Last Time

- 6.1 introduction, services
- 6.2 error detection, correction
- **6.3** Multiple Access Protocols
- channel partitioning
 - TDMA, FDMA, CSMA
- random access
 - Aloha: pure, slotted
 - CSMA, CSMA/CD

- **6.4 LANs**
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS
- 6.5 link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

CSMA (carrier sense multiple access)

CSMA: listen ("sense") before transmitting:

- if channel sensed idle: transmit entire frame
- if channel sensed busy, defer transmission

human analogy: don't interrupt others!

CSMA (carrier sense multiple access)

CSMA: listen before transmit:

if channel sensed idle: transmit entire frame

- if channel sensed busy, defer transmission
- human analogy: dont interrupt others!

- One would hope that CS eliminate collisions. It doesn't!
 - Because of protocol (other users synchronized)
 - Because of physics (sensing is not instantaneous)

CSMA: Carrier Sensing and Persistence

(1-) Persistent: defer transmission until channel becomes idle

P-Persistent: once the channel becomes idle, transmit with prob. p; or defer until next slot

(0-) Non-Persistent: defer transmission, sense again after a random time

Choice of p: throughput vs delay

Higher Throughput

Fig. 3-5. Comparison of the channel utilization versus load for various random access protocols.

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

t₁

CSMA/CD (with collision detection)

- CSMA/CD: carrier sensing
 - If channel is busy, defer as in CSMA
- CSMA/CD collision detection:
 - collisions detected within short time
 - as soon as you detect collision → do not complete,
 abort→reduce channel waste
 - how easy is collision detection?
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

CSMA/CD (collision detection)

CSMA collisions without/with CD

You are sure you "seized" the channel after 2d_{prop}

Ethernet CSMA/CD algorithm

- I. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}.
 NIC waits K:512 bit times, returns to Step 2
 - longer backoff interval with more collisions

CSMA/CD Algorithm

CSMA/CD principles

- CSMA: I-/p-/non- persistent
- CD
- Retransmission after exponential backoff:
 - Why random: to avoid synchronization
 - Why exponential: ~ TCP's multiplicative decrease
 - Why adjust after every collision: p essentially adapts to N
- Minimum frame=contention slot=512bits
 - =worst case RTT (for 10Mbps, length 2500m)

[Analysis of CSMA/CD]

- Cycles of: successful transmission, idle and contention
- Contention slot: S>=2*(prop.delay)

Successful Tx time (in a cycle)

Channel efficiency=

Duration of a cycle

- Because analysis of exp. backoff is difficult
 - Ch.6, Problem 20's Simplification: k stations, each transmitting with prob. p in each slot [this looks like slotted Aloha]

CSMA/CD efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to I
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA
- and simple, cheap, decentralized!

WiFi(802.11) vs. Ethernet (802.3)

- Both CSMA-based
- Collision detection: possible in Ethernet not on WiFi
- Collision avoidance in WiFi:
 - "transmit after you seize the channel"
 - Seize the channel through sensing in Ethernet
 - Seize the channel through RTS/CTS in WiFi
 - http://en.wikipedia.org/wiki/Carrier_sense_multiple_access_ with collision avoidance

Random Access Protocols so far

- when node has packet to send
 - transmit at full channel data rate R.
 - no coordination among nodes (distributed)
- two or more transmitting nodes → "collision"
- random access MAC protocol specifies:
 - how each node detects collisions
 - how each node recovers from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - ALOHA family: slotted ALOHA, "pure" ALOHA
 - CSMA family: CSMA, CSMA/CD, CSMA/CA

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, I/N bandwidth allocated even if only I active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

["Taking turns" MAC protocols]

polling:

- master node "invites" slave nodes to transmit in turn
- typically used with "dumb" slave devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

["Taking turns" MAC protocols]

token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

[Cable access network]

Internet frames, TV channels, control transmitted downstream at different frequencies

cable headend

cable modem termination system

upstream Internet frames, TV control, transmitted upstream at different frequencies in time slots

- multiple 40Mbps downstream (broadcast) channels
 - single CMTS transmits into channels
- multiple 30 Mbps upstream channels
 - multiple access: all users contend for certain upstream channel time slots (others assigned)

[Cable access network]

DOCSIS: data over cable service interface spec

- FDM over upstream, downstream frequency channels
- TDM upstream: some slots assigned, some have contention
 - downstream MAP frame: assigns upstream slots
 - request for upstream slots (and data) transmitted random access (binary backoff) in selected slots

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - Passing a token: FDDI, token ring
 - polling from central site: e.g. bluetooth
- Practical protocols mix and match these ideas
 - [E.g. protocols for cable internet access]