Assignment On

Course Title: Digital Logic Design Lab

Course Code: CSEL-2104

Submitted To,

Professor Dr. Mohammed Nasir Uddin
Department of CSE
Jagannath University, Dhaka

Submitted By,

Atik Jawad

ID: B220305043

Department of Computer Science & Engineering Jagannath University, Dhaka

Date of Submission: 23/4/2025

Table of Contents

1	Decimal to Binary	2
2	Standard Form Representation	4
3	Simplification	5
	3.1 Using Boolean Algebra	5
	3.2 Using K-map	6
	3.3 Using Quine-McCluskey	7
4	Implementation	9
	4.1 Using Primary Gates	9
	4.2 Using NAND Gates	10
	4.3 Using NOR Gates	11
5	BCD to GRAY Code	12
6	BCD to 7 Segment Decoder	15
7	Implementation of Decoder and Encoder	18
	7.1 Decoder	18
	7.2 Encoder	20
8	Implementation of Multiplexer & DeMultiplexer	22
9	Implementation of PLA	24

1 Decimal to Binary

Given function: $F = \sum m (0,1,5,7,9,10,21,23,25,30) + D (4,17)$

$$\begin{array}{c|c}
2 & 0 \\
\hline
 & 0(LSB) \\
0_{10} = 00000_2
\end{array}$$

$$\begin{array}{c|cccc}
2 & 5 \\
\hline
2 & 2 - - - - - 1 \\
1 - - - - - - 0(LSB)
\end{array}$$

$$5_{10} = 00101_{2}$$

$$9_{10} = 01001_2$$

$$10_{10} = 01010_2$$

$$23_{10} = 10111_2$$

Standard Form Representation

 $F = \sum m (0,1,5,7,9,10,21,23,25,30) + D (4,17)$

Truth table:

Α	В	С	D	Ε	Minterms	F
0	0	0	0	0	m_0	1
0	0	0	0	1	m_1	1
0	0	0	1	0	m_2	0
0	0	0	1	1	<i>m</i> ₃	0
0	0	1	0	0	<i>m</i> ₄	X
0	0	1	0	1	<i>m</i> ₅	1
0	0	1	1	0	<i>m</i> ₆	0
0	0	1	1	1	<i>m</i> ₇	1
0	1	0	0	0	<i>m</i> ₈	0
0	1	0	0	1	<i>m</i> ₉	1
0	1	0	1	0	<i>m</i> ₁₀	1
0	1	0	1	1	<i>m</i> ₁₁	0
0	1	1	0	0	<i>m</i> ₁₂	0
0	1	1	0	1	<i>m</i> ₁₃	0
0	1	1	1	0	<i>m</i> ₁₄	0
0	1	1	1	1	<i>m</i> ₁₅	0
1	0	0	0	0	<i>m</i> ₁₆	0
1	0	0	0	1	m ₁₇	X
1	0	0	1	0	<i>m</i> ₁₈	0
1	0	0	1	1	<i>m</i> ₁₉	0
1	0	1	0	0	<i>m</i> ₂₀	0
1	0	1	0	1	<i>m</i> ₂₁	1
1	0	1	1	0	<i>m</i> ₂₂	0
1	0	1	1	1	<i>m</i> ₂₃	1
1	1	0	0	0	<i>m</i> ₂₄	0
1	1	0	0	1	<i>m</i> ₂₅	1
1	1	0	1	0	<i>m</i> ₂₆	0
1	1	0	1	1	<i>m</i> ₂₇	0
1	1	1	0	0	<i>m</i> ₂₈	0
1	1	1	0	1	<i>m</i> ₂₉	0
1	1	1	1	0	<i>m</i> ₃₀	1
1	1	1	1	1	<i>m</i> ₃₁	0

Sum of products:

 $F = \bar{A}\bar{B}\bar{C}\bar{D}\bar{E} + \bar{A}\bar{B}\bar{C}\bar{D}E + \bar{A}\bar{B}C\bar{D}E + \bar{A}\bar{B}C\bar{D}E + \bar{A}\bar{B}C\bar{D}E + \bar{A}\bar{B}\bar{C}\bar{D}E + \bar{A}\bar{B}\bar{C}\bar{D}\bar{E} + \bar{A}\bar{B}\bar{C}\bar{D}\bar{C}\bar{D}\bar{E} + \bar{A}\bar{B}\bar{C}\bar{D}\bar{C}\bar{C}\bar{C}\bar{C}\bar{C}\bar{C}\bar{C}\bar{C}\bar{C$

3 Simplification

3.1 Using Boolean Algebra

```
F = ar{A}ar{B}ar{C}ar{D}ar{E} + ar{A}ar{B}ar{C}ar{D}E + ar{A}ar{B}Car{D}E + ar{A}ar{B}CDE + ar{A}BCDE + 
                         =\bar{A}\bar{B}\bar{C}\bar{D}\bar{E}+\bar{A}\bar{B}\bar{C}\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}B\bar{C}\bar{D}E+\bar{A}B\bar{C}\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}C\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{B}+\bar{A}\bar{B}\bar{C}\bar{D}\bar{
                         =\bar{A}\bar{B}\bar{C}\bar{D}(\bar{E}+E)+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}CDE+\bar{A}B\bar{C}\bar{D}E+\bar{A}B\bar{C}D\bar{E}+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}CDE+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}
                         =\bar{A}\bar{B}\bar{C}\bar{D}+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}CDE+\bar{A}B\bar{C}\bar{D}E+\bar{A}B\bar{C}D\bar{E}+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}CDE+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}\bar{C}D\bar{E}+\bar{A}\bar{C}D\bar{E}+\bar{A}\bar{C}\bar{C}\bar{C}+\bar{A}\bar{C}\bar{C}\bar{C}+\bar{A}\bar
                         =\bar{A}\bar{B}\bar{C}\bar{D}+\bar{A}\bar{B}C(\bar{D}E+DE)+\bar{A}B\bar{C}\bar{D}E+\bar{A}B\bar{C}D\bar{E}+\bar{A}\bar{B}C\bar{D}E+\bar{A}\bar{B}CDE+\bar{A}B\bar{C}\bar{D}E+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}+\bar{A}B\bar{C}D\bar{E}
                         =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}CE+ar{A}Bar{C}ar{D}E+ar{A}Bar{C}Dar{E}+Aar{B}Car{D}E+Aar{B}CDE+Aar{B}Car{D}E+ABCar{D}E
                                    =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}C+Aar{B}C(ar{D}E+DE)+ar{A}Bar{C}ar{D}E+ar{A}Bar{C}Dar{E}+ABar{C}ar{D}E+ABCDar{E}
       =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}C+Aar{B}CE+ar{A}Bar{C}ar{D}E+ar{A}Bar{C}Dar{E}+ABar{C}ar{D}E+ABCDar{E}
                                        =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}C+Aar{B}C+ar{A}Bar{C}(ar{D}E+Dar{E})+ABar{C}ar{D}E+ABCDar{E}
                           =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}C+Aar{B}C+ar{A}Bar{C}ar{D}E+ar{A}Bar{C}Dar{E}+AB(ar{C}ar{D}E+CDar{E})
              =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}C+Aar{B}C+ar{A}Bar{C}ar{D}E+ar{A}Bar{C}Dar{E}+Aar{B}ar{C}DE+ABar{C}ar{D}E+ABCar{C}ar{D}E
     =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}C+ar{A}Bar{C}ar{D}E+ar{A}Bar{C}Dar{E}+Aar{B}E(Car{D}+CD+ar{C}D)+ABar{C}ar{D}E+ABCDar{E}
                                                                         =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}ar{C}+ar{A}Bar{C}ar{D}E+ar{A}Bar{C}Dar{E}+ABCE+ABar{C}ar{D}E+ABCDar{E}
              =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}ar{C}+ar{A}ar{B}ar{C}ar{D}E+ar{A}ar{B}ar{C}ar{D}ar{E}+Aar{B}ar{C}ar{D}E+Aar{B}ar{C}ar{D}E+ar{C}ar{D}E
           =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}C+ar{A}Bar{C}ar{D}E+ar{A}Bar{C}Dar{E}+ABCE+ABCar{D}
                                   =ar{A}ar{B}ar{C}ar{D}+ar{A}ar{B}C+ar{A}Bar{C}(ar{D}E+Dar{E})+ABCE+ABCar{D}
```

 $F = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}C + \bar{A}B\bar{D}E + ABCE + ABC\bar{D}$

(Note: Boolean algebra is prone to errors; K-map is more reliable.)

3.2 Using K-map

$$F = \sum m (0,1,5,7,9,10,21,23,25,30) + D (4,17)$$

Let, X=4 & X=17 be two 'Don't Care Terms'.

From the above k-map we get,

$$F = \overline{B}CE + \overline{A}\overline{B}\overline{D} + \overline{C}\overline{D}E + \overline{A}B\overline{C}D\overline{E} + ABCD\overline{E}$$

3.3 Using Quine-McCluskey

 $F = \sum m (0,1,5,7,9,10,21,23,25,30) + D(4,17)$

Step 1: Group by number of 1s:

Group	Minterms	Binary
0	0	00000
1	1	00001
	4	00100
2	5	00101
	9	01001
	10	01010
	17	10001
3	7	00111
	21	10101
	25	11001
4	23	10111
	30	11110

Step 2: Pair minterms differing by one bit:

Group	Minterms	Binary
0	0, 4	00-00
	0, 1	0000-
1	1, 17	-0001
	1, 9	0-001
	1, 5	00-01
	4, 5	0010-
2	5,21	-0101
	5, 7	001-1
	9,25	-1001
	17, 25	1-001
	17, 21	10-01
3	7,23	-0111
	21, 23	101-1

Step 3: Merging of Minterm pairs:

Groups	Minterms	Binary
0	0, 1, 4, 5	00-0-
1	1, 9, 17, 25	001
	1, 5, 17, 21	-0-01
2	5, 7, 21, 23,	-01-1

Step 4: Prime Implicants Chart:

Minterms	0	1	5	7	9	10	21	23	25	30	Prime Implicants
10						X					$ar{A}Bar{C}Dar{E}$
30										X	$ABCDar{E}$
0,1,4,5	X	X	X								$ar{A}ar{B}ar{D}$
1,5,17,21		X	X				X				$ar{B}ar{D}$ E
1,9,17,25		X			X				X		$ar{C}\overline{D}E$
5,7,21,23			X	X			X	X			$ar{B}\mathit{CE}$

From the above Table we get,

$$F = \overline{B}CE + \overline{A}\overline{B}\overline{D} + \overline{C}\overline{D}E + \overline{A}B\overline{C}D\overline{E} + ABCD\overline{E}$$

4 Implementation

4.1 Using Primary Gates

$$F = \overline{B}CE + \overline{A}\overline{B}\overline{D} + \overline{C}\overline{D}E + \overline{A}B\overline{C}D\overline{E} + ABCD\overline{E}$$

4.2 Using NAND Gates

Used De Morgan's Law to convert the SOP to NAND Form:

$$F = \overline{\overline{B}CE}. \ \overline{A}\overline{B}\overline{D} \ . \ \overline{C}\overline{D}E \ . \ \overline{A}B\overline{C}D\overline{E} \ . \overline{ABCD}\overline{E}$$

4.3 Using NOR Gates

Used De Morgan's Law to convert the SOP to NOR Form:

$$F = \overline{(B + \overline{C} + \overline{E})} + \overline{(C + D + \overline{E})} + \overline{(A + B + D)} + \overline{(A + \overline{B} + C + \overline{D} + E)} + \overline{(\overline{A} + \overline{B} + \overline{C} + \overline{D} + E)}$$

5 BCD to GRAY Code

Minterms			BCD			GRAY Code						
	B ₃	B ₂	B ₁	B ₀	G ₃	G ₂	G ₁	G ₀				
0	0	0	0	0	0	0	0	0				
1	0	0	0	1	0	0	0	1				
2	0	0	1	0	0	0	1	1				
3	0	0	1	1	0	0	1	0				
4	0	1	0	0	0	1	1	0				
5	0	1	0	1	0	1	1	1				
6	0	1	1	0	0	1	0	1				
7	0	1	1	1	0	1	0	0				
8	1	0	0	0	1	1	0	0				
9	1	0	0	1	1	1	0	1				

 $G_3 = \sum m(8, 9) + d(10, 11, 12, 13, 14, 15)$

 $G_2 = \sum m (4, 5, 6, 7, 8, 9) + d (10, 11, 12, 13, 14, 15)$

 $G_1 = \sum m(2, 3, 4, 5) + d(10, 11, 12, 13, 14, 15)$

 $G_0 = \sum m (1, 2, 5, 6, 9) + d (10, 11, 12, 13, 14, 15)$

K-map for G₃:

Here, $G_3 = B_3$

Here, $G_2 = B_2 + B_3$

K-map for G₁:

Here,

 $G_1 = B_1 \bigoplus B_2$

K-map for G₀:

Here,

 $G_0 = B_1 \bigoplus B_0$

The Following Figure is the Logic Diagram for converting BCD to Gray code:

6 BCD to 7 Segment Decoder

Truth Table:

	BCD	Input	t		7 S	egme	nt Out	put Lir	nes		Display
Α	В	С	D	а	b	С	d	е	f	g	
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	9

Kmap for a:

Kmap for b:

Kmap for c:

$$a = \overline{B} \ \overline{D} + A + C + BD$$

$$b = \overline{B} + \overline{C} \, \overline{D} + CD$$

$$c = \bar{C} + D + B$$

Kmap for d:

Kmap for e:

kmap for f:

 $d = \overline{B} \ \overline{D} + \overline{B} C + C \overline{D} + B \overline{C} D + A$

$$e = \overline{B} \overline{D} + C \overline{D}$$

 $f = \bar{C} \, \bar{D} + B\bar{C} + B\bar{D} + A$

Kmap for g:

$$g = \overline{B} C + B\overline{C} + B\overline{D} + A$$

Logic Simulation of 7 Segment Decoder is given below:

7 Implementation of Decoder and Encoder

7.1 Decoder

A digital circuit that **takes a binary input** and **activates exactly one output line** based on that input — it basically *decodes* binary numbers into one-hot encoded outputs.

A 5-to-32 decoder has:

- 2 input lines (say, A, B, C, D, E)
- 32 output lines (O0 to O31)

$$F = \sum m (0,1,5,7,9,10,21,23,25,30)$$

TruthTable of the 5 to 32 Decoder

А	В	С	D	Е	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	9	2	2 1	2 2	2	2 4	2 5	2	2 7	2	2	3	3 1
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

7.2 Encoder

A combinational logic circuit that converts **one active input signal** out of 2^n input lines into an **n-bit binary output**. It performs the operation of encoding — identifying the position of the active input and generating a corresponding binary code.

A 32 -to-5 Encoder has:

• 32 inputs:

• **5 outputs**: A, B ,C ,D ,E

$$F = \sum m (0,1,5,7,9,10,21,23,25,30)$$

TruthTable of the 32 to 5 Encoder

Input	Output A	Output B	Output C	Output D	Output E
I_0	0	0	0	0	0
I_1	0	0	0	0	1
I_2	0	0	0	1	0
I_3	0	0	0	1	1
I_4	0	0	1	0	0
I_5	0	0	1	0	1
I_6	0	0	1	1	0
I_7	0	0	1	1	1
I_8	0	1	0	0	0
I_9	0	1	0	0	1
I_10	0	1	0	1	0
I_11	0	1	0	1	1
I_12	0	1	1	0	0
I_13	0	1	1	0	1
I_14	0	1	1	1	0
I_15	0	1	1	1	1
I_16	1	0	0	0	0
I_17	1	0	0	0	1
I_18	1	0	0	1	0
I_19	1	0	0	1	1
I_20	1	0	1	0	0
I_21	1	0	1	0	1
I_22	1	0	1	1	0
I_23	1	0	1	1	1
I_24	1	1	0	0	0
I_25	1	1	0	0	1
I_26	1	1	0	1	0
I_27	1	1	0	1	1
I_28	1	1	1	0	0
I_29	1	1	1	0	1
I_30	1	1	1	1	0
I_31	1	1	1	1	1

8 Implementation of Multiplexer & DeMultiplexer

Multiplexer: Or MUX, is a combinational logic circuit that selects one input from multiple input lines and forwards it to a single output line, based on the values of select lines (control inputs).

A multiplexer has 2ⁿ input lines, n select lines, and 1 output.

$$F = \sum m (0,1,5,7,9,10,21,23,25,30)$$

Multiplexer Table:

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
E	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Ε	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31
F _x	1	0	Ε	Е	Е	Ē	0	0	0	0	Е	Е	Е	0	0	Ē

DeMultiplexer: A demultiplexer is like a switch that takes a signal from one source and sends it to one of many destinations. It has only one input but several output.

TruthTable of the 16 to 1 DeMUX

Α	В	С	D	F
0	0	0	0	D_0
0	0	0	1	D_1
0	0	1	0	D_2
0	0	1	1	D ₃
0	1	0	0	D_4
0	1	0	1	D_5
0	1	1	0	D ₆
0	1	1	1	D_7
1	0	0	0	D ₈
1	0	0	1	D_9
1	0	1	0	D ₁₀
1	0	1	1	D ₁₁
1	1	0	0	D ₁₂
1	1	0	1	D ₁₃
1	1	1	0	D ₁₄
1	1	1	1	D ₁₅

9 Implementation of PLA

PLA: A programmable logic array (PLA) is a kind of programmable logic device used to implement combinational logic circuits. The PLA has a set of programmable AND gate planes, which link to a set of programmable OR gate planes, which can then be conditionally complemented to produce an output.

Given Function: $F = \sum m (0,1,5,7,9,10,21,23,25,30)$ = $m_0 + m_1 + m_5 + m_7 + m_9 + m_{10} + m_{21} + m_{23} + m_{25} + m_{30}$

PLA Design:

THANK YOU