

Smart Dryer

Matteo Baschieri Valentina Grieci

Poll and Market Analysis

	Not much	Quite enough	A lot
How much is important that the clothes dry fast?	16,5%	47,1%	36,5%
How much is important that a drying system has	11,8%	60%	29,4%
little dimensions?			
How much is important that drying system is quiet?	3,5%	35,3	61,2%

Cons	idering a drying system would you choose:	(1)	(2)	
(1)	Fast but expensive	23,5 %	76,5%	
(2)	Slow but cheap			
(1)	Fast but with high consumption	9%	89,4%	
(2)	Slow but with low consumption			

1. Comparison of the main characteristics of the drying systems

Introduction

2. Drying Rack

3. Dryer

4. Electric drying rack

Washing and drying clothes is a necessary everyday activity.

There are already several devices designed to solve the problem of drying clothes.

Our study aims to create a low-cost smart system to optimize this process.

System Description

The moisture content can be approximated as a linear function of time:

$$m(t) = -C(T, V_{air}, RH)t + m_0$$

Total time to dry the clothes:

$$T_{tot}(q) = \frac{m_0}{qC_{on} + (1 - q)C_{off}}$$

Where
$$q = \frac{T_{on}}{T_{period}} = \frac{T_{on}}{T_{on} + T_{off}}$$

 $m_0 = 1 g$

With:

 $C_{on} = 10 \ g/min$

 $C_{off} = 1 g/min$

System Specification and General Architecture

The system must:

- make the drying process faster,
- understand when the clothes are dry,
- notice the user that the clothes are dry.

5. Schematic representation of the system

System Characteristics

6. Possible positioning of the module on different drying rack

Customer rack adaptable

Customer preferences adaptable three modalities:

- <u>fast drying</u>: fan always on until the drying is complete;
- <u>normal regime</u>: 5 minutes on and 5 off, repeat until the drying is complete;
- energy saving: 3 minutes on and 9 off, repeat until the drying is complete.

Prototype

7. Humidity sensor DHT11

8. Sunon MEC0381V1-A99 fan

9. Prototype photo

Experiments: physical model

OPERATING	Fan	2 min off	1 min off	2 min off	3 min off	2 min off	Fan always on
REGIME	always off	1 min on	1 min on	2 min on	3 min on	1 min on	q=1
	q=0	q=0,33	q=0,5	q=0,5	q=0,5	q=0,66	
TIME	113 min	48 min	33 min	38 min	32 min	30 min	21 min

10. Comparison between experimental and theoretical results

Experiment: real application

11. Humidity and temperature over time in the final test of the system

Conclusion

Advantages:

- Good efficiency
- Cheap
- Low consumption
- Quiet
- Small

Further improvment:

- Explicit $C(T, V_{air}, RH)$ and find optimum V_{air}
- Insert a motor to tilt the fan in order to cover a bigger portion of the rack.

