

Natural Computation Methods in Machine Learning (NCML)

Lecture 12: Evolutionary Computing 2

Neuroevolution

- Genetic algorithms can be used to evolve, rather than train, artificial neural networks
 - This is one of the most common applications of GAs
- Not only to find weight values. We can also evolve
 - Structure
 - Size
 - Activation functions
 - Other meta-parameters
- Current popular method: NEAT
 - NeuroEvolution of Augmented Topologies
 - Many cool application examples on YouTube

Neuroevolution

- Could combine the two forms of learning (evolutionary and neural)
 - Evolve networks, but also train the individuals using conventional neural network algorithms
 - From the GAs perspective, the ANN training is then part of the evaluation of individuals
 - From the ANNs perspective, the GA provides initial network configurations (instead of just randomizing weights)
 - ≈ Lamarckian evolution: The old idea (before Darwin), that learned experience can be inherited No-longer-to-be-ridiculed
- EC does not have to follow natural laws!
 - If you want to have more than two parents, or Lamarckian evolution, by all means, go for it
 - But maybe first consider why nature did <u>not</u> choose this solution

Crossover for training ANNs

is very difficult to define in a non-destructive way

- Two networks that solve the same problem approximately equally well, have probably found very different solutions
 - Their weights are likely to be very different
 - Their 'knowledge' is distributed over all of them
- We can think of crossover as swapping some of the weights between network A to network B
 - Do they still have the same meaning in the other network? (No, not likely)
- The naïve approach with one- or two point crossover is not likely to work (any better than random search)
- There are, of course, many suggested solutions
 - Sorting the hidden nodes actually helps a fair bit
 - Study NEAT for a better (but more complex) solution

EC issues

Some of which are still open to debate

- Generational or steady state
 - Different time scales
 - The previous lecture presented the generational view
 - Each lap in the loop replaces the whole population
 - Steady state is more careful
 - Each lap in the loop is to add/modify one or two individuals
- Population size, constant or variable?
 - If variable, how?
- Introns ('junk DNA'), useful or not?
- The importance of mutation
- Is crossover really constructive or just some kind of mutation macro?

EC issues

Some of which are still open to debate

- Crossover moves parts of genotypes
 - Finding a good encoding for this is difficult
 - Is a substring moved from A to B still meaningful in B?
 - The encoding and the crossover operator should always be designed together, and with a strong focus on this question
- Evaluation (the fitness function) should be simple and efficient
 - This is where EC spends most computation time
 - Good argument against the Lamarckian idea above
 - Is it always necessary to evaluate the whole population every generation?

Genetic Programming

- In GP, genotypes are expressions in a programming language
- Semi-automatic programming
- The most common approach: Operate on representations of parse-trees (Koza, 1990)
- Example: The expression 5 + 3x

As a parse tree

Crossover in GP

Swap randomly selected sub-trees

Parent A: $5 + 4*\sin(x)$

In Lisp: $(+ 5 (* 4 (\sin x)))$

Parent B: 2*(3x+5)

In Lisp: (*2 (+ (*3 x) 5))

Offspring:
$$5 + 4 * 3 * x$$

$$2*(\sin(x) + 5)$$

Mutation in GP Huge number of variants

- Terminal node mutation
 - Replace a terminal with another terminal
- Swap mutation
 - Swap the arguments of a function
- Grow mutation
 - Replace a node by a new random subtree
- Trunc or Cut mutation
 - Replace a non-terminal node with a terminal
- Gaussian mutation
 - Jog a constant

•

Function approximation in GP A very simplified example

Task: Given a training set, discover the function

$$f(x) = x + x^2 + x^3 + x^4$$
, for $x \in [-1,1]$

- A neural network would do a *numerical* approximation
- GP is a *combinatorial* method it should be able to find the exact function
 - if given the building blocks required to express that function

Function approximation in GP A very simplified example

- Create a population of random expressions, y(x), using the functions +, -, *, /, \sin , \cos , \exp and \log , and the terminals 1 and x
- Many lures (exp in particular)
- Fitness: 0 if illegal expression, else 1/(d+1), where d = |f(x) - y(x)|
- This way, fitness will stay in [0,1])

Test run (100 individuals)

Target Languages

- Any language can be used
 - but Lisp is particularly suitable (functional, syntax, untyped)
- Assembler/machine code
 - e.g. AIM-GP (Nordin et al, 1997)
 - Assembler instructions = integers (so GA can be used)
 - Very efficient evaluation
 - 1. Store the expression in an unsigned integer array
 - 2. Cast it to a function pointer, and just call it
 - RedCode (Core War)
- Most methods are specialized for their language
- Decision trees! (common application)
- Computer network protocols
- See <u>geneticprogramming.com</u> for an overview

Grammatical Evolution

Ryan & O'Neill, 1998

- GP methods often specific to their target language
- Grammatical Evolution is language independent
 - It takes a BNF grammar as input,
 - and can therefore generate programs in any language
- The genotype is just a sequence of numbers
 - For example, 8-bit integers: 25, 11, 4, 16, 13, ...
 - So, it's actually GA, not GP (by Koza's definition)
 + two extra, GE-specific operators
 - How to map a sequence of integers to an expression, given a grammar?

BNF grammar

Genotype: A sequence of integers ex) **25**, 11, 4, 16, 13, ...

 $25 \mod 3 = 1 \rightarrow "<\text{num}><\text{op}><\text{num}>"$


```
BNF grammar
<expr> ::= <num> | <num> <op> <num> | preop>(<num>)
        <num> ::= 7 | 17 | 42
        <op> ::= + | -
        preop> ::= sin | cos | exp
```

11 mod 3 = 2
$$\rightarrow$$
 "42 "

BNF grammar

$$4 \mod 2 = 0 \rightarrow "42 + < num > "$$

BNF grammar

$$16 \mod 3 = 1 \rightarrow "42 + 17"$$

$$[25, 11, 4, 16, 13, ...] \rightarrow "42+17"$$

- The rest of the genotype (13, ...) is not used
 - Introns ...
- Wrap around if the sequence is too short
 - The first integers (now reused) are likely to produce a different expression this time, since we are now in a different point in the grammar
 - an advantage in this case
 - but also the source of the big problem with GE
- Evolve the string using Genetic Algorithms
 - Two additional GE specific operators Prune and Duplicate

The problem

with Grammatical Evolution

- We usually strive for 'locality' in EC
 - Similar genotypes should produce similar phenotypes
- This is not the case in GE
 - The meaning of codons (the integers) is extremely context dependent
 - This makes conventional crossover very destructive
 - A subsequence moved from A to B will almost certainly <u>not</u> generate the same expression in B
 - There are suggested solutions to this, of course
- More recent variant Grammatical Swarm
 - Same basic idea, but trained by Particle Swarm
 Optimization (Lecture 14) instead of GA
 - There is no crossover in PSO ...

Challenges in GP

- How and when to define new functions
 - Encapsulation of knowledge, to prevent its destruction
 - For example ADF (Automatically Defined Functions)
- How to deal with types, if-statements, etc.
- GP is a Software Engineering nightmare!
 - Would you want to review the code produced?
- Does it scale?
 - the search space is enormous!
 - a valid concern also for EC in general
- Personal thought (feel free to disagree):
 - Scalability requires constructive crossover!
 - Without it, EC is close to random search
 - and arguably not 'evolutionary' at all, but that's just a name
 - Crossover is indeed difficult, so it's tempting to move away from it, as some branches of EC has, but I think that's a dead end

 (a local optimum in the search for scalable methods)