Automobile Customer Segmentation: Unsupervised Machine Learning Investigation

Deirdre Boland 21 Feb 25

Dataset, Objective and Approach

Dataset

Sales team at an automobile company has classified all customers into 4 segments (A, B, C, D). A strategy of performing segmented outreach and communication has worked exceptionally well for them.

Objective

Can an unsupervised machine learning (ML) model predict the 4 segments?

or

Is domain knowledge and further data required?

Approach

- Took training dataset and removed A-D segmentation to review against unsupervised ML results
- Reference Kaggle: <u>Customer Segmentation</u> Vetrivel-PS

Data exploration and cleaning

- Only ID, gender, age, spending score and segmentation have full data
- Removed null values from Ever Married (cat), Graduated (cat), Family Size (num), Var_1 (cat)
 - 7.3% data dropped 7477 from 8068 (index = original dataset row index)
 - If not removed or replaced with string values will create new variable on encoding
- Label encoded categorical features
 - Gender male = 1, female = 0
 - Ever married and Graduated yes = 1, no = 0
 - Profession Artist = 0, Doctor = 1, Engineer = 2, Entertainment = 3, Executive = 4, Healthcare = 5, Homemaker = 6, Lawyer = 7, Marketing = 8, *null* = 9 *
 - *Potential loss further 1.2% if dropped null, categories seemed limited so allowing place for other/null
 - Spend score Average = 0, high = 1, low = 2
 - Low has highest count not average average may be based on external factor
 - Var_1 Cat 1 7, 0-6
 - Segmentation A–D, 0–3
- Work experience further 10% loss if dropped nulls
 - High count 0/1s despite wide adult age range
 - Low correlation
 - dropped column from dataset

Modelling approach

- 8 numeric features after dropping segmentation (target)
- Data preparation
 - Regularisation
 - Scaled by Z scale, Robust scale and Min max scale
 - Normalised by L1, L2 or Max normalisation
 - PCA of original, scaled and normalised
 - Unsupervised modelling
 - Forcing to 4 categories (k = 4) to match target set even if not optimal
 - K means (Km) clustering
 - Default settings, random state set to limit variation from setting initial centroids
 - K assessment using elbow method and silhouette score
 - Agglomerative (Aggl)/Hierarchical clustering
 - metric= "Euclidean", linkage = "ward"
 - Deterministic, random state not required
 - · K assessment using silhouette score

Histograms of Original Data

Effects of normalisation

- Normalizer works on each sample (row) independently
 - calculates the norm of each sample and then scales the individual features by dividing them by the computed norm.
 - A regularization method, e.g. a method to keep the coefficients of the model small, and in turn, the model less complex.
- L1 Norm: aka Manhattan norm sum of absolute values
- L2 Norm: aka Euclidean norm square root of the sum of squared values most common
- Max Norm: Scales each feature by the maximum absolute value in the sample used neural network weights
- References https://www.pythonprog.com/sklearn-preprocessing-normalizer/#:~:text=The%20Normalizer%20in%20scikit-
 Learn%20focuses%20on%20transforming%20individual,values%20so%20they%20fall%20within%20a%20certain%20range. https://machinelearningmastery.com/vector-norms-machine-learningmaster

Effects of scaling

X axis changes but no major change to distribution or correlation

Results – 8 features

Correlation matrix - target vs. models

- Km Orig vs. Km PCA orig (on right)
- Actual outcome = a 0 in segmentation has a 0.1,2 or 3 in model and same for all categories

0.4

0.3

Results - 3 features

- Only ID, gender, age, spending score and segmentation have full data questions around spending score and profession
- Copied notebook, remodelled data for just gender, age and spending score and re-ran

Cluster visualisation

- Kmeans (Km) and Agglomerative (Aggl) scatter plots of data use whole dataset
- 20 row subset (fixed sampling using numpy seed) used to plot dendrograms (dend)

orough idea of categorisation compared to full data

8 features - Age tracks & Aggl and Kmeans close to dend (2 and 3 swapped)

Original data Variance Ratio: [0.95767885 0.02400603] Variance by 2 component PCA covers 98.17 %

3 features - Age tracks & Kmeans matches and Aggl close to dend

Age	Gender_num	SpendSc_num	Segmentation	Segmentation_num	Km Orig	Aggl Orig	Index	0	5	20	8	ਠੈ	8	60	8
29	0	0	A	0	3	3	1	-	120	10		V.S.	100	10	-
30	0	0	A	0	3	3	14	14							
28	1	2	D	3	3	3	0	0							
28	0	2	С	2	3	3	18	18							
30	1	2	C	2	3	1.	9	φ 1							
30	0	2	D	3	3	1	31	=							\neg
19	0	2	D	3	3	3	4	4							
18	1	2	D	3	3	3	13	ti -							
22	0	2	D	3	3	3	8	00		-					
20	t t	2	D	3	3	3	2	2							
21	1 1	2	D	3	3	3	19	19							
39	1	0	A	0	0	1	7	7							
36	1 1	0	C	2	0	1	5	5							
37	1	2	D	3	0	-12	12	12 1							
47	1, 1	0	В	1	0	0	6	6							
43	0	0	В	1	0	1	17	77			1				
65	1	2	A	0	2	2	10	5		1					
57	1	0	С	2	2	0	15	15	_						
51	1	0	C	2	2	0	3	ω h							
52	0	2	A	0	2	0	16	16 F							

Original data Variance Ratio: [0.99673525 0.00238464] Variance by 2 component PCA covers 99.91 %

Conclusion

- Unsupervised learning was not able to reproduce existing A-D customer classification
 - More domain knowledge required oddities in work experience and spending score noted in data exploration
- Future work/improvements
 - Could have split dataset into training and test data with known answer
 - Iterative approach taken function or pipeline would reduce coding lines for review