

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Reconocimiento de Formas y Aprendizaje Computacional

Trabajo Academico

Luis Alfonso Cardoza Bird

17 de Octubre de 2023

https://md2pdf.netlify.app/ Page 1 of 8

Fashion MNIST

Introduccion

Utilizando como base el **dataset** de **Fashion MNIST**, se hará clasificación de los procesos y resultados, enfocados en la clasificación de imágenes.

Objetivo

• Desarrollar una red neuronal capaz de identificar y categorizar diferentes prendas de vestir utilizando imágenes como base de aprendizaje.

Dimensiones

Shape of train_images: (50000, 28, 28) Shape of train_labels: (50000,)

Análisis Estadístico de la Descripción de Imágenes

• Tabla utilizando df_train_images.describe()

	0	1	2	3	
count	50000.000000	50000.000000	50000.000000	50000.000000	50000.0000
mean	0.000900	0.006160	0.030940	0.107540	0.253580
std	0.100893	0.269673	0.800147	2.558106	4.300201
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	0.000000
max	16.000000	36.000000	119.000000	164.000000	224.000000

8 rows × 784 columns

https://md2pdf.netlify.app/
Page 2 of 8

La tabla generada utilizando df_train_images.describe() brinda un resumen estadístico para el dataset de los valores de pixels de imágenes, brindando valores provisionales como lo son moda, desviación standard std, rango mínimo y Maximo, y nos brinda la capacidad de conocer el nivel de dispersion y tendencia de los datos centrales.

Valores Perdidos

0

Los valores perdidos son datos que al momento de entrenar/analizar son omitidos o no pueden ser analizados, el objetivo principal es llegar lo mas cercano a 0 .

Etiquetadores

Indice	Valor	
0	T-shirt/top	
1	Trouser	
2	Pullover	
3	Dress	
4	Coat	
5	Sandal	
6	Shirt	
7	Sneaker	
8	Bag	
9	Ankle boot	

https://md2pdf.netlify.app/
Page 3 of 8

Esta distribución indica que prendas se asocian con los etiquetadores otorgados.

Creacion de modelos y métricas

```
yeniModelOlustur(input_shape=img_shape):
def
    model = Sequential([
        base_layer(16,input_shape),
        Conv2D(16,3,padding='same',activation='relu'),
        conv_layer(32),
        Dropout(0.1),
        conv_layer(64),
        Dropout(0.2),
        conv_layer(128),
        Dropout(0.25),
        conv_layer(256),
        Conv2D(256,3,padding='same',activation='relu'),
        Dropout(0.3),
        MaxPool2D(pool_size=(2,2),padding='same'),
        Flatten(),
        dense_layer(128,0.6),
        dense_layer(64,0.4),
        output_layer(10)
    ])
    return model
```

https://md2pdf.netlify.app/ Page 4 of 8

```
m = yeniModelOlustur()
m.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
m.summary()
```

Resultado

Layer (type)	Output Shape	Param #
InitLayer (Sequential)	(None, 28, 28, 16)	160
conv2d_1 (Conv2D)	(None, 28, 28, 16)	2320
sequential (Sequential)	(None, 14, 14, 32)	14016
dropout (Dropout)	(None, 14, 14, 32)	0
sequential_1 (Sequential)	(None, 7, 7, 64)	55680
dropout_1 (Dropout)	(None, 7, 7, 64)	0
sequential_2 (Sequential)	(None, 3, 3, 128)	221952
dropout_2 (Dropout)	(None, 3, 3, 128)	0
sequential_3 (Sequential)	(None, 1, 1, 256)	886272
conv2d_10 (Conv2D)	(None, 1, 1, 256)	590080
dropout_3 (Dropout)	(None, 1, 1, 256)	0
Total params: 1,813,050		
Trainable params: 1,811,706		
Non-trainable params: 1,344		

Esta tabla genera un resumen de cada capa con su respectivo tipo, forma final y el numero de parámetros involucrados.

Las celdas finales indica el total de parámetros que están en la red, y distingue entre los que son

https://md2pdf.netlify.app/
Page 5 of 8

entrenables y no entrenables.

Evaluación de Pérdidas y Precisión

- En la primera grafica se visualiza la perdida del modelo en el entrenamiento y validación, mientras prosigue con los temas sets de entrenamiento.
- En la segunda gráfica se visualiza la precision del modelo para ambos sets de datos, dando indicios del la eficacia de aprendizaje con el modelo.

Fine Tuning

https://md2pdf.netlify.app/
Page 6 of 8

1. Early Stopping

```
checkpoint_fm = ModelCheckpoint("fashion_mnist_model.h5", save_best_only=True)
early_stopping_fm = EarlyStopping(patience=10, restore_best_weights=True)
```

2. Learning Rate Decay

```
def exponential_decay(learning_rate, decay_step):
    def exponential_decay_fm(epoch):
        return learning_rate * 0.1 **(epoch / decay_step)
return exponential_decay_fm

exponential_decay_fm = exponential_decay(0.01, 10)
lr_scheduler = LearningRateScheduler(exponential_decay_fm)
```

Re-evaluacion después de aplicar FINE-TUNING

https://md2pdf.netlify.app/ Page 7 of 8

Resultados Finales

Dataset	Accuracy
Train	0.9730799794197083
Dev	0.9369937181472778
Test	0.9352999925613403

Conclusiones

Se puede concluir que el modelo ah sido desarrollado, entrenado y optimizado metódicamente para clasificar imágenes usando el **dataset Fashin MNIST**.

Los resultados iniciales indicaron un rendimiento prometedor, el cual fue validado intensivamente.

Las métricas de visualización de perdida y precision sobre los segmentos de entrenamiento proveen demostraciones de la aplicación de los principios de **DeepLearning** y de los protocolos de evaluación.

https://md2pdf.netlify.app/
Page 8 of 8