실험기구와 장치

Item (품목)	Quantity (수량)	위치
공용 테이블에 있는 물품		
Refractometer Refracto 30GS (굴절계)	1-2 / 1 실험실	후드
Napkins for refractometer cleaning (굴절계 세척용 냅킨)		후드
"Cleaning solvent"라고 표시된 굴절계용 씻기병 (wash bottle)		후드
Aluminum foil for wrapping (플라스크 싸개용 알루미늄 호일)	1-2 / 1 실험실	조교테이블
Balances (저울)	1-3/ 1 실험실	별도테이블
Gloves (S, M, L) (장갑, 대, 중, 소)		조교테이블
"H ₂ O dist."(증류수)라고 표시된 큰 용기		싱크대근처
Napkins for general purposes (공동사용 냅킨)	1 팩 / 1 줄	싱크대근처
Item (품목)	Quantity (수량)	그림 1, 2, 5 에 표시된 번호
개인 실험대에 있는 물품 중 여러 문제에서 사용	하는 것들	
Hot-plate magnetic stirrer (가열할 수 있는 자석교반기)	1	
"Waste" 라고 적혀 있는 폐수통	1	
Cotton gloves (면장갑)	1 짝	
"H ₂ O distilled" (증류수) 라고 적혀 있는 씻기병 (wash bottle)	1	
Pipette pump (피펫필러), 10 mL, 초록색	1	
Pipette pump (피펫필러), 2 mL, 파란색	1	
Graduated cylinder (눈금실린더), 25.0 mL, H₂SO₄ 에만 사용	1	
Safety goggles (보안경)	1	
Napkins for general purposes (냅킨)	1 팩	
문제 1		
Laboratory stand (실험스탠드)	2	1
Round-bottom three-necked flask (3 구 둥근바닥 플라스크), 100 mL	1	2
Reflux condenser, connected to water supply (냉각수가 연결된 환류 냉각기)	1	3
Glass ground joint stopper (유리마개)	6 (한 개는 학생 코드 적혀 있음)	4
Dropping funnel (안전 깔때기), 50 mL	1	5
Oval magnetic stir-bar (big) (타원형 교반자석, 큰 것)	1	6
Pear-shaped round-bottom flask for distillation (서양배 모양의 증류용	1	7
둥근 바닥 플라스크), 50 mL	1	/
Claisen distillation adapter (클라이젠 증류 어댑터)	1	8
Thermometer with fixed ground joint tube (고정된 연결 튜브가 달린 온도계)	1	9

Buchner type fritted glass filter (뷰흐너 식 유리 여과기)	1	10
Rubber spacer for vacuum filtration (여과용 고무 끼우개)	1	11
Liebig (downward) condenser (리비히 콘덴서)	1	12
Distilling receiver cow (증류액 분취용 카우)	1	13
Receiver flask (증류액 분취용 플라스크), 10 mL	│ 4 (한 개는 학생 │ 코드 적혀 있음)	14
Receiver flask, (리시버 플라스크)50 mL	1	15
Adjustable lab jack lift support (높낮이 조절 가능한 랩잭)	1	16
Oval magnetic stir-bar (small) (타원형 교반자석, 작은 것)	1	17
"For the receiver with the product"라고 표시된 플라스틱 비커, 50 mL	1	
Teflon sleeves for ground tapered joints (조인트 연결부에 사용할 수 있는 테플론 슬리브)	12	
Large funnel, 65 mm, with short stem (짧은 가지 큰 깔때기, 65 mm)	1	
Joint clips (조인트 클립)	5	18
Grey clamp (회색 클램프)	1	19
Red clamp (빨간색 클램프)	1	20
Permanent marker (마커)	1	
Glass beaker (유리 비커), 25 mL	1	
"Used glassware"라고 표시된 플라스틱 용기	1	
"Ice bath"라고 표시된 플라스틱 용기	1	
Digital manometer (디지털 압력계)	1	
Cotton wool (솜)	3	
Spatula (스패츌라)	1	
Glass rod (유리막대)	1	
Ruler (자)	1	
Pencil (연필)	1	
문제 2		
Laboratory stand (실험스탠드)	1	
Clamp for burette (뷰렛 스탠드)	1	
"Waste"라고 표시된 플라스틱 비커, 100 mL	1	
Glass beaker (유리비커), 150 mL	1	
마개가 달린 부피 플라스크, 100 mL	1	
Small funnel (작은 깔때기), 45 mm	1	
Medium-size funnel (중간크기 깔때기), 55 mm	1	
Watch glass (관찰접시)	1	
스탠드와 뷰렛, 25.00 mL	1	
Volumetric pipette (부피 피펫), 10.00 mL	1	

Graduated pipette (눈금 피펫), 5.00 mL	1	
Erlenmeyer flask (삼각 플라스크), 150 mL	2	
Graduated cylinder (눈금실린더), 100.0 mL	1	
Pasteur pipette (플라스틱 파스퇴르 피펫)	2	
White paper sheet (흰색 종이)	1	
문제 3		
Photometer (분광기), 파장 525 nm	1	1
Thermostat with adaptor (어댑터가 달린 항온장치)	1	2
Spectrophotometer cell with 3.5 cm optical path length (광경로가 3.5 cm 인 분광기 셀 용기)	2	3
Magnetic stirrer (자력교반기)	1	4
Magnetic stir-bar (medium-size) (교반자석, 중간크기)	1	
Netbook with adaptor and mouse (어댑터와 마우스가 있는 넷북)	1	
마개가 달린 부피 플라스크, 100 mL	1	
Graduated pipette (눈금피펫), 2 mL	2	
학생 코드가 적힌 8 Gb USB 메모리	1	
검정색 자석	1	

GHS(화학물질 분류 및 국제조화 시스템)에서 제공하는 위험표지

Substance	Name	GHS 위험표지
C ₅ H ₆ S	3-methylthiophene	H225, H302, H332
C ₄ H ₄ BrNO ₂	1-Bromo-2,5-pyrrolidinedione	H302, H314
CCl ₄	Carbon tetrachloride	H301, H331, H311, H317, H351, H372, H402, H412
HClO ₄	Perchloric acid	H271, H302, H314
C ₈ H ₁₂ N ₄	2,2'-Azobis(2-methylpropionitrile)	H242, H302, H332 H412
$C_{14}H_{10}O_4$	Dibenzoyl peroxide	H241, H317, H319, H400
K ₂ CO ₃	Potassium carbonate	H315, H319
Test solution	Test solution containing VO ²⁺ and Cr ³⁺	H302, H312, H314, H332
H ₂ SO ₄	Sulfuric acid	H314, H290
KMnO ₄	Potassium permanganate	H272, H302, H400, H410
$H_2C_2O_4$	Oxalic acid	H314, H318
$C_{13}H_{11}NO_2$	Solution of N-phenylanthranilic acid in sodium carbonate	H302, H315, H319, H335
$(NH_4)_2Fe(SO_4)_2$	Mohr's salt	H315, H319, H335
AgNO ₃	Silver nitrate	H272, H302, H314, H410
(MIL) C O	A managing mangulfata	H272, H302, H315, H317, H319, H334,
$(NH_4)_2S_2O_8$	Ammonium persulfate	H335
C ₁₄ H ₁₀ Cl ₂ NNaO ₂	Diclofenac sodium salt	H301
H ₂ SO ₄	Sulfuric acid	H290, H302, H314, H332, H351
KMnO ₄	Potassium permanganate	H272, H302, H400, H410

문제 2. 크로뮴-바나듐 합금 용액의 분석 (12 points)

문제 #	Q1	Q2	Q3a	Q3b	Q4a	Q4b	Q5a	Q5b	Q6	합계
배점	32	32	1	1	3	2	4	10	5	90

반강자성 물질은 고밀도 데이터 저장장치 등 메모리 기기 분야에서 밝은 전망을 가지며, 실례로 12 개의 원자만으로 한 비트를 저장할 수 있는 최소형 자성메모리도 알려져 있다. 바나듐-크로뮴 합금은 0도 이하에서 반강자성을 가진다. 첨단산업은 정확히 조절된 조성을 가진 합금을 필요로 한다.

이 문제는 바나듐-크로뮴 합금을 용해한 것과 유사한 시료 수용액을 이용하여 분석을 수행한다. 이 문제는 아래의 두 부분으로 구성되어 있다.

- I. 과망가니즈산 포타슘을 사용하여 시료의 바나딜 (VO^{2+}) 을 바나데이트 (VO_3^-) 로 산화시켜, 바나듐을 정량분석하는 부분. (이 조건에서 크로뮴(III) 이온은 산화되지 않는다)
- II. 시료를 과황산 암모늄(ammonium persulfate)으로 산화시킨 후, Mohr 염(황산 철(II) 암모늄, Ammonium iron(II) sulfate)으로 적정하여 **바나듐과 크로뮴을 더한 총 조성**을 알아내는 부분.

실험과정

주의!

- 바나듐과 크로뮴의 양은 시료 100 mL 당 mg 의 단위로 계산하고 보고할 것.
- Part C 에 필요한 시료를 산화시키는 전처리에 시간이 소요되므로, 이 문제는 Part A 부터 진행할 것.
- 10.00-mL 부피 피펫은 두 개의 눈금이 있다. 이 두 눈금 사이의 부피가 피펫부피에 해당한다.

Part A. 바나듐과 크로뮴을 더한 총 조성을 측정하기 위한 용액의 준비

- 1. **시료** 10.00-mL 분액(aliquot)을 150-mL 비커에 넣고 1 M 황산 20 mL 를 25-mL 눈금 실린더를 이용해 첨가한다.
- 2. 0.3% 질산 은 용액(촉매) 6-8 방울을 넣은 후 혼합용액을 가열기에 올려놓고 70-80°C 로만들어 비커 벽에 응축되는 방울이 보일 때까지 가열한다. (가열기 눈금을 3 에 맞출 것)

3. 가열된 혼합용액에 100-mL 눈금실린더를 이용해 10% 과황산 암모늄 용액 20 mL 를 첨가한다.

4. 가열을 계속하여 이크로뮴산 이온(dichromate)의 형성을 보여주는 노란색을 관찰한다.

주의! 혼합물을 가열하는 동안, 바나듐 적정(Part B, 1-6)을 실험하는 것도 좋다.

- 5. 노란색이 나타난 후 10-15 분간 혼합용액을 계속 가열하여 (가열기 눈금을 3 에 맞출 것) 과량의 과황산 암모늄을 분해한다. (이 분해과정은 용액에 작은 기포가 보이지 않아야 완료된 것이다.)
- 용액을 상온까지만 식힌다.
- 7. 150-mL 비커의 용액을 **모두 100-mL 부피 플라스크**에 옮겨담고, 부피 플라스크 표시선까지 증류수를 넣어 희석한 후 뚜껑을 막고 잘 섞는다.

Part B. 바나듐의 적정분석

1. 눈금 피펫을 이용하여 시료 5.00-mL 분액을 삼각 플라스크에 옮긴다.

주의! 5.00-mL 눈금피펫은 용액이 저절로 샐 수 있다.

- 2. 조심스럽게 0.03 M 과망가니즈산 포타슘 용액을 방울방울 떨어뜨린다. 한 방울 떨어뜨릴 때마다 잘 흔들어 연한 분홍색(light pink)이 나올 때까지 첨가한다. 연한 분홍색이 유지되는지 확인하라. 0.03 M 옥살산을 방울방울 떨어뜨려 과량의 과망가니즈산 포타슘을 제거하라. 한 방울 떨어뜨릴 때마다 잘 흔들어서 용액의 색이 연한 분홍색에서 옅은 파란색(pale blue)으로 변할 때까지 첨가하라. 용액을 약 1 분간 가만히 놔두어도 분홍색이 다시 생기지 않아야 한다.
- 3. 25-mL 눈금실린더를 이용하여 1 M H₂SO₄ 용액 10 mL 를 삼각 플라스크에 첨가하라.
- 4. 삼각 플라스크에 지시약 2-3 방울(절대로 더 넣지 말것!)을 넣고, 잘 흔들어준다. 삼각 플라스크를 약 2-3 분간 가만히 놔두고 자주색(purple)이 되는 것을 확인하라.
- 5. Mohr 염 용액을 뷰렛에 채운다. 뷰렛에서 과량의 Mohr 용액을 "Waste"라고 적힌 100-mL 플라스틱 비커에 빼 준 후, 초기 눈금을 측정하여 기록하라.
- 6. 용액의 색이 회갈색(brownish-grey)을 거쳐 **맑은 연녹색(pure light green**)이 될 때까지 Mohr 용액으로 삼각 플라스크의 용액을 적정하라.
- 7. 뷰렛의 최종 눈금을 기록하라. 필요하다면 실험을 반복하여 수행하라.

Q1. 표 2 를 완성하라.

표 2. 바나듐의 정량분석

적정 횟수	1	2	3		
뷰렛의 초기 눈금, mL					
뷰렛의 최종 눈금, mL					
소모된 부피, mL					

채택한 실험값 (accepted volume), V_1 ____mL

Part C. 시료중 바나듐과 크로뮴을 더한 조성의 적정분석

- 1. 증류수로 10.00-mL 부피 피펫을 잘 닦은 후, 100-mL 부피 플라스크의 용액(Part A 에서 만든 것)으로 헹궈준다.
- 2. Part A 에서 만든 용액의 분액 10.00-mL 를 피펫으로 삼각 플라스크에 옮긴 후, 25-mL 눈금실린더를 이용하여 1 M H₂SO₄ 용액 10 mL 를첨가한다.
- 3. 지시약 3-4 방울을 첨가한다. 삼각 플라스크를 잘 섞은 후 2-4 분간 가만히 놔둔다. **붉은색(red)**이 나타나는 것을 관찰하라.
- 4. Mohr 용액을 뷰렛에 채운다. 뷰렛에서 과량의 Mohr 용액을 "Waste"라고 적힌 100-mL 플라스틱 비커에 빼 준 후, 초기 눈금을 측정하여 기록하라.
- 5. **옅은 노랑-녹색(light yellow-green)**을 띨 때 까지 Mohr 용액으로 적정하라.
- 6. 뷰렛의 최종 눈금을 기록하라. 필요하다면 반복 실험을 수행하라.

O2. 표 3 을 완성하라.

표 3. 바나듐과 크로뮴을 더한 총량의 정량 분석

적정 횟수	1	2	3		
뷰렛의 초기 눈금, mL					
뷰렛의 최종 눈금, mL					
소모된 부피, mL					

채택한 실험값 (accepted volume), V_2 ____mL

Part D. 질문과 실험결과 분석

O3.	아래의	경우에	일어나는	균형 화	학반응식을	·적어a	라.
vJ.	~ - -	0 1 1		ii O 크		, – – 1 -	-

- a) 과망가니즈산 포타슘에 의한 시료의 산화
- b) Mohr 염에 의한 바나데이트(vanadate)의 적정

a)		
b)	=	VOSO ₄

Q4. 아래의 경우에 일어나는 균형 화학반응식을 적어라.

- a) 과황산 암모늄에 의한 시료의 산화
- b) Mohr 염을 이용한 산화 시료용액의 적정

a)			
b)			

Q5. 시료 용액 속의 a) V(IV) 과 b) Cr(III) 의 농도를 계산하라. **시료 용액 100 mL 당** 각 금속의 mg 의 양으로 계산하라.

a) 측정값: 바나듐(Vanadium):	
b) 측정값: 크로뮴(Chromium):	

Q6. 이 문제의 방법은 철을 고농도 염산(HCl)에 녹인 시료안에 포함된 바나듐과 크로·	뮴의
분석에는 사용할 수 없다. 그 이유가 되는 두 개의 화학반응식을 적으시오.	