Exploring the Trade-offs between Energy and Performance of Federated Learning Algorithms

— A measurement —

Presenter

Advisors

Mai Huong Do

Georges Da Costa Millian Poquet

IRIT - Université Toulouse III February 21, 2025

Table of Contents

- What, Why, How?
- 2 Experiment

Vhat, Why, How?

What, Why, How?

What is it?

Trade-offs between Energy and Performance of Federated Learning?

- **Energy**: Energy consumption when running a process (FL process).
- **Performance**: Performance of model, usually are evaluated by accuracy, loss, time processing.
- Federated Learning (FL): One of the most growing research in ML, also requires huge of resources.

Federated Learning framework

Data privacy concerns in Centralized Machine Learning

Solution from Federated Learning

Federated Learning framework

Step 1: Global model init.

Step 3: Local training

Step 2: Send model to clients

Step 4: Return and aggregate in global

Why? - High energy consumption for Al

¹Measuring the Energy Consumption and Efficiency of Deep Neural Networks: An Empirical Analysis and Design Recommendations (2024), analysis BUTTER-E Dataset = > <

From influence to warning

²"Red Al refers to Al research that seeks to improve accuracy (or related measures) through the use of massive computational power while disregarding the cost — essentially "buying" stronger results."

"Green Al refers to Al research that yields novel results while taking into account the computational cost, encouraging a reduction in resources spent."

Why? - We have money - Project Funding

- ANR DELIGHT (aDvancing fEderated LearnIng while reducinG tHe carbon foo**T**print) project.
- Target: incorporate energy efficiency as one of the metrics of FL to push FL towards sustainability.
- 3 main parts:
 - Reproducible framework of energy performance tradeoff (my thesis).
 - Improve, develop FL model.

Objective and Planning

Objective: develop method for estimating energy, build a automatic framework to explore the trade-offs between Energy and FL performance.

Phases of the thesis:

- Set up an experimental environment on Grid'5000 (g5k) to gather performance and energy metrics.
 - Create a use-case for the Flower framework.
 - Build a reproducible and automated framework for obtaining metrics for this
 use case
- Propose, formulate energy model, and implement the different leverages.
- Explore the impact of the leverages on both energy and performance.

General framework

(from Millian slide - or Arnaud Legrand?)

General framework

12 / 25

Experiment

Process

Process

Flower implement - see more

▶ Set of sensors - see more

Process

► Flower implement - see more

G5k platform

Choose the nodes:

- Site: Nancy
- Cluster: Gros
- Cpu: Intel Xeon Gold 5220 18 Cores x86_64
- Mem: 96GB
- Storage: 480GB SSD + 960GB SSD*
- Net: 2x25 Gbps (SR-IOV)
- Include Kwollect Powermetter

2 monitors

Keyword	Kwollect	RAPL
Purpose	SW/HW-based monitors	Energy measurement and thermal man-
	usage monitoring	agement
		monitoring CPU power usage and system
		performance
Measurement	Power consumption for various compo-	focus on CPU cores, within Intel CPUs,
	nents (CPU, memory, entire server)	package (entire processor), and DRAM
		(memory)

Code structure

```
Repo<sup>3</sup>
Readme<sup>4</sup>
```

```
Flower v1
   client cifar100.py
  client cifar10.py
   client dist.py
 — client mnist.pv
 client svhn.py

    requirement.txt

 server.py

    test strategie custom.py

test strategie.pv
   collect ip.py
   measure.py
   read me.md
   res 1.py
   Reserve info.json
  - run camp.pv
  - run flwr.pv
```

³https://gitlab.irit.fr/huongdm/huong_delight/Huong_Journey

⁴https://gitlab.irit.fr/huongdm/huong_delight/Huong_Journey/-/blob/main/Run/read_me.md?ref_type=heads

Data storing /Log/

```
Flower_test_5
Flower_cifar10_ori_1
  - Flwr_20241020_135940
     Client_172.16.48.10
     — Client_172.16.48.13
     — Client_172.16.50.3
    Server_172.16.51.1
  - Flwr_20241020_140030
     — Client_172.16.48.10
     Client_172.16.48.13
     Client 172.16.50.3
     Server 172.16.51.1
  _ hercule-1.lyon.grid5000.fr_1729425564
  _ hercule-1.lyon.grid5000.fr_1729425564_mojitos
    hercule-1.lyon.grid5000.fr_flower_1729425580
     hercule-1.lvon.arid5000.fr flower 1729425630
    orion-3.lyon.grid5000.fr_flower_1729425580
    orion-3.lyon.grid5000.fr_flower_1729425630
     — taurus-10.lyon.grid5000.fr_flower_1729425580
     — taurus-10.lyon.grid5000.fr_flower_1729425630

    taurus-13.lvon.grid5000.fr_flower_1729425580

    └─ taurus-13.lyon.grid5000.fr_flower_1729425630
   _hercule-1.lyon.grid5000.fr_1729425564_power
    hercule-1.lyon.grid5000.fr_flower_1729425580
    └─ hercule-1.lyon.grid5000.fr_flower_1729425630
   Metadata.ison
Flower_cifar10_ori_2
   Flwr_20241020_140137
     Client_172.16.48.10
```

Data Processing / Data_analysis/

- mojitos_ana, power_ana, flower_ana: pre-process mojitos, kwollect, FL performance data of each instance
- step1_all_ins_ana: run 3 pre-processes above for all files in 1 campaign log
- step2_flower_process: extract needed perf information from flwr
- step2_mojitos_power_process: extract needed energy info from mojitos and kwollect.
- step3_agg: combine, agg, compute to export 1 final csv.

Results

```
Data_analysis > Output_level_2 > III merged_final_combined.csv
      dataset, strategy, num round, log timestamp, time (s), final loss, file number, mean E RAPL, max_time_s_RAPL, num nodes, mean P Kwollect, max time s Kwollect
      cifar10, fedAvg, 1,2024-11-05 19:43:47,8.39,1.550370693206787,1730832227,1573996.9177708772,48.70115637000004,4,85.554375,49.03917193412781
     cifar10, fedAyg, 5, 2024-11-05 19:45:31, 34, 78, 0.8216357231140137, 1730832331, 2951092, 421780954, 42, 66357536700002, 4, 114,81083380601248, 42,04303693771362
     cifar10, fedMedian, 1,2024-11-05 19:53:27,7.87,1.3695908784866333,1730832807,2745925.980583561,13.138403516000151,4,106.25,13.011778831481934
     cifar10, fedMedian, 5,2024-11-05 19:54:29, 35,88,0,8208371996879578,1730832869,2776180,716609589,43,64776340900016,4,111,39659468438538,43,043659925460815
     cifar10, new, 1,2024-11-05 19:47:27,8.12,1.3844554424285889,1730832447,2746707.306390977,13.197975008999949,4,108.67994505494504,13.01743197441101
     cifar10,new,5,2024-11-05 19:48:26,36.22,0.8037880659103394,1730832506,2740971.961907449,44.18649467599994,4,111.3517316017316,43.03302884101868
     cifar10.ori.1.2024-11-05 19:50:25.8.15.1.1542521715164185.1730832625.1924451.6610267283.13.524328816999969.4.91.01785714285715.13.01209807395935
     cifar10,ori,5,2024-11-05 19:51:28,36.67,0.9512131810188292,1730832688,1789009.1145875151,42.219894161999946,4,89.97660575858251,42.03613519668579
     mnist, fedAvg. 1, 2024-11-05 19:56:30.8.76.0.0517027899622917.1730832990.2356143.538596492.16.947971714999994.4.106.52941176470588.16.011781930923462
     mnist, fedAvg, 5, 2024-11-05 19:57:36, 40.38, 0.0221263654530048, 1730833056, 2643139.7951609925, 48.10968462500023, 4, 107.89583333333331, 48.0528609752655
     mnist.fedMedian.1.2024-11-05 20:06:10.8.71.0.0423926003277301.1730833570.2676900.4148509763.13.814431886999955.4.104.93333333333332.14.020021915435793
     mnist, fedMedian, 5, 2024-11-05 20:07:12, 40.52, 0.0238807089626789, 1730833632, 2632104.9772498296, 48.31467085899976, 4, 107.35323491098568, 48.04829788208008
     mnist.new.1,2024-11-05 19:59:44,9.09,0.0575130358338356,1730833184,1958596.9998581011,16.90818759800004,4.93,1805555555556,17.059574842453003
     mnist.new.5.2024-11-05 20:00:51.39.58.0.0205710977315902.1730833251.2808162.922707889.46.79084990499996.4.111.88297872340426.46.057049036026
      mnist,ori,1,2024-11-05 20:03:00,8.93,0.0473004952073097,1730833380,1776703.582672609,14.117340154999964,4.90.73076923076924,14.014400005340576
      mnist.ori.5.2024-11-05 20:04:02.40.94.0.0371751897037029.1730833441.1651069.0905411898.45.79304104100038.4.88.06241134751774.46.0476610660553
```

Results

Thank you!

Flower implement

Dataset Load data, define model training, evaluation, start client Client Script Follow strategy, number of rounds, start server Server Script Customize federated learning process Strategy Script

Energy measurement - Expetator

▶ Energy parameters - see more

Energy measurement - Expetator

rxp	number of received packets	
rxb	number of received bytes	
txp	number of sent packets	
txb	number of sent bytes	
package	entire sockets	
core0	or Power Plane 0, all processor cores on the socket	
dram	RAM	
idle	no activate status	
user	CPU	

