Machine Learning 5

Evaluation Metrics

Accuracy – Sensitivity – Specificity Precision – F1 Score – Confusion Matrix

behzad.amanpour

Accuracy

True Decisions All Decisions

Imbalanced Data

- 90 normal cases (negative class)
- 10 cancerous cases (positive class)

Sensitivity - Specificity

Sensitivity, Recall, True Positive Rate

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Specificity, Selectivity, True Negative Rate

$$ext{TNR} = rac{ ext{TN}}{ ext{N}} = rac{ ext{TN}}{ ext{TN} + ext{FP}}$$

Sensitivity - Specificity

Precision, Positive Predictive Value

$$ext{PPV} = rac{ ext{TP}}{ ext{TP} + ext{FP}}$$

F1 Score (Harmonic Mean of Precision and Sensitivity)

$$\mathrm{F_1} = 2 imes rac{\mathrm{PPV} imes \mathrm{TPR}}{\mathrm{PPV} + \mathrm{TPR}} = rac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$$

Example

20 samples: 10 cancer + 10 normal

Algorithm1:

- all predicted cancer

$$ext{TPR} = rac{ ext{TP}}{ ext{P}} = ext{100\%} \qquad ext{PPV} = rac{ ext{TP}}{ ext{TP} + ext{FP}} = ext{50\%} \quad ext{TNR} = rac{ ext{TN}}{ ext{N}} = ext{0\%}$$

Algorithm2:

- 5 cancerous samples predicted correctly
- 15 samples predicted normal

$$ext{TPR} = rac{ ext{TP}}{ ext{P}} = ext{50\%} \qquad ext{PPV} = rac{ ext{TP}}{ ext{TP} + ext{FP}} = ext{100\%} \quad ext{TNR} = rac{ ext{TN}}{ ext{N}} = ext{100\%}$$

The Free Encyclopedia

Main page Contents Current events Random article About Wikipedia Contact us

Contribute

Donate

Help Learn to edit Community portal Recent changes Upload file

Tools

Wikipedia

Article

Talk

Precision and recall

From Wikipedia, the free encyclopedia

In pattern recognition, information retrieval and classif from a collection, corpus or sample space.

Precision (also called positive predictive value) is the the fraction of relevant instances that were retrieved.

Consider a computer program for recognizing dogs (the twelve dogs, the program identifies eight dogs. Of the cats (false positives). Seven dogs were missed (false (true positives / selected elements) while its recall is 5

When a search engine returns 30 pages, only 20 of witells us how valid the results are, while its recall is 20/8

Adopting a hypothesis-testing approach from statistics type I and type II errors (i.e. perfect specificity and ser (no false negative).

sensitivity, recall, hit rate, or true positive rate (TPR)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

specificity, selectivity or true negative rate (TNR)

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$$

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP} = 1 - FDR$$

negative predictive value (NPV)

$$NPV = \frac{TN}{TN + FN} = 1 - FOR$$

miss rate or false negative rate (FNR)

$$ext{FNR} = rac{ ext{FN}}{ ext{P}} = rac{ ext{FN}}{ ext{FN} + ext{TP}} = 1 - ext{TPR}$$

fall-out or false positive rate (FPR)

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR$$

false discovery rate (FDR)

$$FDR = \frac{FP}{FP + TP} = 1 - PPV$$

false omission rate (FOR)

$$FOR = \frac{FN}{FN + TN} = 1 - NPV$$

Confusion Matrix (Matching Matrix)

Predicted classes Negative Positive 0 15 negative Negative TN FP Frue label Actual classes positive -Positive FN negative positive Predicted label

https://towardsai.net/p/data-science/how-to-evaluate-you-model-using-the-confusion-matrixe

