	2022 Wellness Tracking Objectives The objective of this project is to record and analyze the relationships between input variables and target variables throughout the 2022 Midland Rockhound season in the Texas League of AA baseball create actionable ideas on how to increase performance. This project also strives to incorporate mental variables as well as physical ones, in the hopes of observing the impacts of mental health and training in sport as well as physical. Methods This project will involve various data cleaning and manipulation methods, which will be more specifically evaluated upon implementation. However, the focus of this project is on machine learning.
	This project will involve various data cleaning and manipulation methods, which will be more specifically explained upon implementation. However, the focus of this project is on machine learning implementations, and analyzing feature impact on target variables. Imports and Data Cleaning import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split # Importing CSV data filename = 'Data/michael_wellness_data.csv' def read_csv(filename): df = pd.read_csv(filename) return df
In [3]:	<pre>data = read_csv(filename) column_headers = data.columns drop_headers = ['Thought of the Day', 'Game Notes'] data = data.drop(drop_headers, axis=1) data = data.dropna(axis=0, thresh=3) column_headers = data.columns</pre>
Out[3]:	Part
In [4]:	19 5/3/2022 0 77.0 52.0 8.50 NaN NaN NaN 4.0 3.0 0.0 0.0 6.0 7.0 3.0 7.1 0.0 0.0 0.0 NaN 20 5/4/2022 1 31.0 38.0 8.37 NaN NaN NaN 5.0 9.0 1.0 0.0 4.0 7.0 6.0 14.3 0.0 0.0 0.0 NaN 21 5/5/2022 2 42.0 44.0 7.97 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na
	<pre>morning_variables = ['Day of Week', 'Whoop Recovery', 'HRV', 'Hours of Sleep',</pre>
In [5]:	<pre>print('Enter desired target value according to the keys below:') dict_targets = { i : target_variables[i - 1] for i in range(1, len(target_variables) + 1) } print(dict_targets) desired_target = input() if desired_target == '': desired_target = 1 target = dict_targets[int(desired_target)] print(f'Selected Target Variable: {target}') Enter desired target value according to the keys below: {1: 'Whoop Recovery', 2: 'HRV', 3: 'Body Weight', 4: 'Current BA'}</pre>
In [6]: In [7]:	<pre>def update_df(df, morning, night, target): if target in night: night.remove(target) df['Date'] = pd.to_datetime(df['Date']) curr_day = df.drop(night, axis=1) prev_day = df.drop(morning, axis=1) prev_day = prev_day.shift(periods=1) return pd.concat([curr_day, prev_day], axis=1, join='inner') adjusted_df = update_df(data, morning=morning_variables, night=night_variables, target=target) def drop_nans(df, threshold=0.5): df_length = df.shape[0] df = df.dropna(thresh=threshold * df_length, axis=1).dropna(how='any', axis=0) return df</pre>
Out[7]:	adjusted_df = drop_nans(adjusted_df) X = adjusted_df.drop([target, 'Date'], axis=1) y = adjusted_df[target] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) X.iloc[0:10,:] Day of Week HRV Of Score Score Score Score Score Score Score Score Score Rating Score (1-10) Day of Week HRV Of Score Sc
	1 3 51.0 9.05 7.0 1.0 3.0 6.0 8.0 8.0 300.0 1.0 0.0 0.0 7.0 7.0 5.0 15.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
	y[0:10]
In [9]:	7
	Reasoning and Methodology Random Forest Regression is a robust machine learning algorithm which uses random sampling and bootstrapping from decision trees to make continuous predictions on target variables. I chose this a the first model to be implemented because of its capability to accomodate both continuous and discrete variable. Since the decision trees themselves also support this input flexibility, Random Forest Regression is an excellent candidate for this data. Implementation
in [10]:	<pre>from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error rfr = RandomForestRegressor() rfr.fit(X_train, y_train) score = rfr.score(X_train, y_train) print("R-squared:", round(score, 2))</pre>
in [12]:	<pre>print("R-squared:", round(score, 2)) R-squared: 0.92 y_pred = rfr.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("MSE: ", round(mse, 2)) print("RMSE: ", round(mse**(1/2.0), 2)) MSE: 208.21 RMSE: 14.43 importances = rfr.feature_importances_ x_column_headers = X_test.columns std = np.std([tree.feature_importances_ for tree in rfr.estimators_], axis=0) normalized_importances = (importances - importances.min()) / (importances.max() - importances.min())</pre>
n [14]:	<pre>x_ax = range(len(y_test)) plt.plot(x_ax, y_test, linewidth=1, label=f"Actual {y.name}") plt.plot(x_ax, y_pred, linewidth=1.1, label=f"Predicted {y.name}") plt.title(f"Predicted {y.name} vs. Actual {y.name}") plt.xlabel('Observation Number') units = {'Whoop Recovery': '%', 'HRV': 'bpm', 'Current BA': '%', 'Body Weight': 'lbs'} unit = units[target] plt.ylabel(f'{y.name} ({unit})') plt.legend(loc='best',fancybox=True, shadow=True) plt.grid(True)</pre>
	Predicted Whoop Recovery vs. Actual Whoop Recovery Actual Whoop Recovery Predicted Whoop Recovery Predicted Whoop Recovery 80 40 40 40
n [15]:	forest_importances = pd.Series(normalized_importances, index=x_column_headers) fig, ax = plt.subplots() forest_importances.plot.bar(yerr=std, ax=ax) ax.set_title(f"Feature Importances for {target}") ax.set_vlabel/"Feature Importance")
	ax.set_ylabel("Feature Importance") fig.tight_layout() Feature Importances for Whoop Recovery 0.5
	Having the Having the Having Having Having Having Soreness/Fatigue Score Fitness Rating Positivity Score (1-10) - Confidence Score Caffein of Water Before Coffee? Devo Quality (1-10) - Game? Fin Rating Family Love Rating Family Love Rating Tired Rating Alcohol (# of Drinks) - CBD Cmg) - Melatonin - Melatonin - Melatonin - Melatonin - Melatonin - CBD Cmg) - CBD Cmg
	Analysis and Impact Linear Regression Reasoning and Methodology Though Random Forest Regression seems to be a reasonable and scalable fit for the data, it is worth implementing Linear Regression because of it's simplicity. While it is certainly simple to implement, is also more easily understandable to peopel with less experience with data and statistics. Linear regression also allows flexibility in inputting both continuous and discrete variables by normalizing
	discrete variables to become continuous. This model also outputs clear regression coefficients, which are extremely readable and applicable to this project. Implementation from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score regr = LinearRegression() regr.fit(X_train, y_train)
n [18]: n [19]:	<pre>y_pred = regr.predict(X_test) r2_score2 = r2_score(y_pred, y_test) print(f'R-squared: {round(r2_score2, 2)}') R-squared: 0.91 feature_titles = X_train.columns reg_coef = regr.coef_ pos_features_with_coef = {} neg_features_with_coef = {}</pre>
	<pre>for i in range(len(feature_titles)): if reg_coef[i] > 0: pos_features_with_coef[feature_titles[i]] = round(reg_coef[i], 2) elif reg_coef[i] < 0: neg_features_with_coef[feature_titles[i]] = round(-1*reg_coef[i], 2) print(f'{feature_titles[i]}: {round(reg_coef[i], 2)}')</pre> Day of Week: -0.64 HRV: 3.59 Hours of Sleep: 1.62 Hydration Score (urine): -0.9
	Nydraton sools (drine): -0.59 Soreness/Fatigue Score: -2.2 Fitness Rating: 1.18 Positivity Score (1-10): 0.66 Confidence Score: -0.5 Caffeine in mg: -0.02 Water Before Coffee?: -0.83 Breakfast Before Coffee?: -0.83 Breakfast Before Coffee?: -0.83 Prove Quality (1-10): -0.99 Game?: 0.11 Lift?: 0.61 Protein Shake?: 0.08 Fun Rating: -0.12 Family Love Rating: -0.63 Tired Rating: 0.51 Strain: 0.03 Alcohol (# of Drinks): -1.22 CDD (mg): 0.0
n [20]:	CBD (mg): 0.0 Melatonin: 0.0 pos_imp = pd.Series(pos_features_with_coef.values(), index=pos_features_with_coef.keys()) fig, ax = plt.subplots() pos_imp.plot.bar(ax=ax) ax.set_title(f"Positive Feature Importances for {target}") ax.set_ylabel("Feature Importance") fig.tight_layout() Positive Feature Importances for Whoop Recovery
	Positive Feature Importances for Whoop Recovery Hours of Siege Houses Pating ABH ABH ABH ABH ABH ABH ABH AB
n [21]:	neg_imp = pd.Series(neg_features_with_coef.values(), index=neg_features_with_coef.keys()) fig, ax = plt.subplots() neg_imp.plot.bar(ax=ax) ax.set_title(f"Negative Feature Importances for {target}") ax.set_ylabel("Feature Importance") fig.tight_layout() Negative Feature Importances for Whoop Recovery
	Feature Importance Day of Week Hydration Score (urine) Sick Feeling Soreness/fatigue Score Confidence Score Caffeine in mg Water Before Coffee? Devo Quality (1.10) Fun Rating Family Love Rating Alcohol (# of Drinks)
	Analysis and Impact General Trends Whoop Recovery vs. Date x_ax = data['Date']
~ 1 •	<pre>y_ax = data['Whoop Recovery'] plt.plot(x_ax, y_ax, linewidth=1) plt.title(f"Whoop Recovery Over Time") plt.xlabel('Date') unit = '%' plt.ylabel(f'Whoop Recovery ({unit})') plt.grid(True) plt.xticks(rotation=90) plt.show()</pre> <pre> Whoop Recovery Over Time</pre>
	Whoop Recovery Over Time 100 90
	80