

Aula 12

# Interpolação Forma de Newton



#### Agenda:

- 1. Breve revisão da aula passada;
- 2. A Forma de Newton;
- 3. Operador Diferenças Divididas;
- 4. Forma de Newton para o Polinômio Interpolador;
- 5. Exemplo;
- 6. Exercícios.



A seguinte tabela relaciona calor específico da água e temperatura:

| temperatura<br>(°C) | 20      | 25      | 30      | 35      | 40      |
|---------------------|---------|---------|---------|---------|---------|
| calor<br>específico | 0.99907 | 0.99852 | 0.99826 | 0.99818 | 0.99828 |

| temperatura<br>(°C) | 45      | 50      |
|---------------------|---------|---------|
| calor<br>específico | 0.99849 | 0.99878 |



#### Interpolação polinomial

- Neste caso, dados  $x_0, x_1, ..., x_n$ ; (n+1) pontos distintos em um intervalo I da curva, onde são conhecidos os valores da função  $y_i = f(x_i)$ . Desejamos determinar o polinômio de grau menor ou igual a n,  $p_n(x) = a_n \times x^n + a_{n-1} \times x^{n-1} + \cdots + a_1 \times x + a_0$  tal que  $p_n(x_i) = f(x_i)$  para i = 0, 1, 2, ..., n.
- Teorema: O polinômio de interpolação é único!



#### Graficamente, temos:





Forma ou Fórmula de Lagrange

O polinômio de interpolação é definido por:

$$p_n(x) = f(x_0) \times L_0(x) + f(x_1) \times L_1(x) + \dots + f(x_n) \times L_n(x)$$

Onde:

$$L_k(x) = \frac{(x - x_0) \times (x - x_1) \dots (x - x_{k-1}) \times (x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0) \times (x_k - x_1) \dots (x_k - x_{k-1}) \times (x_k - x_{k+1}) \dots (x_k - x_n)}$$

Para 
$$k = 0, 1, 2, ..., n$$
 $08/04/2019$ 



#### Exemplo

Usando a forma de Lagrange, determinar o polinômio de interpolação para a função f(x) tabelada por:

|      | $x_0$    | <i>x</i> <sub>1</sub> | $x_2$    |
|------|----------|-----------------------|----------|
| X    | -1       | Ó                     | 2        |
| f(x) | 4        | 1                     | -1       |
|      | $f(x_0)$ | $f(x_1)$              | $f(x_2)$ |



#### Solução:

- Neste caso, temos n + 1 = 3 (número de pontos)
- Vamos determinar um polinômio de grau menor ou igual a 2 tal que  $p_2(x_i) = f(x_i)$
- O polinômio interpolador é dado por:

$$p_2(x) = f(x_0) \times L_0(x) + f(x_1) \times L_1(x) + f(x_2) \times L_2(x)$$



Agora, determinado  $L_0(x)$ ,  $L_1(x)$  e  $L_2(x)$ :

$$L_0(x) = \frac{(x - x_1) \times (x - x_2)}{(x_0 - x_1) \times (x_0 - x_2)} = \frac{(x - 0) \times (x - 2)}{(-1 - 0) \times (-1 - 2)} = \frac{x^2 - 2 \times x}{3}$$

$$L_1(x) = \frac{(x - x_0) \times (x - x_2)}{(x_1 - x_0) \times (x_1 - x_2)} = \frac{(x + 1) \times (x - 2)}{(0 + 1) \times (0 - 2)} = \frac{x^2 - x - 2}{-2}$$



$$L_2(x) = \frac{(x - x_0) \times (x - x_1)}{(x_2 - x_0) \times (x_2 - x_1)} = \frac{(x + 1) \times (x - 0)}{(2 + 1) \times (2 - 0)} = \frac{x^2 + x}{6}$$

Assim, na forma de Lagrange, teremos:

$$p_2(x) = 4 \times \left(\frac{x^2 - 2 \times x}{3}\right) + 1 \times \left(\frac{x^2 - x - 2}{-2}\right) + (-1) \times \left(\frac{x^2 + x}{6}\right)$$

$$p_2(x) = \frac{2}{3} \times x^2 - \frac{7}{3} \times x + 1$$



#### Verificando:

$$p_2(-1) = 4$$
 $p_2(0) = 1$ 
 $p_2(2) = -1$ 
 $OK!$ 

#### 2 condições básicas:

- Grau de  $p_n(x) \leq n$
- $p_n(x_i) = f(x_i), i = 0, 1, ..., n$



#### 2. A Forma de Newton

• A forma de Newton para o polinômio  $p_n(x)$  que interpola f(x) em  $x_0, x_1, ..., x_n, (n+1)$  pontos distintos é a seguinte:

$$\begin{aligned} & p_n(x) \\ &= d_0 + d_1 \times (x - x_0) + d_2 \times (x - x_0) \times (x - x_1) \\ &+ \dots + d_n \times (x - x_0) \times (x - x_1) \dots (x - x_{n-1}) \end{aligned}$$



• Vamos assim estudar o operador diferenças divididas, já que os coeficientes  $d_k$  anteriormente mencionados são diferenças divididas de ordem k entre os pontos  $(x_j, f(x_j))$  e vamos estudar também a expressão de  $p_n(x)$ .

#### 3. Operador Diferenças Divididas

• Vamos tabelar a função f(x) em n+1 pontos distintos:  $x_0, x_1, ..., x_n$ .



#### Tabela de Diferenças Divididas

| $x_i$ | $f\left[x_{i} ight]$        | $[x_i, x_j]$                                      | $f\left[x_{m{i}},x_{m{j}},x_{m{k}} ight]$                        |         |
|-------|-----------------------------|---------------------------------------------------|------------------------------------------------------------------|---------|
| $x_0$ | $f\left[x_{0}\right]=f_{0}$ | 61 1 61 1                                         |                                                                  |         |
|       |                             | $f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$ |                                                                  |         |
| $x_1$ | $f\left[x_{1}\right]=f_{1}$ | _1 _0                                             | $f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ |         |
| •     | J ( 1) J1                   | $f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$ | $x_2-x_0$                                                        |         |
|       |                             | $f[x_1, x_2] = \frac{1}{x_2 - x_1}$               | $f[x_0, x_2] - f[x_1, x_2]$                                      | •••     |
| $x_2$ | $f\left[x_2\right] = f_2$   | 61 1 61 1                                         | $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$ |         |
|       |                             | $f[x_2, x_3] = rac{f[x_3] - f[x_2]}{x_3 - x_2}$  |                                                                  |         |
| $x_3$ | $f\left[x_{3}\right]=f_{3}$ |                                                   | $f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$ |         |
|       |                             | $f[x_4] - f[x_3]$                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$             |         |
|       |                             | $f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$ | -                                                                | • • • • |
| $x_4$ | $f\left[x_{4}\right]=f_{4}$ | :                                                 |                                                                  |         |
| i     | :                           |                                                   |                                                                  |         |



- A primeira coluna é constituída dos pontos  $x_k, k = 0, 1, ..., n$ ;
- A segunda coluna contém os valores de f(x) nos pontos  $x_k, k = 0, 1, 2, ..., n$ ;
- Nas colunas 3, 4, 5, . . . , estão as diferenças divididas de ordem 1, 2, 3, . . . . Cada uma dessas diferenças é uma fração cujo numerador é sempre a diferença entre duas diferenças divididas consecutivas e de ordem imediatamente inferior e cujo denominador é a diferença entre os dois extremos dos pontos envolvidos.







|    | Sua tabela de d | liferenças dividid | las é:         |          |                 |
|----|-----------------|--------------------|----------------|----------|-----------------|
| x  | Ordem 0         | Ordem 1            | Ordem 2        | Ordem 3  | Ordem 4         |
| -1 | 1               |                    |                |          |                 |
|    |                 | 0                  |                |          |                 |
| 0  | 1               |                    | $-\frac{1}{2}$ |          |                 |
|    |                 | -1                 |                | <u>1</u> |                 |
| 1  | 0               |                    | 0              | 7        | $-\frac{1}{24}$ |
|    |                 | -1                 |                | 0        |                 |
| 2  | -1              |                    | 0              |          |                 |
|    |                 | -1                 |                |          |                 |
| 3  | -2              |                    |                |          |                 |



#### Onde

$$f[x_0, x_{1}] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{1 - 1}{1} = 0$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{0 - 1}{1 - 0} = -1$$

\$0 \$0

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{-1 - 0}{1 + 1} = \frac{-1}{2}$$

$$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = \frac{-1 + 1}{2 - 0} = 0$$

$$\vdots$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{0 + 1/2}{2 + 1} = \frac{1}{6}$$



# OUTRO EXEMPLO



Exemplo 10.8 - Para a seguinte função tabelada:

construir a tabela de diferenças divididas.



| $x_i$ | $f[x_i]$ | $f\left[x_i, x_j\right]$           | $f\left[x_i, x_j, x_k\right]$      | $f\left[x_i,\ldots,x_\ell\right]$ | $f[x_i,\ldots,x_m]$      |
|-------|----------|------------------------------------|------------------------------------|-----------------------------------|--------------------------|
| -2    | -2       | $\frac{29 - (-2)}{-1 - (-2)} = 31$ |                                    |                                   |                          |
| -1    | 29       |                                    | $\frac{1 - (-31)}{0 - (-2)} = -15$ | 0 - (-15)                         |                          |
| 0     | 30       | $\frac{30 - 29}{0 - (-1)} = 1$     | $\frac{1-1}{1-(-1)} = 0$           | $\frac{0 - (-15)}{1 - (-2)} = 5$  | $\frac{5-5}{2-(-2)} = 0$ |
| 1     | 01       | $\frac{31 - 30}{1 - 0} = 1$        |                                    | $\frac{15 - 0}{2 - (-1)} = 5$     | 2 (2)                    |
| 1     | 31       | $\frac{62 - 31}{2 - 1} = 31$       | $\frac{31 - 1}{2 - 0} = 15$        |                                   |                          |
| 2     | 62       |                                    |                                    |                                   |                          |



4. Forma de Newton para o Polinômio Interpolador

O polinômio interpolador de Newton é definido então, por:

$$\begin{aligned} p_n(x) \\ &= f[x_0] + (x - x_0) \times f[x_0, x_1] + (x - x_0) \times (x - x_1) \\ &\times f[x_0, x_1, x_2] + \dots + (x - x_0) \times (x - x_1) \dots (x - x_{n-1}) \\ &\times f[x_0, x_1, \dots, x_n] \end{aligned}$$



#### 5. Exemplo

Usando a forma de Newton, o polinômio p<sub>2</sub>(x), que interpola f(x) nos pontos dados abaixo

$$p_2(x) = f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2].$$



| x              | Ordem 0          | Ordem 1                 | Ordem 2       |
|----------------|------------------|-------------------------|---------------|
| -1             | 4                |                         |               |
|                |                  | -3                      |               |
| 0              | 1                |                         | $\frac{2}{3}$ |
|                |                  | -1                      |               |
| 2              | -1               |                         |               |
| 19             |                  | . 2                     |               |
| $p_2(x) = 4 +$ | (x + 1)(-3) + (x | $+1)(x-0)\frac{2}{3}$ . |               |



# EXERCÍCIOS



Exemplo 10.9 - Conhecendo-se a seguinte tabela:

calcular f(1), usando polinômio de interpolação de Newton.



Solução: Temos:

e portanto n=2. Assim o polinômio de interpolação na forma de Newton é dado por::

$$P_2(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2]$$
.

Em primeiro lugar, construímos a tabela de diferenças divididas. Assim:

| x  | f(x) |    |   |
|----|------|----|---|
| -1 | 15   | _  |   |
| 0  | 8    | -7 | 1 |
| 3  | -1   | -3 |   |



Portanto:  $P_2(x) = 15 + (x+1)(-7) + (x+1)(x-0)(1)$ .

Agrupando os termos semelhantes obtemos:  $P_2(x) = x^2 - 6 x + 8$ .

Os valores de f(1) é dado por  $P_2(1)$ , lembrando que este é um valor aproximado. Assim:  $P_2(1) = 3 \simeq f(1)$ .



#### Exemplo 10.11 - Dada a tabela:

#### determinar:

- a) o polinômio de interpolação de grau adequado,
- b) calcular f(4.5),



Solução: Inicialmente construímos a tabela de diferenças divididas. Assim:

| $x_{i}$ | $f(x_i)$ | $f\left[x_{\pmb{i}}, x_{\pmb{j}}\right]$ |       |
|---------|----------|------------------------------------------|-------|
| 2       | 0.13     |                                          |       |
|         |          | 0.06                                     |       |
| 3       | 0.19     |                                          | 0.01  |
|         |          | 0.08                                     |       |
| 4       | 0.27     |                                          | 0.015 |
|         |          | 0.11                                     |       |
| 5       | 0.38     |                                          | 0.01  |
|         |          | 0.13                                     |       |
| 6       | 0.51     | 5.25                                     | 0.015 |
| Ü       | 0.01     | 0.16                                     | 0.010 |
| 7       | 0.67     | 0.10                                     |       |
| '       | 0.01     |                                          |       |



a) Como as diferenças divididas de  $2^{n}$  ordem são praticamente constantes podemos adotar um polinômio de  $2^{n}$  grau para interpolá-la. Além disso, como queremos avaliar f(4.5), escolhemos 3 pontos na vizinhança de 4.5. Seja então:  $x_0 = 4$ ,  $x_1 = 5$  e  $x_2 = 6$ . Assim:

$$P_2(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2]$$

$$= 0.27 + (x - 4)(0.11) + (x - 4) (x - 5)(0.01)$$

$$= 0.01 x^2 + 0.02 x + 0.03.$$

b) Agora,  $f(4.5) \simeq P_2(4.5) = 0.01 (4.5)^2 + 0.02 (4.5) + 0.03 = 0.3225$ .



#### Exercícios

**10.18** - Seja a função tabelada:

- a) Determinar o polinômio de interpolação de Newton.
- b) Calcular f(0.5).



#### 10.19 - Dada a função tabelada:

$$x$$
011.52.53.0 $f(x)$ 1.00.50.40.2860.25

- a) Determinar o polinômio de interpolação de Newton sobre 2 pontos (interpolação linear).
- a) Determinar o polinômio de interpolação de Newton sobre 3 pontos (interpolação quadrática).
- b) Calcular f(0.5), usando o item a) e o item b).

Lembre-se que o polinômio de Newton sobre 3 pontos é igual ao polinômio sobre 2 pontos adicionado ao termo de ordem 2. Além disso, o ponto  $x_0$  deve ser comum aos 2 polinômios. Portanto tome cuidado ao escolher os pontos.



#### Próxima aula:

#### Aula 13

- Estudo do erro na interpolação;
- Extrapolação.







