Milestone Report

Rate A Read With goodreads

goodreads

Introduction:

Data Source:

Database Design and Data Wrangling:

Database Design

Fetch Data from Database

Data Wrangling

Feature Extraction

Exploratory Data Analysis:

Scope Of Further Development:

Conclusion:

Introduction:

<u>Goodreads</u> is a social cataloging website for people who love Books.Users can just sign up and then create a reading list or update the books they have read or currently reading or even write a review. They can also form their own groups of book suggestions, surveys, polls, blogs, and discussions.

In this project, I have explored the different features extracted from Books and Authors to determine what makes a book popular or what are the determinants in a book which earns a good rating?

As a user, we can login to the site and search for books of a particular genre. In this project, we are extracting books details for the **"Science Fiction"** Genre. We have used the below tags to get a respectable amount of data:

- 1. science fiction
- 2. science-fiction-fantasy
- 3. science-fiction-romance
- 4. Apocalyptic
- 5. Space
- 6. Dystopia
- 7. Aliens
- 8. Fantasy

Data Source:

To access the GoodReads Data, we can use the GoodReads API. But to use the GoodReads API, we need to register for a developer key. The key can be registered on https://www.goodreads.com/api/keys.

The credentials are secret information and thus can be stored in a pkl file and loaded when required.

Database Design and Data Wrangling:

Database Design

In this project I have used a SQLite3 Database to load the data. I have extracted both the Books details and the Author information from goodreads for a particular genre.

Thus we need to create 2 tables as below:

1. **Books** - To store the book details where book_id is the Primary key

2. **Authors** - To store the author details where book_id from Books table is the Foreign key

Fetch Data from Database

I have used "read_sql_query" from Pandas Library to read Data from Database.

Books Details are fetched into a Dataframe **df_books**. Author Details are fetched into a Dataframe **df_authors**. Books and Author details Dataframe are merged into another Dataframe **df_details** and below is the final result.

```
df details.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9576 entries, 0 to 9575
Data columns (total 19 columns):
book id
                         9576 non-null int64
isbn
                       7864 non-null object
title
                       9576 non-null object
total_pages 8848 non-null float64
average_rating 9576 non-null float64
ratings_count 9576 non-null int64
reviews_count 9576 non-null int64
publication_date 8029 non-null object
publisher 8521 non-null object
popular_shelves 8029 non-null object
author_name 9576 non-null object birth_on death_on feet
fans_count
                        9576 non-null int64
gender
                        8321 non-null object
                        5729 non-null object
hometown
works_count
                      9576 non-null int64
dtypes: float64(2), int64(6), object(11)
memory usage: 1.5+ MB
```

Data Wrangling

- Convert the Gender column to category
- Convert the Date columns to Dates
- Handling Missing Data
 - For **total_pages** column, the missing values are filled with the MEAN of the total pages of the other records.
 - For **fans_count** column, the missing values are filled with the MEAN of the fans count of the other records.
 - For **popular shelves**, the mission value is filled with "No_Tags".
 - **Gender** Missing Values are filled with the Forward fill method.
 - Missing **Book_description** column is filled with a constant value "No Description".

Feature Extraction

Tags:

Popular_shelves column of the books are used to fetch tags of each book by using the below steps:

- Join shelves of each record to get all the shelves.
- Exclude not so important Tags
- Fetched the Most Common Tags Value
- Create new Tags like "classics", "thriller", "romance", "paranormal", "humour", "dystopian", "historical", "comics" and put True/False for each record

Bag of Words from Book Description:

Bag Of Words is used to extract features from Book_Description column suing the below steps:

- 1. The records are converted to lowercase
- 2. HTML tags are removed from the records
- 3. Punctuations are removed from the records
- 4. Trailing spaces are removed from the records
- 5. Spaces in between words are removed from the records
- 6. Numbers are removed from the records
- 7. English stop words are removed
- 8. Tokenization, Stemming and Lemmatization process are used to clean the data
- 9. CountVectorizer method is used to get counts of each words

Exploratory Data Analysis:

In this project, we are predicting the average rating of a book in Science Fiction Genre.

In the dataset, most of the features are categorical features.

Average Rating:

In this project, we are predicting the Average Rating of the books. The rating of the book varies from 2.75 to 4.75 with a mean value around 4.

Gender:

In this project, the Gender of the Author is playing an important role and it seems that there are more Male author than Female authors in the world of Science Fiction.

Total Pages:

In Science Fiction, there are a couple of books which consist of many pages. But, for most of the books, the page count is at a mean of around 350.

Publishers:

"Tor Books" is the most popular publisher in the world of Science Fiction.

Genre:

Science Fiction is a broad Genre. Under Science Fiction, there are some sub-categories and the above plot show the distribution.

City:

Can a City influence a creation? The above plot shows that it can! Chicago and Cleveland have given birth to most of the Science Fiction Creations.

Authors:

Authors who created most of the "Classics" in Science Fiction is "Robert A. Heinlein".

Best Reads in Science Fiction:

title	average_rating	author_name	publisher
Weirdos from Another Planet! (Calvin and Hobbes #4)	4.71	Bill Watterson	Andrews McMeel Publishing
Harry Potter Series Box Set (Harry Potter, #1-7)	4.75	J.K. Rowling	Arthur A. Levine Books
Black Dagger Brotherhood: Boxed Set #1-6	4.69	J.R. Ward	null
Words of Radiance (The Stormlight Archive, #2)	4.77	Brandon Sanderson	Tor Books
A Court of Mist and Fury (A Cou of Thorns and Roses, #2)	4.68	Sarah J. Maas	Bloomsbury USA Childrens
Saga: Book One	4.68	Brian K. Vaughan	Image Comics

The top 5 Best Reads in Science Fiction are displayed in the above chart.

Publication Year:

The above plot shows the count of Science Fiction Publication as per year. It seems that this particular genre started gaining popularity in the 21st century.

Scope Of Further Development:

In this project I have limited the genre as "Science Fiction/Fantasy". I would like to address this issue and accept the genre as a parameter from user and provide some analysis and visualizations that may help the authors to gain more popularity among the readers.

Conclusion:

The objective of this project is to understand and utilise the **ETL**(Extract Transfer Load) process and then finally apply some Machine Learning Algorithms for Prediction.

I would like to address this project as a Regression Problem and predict the average rating of a book.