

Умножение вектора на число

качественные материалы для вашего развития \mathbb{R}^n определена операция умножения вектора на число. Любой вектор из \mathbb{R}^n можно умножить на любое число, и результат умножения тоже будет вектором из \mathbb{R}^n . Число в этом случае называют *скаляром*. Умножение вектора $(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ на число $c \in \mathbb{R}$ определяется так:

$$c(x_1, x_2, \dots, x_n) = (cx_1, cx_2, \dots, cx_n) \in \mathbb{R}^n$$
.

Пример 2. Можно взять вектор $(-2,0,4) \in \mathbb{R}^3$ и умножить его на скаляр 6, получив $6 \cdot (-2,0,4) = (6 \cdot (-2), 6 \cdot 0, 6 \cdot 4) =$ $(-12,0,24) \in \mathbb{R}^3$.

На языке стрелок "умножить вектор на число c" означает "растянуть стрелку в c раз".

Выберите все верные утверждения

Выберите все подходящие ответы из списка

$$(-2) \cdot (3, -4) = (-6, 8)$$

$$2 \cdot (0.5, 3) = (1, 3)$$

$$\sqrt{2} \cdot (\sqrt{2}, 0, \pi) = (2, 0, \sqrt{2}\pi)$$

$$0 \cdot (7, 9) = (0, 0)$$

адача. Векторное пространство 1.	
1. Докажите, что существует и единственен вектор $ec{y} \in \mathbb{R}^n$, такой что для любого вектора $ec{x} \in \mathbb{R}^n$ выполнено $ec{y} + ec{x} = ec{x} = ec{x}$ Такой вектор $ec{y}$ называется <i>нулевым</i> и обозначается $ec{0}$. Каковы координаты вектора $ec{0}$?	$\dot{z} + \dot{y}$
2. Докажите, что для любого вектора $ec{x} \in \mathbb{R}^n$ выполнено $0 ec{x} = ec{0}$ (заметьте, что в левой части равенства ноль это число, а в правой части ноль это вектор).	

Задача с проверкой. Векторное пространство 2.

- 1. Докажите, что для каждого вектора $\vec{x} \in \mathbb{R}^n$ найдётся вектор $\vec{z} \in \mathbb{R}^n$, такой что $\vec{x} + \vec{z} = \vec{0}$. Такой вектор \vec{z} называется противоположным вектору \vec{x} и обозначается $-\vec{x}$. Если $\vec{x} = (x_1, \dots, x_n)$, то каковы координаты вектора $-\vec{x}$? Например, каковы координаты вектора, противоположного вектору (3, -5)?
- 2. Докажите, что для любого вектора $\vec{x} \in \mathbb{R}^n$ выполнено $(-1) \cdot \vec{x} = -\vec{x}$ (заметьте, что в левой части равенства мы умножаем вектор на число, а в правой части рассматриваем противоположный вектор).

Пример. Противоположный вектор к (4,7) – вектор (-4,-7), потому что их сумма (4,7)+(-4,-7)=(4+(-4),7+(-7))=(0,0) – нулевой вектор в \mathbb{R}^2 .

Задача для проверки. Найдите координаты вектора, противоположного вектору (3,-5).

Напишите текст

Напишите ваш ответ здесь...

Дополнительный материал - 3Blue1Brown

3Blue1Brown это замечательный математический youtube канал Гранта Сандерсона. Главная особенность канала – огромное количество визуализаций, максимально наглядное представление математических концептов.

На канале есть серия <u>Essence of linear algebra</u>, которую мы очень рекомендуем к просмотру. В ней 15 коротких видео суммарной длины 2 с половиной часа. Можете сразу просмотреть её целиком, или смотреть отдельные видео из серии, которые мы будем рекомендовать в разных местах нашего курса.

Эта же серия есть на youtube в русскоязычной озвучке: Сущность Линейной Алгебры.

В чём особенности серии и отличия от нашего курса?

- Грант подходит к линейной алгебре с точки зрения геометрии. Мы скорее с точки зрения алгебры. У Гранта в серии много визуализаций, у нас не так много.
- Грант рассматривает векторы только из \mathbb{R}^2 и \mathbb{R}^3 . Собственно, это и позволяет их визуализировать. В нашем курсе мы сразу концентрируемся на произвольных размерностях, так как в DS почти все данные имеют размерность больше 3.
- Ради краткости и наглядности Грант не приводит доказательств. Иногда он даёт идею доказательства.

Зачем это вообще?

- Эта серия точно поможет вам развить геометрическую интуицию в линейной алгебре.
- Если какой-то концепт в произвольных размерностях не очень понятен, то в серии он объяснён в размерности 2, где понять его гораздо проще.

На этом уроке мы предлагаем посмотреть первое видео серии: Chapter 1. Vectors, what even are they? (длина 10 минут)

Что мы прошли на этом уроке

Ура, вот мы и прошли первый урок курса линейной алгебры! Давайте коротко повторим, что мы узнали:

- Упорядоченный набор из n чисел называется вектором. В машинном обучении объекты часто заменяют на векторы признаков объектов.
- Векторное пространство \mathbb{R}^n это множество всех упорядоченных наборов вида (x_1, x_2, \dots, x_n) , где все $x_i \in \mathbb{R}$. Его мы ввели для того, чтобы наша ML модель могла работать со всеми векторами длины n.
- ullet Мы научились складывать векторы из \mathbb{R}^n . Эта операция проводится покоординатно.
- Мы научились умножать вектор из \mathbb{R}^n на число. Эта операция проводится покоординатно.

Что нас ждёт на следующем уроке

На следующем уроке мы начнём проходить линейные отображения:

- Мы обсудим, для чего нужно изучать линейные отображения.
- Научимся проверять, является ли отображение линейным, и докажем несколько свойств линейных отображений.
- Поймём, как можно задавать некоторые линейные отображения с помощью строк и столбцов из чисел.

