CS 207M Tutorial-6

1. Recall that, for a relation T, $T^* = \bigcup_{n=0}^{\infty} T^n$ is the reflexive-transitive closure of T.

Let R be a partial order on a finite set A. Show that there exists a relation R' on A such that $R = R'^*$ and for any other relation Q such that $Q^* = R$, $R' \subseteq Q$. The relation R' is called the transitive reduction of R. Is this true if A is not finite?

2. Let $P = (A, \leq)$ be a finite poset. Show that $l(P).w(P) \geq |A|$ where the length l(P) of P (resp. width w(P) of P) is the size of the largest chain (resp. antichain) of P.

Use this to show that any sequence of distinct mn+1 numbers contains either an increasing subsequence of length m+1 or a decreasing subsequence of length n+1. Hint: For a sequence $(a_i)_{i=1}^{mn+1}$, define a relation \ll on [mn+1] as follows: $i \ll j$ if $i \leq j$ and $a_i \leq a_j$. Show that \ll is a partial order and apply the above result to this partial order.

- 3. Show that, for any sequence of distinct numbers, the minimum number of increasing subsequences into which this sequence can be partitioned is the length of the longest decreasing subsequence.
- 4. Let $P = (A, \leq_P)$ and $Q = (B, \leq_Q)$ be two posets. Consider the binary relation \leq on $A \times B$ defined as follows:

$$(a,b) \le (a',b')$$
 iff $a \le_P a'$ and $b \le_Q b'$

Show that $R = (A \times B, \leq)$ is a poset. This poset is called the direct product of P and Q, and is denoted by $P \times Q$. Assume that P and Q are finite. Show that $P \times Q$ is finite and describe the covering relation of $P \times Q$ in terms of covering relations of P and Q.

- 5. Let $P = (N, \leq)$ be the poset of natural numbers ordered by the usual 'less than or equal to' relation. Show that every antichain of the poset $P \times P$ is finite. Can we partition $P \times P$ into finitely many chains?
- 6. Let S be a set and \mathcal{F} be a collection subsets of S such that S and the empty set are in \mathcal{F} and the intersection of any sets in \mathcal{F} is also in \mathcal{F} . Show that the subsets in \mathcal{F} ordered by inclusion form a lattice.

7. A lattice is said to be distributive if for all a, b, c

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Show that in a distributive lattice

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

- 8. Show that the boolean poset $\mathcal{B}_n = (2^{[n]}, \subseteq)$ is a distributive lattice.
- 9. Fix a positive integer n. Consider the set Π_n of all partitions of [n]. We define the refinement relation \leq on Π_n as follows. Let $\pi = \{A_1, A_2, \ldots, A_p\}$ and $\sigma = \{B_1, B_2, \ldots, B_q\}$ in Π_n . We say $\sigma \leq \pi$ if each B_i is contained in some A_j . Show that (Π_n, \leq) is a lattice. Give an example to show (Π_n, \leq) is not necessarily distributive.
- 10. Consider the division poset P on [2n]. Compute w(P) and a minimum cardinality decomposition of P into chains.