ESP-WROOM-32 Datasheet

Espressif Systems

August 1, 2016

About This Guide

This document introduces the specifications of ESP-WROOM-32 hardware.

The document structure is as follows:

Chapter	Title	Subject	
Chapter 1	Preface	A preview of ESP-WROOM-32.	
Chapter 2	Pin Definitions	The pin layout and descriptions.	
Chapter 3	Functional Description	Description of major functional modules and protocols.	
Chapter 4	Electrical Characteristics	The electrical characteristics and data of ESP-WROOM-32.	
Chapter 5	Schematics	The schematics of ESP-WROOM-32.	

Release Notes

Date	Version	Release notes
2016.08	V1.0	First release.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2016 Espressif Inc. All rights reserved.

Contents

1	Preface	1
2 2.1 2.2	Pin Definitions Pin Layout Pin Description	3 3 4
3.1 3.2 3.3	Crystal Oscillators 3.3.1 Power Consumption	6 6 6 7 8
4.1 4.2 4.3 4.4 4.5	Digital Terminal Characteristics Wi-Fi Radio Bluetooth Radio 4.5.1 Receiver 4.5.2 Transmit	13 13 13 14 14 14 15
5	Schematics	17

List of Tables

1	ESP-WROOM-32 Specifications	2
2	ESP-WROOM-32 Dimensions	3
3	ESP-WROOM-32 Pin Definitions	4
4	Strapping Pins	5
5	Power Consumption by Power Modes	7
6	Interface Description	8
7	Absolute Maximum Ratings	13
8	Recommended Operating Conditions	13
9	Digital Terminal Characteristics	13
10	Wi-Fi Radio Characteristics	14
11	Receiver Characteristics - BLE	14
12	Transmit Characteristics - BLE	15
13	Reflow Profile	15

List of Figures

1	Top View of ESP-WROOM-32	3
2	ESP-WROOM-32 Schematics	17

1. Preface

ESP-WROOM-32 is a generic but powerful WiFi-BT-BLE MCU module that targets a wide variety of applications ranging from low power sensor networks to the most demanding tasks such as voice encoding, music streaming and MP3 decoding.

The core of this module is the ESP32 chip, which is designed to be scalable and adaptive. There are 2 CPU cores that can be individually controlled or powered, and the clock frequency is adjustable from 80 MHz to 240 MHz. The user could even power off the CPU and make use of the low power coprocessor to constantly monitor the peripherals for changes or crossing of thresholds. ESP32 integrates a rich set of peripherals, ranging from capacitive touch sensors, Hall sensors, low noise sense amplifiers, SD card interface, Ethernet, high speed SDIO/SPI, UART, I2S and I2C.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted, and that it is future proof: using Wi-Fi allows a large physical range and direct connection to the internet through a Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone or broadcast low energy beacons for its detection. The sleep current of the ESP32 chip is less than 5 μ A, making it suitable for battery powered and wearable electronics applications. ESP-WROOM-32 supports data rates up to 150 Mbps, and 22 dBm output power at the PA to ensure the widest physical range. As such the chip does offer industry leading specifications and the best optimized performance for electronic integration, range and power consumption, and connectivity.

The operating system chosen for ESP32 is freeRTOS with LWIP; TLS 1.2 with hardware acceleration is built in as well. Encrypted over the air (OTA) upgrade is also supported, so that developers can continually upgrade their products even after their release. New SDK features, tutorials and example applications will be released over the next few months. The software releases are covered under the ESP32 bug bounty program and any bugs can be reported to bugbounty@espressif.com. As the SDK of ESP-WROOM-32 or ESP32 is open-source, the user can build his own platforms and operating systems. For more in-depth discussion of this, the developer can contact john.lee@espressif.com.

ESP-WROOM-32 has Espressif's long term support — ESP32 will be covered under Espressif's longevity program and be available for the next 12 years. The design of ESP-WROOM-32 will be open-source when it has been fully optimized. It is noted that several TVS components have been integrated in the current version of the module to protect the touch sensor pins of the module from ESD events, since it is expected that many developers will be testing this with their bare fingers. These TVS components will be removed from the module after the beta program. Feedbacks about the module, chip, API or firmware can be sent to feedback@espressif.com.

Table 1 provides the specifications of ESP-WROOM-32.

Table 1: ESP-WROOM-32 Specifications

Categories	Items	Specifications		
	Standards	FCC, CE, TELEC, KCC		
\A/: =:	Dratacala	802.11 b/g/n/d/e/i/k/r (802.11n up to 150 Mbps)		
Wi-Fi	Protocols	A-MPDU and A-MSDU aggregation and 0.4 μs		
		guard interval support		
	Frequency range	2.4 ~ 2.5 GHz		
	Protocols	Bluetooth v4.2 BR/EDR and BLE specification		
	Radio	NZIF receiver with -98 dBm sensitivity		
Bluetooth	nadio	Class-1, class-2 and class-3 transmitter		
		AFH		
	Audio	CVSD and SBC		
	Module interface	SD card, UART, SPI, SDIO, I2C, LED PWM, Motor		
	Module interface	PWM, I2S, I2C, IR		
		GPIO, capacitive touch sensor, ADC, DAC, LNA		
		pre-amplier		
Hardware	On-chip sensor Hall sensor, temperature sensor			
	On-board clock	26 MHz crystal, 32 kHz crystal		
	Operating voltage	2.2 ~ 3.6V		
	Operating current	Average: 80 mA		
	Operating temperature range	-40°C ~ 85°C *		
	Ambient temperature range	Normal temperature		
	Package size	18 mm x 20 mm x 3 mm		
	Wi-Fi mode	Station/softAP/SoftAP+station/P2P		
	Security	WPA/WPA2, WPS, TLS		
	Encryption	WEP/TKIP/AES/RSA/ECC/SHA		
Software	Firmware upgrade	UART Download / OTA (via network) / download		
		and write firmware via host		
	Software development	Supports Cloud Server Development / SDK for		
		custom firmware development		
	Network protocols	IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP		
	User configuration	AT instruction set, cloud server, Android/iOS App		

Note:

^{*} ESP-WROOM-32 with high temperature range option (-40°C ~ 125°C) is available for custom order.

2.1 Pin Layout 2 PIN DEFINITIONS

2. Pin Definitions

2.1 Pin Layout

The pin distribution of ESP-WROOM-32 module is illustrated in Figure 1.

Figure 1: Top View of ESP-WROOM-32

Table 2: ESP-WROOM-32 Dimensions

Length	Width	Height	PAD size (bottom)	Pin pitch
18 mm	25.5 mm	2.55 mm	0.45 mm x 0.9 mm	1.27 mm

2.2 Pin Description 2 PIN DEFINITIONS

2.2 Pin Description

ESP-WROOM-32 has 38 pins. See pin definitions in Table 3.

Table 3: ESP-WROOM-32 Pin Definitions

Name	No.	Function	
GND	1	Ground	
3V3	2	Power supply.	
EN	3	Chip-enable signal. Active high.	
SENSOR_VP	4	GPI36, SENSOR_VP, ADC_H, ADC1_CH0, RTC_GPI00	
SENSOR_VN	5	GPI39, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPIO3	
IO34	6	GPI34, ADC1_CH6, RTC_GPIO4	
IO35	7	GPI35, ADC1_CH7, RTC_GPIO5	
IO32	8	GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4,	
		TOUCH9, RTC_GPIO9	
IO33	9	GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,	
		TOUCH8, RTC_GPIO8	
IO25	10	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0	
IO26	11	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1	
1027	12	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV	
IO14	13	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK,	
		SD_CLK, EMAC_TXD2	
IO12	14	GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2,	
		SD_DATA2, EMAC_TXD3	
GND	15	Ground	
IO13	16	GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3,	
		SD_DATA3, EMAC_RX_ER	
SHD/SD2	17	GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD	
SWP/SD3	18	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD	
SCS/CMD	19	GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS	
SCK/CLK	20	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS	
SDO/SD0	21	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS	
SDI/SD1	22	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS	
IO15	23	GPIO15, ADC2_CH3, TOUCH3, MTDO, HSPICS0, RTC_GPIO13, HS2_CMD,	
		SD_CMD, EMAC_RXD3	
IO2	24	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,	
		SD_DATA0	
100	25	GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK	
104	26	GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,	
		SD_DATA1, EMAC_TX_ER	
IO16	27	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT	
IO17	28	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180	
IO5	29	GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK	
IO18	30	GPIO18, VSPICLK, HS1_DATA7	
IO19	31	GPIO19, VSPIQ, U0CTS, EMAC_TXD0	
NC	32	-	

2.2 Pin Description 2 PIN DEFINITIONS

Name	No.	Function	
IO21	33	GPIO21, VSPIHD, EMAC_TX_EN	
RXD0	34	GPIO3, U0RXD, CLK_OUT2	
TXD0	35	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2	
IO22	36	GPIO22, VSPIWP, U0RTS, EMAC_TXD1	
IO23	37	GPIO23, VSPID, HS1_STROBE	
GND	38	Ground	

During the chip power-on reset, the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is power-down or shut-down.

Each strapping pin is with the internal pull-up or the internal pull-down during the chip reset. If a strapping pin is unconnected or the connected external circuit is high-impendence, the internal weak pull-up/pull-down will determine the input level of the strapping pins. So these internal pull-up/pull-down provide the default values for these strapping pins. To change the strapping bit values, Users can apply the external pull-down/pull-up resistances, or apply the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32.

After reset, the strapping pins work as the normal functions pins.

Table 4: Strapping Pins

	Voltage of Internal LDO (VDD_SDIO)					
Pin	Default	3.3	3V	1.8V		
MTDI	Pull-down	()		1	
			Booting Mode			
Pin	Default	SPL	Boot	Downlo	ad Boot	
GPIO0	Pull-up	-	1		0	
GPIO2	Pull-down	Don't	-care	0		
	Debugging Log on U0TXD During Booting					
Pin	Default	U0TXD .	Toggling	UOTXI) Silent	
MTDO	Pull-up	1			0	
	Timing of SDIO Slave					
Pin	Default	Falling-edge Input Falling-edge Input		Rising-edge Input	Rising-edge Input	
		Falling-edge Output Rising-edge Output		Falling-edge Output	Rising-edge Output	
MTDO	Pull-up	0 0		1	1	
GPIO5	Pull-up	0 1		0	1	

Note:

Firmware can configure register bits to change the setting of "Voltage of Internal LDO" and "Timing of SDIO Slave" after booting.

3. Functional Descriptions

This chapter describes the modules and functions implemented in ESP-WROOM-32.

3.1 CPU and Internal Memory

ESP32 contains two low-power Xtensa® 32-bit LX6 microprocessors. The internal memory includes:

- 448 KBytes ROM for booting and core functions.
- 520 KBytes on-chip SRAM for data and instruction.
- 8 KBytes SRAM in RTC, which is called RTC SLOW Memory and can be used for co-processor accessing during the deep sleep mode.
- 8 KBytes SRAM in RTC, which is called RTC FAST Memory and can be used for data storage and main CPU during RTC Boot from the deep sleep mode.
- 1 Kbit of EFUSE, of which 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including Flash-Encryption and Chip-ID.

3.2 External Flash and SRAM

ESP32 supports 4 x 16 MBytes of external QSPI flash and SRAM with hardware encryption based on AES to protect developer's programs and data.

ESP32 accesses external QSPI flash and SRAM by the high-speed caches. Up to 16 MBytes of external flash are memory mapped into the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported. Up to 8 MByte of external SRAM are memory mapped into the CPU data space, supporting 8, 16 and 32-bit access. Data read is supported on the flash and SRAM. Data write is supported on the SRAM.

3.3 Crystal Oscillators

The frequencies of the main crystal oscillator supported include 40 MHz, 26 MHz and 24 MHz. The accuracy of crystal oscillators applied should be ± 10 PPM, and the operating temperature range -40° C to 85°C.

When using the downloading tools, remember to select the right crystal oscillator type. In circuit design, capacitors C1 and C2 that connects to the earth, are added to the input and output terminals of the crystal oscillator respectively. The values of the two capacitors can be flexible, ranging from 6 pF to 22 pF. However, the specific capacitive values of C1 and C2 depend on further testing and adjustment of the overall performance of the whole circuit. Normally, the capacitive values of C1 and C2 are within 10 pF if the crystal oscillator frequency is 26 MHz, while 10pF<C1 and C2<22pF if the crystal oscillator frequency is 40 MHz.

The frequency of the RTC crystal oscillator is typically 32 kHz or 32.768 kHz. The accuracy can be out of the range of ± 20 PPM, since the internal calibration is applied to correct the frequency offset. When the chip operates in low power modes, the application chooses the external low speed (32 kHz) crystal clock rather than the internal RC oscillators to achieve the accurate wakeup time.

3.3.1 Power Consumption

With the advanced power management technologies, ESP32 can switch between different power modes as follows:

Power mode

- Active mode: chip radio is powered on. The chip can receive, transmit, or listen.
- Modem-sleep mode: the CPU is operational and the clock is configurable. Wi-Fi / Bluetooth baseband and radio are disabled.
- Light-sleep mode: the CPU is paused. The RTC and ULP-coprocessor are running. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake up the chip.
- Deep-sleep mode: Only RTC is powered on. Wi-Fi and Bluetooth connection data are stored in RTC memory. The ULP-coprocessor can work.
- Hibernate mode: The internal 8MHz oscillator and ULP-coprocessor are disabled. The RTC recovery
 memory are power-down. Only one RTC timer on the slow clock and some RTC GPIOs are active. The
 RTC timer or the RTC GPIOs can wake up the chip from the Hibernate mode.

• Sleep Pattern

- Association sleep pattern: The power mode switches between the active mode and light sleep mode during this sleep pattern. The CPU, Wi-Fi, Bluetooth, and radio wake up at pre-determined intervals to keep Wi-Fi / BT connections alive.
- Sensor-monitored deep-sleep pattern: The ULP co-processor is enabled or disabled at intervals depending on the measured data from sensors.

The power consumption varies with different power modes/sleep patterns and work status of functional modules (see Table 5).

Table 5: Power Consumption by Power Modes

Power mode	Comment	Power consumption
	Wi-Fi Tx packet 13 dBm ~ 21 dBm	160 ~ 260 mA
Active mode (RF working)	Wi-Fi / BT Tx packet 0 dBm	120 mA
Active mode (hr working)	Wi-Fi / BT Rx and listening	80 ~ 90 mA
	Association sleep pattern (by light sleep)	0.9 mA@DTIM3, 1.2 mA@DTIM1
		Max speed: 20 mA
Modem-sleep mode	The CPU is powered on.	Normal: 5 ~ 10 mA
		Slow speed: 3 mA
Light-sleep mode	-	0.8 mA
	The ULP-coprocessor is powered on	0.5 mA
Deep-sleep mode	Sensor-monitored deep sleep pattern	25 μA @1% duty
	RTC timer + recovery-memory	20 μΑ
Hibernate mode	RTC timer only	2.5 μΑ

3.4 Interface Description

Table 6: Interface Description

Interface	Signal	Pin	Function	
	ADC1_CH0	SENSOR_VP		
	ADC1_CH3	SENSOR_VN		
	ADC1_CH4	IO32		
	ADC1_CH5	IO33		
	ADC1_CH6	IO34		
	ADC1_CH7	IO35		
	ADC2_CH0	IO4		
ADC	ADC2_CH1	IO0	Two 12-bit SAR ADCs	
ADO	ADC2_CH2	IO2	1 IWO 12-DIL SAN ADOS	
	ADC2_CH3	IO15		
	ADC2_CH4	IO13		
	ADC2_CH5	IO12		
	ADC2_CH6	IO14		
	ADC2_CH7	1027		
	ADC2_CH8	IO25		
	ADC2_CH9	IO26		
Ultra Low Noise	SENSOR_VP	IO36	Provides about 60dB gain by using larger	
Analog Pre-Amplifier	SENSOR_VN	IO39	capacitors on PCB	
DAC	DAC_1	IO25	Two 8-bit DACs	
DAC	DAC_2	IO26	1 IWO 8-BIL DACS	
	TOUCH0	IO4		
	TOUCH1	IO0		
	TOUCH2	IO2		
	TOUCH3	IO15		
Touch Sensor	TOUCH4	IO13	Capacitive touch sensors	
TOUCH Sensor	TOUCH5	IO12	- Capacitive touch sensors	
	TOUCH6	IO14		
	TOUCH7	IO27		
	TOUCH8	IO33		
	TOUCH9	IO32		
	HS2_CLK	MTMS		
	HS2_CMD	MTDO		
SD / SDIO / MMC	HS2_DATA0	IO2	Cumparts CD mamaric said VO 01 start law	
Host Controller	HS2_DATA1	IO4	Supports SD memory card V3.01 standard	
	HS2_DATA2	MTDI		
	HS2_DATA3	MTCK		

Interface	Signal	Pin	Function		
	PWM0_OUT0~2				
	PWM1_OUT_IN0~2		Thus shapped of 10 bit timesus suppusts		
	PWM0_FLT_IN0~2		Three channels of 16-bit timers generate		
Matax DMM	PWM1_FLT_IN0~2	Amy ODIO	PWM waveforms; each has a pair of		
Motor PWM	PWM0_CAP_IN0~2	- Any GPIO	output signals. Three fault detection		
	PWM1_CAP_IN0~2		signals. Three even capture signals. Three		
	PWM0_SYNC_IN0~2		sync signals.		
	PWM1_SYNC_IN0~2				
LED PWM	ledc_hs_sig_out0~7	Any CDIO	16 independent channels @80MHz		
	ledc_ls_sig_out0~7	- Any GPIO	clock/RTC CLK. Duty accuracy: 16bits.		
	U0RXD_in		Two UART devices with hardware		
	U0CTS_in		flow-control and DMA		
	U0DSR_in				
	U0TXD_out	-			
	U0RTS_out				
	U0DTR_out				
UART	U1RXD_in	Any GPIO			
UANT	U1CTS_in	Any GFIO			
	U1TXD_out				
	U1RTS_out				
	U2RXD_in				
	U2CTS_in				
	U2TXD_out				
	U2RTS_out				
	I2CEXT0_SCL_in				
	I2CEXTO_SDA_in				
	I2CEXT1_SCL_in				
	I2CEXT1_SDA_in	Any GPIO	Two I2C devices in slave or master modes		
120	I2CEXT0_SCL_out	ALLY GETO	100 120 devices in sidve of master modes		
	I2CEXT0_SDA_out				
	I2CEXT1_SCL_out				
	I2CEXT1_SDA_out				

Interface	Signal	Pin	Function
	I2S0I_DATA_in0~15		
	I2S0O_BCK_in		
	12S0O_WS_in		
	I2S0I_BCK_in		
	I2S0I_WS_in		
	I2S0I_H_SYNC		
	I2S0I_V_SYNC		
	I2S0I_H_ENABLE		
	I2S0O_BCK_out		
	I2S0O_WS_out		
	I2S0I_BCK_out		
	I2S0I_WS_out		
128	I2S0O_DATA_out0~23	Any GPIO	Stereo input and stereo output from/to the
123	I2S1I_DATA_in0~15		audio codec
	I2S1O_BCK_in		
	I2S10_WS_in		
	I2S1I_BCK_in		
	I2S1I_WS_in		
	I2S1I_H_SYNC		
	I2S1I_V_SYNC		
	I2S1I_H_ENABLE		
	I2S1O_BCK_out		
	I2S1O_WS_out		
	I2S1I_BCK_out		
	I2S1I_WS_out		
	I2S1O_DATA_out0~23		
Remote Controller	RMT_SIG_IN0~7	Any GPIO	Eight channels of IR transmitter and
LIGITIOLE COLLINIEL	RMT_SIG_OUT0~7	Ally GFIO	receiver for various waveforms

Interface	Signal	Pin	Function
	SPIHD	SHD/SD2	
	SPIWP	SWP/SD3	
	SPICS0	SCS/CMD	
	SPICLK	SCK/CLK	
	SPIQ	SDO/SD0	
	SPID	SDI/SD1	
	HSPICLK	IO14	
	HSPICS0	IO15	Ourse sets Otses devid ODL Devid ODL seed
Davidle OCDI	HSPIQ	IO12	Supports Standard SPI, Dual SPI, and
Parallel QSPI	HSPID	IO13	Quad SPI that can be connected to the
	HSPIHD	IO4	external flash and SRAM
	HSPIWP	IO2	
	VSPICLK	IO18	
	VSPICS0	IO5	
	VSPIQ	IO19	
	VSPID	IO23	
	VSPIHD	IO21	
	VSPIWP	IO22	
	HSPIQ_in/_out		Standard SPI consists of clock,
	HSPID_in/_out		chip-select, MOSI and MISO. These SPIs
	HSPICLK_in/_out		can be connected to LCD and other
	HSPI_CS0_in/_out		external devices. They support the
Canaval Duva and	HSPI_CS1_out		following features:
General Purpose	HSPI_CS2_out	Any GPIO	(a) both master and slave modes;
SPI	VSPIQ_in/_out		(b) 4 sub-modes of the SPI format transfer
	VSPID_in/_out		that depend on the polarity (POL) and the
	VSPICLK_in/_out		phase (PHA);
	VSPI_CS0_in/_out		(c) CLK frequencies by a divider;
	VSPI_CS1_out		(d) up to 64byte FIFO and DMA.
	VSPI_CS2_out		
	MTDI	IO12	
ITAC	MTCK	IO13	ITAC for ooth your doly and to
JTAG	MTMS	IO14	JTAG for software debugging
	MTDO	IO15	

Interface	Signal	Pin	Function
	SD_CLK	IO6	
	SD_CMD	IO11	SDIO interface that conforms to the
SDIO Slave	SD_DATA0	107	
SDIO Slave	SD_DATA1	IO8	industry standard SDIO 2.0 card specification.
	SD_DATA2	109	- specification.
	SD_DATA3	IO10	
	EMAC_TX_CLK	IO0	
	EMAC_RX_CLK	IO5	
	EMAC_TX_EN	IO21	
	EMAC_TXD0	IO19	
	EMAC_TXD1	1022	
	EMAC_TXD2	IO14	
	EMAC_TXD3	IO12	
	EMAC_RX_ER	IO13	
	EMAC_RX_DV	1027	
	EMAC_RXD0	IO25	
EMAC	EMAC_RXD1	IO26	Ethernet MAC with MII/RMII interface
	EMAC_RXD2	TXD	
	EMAC_RXD3	IO15	
	EMAC_CLK_OUT	IO16	
	EMAC_CLK_OUT_180	IO17	
	EMAC_TX_ER	104	
	EMAC_MDC_out	Any GPIO	
	EMAC_MDI_in	Any GPIO	
	EMAC_MDO_out	Any GPIO	
	EMAC_CRS_out	Any GPIO	
	EMAC_COL_out	Any GPIO	

Note:

Functions of Motor PWM, LED PWM, UART, I2C, I2S and Remote Controller can be configured to any GPIO.

4. Electrical Specifications

Note:

The specifications in this charpter are tested in general condition: VBAT = 3.3V, TA = 27°C, unless otherwise specified.

4.1 Absolute Maximum Ratings

Table 7: Absolute Maximum Ratings

Rating	Condition	Value	Unit
Storage temperatue	-	-40 ~ 85	°C
Maximum soldering temperature	-	260	°C
Supply voltage	IPC/JEDEC J-STD-020	+3.0 ~ +3.6	V

4.2 Recommended Operating Conditions

Table 8: Recommended Operating Conditions

Operating condition	Symbol	Min	Тур	Max	Unit
Operating temperature	-	-40	20	85	°C
Supply voltage	VDD	3.0	3.3	3.6	V

4.3 Digital Terminal Characteristics

Table 9: Digital Terminal Characteristics

Terminals	Symbol	Min	Туре	Max	Unit
Input logic level low	V_{IL}	-0.3	-	0.25VDD	V
Input logic level high	V_{IH}	0.75VDD	-	VDD+0.3	V
Output logic level low	V_{OL}	N	-	0.1VDD	V
Output logic level high	V_{OH}	0.8VDD	-	N	V

4.4 Wi-Fi Radio

Table 10: Wi-Fi Radio Characteristics

Description	Min	Typical	Max	Unit		
Ge	neral Characteris	tics				
Input frequency	2412	-	2484	MHz		
Input impedance	-	50	-			
Input reflection	-	-	-10	dB		
Output power of PA	15.5	16.5	21.5	dBm		
	Sensitivity					
DSSS, 1 Mbps	-	-98	-	dBm		
CCK, 11 Mbps	-	-90	-	dBm		
OFDM, 6 Mbps	-	-93	-	dBm		
OFDM, 54 Mbps	-	-75	-	dBm		
HT20, MCS0	-	-93	-	dBm		
HT20, MCS7	-	-73	-	dBm		
HT40, MCS0	-	-90	-	dBm		
HT40, MCS7	-	-70	-	dBm		
MCS32	-	-91	-	dBm		
Adjad	Adjacent Channel Rejection					
OFDM, 6 Mbps	-	37	-	dB		
OFDM, 54 Mbps	-	21		dB		
HT20, MCS0	-	37		dB		
HT20, MCS7	-	20		dB		

4.5 Bluetooth Radio

4.5.1 Receiver

Table 11: Receiver Characteristics - BLE

Parameter	Conditions	Min	Туре	Max	Unit
Sensitivity @0.1% BER	-	-	-98	-	dBm
Maximum received signal @0.1% BER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
Adjacent channel selectivity C/I	F=F0 + 1 MHz	-	-5	-	dB
	F=F0 - 1 MHz	-	-5	-	dB
	F=F0 + 2 MHz	-	-35	-	dB
	F=F0 - 2 MHz	-	-35	-	dB
	F=F0 + 3 MHz	-	-25	-	dB
	F=F0 - 3 MHz	-	-45	-	dB
	30 MHz - 2000 MHz	-10	-	-	dBm
Out-of-band blocking performance	2000 MHz - 2400 MHz	-27	-	-	dBm
	2500 MHz - 3000 MHz	-27	-	-	dBm
	3000 MHz - 12.5 GHz	-10	-	-	dBm

Intermodulation dBr

4.5.2 Transmit

Table 12: Transmit Characteristics - BLE

Parameter	Conditions	Min	Туре	Max	Unit
RF transmit power	-	-	+7.5	+10	dBm
RF power control range	-	-	25	-	dB
	F=F0 + 1 MHz	-	-14.6	-	dBm
	F=F0 - 1 MHz	-	-12.7	-	dBm
	F=F0 + 2 MHz	-	-44.3	-	dBm
Adiacont channel transmit newer	F=F0 - 2 MHz	-	-38.7	-	dBm
Adjacent channel transmit power	F=F0 + 3 MHz	-	-49.2	-	dBm
	F=F0 - 3 MHz	-	-44.7	-	dBm
	F=F0 + >3 MHz	-	-50	-	dBm
	F=F0 - >3 MHz	-	-50	-	dBm
$\Delta {\rm f1}_{avg} { m Maximum modulation}$	-	-	265	-	kHz
Δ f2 $_{max}$ Minimum modulation	-	-	247	-	kHz
Δ f2 $_{avg}/\Delta$ f1 $_{avg}$	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
Drift rate	-	-	0.7	-	kHz/50
					μ S
Drift	-	-	2	-	kHz

4.6 Reflow Profile

Table 13: Reflow Profile

Item	Value
T_s max to TL (Ramp-up Rate)	3°C/second max
Preheat	
Temperature Min. (T_s Min.)	150°C
Temperature Typ. $(T_s \text{ Typ.})$	175°C
Temperature Min. (T_s Max.)	200°C
Time (T_s)	60 ~ 180 seconds
Ramp-up rate (T_L to T_P)	3°C/second max
Time maintained above: –Temperature (T_L) /Time (T_L)	217°C/60 ~ 150 seconds
Peak temperature (T _P)	260°C max, for 10 seconds
Target peak temperature (T _P Target)	260°C +0/-5°C
Time within 5°C of actual peak (t _P)	20 ~ 40 seconds
T_S max to T_L (Ramp-down Rate)	6°C/second max
Tune 25°C to Peak Temperature (t)	8 minutes max

Note:

The 32 kHz crystal is on board connected to ESP32's IO32 and IO33. To use ADC, Touch or GPIO functions of IO32 and IO33, please remove the 32 kHz crystal and its capacitors — C13 and C17, and solder the 0ohm resisters — R5 and R6.

5. Schematics

Figure 2: ESP-WROOM-32 Schematics