Name:	Date:	
	_	

Time: Start End

Marks: 120

DPP JEE Main

Class XI & XII | M | 005

MATHEMATICS

Chapter 1: Sets, Relations and **Functions**

Topics:

Complete Chapter

Instructions:

⇒ DPP contains 30 questions. ⇒ Each DPP contains Multiple Choice Questions (MCQs) and Numerical Value Type Questions. ⇒ Each question carries 4 marks. ➡ Mark the correct answer for MCQs and answers to be filled in as a numerical value for Numerical Value Type Questions in the OMR Sheet given at the end of the DPP. The For every incorrect answer deduct 1 mark.

1. The domain of the derivative of the function

$$f(x) = \begin{cases} \sin^{-1} x, & \text{if } |x| \le 1\\ \frac{1}{2}(|x|-1), & \text{if } |x| > 1 \end{cases}$$
 is

- (a) $R \{0\}$ (b) $R \{1\}$ (c) $R \{-1\}$ (d) $R \{-1, 1\}$
- **2.** Let $\{x\}$ and [x] denote the fractional and integral part of a real number x respectively. Number of solutions of $4\{x\} = x + [x]$ are (c) 3 (d) Infinite
- 3. The number of integers in the interval [-10, 10] that will not lie in the domain of $f(x) = \frac{1}{[|x-1|+|5-x|]-4}$ is

- (d) None of these
- 4. The range of $y = \sin^{-1}\left(\frac{x^2+1}{x^2+2}\right)$ is
 - (a) $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ (b) $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ (c) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ (d) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
- **5.** If $U = \{x : x^5 6x^4 + 11x^3 6x^2 = 0\}$ and $A = \{x : x^2 5x + 6 = 0\}$ and $B = \{x : x^2 - 3x + 2 = 0\}$, then $(A \cap B)' =$
 - (a) $\{1, 3\}$
- (b) {1, 2, 3}
- (c) $\{0, 1, 3\}$
- (d) {0, 1, 2, 3}
- **6.** Even function in the given options is
 - (a) $2\tan^{-1}(x+\sqrt{1+x^2})-\frac{\pi}{2}$
 - (b) $\sin^{-1} \left(\frac{\sqrt{1-x}}{2} \right) + \cos^{-1} \left(\frac{\sqrt{1+x}}{2} \right) \frac{\pi}{2}$
 - (c) $x \log |\sec x + \tan x| + \sin x \log \left| \frac{1-x}{1+x} \right|$
 - (d) None of these

- 7. If $f: [2, \infty) \to [1, \infty)$ is defined by $f(x) = 2^{x^4 4x^2}$, then $f^{-1}(x)$ is
 - (a) $\sqrt{2 + \sqrt{4 \log_2 x}}$ (b) $\sqrt{2 + \sqrt{4 + \log_2 x}}$

 - (c) $\sqrt{2-\sqrt{4\log_2 x}}$ (d) $\sqrt{2-\sqrt{4+\log_2 x}}$
- 8. If $g(f(x)) = |\sin x|$ and $f(g(x)) = (\sin \sqrt{x})^2$, then
 - (a) $f(x) = \sin^2 x, g(x) = \sqrt{x}$
 - (b) $f(x) = \sin x, g(x) = |x|$
 - (c) $f(x) = x^2, g(x) = \sin \sqrt{x}$
 - (d) f and g cannot be determined
- **9.** The inverse function of $f(x) = \frac{8^{2x} 8^{-2x}}{8^{2x} + 8^{-2x}}$, $x \in (-1, 1)$, is _____.

 - (a) $\frac{1}{4}(\log_8 e)\log_e\left(\frac{1-x}{1+x}\right)$ (b) $\frac{1}{4}(\log_8 e)\log_e\left(\frac{1+x}{1-x}\right)$
 - (c) $\frac{1}{4}\log_e\left(\frac{1+x}{1-x}\right)$ (d) $\frac{1}{4}\log_e\left(\frac{1-x}{1+x}\right)$
- **10.** Let $f:(-1,1) \to B$ be a function defined by $f(x) = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$,

and f is both one-one and onto. Then, B lies in the inter

- (a) $\left[0, \frac{\pi}{2}\right]$ (b) $\left(0, \frac{\pi}{2}\right)$ (c) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- **11.** If $f(x) = \sin x + \cos x$, $g(x) = x^2 1$, then g(f(x)) is invertible in
 - (a) $\left[0, \frac{\pi}{2}\right]$ (b) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (d) $[0, \pi]$
- **12.** Let $f: Z \rightarrow Z: f(n) = 3n$ and let $g: Z \rightarrow Z$, defined by

$$g(n) = \begin{cases} \frac{n}{3}, & \text{if } n \text{ is a multiple of 3} \\ 0, & \text{if } n \text{ is not a multiple of 3} \end{cases}.$$

Then,

(a)
$$gof = I_Z$$
, $fog = I_Z$

(a)
$$gof = I_Z$$
, $fog = I_Z$ (b) $gof \neq I_Z$, $fog \neq I_Z$

(c)
$$gof = I_Z, fog \neq I_Z$$

(d)
$$gof \neq I_Z$$
, $fog = I_Z$

13. Let $f: A \to B$ and $g: B \to A$ such that $(g \circ f) = I_A$. Then

such that
$$(g \circ f) = I_A$$
. Then

14. If
$$f: R \to R$$
, $g: R \to R$ be two given functions, then $f(x) = 2 \min \{f(x) - g(x), 0\}$ equals

(a)
$$f(x) + g(x) - |g(x) - f(x)|$$
 (b) $f(x) + g(x) + |g(x) - f(x)|$

(b)
$$f(x) + g(x) + |g(x) - f(x)|$$

(c)
$$f(x) - \sigma(x) + |\sigma(x) - f(x)|$$

(c)
$$f(x) - g(x) + |g(x) - f(x)|$$
 (d) $f(x) - g(x) - |g(x) - f(x)|$

15. Consider a function
$$f(n)$$
 defined for all $n \in N$. The function satisfies the following two conditions

(i)
$$f(1) + f(2) + f(3) + \dots$$
 to $\infty = 1$.

(ii)
$$f(n) = \{(1-p) p^{-1}\}\{f(n+1) + f(n+2) + \dots \text{ to } \infty\},\$$

where 0 . Then, <math>f(2) is equal to

(a)
$$p(1-p)$$
 (b) $1-p$ (c) $1+p$

16. Let
$$f_1(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
, then

$$f_1(1) + f_1(2) + f_1(3) + \dots + f_1(n)$$
 is equal to

(a)
$$nf_1(n) - 1$$

(b)
$$(n+1) f_1(n) - n$$

(c)
$$(n+1) f_1(n) + n$$

(d)
$$nf_1(n) + n$$

17. Let [x] denotes the greatest integer less than or equal to x. If the function $f(x) = \tan(\sqrt{[n]}x)$ has period $\frac{\pi}{3}$, then

(a)
$$n \in (1,3)$$
 (b) $n \in (9,10)$ (c) $n \in [9,10)$ (d) $n \in (9,\infty)$

18. If
$$f(x) = \frac{1}{\sqrt{x + 2\sqrt{2x - 4}}} + \frac{1}{\sqrt{x - 2\sqrt{2x - 4}}}$$
 for $x > 2$, then $f(11) = (a) \frac{7}{6}$ (b) $\frac{5}{6}$ (c) $\frac{6}{7}$ (d) $\frac{5}{7}$

(a)
$$\frac{7}{6}$$

(b)
$$\frac{5}{6}$$

(c)
$$\frac{6}{7}$$

(d)
$$\frac{5}{7}$$

19. Let
$$f(x) = \frac{x}{(1+x^n)^{1/n}}$$
 for $n \ge 2$ and $g(x) = (f \circ f \circ f... \circ f)(x)$

(where f occurs n times). Then g(x) =

(a)
$$\frac{x}{1+nx}$$

(a)
$$\frac{x}{1+nx}$$
 (b) $\frac{x}{(1+x)^{1/n}}$ (c) $\frac{1}{(1+nx^n)^{1/n}}$ (d) $\frac{x}{(1+nx^n)^{1/n}}$

20. If
$$\log_4\left(\frac{2f(x)}{1-f(x)}\right) = x$$
, then $(f(2010) + f(-2009))$ is equal to

Numerical Value Type

- **21.** The difference between the minimum and maximum elements in the range of $y = \frac{1}{\sin^4 x + \cos^4 x}$ is _____.
- **22.** Sum of maximum & minimum values of

$$f(x) = \frac{1}{\sin x + 2\cos x + 3}$$
 is _____.

- **23.** Let f(x) be a polynomial of degree 3 such that $f(k) = -\frac{2}{k}$ for k = 2, 3, 4, 5. Then the value of 52 - 10 f(10) is equal to _
- **24.** Let $S = \{1, 2, 3, 4, 5, 6, 7\}$. Then the number of possible functions $f: S \to S$ such that $f(m \cdot n) = f(m) \cdot f(n)$, for every $m, n \in S$ and $m \cdot n \in S$ is equal to _____

25. If
$$a + \alpha = 1$$
, $b + \beta = 2$ and $af(x) + \alpha f\left(\frac{1}{x}\right) = bx + \frac{\beta}{x}$, $x \neq 0$, then

the value of the expression
$$\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}$$
 is _____.

- **26.** Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Then the number of elements in the set $C = \{f : A \to B \mid 2 \in f(A) \text{ and } f \text{ is not one-one} \}$ is _
- **27.** The number of elements in range of the relation *R* given by $R = \{(x, y) : y = x + \frac{6}{x} \text{ ; where } x, y \in N \text{ and } x < 6\} \text{ is}$
- **28.** If the period of the function

$$f(x) = \frac{\sin(\sin(nx))}{\tan(\frac{x}{n})}, n \in \mathbb{N}, \text{ is } 6\pi, \text{ then } n \text{ is equal to} \underline{\hspace{1cm}}.$$

- **29.** If $f(x) = \log_{e^2 x} \left(\frac{2 \ln x + 2}{-x} \right)$ and $g(x) = \{x\}$, where $\{x\}$ denotes the fractional part of x, then value of $[e \cdot g(x)]$, where [] = GIF for the existence of f(g(x)), is _____
- **30.** If $[x]^2 + [x-2] < 0$ and $\{x\} = \frac{1}{2}$, then the number of possible values of x, is ([x] and {x} denote greatest integer less than or equal to *x* and fractional part of *x*, respectively) ______.

OMR SHEET Correct marking **b** c d Use HB pencil only and darken each circle completely. Wrong marking 🔯 😿 🕦 💿 Mark only one choice for each question as indicated. 25. . 1. abcd 5. abcd 9. abcd 13. abcd 17. abcd 21. _____ 2. @ b c d 6. @ b c d 10. @ b c d 14. @ b c d 18. @ b c d 22. ___ 26. _ 30. ___ 3. @ 6 0 0 7. @ 6 0 0 0 11. @ 6 0 0 0 15. @ 6 0 0 0 19. @ 6 0 0 0 23. _____ |4. @bcd 8. @bcd 12.@bcd 16.@bcd 20.@bcd 24.__

RESULT M 005 - MATHEMATICS				
Total Questions	30	Total Marks	120	
Attempted		Correct		
ncorrect		Net Score		
Net Score = (Correct × 4) – (Incorrect × 1) =				
Percentage Score =				