

Inferring Temporal Properties of Finite-State Machines with Genetic Programming

Daniil Chivilikhin
PhD student
ITMO University

Ilya Ivanov Undergrad student ITMO University

Anatoly Shalyto Dr. Sci., professor ITMO University

GECCO'15 Student Workshop

July 11, 2015

Introduction

- **♥** Software models
- Not always created
- ✓ If created, not always kept up to date

Model inference

Temporal logics

- Used to express time-related propositions
- ✓ In software verification: state requirements for software systems
- Example statement

"If a request is received, an answer is eventually generated"

Linear temporal logics

- Propositional variables: elementary statements
- \bigcirc Boolean logic operators: \lor , \land , \neg , \rightarrow
- Temporal operators
 - X(f) f has to hold in the next state
 - F(f) f has to hold in some state in the future
 - G(f) f has to hold for all states
 - U(f, g) f has to hold until g holds

•

Specification inference

Finite-State Machines

event
$$\longrightarrow e_1 / z_0, z_1 \longleftarrow$$
 output actions

LTL for FSMs

Propositional variables

- wasEvent(e) for all events e
- wasAction(z) for all output actions z

G (wasEvent(e_2) \rightarrow wasAction(z_2)) 8

Problem statement

Find some non-trivial "interesting" LTL properties (formulas) of a given FSM

- All formulas must hold for input FSM
- Short formulas are better than long ones
- Should not hold for FSMs similar to the input FSM

Proposed approach

- Evolve a population of LTL formulas
- Express constraints using several fitness functions
- Multiobjective optimization

Main challenge

✓ Design a set of fitness functions that result in proper LTL properties

FF #1: Formula must hold for input FSM

- Main search objective
- ✓ Use model checker to check formula *f* against FSM *a*

$$F_1(f) = r(a, f) = \frac{\text{number of verified transition s}}{\text{number of transition s}} \in [0, 1]$$

FF #2: Minimal formula weight

- Measure structural complexity of a formula
- \bigcirc Operators $O = \{ \lor, \land, \neg, \rightarrow, X, F, U, R \}$
- Propositional variables

 $S = \{wasEvent(e) \text{ for all } e \in E\} \cup \{wasAction(z) \text{ for all } z \in Z\}$

FF #2: Minimal formula weight (continued)

- Each operator and variable are assigned weight W
- $\bigvee W(s) = w_s \text{ for } s \in S$
- $\bigvee W(o(arg_1, [arg_2])) = w_o + W(arg_1) [+W(arg_2)]$

$$F_{2}(f) = \frac{1}{W(f)} \in [0,1]$$

FF #3: Random FSMs

- ✓ Idea: if a large number of randomly generated FSMs satisfy an LTL formula, it is meaningless
- Generate a number of random FSMs with the same interface as the input FSM $a_1, \ldots, a_{Nsample}$

$$F_{3}(f) = \frac{1}{N_{\text{sample}}}$$

$$1 + \sum_{i=1}^{N} r(a_{i}, f)^{2}$$

FF #4: Mutants of input FSM

- ✓ Idea: if a formula is not violated by a small change in the FSM, it is not so "interesting"
- ✓ Generate random mutants of the input FSM m₁, . . . , m_{Nsample}
- Mutation operators
 - Change transition end state
 - Add/delete transitions

$$F_4(f) = \frac{1}{1 + \sum_{i=1}^{N_{\text{sample}}} r(m_i, f)^2}$$

FF #5: FSM constructed from scenarios

A scenario is a finite path in an FSM

• Example: $\langle e_2, (z_2) \rangle; \langle e_2, (z_0, z_1) \rangle; \langle e_0, (z_1) \rangle$

FF #5: FSM constructed from scenarios (continued)

- Derive random scenarios of fixed length from input FSM a
- ✓ Use fast exact algorithm to construct an FSM a* from scenarios
- ✓ Note: a* probably differs from a
- ▼ Note: not all formulas that are true for a are true for a*

$$F_{5}(f) = 1 - r(a^{*}, f)$$

FF #6: Mutants of FSM constructed from scenarios

✓ Same as FF #4, but mutants are generated from the FSM constructed from scenarios

Implementation

- **©**ECJ library used for EA implementation
- ✓ Multiobjective EAs: NSGA-II and SPEA2
- Standard GP operators

https://cs.gmu.edu/~eclab/projects/ecj/

Experiments

- Case study: Elevator doors control FSM
- ✓ Input events: A, B, C, D, E
- \bigcirc Output actions: z_1 , z_2 , z_3
- 17 manually created LTL formulas

Original LTL properties

```
G(\text{wasEvent}(D) \to \text{wasAction}(z_0))

G(\text{wasEvent}(E) \leftrightarrow \text{wasAction}(z_1))

G(\text{wasEvent}(C) \leftrightarrow \text{wasAction}(z_2))

G(\text{wasEvent}(B) \to \text{wasAction}(z_0))

G(\text{wasEvent}(A) \to X(\text{wasEvent}(D) \lor \text{wasEvent}(E)))

G(\text{wasEvent}(D) \to X(\text{wasEvent}(A) \lor \text{wasEvent}(C)))

G(\text{wasAction}(z_0) \to X(\text{wasEvent}(A) \lor \text{wasEvent}(C)))
```


Experiments goal

- ♥ Goal: infer formulas similar to manually created ones
- But how do we measure the quality of inferred formulas?
- Introduced two empirical metrics
 - Coverage metric
 - Mutants metric

Coverage metric

- ${f_{\text{new}}} \text{inferred formulas }$
- 1. Derive scenarios from original FSM a
- 2. Model inference: build FSM a' from scenarios and $\{f_{new}\}$
- 3. Metric: how many formulas from $\{f_{old}\}$ does a' satisfy?

$$c_{\text{cover}} = \frac{\sum_{f \in \{f_{\text{old}}\}} r(a', f)}{\left|\{f_{\text{old}}\}\right|}$$

Mutants metric

- ${f_{\text{new}}} \text{inferred formulas }$
- Generate M' ≤ 1000 different mutants of original FSM a
- 2. Ratio of mutants that violate at least one formula from $\{f_{old}\}$

$$n_{\text{unsat}}^{\text{old}} = \frac{1}{M} \sum_{i=1}^{M} \left(1 - \min_{f \in \{f_{\text{old}}\}} \left\lfloor r(m_i, f) \right\rfloor \right)$$

3. Metric:

$$c_{\text{mut}} = \frac{n_{\text{unsat}}^{\text{new}}}{n_{\text{unsat}}^{\text{old}}}$$

Experimental setup

- Tried both NSGA-II and SPEA2
- EAs run for 50 generations
- Population size = 500
- Result of experiment: all formulas in Pareto front
- Each experiment repeated 20 times
- ▼ FF₁ and FF₂ in all experiments, all combinations of the rest

Experimental data

$N_{\overline{0}}$	F_3	F_4	F_5	F_6	$100 \cdot c_{\mathrm{cover}}, \%$	$100 \cdot c_{ ext{mut}}, \%$	Time, s.
1	-	-	-	-	44.1 / 44.1	53.4 / 38.5	60 / 14
2	-	-	-	+	64.7 / 58.8	$49.6 \ / \ 36.6$	170 / 78
3	-	-	+	-	$73.5 \ / \ 70.6$	$65.3 \ / \ 58.0$	133 / 84
4	-	-	+	+	88.2 / 88.2	$77.5 \ / \ 83.6$	521 / 2493
5	-	+	-	-	58.8 / 58.8	55.3 / 49.2	152 / 159
6	-	+	-	+	73.5 / 79.4	71.0 / 74.0	889 / 2898
7	-	+	+	-	$88.2 \ / \ 79.4$	$78.6 \ / \ 79.4$	579 / 2197
8	-	+	+	+	88.2 / 88.2	83.2 / 86.4	1894 / 4618
9	+	-	-	-	53.0 / 61.8	42.4 / 42.0	64 / 17
10	+	-	-	+	$67.6 \; / \; 64.7$	44.7 / 46.6	158 / 108
11	+	-	+	-	88.2 / 82.4	71.4 / 69.5	141 / 211
12	+	-	+	+	88.2 / 88.2	$77.5 \ / \ 80.9$	632 / 2025
13	+	+	-	-	67.6 / 58.8	$66.4 \ / \ 56.9$	236 / 195
14	+	+	-	+	64.7 / 79.4	71.0 / 69.1	796 / 2259
15	+	+	+	-	88.2 / 88.2	87.8 / 85.5	876 / 1775
16	+	+	+	+	88.2 / 82.4	84.0 / 83.6	1618 / 4724

Experimental results

- ▼ NSGA-II and SPEA2 yield similar formula quality
- SPEA2 is much faster than NSGA-II
- \bigcirc Config #8 = {all but FF₃} is best for NSGA-II
- \bigcirc Config #15 = {all but FF₆} is best for SPEA2
- Significance validated using Wilcoxon signed-rank test

Varying other parameters

- ▼ Use SPEA2 with config #15
- ▼ Varied population size from 100 to 1000

Pop size	100	250	500	1000
100 · c _{learn} , %	23	86	86	86
100 · c _{mut} , %	13	79	96	96

- Change number of generations from 25 to 200
 - No significant changes

Larger example

- ATM control FSM
- 12 states
- 14 events
- 13 output actions
- **♥** 30 LTL formulas
- \bigcirc Mutants metric: $100 \cdot c_{\text{mut}} = 65 \%$
- **♥** Coverage metric: infeasible

Results

- Proposed GP-based approach for inferring LTL properties of FSMs
- Feasibility demonstrated on two examples using two empirical quality metrics
- Approach is able to infer up to 100 % of humanwritten LTL formulas

Future work

♥ Couple with existing model inference algorithms

Acknowledgements

▼ This work was financially supported by the Government of Russian Federation, Grant 074-U01.

Thank you for your attention!

Daniil Chivilikhin Ilya Ivanov Anatoly Shalyto chivdan@rain.ifmo.ru