Aula 3 - Camada de Enlace: Protocolos de Acesso Múltiplo

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula...

- Responsabilidade da camada de enlace:
 - Transportar pacotes entre nós diretamente conectados.
- Serviços (potencialmente) providos pela camada de enlace:
 - Encapsulamento em **quadros**.
 - Gerência do acesso ao meio de transmissão
 - Endereçamento.
 - Entrega confiável.
 - Detecção de erros (e, possivelmente, correção).
 - Controle de fluxo.

- Métodos de detecção/correção de erros:
 - Baseados na inserção de bits de redundância.
 - São probabilísticos (i.e., **podem falhar**).
 - Quanto mais redundância, menor probabilidade de falha.
 - Mas maior o overhead.
 - Vários tipos, com diferentes capacidades:
 - Detecção apenas: e.g., bit de paridade, checksum, CRC.
 - Detecção e correção: e.g., paridade bidimensional.
 - Capacidade de correção de erros através de bits redundantes:
 - **FEC**: Forward Error Correction.

Enlaces (e Protocolos) de Acesso Múltiplo

- Dois tipos de "enlaces":
 - Ponto-a-ponto.
 - PPP para acesso discado.
 - Link ponto-a-ponto entre switch e host Ethernet.
 - Difusão/Broadcast (cabo ou meio compartilhado).
 - Ethernet original.
 - Upload em redes HFC.
 - 802.11 (Wi-Fi).

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Protocolos de Acesso Múltiplo

- Único canal de comunicação em difusão.
- Transmissões simultâneas por dois ou mais nós ⇒ interferência.
 - Colisão, quando nó recebe dois sinais misturados.

Protocolo de Acesso Múltiplo

- Algoritmo (possivelmente distribuído) que define como nós compartilham o meio de transmissão.
 - *i.e.*, quando cada nó pode transmitir.
- Normalmente, comunicação usada para a coordenação usa o próprio canal compartilhado.
 - Sem comunicação fora-de-banda.

Protocolo de Acesso Múltiplo Ideal

- ullet Dado: canal de comunicação compartilhado com capacidade de R b/s.
- Características desejadas:
 - Quando um nó quer transmitir, pode enviar dados à taxa R.
 - ullet Quando M nós querem transmitir, cada um obtém uma taxa **média** de $rac{R}{M}$.
 - Totalmente descentralizado.
 - Não há nó especial para coordenação.
 - Não necessita de sincronização entre nós.
 - Simples.

Taxinomia de Protocolos MAC: Três Grandes Categorias

Particionamento de Canal

- Divide o canal em "pedaços" menores.
 - Slots de tempo, frequências diferentes, códigos diferentes.
- Pedaços são alocados para uso exclusivo dos nós.

Acesso Aleatório

- Canal não é dividido, colisões podem ocorrer.
- Utilizam-se métodos para "recuperação" de colisões.

Acesso Alternado ("Taking-turns")

- Ou "revezamento".
- Nós se alternam no acesso ao meio.
- Nós com mais dados podem usar o meio por mais tempo.

Protocolos de Particionamento de Canal: TDMA

- Time Division Multiple Access.
 - Acesso ao canal feito em "rodadas".
 - Cada estação ganha um slot de duração fixa a cada rodada.
 - Duração suficiente para transmissão de quadro.
 - Em Slots não usados, canal ocioso.
 - Exemplo com 6 estações:
 - 1, 3 e 4 têm quadros a transmitir.
 - 2, 5 e 6 não usam seus slots.

Protocolos de Particionamento de Canal: FDMA

- Frequency Division Multiple Access.
 - Canal dividido em bandas de frequência.
 - Cada estação ganha uma frequência fixa.
 - Estações podem transmitir simultaneamente, desde que em frequências diferentes.
 - Se uma estação não utiliza sua frequência durante um intervalo, esta fica ociosa.
 - Exemplo com 6 estações:
 - 1, 3 e 4 têm quadros a transmitir.
 - 2, 5 e 6 não usam suas frequências.

Protocolos de Acesso Aleatório

- Quando nó tem quadros a transmitir, usa o canal "inteiro".
- Não há coordenação prévia entre nós.
- Se dois ou mais nós transmitem ao mesmo tempo, há colisão.
- Um protocolo MAC de acesso aleatório especifica:
 - Como determinar ocorrência de colisões.
 - Como se recuperar de colisões.
 - e.g., via retransmissão do quadro.
- Exemplos de protocolos de acesso aleatório:
 - Slotted ALOHA.
 - ALOHA.
 - CSMA, CSMA/CD, CSMA/CA.

Slotted ALOHA (I)

- Hipóteses:
 - Todos os quadros têm mesmo tamanho.
 - Tempo é discretizado em slots de duração fixa.
 - Suficiente para a transmissão de um quadro.
 - Nós só começam a transmitir no início de slots.
 - Nós estão sincronizados.
 - *i.e.*, sabem quando começa e termina um slot.
 - Se dois ou mais nós transmitem em um slot, todos detectam a colisão.

- Operação:
 - Quando nó possui quadro, transmite no início do próximo slot.
 - Se não houve colisão, nó pode enviar novo quadro no próximo slot.
 - Se houve colisão, nó retransmite o quadro nos slots subsequentes até o sucesso.
 - A cada novo slot, nó tenta retransmissão com probabilidade p.

Slotted ALOHA (II)

- Pontos positivos:
 - Com um único nó ativo, este pode usar toda a capacidade do canal.
 - Altamente decentralizado: requer apenas sincronização de slots.
 - Simples.

- Pontos Negativos:
 - Colisões, desperdiçando slots.
 - Se nós podem detectar colisões em menos tempo que a duração de um slot, retransmissão poderia ser feita antes.
 - Requer sincronização de relógio.

Slotted ALOHA: Eficiência (I)

- Eficiência: fração de slots bem sucedidos a longo prazo.
 - Considerando muitos nós, todos com muitos quadros a enviar.
- ullet Suponha N nós com backlog infinito.
 - i.e., sempre há quadros a enviar.
- Cada nó tenta transmissão em um slot com probabilidade p.
- Sucesso ocorre quando apenas um nó tenta transmitir no slot:

$$P(\mathrm{Sucesso}) = p(1-p)^{N-1}$$

ullet Mas se há N nós:

$$Efic(p) = N \cdot p(1-p)^{N-1}$$

Slotted ALOHA: Eficiência (II)

- ullet Eficiência máxima depende de p.
- Valor ótimo de p depende de N.
 - Quanto mais nós, menor o p ideal.
 - Faz sentido?
- Qual é o p ideal para um dado N?
 - Máximo ocorre quando Efic'(p) = 0:

$$egin{aligned} 0 &= N(1-p)^{N-1} \ &- N \cdot (N-1) \cdot p(1-p)^{N-2} \ 0 &= (1-p) - (N-1)p \ p &= rac{1}{N} \end{aligned}$$

• Logo:

$$MaxEfic(N) = \left(1 - rac{1}{N}
ight)^{N-1}$$

ALOHA Puro (Unslotted)

- Unslotted Aloha: mais simples, sem sincronização.
 - Quando quadro chega, transmite imediatamente.
 - Em caso de colisão, nós aguardam tempo aleatório antes de tentar novamente.
- Probabilidade de colisão aumenta.
 - Quadro enviado em t_0 colide com quadros enviados em $[t_0-1,t_0+1]$.

- Resultado: eficiência é ainda mais baixa.
- No máximo 18%!

CSMA

- Carrier Sense Multiple Access: ouça antes de transmitir.
 - Se o meio está ocioso, transmita o quadro inteiro.
 - Se o meio está ocupado, transmita mais tarde.
- Analogia da comunicação humana:
 - Não interrompa os outros.
- Evita totalmente as colisões?
 - Não! O atraso de propagação pode fazer um nó não perceber uma transmissão.
 - Em caso de colisão, todo o quadro é perdido.

CSMA/CD

- Carrier Sense Multiple Access with Collision Detection.
 - Mesmo princípio básico do CSMA: ouvir antes de transmitir.
 - Durante a transmissão, nó checa por colisões.
 - Detecção rápida.
 - Em caso de colisão, transmissão é abortada.
 - Reduz desperdício do canal.
 - Analogia de comunicação humana: interlocutor educado.

- Detecção de colisões.
- Simples em redes cabeadas: medir intensidade do sinal, comparar sinal transmitido e recebido.
- Difícil em redes sem fio: potência do sinal transmitido é muito maior que do sinal recebido.

O Algoritmo do CSMA/CD no Ethernet

- 1. Interface recebe pacote da camada de rede, cria quadro.
- 2. Se o canal está livre, começa a transmissão do quadro.
 - Caso contrário, aguarda canal se tornar ocioso.
 - E então transmite.
- 3. Se a transmissão é completada sem que se tenha detectado uma colisão, processo termina.
- 4. Se durante a transmissão uma colisão é detectada, transmissão é abortada e **interface envia sinal de jamming**.
 - Por quê?
- 5. Depois de abortar, interface entra em backoff binário (exponencial).
 - Após a n-ésima colisão, sorteia valor inteiro k no intervalo $[0,2^n-1]$.
 - ullet Aguarda um tempo igual a $k \cdot 512$ durações de bit e volta ao passo 2.

CSMA/CD: Eficiência

- t_{prop} : tempo máximo de propagação entre dois nós.
- ullet t_{trans} : tempo de transmissão de quadro.

$$ext{eficiência} = rac{1}{1 + rac{5t_{prop}}{t_{trans}}}$$

- Eficiência tende a 1 se:
 - t_{prop} tende a 0; ou
 - t_{trans} tende a infinito.
- Melhor que o Aloha.
 - Além de simples, barato e decentralizado.

Protocolos de Acesso Alternado

- Protocolos de Particionamento de Canal:
 - Compartilhamento é eficiente e justo sob altas cargas.
 - Mas ineficiente para cargas baixas.
 - Atraso no acesso ao canal.
 - ullet Banda alocada de apenas 1/N, mesmo com um único nó ativo.
- Protocolos de Acesso Aleatório:
 - Eficientes sob baixa carga.
 - Mas sob alta carga: colisões.
- Protocolos de Acesso Alternado:
 - Tentativa: combinar o melhor dos dois mundos!

Acesso Alternado: Polling

- Nó mestre "convida" nós subordinados para transmitir alternadamente.
- Normalmente usado com dispositivos subordinados "sem inteligência".

slaves

- Potenciais problemas:
 - Overhead do polling.
 - Latência.
 - Ponto único de falha.

Acesso Alternado: Passagem de Token

- Token: representa o controle do canal.
 - Nó com token tem direito de transmitir.
 - Após uso (ou não), nó repassa o token.
 - Mensagem ou sinal transmitido no próprio canal.
- Potenciais problemas:
 - Overhead de passagem do token.
 - Latência.
 - Ponto único de falha.
 - O token.

DOCSIS (I)

Data Over Cable Service Interface Specification.

- Múltiplos canais (compartilhados) de downlink (40 Mb/s).
 - Todos usados pelo CMTS (Cable Modem Termination System).
- Múltiplos canais de uplink (30 Mb/s).
 - Acesso múltiplo: todos os usuários competem por slots em certos canais de uplink.

DOCSIS (II)

- FDM no uplink e downlink.
- TDM em canais de uplink:
 - Alguns slots atribuídos, outros para contenção.
 - Atribuição especificada por um MAP frame.

Resumo dos Protocolos de Acesso ao Meio

- Particionamento de canal, por tempo, frequência ou código.
 - TDMA, FDMA, CDMA.
- Acesso aleatório.
 - ALOHA, S-ALOHA, CSMA, CSMA/CD.
 - Carrier Sense (Detecção de Portadora): fácil em certas tecnologias (cabeadas), difícil em outras (sem fio).
 - CSMA/CD usado no Ethernet.
 - CSMA/CA usado no 802.11 (Wi-Fi).
- Acesso alternado.
 - Polling, passagem de token.
 - Bluetooth, FDDI, Token Ring.

Resumo da Aula...

- Enlaces ponto-a-ponto vs. compartilhados.
 - Ou de difusão ou broadcast.
- Transmissões simultâneas em enlace compartilhado podem gerar colisões.
 - Sinais se "misturam" no receptor.
 - Impossível entender mensagens.
- Protocolo de acesso múltiplo: coordena acesso a meio compartilhado.
 - *i.e.*, determina **quando** nó pode transmitir.

- Três tipos básicos:
 - Particionamento de canal: e.g., TDMA, FDMA.
 - Cada nó ganha "pedaço" isolado do canal.
 - Recurso não utilizado por nó fica ocioso.
 - Acesso alternado: e.g., passagem de token.
 - Nós recebem oportunidade de usar o meio.
 - Oferta de oportunidade de transmissão para nó reduz eficiência.
 - Acesso aleatório: e.g., Aloha, CSMA/CD.
 - Sem divisão, nós acessam quando julgam poderem.
 - Colisões podem ocorrer, devem ser tratadas.
 - Colisões reduzem eficiência.
 - Quanto mais nós, mais provável é a ocorrência de colisões.

Leitura e Exercícios Sugeridos

- Protocolos de acesso múltiplo:
 - Páginas 328 a 337 do Kurose (Seção 5.3 até Subseção 5.3.3, inclusive).
 - Exercícios de fixação 4, 5 e 7 do capítulo 5 do Kurose.
 - Problemas 10 (itens a e b) e 13 do capítulo 5 do Kurose.
- CSMA/CD, especificamente:
 - Páginas 346 a 349 do Kurose (Subseção 5.5.2).
 - Exercício de fixação 14 do capítulo 5 do Kurose.
 - Problemas 17, 18, 19, 20, 21 e 26 do capítulo 5 do Kurose.

Próxima Aula...

- Mais sobre camada de enlace.
- Três tópicos:
 - Endereçamento.
 - Por que outro endereçamento?
 - Diferenças para o endereçamento IP.
 - ARP.
 - Como fazer endereçamentos co-existirem?
 - Como o protocolo funciona?
 - Ethernet.
 - O padrão para LANs.
 - Histórico, características, funcionamento, ...