

Tarea 3

27 de septiembre de 2022

2º semestre 2022 - Profesores F. Suárez - S. Bugedo - N. Alvarado

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 11 de octubre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1

- a) Sean R y S ordenes parciales en un conjunto A. ¿Es $R \cup S$ un orden parcial? Demuestre.
- b) Sean R y S ordenes parciales en un conjunto A. ¿Es $R \cap S$ un orden parcial? Demuestre.
- c) Un orden topológico de un conjunto parcialmente ordenado (A, \preceq) es un orden total (A, \preceq_T) tal que

$$x \prec y \rightarrow x \prec_T y$$
.

Demuestre que todo conjunto finito parcialmente ordenado tiene un orden topológico.

Hint: Inducción.

Bonus: Demuestre que \subseteq es un orden total en $\mathcal{P}(\mathbb{R})$ tal que todo conjunto de subconjuntos no vacío acotado superiormente tiene supremo (1 punto).

Solución

a) Consideremos $A = \{1, 2\}$ y las siguientes relaciones de orden parcial:

$$R = \{(1,1), (1,2), (2,2)\}$$

$$S = \{(1,1), (2,1), (2,2)\}$$

Notemos que la unión está dada por

$$R \cup S = \{(1,1), (1,2), (2,1), (2,2)\}.$$

Es claro que $(1,2) \in R \cup S$ y $,(2,1) \in R \cup S$ pero $1 \neq 2$. Esto último implica que la unión no es antisimétrica y por lo tanto no es un orden parcial.

- b) Sean R y S órdenes parciales. Para mostrar que $R \cap S$ es un orden parcial, necesitamos mostrar que es una relación refleja, antisimétrica y transitiva.
 - I) Sea $a \in A$ arbitrario, dado que R y S órdenes parciales, también deben ser relaciones reflejas y por ende $(a,a) \in R$ y $(a,a) \in S$, y por definición de intersección $(a,a) \in R \cap S$. Como a es arbitrario, concluimos que $R \cap S$ es refleja.
 - II) Sea $a, b \in A$ tales que

$$(a,b) \in R \cap S$$
 y $(b,a) \in R \cap S$

Por definición de intersección tenemos que

$$(a,b) \in R \ y \ (b,a) \in R$$

Luego como R es orden parcial, y por ende antisimétrica, se debe tener que a=b. Concluimos que $R\cap S$ es antisimétrica.

III) Sea $(a,b) \in R \cap S$ y $(b,c) \in R \cap S$, por definición de intersección tenemos que

$$(a,b) \in R \ y \ (b,c) \in R \ y \ (a,b) \in S \ y \ (b,c) \in S$$

Como R es orden parcial, y por ende transitiva, obtenemos que $(a, c) \in R$. Además, como S es orden parcial, y por ende transitiva, obtenemos que $(a, c) \in S$.

Luego, por definición de intersección obtenemos que $(a, c) \in R \cap S$. Concluimos que $R \cap S$ es transitiva.

c) Usaremos el siguiente resultado:

Lema: Todo conjunto finito parcialmente ordenado tiene un elemento minimal.

Sea (A, \preceq) un conjunto parcialmente ordenado arbitrario. Consideremos a_1, a_2, \ldots, a_n la sucesión más grande posible de elementos diferentes de A tal que

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
.

Notemos que no puede existir un $a_0 \in A$ tal que $a_0 \leq a_1$ y que no esté en la sucesión anterior, porque sino la sucesión no sería la mayor. Además notemos que $a_i \leq a_1$ es falso para cualquier $i \geq 2$, pues si fuese cierto tendriamos que

$$a_i \prec a_1 \prec a_2 \prec \cdots \prec a_i$$

lo que no puede ser en un conjunto parcialmente ordenado, ya que por antisimetría y transitividad serían todos iguales. De esta forma, concluimos que a_1 es el elemento minimal.

Volviendo al problema original, consideremos la siguiente proposición:

P(n): Todo conjunto parcialmente ordenado de tamaño n tiene un orden topológico. La demostraremos por inducción simple:

- **BI:** Todo conjunto de un elemento que sea parcialmente ordenado es inmediatamente un orden total. Luego, se tiene que P(1) es cierto.
- **HI:** Suponemos que P(n) es cierto.
- **TI:** Sea (A, \leq) un conjunto parcialmente ordenado de tamaño n+1. Por el Lema anterior, existe un elemento minimal $a \in A$. Si quitamos a y todos los pares en \leq que relacionen a a, se obtiene un conjunto parcialmente ordenado¹ (A', \leq')

¹Notar que no se afecta la transitividad y la antisimetría porque a es elemento minimal. Y que la relación se mantiene refleja pero sobre A'.

de tamaño n. Por la hipótesis de inducción, (A', \preceq') tiene un orden topológico (A', \preceq'_T) . Ahora, construimos un orden total (A, \preceq_T) volviendo a adherir a como el elemento más pequeño que los otros. De manera formal, sea

$$\preceq_T = \preceq_T' \cup \{(a, z) \mid z \in A\}.$$

Resta chequear que $x \leq y$ implica que $x \leq_T y$. Para esto tenemos dos casos:

- I) Si x = a, entonces $a \leq_T y$ es cierto ya que $a \leq_T z$ para todo $z \in A$.
- II) Si $x \neq a$, entonces $y \neq a$ pues a es el elemento minimal del orden parcial \preceq . Así, x e y están en A' y entonces $x \preceq' y$. Esto significa que $x \preceq'_T y$ ya que \preceq'_T es orden topológico del orden parcial \preceq' . De esta forma tenemos que $x \preceq_T y$ dado que \preceq_T contiene a \preceq'_T .

Finalmente, por inducción simple concluimos que P(n) es cierto para todo $n \ge 1$.

Bonus: Sea \mathcal{S} una colección de subconjuntos de \mathbb{R} acotada superiormente, mostraremos que \mathcal{S} tiene supremo.

Sea S_{cs} el siguiente conjunto:

$$S_{cs} = \{X \subseteq \mathbb{R} \mid X \text{ es cota superior de } S\}$$

es decir, S_{cs} es el conjunto de todas las cotas superiores de S. Notemos que S_{cs} no puede ser vacío ya que S está acotado superiormente.

Sea $S^U = \bigcup \mathcal{S}$ la unión de todos los conjuntos de \mathcal{S} , mostraremos que S^U está contenido en todos los elementos de S_{cs} . Sea $X \in S_{cs}$, sabemos que X es cota superior de \mathcal{S} , por lo tanto:

$$\forall S \in \mathcal{S} \colon S \subseteq X$$

Es decir, todos los elementos de \mathcal{S} son contenidos en X y por lo tanto también su unión:

$$S^U = \bigcup \mathcal{S} = \bigcup_{S \in \mathcal{S}} S \subseteq X$$

Por lo tanto, obtenemos que para todo $X \in \mathcal{S}_{cs}$ se tiene que $S^U \subseteq X$. En otras palabras, S^U es el mínimo de \mathcal{S}_{cs} . Y como \mathcal{S}_{cs} es el conjunto de todas las cotas superiores de \mathcal{S} concluimos que S^U es la menor de las cotas superiores de \mathcal{S} , es decir, el supremo de \mathcal{S} .

Como \mathcal{S} es arbitrario, concluimos que todo $\mathcal{S}\subseteq\mathcal{P}(\mathbb{R})$ acotado superiormente tiene supremo.

Pauta (6 pts.)

- a) 2 pts. por contraejemplo.
- b) 0.5 por refleja
 - 0.5 por simétrica
 - 1.0 por transitiva
- c) 2 pts.

Bonus 1 pto.

Puntajes intermedios y soluciones alternativas a criterio del corrector.

Problema 2

Sean A, B conjuntos no vacíos y $f: A \to B$ una función. Se dice que f tiene inversa izquierda si existe una función $g: B \to A$ tal que g(f(x)) = x. Analogamente, se dice que f tiene inversa derecha si existe una función $h: B \to A$ tal que f(h(x)) = x.

- a) Muestre que f tiene inversa por la izquierda, si y sólo si, f es invectiva.
- b) Muestre que f tiene inversa por la derecha, si y sólo si, f es sobreyectiva.
- c) Sean A, B conjuntos finitos. Muestre que si $f: A \to B$ es una función inyectiva tal que |A| = |B|, entonces f es biyectiva.

Solución

- a) Demostramos las dos direcciones
 - I) Suponemos que $f: A \to B$ es tal que existe una función $g: B \to A$ que cumple g(f(x)) = x, i.e. es su inversa izquierda. Sean $a_1, a_2 \in A$ tales que $f(a_1) = f(a_2)$. Luego,

$$f(a_1) = f(a_2) \Rightarrow g(f(a_1)) = g(f(a_2))$$
 (g es total)
 $\Rightarrow a_1 = a_2$ (inversa izquierda)

lo que prueba que f es inyectiva.

II) Suponemos que $f:A\to B$ es inyectiva. Dado un $a_0\in A$ fijo arbitrario, construimos la función q según

$$g(b) = \begin{cases} a, & \text{si existe } a \in A \text{ tal que } f(a) = b \\ a_0, & \text{en otro caso} \end{cases}$$

es decir, para aquellos elementos de B con preimagen, asignamos dicha preimagen como resultado. Para los demás, les asignamos un mismo elemento (notar que g no necesita ser inyectiva). Ahora probaremos que g es una función total.

Dado $b \in B$ tal que existe a con f(a) = b, dado que f es inyectiva sabemos que tal a es único para b. Para un $b \in B$ que no es imagen en f, $g(b) = a_0$ es una imagen única. Luego, todo $b \in B$ tiene imagen única en g y g es función. Se sigue por construcción que también es total.

Finalmente, probamos que es inversa izquierda de f. Dado $a \in A$ cualquiera, g(f(a)) = g(b) para b = f(a). Luego, por definición de g, g(b) = a lo que prueba el resultado.

b) Demostramos las dos direcciones

I) Suponemos que $f:A\to B$ es tal que existe una función $h:B\to A$ que cumple f(h(x))=x, i.e. es su inversa derecha. Sea $b\in B$ cualquiera. Luego,

$$b \in B \implies f(h(b)) = b \quad (h \text{ es inversa derecha})$$

 $\implies f(a) = b \quad (h \text{ es total y genera imagen } a \in A)$

por lo que a es preimagen del b arbitrario, lo que prueba que f es sobre.

II) Observación: se anunció el cambio en el enunciado indicando que los conjuntos involucrados son finitos.

Suponemos que $f:A\to B$ es sobre, es decir, todo elemento $b\in B$ tiene preimagen. Dicha preimagen no necesariamente es única (f podría no ser inyectiva), pero siempre existe al menos una preimagen. Luego, definimos la función $h:B\to A$ que asigna a $b\in B$ una y solo una de sus preimágenes

$$h(b) = a$$

Dado que cada b solo produce una imagen h(b), es función y como está definida para todo $b \in B$ dado que f es sobre, entonces h es total.

Ahora probamos que es inversa derecha. Dado $b \in B$ cualquiera, f(h(b)) = f(a) por construcción de h, donde a es tal que f(a) = b, lo que concluye la demostración.

c) Demostraremos que el conjunto de imágenes $|\{f(a) \mid a \in A\}| = |B|$ y por principio del palomar, la función debe ser sobre e inyectiva.

Por inducción sobre el tamaño de A, B.

Sea P(n) la proposición de que si |A| = |B| = n y $f: A \to B$ es inyectiva, entonces f es biyectiva.

B.I.: Si $A = \{a_1\}$, como f es total existe $b \in B$ tal que f(a) = b. Luego, como |B| = 1, f es sobre.

H.I.: Asumamos que P(n) es cierto, es decir, que la propiedad se cumple para conjuntos de tamaño n.

T.I.: Sean A', B' tales que |A'| = |B'| = n+1 y $f: A' \to B'$ es inyectiva. Sea $a_0 \in A'$ un elemento cualquiera. Definimos $A = A' \setminus \{a_0\}$ que cumple |A| = n. Luego, las imágenes de A a través de f cumplen

$$|\{f(a)\mid a\in A\}|=n$$

por hipótesis inductiva. Como f es inyectiva y $a_0 \notin A$, sabemos que $f(a_0) \notin \{f(a) \mid a \in A\}$. Luego, el conjunto de imágenes de A' cumple

$$\{f(a) \mid a \in A'\} = \{f(a) \mid a \in A\} \cup \{f(a_0)\}\$$

de manera que

$$|\{f(a) \mid a \in A'\}| = |\{f(a) \mid a \in A\} \cup \{f(a_0)\}|$$

= $|\{f(a) \mid a \in A\}| + |\{f(a_0)\}|$
= $n+1$

Por principio del palomar, concluimos que $|\{f(a) \mid a \in A\}| = |B| = |A|$ y por ende f es sobre y biyectiva.

Pauta (6 pts.)

- a) 1. pto por \Rightarrow
 - 1. pto por **=**
- b) 1. pto por \Rightarrow
 - 1. pto por *⇐*
- c) 2. pts

Puntajes intermedios y soluciones alternativas a criterio del corrector.