TMA-316

B. TECH. (THIRD SEMESTER) END SEMESTER

EXAMINATION, Dec., 2023

DISCRETE MATHEMATICAL STRUCTURES
AND COMBINATORICS

Time: Three Hours

Maximum Marks: 100

Note: (i) All questions are compulsory.

- (ii) Answer any two sub-questions among (a), (b) and (c) in each main question.
- (iii) Total marks in each main question are twenty.
- (iv) Each sub-question carries 10 marks.
- 1. (a) Define transitive closure of relation. Let $A = \{1,2,3\}$ and $R = \{(1,2),(2,3),(3,1)\}$. Find the transitive closure of R using Warshall's algorithm. (CO1)

- (b) Define a Lattice. Give an example of an infinite lattice with: (CO1)
 - (i) neither a least nor a greatest element.
 - (ii) a least but not a greatest element.
 - (iii) a greatest but not a least element.
 - (iv) both a least and a greatest element.
- (c) Let $f: R \to R$ and $g: R \to R$, where R is the set of real numbers. Find f o g and g o f, where $f(x) = x^2$ and g(x) = x + 4. State whether functions are injective, surjective of bijective. (CO1)
- 2. (a) In a bolt factory, three machines M₁, M₂, and M₃ manufacture 2000, 2500, and 4000 bolts every day. Of their output 3%, 4%, and 2.5% are defective bolts. One of the bolts is drawn very randomly from a day's production and is found to be defective. What is the probability that it was produced by machine M₂? (CO2)

- (b) A die is thrown 6 times. If "getting an odd number" is a "success". What is the probability of: (CO2)
 - (i) 5 successes
 - (ii) at least 5 successes
 - (iii) at most 5 successes
- (c) A random variable has the following probability distribution: (CO2)

x	P (x)
4	0.1
5	0.3
6	0.4
. 8	0.2

Find the expectation and Standard Deviation of random variable.

3. (a) Define a valid argument. Check the validity of the following argument: If I take breakfast, then I go to school. I do not take breakfast. Therefore, I do not go to school. (CO3)

- (b) Explain quantifiers. Symbolize the following sentence using (i) universe of discourse and (ii) without universe of discourse: (CO3)
 - (1) All states in India are not highly populated.
 - (2) Some students are tall but not healthy.
- (c) Using mathematical induction prove that $6^{n+2} + 7^{2n+1}$ is divisible by 43 for each positive integer n. (CO3)
- 4. (a) Consider the set Q of rational numbers, and let * be the operation on Q defined by a * b = ab/2. Check whether (Q, *) is an abelian group? (CO4)
 - (b) Find the solution of the recurrence relation: (CO4)

$$a_n + 2a_{n-1} - 3a_{n-2} = 2^n$$

(c) Define a cyclic group. If G is a cyclic group, then prove that G has exactly two generators. (CO4)

- 5. (a) Define a connected graph. A disconnected simple graph G (without self-loops and parallel edges) with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges. (CO5)
 - (b) Prove that the minimum height of a full binary tree with n vertices is $\left[\log_2(n+1)-1\right]$, where [x] is the smallest integer greater than or equal to x. (CO5)
 - (c) Define Euler and Hamiltonian Graphs and give the example of graph: (CO5)
 - (i) Euler but not Hamiltonian
 - (ii) Hamiltonian but not Euler
 - (iii) Both Euler and Hamiltonian