Examples of differential multicollisions for 13 and 14 rounds of AES-256

Alex Biryukov, Dmitry Khovratovich, Ivica Nikolić

University of Luxembourg

{alex.biryukov, dmitry.khovratovich, ivica.nikolic@uni.lu}

Here we present practical differential q-multicollisions for AES-256. In our paper [1] q-multicollisions are found with complexity $q \cdot 2^{67}$. We relax conditions on the plaintext difference Δ_P allowing some bytes to vary and find multicollisions for 13 and 14 round AES with complexity $q \cdot 2^{37}$. Even with the relaxation there is still a large complexity gap between our algorithm and the lower bound that we have proved in Lemma 1. Moreover we believe that in practice finding even two fixed-difference collisions for a good cipher would be very challenging.

The multicollision sets, presented in the tables below, are obtained using the technique described in our original paper. Our search algorithm for 13 and 14 rounds of AES-256 can be described as:

- 1. Build a differential trail for 14 rounds of AES-256. The trail specifies the admissible values of the active S-boxes in these rounds.
- 2. Using the triangulation algorithm produce one pair that satisfies all the conditions for the S-boxes in the rounds 3–7.
- 3. If this pair satisfies the conditions for the rounds 8-14 as well then goto step 4; else go to step 2.
- 4. Decrypt the pair through one round and print the 13 round example (decrypt the pair through two rounds and print the 14 round example).

Note that, since we use our triangulation algorithm, the S-boxes active in the rounds 3–7 do not increase the complexity of the search, because we always fix the right (admissible) values for them. Hence, the complexity of the above algorithm is fully determined only by the number of active S-boxes in the rounds 8-14 plus one active S-box in the key schedule in round 6 that our triangulation algorithm does not cover. Therefore, we have in total 6 active S-boxes. Five of these hold with probability 2^{-6} and one with probability 2^{-7} , hence the total complexity for finding one collision is 2^{37} executions of step 2. Since S-boxes get admissible values in rounds 3–14, the remaining one (two) rounds in the beginning can add only two bytes (eight bytes) variation to the difference, i.e. the rest of the bytes will still have the pre-fixed differences.

Our lower bound from Lemma 1 suggests that for 13 rounds of AES-256 one would expect to find this type of differential 5-multicollision, with fixed input difference in 14 bytes of the plaintext, and fixed output difference in the ciphertext, with complexity $2^{\frac{4\cdot112}{6}} = 2^{74.6}$ computations. Our search algorithm finds this multicollision set with $5 \cdot 2^{37}$ computations. For 14 rounds, with half of the plaintext difference fixed, and fully fixed difference in the ciphertext, the

generic search would find differential 10-multicollisions with complexity $2^{\frac{9\cdot64}{11}}=2^{52\cdot3}$. Our algorithm finds this set with $10\cdot2^{37}$ computations.

The estimates for the generic multicollision search are given as lower bounds. Since we have highly structured and *fixed* differences in the plaintext and in the ciphertext, we expect that in practice finding each extra collision would cost about 2^{112} and 2^{64} time for 13 and 14 rounds of AES-256, respectively.

References

1. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and related-key attack on the full AES-256. In Shai Halevi, editor, *CRYPTO*, LNCS. Springer, 2009. to appear.

Table 1. Differential 5-multicollisions for 13 rounds of AES-256. The last row is the ciphertext difference for all of the five pairs.

$K_1 \oplus K_2$	0f070709	0e070709	0f070709	0e070709					
	371f1f21	00000000	371f1f21	00000000					
K_1	254a6373	cf362573	ef2cb535	6ae8f43a	K_2	2a4d647a	c131227a	e02bb23c	64eff333
	16a9ba79	a2c2fbed	7f00a01f	48ab1441		21b6a558	${\tt a2c2fbed}$	$481 {\rm fbf3e}$	48ab1441
P_1	243bc292	18fa5782	60236961	b3ec7d58	P_2	8724ddb3	18fa5782	793c7640	b3ec7d58
$P_1 \oplus P_2$	a3 1f1f21	00000000	19 1f1f21	00000000					
K_1	d6da793c	adeb288e	7f8f4e9c	f7f65854	K_2	d9dd7e35	a3ec2f87	70884995	f9f15f5d
	e4b93772	20fe8ecb	2491682d	1327930e		d3a62853	20fe8ecb	138e770c	1327930e
P_1	24159557	e524934a	1afebe7c	8acb180d	P_2	1e0a8a76	e524934a	c1e1a15d	8acb180d
$P_1 \oplus P_2$	3a 1f1f21	00000000	db 1f1f21	00000000					
K_1	e22f0568	1857d06d	2170bf42	dcef9e97	K_2	ed280261	1650d764	2e77b84b	d2e8999e
	da3a3459	b8604fd7	a473efd7	939e628e		ed252b78	b8604fd7	936cf0f6	939e628e
P_1	93677864	20116bd1	e6889a49	9a0c3eaf	P_2	80786745	20116bd1	98978568	9a0c3eaf
$P_1 \oplus P_2$	13 1f1f21	00000000	7e 1f1f21	00000000					
K_1	1e16a0ac	0e8ccaeb	f463fc3b	491381ed	K_2	1111a7a5	008bcde2	fb64fb32	471486e4
	3ad4dc1e	ad3a6411	ef88c1d3	d81dc7a7		0dcbc33f	ad3a6411	$\tt d897def2$	d81dc7a7
P_1	8ff62851	a9a1784f	f8f19558	f9de3c58	P_2	72e93770	a9a1784f	feee8a79	f9de3c58
$P_1 \oplus P_2$	fd 1f1f21	00000000	06 1f1f21 (00000000					
K_1	b35f91b2	450d32a0	074d95e5	260b39a8	K_2	bc5896bb	4b0a35a9	084a92ec	280c3ea1
	05fc10ec	1b5b7eea	4f504523	78bd9286		32e30fcd	1b5b7eea	784f5a02	78bd9286
P_1	78f7ad2f	5d12c822	71aaa425	538b0264	P_2	d3e8b20e	5d12c822	aab5bb04	538b0264
$P_1 \oplus P_2$	ab 1f1f21	00000000	db1f1f21	0000000					
$C_1 \oplus C_2$	01000000	01000000	01000000	01000000					
	1					·			

 $\textbf{Table 2.} \ \ \text{Differential 10-multicollisions for 14 rounds of AES-256.} \ \ \text{The last row is the ciphertext difference for all of the ten pairs.}$

$U \oplus U$	0.0070700	0.070700	0.0070700	0.070700					
$K_1 \oplus K_2$	0f070709								
			371f1f21						
K_1	!		ef2cb535		$ K_2 $				
			7f00a01f		_			481fbf3e	
P_1			5f35ff8f		P_2	938bc4d2	0b6f0bb1	a0320686	0a881e85
$P_1 \oplus P_2$	08 07 66 09	0e a1 07 2f	ff 07 f9 09	0e f1 07 b0					
K_1	dbbfaeb4	92388b3b	3708603d	1b0306c4	K_2	d4b8a9bd	9c3f8c32	380f6734	150401cd
	29f481aa	12c21882	$\mathtt{d708dd52}$	e0b13282		1eeb9e8b	12c21882	e017c273	e0b13282
P_1	487a8f40	6e0356de	41 da0 ba3	3bc3c514	P_2	457d5e49	60ae51d0	15dd73aa	3524c25d
$P_1 \oplus P_2$	0d 07 d1 09	0e ad 07 0e	54 07 78 09	0e e7 07 49					
K_1	d6da793c	adeb288e	7f8f4e9c	f7f65854	K_2	d9dd7e35	a3ec2f87	70884995	f9f15f5d
	e4b93772	20fe8ecb	2491682d	1327930e		d3a62853	20fe8ecb	138e770c	1327930e
P_1	094bb6f6	a759cecf	d41a31fd	319323c3	P_2	024c8aff	a96ec91b	711dbcf4	3f2c2440
$P_1 \oplus P_2$	0ъ 07 3с 09	0e 37 07 d4	a5 07 8d 09	0e bf 07 83					
K_1	e22f0568	1857d06d	2170bf42	dcef9e97	$ K_2 $	ed280261	1650d764	2e77b84b	d2e8999e
	da3a3459	b8604fd7	a473efd7	939e628e		ed252b78	b8604fd7	936cf0f6	939e628e
P_1	5d7c9ca8	082f0f55	5f725130	f4666e5d	P_2	227b43a1	066b084f	d6751039	fab9694e
$P_1 \oplus P_2$	7f 07 df 09	0e 44 07 1a	89 07 41 09	0e df 07 13					
K_1	1e16a0ac	0e8ccaeb	f463fc3b	491381ed	K_2	1111a7a5	008bcde2	fb64fb32	471486e4
	3ad4dc1e	ad3a6411	ef88c1d3	d81dc7a7		0dcbc33f	ad3a6411	d897def2	d81dc7a7
P_1	13e096fd	8fef8da5	979b2ccd	043cf04a	P_2	35e702f4	81368a9a	e09c9bc4	0ac2f796
$P_1 \oplus P_2$	26 07 94 09	0e d9 07 3f	77 07 b7 09	0e fe 07 dc					
K_1	32bc86d4	69a1d814	766610ef	215a5a7b	K_2	3dbb81dd	67a6df1d	796117e6	2f5d5d72
	4d7933db	eb334b0d	ffa980c1	c888c7e3		7a662cfa	eb334b0d	c8b69fe0	c888c7e3
P_1	f2116489	3e44f43b	427d0b82	106e1616	P_2	c7164580	3089f3d7	787af28b	1ef4116a
$P_1 \oplus P_2$	35 07 21 09	0e cd 07 ec	3a 07 f9 09	0e 9a 07 7c					
K_1	23af02e1	65dfae34	801e5598	c9d84572	K_2	2ca805e8	6bd8a93d	8f195291	c7df427b
	af15ae93	addc102d	b985215d	8e2bbf62		980ab1b2	addc102d	8e9a3e7c	8e2bbf62
P_1	839adb14	fc39a4ef	dd8b5835	d4055b3f	P_2	c79dde1d	f2faa32e	ec8cc93c	da545cd7
$P_1 \oplus P_2$	44 07 05 09	0e c3 07 c1	31 07 91 09	0e 51 07 e8					
K_1	66e16f1a	fd4d0e90	db7d4985	bad4284f	K_2	69e66813	f34a0999	d47a4e8c	b4d32f46
	caf7d6f6	19a1bc7e	467ef193	711e1300		fde8c9d7	19a1bc7e	7161eeb2	711e1300
P_1	2d310d6f	a2a409cf	e9f6f074	5167426f	P_2	2e360666	acd10eed	5ff1607d	5f3345e3
$P_1 \oplus P_2$	03 07 0b 09	0e 75 07 22	b6 07 90 09	0e 54 07 8c					
K_1	0b18834e	0810e179	4ef0d554	9b06ebfb	K_2	041f8447	0617e670	41f7d25d	9501ecf2
	73ee203f	98fd948a	53905aa3	647b6cc4		44f13f1e	98fd948a	648f4582	647b6cc4
P_1	c3738f78	9484d719	1180bb6e	9def69b4	P_2	cb74b471	9a94d017	5687fb67	93c26efa
$P_1 \oplus P_2$	08 07 3b 09	0e 10 07 0e	47 07 40 09	0e 2d 07 4e					
K_1	b35f91b2	450d32a0	074d95e5	260b39a8	K_2	bc5896bb	4b0a35a9	084a92ec	280c3ea1
	!		4f504523			l .		784f5a02	
P_1	6bca5047	12085de9	89a72bff	f959571f	P_2	57cdf34e	1ca85a7a	30a0e7f6	f7fc50b3
$P_1 \oplus P_2$	3c 07 a3 09	0e a0 07 93	b9 07 cc 09	0e a5 07 ac					
	01000000								
	1					I			

Fig. 1. Multicollision trail. Green bytes denote arbitrary differences, the other colors denote fixed differences.