Tabela DH Padrão:

сθ	-sθc α	sθs a	r cθ
sθ	cθc a	-cθs α	rsθ
0	s a	c a	d
0	0	0	1

Referências:

https://densorobotics.com/content/user_manuals/19/005929.html

Selecionar a opção "ZYX" na seção "Euler angles (radians)":

https://www.andre-gaschler.com/rotationconverter/

Transformações:

• base_org para o link1_org: É apenas um deslocamento em 0.125m em Z

• link1_org para o link2_org: $[\theta, d, r, \alpha] = [\theta 1, 0.125, 0, pi/2]$

1	0	0	0
0	0	-1	0
0	1	0	0.125
0	0	0	1

[r, p, y] = [p1/2, 0, 0][x, y, z] = [0, 0, 0.125]

• link2_org para o link3_org: $[\theta, d, r, a] = [\theta 2 + pi/2, 0, 0.210, 0]$

0	-1	0	0
1	0	0	0.210
0	0	1	0
0	0	0	1

[r, p, y] = [0, 0, pi/2]

[x, y, z] = [0, 0.210, 0]

• link3_org para o link4_org: $[\theta, d, r, \alpha] = [\theta 3 - pi/2, 0, -0.075, -pi/2]$

0	0	1	0
-1	0	0	0.075
0	-1	0	0
0	0	0	1

[r, p, y] = [-pi/2, 0, -pi/2][x, y, z] = [0, 0.075, 0]

[x, y, 2] [0, 0.070, 0]

• link4_org para wrist1_org: [θ, d, r, α] = [θ4, 0.210, 0, pi/2]

1	0	0	0
0	0	-1	0
0	1	0	0.210
0	0	0	1

[r, p, y] = [pi/2, 0, 0]

[x, y, z] = [0, 0, 0.210]

• wrist1_org para wrist2_org: [θ, d, r, α] = [θ5, 0, 0, -pi/2]

1	0	0	0
0	0	1	0
0	-1	0	0
0	0	0	1

[r, p, y] = [-pi/2, 0, 0]

[x, y, z] = [0, 0, 0]

• Wrist2_org para tool_org: $[\theta, d, r, \alpha] = [\theta 5, 0.070, 0, 0]$ Ou seja, apenas um deslocamento de 0.070 em Z.