Отчет по лабораторной работе №14

Администрирование локальных сетей

Ищенко Ирина НПИбд-02-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы 4.1 Контрольные вопросы	14 14
Сг	писок литературы	16

Список иллюстраций

3.1	Настройка интерфейсов	7
3.2	Настройка субинтерфейсов	8
3.3	Настройка интерфейсов	8
	Настройка интерфейсов	9
3.5	Настройка интерфейсов	9
3.6	Настройка субинтерфейсов	LO
3.7	Доступ к VLAN 201	LO
3.8	Настройка VLAN	L1
3.9	Настройка интерфейсов	11
3.10	Настройка интерфейсов	L2
3.11	Настройка интерфейсов	L2
3.12	Маршрутизация между площадками	L2
3.13	Маршрутизация между площадками	L3
3.14	Маршрутизация между площадками	L3
3.15	Маршрутизация между площадками	L3
3.16	Маршрутизация между площадками	L3
3.17	Настройка NAT	L3

Список таблиц

1 Цель работы

Настроить взаимодействие через сеть провайдера посредством статической маршрутизации локальной сети организации с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи [1].

2 Задание

- 1. Настроить связь между территориями.
- 2. Настроить оборудование, расположенное в квартале 42 в Москве.
- 3. Настроить оборудование, расположенное в филиале в г. Сочи.
- 4. Настроить статическую маршрутизацию между территориями.
- 5. Настроить статическую маршрутизацию на территории квартала 42 в г.Москве.
- 6. Настроить NAT на маршрутизаторе msk-donskaya-gw-1.

3 Выполнение лабораторной работы

Настроим линк между площадками. Настроим интерфейсы маршрутизатора, сделаем их транковыми (рис. 3.1).

```
provider-ioithenko-sw-1*configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
provider-ioithenko-sw-1(config)#interface f0/3
provider-ioithenko-sw-1(config)#interface f0/3
provider-ioithenko-sw-1(config)#interface f0/4
provider-ioithenko-sw-1(config)#interface f0/4
provider-ioithenko-sw-1(config)#interface f0/4
provider-ioithenko-sw-1(config)#switchport mode trunk
provider-ioithenko-sw-1(config-if)#switchport mode trunk
provider-ioithenko-sw-1(config-if)#switchport mode trunk
provider-ioithenko-sw-1(config-vlan)#name q42
provider-ioithenko-sw-1(config-vlan)#name q42
provider-ioithenko-sw-1(config-vlan)#swit
provider-ioithenko-sw-1(config-vlan)#swit
provider-ioithenko-sw-1(config-if)#swit
provider-ioithenko-sw-1(config-if)#swit
provider-ioithenko-sw-1(config-vlan)#name sochi
provider-ioithenko-sw-1(config-vlan)#swit
provider-ioithenko-sw-1(config-vlan)#swit
provider-ioithenko-sw-1(config-vlan)#swit
provider-ioithenko-sw-1(config-if)#swit
provider-ioithenko-sw-1(confi
```

Рис. 3.1: Настройка интерфейсов

На маршрутизаторе территории Донская создадим субинтерфейсы для 5 и 6 VLAN, зададим IP-адрес маршрутизатора в этих VLAN (рис. 3.2).

```
msk-donskaya-ioithenko-gw-1*configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-ioithenko-gw-1(config) #interface f0/1.5
msk-donskaya-ioithenko-gw-1(config-subif) # paddress 10.128.255.1 255.255.252
msk-donskaya-ioithenko-gw-1(config-subif) # paddress 10.128.255.5 255.255.255.252
msk-donskaya-ioithenko-gw-1(config-subif) # paddress 10.128.255.5 255.255.255.252
msk-donskaya-ioithenko-gw-1(config-subif) # paddress 10.128.255.5 255.255.255.252
msk-donskaya-ioithenko-gw-1(config-subif) # paddress 10.128.255.5 255.255.255.255
msk-donskaya-ioithenko-gw-1 # write memory
%LINK-5-CHANGED: Interface FastEthernet0/1.5, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1.5, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1.6, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1.6, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1.6, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1.6, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1.6, changed state to up
```

Рис. 3.2: Настройка субинтерфейсов

Настроим интерфейсы на маршрутизаторе квартала 42 (рис. 3.3).

```
msk-q42-ioithenko-gw-l$configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
msk-q42-ioithenko-gw-l(config)#interface f0/1
msk-q42-ioithenko-gw-l(config-if)#no shutdown

msk-q42-ioithenko-gw-l(config-if)#exit
msk-q42-ioithenko-gw-l(config-if)#exit
msk-q42-ioithenko-gw-l(config-subif)#encapsulation dot10 5
msk-q42-ioithenko-gw-l(config-subif)#encapsulation dot10 5
msk-q42-ioithenko-gw-l(config-subif)#encapsulation dost20 255.255.255.252
msk-q42-ioithenko-gw-l(config-subif)#exit
msk-q42-ioithenko-gw-l(config-subif)#exit
msk-q42-ioithenko-gw-l(config-subif)#exit
msk-q42-ioithenko-gw-l(config-subif)#exit
msk-q42-ioithenko-gw-l(config)#end
msk-q42-ioithenko-gw-l*write memory
%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1.5, changed state to up
%SYS-5-CONFIG_I: Configured from console by console
Building configuration...
[OR]
msk-q42-ioithenko-gw-l#
```

Рис. 3.3: Настройка интерфейсов

Сделаем транковыми порты интерфейсов коммутатора в Сочи и зададим VLAN 6 с именем sochi(рис. 3.4).

```
sch-sochi-ioithenko-sw-1>enable
Password:
sch-sochi-ioithenko-sw-1#enable
sch-sochi-ioithenko-sw-1#configure terminal
Enter configuration commands, one per line. End with CNT: sch-sochi-ioithenko-sw-1(config)#interface f0/23 sch-sochi-ioithenko-sw-1(config-if)#switchport mode trunk sch-sochi-ioithenko-sw-1(config-if)#exit
                                                                         End with CNTL/Z.
sch-sochi-ioithenko-sw-1(config)#interface f0/24 sch-sochi-ioithenko-sw-1(config-if)#switchport mode trunk
sch-sochi-ioithenko-sw-1(config-if) #exit
sch-sochi-ioithenko-sw-1(config) #vlan 6
sch-sochi-ioithenko-sw-1(config-vlan) #name sochi
sch-sochi-ioithenko-sw-1(config-vlan) #exit
sch-sochi-ioithenko-sw-1(config) #interface vlan6
sch-sochi-ioithenko-sw-1(config-if) #no shutdown sch-sochi-ioithenko-sw-1(config-if) #exit
sch-sochi-ioithenko-sw-1(config)#end
sch-sochi-ioithenko-sw-1#write memory
%LINK-5-CHANGED: Interface Vlan6, changed state to up
%SYS-5-CONFIG I: Configured from console by console
Building configuration...
sch-sochi-ioithenko-sw-1#
```

Рис. 3.4: Настройка интерфейсов

Проведем настройку маршрутизатора (рис. 3.5).

```
sch-sochi-ioithenko-gw-1*enable
Password:
sch-sochi-ioithenko-gw-1*enable
sch-sochi-ioithenko-gw-1*enable
sch-sochi-ioithenko-gw-1*econfigure terminal
Enter configuration commands, one per line. End with CNTL/Z.
sch-sochi-ioithenko-gw-1(config) #interface f0/0
sch-sochi-ioithenko-gw-1(config-if) #no shutdown
sch-sochi-ioithenko-gw-1(config-if) #exit
sch-sochi-ioithenko-gw-1(config-subif) #ercapsulation dot10 6
sch-sochi-ioithenko-gw-1(config-subif) #ip address 10.128.255.6 255.255.252
sch-sochi-ioithenko-gw-1(config-subif) #description donskaya
sch-sochi-ioithenko-gw-1(config-subif) #exit
sch-sochi-ioithenko-gw-1(config-subif) #exit
sch-sochi-ioithenko-gw-1(config-subif) #exit
sch-sochi-ioithenko-gw-1(config-subif) #exit
sch-sochi-ioithenko-gw-1*write memory
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%SYS-5-CONFIG_I: Configured from console by console
Building configuration...
[OK]
sch-sochi-ioithenko-gw-1#
```

Рис. 3.5: Настройка интерфейсов

Создадим субинтерфейсы для 201 VLAN (основной) для 202 VLAN (для управления устройствами территории) и зададим IP-адреса (рис. 3.6).

```
msk-q42-ioithenko-gw-1(config) #int f0/0
msk-q42-ioithenko-gw-1(config-if) #no shutdown

msk-q42-ioithenko-gw-1(config-if) #
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

msk-q42-ioithenko-gw-1(config-if) #exit
msk-q42-ioithenko-gw-1(config-subif) #
%LINK-5-CHANGED: Interface FastEthernet0/0.201, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.201, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.201, changed state to up

msk-q42-ioithenko-gw-1(config-subif) #encapsulation dotlo 201
msk-q42-ioithenko-gw-1(config-subif) #esecription q42-main
msk-q42-ioithenko-gw-1(config-subif) #esecription q42-main
msk-q42-ioithenko-gw-1(config-subif) #encapsulation dotlo 201
msk-q42-ioithenko-gw-1(config-subif) #encapsulation
msk-q42-ioithenko-gw-1(config-subif) #encapsulation
msk-q42-ioithenko-gw-1(config-subif) #encapsulation
msk-q42-ioithenko-gw-1(config-subif) #no shutdown

msk-q42-ioithenko-gw-1(config-if) #sxit
msk-q42-ioithenko-gw-1(config-subif) #encapsulation dotlo 202
msk-q42-ioithenko-gw-1(config-subif) #incapsulation dotlo 202
msk-q42-ioithenko-gw-1(config-subif) #encapsulation dotlo 202
msk-q42-ioithenko
```

Рис. 3.6: Настройка субинтерфейсов

Зададим доступ оконечному устройству к VLAN 201 по f0/1 (рис. 3.7).

```
msk-q42-ioithenko-sw-1>enable
Password:
msk-q42-ioithenko-sw-1#configure terminal
Enter configuration commands, one per line. End with CNTL/2.
msk-q42-ioithenko-sw-1(config)#interface f0/24
msk-q42-ioithenko-sw-1(config-if)#switchport mode trunk
msk-q42-ioithenko-sw-1(config-if)#switchport mode trunk
msk-q42-ioithenko-sw-1(config-if)#switchport mode access
msk-q42-ioithenko-sw-1(config-if)#switchport access vlan 201
% Access VLAN does not exist. Creating vlan 201
msk-q42-ioithenko-sw-1(config-if)#switchport access vlan 201
% Access VLAN does not exist. Creating vlan 201
msk-q42-ioithenko-sw-1(config-if)#swit
msk-q42-ioithenko-sw-1(config-vlan)#name q42-main
msk-q42-ioithenko-sw-1(config-vlan)#swit
msk-q42-ioithenko-sw-1(config-vlan)#swit
msk-q42-ioithenko-sw-1(config-if)#wit
MilNKS-CHANNGES: Interface Vlan201, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan201, changed state to up
msk-q42-ioithenko-sw-1(config-if)#no shutdown
msk-q42-ioithenko-sw-1(config-if)#swit
```

Рис. 3.7: Доступ к VLAN 201

Создадим 202 и 301 VLAN для общежитий (рис. 3.8).

Рис. 3.8: Настройка VLAN

Сделаем транковым порт интерфейса и предоставим доступ к 301 VLAN(рис. 3.9).

```
msk-hostel-ioithenko-sw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-hostel-ioithenko-sw-1(config) #int g0/1
msk-hostel-ioithenko-sw-1(config-if) #switchport mode trunk
msk-hostel-ioithenko-sw-1(config-if) #switchport mode access
msk-hostel-ioithenko-sw-1(config-if) #switchport mode access
msk-hostel-ioithenko-sw-1(config-if) #switchport access vlan 301
% Access VLAN does not exist. Creating vlan 301
msk-hostel-ioithenko-sw-1(config-if) #switchport access vlan 301
% Access VLAN does not exist. Creating vlan 301
msk-hostel-ioithenko-sw-1(config-if) #vlan 301
msk-hostel-ioithenko-sw-1(config-vlan) #name hostel-main
msk-hostel-ioithenko-sw-1(config-vlan) #same hostel-main
msk-hostel-ioithenko-sw-1(config-if) #int vlan301
msk-hostel-ioithenko-sw-1(config-if) #
%LINK-5-CHANGED: Interface Vlan301, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan301, changed state to up
msk-hostel-ioithenko-sw-1(config-if) #no shutdown
```

Рис. 3.9: Настройка интерфейсов

Создадим субинтерфейсы на маршрутизаторе для 401 VLAN (основной), зададим IP. Повторим для VLAN 402 (для управления устройствами Сочи)(рис. 3.10).

```
Sch-sochi-ioithenko-gw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
sch-sochi-ioithenko-gw-l(config)#int f0/0.401
sch-sochi-ioithenko-gw-l(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.401, changed state to up
sch-sochi-ioithenko-gw-l(config-subif)#encapsulation dot1Q 401
sch-sochi-ioithenko-gw-l(config-subif)##ip address 10.130.0.1 255.255.255.0
% Invalid input detected at '^' marker.
sch-sochi-ioithenko-gw-l(config-subif)#escription sochi-main
sch-sochi-ioithenko-gw-l(config-subif)#exit
sch-sochi-ioithenko-gw-l(config-subif)#exit
sch-sochi-ioithenko-gw-l(config-subif)#exit
sch-sochi-ioithenko-gw-l(config-subif)#exit
sch-sochi-ioithenko-gw-l(config-subif)#exit
sch-sochi-ioithenko-gw-l(config-subif)#exit
sch-sochi-ioithenko-gw-l(config-subif)#encapsulation dot1Q 402
sch-sochi-ioithenko-gw-l(config-subif)#encapsulation dot1Q 402
sch-sochi-ioithenko-gw-l(config-subif)#encapsulation sochi-management
sch-sochi-ioithenko-gw-l(config-subif)#exit
```

Рис. 3.10: Настройка интерфейсов

На коммутаторе зададим VLAN 401 и предоставим к нему доступ (рис. 3.11).

```
sch-sochi-ioithenko-sw-l>enable
Password:
sch-sochi-ioithenko-sw-l‡conf t
Enter configuration commands, one per line. End with CNTL/2.
sch-sochi-ioithenko-sw-l(config) #int f0/1
sch-sochi-ioithenko-sw-l(config) #int f0/1
sch-sochi-ioithenko-sw-l(config-if) #switchport mode access
sch-sochi-ioithenko-sw-l(config-if) #switchport access vlan 401
% Access VLAN does not exist. Creating vlan 401
sch-sochi-ioithenko-sw-l(config-if) #exit
sch-sochi-ioithenko-sw-l(config-vlan) #name sochi-main
sch-sochi-ioithenko-sw-l(config-vlan) #sxit
sch-sochi-ioithenko-sw-l(config-vlan) #sxit
sch-sochi-ioithenko-sw-l(config-if) #
% ININK-5-CHANGED: Interface Vlan401, changed state to up
sch-sochi-ioithenko-sw-l(config-if) #no shutdown
sch-sochi-ioithenko-sw-l(config-if) #sxit
sch-sochi-ioithenko-sw-l(config) #sxit
sch-sochi-ioithenko-sw-l(config) #exit
sch-sochi-ioithenko-sw-l(config) #exit
sch-sochi-ioithenko-sw-l#
% $YS-5-CONFIG_I: Configured from console by console
wr m
Building configuration...
[OK]
```

Рис. 3.11: Настройка интерфейсов

Зададим маршруты по умолчанию на маршрутизаторе Донской к маршрутизаторам квартала 42 и Сочи, а также в обратную сторону (рис. 3.12), (рис. 3.13) и (рис. 3.14).

```
msk-donskaya-ioithenko-gw-1>enable
Password:
msk-donskaya-ioithenko-gw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-ioithenko-gw-1(config)#ip route 10.129.0.0 255.255.0.0 10.128.255.2
msk-donskaya-ioithenko-gw-1(config)#ip route 10.130.0.0 255.255.0.0 10.128.255.6
msk-donskaya-ioithenko-gw-1(config)#
```

Рис. 3.12: Маршрутизация между площадками

```
msk-q42-ioithenko-gw-1>enable
Password:
msk-q42-ioithenko-gw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-q42-ioithenko-gw-1(config)#ip route 0.0.0.0 0.0.0.0 10.128.255.1
msk-q42-ioithenko-gw-1(config)#exit
msk-q42-ioithenko-gw-1#
%sys-5-CONFIG_I: Configured from console by console
```

Рис. 3.13: Маршрутизация между площадками

```
sch-sochi-ioithenko-gw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
sch-sochi-ioithenko-gw-1(config)#ip route 0.0.0.0 0.0.0.0 10.128.255.5
sch-sochi-ioithenko-gw-1(config)#exit
sch-sochi-ioithenko-gw-1#
```

Рис. 3.14: Маршрутизация между площадками

Маршруты между маршрутизаторами в квартале 42 (рис. 3.15) и (рис. 3.16).

```
msk-q42-ioithenko-gw-1(config) #ip route 10.129.128.0 255.255.128.0 10.129.1.2 msk-q42-ioithenko-gw-1(config) #exit msk-q42-ioithenko-gw-1# msk-q42-ioithenko-gw-1# from console by console
```

Рис. 3.15: Маршрутизация между площадками

```
msk-hostel-ioithenko-gw-1#conf t
Enter configuration commands, one per line. End with CNTL/2.
msk-hostel-ioithenko-gw-1(config)#ip routing
msk-hostel-ioithenko-gw-1(config)#ip route 0.0.0.0 0.0.0.0 10.129.1.1
msk-hostel-ioithenko-gw-1(config)#exit
msk-hostel-ioithenko-gw-1(config)#exit
```

Рис. 3.16: Маршрутизация между площадками

Настроим NAT. Разрешим оконечным устройствам доступ ко всему, дополнив список (рис. 3.17).

```
msk-donskaya-ioithenko-gw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-ioithenko-gw-1(config)#int f0/1.5
msk-donskaya-ioithenko-gw-1(config-subif)#ip nat inside
msk-donskaya-ioithenko-gw-1(config-subif)#exit
msk-donskaya-ioithenko-gw-1(config-subif)#ip nat inside
msk-donskaya-ioithenko-gw-1(config-subif)#ip nat inside
msk-donskaya-ioithenko-gw-1(config-subif)#exit
msk-donskaya-ioithenko-gw-1(config-subif)#exit
msk-donskaya-ioithenko-gw-1(config-subif)#exit
msk-donskaya-ioithenko-gw-1(config-ext-nacl)#remark q42
msk-donskaya-ioithenko-gw-1(config-ext-nacl)#permit ip host 10.129.0.200 any
msk-donskaya-ioithenko-gw-1(config-ext-nacl)#permit ip host 10.129.128.200 any
msk-donskaya-ioithenko-gw-1(config-ext-nacl)#remark sochi
msk-donskaya-ioithenko-gw-1(config-ext-nacl)#permit ip host 10.130.0.200 any
msk-donskaya-ioithenko-gw-1(config-ext-nacl)#permit ip host 10.130.0.200 any
msk-donskaya-ioithenko-gw-1(config-ext-nacl)#exit
msk-donskaya-ioithenko-gw-1(config-ext-nacl)#exit
msk-donskaya-ioithenko-gw-1f
%sys-5-config_I: Configured from console by console
wr m
Building configuration...
[OK]
msk-donskaya-ioithenko-qw-1#
```

Рис. 3.17: Настройка NAT

4 Выводы

В ходе выполнения лабораторной работы я настроила взаимодействие через сеть провайдера посредством статической маршрутизации локальной сети организации с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи.

4.1 Контрольные вопросы

1. Приведите пример настройки статической маршрутизации между двумя подсетями организации.

```
(config)# ip route 192.168.2.0 255.255.255.0 192.168.1.2 (config)# ip route 192.168.1.0 255.255.255.0 192.168.2.1
```

- 2. Опишите процесс обращения устройства из одного VLAN к устройству из другого VLAN.
- Определение VLAN:

Устройства в сети делятся на различные VLAN для управления трафиком и безопасности. Каждый VLAN представляет собой логическую сегментацию сети, где устройства могут общаться только в пределах своего VLAN.

• Маршрутизация между VLAN:

Для обращения устройства из одного VLAN к устройству из другого VLAN требуется маршрутизация между VLAN. Это может быть достигнуто с помощью маршрутизатора или многоуровневого коммутатора, способного работать на уровне маршрутизации.

• Пересылка трафика:

Когда устройство из одного VLAN отправляет пакет к устройству из другого VLAN, маршрутизатор или многоуровневый коммутатор принимает пакет, проверяет его адрес и пересылает его в соответствующий VLAN.

• Прием трафика:

Устройство в целевом VLAN принимает пакет и обрабатывает его в соответствии с его адресом и правилами безопасности VLAN.

3. Как проверить работоспособность маршрута?

Командой ping или traceroute

4. Как посмотреть таблицу маршрутизации?

Командой show ip route

Список литературы

1. Королькова А.В., Кулябов Д.С. Администрирование сетевых подсистем. Лабораторный практикум: учебное пособие. Москва: РУДН, 2021. 137 с.