Basen und darstellende Matrizen für Quotientenvektorräume

Jendrik Stelzner

May 4, 2016

Sofern nichts anderes angegeben ist, bezeichnet K im folgenden einen beliebigen Körper.

1 Basen runterdrücken

Lemma 1. Es sei V ein K-Vektorraum und $U \subseteq V$ ein Untervektorraum. Es sei $\mathcal{B} = (b_i)_{i \in I}$ eine Basis von V, so dass es eine Teilmenge $J \subseteq I$ gibt, so dass $(b_i)_{j \in J}$ eine Basis von U ist. Dann ist $([b_i])_{i \in I \setminus J}$ eine Basis von V/U.

Korollar 2. Ist V ein endlichdimensionaler K-Vektorraum und $U \subseteq V$ ein Untervektorraum, so ist V/U endlichdimensional mit

$$\dim V/U=\dim V-\dim U.$$

Proposition 3. Es seien V ein endlichdimensionaler K-Vektorraum und $U \subseteq V$ ein Untervektorraum. Es sei $\mathcal{B} = (v_1, \ldots, v_n)$ eine Basis von V, so dass $\mathcal{C} := (v_1, \ldots, v_s)$ eine Basis von U ist. Es sei $f : V \to V$ ein Endomorphismus von V mit $f(U) \subseteq U$. Es sei m := n - m. Dann gilt:

- 1. Der Quotientenvektorraum V/U hat $\mathcal{D} := ([v_{s+1}], \dots, [v_n])$ als Basis.
- $2. \ \ Der \ Endomorphismus \ f \ induziert \ einen \ Endomorphismus$

$$f|_U \colon U \to U, \quad u \mapsto f(u)$$

und einen Endomorphismus

$$\bar{f}: V/U \to V/U, \quad [v] \mapsto [f(v)].$$

3. Ist $A={
m M}_{\mathcal C}(f|_U)\in {
m M}(n imes n,K)$ und $C={
m M}_{\mathcal D}(\bar f)\in {
m M}(m imes m,K)$, so ist

$$M_{\mathcal{B}}(f) = \begin{pmatrix} A & B \\ & C \end{pmatrix}$$

 $mit B \in M(n \times m, K).$

Korollar 4. Es sei V ein endlichdimensionaler K-Vektorraum und $U\subseteq V$ ein Untervektorraum. Ist $f\colon V\to V$ ein Endomorphismus mit $f(U)\subseteq U$, so gilt für die induzierten Endomorphismen $f|_U\colon U\to U$ und $\bar f\colon V/U\to V/U$, dass

$$\det f = \det f|_U \cdot \det \bar{f}.$$

2 Basen hochziehen

Lemma 5. Es sei V ein K-Vektorraum und $U \subseteq V$ ein Untervektorraum. Es sei $(b_j)_{j \in J_1}$ eine Basis von V/U, und für jedes $j \in J_1$ sei $v_j \in V$ mit $b_j = [v_j]$. Ferner sei $(v_j)_{j \in J_2}$ eine Basis von U, wobei die Indexmengen J_1 und J_2 disjunkt seien. Dann ist $(v_i)_{i \in I}$ mit $I := J_1 \cup J_2$ eine Basis von V.

Bemerkung 6. Das obige Lemma besagt, grob gesagt, wie man Basen von V/U zu Basen von V zurückziehen kann: Beginnt man mit einer Basis $(b_j)_{j\in J_1}$ von V/U, so wählt man für jedes Basiselement b_j ein Urbild $v_j\in V$. Die Familie $(v_j)_{j\in J_1}$ ist dann im Allgemeinen noch keine Basis von V, aber mit kann sie durch Hinzufügen einer Basis $(v_j)_{j\in J_2}$ des rausgeteilten Untervektorraums U zu einer solchen ergänzen.

Korollar 7. Es sei V ein endlichdimensionaler K-Vektorraum und $U\subseteq V$ ein K-Untervektorraum. Es sei $f\colon V\to V$ ein Endomorphismus mit $f(U)\subseteq U$, und es seien $f|_U\colon U\to U$ und $\bar f\colon V/U\to V/U$ die induzierten Endomorphismen. Es sei $\mathcal C=(v_1,\ldots,v_s)$ eine Basis von $U,\,\mathcal C=(b_1,\ldots b_r)$ eine Basis von $U,\,$ und $\mathcal B=(v_1,\ldots,v_s,v_{s+1},\ldots,v_{r+s})$ mit $[v_{s+i}]=b_i$ eine Basis von V. Für die darstellenden Matrizen $A=M_{\mathcal C}(f|_U)\in M(s\times s,K)$ und $C=M_{\mathcal D}(\bar f)\in M(r\times r,K)$ gilt dann

$$\mathbf{M}_{\mathcal{B}} = \begin{pmatrix} A & B \\ & C \end{pmatrix}$$

 $mit B \in M(s \times r, K).$

Korollar 8. Ist K algebraisch abgeschlossen, V ein K-Vektorraum mit $V \neq 0$ und $f: V \to V$ ein Endomorphismus, so gibt es eine Basis $\mathcal{B} = (v_1, \ldots, v_n)$ von V, so dass $M_{\mathcal{B}}(f)$ eine obere Dreiecksmatrix ist, d.h. $M_{\mathcal{B}}(f)$ ist von der Form

$$\mathrm{M}_{\mathcal{B}}(f) = egin{pmatrix} * & \cdots & & * \\ 0 & \ddots & & dots \\ dots & \ddots & \ddots & dots \\ 0 & \cdots & 0 & * \end{pmatrix}.$$