Programação Paralela - OPRP001

PCAM: Particionamento, Comunicação, Aglomeração e Mapeamento

Desenvolvido por Prof. Guilherme Koslovski e Prof. Maurício Pillon

Revisando

- Definições de programação distribuída, paralela, concorrente e sequencial
- Otimização de algoritmos
- Modelo e impacto de programação paralela

Revisando

Agenda

- Projeto de programas paralelos
 - Metodologia de particionamento

Exemplo: Multiplicação de matrizes

Avaliação de desempenho de aplicações paralelas

Considerações finais

Metodologia de particionamento

- PCAM
 - Particionamento

 - ♣ Aglomeração

- Identificação de oportunidades para execução paralela
- Decomposição do problema
 - Subproblemas
- Decomposição?
 - Estrutural de dados
 - Estrutural de operações

- Decomposição dos dados em pequenas partições de tamanhos semelhantes
- Decomposição das operações de acordo com o particionamento dos dados
- Tarefas resultantes: associação de partições de dados e operações associadas
- Comunicação entre tarefas pode ser necessária

- Decomposição de dados
 - Podem existir diversas alternativas de particionamento
 - Ferramentas de auxílio (Metis, visualizadores de workflows: Moteur)

- Decomposição funcional
 - Cada tarefa executa cálculos diferentes para resolver um problema
 - Tarefas podem ser executadas sobre os mesmos dados ou dados distintos
 - Exemplo: simulação de fenômenos atmosféricos

- Decomposição funcional
 - Decomposição dos dados de acordo com o particionamento das operações
 - Dados diferentes

- Dados se sobrepõem
 - Replicação
 - Comunicação

- Check list
 - O número de tarefas é maior que o número de processadores disponíveis?
 - As tarefas possuem aproximadamente o mesmo tamanho?

- Identificar e satisfazer as dependências e formas de cooperação entre tarefas
- A comunicação precisa ser minimizada
- Paradigmas: troca de mensagens e memória compartilhada

- Local x Global

 - Global: comunicação com muitas (ou todas) tarefas
- Estruturada x Não-estruturada
 - 🖒 Estruturada: árvores, grade
 - Não-estruturada: grafos arbitrários
- Estática x Dinâmica
 - Estrutura/identidade dos pares muda ou não durante a execução Local Communication

Global Communication

- Checklist
 - Todas as tarefas realizam o mesmo número de comunicações?
 - As tarefas estão comunicando 'apenas' com seus vizinhos?
 - Processamento e comunicação podem ocorrer concorrentemente?

- Reduzir as comunicações (aumentar granulosidade), preservando o paralelismo
- Granulosidade: razão entre a quantidade de computação e a quantidade de comunicação
- Pode resultar em replicação de dados e/ou operações

Granulosidade

Uma medida da razão entre a quantidade de computação realizada em uma tarefa e a quantidade de comunicação necessária

Fonte: Simone de Lima Martins

- Granulosidade
 - Nível de granulosidade varia de fina (muito pouco processamento por comunicação de byte) e grossa (muita computação por comunicação de byte)
 - Quanto mais fina a granulosidade menor a aceleração (sincronização!)

- Checklist

 - Existem dados replicados? (é possível)
 - O número de tarefas resultantes afeta a escalabilidade do sistema?

PCAM: Mapeamento

- Alocação de tarefas aos processadores disponíveis
 - Tarefas independentes em processadores diferentes
 - Tarefas com dependências no mesmo processador
- Concorrência x localidade

PCAM: Mapeamento

- Distribuição de carga
 - Mapeamento equitativo de tarefas considerando a capacidade do processador
- Mapeamento estático: definido no início da execução
- Mapeamento dinâmico: segue um balanceamento dinâmico

PCAM: Mapeamento

- Checklist
 - As tarefas comunicantes estão posicionadas no mesmo processador (ou próximas)?
 - Arquitetura física da rede
 - Heterogeneidade

PCAM

Agenda

- Projeto de programas paralelos
 - Metodologia de particionamento

Exemplo: Multiplicação de matrizes

Avaliação de desempenho de aplicações paralelas

Considerações finais

Exemplo

Multiplicação de matrizes

Exemplo

- Particionamento
 - Estrutural. Cada c[i][j] pode ser calculado independentemente
- Comunicação
- Aglomeração
 - Exemplo: cada processador calcula algumas linhas da matriz C
 - Deve "conhecer" algumas linhas de A e de toda matriz B
- Mapeamento
 - Cada processador calcula o mesmo número de linhas
 - Distribuição estática

- As aplicações são modeladas usando um grafo que relaciona as tarefas e trocas de dados.
 - Nós: tarefas
 - Arestas: trocas de dados (comunicações e/ou sincronizações)
- Modelos básicos
 - Workpool
 - Mestre/escravo
 - ☼ Divisão e conquista
 - Pipeline
 - Fases paralelas

- Workpool
 - Tarefas disponibilizadas em uma estrutura de dados global (memória compartilhada)
 - Sincronização no acesso à área compartilhada
 - Balanceamento de carga

- Mestre / Escravo
 - Mestre escalona tarefas entre processos escravos
 - Escalonamento centralizado gargalo

- Divisão e conquista (Divide and Conquer)
 - Processos organizados em uma hierarquia (pai e filhos)
 - Processo pai divide trabalho e repassa uma fração deste aos seus filhos
 - Integração dos resultados de forma recursiva
 - Distribuição do controle de execução das tarefas (processos pai)

divisão do trabalho

integração dos resultados

- Pipeline
 - Pipeline virtual
 - Fluxo contínuo de dados
 - ☼ Sobreposição de comunicação e computação

- Fases paralelas
 - Etapas de computação e sincronização
 - Problema de balanceamento de carga
 - Processos que acabam antes
 - - Comunicação é realizada ao mesmo tempo

