A.1
Gold, silver, and carbon are all examples of <u>elements</u>. They are listed on the <u>periodic table</u>
of <u>elements</u>. If you had a golden ring and an amazing machine, you could break it down into tiny pieces called <u>atoms</u>.

Isotope	Sotope Atomic Symbol		Number of Neutrons
Uranium-238	U	92	146
Radium-226	Ra	88	138
Lead-206	Pb	82	124
Hydrogen-3	Н	1	2
Sodium-22	Na	11	11
Argon-39	Ar	18	21
Radon-222	Rn	86	136
Carbon-12	С	6	6
Carbon-13	С	6	7
Carbon-14	С	6	8

Carbon-12, Carbon-13, and Carbon-14 are all different <u>isotopes</u> of carbon.

B.1. ²³₁₁Na

B.2. ¹⁶₈0

B.3. ¹₁H

B.4. ¹²⁴₅₂Te

B.5. ⁴⁰₁₈Ar

Nucleus	Element	Number of Protons	Number of Neutrons
¹⁴ ₇ N	Nitrogen	7	7
1 ₁ H	Hydrogen	1	0
²²² ₈₆ Rn	Radon	86	136
²³⁸ U	Uranium	92	146
¹⁴ ₆ C	Carbon	6	8

C.1
$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$$

C.2
$$^{222}_{88}$$
Ra $\rightarrow ^{218}_{86}$ Rn $+ ^{4}_{2}$ He

C.3
$$^{208}_{84}$$
Po $\rightarrow ^{204}_{82}$ Pb $+ ^{4}_{2}$ He

D.1 gamma ray

D.2 alpha particle

D.3 beta particle

D.4 beta particle

D.5 alpha particle

D.6 alpha particle

D.7 beta particle

Draw an alpha decay for each nuclide.

	Draw an arpha accay for each machael				
	Nuclide	Decay Reaction			
D.8	²⁵⁶ Lr	$^{256}_{103}\text{Lr} \rightarrow ^{252}_{101}\text{Md} + ^{4}_{2}\text{He}$			
D.9	²³¹ Pa	$^{231}_{91}$ Pa $\rightarrow ^{227}_{89}$ Ac $+ ^{4}_{2}$ He			
D.10	²²⁵ ₈₉ Ac	$^{225}_{89}\text{Ac} \rightarrow ^{221}_{87}\text{Fr} + ^{4}_{2}\text{He}$			
D.11	²¹¹ Fr	$^{211}_{87}$ Fr $\rightarrow ^{207}_{85}$ At $+ ^{4}_{2}$ He			
D.12	¹⁸⁵ Au	$^{185}_{79}$ Au $\rightarrow ^{181}_{77}$ Ir $+ ^{4}_{2}$ He			

Draw a beta decay of each nuclide

	Nuclide	Decay Reaction
D.13	⁶ He	${}_{2}^{6}\text{He} \rightarrow {}_{3}^{6}\text{Li} + {}_{-1}^{0}\text{e}$
D.14	²⁴ Na	$^{24}_{11}$ Na $\rightarrow ^{24}_{12}$ Mg + $^{0}_{-1}$ e
D.15	²⁰¹ Au	$^{201}_{79}$ Au $\rightarrow ^{201}_{80}$ Hg + $^{0}_{-1}$ e
D.16	⁵² Fe	$^{52}_{26}$ Fe $\rightarrow ^{52}_{27}$ Co $+ ^{0}_{-1}$ e
D.17	⁴² K	$^{42}_{19}\text{K} \rightarrow ^{42}_{20}\text{Ca} + ^{0}_{-1}\text{e}$

Nuc	lear	Phy	sics
1 Tuc	Cui	1 11 y	JICU

Name		

Isotope	Atomic Symbol	Number of	Number of
		Protons	Neutrons
Uranium-238			
Radium-226			
Lead-206			
Hydrogen-3			
Sodium-22			
Argon-39			
Radon-222			
Carbon-12			
Carbon-13			
Carbon-14			

Answers;

1.11

2.8

3. H

4.18

5. 7 protons 7 neutrons

6. 1 proton, 0 neutrons

7. 86 protons, 136 neutrons

8. 92 protons, 146 neutrons

9. 6 protons, 8 neutrons

10. $^{234}_{90}$ Th

11. $^{218}_{86}Rn$

12. $^{204}_{82}Pb$

Name		
IIIIC		

first big activity--- determining the number

- ---- issues that must be corrected::::
- define the term nuclide
- introduce the structure of an atom (again)
- include more conceptual questions on the nature of atoms and nuclides

(I need an assessment for the term isotope)