video features exploration

April 14, 2025

1 Video lifetime performance prediction based on early engagement signals

1.1 I. Exploring the feature set

1.1.1 Dataset Structure and Feature Overview

This dataset is designed to capture video performance and early engagement signals around platform-specific impression milestones.

Key Feature Groups: - video_id, channel_name, video_length: basic identifiers and meta-data - *_1k: engagement metrics when the video reaches 1,000 impressions (e.g., views3s_1k, like_1k, comments_1k) - *_5k: engagement metrics at the 5,000 impression milestone (e.g., views3s_5k, like_5k, comments_5k) - *_final: final outcome metrics used as regression targets (e.g., views_final, like_final, comment_final) - reaches_5k: boolean flag indicating whether the video truly reached 5k impressions

These features reflect the kind of early-stage metrics typically available in video performance forecasting workflows.

```
[3]: # Import libraries
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns

[4]: # Load the dataset
  file_path = '../data/Video_Timeseries.csv'
  df = pd.read_csv(file_path)
  df = df.dropna().reset_index(drop=True)
  df.shape

[4]: (13806, 15)
```

```
RangeIndex: 13806 entries, 0 to 13805

Data columns (total 15 columns):

# Column Non-Null Count Dtype
```

```
0
         video_id
                             13806 non-null
                                              object
     1
         channel_id
                             13806 non-null
                                              object
     2
         video_length
                             13806 non-null
                                              int64
     3
         views_final
                             13806 non-null
                                              float64
     4
                             13806 non-null float64
         impressions final
     5
         like final
                             13806 non-null float64
     6
         comment final
                             13806 non-null float64
     7
         views3s 1k
                             13806 non-null int64
         impressions 1k
                             13806 non-null int64
     9
         like 1k
                             13806 non-null float64
     10
                             13806 non-null float64
         comments_1k
                             13806 non-null float64
     11
         views3s_5k
                                             float64
     12
         impressions_5k
                             13806 non-null
     13
         like_5k
                             13806 non-null
                                              float64
     14
         comments_5k
                             13806 non-null
                                             float64
    dtypes: float64(10), int64(3), object(2)
    memory usage: 1.6+ MB
[6]: df.head()
                                                   video id \
      58006937d7695b285f9854bf86a0d63a1476f578925275...
     1 91423a16a2a5fc24cda7bd93403c52f1198dfb7a62ad0c...
     2 ac4f4163917b5bb69c1b227a075817a830ee8afc93bef6...
     3 061287596b4a02efaff23eacba6fc9ee2d31b6f6daebd6...
     4 4250d891dfeba257ef2367c37e29865b4555120d26aa43...
                                                             video_length \
                                                 channel_id
      bab3e0fb356b5dab60dfbfbc33a611547250e93830f6f0...
     0
                                                                    785
     1
       cd0c9afcf7a1c5c5f2e80747041df16c661074594493a1...
                                                                    412
     2
        7687f7c22713a0ba4ce088fb9b5c32a2d9c03567759c28...
                                                                    186
     3 a45ac131cbca37a25a5527b76bb9910cc4ee9689670af0...
                                                                    338
     4 29a69f4cd31f2c5a88e7a5e16a621e8d2d3fd2971cbadb...
                                                                    400
        views final
                     impressions final
                                        like final
                                                      comment final
                                                                    views3s 1k \
     0
            60904.0
                                             1094.0
                                                               51.0
                                96520.0
                                                                             593
     1
           130986.0
                               286634.0
                                              760.0
                                                              116.0
                                                                            9471
     2
           886216.0
                              1160128.0
                                            29008.0
                                                              184.0
                                                                            2813
     3
           534100.0
                              1006887.0
                                             7151.0
                                                              165.0
                                                                           17679
     4
           203323.0
                               382255.0
                                             2174.0
                                                              351.0
                                                                            1643
        impressions_1k
                        like_1k
                                  comments_1k views3s_5k
                                                            impressions_5k
                                                                           like_5k \setminus
     0
                            23.0
                                          3.0
                                                    4002.0
                                                                    6710.0
                                                                               127.0
                  1160
     1
                 39359
                           185.0
                                          7.0
                                                    9471.0
                                                                   39359.0
                                                                               185.0
     2
                  3266
                           113.0
                                          2.0
                                                    6029.0
                                                                    8773.0
                                                                               271.0
     3
                 31591
                           494.0
                                         27.0
                                                   17679.0
                                                                               494.0
                                                                   31591.0
```

[6]:

4

2855

12.0

3424.0

7966.0

28.0

3.0

```
comments_5k
     0
               11.0
                7.0
     1
     2
                5.0
     3
               27.0
               12.0
[7]: # normalizing the early engagement data based on impressions milestones
     df['views3s_1k'] = df['views3s_1k'] * 1000 / df['impressions_1k']
     df['like_1k'] = df['like_1k'] * 1000 / df['impressions_1k']
     df['comments 1k'] = df['comments 1k'] * 1000 / df['impressions 1k']
     df['views3s_5k'] = df['views3s_5k'] * 1000 / df['impressions_5k']
     df['like_5k'] = df['like_5k'] * 1000 / df['impressions_5k']
     df['comments_5k'] = df['comments_5k'] * 1000 / df['impressions_5k']
     # drop the impressions columns
     # df = df.drop(columns=['impressions 1k', 'impressions 5k'])
     df.head()
[7]:
                                                 video_id \
     0 58006937d7695b285f9854bf86a0d63a1476f578925275...
     1 91423a16a2a5fc24cda7bd93403c52f1198dfb7a62ad0c...
     2 ac4f4163917b5bb69c1b227a075817a830ee8afc93bef6...
     3 061287596b4a02efaff23eacba6fc9ee2d31b6f6daebd6...
     4 4250d891dfeba257ef2367c37e29865b4555120d26aa43...
                                               channel_id video_length \
     0 bab3e0fb356b5dab60dfbfbc33a611547250e93830f6f0...
                                                                  785
     1 cd0c9afcf7a1c5c5f2e80747041df16c661074594493a1...
                                                                  412
     2 7687f7c22713a0ba4ce088fb9b5c32a2d9c03567759c28...
                                                                  186
     3 a45ac131cbca37a25a5527b76bb9910cc4ee9689670af0...
                                                                  338
     4 29a69f4cd31f2c5a88e7a5e16a621e8d2d3fd2971cbadb...
                                                                  400
       views_final impressions_final like_final comment_final views3s_1k \
     0
            60904.0
                               96520.0
                                            1094.0
                                                             51.0 511.206897
     1
           130986.0
                              286634.0
                                             760.0
                                                            116.0 240.631114
     2
           886216.0
                             1160128.0
                                           29008.0
                                                            184.0 861.298224
     3
                             1006887.0
                                                            165.0 559.621411
           534100.0
                                            7151.0
     4
           203323.0
                              382255.0
                                            2174.0
                                                            351.0 575.481611
                          like 1k comments 1k views3s 5k
                                                            impressions 5k \
        impressions_1k
                                      2.586207 596.423249
     0
                  1160 19.827586
                                                                    6710.0
     1
                 39359
                         4.700323
                                      0.177850 240.631114
                                                                   39359.0
     2
                  3266 34.598898
                                      0.612370 687.222159
                                                                    8773.0
     3
                 31591 15.637365
                                      0.854674 559.621411
                                                                   31591.0
     4
                  2855
                         4.203152
                                      1.050788 429.826764
                                                                    7966.0
```

```
like_5k comments_5k
18.926975 1.639344
4.700323 0.177850
30.890231 0.569930
315.637365 0.854674
43.514938 1.506402
```

1.2 II. Exploring the target distribution

```
[8]: # Histogram of final views
  plt.figure(figsize=(8, 5))
  sns.histplot(df['views_final'])
  plt.xscale("log")
  plt.title("Distribution of Final Views (log scale)")
  plt.xlabel("Final Views")
  plt.ylabel("Frequency")
  plt.show()
```


1.3 III. Testing which features are tied closely to final outcome with correlations

1.4 IV. Training a regression model

1.4.1 Initial Model Training: Baseline Approach

We begin with a single Random Forest model trained on log-transformed views_final. This gives us a baseline against which to compare more advanced techniques like lifespan-aware modeling.

```
[10]: # Train a basic regression model
      from sklearn.model_selection import train_test_split
      from sklearn.ensemble import RandomForestRegressor
      from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error
[11]: # Select early features
      features = [
          'views3s_1k', 'like_1k', 'comments_1k',
          'views3s_5k', 'like_5k', 'comments_5k',
          # 'video_length'
      ]
[12]: # Create X and y and split the data
      import numpy as np
      X = df[features]
      y_log = np.log1p(df['views_final'])
      X_train, X_test, y_train, y_test = train_test_split(X, y_log, test_size=0.2,_
       →random_state=42)
[13]: # Fit the model
      model = RandomForestRegressor(n_estimators=100, random_state=42)
      model.fit(X_train, y_train)
[13]: RandomForestRegressor(random_state=42)
[14]: # Evaluate
      mae = mean_absolute_error(y_test, model.predict(X_test))
      mape = mean_absolute_percentage_error(y_test, model.predict(X_test))
      print(f"MAE: {mae:.2f}")
      print(f"MAPE: {mape:.4f}")
     MAE: 1.22
     MAPE: 0.1137
```

1.5 V. Introduce cluster-specific modelling

```
[15]: # # Estimate alpha-lifespan and cluster
      # def classify_lifespan(row, alpha=0.5):
           if pd.isna(row['views3s_5k']):
      #
                return 'short'
            ratio = row['views3s_5k'] / row['views_final']
      #
            return 'long' if ratio >= alpha else 'short'
      # df['lifespan_group'] = df.apply(classify_lifespan, axis=1)
[16]: # df['lifespan_group'].value_counts()
[19]: # engineering velocity features for clustering
      df['velocity_1'] = df['impressions_1k'] / 1000
      df['velocity_5'] = df['impressions_5k'] / df['impressions_1k']
[21]: from sklearn.cluster import KMeans
      # We create two velocity features.
      # velocity_1 = impressions_1k normalized by 1000.
      df['velocity_1'] = df['impressions_1k'] / 1000.0
      \# velocity_5 = impressions_5k / impressions_1k (handle division-by-zero).
      df['velocity_5'] = df['impressions_5k'] / df['impressions_1k']
      clust_features = ['velocity_1', 'velocity_5']
      X_clust = df[clust_features].values
      # Perform K-means clustering (using k=3 clusters; adjust if needed).
      kmeans = KMeans(n_clusters=k, random_state=42)
      df['cluster'] = kmeans.fit_predict(X_clust)
      print("\nCluster counts based on engineered velocity features:")
      print(df['cluster'].value_counts())
     Cluster counts based on engineered velocity features:
     cluster
     0
          11479
     1
           1736
            591
     Name: count, dtype: int64
[22]: # Train separate models for each lifespan group
      models = \{\}
      metrics = {}
```

```
for group in df['cluster'].unique():
          group_df = df[df['cluster'] == group]
          X = group_df[features]
          y_log = np.log1p(group_df['views_final'])
          X_train, X_test, y_train, y_test = train_test_split(X, y_log, test_size=0.
       →2, random_state=42)
          model = RandomForestRegressor(n_estimators=100, random_state=42)
          model.fit(X_train, y_train)
          y_pred = model.predict(X_test)
          y_pred_exp = np.expm1(y_pred)
          y_test_exp = np.expm1(y_test)
          mae = mean_absolute_error(y_test_exp, y_pred_exp)
          mape = mean_absolute_percentage_error(y_test_exp, y_pred_exp)
          models[group] = model
          metrics[group] = {'MAE': mae, 'MAPE': mape}
[24]: # Compare specialized models
      for group, metric in metrics.items():
          print(f"Cluster {group}: MAE = {metric['MAE']:.2f}, MAPE = {metric['MAPE']:.
       <4f}")
     Cluster 0: MAE = 242283.33, MAPE = 2.2707
     Cluster 1: MAE = 356563.88, MAPE = 2.0435
     Cluster 2: MAE = 263131.78, MAPE = 0.9407
```