Trigonométrie

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1		priétés de sin, cos et tan	2
	1.1	Sinus et Cosinus	2
	1.2	Tangente et Cotangente	2
2	Vale	eurs remarquables	2
	2.1	Tableau de valeurs	2
		Relations	
3		mules	2
	3.1	Formules d'addition	2
	3.2	Formules de duplication	3
		Formules de linéarisation	
		Formules de transformation d'une somme en produit	
	3.5	Formules pour tangente	3
	3.6	Formules pour tangente	3

1 Propriétés de sin, cos et tan

Sinus et Cosinus 1.1

sin et cos sont 2π -périodiques, indéfiniment dérivables sur \mathbb{R} (c'est-à-dire de classe \mathcal{C}^{∞}).

$$-\sin' = \cos$$
$$-\cos' = -\sin$$

Plus généralement, concernant les dérivées,

$$-\sin^{[2k]} = (-1)^k \sin^{-k} - \sin^{[2k+1]} = (-1)^k \cos^{-k} - \cos^{[2k]} = (-1)^k \cos^{-k}$$

$$-\cos^{[2k+1]} = (-1)^{k+1} \sin
\text{Pour } k \in \mathbb{Z},
-\cos(k\pi) = (-1)^k
-\cos((2k+1)\frac{\pi}{2}) = 0
-\sin((2k+1)\frac{\pi}{2}) = (-1)^k$$

La fonction cos est paire, tandis que sin est impaire. De plus $\forall x \in \mathbb{R}$,

$$\cos^2 x + \sin^2 x = 1$$

Tangente et Cotangente

On définit pour
$$x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$$
,

$$\tan x = \frac{\sin x}{\cos x}$$

La fonction tan est impaire, de classe C^{∞} sur tout intervalle I inclus dans le domaine de définition. De plus

$$\tan' = 1 + \tan^2$$
$$= \frac{1}{\cos^2}$$

On définit pour $x \in \mathbb{R} \backslash \pi \mathbb{Z}$ la fonction

$$\cot x (x) = \frac{\cos x}{\sin x}$$

cotan est impaire et définie sur tout intervalle $I \subset$ $\mathbb{R} \setminus \pi \mathbb{Z}$ et

$$\cot z' z = -(1 + \cot z^2)$$
$$= -\frac{1}{\sin^2}$$

2 Valeurs remarquables

2.1 Tableau de valeurs

1	\boldsymbol{x}	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

2.2Relations

$$-\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$-\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$-\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$-\tan\left(\frac{\pi}{2} - x\right) = \frac{1}{\tan x}$$

$$-\sin\left(\pi - x\right) = \sin x$$

$$-\sin(\pi - x) = \sin x$$

$$-\sin(\pi + x) = -\sin x$$

$$-\cos(\pi + x) = -\cos x$$

$$-\tan(\pi + x) = \tan x$$

$$-\cot(\pi + x) = \cot x$$

Formules 3

Les formules sont valables sur tout réel appartenant au(x) domaine(s) de définitions de(s) la fonction concernée(s).

3.1 Formules d'addition

$$-\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$-\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$-\sin(a+b) = \cos a \sin b + \cos b \sin a$$

$$-\sin(a-b) = \cos b \sin a - \cos a \sin b$$

3.2 Formules de duplication

$$\cos(2a) = \cos^2 a - \sin^2 a$$

$$= 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$-\cos^2 a = \frac{1 + \cos(2a)}{2}$$

$$-\sin^2 a = \frac{1 - \cos(2a)}{2}$$

$$-\sin(2a) = 2\sin a \cos a$$

3.3 Formules de linéarisation

$$-\cos a \cos b = \frac{1}{2} (\cos (a+b) + \cos (a-b))$$

$$-\sin a \sin b = -\frac{1}{2} (\cos (a+b) + \cos (a-b))$$

$$-\sin a \cos b = \frac{1}{2} (\sin (a+b) + \sin (a-b))$$

3.4 Formules de transformation d'une somme en produit

$$-\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$-\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$
$$-\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$
$$-\sin p - \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

3.5 Formules pour tangente

$$-\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$
$$-\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$
$$-\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$$

3.6 Changement de variable $u = \tan \frac{a}{2}$

$$- \tan a = \frac{2u}{1 - u^2}$$

$$- \sin a = \frac{2u}{1 + u^2}$$

$$- \cos a = \frac{1 - u^2}{1 + u^2}$$