Engenharia de Reatores Químicos – IQD0048 Semestre 1/2022 – Turma T01 – Prof. Alexandre Umpierre

Lista de Exercícios 2

- 1) A reação $A + B \rightarrow P$ é conduzida em um CSTR de 1 L. A corrente de alimentação tem 8,5 L/h com 8 mol/L de A e 6 mol/L de B e 1,3 mol/L de P é introduzida no reator a 313 K. A entalpia de reação pode ser assumida como -285 kJ/mol de A e as capacidades térmicas de A, B e P são, respectivamente, 14 J/mol/K E 19 J/mol/K e 11 J/mol/K. Calor é removido do reator por uma camisa de resfriamento de 450 cm² a 278 K com coeficiente de troca térmica global estimado em 260 W/m²/K. A reação é de primeira ordem para A e de primeira ordem para B e obedece ao modelo de Arrhenius, com energia de ativação igual a 50 kJ/mol e fator pré-exponencial igual a 650 mol $^{-1}$ L s $^{-1}$. Determinar a temperatura da reação em função da conversão.
- 2) Um CSTR inicialmente vazio deve ser posto em operação. A partida do reator é realizada com uma corrente de 1 L/h com 2 mol/L do reatante. Até que o meio reacional atinja 1,2 L, não há saída de produto. A constante cinética da taxa de consumo é 1,5 h⁻¹. A partir do preenchimento do volume de operação, a saída do reator é aberta à mesma vazão de alimentação. Determine a evolução da concentração de reatante até que meio reacional atinja seu 99 % da concentração do regime estacionário.
- 3) Um sistema de quatro CSTR's de mesmo volume em série é usado para realizar uma reação de segunda ordem. A conversão da alimentação do primeiro reator é nula e $kc_{A,std}^{n-1}\tau_m = 0,37$. Determine a conversão de saída do sistema.
- 4) Um sistema reacional com dois CSTR's em paralelo deve ser usado para converter uma alimentação de 200 L/min a 6 mol/L em uma etapa de primeira ordem com constante cinética igual a 1 min⁻¹. O volume do primeiro tanque pode ser controlado entre 80 L e 110 L, e o segundo, entre 50 L e 75 L. Determinar os limites de controle do processo e otimizar as vazões.

5) Um CSTR de 1 L, inicialmente cheio e sem reagentes, foi alimentado com 0,1 L/min com 2,01 mg/L de um traçador. A Tabela 1 apresenta a concentração do traçador à saída do reator. Determine a conversão esperada para a reação $A \rightarrow 2B$ para uma alimentação de 0,1 L/min com 1,9 mol/L de A. A taxa de geração de B é dada por $r_B = 0,46 \; (\text{mol/L})^{-0,5} \text{min}^{-1} c_A^{1,5}$.

Tabela 1. Concentração c do traçador medida à saída do reator em função do tempo t decorrido após o pulso.

t (min)	c (mg/L)
4	1,00
8	1,33
10	1,50
14	1,67
16	1,75
18	1,80

6) A Tabela 2 apresenta a concentração de um traçador alimentado com um pulso em um CSTR de 1000 L. Avaliar a possibilidade de modelar esse reator com um volume de troca e determinar o tamanho do volume de troca e a vazão de troca. Determine a conversão esperada para a reação $A \rightarrow 2B$ para uma alimentação de 25 L/min com 1,9 mol/L de A. A taxa de geração de B é dada por $r_B = 0,46 \, (\text{mol/L})^{-0.5} \text{min}^{-1} c_A^{1.5}$.

Tabela 2. Concentração c do traçador medida à saída do reator em função do tempo t decorrido após o pulso.

t (min)	c (mg/L)
0	2000
20	1050
40	520
60	280
80	160
120	61
160	29
200	16,4
240	10
280	6,4
320	4

7) A Tabela 3 apresenta a concentração registrada à saída do reator de um traçador injetado como pulso na alimentação. Determine se o modelo de CSTRs em cascata se ajusta bem aos dados experimentais. Determinar a conversão de A em $A \rightarrow B$ em um PFR não ideal cujo comportamento pode ser descrito pelo modelo de CSTRs em cascata. A constante cinética é dada por $k = 0.25 \text{ s}^{-1}$.

Tabela 3. Concentração c do traçador medida à saída do reator em função do tempo t decorrido após o pulso.

	1 1
<i>t</i> (s)	c (mg/L)
0	0
1	1
2	5
2 3	8
4	10
5	8
6	6
7	4
8	3
9	2,2
10	1,5
12	0,6
14	0

8) Uma reação com $c_0^{n-1}k = 0,1 \, \text{min}^{-1}$ é conduzida em um reator PFR. Estimar a conversão esperada em um PFR para n = 1 e para n = 2 e para n = 2,8, e compare os resultados com as conversões esperadas para e para um PFR ideal. O ensaio com um pulso de traçador é representado pela Tabela 4.

Tabela 4. Concentração c do traçador medida à saída do reator em função do tempo t decorrido após o pulso.

	1 1
t (mim)	c (mol/L)
0	0
1	1
2	5
3	8
4	10
5	8
6	6
7	4
8	3
9	2,2
10	1,5
12	0,6
14	0