Chuong 5

MACH 3 PHA

- ☐ Hệ nhiều pha
- ☐ Mạch 3 pha đối xứng
- Mạch 3 pha bất đối xứng
- ☐ Công suất tải 3 pha
- ☐ Đo công suất tải 3 pha

LÝ THUYẾT MẠCH ĐIỆN

Mục tiêu

Chương 5 sẽ giới thiệu:

- Khái niệm và phân loại mạch 3 pha
- Cách phân tích mạch 3 pha đối xứng
- Tính công suất của nguồn và tải trong mạch 3 pha

Hệ nhiều pha

Giới thiệu

Trong thực tế, để truyền điện năng từ nguồn đến tải, ta cần dùng 2 dây, dây đi và dây về.

Vấn đề: Vậy với một số lượng lớn tải và nguồn, số lượng dây sẽ tăng lên rất nhiều!!

Hệ nhiều pha

Giới thiệu

Vấn đề: Vậy với một số lượng lớn tải và nguồn, số lượng dây sẽ tăng lên rất nhiều!!

Giải pháp: Thay đổi pha của nguồn để có duy nhất 1 dây về và tổng các dòng điện gây ra bởi các nguồn trên dây về chung bằng 0.

Định nghĩa:

- Mạch điện xoay chiều 3 pha gồm nguồn điện 3 pha, đường dây truyền tải và phụ tải 3 pha. Góc lệch pha giữa các nguồn điện là $2\pi/3$

- Các kết nối nguồn tải có 2 dạng chính:
 - 1. Dạng hình sao (Y − star)
 - 2. Dạng hình tam giác (Δ mesh)

Mạch điện 3 pha dạng hình sao

$$\begin{array}{ccc} U_{AB}, U_{CA}, U_{BC} \colon & \text{\'Ap dây } (U_d) \\ U_{AO1}, U_{BO1}, U_{CO1} \colon & \text{\'Ap pha } (U_p) \\ I_{dA}, I_{dB}, I_{dC} \colon & \text{Dòng điện dây } (I_d) \\ I_{pA}, I_{pB}, I_{pC} \colon & \text{Dòng điện pha } (I_p) \end{array}$$

Đặc điểm của dạng hình sao:

$$\begin{split} I_d &= I_p \\ U_{AB} &= U_{AO1} - U_{BO1} \\ U_{CA} &= U_{CO1} - U_{AO1} \\ U_{BC} &= U_{BO1} - U_{CO1} \end{split}$$

Mạch điện 3 pha dạng hình tam giác

 $\begin{array}{ll} U_{AB},\,U_{CA},\,U_{BC}\colon & \acute{A}p\ dây\ (U_d) \\ U_{ZAB},\,U_{ZCA},\,U_{ZBC}\colon & \acute{A}p\ pha\ (U_p) \\ I_{dA},\,I_{dB},\,I_{dC}\colon & D\grave{o}ng\ diện\ dây\ (I_d) \\ I_{pAB},\,I_{pBC},\,I_{pCA}\colon & D\grave{o}ng\ diện\ pha\ (I_p) \end{array}$

Đặc điểm của dạng hình sao:

$$\begin{split} &U_{d}=U_{p}\\ &I_{dA}=I_{pAB}-U_{pCA}\\ &I_{dB}=I_{pBC}-U_{pAB}\\ &I_{dC}=I_{pCA}-I_{pBC} \end{split}$$

Phân loại mạch điện 3 pha theo cách nối

- 1. Nguồn Y Tải Δ
- 2. Nguồn Y Tải Y
- 3. Nguồn Δ Tải Y
- 4. Nguồn Δ Tải Δ

Phân loại mạch điện 3 pha theo điều kiện đối xứng

1. Mạch 3 pha đối xứng: là mạch ba pha có giá trị của nguồn có độ lớn bằng nhau và lệch pha nhau một góc $\frac{2\pi}{3}$.

Đối xứng thứ tự thuận

$$\begin{split} E_A &= E_B = E_C \\ \phi_A - \phi_B &= \phi_B - \phi_C = \phi_C - \phi_A = \frac{2\pi}{3} \end{split}$$

Đối xứng thứ tự nghịch

$$\begin{split} E_{A} &= E_{B} = E_{C} \\ \phi_{A} - \phi_{B} &= \phi_{B} - \phi_{C} = \phi_{C} - \phi_{A} = -\frac{2\pi}{3} \end{split}$$

2. Mạch 3 pha không đối xứng: là mạch ba pha không thỏa mãn điều kiện đối xứng.

Phương pháp giải tích: sử dụng các phương pháp Kirchhoff, mắt lưới, thế nút, dòng nhánh, xếp chồng, Thevenin, Norton bằng cách xem nguồn ba pha như ba nguồn độc lập \dot{E}_A , \dot{E}_B , \dot{E}_C .

Phương pháp một dây

Toán tử quay là một số phức a, được định nghĩa

$$a = e^{j\frac{2\pi}{3}} = -\frac{1}{2} + j\frac{\sqrt{3}}{2} = 1\angle 120$$

$$S= \begin{bmatrix} 1 & a^2 & a \end{bmatrix} \quad TT \text{ Thuận}$$
$$\begin{bmatrix} 1 & a & a^2 \end{bmatrix} \quad TT \text{ Nghịch}$$

Toán tử quay a là một công cụ đắc lực cho việc giải mạch ba pha đối xứng theo tư tưởng phương pháp một dây. Toán tử quay a có một số tính chất

$$1 + a + a2 = 0$$
$$a3 = 1$$
$$a2 = a*$$

Nếu một vector bất kỳ nhân với a sẽ bị quay đi một góc $\frac{2\pi}{3}$

Phương pháp một dây

Trong hệ ba pha đối xứng thứ tự thuận ta có

$$\begin{bmatrix} \dot{\mathbf{U}}_{A} & \dot{\mathbf{U}}_{B} & \dot{\mathbf{U}}_{C} \end{bmatrix} = \dot{\mathbf{U}}_{A} \mathbf{S}$$

với $S = \begin{bmatrix} 1 & a^2 & a \end{bmatrix}$ gọi là hệ số toán tử quay

$$\begin{bmatrix} \mathbf{\dot{U}}_{AB} & \mathbf{\dot{U}}_{BC} & \mathbf{\dot{U}}_{CA} \end{bmatrix} = \mathbf{\dot{U}}_{AB} \mathbf{S}$$

$$\begin{bmatrix} \mathbf{I}_{A} & \mathbf{I}_{B} & \mathbf{I}_{C} \end{bmatrix} = \mathbf{I}_{A} \mathbf{S}$$

$$\begin{bmatrix} \dot{\mathbf{I}}_{AB} & \dot{\mathbf{I}}_{BC} & \dot{\mathbf{I}}_{CA} \end{bmatrix} = \dot{\mathbf{U}}_{AB} \mathbf{S}$$

Phương pháp một dây

Nhận xét: Trong ba đại lượng \mathring{U}_A , \mathring{U}_B , \mathring{U}_C ta chỉ cần tìm một đạo lượng là đủ, ta chỉ cần giải cho pha A sau đó suy ra cho các pha khác. Đây chính là ý tưởng của

Phương pháp một dây

Sơ đồ 1 dây như hình 4.9 Sau khi giải tìm được $\dot{I}_A \Rightarrow \ddot{U}_A = \dot{I}_A Z$ Sau đó ta suy ra được các đại lượng khác thông qua S

Lưu ý: Nếu hệ ba pha đối xứng thứ tự nghịch thì hệ số toán tử quay

$$S = [1 \quad a \quad a^2]$$

Ví dụ

Cho mạch ba pha như hình. Biết hệ ba pha đối xứng thứ tự thuận có áp pha hiệu dụng bằng 120V. Tìm các dòng dây

Mạch 3 pha không đối xứng

Điều kiện:

- > Nguồn không đối xứng và tải không bằng nhau
- > Nguồn không đối xứng và tải bằng nhau
- Nguồn đối xứng và tải không bằng nhau

Phương pháp dịch chuyển trung tính

Sử dụng các phương pháp như Kirchhoff, thế nút, dòng mắt lưới ... để tính điện áp tại nút O_1 . Từ đó tính toán các giá trị còn lại $(I_A, I_B, I_C, I_N, U_P U_D)$

Công suất tải 3 pha

Công suất tác dụng:

P_A, P_B, P_C gọi là công suất tác dụng của pha A, B, C lên tải Z_A, Z_B, Z_C

$$P_A = U_{AN}I_A \cos \varphi_A$$
 $P_B = U_{BN}I_B \cos \varphi_B$ $P_C = U_{CN}I_C \cos \varphi_C$ $(P = U_PI_P \cos \varphi)$

$$P_B = U_{BN}I_B \cos \varphi_B$$

$$P_C = U_{CN}I_C \cos \varphi_C$$

$$(P=U_pI_p\cos\phi)$$

$$P_{3pha} = P_A + P_B + P_C$$

Công suất phản kháng:

Q_A, Q_B, Q_C gọi là công suất phản kháng của 3 pha

$$Q_A = U_{AN}I_A \sin \varphi_A$$
 $Q_B = U_{BN}I_B \sin \varphi_B$ $Q_C = U_{CN}I_C \sin \varphi_C$ $(Q = U_PI_P \sin \varphi)$

$$Q_B = U_{BN}I_B \sin \varphi_B$$

$$Q_C = U_{CN}I_C \sin \varphi_C$$

$$(Q=U_pI_psin\varphi)$$

$$Q_{3pha} = Q_A + Q_B + Q_C$$

Công suất biểu kiến:

S_A, S_B, S_C gọi là công suất biểu kiến của 3 pha

$$S_A = U_{AN}I_A$$
 $S_B = U_{BN}I_B$

$$S_B = U_{BN}I_B$$

$$S_C = U_{CN}I_C$$

$$(S=U_PI_P)$$

$$S_{3pha} = S_A + S_B + S_C$$

Question?