Step-by-step Guide: Building a (Generative) Model

Alex Hess

Translational Neuromodeling Unit (TNU) University of Zurich & ETH Zurich

Computational Psychiatry Course Zurich Tuesday, 10.09.2024

GENERATIVE MODELS

Bayes' rule

BAYESIAN WORKFLOW

Gabry et al. 2019, J R Stat Soc A Stat

Betancourt 2020, https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html

Gelman et al. 2020, arXiv

Schad et al. 2020, arXiv

Baribault and Collins 2023, Psychol Methods

Hess et al. 2024, bioRxiv

CONSTRUCTING MODELS

Some general tips:

- Adapt what has been done before
- Use **heuristics** to develop computational models (e.g., Rescorla Wagner)
- Ideally, you would like to start from first principles (e.g., free energy minimization, Bayes optimal agents)

Active inference: Lecture (*Wed*), Tutorial (*Sat, Tutorial B*)

Bayesian models of perception: Lecture (*Today*)

• Transfer of concepts from artificial intelligence, computer science, and applied mathematics literature (e.g., reinforcement learning, predictive coding)

Reinforcement learning: Lecture (*Wed*), Tutorial (*Sat, Tutorial C*)

Predictive coding: Lecture (*Wed*)

• ...

SPECIFY PRIORS

Define a range of *a priori* plausible parameter values

- Regularisation
- Informativeness
- Prior elicitation
 - Will depend on parametrisation
 - Previous literature
 - Expert knowledge (e.g. volume parameter in BOLD signal models)
 - Empirical priors (beware of double-dipping!)
 - **–** ...

5

EXAMPLE: MULTI-ARMED BANDIT TASK

- K=2 slot machines
- Series of T choices (trials)
- Slot machines have different (but constant) reward probabilities

PICK INITIAL MODEL

model 1

Random choice

$$p_t^1 = b$$

$$p_t^1 = b$$
$$p_t^2 = 1 - b$$

$$0 \le b \le 1$$

$$\mathbf{\theta} = \{b\}$$

Prior elicitation

posterior

likelihood

prior

• No preference for specific values a priori

$$p(\mathbf{\theta}) = \text{Beta}(1,1)$$

Use simulations to refine model without using data multiple times

Use simulations to refine model without using data multiple times

Use simulations to refine model without using data multiple times

MODIFY THE MODEL SPACE

model 1

Random choice

$$p_t^1 = b$$

$$0 \le b \le 1$$

 $\mathbf{\theta} = \{b\}$

 $\mathbf{\theta} = \{\varepsilon\}$

model 2

Noisy win-stay-lose-switch

$$p_t^1 = \begin{cases} 1 - \frac{\varepsilon}{2} & \text{if } (c_{t-1} = 1 \text{ and } r_{t-1} = 1) \text{ OR } (c_{t-1} \neq 1 \text{ and } r_{t-1} = 0) \\ \frac{\varepsilon}{2} & \text{if } (c_{t-1} \neq 1 \text{ and } r_{t-1} = 1) \text{ OR } (c_{t-1} = 1 \text{ and } r_{t-1} = 0) \end{cases}$$

model 3

Rescorla Wagner

$$Q_{t+1}^1 = Q_t^1 + \alpha(r_t - Q_t^1)$$
 and $p_t^1 = \frac{\exp(\beta Q_t^1)}{\sum_{i=1}^K \exp(\beta Q_t^i)}$

$$\mathbf{\theta} = \{\alpha, \beta\}$$

REPEAT PRIOR PREDICTIVE CHECK

INFERENCE ON MODEL PARAMETERS likelihood prior posterior $p(\mathbf{Y}|\mathbf{\theta},m)\frac{p(\mathbf{\theta}|m)}{p(\mathbf{\theta}|m)}$ model evidence **Bayesian Inference** $p(\mathbf{Y}|m) = \int p(\mathbf{Y}|\mathbf{\theta}, m) p(\mathbf{\theta}|m) d\mathbf{\theta}$ Approximate Inference Analytical solutions Variational Sampling MAP (MCMC) Bayes **Estimation VB & MCMC:** Lecture (*Today*)

VALIDATE COMPUTATION

Ensure that the inference on latent variables is reliable

- Identifiability: can we identify the value of a parameter from measured data?
 - Structural identifiability: $f(\theta) = f(\theta') \leftrightarrow \theta = \theta'$
 - Practical identifiability

PRACTICAL IDENTIFIABILITY: PARAMETER RECOVERY

VALIDATE COMPUTATION

Ensure that the inference on latent variables is reliable

- Identifiability: can we identify the value of a parameter from measured data?
 - Structural identifiability: $f(\theta) = f(\theta') \leftrightarrow \theta = \theta'$
 - Practical identifiability (formal and practical issues!)
- Simulation-based calibration Talts et al. 2020 arXiv $p(\mathbf{\theta}) = \int p(\mathbf{\theta}|\mathbf{\tilde{y}}) p(\mathbf{\tilde{y}}|\mathbf{\tilde{\theta}}) p(\mathbf{\tilde{\theta}}) d\mathbf{\tilde{\theta}} d\mathbf{\tilde{y}}$ prior posterior joint
 - any deviation between data-averaged posterior and prior indicates a problem
- Convergence diagnostics
 - Gradient-based optimisation techniques
 - Sampling methods: \widehat{R} statistic Gelman and Rubin 1992 Stat Sci

BAYESIAN WORKFLOW

Figure reproduced from Gelman et al., 2020, arXiv

EVALUATE MODEL

Things to consider:

- Goodness of fit (always plot data and model fit)
- Check the range of the estimated parameters (identifiability)
- Posterior predictive check $p(\tilde{\mathbf{y}}|\mathbf{y}) = \int p(\tilde{\mathbf{y}}|\mathbf{\theta})p(\mathbf{\theta}|\mathbf{y})d\mathbf{\theta}$ likelihood posterior
- Risk of overfitting!
 - Cross validation
 - Holdout test set
- Sensitivity analyses
 - Influence of prior
 - Influence of individual data points

BAYESIAN WORKFLOW

Poster #3 (*Friday*)

HOMI

New Results

Bayesian Workflow for Generative Modeling in Computational Psychiatry

- O Alexander J. Hess, O Sandra Iglesias, Laura Köchli, O Stephanie Marino,
- 1 Matthias Müller-Schrader, 1 Lionel Rigoux, 2 Christoph Mathys, 2 Olivia K. Harrison,
- 0 Jakob Heinzle, 0 Stefan Frässle, 0 Klaas Enno Stephan

doi: https://doi.org/10.1101/2024.02.19.581001

THANK YOU

Alex Hess

Translational Neuromodeling Unit (TNU)
University of Zurich & ETH Zurich

Email: hess@biomed.ee.ethz.ch

FURTHER READING

Bayesian Workflow

[Gabry et al. 2019, J R Stat Soc A Stat; Betancourt 2020; Gelman et al. 2020, arXiv; Schad et al. 2020, arXiv; Baribault and Collins 2023, Psychol Methods; Hess et al. 2020, bioRxiv; ...]

Bayesian Statistics and Modelling

[Etz et al. 2018, Psychon B Rev; van de Schoot et al. 2021, Nat Rev Methods Primers; Bürkner et al. 2023, Statist Surv; ...]

Bayesian Cognitive Modelling

[Lee 2008, Psychon B Rev; ...]

Role of Priors

[Dienes 2011, Perspect Psychol Sci; Berger 2006, Bayesian Anal; Goldstein et al. 2006, Bayesian Anal; Rouder et al. 2016, Collabra; ...]

Prior Elicitation

[Lee and Vanpaemel 2018, Psychon B Rev; ...]

Validation of Computation

[Talts et al. 2020, arXiv; Gelman and Rubin 1992, Stat Sci; Wilson & Collins 2019, eLife; ...]

Fitting a Model

[van de Schoot et al. 2014, Child Dev; ...]

Model Evaluation

[Gelman et al. 2012, Bayesian Data Analysis; ...]

Bayesian Model Comparison

[Kass & Raftery 1995, J Am Stat Asoc; Penny et al. 2004, 2012, NeuroImage; Stephan et al. 2009, NeuroImage; Penny et al. 2010, PLoS Comp Biol; Rigoux et al. 2014, NeuroImage; Vandekerckhove et al. 2015, The Oxford Handbook of Computational and Mathematical Psychology; ...]