Module: Informatique Industrielle

Introduction aux bus de terrain Modbus

Carole LAVAULT

carole.lavault@aii-biomedical.com

Plan

- > Panorama des bus de terrain
- > Les systèmes de bus
- > Types de réseaux : CIM et modèle ISO
- > Modbus
- > Autres bus

Siemens

CAN in Automation (CiA)

AS-International Association

Allen-Bradley Rockwell

Eléments de classification

La pyramide du CIM (Computer Integrated Manufacturing)

4 niveaux correspondent à des stades de decision :

- Niveau supérieur visibilité plus globale, decision
- Niveau inférieur : execution
- Niveau 3 : la gestion des produits et des stocks, approvisionnements, clients, des commandes et de la facturation (gérés par les ERP (Enterprise Ressources Planning))
- Niveau 2 : la localisation des produits en stock, les mouvements physiques et la gestion des lots (géré par le système de gestion d'entrepôt)
- Niveau 1 : les automatismes
- Niveau 0 : les capteurs et actionneurs

A chaque niveau : un type de bus ou de réseau adapté

Réseaux locaux industriels RLI (Data bus)

Informatique <> Automatismes

Quantité importante d'informations

Temps de réaction non critique 1 à 10s

Distances importantes

Réseaux de terrain (Field bus/Device Bus)

Automates, Superviseurs <> Variateurs, commande d'axes, robots

Quantité relativement faible d'information 256 octets

Temps de réaction < 100 ms

Distances < 1Km

Réseaux capteurs actionneurs (Sensor bus)

Liaisons entre nœuds à intelligence limitée ou nulle

Niveau d'information bits

Temps de réaction < 10 ms

Distances < 100m

Exemple de positionnement : Schneider Electric

Le modèle OSI / ISO (International Organization for Standardization) 7 couches (stack)

Bus de terrain : 3 couches concernées : Application, liaison, physique

La couche Physique

- Rôle: Transmission des éléments d'information (bits) sur le support physique
- Définition du Mode d'exploitation (half duplex/full duplex ...)
- Synchronisation Transmission de l' Horloge ou non Synchrone/asynchrone
- Connexion (point à point, multipoint)
- Codage (NRZI, Manchester, ...)
- Detection d'erreurs (niveau du bit)

La couche Physique : les supports de transmission

Type de conducteurs	Avantages	Inconvénients débit limité à ~1 Gbit/s isolation coûteuse (transformateur, optocoupleur) sensibilité aux perturbations électromagnétiques recherche des pannes et des faux contacts difficile encombrement		
Paire torsadée cuivre	technique de câblage classique et bien maîtrisée réalisation et réparation aisées sur site bon marché			
Câble coaxial	meilleure bande passante et insensibilité que la paire torsadée	connexions plus coûteuses topologie limitée		
Fibre optique	atténuation faible et indépendante de la fréquence débit très élevé, longue distance excellente compatibilité électromagnétiques (CEM) isolation électrique parfaite (assure l'équipotentialité des sites distants)	seules des liaisons point à point sont faciles à réaliser pose et montage des connecteurs délicates le coût		
Radio transmission	mobilité installation facile plus de câble (mais qui change la pile ?)	distances limitées faible bande passante conflits entre réseaux		
Courant porteur	réduction des coûts de câblage intéressant pour l'équipement de bâtiments existants	forte sensibilité aux perturbations électromagnétiques bande passante limitée		

La couche Physique : la liaison EIA RS 485

Liaisons	Topologie		Mode		Distance	
	Point à point	Multipoint	Différentiel	Unipolaire	< 100 m	> 1000 m
RS-232	х			х	х	
RS-422	X (1)	X (2)	х	0		х
RS-485		x	x			х

La liaison RS485 est une liaison numérique sérielle multipoint utilisant le mode différentiel Elle permet de raccorder 32 émetteurs/récepteurs en 2 fils ou 4 fils en 2 fils (half duplex ou 4 fils (full duplex) sur des distances pouvant atteindre le km et des debits jusqu'à 10 Mb/s Largement utilisée par les bus de terrain (Modbus/Profibus)

La couche Physique : Ethernet

FIGURE 2-4: ENC28J60 ETHERNET TERMINATION AND EXTERNAL CONNECTIONS

La couche Liaison

- Rôle : Assurer l'acheminement des trames via la couche physique
- > Etablir et libérer les connexions lignes
- Contrôle d'accès : deux stations peuvent disposer simultanément du media COLLISION
- Detecter et gérer les erreurs de transfert
- Assurer le contôle de flux
- Deux sous-couches MAC (Medium Access Control) et LLC (Logical Link Control)
- Arbitrage d'accès au Média

La couche Liaison : Les méthodes d'accès au Média

Méthode d'accès	Avantages	Inconvénients panne du maître bloquante, dialogue direct entre esclaves impossible		
maître unique: une seule station (le maître) peut démarrer un échange, les autres stations (les esclaves) ne peuvent que répondre. On distingue deux variantes: le maître gère complètement l'échange (Modbus, AS-i) ou le maître distribue un temps de parole (Fip).	simple et déterministe			
pair à pair avec arbitrage : chaque station peut démarrer un échange, à tout moment, ce qui nécessite une gestion de collision (Ethernet, bus CAN)	adapté au bus, extensible, efficace (pas d'attente), déterministe (bus CAN)	non-déterministe et risque de saturation (Ethernet)		
registre à décalage distribué (anneau): les stations sont reliées une à une en boucle, une seule station (maître) envoie un télégramme et chaque station y prélève ou introduit ses données (Interbus-S)	déterministe et efficace pour de petites quantités de données	panne bloquante de la liaison ou d'un station		
multi-maître (jeton): les stations maître se partagent un « jeton » unique, celle qui détient le jeton peut démarrer un échange et elle libère le jeton lorsqu'elle a terminé (Token Ring, Profibus)	déterministe	risque de disparition ou de duplication du jeton		

La couche Application

- ➤ Rôle : Interface avec les applications
- Point d'accès aux services réseau
- Couche 7 du modèle OSI
- > Exemple : CanOpen

MODBUS

1979 : Création de MODBUS par MODICON (Modular Digital Controller)

1994 : Modicon fusionne avec Schneider (Telemecanique / April / Square D)

2005 : MODBUS adopté en tant que standard chinois

Echanges Supervision/automate automate/périphérie (capteurs, actionneurs) Industrie, Energie, Bâtiment

MODBUS Série

Couche physique RS232, RS 485 paire torsadée 9600 bauds/5 Mb/s SUBD 9pts/RJ45

Topologie: bus, daisy chain

Méthode d'accès : maître / esclave

2 modes:

- ASCII (maintenu par certains constructeurs pour compatibilité) \$42 '4' '2' → 2 octets
- RTU (actuel) \$42 1 seul octet

MODBUS TCP

Couche physique/liaison: Ethernet transport TCP/IP 10-100 Mbaud RJ45

Topologie: étoile/anneau

Méthode d'accès : client/serveur

Port d'écoute 502 TCP est réservé aux communications Modbus

Source: Modbus.org - Modbus_Application_Protocol_V1_1b3.pdf

Figure 1: MODBUS communication stack

Le protocole Modbus définit une « unité de données de protocole », ou PDU (*Protocol Data Unit*), indépendante des autres couches de communication.

L'encapsulation du protocole Modbus sur TCP/IP introduit un champ supplémentaire (MBAP Header) au niveau de l'unité de donnée d'application, ou ADU (Application Data Unit).

MODBUS Principe

Chaque Esclave MODBUS:

Source : Modbus.org -Modbus_Application_Protocol_V1_ 1b3.pdf

Figure 8 MODBUS Addressing model

MODBUS Principe

Types de données :

Type de variable	Туре	Accès	Exemple d'utilisation
Discrete inputs	Bit	Lecture seule	Entrées TOR
Colls (bobines)	Bit	Lecture/Ecriture	Sorties relais
Input registers	Mot	Lecture seule	Entrées analogique
Holding registers (registres généraux)	Mot	Lecture/Ecriture	Données modifiables par l'application

MODBUS Principe

Accès aux données :

				code	Sub code	(hex)	Section
	Bit access	Physical Discrete Inputs	Read Discrete Inputs	02	code	02	6.2
		Internal Bits Or Physical coils	Read Coils	01		01	6.1
			Write Single Coil	05		05	6.5
	400000		Write Multiple Coils	15		0F	6.11
Data Access		Physical Input Registers	Read Input Register	04		04	6.4
		Internal Registers Or Physical Output Registers	Read Holding Registers	03		03	6.3
	16 bits		Write Single Register	06		06	6.6
	access		Write Multiple Registers	16		10	6.12
			Read/Write Multiple Registers	23		17	6.17
			Mask Write Register	22		16	6.16
			Read FIFO queue	24		18	6.18
			Read File record	20		14	6.14
File record access		rd access	Write File record	21		15	6.15
	Diagnostics Other		Read Exception status	07		07	6.7
			Diagnostic	08	00-18,20	08	6.8
			Get Com event counter	11		ОВ	6.9
			Get Com Event Log	12		0C	6.10
			Report Server ID	17		11	6.13
			Read device Identification	43	14	2B	6.21
			Encapsulated Interface Transport	43	13,14	2B	6.19
			CANopen General Reference	43	13	2B	6.20

Function Codes

Source: Modbus.org -Modbus_Application_Protocol_V1_ 1b3.pdf

Public function code definition

MODBUS Principe

Requête du maître vers l'esclave :

MODBUS Principe

Format general d'une trame :

AS-i AS-International Association

