

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-010427
(43)Date of publication of application : 16.01.2001

(51)Int.CI. B60R 21/00
G08G 1/16
H04N 7/18

(21)Application number : 11-183446 (71)Applicant : FUJITSU TEN LTD
(22)Date of filing : 29.06.1999 (72)Inventor : SHIMIZU TOSHIHIRO
SAKIYAMA KAZUHIRO
SAKO KAZUYA

(54) VEHICLE PARKING ASSIST DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To assist a driver in parking a vehicle in a way that is easy to understand by making effective use of images picked up by cameras.

SOLUTION: Vehicles 53, 54 parked adjacent to a parking space 51 and a vehicle 1 parked in the parking space 51 are formed into a planar model 80 for display, as shown in the figure seen from high above. An objective planar display of the vehicle 1 seen from high above makes it easier to grasp the relationship between the positions of the vehicle 1, the parking space 51 and adjacent parked vehicles 53, 54, and the orientation and advancing direction of the vehicle 1. An estimation curve 5 to be advanced which is based on steering angle is displayed in a rear image to allow judgments also from roof portions and the lines of projection onto the ground.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-10427

(P2001-10427A)

(43)公開日 平成13年1月16日 (2001.1.16)

(51)Int.Cl.⁷
B 60 R 21/00
G 08 G 1/16
H 04 N 7/18

識別記号

F I
B 60 R 21/00
G 08 G 1/16
H 04 N 7/18
B 60 R 21/00

テ-マコ-ト(参考)
6 2 8 D 5 C 0 5 4
C 5 H 1 8 0
J
6 2 1 C

審査請求 未請求 請求項の数8 OL (全 10 頁)

(21)出願番号 特願平11-183446

(22)出願日 平成11年6月29日 (1999.6.29)

(71)出願人 000237592

富士通テン株式会社

兵庫県神戸市兵庫区御所通1丁目2番28号

(72)発明者 清水 俊宏

兵庫県神戸市兵庫区御所通1丁目2番28号

富士通テン株式会社内

(72)発明者 岩山 和広

兵庫県神戸市兵庫区御所通1丁目2番28号

富士通テン株式会社内

(74)代理人 100075557

弁理士 西教 圭一郎 (外3名)

最終頁に続く

(54)【発明の名称】 車両の駐車支援装置

(57)【要約】

【課題】 カメラが撮像する映像を有効に利用して、運転者に対して解りやすい駐車支援を行う。

【解決手段】 駐車スペース51の隣に駐車している車両53、54と自車両1とを平面的にモデル化し、上空から見た図のような平面モデル80として表示する。車両1の上空からの客観的な平面表示にすることによって、自車両1と駐車スペース51および両隣の駐車車両53、54との位置関係や、自車両1の向きおよび進行方向が把握しやすくなる。後方映像に、ステアリング角に基づく進行予測曲線を表示し、ルーフ部分で判断したり、地面への投影線で判断することもできる。

【特許請求の範囲】

【請求項1】 車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、カメラが撮像する後方映像を画像表示する表示手段と、自車両の車幅を後方に延長したガイドライン、および車両後端部からの距離目盛を、表示手段の後方映像に重ねて表示し、駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置。

【請求項2】 車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、カメラが撮像する後方映像を画像表示する表示手段と、自車両のステアリング角を検出するステアリング角センサと、

ステアリング角センサによって検出されるステアリング角に応じて、自車両の進路を予測し、予測結果を表す進行予測曲線を算出する進行予測手段と、

自車両が駐車すべき駐車位置を判定する駐車位置判定手段と、

進行予測手段によって算出される進行予測曲線の長さを、駐車位置判定手段によって判定される駐車位置までの距離に応じて調整して、表示手段の後方映像に重ねて表示し、駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置。

【請求項3】 車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、

カメラが撮像する後方映像を画像表示する表示手段と、自車両のステアリング角を検出するステアリング角センサと、

ステアリング角センサによって検出されるステアリング角に応じて、自車両のルーフ部分の進路を予測し、予測結果を表す進行予測曲線を算出する進行予測手段と、進行予測手段によって算出される車両のルーフ部分の進行予測曲線を、表示手段の後方映像に重ねて表示し、駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置。

【請求項4】 車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、

カメラが撮像する後方映像を画像表示する表示手段と、自車両のステアリング角を検出するステアリング角センサと、

ステアリング角センサによって検出されるステアリング角に応じて、自車両の進路を予測し、予測結果を表す進行予測曲線を算出する進行予測手段と、

カメラが撮像中の駐車領域に隣接する駐車領域に、他の車両が駐車しているか否かを判定し、駐車していると判定されるときに、該車両の地面投影線を算出する車両投

影手段と、
進路予測手段によって算出される進行予測曲線、および車両投影手段によって算出される車両の地面投影線を、表示手段の後方映像に重ねて表示し、駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置。

【請求項5】 車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、

カメラによって撮像される後方映像に基づいて生成される画像を表示する表示手段と、
カメラによって撮像される後方映像に基づき、自車両が駐車すべき駐車領域および該駐車領域に隣接する駐車領域について、自車両および駐車中の車両とともに平面的なモデルを生成する平面モデル生成手段と、
平面モデル生成手段によって生成される平面モデルを、表示手段に表示して駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置。

【請求項6】 前記駐車支援手段は、自車両の後退方向が下向きになるように、前記表示手段への表示を行うことを特徴とする請求項5記載の車両の駐車支援装置。

【請求項7】 前記駐車支援手段は、前記表示手段に、前記カメラからの後方映像と、後方映像に重ねて表示する駐車支援用の画像とを、前記平面モデルと切換えて表示可能であることを特徴とする請求項5または6記載の車両の駐車支援装置。

【請求項8】 車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、

カメラが撮像する後方映像を画像表示する表示手段と、予め設定される時間を計時するタイマと、

車両の進行方向の切換状態を検出する方向検出手段と、方向検出手段によって、車両の進行方向が後退方向に切換えられることが検出されるときに、カメラによって撮像される後方映像を表示手段に表示して運転者に対する駐車支援を行い、方向検出手段によって、車両の進行方向が後退方向から前進方向に切換えられることが検出されるときに、タイマによる計時を開始し、タイマに設定されている時間が経過するまでは、表示手段への後方映像表示による駐車支援を続ける駐車支援手段とを含むことを特徴とする車両の駐車支援装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、車両を運転する運転者に対して、特に駐車を行う際に画像情報に基づく運転支援を行う車両の駐車支援装置に関する。

【0002】

【従来の技術】従来から、自動車などの車両にビデオカメラなどを設置し、特に運転者からは死角となる映像を撮像して、車両の運転者に対する駐車支援を行う提案が

3

成されている。たとえば特開昭64-14700には、ステアリング角から進行予測曲線を算出し、カメラが撮像する映像に重ねて表示し、さらに車両の輪郭を示す車両輪郭線を追加表示して駐車時の支援を行う先行技術が開示されている。特開平7-44799には、側距センサで駐車スペースを測定し、駐車可能かどうかを報知したり、位置や車両特性等のデータからハンドル等の操作量を演算し、表示あるいは自動制御を行う先行技術が開示されている。特開平10-283592には、画像の三次元解析により、自車両と障害物との接触可能性を判断して報知し、またその関係を画像表示する先行技術が開示されている。

【0003】

【発明が解決しようとする課題】特開昭64-14700の先行技術のように、単に進行予測曲線をカメラ画像に重ねて表示したり、車両の輪郭を示す車両輪郭線を追加表示するだけでは、車両が後退して駐車する際の適切な運転支援を行うことができない。特開平7-44799の先行技術のように、側距センサで駐車スペースを測定する方法では、後退して駐車する際の有効な運転支援を行うことはできない。特開平10-283592の先行技術のように、画像の三次元解析で自車両と障害物との接触可能性を判断するだけでは、所定の駐車スペースに車両を誘導するような駐車支援を行うことはできない。

【0004】本発明の目的は、カメラが撮像する映像を有効に利用して、運転者に対して解りやすい駐車支援を行うことができる車両の駐車支援装置を提供することである。

【0005】

【課題を解決するための手段】本発明は、車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、カメラが撮像する後方映像を画像表示する表示手段と、自車両の車幅を後方に延長したガイドライン、および車両後端部からの距離目盛を、表示手段の後方映像に重ねて表示し、駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置である。

【0006】本発明に従えば、カメラが車両の後方映像を撮像すると、表示手段に撮像した後方映像が画像表示される。駐車支援手段は、自車両の車幅を後方に延長したガイドライン、および車両後端部からの距離目盛を、後方映像に重ねて表示する。ガイドラインが自車両の車幅を後方に延長しているので、駐車領域などで隣接する駐車領域との境界線などに平行となった後で、後退する障害物との大体の距離を距離目盛に基づいて確認することができ、駐車を完了させて停止する位置までの距離などの判定を容易に行うことができる。

【0007】さらに本発明は、車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置

10

4

において、車両の後方映像を撮像するカメラと、カメラが撮像する後方映像を画像表示する表示手段と、自車両のステアリング角を検出するステアリング角センサと、ステアリング角センサによって検出されるステアリング角に応じて、自車両の進路を予測し、予測結果を表す進行予測曲線を算出する進路予測手段と、自車両が駐車すべき駐車位置を判定する駐車位置判定手段と、進路予測手段によって算出される進路予測曲線の長さを、駐車位置判定手段によって判定される駐車位置までの距離に応じて調整して、表示手段の後方映像に重ねて表示し、駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置である。

【0008】本発明に従えば、自車両のステアリング角に応じて予測される進行予測曲線の長さを、自車両が駐車すべき駐車位置までの距離に応じて調整するので、進行予測曲線の終端が駐車位置となり、運転者にとって見やすい表示での駐車支援が可能になる。

20

【0009】さらに本発明は、車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、カメラが撮像する後方映像を画像表示する表示手段と、自車両のステアリング角を検出するステアリング角センサと、ステアリング角センサによって検出されるステアリング角に応じて、自車両のルーフ部分の進路を予測し、予測結果を表す進行予測曲線を算出する進路予測手段と、進路予測手段によって算出される車両のルーフ部分の進行予測曲線を、表示手段の後方映像に重ねて表示し、駐車支援を行う駐車支援手段とを含むことを特徴とする。

20

【0010】本発明に従えば、自車両のルーフ部分の進行予測曲線を後方映像に重ねて表示して駐車支援を行うので、駐車領域が隣接している駐車中の車両のルーフなどに当たらないように、進行予測曲線を合わせて後退することによって、死角になる駐車スペースの隣の車両の側部に関係なく後退することができる。

20

【0011】さらに本発明は、車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、カメラが撮像する後方映像を画像表示する表示手段と、自車両のステアリング角を検出するステアリング角センサと、ステアリング角センサによって検出されるステアリング角に応じて、自車両の進路を予測し、予測結果を表す進行予測曲線を算出する進路予測手段と、カメラが撮像中の駐車領域に隣接する駐車領域に、他の車両が駐車しているか否かを判定し、駐車していると判定されるとときに、該車両の地面投影線を算出する車両投影手段と、進路予測手段によって算出される進行予測曲線、および車両投影手段によって算出される車両の地面投影線を、表示手段の後方映像に重ねて表示し、駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置である。

50

【0012】本発明に従えば、自車両が後退して駐車しようとする駐車領域の映像をカメラで撮像するときに、隣接する駐車領域に駐車している他の車両があれば、該車両の地面投影線を算出し、表示手段に表示される後方映像に地面投影線と進行予測曲線とを表示して駐車案内を行うので、たとえば映像の死角となるような他の車両のかねの部分でも、他の車両の進行予測曲線に影響するか否かを確実に判断することができ、駐車領域に対し自車両を案内する際に、他の車両の映像では影になっている部分でも確実に他の車両に触れないで駐車領域に侵入し得るか否かを判断することができる。

【0013】さらに本発明は、車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置において、車両の後方映像を撮像するカメラと、カメラによって撮像される後方映像に基づいて生成される画像を表示する表示手段と、カメラによって撮像される後方映像に基づき、自車両が駐車すべき駐車領域および該駐車領域に隣接する駐車領域について、自車両および駐車中の車両とともに平面的なモデルを生成する平面モデル生成手段と、平面モデル生成手段によって生成される平面モデルを、表示手段に表示して駐車支援を行う駐車支援手段とを含むことを特徴とする車両の駐車支援装置である。

【0014】本発明に従えば、自車両が駐車しようとする駐車領域と隣接する駐車領域とを平面化して平面モデルとして表示し、合わせて自車両および他の駐車領域に駐車している車両を平面化して表示するので、駐車領域を上空から見た図のように表示して、解りやすい駐車案内を行うことができる。平面化しての表示であるので、自車両と駐車領域および隣接する駐車車両との間の位置関係や自車両の向きや進行方向を容易に把握することができる。

【0015】また本発明で前記駐車支援手段は、自車両の後退方向が下向きになるように、前記表示手段への表示を行うことを特徴とする。

【0016】本発明に従えば、自車両の後退方向を下向きとして表示するので、運転者が表示手段を見たときに、運転者の感覚にあった解りやすい表示を行うことができる。

【0017】また本発明で、前記駐車支援手段は、前記表示手段に、前記カメラからの後方映像と、後方映像に重ねて表示する駐車支援用の画像とを、前記平面モデルと切換えて表示可能であることを特徴とする。

【0018】本発明に従えば、平面モデル化した駐車案内と、後方映像に従った駐車案内とを切換えることによって、実際の後方映像に基づく駐車支援と、平面モデル化した駐車支援とを任意に切換えて、運転者にとって解りやすい駐車支援を行うことができる。

【0019】さらに本発明は、車両が後退して駐車する際に、運転者を画像情報で支援する車両の駐車支援装置

10

20

30

40

50

において、車両の後方映像を撮像するカメラと、カメラが撮像する後方映像を画像表示する表示手段と、予め設定される時間を計時するタイマと、車両の進行方向の切換状態を検出する方向検出手段と、方向検出手段によって、車両の進行方向が後退方向に切換えられることが検出されるときに、カメラによって撮像される後方映像を表示手段に表示して運転者に対する駐車支援を行い、方向検出手段によって、車両の進行方向が後退方向から前進方向に切換えられることが検出されるときに、タイマによる計時を開始し、タイマに設定されている時間が経過するまでは、表示手段への後方映像表示による駐車支援を続ける駐車支援手段とを含むことを特徴とする車両の駐車支援装置である。

【0020】本発明に従えば、車両が後退すると、後方映像に基づく駐車支援が行われ、車両の進行方向を後退から前進に切換えるも、タイマに設定される時間が経過するまでは車両後方の状況を表示して駐車支援を行うので、前進および切返しの場合の後方状況の確認を容易に行うことができる。ステアリングの切返しなどを行う際に、どの程度まで前進すればよいのかの目安も解りやすく表示して支援することができる。

【0021】

【発明の実施の形態】図1は、本発明の実施の各形態で運転支援を行う際に基本となる構成を示す。たとえば、車両1の運転者が、駐車場2に後退して駐車する際に、運転者の死角となる映像とともに、運転支援を行う。運転者が白線3などを目標として、正しい位置に駐車することができるよう、情報ディスプレイ4の画面上に後方映像と進行予測曲線5とが表示される。情報ディスプレイ4は、たとえば液晶表示装置(LCD)などで構成され、駐車支援のための電子制御ユニット(以下、「ECU」と略称する)である駐車アシストECU6によって生成される運転支援用の画像を表示する。進行予測曲線5は、ステアリング7の操舵角であるステアリング角を駐車アシストECU6に入力し、ステアリング角に基づく演算処理で求められ、情報ディスプレイ4に表示される。

【0022】駐車アシストECU6による運転支援情報の提供は、変速機のシフトレバー8が、後退用のRポジションに操作されることなどによって開始され、運転支援のための情報は、情報ディスプレイ4による映像ばかりではなく、スピーカ9を介する音響的な情報としても提供される。車両1の後退時の後方映像は、カメラユニット10によって撮像される。カメラユニット10は、たとえば車両1の後部に装着され、車両が後退する方向で、視野10aが駐車場2の方向を向くように設定される。ステアリング7のステアリング角は、ステアリング角センサ11によって検出される。また、シフトレバー8が後退位置に操作されることは、バックランプの点灯状態を制御するスイッチ(以下、「SW」と略称する)

へのON/OFF信号であるバックランプSW信号12に従って判断する。

【0023】図2は、図1の車両1が、後退しながら駐車場2の白線3で示される駐車スペースに進入しようとしている状態を示す。車両1の後部に装着されているカメラユニット10は、視野10a内の映像を撮像する。視野10a内には、車両1の運転者にとって死角となる部分が多く含まれるように設定される。ステアリング角センサ15によって検出されるステアリング角に対応するパルス信号、および車両が後退している状態でONになる変速機から出力されるバックランプSW信号16は、駐車アシストECU6に与えられる。

【0024】駐車アシストECU6は、カメラユニット10からのNTSC方式の映像信号と、ステアリング角センサ7からのステアリング角の操作に対応するパルス信号と、後退時に点灯するバックランプSW信号16とに応答して、情報ディスプレイ4に対して車両1の進行予測曲線5の表示と、進行予測曲線5に沿う3次元的な情報画像での駐車支援を行う。

【0025】図3は、図1の駐車アシストECU6の内部構成を示す。駐車アシストECU6内には、全体的な制御や演算を行うデジタル信号プロセッサ（以下、「DSP」と略称する）20が含まれる。DSP20に対して、バス21を介して周辺の回路が接続される。カメラユニット10からの映像信号は、NTSC方式の複合映像信号として、アンプ+フィルタ回路22に入力される。アンプ+フィルタ回路22は、映像信号中のアナログの映像成分を選択的に増幅し、その出力はアナログデジタル変換（以下、「ADC」と略称する）回路23で、デジタル信号に変換され、フィールドバッファ回路24に記憶される。アンプ+フィルタ回路22からは、同期分離回路25にも映像信号が与えられ、水平同期や垂直同期用の同期信号成分が分離されて、DSP20に入力される。DSP20には、ステアリング角センサ11からの角変位検出信号、およびステアリング7のセンタ位置を検出するときに発生されるセンタ位置検出信号も、バッファ回路26を介して入力される。さらにバックランプSW信号も、バッファ回路26を介してDSP20に入力される。

【0026】DSP20は、バス21を介して接続されるプログラムメモリ27に予め設定されるプログラムに従って動作する。また、データメモリ28には、プログラムメモリ27のプログラム動作の際に必要なデータが予め記憶されている。DSP20は、入力される映像信号に基づき、白線3などの認識を行ったり、ステアリング7の角変位操作に従って進行予測曲線5の生成のための演算処理を行う。

【0027】生成された画像は、SW回路30によって出力が切換可能なフィールドバッファ回路31、32に記憶される。フィールドバッファ回路31、32は、S

W回路30によって選択されて、デジタルアナログ変換（以下、「DAC」と略称する）回路33から、フィルタ+アンプ回路34を介して、情報ディスプレイ4にNTSC方式の映像出力として与えられる。駐車アシストECU6の全体に対しては、電源35から動作用の電力が供給される。リセット回路36からは、リセット信号が供給され、駐車アシストECU6は、初期状態からプログラムに従う動作を開始する。CLK+分周回路37は、駐車アシストECU6が行う動作の基準タイミングとなるクロック信号や、それを分周した信号を供給する。

【0028】図4は、本発明の実施の第1形態で、駐車アシストのための画像を表示している状態を簡略化して示す。本実施形態では、カメラユニット10によって撮像される後方映像中に、駐車用ストップなどの障害物40が存在するときに、距離を判別しやすいように、ガイドライン41、42および距離目盛43、44、45の表示を行う。ガイドライン41、42は、車両1の両側をそれぞれ後方に延長した直線であり、距離目盛43、44、45は車両後端部からの距離を示すラインである。ガイドライン41、42は、幅が車幅に相当するので、駐車スペースを示す白線3などと平行になれば、ガイドライン41、42の方向に直線的に後退すればよいことになる。したがって、図4の画像を表示することによって、後退する場合の障害物40との概略的な距離を容易に確認することができ、停止位置の目標が付けやすくなる。

【0029】図5は、本発明の実施の第2形態で、駐車アシストのための画像を表示している状態を簡略化して示す。本実施形態では、進行予測曲線5の長さを駐車位置までの距離に応じて調節する。駐車位置は、たとえば駐車用ストップなどの障害物40の存在する位置に設定することができる。したがって、車両1の後方映像に重ねて表示される進行予測曲線5の長さは、車両1の後端から障害物40までとなる。駐車位置までの距離に応じて進行予測曲線5の長さを調整することができる、運転者にとって見やすい表示が可能になる。

【0030】図6は、本発明の実施の第3形態で、駐車アシストのための画像を表示している状態を簡略化して示す。本実施形態では、横に並んでいる3つの駐車スペース50、51、52を想定する。両側の駐車スペース50、52には、他の車両53、54が既に駐車している。運転中の車両1が車両53、54間の空いた駐車スペース51に後退して進入する際に、駐車スペース51の隣に駐車している車両53、54のループに当らないように、ループ部分の進行予測曲線55を表示する。

【0031】車両1は3次元的な形状を有するので、車両1の底部に相当する進行予測曲線5では、隣の車両53の陰に隠れて死角となっている部分などで、ループ部分などが他の車両53、54や障害物などと当るか否か

を判断することは困難である。ルーフ部分の進行予測曲線55を表示すれば、隣接する車両53、54のルーフに当らないように案内して、駐車支援を行うことができる。

【0032】図7は、本発明の実施の4形態で、駐車アシストのための画像を表示している状態を簡略化して示す。本実施形態では、図6の実施形態と同様に、横に並んでいる3つの駐車スペース50、51、52のうちの両側の駐車スペース50、52に車両53、54がそれぞれ駐車している場合を想定する。各車両54、54に対しても、地面への投影線56、57をそれぞれ表示する。駐車スペース51の隣の駐車スペース50、52に駐車している車両53、54の投影線56、57を表示することによって、特に、映像の死角になる駐車スペース51の手前側の車両53の側部に関係なく、確実に駐車スペース51に車両1を進入させることができる。

【0033】図8は、本発明の実施の5形態で、駐車アシストのための画像を表示している状態を簡略化して示す。本実施形態でも、図6および図7の実施形態と同様に、横に並んでいる3つの駐車スペース50、51、52のうちの両側の駐車スペース50、52に車両53、54がそれぞれ駐車している場合を想定する。本実施形態では、駐車スペース51の隣に駐車している車両53、54と自車両1とを平面的にモデル化し、上空から見た図のような平面モデル80として表示する。平面モデル80は、映像から認識される駐車スペース50、51、52および車両53、54の概略的な形状や、車両1の相対的位置、および予め入力されている車両1の形状などに基づいて、DSP20によって生成される。車両1の上空からの客観的な平面表示にすることによって、自車両1と駐車スペース51および両隣の駐車車両53、54との位置関係や、自車両1の向きおよび進行方向が把握しやすくなる。

【0034】また、図8に示す平面表示では、自車両1の後退方向が情報ディスプレイ4の表示画面上で下向きになるように表示している。このような方向で平面表示することによって、駐車スペース51に入って落着くという運転者の感覚に合った表示を行うことができる。さらに、平面モデル80も、通常利用する駐車車上であれば駐車スペース50、51、52の形状などについても予めデータとして入力しておくこともできる。

【0035】図9は、本発明の実施の第6形態に用いる駐車アシストECU66の概略的な電気的構成を示す。駐車アシストECU66は、図3に示す駐車アシストECU6に類似し、対応する部分には同一の参照符を付して重複する説明は省略する。角変位検出信号およびセンタ位置信号とともに、シフトレバー8の操作位置を示すシフトレバー位置信号および切換スイッチ67からの信号がバッファ回路68を介してDSP20に入力される。バス21には、タイマ69も接続され、DSP20

が時間を設定して、設定される時間の計時を行わせることができる。

【0036】切換スイッチ67は、図8に示すような平面モデル80の表示と、たとえば図6や図7のような通常の後方映像画面表示とを切換えるために用いる。車両1の運転者は、切換スイッチ67を操作して、駐車スペースなどの状況に応じて、判りやすい表示を選ぶことができる。

【0037】図10は、図9の実施形態で駐車支援を行う手順を示す。ステップs1から手順を開始し、ステップs2では、シフトレバー8がバックギアの位置になっているか否かを、シフトレバー位置信号によって判断する。シフトレバー8がバックギアの位置に操作されていれば、駐車アシストモードになっていると判断され、ステップs3で切換スイッチ67が平面モデル80側に切換えられているか否かが判断される。平面モデル80側に切換えられていれば、ステップs4で平面モデル80の表示が行われる。ステップs3で、切換スイッチ67が平面モデル80側に切換えられていないと判断されるときは、ステップs5で後方映像の表示が行われる。

【0038】ステップs4またはステップs5の終了後、ステップs6では、シフトレバー8がドライブ位置に操作されているか否かが判断される。シフトレバー8がドライブ位置に操作されていなければ、後退して駐車する運転状態が続いていると判断され、ステップs3に戻り、以下、ステップs3からステップs6までを繰返す。

【0039】シフトレバー8がドライブ位置に操作されれば、車両は前進する。本実施形態では、ステアリングの切り返しなどのために、一旦後退した後、少し前進し、その後再び後退して駐車する場合にも、有効な駐車支援を行うことができるよう、一定時間は駐車支援を続ける。このため、ステップs7でタイマ69の計時をスタートさせ、ステップs8でタイマ69の計時が終了するまで、駐車案内を続ける。ステップs8でタイマ69の計時が終了したとき、またはステップs2でシフトレバー8がバック位置でないと判断されるとき、ステップs9で手順を終了する。なお、タイマ69には、予め一定時間、たとえば数十秒程度を設定しておく。この時間が経過する前に、シフトレバー8がバック位置に操作されるときは、ステップs3に戻るようにすることもできる。

【0040】以上説明した各実施形態では、駐車アシストECU6、66で演算処理および制御のためにDSP20を用いているけれども、汎用のCPUを用いることもできる。また、DSPやCPUは複数個組合せて用いることもできる。さらに、画像処理に対しては、専用の半導体集積回路を使用することもできる。

【0041】

【発明の効果】以上のように本発明によれば、車両の車

幅を延長したガイドラインと距離の目盛とを後方映像に重ねて表示し、運転者にとって解りやすい駐車支援を行うことができる。

【0042】さらに本発明によれば、後方映像とともに表示する進行予測曲線の長さを、停車位置までの距離に応じて調整するので、後方映像中で駐車までに進行する経路を運転者に解りやすく表示して、適切な駐車支援を行うことができる。

【0043】さらに本発明によれば、自車両のルーフ部分の進行予測曲線を後方映像に重ねて表示して、隣接車両のために死角となる部分が後方映像中に存在しても車両のルーフに当たらないように進行予測曲線を合わせて後退することによって、有效地に駐車支援を行わせることができる。

【0044】さらに本発明によれば、自車両の進行予測曲線が後方映像中で隣接する駐車領域に駐車している他の車両の影になっても、他の車両について地面投影線を表示して、進行予測曲線と地面投影線とで駐車のために運転支援を行うので、映像の死角となる部分でも、確実に駐車領域への自車両の進行予測曲線と他の車両との位置関係の確認を行うことができる。

【0045】さらに本発明によれば、平面モデルによって、駐車領域の自車両と他車両とを上空から見た図のように表示して駐車支援を行うことができるので、自車両と駐車領域および隣接する駐車領域に駐車している車両との位置関係や自車両の向きおよび進行方向の把握を容易に行うことができる。

【0046】また本発明によれば、平面モデル化しての駐車案内と、後方映像を表示しての駐車案内とを切換可能であるので、たとえば駐車場の状況などに合わせて適切な支援を切替えて選択することができる。

【0047】さらに本発明によれば、車両を後退状態から前進状態に切換えた後でも、一定時間は後方映像に基づく駐車支援のための画像が表示されるので、前進や切返しのための車両後方状況の確認を容易に行うことができる。

【図面の簡単な説明】

【図1】本発明の実施の各形態で駐車支援を行う基本的な構成を示すブロック図である。

【図2】図1の車両1が駐車場2に後退して駐車する状態を示す図である。

【図3】図1の駐車アシストECU6の電気的構成を示すブロック図である。

【図4】本発明の実施の第1形態の駐車支援で、情報ディスプレイ4に表示される画像簡略化して示す図である。

【図5】本発明の実施の第2形態の駐車支援で、情報ディスプレイ4に表示される画像簡略化して示す図である。

【図6】本発明の実施の第3形態の駐車支援で、情報ディスプレイ4に表示される画像簡略化して示す図である。

【図7】本発明の実施の第4形態の駐車支援で、情報ディスプレイ4に表示される画像簡略化して示す図である。

【図8】本発明の実施の第5形態の駐車支援で、情報ディスプレイ4に表示される画像簡略化して示す図である。

【図9】本発明の実施の第6形態で使用する駐車アシストECU6の電気的構成を示すブロック図である。

【図10】図9の実施形態での制御手順を示すフローチャートである。

【符号の説明】

1, 53, 54 車両

2 駐車場

4 情報ディスプレイ

5 進行予測曲線

6, 66 駐車アシストECU

7 ステアリング

8 シフトレバー

10 カメラユニット

10a 視野

30 11 ステアリング角センサ

12 パックランプSW信号

20 DSP

27 プログラムメモリ

28 データメモリ

40 障害物

41, 42 ガイドライン

43, 44, 45 距離目盛

50, 51, 52 駐車スペース

55 ルーフ部分の進行予測曲線

40 56, 57 投影線

60 平面モデル

67 切換スイッチ

69 タイマ

【図1】

【図4】

【図2】

【図6】

【図7】

【図3】

【図5】

【図8】

【図9】

【図10】

フロントページの続き

(72)発明者 佐古 和也

兵庫県神戸市兵庫区御所通1丁目2番28号
富士通テン株式会社内

F ターム(参考) 5C054 AA01 EA05 FA01 FB03 FC12

FE13 FE22 FE26 HA30
5H180 AA01 CC04 CC24 LL02 LL08
LL17