Linear Regression

Hongchang Gao Spring 2024

Summarization

• 1. Build model

$$f(x_i) = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_d x_{i,d}$$

• 2. Build loss function

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

• 3. Optimize model

$$w = (X^T X)^{-1} X^T y$$

• 4. Make prediction

$$\hat{y} = w^T x_{n+1}$$

Machine learning model is an optimization problem

$$\min_{x} f(x)$$

- f(x) is the objective function, or loss function.
- x is the model parameter.
- Goal: find a model parameter to minimize the objective function

- Gradient Descent method:
 - Decrease the loss function along the direction of the negative gradient
 - The gradient represents the slope of the loss function curve

- Gradient Descent method:
 - Decrease the loss function along the direction of the negative gradient

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

- x_t is the model parameter in the t-th iteration
- $\nabla f(x_t)$ is the gradient
- η is the learning rate, or step size

• Example: Linear Regression

$$\min_{w} \|y - Xw\|^2$$

• Gradient:

$$-2X^{T}(y-Xw)$$

• Gradient descent:

$$w_{t+1} = w_t - \eta(2X^T(Xw_t - y))$$

Example

• House price prediction

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41	880	129.0	322	126	8.3252	452600	NEAR BAY
1	-122.22	37.86	21	7099	1106.0	2401	1138	8.3014	358500	NEAR BAY
2	-122.24	37.85	52	1467	190.0	496	177	7.2574	352100	NEAR BAY
3	-122.25	37.85	52	1274	235.0	558	219	5.6431	341300	NEAR BAY
4	-122.25	37.85	52	1627	280.0	565	259	3.8462	342200	NEAR BAY

• 1. Data preprocessing

```
df = pd.read_csv('housing.csv')

# 0. fill in missing values
mean_val = df['total_bedrooms'].mean()
df['total_bedrooms'] = df['total_bedrooms'].fillna(mean_val)
print(df.isnull().sum())

# 1. convert categorical features to numerical values
labelencoder = LabelEncoder()
df['ocean_proximity'] = labelencoder.fit_transform(df['ocean_proximity'])
print(df.info())
```

• 2. Split dataset

- 2. Split dataset
 - Training set
 - Used for training the model, during the training phase
 - Testing set
 - Used for evaluating the performance of the model, after obtaining the model


```
• # 2. split samples
 house_fea = df.drop('median_house_value', axis=1).values
 house price = df['median_house_value'].values
 X_train, X_test, y_train, y_test = train_test_split(house fea,
                                                  house price,
                                                  test size=0.2,
                                                  random state=42)
 print(X train.shape) (16512, 9)
 print(X_test.shape) (4128, 9)
 # normalize features
 normalizer = StandardScaler()
 X train = normalizer.fit transform(X train)
 X test = normalizer.transform(X test)
```

- 3. Train the model
 - Find the optimal model parameter

```
#3. train the model
lr = LinearRegression()

lr.fit(X_train,y_train)

print("bias is "+str(lr.intercept_))
print("coefficients is "+str(lr.coef_))
```

```
bias is 207194.69373786208
coefficients is [-85854.94724101 -90946.06271148 14924.30655143 -17693.23405277
48767.60670995 -43884.16852449 17601.31495096 77144.10164179
-451.52015229]
```

• 3. Train the model

```
y_train_pred = lr.predict(X_train)
mae = mean absolute error(y train pred,y train)
mse = mean squared error(y train pred,y train)
rmse = np.sqrt(mse)
print('prediction for training set:')
print('MAE is: {}'.format(mae))
print('MSE is: {}'.format(mse))
print('RMSE is: {}'.format(rmse))
        prediction for training set:
        MAE is: 50626.9285430206
        MSE is: 4810958229.787787
        RMSE is: 69361.0714290645
```

• 4. Evaluate the model

```
#4. evaluate the model
y_test_pred = lr.predict(X_test)

mae = mean_absolute_error(y_test_pred,y_test)
mse = mean_squared_error(y_test_pred,y_test)
rmse = np.sqrt(mse)

print('prediction for testing set:')
print('MAE is: {}'.format(mae))
print('MSE is: {}'.format(mse))
print('RMSE is: {}'.format(rmse))
```

prediction for testing set:
MAE is: 51846.87784903816
MSE is: 5055025116.165613
RMSE is: 71098.69982050033

4. Evaluate the model


```
labels = ['House1', 'House2', 'House3', 'House4', 'House5']
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, y_test[0:5], width, label='ground truth')
rects2 = ax.bar(x + width/2, y test pred[0:5], width, label='prediction')
ax.set ylabel('Price')
ax.set xticks(x)
ax.set xticklabels(labels)
ax.legend()
```

Y has a non-linear response to X

Non-linear model

Apply non-linear transformation to features

One-dimensional input:
$$\mathbf{x} = (x) \xrightarrow{\phi(\mathbf{x})} \{1, x, x^2, x^3, \cdots, x^k\}$$

$$f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \cdots + w_k x^k$$

Two-dimensional input:
$$\mathbf{x} = (x_1, x_2) \xrightarrow{\phi(\mathbf{x})} \{1, x_1, x_1^2, x_2, x_2^2, x_1 x_2\}$$

$$f(x) = w_0 + w_1 x_1 + w_2 x_1^2 + w_3 x_2 + w_4 x_2^2 + w_5 x_1 x_2$$

• Linear model

X	у	C/ \ 1
1	5.14	$f(x_1) = w_0 + w_1 * 1$
2	10.67	$f(x_2) = w_0 + w_1 * 2$
3	16.17	$f(x_3) = w_0 + w_1 * 3$
4	20.12	$f(x_4) = w_0 + w_1 * 4$

Non-linear model

	X	x^2	x^3	x^4	У
	1	1^2	1^3	1^4	5.14
í	2	2^2	2^3	2^4	10.67
	3	3^2	3^3	3^4	16.17
4	4	4^2	4^3	4^4	20.12

Linear model

X_1	X_2	У
1	-1	11
2	-2	12
3	-3	13
4	-4	14

• Non-linear model Two-dimensional input: $\mathbf{x} = (x_1, x_2) \xrightarrow{\phi(\mathbf{x})} \{1, x_1, x_1^2, x_2, x_2^2, x_1 x_2\}$

X_1	X_2		У
1	-1		11
2	-2		12
3	-3		13
4	-4		14

• Non-linear transformation $\phi(x) = \{1, x, x^2, \dots, x^k\}$ $f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_k x^k$ {1.}

Overfitting

- Errors on training data are small
- But errors on new points are likely to be large

How to avoid overfitting?

- Add a regularization term
 - Make some w_i very small or approach to zero

$$f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_k x^k$$

$$\min_{w} \left[\frac{1}{n} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2} \right]$$

Fit the data

Control the model complexity

w is the model parameter

 λ is the hyperparameter

How to avoid overfitting?

Optimization

$$\min_{w} \frac{1}{n} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

$$\frac{\partial \mathcal{L}(w)}{w} = -\frac{2}{n} X^{T} (y - Xw) + 2\lambda w = 0$$

$$(X^{T}X + \lambda nI)w = X^{T}y$$

$$w = (X^{T}X + \lambda nI)^{-1} X^{T}y$$

$$\mathcal{L}(w) = \frac{1}{n} \|y - Xw\|_{2}^{2}$$

$$\frac{\partial \mathcal{L}(w)}{w} = -\frac{2}{n} X^{T} (y - Xw) = 0$$

$$X^{T} Xw = X^{T} y$$

$$w = (X^{T} X)^{-1} X^{T} y$$

Ridge Regression vs Lasso

- Ridge regression
 - ℓ_2 -norm regularization

$$\min_{w} \frac{1}{n} ||y - Xw||_2^2 + \lambda ||w||_2^2$$

- Lasso
 - ℓ_1 -norm regularization

$$\min_{w} \frac{1}{n} ||y - Xw||_{2}^{2} + \lambda ||w||_{1}$$

Ridge Regression vs Lasso

Ridge Regression

```
#3. train the model
lr = Ridge(alpha=0.1)
lr.fit(X_train,y_train)
```

Lasso

```
#3. train the model
lr = Lasso(alpha=0.1)
lr.fit(X_train,y_train)
```

Ridge Regression vs Lasso

```
x = np.random.rand(10, 1)
noise = np.random.rand(10, 1)*0.2
y = 3*x + noise
# linear regression
lr = LinearRegression()
lr.fit(x,y)
print("coefficients is "+str(lr.coef))
# ridge regression
lr = Ridge(alpha=0.1)
lr.fit(x,y)
print("coefficients is "+str(lr.coef ))
# lasso
lr = Lasso(alpha=0.1)
lr.fit(x,y)
print("coefficients is "+str(lr.coef ))
```

```
coefficients is [[2.95186796]]
coefficients is [[2.64284605]]
coefficients is [1.78259097]
```

Online Resources

- https://cims.nyu.edu/~cfgranda/pages/OBDA_fall17/notes/linear_mo_dels.pdf
- https://stat.ethz.ch/education/semesters/ss2016/regression/Regression.pdf
- https://www.cs.toronto.edu/~rgrosse/courses/csc311 f20/readings/n otes on linear regression.pdf