h
			R/W	#	#	#	#	#	#	#	#	VW24[3:0], FC24[3:0]	00h
30.	Vborder Setting	1DH	R/W	#	#	#	#	#	#	#	#	VBST[3:0], VBLV[1:0], VBINIT, VBEN	30h
			R/W	-	#	#	#	-	#	#	#	GSP[2:0], SGP[2:0]	11h
31.	Power Sequence Setting	1FH	R/W	-	#	#	#	-	#	#	#	NF1[2:0], NF2[2:0]	11h
	,		R/W	-	#	#	#	-	-	-	-	NF3[2:0]	11h
32.	Software Reset	20H	W	•	-	-	-	-	-	-	-	. 1	-
33.	Sleep Mode	21H	W	-	-	-	-	-	-	-	-		-
34.	Program WS MTP	40H	R/W	#	#	#	#	-	#	#	#	PGRS[3:0], VPPSEL, MARS, PST	F0h
			R/W	#	#	#	#	#	#	#		MTPADDR[7:0]	00h
35.	MTP Address Setting	41H	R/W	-	-	-	-	-	#	#	#	MTPADDR[10:8]	00h
36.	MTP One Byte Program	42H	W	#	#	#	#	#	#	#	#	MTPWD[7:0]	00h
37.	MTP Read	43H	R	#	#	#	#	#	#	#	#	MTPRD[7:0]	00h
		ı		1							1		

COMMAND DESCRIPTION

(1) Revision (Index: 00h) (Default: 56h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Read Revision	R	0	1	0	1	0	1	1	0

These bits indicate the revision code. (Read only)

(2) Panel Setting (Index: 01h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Set Panel	RW	-	-	GVS	[1:0]	GSD	SOD	S00	SFO

GVS[1:0]: Gate driver output Voltage Select.

00: Selected gate output as VGH, non-selected gate output as VGL 01: Selected gate output as VGL, non-selected gate output as VGH

10: All Gate output voltage level as VGL 11: All Gate output voltage level as VGH

GSD: Gate driver Scan Direction.

O: Scan up.
1: Scan down.
First line to Last line: G0, G1, G2... G159
First line to Last line: G159, G158, G157... G0

SOD: Source driver Output Direction.

O: Shift right.
1: Shift left.
First data to Last data: S0, S1, S2... S239
First data to Last data: S239, S238, S237... S0

SOO: Source driver Output Order.

0: S0, S1, S2, S3...S239

1: S0, S120, S1, S121 ... S118, S238, S119, S239 (left and right source interlaced)

SFO: Source driver First Output

 $\underline{0}$: S0 is the 1st source output channel 1: S120 is the 1st source output channel

This command can be active only when DBUSY = "0".

Output pin assignment sequence is shown as below

	S	OO=0	S	00=1
Driver	SFO=0	SFO=1	SFO=0	SFO=1
S0	COL0	COL120	COL0	COL1
S1	COL1	COL121	COL2	COL3
S2	COL2	COL122	COL4	COL5
S3	COL3	COL123	COL6	COL7
:	:	:	:	:
S118	COL118	COL238	COL236	COL237
S119	COL119	COL239	COL238	COL239
S120	COL120	COL0	COL1	COL0
S121	COL121	COL1	COL3	COL2
:	:	:	:	:
S236	COL236	COL116	COL233	COL232
S237	COL237	COL117	COL235	COL234
S238	COL238	COL118	COL237	COL236
S239	COL239	COL119	COL239	COL238

Output pin assignment on different Source Output Mode Setting is shown as below:

(3) Driver Voltage Setting (Index: 02h) (Default: 50h, FFh)

Action	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
Set Driver Voltage	R/W	-	\	/GH_LV[2:0)]	-	VGL_LV[2:0]		
Get Briver Voltage	R/W		VSH_LV[3:0]			VSL_L	-V[3:0]		

VGH_LV[2:0]: VGH power selection.

VGH_LV[2:0]	VGH power	VGH_LV[2:0]	VGH power		
000	15V	100	19V		
001	16V	<u>101</u>	20V		
010	17V	110	21V		
011	18V	111	22V		

VGL_LV [2:0]: VGL power selection.

VGL_LV[2:0]	VGL power	VGL_LV[2:0]	VGL power
<u>000</u>	-20V	100	-24V
001	-21V	101	-25V
010	-22V	110	-26V
011	-23V	111	-27V

VSH_LV [3:0]: VSH power selection.

VSH_LV[3:0]	VSH power	VSH_LV[3:0]	VSH power		
0000	8V	1000	12V		
0001	8.5V	1001	12.5V		
0010	9V	1010	13V		
0011	9.5V	1011	13.5		
0100	10V	1100	14V		
0101	10.5V	1101	14.5V		
0110	11V	1110	15V		
0111	11.5V	<u>1111</u>	150		

VSL_LV [3:0]: VSL power selection.

VSL_LV[3:0]	VSL power	VSL_LV[3:0]	VSL power
0000	-8V	1000	-12V
0001	-8.5V	1001	-12.5V
0010	-9V	1010	-13V
0011	-9.5V	1011	-13.5
0100	-10V	1100	-14V
0101	-10.5V	1101	-14.5V
0110	-11V	1110	-15V
0111	-11.5V	<u>1111</u>	-137

This command can be active only when BUSY_N = "1".

If VGH-VGL is under 42V, ensure the IC safety, we will limit the VGL output voltage.

All-in-one driver IC with TCON for EPD Application

(4) Power Control Setting (Index: 03h) (Default: C0h)

Action	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
Power Control Setting	R/W	CLKS	EL[1:0]	CLKSRC	CLKEN	VPP_SEL	VSSEL	VGSEL	PWRON

CLKSEL[1:0]: TCON clock frequency Select . (Divided by clock source)

CLKSRC: Clock source select.

<u>0</u>: Internal clock source. (1Mhz)

1: External clock source

CLKEN: Internal clock auto enable.

0: Internal clock automatic enable or disable.

1: Internal clock always enable. (Not recommended use this setting)

VPP_SEL: Vpp selection.

0: Vpp supply MTP programming power.

1: when VSH supply MTP programming power, need turn on BOOST and set VSH

VSSEL: Source power selection

0: Inetrnal DC/DC function for generating VSH/VSL1: External source power from VSH/VSL pins

VGSEL: Gate power selection

0: Internal DC/DC function for generating VGH/VGL

1: External gate power from VGH/VGL pins

PWRON: Power On

O: Power OFF. The driver will power OFF based on the Power-off sequence, BUSY_N will become "0". This setting will turn off charge pump, T-con, source/gate driver, and VCOM, but register data will be kept until VDD becomes OFF. SD output and Vcom will remain as previous condition. It may have 2 conditions: 0V or floating.

1: Power ON. The driver will be powered ON following the Power-on sequence. After the Power ON command and all power sequence are ready, the BUSY_N signal will become "1". Refer to the Power ON Sequence section.

This command can be active only when BUSY N = "1"

(5) Boost Setting (Index: 04h) (Default: 32h, 24h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Set Boost	R/W	-	BSTNDC		-		BSTSDC		
Set Boost	R/W	-	-	BS	ΓFR	-		BSTSC	

BSTNDC[2:0]: Normal mode duty cycle setting. **BSTSDC[2:0]:** Soft start duty cycle setting.

BSTNDC[2:0], BSTSDC[2:0]	Duty Cycle
000	10%
001	20%
010	30%
011	40%

BSTNDC[2:0], BSTSDC[2:0]	Duty Cycle
100	50%
101	60%
110	70%
111	80%

BSTFR[1:0]: Boost Frequency setting. 00b: (Reserved)

01b: 500KHz 10b: 250KHz 11b: 125KHz

BSTSC[2:0]: Soft start clock cycle setting.

BSTSC[2:0]	Clock Count
000	128
001	256
010	512
011	1024

BSTSC[2:0]	Clock Count
<u>100</u>	2048
101	4096
110	8192
111	16384

All-in-one driver IC with TCON for EPD Application

@1999~2016

This command can be active only when BUSY N = "1".

Note: ((BSTNDC, BSTSDC=000b) and (BSTFR=01b)) is not workable.

((BSTNDC, BSTSDC=001b) and (BSTFR=01b)) is not workable.

((BSTNDC, BSTSDC=111b) and (BSTFR=01b)) is not workable.

((BSTNDC, BSTSDC=000b) and (BSTFR=10b)) is not workable.

(6) VCOM and Data interval Setting (Index: 05h) (Default: 01h, 01h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Set VCOM and Data Interval	R/W	-	-	FI[5:0]					
Set VOOW and Data Interval	R/W	-	-			CDI	[5:0]		

This command indicates the interval of Frame and interval of Vcom and data output.

This command can be active only when BUSY N = "1".

FI[5:0]: Frame interval

FI[5:0], CDI[5:0]	Interval
000000	1 hsync
000001	2 hsync
000010	3 hsync
111111	64 hsync

CDI[5:0]: Vcom and data interval

(7) TCON Timing Setting (Index: 06h) (Default: 03h, 11h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
Set TCOM Timing	R/W		GAP[7:0]								
Set TCOM Timing R/W			S2G	[3:0]		G2S[3:0]					

This command defines Gate-high period and non-overlap period of Gate and Source.

This command can be active only when BUSY N = "1".

GAP[7:0]: Gate Active Period. Period = ClockPeriod * (GAP + 12)

S2G[3:0]: Source to Gate Non-overlap period. Period = ClockPeriod * S2G **G2S[3:0]:** Gate to Source Non-overlap period. Period = ClockPeriod * G2S

$$FrameRate = \frac{I}{LineNumbers*LinePeriod}$$

$$= \frac{1}{(FI+CDI+GATE_E-GATE_S+1)*((GAP+12+S2G+G2S)*ClkPeriod)}$$

(8) Temperature Sensor Configuration (Index: 07h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Config. Temp. Sensor	R/W	-	-	-	-	TDSS[1:0]		TAR	TRO

This command selects temperature device source.

TDSS[1:0]: Temperature Device Source Select.

00, 01: Direct refer TV[7:0] setting

10: Using internal temperature sensor.

11: Using external temperature sensor. External temperature sensor must be connection to GPIO[3:2] port.

TAR: Temperature Auto Retrieval.

This bit determines whether the internal or external temperature is auto retrieved at the beginning of an update.

- 0: temperature retrieval is disabled.
- 1: temperature retrieval is enabled.

TRO: Temperature sensor read operation. (Write only)

0: No effect.

1: Trigger an temperature sensor read operation and also update the temperature value to TV[7:0] at operation end. TDSS[1] must set to '1'.

(9) Temperature Value Register (Index: 08h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
Temperature Value Register	R/W		TV[7:0]								

TV[7:0]:

These bits store the temperature value which will be used for Waveform retrieval on the next display update operation. When TDSS[1]='1' and TAR='1' (R07h), these bits are automatically updated on every frame update operation.

If TDSS='0x', write this registers can direct setting the temperature value.

If TDSS='10', read this registers to obtain internal sensor value. This registers will automatic update when write TRO=1 or TAR=1.

If TDSS='11', read this registers to obtain external sensor value. This registers will automatic update when write TAR=1.

(10) GPIO Configuration Register (Index: 09h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
GPIO Configuration Register	R/W			R[3:0]			GDAT	A[3:0]	

GDIR[3:0]: These bits configure each individual GPIO pin between an input or an output.

0: the corresponding GPIO pin is configured as an input pin.

1: the corresponding GPIO pin is configured as an output pin.

GDATA[3:0]:

When GPIOx is configured as an input, a read from this bit returns the state of the corresponding GPIOx pin. When GPIOx is configured as an output, a write to this bit drives the output state of the corresponding GPIOx pin.

999~2016 All-in-one driver IC with TCON for EPD Application

(11) GPIO Trigger Setting (Index: 0Ah) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
GPIO Interrupt Register	R/W	GIS1	[1:0]	GISC	[1:0]	GIT1	[1:0]	GITO	[1:0]

GISx[1:0]: GPIOx triggered status.

00: Both edge trigger has not occurred.

01: Positive edge trigger has occurred.

10: Negative edge trigger has occurred.

11: Both edge trigger has occurred.

Write '11b' to clear these bit.

GITx[1:0]: GPIOx pin is triggered on the which edge.

00: Positive edge.

01: Negative edge.

1x: Both edges.

(12) GPIO Port Type (Index: 0Bh) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
GPIO Port Type Register	R/W		GCN	l[3:0]			GPH	l[3:0]	

GCN[3:0]: GPIOx output type setting.

0: Push-pull

1: Open-drain, need external pull-high circuit

GPH[3:0]: GPIOx input pull-up resistor setting.

0: Disable GPIOx input pull-up resistor.

1: Enable GPIOx input pull-up resistor.

(13) Panel Resolution Setting (Index: 0Ch) (Default: 00h, EFh, 00h, 9Fh)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
	R/W				SRC_	S[7:0]				
Panel Resolution Setting	R/W SRC_E[7:0]									
r arier resolution Setting	R/W				GATE	_S[7:0]				
	R/W									

This command defines alternative resolution.

SRC_S[7:0]: First active SOURCE channel

SRC_E[7:0]: Last active SOURCE channel

GATE_S[7:0]: First active GATE channel

GATE_E[7:0]: Last active GATE channel

EX: SRC S=0Ah, SRC E=BDh, GATE S=10h, GATE E=8Fh

Resolution: 180 x 128 (BDh-0Ah+1=180, 8Fh-10h+1=128)

First active SOURCE channel = S10, Last active SOURCE channel = S189 First active GATE channel = G16, Last active GATE channel = G143

This command can be active only when BUSY N = "1".

(14) Write Pixel Rectangular Setting (Index: 0Dh) (Default: 00h, EFh, 00h, 9Fh)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0			
	R/W				X_S	[7:0]						
Write Pixel Rectangular Setting	R/W	R/W X_E[7:0]										
Write Fixer Rectangular Setting	R/W	/W Y_S[7:0]										
	R/W	W Y_E[7:0]										

These bits specify the rectangular of the image write.

X_S[7:0]: Set SOURCE start position of the rectangular area.

X_E[7:0]: Set SOURCE end position of the rectangular area.

Y S[7:0]: Set GATE start position of the rectangular area.

Y_E[7:0]: Set GATE end position of the rectangular area.

Note:

X direction (X_S + X_E + 1) must be 4 times pixel unit in the X-mode (R0Fh DEM[2]=0).

Y direction (Y S + Y E + 1) must be 4 times pixel unit in the Y-mode (R0Fh DEM[2]=1).

This command can be active only when BUSY N = "1".

(15) Pixel Access Position Setting (Index: 0Eh) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Pixel Access Position Setting	R/W				PAX	[7:0]			
Tixel Access Fosition Setting	R/W				PAY	[7:0]			

PAX[7:0]: Set the X start address for RAM access PAY[7:0]: Set the Y start address for RAM access

After RAM data are accessed, the address counter is automatically updated according to the settings with DEM[2:0] bits and the setting for a new RAM address is not required in the address counter. Therefore, data are written consecutively without setting an address. The address setting should be made within the area designated with rectangular area which is controlled by the "Data Entry Setting (R0Fh)" and "Write Pixel Rectangular Setting (R0Dh)". Otherwise undesirable image will be displayed on the Panel.

(16) Data Entry Mode Setting (Index: 0Fh) (Default: 20h)

Action	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
Data Entry Mode Setting	R/W	-		SPIOEN	RAMSEL	-		DEM[2:0]	

SPIOEN: SPI output tristate enable.

0: Tristate disable.

1: Tristate enable, spi_miso will tri-state at non output period. (Default)

RAMSEL: Select the RAM of image write or read.

0: Current RAM buffer.

1: Previous RAM buffer.

DEM[2]: Set the direction in which the address counter is updated automatically after data are written to the RAM.

0: the address counter is updated in the X direction.

1: the address counter is updated in the Y direction.

DEM[1:0]:

00: Y increment, X increment,

01: Y increment, X decrement,

10: Y decrement, X increment,

11: Y decrement, X decrement.

(17) Write RAM (Index: 10h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
		Pixel(0)		Pixel(1)		Pixel(2)		Pixel(3)	
Write RAM	W	:		:		:			
		Pixel	(n-4)	Pixel(n-3)		Pixel(n-2)		Pixel	(n-1)

After this command, data entries will be written into the RAM until another command is written. Address pointers will advance accordingly.

 $Pixel(x)[1:0]=00 \rightarrow GS0$

 $Pixel(x)[1:0]=01 \rightarrow GS1$

 $Pixel(x)[1:0]=10 \rightarrow GS2$

 $Pixel(x)[1:0]=11 \rightarrow GS3$

where $x=0 \sim n-1$

This command can be active only when DBUSY = "0".

(18) Read RAM (Index: 11h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
		Pixe	el(0)	Pixe	el(1)	Pixe	el(2)	Pixe	el(3)
Read RAM	R				:				
		Pixel	(n-4)	Pixel	(n-3)	Pixel(n-2)		Pixel	(n-1)

After this command, data read on the MCU bus will fetch data from RAM, until another command is written. Address pointers will advance accordingly. This command can be active only when DBUSY = "0".

(19) Bypass Update Setting (Index: 12h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Bypass Update Setting	R/W	-	-	BPRAM	BCRAM	PPL\	/[1:0]	CPL	/[1:0]

BPRAM: Bypass Previous RAM buffer.

0: Using previous RAM buffer for display update.

1: Using PPLV[1:0] for display update.

BCRAM: Bypass Current RAM buffer.

0: Using current RAM buffer for display update.

1: Using CPLV[1:0] for display update.

PPLV[1:0]/CPLV[1:0]: Previous Pixel level setting / Current Pixel level setting

This command can be active only when DBUSY = "0".

(20) Initial Update Setting (Index: 13h) (Default: 33h)

Action	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
Initial Update Setting	R/W		INITL	C[3:0]			INITT	S[3:0]	

INITLC[3:0]: Initial update Loop Count. init_loop_cnt = INITLC[3:0] + 1 default is loop 4 times, INITLC[3:0]=3

INITTS[3:0]: Initial update transitions setting

INITTS	Transitions
0000	GS0→GS0
0001	GS0→GS1
0010	GS0→GS2
0011	GS0→GS3
0100	GS1→GS0
0101	GS1→GS1
0110	GS1→GS2
0111	GS1→GS3

INITTS	Transitions
1000	GS2→GS0
1001	GS2→GS1
1010	GS2→GS2
1011	GS2→GS3
1100	GS3→GS0
1101	GS3→GS1
1110	GS3→GS2
1111	GS3→GS3

For Example: Assume INITLC=0011b & INITTS=1100b

When we trigger an initial update, the pixel value of panel area will be the below sequence.

 $GS3 \rightarrow GS0 \rightarrow GS3 \rightarrow GS0 \rightarrow GS3 \rightarrow GS0 \rightarrow GS3 \rightarrow GS0$

This command can be active only when DBUSY = "0".

(21) Display Engine Control Register (Index: 14h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Display Engine Control Register	R/W	TKV	[1:0]	DM[[1:0]	TDEN	PART_DISP	WSS	DWTRG

TKV[1:0]: Transparency Key Value.

00:GS0 01:GS1 10:GS2 11:GS3

DM[1:0]: Display Mode Select, these bits select the display mode that is triggered when the DWTRG bit is set(R12H bit0=1b).

00: Full Display Update. The update area of rectangular is defined in R0Ch.

01: Initial Update. The update area of rectangular is defined in R0Ch.

10: Area Display Update. The update area of rectangular is defined in R0Dh.

11: Area Display Update (disable non-select gate line). The update area of rectangular is defined in R0Dh.

TDEN: Transparency Display Enable

0: Transparency Off.

1: Transparency On.

PART_DISP: Partial Display. When Old_data=New_data, the pixel is not updated. The default of the source driver output voltage can be modified by so other.

0: OFF (Normal Display)

1: Partial Display.

WSS: Waveform source select

0: Read waveform from LUT (R1Ch)

1: Read waveform from MT

DWTRG: Display Write Trigger, This bit can be active only when BUSY N = "1". (Write Only)

0: No effect.

1: Triggers a new display operation.

(22) Status Register (Index: 15h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Status Register	R	-	-	-	MTPTO	MBUSY	PRDY	TBUSY	DBUSY

MTPTO: 0: MTP programming normally. 1: MTP programming time out has occurred.

MBUSY: 0: MTP idle. 1: MTP internal operation busy. **PRDY:** 0: Internal Pump not ready. 1: Internal Pump is ready.

TBUSY: 0: Temperature device is idle. 1: Temperature device is busy. (This device coordinates of R07h TDDS setting)

DBUSY: 0: Display Engine is idle. 1: Display Engine is busy.

(23) Interrupt Enable Register (Index: 16h) (Default: 00h)

	Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0	ı
	Interrupt Enable Register	R/W	-	AVMIE	GPIO1IE	GPIO0IE	MIE	PIE	TIE	DIE	l
	VMVIE: Auto VCOM Measure Intern	nable		<u>0</u> :	Disable	1: Ena	ble				
GPIO1IE: GPIO1 trigger Interrupt Enable						Disable	1: Ena	ble			
	GPIO0IE: GPIO0 trigger Interrupt E		<u>0</u> :	Disable	1: Ena	ble					
	MIE: MTP programming finish Inter	rupt E	nable		<u>0</u> :	Disable	1: Ena	ble			
	PIE: Pump ready Interrupt Enable				<u>0</u> :	Disable	1: Ena	ble			
	TIE: Temperaure read operation complement Interrupt Enable				<u>0</u> :	<u>0</u> : Disable 1: Enable					
	DIE: Display update complement In	terrup	t Enable		<u>0</u> :	Disable	1: Ena	ble			

(24) Interrupt Raw Status Register (Index: 17h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Interrupt Status Register	R/W		AVMIS	GPIO1IS	GPIO0IS	MIS	PIS	TIS	DIS

VMVIS: Auto VCOM Measure Interrupt Raw Status

<u>0</u>: VMV register (R1Ah) has <u>NOT</u> updated. 1: VMV register has updated.

GPIO1IS: GPIO1 trigger Interrupt Raw Status

<u>0</u>: GPIO1 trigger has <u>NOT</u> occurred. 1: GPIO1 trigger has occurred.

GPIO0IS: GPIO0 trigger Interrupt Raw Status

<u>0</u>: GPIO0 trigger has <u>NOT</u> occurred.1: GPIO0 trigger has occurred.

MIS: MTP programming finish Interrupt Raw Status

<u>o</u>: MTP programming finish has <u>NOT</u> occurred. 1: MTP programming finish has occurred.

PIS: Pump ready Interrupt Raw Status

<u>o</u>: Pump ready interrupt has <u>NOT</u> occurred. 1: Pump ready interrupt has occurred.

TIS: Temperaure read operation complement Interrupt Raw Status

<u>o</u>: Temperature read complement has <u>NOT</u> occurred. 1: Temperature read complement has occurred.

DIS: Display update complement Interrupt Raw Status (Include Auto Vcom measue complement)

Display update complement interrupt rias of status (include Auto voor measure complement)

0: Display update complement has <u>NOT</u> occurred.1: Display update complement has occurred.

Write '1' to clear these registers.

(25) VCOM Configuration Register (Index: 18h) (Default: 54h, 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
VCOM Configuration Register	R/W	TPCOM_	SEL[1:0]	BPCOM_	SEL[1:0]	BPCOM	_LV[1:0]	-	VCOM_SEL
	R/W	-	-	-	•	-	•	VG_SI	EL[1:0]
VOOM Configuration register	R/W	-	-	SO_OTHER[1:0]		SO_COMH[1:0]		SO_COML[1:0]	
	R/W	-	-	-	-	COM SE	L_NF[1:0]	COM SEL	IDLE[1:0]

TPCOM_SEL[1:0]: Define the TPCOM level at end of an update. **BPCOM_SEL[1:0]:** Define the BPCOM level at end of an update.

BPCOM_LV[1:0]: Define the BPCOM level during update.

	00b	01b	10b	11b
TPCOM_SEL[1:0] / BPCOM_SEL[1:0] / BPCOM_LV[1:0]	GND	Hi-Z	VCOM	VCOM

VCOM SEL:

0: DC VCOM, VCOM output voltage will be fixed in VCOM_DC voltage (R1Bh).

1: AC VCOM, VCOM output voltage will base on VCOM setting in VW LUT or VW MTP.

VG_SEL[1:0]: Define the All GATE driver level at end of an update.

00: GND 01: Hi-Z 1x: Non-select (VGH or VGL according R00h GVS setting)

SO_OTHER[1:0]: Define source driver output voltage when non-update and VCOM=(COM_DC, GND, HiZ). Default: 10b

SO_COMH[1:0]: Define source driver output voltage when non-update and VCOM=COM_H. Default: 01b

SO COML[1:0]: Define source driver output voltage when non-update and VCOM=COM L. Default: 00b

	00b	01b	10b	11b
SO_OTHER[1:0] /	VSL	VSH	GND	HiZ
SO_COMH[1:0] /	VSL	VSH	GND	HiZ
SO_COML[1:0]	VSL	VSH	GND	HiZ

COM SEL NF[1:0]: Define TPCOM output voltage when null-frame period. Default: 10b

COM SEL IDLE[1:0]: Define TPCOM output voltage when display-idle period. Default: 10b

	00b	01b	10b	11b
COM_SEL_NF[1:0] / COM_SEL_IDLE[1:0]	GND	HiZ	(keep)	VCOM_DC

This command can be active only when BUSY_N = "1".

(26) Auto Measure VCOM (Index: 19h) (Default: 14h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Auto Measure VCOM	R/W			AMV ⁻	Γ[5:0]			AMVS	AMVE

This command reads the IC status.

AMVT[5:0]: Auto Measure Vcom Time

Total Vcom measure time = 24 * AMVT[5:0] * FramePeriod = 24 * AMVT[5:0] * LineNumbers * LinePeriod

Note1: the term of LineNumbers and LinePeriod please refer to R06h.

Note2: AMVT[5:0] >= 1

AMVS: Auto Measure Vcom Select.

0: Get Vcom value using internal circuit and stored in VMV registers (R1Ah).

1: Get Vcom value using external circuit.

AMVE: Auto Measure Vcom Enable (write only)

0: No effect

1: Trigger auto Vcom sensing.

This command can be active only when BUSY_N = "1".

(27) VCOM Measure Value (Index: 1Ah)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
VCOM Measure Value	R				VMV	′[7:0]			
VOCIVI IVICASUITE VAILLE	R	R VMV						[9:8]	

This command gets the Vcom value with a 30mV resolution.

If VMV[9]=0, VCOM measure value is + VMV[9:0] * 30mV

If VMV[9]=1, VCOM measure value is - VMV[9:0] * 30mV

(28) VCOM DC Setting (Index: 1Bh) (Default: VCOM_DC value from MTP)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
VCOM DC Setting	R/W	VCOM_DC[7:0]							
VOOW DO Setting	-	-	-	-	-	VC	OM DC[10):8]	

This command sets VCOM_DC value with a 30mV resolution. After power on (REG03h bit0), the VCOM_DC register will loaded with MTP value. If MTP has not been programmed, then default will be 000h

VCOM_DC[9:0]: Vcom Value

VCOM_DC [10]	VCOM_DC[9:0]	VCOM	VCOM_DC [10]	VCOM_DC[9:0]	VCOM
0	000h	0.00 V	1	000h	-0.00 V
0	001h	0.03 V	1	001h	-0.03 V
0	002h	0.06 V	1	002h	-0.06 V
0	003h	0.09 V	1	003h	-0.09 V
0			1	•••	
0	084h	3.96 V	1	084h	-3.96 V
0	085h	3.99 V	1	085h	-3.99 V
0	086h	4.02 V	1	086h	-4.02 V
0			1	087h ~ 3FFh	Reserved
0	14Ch	9.96 V			
0	14Dh	9.99 V			
0	14Eh	10.02 V			
0	14Fh ~ 3FFh	Reserved			

Write this command can be active only when DBUSY = "0"

(29) Waveform LUT Setting (Index: 1Ch) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
		SW1_0								
			SW1_1							
		SW1_2								
			SW1_3							
			SW2_0							
Waveform LUT Setting	R/W	:								
		SW24_3								
		FC1 V						V1		
	FC2 VW2					V2				
	FC3 VW3						V 3			
		: :								
		FC24 VW24								

Write this command can be active only when DBUSY = "0" Source Waveforms LUT content define.

	D7	D6	D5	D4	D3	D2	D1	D0
SWn_0	GS0→GS3		GS0→GS3 GS0→GS2		GS0→GS1		GS0→GS0	
SWn_1	GS1-	→GS3	GS1-	→GS2	GS1-	→GS1	GS1-	→GS0
SWn_2	GS2→GS3		GS2→GS3 GS2→GS2 GS2→GS1		→GS1	GS2-	→GS0	
SWn_3	GS3-	→GS3	GS3-	→GS2	GS3-	→GS1	GS3-	→GS0

Source waveform voltage transitions define.

code	Vsource waveform
00	VSL
01	VSH
10	GND
11	HiZ

VCOM Waveforms LUT content define.

code	VCOM Waveform			
0000	GND			
0001	VCOM_DC			
0010	VSH+VCOM_DC			
0011	VSL+VCOM_DC			
other	HiZ			

Frame Count LUT content define.

code	Frame Count
0000	Frame skipped
0001	1-frame
0010	2-frame
0011	
1110	14-frame
1111	15-frame

(30) VBorder Setting (Index: 1Dh) (Default: 30h)

Action	R/W	D 7	D6	D5	D4	D3	D2	D1	D0
Vborder Setting	R/W		VBST[3:0]			VBL\	/[1:0]	VBINIT	VBEN

VBST[3:0]: Selection VBD transitions.

VBD Transitions
GS0→GS0
GS0→GS1
GS0→GS2
GS0→GS3
GS1→GS0
GS1→GS1
GS1→GS2
GS1→GS3

VBST	VBD Transitions
1000	GS2→GS0
1001	GS2→GS1
1010	GS2→GS2
1011	GS2→GS3
1100	GS3→GS0
1101	GS3→GS1
1110	GS3→GS2
1111	GS3→GS3

VBLV[1:0]: Selection VBD level during "non-update time".

00: HiZ 01: VCOM 1x: GND

VBINIT: Selection which transitions for initialize update.

0: Use initial transitions. (R13h INITTS)

1: Use VBD transitions.

VBEN: Selection whether to switch the border during next update or not.

0: VBD update Disable. 1: VBD update Enable.

This command can be active only when DBUSY = "0".

(31) Power Sequence Setting (Index: 1Fh) (Default: 11h, 11h, 10h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
	R/W	-	GSP[2:0]			-	SGP[2:0]		
Power Sequence Setting	R/W	-	NF1[2:0]		-		NF2[2:0]		
	R/W	-		NF3[2:0]		-	-	-	-

Power On/Off Sequence Setting, This command can be active only when $BUSY_N = "1"$.

GSP[2:0]: GATE voltage ON to SOURCE voltage ON period.

SGP[2:0]: SOURCE voltage OFF to GATE voltage OFF period.

GSP[2:0]; SGP[2:0]	Period
000b	no delay
001b	1ms
010b	2ms
011b	3ms
100b	4ms
101b	5ms
110b	Reseved
111b	Reseved

NF1[2:0]: Null Frame1 period. NF2[2:0]: Null Frame1 period. NF3[2:0]: Null Frame1 period.

NF(x)[2:0]	Period
000b	Zero delay
001b	1-Frame time
010b	2-Frame time
011b	3-Frame time
100b	4-Frame time
101b	5-Frame time
110b	6-Frame time
111b	7-Frame time

(32) Software Reset (Index: 20h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Software Reset	W	-	-	-	-	-	-	-	-

Write any data to this command, the driver will be reset, all registers will be reset to their default value. All driver functions will be disabled. SOURCE driver output and VCOM will base on previous condition. It may have two conditions: 0v or floating.

(33) Sleep Mode (Index: 21h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Sleep Mode	W		-	-	-	-	-	-	-

Write any data to the command, the driver will be entry sleep mode. Insert a rise pulse on RST N pin then back to normal mode.

(34) Program WS MTP (Index: 40h) (Default: F0h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Program WS MTP	R/W		PGRS[3:0]				-	MARS	PST

Program MTP of Waveform Setting, the contents should be written into RAM before sending this command.

PGRS[3:0]: Program Range Setting.

PGRS[3:0]	MTP Program Range	Description
0000b	000h ~ 077h	WS1
0001b	078h ~ 0EFh	WS2
0010b	0F0h ~ 167h	WS3
0011b	168h ~ 1DFh	WS4
0100b	1E0h ~ 257h	WS5
0101b	258h ~ 2CFh	WS6
0110b	2D0h ~ 347h	WS7
0111b	348h ~ 3BFh	WS8
1000b	3C0h ~437h	WS9
1001b	438h ~ 4AFh	WS10
1010b	4B0h ~ 4B8h	TS
1011b	000h ~ 4B8h	WS1 ~ WS10 +TS
1100b~1111b		Reserved

MARS: MTP Access Region Selection.

<u>0</u>: Select type1 region 1: Select type2 region

PST: Program Start (Write Only).

<u>0</u>: No effect. 1: Start a MTP program operation. (Writing '1' can be active only when BUSY_N = "1".)

For Programming the WS and TR, Write RAM is required, and the configurations should be

,	•	1 ,
C 0D	Command 0Dh	Command (14) "Write Pixel Rectangular Setting"
D 00	Parameter 1 default 00h	Sets RAM X-Address for S0
D EF	Parameter 2 default EFh	Sets RAM X-Address for S239
D 00	Parameter 3 default 00h	Sets RAM Y-Address for G0
D 9F	Parameter 4 default 9Fh	Sets RAM Y-Address for G159
C 0E	Command 0Eh	Command (15) "Pixel Access Position Setting"
D 00	Parameter 1 default 00h	Sets start X-address for S0
D 00	Parameter 2 default 00h	Sets start Y-address for G0
C 0F	Command 0Fh	Command (16) "Data Entry mode"
D 00	Parameter 1 default 00h	Sets "Address automatic increment" to "X increment" and "Y increment"
		Sets "Address counter updated" to "in X direction" (rather than Y direction)
		Selects to use "current" RAM buffer (rather than "previous")

MTP Content Address Mapping

Write RAM Start	Address (R0Eh)	MTP Content
PAX	PAY	WITE Content
0	0	WS1
0	2	WS2
0	4	WS3
0	6	WS4
0	8	WS5
0	10	WS6
0	12	WS7
0	14	WS8
0	16	WS9
0	18	WS10
0	20	TS

(35) MTP Address Setting (Index: 41h) (Default: 00h, 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
MTP Address Setting	R/W		MTPADDR[7:0]							
Will Address Setting	R/W	-	MTPADDR[10:8]							

MTPADDR valid range is 000h to 4FFh.

After each byte is accessed, the content of the MTPADDR is auto matically incremented.

(36) MTP One Byte Program (Index: 42h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
MTP One Byte Program	W				MTPW	/D[7:0]			

Write this byte will generate an internal MTP program operation; cause MTPDATA to be written to MTPADDR.

This command can be active only when BUSY_N = "1".

(37) MTP Read (Index: 43h) (Default: 00h)

Action	R/W	D7	D6	D5	D4	D3	D2	D1	D0
MTP Read	R				MTPR	D[7:0]			

Read one byte MTP content to MTPRD, the MTP address according to the MTPADDR.

This command can be active only when BUSY_N = "1".

MTP

The MTP is the non-volatile memory and stored the information:

10 sets of WAVEFORM SETTING (WS) [100bytes x 10]

9 sets of TEMPERATURE SETTING (TS) [1byte x 9]

MTP Content and Address Mapping

Temperature setting mechanism

Ambient Temperature	Select of waveform setting
temperature < temp1	ws1
$temp1 \le temperature < temp2$	ws2
$temp2 \le temperature < temp3$	ws3
$temp3 \le temperature < temp4$	ws4
$temp4 \le temperature < temp5$	ws5
$temp5 \le temperature < temp6$	ws6
$temp6 \le temperature < temp7$	ws7
$temp7 \le temperature < temp8$	ws8
$temp8 \le temperature < temp9$	ws9
temp9 ≤ temperature	ws10

Programmable Source and Gate waveform illustration

Typical Operating Sequence

■ Power On

■ Power Off

All-in-one driver IC with TCON for EPD Application

FULL IMAGE PIXEL WRITE

Resolution: 180x128

FULL IMAGE UPDATE

System in normal mode

Host finished writing to image buffer

All-in-one driver IC with TCON for EPD Application

AREA IMAGE PIXEL WRITE

Windows size: 100x80 System in normal mode Upper left location of the windows: (20,30) REG[0Fh] DEM Set Data Entry Mode REG[0Dh] Set the rectangular window of pixel write X_S=20, X_E=119 Y_S=30, Y_E=109 REG[0Eh] PAX=20, PAY=30 Set start position of pixel write. REG[10h] Burst write image Write Pixel to RAM Pixel write complete

AREA WINDOW IMAGE UPDATE

System in normal mode

■ WS MTP PROGRAMMING

With External VPP Voltage

WS Programming complete

Note: VPP Current Clamp 10mA

@1000~2016

With Internal VSH

WS Programming complete

■ VCOM SENSING AND MTP PROGRAMMING

@1999~2016

HOST INTERFACES

All commands, addresses and data are shifted in and out of the device, most significant bit first.

SPI_MOSI (Serial Data Input) is sampled on the first rising edge of SPI_CLK (Serial Clock) after SPI_CS (Chip Select) is driven Low. Then, the one-byte instruction code must be shifted in to the device, most significant bit first, on SPI_MOSI, each bit being latched on the rising edges of SPI_CLK.

Every instruction sequence starts with a one-byte instruction code. Depending on the instruction, this might be followed by data bytes or none. SPI_CS must be driven high after the last bit of the instruction sequence has been shifted in.

Read SRAM data or MTP data need insert a dummy read.

POWER MANAGEMENT

@1999~2016

ABSOLUTE MAXIMUM RATINGS

Signal	Item	Min	Max.	Unit
VDD	Chip Supply voltage	- 0.3	+3.6	V
VDDIO	IO Supply voltage	-0.3	+3.6	V
Source				
Vsh	Analog supply voltage – positive		+16	V
VsL	Analog supply voltage negative	-16		V
Gate				-
VgH	Analog supply voltage – positive		+22	V
VgL	Analog supply voltage negative	-27		V
Vgh-Vgl	Voltage Range of VGH – VGL		42	V
lvgн	Input rush current for VgH	(TBD)	(TBD)	mA
lvgL	Input rush current for VGL	(TBD)	(TBD)	mA
Tstg	Storage temperature range	-40	+125	°C

Warning:

If ICs are stressed beyond those listed above "absolute maximum ratings", they may be permanently destroyed. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

	DIGITAL DC CHARACTERISTICS								
Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit			
VDDIO	IO Supply voltage		1.7	3.3	3.6	V			
VDDA	Analog Supply voltage		3.0	3.3	3.6	V			
VDD	Core Supply voltage	When EXTVDD=1, internal regulator tune off and using VDD to supply core power.	1.7	1.8	2.0	V			
VPP	MTP supply voltage		8.5	9	9.5	٧			
VIL	LOW Level input voltage	Logic input pins	0		0.3xVddio	V			
ViH	HIGH Level input voltage	Logic input pins	0.7xVddio		Vddio	V			
Vон	HIGH Level output voltage	Logic output pins, IoH=400∪A	VDDIO-0.4			V			
Vol	LOW Level output voltage	Logic output pins, IoL=-400UA	0		0.4	V			
lin	Input leakage current	Digital input pins except pull-up, pull-down pin	-1		1	uA			
ISLVDD	Sleep current	Sleep mode		100		nA			
Istvdd	Standby current	Non-update, No load		35		uA			
lopvdd	Operating current		2	4		mA			
Rin	Pull-up/down impedance			200		ΚΩ			
Dov	EPD driver ON resistance	ta=25°C, for Source			15	ΚΩ			
Ron	EFD UNIVERON TESISIANCE	ta=25°C, for Gate			8	L/77			
Тор	Operating temperature		-30		85	°C			

Analog DC Characteristics									
Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit			
VSH	Supply Voltage	For source driver/VCOM		15		V			
dVSH	Supply Voltage Deviation		-300	0	300	mV			
VSL	Supply Voltage	For source driver/VCOM		-15		٧			
dVSL	Supply Voltage Deviation		-300	0	300	mV			
VSH+VSL	Voltage Range of VSH + VSL	VSH and VSL is symmetric	-200	0	200	mV			
VCOM	VCOM Voltage		-4		10	V			
dVCOM	VCOM Voltage Deviation	VCOM: 2V~5V	-300	0	300	mV			
UVCOIVI	VCOW Vollage Deviation	VCOM<2V, or VCOM>5V	-500	0	500	mV			
VGH-VGL	Voltage Range of VGH – VGL				42	٧			
VGL	VGL voltage Range	For gate driver	-27		-20	V			
dVGL	VGL Supply Voltage Deviation		-500		500	mV			
VGH	VGH voltage Range	For gate driver	15		22	٧			
dVGH	VGH Supply Voltage Deviation		-500		500	mV			
	Digital deep sleep current	VDD OFF		0.02		uA			
Ivdd	Digital stand-by current	All stopped		5.0	50.0	uA			
	Digital operating current			38		mA			
	IO deep sleep current	VDD OFF		0.01		uA			
Ivddio	IO stand-by current	Booster OFF		0.03		uA			
	IO operating current	No load			0.08	mA			
	DCDC deep sleep current	VDD OFF		0.03		uA			
	DODO -td byt	Booster OFF		20	30.0	uA			
	DCDC stand-by current	Booster ON		85		uA			
IVDDA	DCDC operating current	Source output VSH/VSL, duty=0.5, Period =126us, VCOM DC External cap: 415pF, NMOS=340pF		0.02	1	mA			

AC CHARACTERISTICS

Serial Interface - Write

SIGNAL SYMBOL Parameter Condition MIN. TYP. MAX. UNIT **SERIAL COMMUNICATION** Chip select setup time 60 tcss ns Chip select hold time 65 tcsh ns SPI_CS tscc Chip select setup time 20 ns tchw Chip select width 40 ns Serial clock cycle (Write) 100 tscycw ns SPI CLK "H" pulse width (Write) 40 tshw ns SPI_CLK "L" pulse width (Write) tslw 40 ns SPI_CLK Serial clock cycle (Read) 150 tscycr ns SPI_CLK "H" pulse width (Read) tshr 60 ns SPI CLK "L" pulse width (Read) 60 tslr ns tsds Data setup time 30 ns SPI_MOSI Data hold time tsdh 30 ns Access time 30 tacc SPI MISO toh Output disable time 20 ns DRIVER Source driver rise time CL=120pF 20 trS 12 us 10% to 90% tFS 12 Source driver fall time 20 us trG Gate driver rise time CL=480pF, 12 20 us

All-in-one driver IC with TCON for EPD Application

SYMBOL	SYMBOL SIGNAL Parameter		Condition	MIN.	TYP.	MAX.	UNIT
tFG	tFG Gate driver fall time		10% to 90%		12	20	us
trCOM		VCOM rise time	RL_COM=500ohm		60		us
tFCOM		VCOM fall time	C∟_COM=22nF		60		us
		RC LOAD	DING				
RL_S		Source driver output loading			8.8		ΚΩ
CL_S					120		pf
RL_G	RL_G Gate driver output loading				1.645		ΚΩ
CL_G					480		pf

All-in-one driver IC with TCON for EPD Application

PHYSICAL DIMENSIONS

Circuit / Bump View: (Temporary)

Die Size: $(9640 \mu M \pm 40 \mu M) \times (1240 \mu M \pm 40 \mu M)$

Die Thickness: 280µM ± 20µM

Die TTV: $(D_{MAX} - D_{MIN})$ within die $\leq 2\mu M$

Bump Height: $15 \mu M \pm 3 \mu M$

 $(H_{MAX} - H_{MIN})$ within die $\leq 2\mu M$

Hardness: $65Hv \pm 15Hv$

Shear: $\geq 5g / mil^2$

Bump Size: $18\mu M \times 75 \mu M \pm 2\mu M$

Pad center

Bump Pitch: 44µM

Pad reference:

Bump Gap: $26 \mu M \pm 3 \mu M$ Bump Area: $1350 \mu M^2$ Coordinate origin: Chip center

All-in-one driver IC with TCON for EPD Application

©1999~2016

ALIGNMENT MARK INFORMATION

Location:

Shapes and Points:

Upper Left Mark

Upper Righ Mark

Point Coordinates:

	Uppe	r Left	Upper Right	
Point	Х	Υ	Х	Υ
Center	-4698	460	4718	460
1	-4710.5	490	4705.5	490
2	-4685.5	490	4730.5	490
3	-4685.5	472.5	4730.5	472.5
4	-4668	472.5	4748	472.5
5	-4668	447.5	4748	447.5
6	-4685.5	447.5	4730.5	447.5
7	-4685.5	430	4730.5	430
8	-4710.5	430	4705.5	430
9	-4710.5	447.5	4705.5	447.5
10	-4728	447.5	4688	447.5
11	-4728	472.5	4688	472.5
12	-4710.5	472.5	4705.5	472.5
13	-4740.5	502.5	4718	470.607
14	-4655.5	502.5	4728.607	460
15	-4655.5	417.5	4718	449.393
16	-4740.5	417.5	4707.393	460
17	_	_	4675.5	502.5
18	_	_	4760.5	502.5
19	_	_	4760.5	417.5
20	_	_	4675.5 417.5	

PAD COORDINATES

NO.	NAME	X	Υ	W	Н
1	DUMMY	-4740	-550	40	50
2	TPCOM	-4680	-550	40	50
3	TPCOM	-4620	-550	40	50
4	TPCOM	-4560	-550	40	50
5	TPCOM	-4500	-550	40	50
6	TPCOM	-4440	-550	40	50
7	TPCOM	-4380	-550	40	50
8	BPCOM	-4320	-550	40	50
9	BPCOM	-4260	-550	40	50
10	BPCOM	-4200	-550	40	50
11	VDM	-4140	-550	40	50
12	VDM	-4080	-550	40	50
13	VDM	-4020	-550	40	50
14	VDM	-3960	-550	40	50
15	DUMMY	-3900	-550	40	50
16	DUMMY	-3840	-550	40	50
17	DUMMY	-3780	-550	40	50
18	DUMMY	-3720	-550	40	50
19	VSS			40	
20	VSS	-3660	-550 -550		50 50
		-3600		40	
21 22	VSSA	-3540	-550	40	50 50
	VSSA	-3480	-550	40	
23	VSSA	-3420	-550	40	50
24	VSSA	-3360	-550	40	50
25	EXTVDD	-3300	-550	40	50
26	EXTVDD	-3240	-550	40	50
27	VDDA	-3180	-550	40	50
28	VDDA	-3120	-550	40	50
29	VDDA	-3060	-550	40	50
30	VDDA	-3000	-550	40	50
31	VDD	-2940	-550	40	50
32	VDD	-2880	-550	40	50
33	VDD	-2820	-550	40	50
34	TEST0	-2760	-550	40	50
35	TEST0	-2700	-550	40	50
36	TEST1	-2640	-550	40	50
37	TEST1	-2580	-550	40	50
38	TEST2	-2520	-550	40	50
39	TEST2	-2460	-550	40	50
40	VSS	-2400	-550	40	50
41	VSS	-2340	-550	40	50
42	TEST3	-2280	-550	40	50
43	TEST3	-2220	-550	40	50
44	TEST4	-2160	-550	40	50
45	TEST4	-2100	-550	40	50
46	TEST5	-2040	-550	40	50
47	TEST5	-1980	-550	40	50
48	TEST6	-1920	-550	40	50
49	TEST6	-1860	-550	40	50
50	TEST7	-1800	-550	40	50
51	TEST7	-1740	-550	40	50
52	EXTCLK	-1680	-550	40	50
53	EXTCLK	-1620	-550	40	50
54	GPIO0	-1560	-550	40	50
55	GPIO0	-1500	-550	40	50
56	GPIO1	-1440	-550	40	50
57	GPIO1	-1380	-550	40	50
58	GPIO2	-1320	-550	40	50

NO.	NAME	Х	Υ	W	Н
59	GPIO2	-1260	-550	40	50
60	GPIO3	-1200	-550	40	50
61	GPIO3	-1140	-550	40	50
62	IRQ	-1080	-550	40	50
63	IRQ	-1020	-550	40	50
64	BUSY N	-960	-550	40	50
65	BUSY N	-900	-550	40	50
66	RST N	-840	-550	40	50
67	RST N	-780	-550	40	50
68	SPI CS	-720	-550	40	50
69	SPI CS	-660	-550	40	50
70	SPI CLK	-600	-550	40	50
71	SPI CLK	-540	-550	40	50
72	SPI MOSI	-480	-550	40	50
73	SPI MOSI	-420	-550	40	50
74	SPI MISO	-360	-550	40	50
75	SPI_MISO	-300	-550 -550	40	50
76	TAI	-300	-550 -550	40	50
76	TAI	-240	-550 -550	40	50
78	TAO	-120	-550 -550	40	50
79	TAO	-120	-550	40	50
80	VPP	0	-550	40	50
81	VPP	60	-550	40	50
82	VPP	120	-550	40	50
83	VPP	180	-550	40	50
84	VPP	240	-550	40	50
85	VPP	300	-550	40	50
86	VDDA	360	-550	40	50
87	VDDA	420	-550	40	50
88	VDDA	480	-550	40	50
89	VDDA	540	-550	40	50
90	VDDIO	600	-550	40	50
91	VDDIO	660	-550	40	50
92	VDDIO	720	-550	40	50
93	VDDIO	780	-550	40	50
94	VDD	840	-550	40	50
95	VDD	900	-550	40	50
96	VDD	960	-550	40	50
97	VSSA	1020	-550	40	50
98	VSSA	1080	-550	40	50
99	VSSA	1140	-550	40	50
100	VSSA	1200	-550	40	50
101	VSS	1260	-550	40	50
102	VSS	1320	-550	40	50
103	VSS	1380	-550	40	50
104	DUMMY	1440	-550	40	50
105	DUMMY	1500	-550	40	50
106	DUMMY	1560	-550	40	50
107	VDM	1620	-550	40	50
108	VDM	1680	-550	40	50
109	VDM	1740	-550	40	50
110	VDM	1800	-550	40	50
111	BPCOM	1860	-550	40	50
112	BPCOM	1920	-550	40	50
113	BPCOM	1980	-550	40	50
114	TPCOM	2040	-550	40	50
115	TPCOM	2100	-550	40	50
116	TPCOM	2160	-550	40	50

NO.	NAME	Х	Υ	W	Н
117	TPCOM	2220	-550	40	50
118	TPCOM	2280	-550	40	50
119	TPCOM	2340	-550	40	50
120	GDR N	2400	-550	40	50
121	GDR_N	2460	-550	40	50
122	GDR N	2520	-550	40	50
123	GDR N	2580	-550	40	50
123	GDR_N	2640	-550	40	50
125	GDR P	2700	-550	40	50
126	GDR_P	2760	-550	40	50
127	GDR P	2820	-550	40	50
128	VGH	2880	-550	40	50
129	VGH	2940	-550	40	50
130	VGH	3000	-550	40	50
131	VGH	3060	-550	40	50
132	VGH	3120	-550	40	50
133	VGH	3180	-550	40	50
134				40	
	VGH	3240	-550		50 50
135	VGH	3300 3360	-550 550	40	50
136	VGL		-550	40	50
137	VGL VGL	3420	-550 EE0	40	50 50
138		3480	-550	40	
139	VGL	3540	-550	40	50
140	VGL	3600	-550	40	50
141	VGL	3660	-550	40	50
142	VGL	3720	-550	40	50
143	VGL	3780	-550	40	50
144	VSH	3840	-550	40	50
145	VSH	3900	-550	40	50
146	VSH	3960	-550	40	50
147	VSH	4020	-550	40	50
148	VSH	4080	-550	40	50
149	VSH	4140	-550	40	50
150	DUMMY	4200	-550	40	50
151	VSL	4260	-550	40	50
152	VSL	4320	-550	40	50
153	VSL	4380	-550	40	50
154	VSL	4440	-550	40	50
155	VSL	4500	-550	40	50
156	VSL	4560	-550	40	50
157	DUMMY	4620	-550	40	50
158	DUMMY	4680	-550	40	50
159	DUMMY	4740	-550	40	50
160	DUMMY	4609	417.5	18	75 75
161	VBD<0>	4587	537.5	18	75 75
162	S<239>	4565	417.5	18	75 75
163	S<238>	4543	537.5	18	75 75
164	S<237>	4521	417.5	18	75 75
165	S<236>	4499	537.5	18	75 75
166	S<235>	4477	417.5	18	75 75
167	S<234>	4455	537.5	18	75 75
168	S<233>	4433	417.5	18	75 75
169	S<232>	4411	537.5	18	75 75
170	S<231>	4389	417.5	18	75 75
171	S<230>	4367	537.5	18	75 75
172	S<229>	4345	417.5	18	75 75
173	S<228>	4323	537.5	18	75 75
174	S<227>	4301	417.5	18	75
175	S<226>	4279	537.5	18	75 75
176	S<225>	4257	417.5	18	75

NO.	NAME	Х	Υ	W	Н
177	S<224>	4235	537.5	18	75
178	S<223>	4213	417.5	18	75
179	S<222>	4191	537.5	18	75
180	S<221>	4169	417.5	18	75
181	S<220>	4147	537.5	18	75
182	S<219>	4125	417.5	18	75 75
183 184	S<218> S<217>	4103	537.5 417.5	18 18	75 75
185	S<217>	4081		18	75
186	S<216>	4059	537.5	18	75 75
187		4037	417.5		75
188	S<214> S<213>	4015	537.5	18	
		3993	417.5	18	75 75
189	S<212>	3971	537.5	18	75 75
190	S<211>	3949	417.5	18	75 75
191	S<210>	3927	537.5	18	75
192	S<209>	3905	417.5	18	75
193	S<208>	3883	537.5	18	75
194	S<207>	3861	417.5	18	75
195	S<206>	3839	537.5	18	75
196	S<205>	3817	417.5	18	75
197	S<204>	3795	537.5	18	75
198	S<203>	3773	417.5	18	75
199	S<202>	3751	537.5	18	75
200	S<201>	3729	417.5	18	75
201	S<200>	3707	537.5	18	75
202	S<199>	3685	417.5	18	75
203	S<198>	3663	537.5	18	75
204	S<197>	3641	417.5	18	75
205	S<196>	3619	537.5	18	75
206	S<195>	3597	417.5	18	75
207	S<194>	3575	537.5	18	75
208	S<193>	3553	417.5	18	75
209	S<192>	3531	537.5	18	75
210	S<191>	3509	417.5	18	75
211	S<190>	3487	537.5	18	75
212	S<189>	3465	417.5	18	75
213	S<188>	3443	537.5	18	75
214	S<187>	3421	417.5	18	75
215	S<186>	3399	537.5	18	75
216	S<185>	3377	417.5	18	75
217	S<184>	3355	537.5	18	75
218	S<183>	3333	417.5	18	75
219	S<182>	3311	537.5	18	75
220	S<181>	3289	417.5	18	75
221	S<180>	3267	537.5	18	75
222	S<179>	3245	417.5	18	75
223	S<178>	3223	537.5	18	75
224	S<177>	3201	417.5	18	75
225	S<176>	3179	537.5	18	75
226	S<175>	3157	417.5	18	75
227	S<174>	3135	537.5	18	75
228	S<173>	3113	417.5	18	75
229	S<172>	3091	537.5	18	75
230	S<171>	3069	417.5	18	75
231	S<170>	3047	537.5	18	75
232	S<169>	3025	417.5	18	75
233	S<168>	3003	537.5	18	75
234	S<167>	2981	417.5	18	75
235	S<166>	2959	537.5	18	75
236	S<165>	2937	417.5	18	75

NO	NANAT	V	V	10/	
NO.	NAME	X	Y	W	H
237	S<164>	2915	537.5	18	75
238	S<163>	2893	417.5	18	75
239	S<162>	2871	537.5	18	75
240	S<161>	2849	417.5	18	75
241	S<160>	2827	537.5	18	75
242	S<159>	2805	417.5	18	75
243	S<158>	2783	537.5	18	75
244	S<157>	2761	417.5	18	75
245	S<156>	2739	537.5	18	75
246	S<155>	2717	417.5	18	75
247	S<154>	2695	537.5	18	75
248	S<153>	2673	417.5	18	75
249	S<152>	2651	537.5	18	75
250	S<151>	2629	417.5	18	75
251	S<150>	2607	537.5	18	75
252	S<130>		417.5	18	75
		2585			
253	S<148>	2563	537.5	18	75 75
254	S<147>	2541	417.5	18	75
255	S<146>	2519	537.5	18	75
256	S<145>	2497	417.5	18	75
257	S<144>	2475	537.5	18	75
258	S<143>	2453	417.5	18	75
259	S<142>	2431	537.5	18	75
260	S<141>	2409	417.5	18	75
261	S<140>	2387	537.5	18	75
262	S<139>	2365	417.5	18	75
263	S<138>	2343	537.5	18	75
264	S<137>	2321	417.5	18	75
265	S<136>	2299	537.5	18	75
266	S<135>	2277	417.5	18	75
267	S<134>	2255	537.5	18	75
268	S<133>	2233	417.5	18	75
269	S<132>	2211	537.5	18	75
270	S<131>	2189	417.5	18	75
271	S<130>	2167	537.5	18	75
272	S<129>	2145	417.5	18	75
273	S<128>	2123	537.5	18	75
274			417.5		
274	S<127> S<126>	2101 2079	537.5	18 18	75 75
276	S<125>	2057	417.5	18	75
277	S<124>	2035	537.5	18	75
278	S<123>	2013	417.5	18	75
279	S<122>	1991	537.5	18	75
280	S<121>	1969	417.5	18	75
281	S<120>	1947	537.5	18	75
282	VBD<1>	1925	417.5	18	75
283	DUMMY	1903	537.5	18	75
284	G<159>	1749	417.5	18	75
285	G<158>	1727	537.5	18	75
286	G<157>	1705	417.5	18	75
287	G<156>	1683	537.5	18	75
288	G<155>	1661	417.5	18	75
289	G<154>	1639	537.5	18	75
290	G<153>	1617	417.5	18	75
291	G<152>	1595	537.5	18	75
292	G<151>	1573	417.5	18	75
293	G<150>	1551	537.5	18	75
294	G<149>	1529	417.5	18	75
295	G<148>	1507	537.5	18	75
296	G<146>	1485	417.5	18	75
230	U<14/>	1400	+17.5	10	73

NO.	NAME	Х	Υ	W	Н
297	G<146>	1463	537.5	18	75
298	G<145>	1441	417.5	18	75
299	G<144>	1419	537.5	18	75
300	G<143>	1397	417.5	18	75
301	G<142>	1375	537.5	18	75
302	G<141>	1353	417.5	18	75
303	G<140>	1331	537.5	18	75
304	G<139>	1309	417.5	18	75
305	G<138>	1287	537.5	18	75
306	G<137>	1265	417.5	18	75
307	G<136>	1243	537.5	18	75
308	G<135>	1221	417.5	18	75
309	G<134>	1199	537.5	18	75
310	G<133>	1177	417.5	18	75
311	G<132>	1155	537.5	18	75
312	G<131>	1133	417.5	18	75
313	G<130>	1111	537.5	18	75
314	G<129>	1089	417.5	18	75
315	G<128>	1067	537.5	18	75
316	G<127>	1045	417.5	18	75
317	G<126>	1023	537.5	18	75
318	G<125>	1001	417.5	18	75
319	G<124>	979	537.5	18	75
320	G<123>	957	417.5	18	75
321	G<122>	935	537.5	18	75
322	G<121>	913	417.5	18	75
323	G<120>	891	537.5	18	75
324	G<119>	869	417.5	18	75
325	G<118>	847	537.5	18	75
326	G<117>	825	417.5	18	75
327	G<116>	803	537.5	18	75 75
328 329	G<115> G<114>	781 759	417.5 537.5	18 18	75 75
330	G<113>	737	417.5	18	75
331	G<112>	715	537.5	18	75
332	G<111>	693	417.5	18	75
333	G<110>	671	537.5	18	75
334	G<109>	649	417.5	18	75
335	G<108>	627	537.5	18	75
336	G<107>	605	417.5	18	75
337	G<106>	583	537.5	18	75
338	G<105>	561	417.5	18	75
339	G<104>	539	537.5	18	75
340	G<103>	517	417.5	18	75
341	G<102>	495	537.5	18	75
342	G<101>	473	417.5	18	75
343	G<100>	451	537.5	18	75
344	G<99>	429	417.5	18	75
345	G<98>	407	537.5	18	75
346	G<97>	385	417.5	18	75
347	G<96>	363 341	537.5	18	75 75
348	G<95> G<94>	_	417.5	18	75 75
349 350	G<94>	319 297	537.5 417.5	18 18	75 75
351	G<93>	275	537.5	18	75
352	G<91>	253	417.5	18	75
353	G<90>	231	537.5	18	75
354	G<89>	209	417.5	18	75
355	G<88>	187	537.5	18	75
356	G<87>	165	417.5	18	75

NO.	NAME	Х	Υ	W	Н
357	G<86>	143	537.5	18	75
358	G<85>	121	417.5	18	75
359	G<84>	99	537.5	18	75
360	G<83>	77	417.5	18	75
361	G<82>	55	537.5	18	75
362	G<81>	33	417.5	18	75
363	G<80>	11	537.5	18	75
364	G<79>	-11	417.5	18	75
365	G<78>	-33	537.5	18	75
366	G<77>	-55	417.5	18	75
367	G<76>	-77	537.5	18	75
368	G<75>	-99	417.5	18	75
369	G<74>	-121	537.5	18	75
370	G<73>	-143	417.5	18	75
371	G<72>	-165	537.5	18	75
372	G<71>	-187	417.5	18	75
373	G<70>	-209	537.5	18	75
374	G<69>	-231	417.5	18	75
375	G<68>	-253	537.5	18	75
376	G<67>	-275	417.5	18	75
377	G<66>	-297	537.5	18	75
378	G<65>	-319	417.5	18	75
379	G<64>	-341	537.5	18	75
380	G<63>	-363	417.5	18	75
381	G<62>	-385	537.5	18	75
382	G<61>	-407	417.5	18	75
383	G<60>	-429	537.5	18	75
384	G<59>	-451	417.5	18	75
385	G<58>	-473	537.5	18	75
386	G<57>	-495	417.5	18	75
387	G<56>	-517	537.5	18	75
388	G<55>	-539	417.5	18	75
389	G<54>	-561	537.5	18	75
390	G<53>	-583	417.5	18	75
391	G<52>	-605	537.5	18	75
392	G<51>	-627	417.5	18	75
393	G<50>	-649	537.5	18	75
394	G<49>	-671	417.5	18	75
395	G<48>	-693	537.5	18	75
396	G<47>	-715	417.5	18	75
397	G<46>	-737	537.5	18	75
398	G<45>	-759	417.5	18	75
399	G<44>	-781	537.5	18	75
400	G<43>	-803	417.5	18	75
401	G<42>	-825	537.5	18	75
402	G<41>	-847	417.5	18	75
403	G<40>	-869	537.5	18	75
404	G<39>	-891	417.5	18	75
405	G<38>	-913	537.5	18	75
406	G<37>	-935	417.5	18	75
407	G<36>	-957	537.5	18	75
408	G<35>	-979	417.5	18	75
409	G<34>	-1001	537.5	18	75
410	G<33>	-1023	417.5	18	75
411	G<32>	-1045	537.5	18	75
412	G<31>	-1067	417.5	18	75
413	G<30>	-1089	537.5	18	75
414	G<29>	-1111	417.5	18	75
415	G<28>	-1133	537.5	18	75
416	G<27>	-1155	417.5	18	75

NO.	NAME	X	Υ	W	Н
417	G<26>	-1177	537.5	18	75
418	G<25>	-1199			75
419	G<24>	-1221		18	75
			537.5	18	
420	G<23>	-1243	417.5	18	75
421	G<22>	-1265	537.5	18	75
422	G<21>	-1287	417.5	18	75
423	G<20>	-1309	537.5	18	75
424	G<19>	-1331	417.5	18	75
425	G<18>	-1353	537.5	18	75
426	G<17>	-1375	417.5	18	75
427	G<16>	-1397	537.5	18	75
428	G<15>	-1419	417.5	18	75
429	G<14>	-1441	537.5	18	75
430	G<13>	-1463	417.5	18	75
431	G<12>	-1485	537.5	18	75
432	G<11>	-1507	417.5	18	75
433	G<10>	-1529	537.5	18	75
434				18	75
	G<9>	-1551	417.5		
435	G<8>	-1573	537.5	18	75 75
436	G<7>	-1595	417.5	18	75
437	G<6>	-1617	537.5	18	75
438	G<5>	-1639	417.5	18	75
439	G<4>	-1661	537.5	18	75
440	G<3>	-1683	417.5	18	75
441	G<2>	-1705	537.5	18	75
442	G<1>	-1727	417.5	18	75
443	G<0>	-1749	537.5	18	75
444	DUMMY	-1903	417.5	18	75
445	VBD<2>	-1925	537.5	18	75
446	S<0>	-1947	417.5	18	75
447	S<1>	-1969	537.5	18	75
448	S<2>	-1991	417.5	18	75
449	S<3>	-2013	537.5	18	75
450	S<4>	-2035	417.5	18	75
451	S<5>	-2057	537.5	18	75
452	S<6>	-2079	417.5	18	75
453	S<7>	-2101	537.5	18	75
454	S<8>	-2123	417.5	18	75
455	S<9>	-2145	537.5	18	75
456	S<10>	-2167	417.5	18	75
457	S<11>	-2189	537.5 18		75
458	S<12>	-2211	417.5	18	75
459	S<13>	-2233	537.5	18	75
460	S<14>	-2255	417.5	18	75
461	S<15>	-2277	537.5	18	75
462	S<16>	-2299	417.5	18	75
463	S<17>	-2321	537.5	18	75
464	S<18>	-2343	417.5	18	75
465	S<19>	-2365	537.5	18	75
466	S<20>	-2387	417.5	18	75
467	S<21>	-2409	537.5	18	75
468	S<22>	-2431	417.5	18	75
469	S<23>	-2453	537.5	18	75
470	S<24>	-2475	417.5	18	75
	S<24>				
471		-2497	537.5	18	75 75
472	S<26>	-2519	417.5	18	75
473	S<27>	-2541	537.5	18	75
474	S<28>	-2563	417.5	18	75
475			6976	18	75
476	S<29> S<30>	-2585 -2607	537.5 417.5	18	75

All-in-one driver IC with TCON for EPD Application

NO.	NAME	Х	Υ	W	Н	
477	S<31>	-2629 537.5 18		75		
478	S<32>	-2651			75	
479	S<33>	-2673 537.5 18		75		
480	S<34>	-2695 417.5 18		75		
481	S<35>	-2717	537.5	18	75	
482	S<36>	-2739	417.5	18	75	
483	S<37>	-2761	537.5	18	75	
484	S<38>	-2783	417.5	18	75	
485	S<39>	-2805	537.5	18	75	
486	S<40>	-2827	417.5	18	75	
487	S<41>	-2849	537.5	18	75	
488	S<42>	-2871	417.5	18	75	
489	S<43>	-2893	537.5	18	75	
490	S<44>	-2915	417.5	18	75	
491	S<45>	-2937	537.5	18	75	
492	S<46>	-2959	417.5	18	75	
493	S<47>	-2981	537.5	18	75	
494	S<48>	-3003	417.5	18	75	
495	S<49>	-3025	537.5	18	75	
496	S<50>	-3047	417.5	18	75	
497	S<51>	-3069	537.5	18	75	
498	S<52>	-3091	417.5	18	75	
499	S<53>	-3113	537.5	18	75	
500	S<54>	-3135	417.5	18	75	
501	S<55>	-3157	537.5	18	75	
502	S<56>	-3179	417.5	18	75	
503	S<57>	-3201	537.5	18	75	
504	S<58>	-3223	417.5	18	75	
505	S<59>	-3245	537.5	18	75	
506	S<60>	-3267	417.5	18	75	
507	S<61>	-3289	537.5	18	75	
508	S<62>	-3311	417.5	18	75	
509	S<63>	-3333	537.5	18	75	
510	S<64>	-3355	417.5	18	75	
511	S<65>	-3377	537.5	18	75	
512	S<66>	-3399	417.5	18	75	
513	S<67>	-3421	537.5	18	75	
514	S<68>	-3443	417.5	18	75	
515	S<69>	-3465	537.5	18	75	
516	S<70>	-3487	417.5	18	75	
517	S<71>	-3509	537.5	18	75	
518	S<72>	-3531	417.5	18	75	
519	S<73>	-3553	537.5	18	75	
520	S<74>	-3575	417.5	18	75	
521	S<75>	-3597	537.5	18	75	
522	S<76>	-3619	417.5	18	75	
523	S<77>	-3641	537.5	18	75	

NO.	NAME	X	Υ	W	Н
524	S<78>	-3663 417.5 18		75	
525	S<79>	-3685 537.5		18	75
526	S<80>	-3707	417.5	18	75
527	S<81>	-3729	537.5	18	75
528	S<82>	-3751	417.5	18	75
529	S<83>	-3773	537.5	18	75
530	S<84>	-3795	417.5	18	75
531	S<85>	-3817	537.5	18	75
532	S<86>	-3839	417.5	18	75
533	S<87>	-3861	537.5	18	75
534	S<88>	-3883	417.5	18	75
535	S<89>	-3905	537.5	18	75
536	S<90>	-3927	417.5	18	75
537	S<91>	-3949	537.5	18	75
538	S<92>	-3971	417.5	18	75
539	S<93>	-3993	537.5	18	75
540	S<94>	-4015	417.5	18	75
541	S<95>	-4037	537.5	18	75
542	S<96>	-4059	417.5	18	75
543	S<97>	-4081	537.5	18	75
544	S<98>	-4103	417.5	18	75
545	S<99>	-4125	537.5	18	75
546	S<100>	-4147	417.5	18	75
547	S<101>	-4169	537.5	18	75
548	S<102>	-4191	417.5	18	75
549	S<103>	-4213	537.5	18	75
550	S<104>	-4235	417.5	18	75
551	S<105>	-4257	537.5	18	75
552	S<106>	-4279	417.5	18	75
553	S<107>	-4301	537.5	18	75
554	S<108>	-4323	417.5	18	75
555	S<109>	-4345	537.5	18	75
556	S<110>	-4367	417.5	18	75
557	S<111>	-4389	537.5	18	75
558	S<112>	-4411	417.5	18	75
559	S<113>	-4433	537.5	18	75
560	S<114>	-4455	417.5	18	75
561	S<115>	-4477	537.5	18	75
562	S<116>	-4499	417.5	18	75
563	S<117>	-4521	537.5	18	75
564	S<118>	-4543	417.5	18	75
565	S<119>	-4565	537.5	18	75
566	VBD<3>	-4587	417.5	18	75
567	DUMMY	-4609	537.5	18	75

APPLICATION

Application diagram with SPI interface (Temporary)

For 3.3V Interface

For 1.8V Interface

Pin Name	Connect to	LCM output	Note
VDDA	Interface	V	
VDD	Interface	V	
VDDIO	Interface	V	Either 3.0V or 1.8V - needs to be wired out
EXTVDD	GND / VDDA	X	When interface=3.3V, EXTVDD connects to GND When interface=1.8V, EXTVDD connects to VDDA
VSSA	GND	V	
VSS	Interface	V	Connected together on the panel.
VDM	GND	V	
VPP	Interface	V	If not used, leave them open.
SPI_CS	Interface	V	
SPI_CLK	Interface	V	
SPI_MOSI	Interface	V	
SPI_MISO	Interface	V	
TAI		Х	Leave them open.
TAO		Х	Leave them open.
Test0~7		Х	Test pins. Reserved for testing. Test0~Test2: connect to GND. Test3~Test7: leave them open.
IRQ	Interface	V	Connect to MCU. If not used, leave them open.
GPIO_0	Interface	V	Sensor trigger.
GPIO 1	Interface	V	If not used, leave them open
GPIO_2	Interface	V	Used to connect an external temperature sensor.
GPIO_3	Interface	V	If not used, leave them open.
EXCLK	Interface	V	If not used, connect to GND.
RST_N	Interface	V	
BUSY N	Interface	V	
TPCOM	Interface	V	
BPCOM	Interface	V	
GDR_N	Interface	V	
GDR P	Interface	V	
VGH	Interface	V	
VGL	Interface	V	
VSH	Interface	V	
VSL	Interface	V	

All-in-one driver IC with TCON for EPD Application

©1999~2016

Booster Connection Diagram (Temporary)

For 1.8V Interface

For Diode,

- IFSM (Peak Forward Surge Current) > 500mA
- VRM (Peak Reverse Voltage) > 32V
- IR (Reverse Leakage Current) < 1mA

For MOS

- VDS (Drain-Source Breakdown Voltage), PMOS VDS > 32V, NMOS VDS > 25V
- ID (Continuous Drain Current) > 500 mA
- VTH (Gate-Source Threshold Voltage) < 1.8V
- CISS (Input Capacitance) < 200pF

TRAY INFORMATION

All-in-one driver IC with TCON for EPD Application

REVISION HISTORY

Revision	Contents	Date
0.6	(First Release)	Nov. 25, 2016
0.7	Some unused registers are removed.	Dec. 21, 2016
	The Note for DC Characteristics is removed.	Dec. 21, 2010