Répondez directement sur l'énoncé en détaillant vos calculs et justifiant vos raisonnements.

Nom:

1. Soit ${\bf F}$ un corps pour lequel $2\in {\bf F}^{\times}$, $V={\bf F}[x]_{\leqslant 3}$ l'espace vectoriel des polynômes de degré $\leqslant 3$ sur ${\bf F}$ et $\varphi:V\to {\bf F}^3$ l'application linéaire définie par

$$\varphi(f) = \left(\frac{f(1) + f(-1)}{2}, \ f'(1), \ f(0)\right).$$

Déterminer une base $\mathcal{B} = (f_1, f_2, f_3, f_4)$ de V pour laquelle $_{\text{can}}[\varphi]_{\mathcal{B}}$ est la plus simple possible.

2. On définit par récurrence les deux suites de nombres réels (x_n) et (y_n) par

$$\begin{cases} x_{n+1} = -x_n + 2y_n, & x_0 = 0, \\ y_{n+1} = -3x_n + 4y_n, & y_0 = 1. \end{cases}$$

Donner une formule explicite pour x_n et y_n en fonction de $n \in \mathbf{N}$.