INTERVALS ENFORCEABLE PROPERTIES OF FINITE GROUPS

William DeMeo

williamdemeo@gmail.com
University of South Carolina

AMS Southwestern Sectional Meeting
October 5, 2013
University of Louisville

Historically, much work has focused on:

- inferring properties of a group G from the structure of its lattice of subgroups Sub(G);
- inferring lattice theoretical properties of Sub(G) from properties of G.

For some groups, $\mathrm{Sub}(G)$ determines G up to isomorphism.

EXAMPLES

The Klein 4-group, V_4 .

The alternating groups, A_n ($n \ge 4$).

Every finite nonabelian simple group.

For other groups, $\mathrm{Sub}(G)$ is isomorphic to the subgroup lattices of all groups in an infinite class of nonisomorphic groups.

EXAMPLES

$$\operatorname{Sub}(G)\cong rac{\circ}{\downarrow}$$
 if and only if G is cyclic of order p^2 .

$$Sub(G) \cong$$
 if and only if G is cyclic of order pq .

For other groups, $\mathrm{Sub}(G)$ is isomorphic to the subgroup lattices of all groups in an infinite class of nonisomorphic groups.

EXAMPLES

$$\operatorname{Sub}(G)\cong \mathring{}$$
 if and only if G is cyclic of prime order.

$$\operatorname{Sub}(G)\cong rac{\circ}{\downarrow}$$
 if and only if G is cyclic of order p^2 .

$$\operatorname{Sub}(G)\cong$$
 if and only if G is cyclic of order pq .

At the other extreme, there are finite lattices that are not subgroup lattices.

Example?

We are interested in the local structure of subgroup lattices, that is, the possible $\it intervals$

$$\llbracket H, K \rrbracket := \{ X \mid H \leqslant X \leqslant K \} \leqslant \operatorname{Sub}(G)$$

where $H \leqslant K \leqslant G$.

We restrict our attention to *upper intervals*, where K=G, and ask two questions:

- What intervals $\llbracket H,G \rrbracket$ are possible?
- What properties of a group G can be inferred from the shape of an upper interval in Sub(G)?

1. What intervals $\llbracket H,G \rrbracket$ are possible?

There is a remarkable theorem relating this question to the *finite lattice* representation problem (FLRP).

THEOREM (PÁLFY AND PUDLÁK(1980))

The following statements are equivalent:

- (A) Every finite lattice is isomorphic to the congruence lattice of a finite algebra.
- (B) Every finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.

2. What properties of G can be inferred from $\llbracket H, G \rrbracket$?

A group theoretical property ${\mathbb P}$ (and the associated class ${\mathscr G}_{{\mathbb P}})$ is

- interval enforceable (IE) provided there exists a lattice L such that if $G \in \mathfrak{G}$ and $L \cong \llbracket H, G \rrbracket$, then G has property \mathfrak{P} .
- core-free interval enforceable (cf-IE) provided $\exists L$ st if $G \in \mathfrak{G}, \ L \cong \llbracket H, G \rrbracket, \ H$ core-free, then G has property $\mathfrak{P}.$
- *minimal interval enforceable* (min-IE) provided $\exists L$ st if $G \in \mathfrak{G}$, $L \cong \llbracket H, G \rrbracket$, and if G has minimal order (wrt $L \cong \llbracket H, G \rrbracket$), then G has property \mathfrak{P} .

Nonsolvability

It's not hard to find examples of lattices that cannot occur as upper intervals in the subgroup lattices of finite *solvable* groups.

Nonsolvability

It's not hard to find examples of lattices that cannot occur as upper intervals in the subgroup lattices of finite *solvable* groups.

Here are a few

HAS ANYONE SEEN THIS LATTICE?

Given a lattice L with n elements, are there finite groups H < G such that $L \cong$ the lattice of subgroups between H and G?

If there is no restriction on n, this is a famous <u>open problem</u>. I'm wondering if any recent work has been done for small n > 6. 1 believe the question is answered (positively) for n = 6 by Watatani (1996) $\frac{MR1409040}{2000}$ and Aschbacher (2008) $\frac{MR2393428}{2000}$. 1 believe we can answer it for n = 7, with one possible exception. The exceptional case is shown below.

So my two questions are these:

1) Does anyone know of recent work on this special case of the problem (specifically for n=7 or n=8)?

2) Has anyone found a finite group ${\cal G}$ with a subgroup ${\cal H}$ such that the interval

$$[H,G] = \{K : H \le K \le G\}$$

is the lattice shown above?

Welcome to MathOverflow

A place for mathematicians to ask and answer questions.

tagged
finite-groups × 343
open-problem × 216
lattices × 157
universal-algebra × 55
congruences × 7
asked
O months and

8 months ago

viewed 468 times

PROPOSITION

Suppose H < G, $\operatorname{core}_G(H) = 1$, and $L_7 \cong \llbracket H, G \rrbracket$. Then

- (I) *G* is a primitive permutation group.
- (II) If $N \triangleleft G$, then $C_G(N) = 1$.
- (III) G contains no non-trivial abelian normal subgroup.
- (IV) G is not solvable.
- (V) G is subdirectly irreducible.
- (VI) With the possible exception of at most one maximal subgroup, M_1 or M_2 , all proper subgroups in the interval $\llbracket H,G \rrbracket$ are core-free.

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

• If $N \triangleleft G$ then NH permutes with each subgroup containing H.

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

- If $N \triangleleft G$ then NH permutes with each subgroup containing H.
- If $1 \neq N \leqslant J_1$, then $NH = J_1$, so J_1 and K permute.

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

- If $N \triangleleft G$ then NH permutes with each subgroup containing H.
- If $1 \neq N \leqslant J_1$, then $NH = J_1$, so J_1 and K permute.
- Since $J_1K = G$ and $J_1 \cap K = H$, our lemma yields

$$[\![J_1,G]\!]\cong [\![H,K]\!]^{J_1}=\{X\in [\![H,K]\!]\mid J_1X=XJ_1\}.$$

Claim: J_1 and J_2 are core-free subgroups of G.

Proof:

- If $N \triangleleft G$ then NH permutes with each subgroup containing H.
- If $1 \neq N \leqslant J_1$, then $NH = J_1$, so J_1 and K permute.
- Since $J_1K = G$ and $J_1 \cap K = H$, our lemma yields

$$[\![J_1,G]\!] \cong [\![H,K]\!]^{J_1} = \{X \in [\![H,K]\!] \mid J_1X = XJ_1\}.$$

Impossible!

The following are at least core-free interval enforceable:

- $\mathscr{G}_0 = \mathfrak{S}^c$ = the nonsolvable groups
- $\mathscr{G}_1 = \{G \in \mathfrak{G} \mid (\forall n < \omega) \ (G \neq A_n \text{ and } G \neq S_n)\}$

• $\mathcal{G}_4 = \{G \in \mathfrak{G} \mid C_G(M) = 1 \text{ for all } 1 \neq M \leqslant G\}.$

- \mathcal{G}_2 = the subdirectly irreducible groups
- \mathcal{G}_3 = groups with no nontrivial abelian normal subgroups

If a lattice L is isomorphic to an interval in the subgroup lattice of a finite group, then we call L *group representable*.

By the Pálfy-Pudlák Theorem, the FLRP has a negative answer if we can find a finite lattice that is not group representable.

If a lattice L is isomorphic to an interval in the subgroup lattice of a finite group, then we call L *group representable*.

By the Pálfy-Pudlák Theorem, the FLRP has a negative answer if we can find a finite lattice that is not group representable.

Suppose there exists property \mathcal{P} such that both \mathcal{P} and its negation $\neg \mathcal{P}$ are interval enforceable by the lattices L and L_c , respectively:

$$L \cong \llbracket H, G \rrbracket \implies G$$
 has property \mathfrak{P}

 $L_c \cong \llbracket H_c, G_c \rrbracket \implies G_c$ does not have property \mathfrak{P}

If a lattice L is isomorphic to an interval in the subgroup lattice of a finite group, then we call L *group representable*.

By the Pálfy-Pudlák Theorem, the FLRP has a negative answer if we can find a finite lattice that is not group representable.

Suppose there exists property $\mathcal P$ such that both $\mathcal P$ and its negation $\neg \mathcal P$ are interval enforceable by the lattices L and L_c , respectively:

$$L \cong \llbracket H, G \rrbracket \implies G$$
 has property \mathcal{P}

$$L_c \cong \llbracket H_c, G_c \rrbracket \implies G_c$$
 does not have property \mathfrak{P}

Then the lattice

could not be group representable.

As the next result shows, however, if a group property and its negation are interval enforceable by L and L_c , then already at least one of these lattices is not group representable.

LEMMA

If $\mathcal P$ is a group property that is interval enforceable by a group representable lattice, then $\neg \mathcal P$ is not interval enforceable by a group representable lattice.

Nonsolvability is interval enforceable, but solvability is not.

For if $L \cong \llbracket H, G \rrbracket$, then for any nonsolvable group K we have $L \cong \llbracket H \times K, G \times K \rrbracket$, and $G \times K$ is nonsolvable.

Note that the group $H \times K$ at the bottom of the interval is not core-free. So a more interesting question is whether a property and its negation could both be *core-free* IE.

CONJECTURE

If \mathcal{P} is core-free interval enforceable by a group representable lattice, then $\neg \mathcal{P}$ is not core-free interval enforceable by a group representable lattice.

The following lemma shows that any class of groups that omits certain wreath products cannot be core-free interval enforceable by a group representable lattice.

LEMMA

Suppose $\mathfrak P$ is core-free interval enforceable by a group representable lattice. Then, for any finite nonabelian simple group S, there exists a wreath product group of the form $W = S \wr U$ that has property $\mathfrak P$.

COROLLARY

Solvability is not core-free interval enforceable.

Proof Sketch

Let L be a group representable lattice such that if $L\cong \llbracket H,G \rrbracket$ and $\mathrm{core}_G(H)=1$ then G has property $\mathcal{P}.$

Since L is group representable, $\exists\,G \vDash \mathcal{P}$ with $L \cong \llbracket H,G \rrbracket$.

Proof Sketch

Let L be a group representable lattice such that if $L\cong \llbracket H,G \rrbracket$ and $\mathrm{core}_G(H)=1$ then G has property $\mathcal P.$

Since L is group representable, $\exists G \vDash \mathcal{P}$ with $L \cong \llbracket H, G \rrbracket$.

We apply the idea of Hans Kurzweil twice:

- Fix a finite nonabelian simple group S.
- Suppose the index of H in G is |G:H|=n.
- Then the action of G on the cosets of H induces an automorphism of the group Sⁿ by permutation of coordinates.
- Denote this by $\varphi: G \to \operatorname{Aut}(S^n)$, and let $\varphi(G) = \bar{G} \leqslant \operatorname{Aut}(S^n)$.

The interval $[\![D,S^n]\!]$ is isomorphic to $\mathrm{Eq}(n)^*$, the dual of the lattice of partitions of an n-element set.

The dual lattice L^* is an upper interval of $\mathrm{Sub}(U)$, namely, $L^*\cong \llbracket D\bar{G},U
rbracket$.

We conclude that a class of groups that does not include wreath products the form $S \wr G$, where S is an arbitrary finite nonabelian simple group, is no	

core-free interval enforceable class. The class of solvable groups is an

example.

THEOREM

The following statements are equivalent:

- (B) Every finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.
- (C) For every finite lattice L and every finite collection $\mathscr{G}_1, \ldots, \mathscr{G}_n$ of cf-IE classes of groups.

$$\exists \ G \in \bigcap_{i=1}^n \mathscr{G}_i \text{ such that } L \cong \llbracket H, G \rrbracket \text{ and } \mathrm{core}_G(H) = 1.$$

(D) For every finite collection $\mathscr L$ of finite lattices, there exists a finite group G such that each $L_i \in \mathscr L$ is isomorphic to $\llbracket H_i, G \rrbracket$ for some core-free subgroup $H_i \leqslant G$.

By (C), the FLRP would have a negative answer if we could find a collection $\mathscr{G}_1, \ldots, \mathscr{G}_n$ of cf-IE classes such that $\bigcap^n \mathscr{G}_i$ is empty.

By (D), it makes sense to consider finite collections of finite lattices and ask what can be proved about a group G if one assumes that all of these lattices are isomorphic to upper intervals of $\mathrm{Sub}(G)$.

See Peter Cameron's blog at

http://cameroncounts.wordpress.com/tag/onan-scott-theorem/for some interesting history.

ASCHBACHER-O'NAN-SCOTT THEOREM

Let G be a primitive permutation group of degree d, and let $N := \operatorname{Soc}(G) \cong T^m$ with $m \ge 1$. Then one of the following holds.

- N is regular and
 - (Affine type) T is cyclic of order p, so $|N| = p^m$. Then $d = p^m$ and G is permutation isomorphic to a subgroup of the affine general linear group AGL(m,p).
 - (Twisted wreath product type) $m \ge 6$, the group T is nonabelian and G is a group of *twisted wreath product type*, with $d = |T|^m$.
- N is non-regular, non-abelian, and
 - (Almost simple type) m = 1 and $T \leqslant G \leqslant \operatorname{Aut}(T)$.
 - (Product action type) m ≥ 2 and G is permutation isomorphic to a subgroup
 of the product action wreath product P \cap S_{m/l} of degree d = nm/l. The group
 P is primitive of type 2.(a) or 2.(c), P has degree n and Soc(P) ≅ T^l, where
 l ≥ 1 divides m.
 - (Diagonal type) $m \geqslant 2$ and $T^m \leqslant G \leqslant T^m$.(Out $(T) \times S_m$), with the diagonal action. The degree $d = |T|^{m-1}$.