Recitation 2

EE102, Spring 2024-25

Q4.

For the TT given below find

- a) two-level canonical SOP expression for F
- b) two-level canonical POS expression for F

X	Y	Z	F		
0	0	0	1	,	SOP
0	0	1	1		SOP
0	1	0	1		SOP
0	1	1	0	_	→ POS
1	0	0	0	_) POS
1	0	1	1		SOP
1	1	0	0	1	J POS
1	1	1	1		SOP

F is the output and X,Y,Z are inputs.

Solution:

a)
$$F = X'Y'Z' + X'Y'Z + X'YZ' + XY'Z + XYZ$$

b)
$$F = (X+Y'+Z')(X'+Y+Z)(X'+Y'+Z)$$

Q5.

- . For the TT given below find
 - a) two-level canonical SOP expression for F
 - b) two-level canonical POS expression for F

X	Y	Z	F	
0	0	0	1	SOP
0	0	1	1	SOP
0	1	0	0	POS
0	1	1	1	SOP
1	0	0	0	POS
1	0	1	1	SOP
1	1	0	0	J ^p os
1	1	1	1	SOP

F is the output and X,Y,Z are inputs

Solution:

a)
$$F = X'Y'Z' + X'Y'Z + X'YZ + XY'Z + XYZ$$

b)
$$F = (X+Y'+Z)(X'+Y+Z)(X'+Y'+Z)$$

Use NAND gates only ?

F=
$$(W+X)(W+Y)(Y+Z)$$

draw the schematics of F using 1

F= ABC $\frac{\text{dem.}}{\text{Yule}}$ $(A'+B'+C')'$
 $A' = (W+X)'$; $B = (W+Y)'$
 $C' = (Y+Z)'$

KARNAUGH MAPS

Figure 4-26 Karnaugh maps: (a) 2-variable; (b) 3-variable; (c) 4-variable.

Q1.

Given the function $F(A,B,C,D) = \Sigma_{A,B,C,D} (1,4,5,8,10,13,14,15) + d(7,9)$.

- a) Find all minimal sums for F.
- b) Find all minimal products for F
- c) Which of the above minimal sums are equivalent to which of the above minimal products? Equivalent means having the same Truth Table.

a)

<u>SOP1:</u>

F = C'D + A'BC' + ABC + AB'D'

7 is zero

9 is one

c) SOP1 is equivalent to POS1 because in each case 7 is zero, 9 is one.

Q3.

a)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,15)$$

b)
$$F = \Sigma_{W,X,Y,Z} (2,5,13,15,10) + d (8,0,12)$$

c)
$$F = \Pi_{W,X,Y,Z} (4,5,6,7,10,12,13,14) + d (3,9,15)$$

d)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,12,15)$$

e)
$$F = \Sigma_{W,X,Y,Z} (0,2,4,6,8,10,12,14) + d (9,13)$$

f)
$$F = \Sigma_{W,X,Y,Z} (0,2,8,10) + d (5,13)$$

Q3.

a)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,15)$$

b)
$$F = \Sigma_{W,X,Y,Z} (2,5,13,15,10) + d (8,0,12)$$

c)
$$F = \Pi_{W,X,Y,Z} (4,5,6,7,10,12,13,14) + d (3,9,15)$$

d)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,12,15)$$

e)
$$F = \Sigma_{W,X,Y,Z} (0,2,4,6,8,10,12,14) + d (9,13)$$

f)
$$F = \Sigma_{W,X,Y,Z} (0,2,8,10) + d (5,13)$$

Solution:

a)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,15)$$

Q3.

a)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,15)$$

b)
$$F = \Sigma_{W,X,Y,Z} (2,5,13,15,10) + d (8,0,12)$$

c)
$$F = \prod_{W,X,Y,Z} (4,5,6,7,10,12,13,14) + d(3,9,15)$$

d)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,12,15)$$

e)
$$F = \Sigma_{W,X,Y,Z} (0,2,4,6,8,10,12,14) + d (9,13)$$

f)
$$F = \Sigma_{W,X,Y,Z} (0,2,8,10) + d (5,13)$$

b)
$$F = \Sigma_{W,X,Y,Z} (2,5,13,15,10) + d(8,0,12)$$

$$F = X'Z' + ZWX + XY'Z$$

There is only one minimal SOP

Q3.

a)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,15)$$

b)
$$F = \Sigma_{W,X,Y,Z} (2,5,13,15,10) + d (8,0,12)$$

c)
$$F = \Pi_{W,X,Y,Z} (4,5,6,7,10,12,13,14) + d (3,9,15)$$

d)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,12,15)$$

e)
$$F = \Sigma_{W,X,Y,Z} (0,2,4,6,8,10,12,14) + d (9,13)$$

f)
$$F = \Sigma_{W,X,Y,Z} (0,2,8,10) + d (5,13)$$

c)
$$F = \Pi_{W,X,Y,Z} (4,5,6,7,10,12,13,14) + d (3,9,15)$$

$$F = W'X' + X'Y' + ZX'$$

There is only one minimal SOP

Q3.

a)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,15)$$

b)
$$F = \Sigma_{W,X,Y,Z} (2,5,13,15,10) + d (8,0,12)$$

c)
$$F = \Pi_{W,X,Y,Z} (4,5,6,7,10,12,13,14) + d (3,9,15)$$

d)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,12,15)$$

e)
$$F = \Sigma_{W,X,Y,Z} (0,2,4,6,8,10,12,14) + d (9,13)$$

f)
$$F = \Sigma_{W,X,Y,Z} (0,2,8,10) + d (5,13)$$

d)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,12,15)$$

$$F_{1} = W'Y'Z+W'X'Z+W'X'Y'+YWX$$

$$F_{2} = W'Y'Z+W'X'Z+W'X'Y'+WXZ'$$

$$F_{3} = W'Y'Z+W'X'Z+X'Y'Z'+YWX$$

$$F_{4} = W'Y'Z+W'X'Z+X'Y'Z'+WXZ'$$

a)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,15)$$

b)
$$F = \Sigma_{W,X,Y,Z} (2,5,13,15,10) + d (8,0,12)$$

c)
$$F = \Pi_{W,X,Y,Z} (4,5,6,7,10,12,13,14) + d (3,9,15)$$

d)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,12,15)$$

e)
$$F = \Sigma_{W,X,Y,Z} (0,2,4,6,8,10,12,14) + d (9,13)$$

f)
$$F = \Sigma_{W,X,Y,Z} (0,2,8,10) + d (5,13)$$

F = Z' There is only one minimal SOP

Q3.

a)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,15)$$

b)
$$F = \Sigma_{W,X,Y,Z} (2,5,13,15,10) + d (8,0,12)$$

c)
$$F = \prod_{W,X,Y,Z} (4,5,6,7,10,12,13,14) + d(3,9,15)$$

d)
$$F = \Sigma_{W,X,Y,Z} (0,1,3,5,14) + d (8,12,15)$$

e)
$$F = \Sigma_{W,X,Y,Z} (0,2,4,6,8,10,12,14) + d (9,13)$$

f)
$$F = \Sigma_{W,X,Y,Z} (0,2,8,10) + d (5,13)$$

f)
$$F = \Sigma_{W,X,Y,Z}(0,2,8,10) + d(5,13)$$

$$F = X'Z'$$

There is only one minimal SOP

(2's-Complement)

Most significant bit is the sign bit:

MSB = 0: positive integer

MSB = 1: negative integer

Range: -2^{n-1} to $+2^{n-1}-1$

01101110	Original binary value
10010001	1's complement
10010001	
10010010	2's complement

Two's complement binary	Decimal
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

-12 8-bit two's complement?

Decimal	8-bit two's complement
25	
120	
82	
-42	
-6	
-111	

25	00011001
120	01111000
82	01010010
-42	11010110
-6	11111010
-111	10010001

• Add the following pairs of binary numbers, showing all carries:

		1	1	0	0	1	1
			1	1	0	1	0
sum	1	0	0	1	1	0	1

		1	1	0	0	1	1	0
		1	1	1	1	0	0	1
sum	1	1	0	1	1	1	1	1

a)

carries	1	1	0	0	1	0	0
		1	1	0	0	1	1
			1	1	0	1	0
sum	1	0	0	1	1	0	1

d)

carries	1	1	0	0	0	0	0	0
		1	1	0	0	1	1	0
		1	1	1	1	0	0	1
sum	1	1	0	1	1	1	1	1

• Indicate whether or not overflow occurs when adding the following 8-bit two's complement numbers:

(a)
$$11010100$$
 (b) 10111001 (c) 01011101 (d) 00100110 $+ 10101011$ $+ 11010110$ $+ 00100001$ $+ 01011010$

Q16.

Add the following 5-bit binary numbers in two's complement representation to obtain 5-bit binary results in two's complement representation. For each case, <u>indicate whether overflow has occurred or not</u>.

4-Bit Unsigned Comparator

AeqB = $i_3i_2i_1i_0$, AgtB = $a_3b_3'+i_3a_2b_2'+i_3i_2a_1b_1'+i_3i_2i_1a_0b_0'$

AltB = (AeqB + AgtB)' = AeqB'AgtB'

A	B	
6	15	Decinal Number
0110	3266	Binary Number
(0 = a θb =	. 1	Aeq B= 0.1.1.0=0 X
$\frac{i_2}{i_3} = \frac{\overline{\alpha_2 \oplus b_2}}{\overline{\alpha_3 \oplus b_3}} =$	0	A g+B= a3b+ i ab + i i ab
3, 3,	* :	+132100
1	- 3 3	= 0+0+0 ×
		AL+B=(AegB+AgoB)=
		(o+o)=1 \
* *	- 6 a	ACB 6 15

Figure 4.22 A four-bit comparator circuit.

4-Bit Comparator

	Unsigned	Signed
X = Y	Z	Z
X < Y	C _{out} '	$N \oplus V$
X > Y	C _{out} Z'	$(\overline{N \oplus V})Z'$

4-Bit Comparator

	Unsigned	Signed
X = Y	Z	Z
X < Y	C _{out} '	$N \oplus V$
X > Y	C _{out} Z'	$(\overline{N \oplus V})Z'$

