ASSESSMENT - 2

COMBINATIONAL LOGIC - SOLUTIONS

1. A majority function is generated in a combinational circuit, where the output is equal to 1 if the input variables have more 1's than 0's otherwise the output is 0. Design a three-input majority function. (2)

Ans:

TT - 1 Eqn and kmap 1

А	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Y = AB + AC + BC$$

Implement y = AB + CD using NAND gates (1)
 Ans:

3. Draw the logic diagram of a 2-to-4-line decoder with only NOR gates. Include an enable input. (2)

Ans:

- 4. Simplify the following Boolean functions using three-variable maps. (2)
 - a. $F(x,y,z) = \Sigma(0, 1,5, 7)$
 - b. $F(x,y,z) = \Sigma(1, 2, 3,6,7)$
 - c. $F(x,y,z) = \Sigma(3,5,6,7)$
 - d. $F(x,y,z) = \Sigma(0,2,3,4,6)$

Ans:

F = x'y' + xz

$$F = x'z + y$$

$$F = xz + xy + yz$$

\	-				
x \	00	01	11	10	
0	1	0	1	1	
1	1	0	0	1	
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

5. Prove De Morgan's theorem (2)

Ans:

a) 1st theorem

$$\overline{(X+Y)} = X' \cdot Y'$$

Proof:

if X = 0 and Y = 0

LHS
$$\overline{(X+Y)} = \overline{(0+0)} = \overline{(0)} = 1$$

RHS X'.Y'

$$=\overline{0} \cdot \overline{0} = 1 \cdot 1 = 1$$

if X = 1 and Y = 1

LHS
$$\overline{(X+Y)} = \overline{(1+1)} = \overline{(1)} = 0$$

RHS \ddot{X} . \ddot{Y}

b) 2nd theorem

$$\overline{(X.Y)} = \overline{X} + \overline{Y}$$

Proof :

if X = 0 and Y = 0

LHS (X.Y)

$$=\overline{(1.1)}=\overline{(1)}=1$$

RHS
$$\overline{X} + \overline{Y}$$

if
$$X = 1$$
 and $Y = 1$

LHS (X.Y)

$$=\overline{(1.1)}=\overline{(1)}=0$$

RHS
$$\bar{X} + \bar{Y}$$

$$=\bar{1}+\bar{1}=0+0=0$$

6. Design A + B' +C using 3 input and 2 input NAND gates (2)

Ans:

7. Design an XOR gate using a minimum number of NOR gates. (1)

Ans:

- 8. Simplify ABC + AB'C + ABC' using
 - a. boolean laws
 - b. using K-map.

Will the simplified expression be the same or different? (3)

Ans:

a.

ABC + AB'C + ABC'

= AC(B + B') + ABC'

= AC + ABC'

= A(C+C'B)

= A(C + B)

= AB + AC

b.

F = AB + AC

The simplified expressions will be same for both methods

Design a NOR gate using only MUX. (1)
 Ans:

10. Provide CMOS representation of a NOR gate (2)
Ans:

NOR Gate

11. How many select lines will there be for a 128x1 MUX? (1)

Ans:

7 select lines (2^n = number of inputs, where n is number of select lines)

- 12. How can you make an XOR gate to (2)
 - a. behave as a buffer?
 - b. behave as an inverter?

Ans:

a.

b.

13. How will you obtain a Half subtractor using a Half adder block without modifying the internal circuit of the block? (2)

Ans:

14. Design 8x1 MUX using only 4X1 MUX (3)

Ans:

15. Obtain the simplified output expression for the below circuit. (3)

Ans:

16. Find the output expression(Q), represent Q in canonical form and obtain the POS (2)

Ans:

(A+B)' + BC A'B' + BC

A'B'C + A'B'C' + ABC + A'BC

AB	C 00	01	11	10
0	1	1	1	0
1	0	0	1	0

$$F=(A'+B)(B'+C)$$

17. Implement the following expression using a 3 to 8 Decoder

$$F = \sum m(0, 4, 6, 7)$$
 (2)

Ans:

18. Design a 4 bit adder/subtractor(Block diagram). If Carry_in signal is 1, it should perform 4 bit subtraction and if it is 0, it should perform 4 bit addition (3)

Ans:

19. Write the truth table for below waveform(a, b, c are inputs and y is the output) and identify the circuit (2)

Ans:

Symbol		Truth	Table	
A Q = 1 Q 3-input Ex-OR Gate	С	В	А	Q
	0	0	0	0
	0	0	1	1
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
	1	1	1	1
Boolean Expression Q = A \oplus B \oplus C	"Any O	DD Numbe	r of Inputs"	gives Q

- 20. Consider the 2-bit multiplexer (MUX) shown in the figure. What should be the values for A0, A1, A2 and A3 for the OUTPUT to be the (2)
 - a. XOR of C and D
 - b. XNOR of C and D

Ans:

OUTPUT = C'D'A0 + C'DA1 + CD'A2 + CDA3

a. If A0 = 0, A1 = 1, A2 = 1, A3 = 0 then OUTPUT = C'D + CD' = C XOR D

b. If A0 = 1, A1 = 0, A2 = 0, A3 = 1 then OUTPUT = C'D' + CD = C XNOR D