Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Eletrotécnica Amplificadores Operacionais e Semicondutores – *ELT74E* Prof. Juan C. C. Rodriguez

LAB 11 - OSCILADORES

1. Objetivos:

Verificar o funcionamento do amplificador operacional como oscilador linear e não linear.

2. Material:

Laboratório	A ser providenciado pela equipe
01 Fonte de tensão CC variável	01 resistor 1 kΩ ¼ W
01 Matriz de contatos	02 resistores 10 kΩ ¼ W
01 Osciloscópio	Resistores de valor calculado na atividade no pre-lab do moodle,
	caso precise realize associação de resistores, ¼ W
02 Pontas de prova	05 Capacitor cerâmico 100 nF
	01 potenciômetro de 100k Ω
	03 Cl 358 - amplificador operacional

3. Reconhecimento e inspeção dos componentes:

eça os resistor	es e anote os valores.		
	R1k =	R10k =	e
k =	(<i>R</i> ₃ da	configuração oscilado	or por deslocamento de fase)
k =	(R ₂ da	configuração oscilado	or de onda quadrada)
	k =	$k =$ (R_3 da	R1k = $R10k =$ $R1$

4. Circuito 1: Oscilador de onda quadrada

4.1 Monte o circuito indicado Figura 1. Utilize alimentação simétrica de 15V. Use os canais do osciloscópio para observar a tensão de saída (CH1) e a tensão do capacitor (CH2), como mostra a Figura 1. Ajuste as medidas do osciloscópio para observar tensão pico a pico e frequência do canal 1; e valor máximo e valor mínimo do canal 2.

ELT74E 1/4 LAB 11 - OSCILADORES

Figura 1: Circuito 1 – oscilador de onda quadrada.

4.2 Na Tabela 1, transcreva os valores teóricos encontrados no pre-laboratório e realize as medidas do circuito.

	Vout p-p (V _{pp})	Vc max (V)	Vc min. (V)	Frequência (Hz)	Tipo de forma de onda
Teóricos					Quadrada
Experimentais					

Tabela 1. Grandezas relativas às medidas da montagem do circuito 1: oscilador de onda quadrada.

4.3 Faça o print da tela do osciloscopio.

4.4 Compare com os valores teóricos (do Prelab) e verifique seus resultados.

5. Circuito 2: Oscilador linear de onda senoidal

- 5.1 Monte o circuito indicado Figura 2. Use os canais do osciloscópio para observar a tensão de saída (CH1) e a tensão de sápida do Amp-Op, Vx (CH2), como mostra a Figura 2. Ajuste as medidas do osciloscópio para observar tensão pico a pico e frequência do canal 1 e do canal 2.
- 5.2 Mude o valor do potenciômetro desde o min. valor até o valor que consiga atingir uma oscilação na saída. <u>Verifique que a saída do Amp-Op (CH2) atinja os valores pico de saturação, mas ainda seja senoidal (sem cortar os picos!).</u> Aperte Stop no osciloscópio e retire o potenciômetro para medir sua resistência:

$$R_2 =$$
 ______, sendo o valor teórico _____

ELT74E 2/4 LAB 11 - OSCILADORES

Compare o valor encontrado com o valor calculado no pre- laboratório.

Figura 2: Circuito 2– oscilador de onda senoidal.

5.3 Realize as medidas da Tabela 2. Use o cursor do osciloscópio e meça Δt como o tempo entre o pico negativo de Vout e Vx, depois encontre seu equivalente em fase $\Theta = \Delta t * 360 * freq$.

	Vout p-p (V _{pp})	Vx p-p (V _{pp})	Δt (μs)	Frequência (Hz)	Deslocamento de fase (graus)	Tipo de forma de onda em Vout
Experimental						

Tabela 2. Grandezas relativas às medidas da montagem do circuito 2: oscilador de onda senoidal.

5.4 Faça o print da tela do osciloscopio.

5.5 Compare com os valores teóricos (do Prelab) e verifique seus resultados.

6. Circuito 3: Oscilador linear de onda senoidal com buffers

- 6.1 Monte o circuito indicado Figura 3. Use os canais do osciloscópio para observar a tensão de saída (CH1) e a tensão de sápida do Amp-Op (CH2), como mostra a Figura 3. Ajuste as medidas do osciloscópio para observar tensão pico a pico e frequência do canal 1 e do canal 2.
- 6.2 Mude o valor do potenciômetro desde o min. valor até o valor que consiga atingir uma oscilação na saída. Verifique que a saída do Amp-Op (CH2) atinja os valores pico de saturação, mas ainda seja senoidal (sem cortar os picos!). Aperte Stop no osciloscópio e retire o potenciômetro para medir sua resistência:

 $R_2 =$ _____, sendo o valor teórico _____

ELT74E 3/4 LAB 11 - OSCILADORES

Compare o valor encontrado com o valor calculado no pre- laboratório.

Figura 3: Circuito 3– oscilador de onda senoidal com buffers.

6.3 Realize as medidas da Tabela 3. Use o cursor do osciloscópio e meça Δt como o tempo entre o pico negativo de Vout e Vx, depois encontre seu equivalente em fase $\Theta = \Delta t * 360 * freq$.

	Vout p-p (V _{pp})	Vx p-p (V _{pp})	Δ t (μs)	Frequência (Hz)	Deslocame nto de fase (graus)	Tipo de forma de onda em Vout
Experimental						

Tabela 3. Grandezas relativas às medidas da montagem do circuito 2: oscilador de onda senoidal com buffers.

6.4 Faça o print da tela do osciloscopio.

- 6.5 Compare com os valores teóricos (do Prelab) e verifique seus resultados.
- 6.6 Apresente seus cálculos, conclusões, os 3 print de tela do osciloscópio e resultados (Checkpoint).