is periodic of period τ it follows that 0 is a pole of the resolvent of its generator B with residuum P = 101 and $\{\frac{2\pi i}{\tau} \ k \colon k \in \mathbb{Z}\}$ = $\sigma(B)$. Thus R is irreducible and uniformly ergodic on $L^1(\Gamma,m)$ (see A-II, Section 5).

Now let T be a semigroup on M_{\star} . It is called <u>partially periodic</u>, if there exists a projection $Q^{\xi}L(M_{\star})$ reducing T such that $Q(M_{\star}) \cong L^{1}(\Gamma,m)$ and $T_{|\operatorname{im}(Q)|}$ is conjugate to a periodic semigroup on $L^{1}(\Gamma,m)$. In the main result we present a non commutative version of [Nagel (1984)] showing that certain dynamical systems converge to partially periodic semigroups.

<u>Proposition</u> 3.10. Let $^{\mathsf{T}}$ be an irreducible, identity preserving semigroup of Schwarz type with generator A on the predual of a W*-algebra M . If $^{\mathsf{T}}$ is uniformly ergodic, then $\sigma(A)$ \cap $i\mathbb{R} = P\sigma(A)$ \cap $i\mathbb{R} = i\alpha\mathbb{Z}$ for some $\alpha \in \mathbb{R}$. If additionally $\sigma(A)$ \cap $i\mathbb{R} \neq \{0\}$, there exists a strictly positive projection Q on M_{\star} which is identity preserving and completely positive such that:

- (a) Q reduces T and Q(M*) \cong L¹(Γ), Γ being the one dimensional torus.
- (b) The restriction T_Q of T to im(Q) is irreducible and conjugate to a rotation semigroup of period $\tau=\frac{2\pi}{\alpha}$ on Γ .
- (c) The spectral bound $s(A_{|ker(O)})$ is strictly smaller than 0 .

Proof. By D-III, Thm.1.11 and D-III, Thm.2.5 it follows that

$$\sigma(A) \cap i\mathbb{R} = P\sigma(A) \cap i\mathbb{R} = i\alpha \mathbb{Z}$$

for some $\alpha \in \mathbb{R}$. Suppose $\alpha \neq 0$. Since $\sigma(A) + i\alpha \mathbb{Z} = \sigma(A)$ and since every $\eta \in i\alpha \mathbb{Z}$ is isolated, it follows that there exists $\delta > 0$ such that

$$\sigma(A) \setminus i\alpha \mathbb{Z} \subseteq \{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) \leq \delta\}$$
.

Let $\{u_{\alpha}^{\ k}: k\in \mathbb{Z}\}$ be a family of unitary eigenvectors of A' pertaining to the eigenvalues in $i\mathbb{R}$. Then Q'(M) is a commutative W*-algebra. Let $\tau:=\frac{2\pi}{\alpha}$. Then $T(\tau)$ 'u $_{\alpha}^{\ k}=u_{\alpha}^{\ k}$, hence $T_{|im(Q)}$ is periodic. From the Halmos-von Neumann theorem (see [Schaefer (1974),