Lezioni del 25 Settembre del prof. Frigerio

1 Spazi metrici

Definizione 1.1 (Spazio metrico).

Uno spazio metrico è una coppia (X,d) X è un insieme e $d: X \times X \to \mathbb{R}$ con le seguenti propietá:

(i) Assioma di non negativitá

$$\forall x, y \in X \quad d(x, y) \ge 0 \text{ inoltre } d(x, y) = 0 \Leftrightarrow x = y$$

(ii) Assioma di simmetria

$$\forall x, y \in X \quad d(x, y) = d(y, x)$$

(iii) Disuguaglianza triangolare

$$\forall x, y, z \in X \quad d(x, z) \le d(x, y) + d(y, z)$$

1. $X = \mathbb{R} \text{ con } d(x, y) = |x - y|$

2. $X = \mathbb{R}^n$ sia $x = (x_1, \dots, x_n)$ e $y = (y_1, \dots, y_n)$ allora consideriamo

$$d_E(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
 distanza euclidea

$$d_1(x,y) = \sum_{i=1}^n |x_1 - y_1| \text{ distanza l1}$$

$$d_{\infty}(x,y) = \max\{|x_i - y_i| i = 1, \dots, n\}$$
 distanza 1∞

3. X un insieme generico, definiamo la distanza discreta

$$d(x,y) = \begin{cases} 1 & \text{se } x \neq y \\ 0 & \text{se } x = y \end{cases}$$

4. $X = \{f : [0,1] \to \mathbb{R} : f \text{ continua}\}\$

$$d_1(f,g) = \int_0^1 |f(t) - g(t)| dt$$

$$d_2(f,g) = \sqrt{\int_0^1 |f(t) - g(t)|^2} dt$$

$$d_{\infty}(f,g) = \sup_{t \in [0,1]} \{ |f(t) - g(t) \}$$

Proposizione 1.1. d_{∞} è una distanza

(i) Essendo d_{∞} il max di numeri non negativi essa è necessariamente non negativa, inoltre se $d_{\infty}(x,y) = 0$ allora necessariamente $|x_i - y_i| = 0$ ovvero $x_i = y_1 \,\forall i$ dunque x = y

- (ii) La simmetria segue dal fatto che $|x_i y_i| = |y_i x_i|$
- (iii) Dalla definizione di max

$$\exists j \ d_{\infty}(x, z) = |x_j - z_j| \le |x_j - y_j| + |y_j - z_j|$$

Dove abbiamo usato la disuguaglianza triangolare del valore assoluto su \mathbb{R} . Ora

$$|x_j - y_j| \le \max\{x_i - y_i \ i = 1, \dots, n\} = d_{\infty}(x, y)$$

$$|y_j - z_j| \le \max\{y_i - z_i \, i = 1, \dots, n\} = d_{\infty}(y, z)$$

Dunque otteniamo la disuguaglianza triangolare voluta

Definizione 1.2 (Embedding isometrico).

Sia $f:(X,d)\to (Y,d')$ allora f è un embedding isometrico se

$$d'(f(x), f(y)) = d(x, y) \quad \forall x, y \in X$$

Fatti 1.2.

- 1. $id:(X,d)\to (X,d)$ è un embedding isometrico
- 2. Composizione di embedding isometrici è un embedding isometrico
- 3. Se un embedding isometrico f è bigettivo, f^{-1} è un embedding isometrico. In tal caso f è una isometria
- 4. Un embedding isometrico è iniettivo (da cui il nome)

$$f(x_1) = f(x_2) \Rightarrow 0 = d'(f(x_1), f(x_2)) = d(x_1, x_2) \Rightarrow x_1 = x_2$$

- 5. Un embedding isometrico è un isometria se e solo se è surgettivo
- 6. Se (X,d) è fissato. L'insieme delle isometrie da X in se stesso è un gruppo con la composizione, tale gruppo si chiama Isom(X,d)

1.1 Continuitá

Definizione 1.3 (Palla). Sia (X, d) uno spazio metrico, $r \in \mathbb{R}$ e $P \in X$

$$B(P,r) = \{ x \in X : d(P,x) < r \}$$

Definizione 1.4 (Continuitá locale).

 $f:(X,d)\to (Y,d')$ si dice continua in $x_0\in X$ se

$$\forall \varepsilon > 0 \,\exists \delta > 0 \quad f(B(x_0, \delta)) \subseteq B(f(x_0), \varepsilon)$$

o in modo equivalente

$$\forall \varepsilon > 0 \,\exists \delta > 0 \quad B(x_0, \delta) \subseteq f^{-1}(B(f(x_0), \varepsilon))$$

Definizione 1.5 (Continuitá globale).

 $f: (X,d) \to (Y,d')$ è continua se è continua in ogni $x_0 \in X$

Osservazione 1.

- 1. Gli embedding isometrici sono continui (basta porre $\delta = \varepsilon$)
- 2. Una funzione costante è continua ($\delta = 1$), ma le funzioni costanti non sono embedding isometrici dunque le funzioni continue sono maggiori degli è isometrici

Svincoliamo formalmente la continuitá dalla distanza

Definizione 1.6 (Aperto).

Sia X uno spazio metrico, Un insieme $A \subseteq X$ è aperto se

$$\forall x \in A \quad \exists r > 0 \quad \text{t. c.} \quad B(x,r) \subseteq A$$

Esercizio 1.3. Le palle aperte sono aperte

Teorema 1.4.

$$f: (X,d) \to (Y,d')$$
 è continua $\Leftrightarrow \forall A \text{ aperto } di Y \quad f^{-1}(A)$ è aperto in X

 $Dimostrazione. \Rightarrow Sia A \subseteq Y$ un aperto.

Sia $x_0 \in f^{-1}(A)$ allora $f(x_0) \in A$ ed essendo A un aperto

$$\exists \varepsilon > 0$$
 t. c. $B(f(x_0), \varepsilon) \subseteq A$

Ora sfruttando la continuitá di f

$$\exists \delta > 0 \quad B(x_0, \delta) \subseteq f^{-1}(B(f(x_0), \varepsilon))$$

Ora poichè $B(f(x_0), \varepsilon) \subseteq A$ allora $B(x_0, \delta) \subseteq f^{-1}(A)$

Per arbitrarietá di x_0 $f^{-1}(A)$ è aperto

 \Leftarrow Sia $x_0 \in X$ e $\varepsilon > 0$.

Ora $B(f(x_0), \varepsilon)$ è un aperto di Y, dunque $f^{-1}(B(f(x_0), \varepsilon))$ è un aperto di X per ipotesi. Dalla definizione di aperto e poichè $x_0 \in f^{-1}(B(f(x_0), \varepsilon))$ segue che

$$\exists \delta > 0 \quad B(x_0, \delta) \subseteq f^{-1}(B(f(x_0), \varepsilon))$$

dunque f è continua in x_0 , da cui la tesi per arbitarietà di x_0

Osservazione~2. La continuità di f dipende solo dalla famiglia degli aperti di Xe di Y, solo indirettamente da de d^\prime