

vithout potice V_{DS} 1200 V

I_{D @ 25°C} 140 A

 $R_{DS(on)}$ 13 m Ω

CPM3-1200-0013A

Silicon Carbide Power MOSFET C3M MOSFET Technology

N-Channel Enhancement Mode

Features

- C3M SiC MOSFET technology
- High blocking voltage with low on-resistance
- Resistant to Latch-up
- Fast intrinsic diode with low reverse recovery (Qrr)
- Easy to parallel and simple to drive
- · Optimized gate resistance for modules

Benefits

- · Higher system efficiency
- · Reduced cooling requirements
- Low conduction losses over temperature
- Increased system switching frequency

Applications

- EV motor drive
- Solar inverters
- · High voltage DC/DC converters
- · Load switch

Chip Outline

Part Number	Die Size (mm)		
CPM3-1200-0013A	4.36 x 7.26		

Maximum Ratings (T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note	
V_{DSmax}	Drain - Source Voltage	1200	٧	V _{GS} = 0 V, I _D = 100 μA		
V_{GSmax}	Gate - Source Voltage (dynamic)	-8/+19	٧	AC (f >1 Hz)	Note 1	
V_{GSop}	Gate - Source Voltage (static)	-4/+15	٧	Static	Note 2	
	Continuous Drain Current	140	А	V _{GS} =15 V, T _C = 25°C	- Note 3	
I _D		90		V _{GS} =15 V, T _C = 100°C		
I _{D(pulse)}	Pulsed Drain Current	200	А	Pulse width t _P limited by T _{jmax}		
T_{J} , T_{stg}	Operating Junction and Storage Temperature	-55 to +175	°C			
T _{Proc}	Maximum Processing Temperature	325	°C	10 min. maximum		

Note (1): When using MOSFET body diode $V_{GSmax} = -4V/+19V$

Note (2): MOSFET can also safely operate at 0V/+15V

Note (3): Assumes a Reuc < 0.27 K/W

Preliminary

Subject to change without notice

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	1200			٧	V _{GS} = 0 V, I _D = 100 μA		
V Cata Throshold Voltage	1.7	2.4	3.5	V	V _{DS} = V _{GS} , I _D = 20 mA	Fig. 11		
$V_{\text{GS(th)}}$	Gate Threshold Voltage		1.7		V	V _{DS} = V _{GS} , I _D = 20 mA, T _J = 175°C	Fig. 11	
I _{DSS}	Zero Gate Voltage Drain Current		1	100	μΑ	V _{DS} = 1200 V, V _{GS} = 0 V		
I _{GSS}	Gate-Source Leakage Current		10	250	nA	V _{GS} = 15 V, V _{DS} = 0 V		
D	Drain-Source On-State Resistance		13	16	mΩ	V _{GS} = 15 V, I _D = 70 A	Fig. 4,	
$R_{DS(on)}$	Dialii-Source Oir-State Resistance		21		111112	$V_{GS} = 15 \text{ V, } I_D = 70 \text{ A, } T_J = 175 ^{\circ}\text{C}$	5, 6	
a.	Transconductance		63		S	V _{DS} = 20 V, I _{DS} = 70 A	Fig. 7	
g fs	Transconductance		70			V_{DS} = 20 V, I_{DS} = 70 A, T_{J} = 175°C	T Fig. 7	
C_{iss}	Input Capacitance		7670					
C_{oss}	Output Capacitance		275		pF	V _{GS} = 0 V, V _{DS} = 1000 V f = 1 MHz V _{AC} = 25 mV	Fig. 17, 18	
C _{rss}	Reverse Transfer Capacitance		12]			
E _{oss}	C _{oss} Stored Energy		110		μJ	VAC - 25 IIIV		
Eon	Turn-On Switching Energy (Body Diode FWD)		2.1		mJ	$V_{DS} = 800 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}, I_{D} = 75 \text{ A},$		
E _{OFF}	Turn Off Switching Energy (Body Diode FWD)		1.5		1113	$R_{G(ext)} = 2.5\Omega$, L= 57 μ H,		
t _{d(on)}	Turn-On Delay Time		TBD					
t _r	Rise Time		TBD]	$V_{DD} = 800 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}$ $I_D = 75 \text{ A}, R_{G(ext)} = 2.5 \Omega,$		
$t_{\text{d(off)}} \\$	Turn-Off Delay Time		TBD		ns	Timing relative to V _{DS}		
t _f	Fall Time		TBD]	maddive load		
R _{G(int)}	Internal Gate Resistance		5.9		Ω	f = 1 MHz, V _{AC} = 25 mV		
Q_{gs}	Gate to Source Charge		67		Voc = 800 V Voc = -4 V/15 V	V _{DS} = 800 V, V _{GS} = -4 V/15 V		
Q_{gd}	Gate to Drain Charge		56		nC	I _D = 75 A	Fig. 12	
Qg	Total Gate Charge		235	7		Per IEC60747-8-4 pg 21		

Reverse Diode Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V_{SD}	Diode Forward Voltage	4.4		٧	$V_{GS} = -4 \text{ V, I}_{SD} = 75 \text{ A T}_{J} = 25 \text{ °C}$	Fig. 8, 9
		3.8		٧	V _{GS} = -4 V, I _{SD} = 75 A, T _J = 175 °C	and 10
Is	Continuous Diode Forward Current		97	Α	V _{GS} = -4 V	Note 1
I _{S, pulse}	Diode pulse Current		200	Α	V _{GS} = -4 V, pulse width t _P limited by T _{jmax}	Note 1
t _{rr}	Reverse Recover time	TBD		ns		
Q _{rr}	Reverse Recovery Charge	TBD		nC	$V_{GS} = -4 \text{ V, } I_{SD} = 30 \text{ A, } V_{R} = 600 \text{ V}$ dif/dt = 4500 A/µs, $T_{J} = 175 ^{\circ}\text{C}$	Note 2
I _{rrm}	Peak Reverse Recovery Current	TBD		А		

Typical Performance

Figure 1. Output Characteristics T_J = -55 °C

Figure 3. Output Characteristics T_J = 175 °C

Figure 4. Normalized On-Resistance vs. Temperature

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Typical Performance

Figure 7. Transfer Characteristic for Various Junction Temperatures

Figure 9. Body Diode Characteristic at 25 °C

Figure 10. Body Diode Characteristic at 175 °C

Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristics

Typical Performance

Figure 13. 3rd Quadrant Characteristic at -55 °C

Figure 14. 3rd Quadrant Characteristic at 25 °C

Figure 15. 3rd Quadrant Characteristic at 175 °C

Figure 16. Output Capacitor Stored Energy

Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)

Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V)

Mechanical Parameters

Parameter	Тур	Unit
Die Dimensions (L x W)	4.36 x 7.26	mm
Exposed Source Pad Metal Dimensions	1.83 x 5.26 (X2)	mm
Exposed Source Pad Metal Dimensions	1.37 x 1.38 (X2)	mm
Gate Pad Dimensions	0.6 x 0.7 (X2)	mm
Gate Pad Dimensions	0.84 x 0.6 (X2)	mm
Chip Thickness	180 ± 10%	μm
Frontside (Source) metallization (AI)	4	μm
Frontside (Gate) metallization (Al)	4	μm
Backside (Drain) metallization (Ni/Au)	0.8 / 0.1	μm

Chip Dimensions

Not drawn to scale

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems.

Related Links

- SiC MOSFET Isolated Gate Driver reference design: www.wolfspeed.com/power/Tools-and-Support
- Application Considerations for Silicon-Carbide MOSFETs: www.wolfspeed.com/power/Tools-and-Support