M020 - Matemática Discreta | Capítulo 1 - Lógica Formal

Expressão em Português	Conectivo Lógico	Expressão Lógica
e; mas; também; além disso	Conjunção	$A \wedge B$
ou	Disjunção	A v B
Se A, então B. A implica B. A, logo B. A só se B; A somente se B. B segue de A. A é uma condição suficiente para B; basta A para B. B é uma condição necessária para A.	Condicional	$A \rightarrow B$
A se e somente se B A é condição necessária e suficiente para B.	Bicondicional (equivalência)	$A \leftrightarrow B$
não A É falso que A Não é verdade que A	Negação	A'

	Regras de E	quivalência	
Expressão	Equivalente a	Nome/Abreviação da Regra	
P∨Q P∧Q	Q v P Q v P	Comutatividade — com	
$(P \lor Q) \lor R$ $(P \land Q) \land R$	$P \lor (Q \lor R)$ $P \land (Q \land R)$	Associatividade — ass	
(P ∨ Q)' (P ∧ Q)'	$P' \wedge Q'$ $P' \vee Q'$	Leis de De Morgan — De Morgan	
$P \rightarrow Q$	$P' \vee Q$	Condicional — cond	
P	(P')'	Dupla negação — dn	
$P \leftrightarrow Q$	$(P \to Q) \land (Q \to P)$	Definição de equivalência — equi	

Regras de Inferência			
De	Podemos Deduzir	Nome/Abreviação da Regra	
$P, P \rightarrow Q$	Q	Modus ponens — mp	
$P \rightarrow Q, Q'$	P'	Modus tollens — mt	
P,Q	PAQ	Conjunção — conj	
$P \wedge Q$	P, Q	Simplificação — simp	
P	PvQ	Adição — ad	

Regras de Inferência Adicionais		
De	Podemos deduzir	Nome/Abreviação da Regra
$P \rightarrow Q, Q \rightarrow R$	$P \rightarrow R$ [Exemplo 16]	Silogismo hipotético — sh
$P \lor Q, P'$	O [Exercício 21]	Silogismo disjuntivo — sd
$P \rightarrow Q$	$Q' \to P'$ [Exercício 22]	Contraposição — cont
$Q' \rightarrow P'$	$P \rightarrow Q$ [Exercício 23]	Contraposição — cont
P	$P \wedge P$ [Exercício 24]	Auto-referência — auto
$P \vee P$	P [Exercício 25]	Auto-referência — auto
$(P \land Q) \rightarrow R$	$P \rightarrow (Q \rightarrow R)$ [Exercício 26]	Exportação — exp
P,P'	Q [Exercício 27]	Inconsistência — inc
$P \wedge (Q \vee R)$	$(P \land Q) \lor (P \land R)$ [Exercício 28]	Distributividade — dist
$P \lor (Q \land R)$	$(P \lor Q) \land (P \lor R)$ [Exercício 29]	Distributividade — dist

A. S. Saine, Exerning	Regras de Equiv	alência	communication and section are communicated	
Expressão	Equivalente a			
P∨Q P∧Q			mutatividade — com	
(P ∨ Q) ∨ R (P ∧ Q) ∧ R	$P \lor (Q \lor R)$ $P \land (Q \land R)$			
(P ∨ Q)' (P ∧ Q)'	P' ∧ Q' P' ∨ Q'	Leis de De Morgan — De Morgan		
$P \rightarrow Q$	$P' \vee Q$	Cor	ndicional — cond	
P	(P')'	Dug	ola negação — dn	
$P \leftrightarrow Q$	$(P \to Q) \land (Q \to P)$	Def	inição de equivalência — equi	
Regras de Inferência				
De	Podemos Deduzir	No	me/Abreviação da Regra	
$P, P \rightarrow Q$	Q	Mo	odus ponens — mp	
$P \rightarrow Q, Q'$	P'	Modus tollens — mt		
P,Q	PAQ	Conjunção — conj		
$P \wedge Q$	P,Q	Sin	nplificação — simp	
P	$P \lor Q$	$P \lor Q$ Adi		
Regras de Inferência Adicionais			Adicionais	
De	Podemos deduzir		Nome/Abreviação da Regra	
$P \rightarrow Q, Q \rightarrow R$	$P \rightarrow R$ [Exemplo 16]		Silogismo hipotético — sh	
$P \vee Q, P'$	O [Exercício 21]		Silogismo disjuntivo — sd	
$P \rightarrow Q$	$Q' \rightarrow P'$ [Exercício 22]		Contraposição — cont	
$O' \rightarrow P'$	$P \rightarrow O$ [Exercício 23]		Contraposição — cont	
P	$P \wedge P$ [Exercício 24]		Auto-referência — auto	
$P \vee P$	P [Exercício 25]		Auto-referência — auto	
$(P \land Q) \to R$	$P \rightarrow (Q \rightarrow R)$ [Exercício 26]		Exportação — exp	
P,P'	Q [Exercício 27]		Inconsistência — inc	
$P \wedge (Q \vee R)$	$(P \land Q) \lor (P \land R)$ [Exercí	cio 28]	Distributividade — dist	
$P \lor (Q \land R)$	$(P \lor Q) \land (P \lor R)$ [Exercício 29]		Distributividade — dist	

Lógica de Predicados

Regras de Inferência			
De	Podemos Deduzir	Nome/Abreviação da Regra	Restrições sobre o Uso
$(\forall x)P(x)$	P(t) onde t é uma variável ou um símbolo constante	Particularização universal — pu	Se t for uma variável, não deve estar dentro do escopo de um quantificador para t.
(∃ <i>x</i>) <i>P</i> (<i>x</i>)	P(a), onde a é um símbolo constante não utilizado anteriormente na seqüência de demonstração	Particularização existencial — pe	É necessário que seja a primeira regra a usar a.
P(x)	(∀ <i>x</i>) <i>P</i> (<i>x</i>)	Generalização universal — gu	P(x) não pode ter sido deduzida de nenhuma hipótese na qual x é uma variável livre nem pode ter sido deduzida, através de pe, de uma fbf na qual x é uma variável livre.
P(x) ou P(a), onde a é um símbolo constante	$(\exists x)P(x)$	Generalização existencial — ge	Para ir de $P(a)$ a $(\exists x)P(x)$, x não pode aparecer em $P(a)$.