B. Fox and Minimal path

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

Fox Ciel wants to write a task for a programming contest. The task is: "You are given a simple undirected graph with n vertexes. Each its edge has unit length. You should calculate the number of shortest paths between vertex 1 and vertex 2."

Same with some writers, she wants to make an example with some certain output: for example, her birthday or the number of her boyfriend. Can you help her to make a test case with answer equal exactly to k?

Input

The first line contains a single integer k ($1 \le k \le 10^9$).

Output

You should output a graph G with n vertexes ($2 \le n \le 1000$). There must be exactly k shortest paths between vertex 1 and vertex 2 of the graph.

The first line must contain an integer n. Then adjacency matrix G with n rows and n columns must follow. Each element of the matrix must be 'N' or 'Y'. If G_{ij} is 'Y', then graph G has a edge connecting vertex i and vertex j. Consider the graph vertexes are numbered from 1 to n.

The graph must be undirected and simple: G_{ii} = 'N' and G_{ij} = G_{ji} must hold. And there must be at least one path between vertex 1 and vertex 2. It's guaranteed that the answer exists. If there multiple correct answers, you can output any of them.

Examples

input	
output	
INYY INYY 'YNN 'YNN	
INYY	
YNN	
YNN	

input	
9	
output	
8	
NNYYYNNN	
NNNNYYY	
YNNNYYY	
YNNNYYY	
YNNNYYY	
NYYYYNNN	
NYYYYNNN	
NYYYYNNN	

output	
1	
input	

2 NY YN

Note

In first example, there are 2 shortest paths: 1-3-2 and 1-4-2.

In second example, there are 9 shortest paths: 1-3-6-2, 1-3-7-2, 1-3-8-2, 1-4-6-2, 1-4-7-2, 1-4-8-2, 1-5-6-2, 1-5-7-2, 1-5-8-2.