SISTEMI DISCRETI LINEARI

Alcuni esempi di segnali discreti

Per semplicità : x(n) = x(nT), T passo di campionamento costante

Esempi di segnali discreti (sequenze)

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$
 impulso unitario (o sequenza campione)
$$\delta(n)$$

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$
 sequenza gradino

$$= \sum_{k=0}^{+\infty} \delta(n-k)$$

$$g(n) = a^n$$

sequenza geometrica

Caso particolare:

$$a = e^{j2\pi F}$$

esponenziale complesso alla frequenza normalizzata F

Segnale periodico (periodo N):

$$x(n) = x(n + N) \quad \forall n \text{ e il minimo } N$$

Da notare che un segnale continuo periodico di periodo P non necessariamente genera un segnale digitale con periodo N=P/T !!

In generale, per un qualunque segnale x(n), si può scrivere:

$$x(n) = \sum_{k=-\infty}^{+\infty} x(k)\delta(n-k)$$

Interpretabile come la combinazione lineare di impulsi unitari traslati $\delta(n-k)$ pesati da coefficienti costanti x(k)

Esempi di sistemi discreti (s.d.)

$$y(n) = x^{2}(n)$$
, s.d. non lineare senza memoria

$$y(n) = x^{3}(n) + 2x(n-1)$$
, s.d. non lineare con memoria (finita)

$$y(n) = \log[x(n)] - y(n-1)$$
, s.d. non lineare con memoria (infinita)

$$y(n) = \frac{1}{n}x(n) + \frac{n-1}{n}y(n-1)$$
, s.d. lineare tempo-variante (con memoria infinita) [calcolo ricorsivo del valore medio dei valori di una sequenza da 1 a n]

SISTEMI DISCRETI LINEARI

■ Definizione

Dati
$$y_1(n) = Tr[x_1(n)]$$

$$\mathbf{e} \qquad y_2(n) = Tr[x_2(n)]$$

si ha

$$y(n)=Tr[a_1x_1(n) + a_2x_2(n)] =$$

$$= a_1Tr[x_1(n)] + a_2Tr[x_2(n)] =$$

$$= a_1y_1(n) + a_2y_2(n)$$

 a_1 , a_2 costanti (reali o complesse) Si estende ad una combinazione lineare di un numero qualunque (anche infinito) di termini.

Risposta impulsiva o indice

$$h_k(n) = Tr[\delta(n-k)]$$

risposta del sistema all'impulso applicato all'istante k.

■ Proprietà fondamentale

$$y(n) = Tr[x(n)] = \sum_{k=-\infty}^{+\infty} x(k)Tr[\delta(n-k)]$$

$$= \sum_{k=-\infty}^{+\infty} x(k)h_k(n)$$

L'uscita è una combinazione lineare degli ingressi con coefficienti (generalmente) tempo varianti.

SISTEMI DISCRETI LINEARI TEMPO INVARIANTI (LTI)

■ Definizione ($\forall x \in k$)

$$Tr[x(n-k)] = y(n-k)$$

quindi

$$h_k(n) = h_0(n-k) = h(n-k)$$

L'uscita è data da:

$$y(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k) =$$

$$= \sum_{k=-\infty}^{+\infty} h(k)x(n-k)$$

$$= x(n) * h(n)$$
 (Convoluzione discreta)

Esempio di convoluzione discreta di sequenze

La sequenza mostrata nella parte inferiore è il risultato della convoluzione discreta delle due sequenze mostrate nella parte superiore.

■ Sistema discreto lineare tempo-invariante (LTI)

h(n) risposta impulsiva del sistema [risposta all'impulso unitario $\delta(n)$].

caratterizza completamente il sistema

■ <u>Causalità</u>

L'uscita al tempo m dipende solo dagli ingressi passati e presente, cioè per $n \le m$.

Equivale a:
$$h(n) = 0, n < 0$$

Quindi:
$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

Due classi di sistemi discreti causali LTI

IIR (risposta impulsiva infinita)

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

FIR (risposta impulsiva finita)

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

durata della risposta impulsiva: N campioni.

Da notare che un sistema FIR non causale

$$y(n) = \sum_{k=-M}^{N-1} h(k)x(n-k)$$

può essere sempre trasformato in un sistema FIR causale (della stessa durata) ritardando l'uscita di M campioni e traslando di M campioni la risposta impulsiva:

$$y'(n)=y(n-M)=\sum_{k=0}^{N+M-1}h(k-M)x(n-k)$$
$$=\sum_{k=0}^{N+M-1}h'(k)x(n-k)$$

Stabilità (BIBO = Bounded Input Bounded Output)

Ogni ingresso limitato in ampiezza genera una uscita limitata in ampiezza.

Condizione necessaria e sufficiente:

$$\sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

FIR: sempre stabili

IIR: stabilità da verificare

EQUAZIONI ALLE DIFFERENZE FINITE

Modo alternativo di definire un sistema LTI

■ Sistema di ordine N (causale)

$$y(n) = \sum_{k=0}^{M} a_k x(n-k) - \sum_{k=1}^{N} b_k y(n-k), \quad n \ge 0$$

 a_k , b_k coefficienti (costanti) del sistema e condizioni iniziali

$$y_i = y(i)$$
 , $i = -N, ..., -1$

FIR: tutti i $b_k = 0$

IIR: alcuni $b_k \neq 0$

Esempio: sistema LTI, causale, stabile,

$$y(n) = b y(n-1) + x(n), y(-1) = 0$$

che ha una risposta impulsiva (tipo IIR)

$$h(n) = b^{n}u(n)$$

 $|b| < 1$ stabile $\sum_{n=0}^{\infty} |h(n)| = \frac{1}{1-|b|}$

$$|b| \ge 1$$
 non stabile

FUNZIONE DI TRASFERIMENTO

$$X(n)$$

$$h(n)$$

$$Y(z) = X(n)*h(n)$$

$$Y(z) = X(z) H(z)$$

$$H(z) = \sum_{k=-\infty}^{+\infty} h(k)z^{-k},$$

funzione di trasferimento del sistema

Sistemi causali

FIR

$$H(z) = \sum_{k=0}^{N-1} h(k)z^{-k}$$

IIR

$$H(z) = \frac{\sum_{k=0}^{M} a_k z^{-k}}{1 + \sum_{k=1}^{N} b_k z^{-k}} = a_0 \frac{\prod_{k=1}^{M} (1 - Z_k z^{-1})}{\prod_{k=1}^{N} (1 - P_k z^{-1})}$$
$$= \sum_{k=0}^{\infty} h(k) z^{-k}$$

Ordine del sistema: N

 Z_k : zeri del sistema

 P_k : poli del sistema

Stabilità : poli interni al cerchio unitario nel piano z.

Sistemi reali : zeri e poli reali o complessi coniugati

■ H(z) è la trasformata-z di h(n) h(n) è la trasformata-z inversa di H(z)[modo alternativo di ottenere h(n)rispetto al calcolo diretto]

RISPOSTA IN FREQUENZA

Sistema discreto LTI

Ingresso: esponenziale complesso alla frequenza normalizzata F

$$x(n) = e^{j2\pi Fn}$$

$$y(n) = \sum_{k=-\infty}^{+\infty} h(k)e^{j2\pi F(n-k)}$$

$$=e^{j2\pi Fn}\sum_{k=-\infty}^{+\infty}h(k)e^{-j2\pi Fk}$$

$$=e^{j2\pi Fn}H(z)\big|_{z=e^{j2\pi F}}$$

$$=e^{j2\pi Fn}H(F)$$

La funzione complessa H(F)della frequenza normalizzata Fè la <u>risposta in frequenza del sistema</u>

• H(F) è la trasformata di Fourier della sequenza h(n)

Per sistemi reali [sequenze h(n) reali]

$$H(-F) = H^*(F)$$

Risposta in ampiezza:

$$|H(F)|$$
 simmetrica

Risposta in fase:

arg H(F) antisimmetrica

Ritardo di fase:

$$\Delta(F) = -\frac{\arg H(F)}{2\pi F}$$
 (campioni)

Ritardo di gruppo:

$$\tau(F) = -\frac{1}{2\pi} \frac{d \arg H(F)}{dF}$$
 (campioni)

 Sistemi non distorcenti in ampiezza (o passa-tutto)

$$|H(F)|$$
 = costante

 Sistemi non distorcenti in fase (o a fase lineare)

$$\Delta(F) = \tau(F) =$$
 costante

Esempio: sistema reale ingresso sinusoide reale

$$x(n) = \cos 2\pi F n$$

$$y(n) = |H(F)| \cos[2\pi F n + \arg H(F)]$$

■ Calcolo grafico della risposta in frequenza

Esempio: sistema reale con 2 poli e 1 zero

Abbiamo visto per sistemi IIR:

$$H(z) = \frac{\sum_{k=0}^{M} a_k z^{-k}}{1 + \sum_{k=1}^{N} b_k z^{-k}} = a_0 \frac{\prod_{k=1}^{M} (1 - Z_k z^{-1})}{\prod_{k=1}^{N} (1 - P_k z^{-1})}$$

$$= a_0 \frac{\prod_{k=1}^{M} (z - Z_k)}{\prod_{k=1}^{N} (z - P_k)}$$

A meno di un fattore costante (a_0) la risposta del sistema alla frequenza F si può calcolare dai vettori che congiungono il punto $e^{j2\pi F}$ con i poli e gli zeri.

Poli vicini al cerchio unitario: picchi della risposta in frequenza

Zeri vicini al cerchio unitario: bassi valori della risposta in frequenza

Esempio di Risposta in frequenza del sistema

$$H(z) = \frac{1.0 - 1.0z^{-2}}{1.0 + 0.9z^{-2}}$$

■ Descrizione di un sistema discreto LTI

Nel dominio temporale

- \bullet h(n), risposta impulsiva
- Equazione alle differenze finite

Nel dominio trasformato

- \bullet H(z), funzione di trasferimento
- \bullet H(F), risposta in frequenza

Nota

Per semplicità di notazione, per una stessa sequenza h(n) usiamo lo stesso simbolo H per denotare la sua trasformata-z H(z) e la sua trasformata di Fourier H(F).

Le due trasformate sono distinte da:

- variabile indipendente complessa (z) per la trasformata-z
- variabile indipendente reale (F)
 per la trasformata di Fourier

Esercitazioni di Laboratorio di MATLAB

(reperibili a: http://lenst.det.unifi.it/node/379)

Funz trasf

SEGNALI ALEATORI

x(n) segnale aleatorio stazionario in senso lato

$$m_x = E\{x(n)\},$$
 valor medio $r_x(m) = E\{x(n)x(n+m)\},$ autocorrelazione

•
$$E\{y(n)\} = E\{\sum_{k} h(k)x(n-k)\} =$$

$$= m_x \sum_{k} h(k) = m_x H(z)|_{z=1}$$

• Per semplicità $m_x = 0$

Definizioni: $R_x(z) \Leftrightarrow r_x(m)$

Spettro di potenza: $G_x(F) = R_x(z)|_{z=e^{j2\pi F}}$

Potenza del segnale di ingresso

$$S_x = \sigma_x^2 = \int_{\frac{-1}{2}}^{\frac{1}{2}} G_x(F) dF$$

Segnale di uscita

Spettro di potenza

$$G_{y}(F) = |H(F)|^{2} G_{x}(F)$$

Sy=
$$\sigma_y^2 = \int_{-\frac{1}{2}}^{\frac{1}{2}} |H(F)|^2 G_x(F) dF$$

Independent of Elaborazione Numerica dei Segnali

Esempio: x(n) processo bianco

$$G_{x}(F) = N_{0}$$

si ha

$$S_x = N_0$$

$$S_{y} = N_{0} \int_{-\frac{1}{2}}^{\frac{1}{2}} |H(F)|^{2} dF = N_{0} \sum_{k} |h(k)|^{2}$$

L'ultima uguaglianza segue dal Teorema di Parseval

Esempio: Calcolo del rapporto segnale-rumore in uscita dal sistema

Note le caratteristiche del convertitore A/D e noto x(t) si possono calcolare la potenza S_x del segnale x(n) e la densità spettrale di potenza (bianca) di $e_a(n)$

In ingresso:
$$SNR_i = \frac{S_x}{N_a}$$

In uscita:
$$S_y = \int_{-\frac{1}{2}}^{\frac{1}{2}} G_x(F) / H(F) /^2 dF$$

$$N_u = N_q \int_{-\frac{1}{2}}^{\frac{1}{2}} |H(F)|^2 dF$$

$$SNR_u = \frac{S_y}{N_u}$$

ALCUNE PROPRIETA'

■ Stabilità:

$$\sum_{n=-\infty}^{+\infty} |h(n)| < \infty$$

$$\Rightarrow H(z) = \sum_{n=-\infty}^{+\infty} h(n) z^{-n}$$

La RdC include la circonferenza unitaria

Poli: i) solo interni (sequenza infinita positiva)
ii) solo esterni (sequenza infinita negativa)
iii) interni e esterni (sequenza doppiamente
infinita)

- **Causalità**: h(n) = 0 per n < 0
- \Rightarrow RdC esterna a $|z| > R_0$

Poli interni al cerchio di raggio R₀

■ Sistemi causali e stabili

⇒ Poli interni al cerchio unitario

Zeri possono essere dovunque

■ Sistemi a fase minima

Def.: Sono quelli che hanno tutti i poli e tutti gli zeri di H(z) interni al cerchio unitario

⇒ Hanno un ritardo di fase minimo fra tutti i sistemi che hanno la stessa risposta in ampiezza

NOTA: *il sistema inverso G*(

$$G(z) = \frac{1}{H(z)}$$

è ancora un sistema a fase minima (oltre ad essere stabile e causale)

■ Sistemi a fase lineare

Hanno una risposta in fase lineare.

- ➤ Non introducono distorsione di fase:

 Ritardo di fase = Ritardo di gruppo = costante
- Sistemi stabili e causali non hanno poli. Nei sistemi reali gli zeri si presentano in quadruple (se complessi) o in coppie (se reali $\neq \pm 1$).

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

EQUIVALENZA FRA FILTRAGGIO ANALOGICO E NUMERICO

■ Analogico

■ Numerico

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

$$y(t) \cong y_a(t)$$

L'approssimazione dipende da:

- Caratteristiche spettro di $x_a(t)$
- Risposta filtro antialiasing
- **■** Campionatore non ideale
- Quantizzazione
- **■** Filtro numerico non ideale
- Risposta D/A e filtro ricostruzione