	Nome - Adhyan Dhyani Class - 4m Sem, CSE Date. Roll no - 20-4.			
	DAA - Totorial - 2			
91				
Ans	i=1 $i=1$			
/102	= $j=2$ $j=1+2=3$			
	1=3 1= 3+3 = 1+2+3			
	j=k j=1+2+3+ · · · k			
	as irn			
	Sum of K consecutive integers = K(k+1)			
	$\frac{1}{K(k+1)} < n$			
	2			
	$K^2+K< n$			
	2			
	Afters removing const.			
	$K^{2} < n \Rightarrow K < \sqrt{n}$ $T(n) = O(\sqrt{n}) f_{n}$			
	:. T(n) = 0 (Tn) fr			
02				
Ans2				
	- Recurrence relation of fibonacci series			
	T(n) = T(n-1) + T(n-2) + 1			

Date. Page No. Tin) AAA (n-1 X Th-41 T(n-5) 1(n-5) 1 (27-1) complexity

	Date Page No
984	$T(n) = \alpha T(n/2) + cn^2$
Sol	Using master's
	a 2 2, b 2 2
	nogba
	$\frac{109,2}{n}=n$
	J(n) 7 n2
	T(n) = f(n) $= f(n)$
0/6	- Aus
Sol Sol	i i
	1,2,3, · n times
	3 / hmes
	1,2 n/3 hmes
	n I time

Date. Page No. (n) = n+y2+n/3+n/4---= n(1+1/2+1/3 - - - 1/n T(n) = n(logn) T(n) = 2,2k2k2 - 2K we know 2 klogk (logn) = 2 logn = n : Total iteration will be :-= logk(log(n))T(n) = O(logk(logh)) Am. a) |00 < |09 (logn) < log (n) = |09 2n < 5n < 109 (n) < n < 2n < 4n < 2n <

	Date Page No
<i>b</i>	$\frac{1 \left(\log \left(\log \left(n_{1} \right) + \sqrt{\log n} + \log n + \log n \right) \right)}{\left(2\log n_{1} + n + 2n + 4n + 2n \right)}$ $\frac{1 \left(\log \left(n_{1} \right) + 2n + 2n + \log n + \log n \right)}{\left(\log \left(n_{1} \right) + 2n + 2n + 2n \right)}$
c>	96 < log s(n) < log (n) < 5 n < nlog s(n) < nlog n < n! < log n! < 82n.
O3 Solh	1) O (logn)
	-> Binary search -> Finding largest smallest number in binary search kee
	n) O (nlogn)
	→ Merge sort
	grick sort
	1117 log(logn)

Date. Page No. / INV 1=2; 1 = n; i = pow (1,e) int i=0; icn; i++)

for (int j=0; j<n; j++) // o (1) expression when the given array is already sorted and you are talking the 1st or the

Date	
Page No.	

last element as key element then it is worst case of quicksort.

T(n) = T(n) + T(n) + Cn For worst case C = constant

 $n_1 = 0 \qquad \qquad n_2 = n-1$

T(n) = T(0) + T(n-1) + cnT(n) = T(n-1) + cn

 $n-1 \longrightarrow Cn$

0 (n-4) -7 c (n-3)

· (

Date.
Page No.

$$C[n+(n-1)+(n-2)+(n-3)+--1]$$

$$= n(n^{2}+1)$$

$$=\frac{h^2+y}{2}$$