Answer the following questions

What algorithm?

- Deep Q Network, a model free RL algorithm.
- o Learns the value in a particular state.
- Specific variant: involves experience replay and a deep CNN.

• What sort of data structures and classes will we need?

- o Input:
 - Take maximum value for each pixel color value over the frame being encoded and the previous frame.
 - Extract Y channel, that is Luminance, from RGB frame to rescale to 84 x 84.
- DQN class, for Deep Q network.
- o ReplayMemory class, memory representation for agent.
- o Agent Class, performs, remembers, and learns actions.
- Create a separate py file for the environment.
- Create a separate py file for settings.

What model architecture?

- Architecture:
 - Input: 84 x 84 x 4 image produced by pre-processing map psi.
 - First hidden layer convolutional, 32 filters of 8 x 8, with stride 4. Rectifier nonlinearity.
 - Second hidden layer convolutional, 64 filters of 4 x 4, stride 2. Rectifier nonlinearity.
 - Third hidden layer convolutional, 64 filters of 3 x 3. Stride 1. Rectifier nonlinearity.
 - Final hidden layer fully connected. 512 rectifier units.
 - Output layer fully connected. Single output for each valid action. Valid actions varied between 4 and 18.
- Training Details
 - 49 Atari games.
 - A different network for each game. However, the architecture was not changed.
 - Reward clipping.
 - Positive rewards clipped at 1.
 - Negative rewards clipped at -1.
 - 0 rewards unchanged.
 - If there is a live counter, Atari emulator sends the number of lives at the end of the game. This signal was used to mark the end of the episode during training.

What are the hyper parameters:

- Mini batch size 32
- Replay memory size 1,000,000
 - 50,000 frames takes up about 17GB or RAM. Scale accordingly. I have 32 GB, but I only want to use up to 16 GB
- o Agent history length 4
- Target network update frequency 10,000

- o Discount factor 0.99
- o Action repeat 4
- o Update frequency 4
- o Learning rate 0.00025
- o Gradient momentum 0.95
- o squared gradient momentum 0.95
- o min squared gradient 0.01
- o initial exploration 1
- o final exploration 1,000,000
- o no-op max 30
- What general results will we get?
 - o Trained on 49 different Atari games.
 - o Expect a score of 75% of what a human will score on 50% of the games.
 - o Expect a score better than any other RL algorithm can achieve.