

What is Turbidity?

John Daly
ISA NorCal President
South Fork Instruments, Inc.

Standards

Certification

Education & Training

Publishing

Conferences & Exhibits

Objectives

- Understand what Turbidity is
- Investigate the various methods of measurement
- Compare those measurements
- Calibration and how it relates.

Definition

What is Turbidity?

Turbidity is the phenomen where by a specific portion of a light beam passing through a liquid medium is deflected from <u>undissolved</u> particles.

Scattered Light

The deflection is a function of the size and shape of the particles

Incident

Lightbeam

Wavelength of Light Description: Symmetric

Size: Approximately 1/4 the

Wavelength of Light

Description: Scattering Concentrated

in Forward Direction

Size: Larger Than the Wavelength of

Light

Description: Extreme Concentration of Scattering in Forward Direction; Development of Maxima and Minima of Scattering Intensity at Wider

Angles

Absorbance vs. Scattered Light

ISA

Absorbance of light:

(Concentration)

Dissolved Solids

 $\mathbf{I_0}$

Scattering of light:

(Turbidity)

Particulate and Solids

Scattered Light - What are Particles?

Particles may be anything creating heterogeneous surfaces:

solids in liquids (suspension)

oil in water / water in oil (emulsion)

gas bubbles (foam)

dust in air (smoke)

droplets in air (fog, aerosol)

Scattered Light

The diffusion of light caused by <u>undissolved particles</u> in the medium to a lesser or greater degree of the deflection depends on:

- the type of the particles (absorbance)
- the size of particles
- the concentration (the number of particles)
- the type and shape of particles
- the wavelength of the light
- the angle of measurement

Some History - Jackson Candle Turbidity Scale

Scattered Light - Formazine Standard

Formazine = $C_2H_4N_2$

ingredients: Hexamethylentetramine + Hydrazinsulfate

standard-formazin-solution = 4000 FNU

1 FNU = 1 FTU = 1 NTU = 1 TU/F = 0.25 EBC

FNU = formazine nephelometric unit

FTU = formazine turbidity unit

NTU = nephelometric turbidity unit

TU/F= turbidity units formazin

EBC = European Brewery Convention

What does Turbidity look like?

Formazin Turbidity Standards - NTU

Scattered Light - Comparability

A lot of suppliers with different sensors

Forward Scattered light

180° Direct light
(Absorbance)

90°-Scattering

90 degree Scatter- Nepholometry

Single Detector Nepholometry

Dual Detector Nepholometry

One and Two Detector 90 degree Measurement

Backscatter Measurement

High Turbidity Systems – 4000 FTU

Typically probe systems

Disturbing Light Effects

Main Disturbance: Gas Bubbles

50-80% of the mistakes in turbidity measurement

Many suppliers have a debubbler chamber associated with their installation

Spray head

- Wiper
- Spray cleaning

ISA

How does turbidity relate to Process?

- Each process will have a specific turbidity signature
- Your process will have a different particulate size distribution to Formazin – so has to be correlated
- Standards only allow the instrument to be calibrated to the same condition
- Readings are TREND readings for your process
- If the particle size distribution changes, so does the reading!

Scattered Light - Comparability, Correlation

Scattered Light - Comparability, Correlation - again

Turbidity

ISA

Turbidity as Function of Concentration

Turbidity

Typical Values

	4	Ô	7		
	a	14		7	
	٧		5/	Ŋ	
	٦			Í.	
`	_				

Measured Sample	Measured Value		
Waste Water	70-2000 NTU		
Final outlet sewage treatment plant	4-20 NTU		
Well Water	0.05 - 10 NTU		
Potable water	0.05 - 1.5 NTU		
Milk	> 4000 NTU		
Orange juice	300 - 900 NTU		
Primary sludge	6-3%(60 - 30 g/l)		
Activated sludge	3-7 g/l		
Recirculated sludge	6-8 g/l		
Digested sludge	5-8%(50-80 g/l)		

Turbidity - Examples of Applications

- Filter Control
- Centrifuge/Separator Control
- Biomass in fermenter
- Cell Growth
- Quality Control of final product
- Oil in water
- Water in oil
- Catalyst concentration
- Diesel in water
- Oil in condensate
- Leakage control heat exchanger

- Fat Content in milk
- Yeast dosage
- CIP return line
- Interphase detection
- Product recognition
- Water control, In- and Outlet
- Flocculant dosage
- Sludge concentration
- Pulp concentration
- Content of solids
- Dust in gases