The dataset I used is the "penguin size" data, and the coding environment is google colab. The dataset contains the following information:

	species	island	culmen_length_mm	${\tt culmen_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE

I performed two different kinds of tasks with pycaret and autokeras. For pycaret, the task is to predict body mass, which is a number. And for autokeras, the task is to predict the species, which is a category.

Fig 2. GUI for autokeras

For the training process, with the same amount of data, autokeras is easier to set up but with a limited choice of model types. Pycaret takes more effort to set up, but it allows you to compare different model types.

P.S I have spoken with Prof. McComb for an extension.