

Representations of small molecules

Molecular Graphs

A molecular graph represents molecules, with atoms represented as nodes and bonds represented as edges between nodes.

- Rules for Drawing Molecular Graphs:
 - Nodes: Each node represents an atom (typically labeled with the element symbol) Exception: sometimes carbon atoms do not have carbon symbol "C"
 - **Bonds:** Each edge represents a bond between atoms
 - Number of parallel lines indicate type of bonds
 - Hydrogen on Carbon: Hydrogens attached to carbon atoms are generally not shown.
 - Stereochemistry (spatial arrangements of atoms):
 - Solid wedges: bonds coming out of the plane Hashed wedges (hashed triangles): bonds going behind the plane.
 - Plain Lines: bonds in the plane of the screen

SMILES

- SMILES simplified molecular-input line-entry system
- A SMILES string represents the structure of a small molecule using a single string
 - Can consist of letters, numbers and special characters
- SMILES string for Glucose: C(C1C(C(C(C(O1)O)O)O)O)O

SMILES Specification Rules (1)

- Atoms are represented by their chemical symbols in square brackets, e.g. [Fe]
- Hydrogen atoms are usually implied and not explicitly written
- Brackets can be omitted if all of the following rules apply:
 - The atom is part of the following atoms: C, N, O, P, S, F, Cl, Br, B, or I
 - Has no formal charge
 - Number of attached hydrogen atoms can be implied
 - They are the normal isotopes
 - They are not chiral centers
 - Definition: A specific atom in a molecule that has four different groups attached to it, leading to molecules that are non-superimposable mirror images of each other.

[N-] Nitrogen with add. electron

[OH-]

[13C]

SMILES Specification Rules (2)

- Bonds:
 - Single bonds are not explicitly represented unless necessary ('-')
- CCO —— oh

Double and triple bonds are represented by '=' and '#'

- Branches
 - described by using parentheses "(" and ")"

$$C(C(=O)S)C$$

5 hhu.de

SMILES Specification Rules (3)

Rings / cyclic structures are indicated by using numbers to represent the connection points.
The same number is used for both ends of the ring.

C1CCCCO1
$$\longrightarrow$$
 C1=CCCCC1 \longrightarrow C1(CCCCC1)C2=CC=CC2 \longrightarrow \bigcirc

Atoms that are part of an aromatic bond are denoted by lower case letters

SMILES Specification Rules (4)

- Stereochemistry:
 - Chiral center: mirror images are not identical
 - @ and @@ indicate the arrangement of the four bonds attached to the chiral center
 - Consider the four bonds in the order in which they appear, left to right, in the SMILES string
 - Looking toward the central carbon from the perspective of the first bond
 - The following three bonds are counter-clockwise (@) or clockwise (@@)

hhu.de

SMILES Specification Rules (5)

- Stereochemistry: trans and cis isomers
 - Arrangements of bonds typically around double bonds
 - Latin prefixes: "cis"=the side of; "trans"=the other side of
 - Can be specified by "/" and "\"
 - Two slashes are used to specify the stereochemistry:
 - Using the same slash twice indicates trans-molecule
 - Two different slashes indicate cis-molecule
 - Example:

Canonical SMILES

- SMILES strings are not unique
 - For example, they differ depending on with which molecule you start

- Canonical SMILES: generating SMILES strings such that the same molecule always produces the same SMILES
 - involves applying a standardized set of rules and algorithms

Alternative small molecule representations

- InChl (International Chemical Identifier) strings:
 - A textual identifier that provides a unique description of a chemical substance
 - Example: InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6?/m1/s1 is the InChI string for glucose
- Mol file format:
 - Describing chemical molecules.
 - Detailed information about the positions of atoms and the bonds connecting them: