JEGYZŐKÖNYV MODERN FIZIKA LABORATÓRIUM

11. MÉRÉS - SPEKTROFOTOMETRIA

• Mérést végezte : Brindza Mátyás és Szűcs Máté

 $\bullet\,$ Mérés időpontja : 2021.11.16.

A mérés célja:

A mérés célja, hogy meghatározzuk egy vas-ammónium-szulfát oldat és egy szalicilsav oldat reakciójának egyensúlyi állandóját szobahőmérsékleten, koncentrációjuk arányát, illetve a reakcióban képződő komplex maximális abszorbanciánál vett extinkciós állandóját. Az egyensúlyi állandó hőmérséklet-függésének mérésére is sor kerül. Erre a célra a spektrofotometria módszerét használjuk.

A mérés elméleti háttere

A spektroszkópia egy széles körben elterjedt vizsgálati módszer, mely spektrumok készítésével és értelmezésével foglalkozik. A spektrofotometria is egy spektroszkópiai módszer, melynek lényege, hogy egy adott hullámhossztartományon vizsgáljuk a besugárzott fény intenzitását, miután kölcsönhatott (abszorbció vagy emisszió) a mintával.

A koncentráció és az egyensúlyi állandó

E mérés során vas-ammónium-szulfát oldat és szalicilsav oldat összeöntésekor bekövetkező reakciót vizsgáljuk a minta abszorbanciáján keresztül. A reakciót az

$$Fe^{3+} + sal^- \rightleftharpoons Fe^{3+}sal^-$$

formula írja le, ahol az Fe^{3+} a vasion, sal^- pedig a szalicilsav anionja. Ahogy az oda-vissza mutató nyíl is jelzi, a reakció reverzibilis, sőt, mindkét irányban lejátszódik természetes úton is. A rendszer akkor tekinthető egyensúlyban lévőnek, ha az összes komponens (az ionok és a komplex) koncentrációja időben állandó - tehát gyakorlatilag ugyanannyi asszociáció (a reakció jobbra halad) és disszociáció (a reakció balra halad) történik időegységenként -, ekkor beszélünk kémiai egyensúlyról.

Az egyensúlykor beállt koncentrációk segítségével érdemes definiálni a K egyensúlyi állandót, mely

$$K = \frac{[komplex]}{[Fe^{3+}] \cdot [sal^{-}]}$$

formában jellemzi a kémiai egyensúlyt. Itt [...]-vel a koncentrációt jelöljük és "komplex" alatt az $Fe^{3+}sal^-$ -t értjük. A K egyensúlyi állandó azért lesz nagyon hasznos számunkra, mert kiszámolható a vasion és a szalicilsav ionjának egyensúlyi koncentrációja nélkül is, elég tudni a [komplex]-t és az őt alkotó ionok kezdeti (reakció előtti) koncentrációját (rendre c_{Fe}^{elegy} és c_{sal}^{elegy})!

$$K = \frac{[komplex]}{(c_{Fe}^{elegy} - [komplex]) \cdot (c_{sol}^{elegy} - [komplex])}$$

Az abszorbacia

Mint bámely más spektroszkópiai mérésnél, itt is azt használjuk ki, hogy az elektronok gerjesztődése karakterisztikus - azaz az is anyagra jellemző lesz, hogy milyen hullámhosszú elektromágneses sugárzást mekkora mértékben nyel el. Ezt a tulajdonságot az abszorbanciával jellemezzük, melyet

$$a(\lambda) = log_{10} \left(\frac{I_0(\lambda)}{I_t(\lambda)} \right)$$

módon definiálunk, ahol I_0 a beeső és I_t a transzmittált (áteresztett) fény intenzitása. Mértékegysége persze nincs, mivel két ugyanolyan mértékegységű mennyiség arányának logaritmusa.

Valójában csak az abszorbanciát tudjuk mérni a spektrofotométerrel (és a hőmérsékeltet szabályozni). Önmagában a fenti egyenlet nem elég a mérési feladatok megoldásához. Szükségünk van a Lambert-Beer törvényre is :

$$a_{komplex} = \epsilon_{komplex} \cdot l \cdot [komplex]$$

ahol $\epsilon_{komplex}$ az adott komplexnek a λ hullámhosszú fényre vonatkozó abszorpciós (extinkciós) állandója és l a fény által megtett út (tehát a küvetta szélessége).

A mérés menete

- Elkészítünk két sósav oldatot, behelyezzük őket a spektrofotométerbe és lefuttatjuk a *Baseline* procedúrát. Az analizátor meghatározza az alapvonalat, tehát kalibráljuk a műszert az használt oldószerre.
- Elkészítünk 9 db keveréket. Az első keverék 1 : 9 arányban áll vas oldatból és szalicilsav oldatból, a második 2 : 8 arányban, és így tovább 9 : 1 arányig. Mindegyik oldatnak felvesszük az abszorbancia spektrumát.
- Kiválasztjuk azt a keveréket, melynek a legnagyobb abszorbancia maximuma van, majd a mintatartó hőmérsékletét szabályozva 30°-tól 60°-ig (5°-onként) felvesszük a minta abszorbancia spektrumát.

Kiértékelés

A különböző koncentrációjú keverékek spektruma

Miután felvettük a 9 különbző Fe:sal oldat abszorbancia spektrumát, határozzuk meg milyen λ^* hullámhossznál van a maximum, és melyik keveréknek van a legmagasabb csúcsa.

A 9 különböző Fe:salkeverékek abszorbancia spektrumai.

A legtöbb adatsornál $\lambda^*=526.6nm$, ahogy a legmagasabb abszorbancia csúcs esetén is. A 7. keverékhez tartozik a legmagasabb csúcs (Fe:sal=7:3), a=2.41538. Vezessük be a ξ változót, mint

$$\xi = \frac{F - S}{2 \cdot (F + S)}$$

-			2:8					l		
	ξ	-0.4	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3	0.4

A keverési arányok

Egészen konkrétan az alábbi egyenlet teszi lehetővé a numerikus illesztést.

$$a(\lambda^*) = E(\lambda^*) \frac{\kappa(d/2 + d\xi + 1/2 - \xi) + 1 - \sqrt{[\kappa(d/2 + d\xi + 1/2 - \xi) + 1]^2 - 4\kappa(\kappa d/4 - \kappa d\xi^2)}}{2\kappa}$$

Az illesztés eredménye:

Az abszorbanciára illesztett görbe és a mérési pontok.

$$E = 8.68749637 \pm 0.422633$$

$$\kappa = 124.49445046 \pm 82.439150$$

$$d = 0.48881728 \pm 0.019001$$

Egyensúlyi állandó

Tudjuk, hogy a fény által megtett út l=1cm és $c_{sal}=2.5mM=\frac{2.5}{1000}\cdot\frac{mol}{dm^3}$. Innen az egyensúlyi állandó:

$$K = \frac{\kappa}{c_{sal}} = 49797.701355 \frac{dm^3}{mol}$$

Az egyensúlyi állandó hibája:

$$\frac{\Delta K}{K} = \frac{\Delta \kappa}{\kappa}$$

$$\Delta K = 32975.641332 \frac{dm^3}{mol}$$

Az extinkciós állandó

Az extinkciós állandóra vonatkozó összefüggés:

$$E(\lambda^*) = \epsilon_{komplex}(\lambda^*) \cdot l \cdot c_{sal}$$

Innen az extinkciós állandó:

$$\epsilon_{komplex}(\lambda^*) = \frac{E(\lambda^*)}{l \cdot c_{sal}} = 34749.988790 \frac{dm^2}{mol}$$

Az extinkciós állandó hibája:

$$\frac{\Delta \epsilon_{komplex}(\lambda^*)}{\epsilon_{komplex}(\lambda^*)} = \frac{\Delta E(\lambda^*)}{E(\lambda^*)}$$

$$\Delta \epsilon_{komplex}(\lambda^*) = 1690.531359 \frac{dm^2}{mol}$$

A vasion és a szalicilsav koncentrációi

Kiszámolható c_{sal} és d ismeretében, hogy:

$$c_{Fe} = d \cdot c_{sal} = 1.222043mM \pm 0.033252mM$$

$$c_{Fe}^{elegy} = (\frac{1}{2} + \xi) \cdot d \cdot c_{sal} = 0.855430 mM \pm 0.033252 mM$$

$$c_{sal}^{elegy} = (\frac{1}{2} - \xi) \cdot c_{sal} = 0.25mM \pm 0mM$$

A továbbiakban is a hibaterjedés módszerét használjuk.

Az egyensúlyi koncentrációk és az egyensúlyi állandó hőmérsékletfüggése

A mérés során nem volt elég idő megvárni, hogy pontosan beálljon a hőmérséklet, ezért csak közelítőleg lehetett a névleges értékeken mérni. A kezdő és a végső hőmérséklet átlaga jó közelítéssel használható adat.

A hetedik oldatnál volt a lemagasabb a görbe. Sorra 30-tól 60° -ig a kezdeti és a végső hőmérsékletek:

$T_{nominal}$	T_{init}	T_{final}	$T_{average}$
30	30.58	30.21	30.395
35	34.14	34.22	34.18
40	40.57	40.13	40.35
45	43.61	43.72	43.665
50	48.66	48.61	48.635
55	53.79	53.54	53.665

Kezdeti és végső hőmérsékletek

Az abszorbancia hőmérsékletfüggése.

$$[Fe^{3+}] = [komplex] - c_{Fe}^{elegy}$$

$$[sal^{-}] = [komplex] - c_{sal}^{elegy}$$

$T [^{\circ}]$	[komplex]	$\Delta[komplex]$	[Fe]	$\Delta [Fe]$	[sal]	$\Delta[sal]$	K	ΔΚ
30.395	0.688584	0.033499	0.166846	0.066751	0.061416	0.033499	67199.052828	66806.760003
34.18	0.683963	0.033274	0.171467	0.066526	0.066037	0.033274	60403.537655	56808.967411
40.35	0.680271	0.033094	0.175159	0.066346	0.069729	0.033094	55697.151198	50240.637251
43.665	0.676711	0.032921	0.178719	0.066173	0.073289	0.032921	51664.629427	44850.271016
48.635	0.672323	0.032707	0.183108	0.06596	0.077677	0.032707	47268.951131	39230.292443
53.665	0.663335	0.03227	0.192095	0.065522	0.086665	0.03227	39845.231443	30366.046585

A komplex és a két ion egyensúlyi koncentrációja hibával ([mM]-ban megadva), valamint az egyensúlyi állandó ([$\frac{dm^3}{mol}$]-ban megadva)

Az egyensúlyi állandó hőmérsékletfüggése.

Látható, hogy az egyensúlyi állandó egyértelműen csökken a hőmérséklet növekedésével, így exoterm termékképződésről beszélünk.

Diszkusszió

Az egyensúlyi állandók hibájával kifejezetten nem vagyunk megelégedve, de ezt és az elcsúszott adatsort leszámítva a mérést sikeresnek mondanánk, a kiértékelés eredményeit pedig többnyire reálisaknak.

Felhasznált irodalom

[1] Modern fizika laboratórium - Egyetemi tananyag, szerkesztette: Koltai János, lektorálta: Papp Elemér (2013.)