Name:______ Date: <u>11.1.13</u>

Objective for Friday 11.1: I can add and subtract matrices.

I can multiply matrices by	Matrix Basics				
	Matrices look like this —				
	[5 D 4 7]				
Dimensions	They have and Columns. If you record the dimensions of a matrix, the come first and the Columns come second. Remember: Remember: Columns				
Notation	A= [2 i] 2 rows [3 b] "motrix A"				
Element	'matrix A"				
	element is each thin a matrix				
Adding and subtracting	1.) Find the locations that 2.) A or Subtract the numbers in those locations using the rules				
	3.) Your answer should be a matrix of the <u>Saml</u> <u>dimensions</u>				
Scalar	A scalar is a that you multiply by each number in the matrix.				
Multiplying by a scalar	1.) Multiply each number in each location by the 2.) Your answer should be a matrix of the 50 mo dimensions				
Solve an equation using matrices	Solve for x and y. $\begin{bmatrix} y \\ 3x \end{bmatrix} = \begin{bmatrix} 6 & -2x \\ 31 & +4y \end{bmatrix}$				

Example 1

$$A = \begin{bmatrix} 4 & -6 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -3 & 7 \\ 5 & -9 \end{bmatrix}$$

- a. What are the dimensions of A?
- b. Find A + B

c. Find A - B

d. Find 4A

$$4\begin{bmatrix} 4 & -b \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1b \\ 6 \end{bmatrix}$$

Name: ______ Period: Date: 11.1.13

Objective for Friday 11.1: I can add and subtract matrices.

Example 1

$$A = \begin{bmatrix} 4 & -6 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -3 & 7 \\ 5 & -9 \end{bmatrix}$$

a. What are the dimensions of A? 2×2 of B? 2×2

b. Find A + B

c. Find A – B

d. Find 4A

Name:______ Date: <u>11.1.13</u>

Objective for Friday 11.1: I can add and subtract matrices.

I can multiply matrices by a scalar.					
Matrix Basics					
	Matrices look like this 3 - 5 / 7				
Dimensions	They have				
Notation	'matrix A" RC				
Element	ach # in mat(ix				
Adding and subtracting	1.) Find the locations that are in same spot 2.) Add or Subtract the numbers in those locations using the rules 3.) Your answer should be a matrix of the Same dimensions.				
Scalar	A scalar is a that you multiply by each number in the matrix.				
Multiplying by a scalar	1.) Multiply each number in each location by the				
Solve an equation using matrices	Solve for x and y. $\begin{bmatrix} y \\ 3x \end{bmatrix} = \begin{bmatrix} 6 & -2x \\ 31 & +4y \end{bmatrix}$				

Example 1

$$A = \begin{bmatrix} 4 & -6 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -3 & 7 \\ 5 & -9 \end{bmatrix}$$

- a. What are the dimensions of A? 2×2 of B? 2×2
- b. Find A + B

c. Find A – B

 $4\begin{bmatrix} 4 & -6 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 16 & -24 \\ 8 & 12 \end{bmatrix}$ $7 = \begin{bmatrix} 7 & 7 & 7 \\ 8 & 12 \end{bmatrix}$

$$-3\begin{bmatrix} -3 & 7 & - \\ 5 & -9 \end{bmatrix} = \begin{bmatrix} 9 & -21 \\ -15 & 27 \end{bmatrix}$$

Unit 2: Linear and Absolute Value Functions – 2.15		Name:	D-t-: 11.1.1.2
Algebra II – Ms. Cutrona Objective for Friday 11 1:	: I can add and subtract matrices.	Period:	Date: <u>11.1.13</u>
I can multiply matrices by		3/1	
	Matrix Basics	$\sqrt{3}$	
Dimensions	They have	come first and the C	2 × 2 2 - 1 2 × 2 Vertical 2 × 2 Vertical 3 × 2 Vertical 4 × 2 Vertical 4 × 2 Vertical 5 × 2 Vertical 5 × 2 Vertical 6 × 2 Vertical
Notation Material	× A° (5 7) "	5 is a	n element 1, column 1"
Element		Paul	1 5611.000 11
\leftarrow	1= 5 7 " 2ach # in mate	XUW	', Column I
Adding and subtracting	1.) Find the locations that or or or	ch (same rol	those locations using the
	rules 3.) Your answer should be a matrix of	of the Same	dimensions
Scalar	A scalar is a Number whole # + ••		by each number in the
Multiplying by a scalar	To multiply by a scalar, 1.) Multiply each number in each logony 2.) Your answer should be a matrix of		calor dimensions
Solve an equation using matrices	Solve for x and y. $\begin{bmatrix} y \\ 3x \end{bmatrix} = \begin{bmatrix} 6 & -2x \\ 31 & +4y \end{bmatrix}$		

Example 1

$$A = \begin{bmatrix} 4 & -6 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -3 & 7 \\ 5 & -9 \end{bmatrix}$$

a. What are the dimensions of A? 2×2 of B? 2×2

b. Find A + B

c. Find A – B

$$-3\begin{bmatrix} -3 & 7 \\ 5 & -9 \end{bmatrix} - \begin{bmatrix} 9 & -21 \\ -15 & 21 \end{bmatrix}$$