Using customer sentiment to predict customer satisfaction

- Addagarla Suraj
- Bendale Priyanka
- Narayanan Satyajit
- Sinha Mallika

Contents

- Problem Definition
- Markov Decision Process (MDP)
- Variable Selection
- Prediction
- Appendix

Problem definition

Defining the problem to get to the right key questions

Current State

- Lenovo currently uses customers' responses to the Net Promoter Score (NPS) survey as their primary measurement of customer satisfaction
- Feedback from the NPS survey results arrives late in the product life cycle

Gap

 Lack of understanding of customer's concerns and satisfaction with the product

Future State

- Timely addressing customers' concerns
- Taking corrective actions on problems
- Identifying pain points of customers

Adopting a holistic approach to understand customer's concerns and satisfaction

Predict product-NPS (pNPS) using the sentiment data available

Evaluate the use of 'evolution of sentiment' (EOS) in predicting pNPS

Recognize major drivers of customer satisfaction

Assumptions:

- Data available corresponds to 'Do Nothing' scenario
- Better improvement in sentiment with intervention
- Easier to convert negative sentiment into neutral sentiment than for negative sentiment to positive sentiment

Elements of MDP:

State Space (S):
Positive, Neutral and
Negative (sentiments)

Action Space (A):

Do Nothing; Intervention

Decision Epoch (T):

Monthly

Transition Probability (P)

Reward Space (R)

Transition probabilities:

P (Do Nothing)	Positive	Neutral	Negative
Positive	0.25	0.25	0.5
Neutral	0.4	0.2	0.4
Negative	0.167	0.334	0.5

P (Intervene)	Positive	Neutral	Negative
Positive	0.25 + 0.5a	0.25 + 0.5b	0.5(1 - a - b)
Neutral	0.4 + 0.4a	0.2 + 0.4b	0.4(1 - a - b)
Negative	0.167 + 0.5a	0.334 + 0.5b	0.5(1 - a - b)

P (Intervene for a = 5%, b = 10%)	Positive	Neutral	Negative	
Positive	0.275	0.3	0.425	
Neutral	0.42	0.24	0.34	
Negative	0.192	0.384	0.425	

Reward Space (R):

State (S)	Action (A)	Customer Satisfaction (CS)		Monetary	Net Reward R (S, A)	
		Ranking	R _{CS}	Ranking	R _{MC}	(3, A)
Positive	Intervene	1	10	1	(10)	0
Neutral	Intervene	2	6.67	1	(10)	(3.34)
Positive	Do Nothing	2	6.67	2	0	6.67
Negative	Intervene	3	3.34	1	(10)	(6.67)
Neutral	Do Nothing	3	3.34	2	0	3.34
Negative	Do Nothing	4	0	2	0	0

Optimal Policy

- Policy Iteration algorithm was employed to obtain an optimal policy for each state (over an infinite horizon)
- Optimal policy of 'Do Nothing' was arrived at for all the three states
- Policy remains constant for increasing values of (a, b)

Variable Selection

Selecting the variables to be used as predictors of pNPS

Taxonomy sentiments

- Assumption: The frequency of occurrence of a sentiment is calculated for each taxonomy is a predictor of pNPS
- Why at a taxonomy level?
 - Can help us understand the reason for a survey score
 - To capture the magnitude of sentiment across every taxonomy
- To reduce dimensionality, similar taxonomies were identified and grouped based on:
 - Class
 - Correlation between them

Selecting the variables to be used as predictors of pNPS

Evolution of Sentiment (EOS)

- Assumption: The EOS calculated at each month is a predictor of pNPS
- Sentiment distribution in the first month was taken as the initial sentiment distribution (q)
- Distribution in the following months (q_n) was taken as per Chapman-Kolmogorov equation $(q_n = q^*P_n)$
- Note: the distribution of sentiment for the first month should be known to calculate EOS values

Selecting the variables to be used as predictors of pNPS

Calculating pNPS value to be used as a dependent variable

- The Product Net Promoter Score (pNPS) value for a month is calculated as a cumulative subtraction of promoter % and detractor % till that month
- We have assumed that the sentiments will reflect on the pNPS after a lag of 5 months

Level of Data for analysis

We have taken Series-Month combination as level of data for the analysis

Direct application of Multiple Linear Regression and its failure

Why it failed:

- Couldn't handle strongly correlated Taxonomy Sentiment despite grouping of taxonomies
- Couldn't handle missing values
- Variable selection to gain independence between columns is not always obvious and may have lead to suboptimal predictions

Principal Component Analysis (PCA) helps mitigate most of MLR's problems

Why PCA?

- Summarizes different characteristics of dataset into fewer predictors which explains data
- Removes dependency (multi-collinearity) between variables creating a set of uncorrelated variables
- The scores in the components can be calculated even if there are missing data
- Each Component explains a percentage of the total variance in the data

Principal Components Regression is used to predict pNPS

Principal Components Regression is used to predict pNPS

■ The main idea with principal component regression is to replace the K columns in X with their uncorrelated A score vectors from PCA

Multiple linear regression

Principal component regression

Example of Principal Components Regression for one Series-Month combination

Example: Yoga Series

In the Month of May 2017, X values are:

Tax #	Variable	Sentiment	Frequency of sentiments
1		NEGATIVE	84
2	ACCESSORIES	NEUTRAL	92
3		POSITIVE	50
4		NEGATIVE	18
5	CLIENT OS	NEUTRAL	35
6		POSITIVE	14
94		NEGATIVE	22
95	GENERAL COMMENT	NEUTRAL	25
96		POSITIVE	122

Example of Principal Components Regression for one Series-Month combination

After PCA, the T values we get for the month of May 2017 are:

#	Component	Frequency of sentiments
1	C1	23.163
2	C2	-0.789
3	C3	7.458
	•••	
	•••	
29	NEGATIVE	-0.309
30	NEUTRAL	0.038
31	POSITIVE	-0.139

Example of Principal Components Regression for one Series-Month combination

Substituting the T values of the variables onto the regression equation of *Consumer*Products:

$$pNPS_{Consumer} = 30.685 + (0.385)*C1 + (-1.379)*C2 + + (-1.33)*C30 + (-2.022)*C31$$

- We get, pNPS_{Consumer} for YOGA series for the month of May 2017 as 44.144.
- This means, based on May 2017 data, we expect a pNPS for the month of October
 2017 (5 month lag) to be 44.144
- From the survey data, we observe that the actual pNPS value for the month of October 2017 is 43.778

Summary

- EOS obtained from MDP was used as a variable to account for the effect of sentiment evolution in prediction of pNPS
- 2 final equations was obtained based on regression analysis, each for commercial and consumer product type to predict pNPS
- Based on the equations obtained, pNPS was calculated for test products

Predictions for Consumer and Commercial products

 Predictions were made for the required products based on equations for Consumer and Customer

Consumer:

Product	Month of prediction	Predicted pNPS	
	May-18	27.312	
IDEAPAD 120S 11	Jun-18	27.029	
	Jul-18	26.803	
	May-18	33.571	
YOGA 920	Jun-18	25.237	
	Jul-18	34.280	

Commercial:

Product Month of prediction		Predicted pNPS
	Mar-18	60.100
T480	Apr-18	59.920
	May-18	54.533
	Mar-18	80.983
X1 CARBON 2018	Apr-18	21.681
	May-18	36.506

Defining the problem to get to the right key questions

Net Promoter Score (NPS)

- It is the key metric of a company's or a product's performance in the market
- Customers are asked to rate their willingness to suggest the product to a friend on a scale of 0 to 10

Taxonomy Sentiment Analysis

Consumer Negative Sentiment

HELP CENTER DRIVERS GENERAL SOFTWARE OVERALL DESIGNWARRANTY GRAPHICS CARD HARD DRIVE PURCHASE PROCESS THERMAL DEPOT POWER CYCLE PLACE MEMORY PORTS / SLOTS

GENERAL SERVICE

MEMORY PORTS / SLOTS

GENERAL SERVICE

AUTHENTICATION OPTICAL DRIVE REPAIR

OVERALL SERVICE

MEMORY PORTS / SLOTS

GENERAL SERVICE

AUTHENTICATION OPTICAL DRIVE REPAIR

OVERALL SERVICE

MEMORY PORTS / SLOTS

OPTICAL DRIVE REPAIR

OVERALL DESIGNWARRANTY GRAPHICS CARD

OPTICAL DRIVE REPAIR

Consumer Positive Sentiment

PCA For Commercial

- First principle component has large positive association with:
 - Help-positive
 - Parts-positive
 - Sensor-Negative
 - Thermal-Positive
 - EOS-Positive
 - EOS-Neutral
- Second principle component has negative association with:
 - Money-Positive
 - External Positive
 - General Impression- Positive
 - Optical Driven-Negative
 - Noise-Negative

PCA For Consumer

- First principle component has large positive association with:
 - Indicators-Neutral
 - Efficiency-Positive
 - Accessories-Neutral
 - Accessories-Negative
 - Indicators-Positive
 - Power-Neutral
- Second principle component has negative association with:
 - EOS-Neutral
 - Onsite Service- Neutral
 - Depot-Neutral
 - Authentication-Neutral
 - Aesthetic-Neutral

Principal Component Analysis (PCA) helps mitigate most of MLR's problems

PCA Interpretation

- For interpretation, magnitude and direction of the coefficients of original value are examined
- The larger the value, the more important the corresponding variable is in calculating the component
- The level at which correlation value is important is decided

Evolution of the model

#	Test Case	Pass/Fail – (Reason)
1	Apply regression across 184 variables/Predictors (taxonomy-sentiment level) vs pNPS	Fail - very low value of Coefficient of Determination; Multicollinearity between variables
2	Eliminated variables based on the number of 0 responses (142 variables) in order to reduce dimensionality	Fail – very low value of Coefficient of Determination; Multicollinearity between variables
3	Based on the median of frequency of responses, considered first 50% of variables with variables with Highest response being higher limit; this reduced dimensionality to 71 variables	Fail – better value of coefficient of Determination; Multicollinearity between variables
4	Clubbed variables on the basis of their correlation value and performed principle component analysis to reduce the dimensionality	Pass- No Multicollinearity (the components are orthogonal), reduced dimensionality (from 138 variables to 31)
5	Performed Multilinear Regression Analysis on 31 variables as predictors for determining pNPS	Pass

• For Consumer Data, X is given by:

			1	2	3	94	95	K = 96
				ACCESSORIES		 (CLIENT OS	
	Series	Month	NEGATIVE	NEUTRAL	POSITIVE	 NEGATIVE	NEUTRAL	POSITIV E
1	A SERIES	May-17	5	15	2	 5	10	3
2	A SERIES	Jun-17	0	7	4	 1	5	0
3	A SERIES	Jul-17	8	6	1	 4	0	2
4	A SERIES	Aug-17	1	9	2	 0	2	3
5	A SERIES	Sep-17	5	3	3	 4	2	1
82	IDEAPAD 100 SERIES	Aug-17	18	21	8	 8	27	11
83	IDEAPAD 100 SERIES	Sep-17	16	12	6	 13	10	8
N = 84	IDEAPAD 100 SERIES	Oct-17	14	16	13	 10	24	11

■ The K variables are converted to A = 31 components after PCA and we obtain T:

	Series	Month	C 1	C 2	C 3	C 29	C 30	C 31
1	A SERIES	May-17	-0.881	1.882	-0.819	 1.077	-0.382	-0.119
2	A SERIES	Jun-17	-4.191	0.561	-0.318	 -0.129	-0.379	0.981
3	A SERIES	Jul-17	-3.759	-0.107	0.046	 0.384	-0.4	0.916
4	A SERIES	Aug-17	-3.266	-0.013	-0.884	 -0.269	0.749	0.105
5	A SERIES	Sep-17	-3.082	0.385	0.294	 -0.693	0.425	-1.213
82	IDEAPAD 100 SERIES	Aug-17	2.922	6.78	-1.98	 -0.438	1.809	-0.826
83	IDEAPAD 100 SERIES	Sep-17	2.093	5.478	-1.602	 2.609	0.676	0.072
84	IDEAPAD 100 SERIES	Oct-17	4.219	7.737	-3.215	 0.383	0.217	0.098

■ The K variables are converted to A = 31 components after PCA and we obtain T:

	Series	Month	C 1	C 2	C 3		C 29	C 30	C 31
1	A SERIES	May-17	-0.881	1.882	-0.819	•••	1.077	-0.382	-0.119
2	A SERIES	Jun-17	-4.191	0.561	-0.318		-0.129	-0.379	0.981
3	A SERIES	Jul-17	-3.759	-0.107	0.046		0.384	-0.4	0.916
4	A SERIES	Aug-17	-3.266	-0.013	-0.884		-0.269	0.749	0.105
5	A SERIES	Sep-17	-3.082	0.385	0.294		-0.693	0.425	-1.213
82	IDEAPAD 100 SERIES	Aug-17	2.922	6.78	-1.98		-0.438	1.809	-0.826
83	IDEAPAD 100 SERIES	Sep-17	2.093	5.478	-1.602		2.609	0.676	0.072
84	IDEAPAD 100 SERIES	Oct-17	4.219	7.737	-3.215		0.383	0.217	0.098

Month	pNPS
Oct-17	43.75
Nov-17	44.89
Dec-17	33.33
Jan-18	33.33
Feb-18	32.91
•••	•••
Jan-18	15.36
Feb-18	14.47
Mar-18	14.24

Multiple linear regression

Principal component regression

- The main idea with principal component regression is to replace the K columns in X with their uncorrelated A score vectors from PCA
- We replace the N×K matrix of raw data with a smaller N×A matrix of data that summarizes the original X matrix.
- Then we relate these A scores to the y variable. Mathematically it is a two-step process:
- T=XP (from the PCA model)
- $y^=Tb$ (and can be solved as b = (T'T)-1T'y)

Markov Decision Process:

- Aids in decision making in case of probabilistic processes
- Suggests optimal actions at various points in time or for any state (infinite horizon situation)
- Provides expected rewards at each stage which can then be used to select among alternatives
- Characterized by five parameters: {P, A, R, T, S}

Sentiment aggregation across Comments and Months

2									
3	Comment Level:								
4		Positive	Neutral	Negative	Sum	Positive	Neutral	Negative	
5	Comment	9	3	8	20	0.45/0.75	0.15/0.167	0.4/0.0834	
6	Sentiment Distribution	0.45	0.15	0.4		0.6	0.9	4.8	
7									
8	Total	9000	2000	1000	12000				
9	Distribution	0.75	0.167	0.0834					
10									
11									
12	Month Level:								
13		Positive	Neutral	Negative	Sum	Positive	Neutral	Negative	
14	Month	90	30	80	200	0.45/0.75	0.15/0.167	0.4/0.0834	
15	Sentiment Distribution	0.45	0.15	0.4		0.6	0.9	4.8	
16									
17	Total	900	200	100	1200				
18	Distribution	0.75	0.167	0.0834					
19									
20									

P-Matrices (Consumer Products)

P (Do Nothing)	Positive	Neutral	Negative
Positive	0.25	0.25	0.5
Neutral	0.142	0.714	0.142
Negative	0.25	0.5	0.25

P (Intervene)	Positive	Neutral	Negative
Positive	0.25 + 0.5a	0.25 + 0.5b	0.5(1 - a - b)
Neutral	0.142 + 0.142a	0.714 + 0.142b	0.142(1 - a - b)
Negative	0.25 + 0.25a	0.5 + 0.25b	0.25(1 - a - b)

P (Intervene) a = 5%, b = 10%	Positive	Neutral	Negative
Positive	0.275	0.3	0.425
Neutral	0.149	0.728	0.12
Negative	0.263	0.525	0.213