U^b

b UNIVERSITÄT BERN

UNIVERSITÄT BERN

Advanced Networking and Future Internet VIII. Information-Centric Networking

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 02.11.2020

Advanced Networking and Future Internet: Information-Centric Networking

b UNIVERSITÄT

Table of Contents

- Introduction
 - Motivation for Information-Centric Networking
 - 2. Traditional Web Retrieval / Web Services
- 2. Information-Centric Networking
 - 1. Related Work
 - 2. Key Principles and Functions
 - 3. Content Distribution
 - 4. Naming Approaches
 - 5. Name Resolution and Data Transport

- 3. Content-Centric Networking
 - 1. IP Model
 - 2. Messages
 - 3. Interest Message Processing
 - 4. Naming
 - 5. Routing
 - 6. Hour-Glass Models
 - 7. Transport
 - 8. Security
 - 9. Discussion
- 4. Publish-Subscribe Internet
 - Naming
 - 2. Network Primitives
 - Operation

1. Introduction

INIVERSITÄT EERN

1. Motivation for Information-Centric Networking

- Today's network traffic is dominated by information retrieval rather than point-to-point communication between machines or humans.
- Circuit communication model is not considered as appropriate any more.
- Future communication architecture should focus on information objects instead of nodes.

- Today, wires and memories solve complimentary aspects of the same problem:
 - Wires move information in space.
 - Memories move information in time.
- Future communications architecture should unify both issues.
- Flash crowds are difficult to avoid in IP-based networks.

1. Introduction

UNIVERSITÄT BERN

2. Traditional Web Retrieval / Web Services

DNS server

b UNIVERSITÄT BERN

2. ICN

1. Related Work

- Peer-to-Peer Networks
 - Construction of overlay networks
 - Content / service discovery, e.g., using distributed hash tables, flooding, random walks, etc.
- Web Caching
 - Providing content for local users
- Content Distribution Networks
 - Routing and redirection of HTTP requests
 - Cache management

u'

b UNIVERSITÄT BERN

2. ICN

2. Key Principles and Functions

- Naming of content rather than hosts / interfaces
 - Content is independent of devices that store it.
 - Naming is location independent (mobility support !)
- Receivers (subscribers) request content.
- Senders (publishers) advertise content.

- Receivers and senders do not have to be aware of each other, and are decoupled in time.
- Functions needed
 - Name resolution (rendezvous) to match subscriptions and publications
 - Routing and path formation
 - Forwarding content from publisher to subscriber

$u^{'}$

UNIVERSITÄT

2. ICN

3. Content Distribution

2. ICN

4. Naming Approaches

Human-readable, hierarchical names

- support aggregation.
- need coordination.
- Example: CCN

Flat (self-certifying) names

- are often based on hashing content name and / or owner's public key.
- Aggregation is more difficult.
- Examples: PSI

u^{t}

2. ICN

b UNIVERSITÄT BERN

5. Name Resolution and Data Transport

Decoupled

- Name resolution and data transport are independent of each other, cf. DNS, with possibly different nodes for resolution and data transport.
- allows different, possibly already existing transport mechanisms, also multi-path
- Examples: PSI

Coupled

- Nodes for both name resolution and data transport with inverse data path compared to search path
- rather disruptive technology
- Local routing procedures advantageous in case of short link disruptions
- Variants
 - 2 phases: mapping of ID to locator, routing to data source
 - 1 phase: direct ID-based routing to data source
- Example: CCN

$u^{\scriptscriptstyle b}$

3. Content-Centric Networking

- Combination of content lookup and message routing
- Idea: describe the users' interests in the message header, but not where to get it
- Messages (using XML encoding)
 - Interest: content name, selector
 - Data: content name, signature (info), data

- Hierarchical content names
 - Example: /unibe.ch/braun/lectures/2020/anfi/08
- Related Projects
 - NDN = Named Data Networking, www.named-data.net
 - CCNx = Open Source Core Software Project for Content-Centric Networking, www.ccnx.org

u^{b}

UNIVERSITÄT BERN

3. CCN

1. IP Model

FIB: Forwarding Information Base

u'

b Universität Bern

3. CCN

2. Messages

u'

b UNIVERSITÄT BERN

3. ICN

3. Interest Message Processing

- Longest prefix match on content name in Content Store: returning data and discarding Interest
- 2. Forwarding Information Base match: forwarding of Interest towards data
 - FIB population by announcements of content availability

Pending Interest Table match: adding request to PIT and discarding Interest

u^{b}

b UNIVERSITÄT BERN

3. CCN

3.1 Match in Content Store

$u^{\scriptscriptstyle b}$

UNIVERSITÄT

3. CCN

3.2 Match in Forwarding Information Base

$u^{\scriptscriptstyle \mathsf{b}}$

b UNIVERSITÄT BERN

3. CCN

3.3 Match in Pending Interest Table

u^{b}

b UNIVERSITÄT BERN

3. CCN

4. Naming

- Any kind of names are possible
 - → flexible naming
- Examples
 - /unibe.ch/braun/lectures/2020/anfi/08
 - /unibe.ch/E8/Room003/Projector

- Support for simple operations
 - %C1.org.ccnx.frobnicate~1~37
 - command in namespace org.ccnx
 - operation is frobnicate, which takes 1 and 37 as arguments
- Naming resolution approach: coupled with 1 phase

D UNIVERSITÄT BERN

3. CCN

5. Routing

- Longest Prefix Match Routing (as in IP)
- But: different FIB entry semantics
 - IP: IP address prefix will be reached via an outgoing interface for an existing FIB entry.
 - CCN: Content name prefix might be reached via an outgoing interface for an existing FIB entry.

- FIB entries should be populated proactively for known content.
- Alternatively, searching for content, e.g., using broadcasting

$u^{^{\scriptscriptstyle b}}$

UNIVERSITÄT

3. CCN

6. Hour-Glass Models

u^{t}

b UNIVERSITÄT BERN

3. CCN

7. Transport

- Stateless operation with receiver control
- Pipelining: multiple outstanding Interest messages

- Reliability by local retransmissions in strategy layer
- Hop-by-hop flow control
- Sequence numbers in names

$u^{^{\scriptscriptstyle b}}$

b Universität Bern

3. CCN

8. Security

Signing of names and data in each packet

 Denial-of-Service attacks are difficult:
 Combination of multiple Interests and only 1 data packet per Interest

b UNIVERSITÄT BERN

3. CCN

9. Discussion

Advantages

- Automatic content distribution
- Latency < 1 round-trip-time</p>
- Minimization of latency
- Minimization of bandwidth
- Local congestion control
- Built-in security

Drawbacks and problems

- Routing
- Hierarchical naming
- Source mobility

$u^{^{b}}$

D UNIVERSITÄT BERN

4. Publish-Subscribe Internet

1. Naming

- Information items = files, streams, services
- Each information item has its own name.
- Names are unique (SID, RID) pairs
 - Rendezvous Identifier (RID)
 - denotes information item
 - fixed-length, (flat) bit string
 - produced by application specific function, e.g., hashing
 - Scope Identifier (SID)
 - denotes scopes
 - Sequence of RID-like strings
 - Each information item may belong to one or more scopes.
 - Basis for access control
- Scope hierarchy with information belonging to different scopes.

u'

b UNIVERSITÄT BERN

4. PSI

2. Network Primitives

Subscribe

- used to express interest in information items
- Users can subscribe to information items or scopes.
 (SID/RID) must be known.

Publish

used to announce information items or scopes

u^{t}

b UNIVERSITÄT BERN

4. PSI

3.1 Operation

- Information producer publishes information item to rendezvous system consisting of rendezvous points. (1-3)
- Rendezvous points are responsible for certain scopes.
- Information consumer subscribes to information item. (4-6)
- Rendezvous system
 - matches announcements and subscriptions
 - triggers delivery from information producer to information consumer, e.g. using OpenFlow, (7-11)
- Various caching strategies: on-path, off-path, replication

u'

b UNIVERSITÄT BERN

4. PSI

3.2 Operation

Thanks

for Your Attention

b UNIVERSITÄT

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 02.11.2020

