DATA STORAGE TECHNOLOGIES & NETWORKS (CS C446, CS F446 & IS C446)

LECTURE 07 - STORAGE

- What makes the system work?
 - i.e. what makes it possible to access the fast but small memory most of the time so that Memory efficiency is high in practice?
- Locality of References:
 - Locus of memory references at any point during execution of a typical program – is small.

- "Locality of References"
 - Temporal Locality
 - Same data (and therefore locations) are likely to be accessed repeatedly – over a small duration of time
 - E.g. Instructions in a loop body;
 - □ E.g. data locations accessed in a loop body.
 - E.g. local variables of a function/object/data structure

- "Locality of References"
 - Spatial Locality
 - Data (and therefore locations) in the neighborhood are likely to accessed in near future.
 - E.g. Straight line instruction sequence (no jumps)
 - □ E.g. array elements.
 - Special case: Sequential (Stride-1), array elements
 - E.g. streams
 - Note on the notion of "neighborhood":
 - On data: "neighborhood" is a logical notion
 - On (memory) locations: "neighborhood" is a physical notion
 - How is one mapped to the other?

Recall

```
M.E = 100 / (1 + P_{miss} (R-1))
```

- Where $R = T_{h+1} / T_h$
- Performance Gap
 - What if two levels have a large R?
- Solution: Caching brings the levels closer
 - caches are usually transparent

Caching

- L1, L2, and L3 caches between CPU and RAM
 - Transparent to OS and Apps.
 - L1 is typically on (processor) chip
 - R=1 to 2
 - May be separate for data and instructions (Why?)
 - L3 is typically on-board (i.e. processor board or "motherboard")
 - R=5 to 10

Caching - Generic

- Caching as a principle can be applied between any two levels of memory
- e.g. Buffer Cache (part of RAM)
 - transparent to App,
 - maintained by OS,
 - between main memory and hard disk,
 - R_{RAM,buffer}= 1
- ■e.g. Disk cache
 - between RAM and hard disk
 - typically part of disk controller
 - typically semiconductor memory
 - may be non-volatile ROM on high end disks to support power breakdowns.
 - transparent to OS and Apps