LANDSLIDE PREDICTION USING DEEP LEARNING

Sarah Fadhlaldeen and Emerald Awuor

Outline

- Introduction
- Objectives
- Methodology
- Results
- Discussion and conclusion

Introduction: Earthquake induced landslides

- Based on the 2018 earthquake in Papua New guinea.
- 11000 landslides recorded in the inventory.
- Resulted in some of the largest landslides ever recorded.

(Adapted from Tanyas et al., 2022)

Objectives

Conduct landslide prediction using deep learning methods:

- Prediction using UNet and R2-UNet.
- Comparison of performance of the models.

Data

.37

.36

.35

.34

.33

.32

Data

Feature Patch 18

Target Patch 9

Target Patch 15

Target Patch 18

Target Patch 12 Feature Patch 13

Feature Patch 10

Target Patch 11

- The .tiff files were split into patches.
- Augmentation: Vertical and Horizontal flip

Methodology: Models

- R2Unet incorporates the properties of both RNN and ResNet into the UNet.
- The skip connections enable the training of deeper networks.
- The recurrent units improves the network's capacity for feature extraction.

Methodology: Hyper-parameter Tuning

Name	batch_size	hidden_chann els	lr	patch_size
44 hidden channels_aug	32	44	0.001	[24,24]
trial13-aug-very good pred.	32	32	0.001	[24,24]
trial4-aug-also good	64	16	0.001	[24,24]
trial3-aug- with24patch	32	16	0.001	[24,24]
trial2-aug	32	16	0.001	[32,32]
trial1-aug	32	16	0.001	[64,64]
trial11-no aug	32	16	0.001	[64,64]
trial10-no aug	32	16	0.001	[32,32]
trial9-no aug	32	16	0.001	[24,24]
trial8-no aug	32	16	0.001	[16,16]

Methodology: Hyper-parameter Tuning

The parameters we used that we found appropriate for the final training "patch_size": (24,24), "batch_size": 32, "hidden_channels": 44 for U-Net and 64 for R2U-Net, "Ir": 0.001, "weight_decay": 0.001, "epochs": 150.

UNet

Training and Validation Loss History Train Loss Validation Loss O.8 O.4 O.2 O.4 O.2 O.4 O.5 Epoch

R2U-Net

UNet R2U-Net

R2U-Net

Entire Area as Target

Prediction using UNET

Entire Area as Target

Prediction using R2U-Net

Discussion and Conclusion

- Both models performed well with R2U-Net doing slightly better.
- UNet; RMSE~0.2533 for the test data and RMSE~ 0.6127 for validation.
- R2U-Net; RMSE~0.2215 for the test data and RMSE~0.3197 for validation. Also, it was better in capturing some of the small LS.
- The main challenge we faced was overfitting.
- Imbalanced dataset.
- Having more data would perhaps make the training better.
- Selecting the appropriate number of channels played a key role in the accuracy of our output for the models.

Thank You

Questions?