Introduction to graph theory

Giacomo Como, DISMA, Politecnico di Torino Fabio Fagnani, DISMA, Politecnico di Torino

The skeleton of a network: the graph

Elements of graph theory

 \triangleright Set of nodes \mathcal{V} which represent the units participating in the network (e.g. computers, sensors, web pages, companies, individuals, biological entities).

Elements of graph theory

- \triangleright Set of nodes $\mathcal V$ which represent the units participating in the network (e.g. computers, sensors, web pages, companies, individuals, biological entities).
- ▶ Set of *links* $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$. The presence of a link (i,j) may have different interpretation depending on the applicative set-up:
 - node i influences node j;
 - node i 'sees' node i, i has access to the state of i;
 - flow can take place from i to i.

Undirected graphs

Elements of graph theory

- \triangleright Set of nodes $\mathcal V$ which represent the units participating in the network (e.g. computers, sensors, web pages, companies, individuals, biological entities).
- ▶ Set of *links* $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$. The presence of a link (i,j) may have different interpretation depending on the applicative set-up:
 - node i influences node j;
 - node i 'sees' node i, i has access to the state of i;
 - flow can take place from i to j.

 \triangleright $(i, j), (j, i) \in \mathcal{E}$

Elements of graph theory

Weights W_{ii} associated to each link: the strength of a connection, the conductance or capacity of the link.

Undirected graphs

Elements of graph theory

Weights W_{ii} associated to each link: the strength of a connection, the conductance or capacity of the link.

NOTATION:
$$G = (\mathcal{V}, \mathcal{E}, W)$$

If
$$W_{ij} = 1$$
 for every $(i,j) \in \mathcal{E}$: $G = (\mathcal{V}, \mathcal{E})$ unweighted graph

Elements of graph theory

How graphs are represented:

The birth of graph theory

Leonhard Euler (1707 - 1783)

The birth of graph theory

Neighborhood, sink, source

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

- ▶ The out-neighborhood: $\mathcal{N}_i = \{ i \in \mathcal{V} \mid (i, j) \in \mathcal{E} \}$;
- ▶ The in-neighborhood: $\mathcal{N}_i^- = \{j \in \mathcal{V} \mid (j, i) \in \mathcal{E}\};$
- ▶ If $(i, i) \in \mathcal{E}$) (self-loop), then, $i \in \mathcal{N}_i$ and $i \in \mathcal{N}_i^-$
- $\triangleright \mathcal{N}_i = \emptyset, \{i\} \Rightarrow i \text{ is a } sink;$
- $\mathcal{N}_i^- = \emptyset, \{i\} \Rightarrow i \text{ is a source}$

$$\mathcal{N}_d = \{e, g, h\}, \ \mathcal{N}_d^- = \{c, e, h\}.$$
 No sinks, no sources.

Degrees

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

- ► The out-degree: $w_i = \sum_{i \in \mathcal{V}} W_{ij}$;
- ► The in-degree: $w_i^- = \sum_{i \in \mathcal{V}} W_{ii}$.
- $\triangleright \sum_{i} w_{i} = \sum_{i \in \mathcal{V}} w_{i}^{-} = \sum_{i \in \mathcal{V}} \sum_{i \in \mathcal{V}} W_{ii}$
- $ightharpoonup \mathcal{G}$ balanced if $w_i = w_i^-$ for all $i \in \mathcal{V}$
- \triangleright G regular if balanced and $w_i = w_i$ for every $i, j \in \mathcal{V}$

If \mathcal{G} unweighted:

- $| w_i = |\mathcal{N}_i|, w_i^- = |\mathcal{N}_i^-|.$
- $\triangleright \sum_i w_i = \sum_i w_i^- = |\mathcal{E}|$

Connectivity issues

Walks, paths, circuits, cycles

- walk from node i to node j: $\gamma = (i = i_0, i_1, \dots, j = i_l)$ s. t. $(i_{h-1}, i_h) \in \mathcal{E}$ for all $h = 1, \dots, l$. l length of the walk.
- ightharpoonup concatenation of walks: $\gamma^1 = (i, i_1, \dots, j)$ and $\gamma^2 = (i, i_1, \dots, k) \to \gamma^1 \gamma^2 = (i, i_1, \dots, j_1, j_1, \dots, k).$
- j is reachable from i is there exists a walk from i to j.
- **p** path: a walk i_0, i_1, \ldots, i_l such that $i_h \neq i_k$ for all $0 \le h \le k \le I$, except for possibly $i_0 = i_I$.
- **trail**: a walk i_0, i_1, \ldots, i_l with all distinct edges.
- ightharpoonup circuit: a closed trail, namely i_0, i_1, \ldots, i_l with $i_0 = i_l$.
- \triangleright cycle: a closed path of length l > 3.

Walks, paths, circuits, cycles

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$$

- acyclic if no cycles.
- directed acyclic graph DAG if no closed walks
- ▶ distance on \mathcal{V} : $i, j \in \mathcal{V}$, $d_{\mathcal{G}}(i, j)$ is the length of the shortest path from i to j in \mathcal{G} (with the convention that $d_{\mathcal{G}}(i, j) = +\infty$ if no such path exists).
- geodesic path is a path from i to j of minimal length
- diameter of $\mathcal G$ is $\operatorname{diam}(\mathcal G) := \mathsf{max}_{i,j} \, d_{\mathcal G}(i,j)$.
- strongly connected if for all i and j, i is reachable from j.

$$\gamma = (a, b, c, d, g, e, d, h)$$

$$\gamma = (a, b, c, d, g, e, d, h)$$
 trail, not path

$$\gamma = (a, b, c, d, g, e, d, g, e, d, h)$$

 $\gamma = (a, b, c, d, g, e, d, g, e, d, h)$ walk, not trail

$$\gamma = (a, b, c, d, h)$$

$$\gamma = (a, b, c, d, h)$$
 path

$$\gamma = (d, g, e, b, a, f, e, d)$$

$$\gamma = (d, g, e, b, a, f, e, d)$$
 circuit, not cycle

$$\gamma = (a, c, a)$$

$$\gamma' = (a, a)$$

$$\gamma = (a, c, a)$$
 circuit, not cycle $\gamma' = (a, a)$ circuit, not cycle

They are called directed cycles: closed paths of any length

$$\gamma = (e, b, a, f, e)$$

$$\gamma = (e, b, a, f, e)$$
 cycle

non geodesic path: $\gamma = (a, b, c, d, h)$

geodesic path: $\gamma = (a, c, d, h)$

geodesic path: $\gamma = (a, c, d, h)$

$$d_{\mathcal{G}}(a,h)=3$$

Is strongly connected?

Subgraphs

$$\tilde{\mathcal{G}} = (\tilde{\mathcal{V}}, \tilde{\mathcal{E}}, \tilde{\mathcal{W}}), \ \mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$$

$$ilde{\mathcal{G}} \subseteq \mathcal{G} \ ext{if} \ ilde{\mathcal{V}} \subseteq V, \ ilde{\mathcal{E}} \subseteq \mathcal{E}, \ ilde{W}_{ij} \leq W_{ij}$$

- induced subgraph if $\tilde{\mathcal{E}} = \mathcal{E} \cap (\tilde{\mathcal{V}} \times \tilde{\mathcal{V}}), \ \tilde{W} = W_{|\tilde{\mathcal{V}} \times \tilde{\mathcal{V}}};$
- ightharpoonup spanning subgraph if $\tilde{\mathcal{V}} = \mathcal{V}, \ \tilde{W}_{ij} = \left\{ egin{array}{ll} W_{ij} & ext{if } (i,j) \in \tilde{\mathcal{E}} \\ 0 & ext{otherwise} \end{array}
 ight..$

Subgraphs

$$ilde{\mathcal{G}} = (ilde{\mathcal{V}}, ilde{\mathcal{E}}, ilde{\mathcal{W}}), \ \mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$$

$$ilde{\mathcal{G}} \ \subset \ \mathcal{G} \ \ ext{if} \ \ ilde{\mathcal{V}} \subset \mathcal{V}, \ ilde{\mathcal{E}} \subset \mathcal{E}, \ ilde{\mathcal{W}}_{ii} < \mathcal{W}_{ii}$$

• induced subgraph if
$$\tilde{\mathcal{E}} = \mathcal{E} \cap (\tilde{\mathcal{V}} \times \tilde{\mathcal{V}}), \ \tilde{W} = W_{|\tilde{\mathcal{V}} \times \tilde{\mathcal{V}}};$$

$$ightharpoonup$$
 spanning subgraph if $\tilde{\mathcal{V}} = \mathcal{V}, \ \tilde{W}_{ij} = \left\{ egin{array}{ll} W_{ij} & ext{if } (i,j) \in \tilde{\mathcal{E}} \\ 0 & ext{otherwise} \end{array}
ight..$

\mathcal{P} *Monotone* property:

 $\tilde{\mathcal{G}}$ spanning subgraph of \mathcal{G} , \mathcal{P} true for $\tilde{\mathcal{G}} \Rightarrow \mathcal{P}$ true for \mathcal{G} .

Example: strong connectivity.

Is strongly connected?

Example

Strongly connected spanning subgraph.

Example

Strongly connected.

Acyclic versus DAG

Acyclic graphs not DAGs:

Acyclic versus DAG

Acyclic graphs not DAGs:

DAGs:

Properties of DAGs

Theorem

- ▶ \mathcal{G} DAG $\Leftrightarrow \mathcal{G}$ acyclic and no 'undirected' edges or self-loops.
- In a DAG there are always sources and sinks

Undirected graphs

Definitions and properties

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 is

- ▶ undirected if $(i,j) \in \mathcal{E} \Leftrightarrow (j,i) \in \mathcal{E}$ and W symmetric;
- ▶ *simple* if undirected, unweighted $W_{ij} \in \{0,1\}$, no self-loops.

Definitions and properties

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 is

- ▶ undirected if $(i, j) \in \mathcal{E} \Leftrightarrow (j, i) \in \mathcal{E}$ and W symmetric;
- ▶ *simple* if undirected, unweighted $W_{ii} \in \{0,1\}$, no self-loops.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 undirected

- $\triangleright \mathcal{N}_i = \mathcal{N}_i^-, w_i = w_i^- \text{ (balanced)};$
- \triangleright i reachable from $i \Leftrightarrow i$ reachable from i;
- \triangleright i sink \Leftrightarrow i source \Leftrightarrow i isolated node.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 is

- ▶ undirected if $(i, j) \in \mathcal{E} \Leftrightarrow (j, i) \in \mathcal{E}$ and W symmetric;
- ▶ *simple* if undirected, unweighted $W_{ii} \in \{0,1\}$, no self-loops.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 undirected

- $\triangleright \mathcal{N}_i = \mathcal{N}_i^-, w_i = w_i^-$ (balanced);
- \triangleright i reachable from $i \Leftrightarrow i$ reachable from i;
- \triangleright i sink \Leftrightarrow i source \Leftrightarrow i isolated node.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 simple $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

- $\triangleright \sum w_i = |\mathcal{E}|$ is even (handshaking lemma);
- ightharpoonup i leaf if $|\mathcal{N}_i|=1$

Trees

Trees are acyclic (strongly) connected simple graphs.

Trees: examples

 L_n Line with n nodes.

 S_n Star with n+1 nodes.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ simple graph. $n = |\mathcal{V}|$ nodes, $m = |\mathcal{E}|/2$ 'undirected' edges.

Theorem

- 1. \mathcal{G} connected $\Rightarrow m \geq n-1$;
- 2. Assume G is connected. Then, G is a tree if and only if m = n 1;
- 3. In a tree there are at least two leaves;
- 4. A tree with exactly two leaves is a line;

Other examples of simple graphs

$$K_n$$
 Complete graph: $m = n(n-1)/2$

Other examples

$$R_n$$
 Ring: $m = n$

Barbell: two K_n 's connected by an edge

Let $\mathcal{G}^i = (\mathcal{V}^i, \mathcal{E}^i)$ for i = 1, 2 be two simple graphs.

Product graph:
$$\mathcal{G}^1 \times \mathcal{G}^2 = (\mathcal{V}^1 \times \mathcal{V}^2, \mathcal{E}^1 \otimes \mathcal{E}^2)$$

$$((v^1, v^2), (w^1, w^2)) \in \mathcal{E}^1 \otimes \mathcal{E}^2 \iff \left\{ \begin{array}{l} v^1 = w^1, & (v^2, w^2) \in \mathcal{E}^2 \\ v^2 = w^2, & (v^1, w^1) \in \mathcal{E}^1 \end{array} \right.$$

Theorem

- ▶ If G^1 and G^2 are connected, $G^1 \times G^2$ is connected:
- $ightharpoonup \operatorname{diam}(\mathcal{G}^1 \times \mathcal{G}^2) = \operatorname{diam}(\mathcal{G}^1) + \operatorname{diam}(\mathcal{G}^2).$

$$L_h \times L_k$$
 Grid with $n = h \cdot k$ nodes and $m = ?$.

$$L_2^k = L_2 \times L_2 \times \cdots L_2$$
 Hypercube with $n = 2^k$ and $m = ?$.

 $R_h \times R_k$ Toroidal grid with $n = h \cdot k$ nodes and m = ?

Bipartite graphs

Bipartite graphs:

$$\mathcal{G} = (\mathcal{V}_1 \cup \mathcal{V}_2, \mathcal{E}), \ \mathcal{E} \subseteq (\mathcal{V}_1 \times \mathcal{V}_2) \cup (\mathcal{V}_2 \times \mathcal{V}_1)$$

Bipartite graphs: examples

$$K_{p,q}$$
 Complete bipartite: $n = p + q$, $m = pq$

Bipartite graphs: properties

 $\mathcal{G}=(\mathcal{V},\mathcal{E})$ simple graph. $n=|\mathcal{V}|$ nodes, $m=|\mathcal{E}|/2$ 'undirected' edges.

Theorem

A simple graph is bipartite if and only if it does not have any cycle of odd length.

Examples of bipartite graphs

- trees;
- ightharpoonup grids $L_n \times L_m$, hypercubes;
- product of bipartite is bipartite;
- $ightharpoonup R_n$ for even n

Advanced connectivity concepts

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 connected.

$$i \in \mathcal{V} \quad \text{per}(i) := g.c.d\{I \exists \text{closed walk of length } I \text{ in } i\}$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ connected.

 $i \in \mathcal{V}$ per $(i) := g.c.d\{I \exists \text{closed walk of length } I \text{ in } i\}$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 connected.

 $i \in \mathcal{V}$ per $(i) := g.c.d\{I \exists \text{closed walk of length } I \text{ in } i\}$

$$per(a) = ?$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 connected.

$$i \in \mathcal{V} \text{ per}(i) := g.c.d\{I \exists \text{closed walk of length } I \text{ in } i\}$$

$$(a,a) \in \mathcal{E} \Rightarrow \operatorname{per}(a) = 1$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 connected.

$$i \in \mathcal{V} \quad \text{per}(i) := g.c.d\{I \exists \text{closed walk of length } I \text{ in } i\}$$

$$(a,a) \in \mathcal{E} \Rightarrow \operatorname{per}(a) = 1$$

$$per(e) = ?$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 connected.

 $i \in \mathcal{V}$ per $(i) := g.c.d\{I \exists \text{closed walk of length } I \text{ in } i\}$

$$(a,a) \in \mathcal{E} \Rightarrow \operatorname{per}(a) = 1$$

(e, d, g, e), (e, d, e) closed walks $\Rightarrow per(e) = 1$

Theorem

Assume that \mathcal{G} is connected. Then, per(i) = per(j) for every $i, j \in \mathcal{V}$.

Theorem

Assume that G is connected. Then, per(i) = per(j) for every $i, j \in V$.

 $\operatorname{per}_{\mathcal{G}}$ period of \mathcal{G} . \mathcal{G} is called aperiodic if $\operatorname{per}_{\mathcal{G}}=1$

Theorem

Assume that \mathcal{G} is connected. Then, per(i) = per(j) for every $i, j \in \mathcal{V}$.

 $\operatorname{per}_{\mathcal{G}}$ period of \mathcal{G} . \mathcal{G} is called aperiodic if $\operatorname{per}_{\mathcal{G}} = 1$

- ightharpoonup \exists self loop \Rightarrow aperiodic
- \triangleright \mathcal{G} undirected $\Rightarrow \operatorname{per}_{\mathcal{G}} = 1, 2$

Aperiodic

R_n Ring

R_n Ring

$$\operatorname{per}_{R_n} = g.c.d.\{2, n\} = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$$

Equivalence relation: $v \sim w$ if v is reachable from w and w is reachable from v.

Equivalence classes are called *connected components* $C \in \mathcal{C}$

Condensation graph $\mathcal{H} = (\mathcal{C}, \mathcal{F})$: $(C_1, C_2) \in \mathcal{F}$ if there is an edge from some node in C_1 to some node in C_2 .

- ▶ H is a DAG;
- ▶ \mathcal{G} undirected $\Rightarrow \mathcal{H}$ is composed of isolated nodes.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W), \mathcal{U} \subseteq \mathcal{V}$$

- ▶ \mathcal{U} is trapping if $i \in \mathcal{U}$, $(i,j) \in \mathcal{E} \Rightarrow j \in \mathcal{U}$;
- ▶ \mathcal{U} is *globally reachable* if for every $i \in \mathcal{V}$ there is a walk from i to some $j \in \mathcal{U}$.

Other connectivity issues

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W), \mathcal{U} \subseteq \mathcal{V}$$

- ▶ \mathcal{U} is trapping if $i \in \mathcal{U}$, $(i,j) \in \mathcal{E} \Rightarrow j \in \mathcal{U}$;
- ▶ \mathcal{U} is *globally reachable* if for every $i \in \mathcal{V}$ there is a walk from i to some $j \in \mathcal{U}$.

If G is connected,

- each subset $\mathcal{U} \neq \emptyset$ is globally reachable;
- ▶ the only subset $U \neq \emptyset$ that is trapping is U = V.

Other connectivity issues

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W), \mathcal{U} \subseteq \mathcal{V}$$

- ▶ \mathcal{U} is trapping if $i \in \mathcal{U}$, $(i,j) \in \mathcal{E} \Rightarrow j \in \mathcal{U}$;
- ▶ \mathcal{U} is globally reachable if for every $i \in \mathcal{V}$ there is a walk from i to some $j \in \mathcal{U}$.

If G is any graph,

- sink components in the condensation graph are trapping;
- from every node, there is a walk to a node belonging to a sink component;
- ▶ if there is just one sink component *C* in the condensation graph, then *C* is trapping and globally reachable.

{a8} is trapping and globally reachable

Some applications in Al

Patrolling with drones

- $ightharpoonup \mathcal{V}$ set of locations to be patrolled at certain times.
- ▶ $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ simple graph describing constraints: $(i, j) \in \mathcal{E}$ means that i and j can not be patrolled by the same drone (e.g. temporal constraints).

- V set of locations to be patrolled at certain times.
- ▶ $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ simple graph describing constraints: $(i, j) \in \mathcal{E}$ means that i and j can not be patrolled by the same drone (e.g. temporal constraints).

Problems:

- Determine the minimum number k of drones needed to patrol all locations.
- ▶ Find a function $\psi: \mathcal{V} \to \Omega$ where $\Omega = \{1, 2, ..., k\}$ so that

$$(i,j) \in \mathcal{E} \implies \psi(i) \neq \psi(j)$$

Interpretation: $\psi(i) \in \Omega$ indicates the drone that will patrol location i.

The problem just explained is an instance of the so-called coloring problem.

The function $\psi: \mathcal{V} \to \Omega$ is called a *coloring* with k colors: the requirement is that neighbor nodes must have different colors.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ is said to be *k-colorable* if there exists a coloring with *k* colors.

The minimum number of colors k for which \mathcal{G} is k-colorable, is called the *chromatic number* of \mathcal{G} .

The coloring problem: examples

Bipartite graphs (trees, even length cycles) have chromatic number 2.

An odd length cycle has chromatic number 3.

Planar graphs have chromatic number at most 4 (the famous 4-colors problem).

The coloring problem: examples

The coloring problem: problems

Compute the chromatic number of the following graphs:

- ightharpoonup the complete graph K_n
- the barbell graph
- ▶ the $L_h \times L_k$ grid
- the hypercube

A different patrolling problem

- V set of locations to be patrolled.
- ▶ G = (V, E) simple graph describing constraints: $(i, j) \in E$ means that i and j can not be patrolled by the same drone.
- There is only one drone available.

- V set of locations to be patrolled.
- ▶ G = (V, E) simple graph describing constraints: $(i, j) \in E$ means that i and j can not be patrolled by the same drone.
- There is only one drone available.

Problems:

- ▶ Determine the maximum number of locations k that can be patrolled by a single drone.
- ▶ Find all subsets $W \subseteq V$ consisting of k locations that can be patrolled by a single machine.

This leads to another classical graph theoretic problem. $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected graph.

- ▶ $W \subseteq V$ is called an *independent* set if, given any $i, j \in W$, it holds that $(i, j) \notin \mathcal{E}$.
- lacktriangle We are looking for independent sets of ${\cal V}$ of maximum cardinality.
- It is easy to find maximal independent sets (they can not be enlarged)

This leads to a classical graph theoretic problem. $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ simple graph.

- $\mathcal{W} \subseteq \mathcal{V}$ is called an *independent* set if, given any $i, j \in \mathcal{W}$, it holds that $(i, j) \notin \mathcal{E}$.
- lacktriangle We are looking for independent sets of ${\cal V}$ of maximum cardinality.
- It is easy to find maximal independent sets (they can not be enlarged)

Independent edges, the matching problem

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected graph.

 $\mathcal{F}\subseteq\mathcal{E}$ is called an *independent edge set* or a *matching* if any pair of edges in \mathcal{F} does not have nodes in common

Independent edges, the matching problem

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected graph.

 $\mathcal{F} \subseteq \mathcal{E}$ is called an *independent edge set* or a *matching* if any pair of edges in \mathcal{F} does not have nodes in common

Maximal matching

Matching in bipartite graphs

 $\mathcal{G}=(\mathcal{V}_1\cup\mathcal{V}_2,\mathcal{E})$, bipartite graph w.r. to the partition $\mathcal{V}_1\cup\mathcal{V}_2$

$$\mathcal{F} \subseteq \mathcal{E} \text{ matching} \Rightarrow |\mathcal{F}| \leq \min\{|\mathcal{V}_1|, |\mathcal{V}_2|\}$$

Matching *complete* on \mathcal{V}_1 if $|\mathcal{F}|=|\mathcal{V}_1|$ (and thus $|\mathcal{V}_2|\geq |\mathcal{V}_1|$)

$$\mathcal{G} = (\mathcal{V}_1 \cup \mathcal{V}_2, \mathcal{E})$$
, bipartite graph w.r. to the partition $\mathcal{V}_1 \cup \mathcal{V}_2$

$$\mathcal{F} \subseteq \mathcal{E} \text{ matching } \Rightarrow |\mathcal{F}| \leq \min\{|\mathcal{V}_1|, |\mathcal{V}_2|\}$$

Matching *complete* on \mathcal{V}_1 if $|\mathcal{F}|=|\mathcal{V}_1|$ (and thus $|\mathcal{V}_2|\geq |\mathcal{V}_1|$)

Matching complete on \mathcal{V}_2

A group of candidates and a set of jobs, an edge indicates that the candidate is qualified for that job.

A group of candidates and a set of jobs, an edge indicates that the candidate is qualified for that job.

Is there a way to assign each candidate to a single job they are qualified such that every job has only one person assigned to it?

A group of candidates and a set of jobs, an edge indicates that the candidate is qualified for that job.

Is there a way to assign each candidate to a single job they are qualified such that every job has only one person assigned to it?

Equivalently, is there a matching complete on candidates?

A group of candidates and a set of jobs, an edge indicates that the candidate is qualified for that job.

Complete matching on candidates and on jobs: perfect matching

Matching in bipartite graphs

Theorem (Hall's marriage 1934)

 $\mathcal{G} = (\mathcal{V}_1 \cup \mathcal{V}_2, \mathcal{E})$, bipartite graph w.r. to the partition $\mathcal{V}_1 \cup \mathcal{V}_2$. The following conditions are equivalent:

- 1. There exists a complete matching on V_1 ;
- 2. For every subset $W \subseteq V_1$, we have that $|N_W| \ge |W|$, where

$$N_{\mathcal{W}} = \{ v \in \mathcal{V}_2 \, | \, (v, w) \in \mathcal{E} \text{ for some } w \in \mathcal{W} \}$$

We will prove it later as a corollary to the max-flow min-cut theorem. Direct proofs exist.

Multigraphs

- ► Node set V
- \triangleright Link set \mathcal{E}
- \bullet $\theta: \mathcal{E} \to \mathcal{V}, \ \kappa: \mathcal{E} \to \mathcal{V}: \ \theta(e)$ tail of $e, \ \kappa(e)$ head of e

 $\blacktriangleright h \in \mathbb{R}_+^{\mathcal{E}}$ weight on edges

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, h)$$
 multigraph

Multigraphs

- ightharpoonup Node set $\mathcal V$
- ▶ Link set £
- $\theta: \mathcal{E} \to \mathcal{V}, \ \kappa: \mathcal{E} \to \mathcal{V}: \ \theta(e) \ tail \ of \ e, \ \kappa(e) \ head \ of \ e$

▶ $h \in \mathbb{R}_+^{\mathcal{E}}$ weight on edges

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, h)$$
 multigraph

Parallel edges:

Opposite edges:

Multigraphs

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, h)$$
 multigraph

Most of graph theoretic concepts naturally generalize to the new setting.

- ▶ A walk in \mathcal{G} is a sequence of edges $\gamma = (e_1, e_2, \dots, e_r)$ such that $\kappa(e_k) = \theta(e_{k+1})$ for $k = 1, \ldots r - 1$.
- $w_k = \sum_{e:\theta(e)=k} h_e$ degree of node k
- \triangleright G is undirected if \mathcal{E} consists of pairs of opposite edges $\{e, \bar{e}\}$ and $h_{e} = h_{\bar{e}}$.
- \triangleright An undirected graph \mathcal{G} is called *Eulerian* if there exists a closed walk using all edges just once (identifying opposite pairs).

Is it Eulerian?

Theorem

An unweighted undirected multigraph G is Eulerian if and only if it is connected and every node has even degree.