Rec'd PCT/PTO 23 JUN 2005

BUNDE REPUBLIK DEUTS HLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 60 737.0

Anmeldetag:

23. Dezember 2002

Anmelder/Inhaber:

Outokumpu Oyj, Espoo/FI

Bezeichnung:

Verfahren und Anlage zur Wärmebehandlung von

titanhaltigen Feststoffen

IPC:

C 22 B 1/02

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 11. November 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Dzierzon

1

BEST AVAILABLE COPY

VERFAHREN UND ANLAGE ZUR WÄRMEBEHANDLUNG VON TITANHALTIGEN FESTSTOFFEN

Technisches Gebiet

5

10

15

20

25

30

Die vorliegende Erfindung betrifft ein Verfahren zur Wärmebehandlung von titanhaltigen Feststoffen, bei dem feinkörnige Feststoffe in einem Reaktor mit Wirbelschicht bei einer Temperatur von 700 bis etwa 950° C behandelt werden, sowie eine entsprechende Anlage.

Derartige Verfahren und Anlagen werden unter anderem für die Reduktion von Ilmenit (x \star TiO₂ y \star FeO z \star Fe₂O₃) eingesetzt. Hierzu wird Ilmenit z.B. in Drehrohröfen (u.a. SLRN-Verfahren) mit geeigneten Kohlen bei Temperaturen zwischen 850 und 1200° C behandelt. Je nach Behandlungsart in einer weiteren Verarbeitungsstufe kann die Reduktion des Eisens bis zu FeO oder bis zu metallischem Eisen geführt werden. So wird bspw. für das sogenannte Becher-Verfahren ein hoher Metallisierungsgrad des Eisens von bis zu 97 % in dem reduzierten Ilmenit angestrebt.

Die Metallisierung des Eisens bei derart hohen Temperaturen von 1060 bis etwa 1200° C führt allerdings zur Bildung von unerwünschten komplexen Verbindungen, sogenannten M₃O₅-Phasen, im Ilmenitkorn, wobei der Buchstabe "M" allgemein für Metall steht, wie bspw. Ti₂MgO₅, Ti₂MnO₅ oder Ti₂FeO₅. Da diese Verbindungen bspw. weder in Schwefel- noch in Salzsäure lösbar sind, lassen sie sich in den der Reduktion nachgeschalteten hydrometallurgischen Prozesstufen nur schwer oder gar nicht lösen. Dies hat zur Folge, dass in dem Feststoffprodukt, genannt "synthetisches Rutil", neben dem erwünschten TiO₂ unerwünschte Verunreinigungen verbleiben. Das Entstehen dieser unerwünschten Verbindungen ist dabei von der Temperatur und der Verweilzeit des Ilmenits in

der Reduktionszone abhängig, die in einem Drehrohrofen bspw. vier bis fünf Stunden beträgt. Für viele eisenreiche Ilmenite ist die nassmetallurgische Anreicherungsstufe unerlässlich, um ein gut verkaufsfähiges Endprodukt (synthetischer Rutil) zu erzeugen.

5

10

15

Weiter werden Verfahren und Anlagen der eingangs genannten Art auch für die magnetisierende Röstung von Ilmenit eingesetzt. Hierzu wird bisher Ilmenit in einer zirkulierenden Wirbelschicht mit staubfreier, z.B. vorgewärmter Luft durch einen Düsenboden (Gasverteiler) beaufschlagt. Dabei wird es als nachteilig empfunden, dass kein staubbeladenes Gas zur Fluidisierung des Feststoffes eingesetzt werden kann. Ein weiterer Nachteil dieses bekannten Verfahrens ist, dass das Verbrennungsprofil ungünstig ist und darüber hinaus keine Nutzung der Abwärme der Feststoffe erfolgt. Bei einem Teillastbetrieb besteht zudem die Gefahr, dass feinkörnige Feststoffe trotz hohem mechanischen Aufwand für den Düsenboden unerwünscht durch ihn hindurch fallen können. Die verfahrenstechnisch notwendige Feststoffverweilzeit von 20 bis 30 Minuten ist nur mit einem sehr hohen Druckverlust im Reaktor erreichbar, der wiederum zu unerwünschten Pulsationen der Wirbelschicht führt. Daher müssen diese Anlagen für hohe dynamische Belastungen ausgelegt werden, um den im Betrieb auftretenden Kräften standhalten zu können.

20

Allgemein sind zur Wärmebehandlung von Feststoffen Reaktoren bekannt, deren Wirbelschicht entweder stationär oder zirkulierend ausgebildet ist. Allerdings ist die bei Anwendung einer stationären Wirbelschicht erzielte Ausnutzung des Reduktionsmittels und die Energieausnutzung verbesserungsbedürftig. Dies liegt einerseits daran, dass der Stoff- und Wärmeaustausch aufgrund des vergleichsweise geringen Fluidisierungsgrades mäßig ist. Daher ist auch eine Innenverbrennung bei der magnetisierenden Röstung nur schwer zu beherrschen. Außerdem ist eine Feststoffvorwärmung oder Produktkühlung in einem Suspensionswärmetauscher oder einem Wirbelschichtkühler schlecht integrier-

bar, weil man die Fluidisierungsdüsen der stationären Wirbelschicht nur ungern mit staubhaltigen Gasen beaufschlagt. Demgegenüber weisen zirkulierende Wirbelschichten aufgrund des höheren Fluidisierungsgrades bessere Stoff- und Wärmeaustauschbedingungen auf und erlauben die Integration eines Suspensionswärmetauschers oder einer Produktkühlung, sind jedoch aufgrund des höheren Fluidisierungsgrades hinsichtlich ihrer Feststoffverweilzeit beschränkt.

Beschreibung der Erfindung

10

5

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Wärmebehandlung von titanhaltigen Feststoffen zur Verfügung zu stellen, welches effizienter durchführbar ist und sich insbesondere durch gute Wärme- und Stoffaustauschbedingungen auszeichnet.

15

20

25

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der eingangs genannten Art gelöst, bei dem ein erstes Gas oder Gasgemisch von unten durch mindestens ein vorzugsweise zentral angeordnetes Gaszufuhrrohr (Zentralrohr) in einen Wirbelmischkammerbereich des Reaktors eingeführt wird, wobei das Zentralrohr wenigstens teilweise von einer durch Zufuhr von Fluidisierungsgas fluidisierten, stationären Ringwirbelschicht umgeben wird, und bei dem die Gasgeschwindigkeiten des ersten Gases oder Gasgemisches sowie des Fluidisierungsgases für die Ringwirbelschicht derart eingestellt werden, dass die Partikel-Froude-Zahlen in dem Zentralrohr zwischen 1 und 100, in der Ringwirbelschicht zwischen 0,02 und 2 sowie in der Wirbelmischkammer zwischen 0,3 und 30 betragen.

Überraschenderweise lassen sich mit dem erfindungsgemäßen Verfahren bei der Wärmebehandlung, wie bspw. der Reduktion oder der magnetisierenden

Röstung von titanhaltigen Feststoffen, die Vorteile einer stationären Wirbel-

schicht, wie ausreichend lange Feststoffverweilzeit, und die einer zirkulierenden Wirbelschicht, wie guter Stoff- und Wärmeaustausch, unter Vermeidung der Nachteile beider Systeme miteinander verbinden. Beim Passieren des oberen Bereichs des Zentralrohrs reißt das erste Gas bzw. Gasgemisch Feststoff aus der ringförmigen stationären Wirbelschicht, welche als Ringwirbelschicht bezeichnet wird, bis in die Wirbelmischkammer mit, wobei sich aufgrund der hohen Geschwindigkeitsunterschiede zwischen Feststoff und erstem Gas eine intensiv durchmischte Suspension bildet und ein optimaler Wärme- und Stoffaustausch zwischen den beiden Phasen erreicht wird. Durch entsprechende Einstellung des Füllstandes in der Ringwirbelschicht sowie der Gasgeschwindigkeiten des ersten Gases bzw. Gasgemisches und des Fluidisierungsgases kann die Feststoffbeladung der Suspension oberhalb des Mündungsbereiches des Zentralrohrs in weiten Bereichen variiert werden, so dass der Druckverlust des ersten Gases zwischen dem Mündungsbereich des Zentralrohrs und dem oberen Austritt der Wirbelmischkammer zwischen 1 mbar und 100 mbar liegen kann. Im Falle hoher Feststoffbeladungen der Suspension in der Wirbelmischkammer regnet ein Großteil der Feststoffe aus der Suspension aus und fällt in die Ringwirbelschicht zurück. Diese Rückführung wird interne Feststoffrezirkulation genannt, wobei der in dieser internen Kreislaufströmung zirkulierende Feststoffstrom normalerweise bedeutend größer als die dem Reaktor von außen zugeführte Feststoffmenge ist. Der (geringere) Anteil an nicht ausfallendem Feststoff wird zusammen mit dem ersten Gas bzw. Gasgemisch aus der Wirbelmischkammer ausgetragen. Die Verweilzeit des Feststoffs in dem Reaktor kann durch die Wahl von Höhe und Querschnittsfläche der Ringwirbelschicht in weiten Grenzen verändert und der angestrebten Wärmebehandlung angepasst werden. Der mit dem Gasstrom aus dem Reaktor ausgetragene Anteil an Feststoff wird dem Reaktor vollständig oder zumindest teilweise wieder zurückgeführt, wobei die Rückführung zweckmäßigerweise in die stationäre Wirbelschicht erfolgt. Der auf diese Weise in die Ringwirbelschicht zurückgeführte Festmassenstrom liegt normalerweise in der gleichen Größenordnung wie der dem Reaktor von außen

5

10

15

20

25

5

10

15

20

25

zugeführte Festmassenstrom. Mit dem erfindungsgemäßen Verfahren kann somit einerseits eine hohe Feststoffbeladung von z.B. 30 kg Feststoff pro kg Gas und gleichzeitig ein besonders guter Stoff- und Wärmeaustausch erzielt werden. Abgesehen von der hervorragenden Energieausnutzung besteht ein weiterer Vorteil des erfindungsgemäßen Verfahrens in der Möglichkeit, durch Änderung der Strömungsgeschwindigkeiten des ersten Gases bzw. Gasgemisches und des Fluidisierungsgases den Energietransfer des Verfahrens und den Stoffdurchsatz schnell, einfach und zuverlässig den Anforderungen anzupassen. Aufgrund der hohen Feststoffbeladung einerseits und des guten Stoff- und Wärmeaustauschs andererseits ergeben sich oberhalb des Mündungsbereiches des Zentralrohrs hervorragende Bedingungen für eine nahezu vollständige Innenverbrennung des bspw. bei der magnetisierenden Röstung zusätzlich in den Reaktor eingebrachten Brennstoffs. So kann beispielsweise eine praktisch vollständige Verbrennung von Erdgas in der Nähe der Zündtemperatur und/oder bei geringem Sauerstoffüberschuss durchgeführt werden, ohne dass lokale Temperaturspitzen entstehen.

Um einen effektiven Wärme- und Stoffaustausch in der Wirbelmischkammer und eine ausreichende interne Feststoffrezirkulation in dem Reaktor sicherzustellen, werden die Gasgeschwindigkeiten des ersten Gasgemisches und des Fluidisierungsgases für das Wirbelbett vorzugsweise derart eingestellt, dass die dimensionslose Partikel-Froude-Zahlen (Fr_P) in dem Zentralrohr 1,15 bis 20, insbesondere etwa 12 bis 15, in der Ringwirbelschicht 0,115 bis 1,15, insbesondere etwa 0,2 bis 0,4, und/oder in der Wirbelmischkammer 0,37 bis 3,7, insbesondere etwa 1,4, betragen. Dabei sind die Partikel-Froude-Zahlen jeweils nach der folgenden Gleichung definiert:

$$Fr_{p} = \frac{u}{\sqrt{\frac{(\rho_{s} - \rho_{f})}{\rho_{f}} * d_{p} * g}}$$

mit

15

20

25

30

u = effektive Geschwindigkeit der Gasströmung in m/s

5 ρ_f = effektive Dichte des Fluidisierungsgases in kg/m³

 ρ_s = Dichte eines Feststoffpartikels in kg/m³ (scheinbare Dichte)

d_p = mittlerer Durchmesser der beim Reaktorbetrieb vorliegenden

Partikel des Reaktorinventars (bzw. der sich bildenden Sekundär-

agglomerate) in m

10 g = Gravitationskonstante in m/s^2 .

Bei der Anwendung dieser Gleichung gilt zu berücksichtigen, dass d_p nicht den mittleren Durchmesser (d_{50}) des eingesetzten Materials bezeichnet, sondern den mittleren Durchmesser des sich während des Betriebs des Reaktors bildenden Reaktorinventars, welcher von dem mittleren Durchmesser des eingesetzten Materials (Primärteilchen) signifikant abweichen kann. Auch aus sehr feinkörnigem Material mit einem mittleren Durchmesser von bspw. 3 bis 10 μ m können sich bspw. während der Wärmebehandlung Teilchen (Sekundärteilchen) mit einem mittleren Durchmesser von 20 bis 30 μ m bilden. Andererseits zerfallen manche Materialien, bspw. Erze, während der Wärmebehandlung.

In Weiterbildung des Erfindungsgedankens wird vorgeschlagen, den Füllstand an Feststoff in dem Reaktor so einzustellen, dass sich die Ringwirbelschicht zumindest teilweise um einige Zentimeter über das obere Mündungsende des Zentralrohrs hinaus erstreckt und somit ständig Feststoff in das erste Gas oder Gasgemisch eingetragen und von dem Gasstrom zu der oberhalb des Mündungsbereichs des Zentralrohres befindlichen Wirbelmischkammer mitgeführt wird. Auf diese Weise wird eine besonders hohe Feststoffbeladung der Suspension oberhalb des Mündungsbereiches des Zentralrohrs erreicht, die z.B. eine vollständige Verbrennung unter schwierigen Bedingungen erlaubt.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung weist das Zentralrohr an seiner Mantelfläche Öffnungen, bspw. in Form von Schlitzen, auf, so dass während des Reaktorbetriebs ständig Feststoff über die Öffnungen in das Zentralrohr gelangt und durch das erste Gas oder Gasgemisch von dem Zentralrohr bis in die Wirbelmischkammer mitgeführt wird.

5

10

15

20

25

30

Mit dem erfindungsgemäßen Verfahren können alle Arten von titanhaltigen Erzen, insbesondere auch solche, welche zusätzlich Eisenoxide enthalten, effektiv wärmebehandelt werden. Insbesondere ist das Verfahren zur Reduktion von Ilmenit geeignet. Durch den intensiven Stoff- und Wärmeaustausch und die einstellbare Feststoffverweilzeit in dem Reaktor lässt sich ein besonders hoher Grad der Vorreduktion des Eisens in dem Ilmenit erreichen, so dass die Bildung von komplexen M₃O₅-Phasen praktisch unterbunden wird. Dadurch kann die Verweilzeit in einer nachgeschalteten Endreduktionsstufe verkürzt werden, wodurch die M₃O₅-Bildung weiter reduziert wird. Weiter ist das Verfahren insbesondere auch zur magnetisierenden Röstung von Ilmenit geeignet.

Die Erzeugung der für den Reaktorbetrieb notwendigen Wärmemenge kann auf jede dem Fachmann zu diesem Zweck bekannte Weise erfolgen.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist vorgesehen, dass dem Reaktor wasserstoffhaltiges Gas zur Reduktion zugeführt wird, welches bspw. mit einem Wasserstoffgehalt von 75 bis 100 %, insbesondere von 85 bis 95 % durch das Zentralrohr und/oder in die Ringwirbelschicht eingebracht wird. Das wasserstoffhaltige Gas kann zwischen 0 und 5 %, insbesondere zwischen 0,3 und 4,0 %, Wasserdampf und zwischen 5 und 10 %, insbesondere zwischen 7 und 8 %, Stickstoff enthalten. Vorzugsweise wird das wasserstoffhaltige Gas mit einer Temperatur zwischen 820 und 900° C, insbesondere zwischen 840 und 880° C, in den Reaktor eingebracht.

Die Energieausnutzung lässt sich bei dem erfindungsgemäßen Verfahren dadurch verbessern, dass zumindest ein Teil des Abgases eines dem Reaktor nachgeschalteten zweiten Reaktors, in welchem die Feststoffe weiter reduziert werden, dem ersten Reaktor durch das Zentralrohr zugeführt wird. Die staubhaltigen Abgase, die den nachgeschalteten zweiten Reaktor noch mit einem verwertbaren Restgehalt an Reduktionsgas bei einer Temperatur von bspw. etwa 850° C verlassen, können folglich in dem erfindungsgemäßen Verfahren direkt wieder eingesetzt werden. Die Rückführung der Abgase durch das Zentralrohr bringt den Vorteil mit sich, dass im Gegensatz zu einer Rückführung über den Gasverteiler hier nicht die Gefahr eines Zusetzens des Zentralrohrs besteht, da dieses einen größeren Durchmesser als die Öffnungen des Gasverteilers aufweist.

5

10

15

20

25

30

Vorzugsweise wird der Eisenanteil der Feststoffe in dem (ersten) Reaktor zu mindestens 70 %, insbesondere zu etwa 80 % reduziert, d.h. metallisiert, und in dem nachgeschalteten zweiten Reaktor zu mindestens 90 %, insbesondere zu etwa 97 % reduziert.

Wenn zumindest ein Teil des Abgases des Reaktors nach einer Wiederaufbereitung durch Feststoffabscheidung, Abkühlung und Wasserabscheidung verdichtet und aufgeheizt und dem Reaktor durch den Gasverteiler in die Ringwirbelschicht und ggf. zusätzlich über das Zentralrohr zugeführt wird, kann das Reduktionsgas in einem Kreislauf mehrmals eingesetzt werden.

In Weiterbildung des Erfindungsgedankens ist es vorgesehen, dass dem (ersten) Reaktor und dem ggf. nachgeschalteten zweiten Reaktor jeweils eine Abscheidestufe, bspw. ein Zyklon oder dgl., zur Trennung der Feststoffe von dem Abgas nachgeschaltet ist, und dass die abgeschiedenen Feststoffe zumindest teilweise den stationären Wirbelschichten der Reaktoren zugeführt werden.

Auf diese Weise lässt sich u.a. das Niveau des Feststoffes in der stationären Ringwirbelschicht des ersten Reaktors regeln oder gezielt variieren, während überschüssiger Feststoff an den zweiten Reaktor abgegeben wird.

5

10

15

20

25

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist es bei der magnetisierenden Röstung von Ilmenit vorgesehen, dem Reaktor Brennstoff zuzuführen, durch dessen Verbrennung innerhalb des Reaktors mit einem sauerstoffhaltigen Gas die für die Wärmebehandlung erforderlichen Wärmemenge vollständig oder zumindest teilweise generiert wird. Bei der letztgenannten Alternative kann der andere Teil der erforderlichen Wärmemenge dann über die Zufuhr heißer Gase oder vorgewärmten Feststoffes abgedeckt werden. Während fester Brennstoff, wie Kohle, oder flüssiger Brennstoff, bspw. flüssige Kohlenwasserstoffe, dem Reaktor vorzugsweise über eine entsprechende Zuleitung direkt in die Ringwirbelschicht oder die Wirbelmischkammer zugeführt wird, können gasförmige Brennstoffe, bspw. Erdgas, entweder über eine entsprechende Zuleitung in die Ringwirbelschicht, über Lanzen oder dgl. in einen Reaktorbereich oberhalb der Ringwirbelschicht (Wirbelmischkammer) oder durch eine Leitung in das Zentralrohr und von dort gemeinsam mit sauerstoffhaltigem Gas in den Reaktor eingebracht werden. Dabei kann die starke Turbulenz im Zentralrohr für eine Vormischung von gasförmigen Brennstoffen und sauerstoffhaltigem Gas benutzt werden, während Zündung und Verbrennung in der Wirbelmischkammer erfolgen.

Um eine vollständige Verbrennung des Brennstoffs zu gewährleisten, wird dem Reaktor bevorzugt sauerstoffhaltiges Gas, bspw. verdichtete und vorgewärmte Umgebungsluft, zugeführt. Hierbei hat es sich als vorteilhaft erwiesen, den Reaktor bei einem Druck von 0.8 bis 10 bar und besonders bevorzugt bei Atmosphärendruck zu betreiben.

5

10

15

20

25

In Weiterbildung des Erfindungsgedankens wird vorgeschlagen, zumindest einen Teil des Energiebedarfs des Reaktors durch Zufuhr von ggf. staubbeladenen Abgasen aus einer dem Reaktor nachgeschalteten Kühlstufe mit einem Abscheider, bspw. einem Zyklon, abzudecken. So kann der notwendige Bedarf an frischem Brennstoff deutlich gesenkt werden oder sogar ganz entfallen. Diese Verfahrensführung bietet sich insbesondere bei denjenigen Verfahren an, bei denen nach der Wärmebehandlung eine starke Abkühlung der Feststoffe durchgeführt wird, da hierbei große Mengen an Abgas mit hoher Temperatur anfallen. Beispielsweise können dem Reaktor aus der Ringwirbelschicht Feststoffe entnommen und einer Kühlstufe, insbesondere einem Suspensionswärmetauscher, der als Venturiwärmetauscher oder als Steigleitung ausgeführt sein kann, in dem die Feststoffe in einem gasförmigen Kühlmedium, wie Luft, suspendiert werden, und einem nachgeschalteten Abscheider zugeführt werden. Vorzugsweise wird das staubhaltige Abgas des Abscheiders dem Reaktor dabei über das Zentralrohr zugeführt, so dass auf eine kostenaufwendige Entstaubung verzichtet werden kann. Falls als Kühlmedium Luft oder ein anderes sauerstoffhaltiges Gas gewählt wird, kann es im Reaktor für die Verbrennung genutzt werden.

Um den Energiebedarf des Verfahrens weiter zu reduzieren, wird vorzugsweise zumindest ein Teil der Abgase des Reaktors in einem nachgeschalteten Abscheider weitgehend von Feststoffen getrennt und einer dem Reaktor vorgeschalteten Vorwärmstufe zugeführt. Die Vorwärmstufe kann bspw. aus einem Wärmetauscher, wie einem Venturitrockner, und einem Abscheider, wie einem Zyklon oder dgl., bestehen. Die dem Reaktor zugeführten Feststoffe werden auf diese Weise getrocknet und vorgewärmt, wodurch die Wärmebehandlung in dem Reaktor erleichtert wird. Auch eine mehrstufige Feststoffvorwärmung ist möglich, wobei das Abgas des Reaktors stufenweise gekühlt wird.

Der mit dem Gasstrom aus dem Reaktor ausgetragene Anteil an Feststoff wird nach einer bevorzugten Ausführungsform nach dem Abtrennen von Abgasen in einem Abscheider vollständig oder zumindest teilweise wieder in den Reaktor zurückgeführt, wobei die Rückführung zweckmäßigerweise in die stationäre Ringwirbelschicht erfolgt. Der auf diese Weise in die Ringwirbelschicht zurückgeführte Festmassenstrom liegt normalerweise in der gleichen Größenordnung wie der dem Reaktor von außen zugeführte Festmassenstrom. Der aus dem Reaktor ausgetragene Anteil an Feststoff kann auch zusammen mit einem aus der Ringwirbelschicht entnommenen Feststoffstrom der weiteren Verarbeitung oder Behandlung, bspw. der Produktkühlung in einem Suspensionswärmetauscher, zugeleitet werden.

5

10

15

20

25

30

In Weiterbildung des Erfindungsgedankens ist es vorgesehen, dass die dem Reaktor entnommenen Feststoffe nach dem Durchlaufen des Abscheiders und ggf. einer ersten Kühlstufe, wie einem Suspensionswärmetauscher, einer weiteren Kühlstufe zugeführt werden, die einen mit Luft fluidisierten Einspritzkühler und/oder einen mit Luft fluidisierten Wirbelschichtkühler aufweist. Dabei ist es bspw. möglich, die Feststoffe in dem Einspritzkühler durch Einspritzen von Wasser auf unter 300° C, insbesondere auf unter 200° C abzukühlen und/oder in den Wirbelschichtkühlern durch im Gegenstrom durch Kühlwendel geführtes Wasser auf Weiterverarbeitungstemperatur abzukühlen. Vorzugsweise wird das Abgas der weiteren Kühlstufe und des Abscheiders der Vorwärmstufe einem weiteren Abscheider, insbesondere einem Schlauchfilter zugeführt, wobei die in dem weiteren Abscheider abgetrennten Feststoffe einem der Wirbelschichtkühler zugeführt werden.

Eine erfindungsgemäße Anlage, welche insbesondere zur Durchführung des zuvor beschriebenen Verfahrens geeignet ist, weist einen als Wirbelschichtreaktor ausgebildeten Reaktor zur Wärmebehandlung von titanhaltigen Feststoffen auf, wobei der Reaktor ein Gaszuführungssystem aufweist, welches derart

ausgebildet ist, dass durch das Gaszuführungssystem strömendes Gas Feststoff aus einer stationären Ringwirbelschicht, die das Gaszuführungssystem wenigstens teilweise umgibt, in die Wirbelmischkammer mitreißt. Vorzugsweise erstreckt sich dieses Gaszuführungssystem bis in eine Wirbelmischkammer. Es ist jedoch auch möglich, das Gaszuführungssystem unterhalb der Oberfläche der Ringwirbelschicht enden zu lassen. Das Gas wird dann bspw. über seitliche Öffnungen in die Ringwirbelschicht eingebracht, wobei es aufgrund seiner Strömungsgeschwindigkeit Feststoff aus der Ringwirbelschicht in die Wirbelmischkammer mitreißt.

10

15

5

Gemäß einer bevorzugten Ausgestaltung der Erfindung weist das Gaszuführungssystem ein sich vom unteren Bereich des Reaktors aus im Wesentlichen vertikal nach oben erstreckendes Zentralrohr auf, welches wenigstens teilweise von einer Kammer umgeben ist, in der die stationäre Ringwirbelschicht ausgebildet ist. Die Ringwirbelschicht muss dabei nicht kreisringförmig gestaltet sein, vielmehr sind auch andere Ausgestaltungen der Ringwirbelschicht in Abhängigkeit der Geometrie des Zentralrohres und des Reaktors möglich, solange das Zentralrohr wenigstens teilweise von der Ringwirbelschicht umgeben wird.

20

Selbstverständlich können in dem Reaktor auch zwei oder mehr Zentralrohre mit unterschiedlichen oder gleichen Ausmaßen vorgesehen sein. Vorzugsweise ist jedoch wenigstens eines der Zentralrohre, bezogen auf die Querschnittsfläche des Reaktors, in etwa mittig angeordnet.

25

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung weist das Zentralrohr an seiner Mantelfläche Öffnungen, bspw. in Form von Schlitzen, auf, so dass während des Reaktorbetriebs ständig Feststoff über die Öffnungen in das Zentralrohr gelangt und durch das erste Gas oder Gasgemisch von dem Zentralrohr bis in die Wirbelmischkammer mitgeführt wird.

Ein Abtrennen der Feststoffe von dem bei der Wärmebehandlung entstehenden Gas oder Gasgemisch vor der Weiterverarbeitung wird ermöglicht, wenn dem Reaktor ein Abscheider nachgeschaltet ist. Hierzu sind bspw. ein Zyklon, ein Heißgas-Elektrofilter, ein Heißgas-Kerzenfilter oder dgl. einsetzbar. Nach einer bevorzugten Ausführungsform weist der Feststoffabscheider eine zu der Ringwirbelschicht des Reaktors und/oder zu der Ringwirbelschicht eines ggf. nachgeschalteten zweiten Reaktors führende Feststoffleitung auf.

Um eine zuverlässige Fluidisierung des Feststoffs und die Ausbildung einer stationären Wirbelschicht zu ermöglichen, ist in der ringförmigen Kammer des Reaktors ein Gasverteiler vorgesehen, welcher die Kammer in einen oberen Wirbelbettbereich und eine untere Gasverteilerkammer oder Windbox unterteilt. Die Gasverteilerkammer ist mit einer Zufuhrleitung für vorzugsweise weitgehend staubfreies und wasserstoffhaltiges Fluidisierungsgas verbunden, welches zur Erreichung der für die Reduktion notwendigen Temperaturen aufgeheizt sein kann. Für die magnetisierende Röstung kann dem Reaktor brennstoffhaltiges Fluidisierungsgas zugeleitet werden. Anstelle der Gasverteilerkammer kann auch ein aus Rohren aufgebauter Gasverteiler verwendet werden.

Wenn der zweite Reaktor zur Reduktion einen nachgeschalteten Feststoffabscheider aufweist, dessen Abgas über eine Zufuhrleitung in das Zentralrohr des ersten Reaktors geleitet wird, kann die Energieausnutzung der Anlage weiter verbessert werden. Das häufig noch staubbeladene und warme Abgas lässt sich so direkt in der Anlage nutzen.

Vorzugsweise ist dem Feststoffabscheider des Reaktors eine Wiederaufbereitungsstufe für das Abgas nachgeschaltet, so dass das Reduktionsgas in der Anlage zirkuliert.

15

5

10

20

Zur Einstellung der für die Wärmebehandlung des Feststoffs, wie bspw. die magnetisierende Röstung, notwendigen Temperaturen weist der Reaktor vorzugsweise eine zu dem Zentralrohr führende Leitung und/oder eine zu einer Lanzenanordnung, die in die ringförmigen Kammer mündet, führende Zufuhrleitung für insbesondere gasförmigen Brennstoff auf. Flüssige Brennstoffe werden zweckmäßigerweise mit einem Gas in einer Zweistoffdüse zerstäubt. Das Zerstäubungsgas kühlt gleichzeitig die Düse.

5

10

15

20

25

30

Zusätzlich oder alternativ dazu kann dem Reaktor eine Vorwärmstufe vorgeschaltet sein, in der die zu röstenden Feststoffe getrocknet und vorgewärmt werden. Um den Energiebedarf der Anlage zu senken, wird dabei der Wärmetauscher, bspw. ein Venturitrockner, mit der Abgasleitung des dem Reaktor nachgeschalteten Abscheiders verbunden, so dass die heißen Abgase des Reaktors zum Vorwärmen der Feststoffe eingesetzt werden. Zudem kann die Abgasleitung einer dem Reaktor nachgeschalteten Kühlstufe zum Abkühlen der dem Reaktor entnommenen Feststoffe mit dem Zentralrohr verbunden sein, sodass das erwärmte Abgas der Kühlstufe als sauerstoffhaltiges Gas dem Reaktor vorgewärmt zugeleitet wird.

Um die dem Reaktor entnommenen Feststoffe nach der Röstung auf eine für deren Weiterverarbeitung erforderliche Temperatur abzukühlen, können der ersten Kühlstufe weitere Kühlstufen nachgeschaltet sein, bspw. Einspritzkühler und/oder Wirbelschichtkühler.

In der Ringwirbelschicht und/oder der Wirbelmischkammer des Reaktors können erfindungsgemäß Einrichtungen zum Umlenken der Feststoff- und/oder Fluidströme vorgesehen sein. So ist es bspw. möglich, ein ringförmiges Wehr, dessen Durchmesser zwischen dem des Zentralrohrs und dem der Reaktorwand liegt, derart in der Ringwirbelschicht zu positionieren, dass die Oberkante des Wehrs über das sich im Betrieb einstellende Feststoffniveau ragt, während die

Unterkante des Wehrs im Abstand zu dem Gasverteiler oder dgl. angeordnet ist. Feststoffe, die in der Nähe der Reaktorwand aus der Wirbelmischkammer ausregnen, müssen so zunächst das Wehr an dessen Unterkante passieren, bevor sie von der Gasströmung des Zentralrohrs wieder in die Wirbelmischkammer mitgerissen werden können. Auf diese Weise wird ein Feststoffaustausch in der Ringwirbelschicht erzwungen, so dass sich eine gleichmäßigere Verweilzeit des Feststoffs in der Ringwirbelschicht einstellt.

Weiterbildungen, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung von Ausführungsbeispielen und der Zeichnung. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.

15

5

10

Kurzbeschreibung der Zeichnungen

20

- Fig. 1 zeigt ein Prozessdiagramm eines Verfahrens und einer Anlage gemäß eines ersten Ausführungsbeispiels der vorliegenden Erfindung,
- Fig. 2 zeigt in Vergrößerung ein Detail von Fig. 1 und
- Fig. 3 zeigt ein Prozessdiagramm eines Verfahrens und einer Anlage gemäß eines zweiten Ausführungsbeispiels der vorliegenden Erfindung.

25

Detaillierte Beschreibung einer bevorzugten Ausführungsform

Bei dem in den Figuren 1 und 3 dargestellten Verfahren, welches insbesondere zur Wärmebehandlung titanhaltiger Feststoffe geeignet ist, wird, wie in der vergrößerten Darstellung von Figur 2 ersichtlich, in einen Reaktor 1 über eine Zufuhrleitung 2 ein Feststoff eingebracht. Der bspw. zylindrische Reaktor 1 weist ein etwa koaxial mit der Längsachse des Reaktors angeordnetes Zentralrohr 3 auf, welches sich vom Boden des Reaktors 1 aus im Wesentlichen vertikal nach oben erstreckt.

5

Im Bereich des Bodens des Reaktors 1 ist eine ringförmige Gasverteilerkammer 4 vorgesehen, die nach oben durch einen Durchtrittsöffnungen aufweisenden Gasverteiler 5 abgeschlossen wird. In die Gasverteilerkammer 4 mündet eine Zufuhrleitung 6.

10

In dem vertikal oberen Bereich des Reaktors 1, der eine Wirbelmischkammer 7 bildet, ist eine Ausbringleitung 8 angeordnet, die in einen als Zyklon ausgebildeten Abscheider 9 mündet.

15

Wird nun ein Feststoff über die Zufuhrleitung 2 in den Reaktor 1 eingebracht, bildet sich auf dem Gasverteiler 5 eine das Zentralrohr 3 ringförmig umgebende Schicht aus, die als Ringwirbelschicht 10 bezeichnet wird. Durch die Zufuhrleitung 6 in die Gasverteilerkammer 4 eingeleitetes Fluidisierungsgas strömt durch den Gasverteiler 5 und fluidisiert die Ringwirbelschicht 10, so dass sich ein stationäres Wirbelbett ausbildet. Die Geschwindigkeit der der Gasverteilerkammer 4 zugeführten Gase wird dabei so eingestellt, dass die Partikel-Froude-Zahl in der Ringwirbelschicht 10 etwa 0,4 für ein Verfahren nach Figur 1 bzw. etwa 0,2 für ein Verfahren nach Figur 3 beträgt.

20

25

30

Durch die Zufuhr von weiterem Feststoff in die Ringwirbelschicht 10 steigt das Feststoff-Niveau 11 in dem Reaktor 1 so weit an, dass Feststoff in die Mündung des Zentralrohres 3 gelangt. Durch das Zentralrohr 3 wird gleichzeitig ein Gas oder Gasgemisch in den Reaktor 1 eingeleitet. Die Geschwindigkeit des dem Reaktor 1 zugeführten Gases wird vorzugsweise so eingestellt, dass die Partikel-Froude-Zahl in dem Zentralrohr 3 etwa 15 für ein Verfahren nach Figur 1

bzw. etwa 12 für ein Verfahren nach Figur 3 und in der Wirbelmischkammer 7 etwa 1,4 für ein Verfahren nach Figur 1 oder 3 beträgt. Aufgrund dieser hohen Gasgeschwindigkeiten reißt das durch das Zentralrohr strömende Gas beim Passieren des oberen Mündungsbereichs Feststoff aus der stationären Ringwirbelschicht 10 in die Wirbelmischkammer 7 mit.

5

10

15

25

30

Durch die Überhöhung des Niveaus 11 der Ringwirbelschicht 10 gegenüber der Oberkante des Zentralrohres 3 läuft Feststoff über diese Kante in das Zentralrohr 3 hin über, wodurch sich eine intensiv durchmischte Suspension ausbildet. Die Oberkante des Zentralrohres 3 kann hierbei gerade, gewellt oder gezackt sein oder seitliche Eintrittsöffnungen z.B. im Mantelbereich aufweisen. Infolge der Verminderung der Strömungsgeschwindigkeit durch die Expansion des Gasstrahls und/oder durch Auftreffen auf eine der Reaktorwände verlieren die mitgerissenen Feststoffe rasch an Geschwindigkeit und fallen teilweise wieder in die Ringwirbelschicht 10 zurück. Der Anteil an nicht ausfallendem Feststoff wird zusammen mit dem Gasstrom über die Leitung 8 aus dem Reaktor 1 ausgetragen. Dabei stellt sich zwischen den Reaktorbereichen der stationären Ringwirbelschicht 10 und der Wirbelmischkammer 7 eine Feststoffkreislaufströmung ein, durch welche ein guter Wärmeaustausch gewährleistet wird. Vor der Weiterverarbeitung wird der über die Leitung 8 ausgetragene Feststoff in dem Zyklon 9 von den Gasen oder Gasgemischen abgetrennt.

Bei dem Verfahren nach Figur 1 kann der Feststoff, bevor er über die Zufuhrleitung 2 in den Reaktor 1 eingebracht wird, in einer in dargestellten Vorwärmstufe 12 unter oxidierenden Bedingungen erhitzt werden. Auf diese Weise kann die Temperatur der dem Reaktor 1 zugeleiteten Gase innerhalb der technisch möglichen Grenzen gehalten werden.

Bei diesem Verfahren ist neben dem (ersten) Reaktor 1 zur Reduktion von titanhaltigen Feststoffen ein zweiter Reaktor 13 zur weiteren Reduktion vorge-

sehen. Über eine Zufuhrleitung 14 werden dem zweiten Reaktor 13 Feststoffe aus dem dem ersten Reaktor 1 nachgeschalteten Abscheider 9 bzw. direkt aus der Ringwirbelschicht 10 des ersten Reaktors 1 zugeführt. Zur Fluidisierung der Feststoffe wird dem Reaktor 13 über Leitung 15 und einen Gasverteiler 16 ein bspw. wasserstoffhaltiges Fluidisierungsgas, das gleichzeitig als Reduktionsgas dient, zugeführt, so dass sich in dem Reaktor 13 eine stationäre Wirbelschicht mit einer intensiv durchmischten Suspension ausbildet. Der zweite Reaktor 13 kann zusätzlich ein in Fig. 2 nicht dargestelltes Zentralrohr aufweisen, durch welches dem Reaktor bspw. weiteres Reduktionsgas zugeleitet werden kann.

Dem Reaktor 13 ist ein Abscheider 17, bspw. ein Zyklon nachgeschaltet, in welchem die aus dem Reaktor 13 ausgetragenen Feststoffe von dem Abgas abgetrennt werden. Die Feststoffe werden dabei über Leitung 18 und ggf. eine: weitere Reduktionsstufe 19 einem Kühlsystem 20 zugeleitet.

Die in dem Abscheider 17 von den Feststoffen getrennten Abgase des Reaktors 13 werden über Leitung 21 in das Zentralrohr 3 des Reaktors 1 eingebracht. Auf diese Weise lässt sich die in dem Abgas enthaltene Wärme für die erste Reduktionsstufe in dem Reaktor 1 nutzen.

Das in dem dem Reaktor 1 nachgeschalteten Abscheider 9 von den Feststoffen getrennte Abgas wird über Leitung 22 einer Wiederaufbereitungsanlage zugeführt. Das Abgas wird dabei zunächst in einem Wärmetauscher 23 abgekühlt und in einem weiteren Abscheider 24 feingereinigt. Nach einem weiteren Abkühlen der Abgase wird der bei der Reduktion gebildete Wasserdampf in dem Abgas kondensiert und durch Leitung 25 abgeleitet. Das gereinigte Abgas wird dann ggf. unter Beimischung von frischem wasserstoffhaltigem Gas über Leitung 26 komprimiert und in dem Wärmetauscher 23 vorgewärmt. In weiteren Erwärmungsstufen 27 und 28 kann das über das Zentralrohr 16 in den zweiten

10

5

15

Reaktor 13 und das über Leitung 6 in den ersten Reaktor 1 eingebrachte Gas auf die für die Reduktion erforderlichen Temperaturen erwärmt werden.

Bei dem in Fig. 3 dargestellten Verfahren wird über eine Förderschnecke feinkörniges, ggf. feuchtes Erz mit einer Körngröße von weniger als 500 µm in einen als Venturitrockner ausgebildeten Wärmeaustauscher 29 einer ersten Vorwärmstufe chargiert, in dem das Material vorzugsweise durch Abgas des dem Reaktor 1 nachgeschalten Abscheiders 9 suspendiert, getrocknet und aufgewärmt wird. Anschließend wird die Suspension in einen Zyklon 30 geführt, in dem die Feststoffe von dem Gas abgetrennt werden.

5

10

15

25

30

Das so vorgewärmte Erz wird durch die Zufuhrleitung 2 in den Reaktor 1 gefördert, in dem das Material auf Temperaturen von 700 bis 950° C aufgewärmt wird. Wie oben mit Bezug auf Figur 2 erläutert, wird durch die Leitung 6 Luft als sauerstoffhaltiges Fluidisierungsgas zugeführt, welches über die Gasverteilerkammer 4 und den Gasverteiler 5 in den oberen Teil der kreisringförmigen Kammer strömt und dort das zu erwärmende Erz unter Ausbildung einer stationären Wirbelschicht 10 fluidisiert.

Durch das Zentralrohr 3 wird dem Reaktor 1 ständig vorgewärmte Luft aus einer nachgeschalteten ersten Kühlstufe zugeführt, welche eine mit verdichteter Luft beaufschlagte Steigleitung 31 und einen nachgeschalteten Zyklon 32 als Abscheider aufweist. Von Vorteil ist dabei, dass die vorgewärmte Luft aus dem Zyklon 32 zuvor nicht entstaubt werden muss. Zusätzlich wird dem Reaktor auch über das Zentralrohr 3 Erdgas zugeführt.

Der Anteil des Feststoffes, der aufgrund der hohen Gasgeschwindigkeiten des durch das Zentralrohr strömenden Gases beim Passieren mitgerissen und durch die Leitung 8 in den Zyklon 9 ausgetragen wird, kann entweder dosiert über die Leitung 33 wieder in die Ringwirbelschicht 10 zurückgeführt werden, um so den

Füllstand 11 des Feststoffs in dem Reaktor zu regeln, oder zusammen mit dem aus der Ringwirbelschicht 10 entnommenen Feststoffstrom durch Leitung 34 der Steigleitung 31 zur Kühlung zugeleitet werden.

Die erforderliche Prozesswärme wird durch Verbrennung von Brennstoff gedeckt. Hierzu wird dem Reaktor bspw. Erdgas als Brennstoff zugeführt, der über die Leitung 35 in das Zentralrohr 3 und von dort mit dem sauerstoffhaltigen Gas aus Leitung 36 unter Vermischung in den Reaktor 1 eingetragen wird. Alternativ oder ergänzend dazu kann über eine entsprechende Lanzenanordnung 37 Brennstoff auch direkt in die Ringwirbelschicht 10 oder die Wirbelmischkammer 7 eingetragen werden. Es ist alternativ möglich, die Ringwirbelschicht 10 mit Erdgas zu fluidisieren. In diesem Fall wird Erdgas über die Leitung 6 herangeführt, wobei dann kein sauerstoffhaltiges gas in Leitung 6 gelangen darf. Um eine vollständige Verbrennung des Brennstoffs zu gewährleisten, muss die dem Reaktor zugeführte Luft einen ausreichenden Sauerstoffgehalt aufweisen. Alternativ dazu kann auch ein anderes sauerstoffhaltiges Gas über eine Zufuhrleitung in den Reaktor 1 eingebracht werden.

Der ersten Kühlstufe mit der Steigleitung 31 und dem Abscheider 32 ist ein weiteres Kühlsystem mit drei Kühlstufen nachgeschaltet, um die Feststoffe auf die für die weitere Verarbeitung notwendige Temperatur abzukühlen. Dieses Kühlsystem weist zunächst einen Einspritzkühler 38 auf, in den über Leitung 39 Umgebungsluft zur Fluidisierung eingeblasen wird. Gleichzeitig wird in den Einspritzkühler 38 ein Kühlmedium, wie Wasser, durch Leitung 40 eingespritzt, um die Feststoffe rasch abzukühlen. Dem Einspritzkühler 38 sind zwei Wirbelschichtkühler 41 und 42 nachgeschaltet, in denen bspw. Wasser als Kühlmedium im Gegenstrom durch Kühlwendel 43, 44 geführt und gleichzeitig ebenfalls durch Leitung 39 Umgebungsluft als Wirbelluft eingebracht wird, wodurch das Produkt weiter abgekühlt wird.

25

5

10

Das Abgas des Zyklons 30 der Vorwärmstufe sowie die Abgase der Kühlstufen 38, 41 und 42 des Kühlsystems werden über eine gemeinsame Leitung 45 einem weiteren Abscheider 46, bspw. einem Schlauchfilter, zugeleitet. Der darin abgeschiedene Staub kann über eine Leitung 47 zu dem Wirbelschichtkühler 42 zurückgeführt werden.

Durch eine in den Figuren nicht dargestellte Regelungseinrichtung kann die Temperatur der den Reaktor 1 verlassenden Feststoffe gezielt variiert werden. Hierzu wird die Ist-Austrittstemperatur der Feststoffe bspw. in der Leitung 8 gemessen und in Abhängigkeit einer einstellbaren Soll-Austrittstemperatur die Zufuhr von Brennstoff in den Reaktor 1 gesteuert.

Im Folgenden wird die Erfindung anhand von zwei den Erfindungsgedanken demonstrierenden, diesen jedoch nicht einschränkenden Beispielen erläutert.

Beispiel 1 (Reduktion von Ilmenit)

In einer der Figur 1 entsprechenden Anlage wurden dem Reaktor 1 66 t/h Ilmenit mit einer Temperatur von etwa 1.000° C und mit einer Korngröße von etwa 0,125 mm, enthaltend

51 Gew.-% TiO₂ 40 Gew.-% Fe₂O₃

zugeführt. Ferner wurden dem Reaktor 1 über Leitung 6 93.000 Nm³/h Reduktionsgas mit einer Temperatur von 874° C zugeführt, wobei das Reduktionsgas folgende Zusammensetzung aufwies:

91,7 Vol.-% H₂, 0,4 Vol.-% H₂O und 7,9 Vol.-% N₂.

15

20

10

KEIL&SCHAAFHAUSEN

Außerdem wurden dem Reaktor 1 über Leitung 21 und das Zentralrohr 3 aus dem dem zweiten Reaktor 13 nachgeschalteten Abscheider 17 216.000 Nm³/h wasserstoffhaltiges Abgas mit einer Temperatur von etwa 850° C zugeführt. Das Abgas wies dabei folgende Zusammensetzung auf:

90,6 Vol.-% H₂, 1,4 Vol.-% H₂O und 8,0 Vol.-% N₂.

10

5

Aus dem ersten Reaktor 1 wurde kontinuierlich ein Feststoffstrom aus der Ringwirbelschicht 10 entnommen und teilweise mit in dem Abscheider 9 von Abgas getrennten Feststoffen gemischt. Auf diese Weise wurden dem zweiten Reaktor 13 etwa 60 t/h Feststoffe enthaltend:

15

56 Gew.-% TiO₂, 13 Gew.-% FeO und 21 Gew.-% Fe

zugeführt. Über die Zufuhrleitung 15 und über ein ggf. vorgesehenes Zentralrohr wurden insgesamt 216.000 Nm³/h Reduktionsgas mit einer Temperatur von 871° C in den Reaktor 13 eingebracht. Das Reduktionsgas hatte dabei folgende Zusammensetzung:

25

91,7 Vol.-% H₂, 0,4 Vol.-% H₂O und 7,9 Vol.-% N₂.

KEIL&SCHAAFHAUSEN PATENTANWÄLTE

Aus dem dem Reaktor 13 nachgeschalteten Abscheider 17 wurden dann über Leitung 18 58 t/h Feststoff entnommen, der folgende Zusammensetzung aufwies:

5

57 Gew.-% TiO₂, 2 Gew.-% FeO und 30 Gew.-% Fe.

10

In dem Abscheider 9, der dem ersten Reaktor 1 nachgeschaltet ist, wurden 310.000 Nm³/h Abgas mit einer Temperatur von 850° C der Wiederaufbereitungsanlage zugeführt. Das Abgas wies dabei folgende Zusammensetzung auf:

> 88 Vol.-% H₂, 3,9 Vol.-% H₂O und 7,8 Vol.-% N₂.

15

20

Unter diesem Bedingungen konnte der oxidierte Ilmenit in der ersten Reduktionsstufe im Reaktor 1 auf 80 % Metallisierung reduziert werden und anschlie-Bend in der zweiten Reduktionsstufe in Reaktor 13 auf 97% Metallisierung reduziert werden. Gleichzeitig konnte die Bildung von M₃O₅-Phasen, wie bspw. Ti₂MgO₅, Ti₂MnO₅ oder Ti₂FeO₅, die in den nachgeschalteten hydrometallurgischen Prozessstufen schwer oder gar nicht löslich sind, weitestgehend unterbunden werden.

Beispiel 2

(magnetisierende Röstung von Ilmenit)

In einer der Fig. 3 entsprechenden Anlage wurden dem Venturitrockner 29 über die Förderschnecke 43 t/h feuchter Ilmenit mit einer Korngröße von weniger als 315 µm zugeführt.

Nach Durchlaufen der Vorwärmstufen 29, 30 wurde der vorgetrocknete Ilmenit über die Leitung 2 in die Ringwirbelschicht 10 des Reaktors 1 eingeführt. Als Fluidisierungsgas wurden dem Reaktor 1 ca. 9.000 Nm³/h Luft zugeführt, wobei ca. 7.000 Nm³/h vorgewärmte und staubbeladene Luft aus dem Abscheider 32 der dem Reaktor nachgeschalteten Kühlstufe über Leitung 36 in das Zentralrohr 3 eingeleitet und ca. 2.000 Nm³/h kalte Luft über die Leitung 6 und die Windbox (Gasverteilerkammer) 4 zur Fluidisierung der Ringwirbelschicht 10 zugeführt wurden. Gleichzeitig wurden dem Reaktor über die Leitung 28 580 Nm³/h Erdgas als Brennstoff zugeführt und verbrannt. Die Temperatur im Reaktor 1 betrug zwischen 700 und 950° C. Das bei der Verbrennung entstehende Heißgas erwärmte den eingetragenen Ilmenit und es wurde durch die hohe Verweilzeit in dem Reaktor 1 bei Sauerstoffüberschuss eine partielle Röstung des Ilmenit erreicht.

Der geröstete Ilmenit wurde aus der Ringwirbelschicht 10 abgezogen und über Leitung 34 der ersten Kühlstufe 31 zugeführt, in der das Produkt mit 7.000 Nm³/h Luft abgekühlt und in dem Abscheider 32 anschließend von dem Abgas getrennt wurde.

Weitere 12.000 Nm³/h Wirbelluft wurden etwa zu gleichen Teilen auf die drei Kühlstufen 38, 41, 42 des nachgeschalteten Kühlsystems verteilt. Der vorgekühlte Ilmenit wurde zunächst in dem Einspritzkühler 38 fluidisiert und durch Einspritzen von rund 6 m³/h Wasser durch die Leitung 40 auf unter 200° C abgekühlt. Die Endkühlung des Produktes erfolgte dann in den beiden Kammern 41 und 42 des Wirbelschichtkühlern, wobei Kühlwasser den in die Kammern eingebauten Kühlbündeln 43, 44 im Gegenstrom zugeführt wurde.

Der Ilmenit konnte auf diese Weise magnetisierend geröstet, d.h. zumindest teilweise oxidiert, werden.

25

5

10

15

KEIL&SCHAAFHAUSEN PATENTANWÄLTE

Bezugszeichenliste:

5	1	Reaktor	25	19	Reduktionsstufe
	2	Zufuhrleitung für Feststoffe	•	20	Kühlsystem
	3	Gaszufuhrrohr (Zentralrohr)	21, 22	Leitung
	4	Gasverteilerkammer		23	Wärmetauscher
	5	Gasverteiler		24	Abscheider
10	6	Zufuhrleitung für Fluidisie-	30	25, 26	Leitung
		rungsgas		27, 28	Erwärmstufe
	7	Wirbelmischkammer		29	Venturitrockner
	8	Leitung		30	Zyklon
	9	Abscheider (Zyklon)		31	Steigleitung
15	10	(stationäre) Ringwirbel-	35	32	Zyklon
		schicht		33 - 36	Leitung
	11	Niveau der Ringwirbel-		37	Lanzenanordnung
		schicht 10		38	Einspritzkühler
	12	Vorwärmstufe		39, 40	Leitung
20	13	(zweiter) Reaktor	40	41, 42	Wirbelschichtkühler
	14, 15	Zufuhrleitung		43, 44	Kühlbündel
	16	Gasverteiler		45	Leitung
	17	Abscheider		46	Schlauchfilter
	18	Leitung		47	Leitung
45					

Patentansprüche

5

10

15

- 1. Verfahren zur Wärmebehandlung von titanhaltigen Feststoffen, bei dem feinkörnige Feststoffe in einem Reaktor (1) mit Wirbelbett bei einer Temperatur von 700 bis etwa 950° C behandelt werden, dadurch gekennzeichnet, dass ein erstes Gas oder Gasgemisch von unten durch wenigstens ein vorzugsweise zentrales Gaszufuhrrohr (3) in eine Wirbelmischkammer (7) des Reaktors (1) eingeführt wird, wobei das Gaszufuhrrohr (3) wenigstens teilweise von einer durch Zufuhr von Fluidisierungsgas fluidisierten, stationären Ringwirbelschicht (10) umgeben wird, und dass die Gasgeschwindigkeiten des ersten Gases oder Gasgemisches sowie des Fluidisierungsgases für die Ringwirbelschicht (10) derart eingestellt werden, dass die Partikel-Froude-Zahlen in dem Gaszufuhrrohr (3) zwischen 1 und 100, in der Ringwirbelschicht (10) zwischen 0,02 und 2 sowie in der Wirbelmischkammer (7) zwischen 0,3 und 30 betragen.
 - 2. Verfahren nach Anspruch 1, **dadurch gekennzeichnet**, dass die Partikel-Froude-Zahl in dem Gaszufuhrrohr (3) zwischen 1,15 und 20, insbesondere etwa 12 bis 15, beträgt.
 - 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Partikel-Froude-Zahl in der Ringwirbelschicht (10) zwischen 0,115 und 1,15, insbesondere etwa 0,2 bis 0,4, beträgt.
- 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Partikel-Froude-Zahl in der Wirbelmischkammer (7) zwischen 0,37 und 3,7, insbesondere etwa 1,4, beträgt.
 - 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Füllstand an Feststoff in dem Reaktor (1) so eingestellt

wird, dass sich die Ringwirbelschicht (10) wenigstens teilweise über das obere Mündungsende des Gaszufuhrrohres (3) hinaus erstreckt und dass ständig Feststoff in das erste Gas oder Gasgemisch eingetragen und von dem Gasstrom zu der oberhalb des Mündungsbereichs des Gaszufuhrrohres (3) befindlichen Wirbelmischkammer (7) mitgeführt wird.

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Gas oder Gasgemisch durch ein an dessen Mantelfläche mit Öffnungen, bspw. in Form von Schlitzen, versehenes Gaszufuhrrohr (3) geleitet wird.

5

10

15

25

- 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Ausgangsmaterial Ilmenit eingesetzt wird, das in dem Reaktor (1) reduziert wird.
- 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Reaktor (1) wasserstoffhaltigen Gas zugeführt wird.
- 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass in den Reaktor (1) wasserstoffhaltiges Gas mit einem Wasserstoffgehalt von 75 bis 100 %, insbesondere von 85 bis 95 % durch das Gaszufuhrrohr (3) und/oder in die Ringwirbelschicht (10) eingebracht wird.
- 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das wasserstoffhaltige Gas zwischen 0 und 5 %, insbesondere zwischen 0,3 und 4,0 %, Wasserdampf und zwischen 5 und 10 %, insbesondere zwischen 7 und 8 %, Stickstoff enthält.
- 11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das wasserstoffhaltige Gas mit einer Temperatur zwischen 820 und

900° C, insbesondere zwischen 840 und 880° C, in den Reaktor (1) eingebracht wird.

12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil des Abgases eines dem Reaktor (1) nachgeschalteten zweiten Reaktors (13) durch das Gaszufuhrrohr (3) in den Reaktor (1) geführt wird.

5

10

15

20

25

- 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem Reaktor (1) der Eisenanteil der Feststoffe zu mindestens 70 %, insbesondere zu etwa 80 % reduziert werden.
- 14. Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass in dem nachgeschalteten zweiten Reaktor (13) der Eisenanteil der Feststoffe zu mindestens 90 %, insbesondere etwa 97 % reduziert werden.
- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil des Abgases des Reaktors (1) nach einer Wiederaufbereitung durch Feststoffabscheidung, Abkühlung und Wasserabscheidung aufgeheizt und der Ringwirbelschicht (10) des Reaktors (1) die Leitung (6) zugeführt wird.
- 16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem zweiten Reaktor (13) eine Kühlstufe (20) für die Feststoffe nachgeschaltet ist.
- 17. Verfahren nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass dem Reaktor (1) und dem nachgeschalteten zweiten Reaktor (13) jeweils eine Abscheidestufe (9, 17) zur Trennung der Feststoffe von dem Abgas nachgeschaltet ist, und dass die abgeschiedenen Feststoffe zumindest teilweise

den jeweiligen stationären Wirbelschichten (10) der Reaktoren (1, 13) zugeführt werden.

18. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Ausgangsmaterial Ilmenit eingesetzt wird, welches in dem Reaktor (1) magnetisierend geröstet wird.

5

10

15

25

- 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass dem Reaktor (1) Brennstoff zugeführt wird, durch dessen Verbrennung mit einem sauerstoffhaltigen Gas zumindest ein Teil der für die thermische Behandlung erforderlichen Wärmemenge erzeugt wird.
 - 20. Verfahren nach einem der Ansprüche 18 oder 19, dadurch gekennzeichnet, dass gasförmiger Brennstoff, vorzugsweise Erdgas, durch Lanzen (37) oder dgl. in die Wirbelmischkammer (7), die Ringwirbelschicht (10) und/oder durch eine Leitung (35) in das Gaszufuhrrohr (3) und von dort gemeinsam mit sauerstoffhaltigem Gas in den Reaktor (1) eingeführt wird, und dass verdichtete Umgebungsluft oder vorgewärmte Luft als Fluidisierungsgas über eine Zufuhrleitung (6) und einen Gasverteiler (5) in die Ringwirbelschicht (10) des Reaktors (1) eingetragen wird.
 - 21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass durch das Gaszufuhrrohr (3) insbesondere in einer dem Reaktor (1) nachgeschalteten Kühlstufe (31, 32) vorgewärmte und ggf. staubbeladene Luft in den Reaktor (1) eingebracht wird.
 - 22. Verfahren nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass dem Reaktor (1) aus der Ringwirbelschicht (10) Feststoffe entnommen und einer Kühlstufe (31, 32), insbesondere einem Suspensionswärmetauscher (31), in dem die Feststoffe mit einem Kühlmedium, wie Luft, beaufschlagt wer-

den, und einem nachgeschalteten Abscheider, bspw. einem Zyklon (32), zugeführt werden.

23. Verfahren nach einem der Ansprüche 18 bis 22, dadurch gekennzeichnet, dass zumindest ein Teil des Abgases des Reaktors (1) in einem nachgeschalteten Abscheider, insbesondere einem Zyklon (9), weitgehend von Feststoffen getrennt und einer dem Reaktor (1) vorgeschalteten Vorwärmstufe mit einem Trockner, bspw. einem Venturitrockner (29), und einem Abscheider, bspw. einem Zyklon (30), zur Trocknung und Vorwärmung der dem Reaktor (1) zuzuführenden Feststoffe zugeführt wird.

5

10

15

20

25

- 24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die in dem dem Reaktor (1) nachgeschalteten Abscheider (9) von dem Abgas getrennten Feststoffe der Ringwirbelschicht (10) und/oder dem Suspensionswärmetauscher (31) zugeführt werden.
- 25. Verfahren nach einem der Ansprüche 18 bis 24, dadurch gekennzeichnet, dass die dem Reaktor (1) entnommenen Feststoffe nach einer ersten Kühlstufe (31) oder direkt einer weiteren Kühlstufe zugeführt werden, die einen fluidisierten Einspritzkühler (38) und/oder Wirbelschichtkühler (41, 42) aufweist.
- 26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass die Feststoffe in dem Einspritzkühler (38) durch Einspritzen von Wasser auf unter 300° C, insbesondere auf unter 200° C abgekühlt und in den Wirbelschichtkühlern (41, 42) durch im Gegenstrom durch Kühlwendel geführtes Wasser auf Weiterverarbeitungstemperatur abgekühlt werden.
- 27. Verfahren nach Anspruch 25 oder 26, dadurch gekennzeichnet, dass das Abgas der weiteren Kühlstufe (38, 41, 42) und des Abscheiders (30) der Vorwärmstufe einem weiteren Abscheider, insbesondere einem Schlauchfilter

- (46) zugeführt wird, und dass die in dem weiteren Abscheider (46) abgetrennten Feststoffe einem der Wirbelschichtkühler (41, 42) zugeführt werden.
- 28. Anlage zur Wärmebehandlung von titanhaltigen Feststoffen, insbesondere zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 27, mit einem als Wirbelschichtreaktor ausgebildeten Reaktor (1), dadurch gekennzeichnet, dass der Reaktor (1) ein Gaszuführungssystem aufweist, welches derart ausgebildet ist, dass durch das Gaszuführungssystem strömendes Gas Feststoff aus einer stationären Ringwirbelschicht (10), die das Gaszuführungssystem wenigstens teilweise umgibt, in die Wirbelmischkammer (7) mitreißt.

5

10

15

20

- 29. Anlage nach Anspruch 28, dadurch gekennzeichnet, dass das Gaszuführungssystem wenigstens ein sich vom unteren Bereich des Reaktors (1) aus im Wesentlichen vertikal nach oben bis in eine Wirbelmischkammer (7) des Reaktors (1) erstreckendes Gaszufuhrrohr (3) aufweist, wobei das Gaszufuhrrohr (3) wenigstens teilweise von einer ringförmigen Kammer, in der die stationäre Ringwirbelschicht (10) ausgebildet ist, umgeben ist.
- 30. Anlage nach Anspruch 29, dadurch gekennzeichnet, dass das Gaszufuhrrohr (3), bezogen auf die Querschnittsfläche des Reaktors (1), in etwa mittig angeordnet ist.
- 31. Anlage nach Anspruch 29 oder 30, dadurch gekennzeichnet, dass in der ringförmigen Kammer des Reaktors (1) ein Gasverteiler (5) vorgesehen ist, welcher die Kammer in einen oberen Wirbelbettbereich (10) und eine untere Gasverteilerkammer (4) unterteilt, und dass die Gasverteilerkammer (4) mit einer Zufuhrleitung (6) für insbesondere aufgeheiztes wasserstoffhaltiges oder brennstoffhaltiges Fluidisierungsgas verbunden ist.

32. Anlage nach einem der Ansprüche 29 bis 31, dadurch gekennzeichnet, dass dem Reaktor (1) ein Feststoffabscheider, insbesondere ein Zyklon (9), zur Abtrennung von Feststoffen nachgeschaltet ist, und dass der Feststoffabscheider eine zu der Ringwirbelschicht (10) des Reaktors (1) und/oder zu der stationären Wirbelschicht eines ggf. nachgeschalteten zweiten Reaktors (13) führende Feststoffleitung (14) aufweist.

5

10

15

20

25

- 33. Anlage nach einem der Ansprüche 31 oder 32, dadurch gekennzeichnet, dass dem Feststoffabscheider (9) des Reaktors (1) eine Wiederaufbereitungsstufe (23, 24, 25, 26, 27, 28) für das Abgas nachgeschaltet ist.
- 34. Anlage nach einem der Ansprüche 32 oder 33, dadurch gekennzeichnet, dass der zweite Reaktor (13) ebenfalls einen nachgeschalteten Feststoffabscheider (17) aufweist, dessen Abgas über eine Zufuhrleitung (21) in die Wirbelschicht (10) des ersten Reaktors (1) geleitet wird.
- 35. Anlage nach einem der Ansprüche 28 bis 32, dadurch gekennzeichnet, dass der Reaktor (1) eine zu dem Gaszufuhrrohr (3) führende Leitung (35) und/oder zu einer in die Ringwirbelschicht (10) mündenden Lanzenanordnung (37) führende Zufuhrleitung für insbesondere gasförmigen Brennstoff aufweist.
- 36. Anlage nach einem der Ansprüche 28 bis 32, dadurch gekennzeichnet, dass dem Reaktor (1) eine Vorwärmstufe für die Feststoffe vorgeschaltet ist, deren Trockner (29) mit der Abgasleitung des dem Reaktor (1) nachgeschalteten Abscheiders (9) verbunden ist, und dass eine dem Reaktor (1) nachgeschaltete Kühlstufe (31, 32) eine mit dem Gaszufuhrrohr (3) verbundene Abgasleitung aufweist.
- 37. Anlage nach Anspruch 36, **dadurch gekennzeichnet**, dass dem Reaktor (1) wenigstens eine weitere Kühlstufe (38, 41, 42) nachgeschaltet ist.

Fig. 2

Outokumpu Oyj Riihitontuntie 7

02200 Espoo Finnland

Zusammenfassung:

Verfahren und Anlage zur Wärmebehandlung von titanhaltigen Feststoffen

Die vorliegende Erfindung betrifft ein Verfahren und eine Anlage zur Wärmebehandlung von titanhaltigen und ggf. weitere Metalloxide enthaltenden Feststoffen, bei dem feinkörnige Feststoffe in einem Reaktor (1) mit Wirbelbett auf eine Temperatur von 700 bis 950° C erhitzt werden. Um die Energieausnutzung zu verbessern, wird vorgeschlagen, ein erstes Gas oder Gasgemisch von unten durch ein Gaszufuhrrohr (3) in eine Wirbelmischkammer (7) des Reaktors (1) einzuführen, wobei das Gaszufuhrrohr (3) wenigstens teilweise von einer durch Zufuhr von Fluidisierungsgas fluidisierten, stationären Ringwirbelschicht (10) umgeben wird. Die Gasgeschwindigkeiten des ersen Gases oder Gasgemisches sowie des Fluidisierungsgases für die Ringwirbelschicht (10) werden derart eingestellt, dass die Partikel-Froude-Zahlen in dem Gaszufuhrrohr (3) zwischen 1 und 100, in der Ringwirbelschicht (10) zwischen 0,02 und 2 und in der Wirbelmischkammer (7) zwischen 0,3 und 30 betragen. (Fig. 1)

20. Dezember 2002 O 1 P 94

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.