PHL245 Modern Symbolic Logic

© Tingfeng Xia

Fall 2019, modified on September 6, 2019

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Contents

1	Tru	Truth Tables		
	1.1	Summary	2	
	1.2	Full truth tables	2	

1 Truth Tables

1.1 Summary

First we remark that we are here talking about binary operators, so they will have and only have two operands. We have the following to consider:

- Logical OR (\vee) is true when either one of the operands is true. It evaluates to false otherwise.
- Logical AND (\land) is true when both of the operands are true and false otherwise.
- Implication (\Longrightarrow) is true in two cases. The first case is when the first operand is false and second case is when both operands are true.
- Double implication, Iff (\iff) is true when either both operands are true or when both operands are false.
- **Negation** (\neg^1) is true when the operand is false and false otherwise.

1.2 Full truth tables

Example: ² evaluate $(P \land \neg Q) \lor R$. $\neg R \lor Q$. $\therefore \neg P \implies Q$. Notice that this is equivalent to evaluating

$$(((P \land \neg Q) \lor R) \land (\neg R \lor Q)) \implies \neg P \implies Q$$

and by staring at it we see this statement is valid and only valid when $(P,Q,R) \in \{(T,T,T),(T,F,F),(F,T,T)\}$, which has a non-null set of solution. Hence the statement is consistent.

 $^{^1\}mathrm{Or}$ in this course, we may see \sim

²This example was adapted from Scharer 4.4 EG3.