Elektromagnetska polja 1. auditorne vježbe

Studenti: Luka Pevec, Tomislav Petković

Profesor: doc. dr. sc. Bojan Trkulja

Sadržaj

- 1.2. (pretvaranje koordinatnih sustava)
- 1.12. (paralelni vektori)
- 1.13. (okomiti vektori)
- 1.14. (gradijent skalara)
- 2.61. (Lorentzova sila)
- 1.31. (rotor vektorskog polja)
- 1.27. (tok električnog polja)
- Integrali (dvostruki i trostruki)
- 1.20. (volumna gustoća naboja)
- 2.1. (linijski naboj)
- 1.26. (linijski integral)

1.2 Za točku T (2, 1, 3) zadanu u Kartezijevom koordinatnom sustavu odredi koordinate u cilindričnom i sfernom koordinatnom sustavu.

1.12 Za koje su vrijednosti α i β vektori:

$$\mathbf{A} = 2\mathbf{a_r} + 2\pi\mathbf{a_\alpha} + 4\mathbf{a_z} i$$
$$\mathbf{B} = \alpha\mathbf{a_r} + \beta\mathbf{a_\alpha} - 2\mathbf{a_z} \text{ paralelni?}$$

1.13 Za koje su vrijednosti α vektori $\mathbf{A}=2\mathbf{a_x}+2\mathbf{a_y}+2\mathbf{a_z}$ i $\mathbf{B}=\alpha\mathbf{a_x}+2\mathbf{a_y}+\mathbf{a_z}$ međusobno okomiti?

1.14 Neka je zadano skalarno polje $\varphi = x \cdot z - y \cdot z$. Odredite gradijent polja φ , $\frac{\partial \varphi}{\partial x} a_x + \frac{\partial \varphi}{\partial y} a_y + \frac{\partial \varphi}{\partial z} a_z \quad \text{u točki (2; 1; 1)}.$

2.61 Pozitivni točkasti naboj Q mase m= 10⁻¹² kg upada početnom brzinom

$$v = a_x - a_y \, \, \frac{\mathrm{m}}{\mathrm{s}}$$

prema slici u područje između ploča pločastog kondenzatora unutar kojeg vlada homogeno električno polje iznosa $E=2\frac{\rm v}{\rm m}$. Zadano je: d=0,01m, h=0,2m, Q=1nC. Gravitacijsku silu zanemariti.

- a) Odredite iznos brzine na izlazu iz kondenzatora.
- Rj. 19 m/s
- b) Odredite minimalnu koordinatu u smjeru osi y, y_{min} koju će doseći naboj.
- Rj. -0,25mm
- c) Odredite trenutak u kojem je dosegnuta minimalna koordinata $y = y_{min}$.
- Rj. 0,5ms
- d) Odredite y koordinatu naboja pri izlazu iz kondenzatora y_{min}.
- Rj. 9cm

1.31 Odredite rotor vektorskog polja $F(x, y, z) = 5a_r + \cos(\alpha)a_\alpha - 2za_z$.

1.27 Odredite tok vektorskog polja F(x,y,z)=4 $x^2\cdot y$ a_x+2z a_y+2y a_z kroz jediničnu kocku $0 \le x,y,z \le 1$.

Primjer 8. Postavimo granice integracije u oba poretka u dvostrukom integralu

$$I = \iint_D f(x, y) \, dx dy$$

ako je D kružni isječak OAB s centrom u O(0,0) i s krajevima u točkama A(1,1) i B(-1,1).

FER - Fakultet elektrotehnike i računarstva

Primjer 11. Izračunajmo

$$\iiint_V (x^2 + y^2 + z^2) \, dx dy dz,$$

pri čemu je V kugla $x^2 + y^2 + z^2 \le z$.

FER - Fakultet elektrotehnike i računarstva

1.20 Unutar sfere radijusa 0,2m nalazi se naboj volumne gustoće $\rho = \frac{1}{\sqrt{x^2 + y^2}} \frac{C}{m^3}$. Odredite ukupni naboj unutar sfere.

2.1 Dva beskonačno duga linijska naboja s jednoliko raspodijeljenom gustoćom iznosa 2nC/m leže u ravnini x=0 paralelno s osi z, na lokacijama y₁=+3m i y₂=-3m. Odredite jakost električnog polja točki (5m; 0; 10m). 1.26 Odredite linijski integral vektorskog polja $\mathbf{F}(x,y,z) = -2\mathbf{a}_x + 2\mathbf{a}_y + 2\mathbf{a}_z$ po kružnom luku od točke A(1; 0; 1) do B (0; 1; 1). Središte kružnog luka je u točki (0; 0; 1).