

Probability and Statistics MAT 271E

PART 4

Exercise Questions

Assist. Prof. Dr. Ümit KARADOĞAN

Course originally developed by: Prof. Dr. Mehmetçik BAYAZIT, Prof. Dr. Beyhan YEĞEN

In a given business venture a man can make a profit of \$300 with probability 0.6 or take a loss of \$100 with probability 0.4.

Determine his expectation.

Solution:

Expectation = (\$300)(.6) + (-\$100)(.4) = \$180 - \$40 = \$140.

You take out a fire insurance policy on your home. The annual premium is \$300. In case of fire, the insurance company will pay you \$200,000. The probability of a house fire in your area is 0.0002.

- a. What is the expected value?
- b. What is the insurance company's expected value?
- c. Suppose the insurance company sells 100,000 of these policies. What can the company expect to earn?

SOLUTION

a. Expected value = (0.0002)(199,700) + (0.9998)(-300) = -\$260.00Fire No Fire

The expected value over many years is -\$260 per year. Of course, your hope is that you will never have to collect on fire insurance for your home.

- b. The expected value for the insurance company is the same, except the perspective is switched. Instead of -\$260 per year, it is +\$260 per year. Of this, the company must pay a large percent for salaries and overhead.
- c. The insurance company can expect to gross \$30,000,000 in premiums on 100,000 such policies. With a probability of 0.0002 for fire, the company can expect to pay on about 20 fires. This leaves a gross profit of \$26,000,000.

Comparing Two Expected Values

A child asks his parents for some money. The parents make the following offers.

Father's offer: The child flips a coin. If the coin lands heads up, the father will give the child \$20. If the coin lands tails up, the father will give the child nothing.

Mother's offer: The child rolls a 6-sided die. The mother will give the child \$3 for each dot on the up side of the die.

Which offer has the greater expected value?

SOLUTION

Father's offer:

Probability of heads

Payoff for heads Probability of tails

Payoff for tails

Mother's offer: There are six possible outcomes.

DATA						_
		Α	В	С	D	
r r	1	Number	Payoff	Probability	Expected Value	
	2	1	\$3.00	16.67%	\$0.50	ı
	3	2	\$6.00	16.67%	\$1.00	ı
	4	3	\$9.00	16.67%	\$1.50	1
	5	4	\$12.00	16.67%	\$2.00	
	6	5	\$15.00	16.67%	\$2.50	
	7	6	\$18.00	16.67%	\$3.00	
	8	Total			\$10.50	
	0					

Your company is considering developing one of two cell phones. Your development and market research teams provide you with the following projections.

Cell phone A:

Cost of development: \$2,500,000

Projected sales: 50% chance of net sales of \$5,000,000

30% chance of net sales of \$3,000,000

20% chance of net sales of \$1,500,000

Cell phone B:

Cost of development: \$1,500,000

Projected sales: 30% chance of net sales of \$4,000,000

60% chance of net sales of \$2,000,000

10% chance of net sales of \$500,000

Which model should your company develop? Explain.

NICAL UNIVERSITY 1773

SOLUTION

A decision tree can help organize your thinking.

	Probability	Profit	Expected Value
_	50%	-<- \$2.5 million	0.5(2.5)
\sim	30%	\$0.5 million	0.3(0.5)
/ ^ <u>\</u>	20%	\$1 million	+ 0.2(-1) \$1.2 million
	30%	\$2.5 million	0.3(2.5)
	60%		0.6(0.5)
/ B /	10%	-\$1 million	+ 0.1(-1) \$0.95 million
\ <u>\</u>	100%	-< \$0	1.0(0) = \$0 million
Neither		73	

Although cell phone A has twice the risk of losing \$1 million, it has the greater expected value. So, using expected value as a decision guideline, your company should develop cell phone A.

A speculative investment is one in which there is a high risk of loss. What is the expected value for each of the following for a \$1000 investment?

a. Speculative investment

Complete loss: 40% chance
No gain or loss: 15% chance

100% gain: 15% chance
400% gain: 15% chance

900% gain: 15% chance

SOLUTION

a. Speculative investment

	Α	В	С	D
1	Result	Payoff	Probability	Expected Value
2	Complete loss	-\$1,000	40%	-\$400
3	No gain or loss	\$0	15%	\$0
4	100% gain	\$1,000	15%	\$150
5	400% gain	\$4,000	15%	\$600
6	900% gain	\$9,000	<u>15%</u>	\$1,350
7	Total		100%	\$1,700
Q				

This example points out the potential gain and the risk of investment. The speculative investment has an expected value of \$1700, which is a high return on investment. If you had the opportunity to make 100 such investments, you would have a high likelihood of making a profit. But, when making only 1 such investment, you have a 40% chance of losing everything.

b. Conservative investment

Complete loss: 1% chance
No gain or loss: 35% chance

10% gain: 59% chance20% gain: 5% chance

b. Conservative investment

	Α	В	С	D	
1	Result	Payoff	Probability	Expected Value	
2	Complete loss	-\$1,000	1%	-\$10	
3	No gain or loss	\$0	35%	\$0	
4	10% gain	\$100	59%	\$59	
5	20% gain	\$200	<u>5%</u>	<u>\$10</u>	
6	Total		100%	\$59	
7					

TOTAL UNIVERSITY

1773

Find (a) E(X), (b) $E(X^2)$, and (c) $E[(X - \bar{X})^2]$

for the following probability distribution.

X	8.	12	16	20	24
p(X)	1/8	1/6	3/8	1/4	1/12

$$Var(X) = E((X - \mu_X)^2)$$

$$Var(X) = \sum_{X_i} (x_i - \mu_X)^2 p(x_i)$$

Solution:

- (a) $E(X) = \sum Xp(X) = (8)(1/8) + (12)(1/6) + (16)(3/8) + (20)(1/4) + (24)(1/12) = 16$ This represents the mean of the distribution.
- (b) $E(X^2) = \sum X^2 p(X) = (8)^2 (1/8) + (12)^2 (1/6) + (16)^2 (3/8) + (20)^2 (1/4) + (24)^2 (1/12) = 276$ This represents the second moment about the origin zero.
- (c) $E[(X-\bar{X})^2] = \Sigma(X-\bar{X})^2 p(X)$ = $(8-16)^2(1/8) + (12-16)^2(1/6) + (16-16)^2(3/8) + (20-16)^2(1/4) + (24-16)^2(1/12) = 20$ This represents the *variance* of the distribution.

Suppose that X is a random variable that takes on values

0, 2 and 3 with probabilities 0.3, 0.1, 0.6 respectively.

Let
$$Y = 3(X - 1)^2$$
.

- (a) What is the expectation of X?
- (b) What is the variance of X?
- (c) What is the expection of Y?

(a) We first make the probability tables

$$egin{array}{c|cccc} X & 0 & 2 & 3 \\ {
m prob.} & 0.3 & 0.1 & 0.6 \\ Y & 3 & 3 & 12 \\ \hline \end{array}$$

$$\Rightarrow E(X) = 0 \cdot 0.3 + 2 \cdot 0.1 + 3 \cdot 0.6 = 2$$

(b)
$$E(X^2) = 0 \cdot 0.3 + 4 \cdot 0.1 + 9 \cdot 0.6 = 5.8$$

$$\Rightarrow Var(X) = E(X^2) - E(X)^2 = 5.8 - 4 = 1.8.$$

(c)
$$E(Y) = 3 \cdot 0.3 + 3 \cdot 0.1 + 12 \cdot 0.6 = 8.4$$
.

Example: Suppose that X takes values between 0 and 1 and has probability density function 2x. Compute Var(X) and Var(X²).

We will make use of the formula $Var(Y) = E(Y^2) - E(Y)^2$. First we compute

$$E[X] = \int_0^1 x \cdot 2x dx = \frac{2}{3}$$

$$E[X^2] = \int_0^1 x^2 \cdot 2x dx = \frac{1}{2}$$

$$E[X^4] = \int_0^1 x^4 \cdot 2x dx = \frac{1}{3}.$$

Thus,

$$Var(X) = E[X^2] - (E[X])^2 = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$$

and

$$Var(X^2) = E[X^4] - (E[X^2])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$