An Example for Model-Agnostic Meta-Learning Algorithm

1 Example: Single Neuron Neural Network

We use a single-neuron neural network as a simple example to illustrate the Model-Agnostic Meta-Learning (MAML) algorithm [FAL17]. The goal of MAML is to learn a good initialisation of w, the meta model's parameters. We define a dataset and aim to train the model to obtain a good initialisation that can quickly adapt to a new task using only few data samples and updates. This setting is also formalised as a few-shot learning problem.

Suppose that we have three datasets \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_{new} . \mathcal{D}_1 and \mathcal{D}_2 will be used for training the meta model and \mathcal{D}_{new} , with only a few samples, will be used for testing the meta model. In the general case, the data points from \mathcal{D}_1 , \mathcal{D}_2 , and \mathcal{D}_{new} can be drawn from different distributions.

Definition 1.1 (Dataset). Let $\mathcal{D}_j = \{S_j, Q_j\}$ be the j-th dataset, where the support (S_j) and query (Q_j) set are two subsets of \mathcal{D}_j . $S_j, Q_j \subset \mathcal{D}_j$ and $S_j \cap Q_j = \emptyset$.

 S_j and Q_j are used for task-specific (conventional training) update and meta update respectively. The loss over each sets are \mathcal{L}_{S_j} and \mathcal{L}_{Q_j} , respectively.

Definition 1.2 (Single Neuron Model). Let $f_{\theta} : \mathbb{R} \to \mathbb{R}$ be a single neuron neural network model parameterised by $\theta \in \mathbb{R}$ and defined as,

$$f_{\theta}(x) = \theta x$$

We build a meta-learning framework for a single neuron neural network model, as shown in Figure 1.

$$x \not \longmapsto f_{\theta}(x) = \theta x$$

Figure 1: Single processing unit and its components.

The model is denoted by f_{θ} and applied on the input x of the unit to form its output $f_{\theta}(x) = \theta x$, where θ represents the weight of unit.

The single neuron neural network model computes a function $\hat{y}_i = f_{\theta}(x_i)$, where \hat{y}_i is the predicted value of input sample x_i , and θ represents the model weights.

1.1 Conventional Supervised Learning

We first recap the process of conventional supervised learning. In supervised learning, a loss function (e.g., mean squared error (MSE)) measures the difference between the target values y_i and predicted output values \hat{y}_i produced by the network model. In a simple case, the learning (i.e., model training) procedure aims at finding the best value of w that minimises the loss to its lowest value.

For regression tasks using MSE, given a general dataset, \mathcal{D} , the loss takes the form:

$$\mathcal{L}(f_w(x), y) = \sum_{(x_i, y_i) \in D} (y_i - wx_i)^2$$
(1)

and the gradient of loss function is calculated as,

$$\frac{\partial \mathcal{L}(f_w)}{\partial w} = -2 \sum_{(x_i, y_i) \in D} x_i (y_i - w x_i) \tag{2}$$

We perform one-step update using an optimisation algorithm, such as Stochastic Gradient Descent (SGD):

$$w^{(1)}(w^{(0)}) = w^{(0)} - \alpha \left. \frac{\partial \mathcal{L}(f_w)}{\partial w} \right|_{w=w^{(0)}}$$

$$w^{(1)}(w^{(0)}) = w^{(0)} + 2 \sum_{(x_i, y_i) \in D} x_i(y_i - w^{(0)}x_i)$$
(3)

Remark 1: Where $w^{(0)}$ is the initialisation weight and α is the learning rate. The updated weight is a function of initialisation weight, $w^{(1)}(w^{(0)})$ (in Equation 3).

1.1.1 Numerical example

We define a dataset $\hat{\mathcal{D}}$ with 3 data points:

$$\begin{array}{c|ccccc} \hat{\mathcal{D}} & x & y & f_w \\ \hline & 1 & 2 & 1 \\ & 2 & 4 & 2 \\ & 3 & 1 & 3 \\ \end{array}$$

Table 1: Dataset $\hat{\mathcal{D}}$

By initializing $w^{(0)} = 1$ and $\alpha = 0.1$, we perform one step update new weights w with equation 3

using the dataset $\hat{\mathcal{D}}$ in Table 1.

$$w^{(1)}(w^{(0)}) = w^{(0)} + 2\alpha \sum_{i=1}^{3} x_i (y_i - w^{(0)} x_i)$$

$$w^{(1)}(1) = 1 + 2 \times 0.1[1(2-1) + 2(4-2) + 3(1-3)]$$

$$= 1 - 0.2$$

$$= 0.8$$
(4)

1.2 Meta Learning

MAML consists of deriving task-specific weights (via conventional training), followed by a meta update. We update θ during the meta-update through aggregating each task-specific weights φ_j . Figure 2 shows the workflow of MAML for two tasks.

Figure 2: The workflow of key formulas used in MAML for two tasks.

1.2.1 Task-specific training

The task-specific training is conventional training on each j-th datasets \mathcal{D}_j , using data points from the support set S_j , except that we compute the task-specific model's weights φ_j instead of updating θ . In our example, φ_j is computed using one gradient update. We can rewrite the loss function and its gradients as:

$$\mathcal{L}_{\mathcal{S}_j}(f_{\theta}(x), y) = \sum_{\substack{(x_i^j, y_i^j) \in S_i}} (y_i^j - \theta x_i^j)^2$$

$$\tag{5}$$

$$\frac{\partial \mathcal{L}_{\mathcal{S}_j}(f_{\theta})}{\partial \theta} = -2 \sum_{(x_i^j, y_i^j) \in S_j} x_i^j (y_i^j - \theta x_i^j)$$
(6)

The task-specific weight with one gradient step is expressed as a function of initialization weight $\theta^{(0)}$ as:

$$\varphi_{j}(\theta^{(0)}) = \theta^{(0)} - \alpha \frac{\partial \mathcal{L}_{S_{j}}(f_{\theta})}{\partial \theta} \bigg|_{\theta = \theta^{(0)}}$$

$$= \theta^{(0)} + 2\alpha \sum_{(x_{i}^{j}, y_{i}^{j}) \in S_{j}} x_{i}^{j}(y_{i}^{j} - \theta^{(0)}x_{i}^{j})$$
(7)

where α is the task-specific learning rate and \mathcal{L}_{S_j} is the loss on the support set of dataset \mathcal{D}_j . **Remark 2:** For simplicity and readability of this report, we replace $\varphi_j(\theta^{(0)})$ with φ_j in the following sections.

1.2.2 Meta training

For meta training, the model f_{θ} is trained by optimising for the performance of f_{φ_j} with respect to θ across all tasks. Here,

$$f_{\varphi_j} = \varphi_j x \tag{8}$$

The meta-loss is calculated on the query set Q_j as the sum of task-specific losses after task-specific weight updates:

$$\sum_{j} \mathcal{L}_{Q_{j}}(f_{\varphi_{j}}) \tag{9}$$

and:

$$\mathcal{L}_{Q_j}(f_{\varphi_j}) = \sum_{\substack{(x_q^j, y_q^j) \in Q_j}} (y_q^j - \varphi_j x_q^j)^2$$
(10)

are the task-specific model and the MSE loss over query set Q_j .

The meta-optimisation across tasks is performed using SGD. The first step meta update are as follows:

$$\theta^{(1)} = \tilde{\theta}^{(0)} - \beta \frac{\partial}{\partial \theta^{(0)}} \sum_{j} \mathcal{L}_{Q_{j}}(f_{\varphi_{j}}) \bigg|_{\theta^{(0)} = \tilde{\theta}^{(0)}}$$

$$= \tilde{\theta}^{(0)} - \beta \sum_{j} \underbrace{\frac{\partial \mathcal{L}_{Q_{j}}(f_{\varphi_{j}})}{\partial \theta^{(0)}}}_{*} \bigg|_{\theta^{(0)} = \tilde{\theta}^{(0)}}$$
(11)

where β is the meta learning rate and $\tilde{\theta}^{(0)}$ is the initialization constant. The part of Eq. 11 marked with * can be calculated using the chain rule:

$$\frac{\partial \mathcal{L}_{Q_j}(f_{\varphi_j})}{\partial \theta^{(0)}} = \underbrace{\frac{\partial \varphi_j}{\partial \theta^{(0)}}}_{\dagger} \underbrace{\frac{\partial \mathcal{L}_{Q_j}(f_{\varphi_j})}{\partial \varphi_j}}_{\dagger}$$
(12)

Then, the gradient marked with (‡) is expressed by

$$\frac{\partial \mathcal{L}_{Q_j}(f_{\varphi_j})}{\partial \varphi_j} = -2 \sum_{(x_q^j, y_q^j) \in Q_j} x_q^j \left(y_q^j - \varphi_j x_q^j \right) \tag{13}$$

Using Eq. 7, the part of equation marked with † is calculated as follows:

$$\frac{\partial \varphi_j}{\partial \theta^{(0)}} = \frac{\partial \theta^{(0)}}{\partial \theta^{(0)}} + 2\alpha \sum_{(x_i^j, y_i^j) \in S_j} \frac{\partial}{\partial \theta^{(0)}} x_i^j (y_i^j - \theta^{(0)} x_i^j)$$

$$= 1 - 2\alpha \sum_{(x_i^j, y_i^j) \in S_j} \left(x_i^j\right)^2$$
(14)

Using Eq. 14 and 13, the Eq. 12 becomes as follows:

$$\frac{\partial \mathcal{L}_{Q_j}(f_{\varphi_j})}{\partial \theta^{(0)}} = \left(1 - 2\alpha \sum_{(x_q^j, y_q^j) \in S_j} \left(x_q^j\right)^2\right) \left(-2 \sum_{(x_q^j, y_q^j) \in Q_j} x_q^j (y_q^j - \varphi_j x_q^j)\right)$$
(15)

Remark 3: Eq. 14 is computed using the support set, since φ_j is derived using the support set.

1.3 Numerical example walkthrough

Here, we put our formulas derived using a numerical example.

Table 1.3 shows the data points from \mathcal{D}_1 and \mathcal{D}_2 .

\mathcal{D}_1	x	y	f_{θ}
Q_1	1	2	ı
S_1	2	4	2
	3	1	3

(a)) Dataset	\mathcal{D}
-----	-----------	---------------

\mathcal{D}_2	x	y	f_{θ}
Q_2	4	1	-
S_2	5	3	5
	6	0	6

(b) Dataset \mathcal{D}_2

Table 2: Two dataset \mathcal{D}_1 and \mathcal{D}_2 .

In our defined datasets, \mathcal{D}_1 consists of support set $S_1 = \{(2,4), (3,1)\}$ and query set $Q_1 = \{(1,2)\}$. Likewise, $S_2 = \{(5,3), (6,0)\}$ and $Q_2 = \{(4,1)\}$.

By initializing $\tilde{\theta}^{(0)} = 1$ and $\alpha = 0.1$, we can substitute data points (x_i^1, y_i^1) in S_1 and (x_i^2, y_i^2) in S_2 into equation 7, and compute task-specific weights for \mathcal{D}_1 and \mathcal{D}_2 respectively:

$$\varphi_{1}(\tilde{\theta}^{(0)}) = \tilde{\theta}^{(0)} + 2\alpha \sum_{(x_{i}^{1}, y_{i}^{1}) \in S_{1}} x_{i}^{1}(y_{i}^{1} - \tilde{\theta}^{(0)}x_{i}^{1})$$

$$\varphi_{1}(1) = 1 + 2 * 0.1(2(4 - 2) + 3(1 - 3))$$

$$= 1 - 0.4$$

$$= 0.6$$
(16)

$$\varphi_{2}(\tilde{\theta}^{(0)}) = \tilde{\theta}^{(0)} + 2\alpha \sum_{(x_{i}^{2}, y_{i}^{2}) \in S_{2}} x_{i}^{2}(y_{i}^{2} - \tilde{\theta}^{(0)}x_{i}^{2})$$

$$\varphi_{2}(1) = 1 + 2 * 0.1(5(3 - 5) + 6(0 - 6))$$

$$= 1 - 9.2$$

$$= -8.2$$
(17)

In our regression problem, the Eq. 15 can be solved by replacing the data points in Q_1 and Q_2 of each tasks as follows:

$$\frac{\partial \mathcal{L}_{Q_1}(f_{\varphi_1})}{\partial \theta^{(0)}} \bigg|_{\varphi_1 = 0.6} = (1 - 2(0.1)(2^2 + 3^2)) \cdot (-2(1)(2 - 1(0.6))) = 4.48$$
(18)

$$\frac{\partial \mathcal{L}_{Q_2}(f_{\varphi_2})}{\partial \theta^{(0)}}\Big|_{\varphi_2 = -8.2} = (1 - 2(0.1)(5^2 + 6^2)) \cdot (-2(4)(1 - 4(-8.2))) = 3028.48 \tag{19}$$

By setting $\beta = 0.5$ and $\tilde{\theta}^{(0)} = 1$, the new weight of model according to Eq. 11 becomes:

$$\theta^{(1)} = \tilde{\theta}^{(0)} - \beta \left(\frac{\partial \mathcal{L}_{Q_1}(f_{\varphi_1})}{\partial \theta^{(0)}} \bigg|_{\varphi_1 = 0.6} + \frac{\partial \mathcal{L}_{Q_2}(f_{\varphi_2})}{\partial \theta^{(0)}} \bigg|_{\varphi_2 = -8.2} \right)$$

$$\theta^{(1)} = 1 - 0.5(4.48 + 3028.48)$$

$$= -1515.48$$
(20)

The meta-update calculation gives us a large value of -295.32. For our simple problem statement, we can accept this result, since the data \mathcal{D}_1 and \mathcal{D}_2 are selected randomly and has no underlying assumption of the data following any distribution. For future verification, we may choose to select data points that follow a distribution.

2 General Formulation for Few Gradient Steps

In this section, we consider the case of performing k task-specific gradient steps, $k \ge 1$. Starting with the initial model weight $\theta^{(0)}$, the equation 7 is refined as:

$$\varphi_{j}^{(1)} = \theta^{(0)} - \alpha \frac{\partial \mathcal{L}_{S_{j}}(f_{\theta})}{\partial \theta} \Big|_{\theta = \theta^{(0)}}$$

$$\varphi_{j}^{(2)}(\varphi_{j}^{(1)}) = \varphi_{j}^{(1)} - \alpha \frac{\partial \mathcal{L}_{S_{j}}(f_{\theta})}{\partial \theta} \Big|_{\theta = \varphi_{j}^{(1)}}$$

$$\vdots$$

$$\varphi_{j}^{(k)}(\varphi_{j}^{(k-1)}) = \varphi_{j}^{(k-1)} - \alpha \frac{\partial \mathcal{L}_{S_{j}}(f_{\theta})}{\partial \theta} \Big|_{\theta = \varphi_{j}^{(k-1)}}$$

$$\theta = \varphi_{j}^{(k-1)}$$

$$\theta = \varphi_{j}^{(k-1)}$$
(21)

where k denotes the iteration number and $\varphi_j^{(k)}$ is the weight of task j updated after k gradient steps. We can also express Equation 21 recursively as a composite function:

$$W_j^{(k)}(\theta^{(0)}) = \varphi_j^{(k)} \circ \varphi_j^{(k-1)} \circ \dots \circ \varphi_j^{(2)} \circ \varphi_j^{(1)}(\theta^{(0)})$$
(22)

Then in the meta-learning, we need to update the meta-learning model weights.

2.1 Meta Training

In the meta training phase, the model f_{θ} (see Definition 1.2) is trained by optimising the kth updated of task-specific weights, $W_{j}^{(k)}(\theta^{(0)})$ obtained from equation 21. Therefore, the equations 8 and 10 are changed accordingly:

$$f_{W_j^{(k)}(\theta^{(0)})} = W_j^{(k)}(\theta^{(0)})x \tag{23}$$

The meta-loss is calculated on the query set Q_j as the sum of task-specific losses after kth task-specific weight updates:

$$\mathcal{L}_{Q_j}(f_{W_j^{(k)}(\theta^{(0)})}) = \sum_{(x_q^j, y_q^j) \in Q_j} (y_q^j - W_j^{(k)}(\theta^{(0)}) x_q^j)^2$$
(24)

In order to update the meta weights based on the task-specific weights, the equation 11 is refined as follows:

$$\theta^{(1)} = \tilde{\theta}^{(0)} - \beta \frac{\partial}{\partial \theta^{(0)}} \sum_{j} \mathcal{L}_{Q_{j}} \left(f_{W_{j}^{(k)}(\theta^{(0)})} \right) \bigg|_{\theta^{(0)} = \tilde{\theta}^{(0)}}$$

$$= \tilde{\theta}^{(0)} - \beta \sum_{j} \underbrace{\frac{\partial \mathcal{L}_{Q_{j}} \left(f_{W_{j}^{(k)}(\theta^{(0)})} \right)}{\partial \theta^{(0)}}}_{*} \bigg|_{\theta^{(0)} = \tilde{\theta}^{(0)}}$$

$$(25)$$

The equations 12, 13, 14 are changed as follows:

$$\frac{\partial \mathcal{L}_{Q_j} \left(f_{W_j^{(k)}(\theta^{(0)})} \right)}{\partial \theta^{(0)}} = \underbrace{\frac{\partial W_j^{(k)}(\theta^{(0)})}{\partial \theta^{(0)}}}_{\dagger} \underbrace{\frac{\partial \mathcal{L}_{Q_j} \left(f_{W_j^{(k)}(\theta^{(0)})} \right)}{\partial W_j^{(k)}(\theta^{(0)})}}_{\dagger} \tag{26}$$

Then, the gradient marked with (‡) is expressed by

$$\frac{\partial \mathcal{L}_{Q_j} \left(f_{W_j^{(k)}(\theta^{(0)})} \right)}{\partial W_j^{(k)}(\theta^{(0)})} = -2 \sum_{(x_q^j, y_q^j) \in Q_j} x_q^j \left(y_q^j - W_j^{(k)}(\theta^{(0)}) x_q^j \right)$$
(27)

Using Eq. 23, the part of equation marked with \dagger can be broken down further using the chain rule until we get a derivative wrt $\theta^{(0)}$:

$$\frac{\partial W_{j}^{(k)}(\theta^{(0)})}{\partial \theta^{(0)}} = \frac{\partial \varphi_{j}^{(k)}(\varphi_{j}^{(k-1)})}{\partial \varphi_{j}^{(k-1)}} \cdot \frac{\partial \varphi_{j}^{(k-1)}(\varphi_{j}^{(k-2)})}{\partial \varphi_{j}^{(k-2)}} \cdot \dots \cdot \underbrace{\frac{\partial \varphi_{j}^{(1)}}{\partial \theta^{(0)}}}_{\diamond}$$

$$= \prod_{\tau=1}^{k} \left(\frac{\partial \varphi_{j}^{(\tau)}(\varphi_{j}^{(\tau-1)})}{\partial \varphi_{j}^{(\tau-1)}} \right)$$

$$= \left(1 - 2\alpha \sum_{(x_{i}^{j}, y_{i}^{j}) \in S_{j}} \left(x_{i}^{j} \right)^{2} \right)^{k}$$
(28)

We expand \diamond below:

$$\frac{\partial \varphi_j^{(1)}}{\partial \theta^{(0)}} = \frac{\partial \theta^{(0)}}{\partial \theta^{(0)}} + 2\alpha \sum_{(x_i^j, y_i^j) \in S_j} \frac{\partial}{\partial \theta^{(0)}} x_i^j (y_i^j - \theta^{(0)} x_i^j)
= 1 - 2\alpha \sum_{(x_i^j, y_i^j) \in S_j} (x_i^j)^2$$
(29)

Appendix I: Glossary

Table 3: Notations for MAML simple example.

Indices:		
$\mid i \mid$	Sample index in support set	
$\mid q$	Sample index in query set	
$\mid j \mid$	Task index	
$\mid k \mid$	Task specific updates	
$\mid au$	Task specific update index	
Data and Dataset:		
\mathcal{D}	All data space	
$\mid \mathcal{D}_j \mid$	Dataset of task j	
$ig Q_j$	Query set of task j	
$\mid S_{j} \mid$	Support set of task j	
(x_i^j, y_i^j)	i-th input and target of j -th task in support set	
(x_q^j, y_q^j)	q-th input and target of j -th task in query set	
\mathcal{D}_{new}	Dataset of new task with a few samples	
Function:		
$\int f_w$	Single neuron model parameterised by w	
$\mid f_{ heta} \mid$	Single neuron model parameterised by θ	
Variables:		
$\mid w \mid$	Conventional SL model weights	
$\mid heta$	MAML model weights	
$\theta^{(0)}$	MAML Initialisation variable	
$\mid arphi_j \mid$	MAML task-specific weights for j -th dataset	
Constants:		
$w^{(0)}$	Conventional SL Initialisation weight	
$\mid ilde{ heta}^{(0)} \mid$	MAML Initialisation weight	
α	Task-specific learning rate	
β	Meta model learning rate	

References

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 1126–1135. PMLR, 2017.