es. 1. Loll

$$\Sigma = \{a, b, c\} \qquad \rightarrow p \mid \varphi \mid p \mid \{q\} \mid r \}$$

$$q \mid p \mid \{q\} \mid r \mid \varphi \mid p \}$$

$$\times r \mid \{q\} \mid r \mid \varphi \mid \{p\} \mid q \}$$

(i) ECLOSE(
$$p$$
) = $\{p\}$
ECLOSE(q) = $\{p,q\}$
ECLOSE(r) = $\{p,q,r\}$

$$(ii) \qquad a \qquad b \qquad c \\ \longrightarrow \{P\} \quad \{P,Q\} \quad \{P,Q,r\} \\ \quad \{P,Q\} \quad \{P,Q,r\} \quad \{P,Q,r\} \\ \times \{P,Q,r\} \quad \{P,Q,r\} \quad \{P,Q,r\} \quad \{P,Q,r\} \\$$

$$Es. 3. 2022$$
 $\Sigma = \{0,1\}$

(i)
$$L_1 = \{0^n 1^m \mid n, m > 0\} \cup \{1^n 0^m \mid n, m > 0\}$$

start
$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2$$
 $\begin{cases} N(a,b) & con \\ a,b \in \Sigma^* \end{cases}$

L1 = L(N(O,1)) U L(N(1,0)). L1 è unione di linguaggi regolari, quindi e' regolare. Poiché regolare, è libero, con la seguente grammatica:

(ii) $L_2 = \{w\overline{w}\}$ dove \overline{w} s: ott:ene sost:tuendo gl: 1 ω n gl: 0 e viceversa.

Per il PL, s: consider: 10ⁿ101ⁿ0ⁿ = abcde | Ibcd|≤n, bd ≠ E, abicdie ∈ L2 ∀i∈ N. In nesson caso ace ∈ L2. Qu:nd: L2 non è libero; cosi neanche regolare.

Per il PL, si consideri on 1 (01) = abade | 16cdl ≤ ≤n, bd ≠ ε, abi cdi e ∈ L3 V i ∈N. Se bcd contiene 0 da sinistra, ace ∉ L3 perché gli 0 a sinistra some meno di quelli a destra, analogamente se contiene solo gli 1 a sinistra o se contiene uno 0 a destra.

Quindi La non è libero; così neanche regolare.

es. 4. 2012

(i)
$$L(G) = \{ w \in \{0,1\}^{t} | w \text{ sia bilanciato da 0 in apertura}$$

e 1 in chiusura}

es. 5.2022

Dato un DFA D, S: costruisca D' copiaudore la struttura, ma rimovendo ogni transizione che parte dagli stati finali. D'accetta sono min (L(D)).