TOPIC 9 VECTOR ALGEBRA SCHEMATIC DIAGRAM

Торіс	Concept	Degree of importance	Refrence NCERT Text Book Edition 2007
Vector algebra	(i)Vector and scalars	*	Q2 pg428
	(ii)Direction ratio and direction cosines	*	Q 12,13 pg 440
	(iii)Unit vector	* *	Ex 6,8 Pg 436
	(iv)Position vector of a point and collinear vectors	* *	Q 15 Pg 440 , Q 11Pg440 , Q 16 Pg448
	(v)Dot product of two vectors	**	Q6 ,13 Pg445
	(vi)Projection of a vector	* * *	Ex 16 Pg 445
	(vii)Cross product of two vectors	* *	Q 12 Pg458
	(viii)Area of a triangle	*	Q 9 Pg 454
	(ix)Area of a parallelogram	*	Q 10 Pg 455

SOME IMPORTANT RESULTS/CONCEPTS

* Position vector of point
$$A(x, y, z) = \overrightarrow{OA} = x\hat{i} + y\hat{j} + z\hat{k}$$

* If
$$A(x_1, y_1, z_1)$$
 and point $B(x_2, y_2, z_2)$ then $\overrightarrow{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$

* If
$$\overrightarrow{a} = x\hat{i} + y\hat{j} + z\hat{k}$$
 ; $|\overrightarrow{a}| = \sqrt{x^2 + y^2 + z^2}$

*Unit vector parallel to
$$\vec{a} = \frac{\vec{a}}{\begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix}}$$

* Scalar Product (dot product) between two vectors: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$; θ is angle between the vectors

$$*\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

* If
$$\vec{a} = a_1 \hat{i} + b_1 \hat{j} + c_1 \hat{k}$$
 and $\vec{b} = a_2 \hat{i} + b_2 \hat{j} + c_2 \hat{k}$ then $\vec{a} \cdot \vec{b} = a_1 a_2 + b_1 b_2 + c_1 c_2$

- * If \overrightarrow{a} is perpendicular to \overrightarrow{b} then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$
- $*\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{.}\stackrel{\rightarrow}{a}=\left|\stackrel{\rightarrow}{a}\right|^2$
- * Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
- * Vector product between two vectors:

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \ \hat{n} \quad ; \quad \hat{n} \text{ is the normal unit vector which is perpendicular to both } \vec{a} \ \& \ \vec{b}$

- * $\hat{n} = \frac{\stackrel{\rightarrow}{a \times b} \stackrel{\rightarrow}{b}}{\stackrel{\rightarrow}{a \times b}}$
- * If \overrightarrow{a} is parallel to \overrightarrow{b} then $\overrightarrow{a} \times \overrightarrow{b} = 0$
- * Area of triangle (whose sides are given by \overrightarrow{a} and \overrightarrow{b}) = $\frac{1}{2} \begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}$
- * Area of parallelogram (whose adjacent sides are given by \overrightarrow{a} and \overrightarrow{b}) = $\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}$
- * Area of parallelogram (whose diagonals are given by \overrightarrow{a} and \overrightarrow{b}) = $\frac{1}{2} \begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}$

ASSIGNMENTS

(i) Vector and scalars, Direction ratio and direction cosines&Unit vector

LEVEL I

- 1. If $\vec{a} = \hat{i} + \hat{j} 5\hat{k}$ and $\vec{b} = \hat{i} 4\hat{j} + 3\hat{k}$ find a unit vector parallel to $\vec{a} + \vec{b}$
- 2. Write a vector of magnitude 15 units in the direction of vector \hat{i} $2\hat{j}$ + $2\hat{k}$
- 3. If $\vec{a} = \hat{i} + \hat{j} \hat{k}$; $\vec{b} = \hat{i} \hat{j} + \hat{k}$; $\vec{c} = -\hat{i} + \hat{j} + \hat{k}$ find a unit vector in the direction of $\vec{a} + \vec{b} + \vec{c}$
- 4. Find a unit vector in the direction of the vector $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ [CBSE 2011]
- 5. Find a vector in the direction of vector $\hat{a} = \hat{i} 2\hat{j}$, whose magnitude is 7

LEVEL II

1. Find a vector of magnitude 5 units, perpendicular to each of the vectors $(\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b})$, $(\stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b})$ where

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

- 2. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.
- 3. If $\hat{a} = \hat{i} + \hat{j} + \hat{k}$, $\hat{b} = 4\hat{i} 2\hat{j} + 3\hat{k}$ and $\hat{c} = \hat{i} 2\hat{j} + \hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2\hat{a} \hat{b} + 3\hat{c}$

LEVEL – III

- 1. If a line make α, β, γ with the X axis , Y axis and Z axis respectively, then find the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$
- 2. For what value of p, is $(\hat{i} + \hat{j} + \hat{k})$ p a unit vector?
- 3. What is the cosine of the angle which the vector $\sqrt{2} \hat{i} + \hat{j} + \hat{k}$ makes with Y-axis
- 4. Write the value of p for which $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel vectors.

(ii)Position vector of a point and collinear vectors

LEVEL – I

- 1. Find the position vector of the midpoint of the line segment joining the points $A(5\hat{i} + 3\hat{j})$ and $B(3\hat{i} \hat{j})$.
- 2. In a triangle ABC, the sides AB and BC are represents by vectors $2\hat{i} \hat{j} + 2\hat{k}$,
- $\hat{i} + 3\hat{j} + 5\hat{k}$ respectively. Find the vector representing CA.
- 3. Show that the points (1,0), (6,0), (0,0) are collinear.

LEVEL - II

- 1. Write the position vector of a point R which divides the line joining the points P and Q whose position vectors are $\hat{i} + 2 \hat{j} \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively in the ratio 2:1 externally.
- 2. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2\ a + b)$ and (a 3b) respectively, externally in the ratio 1:2. Also, show that P is the mid-point of the line segment RQ

(iii) Dot product of two vectors

1.Find
$$\stackrel{\rightarrow}{a}$$
 . $\stackrel{\rightarrow}{b}$ if $\stackrel{\rightarrow}{a}=3\,\hat{i}$ - \hat{j} + $2\,\hat{k}$ and $\stackrel{\rightarrow}{b}=2\,\hat{i}$ + $3\,\hat{j}$ + $3\,\hat{k}$.

- 2.If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and \vec{a} . $\vec{b} = \sqrt{6}$. Then find the angle between \vec{a} and \vec{b} .
- 3. Write the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having \vec{a} . \vec{b} = $\sqrt{6}$ [CBSE 2011]

LEVEL - II

- 1. The dot products of a vector with the vectors \hat{i} $3\hat{j}$, \hat{i} $2\hat{j}$ and \hat{i} + \hat{j} + $4\hat{k}$ are 0, 5 and 8 respectively. Find the vectors.
- 2. If $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are two vectors such that $|\stackrel{\rightarrow}{a}|$, $\stackrel{\rightarrow}{b}|=|\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{b}|$, then what is the angle between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$.
- 3. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , find the value of λ .

LEVEL – III

- 1. If $\overrightarrow{a} \& \overrightarrow{b}$ are unit vectors inclined at an angle θ , prove that $\sin \frac{\theta}{2} = \frac{1}{2} \begin{vmatrix} \overrightarrow{a} \overrightarrow{b} \end{vmatrix}$.
- 2. If $|\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}| = |\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b}|$, then find the angle between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$.
- 3. For what values of λ , vectors $\stackrel{\rightarrow}{a} = 3\hat{i} 2\hat{j} + 4\hat{k}$ and $\stackrel{\rightarrow}{a} = \lambda\hat{i} 4\hat{j} + 8\hat{k}$ are (i) Orthogonal (ii) Parallel `
- 4..Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} \vec{a})$. $(\vec{x} + \vec{a}) = 15$.
- 5. If $\vec{a} = 5\hat{i} \hat{j} + 7\hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \mu\hat{k}$, find μ , such that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal.
- 6. Show that the vector $2\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $-3\hat{\mathbf{j}} 5\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} 4\hat{\mathbf{j}} 4\hat{\mathbf{k}}$ form sides of a right angled triangle.
- 7.Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and \vec{c} . $\vec{d} = 18$.
- 8. If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular vectors of equal magnitudes, prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with the vectors \vec{a} , \vec{b} , \vec{c} .
- 9. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, $|\overrightarrow{c}| = 5$ and each of them being perpendicular

to the sum of the other two, find $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \end{vmatrix}$.

(iv) Projection of a vector

LEVEL – I

- 1. Find the projection of $\stackrel{\rightarrow}{a}$ on $\stackrel{\rightarrow}{b}$ if $\stackrel{\rightarrow}{a}$. $\stackrel{\rightarrow}{b}$ = 8 and $\stackrel{\rightarrow}{b}$ = $2\hat{i}$ + $6\hat{j}$ + $3\hat{k}$.
- 2. Write the projection of the vector $\hat{\mathbf{i}} \hat{\mathbf{j}}$ on the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}}$

[CBSE 2011]

- 3. Find the angle between the vectors $\hat{\bf i}$ -2 $\hat{\bf j}$ + 3 $\hat{\bf k}$ and 3 $\hat{\bf i}$ -2 $\hat{\bf j}$ + $\hat{\bf k}$
- 4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} \hat{j} + 8\hat{k}$

LEVEL - II

- 1. Three vertices of a triangle are A(0, -1, -2), B(3,1,4) and C(5,7,1). Show that it is a right angled triangle. Also find the other two angles.
- 2. Show that the angle between any two diagonals of a cube is $\cos^{-1}\left(\frac{1}{3}\right)$.

3.If
$$\vec{a}$$
, \vec{b} , \vec{c} are non - zero and non – coplanar vectors, prove that $\vec{a} - 2\vec{b} + 3\vec{c}$, $-3\vec{b} + 5\vec{c}$ and $-2\vec{a} + 3\vec{b} - 4\vec{c}$ are also coplanar

LEVEL - III

- 1.If a unit vector \vec{a} makes angles $\pi/4$, with \hat{i} , $\pi/3$ with \hat{j} and an acute angle θ with \hat{k} , then find the component of \vec{a} and angle θ .
- 2. If a, b, c are three mutually perpendicular vectors of equal magnitudes, prove that a + b + c is equally inclined with the vectors a, b, c.
- 3.If with reference to the right handed system of mutually perpendicular unit vectors $\,\hat{i}\,$, $\,\hat{j}$,and $\,\hat{k}$,
- $\vec{\alpha} = 3\hat{i} \hat{j}$, $\vec{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$ then express $\vec{\beta}$ in the form of $\vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.
- 4. Show that the points A, B, C with position vectors $\vec{a} = 3\hat{i} 4\hat{j} 4\hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} 3\hat{j} 5\hat{k}$ respectively form the vertices of a right angled triangle.

5. If a & b are unit vectors inclined at an angle θ , prove that

(i)
$$\sin \frac{\theta}{2} = \frac{1}{2} \begin{vmatrix} \overrightarrow{a} - \overrightarrow{b} \end{vmatrix}$$
 (ii) $\tan \frac{\theta}{2} = \begin{vmatrix} \overrightarrow{a} - \overrightarrow{b} \end{vmatrix}$

(vii)Cross product of two vectors

LEVEL - I

1. If
$$|\stackrel{\rightarrow}{a}|=3$$
 , $|\stackrel{\rightarrow}{b}|=5$ and $\stackrel{\rightarrow}{a}$. $\stackrel{\rightarrow}{b}$ $=9$. Find $|\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{b}|$

2.Find
$$|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}|$$
, if $\stackrel{\rightarrow}{a} = \hat{i} -7\hat{j} + 7\hat{k}$ and $\stackrel{\rightarrow}{b} = 3\hat{i} + 2\hat{j} + 2\hat{k}$

3. Find
$$|\vec{x}|$$
, if \vec{p} is a unit vector and , ($\vec{x} - \vec{p}$).($\vec{x} + \vec{p}$)= 80.

4. Find p, if
$$(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + 3\hat{j} + p\hat{k}) = 0$$
.

LEVEL - II

1. Find
$$\lambda$$
, if $(2\hat{i} + 6\hat{j} + 14\hat{k}) \times (\hat{i} - \lambda\hat{j} + 7\hat{k}) = 0$.

2. Show that
$$(a - b) \times (a + b) = 2(a \times b)$$

3. Find the angle between two vectors
$$\stackrel{\rightarrow}{a}$$
 and $\stackrel{\rightarrow}{b}$ if $|\stackrel{\rightarrow}{a}| = 3$, $|\stackrel{\rightarrow}{b}| = 4$ and $|\stackrel{\rightarrow}{a}| \times \stackrel{\rightarrow}{b}| = 6$.

4. Let
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} be unit vectors such that \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{a}$. $\overrightarrow{c} = 0$ and the angle between \overrightarrow{b} and \overrightarrow{c} is $\pi/6$, prove that $\overrightarrow{a} = \pm 2(\overrightarrow{a} \times \overrightarrow{b})$.

LEVEL - III

1. Find the value of the following:
$$\hat{i}$$
.(\hat{j} x \hat{k}) + \hat{i} .(\hat{i} x \hat{k}) + \hat{k} .(\hat{i} x \hat{j})

2. Vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are such that $|\overrightarrow{a}| = \sqrt{3}$, $|\overrightarrow{b}| = \frac{2}{3}$, and $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector. Write the

angle between a and b

3.If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{j} - \hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and

$$\overrightarrow{a}$$
 . $\overrightarrow{c} = 3$.

4.If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ show that $(\overrightarrow{a} - \overrightarrow{d})$ is parallel to $\overrightarrow{b} - \overrightarrow{c}$, where $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.

5. Express $2\hat{i} - \hat{j} + 3\hat{k}$ as the sum of a vector parellal and perpendicular to $2\hat{i} + 4\hat{j} - 2\hat{k}$.

(viii)Area of a triangle & Area of a parallelogram

LEVEL - I

1. Find the area of Parallelogram whose adjacent sides are represented by the vectors

$$\stackrel{\rightarrow}{a} = 3\hat{i} + \hat{j} - 2\hat{k}$$
 and $\stackrel{\rightarrow}{b} = \hat{i} - 3\hat{j} + 4\hat{k}$.

- 2.If \vec{a} and \vec{b} represent the two adjacent sides of a Parallelogram, then write the area of parallelogram in terms of \vec{a} and \vec{b} .
- 3. Find the area of triangle having the points A(1,1,1), B(1,2,3) and C(2,3,1) as its vertices.

LEVEL - II

- 1.Show that the area of the Parallelogram having diagonals ($3\hat{i} + \hat{j} 2\hat{k}$) and ($\hat{i} 3\hat{j} + 4\hat{k}$) is $5\sqrt{3}$ Sq units.
- 2. If a, b, c are the position vectors of the vertices of a \triangle ABC, show that the area of the \triangle ABC is

$$\frac{1}{2} \begin{vmatrix} \rightarrow & \rightarrow & \rightarrow & \rightarrow \\ a \times b + b \times c + c \times a \end{vmatrix}.$$

3.Using Vectors, find the area of the triangle with vertices A(1,1,2), B(2,3,5) and C(1,5,5) [**CBSE 2011**]

[CDSE 20

Questions for self evaluation

- 1. The scalar product of the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ with the unit vector along the sum of vectors $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} 5\hat{\mathbf{k}}$ and $\lambda\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ is equal to one. Find the value of λ .
- 2. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, $|\overrightarrow{c}| = 5$ and each one of them being perpendicular to the sum of the other two, find $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$.
- 3. If |a+b|=|a-b|, then find the angle between |a| and |b|.
- 4. Dot product of a vector with $\hat{i} + \hat{j} 3\hat{k}$, $\hat{i} + 3\hat{j} 2\hat{k}$, and $2\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5, 8 respectively. Find the vector.
- 5. Find the components of a vector which is perpendicular to the vectors $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} \hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$.