Aljoscha Meyer

Set Reconciliation

- set union over a network
- between (exactly) two machines
- unstructured data
- no shared state or history

Trivial Reconciliation

Model and Analysis

- Alfie and Betty talk over a network
- reliable communication, rounds of unit length, unlimited bandwidth
- probabilistic solutions

Model and Analysis

- Alfie and Betty talk over a network
- reliable communication, rounds of unit length, unlimited bandwidth
- probabilistic solutions
- n: size of the union
- n_{\triangle} : size of the symmetric difference

Model and Analysis

- roundtrips
- communicated bytes
- computation time
- computation space

Traditional Approaches

- ullet obtain approximation of n_{\triangle}
- ullet compute message of size $\mathcal{O}(n_{\triangle})$ by iterating over all n items
- exchange messenges
- ullet recover symmetric difference from those messages using at least $\mathcal{O}(n_\triangle)$ time and memory

P2P Reconciliation

Peer-to-peer systems:

- iterating over local set every time infeasible
- loading local set into memory infeasible
- some peers are out to get us

P2P Reconciliation

Peer-to-peer systems:

- iterating over local set every time infeasible
- loading local set into memory infeasible
- some peers are out to get us
- ⇒ traditional approaches don't work

• allow for logarithmic number of rounds

- allow for logarithmic number of rounds
- compare fingerprints of local sets

- allow for logarithmic number of rounds
- compare fingerprints of local sets
 - if equal, we are done

- allow for logarithmic number of rounds
- compare fingerprints of local sets
 - if equal, we are done
- divide-and-conquer

- allow for logarithmic number of rounds
- compare fingerprints of local sets
 - if equal, we are done
- divide-and-conquer
 - chose predicate for partitioning

- allow for logarithmic number of rounds
- compare fingerprints of local sets
 - if equal, we are done
- divide-and-conquer
 - chose predicate for partitioning
 - restrict to simple predicates (split into ranges)

- allow for logarithmic number of rounds
- compare fingerprints of local sets
 - if equal, we are done
- divide-and-conquer
 - chose predicate for partitioning
 - restrict to simple predicates (split into ranges)
 - peers alternatingly choose splits that are optimal for themselves

- allow for logarithmic number of rounds
- compare fingerprints of local sets
 - if equal, we are done
- divide-and-conquer
 - chose predicate for partitioning
 - restrict to simple predicates (split into ranges)
 - peers alternatingly choose splits that are optimal for themselves
- binary-search for differences

- allow for logarithmic number of rounds
- compare fingerprints of local sets
 - if equal, we are done
- divide-and-conquer
 - chose predicate for partitioning
 - restrict to simple predicates (split into ranges)
 - peers alternatingly choose splits that are optimal for themselves
- binary-search for differences
 - collaboratively
 - over the wire
 - in parallel
 - ok, the analogy is not perfect

Some Nice Properties

- reasonably efficient: $\mathcal{O}(\min(n_{\triangle} \cdot \log(n), n))$ bytes communication, $\mathcal{O}(1)$ working memory
- can tune bandwidth vs roundtrip minimization
- arbitrary recursion anchor protocols
- arbitrary partition techniques

Some Nice Properties

- reasonably efficient: $\mathcal{O}(\min(n_{\triangle} \cdot \log(n), n))$ bytes communication, $\mathcal{O}(1)$ working memory
- can tune bandwidth vs roundtrip minimization
- arbitrary recursion anchor protocols
- arbitrary partition techniques
- but: linear computation times

Reducing Computation Times

• $\binom{n}{2}$ possible subranges \implies cannot precompute all fingerprints

Reducing Computation Times

- $\binom{n}{2}$ possible subranges \implies cannot precompute all fingerprints
- free space budget of $\mathcal{O}(n)$
- labeled trees!

Intermission — Merkle Search Trees

Auvolat, Alex, and François Taïani. "Merkle search trees: Efficient state-based CRDTs in open networks." 2019 38th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2019.

- define a unique tree shape for every set
- use that shape for a Merkle tree of your set
- only exchange fingerprints for ranges that correspond to subtrees

Intermission — Merkle Search Trees

Auvolat, Alex, and François Taïani. "Merkle search trees: Efficient state-based CRDTs in open networks." 2019 38th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2019.

- define a unique tree shape for every set
- use that shape for a Merkle tree of your set
- only exchange fingerprints for ranges that correspond to subtrees

Problems:

- easily attacked with degenerate tree shapes
- peers cannot optimize data representation for their use-case

Say No to Merkle Trees

Order-Statistic Trees

- ullet set of labels: ${\mathbb N}$
- ullet binary associative function: +
- neutral element: 0

Monoid:

- ullet set of labels: ${\mathbb N}$
- binary associative function: +
- neutral element: 0

Monoid:

- ullet set of labels: ${\mathbb N}$
- binary associative function: +
- neutral element: 0
- lifting into the monoid: $\lambda x.1$

Monoid:

- ullet set of labels: ${\mathbb N}$
- binary associative function: +
- neutral element: 0
- lifting into the monoid: $\lambda x.1$

• set of labels: ${n: 0 \le n \le 2^{256} - 1}$

• lifting into the monoid: sha256

Monoid:

- set of labels: IN
- binary associative function: +
- neutral element: 0
- lifting into the monoid: $\lambda x.1$

- set of labels: ${n: 0 \le n \le 2^{256} 1}$
- binary associative function: xor
- neutral element: 0
- lifting into the monoid: sha256

Resulting Functions

Let U be a set, \leq a linear order on U, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $h:U\to M$.

We lift h to finite sets via \mathcal{M} to obtain lift $^{\mathcal{M}}_{h}: \mathcal{P}(U) \rightharpoonup M$ with:

$$\begin{split} & \mathsf{lift}^{\mathcal{M}}_h(\emptyset) := \mathbb{O}, \\ & \mathsf{lift}^{\mathcal{M}}_h(S) := \mathsf{h}\big(\mathsf{min}(S)\big) \oplus \mathsf{lift}^{\mathcal{M}}_h\big(S \setminus \{\mathsf{min}(S)\}\big). \end{split}$$

That is:
$$\operatorname{lift}_{h}^{\mathcal{M}}(S) = h(s_1) \oplus h(s_2) \oplus \cdots \oplus h(s_{|S|}).$$

Advantages

- solid worst-case communication complexity
- implementation independence

- monoid B-Tree
- monoid prefix tree
- monoid skip list
- monoid zip-tree
- no datastructure at all
- ...

• adversary must sabotage reconciliation

- adversary must sabotage reconciliation
- active and passive adversaries

- adversary must sabotage reconciliation
- active and passive adversaries
- randomized boundaries defeat individual collisions

- adversary must sabotage reconciliation
- active and passive adversaries
- randomized boundaries defeat individual collisions
- better protection: secure hash functions

Let U be a set, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $f:\mathcal{P}(U)\to M$. f is set-homomorphic if $f(U_1\cup U_2)=f(U_1)\oplus f(U_2)$.

Let U be a set, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $f:\mathcal{P}(U)\to M$. f is set-homomorphic if $f(U_1\cup U_2)=f(U_1)\oplus f(U_2)$. xor, addition, multiplication, lattices, RSA, eliptic curves.

Let U be a set, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $f:\mathcal{P}(U)\to M$.

f is set-homomorphic if $f(U_1 \cup U_2) = f(U_1) \oplus f(U_2)$.

xor, addition, multiplication, lattices, RSA, eliptic curves.

Our functions: $\operatorname{lift}_{h}^{\mathcal{M}}(S) = h(s_1) \oplus h(s_2) \oplus \cdots \oplus h(s_{|S|})$

Let U be a set, $\mathcal{M} = (M, \oplus, \mathbb{O})$ a monoid, and $f : \mathcal{P}(U) \to M$.

f is set-homomorphic if $f(U_1 \cup U_2) = f(U_1) \oplus f(U_2)$.

xor, addition, multiplication, lattices, RSA, eliptic curves.

Our functions: $lift_h^{\mathcal{M}}(S) = h(s_1) \oplus h(s_2) \oplus \cdots \oplus h(s_{|S|})$

Let further \leq a linear order on U.

h is a tree-friendly function if for $S_0, S_1 \in \mathcal{P}(U)$ with $\max(S_0) \prec \min(S_1)$, we have $h(S_0 \cup S_1) = h(S_0) \oplus h(S_1)$.

Let U be a set, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $f:\mathcal{P}(U)\to M$.

f is set-homomorphic if $f(U_1 \cup U_2) = f(U_1) \oplus f(U_2)$.

xor, addition, multiplication, lattices, RSA, eliptic curves.

Our functions: $lift_h^{\mathcal{M}}(S) = h(s_1) \oplus h(s_2) \oplus \cdots \oplus h(s_{|S|})$

Let further \leq a linear order on U.

h is a tree-friendly function if for $S_0, S_1 \in \mathcal{P}(U)$ with $\max(S_0) \prec \min(S_1)$, we have $h(S_0 \cup S_1) = h(S_0) \oplus h(S_1)$.

No commutativity: Cayley hash functions

Summary

- divide-and-conquer to find differences by checking fingerprint equality
- tree-friendly functions allow for efficient and flexible implementation
- cryptographically secure tree-friendly functions exist
- pretty simple compared to traditional solutions

Summary

- divide-and-conquer to find differences by checking fingerprint equality
- tree-friendly functions allow for efficient and flexible implementation
- cryptographically secure tree-friendly functions exist
- pretty simple compared to traditional solutions
- remember to say no to Merkle trees

Bonus Slides!

Reducing Computation Times

• Step 1: Put a Merkle tree on it

• Step 2: ???

• Step 3: Profit

Auvolat, Alex, and François Taïani. "Merkle search trees: Efficient state-based CRDTs in open networks." 2019 38th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2019.

Merkle Trees

Merkle Trees

Merkle Tree Reconciliation

Merkle Tree Reconciliation

- inflexible data representation
- inacceptable worst-case complexity
 - remember, some peers are out to get us