计算机网络实验指导 郑宏 宿红毅 编著

第 4 章

4.1	VLANIF 配置
4.2	单臂路由器配置
4.3	静态路由与默认路由配置
4.4	RIP 配置与分析
4.5	OSPF 配置
4.6	IPv6 网络配置与分析
4.7	NAT 配置

4.4	
RIP 配置与 分析	

实验 4.4.1	路由器配置 RIPv1 基本功能
实验 4.4.2	路由器配置 RIPv2 基本功能
实验 4.4.3	路由器配置 RIPv2 鉴别
实验 4.4.4	RIP 路由环路和慢收敛的验证与解决方法

4.4 RIP 配置与分析

◆ 实验目的

- 1. 理解距离向量算法和RIP原理。
- 2. 掌握RIPv1的配置方法。
- 3. 掌握RIPv2的配置方法。
- 4. 掌握RIPv2鉴别的配置方法。
- 5. 理解RIP坏消息传播得慢和路由环路问题。
- 6. 理解水平分割作用和原理,掌握水平分割配置方法。
- 7. 理解毒性逆转作用和原理,掌握毒性逆转配置方法。

◆ 实验装置

- 1. 华为 eNSP 软件。
- 2. ping.
- 3. tracert
- 4. Wireshark

4.4 RIP 配置与分析

◆实验原理

- RIP (Routing Information Protocol,路由信息协议)是互联网的标准协议。
- RIP 是内部网关协议 IGP (Interior Gateway Protocol)中最先得到广泛使用的协议。
- RIP 是一种分布式的基于距离向量(Distance-Vector)算法的路由选择协议。
- RIP 包括 RIPv1 和 RIPv2 两个版本, RIPv2 对 RIPv1 进行了扩充。
- RIP 的最大优点是实现简单,但缺点是收敛时间较长,交换的路由信息多,最大距离为 15。因此,该协议主要应用于规模较小的网络。

实验 4.4.1 路由器配置 RIPv1 基本功能

◆任务要求(1/3):

- 某网络如图所示。招生就业部和学籍管理部的电脑位于不同的IP网段,通过 3 台路由器 RTA、RTB 和 RTC 互连在一起。
- 由于业务需要,两个部门的用户需要交换数据。
- 决定在 3 台路由器上配置 RIPv1 实现网络之间的通信。
- 请配置路由器,实现招生就业部和学籍管理部电脑之间的通信。

实验 4.4.1 路由器配置 RIPv1 基本功能

◆任务要求(2/3):

图4-8 路由器配置 RIPv1 基本功能实现网络之间的通信

实验 4.4.1 路由器配置 RIPv1 基本功能

◆任务要求(3/3):

表4-10 IP 网段的 IPv4 地址和子网掩码定义

	IPv4地址	子网掩码	默认网关
用户电脑			
PC-10-1	10.1.10.11	255.255.255.0	10.1.10.1
PC-50-1	11.1.50.11	255.255.255.0	11.1.50.1
路由器RTA			
GE 0/0/0	172.16.101.1	255.255.255.0	
GE 0/0/2	10.1.10.1	255.255.255.0	
路由器RTB			
GE 0/0/0	172.16.101.2	255.255.255.0	
GE 0/0/1	172.16.102.2	255.255.255.0	
路由器RTC			
GE 0/0/0	172.16.102.1	255.255.255.0	
GE 0/0/2	11.1.50.1	255.255.255.0	

实验 4.4.1 路由器配置 RIPv1 基本功能

- ◆实验步骤(1/4):
 - 步骤1:创建拓扑。向空白工作区中添加3 台路由器和 PC。按指定端口将路由器和 PC 互连。
 - 步骤2:配置 PC 的 IP 地址。为 PC 配置 IPv4 地址、子网掩码和默认网关。保存创建的拓扑。
 - 步骤3:启动设备。
 - 步骤4:配置各路由器端口的 IPv4 地址和子网掩码。

创建的网络拓扑

实验 4.4.1 路由器配置 RIPv1 基本功能

- ◆实验步骤(2/4):
 - 步骤5:配置各路由器的 RIPv1 基本功能。
 - > 1. 使能 RIP 进程。
 - > 2. 对指定网段接口使能 RIP 路由。地址必须是不带子网的地址段,使用点分十进制形式。
 - 步骤6: 检查配置结果。
 - > 1. RIP 的邻居信息。
 - > 2. RIP 发布数据库的所有激活路由。
 - > 3. 从其他路由器学来的 RIP 路由信息。
 - > 4. 路由器 IP 路由表。

实验 4.4.1 路由器配置 RIPv1 基本功能

- ◆实验步骤(3/4):
 - 步骤7:测试验证。
 - > 1. 检查 PC-10-1 是否能与 PC-50-1 通信:

tracert 11.1.50.11

- > 2. 开启路由器 RTB 端口 GE 0/0/0 和 GE 0/0/1 的数据抓包。分析抓取到的 RIPv1 通信。分析并回答:
 - (1) RIPv1 报文类型有几种?它们分别是什么?
 - (2) RIPv1 使用哪个协议传输 RIP 报文?源端口号和目的端口号分别是多少?
 - (3) RIPv1 发送路由更新报文时,报文的目的 IP 地址是多少?是什么类型的IP地址?
 - (4)在 RIPv1 路由更新报文中,有几条路由?每条路由包含哪些信息?
- ◆完成并提交实验报告

实验 4.4.2 路由器配置 RIPv2 基本功能

◆任务要求(1/3):

- 某网络如图所示。招生就业部和学籍管理部的电脑位于不同的IP网段,通过 3 台路由器 RTA、RTB 和 RTC 互连在一起。
- 由于业务需要,两个部门的用户需要交换数据。
- 决定在 3 台路由器上配置 RIPv2 实现网络之间的通信。
- 请配置路由器,实现招生就业部和学籍管理部电脑之间的通信。

实验 4.4.2 路由器配置 RIPv2 基本功能

◆任务要求(2/3):

图4-9 路由器配置 RIPv2 基本功能实现网络之间的通信

实验 4.4.2 路由器配置 RIPv2 基本功能

◆任务要求(3/3):

表4-11 IP 网段的 IPv4 地址和子网掩码定义

	IPv4地址	子网掩码	默认网关
用户电脑			
PC-10-1	10.1.10.11	255.255.255.0	10.1.10.1
PC-50-1	11.1.50.11	255.255.255.0	11.1.50.1
路由器RTA			
GE 0/0/0	172.16.101.1	255.255.255.0	
GE 0/0/2	10.1.10.1	255.255.255.0	
路由器RTB			
GE 0/0/0	172.16.101.2	255.255.255.0	
GE 0/0/1	172.16.102.2	255.255.255.0	
路由器RTC			
GE 0/0/0	172.16.102.1	255.255.255.0	
GE 0/0/2	11.1.50.1	255.255.255.0	

实验 4.4.2 路由器配置 RIPv2 基本功能

- ◆实验步骤(1/4):
 - 步骤1:加载拓扑。
 - 1. 打开实验 4.4.1 中保存的拓扑文件, 将其加载到工作区。当然,也可以创建 拓扑。
 - > 2. 检查、设置各 PC 的 IP 地址、子网掩码和默认网关的设置,使其与表4-11 中的定义一致。
 - > 3. 保存拓扑。
 - 步骤2:启动设备。

创建的网络拓扑

实验 4.4.2 路由器配置 RIPv2 基本功能

- ◆实验步骤(2/4):
 - 步骤3: 配置各路由器端口的 IPv4 地址和子网掩码。
 - 步骤4:配置各路由器的 RIPv2 基本功能。
 - > 1. 使能 RIP 进程, 配置 RIPv2。
 - > 2. 对指定网段接口使能 RIP 路由。地址必须是不带子网的地址段,使用点分十进制 形式。
 - 步骤5:检查配置结果。
 - > 1. RIP 的邻居信息。
 - > 2. RIP 发布数据库的所有激活路由。
 - > 3. 从其他路由器学来的 RIP 路由信息。
 - > 4. 路由器 IP 路由表。

实验 4.4.2 路由器配置 RIPv2 基本功能

- ◆实验步骤(3/4):
 - 步骤6:测试验证。
 - > 1. 检查 PC-10-1 是否能与 PC-50-1 通信:

tracert 11.1.50.11

- ▶ 2. 开启路由器 RTB 端口 GE 0/0/0 和 GE 0/0/1 的数据抓包。分析抓取到的 RIPv2 通信。分析并回答:
 - (1) RIPv2 报文类型有几种?它们分别是什么?
 - (2) RIPv2 使用哪个协议传输 RIP 报文?源端口号和目的端口号分别是多少?
 - (3) RIPv2 发送路由更新报文时,报文的目的 IP 地址是多少?是什么类型的IP地址?
 - (4)在 RIPv2 路由更新报文中,有几条路由?每条路由包含哪些信息?
- ◆完成并提交实验报告

- ◆ RIP 路由更新报文以明文形式广播或组播给所有的 RIP 路由器,任何 RIP 路由器都可以发送和接收路由更新报文,从而改变或影响RIP路由器的路由选择结果。攻击者经常利用该特性对网络发动攻击。
- ◆防止这种攻击的一种方法是使用鉴别。
- ◆ RIPv1 不支持鉴别,但 RIPv2 支持鉴别。
- ◆ RIPv2 协议能够通过路由更新消息所包含的<mark>密码</mark>来验证该路由更新来源是 否合法,其方式有两种:简单(Simple)鉴别和 MD5(Message Digest 5)密文鉴别。
- ◆ 当一方开启鉴别之后,另一方也同样需要开启鉴别,且只有密码一致时, 路由更新才生效。

实验 4.4.3 路由器配置 RIPv2 鉴别

◆任务要求(1/3):

- 某网络如图所示。招生就业部和学籍管理部的电脑位于不同的IP网段,通过 3 台路由器 RTA、RTB 和 RTC 互连在一起。
- 由于业务需要,两个部门的用户需要交换数据。
- 决定在 3 台路由器上配置 RIPv2 实现网络之间的通信。
- 为防止非法路由更新,提高安全性,需要配置鉴别。
- 请配置路由器,实现安全的路由更新和招生就业部与学籍管理部电脑之间的通信。

→ 计算机网络实验指导

郑宏 宿红毅 编著 🔾

实验 4.4.3 路由器配置 RIPv2 鉴别

◆任务要求(2/3):

图4-10 路由器配置 RIPv2 鉴别

实验 4.4.3 路由器配置 RIPv2 鉴别

◆任务要求(3/3):

表4-12 IP 网段的 IPv4 地址和子网掩码定义

	IPv4地址	子网掩码	默认网关
用户电脑			
PC-10-1	10.1.10.11	255.255.255.0	10.1.10.1
PC-50-1	11.1.50.11	255.255.255.0	11.1.50.1
路由器RTA			
GE 0/0/0	172.16.101.1	255.255.255.0	
GE 0/0/2	10.1.10.1	255.255.255.0	
路由器RTB			
GE 0/0/0	172.16.101.2	255.255.255.0	
GE 0/0/1	172.16.102.2	255.255.255.0	
路由器RTC			
GE 0/0/0	172.16.102.1	255.255.255.0	
GE 0/0/2	11.1.50.1	255.255.255.0	

- ◆实验步骤(1/4):
 - 步骤1:加载拓扑。
 - > 1. 打开实验 4.4.2 中保存的拓扑文件, 将其加载到工作区。当然,也可以创建 拓扑。
 - > 2. 检查、设置各 PC 的 IP 地址、子网掩码和默认网关的设置,使其与表4-12 中的定义一致。
 - > 3. 保存拓扑。
 - 步骤2:启动设备。

创建的网络拓扑

- ◆实验步骤(2/4):
 - 步骤3:配置各路由器端口的 IPv4 地址和子网掩码。
 - 步骤4: 配置各路由器的 RIPv2 基本功能和鉴别。
 - > 1. 使能 RIP 进程,配置 RIPv2。
 - > 2. 对指定网段接口使能 RIP 路由。地址必须是不带子网的地址段,使用点分十进制 形式。
 - > 3. 配置使用的<mark>鉴别方法。两端的鉴别方法和密码必须一致</mark>,否则不能通过验证导致 鉴别失败。

- ◆实验步骤(2/4):
 - 步骤5: 检查配置结果。
 - > 1. RIP 的邻居信息。
 - > 2. RIP 发布数据库的所有激活路由。
 - > 3. 从其他路由器学来的 RIP 路由信息。
 - > 4. 路由器 IP 路由表。

实验 4.4.3 路由器配置 RIPv2 鉴别

- ◆实验步骤(3/4):
 - 步骤6:测试验证。
 - > 1. 检查 PC-10-1 是否能与 PC-50-1 通信:

tracert 11.1.50.11

- > 2. 开启路由器 RTB 端口 GE 0/0/0 和 GE 0/0/1 的数据抓包。分析抓取到的 RIPv2 通信。分析并回答:
 - (1) 在路由器 RTA 和 RTB 之间的 RIPv2 路由更新报文中,采用的鉴别方式是什么?密码是什么?
 - (2) 在路由器 RTB 和 RTC 之间的 RIPv2 路由更新报文中,采用的鉴别方式是什么?密码是什么?

实验 4.4.3 路由器配置 RIPv2 鉴别

- ◆实验步骤(2/4):
 - 步骤7: 修改路由器 RIPv2 鉴别配置。修改路由器 RTA 的 RIPv2 鉴别配置, 其他路由器的配置不变。
 - > 1. 修改鉴别方法。

或者

> 2. 修改密码。

实验 4.4.3 路由器配置 RIPv2 鉴别

- ◆实验步骤(2/4):
 - 步骤8: 检查路由器 RTA 的 RIP 结果。

【注:RIP 的路由更新要花费一定的时间,需要等待一段时间(3分钟左右)后才能在路由表中看到配置是否生效。】

- > 1. RIP 的邻居信息。
- > 2. RIP 发布数据库的所有激活路由。
- > 3. 从其他路由器学来的 RIP 路由信息。
- > 4. 路由器 IP 路由表。

实验 4.4.3 路由器配置 RIPv2 鉴别

- ◆实验步骤(3/4):
 - 步骤9:测试验证。
 - > 1. 检查 PC-10-1 是否能与 PC-50-1 通信:

tracert 11.1.50.11 超时

- > 2. 开启路由器 RTB 端口 GE 0/0/0 和 GE 0/0/1 的数据抓包。分析抓取到的 RIPv2 通信。分析并回答:
 - (1) 在路由器 RTA 和 RTB 之间的 RIPv2 路由更新报文中,采用的鉴别方式是什么?密码是什么?
 - (2) 为什么 PC-10-1 与 PC-50-1 不能相互ping通?
- ◆完成并提交实验报告

实验 4.4.4 RIP 路由环路和慢收敛的验证与解决方法

- ◆ RIP 特点:好消息传播得快,坏消息传播得慢。
- ◆ "坏消息传播得慢"有可能会产生路由环路。
- ◆ 为了使坏消息传播得更快些,加快收敛,消除路由环路,可以采取以下机制:
 - 将距离等于 16 的路由定义为不可达。
 - 触发更新:若网络拓扑没有变化,则按通常的间隔发送路由更新报文。一旦网络拓扑有变化,立刻向邻居路由器发布路由更新报文。
 - 水平分割(Split Horizon):从某个端口学到的路由,不会从该端口再发回给邻居路由器。
 - 毒性逆转(Poison Reverse):从某个端口学到路由后,将该路由的距离设置为16(不可达),并从原端口发回邻居路由器。

实验 4.4.4 RIP 路由环路和慢收敛的验证与解决方法

◆任务要求(1/3):

- 某网络如图所示。招生就业部和学籍管理部的电脑位于不同的IP网段,通过 3 台路由器 RTA、RTB 和 RTC 互连在一起。
- 由于业务需要,两个部门的用户需要交换数据。
- 决定在 3 台路由器上配置 RIPv1 实现网络之间的通信。
- 请分别配置水平分割和毒性反转,验证这两种机制使坏消息传播得更快,进而消除路由环路和加快收敛的效果。

实验 4.4.4 RIP 路由环路和慢收敛的验证与解决方法

◆任务要求(2/3):

图4-11 路由器配置 RIPv1 基本功能实现网络之间的通信

实验 4.4.4 RIP 路由环路和慢收敛的验证与解决方法

◆任务要求(3/3):

表4-13 IP 网段的 IPv4 地址和子网掩码定义

	IPv4地址	子网掩码	默认网关
用户电脑			
PC-10-1	10.1.10.11	255.255.255.0	10.1.10.1
PC-50-1	11.1.50.11	255.255.255.0	11.1.50.1
路由器RTA			
GE 0/0/0	172.16.101.1	255.255.255.0	
GE 0/0/2	10.1.10.1	255.255.255.0	
路由器RTB			
GE 0/0/0	172.16.101.2	255.255.255.0	
GE 0/0/1	172.16.102.2	255.255.255.0	
路由器RTC			
GE 0/0/0	172.16.102.1	255.255.255.0	
GE 0/0/2	11.1.50.1	255.255.255.0	

实验 4.4.4 RIP 路由环路和慢收敛的验证与解决方法

- ◆实验步骤(1/21):
 - 步骤1:加载拓扑。
 - > 1. 打开实验 4.4.1 中保存的拓扑文件, 将其加载到工作区。当然,也可以创建 拓扑。
 - > 2. 检查、设置各 PC 的 IP 地址、子网掩码和默认网关的设置,使其与表4-13 中的定义一致。
 - > 3. 保存拓扑。
 - 步骤2:启动设备。

创建的网络拓扑

实验 4.4.4 RIP 路由环路和慢收敛的验证与解决方法

- ◆实验步骤(2/21):
 - 步骤3:配置各路由器端口的 IPv4 地址和子网掩码。
 - 步骤4: 配置各路由器的 RIPv1 基本功能。
 - > 1. 使能 RIP 进程。
 - > 2. 对指定网段接口使能 RIP 路由。地址必须是不带子网的地址段,使用点分十进制形式。
 - 步骤5: 检查配置结果。
 - > 1. 从其他路由器学来的 RIP 路由信息。
 - > 2. 路由器 IP 路由表中的 RIP 路由。

实验 4.4.4 RIP 路由环路和慢收敛的验证与解决方法

- ◆实验步骤(3/21):
 - 步骤6:测试验证。
 - > 1. 检查 PC-10-1 是否能与 PC-50-1 通信:

ping 11.1.50.11

能:正确; 不能:错误

> 2. 若不能通信,说明配置不正确。在验证 RIPv1 的配置正确之后,再继续下面的 步骤。

实验 4.4.4 RIP 路由环路和慢收敛的验证与解决方法

- ◆★实验步骤(4/21):
 - 步骤7:验证路由环路和慢收敛。
 - > 1. 开启路由器 RTB 端口 GE 0/0/0 和 GE 0/0/1 的数据抓包。
 - > 2. 修改路由器 RTA 的 RIPv1 配置,关闭自动地址聚合,关闭与路由器 RTB 之间的水平分割和毒性逆转。
 - > 3. 修改路由器 RTB 的 RIPv1 配置, 关闭自动地址聚合, 关闭与路由器 RTA 和 RTC 之间的水平分割和毒性逆转。
 - > 4. 修改路由器 RTC 的 RIPv1 配置,关闭自动地址聚合,关闭与路由器 RTB 之间的水平分割和毒性逆转。

- **◆实验步骤(5/21):**
 - 步骤7:验证路由环路和慢收敛。
 - > 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTA 发给路由器 RTB 的路由更新报文中有几条路由?每条路由包含哪些信息?与未关闭水平分割相比,路由更新报文中增加了哪些路由?
 - (2)路由器 RTB 把到电脑 PC-50-1 所在网络的路由更新为路由器 RTA 发送的路由了吗?
 - (3)路由器 RTB 发给路由器 RTA 的路由更新报文中有几条路由?每条路由包含哪些信息?与未关闭水平分割相比,路由更新报文中增加了哪些路由?
 - (4) 路由器 RTA 把到电脑 PC-10-1 所在网络的路由更新为路由器 RTB 发送的路由了吗?

- ◆实验步骤(6/21):
 - 步骤7:验证路由环路和慢收敛。
 - > 5. 模拟产生一个坏消息:关闭路由器 RTC 端口 GE 0/0/2,模拟与电脑 PC-50-1 之间的链路断开。
 - > 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTA 发给路由器 RTB 的路由更新报文中<mark>有几条路由?</mark>每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新,其距离变为16?

- **◆实验步骤(7/21):**
 - 步骤7:验证路由环路和慢收敛。
 - > 分析路由器 RTB 端口 GE 0/0/1 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTB 发给路由器 RTC 的路由更新报文中有几条路由?每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新,其距离变为16?
 - → 从 PC-10-1 ping PC-50-1, 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 ICMP 通信,回答下列问题:
 - (1) PC-10-1能 ping 通PC-50-1吗?
 - (2)路由器 RTA 和路由器 RTB 之间传输了哪些 ICMP 消息?相同的消息在它们之间传输了多少次?为什么会传输多次?何时停止传输?

- ◆实验步骤(8/21):
 - 步骤7:验证路由环路和慢收敛。
 - > 观察路由表的变化情况,回答下列问题:
 - (1) 在路由器 RTA 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?
 - (2)在路由器 RTB 路由表中,到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?
 - (3)在路由器 RTC 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?

- ◆实验步骤(9/21):
 - 步骤7:验证路由环路和慢收敛。
 - > 6. 模拟产生一个好消息: 打开路由器 RTC 端口 GE 0/0/2,模拟与电脑 PC-50-1 之间的链路连通。
 - > 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTA 发给路由器 RTB 的路由更新报文中<mark>有几条路由?</mark>每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新?

- ◆实验步骤(10/21):
 - 步骤7:验证路由环路和慢收敛。
 - → 分析路由器 RTB 端口 GE 0/0/1 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTB 发给路由器 RTC 的路由更新报文中有几条路由?每条路由包含哪些信息?
 - (2)到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新?
 - → 从 PC-10-1 ping PC-50-1, 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 ICMP 通信,回答下列问题:
 - (1) PC-10-1能 ping 通PC-50-1吗?
 - (2) 路由器 RTA 和路由器 RTB 之间传输了哪些 ICMP 消息?相同的消息在它们之间传输了多少次?何时停止传输?

- +实验步骤(11/21):
 - 步骤7:测试验证路由环路和慢收敛。
 - > 观察路由表的变化情况,回答下列问题:
 - (1)在路由器 RTA 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次?
 - (2)在路由器 RTB 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次?
 - (3)在路由器 RTC 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次?

- ◆★实验步骤(12/21):
 - 步骤8:验证水平分割对路由环路和慢收敛的影响。
 - > 1. 修改路由器 RTA 的 RIPv1 配置,关闭自动地址聚合,开启与路由器RTB之间的水平分割。
 - > 2. 修改路由器 RTB 的 RIPv1 配置, 关闭自动地址聚合, 开启与路由器 RTA 和 RTC 之间的水平分割。
 - > 3. 修改路由器 RTC 的 RIPv1 配置,关闭自动地址聚合,开启与路由器 RTB 之间的水平分割。

- ◆实验步骤(13/21):
 - 步骤8:验证水平分割对路由环路和慢收敛的影响。
 - > 4. 模拟产生一个坏消息:关闭路由器 RTC 端口 GE 0/0/2,模拟与电脑 PC-50-1 之间的链路断开。
 - > 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTA 发给路由器 RTB 的路由更新报文中<mark>有几条路由?</mark>每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新,其距离变为16?

- ◆实验步骤(14/21):
 - 步骤8:验证水平分割对路由环路和慢收敛的影响。
 - → 分析路由器 RTB 端口 GE 0/0/1 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTB 发给路由器 RTC 的路由更新报文中有几条路由?每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新,其距离变为16?
 - > 观察路由表的变化情况,回答下列问题:
 - (1) 在路由器 RTA 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?
 - (2) 在路由器 RTB 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?
 - (3) 在路由器 RTC 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?

- ◆实验步骤(15/21):
 - 步骤8:验证水平分割对路由环路和慢收敛的影响。
 - > 5. 模拟产生一个好消息: 打开路由器 RTC 端口 GE 0/0/2,模拟与电脑 PC-50-1 之间的链路连通。
 - > 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTA 发给路由器 RTB 的路由更新报文中<mark>有几条路由?</mark>每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新?

- ◆实验步骤(16/21):
 - 步骤8:验证水平分割对路由环路和慢收敛的影响。
 - → 分析路由器 RTB 端口 GE 0/0/1 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTB 发给路由器 RTC 的路由更新报文中有几条路由?每条路由包含哪些信息?
 - (2)到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新?
 - > 观察路由表的变化情况,回答下列问题:
 - (1) 在路由器 RTA 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次?
 - (2) 在路由器 RTB 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次?
 - (3)在路由器 RTC 路由表中,到电脑 PC-50-1 所在网络的路由更新了多少次?

- ◆★实验步骤(17/21):
 - 步骤9:验证毒性逆转对路由环路和慢收敛的影响。
 - > 1. 修改路由器 RTA 的 RIPv1 配置,关闭自动地址聚合,关闭与路由器RTB之间的水平分割,开启毒性逆转。
 - > 2. 修改路由器 RTB 的 RIPv1 配置, 关闭自动地址聚合, 关闭与路由器 RTA 和 RTC 之间的水平分割, 开启毒性逆转。
 - > 3. 修改路由器 RTC 的 RIPv1 配置,关闭自动地址聚合,关闭与路由器 RTB 之间的水平分割,开启毒性逆转。

- ◆实验步骤(18/21):
 - 步骤9:验证毒性逆转对路由环路和慢收敛的影响。
 - > 4. 模拟产生一个坏消息:关闭路由器 RTC 端口 GE 0/0/2,模拟与电脑 PC-50-1 之间的链路断开。
 - ▶ 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTA 发给路由器 RTB 的路由更新报文中<mark>有几条路由?</mark>每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新,其距离变为16?

- ◆实验步骤(19/21):
 - 步骤9:验证毒性逆转对路由环路和慢收敛的影响。
 - → 分析路由器 RTB 端口 GE 0/0/1 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTB 发给路由器 RTC 的路由更新报文中有几条路由?每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新,其距离变为16?
 - > 观察路由表的变化情况,回答下列问题:
 - (1) 在路由器 RTA 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?
 - (2) 在路由器 RTB 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?
 - (3) 在路由器 RTC 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次才被删除?

- ◆实验步骤(20/21):
 - 步骤9:验证毒性逆转对路由环路和慢收敛的影响。
 - > 5. 模拟产生一个好消息: 打开路由器 RTC 端口 GE 0/0/2,模拟与电脑 PC-50-1 之间的链路连通。
 - ▶ 分析路由器 RTB 端口 GE 0/0/0 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTA 发给路由器 RTB 的路由更新报文中<mark>有几条路由?</mark>每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新?

- ◆实验步骤(21/21):
 - 步骤9:验证毒性逆转对路由环路和慢收敛的影响。
 - > 分析路由器 RTB 端口 GE 0/0/1 上抓取到的 RIPv1 通信,回答下列问题:
 - (1) 路由器 RTB 发给路由器 RTC 的路由更新报文中有几条路由?每条路由包含哪些信息?
 - (2) 到达电脑 PC-50-1 的路由的距离是如何变化的?经过多少次更新?
 - > 观察路由表的变化情况,回答下列问题:
 - (1) 在路由器 RTA 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次?
 - (2) 在路由器 RTB 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次?
 - (3) 在路由器 RTC 路由表中, 到电脑 PC-50-1 所在网络的路由更新了多少次?
- ◆完成并提交实验报告

