UNIVERSIDADE FEDERAL DE SANTA MARIA Colégio Técnico Industrial de Santa Maria

Caderno Didático 2

Geometria Analítica

Série: Matemática III

Por:
Professora Elisia L. Chiapinotto
Professor Mauricio R. Lutz

Fevereiro de 2020

UNIVERSIDADE FEDERAL DE SANTA MARIA Colégio Técnico Industrial de Santa Maria

Caderno Didático 2

Geometria Analítica

Série: Matemática III

Por:
Professora Elisia L. Chiapinotto
Professor Mauricio R. Lutz

Fevereiro de 2020

C532c

Chiapinotto, Elisia L.

Caderno didático 2 : geometria analítica / por Elisia Lorenzoni Chiapinotto, Mauricio Ramos Lutz. – Santa Maria , 2004.

44 f.: il. (Série Matemática III)

1. Matemática 2. Sistema cartesiano ortogonal 3. Ponto 4. Reta 5. Equações 6. Circunferência 7. Posições relativas I. Lutz, Mauricio Ramos II. Título

CDU: 514.12

Ficha catalográfica elaborada por Luiz Marchiotti Fernandes CRB 10/1160 Biblioteca Setorial do Centro de Ciências Rurais/UFSM

i

SUMÁRIO

1	SISTEMA CARTESIANO ORTOGONAL	01
2	DISTÂNCIA ENTRE DOIS PONTOS	02
3	PONTO MÉDIO	04
4	RAZÃO DE SECÇÃO	05
5	CONCEITOS FUNDAMENTAIS	06
6	CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS	80
7	CÁLCULO DA ÁREA DE UM TRIÂNGULO	10
8	ESTUDO DA RETA	12
8.1	Equações da reta	12
8.1.1	Equação geral de uma reta	12
8.1.2	Equação segmentaria da reta	14
8.1.3	Equações paramétricas da reta	15
8.1.4	Equação reduzida da reta	16
8.2	Intersecção de duas retas	18
8.3	Posição relativa de duas retas	20
8.4	Equação da reta que passa por um ponto	21
8.5	Ângulo entre duas retas	23
8.6	Distância do ponto à reta	25
9	CIRCUNFERÊNCIA	27
9.1	Equação da circunferência	27
9.2	Condições para reconhecer circunferência	28
9.3	Posições relativas	31
9.3.1	Posições relativas entre ponto e circunferência	31
9.3.2	Posição relativa da reta e circunferência	33
9.3.3	Posições relativas entre duas circunferências	35
	GABARITO	42
	REFERÊNCIAS BIBLIOGRÁFICAS	44

"Penso, logo existo". O autor desta famosa frase, o filósofo e físico francês René Descartes (1596–1650), foi criador da chamada geometria analítica.

A geometria analítica estuda curvas e figuras através de suas equações e analisa as equações através dos gráficos. Há, portanto, uma integração da álgebra com a geometria.

Para isso, Descartes idealizou um sistema de coordenadas, denominado de sistema cartesiano.

O princípio fundamental da geometria analítica é:

Num referencial cartesiano plano, os pontos associados a pares ordenados de números reais que satisfazem uma equação de duas variáveis, em geral descrevem uma curva.

1 SISTEMA CARTESIANO ORTOGONAL

O dois eixos dividem o plano em quatro regiões denominadas quadrantes, cuja identificação é feita no sentido anti-horário.

$$\begin{split} &P(x_p,y_p)\in 1^oQ \Rightarrow x_p > 0 \text{ e } y_p > 0 \\ &P(x_p,y_p)\in 2^oQ \Rightarrow x_p < 0 \text{ e } y_p > 0 \\ &P(x_p,y_p)\in 3^oQ \Rightarrow x_p < 0 \text{ e } y_p < 0 \\ &P(x_p,y_p)\in 4^oQ \Rightarrow x_p > 0 \text{ e } y_p < 0 \\ &P(x_p,y_p)\in \text{eixo dos } x\Rightarrow y_p = 0 \\ &P(x_p,y_p)\in \text{eixo dos } y\Rightarrow x_p = 0 \end{split}$$

Estabelecido o sistema, podemos localizar qualquer ponto por meio

y

N
P(a,b)

de um par ordenado de números reais. Assim, dado um ponto P do plano:

- ⇒ O número real a é chamado <u>abscissa</u> do ponto P.
- \Rightarrow O número real b é chamado <u>ordenada</u> do ponto P.
- ⇒ Os números reais a e b são chamados coordenadas do ponto P.

<u>Bissetriz</u> é a reta que divide os quadrantes em partes congruentes.

• $P(x_p,y_p)$ pertence à bissetriz dos quadrante ímpares (1º e 3º), então:

$$P \in b_{1,3} \Leftrightarrow x_p \text{=} y_p \Rightarrow P(x \text{ , } x) \text{ ou } P(y \text{ , } y)$$

$$P \in b_{2,4} \Leftrightarrow x_p = -y_p \Rightarrow P(x, -x) \text{ ou } P(y, -y)$$

2 DISTÂNCIA ENTRE DOIS PONTOS

Dados dois pontos $A(x_A, y_A)$ e $B(x_B, y_B)$ de um sistema cartesiano ortogonal. Indicamos por d a distância entre eles e aplicando o teorema de Pitágoras no triângulo ABC, temos:

Exemplo: Dados os pontos A(1,3) e B(5,6), a sua distância é:

Resolução:

$$d_{AB} = \sqrt{(5-1)^2 + (6-3)^2} = \sqrt{16+9} = 5u.d.$$

(Obs.: u.d.⇒ unidades de distância)

Exercícios

- 1. Determine a distância entre:
- a) A(4,3) e B(0,3)
- b) C(5,-1) e D(5,4)
- 2. Calcule a distância da origem do sistema cartesiano ao ponto P(3,-4).
- 3. calcule o perímetro do triângulo de vértices nos pontos A(-1,1), B(3,-2) e C(0,1).
- 4. Determine um ponto P no eixo das abscissas eqüidistantes de A(1,2) e B(5,4).
 - 5. A distância entre os pontos A(2x, -3x) e B(3,2) é $\sqrt{26}$. Calcule x.
- 6. A distância do ponto A(a+2, -a) ao ponto B(11, 2a-1) é 10. Determinar a.
- 7. Obter o ponto da bissetriz dos quadrantes ímpares equidistante de A(1,2) e B(-1,3).
- 8. Determinar as coordenadas do ponto equidistante de A(1,7), B(8,6) e C(7,-1).
- 9. Determine um ponto da bissetriz dos quadrantes ímpares, cuja distância ao ponto P(5, -2) é de 5u.c.

10. Qual é o ponto da bissetriz dos quadrantes pares que possui abscissa positiva e que dista $4\sqrt{2}$ u.c. da origem.

3 PONTO MÉDIO

Em muitos problemas, precisaremos determinar as coordenadas do ponto médio de um segmento AB em função das extremidades A e B do segmento.

Sejam $A(x_A, y_A)$ e $B(x_B, y_B)$ as extremidades do segmento AB, o ponto médio será determinado por:

$$\begin{cases} x_M = \frac{x_A + x_B}{2} \\ y_M = \frac{y_A + y_B}{2} \end{cases}$$

Exemplo: Uma das extremidades de um segmento é o ponto A(13,19). Sendo P(-9,30) o ponto médio do segmento, calcular as coordenadas de B, que é a outra extremidade do segmento.

$$\begin{cases}
-9 = \frac{13 + x_2}{2} \Rightarrow x_2 = -31 \\
30 = \frac{19 + y_2}{2} \Rightarrow y_2 = 41
\end{cases}$$
B(-31,41)

(2) Exercícios

- 1. Calcule a distância do ponto M(-12,9) à origem.
- a) 15
- b) 13
- c) 25
- d) 35
- e) 37
- 2. A distância do ponto (-7,-2) ao eixo das abscissas é:
- a) 1
- b) 2
- c) 3
- d) -2
- e) -3
- 3. A distância da origem de um sistema de eixos coordenadas ao ponto médio do segmento que une os pontos M (-10:6) e N(-6:6) é:
 - a) 2 √7 u.c.
- b) 4 u.c. c) $\sqrt{10}$ u.c. d) 10 u.c.
- e) 100 u.c.

4. A distância do ponto (-4,-2) ao eixo das ordenadas

- a) 2
- b) 3
- c) –4
- d) 4

e) 2

5. Calcule o perímetro do triângulo ABC, sabendo que A(1,3), B(7,3) e C(7,11).

- a) 48
- b) 36
- c) 32
- d) 24

e) 20

6. Os pontos médios dos lados de um triângulo cujos vértices são: (4,0); (0,0); (0,4) são, respectivamente, considerando a ordem dos vértices:

- a) (1,0); (0,1); (1,1)
- b) (2,0); (0,2); (2,2)
- c) (2,0); (0,2); (2,1)
- d) (0,2); (2,0); (1,2)
- e) (0,1); (1,0); (1,1)

7. Os pontos A(x,4) e B(-2,y) pertencem à reta da equação 3x-4y+10=0. A distância entre os pontos A e B é, em unidades de distância,

- a) 5
- b) 4
- c) 3
- d) 2
- e) 1

8. Calcule o número real a de forma que a distância do ponto P(2a,3) ao ponto Q(1,0) seja igual $3\sqrt{2}$.

- a) 2
- b) 1
- c) -1 ou 2
- d) -2
- e) 4

4 RAZÃO DE SECÇÃO

Sejam os pontos A(x_A, y_A), B(x_B, y_B) e C(x_C, y_C) colineares, determinar o valor da razão $r = \frac{\overline{AC}}{\overline{CB}}$.

Considerando que o segmento \overline{AB} não seja paralelo a nenhum dos eixos e que as retas $\overrightarrow{AA_1}$, $\overrightarrow{BB_1}$ e $\overrightarrow{CC_1}$ são paralelas e distantes, o mesmo ocorre com

as retas $\overrightarrow{AA_2}$, $\overrightarrow{BB_2}$ e $\overrightarrow{CC_2}$, aplicando o teorema de Tales (feixe de retas paralelas cortadas por retas transversais, determina segmentos proporcionais), temos:

$$r = \frac{\overline{AC}}{\overline{CB}} = \frac{\overline{A_1C_1}}{\overline{C_1B_1}} = \frac{x_C - x_A}{x_B - x_C} \quad \text{ou } r = \frac{\overline{AC}}{\overline{CB}} = \frac{\overline{A_2C_2}}{\overline{C_2B_2}} = \frac{y_C - y_A}{y_B - y_C}$$

Podemos concluir que:

$$r = \frac{x_C - x_A}{x_B - x_C} = \frac{y_C - y_A}{y_B - y_C}$$

A condição acima, não se verifica se B=C (caso em que $x_B=x_C$, $y_B=y_C$, anulando-se os denominadores) ou se a reta ABC é paralela a um dos eixos (caso em que $x_A=x_B=x_C$ ou $y_A=y_B=y_C$, ocorrendo anulamento simultâneo de numerador e denominador de uma das frações).

Exemplo: Dados A(3, 10), B(-1, -6) e C(7, 26) colineares, determine a razão $r = \frac{\overline{AC}}{\overline{CR}}$.

Resolução:

$$r = \frac{x_C - x_A}{x_B - x_C} = \frac{7 - 3}{-1 - 7} = \frac{4}{-8} = -\frac{1}{2}$$
 ou $r = \frac{y_C - y_A}{y_B - y_C} = \frac{26 - 10}{-6 - 26} = \frac{16}{-32} = -\frac{1}{2}$

5 CONCEITOS FUNDAMENTAIS

Consideremos o triângulo ABC.

 $\underline{\text{Mediana}} \Rightarrow \text{\'e}$ a distância de um dos vértices de um triângulo ao ponto médio do lado oposto a esse vértice.

Baricentro ⇒ é o ponto de encontro da

medianas (G). O baricentro divide a mediana relativa a um lado em duas partes: a que do vértice ao baricentro tem o dobro da medida da que vai do baricentro ao ponto médio do lado. $G\left(\frac{x_A+x_B+x_C}{3}, \frac{y_A+y_B+y_C}{3}\right)$.

 $\underline{\text{Altura}} \Rightarrow \text{o segmento } \overline{AH_1} \text{, cujas extremidades são o vértice A e o}$ ponto H₁ ($\overline{AH_1}$ é perpendicular ao lado oposto a esse vértice), chama-se altura do Δ ABC em relação ao lado \overline{BC} .

 $\underline{\text{Ortocentro}} \Rightarrow \text{\'e} \text{ o ponto de encontro das}$ alturas.

 $\underline{\text{Bissetriz}} \Rightarrow \text{\'e um segmento que divide um}$ ângulo de um vértice do triângulo em dois ângulos congruentes.

 $\underline{\mathsf{Incentro}} \Rightarrow \mathsf{\acute{e}} \mathsf{o} \mathsf{ponto} \mathsf{de} \mathsf{encontro} \mathsf{das}$ bissetrizes.

 $\underline{\mathsf{Mediatriz}} \Rightarrow \mathsf{\acute{e}}$ uma reta que divide um segmento em duas partes congruentes. Esta reta $\mathsf{\acute{e}}$ perpendicular ao segmento.

<u>Circuncentro</u> ⇒ é o ponto de encontro das mediatrizes.

Obs: 1. Com o circuncentro, constrói-se o círculo circunscrito no triângulo

2. Com o incentro, constrói-se o círculo inscrito no triângulo.

(3) Exercícios

- 1. Calcule os pontos que dividem o segmento \overline{AB} em 4 partes congruentes, sendo A(1, 8) e B(13, -7).
- 2. Determinar os pontos que dividem o segmento \overline{AB} em 3 partes congruentes, sendo A(1, 8) e B(13, -7)
- 3. Calcular o perímetro do Δ MNP, sabendo que M, N e P são pontos médios dos lados do Δ ABC, dados A(0, 0), B(6, 8) e C(8, 6).
- 4. Calcular a medida da mediana relativa ao vértice A do Δ ABC, dados A(0, 0), B(-3, 4) e C(-7, 20).
- 5. Determinar B, sabendo que M(7, -3) é ponto médio do segmento \overline{AB} , sendo A(1, 2).

- 6. Determinar o baricentro do triângulo de vértices A(1, 0), B(5, 2) e C(2, 4).
- 7. O baricentro de um \triangle ABC é G(4, -2). Obter C, sabendo que A(5, -7) e B(8, -3).
- 8. O segmento de une A(1, 2) e B(2, 1) é prolongado até C, sendo $\overline{BC} = 4\overline{AB}$, determine C.

6 CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

Se os pontos $A(x_A,y_A)$, $B(x_B,y_B)$ e $C(x_C,y_C)$ são distintos e estão sobre uma reta não paralela aos eixos, valem as relações:

$$r = \frac{x_C - x_A}{x_B - x_C}$$

$$r = \frac{y_C - y_A}{y_B - y_C}$$

$$\Rightarrow \frac{x_C - x_A}{x_B - x_C} = \frac{y_C - y_A}{y_B - y_C}$$

Se os três pontos verificarem a igualdade, então A, B e C estão sobre uma mesma reta.

Partindo da condição acima, vamos determinar um dispositivo prático para impormos a condição de alinhamento dos três pontos.

$$\frac{x_C - x_A}{x_B - x_C} = \frac{y_C - y_A}{y_B - y_C} \Rightarrow (x_C - x_A)(y_B - y_C) = (x_B - x_C)(y_C - y_A)$$

$$x_C y_B - x_C y_C - x_A y_B + x_A y_C = x_B y_C - x_B y_A - x_C y_C + x_C y_A$$

$$0 = x_B y_C - x_B y_A - x_C y_C + x_C y_A - x_C y_B + x_C y_C + x_A y_B - x_A y_C$$

$$x_A y_B + x_B y_C + -x_C y_A - x_C y_B - x_B y_A - x_A y_C = 0$$
(*)

Por outro lado, o determinante formado pelas coordenadas dos três pontos $A(x_A,y_A)$, $B(x_B,y_B)$ e $C(x_C,y_C)$ e uma coluna de 1, quando desenvolvido pela regra de Sarrus fica:

$$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = x_A y_B + x_B y_C + -x_C y_A - x_C y_B - x_B y_A - x_A y_C$$
 (**)

Logo, comparando-se (**) e (*) temos:

$$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0 \Rightarrow \text{condição de alinhamento para 3 pontos quaisquer}$$

Exemplos: 1. Verifique se os pontos A, B e C estão alinhados se A(1, 2), B(0, 1) e C(3, 4).

Resolução:

$$\begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 3 & 4 & 1 \end{vmatrix} = 0 \Rightarrow 1 + 6 + 0 - 3 - 4 + 0 = 0 \Rightarrow 0 = 0$$

Logo os 3 pontos estão alinhados.

2. Determinar o valor de m para que os pontos A(m,3), B(-2,-5), C(-1,-3) sejam colineares.

Resolução:

$$\begin{vmatrix} m & 3 & 1 \\ -2 & -5 & 1 \\ -1 & -3 & 1 \end{vmatrix} = 0 \Rightarrow -5m - 3 + 6 - 5 + 3m + 6 = 0 \Rightarrow -2m + 4 = 0 \Rightarrow m = 2$$

(4) Exercícios

- 1. Verifique se os pontos A, B e C estão alinhados quando:
- a) A(0, 2), B(-3, 1) e C(4, 5)
- b) A(-2, 6), B(4, 8) e C(1, 7)
- c) A(-1, 3), B(2, 4) e C(-4, 10)
- 2. Determine m para que os pontos A(0, -3), B(-2m, 11) e C(-1, 10m) estejam em linha reta.

- 3. Determine t, sabendo que os pontos $A(\frac{1}{2}, t)$, $B(\frac{2}{3}, 0)$ e C(-1, 6)são colineares.
- 4. Os pontos A(-1, 2), B(3,1) e C(a, b) são colineares. Calcule a e b de modo que o ponto C esteja localizado sobre o eixo das abscissas.
- 5. Seja P o ponto de intersecção da reta r com o eixo das ordenadas. Sendo r a reta determinada pelos pontos A(-1, -2) e B(4, 2), calcule as coordenadas no ponto P.

7 CÁLCULO DA ÁREA DE UM TRIÂNGULO

A área do triângulo cujos vértices são os pontos $A(x_1,y_1)$ e $B(x_2,y_2)$ e $C(x_3,y_3)$ é da por:

$$A = \frac{1}{2}|D| \quad \text{onde} \quad D = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$$

Exemplo: A área do triângulo cujos vértices são A(1,3), B(3,5) e C(4,2). Resolução:

$$D = \begin{vmatrix} 1 & 3 & 1 \\ 3 & 5 & 1 \\ 4 & 2 & 1 \end{vmatrix} = 5 + 12 + 6 - 20 - 2 - 9 = -8$$

$$A = \frac{1}{2} |-8| = 4u.a.$$

(5) Exercícios

- 1. Os pontos A(1,3), B(2,7) e C(4,k) do plano cartesiano estão alinhados se e somente se:
 - a) k=11

- b) k=12 c) k=13 d) k=14 e) k=15
- 2. Os pontos A(-1,2), B(3,1) e C (a,b) são colíneares. Calcule a e b de modo que o ponto C esteja localizado sobre o eixo das abscissas.

3. Seja o quadrilátero cujos vértices são os pontos A(4,0), B(6,2), C(2,4) e D(0,2). Calcule a área desse quadrilátero. a) 10 b) 12 c) 16 d) 28 e) 32 4. A reta r da figura a seguir tem equação x+2y-4=0. Determine a área do triângulo AOB. a) 1 b) 3 c) 7 0 d) 5 e) 4 5. As retas suportes dos lados de um triângulo são as retas x+2y-1=0, x-2y-7=0 e y-5=0. Calcule a área desse triângulo. a) 149 b) 85 c) 169/2 d) 80 e) 90 6.Os pontos A(1,2), B e C(5,-2) estão numa mesma reta. Determine o ponto B, sabendo que o mesmo é do eixo x. a) 4 b) 3 c) 2 d) 1 e) 0 7. No plano cartesiano, os pontos (1,0) e (-1,0) são vértices de um quadrado cujo centro é a origem. Qual a área do quadrado? a) 1 b) 2 c) 3 d) 4 e) 5 8. A reta r, de equação x+2y-8=0, intercepta o eixo x no ponto A e

9. Os pontos A(2, -4), B(a, 1) e C(4, 2) são os vértices do triângulo ABC. Calcule o valor de a, para que esse triângulo tenha 2 unidades de área.

b) 12

intercepta a bissetriz dos quadrantes pares no ponto B. Calcule a área do

c) 24

d) 32

e) 38

triângulo OAB, sendo O a origem.

a) 8

8 ESTUDO DA RETA

8.1 Equações da reta

8.1.1 Equação geral de uma reta

A equação geral pode ser estabelecida a partir da condição de alinhamento de 3 pontos. Podemos escrever, da forma Ax+By+C=0. A equação geral de uma reta relaciona x e y para qualquer ponto P genérico dessa reta.

$$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x & y & 1 \end{vmatrix} = 0 \implies x_A y_B + x_B y + x_B y_A - x_B y_A = 0$$

$$(y_A - y_B)x + (x_B - x_A)y + (x_A y_B - x_B - y_A) = 0$$

Fazendo:

 $y_A-y_B=A;$ $x_B-x_A=B;$ $x_Ax_B-x_B-y_A=C,$ com A e B não simultaneamente nulos temos:

Se tivermos somente um ponto e seu coeficiente angular podemos determinar a equação da reta através de:

$$m = \frac{y - y_1}{x - x_1} \Rightarrow y - y_1 = m(x - x_1) \Rightarrow$$
 equação da reta

Exemplos: 1. Sendo A(1,3) e B(2,4) 2 pontos, determine a equação geral da reta.

Resolução:

$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & 4 & 1 \\ x & y & 1 \end{vmatrix} = 0 \Rightarrow 4 + 3x + 2y - 4x - y - 6 = 0$$
$$-x + y - 2 = 0 \quad \text{ou} \quad x - y + 2 = 0$$

2. Determinar a equação de uma reta r que passa pelo ponto A(-1, 4) e tem coeficiente angular 2.

Resolução:

$$y - y_1 = m(x - x_1) \Rightarrow y - 4 = 2(x + 1) \Rightarrow y - 4 = 2x + 2 \Rightarrow 2x - y + 6 = 0$$

(6) Exercícios

- 1. Determinar a equação da reta que passa pelo ponto A(2, -3) e tem coeficiente angular ½.
- Uma reta r passa pelo ponto P(2, 4) e tem coeficiente angular
 Determine a equação da reta r.
- 3. Determine k, sabendo que a inclinação da reta que passa pelos pontos A(k, 3) e B(-1, -4) é de 45°.
- 4. Determine a equação da reta que passa pelo ponto P(4, 1) e tem uma inclinação de 45°.
- 5. Dado o ponto A(-2, 3), calcule as coordenadas do ponto B(3k, k+1) de modo que o coeficiente angular da reta \overrightarrow{AB} seja m=½.
 - 6. Determine a equação geral da reta que passa por:
 - a) $A(2, 3) \in B(4, 7)$
 - b) A(-3, 5) e B(3, -1)
 - c) $A(\frac{1}{2}, -\frac{1}{2})$ e B(0, -4)
- 7. Determine o valor de m de modo que $A \in r$, para A(3, m) e r: 3x+5y-12=0.
- 8. Determine a equação da reta que passa pelo ponto C e encontra o segmento \overline{AB} no seu ponto médio, sendo A(0, -3), B(-4, 5) e C(1, 2).

8.1.2 Equação segmentaria da reta

É uma equação equivalente à equação geral da reta.

A reta r tem as seguintes características:

- a) não é paralela a nenhum dos eixos;
- b) intercepta os eixos nos pontos P(p,0) e Q(0,q).

A equação segmentária é dada por:

$$\begin{vmatrix} p & 0 & 1 \\ 0 & q & 1 \\ x & y & 1 \end{vmatrix} = 0 \Rightarrow pq - qx - py = 0 \quad x(-1)$$

$$qx + py - pq = 0 \implies$$
 (equação geral da reta)

$$qx + py = pq$$
 (÷ pq \neq 0), temos:

$$\frac{qx}{pq} + \frac{py}{pq} = \frac{pq}{pq}$$

$$\frac{x}{p} + \frac{y}{q} = 1 \Rightarrow$$
 equação da reta na forma segmentada

Exemplo:

Temos p=3 e q=2;

$$Logo \ \frac{x}{3} + \frac{y}{2} = 1.$$

(7) Exercícios

1. Escreva a equação segmentária da reta que passa pelos pontos A(3, 0) e B(0, 2).

- 2. Uma reta r passa pelos pontos $P_1(3, 0)$ e $P_2(0, -4)$. Escreva a equação da reta r na forma segmentária.
- 3. Escreva a equação segmentária da reta cujas intersecções com o eixo x e com o eixo y são respectivamente, os pontos P(5, 0) e Q(0, -3).

8.1.3 Equações paramétricas da reta

São equações equivalentes à equação geral da reta que relacionam as coordenadas x e y dos pontos da reta com um parâmetro t.

Exemplo:
$$\begin{cases} x = t + 2 \\ y = -t + 1 \end{cases}$$

Resolução:

Para obtermos a equação geral da reta r a partir de suas paramétricas, basta eliminarmos t das 2 equações. Assim:

$$\begin{cases} t = x - 2 \\ t = -y + 1 \end{cases}$$
, então x-2=-y+1;

Logo x+y-3=0.

<u>Obs:</u> Para determinarmos a equação geral da reta, quando conhecermos 2 pontos, faremos a partir de alinhamento de 3 pontos, considerando um dos pontos por P(x,y).

(8) Exercícios

- 1. O perímetro do quadrado da figura é 8. A equação da reta r é
- a) x-y-2=0
- b) x+y-2=0
- c) 2x+y-2=0
- d) 2x-y-2=0
- e) 2x+y+2=0

2. As retas x+y-c=0 e x+by+3c=0, com b, $c \in \Re$, interceptam-se no ponto (-1, 2). O valor de b+c é

- a) -1
- b) 0
- c) 1 d) 2
- e) 3

3. Determine k e m para que $r: \frac{x}{k} + \frac{y}{m+1} = 1$ intercepte os eixos nos pontos P(2, 0) e Q(0, 3).

4. Obtenha a equação segmentaria da reta 3x+4y-12=0.

5. Por qual quadrante não passa a reta $\frac{x}{3} + \frac{y}{-2} = 1$?

- a) 1°Q
- b) 2°Q
- c) 3°Q d) 4°Q
- e) n.r.a.

6. A reta que passa pelos pontos (2, ½) e (0, 5/2) tem equação:

- a) x=y b) x-y=1 c) 2x+2y-5=0 d) x+y=1 e) x-y-2=0

7. Determine a equação geral das retas definidas por:

a)
$$\begin{cases} x = 1 + t \\ y = 5 - 3t \end{cases}$$
 b)
$$\begin{cases} x = 2 - t \\ y = 1 + 5t \end{cases}$$

b)
$$\begin{cases} x = 2 - t \\ y = 1 + 5 \end{cases}$$

8. Obtenha os pontos em que a reta de equações paramétricas x=2+3t e y=5-t intercepta os eixos coordenados.

8.1.4 Equação reduzida da reta

Sendo r uma reta não paralela ao eixo dos y de equação geral Ax+By+C=0, com B \neq 0 e isolando y, temos:

$$Ax + By + C = 0 \Rightarrow By = -Ax - C \Rightarrow y = -\frac{a}{b}x - \frac{c}{b}$$

Fazendo:
$$\begin{cases} -\frac{a}{b} = m \\ -\frac{c}{b} = q \end{cases}$$

Logo escrevemos a equação reduzida pela forma y=mx+q, onde:

 $m \Rightarrow$ coeficiente angular da reta r, tal que:

m=tg α ($\alpha \neq \pi/2$)

 $m \rightarrow + \rightarrow$ declividade aguda

 $m \rightarrow - \rightarrow$ declividade obtusa

q ⇒ coeficiente linear (ponto em que a reta intercepta o eixo das ordenadas).

Importante: Podemos calcular o coeficiente angular por:

- 1°) $m = \frac{y_2 y_1}{x_2 x_1}$ (conhecido dois pontos da reta);
- 2°) $m = tg\alpha$ (conhecido o ângulo α);
- 3°) $m = -\frac{a}{b}$ (conhecida a equação geral da reta);
- 4°) m = coeficiente de x (conhecida a equação reduzida da reta)

Exemplos: 1. Determine o coeficiente angular da reta que passa pelos pontos A(2,-3) e B(-2,5).

Resolução:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - (-3)}{-2 - 2} = \frac{8}{-4} = -2$$

2. Obtenha a equação reduzida da reta que passa pelos pontos A(-3, 0) e B(1, 1).

Resolução:

$$\begin{vmatrix} -3 & 0 & 1 \\ 1 & 1 & 1 \\ x & y & 1 \end{vmatrix} = 0 \Rightarrow -3 + y + 0 - x - 0 + 3y = 0 \Rightarrow 4y = x + 3 \Rightarrow y = \frac{x}{4} + \frac{3}{4}$$

(9) Exercícios

- 1. Se as retas de equações y=ax e y=-x+b se cortam num ponto de coordenadas estritamente negativas, conclui-se que
 - a) a>0 e b>0
- b) a>0 e b<0
- c) a<0 e b<0
- d) a<-1 e b<0 e) a<-1 e b>0

2. A equação reduzida da reta que contém os pontos representados por A(2,-5) e B(-1,1) é

- a) y = -2x 1 b) y = -2x + 1 c) y = 2x d) y = -x + 2 e) y = x + 2

3. Uma reta passa pelo ponto P(-2,-4) e tem coeficiente angular m= -2/3. Determine o coeficiente linear da reta.

- a) -3
- b) 16
- c) -16/3
- d) –4 e) 14/3

4. Os pontos A(-1,m) e B(n,2) pertencem à reta 2x-3y=4. Calcule a distância entre A e B.

- a) $\sqrt{13}$ b) $2\sqrt{13}$ c) $\sqrt{26}$ d) 13 e) n.r.a.

5. A equação geral da reta que passa por P(1,2), de coeficiente angular m=tg135° é:

- a) x+y+3=0

- b) x-y=0 c) x+y=0 d) x+y-3=0 e) x-y+3=0

6. Escreva a equação reduzida da reta que tem coeficiente angular m=2 e que cruza o eixo y no ponto (0, -3).

- 7. Dada a reta que tem como equação 3x+4y=7, determine o coeficiente angular da reta.
- 8. Uma reta passa pelo ponto P(+2, -4) e tem coeficiente angular m= -5. Determine o coeficiente linear da reta.

8.2 Intersecção de duas retas

É o ponto comum às duas retas no plano cartesiano. Para determinar as coordenadas do ponto de intersecção. Algebricamente, basta resolver o sistema formado pelas equações das retas.

<u>Obs:</u> Para representarmos graficamente uma reta no plano cartesiano, é suficiente determinamos dois de seus pontos. Pois, pelo postulado fundamental da reta: dois pontos distintos determinam uma única reta. Para isso, atribuímos valores para x e determinamos y.

Exemplo: Vamos determinar o ponto de intersecção das retas r: 2x+y-4=0 e s: x-y+1=0.

Resolução:

Como o ponto de intersecção de duas retas, r e s, é solução do sistema formado pelas equações dessas retas. temos:

$$\begin{cases} 2x + y - 4 = 0 \\ x - y + 1 = 0 \end{cases} \Rightarrow \begin{cases} 2x + y = 4 \\ x - y = -1 \end{cases} \Rightarrow x = 1 \text{ e } y = 2$$

Logo P(1, 2)

Verificação:

Substituindo as coordenadas de P em r e s, temos:

$$\begin{cases} 2x + y - 4 = 0 \Rightarrow 2 + 2 - 4 = 0 \Rightarrow 0 = 0 \\ x - y + 1 = 0 \Rightarrow 1 - 2 + 1 = 0 \Rightarrow 0 = 0 \end{cases}$$

Logo P é ponto de intersecção de r e s.

(10) Exercícios

- 1. Determinar os pontos onde a reta r: 3x+2y-18=0 intercepta os eixos x e y.
- 2. Uma reta r é determinada pelos pontos A(2, 0) e B(0, 4), e uma reta s é determinada pelos pontos C(-4, 0) e D(0, 2). Seja P(a, b) o ponto de intersecção das retas r e s. Determine as coordenadas do ponto P.
- Determine os pontos de intersecção da reta de equação x+2y-4=0 com os eixos.
- 4. Determine a equação da reta que passa pela origem dos eixos coordenados e pela intersecção das retas 2x+y-6=0 e x-3y+11=0.

5. Ache a e b para que as retas ax+5y-7=0 e 4x+by-5=0 sejam concorrentes no ponto P(2, -1).

8.3 Posição relativa de duas retas

Sendo 2 retas $\begin{cases} r: y = m_1x + q_1 \\ s: y = m_2x + q_2 \end{cases}$, temos as seguintes posições:

 $m_1\text{=}m_2 \text{ e } q_1\text{\neq}q_2 \Rightarrow \text{retas paralelas}$

 m_1 = m_2 e q_1 = q_2 \Rightarrow retas coincidentes

 $m_1 \neq m_2 \Rightarrow retas concorrentes$

 $m_1 = -\frac{1}{m_2} \Rightarrow$ retas perpendiculares

Exemplo: Determinar a posição da reta r, de equação 2x-3y+5=0, em relação à reta s, de equação 4x-6y-1=0.

Resolução:

Passar para a forma reduzida:

$$2x-3y+5=0 \Rightarrow -3y=-2x-5 \Rightarrow y = \frac{2}{3}x + \frac{5}{3} \therefore m_1 = \frac{2}{3}$$

$$4x-6y-1=0 \Rightarrow -6y=-4x=1 \Rightarrow y = \frac{2}{3}x - \frac{1}{6} : m_2 = \frac{2}{3}$$

Comparando, temos: m₁=m₂ e q₁≠q₂, logo as retas são paralelas.

(11) Exercícios

- 1. Obter a equação da reta r, que passa por P(-3, 5) e é paralela à reta s: 3x+y-1=0.
- 2. Obter a equação da reta r, que passa por A(-2,4) e é paralela à reta que passa por P(1, 2) e Q(2, 4).
 - 3. Verificar as posições relativas das retas:

- 4. Para que valor de k as retas r: 2x+ky-3=0 e s: 3x+5y-1=0 são perpendiculares.
- 5. Determinar a equação da reta r que passa por A(-2, 2) e é perpendicular a s: x+3y-5=0.

8.4 Equação da reta que passa por um ponto

Consideremos uma reta r que passa pelo ponto $P(x_1,y_1)$ e tem coeficiente angular m, determinaremos pela expressão:

$$y - y_1 = m(x - x_1)$$

Exemplos: 1. Determinar a equação da reta que passa pelo ponto P(2,5) e tem inclinação de 60°.

Resolução:

Dados
$$x_1=2$$
 e $y_1=5$
 $m = tg 60^\circ = \sqrt{3}$
 $y-5=\sqrt{3} (x-2) \Rightarrow \sqrt{3} x - y + 5 - 2\sqrt{3} = 0$

2. Determinar a equação da reta que passa pelo ponto A(3,-5) e é paralela à reta de equação 8x-2y+1=0.

Resolução:

Vamos determinar o coeficiente angular m da reta de equação 8x-2y+1=0.

$$-2y=-8x-1 \Rightarrow 2y=8x+1 \Rightarrow y=4x+\frac{1}{2} : m=4$$

A reta pedida deve ter coeficiente angular m=4 e passar pelo ponto (3,-5).

$$y - y_1 = m(x - x_1) \implies 4x - y - 17 = 0$$

<u>Obs:</u> Toda a reta que passa por apenas um ponto será representada pela forma $y - y_1 = m(x - x_1)$

(12) Exercícios

	1. Determine k	, sabendo qu	e a inclinaçã	o da reta que	e passa pelos				
pontos A(k,3) e B(-1,-4) é	de 45°.							
	a) k=3	b) k=4	c) k=5	d) k=6	e) k=7				
	2. A equação	y-2=a(x+3) re	presenta um	feixe de retas	s que passam				
pelo ponto	D :								
	a) (-3, 2)	b) (2,	-3) c) (3,	-2) d) (-2,	3) e) (2,				
3)									
	3. Determine a equação da reta que passa pelo ponto A (-1/2,0) e								
cuja decli	vidade é 135°								
			~	0 4 0					
	4. As retas								
respectiva	amente, são para	alelas. Nessas	s condições, (calcule o valo	r de p.				
	5 A oguação (da rota norna	andicular à re	to v=2v+1 o	que contóm e				
nonto má	5. A equação d dio entre (1, 1) e		filulculai a le	ila y-zx+i e	que content o				
ponto met	a) y=-(x/2)+1	· (-1, 1), C .							
	b) $y=-(x/2)^{-1}$								
	c) y=-2x+1								
	d) $y=2x+(1/2)$								
	e) $y = (x/2)+1$								
	0)) (/4_) .								
	6. Escreva a	equação da	mediatriz de	um segmen	to AB, sendo				
dados A(1	I,-3) e B(-5,1).								
	7. Determine of	valor de k	para que as	retas l ₁ e l ₂	de equações				
kx+y+2=0 e 3x+(k+1)y-7=0, respectivamente, sejam perpendiculares.									
	a) k=-1/3	b) k=-2/7	c) k=1/4	d) k=5/7	e) n.r.a.				

8. A equação de uma reta r é dada por:

$$\begin{vmatrix} y - 1 & x & 4 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{vmatrix} = 0$$

Determine a equação da reta que passa pelo ponto (4,7) e é perpendicular a r.

- a) x-2y+18=0
- b) x+2y-18=0
- c) x+2y+18=0
- d) x-2y-18=0
- e) x+y-18=0

8.5 Ângulo entre duas retas

Sendo r e s duas retas concorrentes, conforme a figura.

A reta r com coeficiente angular m_1 e a reta s com coeficiente angular m_2 .

O ângulo α formado entre r e s, determinaremos pelo expressão:

$$tg\alpha = \left| \frac{m_2 - m_1}{1 + m_2 \cdot m_1} \right|$$

Obs: A equação é modular, portanto determinaremos a declividade aguda. O outro ângulo será o suplementar.

Exemplos: 1. Determinar o ângulo formado pelas retas:

$$\begin{cases} 2x - y + 1 = 0 \rightarrow r \\ 3x + y - 2 = 0 \rightarrow s \end{cases}$$

Resolução:

Cálculo do coeficiente angular

$$2x\text{-}y\text{+}1\text{=}0 \Rightarrow y\text{=}2x\text{+}1 \Rightarrow m_1\text{=}2$$

$$3x + y - 2 = 0 \Rightarrow y = -3x + 2 \Rightarrow m_2 = -3$$

Cálculo de a

$$tg\alpha = \left| \frac{-3 - 3}{1 + (-3).2} \right| = \left| \frac{-5}{-5} \right| = 1$$

2. Determinar a equação da reta r que passa pelo ponto P(2,3) e que forma um ângulo de 45° com a reta s, de equação 3x-2y+1=0.

Resolução:

Temos:
$$3x-2y+1=0 \Rightarrow y= (3/2)x + \frac{1}{2} \Rightarrow m_2=3/2$$

Vamos calcular m_1 .

$$tg45^{\circ} = \left| \frac{\frac{3}{2} - m_1}{1 + \frac{3}{2} \cdot m_1} \right| \Rightarrow 1 = \left| \frac{3 - 2m_1}{2 + 3m_1} \right|,$$
 resolvendo a equação modular,

adotemos

$$1 = \left| \frac{3 - 2m_1}{2 + 3m_1} \right|$$

$$3m_1 + 2 = 3 - 2m_1$$

$$m_1 = 1/5$$

$$y - 3 = 1/5(x - 2)$$

$$x - 5y + 13 = 0$$

$$-1 = \left| \frac{3 - 2m_1}{2 + 3m_1} \right|$$

$$-2 - 3m_1 = 3 - 2m_1$$

$$m_1 = 5$$

$$y - 3 = -5(x - 2)$$

$$5x + y - 13 = 0$$

(13) Exercícios

1. Seja α o ângulo agudo formado pelas retas de equações x-3y-7=0 e x-13y-9=0. Calcule $\cot \alpha$.

- a) 1/4
- b) 1/6 c) 4
- d) 6
- e) -4

2) Determine a equação da reta r do gráfico a seguir.

3. Determine o ângulo formado pelas retas:

b) x-
$$\sqrt{3}$$
 y+1=0 e 3x+2=0

c)
$$\sqrt{3}$$
 x-3y-1=0 e x-2=0

4. Seja uma reta que passa pelo ponto A(1, 1) e faz um ângulo de 45º com a reta s, de equação x-2y+2=0. Determine a equação da reta r.

8.6 Distância do ponto à reta

A distância entre um ponto A e uma reta r é a medida do segmento da reta perpendicular à reta que tem uma extremidade A e a outra na reta r.

$$\begin{array}{c|c}
A & \bullet \\
& > d(AB)
\end{array}$$
B r

Dado um ponto $A(x_p,y_p)$ e uma reta r de equação Ax+by+C=0, a distância entre A e r é dada pela fórmula:

$$d = \left| \frac{Ax_p + By_p + C}{\sqrt{A^2 + B^2}} \right|$$

Exemplos: 1. Determinar a distância entre o ponto P(-1,2) e a reta de equação 10x-2y-2=0.

Resolução:

$$d = \left| \frac{10 \cdot (-1) + (-2) \cdot 2 - 2}{\sqrt{(10)^2 + (-2)^2}} \right| = \left| \frac{-10 - 4 - 2}{\sqrt{104}} \right| = \left| \frac{-16}{\sqrt{104}} \right| = \frac{16}{2\sqrt{26}} = \frac{4\sqrt{26}}{13} u ... d.$$

<u>Obs:</u> Quando as retas forem paralelas, usaremos a seguinte fórmula $d = \left| \frac{C_1 - C_2}{\sqrt{A^2 + B^2}} \right|$

2. Determinar a distância entre as retas paralelas 2x+3y-6=0 e 2x+3y-10=0.

Resolução:

$$d = \left| \frac{-6 - (-10)}{\sqrt{4 + 9}} \right| = \frac{4\sqrt{13}}{13} \text{ u.d.}$$

(14) Exercícios

1. Sejam 3x-4y+10=0 e 6x-8y+15=0 as equações das retas suportes das bases de um trapézio. Determine a altura deste trapézio.

- a) 1
- b) 5/2
- c) $\frac{1}{2}$
- d) 25/2
- e) 9

2. Qual é o raio da circunferência de centro C(-1, 4) e tangente à reta 2x-y-5=0?

- a) 11 b) $\sqrt{5}$ c) $\frac{3\sqrt{5}}{5}$ d) $\frac{11\sqrt{5}}{5}$ e) $\frac{\sqrt{5}}{5}$

3. A distância entre o ponto P(0,k) e a reta r, de equação 4x+3y-2=0, é igual a 2 unidades. Determine o valor de k.

- a) k=4
- b) k = 8/3

- c) k=-3 d) k=-8/3 e) k=4 ou k=-8/3

4. Os pontos A(2,1), B(-2,-4) e C(0,2) são os vértices de um triângulo ABC. Determine a medida da altura relativa ao lado BC do triângulo.

- a) $\frac{7\sqrt{10}}{10}$ b) $\sqrt{10}$ c) $5\sqrt{10}$ d) $\frac{\sqrt{10}}{10}$ e) n.r.a.

5. Calcule a distância entre as seguintes retas paralelas: y=(4/3)x-(2/3) e y=(4/3)x+(8/3)

- a) 1
- b) 2
- c) 3
- d) 4
- e)5

6. Seja A o ponto de interseção da reta r, de equação x+y-2=0, com o eixo das abscissas. Determine a distância do ponto A à reta s, de equação 3x-4y+10=0.

- a) 5/3
- b) 7/3
- c) 13/5
- d) 14/5
- e) 16/5
- 7. Calcular a distância da origem à reta r: 4x+3y-5=0.
- 8. Calcular a distância entre as retas paralelas r: 4x-3y+1 e s: 4x-3y+11=0.
- 9. Calcule a distância entre o ponto P(1/2, -1/3) e a reta r: 4x+3y-10=0
 - 10. A distância da origem à reta t: ax+y+20=0 é 10. Determine a.

9 CIRCUNFERÊNCIA

Para que tenhamos um círculo bem determinado devemos saber a localização do seu centro e o valor do seu raio.

Denomina-se circunferência o conjunto de todos os pontos de um plano equidistantes de um ponto fixo C denominado centro da circunferência.

9.1 Equação da circunferência

Sendo C, centro da circunferência onde $C(x_1, y_1)$, A(x, y) e r o raio desta circunferência, temos

$$d_{\scriptscriptstyle CA} = r \Longrightarrow d_{\scriptscriptstyle CA} = \sqrt{\left(x-x_1\right)^2 + \left(y-y_1\right)^2} = r$$

 $r = \sqrt{(x-x_1)^2 + (y-y_1)^2} \; , \; \text{elevando ambos os membros da equação}$ ao quadrado temos:

$$(x-x_1)^2 + (y-y_1)^2 = r^2 \implies$$
 equação reduzida de circunferência.

Desenvolvendo a equação reduzida de uma circunferência, $(x-x_1)^2+(y-y_1)^2=r^2$, vamos obter:

$$x^{2} - 2xx_{1} + x_{1}^{2} + y^{2} - 2yy_{1} + y_{1}^{2} = r^{2}$$
, ordenando os termos:

$$x^{2} + y^{2} - 2x_{1}x + -2y_{1}y + x_{1}^{2} + y_{1}^{2} - r^{2} = 0$$
, fazendo

$$D = -2x_1$$
, $E = -2y_1$ e $F = x_1^2 + y_1^2 - r^2$, temos

 $x^2 + y^2 + Dx + Ey + F = 0 \Rightarrow$ equação geral da circunferência.

Pelas relações, temos:

$$\begin{cases} x_1 = \frac{-D}{2}, D \text{ acompanha}(x) \\ y_1 = \frac{-E}{2}, E \text{ acompanha}(y) \end{cases}$$

$$r = \left| \sqrt{x_1^2 + y_1^2 - F} \right| \Rightarrow r > 0$$
, F é o termo indep.

Exemplo: A equação da circunferência com centro em (3,5) e raio 4 é:

Resolução:

$$(x-3)^2 + (y-5)^2 = 4^2$$
, desenvolvendo temos

$$x^2 + y^2 - 6x - 10y + 18 = 0$$

9.2 Condições para reconhecer circunferência

 \Rightarrow os coeficiente de x^2 e y^2 devem ser iguais;

⇒ não poder ter o termo xy;

 \Rightarrow r>0.

Exemplos: 1. Determinar as coordenadas do centro e o raio da circunferência de equação $x^2 + y^2 - 4x + 2y - 1 = 0$.

Resolução:

$$\begin{cases} x_1 = \frac{-D}{2} = -\frac{-4}{2} = 2 \\ y_1 = \frac{-E}{2} = -\frac{2}{2} = -1 \end{cases}$$
 C(2,-1)

$$r = \sqrt{(2)^2 + (-1)^2 - (-1)} = \sqrt{6}$$

2. Determinar as coordenadas do centro e raio da circunferência de equação $4x^2 + 4y^2 + 4x + 8y + 9 = 0$.

Resolução:

Dividindo por 4 temos,

$$x^2 + y^2 + x + 2y + \frac{9}{4} = 0$$

$$x_1 = -\frac{1}{2}$$

$$y_1 = -1$$

$$r = \sqrt{(-1/2)^2 + (-1)^2 - (9/4)} = \sqrt{-13/4}$$

⇒ Logo não representa uma circunferência.

(15) Exercícios

1. A equação do círculo que passa pela origem e tem como coordenadas do centro o ponto P(-3,4) é:

a)
$$(x+3)^2 + (y-4)^2 = 25$$

b)
$$(x-3)^2 + (y+4)^2 = 25$$

C)
$$x^2 + y^2 = 25$$

d)
$$x^2 + y^2 = 5$$

- e) n.r.a.
- 2. Seja os pontos A(-1,-2) e B(3,0) as extremidades de um diâmetro. A equação da circunferência é:

a)
$$x^2+y^2+2x-2y-3=0$$

b)
$$x^2+y^2-2x+2y-3=0$$

c)
$$x^2+y^2+x-y-3=0$$

d)
$$x^2+y^2+2x-2y-18=0$$

e)
$$x^2+y^2-2x-2y-3=0$$

3. Determine a equação da circunferência de centro C(2,1) e que é tangente à reta de equação 2x+y-20=0.

	4. A circ	unferência de	e equação	$x^2 + y^2 - 8x + 6y +$	+ 22 = 0 limita	um			
círculo cuja área é:									
	a) 3π	b) 6π	c) 9π	d) 11π	e) 22π				
5. A equação $x^2 + y^2 + 2x + 2y + F = 0$ é de um círculo somente quando:									
	a) F=2	b) F>0	c) F<0		e) F<2				

6. Calcule o valor de k de modo que a equação $x^2+y^2-2x+10y+2k=0 \ \text{represente uma circunferência}.$

a) k=6 b) k>15 c) k<13 d) k<15 e) k>12

7. Determine k de modo que a equação $x^2 + y^2 + 6x + 14y + k = 0$ represente uma circunferência de raio 9.

a) -21 b) -23 c) -25 d) 27 e) -20

8. Determine a equação reduzida da circunferência com centro no ponto C e que passa pelo ponto P, nos seguintes casos:

9. O ponto P(-3,b) pertence à circunferência de centro no ponto C(0, 3) e de raio r=5. Calcule o valor de b.

10. Determine a equação geral das seguintes circunferências:

a)
$$(x-1)^2+(y+2)^2=3$$

b)
$$(x+4)^2+y^2=6$$

9.3 Posições relativas

9.3.1 Posições relativas entre ponto e circunferência

Um ponto pode ser interno, externo ou poder pertencer a uma circunferência.

Exemplos: 1. Determinar a posição do ponto P(-2,3) em relação a circunferência de equação $x^2 + y^2 - x + 3y - 4 = 0$.

Resolução:

Substituindo P(-2,3), temos:

$$(-2)^2 + (3)^2 - (-2) + 3 \cdot (3) - 4 \Rightarrow 4 + 9 + 4 + 9 - 4 = 22$$

22>0, logo é externo

2. Qual a condição que deve verificar o número m, para que o ponto P(4,3) seja externo à circunferência de equação $x^2 + y^2 - 4x - 2y + m = 0$? Resolução:

Primeiro verifique a condição de m, para ser circunferência.

$$\begin{cases} x_1 = -\frac{(4)}{2} = 2 \\ y_1 = -\frac{(2)}{2} = 1 \end{cases}$$

$$r = \sqrt{(2)^2 + (1)^2 - m}, \text{ como } r > 0 : r = \sqrt{4 + 1 - m} > 0$$

$$\Rightarrow m < 5.$$

Para que o ponto P seja externo, devemos ter:

$$(4)^2 + (3)^2 - 4 \cdot (4) - 2 \cdot (3) + m > 0$$
 : m>-3, desenvolvendo a interseção,

temos

(16) Exercícios

- 1. O ponto (1, $\sqrt{2}$), em relação à circunferência $x^2 + y^2 4x 4y + 4 = 0$
- a) está situado no centro
- b) é interno ao círculo e fora do centro
- c) está situado na curva
- d) é externo ao círculo, mas está na reta y
- e) n.d.a.
- 2. Qual a condição que deve verificar o número k, para que o ponto $P(1,-3) \quad \text{seja} \quad \text{interno} \quad \text{em} \quad \text{relação} \quad \text{à} \quad \text{circunferência} \quad \text{de} \quad \text{equação} \\ x^2+y^2-2x+4y+k=0 \, ?$
 - a) k>3
- b) k<2
- c) k<3
- d) 2<k<4
- e) K<4
- 3. Qual posição do ponto A(2,-2) em relação a circunferência de equação $x^2+y^2-2x-8y-9=0$?
 - a) interno
- b) pertence
- c) externo
- 4. Qual a posição do ponto A(-3,4) em relação a cada uma das circunferências definidas por:

a)
$$2x^2+2y^2+x+y-4=0$$

b)
$$x^2+y^2-2x+4y-3=0$$

c)
$$x^2+y^2-8x-20y+10=0$$

5. Qual a posição do ponto A(2, -2) em relação a circunferência de equação $x^2+y^2-2x-8y-9=0$?

9.3.2 Posição relativa da reta e circunferência

Podemos determinar a posição de uma reta e uma circunferência procurando os pontos de interseção da reta com a circunferência.

Resolvendo o sistema

$$\begin{cases} Ax + By + C = 0 \\ x^2 + y^2 + 2x + 2y + F = 0 \end{cases}$$

Recai-se numa equação de segundo grau, onde:

 Δ >0 (2 pontos distinto) \Rightarrow reta secante

 Δ =0 (1 ponto) \Rightarrow reta tangente

 Δ <0 (nenhum ponto comum) \Rightarrow reta exterior

Exemplo: Qual a posição da reta x+y+3=0 em relação a circunferência $x^2 + y^2 - 4x - 2y - 13 = 0$?

Resolução:

Isolando x na reta x=-y-3 \Rightarrow substituindo na equação da circunferência, temos:

$$(-y-3)^2 + y^2 - 4(-y-3) - 2y - 13 = 0$$

$$y^2 + 4y + 4 = 0$$

$$y = \frac{4 \pm \sqrt{16 - 16}}{2} \therefore \Delta = 0 \text{ , logo \'e tangente.}$$

(17) Exercícios

1. Determine a equação de uma circunferência tangente ao eixo y e à reta x=4 e que tem o centro no eixo x.

2. A reta s, de equação x+y-7=0, e a circunferência, de equação $x^2 + y^2 - 6x - 4y + 9 = 0$, são secantes nos pontos A e B. Calcule o comprimento da corda AB.

- a) 8
- b) $2\sqrt{2}$ c) $\sqrt{2}$
- d) 4
- e) 6

3. A reta I de equação x=3 é tangente à circunferência de equação $x^2 + y^2 + 4x - 2y + k = 0$. Nessas condições, calcule o valor de k.

- a) 10
- b) –15
- c) –18
- d) –20
- e) 16

4. Qual é a equação de uma circunferência concêntrica à circunferência de equação $x^2 + y^2 - 8x - 4y + 4 = 0$ e que é tangente à reta I de equação 4x+3y+13=0?

5. A equação de circunferência de raio 3, tangente ao eixo y e com centro sobre a reta y=2x, é:

- a) $x^2 + y^2 12x 6y + 36 = 0$
- b) $x^2 + y^2 + 6x + 12y + 30 = 0$
- C) $x^2 + y^2 6x 12y + 36 = 0$
- d) $x^2 + y^2 + 12x + 6y + 36 = 0$
- e) $x^2 + y^2 + 12x 6y 36 = 0$

6. São dadas a reta s: 4x+3y-1=0 e a circunferência $x^2+y^2+6x-8y=0$. Qual a posição da reta s em relação à circunferência?

7. Verificar a posição relativa entre $(x-1)^2+(y+3)^2=10$ e cada uma da retas r: 3x+y-10=0, s: 3x+4y-6=0 e t: 3x-4y+5=0.

- 8. Determine os valores reais de k para os quais a reta y=k e a circunferência (x-2)2+(y+3)2=9 são:
 - a) secantes;
 - b) tangentes;
 - c) exteriores.

9.3.3 Posições relativas entre duas circunferências

Duas circunferências λ_1 e λ_2 , distintas, podem ter dois, um ou nenhum ponto em comum. Portanto, podem ocupar, no plano, as seguintes posições relativas:

a) λ_1 e λ_2 são tangentes

Externamente λ_1 C_1 r_1 r_2 λ_2 C_1 r_1 C_2 r_1 C_2 $d_{C_1C_2} = r_1 + r_2$ $d_{C_1C_2} = |r_1 - r_2|$

b) λ_1 e λ_2 são secantes

c) λ_1 e λ_2 não se interceptam

<u>**Obs:**</u> Para se determinar a posição relativa de duas circunferências λ_1 e λ_2 , e também os possíveis pontos de intersecção, devemos resolver o sistema formado pelas duas equações das circunferências dadas.

Exemplo: Dadas as circunferências de equações:

$$\lambda_1$$
: $x^2+y^2-2x-10y+22=0$
 λ_2 : $x^2+y^2-8x-4y+10=0$

Qual a posição relativa entre elas e também quais os possíveis pontos de intersecção?

Resolução:

Resolvendo o sistema formado pelas equações das duas circunferências temos:

(1)
$$x^2+y^2-2x-10y+22=0$$

$$\begin{array}{r} (2) \quad x^2 + y^2 - 8x - 4y + 10 = 0 \\ \hline \qquad \qquad 6x - 6y + 12 = 0 \end{array} (3)$$

Da equação (3), vem:

$$6x-6y+12=0 \Rightarrow x-y+2=0 \Rightarrow y=x+2 (4)$$

Substituindo (4) em (1), temos:

$$x^{2}+(x+2)^{2}-2x-10(x+2)+22=0$$

 $x^{2}+x^{2}+4x+4-2x-10x-20+22=0$
 $2x^{2}-8x+6=0$
 $x'=3 e x''=1$

Substituindo na equação (4), temos:

$$x=3 \Rightarrow y=3+2 \Rightarrow y=5$$

 $x=1 \Rightarrow y=1+2 \Rightarrow y=3$

Como existem dois pontos de intersecção, as circunferências são secantes, e os pontos de intersecção são (3, 5) e (1,3).

(18) Exercícios

- 1. Determine os pontos de intersecção das circunferências x²+y²=4 e $(x-3)^2+(y-3)^2=10$.
- 2. Qual a posição relativa entre as circunferências de equações $x^2+y^2+6x-4y+12=0$ e $x^2+y^2+6x-4y+4=0$.
- 3. Qual a posição relativa entre as circunferências de equações $x^2+y^2-2x=0$ e $x^2+y^2-2x-8y+8=0$.
 - 4. Verifique as posições relativas das circunferências de equações:

a)
$$x^2+y^2-6x+4y=23$$
 e $x^2+y^2-6x+4y=12$

b)
$$x^2+y^2=6x+4y+5$$
 e $(x+1)^2+(y+2)^2=2$

c)
$$x^2+y^2=4y e x^2+y^2=2x$$

d)
$$x^2+y^2=1$$
 e $(x-4)^2+(y+8)^2=1$

(19) Exercícios complementares

1. (UFSM/1997)	A circunferência	$x^2 + y^2 - 8x + 6y + 22 = 0$	limita	um
círculo cuja área é				

- a) 6π b) 3π c) 9π
- d) 11π e) 22π

2. (UFSM/1997) Considerando a circunferência
$$\lambda : (x-2)^2 + (y+1)^2 = 5$$
, a reta r: y=x, o ponto P(9/2,-2), a reta r é _____ à circunferência λ , o ponto P ____ à reta r e é ____ à circunferência λ .

Assinale a alternativa que completa, corretamente, as lacunas.

- a) secante, não pertence, interno
- b) tangente, pertence, externo
- c) secante, pertence, interno
- d) tangente, não pertence, externo
- e) secante, não pertence, externo

- 3. (UFSM/1998) A área do triângulo cujos lados estão contidos, respectivamente, nas retas r: x+y=4, s: x+2y=4 e t: y=2, é igual a
 - a) 2
- b) 4
- c) 6
- d) 8
- e) 12
- 4. (UFSM/1999) Sejam r: x+qy-1=0 e s: px+5y+2=0 duas retas perpendiculares entre si. Então, é correto afirmar que
 - a) p/q=-5
- b) p/q=5
- c) p/q=1
- d) p.q=-1
- e) p.q=5
- 5. (UFSM/1999) Dada a circunferência β : $x^2+y^2-4x-12=0$, então a circunferência α , que é concêntrica à circunferência β e tangente à reta r:x+y=0, é
 - a) $x^2+(y+2)^2=4$
 - b) $x^2-4x+y^2=0$
 - c) $x^2+y^2+4y+2=0$
 - d) $x^2+y^2-4x+2=0$
 - e) $(x+2)^2+y^2=2$
- 6. (UFSM/2000) Sejam as retas r: y=x e s: y=-x, sobre as quais estão dois lados de um retângulo. O ponto P(4,2) é um dos vértices do retângulo. Então pode-se dizer que os outros dois lados desse retângulo estão sobre as retas

- b) y=-x+2 e y=x+6
- c) y=x-2 e y=-x+6
- d) y=-x-2 e y=-x+6
- e) y=x+2 e y=x+6

- 7. (UFSM/2001) As retas r e s tangência a circunferência da equação $x^2+y^2-4x+3=0$, respectivamente, nos pontos P e Q e passam pelo Ponto O(0,0). A medida do ângulo PÔQ vale
 - a) 15°
- b) 30°
- c) 45°
- d) 60°
- e) 90°

- 8. (UFSM/2002) Seja r a reta que corta o eixo y no ponto (0,2) e forma ângulo de 45° com eixo x; s, a reta que corta o eixo x no ponto (-2,0) e forma ângulo de 135° com o eixo x; t, o eixo y. Para que o ponto (1,m) pertença à circunferência que passa pelas interseções das retas r, s e t, o valor de m é
 - a) $\sqrt{3}$ ou $\sqrt{3}$ b) $\sqrt{2}$ ou $\sqrt{2}$ c) 2 ou -2 d) 1 ou -1 e) $\sqrt{\pi}$ ou $\sqrt{\pi}$
- 9. (UFSM-PEIES/1998) Considere as afirmativas referentes às retas (r): x-y+1=0, (s): x+y-3=0 e (t): y-1=0, assinalando V nas verdadeiras e F nas falsas.
 - () As retas (r) e (s) são perpendiculares.
 - () O ângulo formado pelas retas (r) e (t) é de 30°.
- () A área do triângulo cujos lados estão contidos nas retas (r), (s) e(t) é 1 unidade de área.

A sequência correta é

- a) V F F.
- b) V F V.
- c) F V F.
- d) V V F.
- e) F V V.
- 10. (UFSM-PEIES/1998) Considere as afirmações referentes às circunferências (C_1): (x-4) 2 +(y-3) 2 =9, (C_2): X^2 + y^2 -6x-6y+17=0, à reta (r): x-y+1=0 e ao ponto P=(4,2).
- I. O ponto P é interior à circunferência (C₁) e exterior a circunferência (C₂).
 - II. A reta (r) é tangente à circunferência (C₂).
 - III. A circunferência (C₂) é interior à circunferência (C₁).

Está(ão) correta(s)

- a) apenas I e II.
- b) apenas II.
- c) apenas I e III.

- d) apenas III.
- e) I, II, III.

11. (UFSM-PEIES/1998) A soma dos possíveis valores de k, para que a distância do ponto P=(3,4) à reta (r): 4x-3y+k=0 seja igual a 1, é

a) -5

b) –1

c) 2

d) 0

e) 5

12. (UFSM-PEIES/1999) A reta r é determinada pelos pontos (1,0) e (0,-1). A reta s passa pelo ponto (3,0) e é paralela à reta r. A equação geral da reta s e a distância entre as retas r e s, são respectivamente,

a) x+y-3=0 e 2.

b) x-y-3=0 e 2.

c) x+y-3=0 e $\sqrt{2}$.

d) x+y+3=0 e 2. e) x-y-3=0 e $\sqrt{2}$.

13. (UFSM-PEIES/1999) Uma equação da circunferência C, de centro (4,2), que passa pelo ponto (3,1) é _____. Para que a reta y=mx+2 seja tangente à circunferência C, os valores de m devem ser, respectivamente, ____ e ___.

Assinale a alternativa que completa, corretamente, as lacunas.

a)
$$(x-4)^2 + (y-2)^2 = 4; \frac{\sqrt{7}}{7}; \frac{-\sqrt{7}}{7}$$

b)
$$(x-4)^2 + (y-2)^2 = 2; \frac{\sqrt{7}}{7}; \frac{-\sqrt{7}}{7}$$

C)
$$(x-4)^2 + (y+2)^2 = 2; \frac{1}{7}; \frac{-1}{7}$$

d)
$$(x+4)^2 + (y+2)^2 = 2; \sqrt{7}; -\sqrt{7}$$

e)
$$(x-4)^2 + (y-2)^2 = 2;7;-7$$

14. (UFSM-PEIES/2000) A reta r passa pelo ponto (1, -2) e tem uma inclinação α =135°. Uma equação da reta s que passa pelo ponto (2,1) e forma um ângulo de 45° com a reta r é

a)
$$y-1=(2-2\sqrt{3})(x-2)$$

b)
$$\sqrt{3}x - 3y + 3 - 2\sqrt{3} = 0$$

c)
$$x - 2 = 0$$

d)
$$v + 1 = 0$$

e)
$$v - 1 = 0$$

15. (UFSM-PEIES/2000) As retas r:x+y-6=0 e s:x+y+6=0 são paralelas. Uma circunferência tangência a reta r no ponto (3,3) e também é tangente a reta s. A equação dessa circunferência é

a)
$$(x-3)^2 + (y-3)^2 = 18$$

b)
$$(x-3)^2 + y^2 = 3\sqrt{2}$$

C)
$$x^2 + (y-3)^2 = 18$$

d)
$$x^2 + y^2 = 18$$

e)
$$x^2 + y^2 = 3\sqrt{2}$$

16. (UFSM-PEIES/2001) A reta r é determinada pelos pontos A(2,1) e B(6,3). A reta s é perpendicular a r e passa pelo ponto B(6,3). A reta t, de equação x+3y-5=0, intercepta a reta s no ponto C. O comprimento do segmento \overline{BC} é

- a) $\sqrt{10}$
- b) $2\sqrt{5}$
- C) $(x-3)^2 + y^2 = 3\sqrt{2}$
- d) 4
- e) 5

17. (UFSM-PEIES/2001) A reta y= -x+4 determina, na circunferência $x^2+y^2-6x-4y+12=0$, determina uma corda de comprimento

- a) $\sqrt{2}/2$
- b) 1
- c) $\sqrt{2}$
- d) $\sqrt{3}$
- e) $2\sqrt{2}$

GABARITO

- (1) 1. a) 4u.c. b) 5u.c. 2. 5u.c. 3. $6+3\sqrt{2}$ 4. (9/2, 0) 5. -1 ou 1 6. 3 e -3/5 7. (-5/2, -5/2) 8. (4,3) 9. (1,1) ou (2,2) 10. (4, -4)
- (2) 1. a 2. b 3. d 4. d 5. d 6. b 7. a 8) c.
- (3) 1. $(7, \frac{1}{2})$; $(4, \frac{17}{4})$; $(10, -\frac{13}{4})$ 2. $(5, \frac{3}{3})$; (9, -2) 3. $10 + \sqrt{2}$ u.c. 4. 13u.c. 5. B(13, -8) 6. G(8/3, 2) 7. C(-1, 4) 8. C(6, -3)
- (4) 1. a) não b) sim c) não 2. m=-1 ou m=7/10 3. t=3/5 4. a=7 e b=0 5. P(0, -6/5)
- (5) 1. e 2. a=7 e b=0 3. b 4. e 5. c 6. b 7. b 8. d 9. a=13/3 ou a=3
- **(6)** 1. x-2y-8=0 2. 3x+y-10=0 3. k=6 4. x-y-3=0 5. B(-18, -5) 6. a) 2x-y-1=0 b) x+y-2=0 c) 7x-y-4=0 7. 3/5 8. x-3y+5=0
- (7) 1. x/3 + y/2 = 1 2. x/3 + y/-4 = 1 3. x/5 + y/-3 = 1
- (8) 1. b 2. b 3. k=2 e m=2 4. x/4 + y/3=1 5) b 6) c. 7. a) 3x+y-8=0 b) 5x-y-9=0 8. (0, 17/3) e (17, 0)
- (9) 1. b 2. a 3. c 4. b 5. d 6. y=2x-3 7. m=-3/4 8. 6
- (10) 1. P(6, 0) e Q(0, 9) 2. P(4/5, 12/5) 3. (4, 0) e (0, 2) 4. 4x-y=0 5. a=6 e b=3
- (11) 1. 3x+y+4=0 2. 2x-y+8=0
 - 3. a) r paralelo a s b) são retas concorrentes
 - 4. k= -6/5 5. 3x-y+8=0

- (12) 1. d 2. a 3. 2x+2y+1=0 4. p=4 ou p=-4 5. a 6. 3x-2y+4=0 7. e 8. b.
- (13) 1. c 2. 3y-x-5. 3. a) 45° b) 60° c) 60° 4. 3x-y-2=0, 3y+x-4=0
- (14) 1. c 2. d 3. e 4. a 5. b 6. e 7. 1u.c. 8. 2u.c. 9. 9/5u.c. $10. \pm \sqrt{3}$
- (15) 1. a 2. b 3. $x^2+y^2-4x-2y-40=0$ 4. a 5. e 6. c 7. b 8. a) $(x+1)^2+(y-2)^2=13$ b) $x^2+(y-1)^2=2$ C) $(x-1)^2+(y-2)^2=25$ 9. b= -1 ou b=7 10. a) $x^2+y^2-2x+4y+2=0$ b) $x^2+y^2+8x+10=0$
- (16) 1. b 2. e 3. c 4. a) externo b) externo c) interno 5. externo 6. k < 4.
- (17) 1. $x^2 + y^2 4x = 0$ 2. b 3. d 4. $x^2 + y^2 8x 4y 29 = 0$ 5. c 6. a reta é secante 7. Tangente, secante e exterior. 8. a) -6 < k < 0 b) k = -6 ou k = 0 c) k < -6 ou k > 0
- (18) 1. (0, 2) e (2, 0) 2. São concêntricas 3. Tangentes no ponto (1, 1) 4. a) concêntricas; b) tangentes externas; c) secantes; d) exteriores
- (19) 1. b 2. e 3. a 4. a 5. d 6. c 7. d. 8. a 9. b; 10. c 11. d 12. e 13. b 14. e 15. d 16. b 17. c.

REFERÊNCIAS BIBLIOGRÁFICAS

Currículo Básico do PEIES. Universidade Federal de Santa Maria. **Programa** de Ingresso ao Ensino Superior. V. 5, Santa Maria, 1999

DECISAÔ PRÉ-VESTIBULAR. **Matemática.** Polígrafo – Santa Maria [s.n.], 1997, não paginado.

ESCOLA ESTADUAL DE 2º GRAU CILON ROSA. **Geometria analítica.** Polígrafo – Santa Maria [s.n.], 1999, 50 p.

GENTIL, N., SANTOS, C. A. M. dos, GRECO, A. C., GRECO, S. E., Matemática para o 2º grau. V. 3, Editora Ática, São Paulo, 1996.

GIOVANNI, J. R., BONJORNO, J. R. **Matemática.** V. 3, Editora FTD S.A., São Paulo, 1992.

IEZZI, G., DOLCE, O., DEGENSZAJN, D., PÉRIGO, R. **Matemática.** Volume Único, Editora Atual, São Paulo, 2002.

LIMA, E. L., CARVALHO, P. C. P., MORGADO, A. C. **A Matemática do Ensino Médio.** V. 2, SBM, Rio de Janeiro, 2001.

SILVA, J. D., FERNANDES, V. dos S., MABELINI, O. D. **Matemática: Novo Ensino Médio – Volúme Único Curso Completo.** Sistema de Ensino IPEP, São Paulo, 2002.

TIZZIOTI, José Guilherme. **Matemática: programa completo: 2º grau, vestibular.** Ática, São Paulo, 1982.