BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE - PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION FIRST SEMESTER 2018-2019 (COURSE HANDOUT: PART-II)

Date: 30/07/2019

In addition to Part- I (a general handout for all courses appended to the time-table), this handout provides the specific details of this course.

Course No. : ME G533

Course Title : CONDUCTION AND RADIATION HEAT TRANSFER

Instructor-in-charge : SANTANU PRASAD DATTA

1. Course Description

Heat conduction equations; Eigen value problems; analytical solution of heat conduction equation by Laplace transform, Duhamel's theorem, Fourier transform and separation of variables techniques; contact resistance; transient heat conduction - conduction with moving boundary, solidification and melting; problems with periodic boundary conditions; inverse heat conduction, micro-scale heat transfer; integral equation for radiative exchange; view factors; radiative exchange between surfaces: black surfaces, gray, diffuse partially specular surfaces; radiative properties of participating media: introduction to gas properties, wide band models, total emissivity, particle properties; radiative transfer through participating media: gray, plane-parallel slab; approximate methods; non-gray media.

2. Scope and Objective

To introduce and familiarize students with various analytical methods used as tools to analyse a wide range of engineering applications involving heat transfer by conduction and radiation. Emphasis will be given to understanding and the use of various mathematical techniques needed to develop the exact analytical and appropriate solutions for a broad class of heat conduction and radiation problems. Examples will be discussed to illustrate the applications of various exact solution techniques. In the first half, basics conduction heat transfer equations and analytical methods to the solutions of transient conduction heat transfer with and without heat generation, with moving heat source and phase change will be discussed. In the second half, the theory of radiation heat transfer and analytical methods to the solution of radiation heat exchange between different surfaces with and without participating media will be discussed.

3. Text Books (TBs)

- (a) TB1: M. Necati Ozisik, "Heat Conduction", John Wiley & Sons, 2nd edition, 1993.
- (b) TB2: Michael F. Modest, Radiative Heat Transfer, Academic Press, 2nd edition, 2003.

4. Reference Books (RBs)

- (a) RB1: Latif M. Jiji, "Heat Conduction", Springer, 3rd edition, 2009.
- (b) RB2: Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, "Fundamentals of Heat and Mass Transfer", Wiley, 7th edition, 2011.
- (c) RB3: Vedat S. Arpaci, "Conduction Heat Transfer", Addison-Wesley, 1991.
- (d) RB4: John R. Howell and Robert Siegel, "Thermal Radiation Heat Transfer", Taylor & Francis, 4th Edition, 2002.

5. Course Plan

Lecture No.	Learning Objectives	Topics to be covered	Chapte r Nos.				
1-4	Heat conduction equations with different geometry, boundary conditions, solution methodology	Fundamental of conduction heat transfer (CHT) - steady and transient CHT, boundary conditions, separation of variables, Eigen values	Ch. 1-3 (TB1)				
5-10	Different methodologies to solve steady state and transient heat conduction	Exact solution of CHT - Duhamel's theorem, Green's function, Laplace transform, Fourier transform	Ch. 5-7 (RB1)/ Ch. 1-2 (RB1)				
11-13	Mathematical modelling of moving heat source and heat sink problems	Application of transient conduction heat transfer (TCHT) - stationary and moving heat source/sink	Ch. 3-4 (RB1)				
14-16	Heat conduction through porous media	Introduction about porous media, steady state and transient heat transfer through porous media	Ch. 5 (RB1)				
17-21	Phase-change problems with variable boundary wall	Application of TCHT - moving boundary problems (melting and solidification)	Ch. 6 (RB1)				
22-23	An overview of nonlinear conduction problems	Source of nonlinearity, Taylor series method, Kirchhoff Transformation, Boltzmann Transformation	Ch. 7 (RB1)				
24-25	Approximate solution: Integral method	Integral method approximation and accuracy of integral method	Ch. 8 (RB1)				
26-27	Perturbation solutions	Perturbation solution procedure and example, Variable thermal conductivity	Ch. 9 (RB1)				
28-32	Fundamentals of radiation, basic laws, some definition of radiative heat transfer	Fundamental of radiation heat transfer (RHT) – radiation characteristics of matter, radiative properties of surfaces	Ch. 1 & 3 (TB2)				
33-36	Definition and method to evaluate view factor	View factors	Ch. 4 (TB2)				
37-39	Radiative heat exchange between different surfaces	Radiative heat exchange between gray, diffusive, partially-specular and non-gray surfaces, radiation network, radiation shield	Ch. 5-7 (TB2)				
40-42	Equation of radiative transfer in participating media	Radiative heat transfer with participating media – absorbing, emitting and scattering	Ch. 9 (TB2)				

6. Evaluation Scheme

Evaluation Component	Duration (min.)	Weightage (%)	Date & Time	Nature of Component
Mid Semester Exam	90	25%	TBA	Closed Book
Assignment	Within 7 days	5%	To be announced by I/C	Open Book
Class Assessment	_	10%	To be announced by I/C	Open Book
Experiment	-	15%	To be announced by I/C	Open Book
Term-project	-	10%	To be announced by I/C	Open Book
Comprehensive Exam	180	35%	07/12 FN	Closed Book

7. Chamber Consultancy Hour

To be announced by I/C in the class.

8. Notices

All notices concerning this course will be displayed in *Mechanical Engineering* notice board. Students are advised to visit regularly *CMS* (institute's web based Course Management System) for all notices and updates.

9. Make-up Policy

Make-up request for tests shall be granted only for the genuine cases with sufficient evidence. Request letter duly signed by the student should reach the under signed well in advance.

10. Academic Honesty and Integrity Policy:

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge (I/C) (ME G533)