МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) Кафедра Физики

ЛАБОРАТОРНАЯ РАБОТА №10 по дисциплине «Физика» Тема: ПЕРЕДАЧА МОЩНОСТИ В ЦЕПИ ПОСТОЯННОГО ТОКА

Студентгр. 9892	 Лескин К.А.
Преподаватель	 Лоскутников В.С.

Санкт-Петербург 2020

Цель

Экспериментальное исследование зависимости полезной мощности, полной мощности и коэффициента полезного действия (КПД) источника от отношения сопротивлений нагрузки и источника.

Приборы и принадлежности

Стенд для сборки измерительной цепи; два источника с различными ЭДС; миллиамперметр и вольтметр; переменный резистор.

Схема установки на рис. 1

Рис. 1 – Схема установки

Переключателем SB1 источники G1 и G2 с различными ЭДС и внутренними сопротивлениями могут быть поочередно подключены к нагрузке R1. Ток I и напряжение Ue на резисторе R1 измеряют миллиамперметром PA1 и вольтметром PV1. Режим разомкнутой цепи осуществляется отключением нагрузки кнопкой SB2; показание вольтметра при этом равно ЭДС источника.

Исследуемые закономерности

Ток в цепи I, создаваемый источником ЭДС E с внутренним сопротивлением R_i и нагруженный на сопротивление R_1 рассчитывается как

$$I = \frac{E}{R_1 + R_i} \tag{1}$$

Полная мощность P=EI, развиваемая источником, делится между нагрузкой и источником следующим образом:

$$\frac{P_e}{P} = \frac{U_e}{U} = \frac{R_1}{R_1 + R_i} = \eta \tag{2}$$

$$\frac{P_i}{P} = \frac{U_i}{U} = \frac{R_i}{R_1 + R_i} = 1 - \eta \tag{3}$$

где $P_e=IU_e$ – мощность, выделяющаяся в нагрузке (полезная); $P_i=IU_i$ – мощность, выделяющаяся на внутреннем сопротивлении источника; U_e и U_i – падения напряжения на нагрузке и на внутреннем сопротивлении источника соответственно; η – КПД источника.

Напряжение U_e возрастает от нуля до значения, равного ЭДС с увеличением внутреннего сопротивления от нуля (короткое замыкание) до бесконечности (разомкнутая цепь).

Ток в цепи уменьшается от $I_{K3}=\frac{E}{R_i}$ при коротком замыкании до нуля при разомкнутой цепи.

 $P_e = 0$ как при коротком замыкании, так и при разомкнутой цепи.

Максимальная полезная мощность $P_{e\ max}$ достигается, когда $R_1=R_i$, при так называемом согласовании сопротивлений источника и нагрузки. В этом случае

$$P_{e\ max} = \frac{E^2}{4R_i} \tag{4}$$

Мощность P_{K3} развиваемая источником в режиме короткого замыкания составляет:

$$P_{K3} = \frac{E^2}{R_i} \tag{5}$$

С увеличением сопротивления нагрузки полная мощность P уменьшается и в режиме согласования составляет

$$P = \frac{E^2}{2R_i} \tag{6}$$

Напряжение U_e в режиме согласования равно половине ЭДС E. КПД источника равен нулю при коротком замыкании и единице при разомкнутой цепи; в согласованном режиме $\eta=0.5$.

Протокол $G_1, E_1 = 7.4 \text{ B}$

i	U_e , B	$I(U_e)$, мА
1	0	8.2
2	1	7.0
3	2	6.0
4	3	5.0
5	4	3.8
6	5	2.7

 $G_2, E_2 = 6.2 \text{ B}$

i	U_e , B	$I(U_e)$, MA
1	0	9.4
2	1	7.9
3	2	6.4
4	3	4.9
5	4	3.2
6	5	1.9

Обработка результатов измерений

1. Рассчитаем для каждой пары значений тока I и напряжения U_e значения $P, P_e, \eta, \frac{R_1}{R_i} = \frac{U_e}{(E-U_e)}$ для G_1 .

 $G_1, E_1 = 7.4 \text{ B}$

i	U_e , B	$I(U_e), A$	$P = E * I, B_{T}$	$P_e = U_e * I, \mathrm{Bt}$	$\eta = \frac{P_e}{P}$	$\frac{R_1}{R_i} = \frac{U_e}{(E - U_e)}$
1	0	0.0082	0.0607	0.0	0.0	0.0
2	1	0.007	0.0518	0.007	0.1351	0.1562
3	2	0.006	0.0444	0.012	0.2703	0.3704
4	3	0.005	0.037	0.015	0.4054	0.6818
5	4	0.0038	0.0281	0.0152	0.5409	1.1765
6	5	0.0027	0.02	0.0135	0.675	2.0833

2. Рассчитаем для каждой пары значений тока I и напряжения U_e значения $P, P_e, \eta, \frac{R_1}{R_i} = \frac{U_e}{(E-U_e)}$ для G_2 .

 $G_2, E_2 = 6.2 \text{ B}$

i	U_e , B	$I(U_e), A$	P = E * I, Bt	$P_e = U_e * I$, BT	$\eta = \frac{P_e}{P}$	$\frac{R_1}{R_i} = \frac{U_e}{(E - U_e)}$
1	0	0.0094	0.0583	0.0	0.0	0.0
2	1	0.0079	0.049	0.0079	0.1612	0.1923
3	2	0.0064	0.0397	0.0128	0.3224	0.4762
4	3	0.0049	0.0304	0.0147	0.4836	0.9375
5	4	0.0032	0.0198	0.0128	0.6465	1.8182
6	5	0.0019	0.0118	0.0095	0.8051	4.1667

3. Построим на одном рисунке для каждого источника зависимости P, P_e, η от отношения $\frac{R_1}{R_i}$ для G1.

4. Построим на одном рисунке для каждого источника зависимости P, P_e, η от отношения $\frac{R_1}{R_i}$ для G2.

5. Определим для G_1 : P_{emax} , P_{K3} , внутреннее сопротивление R_i .

$$R_i = \frac{E - U_e}{I}$$

$$G_1, E_1 = 7.4 \text{ B}$$

- 1/	-		
i	U_e , B	$I(U_e), A$	$R_i = \frac{E - U_e}{I}$
1	0	0.0082	902.44
2	1	0.007	914.29
3	2	0.006	900.0
4	3	0.005	880.0
5	4	0.0038	894.74
6	5	0.0027	888.89

$$\overline{R}_i = \frac{\sum R_{ii}}{N} = \frac{5380.36}{6} = 896.72 \text{ Om}$$

$$P_{e\ max} = \frac{E^2}{4R_i} = \frac{54.76}{4*896.72} = 0.01526674993308948 \text{ Bt}$$

$$P_{K3} = \frac{E^2}{R_i} = P_{e\ max} * 4 = 0.06106699973235792 \text{ Bt}$$

6. Определим для G_2 : P_{emax}, P_{K3} , внутреннее сопротивление R_i .

 $G_1, E_2 = 6.2 \text{ B}$

$\alpha_1,$	$O_1, D_2 = 0.2 D$				
i	U_e , B	$I(U_e), A$	$R_i = \frac{E - U_e}{I}$		
1	0	0.0094	659.57		
2	1	0.0079	658.23		
3	2	0.0064	656.25		
4	3	0.0049	653.06		
5	4	0.0032	687.5		
6	5	0.0019	631.58		

$$\overline{R}_i = \frac{\sum R_{ii}}{N} = \frac{3946.19}{6} = 657.7 \text{ Om}$$

$$P_{e\ max} = \frac{E^2}{4R_i} = \frac{38,44}{4*657.7} = 0.014611562038320508 \text{ Bt}$$

$$P_{K3} = \frac{E^2}{R_i} = P_{e\ max}*4 = 0.05844624815328203 \text{ Bt}$$

Вывод

В ходе лабораторной работы экспериментально были исследованы зависимости полезной мощности, полной мощности и коэффициента полезного действия (КПД) источника от отношения сопротивлений нагрузки и источника, полученные расчётным путём. Были построены графики зависимости P, P_e, η от $\frac{R_1}{R_i}$ и рассчитаны $R_i, P_{e\ max}, P_{K3}$ для источников G_1, G_2 .