- "I believe in intuitions and inspirations...I sometimes FEEL that I am right. I do not KNOW that I am."
- Albert Einstein

Filter Intuitions

April 6th, 2012 Yunjae Cho

Photo credits to:
Neel Shah (Summer 2011)
Michel Maharbiz (Fall 2011)
Vivek Subramanian

Circuit Intuition

Circuit? Intuitive? What??? Iol Believe it or not, circuits can be *intuitive*

These exercises are designed to build your **qualitative intuition** in identifying different types of filters.

Impedance, Z(w) is a function of w:

$$Z_{R}(w) = R$$
, $Z_{C}(w) = 1/jwC$, $Z_{I}(w) = jwL$

Low (~DC) frequency:

$$Z_{\rm C}(0)$$
 = infinity

$$Z_L(0)=0$$

High (~infinity) frequency:

$$Z_{\rm C}(\inf) = 0$$

$$Z_{I}$$
 (inf) = infinity

Try not to write down any equations

during this exercise.

Rather, examine the filter outputs for inputs with:

Low frequencies (0 Hz) Middle frequencies High frequencies (inf)

In case you're a visual person like me, :)

	Low Frequency (e.g. w=0)	High Frequency (e.g. w=1 GHz)
Capacitor	Block!	Pass!
Inductor	Pass!	Block!

Your good intuition might save you some time on exam / circuit designs

Circuit Intuition (RC)

Let's warm up with a simple one mkay... what about this one?

Is this:

- 1. High-Pass Filter
- 2. Low-Pass Filter
- 3. Band-Pass Filter
- 4. Band-Reject Filter
- 5. I-don't-know Filter

- 1. High-Pass Filter
- 2. Low-Pass Filter
- 3. Band-Pass Filter
- 4. Band-Reject Filter
- 5. I-don't-know Filter

Circuit Intuition (RC)

	Low Frequency (e.g. w=0)	High Frequency (e.g. w=1 GHz)
Capacitor	Block!	Pass!
Inductor	Pass!	Block!

Vout = V drop across R

Low-frequency Input: reach Vout node?

High-frequency Input: reach Vout node?

Still not convinced?

Draw equivalent circuits for both cases

answer: HP

Circuit Intuition (RC)

Similar logic applies here:

High-frequency Input:

Cap = short-circuit (wire)

Vout = GND

Vin is "shorted" to GND

Low-frequency Input:

Cap = open-circuit

=> No current through R

=> Vout = Vin

Answer: LP

Circuit Intuition (RL) (still 1st order)

What about inductors?

- 1. High-Pass Filter
- 2. Low-Pass Filter
- 3. Band-Pass Filter
- 4. Band-Reject Filter
- 5. I-don't-know Filter

	Low Frequency (e.g. w=0)	High Frequency (e.g. w=1 GHz)
Capacitor	Block!	Pass!
Inductor	Pass!	Block!

Circuit Intuition (RL) (still 1st order)

What about inductors?

Low-frequency Input: Inductor = short circuit (wire)

High-frequency Input: Inductor = open-circuit

answer: HP

	Low Frequency (e.g. w=0)	High Frequency (e.g. w=1 GHz)
Capacitor	Block!	Pass!
Inductor	Pass!	Block!

answer: LP

What kind of filter is this circuit?

A = Low pass filter C = Band pass filter

B = High pass filter D = Band stop filter

What kind of filter is this circuit?

A = Low pass filter

C = Band pass filter

B = High pass filter

D = Band stop filter

answer: HP

 $\begin{array}{c|c}
V_0 \\
\downarrow \\
I_s \cos \omega t
\end{array}$

What Kind of Filter are they?

A = Low pass filter

B = High pass filter

C = Band pass filter

D = Band stop filter

Hint: They are the same type

answer: BP

- What kind of filter is this circuit?
 - A = Low pass filter
 - B = High pass filter
 - C = Band pass filter
 - -D = Band stop filter

Darn it, I just gave it away! lol

Now you can tell me what this one is:

Active Filtering

Filtering with Op Amps:

Advantage: can have a Gain! =>Amplify Input Signal! From the Final Project - Non-inverting Low Pass Filter

Active Filtering

From the project - Notch Filter You've proven the two circuits are equivalent (gyrator) Makes sense why it's a Notch Filter, now?

Active Filtering

High Pass or Low Pass?

Inverting Integrator

Active Filtering (Cascading)

You can't do this by combining simple circuit elements in some kind of order without any Op Amps. (why?)

Filters combined in Series : Multiply transfer functions Filters combined in Parallel : Add transfer functions

Cascaded Filters

Determine the type of the gigantic filter above (Determine the type of each sub-fitler then cascade them)

Possible Application:

Designing a hearing aid for human voice range (50 Hz ~ 20 kHz)

Inverting Amplifier

