First and Last Name	:
Student ID Number:	
Regular TA:	
Lab Section:	
Date Performed:	
Make-up TA (If applicable):	

Part 1: Preparing NaOH solution from a stock solution

NaOH stock solution,	
V(mL)	
NaOH stock solution	~1.2 M
M(mol/L)	
Volume of H ₂ O used	
for dilution	
Estimated	
concentration of	
diluted NaOH, M	
(mol/L)	

Part 2: Standardization of NaOH

- a) Please report your measured values with the correct number of significant figures.
- b) Calculate the exact volume of NaOH used for titration with the **correct number of significant figures.**

Run#	Exact mass of potassium hydrogen phthalate, (g)	Initial burette volume reading, V _i (mL)	Final burette volume reading, V _f (mL)	Exact volume of NaOH used for titration, V(NaOH) =V _f – V _i (mL)	Volume of NaOH used for titration, V(L)

Part 3. Determining if there are outliers in your titration results and if you need to repeat the titration.

• Calculate the n(KHP) for each run (MW= 204.23 g/mol), report the n(NaOH) for each run and calculate the M(NaOH) for each run. Report your values with the **correct number of significant figures**.

 $M_{NaOH}(mol/L) = n_{NaOH}(mol)/V_{NaOH}(L)$

Run#	n(KHP), mol	n(NaOH), mol	M _{NaOH} (mol/L)
		Average M _{NaOH} (mol/L)	

• Compare your calculated values with the estimated NaOH molar concentration value in Part 1 Table and explain whether the M_{NaOH} you obtained make sense.
Do you have an outlier in your molar concentrations? Explain
Yes/No
 If you do have an outlier, repeat your titration and add your results to a corresponding table
Part 4 Calculating SD and RSD

• Calculate SD and RSD using Excel and report the results with **the correct number** of significant figures and units.

Results	Units	Values
SD		
RSD		
M _{average} +/- SD		