

Microprocessadores

Hugo Marcondes hugo.marcondes@ifsc.edu.br

Aula 10

Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina

Dispositivos de Entrada e Saída

- Dispositivos de entrada e saída são essenciais para um sistema computacional
 - Interação com o ambiente
- Componentes muito diversos
 - Entrada, Saída, Entrada e Saída, Armazenamento
 - Interação Homem-Máquina / Máquina-Máquina
 - Taxas de transferência de dados

2 IFSC - Departamento Acadêmico de Eletrônica

Dispositivos de Entrada e Saída

- Seu estudo pode ser dividido em duas áreas
 - Conexão dos dispositivos com o Microprocessador
 - Interface, barramentos, protocolo
 - Comunicação dos dispositivos com o Microprocessador
 - Polling, Interrupções, DMA

Controladores de dispositivos

- Os controladores de dispositivos são sistemas digitais responsáveis por controlar fisicamente um dispositivo
 - discos rígidos, impressoras, video
- De forma geral, as controladoras recebem comandos do SO para executarem no dispositivo (ex. ler / escrever dados)
- Na maioria dos casos, um dispositivo real é complicado e cheio de detalhes, desta forma, cabe ao controlador apresentar uma interface mais simples para a CPU
 - Ex. Disco rígido
- 8 IFSC Departamento Acadêmico de Eletrônica

Drivers de Dispositivos

- Os componentes de software que se comunicam com as controladoras de dispositivos é chamado de "Drivers de dispositivos"
 - Responsável por conhecer o "protocolo" de comunicação com a controladora
 - Interface entre o CPU (sistema operacional) e os dispositivos
- Cada fabricante deve fornecer os "drivers" para os sistemas operacionais que deseja suportar

10 IFSC - Departamento Acadêmico de Eletrônica

Interface HW/SW

- Toda controladora deve prover um conjunto de registradores para que a CPU possa trocar informações com a mesma
 - Feito através dos barramentos
 - Endereçados através do espaço de endereçamento
 - Espaços dedicados para I/O, através de instruções específicas da CPU
 - A transferência de dados entre a CPU e a controladora pode ocorrer de três maneiras distintas:
 - Pooling (Espera ocupada / busy-wait)
 - Interrupções
 - DMA (Direct Memory Access)

11 IFSC - Departamento Acadêmico de Eletrônica

Barramentos

- Meio de comunicação compartilhado
- Para conectar subsistemas
 - CPU, memória, E/S
- Vantagens
 - Versatilidade
 - · Novos dispositivos podem ser conectados
 - Baixo custo
 - Único conjunto de fios compartilhados

Barramentos

- Único conjunto de fios
 - Para conectar vários subsistemas
 - Só 2 "conversam" simultaneamente
- Desvantagem
 - Gargalo de comunicação
 - Limite para o throughput de E/S

13 IFSC - Departamento Acadêmico de Eletrônica

Barramentos: Estrutura

- Linhas de dados e/ou endereços
 - Transportam informação entre fonte e destino
 - Dados e endereços
 - Alternativas: linhas distintas ou compartilhadas
 - Exemplo: escrita de um setor do HD na memória
 - Endereço destino de memória, os dados do setor
- Linhas de controle
 - Indicam tipo de informação nas linhas de dados
 - Sinal de requisição ("Request")
 - Sinal de reconhecimento ("Acknowledgement")
 - Usadas para implementar o protocolo

15 IFSC - Departamento Acadêmico de Eletrônica

Barramentos: Transação

- Duas etapas
 - Envio do endereço
 - Envio ou recepção dos dados
- Tipos
 - Entrada
 - Dado enviado de dispositivo para memória
 - Onde será lido pela CPU
 - Saída
 - Dado enviado para dispositivo a partir da memória
 - Onde foi escrito pela CPU

Barramentos: Classificação NSTITUTO FEDERAL • Barramento processador-memória • Dedicado • Curto: baixo tempo de acesso • Casado com o subsistema de memória • Para maximizar bandwidth • Barramento de E/S • De propósitos gerais Vários dispositivos de vários tipos • Longo: alto tempo de acesso • Não se conecta diretamente à memória • Exemplos: Firewire e USB 17 IFSC - Departamento Acadêmico de Eletrônica Barramentos: Classificação INSTITUTO FEDERAL Síncronos • Uma das linhas de controle é o relógio • Protocolo fixo baseado no relógio · Resulta em alta velocidade, mas não pode ser longo • Exemplo: • Barramento processador-memória • Leitura da memória • Protocolo: • Endereço e comando de leitura no primeiro ciclo · Memória disponibiliza dado no quinto ciclo 18 IFSC - Departamento Acadêmico de Eletrônica

Barramentos: Classificação

- Assíncronos
 - Não tem relógio
 - Podem ser longos
 - · Podem acomodar variedade de dispositivos
 - Protocolo: "handshaking"
 - Série de etapas
 - Transição entre etapas: quando transmissor e receptor concordam
- Exemplo:
 - Firewire e USB

Handshaking

INSTITUTO FEDERAL

- Sinais de controle adicionais
 - ReadReq
 - Indica requisição de leitura da memória
 - Endereco colocado nas linhas de dados
 - DataRdy
 - Indica que o dado está pronto
 - Dado colocado nas linhas de dados
 - Acionado pela memória (output) ou por dispositivo de E/S (input)
 - Ack
 - Indica o reconhecimento de ReadReq ou DataRdy
 - · Acionado pela outra parte

Barramentos: Hierarquia

- Os barramentos podem ser divididos de uma forma hierárquica (em relação a CPU)
 - 1, 2, 3, 4 ... barramentos
- Múltiplos barramentos são conectados através de pontes

22 IFSC - Departamento Acadêmico de Eletrônica

Barramentos

- Principais barramentos utilizados em SoC (System on a Chip)
 - CoreConnect IBM
 - AMBA ARM
 - Wishbone OpenCores
 - Avalon Altera

Core Connect

- Arquitetura de barramento para sistemas SoC da IBM
 - Arquitetura Power
 - FPGA da Xilinx
- Três barramentos diferentes
 - PLB
 - Alta largura de banda
 - Periféricos de alta velocidade
 - OPB
 - Periféricos de baixa velocidade
 - DCR
 - Barramento de configuração
 - Transferência síncrona de GPRs e periféricos

25 IFSC - Departamento Acadêmico de Eletrônica

AMBA

- Advanced Microcontroller Bus Architecture (AMBA)
- Desenvolvido pela ARM
- Diversas versões, com especificação de barramentos distintos
 - AMBA, AMBA2, AMBA3, AMBA4
 - Advanced System Bus (ASB) AMBA / AMBA2
 - Advanced Peripheral Bus (APB) AMBA / AMBA2
 - Advanced High-performance Bus (AHB) AMBA2/AMBA3
 - AHB-Lite AMBA-3
 - Advanced Trace Bus (ATB)

 - AXI Coherency Extensions (ACE) AMBA 4
 - ACE -Lite AMBA4

Resumindo...

- Dispositivos de I/O são fundamentais
- Grande variedade de dispositivos
- Barramentos de comunicação
 - Linhas Dados, Endereço e Controle
 - Largura das linhas
 - Taxa de vazão
 - Protocolo define quais sinais e como devem ser ativados para a comunicação
 - Síncrono/Assíncrono
 - Mestre/Escravo
 - Arbitragem do barramento
 - Coerência de Cache (Multiprocessadores)

30 IFSC - Departamento Acadêmico de Eletrônica

Dispositivos de Entrada e Saída no MARS

- O MIPS trabalha com dispositivos de E/S utilizando uma técnica chamada memória-mapeada. Assim não há necessidade de utilizar instruções adicionais para o acesso a tais dispositivos.
 - Acessar registradores de um dispositivo, significa realizar instruções de load e store no endereço de memória em que o mesmo está mapeado.

Exercício

 Modifique o programa de ECO implementado com chamadas de sistema para que utilize o teclado e display mapeados em memória do MARS.

char getchar();
void print_char(char a);

• Desafio: Implemente as funções abaixo e faça um programa para testá-las

int getline(char * string, int buf_size);
void print_string(char * string);