## 3міст

| 1. Bcmyn                                                                                           | 2 |
|----------------------------------------------------------------------------------------------------|---|
| 2. Синтез автомата                                                                                 | 2 |
| 2.1 Структурний синтез автомату                                                                    | 2 |
| 3. Синтез комбінаційних схем                                                                       | 3 |
| 3.1 Представлення функції f4 в канонічній формі алгебри Буля                                       | 7 |
| 3.2 Представлення функції f4 в канонічній формі алгебри Шеффера                                    | 7 |
| 3.3 Представлення функції f4 в канонічній формі алгебри Пірса                                      | 7 |
| 3.4 Представлення функції f4 в канонічній формі алгебри Жегалкіна                                  | 3 |
| 3.5 Визначення належності функції f4 до п'яти чудових класів 8                                     | 3 |
| 3.6 Мінімізація функції f4 методом невизначених коефіцієнтів                                       | Э |
| 3.7 Мінімізація функції f4 методом Квайна — Мак-Класкі                                             | 7 |
| 3.8 Мінімізація функції f4 методом Вейча                                                           | J |
| 3.9. Спільна мінімізація функцій f1, f2, f3 методом Квайна—Мак-Класкі10                            | J |
| 3.10 Одержання операторних форм для реалізації на ПЛМ1                                             | 3 |
| 3.10.1 Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБO1    |   |
| 3.10.2 Розглянемо програмування ПЛМ для системи перемикальних функцій що подана в формі I/AБO-HE14 |   |
| 4. Висновок                                                                                        | 5 |
| 5. Список літератури                                                                               | 5 |
|                                                                                                    |   |

| Арк. | № докум.          | Підпис                           | Дата                     |
|------|-------------------|----------------------------------|--------------------------|
| δ.   | Бровченко А.В.    |                                  |                          |
| ip.  |                   |                                  |                          |
|      |                   |                                  |                          |
| нтр. |                   |                                  |                          |
| рд.  | Жабін В.І.        |                                  |                          |
| ֡    | δ.<br>ip.<br>amp. | б. Бровченко А.В.<br>ip.<br>нтр. | б. Бровченко А.В.<br>ip. |

*IAЛЦ.006403.004 ПЗ* 

Курсова робота Пояснювальна записка

| НТУУ «КПІ» | Ф/0 Т |
|------------|-------|
| ΓΡΥΠΑ ΙΩ-  | -64   |

Аркушів

## 1. Bcmyn

На основі «Технічного завдання ІАЛЦ.006403.002 ТЗ» виконуємо синтез автомата та синтез комбінаційних схем. Умова курсової роботи вимагає представлення функції f4 в канонічних формах алгебри Буля, Жегалкіна, Пірса і Шефера.

#### 2. Синтез автомата

#### 2.1 Структурний синтез автомату

За графічною схемою алгоритму виконаємо розмітку станів автомата. Зауважимо, що автомат циклічний.



Рисунок 1 - Розмітка станів автомата Мура

Згідно з блок-схемою алгоритму (рисунок 1) побудуємо граф автомата Мура (рисунок 2), виконаємо кодування станів автомата.

|      |      |          |        |      |                           | Арк |
|------|------|----------|--------|------|---------------------------|-----|
|      |      |          |        |      | <i>IAЛЦ.006403.004 ПЗ</i> | 2   |
| Змн. | Арк. | № докум. | Підпис | Дата | •                         |     |



Рисунок 2 - Граф автомата

Для синтезу логічної схеми автомата необхідно виконати синтез функцій збудження тригерів та вихідних функцій автомата. Кількість станів автомата дорівнює 6, кількість тригерів знайдемо за формулою K>= ]log2N[ = ]log26[, звідки K = 3. Так як для побудови даного автомата необхідно використовувати Т-тригери, напишемо таблицю переходів цього типу тригерів (рисунок 3).



Рисунок 3 - Таблиця переходів ЈК-тригера

На основі графа автомата (рисунок 2) складемо структурну таблицю автомата (таблицю 1).

|     |        |          |        |      | IAЛЦ.006403.004 ПЗ |  |
|-----|--------|----------|--------|------|--------------------|--|
| Змн | . Арк. | № докум. | Підпис | Дата |                    |  |

Таблиця 1 — Структурна таблиця автомата

| q <sub>1</sub> q <sub>2</sub> q <sub>3</sub> q <sub>4</sub> <sup>†</sup> | q <sub>1</sub> q <sub>2</sub> q <sub>3</sub> q <sub>4</sub> <sup>†+1</sup> | x <sub>1</sub> x <sub>2</sub> | y <sub>1</sub> y <sub>2</sub> y <sub>3</sub> y <sub>4</sub> | J <sub>1</sub> K <sub>1</sub> | J <sub>2</sub> K <sub>2</sub> | J <sub>3</sub> K <sub>3</sub> | J <sub>4</sub> K <sub>4</sub> |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 0000                                                                     | 0001                                                                       |                               | 0000                                                        | 0-                            | 0-                            | 0-                            | 1-                            |
| 0001                                                                     | 0001                                                                       | 0-                            | 1000                                                        | 0-                            | 0-                            | 0-                            | -0                            |
| 0001                                                                     | 0010                                                                       | 1–                            | 1000                                                        | 0-                            | 0-                            | 1-                            | -1                            |
| 0010                                                                     | 0011                                                                       | -0                            | 0010                                                        | 0-                            | 0-                            | -0                            | 1–                            |
| 0010                                                                     | 0101                                                                       | -1                            | 0010                                                        | 0-                            | 1-                            | -1                            | 1–                            |
| 0011                                                                     | 0100                                                                       |                               | 0100                                                        | 0-                            | 1-                            | -1                            | -1                            |
| 0100                                                                     | 0011                                                                       | -0                            | 0100                                                        | 0-                            | -1                            | 1-                            | 1–                            |
| 0100                                                                     | 0101                                                                       | -1                            | 0100                                                        | 0-                            | -0                            | 0-                            | 1-                            |
| 0101                                                                     | 0110                                                                       |                               | 0001                                                        | 0-                            | -0                            | 1-                            | -1                            |
| 0110                                                                     | 0111                                                                       |                               | 0100                                                        | 0-                            | -0                            | -0                            | 1–                            |
| 0111                                                                     | 0000                                                                       | 0-                            | 0100                                                        | 0-                            | -1                            | -1                            | -1                            |
| 0111                                                                     | 1000                                                                       | 1–                            | 0100                                                        | 1–                            | -1                            | -1                            | -1                            |
| 1000                                                                     | 0000                                                                       |                               | 1000                                                        | -1                            | 0-                            | 0-                            | 0-                            |

На основі структурної таблиці автомата виконаємо синтез комбінаційних схем для вихідних сигналів і функцій збудження тригерів. Аргументами функцій збудження тригерів та вихідних сигналів є коди початкових станів та вхідні сигнали. Виконаємо мінімізацію функцій методом Вейча.

Операторні представлення функцій сформовані враховуючи елементний базис {31, 2A60, HE}.



Рисунок 4 - Діаграми Вейча для функцій збудження тригерів

|      |      |          |        |      |                           | Ар |
|------|------|----------|--------|------|---------------------------|----|
|      |      |          |        |      | <i>IAЛЦ.006403.004 ПЗ</i> | 1  |
| Змн. | Арк. | № докум. | Підпис | Дата |                           | 4  |



| $J_1 = (\overline{q}_1 q_2 q_3) q_4 x_1$                            | $K_1 = q_1$                                                    |
|---------------------------------------------------------------------|----------------------------------------------------------------|
| $J_2 = q_3 q_4 v q_3 x_2$                                           | $K_2 = q_3 q_4 v \overline{q}_2 \overline{q}_3 \overline{q}_4$ |
| $J_3 = (\overline{x}_2 q_2 \ v \ \overline{x}_1 q_4) \ v \ q_2 q_4$ | $K_3 = q_4  v \ \overline{q}_2 x_2$                            |
| $J_4 = \overline{q}_1$                                              | $K_4 = (x_1 \ v \ q_2) v \ q_3$                                |

| Y1  | Q | 2 |   |   |    |
|-----|---|---|---|---|----|
| 0.1 | ı | I | I | 1 |    |
| ď   | - | - | - | - | £D |
|     | 0 | 0 | 0 | 0 | ω  |
|     | 0 | 0 | 1 | 0 |    |
|     |   | Q | 4 |   | •  |

| Y1 | Q | 2 |   |   |    |
|----|---|---|---|---|----|
| ۵1 | ı | I | ı | 0 |    |
| O  | - | - | - | - | ٤D |
|    | 1 | 1 | 1 | 0 | ω  |
|    | 1 | 0 | 0 | 0 |    |
|    |   | Q | 4 |   |    |

| Y1       | Q | 2 |   |   |    |   |
|----------|---|---|---|---|----|---|
| 0.1      | ı | I | I | 0 |    |   |
| <u> </u> | ı | ı | ı | ı | ٤D |   |
|          | 0 | 0 | 0 | 1 | 3  |   |
|          | 0 | 0 | 0 | 0 |    | - |
|          |   | Q | 4 |   | •  |   |

| Y1 | Q | 2 |   |   |    |
|----|---|---|---|---|----|
| ۵1 | ı | I | ı | 0 |    |
| 0  | ı | 1 | ı | 1 | ٤D |
|    | 0 | 0 | 0 | 0 | ω  |
|    | 0 | 1 | 0 | 0 |    |
|    |   | Q | 4 |   |    |

Рисунок 5 - Діаграми Вейча для функцій управляючих сигналів

$$y_1 = \overline{q}_1 \overline{q}_3 q_4 \quad v \quad q_1$$
  $y_3 = \overline{q}_2 q_3 q_4$   
 $y_2 = q_2 \overline{q}_4 \quad v \quad q_3 q_4$   $y_4 = q_2 \overline{q}_3 q_4$ 

Даних достатьо для побудови комбінаційних схем функцій збудження тригерів та функцій сигналів виходу, товто і всієї комбінаційної схеми. Автомат будуємо на Т-тригерах. Автомат є синхронним, так як його ровоту синхронізує генератор, а Т-тригер керується перепадом синхросигналу. Схема даного автомату виконана згідно з єдиною системою конструкторської документації (ЕСКД) і наведена у документі «Автомат керуючий. Схема електрична функціональна ІАЛЦ.006403.003 Е2».

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

#### 3. Синтез комбінаційних схем

#### 3.1 Представлення функції f4 в канонічній формі алгебри Буля

В даній алгебрі визначені функції {I, АБО, НЕ}. Нормальними канонічними формами є ДДНФ (Досконала диз'юнктивна нормальна форма) та ДКНФ (Досконала кон'юнктивна нормальна форма).

$$\begin{split} \mathsf{F}_{\Pi\Pi\mathsf{H}\Phi} = & (\overline{\mathsf{X}}_{4} \overline{\mathsf{X}}_{3} \overline{\mathsf{X}}_{2} \mathsf{X}_{1}) \ \mathsf{v} \ (\mathsf{X}_{4} \overline{\mathsf{X}}_{3} \overline{\mathsf{X}}_{2} \mathsf{X}_{1}) \ \mathsf{v} \ (\mathsf{X}_{4} \overline{\mathsf{X}}_{3} \mathsf{X}_{2} \mathsf{X}_{1}) \ \mathsf{v} \ (\mathsf{X}_{4} \mathsf{X}_{3} \overline{\mathsf{X}}_{2} \overline{\mathsf{X}}_{1}) \ \mathsf{v} \ (\mathsf{X}_{4} \mathsf{X}_{3} \overline{\mathsf{X}}_{2} \overline{\mathsf{X}}_{1}) \ \mathsf{v} \ (\mathsf{X}_{4} \mathsf{X}_{3} \mathsf{X}_{2} \mathsf{X}_{1}) \\ & \mathsf{v} \ (\mathsf{X}_{4} \mathsf{X}_{3} \mathsf{X}_{2} \overline{\mathsf{X}}_{1}) \bullet (\mathsf{X}_{4} \mathsf{v} \mathsf{X}_{3} \mathsf{x}_{2} \mathsf{X}_{1}) \bullet (\mathsf{X}_{4} \mathsf{v} \overline{\mathsf{X}}_{3} \mathsf{v} \mathsf{X}_{2} \mathsf{v} \mathsf{X}_{1}) \bullet (\mathsf{X}_{4} \mathsf{v} \mathsf{X}_{3} \mathsf{v} \mathsf{X}_{2} \mathsf{v} \mathsf{X}_{1}) \end{split}$$

## 3.2 Представлення функції f4 в канонічній формі алгебри Шеффера

В даній алгебрі визначені функції {I-HE}. Канонічною формою алгебри Шеффера є штрих Шеффера.

$$F_{4} = \overline{(\overline{X}_{4}\overline{X}_{3}\overline{X}_{2}X_{1}) \ v \ (X_{4}\overline{X}_{3}\overline{X}_{2}X_{1}) \ v \ (X_{4}\overline{X}_{3}X_{2}X_{1}) \ v \ (X_{4}X_{3}\overline{X}_{2}\overline{X}_{1}) \ v \ (X_{4}X_{3}\overline{X}_{2}\overline{X}_{1}) \ v \ (X_{4}X_{3}\overline{X}_{2}\overline{X}_{1}) \ v \ (X_{4}X_{3}\overline{X}_{2}X_{1}) \ = \\ = (\overline{X}_{4}/\overline{X}_{3}/\overline{X}_{2}X_{1}) \ / \ (X_{4}/\overline{X}_{3}/\overline{X}_{2}/X_{1}) \ / \ (X_{4}/\overline{X}_{3}/\overline{X}_{2}/X_{1}) \ / \ (X_{4}/\overline{X}_{3}/\overline{X}_{2}/\overline{X}_{1}) \ / \ (X_{4}/X_{3}/\overline{X}_{2}/\overline{X}_{1}) \ / \ (X_{4}/X_{3}/\overline{X}_{2}/\overline{X}_{1}) \ / \ (X_{4}/X_{3}/\overline{X}_{2}/\overline{X}_{1}) \ / \ (X_{4}/X_{3}/\overline{X}_{2}/\overline{X}_{1}) \ / \ (X_{4}/(X_{3}/\overline{X}_{3})/(X_{2}/\overline{X}_{2})/\overline{X}_{1}) \ / \ (X_{4}/(X_{3}/\overline{X}_{3})/(X_{2}/\overline{X}_{2})/\overline{X}_{1}) \ / \ (X_{4}/(X_{3}/\overline{X}_{2})/\overline{X}_{1})/(X_{4}/X_{3}/\overline{X}_{2}/\overline{X}_{1}) \ / \ (X_{4}/X_{3}/(X_{2}/\overline{X}_{2})/(X_{1}/\overline{X}_{1})) \ / \ (X_{4}/X_{3}/(X_{2}/\overline{X}_{2})/\overline{X}_{1}) \ / \$$

## 3.3 Представлення функції f4 в канонічній формі алгебри Пірса

В даній алгебрі визначені функції {АБО-НЕ}. Канонічною формою алгебри Пірса є стрілка Пірса.

$$F_{4} = \overline{(X_{4} \vee X_{3} \vee \overline{X}_{2} \vee X_{1}) \bullet (X_{4} \vee X_{3} \vee \overline{X}_{2} \vee \overline{X}_{1}) \bullet (X_{4} \vee \overline{X}_{3} \vee X_{2} \vee X_{1}) \bullet (X_{4} \vee \overline{X}_{3} \vee X_{2} \vee \overline{X}_{1}) \bullet}} \bullet \overline{(X_{4} \vee \overline{X}_{3} \vee \overline{X}_{2} \vee X_{1}) \bullet (X_{4} \vee \overline{X}_{3} \vee \overline{X}_{2} \vee \overline{X}_{1}) \bullet (\overline{X}_{4} \vee X_{3} \vee X_{2} \vee X_{1}) \bullet}} \bullet \overline{(\overline{X}_{4} \vee X_{3} \vee \overline{X}_{2} \vee X_{1}) \bullet (X_{4} \vee \overline{X}_{3} \vee \overline{X}_{2} \vee \overline{X}_{1}) \bullet}} =$$

$$= (X_{4} \uparrow X_{3} \uparrow \overline{X}_{2} \uparrow X_{1}) \uparrow (X_{4} \uparrow X_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow (X_{4} \uparrow \overline{X}_{3} \uparrow X_{2} \uparrow \overline{X}_{1}) \uparrow (\overline{X}_{4} \uparrow X_{3} \uparrow X_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow X_{1}) \uparrow (X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_{3} \uparrow \overline{X}_{2} \uparrow \overline{X}_{1}) \uparrow} \bullet \overline{(X_{4} \uparrow \overline{X}_$$

| 3ми | 100 | NO BOKUM | Підпис | Пата |
|-----|-----|----------|--------|------|

$$\uparrow (\overline{X}_{4} \uparrow X_{3} \uparrow \overline{X}_{2} \uparrow X_{1}) \uparrow (X_{4} \uparrow X_{3} \uparrow X_{2} \uparrow X_{1}) =$$

$$= (X_{4} \uparrow X_{3} \uparrow (X_{2} \uparrow X_{2}) \uparrow X_{1}) \uparrow (X_{4} \uparrow X_{3} \uparrow (X_{2} \uparrow X_{2}) \uparrow (X_{1} \uparrow X_{1})) \uparrow (X_{4} \uparrow (X_{3} \uparrow X_{3}) \uparrow X_{2} \uparrow X_{1}) \uparrow$$

$$\uparrow (X_{4} \uparrow (X_{3} \uparrow X_{3}) \uparrow X_{2} \uparrow (X_{1} \uparrow X_{1})) \uparrow (X_{4} \uparrow (X_{3} \uparrow X_{3}) \uparrow (X_{2} \uparrow X_{2}) \uparrow X_{1}) \uparrow$$

$$\uparrow (X_{4} \uparrow (X_{3} \uparrow X_{3}) \uparrow (X_{2} \uparrow X_{2}) \uparrow (X_{1} \uparrow X_{1})) \uparrow ((X_{4} \uparrow X_{4}) \uparrow X_{3} \uparrow X_{2} \uparrow X_{1}) \uparrow$$

$$\uparrow ((X_{4} \uparrow X_{4}) \uparrow X_{3} \uparrow (X_{2} \uparrow X_{2}) \uparrow X_{1}) \uparrow (X_{4} \uparrow X_{3} \uparrow X_{2} \uparrow X_{1})$$

#### 3.4 Представлення функції f4 в канонічній формі алгебри Жегалкіна

В даній алгебрі визначені функції {ВИКЛЮЧНЕ AБO, I, const 1}. Канонічною формою алгебри Жегалкіна є поліном Жегалкіна.

$$F_{4} = (\overline{X}_{4}\overline{X}_{3}\overline{X}_{2}X_{1}) \vee (X_{4}\overline{X}_{3}\overline{X}_{2}X_{1}) \vee (X_{4}\overline{X}_{3}X_{2}X_{1}) \vee (X_{4}X_{3}\overline{X}_{2}\overline{X}_{1}) \vee (X_{4}X_{3}\overline{X}_{2}\overline{X}_{1}) \vee (X_{4}X_{3}X_{2}\overline{X}_{1}) \vee (X_{4}X_{3}X_{2}X_{1}) =$$

$$= (\overline{X}_{4}\overline{X}_{3}\overline{X}_{2}X_{1}) \oplus (X_{4}\overline{X}_{3}\overline{X}_{2}X_{1}) \oplus (X_{4}\overline{X}_{3}X_{2}X_{1}) \oplus (X_{4}X_{3}\overline{X}_{2}\overline{X}_{1}) \oplus (X_{4}X_{3}\overline{X}_{2}X_{1}) \oplus (X_{4}X_{3}X_{2}X_{1}) \oplus (X_{4}X_{3}X_{2}X_{1}) =$$

$$= ((X_{4} \oplus 1)(X_{3} \oplus 1)(X_{2} \oplus 1)X_{1}) \oplus (X_{4}(X_{3} \oplus 1)(X_{2} \oplus 1)X_{1}) \oplus (X_{4}(X_{3} \oplus 1)X_{2}X_{1}) \oplus \\ \oplus (X_{4}X_{3}(X_{2} \oplus 1)(X_{1} \oplus 1)) \oplus (X_{4}X_{3}(X_{2} \oplus 1)X_{1}) \oplus \\ (X_{4}X_{3}X_{2}(X_{1} \oplus 1)) \oplus (X_{4}X_{3}X_{2}X_{1}) =$$

$$= X_1 \bigoplus X_3 X_1 \bigoplus X_2 X_1 \bigoplus X_3 X_2 X_1 \bigoplus X_4 X_2 X_1 \bigoplus X_4 X_3 \bigoplus X_4 X_3 X_2 X_1$$

## 3.5 Визначення належності функції f4 до n'яти чудових класів

- 1. Дана функція зберігає одиницю, f(1111) = 1;
- 2. Дана функція зберігає нуль, f(0000) = 0;
- 3. Дана функція не самодвоїста, f(0011) = 0; f(1100) = 1;
- 4. Дана функція не монотонна, f(0001) > f(0010);
- 5. Дана функція не лінійна, так як канонічна форма алгебри Жегалкіна не є лінійним поліномом.

На основі вищесказаного робимо висновок, що функція f4 належить першим двом i не належить останнім трьом передповним класам. Це можна узагальнити таблицею:

Таблиця 2 — Таблиця приналежності f4 до n'яти чудових класів

|                | K <sub>0</sub> | K <sub>1</sub> | Kc | K <sub>M</sub> | K <sub>Λ</sub> |
|----------------|----------------|----------------|----|----------------|----------------|
| F <sub>4</sub> | +              | +              | -  | -              | -              |

| Змн. | Арк. | № докум. | Підпис | Дата |  |
|------|------|----------|--------|------|--|

*IAЛЦ.006403.004* ПЗ

#### 3.6 Мінімізація функції f4 методом невизначених коефіцієнтів

Викреслимо ті рядки, на яких функція приймає нульові значення. Викреслимо вже знайдені нульові коефіцієнти в тих рядках таблиці, в яких залишилися імпліканти, що залишилися після виконання попередніх дій поглинають ті імпліканти, що розташовані справа від них.

Таблиця 3 — Таблиця невизначених коефіцієнтів

| X4       | X <sub>3</sub> | X <sub>2</sub> | X <sub>1</sub> | X <sub>4</sub> X <sub>3</sub> | X <sub>4</sub> X <sub>2</sub> | X <sub>4</sub> X <sub>1</sub> | X <sub>3</sub> X <sub>2</sub>                                                       | X <sub>3</sub> X <sub>1</sub> | $X_2X_1$                                                                            | $X_4X_3X_2$                            | X <sub>4</sub> X <sub>3</sub> X <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $X_4X_2X_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $X_3X_2X_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $X_4X_3X_2X_1$                         | Υ |
|----------|----------------|----------------|----------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|
| <b>X</b> | $\gg$          | $\nearrow$     | $\gg$          | $\nearrow$                    | $\nearrow$                    | $\nearrow$                    | $\nearrow$                                                                          | $\nearrow$                    | $\nearrow$                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )<br>)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 0 |
| <b>X</b> | <b>X</b>       | $\times$       | $\times$       | $\nearrow$                    | $\nearrow$                    | $\nearrow$                    | $\nearrow$                                                                          | $\nearrow$                    | $\nearrow$                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | 1 |
| <b>X</b> | <b>X</b>       | $\times$       | $\gg$          | $\nearrow$                    | $\nearrow$                    | $\nearrow$                    | $\nearrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\nearrow$                    | $\mathbb{X}$                                                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )#I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D940                                   | 0 |
| <b>X</b> | <b>X</b>       | $\times$       | $\times$       | $\nearrow$                    | $\nearrow$                    | $\nearrow$                    | $\nearrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\nearrow$                    | $\mathbb{X}$                                                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \(\)                                   | 0 |
| <b>X</b> | $\times$       | $\nearrow$     | $\gg$          | $\nearrow$                    | $\nearrow$                    | $\nearrow$                    | $\nearrow$                                                                          | $\mathbb{X}$                  | $\nearrow$                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D##0                                   | 0 |
| <b>X</b> | $\times$       | $\times$       | $\times$       | $\nearrow$                    | $\nearrow$                    | $\nearrow$                    | $\nearrow$                                                                          | $\times$                      | $\nearrow$                                                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | )<br>BHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \                                      | 0 |
| <b>X</b> | $\times$       | $\times$       | $\gg$          | $\nearrow$                    | $\nearrow$                    | $\nearrow$                    | $\times$                                                                            | $\mathbb{X}$                  | $\mathbb{X}$                                                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D##0                                   | 0 |
| <b>X</b> | $\times$       | $\times$       | $\times$       | $\nearrow$                    | $\nearrow$                    | $\nearrow$                    | $\times$                                                                            | $\times$                      | $\mathbb{X}$                                                                        |                                        | )<br>BHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )<br>BH(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \mathrew{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\\ \tex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\text{\tex |                                        | 0 |
| $\times$ | <b>X</b>       | $\nearrow$     | $\gg$          | $\nearrow$                    | $\nearrow$                    | $\mathbb{X}$                  | $\nearrow$                                                                          | $\nearrow$                    | $\nearrow$                                                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )<br>)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 0 |
| $\times$ | <b>X</b>       | $\varkappa$    | $\times$       | $\not \geqslant$              | $\nearrow$                    | 11                            | $\nearrow$                                                                          | $\nearrow$                    | $\nearrow$                                                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \                                      | 1 |
| $\times$ | <b>X</b>       | $\times$       | $\gg$          | $\not \succcurlyeq$           | $\times$                      | $\mathbb{X}$                  | $\nearrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\nearrow$                    | $\mathbb{X}$                                                                        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )#C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0 |
| $\times$ | <b>X</b>       | $\times$       | $\times$       | $\not \succcurlyeq$           | $\times$                      | 11                            | $\nearrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\nearrow$                    | $\mathbb{X}$                                                                        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \                                      | 1 |
| $\times$ | $\times$       | $\nearrow$     | $\gg$          | 11                            | $\nearrow$                    | $\mathbb{X}$                  | $\nearrow$                                                                          | $\mathbb{X}$                  | $\nearrow$                                                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1 |
| X        | $\times$       | <b>8</b>       | $\mathbb{X}$   | 11                            | $\nearrow$                    | 11                            | $\nearrow$                                                                          | XX                            | $\nearrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\nearrow\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1 |
| X        | $\times$       | $\times$       | <b>X</b>       | 11                            | XX                            | $\nearrow$                    | $\mathbb{X}$                                                                        | $\nearrow$                    | $\nearrow$                                                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1 |
| $\times$ | $\mathbb{X}$   | $\times$       | $\times$       | 11                            | $\nearrow$                    | 11                            | $\nearrow$                                                                          | $\nearrow$                    | $\nearrow$                                                                          | \mathrew{\pi}                          | \mathrew{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\tex{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\tet | \mathrew{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\\ \tex{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\text{\texi}\text{\text{\tex | \m\( \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1 |

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту:

Ядро = 
$$\{X_4X_3, \overline{X}_3\overline{X}_2X_1\}$$

$$F_4(MДН\Phi) = X_4X_1 v X_4X_3 v \overline{X}_3\overline{X}_2X_1$$

## 3.7 Мінімізація функції f4 методом Квайна — Мак-Класкі

Випишемо конституенти одиниці, поєднуючи набори у групи за кількістю одиниць. Виконуємо склеювання та формуємо групи, поєднуючи набори за розміщенням «Х».

$$K_0 = \begin{cases} 0001 \\ 1001 \\ 1100 \\ 1011 \\ 1101 \\ 1110 \\ 1111 \end{cases} \quad K_1 = \begin{cases} X001 \\ 1X01 \\ 1X11 \\ 10X1 \\ 11X0 \\ 11X1 \\ 111X \\ 111X \\ 110X \end{cases} \quad K_2 = \begin{cases} 11XX \\ 1XX1 \end{cases} \quad Z = \begin{cases} X001 \\ 10X1 \\ 11XX \\ 1XX1 \end{cases}$$

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

**Таблиця 4** — Таблиця покриття f4

|      | 0001 | 1001 | 1100 | 1011 | 1101 | 1110 | 1111 |
|------|------|------|------|------|------|------|------|
| 0001 | V    | V    |      |      |      |      |      |
| 10X1 |      | ٧    |      | ٧    |      |      |      |
| 11XX |      |      | ٧    |      |      | V    | V    |
| 1XX1 |      |      |      | ٧    | ٧    |      | V    |

Ядро = 
$$\{X_4X_3, \overline{X}_3\overline{X}_2X_1\}$$

$$F_4(MДH\Phi) = X_4X_1 v X_4X_3 v \overline{X}_3\overline{X}_2X_1$$

## 3.8 Мінімізація функції f4 методом Вейча



Рисунок 6 - Мінімізація функції f4 методом Вейча

## 3.9. Спільна мінімізація функцій f1, f2, f3 методом Квайна—Мак-Класкі

Виходячи з таблиці, записуємо комплекс кубів  $K_0$  набори на яких функція приймає значення «1» та «-», поєднуючи набори у групи за кількістю одиниць. Виконуємо всі попарні склеювання та отримуємо комплекси кубів  $K_1$ ,  $K_2$ .

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

| <i>IA/ILI.006403.004</i>                                                              | П.З |
|---------------------------------------------------------------------------------------|-----|
| $I \cap I \cap I \cup U \cup$ | 115 |

$$K_0 = \begin{cases} 0000\{1,2,3\} \\ 0001\{1,2\} \\ 0010\{1,2,3\} \\ 0100\{1,2,3\} \\ 0100\{1,3\} \\ 1000\{1\} \\ 0110\{1,2,3\} \\ 1010\{3\} \\ 1100\{1,2,3\} \\ 0111\{1,2,3\} \\ 1011\{1\} \\ 1101\{1\} \\ 1101\{1\} \\ 1101\{3\} \end{cases} \\ K_1 = \begin{cases} 0000\{1,2,3\} \\ 0110\{1,2,3\} \\ 0100\{1,2,3\} \\ 0110\{1,2,3\} \\ 0001\{1,2,3\} \\ 0110\{1,2,3\} \\ 0001\{1,2,3\} \\ 0110\{1,2,3\} \\ 0001\{1,2,3\} \\ 0000\{1,3\} \\ 0000\{1,3\} \\ 0000\{1,3\} \\ 0000\{1,3\} \\ 0000\{1,3\} \\ 0000\{1,3\} \\ 0000\{1,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 0000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2,3\} \\ 00000\{1,2$$

Для видалення надлишкових імплікант будуємо таблицю покриття

**Таблиця 5** — Таблиця покриття системи функцій

|             |      | F <sub>1</sub> |      |      |      |             |      |      |      |      | F    | 2    |      |      |      |      | F <sub>3</sub> |      |      |      |
|-------------|------|----------------|------|------|------|-------------|------|------|------|------|------|------|------|------|------|------|----------------|------|------|------|
|             | 0000 | 0001           | 0010 | 0110 | 1000 | 1011        | 1100 | 1101 | 1111 | 0000 | 0001 | 0010 | 1111 | 0000 | 0010 | 0100 | 0111           | 1010 | 1100 | 1111 |
| 1100{1,2,3} |      |                |      |      |      |             | ٧    |      |      |      |      |      |      |      |      | ٧    |                |      | ٧    |      |
| 000X{1,2}   | ٧    | ٧              |      |      |      |             |      |      |      | ٧    | ٧    |      |      |      |      |      |                |      |      |      |
| 00X0{1,2,3} | ٧    |                | ٧    |      |      |             |      |      |      | ٧    |      | ٧    |      | ٧    | ٧    |      |                |      |      |      |
| 110X{1}     |      |                |      |      |      |             | ٧    | ٧    |      |      |      |      |      |      |      |      |                |      |      |      |
| 11X1{1}     |      |                |      |      |      |             |      | ٧    | ٧    |      |      |      |      |      |      |      |                |      |      |      |
| 0X10{1,2,3} |      |                | ٧    | ٧    |      |             |      |      |      |      |      | ٧    |      |      | ٧    |      |                |      |      |      |
| X100{1,3}   |      |                |      |      |      |             | ٧    |      |      |      |      |      |      |      |      | ٧    |                |      | ٧    |      |
| 011X{1,2,3} |      |                |      | ٧    |      |             |      |      |      |      |      |      |      |      |      |      | ٧              |      |      |      |
| X111{1,2,3} |      |                |      |      |      |             |      |      | ٧    |      |      |      | ٧    |      |      |      | ٧              |      |      | ٧    |
| 1X11{1}     |      |                |      |      |      | <b>&gt;</b> |      |      | ٧    |      |      |      |      |      |      |      |                |      |      |      |
| 0XX0{1,3}   | ٧    |                | ٧    | ٧    |      |             |      |      |      |      |      |      |      | ٧    | ٧    | ٧    |                |      |      |      |
| XX00{1}     | ٧    |                |      |      | ٧    |             | ٧    |      |      |      |      |      |      |      |      |      |                |      |      |      |
| X0X0{3}     |      |                |      |      |      |             |      |      |      |      |      |      |      | ٧    | ٧    |      |                | ٧    |      |      |

На підставі таблиці покриття запишемо МДНФ перемикальних функцій:

$$F_1(MДH\Phi) = \overline{X}_4 \overline{X}_3 \overline{X}_2 \ V \ X_4 X_3 \overline{X}_2 \ V \ \overline{X}_4 X_2 \overline{X}_1 \ V \ X_4 X_2 X_1 \ V \ \overline{X}_2 \overline{X}_1$$

$$F_2(MДH\Phi) = \overline{X}_4 \overline{X}_3 \overline{X}_2 \lor \overline{X}_4 X_2 \overline{X}_1 \lor X_3 X_2 X_1$$

$$F_3(MДH\Phi) = X_3\overline{X}_2\overline{X}_1 V X_3X_2X_1 V \overline{X}_3\overline{X}_1$$

Аналогічно виконаємо мінімізацію заперечень функцій.

|      |      |          |        |      |                     | Арк. |
|------|------|----------|--------|------|---------------------|------|
|      |      |          |        |      | IA/IЦ.006403.004 Π3 | 11   |
| Змн. | Арк. | № докум. | Підпис | Дата |                     |      |

0011{1,2,3} 0101{1,2,3} 1001{1,2,3} 010X{1,2} 011X{2} 1010{1,2} 0001{3} 101X{2} 1100{2} 0100{1,2} 100X{2,3} 1110{1,2,3} 1000{2,3} 01X0{2} 010X{1,2} 0011{1,2,3} 01X1{1,2} 101X{2} 0101{1,2,3} 10X1{2,3} 100X{2,3} 0110{2,3} (X0X1{3} 00X1{3} 01X1{1,2}  $K_0 = \langle$ 1001{1,2,3} K<sub>1</sub>= ·  $K_2 = \{XX01\{3\}\}$ Z=· 0X11{1,2} 10X1{2,3} 1010{1,2} (01XX{2}  $1X01{2,3}$ 0X11{1,2} 1100{2} 1X10{1,2} 1X10{1,2} 0111{1,2} 0X01{3} 1X01{2,3} 1011{2,3} X110{2,3}  $X110{2,3}$ 1101{2,3} X101{2,3} X101{2,3} 1110{1,2,3} X001{3} X011{2,3 X011{2,3} X0X1{3} XX01{3} 01XX{2}

**Таблиця 6** — Таблиця покриття заперечення системи функцій

|             |      | He F <sub>1</sub> |      |      |      |      |      |      | Н    | e F  | 2    |      |      |      | He F₃ |      |      |      |      |      |      |      |
|-------------|------|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|
|             | 0011 | 0101              | 1001 | 1010 | 1110 | 0011 | 0100 | 0101 | 1000 | 1001 | 1010 | 1011 | 1101 | 1110 | 0001  | 0011 | 0101 | 1000 | 1001 | 1011 | 1101 | 1110 |
| X0X1(3)     |      |                   |      |      |      |      |      |      |      |      |      |      |      |      |       | ٧    |      |      | ٧    | ٧    |      |      |
| XX01(3)     |      |                   |      |      |      |      |      |      |      |      |      |      |      |      | ٧     |      | ٧    |      | ٧    |      | ٧    |      |
| 01XX(2)     |      |                   |      |      |      |      | ٧    | ٧    |      |      |      |      |      |      |       |      |      |      |      |      |      |      |
| 010X(1,2)   |      | ٧                 |      |      |      |      | ٧    | ٧    |      |      |      |      |      |      |       |      |      |      |      |      |      |      |
| 0X11(1,2)   | ٧    |                   |      |      |      | ٧    |      |      |      |      |      |      |      |      |       |      |      |      |      |      |      |      |
| X011(2,3)   |      |                   |      |      |      | ٧    |      |      |      |      |      | ٧    |      |      |       | ٧    |      |      |      | ٧    |      |      |
| 01X1(1,2)   |      | ٧                 |      |      |      |      |      | ٧    |      |      |      |      |      |      |       |      |      |      |      |      |      |      |
| X101(2,3)   |      |                   |      |      |      |      |      | ٧    |      |      |      |      | ٧    |      |       |      | ٧    |      |      |      | ٧    |      |
| X110(2,3)   |      |                   |      |      |      |      |      |      |      |      |      |      |      | ٧    |       |      |      |      |      |      |      | V    |
| 10X1(2,3)   |      |                   |      |      |      |      |      |      |      | ٧    |      | ٧    |      |      |       |      |      |      |      | ٧    |      |      |
| 1X01(2,3)   |      |                   |      |      |      |      |      |      |      | ٧    |      |      | ٧    |      |       |      |      |      | ٧    |      | ٧    |      |
| 101X(2)     |      |                   |      |      |      |      |      |      |      |      | ٧    | ٧    |      |      |       |      |      |      |      |      |      |      |
| 1X10(2,3)   |      |                   |      |      |      |      |      |      |      |      | ٧    |      |      | ٧    |       |      |      |      |      |      |      | V    |
| 100X(2,3)   |      |                   |      |      |      |      |      |      | ٧    | ٧    |      |      |      |      |       |      |      | ٧    | ٧    |      |      |      |
| 0011(1,2,3) | ٧    |                   |      |      |      | ٧    |      |      |      |      |      |      |      |      |       | ٧    |      |      |      |      |      |      |
| 0101(1,2,3) |      | ٧                 |      |      |      |      |      | ٧    |      |      |      |      |      |      |       |      | ٧    |      |      |      |      |      |
| 1001(1,2,3) |      |                   | ٧    |      |      |      |      |      |      | ٧    |      |      |      |      |       |      |      |      | ٧    |      |      |      |
| 1100(2)     |      |                   |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |      |      |      |
| 1010(1,2)   |      |                   |      | ٧    |      |      |      |      |      |      | ٧    |      |      |      |       |      |      |      |      |      |      |      |
| 1110(1,2,3) |      |                   |      |      | ٧    |      |      |      |      |      |      |      |      | ٧    |       |      |      |      |      |      |      | V    |

| ·    | ·    |          |        | ·    |
|------|------|----------|--------|------|
| Змн. | Арк. | № докум. | Підпис | Дата |

На підставі таблиці покриття системи заперечень перемикальних функцій одержуємо МДНФ заперечень перемикальних функцій:

$$F_{1}(MДH\Phi) = \overline{X}_{4}X_{3}\overline{X}_{2} \ V \ \overline{X}_{4}X_{2}X_{1} \ V \ X_{4}\overline{X}_{3}\overline{X}_{2}X_{1} \ V \ X_{4}X_{3}X_{2}\overline{X}_{1} \ V \ X_{4}\overline{X}_{3}X_{2}\overline{X}_{1}$$

$$F_2(MДH\Phi) = \overline{X_4X_3}\overline{X_2} \ V \ \overline{X_3}X_2X_1 \ V \ X_4\overline{X_2}X_1 \ V \ X_4\overline{X_3}\overline{X_2} \ V \ X_4X_3X_2\overline{X_1} \ V \ X_4\overline{X_3}X_2\overline{X_1}$$

$$F_{3}(M \underline{\Pi} H \Phi) = \overline{X}_{2} X_{1} V \overline{X}_{3} X_{2} X_{1} V X_{4} \overline{X}_{3} \overline{X}_{2} V X_{4} X_{3} X_{2} \overline{X}_{1}$$

#### 3.10 Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальні форми І/АБО, І/АБО-НЕ.

3.10.1 Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/A60.

$$F_{1} = \overline{X}_{4} \overline{X}_{3} \overline{X}_{2} \quad \forall \quad X_{4} X_{3} \overline{X}_{2} \quad \forall \quad \overline{X}_{4} X_{2} \overline{X}_{1} \quad \forall \quad X_{4} X_{2} X_{1} \quad \forall \quad \overline{X}_{2} \overline{X}_{1} \qquad \qquad I/A 60$$

$$F_2 = \overline{X}_4 \overline{X}_3 \overline{X}_2 \quad V \ \overline{X}_4 X_2 \overline{X}_1 \quad V \ X_3 X_2 X_1$$
 I/A60

$$F_3 = X_3 \overline{X}_2 \overline{X}_1 \vee X_3 X_2 X_1 \vee \overline{X}_3 \overline{X}_1 \qquad I/Ab0$$

Всього 4 змінні, 8 імплікант, 3 функції. Тож оберемо ПЛМ(4,8,3).

Позначимо терми системи перемикальних функцій:

$$P_1 = \overline{X}_4 \overline{X}_3 \overline{X}_2$$

$$P_4 = \overline{X}_2 \overline{X}_1$$

$$P_7 = X_3 \overline{X}_2 \overline{X}_1$$

$$P_2 = X_4 X_3 \overline{X}_2$$

$$P_5 = X_4 X_2 X_1$$

$$P_8 = \overline{X}_3 \overline{X}_1$$

$$P_3 = \overline{X}_4 X_2 \overline{X}_1$$

$$P_6 = X_3 X_2 X_1$$

Тоді функції f1, f2 ma f3 набувають вигляду:

$$F_1 = P_1 V P_2 V P_3 V P_4 V P_5$$

Визначимо мінімальні параметри ПЛМ:

- n = 4 число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій;
- p = 8 число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи;
- m = 3 число інформаційних виходів, яке дорівнює кількості функцій виходів.

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

Побудуємо мнемонічну схему ПЛМ (I/A60)



Рисунок 7 - Мнемонічна схема ПЛМ (І/АБО)

За даними мнемонічної схеми побудуємо карту програмування ПЛМ (І/АБО)

**Таблиця 7** - Карта програмування ПЛМ (I/AБО)

| X <sub>4</sub> | <b>X</b> <sub>3</sub> | $X_2$ | X <sub>1</sub> | Pi             | f <sub>1</sub> | f <sub>2</sub> | f <sub>3</sub> |
|----------------|-----------------------|-------|----------------|----------------|----------------|----------------|----------------|
| 0              | 0                     | 0     | -              | P <sub>1</sub> | 1              | 1              | 0              |
| 1              | 1                     | 1     | -              | P <sub>2</sub> | 1              | 0              | 0              |
| 0              | -                     | 1     | 1              | P <sub>3</sub> | 1              | 1              | 0              |
| -              | -                     | 0     | 0              | P <sub>4</sub> | 1              | 0              | 0              |
| 1              | -                     | 1     | 1              | P <sub>5</sub> | 1              | 0              | 0              |
| -              | 1                     | 1     | 1              | P <sub>6</sub> | 0              | 1              | 1              |
| -              | 1                     | 0     | 0              | P <sub>7</sub> | 0              | 0              | 1              |
| -              | 0                     | -     | 0              | P <sub>8</sub> | 0              | 0              | 1              |

# 3.10.2 Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/A60-HE.

$$F_{1} = \overline{X_{4}X_{3}}\overline{X_{2}} \ V \overline{X_{4}X_{2}X_{1}} \ V \ X_{4}\overline{X_{3}}\overline{X_{2}X_{1}} \ V \ X_{4}X_{3}X_{2}\overline{X_{1}} \ V \ X_{4}\overline{X_{3}}\overline{X_{2}}\overline{X_{1}}$$

$$F_2 = \overline{X_4 X_3 \overline{X}_2 \ V \ \overline{X}_3 X_2 X_1 \ V \ X_4 \overline{X}_2 X_1 \ V \ X_4 \overline{X}_3 \overline{X}_2 \ V \ X_4 X_3 X_2 \overline{X}_1 \ V \ X_4 \overline{X}_3 X_2 \overline{X}_1}$$

$$F_3 = \overline{X}_2 X_1 V \overline{X}_3 X_2 X_1 V X_4 \overline{X}_3 \overline{X}_2 V X_4 X_3 X_2 \overline{X}_1$$

|      |      |          |        |      |                           | Арк. |
|------|------|----------|--------|------|---------------------------|------|
|      |      |          |        |      | <i>IAЛЦ.006403.004 ПЗ</i> | 14   |
| Змн. | Арк. | № докум. | Підпис | Дата |                           | 14   |

Всього 4 змінні, 8 імплікант, 3 функції. Тож оберемо ПЛМ(4,8,3).

Позначимо терми системи перемикальних функцій

$$P_1 = \overline{X}_4 X_3 \overline{X}_2$$

$$P_4 = X_4 X_3 X_2 \overline{X}_1$$
  $P_7 = X_4 \overline{X}_2 X_1$ 

$$P_7 = X_L \overline{X}_2 X_1$$

$$P_2 = \overline{X}_4 X_2 X_1$$

$$P_2 = \overline{X}_4 X_2 X_1$$
  $P_5 = X_4 \overline{X}_3 X_2 \overline{X}_1$   $P_8 = X_4 \overline{X}_3 \overline{X}_2$ 

$$P_8 = X_4 \overline{X}_3 \overline{X}_2$$

$$P_3 = X_4 \overline{X}_3 \overline{X}_2 X_1$$
  $P_6 = \overline{X}_3 X_2 X_1$ 

$$P_6 = \overline{X}_3 X_2 X_2$$

$$P_9 = \overline{X}_2 X_1$$

Тоді функції f1, f2 ma f3 набувають вигляду:

$$F_1 = P_1 V P_2 V P_3 V P_4 V P_5$$

$$F_2 = P_1 \quad V P_4 \quad V P_5 \quad V P_6 \quad V P_7 \quad V P_8$$

$$F_3 = P_4 V P_6 V P_8 V P_9$$

Визначимо мінімальні параметри ПЛМ:

n = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних финкцій;

р = 8 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи;

m = 3 - число інформаційних виходів, яке дорівнює кількості функцій виходів.Побудуємо мнемонічну схему ПЛМ (I/A60-HE):



Рисунок 8 - Мнемонічна схема ПЛМ (І/АБО-НЕ)

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

За даними мнемонічної схеми побудуємо карту програмування ПЛМ (І/АБО-НЕ)

**Таблиця 8 - К**арта програмування П/ІМ (І/АБО-НЕ)

| X <sub>4</sub> | <b>X</b> <sub>3</sub> | $X_2$ | X <sub>1</sub> | Pi             | $f_1$ | f <sub>2</sub> | $f_3$ |
|----------------|-----------------------|-------|----------------|----------------|-------|----------------|-------|
| 0              | 1                     | 0     | -              | P <sub>1</sub> | 1     | 1              | 0     |
| 0              | -                     | 1     | 1              | P <sub>2</sub> | 1     | 0              | 0     |
| 1              | 0                     | 0     | 1              | P <sub>3</sub> | 1     | 0              | 0     |
| 1              | 1                     | 1     | 0              | P <sub>4</sub> | 1     | 1              | 1     |
| 1              | 0                     | 1     | 0              | P <sub>5</sub> | 1     | 1              | 0     |
| -              | 0                     | 1     | 1              | P <sub>6</sub> | 0     | 1              | 1     |
| 1              | -                     | 0     | 1              | P <sub>7</sub> | 0     | 1              | 0     |
| 1              | 0                     | 0     | -              | P <sub>8</sub> | 0     | 1              | 1     |
| _              | -                     | 0     | 1              | P <sub>9</sub> | 0     | 0              | 1     |

Отже, кращою матрицею є матриця реалізована в елементному базисі І/АБО.

#### 4. Висновок

Метою курсової роботи було закріпити навички структурного синтезу автомата по заданому алгоритму роботи, побудови схеми автомата, мінімізації перемикальних функцій та побудови програмувальних логічних матриць.

При побудові комбінаційних схем було показано ефективність сумісної мінімізації трьох функцій.

Усі схеми та керуючий автомат були перевірені в програмі AFDK. Перевірка показала позитивні результати.

## 5. Список літератури

- 1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів 2-ге вид., допрац.: Навч. посібник. К.: Книжкове видавництво НАУ «НАУ друк», 2009.—360с.
- 2. Конспект лекцій з курсу «Комп'ютерна логіка».

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|