Bioinformatika

Tomáš Martínek martinto@fit.vutbr.cz

Osnova

- Úvod
- Dynamické programování
- Heuristické metody
 - CLUSTAL
 - MUSCLE
- Shrnutí

Motivace

- Doposud jsme zarovnávali pouze dvě sekvence
- Co takhle zarovnávání více sekvencí?
- Důvody:
 - Části společné u více organizmů ukazují na oblasti, které mohou mít významnou funkci
 - Naopak neshodující se části ukazují na charakteristické rysy, ve kterých se organizmy liší
 - Vícenásobné zarovnání mezi podobnými sekvencemi dokonce zpřesňuje zarovnání, které by u dvojice sekvencí nebylo tak zřetelné
- Použití:
 - Konstrukce fylogenetických stromů
 - Predikce struktury a funkce proteinů

Příklad:

A T - G C G -

A - C G T - A

ATCAC-A

A T C G - G A

- Předpokládejme vícenásobné zarovnání generované některým algoritmem
- Jak ohodnotit kvalitu vícenásobného zarovnání?
- Příklad:
 - zarovnání 2 vs. 3 sekvencí?

Α	Т	-	G	С	G	1
Α	-	С	G	Т	1	Α
1	-1	-1	1	0	-1	-1

Skóre: -2

Α	Т	-	G	С	G	-
Α	-	С	G	Т	-	Α
Α	Т	С	Α	С	-	Α
?	?:	? ·	?:	?:	?:	?

Skóre: ??

- Počet shodných znaků
- Vlastnosti:
 - Velmi jednoduchý způsob
 - Funguje dobře pouze pro zarovnání s velkým počtem identických znaků
- Příklad:

Α	Т	С	G	С	G	Α
Α	-	С	G	Т	ı	Α
Α	Т	С	G	С	1	Α
1	0	1	1	0	0	1

Skóre: 4

Α	Т	-	G	С	G	-
Α	-	С	G	Т	-	Α
Α	Т	С	Α	С	-	Α
1	0	0	0	0	0	0

Skóre: 1

- Suma párů (Sum of Pairs)
- Myšlenka:
 - Skóre vícenásobného zarovnání je vysoké, pokud je vysoké i skóre zarovnaných dvojic sekvencí
- Výpočet:
 - Pro každý sloupec zarovnání je vypočteno skóre všech dvojic znaků

$$S_{Col}(a_1, a_2, ..., a_n) = \sum_{i \neq j} S(a_i, a_j) \qquad S(a_i, a_j) = \begin{cases} M(a_i, a_j) & \text{if } (a_i \& a_j \neq -) \\ 0 & \text{if } (a_i \& a_j = -) \\ -g & \text{otherwise} \end{cases}$$

- kde M(x, y) je položka skórovací matice a g je penalizace za vložení mezery
- Celkové skóre je suma přes všechny sloupce

• Příklad:

Α	Т	-	G	С	G	-
Α	1	С	G	Т	-	Α
Α	Т	С	Α	С	-	Α
3	-1	-1	1	1	-2	-1

Skórovací matice

	Α	Η	C	G
Α	1	0	0	0
Т	0	1	0	0
С	0	0	1	0
G	0	0	0	1

$$Score = 1$$

Score =
$$1-2g=-1$$

Score =
$$-2g=-2$$

- Důležitá poznámka:
 - pro *n* sekvencí je potřeba porovnat $\binom{n}{2}$ párů

- Zobecnění přístupu ze zarovnání dvou sekvencí na zarovnání n sekvencí
- Výpočet n-rozměrné matice, každá sekvence reprezentuje jednu souřadnou osu
- Příklad: 2D vs. 3D zarovnání

- Příklad: 2D vs. 3D zarovnání
 - Pravidlo výpočtu dynamického programování

2D: zarovnání ze 3 možných směrů

3D: zarovnání ze 7 možných směrů

2D: zarovnání ze 3 možných směrů

1	2	3
V_{x}	V_{x}	ı
W_{V}	•	W_{V}

Výpočet skóre

$$- S_{x,y} = \max \begin{cases} S_{x-1,y-1} + M(v_x, w_y) \\ S_{x,y-1} - g \\ S_{x-1,y} - g \end{cases}$$

 kde M(x, y) je položka skórovací matice a g je penalizace za vložení mezery

	Α	Т	С	G
Α	1	0	0	0
Т	0	1	0	0
С	0	0	1	0
G	0	0	0	1

Skórovací matice

3D: zarovnání ze 7 možných směrů

1	2	3	4	5	6	7
V_{x}	ı	V_{x}	V_{x}	ı	V_{x}	ı
W_{V}	W_{v}	ı	W_{v}	ı	ı	W_{v}
U_{7}	u _z	U _z	, ,	U₂	1	, ,

Výpočet skóre:

$$S_{x,y,z} = \max$$

Založeno na principu sumy párů

$$\begin{pmatrix}
S_{x-1,y-1,z-1} + M(v_x, w_y) \\
+ M(v_x, u_z) \\
+ M(w_y, u_z)
\end{pmatrix}$$

$$S_{x-1,y-1,z} + M(v_x, w_y) - 2*g$$

$$S_{x-1,y,z-1} + M(v_x, u_z) - 2*g$$

$$S_{x,y-1,z-1} + M(w_y, u_z) - 2*g$$

$$S_{x-1,y,z} - 2*g$$

$$S_{x-1,y,z} - 2*g$$

$$S_{x,y-1,z} - 2*g$$

$$S_{x,y-1,z} - 2*g$$

$$S_{x,y,z-1} - 2*g$$

Časová složitost:

- Pro 3 sekvence délky n je potřeba vypočítat 7n³ součtů, časová složitost je O(n³)
- Pro obecně k sekvencí je sestavena kdimensionální matice a vypočteno (2k-1)(nk) součtů, časová složitost je O(2knk)

Zhodnocení:

- Časová složitost roste exponenciálně s počtem sekvencí
- Přístup je použitelný do nejvýše 20 (relativně) krátkých sekvencí

- Z více-násobného zarovnání můžeme jednoduše sestrojit zarovnání dvojic (i když ne zcela optimální)
- Příklad:

```
x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG
y: ACGC-GAC; z: GCCGC-GAG;
```

Pokud máme k dispozici zarovnání všech dvojic:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

Můžeme získat více-násobné zarovnání?

=> Bohužel, ne vždy

Příklad:

– zarovnání sekvencí:

- AAAATTTT
- TTTTGGGG
- AAAAGGGG
- Kompatibilní sekvence

Příklad:

- zarovnání sekvencí:
 - AAAATTTT
 - TTTTGGGG
 - GGGGAAAA
- Nekompatibilní sekvence

Progresivní metody

Postup:

- 1. Z množiny *k* sekvencí zarovnat dvě a získat tak množinu *k-1* sekvencí
- Opakovat, dokud nejsou zarovnány všechny sekvence

Problémy:

- Jak zarovnat sekvenci k zarovnání nebo zarovnání k zarovnání?
- 2. Jak vybrat pořadí, ve kterém se budou jednotlivé dvojice zarovnávat?

- Jak zarovnat sekvenci k zarovnání nebo zarovnání k zarovnání?
- Příklad:

Příklad:

		G	Т	С	t/a	G	a/c
	0	-1	-2	-3	-4	-5	-6
G	-1	1	0	-1	X _{1.4}		
Α	-2	0	1	0	$X_{2.4}$		
T	-3	-1	1	0 \	×3.4		
-/a	-4	X _{4.1}	X _{4.2}	$X_{4,3}$	X _{4.4}		
Т	-5	,	,	, -	,		
C/-	-6						
a/t	-7						

$$x_{3,4}=max$$
 $\begin{cases} x_{2,4} + (-1) \\ 0 + (-1) \\ 0 + cmp(T,t/a) \end{cases}$

$$x_{4,4} = \max \begin{cases} x_{3,4} + (-1) \\ x_{4,3} + (-1) \\ 0 + cmp(-/a,t/a) \end{cases}$$

$$cmp(T,t/a) = (M(T,T) + M(T,A))/2 = (1 + 0)/2 = 0,5$$

$$cmp(-/a,t/a) = (g + g + M(A,T) + M(A,A))/4 = ((-1)+(-1)+0+1)/4 = -0,25$$

- Čím více je zarovnaných sekvencí, tím horší je přehlednost popisu sloupců a řádků DP matice => používá se zápis ve formě profilu, tj. procentuální zastoupení jednotlivých znaků
- Příklad:

Profil množiny zarovnaných sekvencí

Jak zarovnávat profily mezi sebou?

Příklad:

	Profil 1	Profil 2
Α	0,6	
С		0,8
G	0,2	
Т		
_	0,2	0,2

Skóre =

$$0.6*0.8*M(A,C) + 0.6*0.2*(-g) + 0.2*0.8*M(G,C) + 0.2*0.2*(-g) + 0.2*0.8*(-g) + 0.2*0.2*0$$

Výběr dvojic pro zarovnání

- Všimněte si, že postupným přidáváním sekvencí se výsledné zarovnání neustále rozšiřuje, přičemž mezivýsledek v kroku n nelze zpětně upravovat v následujících krocích n+1, n+2, atd.
- Pořadí výběru dvojic sekvencí proto významně ovlivňuje kvalitu výsledného zarovnání
- Základní pravidlo:
 - Výběr takových dvojic sekvencí, které jsou si nejvíce podobné
- Postup:
 - 1. sestavení matice podobnosti všech sekvencí
 - 2. sestavení pomocného stromu (Guided Tree)

Sestavení matice podobnosti

Postup:

- 1. Vypočítej zarovnání všech kombinací dvojic řetězců
- 2. Ohodnoť každou dvojici např. podle vzorce:

- 3. Hodnoty ulož do trojúhelníkové matice
- Příklad:
 - sekvence: GATTCA, GTCTGA, GATATT, GTCAGC

Výpočet zarovnání

$$s2$$
 GTCT**G**A $s4$ **GTC**A**G**C $(4/6 = 0.66)$

$$S1$$
 GAT-TCA $S2$ G-TCTGA $(4/7 = 0.57)$

$$S1$$
 GAT-TCA $S3$ GATAT-T $(5/7 = 0.71)$

$$S1$$
 GATTCA-- $S4$ G-T-CAGC (4/8 = 0.5)

s2 G-TCTGA
s3 GATAT-T
$$(7/3 = 0.42)$$

Sestavení pomocného stromu (UPGMA)

Postup:

- Vyber z tabulky podobnosti sekvenci s_A a s_B s nejvyšší mírou identity
- Dvojici spoj do jedné sekvence s_{AB} a přepočítej vzdálenosti v tabulce podobnosti podle vztahu:
 D_{AB,C} = (D_{A,C}+D_{B,C})/2
- Spojení obou sekvencí zakresli do pomocného stromu
- Opakuj, dokud nejsou spojeny všechny dvojice

Příklad:

 Mějme následující tabulku podobnosti

Sloučíme sekvence v₁ a v₃
 a přepočítáme tabulku

Sestavení pomocného stromu

Přepočet vzdáleností

$$- D_{13,2} = (D_{1,2} + D_{3,2})/2 = (0.57 + 0.42)/2 = 0.49$$

$$-D_{13.4} = (D_{1.4} + D_{3.4})/2 = (0.50+0.42)/2 = 0.46$$

Upravená tabulka:

Výsledný postup výběru dvojic:

1.
$$v1,3 = alignment(v1, v3)$$

2.
$$v2,4$$
 = alignment($v2,v4$)

3.
$$v1,2,3,4 = alignment((v1,3),(v2,4))$$

Pomocný strom

____ **v**_

 $\mathbf{v}_{\mathfrak{s}}$

 \mathbf{v}_4

 \mathbf{v}_{2}

 $\underline{}$. $\underline{}$

 \mathbf{v}_1

Algoritmus CLUSTAL

- Doposud popsané techniky jsou základem jednoho z nejrozšířenějších algoritmů – CLUSTAL [D. Higgins, P. Sharp, 1988]
- Postup:
 - 1. Porovnání všech dvojic sekvencí mezi sebou, sestavení tabulky podobnosti
 - 2. Sestavení pomocného stromu
 - 3. Na základě pomocného stromu postupné zarovnávání dvojic sekvencí
- Vylepšená (často používaná) verze se nazývá CLUSTALW

CLUSTAL vs. CLUSTALW

CLUSTAL

- při sestavení tabulky podobnosti používá princip BLASTu/FASTA (slovo 1-2 znaky pro proteiny, 2-4 pro nukleotidy)
- při sestavování stromu se používá spojování sekvencí s nejvyšší mírou identity (metoda UPGMA)
- při výpočtu zarovnání se bere v úvahu zastoupení jednotlivých znaků (profil)
- jako skórovací matice se používají pouze vybrané verze PAM a BLOSUM matic

CLUSTALW (Weighted)

- při sestavení tabulky podobnosti používá dynamické programování
- při sestavování stromu používá princip Neighbour-Joining (viz. fylogenetické stromy)
- při výpočtu zarovnání je každá sekvence navíc váhována podle své významnosti (váhovaný profil)
- skórovací matice se vybírá dynamicky na základě míry identity zarovnávaných sekvencí (BLOSUM-XX)
- vylepšený způsob penalizace za vložení mezer

Problémy progresivních metod

- Jsou pomalé, výpočetně nejnáročnější část je porovnání všech dvojic sekvencí a sestavení tabulky podobnosti
 - Příklad: mějme 100 sekvencí délky N
 - je nezbytné provést 4950 porovnání dvojic (100 * 99/2)
 - pokud použito DP, potom pro každou dvojici výpočet N² položek v tabulce
 - Pro sestavení tabulky podobnosti nepotřebujeme ve skutečnosti znát přesné zarovnání, stačí nám pouze hodnota ukazující míru podobnosti – můžeme použít méně výpočetně náročnou metodu
- Výsledné zarovnání již nelze změnit a ani nejlepší možný výběr pořadí zarovnávání nemusí vést k optimálnímu výsledku => výsledek je potřeba iterativně zpřesňovat

Zrychlení porovnání dvojic sekvencí

- Princip metody počítání k-tic (k-mer counting)
 - Obě porovnávané sekvence X a Y se rozdělí do ktic použitím posouvajícího se okénka
 - množina všech možných k-tic W_k je tvaru:

$$W_k = \{W_1, W_2, ..., W_n\}$$

- kde n = r^kje počet všech možných k-tic a r je počet znaků abecedy (4 pro nukleotidy, 20 pro aminokyseliny)
- 2. Pro každou k-tici z W_k se zaznamená počet (frekvence) jejich slova w_i v sekvencích X resp. Y
 - množina frekvence výskytů je ve tvaru:

$$c_X = \{c_{X1}, c_{X2}, ..., c_{Xn}\}$$
 resp.
 $c_Y = \{c_{Y1}, c_{Y2}, ..., c_{Yn}\}$

Zrychlení porovnání dvojic sekvencí

3. Na základě počtu výskytů slov se vypočte vzdálenost obou sekvencí X a Y např. pomocí Euklidovské vzdálenosti:

$$d(X,Y) = (c_X - c_Y).(c_X - c_Y) = \sum_{i=1}^{n} (c_{Xi} - c_{Yi})^2$$

Poznámky:

- Je statisticky dokázáno, že čím více jsou si sekvence X a
 Y podobné, tím více si odpovídají i četnosti výskytů slov
- Tento jednoduchý princip se začíná používat při prohledávání rozsáhlých databází jako základní filtr
- Existuje celá řada přístupů pro výpočet vzdálenosti, liší se svou přesností

Zrychlení porovnání dvojic sekvencí

- Příklad:
 - Vstupní sekvence:
 - X = ATATAC
 - Y = ATATAG
 - Množina všech trojic:
 - W₃ = {ATA, TAT, TAC, TAG,}
 - Frekvence výskytů jednotlivých slov v X a Y:
 - $c_X = \{2, 1, 1, 0, ...\}$
 - $c_Y = \{2, 1, 0, 1, ...\}$
 - Výpočet Euklidovské vzdálenosti:
 - $d(X,Y) = (2-2)^2 + (1-1)^2 + (1-0)^2 + (0-1)^2 = 2$

Iterativní zpřesňování zarovnání

 Na vstupu předpokládejme pomocný strom a výsledek více-násobného zarovnání

Postup:

 Strom se rozstřihne na dvě části a pro každou část se odděleně sestaví vícenásobné zarovnání (jako návod se použijí vzniklé podstromy)

Iterativní zpřesňování zarovnání

- Z obou zarovnání se sestrojí výsledné zarovnání a ohodnotí se jeho skóre
- 3. Pokud bylo dosaženo lepší skóre, původní strom se nahradí novým a zpřesňování pokračuje dokud jsou nalézána lepší skóre nebo již byly vyzkoušený všechny větve. Při volbě větve pro rozstřižení se postupuje systematicky od kořene k uzlům

Metoda MUSCLE

- V současnosti jedna z nejpřesnějších metod [Robert C. Edgar, 2004]
- Princip:
 - 1. Výpočet předběžného zarovnání
 - Matice podobnosti se sestrojí skrze počítání k-tic
 - Vytvoří se první pomocný strom (TREE1) metodou UPGMA
 - Vytvoří se první zarovnání sekvencí (MSA1)
 - 2. Přepočet zarovnané sekvence
 - Z MSA1 se vypočte nová matice podobnosti skrze přesnější výpočet (Kimurova vzdálenost)
 - Sestaví se druhý pomocný strom (TREE2) a vytvoří se nové zarovnání (MSA2)
 - 3. Aplikace iterativního zpřesňování na TREE2 a MSA2 (viz předchozí popis)

Metoda MUSCLE

Shrnutí

- Vícenásobné zarovnání nám umožňuje získat daleko více informací o zkoumaných organizmech
- Optimální algoritmus dynamického programování v nrozměrném prostoru nelze použít pro svou složitost
- Dobré výsledky dávají progresivní metody založené na sestavení pomocného stromu a postupném zarovnání dvojic sekvencí (UPGMA)
- Ani tyto metody však nedávají dostatečně přesné výsledky, pokud nejsou iterativně zpřesňovány např. prostříháváním pomocného stromu

Literatura

- Dan K. Krane, Michael L. Raymer: Fundamental Concepts of Bioinformatics, ISBN: 0-8053-4633-3, Benjamin Cummings 2003.
- Neil C. Jones, Pavel A. Pevzner, An Introduction to Bioinformatics Algorithms, ISBN-10: 0262101068, The MIT Press, 2004

Konec

Děkuji za pozornost