U.D.L Sidi Bel Abbès Module : Mathématiques Financières

Faculté des Sciences Exactes Responsable : M. HAMMAD Département : Probabilités-Statistique Mercredi 15/01/2020

Master 2 : Statistique et ses Applications Durée : 1h30mn

EXAMEN FINAL

Exercice 1 (11 points).

Soit $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ une base stochastique, W un mouvement brownien standard et λ une constante réelle. Soit

$$\begin{cases} dX_t = -\lambda^2 X_t^2 (1 - X_t) dt + \lambda X_t (1 - X_t) dW_t, \\ X_0 = x \in]0, 1[. \end{cases}$$

On admet que X prend ses valeurs dans l'intervalle]0,1[. On pose $Y_t = \frac{X_t}{1-X_t}$.

- 1. Vérifier que X_t est un processus d'Itô.
- 2. Quelle est l'E.D.S (Équation Différentielle Stochastique) vérifiée par Y?.
- 3. Résoudre cette E.D.S et donner une formule explicite de Y.
- 4. Déduire que $X_t = \frac{x \exp[\lambda W_t \lambda^2 t/2]}{x \exp[\lambda W_t \lambda^2 t/2] + 1 x}$.

Exercice 2 (09 points).

Soit $(W_t, t \ge 0)$ un mouvement brownien réel issu de 0 et on note $(\mathcal{F}_t)_{t\ge 0}$ sa filtration naturelle.

- 1. Calculer pour tout couple (s,t) les quantitées $\mathbb{E}(W_sW_t^2)$, $\mathbb{E}(W_t \mid \mathcal{F}_s)$ et pour $t \geq s \mathbb{E}(W_t \mid W_s)$.
- 2. Calculer $\mathbb{E}(W_t^2W_s^2)$ sachant que pour une v.a. gaussienne centrée Z de variance σ^2 , on a $\mathbb{E}(Z^4)=3\sigma^4$.
- 3. Quelle est la loi de $W_t + W_s$?.
- 4. Soit θ_s une v.a. bornée \mathcal{F}_s —mesurable. Calculer pour tout $t \geq s$, $\mathbb{E}[\theta_s(W_t - W_s)]$ et $\mathbb{E}[\theta_s(W_t - W_s)^2]$.