1. Aktualnie Wykorzystywane Standardy Wi-Fi

Wi-Fi, znane również jako IEEE 802.11, to zestaw standardów definiujących komunikację bezprzewodową w sieciach lokalnych. Najważniejsze standardy Wi-Fi:

1.1. IEEE 802.11n (Wi-Fi 4)

- Wprowadzenie: 2009 rok.
- **Pasmo**: 2,4 GHz i 5 GHz.
- Maksymalna przepustowość teoretyczna: do 600 Mb/s.
- · Cechy:
 - Wprowadzenie technologii MIMO (Multiple Input Multiple Output) zwiększającej przepustowość.
 - o Kompatybilność wsteczna z wcześniejszymi standardami (802.11a/b/g).
- **Zastosowanie**: Sieci domowe i biurowe wymagające większej przepustowości, np. do strumieniowania wideo HD.

1.2. IEEE 802.11ac (Wi-Fi 5)

- Wprowadzenie: 2013 rok.
- Pasmo: 5 GHz.
- Maksymalna przepustowość teoretyczna: do 3,5 Gb/s.
- Cechy:
 - Szersze kanały (do 160 MHz).
 - Większa liczba strumieni MIMO (do 8).
 - o Modulacja 256-QAM zwiększająca efektywność spektralną.
- **Zastosowanie**: Aplikacje wymagające wysokiej przepustowości, takie jak strumieniowanie wideo 4K, gry online.

1.3. IEEE 802.11ax (Wi-Fi 6)

- Wprowadzenie: 2019 rok.
- **Pasmo**: 2.4 GHz i 5 GHz.
- Maksymalna przepustowość teoretyczna: do 9,6 Gb/s.
- · Cechy:
 - Technologia OFDMA (Orthogonal Frequency-Division Multiple Access)
 poprawiająca efektywność w zatłoczonych sieciach.
 - o Lepsza obsługa wielu urządzeń dzięki ulepszonemu MU-MIMO.
 - Zmniejszone opóźnienia i większa wydajność energetyczna.
- Zastosowanie: Inteligentne domy, IoT, środowiska o dużym zagęszczeniu urządzeń.

1.4. IEEE 802.11ax z rozszerzeniem 6 GHz (Wi-Fi 6E)

• Wprowadzenie: 2020 rok.

• **Pasmo**: 2,4 GHz, 5 GHz i 6 GHz.

• Maksymalna przepustowość teoretyczna: do 9,6 Gb/s.

• Cechy:

o Dodatkowe pasmo 6 GHz oferujące więcej kanałów i mniejsze zakłócenia.

o Lepsza wydajność w zatłoczonych środowiskach.

• **Zastosowanie**: Aplikacje wymagające niskich opóźnień i wysokiej przepustowości, np. VR/AR.

1.5. IEEE 802.11be (Wi-Fi 7)

• Wprowadzenie: Oczekiwane w 2024 roku.

• **Pasmo**: 2,4 GHz, 5 GHz i 6 GHz.

• Maksymalna przepustowość teoretyczna: do 46 Gb/s.

• Cechy:

o Szersze kanały (do 320 MHz).

o Modulacja 4096-QAM zwiększająca efektywność transmisji.

 Obsługa Multi-Link Operation (MLO) umożliwiająca jednoczesne korzystanie z wielu pasm.

• **Zastosowanie**: Aplikacje wymagające ultra-niskich opóźnień i bardzo wysokiej przepustowości, takie jak transmisje 8K, VR/AR, gry w chmurze.

Tabela porównawcza standardów Wi-Fi

Standard	Rok wprowadzenia	Pasmo	Maks. przepustowość
Wi-Fi 4	2009	2,4 GHz, 5 GHz	do 600 Mb/s
Wi-Fi 5	2013	5 GHz	do 3,5 Gb/s
Wi-Fi 6	2019	2,4 GHz, 5 GHz	do 9,6 Gb/s
Wi-Fi 6E	2020	2,4 GHz, 5 GHz, 6 GHz	do 9,6 Gb/s
Wi-Fi 7	2024	2,4 GHz, 5 GHz, 6 GHz	do 46

2. Starsze Standardy Wi-Fi

Można spotkać starsze standardy Wi-Fi, zwłaszcza w starszych urządzeniach, systemach przemysłowych i niektórych sieciach o ograniczonych wymaganiach. Oto starsze standardy Wi-Fi, które mogą być nadal wykorzystywane:

2.1. IEEE 802.11a (1999)

- Pasmo: 5 GHz, Maksymalna przepustowość: 54 Mb/s
 - o Pierwszy standard działający w paśmie 5 GHz.
 - o Mniejsze zakłócenia niż w 2,4 GHz, ale krótszy zasięg.

• Czy jest jeszcze używany?

o **Rzadko**, ale niektóre starsze urządzenia mogą go nadal obsługiwać.

2.2. IEEE 802.11b (1999)

- Pasmo: 2,4 GHz, Maksymalna przepustowość: 11 Mb/s
 - o Bardzo popularny na początku lat 2000.
 - o Duża kompatybilność, ale wolne prędkości.

Czy jest jeszcze używany?

 Tak, ale rzadko, głównie w starszych urządzeniach IoT i systemach przemysłowych.

2.3. IEEE 802.11g (2003)

- Pasmo: 2,4 GHz, Maksymalna przepustowość: 54 Mb/s
 - Następca 802.11b, oferujący lepszą prędkość.
 - o Kompatybilny wstecznie z 802.11b.

Czy jest jeszcze używany?

 Tak, choć coraz rzadziej – niektóre stare routery i urządzenia IoT nadal go obsługują.

Podsumowanie w tabeli:

Standard	Rok wprowadzenia	Pasmo	Maks. przepustowość	Czy nadal jest używany?
Wi-Fi 1 (802.11)	1997	2,4 GHz	2 Mb/s	X Nie
Wi-Fi 2 (802.11a)	1999	5 GHz	54 Mb/s	↑ Rzadko
Wi-Fi 2 (802.11b)	1999	2,4 GHz	11 Mb/s	▲ Sporadycznie (IoT, przemysł)
Wi-Fi 3 (802.11g)	2003	2,4 GHz	54 Mb/s	✓ Nadal w niektórych urządzeniach

3. Kompatybilność wsteczna i przyszłościowa

Kompatybilność wsteczna oznacza, że nowszy sprzęt może obsługiwać starsze standardy.

Standard	Kompatybilność wsteczna	Pasma
Wi-Fi 7 (802.11be)	z Wi-Fi 6E, Wi-Fi 6, Wi-Fi 5, Wi-Fi 4	2,4 GHz, 5 GHz, 6 GHz
Wi-Fi 6E (802.11ax 6 GHz)	X Tylko z Wi-Fi 6E	6 GHz
Wi-Fi 6 (802.11ax)	☑ z Wi-Fi 5, Wi-Fi 4	2,4 GHz, 5 GHz
Wi-Fi 5 (802.11ac)	☑ z Wi-Fi 4	5 GHz
Wi-Fi 4 (802.11n)	☑ z Wi-Fi 3, Wi-Fi 2	2,4 GHz, 5 GHz
Wi-Fi 3 (802.11g)	✓ z Wi-Fi 2	2,4 GHz
Wi-Fi 2 (802.11b)	X Niekompatybilny z Wi-Fi 1	2,4 GHz
Wi-Fi 1 (802.11a)	X Niekompatybilny z innymi	5 GHz

3.1. Kluczowe zasady kompatybilności

- Wi-Fi 4 (802.11n) wprowadziło pełną kompatybilność między pasmami 2,4 GHz i 5 GHz, co oznacza, że routery Wi-Fi 4 mogą obsługiwać zarówno starsze 802.11a/b/g, jak i nowsze urządzenia.
- Wi-Fi 5 (802.11ac) obsługuje tylko pasmo 5 GHz, więc nie współpracuje z urządzeniami Wi-Fi 3 (802.11g) i Wi-Fi 2 (802.11b), które działają tylko na 2,4 GHz.
- Wi-Fi 6 (802.11ax) działa na 2,4 GHz i 5 GHz, co oznacza kompatybilność ze starszymi standardami.

Wi-Fi 6E działa tylko w paśmie 6 GHz, więc nie obsługuje starszych urządzeń działających na 2,4 GHz i 5 GHz.

4. Bezpieczeństwo sieci Wi-Fi – Standardy i Zalecenia

Bezpieczeństwo Wi-Fi jest kluczowe, ponieważ sieci bezprzewodowe są podatne na ataki, takie jak podsłuch, spoofing czy ataki typu "man-in-the-middle". Poniżej przedstawiam standardy zabezpieczeń Wi-Fi, ich poziom bezpieczeństwa oraz rekomendacje dotyczące ich stosowania.

4.1. Standardy szyfrowania Wi-Fi

Standard	Rok	Szyfrowanie	Poziom bezpieczeństwa	Czy używać?
WEP (Wired Equivalent Privacy)	1997	RC4 (64-/128- bit)	Bardzo słabe – podatne na ataki	X Nie używać
WPA (Wi-Fi Protected Access)	2003	TKIP (RC4)	⚠ Przestarzałe – łatwe do złamania	X Nie używać
WPA2-PSK (Wi-Fi Protected Access 2 - Pre- Shared Key)	2004	AES (CCMP)	☑ Bezpieczne (z silnym hasłem)	☑ Używać, jeśli nie ma WPA3
WPA2-Enterprise	2004	AES (CCMP)	☑ Bardzo bezpieczne (RADIUS, 802.1X)	☑ Używać w firmach
WPA3-PSK (Wi-Fi Protected Access 3)	2018	AES-GCMP	✓ Najbezpieczniejsze dla domów i firm	✓ Zalecane
WPA3-Enterprise	2018	AES-GCMP + 192-bit mode	Najwyższy poziom bezpieczeństwa	Dla firm i instytucji

4.2. Jakie zabezpieczenia są rekomendowane?

✓ Dla sieci domowej:

- WPA3-PSK (Personal) najlepsza opcja, jeśli router i urządzenia obsługują WPA3.
- WPA2-PSK (AES) jeśli WPA3 nie jest dostępne.
- Silne hasło (min. 12 znaków, unikanie słownikowych fraz).

√ Dla firm i organizacji:

- WPA3-Enterprise najlepszy wybór, szczególnie w środowiskach o podwyższonym poziomie bezpieczeństwa.
- WPA2-Enterprise alternatywa, jeśli starsze urządzenia nie obsługują WPA3.
- Autoryzacja RADIUS (802.1X) zapobiega atakom typu "man-in-the-middle".

4.3. Zalecenia dodatkowe dla bezpieczeństwa sieci Wi-Fi

Zalecane praktyki:

- Wyłącz WPS (Wi-Fi Protected Setup) WPS jest podatne na ataki brute-force.
 Zmień domyślną nazwę SSID unikaj nazw sugerujących rodzaj sprzętu (np. "TP-Link_1234").
- **Ukrycie SSID?** Nie zwiększa bezpieczeństwa, a może powodować problemy z niektórymi urządzeniami.
- **Aktualizuj oprogramowanie routera** wiele luk w zabezpieczeniach wynika z nieaktualnego firmware'u.
- **Filtracja adresów MAC?** Może być łatwo obejściem przez spoofing, nie jest kluczowym zabezpieczeniem.

Podsumowanie:

- WPA3 to obecnie najbezpieczniejszy standard i warto go stosować, jeśli jest dostępny.
- WPA2-AES nadal zapewnia dobrą ochronę, ale należy unikać TKIP i słabych haseł.
- WEP i WPA (TKIP) są całkowicie przestarzałe i nie powinny być używane.
- Dodatkowe zabezpieczenia, jak RADIUS, segmentacja VLAN i aktualizacje routera, zwiększają ochronę.