Remember from last week:

Theorem 9: Best Approximation Thoerem: Let W be a subspace of \mathbb{R}^n , and y a vector in \mathbb{R}^n . Then the closest point in W to ${\bf y}$ is the unique point $\hat{{\bf y}}$ in W such that $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . In other words, $\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$ for all \mathbf{v} in W with $\mathbf{v} \neq \hat{\mathbf{y}}$.

We proved last week that, if $\hat{\mathbf{y}}$ is in W, and $\mathbf{y}-\hat{\mathbf{y}}$ is in W^\perp , then $\hat{\mathbf{y}}$ is the unique closest point in W to ${\bf y}$. But we did not prove that a $\hat{{\bf y}}$ satisfying these conditions always exist.

orthogonal projection onto ${\cal W}$, and calculate it using an orthogonal basis for ${\cal W}.$ We will show that the function $y \mapsto \hat{y}$ is a linear transformation, called the

Our remaining goals:

- §6.2 The properties of orthogonal bases (p2-6)
- §6.3 Calculating the orthogonal projection (p7-16)
 - §6.4 Constructing orthogonal bases (p17-20)
- $\S6.2$ Matrices with orthogonal columns (p21-23) $^{f 0}$

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 13, Page 1 of 24

§6.2-6.3: Orthogonal Bases, Orthogonal Projections

Definition: • A set of vectors $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$ is an *orthogonal set* if each pair of distinct vectors from the set is orthogonal, i.e. if $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ whenever $i \neq j$.

ullet A set of vectors $\{\mathbf{u}_1,\dots,\mathbf{u}_p\}$ is an *orthonormal set* if it is an

orthogonal set and each \mathbf{u}_i is a unit vector.

$$\left\{ \begin{array}{c|c} 3/\sqrt{10} & -1/\sqrt{35} & 1/\sqrt{14} \\ 0 & , & 5/\sqrt{35} & , & 2/\sqrt{14} \\ -1/\sqrt{10} & -3/\sqrt{35} & 3/\sqrt{14} \end{array} \right\} \text{ is an orthonormal so}$$

Example: In \mathbb{R}^6 , the set $\{\mathbf{e}_1,\mathbf{e}_3,\mathbf{e}_5,\mathbf{e}_6,\mathbf{0}\}$ is an orthogonal set, because $\mathbf{e}_i\cdot\mathbf{e}_j=0$ for all $i\neq j$, and $\mathbf{e}_i\cdot\mathbf{0}=0$.

So an orthogonal set may contain the zero vector. But when it doesn't:

Theorem 4: Nonzero Orthogonal sets are Linearly Independent: If

 $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$ is an orthogonal set of nonzero vectors, then it is linearly independent.

Proof: We need to show that $c_1 = \cdots = c_p = 0$ is the only solution to

 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}.$ Take the dot product of both sides with \mathbf{v}_1 :

$$(c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p)\cdot\mathbf{v}_1=\mathbf{0}\cdot\mathbf{v}_1$$

 $c_1\mathbf{v}_1 \cdot \mathbf{v}_1 + c_2\mathbf{v}_2 \cdot \mathbf{v}_1 + \dots + c_p\mathbf{v}_p \cdot \mathbf{v}_1 = 0.$ Using that $\mathbf{v}_j \cdot \mathbf{v}_1 = 0$ whenever $j \neq 1$:

$$c_1\mathbf{v}_1 \cdot \mathbf{v}_1 + c_2\mathbf{0} + \cdots + c_p\mathbf{0} = c_1\mathbf{v}_1 \cdot \mathbf{v}_1 + c_2\mathbf{0}$$

Since ${\bf v}_1$ is nonzero, ${\bf v}_1 \cdot {\bf v}_1$ is nonzero, so it must be that $c_1=0$.

By taking the dot product of (*) with each of the other \mathbf{v}_i s and using this argument, each c_i must be 0.

Semester 1 2016, Week 13, Page 3 of 24

Semester 1 2016, Week 13, Page 4 of 24

Let $\{{f v}_1,\dots,{f v}_p\}$ is an orthogonal set of nonzero vectors, as before, and use the Since \mathbf{v}_1 is nonzero, $\mathbf{v}_1 \cdot \mathbf{v}_1$ is nonzero, we can divide both sides by $\mathbf{v}_1 \cdot \mathbf{v}_1$: $\frac{\mathbf{v}_1 \cdot \mathbf{y}}{\mathbf{v}_1 \cdot \mathbf{v}_1} = c_1$ $\mathbf{v}_1 \cdot \mathbf{y} = c_1 \mathbf{v}_1 \cdot \mathbf{v}_1 + c_2 \mathbf{v}_2 \cdot \mathbf{v}_1 + \dots + c_p \mathbf{v}_p \cdot \mathbf{v}_1.$ $+\cdots+c_p0$ $\mathbf{v}_1 \cdot \mathbf{y} = \mathbf{v}_1 \cdot \left(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p \right)$ $\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p.$ $\mathbf{v}_1 \cdot \mathbf{y} = c_1 \mathbf{v}_1 \cdot \mathbf{v}_1 + c_2 0$ Take the dot product of both sides with $\mathbf{v}_1\colon$ Using that $\mathbf{v}_j \cdot \mathbf{v}_1 = 0$ whenever $j \neq 1$: same idea with

By taking the dot product of (*) with each of the other \mathbf{v}_j s and using this argument, we obtain $c_j = \frac{\mathbf{v} \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j}$.

So finding the weights in a linear combination of orthogonal vectors is much easier than for arbitrary vectors (where we would have to row-reduce $egin{array}{ccc} egin{array}{cccc} ig| & ar{h} & ig| & ar{h} & ig| & ar{h} & a$

HKBU Math 2207 Linear Algebra

Definition: ullet A set of vectors $\{{f v}_1,\ldots,{f v}_p\}$ is an *orthogonal basis* for a subspace Wif it is both an orthogonal set and a basis for ${\cal W}.$

 \bullet A set of vectors $\{\mathbf{u}_1,\dots,\mathbf{u}_p\}$ is an orthonormal basis for a subspace W if it is both an orthonormal set and a basis for W

Example: The standard basis $\{\mathbf{e}_1,\dots,\mathbf{e}_n\}$ is an orthonormal basis for \mathbb{R}^n

By the previous theorem, any orthogonal set of nonzero vectors is an orthogonal basis

Theorem 5: Weights for Orthogonal Bases: If $\{{\bf v}_1,\dots,{\bf v}_p\}$ is an orthogonal basis As proved on the previous page, a big advantage of orthogonal bases is: for W, then, for each ${\bf y}$ in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

$$c_s = \frac{\mathbf{y} \cdot \mathbf{v}_j}{\mathbf{v}_s}$$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j}.$$

Semester 1 2016, Week 13, Page 5 of 24 In particular, if $\{{f u}_1,\dots,{f u}_p\}$ is an orthonormal basis, then the weights are $c_j={f y}\cdot{f u}_j$ HKBU Math 2207 Linear Algebra

Example: We showed on p2 that $\left\{ \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$ is an orthogonal set. Since these vectors are nonzero, the set is linearly independent, and is therefore a basis for \mathbb{R}^3

 $\frac{\mathbf{y}\cdot\mathbf{v}_j}{\mathbf{v}_j\cdot\mathbf{v}_j}$

$$c_{1} = \begin{bmatrix} 10 \\ 9 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix} = \underbrace{\frac{10}{30+0+0} = 3}_{9+0+1}, \quad c_{2} = \underbrace{\frac{10}{0} \begin{bmatrix} -1 \\ 9 \end{bmatrix} \begin{bmatrix} -1 \\ 5 \end{bmatrix}}_{2} = \underbrace{\frac{100}{1+25+9} = 1}_{1+25+9}, \quad c_{3} = \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac{1}{2}}_{2}}_{2} = \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{2} = \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac{1}{2}}_{2}}_{2} = \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac{10}{9} \begin{bmatrix} 1 \\ 9 \end{bmatrix} \underbrace{\frac$$

Semester 1 2016, Week 13, Page 6 of 24

From the Weights for Orthogonal Bases Theorem: if $\{u_1,\dots,u_p\}$ is an orthonormal basis for a subspace W in \mathbb{R}^n , then each y in W is $\mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p$

etation of this decomposition in R2:

Algebraic proof: this satisfies the hypothesis of the Best Approximation The-rorem because: From the picture, the closest point in the line $\operatorname{Span}\{\mathbf{u}_i\}$ to \mathbf{y} is ..

Let
$$\mathbf{y} = \begin{bmatrix} 10 \\ 9 \end{bmatrix}$$
. We can write (see p6)
$$\mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2 + (\mathbf{y} \cdot \mathbf{u}_3)\mathbf{u}_3$$
$$= \underbrace{3\sqrt{10}\mathbf{u}_1 + \sqrt{35}\mathbf{u}_2}_{2} + \underbrace{2\sqrt{14}\mathbf{u}_3}_{2}.$$

Call this vector $\hat{\mathbf{y}}$. Then this is $\mathbf{y} - \hat{\mathbf{y}}$. It is in W^\perp , because It is in W. it is orthogonal to a spanning set for W.

So, by the Best Approximation Theorem, $\mathbf{\hat{y}}=3\sqrt{10}\mathbf{u}_1+\sqrt{35}\mathbf{u}_2=\left|\begin{array}{cc}5\end{array}\right|$

closest point in W to \mathbf{y} . Notice that \mathbf{u}_3 was not necessary to calculate $\tilde{\mathbf{y}}$. The distance from \mathbf{y} to W is $\|\mathbf{y} - \hat{\mathbf{y}}\| = \left\|2\sqrt{14}\mathbf{u}_3\right\| = 2\sqrt{14}$.

Then every ${f y}$ in ${\Bbb R}^n$ can be written uniquely as ${f y}={f \hat y}+{f z}$ with ${f \hat y}$ in W and ${f z}$ in W^\perp . Theorem 8: Orthogonal Decomposition Theorem: Let W be a subspace of \mathbb{R}^n In fact, if $\{{f v}_1,\dots,{f v}_p\}$ is any orthogonal basis for W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{v}_p}{\mathbf{v}_p \cdot \mathbf{v}_p} \mathbf{v}_p \quad \text{and} \quad \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

Definition: The orthogonal projection onto W is the function $\operatorname{proj}_W:\mathbb{R}^n\to\mathbb{R}^n$ such that $\mathsf{proj}_W(\mathbf{y})$ is the unique $\hat{\mathbf{y}}$ in the above theorem. The image vector $\mathsf{proj}_W(\mathbf{y})$ is the orthogonal projection of y onto W.

The uniqueness part of the theorem means that the $\mathsf{proj}_W(\mathbf{y})$ does not depend on the orthogonal basis used to calculate it.

Note that $\mathsf{proj}_W(\mathbf{y})$ satisfies the hypotheses of the Best Approximation Theorem, so orthogonal decomposition, but we will give another proof not using the Best $\mathsf{proj}_W(\mathbf{y})$ is the closest point in W to $\mathbf{y}.$ This implies the uniqueness of the

Approximation Theorem. HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 13, Page 9 of 24

Then every ${f y}$ in ${\Bbb R}^n$ can be written uniquely as ${f y}=\hat{{f y}}+{f z}$ with $\hat{{f y}}$ in W and ${f z}$ in W^\perp . Theorem 8: Orthogonal Decomposition Theorem: Let W be a subspace of \mathbb{R}^n . In fact, if $\{{f v}_1,\ldots,{f v}_p\}$ is any orthogonal basis for W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{v}_p}{\mathbf{v}_p \cdot \mathbf{v}_p} \mathbf{v}_p \quad \text{and} \quad \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

 $extsf{Proof}$: We first show that the formulas for $\hat{\mathbf{y}}$ and \mathbf{z} above indeed give an orthogonal decomposition.

 $\hat{\mathbf{y}}$ is a linear combination of $\mathbf{v}_1,\dots,\mathbf{v}_p,$ so it is in W . To show \mathbf{z} is in $W^\perp.$

$$\mathbf{z} \cdot \mathbf{v}_1 = (\mathbf{y} - \hat{\mathbf{y}}) \cdot \mathbf{v}_1 \\ = \mathbf{y} \cdot \mathbf{v}_1 - \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \frac{\mathbf{y} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \underbrace{(\mathbf{v}_2 \cdot \mathbf{v}_1)}_{\mathbf{v}_2 \cdot \mathbf{v}_2} \cdots - \frac{\mathbf{y} \cdot \mathbf{v}_p}{\mathbf{v}_p \cdot \mathbf{v}_p} \underbrace{(\mathbf{v}_p \cdot \mathbf{v}_1)}_{\mathbf{v}_p \cdot \mathbf{v}_p}$$

and the same argument shows that $\mathbf{z} \cdot \mathbf{v_i} = 0$ for all i, so \mathbf{z} is orthogonal to a spanning $= \mathbf{y} \cdot \mathbf{v}_1 - \mathbf{y} \cdot \mathbf{v}_1 = 0,$ set for W, and therefore in W^{\perp} .

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 13, Page 10 of 24

Then every ${f y}$ in ${\Bbb R}^n$ can be written uniquely as ${f y}={f \hat y}+{f z}$ with ${f \hat y}$ in W and ${f z}$ in W^\perp . Theorem 8: Orthogonal Decomposition Theorem: Let W be a subspace of \mathbb{R}^n In fact, if $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$ is any orthogonal basis for W, then

$$\mathbf{\hat{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{v}_p}{\mathbf{v}_p \cdot \mathbf{v}_p} \mathbf{v}_p \quad \text{and} \quad \mathbf{z} = \mathbf{y} - \mathbf{\hat{y}}.$$

Proof: (continued) We show the uniqueness of $\hat{\mathbf{y}}$ and \mathbf{z} .

Suppose $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ and $\mathbf{y}=\hat{\mathbf{y}}_1+\mathbf{z}_1$ are two such decompositions, so $\hat{\mathbf{y}},\hat{\mathbf{y}}_1$ are in W, and \mathbf{z},\mathbf{z}_1 are in W^\perp , and

$$\hat{\mathbf{y}} + \mathbf{z} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$$

 $\hat{\mathbf{y}} - \hat{\mathbf{y}}_1 = \mathbf{z}_1 - \mathbf{z}.$

RHS: Because \mathbf{z}, \mathbf{z}_1 are in W^{\perp} and W^{\perp} is a subspace, the difference $\mathbf{z}_1 - \mathbf{z}$ is in W^{\perp} . So the vector $\hat{\mathbf{y}} - \hat{\mathbf{y}}_1 = \mathbf{z}_1 - \mathbf{z}$ is in both W and W^{\perp} , this vector is the zero vector LHS: Because $\hat{\mathbf{y}}, \hat{\mathbf{y}}_1$ are in W and W is a subspace, the difference $\hat{\mathbf{y}} - \hat{\mathbf{y}}_1$ is in W. (property 1 on week 12, p10). So $\hat{\mathbf{y}} = \hat{\mathbf{y}}_1$ and $\mathbf{z}_1 = \mathbf{z}$.

orthogonal basis - see p17-20 for an explicit construction.) Semester 1 2016, Week 13, Page 11 of 24 (Technically, to complete the proof, we need to show that every subspace has an

Then every ${f y}$ in ${\Bbb R}^n$ can be written uniquely as ${f y}={f \hat y}+{f z}$ with ${f \hat y}$ in W and ${f z}$ in W^\perp . **Theorem 8: Orthogonal Decomposition Theorem**: Let W be a subspace of \mathbb{R}^n . In fact, if $\{{f v}_1,\ldots,{f v}_p\}$ is any orthogonal basis for W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{v}_p}{\mathbf{v}_p \cdot \mathbf{v}_p} \mathbf{v}_p \quad \text{and} \quad \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

How can we discover the formula for $\hat{\mathbf{y}}$ if we did not consider orthogonal bases for $\mathbb{R}^{n?}$ We want a $\hat{\mathbf{y}}$ in W, and $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$ is a basis for W, so $\hat{\mathbf{y}}=c_1\mathbf{v}_1+\dots+c_p\mathbf{v}_p$ for some weights $c_1,\ldots,c_p.$

We want $\mathbf{y} - \hat{\mathbf{y}}$ to be in W^\perp . By the properties of W^\perp , it's enough to show that $(\mathbf{y} - \hat{\mathbf{y}}) \cdot \mathbf{v}_i = 0$ for each i. We can use this condition to solve for c_i :

HKBU Math 2207 Linear Algebra

 $so c_1 =$

Semester 1 2016, Week 13, Page 12 of 24

Properties of the function $\operatorname{proj}_W:\mathbb{R}^n \to \mathbb{R}^n$:

- a. proj_W is a linear transformation. b. $\mathrm{proj}_W(\mathbf{y}) = \mathbf{y}$ if and only if \mathbf{y} is in W
 - c. The range of proj_W is W.
- d. The kernel of proj_W is W^\perp

To see f: Write U for $W^{\perp}.$ Then,

$$\mathbf{y} = \underbrace{\mathbf{\hat{y}}}_{\text{in } W^{\perp} = U^{\perp}} + \underbrace{\mathbf{z}}_{\text{in } W^{\perp} = U}.$$

By uniqueness of the orthogonal decomposition, $\mathbf{z} = \operatorname{proj}_U(\mathbf{y})$. So $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} = \operatorname{proj}_W(\mathbf{y}) + \operatorname{proj}_{W^{\perp}}(\mathbf{y})$ for each \mathbf{y} in \mathbb{R}^n , so $\operatorname{proj}_W + \operatorname{proj}_{W^{\perp}}$ is the identity transformation.

Properties of the function $\operatorname{proj}_W:\mathbb{R}^n \to \mathbb{R}^n$:

- a. proj_W is a linear transformation.
- $\operatorname{proj}_W(\mathbf{y}) = \mathbf{y}$ if and only if \mathbf{y} is in W.
- - c. The range of proj_W is W.
- d. The kernel of proj $_W$ is $W^\perp.$
- e. $\mathrm{proj}^2_W = \frac{1}{\mathrm{minim}}$ f. $\mathrm{proj}_W + \mathrm{proj}_{W^\perp}$ is the identity transformation.

It is easy to prove a,b,c,d,e using the formula, but we can also prove them from the existence and uniqueness of the orthogonal decomposition, e.g. to see a: if we have orthogonal decompositions $\mathbf{y}_1 = \mathsf{proj}_W(\mathbf{y}_1) + \mathbf{z}_1$ and $\mathbf{y}_2 = \mathsf{proj}_W(\mathbf{y}_2) + \mathbf{z}_2$, then

$$c\mathbf{y}_1 + d\mathbf{y}_2 = c(\mathsf{proj}_W(\mathbf{y}_1) + \mathbf{z}_1) + d(\mathsf{proj}_W(\mathbf{y}_2) + \mathbf{z}_2)$$

$$= \underbrace{c\mathsf{proj}_W(\mathbf{y}_1) + d\mathsf{proj}_W(\mathbf{y}_2) + c\mathbf{z}_1 + d\mathbf{z}_2}_{\mathsf{in }W}$$

Since the orthogonal decomposition is unique, this shows

$$\frac{\mathsf{proj}_W(c\mathbf{y}_1+d\mathbf{y}_2)}{\mathsf{QM}} = c\mathsf{proj}_W(\mathbf{y}_1) + d\mathsf{proj}_W(\mathbf{y}_2).$$
 Semester 1 2016, Week 13, Page 14 of 24

(formula on p9) than using the standard matrix, but this result is useful theoretically.) The orthogonal projection is a linear transformation, so we can ask for its standard matrix. (It is faster to compute orthogonal projections by taking dot products Theorem 10: Matrix for Orthogonal Projection: Let $\{\mathbf{u}_1,\dots,\mathbf{u}_p\}$ be an

orthonormal basis for a subspace W, and U be the matrix $U = \left| \mathbf{u}_1 \right|$

Then the standard matrix for proj_W is $[\operatorname{proj}_W]_{\mathcal{E}} = UU^T$.

$$UU^T\mathbf{y} = \begin{bmatrix} | & | & | & | \\ \mathbf{u}_1 & \dots & \mathbf{u}_p \\ | & | & | \end{bmatrix} \begin{bmatrix} -- & \mathbf{u}_1 & -- \\ \vdots & -- & \vdots \\ -- & \mathbf{u}_p & -- \end{bmatrix} \mathbf{y} = \begin{bmatrix} | & | & | & | \\ \mathbf{u}_1 & \dots & \mathbf{u}_p \\ | & | & | \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \cdot \mathbf{y} \\ \vdots \\ \vdots \\ \mathbf{u}_p \cdot \mathbf{y} \end{bmatrix}$$

$$= (\mathbf{u}_1 \cdot \mathbf{y})\mathbf{u}_1 + \dots + (\mathbf{u}_p \cdot \mathbf{y})\mathbf{u}_p.$$

Tip: to remember that $[\mathrm{proj}_W]_{\mathcal{E}} = UU^T$ and not U^TU (which is important too, see p21), make sure this matrix is $n \times n$.

This is an algorithm to make an orthogonal basis out of an arbitrary basis. Example: Let
$$\mathbf{x}_1 = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and let $W = \operatorname{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$.

Construct an orthogonal basis $\{\mathbf{v}_1,\mathbf{v}_2\}$ for W.

Answer: Let
$$\mathbf{v}_1=\mathbf{x}_1=egin{bmatrix} z\\0 \end{bmatrix}$$
 , and let $W_1=\mathsf{Span}\,\{\mathbf{v}_1\}.$

by the vicine $\mathbf{x}_2 - \mathsf{proj}_{W_1}(\mathbf{x}_2)$ is orthogonal to W_1 . $(\mathbf{x}_1) - \mathbf{x}_2 - \mathbf{v}_1$ By the Orthogonal Decomposition Theorem, So let $\mathbf{v}_2 = \mathbf{x}_2 - \mathsf{proj}_{W_1}(\mathbf{x}_2) = \mathbf{x}_2 - \frac{\mathbf{x}_2}{\mathbf{v}_1 \cdot \mathbf{v}_1}$

Semester 1 2016, Week 13, Page 17 of 24

For subspaces of dimension p>2, we repeat this idea p times, like this:

Construct an orthogonal basis
$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 for W .

Answer: Let $\mathbf{v}_1 = \mathbf{x}_1$, $W_1 = \operatorname{Span}\{\mathbf{v}_1\}$.

By the Orthogonal Decomposition Theorem, $\mathbf{x}_2 - \operatorname{proj}_{W_1}(\mathbf{x}_2)$ is orthogonal to W_1 .

So let $\mathbf{v}_2 = \mathbf{x}_2 - \operatorname{proj}_{W_1}(\mathbf{x}_2) = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix} - \frac{24 + 0 - 6 + 0}{3^2 + 0 + 1^2 + 0} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ 0 \end{bmatrix}$.

Let $W_2 = \text{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$. By the Orthogonal Decomposition Theorem, $\mathbf{x}_3 - \text{proj}_{W_2}(\mathbf{x}_3)$ is orthogonal to W_2 , and in particular to \mathbf{v}_1 and \mathbf{v}_2 . So let $\mathbf{v}_3 = \mathbf{x}_3 - \text{proj}_{W_2}(\mathbf{x}_3) = \dots$

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 13, Page 18 of 24

Answer: (continued) So far we have
$$\mathbf{v}_1 = \mathbf{x}_1 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \mathbf{x}_2 - \operatorname{proj}_{W_1}(\mathbf{x}_2) = \begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix}$ and $W_2 = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.
Let $\mathbf{v}_3 = \mathbf{x}_3 - \operatorname{proj}_{W_2}(\mathbf{x}_3) = \mathbf{x}_3 - \left(\frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\mathbf{v}_1 + \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2}\mathbf{v}_2\right)$

and
$$W_2 = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$$
.
Let $\mathbf{v}_3 = \mathbf{x}_3 - \text{proj}_{W_2}(\mathbf{x}_3) = \mathbf{x}_3 - \left(\frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2\right)$

$$\begin{bmatrix} -6 \\ 7 \\ -\frac{18+0-2+0}{3^2+0+1^2+0} \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix} - \frac{-6-35+6+0}{1^2+(-5)^2+3^2+0} \begin{bmatrix} -5 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Check our answer: $\mathbf{v}_1 \cdot \mathbf{v}_2 = 3 + 0 - 3 + 0 = 0$, $\mathbf{v}_1 \cdot \mathbf{v}_3 = \dots = 0$, $\mathbf{v}_2 \cdot \mathbf{v}_3 = \dots = 0$

HKBU Math 2207 Linear Algebra

In general:

Theorem 11: Gram-Schmidt: Given a basis $\{{f x}_1,\dots{f x}_p\}$ for a subspace W of

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2}$$

$$\mathbf{v}_p = \mathbf{x}_p - \frac{\mathbf{x}_p \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \dots - \frac{\mathbf{x}_p \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$

Then $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$ is an orthogonal basis for W, and Span $\{\mathbf{v}_1,\dots,\mathbf{v}_k\}=$ Span $\{\mathbf{x}_1,\dots,\mathbf{x}_k\}$ for each k between 1 and p.

In fact, you can apply this algorithm to any spanning set (not necessarily linearly independent). Then some \mathbf{v}_k s might be zero, and you simply remove them.

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 13, Page 19 of 24

pp361-362: Matrices with orthonormal columns

This is an important class of matrices.

Theorem 6: Matrices with Orthonormal Columns: A matrix U has orthonormal columns if and only if $U^T U = I$. **Proof**: Let \mathbf{u}_i denote the ith column of U. From the row-column rule of matrix multiplication (week 12 p14):

$$egin{bmatrix} egin{bmatrix} -- & \mathbf{u}_1 & -- \ -- & \vdots & -- \ & \vdots & -- \end{bmatrix} egin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_p \ \mathbf{u}_1 & \cdots & \mathbf{u}_p \end{bmatrix} = egin{bmatrix} \mathbf{u}_1 \cdot \mathbf{u}_1 & \cdots & \mathbf{u}_1 \cdot \mathbf{u}_p \ \vdots & \vdots & \vdots \ -- & \mathbf{u}_p \cdot \mathbf{u}_p \end{bmatrix}.$$

so $U^TU=I$ if and only if ${\bf u}_i\cdot {\bf u}_i=1$ for each i (diagonal entries), and ${\bf u}_i\cdot {\bf u}_j=0$ for each pair i
eq j (non-diagonal entries).

Semester 1 2016, Week 13, Page 21 of 24 HKBU Math 2207 Linear Algebra

Theorem 7: Matrices with Orthonormal Columns represent Length-**Preserving Linear Transformations**: Let U be an m imes n matrix with orthonormal columns. Then, for any $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$,

$$(U\mathbf{x})\cdot(U\mathbf{y})=\mathbf{x}\cdot\mathbf{y}.$$

In particular, $\|U\mathbf{x}\| = \|\mathbf{x}\|$ for all \mathbf{x} , and $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$.

$$(U\mathbf{x})\cdot(U\mathbf{y})=(U\mathbf{x})^T(U\mathbf{y})=\mathbf{x}^TU^TU\mathbf{y}=\mathbf{x}^T\mathbf{y}=\mathbf{x}\cdot\mathbf{y}.$$
 because $U^TU=I_n$, by the previous theorem

Exercise: prove that an isometry also preserves angles; that is, if $\|U\mathbf{x}\| = \|\mathbf{x}\|$ for Length-preserving linear transformations are sometimes called isometries all x, then $(U\mathbf{x})\cdot(U\mathbf{y})=\mathbf{x}\cdot\mathbf{y}$ for all x, y. (Hint: think about $\mathbf{x}+\mathbf{y}.$)

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 13, Page 22 of 24

An important special case:

Definition: A matrix U is orthogonal if it is a square matrix with orthonormal columns. Equivalently, $U^{-1}=U^{ar{\jmath}}$ Warning: An orthogonal matrix has orthonormal columns, not simply orthogonal

Example: The standard matrix of a rotation in \mathbb{R}^2 is $U = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, and this is an orthogonal matrix because

$$U^T U = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0 \\ 0 & \cos^2\theta + \sin^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

represents a rotation. So an orthogonal $n \times n$ matrix with determinant 1 is a It can be shown that every orthogonal 2×2 matrix U with determinant 1high-dimensional generalisation of a rotation.

Non-examinable: distances for abstract vector spaces

inner products exist; these can be used to compute weighted regression lines, see an inner product. The inner product of ${\bf u}$ and ${\bf v}$ is often written $\langle {\bf u}, {\bf v} \rangle$ or $\langle {\bf u} | {\bf v} \rangle$. satisfying the symmetry, linearity and positivity properties (week 12 p5) is called (So the dot product is one example of an inner product on \mathbb{R}^n , but other useful On an abstract vector space, a function that takes two vectors to a scalar 36.8 of the textbook)

Many common inner products on C([0,1]), the vector space of continuous functions, have the form

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_0^1 f(t)g(t)w(t) dt$$

for some weight function w(t). This inner product can be used to find polynomial approximations and Fourier approximations to functions, see $\S 6.7 \hbox{-} 6.8$ of the

Applying Gram-Schmidt to $\left\{1,t,t^2,\dots\right\}$ produces various families of orthogonal polynomials, which is a big field of study. Semester 1 2016. Week 13. Page 24.

With the concept of inner product, we can understand what the transpose means for linear transformations:

First notice: if A is an $m \times n$ matrix, then, for all ${\bf v}$ in \mathbb{R}^n and all ${\bf u}$ in \mathbb{R}^m :

$$\underbrace{(A^T\mathbf{u}) \cdot \mathbf{v}}_{\text{ot product in } \mathbb{R}^n} = (A^T\mathbf{u})^T\mathbf{v} = \mathbf{u}^TA\mathbf{v} = \underbrace{\mathbf{u} \cdot (A\mathbf{v})}_{\text{dot product in } \mathbb{R}^m}.$$

 $\mathsf{dot}\ \mathsf{product}\ \mathsf{in}\ \mathbb{R}^n$

So, if A is the standard matrix of a linear transformation $T:\mathbb{R}^n o \mathbb{R}^m$, then A^T is the standard matrix of its adjoint $T^*:\mathbb{R}^m \to \mathbb{R}^n$, which satisfies

$$(T^*\mathbf{u})\cdot\mathbf{v}=\mathbf{u}\cdot(T\mathbf{v}).$$

 $(T^*\mathbf{u})\cdot\mathbf{v}=\mathbf{u}\cdot(T\mathbf{v}).$ or, for abstract vector space with an inner product:

$$\langle T^* \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, T \mathbf{v} \rangle.$$

So symmetric matrices $(A^T=A)$ represent self-adjoint linear transformations $(T^*=T)$. For example, on C([0,1]) with any integral inner product, the multiplication-by-x function $\mathbf{f}\mapsto x\mathbf{f}$ is self-adjoint.

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 13, Page 25 of 24