2 Razonamiento con incertidumbre

Camilo Palazuelos Calderón

REPRESENTACIÓN DEL CONOCIMIENTO Grado en Ingeniería Informática Mención en Computación

Curso 2023-2024

Información útil

Sobre la práctica y su entrega

Objetivos de la práctica

- Familiarizarse con el manejo de grafos en Python
- □ Implementar un algoritmo para decidir $X \perp_{\mathcal{G}} Y \mid \mathbf{Z}$
- □ Calcular el coste temporal del algoritmo codificado
- Laboratorio: 20 y 27 de octubre de 14:30 a 16:30
 - □ La fecha límite de entrega es el 2 de noviembre a las 23:59

L	M	X	J	V
2	3	4	5	6
9	10	11	12	13
16	17	18	19	20
23	24	25	26	27
30	31	1	2	3

Qué entregar

- Memoria con respuestas a las preguntas formuladas en el guion de la práctica
- Código desarrollado (y material adicional si lo consideráis oportuno)

Vértices hoja de \mathcal{G}

Cómo simplificamos una RB

■ Proposición 2.1. Sean $\mathcal{G} = (V, E)$ y $\mathcal{G}' = \mathcal{G}[V \setminus \{v_i\}]$ los grafos de dos RB tales que v_i es un vértice hoja, donde $v_i \in V$.

$$p(\mathbf{x}_{-i} \mid \mathcal{G}) = p(\mathbf{x}_{-i} \mid \mathcal{G}')$$

Demostración

$$p(\mathbf{x}_{-i} \mid \mathcal{G}) = \sum_{x_i} p(\mathbf{x}_{-i}, x_i \mid \mathcal{G})$$

$$= \sum_{x_i} \prod_{x \in \mathbf{x}_{-i}} p(x \mid pa(X), \mathcal{G}) \cdot p(x_i \mid pa(X_i), \mathcal{G})$$

$$= \prod_{\mathbf{x} \in \mathbf{x}_{-i}} p(x \mid pa(X), \mathcal{G}) \cdot \sum_{x_i} p(x_i \mid pa(X_i), \mathcal{G}) = p(\mathbf{x}_{-i} \mid \mathcal{G}')$$

Independencia condicional

Qué asumimos en p(x) y cómo lo sabemos

Proposición 2.2. Sea p una distribución y sean ϕ_1 y ϕ_2 dos funciones no negativas.

$$X \perp_{p} Y \mid \mathbf{Z} \Longleftrightarrow \exists \phi_1 \, \exists \phi_2 \, [p(x, y, \mathbf{z}) = \phi_1(x, \mathbf{z}) \cdot \phi_2(y, \mathbf{z})]$$

Algunas equivalencias

Separación gráfica

Cómo se refleja $X \perp_{p} Y \mid \mathbf{Z}$ en \mathcal{G}

■ Teorema 2.3. Sea p una distribución que factoriza de acuerdo con el grafo G de una RB.

$$\underbrace{X \perp_{\mathcal{G}} Y \mid \mathbf{Z}}_{\text{Separación}} \Longrightarrow \underbrace{X \perp_{p} Y \mid \mathbf{Z}}_{\text{Independencia}}$$

- $X \perp_{\mathcal{G}} Y \mid Z$ si no hay caminos activos entre X e Y dado Z
 - Un camino no dirigido en \mathcal{G} se denomina *activo* dado \mathbf{Z} si, para cada trío de variables consecutivas, estamos en una de estas situaciones

Un algoritmo de separación

Cómo enfocamos el problema computacionalmente

- Algoritmo para decidir X ⊥_G Y | Z
 - ① Elimina los vértices hoja de G de acuerdo con $\{X, Y\} \cup Z$
 - ② Une padres con hijos en común e ignora la dirección en $E(\mathcal{G})$
 - $3 X \perp_{\mathcal{G}} Y \mid \mathbf{Z}$ si no existen caminos entre X e Y sin ningún $Z \in \mathbf{Z}$

Tareas y preguntas

Qué hacer y a qué dar respuesta en la memoria

- [6 PUNTOS] Codificación del algoritmo descrito
 - Para ello, os recomiendo utilizar el módulo de Python NetworkX
- [2 PUNTOS] Eficacia de vuestra propuesta
 - Mostrad, con ejemplos variados, que todo funciona correctamente
- [2 PUNTOS] Cálculo de su coste temporal
 - □ Expresadlo en función de n y m, donde $n = |V(\mathcal{G})|$ y $m = |E(\mathcal{G})|$