408统考组成原理部分

课程基于

《计算机组成与设计:硬件/软件接口》5e

Patterson & Hennesy 著

408统考与《硬件软件接口》

408多出来的部分:

- 一、计算机系统概述 性能评价指标: MIPS、xFLOPS
- 二、数据的表示和运算 定点数的编码表示
- 三、存储器层次结构 段式、段页式虚拟存储器的基本原理
- 四、指令系统 指令格式,x86寻址方式,CISC和RISC
- 五、中央处理器 (CPU) 大部分内容,特别是异常和中断机制
- 六、总线和I/O系统 几乎所有内容

《硬件软件接口》多出来的部分:

- CH2 大部分内容、特别是MIPS指令集
- CH3 改进后的乘除法器,浮点乘法
- CH4 大部分内容
- CH5 cache一致性

	第一,其浮点运算速度为 93.0146 PFLOPS,说明该计算机每秒钟内完成的浮点操作次数约										
	, 为()。										
	A. 9.3×10 ¹³ 次	B. 9.3×10 ¹⁵ 次	C. 9.3 千万亿次	D. 9.3 亿亿次							
13.	. 已知带符号整数用补码表示,变量 x,y,z 的机器数分别为 FFFDH, FFDFH, 7FFCH,下列结										
	论中,正确的是()。										
	A. 若 x,y 和 z 为无符号整数,则 $z < x < y$										
	B. 若 x,y 和 z 为无符号	B整数,则 $x < y < z$									
	C. 若 x,y 和 z 为带符号整数,则 $x < y < z$										
	D. 若 x, y 和 z 为带符号	号整数,则 <i>y</i> < <i>x</i> < <i>z</i>									
14.	下列数值中,不能用 IE	EEE 754 浮点格式精	确表示的是 ()。								
	A. 1.2	B. 1.25	C. 2.0	D. 2.5							
15.	某计算机的存储器总线	中有 24 位地址线和	32 位数据线,按字编	址,字长为32位。如果							
	00 0000H~3F FFFFH 为 RAM 区,那么需要 512K×8 位的 RAM 芯片数为 ()。										
	A. 8	B. 16	C. 32	D. 64							
16.	若计算机主存地址为32	2位,按字节编址,(Cache 数据区大小为 32	KB,主存块大小为 32B,							
	采用直接映射方式和回	写(Write Back)策	略,则 Cache 行的位数	至少是()。							
	A. 275	B. 274	C. 258	D. 257							

12. 2017年公布的全球超级计算机 TOP 500 排名中, 我国"神威·太湖之光"超级计算机蝉联

17.	下列客左哭中。	汇编语言程序员可见的是 ()

- I. 指令寄存器 II. 微指令寄存器 III. 基址寄存器 IV. 标志/状态寄存器

- A. 仅I、II B. 仅I、IV C. 仅II、IV D. 仅III、IV
- 18. 下列关于数据通路的叙述中,错误的是()。
 - A. 数据通路包含 ALU 等组合逻辑(操作)元件
 - B. 数据通路包含寄存器等时序逻辑(状态)元件
 - C. 数据通路不包含用于异常事件检测及响应的电路
 - D. 数据通路中的数据流动路径由控制信号进行控制
- 19. 下列关于总线的叙述中,错误的是()。
 - A. 总线是在两个或多个部件之间进行数据交换的传输介质
 - B. 同步总线由时钟信号定时,时钟频率不一定等于工作频率
 - C. 异步总线由握手信号定时,一次握手过程完成一位数据交换
 - D. 突发(Burst)传送总线事务可以在总线上连续传送多个数据
- **20**. 下列选项中,不属于 I/O 接口的是()。

 - A. 磁盘驱动器 B. 打印机适配器 C. 网络控制器
- D. 可编程中断控制器
- 21. 异常事件在当前指令执行过程中进行检测,中断请求则在当前指令执行后进行检测。下列 事件中,相应处理程序执行后,必须回到当前指令重新执行的是()。
 - A. 系统调用B. 页缺失
- C. DMA 传送结束 D. 打印机缺纸

- 22. 下列是关于多重中断系统中 CPU 响应中断的叙述,其中错误的是()。
 - A. 仅在用户态(执行用户程序)下,CPU才能检测和响应中断
 - B. CPU 只有在检测到中断请求信号后,才会进入中断响应周期
 - C. 进入中断响应周期时, CPU 一定处于中断允许(开中断)状态
 - D. 若 CPU 检测到中断请求信号,则一定存在未被屏蔽的中断源请求信号
- 09. A 10. C 11. B 12. D 13. D 14. A 15. C 16. A
- 17. D 18. C 19. C 20. A 21. B 22. A 23. B 24. B

43. (15 分) 假定计算机 M 字长为 16 位,按字节编址,连接 CPU 和主存的系统总线中地址线为 20 位、数据线为 8 位,采用 16 位定长指令字,指令格式及其说明如下:

其中, $op1\sim op3$ 为操作码,rs, rt 和 rd 为通用寄存器编号,R[r]表示寄存器 r 的内容,imm 为立即数,target 为转移目标的形式地址。请回答下列问题。

- 1) ALU 的宽度是多少位?可寻址主存空间大小为多少字节?指令寄存器、主存地址寄存器(MAR)和主存数据寄存器(MDR)分别应有多少位?
- 2) R 型格式最多可定义多少种操作? I 型和 J 型格式总共最多可定义多少种操作? 通用寄存器最多有多少个?
- 3) 假定 op1 为 0010 和 0011 时,分别表示带符号整数减法和带符号整数乘法指令,则指令 01B2H 的功能是什么(参考上述指令功能说明的格式进行描述)? 若 1, 2, 3 号通用寄存器当前内容分别为 B052H,0008H,0020H,则分别执行指令 01B2H 和 01B3H 后,3 号通用寄存器内容各是什么?各自结果是否溢出?
- 4) 若采用 I 型格式的访存指令中 imm (偏移量) 为带符号整数,则地址计算时应对 imm 进行零扩展还是符号扩展?
- 5) 无条件转移指令可以采用上述哪种指令格式?

- **44.** (8分)假设计算机 M 的主存地址为 24位,按字节编址;采用分页存储管理方式,虚拟地址为 30位,页大小为 4 KB; TLB 采用 2 路组相联方式和 LRU 替换策略,共 8 组。请回答下列问题。
 - 1) 虚拟地址中哪几位表示虚页号?哪几位表示页内地址?
 - 2) 已知访问 TLB 时虚页号高位部分用作 TLB 标记,低位部分用作 TLB 组号, M 的虚拟 地址中哪几位是 TLB 标记?哪几位是 TLB 组号?
 - 3) 假设 TLB 初始时为空,访问的虚页号依次为 10,12,16,7,26,4,12 和 20,在此过程中,哪一个虚页号对应的 TLB 表项被替换?说明理由。
 - 4) 若将 M 中的虚拟地址位数增加到 32 位,则 TLB 表项的位数增加几位?

43.【答案要点】

- (1) ALU 的宽度为 16 位。可寻址主存空间大小为 2²⁰字节(或 1 MB)。指令寄存器、MAR 和 MDR 各有 16 位、20 位和 8 位。
 - (2) R型最多有 2⁴(或 16) 种操作 1型和 J型总共最多有 63 种操作。通用寄存器最多有 4 个。
- (3) 指令 01B2H = 000000 01 10 11 0010B,其功能为 R[3]← R[1]-R[2]。执行指令 01B2H 后,R[3]=B052H-0008H= B04AH;结果不溢出;执行指令 01B3H 后,R[3]= R[1]× R[2]= B052H × 0008H = 8290H,结果溢出。
 - (4) 应对 imm 进行符号扩展。
 - (5) 无条件转移指令可以采用 J 型格式。

44.【答案要点】

- (1) 因为按字节编址,页大小为 4 KB = 2¹² B,所以虚拟地址中 高 30-12 = 18 位表示虚页号。虚拟地址低 12 位表示页 内地址。
- (2) 因为 TLB 采用 2 路组相联方式,共 8 = 2³组,所以虚拟地址(或虚页号)中高 18-3 = 15 位为 TLB 标记;虚拟地址中随后 3 位(或虚页号中低 3 位)为 TLB 组号。
- (3) 虚页号 4 对应的 TLB 表项被替换。因为虚页号与 TLB 组号的映射关系为 TLB 组号 = 虚页号 mod TLB 组数 = 虚页号 mod 8,因此,虚页号 10、12、16、7、26、4、12、20 映射到的 TLB 组号依次为 2、4、0、7、2、4、4、4。 TLB 采用 2 路组相联方式,从上述映射到的 TLB 组号序列可以看出,只有映射到 4 号组的虚页号数量大于 2,相应虚页号依次是12、4、12 和 20。根据 LRU 替换策略,当访问第 20 页时,虚页号 4 对应的 TLB 表项被替换出来。
- (4) 虚拟地址位数增加到 32 位时, 虚页号增加了 32-30=2 位, 使得每个 TLB 表项中的标记字段增加 2 位, 因此, 每个 TLB 表项的位数增加 2 位。

12.	下列给出的部	件中,其位数(宽度)	一定与机器字长相同的	J是()。
	I. ALU	II. 指令寄存器	III. 通用寄存器	IV.	浮点寄存器
	A. 仅I、II	B. 仅I、III	C. 仅II、III D	D. 仅 II、	III、IV

13. 已知带符号整数用补码表示,float 型数据用 IEEE 754 标准表示,假定变量 x 的类型只可能 是 int 或 float,当 x 的机器数为 C800 0000H 时,x 的值可能是()。

```
A. -7 \times 2^{27} B. -2^{16} C. 2^{17} D. 25 \times 2^{27}
```

14. 在按字节编址,采用小端方式的 32 位计算机中,按边界对齐方式为以下 C 语言结构型变量 a 分配存储空间:

```
Struct record{
    short x1;
    int x2;
} a;
```

若 a 的首地址为 2020 FE00H,a 的成员变量 x2 的机器数为 1234 0000H,则其中 34H 所在存储单元的地址是()。

- A. 2020 FE03H B. 2020 FE04H C. 2020 FE05H D. 2020 FE06H
- 15. 下列关于 TLB 和 Cache 的叙述中,错误的是()。
 - A. 命中率都与程序局部性有关 B. 缺失后都需要去访问主存
 - C. 缺失处理都可以由硬件实现 D. 都由 DRAM 存储器组成

16.	某计算	机采用	16	位定长	指令字	格式,	操作	码位数和	寻址方:	式位数固定	定,指	令系统	有 48	条
	指令,	支持直	接、	间接、	立即、	相对	4 种等	身址方式。	。单地均	业指令中,	直接	寻址方式	比的可	. 寻
	址范围	見 ()。											

- A. 0~255 B. 0~1023 C. -128~127
- D. $-512 \sim 511$
- 17. 下列给出的处理器类型中,理想情况下,CPI为1的是()。
- A. 仅I、II
 - I. 单周期 CPU II. 多周期 CPU III. 基本流水线 CPU IV. 超标量流水线 CPU B. 仅I、III
 - C. 仅II、IV
- D. 仅III、IV
- 18. 下列关于"自陷"(Trap,也称陷阱)的叙述中,错误的是()。
 - A. 自陷是通过陷阱指令预先设定的一类外部中断事件
 - B. 自陷可用于实现程序调试时的断点设置和单步跟踪
 - C. 自陷发生后 CPU 将转去执行操作系统内核相应程序
 - D. 自陷处理完成后返回到陷阱指令的下一条指令执行
- 19. OPI 总线是一种点对点全工同步串行总线,总线上的设备可同时接收和发送信息,每个方 向可同时传输 20 位信息(16 位数据+4 位校验位),每个 OPI 数据包有 80 位信息,分 2 个 时钟周期传送,每个时钟周期传递 2 次。因此,QPI 总线带宽为:每秒传送次数×2B×2。 若 QPI 时钟频率为 2.4GHz,则总线带宽为 ()。
 - A. 4.8GBps
- B. 9.6GBps
- C. 19.2GBps
- D. 38.4GBps
- 20. 下列事件中,属于外部中断事件的是()。
 - I. 访存时缺页
- II. 定时器到时
- III. 网络数据包到达

- A. 仅I、II
- B. 仅 I、III
- C. 仅II、III
- D. I、II和III

- **21.** 外部中断包括不可屏蔽中断(NMI)和可屏蔽中断,下列关于外部中断的叙述中,错误的是()。
 - A. CPU 处于关中断状态时,也能响应 NMI 请求
 - B. 一旦可屏蔽中断请求信号有效, CPU 将立即响应
 - C. 不可屏蔽中断的优先级比可屏蔽中断的优先级高
 - D. 可通过中断屏蔽字改变可屏蔽中断的处理优先级
- 22. 若设备采用周期挪用 DMA 方式进行输入和输出,每次 DMA 传送的数据块大小为 512 字节,相应的 I/O 接口中有一个 32 位数数据缓冲寄存器。对于数据输入过程,下列叙述中,错误的是()。
- 09. C 10. B 11. A 12. B 13. A 14. D 15. D 16. A 17. B 18. A 19. C 20. C 21. B 22. C 23. B 24. A

43. (13 分) 有实现 x×y 的两个 C 语言函数如下:

```
unsigned umul (unsigned x, unsigned y) { return x*y; } int imul (int x, int y) {return x * y; }
```

假定某计算机 M 中 ALU 只能进行加减运算和逻辑运算。请回答下列问题。

- 1) 若 M 的指令系统中没有乘法指令,但有加法、减法和位移等指令,则在 M 上也能实现上述两个函数中的乘法运算,为什么?
- 2) 若 M 的指令系统中有乘法指令,则基于 ALU、位移器、寄存器以及相应控制逻辑实现 乘法指令时,控制逻辑的作用是什么?
- 3)针对以下三种情况:① 没有乘法指令;② 有使用 ALU 和位移器实现的乘法指令; ③ 有使用阵列乘法器实现的乘法指令,函数 umul()在哪种情况下执行时间最长?哪种情况下执行的时间最短?说明理由
- 4) n 位整数乘法指令可保存 2n 位乘积,当仅取低 n 位作为乘积时,其结果可能会发生溢出。当 n=32, $x=2^{31}-1$, y=2 时,带符号整数乘法指令和无符号整数乘法指令得到的 $x \times y$ 的 2n 位乘积分别是什么(用十六进制表示)?此时函数 umul()和 imul()的返回结果是否溢出?对于无符号整数乘法运算,当仅取乘积的低 n 位作为乘法结果时,如何用 2n 位乘积进行溢出判断?

- **44.** (10 分) 假定主存地址为 32 位,按字节编址,指令 Cache 和数据 Cache 与主存之间均采用 8 路组相联映射方式,直写(Write Through)写策略和 LRU 替换算法,主存块大小为 64B,数据区容量各为 32KB。开始时 Cache 均为空。请回答下列问题。
 - 1) Cache 每一行中标记(Tag)、LRU 位各占几位?是否有修改位?
 - 2) 有如下 C 语言程序段:

```
for (k = 0; k < 1024; k++)

s[k] = 2 * s[k];
```

若数组 s 及其变量 k 均为 int 型,int 型数据占 4B,变量 k 分配在寄存器中,数组 s 在 主存中的起始地址为 0080 00C0H,则该程序段执行过程中,访问数组 s 的数据 Cache 缺失次数为多少?

3) 若 CPU 最先开始的访问操作是读取主存单元 0001 0003H 中的指令,简要说明从 Cache 中访问该指令的过程,包括 Cache 缺失处理过程。