Math 115B Homework #6

Nathan Solomon

February 26, 2025

Problem 0.1.

Problem 0.2.

Suppose V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues which all have magnitude 1. Then V can be decomposed into orthogonal eigenspaces $V_1 \oplus V_2 \oplus \cdots \oplus V_n$, and if we let $\lambda_i \in \mathbb{C}$ be the eigenvalue corresponding to the eigenspace V_i and let T_i be the orthogonal projection onto V_i , then

$$T = \sum_{i=1}^{n} \lambda_i T_i.$$

We know want to check that $TT^* = I$. Since we have an orthonormal basis of eigenvectors, whenver v_i and v_j are eigenvectors of T with different eigenvalues, $\langle v_i, v_j \rangle = 0$. That means if $i \neq j$, then every element of V_i is orthogonal to every element of V_j , which implies $T_iT_j = 0$. Therefore

$$TT^* = \left(\sum_{i=1}^n \lambda_i T_i\right) \left(\sum_{i=1}^n \lambda_i T_i\right)^*$$

$$= \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j^* T_i T_j^*$$

$$= \sum_{i=1}^n \sum_{j=1}^n \delta(i=j) \lambda_i \lambda_j^* T_i T_j$$

$$= \sum_{i=1}^n \lambda_i \lambda_i^* T_i^2$$

$$= \sum_{i=1}^n T_i$$

$$= T,$$

so T is unitary.

Now suppose T is unitary, and we want to show that V has an orthonormal basis of eigenvectors of T which all have magnitude 1.

Problem 0.3.

• Reflexivity: $A \sim A$ because I is unitary and $I^{-1}AI$.

• Symmetry: If $A \sim B$, then there exists a unitary matrix P such that $A = P^*BP$. P^* is also unitary, so

$$(P^*)^*AP^* = PAP^* = PP^*BPP^* = IBI = B,$$

which means $B \sim A$.

• Transitivity: If $A \sim B$ and $B \sim C$, then there exist unitary matrices P and Q such that $A = P^*BP$ and $B = Q^*CQ$. If we let R = QP, then R is also unitary, and

$$A = P^*(Q^*CQ)P = R^*CR,$$

which means that $A \sim C$.

If you replace \mathbb{C} with \mathbb{R} , and "unitary" with "orthogonal", then this exact same method proves that orthogonal equivalence is an equivalence relation.

Problem 0.4.

(a) We know that $T_i T_j = \delta(i == j)$, so by induction,

$$T^{n} = \lambda_{i}^{n} T_{i} + \dots + \lambda_{m}^{n} T_{m} = \sum_{i=1}^{m} \lambda_{i}^{n} T_{i}$$

for any nonnegative integer n. g(T) is a linear combination of such powers of T, so if $g(t) = a_0 + a_1 t + a^2 t^2 + \cdots + a^d t^d$ then

$$g(T) = \sum_{i=0}^{d} a^{i} T^{i} = \sum_{i=0}^{d} a^{i} \sum_{j=1}^{m} \lambda_{j}^{i} T_{j}^{i} = \sum_{j=1}^{m} \sum_{i=0}^{d} a^{i} \lambda_{j}^{i} T_{j} = \sum_{j=1}^{m} g(\lambda_{j}) T_{j}.$$

(b) I just showed that

$$T^n = \lambda_i^n T_i + \dots + \lambda_m^n T_m = \sum_{i=1}^m \lambda_i^n T_i,$$

so if $T^n = 0$, then each λ_i is zero (because none of the T_i s are zero). That means T is zero.

(c)

- (d) For every complex number λ_i , there exists at least one complex number c_i such that $c_i^2 = \lambda_i$. Let $U = \sum_i c_i T_i$. Then by the logic I used in part (a), $U^2 = T$. Since U is a diagonal matrix (in the basis spanned by eigenvectors v_i of each T_i), U is normal.
- (e) If there is some i such that $\lambda_i = 0$, then T is not injective, which means T is not invertible. However, if every $\lambda_i = 0$, then let $U = \sum_i (1/\lambda_i) T_i$. This satisfies UT = I = TU, so T is invertible.
- (f) In part (a), I showed that

$$T^{n} = \lambda_{i}^{n} T_{i} + \dots + \lambda_{m}^{n} T_{m} = \sum_{i=1}^{m} \lambda_{i}^{n} T_{i}.$$

Plugging in n=2 and recalling that the T_i s are linearly independent, we see that $T^2=T$ if and only if $\lambda_i^2=\lambda_i$ for every index i. That means every λ_i is either zero or one.

(g) Orthogonal projections satisfy $T_i^* = T_j$, so if $T = -T^*$, then

$$\sum_{j} \lambda_{j} T_{j} = -\left(\sum_{j} \lambda_{j} T_{j}\right)^{*} = \sum_{j} \left(-\lambda_{j}^{*}\right) T_{j},$$

which means $\lambda_j = -\lambda_j^*$ for each j. Each λ_j can be written as a + bi where $a, b \in \mathbb{R}$, so we have

$$a + bi = -(a + bi)^* = -(a - bi) = -a + bi,$$

so a = 0, meaning λ_j is purely imaginary.

Problem 0.5.

Since T is normal, there exists an orthonormal basis of eigenvectors $\{v_1, \ldots, v_n\}$ and corresponding eigenvectors λ_i such that T can be written as

$$T = \sum_{i=1}^{n} \lambda_i P_i,$$

where P_i is the orthogonal projection onto the span of v_i (so $P_i^* = P_i$). Then

$$UT^* = U \left(\sum_{i=1}^n \lambda_i P_i \right)^*$$

$$= U \left(\sum_{i=1}^n \lambda_i^* P_i^* \right)$$

$$= \sum_{i=1}^n \lambda_i^* U P_i^*$$

$$= \sum_{i=1}^n \lambda_i^* (P_i U^*)^*$$

Problem 0.6.

- Normal means that $TT^* = T^*T$
- **Projection** means that $T^2 = T$
- Orthogonal projection means that $T^2 = T = T^*$

Since T is normal, there exists an orthonormal basis of eigenvectors $\{v_1, \ldots, v_n\}$ and corresponding eigenvectors λ_i such that T can be written as

$$T = \sum_{i=1}^{n} \lambda_i P_i,$$

where P_i is the orthogonal projection onto the span of v_i (so $P_i^* = P_i$). Since $P_i P_j = \delta(i = j)$,

$$T^2 = \sum_{i=1}^n \lambda_i^2 P_i,$$

which means every λ_i is either 0 or 1. Then

$$T^* = \left(\sum_{i=1}^n \lambda_i P_i\right)^* = \sum_{i=1}^n \lambda_i^* P_i^* = \sum_{i=1}^n \lambda_i * P_i = \sum_{i=1}^n \lambda_i P_i = T,$$

so T is an orthogonal projection.

Problem 0.7.

- (a) By the definition of being U-invariant, UW is a subspace of W. If the dimension of UW is less than the dimension of W, then that would imply the determinant of U is zero, but a unitary matrix always has a determinant with magnitude 1, so $\dim(UW)$ is not less than $\dim(W)$ (and both of those are finite). Combined with the fact that $UW \subset W$, that means UW = W.
- (b) Suppose for the sake of contradiction that $a \in W^{\perp}$ but $Ua \notin W^{\perp}$. That is, $P_W a = 0$ but $P_W Ua \neq 0$, where P_W is the orthogonal projection onto W. Applying U to both sides of the first equation, $UP_W a = 0$

Problem 0.8.

Let v be any vector in V. Then T_jv is in W_j . If $i \neq j$, then since W_i is orthogonal to W_j , $T_iT_jv = 0$. If i = j, then elements of W_j are unaffected by T_i , so $T_iT_jv = T_jv$. In conclusion, $T_iT_j = \delta(i = j)T_i$.

Math 115B: Linear Algebra

Homework 6

Due: Saturday, February 22nd at 11:59pm PT

- All answers should be accompanied with a full proof as justification unless otherwise stated.
- Homeworks should be submitted through Gradescope, which can be found on the course Canvas (Bruin Learn) page.
- As always, you are welcome and encouraged to collaborate on this assignment with other students in this course! However, answers must be submitted in your own words.
- Unless otherwise stated k denotes an arbitrary field and all vector spaces are over k. All inner product spaces are defined over a field F which is either \mathbb{R} or \mathbb{C} .
- You are welcome to use results of previous problems on later problems, even if you do not solve the previous parts.
- 1. $(\frac{-}{10})$ Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T, and use this to prove T is self adjoint.
- 2. $(\frac{-}{10})$ Prove Corollary 2 to Theorem 6.18. That is, prove that if T is a linear operator on a finite-dimensional complex inner product space V, then: V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1 if and only if T is unitary.
- 3. $(\frac{-}{10})$ We say that matrix $A \in \mathbb{C}^{n \times n}$ is unitarily equivalent to $B \in \mathbb{C}^{n \times n}$ if there exists a unitary matrix $P \in \mathbb{C}^{n \times n}$ such that $A = P^{-1}BP$. Prove that this is an equivalence relation on $\mathbb{C}^{n \times n}$. (Replacing the field \mathbb{C} with the field \mathbb{R} and the word 'unitary' with 'orthogonal,' the same definition gives when two matrices are *orthogonally equivalent*.)
- 4. $(\frac{-}{6*5})$ Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decomposition $\lambda_1 T_1 + ... + \lambda_m T_m$ of T (where $\lambda_i \in \mathbb{C}$) to prove the following:
 - (a) If $g(t) \in \mathbb{C}[t]$ then $g(T) = \sum_{i=1}^{m} g(\lambda_i) T_i$.
 - (b) If some positive power of T is the zero transformation, then T itself is the zero transformation.
 - (c) Let U be a linear operator on V. Then U commutes with T if and only if U commutes with each T_i for all $i \in \{1, 2, ..., m\}$.
 - (d) There exists a normal operator U on V such that $U^2 = T$.
 - (e) T is invertible if and only if $\lambda_i \neq 0$ for all $i \in \{1, 2, ..., m\}$.
 - (f) T is a projection if and only if every eigenvalue of T is 1 or 0.

- (g) $T = -T^*$ if and only if every λ_i is *purely imaginary*, that is, it lies in the set $i\mathbb{R} := \{ix : x \in \mathbb{R}\}.$
- 5. $(\frac{-}{10})$ Show that if T is a normal operator on a complex finite-dimensional inner product space and U is a linear operator that commutes with T, then U also commutes with T^* .
- 6. $(\frac{-}{10})$ Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is a projection, then it is also an orthogonal projection.
- 7. $(\frac{-}{2*5})$ Let U be a unitary operator on an inner product space V, and let W be a finite-dimensional U-invariant subspace of V. Prove that:
 - (a) U(W) = W
 - (b) W^{\perp} is U-invariant.
- 8. $(\frac{-}{10})$ Prove part (c) of the spectral theorem. In other words: assume that for a linear operator T on a finite dimensional inner product space V which is normal if $F=\mathbb{C}$ and self adjoint if $F=\mathbb{R}$, and let $W_1,...,W_m$ denote the eigenspaces corresponding to distinct eigenvalues of T and let T_i be the orthogonal projection of V onto W_i . Then $T_iT_j=\delta_{ij}T_i$, where $\delta_{ij}=0$ if $i\neq j$ and $\delta_{ii}=1$.