One-to-one Transformations 单射(也译作injective)

Definition (One-to-one transformations). A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *one***to-one** if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at most one solution x in \mathbb{R}^n .

定义:映射T: $\mathbb{R}^n \to \mathbb{R}^m$ 是单射,则对于任意 $\mathbf{b} \in \mathbb{R}^m$,方程 $T(\mathbf{x}) = \mathbf{b}$ 在 $\mathbf{x} \in \mathbb{R}^n$ 中至多有一个解。

Onto Transformations

满射(也译作surjective)

Definition (Onto transformations). A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *onto* if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at least one solution x in \mathbb{R}^n .

定义: 映射T: $\mathbb{R}^n \to \mathbb{R}^m$ 是满射,则对于任意 $\mathbf{b} \in \mathbb{R}^m$,方程 $T(\mathbf{x}) = \mathbf{b}$ 在 $\mathbf{x} \in \mathbb{R}^n$ 中至少有一个解。

Bijective (双射)

Definition: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is bijective if it is injective and surjective; that is, every element $\mathbf{b} \in \mathbb{R}^m$ is the image of exactly one element $\mathbf{x} \in \mathbb{R}^n$.

定义:映射 $T: \mathbb{R}^n \to \mathbb{R}^m$ 是双射,则映射T既为单射也为满射,即对于任意 $\mathbf{b} \in \mathbb{R}^m$,方程 $T(\mathbf{x}) = \mathbf{b}$ 在 $\mathbf{x} \in \mathbb{R}^n$ 中有唯一解。

Bijection (One-to-One and Onto)

Comparison

The above expositions of one-to-one and onto transformations were written to mirror each other. However, "one-to-one" and "onto" are complementary notions: neither one implies the other. Below we have provided a chart for comparing the two. In the chart, A is an $m \times n$ matrix, and $T: \mathbb{R}^n \to \mathbb{R}^m$ is the matrix transformation T(x) = Ax.

T is one-to-one	T is onto
$T(\mathbf{x}) = \mathbf{b}$ has at most one solution for every \mathbf{b} . 对每个 \mathbf{b} ,方程 $T(\mathbf{x}) = \mathbf{b}$ 在至多有一个解.	$T(\mathbf{x}) = \mathbf{b}$ has at least one solution for every \mathbf{b} . 对每个 \mathbf{b} ,方程 $T(\mathbf{x}) = \mathbf{b}$ 至少有一个解.
The columns of A are linearly independent. A的列向量线性独立.	The columns of A span \mathbb{R}^m . A的列向量张成 \mathbb{R}^m 空间.
A has a pivot in every column. A的每列都有主元.	A has a pivot in every row. A的每行都有主元.
The range of T has dimension n . T 的陪域是 n 维的.	The range of <i>T</i> has dimension m. <i>T</i> 的陪域是 <mark>m维</mark> 的.

Note that in general, a transformation T is bijective if it is injective and surjective; that is, every element $\mathbf{b} \in \mathbb{R}^m$ is the image of exactly one element $\mathbf{x} \in \mathbb{R}^n$. 注意: 映射T是双射,则映射T既为单射也为满射,即对于任意 $\mathbf{b} \in \mathbb{R}^m$,方程 $T(\mathbf{x}) = \mathbf{b}$ 在 $\mathbf{x} \in \mathbb{R}^n$ 中有唯一解。