# Molecular dynamics simulation

David Girón, Sergio Blanco y Alain Verduras

## Requirement list

- 1. Input/output
- 2. Initialization
- 3. Neighbour list
- 4. Potential, energies and forces
- 5. Integration of Newton's 2nd law

## Requirement list

#### 1 INPUT/OUTPUT:

- 1.1 Data from an input text file
- 1.2 No order in the input file
- 1.3 Different system of units
- 1.4 Default values for the parameters
- 1.5. A GUI

#### 2 **INITIALIZATION**:

- 2.1 Initial positions of FCC lattice
- 2.2 Maxwell-Boltzmann distribution for Vi
- 2.3 Initial positions in a file
- 2.4 Initial velocities in a histogram

## Requirement list

#### **3 NEIGHBOUR LIST:**

- 3.1 Verlet's neighbour list
- 3.2 Initial neighbour list in a file

#### 4 POTENTIAL, ENERGIES, AND FORCES:

- 4.1 Shifted Lennard-Jones potential
- 4.2 Energies and temperature in a file
- 4.3 Original Lennard-Jones potential
- 4.4 GUI with type of potentials

#### **5 INTEGRATION OF NEWTON'S 2nd LAW:**

- 5.1 Verlet's algorithm
- 5.2 Positions in a text file
- 5.3 GUI with integration algorithms
- 5.4 Custom the integration algorithm



#### UML model

Schematic class diagram

#### UML model

Activity diagram of the object creation and the simulation method





## Input: GUI

\* Change to project folder:

cd Route\_To\_Project\_Folder

Command:

python run\_simulation.py

• Alternative:

Double click in the executable file *run.sh* 

## Input: data file

Command:

python run\_simulation.py
--data\_file=FILE\_NAME

Command for help: python run\_simulation.py --help



## Data file: error testing

### Some of the error tests implemented include:

- Check if keyword correctly spelled
- Check if unit is admitted
- Check if there is any keyword missing
- Check if data file exists, if not it uses a default one

### Data file: flexibilities

### Some of the flexibilities implemented:

- Header row omission
- Capital letter use
- Order of keywords

### Initialization: class diagram



## Initialization: Output

T=100, N=10, sigma=2, a=0.1

positions

```
initial positions dat: Bloc de notas
Archivo Edición Formato Ver Ayuda
Initial position of the atoms in the supercell divided in unit cell
blocks in a system of units where sigma is 1 and the origin
is placed at the center of the supercell, in cartesian coordinates
1 [-0.25 -0.25 -0.25]
2 [-0.25 -0.225 -0.225]
3 [-0.225 -0.25 -0.225]
4 [-0.225 -0.225 -0.25 ]
5 [-0.2 -0.25 -0.25]
         -0.225 -0.225]
7 [-0.175 -0.25 -0.225]
8 [-0.175 -0.225 -0.25 ]
9 [-0.15 -0.25 -0.25]
10 [-0.15 -0.225 -0.225]
11 [-0.125 -0.25 -0.225]
12 [-0.125 -0.225 -0.25 ]
13 [-0.1 -0.25 -0.25]
14 [-0.1 -0.225 -0.225]
15 [-0.075 -0.25 -0.225]
16 [-0.075 -0.225 -0.25 ]
17 [-0.05 -0.25 -0.25]
18 [-0.05 -0.225 -0.225]
19 [-0.025 -0.25 -0.225]
20 [-0.025 -0.225 -0.25 ]
          -0.25 -0.251
           -0.225 -0.2251
23 [ 0.025 -0.25 -0.225]
24 [ 0.025 -0.225 -0.25 ]
```

#### velocity histogram

| Archivo Edición Formato Ver Ayu | da  |
|---------------------------------|-----|
| -90.0000000000                  | 7   |
| 88.000000000                    | 6   |
| 86.0000000000                   | 6   |
| 84.0000000000                   | 10  |
| -82.0000000000                  | 9   |
| -80.0000000000                  | 19  |
| 78.0000000000                   | 21  |
| 76.000000000                    | 25  |
| -74.0000000000                  | 17  |
| 72.0000000000                   | 26  |
| -70.0000000000                  | 43  |
| -68.0000000000                  | 29  |
| -66.0000000000                  | 35  |
| -64.0000000000                  | 38  |
| -62.0000000000                  | 42  |
| -60.0000000000                  | 46  |
| 58.000000000                    | 56  |
| -56.0000000000                  | 66  |
| 54.0000000000                   | 61  |
| -52.0000000000                  | 79  |
| 50.000000000                    | 103 |
| 48.0000000000                   | 93  |
| -46.00000000000                 | 119 |
| 44.0000000000                   | 109 |
| -42.00000000000                 | 135 |
| -40.0000000000                  | 147 |
| -38.0000000000                  | 162 |
| -36.0000000000                  | 172 |
| -34.0000000000                  | 186 |
| -32.0000000000                  | 210 |
| -30.0000000000                  | 188 |
| -28.0000000000                  | 182 |
| -26.0000000000                  | 232 |
| -24.0000000000                  | 237 |
| -22.0000000000                  | 219 |
| 20 000000000                    | 255 |

3

### Distribution of velocities



## Neighbour list

Without boundary conditions



With boundary conditions



LIST 2 3 4 1 1 1

LIST 2 3 4 1 3 4 1 2 4 1 2

POINT 0 3 4 5

**POINT** 

0 3 6 9

3

## Potential energies and forces



## **ODE** algorithms

- Activity diagram of the algorithm
- Essentially the same for every algorithm, just some small changes

