# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра САУ

#### ОТЧЕТ

#### по Лабораторной работе №6

### Тема «ИССЛЕДОВАНИЕ СИСТЕМЫ С ПЕРЕМЕННОЙ СТРУКТУРОЙ»

по дисциплине «Нелинейные системы управления» Вариант № 3

| Студенты гр. 6492 | Д.В. Огурецкий  |  |  |
|-------------------|-----------------|--|--|
|                   | А. С. Мурашко   |  |  |
| Преподаватель     | Н. А. Доброскок |  |  |

Санкт-Петербург

## 1 ИССЛЕДОВАНИЕ СИСТЕМЫ С ПЕРЕМЕННОЙ СТРУКТУРОЙ

Цель работы: исследование скользящих режимов в системах с переменной структурой методом фазовой плоскости.

#### 1.1 Общие сведения

#### 1.1.1 Система с переменной структурой

Применение систем с переменной структурой позволяет получить высокое быстродействие, т. е. протекание процессов за минимальное время при незначительных колебаниях, а в отдельных случаях и при отсутствии колебаний выходных координат в установившихся режимах. В работе рассматривается два варианта движений в системе с переменной структурой, которые в общем случае могут быть представлены на рис.1а, где введены следующие обозначения: ОУ — объект управления; УП — устройство переключения;  $k_1$  и  $k_2$  — коэффициенты регулятора.



(а) Система с переменной структурой. с переменной структурой.

#### Рисунок 1

Пример движения изображающей точки на фазовой плоскости показан на рис.1б. Из приведенного рисунка следует, что система становится асимптотически устойчивой, но устойчивого положения равновесия она достигает только при  $t \to \infty$ .

Допустим, объект управления – это система второго порядка, не обладающая при постоянной структуре собственной устойчивостью. Математиче-

Таблица 1 — Таблица вариантов.

| Вариант | 3   |  |
|---------|-----|--|
| k       | 3.5 |  |

ское описание системы (1).

$$\ddot{\mathbf{x}} + k\mathbf{x} = 0 \tag{1}$$

Задание варианта указано в табл.1.

#### 1.2 выполнение работы

#### 1.2.1 Система с переменной структурой

Создали новую модель в Matlab Simulink на рис.2. Коэффициенты были подобраны таким образом, что  $k_1 > k_2$ . Коэффициенты указаны в табл. 2.

Математическая форма записи описанного алгоритма управления примет вид системы (2).

$$\begin{cases} \ddot{\mathbf{x}} + k_1 \, k \, \mathbf{x} = 0, & \dot{\mathbf{x}} > 0, \\ \ddot{\mathbf{x}} + k_2 \, k \, \mathbf{x} = 0, & \dot{\mathbf{x}} < 0. \end{cases}$$
 (2)

Система с переменной структурой переключается с одного регулятора на другой в зависимости от выполнения условий.

Исследуем движение фазовых координат во времени посредством моделирования процессов в системе при отклонении системы от состояния равновесия. Значения начальных условий в табл.2. Фазовые траектории и переходные процессы в системе на рис.3, крестиками указа-

ординат во времени посредством мо- Таблица 2 — Таблица коэффициентов.

| номер | $k_1$ | $k_2$ | $x_0$ | $y_0$ |
|-------|-------|-------|-------|-------|
| 1     | 3     | 0.8   | 0     | 0     |
| 2     |       |       | 0.1   | 0.1   |
| 3     |       |       | 0.2   | 0.2   |

ны состояния системы, соответствующие начальным значениям. Как видно, система асимптотически устойчива, так как изображающая точка на фазовой траектории приближается к точке равновесия.

В дополнение на рис.4 указано изменение переменных состояния. Отметим, что закон изменения x представляет собой колебательный процесс, соответственно — y тоже.



Рисунок 2 — Стурктурная схема системы с переменной структурой.



Рисунок 3 — Фазовые траектории для системы с переменной структурой с разными начальными условиями.



Рисунок 4 — Графики изменения переменных состояния.



Рисунок 5 — Фазовые траектории для системы с переменной структурой с разными начальными условиями( $au_1$ ).



Рисунок 6 — Графики изменения переменных состояния $(\tau_1)$ .



Рисунок 7 — Фазовые траектории для системы с переменной структурой с разными начальными условиями( $au_2$ ).



Рисунок 8 — Графики изменения переменных состояния $(\tau_2)$ .

# 1.2.2 Система с переменной структурой со скользящим видом движения

Для выполнения данного пункта оставим прошлую модель в Matlab Simulink на рис.2. Коэффициенты были подобраны таким образом, что  $k_2 = -k_1$ . Коэффициенты указаны в табл. 3.

Изменим наше условие переключения между регуляторами. Таким образом математическая форма записи описанного ранее алгоритма управления (2) примет вид (3).

$$\begin{cases} \ddot{\mathbf{x}} + k_1 \, k \, \mathbf{x} = 0, \mathbf{x} (\dot{\mathbf{x}} + \tau \, \mathbf{x}) > 0, \\ \ddot{\mathbf{x}} - k_1 \, k \, \mathbf{x} = 0, \mathbf{x} (\dot{\mathbf{x}} + \tau \, \mathbf{x}) < 0. \end{cases}$$
(3)

Два регулятора по-прежнему являются неустойчивыми. Один регулятор должен обеспечить движение изображающей точки по фазовой траектории типа «седло», а второй – по фазовой траектории типа «центр».

В этом случае линиями раздела между областями действия регуляторов будут ось ординат и наклонная прямая на фазовой плоскости, определяемая выражением  $\dot{x}=-\tau x$ , называемая линией скольжения. Также имеется сепаратриса седловой траектории с отрицательным наклоном, определяемая уравнением (4).

Таблица 3 — Таблица параметров.

| номер | $k_1$ | $k_2$ | $x_0$ | $y_0$ | $	au_1$ | $	au_2$ |
|-------|-------|-------|-------|-------|---------|---------|
| 1     |       |       | 0     | 0     |         |         |
| 2     | 1     | -1    | 0.1   | 0.1   | 3.74    | 0.935   |
| 3     |       |       | 0.2   | 0.2   |         |         |

$$\dot{\mathbf{x}} = -\sqrt{k}\,\mathbf{x} \tag{4}$$

В общем случае движение изображающей точки в зависимости от значения  $\tau$  будет происходить по разным траекториям. Из расчетов видно  $\sqrt{k}=1.871$  .

Если взять  $\tau=\tau_1=2\sqrt{k}=3.74$ , т.е.  $\tau>\sqrt{k}$  в 2 раза, то мы будем наблюдать колебательный процесс рис.9, в этом случае скольжения не наблюдается. То что процесс колебательный, мы можем видеть на рис.10.



Рисунок 9 — Фазовые траектории для системы с переменной структурой с разными начальными условиями( $au_1$ ).



Рисунок 10 — Графики изменения переменных состояния $(\tau_1)$ .

Если взять  $\tau = \tau_1 = \sqrt{k}/2 = 0.935$ , т.е.  $\tau < \sqrt{k}$  в 2 раза, то мы будем наблюдать апериодический процесс рис.11, в этом случае движение изображающей точки происходит с одним переключением, после чего наблюдается скольжение вдоль прямой линиии к началу координат. То что процесс апериодический, мы можем видеть на рис.12.



Рисунок 11 — Фазовые траектории для системы с переменной структурой с разными начальными условиями( $\tau_2$ ).

#### Из пункта 1.2.2 можно сделать вывод:

- 1. Что введя новый закон переключения и имея два неустойчивых регулятора, причём один регулятор обеспечивает движение изображающей точки по фазовой траектории типа «седло», а второй по фазовой траектории типа «центр», можно созданием системы с переменной структурой добиться устойчивости системы в целом и получить режим, позволяющий привести изображающую точку в начало координат за минимальное число переключений, устранить колебательные процессы.
- 2. Время протекания процесса при скользящем режиме уменьшилось по сравнению с другими режимами (это видно на рис.12).



Рисунок 12 — Графики изменения переменных состояния( $\tau_2$ ).

3. Для данного примера скользящий режим будет выполняться только при  $au < \sqrt{k}$ .

Вывод: применение систем с переменной структурой со скользящим режимом позволяет получить высокое быстродействие, т. е. протекание процессов за минимальное время и при отсутствии колебаний выходных координат в установившихся режимах.