RECURSADO MATEMÁTICA DISCRETA I Examen Final - 15/12/2015

Apellido y Nombre:

Nota:

Justificar apropiadamente todas las respuestas.

Resolver tres de los siguientes puntos:

- 1. a) Dar la definición de máximo común divisor entre dos números enteros.
 - b) Enunciar el principio de inducción.
 - c) Demostrar que si $p \in \mathbb{N}$ es primo, $a, b \in \mathbb{N}$ y $p \mid ab$ entonces $p \mid a$ o $p \mid b$.
 - d) Enunciar el Teorema fundamental de la aritmética.
- 2. Encuentre todos los $x \in \mathbb{Z}$ que satisfacen la congruencia:

$$1001 x \equiv 221 (247)$$

Dar aquellas soluciones que además verifiquen que $-10 \le x \le 15$.

- 3. Resolver los siguientes ejercicios:
 - a) Calcular [1009, 111].
 - b) Demostrar que para todo $2 \le n \in \mathbb{N}$ se verifica

$$\sum_{k=2}^{n} k!k = (n+1)! - 2.$$

- c) Demostrar que para todo $n \in \mathbb{N}$, 8 divide a $7^{2n-1} + 1$.
- d) Expresar al número 111 en base 2.
- 4. De un grupo de 15 personas, de las cuales 10 son mujeres y 5 hombres, quiero formar un comité de 5 personas. De cuántas formas puedo hacerlo, si:
 - a) En el comité hay más mujeres que hombres.
 - b) Iván es una de las 15 personas y no quiero que él forme parte del comité.
 - c) No hay ninguna restricción.
- 5. Determinar si las siguientes afirmaciones son verdaderas o falsas.
 - a) Existen dos grafos no isomorfos con valencias 0,1,1,3,1,1,1.
 - b) El número $2015^{2015} 1$ es divisible por 3.
 - c) Si $n, m \in \mathbb{N}$ y $n \leq m$, entonces

$$\binom{m}{n-1} + \binom{m}{n} = \binom{m+1}{n}.$$

1.a	1.b	1.c	1.d	2	3.a	3.b	3.c	3.d	4.a	4.b	4.c	5.a	5.b	5.c	Total