Informatie Notas semester 2

Fordeyn Tibo

INHOUDSTAFEL

1	Bron	ncodering	2
2	Con	tinue informatiebronnen	4
	2.1	Probleemstelling	. 4
	2.2	continue informtiebron met geheugen	. 4
	2.3	analoog spectrum	. 4

1 Broncodering

Bewijs 1.0.1:

Stelling:

 $L \cdot \log r \ge H(A)$.

met

$$L = \sum_{i=1}^{n} p_i \cdot l_i.$$

$$H(A) = -\sum_{i=1}^{n} p_{i} \cdot \log p_{i}.$$

$$H(A) - L \cdot \log r = \sum_{i=1}^{n} \left(p_{i} \cdot \log p_{i} + p_{i} l_{i} \log r \right).$$

$$\iff \sum_{i=1}^{n} \left(p_{i} \log \frac{1}{p_{i} r^{l_{i}}} \right).$$

$$\iff \sum_{i=1}^{n} p_{i} \frac{\ln \left(\frac{1}{p_{i} \cdot r^{l_{i}}} \right)}{\ln(2)}.$$

Herrinnering 1.0.1

$$ln(a) \le a - 1$$
.

$$\iff \sum_{i=1}^n p_i \cdot \ln \left(\frac{1}{p_i r^{l_i}} \right) \le \sum_{i=1}^n p_i \cdot \left(\frac{1}{p_i \cdot r^{l_i}} - 1 \right).$$

Opmerking 1.0.1

Kraft zegt niets over efficientie We kijken nu naar broncodes zonder verlies.

Definitie 1.0.1: Efficientie

efficientie van broncodde

$$\epsilon = \frac{H(A)}{L \cdot \log r}.$$

$$\equiv \frac{\text{bit}_i/\text{symbool A}}{\text{bit/codewoord C}}$$

Huffman codering werkt door altijd boom te nemen de kleinsten samente nemen;

Dan kun je efficientie bepalen

$$H(A) = \dots [bit_i/Symbool uit A].$$

$$L = \dots = [bit/codewoord uit C].$$

$$\epsilon = \frac{H(A)}{L \cdot \log r}.$$

Opmerking 1.0.2

Wat doe je als je drie symbolen hebt? Splitsen i ndrie ... Zorg vooral dat je zo'n boom op kunt stellen

Opmerking 1.0.3

$$P(1|0) + P(0|0) = 1.$$

Opmerking 1.0.4 Lempel

Dit is een manier om door de tekst tot een systematische manier leidt om code uit de tekst af gte leiden zonder dat je de statistiek moet kennen.

2 Continue informatiebronnen

2.1 Probleemstelling

We willen een geluidsbron karakteriseren.

Definitie 2.1.1: gemiddeld vermogen van een continue bron

Gedefinieerd als

$$P_X = \int_{-\infty}^{+\infty} x^2 p(x) dx.$$

"Het vermogen is de amplitude tot de tweede macht." p_x is de kans op die amplitude

Het vermogen van de normaalverdeling is de variantie Verdubbeling amplitude geeft factor vier in vermoen, voor je het weet wordt de telefoon veel te warm.

2.2 continue informtiebron met geheugen

Definitie 2.2.1: gemiddelde hoeveelhid informatie per bemonsterinv continue informatiebron na kwantisatie

;

$$H(x^{\Delta}) = -\sum_{i} p_{i} \log p_{i}.$$

delta de kwantisatiestap en $p_i = p(x_i)$

$$H(A) = -\int_{-A}^{0} p(x) \log p(x) dx.$$

$$\iff -\int_{-A}^{A} \frac{1}{2A} \log \frac{1}{2A} dx.$$

$$\iff \frac{1}{2A} \log (2A) x \Big|_{-1}^{A}.$$

2.3 analoog spectrum

Periodisch \rightarrow f is discreet, reel \rightarrow complex toegevogd symmetrisch. Als het reel signaal even is dan is het spectrum symmetrisch. Imaginair deel valt weg.q

Definitie 2.3.1: complexe fourier reeks

;

$$x(t) = \sum_{m=0}^{\infty} c_n e^{j2\pi\nu f_0 t}.$$

en

$$c_n = \frac{1}{T} \int_{-\frac{T_0}{2}}^{+\frac{T_0}{2}} x(t) e^{-j2\pi \nu f_0 t} dt.$$

$$x(t) = \sum_{-\infty}^{\infty} c_n e^{j2\pi f_0 t}, f_n = n \cdot f_0 = \frac{n}{T_0}.$$

Voorbeeld 2.3.1 (Oefening als voorbeeld)

$$C_n = f(nf_0) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} X(t) e^{-j2\pi\nu f_0 t} dt.$$

Figure 2.1: representatie

$$\iff \frac{1}{T_0} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-j2\pi n f_0 t} dt.$$

$$\iff \frac{1}{T_0} \frac{1}{-j2\pi n f_0} \left[e^{-j2\pi n f_0 \frac{T}{2}} - e^{-j2\pi n f_0 \frac{T}{2}} \right].$$

$$\iff \frac{T}{T_0} \frac{\sin(\pi f_n T)}{n f_n T}.$$

Opmerking 2.3.1 Wat als T_0 groter wordt?

Hoe groter de periode hoe kleiner de stapjes. n
 wordt meegeschaald met T_0 . f_n wordt meer en meer continu.