Lecture 13:

Constrained Rigid Body Systems

FUNDAMENTALS OF COMPUTER GRAPHICS

Animation & Simulation Stanford CS248B, Fall 2022

Collision is detected! What now?

- Collision detector is responsible for returning a list of collisions at every time step.
- If the list is not empty, collision handler will take over and resolve the collisions.
- For each collision on the list, it should contains
 - IDs of a pair of rigid bodies in collision
 - Coordinate of the contact point
 - Normal vector at the contact point

Collision is detected! What now?

- Collision detector is responsible for returning a list of collisions at every time step.
- If the list is not empty, collision handler will take over and resolve the collisions.
- **■** For each collision on the list, it should contains
 - IDs of a pair of rigid bodies in collision
 - Coordinate of the contact point
 - Normal vector at the contact point

Contact Points

Collision handler tells us that a point on A and a point on B are in collision

Contact Points

Collision handler tells us that a point on A and a point on B are in collision

Put in the world space...

Although p_a and p_b are coincident at time t_c , the velocity of the two points may be different!

Velocity of a Contact Point

$$\dot{\mathbf{p}}_a(t_c) = \mathbf{v}_a(t_c) + \boldsymbol{\omega}_a(t_c) \times \left(\mathbf{p}_a(t_c) - \mathbf{x}_a(t_c)\right)$$

$$\dot{\mathbf{p}}_b(t_c) = \mathbf{v}_b(t_c) + \boldsymbol{\omega}_b(t_c) \times \left(\mathbf{p}_b(t_c) - \mathbf{x}_b(t_c)\right)$$

$$v_r = \hat{\mathbf{n}} \cdot \left(\dot{\mathbf{p}}_a(t_c) - \dot{\mathbf{p}}_b(t_c) \right)$$

 v_r is the magnitude of the relative velocity in the normal direction

Relative Normal Velocity

$$v_r > 0$$

$$v_r = 0$$

$$v_r < 0$$

separation

resting contact

colliding contact

Relative Normal Velocity

$$v_r > 0$$

$$v_r = 0$$

separation

Collision Process

$$\mathbf{J} \equiv \int_0^{\Delta t} \mathbf{f}_t \, dt = m \Delta \mathbf{v}$$

A Soft Collision

force

$$\mathbf{J} = \int_0^{\Delta t} \mathbf{f}_t \, dt$$

velocity

$$\mathbf{J} = m\Delta\mathbf{v}$$

A Hard Collision

$$\mathbf{J} = \int_0^{\Delta t} \mathbf{f}_t \, dt$$

$$\mathbf{J} = m\Delta \mathbf{v}$$

An Infinitely Hard Collision

$$J = ?$$

$$\mathbf{J} = m\Delta \mathbf{v}$$

Impulse

- In the rigid body world, we want the velocity to change instantaneously if there is a collision contact.
- lacksquare Use finite impulse to change velocity instead of infinite force: ${f J}=\Delta{f P}=m\Delta{f v}$
- If the impulse acts on a point p, the impulse produces an impulsive torque

$$\boldsymbol{\tau}_{imp} = \left(\mathbf{p} - \mathbf{x}(t)\right) \times \mathbf{J}$$

– Impulsive torque results in a change in angular momentum: $au_{imp} = \Delta extbf{L}$

lacksquare For frictionless bodies, the direction of the impulse will be in the normal direction $\hat{f n}(t_c)$.

- If we solve for j, we then can update the linear momentum of the rigid body after the collision.
- lacksquare Body A is subject to impulse ${f J}$, while B is subject to an equal but opposite impulse $-{f J}$

■ Similarly, we use impulsive torque to update the angular moment of the rigid bodies

How to solve *j*?

■ The change of velocity at the contact point follows the empirical law:

$$v_r^+ = -\epsilon v_r^-$$

- Coefficient of restitution
 - $\epsilon = 0$, resting contact
 - $\epsilon=1$, perfect bounce

We need to solve for j such that $v_r^+ = -\epsilon v_r^-$

before collision

$$v_r^- = \hat{\mathbf{n}}(t_c) \cdot (\dot{\mathbf{p}}_a^- - \dot{\mathbf{p}}_b^-)$$

after collision

$$v_r^+ = \hat{\mathbf{n}}(t_c) \cdot (\dot{\mathbf{p}}_a^+ - \dot{\mathbf{p}}_b^+)$$

- Define the displacement from center of mass
 - $\mathbf{r}_a = \mathbf{p}_a \mathbf{x}_a$
 - $\mathbf{r}_b = \mathbf{p}_b \mathbf{x}_b$
- **■** Express contact point velocity in rigid body velocity
 - $\dot{\mathbf{p}}_a^- = \mathbf{v}_a^- + \boldsymbol{\omega}_a^- \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^-$
 - $\dot{\mathbf{p}}_a^+ = \mathbf{v}_a^+ + \boldsymbol{\omega}_a^+ \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^+$
- Express post-collision velocity in unknown impulse

$$\mathbf{v}_a^+ = \mathbf{v}_a^- + \frac{j\hat{\mathbf{n}}}{m_a}, \text{ similar for } \mathbf{v}_b^+$$

-
$$\omega_a^+ = \omega_a^- + \mathbf{I}_a^{-1} (\mathbf{r}_a \times j\hat{\mathbf{n}})$$
, similar for ω_b^+

- Define the displacement from center of mass
 - $\mathbf{r}_a = \mathbf{p}_a \mathbf{x}_a$
 - $\mathbf{r}_b = \mathbf{p}_b \mathbf{x}_b$
- Express contact point velocity in rigid body velocity
 - $\dot{\mathbf{p}}_a^- = \mathbf{v}_a^- + \boldsymbol{\omega}_a^- \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^-$
 - $\dot{\mathbf{p}}_a^+ = \mathbf{v}_a^+ + \boldsymbol{\omega}_a^+ \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^+$
- Express post collision velocity in unknown impulse

$$\mathbf{v}_a^+ = \mathbf{v}_a^- + \frac{j\hat{\mathbf{n}}}{m_a} \text{ similar for } \mathbf{v}_b^+$$

-
$$\omega_a^+ = \omega_a^- + \mathbf{I}_a^{-1} (\mathbf{r}_a \times j\hat{\mathbf{n}})$$
, similar for ω_b^+

- Define the displacement from center of mass
 - $\mathbf{r}_a = \mathbf{p}_a \mathbf{x}_a$
 - $\mathbf{r}_b = \mathbf{p}_b \mathbf{x}_b$
- Express contact point velocity in rigid body velocity
 - $\dot{\mathbf{p}}_a^- = \mathbf{v}_a^- + \boldsymbol{\omega}_a^- \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^-$
 - $\dot{\mathbf{p}}_a^+ = \mathbf{v}_a^+ + \boldsymbol{\omega}_a^+ \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^+$
- Express post-collision velocity in unknown impulse
 - $\mathbf{v}_a^+ = \mathbf{v}_a^- + \frac{j\mathbf{n}}{m_a}, \text{ similar for } \mathbf{v}_b^+$
 - $\omega_a^+ = \omega_a^- + \mathbf{I}_a^{-1} (\mathbf{r}_a \times j\hat{\mathbf{n}})$, similar for ω_b^+

- Define the displacement from center of mass
 - $\mathbf{r}_a = \mathbf{p}_a \mathbf{x}_a$
 - $\mathbf{r}_b = \mathbf{p}_b \mathbf{x}_b$
- Express contact point velocity in rigid body velocity
 - $\dot{\mathbf{p}}_a^- = \mathbf{v}_a^- + \boldsymbol{\omega}_a^- \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^-$
 - $\dot{\mathbf{p}}_a^+ = \mathbf{v}_a^+ + \boldsymbol{\omega}_a^+ \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^+$
- Express post-collision velocity in unknown impulse

$$\mathbf{v}_a^+ = \mathbf{v}_a^- + \frac{j\hat{\mathbf{n}}}{m_a}, \text{ similar for } \mathbf{v}_b^+$$

-
$$\omega_a^+ = \omega_a^- + \mathbf{I}_a^{-1} (\mathbf{r}_a \times j\hat{\mathbf{n}})$$
, similar for ω_b^+

$$\dot{\mathbf{p}}_a^+ = \mathbf{v}_a^- + \frac{j\hat{\mathbf{n}}}{m_a} + \left(\boldsymbol{\omega}_a^- + \mathbf{I}_a^{-1}(\mathbf{r}_a \times j\hat{\mathbf{n}})\right) \times \mathbf{r}_a$$

- Define the displacement from center of mass
 - $-\mathbf{r}_a = \mathbf{p}_a \mathbf{x}_a$
 - $\mathbf{r}_h = \mathbf{p}_h \mathbf{x}_h$
- Express contact point velocity in rigid body velocity
 - $\dot{\mathbf{p}}_a^- = \mathbf{v}_a^- + \boldsymbol{\omega}_a^- \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^-$
 - $\dot{\mathbf{p}}_a^+ = \mathbf{v}_a^+ + \boldsymbol{\omega}_a^+ \times \mathbf{r}_a$, similar for $\dot{\mathbf{p}}_b^+$
- Express post-collision velocity in unknown impulse

$$\mathbf{v}_a^+ = \mathbf{v}_a^- + \frac{j\hat{\mathbf{n}}}{m_a}, \text{ similar for } \mathbf{v}_b^+$$

-
$$\omega_a^+ = \omega_a^- + \mathbf{I}_a^{-1} (\mathbf{r}_a \times j\hat{\mathbf{n}})$$
, similar for ω_b^+

$$\dot{\mathbf{p}}_{a}^{+} = \mathbf{v}_{a}^{-} + \frac{j\hat{\mathbf{n}}}{m_{a}} + (\boldsymbol{\omega}_{a}^{-} + \mathbf{I}_{a}^{-1}(\mathbf{r}_{a} \times j\hat{\mathbf{n}})) \times \mathbf{r}_{a}$$
Recover pre-collision contact velocity, $\dot{\mathbf{p}}_{a}^{-}$

$$\dot{\mathbf{p}}_a^+ = \dot{\mathbf{p}}_a^- + j\left(\frac{j\hat{\mathbf{n}}}{m_a} + \left(\mathbf{I}_a^{-1}(\mathbf{r}_a \times j\hat{\mathbf{n}})\right) \times \mathbf{r}_a\right)$$

Express the empirical law in contact velocity

$$v_r^+ = -\epsilon v_r^-$$

$$\dot{\mathbf{p}}_a^+ = \dot{\mathbf{p}}_a^- + j\left(\frac{j\hat{\mathbf{n}}}{m_a} + \left(\mathbf{I}_a^{-1}(\mathbf{r}_a \times j\hat{\mathbf{n}})\right) \times \mathbf{r}_a\right)$$

Express the empirical law in contact velocity

$$v_r^+ = -\epsilon v_r^-$$

$$\dot{\mathbf{p}}_a^+ = \dot{\mathbf{p}}_a^- + j \left(\frac{j \hat{\mathbf{n}}}{m_a} + \left(\mathbf{I}_a^{-1} (\mathbf{r}_a \times j \hat{\mathbf{n}}) \right) \times \mathbf{r}_a \right)$$

$$v_r^+ = \hat{\mathbf{n}} \cdot (\dot{\mathbf{p}}_a^+ - \dot{\mathbf{p}}_b^+)$$

$$= \hat{\mathbf{n}} \cdot (\dot{\mathbf{p}}_a^- - \dot{\mathbf{p}}_b^-) + j(\frac{1}{m_a} + \frac{1}{m_b} + \hat{\mathbf{n}} \cdot (\mathbf{I}_a^{-1}(\mathbf{r}_a \times \hat{\mathbf{n}})) \times \mathbf{r}_a + \hat{\mathbf{n}} \cdot (\mathbf{I}_b^{-1}(\mathbf{r}_b \times \hat{\mathbf{n}})) \times \mathbf{r}_b)$$

Express the empirical law in contact velocity

$$v_r^+ = -\epsilon v_r^-$$

$$\dot{\mathbf{p}}_a^+ = \dot{\mathbf{p}}_a^- + j \left(\frac{j \hat{\mathbf{n}}}{m_a} + \left(\mathbf{I}_a^{-1} (\mathbf{r}_a \times j \hat{\mathbf{n}}) \right) \times \mathbf{r}_a \right)$$

$$v_r^+ = \hat{\mathbf{n}} \cdot (\dot{\mathbf{p}}_a^+ - \dot{\mathbf{p}}_b^+)$$

$$= \hat{\mathbf{n}} \cdot (\dot{\mathbf{p}}_a^- - \dot{\mathbf{p}}_b^-) + j(\frac{1}{m_a} + \frac{1}{m_b} + \hat{\mathbf{n}} \cdot (\mathbf{I}_a^{-1}(\mathbf{r}_a \times \hat{\mathbf{n}})) \times \mathbf{r}_a + \hat{\mathbf{n}} \cdot (\mathbf{I}_b^{-1}(\mathbf{r}_b \times \hat{\mathbf{n}})) \times \mathbf{r}_b)$$

$$= v_r^- + j(\frac{1}{m_a} + \frac{1}{m_b} + \hat{\mathbf{n}} \cdot (\mathbf{I}_a^{-1}(\mathbf{r}_a \times \hat{\mathbf{n}})) \times \mathbf{r}_a + \hat{\mathbf{n}} \cdot (\mathbf{I}_b^{-1}(\mathbf{r}_b \times \hat{\mathbf{n}})) \times \mathbf{r}_b)$$

$$-\epsilon v_r^- = v_r^- + j(\frac{1}{m_a} + \frac{1}{m_b} + \hat{\mathbf{n}} \cdot (\mathbf{I}_a^{-1}(\mathbf{r}_a \times \hat{\mathbf{n}})) \times \mathbf{r}_a + \hat{\mathbf{n}} \cdot (\mathbf{I}_b^{-1}(\mathbf{r}_b \times \hat{\mathbf{n}})) \times \mathbf{r}_b)$$

$$j = \frac{-(1+\epsilon)v_r^-}{\frac{1}{m_a} + \frac{1}{m_b} + \hat{\mathbf{n}} \cdot (\mathbf{I}_a^{-1}(\mathbf{r}_a \times \hat{\mathbf{n}})) \times \mathbf{r}_a + \hat{\mathbf{n}} \cdot (\mathbf{I}_b^{-1}(\mathbf{r}_b \times \hat{\mathbf{n}})) \times \mathbf{r}_b}$$

- Apply change in momentum to current state:
 - Body A:

-
$$\mathbf{P}(t_c + h) = \mathbf{P}(t_c) + \mathbf{J}$$

-
$$\mathbf{L}(t_c + h) = \mathbf{L}(t_c) + (\mathbf{p} - \mathbf{x}_a) \times \mathbf{J}$$

- Body B:
 - $\mathbf{P}(t_c + h) = \mathbf{P}(t_c) \mathbf{J}$
 - $\mathbf{L}(t_c + h) = \mathbf{L}(t_c) + (\mathbf{p} \mathbf{x}_b) \times (-\mathbf{J})$

after collision

Relative Normal Velocity

$$v_r > 0$$

separation

$$v_r < 0$$

colliding contact

Resting Contact

- In this case, all n contact points have the zero relative velocity
- At each contact point there is some force $f_i\hat{\mathbf{n}}_i$, where f_i is an unknown scalar and $\hat{\mathbf{n}}_i$ is a defined normal at that contact point
- lacksquare Our goal is to determine what each f_i is by solving all of them simultaneously
- What are the conditions for f_i ?

- Let's define penetration:
 - $d_i = \hat{\mathbf{n}} \cdot (\mathbf{p}_a \mathbf{p}_b)$

 $d_i(t) = 0$

- Let's define penetration:
 - $d_i = \hat{\mathbf{n}} \cdot (\mathbf{p}_a \mathbf{p}_b)$
- We want to avoid $d_i < 0$

 $d_i(t) = 0$

 $d_i(t) < 0$

- Let's define penetration:
 - $d_i = \hat{\mathbf{n}} \cdot (\mathbf{p}_a \mathbf{p}_b)$
- We want to avoid $d_i < 0$
- Since collision is detected, $d_i(t) = 0$

■ Let's define penetration:

$$- d_i = \hat{\mathbf{n}} \cdot (\mathbf{p}_a - \mathbf{p}_b)$$

 $\blacksquare \ \ \text{We want to avoid} \ d_i < 0$

■ Since collision is detected,
$$d_i(t) = 0$$

• What about $\dot{d}_i(t)$?

$$\dot{d}_i(t) = \dot{\hat{\mathbf{n}}}_i(t) \cdot \left(\mathbf{p}_a(t) - \mathbf{p}_b(t)\right) + \hat{\mathbf{n}}_i(t) \cdot \left(\dot{\mathbf{p}}_a(t) - \dot{\mathbf{p}}_b(t)\right)$$

$$\dot{d}_i(t) = v_r = 0$$
 because it is a resting contact

■ Let's define penetration:

$$- d_i = \hat{\mathbf{n}} \cdot (\mathbf{p}_a - \mathbf{p}_b)$$

- We want to avoid $d_i < 0$
- At rest contact, $d_i(t) = 0$ and $\dot{d}_i(t) = 0$

- **■** Let's define penetration:
 - $d_i = \hat{\mathbf{n}} \cdot (\mathbf{p}_a \mathbf{p}_b)$
- We want to avoid $d_i < 0$
- At rest contact, $d_i(t) = 0$ and $\dot{d}_i(t) = 0$
- If $\dot{d}(t) < 0$, bodies have an acceleration toward each other and the penetration will occur.

Non-penetration

- Let's define penetration:
 - $d_i = \hat{\mathbf{n}} \cdot (\mathbf{p}_a \mathbf{p}_b)$
- We want to avoid $d_i < 0$
- At rest contact, $d_i(t) = 0$ and $\dot{d}_i(t) = 0$
- If $\dot{d}(t) < 0$, bodies have an acceleration toward each other and the penetration will occur.
- Therefore, the first condition is $\ddot{d}(t) \ge 0$

Repulsive force

- The contact forces can push bodies apart, but can never act like "glue" and hold bodies together.
- lacksquare Therefore, each contact force must act outward: $f_i \geq 0$

Workless force

- The contact force at the a contact point becomes zero if the bodies begin to separate.
- If contact is breaking, that is, $\dot{d}_i(t) > 0$, then f_i should be zero.
- If f_i is not zero, then the contact is not breaking, that is, $\dot{d}_i(t)=0$.
- What is the equation that satisfies these two conditions?

$$f_i \dot{d}_i(t) = 0$$

Compute contact forces

Non-penetration

$$\ddot{d}_i(t) \geq 0$$

Repulsive force

$$f_i \geq 0$$

Workless force

$$f_i \ddot{d}_i(t) = 0$$

Compute contact forces

Non-penetration

$$\ddot{d}_i(t) \geq 0$$

Repulsive force

$$f_i \geq 0$$

Workless force

$$f_i \ddot{d}_i(t) = 0$$

Express \ddot{d} 's in terms of f's:

$$\ddot{d}_i = \hat{\mathbf{n}} \cdot (\ddot{\mathbf{p}}_a - \ddot{\mathbf{p}}_b) + 2\dot{\hat{\mathbf{n}}} \cdot (\dot{\mathbf{p}}_a - \dot{\mathbf{p}}_b)$$

$$= a_{i1}f_1 + a_{i2}f_2 + \dots + a_{in}f_n + b_i$$

Factor out the terms that depend on $f_{\!j}$ and assign them to a_{ij}

Assign the rest of terms to b_i

Collect all the a_{ij} to form matrix ${\bf A}$ and all the b_i to form vector ${\bf b}$

$$\ddot{\mathbf{d}} = \mathbf{Af} + \mathbf{b}$$
, where $\ddot{\mathbf{d}} = [\ddot{d}_1, \cdots \ddot{d}_n]$ and $\mathbf{f} = f_1, \cdots, f_n]$

Linear complementarity program (LCP)

- Solve for $\mathbf{f} = [f_i, f_2, \dots, f_n]$
- Subject to

$$\mathbf{Af} + \mathbf{b} \ge 0$$

$$f \ge 0$$

$$(\mathbf{Af} + \mathbf{b})^T \mathbf{f} = 0$$

Can solve it as a Quadratic Program

Solve LCP iteratively

A typical LCP:

$$\mathbf{A}\mathbf{x} + \mathbf{b} \geq \mathbf{0} \quad \text{split } \mathbf{A} \text{ to } \mathbf{M} + \mathbf{N} \quad (\mathbf{M} + \mathbf{N})\mathbf{x} + \mathbf{b} \geq \mathbf{0}$$

$$\mathbf{x} \geq \mathbf{0} \quad \mathbf{x} \geq \mathbf{0}$$

$$\mathbf{x}^{T}(\mathbf{A}\mathbf{x} + \mathbf{b}) = 0 \quad \mathbf{x}^{T}((\mathbf{M} + \mathbf{N})\mathbf{x} + \mathbf{b}) = 0$$
Fixed point it old \mathbf{x} update \mathbf{x} iteratively
$$\mathbf{M}\mathbf{x}_{k+1} + \mathbf{N}\mathbf{x}_{k} + \mathbf{b} \geq \mathbf{0}$$

$$\mathbf{x}_{k+1} = \mathbf{n}\mathbf{e}\mathbf{w} \mathbf{x}$$

$$\mathbf{x}_{k+1}^{T}(\mathbf{M}\mathbf{x}_{k+1} + \mathbf{N}\mathbf{x}_{k} + \mathbf{b}) = 0$$
Let $\mathbf{c}_{k} \equiv \mathbf{N}\mathbf{x}_{k} + \mathbf{b}$

$$\mathbf{M}\mathbf{x}_{k+1} + \mathbf{c}_{k} \geq \mathbf{0}$$

$$\mathbf{x}_{k+1} \geq \mathbf{0}$$

$$\mathbf{x}_{k+1}^{T}(\mathbf{M}\mathbf{x}_{k+1} + \mathbf{c}_{k}) = 0$$

Solve LCP iteratively

A typical LCP:

$$\mathbf{A}\mathbf{x} + \mathbf{b} \ge \mathbf{0} \quad \text{split } \mathbf{A} \text{ to } \mathbf{M} + \mathbf{N} \qquad (\mathbf{M} + \mathbf{N})\mathbf{x} + \mathbf{b} \ge \mathbf{0}$$

$$\mathbf{x} \ge \mathbf{0} \qquad \qquad \mathbf{x} \ge \mathbf{0}$$

$$\mathbf{x}^{T}(\mathbf{A}\mathbf{x} + \mathbf{b}) = 0 \qquad \qquad \mathbf{x}^{T}((\mathbf{M} + \mathbf{N})\mathbf{x} + \mathbf{b}) = 0$$

Fixed point ite old x: update x iteratively

$$\mathbf{M}\mathbf{x}_{k+1} + \mathbf{N}\mathbf{x}_k + \mathbf{b} \ge \mathbf{0}$$

$$\mathbf{x}_{k+1}^T = \mathbf{new} \mathbf{x}$$

$$\mathbf{x}_{k+1}^T (\mathbf{M}\mathbf{x}_{k+1} + \mathbf{N}\mathbf{x}_k + \mathbf{b}) = 0$$

Let
$$\mathbf{c}_k \equiv \mathbf{N}\mathbf{x}_k + \mathbf{b}$$

$$\mathbf{M}\mathbf{x}_{k+1} + \mathbf{c}_k \ge \mathbf{0}$$

$$\mathbf{x}_{k+1} \ge \mathbf{0}$$

$$\mathbf{x}_{k+1}^T(\mathbf{M}\mathbf{x}_{k+1} + \mathbf{c}_k) = 0$$

Projected Gauss Seidel (PGS)

$$\mathbf{M} = \begin{bmatrix} a_{11} & & & & \\ & & 0 \\ \vdots & \ddots & & \\ a_{11} & \dots & a_{nn} \end{bmatrix} \mathbf{N} = \begin{bmatrix} a_{12} & \dots & a_{1n} \\ & & \\ 0 & & \end{bmatrix}$$

for k = 0 to max_iter:

$$x_{k+1}(1) \cdot \left(a_{11}x_{k+1}(1) + c_k(1)\right) = 0$$

$$x_{k+1}(1) = \max(0, -\frac{c_k(1)}{a_{11}}) \text{ just solved!}$$

$$x_{k+1}(2) \cdot \left(a_{21}x_{k+1}(1) + a_{22}x_{k+1}(2) + c_k(2)\right) = 0$$

$$x_{k+1}(2) = \max(0, -\frac{a_{21}x_{k+1}(1) + c_k(2)}{a_{22}x_{k+1}(2)}) \dots$$

Solve LCP iteratively

Projected Jacobi:

$$\mathbf{M} = \begin{bmatrix} a_{11} \\ \ddots \\ a_{nn} \end{bmatrix} \mathbf{N} = \begin{bmatrix} a_{11} \\ \vdots \\ a_{nn} \end{bmatrix}$$

Projected Successive Over Relaxation:

$$\mathbf{M} = \begin{bmatrix} a_{11} & & & & \\ & & 0 & \\ & & \ddots & \\ & & a_{nn} & \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} (1-\alpha) \cdot a_{ij} \\ & 0 & \\ & & 0 \end{bmatrix}$$

Projected Gauss Seidel (PGS)

$$\mathbf{M} = \begin{bmatrix} a_{11} & & & & \\ & & 0 \\ \vdots & \ddots & & \\ a_{11} & \dots & a_{nn} \end{bmatrix} \mathbf{N} = \begin{bmatrix} a_{12} & \dots & a_{1n} \\ & & \\ 0 & & \end{bmatrix}$$

for k = 0 to max_iter:

$$x_{k+1}(1) \cdot \left(a_{11}x_{k+1}(1) + c_k(1)\right) = 0$$
$$x_{k+1}(1) = \max(0, -\frac{c_k(1)}{a_{11}})$$

$$x_{k+1}(2) \cdot (a_{21}x_{k+1}(1) + a_{22}x_{k+1}(2) + c_k(1)) = 0$$

$$x_{k+1}(2) = \max(0, -\frac{a_{21}x_{k+1}(1) + c_k(2)}{a_{22}})$$
 ...

Non-penetration

$$\dot{d}_i(t) \geq 0$$

Repulsive force

$$f_i \geq 0$$

Workless force

$$f_i \dot{d}_i(t) = 0$$

Non-penetration

$$\frac{\partial d_i}{\partial \mathbf{q}} \dot{\mathbf{q}} \ge 0$$

Repulsive force

$$f_i \geq 0$$

Workless force

$$f_i \frac{\partial d}{\partial \mathbf{q}} \dot{\mathbf{q}} = 0$$

General representation of configurations of two rigid bodies

$$\mathbf{q} = [\mathbf{x}_a, \mathbf{R}_a, \mathbf{x}_b, \mathbf{R}_b]$$

Shortest distance between two rigid bodies

$$d(\mathbf{q})$$

Time derivative of $d(\mathbf{q}(t))$

$$\dot{d}_i(\mathbf{q}(t)) = \frac{\partial d_i}{\partial \mathbf{q}} \dot{\mathbf{q}} \ge 0$$

Non-penetration

$$\frac{\partial d_i}{\partial \mathbf{q}} \dot{\mathbf{q}} \ge 0$$

Repulsive force

$$f_i \geq 0$$

Workless force

$$f_i \frac{\partial d}{\partial \mathbf{q}} \dot{\mathbf{q}} = 0$$

General representation of configurations of two rigid bodies

$$\mathbf{q} = [\mathbf{x}_a, \mathbf{R}_a, \mathbf{x}_b, \mathbf{R}_b]$$

Shortest distance between two rigid bodies

$$d(\mathbf{q})$$

Time derivative of $d(\mathbf{q}(t))$

$$\dot{d}_i(\mathbf{q}(t)) = \frac{\partial d_i}{\partial \mathbf{q}} \dot{\mathbf{q}} \ge 0$$

Compact expression of LCP:
$$0 \le \mathbf{f} \perp \frac{\partial \mathbf{d}}{\partial \mathbf{q}} \dot{\mathbf{q}} \ge 0$$

Non-penetration

$$\frac{\partial d_i}{\partial \mathbf{q}} \dot{\mathbf{q}} \ge 0$$

Repulsive force

$$f_i \geq 0$$

Workless force

$$f_i \frac{\partial d}{\partial \mathbf{q}} \dot{\mathbf{q}} = 0$$

Make it implicit

$$0 \le \mathbf{f} \perp \frac{\partial \mathbf{d}}{\partial \mathbf{q}} \dot{\mathbf{q}}^{+} \ge 0$$
$$\dot{\mathbf{q}}^{+} = \dot{\mathbf{q}}^{-} + M^{-1} (\frac{\partial \mathbf{d}}{\partial \mathbf{q}})^{T} \mathbf{f}$$

Combine with colliding case

$$0 \le \mathbf{f} \perp \frac{\partial \mathbf{d}}{\partial \mathbf{q}} \dot{\mathbf{q}}^{+} \ge -\epsilon \frac{\partial \mathbf{d}}{\partial \mathbf{q}} \dot{\mathbf{q}}^{-}$$

Compact expression of LCP: $0 \le \mathbf{f} \perp \frac{\partial \mathbf{d}}{\partial \mathbf{q}} \dot{\mathbf{q}} \ge 0$

Friction

- Coulomb's Law of Friction
 - If sliding, the kinetic friction is

$$\mathbf{f}_{\parallel} = -\mu_k |\mathbf{f}_{\perp}| \frac{\mathbf{v}_{\parallel}}{|\mathbf{v}_{\parallel}|}$$

- If static, stay static as long as

$$|\mathbf{f}_{\parallel}| \leq \mu_{\scriptscriptstyle S} |\mathbf{f}_{\perp}|$$

static friction kinetic friction $\theta = \tan^{-1} \mu_s$

Friction coefficient

Materials		Static Friction, $\mu_{ m s}$		Kinetic/Sliding Friction, μ_{k}	
		Dry and clean	Lubricated	Dry and clean	Lubricated
Aluminium	Steel	0.61 ^[25]		0.47 ^[25]	
Aluminium	Aluminium	1.05-1.35 ^[25]	0.3 ^[25]	1.4 ^[25] -1.5 ^[26]	
Gold	Gold			2.5 ^[26]	
Platinum	Platinum	1.2 ^[25]	0.25 ^[25]	3.0 ^[26]	
Silver	Silver	1.4 ^[25]	0.55 ^[25]	1.5 ^[26]	
Alumina ceramic	Silicon nitride ceramic				0.004 (wet) ^[27]
BAM (Ceramic alloy AIMgB ₁₄)	Titanium boride (TiB ₂)	0.04-0.05 ^[28]	0.02 ^{[29][30]}		
Brass	Steel	0.35-0.51 ^[25]	0.19 ^[25]	0.44 ^[25]	
Cast iron	Copper	1.05 ^[25]		0.29 ^[25]	
Cast iron	Zinc	0.85 ^[25]		0.21 ^[25]	
Concrete	Rubber	1.0	0.30 (wet)	0.6-0.85 ^[25]	0.45-0.75 (wet) ^[25]
Concrete	Wood	0.62 ^{[25][31]}			
Copper	Glass	0.68 ^[32]		0.53 ^[32]	
Copper	Steel	0.53 ^[32]		0.36 ^{[25][32]}	0.18 ^[32]
Glass	Glass	0.9-1.0 ^{[25][32]}	0.005-0.01 ^[32]	0.4 ^{[25][32]}	0.09-0.116 ^[32]
Human synovial fluid	Human cartilage		0.01 ^[33]		0.003 ^[33]
Ice	Ice	0.02-0.09 ^[34]			
Polyethene	Steel	0.2 ^{[25][34]}	0.2 ^{[25][34]}		
PTFE (Teflon)	PTFE (Teflon)	0.04 ^{[25][34]}	0.04 ^{[25][34]}		0.04 ^[25]
Steel	Ice	0.03 ^[34]			
Steel	PTFE (Teflon)	0.04 ^[25] -0.2 ^[34]	0.04 ^[25]		0.04 ^[25]
Steel	Steel	0.74 ^[25] -0.80 ^[34]	0.005-0.23 ^{[32][34]}	0.42-0.62[25][32]	0.029-0.19 ^[32]
Wood	Metal	0.2-0.6 ^{[25][31]}	0.2 (wet) ^{[25][31]}	0.49 ^[32]	0.075 ^[32]
Wood	Wood	0.25-0.62 ^{[25][31][32]}	0.2 (wet) ^{[25][31]}	0.32-0.48 ^[32]	0.067-0.167 ^[32]

Quiz

■ A block is pushed by an increasing horizontal force. The friction force overtime looks like:

