Time Series - Homework 1

$Matt\ Isaac$

September 18, 2018

I. Data Analysis

- 1. The data set I chose is nhtemp, which contains data for the average yearly temperatures in New Haven from 1912 to 1971.
- Plot the data

```
plot(nhtemp, xlab = "Year", ylab = "Temperature",
    main = "Average Yearly Temperatures in New Haven")
```

Average Yearly Temperatures in New Haven

- Identify any trend or seasonality or both in your data.

 I see a slight upward linear trend present in these data. I don't see any evidence of seasonality/period in these data.
- Transform the data into a stationary process and plot the transformed data

Average Yearly Temperatures in New Haven (Transformed

- 2. Consider the Nile and the Johnson Johnson data in R Datasets package. For each one of the two:
- Transform the original time series into a stationary process.
- Plot the original data, transformed data, and the sample ACF of the transformed data on one page.

Nile data

- Transform into stationary process.
- Plots

```
Nile_st <- diff(Nile, differences = 1)
par(mfrow = c(3,1))
plot(Nile, main = "Yearly Flow of the River Nile", xlab = "Year", ylab = "Flow")
plot(Nile_st, main = "Yearly Flow of the River Nile (Transformed)", xlab = "Year", ylab = "Flow")
acf(Nile_st, main = "ACF")</pre>
```

Yearly Flow of the River Nile

Yearly Flow of the River Nile (Transformed)

ACF

Johnson Johnson data

- Transform into stationary process.
- Plots

```
par(mfrow = c(3,1))
plot(JohnsonJohnson, main = "Quarterly Sales for Johnson and Johnson", ylab = "sales")
lnJJ <- log(JohnsonJohnson)
lnJJ_st1 <- diff(lnJJ, diff = 2)
lnJJ_st2 <- diff(lnJJ_st1, lag = 4)
plot(lnJJ_st2, main = "Quarterly Sales for Johnson and Johnson (Transformed)", ylab = "sales")
acf(lnJJ_st2, main = "ACF")</pre>
```

Quarterly Sales for Johnson and Johnson

Quarterly Sales for Johnson and Johnson (Transformed)

ACF

