A decision-analytic QSAR model for planning cannabinoid discovery activities

Cannabinoid-based drug discovery

Drugs to target human cannabinoid system:

- CB1 receptor:
 - Psychotropic effects
- CB2 receptor (CBR2):
 - Lack of CB1 receptor negative effects
 - Involves interesting biological pathways

Goal: Ligand discovery with certain properties that target CB2R

But entails high research and development costs!

Drug development

Traditional drug development

Objective

QSAR strategy implementation to identify CB2R. It consists of:

- Predictive stage
 - Combines 3 classifiers
 - Forecast behavior/activity properties
- Decision stage
 - Utility model
 - Consider costs/ benefits of design decisions.

Data collection

CBR2 ligands from ChEMBL public database:

- Behaviour: Agonist/ Antagonist
- o EC₅₀ bioactivity value
 - Inactive: $EC_{50} >= 10 \mu M$
 - Moderately active: $0.01 \, \mu M < EC_{50} < 10 \, \mu M$
 - Active: $EC_{50} \le 0.01 \,\mu\text{M}$ Active (Active)

• Compound $x \in \{AgAct, AgMod, AgIn, AntAct, AntMod, AntIn \}$

Data description

We split the data:

- $X_{internal}$ (90%) \Longrightarrow Predictive stage
- ullet $X_{external}$ (10%) \longrightarrow Decision stage

Compounds represented by:

- Mordred (997 features)
- BERT (787 features)

Class	$X_{internal}$	$X_{external}$	Total
AgAct	360	43	403
AgMod	899	103	1002
AgIn	93	7	100
AntAct	18	1	19
AntMod	105	7	112
AntIn	41	8	49

Bigger number of features than #c ompounds!!

Predictive stage

3 classifiers to forecast compound *x* properties:

- Behaviour:
 - o Model B: Agonists (y_1) vs Antagonists (y_2) $\bullet b(x) = p(y=y_1|x) \Longrightarrow 1-b(x) = p(y=y_2|x)$
- Activity:
 - \circ Model M: Mod. Active (w_1) vs Not mod. Active (w_2)

$$m(x) = p(y = w_1|x) \implies 1 - m(x) = p(y = w_2|x)$$

- Model A: Active (z_1) vs Inactive(z_2)
 - $a(x) = p(y = z_1 | x, w_2) \Longrightarrow 1 a(x) = p(y = z_2 | x, w_2)$

Predictive stage pipeline

Example: P(x = AgAct) = b(x)(1-m(x))a(x)

Calibration task

Focus on probability precision, not predicted label.

- Accuracy, recall, precision, F1- score not appropriate
- Alternatives:
 - Stratified Brier Score(BS).

$$BS^{+} = \frac{\sum_{y_{i}=1} \left(y_{i} - f(y_{i} \mid x_{i}) \right)^{2}}{N_{pos}} \qquad BS^{-} = \frac{\sum_{y=0} \left(y_{i} - f(y_{i} \mid x_{i}) \right)^{2}}{N_{neq}}$$

- Best value: 0 Worst value: 1
- o ROC-AUC.
 - Best value: 1 Worst value: 0

Imbalanced problem

• Split data:

 $\sim X_{train}$ (80%): Hyperparametrization + training

 $_{\circ}$ X_{test} (20%): Performance assessment

Stage	X_{train}		X_t	test	Total		
	0	1	0	1	0	1	
В	1085	127	267	37	1352	164	
M	803	409	201	103	1004	512	
A	304	105	74	29	378	134	

B: Agonists (1) vs Antagonists (0)

M: Mod. active (1) vs No Mod. active (0)

A: Inactive (1) vs Inactive (0)

- Imbalance data for each stage. To handle it:
 - Metric
 - Undersampling + Bag classifier

Undersampling

M compounds in majority class; N in minority

- Random undersampling
 - Consider all compounds from minority class and randomly select N from majority class
 - Way to obtain a balanced dataset

Bag classifier

BDS = Balanced data subset

Model performance

 Classifiers: KNN, Naive Bayes, AdaBoost, Gradient Boosting, Random Forest, Logistic Regression, SVM

Model	Model Feature	Classifian	BS +		BS -		ROC-AUC	
Model	reature	Classifier	Train	Test	Train	Test	Train	Test
В	BERT	Logistic Regression (l1 reg.)	0.03	0.08	0.08	0.09	0.99	0.96
M	Mordred	Random Forest	0.19	0.23	0.21	0.22	0.8	0.69
A	BERT	Logistic Regression (l1 reg.)	0.09	0.09	0.15	0.17	0.93	0.92

Decision stage

Given a compound x, select one of the actions: {synthesize, keep in portfolio,reject}.

	Active Agonist	Moderate Agonist	Inactive Agonist	Active Antagonist	Moderate Antagonist	Inactive Antagonist
	Best	Moderately good	Worst	Very good	Good	Worst
Synthesize	synthesizes compound. Great opportunity to identify hit and start med. chem. program. Hit to lead compound.	User starts a med. chem. program to improve the compound and possibly find a new family.	User synthesizes or study an inactive compound. Loss of time and money.	User starts new research line, quickly obtaining results to continue drug development.	User possibly starts new research line.	User synthesizes or study an inactive compound. Loss of time and money.

Depending on the compound type, the action is more or less appropriate.

Utility assessments

We identify ten different situations and codify them from best to worse:

$$1 > u_1 > u_2 > u_3 > u_4 > u_5 > u_6 > u_7 > u_8 > 0$$

		Active	Moderate	Inactive	Active	Moderate	Inactive
		Agonist	Agonist	Agonist	Antagonist	Antagonist	Antagonist
	Synthesize	1	u_3	0	u_1	u_2	0
Decision	Keep in portfolio	u_5	u_4	u_7	u_4	u_4	u_7
	Reject	u_8	u_7	1	u_6	u_5	1

Represent different preferences

		Active	Moderate	Inactive	Active	Moderate	Inactive
		Agonist	Agonist	Agonist	Antagonist	Antagonist	Antagonist
	Synthesize	1	u_3	0	u_1	u_2	0
Decision	Keep in portfolio	u_5	u_4	u_7	u_4	u_4	u_7
	Reject	u_8	u_7	1	u_6	u_5	1

Utility	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8
\mathcal{U}_1	0.1	0.09	0.08	0.07	0.06	0.05	0.02	0.01
\mathcal{U}_3	0.99	0.98	0.97	0.09	0.06	0.05	0.02	0.01

 \mathcal{U}_1 : Focus on determining active agonists

 \mathcal{U}_3 : Active and moderately active agonists are sought for

Expected utility

Compute each expected utility for each action $i \in \{\text{synthesize}, \\ \text{keep in portfolio}, \\ \text{reject}\}.$

$$\psi(i|x) = \sum_{i=1}^{6} u_{ij} p(j|x)$$
 j \in {AgAct, AgMod, AgIn, AntMod, AntIn }

Choose action with the maximum expected utility:

$$i^*(x) = \arg\max_{i} \psi(i|x)$$

Results

 \mathcal{U}_1

Davis			Compoun	d type		
Decision	AgAct	AgMod	AgIn	AntAct	AntMod	AntIn
Synthesize	$37.2\pm(0.75)$	$53.1\pm(2.02)$	$2.0\pm(0.63)$	$0.0\pm(0.0)$	$1.6\pm(0.49)$	$0.7\pm(0.78)$
Keep in portfolio	$0.0 \pm (0.0)$	$0.0 \pm (0.0)$	$0.0 \pm (0.0)$	$0.0 \pm (0.0)$	$0.0 \pm (0.0)$	$0.0 \pm (0.0)$
Reject	$5.8 \pm (0.75)$	$49.9 \pm (2.02)$	$5.0 \pm (0.63)$	$1.0 \pm (0.0)$	$5.4 \pm (0.49)$	$7.3\pm(0.78)$
Total compounds	43	103	7	1	7	8

Discussion

QSAR model to speed cannabinoid-based drug discovery.

 Consider compounds properties and costs/ benefits of design decisions.

Significant profits in terms of time and money.