Learning Utility-changes for Rule-based Adaptation of Dynamic Architectures

CHRISTIAN M. ADRIANO[†], Hasso Plattner Institute for Digital Engineering, Germany SONA GHAHREMANI, Hasso Plattner Institute for Digital Engineering, Germany HOLGER GIESE, Hasso Plattner Institute for Digital Engineering, Germany

Additional Key Words and Phrases: self-healing, adaptation rules, architecture-based adaptation, utility

Christian M. Adriano, Sona Ghahremani, and Holger Giese. 2018. Learning Utility-changes for Rule-based Adaptation of Dynamic Architectures. 1, 1 (April 2018), 6 pages.

1 INTRODUCTION

This report details the technical steps taken to train different machine learning models and compares decisions made with these models. We report on the intermediary results for building, validating, and evaluating these models.

Summary of the final results. Here we report on the final results of model training and validation 1

2 PREREQUISITES

Fig. 1 depicts an example of an instantiation of the mrubis runtime model in form of an object diagram. In case of rule-based adaptation a rule r is triggered when the pre-condition of the rule (i.e the left hand side) is matched. A match m for rule r is a fragment of the runtime model that satisfies the pre-condition of the rule. Fig. 2 depicts the left hand side of a rule and the gray part of Fig. 1 presents an example for a match of this left hand side of the rules. The change of the state of a component to REMOVED is considered a failure. Such a situation is therefore considered as a match (i.e. trigger) for the repair rules.

3 METHODOLOGY

Figure. 3 represents the proposed methodology together with the activities required to evaluate it.

Evaluation setup. we exported the Prediction Model to an XML exchange format, The prediction model is developed in R and exported to an XML format, pmml (prediction modeling markup language). Each prediction model has a pmml file that can later be instantiated and called from a Java code. This architecture is presented in Figure. 3.

Authors' addresses: Christian M. Adriano, Hasso Plattner Institute for Digital Engineering, Prof.-Dr.-Helmert-Straße 2-3, Potsdam, D-14482, Germany, christian.adriano@hpi.de; Sona Ghahremani, Hasso Plattner Institute for Digital Engineering, Prof.-Dr.-Helmert-Straße 2-3, Potsdam, D-14482, Germany, sona.ghahremani@hpi.de; Holger Giese, Hasso Plattner Institute for Digital Engineering, Prof.-Dr.-Helmert-Straße 2-3, Potsdam, D-14482, Germany, holger.giese@hpi.de.

 $^{^{1}}$ This report provides additional supporting material (code and results), for the corresponding paper submitted to ICAC2018.

^{*}This is the corresponding author

Fig. 1. Exemplary object diagram of a runtime model

4 APPLICATION

4.0.1 Training. The data used for training is publicly available ¹

Table 1. Final Prediction Models

Method	Number of Trees	Specific hyper-parameters
		objective="reg:linear"
XGB	500	base_score=0.5
AGD	500	early_stopping_rounds=500
		metrics="rmse"
		distribution="gaussian"
	15000	interaction.depth=10
GBM		n.minobsinnode=5
		shrinkage=1
		bag.fraction=1
DE.	100	node.size=5
RF	100	metrics="rmse"

Fig. 3. Methodology and its evaluation activities

 $^{^{1}. \,} https://github.com/christianadriano/MLSelfHealingUtility/tree/master/data/$

Complexity	Dataset_size	Split	Train_RMSE_MEAN	Train_RMSE_STD	Test_RMSE_MEAN	Test_RMSE_STD	RMSE	R_Squared	MAPD_%
Discontinuous	1k	90_10	0.003	0.000	26.774	16.521	3.350	1.000	0.643
Discontinuous	1k	80_20	0.002	0.000	26.879	11.300	22.850	0.990	1.968
Discontinuous	1k	70_30	0.002	0.000	26.091	14.796	32.464	0.980	2.657
Discontinuous	3k	90_10	0.003	0.000	18.549	6.138	6.823	0.999	0.197
Discontinuous	3k	80_20	0.003	0.000	18.275	5.494	11.043	0.998	0.479
Discontinuous	3k	70_30	0.018	0.003	16.528	7.459	13.210	0.997	1.256
Discontinuous	9k	90_10	0.008	0.001	21.963	9.060	4.923	1.000	0.127
Discontinuous	9k	80_20	0.005	0.000	21.739	11.884	5.393	1.000	0.185
Discontinuous	9k	70_30	0.069	0.007	20.633	9.277	21.539	0.994	0.912
Linear	1k	90_10	0.001	0.000	0.237	0.220	0.048	1.000	0.022
Linear	1k	80_20	0.001	0.000	0.294	0.294	0.106	1.000	0.048
Linear	1k	70_30	0.002	0.000	0.277	0.254	0.068	1.000	0.062
Linear	3k	90_10	0.002	0.000	0.584	0.556	0.066	1.000	0.013
Linear	3k	80_20	0.003	0.001	0.553	0.572	0.237	1.000	0.044
Linear	3k	70_30	0.002	0.000	0.726	0.606	0.342	1.000	0.066
Linear	9k	90_10	0.002	0.000	0.200	0.190	0.202	1.000	0.013
Linear	9k	80_20	0.002	0.000	0.137	0.099	0.300	1.000	0.022
Linear	9k	70_30	0.002	0.000	0.206	0.200	0.326	1.000	0.018
Saturating	1k	90_10	0.003	0.001	9.902	4.861	1.800	1.000	0.180
Saturating	1k	80_20	0.019	0.002	11.844	6.543	3.023	0.999	0.479
Saturating	1k	70_30	0.002	0.000	13.409	6.000	4.439	0.999	0.788
Saturating	3k	90_10	0.004	0.000	8.169	3.216	3.174	1.000	0.152
Saturating	3k	80_20	0.141	0.011	7.500	2.315	3.880	0.999	0.419
Saturating	3k	70_30	0.003	0.000	8.263	1.962	5.353	0.999	0.627
Saturating	9k	90_10	0.008	0.001	9.501	3.616	3.299	1.000	0.113
Saturating	9k	80_20	0.035	0.003	9.124	1.958	4.690	0.999	0.248
Saturating	9k	70_30	0.006	0.000	10.182	2.974	6.286	0.999	0.473

Fig. 4. Extreme Boost Trees trained with 500 trees over different datasets and data splits

Utility Type	Model	Dataset Size	RMSE	R_Squared	MADP%	Elapsed Time	Number of Trees
Linear10K	XGB	10K	0.57	1.00	0.12	19.61	448
Discontinuous10K	XGB	10K	24.84	0.99	3.09	22.98	448
Saturating10K	XGB	10K	9.28	1.00	1.32	24.80	448
Combined10K	XGB	10K	161.24	1.00	1.95	25.51	448

Fig. 5. Extreme Boost Trees trained with 500 trees over different datasets and data splits

XGB model: We first investigated how XGB performed with different dataset sizes under different splits of data between training and validation 4. Since the results of 70/30 split was better, we adopted this split for the other two method types (GBM and Random Forest). The source code that generated the XGB results is available.² We also trained XGB with other dataset sizes, 10K and 100k. However, the values for MADP saturated after 10K dataset size (Figure.5). Source code is available³.

Random Forest - RF: We investigate if the performance of the model would improve with a higher number of trees and sizes of datasets (Figure.6).

Random Forest - RF-Heavy. We trained a forest with 200 trees to investigate if we could improve MADP without impacting much the execution time. We were not successful with that (Figure.7).

 $[\]overline{{}^2 \ https://github.com/christianadriano/ML_SelfHealingUtility/blob/master/models/mainControl_XGB.R}^{3} \ https://github.com/christianadriano/ML_SelfHealingUtility/blob/master/models/mainControl_XGB.R}$

Utility Type	Model	Dataset Size	RMSE	R_Squared	MADP%	Elapsed Time	Number of Trees
Linear	Random Forest	1k	0.28	1.00	0.25	13.08	100
Linear	Random Forest	3K	0.62	1.00	0.26	61.35	100
Linear	Random Forest	9K	0.76	1.00	0.05	224.22	100
Discontinuous	Random Forest	1K	24.80	0.98	6.43	49.61	100
Discontinuous	Random Forest	3K	27.11	0.99	4.20	268.01	100
Discontinuous	Random Forest	9K	25.06	0.99	1.55	1485.87	100
Saturating	Random Forest	1K	8.17	1.00	2.13	17.92	100
Saturating	Random Forest	3K	10.11	0.99	1.80	145.30	100
Saturating	Random Forest	9K	11.83	1.00	1.54	857.70	100
Combined	Random Forest	1K	375.88	0.97	8.52	45.43	100
Combined	Random Forest	3K	416.38	0.98	7.24	181.80	100
Combined	Random Forest	9K	429.05	0.98	4.11	968.25	100

Fig. 6. Random Forests trained with 100 trees across different dataset sizes

.

Utility Type	lity Type Model Si		RMSE	R_Squared	MADP%	Elapsed Time	Number of Trees
Linear	Random Forest	9K	0.74	1.00	0.05	335.53	200
Discontinuous	Random Forest	9K	25.55	0.99	1.54	1427.55	200
Saturating	Random Forest	9K	11.71	1.00	1.53	1384.28	200
Combined	Random Forest	9K	441.13	0.98	4.09	1704.05	200

Fig. 7. Random Forests trained with 200 trees for 9K dataset size

Utility Type	Model	Dataset Size	RMSE	R_Squared	MADP%	Elapsed Time	Number of Trees
Linear	GBM	1K	0.27	1.00	0.37	43.33	9920
Linear	GBM	3K	1.03	1.00	1.37	114.37	726
Linear	GBM	9K	0.83	1.00	0.58	331.79	1342
Discontinuous	GBM	1K	13.38	0.99	13.19	42.31	9999
Discontinuous	GBM	3K	14.04	1.00	4.71	107.81	10000
Discontinuous	GBM	9K	13.32	1.00	2.94	309.84	6158
Saturating	GBM	1K	4.41	1.00	1.52	42.08	9773
Saturating	GBM	3K	8.02	1.00	1.49	107.42	10000
Saturating	GBM	9K	7.15	1.00	1.15	311.08	9999
Combined	GBM	1K	262.94	0.99	5.63	51.75	9996
Combined	GBM	3K	288.42	0.99	4.87	112.5	9979
Combined	GBM	9K	257.20	0.99	3.73	316.17	10000

Fig. 8. GBM across different dataset sizes

Tuning GBM model: GBM require the largest number of trees compare to the other models. For this reason it also took the longer to be trained as the elapsed time column shows. We trained with 10K trees (Figure.8) and 15K trees (Figure.9). Source code is available⁴.

 $[\]overline{^4 \, https://github.com/christianadriano/ML_SelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/models/mainControl_GBM.RelfHealingUtility/blob/master/mainControl_GBM.RelfHealingUtility/blob/mainContr$

Utility_Type	Model	Dataset_Size	RMSE	R_Squared	MAPD%	Elapsed_Time	Number_of_Trees
Linear	GBM	1K	0.47	1.00	0.82	69.31	171
Linear	GBM	3K	0.87	1.00	0.91	179.7	317
Linear	GBM	9K	0.64	1.00	0.23	526.21	714
Discontinuous	GBM	1K	32.31	0.98	42.69	83.97	128
Discontinuous	GBM	3K	19.33	0.99	12.61	221.71	578
Discontinuous	GBM	9K	18.52	1.00	7.78	752.14	480
Saturating	GBM	1K	2.93	1.00	0.78	84.45	14973
Saturating	GBM	3K	5.41	1.00	0.74	234.61	3445
Saturating	GBM	9K	5.04	1.00	0.37	676.8	14832
Combined	GBM	1K	211.20	0.99	2.72	94.17	14812
Combined	GBM	3K	247.39	0.99	3.27	203.19	1060
Combined	GBM	9K	198.15	1.00	1.24	524.32	14954

Fig. 9. GBM across different dataset sizes

Complexity	Dataset_size	Split	Train_RMSE_MEAN	Train_RMSE_STD	Test_RMSE_MEAN	Test_RMSE_STD	RMSE	R_Squared	MAPD_%
Discontinuous	1k	90_10	0.003	0.000	26.774	16.521	3.350	1.000	0.643
Discontinuous	1k	80_20	0.002	0.000	26.879	11.300	22.850	0.990	1.968
Discontinuous	1k	70_30	0.002	0.000	26.091	14.796	32.464	0.980	2.657
Discontinuous	3k	90_10	0.003	0.000	18.549	6.138	6.823	0.999	0.197
Discontinuous	3k	80_20	0.003	0.000	18.275	5.494	11.043	0.998	0.479
Discontinuous	3k	70_30	0.018	0.003	16.528	7.459	13.210	0.997	1.256
Discontinuous	9k	90_10	0.008	0.001	21.963	9.060	4.923	1.000	0.127
Discontinuous	9k	80_20	0.005	0.000	21.739	11.884	5.393	1.000	0.185
Discontinuous	9k	70_30	0.069	0.007	20.633	9.277	21.539	0.994	0.912
Linear	1k	90_10	0.001	0.000	0.237	0.220	0.048	1.000	0.022
Linear	1k	80_20	0.001	0.000	0.294	0.294	0.106	1.000	0.048
Linear	1k	70_30	0.002	0.000	0.277	0.254	0.068	1.000	0.062
Linear	3k	90_10	0.002	0.000	0.584	0.556	0.066	1.000	0.013
Linear	3k	80_20	0.003	0.001	0.553	0.572	0.237	1.000	0.044
Linear	3k	70_30	0.002	0.000	0.726	0.606	0.342	1.000	0.066
Linear	9k	90_10	0.002	0.000	0.200	0.190	0.202	1.000	0.013
Linear	9k	80_20	0.002	0.000	0.137	0.099	0.300	1.000	0.022
Linear	9k	70_30	0.002	0.000	0.206	0.200	0.326	1.000	0.018
Saturating	1k	90_10	0.003	0.001	9.902	4.861	1.800	1.000	0.180
Saturating	1k	80_20	0.019	0.002	11.844	6.543	3.023	0.999	0.479
Saturating	1k	70_30	0.002	0.000	13.409	6.000	4.439	0.999	0.788
Saturating	3k	90_10	0.004	0.000	8.169	3.216	3.174	1.000	0.152
Saturating	3k	80_20	0.141	0.011	7.500	2.315	3.880	0.999	0.419
Saturating	3k	70_30	0.003	0.000	8.263	1.962	5.353	0.999	0.627
Saturating	9k	90_10	0.008	0.001	9.501	3.616	3.299	1.000	0.113
Saturating	9k	80_20	0.035	0.003	9.124	1.958	4.690	0.999	0.248
Saturating	9k	70_30	0.006	0.000	10.182	2.974	6.286	0.999	0.473

Fig. 10. XGB across different dataset sizes

5 EVALUATION

We evaluted the prediction models under for different dataset sizes. Results can be compared in Figure. 11

Fig. 11. Normalized reward of variants across learning methods and dataset sizes