Cálculo II.

1º DE GRADO EN MATEMÁTICAS Y DOBLE GRADO INFORMÁTICA-MATEMÁTICAS. Curso 2019-20. DEPARTAMENTO DE MATEMÁTICAS

Hoja 4

Funciones vectoriales. Regla de la cadena. Plano tangente a una superficie

- 1.- Sea F(x,y) = f(u(x,y),v(x,y)) con $u = \frac{x-y}{2}, v = \frac{x+y}{2}$. Aplicar la regla de la cadena para calcular $\nabla F(x,y)$ en función de las derivadas parciales de f, $\frac{\partial f}{\partial u}$ y $\frac{\partial f}{\partial v}$.
- 2.- Sean $f(x,y) = x^2 + y$, $g(u) = (\text{sen } 3u, \cos 8u)$ y h(u) = f(g(u)). Calcular dh/du en u = 0 tanto de forma directa como usando la regla de la cadena.
- 3.- Las relaciones u = f(x,y), x = x(t) e y = y(t) definen u como función escalar de t, digamos u = u(t). Aplicar la regla de la cadena para la derivada de u respecto de t cuando

$$f(x,y) = e^{xy} \cos x y^2$$
, $x(t) = \cos t$, $y(t) = \sin t$.

- 4.- La sustitución t = g(x,y) convierte F(t) en f(x,y) = F(g(x,y)). Calcúlese la matriz de Df(x,y) en el caso particular en que $F(t) = e^{\sin t}$ y $g(x,y) = \cos(x^2 + y^2)$.
- 5.- Las ecuaciones $u=f(x,y), \ x=x(s,t)$ e y=y(s,t) definen u como función de las variables (s,t). Expresar las derivadas parciales $\frac{\partial u}{\partial s}$ y $\frac{\partial u}{\partial t}$, en términos de las diversas derivadas parciales de f, x e y. Resolver este mismo ejercicio en el caso particular en que $x(s,t)=s\,t,\ y(s,t)=\frac{s}{t}$.
- 6.- Sean $f:\mathbb{R}^2 \to \mathbb{R}^2$ y $g:\mathbb{R}^3 \to \mathbb{R}^2$ funciones vectoriales definidas mediante

$$f(x,y) = (e^{x+2y}, \text{sen}(2x+y)),$$
 $g(u,v,w) = (u+2v^2+3v^3, 2v-u^2).$

Hallar cada una de las matrices de Df(x,y) y Dg(u,v,w). Calcular la función compuesta h(u,v,w) = f(g(u,v,w)) y la matriz de Dh(1,-1,1).

7.- Sean $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ una función diferenciable y $g=(g_1,g_2)$ la función vectorial

$$g(u, v, w) = (u^2 + v^2 + w^2, u + v + w).$$

Considérese la función compuesta $h = f \circ g$ y demuéstrese que

$$\|\nabla h\|^2 = 4 \left(\frac{\partial f}{\partial x}\right)^2 g_1 + 4 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} g_2 + 3 \left(\frac{\partial f}{\partial y}\right)^2.$$

- 8.- (a) Hallar la función $\frac{\partial f}{\partial x}$, siendo $f(x,y) = \int_0^{\sqrt{xy}} e^{-t^2} dt$, definida para x > 0, y > 0.
 - (b) Hallar el valor de $\frac{\partial f}{\partial x}(1,2)$, donde

$$f(x,y) = \int_0^{x^3 - 2y} e^{t^2} dt, \quad x, y \in \mathbb{R}.$$

- 9.- Supongamos que la ecuación $y^2 + xz + z^2 e^z k = 0$ define z como función de x e y, sea ésta z = f(x, y). Hallar el valor de la constante k para el cual f(0, e) = 2 y calcular $\nabla f(0, e)$.
- 10.- Hállese la ecuación de los planos tangentes a la gráficas de la funciones:
 - (a) $f(x,y) = x^2 y^2$, en el punto (1,1,0).
 - (b) $f(x,y) = x^2 + y^2$ en un punto genérico (x_0,y_0,z_0) . ¿En qué puntos es el plano tangente paralelo al plano x=z?

- 11.- Hállese la ecuación del plano tangente a la superficie $x^2 y^2 z = 0$ en el punto (1, 1, 0).
- 12.- Si (a, b, c) es un punto de la superficie z = xy, las dos rectas

$$\left\{ \begin{array}{l} z=b\,x,\\ y=b, \end{array} \right. \qquad \text{y} \qquad \left\{ \begin{array}{l} z=a\,y,\\ x=a, \end{array} \right.$$

se cortan en (a, b, c) y están situadas en la superficie. Comprobar que el plano tangente a esta superficie en el punto (a, b, c) contiene a esas dos rectas.

- 13.- Hallar la ecuación de la única recta tangente a las dos superficies $x^2 + y^2 + 2z^2 = 4$ y $z = e^{x-y}$ en el punto (1, 1, 1).
- 14.- Hallar una constante c tal que en todo punto de la intersección de las dos esferas $(x-c)^2 + y^2 + z^2 = 3$ y $x^2 + (y-1)^2 + z^2 = 1$, los planos tangentes correspondientes sean perpendiculares el uno a otro.
- 15.- Calcular las derivadas direccionales de las funciones:
 - (a) f(x, y, z) = 3x 5y + 2z en el punto (2, 2, 1) en la dirección de la normal exterior a la esfera $x^2 + y^2 + z^2 = 9$.
 - (b) $f(x, y, z) = x^2 y^2$ en un punto cualquiera de la superficie $x^2 + y^2 + z^2 = 4$, en la dirección de la normal exterior en dicho punto.