Max Flow - Fulkerson Alg.: Longest Path Problem. Let E_i = earliest time to get to place (use D.P.), E_{ij} = earliest time to complete ij. Find E_i = max[$E_i + e_{ij}$, $E_i + e_{ik}$, $E_i + e_{il}$], stop after all nodes have been included, then choose longest path. Can also find L_i = lowest time to complete = min L_i < or > t_{ij} .

Make a chart: Activity ij t_{ij} E_i E_{ij} L_i $T\bar{F_{ij}}$, where $T\bar{F_{ij}} = L_i - E'_{ij} = \text{Flexibility. A } \underline{\text{critical path}}$ is a path with 0 flexibility.

Ex: Form LP to find the max # of barrels/hr sent from so (source) to si (sink). Note that flow must pass thru some/all of stations 1, 2, and 3. Let x_{ij} = barrels/hr thru arc (i, j), x_0 = barrels entering si.

LP: $\max z = x_0$

Inventory - EOQ: Purchase Cost = C(z) = K + cz, Holding Cost = H(z) = hz, h = hold cost, $Q^* = \sqrt{\frac{2ak}{h}} = \text{how much}$, $\frac{Q^*}{a} = \text{time between}$, k = fixed cost, c = var cost, a = rate needed.

 $\underline{\underline{Ex:}}$ Let Demand = 4000gallons/month, Charge = \$50 + \$0.7/gallon refill, Annual Hold Fee = \$0.3.

Order Size = $Q^* = \sqrt{\frac{2(4000)(50)}{0.025}} = 4000$ gallons, # of orders/year= $\frac{12(4000)}{4000} = 12$, Time b/w Orders= $\frac{4000}{12(4000)} = \frac{1}{12} \rightarrow$ once a month, Lead Time of 2 weeks: $\frac{12a \cdot LT}{52} = 1846.15 \rightarrow$ reorder at 1846.15 gallons.

EOQ Delayed Case: $Q^* = \sqrt{\frac{2ak}{h} \cdot \frac{p+h}{p}} \rightarrow \text{order}, \ S^* = \sqrt{\frac{2ak}{h} \cdot \frac{p}{p+h}} \rightarrow \text{max inventory}, \ Q^* - S^* = \text{max shortage}, \ \text{Penalty}$

Dynamic Program: Start at the end. State: stages, states, recursion. $V_i(x) = \max/\min x$ s.t. $x_i \le x(r_i(x_i) + v_i + (x - x_i))$. 1) Start at the end w/ all possibilities, 2) Move to previous step and test all possibilities which include step before vals, in the 1st step do once, w/ all utility. *Can use DP for shortest/longest path also (easier).

NLPs: 1) $\overline{\nabla}(f(x) + \sum_{i=1} \lambda_i \overline{\nabla} g_i(x)) = 0$, 2) Feasible $g_i(x) \le 0$, i = 1, ..., m, 3) $\lambda \ge 0$, 4) $\lambda_i \cdot g_i(x) = 0 = i, ..., m$. Ex: