Algorithme Génétique

Solution aux problèmes d'optimisation sous contraintes

Vladimir-Alexandru PAUN

IN104: Projet informatique, 2016

Sommaire

- Introduction
 - Optimisation
 - Algorithmes Génétiques (AG's)
- 2 Modélisation
 - Comparaison avec l'évolution naturelle
- 3 Exemples
 - Applications des AG's

Optimisation

Problématique et approches

Problème

L'optimisation est une branche des mathématiques, cherchant à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à déterminer le meilleur élément d'un ensemble, au sens d'un critère quantitatif donné.

Optimisation

Problématique et approches

Problème

L'optimisation est une branche des mathématiques, cherchant à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à déterminer le meilleur élément d'un ensemble, au sens d'un critère quantitatif donné.

Difficulté

Calcul des solutions souvent NP-complet

Problématique et approches

Problème

L'optimisation est une branche des mathématiques, cherchant à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à déterminer le meilleur élément d'un ensemble, au sens d'un critère quantitatif donné.

Difficulté

Calcul des solutions souvent NP-complet

Solutions

- Steepest Descent
- Recuit Simulé (Monte Carlo)
- Algorithme Génétique

Informations générales

Les Algorithmes Génétiques (AG's) sont

 des techniques de résolution de problèmes qui ont besoin d'optimisation,

Informations générales

Les Algorithmes Génétiques (AG's) sont

- des techniques de résolution de problèmes qui ont besoin d'optimisation,
- sous-classe des Algorithmes Evolutionnistes,

Informations générales

Les Algorithmes Génétiques (AG's) sont

- des techniques de résolution de problèmes qui ont besoin d'optimisation,
- sous-classe des Algorithmes Evolutionnistes,
- basées sur la théorie de l'évolution de Darwin.

Informations générales

Les Algorithmes Génétiques (AG's) sont

- des techniques de résolution de problèmes qui ont besoin d'optimisation,
- sous-classe des Algorithmes Evolutionnistes,
- basées sur la théorie de l'évolution de Darwin.

Historique

- Les Algorithmes Evolutionnistes ont été développé dans les années '60
- Les AG's ont été crées par John Holland dans les années '70

L'intuition

On se base sur le modèle des êtres vivants qui sont constitués de cellules qui contient un noyau (nucléus).

L'intuition

On se base sur le modèle des êtres vivants qui sont constitués de cellules qui contient un noyau (nucléus).

L'intuition

On se base sur le modèle des êtres vivants qui sont constitués de cellules qui contient un noyau (nucléus).

L'intuition

On se base sur le modèle des êtres vivants qui sont constitués de cellules qui contient un noyau (nucléus).

L'information génétique est stockée dans les chromosomes qui sont constitués d'ADN.

Représentation du modéle

Représentation

00101000101110100000100010

Représentation du modéle

Représentation

00101000101110100000100010

("information génétique")

Représentation du modéle

Représentation

00101000101110100000100010 ("information génétique")

Population

...

00 10 10 00 10 10 01 10 00 00 10 10 11

Représentation du modéle

Représentation

00101000101110100000100010 ("information génétique")

Population

. . .

00 10 10 00 10 10 01 10 00 00 10 10 11 ("gene pool")

Sélection Naturelle

Principes

Préservation des variations favorables et rejet des variations défavorables

Sélection Naturelle

Principes

Préservation des variations favorables et rejet des variations défavorables

les individus qui ont un avantage ont plus de chance de survie - "survival of the fittest" \implies fonction de fitness

Evolution

Terminaison

La population évolue suivant certaines règles jusqu'à ce que un individu qui correspond à un critère est produit.

Evolution

Terminaison

La population évolue suivant certaines règles jusqu'à ce que un individu qui correspond à un critère est produit.

Iteration - reproduction de l'information génétique

Mitose

Recopie de l'information existante.

Evolution

Terminaison

La population évolue suivant certaines règles jusqu'à ce que un individu qui correspond à un critère est produit.

Iteration - reproduction de l'information génétique

Mitose

Recopie de l'information existante.

L'aléatoire

Durant la reproduction, des *erreurs* sont produites grâce auxquelles la population varie pour produire un meilleur élément en évitant les minima locaux.

L'aléatoire

Durant la reproduction, des *erreurs* sont produites grâce auxquelles la population varie pour produire un meilleur élément en évitant les minima locaux.

L'aléatoire

Durant la reproduction, des *erreurs* sont produites grâce auxquelles la population varie pour produire un meilleur élément en évitant les minima locaux.

La mutation

Une partie de l'information initiale est perdue et remplacée avec autre chose.

Applications des AG's

Utilisation des algorithmes génétiques

Finance

Stock Market Data Mining Optimisation

Applications des AG's

Utilisation des algorithmes génétiques

Finance

Stock Market Data Mining Optimisation

Modélisation des antennes

Applications des AG's

Utilisation des algorithmes génétiques

Finance

Stock Market Data Mining Optimisation

Modélisation des antennes

Réseau

Network intrusion detection