2023. december 1., péntek 10:18

Intelligens érzékelő:

- Szenzor
- Intelligens szenzor
- Mikroprocesszorok végzik el a feldolgozási feladatokat
- Feladatai:
 - Jelet mér
 - Digitális feldolgozás
 - o Továbbítás szabványos közlési protokollon
 - o Rendelkezik:
 - Önkalibráló
 - Öndiagnosztizáló
 - Alkalmazkodó képességgel
 - Digitális jeltárolás
 - Hibakompenzáció
 - Multiszenzor jelfeldolgozás
 - Önkalibráció és tesztelés
 - Automatikus méréshatár váltás
 - Átlag- és hibaszámítás
 - o Időbeli instabilitások kompenzációja
 - Számítógépekkel való kommunikáció

Gépi látás:

- Általános gyűjtőfogalom eljárásokra és rendszerekre
- Mozgókép alapú adatgyűjtés és kiértékelés után / hatására beindul:
 - Vezérlési VAGY
 - Szabályozási VAGY
 - o Gépi értelmezési mechanizmus
- Például:
 - Machine Vision
 - Computer Vision

Machine Vision:

- Emberi tényezőt meghaladó képességek géppel való kiváltása
- Kiértékelés
- Méretezés
- Pozícionálás
- Jelenség felismerése
- Képi kódolvasás

Computer Vision:

- Emberi látáshoz köthető feladatok automatizálására, modellezésére
- Térérzékelés és térlátás
- Számlálás
- Objektumfelismerés
- Minta- és jelenségelemzés
- Azonosítás
- Nyomkövetés

Mechanikai elemzés

Előfeldolgozás:

- Bemenet és kimenet: 1-1 kép
- Feladatok:
 - Fölösleges információk eldobása --> átalakítás szürkearánylatos képpé
 - Zajszűrés
 - Élesítés
 - o Kontraszt erősítése
 - o Általános formula: 0.21R + 0.72G + 0.07B

Képszűrés:

- Központi fogalom
- Legfontosabb művelet
- Lokális operátorok
- F(x, y) bemeneti kép, g(x, y) kimeneti kép
- (x, y) pontban az eredmény a pont környezetétől függ
 - \circ G(x, y) = T[f (x, y)] --> T a környezeten definiált operátor

Zajtípusok:

- Fehér zaj:
 - $\circ G(x, y) = f(x, y) + V_{add}(x, y)$
 - o Finput G output V zaj
- Nemkorrelált multiplikatív zaj:
 - $\circ G(x, y) = f(x, y) + V_{mult}(x, y)$
 - Amplitudó-moduláció
- Kvantálási zaj (hiba):
 - $\circ V_{kvant}(x, y) = G_{kvant}(x, y) F_{eredeti}(x, y)$
 - o Eredeti folytonos, kvantált diszkrét
- Só-és-bors zaj:
 - o Pontszerű
 - Képpel nem korreláló
 - Véletlen zaj
 - Legtöbbször szélsőértékű

Átlagszűrő:

- Képtérben működő lineáris simítószűrő
- Nem negatívak
- Nem nőnek a középponttól való távolsággal
- Összegük: 1
- Súlyok gyakran egész számok
- Súlyok összegével nomálják az eredményt
- Típusai:
 - o Dobozszűrő: legegyszerűbb és leggyorsabb, azonos súlyokkal rendelkező
 - o Gauss-szűrő: legelterjedtebb, súlyokat a normáleloszlás adja
 - Mediánszűrő: ablakban levő értékek mediánja, nemlineáris művelet, robosztus statisztikai mennyiség, hibás adatok aránya kevesebb mint 50%, akkor nem befolyásolja az eredményt

Szegmentálás:

- Fontos területek kiválasztása
- Szín és világosság alapján

- Intenzivitás alapján küszöböléssel
- Régió alapú szegmentálás:
 - o I kép n darab összefüggő homogén régióra való felosztása
 - O Homogén, ha: | Imax Imin | kicsi, intenzitási szórás a régióban kicsi
 - Legyakoribb eljárások:
 - Régió növesztés
 - Régiók darabolása és egyesítése
 - o Eredménye függ:
 - Képi tulajdonságok
 - Hasonlítás módja
 - Régión belüli változások nagyságának tolerációja

Régió alapú szegmentálási eljárások:

- Pixel-felhalmozás:
 - Inicializálás
 - o Iteráció
 - Megállás
- Vágás és egyesítés
 - Föntről lefelé (top-down)
 - Lentről fölfelé (bottom-up)
 - o Iteráljuk a két fázist, amíg van új felosztás vagy egyesítés
- Egyéb módszerek:
 - Él alapú
 - o Textúra, szín alapú
 - Mozgás alapú
- Feature detekció:
 - o Egyes feladatok jelentősen különböző featureök kinyerését igénylék
 - o Példák:
 - Arcfelismerés
 - Nyomtatott vagy kézzel írt szöveg
 - Ujilenyomatok felismerése
 - Élek, kontúrok, sarkok detektálása
 - □ Él: nagyobb a kontúrra merőleges intenzitás-változás
 - ☐ Sarok: egy hirtelen forduló a kontúron
 - □ Vonal: egy keskeny, hosszú régió
 - □ Folt: egy kompakt régió

<u>Élszűrés:</u>

- Folyamata
 - Élszűrés -->
 - o éllokalizáció
- Élszűrők:
 - Gradiens operátor
 - Laplace-operátor
- Jó lineáris élszűrő kritériumai:
 - o Nulla az eredmény, ahol nincs képváltozás
 - Legyen jó a detektálás
 - Legyen jó a lokalizálás
 - Szűrő legyen izotróp
 - Szűrő egy élet csak egyszer jelezzen
- Egy zajos, elmosott él, több szomszédos maximumot produkál