Proforma

Name

College

Project Title

Examination

Word Count

Project Originator

 ${\bf Supervisor}$

Original Aims of the Project

Describe what solution should do (1 paragraph)

Work Completed

Describe code structure and libraries used

OR

Give tasks completed during project

Special Difficulties

None

Declaration

Look this up in pink book

Contents

1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Overview of Sound Separation	1
	1.3	Current Implementations	1
	1.4	Overview of the Dissertation (Optional)	1
2	Pre	Preparation 2	
	2.1	Choice of Overall Process	2
	2.2	Choice of Features	2
	2.3	Choice of Implementation	2
	2.4	Software Engineering Approach	2
		2.4.1 Requirements	$\overline{2}$
		2.4.2 Software Development Process/Methodology	2
		2.4.3 Version Control and Back-up	2
		2.4.4 Testing	3
			•
3	Imp	lementation	4
	3.1	Signal Transforms	4
	3.2	Sinusoidal Trajectories	4
	3.3	Matrix Factorisation	4
	3.4	Clustering Algorithms	4
	3.5	Additional Features	4
	3.6	Tests	5
	3.7	Software Engineering Practice	5
4	Evaluation 6		
	4.1	Method Comparisons	6
		4.1.1 Sinusoids vs. NMF	6
		4.1.2 Hard vs. Soft vs. Matrix vs. Naive Clustering	6
		4.1.3 Addition of Noise	6
	4.2	Case Analysis	6
		4.2.1 Performance Against Noise	6
		4.2.2 Performance Against Stereo Separation	6
		4.2.3 Performance Against Frequency Offset	6
		4.2.4 Synthetic Pathological Cases	6
5	Con	aclusion	7
Α	Test	t Cases	8
\mathbf{B}	Pro	ject Proposal	9

List of Figures

Acknowledgements

Thank peeps

Introduction

Describe project aims

1.1 Motivation

Discuss uses for sound separation and need for this solution Mention Hadamard's conditions and ill-posed problem

1.2 Overview of Sound Separation

Describe forms of sound separation

Specify parameters of problem being considered and explain why
Published literature - following work of J. Bloggs

1.3 Current Implementations

Say what Melodyne does and other music-oriented piece Beamforming?

1.4 Overview of the Dissertation (Optional)

Sentence on each section of the dissertation

Preparation

Brief statement about design choices

2.1 Choice of Overall Process

Describe general flow of data through solution + reasons Alternative(s) - no features? Comment on human process

2.2 Choice of Features

Define sinusoidal trajectories NMF and matrix factors Other possible feature? STFT vs Wavelets

2.3 Choice of Implementation

Mention typical code examples (i.e. MATLAB)
Discuss usefulness of Object-Oriented style
Final choices for style and platform
Libraries used

2.4 Software Engineering Approach

2.4.1 Requirements

Required actions in the project Features of solution

2.4.2 Software Development Process/Methodology

Originally planned as waterfall Result was spiral/incremental, I guess?

2.4.3 Version Control and Back-up

VCS and back-up

2.4.4 Testing

Acquisition and use of samples

Generation of synthetic sounds

Metrics of evaluation - cosine similarity of final audio data; similarity of spectrograms?

Implementation

Contents of solution and how to use it

3.1 Signal Transforms

STFT, iSTFT

Problems encountered in making them

3.2 Sinusoidal Trajectories

Point structure

Trajectory structure Distance measurements Problems

3.3 Matrix Factorisation

NMF implementation (Lee and Seung)
Distance measurements
Problems

3.4 Clustering Algorithms

Hard clustering Soft clustering NMF Problems

3.5 Additional Features

File handling
Thresholding
Phase consistency
Noise splitting

3.6 Tests

Unit tests Parameter optimisation

3.7 Software Engineering Practice

Comment on how methodology changed Library use, documentation, code structure Comment on schedule

Evaluation

Statement about contents of chapter

4.1 Method Comparisons

Metric definitions Test sets

- 4.1.1 Sinusoids vs. NMF
- 4.1.2 Hard vs. Soft vs. Matrix vs. Naive Clustering
- 4.1.3 Addition of Noise

4.2 Case Analysis

Describe chosen final solution for further analysis

4.2.1 Performance Against Noise

Varying noise level Varying threshold without noise

- 4.2.2 Performance Against Stereo Separation
- 4.2.3 Performance Against Frequency Offset
- 4.2.4 Synthetic Pathological Cases

Conclusion

Paragraph stating tasks completed over project
Open questions on topic
Comment on my workflow during project
Potential further extensions - UI for assisted clustering
Use of solutions and state of field

Appendix A

Test Cases

Include spectrograms of examples of typical test inputs, performance tests and pathological cases $\,$

Appendix B

Project Proposal

Include original proposal