

A brief intro to Explainable AI and its application to antibody screening

28.03.2023

Ali Boushehri

Part 1: intro to explainable Al

Motivation

 Recent advances in machine learning have been efficient for essential tasks in diagnostics and have reached the human level or even outperformed experts.

However, the black-box nature of algorithms has restricted their clinical use.

Practical example

Let's imagine that we have trained an algorithm that can distriminate between Mylocites and typical Lymphocytes:

Q) Did the model use the background color?

Q) What is the exact difference that the model has noticed?

Typical Lymphocytes

Myelocyte

Explainability must be used to answer such questions!

Lymphocyte typical

Neutrophil segmented

Basophil

Lymphocyte typical

Neutrophil Segmented

Deep Learning Classifier

General classification pipeline

How can we explain each pipeline?

In-model

Linear Models

Post-model SH

SHAP values

Permutation importance

Needs meaningful features

- Suffers from multi-dimensionality
- Suffers from multi-collinearity

Explainability

- Work as sanity checks
- Cannot provide meaningful insights

Matek, C., Schwarz, S., Spiekermann, K. et al. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat Mach Intell 1, 538–544 (2019). https://doi.org/10.1038/s42256-019-0101-9

Explainability Taxonomy

Part 2: application in antibody screening

Use-case

scifAI: Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies

Motivation

• The formation of an immunological synapse is the first event of an adaptive immune reaction between a T cell and an antigen-presenting cell

However the mechanisms and modulations by antibodies are still often unclear

 So far, no study has systematically addressed how quantity and morphology of the immunological synapse is correlated to T cell function

There is no universal tool for working on imaging flow cytometry data

Background

Recording the images

Roche

Background

Data Generation Pipeline

Roche

Data generation pipeline

More than 3 million images were recorded

Can we classify cell types automatically?

Feature extraction

A modular python package is developed to extract interpretable features

Feature extraction

Explainable machine learning

Identification of the most informative image features

Small annotated dataset

Classification

Top features

Roche

Background

Immunological response

23

Can we use xAl to profile the mode of action of therapeutic antibodies on synapse formation?

Experimental setup

As a proof of concept, we study an immune response activator

Large therapeutic molecules

Investigating the influence large therapeutic molecules

- We created an end-to-end pipeline to study immunological synapse
- xAl allows for studying immunological synapse properties in an unbiased and systematic way
- **Image-based approach resolves higher order features** of marker expression (e.g. enrichment of MHCII in the synapse of a B/T cell doublets)
- The tool can be used in other IFC datasets and applications.

Doing now what patients need next