LPO G.BRASSENS

DEVOIR COMMUN 17 FÉVRIER 2022 CORRECTION

GENCODE: 3953286104

Mathématiques

Consignes:

- * Vous rédigerez vos réponses directement sur le sujet dans les espaces prévus à cet effet.
- * La calculatrice est autorisée.
- * L'examen est noté sur un total de 40 points.
- * L'épreuve dure 2 heures.
- * Vous devez écrire votre nom et prénom sur chaque entête de page dans la zone prévue à cet effet.

Exercice 1: Dans un lycée, on considère les élèves ayant obtenu le baccalauréat STMG:

- 65 % de ces élèves poursuivent leurs études en BTS ou DUT et parmi eux, 44 % après l'obtention du BTS ou DUT poursuivent leurs études et obtiennent une licence.
- Les autres élèves poursuivent d'autres études après le baccalauréat, et parmi eux, 42 % obtiennent une licence.

On appelle:

T: l'évènement : « pour suivre ses études en BTS ou DUT »;

A: l'évènement : « pour suivre d'autres études après le baccalauréat »;

L: l'évènement: « obtenir une licence ».

 \overline{L} désigne l'évènement contraire de l'évènement L.

a: (6 points) compléter l'arbre suivant qui modélise la situation :

b: (1 point) Déterminer la valeur de la probabilité $p(T \cap L)$.

Solution:
$$p(T \cap L) = p(T) \times p_T(L) = 0.65 \times 0.44 = 0.286$$

c: (1 point) Montrer que p(L) = 43.3%.

Solution:
$$p(L) = p(T \cap L) + p(A \cap L) = 0.286 + 0.35 \times 0.42 = 0.286 + 0.147 = 0.433$$

d: (1 point) Déterminer la probabilité d'avoir suivi une formation en BTS ou DUT sachant que l'on a obtenu une licence. On arrondira le résultat à 0,01 %.

Solution: La probabilité d'avoir suivi une formation en BTS ou DUT sachant que l'on a obtenu une licence, est :

$$p_L(T) = \frac{p(L \cap T)}{p(L)} = \frac{0.286}{0.433} \approx 0.6605$$

e: (2 points) Déterminer la valeur arrondie à 0,01 % de la probabilité $p_L(A)$. Interpréter.

Nom:

Prénom: Devoir Commun 17 Février 2022Correction - genCode: 3953286104 TSTMG

Solution:

$$p_L(A) = \frac{p(A \cap L)}{p(L)} = \frac{0.147}{43.3} \approx 0.0034$$

C'est la probabilité de ne pas avoir suivi une formation en BTS ou DUT sachant que l'on a obtenu une licence.

Prénom: Devoir Commun 17 Février 2022Correction - genCode: 3953286104

Exercice 2: Le tableau suivant donne le nombre de morts sur les routes françaises par an de 1998 à 2006.

Année	1998	1999	2000	2001	2002	2003	2004	2005	2006
Rang (x_i)	1	2	3	4	5	6	7	8	9
Nombre de morts (y_i)	7586	6825	7939	4997	6499	7730	8057	5612	6388

Source: d'après www.securite-routiere.gouv.fr

a: (2 points) Sur le graphique ci-dessous, on a représenté une partie du nuage de points $M_i(x_i; y_i)$.

Compléter ce nuage de points à l'aide du tableau en plaçant le point d'abscisse 4 et le point d'abscisse 7.

b: (2 points) Sur le graphique ci-dessus est tracée la droite d'ajustement. À l'aide de cette droite d'ajustement, par lecture graphique, déterminer une prévision du nombre de morts en 2010.

Solution: environ 2 800

c: (2 points) On a observé en réalité que le nombre de personnes ayant perdu la vie sur les routes françaises en 2010 a diminué de 14% par rapport à l'année 2000. Quel est le nombre réel de victimes sur les routes françaises en 2010? On donnera le résultat arrondi à l'unité.

Solution: En 2000, il y avait 7939 morts; en 2010 il y en a eu:

$$7939 \times \left(1 - \frac{14}{100}\right) \approx 6827$$

Exercice 3: Le tableau suivant indique, sur la période 2002-2012, en France, la proportion de déchets recyclés exprimée en pourcentage des déchets d'emballages ménagers.

Année	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Pourcentage de déchets recyclés (en %)	48.2	51.7	61.8	56.7	54.5	49.0	64.2	45.8	53.2	57.4	52.5

a: (1 point) Montrer que le taux global d'évolution, arrondi à l'unité, entre 2006 et 2010 est de -2%.

Solution:

$$\frac{pourcent_{2010} - pourcent_{2006}}{pourcent_{2006}} \times 100 = \frac{53.2 - 54.5}{54.5} \times 100 \approx -2.39 \text{ soit -2}\%$$

b: (2 points) Déterminer le taux annuel moyen entre 2006 et 2010. On donnera le résultat en pourcentage arrondi au centième.

Solution: Le taux global qui fait passer de 2006 à 2010 est de -2%. Le taux moyen est donc :

$$t_m = \sqrt[4]{1 + \frac{-2}{100}} - 1 \approx -0.5038\%$$

c: (2 points) On conjecture qu'à partir de 2012, le taux annuel est de +4.91%. Avec ce modèle, quel est le taux de recyclage en 2020? On donnera le résultat en pourcentage arrondi au dixième.

Solution: De 2012 à 2020, il y a 8 ans, le taux en 2012 était de 52.5%. Le taux en 2020 est donc :

$$52.5 \times \left(1 + \frac{4.91}{100}\right)^8$$
 soit environ 77.04%

Exercice 4: Une usine produit des bonbons. Le responsable "production" a modélisé le cout de production de chacune des machines en fonction du poids de bonbons produit pour une machine. Si x est le poids de bonbons produit alors C(x) donne le coût de production au kilogramme en fonction de x avec :

$$C(x) = \frac{x^3}{3} - 7x^2 + 45x + 11$$

a: (3 points) Déterminer C'(x), la fonction dérivée de C(x)

Solution: La fonction C(x) est de la forme u + v on a donc :

$$C(x) = u + v + w + z$$

avec $u = \frac{1}{3}x^3$, $v = -7x^2$, $w = 45x$ et $z = 11$

u, v, w et z sont de la forme kx^n or $(kx^n)' = knx^{n-1}$ on a donc :

$$C'(x) = u' + v' + w' + z'$$

avec $u' = 1x^2$, $v' = -14x$, $w' = 45$ et $z' = 0$

d'où:

$$C'(x) = 1x^2 + -14x + 45 + 0$$

et donc:

$$C'(x) = 1x^2 + -14x + 45$$

b: (3 points) Résoudre C'(x) = 0

Solution: C'(x) est un polynôme du second degré, on utilise donc la méthode du discriminant.

On écrit donc C'(x) avec :

$$C'(x) = ax^2 + bx + c$$

 $a = 1, b = -14 \text{ et } c = 45$

On calcul $\Delta = b^2 - 4ac$ d'où :

$$\Delta = b^{2} - 4ac$$

$$= -14^{2} - 4145$$

$$= 16 = (4)^{2}$$

Donc $\Delta > 0$, il y a donc 2 solutions à l'équation C'(x) = 0

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_{1} = \frac{-(-14) - \sqrt{16}}{2 \times + 1}$$

$$x_{1} = \frac{-(-14) - 4}{2 \times + 1}$$

$$x_{1} = \frac{-(-14) - 4}{2 \times + 1}$$

$$x_{1} = 5$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_{1} = \frac{-(-14) + \sqrt{16}}{2 \times + 1}$$

$$x_{1} = \frac{-(-14) + 4}{2 \times + 1}$$

$$x_{2} = 9$$

Les 2 solutions sont donc $x_1 = 5$ et $x_2 = 9$

 $\overline{\text{c:}}$ (3 points) En déduire le signe de C' et les variations de C

Solution: Le polynôme est du signe de -a entre ses racines d'où le tableau de signe et de variation suivant :

x	$-\infty$		5		9		∞
C'(x)		+	0	_	0	+	
С	-∞		C(5)		C (9)		+∞

d: (3 points) Conclure sur la quantité optimale de production et en donner donc le coût minimal au kilogramme

Solution: La quantité optimale à produire est 9 kilogrammes pour :

$$C(9) = \frac{1}{3} \times (9)^3 + -7 \times (9)^2 + 45 \times 9 + 11$$

= 92