Power BI Project: Olist E-commerce Dataset Analysis

Objective:

Develop a comprehensive Power BI report that provides valuable insights into Olist's e-commerce performance, addressing key business questions.

Olist Data Source

Provider: Olist

• Dataset Name: Olist Store Dataset

• **Source**: https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce/data

License

The dataset is available under the **Open Database License (ODbL)**, which allows you to:

- Share: Copy and redistribute the material in any medium or format.
- Adapt: Remix, transform, and build upon the material for any purpose, even commercially.

The Olist dataset is a comprehensive collection of data from Olist, a Brazilian e-commerce marketplace. It contains several tables, each providing insights into different aspects of the business operations, including orders, products, customers, payments, reviews, and logistics. Here's a brief explanation of the key tables and their primary columns:

```
1. ORDERS TABLE (OLIST ORDERS DATASET)
```

Columns:

- order_id: Unique identifier for each order.
- customer id: Unique identifier for each customer.
- order status: Current status of the order (e.g., delivered, shipped, canceled).
- order purchase timestamp: Timestamp when the order was placed.
- order approved at: Timestamp when the order was approved.
- order delivered carrier date: Date when the order was handed to the carrier.
- order_delivered_customer_date: Date when the order was delivered to the customer.
- order estimated delivery date: Estimated delivery date for the order.

```
2. ORDER ITEMS TABLE (OLIST ORDER ITEMS DATASET)
```

Columns:

- order id: Unique identifier for each order.
- order_item_id: Identifier for each item in an order.

- product id: Unique identifier for each product.
- seller id: Unique identifier for each seller.
- shipping limit date: Latest date by which the seller must ship the item.
- price: Price of the item.
- freight value: Freight cost for the item.

3. CUSTOMERS TABLE (OLIST CUSTOMERS DATASET)

Columns:

- customer id: Unique identifier for each customer.
- customer_unique_id: Unique identifier that groups multiple orders from the same customer
- customer zip code prefix: First five digits of the customer's zip code.
- customer city: City of the customer.
- customer state: State of the customer.

4. SELLERS TABLE (OLIST SELLERS DATASET)

Columns:

- seller id: Unique identifier for each seller.
- seller zip code prefix: First five digits of the seller's zip code.
- seller city: City of the seller.
- seller state: State of the seller.

5. PRODUCTS TABLE (OLIST_PRODUCTS_DATASET)

Columns:

- product id: Unique identifier for each product.
- product category name: Category name of the product.
- product name lenght: Length of the product name.
- product description lenght: Length of the product description.
- product photos qty: Number of photos for the product.
- product weight g: Weight of the product in grams.
- product length cm: Length of the product in centimeters.
- product height cm: Height of the product in centimeters.
- product_width_cm: Width of the product in centimeters.

6. PAYMENTS TABLE (OLIST ORDER PAYMENTS DATASET)

Columns:

- order id: Unique identifier for each order.
- payment sequential: Sequential number for the payment.
- payment type: Type of payment (e.g., credit card, boleto).
- payment installments: Number of payment installments.
- payment value: Value of the payment.

7. REVIEWS TABLE (OLIST ORDER REVIEWS DATASET)

Columns:

- review id: Unique identifier for each review.
- order id: Unique identifier for each order.
- review score: Score given by the customer (1-5).
- review comment title: Title of the review comment.
- review comment message: Message of the review comment.
- review creation date: Date when the review was created.
- review answer timestamp: Timestamp when the review was answered.

8. GEOLOCATION TABLE (OLIST GEOLOCATION DATASET)

Columns:

- geolocation zip code prefix: First five digits of the zip code.
- geolocation lat: Latitude coordinate.
- geolocation lng: Longitude coordinate.
- geolocation city: City corresponding to the geolocation.
- geolocation_state: State corresponding to the geolocation.

These tables can be joined using common identifiers like order_id, customer_id, product_id, and seller_id to create a comprehensive view of the e-commerce operations and analyze various aspects such as sales performance, customer behavior, and delivery logistics.

TARGET AUDIENCE FOR POWER BI REPORTS:

- **Olist Higher Management**: The reports aim to provide a comprehensive overview of the company's financial and commercial performance.
- Marketing Team: To analyze product performance and understand customer preferences.
- Logistic Team: To improve their operations and make informed decisions based on the provided data.

BUSINESS QUESTIONS RELATED TO E-COMMERCE GROWTH AND OPTIMIZATION

1. Sales Performance:

- O What are the top-selling products and categories?
- o What are the revenue trends over time (monthly, quarterly, annually)?
- o How do sales vary across different regions or demographics?

2. Customer Segmentation:

o How are customers segmented based on their purchasing behavior?

 What percentage of customers fall into high-value frequent, high-value infrequent, low-value frequent, and low-value infrequent segments?

3. Order Fulfillment:

- o What is the average order cancellation rate?
- O What is the on-time delivery rate and delayed delivery rate?

4. Payment Preferences:

- O What are the preferred payment methods among customers?
- O How many installments do customers prefer when making a purchase?

5. Customer Feedback:

- O What is the Net Promoter Score (NPS)?
- How many reviews have been provided, and how many customers are promoters or detractors?

6. Category Preferences:

- o Which product categories are most preferred by customers?
- O What are the significant drivers for these preferences?

7. Monthly and Weekly Preferences:

O What are the monthly and weekly purchasing trends?

DATA CLEANING AND TRANSFORMATION DOCUMENTATION FOR OLIST DATASETS

1. CUSTOMERS TABLE (CUSTOMERS)

- Remove Duplicates: Ensure that there are no duplicate customer entries.
- Standardize Customer IDs: Verify that all customer IDs are unique and properly formatted.
- Validate Geolocation Data: Cross-check the geolocation data for any missing or incorrect values.
- Clean Column Names: Standardize column names to follow a consistent naming convention (e.g., customer id, customer unique id, customer zip code prefix).

2. GEOLOCATION TABLE (GEOLOCATION)

- Remove Duplicates: Ensure that there are no duplicate geolocation entries.
- Handle Missing Values: Fill missing geolocation coordinates (latitude and longitude) where
 possible, or remove records if they are incomplete.
- Clean Column Names: Standardize column names (e.g., geolocation_zip_code_prefix, geolocation_lat, geolocation_lng).

3. ORDER ITEMS TABLE (ORDER ITEMS)

- Remove Duplicates: Ensure there are no duplicate order item entries.
- Validate Order IDs: Ensure that all order IDs are valid and exist in the orders table.
- Clean Product IDs: Verify that all product IDs are valid and exist in the products table.
- Standardize Column Names: (e.g., order_id, order_item_id, product_id, seller id, price, freight value).

4. ORDER PAYMENTS TABLE (ORDER PAYMENTS)

- Remove Duplicates: Ensure there are no duplicate payment entries.
- Validate Order IDs: Ensure that all order IDs are valid and exist in the orders table.
- Handle Missing Values: Fill or remove any missing payment details.

- Standardize Payment Types: Ensure consistency in payment types (e.g., credit_card, boleto, voucher).
- Clean Column Names: (e.g., order_id, payment_sequential, payment_type, payment installments, payment value).

5. ORDER REVIEWS TABLE (ORDER REVIEWS)

- Remove Duplicates: Ensure there are no duplicate review entries.
- Validate Order IDs: Ensure that all order IDs are valid and exist in the orders table.
- Handle Missing Review Scores: Fill missing review scores with a default value or remove the records.
- Standardize Column Names: (e.g., review_id, order_id, review_score, review comment message).

6. ORDERS TABLE (ORDERS)

- Remove Duplicates: Ensure there are no duplicate order entries.
- Validate Customer IDs: Ensure that all customer IDs are valid and exist in the customers table.
- **Handle Missing Dates**: Fill missing dates (order purchase date, estimated delivery date) where possible.
- Standardize Order Status: Ensure consistency in order status values (e.g., delivered, shipped, canceled).
- **Clean Column Names**: (e.g., order_id, customer_id, order_status, order purchase timestamp).

7. PRODUCTS TABLE (PRODUCTS)

- Remove Duplicates: Ensure there are no duplicate product entries.
- Validate Product IDs: Ensure that all product IDs are unique and properly formatted.
- Handle Missing Values: Fill missing product details (e.g., product_category_name, product description length).
- Standardize Column Names: (e.g., product_id, product_category_name, product weight g, product length cm).

8. SELLERS TABLE (SELLERS)

- Remove Duplicates: Ensure there are no duplicate seller entries.
- Validate Seller IDs: Ensure that all seller IDs are unique and properly formatted.
- Handle Missing Values: Fill missing geolocation data where possible.
- Clean Column Names: (e.g., seller_id, seller_zip_code_prefix, seller city, seller state).

9. PRODUCT CATEGORY NAME TRANSLATION TABLE

(PRODUCT_CATEGORY_NAME_TRANSLATION)

- Remove Duplicates: Ensure there are no duplicate category name entries.
- Validate Translations: Ensure that all translations are accurate and cover all necessary categories.
- Standardize Column Names: (e.g., product_category_name, product category name english).

GENERAL DATA TRANSFORMATION STEPS

- 1. **Data Type Conversion**: Ensure all columns have appropriate data types (e.g., dates, numerical values, categorical values).
- 2. **Date/Time Formatting**: Standardize date and time formats across all tables.
- 3. **Column Renaming**: Rename columns for consistency and readability.
- 4. **Creating New Columns**: Derive new columns where necessary for analysis (e.g., calculating delivery time, total order value).

DATA MODELING AND RELATIONSHIPS

1. ESTABLISH RELATIONSHIPS BETWEEN TABLES BASED ON DATA STRUCTURE

- One-to-One Relationships: These are rare but can occur in certain scenarios. For example, each customer_id in the customer table might have a unique corresponding entry in an orders table.
- **One-to-Many Relationships**: Common in e-commerce data, where one entity is related to multiple records in another table. Examples:
 - o orders to order items: One order can contain multiple items.
 - o products to order items: One product can be part of multiple order items.

2. CREATE A STAR SCHEMA OR FOR EFFICIENT DATA MODELING

- **Star Schema**: Central fact table surrounded by dimension tables. Efficient for querying and analysis.
 - o Fact Table: merge of orders & order items
 - O Dimensions:
 - customers
 - products
 - sellers
 - order payments
 - order reviews
 - geolocation

3. CONSIDER CARDINALITY

- One-to-Many (1
 -): Commonly seen relationships in e-commerce data.
 - o Example: customers (1) to orders (N)
- Many-to-One (N:1): Reverse of the one-to-many relationship.
 - o Example: order items (N) to products (1)
- Many-to-Many (N
 -): Should be carefully modeled using bridge tables to avoid performance issues.
 - o Example: If we had a promotions table and an orders table linked through an order promotions bridge table.

4. VALIDATE DATA MODEL INTEGRITY

- **Data Preview**: Regularly preview data in Power BI to ensure transformations and relationships are working as expected.
- **Cross-Filtering**: Test cross-filtering in Power BI to verify relationships. Ensure that selections in one table filter data appropriately in related tables.
- Data Integrity Checks: Perform data validation checks to ensure referential integrity:
 - Check for orphaned records (e.g., orders without corresponding customers).
 - o Ensure that all foreign keys (e.g., product_id in order_items) exist in their respective primary key tables (e.g., products).

STEPS TO ESTABLISH RELATIONSHIPS IN POWER BI

- 1. Load Data: Import all tables into Power BI.
- 2. Manage Relationships:
 - Navigate to the "Model" view.
 - Automatically detect relationships using Power BI's "Manage Relationships" feature.
 - Manually adjust or create relationships as necessary by dragging and dropping fields between tables.
- 3. Define Relationships:
 - Specify the relationship type (one-to-one, one-to-many).
 - Set cross-filter direction (single, both).
 - o Ensure cardinality is correctly set to optimize performance.
- 4. Create Hierarchies (optional):
 - Create hierarchies within dimension tables to enhance drill-down capabilities (e.g., Year > Quarter > Month for dates).
- 5. Test Relationships:
 - Use Power BI visuals (e.g., tables, charts) to test if filters and slicers are working correctly across related tables.
 - o Validate with sample queries to ensure data consistency and integrity.

EXAMPLE RELATIONSHIPS IN POWER BI MODEL VIEW

- 1. Customers to Orders:
 - o customers.customer_id(1)toorders.customer_id(N)
- 2. Orders to Order Items:
 - o orders.order id (1) to order items.order id (N)
- 3. **Products to Order Items**:
 - o products.product_id(1) to order_items.product_id(N)
- 4. Sellers to Order Items:
 - o sellers.seller id (1) to order items.seller id (N)
- 5. Orders to Order Payments:
 - o orders.order_id(1)toorder_payments.order_id(N)
- 6. Orders to Order Reviews:
 - o orders.order id (1) to order reviews.order id (N)
- 7. Geolocation to Customers:
 - o geolocation.geolocation_zip_code_prefix (1) to customers.customer_zip_code_prefix (N)

FINAL VALIDATION AND TESTING

• **Data Preview**: Regularly check the data preview to ensure that transformations and relationships are correctly applied.

- Cross-Filtering: Verify that cross-filtering and interactions between visuals work correctly, reflecting accurate data.
- Performance Testing: Monitor performance metrics in Power BI to ensure the data model is optimized for query performance.

Important DAX Calculations

RETURN

```
Average order value = DIVIDE([total revenue], CALCULATE(COUNTROWS('orders')))
payment value MoM% =
        IF(
          ISFILTERED('orders'[order_purchase_timestamp]),
          ERROR("Time intelligence quick measures can only be grouped or filtered by the Power
        BI-provided date hierarchy or primary date column."),
           VAR __PREV_MONTH =
             CALCULATE(
               SUM('order payments'[payment_value]),
               DATEADD('orders'[order_purchase_timestamp].[Date], -1, MONTH)
             )
          RETURN
             DIVIDE(
               SUM('order payments'[payment_value]) - __PREV_MONTH,
               __PREV_MONTH
             )
        )
payment value QoQ% =
        IF(
          ISFILTERED('orders'[order_purchase_timestamp]),
          ERROR("Time intelligence quick measures can only be grouped or filtered by the Power
        BI-provided date hierarchy or primary date column."),
           VAR __PREV_QUARTER =
             CALCULATE(
               SUM('order payments'[payment_value]),
               DATEADD('orders'[order_purchase_timestamp].[Date], -1, QUARTER)
             )
```

```
DIVIDE(

SUM('order payments'[payment_value]) - __PREV_QUARTER,

__PREV_QUARTER
)
```

The Net Promoter Score (NPS) is a metric used to gauge customer loyalty

```
Detractors =
                CALCULATE(
                   COUNTROWS('order reviews'),
                   'order reviews'[review_score]<3
                Detractor Percentage = \\
                DIVIDE(
                   [Detractors],
                   [TotalReviews]
                Promoters =
                CALCULATE(
                   COUNTROWS('order reviews'),
                   'order reviews'[review_score] >= 3
                PromoterPercentage =
                DIVIDE(
                   [Promoters],
                   [TotalReviews]
                )
                NPS =
                ([PromoterPercentage] - [DetractorPercentage]) *100
Average Order Cancellation Rate =
                   DIVIDE(
                     CALCULATE(COUNTROWS(orders),
                        orders[order_status] = "canceled"),
```

COUNTROWS(orders))

Customer segmentation is the process of dividing a customer base into distinct groups based on shared characteristics. It helps businesses target specific customer groups more effectively, customize their marketing strategies, and improve customer satisfaction and retention.

```
Customer Monetary Value =
CALCULATE(
  SUM('order payments'[payment_value]),
  ALLEXCEPT('customers',
'customers'[customer_unique_id])
Customer Order Frequency =
CALCULATE(
  COUNTROWS('customers'),
  ALLEXCEPT('customers', 'customers'[customer_unique_id])
)
Customer_Segment =
SWITCH(
  TRUE(),
  [Customer Order Frequency] > 1 && [Customer Monetary Value] > 200, "High Value Frequent",
  [Customer Order Frequency] > 1 && [Customer Monetary Value] <= 200, "Frequent Low Value",
  [Customer Order Frequency] <= 1 && [Customer Monetary Value] > 200, "High Value Infrequent",
  "Low Value Infrequent"
)
Avg Orders per Seller =
DIVIDE(
  COUNTROWS('order items'),
  [Total Sellers]
)
Avg Orders per Seller =
DIVIDE(
  COUNTROWS('order items'),
```

```
[Total Sellers]
)
ontime count days =
CALCULATE(COUNT(orders[ontime/delay]),FILTER(orders,orders[ontime/delay]="on time"))
On-Time Delivery Rate = DIVIDE([ontime count days],[ontime/delay count])
delay count days =
CALCULATE(COUNT(orders[ontime/delay]),FILTER(orders,orders[ontime/delay]="delay"))
Delayed Delivery Rate = DIVIDE([delay count days],[ontime/delay count])
Active_Sellers = CALCULATE(
           DISTINCTCOUNT('order items'[seller_id]),
              'orders'[order_status] = "delivered",
                 'orders'[order_purchase_timestamp] >= MIN('orders'[order_purchase_timestamp])
- 30.
                 'orders'[order_purchase_timestamp] <= MAX('orders'[order_purchase_timestamp])
          )
Avg Orders per Seller =
DIVIDE(
  COUNTROWS('order items'),
  [Total Sellers]
)
```

Conclusions

1. Customer Segmentation and Preferences

- The majority of customers (74%) are categorized as "Low Value Infrequent," indicating that they make small and infrequent purchases.
- "High Value Infrequent" customers constitute 19% of the customer base, suggesting potential for targeted marketing to increase their purchase frequency.

o The "High Value Frequent" and "Frequent Low Value" segments are smaller, but still significant, representing 4% and 3%, respectively.

2. Order Fulfillment and Cancellations

- The average order cancellation rate is relatively low at 0.63%, indicating a high level of order completion.
- o On-time delivery rates and delayed delivery rates are critical metrics that need continuous monitoring to ensure customer satisfaction.

3. Payment and Installment Preferences

- Credit cards are the most preferred payment method, as indicated by the word cloud.
- A significant number of customers (52.5K) prefer to pay in one installment, while others opt for multiple installments, reflecting diverse financial flexibility among customers.

4. Customer Feedback and Satisfaction

- The Net Promoter Score (NPS) of 71 is a positive indicator of customer satisfaction and loyalty.
- o A high number of promoters (84,649) compared to detractors (14,575) suggests strong overall customer approval.

5. Category Preferences

- o Categories such as "Electronics," "Beauty," and "Fashion" are highly preferred, indicating areas where marketing efforts can be concentrated.
- Significant drivers behind category preferences provide insights into customer needs and buying behavior.

6. Monthly and Weekly Trends

o Purchase preferences vary by month and day, with noticeable peaks and troughs, which can guide inventory and promotional planning.

Recommendations

1. Targeted Marketing

- Focus on increasing the purchase frequency of "High Value Infrequent" customers through personalized offers and loyalty programs.
- Develop campaigns to convert "Low Value Infrequent" customers into more frequent buyers.

2. Order Fulfillment Improvement

- o Maintain the low order cancellation rate by continuously improving the accuracy and efficiency of the fulfillment process.
- Monitor and enhance on-time delivery rates to ensure customer satisfaction.

3. Payment Options

- Continue to offer diverse payment and installment options to cater to different customer preferences.
- Highlight the convenience and benefits of preferred payment methods in marketing materials.

4. Enhance Customer Satisfaction

 Utilize feedback from promoters to understand what drives customer satisfaction and apply these insights to broader customer service strategies. • Address the concerns of detractors promptly to convert them into promoters and reduce negative feedback.

5. Product Category Focus

- o Allocate marketing resources to high-preference categories like "Electronics," "Beauty," and "Fashion" to maximize sales.
- o Analyze the significant drivers for category preferences to refine product offerings and marketing messages.

6. Seasonal and Trend Analysis

- Use monthly and weekly purchasing trends to plan promotions, inventory, and staffing effectively.
- Capitalize on peak buying periods with targeted campaigns to boost sales during those times.

By implementing these recommendations, Olist can enhance its e-commerce operations, increase customer satisfaction, and drive growth through data-driven decision-making.