

CHITTAGONG UNIVERSITY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING CHITTAGONG-4349, BANGLADESH.

Course No. EEE-182

Course Title: Basic Electrical Engineering Sessional

Experiment No. 5

VERIFICATION OF RECIPROCITY THEOREM AND COMPENSATION THEOREM

PRELAB WORK:

- Read this laboratory manual carefully before coming to the laboratory class, so that you know what is required.
- Try to **follow** the lecture notes of **EEE 111.**
- **DONOT** copy others blindly!!!
- Submit your lab report before the roll call.

(FOR RECIPROCITY THEOREM)

THEORY:

In any linear bilateral network, if a source of emf E in any branch produces a current I in any other branch, then the same emf E acting in the second branch would produce the same current I in the first branch.

APPARATUS:

- **1.** Resistors 120Ω , 0.5 w (3 Pieces), 220Ω , 0.5 w (2 pieces).
- **2.** 470 Ω , 0. 25w (1 piece), 1K Ω , 0.25w (1 piece).
- 3. DC voltmeter.
- 4. DC ammeter.
- 5. Multimeter.
- **6.** Bread Board.

CIRCUIT DIAGRAM:

PROCEDURES:

- 1. Construct the circuit as shown in Fig. 3 with E=15 Volts, $R_1=120$ Ω , $R_2=220$ Ω , $R_3=120$ Ω , $R_4=120$ Ω , $R_5=220$ Ω .
 - 2. Now measure the currents in all branches and note down them in the Table-1.

Table-1: When the source E is located in the branch 'af'

I_{ab}	I _{be}	I_{bc}	I_{cd}

3. Now replace the source of the 'af' branch with a short. Place the source E in the 'ab' branch with correct polarity so that the direction of current before and after the placement of the source is the same. Measure the current in 'fa' branch, $I_{fa}(ab)$. $I_{fa}(ab) = Current$ in 'fa' branch when source is located in 'ab' branch. Note down this value in Table -2.

Figure-4

4. Similarly place the source in the branch 'be', 'bc', 'cd' step by step and measure the current in 'fa' branch at each step and put down these values in Table-2.

<u>Table-2</u>: When the source E is located in different branch

I _{fa} (ab)	I _{fa} (be)	I _{fa} (bc)	I _{fa} (cd)

5. Now note down the actual values of E, R_1 , R_2 , R_3 , R_4 & R_5 for theoretical calculation.

(FOR COMPENSATION THEOREM) THEORY:

If the resistance of any branch of a network is changed from R to $(R + \Delta R)$ where the current flowing originally is I, the change of current at any other place in the network may be found by assuming that an emf of -I. ΔR has been injected into the modified branch while all other sources are suppressed and are represented by internal resistances only.

PROCEDURES:

- 1. Construct the circuit as shown in Fig. 5 with E=15 Volts, $R_1=220$ Ω , $R_2=220$ Ω , $R_3=470$ Ω
- 2. Now measure the currents in all branches and note down them in the Table-3.
- 3. Insert $R_4 = 1000 \Omega$ resistance in series with $R_3 = 470 \Omega$ in 'cd' branch as in Fig. 6 and again measure all branch currents and note down in Table-3.

Table-3:

	I_{ab}	I _{be}	I_{cd}
When Rcd=470 Ω			
When Rcd=1470 Ω			
Difference (I ₁₄₇₀ - I ₄₇₀)			

- **4.** Calculate the voltage, $\Delta V = -I \times \Delta R = -I \times R_4$
- 5. Now apply a source of ΔV volts in the 'cd' branch with correct polarity deactivating source E and measure the current in all branches and note down them in Table-4.

<u>Table-4</u>:

When the source ΔV is located in the branch 'cd'

I_{ab}	I_{be}	I_{cd}

6. Now note down the actual values of E, R₁, R₂, R₃, & R₄ for theoretical calculation

REPORT:

- 1. Verify the experimental results with those obtained by theoretical calculations.
- 2. Mention the applications of these theorems.