PHYS2020 Thern	nodynamics and	Condensed	Matter Ph	ysic
----------------	----------------	-----------	-----------	------

Student Number	
Family Name	
First Name	

School of Mathematics & Physics EXAMINATION

Semester One Final Examinations, 2020

PHYS2020 Thermodynamics and Condensed Matter Physics

111102020 Thermodynamics and Condended Matter	, 5.00	
This paper is for St Lucia Campus students.		
Examination Duration: 120 minutes (+ additional 30 mins encompassing reading	For Examiner	Use Only
time, and time to scan and upload solutions). You must commence your exam at the time listed in your personalised timetable. The exam will remain open only for the duration shown	Question	Mark
Materials Permitted In The Exam Venue: This is an Open Book exam. Students		
are allowed to use a computer and all forms of calculator. No consultation or collaboration is allowed on the exam questions, whether face-to-face, over the phone, over the internet, through social media or otherwise.		
Instructions To Students: You can print the exam and write on the exam paper, or write your answers on blank paper, or write electronically on a suitable device. Scan or photograph your work if necessary and upload your answers to Blackboard as a single pdf file.		
The exam consists of two parts. Complete all four questions in Part A. Complete two of three questions in Part B.		
Each question will be marked with a grade between 1 and 7. Overall exam grades		
will be calculated as a weighted average, with each question in Part B receiving twice the weighting of those in Part A (so that Parts A and B contribute equally overall).	Total	

Who to Contact: Course staff will not be able to respond to academic queries during the exam. If you have any concerns or queries about a particular question, or need to make any assumptions to answer the question, state these at the start of your solution to that question. You may also include queries you might have made with respect to a particular question, were you able to 'raise your hand' in an examination room.

If you experience any technical difficulties during the exam, contact the <u>Library AskUs</u> service via the Live Chat or Phone for advice (open 7:00am – 10:00pm AEST every day during the final exam period). You should ask the library staff for an email documenting the advice provided so you can provide this to the course coordinator.

Certification (must be signed before submission):

I certify that my submitted answers are entirely my own work and that I have neither given nor received any unauthorised assistance on this assessment item.

Signed:	Date:	
olgi ieu	Date	

Part A

Answer all questions in this section

Question 1

Four kilograms of water vapour (corresponding to 221 moles) is heated from 300 K to 800 K at a constant pressure of 10 kPa.

- (a) How many quadratic degrees of freedom would you expect to be active for each water molecule? Explain.
- (b) Assuming that the water vapour behaves as an ideal gas with this number of degrees of freedom, calculate its heat capacity at constant pressure C_P . From this determine the heat Q required to increase the temperature to 800 K.
- (c) Check your calculation by also calculating Q from the data in the superheated steam table below. Discuss the level of agreement, and what might cause any discrepancies.

T	1/ρ	u	h	S
(°C)	$(m^3 kg^{-1})$	(kJ kg ⁻¹)	(kJ kg ⁻¹)	(kJ kg ⁻¹ K ⁻¹)
sat	14.674	2437.9	2584.6	8.1501
50	14.869	2443.9	2592.6	8.1749
100	17.196	2515.5	2687.5	8.4479
150	19.513	2587.9	2783.0	8.6881
200	21.825	2661.3	2879.5	8.9037
250	24.136	2736.0	2977.3	9.1002
300	26.445	2812.1	3076.5	9.2812
400	31.063	2968.9	3279.5	9.6076
500	35.679	3132.3	3489.0	9.8977
600	40.295	3302.5	3705.4	10.1608
700	44.911	3479.6	3928.7	10.4028
800	49.526	3663.8	4159.1	10.6281
900	54.141	3855.0	4396.4	10.8395
1000	58.757	4053.0	4640.6	11.0392
1100	63.372	4257.5	4891.2	11.2287
1200	67.987	4467.9	5147.8	11.4090
1300	72.603	4683.7	5409.7	11.5810

Figure 1: Superheated steam table at P=10 kPa. T, temperature; ρ , density; u, energy density; h, specific enthalphy; s, specific entropy.

Question 2

Two copper blocks have masses m_A and m_B , and initial temperatures T_A and T_B , respectively. They are placed in thermal contact while being kept well insulated from the environment.

(a) By considering the heat transfer between the blocks and assuming that their specific heat capacity at constant pressure c_P is constant over the temperature range of interest, show that in equilibrium they reach a temperature of

$$T_F = \frac{m_A T_A + m_B T_B}{m_A + m_B}.$$

Check that this expression gives sensible results in appropriate limits.

(b) If $m_A = 1$ kg, $m_B = 2$ kg, $T_A = 300$ K and $T_B = 305$ K, how much does the entropy of the universe change after the blocks are placed in contact? Discuss this result. Note: over this range of temperatures the specific heat capacity at constant pressure of copper can be well approximated as $c_P = 386$ J K⁻¹ kg⁻¹.

Question 3

(a) Using the thermodynamic identity and Maxwell's relations show that changes in the internal energy U of a substance can be related to changes in temperature T, volume V and pressure P via

$$dU = C_V dT + \left(T \left(\frac{\partial P}{\partial T}\right)_V - P\right) dV,$$

where C_V is the heat capacity at constant volume. Hint: an incremental change in entropy dS may be expanded as

$$dS = \left(\frac{\partial S}{\partial T}\right)_V dT + \left(\frac{\partial S}{\partial V}\right)_T dV.$$

(b) Consider a van der Waals gas that undergoes a change in volume and pressure at constant temperature. Use the relationship given in (a) to show that the change internal energy is

$$\Delta U_T = an^2 \left(\frac{1}{V_i} - \frac{1}{V_f} \right),\,$$

where a is the constant used to introduce attractive forces in van der Waals equation, n is the number of moles of gas, and the subscripts i and f label the state variables in the initial and final states, respectively.

(c) Compare your result from (b) to what you would expect for an ideal gas, and suggest reasons for any differences.

Question 4

- (a) In your own words, briefly explain how you would distinguish a phase transformation from other changes in the properties of a pure substance.
- (b) Sketch a qualitatively accurate graph of G versus T for a pure substance as it changes from solid to liquid to gas at fixed pressure. Think carefully about the slope of the line in each region of the graph and briefly discuss its main features.

Part B

Answer any 2 out of the 3 questions in this section.

Question 5

Heat pumps use work to transfer heat from a cold reservoir to a hot reservoir. Design your own thermodynamic cycle for a heat pump (do not replicate a cycle you have seen elsewhere). You could, for example, build the heat pump from some different combination of quasistatic isobaric, isochoric, isothermal and adiabatic processes, or from some other closed loop on a PV or TS diagram.

- (a) Draw either the PV diagram or the TS diagram for the thermodynamic cycle.
- (b) Identify the processes in the cycle (or regions of the cycle) for which the heat pump does positive work on its environment, and for which the environment does positive work on the heat pump.
- (c) Identify the processes in the cycle (or regions of the cycle) for which heat is transferred into the heat pump, and for which it is transferred out.
- (d) Calculate the ideal coefficient of performance of your heat pump and compare this to the Carnot limit. Note: the coefficient of performance of a heat pump is defined as the heat transferred to the hot reservoir (the effect we want) divided by the input work, and the Carnot limit for a heatpump is

$$COP_{\rm C} = \frac{1}{1 - T_C/T_H}.$$

(e) Discuss the advantages and disadvantages of this heat pump, and how you might build it.

Question 6

Consider a fuel cell that uses methane ("natural gas") as fuel. The reaction is

$$CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$$

- (a) Using the table of thermodynamic properties at the back of the exam, determine the values of ΔH and ΔG for this reaction for one mole of methane. Assume that the reaction takes place at room temperature and atmospheric pressure.
- (b) Assuming ideal performance, how much electrical work can you get out of the cell for each mole of methane fuel?
- (c) How much waste heat is produced for each mole of fuel?
- (d) The chemical reaction equations at the two electrodes are:

Negative electrode: $CH_4 + 2H_2O \rightarrow CO_2 + 8H^+ + 8e^-$.

Positive electrode: $2O_2 + 8H^+ + 8e^- \rightarrow 4H_2O$.

What is the voltage of the cell?

Question 7

This question considers the thermodynamics of seawater.

- (a) Seawater has a salinity of 3.5% meaning that if you boil away a kilogram of seawater, when you're finished 35 grams of solids will remain (mostly NaCl). Calculate the osmotic pressure difference between seawater and fresh water. For simplicity, assume that all the dissolved salts in seawater are NaCl.
- (b) Briefly discuss the concept of reverse osmosis and calculate the minimum work required to desalinate one litre of seawater.
- (c) Discuss some reasons why the realistic work required to desalinate the seawater would be greater than the minimum value calculated in (b).
- (d) Calculate the boiling and freezing temperatures of seawater.

END OF EXAMINATION

PHYS2020 Formula Sheet

Units and constants:

$$\begin{array}{rcl} 1 \text{ atm} & = & 101.3 \text{ kPa} = 1.013 \text{ bar} \\ & = & 1.013 \times 10^5 \text{ N/m}^2 \\ 0 \text{ °C} & = & 273.15 \text{ K} \\ 1 \text{ cal} & = & 4.186 \text{ J} \\ N_A & = & 6.022 \times 10^{23} \\ R & = & 8.315 \text{ J/(mol·K)} \\ k_B = R/N_A & = & 1.381 \times 10^{-23} \text{ J/K} \\ e & = & 1.602 \times 10^{-19} \text{ C} \\ F = N_A e & = & 96485 \text{ J/V·mol} \end{array}$$

Ideal gas equation of state:

$$PV = nRT = NkT$$

Van der Waals equation of state:

$$P = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)^2$$

Virial equation of state:

$$PV_m = RT(1 + BP + CP^2 + \dots)$$

$$PV_m = RT\left(1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \dots\right)$$

Compression factor:

$$Z = PV/NkT$$

Work and heat:

$$\Delta U = Q + W$$

$$W = -\int P \, dV$$

$$Q = \int T \, dS$$

Heat capacities:

$$C_m = C/n \;, \; c = C/m$$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V \;, \; C_P = \left(\frac{\partial H}{\partial T}\right)_P$$

$$C_V = \frac{f}{2}Nk = \frac{f}{2}nR \; \text{(ideal gas)}$$

$$C_P - C_V = nR \; \text{(ideal gas)}$$

Adiabatic expansion of an ideal gas:

$$PV^{\gamma} = \text{const}; \ TV^{\gamma-1} = \text{const}; \ \gamma = \frac{f+2}{f}$$

Equipartition theorem:

$$U(T) = U(0) + \frac{f}{2}nRT = U(0) + \frac{f}{2}NkT$$

Entropy:

$$S = k \ln \Omega$$

$$dS = \frac{Q_{\text{rev}}}{T}$$

$$\Delta_{\text{trs}}S = \frac{\Delta_{\text{trs}}H}{T_{\text{trs}}}$$

$$S(T_f) = S(T_i) + \int_{T_i}^{T_f} \frac{C_P dT}{T}$$

Clausius-Clapeyron equation:

$$\frac{dP}{dT} = \frac{\Delta S}{\Delta V} = \frac{L}{T\Delta V}$$

Clausius inequality:

$$\oint \frac{dQ}{T_{\rm env}} \le 0$$

Entropy of mixing:

$$\Delta S_{\text{mixing}} = -nR \left[x \ln x + (1-x) \ln(1-x) \right]$$

Efficiency of a heat engine:

$$\epsilon \equiv \frac{\text{work performed}}{\text{heat absorbed}} = \frac{W}{Q_h}$$

Carnot efficiency:

$$\epsilon_C = 1 - \frac{T_c}{T_h}$$

Coefficient of performance:

$$COP \equiv \frac{\text{energy transferred as heat}}{\text{work performed}} = \frac{Q_c}{W}$$

Carnot refrigerator:

$$COP_C = \frac{1}{T_h/T_c - 1}$$

Thermodynamic potentials:

$$H = U + PV$$

$$F = U - TS$$

$$G = H - TS$$

Thermodynamic identity:

$$dU = TdS - PdV + \mu dN$$

$$dG = -SdT + VdP + \mu dN$$

Maxwell relations:

$$\begin{pmatrix} \frac{\partial T}{\partial P} \end{pmatrix}_{S} = \begin{pmatrix} \frac{\partial V}{\partial S} \end{pmatrix}_{P} \\
\begin{pmatrix} \frac{\partial T}{\partial V} \end{pmatrix}_{S} = -\begin{pmatrix} \frac{\partial P}{\partial S} \end{pmatrix}_{V} \\
\begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P} = -\begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix}_{T} \\
\begin{pmatrix} \frac{\partial P}{\partial T} \end{pmatrix}_{V} = \begin{pmatrix} \frac{\partial S}{\partial V} \end{pmatrix}_{T}$$

Gibbs-Helmholtz equations:

$$\left(\frac{\partial}{\partial T} \frac{G}{T} \right)_{P} = -\frac{H}{T^{2}}$$

$$\left(\frac{\partial}{\partial T} \frac{F}{T} \right)_{V} = -\frac{U}{T^{2}}$$

Partial derivatives:

$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$$

$$\left(\frac{\partial x}{\partial y}\right)_z = \left[\left(\frac{\partial y}{\partial x}\right)_z\right]^{-1}$$

Thermodynamic Properties of Selected Substances

All of the values in this table are for one mole of material at 298 K and 1 bar. Following the chemical formula is the form of the substance, either solid (s), liquid (l), gas (g), or aqueous solution (aq). When there is more than one common solid form, the mineral name or crystal structure is indicated. Data for aqueous solutions are at a standard concentration of 1 mole per kilogram water. The enthalpy and Gibbs free energy of formation, $\Delta_f H$ and $\Delta_f G$, represent the changes in H and G upon forming one mole of the material starting with elements in their most stable pure states (e.g., C (graphite), O_2 (g), etc.). To obtain the value of ΔH or ΔG for another reaction, subtract Δ_f of the reactants from Δ_f of the products. For ions in solution there is an ambiguity in dividing thermodynamic quantities between the positive and negative ions; by convention, H^+ is assigned the value zero and all others are chosen to be consistent with this value. Data from Atkins (1998), Lide (1994), and Anderson (1996). Please note that, while these data are sufficiently accurate and consistent for the examples and problems in this textbook, not all of the digits shown are necessarily significant; for research purposes you should always consult original literature to determine experimental uncertainties.

Substance (form)	$\Delta_f H ext{ (kJ)}$	$\Delta_f G ext{ (kJ)}$	S (J/K)	C_P (J/K)	$V (\text{cm}^3)$
Al (s)	0	0	28.33	24.35	9.99
Al ₂ SiO ₅ (kyanite)	-2594.29	-2443.88	83.81	121.71	44.09
Al ₂ SiO ₅ (andalusite)	-2590.27	-2442.66	93.22	122.72	51.53
Al ₂ SiO ₅ (sillimanite)	-2587.76	-2440.99	96.11	124.52	49.90
Ar (g)	0	0	154.84	20.79	
C (graphite)	0	0	5.74	8.53	5.30
C (diamond)	1.895	2.900	2.38	6.11	3.42
CH_4 (g)	-74.81	-50.72	186.26	35.31	
C_2H_6 (g)	-84.68	-32.82	229.60	52.63	
C_3H_8 (g)	-103.85	-23.49	269.91	73.5	
C_2H_5OH (l)	-277.69	-174.78	160.7	111.46	58.4
$C_6H_{12}O_6$ (glucose)	-1273	-910	212	115	
CO (g)	-110.53	-137.17	197.67	29.14	
CO_2 (g)	-393.51	-394.36	213.74	37.11	
H_2CO_3 (aq)	-699.65	-623.08	187.4		
HCO_3^- (aq)	-691.99	-586.77	91.2		
Ca^{2+} (aq)	-542.83	-553.58	-53.1		
$CaCO_3$ (calcite)	-1206.9	-1128.8	92.9	81.88	36.93
$CaCO_3$ (aragonite)	-1207.1	-1127.8	88.7	81.25	34.15
$CaCl_2$ (s)	-795.8	-748.1	104.6	72.59	51.6
$Cl_2(g)$	0	0	223.07	33.91	
Cl ⁻ (aq)	-167.16	-131.23	56.5	-136.4	17.3
Cu (s)	0	0	33.150	24.44	7.12
Fe (s)	0	0	27.28	25.10	7.11

Substance (form)	$\Delta_f H$ (kJ)	$\Delta_f G ext{ (kJ)}$	S (J/K)	C_P (J/K)	$V~({ m cm}^3)$
H ₂ (g)	0	0	130.68	28.82	
H (g)	217.97	203.25	114.71	20.78	
H^+ (aq)	0	0	0	0	
$H_2O(1)$	-285.83	-237.13	69.91	75.29	18.068
$H_2O(g)$	-241.82	-228.57	188.83	33.58	
He (g)	0	0	126.15	20.79	
Hg (l)	0	0	76.02	27.98	14.81
N_2 (g)	0	0	191.61	29.12	
NH_3 (g)	-46.11	-16.45	192.45	35.06	
Na ⁺ (aq)	-240.12	-261.91	59.0	46.4	-1.2
NaCl (s)	-411.15	-384.14	72.13	50.50	27.01
NaAlSi ₃ O ₈ (albite)	-3935.1	-3711.5	207.40	205.10	100.07
NaAlSi ₂ O ₆ (jadeite)	-3030.9	-2852.1	133.5	160.0	60.40
Ne (g)	0	0	146.33	20.79	
O_2 (g)	. 0	0	205.14	29.38	
O_2 (aq)	-11.7	16.4	110.9		
OH^- (aq)	-229.99	-157.24	-10.75	-148.5	
Pb (s)	0	0	64.81	26.44	18.3
PbO_2 (s)	-277.4	-217.33	68.6	64.64	
$PbSO_4$ (s)	-920.0	-813.0	148.5	103.2	
SO_4^{2-} (aq)	-909.27	-744.53	20.1	-293	
HSO_4^- (aq)	-887.34	-755.91	131.8	-84	
SiO_2 (α quartz)	-910.94	-856.64	41.84	44.43	22.69
H_4SiO_4 (aq)	-1449.36	-1307.67	215.13	468.98	

The atomic mass (bottom) is weighted by isotopic abundances in the earth's surface. Atomic masses are relative to the mass of the carbon-12 isotope, defined to be exactly 12 unified atomic mass units (u). Uncertainties range from 1 to 9 in the last digit quoted. Relative isotopic abundances often vary considerably, both in natural and commercial samples. A number in parentheses is the mass of the longest-lived isotope of that element—no stable isotope exists. However, although Th, Pa, and U have no stable isotopes, they do have characteristic terrestrial compositions, and meaningful weighted masses can be given. For elements 110–112, the mass numbers of known isotopes are given. From the Review of Particle Physics by the Particle Data Group, The European Physical Journal C3, 73 (1998). The atomic number (top left) is the number of protons in the nucleus.

Signature Sign				1												₩ ₹
Codic Table of the Elements Samo Corton Cobalt Cobalt Copat Copa												14	75	16	17	2 He
Codic Table of the Elements Same and American State Corporation Codic New York Code											¥ H	≱	3 ≯	Y X	ΥIIV	4.002602
Secondary Color			Dor	iodio	Table	f tho	Flomo	ate.						8	6	
10 811 12.0107			10	. Jinor	Table	arra re	amena	2711			Boron		Nitrogen		Fluorine	Neon
13 14 51											10.811		14.00674	15.9994	18.9984032	20.1797
6 7 8 9 10 11 12 Aluminum Silicon VIB III 1 1 1 2 6.9 e1338 28.0855 24 Cr 25 Mn 26 Fe 27 Co 28 Ni chel Copper Zinc Gallium German. 51.9961 54.938049 55.845 58.933200 58.6934 63.546 65.39 65.73 7.21 Gallium German. 51.9961 54.938049 55.845 58.933200 58.6934 63.546 65.39 65.73 7.21 7.21 42 Molybol 7 Ruthen. Rhodium Paladium Silver Codmium Indium Transmens 71mgsten Rhenium Osmium Iridium Palatium Palatium Indium Irida 190 Mg 10 Mg Mg 11 112 1 2 April 106 Saborium Ressium <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>٠</td> <td>•</td> <td>₹</td> <td>14</td> <td>Ф</td> <td>16</td> <td>17</td> <td>18 Ar</td>									٠	•	₹	14	Ф	16	17	18 Ar
VIB VIIB IB IB IB 1B 26.981538 28.08558 24 Cr 25 Mn 26 Fe 27 Co 28 Ni ckel Copper Zinc Gallium German. 51.9961 55.845 58.932300 58.6934 63.546 65.39 69.723 72.61 42 Molybd. 7chmet. Ruthen. Rhodium Palladium Silver Codmium Indium Tin 95.94 97.907215 101.07 102.90550 106.42 17.8682 12.411 11.4818 11.8710 71mgsten Rhenium Pridium Pridium Palladium Codmium Prim Tin 195.24 07.907215 101.07 102.90550 106.42 17.8682 10.2411 11.41818 11.8710 196.59 196.23 196.24 17.8682 10.5646 20.59 20.43833 207.2 106.5 10.0 Nt 10.2 Nt 10.2	3 4		2	9	7	œ	6	10	11		Aluminum	_	Phosph.	Sulfur	Chlorine	Argon
24 Cr 5 Mn 26 Fe 7 Cobatt Nickel Copper Zinc Gallum German. 51.9961 55.845 58.93320 58.6934 63.546 65.39 69.723 72.61 42 Molybel. 7chmet. Ruthen. Rhodium Palladium Silver Cadmium Indium Tin 95.94 7chmet. Ruthen. Rhodium Palladium Silver Cadmium Indium Tin 105.94 7chmet. Ruthen. Rhodium Palladium Silver Cadmium Indium Tin 105.94 7chmet. Ruthen. Rhodium Palladium Silver Cadmium Indium Tin 105.94 7chmet. Rhodium Palladium Silver Cadmium Indium Tin 106.95 10chmet. Rhodium Palladium Silver Cadmium Indium Tin 108.96 7chmet. Rholium Palladium Si	IIIB IVB		VB	VIB	VIIB	L	- NII -	Γ	8		26.981538	28.0855	30.973761		35.4527	39.948
Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium German. 51.9961 54.932049 58.893200 58.6934 63.546 65.39 69.723 72.61 42 Molybd. 12.941 Huben. Rhodium Palladium Silver Codmium Indium Tin 95.94 17.907213 101.07 102.9050 106.42 17.8682 112.411 11.4818 118.710 7mgsten Rhenium Osmium Indium Platinum Gold Mrcury Thallium Inad 183.84 186.207 190.23 192.217 195.078 196.6655 20.6.59 204.3833 207.2 183.84 186.207 190 Nt 110 11 112 1 1 Seaborg Bohrium Meitner. 110 111 112 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K 20 Ca 21 Sc 22 Ti	Γi			25 Mn			28 Ni		1	İ		l		35	36 Kr
51.9961 54.938049 55.845 58.933200 58.6934 63.546 65.39 69.723 72.61 42 Mol ybd. Technet. Ruthen. Rhodium Palladium Silver Cadmium Indium Tin 95.94 97.907215 101.07 102.90550 106.42 107.8662 112.411 114.818 118.710 74 M 75 Re 76 Os 71 Ir Rhodium Palladium Silver Cadmium Indium Tin 95.94 97.907215 101.07 102.90550 106.42 107.8662 112.411 114.818 118.710 74 M 75 Re 76 Os 71 Ir Rhodium Palladium Pall	ndium Titanium	g	Vanadium	Chromium	Manganese		Cobalt		Copper	Zinc				Selenium		Krypton
42 Mo 43 Tc 44 Ru 45 Ru 46 Pd 47 Ag 48 Cd 49 In 50 5n Molybd. Technet. Ruthen. Rhodium Palladium Silver Cadmium Indium Tin 45	40.078 44.955910 47.867		50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	62.39	69.723	_	74.92160	78.96	79.904	83.80
Molybd. Technet. Ruthen. Rhodium Palladium Silver Cadmium Indium Tin 15.594 (97.907215) 101.07 102.90550 106.42 107.8662 112.411 114.818 118.710 18.710 12.90550 106.42 107.8662 112.411 114.818 118.710 18.710 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214 14.214 14.214 14.214 14.214 14.214 14.2141 14.214 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214 14.2141 14.214	Sr 39 Y 40 Zr	~	41 Nb	42 Mo	43 Tc	44 Ru		46 Pd	47 Ag	48 Cd						54 Xe
10 10 10 10 10 10 10 10	Rubidium Strontium Yttrium Zirconium Niobium	Ħ	Niobium	Molybd.		Ruthen.	Rhodium	Palladium		Cadmium	Indium		Antimony	Tellurium	Iodine	Xenon
74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 11 TI 82 Pb Thurstern Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead 183.34 186.207 190.23 192.217 195.078 106 50655 200.59 204.3833 207.2 106 Sg 107 Bh 108 Hs 110 111 112 Seaborg Bohrium Hassium Metren. Ametren. 204.3833 207.2 204.3833 207.2 106 Sd 107 Bh 111 112 112 112 112 Seaborg Bohrium Metren. Metren. Metren. 111 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112	88.90585 91.224	_ 1	92.90638		(97.907215)		102.90550			112.411	114.818		121.760	127.60	126.90447	131.29
Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead 183.34 186.207 190.23 192.217 195.078 196.56658 200.59 204.3833 207.2 106 Sg 107 Bh 108 Hs 110 111 112 Seaborg. Bohrium Hassium Metrer. (262.1231) (265.1366) (266.1376) (266.1376) (266.273) (272) (277) R R R 50 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Th 66 Dy 67 Ho 68 Necdym. Prometh. Samarium Europium Gadolin. Terbium Dyspros. Holmium Erbi 144.24 (144.912745) 150.36 151.964 157.25 158.9234 162.50 164.93032 167 Ho 68 2 U 93 Np 96 Cm 97 Berkelium	57-71 72 Hf	#							79 Au			82 Pb	Bi	84	85	86 Rn
183 84 186 207 190 23 192 217 195 078 196 96655 200 59 204 3833 207 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Lantha- Hafnium		Tantalum	Tungsten		Osmium		Platinum	_		Thallium		Bismuth	Polonium	Astatine	Radon
106 Sg 107 Bh 108 Hs 109 Mt 110 111 112	nides 178.49		180.9479	183.84	186.207		192.217	195.078			204.3833		208.98038	(208.982415)	(209.987131)	(222.017570)
Seaborg Bohrium Hassium Meitner.	Fr 88 Ra 89-103 104 Rf	≈	105 Db	106 Sg		108 Hs	109 Mt			112						
(272) (277	Francium Radium Actinides Rutherford Dubnium	덛	Dubnium	Seaborg.	Bohrium	Hassium	Meitner.									
60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 72 72<	(261.1089)	ଚ	(262.1144)	(263.1186)	(262.1231)	(265.1306)	(266.1378)	(269, 273)	(272)	(277)						
Neodyn. Frometh. Samarium Europium Gadolin. Terbium Dyspros. Holmium Erbium Thulium Ytterbium Interpreta 144.24 (144.912745) 150.36 151.964 157.25 158.92534 162.50 164.93032 167.26 168.93421 173.04 174.14 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 101 Md 102 No 103 No 104 No 104 104 No 104 No 104 No 104 No 104 No No 104 No	La 58 Ce	1-	P	P	19		83	2	65		29		69	Tm 70		Lu
102 No 103 Nobelium Lawr	Lanthanum Cerium Pr 138.9055 140.116 1-				Prometh. (144.912745)	Samarium 150.36								lium Ytte 33421 17	rbium Lute	tium 967
102 No 103 Nobelium Lawr		4 1								_ 1	7	41	ן ד	4	-	
Protectin. Uranium Neptunium Plutonium Americium Curium Berkelium Californ. Einstein. Fermium Mendelev. Nobelium Lawrenc.	89 Ac 90 Th		91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 B	k 98	Cf 99	Es 100	Fm 101	Md 102	No 103	
			Protactin.	Uranium	Neptunium	Plutonium	Americiun	Curium	Berkeliu	n Califor	n. Einste	in. Ferm	ium Meno	lelev. Nob	elium Law	renc.
$\frac{231.03588}{238.0289} \left[(237.048166) (244.064197) (244.064197) (244.064197) (247.070346) (247.070349) (251.079579) (252.08297) (252.09$	227.027747) 232.0381 2			238.0289	(237.048166)	(244.064197)	(243.061372	(247.07034	5) (247.07029	48) (251.0795	79) (252.082	297) (257.09	5096) (258.09	98427) (259		1098)