CMOS AIC design - ITI - Lab 5

Part 1: Exploring Sizing Tradeoffs Using SA

- Sinking current means which device type? NMOS or PMOS?
 - Sinking current is performed using NMOS.
- The % Change in current translates to a spec on the $\lambda = 1/V_A$ of the device. How much is the required λ ?

$$I_{D} = I_{DS}(1 + \lambda V_{DS}), \frac{\Delta I_{D}}{\Delta V_{DS}}|_{V_{DS}=1} = \lambda \frac{I_{D}}{1+\lambda} \Rightarrow \lambda = 0.1$$

L vs V*

W vs V*

Area vs V*

Lambda vs V*

- Can we do the previous design trade-offs exploration sweeps using a standard SPICE simulator, i.e., sweep Vstar at a constant σ(Iout)/Iout? Why?
 - The mismatch is a statistical measure which the standard SPICE simulator has no control over.
- Report the above plot with a cursor added at the required V^* . Does this point satisfy the mismatch and λ constraints?

L @ required V*

W @ required V*

Area @ required V*

Lambda @ required V*

- The constraints are satisfied.
- If the λ constraint is not satisfied at $\sigma(Iout)/Iout$ =2%, i.e., it needs a longer L, we can use SA to find the required design point as shown below. Report the device sizing and $\sigma(Iout)/Iout$ at the selected design point.

Device sizing after redesign

Part 2: Current Mirror Simulation

• Create a new schematic. Construct the circuit shown below.

Required schematic

1. Design and OP (Operating Point) Analysis

• Assume we want to set a 50mV saturation margin for M6 and M3, i.e., $V_{DS6} \approx V_{DS3} \approx V^* + 50mV$. Ignore the body effect and calculate a rough value for RB.

$$R_{B} = \frac{200m}{10u} = 20k\Omega.$$

• Perform DC sweep (not parametric sweep) for RB. Choose a reasonable sweep range given the rough value computed in the previous step. Report V_{DS6} vs R_B . Choose R_B to satisfy the 50mV saturation margin requirement. Is the selected R_B value larger or smaller than the rough analytical value? Why?

	: 31 "CM_TB_final.raw" ey Short Channel IGFET	Model-4	
device	m.xm5.m0	m.xm6.m0	m.xm2.m0
model	nmos 3p3.14	nmos 3p3.14	nmos 3p3.14
id	1.99541e-05	1.99541e-05	1e-05
gm	0.000269502	0.000267681	0.0001349
gds	5.86337e-07	1.63754e-06	3.22657e-07
vgs	0.831469	0.751969	0.831955
vth	0.754193	0.672884	0.754132
vds	0.679499	0.220499	0.531954
BSIM4v5: Berkel	ey Short Channel IGFET	Model-4	
device	m.xm3.m0	m.xm4.m0	m.xm1.m0
model	nmos_3p3.14	nmos_3p3.14	nmos_3p3.14
id	1e-05	2.05127e-05	1e-05
gm	0.000134025	0.000273983	0.000134595
gds	8.2581e-07	5.67682e-07	2.92144e-07
vgs	0.751969	0.751426	0.751426
vth	0.672671	0.672136	0.673656
vds	0.220013	0.899999	0.751425

Required calculations

Required RB $\approx 27k\Omega$

- The selected R_B has a larger value than the roughly-estimated one due to approximations implied in hand analysis.
- Simulate the OP point. Report a snapshot clearly showing the following parameters.

No. of Data Rows :	1		
BSIM4v5: Berkeley	Short Channel IGFE	T Model-4	
device	m.xm5.m0	m.xm6.m0	m.xm2.m0
model	nmos_3p3.14	nmos_3p3.14	nmos_3p3.14
id	1.99268e-05	1.99268e-05	1e-05
gm	0.000269042	0.000262934	0.000134798
gds	5.72584e-07	8.03127e-06	3.0815e-07
vgs	0.805508	0.752625	0.807068
vth	0.72841	0.6727	0.72932
vds	0.752881	0.147116	0.607067
vdsat	0.116533	0.116431	0.116917
gmbs	9.82432e-05	0.000103149	4.92533e-05
DCTMAyE, Dorkolov	Chart Channel ICEE	T Model 4	
device	Short Channel IGFE		m vm1 m0
	m.xm3.m0	m.xm4.m0	m.xm1.m0
model	nmos_3p3.14	nmos_3p3.14	nmos_3p3.14
id	1e-05	1.97421e-05	1e-05
gm	0.000131593	0.000266887	0.000134613
gds	4.30677e-06	5.52745e-07	2.92492e-07
vgs	0.752625	0.748558	0.748558
vth	0.672335	0.672118	0.670807
vds	0.145556	0.899999	0.748557
vdsat	0.116655	0.114304	0.115101
gmbs	5.16262e-05	0.000104682	5.27906e-05

Required calculations

• Do all transistors operate in saturation?

#	$V_{_{DS}}$	V DS,sat	Sat?
1	0.75	0. 11	Yes
2	0.6	0. 11	Yes
3	0. 15	0. 11	Yes
4	0.9	0.11	Yes
5	0.75	0.11	Yes
6	0.15	0. 11	Yes

2. DC Sweep (I_{out} vs VOUT)

• Perform DC sweep (not parametric sweep) using VOUT = 0:10m:VDD. Report I_{out} vs VOUT for the two CMs overlaid in the same plot. Comment on the difference between the two circuits.

Iout1 vs Vout1

Iout2 vs Vout2

- It's clear that the wide swing CM acts as a current source more ideal than the conventional CM due to the boosted o/p impedance.
- From the plot, find an estimate for the compliance voltage of each current mirror.

Compliance voltage of the conventional CM

Compliance voltage of the wide swing CM

 I_{out} of the simple CM is exactly equal to IB*2 at a specific value of VOUT. Why?

V @ which lout ≈ 2IB

- I_{out} nearly equals $I_{ref} \otimes V_{out} \approx 1.8V = V_{DD}$ which is the maximum V_{out} obtainable that achieves the almost-ideal current mirroring.
- ullet For the simple current mirror, calculate the percent change in I_{out} when VOUT changes from 0.5V to 1.5V (i.e., 1V change). Compare the result to the value expected from Part 1.

Iout @ Vout = 1V

lout @ *Vout* = 1.5V

$$\frac{\Delta I_{out}}{\Delta V_{out}} = \frac{2.02u - 1.99u}{1.5 - 1} = 60n << 0.1$$

Report the percent of error in I_{out} vs VOUT (ideal I_{out} should be IB*2) for the two CMs in the current mirror operating region (VOUT ≈ V^{*} to VDD) overlaid in the same plot. Comment on the difference between the two circuits.

Percent error in lout vs Vout

- As V_{out} increases, the percent error in the conventional CM is getting very large compared to that of the wide swing CM.
- Report Rout vs VOUT (take the inverse of the derivative of I_{out} plot) for the two CMs in the current mirror operating region (VOUT ≈ V* to VDD) overlaid in the same plot. Use log scale on the y-axis. Add a cursor at VOUT = VDD/2. Comment on the difference between the two circuits. Does Rout change with VOUT? Why?

Rout vs Vout

- The o/p impedance of the wide swing CM is much larger than that of the conventional CM.
- The variation of R_{out} with V_{out} is due to the fact that

$$R_{out} = \frac{\Delta V_{out}}{\Delta I_{out}} = f(V_{out}).$$

Analytically calculate Rout of both circuits at VOUT = VDD/2.
Compare with simulation results in a table.

Conventional:
$$R_{out} = \frac{1}{g_{ds4}} \approx 1.8 M\Omega$$
 wide swing: $R_{out} = r_{o5}(1 + (g_{m5} + g_{mb5})r_{o6}) \approx 64 M\Omega$

Circuit	Simulated	Calculated
Conventional	1.7 <i>M</i>	85 <i>M</i>
wide swing	1.8 <i>M</i>	64 <i>M</i>

3. Mismatch

 Perform DC sweep for VMIS1 and VMIS2 from 0 to sqrt(1.5)*3.5m/sqrt(W*L*1e12) using the code below and set VMIS3 = 0. This models the standard deviation of the mismatch in V_{th} for the current mirror devices. Find the percent change in I_{out}.

Iout1 vs VMIS1

$$\frac{\sigma I_{out1}}{I_{out1}} = \frac{20.394 - 20}{20} \times 100 = 1.97\%$$

Iout2 vs VMIS2

$$\frac{\sigma I_{out2}}{I_{out2}} = \frac{20.722 - 20}{20} \times 100 = 3.61\%$$

ullet Analytically calculate the percent change in I_{out} and compare it to the simulation result.

Hint: The voltage change at the gate can be considered as a small signal. Thus, the change in the current can be calculated using the G_m of the circuit. In this case, the circuit can be considered as a cascode amplifier.

$$\frac{\sigma I_{out2}}{I_{out2}} = \frac{g_{m5}V_{mis2}}{I_{out2}} \approx 2.03\%$$

from simulation	Analytically calculated
3.61%	2.03%

• Set VMIS1 = VMIS2 = 0 and perform DC sweep for VMIS3 from 0 to sqrt(1.5)*3.5m/sqrt(W*L*1e12). This models the standard deviation of the mismatch in V_{th} for the cascode devices. Find the percent change in I_{out} .

Iout2 vs VMIS3

$$\frac{\sigma I_{out2}}{I_{out2}} \approx 0$$
 "as can be seen from the graph"

• Analytically calculate the percent change in I_{out} and compare it to the simulation result.

Hint: The voltage change at the gate can be considered as a small signal. Thus, the change in the current can be calculated using the Gm of the circuit. In this case, the circuit can be considered as a degenerated common source amplifier.

$$\frac{\sigma I_{out2}}{I_{out2}} = \frac{g_{m5}}{1 + g_{m5}r_{06}} V_{mis3} / I_{out2} \approx 0.06\%$$

from simulation	Analytically calculated
0	0.06%

- Which mismatch contribution is more pronounced? Why?
 - The contribution of V_{mis1} and V_{mis2} is much more pronounced due to the fact that they change the value of V_{GS} of mirror devices, which in turn have a one-to-one correspondence with I_D , while the change in V_{mis3} is absorbed by V_{DS} which has a much weaker effect on the current.
- Which design decision is better: setting the same W and L for the mirror and cascode devices? Or using larger W and L for the current mirror devices? Why?

- It can be deduced from the formula of calculating mismatch that larger L and W eventually leads to lower mismatch, so larger L and W is better.