

AWS

5 U M M I T

Scalable Deep Learning on AWS using Apache MXNet

Julien Simon, Principal Technical Evangelist julsimon@amazon.com
@julsimon

Agenda

- Al: The Story So Far
- Applications of Deep Learning
- Apache MXNet Overview
- Apache MXNet API
- Code and Demos
- Tools and Resources

Al: The Story So Far

Where is HAL?

Machine Learning is now a commodity, but still no HAL in sight

 Traditional Machine Learning doesn't work well with problems where features can't be explicitly defined

 So what about solving tasks that are easy for people to perform, but hard to describe formally?

Is there a way to get informal knowledge into a computer?

Neural Networks, Revisited

- Universal approximation machine
- Through training, a neural network discovers features automatically
- Not new technology!
 - Perceptron Rosenblatt, 1958
 image recognition, 20x20 pixels
 - Backpropagation Werbos, 1975
- They failed back then because:
 - Data sets were too small
 - Solving large problems with fully connected networks required too much memory and computing power, aka the Curse of Dimensionality

Why It's Different This Time

Everything is digital: large data sets are available

- Imagenet: 14M+ labeled images http://www.image-net.org/
- YouTube-8M: 7M+ labeled videos https://research.google.com/youtube8m/
- AWS public data sets https://aws.amazon.com/public-datasets/

The parallel computing power of GPUs make training possible

- Simard et al (2005), Ciresan et al (2011)
- State of the art networks have hundreds of layers
- Baidu's Chinese speech recognition: 4TB of training data, +/- 10 Exaflops

Cloud scalability and elasticity make training affordable

- Grab a lot of resources for fast training, then release them
- Using a DL model is lightweight: you can do it on a Raspberry Pi

Applications of Deep Learning

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Same breed?

Autonomous Driving Systems

Amazon Echo

Apache MXNet Overview

Apache MXNet

Programmable

Simple syntax, multiple languages

Portable

Highly efficient models for mobile and IoT

High Performance

Near linear scaling across hundreds of GPUs

Most Open

Accepted into the Apache Incubator

Best On AWS

Optimized for deep learning on AWS

Deep Learning Framework Comparison

	Apache MXNet	TensorFlow	Cognitive Toolkit
Industry Owner	N/A – Apache Community	Google	Microsoft
Programmability	Imperative and Declarative	Declarative only	Declarative only
Language Support	R, Python, Scala, Julia, Cpp. Javascript, Go, Matlab and more	Python, Cpp. Experimental Go and Java	Python, Cpp, Brainscript.
Code Length AlexNet (Python)	44 sloc	107 sloc using TF.Slim	214 sloc
Memory Footprint (LSTM)	2.6GB	7.2GB	N/A

Multi-GPU Scaling With MXNet

Multi-Machine Scaling With MXNet

Apache MXNet API

Apache MXNet | The Basics

- **NDArray**: Manipulate multi-dimensional arrays in a command line paradigm (imperative).
- Symbol: Symbolic expression for neural networks (declarative).
- *Module*: Intermediate-level and high-level interface for neural network training and inference.
- Loading Data: Feeding data into training/inference programs.
- Mixed Programming: Training algorithms developed using NDArrays in concert with Symbols.

https://medium.com/@julsimon/an-introduction-to-the-mxnet-api-part-1-848febdcf8ab

Imperative Programming

```
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
d = c + 1
```

Easy to tweak in Python

PRO

- S Straightforward and flexible.
- Take advantage of language native features (loop, condition, debugger).
- E.g. Numpy, Matlab, Torch, ...

CONS

Hard to optimize

Declarative Programming

because C is deleted later

PRO

S

- More chances for optimization
- Cross different languages
- E.g. TensorFlow, Theano, Caffe

CONS

Less flexible

MXNet Symbol API

Demo #1 — Training MXNet on MNIST

https://medium.com/@julsimon/training-mxnet-part-1-mnist-6f0dc4210c62 https://github.com/juliensimon/aws/tree/master/mxnet/mnist

Tools and Resources

AWS Deep Learning AMI

Up to~40k CUDA cores

Apache MXNet

TensorFlow

Theano

Caffe

Torch

Keras

Pre-configured CUDA drivers, MKL

Anaconda, Python3

Ubuntu and Amazon Linux

+ CloudFormation template

+ Container Image

One-Click GPU or CPU Deep Learning

Additional Resources

MXNet Resources

- MXNet Blog Post | AWS Endorsement
- Read up on MXNet and Learn More: mxnet.io
- MXNet Github Repo
- MXNet Recommender Systems Talk Leo Dirac

AWS Resources

- Deep Learning AMI Amazon Linux
- Deep Learning AMI Ubuntu
- CloudFormation Template Instructions
- Deep Learning Benchmark
- MXNet on Lambda
- MXNet on ECS/Docker

-00000000000000 **=**0000000000000 00000000000000

AWS

5 U M M I T

Thank You!

julsimon@amazon.com @julsimon

000

0

0

000

000000000000

0000000000000