

09/937240

FIG.1A

FIG.1B

FIG.2

09/937240

FIG.3A

FIG.3B

FIG.4

09/937240

FIG.5

09/937240

FIG.6

09/937240

FIG.7

09/937240

புது தமிழ்நாடு முனிக்பாடு

FIG.8

FIG.9

FIG.10

FIG.11

S1001
S1002
S1003
S1004
S1005
S1006
S1007

09/937240

FIG.12

09/937240

R_N, G_N, B_N, α_N

R_2, G_2, B_2, α_2

R_1, G_1, B_1, α_1

R_0, G_0, B_0, α_0

09/937240

FIG.13

```
1      R=0 ;
2      G=0 ;
3      B=0 ;
4       $\alpha$ =0 ;
5      for (i=0 ; i<=N ; i++) {
6          if (VIDEO=component i) {
7              R=(1 -  $\alpha$  i)*R ;
8              G=(1 -  $\alpha$  i)*G ;
9              B=(1 -  $\alpha$  i)*B ;
10              $\alpha$  =  $\alpha$  i ;
11         } else {
12             R=  $\alpha$  i*Ri+(1 -  $\alpha$  i)*R ;
13             G=  $\alpha$  i*Gi+(1 -  $\alpha$  i)*G ;
14             B=  $\alpha$  i*Bi+(1 -  $\alpha$  i)*B ;
15              $\alpha$  =  $\alpha$  *(1 -  $\alpha$  i) ;
16         }
17     }
18     R=R+  $\alpha$  *Rv ;
19     G=G+  $\alpha$  *Gv ;
20     B=B+  $\alpha$  *Bv ;
```

FIG.14

[program 1]

```

1      R=0 ;
2      G=0 ;
3      B=0 ;
4       $\alpha$  =0 ;
5      for (i=0 ; i<=N ; i++) {
6          if (VIDEO=component i) {
7              R=(1- $\alpha$  i)*R ;
8              G=(1- $\alpha$  i)*G ;
9              B=(1- $\alpha$  i)*B ;
10              $\alpha$  =  $\alpha$  i ;
11         } else {
12             R=  $\alpha$  i*Ri+(1- $\alpha$  i)*R ;
13             G=  $\alpha$  i*Gi+(1- $\alpha$  i)*G ;
14             B=  $\alpha$  i*Bi+(1- $\alpha$  i)*B ;
15              $\alpha$  =  $\alpha$  *(1- $\alpha$  i) ;
16         }
17     }
;
```

[program 2]

```

1      while(true) {
2          R=R+  $\alpha$  *Rv ;
3          G=G+  $\alpha$  *Gv ;
4          B=B+  $\alpha$  *Bv ;
5      }
;
```

FIG.15

FIG.16

FIG.17

09/937240

FIG.18

09/937240

FIG.19

FIG.20

FIG.21

09/937240

FIG.22

09/937240

FIG.23A

FIG.23B

number	operation type
1	CLEAR
2	SRC
3	SRC_OVER
4	DST_OVER
5	SRC_IN
6	DST_IN
7	SRC_OUT
8	DST_OUT

FIG.24

09/937240

operation type	operation
CLEAR	$R=0, G=0, B=0$
SRC	$R=\alpha_i \cdot R_i, G=\alpha_i \cdot G_i, B=\alpha_i \cdot B_i$
SRC_OVER	$R=\alpha_i \cdot R_i + (1-\alpha_i) \cdot R, G=\alpha_i \cdot G_i + (1-\alpha_i) \cdot G_i,$ $B=\alpha_i \cdot B_i + (1-\alpha_i) \cdot B$
DST_OVER	$R=R + (1-\alpha) \cdot \alpha_i \cdot R_i, G=G + (1-\alpha) \cdot \alpha_i \cdot G_i,$ $B=B + (1-\alpha) \cdot \alpha_i \cdot B_i,$
SRC_IN	$R=\alpha \cdot \alpha_i \cdot R_i, G=\alpha \cdot \alpha_i \cdot G_i, B=\alpha \cdot \alpha_i \cdot B_i$
DST_IN	$R=\alpha_i \cdot R, G=\alpha_i \cdot G, B=\alpha_i \cdot B,$
SRC_OUT	$R=(1-\alpha) \cdot \alpha_i \cdot R_i, G=(1-\alpha) \cdot \alpha_i \cdot G_i,$ $B=(1-\alpha) \cdot \alpha_i \cdot B_i$
DST_OUT	$R=(1-\alpha_i) \cdot R, G=(1-\alpha_i) \cdot G, B=(1-\alpha_i) \cdot B$

FIG.25

FIG.26

operation type	operation
CLEAR	R=0, G=0, B=0
SRC	R=0, G=0, B=0
SRC_OVER	R=(1 - α_i) · R, G=(1 - α_i) · G, B=(1 - α_i) · B
DST_OVER	R=R, G=G, B=B
SRC_IN	R=0, G=0, B=0
DST_IN	R= α_i · R, G= α_i · G, B= α_i · B
SRC_OUT	R=0, G=0, B=0
DST_OUT	R=(1 - α_i) · R, G=(1 - α_i) · G, B=(1 - α_i) · B

09/937240

FIG.27

operation type	operation
CLEAR	$\alpha = 0$
SRC	$\alpha = \alpha_i$
SRC_OVER	$\alpha = \alpha_i + (1 - \alpha_i) \cdot \alpha$
DST_OVER	$\alpha = \alpha + (1 - \alpha) \cdot \alpha_i$
SRC_IN	$\alpha = \alpha \cdot \alpha_i$
DST_IN	$\alpha = \alpha \cdot \alpha_i$
SRC_OUT	$\alpha = (1 - \alpha) \cdot \alpha_i$
DST_OUT	$\alpha = (1 - \alpha_i) \cdot \alpha$

FIG.28

FIG.29

operation type	operation
CLEAR	$\alpha = 0$
SRC	$\alpha = 0$
SRC_OVER	$\alpha = \alpha_i \cdot (1 - \alpha_i)$
DST_OVER	$\alpha = \alpha_i$
SRC_IN	$\alpha = 0$
DST_IN	$\alpha = \alpha_i \cdot \alpha_{osd}$
SRC_OUT	$\alpha = 0$
DST_OUT	$\alpha = (1 - \alpha_i) \cdot \alpha_{osd}$

FIG.30

operation type	operation
CLEAR	$\alpha = 0$
SRC	$\alpha = \alpha_i$
SRC_OVER	$\alpha = \alpha_i$
DST_OVER	$\alpha = \alpha_i \cdot (1 - \alpha_{osd})$
SRC_IN	$\alpha = \alpha_i \cdot \alpha_{osd}$
DST_IN	$\alpha = 0$
SRC_OUT	$\alpha = (1 - \alpha_{osd}) \cdot \alpha_i$
DST_OUT	$\alpha = 0$

FIG.31

```
1   R=0 ;
2   G=0 ;
3   B=0 ;
4   α =0 ;
5   α v=0 ;
6   for (i=0 ; i<=N ; i++) {
7       if (VIDEO=component i) {
8           R,G,B update A
9           α v update A
10      } else {
11          R,G,B update B
12          α v update B
13      }
14      α update
15  }
16  R=R+ α v*Rv ;
17  G=G+ α v*Gv ;
18  B=B+ α v*Bv ;
```