Introduction to Three* Matrix Structures

*Interpreted 4 ways

Framing

M or X or df or data or observations

Tall and Skinny Matrices

Explicitly calculate correlation between columns

Short and Fat Matrices

Approximate the correlation between columns

Simplifying assumption: a good model doesn't require all provided features

PCA: preforms lossless compression on M independent of L

Lasso, Ridge Regression: utilizes L to identify features that are significant

Random Forest: utilizes L to identify features that are significant

Square

Network analysis, Graph Representations

Every a_ij entry represents the relationship between item i and item j.

i.e. clustering, node centrality, propagation models

Really Tall and Skinny Matrices

Explicitly calculate higher order correlations between columns

