M62. EXERCICES 2

1. Exercice

Soit une fonction f de classe C^1 sur $\mathbb R$ qui vérifie

$$\lim_{t \to +\infty} (f(t) + f'(t)) = 0.$$

Démontrer que $\lim_{t\to+\infty} f(t) = 0$.

2. Exercice

Soit le problème de Cauchy

$$\dot{y} = \sqrt{1 + y^2},$$

$$y(0) = 1.$$

- Démontrer qu'il existe une unique solution globale pour ce problème de Cauchy.
- 2) Calculer la solution.

3. Exercice

Soit l'équation différentielle

$$t\dot{y} + y = 0.$$

1) Cette équation différentielle rentre-t-elle dans le cadre du théorème de Cauchy-Lipschitz pour t>0 ? pour $t\in\mathbb{R}$?

- 2
- 2) Trouver toutes les solutions définies sur un intervalle ouvert en t inclus dans $]0, +\infty[$.
- 3) Parmi ces solutions lesquelles se prolongent à tout t dans \mathbb{R} ?

4. Exercice

On considère les solutions de l'équation différentielle ordinaire sur \mathbb{R}

$$2\dot{y} = y(1 - \frac{3}{y^2 + 2}).$$

- 1) Vérifier les hypothèses du théorème de Cauchy-Lipshitz On considère dans la suite une trajectoire qui part de $y_0 > 0$ à t = 0.
- 2) Montrer que le temps maximal positif d'existence des solutions est $+\infty$.
- 3) Montrer que y(t) reste strictement positive pour tout t > 0.
- 4) Suivant la valeur de y_0 déterminer la limite quand t tend vers $+\infty$ de la trajectoire.

5. Exercice

On considèle le problème suivant: trouver y de classe \mathbb{C}^2 telle que

$$\ddot{y} = 4y - 6y^2,$$

$$y(0) = 1$$
 et $\dot{y}(0) = 0$.

- 1) Démontrer qu'il existe une solution unique à ce problème
- 2) Démontrer que la fonction $t \mapsto y(t)$ est paire.
- 3) Démontrer que $\dot{y}^2 = 4y^2(1-y)$.
- 4) Démontrer que la solution existe pour tout temps, qu'elle vérifie $0 \le y \le 1$ et que $\dot{y}(t) \le 0$ si $t \ge 0$.
- 5) Calculer y(t).