Linear Algebra

Introduction

Kang Hoon Lee

Department of Computer Science, Kwangwoon University

Linear Algebra

 Linear algebra is the branch of mathematics concerning linear equations such as

$$a_1x_1 + \dots + a_nx_n = b,$$

linear functions such as

$$(x_1,\cdots,x_n)\to a_1x_1+\cdots+a_nx_n,$$

and their representations through matrices and vector spaces.

From Wikipedia

How to Learn Linear Algebra

Understanding concepts

Prove that (K+K1). I = KI + K1 I

Proving theorems

Manipulating expressions

Linear Algebra for CS Students

- Understanding concepts
- Proving theorems
- Manipulating expressions

- Visualizing the algebraic concepts, theorems, and expressions into their geometric counterparts
 - To intuitively understand the mechanisms behind the abstract mathematical notations
- Representing the abstract objects and systems as the computational data structures and algorithms
 - To apply the power of linear algebra to various computational problems (e.g. computer graphics, machine learning)

Textbook: Interactive Linear Algebra

- Free e-book
 - Focusing on the synthesis of algebra and geometry
 - Developed for the introductory linear algebra course at Georgia Tech
 - Download PDF and/or access directly on the web
 - https://textbooks.math.gat ech.edu/ila/1553/

Topics to Be Covered

- Systems of Linear Equations: Algebra
 - Systems of linear equations
 - Row reduction
 - Parametric form
- Systems of Linear Equations: Geometry
 - Vectors
 - Vector equations and spans
 - Matrix equations
 - Solution sets
 - Linear independence
 - Subspaces
 - Basis and dimension
 - The rank theorem

Topics to Be Covered

- Linear Transformations and Matrix Algebra
 - Matrix transformations
 - One-to-one and onto transformations
 - Matrix multiplication
 - Matrix inverses
 - The invertible matrix theorem
- Determinants
 - Determinants: definition
 - Cofactor expansions
 - Determinants and volumes

Topics to Be Covered

- Eigenvalues and Eigenvectors
 - Eigenvalues and eigenvectors
 - The characteristic polynomial
 - Diagonalization
 - Complex eigenvalues
 - Stochastic matrices
- Orthogonality
 - Dot products and orthogonality
 - Orthogonal complements
 - Orthogonal projection
 - The method of least squares

Schedule

Week	Mon	Wed	Homework
1	Introduction	Systems of Linear Equations (1)	
2	Systems of Linear Equations (2)	Row Reduction (1)	Worksheet 2.1
3	Row Reduction (2)	Parametric Form, Vectors	Worksheet 2.2-2.3
4	Vector Equations	Matrix Equations	Worksheet 3.1-3.2
5	Solutions Sets	Linear Independence	Worksheet 3.3-3.5
6	Subspaces	Basis, Dimension, and Rank	Worksheet 3.6-4.1
7	Matrix Transformations	One-to-one and Onto	
8	Midterm Exam		
9	Linear Transformations	Matrix Multiplication	Worksheet 4.2-4.3
10	Matrix Inverses	Determinants	Worksheet 4.4-4.5
11	Cofactor Expansions	Eigenvalues and Eigenvectors	Worksheet 5.1-6.1
12	Characteristic Polynomial	Diagonalization	Worksheet 6.2-6.4
13	Dot Product and Orthogonality	Orthogonal Complements	Worksheet 7
14	Orthogonal Projections (1)	Orthogonal Projections (2)	
15	Final Exam		