1 Measurements made for a sample of metal wire are shown in Fig. 1.1.

quantity	measurement	uncertainty
length	1750 mm	±3mm
diameter	0.38 mm	±0.01 mm
resistance	7.5Ω	±0.2Ω

		resistance	7.5Ω	±0.2Ω	
			Fig. 1.1		
(a)	Stat	e the appropriate inst	ruments used to make eacl	n of these measurements.	
	(i)	length			
					[1]
	(ii)	diameter			
	/:::\				[1]
	(iii)	resistance			[1]
(b)	(i)		rity of the metal is calculate		[1]
					[2]
	(ii)	Calculate the uncerta	ainty in the resistivity.		

uncertainty = \pm Ω m [4]

(c)	the answers in (b) to express the resistivity with its uncertainty to the appropriate number of significant figures.
	resistivity = ± Ω m [1]

2	(a)	Explain what is meant by work done.
		[1]
	(b)	A car is travelling along a road that has a uniform downhill gradient, as shown in Fig. 2.1.
		25 m s ⁻¹
		7.5°
		Fig. 2.1
		The car has a total mass of 850 kg. The angle of the road to the horizontal is 7.5° .
		Calculate the component of the weight of the car down the slope.
		component of weight = N [2]
	(c)	The car in (b) is travelling at a constant speed of 25 m s ⁻¹ . The driver then applies the brakes to stop the car. The constant force resisting the motion of the car is 4600 N.
		(i) Show that the deceleration of the car with the brakes applied is $4.1\mathrm{ms^{-2}}$.
		[2]
		(ii) Calculate the distance the car travels from when the brakes are applied until the car comes to rest.
		distance = m [2]

(iii)	Cal	culate
	1.	the loss of kinetic energy of the car,
		loss of kinetic energy = J [2]
	2.	the work done by the resisting force of 4600 N.
		work done = J [1]
(iv)		e quantities in (iii) part 1 and in (iii) part 2 are not equal. Explain why these two antities are not equal.
		[1]

3	(a)	Explain what is meant by centre of gravity.
		[2]
	(b)	Define <i>moment</i> of a force.
		[1]
	(c)	A student is being weighed. The student, of weight $\it W$, stands 0.30 m from end A of a uniform plank AB, as shown in Fig. 3.1.
		A
		2.0 m

Fig. 3.1 (not to scale)

(i)

The plank has weight $80\,\mathrm{N}$ and length $2.0\,\mathrm{m}$. A pivot P supports the plank and is $0.50\,\mathrm{m}$ from end A.

A weight of $70\,\mathrm{N}$ is moved to balance the weight of the student. The plank is in equilibrium when the weight is $0.20\,\mathrm{m}$ from end B.

State the two conditions necessary for the plank to be in equilibrium.
1
2
[2

(ii)	Determine the weight <i>W</i> of the student.
	<i>W</i> = N [3]
(iii)	If only the 70N weight is moved, there is a maximum weight of student that can
(111)	be determined using the arrangement shown in Fig. 3.1. State and explain one
	change that can be made to increase this maximum weight.
	roz
	[2]

4	(a)	Defi	ine, for a wire,
		(i)	stress,
			[1]
		(ii)	strain.
			[1]
	(b)	A w	ire of length 1.70 m hangs vertically from a fixed point, as shown in Fig. 4.1.
			<u>////</u>
			wire ——
			▼ 25.0 N
			Fig. 4.1
			wire has cross-sectional area $5.74 \times 10^{-8} \text{m}^2$ and is made of a material that has a ng modulus of $1.60 \times 10^{11} \text{Pa}$. A load of 25.0N is hung from the wire.
		(i)	Calculate the extension of the wire.
			extension = m [3]
		(ii)	The same load is hung from a second wire of the same material. This wire is twice the length but the same volume as the first wire. State and explain how the extension of the second wire compares with that of the first wire.
			[3]

5 (a) A variable resistor is used to control the current in a circuit, as shown in Fig. 5.1.

Fig. 5.1

The variable resistor is connected in series with a 12V power supply of negligible internal resistance, an ammeter and a 6.0Ω resistor. The resistance R of the variable resistor can be varied between 0 and 12Ω .

(i) The maximum possible current in the circuit is 2.0 A. Calculate the minimum possible current.

minimum current = A [2]

[2]

(ii) On Fig. 5.2, sketch the variation with R of current I_1 in the circuit.

Fig. 5.2

(b) The variable resistor in (a) is now connected as a potential divider, as shown in Fig. 5.3.

Fig. 5.3

Calculate the maximum possible and minimum possible current ${\cal I}_2$ in the ammeter.

$$\label{eq:maximum} \mbox{ maximum } I_2 = \hdots \hdots$$

[2]

(c) (i) Sketch on Fig. 5.4 the I-V characteristic of a filament lamp.

Fig. 5.4

lamp.			

6	(a)	State two assumptions of the simple kinetic model of a gas.
		1
		2
		[2]
	(b)	the kinetic model of gases and Newton's laws of motion to explain how a gas exerts a pressure on the sides of its container.
		[3]

(a)	Exp	plain the term <i>interference</i> .
(b)	A ri	pple tank is used to demonstrate interference between water waves.
	Des	scribe
	(i)	the apparatus used to produce two sources of coherent waves that have circu wavefronts,
	/::\	
	(ii)	how the pattern of interfering waves may be observed.

(c) A wave pattern produced in (b) is shown in Fig. 7.1.

Fig. 7.1

Solid lines on Fig. 7.1 represent crests.

On Fig. 7.1,

- (i) draw two lines to show where maxima would be seen (label each of these lines with the letter X), [1]
- (ii) draw one line to show where minima would be seen (label this line with the letter N). [1]