Eli Pinkus CS 156a Set 8

Problem 1

The question requires optimizing $\frac{1}{2}w^Tw$ subject to $y_n(w^Tx_n+b)\geq 1$ Which means that we are looking to optimize |w|+|b| many variables and |w|=d and |b|=1 so the answer is d+1 variables which is D

Problem 2

The sim returns 0 vs. all as the max E_{in} so the answer is ${\bf A}$

Problem 3

The sim returns 1 vs. all as the max E_{out} so the answer is A

Problem 4

The sim returns a difference in number of SVs of 1793 so the answer is C

Problem 5

We know intuitively that the highest C will allow for the best fitting which means lowest $E_{\rm in}$ and the results of the sim confirm while debunked the others. Thus, the answer is D

Problem 6

The sim confirms the statement of B to be true

Problem 7

The sim returns that C=0.001 is selected most often so the answer is B

Problem 8

The sim returned average best $E_{\rm CV} \approx 0.0044$ so the answer is C

Problem 9

The sim returned lowest $E_{\rm in}$ for $C=1\times10^6$ so the answer is E

Eli Pinkus CS 156a Set 8

Problem 10

The sim returned lowest E_{out} for C=100 so the answer is ${
m C}$