Poítání dvma zpsoby

Vojtch ára, Marek Doua

November 11, 2020

Abstract: urím njakou veliinu dvma zpsoby, dám je dohromady a dostanu tak explicitní vzorec pro danou

Poet hran symetrického bipartitního grafu je $(\frac{n}{2})^2$

Pozorování: grafy bez C_3 mohou mít a kvadraticky mnoho hran vzhledem k |v|.

Pokud graf G na n vrcholech neobsahuje C_4 jako podgraf, potom má nejvýe $\frac{1}{2}(n^{\frac{3}{2}}+n)$ hran.

Spoítáme dvma zpsoby poet vidliek P_3 . Pokud zafixuji dva vrcholy, tak vidím, e vidliek je maximáln tolik kolik je dvojic rzných vrchol - $\#vidliek \leq \binom{n}{2}$.

Zárove meme vybírat dvojice sousedních vrchol kadého vrcholu - ty také tvoí vidliky a tímto zpsobem také

sumou pes vechny vrcholy dojdeme k celkovému potu vidliek. $\#vidliek = \sum_{v \in V} {deg(v) \choose 2}$ Dosazením do rovnosti je $\sum_{v \in V} {deg(v) \choose 2} \le {n \choose 2} = \sum_{v \in V} (def(v) - 1)^2 \le n^2$ Cauchy Schwartzova nerovnost $(\langle x|y \rangle \leq ||x|| * ||y||).$

x = deg(v1) - 1, deg(v2) - 1, ..., deg(vn) - 1 y = 1, 1, 1, ..., 1 ikovn zvolím x a y, t.. mi vyjde $\langle x|y \rangle = 1$ $\sum_{i=n} deg(i) - 1 = 2 * |E| - n$

 $||x||=\sqrt{\sum_{i=n}deg(i)-1}\leq \sqrt{n^2}=n$ z rovnice co nám vyla díve $||y||=\sqrt{\sum_{i=n}1^2}=\sqrt{n}$ vycházi $2*|E|-n \le n*\sqrt{n}$, tedy e poet hran je maximáln $\frac{1}{2}(n^{3/2}+n)$

 $A, B \subseteq X$ nezávislé ... $A \subseteq B \land B \subseteq A$

Antietzec / nezávislá mnoina $Y \subseteq P(X) : \forall A, B \in Y$ jsou A, B navzájem nezávislé.

Spernerova Vta:

Kadý mnoinový systém vybudovaný na n prv
cích má nejvýe $\binom{n}{n/2}$ nezávislých podmnoin.

Oznaíme M nejvtí antietzec v (S,\subseteq) kde $S\subseteq P(X), |x|=n$. $m=\{M_1,M_2,...,M_k\}$. Dvma zposby spoítejme #(M,), kde $M \in m$ a je maximální etzec obsahující M.

Pozorování: $\#(M,) \le \# \le n!$ protoe k jednomu lze doplnit nanejvý jedno M. etzc je maximáln tolik, kolik je rzných uspoádání.

Druhý zpsob:

Pozorování - kadou mnoinu M lze nalézt v nejvýe |M|!(n-|M|)! etzcích. Nakreslíme-li obsahující M.

$$\emptyset = M_0, M_1, ..., M_i = M, ..., M_n = X$$

.
$$\#(M,) = \sum_{M \in m} |M|!(n - |M|)!$$

$$\sum_{M \in m} |M|!(n - |M|)! \le n!$$

$$\sum_{M \in m} \frac{|M|!(n - |M|)!}{n!} \le -1$$

$$1 \ge \sum_{M \in m} \binom{n}{|M|}^{-1} \ge \sum_{M \in m} \binom{n}{\frac{n}{2}}^{-1} = |m| \binom{n}{\frac{n}{2}}^{-1}$$

Poslední krok: $\Rightarrow |m| \le {n \choose \frac{n}{2}}$

Vta nám umonuje testovat ásteném uspoádání na celém grafu.

Míra souvislosti graf

Meme pevést na jednoduí úlohu podrozdlením grafu na více ástí. Definice: eknme, e $S\subseteq V_0$ je vrcholový ez (separátor) pokud G§je nesouvislý. Vrcholová souvislost neprázdného grafu F je $K_{v(G)}=min|S|, kdeSjevrcholovez, G\neq K_n$ neboli nejmení poet vrchol, který u graf udlá nesouvislý. Graf je tsouvislý pokud $K_v(G)\geq t$ Jak se souvislost mní na podgrafech? Pokud má stejn vrchol, tak má podgraf \leq souvislost. Pokud má mén, tak o nm nemohu íct nic. $K_v(G)\leq \min \deg(n)$ Hranová souvislost \neq Vrcholová souvislost. # Hranových ez \geq # vrcholových ez.