Clustering Part 1

Mohammed Brahimi & Sami Belkacem

Outline

- Overview of Clustering
- Major Clustering Approaches
 - □ K-means Clustering
 - ☐ Hierarchical Clustering
 - DBSCAN Clustering
- Cluster Evaluation

Outline

- Overview of Clustering
- Major Clustering Approaches
 - □ K-means Clustering
 - ☐ Hierarchical Clustering
 - DBSCAN Clustering
- Cluster Evaluation

What is Clustering?

Given a set of objects, place them in groups such that:

The objects in a group are **similar** (or related) to one another and **different** from (or unrelated to) the objects in other groups

Applications of Clustering

- Marketing: Discover customer segments for targeted marketing
- Information retrieval: Document clustering
- Land use: Identifying similar land use areas in an Earth database
- Biology: Taxonomy levels (kingdom to species)
- City planning: Grouping houses by type, value, and location
- Earthquake studies: Clustering observed epicenters along fault lines
- Climate: Analyzing atmospheric and ocean patterns
- Economic science: Market research

Clustering as Preprocessing tool

Summarization:

Preprocessing for classification, regression, PCA, and association analysis

Compression:

Image processing using vector quantization

Finding K-nearest Neighbors

Localizing search to one or a small number of clusters

Outlier detection

Outliers are often viewed as those "far away" from any cluster

What is a **good** clustering and what are the **factors** that contribute to it?

What is a Good Clustering? (1)

- A <u>good clustering</u> method will produce high-quality clusters
 - high intra-class similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The <u>quality</u> of a clustering method depends on:
 - the <u>similarity</u> measure used by the method
 - the <u>implementation</u> of the clustering method
 - the ability to discover some or all of the <u>hidden patterns</u>

What is a Good Clustering? (2)

Dissimilarity/Similarity metric

- Similarity is expressed in terms of a distance function d(i, j)
- The definitions of distance functions depend on the attribute type: boolean, categorical, interval-scaled, ordinal ratio, and vector variables
- Weights should be associated with different attributes based on the domain application and data semantics

Quality of clustering

- There is a "quality" function that measures the "goodness" of a cluster
- It is hard to define "similar enough" or "good enough" due to subjectivity

Considerations for Clustering

Partitioning criteria

- Single-level
- Hierarchical partitioning (often, multi-level partitioning is desirable)

Separation of clusters

- Exclusive (e.g., one customer belongs to only one region)
- Non-exclusive (e.g., one document may belong to more than one class)

Similarity measure

- Distance-based (e.g., Euclidean, road network, vector)
- Connectivity-based (e.g., density or contiguity)

Clustering space

- Full space (often when low dimensional)
- Subspaces (often in high-dimensional clustering)

Notion of a Cluster can be Ambiguous

How many clusters?

Notion of a Cluster can be Ambiguous

Requirements and Challenges

Interpretability

Explain and use the different clusters

Scalability

Clustering all the data instead of samples

Deal with different types of attributes

Numerical, binary, categorical, ordinal, linked, and a mixture of these

Constraint-based clustering

- User may give inputs on constraints
- Use domain knowledge to determine input parameters

Others

- Ability to deal with noisy data and outliers
- Ability to detect clusters of any shape

Outline

- Overview of Clustering
- Major Clustering Approaches
 - □ K-means Clustering
 - ☐ Hierarchical Clustering
 - DBSCAN Clustering
- Cluster Evaluation

Major Clustering Approaches

Partitional vs Hierarchical Clustering

Hierarchical Clustering

Partitional Clustering

Nested clusters

Non-nested clusters

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion
- Typical methods: K-means, K-medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data using some criterion
- <u>Typical methods</u>: Diana, Agnes, BIRCH, CAMELEON

Density-based approach:

- Based on connectivity and density functions (detect regions where points are concentrated)
- Typical methods: DBSCAN, OPTICS, DenClue

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit
- <u>Typical methods:</u> EM, SOM, COBWEB

Outline

- Overview of Clustering
- Major Clustering Approaches
 - □ K-means Clustering
 - Hierarchical Clustering
 - DBSCAN Clustering
- Cluster Evaluation

Partitional Algorithms

- Objective: Partitioning a database D of n objects into a set of K clusters.
- K-Means algorithm is an example of a partitional clustering algorithm.
- Example of clustering data points with K=3:

Which objective function should be used?

Objective Function

- A common objective function is minimize the Sum of Squared Distances (SSE)
- SSE is used with the Euclidean distance measure

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the centroid or medoid for cluster C_i
- For each point x, the error is the distance to the nearest cluster center m;
- To get SSE, we square these errors and sum them.
- SSE improves in each iteration until it reaches a local or global minima.

K-Means Algorithm

- The number of clusters *K* must be specified as input
- Each cluster is represented with a centroid (i.e. center point, e.g. the mean)
- In the first iteration, the *K* centroids are *K* random points (objects) from the data
- Each point in the data is assigned to the cluster with the closest centroid
- The centroid of each cluster is updated at each iteration
- The algorithm keeps iterating until the centroid don't change
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

Example of *K-Means* (K=2)

Example of *K-Means* (K=3)

Strength and Weakness of K-Means

- Strength: Fast: O(tkn)
 - n: number of objects, k: number of clusters, t: number of iterations
 - Normally: k, t << n</p>

Weakness

- Need to specify k, the number of clusters, in advance
- The random choice of the first k centroids may result in different clustering
- Applicable only to objects in a continuous n-dimensional space
- Often terminates at a local optimal
- Sensitive to noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

How to improve the K-Means algorithm?

Variations of the K-Means Algorithm

- Most of the variants of the k-means differ in:
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means

- Handling categorical data with k-modes:
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

Outline

- Overview of Clustering
- Major Clustering Approaches
 - □ K-means Clustering
 - ☐ Hierarchical Clustering
 - DBSCAN Clustering
- Cluster Evaluation