

Intelligent Agents

ARTIFICIAL INTELLIGENCE
JUCHEOL MOON

1

Vacuum-cleaner world

- Equipped component
- Dirty sensing, move / suck action
- Percept:
- •location and contents
- •e.g., [A; Dirty]
- Actions
- •Left, Right, Suck, NoOp

Agents and environments

- •Agents include humans, robots, softbots, thermostats, etc.
- •The agent function maps from percept histories to actions
- $\bullet f: P \to A$
- ullet The agent program runs on the physical architecture to produce f

2

A vacuum-cleaner agent

•What is the right function?

Percept	Action
[A; Dirty]	suck
[A; Clean]	Right
[B; Dirty]	Suck
[B; Clean]	Left

3

4

A vacuum-cleaner agent

Can it be implemented in a small agent program? function Vacuum-Agent([location, status]) if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left

Rationality

- •A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date
- •Performance measure
- •by the amount of dirt cleaned up?
- •cleaning up the dirt, then dumping it all on the floor, then cleaning it up again, and so on.

5

6

1

Rationality

- •Performance measure
- designing performance measures according to what one actually wants in the environment
- •Rational (= or \neq) omniscient
- percepts may not supply all relevant information
- •Rational (= or ≠) clairvoyant
- •action outcomes may not be as expected
- •Hence, rational $(= \text{ or } \neq)$ successful

7

Task environment of a self-driving car

- •Performance measure
- safety, destination, profits, legality, comfort
- •US streets/freeways, traffic, pedestrians, weather
- Actuators
- *steering, accelerator, brake, horn, speaker/display
- Sensors
- •video, accelerometers, gauges, engine sensors, GPS

9

Environment types

- •Deterministic vs. stochastic
- •If the next state of the environment is completely determined by the current state and the action executed by the agent, then we say the environment is deterministic
- •Episodic vs. sequential

11

•In an episodic task environment, the agent's experience is divided into atomic episodes. The next episode does not depend on the actions taken in previous episodes.

Task environment

- •To design a rational agent, we must specify the task environment
- •Performance measure
- Environment
- Actuators
- •Sensors

8

Environment types

- •Fully observable vs. partially observable
- •If an agent's sensors give it access to the complete state of the environment at each point in time, then we say that the task environment is fully observable.
- •Single agent vs. multiagent
- •An agent solving a crossword puzzle by itself is clearly in a _______ -agent environment, whereas an agent playing chess is in a __wulti__ -agent environment.

10

Environment types

- •Static vs. dynamic
- •If the environment can change while an agent is deliberating, then we say the environment is dynamic for that agent.
- •Discrete vs. continuous
- •The chess environment has a finite number of distinct states (excluding the clock). Chess also has a discrete set of percepts and actions.

12

2

12

Environment types of a self-driving car

- •Observable?
- Partially
- •Agents?
- Multi
- •Deterministic?
- Stochastic

- •Episodic?
- Sequential

Continuous

- •Static?
- Dynamic
- •Discrete?

- Agent types
- Four basic types in order of increasing generality:
- •Simple reflex agents
- •Model-based reflex agents
- •Goal-based agents
- Utility-based agents
- Learning agents

14

13

Simple reflex agents

- •if car-in-front-is-braking
- •then initiate-braking.

Model-based reflex agents

- •We need some information about how the agent's own actions affect the world
- •When the agent turns the steering wheel clockwise
- ■The car turns to the right •After driving for five minutes
- northbound on the freeway
- •One is usually about five miles north of where one was five minutes

15

16

15

Goal-based agents

- •The agent program can combine this with the model to choose actions that achieve the goal
- •At a cross road, an self-driving car can turn left, turn right, or go straight on.
- •The correct decision depends on where the taxi is trying to get to.

Utility-based agents

- •Goals alone are not enough to generate high-quality behavior in most environments
- •Goal: get the taxi to its destination
- Plus
- ullet Quicker, safer, more reliable, or cheaper

17 17 18