УДК 621.039.586

АНАЛИЗ АВАРИИ РАЗГОНА БЫСТРОГО РЕАКТОРА В ПРИБЛИЖЕНИИ «МГНОВЕННОГО СКАЧКА»

Н. М. Каджури

Московский физико-технический институт, г. Москва

В приближении «мгновенного скачка» проведены оценки предельного ввода реактивности ρ_{m} , ведущего к разрушению топлива.

ВВЕДЕНИЕ

Ввод реактивности $\rho(t)$ в быстрый реактор с малым временем жизни нейтронов и с мгновенно реагирующей на температуру топлива T отрицательной обратной связью - (T) приводит к серии вспышек мощности. Выполненные в [1] расчеты показывают, что для теплопроводного и термостойкого топлива (например, нитридного) с большим запасом ΔT_m до температуры его разрушения при скорости ввода реактивности $\dot{\rho}$ в десятки $\dot{\rho}$ сек рост температуры во вспышке оказывается небольшим, $\Delta T << \Delta T_m$. В этом случае возможно описание аварийного процесса усредненной по вспышкам мощностью p(t), что соответствует «приближению нулевого времени жизни нейтронов ($\tau = 0$)», подобному «приближению мгновенного скачка» (2). Использование такого приближения позволяет упростить громоздкий численный расчет реактивностных аварий в быстром реакторе, значительно увеличив шаг по временной оси.

Ниже анализируются простейшие аналитические решения уравнений одноточеч-

ной кинетики в этом приближении (для упрощения теплоемкость топлива C(T) и $\frac{d\rho_f}{dT}$ принимаются постоянными).

Оценки по простым моделям остаются необходимой частью анализа нейтронных процессов в реакторах как для выработки физических представлений об их закономерностях, так и для построения рациональных способов численных расчетов.

Рассмотренные простейшие примеры демонстрируют особенности приближения $\alpha \tau = 0$ », требующие учета при построении расчетных схем: скачки мощности при изменении $\dot{\rho}$, возникновение нефизических отрицательных решений при $\dot{\rho} < 0$.

Нашей задачей является также оценка предельного ввода реактивности $\rho_{\it m}$, ведущего к разрушению топлива, в зависимости от $\beta_{\it s}$ и $\rho_{\it f}$. Эта практически важная для безопасности реактора величина зависит также от времени аварийного процесса по сравнению с временами температурной релаксации топлива $\theta_{\it c}$ и распада источни-

ков запаздывающих нейтронов $\frac{1}{\lambda}$. Поэтому наряду с быстрым адиабатическим разгоном ниже рассмотрены и случаи медленного ввода реактивности, когда прибли-

© **Н.М.** Каджури, 2002

жение «τ=0» заведомо приемлемо.

ПРИБЛИЖЕНИЕ НУЛЕВОГО ВРЕМЕНИ ЖИЗНИ НЕЙТРОНОВ

Быстрый разгон реактора при вводе реактивности с высокой скоростью $\dot{\rho}\!\left(\frac{\rho\dot{\theta}}{\beta_{\jmath\phi}}>>\!1\right)$ имеет адиабатический характер и при τ = 0 в «одноточечном» приближении описывается уравнением для удельной мощности p(t) (вт/гр)

$$\beta_{\ni \phi \phi} p(t) - \rho(t) \cdot p(t) + \frac{\rho_0}{\theta_c p_0} \cdot p(t) \cdot \int_0^t (p(t') - p_0) \cdot dt' = \beta_{\ni \phi \phi} p_0, \tag{1}$$

где p_0 - исходная мощность; $\rho_0 = \frac{d\rho_f}{dt} \cdot \Delta T_0$ - температурный эффект по топливу при

мощности $p=p_0$; $\Delta T_0=\frac{p_0\theta_c}{C}$ - превышение средней температуры топлива над температурой теплоносителя при $p=p_0$.

Разделив (1) на p(t) и дифференцируя по t, получим уравнение

$$\frac{\beta_{3\phi} p_0}{p^2(t)} \frac{dp(t)}{dt} = \dot{\rho}(t) - \frac{\rho_0}{\theta p_0} (p(t) - p_0) , p(0) = p_0.$$
 (2)

Рассмотрим сначала предельный случай $eta_{\imath n} \! o \! 0$ с решением

$$p(t) = p_0 \left(1 + \frac{\Theta \dot{\rho}(t)}{\rho_0} \right), \tag{3}$$

дающим скачкообразный рост мощности при вводе реактивности со скоростью $\dot{\rho}$. При снижении $\dot{\rho}$ мощность p(t) падает вплоть до отрицательных значений при $\dot{\rho}$ <0 . Возникновение физически неверного отрицательного решения связано с нарушением условия применимости приближения « τ = 0»

$$\frac{\tau}{p}\frac{dp}{dt} << 1$$

при приближении p(t) к нулю. Учет в уравнении нейтронной кинетики члена $\tau \frac{dp}{dt}$, опущенного в (1), привел бы к быстрому экспоненциальному обращению в ноль p(t) без перехода в отрицательную область. Исправление этого дефекта приближения « $\tau = 0$ » состоит поэтому в замене на ноль отрицательных величин p(t).

Из (3) рост температуры топлива при вводе реактивности о составит

$$\Delta T = \frac{1}{c} \cdot \int_{0}^{t} (p(t) - p_0) dT = \frac{p_0 \theta}{c \rho_0} \rho(t) = \Delta T_0 \cdot \frac{\rho(t)}{\rho_0}.$$

При $\beta_{\!\circ\!\phi}$ > 0 и линейном вводе реактивности $\rho(t)\!=\!\dot{\rho}t$, подставив в (2)

$$p(t) = p_m(1 - v(t)),$$

где $p_m = p_0 \cdot \left(1 + \frac{\theta \cdot \dot{\rho}}{\rho_0}\right)$ - асимптотическое значение мощности при больших t, получим для v(t) уравнение

$$\frac{p_m}{p_0} \cdot \frac{d\rho}{\beta} = -\frac{d\nu}{\nu(1-\nu)^2} \left(\nu(0) = 1 - \frac{p_0}{p_m}\right) \tag{4}$$

с решением

$$\frac{\rho(t)}{\beta} = 1 + \frac{p_0}{p_m} \cdot \ln \left(\frac{p_m}{p_0} - 1 \right) - \frac{p_0}{p_m} \cdot \left(\frac{1}{1 - \nu(t)} + \ln \left(\frac{\nu(t)}{1 - \nu(t)} \right) \right)$$

изображаемым кривой на рис. 1.

По сравнению с β =0 рост мощности от p_0 до p_m растягивается на время $t \sim \frac{\beta}{\dot{\rho}}$, за которое вводится реактивность $\rho \sim \beta$.

Умножая (4) на v(t) и интегрируя по ρ от нуля до ρ_m , получим

$$\frac{\Delta T_m}{\Delta T_0} = \frac{\rho_m - \beta}{\rho_0} + \frac{\beta}{\theta \cdot (1 - \nu(t)) \cdot \dot{\rho}};$$
(5)

при $\rho_m << \beta \ \frac{\Delta T_m}{\Delta T_0} \cong \frac{\rho_m}{\rho_0}$ мало, при $\rho = \beta \ \frac{\Delta T_m}{\Delta T_0} = \frac{\beta}{\theta \cdot 0.782 \cdot \dot{\rho}}$ остается малым и растет до опасных пределов лишь при $\rho > \beta$.

Если взять за ΔT_m предельный рост температуры топлива, за которым наступает его разрушение в результате фазовых превращений и фрагментации, то предельная реактивность, не ведущая к разрушению,

$$\rho_m = \beta_{\vartheta\phi\phi} + \rho_0 \cdot \frac{\Delta T_m}{\Delta T_0} = \beta_{\vartheta\phi\phi} + \frac{d\rho_f}{dT} \cdot \Delta T_m.$$
 (6)

Для термостойких и теплопроводных топлив $\frac{\Delta T_m}{\Delta T_0}$ велико, и безопасные для аварий быстрого разгона пределы ввода реактивности ρ_m могут существенно превысить величину β в зависимости от обратной связи $\frac{d\rho_f}{dT}$ и температурного запаса до разрушения топлива ΔT_m , т.е. от его термостойкости и теплопроводности.

Рис. 1

Пределы быстрого ввода реактивности, не ведущего к разрушению топлива, могут поэтому быть расширены достаточно далеко за $\beta_{3\phi\phi}$. Разумеется, более определенная формулировка критерия безопасности реактора в отношении экстремальных аварий с быстрым вводом реактивности требует более детального исследования.

БОЛЕЕ МЕДЛЕННЫЕ АВАРИИ С ВВОДОМ РЕАКТИВНОСТИ

А. При $\dot{\rho} \leq 1\$/c \; \frac{\rho \; \theta_c}{\beta} \leq 1 \;$ существенным становится вынос тепла из топлива с

разогревом оболочек твэлов и теплоносителя, выносящего тепло из реактора. Между ними устанавливается распределение температур, растущих с p(t). Величина обратной связи, учитывающей влияние всех этих компонентов, определяется мощност-

ным эффектом реактивности $\rho_f(p) = \rho_0 \cdot \frac{p(t)}{p_0}$, ρ_0 - мощностной эффект реактора на исходной мощности p_0 .

В приближении $\tau = 0$ уравнение одноточечной кинетики реактора на мгновенных нейтронах

$$\beta p(t) - \rho(t)p(t) + \rho_0 \frac{p(t) - p_0}{p_0} p(t) = \beta p_0$$
 (7)

имеет решение

$$p(\rho) = \frac{2 \cdot p_0}{\sqrt{\left(1 - \frac{\rho}{\beta} - \frac{\rho_0}{\beta}\right)^2 + 4 \cdot \frac{\rho_0}{\beta} + 1 - \frac{\rho}{\beta} - \frac{\rho_0}{\beta}}}.$$
 (8)

Зависимость $\frac{p(\frac{\rho}{\beta})}{p_0} = \frac{\Delta T(\rho)}{\Delta T_0} + 1$ при различных $\frac{\rho_0}{\beta}$ приведена на рис. 2.

В. При $\dot{\rho}$ <0.1\$/с кинетика реактора определяется запаздывающими нейтронами

Рис.2. Зависимость $\frac{p(\rho'\beta)}{p_0} = \frac{\Delta T(\rho)}{\Delta T_0} + 1$ при различных $\frac{\rho_0}{\beta}$ (1-0.5, 2-1, 3-2, 4-4: $\frac{\rho_0}{\beta}$)

со средней постоянной распада $\lambda \sim 0.1c^{-1}$, $\frac{\dot{\rho}}{\lambda\beta} \leq 1$. Среднее время жизни нейтронного поколения значительно увеличивается по сравнению с τ , но остается небольшим, $\frac{\beta}{\lambda} < 0.1c$, поэтому в уравнении кинетики

$$\frac{\beta}{\lambda} \cdot \frac{dp(t)}{dt} = \rho p(t) - \rho_0 \frac{p - p_0}{p_0} p(t)$$
(9)

левая часть для малых ρ невелика и обуславливает лишь небольшое запаздывание в развитии разгона, вызываемого вводом реактивности $\rho(t)$. Пренебрегая производной, получим

$$p(t) = p_0 \left(1 + \frac{\rho(t)}{\rho_0} \right),$$

так что
$$\frac{\Delta T(\rho)}{\Delta T_0} = \frac{\rho(t)}{\rho_0}$$
.

При медленном вводе допустимая реактивность определяется величиной мощностного эффекта ρ_0 и пределами кратковременного (десятки секунд) повышения температуры теплоносителя (кипение), оболочек твэлов (плавление) и топлива (разрушение).

При ρ_0 масштаба и больших запасах до критических температур пределы аварийного ввода реактивности без разрушения топлива и других экстремальных последствий могут быть также расширены за пределы $\rho = \beta_{\vartheta \phi \phi}$ и для медленных процессов.

Литература

- 1. *Каджури Н.М.* Аварии разгона быстрого реактора. Ппростейшие Модели и закономерности// Известия вузов. Ядерная энергетика. 2000. №2. С. 72-78.
- 2. Hetrick David L. Dynamics of Nuclear Reactors, chapter 3, The University of Chicago press, 1971.

Поступила в редакцию 12.04.2002

УДК 621.039.586

Analysis of Failure of a Fast Reactor Runaway in Approach of Zero Lifetime of Prompt Neutrons \N.M. Kadjuri; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 5 pages, 2 illustrations. – References, 2 titles.

The estimations of the limit introducing of reactivity $\rho_{_m}$ conducting to destruction of fuel in approach of zero lifetime of prompt neutrons are carried out.

УДК 536.24:621.039.553.34

Influence of Geometrical Parameters of Surface Spheriodical Elements and the Scheme of Their Arrangement on Heat Efficiency of Heat-Exchange Plate Surface \ V.T. Buglaev, A.A.Anisin; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 11 pages, 5 illustrations. – References, 11 titles.

The reseach results of heat-aerodynamic characteristics of heat-exchange profile plate surface experimental patterns with different geometrical parameters of flow sections of adjustable passages are given and their heat efficiency is estimated.

УДК 621.039.6

Magnetohydrodynamic Resistance Reduction by Forming Oxide Electroinsulated Coatings on Channels with Heavy Liquid Metal Coolants of TOKAMAK Reactor\A.V. Beznosov, S.S. Pinaev, M.A. Kamnev, A.V. Nazarov, P.V.Romanov; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) — Obninsk, 2002. — 3 pages, 1 table, 1 illustration. — References, 8 titles.

The article includes experimental data received in investigations of magnetohydrodynamic resistance reduction by forming oxide electroinsulated coatings on internal surfaces of channels of tokamak blanket and divertor.

УДК 556.555.8

⁹⁰Sr Contamination of Water Ecosystems in Bryansk Regions Damaged after Chernobyl Accident \M.N. Katkova, Ya.I. Gaziev, G.I. Petrenko, A.M. Polukhina; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 6 pages, 3 tables, 2 illustrations.

In 1997-1999 the monitoring of water ecosystems in Bryansk regions contaminated after Chernobyl fallout have been conducted. In the framework of these investigations the present ⁹⁰Sr level in water bodies was evaluated. Taking into accounts the obtained result the basic conclusions and recommendations for their future use were done.

УДК 631.42

Distribution of ¹³⁷Cs on ""grain-size" fractions in soils at the 30 km restricted zone around Chernobyl NPP\S.M. Rudaya, O.V. Chistik, I.I. Matveenko; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 8 pages, 2 tables, 2 illustrations. – References, 8 titles.

The results of investigation of ¹³⁷Cs distribution on "grain-size" fractions in soils contaminated by Chernobyl catastrophe products are presented. The mathematical description of radiocaesium distribution on fractions >0,01 mm, 0,01-0,001 mm, <0,001 mm is given. Is shown that "grain-size" and mineralogy composition of researched soils substantially determines a sorption of a radionuclide on soil particles and influences vertical migration.

УДК 574:621.039.542.4

Ecological Aspects of Mass Production of Motor Fuels from Brown Coals and Heavy Petroleum Residuals by Hydrogenation with the Use of Nuclear Technologies \ G.I. Sidorov, V.M. Poplavsky, A.A. Kritchko, A.S. Maloletnev; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 10 pages, 5 tables. – References, 28 titles.