中国农业大学

2015~2016 学年春季学期 (2016. 6) 高等数学 A (下) 课程考试试题

(注意:本试卷共有八道大题,满分100分,考试时间100分钟)

-,	填空题(共5道小题,每小题3分,满分15分),请将答案填在横线上.
1.	设函数 $z = z(x,y)$ 由方程 $\sin x + 2y - z = e^z$ 所确定,则 $\frac{\partial z}{\partial x} =$
2.)	旋转抛物面 $z = x^2 + y^2 - 1$ 在点 $(2,1,4)$ 处的切平面方程是
3.	设 L 为圆 $x^2 + y^2 = 1$,取逆时针方向,则 $\oint_L -ydx + xdy = $
4.	设 $f(x)$ 为连续函数, $F(t) = \int_{1}^{t} dy \int_{y}^{t} f(x) dx$,则 $F'(2) =$
5.	设 $f(x)$ 是周期为 2π 的奇函数,满足狄利克雷(Dichilet)充分条件, 且 $f(x)$ 的傅里
叶级	及数展开式为 $f(x) = \sum_{n=1}^{\infty} b_n \sin nx$,且 $\sum_{n=1}^{\infty} b_n^2 = C$,则 $\int_{-\pi}^{\pi} f^2(x) dx = \underline{\qquad}$.
二、	单项选择题(共 5 道小题,每小题 3 分,满分 15 分),请将合适选项填在括号内.
1.	函数 $z = 2x^3 + y^2$ 在点(1, 2)的梯度为()
	(A) $6i+2j$. (B) $4i+6j$. (C) $6i+4j$. (D) 10.
2.	二次积分 $\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$ 在极坐标系下先对 r 积分的二次积分为 ()
	(A) $\int_0^{\pi} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) r dr$. (B) $\int_0^{\pi} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) dr$.
	(C) $\int_0^{2\pi} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) r dr.$ (D) $\int_0^{2\pi} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) dr.$

- 二元函数 f(x,y) 在(0,0) 点可微的一个充分条件是(
 - (A) $\lim_{(x,y)\to 0} f(x,y) f(0,0) = 0$.

(B)
$$\lim_{x\to 0} \frac{f(x,0) - f(0,0)}{x} = 0$$
, $\lim_{y\to 0} \frac{f(0,y) - f(0,0)}{y} = 0$.

(C)
$$\lim_{(x,y)\to 0} \frac{f(x,y) - f(0,0)}{\sqrt{x^2 + y^2}} = 0.$$

- (D) $\lim_{x\to 0} [f'_x(x,0) f'_x(0,0)] = 0$, $\lim_{y\to 0} [f'_y(0,y) f'_y(0,0)] = 0$.
- 下列级数中,条件收敛的是(

(A)
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{n}{\sqrt{2n^3+4}}$$
. (B) $\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \left(\frac{2}{3}\right)^n$. (C) $\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{1}{n^2}$. (D) $\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{1}{n2^n}$.

- 设线性无关的函数 y_1, y_2, y_3 都是二阶非齐次线性方程 y'' + p(x)y' + q(x)y = f(x) 的
- 解, c_1,c_2 是任意常数,则该非齐次线性方程的通解是(

(A)
$$c_1 y_1 + c_2 y_2 + y_3$$
.

(B)
$$c_1y_1 + c_2y_2 - (c_1 + c_2)y_3$$
.

(C)
$$c_1 y_1 + c_2 y_2 - (1 - c_1 - c_2) y_3$$

(C)
$$c_1y_1 + c_2y_2 - (1 - c_1 - c_2)y_3$$
. (D) $c_1y_1 + c_2y_2 + (1 - c_1 - c_2)y_3$.

三、(本题满分 10 分)设函数 $z = xy + f(xy, \frac{x}{y})$,函数 f 具有二阶连续的偏导数,求 $\frac{\partial^2 z}{\partial r \partial y}$.

四、(本题满分 12 分) 求常数 a ,使 $\frac{(ax+y)dx-(x+y)dy}{x^2+y^2}$ 是右半平面 (x>0) 内某个 函数 u(x, y) 的全微分, 并求 u(x, y).

五、(本题满分 12 分) 计算曲面积分 $I = \iint\limits_{\Sigma} (8y+1)xdydz + 2(1-y^2)dzdx - 4yzdxdy$

其中 Σ 是由曲线 $\begin{cases} z = \sqrt{y-1} \\ x = 0 \end{cases}$ $(1 \le y \le 3)$ 绕 y 轴旋转一周所成的曲面,它的法向量与 y

轴正向的夹角恒大于 $\frac{\pi}{2}$.

六、(本题满分 12 分)

(1) 求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$$
 的和函数; (2) 求级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1}$ 的和.

七、(本题满分 12 分) 将给定的正数 m 分成三个非负数 x, y, z 之和,使 $x^a y^b z^c$ 最大, 其中 a, b, c 为给定的正数 ,并证明 $\sqrt[3]{xyz} \le \frac{1}{3}(x+y+z)$.

八、(本题满分 12 分) 设 f(0)=0, $f'(x)=\cos x-\int_0^x f(t)dt$, 其中 f 为连续函数, 求 f(x). 第2页,共2页