MA2047 Algebra och diskret matematik

Något om logik och mängdlära

Mikael Hindgren

3 september 2025

Utsagor

Utsaga = Påstående som har sanningsvärde Utsagan kan vara

- sann (S) eller falsk (F)
- öppen eller sluten

Exempel 1

- A: 5 ⋅ 6 = 30 Sann, Sluten
- B: Volvo är ett bilmärke Sann, Sluten
- C: a + 2 = 6 Sann om a = 4 annars falsk, Öppen utsaga (sanningsvärdet beror på a)
- D: Jag kan flyga Falsk, Sluten

- A: 2x + 5 Ingen utsaga!
- B: $x^2 + y^2 = 5$, Öppen utsaga
- C: 4 ≥ 3 Sluten utsaga (Sann!)

HÖGSKOLAN IHALMSTAD

Negation

Negationen till en utsaga A (skrivs $\neg A$) = motsatsen till A

Exempel 3

- A : x ≥ 2

- A : Alla hundar kan skälla
- ¬A : Det finns (minst) en hund som inte kan skälla

Konjunktion och disjunktion

Flera utsagor kan kombineras till en ny utsaga:

- Konjunktion: $C = A \wedge B$: Sann om A och B är sanna
- ② Disjunktion: $C = A \lor B$: Sann om A eller B är sanna $\bigcap_{\text{eller}} A \lor B$

Sanningsvärdestabell för negation (\neg) , konjunktion (\land) och disjunktion (\lor):

Α	В	$\neg A$	$A \wedge B$	$A \lor B$
S	S	F	S	S
S	F	F	F	S
F	S	S	F	S
F	F	S	F	F

- A: Sverige ligger i Asien (Falsk)
- B: $(a+b)^2 = a^2 + 2ab + b^2$ (Sann)
- $\therefore A \land B$ är falsk, $A \lor B$ är sann

Tautologi och kontradiktion

En sammansatt utsaga är en tautologi/kontradiktion om den alltid är sann/falsk oberoende av de ingående utsagornas sanningsvärde.

Exempel 6

Är utsagan $(\neg A \land (A \lor B)) \lor A$ en tautologi? Är det en kontradiktion? Sanningsvärdestabell:

Α	В	$\neg A$	$A \lor B$	$\neg A \wedge (A \vee B)$	Tot
S	S	F	S	F	S
S	F	F	S	F	S
F	S	S	S	S	S
F	F	S	F	F	F

Svar: Utsagan är varken en tautologi eller en kontradiktion.

Exemplet ovan i Mathematica:

 ${\tt BooleanTable[\{a,b,!a,a||b,!a\&\&(a||b),utsaga\},\{a,b\}]//TableForm}$

HÖGSKOLAN I HALMSTAD

Implikation och ekvivalens

Exempel 7

Utsagan "Om
$$\underbrace{x=5}_{A}$$
 så är $\underbrace{x^2=25}_{B}$ " skrivs: $x=5$ \Longrightarrow implicerar $x^2=25$

- Utsagan A ⇒ B (medför, om ... så är) kallas en implikation
- A kallas förutsättning (premiss, hypotes) och B kallas slutsats (konsekvens).

Exempel 8

•
$$x = 2 \Rightarrow x^2 = 4$$
 Sann

•
$$x^2 = 4 \Rightarrow x = 2$$
 Falsk $A \Rightarrow B$ sann behöver inte betyda att omvändningen $B \Rightarrow A$ är sann.

•
$$x^2 \neq 4 \Rightarrow x \neq 2$$
 Sann

Den kontrapositiva formen $\neg B \Rightarrow \neg A$ är logiskt sett densamma som $A \Rightarrow B$

•
$$x < 2 \Rightarrow x^2 < 4$$
 Falsk

Anm: Om utsagan i VL är specifikt angiven menar vi att den är sann.

Implikation och ekvivalens

Olika ekvivalenta formuleringar för $A \Rightarrow B$:

- A är ett tillräckligt villkor för B
- B är ett nödvändigt villkor för A
- A gäller endast då B gäller

$$x = 3 \Rightarrow x^2 = 9$$

- Att x = 3 är ett tillräckligt villkor för att $x^2 = 9$
- 2 Att $x^2 = 9$ är ett nödvändigt villkor för att x = 3
- x = 3 gäller endast om $x^2 = 9$

HÖGSKOLAN I HALMSTAD

Implikation och ekvivalens

Exempel 10

$$A: x^2 = 4, \ B: (x = 2) \lor (x = -2)$$

$$A \Rightarrow B \quad \text{Sann}$$

$$B \Rightarrow A \quad \text{Sann}$$

$$A \Leftrightarrow B \quad \text{Sann}$$

$$\therefore x^2 = 4 \Leftrightarrow (x = 2) \lor (x = -2)$$

- Utsagan $A \Leftrightarrow B$ kallas en ekvivalens
- ⇒ : Formuleras "är ekvivalent med" eller "om och endast om (omm)"

Sanningsvärdestabell för implikation och ekvivalens:

Α	В	$A \Rightarrow B$	$A \Leftrightarrow B$
S	S	S	S
S	F	F	F
F	S	S	F
F	F	S	S

Exempel 11

- $A: x^2 \ge 4$
- B: x < -1
 </p>
- C: x > 1

Avgör om utsagan $(A \land \neg B) \Rightarrow C$ är sann eller falsk. Är omvändningen sann?

Prioritetsordning for de logiska operatorerna

Regel: ¬ före ∧ före ∨

Exempel 12

- $A \wedge B \vee C$ tolkas som $(A \wedge B) \vee C$
- $\neg A \land B$ tolkas som $(\neg A) \land B$

Vill man att uttrycket ska tolkas i annan ordning används parenteser.

De Morgans lagar

Exempel 13

Gör sanningsvärdestabell för utsagorna $\neg (A \lor B)$ och $\neg A \land \neg B$.

Α	В	$\neg A$	$\neg B$	$A \lor B$	$\neg (A \lor B)$	$\neg A \land \neg B$
S	S	F	F	S	F	F
S	F	F	S	S	F	F
F	S	S	F	S	F	F
F	F	S	S	F	S	S

Sats 1 (de Morgans Lagar)

För utsagorna A och B gäller

- $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$

Kvantorer

Exempel 14

Utsagan A: "Alla hundar kan skälla" kan skrivas som

A: ∀hund: hunden kan skälla

∀ : "För varje", "för alla":

Exempel 15

¬A: Det finns minst en hund som inte kan skälla

¬A:∃hund: hunden kan inte skälla

∃: "Det finns (existerar) en/ett"

Exempel 16

A: För alla reella tal x gäller det att $x^2 - 1 = (x + 1)(x - 1)$

$$A: \forall x \in \mathbb{R}: x^2 - 1 = (x+1)(x-1)$$

Kvantorer

Exempel 17

B: Det finns ett reellt tal x sådant att 2x = 4

$$B:\exists x\in\mathbb{R}:2x=4$$

Mängder

Vad är en mängd?

- En mängd är en samling objekt som kallas element
- \bullet En mängd kan anges genom uppräkning av dess element inom $\{...\}$ eller genom en definierande utsaga
- ullet Antalet element i en mängd A kallas mängdens kardinalitet och betecknas |A|
- Om x är ett element i mängden M skriver vi $x \in M$ (x tillhör M)
- Två mängder är lika om de innehåller samma element
- Den tomma mängden ∅ innehåller inga element
- Det finns alltid en grundmängd eller universum U

- $A = \{1, 2, 3, 5, 6\}$
- $B = \{1, 2, 3,, 99\}$
- $C = \{ Alla \text{ heltal } x \text{ sådana att } 1 \le x \le 3627 \} = \{ x \in \mathbb{Z} : 1 \le x \le 3627 \}$

Mängder

Exempel 19

$$A = \{1, 2, 3, 4\}, \qquad B = \{x \in \mathbb{R} : 1 < x < 2\}$$

- |A| = 4
- |*B*| = ∞
- 2 ∈ A
- \circ $\frac{3}{2} \in B$
- 5 ∉ B

- $|\{4,4,3,1\}| = 3$
- $\emptyset = \{\} = \{x : x \neq x\} = \{$ Alla reella tal x sådana att $x^2 = -1\} = ...$

Talmängder

- $\mathbb{N} = \{0, 1, 2, 3, ...\}$: De naturliga talen
- $\bullet \ \, \mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\} :$ De hela talen
- $\mathbb{Z}_+ = \{1, 2, 3, ...\}$: De positiva hela talen
- $ullet \ \mathbb{Q}=\{rac{oldsymbol{
 ho}}{q}:oldsymbol{p},q\in\mathbb{Z},q
 eq0\} ext{: De rationella talen}$
- \bullet \mathbb{R} = De reella talen
- $\mathbb{C} = \{a+ib: a,b \in \mathbb{R}, i^2 = -1\}$: De komplexa talen

Exempel 21

Intervall:

- $[-1,9] = \{x \in \mathbb{R} : -1 \le x \le 9\}$: Slutet och begränsat (kompakt)
- $(2,6) = \{x \in \mathbb{R} : 2 < x < 6\}$: Öppet och begränsat
- $[1,3) = \{x \in \mathbb{R} : 1 \le x < 3\}$: Halvöppet och begränsat
- $[1, \infty) = \{x \in \mathbb{R} : x \ge 1\}$: Slutet och obegränsat

Delmängd

Mängden A är en delmängd av B om och endast om varje element i A är ett element i B:

$$A \subseteq B \text{ omm } x \in A \Rightarrow x \in B$$

Om $A \subseteq B$ och $A \neq B$ så är A en äkta delmängd av $B: A \subset B$.

Venndiagram

Exempel 22

 $\mathbb{Z}_+ \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

Exempel 23

$$A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}$$

 $\Rightarrow A \subseteq B.$

 $A \neq B \Rightarrow A \subset B$.

Anm: Den tomma mängden är en delmängd av varje mängd: $\emptyset \subseteq A \ \forall \ A$

Komplementmängd

Komplementet till *A* betecknas *A'* och består av alla element i *U* som inte finns i A:

$$A' = \{x : x \notin A\}$$

Exempel 24

Bestäm A' om $A = \{1, 3, 4, 6\}$ och $U = \{1, 2, 3, 4, 5, 6, 7\}$.

Svar: $A' = \{2, 5, 7\}$

Exempel 25

Bestäm A' om $A = \{x \in \mathbb{R} : x \ge 2\}$ och $U = \mathbb{R}$.

Svar:
$$A' = \{x \in \mathbb{R} : x < 2\}$$

Snitt och Union

Snittet av två mängder A och B betecknas $A \cap B$ och består av alla element som finns i A och i B:

$$A \cap B = \{x : x \in A \land x \in B\}$$

Unionen av två mängder A och B betecknas $A \cup B$ och består av alla element som finns i A eller i B:

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Exempel 26

Bestäm $A \cap B$ och $A \cup B$ om $A = \{1, 3, 4, 8\}$ och $B = \{1, 2, 5, 8\}$.

- $A \cap B = \{1, 8\}$
- $A \cup B = \{1, 2, 3, 4, 5, 8\}$

Om $A \cap B = \emptyset$ så är A och B disjunkta.

Sats 2 (de Morgans lagar)

- $\bullet (A \cap B)' = A' \cup B'$
- $\bullet (A \cup B)' = A' \cap B'$

Mängddifferens och Produktmängd

Mängddifferensen $A \setminus B$ är mängden av alla element som finns i A men inte i B:

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

Produktmängden eller den Cartesiska produkten av mängderna A och B är mängden av alla ordnade par (a,b) där $a \in A$ och $b \in B$:

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Exempel 27

Bestäm $A \setminus B$ och $A \times B$ om $A = \{1, 2, 3\}$ och $B = \{3, 5\}$

- $A \setminus B = \{1, 2\}$
- $A \times B = \{(1,3), (1,5), (2,3), (2,5), (3,3), (3,5)\}$

$$B' \cap (A \cup B) = A \setminus B$$