Getting to know your data

Data visualization

Measuring data similarity and dissimilarity

Based on Data Mining – Concept and Techniques, Jiawei Han, Micheline Kamber & Jian Pei

Data visualization

What is data?

Why data visualization?

- Gain insight into an information space
- Provide qualitative overview of large data sets
- Search for patterns, trends, irregularities, relationships among data
- Help find interesting regions

Categorization of visualization methods:

- Pixel-oriented visualization techniques
- Geometric projection visualization techniques
- Icon-based visualization techniques
- Hierarchical visualization techniques
- Visualizing complex data and relations

Pixel-oriented visualization techniques

- For a data set of m dimensions, create m windows on the screen, one for each dimension
- The m dimension values of a record are mapped to m pixels at the corresponding positions in the windows
- The colors of the pixels reflect the corresponding values

Pixel-oriented visualization techniques (Recursive pattern technique)

Pixel-oriented visualization techniques (Laying Out Pixels in Circle Segments)

Crash

Representing a data record in circle segment

Geometric projection visualization techniques

Matrix of scatterplots (x-y-diagrams) of the k-dim.

data [total of $\frac{k^2 - k}{2}$ scatterplots]

Landscape

Parallel Coordinates

Direct visualization

Icon-Based Visualization Techniques (chernoff faces)

- A way to display variables on a two-dimensional surface, e.g., let x be eyebrow slant, y be eye size, z be nose length, etc. (10 characteristics)
- assigned one of 10 possible values, generated using
- REFERENCE: Gonick, L. and Smith, W. <u>The Cartoon Guide to</u> <u>Statistics.</u> New York: Harper Perennial, p. 212, 1993
- Weisstein, Eric W. "Chernoff Face." From MathWorld--A Wolfram Web Resource. mathworld.wolfram.com/ChernoffFace.html

Icon-Based Visualization Techniques (Stick figure)

Hierarchical visualization techniques

Dendrogram

Node-link diagram

Treemaps, voronoi treemaps

Measuring Data Similarity and Dissimilarity

Similarity and dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- **Dissimilarity** (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data matrix and dissimilarity matrix

Data matrix

n data points with p dimensions

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Proximity measures for binary attributes

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables

$$d(i, j) = \frac{r+s}{q+r+s+t}$$

sum

q+r

Object *j*

$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Dissimilarity between binary variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Proximity measures for nominal attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching m: # of matches, p: total # of variables $d(i,j) = \frac{p-m}{p}$
- Method 2: Use a large number of binary attributes
 creating a new binary attribute for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, ..., M_f\}$
 - map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using methods for interval-scaled variables

Distance on Numeric Data: Minkowski Distance

• Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

- where $i=(x_{i1},\,x_{i2},\,\ldots,\,x_{ip})$ and $j=(x_{j1},\,x_{j2},\,\ldots,\,x_{jp})$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)
- Properties
 - d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$. "supremum" (L_{max} norm, L_{\infty} norm) distance. Chebyshev distance
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x2</i>	3	5
<i>x</i> 3	2	0
<i>x4</i>	4	5

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- *f* is binary or nominal:
 - $d_{ij}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ij}^{(f)} = 1$ otherwise
- f is numeric: use the normalized distance
- f is ordinal
 - Compute ranks r_{if} and
 - Treat z_{if} as interval-scaled $z_{if} = \frac{r_{if}-1}{M_{if}-1}$

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then
- $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$
 - where indicates vector dot product, ||d||: the length of vector d

Example: Cosine Similarity

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$
 - where indicates vector dot product, ||d||: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.
 - $d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$
 - $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$
 - $d_1 \bullet d_2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25$
 - $||d_1|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$
 - $||d_2|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5} = (17)^{0.5} = 4.12$
 - $\cos(d_1, d_2) = 0.94$

Exploratory Data Analysis (EDA)& Data Visualization

Knowledge about your data is useful for data preprocessing

- What are the types of attributes?
- What kind of values does each attribute have?
- What do the data look like?
 - Exploring measures od central tendency (symmetric or skewed)
 - Mean, Median, Mode, Variance, Weighted Mean, Trimmed Mean etc.
- How are the values distributed?
- Are there ways we can visualize the data to get a better sense of it all?
 - Identify relations, trends, biases etc.
 - Simple techniques such as scatter-plot matrices, histograms, Q-Q plots etc.
- Measure data similarity

Thank you!

