斗目代码:	896	科目名称:	数据结构
★所有答案必	必须做在答题纸上	,做在试题纸上无效	
一、单项选	择题(20分,	每题2分)	
下列每个题目中	中有四个选项,其中	7只有一个是正确的。 试根据题目的	陈述,选择正确的答案。
1. 与算法	法的时间复杂度有关	的是 ()。	
A. 19	题规模	B. 计算机硬件性能	
	译程序质量	D. 程序设计语言	,
2. 两个顺 顶指针 top2 i	ī序栈共享数组 S[0. 的初始值为 n,则为	May Milliana Millian	p1 的初始值为-1,第二个栈的栈。
A. to	op2 + 2 = top1	B. top1 + 1 = top2	
C. to	p1 + 2 = top2	p. top2 + 1 = top1	
3. 将一根	果树转换为二叉树后	,这棵二叉树的形态是().
B C D. 7	一定没有左子树 一定没有右子树 一定同时具有左子树 下确定		
4. 对于总 条查找路径	关键字序列(16, 10 的序列是(), 20, 12, 18, 7, 14, 13, 5, 19).),不可能构成其二义排序树中一 《
	16, 10, 7, 5	B. 16, 20, 18, 19	**
		D. 16, 10, 12, 14	
5. 广义	表 A=((b, (a,D)), (b,(a,D), C)),则运算 GetHead(GetHead	(GetTail(A)))的结果是(
A. 1		B. (a,D)	
	(b,(a,D))	D. a	*
6. 由权	值序列(5, 6, 2, 1	0,9,8)构造一棵赫夫曼树,其带	权路径长度 WPL 值是(
Α.		B. 68	
c.	110	D. 100	
7. 在平	衡二叉树中, 结点	的平衡因子的取值不可能是().
A.		B1	
C.	1	D. 2	
		9	

8. 有向无环图 G 中的有向边集合 E={ <v1, v2="">, <v2, v3="">, <v3, v4="">, <v1, v4="">},则下列属于该有向无环图 G 的一种拓扑排序序列的是(</v1,></v3,></v2,></v1,>	科目代码:	896		科目名称: _	数据结	构	
属于该有向无环图 G 的一种拓扑排序序列的是 (A D (471 T)	2> <1/2 \1/2>	. <v3. v4="">.</v3.>	<v1, v4="">},</v1,>	则下列
A. V1, V2, V3, V4 C. V1, V4, V2, V3 D. V1, V2, V4, V3 9. 无向连通网的最小生成树是指(8. 有向	无环图 G 中的有向边集	台 E={ <v1, v<br="">序序列的是(</v1,>).	, -10, 1-1	a var	custof of RUIN
C. V1, V4, V2, V3 9. 无向连通网的最小生成树是指(B. V2,	V3, V4, V1			
9. 无向连通网的最小生成树是指()。			41				
A. 利用深度优先遍历得到的生成树 B. 利用广度优先遍历得到的生成树 C. 权值之和最小的生成树 D. 边的条数最少的生成树 D. 边的条数最少的生成树 D. 边的条数最少的生成树 10. 如果需要在 O(nlog.n)的时间复杂度内完成对含有 n 个元素的关键字序列进行稳定性排序,可以选择的排序方法是(A. 快速排序 C. 归并排序 D. 直接插入排序 二、填空题(20 分,每题 2 分) 1. 对于包含 n 个元素的单链表,求该单链表长度算法的时间复杂度为 ① 。 2. 假定一棵树的广义表表示为A(B(C,D(E,F,G),H(I,I)))》,则结点H的双亲结点为 ② 。 4. 设一棵完全二叉树有128个结点,则该完全二叉树的叶子结点数目为 ④ 。 5. 已知一棵二叉树的先序遍历序列是ABDEFCGH,中序遍历序列是DBFEACHG。如果对该二叉树所对应的森林进行先序遍历,则该先序遍历序列为 ⑥ 设有一组记录,其关键字初始排列的顺序为 (30, 28, 32, 26, 45, 29),则根据该初始关键等序列建成的初始堆(小顶堆)中关键字排列的顺序为 ⑥ 。 6. 设有一组记录,其关键字初始排列的顺序为 ⑥ 。 6. 设有一组记录,其关键字初始非列的顺序为 ⑥ 。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是 ⑦ 。 8. 对于包含n个项点的连通图,它的生成树中边的条数一定是 ⑥ 。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性 ⑥ 。	0 天向	连通网的最小生成树是	指 ()。	•			
B. 利用广度优先遍历得到的生成树 C. 权值之和最小的生成树 D. 边的条数最少的生成树 D. 边的条数最少的生成树 10. 如果需要在 O(nlog_n)的时间复杂度内完成对含有 n 个元素的关键字序列进行稳定性排序,可以选择的排序方法是(A. 快速排序 C. 归并排序 D. 直接插入排序 C. 明荣也含 n 个元素的单链表,求该单链表长度算法的时间复杂度为	Willes a						
C. 权值之和最小的生成树 D. 边的条数最少的生成树 10. 如果需要在 O(nlogon)的时间复杂度内完成对含有 n 个元素的关键字序列进行稳定性排序,可以选择的排序方法是(A. 快速排序 C. 归并排序 D. 直接插入排序 C. 归并排序 D. 直接插入排序 一、填空题(20 分,每题 2 分) 1. 对于包含 n 个元素的单链表,求该单链表长度算法的时间复杂度为							
D. 边的条数最少的生成树 10. 如果需要在 O(nlog_n)的时间复杂度内完成对含有 n 个元素的关键字序列进行稳定性排序,可以选择的排序方法是(
10. 如果需要在 O(nlog2n)的时间复杂度内完成对含有 n 个元素的关键字序列进行稳定性排序,可以选择的排序方法是(A. 快速排序 B. 堆排序 C. 归并排序 D 直接插入排序 一、填空题(20 分,每题 2 分) 1. 对于包含 n 个元素的单链表,求该单链表长度算法的时间复杂度为 ① 。 2. 假定一棵树的广义表表示为 A(B(C,D(E,F,G),H(I,J))),则结点H的双亲结点为 ② 3. 中缀表达式 108 - ((30 - 6) / 4 + 5 * 8) 对应的后缀表达式为 ③ 。 4. 设一棵完全二叉树有128个结点,则该完全二叉树的叶子结点数自为 ④ 。 5. 已知一棵二叉树的先序遍历序列是ABDEFCGH,中序遍历序列是DBFEACHG。如果对该二叉树所对应的森林进行先序遍历,则该先序遍历序列为 ⑤ 。 6. 设有一组记录,其关键字初始排列的顺序为 (30, 28, 32, 26, 45, 29),则根据该初始关键等序列建成的初始堆(小顶堆)中关键字排列的顺序为 ⑥ 。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是 ⑦ 。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是 ⑥ 。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性 ⑥ 。		47					
可以选择的排序方法是(A. 快速排序 C. 归并排序 D. 直接插入排序 D. 直接插入排列 D. 自然表达式为 D. 自然表达对,则根据该初始关键与序列建成的初始堆(小顶堆)中关键字排列的顺序为 D. 自然表达和分析,可以上面上面上面上面上面上面上面上面上面上面上面上面上面上面上面上面上面上面上面		The same of the sa	EC 53			今下小北/二路 中	州排호
A. 快速排序 C. 归并排序 D. 直接插入排序 T. 填空题(20 分,每题 2 分) 1. 对于包含 n 个元素的单链表,求该单链表长度算法的时间复杂度为。 2. 假定一棵树的广义表表示为A(B(C,D(E,F,G),H(I,J)))、则结点H的双亲结点为。 3. 中缀表达式 108 - ((30 - 6) / 4 + 5 * 8) 对应的后缀表达式为。 4. 设一棵完全二叉树有128个结点,则该完全二叉树的叶子结点数目为。 5. 已知一棵二叉树的先序遍历序列是ABDEFCGH,中序遍历序列是DBFEACHG。如果对该二叉构所对应的森林进行先序遍历,则该先序遍历序列为。 6. 设有一组记录,其关键字初始排列的顺序为 (30, 28, 32, 26, 45, 29),则根据该初始关键写序列建成的初始堆(小顶堆)中关键字排列的顺序为。 6. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。	10. 如	果需要在 O(nlog2n)的印	间复杂度内完	成对含有 n 个	元素的关键字》	予列进行稳定	1生1477,
C. 归并排序 D. 直接插入排序 二、填空题(20 分,每题 2 分) 1. 对于包含 n 个元素的单链表,求该单链表长度算法的时间复杂度为。 2. 假定一棵树的广义表表示为 A(B(C,D(E,F,G),H(I,J)),则结点H的双亲结点为。 3. 中缀表达式 108 - ((30 - 6) / 4 + 5 * 8) 对应的后缀表达式为。 4. 设一棵完全二叉树有128个结点,则该完全二叉树的叶子结点数目为。 5. 已知一棵二叉树的先序遍历序列是ABDEFCGH,中序遍历序列是DBFEACHG。如果对该二叉树所对应的森林进行先序遍历,则该先序遍历序列为。 6. 设有一组记录,其关键字初始排列的顺序为 (30, 28, 32, 26, 45, 29),则根据该初始关键写序列建成的初始堆(小顶堆)中关键字排列的顺序为。 6. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。			ル B. 堆	排序			
二、填空题(20 分,每题 2 分) 1. 对于包含 n 个元素的单链表,求该单链表长度算法的时间复杂度为。 2. 假定一棵树的广义表表示为 A(B(C,D(E,F,G),H(I,J)),则结点H的双亲结点为。 3. 中缀表达式 108 - ((30 - 6) /4 +5 *8) 对应的后缀表达式为。 4. 设一棵完全二叉树有128个结点,则该完全二叉树的叶子结点数目为。 5. 已知一棵二叉树的先序遍历序列是ABDEFCGH,中序遍历序列是DBFEACHG。如果对该二叉树所对应的森林进行先序遍历,则该先序遍历序列为。 6. 设有一组记录,其关键字初始排列的顺序为(30,28,32,26,45,29),则根据该初始关键等序列建成的初始堆(小顶堆)中关键字排列的顺序为。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。			D〉值	接插入排序			
1. 对于包含 n 个元素的单链表,求该单链表长度算法的时间复杂度为	0.	2-17131113				9	
2. 假定一棵树的广义表表示为 A(B(C,D(E,F,G),H(I,J)),则结点H的双亲结点为							
2. 假定一棵树的广义表表示为 A(B(C,D(E,F,G),H(I,J)),则结点H的双亲结点为	1. 对于包	含n个元素的单链表,	求该单链表长度	建算法的时间复	杂度为		
3. 中缀表达式 108 - ((30 - 6) / 4 + 5 * 8) 对应的后缀表达式为 3。 4. 设一棵完全二叉树有128个结点,则该完全二叉树的叶子结点数目为 4。 5. 已知一棵二叉树的先序遍历序列是ABDEFCGH,中序遍历序列是DBFEACHG。如果对该二叉构所对应的森林进行先序遍历,则该先序遍历序列为。 6. 设有一组记录,其关键字初始排列的顺序为 (30, 28, 32, 26, 45, 29),则根据该初始关键写序列建成的初始堆(小顶堆)中关键字排列的顺序为。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。	2. 假定一	棵树的广义表表示为A	B(C,D(E,F,C	3),H(I,J)) X .P	结点H的双亲	结点为	(2)
4. 设一棵完全二叉树有128个结点,则该完全二叉树的叶子结点数目为。 5. 已知一棵二叉树的先序遍历序列是ABDEFCGH,中序遍历序列是DBFEACHG。如果对该二叉松所对应的森林进行先序遍历,则该先序遍历序列为。 6. 设有一组记录,其关键字初始排列的顺序为(30, 28, 32, 26, 45, 29),则根据该初始关键等序列建成的初始堆(小顶堆)中关键字排列的顺序为。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。	3. 中缀表:	达式 108 - ((30 - 6) /	4+5*8) 对应	的后缀表达式	h <u>) 3</u>	• ·	
5. 已知一棵二叉树的先序遍历序列是ABDEFCGH,中序遍历序列是DBFPACHG。如果对该二叉称所对应的森林进行先序遍历,则该先序遍历序列为。 6. 设有一组记录,其关键字初始排列的顺序为 (30, 28, 32, 26, 45, 29),则根据该初始关键写序列建成的初始堆(小顶堆)中关键字排列的顺序为。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。	4. 设一棵	完全二叉树有128个结儿	点,则该完全二	叉树的叶子结	点数目为		
所对应的森林进行先序遍历,则该先序遍历序列为。 6. 设有一组记录,其关键字初始排列的顺序为 (30, 28, 32, 26, 45, 29),则根据该初始关键写序列建成的初始堆(小顶堆)中关键字排列的顺序为。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。	5. 已知一	棵二叉树的先序遍历序	列是ABDEFC	3H,中序遍历/	亨列是DBFEAG	CHG。如果对	该二叉树
6. 设有一组记录,其关键字初始排列的顺序为 (30, 28, 32, 26, 45, 29),则根据该初始关键写序列建成的初始堆 (小顶堆)中关键字排列的顺序为。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。	所对应的	森林进行先序遍历,则	亥先序遍历序列	1为	0		
序列建成的初始堆(小顶堆)中关键字排列的顺序为。 7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。	6. 设有一	-组记录, 其关键字初如	台排列的顺序为	(30, 28, 32,	26, 45, 29)	,则根据该初]始关键 ^与
7. 在图的广度优先搜索遍历算法中,使用的辅助数据结构是。 8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是。 9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。							
8. 对于包含n个顶点的连通图,它的生成树中边的条数一定是						°	
9. 在哈希表中,装填因子的值越大,则存储元素时发生冲突的可能性。							
10 大汉公林京第法的时间开销时,主要老虎的两个基本操作是 ⑩。	0. 71 1 E	· 表由	成大,则存储元	素时发生冲突	的可能性	9	_•
	7. 在情報	办北 定 質注的时间开销	d. 主要老虎的	的两个基本操作	是		

第2页共6页

科目代码:

896

科目名称: 数据结构

三、解答题 (50 分, 每题 10 分)

1. 已知一个 6×5 稀疏矩阵 M 如图 1 所示,回答问题。

$$M = \begin{bmatrix} 10 & 0 & 0 & 0 & -5 \\ 0 & -1 & 0 & 0 & 0 \\ 16 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

图 1 稀疏矩阵 M

(1) 写出三元组顺序表的存储表示。

j (列) v (值) i(行)

(2) 写出对矩阵转置之后的三元组顺序存储表示。(不要求过程)

v (值) i (列) i(行)

- (3) 简述稀疏矩阵采用三元组顺序表存储方式的特点,该存储方式适用于哪些类型的矩阵运算。
- 2. 假设某字符集合包含4个字符A, B, C, D。传输一段西文文本 ABABABBCBDCA, 回答下列问题。
 - (1) 为该段西文文本中的每个字符设计等长的二进制编码。
- (2) 构造一组二进制编码,使用其对这段西文编码后的二进制位(bit)数最短,且在译码成西文时, 不会产生二义性。简述构造过程,并写出每个字符的编码。
 - (3) 简述如上两种不同类型编码的差异。
- 3. 折半查找(二分查找)过程可以利用一棵称之为"判定树"的二叉树来描述,假设对长度为13的有 序表 (23, 25, 32, 46, 50, 58, 69, 78, 79, 82, 88, 90, 92)进行折半查找。回答如下问题。
 - (1) 画出对应的判定树。
 - (2) 计算等概率情况下查找成功的平均查找长度ASL值。

科目代码:

896

科目名称:

数据结构

4. 已知无向图 G 包含 6 个顶点, 如图 2 所示:

图 2 无向图 G

回答如下问题:

- (1)画出该无向图 G 的邻接表存储表示。假定每个顶点的单链表中的结点是按顶点序号从小到大(V1 序号小于 V2, 依次类推)的次序链接。
- (2)对于如上的邻接表表示,分别写出从顶点 V1 出发按深度优先搜索遍历和广度优先搜索遍历得到的顶点序列。

深度优先搜索序列:

0

广度优先搜索序列:

<u></u>

- (3) 对于图 2 所表示的无向图 G, 给出用普里姆 Prim 算法 (从顶点 V1 开始) 构造的最小生成树。
- 5. 设一组初始记录关键字序列为 (p, d, f, q, y, a, e, s, r, h, j), 对其按照字母顺序非递减排列, 分别给出第4趟简单选择排序和第4趟直接插入排序后的结果。

四、算法阅读题(共15分,每题5分)

阅读下列带头结点的双向链表的相关算法,假定链表中各个数据元素 data 取值均不相同。

双向链表的类型定义为:

typedef struct DuLNode {

int freq: //检索频度

char data;

struct DuLNode *prior;

struct DuLNode *next;

}DuLNode, *DuLinkList;

科目代码:

896

科目名称:

数据结构

```
DuLNode* Algorithm(DuLinkList &L, char value)
  if(L->next) = NULL) return NULL;
  p = L - next;
  while ((p != NULL) && (p->data != value))
      p = p - next;
  if (p = NULL) return NULL;
  p->freq++;
   q = p \rightarrow prior;
   while ((q != L) && (q) freq  freq))
     q = q->prior;
   if (q != p \rightarrow prior)
    p->prior->next = p->next;
    if(p->next!=NULL)
       p->next->prior = p->prior;
    p - next = q - next;
    p->prior = q;
    q->next->prior = p;
    q \rightarrow next = p;
   return p;
```

计算机/软件工程专业 每个学校的 考研真题/复试资料/考研经验 考研资讯/报录比/分数线

免费分享

微信 扫一扫 关注微信公众号 计算机与软件考研

回答下列三个问题:

(1) 对于图 3 带头结点的双向链表,连续执行 3 次算法调用 Algorithm(L, 'F')之后,画出变化后的双向链表。

图 3. 双向链表

- (2) 简述该算法的功能。
- (3) 简述算法执行过程中,将结点按照频度 freq 排序对于查找效率有何影响?

第5页共6页

科目代码:

896

科目名称:

数据结构

五、算法设计(共45分,每题15分)

- 1. (算法设计) 一种改进的冒泡排序算法,将原始关键字序列按照非递减顺序排列,排序的过程为: 采用双向扫描的方式,首先自前向后相邻关键字依次比较找到较大的元素,然后从后向前相邻关键字 依次比较找到较小的元素,重复该过程直到序列有序。要求在排序过程中尽量减少重复的比较,当检 测到序列有序时,排序算法结束。假设待排序的序列中每个数值互不相同。
 - (1) 设计并编写改进的排序算法。待排序整数序列存储在线性表 A 中。存储线性表的类型定义为:

typedef struct {

int data[MAXLEN];

int size; //当前长度

}SqList;

算法原型为:

void BubbleSort(SqList &A)

- (2) 分析算法的时间复杂度和空间复杂
- 2. (算法设计)已知非空二叉树采用二叉链表存储结构,指向根结点的指针为T。请设计并编写算法, 求二叉树T中由指针q所指结点(该结点为非根结点)的兄弟结点。若二叉树中存在该兄弟结点,返回该 兄弟结点的地址,否则,返回NULL。

二叉链表存储表示为:

typedef struct BiTNode { int data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree;

算法原型为: BiTNode* BrotherNode(BiTree T, BiTNode *q)

3. (数据结构设计)园博园用于展示国内外造园艺术以及园林绿化新技术、新材料、新成果,展示奇 石、插花、盆景等各类园林艺术作品,除去主展馆外,包括世界及全国各地的特色园区。从主展馆出 发,为了在有限的时间内,能够游览不同的园区,需要设计游览路线的最佳方案。

进行问题分析,然后回答下列问题:

- (1) 如果解决这个问题,需要已知哪些信息?(文字描述即可)
- (2) 通过分析,确定所需要的数据结构。(文字描述即可)
- (3) 写出数据结构的抽象数据类型定义。