ENSAE (2021/2022)

TEST DE PRESELECTION AU CONCOURS DE RECRUTEMENT D'ELEVES INGENIEURS STATISTICIENS ECONOMISTES (CYCLE LONG) ET D'ANALYSTES STATISTICIENS - DURÉE = 3H

La clarté de la rédaction ainsi que la justification des résultats seront prises en compte dans la notation.

Les documents et téléphones portables sont formellement interdits.

Exercice 1

Soit la fonction réelle f de variable réelle x définie sur \mathbb{R} par $f(x) = \frac{x}{1+|x|}$

- (1) (a) Soit y un réel donné. Résoudre, dans \mathbb{R} , l'équation y = f(x).
 - (b) En déduire que f est une bijection de \mathbb{R} sur un intervalle $I_1 = f(\mathbb{R})$ que l'on précisera.
 - (c) Soit f^{-1} la bijection réciproque de f. Pour tout $x \in I_1$, déterminer alors l'expression de $f^{-1}(x)$ à l'aide de |x|.
 - (d) Contruire, dans un même repère orthonormé, les courbes de f et de f^{-1} .
- (2) On pose $f_1 = f, f_2 = f \circ f_1, f_3 = f \circ f_2, ..., f_n = f \circ f_{n-1}, \forall n \in \mathbb{N}, n \ge 2$
 - (a) Calculer, pour tout $x \in \mathbb{R}$, les expressions de $f_2(x), f_3(x)$ et $f_n(x)$
 - (b) Exprimer $f_n(x)$ en fonction de $f(nx), \forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*$
 - (c) En déduire, pour tout $n \in \mathbb{N}^*$, l'ensemble $I_n = \{f_n(x)/x \in \mathbb{R}\} = f_n(\mathbb{R})$.

Exercice 2

On considère la suite $(S_n)_{n\geq 1}$ définie par :

$$S_n = \frac{1}{5} + \frac{4}{5^2} + \frac{7}{5^3} + \ldots + \frac{3n-2}{5^n}, \forall n \in \mathbb{N}^*$$

- (1) Montrer que $(S_n)_{n\geq 1}$ est une suite croissante.
- (2) Montrer que $S_{n+1} = \frac{1}{5} + \frac{1}{5}S_n + \frac{3}{20}(1 \frac{1}{5^n}), \forall n \in \mathbb{N}^*.$
- (3) Déduire de ce qui précède que $(S_n)_{n\geq 1}$ est une suite majorée.
- (4) Prouver que $(S_n)_{n\geq 1}$ est une suite convergente et calculer sa limite.

Exercice 3

Pour tout $n \in \mathbb{N} \setminus \{0,1\}$, on considère, dans \mathbb{R}_+ , l'équation $(E_n): x^n = x + n$ et la fonction f_n définie sur \mathbb{R}_+ par $f_n(x) = x^n - x - n$

- (1) En étudiant les variations de f_n sur \mathbb{R}_+ , montrer que (E_n) admet une unique solution, notée x_n , telle que $x_n > 1, \forall n \geq 2$.
- (2) On suppose la suite $(x_n)_{n\geq 2}$, ainsi obtenue, convergente. On pose $\lim_{n\to +\infty} x_n = l$ Calculer alors sa limite l.
- (3) Soit ϵ un réel arbiraire strictement positif ($\epsilon > 0$).

Montrer, en utilisant le sens de variation de f_n , l'existence d'un entier naturel $N \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}$, on a l'implication : $n > N \Rightarrow 1 < x_n < 1 + \epsilon$.

Que peut on en déduire alors pour la suite $(x_n)_{n\geq 2}$?

Exercice 4

Soit
$$a \in [0, \pi] \setminus \{\frac{\pi}{2}\}$$
. On pose $x = tg(a), y = \frac{cos(4a)}{cos^4(a)}$ et $y = f(x)$

- (1) Déterminer, en fonction de x, l'expression de la fonction f ainsi définie.
- (2) Etudier la fonction f et contruire sa courbe \mathcal{C} dans un repère orthogonal du plan.
- (3) Déterminer les coordonnée des points d'intersection de \mathcal{C} avec l'axe des abscisses.
- (4) A quelles valeurs de a correspondent ces points?

FIN DU SUJET

BAREME

Exercice 1: 7pts = (1 + 1 + 1 + 1) + (1,5 + 0,5 + 1)

Exercice 2: 4pts = 1 + 1 + 1 + 1

Exercice 3:4pts = 1.5 + 1 + 1.5

Exercice 4:5pts = 1 + 1,5 + 1 + 1,5