LINEAR REGRESSION: INTRODUCTION & ESTIMATION

Connor K. Brubaker

Department of Statistics Texas A&M University

EQUATION OF A LINE

The equation of a straight line is

$$y = bx + a$$

where b is the slope of the line and a is the intercept.

LINEAR RELATIONSHIPS

Below are examples of *perfect* linear relationships.

INTERPRETATION OF SLOPE

For any two points (x_1, y_1) and (x_2, y_2) ,

$$b=\frac{y_2-y_1}{x_2-x_1}.$$

The slope is the **exact** rate of change in y for every unit increase in x.

INTERPRETATION OF INTERCEPT

When
$$x = 0$$
,
$$y = b(0) + a = a$$

The intercept is the **exact** value of y when x = 0.

EXAMPLE: HOUSING PRICES

- How much should you pay for a house?
- Factors that influence price:
 - Location
 - Year built
 - Amenities
 - Square footage
- ➤ To determine a price, we might model price as a function of square footage:

Price =
$$f(Square Footage) + \varepsilon$$

f is called the **regression function**.

MOTIVATING EXAMPLE: HOUSING PRICES

Scatter plots help determine the functional relationship between two variables.

SIMPLE LINEAR REGRESSION

The simplest model is where *f* is a linear function:

$$f(x) = \beta_0 + \beta_1 x.$$

The model becomes

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i.$$

Price_i =
$$\beta_0 + \beta_1$$
 Square Footage_i + ε_i .

 Y_i is called the **dependent variable** or the **response** and X_i is called the **independent variable** or **predictor**.

PARAMETERS OF SLR

Under SLR, the model is

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i.$$

The **parameters** of the model are the intercept β_0 and the slope β_1 . These are unknown and must be estimated using data.

THE ERROR TERM

Under SLR, the model is

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i.$$

The **error term** ε_i accounts for the fact that

- not all the points lie exactly on the regression line and
- Y cannot be perfectly predicted from X alone

THE ERROR TERM

Under SLR, the model is

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i.$$

We assume the **error term** ε_i satisfies

- $ightharpoonup arepsilon_i \sim \mathcal{N}(0, \sigma^2)$
- the error terms are all independent of each other (mutually independent)

REGRESSION MODELS THE CONDITIONAL EXPECTATION

In SLR, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ so that $\mathbb{E}(\varepsilon_i) = 0$. Treating X_i as a given constant, we have

$$\mathbb{E}[Y_i|X_i] = \mathbb{E}(\beta_0 + \beta_1 X_i + \varepsilon_i)$$

$$= \beta_0 + \beta_1 X_i + \mathbb{E}(\varepsilon_i)$$

$$= \beta_0 + \beta_1 X_i$$

 $\mathbb{E}[Y_i|X_i]$ is the conditional expectation of Y_i given X_i - it *depends* on the value X_i .

LINE OF BEST FIT

Many different lines "fit" the data, which is the best?

RESIDUALS

Given some β_0 and β_1 , the predicted value of Y_i at X_i is

$$\hat{Y}_i = \beta_0 + \beta_1 X_i$$

The ith residual is

$$\hat{\varepsilon}_i = Y_i - \hat{Y}_i = Y_i - \beta_0 - \beta_1 X_i$$

LEAST SQUARES CRITERION

We choose the line with intercept β_0 and slope β_1 that minimizes the sum of squared residuals,

$$RSS = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \beta_{0} - \beta_{1} X_{i})^{2}$$

The values of β_0 and β_1 that minimize *RSS* are called the **least** squares estimators.

RESIDUALS OF THE HOUSING DATA

LEAST SQUARES ESTIMATORS

Use principles of calculus to find the minimizers of the residual sum of squares,

$$RSS = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2.$$

LEAST SQUARES ESTIMATORS

Define

$$SXY = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$
 and $SXX = \sum_{i=1}^{n} (X_i - \bar{X})^2$.

The least squares estimators are

$$\hat{\beta}_1 = \frac{SXY}{SXX}$$
 and $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$.

COVARIANCE

The quantity

$$SXY = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

is an estimator of the **covariance** between *X* and *Y*.

COVARIANCE

The covariance Cov(X, Y) between X and Y

- quantifies the strength of the linear relationship between X and Y,
- can be positive or negative, and
- could be near zero if the relationship is non-linear.

COVARIANCE

CORRELATION

Standardizing the covariance gives the correlation ρ :

$$\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

It has the same interpretation but is restricted to lie between -1 and 1. Correlation of 1 is a perfect positive linear relationship.

INTERPRETATION OF SLOPE PARAMETER

Recall

$$\mathbb{E}[Y_i|X_i] = \beta_0 + \beta_1 X_i$$

- ► The slope is the change in the *expected value* of *Y* for every unit increase in *X*.
- ▶ The intercept is the *expected value* of *Y* when X = 0.

EXAMPLE: HOUSING PRICES

For the housing data,

$$\hat{\beta_0} = 13859.393$$

and

$$\hat{\beta}_1 = 138.546$$

NO INTERCEPT MODEL

Sometimes it is appropriate to fit the SLR model with no intercept:

$$Y_i = \beta_1 X_i + \varepsilon_i$$

Is this appropriate for the housing data?

LINEAR MODEL IN R

A linear model can be fit using

```
> model <- lm(price \sim sqft)
```

- > model <- lm(price \sim sqft 1) # no intercept
- > summary(model)

LINEAR MODEL IN R

```
> summary(model)
Call:
lm(formula = price ~ saft, data = Sacramento)
Residuals:
   Min
            10 Median
                            30
                                   Max
-231889 -54717 -11822
                       38993 600141
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 13859.393
                       6948.714 1.995
                                          0.0464 *
sqft
             138,546
                          3.796 36.495 <2e-16 ***
Signif. codes:
                 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 84130 on 930 degrees of freedom
Multiple R-squared: 0.5888, Adjusted R-squared: 0.5884
F-statistic: 1332 on 1 and 930 DF, p-value: < 2.2e-16
```

ASSOCIATION AND CAUSATION

A strong relationship between two variables does not always imply a causal relationship.

A strong association between two variables is often due to lurking variables that we are not aware of.

ASSOCIATION AND CAUSATION

https://www.tylervigen.com/spurious-correlations

ASSOCIATION AND CAUSATION

- The best evidence for causal relationships comes from properly designed randomized experiments.
- Observational studies can show a strong association, but it is not appropriate to conclude causation.

Does Smoking Cause Lung Cancer?

- Unethical to investigate this with an experiment.
- Observational studies have demonstrated an association between lung cancer and smoking.
- Evidence has been collected from many studies.
- It is plausible that smoking causes cancer, but the conclusion is not as strong as evidence from a randomized experiment.