

A. Document Information

Document Name	Pharmaceutical Production Case Study - SAS
Document Author	Avani Joshi
Document	
Objective	
Document Version	Version 2
Release Date	25 th June, 2017

B. Document History

Version No	Date	Section No	Description of Change	Author
V1	26 th May 2017		First Version	
V2	25 th June 2017		Second Version	

1. BACKGROUND

1.1 Introduction

Drug discovery teams are often faced with data for which the samples have been categorized into two or more groups. For example, early in the drug discovery process, high throughput screening is used to identify compounds' activity status against a specific biological target. At a subsequent stage of discovery, screens are used to measure compounds' solubility, permeability, and toxicity status. In other areas of drug discovery, information from animal models on disease classification, survival status, and occurrence of adverse events is obtained and scrutinized. Based on these categorizations, teams must decide which compounds to pursue for further development.

In addition to the categorical response, discovery data often contain variables that describe features of the samples. For example, many computational chemistry software packages have the ability to generate structural and physical-property descriptors for any defined set of compounds. In genomics and proteomics, expression profiles can be measured on tissue samples.

1.2 Problem Statement

Generally speaking, permeability is the ability of a molecule to cross a membrane. In the body, key membranes exist in the intestine and brain, and are composed of layers of molecules and proteins organized in a way to prevent harmful substances from crossing while allowing essential substances to pass through. Because a compound's permeability status is critically important to its success, pharmaceutical companies would like to identify poorly permeable compounds as early as possible in the discovery process.

We have to perform the identification of the same on the "permy" SAS data set with 354 variables, and classify our compounds on the basis of permeability.

Training Data Results

Step 1- Importing the data set into enterprise guide and printing the dataset

We start with importing our dataset into our local SAS server and print the dataset to have a thorough look at our data. We use only the training data set here (observations starting from 141 till 354).

Code used -

```
libname ph 'C:\SAS';
data ph.example; /*setting the input ndata set*/
set ph.permy (firstobs=141);
run;
proc print data=ph.example;
run;
```

Output-

```
Rrogram* 📋 Log 🚜 Output Data
Export - Send To - Create - 🕆 🧦 📳 Log Summary 🕞 Project Log 📳 Properties
 ∃1
                                                                 The SAS System
              %_eg_hidenotesandsource;
  1
              %_eg_hidenotesandsource;
  29
  30
              data ph.example; /*setting the input ndata set*/
  31
              set ph.permy (firstobs=141);
  32
              run;
  NOTE: There were 214 observations read from the data set PH.PERMY.
  NOTE: The data set PH.EXAMPLE has 214 observations and 73 variables.
  NOTE: DATA statement used (Total process time):
         real time
                            0.01 seconds
                            0.03 seconds
         cpu time
  33
              %_eg_hidenotesandsource;
  34
  47
   48
   49
              % eg hidenotesandsource;
  52
```

<u>Step 2 – Using The Means procedure to calculate descriptive statistics for the dataset</u>

In the next step we are using the MEANS procedure to calculate all the descriptive statistics like mean, median, interquartile ranges etc. This helps us to analyze our dataset better and know the distribution of our data.

Code used –

```
proc means data=ph.example printalltypes n mean median std min max q1 q3; 
class y; 
var x1-x10; 
run;
```

Output-

					The MEANS P	roceaure			
N Obs	Variable	N	Mean	Median	Std Dev	Minimum	Maximum	Lower Quartile	Upper Quartile
214	x1	214	884.2757009	883.1250000	164.4834417	477.0000000	1258.63	773.7500000	989.8750000
	x2	214	599.3289673	601.3310000	101.6303037	332.9160000	837.4430000	531.9980000	665.6470000
	х3	214	1.4717196	1.4670000	0.0416471	1.3710000	1.6340000	1.4460000	1.4890000
	х4	214	1.5576262	1.5645000	0.1179401	1.1970000	1.8310000	1.4840000	1.6370000
	x5	214	1553.50	1591.44	239.0947752	738.1250000	2121.75	1388.00	1727.25
	х6	214	1012.19	1022.00	214.7105889	309.5000000	1504.38	866.0000000	1164.50
	х7	214	584.8750000	595.3750000	155.2068073	138.3750000	974.2500000	472.6250000	688.3750000
	х8	214	246.4339953	249.6250000	78.6629285	57.8750000	464.5000000	199.3750000	290.7500000
	x9	214	126.8539720	129.2500000	45.0731636	27.5000000	260.6250000	95.8750000	153.2500000
	x10	214	66.4509346	65.7500000	26.0457049	12.0000000	145.7500000	48.7500000	80.5000000
N Ob	s Variable	N	Mean	Median	Std Dev	Minimum	Maximum	Lower Quartile	Upper Quartile
10	7 x1	107	924.0642523	916.2500000	144.1685665	628.3750000	1258.63	826.2500000	1017.00
	x2	107	626.2027850	620.1900000	91.0968870	429.6280000	837.4430000	558.5800000	676.5430000
	хЗ	107	1.4738037	1.4680000	0.0341750	1.4000000	1.5750000	1.4500000	1.4880000
	x4	107	1.5922150	1.5940000	0.1081788	1.3330000	1.8310000	1.5180000	1.6690000
	х5	107	1648.38	1684.75			2121.75	1507.50	1812.38
	х6	107		1122.88		451.2500000	1504.38	955.6250000	1244.00
	х7	107	642.3235981	667.6250000	152.4106005	166.5000000	974.2500000	554.1250000	750.0000000
	х8	107	274.1214953	275.5000000	82.4566736			220.2500000	323.0000000
	х9	107	140.8726636	143.5000000	48.4019262	27.5000000	260.6250000	110.3750000	162.5000000
	x10	107	73.9474299	71.3750000	28.7390260	12.0000000	145.7500000	55.1250000	89.2500000
10	7 x1	107		836.0000000					
	х2	107	572.4551495	570.9670000	104.8723251	332.9160000			
	хЗ	107	1.4696355	1.4640000	0.0480482	1.3710000			
	х4	107	1.5230374	1.5310000	0.1176136				
	х5	107		1487.88					
	х6	107		948.2500000					
	х7	107							
	х8	107	218.7464953		63.9322000				
	х9	107	112.8352804	115.7500000	36.6448389	31.6250000			
	x10	107	58.9544393	60.5000000	20.5856857	16.7500000	103.8750000	43.3750000	75.1250000

Note: the output above is just for first 10 variables, but the results are performed for all 71 in the same manner.

Step 3 – Finding the number of missing values and imputing them with 0

Before performing any operations on our data, it's important to normalize and cleanse our data. Determining missing values and resolving them is a part of the same process.

Code Used-

```
proc format; /* create a format to group missing and nonmissing */
     value $missfmt ' '='Missing' other='Not Missing';
     value missfmt . ='Missing' other='Not Missing';
      value zmissfmt 0='Missing' other = 'Not Missing';
run;
proc freq data=ph.example;
     format CHAR $missfmt.;
     tables CHAR / missing missprint nocum nopercent;
     format _NUMERIC_ missfmt.;;
     tables NUMERIC / missing missprint nocum nopercent;
     format NUMERIC zmissfmt.;;
     tables NUMERIC / missing missprint nocum nopercent;
run;
data ph.example;
   set ph.example;
   array change _numeric_;
        do over change;
            if change=. then change=0;
        end;
run ;
```

Results obtained -

The results show that few variables had some missing values. We impute the missing values found by 0, since that is the most suitable and generalized way for handling missing numeric values.

The following table shows the variables that were found to have missing values, and the count of missing observations. It also shows whether the variable is normal or not:

Table 1: Summary of variables present

Variable Number	No. of Missing Values	Percent of Missing values
X1	0	0
X2	0	0
X3	0	0
X4	0	0
X5	0	0
X6	0	0
X7	0	0
X8	0	0
X9	0	0
X10	0	0
X11	0	0
X12	1	0.47
X13	0	0
X14	0	0
X15	0	0
X16	0	0
X17	0	0
X18	0	0
X19	0	0
X20	1	0.47
X21	0	0
X22	0	0
X23	0	0
X24	0	0
X25	0	0
X26	0	0
X27	0	0
X28	1	0.47
X29	0	0
X30	0	0
X31	0	0
X32	0	0
X33	0	0
X34	0	0

	,	1
X35	0	0
X36	0	0
X37	0	0
X38	0	0
X39	0	0
X40	0	0
X41	0	0
X42	0	0
X43	0	0
X44	0	0
X45	0	0
X46	0	0
X47	0	0
X48	0	0
X49	0	0
X50	0	0
X51	0	0
X52	0	0
X53	0	0
X54	0	0
X55	0	0
X56	0	0
X57	0	0
X58	9	4.2
X59	11	5.14
X60	14	6.54
X61	0	0
X62	0	0
X63	0	0
X64	0	0
X65	0	0
X66	0	0
X67	0	0
X68	0	0
X69	0	0
X70	1	0.47
X71	0	0
TOTAL:	38	0.25
L	ı	

<u>Step 4 – Assessing normality of data using PROC UNIVARIATE (using skewness, kurtosis, histogram and probability plots)</u>

After imputing the missing values, we will now analyze the normality of our data. We'll produce more descriptive statics for this and also use Probability plots and histograms.

Code used -

```
proc univariate data=ph.example;
  var x1-x71;

histogram x1-x71 / normal(mu=est sigma=est);
  inset skewness kurtosis / position=ne;
  probplot x1-x71 / normal(mu=est sigma=est);
  inset skewness kurtosis;
  title 'Descriptive Statistics Using PROC UNIVARIATE';
run;
```

Example plots-

1. Statistics and plots for a variable depicting normality

2. Statistics and plots for a variable not depicting normality

		Page Break		
Descriptiv	e Statist	ics Using PROC (JNIVAR	RIATE
5555.154.1				· · · · · -
		IIVARIATE Procedure Variable: x32		
		variable. A32		
		Moments		
N N		214 Sum Weights		214
Mean		36916 Sum Observation		666.047
Std Deviation		00231 Variance		1.5668167
Skewness Uncorrected S		99396 Kurtosis i.7161 Corrected SS		03056079 463.73196
Coeff Variatio		73744 Std Error Mean		23248773
Coon variation			0.20	20240110
	Basic cation	Statistical Measures Variability		
		Std Deviation	3.40100	n
		Variance	11.56682	
Mode	0.707000	Range	14.34300	
		Interquartile Range	3.77100	00
	Tests	for Location: Mu0=0		
Test		Statistic p Va	lue	
Stud		13.38724 Pr > t	<.0001	
Sign		M 107 Pr >= M		
Sign	ed Rank S	S 11502.5 Pr >= S	<.0001	
	Quai	ntiles (Definition 5)		
	Leve			
	100%			
	99% 95%	14.169 10.271		
	90%	8.170		
	75% (
		Median 1.225		
	25% (
	10% 5%	0.707 0.707		
	1%	0.707		
	0% M			
	Foto	eme Observations		
		west Highest		
		e Obs Value Obs		
		7 214 14.124 74		
		7 213 14.169 107		
		7 209 14.169 204		
		7 207 14.637 125 7 203 15.050 131		
	0.70			

Output can be assessed as follows -

Variables with skewness and kurtosis values greater than zero will affect the normality of the data. We have assessed the data using Skewness and Kurtosis for normal data as follows:

1. For skewness:

- a. Normal Data = +1 to -1
- b. Right Skewed = value > +1
- c. Left Skewed = value < -1

2. For Kurtosis:

- a. Normal Data = exact 3
- b. Leptokurtic = value > 3
- c. Platykurtic = value < 3

We have assessed the plots by manual visualization. Results show the different variations in normality of each variable according to the parameters used by us.

The following table sums up the normality assessment results. The values marked with red show very high values for the properties (exceeding the normal limits):

Table2: Normality Assessment results

Variable	Normality assessment according to Skewness Value	Is the variable normal based on Skewness	Normality assessment according to Kurtosis Value	Is the variable normal based on Kurtosis	Norma l Plots
X1	0.1	Normal	-0.29	Not Normal - Platykurtic	Yes
X2	-0.02	Normal	-0.33	Not Normal - Platykurtic	Yes
X3	1.02	Right Skewed	2	Not Normal - Platykurtic	Yes
X	-0.26	Normal	-0.15	Not Normal - Platykurtic	Yes
X5	-0.4	Normal	-0.11	Not Normal - Platykurtic	Yes
X6	-0.32	Normal	-0.08	Not Normal - Platykurtic	Yes
X7	-0.14	Normal	-0.16	Not Normal - Platykurtic	Yes
X8	0.23	Normal	0.16	Not Normal - Platykurtic	Yes
X9	0.35	Normal	0.44	Not Normal - Platykurtic	Yes
X10	0.53	Normal	0.59	Not Normal - Platykurtic	Yes
X11	0.87	Normal	0.38	Not Normal - Platykurtic	Yes
X12	1.13	Right Skewed	0.8	Not Normal - Platykurtic	Yes
X13	1.13	Right Skewed	0.94	Not Normal - Platykurtic	Yes
X14	1.21	Right Skewed	1.21	Not Normal - Platykurtic	Yes
X15	1.2	Right Skewed	1.1	Not Normal - Platykurtic	Yes
X16	0.84	Normal	0.14	Not Normal - Platykurtic	Yes
X17	0.7	Normal	-0.1	Not Normal - Platykurtic	Yes
X18	0.59	Normal	-0.27	Not Normal - Platykurtic	Yes
X19	0.58	Normal	-0.27	Not Normal - Platykurtic	Yes

X20	0.36	Normal	-0.2	Not Normal - Platykurtic	Yes	
X21	0.30	Nomiai	-0.2	Not Normal -		
Λ21	0.02	Normal 1	0.50		Yes	
V22	0.02	Normal	-0.59	Platykurtic		
X22	0.01	NY 1	0.44	Not Normal -	Yes	
***	0.01	Normal	-0.44	Platykurtic		
X23				Not Normal -	Yes	
	0	Normal	-0.4	Platykurtic	100	
X24				Not Normal -	Yes	
	0.29	Normal	-0.1	Platykurtic	103	
X25				Not Normal -	Yes	
	0.42	Normal	-0.01	Platykurtic	108	
X26				Not Normal -	Vas	
	0.6	Normal	0.07	Platykurtic	Yes	
X27				Not Normal -	37	
	0.91	Normal	0.04	Platykurtic	Yes	
X28		-		Not Normal -		
	1.15	Right Skewed	0.37	Platykurtic	Yes	
X29				Not Normal -		
112)	1.54	Right Skewed	2.5	Platykurtic	No	
X30		ragin brewed		Not Normal -		
A30	1.37	Right Skewed	1.63	Platykurtic	Yes	
V21	T31 1.18 Right Skewed	Right Skewed		Not Normal -		
A31		Diales Cleaned	2.97		No	
V22			Right Skewed		Platykurtic	
X32	1.63	D: 1 . Cl 1	2.03	Not Normal -	Yes	
		Right Skewed		Platykurtic		
X33	1.1		Not Normal -	Yes		
		Right Skewed		Platykurtic		
X34	1.14		0.44	0.44	Not Normal -	Yes
	1.1 1	Right Skewed	0.11	Platykurtic	103	
X35	0.14		-0.02	Not Normal -	Yes	
	0.14	Normal	-0.02	Platykurtic	103	
X36	0.16		-0.05	Not Normal -	Yes	
	0.10	Normal	-0.03	Platykurtic	168	
X37	0.39		0.13	Not Normal -	Yes	
	0.39	Normal	0.13	Platykurtic	ies	
X38	0.70		1.04	Not Normal -	N/	
	0.78	Normal	1.04	Platykurtic	Yes	
X39	1.0.5		4 = 4	Not Normal		
	1.06	Right Skewed	1.76	Platykurtic	Yes	
X40		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Not Normal -		
	1.08	Right Skewed	1.63	Platykurtic	Yes	
X41		Tugit Site eu		Not Normal -		
21-1	0.88	Normal	1.05	Platykurtic	Yes	
X42		TOITIGI	Normai			
/ \ +	0.77	Normal	Normal 0.85	Not Normal - Platykurtic	Yes	
V42			•			
X43	0.7	Na1	0.36	Not Normal -	Yes	
X7.4.4		Normal		Platykurtic		
X44	0.93		1.39	Not Normal -	Yes	
		Normal		Platykurtic	1	

X45	1.1	Right Skewed	2.49	Not Normal - Platykurtic	No
X46	1.43		4.28	Not Normal -	No
X47	1.43	Right Skewed	7.20	Leptokurtic Not Normal -	110
	1.51	Right Skewed	4.77	Leptokurtic	No
X48	1.55	Right Skewed	4.81	Not Normal - Leptokurtic	No
X49	1.55	Right Skewed	4.9	Not Normal - Leptokurtic	No
X50	1.4	Right Skewed	4.7	Not Normal - Leptokurtic	No
X51	1.34	Right Skewed	2.63	Not Normal - Platykurtic	No
X52	1.7		4.7	Not Normal - Leptokurtic	No
X43	0.15	Right Skewed	-0.44	Not Normal -	Yes
X54	2.65	Normal Piels Shares 4	8.23	Platykurtic Not Normal -	No
X55	4.21	Right Skewed	23	Leptokurtic Not Normal -	No
X56	1.22	Right Skewed	2.72	Leptokurtic Not Normal -	No
X57		Right Skewed		Platykurtic Not Normal -	
W50	1.26	Right Skewed	2.83	Platykurtic	No
X58	1.92	Right Skewed	6.71	Not Normal - Leptokurtic	No
X59	2.7	Right Skewed	13.6	Not Normal - Leptokurtic	No
X60	4.53	Right Skewed	36.28	Not Normal - Leptokurtic	No
X61	-0.37	Normal	0.09	Not Normal - Platykurtic	Yes
X62	0.14	Normal	-0.01	Not Normal - Platykurtic	Yes
X63	-4.68	Left Skewed	25.36	Not Normal - Leptokurtic	No
X64	-0.39	Normal	0.82	Not Normal - Platykurtic	Yes
X65	0.25	Normal	0.03	Not Normal - Platykurtic	Yes
X66	0.45	Normal	0.44	Not Normal - Platykurtic	Yes
X67	0.47	Normal	0.53	Not Normal - Platykurtic	Yes
X68	0.62	Normal	0.78	Not Normal - Platykurtic	Yes
X69	0.88	Normal	0.52	Not Normal - Platykurtic	Yes

X70	1.05	Right Skewed	0.34	Not Normal - Platykurtic	Yes
X71	-0.13	Normal	-0.15	Not Normal - Platykurtic	Yes

<u>Step 5 – Performing Stepwise Variable Selection for the model using different approaches</u>

In this step we use three different procedures to perform variable selection for our **train data**. The procedures used are Proc REG, Proc GLMSELECT and Proc LOGISTIC. We perform the stepwise variable selection using these procedures with two different variation –

- a. using default SL values
- b. Using manually selected SL values

The following table summarizes the whole analysis if stepwise variable selection methods:

Table3: Stepwise Variable Selection Summary

Stepwise Selection Result (proc REG) Variable included in Final Model		Stepwise Sele (proc GLMSEL inclu- in Final	Stepwise Selection Result (proc LOGISTIC) Variables included in Final Model	
According to Default SL values (SLS & SLE=0.15)	According to manually selected SL values (SLS & SLE=0.05)	According to Default SL values (SLS & SLE = 0.15)	According to manually selected SL values (SLS & SLE=0.05)	According to SLE & SLS = 0.05 (here this is also the default value)
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	Yes
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No

Yes	No	Yes	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	Yes	Yes	Yes	Yes
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No
Yes	Yes	Yes	Yes	Yes
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	Yes	Yes	Yes	Yes

Yes	No	Yes	No	No
Yes	Yes	Yes	Yes	Yes
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No
No	No	Yes	No	No
No	No	No	No	No
No	No	No	No	No
Yes	Yes	Yes	Yes	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No

<u>Step 6 – Performing Linear Discriminant Analysis using Proc DISCRIM</u>

No after the variable selection, we will apply the LDA using PROC DISCRIM on all different model selections that we got, using different SL values in Proc REG, Proc GLMSELECT and Proc LOGISTIC.

We'll see all these one by one:

1. LDA on Variables selected using PROC REG – Stepwise selection (SL=0.15)

Code Used:

```
proc discrim data = ph.example outstat=ph.ldamodel
method=normal pool=yes;
class y;
var x5 x10 x12 x20 x30 x41 x43 x54 x55 x56 x61 x66;
    run;
```

Output:

The classification table above shows that out of 107 non-permeable observation (y=0) only 83 were correctly classified as non-permeable i.e. **77.57%.** While out of 107 permeable observations (y=1) 85 were correctly classified as permeable i.e. **79.44%.** So this shows that it is comparatively easier to predict the permeable observations.

2. LDA on Variables selected using PROC REG – Stepwise selection (SL=0.05)

Code Used:

```
proc discrim data = ph.example outstat=ph.ldamodel
method=normal pool=yes;
class y;
var x20 x43 x54 x56 x66;
    run;
```

Output:

The classification table above shows that out of 107 non-permeable observation (y=0) only 76 were correctly classified as non-permeable i.e. 71.03%. While out of 107 permeable observations (y=1) 75 were correctly classified as permeable i.e. 70.09%.

So this shows that it is comparatively easier to predict the non-permeable observations.

3. <u>LDA on Variables selected using PROC GLMSELECT – Stepwise selection</u> (SL=0.15)

Code Used:

```
proc discrim data = ph.example outstat=ph.ldamodel
method=normal pool=yes;
class y;
var x10 x12 x20 x30 x41 x43 x54 x55 x56 x61 x63 x66;
    run;
```

Output:

The classification table above shows that out of 107 non-permeable observation (y=0) only 83 were correctly classified as non-permeable i.e. 77.57%. While out of 107 permeable observations (y=1) 85 were correctly classified as permeable i.e. 79.44%.

So this shows that it is comparatively easier to predict the permeable observations.

4. <u>LDA on Variables selected using PROC GLMSELECT – Stepwise selection</u> (SL=0.05)

Code Used:

```
proc discrim data = ph.example outstat=ph.ldamodel
method=normal pool=yes;
class y;
var x20 x43 x54 x56 x66;
    run;
```

Output:

The classification table above shows that out of 107 non-permeable observation (y=0) only 76 were correctly classified as non-permeable i.e. 71.03%. While out of 107 permeable observations (y=1) 75 were correctly classified as permeable i.e. 70.09%. So this shows that it is comparatively easier to predict the non-permeable observations.

5. LDA on Variables selected using PROC LOGISTIC – Stepwise selection (SL=0.05)

Code Used:

```
proc discrim data = ph.example outstat=ph.ldamodel
method=normal pool=yes;
class y;
var x8 x20 x43 x54 x56 ;
    run;
```

Output:

 tive Statis	ucs Os	sing F	NOC C	/I 4I V /	NAIL
The tion Summa tion Summa		alibrati	on Data		
Number of	Observa Classifie			cent	
From y	0		1	Fotal	
	74	3	33	107	
0	69.16	30.8	34 10	00.00	
	30	7	77	107	
1	28.04	71.9	96 10	00.00	
Total	104	11	10	214	
Total	48.60	51.4	10 10	00.00	
Priors	0.5	0	.5		
Priors					
Error	Count E	stimate	s for y	Ī	
	0	1	Total		
Rate	0.3084	0.2804	0.2944		
Priors	0.5000	0.5000			

The classification table above shows that out of 107 non-permeable observation (y=0) only 74 were correctly classified as non-permeable i.e. **69.16%**. While out of 107 permeable observations (y=1) 77 were correctly classified as permeable i.e. **71.96%**. So this shows that it is comparatively easier to predict the permeable observations.

Summary of LDA on Training Data:

The following table summarizes the results obtained by performing Linear Discriminant Analysis (using proc discrim):

Table4: Summary of LDA

	•	Predicted observations	Correctly Predicted Non-Permeable observations	
	Count	Percentage	Count	Percentage
LDA on Variables				
selected using PROC REG -				
Stepwise selection (SL=0.15)	85	79.44%	83	77.57%
LDA on Variables				
selected using PROC REG -				
Stepwise selection (SL=0.05)	75	70.09%	76	71.03%
LDA on Variables				
selected using PROC GLMSELECT				
_				
Stepwise selection (SL=0.15)	85	79.44%	83	77.57%
LDA on Variables				
selected using PROC GLMSELECT				
_				
Stepwise selection (SL=0.05)	75	70.09%	76	71.03%
LDA on Variables			_	
selected using PROC LOGISTIC -				
Stepwise selection (SL=0.05)	77	71.96%	74	69.16%

Test Data Results

Step 1- Importing the data set into enterprise guide and printing the dataset

We start with importing our dataset into our local SAS server and print the dataset to have a thorough look at our data. We use only the training data set here (observations starting from 141 till 354).

Code used -

```
libname ph 'C:\SAS';
data ph.exampletest; /*setting the input ndata set*/
set ph.permy (firstobs=1 obs=140);
run;
proc print data=ph.exampletest;
run;
```

Output-

```
🌉 Program* 📋 Log 👸 Output Data <equation-block> Results 🛭
Export ▼ Send To ▼ Create ▼ | → ┡ | 🗓 Log Summary | 📸 Project Log | 🖺 Properties
 ⊡1
                                                                  The SAS System
              % eg hidenotesandsource;
  1
  5
              %_eg_hidenotesandsource;
  29
  30
              data ph.exampletest; /*setting the input ndata set*/
  31
              set ph.permy (firstobs=1 obs=140);
  32
              run:
  NOTE: There were 140 observations read from the data set PH.PERMY.
  NOTE: The data set PH.EXAMPLETEST has 140 observations and 73 variables.
  NOTE: DATA statement used (Total process time):
                             0.01 seconds
        real time
         cpu time
                              0.01 seconds
              proc print data=ph.exampletest;
  33
  NOTE: There were 140 observations read from the data set PH.EXAMPLETEST.
  NOTE: PROCEDURE PRINT used (Total process time):
         real time
                           0.74 seconds
                             0.73 seconds
         cpu time
  35
  36
              %_eg_hidenotesandsource;
  49
  50
  51
              %_eg_hidenotesandsource;
  54
```

<u>Step 2 – Using The Means procedure to calculate descriptive statistics for the dataset</u>

In the next step we are using the MEANS procedure to calculate all the descriptive statistics like mean, median, interquartile ranges etc. This helps us to analyze our dataset better and know the distribution of our data.

Code used -

```
proc means data=ph.exampletest printalltypes n mean median std min max q1 q3;
class y;
var x1-x10;
run;
```

Output-

	The MEANS Procedure									
N	Obs	Variable	N	Mean	Median	Std Dev	Minimum	Maximum	Lower Quartile	Upper Quartile
	140	x1	140	900.2767857	895.4375000	161.2828830	491.8750000	1246.00	799.0625000	991.2500000
		x2	140	610.5786143	605.3705000	100.3121190	354.3120000	849.6270000	550.0545000	665.5465000
		x3	140	1.4711714	1.4670000	0.0413093	1.3770000	1.6250000	1.4465000	1.4885000
		x4	140	1.5733571	1.5730000	0.1168610	1.2530000	1.8920000	1.5090000	1.6580000
		x5	140	1591.96	1583.06	223.8627588	992.7500000	2284.63	1448.56	1753.50
		x6	140	1056.31	1042.50	195.7568223	521.0000000	1593.25	906.1250000	1196.44
		x7	140	618.9910714	623.2500000	145.7353483	220.5000000	976.2500000	513.0625000	715.0000000
		x8	140	262.7285714	264.6875000	73.7260172	53.1250000	438.5000000	218.0625000	305.4375000
		x9	140	136.3205357	139.5625000	43.1237168	17.5000000	240.0000000	103.7500000	161.4375000
		x10	140	71.9383929	72.3750000	25.3170520	10.0000000	143.7500000	54.3750000	85.8125000
у	N Ob	s Variable	e N	Mean	Median	Std Dev	Minimum	Maximum	Lower Quartile	Upper Quartile
, D) x1	70						849.6250000	1033.13
	, ,,	x2	70			94.7065757			581.8600000	
		x3	70	1.4681143		0.0363691	1.3880000		1.4460000	
		x4	70	1.6111143		0.1088954	1.2750000		1.5410000	
		x5	70	1678.15			1068.25		1535.63	
		x6	70						1025.25	1272.00
		x7	70						616.2500000	788.7500000
		x8	70			67.5448713			258.5000000	345.2500000
		x9	70	156.2375000		40.5891126	46.5000000		134.8750000	176.5000000
		x10	70	82.5678571	83.3125000	24.9289542	23.6250000		65.1250000	97.6250000
1	70) x1	70	864.0339286	850.1875000	163.8934748	554.2500000	1246.00	771.1250000	962.6250000
		x2	70			99.5510485			535.0140000	646.7780000
		x3	70	1.4742286	1.4705000	0.0457818	1.3770000	1.6250000	1.4470000	1.4990000
		x4	70	1.5356000		0.1129609	1.2530000		1.4820000	
		x5	70						1385.75	
		x6	70			165.2549612			876.1250000	
		x7	70			123.6626435			475.3750000	
		x8	70	226.0142857	235.6250000	60.4364880	53.1250000	366.6250000	177.8750000	269.2500000
		x9	70			35.9710480	17.5000000		87.1250000	142.3750000
		x10	70	61.3089286	62.4375000	20.9880133	10.0000000	105.6250000	43.3750000	78.2500000

Note: the output above is just for first 10 variables, but the results are performed for all 71 in the same manner.

Step 3 – Finding the number of missing values and imputing them with 0

Before performing any operations on our data, it's important to normalize and cleanse our data. Determining missing values and resolving them is a part of the same process.

Code Used-

```
proc format; /* create a format to group missing and nonmissing */
     value $amissfmt ' '='Missing' other='Not Missing';
     value bmissfmt . ='Missing' other='Not Missing';
value cmissfmt 0='Missing' other = 'Not Missing';
run;
proc freq data=ph.exampletest;
format CHAR $amissfmt.;
tables CHAR / missing missprint nocum nopercent;
format NUMERIC bmissfmt.;;
tables _NUMERIC_ / missing missprint nocum nopercent;
format NUMERIC cmissfmt.;;
tables NUMERIC / missing missprint nocum nopercent;
run;
data ph.exampletest;
   set ph.exampletest;
  array change numeric;
       do over change;
           if change=. then change=0;
       end:
 run;
```

Results obtained –

The results show that few variables had some missing values. We impute the missing values found by 0, since that is the most suitable and generalized way for handling missing numeric values.

The following table shows the variables that were found to have missing values, and the count of missing observations. It also shows whether the variable is normal or not:

Table 5: Summary of variables present

Variable Number	No. of Missing Values	Percent of Missing values
X1	0	0
X2	0	0
X3	0	0
X4	0	0
X5	0	0
X6	0	0
X7	0	0
X8	0	0
X9	0	0
X10	0	0
X11	0	0
X12	1	0.71
X13	0	0
X14	0	0
X15	0	0
X16	0	0
X17	0	0
X18	0	0
X19	0	0
X20	1	0.71
X21	0	0
X22	0	0
X23	0	0
X24	0	0
X25	0	0
X26	0	0
X27	0	0
X28	1	0.71
X29	0	0
X30	0	0
X31	0	0
X32	0	0
X33	0	0
X34	0	0

1 1	_	1 -
X35	0	0
X36	0	0
X37	0	0
X38	0	0
X39	0	0
X40	0	0
X41	0	0
X42	0	0
X43	0	0
X44	0	0
X45	0	0
X46	0	0
X47	0	0
X48	0	0
X49	0	0
X50	0	0
X51	0	0
X52	0	0
X53	0	0
X54	0	0
X55	0	0
X56	0	0
X57	0	0
X58	6	4.3
X59	9	6.42
X60	9	6.42
X61	0	0
X62	0	0
X63	0	0
X64	0	0
X65	0	0
X66	0	0
X67	0	0
X68	0	0
X69	0	0
X70	1	0.71
X71	0	0
TOTAL:	28	0.28%
		1

<u>Step 4 – Assessing normality of data using PROC UNIVARIATE (using skewness, kurtosis, histogram and probability plots)</u>

After imputing the missing values, we will now analyze the normality of our data. We'll produce more descriptive statics for this and also use Probability plots and histograms.

Code used -

```
proc univariate data=ph.exampletest;
  var x1-x71;

  histogram x1-x71 / normal(mu=est sigma=est);
  inset skewness kurtosis / position=ne;
  probplot x1-x71 / normal(mu=est sigma=est);
  inset skewness kurtosis;
  title 'Descriptive Statistics Using PROC UNIVARIATE';
run;
```

Example plots-

3. Statistics and plots for a variable depicting normality

4. Statistics and plots for a variable not depicting normality

Output can be assessed as follows –

Variables with skewness and kurtosis values greater than zero will affect the normality of the data. We have assessed the data using Skewness and Kurtosis for normal data as follows:

3. For skewness:

- d. Normal Data = +1 to -1
- e. Right Skewed = value > +1
- f. Left Skewed = value < -1

4. For Kurtosis:

- d. Normal Data = exact 3
- e. Leptokurtic = value > 3
- f. Platykurtic = value < 3

We have assessed the plots by manual visualization. Results show the different variations in normality of each variable according to the parameters used by us.

The following table sums up the normality assessment results. The values marked with red show very high values for the properties (exceeding the normal limits):

Table6: Normality Assessment results

Variable Number	Normality assessment according to Skewness Value	Is the variable normal based on Skewness	Normality assessment accoriding to Kurtosis Value	Is the variable normal based on Kurtosis	Normal Plots
X1	0.07	Normal	-0.07	Not Normal - Platykurtic	Yes
X2	0	Normal	-0.04	Not Normal - Platykurtic	Yes
Х3	0.85	Normal	1.7	Not Normal - Platykurtic	Yes
X4	-0.18	Normal	0.31	Not Normal - Platykurtic	Yes
X5	-0.07	Normal	0.25	Not Normal - Platykurtic	Yes
X6	0.1	Normal	-0.3	Not Normal - Platykurtic	Yes
X7	-0.06	Normal	-0.3	Not Normal - Platykurtic	Yes
X8	0.02	Normal	0.002	Not Normal - Platykurtic	Yes
X9	0.82	Normal	0.1	Not Normal - Platykurtic	Yes
X10	0.32	Normal	0.26	Not Normal - Platykurtic	Yes
X11	0.79	Normal	0.72	Not Normal - Platykurtic	Yes
X12	1.4	Right Skewed	2.3	Not Normal - Platykurtic	No
X13	1.03	Right Skewed	0.5	Not Normal - Platykurtic	Yes
X14	1.06	Right Skewed	0.73	Not Normal - Platykurtic	Yes

X15	1.13	Right Skewed	0.91	Not Normal - Platykurtic	No
X16	0.8	Normal	0.05	Not Normal - Platykurtic	Yes
X17	0.75	Normal	-0.15	Not Normal - Platykurtic	Yes
X18	0.69	Normal	-0.41	Not Normal - Platykurtic	Yes
X19	0.7	Normal	-0.14	Not Normal - Platykurtic	Yes
X20	0.9	Normal	0.9	Not Normal - Platykurtic	Yes
X21	0.08	Normal	-0.59	Not Normal - Platykurtic	Yes
X22	0.11	Normal	-0.48	Not Normal - Platykurtic	Yes
X23	-0.07	Normal	-0.45	Not Normal - Platykurtic	Yes
X24	-0.15	Normal	-0.15	Not Normal - Platykurtic	Yes
X25	-0.15	Normal	-0.07	Not Normal - Platykurtic	Yes
X26	0.27	Normal	-0.13	Not Normal - Platykurtic	Yes
X27	0.7	Normal	-0.16	Not Normal - Platykurtic	Yes
X28	1.08	Right Skewed	0.5	Not Normal - Platykurtic	No
X29	1.7	Right Skewed	3.11	Not Normal - Leptokurtic	Yes
X30	1.67	Right Skewed	1.44	Not Normal - Platykurtic	Yes
X31	1.45	Right Skewed	3.42	Not Normal - Leptokurtic	Yes
X32	1.48	Right Skewed	1.32	Not Normal - Platykurtic	No
X33	1.22	Right Skewed	0.74	Not Normal - Platykurtic	No
X34	1.5	Right Skewed	1.57	Not Normal - Platykurtic	No
X35	0.35	Normal	-0.32	Not Normal - Platykurtic	Yes
X36	0.27	Normal	-0.48	Not Normal - Platykurtic	Yes
X37	0.23	Normal	-0.35	Not Normal - Platykurtic	Yes
X38	0.39	Normal	0.19	Not Normal - Platykurtic	Yes
X39	0.53	Normal	0.27	Not Normal - Platykurtic	Yes

X40	0.6	Normal	0.5	Not Normal - Platykurtic	Yes
X41	0.37	Normal	-0.21	Not Normal - Platykurtic	Yes
X42	0.33	Normal	-0.43	Not Normal - Platykurtic	Yes
X43	0.6	Normal	-0.41	Not Normal - Platykurtic	Yes
X44	0.78		0.09	Not Normal -	Yes
X45	1.05	Normal	1.01	Platykurtic Not Normal -	Yes
X46	1.22	Right Skewed	1.49	Platykurtic Not Normal -	Yes
X47	1.3	Right Skewed	1.77	Platykurtic Not Normal -	Yes
		Right Skewed		Platykurtic Not Normal -	
X48	1.27	Right Skewed	1.53	Platykurtic Not Normal -	Yes
X49	1.21	Right Skewed	1.55	Platykurtic Not Normal -	Yes
X50	1.17	Right Skewed	1.49	Platykurtic Not Normal -	Yes
X51	0.8	Normal	0.5	Platykurtic	Yes
X52	1.14	Right Skewed	1.24	Not Normal - Platykurtic	Yes
X53	0.01	Normal	-0.16	Not Normal - Platykurtic	Yes
X54	2.72	Right Skewed	10.72	Not Normal - Leptokurtic	No
X55	4	Right Skewed	20.1	Not Normal - Leptokurtic	No
X56	1.35	Right Skewed	2.75	Not Normal - Platykurtic	Yes
X57	0.98	Normal	1.14	Not Normal - Platykurtic	Yes
X58	0.88	Normal	0.43	Not Normal - Platykurtic	Yes
X59	0.94	Normal	0.48	Not Normal - Platykurtic	Yes
X60	1.6	Right Skewed	4.03	Not Normal - Leptokurtic	Yes
X61	0.28	Normal	0.87	Not Normal - Platykurtic	Yes
X62	0.11	Normal	0.32	Not Normal - Platykurtic	Yes
X63	-4.2		21.09	Not Normal -	No
X64	-0.38	Left Skewed Normal	0.09	Leptokurtic Not Normal - Platykurtic	Yes

X65	0.08	Normal	-0.72	Not Normal - Platykurtic	Yes
X66	0	Normal	-0.22	Not Normal - Platykurtic	Yes
X67	0.09	Normal	0.05	Not Normal - Platykurtic	Yes
X68	0.38	Normal	0.31	Not Normal - Platykurtic	Yes
X69	0.85	Normal	0.84	Not Normal - Platykurtic	Yes
X70	1.35	Right Skewed	2.21	Not Normal - Platykurtic	Yes
X71	0.18	Normal	0.5	Not Normal - Platykurtic	Yes

<u>Step 5 – Performing Stepwise Variable Selection for the model using different approaches</u>

In this step we use three different procedures to perform variable selection for our **test data**. The procedures used are Proc REG, Proc GLMSELECT and Proc LOGISTIC. We perform the stepwise variable selection using these procedures with two different variation –

- a. using default SL values
- b. Using manually selected SL values

The following table summarizes the whole analysis if stepwise variable selection methods:

Table7: Stepwise Variable Selection Summary

Stepwise Selection Result (proc REG) Variable included in Final Model		Stepwise Select (proc GLMSELECT) in Final N	Stepwise Selection Result (proc LOG,.ISTIC) Variables included in Final Model	
According to Default SL values (SLS & SLE=0.15)	According to manually selected SL values (SLS & SLE=0.05)	According to Default SL values (SLS & SLE = 0.15)	According to manually selected SL values (SLS & SLE=0.05)	According to SLE & SLS = 0.05 (here this is default value itself)
No	No	No	No	No
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No

No	No	No	No	No
Yes	Yes	Yes	Yes	Yes
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No

No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
Yes	No	Yes	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No
No	No	No	No	No

Step 6 – Performing Linear Discriminant Analysis using Proc DISCRIM

No after the variable selection, we will apply the LDA using PROC DISCRIM on all different model selections that we got, using different SL values in Proc REG, Proc GLMSELECT and Proc LOGISTIC.

We'll see all these one by one:

1. LDA on Variables selected using PROC REG – Stepwise selection (SL=0.15)

Code Used:

```
proc discrim data = ph.exampletest outstat=ph.ldamodeltest
method=normal pool=yes;
class y;
var x3 x8 x20 x31 x34 x62;
    run;
```

Output:

The classification table above shows that out of 70 non-permeable observation (y=0) 53 were correctly classified as non-permeable i.e. **75.71%**. Similarly, out of 70 permeable observations (y=1) 53 were correctly classified as permeable i.e. **75.71%**.

So this shows that by this method the probability for predicting the permeable and non-permeable observations is equal.

2. <u>LDA on Variables selected using PROC REG – Stepwise selection (SL=0.05)</u>

Code Used:

```
proc discrim data = ph.exampletest outstat=ph.ldamodeltest
method=normal pool=yes;
class y;
var x8;
    run;
```

Output:

The classification table above shows that out of 70 non-permeable observation (y=0) 51 were correctly classified as non-permeable i.e. **72.85%**. While out of 70 permeable observations (y=1) 49 were correctly classified as permeable i.e. **70%**.

So this shows that it is comparatively easier to predict the non-permeable observations.

3. <u>LDA on Variables selected using PROC GLMSELECT – Stepwise selection</u> (SL=0.15)

Code Used:

```
proc discrim data = ph.exampletest outstat=ph.ldamodeltest
method=normal pool=yes;
class y;
var x3 x8 x20 x31 x34 x62;
    run;
```

Output:

Descripti Classification Resubstitution	The Summary	DISCRII for Cali	M Proce	dure Data: PH	l.EX
1	Number of Observations and Percent Classified into y				
	From y	0		I To	tal
	0	53 75.71			70 .00
	1	17 24.29	75.7°	-	70 .00
	Total	70 50.00			.00
	Priors	0.5	0.5	5	
	Error Count Estimates for y				
		0	1	Total	
	Rate	0.2429	0.2429	0.2429	
	Priors	0.5000	0.5000		

The classification table above shows that out of 70 non-permeable observation (y=0) 53 were correctly classified as non-permeable i.e. **75.71%**. Similarly, out of 70 permeable observations (y=1) 53 were correctly classified as permeable i.e. **75.71%**.

So this shows that by this method the probability for predicting the permeable and non-permeable observations is equal.

4. <u>LDA on Variables selected using PROC GLMSELECT – Stepwise selection</u> (SL=0.05)

Code Used:

```
proc discrim data = ph.exampletest outstat=ph.ldamodeltest
method=normal pool=yes;
class y;
    var x8;
    run;
```

Output:

The classification table above shows that out of 70 non-permeable observation (y=0) 51 were correctly classified as non-permeable i.e. **72.85%**. While out of 70 permeable observations (y=1) 49 were correctly classified as permeable i.e. **70%**.

So this shows that it is comparatively easier to predict the non-permeable observations.

5. LDA on Variables selected using PROC LOGISTIC – Stepwise selection (SL=0.05)

Code Used:

```
proc discrim data = ph.exampletest outstat=ph.ldamodeltest
method=normal pool=yes;
class y;
    var x8;
    run;
    Output:
```


The classification table above shows that out of 70 non-permeable observation (y=0) 51 were correctly classified as non-permeable i.e. **72.85%**. While out of 70 permeable observations (y=1) 49 were correctly classified as permeable i.e. **70%**.

So this shows that it is comparatively easier to predict the non-permeable observations.

Summary of LDA on Testing Data:

The following table summarizes the results obtained by performing Linear Discriminant Analysis (using proc discrim):

Table8: Summary of LDA

		y Predicted observations	Correctly Predicted Non-Permeable observations		
	Count	Percentage	Count	Percentage	
LDA on Variables selected using PROC REG – Stepwise selection (SL=0.15)	53	75.71%	53	75.71%	
LDA on Variables selected using PROC REG – Stepwise selection (SL=0.05)	49	70.00%	51	72.85%	
LDA on Variables selected using PROC GLMSELECT – Stepwise selection (SL=0.15)	53	75.71%	53	75.71%	
LDA on Variables selected using PROC GLMSELECT – Stepwise selection (SL=0.05)	49	70.00%	51	72.85%	
LDA on Variables selected using PROC LOGISTIC – Stepwise selection (SL=0.05)	49	70.00%	51	72.85%	

Comparison of Results of LDA on Test and Train Data:

Method	<u>Train da</u>	ta Efficiency	Test Data Efficiency		
	Correctly Predicted Permeable	Correctly Predicted Non-Permeable	Correctly Predicted Permeable	Correctly Predicted Non-Permeable	
LDA on Variables selected using PROC REG – Stepwise selection (SL=0.15)	79.44%	77.57%	75.71%	75.71%	

LDA on Variables selected using PROC REG – Stepwise selection (SL=0.05)	70.09%	71.03%	70.00%	72.85%
LDA on Variables selected using PROC GLMSELECT – Stepwise selection (SL=0.15)	79.44%	77.57%	75.71%	75.71%
LDA on Variables selected using PROC GLMSELECT – Stepwise selection (SL=0.05)	70.09%	71.03%	70.00%	72.85%
LDA on Variables selected using PROC LOGISTIC – Stepwise selection (SL=0.05)	71.96%	69.16%	70.00%	72.85%

On an average, the highest efficiency obtained on Train data using LDA for permeable observation is 79.44% and for correctly predicted non permeable observation is 77.57%.

While on test data, the highest efficiency obtained for both correctly predicted permeable and non-permeable observation using LDA is 75.71%.

The following bar graph shows these results graphically-

