Institution Oregon State University

Vehicle Properties			
Total Length (in)	109		
Diameter (in)	6.25		
Gross Lift Off Weigh (lb)	62		
Airframe Material(s) Carbon Fiber/fiber			
Fin Material and Thickness (in)	Carbon Fiber 0.25		
Coupler Length(s)/Shoulder Length(s) (in) 15/6.5			

Motor Properties			
Motor Brand/Designation	AeroTech L2200G		
Max/Average Thrust (lb)	697/504		
Total Impulse (lbf-s)	1147		
Mass Before/After Burn (lb)	10.5/4.93		
Liftoff Thrust (lb)	557		
Motor Retention Method	Bolted Retaining Ring		

Stability Analysis				
Center of Pressure (in. from nose)	81.13			
Center of Gravity (in. from nose)	62.04			
Static Stability Margin (on pad)	2.98			
Static Stability Margin (at rail exit)	3.04			
Thrust-to-Weight Ratio	11.4			
Rail Size/Type and Length (in)	1515/180			
Rail Exit Velocity (ft/s)	90.1			

Ascent Analysis			
Maximum Velocity (ft/s)	541		
Maximum Mach Number	0.49		
Maximum Acceleration (ft/s^2)	346		
Target Apogee (ft)	4000		
Predicted Apogee (From Sim.) (ft)	4427		

Recovery System Properties - Overall			
Total Descent Time (s) 85.4			
Total Drift in 20 mph winds (ft) 2400			

Recovery System Properties - Energetics			
Ejection System Energetics (ex	Black Powder		
Energetics Mass - Drogue	Primary	1.9 g	
Chute (grams)	Backup	3.8 g	
Energetics Mass - Main Chute (grams)	Primary	4.8 g	
	Backup	9.6 g	
Energetics Mass - Other	Primary	N/A	
(grams) - If Applicable	Backup	N/A	

Milestone	CDR
-----------	-----

Payload Deployment		
Location: Air or Ground (if applicable) Ground		
Altitude of Deployment (if applicable)	0 ft AGL	

Recovery System Properties - Recovery Electronics			
Primary Altimeter Make	e/Model	Missile Works RRC3 Altimete	
Secondary Altimeter Ma	ke/Model	TE MS5038 - Avionics	
Other Altimeters (if applicable)		TE MS5038 - BEAVS	
Rocket Locator (Make/Model)		ublox SAM-M8Q -	
Additional Locators (if applicable)		ublox SAM-M8Q -	
Transmitting Frequencies (all payload)	- vehicle and	***Required by CDR*** (Complete on pages 3 and 4)	
Pad Stay Time (Launch Cor	figuration)	10 hr	
Describe Redundancy Plan (batteries, switches, etc.)	The avionics bay will have additional batteries for twice the required time with backups in BEAVS.		

Recovery System Properties - Drogue Parachute				
Manufacturer/Model		Fruity Chutes Eliiptical		
Size o	or Diameter (in	or ft)	18 in	
Main Altim	neter Deployme	ent Setting	4000ft	
Backup Alti	meter Deploym	ent Setting	39)50ft
Velocity at Deployment (ft/s)		:	1.7	
Terminal Velocity (ft/s)		136		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1in flat Nylon Strap		
Recovery Harness Length (ft)		ngth (ft) 33ft		
Harness/Airframe Interfaces		Eye bolts		
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy (Ft- 36.53 1.08		36.67	N/A	

Recovery System Properties - Main Parachute				
Manufacturer/Model		Fruitychutes		
Size o	or Diameter (in	or ft)	12ft	
Main Altime	ter Deploymen	t Setting (ft)	600	
Backup Altimeter Deployment Setting (ft)		5	500	
Velocity at Deployment (ft/s)		136		
Terminal Velocity (ft/s)		532		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1in flat Nylon strap		
Recovery Harness Length (ft)		15ft		
Harness/Airframe Interfaces Eyeb		bolts and butterfly knot		
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy (Ft- lbs)	36.53	1.08	36.67	N/A

Institution	Oregon State University	Milestone	CDR
	Payload		
	Overv	view	
Payload 1 (official payload)	The payload is retained in the fore section of the airframe by a lead screw so from the airframe. Ground operations will then be performed by a rover expandable wheels to navigate. The wheels collapse to a stowed diameter of from the airframe. At this point a carbon fiber tail will unfurl. This mechanical The rover then uses a plow styled collection system, powered by a leadscrew itself is comprised of a laser cut wooden chassis, manual name of the payload strengths.	styled ejection system. This system or r styled system. The rover utilizes a of 6.25 in. in the airframe, then exp al motion is used to switch a relay t w linear actuator to collect and stor	bi-axial dual motor drivetrain, and band to a 10 in. diameter once ejected turning on the rover electronic system. re the simulated ice sample. The rover
	Overv	riew	
Payload 2 (non-scored payload)			
	Test Plans, Status, and	Results	
Ejection Charge Tests	Subscale black powder ejection charge tests were conducted, and showed th the main parachute in their respective tests. Therefore the subscale drogue test full scale drogue and full scale main parachute deployments, however, delivered, and the nomex black.	and subscale main deployment tes , in order to do this, the full scale p	sts were successful. The next step is to
Sub-scale Test Flights	The subscale test flight took place under ideal conditions, having a clear sk correction as per the RSO instructions. The launch vehicle left the rail acce slightly above the launch site RSO table. Drogue deployed at apogee, wit programmed. The launch vehicle glided down to 600 ft AGL with the wind c Again with a noticeable deployment of the secondary backup charge as the vehicle then I	elerating straight up into the air and th a noticeable deployment of the s carrying it slightly past the launch ra vehicle passed approximately 500 ft	d coasting past motor burnout arcing secondary charge 1 second later as ail, and deployed the main parachute. t AGL. This was also exactly as designed
Vehicle Demon- stration Flights			
Payload Demon- stration Flights	The payload has not been presen	it on any of the subscale flights.	

nstitution	Oregon State University	Mi	ilestone	CDR
	ů ,			

Transmitter #1				
Location of transmitter:	Nose Cone			
Purpose of transmitter:	To track rocket altitude during flight			
Brand	HOPERF electronic	RF Output Power (mW)	100mW	
Model	RFM95	Specific Frequency used by team (MHz)	915	
Handshake or frequency hopping? (explain)	Yes, to ensure that payload is not ejected prematurely. It will involve handshakes and acknowledgement.			
Distance to closest e-match or altimeter (in)	38.95			
Description of shielding plan:	It will be separated by a bulk head and will be surrounded by a ground plane.			

	Transmitte	r #2		
Location of transmitter:	Payload Bay			
Purpose of transmitter:	Ejection of Payload			
Brand	DIGI	RF Output Power (mW)	100mW	
Model	XBee Pro XSC SC3B	Specific Frequency used by team (MHz)	915	
Handshake or frequency hopping? (explain)	Handshake to verify correct reception of data.			
Distance to closest e-match or altimeter (in)	30			
Description of shielding plan:	It will be shielded by a bulk head and surrounded by the ground plane between itself and the altimeters.			

	Transmitte	r #3		
Location of transmitter:	Rover			
Purpose of transmitter:	Rover Control			
Brand	DIGI	RF Output Power (mW)	100mW	
Model	XBee Pro XSC SC3B	Specific Frequency used by team (MHz)	915	
Handshake or frequency hopping? (explain)	Handshake to verify correct reception of data.			
Distance to closest e-match or altimeter (in)	38.95			
Description of shielding plan:	It will be off until the Payload is ejected from the rocket. It will also be surrounded by a ground plane			

Transmitter #4			
Location of transmitter:			
Purpose of transmitter:			
Brand	RF Output Power (mW)		
Model	Specific Frequency used by team (MHz)		
Handshake or frequency hopping? (explain)	•		
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			
Description of shielding plan:			

Institution Oregon	State University	Milestone CDR	
	Transmitte	#5	
Location of transmitter:			
Purpose of transmitter:		<u> </u>	
Brand Model		RF Output Power (mW) Specific Frequency used by team (MHz)	
Handshake or frequency hopping? (explain)		Specific Frequency used by team (Minz)	
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			
Description of shielding plan.			
	Transmitte	#6	
Location of transmitter:			
Purpose of transmitter:			
Brand		RF Output Power (mW)	
Model		Specific Frequency used by team (MHz)	
Handshake or frequency hopping? (explain)			
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			
	A 1 191 1 0		
	Additional Com	iments	