OPTIMALLY DESIGNED MODEL SELECTION

FOR SYNTETIC BIOLOGY

ETHzürich

OVERVIEW

- 1. How to use OED in Synthetic Biology
- 2. The Model(s)
- 3. Frequentist vs Bayesian approach
- 4. Inferring parameters and first model selection
 - I. Frequentist approach: Evolutionary Algorithm
 - II. Bayesian approach: NUTS Algorithm (HMC)
- 5. Optimal Experimental Design
- 6. Stability properties of the solution (if time)
- 7. Conclusion
- 8. Recap

OVERVIEW

- 1. How to use OED in Synthetic Biology
- 2. The Model(s)
- 3. Frequentist vs Bayesian approach
- 4. Inferring parameters and first model selection
 - I. Frequentist approach: Evolutionary Algorithm
 - II. Bayesian approach: NUTS Algorithm (HMC)
- 5. Optimal Experimental Design
- 6. Stability properties of the solution (if time)
- 7. Conclusion
- 8. Recap

PAY ATTENTION TO THIS LINE!

- easy and intuitive
- a bit more involved
- sloppy and mathsy

- 1. Models are essential for studying synthetic circuits
 - I. Biology to include?

- 1. Models are essential for studying synthetic circuits
 - I. Biology to include?
- 2. We need experimental data to assess parameters of the model

- 1. Models are essential for studying synthetic circuits
 - I. Biology to include?
- 2. We need experimental data to assess parameters of the model
 - I. Time

- 1. Models are essential for studying synthetic circuits
 - I. Biology to include?
- 2. We need experimental data to assess parameters of the model
 - I. Time
 - II. Cost 💲

- 1. Models are essential for studying synthetic circuits
 - I. Biology to include?
- 2. We need experimental data to assess parameters of the model
 - I. Time
 - II. Cost 🕉

III.Nonlinearity ~

- 1. Models are essential for studying synthetic circuits
 - I. Biology to include?
- 2. We need experimental data to assess parameters of the model

- 1. Models are essential for studying synthetic circuits
 - I. Biology to include?
- 2. We need experimental data to assess parameters of the model

Optimal Experimental Design!

Try to balance tradeoff between information gained and experimental effort

Can we use OED also to solve problem !?

(i.e. can we use OED for model selection?)

THE MODEL(S)

• Toggle Switch: two transcriptional inhibitors (Lacl and TetR) and two inducers (aTc and IPTG) in *E.Coli*

Fixed

Changeable

THE MODEL(S)

- ullet M_1 Non symmetrical influx/outflux of aTc/IPTG through the membrane
- $\cdot M_2$ Same influx/outflux rate (simple diffusion)
- ${}^{\bullet}\!M_3$ Same influx/outflux rate (simple diffusion) + Dilution due to cell growth

FREQUENTIST VS BAYESIAN

MODELS PARAMETERS of the model first MODEL SELECTION OED final choice

FREQUENTIST

approach

BAYESIAN approach

1 2 3 4 5 6 7 8

- For a given set of parameters you can simulate the system and compare to experimental data
 - Loss function: weighted Sum of Squared Error (SSE) [$w_k = \frac{1}{\overline{\sigma}_k}$, k exp.]
- For a each parameter i we have an initial estimate μ_i (other publication)
- Enhanced Scatter Search Algorithm (Evolutionary Algorithm) is used

ESS Algorithm initialisation (for each model):

ESS Algorithm evaluation (for each individual):

ESS Algorithm evaluation (for each individual):

And calculate square residuals

Do it for all 10 experiments and sum the residuals with weight 1

$$w_k = \frac{1}{\overline{\sigma}_k} \text{ for } k \in \{1, 2, \dots 10\}$$

This is how you obtain the (un)fitness value for your individual!

and calculate residuals

ESS Algorithm in action (for each model):

Initialise 100 individuals and calculate their fitness value

COMBINATION RULE

Select best b/2 individuals

Sample the other b/2 from the rest of the population

COMBINATION METHOD

For all couple of points create biased hyper rectangle to sample from

(ENHANCING)

If parent substituted:
continue the search in
the direction parent/
fittest child, possibly
iterating three times

POPULATION UPDATE

For each parent: if one of the b-1 solutions is fitter than it, substitute the parent

ESS Algorithm in action (for each model):

We now have

we use the covariance matrix and the Cramer Rao lower bound!

This will create confidence intervals and a multivariate Gaussian

MODEL SELECTION:

$$\hat{\theta} = \begin{bmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \\ \vdots \\ \hat{\theta}_t \end{bmatrix} \qquad \qquad \text{Simulate forward} \qquad \longrightarrow \qquad \text{Use } AIC_i \text{ to rank the models}$$

$$AIC_{i} = 2d_{i} + \sum_{k \in \{g,r\}} \sum_{t} \frac{(\hat{y}_{k,t}(\theta_{i}, u) - y_{k,t}(\theta_{i}, u))^{2}}{\sigma_{k,t}^{2}(u)}$$

Fitness of our Evolutionary Algorithm

We want $P(\theta_i | \{E\})$ $i \in \{1,2,3\}$

We want $P(\theta_i | \{E\})$ $i \in \{1,2,3\}$

From Bayes: $P(\theta_i | \{E\}) \propto P(\{E\} | \theta_i, M_i) P(\theta_i, M_i)$

We want $P(\theta_i | \{E\})$ $i \in \{1,2,3\}$

From Bayes: $P(\theta_i | \{E\}) \propto P(\{E\} | \theta_i, M_i) P(\theta_i, M_i)$

That we cannot use directly we

We want $P(\theta_i | \{E\})$ $i \in \{1,2,3\}$

From Bayes: $P(\theta_i | \{E\}) \propto P(\{E\} | \theta_i, M_i) P(\theta_i, M_i)$

That we cannot use directly we

We want $P(\theta_i | \{E\})$ $i \in \{1,2,3\}$

From Bayes: $P(\theta_i | \{E\}) \propto P(\{E\} | \theta_i, M_i) P(\theta_i, M_i)$

That we cannot use directly we

Refresher: Metropoli-Hastings (for each model):

Refresher: Metropoli-Hastings:

1 2 3 4 5 6 7 8

"Probability view"

"Potential energy view"

Refresher: Metropoli-Hastings:

MH not really good at going around high dimensional/highly correlated probability distributions

Hamiltonian Monte Carlo: Using both Potential and Kinetic energy

$$H(\theta,m) = U(\theta) + K(m) \text{ where } K(m) = \sum_{j=1}^{I} \frac{m_j^2}{2mass} \text{ and } U(\theta) = -\log(P(E\mid\theta)P(\theta))$$

$$P(\theta, m) \propto P(E \mid \theta)P(\theta)e^{-\frac{m^2}{2}} = P(E \mid \theta)P(\theta)\mathcal{N}(m; 0, 1)$$

Meaning that we can just sample from this joint and then discard the m values to sample from the posterior

Hamiltonian Monte Carlo: Intuition

(Here there are some tricks to maintain detail balance)

$$H(\theta, m) = U(\theta) + K(m)$$

Mechanical energy is conserved!

We (almost) always accept the next move!

Metropolis-Hastings

Random walk to move around

Hamiltonian Monte Carlo

sample *m* and then Newton to move around

No-U-Turns Algorithm: Improving HMC

PROBLEMS:

- Inaccuracy in integrating the equation of motion
 - Trajectory might go back and forth many times

No-U-Turns Algorithm: Improving HMC

PROBLEMS:

- Inaccuracy in integrating the equation of motion
 - Trajectory might go back and forth many times

INFERRING PARAMETERS: BAYESIAN VS FREQUENTIST

MODEL SELECTION

We use Laplace approximation

Posterior

Find argmax with an MCMC method

Fit a (multivariate) Gaussian and get the Gaussian likelihood and the evidence for each model

INFERRING PARAMETERS: BAYESIAN VS FREQUENTIST

Bayesian approach more "sure" than Frequentist approach

Bayesian approach better at predicting real data overall

(8k samples from each model's distribution)

MODEL SELECTION RESULTS

FREQUENTIST

Prefers models M_1 and M_3

BAYESIAN

Prefers models M_1 and M_2

OPTIMAL ESPERIMENTAL DESIGN (OED)

to take the final decision!

Finding the best next experiment to discriminate between the two candidate models

INTUITION

We can choose a step-wise input

Predicted outputs

To maximize the divergence between the simulated values (we fix the best parameters)

INTUITION

THE TWO MODELS DISAGREE!

According to:

 M_1 GFP dominates

 M_3 RFP dominates

Good experiment

FREQUENTIST

Enhanced Scatter Sampling Algorithm with new fitness function!

$$d(M_{\alpha}, M_{\beta}) = \sqrt{\sum_{t=1}^{T} (\hat{y}_{t,\alpha}(\theta_{\alpha}, u_j) - \hat{y}_{t,\beta}(\theta_{\beta}, u_j))^2}$$

800 loops of the algorithm

BAYESIAN

"We want to maximise the distance between the predictive posteriors with Bhattacharyya distance using Bayesian Optimisation"

BAYESIAN

"We want to maximise the distance between the predictive posteriors with Bhattacharyya distance using Bayesian Optimisation"

Probably you right now: (2)

BAYESIAN

"We want to maximise the distance between the predictive posteriors with Bhattacharyya distance using Bayesian Optimisation"

Probably you right now:

Let's try to build some intuition:

- 1. Predictive posterior distribution
- 2. Bhattacharyya distance
- 3. Bayesian Optimisation

BAYESIAN

Predictive posterior: probability of new data marginalising over the posterior

$$p(\tilde{E} \mid \{E\}, M_i) = \int p(\tilde{E} \mid \theta_i) p(\theta_i \mid \{E\}) d\theta = \mathbb{E}_{post}[p(\tilde{E})]$$

Bhattacharyya distance: how distance are the distributions (amount of overlap)

$$d_B(p,q) = -\log\left(\int_X \sqrt{q(x)p(x)}dx\right)$$

[For Gaussians (VI on posterior) we want distant means and small variance]

BAYESIAN OPTIMISATION: Gaussian process and Upper Confidence Bound (GP + UCB)

BAYESIAN OPTIMISATION: Gaussian process and Upper Confidence Bound (GP + UCB)

CANNOT TAKE DERIVATIVES OF POSTERIOR Cannot directly maximise! Consider it BlackBox

BAYESIAN OPTIMISATION: Gaussian process and Upper Confidence Bound (GP + UCB)

2 3 4 5 6 7 8

BAYESIAN OPTIMISATION: Gaussian process and Upper Confidence Bound (GP + UCB)

2 3 4 5 6 7 8

BAYESIAN OPTIMISATION: Gaussian process and Upper Confidence Bound (GP + UCB)

3 4 5 6 7 8

BAYESIAN OPTIMISATION: Gaussian process and Upper Confidence Bound (GP + UCB)

3 4 5 6 7 8

Follow PAI for more!

STABILITY PROPERTIES OF THE SOLUTION

We have optimal inputs and different steady states, but how sure are we of the result?

We want to study the stability of these steady states depending on the input

CONCLUSION

IN THIS FRAMEWORK

- 1. Create candidate model for your biological problem
- 2. We proceed with traditional model selection
 - I. Find best set of parameters for each candidate model
 - a) Frequentist: Evolutionary Algorithm
 - b) Bayesian: MCMC method
 - II. Eliminate some candidate models
 - a) Frequentist: AIC
 - b) Bayesian: Laplace Approximation

- 3. Augment you dataset with optimal experiment
 - I. Define you metric
 - a) Frequentist: (simil) RMSE
 - b) Bayesian: Bhattacharyya distance
 - II. Optimise for the metric
 - a) Frequentist Evolutionary Algorithm
 - b) Bayesian: GP + UCB

RECAP

Toggle Switch Model (CSB)

Laplace Approximation (PAI)

Enhanced Scatter Search
("CSB")

$$p(\tilde{E} | \{E\}, M_i) = \int p(\tilde{E} | \theta_i) p(\theta_i | \{E\}) d\theta = \mathbb{E}_{post}[p(\tilde{E})]$$
$$d_B(p, q) = -\log\left(\int_X \sqrt{q(x)p(x)} dx\right)$$

Predictive posterior and Bhattacharyya distance (PAI)

Hamiltonian Monte Carlo ("CSBMS")

Bayesian Opaimization (PAI)

THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS?