Homework 1

Ruixin Guo

February 27, 2022

1.

Since $X_1, X_2, ..., X_n$ are iid $Bern(\theta), \bar{X} = \theta$, thus \bar{X} is an unbiased estimator of θ .

The variance of \bar{X} is $Var(\bar{X}) = \frac{\sigma^2}{n} = \frac{\theta(1-\theta)}{n}$. Since

$$(\frac{d}{d\theta}E_{\theta}[\bar{X}])^{2} = 1^{2} = 1$$

$$I_{n}(\theta) = nI_{1}(\theta) = nE_{\theta}[(\frac{\partial}{\partial \theta}\log f_{X_{1}}(x|\theta))^{2}]$$

$$= nE_{\theta}[(\frac{\partial}{\partial \theta}[x\log\theta + (1-x)\log(1-\theta)])^{2}]$$

$$= nE_{\theta}[(\frac{x}{\theta} - \frac{1-x}{1-\theta})^{2}]$$

$$= n[\theta\frac{1}{\theta^{2}} + (1-\theta)\frac{1}{(1-\theta)^{2}}]$$

$$= \frac{n}{\theta(1-\theta)}$$

The CRLB of \bar{X} is

Thus $Var(\bar{X})$ attains CRLB, \bar{X} is the UMVUE of θ .

2. Yes. Let W(X) be an unbiased estimator of $\tau(\theta)$, W(X) attains CRLB if and only if $\frac{\partial}{\partial \theta} \log L(\theta|x) = a(\theta)(W(X) - \tau(\theta))$ for some function $a(\theta)$. Since

 $\frac{\left(\frac{d}{d\theta}E_{\theta}[\bar{X}]\right)^{2}}{I_{n}(\theta)} = \frac{\theta(1-\theta)}{n}$

$$\begin{split} \frac{\partial}{\partial \theta} \log L(\theta|\mathbf{x}) &= \frac{\partial}{\partial \theta} \log \theta^n (\prod_{i=1}^n x_i)^{\theta-1} \\ &= \frac{\partial}{\partial \theta} (n \log \theta + (\theta - 1) \log (\prod_{i=1}^n x_i)) \\ &= \frac{n}{\theta} + \log (\prod_{i=1}^n x_i) \end{split}$$

Let $\tau(\theta) = \frac{n}{\theta}$, $W(X) = -\log(\prod_{i=1}^{n} X_i)$ is the UMVUE of $\tau(\theta)$. Here we set $a(\theta) = -1$.

- 3.
- a. The regularity condition of CRLB is

$$\frac{d}{d\theta} E_{\theta}[W(\boldsymbol{X})] = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} [W(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}|\theta)] d\boldsymbol{x}$$

Since X_i s are iid Unif $(0,\theta)$, the range of each X_i is $[0,\theta]$. By Leibnitz's rule

$$\frac{d}{d\theta} E_{\theta}[W(\boldsymbol{X})] = \frac{d}{d\theta} \int_{x_i \in [0,\theta]} W(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}|\theta) d\boldsymbol{x} = f_{\boldsymbol{X}}(\boldsymbol{\theta}|\theta) + \int_{x_i \in [0,\theta]} \frac{\partial}{\partial \theta} [W(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}|\theta)] d\boldsymbol{x}$$

where θ is a n-dimensional vector with each element be θ .

 $f_{\boldsymbol{X}}(\boldsymbol{\theta}|\boldsymbol{\theta})$ means the probability that each element in \boldsymbol{X} is $\boldsymbol{\theta}$. Thus $f_{\boldsymbol{X}}(\boldsymbol{\theta}|\boldsymbol{\theta}) = \frac{1}{\theta^n}$. It is obvious that $\frac{d}{d\theta}E_{\theta}[W(\boldsymbol{X})] \neq \int_{\mathcal{X}} \frac{\partial}{\partial \theta}[W(\boldsymbol{x})f_{\boldsymbol{X}}(\boldsymbol{x}|\boldsymbol{\theta})]d\boldsymbol{x}$. Thus the Unif $(0,\theta)$ PDF does not satisfy the regularity conditions of CRLB.

b. By Factorization Theorem,

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \frac{1}{\theta^n} \prod_{i=1}^n I(0 < x_i < \theta) = \frac{1}{\theta^n} I(x_{(n)} < \theta) \prod_{i=1}^n I(x_i > 0)$$

Let $g(x_{(n)}|\theta) = \frac{1}{\theta^n}I(x_{(n)} < \theta)$ and $h(x) = \prod_{i=1}^n I(x_i > 0)$, we have $f_X(x|\theta) = g(x_{(n)}|\theta)h(x)$. Thus the Factorization Theorem holds, and $X_{(n)}$ is a sufficient statistic for θ .

c. Let $T(X) = X_{(n)}$, and F(X) be the CDF of Unif $(0, \theta)$, the PDF of T is

$$f_T(t|\theta) = \frac{d}{dt}(F(t))^n = \frac{d}{dt}(\frac{t}{\theta}I(0 < t < \theta))^n = \frac{n}{\theta^n}t^{n-1}I(0 < t < \theta)$$

The expectation of q(T) is

$$E_{\theta}(g(T)) = \int_0^{\theta} g(t) f_T(t|\theta) dt = \int_0^{\theta} g(t) \frac{n}{\theta^n} t^{n-1} I(0 < t < \theta) dt$$

Since $\frac{n}{\theta^n}t^{n-1}I(0 < t < \theta) > 0$ when $t \in (0,\theta)$, $E_{\theta}(g(T)) = 0$ only when g(T) = 0 for all T. Thus T is a complete statistic.

d.

$$E_{\theta}(\frac{n+1}{n}X_{(n)}) = \frac{n+1}{n}E_{\theta}(X_{(n)}) = \frac{n+1}{n}\int_{0}^{\theta} \frac{n}{\theta^{n}}t^{n}I(0 < t < \theta)dt = \frac{n+1}{n}\frac{n}{n+1}\left[\frac{t^{n+1}}{\theta^{n}}\right]_{0}^{\theta} = \theta$$

Thus $\frac{n+1}{n}X_{(n)}$ is an unbiased estimator of θ .

- **e.** Since $T(X) = X_{(n)}$ is a complete and sufficient statistic, by Rao-Blackwell Theorem, if we find a function $\phi(T)$ such that $E_{\theta}(\phi(T)) = \theta$, then $\phi(T)$ is the UMVUE. Obviously $\phi(T) = \frac{n+1}{n}X_{(n)}$ is the UMVUE.
 - **5**.

a. Because

$$I(X_1 = 0) = \begin{cases} 1 & \text{if } X_1 = 0 \\ 0 & \text{if } X_1 \neq 0 \end{cases}$$

We have $E_{\theta}(W(\boldsymbol{X})) = E_{\theta}(I(X_1 = 0)) = P_{\theta}(X_1 = 0) = e^{-\theta} = \tau(\theta)$. Thus $W(\boldsymbol{X})$ is an unbiased estimator of $\tau(\theta)$.

b.

First we prove Poisson distribution belongs to Exponential Family,

$$P(X = x | \theta) = \frac{\theta^x e^{-\theta}}{r!} = \frac{1}{r!} e^{-\theta} e^{x \log \theta}$$

Let $h(x) = \frac{1}{x!}$, $g(\theta) = e^{-\theta}$, $w_1(\theta) = \log \theta$ and $t_1(x) = x$. Then $P(X = x | \theta) = h(x)g(\theta)e^{w_1(x)t_1(\theta)}$. Thus Poisson distribution belongs to Exponential Family. Since d = k = 1, $T = T(X) = \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic of θ .

Since W(X) is an unbiased estimator of $\tau(\theta)$, by Rao-Blackwell Theorem, $E_{\theta}(W|T)$ is the UMVUE of $\tau(\theta)$.

$$E_{\theta}(W|T) = E(I(X_1 = 0)| \sum_{i=1}^{n} X_i = t)$$

$$= P(X_1 = 0| \sum_{i=1}^{n} X_i = t)$$

$$= \frac{P(X_1 = 0, \sum_{i=1}^{n} X_i = t)}{P(\sum_{i=1}^{n} X_i = t)}$$

$$= \frac{P(X_1 = 0)P(\sum_{i=2}^{n} X_i = t)}{P(\sum_{i=1}^{n} X_i = t)}$$

Note that $\sum_{i=1}^{n} X_i \sim \text{Pois}(n\theta)$ and $\sum_{i=2}^{n} X_i \sim \text{Pois}((n-1)\theta)$. Thus,

$$E_{\theta}(W|T) = \frac{e^{-\theta} \cdot [(n-1)\theta]^t e^{-(n-1)\theta}/t!}{[n\theta]^t e^{-n\theta}/t!} = (\frac{n-1}{n})^t$$

Therefore, $(\frac{n-1}{n})^{\sum_{i=1}^{n} X_i}$ is the UMVUE of $\tau(\theta)$.