Exercices du chapitre I - Fonctions de plusieurs variables

Exercice 1 – Calculer les dérivées partielles des fonctions suivantes :

$$f_1(x,y) = 3x - 8y + 4, f_2(x,y) = 4x^2 - 5y^2 + \frac{5}{x} - 2, f_3(x,y,z) = 3x^2y^4z,$$

$$f_4(x,y) = -x^2y + 3xy + 8xy^2 - 1, f_5(x,y) = \sqrt{3x + 2y}, f_6(x,y) = \frac{x}{y}, f_7(x,y) = e^{\frac{x}{y}},$$

$$f_8(x,y) = \ln(xy), f_9(x,y) = \sin(x - 4y)e^{x^3y}, f_{10}(x,y) = \cos(x^2y)\ln(1 + x^2 + y^3).$$

Exercice 2 – On considère la fonction définie par $f(x,y) = x \cos(xy) + 2$.

- a) Calculer les dérivées partielles de f.
- b) Donner une équation du plan tangent à la surface représentant f au dessus du point $(1, \frac{\pi}{2})$.

Exercice 3 -

1. Calculer la dérivée partielle par rapport à x de la fonction suivante

$$j(x,y) = (u(x,y))^2 \cos(v(x,y))$$
 où $u(x,y) = 2x + y$ et $v(x,y) = \ln(x) - y$.

2. Soit la fonction $f(x,y) = e^x \sin y$.

On pose
$$x(r,\alpha) = r\cos(\alpha)$$
, $y(r,\alpha) = r\sin(\alpha)$ et $F(r,\alpha) = f(x(r,\alpha), y(r,\alpha))$.

Calculer les dérivées partielles $\frac{\partial F}{\partial r}(r,\alpha)$ et $\frac{\partial F}{\partial \alpha}(r,\alpha)$ de deux façons différentes : d'abord en utilisant la formule des dérivées d'une fonction composée puis par un calcul direct (en remplaçant dans F).

Exercice 4 – Soit la fonction $f(x,y) = \frac{y}{x^2 + 1}$.

- a) Déterminer $\overrightarrow{\operatorname{grad}} f(x,y)$.
- b) Tracer les lignes de niveau L_0 , L_1 et L_{-1} où $L_a = \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = a\}$.
- c) Dessiner les vecteurs gradients aux points (0,0), (-1,0), (-1,2) et (1,-2).

Exercice 5 -

- 1. Calculer les dérivées partielles de la fonction $f_1(x,y) = x^2 \ln(y) + 2 \frac{\operatorname{ch}(x)}{\operatorname{sh}(y)} + x \sin(y^2 1) + 2$.
- 2. Soit la fonction $f(x,y) = e^{x^2+y^2}$. Déterminer $\overrightarrow{\operatorname{grad}} f(x,y)$. Tracer les lignes de niveau L_0 , L_1 et L_{e^4} .

Exercice 6 – Le point de coordonnées (3,-1) appartient à la ligne de niveau L_{10} de la fonction f. On sait de plus que $\overrightarrow{\text{grad}} f(3,-1) = 2\overrightarrow{\imath} - \overrightarrow{\jmath}$.

- 1. Donner l'équation de la tangente à la ligne de niveau 10 au point (3, -1).
- 2. Donner l'équation cartésienne du plan tangent à la surface représentative de f au dessus du point (3,-1).

Exercices complémentaires

Exercice 7 -

Pour tous $x, y \in \mathbb{R}$, on pose $f(x, y) = (x^2 + 1)y + (x + y)(x + 1)\sin(y^2 + xy - 6)$.

- 1. Calculer, pour tous $x, y \in \mathbb{R}$, les dérivées partielles $\frac{\partial f}{\partial x}(x, y)$ et $\frac{\partial f}{\partial y}(x, y)$
- 2. Que vaut $\overrightarrow{\operatorname{grad}} f(1,2)$?
- 3. Déterminer une équation du plan tangent à la surface représentative de f au point $M_0(1,2,f(1,2))$.

Exercice 8 – On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = e^{x^2 + y^2 - 2y}.$$

- 1. Calculer les dérivées partielles de f par rapport à x et à y.
- 2. Calculer le gradient de f en (0,0).
- 3. Identifier la ligne de niveau 1 de f. Quelle est sa tangente en (0,0)? Est-ce cohérent avec le résultat de la question précédente?

Exercice 9 – Soit la fonction $f(x,y) = (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right)$ et $(x_0, y_0) \in \mathbb{R}^2$.

- 1. Calculer $\overrightarrow{\operatorname{grad}} f(x_0, y_0)$.
- 2. Vérifier que le point $P(\frac{1}{\sqrt{\pi}}, \frac{1}{\sqrt{\pi}})$ appartient à la ligne de niveau $L_{\frac{2}{\pi}}$. Déterminer l'équation de la tangente à la ligne de niveau $\frac{2}{\pi}$ au point P.
- 3. Déterminer l'équation cartésienne du plan tangent à la surface représentative de f au point $(\frac{1}{\sqrt{\pi}}, \frac{1}{\sqrt{\pi}}, f(P))$.

Exercice 10 – Soit $f_{x,y}(t) = x^2t^2 + (x+y)t + 1$, $x \neq 0$, et $F(x,y) = \min_{t \in \mathbb{R}} f_{x,y}(t)$. Calculer F(x,y) et ses dérivées partielles.

Exercice 11 – Soit $F(x,y) = e^x + e^y + x + y - 2$ et $\varphi : I \to \mathbb{R}$ une fonction deux fois dérivable, où I est un intervalle ouvert contenant 0. On pose $h(x) = F(x, \varphi(x))$.

- 1. Calculer h'(x) et h''(x) en fonction de F, φ et de leurs dérivées partielles.
- 2. On suppose que φ vérifie : $e^x + e^{\varphi(x)} + x + \varphi(x) = 2$ pour tout $x \in I$. Qu'en déduisez vous pour h? Calculer $\varphi(0)$, $\varphi'(0)$ et $\varphi''(0)$.