Московский физико-технический институт

Лабораторная работа 2.2.1

Измерение удельной теплоемкости воздуха при постоянном давлении

выполнил студент группы Б03-302 Танов Константин

1 Цель работы:

Измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

2 Оборудование:

Теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

3 Теоретические сведения:

Измерение теплоёмкости тел обычно производится в калориметрах, т.е. в сосудах, обеспечивающих теплоизоляцию исследуемого тела от внешней среды. При этом регистрируется изменение его температуры δT в зависимости от количества тепла δQ , полученного телом от некоторого нагревательного элемента внутри калориметра. Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{\delta T} \tag{1}$$

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно - масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рис. 1: Нагрев газа при течении по трубе

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент (см.рис.1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm = qdt, где q [кг/с] - массовый расход газа в трубе. Если мощность нагрева равна $N_{\rm нагр}$, мощность тепловых потерь на обмен с окружающей средой $N_{\rm пот}$, то порция получила тепло $\delta Q = (N_{\rm нагр} - N_{\rm пот})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q = cdm\Delta T$, где $\Delta T = T_2 - T_1$ - приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1 \approx P_2 = P_0$, где P_0 - атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$C_p = \frac{N_{\text{Harp}} - N_{\text{пот}}}{a\Delta T} \tag{2}$$

Экспериментальная установка

Схема установки изображена на рис. 2. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь тепла за счет излучения. Воздух из пространства между стенками калориметра откачан до высокого вакуума (10^{-5} торр) для минимизации потерь тепла, обусловленных теплопроводностью.

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев

Рис. 2: Схема установки

проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N_{\rm Harp} = UI \tag{3}$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй - в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T \tag{4}$$

где $\beta=40,7\frac{\text{мкB}}{^{\circ}C}$ - чувствительность медно-константановой термопары в рабочем диапазоне температур (20-30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком Γ С. Для регулировки расхода служит кран K. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход

равен $\Delta V/\Delta t$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

где ρ_0 - плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева-Клапейрона: $\rho_0=\frac{\mu P_0}{RT_0}$, где P_0 - атмосферное давление, T_0 - комнатная температура (в Кельвинах), $\mu=29.0$ г/моль - средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T << T_0$) мощность потерь тепла $N_{\rm пот}$ прямо пропорциональна разности температур:

$$N_{\text{HOT}} = \alpha \Delta T \tag{6}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N_{\text{Happ}} = (c_p q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью $(\Delta T(N)-$ линейная функция).

4 Подготовка к эксперименту:

- 1. С помощью газового счетчика и секундомера измеряем максимальный объемный расход воздуха $\Delta V/\Delta t$ (в л/с)(табл. 1). Измерения проведим несколько раз и определяем среднее значение расхода для каждого случая. Вычисляем соответствующий массовый расход воздуха $q_{max} \approx 0,2$ г/с, пользуясь формулой (5).
- 2. Оцениваем величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\Delta T = 1$ °C. Для этого определяем теоретическое значение удельной теплоёмкости воздуха при постоянном давлении c_p [Дж/г·K], считая воздух смесью двухатомных идеальных газов; оцениваем минимальную мощность $N_0 \approx 0$, 2 Вт ($N \geq c_p q \Delta T$), необходимую для нагрева газа при

1			2		
ΔV ,	Δt ,	V/t, л/с	V, л	t, c	V/t, л/c
5	31.6	0.1582	5	83,19	0.0601
5	31.55	0.1585	5	83,06	0.0602
5	31.75	0.1575	5	83,47	0.0599
$q_m ax$	0.2 ± 0.0003		q_1	0.078 ± 0.0001	

Таблица 1: Результаты измерений массового расхода

максимальном расходе q_{max} на $\Delta T_0 = 1^{\circ}C$; учитывая, что сопротивление проволоки нагревателя составляет приблизительно $R_H \approx 29~{\rm Om}$ и в процессе опыта практически не меняется, определияем искомое значение тока

$$I_0 = \sqrt{\frac{N_0}{R_H}} \approx 83.045 \text{MA}$$

Погрешность для массового расхода можно оценить ппо формуле:

$$\sigma \approx \sigma_{\text{CJI}} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{n} (q_j - \overline{q})^2}$$

3. Проведем измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при максимальном расходе воздуха $q_0 = q_{max}$.

I, м A	U, B	N , м $\mathrm{B}\mathrm{ ext{ iny T}}$	$\varepsilon,$ MKB	$\Delta T, K$
125.77	3.711	466.73	68	4
177.32	5.273	928.62	143	6
251.2	7.192	1806.63	293	8
270.1	7.736	2089.49	336	10

Таблица 2: Измерение $\Delta T(N)$ q_{max}

4. Завершив первую серию измерений, охладим калориметр до комнатной температуры. Проведем аналогичные измерения для других значений расхода воздуха q_1 .

I, м A	U, B	N , м $\mathrm{B}\mathrm{ ext{ iny T}}$	$\varepsilon,$ MKB	$\Delta T, K$
75.12	2.214	466.73	55	4
102.18	3.014	928.62	103	6
126.13	3.722	1806.63	142	8
117.92	3.48	2089.49	124	10

Таблица 3: Измерение $\Delta T(N)$ q_1

5. Построим на одном графике зависимости $\Delta T(N)$ при разных значениях q (рис. 3):

Рис. 3: График зависимости dT от мощности нагрева

Аппроксимируя зависимость прямой y=kx, найдем угловые коэффициенты k для каждого расхода и соответствующие погрешности по формулам:

$$k = \frac{\langle dT \cdot N \rangle}{\langle N^2 \rangle}$$

$$\sigma_k = \sqrt{\frac{1}{n} \left(\frac{\langle dT^2 \rangle}{\langle N^2 \rangle} - k^2 \right)}$$

Выходит, что $k_1 = 4.699 \pm 0.143 \; \mathrm{K/Br}; \; k_2 = 15.22 \pm 0.87 \; \mathrm{K/Br}$

6. Построим график зависимости 1/k(q) и по его наклону определим теплоёмкость воздуха при постоянном давлении c_p , а также α –коэффициент теплопердачи:

Рис. 4: График зависимости 1/k от массового расхода

Выходит, что $c_p=1.048\pm0.034\frac{\mbox{Дж}}{\mbox{Γ\cdot$K}}$, что совпадает с теоретическим значением $1\frac{\mbox{Дж}}{\mbox{$\Gamma\cdotK}}$ в пределах двух погрешностей. А $\alpha=0.028\pm0.0031\frac{\mbox{Bt}}{\mbox{K}}$.

7. Посчитаем долю тепловых потерь в 1-ом опыте:

$$\frac{N_{\text{not}}}{N} = \frac{\alpha}{c_p \cdot q_{\text{max}} + \alpha} = 0.118 \pm 0.014$$

Посчитаем долю тепловых потерь в 2-ом опыте:

$$\frac{N_{\text{mot}}}{N} = \frac{\alpha}{c_p \cdot q_{\text{max}} + \alpha} = 0.255 \pm 0.029$$

5 Вывод:

Таким образом, в ходе лабораторной работы была получена удельная тепло-ёмкость воздуха, которая совпадает с теоретическим значением в пределах своей погрешности.