

Fouille de Données T.P. Nº 2

Etude du classeur bayésien

20 octobre 2021

1 Application du théorème de Bayes

Exercice 1 Soit P la population des champignons. Il y a deux classes de champignons : vénéneux et comestible. on s'interesse à l'attribut binaire volve. Soit le tableau suivant :

classe k	1 : vénéneux	2 : comestible
P(k)	0.05	0.95
P(volve k)	0.9	0.2

On ramasse les champignons si la règle de Bayes détermine leur classe comme comestible. Est ce qu'on ramasse les champignons ayant une volve.

Exercice 2 Les anglais et les américains orthographient le mot rigueur respectivement rigour et rigor.

Un homme ayant pris une chambre dans un hotel a écrit ce mot sur un bout de papier. Une lettre est prise au hasard dans ce mot : c'est un voyelle. Quelle la probabilité que cet homme soit anglais?

Répéter la même question sachant que l'hotel héberge 60% d'américains, les autres étant des anglais.

2 Classifieur bayésien naif

Soit l'ensemble d'apprentissage suivant

Match à domicile ?	Balance positive ?	Mauvaises conditions	Match précédent	Match gagné
		climatiques ?	gagné ?	
V	V	F	F	V
F	F	V	V	V
V	V	V	F	V
V	V	F	V	V
F	V	V	V	F
F	F	V	F	F
V	F	F	V	F
V	F	V	F	F

Exercice 3 Quel est votre pronostic pour le match de samedi sachant qu'il est à domicile, que la balance est positive, les conditions climatiques seront bonnes et le match précédent a été gagné?

3 Etude pratique en utilisant Weka

Exercice 4 En utilisant le classeur Bayésien , ainsi que la base d'exemples Weather. Tester le classeur sur la base de test contenant les trois exemples positifs suivants :

- la journée est ensoleillée et le vent est faible.
- la journée est ensoleillée, le vent est faible, la temperature est de 23 degrés et l'humidité est de 70 %.
- la temperature est de 23 degrés.

Exercice 5 Effectuer une étude comparative, en mode validation croisée, des algorithmes k-plus proche voisin, arbres de décision (ID3 ou J48) et le classeur bayésien sur la base de données IRIS. Commenter les résultats.

4 Etude pratique avec R

Le but de cette section est d'appliquer le classifieur bayésien sur le dataset IRIS :

1. Exploration de l'ensemble des données IRIS : Caractéristiques :

```
dim(iris)
     names(iris)
     str(iris)
     attributes(iris)
  Contenu par ligne ou par colonne :
     iris[1:5,]
     head(iris)
     tail(iris)
     iris$Sepal.Length[1:10]
  Statistiques:
     summary(iris)
     var(iris$Sepal.Length)
     hist(iris$Sepal.Length)
     quantile(iris$Sepal.Length)
     quantile(iris$Sepal.Length, c(.1, .3, .65))
     table(iris$Species)
     pie(table(iris$Species))
  Plot:
     plot(density(iris$Sepal.Length))
     barplot(table(iris$Species))
     boxplot(Sepal.Length~Species, data=iris)
     with(iris, plot(Sepal.Length, Sepal.Width, col=Species, pch=as.numeric(S
     library(scatterplot3d)
     scatterplot3d(iris$Petal.Width, iris$Sepal.Length, iris$Sepal.Width)
     library(MASS)
     parcoord(iris[1:4], col=iris$Species)
2. Devision en train et test
  set.seed(1234)
  ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))</pre>
  trainData <- iris[ind==1,]</pre>
  testData <- iris[ind==2,]</pre>
  trainData
  testData
```

3. Classifiieur bayésien

```
library(e1071)
model=naiveBayes(Species ~ .,data=trainData)
attributes(model)
model$apriori
```

4. Prédictions et matrices de confusion

```
trainPredBayes <- predict(model, newdata = trainData)
trainPredBayes
table(trainPredBayes, trainData$Species)
testPredBayes <-predict(model,newdata=testData)
table(testPredBayes, testData$Species)</pre>
```

Exercice 6 Parmi les attributs du modèle bayésien : nous retrouvons les attributs *apriori* et *tables*. Que représentent ces attributs et à quoi ils servent ?

Exercice 7 En examinant la matrice de confusion sur l'ensemble de test, donner la précision et le rappel de chaque classe ainsi que l'erreur sur l'ensemble de test.

Exercice 8 Ecrire une fonction Evaluator qui prend en paramètre trois argument : un modèle, un ensemble de test ainsi que le nombre de colonnes et qui affiche la matrice de confusion, la précision et le rappel de chaque classe ainsi que l'erreur.

Exercice 9 Refaire le même travail sur le dataset *PimaIndiansDiabetes* de la libraire *mlbench*