ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Proposed

Analysis

Conclusio

D - C-----

ANALYSIS OF MALICIOUS CODE DYNAMICS WITH TARGET AND ATTACKER NODES USING MATHEMATICAL MODEL

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

ATAL BIHARI VAJPAYEE INDIAN INSTITUTE OF INFORMATION
TECHNOLOGY AND MANAGEMENT
20-09-2017

Contents

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

- Introduction
- Literature Review
- Problem Statement and Objective
- Schematic Flow of Proposed Compartmental Model
- Numerical Experimentation (Feasibility States)
- Numerical Experimentation (No Security)
- Analysis of media coverage factor
- Analysis of Sensitivity
- Conclusion and Future Scope
- References

Introduction

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Propose Model

Analysis

Conclusion

D - C-----

- Malicious code is any code intentionally integrated, converted or cut out from a software system to damage or debase the system's predetermined function, e.g., Virus, Worms, Ransom-Ware.
- Propagation of malicious codes is epidemic in nature.
- To predict the behavior of cyber threats and to make the secure cyber system, it is necessary to study and find out the different types of malicious objects.

Literature Review

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Propose

Analysi

Conclusion

References

Author	Paper Title	Publishing Details	Salient Fea- tures
A. K.	Capturing the	Applied	Effect of an-
Misra, M.	interplay between	Mathemat-	tivirus over a
Verma	malware and	ics and	system [5]
and A.	anti-malware in a	Computa-	
Sharma	computer network	tion 2014	

Literature Review

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Literature Review

Author	Paper Title	Publishing	Salient Fea-
		Details	tures
Bhargava,	Dynamics of at-	ICRTIT,	Malicious
D.Soni,	tack of malicious	IEEE 2016	code dynamics
P.jain,	codes on the tar-		and effect of
J.Dhar	geted network		firewall[1]
G. P.	SEIQHRS epi-	J. Math-	An epidemic
Sahu, J.	demic model with	ematical	model SE-
Dhar	media cover-	Analysis	QIHRS is
	age, quarantine	and Ap-	proposed with
	and isolation in	plications,	quarantine and
	a community	Elsevier	isolation con-
	with pre-existing	2015	trol strategies
	immunity		[6]

Literature Review

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem Statement and Objective

Proposed Model

Analysi

_ .

Author	Paper Title	Publishing	Salient Fea-
		Details	tures
A. Grey	A stochastic differ-	SIAM J. Ap-	Analysis of
et. al.	ential equation SIS	plied Mathe-	stochastic SIS
	epidemic model	matics 2011	model [3]
Kribs-	A simple vaccina-	Mathematical	Effect of vac-
Zaleta	tion model with	biosciences	cination on
and	multiple endemic	2002	basic reproduc-
Velasco-	states		tion number
Hernandez			for a large
			population [4]

Problem Statement and Objective

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Problem Statement and Objective

The objective of this project is to analyze the malicious code dynamics with the target and attacker nodes using a mathematical model.

Schematic Flow of Proposed Compartmental Model

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-

078)

Literature

Problem
Statement
and Objective

Proposed Model

Analysis

Analysis

D 6

Parameters Descriptions

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Proposed Model

Analysis

Conclusio

Deferences

Parameters	Description
b, b ₁	Recruitment rates of target and attacker classes
d_1, d_3	Natural death rate of targeted and attacker population node
β_1	Contact rate from susceptible class to infected class
β_2	Contact rate from breaking-out to susceptible class
γ	Rate of recovery of computers with malicious codes in breaking-out state
η , η_1	Rate of recovery of computers with malicious codes in infected state
d ₂	Death rate in infected target classes(death due to infection and natural
	death)
λ_0	Rate of recovery of computers with malicious codes in quarantine state
δ	Rate of change of malicious nodes from infected to breaking-out state
θ	Rate of change of recovered nodes into infected nodes
d_4	Death rate in infected attacker classes(death due to infection and natur
	death)
α	Rate of change of recovered nodes into susceptible nodes
m ₁ , m ₂	Infection controlling coefficients
μ	Rate of change of malicious nodes from infected to quarantine state

Table: Description of Parameters

Proposed mathematical model For targeted nodes:

Gwalior Alok Singh (2014IPG-

ABV-IIITM

009) Neha Singh (2014IPG-059)

Saurabh Sharma (2014IPG-078)

Proposed Model

 $\frac{d\tilde{S}_{1}}{d\tilde{t}} = b - d_{1}\tilde{S}_{1} + \tilde{\alpha}\tilde{R}_{1} - \tilde{\beta}_{1}e^{-m_{1}\left(\frac{\tilde{l}_{1}}{\tilde{N}_{1}}\right)}\left(\frac{\tilde{l}_{1}}{\tilde{N}_{1}}\right)\tilde{S}_{1} - \tilde{\beta}_{2}e^{-m_{2}\left(\frac{\tilde{B}_{2}}{\tilde{N}_{2}}\right)}\left(\frac{\tilde{B}_{2}}{\tilde{N}_{1}}\right)\tilde{S}_{1}$

 $\frac{d\tilde{l}_1}{d\tilde{t}} = \tilde{\beta}_1 e^{-m_1 \left(\frac{\tilde{l}_1}{\tilde{N}_1}\right)} \left(\frac{\tilde{l}_1}{\tilde{N}_1}\right) \tilde{S}_1 + \tilde{\beta}_2 e^{-m_2 \left(\frac{\tilde{b}_2}{\tilde{N}_2}\right)} \left(\frac{\tilde{B}_2}{\tilde{N}_1}\right) \tilde{S}_1 - (\tilde{d}_2 + \tilde{\eta} + \tilde{\mu}) \tilde{l}_1$

 $\frac{d\tilde{Q}_1}{d\tilde{t}} = \tilde{\mu}\tilde{l}_1 - \tilde{d}_2\tilde{Q}_1 - \tilde{\lambda}_0\tilde{Q}_1$

 $= \tilde{\lambda}_0 \tilde{Q}_1 - \tilde{\alpha} \tilde{R}_1 - d_1 \tilde{R}_1 + \tilde{\eta} \tilde{I}_1$

For attacker nodes:

 $= b_1 - \tilde{d}_4 \tilde{l}_2 - \tilde{\delta} \tilde{l}_2 + \tilde{\theta} \tilde{R}_2 - \tilde{\eta}_1 \tilde{l}_2$ $= \tilde{\delta}\tilde{I}_2 - \tilde{d}_4\tilde{B}_2 - \tilde{\gamma}\tilde{B}_2$

 $=\quad \tilde{\gamma}\tilde{B}_2-d_3\tilde{R}_2-\tilde{\theta}\tilde{R}_2+\tilde{\eta}_1\tilde{\Phi}_2 +\tilde{\eta}_1\tilde{\Phi}_2 +\tilde{\eta}_1\tilde$

Boundedness of the system

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Analysis

For targeted population,

$$\Omega_k = \{ (\tilde{S}_1, \tilde{I}_1, \tilde{Q}_1, \tilde{R}_1) \in R_+^{-4} : \tilde{S}_1 + \tilde{I}_1 + \tilde{Q}_1 + \tilde{R}_1 \leq b/d \}$$

And for Attacker population

$$\Omega_{k1} = \{ (\tilde{I}_2, \tilde{B}_2, \tilde{R}_2) \in R_+^3 : \tilde{I}_2 + \tilde{B}_2 + \tilde{R}_2 \le b_1/d_1 \}$$

Steady States and their Stability: Two equilibrium states are observed out of which one is malicious-codes free and another is endemic equilibrium states.

Proposed mathematical model(Non- Dimensional)

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Propose Model

Analysis

Conclusion

References

Due to complicated nature of the equations, the equations are non-dimensionalized for the above system using:

$$S_1 = rac{ ilde{S}_1}{ ilde{N}_1}, \hspace{0.5cm} I_1 = rac{ ilde{I}_1}{ ilde{N}_1}, \hspace{0.5cm} Q_1 = rac{ ilde{Q}_1}{ ilde{N}_1} \hspace{0.5cm} R_1 = rac{ ilde{R}_1}{ ilde{N}_1},$$

$$I_2 = rac{ ilde{I}_2}{ ilde{N}_2}, \hspace{0.5cm} B_2 = rac{ ilde{B}_2}{ ilde{N}_2}, \hspace{0.5cm} R_2 = rac{ ilde{R}_2}{ ilde{N}_2}, \hspace{0.5cm} t = ilde{d}_1 ilde{t},$$

$$N_1 = rac{ ilde{N}_1}{ ilde{N}_1{}^0}, \quad N_2 = rac{ ilde{N}_2}{ ilde{N}_2{}^0}, \quad ilde{N}_1{}^0 = rac{b}{ ilde{d}_1}, \quad ilde{N}_2{}^0 = rac{b_1}{ ilde{d}_3}$$

Proposed mathematical model(Non-Dimensional)

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059)

Saurabh Sharma (2014IPG-078)

Analysis

For targeted nodes:

$$\frac{dS_1}{dt} = \frac{(1-S_1)}{N_1} + \alpha R_1 - \beta_1 e^{-m_1 l_1} l_1 S_1 - \beta_2 e^{-m_2 B_2} B_2 S_1 - S_1 + S_1^2 + d_2 l_1 S_1 + d_2 Q_1 S_1 + R_1 S_1$$

$$\begin{split} \frac{dl_1}{dt} &= \beta_1 e^{-m_1 l_1} l_1 S_1 + \beta_2 e^{-m_2 B_2} B_2 S_1 - (d_2 + \eta + \mu) l_1 - \frac{l_1}{N_1} + d_2 l_1^2 \\ &+ l_1 S_1 + d_2 Q_1 l_1 + l_1 R_1 \\ \\ \frac{dQ_1}{dt} &= \mu l_1 - d_2 Q_1 - \lambda_0 Q_1 - \frac{Q_1}{N_1} + d_2 Q_1^2 + d_2 l_1 Q_1 + Q_1 S_1 + Q_1 R_1 \\ \\ \frac{dR_1}{dt} &= \lambda_0 Q_1 - \alpha R_1 - R_1 + \eta l_1 - \frac{R_1}{N_1} + R_1^2 + d_2 l_1 R_1 + d_2 Q_1 R_1 + R_1 S_1 \end{split}$$

For attacker nodes:

$$\frac{dl_2}{dt} = \frac{(1 - l_2)}{N_2} - d_4 l_2 - \delta l_2 + \theta R_2 - \eta_1 l_2 + d_4 l_2^2 + d_4 l_2 B_2 + l_2 R_2$$

$$\frac{dB_2}{dt} = \delta l_2 - d_4 B_2 - \gamma B_2 - \frac{B_2}{N_2} + d_4 B_2^2 + d_4 l_2 B_2 + B_2 R_2$$

$$\frac{dR_2}{dt} = \gamma B_2 - R_2 - \theta R_2 + \eta_1 l_2 - \frac{R_2}{N_2} + R_2^2 + d_4 l_2 R_2 + d_4 B_2 R_2$$

Basic Reproduction Number

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Statement and Objective

Model

Analysis

. .

References

Basic Reproduction Number: It is defined by the expected number of secondary cases produced by a single infection in a completely susceptible population..

Observed basic reproduction number for this model is calculated by using F and V matrices with the infectious nodes (I_1, Q_1, I_2, B_2) ,

$$\mathcal{F} = \begin{bmatrix} \beta_1 e^{-m_1 l_1} l_1 S_1 - \beta_2 e^{-m_2 B_2} B_2 N_2 S_1 \\ Q_1 S_1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathcal{V} = \begin{bmatrix} (d_2 + \eta + \mu)I_1 + \frac{I_1}{N_1} - d_2I_1^2 - I_1S_1 - d_2Q_1I_1 - I_1R_1 \\ -\mu I_1 + d_2Q_1 + \lambda_0Q_1 + \frac{Q_1}{N_1} - d_2Q_1^2 - d_2I_1Q_1 - Q_1R_1 \\ -\frac{(1-I_2)}{N_2} + d_4I_2 + \delta I_2 - \theta R_2 + \eta_1I_2 - d_4I_2^2 - d_4I_2B_2 - I_2R_2 \\ -\delta I_2 + d_4B_2 + \gamma B_2 + \frac{B_2}{N_2} - d_4B_2^2 - d_4I_2B_2 - B_2R_2 \end{bmatrix}$$

Contd..

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Statement and Objective

Proposed Model

Analysis

Allalysis

Reference

Now, calculating Jacobian of ${\mathcal F}$ and ${\mathcal V}$ as F and V respectively, F=

V =

$$egin{bmatrix} (d_2+\eta+\mu+1) & 0 & 0 & 0 \ -\mu & (d_2+\lambda_0+1) & 0 & 0 \ 0 & 0 & (1+d_4+\delta+\eta_1) & 0 \ 0 & 0 & -\delta & (d_4+\gamma+1) \end{bmatrix}$$

Then, the dominant eigenvalue of FV^{-1} is the basic reproduction number R_0 .

$$R_0 = max\{rac{(eta_1+1)S_1}{ig(d_2+\mu+\eta+1ig)},rac{S_1}{ig(d_2+\lambda_0+1ig)}\}$$

Dynamic Behavior and Results

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Analysis

Malicious-code free equilibrium E_1 is stable if the reproduction number $R_0 < 1$. Endemic equilibrium E_2 is stable if $R_0 > 1$.

Dynamic Behavior and Results

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059)

Saurabh Sharma (2014IPG-078)

Review

Analysis

The local stability of malicious codes free and endemic equilibrium is verified by the eigenvalues of the variational matrix. If all the eigenvalues have negative real part, then the equilibrium point is said to be asymptotically stable.

$$J = \begin{bmatrix} -2 + 2S_1 & a_{12} & d_2S_1 & \alpha + S_1 & 0 & -\beta_2S_1 & 0 \\ 0 & a_{22} & 0 & 0 & 0 & \beta_2S_1 & 0 \\ 0 & \mu & a_{33} & 0 & 0 & 0 & 0 \\ 0 & \eta & \lambda_0 & a_{44} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{55} & 0 & \theta \\ 0 & 0 & 0 & 0 & \delta & -1 - d_4 - \gamma & 0 \\ 0 & 0 & 0 & 0 & 0 & \eta_1 & \gamma & -2 - \theta \end{bmatrix}$$

Where.

$$\begin{array}{rcl} a_{12} & = & d_2S_1 - \beta_1S_1 \\ a_{22} & = & -1 - d_2 - \eta - \mu + \beta_1S_1 + S_1 \\ a_{33} & = & -1 - d_2 - \lambda_0 + S_1 \\ a_{44} & = & -2 + \alpha + S_1 \\ a_{55} & = & -1 - d_4 - \eta_1 - \delta \end{array}$$

17 / 29

Numerical Experimentation (Feasible States)

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Proposed Model

Analysis

Conclusion

D. C

Possible steady states with respect to the reproduction number for different parameter set(Dimensional and non-dimensional) in the model.

Parameters (Non-	Set A	Set B	Parameters (With Dimen-	Set C	Set D
Dimensional)			sions)		
b	7.5	7.5	b	1	75
d_1	0.003	0.003	d_1	0.3	0.3
β_1	0.001	0.01	$egin{array}{c} ilde{eta}_1 \ ilde{eta}_2 \end{array}$	0.5	2.5
β_2	0.006	0.30	$\tilde{\beta}_2$	0.6	0.6
μ	0.003	0.003	$\tilde{\mu}$	0.3	0.3
λ_0	0.008	0.0008	$\left egin{array}{c} ilde{\mu} \ ilde{\lambda}_0 \end{array} ight $	0.8	0.8
d_4	0.075	0.0075	\tilde{d}_{Λ}	10	2.5
<i>b</i> ₁	7.5	7.5	$\begin{bmatrix} \tilde{b}_1 \\ \tilde{d}_3 \end{bmatrix}$	75	75
d_3	0.02	0.02	\tilde{d}_3	2.0	2.0
η	0.004	0.0004	$\tilde{\eta}$	0.4	0.4
η_1	0.175	0.0175	$\tilde{\eta}_1$	17.5	7.5
α	0.010	0.0005	$\tilde{\alpha}$	1.0	1.0
d_2	0.4	0.004	\tilde{d}_2	0.4	0.4
γ	0.0005	0.01	$egin{array}{c} ilde{\gamma} \ ilde{\delta} \end{array}$	0.75	0.75
δ	0.009	0.027	δ	1.9	0.9
θ	0.10	0.20	$\tilde{\theta}$	10	10
m_1	2	2	m ₁	6	2
m_2	3	2	m ₂	6	2
Feasible SS	E ₁	E ₂	Feasible SS	E_1	E_2
R ₀₁	0.0098	1.2500	-		
R ₀₂	0.0073	0.3846	R 0	0.4545	2. 2 727 🗸

Simulation

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Analysis

Figure: Node density vs Time for set A (left) and set B (right)

Numerical Experimentation(No Security)

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Analysis

Figure: Node density vs Time for set A (left) and set B(right)

4 D > 4 A > 4 B > 4 B > 900

Analysis of firewall coverage

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Analysis

Figure: Effect of m_2 (firewall coefficient) on \tilde{l}_1 when $\tilde{R}_0 < 1$ (left) and $\tilde{R}_0 > 1$ (right) 4 D > 4 A > 4 B > 4 B >

Sensitivity analysis of the system parameters

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Propose Model

Analysis

Anaiysis

References

- Sensitivity indices enables us to measure the relative change in a state variable with respect to a small change in the system parameter [2].
- Estimation and measurement of highly sensitive parameter should be done carefully, because a small change in the parameter will lead to relatively huge quantitative change.
- With respect to each parameter, we derived analytical expressions for sensitivity index of the most significant reproduction number R_{01} . We observed most sensitive parameters for Basic Reproduction Numbers which are shown in the table.

Sensitivity Analysis

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem Statement and Objectiv

Proposed

Analysis

Conclusion

Parameters (y _j)	Sensitivity $\Upsilon_{y_i}^{R_{01}}$	$\Upsilon_{y_i}^{R_{01}}$ Set 1	$\Upsilon_{y_i}^{R_{01}}$ Set 2
b	0	0	0
d_1	0	0	0
β_1	$\frac{\beta_1}{\beta_1+1}$	0.000999	0.0099
β_2	0	0	0
μ	$-\frac{\mu}{d_2+\mu+\eta+1}$	-0.002	-0.00298
λ_0	0	0	0
d_4	0	0	0
b_1	0	0	0
d ₃	0	0	0
η	$-\frac{\eta}{d_2+\mu+\eta+1}$	-0.0028	-0.000397
η_1	0	0	0
α	0	0	0
d_2	$-\frac{d_2}{d_2+\mu+\eta+1}$	-0.28	-0.00397
$\frac{\gamma}{\delta}$	0	0	0
δ	0	0	0
θ	0	0	0

Table: Distributed sensitivity indices concerning R_{01} d_2 , β_1 , μ and η are moderately sensitive and rest are independent of R_{01} .

Conclusion

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literatur Review

Problem
Statement
and Objective

Propose Model

Analysis

Conclusion

Deferences

- $f eta_1$ was found as decisive parameter for the reproduction number.
- Malicious code free equilibrium is stable, when R_0 <1 and, the endemic equilibrium achieved stability when R_0 >1.
- The coefficient of firewall security m can be defined as

$$m=-log_2(a+b-ab).$$

■ The basic reproduction number R_0 is not affected by the coefficient of firewall security and hence the features related to quality of the model don't change.

Conclusion

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Proposed Model

Analysis

Conclusion

D. C

Type of Analysis	Bhargava, Palash, Soni, Dhar	Proposed Model
Total equilibrium states	16	2
Malicious code free equi-	4	1
librium		
Endemic equilibrium	12	1
Highly sensitive parame-	2 to 4	0
ters		
Moderately sensitive parameters	3 to 5	2 to 4

Table: Comparison Table

Future Scope

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Propose

Analysi

Conclusion

Deference

- The analysis can be extended by considering time variant recruitment rate.
- Using some antidotal nodes.
- The idea of quarantined nodes can also help an individual of an organization to get rid of some new computer network attacks like Ransom-ware etc.
- The idea of kill signals can be implemented.

References I

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Statement and Objective

Propose Model

Analy

Conclusio

References

- [1] Bhargava, A., Soni, D. K., Jain, P. and Dhar, J.: 2016, Dynamics of attack of malicious codes on the targeted network: Effect of firewall, *International Conference on Recent Trends in Information Technology (ICRTIT)*, 2016, IEEE, pp. 1–6.
- [2] Chitnis, N., Hyman, J. M. and Cushing, J. M.: 2008, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, *Bulletin of Mathematical Biology* **70**(5), 1272–1296.
- [3] Gray, A., Greenhalgh, D., Hu, L., Mao, X. and Pan, J.: 2011, A stochastic differential equation sis epidemic model, SIAM Journal on Applied Mathematics 71(3), 876–902.

References II

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-078)

Introduction

Literature Review

Problem
Statement
and Objective

Proposed Model

Analysis

_ . .

References

- [4] Kribs-Zaleta, C. M. and Velasco-Hernandez, J. X.: 2000, A simple vaccination model with multiple endemic states, *Mathematical Biosciences* **164**(2), 183–201.
- [5] Misra, A. K., Verma, M. and Sharma, A.: 2014, Capturing the interplay between malware and anti-malware in a computer network., *Applied Mathematics and Computation* 229, 340–349.
- [6] Sahu, G. P. and Dhar, J.: 2015, Dynamics of an seqihrs epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, *Journal of Mathematical Analysis and Applications* 421(2), 1651–1672.

ABV-IIITM Gwalior

Alok Singh (2014IPG-009) Neha Singh (2014IPG-059) Saurabh Sharma (2014IPG-

078)

Literature Review

Problem
Statement
and Objective

Proposed

Analysis

Conclusion

References

Thank You