MATH324 (Statistics) – Lecture Notes McGill University

Masoud Asgharian

Winter 2019

Contents

1	Lecture 0	2
2	Lecture 1	2
3	Lecture 23.1 Markov's Inequality3.2 Tchebyshev's Inequality3.3 Application to Voting	2 2 2 4
4	Lecture 3	6
5	Lecture 4	6
6	Lecture 5	6
7	Lecture 6	6
8	Lecture 7	6
9	Lecture 8	6
10	Lecture 9	6
11	Lecture 10	6
12	Lecture 11	6
13	Lecture 12	6

- 1 Lecture 0
- 2 Lecture 1
- 3 Lecture 2

3.1 Markov's Inequality

Let X be a random variable and h be a **non-negative** function; ie:

$$h: R \to R^+ \cup \{0\} = [0, \infty)$$

Suppose $E(h(x)) < \infty$, then for some $\lambda > 0$, we have:

$$P(h(x) \ge \lambda) \le \frac{E[h(x)]}{\lambda} \tag{1}$$

Proof. Suppose X is a continuous random variable:

$$E[h(x)] = \int_{x} h(x)d_{x}(x)dx$$

$$= \left(\int_{x:h(x)\geq\lambda} h(x)f_{x}(x)dx + \int_{x:h(x)<\lambda} h(x)f_{x}(x)dx\right)$$

$$\geq \int_{x:h(x)\geq\lambda} h(x)f_{x}(x)dx \qquad \underline{since} \ h \geq 0$$

$$\geq \lambda \int_{x:h(x\geq\lambda} f_{x}(x)dx = \lambda \ P(h(x)\geq\lambda)$$

$$\implies P(h(x) \ge \lambda) \le \frac{E(h(x))}{\lambda}$$

The proof for the discrete case is similar.

3.2 Tchebyshev's Inequality

Tchebyshev's Inequality is a special case of Markov's Inequality. Consider $h(x) = (x - \mu)^2$, then:

$$P(|x - \mu| \ge \lambda) = P((x - \mu)^2 \ge \lambda^2)$$

$$\le \frac{E[(x - \mu)^2]}{\lambda^2} \qquad if \ E[(x - \mu)^2] < \infty$$

Let $\mu = E(X)$, then $E[(x - \mu)^2] = Var(X)$ denoted by σ_x^2 . We therefore have:

$$P(|x - \mu_x| \ge \lambda) \le \frac{\sigma_x^2}{\lambda^2}$$
 where $\mu_x = E(x)$ (2)

Now consider $\lambda = K\sigma_x$ where K is a known number. Then:

$$P(|x - \mu_x| \ge K\sigma_x) \ge \frac{\sigma_x^2}{K^2 \sigma_x^2} = \frac{1}{K^2}$$
(3)

This is called **Tchbyshev's Inequality**.

Example 3.1. Suppose K = 3.

$$P(|X - \mu_x| \ge 3 \ \sigma_x) \le \frac{1}{9}$$

In other words, at least 88% of the observations are within 3 standard deviation from the population mean.

Going back to the our example:

$$X_i \sim (\mu, 1)$$
 , $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

We want to study $P(\epsilon \geq \lambda) = P(|\bar{X}_n - \mu| \geq \lambda)$, first we note that:

$$E(X_i) = \mu$$
 , $i = 1, 2, \dots, n$

Then

$$E(\bar{X}_n) = E(\frac{1}{n} \sum_{i=1}^n X_i) = \frac{1}{n} \sum_{i=1}^n E(X_i)$$

$$= \frac{1}{n} \sum_{i=1}^n \mu = \frac{1}{n} (n\mu) = \frac{1}{n} (n\mu)$$

$$= \mu$$
(*)

Thus, using (2) we have:

$$P(|\bar{X}_n - \mu| \ge \delta) \le \frac{Var(\bar{X}_n)}{\delta^2}$$

Now:

$$Var(\bar{X}_n) = Var(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n^2}Var(\sum_{i=1}^n X_i)$$

$$= \frac{1}{n^2} \Big[\sum_{i=1}^n Var(X_i) + \sum_{1 \le i < j \le n} \sum_{1 \le i < j \le n} Cov(X_i, X_j) \Big] \qquad using Thm \ 5.12(b) - page \ 271$$

$$= \frac{1}{n^2} \sum_{i=1}^n Var(X_i) \qquad since \ \coprod_1^n X_i$$

$$= \frac{1}{n^2} \mathcal{N} Var(X) = \frac{Var(X)}{n} \qquad since \ x_i s \ are \ identically \ distributed$$

$$= \frac{\delta_X^2}{n} \qquad (**)$$

In our case $X \sim N(\mu, 1)$ so $Var(X) = \delta_X^2 = 1$. Thus $Var(\bar{X}_n) = \frac{1}{n}$

Remark. $X \coprod Y \implies Cov(X,Y) = 0$. Note that:

$$X \coprod Y \implies E[g_1(X)g_2(Y)] = E[g_1(X)].E[g_2(Y)]$$

in particular:

$$X \coprod Y \implies E[XY] = E[X].E[Y]$$

on the other hand:

$$Cov(X,Y) = E[XY] - E(X)E(Y)$$

thus:

$$X \coprod Y \implies Cov(X,Y) = 0.$$

recall that $X\coprod Y$ means X and Y are independent, i.e. $f_{X,Y}(x,y)=f_X(x)f_Y(y)$ where $f_{X,Y},f_X$ and f_Y represent respectively the ////TODO We therefore have:

$$P(|\bar{X}_n - \mu| \ge \delta) \le \frac{1}{n\delta^2} \tag{4}$$

Using (4) and the sample size, n, we can find an upper bound for the proportion of deviations which are greater than a given threshold δ .

We can also use (4) for Sample Size Deterministic:

Suppose δ is given and we want $P(|\bar{X}_n - \mu| \ge \delta) \le \beta$ where β is also given. Then setting $\frac{1}{n\delta^2} = \beta$, we can estimate $n \approx \frac{1}{\beta\delta^2}$.

3.3 Application to Voting

Define $X_i = \begin{cases} 1 & \text{NDP} \\ 0 & \text{otherwise} \end{cases}$. Associated to each eligible voter in Canada

we have a binary variable X. Let p = P(X = 1). So p represents the proportion of eligible voters who favor NDP. Of interest is often estimation of p. Suppose we have a sample of size n, X_1, X_2, \ldots, X_n .

 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is the sample proportion; The counterpart of p which nat be denoted by \hat{p} . Note that:

$$\mu_X = E(X) = 1 \times P(X = 1) + 0 \times P(X = 0) = 1 - p + 0 \times (1 - p) = p$$

and:

$$E(X^2) = 1^2 \times P(X = 1) + 0^2 \times P(X = 0) = 1 - p + 0 \times (1 - p) = p$$

From (*) and (**) we find that :

$$E(\hat{p}_n) = E(\bar{X}_n)\mu_X = p$$

and:

$$Var(\hat{p}_n) = E(\bar{X}_n) = \frac{Var(X)}{n} = \frac{\sigma_X^2}{n} = \frac{p(1-p)}{n}$$

Thus using (2), we have:

$$P(|\hat{p}_n - p| \ge \delta) \le \frac{Var(\hat{p}_n)}{\delta^2} = \frac{p(1-p)}{n\delta^2}$$

Note that the above bound on the probability of derivation depends on p which is unknown. We however notice that $p(1-p) \leq \frac{1}{4}$.

Define
$$\zeta(x) = x(1-x)$$
 for $0 < x < 1$. Then:

$$\zeta'(x) = 1 - 2x \implies \zeta'(x) = 0 \implies x = \frac{1}{2}$$

$$\zeta''(\frac{1}{2}) = -2 \implies x = \frac{1}{2} \quad \text{which is a maximizer}$$

$$\zeta(\frac{1}{2}) = \frac{1}{2}(1 - \frac{1}{2}) = \frac{1}{4}$$

(Note that $\zeta''(x) = -2$ for all 0 < x < 1)

We therefore find:

$$P(|\hat{p}_n - p| \ge \delta) \le \frac{1}{4n\delta^2} \tag{5}$$

Using (5) and a given sample size n we can find an upper bound for the probability of derivation by δ and the amount for any given δ .

We can also use (5) for <u>sample size deterministic</u> for a size bound β and derivative δ as follows:

$$\frac{1}{4n\delta^2} = \beta \qquad \implies \qquad n \ge \frac{1}{4\beta\delta^2}$$

This is of course conservative since $p(1-p) \leq \frac{1}{4}$.

- 4 Lecture 3
- 5 Lecture 4
- 6 Lecture 5
- 7 Lecture 6
- 8 Lecture 7
- 9 Lecture 8
- 10 Lecture 9
- 11 Lecture 10
- 12 Lecture 11
- 13 Lecture 12