Rock Climbing Classification

Joshua Dai & Nicholas Maynard - team 1

Overview

Our project focused trying to differentiate head movements between a beginner climber and a more advanced climber

Classify differences in head movements

Advancement from previous assignment:

 Multiple sensors - both Accelerometer and Gyroscope

Data Collection and Processing

- Recorded 4 participants doing 5-6 sets of the same set climb
- Sensor Logger app + AirPod Pro
 - Sampled at 25 Hz
 - Utilized both Accelerometer and Gyroscope
- Sliding Window approach

Technical Implementation

Feature Engineering

- Used time domain features in x, y, z axis with both acceleration and rotation
 - Mean, Max, Min, Standard Deviation, Q25, Q75

Used a feature importance function to select the **top 4** features

Classification Approach is 70% training and 30% testing

Tested decision tree classification and random forest

Compared acceleration, rotation, and acceleration + rotation confusion matrixes

Results

	precision	recall	f1-score	support
Advanced	0.80	0.71	0.75	17
Beginner	0.86	0.91	0.88	33
accuracy			0.84	50
macro avg	0.83	0.81	0.82	50
weighted avg	0.84	0.84	0.84	50

Accuracy on test set: 0.84

Conclusion

What did you learn?

 Data collection, pre-processing techniques, feature selection, training and evaluation of models

What were the main challenges

Designing how to collect the data, finding meaningful differences between groups

Future improvements

 Would want to take measurements of more difficult climbs in a more controlled setting, would like to evaluate more metrics hip and arm