



## Comparative Analysis of India and USA

### **Challenges in Smart Meter Deployment**

Both India and the USA encounter significant challenges in deploying smart meters, impacting efficiency and accessibility.

## **India's Mass Deployment Strategy**

India focuses on mass deployment of smart meters across diverse terrains, aiming for widespread accessibility and integration.

## **USA's Phased Approach**

The USA adopts a phased approach to smart meter deployment, utilizing existing infrastructure for gradual integration.





# Strategic Planning & Phased Rollouts



Large AMI deployments should be executed in phases to identify and resolve issues early.



PG&E's phased approach helped refine RF planning and meter installation logistics.



Lesson for India: A phased approach allows adjustments before full-scale implementation.

## Phase 1: Pilot & Technology Validation (2006-2007)

- Tested RF Mesh reliability & smart meter accuracy in select regions.
- Identified **early technical challenges** (e.g., RF interference, network dropouts).
- Refined deployment strategies before scaling up.

## Phase 2: Early Mass Deployment (2008-2010)

- Expanded to 1M+ meters per year while optimizing network configurations.
- Strengthened customer education & outreach programs.
- Improved load forecasting & regulatory compliance.

## Phase 3: Full-Scale Rollout (2011-2013)

- Completed **9M smart meter installations** across urban & rural areas.
- Integrated real-time monitoring & predictive analytics for proactive maintenance.
- Achieved higher operational efficiency & cost savings.

# Hybrid Connectivity Models for Large Regions

- A single AMI communication technology is insufficient for vast regions.
- Duke Energy used a Hybrid AMI Connectivity Model
  - Urban Areas:
    - RF Mesh for high-density, low-latency communication.
  - Suburban Areas:
    - Cellular LTE (4G, LTE-M, Private LTE) for flexibility and scalability.
  - Rural Areas:
    - PLC (Power Line Communication) to leverage existing infrastructure.
  - Remote Areas:
    - Satellite connectivity to ensure universal smart meter coverage.
- Lesson for India: Combining NB-IoT, RF Mesh, Private LTE, and Satellite can ensure seamless coverage.



# RF Planning is Critical to Avoid Coverage Gaps

- Poor RF network design leads to dead zones and higher costs.
- Before deploying smart meters, CenterPoint conducted extensive RF propagation studies to ensure optimal placement of network access points.
- Lesson for India: Comprehensive RF modeling must be done before deployment.





# Avoiding Costly Post-Deployment Adjustments

#### **GIS-Driven Planning**

Implementing GIS-driven planning allows organizations to visualize data and make informed decisions before deployment, minimizing errors.

#### **Proactive Implementation**

Proactive planning and foresight result in smoother implementation, reducing the need for costly adjustments later on.

#### Resource Management

Effective resource management through GIS helps allocate resources efficiently, preventing wastage and enhancing project success.

#### **Enhanced Mapping Accuracy**

EDX Wireless' tools significantly improve the accuracy of meter density mapping, ensuring reliable data for planning.

#### **Streamlined Planning Process**

Utilizing these mapping tools streamlines the planning process, saving time and resources for project managers







# Case Studies of Predictive Planning Benefits

#### **Successful Implementation**

Case studies demonstrate successful implementation of predictive planning across various industries, leading to improved outcomes.

#### **Lessons Learned**

Valuable lessons from these case studies illustrate effective strategies and common challenges in predictive planning.

#### **Benefits Showcase**

The benefits of predictive planning include enhanced decision-making, resource optimization, and risk mitigation.

# Key Takeaways for India's AMI Rollout

- Phased rollouts prevent large-scale failures.
- Hybrid AMI models (RF Mesh, LTE, Satellite) improve connectivity.
- Pre-deployment RF planning reduces unexpected costs.
- Section Customer education is essential to drive acceptance.
  - AI-driven analytics enhance smart grid efficiency.
- Cong-term AMI sustainability planning is critical.