1. INTRODUÇÃO

O presente trabalho tem como objetivo desenvolver o pré-projeto de um ventilador centrífugo tipo Siroco resolvendo equações hidráulicas. Tal ventilador é composto, em termos hidráulicos, de um tubo de sucção, pás e tubo de requalque.

2. DADOS DE ENTRADA

Como requisitos, o ventilador a ser projetado deverá apresentar as seguintes características (Tabela 1) nas condições padrões de temperatura e pressão ($T=20\,^{\circ}C$, $P=101.325\,kPa$).

Tabela 1 – Requisitos para o ventilador

φ	$Q(m^3/s)$	$PTV(mmH_2O)$	N(rpm)	$r_{\scriptscriptstyle D}$
0.75	3.6	552.0	600	0.86

Ademais, admite-se: rendimento volumétrico de 93% dadas relações empíricas entre essa e a razão entre os diâmetros $r_{\rm D}$; rendimento mecânico de 95% visto que o sistema de transmissão de potência é simples e não envolve sistemas de engrenamento ou de polias; e rendimento elétrico de 96% pois é a eficiência condizente à legislação IR4.

Os valores de ψ e η_t são obtidos por uma fórmula de interporlação de resultados empíricos.

3. PRÉ-PROJETO

Para determinar as características construtivas do ventilador, é seguido um memorial de cálculo desenvolvido a partir de equações teóricas para máquinas hidráulicas e relações empíricas para ventiladores do tipo Siroco (Tabela 2).

Tomando como estimativa inicial φ =0.75, otimiza-se a solução alterando a parâmetro φ de forma que se obtenha a maior eficiência total η_r .

Tabela 2 - Memorial de cálculo

ρ	$\frac{p}{R(T+273.15)}$
Q_r	$rac{Q}{\eta_{_{V}}}$
η_i	$rac{\eta_t}{\eta_m}$
Y	$\frac{PTV}{\rho}$
Y_{pa}	$\frac{Y}{\eta_i}$
$P_{\it efe}$	$\frac{\rho Y_{pa}Q_r}{\eta_m}$
P_{ele}	$rac{P_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$
d	$36.502 \left(\frac{P_{efe}}{\tau_{adm}N}\right)^{\frac{1}{3}}$
u_5	$\left(2\frac{Y}{\psi}\right)^{\frac{1}{2}}$
d_5	$\frac{60}{\pi} \frac{u_5}{N}$
d_4	$r_D d_5$
c_{m5}^*	ϕu_5
Y pa,inf	$2u_5^2$
$\boldsymbol{\beta}_5^*$	$\arctan\left(\frac{c_{m5}^*}{u_5}\right)$
$oldsymbol{eta}_5$	$\pi - \boldsymbol{\beta}_5^*$
C _{u6}	$\frac{Y_{pa}}{u_5}$

$\boldsymbol{\beta}_{6}^{*}$	$\arctan\left(\frac{c_{m5}^*}{c_{u6}-u_5}\right)$
$oldsymbol{eta}_{6}$	π – $self$. $beta_6^*$
u_4	$\frac{\pi}{60}d_4N$
C*************************************	$\frac{c_{m5}^*}{r_D}$
$oldsymbol{eta}_4$	$\arctan\left(\frac{c_{m4}^*}{u_4}\right)$
r	$\frac{d_5 - d_4}{2\left[\cos\left(\beta_4\right) - \cos\left(\beta_5\right)\right]}$
Z	$round\left(k_{z}\frac{\cos\left(\beta_{4}\right)-\cos\left(\beta_{5}\right)}{1-r_{D}}\right)$
t_5	$\pi \frac{d_5}{z}$
t_4	$\pi \frac{d_4}{z}$
b	$k_b d_5$
d_3	0.95 d ₄
C_{m3}	$4\frac{Q}{\pi d_3^2}$
C _{m4}	$0.44 d_4 \frac{c_{m3}}{b}$
C_{m5}	$C_{m4} \frac{d_4}{d_5}$

4. RESULTADOS

Todos os parâmetros obtidos pelo memorial são apresentados na Tabela 2. O desenho técnico do ventilador (vista meridiana, vista normal e pá) para as condições de operação pré-determinadas é mostrado nos anexos 1, 2 e 3.

Tabela 3 – Resultados numéricos

ρ	1.204106 <i>kg</i> / <i>m</i> ³
Q	$3.600000 m^3/s$
PTV	5415.120000 Pa
N	600 rpm
$\eta_{\scriptscriptstyle m v}$	0.930000
$\eta_{\scriptscriptstyle m}$	0.950000
η_t	0.724010
$\eta_{\it ele}$	0.960000
$r_{\scriptscriptstyle D}$	0.860000
$ au_{adm}$	29.430000 MPa
Q_r	3.870968 m³/s
η_i	0.762116
Y	4497.211066 J/kg
Y_{pa}	5900.955848 J/kg
$P_{\it efe}$	28952.303759 W
$P_{\it ele}$	30158.649749 W
d	0.430425 <i>m</i>
$u_{\scriptscriptstyle 5}$	56.536887 m/s
d_{5}	1.799625 m
d_4	1.547677 m
${\color{blue}C_{m5}^*}$	48.056354 m/s

$Y_{\mathit{pa,inf}}$	6392.839135 J/kg
$\boldsymbol{\beta}_5^*$	40.364537°
$oldsymbol{eta}_{\scriptscriptstyle 5}$	139.635463°
c_{u6}	104.373555 m/s
$\boldsymbol{\beta}_{6}^{*}$	45.131261°
$oldsymbol{eta}_{6}$	134.868739°
u_4	48.621723 m/ s
${c_{m4}^*}$	55.879481 m/s
$oldsymbol{eta}_4$	48.972895°
r	0.088817 m
Z	76
t_5	0.074391 m
t_4	0.063976 <i>m</i>
b	0.809831 m
d_3	1.470294 m
c_{m3}	2.120335 <i>m</i> /s
C_{m4}	1.782966 m/s
C_{m5}	1.533351 m/s