Annales du bac 2013/2014

Exercices portant sur les probabilités, l'échantillonnage et l'estimation

1 Exercices sans lois à densité

Exercice 1 (Métropole 2013) Commun à tous les candidats

4 points

Une jardinerie vend de jeunes plants d'arbres qui proviennent de trois horticulteurs : 35% des plants proviennent de l'horticulteur H_1 , 25% de l'horticulteur H_2 et le reste de l'horticulteur H_3 . Chaque horticulteur livre deux catégories d'arbres : des conifères et des arbres à feuilles.

La livraison de l'horticulteur H_1 comporte 80 % de conifères alors que celle de l'horticulteur H_2 n'en comporte que 50 % et celle de l'horticulteur H_3 seulement 30 %.

1. Le gérant de la jardinerie choisit un arbre au hasard dans son stock.

On envisage les événements suivants :

- H₁ : « l'arbre choisi a été acheté chez l'horticulteur H₁ »,
- H₂ : « l'arbre choisi a été acheté chez l'horticulteur H₂ »,
- H₃ : « l'arbre choisi a été acheté chez l'horticulteur H₃ »,
- C : « l'arbre choisi est un conifère »,
- F : « l'arbre choisi est un arbre feuillu ».
- a. Construire un arbre pondéré traduisant la situation.
- b. Calculer la probabilité que l'arbre choisi soit un conifère acheté chez l'horticulteur H₃.
- c. Justifier que la probabilité de l'évènement C est égale à 0,525.
- d. L'arbre choisi est un conifère.
 - Quelle est la probabilité qu'il ait été acheté chez l'horticulteur H_1 ? On arrondira à 10^{-3} .
- 2. On choisit au hasard un échantillon de 10 arbres dans le stock de cette jardinerie. On suppose que ce stock est suffisamment important pour que ce choix puisse être assimilé à un tirage avec remise de 10 arbres dans le stock. On appelle X la variable aléatoire qui donne le nombre de conifères de l'échantillon choisi.
 - **a.** Justifier que X suit une loi binomiale dont on précisera les paramètres.
 - **b.** Quelle est la probabilité que l'échantillon prélevé comporte exactement 5 conifères ? On arrondira à 10^{-3} .
 - c. Quelle est la probabilité que cet échantillon comporte au moins deux arbres feuillus? On arrondira à 10^{-3} .

Exercice 4 (Antilles, septembre 2013)

5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

Les deux parties sont indépendantes

Le robot Tom doit emprunter un pont sans garde-corps de 10 pas de long et de 2 pas de large. Sa démarche est très particulière :

- Soit il avance d'un pas tout droit;
- Soit il se déplace en diagonale vers la gauche (déplacement équivalent à un pas vers la gauche et un pas tout droit);
- Soit il se déplace en diagonale vers la droite (déplacement équivalent à un pas vers la droite et un pas tout droit).

On suppose que ces trois types de déplacement sont aléatoires et équiprobables.

L'objectif de cet exercice est d'estimer la probabilité p de l'évènement $S \ll Tom$ traverse le pont » c'est-à-dire « Tom n'est pas tombé dans l'eau et se trouve encore sur le pont au bout de 10 déplacements ».

Partie A: modélisation et simulation

On schématise le pont par un rectangle dans le plan muni d'un repère orthonormé (O , I, J) comme l'indique la figure ci-dessous. On suppose que Tom se trouve au point de coordonnées (0;0) au début de la traversée. On note (x;y) les coordonnées de la position de Tom après x déplacements.

Lycée Émile Duclaux Page 1/13

On a écrit l'algorithme suivant qui simule la position de Tom au bout de *x* déplacements :

x, y, n sont des entiers

Affecter à x la valeur 0Affecter à y la valeur 0Tant que $y \ge -1$ et $y \le 1$ et $x \le 9$ Affecter à n une valeur choisie au hasard entre -1, 0 et 1Affecter à y la valeur y + nAffecter à x la valeur x + 1Fin tant que

Afficher « la position de Tom est » (x; y)

- 1. On donne les couples suivants : (-1; 1); (10; 0); (2; 4); (10; 2). Lesquels ont pu être obtenus avec cet algorithme? Justifier la réponse.
- 2. Modifier cet algorithme pour qu'à la place de « la position de Tom est (x; y) », il affiche finalement « Tom a réussi la traversée » ou « Tom est tombé ».

Partie B

Pour tout n entier naturel compris entre 0 et 10, on note :

 A_n l'évènement « après n déplacements, Tom se trouve sur un point d'ordonnée -1 ».

 \mathbf{B}_n l'évènement « après n déplacements, Tom se trouve sur un point d'ordonnée 0 ».

C_n l'évènement « après n déplacements, Tom se trouve sur un point d'ordonnée 1 ».

On note a_n , b_n , c_n les probabilités respectives des évènements A_n , B_n , C_n .

- **1.** Justifier que $a_0 = 0$, $b_0 = 1$, $c_0 = 0$.
- 2. Montrer que pour tout entier naturel n compris entre 0 et 9, on a

$$\left\{ \begin{array}{lll} a_{n+1} & = & \frac{a_n + b_n}{3} \\ b_{n+1} & = & \frac{a_n + b_n + c_n}{3} \end{array} \right.$$

On pourra s'aider d'un arbre pondéré.

- **3.** Calculer les probabilités $p(A_1)$, $p(B_1)$ et $p(C_1)$.
- 4. Calculer la probabilité que Tom se trouve sur le pont au bout de deux déplacements.
- 5. À l'aide d'un tableur, on a obtenu la feuille de calcul ci-contre qui donne des valeurs approchées de a_n , b_n , c_n pour n compris entre 0 et 10.

Donner une valeur approchée à 0,001 près de la probabilité que Tom traverse le pont (on pourra s'aider du tableau cicontre).

n	a_n	b_n	c_n
0	0	1	0
1	0,333 333	0,333 333	0,333 333
2	0,222 222	0,333 333	0,222 222
3	0,185 185	0,259 259	0,185 185
4	0,148 148	0,209 877	0,148 148
5	0,119 342	0,168724	0,119 342
6	0,096 022	0,135 802	0,096 022
7	0,077 275	0,109 282	0,077 275
8	0,062 186	0,087 944	0,062 186
9	0,050 043	0,070772	0,050 043
10	0,040 272	0,056 953	0,040 272

Lycée Émile Duclaux Page 2/13

2 Exercices sans question sur les intervalles de fluctuation ou de confiance

Exercice 4 (Pondichéry 2013) Commun à tous les candidats

6 points

Dans une entreprise, on s'intéresse à la probabilité qu'un salarié soit absent durant une période d'épidémie de grippe.

- Un salarié malade est absent
- La première semaine de travail, le salarié n'est pas malade.
- Si la semaine n le salarié n'est pas malade, il tombe malade la semaine n+1 avec une probabilité égale à 0,04.
- Si la semaine n le salarié est malade, il reste malade la semaine n+1 avec une probabilité égale à 0, 24.

On désigne, pour tout entier naturel n supérieur ou égal à 1, par E_n l'évènement « le salarié est absent pour cause de maladie la n-ième semaine ». On note p_n la probabilité de l'évènement E_n .

On a ainsi : $p_1 = 0$ et, pour tout entier naturel n supérieur ou égal à $1 : 0 \le p_n < 1$.

- **1. a.** Déterminer la valeur de p_3 à l'aide d'un arbre de probabilité.
 - **b.** Sachant que le salarié a été absent pour cause de maladie la troisième semaine, déterminer la probabilité qu'il ait été aussi absent pour cause de maladie la deuxième semaine.
- 2. a. Recopier sur la copie et compléter l'arbre de probabilité donné ci-dessous

- **b.** Montrer que, pour tout entier naturel n supérieur ou égal à 1, $p_{n+1} = 0, 2p_n + 0, 04$.
- c. Montrer que la suite (u_n) définie pour tout entier naturel n supérieur ou égal à 1 par $u_n = p_n 0.05$ est une suite géométrique dont on donnera le premier terme et la raison r. En déduire l'expression de u_n puis de p_n en fonction de n et r.
- **d.** En déduire la limite de la suite (p_n) .
- e. On admet dans cette question que la suite (p_n) est croissante. On considère l'algorithme suivant :

Variables	K et J sont des entiers naturels, P est un nombre réel
Initialisation	P prend la valeur 0
	J prend la valeur 1
Entrée	Saisir la valeur de K
Traitement	Tant que $P < 0.05 - 10^{-K}$
	P prend la valeur $0.2 \times P + 0.04$
	J prend la valeur J +1
	Fin tant que
Sortie	Afficher J

À quoi correspond l'affichage final J?

Pourquoi est-on sûr que cet algorithme s'arrête?

3. Cette entreprise emploie 220 salariés. Pour la suite on admet que la probabilité pour qu'un salarié soit malade une semaine donnée durant cette période d'épidémie est égale à p = 0.05.

On suppose que l'état de santé d'un salarié ne dépend pas de l'état de santé de ses collègues.

On désigne par X la variable aléatoire qui donne le nombre de salariés malades une semaine donnée.

- a. Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres. Calculer l'espérance mathématique μ et l'écart type σ de la variable aléatoire X.
- **b.** On admet que l'on peut approcher la loi de la variable aléatoire $\frac{X-\mu}{\sigma}$

par la loi normale centrée réduite c'est-à-dire de paramètres 0 et 1.

On note Z une variable aléatoire suivant la loi normale centrée réduite.

Le tableau suivant donne les probabilités de l'évènement Z < x pour quelques valeurs du nombre réel x.

Lycée Émile Duclaux

x	-1,55	-1,24	-0,93	-0,62	-0,31	0,00	0,31	0,62	0,93	1,24	1,55
P(Z < x)	0,061	0,108	0,177	0,268	0,379	0,500	0,621	0,732	0,823	0,892	0,939

Calculer, au moyen de l'approximation proposée en question b., une valeur approchée à 10^{-2} près de la probabilité de l'évènement : « le nombre de salariés absents dans l'entreprise au cours d'une semaine donnée est supérieur ou égal à 7 et inférieur ou égal à 15 ».

Exercice 2 (Liban 2013) Commun à tous les candidats

5 points

L'entreprise <u>Fructidoux</u> fabrique des compotes qu'elle conditionne en petits pots de 50 grammes. Elle souhaite leur attribuer la dénomination « compote allégée ».

La législation impose alors que la teneur en sucre, c'est-à-dire la proportion de sucre dans la compote, soit comprise entre 0,16 et 0,18. On dit dans ce cas que le petit pot de compote est conforme.

L'entreprise possède deux chaînes de fabrication F₁ et F₂.

Les parties A et B peuvent être traitées indépendamment

Partie A

La chaîne de production F_2 semble plus fiable que la chaîne de production F_1 . Elle est cependant moins rapide.

Ainsi, dans la production totale, 70 % des petits pots proviennent de la chaîne F₁ et 30 % de la chaîne F₂.

La chaîne F₁ produit 5 % de compotes non conformes et la chaîne F₂ en produit 1 %.

On prélève au hasard un petit pot dans la production totale. On considère les évènements :

E: « Le petit pot provient de la chaîne F_2 »

C: « Le petit pot est conforme. »

- 1. Construire un arbre pondéré sur lequel on indiquera les données qui précèdent.
- 2. Calculer la probabilité de l'évènement : « Le petit pot est conforme et provient de la chaîne de production F₁. »
- 3. Déterminer la probabilité de l'évènement C.
- 4. Déterminer, à 10^{-3} près, la probabilité de l'évènement E sachant que l'évènement C est réalisé.

Partie B

1. On note X la variable aléatoire qui, à un petit pot pris au hasard dans la production de la chaîne F₁, associe sa teneur en sucre.

On suppose que X suit la loi normale d'espérance $m_1 = 0.17$ et d'écart-type $\sigma_1 = 0.006$.

Dans la suite, on pourra utiliser le tableau ci-dessous.

α	β	$P(\alpha \leqslant X \leqslant \beta)$
0,13	0,15	0,0004
0,14	0,16	0,047 8
0,15	0,17	0,4996
0,16	0,18	0,9044
0,17	0,19	0,4996
0,18	0,20	0,047 8
0,19	0,21	0,0004

Donner une valeur approchée à 10^{-4} près de la probabilité qu'un petit pot prélevé au hasard dans la production de la chaîne F_1 soit conforme.

2. On note Y la variable aléatoire qui, à un petit pot pris au hasard dans la production de la chaîne F₂, associe sa teneur en sucre.

On suppose que Y suit la loi normale d'espérance $m_2 = 0,17$ et d'écart-type σ_2 .

On suppose de plus que la probabilité qu'un petit pot prélevé au hasard dans la production de la chaîne F₂ soit conforme est égale à 0,99.

Soit Z la variable aléatoire définie par $Z = \frac{Y - m_2}{\sigma_2}$.

- **a.** Quelle loi la variable aléatoire Z suit-elle?
- **b.** Déterminer, en fonction de σ_2 l'intervalle auquel appartient Z lorsque Y appartient à l'intervalle [0,16; 0,18].

Lycée Émile Duclaux Page 4/13

c. En déduire une valeur approchée à 10^{-3} près de σ_2 . On pourra utiliser le tableau donné ci-dessous, dans lequel la variable aléatoire Z suit la loi normale d'espérance 0 et d'écart-type 1.

β	$P(-\beta \leqslant Z \leqslant \beta)$
2,432 4	0,985
2,457 3	0,986
2,483 8	0,987
2,5121	0,988
2,542 7	0,989
2,575 8	0,990
2,6121	0,991
2,652 1	0,992
2,6968	0,993

Exercice 3 (Antilles 2013) Commun à tous les candidats

4 points

Une entreprise industrielle fabrique des pièces cylindriques en grande quantité. Pour toute pièce prélevée au hasard, on appelle X la variable aléatoire qui lui associe sa longueur en millimètre et Y la variable aléatoire qui lui associe son diamètre en millimètre.

On suppose que X suit la loi normale de moyenne $\mu_1 = 36$ et d'écart-type $\sigma_1 = 0,2$ et que Y suit la loi normale de moyenne $\mu_2 = 6$ et d'écart-type $\sigma_2 = 0,05$.

1. Une pièce est dite conforme pour la longueur si sa longueur est comprise entre μ_1 – $3\sigma_1$ et μ_1 + $3\sigma_1$. Quelle est une valeur approchée à 10^{-3} près de la probabilité p_1 pour qu'une pièce prélevée au hasard soit conforme pour la longueur?

2. Une pièce est dite conforme pour le diamètre si son diamètre est compris entre 5,88 mm et 6,12 mm. Le tableau donné ci-contre a été obtenu à l'aide d'un tableur. Il indique pour chacune des valeurs de k, la probabilité que Y soit inférieure ou égal à cette valeur.

Déterminer à 10^{-3} près la probabilité p_2 pour qu'une pièce prélevée au hasard soit conforme pour le diamètre (on pourra s'aider du tableau ci-contre).

k	$p(Y \leqslant k)$
5,8	3,16712E – 05
5,82	0,000159109
5,84	0,000687138
5,86	0,00255513
5,88	0,008197536
5,9	0,022750132
5,92	0,054799292
5,94	0,11506967
5,96	0,211855399
5,98	0,344578258
6	0,5
6,02	0,655 421 742
6,04	0,788144601
6,06	0,88493033
6,08	0,945 200 708
6,1	0,977 249 868
6,12	0,991 802 464
6,14	0,997 444 87
6,16	0,999312862
6,18	0,999840891
6, 2	0,999968329
our la	longueur » et D1

- **3.** On prélève une pièce au hasard. On appelle L l'évènement « la pièce est conforme pour la longueur » et D l'évènement « la pièce est conforme pour le diamètre ». On suppose que les évènements L et D sont indépendants.
 - a. Une pièce est acceptée si elle est conforme pour la longueur et pour le diamètre. Déterminer la probabilité pour qu'une pièce prélevée au hasard ne soit pas acceptée (le résultat sera arrondi à 10^{-2}).
 - **b.** Justifier que la probabilité qu'elle soit conforme pour le diamètre sachant qu'elle n'est pas conforme pour la longueur, est égale à p_2 .

Lycée Émile Duclaux Page 5/13

Exercice 3 (Nouvelle Calédonie, novembre 2013) Commun à tous les candidats

5 points

Tous les résultats numériques devront être donnés sous forme décimale et arrondis au dix-millième

Une usine fabrique des billes sphériques dont le diamètre est exprimé en millimètres.

Une bille est dite hors norme lorsque son diamètre est inférieur à 9 mm ou supérieur à 11 mm.

Partie A

1. On appelle X la variable aléatoire qui à chaque bille choisie au hasard dans la production associe son diamètre exprimé en mm.

On admet que la variable aléatoire X suit la loi normale d'espérance 10 et d'écart-type 0,4.

Montrer qu'une valeur approchée à 0,000 1 près de la probabilité qu'une bille soit hors norme est 0,012 4. On pourra utiliser la table de valeurs donnée en annexe.

2. On met en place un contrôle de production tel que 98 % des billes hors norme sont écartés et 99 % des billes correctes sont conservées.

On choisit une bille au hasard dans la production. On note N l'évènement : « la bille choisie est aux normes », A l'évènement : « la bille choisie est acceptée à l'issue du contrôle ».

- a. Construire un arbre pondéré qui réunit les données de l'énoncé.
- **b.** Calculer la probabilité de l'évènement A.
- c. Quelle est la probabilité pour qu'une bille acceptée soit hors norme?

Partie B

Ce contrôle de production se révélant trop coûteux pour l'entreprise, il est abandonné : dorénavant, toutes les billes produites sont donc conservées, et elles sont conditionnées par sacs de 100 billes.

On considère que la probabilité qu'une bille soit hors norme est de 0,012 4.

On admettra que prendre au hasard un sac de 100 billes revient à effectuer un tirage avec remise de 100 billes dans l'ensemble des billes fabriquées.

On appelle Y la variable aléatoire qui à tout sac de 100 billes associe le nombre de billes hors norme de ce sac.

- 1. Quelle est la loi suivie par la variable aléatoire Y?
- 2. Quels sont l'espérance et l'écart-type de la variable aléatoire Y?
- 3. Quelle est la probabilité pour qu'un sac de 100 billes contienne exactement deux billes hors norme?
- 4. Quelle est la probabilité pour qu'un sac de 100 billes contienne au plus une bille hors norme?

3 Exercices avec intervalles de fluctuation ou de confiance

Exercice 3 (Amérique du Nord 2013) Commun à tous les candidats

5 points

Les parties A B et C peuvent être traitées indépendamment les unes des autres

Une boulangerie industrielle utilise une machine pour fabriquer des pains de campagne pesant en moyenne 400 grammes. Pour être vendus aux clients, ces pains doivent peser au moins 385 grammes. Un pain dont la masse est strictement inférieure à 385 grammes est un pain non-commercialisable, un pain dont la masse est supérieure ou égale à 385 grammes est commercialisable.

La masse d'un pain fabriqué par la machine peut être modélisée par une variable aléatoire X suivant la loi normale d'espérance $\mu = 400$ et d'écart-type $\sigma = 11$.

Les probabilités seront arrondies au millième le plus proche

Partie A

On pourra utiliser le tableau suivant dans lequel les valeurs sont arrondies au millième le plus proche.

x	380	385	390	395	400	405	410	415	420
$P(X \le x)$	0,035	0,086	0,182	0,325	0,5	0,675	0,818	0,914	0,965

Lycée Émile Duclaux Page 6/13

- **1.** Calculer $P(390 \le X \le 410)$.
- 2. Calculer la probabilité p qu'un pain choisi au hasard dans la production soit commercialisable.
- **3.** Le fabricant trouve cette probabilité *p* trop faible. Il décide de modifier ses méthodes de production afin de faire varier la valeur de σ sans modifier celle de μ.

Pour quelle valeur de σ la probabilité qu'un pain soit commercialisable est-elle égale à 96 %? On arrondira le résultat au dixième.

On pourra utiliser le résultat suivant : lorsque Z est une variable aléatoire qui suit la loi normale d'espérance 0 et d'écart-type 1, on a $P(Z \le -1,751) \approx 0,040$.

Partie B

Les méthodes de production ont été modifiées dans le but d'obtenir 96 % de pains commercialisables. Afin d'évaluer l'efficacité de ces modifications, on effectue un contrôle qualité sur un échantillon de 300 pains fabriqués.

- 1. Déterminer l'intervalle de fluctuation asymptotique au seuil de 95 % de la proportion de pains commercialisables dans un échantillon de taille 300.
- 2. Parmi les 300 pains de l'échantillon, 283 sont commercialisables. Au regard de l'intervalle de fluctuation obtenu à la question 1, peut-on décider que l'objectif a été atteint?

Partie C

Le boulanger utilise une balance électronique. Le temps de fonctionnement sans dérèglement, en jours, de cette balance électronique est une variable aléatoire T qui suit une loi exponentielle de paramètre λ .

1. On sait que la probabilité que la balance électronique ne se dérègle pas avant 30 jours est de 0,913. En déduire la valeur de λ arrondie au millième.

Dans toute la suite on prendra $\lambda = 0,003$.

- 2. Quelle est la probabilité que la balance électronique fonctionne encore sans dérèglement après 90 jours, sachant qu'elle a fonctionné sans dérèglement 60 jours?
- **3.** Le vendeur de cette balance électronique a assuré au boulanger qu'il y avait une chance sur deux pour que la balance ne se dérègle pas avant un an. A-t-il raison? Si non, pour combien de jours est-ce vrai?

Exercice 3 (Polynésie 2013) : Commun à tous les candidats

5 points

Les 3 parties peuvent être traitées de façon indépendante.

Thomas possède un lecteur MP3 sur lequel il a stocké plusieurs milliers de morceaux musicaux.

L'ensemble des morceaux musicaux qu'il possède se divise en trois genres distincts selon la répartition suivante :

30 % de musique classique, 45 % de variété, le reste étant du jazz.

Thomas a utilisé deux qualités d'encodage pour stocker ses morceaux musicaux : un encodage de haute qualité et un encodage standard. On sait que :

- les $\frac{5}{6}$ des morceaux de musique classique sont encodés en haute qualité.
- les $\frac{5}{9}$ des morceaux de variété sont encodés en qualité standard.

On considérera les évènements suivants :

C: « Le morceau écouté est un morceau de musique classique » ;

V: « Le morceau écouté est un morceau de variété » ;

J: «Le morceau écouté est un morceau de jazz»;

H: « Le morceau écouté est encodé en haute qualité » ;

S: « Le morceau écouté est encodé en qualité standard ».

Partie 1

Thomas décide d'écouter un morceau au hasard parmi tous les morceaux stockés sur son MP3 en utilisant la fonction « lecture aléatoire ».

On pourra s'aider d'un arbre de probabilités.

Lycée Émile Duclaux Page 7/13

- 1. Quelle est la probabilité qu'il s'agisse d'un morceau de musique classique encodé en haute qualité?
- 2. On sait que P(H) = $\frac{13}{20}$
 - a. Les évènements C et H sont-ils indépendants?
 - **b.** Calculer $P(J \cap H)$ et $P_I(H)$.

Partie 2

Pendant un long trajet en train, Thomas écoute, en utilisant la fonction « lecture aléatoire » de son MP3, 60 morceaux de musique.

- 1. Déterminer l'intervalle de fluctuation asymptotique au seuil 95 % de la proportion de morceaux de musique classique dans un échantillon de taille 60.
- 2. Thomas a comptabilisé qu'il avait écouté 12 morceaux de musique classique pendant son voyage. Peut-on penser que la fonction « lecture aléatoire » du lecteur MP3 de Thomas est défectueuse ?

Partie 3

On considère la variable aléatoire X qui, à chaque chanson stocké sur le lecteur MP3, associe sa durée exprimée en secondes et on établit que X suit la loi normale d'espérance 200 et d'écart-type 20.

On pourra utiliser le tableau fourni en annexe dans lequel les valeurs sont arrondies au millième le plus proche.

On écoute un morceau musical au hasard.

- 1. Donner une valeur approchée à 10^{-3} près de P(180 \leq X \leq 220).
- 2. Donner une valeur approchée à 10^{-3} près de la probabilité que le morceau écouté dure plus de 4 minutes.

Exercice 2 (Antilles 2013) Commun à tous les candidats

5 points

Soient n un entier naturel, p un nombre réel compris entre 0 et 1, et X_n une variable aléatoire suivant une loi binomiale de paramètres n et p. On note $F_n = \frac{X_n}{n}$ et f une valeur prise par F_n . On rappelle que, pour n assez grand, l'intervalle $p - \frac{1}{\sqrt{n}}$; $p + \frac{1}{\sqrt{n}}$ contient la fréquence f avec une probabilité au moins égale à 0,95.

En déduire que l'intervalle $\left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right]$ contient p avec une probabilité au moins égale à 0,95.

Partie B

On cherche à étudier le nombre d'étudiants connaissant la signification du sigle URSSAF. Pour cela, on les interroge en proposant un questionnaire à choix multiples. Chaque étudiant doit choisir parmi trois réponses possibles, notées A, B et C, la bonne réponse étant la A.

On note r la probabilité pour qu'un étudiant connaisse la bonne réponse. Tout étudiant connaissant la bonne réponse répond A, sinon il répond au hasard (de façon équiprobable).

- 1. On interroge un étudiant au hasard. On note :
 - A l'évènement « l'étudiant répond A »,
 - B l'évènement « l'étudiant répond B »,
 - C l'évènement « l'étudiant répond C »,
 - R l'évènement « l'étudiant connait la réponse »,
 - R l'évènement contraire de R.
 - a. Traduire cette situation à l'aide d'un arbre de probabilité.
 - **b.** Montrer que la probabilité de l'évènement A est $P(A) = \frac{1}{2}(1+2r)$.
 - ${f c.}\;$ Exprimer en fonction de r la probabilité qu'une personne ayant choisie A connaisse la bonne réponse.
- 2. Pour estimer r, on interroge 400 personnes et on note X la variable aléatoire comptant le nombre de bonnes réponses. On admettra qu'interroger au hasard 400 étudiants revient à effectuer un tirage avec remise de 400 étudiants dans l'ensemble de tous les étudiants.
 - a. Donner la loi de X et ses paramètres n et p en fonction de r.

Lycée Émile Duclaux Page 8/13

- b. Dans un premier sondage, on constate que 240 étudiants répondent A, parmi les 400 interrogés.
 - Donner un intervalle de confiance au seuil de 95 % de l'estimation de p.
 - En déduire un intervalle de confiance au seuil de 95 % de r.
- **c.** Dans la suite, on suppose que r = 0.4. Compte-tenu du grand nombre d'étudiants, on considérera que X suit une loi normale.
 - i. Donner les paramètres de cette loi normale.
 - ii. Donner une valeur approchée de $P(X \le 250)$ à 10^{-2} près.

On pourra s'aider de la table en annexe 1, qui donne une valeur approchée de $P(X \le t)$ où X est la variable aléatoire de la question 2. c.

Exercice 1 (Asie 2013) Commun à tous les candidats

5 points

Dans cet exercice, les probabilités seront arrondies au centième.

Partie A

Un grossiste achète des boîtes de thé vert chez deux fournisseurs. Il achète 80 % de ses boîtes chez le fournisseur A et 20 % chez le fournisseur B.

10 % des boîtes provenant du fournisseur A présentent des traces de pesticides et 20 % de celles provenant du fournisseur B présentent aussi des traces de pesticides.

On prélève au hasard une boîte du stock du grossiste et on considère les évènements suivants :

- évènement A : « la boîte provient du fournisseur A » ;
- évènement B : « la boîte provient du fournisseur B » ;
- évènement S : « la boîte présente des traces de pesticides ».
- 1. Traduire l'énoncé sous forme d'un arbre pondéré.
- 2. **a.** Quelle est la probabilité de l'évènement $B \cap \overline{S}$?
 - b. Justifier que la probabilité que la boîte prélevée ne présente aucune trace de pesticides est égale à 0,88.
- 3. On constate que la boîte prélevée présente des traces de pesticides.
 - Quelle est la probabilité que cette boîte provienne du fournisseur B?

Partie B

Le gérant d'un salon de thé achète 10 boîtes chez le grossiste précédent. On suppose que le stock de ce dernier est suffisamment important pour modéliser cette situation par un tirage aléatoire de 10 boîtes avec remise.

On considère la variable aléatoire X qui associe à ce prélèvement de 10 boîtes, le nombre de boîtes sans trace de pesticides.

- 1. Justifier que la variable aléatoire X suit une loi binomiale dont on précisera les paramètres.
- 2. Calculer la probabilité que les 10 boîtes soient sans trace de pesticides.
- 3. Calculer la probabilité qu'au moins 8 boîtes ne présentent aucune trace de pesticides.

Partie C

À des fins publicitaires, le grossiste affiche sur ses plaquettes : « 88 % de notre thé est garanti sans trace de pesticides ». Un inspecteur de la brigade de répression des fraudes souhaite étudier la validité de l'affirmation. À cette fin, il prélève 50 boîtes au hasard dans le stock du grossiste et en trouve 12 avec des traces de pesticides.

On suppose que, dans le stock du grossiste, la proportion de boîtes sans trace de pesticides est bien égale à 0,88. On note F la variable aléatoire qui, à tout échantillon de 50 boîtes, associe la fréquence des boîtes ne contenant aucune trace de pesticides.

- 1. Donner l'intervalle de fluctuation asymptotique de la variable aléatoire F au seuil de 95 %.
- 2. L'inspecteur de la brigade de répression peut-il décider, au seuil de 95 %, que la publicité est mensongère?

Lycée Émile Duclaux Page 9/13

Exercice 1 (Centres étrangers 2013)

6 points

Commun à tous les candidats

Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes.

Partie A

La durée de vie d'une vanne, exprimée en heures, est une variable aléatoire T qui suit la loi exponentielle de paramètre $\lambda = 0.0002$.

- 1. Quelle est la durée de vie moyenne d'une vanne?
- 2. Calculer la probabilité, à 0,001 près, que la durée de vie d'une vanne soit supérieure à 6 000 heures.

Partie B

Avec trois vannes identiques V_1 , V_2 et V_3 , on fabrique le circuit hydraulique ci-contre. Le circuit est en état de marche si V_1 est en état d arche ou si V_2 et V_3 le sont simultanément.

On assimile à une expérience aléatoire le fait que chaque vanne est ou n'est pas en état de marche après 6 000 heures. On note :

- F_1 l'évènement : « la vanne V_1 est en état de marche après 6 000 heures ».
- F₂ l'évènement : « la vanne V₂ est en état de marche après 6 000 heures ».
- F₃ l'évènement : « la vanne V₃ est en état de marche après 6 000 heures ».
- E: l'évènement: « le circuit est en état de marche après 6 000 heures ».

On admet que les évènements F₁, F₂ et F₃ sont deux à deux indépendants et ont chacun une probabilité égale à 0, 3.

- **1.** L'arbre probabiliste ci-contre représente une partie de la situation.
 - Reproduire cet arbre et placer les probabilités sur les branches.
- 2. Démontrer que P(E) = 0.363.
- 3. Sachant que le circuit est en état de marche après 6 000 heures, calculer la probabilité que la vanne V_1 soit en état de marche à ce moment là. Arrondir au millième.

Partie C

L'industriel affirme que seulement 2 % des vannes qu'il fabrique sont défectueuses. On suppose que cette affirmation est vraie, et l'on note F la variable aléatoire égale à la fréquence de vannes défectueuses dans un échantillon aléatoire de 400 vannes prises dans la production totale.

- 1. Déterminer l'intervalle I de fluctuation asymptotique au seuil de 95 % de la variable F,
- 2. On choisit 400 vannes au hasard dans la production, On assimile ce choix à un tirage aléatoire de 400 vannes, avec remise, dans la production.

Parmi ces 400 vannes, 10 sont défectueuses.

Au vu de ce résultat peut-on remettre en cause. au seuil de 95 %, l'affirmation de l'industriel ?

Partie D

Dans cette partie, les probabilités calculées seront arrondies au millième.

L'industriel commercialise ses vannes auprès de nombreux clients, La demande mensuelle est une variable aléatoire D qui suit la loi normale d'espérance $\mu = 800$ et d'écart-type $\sigma = 40$.

- 1. Déterminer $P(760 \le D \le 840)$.
- 2. Déterminer $P(D \le 880)$.

Lycée Émile Duclaux Page 10/13

3. L'industriel pense que s'il constitue un stock mensuel de 880 vannes, il n'aura pas plus de 1 % de chance d'être en rupture de stock. A-t-il raison?

Exercice 3 (Métropole, septembre 2013) Commun à tous les candidats

5 points

Dans une usine, on utilise deux machines A et B pour fabriquer des pièces.

1. La machine A assure 40 % de la production et la machine B en assure 60 %.

On estime que 10 % des pièces issues de la machine A ont un défaut et que 9 % des pièces issues de la machine B ont un défaut.

On choisit une pièce au hasard et on considère les évènements suivants :

- A : « La pièce est produite par la machine A »
- B : « La pièce est produite par la machine B »
- D: « La pièce a un défaut ».
- D, l'évènement contraire de l'évènement D.
- a. Traduire la situation à l'aide d'un arbre pondéré.
- b. Calculer la probabilité que la pièce choisie présente un défaut et ait été fabriquée par la machine A.
- c. Démontrer que la probabilité P(D) de l'évènement D est égale à 0,094.
- **d.** On constate que la pièce choisie a un défaut. Quelle est la probabilité que cette pièce provienne de la machine A?
- 2. On estime que la machine A est convenablement réglée si 90 % des pièces qu'elle fabrique sont conformes.

On décide de contrôler cette machine en examinant n pièces choisies au hasard (n entier naturel) dans la production de la machine A. On assimile ces n tirages à des tirages successifs indépendants et avec remise.

On note X_n le nombre de pièces qui sont conformes dans l'échantillon de n pièces, et $F_n = \frac{X_n}{n}$ la proportion correspondante.

- a. Justifier que la variable aléatoire X_n suit une loi binomiale et préciser ses paramètres.
- **b.** Dans cette question, on prend n = 150.

Déterminer l'intervalle de fluctuation asymptotique I au seuil de 95 % de la variable aléatoire F₁₅₀.

c. Un test qualité permet de dénombrer 21 pièces non conformes sur un échantillon de 150 pièces produites. Cela remet-il en cause le réglage de la machine ? Justifier la réponse.

Exercice 4 (Amérique du Sud, novembre 2013) Commun à tous les candidats

5 points

Dans cet exercice, les résultats seront arrondis à 10^{-4} près.

Partie A

En utilisant sa base de données, la sécurité sociale estime que la proportion de Français présentant, à la naissance, une malformation cardiaque de type anévrisme est de 10 %. L'étude a également permis de prouver que 30 % des Français présentant, à la naissance, une malformation cardiaque de type anévrisme, seront victimes d'un accident cardiaque au cours de leur vie alors que cette proportion n'atteint plus que 8 % pour ceux qui ne souffrent pas de cette malformation congénitale.

On choisit au hasard une personne dans la population française et on considère les évènements :

M : « La personne présente, à la naissance, une malformation cardiaque de type anévrisme »

C : « La personne est victime d'un accident cardiaque au cours de sa vie ».

- **1. a.** Montrer que $P(M \cap C) = 0,03$.
 - **b.** Calculer P(C).
- 2. On choisit au hasard une victime d'un accident cardiaque. Quelle est la probabilité qu'elle présente une malformation cardiaque de type anévrisme ?

Partie B

La sécurité sociale décide de lancer une enquête de santé publique, sur ce problème de malformation cardiaque de type anévrisme, sur un échantillon de 400 personnes, prises au hasard dans la population française.

On note X la variable aléatoire comptabilisant le nombre de personnes de l'échantillon présentant une malformation cardiaque de type anévrisme.

Lycée Émile Duclaux Page 11/13

- 1. Définir la loi de la variable aléatoire X.
- 2. Déterminer P(X = 35).
- **3.** Déterminer la probabilité que 30 personnes de ce groupe, au moins, présentent une malformation cardiaque de type anévrisme.

Partie C

- 1. On considère la variable aléatoire F, définie par $F = \frac{X}{400}$, X étant la variable aléatoire de la **partie B**. Déterminer l'intervalle de fluctuation asymptotique de la variable aléatoire F au seuil de 95 %.
- 2. Dans l'échantillon considéré, 60 personnes présentent une malformation cardiaque de type anévrisme. Qu'en pensez-vous ?

EXERCICE 2 (NOUVELLE CALÉDONIE, MARS 2014)
Commun à tous les candidats

6 points

Les parties A, B et C sont indépendantes

Partie A

Restitution organisée des connaissances

L'objectif de cette partie est de démontrer le théorème suivant :

Si X est une variable aléatoire suivant la loi normale centrée réduite, alors pour tout réel α appartenant à l'intervalle]0; 1[, il existe un unique réel strictement positif χ_{α} tel que $P(-\chi_{\alpha} < X < \chi_{\alpha}) = 1 - \alpha$.

Soit f la fonction définie sur l'ensemble des nombres réels $\mathbb R$ par

$$f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}.$$

Soit H la fonction définie et dérivable sur $[0; +\infty[$ par

$$H(x) = P(-x \le X \le x) = \int_{-x}^{x} f(t) dt.$$

- 1. Que représente la fonction f pour la loi normale centrée réduite ?
- 2. Préciser H(0) et la limite de H(x) quand x tend vers $+\infty$.
- 3. À l'aide de considérations graphiques, montrer que pour tout nombre réel positif x, $H(x) = 2 \int_0^x f(t) dt$.
- **4.** En déduire que la dérivée H' de la fonction H sur $[0; +\infty[$ est la fonction 2f et dresser le tableau de variations de H sur $[0; +\infty[$.
- 5. Démontrer alors le théorème énoncé.

Partie B

Un laboratoire se fournit en pipettes auprès de deux entreprises, notées A et B.

60 % des pipettes viennent de l'entreprise A et 4,6 % des pipettes de cette entreprise possèdent un défaut.

Dans le stock total du laboratoire, 5 % des pièces présentent un défaut. On choisit au hasard une pipette dans le stock du laboratoire et on note :

A l'évènement : « La pipette est fournie par l'entreprise A » ;

B l'évènement : « La pipette est fournie par l'entreprise B » ;

D l'évènement : « La pipette a un défaut ».

- 1. La pipette choisie au hasard présente un défaut ; quelle est la probabilité qu'elle vienne de l'entreprise A?
- **2.** Montrer que $p(B \cap D) = 0.0224$.
- 3. Parmi les pipettes venant de l'entreprise B, quel pourcentage de pipettes présente un défaut?

Lycée Émile Duclaux Page 12/13

Partie C

Une pipette est dite conforme si sa contenance est comprise, au sens large entre 98 millilitres (mL) et 102 mL.

Soit X la variable aléatoire qui à chaque pipette prise au hasard dans le stock d'un laboratoire associe sa contenance (en millilitres)

On admet que X suit une loi normale de moyenne μ et écart type σ tels que $\mu = 100$ et $\sigma^2 = 1,0424$.

1. Quelle est alors la probabilité, à 10^{-4} près, pour qu'une pipette prise au hasard soit conforme? On pourra s'aider de la table ci-dessous ou utiliser une calculatrice.

Contenance <i>x</i> (en mL)	95	96	97	98	99
$P(X \leqslant x)$ (arrondi à 10^{-5})	0,000 00	0,000 04	0,001 65	0,025 06	0,16368
Contenance <i>x</i> (en mL)	100	101	102	103	104
$P(X \leqslant x)$ (arrondi à 10^{-5})	0,5	0,836 32	0,974 94	0,998 35	0,999 96

Pour la suite, on admet que la probabilité pour qu'une pipette soit non-conforme est p = 0,05.

2. On prélève dans le stock du laboratoire des échantillons de pipettes de taille *n*, où *n* est un entier naturel supérieur ou égal à 100. On suppose que le stock est assez important pour considérer ces tirages comme indépendants.

Soit Y_n la variable aléatoire qui à chaque échantillon de taille n associe le nombre de pipettes non-conformes de l'échantillon.

- **a.** Quelle est la loi suivie par la variable aléatoire Y_n ?
- **b.** Vérifier que $n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$.
- **c.** Donner en fonction de *n* l'intervalle de fluctuation asymptotique au seuil de 95 % de la fréquence des pipettes non-conformes dans un échantillon.

Exercice 1 (Pondichéry 2014) Commun à tous les candidats

4 points

Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième.

1. La durée de vie, exprimée en années, d'un moteur pour automatiser un portail fabriqué par une entreprise A est une variable aléatoire X qui suit une loi exponentielle de paramètre λ , où λ est un réel strictement positif.

On sait que $P(X \le 2) = 0,15$.

Déterminer la valeur exacte du réel λ .

Dans la suite de l'exercice on prendra 0,081 pour valeur de λ .

- 2. a. Déterminer $P(X \ge 3)$.
 - **b.** Montrer que pour tous réels positifs t et h, $P_{x \ge t}(X \ge t + h) = P(X \ge h)$.
 - c. Le moteur a déjà fonctionné durant 3 ans. Quelle est la probabilité pour qu'il fonctionne encore 2 ans?
 - d. Calculer l'espérance de la variable aléatoire X et donner une interprétation de ce résultat.
- 3. Dans la suite de cet exercice, on donnera des valeurs arrondies des résultats à 10^{-3}

L'entreprise A annonce que le pourcentage de moteurs défectueux dans la production est égal à 1 %. Afin de vérifier cette affirmation 800 moteurs sont prélevés au hasard. On constate que 15 moteurs sont détectés défectueux.

Le résultat de ce test remet-il en question l'annonce de l'entreprise A? Justifier. On pourra s'aider d'un intervalle de fluctuation.

Lycée Émile Duclaux Page 13/13