

 Modelo ilustrativo do Perceptron para reconhecimento de padrões:

Sinais elétricos advindos de fotocélulas mapeando padrões geométricos eram ponderados por resistores sintonizáveis.

Os resistores eram ajustados durante o processo de treinamento.
 Um somador efetuava a composição de todos os sinais.

	Apresentação de um conjunto de valores que representam as variáveis de entrada do neurônio.	x, — w, — θ
	 Multiplicação de cada entrada do neurônio pelo seu respectivo peso sináptico. 	$x_2 \longrightarrow \underbrace{x_2} \longrightarrow \underbrace{y}$
_	Obtenção do potencial de ativação produzido pela soma ponderada dos sinais de entrada, subtraindo-se o limiar de ativação.	$\int u = \sum_{j=1}^{n} w_j \cdot x_j - \theta$
	 Aplicação de uma função de ativação apropriada, tendo-se como objetivo limitar a saída do neurônio. 	y = g(u)

 Compilação da saída a partir da aplicação da função de ativação neural em relação ao seu potencial de ativação.

	Parâmetro	Variável Representativa	Tipo Característico
	Entradas	x _i (<i>i-</i> ésima entrada)	Reais ou Binária (advindas externamente)
	Pesos Sinápticos	(associado a x _i)	Reais (iniciados aleatoriamente)
-	Limiar	θ	Real (iniciado aleatoriamente)
	Saída	y	Binária
	Função de Ativação	g(.)	Degrau ou Degrau Bipolar
	Processo de Treinamento		Supervisionado
	Regra de Aprendizado		Regra de Hebb

- 1) Conforme tabela apresentada, o ajuste dos pesos e limiar do Perceptron é efetuado utilizando processo de treinamento "Supervisionado".
- 2) Então, para cada amostra dos sinais de
 entrada se tem a respectiva saída (resposta) desejada.
- 3) Como o Perceptron é tipicamente usado em problemas de classificação de padrões, a sua saída pode assumir somente dois valores possíveis.
- 4) Assim, cada um de tais valores será - associado a uma das "duas classes" que o Perceptron estará identificando.