Experiment 3: Implement linear regression in Python on a given dataset.

Theory:

1. Linear Regression

Regression is a technique from statistics that is used to predict values of a desired target quantity when the target quantity is continuous. When implementing linear regression of some dependent variable y on the set of independent variables $x=(x_1,...,x_r)$, where r is the number of predictors, you assume a linear relationship between y and x: $y=\beta_0+\beta_1x_1+.....+\beta_rx_r+\epsilon$. This equation is the regression equation. $\beta_0,\beta_1,...,\beta_r$ are the regression coefficients, and ϵ is the random error.

Implementation:

1. sklearn.linear_model.LinearRegression

Syntax:

class sklearn.linear_model.LinearRegression()

Gives ordinary least squares Linear Regression.

- 2. **corr()** Compute pairwise correlation of columns, excluding NA/null values.
- 3. **reg.coef_** Estimated coefficients for the linear regression problem.
- 4. **reg.intercept** Independent term in the linear model.
- 5. sklearn.impute.KNNImputer

Syntax-

class sklearn.impute.**KNNImputer**(*, $missing_values=nan$, $n_neighbors=5$, weights=uniform) ¶

Imputation for completing missing values using k-Nearest Neighbors.

6. sklearn.model_selection.train_test_split

Syntax:

sklearn.model_selection.**train_test_split**(*arrays, test_size=None, train_size=None, r andom_state=None, shuffle=True) \P

Split arrays or matrices into random train and test subsets.

- 7. **fit()**-Fit linear model & **predict()**-Predict using the linear model.
- 8. sklearn.metrics.r2_score

Syntax:

sklearn.metrics.**r2_score**(*y_true*, *y_pred*) ¶

Computes R2 (coefficient of determination) regression score function.

About Dataset:

(Describe your dataset)

Conclusion: In this way, we have studied and implemented the linear regression algorithm and predicted the values of continuous-valued attribute.