RNN

38 visit_pop_cnt_sf

1666 non-null

float64

```
In [1]:
        import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
        import seaborn as sns
         from sklearn.preprocessing import MinMaxScaler
        from sklearn.model_selection import train_test_split
In [2]:
        # 파일 로드
        df = pd.read_csv('전체데이터_병합.csv',encoding='cp949',parse_dates=['y_m'])
        df.info()
        df.head()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1666 entries, 0 to 1665
        Data columns (total 39 columns):
            Column
        #
                            Non-Null Count Dtype
                             -----
        0
                            1666 non-null datetime64[ns]
            y_m
                            1666 non-null object
            city
         1
                           1666 non-null object
1666 non-null float64
1666 non-null int64
        2
            location
           area_cnt
         3
         4
           em_cnt
            .555 mon-null int64
pay_amt 1666 non-null int64
제주도민_여 1666 non-null f
외국인거주_여 1666 non-null f
         5
        6
                             1666 non-null float64
1666 non-null float64
1666 non-null float64
         7
        8
        9
            제주도민_남
                                 1666 non-null float64
         10 외국인거주_남
         11 제주도민_60이상
                                  1666 non-null float64
                                   1666 non-null float64
         12 제주도민_60미만
                            1666 non-null float64
         13 total_pop

      14 패스트푸드_결제건수
      1666 non-null float64

      15 패스트푸드_결제금액
      1666 non-null float64

         15 패스트푸드_결제금액
         16 간식_결제건수
                                   1666 non-null float64
         17 간식_결제금액
                                   1666 non-null float64
         18 농축수산물_결제건수
                                   1666 non-null float64
         19 농축수산물_결제금액
                                     1666 non-null float64
                                   1666 non-null float64
         20 마트/슈퍼마켓_결제건수
         21 마트/슈퍼마켓_결제금액
                                      1666 non-null float64
         22 식품_결제건수
                                   1666 non-null float64
         23 식품_결제금액
                                   1666 non-null float64
         24 배달_결제건수
                                   1666 non-null float64
        25
                                   1666 non-null float64
            배달_결제금액
        26 식당_결제건수
                                   1666 non-null float64
        27 식당_결제금액
                                   1666 non-null float64
        28 풍속
                               1666 non-null float64
        29 기온
                               1666 non-null float64
                               1666 non-null float64
        30 습도
                               1666 non-null float64
         31 강수
                                    1666 non-null float64
         32 전국_누적확진자
         33 전국_월별확진자
                                    1666 non-null float64
         34 제주_누적확진자
                                    1666 non-null float64
         35 제주_월별확진자
                                    1666 non-null float64
        36 visit_pop_cnt
                              1666 non-null float64
        37 visit_pop_cnt_lf 1666 non-null
                                            float64
```

dtypes: datetime64[ns](1), float64(33), int64(3), object(2)

memory usage: 507.7+ KB

Out[2]:

	y_m	city	location	area_cnt	em_cnt	em_g	pay_amt	제주도 민_여	외국 인거 주_여	제주도 민_남	•••	기
0	2018- 01-01	서 귀 포 시	남원읍	52.0	9570	42437700	1270773	9306.0	200.0	9806.0		6.25658
1	2018- 01-01	서 귀 포 시	대륜동	38.0	21666	57612600	1676850	6637.0	95.0	6836.0		8.0043(
2	2018- 01-01	서 귀 포 시	대정읍	89.0	10185	38885550	1164122	10725.0	677.0	10360.0		5.41787
3	2018- 01-01	서 귀 포 시	대천동	37.0	20280	53858550	1593709	6475.0	137.0	6685.0		8.0043(
4	2018- 01-01	서 귀 포 시	동홍동	49.0	45936	118701000	3501286	11569.0	642.0	11124.0		5.7715(

5 rows × 39 columns

```
In [3]:
       # 결측치 확인
       df.isnull().sum()
Out[3]: y_m
                     0
      city
                     0
                     0
      location
                     0
      area_cnt
      em_cnt
                     0
                     0
      em_g
                     0
      pay_amt
      제주도민_여
                         0
      외국인거주_여
                          0
      제주도민_남
                         0
      외국인거주_남
                          0
      제주도민_60이상
                          0
      제주도민_60미만
                          0
      total_pop
      패스트푸드_결제건수
                            0
      패스트푸드_결제금액
                            0
      간식_결제건수
                          0
      간식_결제금액
                          0
      농축수산물_결제건수
                            0
      농축수산물_결제금액
                            0
      마트/슈퍼마켓_결제건수
                             0
```

```
마트/슈퍼마켓_결제금액
                                 0
       식품_결제건수
                              0
       식품_결제금액
                              0
       배달_결제건수
                              0
       배달_결제금액
                              0
       식당_결제건수
                              0
       식당_결제금액
                              0
       풍속
                          0
       기온
                          0
       습도
                          0
       강수
                          0
       전국_누적확진자
                               0
       전국_월별확진자
                               0
       제주_누적확진자
                               0
       제주_월별확진자
                               0
                        0
       visit_pop_cnt
       visit_pop_cnt_lf
                        0
       visit_pop_cnt_sf
       dtype: int64
In [4]:
        # 결측치 0으로 처리
        df = df.fillna(0)
In [5]:
        # 시계열 부분 재설정
        df['y_m'] = pd.to_datetime(df['y_m'], format='%Y%m')
        df['year'] = df['y_m'].dt.year
In [6]:
        # 정규화
        scaler = MinMaxScaler()
        scale_cols = df.drop(columns=['y_m', 'city', 'location'], axis=1)
        scale_cols[:] = scaler.fit_transform(scale_cols[:])
        scale_cols
Out[6]:
```

area_cnt

em_cnt

em_g pay_amt

0	0.283133	0.056415	0.128689	0.128995	0.329521	0.147820	0.361258	0.178631	0.599266	0.286
1	0.198795	0.129141	0.175075	0.170545	0.235013	0.070214	0.251842	0.034641	0.315602	0.216
2	0.506024	0.060112	0.117831	0.118083	0.379767	0.500370	0.381668	0.351002	0.575097	0.349
3	0.192771	0.120808	0.163600	0.162038	0.229277	0.101256	0.246279	0.044658	0.255934	0.222
4	0.265060	0.275063	0.361806	0.357223	0.409653	0.474501	0.409814	0.260434	0.420587	0.405
•••										
1661	0.493976	0.506085	0.449648	0.449399	0.586700	0.147820	0.592286	0.031302	0.840095	0.507
1662	0.819277	0.165612	0.194378	0.194523	0.439857	0.178862	0.479553	0.116444	0.732413	0.387
1663	0.397590	0.047162	0.081684	0.081838	0.160440	0.073910	0.170461	0.098915	0.371170	0.122
1664	0.644578	0.153113	0.251904	0.252345	0.366170	0.842572	0.401230	0.872287	0.697346	0.363
1665	0.475904	0.396225	0.337502	0.337244	0.433342	0.118995	0.444371	0.070534	0.519206	0.400

_여

주_여

제주도민 외국인거 제주도민 외국인거 제주도민

_남

주_남 _60이상

_60

from keras. layers import Dense

```
In [7]:
          # 데이터셋 분리(시계열)
          TEST_SIZE = 1512 # 3년 데이터
          WINDOW_SIZE = 254 # 6개월 데이터
          test = scale_cols[:-TEST_SIZE]
          train = scale_cols[-TEST_SIZE:]
 In [8]:
          # 훈련데이터와 테스트데이터 분리에 사용할 함수 정의
          def make_dataset(data, label, window_size=20):
              feature_list = []
              label_list = []
              for i in range(len(data) - window_size):
                 feature_list.append(np.array(data.iloc[i:i+window_size]))
                 label_list.append(np.array(label.iloc[i+window_size]))
              return np.array(feature_list), np.array(label_list)
 In [9]:
          # 훈련데이터와 테스트데이터 분리
          feature_cols = scale_cols.columns
          label_cols = ['em_g']
          train_feature = train[feature_cols]
          train_label = train[label_cols]
          train_feature, train_label = make_dataset(train_feature, train_label, 20)
          x_train, x_valid, y_train, y_valid = train_test_split(train_feature, train_label, test
          x_train.shape, x_valid.shape
         ((1193, 20, 37), (299, 20, 37))
Out[9]:
In [10]:
          # 데이터셋 형태 확인
          test_feature = test[feature_cols]
          test_label = test[label_cols]
          test_feature.shape, test_label.shape
         ((154, 37), (154, 1))
Out[10]:
In [11]:
          test_feature, test_label = make_dataset(test_feature, test_label, 20)
          test_feature.shape, test_label.shape
         ((134, 20, 37), (134, 1))
Out[11]:
In [12]:
          # tensorflow, keras 로드
          import tensorflow as tf
          from tensorflow import keras
In [13]:
          # keras 모형 불러오기
          from keras.models import Sequential
```

```
In [14]:
          # 훈련 진행
          import os
          model.compile(loss='mean_squared_error', optimizer='adam',metrics=["acc"]) # acc 안나
          early_stop = EarlyStopping(monitor='val_loss', patience=5)
          model_path = 'model'
          filename = os.path.join(model_path, 'tmp_checkpoint.h5')
          checkpoint = ModelCheckpoint(filename, monitor='val_loss', verbose=1, save_best_only=
          history = model.fit(x_train, y_train,
                                             epochs=200,
                                             batch_size=16,
                                             validation_data=(x_valid, y_valid),
                                             callbacks=[early_stop, checkpoint])
         Epoch 1/200
         75/75 [=============] - 3s 14ms/step - loss: 0.0514 - acc: 8.3822e-04
         - val_loss: 0.0325 - val_acc: 0.0000e+00
         Epoch 00001: val_loss improved from inf to 0.03253, saving model to model\tmp_checkpoi
         nt.h5
         Epoch 2/200
```

```
75/75 [===========] - 1s 9ms/step - loss: 0.0330 - acc: 8.3822e-04
- val_loss: 0.0304 - val_acc: 0.0000e+00
Epoch 00002: val_loss improved from 0.03253 to 0.03039, saving model to model\tmp_chec
kpoint.h5
Epoch 3/200
75/75 [===========] - 1s 17ms/step - loss: 0.0314 - acc: 8.3822e-04
- val_loss: 0.0289 - val_acc: 0.0000e+00
Epoch 00003: val_loss improved from 0.03039 to 0.02893, saving model to model\tmp_chec
kpoint.h5
Epoch 4/200
75/75 [========] - 1s 10ms/step - loss: 0.0298 - acc: 8.3822e-04
- val_loss: 0.0267 - val_acc: 0.0000e+00
Epoch 00004: val_loss improved from 0.02893 to 0.02667, saving model to model\tmp_chec
kpoint.h5
Epoch 5/200
75/75 [==============] - 3s 45ms/step - loss: 0.0278 - acc: 8.3822e-04
- val_loss: 0.0247 - val_acc: 0.0000e+00
Epoch 00005: val_loss improved from 0.02667 to 0.02473, saving model to model₩tmp_chec
kpoint.h5
Epoch 6/200
75/75 [=========] - 3s 44ms/step - loss: 0.0254 - acc: 8.3822e-04
- val_loss: 0.0230 - val_acc: 0.0000e+00
```

Epoch 00006: val_loss improved from 0.02473 to 0.02298, saving model to model\tmp_chec

```
kpoint.h5
Epoch 7/200
75/75 [===============] - 4s 48ms/step - loss: 0.0239 - acc: 8.3822e-04
- val_loss: 0.0234 - val_acc: 0.0000e+00
Epoch 00007: val_loss did not improve from 0.02298
Epoch 8/200
75/75 [===========] - 3s 44ms/step - loss: 0.0205 - acc: 8.3822e-04
- val_loss: 0.0224 - val_acc: 0.0000e+00
Epoch 00008: val_loss improved from 0.02298 to 0.02239, saving model to model\tmp_chec
kpoint.h5
Epoch 9/200
75/75 [===========] - 4s 55ms/step - loss: 0.0177 - acc: 8.3822e-04
- val_loss: 0.0205 - val_acc: 0.0000e+00
Epoch 00009: val_loss improved from 0.02239 to 0.02053, saving model to model\tmp_chec
kpoint.h5
Epoch 10/200
- val_loss: 0.0189 - val_acc: 0.0000e+00
Epoch 00010: val_loss improved from 0.02053 to 0.01890, saving model to model\tmp_chec
kpoint.h5
Epoch 11/200
75/75 [=============] - 4s 49ms/step - loss: 0.0140 - acc: 8.3822e-04
- val_loss: 0.0219 - val_acc: 0.0000e+00
Epoch 00011: val_loss did not improve from 0.01890
Epoch 12/200
75/75 [===========] - 3s 36ms/step - loss: 0.0132 - acc: 8.3822e-04
- val_loss: 0.0178 - val_acc: 0.0000e+00
Epoch 00012: val_loss improved from 0.01890 to 0.01783, saving model to model\tmp_chec
kpoint.h5
Epoch 13/200
75/75 [===========] - 3s 43ms/step - loss: 0.0119 - acc: 8.3822e-04
- val_loss: 0.0143 - val_acc: 0.0000e+00
Epoch 00013: val_loss improved from 0.01783 to 0.01426, saving model to model\tmp_chec
kpoint.h5
Epoch 14/200
75/75 [==============] - 3s 45ms/step - loss: 0.0111 - acc: 0.0017 - v
al_loss: 0.0161 - val_acc: 0.0000e+00
Epoch 00014: val_loss did not improve from 0.01426
Epoch 15/200
75/75 [=========] - 3s 38ms/step - loss: 0.0117 - acc: 8.3822e-04
- val_loss: 0.0144 - val_acc: 0.0000e+00
Epoch 00015: val_loss did not improve from 0.01426
Epoch 16/200
75/75 [=============================] - 3s 37ms/step - loss: 0.0103 - acc: 8.3822e-04
- val_loss: 0.0152 - val_acc: 0.0000e+00
Epoch 00016: val_loss did not improve from 0.01426
Epoch 17/200
75/75 [=============] - 3s 34ms/step - loss: 0.0096 - acc: 0.0017 - v
al_loss: 0.0123 - val_acc: 0.0000e+00
Epoch 00017: val_loss improved from 0.01426 to 0.01232, saving model to model\tmp_chec
kpoint.h5
Epoch 18/200
75/75 [=========================== ] - 1s 20ms/step - loss: 0.0093 - acc: 0.0017 - v
al_loss: 0.0132 - val_acc: 0.0000e+00
```

```
Epoch 00018: val_loss did not improve from 0.01232
Epoch 19/200
75/75 [=============] - 2s 23ms/step - loss: 0.0091 - acc: 0.0017 - v
al_loss: 0.0117 - val_acc: 0.0000e+00
Epoch 00019: val_loss improved from 0.01232 to 0.01167, saving model to model\tmp_chec
kpoint.h5
Epoch 20/200
75/75 [======================] - 1s 20ms/step - loss: 0.0087 - acc: 0.0017 - v
al_loss: 0.0110 - val_acc: 0.0000e+00
Epoch 00020: val_loss improved from 0.01167 to 0.01104, saving model to model₩tmp_chec
kpoint.h5
Epoch 21/200
75/75 [============] - 2s 21ms/step - loss: 0.0090 - acc: 0.0017 - v
al_loss: 0.0115 - val_acc: 0.0000e+00
Epoch 00021: val_loss did not improve from 0.01104
Epoch 22/200
75/75 [====================] - 2s 24ms/step - loss: 0.0081 - acc: 0.0017 - v
al_loss: 0.0117 - val_acc: 0.0000e+00
Epoch 00022: val_loss did not improve from 0.01104
Epoch 23/200
75/75 [==========] - 2s 26ms/step - loss: 0.0077 - acc: 0.0017 - v
al_loss: 0.0110 - val_acc: 0.0000e+00
Epoch 00023: val_loss improved from 0.01104 to 0.01096, saving model to model₩tmp_chec
kpoint.h5
Epoch 24/200
al_loss: 0.0106 - val_acc: 0.0000e+00
Epoch 00024: val_loss improved from 0.01096 to 0.01061, saving model to model\tmp_chec
kpoint.h5
Epoch 25/200
al_loss: 0.0107 - val_acc: 0.0000e+00
Epoch 00025: val_loss did not improve from 0.01061
Epoch 26/200
75/75 [=============] - 2s 31ms/step - loss: 0.0072 - acc: 0.0017 - v
al_loss: 0.0117 - val_acc: 0.0000e+00
Epoch 00026: val_loss did not improve from 0.01061
Epoch 27/200
75/75 [=========] - 2s 27ms/step - loss: 0.0070 - acc: 0.0017 - v
al_loss: 0.0091 - val_acc: 0.0000e+00
Epoch 00027: val_loss improved from 0.01061 to 0.00909, saving model to model\tmp_chec
kpoint.h5
Epoch 28/200
75/75 [=============] - 3s 36ms/step - loss: 0.0073 - acc: 0.0017 - v
al_loss: 0.0120 - val_acc: 0.0000e+00
Epoch 00028: val_loss did not improve from 0.00909
Epoch 29/200
75/75 [=============] - 2s 29ms/step - loss: 0.0070 - acc: 0.0017 - v
al_loss: 0.0093 - val_acc: 0.0000e+00
Epoch 00029: val_loss did not improve from 0.00909
Epoch 30/200
75/75 [==============] - 2s 24ms/step - loss: 0.0063 - acc: 0.0017 - v
```

al_loss: 0.0100 - val_acc: 0.0000e+00

```
Epoch 00030: val_loss did not improve from 0.00909
         Epoch 31/200
         75/75 [=============] - 2s 21ms/step - loss: 0.0065 - acc: 0.0017 - v
         al_loss: 0.0099 - val_acc: 0.0000e+00
         Epoch 00031: val_loss did not improve from 0.00909
         Epoch 32/200
         75/75 [=============] - 1s 15ms/step - loss: 0.0065 - acc: 0.0017 - v
         al_loss: 0.0100 - val_acc: 0.0000e+00
         Epoch 00032: val_loss did not improve from 0.00909
In [15]:
          # 훈련 및 검증 loss, accuracy 그래프
          fig, loss_ax = plt.subplots()
          acc_ax = loss_ax.twinx()
          loss_ax.plot(history.history['loss'], 'y', label='train loss')
          loss_ax.plot(history.history['val_loss'], 'r', label='val_loss')
          acc_ax.plot(history.history['acc'], 'b', label='train acc')
          acc_ax.plot(history.history['val_acc'], 'g', label='val acc')
          loss_ax.set_xlabel('epoch')
          loss_ax.set_ylabel('loss')
          acc_ax.set_ylabel('accuray')
          loss_ax.legend(loc='upper left')
          acc_ax.legend(loc='lower left')
          plt.savefig('rnn_m.png')
                                                                 0.00175
                     train loss
            0.05
                     val loss
                                                                 0.00150
            0.04
                                                                 0.00125
                                                                 0.00100
                                                                 0.00100 A
         S 0.03
            0.02
                                                                 0.00050
                                                                 0.00025
                     train acc
            0.01
                     val acc
                                                                 0.00000
                               10
                                      15
                                             20
                                                     25
                                                           30
                                      epoch
In [16]:
          # 모델 로드 및 예측
          model.load_weights(filename)
          pred = model.predict(test_feature)
          pred. shape
         (134, 1)
Out[16]:
In [17]:
          # 예측 그래프 확인
          plt.figure(figsize=(12, 9))
          plt.plot(test_label, label = 'actual')
          plt.plot(pred, label = 'prediction')
```

```
plt.legend()
plt.savefig('rnn_p_m.png')
```

