Дроссели для импульсных источников питания на ферритовых кольцах

При повторении импульсных вторичных источников питания и стабилизаторов напряжения или самостоятельной их разработке радиолюбители испытывают трудности при подборе магнитопроводов и расчете индуктивных элементов устройств. Публикуемая статья может помочь в решении таких задач.

В однотактных импульсных источниках питания и стабилизаторах напряжения важнейшим элементом является дроссель или импульсный трансформатор, в котором происходит накопление энергии. Обычно их наматывают на броневых или Ш-образных ферритовых магнитопроводах с зазором или кольцах из Мопермаллоя МП140 или МП160 [1 — 4]. Магнитопроводы из прессованного пермаллоя (Мопермаллоя) достаточно дороги и дефицитны. В то же время в большинстве случаев индуктивные элементы таких устройств можно выполнить на широко распространенных кольцах из феррита с проницаемостью 600. . .6000, если в них ввести зазор.

Индуктивность L катушки, намотанной на кольцевом магнитопроводе, как известно, можно найти по формуле [1]

$$L = A_1 N^2$$

где A_L — так называемый коэффициент индуктивности, N — число витков катушки. Коэффициент A_L соответствует индуктивности катушки в один виток и обычно приводится в справочных данных конкретных магнитопроводов [1 — 4], а для кольцевых магнитопроводов может быть легко рассчитан:

$$A_{L} = \frac{\mu_{0}\mu_{3\phi\phi}S_{3\phi\phi}}{l_{3\phi\phi}}$$

где $\mu_0=1,257\cdot 10^{-3}$ мкГн/мм — абсолютная магнитная проницаемость вакуума, $\mu_{\rm 3фф}$ — эффективная начальная магнитная проницаемость материала магнитопровода, $S_{\rm 3фф}$ — эффективная площадь сечения магнитопровода в мм², $I_{\rm 3фф}$ — эффективная длина магнитопровода в мм.

Зная величину A_L, нетрудно определить число витков катушки для получения необходимой индуктивности:

$$N = \sqrt{L/A_L}$$

Эффективное сечение и длина магнитопровода несколько меньше определяемых по его геометрическим параметрам и обычно приводятся в справочной литературе. В Табл. 1 в первых пяти столбцах приведены геометрические размеры, эффективные сечение и длина $I_{\text{эфф}}$ для ферритовых колец стандартного ряда с внешним диаметром D от 6 до 50 мм, внутренним d и высотой h [1].

В этой же таблице приведены расчетные значения площади окна магнитопроводов $S_{\text{окн}}$, периметра сечения р и коэффициента индуктивности A_L для $\mu_{\text{эфф}}$ = 50. Данные позволяют рассчитать индуктивность любой катушки, намотанной на кольцевом магнитопроводе с табличными геометрическими размерами. Если $\mu_{\text{эфф}}$ используемого кольца отличается от 50, значение A_L необходимо пропорционально изменить,

например, для $\mu_{3\Phi\Phi}=2000$ коэффициент A_L следует увеличить в 40 раз. Следует иметь ввиду, что значения $\mu_{3\Phi\Phi}$, $S_{3\Phi\Phi}$ и $I_{3\Phi\Phi}$ определяются с большой погрешностью, и в справочниках для кольцевых магнитопроводов указан обычно двукратный разброс значений A_L [1]. Поэтому величины A_L , взятые из **Таблицы 1**, следует принимать как ориентировочные и уточнять их при необходимости более точного расчета по результатам эксперимента.

Для этого следует намотать на магнитопроводе пробную катушку, например, из десяти витков и измерить ее индуктивность $L_{\Pi P}$. Здесь себя хорошо зарекомендовал прибор, описанный в [5]. Разделив $L_{\Pi P}$ на $100=10^2$, определим значение A_L . Расчетное значение N следует увеличить на несколько витков (до N_1), по результату измерения L_1 уточнить необходимое число витков $N=N_1$ $\sqrt{L/L_1}$ и отмотать лишние витки.

Описанным выше образом можно рассчитать индуктивность катушки или необходимое число витков. Однако, как только речь заходит о дросселях для импульсных источников питания, сразу возникает вопрос, какой ток может выдержать дроссель без насыщения магнитопровода?

Магнитная индукция В в магнитопроводе при токе I может быть рассчитана по формуле

$$\mathsf{B} = \frac{\mu_0 \mu_{0 \phi \phi} IN}{l_{0 \phi \phi}}$$

Максимально допустимая индукция B_{max} для материалов магнитопроводов приводится в справочных данных и лежит в пределах 0, 25. ..0,5 Тл. Из этой формулы несложно получить выражение для максимального тока дросселя:

$$I_{\text{max}} = \frac{B_{\text{max}} l_{\text{a}\phi\phi}}{\mu_0 \mu_{\text{a}\phi\phi} N}$$

Если в нее подставить формулу для определения числа витков по заданной индуктивности, получим

$$I_{\text{max}} = \sqrt{V_{\text{add}}/(\mu_0 \mu_{\text{add}} L)}$$

где $V_{3\Phi\Phi} = S_{3\Phi\Phi} I_{3\Phi\Phi}$ — эффективный объем магнитопровода. Нетрудно видеть, что чем выше $\mu_{3\Phi\Phi}$, тем меньший ток может пропустить дроссель при тех же геометрических размерах магнитопровода и заданной индуктивности. Более или менее приемлемые результаты при изготовлении дросселей для ИВЭП получаются при $\mu_{3\Phi\Phi} = 30...~50$. Именно поэтому в **Таблице 1** значение коэффициента A_L приведено для

 $\mu_{\text{эфф}} = 50$. В той же таблице приведено максимальное значение тока I_{max} через дроссель c одним витком при $B_{\text{max}} = 0,3$ Тл. Для определения допустимого тока реального дросселя достаточно табличное значение I_{max} разделить на число витков N.

Однако в радиолюбительской практике более доступны кольцевые магнитопроводы с большими значениями эффективной магнитной проницаемости $\mu_{\text{эфф}} = 600...6000$. Понизить эффективную магнитную проницаемость таких магнитопроводов можно введением зазора, при этом

$$\mu_{\rm 9 d p d} = \frac{\mu_{\rm \tiny HA \tiny HA \tiny \tiny I}}{1 + \mu_{\rm \tiny \tiny HA \tiny \tiny I} \frac{\Delta_{\rm \tiny 9 d p d}}{l_{\rm \tiny 9 d p d}}}$$

где $\mu_{\text{нач}}$ — начальная магнитная проницаемость материала магнитопровода, $\Delta_{\text{эфф}}$ — эффективная ширина зазора. При реальной ширине зазора $\mu_{\text{эфф}} = l_{\text{эфф}}/\Delta_{\text{эфф}}$. Для того, чтобы снизить $\mu_{\text{эфф}}$ примерно до 50. . . 100 (это значение исходя из опыта расчета и изготовления дросселей близко к оптимальному), эффективная ширина зазора должна составлять $\Delta_{\text{эфф}} = l_{\text{эфф}}/(50...100)$ независимо от начальной магнитной проницаемости магнитопровода.

Если в вышеприведенную формулу для расчета A_L подставить значение $\mu_{9\varphi\varphi}$ для магнитопровода с зазором, получим

$$A_{L} = \frac{\mu_{0} S_{9\phi\phi}}{\Delta_{9\phi\phi}}$$

Еще более простой получается формула для максимального тока через дроссель

$$I_{\text{max}} = rac{B_{\text{max}} \Delta_{\text{эфф}}}{\mu_0 N} \cong rac{240 \cdot \Delta_{\text{эфф}}}{N} \; ext{(для B}_{\text{max}} = ext{0.3Tn})$$

т. е. допустимый ток определяется только эффективным зазором и числом витков.

Почти все приведенные выше формулы уже были опубликованы в журнале «Схемотехника» [4], однако ни в одной из известных автору статьи публикаций не отмечено, что эффективная ширина зазора, которую

Рис. 1

надо применять в расчетах, меньше геометрической. Это различие возникает из-за того, что магнитное поле, существующее рядом с зазором (**Puc. 1**), шунтирует зазор и уменьшает его эффективную ширину. Для того, чтобы рассчитать влияние этого поля, можно обратиться к аналогии между магнитным и электрическим полями. Воспользуемся формулой для емкости конденсатора из двух цилиндров с близко расположенными торцами [6]:

$$C = \frac{D^2}{16d} + \frac{D}{8\pi} \cdot \left\{ 1 + \ln \frac{8\pi\pi D(+b)}{d^2} + \frac{b}{d} \cdot \ln(1 + \frac{d}{b}) \right\}$$

где С — емкость конденсатора в сантиметрах, D— диаметр цилиндров, b — их высота, d — зазор между их торцами.

Нетрудно заметить, что первое слагаемое соответствует емкости зазора между цилиндрами, а второе — емкости, вносимой боковыми поверхностями цилиндров. Будем считать, что высота цилиндров равна их удвоенному диаметру b = 2D. Это означает, что мы учтем только емкость ближайшей к зазору части боковой поверхности цилиндров, пренебрегая дальней. Расчеты при длине цилиндров в 3 или 4 диаметра дают практически тот же результат.

Для того, чтобы в дальнейшем перейти от емкости между цилиндрами к емкости между прямоугольными брусками (а это по форме ближе к сечению ферритового кольца), будем считать, что емкость, вносимая боковыми поверхностями, пропорциональна периметру зазора, и выразим в этой формуле диаметр цилиндров через периметр р их кругового сечения:

$$D = p/\pi$$

высота цилиндров $b = 2D = 2p/\pi$.

Если в формулу для емкости подставить эти выражения, можно определить из нее отношение полной емкости к емкости между торцами в функции от отношения зазора к периметру цилиндров β = d/b. Формула эта, однако, получается довольно громоздкой и неудобной для применения.

Обозначим буквой а отношение эффективного зазора, обеспечивающего без емкости боковых поверхностей ту же емкость, что и емкость между торцами с учетом емкости боковых поверхностей, к геометрическому. На **Рис. 2** приведена расчетная зависимость а от β . Из подобия уравнений, описывающих электрическое и магнитное поле, следует, что аналогично выглядит и зависимость отношения эффективного магнитного зазора к геометрическому от отношения геометрического магнитного зазора к периметру.

Из графика на **Рис. 2** следует, что эффективная ширина зазора может существенно отличаться от геометрической. В реальном диапазоне β составляет от 0,01 до 0,1 эффективная ширина зазора меньше геометрической в 1,26...2,66 раза.

Tat	блица	a 1																		
Без зазора								А _L , мкГн с зазором, мм				I²L, А² мкГн с зазором, мм								
D,	d, мм	h, MM	<i>I_{эфф}</i> , ММ	S _{эф-}	S _{OKH} MM ²	Р,	(µ _{эфф}	₅ =50)	A _L ,	мкінс	зазором	, мм	0	,25),5		1		1,5
101101		IVIIVI	141141	фічни	IVIIVI	IVIIVI	А _L , мкГн	I _{max} ,A (N=1)	0,25	0,5	1	1,5	нас.	зап.	нас.	зап.	нас.	зап.	нас.	зап.
6	2,5	1,8	11,8	2,96	4,9	7,1	0,016	56,28	0,03	0,02	0,012	0,01	30,65	0,3487	46.8	0,229	67,2	0,1591	81,3	0,1314
6 7	3 4	2,4 1,5	13,1 16.4	3,53 2,19	7,1 13	7,8 6	0,017 0,008	62,34 78,33	0,03 0,02	0,02 0,01	0,013 0,009	0,011 0,008	37,72 21,37	0,8357 1,7945	58.1 32,1	0,543 1,195	84 45,5	0,3751 0,8421	102 54,85	0,3089 0,6989
7	4	2	16,4	2,92	13	7	0,011	78,33	0,03	0,02	0,012	0,01	30,09	2,2654	45.8	1,487	65,8	1,0362	79,58	0,8564
7,5	3	2,2	14,4	4,62	7,1	8,9	0,02	68,69	0,04	0,02	0,016	0,013	51,48	1,0488	80,3	0,672	117	0,4597	143,2	0,3769
8	4	2,5	17,4	4,9	13	9	0,018	83,1	0,04	0,03	0,017	0,014	54,79	3,5035	85.6	2.243	125	15324	152,8	1,2561
9	6	3	22,9	4,44	28	9	0,012	109,5	0,04	0,02	0,016	0,013	49,64	16,071	77,5	10.29	113	7,0299	138,4	5,7624
10	4	3	19,2	8,4	13	12	0,028	91,6	0,06	0,04	0,026	0,021	102	5,5315	164	3.441	246	2.2916	303,7	1,8568
10	6	2	24,1	3,91	28	8	0,01	114,9	0,03	0,02	0,015	0,012	42,12	14,688	65	9.515	94.3	6.5635	114,5	5,4021
10 10	6 6	3 4,5	24,1 24,1	5,87 8,81	28 28	10 13	0,015 0,023	114,9 114,9	0,05 0,06	0,03 0,04	0,02 0,026	0,016 0,021	67,73 109,2	20,588 28,765	107 177	13.04 17.75	158 268	8,8311 11,734	193,4 331,5	7,21 9,4738
10	6	4,5 5	24,1	9,63	28	14	0,025	114,9	0,00	0,04	0,028	0,021	121,6	30,866	198	18.91	^302	12,41	375,8	9,9858
12	5	5,5	23,6	18,1	20	18	0,048	112,5	0,12	0,07	0.047	0,037	241,6	26,376	404	15.77	631	10.098	794,2	8,0238
12	6	4,5	26,1	13	28	15	0,031	124,7	0,09	0,06	0,036	0,029	166,5	40,889	274	24,88	L420	16.221	523,3	13,008
12	8	3	30,6	5,92	50	10	0,012	145,9	0,05	0,03	0,02j	0,016	68,31	65,624	108	41.58	159	28.148	195	22,981
12	9	4	29.7	4,97	64	11	0,011	141,6	0,04	0,02	0,016	0,013	58,93	85,886	93,9	53.9	140	36,18	171,9	29,425
13	5,5	5	25,7	17,6	24	18	0,043	J22,7	0,12	0,07	0,046	0,036	233,5	37,775	389	22.65	607	14.542	762,3	11,571
15	6	4,5	28,8	18,9	28	18	0,041	137,4	0,13	0,08	0,049	0,039	252.6	57,175	422	34,19	660	21,89	830,2	17,393
16	4 8	2,5 6	23,2 34,9	12,8 23,1	13 50	17 20	0,035	110,9	0,09 0,15	0,05 0.09	0,034	0,027	169,2 315,1	7,7536 215,87	281 532	4,662	437	3,0017	548,3	2,3921
16 16	10	4,5	39,4	13,3	79	15	0,042 0,021	166,4 187,9	0,13	0,09	0,057 0,037	0,045 0,03	170,1	322,31	280	127,8 196,1	840 429	80.981 127.86	1063 534,6	63,984 102,54
17	5,5	2,3	28,8	11,9	24	16	0,021	137,6	0,08	0,05	0,032	0,026	155,4	26,082	257	15,76	397	10.205	497	8,1551
18	8,2	5	36,8	22,2	53	19	0,038	175,4	0,15	0,09	0,056	0,044	300,8	230,73	506	137,1	796	87.153	1005	68,993
18	9	5	39,2	21,6	64	19	0,035	187,1	0,14	0,09	0,055	0,043	292,4	327,57	491	194,9	772	124,1	973,9	98,328
18	14	12	49,7	23,9	154	28	0,03	237,4	0,15	0,09	0,052	0,04	346,4	1973,2	603	1134	984	694,75	1268	538,66
20	10	5	43,6	24	79	20	0,035	207,9	0,16	0,09	0,059	0,047	328,2	548,98	554	325	875	205.94	1107	162,71
20	10	7,5	43,6	36	79	25	0,052	207,9	0,23	0,13	0,082	0,064	513	789,86	884	458,3	1427	283.99	1828	221,62
20	12	4 6	48,1	15,4	113	16	0,02	229,8	0,11	0,06	0,042	0,033	200,8	765,79	332	463,1	513	300	641.2	239.81
20 20	12 12	7,5	48,1 48,1	23,5 28,9	113 113	20 23	0,031 0,038	229,8 229,8	0,15 0,19	0,09 0,11	0,058 0,068	0,046 0,053	320,8 405,4	1112,8 1333,2	542 693	658,8 779,3	855 1110	417,43 486,94	1082 1415	329,82 381,79
21	11	5	46,9	24,2	95	20	0,032	224	0,16	0,09.	0,06	0,047	330	808,11	557	478,5	880	303.14	1113	239,52
22	10	6,5	45,4	37	79	25	0,051	216,8	0.23	0,14	0,084	0,066	527,5	812,22	909	471,3	1467	292,03	1879	227,89
25	12	6	53,2	37,3	113	25	0,044	254	0,24	0,14	0,085	0,066	531,2	1696,1	915	984,2	1477	609,81	1893	475,88
25	12	9	53,2	55,9	113	31	0,066	254	0,34	0,19	0,118	0,091	824,7	2457	1447	1400	2386	849,32	3095	654,61
25	15	7,5	57,8	36,7	177	25	0,04	275,9	0,23	0,13	0,083	0,065	522,6	4074,1	901	2364	1454	1464,8	1862	1143,1
28	16	6	65,6	34,1	201	24	0,033	313,3	0,22	0,13	0,079	0,062	482,7	4941,4	829	2878	1332	1790.3	1703	1400,3
28 31	16 18,5	9 7	65,6 74,4	52,6 42,8	201 269	30 27	0,05 0,036	313,3 355,2	0,32 0,27	0,18 0,15	0,112 0,095	0,087 0,074	771,8 615,4	7339,4 10883	1350 1065	4194 6283	2220 1730	2552 3870,8	2874 2224	1970,7 3010,6
31	18,5	, 14	74,4	42,6 85,6	269	41	0,036	355,2	0,27	0,13	0,095	0,074	1309	20475	2344	11429	3965	6759.4	5226	5128,6
32	16	8	69,7	61,5	201	32	0,055	332,6	0,37	0,21	0,100	0,099	911	8497	1602	4830	2650	2920,6	3444	2246.9
32	16	12	69,7	92,3	201	40	0,083	332,6	0,54	0,3	0,18	0,137	1409	12365	2520	6909	4258	4090,3	5607	3105,7
32	20	6	78,8	35,3	314	24	0,028	375,9	0,22	0,13	0,082	0,064	499,7	12488	858	7272	1379	4524,6	1763	3539
32	20	9	78,8	53	314	30	0,042	375,9	0,33	0,19	0,113	0,087	777,8	18058	1361	10317	2237	6279	2896	4848,8
38	24	7	94	48,2	452	28	0,032	448,9	0,3	0,17	0,105	0,082	698,8	34376		19754	1985	12103	2559	9384
40	20	5	87,1	48,1	314	30	0,035	415,8	0,29	0,17	0,103	0,079	704,9	16365	1233	9351	2027	5690,4	2625	4394,3
40	20	7,5	87,1	72,1	314	35 40	0,052	415,8	0,43	0,24	0,146	0,112	1081	24002		13546 35616	3195	8121.8	4175 5710	6215,4
40 40	24 25	12 7,5	96,3 98,4	93,9 55,2	452 491	40 30	0,061 0,035	459,6 469,9	0,55 0,34	0,31 0,19	0,183 0,118	0,139 0,091	1434 810,2	63742 45925		26240	4336 2330	21087 15968	5710 3017	16011 12331
40	25	11	98,4	81,1	491	37	0,052	469,9	0,48	0,13	0,110	0,031	1226	65455	2181	36785	3658	21938	4795	16734
45	28	8	110	66,7	616	33	0,038	527,3	0,4	0,23	0,138	0,106	993	86097	1751	48816	2905	29434	3782	22603
45	28	12	110	97,8	616	41	0,056	527,3	0,57	0,32	0,189	0,144	1498	122602	2686	68382	4548	40393	5998	30626
50	25	6	109	72,1	491	37	0,042	519,7	0,43	0,24	0,144	0,11	1089	58160	1938		3250	19493	4261	14869
50	25	9	109	108	491	43	0,062	519,7	0,63	0,35	0,206	0,156	1665	85599	2995	47581	5094	27984	6737	21157
50	30	10	120	97,9	707	40	0,051	574,5	0,58	0,32	0,191	0,145	1494	162098	2673	90572	4516	53624	5948	40716

В **Таблице 1** приведены значения А_L для кольцевых магнитопроводов с четырьмя различными зазорами, рассчитанные с учетом отличия эффективного зазора от геометрического.

Вышесказанное позволяет сделать вывод, что необходимые число витков и зазор практически не зависят от начальной магнитной проницаемости материала магнитопровода, и поэтому можно применить ферриты с любой проницаемостью, большей 600. Для любого имеющегося кольца с табличным зазором по значению A_L нетрудно вычислить индуктивность или необходимое число витков и рассчитав $\beta = \Delta/p$, по графику (рис. 2) определить значение $\alpha = \Delta_{\text{эфф}}/p$ и $\Delta_{\text{эфф}} = \alpha p$. По найденному значению $\Delta_{\text{эфф}}$ и при-

веденной ранее формуле можно найти максимальный ток, не вызывающий насыщения сердечника.

Однако существует еще одно обстоятельство, влияющее на выбор магнитопровода — возможность намотки на него требуемого числа витков проводом соответствующего сечения. Необходимая площадь окна кольца составляет

$$S_{OKH} = NS_{\Pi POB}/K_{3A\Pi}$$

где $S_{\text{пров}}$ — сечение провода, а $k_{\text{зап}}$ — коэффициент заполнения окна. Расчет $S_{\text{пров}}$ производят по формуле $S_{\text{пров}}$ = I/j, где j — допустимая плотность тока. Типовое значение $k_{\text{зап}}$ по меди составляет 0,3, а для j

при начальном расчете принимают значение 2,5 A/mm^2 .

Подставив в формулу для расчета площади окна выражения для N и A_L, получим следующую формулу:

$$I^2L = (S_{OKH}jk_{3a\Pi})^2\mu_0S_{9dbd}/\Delta_{9dbd}$$

Подобное выражение можно получить и из формулы для максимального тока, который можно пропустить через дроссель без насыщения сердечника:

$$I^2L = B_{\text{max}}^2 S_{3\phi\phi} I_{3\phi\phi} / (\mu_0 \mu_{3\phi\phi})$$

Однозначного расчета конструктивных параметров дросселя по заданной индуктивности и току не существует. Однако при подборе кольца и определении данных обмотки могут помочь последние восемь колонок табл. 1 . В них приведены максимальные значения произведения I^2L по насыщению и по заполнению, рассчитанные по приведенным выше формулам для $B_{\text{max}} = 0.3$ Тл, $k_{\text{зап}} = 0.3$, j = 2.5 А/мм 2 и четырех значений зазора.

Подбор колец и расчет конструктивных параметров дросселей продемонстрируем на двух примерах.

Пусть необходим дроссель индуктивностью 22 мкГн на рабочий ток 1,2 А. Для него значение $I^2L=1,2^2x22=31,68$. Среди колец минимального диаметра первым почти подходит кольцо K10x6x4, 5. При введении в него зазора 0,25 мм имеем возможность намотать дроссель с большим запасом по току (**Таблица 1**, колонка «нас.»), но с некоторым превышением плотности тока относительно 2,5 A/мм² (колонка «зап.»).

Определим параметры дросселя при зазоре 0,25 мм. Для него коэффициент индуктивности по **Таблице** 1 составит $A_1 = 0,064$, необходимое число витков

$$\Delta_{9\varphi\varphi} = \sqrt{22/0,064} = 18,5$$

(округляем до 19), допустимый ток Для I = 1,2 А при j = 2,5 А/мм² необходим провод сечением

$$S_{npob} = I/j = 1,2/2,5 = 0,48 \text{ MM}^2$$

При коэффициенте заполнения $k_{\text{зап}}=0.3$ необходимая площадь окна составит $S_{\text{окн}}=S_{\text{пров}}\,N/k_{\text{зап}}=$ =0,48x19/ 0,3 = 30,4 мм². Площадь окна по **Таблице 1** составляет 28,3 мм², что несколько меньше. Необходимо за счет увеличения плотности тока уменьшить сечение провода до

$$S_{\text{пров}} = S_{\text{окн}} k_{\text{зап}} / N = 28,3x0,3/19 = 0,446 \text{ MM}^2$$

Плотность тока составит $j=1/S_{\text{пров}}=1,2/0,446==2,68\ \text{А/мм}^2,$ что вполне допустимо. Диаметр провода указанного сечения (по меди) можно рассчитать по формуле:

$$d_{\text{пров}} = 2\,\sqrt{S_{_{\Pi \text{ров}}}\,/\,\pi}\,\,= 2\,\sqrt{0,446\,/\,3,\!14}\,\,= 0,75$$
 мм

Пусть необходим дроссель 88 мкГн на ток 1,25 А. Для него $I^2L = 137,5$. Дроссель можно намотать на кольце K12x6x4.5 с тем же зазором, при этом насыще-

ния магнитопровода происходить не будет, но плотность тока существенно превысит норму. Поэтому необходимо перейти к кольцу большего размера. В распоряжении автора были кольца К12х8х3 из феррита М4000НМ. На одном кольце невозможно намотать необходимый дроссель, ни по насыщению сердечника, ни по заполнению окна. Можно сложить два кольца вместе. В этом случае эффективное сечение магнитопровода увеличивается в два раза, а допустимые значения I²L вырастут по насыщению несколько более, а по заполнению несколько менее, чем в два раза. Поэтому необходимый дроссель при геометрическом зазоре 0,25 мм можно намотать с запасом по току насыщения и с небольшим превышением плотности тока.

Только табличными сведениями теперь не обойтись, необходим полный расчет. Для двух колец периметр сечения (при зазоре 0,25 мм):

$$p = D-d+4$$
 $h = 12-8+4$ $3 = 16$ MM,

$$\beta = \Delta/p = 0.25/16 = 0.0156$$
.

По графику на **Рис. 2** находим $\alpha = 0.73$, откуда эффективный зазор

 $\Delta_{\circ \oplus \oplus} = \Delta^. \alpha = 0.25^. 0.73 = 0.183$ мм. Найденное значение

$$A_{L} = \mu_{0} S_{9\varphi\varphi} / \Delta_{9\varphi\varphi} = 1,257x10^{-3}x2x5,92/0,183 =$$
 =0,081.

$$N = \sqrt{L/A_1} = \sqrt{88/0,081} = 32,9$$

округляем в большую сторону до 33 витков. Максимальный ток через дроссель

$$I_{max} = 240 \Delta_{add} / N = 240x0, 183/33 = 1,33 A.$$

Максимальное сечение провода

$$S_{\text{IDOB}} = S_{\text{OKH}} k_{33\Pi} / N = 50.3 \times 0.3 / 33 = 0.457 \text{ MM}^2$$

что соответствует плотности тока 1,25/0,457 = 2,74 A/mm^2 . Сечению $S_{пров}$ = 0,457 mm^2 соответствует диаметр:

$$\mbox{d}_{\mbox{\tiny пров}} = 2\,\sqrt{S_{\rm пров}\,/\,\pi} \; = 2\,\sqrt{0,457\,/\,3,\!14} \; = \!0.76 \; \mbox{mm}. \label{eq:dnpob}$$

Иногда удобнее ввести два одинаковых зазора. В этом случае табличное значение A_L для половинного зазора следует уменьшить в два раза, а табличное значение I^2L для половинного зазора — удвоить.

Технология введения зазора такова. Небольшое кольцо перед намоткой разломить на две части, надпилив его надфилем, лучше алмазным. Половинки склеивают между собой эпоксидным клеем с наполнителем, в качестве которого удобно использовать тальк. При склеивании в один из зазоров или в оба на часть глубины вводят прокладку из гетинакса, текстолита или нескольких слоев бумаги. Можно считать, что толщина одного листа бумаги для ксероксов и лазерных принтеров составляет 0,1 мм. Для сохранения формы кольца в процессе полимеризации клея оно должно лежать на обрезке органического стекла, от которого затем легко отделяется при изгибе этого обрезка. Перед намоткой острые грани колец следует тщательно скруглить небольшим наждачным камнем.

Рис. 3

У большого кольца зазор можно также выполнить ножовкой с алмазным полотном, однако его ширина при этом однозначно определяется толщиной полотна. В такой зазор для сохранения прочности кольца следует вклеить прокладку из жесткого диэлектрика.

Для экспериментальной проверки тока насыщения дросселей автором была изготовлена приставка к осциллографу, схема которой приведена на **Рис. 3**. Устройство представляет собой упрощенный вариант обратноходового преобразователя.

На микросхеме DD1 собран генератор импульсов положительной полярности длительностью, регулируемой в пределах 10...300 мкс с периодом повторения около 10 мс. Импульсы с его выхода поданы на затвор мощного, но низковольтного и относительно недорогого полевого транзистора VT2. Транзистор открывается и через проверяемую катушку индуктивности L1 начинает течь линейно нарастающий ток. Когда импульс заканчивается, накопленная энергия передается через диод VD2 в нагрузку, которой служат стабилитроны VD3 и VD4. Напряжение с резистора R7, пропорциональное току через катушку L1, подается на осциллограф. Для синхронизации осциллографа лучше использовать сигнал с выхода DD1.4. Если ток превысит 6A, откроется транзистор VT1 и оборвет формирование импульса. Пока сердечник катушки не входит в насыщение, зависимость тока от времени, как указывалось выше, носит линейный характер. При плавном увеличении длительности импульсов и подходе максимального тока через дроссель к току насыщения на экране осциллографа хорошо видно резкое отклонение зависимости от линейной. Источник напряжением 20 В должен допускать выходной ток не менее 1 А. Для упрощения пользования приставкой можно цепь +6 В питать от цепи +20 В через микросхемный стабилизатор КР145ЕН5Б(Г), либо КР1157ЕН6 с любыми суффиксами (7806 или 78L06). Экспериментальная проверка изготовленных дросселей подтвердила точность расчета необходимого числа витков и тока насыщения порядка ±10 %, что можно считать неплохим результатом, учитывая ошибки установки ширины зазора и множество допущений при выводе формул.

Литература:

- 1. И. Н. Сидоров, А. А. Христинин, С. В. Скорняков. Малогабаритные магнитопроводы и сердечники. Справочник.— М.: Радио и связь, 1989, с. .384,
- 2. А. Миронов. Магнитные материалы и магнитопроводы для импульсных источников питания.— Радио, 2000, №6, с. 53, 54. 3. Ферритовые магнитопроводы серии RM фирмы EPCOS. — Радио, 2001, №3, с. 49—51, №10, с. 48—50.
- 4. А. Кузнецов. Трансформаторы и дроссели для импульсных источников питания. Схемотехника, 2000, №1, с. 30—33, №2, с. 48, 49, 2001, №1, с. 32—34.
- 5. С. Бирюков. Цифровой измеритель RCL. Радио, 1996, №3, с. 38—41, №7, с. 62, 1997, №7, с. 32, 1998, №5, с. 63, 2001, №5, с. 44. 6. Г. Г. Гинкин. Справочник по радиотехнике. Изд. 4-е, переработанное. М.: Госэнергоиздат, 1948, с. 816.

Сергей Бирюков, editor@dian.ru