## MAIO8 - Lecture 16

Improper integrals of the first kind Definition: A function of: [a, b] - R is said to be piecewise continuous if there is a partition: astoct, con the ctasb such that (i) f is continuous on (tin, ti) i=1,2,...,n ii)  $\lim_{t\to t_i^+} f(t) = \lim_{t\to t_i^-} f(t) = \lim_{t\to t_i^-} f(t) = \lim_{t\to t_i^-} f(t) = \lim_{t\to t_i^+} f(t) =$ escist for i=1,2,...,not and  $\lim_{t\to t_0^+} f(t)$  and  $\lim_{t\to t_n^+} f(t)$  both exist. Let f: [a, 00) -> R be a function. If is such that, for any 67,0, f: [a,b] -> R is piecewise continuous, then we say to is so onland Note ) Such an f is bounded on [a,b] for every b>,a. Note 2) For any 67a, the usual Remana integral  $I(b) = \int_{a}^{b} f(n) dx$  exists. Definition: An improper integral of first kind is defined to be francis := lim francis,

this limit exists

| I           | the          | abone        | Q    | imit            | exists,            | we                |
|-------------|--------------|--------------|------|-----------------|--------------------|-------------------|
| say         | that         | S disc       | , dx | <u></u>         | exists,<br>nverges | )                 |
| other       | m'se         | it i         | ა    | said            | to d               | verge.            |
| Exampl      | e 1):        | Consid       | der  | th.             | impr<br>s∈R.       | oper              |
|             |              |              |      | χ<br>1-5        |                    | : ·{S+            |
|             | Ĭ            | -            | _    | b - 1           |                    |                   |
| <b>&gt;</b> | I            | [b) =        |      | b -1<br>1-5     | · ,                | S <del>+</del> 1  |
|             |              |              |      | ln b            |                    | ~ S=\             |
| ⇒ l<br>b    | im I<br>-910 | <u>(b)</u> = |      | <u>1</u><br>S-1 | L                  | . S >  <br>       |
|             |              |              |      |                 | ; \                | { s <u>&lt;</u> 1 |

|               | $\infty$                                                                                                  |
|---------------|-----------------------------------------------------------------------------------------------------------|
| Exam          | ole 2) The untegral (sinx dx                                                                              |
|               |                                                                                                           |
|               | _                                                                                                         |
| diver         | ges because                                                                                               |
|               |                                                                                                           |
| IC            | $b = \int_{Sink} dx = 1 - \cos b$                                                                         |
|               | ) 3,000                                                                                                   |
|               |                                                                                                           |
| and           | lin I(b) does not exist.                                                                                  |
|               | 9-5 <del>~</del>                                                                                          |
|               |                                                                                                           |
| Note:         | We can define similarly,  b for, dx = lim for, dx  -00                                                    |
|               | b                                                                                                         |
|               | ( 100 de = lim ( 100 de                                                                                   |
|               | $\int \int \partial u du d$ |
|               | -80                                                                                                       |
|               |                                                                                                           |
| We            | say that the integral                                                                                     |
|               |                                                                                                           |
|               | Spende is convergent if                                                                                   |
|               |                                                                                                           |
| _             |                                                                                                           |
| سل            |                                                                                                           |
| there         | is a CER such that                                                                                        |
| C             | 1.                                                                                                        |
|               | ou da is convergent s                                                                                     |
|               | (10)                                                                                                      |
| _0            |                                                                                                           |
| ~<br>(        | · · · · · · · · · · · · · · · · · · ·                                                                     |
|               | for de is convergent.                                                                                     |
| <u>ر</u><br>ن | V                                                                                                         |
|               |                                                                                                           |



we then define: Starda := Standa + Standa. Exercise: Show that the definition is independent of the choice of Convergence tests for improper integral I Theorem: Suppose there is a real number M70 such that I | fax | dx < M : for every b>, a. Then I fax, dx and I if and dx are convergent. II Theorem 2: Comparison test: Suppose  $0 \le f(x) \le g(x)$ :

It I ga, da converges, then I for de also converges & Spor de E Sgon de Prof: Exercise: Example: As  $0 \leq sin^2 x \leq 1$ on [1,00) and  $\int \frac{1}{x^2} dx$ converges, me have grinze de also converges. III Theorem 3 (Limit Comparison test): Suppose for 30 and gos >0 on [a,0) & Stor, dr & Sgar dx exist, for every 67a.

| I        | $\lim_{\alpha \to \infty} \frac{f(\alpha)}{f(\alpha)} = C : C \neq 0,$ |
|----------|------------------------------------------------------------------------|
| V        | $\lim_{n \to \infty} \frac{f(n)}{g(n)} = C : C \neq 0,$                |
|          | ∞ do                                                                   |
| then     | both Spands                                                            |
|          | J & Constant                                                           |
|          | <b>δ σ</b>                                                             |
|          | ρ .                                                                    |
| Conva    | erge or both Liverge.<br>= 0 and Janda converges                       |
|          | 0 ~                                                                    |
| 37 0     | =0 and fax, dx converges                                               |
| V        |                                                                        |
|          | <i>∞</i> ∞                                                             |
| then     | Jos de converges.                                                      |
|          | 7 1-                                                                   |
|          | O <sup>4</sup>                                                         |
| Proof    | : Exercise.                                                            |
|          |                                                                        |
|          | 8                                                                      |
| Exam     | ple: (ensider $\int_{-\infty}^{-\infty} x^{S} dx : self.$              |
|          |                                                                        |
|          | V                                                                      |
|          |                                                                        |
| We.      | have $\lim_{x\to\infty}\frac{e^xx^5}{5t^2}=0$                          |
| 7.0      | x->00                                                                  |
|          |                                                                        |
| and      | J de converges.                                                        |
| (00) (3) | Jan Sold Salving ges.                                                  |
|          | 1                                                                      |
| Hanso    | land the class that we re                                              |
| 1 00000  | Sex de converges for every se R                                        |
|          | C-X S 1                                                                |
|          | e x de conveyes for                                                    |
|          | 000000                                                                 |
|          | SER                                                                    |

| Escam    | ple: Define the Gamma function.                                                        |
|----------|----------------------------------------------------------------------------------------|
|          | $\Gamma: (0, \infty) \longrightarrow \mathbb{R}  \text{as}:$                           |
|          | $\Gamma(y) = \int_{0}^{\infty} e^{x} x^{y-1} dx$                                       |
| & ∫<br>0 | $e^{-x} y^{-1} dx = \int e^{-x} y^{-1} dx$                                             |
|          | + S ex x da,                                                                           |
| Γ'(y     | ) is well-defined for y>o.                                                             |
| Lunch    | ional equation:                                                                        |
|          | $\Gamma(y+1) = y \cdot \Gamma(y)$                                                      |
| fet      | ocacb. Use interation by                                                               |
| parto    | to evaluate:                                                                           |
| b        | to evaluate: $x = -x = $                                 |
|          | \ <u>\</u>                                                                             |
|          | $= \alpha \stackrel{\text{g}}{=} b \stackrel{\text{g}}{=} y \cdot \int_{e}^{-x} y  dx$ |
| Taki     | ng limit as b=> 00 Da=sot                                                              |

on both sides, me get:  $\int e^{-x} x^{y} dx = y \Gamma(y)$ i.e. M(y+1) = y M(y) Note:  $\Gamma(n+1) = n! : n=0,1,2,...$ To see this, apply induction on n. (check!) Improper integrals of the second kind Let f: (a, b] -> IR be such that I f(t) dt exists for every x ∈ (a, b]. Set  $I(x) = \int f(t) dt$ :  $x \in (a, b)$ . Definition: If lim I (oc) exists, then we say that ( )(t) dt

is convergent and call eit an improper integral of the second kind. Note: In a similar fashion, we can define improper integrals of the second kind if f: [a, b) -> R. Example: \( \( \tau \) = \( \frac{1}{t^s} \); \( \tau > 0 \) het b, 21 >0. Then  $I(x) = \int \frac{dt}{t^s} = \int \frac{b^{-s}}{1-s} \frac{1-s}{s+1}$ [ lnb-lnx: s=1 Thus lim of dt exists if and only if S<1. Definition: Let a=to < t, < -- < tn+1=b be a partition of [a,b] and 

| We    | say If (t) de converges if                                                                              |
|-------|---------------------------------------------------------------------------------------------------------|
|       | of f(t) dt : i=1,,n                                                                                     |
| Conul | rges and define:  b  t,  tz  f(t)dt = f(t)dt + f(t)dt + + f(t)dt  a  a  t  t  t  t  t  t  t  t  t  t  t |
|       | a a to the                                                                                              |
| Ecam  | $\frac{1}{2}$ : Consider $\int_{0}^{2} \frac{dsc}{(0c-1)^{2}} \frac{dsc}{2}$                            |
| The   | function $(x-1)^{-2/3}$ is not                                                                          |
| defin | ed at x=1.                                                                                              |
| We    | have $\int \frac{dx}{(x-1)^{2/3}} = 3$                                                                  |
|       | $\int_{1}^{3} \frac{dx}{(x-1)^{3}} = 3\sqrt[3]{2}$                                                      |
| Henc  | $ \frac{3}{3} = \int \frac{dx}{(9(1)^{43})} + \int \frac{dx}{(2x)^{43}} $                               |
|       | = 3 + 3 3/2                                                                                             |

Example: Prone that  $\int_{-\infty}^{\infty} ds = \sqrt{\frac{1}{2}}$ As exis continuous for every x and  $\int e^{-\chi^2} dx$  is a proper integral. We will show that the improper integral Jezdoc converges. Note that  $\int_{e}^{-x^{2}} dx \leq \int_{e}^{x} e^{x} dx = \frac{1}{e}$ Hence [ =x² de converges. To find its value, note that  $I = \int e^{-x^2} dx = \int e^{-y^2} dy$  $\Rightarrow I^2 = \int \int e^{-k^2 + y^2} dx dy$ Put x=r coso, y=rsino, dscdy = rdrdo

| Simila | $ry, \Gamma(5/2) = \frac{3}{2} \cdot \Gamma(3/2)$ |
|--------|---------------------------------------------------|
|        | = 3 TT.                                           |
|        |                                                   |
|        |                                                   |
|        |                                                   |
|        |                                                   |
|        |                                                   |
|        |                                                   |
|        |                                                   |
|        |                                                   |
|        |                                                   |
|        |                                                   |
|        |                                                   |

