Molecular Orbital Theory of H₂⁺

$$E_{_{1}} = E_{_{1S}} + \frac{Qe^{^{2}}}{R} - \frac{Qe^{^{2}}[J+K]}{[1+S]}$$

$$E_{2} = E_{1s} + \frac{Qe^{2}}{R} - \frac{Qe^{2}[J - K]}{[1 - S]}$$

$$0 \le |S| \le 1; J < 0 \& K < 0$$

J - Coulomb integral - interaction of electron in 1s orbital around A with a nucleus at B

K - Exchange integral
– exchange (resonance)
of electron between the
two nuclei.

Destabilization of Anti-bonding orbital is more than **Stabilization of Bonding** orbital

Molecular Orbital Theory of H₂⁺

σ bonding molecular orbital

Sigma Bonding with 1s Orbitals

Bonding with 2p Orbitals

Sigma Bonding with 2p Orbitals

Pi Bonding with 2p Orbitals

Note the signs, symmetries and nodes

Symmetry of Orbitals

Hydrogen molecule ion:

Bonding: Symmetric

 $\rightarrow \sigma_g$

Anti-bonding: Antisymmetric

 $\rightarrow \sigma_{ii}$

Gerade (g) \rightarrow Symmetric Ungarade (u) \rightarrow Antisymmetric

Types of Bonds

$$\widehat{H}(H_{2}) = \underbrace{-\frac{\hbar^{2} \text{ignore}}{2m_{A}} \nabla_{A}^{2} - \frac{\hbar^{2}}{2m_{B}} \nabla_{B}^{2}}_{-2m_{e}} \nabla_{e1}^{2} - \frac{\hbar^{2}}{2m_{e}} \nabla_{e2}^{2} - \underbrace{-\frac{\hbar^{2}}{2m_{e}}}_{-2m_{e}} \nabla_{e2}^{2} - \underbrace{-\frac{\hbar^{2}}{2m_{e}}}_{-2m_{e}}_{-2m_{e}} \nabla_{e2}^{2} - \underbrace{-\frac{\hbar^{2}}{2m_{e}}}_{-2m_{e}} \nabla_{e2}^{2} - \underbrace{-\frac{\hbar^{2}}{2m_{e}}}_{-2m_{e}} \nabla_{e2}^{2} - \underbrace{-\frac{\hbar^{2}}{2m_{e}}}_{-2m_{e}} \nabla_{e2}^{2} - \underbrace{-\frac{\hbar^{2}}{2m_{e}}}_{-2m_{e}}}_{-2m_{e}} \nabla_{e2}^{2} - \underbrace{-\frac{\hbar^{2}}{2m_{e}}}_{-2m_{e}}}_{-2m_{$$

$$\widehat{H}(H_{2}) = -\frac{\hbar^{2}}{2m_{e}}\nabla_{e_{1}}^{2} - \frac{\hbar^{2}}{2m_{e}}\nabla_{e_{2}}^{2} - Q\frac{e^{2}}{r_{1A}} - Q\frac{e^{2}}{r_{1B}}Q\frac{e^{2}}{r_{2A}} - Q\frac{e^{2}}{r_{2B}} + Q\frac{e^{2}}{r_{12}} + Q\frac{e^{2}}{r_{12}}$$

$$\widehat{H}\big(H_{_{2}}\big) = - \left\lceil \frac{\hbar^{2}}{2m_{_{e}}} \nabla_{_{e_{1}}}^{2} + Q \frac{e^{^{2}}}{r_{_{1}A}} \right\rceil - \left\lceil \frac{\hbar^{2}}{2m_{_{e}}} \nabla_{_{e_{2}}}^{2} + Q \frac{e^{^{2}}}{r_{_{2}B}} \right\rceil - Q \frac{e^{^{2}}}{r_{_{1}B}} Q \frac{e^{^{2}}}{r_{_{2}A}} + Q \frac{e^{^{2}}}{r_{_{1}2}} + Q \frac{e^{^{2}}}{R}$$

$$\widehat{H}(H_{2}) = \widehat{H}(H_{1e}) + \widehat{H}(H_{2e}) - Q\frac{e^{2}}{r_{1R}}Q\frac{e^{2}}{r_{2A}} + Q\frac{e^{2}}{r_{12}} + Q\frac{e^{2}}{R}$$
 Cannot be Solved

For
$$H_2^+$$

$$\psi_{bonding} = \psi_1 = \frac{1}{\sqrt{[2+2S]}} (\phi_{1s_A} + \phi_{1s_B})$$

Place the second electron in the bonding orbital to get H₂

$$\psi_{bonding}(H_{2}) = \psi_{1} \cdot \psi_{2}$$

$$= \left[\frac{1}{\sqrt{[2+2S]}} \left(\phi_{1s_{A}}^{1} + \phi_{1s_{B}}^{1} \right) \right] \cdot \left[\frac{1}{\sqrt{[2+2S]}} \left(\phi_{1s_{A}}^{2} + \phi_{1s_{B}}^{2} \right) \right] \left[\frac{1}{\sqrt{2}} \left[\alpha(1)\beta(2) - \beta(1)\alpha(2) \right] \right]$$

$$\psi_{bonding}(H_{\scriptscriptstyle 2})$$

$$= \frac{1}{2[1+S]} \left[\left(\phi_{1s_A}^1 + \phi_{1s_B}^1 \right) \right] \cdot \left[\left(\phi_{1s_A}^2 + \phi_{1s_B}^2 \right) \right] \left[\frac{1}{\sqrt{2}} \left[\alpha(1)\beta(2) - \beta(1)\alpha(2) \right] \right]$$

Spatial Part

$$\psi_{bonding} = \frac{1}{2[1+S]} \left[\phi_{1s_A}^1 \phi_{1s_A}^2 + \phi_{1s_B}^1 \phi_{1s_B}^2 + \phi_{1s_A}^1 \phi_{1s_B}^2 + \phi_{1s_B}^1 \phi_{1s_A}^2 \right]$$

$$\frac{1}{2[1+S]} \left[1s_A(1) \cdot 1s_A(2) + 1s_B(1) \cdot 1s_B(2) + 1s_A(1) \cdot 1s_B(2) + 1s_B(1) \cdot 1s_A(2) \right]$$

$$\psi_{anti-bonding}(H_{_2})$$

$$= \frac{1}{2[1-S]} \left[\left(\phi_{1s_{A}}^{1} - \phi_{1s_{B}}^{1} \right) \right] \cdot \left[\left(\phi_{1s_{A}}^{2} - \phi_{1s_{B}}^{2} \right) \right] \left[\frac{1}{\sqrt{2}} \left[\alpha(1)\beta(2) - \beta(1)\alpha(2) \right] \right]$$

Spatial Part

$$\psi_{anti-bonding} = \frac{1}{2[1-S]} \left[\phi_{1s_A}^1 \phi_{1s_A}^2 + \phi_{1s_B}^1 \phi_{1s_B}^2 - \phi_{1s_A}^1 \phi_{1s_B}^2 - \phi_{1s_B}^1 \phi_{1s_A}^2 \right]$$

$$\frac{1}{2[1-S]} \left[1s_A(1) \cdot 1s_A(2) + 1s_B(1) \cdot 1s_B(2) - 1s_A(1) \cdot 1s_B(2) - 1s_B(1) \cdot 1s_A(2) \right]$$

$$\psi_{anti-bonding} = \frac{1}{2[1-S]} \left[\phi_{1s_A}^1 \phi_{1s_A}^2 + \phi_{1s_B}^1 \phi_{1s_B}^2 - \phi_{1s_A}^1 \phi_{1s_B}^2 - \phi_{1s_B}^1 \phi_{1s_A}^2 \right]$$

$$\frac{1}{2[1-S]} \left[1s_A(1) \cdot 1s_A(2) + 1s_B(1) \cdot 1s_B(2) - 1s_A(1) \cdot 1s_B(2) - 1s_B(1) \cdot 1s_A(2) \right]$$

$$\nu_{bonding} = \frac{1}{2[1+S]} \left[\phi_{1s_A}^1 \phi_{1s_A}^2 + \phi_{1s_B}^1 \phi_{1s_B}^2 + \phi_{1s_A}^1 \phi_{1s_B}^2 + \phi_{1s_B}^1 \phi_{1s_A}^2 \right]$$

$$\frac{1}{2[1+S]} \left[1s_A(1) \cdot 1s_A(2) + 1s_B(1) \cdot 1s_B(2) + 1s_A(1) \cdot 1s_B(2) + 1s_B(1) \cdot 1s_A(2) \right]$$

Effective nuclear charge changes the absolute energy Levels and the size of orbitals!

Matching of energies of AOs important for LCAO-MO If energies are not close to each other, they would Not interact to form MOs.

Diatoms of First Row: H₂⁺, H₂, He₂, He₂⁺

Molecular properties of H₂⁺, H₂, He₂⁺, and He₂.

Species	Number of electrons	Ground-state electron configuration	Bond order	Bond length/pm	Binding energy/kJ·mol ⁻¹
11,	1	$(\sigma_{g} 1s)^{1}$	1/2	106	268
H ₂	2	$(\sigma_{\rm g}^{\circ} ls)^2$	1	74	457
He ₂ ⁺	3		1/2	108	241
He ₂	4	$(\sigma_{g} 1s)^{2} (\sigma_{u} 1s)^{4}$ $(\sigma_{g} 1s)^{2} (\sigma_{u} 1s)^{2}$	0	≈ 6000	≪ 1

Effective nuclear charge changes the absolute energy levels and the size of orbitals!

Matching of energies of AOs important for LCAO-MO, if the energies of two Aos are not close they will not interact to form MOs.