Функции алгебры логики

Татьяна Анатольевна Новикова novikovat.cmc@gmail.com

 $\Phi_{\rm акультет} \ {\rm BMuK} \\ {\rm Kaзаxcтanckuй} \ {\rm филиал} \ {\rm M\Gamma Y} \ {\rm им.M.B.} \ {\rm Ломоносовa} \\$

24 апреля 2016 г.

Пусть $E_2 = \{0,1\}$ — исходный алфавит (множество) значений переменных.

Обозначим $E_2^n = \{(a_1,\ldots,a_n)| \forall i \ a_i \in E_2\}.$

Definition

Всюду определенная булева функция — отображение $f(x_1, \ldots, x_n) : E_2^n \to E_2$.

Табличное представление функций одной переменной.

Χ	0	1	X	Σ
0	0	1	0	1
1	0	1	1	0

Табличное представление функций одной переменной.

X	0	1	Χ	X
0	0	1	0	1
1	0	1	1	0

Функция 0 — константа ноль(нуль).

Функция 1 — константа единица.

 Φ ункция \mathbf{x} — тождественная функция.

Функция \bar{x} — отрицание (другое обозначение: $\neg x$).

Табличное представление функций двух переменных.

X	y	<i>f</i> ₁	f_2	f_3	f_4	<i>f</i> ₅	f_6	<i>f</i> ₇
0	0	0	0	0	1	1	1	1
0	1	1	0	1	1	0	1	0
1	0	1	0	1	0	0	1	0
1	1	0 1 1 1	1	0	1	1	0	0

Табличное представление функций двух переменных.

Χ	y	<i>f</i> ₁	f_2	f_3	f_4	f_5	f_6	<i>f</i> ₇
0	0	0	0	0	1	1	1	1
0	1	1	0	1	1	0	1	0
1	0	1	0	1	0	0	1	0
1	1	1	1	0	1	1	0	1 0 0

 f_1 — дизъюнкция, логическое ИЛИ: $f_1 = x \lor y$.

 f_2 — конъюнкция, логическое И: $f_2 = x \cdot y = x \& y = xy$.

 f_3 — сложение по модулю 2, исключающее ИЛИ: $f_3 = x \oplus y$.

 f_4 — импликация(x имплицирует y): $\mathit{f}_4 = \mathit{x} \longrightarrow \mathit{y}$.

 f_5 — эквивалентность: $f_5 = x \sim y = \overline{x \oplus y}$.

 f_6 — штрих Шеффера: $f_6 = x|y = \overline{xy}$.

 f_7 — стрелка Пирса: $f_7 = x \downarrow y = \overline{x \vee y}$.

Lemma

В алфавите $A = \{a_1, \dots, a_r\}$ из r букв можно построить ровно r^m различных слов длины m.

Доказательство. Индукцией по m. m = 1. Очевидно.

Lemma

В алфавите $A = \{a_1, \dots, a_r\}$ из r букв можно построить ровно r^m различных слов длины m.

Доказательство. Индукцией по m.

m = 1. Очевидно.

Пусть верно для m-1, то есть существует ровно r^{m-1} различных слов длины m-1. Сколько существует способов добавить одну букву в конец слова?

Lemma

В алфавите $A = \{a_1, \dots, a_r\}$ из r букв можно построить ровно r^m различных слов длины m.

Доказательство. Индукцией по m.

m = 1. Очевидно.

Пусть верно для m-1, то есть существует ровно r^{m-1} различных слов длины m-1. Сколько существует способов добавить одну букву в конец слова?

К каждому из r^{m-1} слов можно приписать одну букву r способами, итого $r \cdot r^{m-1} = r^m$.

Табличное задание некоторой функции алгебры логики от n переменных:

Каково количество всевозможных функций f — мощность множества P_2 ?

Табличное задание некоторой функции алгебры логики от n переменных:

$$2^{n}egin{bmatrix} x_{1} & x_{2} & \dots & x_{n} & f \ 0 & 0 & \dots & 0 & lpha_{0} \ 0 & 0 & \dots & 1 & lpha_{1} \ \dots & \dots & \dots & \dots & \dots \ 1 & 1 & \dots & 1 & lpha_{2^{n}-1} \end{bmatrix} 2^{2^{n}}$$

Каково количество всевозможных функций f — мощность множества P_2 ? $|P_2| = 2^{2^n}$.

Definition

Переменная x_i называется существенной переменной ФАЛ $f(x_1, \ldots, x_n)$, если существуют такие числа $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_n \in E_2$, что

$$f(\alpha_1,\ldots,\alpha_{i-1},0,\alpha_{i+1},\ldots,\alpha_n)\neq f(\alpha_1,\ldots,\alpha_{i-1},1,\alpha_{i+1},\ldots,\alpha_n),$$

при этом наборы, отличающиеся только значением *i*-той компоненты, называются соседними по переменной *x_i*. В противном случае переменная *x_i* называется фиктивной.

Если x_i — фиктивная переменная функции f, то набор ее значений однозначно совпадает с набором значений некоторой функции $g(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$.

Две функции алгебры логики мы назовем равными, если одна из них может быть получена из другой путем добавления или изъятия любого числа фиктивных переменных.

Пусть имеется множество функций $A = \{f_1(\ldots), \ldots, f_n(\ldots), \ldots\}.$

Definition

Формулой над А назовем следующие объекты:

- **1** Любая функция из A называется формулой над A.
- **2** Если $f(x_1, ..., x_n) \in A$ и для любого i верно, что H_i либо переменная, либо формула над A, то выражение вида $f(H_1, ..., H_n)$ тоже является формулой над A.
- **3** Те и только те объекты, которые строятся по пунктам 1 и 2, являются формулами.

- Коммутативность.
- 2 Ассоциативность.
- **3** Дистрибутивность.
- Ф Тождества де Моргана.
- Законы поглощения.
- 6 Очевидные тождества.

Коммутативность.

- $x \lor y = y \lor x$;
- xy = yx;
- $x \oplus y = y \oplus x$;
- $X \sim y = y \sim X$.

Ассоциативность.

$$(xy)z = x(yz) = xyz;$$

$$(x \oplus y) \oplus z = x \oplus (y \oplus z) = x \oplus y \oplus z.$$

Дистрибутивность.

$$(x \vee y)z = (xz) \vee (yz);$$

$$(xy) \lor z = (x \lor z) \cdot (y \lor z).$$

Тождества де Моргана.

$$\bullet \quad \bar{\bar{x}} = x;$$

Законы поглощения.

3
$$x \vee \bar{x} = 1$$
;

6
$$x \lor 1 = 1$$
;

6
$$x \cdot 1 = x$$
;

3
$$x \cdot 0 = 0$$
.

Тождества по определению.

$$2 x \downarrow y = \overline{x \vee y};$$

Очевидные тождества:

$$x_1 \cdot x_2 \cdot \ldots \cdot x_n = 1 \Leftrightarrow \forall i : x_i = 1,$$

 $x_1 \lor x_2 \lor \ldots \lor x_n = 1 \Leftrightarrow \exists i : x_i = 1$

Очевидные тождества:

$$x_1 \cdot x_2 \cdot \ldots \cdot x_n = 1 \Leftrightarrow \forall i : x_i = 1,$$

 $x_1 \lor x_2 \lor \ldots \lor x_n = 1 \Leftrightarrow \exists i : x_i = 1$
Введем обозначение:

(χσ

$$\mathbf{X}^{\sigma} = \left\{ \begin{array}{lcl} \mathbf{X}, \sigma & = & \mathbf{1} \\ \mathbf{\bar{X}}, \sigma & = & \mathbf{0}. \end{array} \right.$$

Что означает утверждение вида: $x^{\sigma} = 1$?

Очевидные тождества:

$$x_1 \cdot x_2 \cdot \ldots \cdot x_n = 1 \Leftrightarrow \forall i : x_i = 1,$$

 $x_1 \lor x_2 \lor \ldots \lor x_n = 1 \Leftrightarrow \exists i : x_i = 1$
Введем обозначение:

$$\mathbf{x}^{\sigma} = \left\{ \begin{array}{lcl} \mathbf{x}, \sigma & = & 1 \\ \mathbf{\bar{x}}, \sigma & = & \mathbf{0}. \end{array} \right.$$

Что означает утверждение вида: $x^{\sigma} = 1$? $x = \sigma$.

Theorem (O разложении ФАЛ по переменным)

Для любой функции алгебры логики $f(x_1, \ldots, x_n)$ и для любого $k(1 \le k \le n)$ справедливо следующее равенство:

$$f(x_1,\ldots,x_n) = \bigvee_{(\sigma_1,\ldots,\sigma_k)\in E_2^k} X_1^{\sigma_1} \cdot X_2^{\sigma_2} \cdot \ldots \cdot X_k^{\sigma_k} \cdot f(\sigma_1,\ldots,\sigma_k,X_{k+1},\ldots,X_n).$$

Theorem (O разложении ФАЛ по переменным)

Для любой функции алгебры логики $f(x_1, \ldots, x_n)$ и для любого $k(1 \le k \le n)$ справедливо следующее равенство:

$$f(x_1,\ldots,x_n) = \bigvee_{(\sigma_1,\ldots,\sigma_k)\in E_2^k} x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdot \ldots \cdot x_k^{\sigma_k} \cdot f(\sigma_1,\ldots,\sigma_k,x_{k+1},\ldots,x_n).$$

Идея доказательства. Рассмотрим произвольный набор $\tilde{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n)$.

Заметим, что (Почему это так?)

$$\bigvee_{(\sigma_1,\ldots,\sigma_k)\in E_2^k}\alpha_1^{\sigma_1}\cdot\alpha_2^{\sigma_2}\cdot\ldots\cdot\alpha_k^{\sigma_k}\cdot f(\sigma_1,\ldots,\sigma_k,\alpha_{k+1},\ldots,\alpha_n)=$$

$$0\vee\ldots\vee0\vee\alpha_1^{\alpha_1}\cdot\alpha_2^{\alpha_2}\ldots\alpha_k^{\alpha_k}\cdot f(\alpha_1,\ldots,\alpha_n).$$

Следствие 1. Разложение произвольной ФАЛ по одной переменной:

$$f(x_1,...,x_n) = \bar{x_1} \cdot f(0,x_2,...,x_n) \vee x_1 \cdot f(1,x_2,...,x_n).$$

Следствие 1. Разложение произвольной ФАЛ по одной переменной:

$$f(x_1,...,x_n) = \bar{x_1} \cdot f(0,x_2,...,x_n) \vee x_1 \cdot f(1,x_2,...,x_n).$$

Следствие 2 (Теорема о совершенной дизъюнктивной нормальной форме, ДНФ). Для любой ФАЛ $f(x_1, x_2, ..., x_n)$, отличной от тождественного ноля, справедливо следующее представление:

$$f(x_1,\ldots,x_n) = \vee_{(\sigma_1,\ldots,\sigma_n):f(\sigma_1,\ldots,\sigma_n)=1} x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdot \ldots \cdot x_n^{\sigma_n}.$$

Доказательство ?.

Для любой функции алгебры логики $f(x_1, x_2, \dots, x_n)$, отличной от тождественной единицы, справедливо представление:

$$f(x_1,\ldots,x_n) = \&_{(\sigma_1,\ldots,\sigma_n):f(\sigma_1,\ldots,\sigma_n)=0}(x_1^{\overline{\sigma_1}}\vee\ldots\vee x_n^{\overline{\sigma_n}}).$$

Definition

Система функций алгебры логики A называется полной системой в P_2 , если любую булеву функцию можно выразить формулой над A.

Definition

Система функций алгебры логики A называется полной системой в P_2 , если любую булеву функцию можно выразить формулой над A.

Theorem

Пусть даны две системы функций алгебры логики:

$$A = \{f_1, f_2, \ldots\}, B = \{g_1, g_2, \ldots\}.$$

Пусть известно, что система A полна и каждая ее функция выражается формулой над системой B. Тогда система B также является полной.

Доказательство. Рассмотрим произвольную функцию $h \in P_2$. Ввиду полноты системы A функция h может быть выражена формулой $h = H(f_1, \ldots, f_n, \ldots)$.

По условию теоремы справедливо:

$$f_1 = H_1(g_1, \ldots, g_n, \ldots), f_2 = H_2(g_1, \ldots, g_n, \ldots), \ldots$$

Произведем замену в формуле для h:

$$H(f_1,\ldots,f_n,\ldots)=H(H_1(g_1,\ldots,g_n,\ldots),f_2=H_2(g_1,\ldots,g_n,\ldots),\ldots)$$

Таким образом, существует формула H':

$$h = H(f_1, \ldots, f_n, \ldots) = H'(g_1, \ldots, g_n, \ldots).$$

Ввиду произвольности функции h, теорема доказана.

Theorem (О стандартном базисе)

Система $A = \{\lor, \&, \lnot\}$ является полной в P_2 .

Доказательство. Если функция f отлична от тождественного ноля, то, по теореме о ДНФ, существует формула над A, реализующая f. Если же $f \equiv 0$, то $f = x \cdot \bar{x}$.

Следующие системы являются полными в P_2 :

- $\{x \cdot y, \bar{x}\};$
- **3** $\{x|y\}$;
- **4** $\{x \cdot y, x \oplus y, 1\}.$

Идеи доказательств.

• По закону де Моргана: $\overline{x \cdot y} = \overline{x} \vee \overline{y}$. Тогда: $x \cdot y = \overline{\overline{x} \vee \overline{y}}$. Но тогда по теореме о стандартном базисе система $\{x \vee y, \overline{x}\}$ тоже является полной системой.

Следующие системы являются полными в P_2 :

- **6** $\{x|y\}$;
- **4** $\{x \cdot y, x \oplus y, 1\}.$

Идеи доказательств.

- По закону де Моргана: $\overline{x \cdot y} = \overline{x} \vee \overline{y}$. Тогда: $x \cdot y = \overline{x} \vee \overline{y}$. Но тогда по теореме о стандартном базисе система $\{x \vee y, \overline{x}\}$ тоже является полной системой.

Следующие системы являются полными в P_2 :

- $\{x \cdot y, \bar{x}\};$
- **6** $\{x|y\}$;
- **4** $\{x \cdot y, x \oplus y, 1\}.$

Идеи доказательств.

- По закону де Моргана: $\overline{x\cdot y} = \overline{x}\vee \overline{y}$. Тогда: $x\cdot y = \overline{x}\vee \overline{y}$. Но тогда по теореме о стандартном базисе система $\{x\vee y, \overline{x}\}$ тоже является полной системой.

Theorem

Следующие системы являются полными в P_2 :

- **3** $\{x|y\}$;
- **4** $\{x \cdot y, x \oplus y, 1\}.$

Идеи доказательств.

- По закону де Моргана: $\overline{x \cdot y} = \overline{x} \vee \overline{y}$. Тогда: $x \cdot y = \overline{x} \vee \overline{y}$. Но тогда по теореме о стандартном базисе система $\{x \vee y, \overline{x}\}$ тоже является полной системой.

- \bullet $\bar{x} = x \oplus 1$.

Монотонной конъюнкцией от переменных x_1, \ldots, x_n называется любое выражение вида $x_{i_1} \cdot x_{i_2} \cdot \ldots \cdot x_{i_s}$, где $s \geq 1, 1 \leq i_j \leq n, \forall j = 1, 2, \ldots, s$, все переменные различны $(i_j \neq i_k)$, если $j \neq k$; либо просто 1.

Монотонной конъюнкцией от переменных x_1, \ldots, x_n называется любое выражение вида $x_{i_1} \cdot x_{i_2} \cdot \ldots \cdot x_{i_s}$, где $s \geq 1, 1 \leq i_j \leq n, \forall j = 1, 2, \ldots, s$, все переменные различны $(i_j \neq i_k)$, если $j \neq k$; либо просто 1.

Definition

Полиномом Жегалкина над x_1, \dots, x_n называется выражение вида

$$K_1 \oplus K_2 \oplus \ldots \oplus K_I$$
,

где $I \geq 1$ и все K_j есть различные монотонные конъюнкции над x_1, \ldots, x_n ; либо константа 0.

Theorem (Теорема Жегалкина)

Любую функцию алгебры логики $f(x_1,\ldots,x_n)$ можно единственным образом выразить полиномом Жегалкина над x_1,\ldots,x_n .

Доказательство. Существование. Любую ФАЛ f можно реализовать формулой над $\{x \cdot y, x \oplus y, 1\}$. Преобразуем эту формулу по следующим правилам:

- дистрибутивность: раскрываем все скобки и получаем $f(x_1,\ldots,x_n)=K_1'\oplus K_2'\oplus\ldots\oplus K_l'$, где каждая K_i' конъюнкция переменных и единиц.
- Коммутативность и соотношения: $x \cdot x = x, 1 \cdot 1 = 1, A \cdot 1 = A$. В результате все конъюнкции станут монотонными.
- $A \oplus A = 0, A \oplus 0 = A$. В результате получим либо 0, либо $K_{i_1} \oplus K_{i_2} \oplus \ldots \oplus K_{i_n}$.

Единственность. Подсчитаем количество полиномов Жегалкина от переменных x_1, \dots, x_n — число выражений вида

$$\sum_{(i_1,\ldots,i_s)} a_{i_1\ldots i_s} \cdot x_{i_1} \cdot \ldots \cdot x_{i_n}.$$

Число членов $x_{i_1} \dots x_{i_s}$ равно количеству всех подмножеств (i_1, \dots, i_s) из n чисел $(1, \dots, n)$.

Единственность. Подсчитаем количество полиномов Жегалкина от переменных x_1, \dots, x_n — число выражений вида

$$\sum_{(i_1,\ldots,i_s)} a_{i_1\ldots i_s} \cdot x_{i_1} \cdot \ldots \cdot x_{i_n}.$$

Число членов $x_{i_1} \dots x_{i_s}$ равно количеству всех подмножеств (i_1, \dots, i_s) из n чисел $(1, \dots, n)$., т.е. 2^n .

Единственность. Подсчитаем количество полиномов Жегалкина от переменных x_1, \dots, x_n — число выражений вида

$$\sum_{(i_1,\ldots,i_s)} a_{i_1\ldots i_s} \cdot x_{i_1} \cdot \ldots \cdot x_{i_n}.$$

Число членов $X_{i_1} \dots X_{i_s}$ равно количеству всех подмножеств (i_1, \dots, i_s) из n чисел $(1, \dots, n)$., т.е. 2^n .

Коэффициент $a_{i_1...i_s}$ принимает одно из значений 0 или 1. Но тогда число полиномов соответствует числу всех булевых функций от тех же переменных, т.е. 2^{2^n} . Ввиду существования представления для каждой функции и ввиду равномощности множества всех булевых функций и множества полиномов, единственность доказана.

Пусть $A \subseteq P_2$. Тогда замыканием A - [A] — называется множество всех Φ АЛ, которые могут быть выражены формулами над A.

Свойства замыканий:

- ② $A \supseteq B \Rightarrow [A] \supseteq [B]$, причем $A \supset B \Rightarrow [A] \supseteq [B]$;
- **3** [[A]] = [A].

Система функций алгебры логики A называется полной, если $[A] = P_2$.

Система функций алгебры логики A называется полной, если $[A] = P_2$.

Definition

Пусть $A \subseteq P_2$. Тогда система A называется замкнутым классом, если замыкание A совпадает с самим A: [A] = A.

Утверждение. Пусть A — замкнутый класс, $A \neq P_2$, и $B \subseteq A$. Тогда B — неполная система.

Система функций алгебры логики A называется полной, если $[A] = P_2$.

Definition

Пусть $A \subseteq P_2$. Тогда система A называется замкнутым классом, если замыкание A совпадает с самим A: [A] = A.

Утверждение. Пусть A — замкнутый класс, $A \neq P_2$, и $B \subseteq A$. Тогда B — неполная система.

 $B\subseteq A\Rightarrow [B]\subseteq [A]=A\neq P_2$. Значит, B — неполная система.

Примеры замкнутых классов:

- **1** класс функций, сохраняющих 0: T_0 ;
- **2** класс функций, сохраняющих 1: T_1 ;
- **8** класс линейных функций: *L*;
- класс монотонных функций: *М*;
- **б** класс самодвойственных функций: *S*.

$$T_0 = \{f(x_1, \dots, x_n) | f(0, \dots, 0) = 0\}.$$
 Примеры:

 $T_0 = \{f(x_1, \dots, x_n) | f(0, \dots, 0) = 0\}$. Примеры: $0, x, xy, x \lor y, x \oplus y$. Каково количество функций в классе T_0 ?

$$T_0=\{f(x_1,\dots,x_n)|f(0,\dots,0)=0\}.$$
 Примеры: $0,x,xy,x\vee y,x\oplus y.$ Каково количество функций в классе T_0 ? $|T_0|=2^{2^n-1}.$

$$T_0=\{f(x_1,\dots,x_n)|f(0,\dots,0)=0\}.$$
 Примеры: $0,x,xy,x\vee y,x\oplus y.$ Каково количество функций в классе T_0 ? $|T_0|=2^{2^n-1}.$

Theorem

Класс T_0 — замкнутый класс.

Доказательство. Пусть
$$\{f(x_1,\ldots,x_n),g_1(y_{11},\ldots,y_{1m_1}),\ldots,g_n(y_{n1},\ldots,y_{nm_n})\}$$
. Рассмотрим функцию $h(y_1,\ldots,y_r)=f(g_1(y_{11},\ldots,y_{1m_1}),\ldots,g_n(y_{n1},\ldots,y_{nm_n}))$. Но $h(0,\ldots,0)=f(g_1(0,\ldots,0),\ldots,g_2(0,\ldots,0))=f(0,\ldots,0)=0$ функция h тоже сохраняет ноль!

$$T_1 = \{f(x_1, \dots, x_n) | f(1, \dots, 1) = 1\}$$
 Примеры:

$$T_1 = \{f(x_1, \dots, x_n) | f(1, \dots, 1) = 1\}$$
 Примеры: $1, x, xy, x \vee y, x \rightarrow y, x \sim y.$

$$T_1 = \{f(x_1, \dots, x_n) | f(1, \dots, 1) = 1\}$$
 Примеры: $1, x, xy, x \lor y, x \to y, x \sim y.$

Каково количество функций в классе T_1 ? Как и в классе T_0 .

Theorem

Класс T_1 — замкнутый класс.

Доказательство. Аналогично доказательству предыдущей теоремы.

Definition

Функция алгебры логики $f(x_1,\ldots,x_n)$ называется линейной, если

$$f(x_1,\ldots,x_n)=a_0\oplus a_1x_1\oplus\ldots\oplus a_nx_n,$$

где $a_i \in \{0, 1\}.$

Примеры:

Definition

Функция алгебры логики $f(x_1,\ldots,x_n)$ называется линейной, если

$$f(x_1,\ldots,x_n)=a_0\oplus a_1x_1\oplus\ldots\oplus a_nx_n,$$

где $a_i \in \{0, 1\}.$

Примеры: $0, 1, \bar{x}, x \sim y, x \oplus y$.

Definition

Функция алгебры логики $f(x_1,\ldots,x_n)$ называется линейной, если

$$f(x_1,\ldots,x_n)=a_0\oplus a_1x_1\oplus\ldots\oplus a_nx_n,$$

где $a_i \in \{0, 1\}.$

Примеры: $0, 1, \bar{x}, x \sim y, x \oplus y$.

Theorem

Класс L замкнут.

Definition

Функция алгебры логики $f(x_1,\ldots,x_n)$ называется линейной, если

$$f(x_1,\ldots,x_n)=a_0\oplus a_1x_1\oplus\ldots\oplus a_nx_n,$$

где $a_i \in \{0, 1\}.$

Примеры: $0, 1, \bar{x}, x \sim y, x \oplus y$.

Theorem

Класс L замкнут.

Доказательство. Всякая линейная функция представима в виде $x_{i_1} \oplus x_{i_2} \oplus \ldots \oplus x_{i_n} \oplus a$. Если вместо каждого x_{i_j} подставить линейное выражение, то получится снова линейная функция.

Функцией, двойственной к ФАЛ $f(x_1, \ldots, x_n)$, называется функция $f^*(x_1, \ldots, x_n) = \overline{f}(\overline{x_1}, \ldots, \overline{x_n})$.

Функцией, двойственной к ФАЛ $f(x_1, \ldots, x_n)$, называется функция $f^*(x_1, \ldots, x_n) = \overline{f}(\overline{x_1}, \ldots, \overline{x_n})$.

Theorem (Принцип двойственности)

Пусть

$$\Phi(y_1,\ldots,y_m)=f(g_1(y_{11},\ldots,y_{1k_1}),\ldots,g_n(y_{n1},\ldots,y_{nk_n})).$$

Тогда

$$\Phi^*(y_1,\ldots,y_m)=f^*(g_1^*(y_{11},\ldots,y_{1k_1}),\ldots,g_n^*(y_{n1},\ldots,y_{nk_n})).$$

Доказательство принципа двойственности. Рассмотрим

$$\Phi^*(y_1, \dots, y_m) = \overline{f}(g_1(\overline{y_{11}}, \dots, \overline{y_{1k_1}}), \dots, g_n(\overline{y_{n1}}, \dots, \overline{y_{nk_n}}))$$

$$= \overline{f}(\overline{\overline{g_1}}(\overline{y_{11}}, \dots, \overline{y_{1k_1}}), \dots, \overline{\overline{g_n}}(\overline{y_{n1}}, \dots, \overline{y_{nk_n}}))$$

$$= f^*(g_1^*(y_{11}, \dots, y_{1k_1}), \dots, g_n^*(y_{n1}, \dots, y_{nk_n})).$$

Утверждение. Для любой ФАЛ $f(x_1, \ldots, x_n)$ справедливо равенство

$$f(x_1\ldots,x_n)=f^{**}(x_1,\ldots,x_n).$$

Утверждение. Для любой Φ АЛ $f(x_1, ..., x_n)$ справедливо равенство

$$f(x_1\ldots,x_n)=f^{**}(x_1,\ldots,x_n).$$

Обоснование.

$$f^{**} = [\overline{f}(\overline{x_1}, \ldots, \overline{x_n})]^* = \overline{\overline{f}}(\overline{\overline{x_1}}, \ldots, \overline{\overline{x_n}}) = f(x_1, \ldots, x_n).$$

 Φ АЛ $f(x_1, ..., x_n)$ называется самодвойственной, если $f(x_1, ..., x_n) = f^*(x_1, ..., x_n)$.

Примеры:

 Φ АЛ $f(x_1, ..., x_n)$ называется самодвойственной, если $f(x_1, ..., x_n) = f^*(x_1, ..., x_n)$.

Примеры: $\{x, \bar{x}, x \oplus y \oplus z \oplus a, m(x, y, z) = xy \lor yz \lor xz\}.$

 Φ АЛ $f(x_1,\ldots,x_n)$ называется самодвойственной, если $f(x_1,\ldots,x_n)=f^*(x_1,\ldots,x_n).$

Примеры: $\{x, \bar{x}, x \oplus y \oplus z \oplus a, m(x, y, z) = xy \lor yz \lor xz\}.$

Theorem

Класс S замкнут.

 Φ АЛ $f(x_1,...,x_n)$ называется самодвойственной, если $f(x_1,...,x_n)=f^*(x_1,...,x_n).$

Примеры: $\{x, \bar{x}, x \oplus y \oplus z \oplus a, m(x, y, z) = xy \lor yz \lor xz\}.$

Theorem

Класс S замкнут.

Доказательство. Пусть
$$f(x_1, \ldots, x_n) \in S$$
, $\forall i$ $g_i(y_{i1}, \ldots, y_{ik_i}) \in S$, $i = 1, 2, \ldots, n$ и $\Phi = f(g_1(y_{11}, \ldots, y_{1k_i}), \ldots, g_n(y_{n1}, \ldots, y_{nk_n}))$.

Тогда по принципу двойственности:

$$\Phi^* = f^*(g_1^*(y_{11},..,y_{1k_1}),..,g_n^*(y_{n1},..,y_{nk_n})) = f(g_1(..),..,g_n(..)).$$

T.e.
$$\Phi = \Phi^* \Rightarrow \Phi \in S$$
.

Пусть $\widetilde{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n)$ и $\widetilde{\beta} = (\beta_1, \beta_2, \dots, \beta_n)$. Тогда $\widetilde{\alpha} \leq \widetilde{\beta} \Leftrightarrow \forall i(\alpha_i \leq \beta_i)$.

Указанное здесь отношение порядка является частичным. Существует несравнимые наборы, например, (1,0,0) и (0,0,1).

Пусть $\widetilde{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n)$ и $\widetilde{\beta} = (\beta_1, \beta_2, \dots, \beta_n)$. Тогда $\widetilde{\alpha} \leq \widetilde{\beta} \Leftrightarrow \forall i(\alpha_i \leq \beta_i)$.

Указанное здесь отношение порядка является частичным. Существует несравнимые наборы, например, (1,0,0) и (0,0,1).

Definition

Функция алгебры логики $f(x_1,\ldots,x_n)$ называется монотонной, если для любых двух сравнимых наборов $\widetilde{\alpha}$ и $\widetilde{\beta}$ выполняется импликация

$$\widetilde{\alpha} \leq \widetilde{\beta} \Rightarrow f(\widetilde{\alpha}) \leq f(\widetilde{\beta}).$$

Класс M — класс всех монотонных функций. Примеры:

Класс M — класс всех монотонных функций.

Примеры: $0, 1, x, xy, x \lor y, m(x, y, z)$.

Класс M — класс всех монотонных функций.

Примеры: $0, 1, x, xy, x \lor y, m(x, y, z)$.

Theorem

Класс M замкнут.

Класс M — класс всех монотонных функций.

Примеры: $0, 1, x, xy, x \vee y, m(x, y, z)$.

Theorem

Класс M замкнут.

Доказательство. Пусть $f(x_1,\ldots,x_n)\in M$, для любого j: $g_j(y_1,y_m)\in M$ и

$$\Phi(y_1,\ldots,y_m)=f(g_1(y_1,\ldots,y_m),\ldots,g_n(y_1,\ldots,y_m)).$$

Пусть наборы $\widetilde{\alpha}$, $\widetilde{\beta}$ таковы, что $\widetilde{\alpha} \leq \widetilde{\beta}$. Обозначим $\mathbf{a}_i(\widetilde{\alpha}) = \gamma_i$, $\mathbf{a}_i(\widetilde{\beta}) = \delta_i$.

Тогда для любого i имеем $(\gamma_i \leq \delta_i)$. Обозначим $\widetilde{\gamma} = (\gamma_1, \ldots, \gamma_n), \widetilde{\delta} = (\delta_1, \ldots, \delta_n)$. Тогда по определению $\widetilde{\gamma} \leq \widetilde{\delta}$ и $f(\widetilde{\gamma}) \leq f(\widetilde{\delta})$.

Но

$$\Phi(\widetilde{\alpha}) = f(\widetilde{\gamma}), \Phi(\widetilde{\beta}) = f(\widetilde{\delta}),$$

и тогда $f(\widetilde{\gamma}) \leq f(\widetilde{\delta}) \Leftrightarrow \Phi(\widetilde{\alpha}) \leq \Phi(\widetilde{\beta})$, значит, $\Phi \in M$.

Леммы о не-функциях.

Lemma

Из любой несамодвойственной ФАЛ $f(x_1, \ldots, x_n)$, подставляя вместо всех переменных функции \bar{x}, x , можно получить константу.

Lemma

Из любой несамодвойственной ФАЛ $f(x_1, \ldots, x_n)$, подставляя вместо всех переменных функции \bar{x}, x , можно получить константу.

Доказательство. Пусть $f \notin S$. Тогда

$$ar{f}(\overline{x_1},\ldots,\overline{x_n})
eq f(x_1,\ldots,x_n) \Rightarrow \exists \widetilde{\sigma} = (\sigma_1,\ldots,\sigma_n)$$
 такой, что

$$\overline{f}(\overline{\sigma_1},\ldots,\overline{\sigma_n})\neq f(\sigma_1,\ldots,\sigma_n)\Leftrightarrow f(\overline{\sigma_1},\ldots,\overline{\sigma_n})=f(\sigma_1,\ldots,\sigma_n).$$

Построим функцию
$$\phi(x)$$
 так: $\phi(x) = f(x \oplus \sigma_1, \dots, x \oplus \sigma_n)$. Тогда $\phi(0) = f(\sigma_1, \dots, \sigma_n), \phi(1) = f(\overline{\sigma_1}, \dots, \overline{\sigma_n})$

и
$$\phi(0) = \phi(1) \Rightarrow \phi(x) = const.$$

Из любой немонотонной ФАЛ $f(x_1,\ldots,x_n)$, подставляя вместо всех переменных функции x,0,1 можно получить функцию $\phi(x)\equiv \bar{x}$.

Из любой немонотонной ФАЛ $f(x_1,\ldots,x_n)$, подставляя вместо всех переменных функции x,0,1 можно получить функцию $\phi(x)\equiv \bar{x}$.

Доказательство. Пусть $f \notin M$. Тогда существуют наборы $\widetilde{\alpha} = (\alpha_1, \dots, \alpha_n)$ и $\widetilde{\beta} = (\beta_1, \dots, \beta_n)$ такие, что $\widetilde{\alpha} < \widetilde{\beta}$ и $f(\widetilde{\alpha}) > f(\widetilde{\beta})$.

Из любой немонотонной ФАЛ $f(x_1,\ldots,x_n)$, подставляя вместо всех переменных функции x,0,1 можно получить функцию $\phi(x)\equiv \bar{x}$.

Доказательство. Пусть $f \notin M$. Тогда существуют наборы $\widetilde{\alpha} = (\alpha_1, \dots, \alpha_n)$ и $\widetilde{\beta} = (\beta_1, \dots, \beta_n)$ такие, что $\widetilde{\alpha} < \widetilde{\beta}$ и $f(\widetilde{\alpha}) > f(\widetilde{\beta})$.

Пусть они различаются в разрядах i_1, \ldots, i_k . Тогда в наборе α они равны 0, а в наборе $\beta-1$.

Из любой немонотонной ФАЛ $f(x_1,\ldots,x_n)$, подставляя вместо всех переменных функции x,0,1 можно получить функцию $\phi(x)\equiv \bar{x}$.

Доказательство. Пусть $f \notin M$. Тогда существуют наборы $\widetilde{\alpha} = (\alpha_1, \dots, \alpha_n)$ и $\widetilde{\beta} = (\beta_1, \dots, \beta_n)$ такие, что $\widetilde{\alpha} < \widetilde{\beta}$ и $f(\widetilde{\alpha}) > f(\widetilde{\beta})$.

Пусть они различаются в разрядах i_1,\dots,i_k . Тогда в наборе α они равны 0, а в наборе $\beta-1.$

Рассмотрим последовательность наборов $\widetilde{\alpha}_0, \widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_k$ таких, что $\widetilde{\alpha} = \widetilde{\alpha}_0 < \widetilde{\alpha}_1 < \ldots < \widetilde{\alpha}_k = \widetilde{\beta}$, при этом $\widetilde{\alpha}_{i+1}$ получается из $\widetilde{\alpha}_i$ заменой одного из нулей в позициях i_1, \ldots, i_k на единицу.

Из любой немонотонной ФАЛ $f(x_1, \ldots, x_n)$, подставляя вместо всех переменных функции x, 0, 1 можно получить функцию $\phi(x) \equiv \bar{x}$.

Доказательство. Пусть $f \notin M$. Тогда существуют наборы $\widetilde{\alpha} = (\alpha_1, \dots, \alpha_n)$ и $\widetilde{\beta} = (\beta_1, \dots, \beta_n)$ такие, что $\widetilde{\alpha} < \widetilde{\beta}$ и $f(\widetilde{\alpha}) > f(\widetilde{\beta})$.

Пусть они различаются в разрядах i_1, \ldots, i_k . Тогда в наборе α они равны 0, а в наборе $\beta-1$.

Рассмотрим последовательность наборов $\widetilde{\alpha}_0, \widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_k$ таких, что $\widetilde{\alpha} = \widetilde{\alpha}_0 < \widetilde{\alpha}_1 < \ldots < \widetilde{\alpha}_k = \widetilde{\beta}$, при этом $\widetilde{\alpha}_{i+1}$ получается из $\widetilde{\alpha}_i$ заменой одного из нулей в позициях i_1, \ldots, i_k на единицу.

Среди рассмотренных наборов найдутся два таких, что $f(\widetilde{\alpha}_i) = 1, f(\widetilde{\alpha}_{i+1}) = 0.$

Предположим, что они отличаются в *i*-том разряде. Определим функцию $\phi(x) = f(\alpha_1, \dots, \alpha_{r-1}, x, \alpha_{r+1}, \dots, \alpha_n)$.

Предположим, что они отличаются в *і*-том разряде.

Определим функцию $\phi(\mathbf{x}) = f(\alpha_1, \dots, \alpha_{r-1}, \mathbf{x}, \alpha_{r+1}, \dots, \alpha_n)$.

Ho тогда
$$\phi(0)=f(\widetilde{\alpha_i})=1,\,\phi(1)=f(\widetilde{\alpha_{i+1}})=0,\,\phi(x)\equiv \bar{x}.$$

Lemma (О нелинейной функции.)

Из любой нелинейной функции алгебры логики $f(x_1,\ldots,x_n)$, подставляя вместо всех переменных $x,\bar{x},y,\bar{y},0,1$, можно получить $\phi(x,y)=x\cdot y$ или $\phi(x,y)=\overline{x\cdot y}$.

Доказательство. Пусть $f \notin L$. В полиноме Жегалкина этой функции присутствуют слагаемые вида $X_{i_1} \cdot X_{i_2} \cdot \ldots$ Предположим, что $i_1 = 1, i_2 = 2$ и т.д. Тогда:

$$f(x_1,...,x_n) = x_1 \cdot x_2 \cdot P_1(x_3,...,x_n) \oplus x_1 \cdot P_2(x_3,...,x_n) \oplus x_2 \cdot P_3(x_3,...,x_n) \oplus P_4(x_3,...,x_n),$$

причем $P_1(x_3,...,x_n) \neq 0$.

Это означает, что $\exists a_3, a_4, \dots, a_n$ такие, что

$$P_1(a_3, a_4, \ldots, a_n) = 1.$$

Рассмотрим вспомогательную функцию

$$f(x_1,x_2,a_3,a_4,\ldots,a_n)=x_1x_2\cdot 1\oplus x_1\cdot b\oplus x_2\cdot c\oplus d.$$

Это означает, что $\exists a_3, a_4, \dots, a_n$ такие, что $P_1(a_3, a_4, \dots, a_n) = 1$. Рассмотрим вспомогательную функцию $f(x_1, x_2, a_3, a_4, \dots, a_n) = x_1 x_2 \cdot 1 \oplus x_1 \cdot b \oplus x_2 \cdot c \oplus d$. Тогда

$$f(x \oplus c, y \oplus b, a_3, a_4, \dots, a_n)$$

$$= (x \oplus c)(y \oplus b) \oplus (x \oplus c)b \oplus (y \oplus b)c \oplus d$$

$$= xy \oplus b \cdot x \oplus c \cdot y \oplus bc \oplus x \cdot b \oplus bc \oplus yc \oplus bc \oplus d$$

$$= xy \oplus (bc \oplus d) = \begin{cases} xy, bc \oplus d &= 0 \\ \overline{xy}, bc \oplus d &= 1. \end{cases}$$

Тheorem (Теорема Поста)

Система функций алгебры логики $A = \{f_1, f_2, \ldots\}$ является полной в P_2 тогда и только тогда, когда она не содержится целиком ни в одном из следующих классов: T_0, T_1, S, L, M .

Доказательство. Необходимость.

Пусть A — полная система, N — любой из классов T_0, T_1, S, L, M и пусть $A \subseteq N$.

Theorem (Теорема Поста)

Система функций алгебры логики $A = \{f_1, f_2, ...\}$ является полной в P_2 тогда и только тогда, когда она не содержится целиком ни в одном из следующих классов: T_0, T_1, S, L, M .

Доказательство. Необходимость.

Пусть A — полная система, N — любой из классов T_0, T_1, S, L, M и пусть $A \subseteq N$. Тогда $[A] \subseteq [N] = N \neq P_2$ и $[A] \neq P_2$. ?!

Достаточность. Пусть A не содержится ни в одном указанных классов \Rightarrow в A существуют функции $f_0 \notin T_0, f_1 \notin T_1, f_M \notin M, f_L \notin L, f_S \notin S$.

Достаточность. Пусть A не содержится ни в одном указанных классов \Rightarrow в A существуют функции $f_0 \notin T_0, f_1 \notin T_1, f_M \notin M, f_L \notin L, f_S \notin S$. Нам необходимо показать, что $[A] \supseteq [f_0, f_1, f_M, f_L, f_S] = P_2$. Для этого получим отрицание, константы и конъюнкции.

Достаточность. Пусть A не содержится ни в одном указанных классов \Rightarrow в A существуют функции $f_0 \notin T_0, f_1 \notin T_1, f_M \notin M, f_L \notin L, f_S \notin S$. Нам необходимо показать, что $[A] \supseteq [f_0, f_1, f_M, f_L, f_S] = P_2$. Для этого получим отрицание, константы и конъюнкции. І. Получение \bar{x} . Рассмотрим $f_0(x_1, \ldots, x_n) \notin T_0$ и введем функцию $\phi_0(x) = f_0(x, x, \ldots, x)$. Функция f_0 не сохраняет 0, $\phi_0(0) = f(0, \ldots, 0) = 1$. $\phi_0(x)$ — функция одной переменной, значит, либо $\phi_0(x) \equiv \bar{x}$, либо $\phi_0(x) \equiv 1$.

Достаточность. Пусть A не содержится ни в одном указанных классов \Rightarrow в A существуют функции $f_0 \notin T_0, f_1 \notin T_1, f_M \notin M, f_L \notin L, f_S \notin S$.

Нам необходимо показать, что $[A] \supseteq [f_0, f_1, f_M, f_L, f_S] = P_2$. Для этого получим отрицание, константы и конъюнкции.

- I. Получение \bar{x} . Рассмотрим $f_0(x_1,\ldots,x_n) \notin T_0$ и введем функцию $\phi_0(x) = f_0(x,x,\ldots,x)$. Функция f_0 не сохраняет 0, $\phi_0(0) = f(0,\ldots,0) = 1$.
- $\phi_0(x)$ функция одной переменной, значит, либо $\phi_0(x) = \bar{x}$, либо $\phi_0(x) \equiv 1$.

То же самое проделаем с функцией $f_1 \notin T_1$. Построенная в этом случае аналогичным образом функция $\phi_1(x)$ принимает либо $\phi_1(x) = \bar{x}$, либо $\phi_1(x) \equiv 0$.

Достаточность. Пусть A не содержится ни в одном указанных классов \Rightarrow в A существуют функции $f_0 \notin T_0, f_1 \notin T_1, f_M \notin M, f_L \notin L, f_S \notin S$.

Нам необходимо показать, что $[A] \supseteq [f_0, f_1, f_M, f_L, f_S] = P_2$. Для этого получим отрицание, константы и конъюнкции.

- I. Получение \bar{x} . Рассмотрим $f_0(x_1,\ldots,x_n) \notin T_0$ и введем функцию $\phi_0(x) = f_0(x,x,\ldots,x)$. Функция f_0 не сохраняет 0, $\phi_0(0) = f(0,\ldots,0) = 1$.
- $\phi_0(x)$ функция одной переменной, значит, либо $\phi_0(x) = \bar{x}$, либо $\phi_0(x) \equiv 1$.

То же самое проделаем с функцией $f_1 \notin T_1$. Построенная в этом случае аналогичным образом функция $\phi_1(x)$ принимает либо $\phi_1(x) = \bar{x}$, либо $\phi_1(x) \equiv 0$.

Если хотя бы в одном из случаев получили отрицание, хорошо. Если не получили - применяем лемму о немонотонной функции для двух констант.

II. Получение 0, 1. Рассмотрим $f_s \notin S$. Согласно лемме о несамодвойственной функции, с учетом полученного в п.1 отрицания, строим константы.

- II. Получение 0, 1. Рассмотрим $f_s \notin S$. Согласно лемме о несамодвойственной функции, с учетом полученного в п.1 отрицания, строим константы.
- III. Получение конъюнкции $x \cdot y$. Рассмотрим функцию $f_L \notin L$. Подставим в нее вместо всех переменных константы и отрицания, полученные в предыдущих пунктах. В результате получим конъюнкцию или ее отрицание.

- II. Получение 0, 1. Рассмотрим $f_s \notin S$. Согласно лемме о несамодвойственной функции, с учетом полученного в п.1 отрицания, строим константы.
- III. Получение конъюнкции $x \cdot y$. Рассмотрим функцию $f_L \notin L$. Подставим в нее вместо всех переменных константы и отрицания, полученные в предыдущих пунктах. В результате получим конъюнкцию или ее отрицание.

Итого: $[f_0, f_1, f_L, f_S, f_M] \supseteq [\bar{x}, xy] = P_2.$

ロ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q (~)

Definition

Система функций алгебры логики \boldsymbol{A} называется базисом в $\boldsymbol{P_2},$ если

- **1** $[A] = P_2;$

Definition

Система функций алгебры логики \boldsymbol{A} называется базисом в $\boldsymbol{P_2},$ если

Theorem

Максимальное число функций в базисе алгебры логики равно 4.

Доказательство. Покажем, что из любой полной системы можно выделить полную подсистему, содержащую не более 4 функций.

По теореме Поста, из полной системы A можно выделить пять функций: $f_0 \notin T_0, f_1 \notin T_1, f_L \notin L, f_S \notin S, f_M \notin M$ — образующих также полную систему. Рассмотрим подробнее функцию $f_0: f_0(0,\ldots,0)=1$:

•
$$f_0(1,...,1) = 1 \Rightarrow f_0 \notin S \Rightarrow [f_0, f_1, f_L, f_M] = P_2.$$

•
$$f_0(1,...,1) = 0 \Rightarrow f_0 \notin M, T_1 \Rightarrow [f_0, f_L, f_S] = P_2.$$

Продолжение доказательства. Теперь нужно показать, что такой базис из четырех функций действительно существует. Рассмотрим систему $\{0,1,xy,x\oplus y\oplus z\}$. Эта система полна.

Продолжение доказательства. Теперь нужно показать, что такой базис из четырех функций действительно существует. Рассмотрим систему $\{0,1,xy,x\oplus y\oplus z\}$. Эта система полна. Но каждая ее подсистема не является полной:

- $\{0, 1, x \cdot y\} \subseteq ?;$
- $\{0, 1, x \oplus y \oplus z\} \subseteq ?;$
- $\{0, xy, x \oplus y \oplus z\} \subseteq ?;$
- $\{1, xy, x \oplus y \oplus z\} \subseteq ?$.

Продолжение доказательства. Теперь нужно показать, что такой базис из четырех функций действительно существует. Рассмотрим систему $\{0,1,xy,x\oplus y\oplus z\}$. Эта система полна. Но каждая ее подсистема не является полной:

- $\{0, 1, x \cdot y\} \subseteq M$;
- $\{0, 1, x \oplus y \oplus z\} \subseteq L$;
- $\{0, xy, x \oplus y \oplus z\} \subseteq T_0$;
- $\{1, xy, x \oplus y \oplus z\} \subseteq T_1$.

Definition

Пусть $A \subseteq P_2$. A называется предполным классом, если

- **1** $[A] \neq P_2;$
- $ext{ 2} \quad \forall f \in P_2 \ \text{справедливо: если } f \notin A, \ \text{то } [A \cup \{f\}] = P_2.$

Theorem (О предполных классах)

В P_2 предполными являются только следующие 5 классов: T_0, T_1, S, L, M .

Доказательство. Покажем сначала, что ни один из этих пяти классов не содержится в другом.

€	T_0	T_1	L	M	S
T_0		0	xy	$x \oplus y$	0
T_1	1		xy	$x \oplus y \oplus 1$	1
L	1	0		$x \oplus y$	0
M	1	0	xy		0
S	\overline{x}	\overline{x}	$xy \oplus yz \oplus zx$	\overline{x}	

Продолжение доказательства. Покажем теперь, что все эти классы — предполные. Пусть $N \in \{T_0, T_1, L, M, S\}, f \notin N$. Тогда система $N \cup \{f\}$ не содержится ни в одном из пяти классов Поста. Но тогда система $N \cup f$ — полная, а N — предполный класс.

Продолжение доказательства. Покажем теперь, что все эти классы — предполные. Пусть $N \in \{T_0, T_1, L, M, S\}, f \notin N$. Тогда система $N \cup \{f\}$ не содержится ни в одном из пяти классов Поста. Но тогда система $N \cup f$ — полная, а N — предполный класс.

Пусть теперь A — предполный класс. Тогда A не содержится в одном из классов $\{T_0, T_1, L, M, S\}$, назовем этот класс N.

Продолжение доказательства. Покажем теперь, что все эти классы — предполные. Пусть $N \in \{T_0, T_1, L, M, S\}, f \notin N$. Тогда система $N \cup \{f\}$ не содержится ни в одном из пяти классов Поста. Но тогда система $N \cup f$ — полная, а N — предполный класс.

Пусть теперь A — предполный класс. Тогда A не содержится в одном из классов $\{T_0, T_1, L, M, S\}$, назовем этот класс N. Если $A \neq N$, то $f: f \in N, f \notin A$ такая, что $A \cup \{f\} \subseteq N \Rightarrow [A \cup \{f\}] \neq P_2$?!. Значит, A совпадает с указанным N.

Общие результаты, полученные Постом относительно класса P_2 :

- lacktriangled В P_2 существует ровно счетное число замкнутых классов.
- 2 В любом замкнутом классе существует конечный базис.