ml-review

July 17, 2023

Bitcoin Price Prediction and Analysis Using Deep Learning Models

S.NARTHANA - 21MIA1124

Display the descriptive statistics
statistics = df['Close'].describe()

print(statistics)

```
DILLIBABU-21MIA1148

[]: import pandas as pd
import matplotlib.pyplot as plt

# Load the dataset

df = pd.read_csv('/content/BTC-USD.csv')

# Display the DataFrame
print(df)

# Display the histogram

df['Close'].hist(bins=20)
plt.xlabel('Close Price')
plt.ylabel('Frequency')
plt.title('Histogram of Close Price')
plt.show()
```

	Date	Open	High	Low	Close	\
0	2014-09-17	465.864014	468.174011	452.421997	457.334015	
1	2014-09-18	456.859985	456.859985	413.104004	424.440002	
2	2014-09-19	424.102997	427.834991	384.532013	394.795990	
3	2014-09-20	394.673004	423.295990	389.882996	408.903992	
4	2014-09-21	408.084991	412.425995	393.181000	398.821014	
2708	2022-02-15	42586.464844	44667.218750	42491.035156	44575.203125	
2709	2022-02-16	44578.277344	44578.277344	43456.691406	43961.859375	
2710	2022-02-17	43937.070313	44132.972656	40249.371094	40538.011719	
2711	2022-02-18	40552.132813	40929.152344	39637.617188	40030.976563	
2712	2022-02-19	40022.132813	40246.027344	40010.867188	40126.429688	

	Adj Close	Volume
0	457.334015	21056800
1	424.440002	34483200
2	394.795990	37919700
3	408.903992	36863600
4	398.821014	26580100
2708	44575.203125	22721659051
2709	43961.859375	19792547657
2710	40538.011719	26246662813
2711	40030.976563	23310007704
2712	40126.429688	22263900160

[2713 rows x 7 columns]

count	2713.000000
mean	11323.914637
std	16110.365010
min	178.102997
25%	606.718994
50%	6317.609863

```
75%
             10462.259766
             67566.828125
    max
    Name: Close, dtype: float64
[ ]: # Check for null values
     null_counts = df.isnull().sum()
     # Display the null value counts
     print(null_counts)
                 0
    Date
    Open
                 0
                 0
    High
    Low
                 0
    Close
                 0
    Adj Close
                 0
    Volume
                 0
    dtype: int64
    LSTM MODEL
[ ]: import numpy as np
     import pandas as pd
     from sklearn.preprocessing import MinMaxScaler
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import LSTM, Dense
[ ]: # Load the dataset
     data = pd.read_csv('/content/BTC-USD.csv')
[ ]: # Normalize the 'Close' column
     scaler = MinMaxScaler(feature_range=(0, 1))
     data['Close'] = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
[ ]: # Convert the 'Close' column to a numpy array
     prices = data['Close'].values
[]: # Define the function to create the LSTM model
     def create_lstm_model(window_size):
         model = Sequential()
         model.add(LSTM(50, input_shape=(window_size, 1)))
         model.add(Dense(1))
         model.compile(loss='mean_squared_error', optimizer='adam')
         return model
[]: # Define the function to train and evaluate the LSTM model
     def train_and_evaluate(prices, window_size, num_days_ahead):
         X, y = [], []
```

```
y.append(prices[i+window_size+num_days_ahead])
         X = np.array(X)
         y = np.array(y)
         split_index = int(0.8 * len(X))
         X_train, X_test = X[:split_index], X[split_index:]
         y_train, y_test = y[:split_index], y[split_index:]
         model = create_lstm_model(window_size)
         model.fit(X_train, y_train, epochs=100, batch_size=32, verbose=0)
         # Make predictions
         train_predictions = model.predict(X_train)
         test_predictions = model.predict(X_test)
         # Denormalize the predictions
         train_predictions = scaler.inverse_transform(train_predictions)
         test_predictions = scaler.inverse_transform(test_predictions)
         y_train = scaler.inverse_transform(y_train.reshape(-1, 1))
         y_test = scaler.inverse_transform(y_test.reshape(-1, 1))
         # Calculate RMSE and MAPE
         train_rmse = np.sqrt(np.mean((y_train - train_predictions)**2))
         test_rmse = np.sqrt(np.mean((y_test - test_predictions)**2))
         train_mape = np.mean(np.abs((y_train - train_predictions) / y_train))
         test_mape = np.mean(np.abs((y_test - test_predictions) / y_test))
         return train_rmse, test_rmse, train_mape, test_mape
[]: # Define the window sizes and number of days ahead for prediction
     window_sizes = [5, 7]
     num_days_ahead_list = [7, 15]
     # Store the results in a list
     results = \Pi
     # Generate results for each combination of window size and number of days ahead
     for window_size in window_sizes:
         for num_days_ahead in num_days_ahead_list:
             train_rmse, test_rmse, train_mape, test_mape =_
      strain_and_evaluate(prices, window_size, num_days_ahead)
             results.append((window_size, num_days_ahead, train_rmse, test_rmse,_
      strain_mape, test_mape))
     # Print the results
```

for i in range(len(prices) - window_size - num_days_ahead):

X.append(prices[i:i+window_size])

```
print("Window size\tNumber of days ahead\tRMSE\t\tMAPE")
   for result in results:
      window_size, num_days_ahead, train_rmse, test_rmse, train_mape, test_mape = ____
    result
      print(f"{window_size}\t\t{num_days_ahead}\t\t{test_rmse:.3f}\t\t{test_mape:.
    s3f}")
   68/68 [========= - 1s 2ms/step
   Window size
              Number of days ahead
                                           MAPE
   5
              7
                          12155.783
                                           0.228
   5
              15
                          22302.529
                                           0.424
   7
              7
                          14955.699
                                           0.281
   7
              15
                          25339.671
                                           0.481
[ ]: # Define the window sizes and number of days ahead for prediction
   window_sizes = [12, 15]
   num_days_ahead_list = [3, 15]
   # Store the results in a list
   results = \Pi
   # Generate results for each combination of window size and number of days ahead
   for window_size in window_sizes:
      for num_days_ahead in num_days_ahead_list:
         train_rmse, test_rmse, train_mape, test_mape =_
    strain_and_evaluate(prices, window_size, num_days_ahead)
         results.append((window_size, num_days_ahead, train_rmse, test_rmse,_
    strain_mape, test_mape))
   # Print the results
   print("Window size\tNumber of days ahead\tRMSE\t\tMAPE")
   for result in results:
      window_size, num_days_ahead, train_rmse, test_rmse, train_mape, test_mape = ___
      print(f"{window_size}\t\t{num_days_ahead}\t\t{test_rmse:.3f}\t\t{test_mape:.
    s3f}")
   17/17 [=======] - Os 4ms/step
```

```
Window size
                 Number of days ahead
                                                    MAPE
                                     RMSE
   12
                               9113.316
                                                    0.164
   12
                 15
                               23132.826
                                                    0.446
   15
                               10109.427
                 3
                                                    0.180
   15
                 15
                               23255.099
                                                    0.445
   GRU MODEL
[]: import numpy as np
    import pandas as pd
    from sklearn.preprocessing import MinMaxScaler
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import GRU, Dense
[ ]: # Load the dataset
    data = pd.read_csv('/content/BTC-USD.csv')
[ ]: # Normalize the 'Close' column
    scaler = MinMaxScaler(feature_range=(0, 1))
    data['Close'] = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
[ ]: # Convert the 'Close' column to a numpy array
    prices = data['Close'].values
[ ]: # Define the function to create the GRU model
    def create_gru_model(window_size):
       model = Sequential()
       model.add(GRU(50, input_shape=(window_size, 1)))
       model.add(Dense(1))
       model.compile(loss='mean_squared_error', optimizer='adam')
       return model
[]: # Define the function to train and evaluate the GRU model
    def train_and_evaluate(prices, window_size, num_days_ahead):
       X, y = [], []
       for i in range(len(prices) - window_size - num_days_ahead):
           X.append(prices[i:i+window_size])
           y.append(prices[i+window_size+num_days_ahead])
       X = np.array(X)
       y = np.array(y)
       split_index = int(0.8 * len(X))
       X_train, X_test = X[:split_index], X[split_index:]
```

```
y_train, y_test = y[:split_index], y[split_index:]
       model = create_gru_model(window_size)
       model.fit(X_train, y_train, epochs=100, batch_size=32, verbose=0)
       # Make predictions
       train_predictions = model.predict(X_train)
       test_predictions = model.predict(X_test)
       # Denormalize the predictions
       train predictions = scaler.inverse transform(train predictions)
       test_predictions = scaler.inverse_transform(test_predictions)
       y_train = scaler.inverse_transform(y_train.reshape(-1, 1))
       y_{test} = scaler.inverse_transform(y_test.reshape(-1, 1))
       # Calculate RMSE and MAPE
       train_rmse = np.sqrt(np.mean((y_train - train_predictions)**2))
       test\_rmse = np.sqrt(np.mean((y\_test - test\_predictions)**2))
       train_mape = np.mean(np.abs((y_train - train_predictions) / y_train))
       test_mape = np.mean(np.abs((y_test - test_predictions) / y_test))
       return train_rmse, test_rmse, train_mape, test_mape
[ ]: # Define the window sizes and number of days ahead for prediction
   window_sizes = [5, 7]
   num_days_ahead_list = [7, 15]
[ ]: results = []
   for window_size in window_sizes:
       for num_days_ahead in num_days_ahead_list:
          train_rmse, test_rmse, train_mape, test_mape =_
     strain_and_evaluate(prices, window_size, num_days_ahead)
          results.append((window_size, num_days_ahead, train_rmse, test_rmse,_
     strain_mape, test_mape))
   [ ]: # Print the results
   print("Window size\tNumber of days ahead\tRMSE\t\tMAPE")
   for result in results:
```

```
window_size, num_days_ahead, train_rmse, test_rmse, train_mape, test_mape =
sresult
    print(f"{window_size}\t\t{num_days_ahead}\t\t{test_rmse:.3f}\t\t{test_mape:.
s3f}")
```

```
Window size
                Number of days ahead
                                        RMSE
                                                        MAPE
                               15685.623
                                                        0.294
5
                15
                               19692.828
                                                        0.371
7
                7
                               15238.392
                                                        0.285
7
                15
                               22067.657
                                                        0.428
```

```
[ ]: # Define the window sizes and number of days ahead for prediction
     window_sizes = [12, 15]
     num_days_ahead_list = [3, 15]
     # Store the results in a list
     results = []
     # Generate results for each combination of window size and number of days ahead
     for window_size in window_sizes:
         for num_days_ahead in num_days_ahead_list:
             train_rmse, test_rmse, train_mape, test_mape =_
      strain_and_evaluate(prices, window_size, num_days_ahead)
             results.append((window_size, num_days_ahead, train_rmse, test_rmse,_
      strain_mape, test_mape))
     # Print the results
     print("Window size\tNumber of days ahead\tRMSE\t\tMAPE")
     for result in results:
         window_size, num_days_ahead, train_rmse, test_rmse, train_mape, test_mape = __
      sresult
         print(f"{window_size}\t\t{num_days_ahead}\t\t{test_rmse:.3f}\t\t{test_mape:.
      ₃3f}")
```

12	3	8504.012	0.156
12	15	20957.390	0.409
15	3	7955.616	0.141
15	15	18873.989	0.373

MAPE

Graph for comparision for LSTM model

```
[ ]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.preprocessing import MinMaxScaler
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import LSTM, Dense
     # Load the dataset
     df = pd.read_csv('/content/BTC-USD.csv')
     # Preprocessing and feature scaling
     scaler = MinMaxScaler()
     df['Close'] = scaler.fit_transform(df['Close'].values.reshape(-1, 1))
     # Split the dataset into train and test sets
     train size = int(len(df) * 0.8)
     train_data = df[:train_size]
     test_data = df[train_size:]
     # Define a function to create input sequences for LSTM
     def create_sequences(data, sequence_length):
         x = \Pi
         \mathbf{v} = \mathbf{\Pi}
         for i in range(len(data)-sequence_length):
             x.append(data[i:i+sequence_length])
             y.append(data[i+sequence_length])
         return np.array(x), np.array(y)
     # Set the sequence length and create input sequences for train and test data
     sequence_length = 10
     X_train, y_train = create_sequences(train_data['Close'].values, sequence_length)
     X_test, y_test = create_sequences(test_data['Close'].values, sequence_length)
     # Build and train the LSTM model
     model = Sequential()
     model.add(LSTM(units=50, input_shape=(sequence_length, 1)))
     model.add(Dense(1))
     model.compile(loss='mean_squared_error', optimizer='adam')
     model.fit(X_train, y_train, epochs=10, batch_size=32)
     # Make predictions on the train and test data
     train_predictions = model.predict(X_train)
     test_predictions = model.predict(X_test)
     # Inverse transform the scaled values
```

```
train_predictions = scaler.inverse_transform(train_predictions)
y_train = scaler.inverse_transform([y_train])
test_predictions = scaler.inverse_transform(test_predictions)
y_test = scaler.inverse_transform([y_test])
# Plot the graph
plt.figure(figsize=(12, 6))
plt.plot(y_train[0], label='Actual (Train)')
plt.plot(train_predictions[:,0], label='Predicted (Train)')
plt.plot(range(len(y_train[0]), len(y_train[0])+len(y_test[0])), y_test[0],_
 slabel='Actual (Test)')
plt.plot(range(len(y_train[0]), len(y_train[0])+len(y_test[0])),_
 stest_predictions[:,0], label='Predicted (Test)')
plt.title('Bitcoin Price Prediction using LSTM')
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
plt.show()
Epoch 1/10
Epoch 2/10
68/68 [=========]
                                - 1s 7ms/step - loss: 6.6373e-05
Epoch 3/10
68/68 [=========]
                                - 1s 7ms/step - loss: 6.5029e-05
Epoch 4/10
68/68 [=========]
                                - 1s 8ms/step - loss: 6.5284e-05
Epoch 5/10
68/68 [=========]
                                - 0s 7ms/step - loss: 5.9934e-05
Epoch 6/10
68/68 [==========]
                                - 1s 7ms/step - loss: 5.9925e-05
Epoch 7/10
68/68 [===========
                                - 0s 7ms/step - loss: 5.5796e-05
Epoch 8/10
68/68 [=========]
                                - 1s 7ms/step - loss: 5.8152e-05
Epoch 9/10
68/68 [=========]
                                - 0s 7ms/step - loss: 5.0336e-05
Epoch 10/10
68/68 [=========]
                                - 1s 8ms/step - loss: 4.8956e-05
68/68 [=========]
                                - 1s 3ms/step
17/17 [========]
                                - 0s 3ms/step
```


Graph for comparision for GRU model

```
[]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.preprocessing import MinMaxScaler
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import GRU, Dense
     # Load the dataset
     df = pd.read_csv('/content/BTC-USD.csv')
     # Preprocessing and feature scaling
     scaler = MinMaxScaler()
     df['Close'] = scaler.fit_transform(df['Close'].values.reshape(-1, 1))
     # Split the dataset into train and test sets
     train_size = int(len(df) * 0.8)
     train_data = df[:train_size]
     test_data = df[train_size:]
     # Define a function to create input sequences for GRU
     def create_sequences(data, sequence_length):
         x = []
         \mathbf{v} = \mathbf{\Pi}
         for i in range(len(data)-sequence_length):
             x.append(data[i:i+sequence_length])
             y.append(data[i+sequence_length])
```

```
return np.array(x), np.array(y)
# Set the sequence length and create input sequences for train and test data
sequence_length = 10
X_train, y_train = create_sequences(train_data['Close'].values, sequence_length)
X_test, y_test = create_sequences(test_data['Close'].values, sequence_length)
# Build and train the GRU model
model = Sequential()
model.add(GRU(units=50, input_shape=(sequence_length, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_train, y_train, epochs=10, batch_size=32)
# Make predictions on the train and test data
train_predictions = model.predict(X_train)
test_predictions = model.predict(X_test)
# Inverse transform the scaled values
train_predictions = scaler.inverse_transform(train_predictions)
y_train = scaler.inverse_transform([y_train])
test_predictions = scaler.inverse_transform(test_predictions)
y_test = scaler.inverse_transform([y_test])
# Plot the graph
plt.figure(figsize=(12, 6))
plt.plot(y_train[0], label='Actual (Train)')
plt.plot(train_predictions[:,0], label='Predicted (Train)')
plt.plot(range(len(y_train[0]), len(y_train[0])+len(y_test[0])), y_test[0],_
 slabel='Actual (Test)')
plt.plot(range(len(y_train[0]), len(y_train[0])+len(y_test[0])),
 stest_predictions[:,0], label='Predicted (Test)')
plt.title('Bitcoin Price Prediction using GRU')
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
plt.show()
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
```

```
- 0s 7ms/step - loss: 4.2699e-05
Epoch 6/10
68/68 [=========]
                            - 1s 7ms/step - loss: 4.1701e-05
Epoch 7/10
68/68 [==========]
                            - 1s 8ms/step - loss: 4.0932e-05
Epoch 8/10
68/68 [==========]
                            - 1s 7ms/step - loss: 3.6781e-05
Epoch 9/10
68/68 [==========]
                            - 0s 7ms/step - loss: 3.5296e-05
Epoch 10/10
68/68 [=========]
                            - 0s 7ms/step - loss: 3.4303e-05
68/68 [==========]
                            - 1s 3ms/step
17/17 [=========]
                            - 0s 3ms/step
```


Compilation Time for both LSTM AND GRU MODEL

```
[]: import time
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, GRU, Dense

# Define the LSTM model
| lstm_model = Sequential()
| lstm_model.add(LSTM(units=50, input_shape=(sequence_length, 1)))
| lstm_model.add(Dense(1))
| lstm_model.compile(loss='mean_squared_error', optimizer='adam')

# Define the GRU model
| gru_model = Sequential()
```

```
gru_model.add(GRU(units=50, input_shape=(sequence_length, 1)))
gru_model.add(Dense(1))
gru_model.compile(loss='mean_squared_error', optimizer='adam')
# Measure LSTM model compilation time
start_time = time.time()
lstm_model.compile(loss='mean_squared_error', optimizer='adam')
end_time = time.time()
Istm_compilation_time = (end_time - start_time) * 1000 # in milliseconds
# Measure GRU model compilation time
start_time = time.time()
gru_model.compile(loss='mean_squared_error', optimizer='adam')
end_time = time.time()
gru_compilation_time = (end_time - start_time) * 1000 # in milliseconds
# Print the model compilation time and number of epochs
print(f"LSTM Model Compilation Time (ms): {lstm_compilation_time}")
print(f"GRU Model Compilation Time (ms): {gru_compilation_time}")
print("Number of Epochs: 100")
```

LSTM Model Compilation Time (ms): 8.494138717651367 GRU Model Compilation Time (ms): 10.382413864135742 Number of Epochs: 100

[]: import time

end_time = time.time()

import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, GRU, Dense

Define the LSTM model
lstm_model = Sequential()
lstm_model.add(LSTM(units=50, input_shape=(sequence_length, 1)))
lstm_model.add(Dense(1))
lstm_model.compile(loss='mean_squared_error', optimizer='adam')

Define the GRU model
gru_model = Sequential()
gru_model.add(GRU(units=50, input_shape=(sequence_length, 1)))
gru_model.add(Dense(1))
gru_model.compile(loss='mean_squared_error', optimizer='adam')

Measure LSTM model compilation time
start_time = time.time()

lstm_model.compile(loss='mean_squared_error', optimizer='adam')

Istm_compilation_time = (end_time - start_time) * 1000 # in milliseconds

```
# Measure GRU model compilation time
start_time = time.time()
gru_model.compile(loss='mean_squared_error', optimizer='adam')
end_time = time.time()
gru_compilation_time = (end_time - start_time) * 1000 # in milliseconds

# Plot the graph
models = ['LSTM', 'GRU']
compilation_times = [lstm_compilation_time, gru_compilation_time]

plt.bar(models, compilation_times)
plt.xlabel('Models')
plt.ylabel('Compilation Time (ms)')
plt.title('Model Compilation Time')
plt.show()

# Print the number of epochs
print("Number of Epochs: 100")
```


Number of Epochs: 100

bITCOIN PRICE PREDICTION FOR 7 DAYS AHEAD FOR BOTH LSTM AND GRU MODEL

```
[ ]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.preprocessing import MinMaxScaler
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import LSTM, GRU, Dense
     from sklearn.metrics import mean_squared_error
     # Load the dataset
     df = pd.read_csv('/content/BTC-USD.csv')
     # Preprocessing and feature scaling
     scaler = MinMaxScaler()
     df['Close'] = scaler.fit_transform(df['Close'].values.reshape(-1, 1))
     # Split the dataset into train and test sets
     train_size = int(len(df) * 0.8)
     train_data = df[:train_size]
     test_data = df[train_size:]
     # Define a function to create input sequences
     def create_sequences(data, sequence_length):
         x = \Pi
         y = []
         for i in range(len(data)-sequence_length):
             x.append(data[i:i+sequence_length])
             v.append(data[i+sequence_length])
         return np.array(x), np.array(y)
     # Set the sequence length and create input sequences for train and test data
     sequence_length = 10
     X_train, y_train = create_sequences(train_data['Close'].values, sequence_length)
     X_test, y_test = create_sequences(test_data['Close'].values, sequence_length)
     # Build and train the LSTM model
     Istm model = Sequential()
     lstm_model.add(LSTM(units=50, input_shape=(sequence_length, 1)))
     lstm model.add(Dense(1))
     lstm_model.compile(loss='mean_squared_error', optimizer='adam')
     lstm_model.fit(X_train, y_train, epochs=10, batch_size=32)
     # Build and train the GRU model
     gru_model = Sequential()
```

```
gru_model.add(GRU(units=50, input_shape=(sequence_length, 1)))
gru_model.add(Dense(1))
gru_model.compile(loss='mean_squared_error', optimizer='adam')
gru_model.fit(X_train, y_train, epochs=10, batch_size=32)
# Make predictions on the test data using the LSTM model
lstm_predictions = lstm_model.predict(X_test)
lstm_predictions = scaler.inverse_transform(lstm_predictions)
y_test = scaler.inverse_transform([y_test])
# Make predictions on the test data using the GRU model
gru_predictions = gru_model.predict(X_test)
gru_predictions = scaler.inverse_transform(gru_predictions)
# Calculate Mean Squared Error (MSE)
lstm_mse = mean_squared_error(y_test[0], lstm_predictions[:, 0])
gru_mse = mean_squared_error(y_test[0], gru_predictions[:, 0])
# Plot the MSE graphs
plt.figure(figsize=(12, 6))
plt.plot(y_test[0], label='Actual')
plt.plot(lstm_predictions[:, 0], label='LSTM Predicted (MSE: {:.4f})'.
 sformat(lstm_mse))
plt.plot(gru_predictions[:, 0], label='GRU Predicted (MSE: {:.4f})'.
 sformat(gru_mse))
plt.title('Bitcoin Price Prediction - 7-Day Ahead')
plt.xlabel('Time')
plt.vlabel('Price')
plt.legend()
plt.show()
Epoch 1/10
Epoch 2/10
68/68 [=========]
                                  - 1s 12ms/step - loss: 7.4434e-05
Epoch 3/10
68/68 [=========
                                  - 1s 11ms/step - loss: 7.5137e-05
Epoch 4/10
68/68 [=========]
                                  - 1s 11ms/step - loss: 7.1353e-05
Epoch 5/10
68/68 [=========]
                                  - 1s 10ms/step - loss: 6.7974e-05
Epoch 6/10
68/68 [=========
                                  - 1s 8ms/step - loss: 6.5921e-05
Epoch 7/10
68/68 [=========]
                                  - 1s 7ms/step - loss: 6.0795e-05
Epoch 8/10
68/68 [=========]
                                  - 1s 7ms/step - loss: 5.8551e-05
```

```
Epoch 9/10
68/68 [==========]
                              - 1s 7ms/step - loss: 6.1085e-05
Epoch 10/10
                              - 0s 7ms/step - loss: 5.5713e-05
68/68 [=========]
Epoch 1/10
68/68 [==========]
                              - 3s 8ms/step - loss: 0.0017
Epoch 2/10
68/68 [==========]
                              - 1s 8ms/step - loss: 5.2811e-05
Epoch 3/10
68/68 [==========]
                              - 1s 8ms/step - loss: 5.1522e-05
Epoch 4/10
                              - 1s 8ms/step - loss: 4.7993e-05
68/68 [==========]
Epoch 5/10
                              - 1s 8ms/step - loss: 4.5459e-05
68/68 [===========]
Epoch 6/10
68/68 [=========]
                              - 1s 8ms/step - loss: 4.3508e-05
Epoch 7/10
68/68 [=========]
                              - 1s 8ms/step - loss: 4.0065e-05
Epoch 8/10
68/68 [==========]
                              - 1s 8ms/step - loss: 4.2622e-05
Epoch 9/10
68/68 [==========]
                              - 1s 8ms/step - loss: 3.9016e-05
Epoch 10/10
                              - 1s 8ms/step - loss: 3.6468e-05
68/68 [=========
17/17 [==========]
                              - 0s 3ms/step
17/17 [=========]
                              - 0s 3ms/step
```


In terms of RMSE (Root Mean Square Error), MSE (Mean Square Error), and MAPE (Mean

Absolute Percentage Error) values. GRU (Gated Recurrent Unit) model is al better than the LSTM (Long Short-Term Memory) model.

Both GRU and LSTM are popular types of recurrent neural network (RNN) architectures that are effective in modeling sequential data. They are designed to address the vanishing gradient problem that traditional RNNs often encounter. While LSTM has been widely used and studied for a longer period, GRU is a more recent development that simplifies the LSTM architecture by merging the cell state and hidden state.

But it is not accurate to make a general conclusion that the GRU (Gated Recurrent Unit) model is always better than the LSTM (Long Short-Term Memory) model. The choice between these two models depends on various factors, including the nature of the data, the complexity of the problem, and the available resources.