Truth table of AND gate

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Truth table of OR gate

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

Truth table of half adder

Α	В	В S	
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S=A'.B + A. B' = A \oplus B$$

 $C=A.B$

Truth table of full adder

Α	B Cin			S (Cout	
0	0	0		0	0	
0	0 1	1		1	0	
0	1 0	1		0	1	
1 1	0	1		0	1	
1	1	0		0	1	
1	1	1		1	1	

```
S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin

= A' B Cin' + A B' Cin' + A B Cin + A' B' Cin

= (A' B + A B') Cin' + (A B + A' B') Cin

= (A ⊕ B) Cin' + (A ⊕ B)' Cin

= A ⊕ B ⊕ Cin
```

Truth table of half subtractor

Α	В	B d		
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Truth table of full subtractor

А	В	bin	d bout
0	0	0	0 0
0	0	1	1 1
0	1	0	1 1
0	1	1	0 1
1	0	0	1 0
1	0	1	0 0
1	1	0	0 0
1	1	1	1 1

$$d = A'.B'.bin + A'.B.bin' + A.B'.bin' + A.B.bin$$

= A'.B.bin' + A.B'.bin' + A.B.bin + A'.B'.bin
= (A'.B + A.B') .bin' + (A.B + A'.B').bin
= (A\rightarrow B). bin' + (A\rightarrow B)'. bin
= A\rightarrow B \rightarrow bin

bout = A'.B'.bin + A'.B.bin' + A'.B.bin + A.B.bin
= A'.B.bin' + A'.B.bin + A.B.bin + A'.B'.bin
= A'.B.(bin'+ bin) + (A.B + A'.B').bin
= A'.B + (A
$$\oplus$$
B)'. bin

Addition of two 4 bit binary numbers

```
11
A 1011
B 1001
S 10100
```

Ripple Carry Adder

Carry look ahead adder

$$\begin{split} S_{i} &= A_{i} \oplus B_{i} \oplus C_{i} = P_{i} \oplus C_{i} \\ C_{i+1} &= A_{i} \cdot B_{i} + (A_{i} \oplus B_{i}) \cdot C_{i} = G_{i} + P_{i} \cdot C_{i} \\ C_{1} &= G_{0} + P_{0} \cdot C_{0} \\ C_{2} &= G_{1} + P_{1} \cdot C_{1} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot C_{0} \\ C_{3} &= G_{2} + P_{2} \cdot C_{2} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0} \\ C_{4} &= G_{3} + P_{3} \cdot C_{3} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0} \end{split}$$

Addition- Subtraction Example

```
0111 (A)
0011 (B)
1010 (S)
```

```
0111 (A)
0011 (B)
1's complement of B is 1100
2's complement of B is 1100 + 1
-B = 1101
0111 (A)
1101 (-B)
10100 (S)
```

Truth table of XOR gate

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Adder – Subtractor composite unit

Binary 4 bit incrementer

```
11
A 1011
+ 1
S 1100
```

Binary 4 bit incrementer circuit

Binary 4 bit decrementer

```
4 bit representation of +1 0001
1's complement 1110 +1
2's complement 1111 (-1)

1 1 1
A 0 1 1 1 (7)
+ 1 1 1 1 (-1)

S * 10 1 1 0 (6)
```

Binary 4 bit decrementer circuit

S1	S0	Cin	Υ	F=A+Y+Cin	Operation
0	0	0	В	F=A+B	Addition
0	0	1	В	F=A+B+1	Addition with carry
0	1	0	B	F=A+B	Subtraction with borrow
0	1	1	B	F=A+B+1	Subtraction
1	0	0	1	F=A -1	Decrement
1	0	1	1	F=A	Transfer
1	1	0	0	F=A	Transfer
1	1	1	0	F=A+1	Increment

Thank You