● 實驗數據

◆ A-1 不同材質表面的熱輻射效應實驗

刻度5	精密抛光鋁面	噴砂鋁面	黑漆面	白色面
輸出電壓(mV)	0.1	2. 0	4. 9	4.8
電阻(Ω)	26.8	26.8	26.8	26.8

刻度7	精密抛光鋁面	噴砂鋁面	黑漆面	白色面
輸出電壓(mV)	0.2	2.5	6. 5	6. 2
電阻(Ω)	18. 9	18. 9	18. 9	18. 9

◆ A-2 點熱源之輻射平方反比定律

定電壓: 10.1 (V)

距離 X ₀ (cm)	環境的輻射強度的對應電壓 V ₀ (mV)
10	-0.5
20	-0.4
30	-0.2
40	-0.1
50	-0. 1
60	-0. 1
70	-0.1
80	-0. 1
90	0
100	0
平均輻射強度電壓(mV)	-0.16
平均偏差	0. 124

距離 X ₀ (cm)	偵測到之輻射強度的相對電壓	RAD –
	輸出值 RAD(mV)	Ambedient
10	4. 5	4.66
20	1.1	1.26
30	0. 5	0.66
40	0.3	0.46
50	0.2	0.36
60	0.2	0.36
70	0. 2	0.36
80	0.1	0. 26
90	0.1	0. 26
100	0.1	0. 26

◆ B-2 查理定律

溫度 T(k)	體積 V(ml)
302.05	20
309.15	25
319.45	33
305. 95	23

◆ B-3 波以爾定律

體積 V(ml)	壓力 P(kPa)
46	103. 52
43	105. 63
41	107. 2
40	108. 13

◆ B-4 Combined Gas Law

溫度 T(K)	壓力 P(kPa)
293. 65	97. 85
297. 45	98. 81
298. 35	99. 12
301. 75	100.13

◆ 空氣γ值得測定

	γ (實驗值)	γ (理論值)	誤差%
空氣	1. 3925	1. 40	0. 00536
二氧化碳	1. 3390	1.29	-0.0380

✓ 分析:

空氣的 γ 誤差% = $\frac{1.40-1.3925}{1.4}*100\%$ = 0.00536%

二氧化碳的 γ 誤差% = $\frac{1.29 - 1.3390}{1.29} * 100\% = -0.0380%$ 推測瓶內有其他 γ 較高的氣體存在,使得實驗值較高。

● 結果與討論

A-1:

溫度較高時,表面輻射也較強,而各表面的輻射強度為: 黑漆 > 白色面 > 噴砂鋁面 > 精密拋光鋁面

A-2:

因為熱輻射以球狀向外輻射,將燈泡視為點熱源,根據真空中點熱源之輻射平方反比定律,輻射強度與輻射距離為平方反比關係,V正比於 $1/x^2$ 。推射誤差產生因實驗環境非真空,因此熱輻射被空氣的物質吸收,導致熱輻射傳遞距離誤差越大。輻射強度與距離平方反比呈線性,但距離 10 公分後出現斷層,應該是因為距離太遠,感應器感應不太到此處的入輻射量。

● 問題與討論

- 1. 將熱輻射體四面的輻射能量高低排序,是否跟溫度有關? Ans: 跟溫度無關,只和輻射表面材質有關,顏色越深能量越高
- 2. 平方反比定律實驗中,輻射強度與距離的關係圖,何者為線性?在所量測的範圍中是否都呈線性關係?

Ans:

輻射強度與距離平方反比呈線性

是,但10公分後出現斷層,應該是熱輻射量過低,超出感應器偵測範圍。一位實驗環境非真空,因此熱輻射被空氣中的物質吸收,導致熱輻射傳遞距離越遠誤差越大。

3. Stefan-Boltzmann 燈泡是否為一真正的點光源?如果不是,會對實驗有何影響?在所測得的實驗數據中是否看得到此現象?

Ans:整條發亮的鎢絲都是光源,所以非點光源。如果燈心能確定與熱感應器都在同一條直線上,影響將降至最小,由實驗數據來看,較近距離的點較接近線性關係。

4. 實驗過程中,除了燈泡的熱輻射外,還有哪些會影響實驗結果?

Ans: 熱感應器與燈心的相對位置、熱感應器的靈敏度。

5. 要如何改善實驗 B 讓結果更精準?

Ans:由於氣體與氣體之間分子間仍有交互作用力,因此可以嘗試使用 van der Waal's Law 來修正,使結果較準確。

$$\left(p+arac{n^2}{V^2}
ight)(V-nb)=nRT$$

- V為總體積
- n為物質的量
- a為度量分子間重力的參數 $a=N_A^2a'$
- b為1莫耳分子本身包含的體積之和 $b = N_A b'$,
- R為普適氣體常數
- N_A 為阿伏加德羅常數.
- 6. 如果壓縮氣體的時候比較緩慢,則對實驗結果有何影響?

Ans: 氣體不是熱得良導體, 熱平衡的達成需要一段時間。當 PV 改變的不夠快時, 氣體 個部分之間可能來得及交換熱量, 因此實際發生的過程苦能事等溫變化, 非絕熱過程。

7. 不同結構的氣體其 γ 有何不同?

Ans:

	γ
單原子分子 He	1. 66
雙原子分子 H ₂	1.41
三原子分子 CO ₂	1. 29

● 心得與建議

這次實驗算是儀器和步驟比較繁複的一次,一開始完全摸不著頭緒,即使將實驗講義看得滾瓜爛熟,再加上時間的壓力,其實滿緊張。這算是普物實驗的倒數幾個實驗,也和其他組的人混得滿熟,可以一起討論實驗的過程和結果,因此很順利的在期限前把實驗做完。