Ecole Nationale d'Ingénieurs de Carthage

Analyse Numérique 2

Feuille d'exercices n°1

Interpolation polynomiale

Classes: 1^{ère} année ING-INF 2019/2020

Exercice 1 On considère la fonction $f(x) = -x^3 + 3x^2 - 2$.

- 1. Soit P_2 le polynôme d'interpolation de f relatif aux points $x_0=0, x_1=1$ et $x_2=2$. Calculer P_2 en utilisant
 - (a) la matrice de Vandermonde,
 - (b) la forme de Lagrange,
 - (c) la forme de Newton,
- 2. Calculer maintenant le polynôme P_3 de degré 3 interpolant f aux points $x_0=0,\,x_1=0,75,\,x_2=1,5$ et $x_3=2.$

Exercice 2 Calculer le polynôme d'interpolation aux points (x_i, y_i) , i = 0..4, suivants :

x_i	-2	1	4	-1	3	-4
y_i	-1	2	59	4	24	-53

à l'aide de la méthode des différences divisées.

Exercice 3 Soit f la fonction définie sur [0,3] par $f(x) = \ln(1+x)$.

- 1. Soit P_3 le polynôme d'interpolation de f relatif aux points $x_0 = 0$, $x_1 = 1$, $x_2 = 2$ et $x_3 = 3$.
 - (a) Calculer le polynôme P_3 en utilisant la base de Lagrange.
 - (b) Calculer le polynôme P_3 en utilisant la base de Newton.

(On donne:
$$\ln(2) \simeq 0.6931$$
, $\ln(3) \simeq 1.0986$, $\ln(4) \simeq 1.3863$), $\ln(5) \simeq 1.6094$)

- 2. Soit P_4 le polynôme d'interpolation de f relatif aux points $x_0=0, x_1=1, x_2=2, x_3=3$ et $x_4=\frac{3}{2}$.
 - (a) Calculer P_4 . Justifier le choix de la méthode utilisée.
 - (b) Donner, en fonction des dérivées successives de f, l'expression de l'erreur d'interpolation $E_4(x) = f(x) P_4(x)$, $\forall x \in [0,3]$.
 - (c) Utiliser le polynôme P_4 pour calculer une valeur approchée de $\ln(2.7)$, ainsi qu'une majoration de la valeur absolue de l'erreur commise.

Exercice 4 Soient $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ une fonction de classe C^n et P son polynôme d'interpolation relatif aux (n+1) points distincts x_0, x_1, \ldots, x_n de [a,b].

- 1. Montrer qu'il existe $\xi \in [a,b]$ tel que $f^{(n)}(\xi) = P^{(n)}(\xi)$.
- 2. En déduire que $f[x_0, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}$ où $f[x_0, \dots, x_n]$ désigne la différence divisée de f aux points x_0, \dots, x_n

Exercice 5 On considère la fonction $f(x) = 2\sin\left(\frac{x}{3}\right)$ définie sur [0,1].

Soit P_n le polynôme d'interpolation de f relatif aux points distincts x_0, x_1, \ldots, x_n donnés dans [0, 1]. On note $E_n(f) = \max_{x \in [0,1]} |f(x) - P_n(x)|$. Montrer que

$$\lim_{n \to +\infty} E_n(f) = 0$$

Exercice 6 soit $f:[0,1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^4 et soit P le polynôme d'interpolation d'Hermite (de degré ≤ 3) de f vérifiant :

$$P(0) = f(0)$$
 , $P'(0) = f'(0)$ $P''(0) = f''(0)$ et $P(1) = f(1)$

- 1. Déterminer le polynômes P.
- 2. (a) Soit $x \neq 0$ et $x \neq 1$. On pose

$$F(t) = f(t) - P(t) - \frac{f(x) - P(x)}{x^3(x-1)}t^3(t-1)$$

Montrer que F est de classe C^4 sur [0,1] et qu'il existe $\xi_x \in]0,1[$ tel que

$$F^{(4)}(\xi_x) = 0$$

(b) Déduire l'expression de l'erreur d'interpolation $E(x) = f(x) - P(x), \forall x \in [0, 1].$

Exercice 7 Soient $a \in]0, +\infty[$ et $f : [-a, a] \to \mathbb{R}$ une fonction de classe \mathcal{C}^4 .

1. Déterminer l'unique polynôme P de degré 3 vérifiant :

$$P(-a) = f(-a)$$
 , $P(a) = f(a)$, $P(0) = f(0)$ et $P'(0) = f'(0)$

2. Montrer que, pour tout $x \in [-a, a]$, on a

$$|f(x) - P(x)| \le \frac{a^4}{96}M$$

où
$$M = \max_{x \in [-a,a]} |f^{(4)}(x)|$$

Exercice 8 Soit $\Delta = \{a = x_0 < x_1 < \dots < x_n = b\}$ une partition de l'intervalle [a,b]. On désigne par $h_{\Delta} = \max_i (x_{i+1} - x_i)$ la finesse de Δ .

- 1. Montrer que pour chaque $f \in \mathcal{C}^m[a,b]$, il existe une fonction φ unique vérifiant les conditions :
 - (a) φ est un polynôme de degré 2m+1 sur chaque segment $[x_i,x_{i+1}]$
 - (b) $\varphi \in \mathcal{C}^m[a,b]$
 - (c) $\varphi^{(k)}(x_i) = f^{(k)}(x_i) \quad 0 \le i \le n, \ 0 \le k \le m$
- 2. On suppose que $f \in \mathcal{C}^{2m+2}[a,b]$. Montrer que

$$||f - \varphi||_{\infty} \le \frac{1}{2^{2(m+1)}(2m+2)!} ||f^{(2m+2)}||_{\infty} h_{\Delta}^{2(m+1)}$$

 $Notation: ||g||_{\infty} = \max_{x \in [a,b]} |g(x)|$

Exercice 9 soit $f: [-1,1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^3 et soit P le polynôme d'interpolation d'Hermite de f aux points -1 et 1 vérifiant :

$$P(-1) = f(-1)$$
 , $P'(-1) = f'(-1)$ et $P(1) = f(1)$

1. Calculer les polynômes w_1 , w_2 et w_3 de degré 2 définis par :

$$\begin{cases} w_1(-1) = w'_1(-1) = 0 & et \quad w_1(1) = 1 \\ w_2(-1) = w_2(1) = 0 & et \quad w'_2(-1) = 1 \\ w_3(1) = w'_3(-1) = 0 & et \quad w_3(-1) = 1 \end{cases}$$

- 2. Montrer que la famille $\{w_1, w_2, w_3\}$ forme une base de $\mathbb{R}_2[X]$ (espace des polynômes de degré inférieur ou égal à 2)
- 3. Donner l'expression du polynôme P dans la base $\{w_1, w_2, w_3\}$.
- 4. Donner l'expression de l'erreur d'interpolation E(x) = f(x) P(x).

Exercice 10 Soient x_0, x_1 et x_2 trois nombres réels tels que $x_0 < x_1 < x_2$. On note \mathcal{P}_m l'espace vectoriel des polynômes à coefficients réels de degré $\leq m$. Soit $q: [x_0, x_2] \to \mathbb{R}$ une fonction de classe C^5 .

1. Montrer qu'il existe un polynôme $P \in \mathcal{P}_4$ unique vérifiant :

$$P(x_0) = g(x_0)$$
 $P(x_1) = g(x_1)$
 $P'(x_0) = g'(x_0)$ $P'(x_1) = g'(x_1)$ et $P'(x_2) = g'(x_2)$

(On pourra d'abord montrer l'unicité et en déduire l'existence)

2. Soit *H* le polynôme d'interpolation d'Hermite vérifiant :

$$H(x_0) = 0$$
 $H(x_1) = 0$ $H(x_2) = 1$
 $H'(x_0) = 0$ $H'(x_1) = 0$ $H'(x_2) = 0$

(a) Montrer que $H^{(5)}$ est une constante non nulle et que

$$H(t) \neq 0$$
 pour tout $t \in [x_0, x_2] \setminus \{x_0, x_1\}$

(b) Soient P le polynôme introduit en 1., et $t \in [x_0, x_2]$.

$$\text{Montrer qu'il existe } \xi=\xi(t)\in]x_0,x_2[\text{ tel que }g(t)-P(t)=\frac{g^{(5)}(\xi)}{H^{(5)}(\xi)}H(t).$$

Indication : On pourra considérer pour $t \neq x_0$ et $t \neq x_1$, la fonction

$$G(x) = g(x) - P(x) - \frac{g(t) - P(t)}{H(t)}H(x)$$