Projeto e Análise de Algoritmos

Aula 2:

Função de Complexidade Notação Assintótica

DECOM/UFOP

Anderson Almeida Ferreira

Adaptado do material feito por Andréa Iabrudi Tavares

Qual o modelo para medir desempenho?

- Medida precisa de um programa executando em um ambiente específico?
 - muitas variáveis externas
- Algoritmo em pseudo-código para RAM
 - Capturar os aspectos essenciais
 - · Abstração de hardware, sistema operacional, compilador, linguagem, etc
 - Medir número de passos (operações básicas)
 - Custo constante para passo

Função de Complexidade

T(n)

- Número de passos/itens de memória
- Depende do tamanho da entrada
 - Número de elementos
 - Número de bits
 - Número de arestas + vértices
- Depende da entrada: melhor/pior caso/ caso médio

Exemplo: Ordenação por Inserção

```
function insertion (A[n])
```

```
    for i=2..n:
    elem = A[i]
    j = i
    while (j>1) and (elem<A[j-1]):
        A[j] = A[j-1]
        j = j-1
        A[j] = elem</li>
```


Inserção - Função de complexidade

```
function insertion (A[n])

1. for i=2..n:

2. elem = A[i]

3. j=i

4. while (j>1) and (elem < A[j-1]):

5. A[j] = A[j-1]

6. j=j-1

7. A[j] = elem
```

	# instruções	vezes
1	2	n
2	1	(n-1)
3	1	(n-1)
4	3	(ti+1) p/ i
5	1	ti p/i
6	1	ti p/i
7	1	(n-1)

For 🖨

Atribuição Teste

Incremento Teste

Incremento Teste

Incremento Teste

•••

Incremento Teste (F)

T(n) = 2n + 3(n-1) +
$$\sum_{i=2}^{n} 3(ti + 1)$$

+ $2\sum_{i=2}^{n} ti$

$$-\Delta l = 2$$

$$T(n) = 5n - 3 + 5\sum_{i=2}^{n} ti + 3\sum_{i=2}^{n} 1$$

$$T(n) = 5n - 3 + 3(n-1) + 5\sum_{i=2}^{n} ti$$

$$T(n) = 8n - 6 + 5\sum_{i=2}^{n} ti$$

Inserção - Função de complexidade

$$T(n) = 8n - 6 + 5\sum_{i=2}^{n} ti$$

Melhor caso

$$T(n) = 8n - 6$$

Pior caso

$$T(n) = 8n - 6 + 5\sum_{i=2}^{n} (i-1)$$

$$T(n) = 8n - 6 + 5\sum_{i=1}^{n-1} i$$

$$T(n) = 8n - 6 + 5 n(n-1)/2$$

$$T(n) = (5n^2 + 11n - 12)/2$$

Caso médio

Assumindo probabilidades iguais

• ti médio =
$$\frac{1}{i} (0 + 1 + ... + (i - 1))$$

$$= \frac{1}{i} \sum_{j=0}^{i-1} j$$

$$= \frac{1}{i} i(i-1)/2$$

• ti médio =
$$(i - 1)/2$$

$$T(n) = 8n - 6 + 5\sum_{i=2}^{n} (i-1)/2$$

$$T(n) = 8n - 6 + \frac{5}{2} \sum_{i=1}^{n-1} i$$

$$T(n) = 8n - 6 + 5n(n-1)/4$$

$$T(n) = (5n^2 + 27n - 24)/4$$

decom

Função de Complexidade

- Caso médio: tempo esperado
- Melhor caso: menor tempo de execução
- Pior caso : maior tempo de execução

Funções de Complexidade

Qual o melhor programa?

D1	20	80	370
D2	100	100	40
D3	40	90	35
D4	145	85	40
D5	80	82	35
D6	200	83	40
D7	10	75	35
Médio	85	85	85
Pior	200	100	370
Melhor	10	75	35

decom

Diferentes medidas

- Caso médio: tempo esperado
 - Não se sabe a distribuição da entrada
 - Pode ser difícil de calcular
- Melhor caso: menor tempo de execução
 - Normalmente, pouquíssimas instâncias
 - Pode enganar
- Pior caso: maior tempo de execução
 - garantia de tempo de execução

Comparação Efetiva

• Inserção com melhor programador:

$$T_1(n) = 2n^2$$

MergeSort com programador medíocre:

$$T_2(n) = 50 n \lg n$$

• No mesmo computador, qual é o melhor se a entrada for 100? E se for 2000?

50n lg n	2*n^2	n
33.219,28	20.000	100
1.096.578,43	8.000.000	2000

Execução num mesmo computador

Entradas Pequenas

Execução num mesmo computador

Entradas Pequenas

Tendência

Tecnologia só atrasa diferença...

Iguais

Mil vezes mais rápido

decom

Função de Complexidade

• Exercício. Forneça a função de complexidade de tempo do melhor caso, pior caso e caso médio para:

```
function sequencial(V,n, c)
    V[o] = c;
    i = n;
    while V[i] != c:
        i = i - 1;
    return i;
```


Análise Assintótica - "A Idéia"

- Ignorar constantes dependentes de máquina
- Olhar a taxa de crescimento do tempo de execução, expressa em função do tamanho da instância de entrada.
 - Funções: Θ, Ο, Ω, ο, ω

Capturando essência da complexidade...

- Captura a tendência real do desempenho de um algoritmo, quando o tamanho da instância de entrada cresce.
- Em termos práticos:
 - Ignorar constantes e remover termos dominados da função de complexidade

- O parâmetro *n* fornece uma medida da dificuldade para se resolver um problema, já que o tempo necessário para resolvê-lo cresce quando *n* cresce.
 - Para valores suficientemente pequenos de *n*, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes.
 - A escolha do algoritmo não é um problema crítico para problemas de tamanho pequeno.
- A análise de algoritmos é realizada para valores grandes de *n*.
 - Estuda-se o comportamento assintótico das funções de custo.
 - O comportamento assintótico de *f*(*n*) representa o limite do comportamento do custo quando *n* cresce.

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares.
 - A medida de custo ou medida de complexidade deve relatar o crescimento assintótico da(s) operação(ões) considerada(s).
- A seguinte definição relaciona o comportamento assintótico de duas funções distintas:

Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, temse $|g(n)| \le c \times |f(n)|$.

- Exemplo 1: Seja $g(n) = n e f(n) = -n^2$.
 - □ A função f(n) domina assintoticamente a função g(n), já que $|n| \le 1 \times |-n^2|$ para $n \ge 0$.
 - ¹ A função g(n) não domina assintoticamente a função f(n), já que $|-n^2| > c \times |n|$ para todo n > 1 e qualquer valor de c para algum valor de m.
- Exemplo 2: Seja $g(n) = (n+1)^2 e f(n) = n^2$.
 - A função g(n) e f(n) dominam assintoticamente uma a outra, já que:

$$|n^2| \le 1 \times |(n+1)^2|$$
 para $n \ge 0$;
 $|(n+1)^2| \le 4 \times |n^2|$ para $n \ge 1$.

- Para expressar que f(n) domina assintoticamente g(n), uma notação sugerida por Knuth é g(n) = O(f(n)), onde se lê "g(n) é da ordem no máximo f(n)".
 - [□] Assim, se o tempo de execução T(n) de um programa é $O(n^2)$, existem constantes c e m tais que, para valores de $n \ge m$, $T(n) \le c \times n^2$.
- **Definição** notação O: Uma função g(n) é O(f(n)) se existem duas constantes positivas c e m tais que, para todo $n \ge m$, tem-se $|g(n)| \le c \times |f(n)|$.
- Exemplo 1: Seja $g(n) = (n+1)^2$.
 - □ Logo g(n) é $O(n^2)$, já que $|(n+1)^2| \le 4 \times |n^2|$ para $n \ge 1$.

- Exemplo 2: Seja $g(n) = 3n^3 + 2n^2 + n$
 - □ Logo g(n) é $O(n^3)$, já que $|3n^3+2n^2+n| \le 6 \times |n^3|$ para $n \ge 0$.
 - É importante notar que g(n) também é $O(n^4)$, porém tal fato é mais fraco do que dizer que g(n) é $O(n^3)$.
- Exemplo 3: Seja $g(n) = n^2$
 - □ Claramente, g(n) é $O(n^2)$, já que $|n^2| \le 1 \times |n^2|$ para $n \ge 0$.
 - Porém, g(n) não é O(n). Suponha que existam constantes c e m tais que para todo $n \ge m$, $n^2 \le c \times n$. Logo $c \ge n$ para qualquer $n \ge m$. Mas, não existe $c \ge n$ para todo n.
- Exemplo 4: Seja $g(n) = \log_5 n$
 - $g(n) \notin O(\log n)$, já que $\log_b n$ difere de $\log_c n$ pela const. $\log_b c$.
 - Como $n = c^{\log_c n}$, tomando \log_b em ambos os lados, tem-se:

$$\log_b n = \log_b c^{\log_c n} = \log_c n \times \log_b c.$$

$$\log_c n = \frac{\log_b n}{\log_b c}$$

• Algumas operações realizadas com a notação O são:

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \quad c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

- A regra da soma O(f(n)) + O(g(n)) pode ser usada para calcular o tempo de execução de uma sequência de trechos de programa.
 - Suponha trechos cujo tempo de execução são O(n), $O(n^2)$ e $O(n\log n)$. Assim, o tempo de execução do programa é $O(n^2)$.
- O produto de $[\log n + k + O(1/n)]$ por $[n + O(\sqrt{n})]$ é:

$$n\log n + kn + O(\sqrt{n}\log n).$$

- Dizer que g(n) é O(f(n)) significa que f(n) é um limite superior para g(n). A notação Ω especifica o limite inferior.
- **Definição** notação Ω : Uma função g(n) é $\Omega(f(n))$ se existem duas constantes positivas c e m tais que, para todo $n \ge m$, tem-se $|g(n)| \ge c \times |f(n)|$.

- Exemplo: Seja $g(n) = 3n^3 + 2n^2$
 - Logo g(n) é $\Omega(n^3)$, já que $|3n^3+2n^2| \ge 1 \times |n^3|$ para $n \ge 0$.

Comportamento assintótico de funções • **Definição** notação Θ : Uma função g(n) é $\Theta(f(n))$ se

• **Definição** notação Θ : Uma função g(n) é $\Theta(f(n))$ se existirem constantes positivas c_1 , c_2 e m tais que, para todo $n \ge m$, tem-se $0 \le c_1 \times f(n) \le g(n) \le c_2 \times f(n)$.

• Para todo $n \ge m$, g(n) é igual a f(n) a menos de uma constante. Nesse caso, f(n) é considerado um **limite** assintótico firme.

- Exemplo: Seja $g(n) = 3n^2 + 2n + 2$.
 - Para mostrar que g(n) = $\Theta(n^2)$, deve-se determinar valores para as constantes c_1 , c_2 e m tais que:

$$c_1 n^2 \le 3n^2 + 2n + 2 \le c_2 n^2$$
, para $n \ge m$

- □ Para c2 podemos escolher 7, para $n \ge 1$
- Para c1 podemos escolher 1, para n ≥ 0
- Logo, escolhendo $c_1 = 1$, $c_2 = 7$ e m = 1, é possível verificar que $g(n) = \Theta(n^2)$.
- Outras constantes podem existir, mas o importante é que existe alguma escolha para as três constantes.

- A notação *o* é usada para definir um limite superior que não é assintoticamente firme.
- **Definição** notação o: Uma função g(n) é o(f(n)) se, para qualquer constante c > 0 existe m > 0, então $0 \le g(n) < c \times f(n)$ para todo $n \ge m$.
- Exemplo: $2n = o(n^2)$, mas $2n^2 \neq o(n^2)$.
- As notações *O* e *o* são similares.
 - A diferença é que em g(n) = O(f(n)), a expressão "o $\leq g(n) < c \times f(n)$ " é válida para alguma constante c > 0, mas em g(n) = o(f(n)), tal expressão é válida para todas as constantes c > 0.
- Na notação o, a função g(n) tem um crescimento muito menor que f(n) quando n tende para infinito.
 - Alguns autores usam o seguinte limite para definição da notação o:

$$\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$$

- A notação ω é usada para definir um limite inferior que não é assintoticamente firme.
- **Definição** notação ω : Uma função g(n) é $\omega(f(n))$ se, para qualquer constante c > 0 existir m > 0, então $0 \le c \times f(n) < g(n)$ para todo $n \ge m$.
- Exemplo: $n^2/2 = \omega(n)$, mas $n^2/2 \neq \omega(n^2)$.
- As notações Ω e ω são similares.
 - A diferença é que em $g(n) = \Omega(f(n))$, a expressão " $0 \le c \times f(n) < g(n)$ " é válida para alguma constante c > 0, mas em $g(n) = \omega(f(n))$, tal expressão é válida para todas as constantes c > 0.
- Na notação ω , a função f(n) tem um crescimento muito menor que g(n) quando n tende para infinito.
 - Alguns autores usam o seguinte limite para definição da notação ω:

$$\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$$

decom

Limites são mais suaves...

decom

Exercícios

• Em cada uma das situações mostre se $f = O(g), f = \Omega(g), f = \Theta(g)$.

f	g
n-100	n-200
log n	$(\log n)^2$
log n	$\log n^2$
2 ⁿ	2 ⁿ⁺¹
n!	2 ⁿ
$2n^2 + 5n$	n²
2n²+5n	n^3

Exercício

- Mostre que $(n+2)^2 = \Theta(n^2)$
- Mostre que $2^{2n} \neq O(2^n)$

- Atribuição: *O(1)*
- Sequência: regra da soma

$$O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$$

$$\Omega(f(n)) + \Omega(g(n)) = \Omega(\max(f(n), g(n)))$$

- Decisão
 - Condição
 - Melhor (mínimo), pior (máximo), médio (?)

- Repetição: regra da multiplicação
 - Somatórios
 - Dependência de limite
 - While (pior, melhor, médio)

$$O(cf(n)) = O(f(n))$$

$$\Theta(f(n))\Theta(g(n)) = \Theta(f(n)g(n))$$

- Funções não-recursivas
 - Calcula complexidade da função e atribui ao comando de chamada
- Funções recursivas:
 - Relações de recorrência
 - Teorema mestre

Multiplicação de Matrizes

```
for (i=1; i<=x; i++)
        for (j=1; j<=y; j++) {
                C[i][j] = 0;
                for (k=1; k<=z; k++)
                        C[i][j] += A[i][k] * B[k][j];
```

- Multiplicação de duas matrizes $C_{x \times z} = A_{x \times y} \times B_{y \times z}$
- Matrizes começam no índice 1

Multiplicação de Matrizes

$$T(x, y, z) = \sum_{i=1}^{x} \sum_{j=1}^{y} (\Theta(1) + z\Theta(1))$$

$$T(x, y, z) = \sum_{i=1}^{x} \sum_{j=1}^{y} (\Theta(1) + \Theta(z)) = \sum_{i=1}^{x} \sum_{j=1}^{y} (\Theta(z))$$

$$T(x, y, z) = \sum_{i=1}^{x} y\Theta(z) = \sum_{i=1}^{x} \Theta(yz)$$

$$T(x, y, z) = x\Theta(yz) = \Theta(xyz)$$

decom departamento de computação

Pesquisa em texto

```
int findmatch(char *p, char *t)
{
                                           /* counters */
        int i,j;
                                           /* string lengths */rana
        int m, n;
        m = strlen(p);
        n = strlen(t);
                                                                 )s m-1
                                                                 buco se isso
        for (i=0; i <= (n-m); i=i+1) {
                 j=0;
                 while ((j < m) & (t[i+j] == p[j]))
                                                                 do while, se
                         j = j+1;
                                                                  = m-1
                 if (j == m) return(i);
        return(-1);
```

decom departamento de computação

Pesquisa em texto

```
int findmatch(char *p, char *t)
                                                                                        int i,j;
                                                                                                                             /* counters */
                                                                                                                             /* string lengths */
                                                                                        int m. n:
                                                                                         m = strlen(p);
                                                                                        n = strlen(t);
                                                                                        for (i=0; i<=(n-m); i=i+1) {
                                                                                                  j=0;
                                                                                                 while ((j \le m) \&\& (t[i+j]==p[j]))
                                                                                                  if (j == m) return(i);
                                                                                        return(-1);
T(n,m) = \Theta(n) + \Theta(m) + \sum_{i=0}^{n-m} \left( \Theta(1) + \sum_{i=1}^{m-1} \Theta(1) + \Theta(1) \right) + \Theta(1)
T(n,m) = \Theta(n) + \sum_{i=0}^{n-m} (\Theta(1) + (m-1)\Theta(1))
T(n,m) = \Theta(n) + \sum_{i=0}^{n-m} (\Theta(1) + \Theta(m)) = \Theta(n) + \sum_{i=0}^{m-m} (\Theta(m))
T(n,m) = \Theta(n) + (n-m+1)\Theta(m) = \Theta(n) + \Theta(nm-m^2+m)
T(n,m) = \Theta(n) + \Theta(nm) = \Theta(nm)
```


Análise com chamadas de função

```
\frac{\text{function fib2}}{\text{if } n=0 \text{ return } 0}
\text{create an array } f[0...n]
f[0] = 0, f[1] = 1
\text{for } i=2...n:
f[i] = f[i-1] + f[i-2]
\text{return } f[n]
```

$$T_1(n) = \Theta(n)$$

<u>function</u> <u>escreveFibonacci(</u> *n*)

1 for
$$i = 1..n$$
:
2 $val = fib_2(i)$;

T2(n) =
$$\sum_{i=1}^{n} T_1(i)$$

= $\sum_{i=1}^{n} \Theta(i)$
= $\Theta\left(\frac{n(n+1)}{2}\right)$
= $\Theta(n^2)$

Algoritmos recursivos

<u>function pesquisaBinaria</u>(*chave, esq, dir, a[1..n]*)

```
1  if esq > dir:
2     return no;
3  meio = (dir+esq)/2;
4  if (a[meio] == chave):
5     return yes;
6  if (a[meio] > chave):
7     return pesquisaBinaria(chave, esq, meio-1, a)
8  else:
9     return pesquisaBinaria(chave, meio+1, dir, a)
```


Complexidade - Recorrência

<u>function pesquisaBinaria</u>(*chave, esq, dir, a[1..n]*)

```
1  if esq > dir:
2     return no;
3  meio = (dir+esq)/2;
4  if (a[meio] == chave):
5     return yes;
6  if (a[meio] > chave):
7     return pesquisaBinaria(chave, esq, meio-1, a)
8  else:
9     return pesquisaBinaria(chave, meio+1, dir, a)
```

$$T(n) = \begin{cases} 1 & n = 1\\ 4 + T\left(\frac{n}{2}\right) & n > 1 \end{cases}$$

decom departamento de computação

Recorrência: terminologia

$$T(n) = \begin{cases} 1 & n=1 \\ 4+T\left(\frac{n}{2}\right) & n>1 \end{cases}$$
 Base

$$T(n) = 4\lceil \log n \rceil + 1$$

Forma Fechada da Função de Complexidade

Iteração

$$T(n) = 4 + T\left(\frac{n}{2}\right)$$

$$T(n) = 4 + \left(4 + T\left(\frac{n}{4}\right)\right) = 2 \times 4 + T\left(\frac{n}{2^2}\right)$$

$$T(n) = 2 \times 4 + \left(4 + T\left(\frac{n}{2^3}\right)\right) = 3 \times 4 + T\left(\frac{n}{2^3}\right)$$

. . .

$$T(2^{k}) = k \times 4 + T\left(\frac{n}{2^{k}}\right) = \log n \times 4 + T(1)$$
$$T(n) = \Theta(\log n)$$

$$\frac{n}{2^k} = 1$$

$$n = 2^k$$

$$k = \lg n$$

Exercício

• Faça um algoritmo que informe o n-ésimo número de Fibonacci em O(log n).