ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

L, LENIKOA VAKEIOA

ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ»

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚΔΟΣΗΣ

Η επανέκδοση του παρόντος βιβλίου πραγματοποιήθηκε από το Ινστιτούτο Τεχνολογίας Υπολογιστών & Εκδόσεων «Διόφαντος» μέσω ψηφιακής μακέτας, η οποία δημιουργήθηκε με χρηματοδότηση από το ΕΣΠΑ / ΕΠ «Εκπαίδευση & Διά Βίου Μάθηση» / Πράξη «ΣΤΗΡΙΖΩ».

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΛΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΔΑΜΙΑΝΟΥ ΧΑΡΑΛΑΜΠΟΣ ΣΒΕΡΚΟΣ ΑΝΛΡΕΑΣ

Η συγγραφή και η επιστημονική επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού Ινστιτούτου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

Γ΄ Τάξη Γενικού Λυκείου

ΓΙΑ ΤΟ ΜΑΘΗΤΗ

Το τεύχος που κρατάς έχει μια ιδιομορφία: σου δίνεται με τη σύσταση να μη το διαβάσεις τουλάχιστο με την έννοια που διαβάζεις ένα άλλο βιβλίο για να κατανοήσεις το περιεχόμενό του.

Πράγματι, οι ασκήσεις που σου δίνει ο καθηγητής σου είναι για να εργαστείς μόνος. Γιατί το να λύσεις μια άσκηση σημαίνει πολλές φορές όχι μόνο ότι έχεις κατανοήσει την αντίστοιχη θεωρητική ύλη αλλά και ότι ξέρεις να τη χρησιμοποιήσεις για να δημιουργείς, να ανακαλύπτεις ή να επιβεβαιώνεις κάτι καινούργιο. Και αυτό έχει ιδιαίτερη σημασία για σένα τον ίδιο. Δεν μπορεί παρά να έχεις και συ τη φιλοδοξία να λύνεις μόνος χωρίς βοήθεια τις ασκήσεις, για να νιώθεις τη χαρά αυτής της δημιουργίας, της ανακάλυψης.

Πρέπει να ξέρεις ότι όταν δυσκολεύεσαι στη λύση μιας άσκησης, τις πιο πολλές φορές υπάρχει κάποιο κενό στη γνώση της αντίστοιχης θεωρίας. Πήγαινε πίσω λοιπόν στο διδακτικό βιβλίο κάθε φορά που χρειάζεται να εντοπίσεις και να συμπληρώσεις τέτοια κενά. Οπωσδήποτε πριν καταπιαστείς με τη λύση των ασκήσεων πρέπει να αισθάνεσαι κάτοχος της θεωρίας που διδάχτηκες.

Εκτός από την κατανόηση της θεωρίας μπορεί να βοηθηθείς στη λύση μιας άσκησης από τα παραδείγματα και τις εφαρμογές που περιέχει το διδακτικό σου βιβλίο. Αν παρόλ' αυτά δε μπορείς να προχωρήσεις, στο τέλος του βιβλίου σου θα βρεις μια σύντομη υπόδειξη που ασφαλώς θα σε διευκολύνει.

Στις ελάχιστες περιπτώσεις που έχοντας εξαντλήσει κάθε περιθώριο προσπάθειας δε βρίσκεται η πορεία που οδηγεί στη λύση της άσκησης τότε και μόνο τότε μπορείς να καταφύγεις σ' αυτό το τεύχος και μάλιστα για να διαβάσεις εκείνο το τμήμα της λύσης που σου είναι απαραίτητο για να συνεχίσεις μόνος.

Ουσιαστικά λοιπόν δεν το 'χεις ανάγκη αυτό το τεύχος. Σου παρέχεται όμως για τους εξής λόγους:

- α) Για να μπορείς να συγκρίνεις τις λύσεις που εσύ βρήκες.
- β) Για να σε προφυλάξει από ανεύθυνα «λυσάρια».
- γ) Για να απαλλάξει τους γονείς σου από αντίστοιχη οικονομική επιβάρυνση.
- δ) Για να έχεις εσύ και οι συμμαθητές σου την ίδια συλλογή ασκήσεων που είναι έτσι επιλεγμένες ώστε να εξασφαλίζουν την εμπέδωση της ύλης.
- ε) Για να εργάζεσαι χωρίς το άγχος να εξασφαλίσεις οπωσδήποτε για κάθε μάθημα τις λύσεις των ασκήσεων.

Το τεύχος που κρατάς είναι λοιπόν φίλος. Να του συμπεριφέρεσαι όπως σ' έναν φίλο που έχει δει πριν από σένα την ταινία που πρόκειται να δεις' μη του επιτρέψεις να σου αποκαλύψει την «υπόθεση» πριν δεις και συ το έργο. Μετά μπορείτε, να συζητήσετε. Η σύγκριση των συμπερασμάτων θα είναι ενδιαφέρουσα και προπαντός επωφελής.

(Από το Τμήμα Μ.Ε. του Π.Ι.)

1.1 ΣΥΝΑΡΤΗΣΕΙΣ

Α΄ ΟΜΑΔΑΣ

1.
$$f(1) = 1^3 - 3 \cdot 1 = 1 - 3 = -2$$

$$f(2) = 2^3 - 3 \cdot 2 = 8 - 6 = 2$$

$$f(-1) = (-1)^3 - 3(-1) = -1 + 3 = 2$$
.

2.
$$\varphi(0) = 6$$

$$\varphi(1) = 1 - 5 + 6 = 2$$
.

Έχουμε διαδοχικά: $\varphi(t) = 0$

$$t^2 - 5t + 6 = 0$$

$$t = \frac{5 \pm 1}{2}$$

$$t = 2 \, \acute{\eta} \, t = 3.$$

3.
$$h(0) = \sigma v v 0 - \eta \mu 0 = 1 - 0 = 1$$

$$h\left(\frac{\pi}{2}\right) = \text{sun}\frac{\pi}{2} - \eta\mu\frac{\pi}{2} = 0 - 1 = -1.$$

Έχουμε διαδοχικά:

$$h(\theta) = 0$$

$$συνθ - ημθ = 0$$

$$\eta\mu\theta = \sigma \upsilon \nu\theta$$

$$\varepsilon \varphi \theta = 1$$

$$\theta = \frac{\pi}{4} \quad \acute{\eta} \quad \theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4}.$$

4.
$$f(1) = \frac{1}{2} \ln 1^2 = \frac{1}{2} \cdot 0 = \mathbf{0}$$

$$f(e) = \frac{1}{2} \ln e^2 = \frac{1}{2} \cdot 2 \cdot \ln e = 1.$$

5. Πρέπει $(x-1)(x-2) \neq 0$ ή ισοδύναμα $x \neq 1$ και $x \neq 2$. Άρα $A = \mathbf{R} - \{1, 2\}$.

6. • Έχουμε διαδοχικά f(x) < 0

$$(x-3)(x-7)<0$$

• Πρέπει $(x-3)(x-7) \ge 0$, οπότε $x \le 3$ ή $x \ge 7$.

$$A$$
ρ α $A = (-\infty, 3] \cup [7, +\infty)$.

7. $f(x) + g(x) = 3x^2 - 2x - 1 + 2x - 1 = 3x^2 - 2$

$$f(x) \cdot g(x) = (3x^2 - 2x - 1)(2x - 1)$$

$$= 6x^3 - 3x^2 - 4x^2 + 2x - 2x + 1 = 6x^3 - 7x^2 + 1$$

$$\frac{f(x)}{g(x)} = \frac{3x^2 - 2x - 1}{2x - 1}, x \neq \frac{1}{2}.$$

8. Έχουμε

i)
$$\lim_{x\to 0} (x^2 - 3x + 4) = 0^2 - 3 \cdot 0 + 4 = 4$$

ii)
$$\lim_{x \to -2} = [(2x-1)(x+4)] = (-4-1)(-2+4) = -5 \cdot 2 = -10$$

iii)
$$\lim_{x \to 4} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) = \sqrt{4} + \frac{1}{\sqrt{4}} = 2 + \frac{1}{2} = \frac{5}{2}$$

iv)
$$\lim_{x\to 0} (2\eta \mu x + 3\sigma v v) = 2 \cdot \eta \mu 0 + 3 \cdot \sigma v v 0 = 2 \cdot 0 + 3 \cdot 1 = 3$$

v)
$$\lim_{x \to \frac{\pi}{4}} (3\eta \mu x + \text{sun}x) = 3 \cdot \eta \mu \frac{\pi}{4} + \text{sun} \frac{\pi}{4} = 3 \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = 2\sqrt{2}$$
.

9. Έχουμε

i)
$$\lim_{x \to -2} \frac{x^2 - 4}{3(x - 2)} = \frac{(-2)^2 - 4}{3(-2 - 2)} = \frac{4 - 4}{-12} = \frac{0}{-12} = \mathbf{0}$$

ii)
$$\lim_{x \to -1} \frac{5x^2}{x^2 + 1} = \frac{5(-1)^2}{(-1)^2 + 1} = \frac{5}{1+1} = \frac{5}{2}$$

iii)
$$\lim_{x\to 0} [(x+1)\sigma v v x] = (0+1) \cdot \sigma v v 0 = 1$$

iv) Για
$$x \ne 4$$
 έχουμε $\frac{x^2 - 16}{x - 4} = \frac{(x - 4)(x + 4)}{x - 4} = x + 4$ και επομένως
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} (x + 4) = 4 + 4 = 8.$$

ν) Για
$$x \ne -5$$
 έχουμε $\frac{x^2 - 25}{x + 5} = \frac{(x + 5)(x - 5)}{x + 5} = x - 5$ και επομένως
$$\lim_{x \to -5} \frac{x^2 - 25}{x + 5} = \lim_{x \to -5} (x - 5) = -5 - 5 = -10.$$

vi) Για
$$x \ne 2$$
 έχουμε $\frac{2x^2 - 3x - 2}{x - 2} = \frac{(2x + 1)(x - 2)}{x - 2} = 2x + 1$ και επομένως
$$\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x - 2} = \lim_{x \to 2} (2x + 1) = 2 \cdot 2 + 1 = 4 + 1 = 5.$$

Β' ΟΜΑΔΑΣ

1. Έχουμε
$$f(x) + f(-x) = \frac{1}{1 + e^{\frac{1}{x}}} + \frac{1}{1 + e^{-\frac{1}{x}}}$$
$$= \frac{1}{1 + e^{\frac{1}{x}}} + \frac{1}{1 + \frac{1}{e^{\frac{1}{x}}}}$$
$$= \frac{1}{1 + e^{\frac{1}{x}}} + \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}}$$
$$= \frac{1 + e^{\frac{1}{x}}}{\frac{1}{x}} = 1.$$

2. Αφού οι τρεις πλευρές του ορθογώνιου που θα περιφραχτούν έχουν μήκος 100m και η μια πλευρά του είναι x, η άλλη πλευρά του θα είναι $\frac{100-x}{2}=50-\frac{x}{2}$ και το εμβαδόν του θα είναι $E(x)=x\bigg(50-\frac{x}{2}\bigg)$ με 0< x<100.

3. • Το μήκος της βάσης του κυλίνδρου είναι $2\pi r$ και σύμφωνα με τα δεδομένα έχουμε $2\pi r + h = 20$. (1) Ο όγκος του κυλίνδρου είναι $V = \pi r^2 \cdot h$. (2) Από την (1) έχουμε $r = \frac{20 - h}{2\pi}$, οπότε η (2) γίνεται

$$V = \pi \left(\frac{20 - h}{2\pi}\right)^2 \cdot h$$
, $\alpha \rho \alpha V(h) = \pi \left(\frac{20 - h}{2\pi}\right)^2 \cdot h$ $\mu \epsilon 0 < h < 20$.

• Η επιφάνεια του ανοικτού κυλίνδρου είναι $E=\pi r^2+2\pi r\cdot h$. Όμως $h=20-2\pi r$, οπότε $E(r)=\pi r^2+2\pi r\cdot (20-2\pi r)$, με r>0 και $20-2\pi r>0$, δηλαδή $0< r<\frac{10}{\pi}$.

Άρα
$$E(r) = \pi r^2 + 2\pi r \cdot (20 - 2\pi r), 0 < r < \frac{10}{\pi}$$

4.

- Αν η γωνία θ είναι οξεία ή αμβλεία έχουμε ημ $\theta = \frac{v}{10}$ ή ημ(180° $-\theta$) $= \frac{v}{10}$ αντιστοίχως, οπότε σε κάθε περίπτωση ισχύει ημ $\theta = \frac{v}{10}$, άρα $v = 10 \cdot \eta \mu \theta$. (1)
- Έχουμε $E(\theta) = \frac{1}{2} \cdot 10 \cdot v = \frac{1}{2} \cdot 10 \cdot 10 \cdot \eta \mu \theta \, \dot{\eta} \, E(\theta) = 50 \, \eta \mu \theta$. (2) Οι τύποι (1), (2) ισχύουν και στην περίπτωση που $\theta = 90^{\circ}$.
- 5. i) $\Gamma \text{ia} \ x \neq 5 \ \text{écoume} \ \frac{\sqrt{x} \sqrt{5}}{x 5} = \frac{\sqrt{x} \sqrt{5}}{\left(\sqrt{x} \sqrt{5}\right)\left(\sqrt{x} + \sqrt{5}\right)} = \frac{1}{\sqrt{x} + \sqrt{5}}, \text{ opóte}$ $\lim_{x \to 5} \frac{\sqrt{x} \sqrt{5}}{x 5} = \lim_{x \to 5} \frac{1}{\sqrt{x} + \sqrt{5}} = \frac{1}{\sqrt{5} + \sqrt{5}} = \frac{1}{2\sqrt{5}}.$

ii) Για $h \neq 0$ έχουμε

$$\frac{\sqrt{1+h}-1}{h} = \frac{\sqrt{1+h}-1}{(1+h)-1} = \frac{\sqrt{1+h}-1}{\left(\sqrt{1+h}-1\right)\left(\sqrt{1+h}+1\right)} = \frac{1}{\sqrt{1+h}+1} \;, \; \text{opsign}$$

$$\lim_{x\to 0} \frac{\sqrt{1+h}-1}{h} = \lim_{x\to 0} \frac{1}{\sqrt{1+h}+1} = \frac{1}{\sqrt{1+0}+1} = \frac{1}{2} \;.$$

1.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ

Α΄ ΟΜΑΔΑΣ

1. i) •
$$f(3+h) - f(3) = 3(3+h) + 1 - (3 \cdot 3 + 1) = 9 + 3h + 1 - 9 - 1 = 3h$$

•
$$\Gamma \iota \alpha \ h \neq 0$$
 Écoume $\frac{f(3+h)-f(3)}{h} = \frac{3h}{h} = 3.$

•
$$\text{Apa } f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} 3 = 3.$$

ii) •
$$g(-2+h) - g(-2) = (-2+h)^2 + 5 - [(-2)^2 + 5]$$

$$=4+h^2-4h+5-4-5=h(h-4)$$
.

• Για
$$h \neq 0$$
 έχουμε $\frac{g(-2+h)-g(-2)}{h} = \frac{h(h-4)}{h} = h-4$.

• 'Apa
$$g'(-2) = \lim_{h \to 0} \frac{g(-2+h) - g(-2)}{h} = \lim_{h \to 0} (h-4) = -4.$$

iii) •
$$\sigma(4+h) - \sigma(4) = (4+h)^2 + 2(4+h) - (4^2+2\cdot4)$$

$$= 16 + 8h + h^2 + 8 + 2h - 16 - 8 = h^2 + 10h = h(h+10).$$

• Για
$$h \neq 0$$
 έχουμε $\frac{\sigma(4+h) - \sigma(4)}{h} = \frac{h(h+10)}{h} = h+10.$

• 'Apa
$$\sigma'(4) = \lim_{h \to 0} \frac{\sigma(4+h) - \sigma(4)}{h} = \lim_{h \to 0} (h+10) = 10.$$

2. •
$$f(1+h) - f(1) = \frac{1}{1+h+1} - \frac{1}{2} = \frac{1}{2+h} - \frac{1}{2} = -\frac{h}{2(2+h)}$$

• Για
$$h \neq 0$$
 έχουμε $\frac{f(1+h)-f(1)}{h} = \frac{1}{h} \cdot \left[-\frac{h}{2(2+h)} \right] = -\frac{1}{2(2+h)}$.

• Άρα
$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \left[-\frac{1}{2(2+h)} \right] = -\frac{1}{4}$$
.

3. i) Exoure
$$L(r) = 2\pi r$$

•
$$L(3+h)-L(3) = 2\pi(3+h)-2\pi\cdot 3 = 6\pi+2\pi h-6\pi = 2\pi h$$
.

• Για
$$h \neq 0$$
 έχουμε $\frac{L(3+h) - L(3)}{h} = \frac{2\pi h}{h} = 2\pi$.

• Apa
$$L'(3) = \lim_{h \to 0} \frac{L(3+h) - L(3)}{h} = \lim_{h \to 0} 2\pi = 2\pi.$$

ii) Έχουμε
$$E(r) = \pi r^2$$

•
$$E(2+h) - E(2) = \pi(2+h)^2 - \pi \cdot 2^2 = \pi(4+4h+h^2-4) = \pi(4+h)h$$
.

• Για
$$h \neq 0$$
 έχουμε $\frac{E(2+h)-E(2)}{h} = \frac{\pi(4+h)h}{h} = \pi(4+h)$.

• Apa
$$E'(2) = \lim_{h \to 0} \frac{E(2+h) - E(2)}{h} = \lim_{h \to 0} \pi(4+h) = 4\pi.$$

4. i) Έχουμε $E(x) = x^2$

•
$$E(5+h) - E(5) = (5+h)^2 - 5^2 = 25 + 10h + h^2 - 25 = h(10+h)$$
.

• Για
$$h \neq 0$$
 έχουμε $\frac{E(5+h)-E(5)}{h} = \frac{h(10+h)}{h} = 10+h$.

•
$$\Lambda \rho \alpha E'(5) = \lim_{h \to 0} \frac{E(5+h) - E(5)}{h} = \lim_{h \to 0} (10+h) = 10.$$

ii) Έχουμε
$$V(x) = x^3$$

•
$$V(10+h) - V(10) = (10+h)^3 - 10^3$$

= $10^3 + 3 \cdot 10^2 \cdot h + 3 \cdot 10 \cdot h^2 + h^3 - 10^3$
= $h(300 + 30h + h^2)$

• Για $h \neq 0$ έχουμε

$$\frac{V(10+h)-V(10)}{h} = \frac{h(300+30h+h^2)}{h} = 300+30h+h^2.$$

•
$$\Lambda \rho \alpha V'(10) = \lim_{h \to 0} \frac{V(10+h) - V(10)}{h} = \lim_{h \to 0} (300 + 30h + h^2) = 300.$$

5. i) Πρέπει να υπολογίσουμε το f'(3).

•
$$f(3+h) - f(3) = (3+h)^2 - 3^2 = 9 + 6h + h^2 - 9 = h(6+h)$$

• Για
$$h \neq 0$$
 έχουμε $\frac{f(3+h)-f(3)}{h} = \frac{h(6+h)}{h} = 6+h$.

• 'Apa
$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} (6+h) = 6.$$

Επομένως η εξίσωση της εφαπτομένης θα έχει τη μορφή

$$y = 6x + \beta$$
.

Η εφαπτομένη αυτή όμως θα διέρχεται και από το σημείο A(3, f(3)), δηλαδή από το A(3,9) και επομένως θα ισχύει $9 = 6 \cdot 3 + \beta$, οπότε $\beta = -9$. Άρα η εξίσωση της εφαπτομένης είναι $\mathbf{y} = \mathbf{6x} - \mathbf{9}$.

ii) Πρέπει να υπολογίσουμε το f'(4).

•
$$f(4+h) - f(4) = 2\sqrt{4+h} - 2\sqrt{4} = 2(\sqrt{4+h} - 2)$$
.

• Για
$$h \neq 0$$
 έχουμε $\frac{f(4+h)-f(4)}{h} = \frac{2(\sqrt{4+h}-2)}{h} = 2\frac{\sqrt{4+h}-2}{(4+h)-4}$

$$=2\frac{\sqrt{4+h}-2}{\left(\sqrt{4+h}-2\right)\!\left(\sqrt{4+h}+2\right)}=\frac{2}{\sqrt{4+h}+2}$$

• Apa
$$f'(4) = \lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = \lim_{h \to 0} \frac{2}{\sqrt{4+h} + 2} = \frac{2}{\sqrt{4} + 2} = \frac{2}{4} = \frac{1}{2}$$
.

Επομένως η εξίσωση της εφαπτομένης θα έχει τη μορφή

$$y = \frac{1}{2}x + \beta.$$

Η εφαπτομένη αυτή όμως θα διέρχεται και από το σημείο A(4,f(4)), δηλαδή από το A(4,4) και επομένως θα ισχύει $4=\frac{1}{2}\cdot 4+\beta$, οπότε $\beta=2$.

Άρα η εξίσωση της εφαπτομένης είναι $y = \frac{1}{2}x + 2$.

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

Α΄ ΟΜΑΔΑΣ

1. i)
$$(-5)' = 0$$
 ii) $(x^4)' = 4x^3$ iii) $(x^9)' = 9x^8$.

2. i)
$$\left(x^{\frac{3}{2}}\right)' = \frac{3}{2}x^{\frac{3}{2}-1} = \frac{3}{2}x^{\frac{1}{2}}$$

ii)
$$(x^{-3})' = -3x^{-3-1} = -3x^{-4}$$

iii)
$$(x^{-5})' = -5x^{-5-1} = -5x^{-6}$$
.

3. i)
$$\left(\sqrt[3]{x}\right)' = \left(x^{\frac{1}{3}}\right)' = \frac{1}{3}x^{\frac{1}{3}-1} = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3}\frac{1}{\sqrt[3]{x^2}}$$

ii)
$$\left(\sqrt[5]{x^2}\right)' = \left(x^{\frac{2}{5}}\right)' = \frac{2}{5}x^{\frac{2}{5}-1} = \frac{2}{5}x^{-\frac{3}{5}} = \frac{2}{5}\frac{1}{\sqrt[5]{x^3}}$$
.

4. i)
$$\left(\frac{1}{\sqrt{x}}\right)' = \left(x^{-\frac{1}{2}}\right)' = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}} = -\frac{1}{2}\frac{1}{\sqrt{x^3}} = -\frac{1}{2}\frac{1}{x\sqrt{x}}$$

ii)
$$\left(\frac{1}{\sqrt[3]{x}}\right)' = \left(x^{-\frac{1}{3}}\right)' = -\frac{1}{3}x^{-\frac{1}{3}-1} = -\frac{1}{3}x^{-\frac{4}{3}} = -\frac{1}{3}\frac{1}{\sqrt[3]{x^4}} = -\frac{1}{3}\frac{1}{x\sqrt[3]{x}}$$

iii)
$$\left(\frac{1}{\sqrt[5]{x^2}}\right) = \left(x^{-\frac{2}{5}}\right)^{\frac{2}{5}} = -\frac{2}{5}x^{-\frac{2}{5}-1} = -\frac{2}{5}x^{-\frac{7}{5}} = -\frac{2}{5}\frac{1}{\sqrt[5]{x^7}} = -\frac{2}{5}\frac{1}{x\sqrt[5]{x^2}}.$$

5. i)
$$(4x^3)' = 4(x^3)' = 4 \cdot 3x^2 = 12x^2$$

ii)
$$(6x^{-5})' = 6 \cdot (x^{-5})' = 6 \cdot (-5)x^{-6} = -30x^{-6}$$

iii)
$$\left(-\frac{2}{5}x^{20}\right)' = -\frac{2}{5} \cdot 20 \cdot x^{19} = -8x^{19}$$
.

6. i)
$$f(x) = \frac{-6}{\sqrt[4]{x}} = -6x^{-\frac{1}{4}}$$
 και επομένως

$$f'(x) = \left(-6x^{-\frac{1}{4}}\right)' = -6\left(x^{-\frac{1}{4}}\right)' = -6\cdot\left(-\frac{1}{4}\right)\cdot x^{-\frac{1}{4}-1} = \frac{3}{2}x^{-\frac{5}{4}} = \frac{3}{2}\cdot\frac{1}{x^{\frac{4}{4}x}}.$$

ii)
$$f(x) = 6x\sqrt{x} = 6x \cdot x^{\frac{1}{2}} = 6x^{\frac{3}{2}}$$
 και επομένως
$$f'(x) = \left(6x^{\frac{3}{2}}\right)' = 6 \cdot \frac{3}{2}x^{\frac{3}{2}-1} = 9x^{\frac{1}{2}} = 9\sqrt{x}.$$

7. i)
$$(x^4 + 3x^2)' = (x^4)' + (3x^2)' = 4x^3 + 6x$$

ii)
$$\left(x^2 + 5 + \frac{3}{x}\right)' = (x^2)' + (5)' + \left(\frac{3}{x}\right)' = 2x + 0 - \frac{3}{x^2} = 2x - \frac{3}{x^2}$$

iii) Έχουμε
$$\frac{x^2 + 2x - 1}{x} = \frac{x^2}{x} + \frac{2x}{x} - \frac{1}{x} = x + 2 - \frac{1}{x}$$
 και επομένως
$$\left(\frac{x^2 + 2x - 1}{x}\right)' = \left(x + 2 - \frac{1}{x}\right)' = 1 + 0 + \frac{1}{x^2} = 1 + \frac{1}{x^2}.$$

8. i)
$$(8x^3 - \mu x + 5)' = (8x^3)' - (\mu x)' + (5)' = 24x^2 - \mu x$$

ii)
$$[6 \text{ dun} - 8(x^2 + x)]' = (6 \text{ dun} x)' - (8(x^2 + x))' = -6 \text{ mu} - 8(2x + 1)$$

9. i)
$$((x^3 + 1)(x^4 + 1))' = (x^3 + 1)'(x^4 + 1) + (x^3 + 1)(x^4 + 1)'$$

 $= 3x^2(x^4 + 1) + 4x^3(x^3 + 1)$
 $= 3x^6 + 3x^2 + 4x^6 + 4x^3$
 $= 7x^6 + 4x^3 + 3x^2$.

ii)
$$(\eta \mu x (1 - \sigma \upsilon v x))' = (\eta \mu x)' (1 - \sigma \upsilon v x) + \eta \mu x (1 - \sigma \upsilon v x)'$$

 $= \sigma \upsilon v x (1 - \sigma \upsilon v x) + \eta \mu x \cdot \eta \mu x$
 $= \sigma \upsilon v x - \sigma \upsilon v^2 x + \eta \mu^2 x$
 $= \sigma \upsilon v x - \sigma \upsilon v 2 x.$

10. i)
$$(x \sigma \upsilon v x + 3(x+1)(x-1))' = (x \sigma \upsilon v x)' + (3(x+1)(x-1))'$$

= $\sigma \upsilon v x - x \eta \mu x + 3(x-1+x+1)$
= $\sigma \upsilon v x - x \eta \mu x + 6x$

ii)
$$(4x^2\eta\mu x - 3x^2\sigma\upsilon vx)' = (4x^2\eta\mu x)' - (3x^2\sigma\upsilon vx)'$$

= $4(2x\eta\mu x + x^2\sigma\upsilon vx) - 3(2x\sigma\upsilon vx - x^2\eta\mu x)$
= $8x\eta\mu x + 4x^2\sigma\upsilon vx - 6x\sigma\upsilon vx + 3x^2\eta\mu x$
= $(8x + 3x^2)\eta\mu x + (4x^2 - 6x)\sigma\upsilon vx$

11. i)
$$\left(\frac{x^2}{x+1}\right)' = \frac{(x^2)'(x+1) - x^2(x+1)'}{(x+1)^2} = \frac{2x(x+1) - x^2}{(x+1)^2} = \frac{x^2 + 2x}{(x+1)^2}$$

ii)
$$\left(\frac{x}{\eta \mu x}\right)' = \frac{(x)' \eta \mu x - x(\eta \mu x)'}{\eta \mu^2 x} = \frac{\eta \mu x - x \sigma v x}{\eta \mu^2 x}$$

iii)
$$\left(\frac{x + \eta \mu x}{1 + \sigma \upsilon v x} \right)' = \frac{(x + \eta \mu x)'(1 + \sigma \upsilon v x) - (x + \eta \mu x)(1 + \sigma \upsilon v x)'}{(1 + \sigma \upsilon v x)^2}$$

$$= \frac{(1 + \sigma \upsilon v x)(1 + \sigma \upsilon v x) - (x + \eta \mu x)(-\eta \mu x)}{(1 + \sigma \upsilon v x)^2}$$

$$= \frac{1 + 2\sigma \upsilon v x + \sigma \upsilon v^2 x + x \eta \mu x + \eta \mu^2 x}{(1 + \sigma \upsilon v x)^2}$$

$$= \frac{2 + 2\sigma \upsilon v x + x \eta \mu x}{(1 + \sigma \upsilon v x)^2}$$

12. i)
$$\left(\frac{1}{1 + \sigma \upsilon vx}\right)' = \frac{-(1 + \sigma \upsilon vx)'}{(1 + \sigma \upsilon vx)^2} = \frac{\eta \mu x}{(1 + \sigma \upsilon vx)^2}$$

ii)
$$\left(\frac{3}{(x+1)^2}\right)' = \frac{-3((x+1)^2)'}{(x+1)^4} = \frac{-3 \cdot 2(x+1)}{(x+1)^4} = \frac{-6}{(x+1)^3}$$

13. i)
$$((x-1)^5)' = 5(x-1)^4(x-1)' = 5(x-1)^4$$

ii)
$$((2x+1)^5)' = 5(2x+1)^4(2x+1)' = 10(2x+1)^4$$

iii)
$$((2x^2-3x)^5)' = 5(2x^2-3x)^4(2x^2-3x)' = 5(2x^2-3x)^4(4x-3)$$

14. i)
$$(\eta \mu^3 x)' = 3 \cdot \eta \mu^2 x \cdot (\eta \mu x)' = 3 \eta \mu^2 x \sigma v v x$$

ii)
$$(nux^3)' = \sigma v v x^3 \cdot (x^3)' = 3x^2 \cdot \sigma v v x^3$$

iii)
$$(x\eta\mu 4x)' = (x)' \cdot \eta\mu 4x + x(\eta\mu 4x)' = \eta\mu 4x + x \cdot \sigma \upsilon v 4x \cdot (4x)'$$

= $\eta\mu 4x + 4x\sigma \upsilon v 4x$

iv)
$$(\epsilon \varphi 3x)' = \frac{1}{\varphi v^2 3x} \cdot (3x)' = \frac{3}{\varphi v^2 3x}$$
.

15. i)
$$\left(\sqrt{2x^2 - x}\right)' = \frac{1}{2\sqrt{2x^2 - x}} \cdot (2x^2 - x)' = \frac{1}{2\sqrt{2x^2 - x}} \cdot (4x - 1)$$

ii)
$$\left(\sqrt{1+\eta\mu x}\right)' = \frac{1}{2\sqrt{1+\eta\mu x}} \cdot (1+\eta\mu x)' = \frac{\sigma \upsilon v x}{2\sqrt{1+\eta\mu x}}$$
.

16. i)
$$(e^{3x})' = e^{3x} \cdot (3x)' = 3e^{3x}$$

ii)
$$(e^{-x^2})' = e^{-x^2} \cdot (-x^2)' = -2x \cdot e^{-x^2}$$

iii)
$$(e^{\alpha x + \beta})' = e^{\alpha x + \beta} \cdot (\alpha x + \beta)' = \alpha \cdot e^{\alpha x + \beta}$$

iv)
$$\left(\frac{e^x}{e^x + e^{-x}} \right)' = \frac{(e^x)'(e^x + e^{-x}) - e^x(e^x + e^{-x})'}{(e^x + e^{-x})^2}$$

$$= \frac{e^x(e^x + e^{-x}) - e^x(e^x - e^{-x})}{(e^x + e^{-x})^2} = \frac{e^x \cdot 2e^{-x}}{(e^x + e^{-x})^2} = \frac{2}{(e^x + e^{-x})^2} .$$

17. i)
$$(\ln 2x)' = \frac{1}{2x}(2x)' = \frac{2}{2x} = \frac{1}{x}$$

ii) Έχουμε $\ln \frac{1}{x^3} = \ln 1 - \ln x^3 = -3 \ln x$ και επομένως

$$\left(\ln\frac{1}{x^3}\right)' = (-3\ln x)' = -\frac{3}{x}$$

iii)
$$(\ln(\alpha x + \beta))' = \frac{1}{\alpha x + \beta}(\alpha x + \beta)' = \frac{a}{\alpha x + \beta}$$

iv)
$$\left(\ln \sqrt{x-1}\right)' = \frac{1}{\sqrt{x-1}} \cdot \left(\sqrt{x-1}\right)' = \frac{1}{\sqrt{x-1}} \cdot \frac{1}{2\sqrt{x-1}} = \frac{1}{2(x-1)}$$

18. i)
$$\left(\frac{\ln x}{x}\right)' = \frac{(\ln x)' \cdot x - \ln x \cdot (x)'}{x^2} = \frac{\frac{1}{x} \cdot x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}$$

ii)
$$(e^x \cdot \ln x)' = (e^x)' \ln x + e^x (\ln x)' = e^x \ln x + e^x \cdot \frac{1}{x} = e^x \left(\frac{1}{x} + \ln x\right).$$

19. i) Ο συντελεστής διεύθυνσης είναι $\lambda = f'(3)$. Έχουμε:

$$f'(t) = \left(\frac{t^3}{t^2 + 1}\right)' = \frac{3t^2(t^2 + 1) - t^3 \cdot 2t}{(t^2 + 1)^2} = \frac{t^4 + 3t^2}{(t^2 + 1)^2}$$
 και επομένως
$$\lambda = \frac{3^4 + 3 \cdot 3^2}{(3^2 + 1)^2} = \frac{3^3(3 + 1)}{10^2} = \frac{4 \cdot 27}{100} = \frac{27}{25} = 1,08.$$

ii) Ecoure
$$f'(\theta) = \left(\frac{\eta\mu\theta}{\eta\mu\theta + \text{sun}\theta}\right)' = \frac{\text{sun}\theta \cdot (\eta\mu\theta + \text{sun}\theta) - \eta\mu\theta(\text{sun}\theta - \eta\mu\theta)}{(\eta\mu\theta + \text{sun}\theta)^2}$$

$$=\frac{\eta\mu\theta\,\text{sun}\theta+\text{sun}^2\theta-\eta\mu\theta\,\text{sun}\theta+\eta\mu^2\theta}{\left(\eta\mu\theta+\text{sun}\theta\right)^2}=\frac{1}{\left(\eta\mu\theta+\text{sun}\theta\right)^2}\;,$$

επομένως

$$\lambda = f'\left(\frac{\pi}{3}\right) = \frac{1}{\left(\eta\mu\frac{\pi}{3} + \sigma\upsilonv\frac{\pi}{3}\right)^2} = \frac{1}{\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)^2} = \frac{4}{\left(1 + \sqrt{3}\right)^2} = \frac{4}{1 + 3 + 2\sqrt{3}}$$
$$= \frac{2}{2 + \sqrt{3}} = \frac{2\left(2 - \sqrt{3}\right)}{\left(2 + \sqrt{3}\right)\left(2 - \sqrt{3}\right)} = \frac{2\left(2 - \sqrt{3}\right)}{4 - 3} = 2\left(2 - \sqrt{3}\right).$$

20. i)
$$B'(t) = \left(1 + \frac{1}{4}(t+2)^2\right)' = \frac{1}{4} \cdot 2(t+2) = \frac{1}{2}(t+2).$$

ii) Έχουμε:
$$B'(1) = \frac{1}{2}(1+2) = \frac{3}{2}$$

 $B'(2) = \frac{1}{2}(2+2) = 2$
 $B'(8) = \frac{1}{2}(8+2) = 5$.

21. Έχουμε $d(x) = AB = \sqrt{(x-0)^2 + (0-3)^2} = \sqrt{x^2 + 9}$ και επομένως

$$d'(x) = \left(\sqrt{x^2 + 9}\right)' = \frac{1}{2\sqrt{x^2 + 9}}(x^2 + 9)' = \frac{2x}{2\sqrt{x^2 + 9}} = \frac{x}{\sqrt{x^2 + 9}}$$

Άρα ο ρυθμός μεταβολής της απόστασης όταν x=10 είναι

$$d'(10) = \frac{10}{\sqrt{10^2 + 9}} = \frac{10}{\sqrt{109}}.$$

22. Επειδή η εφαπτομένη της καμπύλης της f θα σχηματίζει με τον άξονα x'x γωνία 60° θα ισχύει $f'(0) = \epsilon \phi 60^\circ = \sqrt{3}$.

Έχουμε $f'(x) = (\alpha x(1-x))' = (\alpha x - \alpha x^2)' = \alpha - 2\alpha x$ και επομένως $f'(0) = \alpha$. Άρα $\alpha = \sqrt{3}$.

Β' ΟΜΑΔΑΣ

1. Αφού η εφαπτομένη της καμπύλης της f θα είναι παράλληλη με την ευθεία y = 3x + 5, θα πρέπει ο συντελεστής της εφαπτομένης να είναι ίσος με 3.

Έχουμε
$$f'(x) = \left(\frac{3x}{x+1}\right)' = \frac{3(x+1)-3x}{(x+1)^2} = \frac{3}{(x+1)^2}$$
. Επομένως πρέπει
$$\frac{3}{(x+1)^2} = 3 \Leftrightarrow (x+1)^2 = 1 \Leftrightarrow x+1=1 \text{ ή } x+1=-1 \Leftrightarrow x=0 \text{ ή } x=-2.$$

Για x = 0 έχουμε f(0) = 0 και για x = -2 έχουμε f(-2) = 6. Άρα τα ζητούμενα σημεία είναι τα (0, 0) και (-2, 6).

2. Τα ζητούμενα σημεία (x, f(x)) είναι εκείνα για τα οποία ισχύει f'(x) = 0.

Έχουμε
$$f'(x) = (x^3 - 6x^2 + 9x + 4)' = 3x^2 - 12x + 9$$
. Επομένως

$$f'(x) = 0 \Leftrightarrow 3x^2 - 12x + 9 = 0$$
$$\Leftrightarrow x^2 - 4x + 3 = 0$$
$$\Leftrightarrow x = \frac{4 \pm 2}{2}$$

Για x = 1 είναι f(1) = 8 και για x = 3 είναι f(3) = 27 - 54 + 27 + 4 = 4. Άρα τα ζητούμενα σημεία είναι τα (1, 8) και (3, 4).

3. Επειδή ο συντελεστής διεύθυνσης της διχοτόμου y = x είναι ίσος με 1, τα ζητούμενα σημεία (x, f(x)) είναι εκείνα για τα οποία ισχύει f'(x) = 1.

Έχουμε
$$f'(x) = \left(\frac{x}{x+1}\right)' = \frac{x+1-x}{(x+1)^2} = \frac{1}{(x+1)^2}$$
. Επομένως $f'(x) = 1 \Leftrightarrow \frac{1}{(x+1)^2} = 1 \Leftrightarrow (x+1)^2 = 1$ $\Leftrightarrow x+1=1 \ \acute{\eta} \ x+1=-1 \Leftrightarrow x=0 \ \acute{\eta} = -$.

Για x = 0 είναι f(0) = 0 και για x = -2 είναι f(-2) = 2. Άρα τα ζητούμενα σημεία είναι τα (0, 0) και (-2, 2).

4. • Η ταχύτητα του σώματος είναι

$$\upsilon(t) = x'(t) = (t^3 - 2t^2 + t)' = 3t^2 - 4t + 1.$$

• Το σώμα είναι ακίνητο όταν x'(t) = 0. Έχουμε

$$x'(t) = 0 \Leftrightarrow 3t^2 - 4t + 1 = 0 \Leftrightarrow t = \frac{4 \pm 2}{6} < \frac{3}{1/3}.$$

Άρα το σώμα είναι (στιγμιαία) ακίνητο όταν $t=\frac{1}{3}$ και όταν t=1.

• Η επιτάχυνση του σώματος είναι

$$a(t) = v'(t) = (3t^2 - 4t + 1)' = 6t - 4$$
.

Για $t = \frac{1}{3}$ είναι $a\left(\frac{1}{3}\right) = 6 \cdot \frac{1}{3} - 4 = 2 - 4 = -2$ και για t = 1 είναι $a(1) = 6 \cdot 1 - 4 = 2$.

5. Ecoume
$$f'(x) = (A \operatorname{sun} \omega x + B \eta \mu \omega x)'$$

 $= (A \operatorname{sun} \omega x)' + (B \eta \mu \omega x)'$
 $= A(\operatorname{sun} \omega x)' + B(\eta \mu \omega x)'$
 $= A(-\eta \mu \omega x) \cdot (\omega x)' + B(\operatorname{sun} \omega x) \cdot (\omega x)'$

Επομένως
$$f'(x) = -A\omega \eta \mu \omega x + B\omega \sigma \upsilon v \omega x$$

$$f''(x) = (-A\omega \eta \mu \omega x + B\omega \sigma \upsilon v \omega x)'$$

$$= (-A\omega \eta \mu \omega x)' + (B\omega \sigma \upsilon v \omega x)'$$

$$= -A\omega \cdot \sigma \upsilon v \omega x \cdot \omega + B\omega (-\eta \mu \omega x) \cdot \omega$$

$$= -A\omega^2 \sigma \upsilon v \omega x - B\omega^2 \eta \mu \omega x$$

$$= -\omega^2 (A\sigma \upsilon v \omega x + B\eta \mu \omega x).$$

Επομένως $f''(x) = -\omega^2 f(x)$, άρα $f''(x) + \omega^2 f(x) = 0$.

6. Έχουμε
$$f'(x) = (\alpha e^{px} + \beta e^{-px})' = \alpha \cdot e^{px} \cdot p + \beta \cdot e^{-px} \cdot (-p)$$
,
δηλαδή $f'(x) = \alpha p e^{px} - \beta p e^{-px}$,
οπότε $f''(x) = (\alpha p e^{px} - \beta p e^{-px})' = \alpha p \cdot e^{px} \cdot p - \beta p \cdot e^{-px} \cdot (-p)$
 $= \alpha p^2 e^{px} + \beta p^2 e^{-px} = p^2 (\alpha e^{px} + \beta e^{-px}) = p^2 f(x)$.

7. Έχουμε
$$f'(x) = (e^{\mu x})' = e^{\mu x} \cdot \mu = \mu e^{\mu x}$$
 και
$$f''(x) = (\mu e^{\mu x})' = \mu \cdot e^{\mu x} \cdot \mu = \mu^2 e^{\mu x}.$$

Επομένως έχουμε διαδοχικά

$$f''(x) - 3f'(x) - 4f(x) = 0$$

$$\mu^{2} \cdot e^{\mu x} - 3\mu e^{\mu x} - 4e^{\mu x} = 0 \qquad (e^{\mu x} \neq 0)$$

$$\mu^{2} - 3\mu - 4 = 0$$

$$\mu = \frac{3 \pm 5}{2} \underbrace{\qquad \qquad 4}_{-1}.$$

Aρα $\mu = -1$ ή $\mu = 4$.

8. O suntelestής διεύθυνσης της εφαπτομένης της καμπύλης στο σημείο της $\left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right)$ είναι $\lambda = f'\left(\frac{\pi}{3}\right)$.

Έχουμε $f'(x) = (2ημxσυνx)' = (ημ2x)' = συν2x \cdot 2 = 2συν2x$.

Επομένως $f'\left(\frac{\pi}{3}\right)=2\cdot$ συν $\frac{2\pi}{3}=-2$ συν $\frac{\pi}{3}=-2\cdot\frac{1}{2}=-1$, οπότε η εξίσωση της εφαπτομένης θα έχει τη μορφή

$$y = -1 \cdot x + \beta.$$

Όμως το σημείο $\left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right)$, δηλαδή το $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$ ανήκει στην εφαπτομένη.

Επομένως $\frac{\sqrt{3}}{2}=-\frac{\pi}{3}+\beta$ που σημαίνει ότι $\beta=\frac{\sqrt{3}}{2}+\frac{\pi}{3}$. Άρα η εξίσωση της εφαπτομένης είναι

$$y=-x+\frac{\sqrt{3}}{2}+\frac{\pi}{3}.$$

9. i) Exoure
$$P'(I) = \left(\frac{I}{\alpha + \beta I}\right)$$

$$= \frac{I' \cdot (\alpha + \beta I) - I \cdot (\alpha + \beta I)'}{(\alpha + \beta I)^2}$$

$$= \frac{\alpha + \beta I - \beta I}{(\alpha + \beta I)^2}.$$

Επομένως
$$P'(I) = \frac{\alpha}{(\alpha + \beta I)^2}$$
 και $P'(0) = \frac{a}{a^2} = \frac{1}{a}$.

ii) Έχουμε

$$\frac{1}{\alpha} \left[1 - \beta P(I) \right]^2 = \frac{1}{\alpha} \left[1 - \beta \cdot \frac{I}{\alpha + \beta I} \right]^2$$

$$= \frac{1}{\alpha} \cdot \left(\frac{\alpha + \beta I - \beta I}{\alpha + \beta I} \right)^2 = \frac{1}{\alpha} \cdot \frac{\alpha^2}{(\alpha + \beta I)^2} = \frac{\alpha}{(\alpha + \beta I)^2} = P'(I).$$

- **10.** i) Έχουμε $\upsilon(t) = y'(t) = (A \eta \mu \omega t)' = A \cdot \sigma \upsilon v \omega t \cdot \omega = A \omega \sigma \upsilon v \omega t$ και $\alpha(t) = \upsilon'(t) = (A \omega \sigma \upsilon v \omega t)' = A \omega \cdot (-\eta \mu \omega t) \cdot \omega = -A \omega^2 \cdot \eta \mu \omega t.$
 - ii) Έχουμε $\alpha(t) = -A\omega^2 \cdot \eta \mu \omega t = -\omega^2 \cdot A \eta \mu \omega t = -\omega^2 \cdot y$, δηλαδή $\alpha(t) = -\omega^2 \cdot y$ που δηλώνει ότι η επιτάχυνση α είναι ανάλογη της απομάκρυνσης y.
 - iii) Όταν $\alpha(t) = -A\omega^2 \cdot \eta \mu \omega t = 0$, τότε $\eta \mu \omega t = 0$, οπότε συν $\omega t = 1$ ή συν $\omega t = -1$. Όμως το μέτρο της ταχύτητας $\upsilon(t) = A\omega$ συν ωt είναι ίσο με $|A\omega| \cdot |\text{συν}\omega t|$ και γίνεται μέγιστο όταν συν $\omega t = \pm 1$, δηλαδή όταν $\alpha(t) = 0$.

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

Α΄ ΟΜΑΔΑΣ

1. i) f'(x) = 2x - 2 = 2(x - 1) $f'(x) = 0 \Leftrightarrow 2(x - 1) = 0 \Leftrightarrow x = 1$ $f'(x) > 0 \Leftrightarrow 2(x - 1) > 0 \Leftrightarrow x > 1$

х	$-\infty$	1	+∞
f'(x)	_	0	+
f(x)	φθίνουσ	σ	αύξουσα

Άρα για x = 1 η συνάρτηση παρουσιάζει ελάχιστο ίσο με f(1) = -1.

ii) f'(x) = -6x $f'(x) = 0 \Leftrightarrow -6x = 0 \Leftrightarrow x = 0$ $f'(x) > 0 \Leftrightarrow -6x > 0 \Leftrightarrow x < 0$

х	-∞	0	+∞
f'(x)	+	0	-
f(x)	αύξουσα		φθίνουσα

Αρα για x = 0 η συνάρτηση παρουσιάζει **μέγιστο ίσο με** f(0) = 6.

iii)
$$f'(x) = 2x - 2$$

 $f'(x) = 0 \Leftrightarrow 2(x - 1) = 0 \Leftrightarrow x = 1$
 $f'(x) > 0 \Leftrightarrow 2(x - 1) > 0 \Leftrightarrow x > 1$

х	$-\infty$	1	+∞
f'(x)	_	0	+
f(x)	φθίνουσα	Τ	αύξουσα

Άρα για x = 1 η συνάρτηση παρουσιάζει ελάχιστο ίσο $\mu \varepsilon f(1) = 3$.

2. i)
$$f'(x) = 3x^2 - 12x$$

 $f'(x) = 0 \Leftrightarrow 3x^2 - 12x = 0 \Leftrightarrow 3x(x - 4) = 0 \Leftrightarrow x = 0 \text{ } \acute{\eta} \text{ } x = 4$
 $f'(x) > 0 \Leftrightarrow 3x(x - 4) > 0 \Leftrightarrow x < 0 \text{ } \acute{\eta} \text{ } x > 4$

x	-∞ () 4	1 +∞
f'(x)	+	-	+
f(x)	αύξουσα	φθίνουσα	αύξουσα

Άρα για x = 0 η συνάρτηση παρουσιάζει τοπικό μέγιστο ίσο με f(0) = 5 και για x = 4 παρουσιάζει τοπικό ελάχιστο ίσο με f(4) = -27.

ii)
$$f'(x) = -3x^2 + 3$$

 $f'(x) = 0 \Leftrightarrow 3(x^2 - 1) = 0 \Leftrightarrow x = -1 \text{ } \acute{\eta} \text{ } x = 1$
 $f'(x) > 0 \Leftrightarrow -3(x+1)(x-1) > 0 \Leftrightarrow (x+1)(x-1) < 0 \Leftrightarrow -1 < x < 1$

	х	-8 -	-1 1	+∞
	f'(x)	- () +	0 -
İ	f(x)	φθίνουσα	αύξουσα	φθίνουσα

Άρα για x = -1 η συνάρτηση παρουσιάζει τοπικό ελάχιστο ίσο με f(-1) = -1 και για x = 1 παρουσιάζει τοπικό μέγιστο ίσο με f(1) = 3.

- 3. i) $f'(x) = 6x^2$. Παρατηρούμε ότι για x = 0 είναι f'(0) = 0, αλλά f'(x) = 0 για x < 0 και για x > 0. Επομένως (βλ. σχόλιο σελ. 40) η f είναι γνησίως αύξουσα και άρα δεν έγει ακρότατα.
 - ii) $f'(x) = -3x^2$. Παρατηρούμε ότι f'(0) = 0, αλλά f'(x) < 0 για x < 0 και για x > 0. Επομένως η f είναι γ**νησίως φθίνουσα** και άρα δεν έχει ακρότατα.
 - iii) $f'(x) = 3x^2 6x + 3(x^2 2x + 1) = 3(x 1)^2$. Παρατηρούμε ότι f'(1) = 0, αλλά f'(x) > 0 για x < 1 και για x > 1. Επομένως η fείναι γνησίως αύξουσα και άρα δεν έχει ακρότατα.

- iv) $f'(x) = -3x^2 + 6x 5$. Η διακρίνουσα του τριωνύμου αυτού $\Delta = 36 - 4 \cdot (-3)(-5) = -24 < 0$. Επομένως f'(x) < 0 για κάθε $x \in \mathbb{R}$. Άρα η f'(x) < 0είναι γνησίως φθίνουσα στο **R** και δεν έχει ακρότατα.
- **4.** Έστω x και y οι δυο αριθμοί με x + y = 40. Για το γινόμενό τους έχου $xy = x(40-x) = 40x - x^2$. Ζητάμε το μέγιστο της συνάρτησης $E(x) = 40x - x^2$. Έχουμε E'(x) = 40 - 2x. Επομένως $E'(x) = 0 \Leftrightarrow x = 20$ και $E'(x) > 0 \Leftrightarrow 40 - 2x > 0 \Leftrightarrow 2x < 40 \Leftrightarrow x < 20$.

Άρα η συνάρτηση παρουσιάζει | μέγιστο για x = 20. Όταν όμως x= 20, τότε και y = 20. Δηλαδή το γινόμενο γίνεται μέγιστο όταν χ = y = 20, και είναι ίσο με $20 \cdot 20 =$ **400**.

х	-∞ 2	20 +∞
E'(x)	+	_
E(x)	αύξουσα	φθίνουσα

10

5. Έστω x και y οι διαστάσεις του ορθογωνίου. Τότε xy = 100 με x > 0και y > 0. Η περίμετρος του ορθογωνίου αυτού είναι $2x + 2y = 2x + 2 \cdot \frac{100}{2}$.

Ζητάμε το ελάχιστο της συνάρτησης $L(x) = 2x + \frac{200}{x}$, x > 0. Έχουμε

$$L'(x) = 2 - \frac{200}{x^2}$$
. Επομένως $L'(x) = 0 \Leftrightarrow x = 10$ και

$$L'(x) > 0 \Leftrightarrow 2 - \frac{200}{x^2} > 0 \Leftrightarrow 2x^2 > 200 \Leftrightarrow x^2 > 100 \Leftrightarrow x > 10, \text{ apoù } x > 0.$$

Άρα για x = 10 η συνάρτηση παρουσιάζει ελάχιστο. Όταν όμως χ x =

trails a starday array Victoria a tarr a bread			
$x = 10$, τότε και $y = \frac{100}{10} = 10$.	L'(x)	- 0	+
Δηλαδή το ορθογώνιο με τη	L(x)	φθίνουσα	αύξουσα
μικρότερη περίμετρο είναι αυτό			

μικρ που έχει ίσες διαστάσεις x = y = 10 m.

6. Έστω x η πλευρά της βάσης και y το ύψος του. Έχουμε $x^2y = 32$. Ελάχιστο υλικό κατασκευής χρειάζεται εκείνο το κουτί που έχει την ελάχιστη επιφάνεια. Η επιφάνεια του κουτιού είναι ίση με

$$x^2 + 4xy = x^2 + 4x \cdot \frac{32}{x^2} = x^2 + \frac{128}{x}$$
.

Ζητάμε επομένως το ελάχιστο της συνάρτησης $E(x) = x^2 + \frac{128}{x}$, x > 0. Έχουμε $E'(x) = 2x - \frac{128}{x^2}$. Επομένως $E'(x) = 0 \Leftrightarrow x = 4$,

evá
$$E'(x) > 0 \Leftrightarrow 2x - \frac{128}{x^2} > 0 \Leftrightarrow 2x^3 > 128 \Leftrightarrow x^3 > 64 \Leftrightarrow x > 4$$
.

Αρα για x=4 η συνάρτηση παρουσιάζει ελάχιστο. Όταν όμως x=4, τότε $y=\frac{32}{4^2}=2$. Δηλαδή το

x	0 4	4 +∞
E'(x)	- (0 +
E(x)	φθίνουσα	αύξουσα

κουτί που χρειάζεται το ελάχιστο

δυνατό υλικό είναι εκείνο που έχει πλευρά βάσης 4 dm και ύψος 2 dm.

7. Έστω x η πλευρά της βάσης του και y το ύψος του. Τότε έχουμε $x^2 + 4xy = 12$. Ο όγκος του κουτιού είναι $x^2 \cdot y = x^2 \cdot \frac{12 - x^2}{4x} = \frac{1}{4}x(12 - x^2)$.

Ζητάμε επομένως το μέγιστο της συνάρτησης

$$V(x) = \frac{1}{4}x(12 - x^2) = 3x - \frac{1}{4}x^3 \qquad x > 0.$$

Έχουμε $V'(x) = 3 - \frac{3}{4}x^2$. Επομένως $V'(x) = 0 \Leftrightarrow x = 2$ αφού x > 0,

Άρα ο μέγιστος δυνατός όγκος του κουτιού είναι ίσος με

$$V(2) = 6 - \frac{1}{4} \cdot 8 = 6 - 2 = 4 \,\mathrm{dm}^3$$
.

х	0	2 +∞
E'(x)	+	0 –
V(x)	αύξουσα	φθίνουσα

8. Έστω M(x, 2x-3) ένα σημείο της ευθείας. Τότε η απόσταση του M από την αρχή O(0, 0) είναι $\sqrt{x^2+(2x-3)^2}$. Ζητάμε την ελάχιστη τιμή της συνάρτησης αυτής. Αρκεί να βρούμε την ελάχιστη τιμή της συνάρτησης $f(x)=x^2+(2x-3)^2$. Έχουμε $f'(x)=2x+2(2x-3)\cdot 2=10x-12$.

Επομένως
$$f'(x) = 0 \Leftrightarrow x = \frac{6}{5}$$
, ενώ $f'(x) > 0 \Leftrightarrow x > \frac{6}{5}$.

Δηλαδή η συνάρτηση έχει ελάχιστη τιμή για $x=\frac{6}{5}$, και άρα το πλησιέστερο σημείο της ευθείας στην αρχή των αξόνων είναι το $M\left(\frac{6}{5},\frac{-3}{5}\right)$.

х	-∞	$\frac{6}{5}$ + ∞
f'(x)	_	0 +
f(x)	φθίνουσα	αύξουσα

9. Έχουμε την ελάχιστη ταχύτητα όταν η ποσότητα $\frac{\lambda}{c} + \frac{c}{\lambda}$ είναι ελάχιστη. Αρκεί επομένως να βρούμε το ελάχιστο της συνάρτησης $f(\lambda) = \frac{\lambda}{c} + \frac{c}{\lambda}$, $\lambda > 0$.

Έχουμε

$$f'(\lambda) = \frac{1}{c} - \frac{c}{\lambda^2} \quad \text{Kat } f''(\lambda) = \frac{2c}{\lambda^3}.$$

Επίσης

$$f'(\lambda) = 0 \Leftrightarrow \frac{1}{c} - \frac{c}{\lambda^2} = 0 \Leftrightarrow \lambda^2 = c^2 \Leftrightarrow \lambda = c, \text{ afoi } c > 0 \text{ kai } f''(c) = \frac{2c}{c^3} = \frac{2}{c^2} > 0.$$

Άρα για $\lambda = c$ η συνάρτηση f παρουσιάζει ελάχιστο που σημαίνει ότι για $\lambda = c$ η ταχύτητα υ είναι ελάχιστη.

10. Αν x είναι ο ένας αριθμός, τότε ο άλλος θα είναι 10 - x και το άθροισμα των τετραγώνων τους θα είναι

$$x^2 + (10 - x)^2$$
.

Ζητάμε λοιπόν το ελάχιστο της συνάρτησης

$$f(x) = x^2 + (10 - x)^2$$
, $0 < x < 10$.

Έχουμε

$$f'(x) = 2x + 2(10 - x)(-1) = 2x - 20 + 2x$$
.

Επομένως
$$f'(x) = 4x - 20$$
 και $f''(x) = 4 > 0$.

Έχουμε

$$f'(x) = 0 \Leftrightarrow 4x - 20 = 0 \Leftrightarrow x = 5$$
.

Άρα για x = 5 η συνάρτηση παρουσιάζει ελάχιστο. Όταν όμως x = 5, τότε ο άλλος αριθμός είναι 10 - x = 5. Άρα οι ζητούμενοι αριθμοί είναι ίσοι και καθένας είναι ίσος με 5.

Β' ΟΜΑΛΑΣ

1. Επειδή p και q σταθερές, το v είναι συνάρτηση του r, δηλαδή

$$v(r) = 100 p(1 + \ln r) - 100 qr, r > 0.$$

Έχουμε

$$\upsilon'(r) = 100 p \cdot \frac{1}{r} - 100 q$$

$$\upsilon'(r) = 0 \Leftrightarrow 100 p \cdot \frac{1}{r} - 100 q = 0 \Leftrightarrow r = \frac{p}{q}$$

Επίσης ισχύει $v''(r) = -100 p \frac{1}{r^2} < 0$, για κάθε r > 0, αφού p > 0.

Άρα, όταν $r = \frac{p}{a}$ το υ έχει τη μέγιστη τιμή του.

2. Έχουμε
$$v(x) = \kappa x^2 \ln\left(\frac{1}{x}\right) = \kappa x^2 (\ln 1 - \ln x) = -\kappa x^2 \ln x, x > 0.$$

Επομένως $v'(x) = (-\kappa x^2 \ln x)' = -\kappa \left(2x \ln x + x^2 \cdot \frac{1}{x}\right) = -\kappa (2x \ln x + x)$

και $v'(x) = 0 \Leftrightarrow -\kappa (2x \ln x + x) = 0 \Leftrightarrow 2x \ln x + x = 0 \Leftrightarrow \ln x = -\frac{1}{2} \Leftrightarrow x = \frac{1}{\sqrt{e}}.$

Όμως $v''(x) = -\kappa (2x \ln x + x)' = -\kappa \left(2\ln x + 2x \cdot \frac{1}{x} + 1\right) = -\kappa (2\ln x + 3),$ οπότε $v''\left(\frac{1}{\sqrt{e}}\right) = -\kappa (-1 + 3) = -2\kappa < 0,$ αφού $\kappa > 0.$

Άρα για $x = \frac{1}{\sqrt{e}}$ το v γίνεται μέγιστο.

3. Αν x είναι το μήκος της πλευράς των τετραγώνων που θα αποκοπούν, τότε ο όγκος V(x) του δοχείου θα είναι

$$V(x) = (60-2x)^2 \cdot x, \ 0 < x < 30.$$
 Exoure $V'(x) = 2(60-2x)(-2) \cdot x + (60-2x)^2 = (60-2x)(-4x+60-2x),$ dhadh
$$V'(x) = (60-2x)(60-6x)$$
 kai
$$V''(x) = -2(60-6x) + (60-2x)(-6)$$

$$= -120 + 12x - 360 + 12x,$$
 dhadh

Έχουμε $V'(x) = 0 \Leftrightarrow x = 10$ ή x = 30. Η τιμή x = 30 απορρίπτεται, αφού δεν ανήκει στο πεδίο ορισμού της συνάρτησης. Για x = 10 έχουμε V''(10) = 240 - 480 = -240 < 0.

Άρα το δοχείο με το μεγαλύτερο όγκο είναι εκείνο για το οποίο x = 10, οπότε η πλευρά της βάσης του δοχείου είναι $60 - 2 \cdot 10 = 40$ cm και το ύψος 10 cm.

4. Αν χ το πλάτος και y το μήκος του ορθογωνίου, τότε το ζητούμενο κόστος είναι

$$K = (2x + 2y) \cdot 9 + 6x$$
. Όμως $xy = 16000$, οπότε $y = \frac{16.000}{x}$ και το κόστος γίνεται

$$K(x) = 6x + 18\left(x + \frac{16.000}{x}\right), x > 0.$$
 Exoure
$$K'(x) = 6 + 18\left(1 - \frac{16.000}{x^2}\right) = 6 + 18(1 - 16.000x^{-2})$$

και
$$K''(x) = 18(32.000 \cdot x^{-3}) > 0$$
.

Eivat
$$K'(x) = 0 \Leftrightarrow 6 + 18\left(1 - \frac{16.000}{x^2}\right) = 0$$

$$\Leftrightarrow 1 + 3\left(1 - \frac{16.000}{x^2}\right) = 0$$

$$\Leftrightarrow 4 - \frac{48.000}{x^2} = 0$$

$$\Leftrightarrow 1 - \frac{12.000}{x^2} = 0$$

$$\Leftrightarrow x^2 = 12.000$$

$$\Leftrightarrow x^2 = 400.30$$

$$\Leftrightarrow x = 20\sqrt{30} \approx 109.5$$

Επειδή K''(x) > 0, προκύπτει ότι για $x = 20\sqrt{30}$ έχουμε το ελάχιστο κόστος. Δηλαδή οι διαστάσεις του ορθογωνίου με το ελάχιστο κόστος περίφραξης και χωρίσματος είναι $x = 20\sqrt{30} \cong 109.5$ και $y = \frac{16.000}{109.5} \cong 146$ m.

5. Αν x και y είναι οι πλευρές του ορθογωνίου, τότε το εμβαδόν του είναι $E = x \cdot y$. Όμως από το Πυθαγόρειο Θεώρημα έχουμε $x^2 + y^2 = 4\rho^2$, οπότε $y = \sqrt{4\rho^2 - x^2}$.

Επομένως το εμβαδόν του ορθογωνίου εκφράζεται ως συνάρτηση του x με τον τύπο:

$$E(x) = x\sqrt{4\rho^2 - x^2}$$
, $0 < x < 2\rho$.

Έχουμε
$$E'(x) = \left(x \cdot \sqrt{4\rho^2 - x^2}\right)' = \sqrt{4\rho^2 - x^2} + x \cdot \frac{1}{2\sqrt{4\rho^2 - x^2}}(-2x)$$

$$= \sqrt{4\rho^2 - x^2} - \frac{x^2}{\sqrt{4\rho^2 - x^2}} = \frac{4\rho^2 - x^2 - x^2}{\sqrt{4\rho^2 - x^2}}.$$
 Επομένως
$$E'(x) = \frac{4\rho^2 - 2x^2}{\sqrt{4\rho^2 - x^2}}.$$

Έχουμε
$$E'(x) = 0 \Leftrightarrow 4\rho^2 - 2x^2 = 0 \Leftrightarrow x^2 = 2\rho^2 \Leftrightarrow x = \rho\sqrt{2} \quad (\text{αφού } x > 0)$$
$$E'(x) > 0 \Leftrightarrow 4\rho^2 - 2x^2 > 0 \Leftrightarrow x^2 < 2\rho^2 \Leftrightarrow x < \rho\sqrt{2} \quad (\text{αφού } x > 0).$$

Επομένως για $x = \rho\sqrt{2}$ το ορθογώνιο έχει το μέγιστο εμβαδόν. Όταν όμως $x = \rho\sqrt{2}$, τότε και $y = \sqrt{4\rho^2 - 2\rho^2} = \rho\sqrt{2}$.

Αρα, από όλα τα ορθογώνια που μπορούν να εγγραφούν σε έναν κύκλο ακτίνας ρ , το τετράγωνο έχει το μεγαλύτερο δυνατό εμβαδόν.

6. Αν x είναι το μήκος του κύκλου, τότε $\lambda-x$ είναι η περίμετρος του τετραγώνου. Αν ρ είναι η ακτίνα του κύκλου με μήκος x, τότε $2\pi\rho=x$, οπότε $\rho=\frac{x}{2\pi}$ και το εμβαδό του θα είναι $\pi\rho^2=\pi\frac{x^2}{4\pi^2}=\frac{x^2}{4\pi}$. Επειδή το τετράγωνο θα έχει περίμετρο $\lambda-x$, η πλευρά του θα είναι $\alpha=\frac{\lambda-x}{4}$ και το εμβαδόν του $\left(\frac{\lambda-x}{4}\right)^2$. Επομένως το άθροισμα των δύο εμβαδών είναι

$$E(x) = \frac{x^2}{4\pi} + \left(\frac{\lambda - x}{4}\right)^2, \ 0 \le x \le \lambda.$$

Έχουμε

$$E'(x) = \frac{1}{4\pi} \cdot 2x + 2\left(\frac{\lambda - x}{4}\right) \cdot \left(-\frac{1}{4}\right), \, \delta\eta \lambda \alpha \delta \dot{\eta}$$

$$E'(x) = \frac{1}{2\pi} \cdot x - \frac{\lambda - x}{8}$$
 kai $E''(x) = \frac{1}{2\pi} + \frac{1}{8} > 0$.

Έχουμε
$$E'(x) = 0 \Leftrightarrow \frac{1}{2\pi} \cdot x - \frac{\lambda - x}{8} = 0 \Leftrightarrow 4x - \pi(\lambda - x) = 0$$

$$\Leftrightarrow 4x - \lambda \pi + \pi x = 0 \Leftrightarrow (4 + \pi)x = \lambda \pi \Leftrightarrow x = \frac{\lambda \pi}{4 + \pi}.$$

Επομένως όταν $x=\frac{\lambda\pi}{4+\pi}$ έχουμε το ελάχιστο εμβαδόν. Όταν όμως $x=\frac{\lambda\pi}{4+\pi}$, τότε η διάμετρος του κύκλου είναι $\delta=2\rho=\frac{2}{2\pi}\cdot\frac{\lambda\pi}{4+\pi}=\frac{\lambda}{4+\pi}$ και η πλευρά του τετραγώνου είναι επίσης

$$\alpha = \frac{\lambda - x}{4} = \frac{1}{4} \left(\lambda - \frac{\lambda \pi}{4 + \pi} \right) = \frac{1}{4} \cdot \frac{4\lambda + \lambda \pi - \lambda \pi}{4 + \pi} = \frac{\lambda}{4 + \pi}.$$

7. Έχουμε

$$y'(t) = \frac{A}{\kappa_2 - \kappa_1} \left(-\kappa_1 e^{-\kappa_1 t} + \kappa_2 e^{-\kappa_2 t} \right) \kappa \alpha t$$

$$y''(t) = \frac{A}{\kappa_2 - \kappa_1} \left(\kappa_1^2 e^{-\kappa_1 t} - \kappa_2^2 e^{-\kappa_2 t} \right).$$

Επομένως:

$$y'(t) = 0 \Leftrightarrow \kappa_2 e^{-\kappa_2 t} = \kappa_1 e^{-\kappa_1 t}$$

$$\Leftrightarrow \frac{\kappa_2}{\kappa_1} = e^{(\kappa_2 - \kappa_1)t}$$

$$\Leftrightarrow (\kappa_2 - \kappa_1)t = \ln\left(\frac{\kappa_2}{\kappa_1}\right)$$

$$\Leftrightarrow t = \frac{1}{\kappa_2 - \kappa_1} \cdot \ln\left(\frac{\kappa_2}{\kappa_1}\right).$$
(1)

$$\begin{split} \Gamma \text{iα} \ \ t_0 &= \frac{1}{\kappa_2 - \kappa_1} \cdot \ln \! \left(\frac{\kappa_2}{\kappa_1} \right), \text{ iscnification} \ \ \kappa_2 e^{-\kappa_2 t_0} = \kappa_1 e^{-\kappa_1 t_0}, \text{ optice} \\ y''(t_0) &= \frac{A}{\kappa_2 - \kappa_1} \Big(\kappa_1^2 e^{-\kappa_1 t_0} - \kappa_2 \cdot \kappa_1 e^{-\kappa_1 t_0} \Big) \\ &= \frac{A \kappa_1 e^{-\kappa_1 t_0}}{\kappa_2 - \kappa_1} (\kappa_1 - \kappa_2) = -A \kappa_1 e^{-\kappa_1 t_0} < 0. \end{split}$$

Αρα για $t = \frac{1}{\kappa_2 - \kappa_1} \cdot \ln \left(\frac{\kappa_2}{\kappa_1} \right)$ το φάρμακο παρουσιάζει τη μεγαλύτερη συγκέντρωση στο αίμα του ασθενούς.

8. i) Για να διανύσει το όχημα την απόσταση των 1000 km με ταχύτητα υ km/h, χρειάζεται χρόνο $\frac{1000}{\upsilon}$ ώρες, και αφού σε κάθε ώρα καταναλώνει $6+0,001\upsilon^3$ λίτρα, χρειάζεται συνολικά $K(\upsilon)=(6+0,0001\cdot\upsilon^3)\cdot\frac{1000}{\upsilon}$ λίτρα καύσιμα.

ii) Έχουμε $K(\upsilon) = \frac{6000}{\upsilon} + 0.1 \cdot \upsilon^2$. Επομένως $K'(\upsilon) = 0.2\upsilon - \frac{6000}{\upsilon^2}$ και $K''(\upsilon) = 0.2 + \frac{12000}{\upsilon^3} > 0$. Είναι $K'(\upsilon) = 0 \Leftrightarrow \upsilon^3 = 30000 \Leftrightarrow \upsilon = \sqrt[3]{30000}$ ή $\upsilon \cong 31$. Άρα για $\upsilon \cong 31$ km έχουμε την οικονομικότερη κατανάλωση καυσίμων, η οποία είναι ίση με $K(31) \cong 300$ λίτρα.

Δεν είναι εφαρμόσιμη, διότι το όχημα θα χρειάζεται περίπου $\frac{1000}{31} \cong 32$ ώρες, δηλαδή πολύ μεγάλο χρόνο.

9. Έχουμε $R_1 + R_2 = 450$. Για την ολική αντίσταση R των R_1 και R_2 όταν συνδεθούν εν παραλλήλω έχουμε

$$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R} \iff \frac{R_1 + R_2}{R_1 R_2} = \frac{1}{R} \iff R = \frac{R_1 R_2}{R_1 + R_2}.$$

συνάρτηση της R_1 είναι

$$R(R_1) = R_1 - \frac{1}{450}R_1^2.$$

Έχουμε

$$R'(R_{_{\! 1}})=1-\frac{1}{225}R_{_{\! 1}} \ \ \mathrm{kat} \ \ R''(R_{_{\! 1}})=-\frac{1}{225}<0\,.$$

$$R'(R_1) = 0 \Leftrightarrow 1 - \frac{1}{225}R_1 = 0 \Leftrightarrow R_1 = 225.$$

Όταν όμως $R_1 = 225$, τότε και $R_2 = 450 - 225 = 225$. Άρα για να έχουμε τη μέγιστη ολική αντίσταση πρέπει οι δύο αντιστάσεις να είναι ίσες, δηλαδή πρέπει $R_1 = R_2 = 225\Omega$.

10. Αν I και Φ είναι οι θέσεις των δύο πλοίων ύστερα από t ώρες τότε OI = 20 - 40t και OΦ = 20t, οπότε $IΦ = \sqrt{(20 - 40t)^2 + (20t)^2}$. Η ελάχιστη απόσταση θα παρουσιαστεί όταν το υπόριζο $(20 - 40t)^2 + (20t)^2$ γίνει ελάχιστο. Θεωρούμε τη συνάρτηση $f(t) = (20 - 40t)^2 + (20t)^2$, t > 0.

$$f'(t) = 2(20 - 40t)(-40) + 2 \cdot 20t \cdot 20$$
$$= -1600 + 3200t + 800t,$$

$$f'(t) = 0 \Leftrightarrow 4000t - 1600 = 0 \Leftrightarrow t = \frac{1600}{4000} = \frac{2}{5} = 0,4.$$

Επομένως σε χρόνο $t = \frac{2}{5} h$ (24 λεπτά) η απόσταση των δύο πλοίων θα είναι ελάχιστη και ίση με

 $I\Phi = \sqrt{\left(20 - 40 \cdot \frac{2}{5}\right)^2 + \left(20 \cdot \frac{2}{5}\right)^2} = \sqrt{4^2 + 8^2} = \sqrt{80}.$

Επειδή $\sqrt{80} < \sqrt{100} = 10$ συμπεραίνουμε ότι οι άνθρωποι των δύο πλοίων $\theta \alpha$ έχουν κάποια στιγμή οπτική επαφή.

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. i) Έχουμε: μέση πυκνότητα =
$$\frac{f(1,21) - f(1)}{1,21-1} = \frac{\sqrt{1,21} - \sqrt{1}}{0,21} = \frac{1,1-1}{0,21} = \frac{0,1}{0,21} \cong \mathbf{0,476}$$

ii) Γραμμική πυκνότητα
$$\rho = \lim_{h \to 0} \frac{\sqrt{1+h} - \sqrt{1}}{h} = f'(1).$$

Όμως
$$f'(x) = \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$
. Επομένως $f'(1) = \frac{1}{2\sqrt{1}} = \frac{1}{2} = 0.5$. Άρα $\rho = 0.5$.

2. Έγουμε $C'(x) = 3x^2 - 6vx$, C''(x) = 6x - 6v. Επομένως

$$C'(x) = 0 \Leftrightarrow 3x^2 - 6\nu x = 0 \Leftrightarrow 3x = 6\nu \Leftrightarrow x = 2\nu$$
 kai

$$C''(2\nu) = 12\nu - 6\nu = 6\nu > 0.$$

Άρα για x = 2v μονάδες το κόστος γίνεται ελάχιστο.

Το κέρδος από την παραγωγή 2ν μονάδων είναι ίσο με $P(v) = 2v \cdot (16 - v)$, δηλαδή $P(v) = 32v - 2v^2$. Έχουμε P'(v) = 32 - 4v και P''(v) = -4 < 0. Είναι $P'(v) = 0 \Leftrightarrow 32 - 4v = 0 \Leftrightarrow v = 8$.

Άρα, όταν παράγονται ημερησίως $x = 2 \cdot 8 = 16$ μονάδες από v = 8 εργάτες έχουμε το ελάχιστο κόστος και το μέγιστο κέρδος.

3. Ο συντελεστής διεύθυνσης της καμπύλης της συνάρτησης f σε ένα σημείο της (x, f(x)) είναι

$$\lambda = f'(x) = (x^3 + 3x^2 - 2x - 1)' = 3x^2 + 6x - 2.$$

Αναζητούμε τις τιμές του x για τις οποίες η συνάρτηση $\lambda(x) = 3x^2 + 6x - 2$ έχει ελάχιστο. Έχουμε

$$\lambda'(x) = 6x + 6 \text{ kat } \lambda''(x) = 6 > 0.$$

Επομένως

$$\lambda'(x) = 0 \Leftrightarrow 6x + 6 = 0 \Leftrightarrow x = -1.$$

Αρα για x = -1 η συνάρτηση έχει τον ελάχιστο συντελεστή διεύθυνσης. Όμως για x = -1 είναι

$$f(-1) = (-1)^3 + 3(-1)^2 - 2(-1) - 1 = -1 + 3 + 2 - 1 = 3.$$

Άρα το ζητούμενο σημείο είναι το (-1, 3).

4. An λ είναι ο συντελεστής διεύθυνσης της ε , τότε η εξίσωσή της είναι $y = \lambda x + \kappa$.

Επειδή το σημείο $A(\alpha, \beta)$ ανήκει στην ε έχουμε $\beta = \lambda \cdot \alpha + \kappa$, οπότε $\kappa = \beta - \lambda \alpha$. Επομένως η εξίσωση της ε γίνεται $y = \lambda x + \beta - \lambda \alpha$.

Για
$$x = 0$$
, έχουμε $y = \beta - \lambda \alpha$,

δηλαδή $q=\beta-\lambda\alpha$ και για y=0, έχουμε $0=\lambda x+\beta-\lambda\alpha$, οπότε $x=\frac{\lambda\alpha-\beta}{\lambda}$ δηλαδή $p=\alpha-\frac{\beta}{\lambda}$. Επομένως

$$p+q=\alpha-\frac{\beta}{\lambda}+\beta-\lambda\alpha=(\alpha+\beta)-\left(\alpha\lambda+\frac{\beta}{\lambda}\right)$$

Θεωρούμε τη συνάρτηση

$$f(\lambda) = (\alpha + \beta) - \left(\alpha\lambda + \frac{\beta}{\lambda}\right)$$

και έχουμε

$$f'(\lambda) = -\left(\alpha - \frac{\beta}{\lambda^2}\right) = \frac{\beta}{\lambda^2} - \alpha \text{ kai } f''(\lambda) = -2\beta \frac{1}{\lambda^3}.$$

$$\begin{split} &\text{Είναι} \quad f'(\lambda) = 0 \Leftrightarrow \frac{\beta}{\lambda^2} - \alpha = 0 \Leftrightarrow \lambda^2 = \frac{\beta}{\alpha}, \quad \text{οπότε} \quad \lambda = -\frac{\sqrt{\beta}}{\sqrt{\alpha}} \quad \text{αφού} \quad \lambda < 0. \quad \text{Για} \\ &\lambda = \frac{-\sqrt{\beta}}{\sqrt{\alpha}} \quad \text{έχουμε} \quad f''(\lambda) = 2\beta \bigg(\frac{\sqrt{\alpha}}{\sqrt{\beta}}\bigg)^3 > 0. \quad \text{Επομένως} \quad \text{για} \quad \lambda = \frac{-\sqrt{\beta}}{\sqrt{\alpha}} \quad \eta \\ &\lambda = \frac{-\sqrt{\beta}}{\sqrt{\alpha}} \quad \text{Επομένως} \quad \text{για} \quad \lambda = \frac{-\sqrt{\beta}}{\sqrt{\alpha}} \quad \eta \\ &\lambda = \frac{-\sqrt{\beta}}{\sqrt{\alpha}} \quad \text{Ω} \end{split}$$

συνάρτηση παρουσιάζει ελάχιστο ίσο με

$$\begin{split} f\left(\frac{\sqrt{\beta}}{\sqrt{\alpha}}\right) &= (\alpha + \beta) + \left(\alpha \frac{\sqrt{\beta}}{\sqrt{\alpha}} + \beta \frac{\sqrt{\alpha}}{\sqrt{\beta}}\right) \\ &= (\alpha + \beta) + \left(\sqrt{\alpha\beta} + \sqrt{\alpha\beta}\right) = \alpha + \beta + 2\sqrt{\alpha\beta} = \left(\sqrt{\alpha} + \sqrt{\beta}\right)^2. \end{split}$$

5. Αν δ η διάμετρος και v το ύψος του κυλίνδρου θα έχουμε

$$\delta + v = 20 \text{ kai}$$

$$V = \pi \left(\frac{\delta}{2}\right)^2 \cdot \upsilon = \pi \cdot \frac{\delta^2}{4} \cdot (20 - \delta) = 5\pi \delta^2 - \frac{\pi}{4} \delta^3.$$

Άρα
$$V(\delta) = 5\pi\delta^2 - \frac{\pi}{4}\delta^3$$
, $0 < \delta < 20$.

Έχουμε
$$V'(\delta) = 10\pi\delta - \frac{3\pi}{4}\delta^2$$
 και $V''(\delta) = 10\pi - \frac{3\pi}{2}\delta$.

$$V'(\delta) = 0 \Leftrightarrow 10\pi\delta - \frac{3\pi}{4}\delta^2 = 0 \Leftrightarrow 10\delta - \frac{3\delta^2}{4} = 0 \Leftrightarrow 40\delta - 3\delta^2 = 0$$
$$\Leftrightarrow (40 - 3\delta)\delta = 0 \Leftrightarrow \delta = \frac{40}{3}.$$

Για
$$\delta = \frac{40}{3}$$
 είναι $V''\left(\frac{40}{3}\right) = 10\pi - \frac{3\pi}{2} \cdot \frac{40}{3} = -10\pi < 0$.

Αρα για
$$\delta = \frac{40}{3}$$
 και $v = 20 - \frac{40}{3} = \frac{20}{3}$, έχουμε το μέγιστο όγκο του κυλίνδρου.

6. Το κόστος θα είναι ελάχιστο όταν η επιφάνεια του δοχείου θα είναι ελάχιστη. Αν ρ και v είναι η ακτίνα και το ύψος του κυλινδρικού δοχείου σε cm, τότε η ολική του επιφάνεια είναι ίση με $E=2\pi\rho^2+2\pi\rho\cdot v$.

Όμως
$$V = \pi \rho^2 \cdot \upsilon = 1000$$
, οπότε $\upsilon = \frac{1000}{\pi \rho^2}$ και η επιφάνεια γίνεται $E(\rho) = 2\pi \rho^2 + 2\pi \rho \cdot \frac{1000}{\pi \rho^2}$.

Θα βρούμε επομένως το ελάχιστο της συνάρτησης

$$E(\rho) = 2\pi\rho^2 + \frac{2000}{\rho}, \rho > 0.$$

Έχουμε

$$E'(\rho) = 4\pi\rho - \frac{2000}{\rho^2}$$
 kai $E''(\rho) = 4\pi + \frac{2000}{\rho^3} > 0$.

Επομένως

$$E'(\rho) = 0 \Leftrightarrow 4\pi\rho - \frac{2000}{\rho^2} = 0 \Leftrightarrow \pi\rho^3 = 500 \Leftrightarrow \rho^3 = \frac{500}{\pi},$$

οπότε
$$\rho = \sqrt[3]{\frac{500}{\pi}}$$
.

Άρα για $\rho = \sqrt[3]{\frac{500}{\pi}}$ έχουμε την ελάχιστη επιφάνεια του δοχείου. Όταν

$$\rho = \sqrt[3]{\frac{500}{\pi}} , \text{ the } \upsilon = \frac{1000}{\pi \rho^2} = \frac{1000}{\pi \left(\frac{500}{\pi}\right)^{2/3}} = 2\sqrt[3]{\frac{500}{\pi}} = 2\rho.$$

Άρα το κόστος ελαχιστοποιείται όταν η ακτίνα του δοχείου είναι

 $\rho = \sqrt[3]{\frac{500}{\pi}} \cong 5,42 \ \text{ και το ύψος του διπλάσιο από την ακτίνα, δηλαδή ίσο με τη διάμετρο της βάσης.}$

7. Ο όγκος του κωνικού ποτηριού είναι $\frac{1}{3}\pi\rho^2 \cdot \upsilon$ όπου ρ είναι η ακτίνα της βάσης του και υ το ύψος του. Όμως $\upsilon^2 + \rho^2 = R^2$. Επομένως ο όγκος του ποτηριού είναι $V(\upsilon) = \frac{1}{3}\pi(R^2 - \upsilon^2) \cdot \upsilon = \frac{1}{3}\pi R^2 \cdot \upsilon - \frac{1}{3}\pi \upsilon^3 \,, \ \upsilon > 0.$

Έχουμε

$$V'(\upsilon) = \frac{1}{3}\pi R^2 - \pi \upsilon^2 \text{ Kat } V''(\upsilon) = -2\pi \upsilon < 0.$$

Είναι

$$V'(\upsilon) = 0 \Leftrightarrow \frac{1}{3}\pi R^2 - \pi \upsilon^2 = 0 \Leftrightarrow \pi R^2 = 3\pi \upsilon^2$$
$$\Leftrightarrow 3\upsilon^2 = R^2 \Leftrightarrow \upsilon^2 = \frac{1}{3}R^2 \Leftrightarrow \upsilon = R\frac{\sqrt{3}}{3}.$$

Άρα για $v = R \frac{\sqrt{3}}{3}$ έχουμε τη μέγιστη χωρητικότητα που είναι ίση με

$$V\left(\frac{R\sqrt{3}}{3}\right) = \frac{1}{3}\pi\left(R^2 - \frac{1}{3}R^2\right)\frac{R\sqrt{3}}{3} = \frac{1}{3}\pi \cdot \frac{2R^2}{3} \cdot \frac{R\sqrt{3}}{3} = \frac{2\pi}{27}R^3\sqrt{3}.$$

8. a) Exoure $c(x) = \frac{C(x)}{x}$

$$c'(x) = \frac{C'(x) \cdot x - C(x)}{x^2} .$$

Αφού όμως το μέσο κόστος είναι ελάχιστο θα έχουμε:

•
$$c'(x) = 0 \Leftrightarrow xC'(x) - C(x) = 0 \Leftrightarrow C'(x) = \frac{C(x)}{x}$$

β) i) Έχουμε $C(x) = \frac{1}{1000}x^2 + 2x + 2600$ και επομένως το μέσο κόστος είναι $\frac{C(x)}{x} = \frac{1}{1000}x + 2 + \frac{2600}{x}$ και το οριακό κόστος $C'(x) = \frac{1}{500}x + 2$. Έτσι

έχουμε τον επόμενο πίνακα

Αριθμός μονάδων	Κόστος	Μέσο κόστος	Οριακό κόστος
x	C(x)	$c(x) = \frac{C(x)}{x}$	C'(x)
1000	5.600	5,6	4
2000	10.600	5,3	6
3000	17.600	5,87	8

ii) Πρέπει
$$c'(x) = \frac{C(x)}{x}$$
, δηλαδή $\frac{1}{500}x + 2 = \frac{1}{1000}x + 2 + \frac{2600}{x}$, οπότε
$$\frac{1}{1000}x = \frac{2600}{x}$$
 ή $x^2 = 2600 \cdot 1000$ και άρα $x = 1612$.

Το ότι το επίπεδο αυτό παραγωγής δίνει πράγματι το ελάχιστο μέσο κόστος προκύπτει από το γεγονός ότι έχουμε

$$c'(x) = \frac{x \cdot C'(x) - C(x)}{x^2} = \frac{C'(x)}{x} - \frac{C(x)}{x^2}$$
$$= \frac{1}{500} + \frac{2}{x} - \frac{1}{1000} - \frac{2}{x} - \frac{2600}{x^2},$$

δηλαδή $c'(x) = \frac{1}{100} - \frac{2600}{x^2}$ και άρα $c''(x) = \frac{5200}{x^3} > 0$.

Η αντίστοιχη ελάχιστη τιμή του μέσου κόστους για x = 1612 είναι

$$c(1612) = \frac{1}{1000} \cdot 1612 + 2 + \frac{2600}{1612} = 5,22.$$

9. α) Έχουμε
$$P(x) = R(x) - C(x)$$

$$P'(x) = R'(x) - C'(x) \, .$$
 Αν $P(x)$ μέγιστο, τότε $P'(x) = 0$ και επομένως $R'(x) - C'(x) = 0$.

$$A$$
ρ α $R'(x) = C'(x)$.

β) Πρέπει
$$R'(x) = C'(x)$$
$$(x(50-0,01x))' = (3800 + 5x - 0,001x^2)'$$
$$50-0,02x = 5-0,002x$$
$$45 = 0,018x$$
$$x = \frac{45}{0.018} = 2500.$$

Το ότι το επίπεδο αυτό παραγωγής δίνει πράγματι το μέγιστο κέρδος, προκύπτει από το γεγονός ότι έχουμε P(x) = R(x) - C(x)

10. i) Έχουμε $A\Gamma = \sqrt{d_1^2 + x^2}$, οπότε ο απαιτούμενος χρόνος στον αέρα είναι $\frac{\sqrt{d_1^2 + x^2}}{\upsilon_1}.$ Επίσης $B\Gamma = \sqrt{d_2^2 + (d-x)^2}$, οπότε ο απαιτούμενος χρόνος στο νερό είναι $\frac{\sqrt{d_2^2 + (d-x)^2}}{\upsilon_2} \ .$

Επομένως ο χρόνος που χρειάζεται το φως για τη διαδρομή ΑΓΒ είναι

$$t(x) = \frac{\sqrt{x^2 + d_1^2}}{\upsilon_1} + \frac{\sqrt{(d-x)^2 + d_2^2}}{\upsilon_2} \ .$$

ii) Έχουμε
$$t'(x) = \frac{1}{\nu_1} \cdot \frac{1}{2\sqrt{x^2 + d_1^2}} \cdot 2x + \frac{1}{\nu_2} \cdot \frac{1}{2\sqrt{(d-x)^2 + d_2^2}} \cdot 2(d-x)(-1)$$

$$= \frac{1}{v_1} \cdot \frac{x}{\sqrt{x^2 + d_1^2}} - \frac{1}{v_2} \cdot \frac{d - x}{\sqrt{(d - x)^2 + d_2^2}}.$$

iii) Το ελάχιστο του χρόνου το έχουμε όταν t'(x) = 0.

Επομένως,
$$\frac{1}{\upsilon_1} \cdot \frac{x}{\sqrt{x^2 + d_1^2}} = \frac{1}{\upsilon_2} \cdot \frac{d - x}{\sqrt{(d - x)^2 + d_2^2}}$$

$$\frac{1}{\upsilon_1} \cdot \eta \mu \alpha = \frac{1}{\upsilon_2} \cdot \eta \mu \beta$$

$$\frac{\eta \mu \alpha}{\eta \mu \beta} = \frac{\upsilon_1}{\upsilon_2} \ .$$

2.1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

1. Ποιοτικές: γ, δ, στ, ζ

Ποσοτικές - διακριτές: β, η, θ, ι

Ποσοτικές - συνεχείς: α, ε

- 2. α) Μισθός (ποσοτική), ηλικία (διακριτή), φύλο (ποιοτική), ικανοποίηση από τη δουλειά (ποιοτική), κτλ.
 - β) Βάρος (ποσοτική), ποιότητα (ποιοτική), κτλ.
 - γ) Χρόνος παρακολούθησης τηλεόρασης (ποσοτική), σταθμός προτίμησης (ποιοτική) κτλ.
 - δ) Χρόνος συμμετοχής (ποσοτική-συνεχής), αριθμός πόντων (ποσοτική-διακριτή), κτλ.
- 3. (ε). Πρέπει το δείγμα να είναι αντιπροσωπευτικό του πληθυσμού. Επομένως πρέπει να πάρουμε άτομα (των δύο φύλων και διαφόρων ηλικιών) από διάφορες περιοχές του πληθυσμού για τον οποίο αναφερόμαστε.
- 4. α) Με το σχέδιο αυτό θα έχουμε υπερεκτίμηση του αριθμού των ανδρών.
 - β) Πιθανόν να έχουν τις ίδιες πολιτικές πεποιθήσεις.
 - γ) Θα έχουμε υπερεκτίμηση του εισοδήματος.
 - δ) Νέοι δεν είναι μόνο οι μαθητές Λυκείου. Ελλάδα δεν είναι μόνο η Αττική.
 - ε) Οι λόγοι απουσίας των μαθητών διαφέρουν κατά τη διάρκεια του έτους.Το Νοέμβριο μπορεί να απουσιάζουν λόγω κρυολογήματος, το Μάιο λόγω συμμετοχής σε εξετάσεις.

2.2 ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

Α΄ ΟΜΑΔΑΣ

1. α) Παριστάνουμε με *X* τη βαθμολογία των φοιτητών. Ο πίνακας κατανομής των συχνοτήτων και των σχετικών συχνοτήτων της μεταβλητής *X* είναι ο εξής:

\mathbf{B} αθμολογία \mathbf{x}_i	Διαλογή	Συχνότ. v_i	Σχετική σ υχνότητα $f_i\%$	A θροιστ. συχνότητα N_i	Αθρ. Σχετ. Συχν. $F_{i}\%$
1	III	3	6	3	6
2	l II	2	4	5	10
3	Ш	5	10	10	20
4	III	3	6	13	26
5	## II	7	14	20	40
6		9	18	29	58
7	HIIII	7	14	36	72
8	₩Ш	7	14	43	86
9	₩ 1	5	10	48	96
10		2	4	50	100
Σύνολο	_	50	100		

- β) i) Από τον παραπάνω πίνακα παρατηρούμε ότι από τους 50 φοιτητές 13 έχουν βαθμό κάτω από τη βάση. Άραγια $X \le 4$ το αντίστοιχο ποσοστό είναι 13/50 = 0.26 = 26% (βλ. τελευταία στήλη F.%).
 - ii) Για $X \ge 9$ το αντίστοιχο ποσοστό είναι (5+2)/50 = 7/50 = 0,14 = 14%. Ισοδύναμα από την τελευταία στήλη το ποσοστό είναι 100% 86% = 14%.
 - iii) Ομοίως, για $7 \le X \le 9$ έχουμε τους φοιτητές με βαθμό 7,8 ή 9. Συνεπώς το αντίστοιχο ποσοστό είναι

$$(7 + 7 + 5)/50 = 19/50 = 0.38 = 38\%.$$

Ισοδύναμα από την τελευταία στήλη το ποσοστό αυτό είναι 96% - 58% = 38%.

2.

Φ41 s	Βαθμο	S ()	
Φύλο	≤5	> 5	Σύνολο
A	11	18	29
K	9	12	21
Σύνολο	20	30	50

3. α) Διαιρούμε τις συχνότητες των "κελλιών" του πίνακα της άσκησης 2 με το συνολικό αριθμό φοιτητών v = 50.

.	Βαθμο	Served a	
Φύλο	≤5	> 5	Σύνολο
A	11/50 = 22%	36%	58%
K	18%	24%	42%
Σύνολο	40%	60%	100%

Δηλαδή το 22% των φοιτητών είναι αγόρια με βαθμό \leq 5, κτλ.

β) Διαιρούμε τις συχνότητες των "κελλιών" κάθε γραμμής με το αντίστοιχο σύνολο της γραμμής.

	Βαθμο		
Φύλο	≤ 5	> 5	Σύνολο
A	11/29 = 37,93%	62,07%	100%
K	42,86%	57,14%	100%
Σύνολο	_	_	_

Δηλαδή το 37,93% των **αγοριών** έχουν βαθμό ≤ 5 , κτλ.

γ) Διαιρούμε τις συχνότητες των "κελλιών" κάθε στήλης με το αντίστοιχο σύνολο της στήλης.

- · · ·	Βαθμο	F. ()	
Φύλο	≤ 5	> 5	Σύνολο
A	11/20 = 55%	60%	_
K	45%	40%	_
Σύνολο	100%	100%	

Δηλαδή το 55% των φοιτητών με $\beta \alpha \theta \mu \delta \le 5$ είναι αγόρια, κτλ.

- **4.** Παριστάνουμε με *X* τις ημέρες απουσίας:
 - α) Είναι X ≥ 1. Άρα έχουμε 8+5+4+5+8+0+5+2+1=38 εργάτες, δηλαδή το 38/50 = 0,76 = 76% των εργατών απουσίασαν τουλάχιστον μια ημέρα. Ισοδύναμα αυτό μπορεί να βρεθεί αν από τους 50 εργάτες αφαιρέσουμε τους 12 που δεν απουσίασαν ποτέ από την εργασία τους.
 - β) Είναι X > 5. Άρα έχουμε 0 + 5 + 2 + 1 = 8 εργάτες, δηλαδή 8/50 = 0,16 = 16%.
 - γ) Είναι $3 \le X \le 5$. Άρα έχουμε 4 + 5 + 8 = 17 εργάτες, δηλαδή 17/50 = 0.34 = 34%.
 - δ) Είναι $X \le 5$. Άρα έχουμε 12 + 8 + 5 + 4 + 5 + 8 = 42 εργάτες, δηλαδή 42/50 = 0.84 = 84%.
 - ε) Είναι X = 5. Άρα έχουμε 8 εργάτες, δηλαδή 8/50 = 0.16 = 16%.
- 5. Ακολουθούμε, για παράδειγμα, τα παρακάτω βήματα:

$$\alpha) \ \ \nu = \frac{v_2}{f_2} = \frac{4}{0,20} = 20$$

$$\delta$$
) $f_4 = \frac{f_4\%}{100} = \frac{25}{100} = 0.25$

$$\beta$$
) $N_1 = N_2 - v_2 = 6 - 4 = 2 = v_1$

$$\epsilon$$
) $v_6 = v - N_5 = 20 - 19 = 1$

$$\gamma) \ f_3 = F_3 - F_2 = 0,60 - 0,30 = 0,30.$$

T /		,	,		,
HπOHEVIOC	\cap	TIVOROC	CHANGE	$\tau \omega v$	GIMMI.
Επομένως	v	nivakas	OUZVOU	ιων	civui.

x_{i}	v_{i}	f_{i}	N_{i}	F_{i}	$f_i\%$	$F_i\%$
1	2	0,10	2	0,10	10	10
2	4	0,20	6	0,30	20	30
3	6	0,30	12	0,60	30	60
4	5	0,25	17	0,85	25	85
5	2	0,10	19	0,95	10	95
6	1	0,05	20	1,00	5	100
Σύνολο	20	1,00	_	_	100	_

6. Αν εργαστούμε όπως στον πίνακα 5 έχουμε τον πίνακα συχνοτήτων του βαθμού στα Μαθηματικά για τα αγόρια και τα κορίτσια:

Βαθμός στα	Αγό	ρια	Κορίτ	σια
Μαθηματικά, x_{i}	Δ ιαλογή v_{A}		Διαλογή	$v_{_K}$
10		1		0
11		1		0
12		1	III	3
13		1	I	1
14		2	III	3
15		2	l IIII I	6
16		3	III	3
17		3	l	1
18		2	1	1
19		2	III	3
20		0		1
Σύνολο	_	18	_	22

Επομένως το αντίστοιχο διάγραμμα συχνοτήτων είναι:

Αλλο

16,7%

Rolling Stones

11,1%

7. Κατασκευάζουμε πρώτα τον πίνακα συχνοτήτων:

Μουσικό συγκρότημα, x_i	v_{i}	$f_i\%$
Metallica	5	27,8
Iron Maiden	3	16,7
Scorpions	4	22,2
Oasis	1	5,5
Rolling Stones	2	11,1
Άλλο	3	16,7
Σύνολο	18	100,0

- α) Επομένως το ραβδόγραμμα σχετικών συχνοτήτων είναι:
- β) Το αντίστοιχο κυκλικό διάγραμμα σχετικών συχνοτήτων είναι:

8. Αν v=450 το πλήθος των μαθητών, v_i , i=1,2,3,4 οι συχνότητες, f_i οι σχετικές συχνότητες και a_i , i=1,2,3,4 τα τόξα του κυκλικού διαγράμματος για τις τέσσερις κατηγορίες Άριστα, Λίαν Καλώς, Καλώς και Σχεδόν Καλώς, αντιστοίχως, θα έχουμε $v_2=f_2\cdot v=0,30\cdot 450=135$ και $v_3=\frac{\alpha_3\cdot v}{360^\circ}=\frac{144^\circ\cdot 450}{360^\circ}=180$. Στη συνέχεια βρίσκουμε τη συχνότητα v_i της τιμής $x_i=$ "Άριστα", χρησιμοποιώντας και το γεγονός ότι $v_4=2v_i$: $v_1+135+180+v_4=450 \Leftrightarrow v_1+135+180+2v_1=450 \Leftrightarrow v_1=(450-135-180)/3=45.$

Άρα και $v_4 = 90$. Έτσι ο πίνακας συχνοτήτων είναι:

i	x_{i}	v_{i}	$f_i\%$	$\alpha_i = \frac{360v_i}{v}$
1	Άριστα	45	10	36
2	Λίαν Καλώς	135	30	108
3	Καλώς	180	40	144
4	Σχεδόν Καλώς	90	20	72
	Σύνολο	ν=450	100	360

Οπότε το αντίστοιχο κυκλικό διάγραμμα και το ραβδόγραμμα σχετικών συχνοτήτων είναι:

Τουλάχιστον λίαν καλώς έχει το 40%, δηλαδή 180 μαθητές.

9. Κατασκευάζουμε πρώτα τον πίνακα συχνοτήτων:

Ομάδα	v_{i}	$f_i\%$
AEK	9	23,1
Λάρισα	1	2,6
Ολυμπιακός	12	30,8
ПАО	15	38,4
ПАОК	2	5,1
Σύνολο	39	100,0

Συνεπώς το ραβδόγραμμα σχετικών συχνοτήτων και το αντίστοιχο κυκλικό διάγραμμα σχετικών συχνοτήτων είναι:

10. Εργαζόμαστε όπως στο παράδειγμα στο σχήμα 1(γ):

11. Τα χρονογράμματα των δύο λοιμωδών νόσων δίνονται παρακάτω:

Έρπης ζωστήρ: Έχουμε ανοδική τάση μέχρι το 1995 και μετά ελαφρά πτώση. Ηπατίτιδα Α : Έχουμε καθοδική τάση μέχρι το 1993, σημαντική αύξηση τα έτη 1994 και 1995 και μετά πτώση στα επίπεδα του 1992-93.

12. α) Ο πίνακας συχνοτήτων της επίδοσης Χ των 50 υποψηφίων είναι:

x_{i}	Διαλογή	v_{i}	f_i %	$N_{_i}$	F_i %
0	Ш	2	4	2	4
1	IIII	4	8	6	12
2	IIII	4	8	10	20
3	Ш	5	10	15	30
4	##	5	10	20	40
5	# #	5	10	25	50
6	ШΠ	7	14	32	64
7	JHI II	7	14	39	78
8	₩1	6	12	45	90
9	Ш	5	10	50	100
Σύνολο	_	50	100		

β) Τα διαγράμματα σχετικών και αθροιστικών σχετικών συχνοτήτων είναι:

- γ) Θέλουμε επίδοση μεγαλύτερη ή ίση του 8, $X \ge 8$. Άρα η σχολή θα πάρει 6+5=11 άτομα, δηλαδή το 22% των υποψηφίων.
- δ) Αφού η σχολή θα πάρει το 36% των υποψηφίων σημαίνει ότι το 64% των υποψηφίων δεν θα επιλεγούν, δηλαδή όσοι έχουν επίδοση μικρότερη ή ίση του 6. Άρα θα επιλεγούν όσοι έχουν επίδοση μεγαλύτερη ή ίση του 7.
- 13. Επειδή στον κατακόρυφο άξονα έχουμε το ποσοστό του εισοδήματος ανά χιλιάδες ευρώ, έχουμε:

$$y^* = \frac{f\%}{c} \Leftrightarrow f\% = y^* \cdot c = 10 \cdot (20 - 15) = 10 \cdot 5 = 50\%$$

Άρα το 50% των οικογενειών της περιοχής έχουν εισόδημα από 15 έως 20 χιλιάδες ευρώ.

14. Πρέπει το εμβαδόν του πολυγώνου σχετικών συχνοτήτων να είναι 100 (τοις εκατό). Όμως αυτό που έκανε ο μαθητής είναι περίπου ένα τρίγωνο με βάση (190-150)=40 και ύψος 10. Άρα έχει εμβαδόν $(40\cdot 10)/2=200$. Συνεπώς είχε δίκιο ο καθηγητής.

Β' ΟΜΑΔΑΣ

- 1. Παρατηρούμε ότι:
 - Για τη Λέσβο υπάρχει πτωτική τάση.
 - Για τη Θάσο υπάρχει περίπου σταθερή κατάσταση.
 - Για τη Σαλαμίνα υπάρχει ανοδική τάση.

2. Οι βεβαιωθέντες θάνατοι από χρήση ναρκωτικών για τα έτη 1988-98 αναφορικά με την ηλικιακή ομάδα είναι:

/E		Ηλικία		Σύνολο
Έτος	≤ 20	21-30	≥ 31	Σύνολο
1988	7	43	12	62
1989	4	51	17	72
1990	2	34	30	66
1991	2	44	33	79
1992	1	47	31	79
1993	4	49	25	78
1994	8	71	67	146
1995	7	90	79	176
1996	14	98	110	222
1997	22	99	101	222
1998*	6	33	26	65

^{*}Μέχρι 8 Απριλίου. Πηγή: ΟΚΑΝΑ

3. Οι βεβαιωθέντες θάνατοι από χρήση ναρκωτικών για τα έτη 1988-98 αναφορικά με το φύλο είναι:

	Φύλ	λο		
Έτος	Γυναίκες	Άνδρες	Σύνολο	
1988	8	54	62	
1989	10	62	72	
1990	7	59	66	
1991	5	74	79	
1992	9	70	79	
1993	8	70	78	
1994	11	135	146	
1995	14	162	176	
1996	20	202	222	
1997	20	202	222	
1998*	9	56	65	

^{*} Μέχρι 8 Απριλίου. Πηγή: ΟΚΑΝΑ

- 4. α) Παρατηρούμε ότι ολοένα και περισσότερο το ποσοστό των πτυχιούχων γυναικών Μαθηματικών πλησιάζει σημαντικά το αντίστοιχο ποσοστό των ανδρών. Ενώ δηλαδή το 1930 ο λόγος ανδρών-γυναικών Μαθηματικών ήταν 90% προς 10% το 1995 ο λόγος αυτός έγινε 55% προς 45%, αντίστοιχα.
 - b) Γ unaikez = 45% \cdot 789 \cong 355 Andres = 55% \cdot 789 \cong 434.
 - γ) Το ποσοστό των πτυχιούχων γυναικών το 1974 ήταν 20% και εφόσον αυτές ήταν 173 συμπεραίνουμε ότι το σύνολο των πτυχιούχων ήταν (173·100)/20 = 865. Άρα οι άνδρες ήταν 692 (ποσοστό 80%).
 - δ) Γνωρίζουμε μόνο τα αντίστοιχα ποσοστά, άρα δεν μπορούμε να ξέρουμε τον αριθμό ανδρών και γυναικών που πήραν πτυχίο Μαθηματικού το έτος αυτό.
- 5. Παρατηρούμε ότι ο αριθμός των παιδιών από 0-14 ετών μειώνεται σημαντικά ενώ αυξάνει ο αριθμός των ηλικιωμένων (≥65 ετών) και των ατόμων μεταξύ 15 και 64 ετών.

6. α) Φάρμακο A:
$$(12+6+5+3)/150 = \frac{26}{150} \approx 0,173 \approx 17,3\%$$
.
Φάρμακο B: $(26+12+8+6)/200 = \frac{52}{200} = 0,26 = 26\%$.

β) Επειδή η μεταβλητή "συστολική πίεση" είναι συνεχής η ομαδοποίηση σε κλάσεις της μορφής [,) είναι: 94,5 – 99,5 99,5 – 104,5 κτλ. Επομένως τα πολύγωνα αθροιστικών σχετικών συχνοτήτων για τη συστολική πίεση των γυναικών που λαμβάνουν τα φάρμακα Α και Β είναι:

Παρατηρούμε ότι η συστολική πίεση των γυναικών που παίρνουν το φάρμακο Β είναι εν γένει μεγαλύτερη από ότι των γυναικών που παίρνουν το φάρμακο Α. Για παράδειγμα, το 40% των γυναικών που παίρνουν το φάρμακο Α έχουν συστολική πίεση μεγαλύτερη των 119,5 mm Hg, ενώ το ίδιο ποσοστό γυναικών που παίρνουν το φάρμακο Β έχουν συστολική πίεση μεγαλύτερη των 124,5 mm Hg. Με τα δεδομένα αυτά όμως δεν μπορούμε να ξέρουμε αν το φάρμακο Β προκαλεί την αύξηση της πίεσης ή οι γυναίκες με υψηλή πίεση παίρνουν το φάρμακο Β.

7. α) Επειδή $\nu=55$ χρησιμοποιούμε $\kappa=7$ ισοπλατείς κλάσεις. Το εύρος είναι R=13.8-1.3=12.5 συνεπώς το πλάτος των κλάσεων είναι $c=\frac{R}{\kappa}=\frac{12.5}{7}=1.786\approx1.8.$

β) Ο πίνακας συγνοτήτων είναι:

	**					
Κλάσεις [–)	Διαλογή	v_{i}	$f_i\%$	$N_{_{i}}$	$F_{i}\%$	x_{i}
1,3-3,1	## ## IIII	14	25,5	14	25,5	2,2
3,1-4,9	#####III	19	34,5	33	60,0	4,0
4,9-6,7	IIII	4	7,3	37	67,3	5,8
6,7-8,5	ШΙ	6	10,9	43	78,2	7,6
8,5-10,3	IIII	4	7,3	47	85,5	9,4
10,3-12,1	III	3	5,4	50	90,9	11,2
12,1-13,9	Ш	5	9,1	55	100,0	13,0
Σύνολο:		55	100,0	_	_	_

Πολύγωνο σχετικών συχνοτήτων.

Πολύγωνο αθροιστικών σχετικών συχνοτήτων.

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ

Α΄ ΟΜΑΔΑΣ

1. Αν x είναι ο πρώτος άρτιος, τότε οι ζητούμενοι άρτιοι αριθμοί θα είναι:

$$x + 2 + 4 + x + 6 + x + 8 + x + 10.$$

Επειδή η μέση τιμή τους είναι ίση με 15 έχουμε

$$\frac{x + x + 2 + x + 4 + x + 6 + x + 8 + x + 10}{6} = 15 \Leftrightarrow \frac{6x + 30}{6} = 15 \Leftrightarrow x = 10$$

Άρα οι αριθμοί είναι οι: 10, 12, 14, 16, 18, 20.

H διάμεσός τους είναι η $\delta = \frac{14+16}{2} = 15$.

- 2. α) Ναι, όταν και οι δέκα τιμές είναι ίσες με 1.
 - β) Όχι, η μέση τιμή είναι πάντα ανάμεσα στη μικρότερη και τη μεγαλύτερη παρατήρηση.
 - γ) Ναι, για παράδειγμα οι τιμές: 1 1 1 1 1 3 3 3 3.

3.
$$\overline{x} = \frac{5+16-10+0+27+14-20+34}{8} = \frac{66}{8} = 8,25\%$$
.

4.
$$\alpha$$
) $\overline{x} = \frac{9 \cdot 205 + 216}{10} = \frac{1845 + 216}{10} = 206,1 \text{ cm}.$

β)
$$\frac{9 \cdot 205 + x}{10} = 208 \Leftrightarrow x = 235 \text{ cm}.$$

 Αν παραστήσουμε με X την ηλικία των μαθητών, τότε έχουμε τα παρακάτω δεδομένα:

$$v_A = 18$$
, $v_K = 12$, $v = v_A + v_K = 30$, $\overline{x}_A = 15.8$, $\overline{x} = 15.4$.

Αν \overline{x}_{K} είναι η μέση ηλικία των κοριτσιών, τότε θα είναι $\overline{x}=\frac{v_{A}\overline{x}_{A}+v_{K}\overline{x}_{K}}{v_{A}+v_{K}}$, οπότε αντικαθιστώντας τα δεδομένα έχουμε:

$$15,4 = \frac{18 \cdot 15,8 + 12\overline{x}_K}{30} \Leftrightarrow \overline{x}_K = 14,8.$$

6. α) Έχουμε 1Α, 2Μ, 3Κ και 4Π μπάλες. Αν παραστήσουμε με Χ το βάρος (σε gr) για τις μπάλες διαφορετικού χρώματος, θα έχουμε τις τιμές 10, 11, 12 και 13 για τις άσπρες, μαύρες, κόκκινες και πράσινες μπάλες, αντίστοιχα, με συχνότητες όπως δίνονται στον παρακάτω πίνακα:

Α	10%	10gr
М	20%	11gr
K	30%	12gr
П	40%	13gr

x_{i}	v_{i}	f_{i}
10	1	0,10
11	2	0,20
12	3	0,30
13	4	0,40
Σύνολο	10	1,00

$$\overline{x} = \frac{10 + 2 \cdot 11 + 3 \cdot 12 + 4 \cdot 13}{10} = \frac{120}{10} = 12 \text{ gr}$$

$$\delta = \frac{12 + 12}{2} = 12 \text{ gr}$$

$$M_0 = 13 \text{ gr}.$$

β) Έχουμε 2A, 4M, 6K και 8Π μπάλες. Αν εργαστούμε όπως στην προηγούμενη περίπτωση, ο πίνακας συχνοτήτων είναι:

x_{i}	v_{i}	f_{i}
10	2	0,10
11	4	0,20
12	6	0,30
13	8	0,40
Σύνολο	20	1,00

$$\overline{x} = \frac{2 \cdot 10 + 4 \cdot 11 + 6 \cdot 12 + 8 \cdot 13}{20} = 12 \text{ gr}$$

$$\delta = \frac{12 + 12}{2} = 12 \text{ gr } \kappa \alpha t$$

$$M_0 = 13 \text{ gr.}$$

$$\gamma$$
) $\overline{x} = \sum_{i=1}^{4} x_i f_i = 10 \cdot 0, 10 + 11 \cdot 0, 20 + 12 \cdot 0, 30 + 13 \cdot 0, 40 = 12 \text{ gr}$

Οι μισές από τις μπάλες έχουν βάρος μικρότερο των 12 gr και οι άλλες μισές μεγαλύτερο των 12 gr, άρα δ = 12 gr.

7. α) Ο αριθμητικός μέσος είναι

$$\overline{x} = \frac{12+10+16+18+14}{5} = 14$$

β) Ο σταθμικός μέσος είναι

$$\overline{x} = \frac{2 \cdot 12 + 3 \cdot 10 + 1 \cdot 16 + 1 \cdot 18 + 3 \cdot 14}{2 + 3 + 1 + 1 + 3} = \frac{130}{10} = 13.$$

Για να μεγαλώσει ο σταθμικός μέσος πρέπει να έχει μεγάλους βαθμούς στα μαθήματα που έχουν και μεγαλύτερους συντελεστές. Έπρεπε λοιπόν ο μαθητής να δώσει ιδιαίτερη προσοχή στα μαθήματα με τους συντελεστές στάθμισης 3.

8. Είναι $\overline{x}_{\rm A}$ = 1249 ευρώ, $\overline{x}_{\rm B}$ = 1280 και $\overline{x}_{\rm \Gamma}$ = 1360 ευρώ. Άρα

$$\overline{x}_{o\lambda} = \frac{5 \cdot 1249 + 6 \cdot 1280 + 4 \cdot 1360}{5 + 6 + 4} = \frac{13365}{15} = 1291 \text{ euró.}$$

9. Εφόσον οι αριθμοί είναι πέντε, η διάμεσος θα είναι ο μεσαίος αριθμός. Επειδή όμως $\delta=6$ προκύπτει ότι ένας από τους αριθμούς που ζητούμε είναι το 6. Επειδή όμως η μέση τιμή είναι επίσης 6, αν x είναι ο πέμπτος αριθμός θα έχουμε: $\frac{5+6+8+9+x}{5}=6 \Leftrightarrow x=2.$

Επομένως οι άλλοι δύο αριθμοί είναι οι 2 και 6.

10.
$$\alpha$$
) $\overline{x} = \frac{\sum x_i v_i}{\sum v_i} \Leftrightarrow 4, 4 = \frac{2 \cdot 1 + 3 \cdot 3 + 4 \cdot 1 + 5 \cdot 2 + 6 \cdot v_5 + 7 \cdot 1}{1 + 3 + 1 + 2 + v_5 + 1}$
 $\Leftrightarrow 4, 4(8 + v_5) = 6v_5 + 32 \Leftrightarrow v_5 = 2.$

β) Οι τιμές σε αύξουσα σειρά είναι:

Επειδή η $\delta=4,5=\frac{4+5}{2}$, όσες τιμές έχουμε αριστερά της (δηλαδή 5) άλλες τόσες θα έχουμε προς τα δεξιά της. Άρα πρέπει να έχουμε ακόμη δύο 6. Συνεπώς $v_s=2$.

γ) Για να έχουμε δύο επικρατούσες τιμές πρέπει το v_5 = 3, οπότε οι επικρατούσες τιμές θα είναι το 3 και το 6.

11. Ο πίνακας συχνοτήτων της μεταβλητής X που παριστά τον βαθμό στα Μαθηματικά των 40 μαθητών του πίνακα 4, είναι:

x_{i}	ν_{i}	$x_i v_i$	N_{i}
10	1	10	1
11	1	11	2 6
12	4	48	6
13	2	26	8
14	5	70	13
15	2 5 8 6	120	21
16	6	96	27
17	4	68	31
18	4 3	54	34
19	5	95	39
20	1	20	40
Σύνολο	40	618	_

Επομένως

$$\alpha$$
) $\overline{x} = \frac{\sum x_i v_i}{\sum v_i} = \frac{618}{40} = 15,45$

β)
$$\delta = \frac{20 \acute{\eta} \pi \alpha \rho. + 21 \eta \pi \alpha \rho.}{2} = \frac{15 + 15}{2} = 15,$$

δηλαδή το πολύ 50% των μαθητών και μαθητριών έχουν βαθμό στα Μαθηματικά κάτω από 15 και το πολύ 50% πάνω από 15.

$$\gamma M_0 = 15$$

δ)
$$Q_1 = \frac{10\eta \pi \alpha \rho. + 11\eta \pi \alpha \rho.}{2} = \frac{14 + 14}{2} = 14$$

$$Q_3 = \frac{30\dot{\eta} \pi \alpha \rho. + 31\eta \pi \alpha \rho.}{2} = \frac{17 + 17}{2} = 17.$$

Συγκεκριμένα εδώ έχουμε $\frac{13}{40}$ = 32,5% με βαθμό μικρότερο του 15 και

$$\frac{19}{40}$$
 = 47,5% με βαθμό μεγαλύτερο του 15.

12. Ο πίνακας συχνοτήτων είναι:

Επισκέψεις [-)	x_{i}	v_{i}	$x_i V_i$	N_{i}	$F_i\%$
0-2	1	8	8	8	20
2-4	3	12	36	20	50
4-6	5	10	50	30	75
6-8	7	6	42	36	90
8-10	9	4	36	40	100
Σύνολο		40	172	_	_

$$\alpha$$
) $\overline{x} = \frac{\sum x_i v_i}{\sum v_i} = \frac{172}{40} = 4,3.$

$$M_0 \approx 3.3$$

$$Q_1 \approx 2,33$$

$$\delta = 4$$

$$Q_3 = 6$$

13.
$$\alpha$$
) $\overline{x} = \frac{30 \cdot 170 - 180}{29} \approx 169,66 \text{ cm}$

$$\beta$$
) $\overline{x} = \frac{30 \cdot 170 + 170}{31} = 170 \text{ cm}$

$$\gamma$$
) $\overline{x} = \frac{30 \cdot 170 - 180 + 170}{30} \approx 169,67 \text{ cm}.$

- 14. α) Διακύμανση ή διασπορά ορίζεται ο μέσος όρος των τετραγώνων των αποκλίσεων των x_i από τη μέση τιμή τους. Μικρότερες (κατ' απόλυτη τιμή) αποκλίσεις έχουμε στη δεύτερη λίστα και μεγαλύτερες αποκλίσεις στην τρίτη λίστα. Άρα μικρότερη διασπορά έχουν οι τιμές της 2ης λίστας και μεγαλύτερη διασπορά της 3ης λίστας.
 - β) Όχι, γιατί έχουν το ίδιο εύρος.
- 15. Οι τιμές της βαθμολογίας σε αύξουσα σειρά είναι:

3 4 7 10 11 11 12 13 14 15
$$\delta$$

$$\alpha$$
) $\bar{x} = \frac{3+4+...+15}{10} = \frac{100}{10} = 10$
 $M_0 = 11, \ \delta = \frac{11+11}{2} = 11.$

β) Το Q_I είναι η διάμεσος των: 3 4 7 10 11. Άρα Q_I = 7. Το Q_3 είναι η διάμεσος των: 11 12 13 14 15. Άρα Q_3 = 13.

$$\gamma) R = 15 - 3 = 12$$

$$s^{2} = \frac{(3 - 10)^{2} + (4 - 10)^{2} + \dots + (15 - 10)^{2}}{10} = \frac{49 + 36 + \dots + 25}{10} = 15$$

$$s = \sqrt{15} \approx 3.87$$

$$cv = \frac{s}{T} = \frac{3.87}{10} = 38.7\%.$$

16. Από τον πίνακα της άσκησης 12 βρίσκουμε:

	x_{i}	v_{i}	$x_i v_i$	$x_i^2 V_i$
İ	1	8	8	8
I	3	12	36	108
İ	5	10	50	250
İ	7	6	42	294
ı	9	4	36	324
İ	_	40	172	_

$$s^{2} = \frac{1}{\nu} \left\{ \sum x_{i}^{2} v_{i} - \frac{\left(\sum x_{i} v_{i}\right)^{2}}{\nu} \right\}$$

$$= \frac{1}{40} \left\{ 984 - \frac{172^{2}}{40} \right\}$$

$$= \frac{1}{40} \left\{ 984 - \frac{29584}{40} \right\} = \frac{244,4}{40} = 6,11.$$

$$Άρα s = √6,11 ≈ 2,47.$$

- **17.** Έχουμε $\overline{x} = 10$ και s = 2. Άρα:
 - στο διάστημα (8, 12) έχουμε το 68%
 - στο διάστημα (6, 14) έχουμε το 95%
 - στο διάστημα (4, 16) έχουμε το 99,7%.
 Συνεπώς το ποσοστό των μαθητών που χρειάζονται:

β) πάνω από 14 λεπτά είναι το

$$\frac{100\% - 95\%}{2} = 2,5\%$$

- γ) το πολύ 10 λεπτά είναι το 50%
- δ) μεταξύ 6 και 12 λεπτά είναι το $\frac{95\% 68\%}{2} + 68\% = 81,5\%$.

18.
$$\alpha$$
) $\overline{x} = \frac{1+2+6}{3} = 3$, $\delta = 2$.

β) Οι τιμές αυτές προκύπτουν από τις τιμές του πρώτου δείγματος αν πολλαπλασιάσουμε καθεμιά επί 2.

$$Aρα \overline{x} = 3 \cdot 2 = 6$$
 και $δ = 2 \cdot 2 = 4$.

γ) Οι τιμές αυτές προκύπτουν από τις τιμές του πρώτου δείγματος αν προσθέσουμε σε καθεμιά το 10.

$$A$$
ρα $\bar{x} = 3 + 10 = 13$, $\delta = 2 + 10 = 12$.

δ) Οι τιμές αυτές προκύπτουν από τις τιμές του πρώτου δείγματος πολλαπλασιάζοντας καθεμιά επί 2 και προσθέτοντας το 10. Άρα $\overline{x} = 3 \cdot 2 + 10 = 16$, $\delta = 2 \cdot 2 + 10 = 14$.

19.
$$s_{\alpha}^{2} = \frac{1}{v} \sum (x_{i} - \overline{x}_{\alpha})^{2} = \frac{(1-4)^{2} + (3-4)^{2} + (4-4)^{2} + (5-4)^{2} + (7-4)^{2}}{5} = \frac{20}{5} = 4$$

$$s_{\beta}^{2} = \frac{1}{v} \sum (x_{i} - \overline{x}_{\beta})^{2} = \frac{(3-12)^{2} + (9-12)^{2} + \dots + (21-12)^{2}}{5} = \frac{180}{5} = 36$$

$$s_{\gamma}^{2} = \frac{1}{v} \sum (x_{i} - \overline{x}_{\gamma})^{2} = \frac{(6-9)^{2} + (8-9)^{2} + \dots + (12-9)^{2}}{5} = \frac{20}{5} = 4$$

$$s_{\delta}^{2} = \frac{1}{v} \sum (x_{i} - \overline{x}_{\delta})^{2} = \frac{(-1+4)^{2} + (-3+4)^{2} + \dots + (-7+4)^{2}}{5} = \frac{20}{5} = 4$$

$$A\rho\alpha s_{\alpha} = 2, s_{\beta} = 6, \quad s_{\gamma} = 2, s_{\delta} = 2.$$

Παρατηρούμε ότι:

Οι τιμές της λίστας (β) προκύπτουν από τις αντίστοιχες τιμές της λίστας
 (α) πολλαπλασιάζοντας κάθε τιμή επί 3. Τότε, από την εφαρμογή 3, η διακύμανση των τιμών της λίστας (β) προκύπει από τη διακύμανση των τιμών της λίστας (α) πολλαπλασιάζοντας επί 3². Δηλαδή,

$$s_{\beta}^2 = 3^2 \cdot s_{\alpha}^2$$
 kat $s_{\beta} = 3 \cdot s_{\alpha}$.

Οι τιμές της λίστας (γ) προκύπτουν από τις αντίστοιχες τιμές της λίστας
 (α) προσθέτοντας το 5. Τότε, από την εφαρμογή 3, η διακύμανση της λίστας (γ) ισούται με τη διακύμανση της λίστας (α). Δηλαδή

$$s_{\gamma}^2 = s_{\alpha}^2$$
 kat $s_{\gamma} = s_{\alpha}$.

Οι τιμές της λίστας (δ) προκύπτουν από τις αντίστοιχες τιμές της λίστας
 (α) πολλαπλασιάζοντας επί (-1). Τότε σύμφωνα με την εφαρμογή 3,

$$s_{\delta}^2 = (-1)^2 s_{\alpha}^2 = s_{\alpha}^2$$
 kat $s_{\delta} = \left|-1\right| s_{\alpha} = s_{\alpha}$.

20.
$$cv = \frac{s}{\overline{x}} \Leftrightarrow 0,272 = \frac{1}{625} \Leftrightarrow s = 170$$
 ευρώ

$$s^{2} = \frac{1}{\nu} \left\{ \sum x_{i}^{2} - \nu \overline{x}^{2} \right\} \Leftrightarrow \nu = \frac{\sum x_{i}^{2}}{s^{2} + \overline{x}^{2}} \Leftrightarrow \nu = \frac{11746700}{170^{2} + 625^{2}} \Leftrightarrow \nu = 28.$$

Β' ΟΜΑΔΑΣ

1. α) Επειδή το εύρος των παρατηρήσεων είναι R=20-10=10 και το πλήθος των κλάσεων είναι $\kappa=5$, προκύπτει ότι το πλάτος των κλάσεων είναι $c=R/\kappa=10/5=2$. Επομένως ο πίνακας συχνοτήτων είναι:

Κλάσεις [-)	x_{i}	v_{i}	$x_i v_i$	N _i	$F_{_i}\%$
10-12	11	5	55	5	10
12-14	13	10	130	15	30
14-16	15	20	300	35	70
16-18	17	10	170	45	90
18-20	19	5	95	50	100
Σύνολο	_	50	750	_	

50

$$\beta$$
) $\bar{x} = \frac{750}{50} = 15$.

Από το διπλανό πολύγωνο αθροιστικών σχετικών συχνοτήτων βρίσκουμε $\delta = 15$.

$$\sum_{i=1}^{5} (x_i - \overline{x})^2 = \sum_{i=1}^{4} (x_i - \overline{x})^2 + (x_5 - \overline{x})^2$$

$$\Leftrightarrow (x_5 - \overline{x})^2 = \sum_{i=1}^{5} (x_i - \overline{x})^2 - \sum_{i=1}^{4} (x_i - \overline{x})^2 = 50 - 14 = 36$$

$$\Leftrightarrow x_5 - \overline{x} = 6 \Leftrightarrow x_5 = \overline{x} + 6 = 4 + 6 = 10$$

$$\dot{\eta}$$
 $x_s - \overline{x} = -6 \Leftrightarrow x_s = \overline{x} - 6 = 4 - 6 = -2$.

Συνεπώς $x_5 = -2$ ή $x_5 = 10$.

3. Σε αύξουσα σειρά οι τιμές είναι:

$$\alpha) \ \overline{x} = \frac{6+6+9+9+9+12+15+18+21+27}{10} = \frac{132}{10} = 13,2 \ \text{euró}$$

$$\delta = \frac{9+12}{2} = 10,5 \ \text{euró}$$

$$M_o = 9 \ \text{euró}$$

β) Αν προσθέσουμε το ΦΠΑ 18%, τότε σύμφωνα με την εφαρμογή 3 η μέση τιμή θα αυξηθεί κατά 18%. Δηλαδή η μέση αξία των βιβλίων θα γίνει

$$\overline{x} + \frac{18}{100}\overline{x} = 13,2 + 0,18 \cdot 13,2 \approx 13,2 + 2,37 \approx 15,57 \text{ evr}$$

Εφόσον οι παρατηρήσεις αυξάνονται όλες κατά 18%, τότε η διάμεση τιμή θα είναι η αρχική διάμεση τιμή αυξημένη κατά 18%, δηλαδή θα γίνει

$$\delta + \frac{18}{100}\delta = 10,5 + 0,18 \cdot 10,5 = 12,39 \text{ eva}$$

Ομοίως και η επικρατούσα τιμή θα αυξηθεί κατά 18%, δηλαδή θα γίνει

$$M_0 + \frac{18}{100}M_0 = 9 + 0.18 \cdot 9 = 9 + 1.62 = 10.62 \text{ euró}$$

γ) Εάν προσθέσουμε επιπλέον και το κόστος των 0,3 ευρώ για το ντύσιμο κάθε βιβλίου, τότε η μέση, η διάμεση και η επικρατούσα αξία θα αυξηθούν κατά 0,3 ευρώ δηλαδή θα γίνουν:

15,87 ευρώ, 12,69 ευρώ, 10,92 ευρώ αντιστοίχως.

4. Αν 0, 2, 4, 6, 8, 10, 12 οι τιμές ενός δείγματος, τότε η μέση τιμή και η τυπική απόκλιση είναι:

$$\overline{x} = \frac{0+2+4+6+8+10+12}{7} = \frac{42}{7} = 6$$

$$s_x^2 = \frac{(0-6)^2 + (2-6)^2 + (4-6)^2 + (6-6)^2 + (8-6)^2 + (10-6)^2 + (12-6)^2}{7}$$

$$= \frac{36+16+4+0+4+16+36}{7} = 16.$$

 $A\rho\alpha s_x = 4.$

Αν από κάθε τιμή αφαιρέσουμε τη μέση τιμή και διαιρέσουμε με την τυπική απόκλιση, οι νέες τιμές θα είναι

$$-\frac{6}{4}$$
, $-\frac{4}{4}$, $-\frac{2}{4}$, 0, $\frac{2}{4}$, $\frac{4}{4}$, $\frac{6}{4}$ $\acute{\eta}$ -1,5, -1, -0,5, 0, 0,5, 1, 1,5.

Συνεπώς η μέση τιμή και η τυπική τους απόκλιση είναι:

$$\overline{y} = \frac{-1,5-1-0,5+0+0,5+1+1,5}{7} = \frac{0}{7} = 0$$

και

$$s_y^2 = \frac{1}{7} \sum (y_i - \overline{y})^2 = \frac{1}{7} \sum y_i^2 = \frac{2,25 + 1 + 0,25 + 0,25 + 1 + 2,25}{7} = \frac{7}{7} = 1.$$

Γενικά, αποδεικνύεται (βλέπε εφαρμογή 3) ότι: αν x_{p} , x_{2} , ..., x_{v} οι παρατηρήσεις ενός δείγματος με μέση τιμή \overline{x} και τυπική απόκλιση s, τότε οι τιμές $y_{i} = \frac{x_{i} - \overline{x}}{s}, i = 1, 2, ..., v$ έχουν μέση τιμή 0 και τυπική απόκλιση 1.

5. α) Ο αριθμός των πωλητών είναι 12 + 8 + 14 + 10 + 8 + 5 + 3 = 60.

$$\beta$$
) 7 + 10 + 8 + 5 + 3 = 33.

$$\gamma$$
) $M_0 \approx 5.2$ χιλ. ευρώ = 5.200 ευρώ

5)			1				
,	Κλάσεις [-)	x_{i}	v_{i}	$x_i v_i$	$x_i^2 v_i$	$N_{_i}$	$F_{_i}\%$
	0-2	1	12	12	12	12	20,0
	2-4	3	8	24	72	20	33,3
	4-6	5	14	70	350	34	56,7
	6-8	7	10	70	490	44	73,3
	8-10	9	8	72	648	52	86,7
	10-12	11	5	55	605	57	95,0
	12-14	13	3	39	507	60	100,0
	Σύνολο		60	342	2684	_	_

$$\overline{x} = \frac{\sum x_i y_i}{v} = \frac{342}{60} = 5.7$$
 χιλιάδες ευρώ = 5.700 ευρώ

$$s^{2} = \frac{1}{v} \left\{ \sum x_{i}^{2} v_{i} - \frac{\left(\sum x_{i} v_{i}\right)^{2}}{v} \right\} = \frac{1}{60} \left\{ 2684 - \frac{342^{2}}{60} \right\} = 12,24.$$

Άρα
$$s = \sqrt{12,24} \approx 3.5$$
 χιλιάδες ευρώ = $3.5 \cdot 10^3$ ευρώ

6. α) Έχουμε κ = 5 κλάσεις πλάτους c = 20 της ηλικίας X των ατόμων μιας πόλης. Ο πίνακας συχνοτήτων είναι :

Κλάσεις [-)	X_{i}	V_{i}	$x_i v_i$	$x_i^2 v_i$	N_{i}	$F_{i}\%$
0-20	10	12	120	1200	12	20,0
20-40	30	14	420	12600	26	43,3
40-60	50	20	1000	50000	46	76,7
60-80	70	10	700	49000	56	93,3
80-100	90	4	360	32400	60	100,0
Σύνολο		60	2600	145200	_	_

από τον οποίο βρίσκουμε

$$\overline{x} = \frac{\sum x_i v_i}{v} = \frac{2600}{60} = 43,33 \text{ \'eth}$$

$$s^2 = \frac{1}{v} \left\{ \sum x_i^2 v_i - \frac{\left(\sum x_i v_i\right)^2}{v} \right\} = \frac{1}{60} \left\{ 145200 - \frac{2600^2}{60} \right\} = 542,22$$

 $Aρα s = \sqrt{542,22} = 23,29 έτη.$

$$cv = \frac{23,29}{43,33} = 53,75\% \ . \ H \ \text{τιμή αυτή σημαίνει ότι έχουμε μεγάλη}$$
 "ανομοιογένεια".

β) Κατασκευάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων από το οποίο εκτιμούμε τα Q_1 και Q_3 .

Δηλαδή το 25% των ατόμων έχουν ηλικία κάτω των 24 ετών, το 25% έχουν ηλικία άνω των 59 ετών και για το ενδιάμεσο 50% των ατόμων η ηλικία τους διαφέρει μέχρι και 35 χρόνια.

7. Παρατηρούμε ότι οι κλάσεις της ηλικίας είναι 50-54, 55-59, κτλ. Τότε όμως δύο άτομα, για παράδειγμα 54,2 και 54,8 ετών αντιστοίχως, σε ποια κλάση θα ταξινομηθούν; Στις περιπτώσεις αυτές συνήθως η στρογγυλοποίηση γίνεται στον πλησιέστερο ακέραιο οπότε το 54,2 θα γίνει 54 και το 54,8 θα γίνει 55. Συνεπώς χρησιμοποιώντας για την ηλικία κλάσεις της μορφής [-), οι κλάσεις και ο πίνακας συχνοτήτων για τους άνδρες και τις γυναίκες είναι:

W1.6	Άνδρες			Γυναίκες			
Κλάσεις [-)	x_{i}	v_{i}	N_{i}	$F_{i}\%$	v_i'	N_{i}^{\prime}	$F_{i}^{\prime}\%$
49,5-54,5	52	10	10	2,3	7	7	1,1
54,5-59,5	57	10	20	4,6	4	11	1,8
59,5-64,5	62	17	37	8,6	21	32	5,2
64,5-69,5	67	36	73	17,0	57	89	14,4
69,5-74,5	72	44	117	27,2	61	150	24,3
74,5-79,5	77	73	190	44,2	109	259	42,0
79,5-84,5	82	117	307	71,4	162	421	68,3
84,5-89,5	87	123	430	100,0	195	616	100,0
Σύνολο		430		_	616	_	_

Από τον πίνακα, τα πολύγωνα αθροιστικών σχετικών συχνοτήτων είναι:

Παρατηρούμε από τα πολύγωνα αθροιστικών σχετικών συχνοτήτων ότι τα ποσοστά των ανδρών που πέθαναν από υπερτασική νόσο το 1995 ήταν σ' όλες τις ηλικίες μεγαλύτερα από τα αντίστοιχα ποσοστά των γυναικών. Το 25% των ανδρών που πέθαναν από υπερτασική νόσο ήταν κάτω των 73 ετών περίπου ενώ για το αντίστοιχο ποσοστό η ηλικία των γυναικών ήταν κάτω των 75 ετών περίπου.

Ομοίως το 50% των ανδρών και το 50% των γυναικών ήταν άνω των 81 ετών. Τέλος, το 25% των ανδρών και το 25% των γυναικών ήταν (περίπου) άνω των 85 ετών.

2.4 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Α΄ ΟΜΑΔΑΣ

Τα διαγράμματα διασποράς για τα ζεύγη (x_i, y_i) στις περιπτώσεις (α) και (β) δίνονται παρακάτω. Η προσαρμοσμένη "με το μάτι" ευθεία μπορεί να είναι, όπως έχουμε δει, διαφορετική για κάθε μαθητή.

2. i) Εργαζόμαστε όπως στην εφαρμογή 1. Επιλέγουμε τα σημεία A(6, 8), B(18, 18), οπότε για την ευθεία που διέρχεται από τα σημεία αυτά έχουμε:

$$\begin{cases}
8 = \alpha + 6\beta \\
18 = \alpha + 18\beta
\end{cases} \Leftrightarrow \begin{cases}
8 = \alpha + 6\beta \\
10 = 12\beta
\end{cases} \Leftrightarrow \begin{cases}
8 = \alpha + 6\beta \\
\beta = \frac{5}{6}
\end{cases} \Leftrightarrow \beta = \frac{5}{6}
\end{cases}$$

$$\Delta \rho \alpha \qquad y = 3 + \frac{5}{6}x.$$

ii) Εργαζόμαστε όπως και στην περίπτωση (i). Για τα σημεία A(20, 60), B(35, 70) έχουμε:

$$60 = \alpha + 20\beta$$

$$70 = \alpha + 35\beta$$

$$\Leftrightarrow 60 = \alpha + 20\beta$$

$$\Leftrightarrow \beta = \frac{2}{3}$$

$$\Leftrightarrow \alpha \approx 46,7$$

$$\beta \approx 0,67$$

Άρα

$$y = 46,7 + 0,67x$$
.

3. α) Έχουμε τον πίνακα

x_i	y_i	x_i^2	$x_i y_i$
1	1	1	1
2	2	4	4
3	3	9	9
4	4	16 25	16
5	5	25	16 25
15	15	55	55

$$y = \alpha + \beta x$$

$$v = 5$$

$$\overline{x} = \frac{\sum x_i}{v} = \frac{15}{5} = 3$$

$$\overline{y} = \frac{\sum y_i}{v} = \frac{15}{5} = 3$$

από τον οποίο βρίσκουμε

$$\hat{\beta} = \frac{v \sum x_i y_i - (\sum x_i)(\sum y_i)}{v \sum x_i^2 - (\sum x_i)^2} = \frac{5 \cdot 55 - 15 \cdot 15}{5 \cdot 55 - 15^2} = 1$$

$$\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x} = 3 - 1 \cdot 3 = 0.$$

Άρα η ευθεία ελαχίστων τετραγώνων είναι η $\hat{y} = x$ και δίνεται στο παρακάτω σχήμα (α).

Συνεπώς η πρόβλεψη του y για x = 6 είναι $\hat{y} = 6$.

Αν εργαστούμε όπως και στην περίπτωση (α), βρίσκουμε:

- β) v = 5, $\overline{x} = 3$, $\overline{y} = 3$, $\hat{\beta} = -1$, $\hat{\alpha} = 6$. Άρα $\hat{y} = 6 - x$. Συνεπώς για x = 6 έχουμε $\hat{y} = 0$.
- γ) ν = 5, $\overline{x} = 3$, $\overline{y} = 3$, $\hat{β} = -0.3$, $\hat{α} = 3.9$. Άρα $\hat{y} = 3.9 - 0.3x$. Συνεπώς για x = 6 έχουμε $\hat{y} = 2.1$.
- δ) v = 5, $\overline{x} = 3$, $\overline{y} = 3$, $\hat{\beta} = 0.3$, $\hat{\alpha} = 2.1$. Άρα $\hat{y} = 2.1 + 0.3x$. Συνεπώς για x = 6 έχουμε $\hat{y} = 3.9$.

4. Συμπληρώνουμε τον παρακάτω πίνακα

x_i	y_i	x_i^2	$x_i y_i$	
0,30	12,5	0,0990	3,750	v = 10
0,35	11,5	0,1225	4,025	V = 10
0,40	11,0	0,1600	4,400	-
0,45	8,5	0,2025	3,825	$\overline{x} = \frac{\sum x_i}{10} = \frac{5,55}{10} = 0,555$
0,55	7,0	0,3025	3,850	$x = \frac{10}{v} = \frac{10}{10} = 0,333$
0,60	6,0	0,3600	3,600	, 10
0,65	5,0	0,4225	3,250	$\sum y_i = 70$
0,70	4,0	0,4900	2,800	$y = \frac{2v}{v} = \frac{10}{10} = 7$
0,75	2,5	0,5625	1,875	V 10
0,80	2,0	0,6400	1,600	
5,55	70,0	3,3525	32,975	

από τον οποίο βρίσκουμε

$$\hat{\beta} = \frac{v \sum x_i y_i - (\sum x_i)(\sum y_i)}{v \sum x_i^2 - (\sum x_i)^2} = \frac{10 \cdot 32,975 - 5,55 \cdot 70}{10 \cdot 3,3525 - 5,55^2} = -21,58$$

και

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x} = 7 - (-21,58) \cdot 0,555 = 18,98.$$

Το διάγραμμα διασποράς και η ευθεία ελαχίστων τετραγώνων $\hat{y} = 18,98 - 21,58x$, δίνονται παρακάτω:

Η ευθεία που προσαρμόστηκε με "το μάτι" στην εφαρμογή 1 ήταν η y=18,5-20,58χ. Συνεπώς μπορούμε να πούμε ότι έγινε ικανοποιητική προσαρμογή σε σχέση με την ευθεία ελαχίστων τετραγώνων $\hat{y}=18,98-21,58$ χ.

5. α) Συμπληρώνουμε τον παρακάτω πίνακα

x_{i}	\mathcal{Y}_{i}	x_i^2	$x_i y_i$
12	13	144	156
15	14	225	210
16	18	256	288
18	18	324	324
18	20	324	360
79	83	1273	1338

$$y = \alpha + \beta x$$

$$v = 5$$

$$\overline{x} = \frac{79}{5} = 15,8$$

$$\overline{y} = \frac{83}{5} = 16,6$$

από τον οποίο βρίσκουμε

$$\hat{\beta} = \frac{v \sum x_i y_i - (\sum x_i)(\sum y_i)}{v \sum x_i^2 - (\sum x_i)^2} = \frac{5 \cdot 1338 - 79 \cdot 83}{5 \cdot 1273 - 79^2} = \frac{133}{124} = 1,07$$

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x} = 16, 6 - 1, 07 \cdot 15, 8 = -0, 35.$$

$$\hat{A}$$
ρα $\hat{y} = -0.35 + 1.07x$.

Το διάγραμμα διασποράς και η ευθεία ελαχίστων τετραγώνων δίνονται παρακάτω

β) An
$$x = 15$$
 τότε $\hat{y} = -0.35 + 1.07 \cdot 15 = 15.7 \approx 16$.

Επομένως για μαθητή με βαθμό 15 στα Μαθηματικά αναμένεται να έχει βαθμό 16 στη Φυσική.

Β' ΟΜΑΔΑΣ

α) Η ηλικία (Χ) θεωρείται ως ανεξάρτητη μεταβλητή και η συστολική πίεση (Υ) ως εξαρτημένη μεταβλητή καθόσον η ηλικία καθορίζεται χωρίς σφάλμα ενώ στη μέτρηση της συστολικής πίεσης έχουμε κάποιο σφάλμα.

- γ) Είναι δυνατό να έχουμε διαφορετικές ευθείες που προσαρμόζονται "με το μάτι" στα δεδομένα αυτά. Αν, για παράδειγμα, πάρουμε τα σημεία A(30, 110) και B(60, 150), βρίσκουμε ότι η ευθεία που διέρχεται από τα σημεία αυτά είναι η y = 70 + 1.33 x.
- δ) Για μια γυναίκα ηλικίας 75 ετών προβλέπεται συστολική πίεση

$$y = 70 + 1.33 \cdot 75 \approx 170 \text{ mm Hg}.$$

2. α) Αρκεί να βρούμε την ευθεία ελαχίστων τετραγώνων του ύψους (Υ) των μαθητών πάνω στο ύψος (Χ) των πατέρων τους ή, για ευκολία, να προσαρμόσουμε "με το μάτι" την καλύτερη ευθεία στο αντίστοιχο διάγραμμα διασποράς. Οι τιμές των ζευγών (x_i, y_i), i = 1, 2,..., 18 δίνονται παρακάτω, όπου y_i παριστάνει το ύψος των αγοριών και x_{ii} το ύψος των πατέρων τους:

y_A	$x_{_{II}}$	$x_{_{M}}$	$z = \frac{x_{II} + x_{M}}{2}$
180	185	165	175
175	174	174	174
173	182	160	171
170	182	165	173,5
177	177	169	173
180	170	165	167,5
182	176	173	174,5
178	182	170	176
178	173	168	170,5
172	178	165	171,5
187	185	170	177,5
180	180	167	173,5
178	173	170	171,5
191	180	170	175
176	180	172	176
179	178	160	169
178	180	160	170
180	170	163	166,5

Η ευθεία ελαχίστων τετραγώνων του ύψους των αγοριών πάνω στο ύψος του πατέρα, όπως μπορεί εύκολα να διαπιστωθεί μετά από πράξεις, είναι η $\hat{y}_{\scriptscriptstyle A} = 167 + 0,06 x_{\scriptscriptstyle T}.$

Για $x_{_{I\!I}}$ =180 cm το προβλεπόμενο ύψος του αγοριού είναι $\hat{y}_{_{\!A}}$ =178,7 cm.

β) Όπως προηγουμένως, με τη διαφορά ότι η ανεξάρτητη μεταβλητή είναι η

$$Z = \frac{\Upsilon_{\text{Wos}} \ \text{patéra} + \Upsilon_{\text{Wos}} \ \text{mhtéras}}{2} = \frac{X_{\text{p}} + X_{\text{m}}}{2} \, .$$

Οι τιμές των ζευγών (y_i, z_i) , i=1,2,...,18 δίνονται επίσης στον παραπάνω πίνακα. Η ευθεία ελαχίστων τετραγώνων του ύψους των αγοριών στο μέσο ύψος των γονιών τους είναι η $\hat{y}_a=112,9+0,38z$.

Για z = 170 cm το προβλεπόμενο ύψος του αγοριού είναι $\hat{y}_A = 177,5$ cm.

3. Εργαζόμαστε όπως στην άσκηση 2 όπου Y_{K} το ύψος των κοριτσιών, X_{M} το ύψος της μητέρας και Z το μέσο ύψος των γονιών. Για κάθε περίπτωση έχουμε 22 ζεύγη τιμών.

- α) Μετά από πράξεις, η ευθεία ελαχίστων τετραγώνων του ύψους των κοριτσιών πάνω στο ύψος της μητέρας είναι $\hat{y}_K=164,6+0,02x_M$. Έτσι το προβλεπόμενο ύψος ενός κοριτσιού με ύψος μητέρας $x_M=168$ cm είναι $\hat{y}_K=168,3$ cm.
- β) Αν εργαστούμε όπως και στην περίπτωση (α) βρίσκουμε $\hat{y}_K = 112 + 0.33z$. Για z = 170 cm έχουμε $\hat{y}_K = 168.1$ cm.

4. α) Συμπληρώνουμε πρώτα τον παρακάτω πίνακα

x_{i}	\mathcal{Y}_{i}	x_i^2	$x_i y_i$
20	20	400	400
20	22	400	440
22	24	484	528
27	25	729	675
24	28	576	672
25	30	625	750
28	33	784	924
34	38	1156	1292
200	220	5154	5681

$$v = 8$$

$$\overline{x} = 25$$

$$\overline{y} = 27,5$$

από τον οποίο βρίσκουμε

$$\hat{\beta} = \frac{v \sum_{i} x_{i} y_{i} - \left(\sum_{i} x_{i}\right) \left(\sum_{i} y_{i}\right)}{v \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}}$$

$$= \frac{8 \cdot 5681 - 200 \cdot 220}{8 \cdot 5154 - 200^{2}}$$

$$= \frac{1448}{1232} = 1,175 \approx 1,18$$

$$\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x} = 27,5 - 1,175 \cdot 25 \approx -1,88.$$

Επομένως η ευθεία ελαχίστων τετραγώνων είναι η $\hat{y} = -1.88 + 1.18x$

β) Για μια νύφη x = 25 ετών εκτιμούμε από την ευθεία ελαχίστων τετραγώνων την ηλικία του γαμπρού.

$$y = -1.88 + 1.18 \cdot 25 = 27.62$$
 έτη ≈ 27 έτη 7 μήνες

- γ) Όταν η ανεξάρτητη μεταβλητή X (ηλικία νύφης) μεταβάλλεται κατά μία μονάδα τότε η εξαρτημένη μεταβλητή Y μεταβάλλεται κατά $\hat{\beta}$ μονάδες. Επομένως όταν η ηλικία της νύφης αυξηθεί κατά ένα έτος αναμένεται η αύξηση (διότι $\hat{\beta}>0$) της ηλικίας του γαμπρού κατά $\hat{\beta}=1,18$ έτη ≈ 1 έτος 2 μήνες.
- 5. α) Αν εργαστούμε όπως στην άσκηση 4 βρίσκουμε την ευθεία ελαχίστων τετραγώνων της ηλικίας της νύφης στην ηλικία του γαμπρού $\hat{x} = \hat{\gamma} + \hat{\delta}y$, όπου

$$\hat{\delta} = \frac{v \sum y_i x_i - (\sum y_i)(\sum x_i)}{v \sum y_i^2 - (\sum y_i)^2}$$
$$= \frac{8 \cdot 5681 - 220 \cdot 200}{8 \cdot 6302 - 220^2} = 0,72$$

$$\kappa \alpha i \hat{\gamma} = \overline{x} - \hat{\delta} \overline{y} = 25 - 0.72 \cdot 27.5 \approx 5.25.$$

Επομένως η ευθεία ελαχίστων τετραγώνων της ηλικίας της νύφης στην ηλικία του γαμπρού είναι η $\hat{x} = 5,25+0,72y$.

β) Για ένα γαμπρό ηλικίας y = 28 ετών η εκτιμώμενη ηλικία της νύφης είναι:

$$\hat{x} = 5,25 + 0,72 \cdot 28 = 25,4 \text{ eth} \cong 25 \text{ eth} 5 \text{ mhnes.}$$

γ) Όταν η ανεξάρτητη μεταβλητή Y (ηλικία γαμπρού) μεταβάλλεται κατά μία μονάδα τότε η εξαρτημένη μεταβλητή X μεταβάλλεται κατά $\hat{\delta}$ μονάδες. Επομένως όταν η ηλικία του γαμπρού αυξηθεί κατά ένα έτος αναμένεται αύξηση (διότι $\hat{\delta} > 0$) της ηλικίας της νύφης κατά $\hat{\delta} = 0.72$ έτη ≈ 9 μήνες.

2.5 ΓΡΑΜΜΙΚΗ ΣΥΣΧΕΤΙΣΗ

Α΄ ΟΜΑΔΑΣ

1. 0, 0,2, -0,6, -0,7, 0,9, -1

2.

θετική-μεγάλη

αρνητική-μέτρια

θετική-μικρή

θετική-μέτρια

γραμμικά ασυσχέτιστες

x_{i}	y_{i}	x_i^2	y_i^2	$x_i y_i$	
1 3 5	-2 0 1	1 9 25	4 0 1	-2 0 5	
7 9	3 5	25 49 81	9 25	21 45	v = 8
10 12 13	6 8 10	100 144 169	25 36 64 100	45 60 96	
60	31	578	239	130 355	

3. α) Εργαζόμαστε όπως στην εφαρμογή της §2.5:

Επομένως ο συντελεστής γραμμικής συσχέτισης είναι

$$r = \frac{\nu \sum xy - (\sum x)(\sum y)}{\sqrt{\nu \sum x^2 - (\sum x)^2} \sqrt{\nu \sum y^2 - (\sum y)^2}} = \frac{8 \cdot 355 - 60 \cdot 31}{\sqrt{8 \cdot 578 - 60^2} \sqrt{8 \cdot 239 - 31^2}}$$
$$= \frac{2840 - 1860}{\sqrt{1024} \sqrt{951}} \approx \frac{980}{986.83} \approx 0.99,$$

δηλαδή αρκετά μεγάλη θετική γραμμική συσχέτιση, όπως ακριβώς εκτιμήθηκε και από το διάγραμμα διασποράς (α) της προηγούμενης άσκησης. Με ανάλογο τρόπο υπολογίζουμε τους συντελεστές γραμμικής συσχέτισης για τις περιπτώσεις (β) έως (ε), για τις οποίες βρίσκουμε:

$$β$$
) $r = 0.59$ $γ$) $r = -0.70$ $δ$) $r = -0.05$ $ε$) $r = 0.33$

4. Υπολογίζουμε πρώτα τις μέσες τιμές \bar{x} και \bar{y} και στη συνέχεια βρίσκουμε το συντελεστή γραμμικής συσχέτισης από τη σχέση (1) της $\S 2.5$:

$$\alpha$$
) $\bar{x} = \frac{1+2+3+4+5}{5} = 3 \text{ Kat } \bar{y} = \frac{4+2+0-2-4}{5} = 0$

x	i 'i	y_i	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$
1		4	-2	4	4	16	-8
2	2	2	-1	2	1	4	-2
3	3	0	0	0	0	0	0
4	1	-2	1	-2	1	4	-2
5	5	-4	2	-4	4	16	-8
	_	_	0	0	10	40	-20

$$r_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}} = \frac{-20}{\sqrt{10}\sqrt{40}} = -1.$$

Συμπεραίνουμε λοιπόν ότι υπάρχει τέλεια αρνητική γραμμική συσχέτιση.

- β) Αν εργαστούμε όπως στην περίπτωση (α) βρίσκουμε r_2 =1, δηλαδή υπάρχει τέλεια θετική γραμμική συσχέτιση.
 - Συγκρίνοντας τις τιμές των (x, y) και τους αντίστοιχους συντελεστές γραμμικής συσχέτισης παρατηρούμε ότι:
 - Εάν οι Χ, Υ είναι αρνητικά συσχετισμένες οι Χ, -Υ είναι θετικά συσχετισμένες.
- **5.** Επειδή v=4 και $\overline{x}=7$, $\overline{y}=4,5$ έχουμε $\sum x_i=v\overline{x}=28$ και $\sum y_i=v\overline{y}=18$. Συνεπώς ο συντελεστής γραμμικής συσχέτισης είναι:

$$r = \frac{v \sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{v \sum x_i^2 - (\sum x_i)^2} \sqrt{v \sum y_i^2 - (\sum y_i)^2}} = \frac{4 \cdot 138 - 28 \cdot 18}{\sqrt{4 \cdot 210 - 28^2} \sqrt{4 \cdot 92 - 18^2}}$$
$$= \frac{48}{\sqrt{56} \sqrt{44}} \approx 0,97.$$

- **6.** Επειδή $(x_2, y_2) = (2, 6)$ έχουμε:
 - $(x_2 \overline{x})^2 = 9 \Leftrightarrow (2 \overline{x})^2 = 9 \Leftrightarrow \overline{x} = -1 \ \acute{\eta} \ \overline{x} = 5.$

Επειδή όμως $x_i > 0$ η $\overline{x} = -1$ απορρίπτεται.

Όταν όμως $\bar{x} = 5$ έχουμε $\frac{\sum x_i}{6} = 5 \Leftrightarrow \sum x_i = 30$.

Συνεπώς η τρίτη τιμή της μεταβλητής X είναι η 30 - (1 + 2 + 6 + 8 + 9) = 4.

•
$$(y_2 - \overline{y})^2 = 1 \Leftrightarrow (6 - \overline{y})^2 = 1 \Leftrightarrow \overline{y} = 5 \text{ } \acute{\eta} \text{ } \overline{y} = 7$$

Για $\overline{y} = 5$ έχουμε:

$$(x_2 - \overline{x})(y_2 - \overline{y}) = (2 - 5)(6 - 5) = -3 \neq 3$$
 απορρίπτεται.

 Γ ια $\overline{y} = 7$ έχουμε

$$(x_2 - \overline{x})(y_2 - \overline{y}) = (2 - 5)(6 - 7) = 3$$
, dektή.

Όταν όμως $\overline{y} = 7$ έχουμε $\frac{\sum y_i}{6} = 7 \Leftrightarrow \sum y_i = 42$.

Συνεπώς η τέταρτη τιμή της μεταβλητής Υ είναι η

$$42 - (3 + 6 + 1 + 8 + 13) = 11.$$

• Στη συνέχεια συμπληρώνουμε τον πίνακα ως εξής:

X_{i}	y_i	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$	
1	3	16	16	16	v = 6
2	6	9	1	3	
4	1	1	36	6	$\overline{x} = 5$
6	11	1	16	4	
8	8	9	1	3	$\overline{y} = 7$
9	13	16	36	24	y - 1
30	42	54	106	56	

από τον οποίο βρίσκουμε

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}} = \frac{56}{\sqrt{54}\sqrt{106}} = \frac{56}{75,66} = 0,74.$$

Β' ΟΜΑΔΑΣ

1. α) Αν εργαστούμε όπως στην εφαρμογή της §2.5 βρίσκουμε τον πίνακα

x_{i}	y_i	x_i^2	y_i^2	$x_i y_i$	
15,6	10,8	243,36	116,64	168,48	
15,2	11,1	231,04	123,21	168,72	v = 6
14,7	11,5	216,09	132,25	169,05	
14,3	12,1	204,49	146,41	173,03	
13,4	12,8	179,56	163,84	171,52	
12,8	13,2	163,84	174,24	168,96	
86,0	71,5	1238,38	856,59	1019,76	

Επομένως

$$r = \frac{v \sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{v \sum x_i^2 - (\sum x_i)^2} \sqrt{v \sum y_i^2 - (\sum y_i)^2}}$$

$$= \frac{6 \cdot 1019, 76 - 86, 0 \cdot 71, 5}{\sqrt{6 \cdot 1238, 38 - 86^2} \sqrt{6 \cdot 856, 59 - (71, 5)^2}} = \frac{-30, 44}{\sqrt{34, 28} \sqrt{27, 29}} \approx -1$$

Έχουμε δηλαδή τέλεια αρνητική γραμμική συσχέτιση μεταξύ της κατανάλωσης άπαχου και πλήρους γάλακτος.

β) Αν πολλαπλασιάσουμε τις παραπάνω τιμές των x_i και y_i με 3,8 βρίσκουμε την κατανάλωση σε λίτρα. Αν εργαστούμε όπως στην περίπτωση (α) βρίσκουμε πάλι ότι $r \approx -1$.

2. α) Το διάγραμμα διασποράς είναι::

- β) Από το διάγραμμα διασποράς εκτιμούμε ότι ο συντελεστής γραμμικής συσχέτισης είναι περίπου 0,90.
- γ) Έχουμε τον πίνακα

	X_{i}	\mathcal{Y}_{i}	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$
	85 90	90 100	625 400	400 100	500 200
	95	90	225	400	300
	100 110	105 120	100	25 100	50
	115	110	25	0	ő
ł	120 120	125 110	100 100	225	150
	130	130	400	400	400
H	135 1100	120 1100	625 2600	100 1750	250 1850

από τον οποίο βρίσκουμε

$$\bar{x} = 110$$
, $\bar{y} = 110$ kai $r \approx 0.87$,

δηλαδή έχουμε αρκετά μεγάλη θετική γραμμική συσχέτιση

3.
$$\alpha$$
)
$$\sum_{i=1}^{v} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{v} \{x_i y_i - \overline{y} x_i - \overline{x} y_i + \overline{x} \overline{y}\}$$
$$= \sum_{i=1}^{v} x_i y_i - \overline{y} \sum_i x_i - \overline{x} \sum_i y_i + \sum_i \overline{x} \overline{y}$$
$$= \sum_i x_i y_i - v \overline{y} \overline{x} - v \overline{x} \overline{y} + v \overline{x} \overline{y}$$
$$= \sum_i x_i y_i - v \overline{x} \overline{y}.$$

β) Για ν = 7 έχουμε:

$$\sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i y_i - \nu \overline{x} \overline{y} = 308 - 7 \cdot 4 \cdot 9 = 56.$$

Επομένως

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}} = \frac{56}{\sqrt{28}\sqrt{112}} = \frac{56}{56} = 1,$$

δηλαδή έχουμε τέλεια θετική γραμμική συσχέτιση.

4. Αν παραστήσουμε με X τη βαθμολογία του εξεταστή A και με Y τη βαθμολογία του εξεταστή B έγουμε τον παρακάτω πίνακα

x_i	y_i	x_i^2	y_i^2	$x_i y_i$
55	54	3025	2916	2970
62	56	3844	3136	3472
71	61	5041	3721	4331
66	66	4356	4356	4356
63	63	3969	3969	3969
56	61	3136	3721	3416
72	73	5184	5329	5256
51	54	2601	2916	2754
496	488	31156	30064	30524

από τον οποίο βρίσκουμε

$$r = \frac{\nu \sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{\nu \sum x_i^2 - (\sum x_i)^2} \sqrt{\nu \sum y_i^2 - (\sum y_i)^2}}$$
$$= \frac{8 \cdot 30524 - 496 \cdot 488}{\sqrt{8 \cdot 31156 - 496^2} \sqrt{8 \cdot 30064 - 488^2}} \approx 0,77.$$

Επομένως έχουμε αρκετά μεγάλη θετική γραμμική συσχέτιση μεταξύ της βαθμολογίας των δύο εξεταστών.

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. Κατασκευάζουμε τον πίνακα συχνοτήτων

x_{i}	v_{i}	$N_{_i}$	$x_i v_i$	$x_i^2 v_i$	$f_i\%$	F_i %
0	10	10	0	0	12,50	12,50
1	25	35	25	25	31,25	43,75
2	20	55	40	80	25,00	68,75
3	12	67	36	108	15,00	83,75
4	6	73	24	96	7,50	91,25
5	5	78	25	125	6,25	97,50
6	2	80	12	72	2,50	100,00
Σύνολο	80		162	506	100,00	_

από τον οποίο βρίσκουμε

$$\alpha) \qquad \overline{x} = \frac{\sum x_i v_i}{\sum v_i} = \frac{162}{80} = 2,025, \qquad \delta = \frac{2+2}{2} = 2, \qquad M_0 = 1$$

$$s^2 = \frac{1}{v} \left\{ \sum x_i^2 v_i - \frac{\left(\sum x_i v_i\right)^2}{v} \right\} = \frac{1}{80} \left\{ 506 - \frac{162^2}{80} \right\} = 2,224.$$

$$Άρα s = \sqrt{2,224} = 1,49.$$

Από το πολύγωνο αθροιστικών σχετικών συχνοτήτων εκτιμούμε $Q_1 \approx 0,4,~\delta \approx 1,25~$ και $Q_3 \approx 2,4.$

2.
$$v = 60, \kappa = 5, c = 2$$

α) Ο πίνακας συχνοτήτων είναι:

Κλάσεις [-)	x_{i}	v_{i}	$N_{_i}$	$x_i v_i$	$x_i^2 V_i$
0-2	1	10	10	10	10
2-4	3	17	27	51	153
4-6	5	18	45	90	450
6-8	7	11	56	77	539
8-10	9	4	60	36	324
Σύνολο	_	60	_	264	1476

$$\gamma) \bullet \overline{x} = \frac{\sum x_i v_i}{\sum v_i} = \frac{264}{60} = 4.4 \lambda \dot{\alpha} \theta \eta$$

• $\delta \approx 4.3 \lambda \alpha \theta \eta$

• $M_0 \approx 4.25 \lambda \dot{\alpha} \theta \eta$

•
$$s^2 = \frac{1}{v} \left\{ \sum x_i^2 v_i - \frac{\left(\sum x_i v_i\right)^2}{v} \right\} = \frac{1}{60} \left\{ 1476 - \frac{264^2}{60} \right\} = 5,24.$$

•
$$s = \sqrt{5,24} \approx 2,29$$
.

3. α) Επειδή το 18% των ν = 200 υπαλλήλων ανήκουν στην πρώτη κλάση, συμπεραίνουμε ότι η συχνότητα v_1 της πρώτης κλάσης είναι

 $v_1 = \frac{18}{100} \cdot 200 = 36$. Ομοίως υπολογίζουμε και τις συχνότητες των άλλων κλάσεων, οπότε έχουμε τον παρακάτω πίνακα:

Κλάσεις [-)	x_{i}	v_{i}	$f_i\%$	$x_i v_i$	$x_i^2 v_i$	$ u_i^*$
0-5	2,5	36	18	90	225	3,6
5-10	12,5	60	30	750	9375	6,0
10-20	15,0	68	34	1020	15300	3,4
20-30	25,0	28	14	700	17500	1,4
30-35	32,5	8	4	260	8450	0,8
Σύνολο	_	200	100	2820	50850	

$$\beta) \ \overline{x} = \frac{\sum x_i v_i}{\sum v_i} = \frac{2820}{200} = 14,1$$

$$s^2 = \frac{1}{v} \left\{ \sum x_i^2 v_i - \frac{\left(\sum x_i v_i\right)^2}{v} \right\} = \frac{1}{200} \left\{ 50850 - \frac{2820^2}{200} \right\} = 55,44.$$

Aρα s = 7,4.

- γ) i) Πρέπει να έχουν τώρα τουλάχιστον 30 έτη υπηρεσίας. Επομένως 8 υπάλληλοι θα συνταξιοδοτηθούν στην επόμενη πενταετία.
 - ii) Πρέπει να έχουν τώρα τουλάχιστον 25 έτη υπηρεσίας. Υποθέτοντας ότι τα 28 άτομα στην κλάση 20-30 είναι ομοιόμορφα κατανεμημένα, οι 14 θα έχουν πάνω από 25 έτη υπηρεσίας (και κάτω των 30 ετών). Συνεπώς, συνολικά 14 + 8 = 22 άτομα θα συνταξιοδοτηθούν στην επόμενη δεκαετία.
- δ) Επειδή έχουμε άνισες κλάσεις, το ύψος των ορθογωνίων θα είναι $v_i^* = \frac{f_i\%}{c_i}$. Έτσι για την πρώτη κλάση με πλάτος $c_1 = 5 0 = 5$ και σχετική συχνότητα 18% το ύψος του ορθογωνίου είναι $v_1^* = \frac{18}{5} = 3,6$. Ομοίως

βρίσκουμε και τα άλλα ύψη v_i^* τα οποία δίνονται στον παρακάτω πίνακα. Στη συνέχεια βρίσκουμε το ιστόγραμμα σχετικών συχνοτήτων.

$$\beta) \ \, \overline{x}_{1990} = \frac{5834}{12} \approx 486 \ \text{ατυχήματα ανά μήνα} \\ \overline{x}_{1994} = \frac{4465}{12} \approx 372 \ \text{ατυχήματα ανά μήνα}.$$

$$\gamma$$
) 5834×1,4% ≈ 82 γ 1 α το 1990 4465×2,1% ≈ 94 γ 1 α το 1994

Παρατηρούμε ότι ενώ έχουμε λιγότερα κατά μέσο όρο ατυχήματα το 1994 τα θανατηφόρα ήταν περισσότερα. Επίσης το 1990 είχαμε μια, έστω και μικρή, καθοδική τάση των ατυχημάτων κατά τη διάρκεια του έτους. Αντίθετα το 1994 ο αριθμός των ατυχημάτων ήταν περίπου σταθερός, γύρω στα 750 ανά δίμηνο.

5. α)
$$\overline{x}_{\scriptscriptstyle A} = \frac{12 + 14 + 23 + 30 + 36}{5} = 23 \, \text{cm}. \text{ where} = 23.000 \, \text{where}$$

$$\overline{x}_{\scriptscriptstyle B} = \frac{12 + 13 + 16 + 22 + 32}{5} = 19 \, \text{cm}. \text{ where} = 19.000 \, \text{where}.$$
 Κατά μέσο όρο μία ηλέκτρ. συσκευή τύπου Α στοιχίζει
$$\frac{230 \, \text{eurw}}{23000 \, \text{where}} = 0.01 \, \text{eurw}/\text{where} = 1 \, \text{lepti/where}$$

Ομοίως κατά μέσο όρο μια ηλεκτρ. συσκευή τύπου B στοιχίζει για καθεμιά από τις τρεις περιπτώσεις:

i)
$$\frac{180 \ \text{ευρώ}}{19.000 \ \text{ώρες}} \approx 0,95 \ \text{λεπτά/ώρα.} \ \text{Άρα προτιμούμε ηλ. συσκευή τύπου } \text{B.}$$

ii)
$$\frac{190 \text{ ευρώ}}{19.000 \text{ ώρες}} \approx 1 \text{ λεπτό /ώρα. Άρα δεν έχουμε προτίμηση.}$$

$$iii) \; \frac{200 \; \text{ευρώ}}{19.000 \; \text{ώρες}} \; \approx 1,05 \; \text{λεπτά/ώρα.} \; \text{Άρα προτιμούμε ηλ. συσκευή τύπου} \; A.$$

β) Αρκεί να βρούμε τους συντελεστές μεταβλητότητας:

$$s_A^2 = \frac{(12-23)^2 + (14-23)^2 + (23-23)^2 + (30-23)^2 + (36-23)^2}{5} = \frac{420}{5} = 84$$
opóte $s_A = 9,165$.

$$s_B^2 = \frac{(12-19)^2 + (13-19)^2 + (16-19)^2 + (22-19)^2 + (32-19)^2}{5} = \frac{272}{5} = 54,4$$

οπότε
$$s_B = 7,376$$
.

Συνεπώς
$$cv_A = \frac{9,165}{23} = 39,8\%$$
 και $cv_B = \frac{7,376}{19} = 38,8\%$.

Επομένως οι ηλεκτρ. συσκευές και των δύο τύπων παρουσιάζουν σχετικά μεγάλη "ανομοιογένεια" ως προς τη διάρκεια λειτουργίας τους. Ελάχιστα μεγαλύτερη ομοιογένεια παρουσιάζουν οι ηλεκτρ. συσκευές του τύπου Β.

- β) Εξετάζουμε πρώτα την περίπτωση πριν το Σ.Κ.
 - i) Η μέση τιμή ενός συνόλου παρατηρήσεων ορίζεται ως το άθροισμα των παρατηρήσεων διά του πλήθους αυτών. Έτσι, το μέσο ποσοστό των πολύ καλά ενημερωμένων για τις ν = 15 χώρες της Ε.Ε. ήταν

$$\overline{\pi} = \frac{\sum \pi_i}{v} = \frac{662}{15} \approx 44,1\%.$$

ii) Αντίθετα, όταν οι παρατηρήσεις δεν έχουν την ίδια βαρύτητα, όπως εδώ όπου έχουμε τα ποσοστά των χωρών της Ε.Ε. με διαφορετικό πληθυσμό η καθεμιά, τότε πρέπει να χρησιμοποιηθεί ο σταθμικός μέσος με βάρη w_i τον πληθυσμό των χωρών. Τα βάρη αυτά, από τη Γεωγραφία της Β΄ Γυμνασίου (Α. Καραμπάτσα κ.ά.), δίνονται στον παρακάτω πίνακα:

Χώρα	Ποσοστό π _i %	Βάρος <i>w_i</i>	$\pi_{i}^{} w_{i}^{}$
Αυστρία	50	8.040.000	402.000.000
Βέλγιο	55	10.131.000	557.205.000
Βρετανία	40	58.276.000	2.331.040.000
Γαλλία	61	58.027.000	3.539.647.000
Γερμανία	44	81.553.000	3.588.332.000
Δανία	51	5.216.000	266.016.000
Ελλάδα	26	10.442.000	271.492.000
Ιρλανδία	41	3.577.000	146.657.000
Ισπανία	30	39.170.000	1.175.100.000
Ιταλία	49	57.248.000	2.805.152.000
Λουξεμβούργο	56	407.000	22.792.000
Ολλανδία	56	15.423.000	863.688.000
Πορτογαλία	18	9.912.000	178.416.000
Σουηδία	40	8.818.000	352.720.000
Φιλανδία	45	5.099.000	229.455.000
Σύνολο	662	371.339.000	16.729.712.000

Άρα το σταθμικό μέσο ποσοστό των πολύ καλά ενημερωμένων πριν το Σ.Κ. ήταν

 $\overline{\pi}_{w} = \frac{\sum \pi_{i} w_{i}}{\sum w_{i}} = \frac{16.729.712.000}{371.339.000} \approx 45\%.$

Για το αριθμητικό μέσο ποσοστό των πολύ καλά ενημερωμένων μετά το Σ .Κ. βρίσκουμε $\overline{\pi}=43,9\%$, ενώ το αντίστοιχο σταθμικό μέσο ποσοστό, χρησιμοποιώντας τα ίδια βάρη όπως προηγουμένως, είναι 46%.

7. Μετατρέπουμε τους χρόνους σε δευτερόλεπτα οπότε έχουμε τα παρακάτω χρονογράμματα:

Παρατηρούμε ότι υπάρχει μια συνεχής βελτίωση του χρόνου μέχρι και τους Ολυμπιακούς αγώνες του 1976. Στη συνέχεια η βελτίωση του χρόνου, τόσο για τους άνδρες όσο και για τις γυναίκες, είναι πολύ μικρή.

8. α) Έχουμε τον πίνακα

Έτος	x_{i}	y_i	x_i^2	$x_i y_i$
1960	1	63	1	63
1961	2	64	4	128
1962	3	64	9	192
1963	4	64	16	256
1964	5	66	25	330
1965	6	65	36	390
1966	7	65	49	455
1967	8	66	64	528
1968	9	66	81	594
1969	10	67	100	670
1970	11	67	121	737
1971	12	67	144	804
1972	13	67	169	871
1973	14	68	196	952
1974	15	68	225	1020
Σύνολο	120	987	1240	7990

από τον οποίο βρίσκουμε

$$\hat{\beta} = \frac{v \sum x_i y_i - (\sum x_i)(\sum y_i)}{v \sum x_i^2 - (\sum x_i)^2} = \frac{15 \cdot 7990 - 120 \cdot 987}{15 \cdot 1240 - 120^2} = 0,34$$

και

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x} = 65,8 - 0,34 \cdot 8 = 63,1.$$

Άρα η ευθεία ελαχίστων τετραγώνων είναι η $\hat{y} = 63,1+0,34x$ και παριστάνεται στο παρακάτω διάγραμμα διασποράς:

β) Για x = 17 (έτος 1976) έχουμε $\hat{y} = 63.1 + 0.34 \cdot 17 = 68.9$ κάτοικου/km² που δεν διαφέρει και πολύ από τους 69.5 κατοίκους/km² που είχαμε σύμφωνα με την άσκηση.

9. γ) Έχουμε τον πίνακ	ρμε τον πίνακα	9. γ) Έχο
------------------------	----------------	------------------

Έτος	x_{i}	y_i	x_i^2	$x_i y_i$	
1931	1	17,7	1	17,7	_
1936	6	15,1	36	90,6	v = 7
1940	10	12,8	100	128,0	$\bar{x} = 18,29$
1950	20	7,9	400	158,0	$\bar{y} = 10,96$
1956	26	7,4	676	192,4	
1961	31	7,6	961	235,6	
1964	34	8,2	1156	278,8	
Σύνολο	128	76,7	3330	1101,1	

από τον οποίο βρίσκουμε

$$\hat{\beta} = \frac{v \sum x_i y_i - (\sum x_i)(\sum y_i)}{v \sum x_i^2 - (\sum x_i)^2} = \frac{7 \cdot 1101, 1 - 128 \cdot 76, 7}{7 \cdot 3330 - 128^2} = -0,305$$

και

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x} = 10,96 + 0,305 \cdot 18,29 = 16,53.$$

Αρα η ευθεία ελαχίστων τετραγώνων είναι η $\hat{y} = 16,53 - 0,3x$ και παριστάνεται στο παρακάτω διάγραμμα διασποράς.

10. Έχουμε τον πίνακα

x_{i}	y_i	x_i^2	$x_i y_i$
3,5	1,1	12,25	3,85
3,7	1,5	13,69	5,55
4,2	1,8	17,64	7,56
4,3	1,5	18,49	6,45
6,9	2,5	47,61	17,25
22.6	8 4	109 68	40.66

$$v = 5$$

$$\overline{x} = 4,52$$

$$\overline{y} = 1,68$$

από τον οποίο βρίσκουμε

$$\hat{\beta} = \frac{v \sum x_i y_i - (\sum x_i)(\sum y_i)}{v \sum x_i^2 - (\sum x_i)^2} = \frac{5 \cdot 40,66 - 22,4 \cdot 8,4}{5 \cdot 109,68 - 22,4^2} = 0,36$$

και

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x} = 1,68 - 0,36 \cdot 4,52 = 0,06.$$

Άρα η ευθεία ελαχίστων τετραγώνων είναι η $\hat{y} = 0.06 + 0.36x$ και παριστάνεται στο παρακάτω διάγραμμα διασποράς.

- β) Για x = 5 έχουμε $\hat{y} = 0.06 + 0.36 \cdot 5$ $= 1.86 \cdot 10 \in = 18.6 \in E$
- γ) Πρέπει να βρούμε πρώτα την ευθεία ελαχίστων τετραγώνων της *X* πάνω στην *Y*.
- 11. α) Σύμφωνα με την άσκηση 7(α) Α΄ Ομάδας της §2.5, έχουμε:

$$\begin{split} \frac{s_{xy}}{s_x^2} &= \frac{\frac{1}{\nu} \sum (x_i - \overline{x})(y_i - \overline{y})}{\frac{1}{\nu} \sum (x_i - \overline{x})^2} = \frac{\sum x_i y_i - \nu \overline{x} \, \overline{y}}{\sum x_i^2 - \nu \overline{x}^2} \\ &= \frac{\nu \sum x_i y_i - \left(\sum x_i\right) \left(\sum y_i\right)}{\nu \sum x_i^2 - \left(\sum x_i\right)^2} = \hat{\beta} \\ \delta \eta \lambda \alpha \delta \hat{\eta} \qquad \hat{\beta} &= \frac{s_{xy}}{s_x^2} \end{split} \tag{1}.$$

β) Έχουμε:

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}} = \frac{vs_{xy}}{\sqrt{vs_x^2} \sqrt{vs_y^2}} = \frac{s_{xy}}{s_x s_y} = \frac{s_{xy}}{s_x^2} \cdot \frac{s_x}{s_y} = \hat{\beta} \cdot \frac{s_x}{s_y}$$

12.

C F C² F² C·F 15 59 225 3481 885 20 68 400 4624 1360 25 77 625 5929 1925 30 86 900 7396 2580 35 95 1225 9025 3325 125 385 3375 30455 10075						
20 68 400 4624 1360 25 77 625 5929 1925 30 86 900 7396 2580 35 95 1225 9025 3325	С	F	C^2	F^2	$C \cdot F$	
20 68 400 4624 1360 25 77 625 5929 1925 30 86 900 7396 2580 35 95 1225 9025 3325	15	59	225	3481	885	
30 86 900 7396 2580 35 95 1225 9025 3325	20	68	400	4624	1360	1
35 95 1225 9025 3325	25	77	625	5929	1925	
	30	86	900	7396	2580	'
125 385 3375 30455 10075	35	95	1225	9025	3325	
	125	385	3375	30455	10075	'

$$\hat{F} = \hat{\alpha} + \hat{\beta}C$$

$$v = 5$$

$$\overline{F} = \frac{\Sigma F}{v} = \frac{385}{5} = 77$$

$$\overline{C} = \frac{\Sigma C}{v} = \frac{125}{5} = 25$$

$$\hat{\beta} = \frac{v\Sigma FC - (\Sigma F)(\Sigma C)}{v\Sigma C^2 - (\Sigma C)^2}$$

$$= \frac{5 \cdot 10075 - 385 \cdot 125}{5 \cdot 3375 - 125^2}$$

$$= \frac{2250}{1250} = 1,8$$

$$\hat{\alpha} = \overline{F} - \hat{\beta}\overline{C} = 77 - 1,8 \cdot 25 = 32.$$

$$\hat{F}$$
 = 32 + 1,8 C .

13. Είναι

Άρα

$$r(X,Z) = \frac{\sum (x_i - \overline{x})(z_i - \overline{z})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (z_i - \overline{z})^2}}$$
(1)

Επειδή $Z = \lambda Y$ έχουμε

$$\overline{z} = \frac{z_1 + z_2 + \dots + z_{\nu}}{\nu} = \frac{\lambda y_1 + \lambda y_2 + \dots + \lambda y_{\nu}}{\nu} = \lambda \overline{y}.$$

$$z_i - \overline{z} = \lambda y_i - \lambda \overline{y} = \lambda (y_i - \overline{y})$$

και
$$\sqrt{\sum (z_i - \overline{z})^2} = \sqrt{\lambda^2 \sum (y_i - \overline{y})^2} = |\lambda| \sqrt{\sum (y_i - \overline{y})^2}.$$

Αντικαθιστούμε στην (1) και έχουμε

$$r(X,Z) = \frac{\lambda}{|\lambda|} \cdot \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}} = \frac{\lambda}{|\lambda|} r(X,Y).$$

Επομένως όταν
$$\lambda > 0$$
 ισχύει $r(X,Z) = r(X,Y)$ ενώ $\lambda < 0$ ισχύει $r(X,Z) = -r(X,Y)$.

14. Έχουμε

$$\hat{\beta} = \frac{v \sum xy - (\sum x)(\sum y)}{v \sum x^2 - (\sum x)^2} = \frac{21 \cdot 75512 - 231 \cdot 5544}{21 \cdot 3311 - 231^2} = \frac{305088}{16170} = 18,87$$

$$\overline{x} = \frac{231}{21} = 11, \ \overline{y} = \frac{5544}{21} = 264$$

$$\hat{\alpha} = 264 - 18,87 \cdot 11 = 56,46.$$

Επομένως η ευθεία ελαχίστων τετραγώνων είναι η $\hat{y} = 56,46 + 18,87x$ και παριστάνεται στο παρακάτω διάγραμμα διασποράς.

- Για το έτος 1995 αντιστοιχεί x=22, οπότε ο προβλεπόμενος αριθμός διαζυγίων είναι $\hat{y}=56,46+18,87\cdot 22\approx 472$ διαζύγια
- Για το έτος 2000 αντιστοιχεί x = 26, οπότε ο προβλεπόμενος αριθμός διαζυγίων το έτος 2000 θα είναι ŷ = 56,46+18,87 · 26 ≈ 547 διαζύγια.

3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ – ΕΝΔΕΧΟΜΕΝΑ

Α΄ ΟΜΑΔΑΣ

1. Έστω α , μ , κ τα αποτελέσματα η μπάλα να είναι άσπρη, μαύρη και κόκκινη αντιστοίχως. Έχουμε:

i)

$$\Omega = \{(\alpha, \alpha), (\alpha, \mu), (\alpha, \kappa), (\mu, \alpha), (\mu, \mu), (\mu, \kappa), (\kappa, \alpha), (\kappa, \mu), (\kappa, \kappa)\}$$

- ii) $\{(\kappa,\alpha), (\kappa,\mu), (\kappa,\kappa)\}$
- iii) $\{(\alpha,\alpha), (\mu,\mu), (\kappa,\kappa)\}$

$$\Omega = \{(\alpha, \mu), (\alpha, \kappa), (\mu, \alpha), (\mu, \kappa), (\kappa, \alpha), (\kappa, \mu)\}$$

- ii) $\{(\kappa,\alpha), (\kappa,\mu)\}$
- iii) Ø.

- 3. i) Ω = {(Κύπρος, αεροπλάνο), (Κύπρος, πλοίο) (Μακεδονία, αυτοκίνητο), (Μακεδονία, τρένο), (Μακεδονία, αεροπλάνο)}
 - ii) A = {(Κύπρος, αεροπλάνο), (Μακεδονία, αεροπλάνο)}.
- **4.** i) Αν συμβολίσουμε καθεμία από τις επιλογές με το αρχικό της γράμμα, έχουμε το παρακάτω δεντροδιάγραμμα:

Το σύνολο που έχει ως στοιχεία τις 18 τριάδες της στήλης "αποτέλεσμα" αποτελεί το δειγματικό χώρο του πειράματος.

- ii) $A = \{(\kappa, \mu, \pi), (\kappa, \rho, \pi), (\kappa, \chi, \pi), (\varphi, \mu, \pi), (\varphi, \rho, \pi), (\varphi, \chi, \pi)\}$
- iii) $B = \{(\kappa, \mu, \pi), (\kappa, \mu, \tau), (\kappa, \mu, \zeta), (\kappa, \rho, \pi), (\kappa, \rho, \tau), (\kappa, \rho, \zeta), (\kappa, \chi, \pi), (\kappa, \chi, \tau), (\kappa, \chi, \zeta)\}$
- iv) $(A \cap B) = \{(\kappa, \mu, \pi), (\kappa, \rho, \pi), (\kappa, \chi, \pi)\}$
- v) $\Gamma = \{(\kappa, \rho, \pi), (\kappa, \rho, \tau), (\kappa, \rho, \zeta), (\varphi, \rho, \pi), (\varphi, \rho, \tau), (\varphi, \rho, \zeta)\}$ $(A \cap B) \cap \Gamma = \{(\kappa, \rho, \pi)\}.$
- **5.** i) $\Omega = \{(0,\alpha), (0,\beta), (0,\gamma), (0,\delta), (1,\alpha), (1,\beta), (1,\gamma), (1,\delta)\}$
 - ii) $A = \{(0, \gamma), (0, \delta)\}$
 - iii) $B = \{(0, \alpha), (0, \beta), (1, \alpha), (1, \beta)\}$
 - iv) $\Gamma = \{(1, \alpha), (1, \beta), (1, \gamma), (1, \delta)\}.$
- **6.** i) $A = \{3\}, B = \{2,4,6\}, A \cap B = \emptyset$, άρα τα A και B είναι ασυμβίβαστα.
 - ii) Επειδή υπάρχουν και Έλληνες καθολικοί, αυτό σημαίνει ότι $A \cap B \neq \emptyset$, δηλαδή τα A και B δεν είναι ασυμβίβαστα.

- iii) Επειδή υπάρχουν γυναίκες άνω των 30, που να είναι 30 χρόνια παντρεμένες, αυτό σημαίνει ότι $A \cap B \neq \emptyset$.
- iv) $A \cap B = \emptyset$, άρα τα A και B είναι ασυμβίβαστα.

 $Ω = {aaa, aaκ, aκα, aκκ, κaa, κακ, κκα, κκκ}.$

Β' ΟΜΑΔΑΣ

 $\Omega = \{\alpha\alpha, \alpha\beta\alpha, \alpha\beta\beta, \beta\alpha\alpha, \beta\alpha\beta, \beta\beta\}.$

2. Τα αποτελέσματα της ρίψης δύο ζαριών φαίνονται στον παρακάτω πίνακα διπλής εισόδου.

2η ρίψη						
1η ρίψη	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2,3)	(2,4)	(2,5)	(2, 6)
3	(3, 1)	(3, 2)	(3,3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5,3)	(5, 4)	(5,5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

$$A = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (5,4), (6,1), (6,2), (6,3), (6,4), (6,5)\}.$$

$$B = \{(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1), (5,3), (5,5), (6,2), (6,4), (6,6)\}.$$

$$E = \{(1,1), (1,2), (1,2), (1,4), (2,1), (2,2), (2,1), (4,1)\}$$

$$\Gamma = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (3,1), (4,1)\}.$$

$$A \cap B = \{(3,1), (4,2), (5,1), (5,3), (6,2), (6,4)\}.$$

$$A \cap \Gamma = \{(2,1), (3,1), (4,1)\}.$$

$$(A \cap B) \cap \Gamma = \{(3,1)\}.$$

3. An $x \in B'$, tote $x \notin B$, opote $x \notin A$, amon $A \subseteq B$.

Άρα x ∈ A'. Επομένως B' ⊆ A'.

4. $A \cup B = (A \cap B') \cup (A \cap B) \cup (A' \cap B)$. Δηλαδή $A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$

3.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

Α΄ ΟΜΑΔΑΣ

- 1. i) Η τράπουλα έχει 4 πεντάρια και επομένως η ζητούμενη πιθανότητα είναι ίση με $\frac{4}{52} = \frac{1}{13}$.
 - ii) Το ενδεχόμενο είναι το αντίθετο του ενδεχομένου του προηγούμενου ερωτή- ματος. Άρα η ζητούμενη πιθανότητα είναι ίση με $1-\frac{4}{52}=\frac{48}{52}=\frac{12}{13}$.
- **2.** Αν Γ το αποτέλεσμα "γράμματα" και K το αποτέλεσμα "κεφαλή", ο δειγματικός χώρος του πειράματος είναι $\Omega = \{K\Gamma, \Gamma K, KK, \Gamma \Gamma\}$ και υπάρχει μια ευνοϊκή περίπτωση η $\Gamma \Gamma$. Άρα η ζητούμενη πιθανότητα είναι $\frac{1}{4}$.
- **3.** Το κουτί έχει συνολικά 10 + 15 + 5 + 10 = 40 μπάλες.

- i) Οι μαύρες μπάλες είναι 15. Άρα η πιθανότητα να είναι η μπάλα μαύρη $\frac{15}{40}$.
- ii) Υπάρχουν 10 άσπρες και 15 μαύρες μπάλες. Άρα η ζητούμενη πιθανότητα είναι ίση με $\frac{10+15}{40} = \frac{25}{40}$.
- iii) Το να μην είναι η μπάλα ούτε κόκκινη ούτε πράσινη, σημαίνει ότι μπορεί να είναι άσπρη ή μαύρη. Άρα η ζητούμενη πιθανότητα είναι ίση με $\frac{10+15}{40} = \frac{25}{40}.$
- **4.** Η τάξη έχει συνολικά 4 + 11 + 9 + 3 + 2 + 1 = 30 μαθητές. Για να έχει η οικογένεια ενός μαθητή 3 παιδιά, πρέπει ο μαθητής αυτός να έχει δηλώσει ότι έχει 2 αδέλφια. Επειδή 9 μαθητές δήλωσαν ότι έχουν 2 αδέλφια, η ζητούμενη πιθανότητα είναι $\frac{9}{30}$.
- **5.** Έχουμε $\Omega = \{10,11,12,13,14,15,16,17,18,19,20\}, A = \{12,15,18\}$ και $B = \{12,16,20\}$. Επομένως
 - i) $P(A) = \frac{3}{11}$. ii) Exoure $P(B) = \frac{3}{11}$, ára $P(B') = 1 \frac{3}{11} = \frac{8}{11}$.
- **6.** Αν Λ, Π και N είναι τα ενδεχόμενα να κερδίσουν ο Λευτέρης, ο Παύλος και ο Νίκος αντιστοίχως, τότε $P(\Lambda) = \frac{30}{100}$, $P(\Pi) = \frac{20}{100}$ και $P(N) = \frac{40}{100}$.

Επειδή τα ενδεχόμενα είναι ασυμβίβαστα έχουμε:

i)
$$P(\Lambda \cup \Pi) = P(\Lambda) + P(\Pi) = \frac{30}{100} + \frac{20}{100} = \frac{50}{100}$$
, $\delta \eta \lambda \alpha \delta \eta \delta 0$ %.

- ii) $P(\Lambda \cup N)' = 1 P(\Lambda \cup N) = 1 P(\Lambda) P(N) = 1 \frac{30}{100} \frac{40}{100} = \frac{30}{100}$, δηλαδή **30%**.
- 7. Έχουμε διαδοχικά $P(A) + P(B) P(A \cap B) = P(A \cup B)$

$$\frac{17}{30} + \frac{17}{15} - P(A \cap B) = \frac{2}{3}$$

$$P(A \cap B) = \frac{17}{30} + \frac{7}{15} - \frac{2}{3} = \frac{17}{30} + \frac{14}{30} - \frac{20}{30} = \frac{11}{30}.$$

8. Έχουμε διαδοχικά $P(A) + P(B) - P(A \cap B) = P(A \cup B)$

$$\frac{1}{2} + P(B) - \frac{1}{3} = \frac{5}{6}$$

$$P(B) = \frac{5}{6} + \frac{1}{3} - \frac{1}{2} = \frac{5}{6} + \frac{2}{6} - \frac{3}{6} = \frac{4}{6} = \frac{2}{3}.$$

9. Έχουμε διαδοχικά
$$P(A)+P(B)-P(A\cap B)=P(A\cup B)$$

$$2P(A)-0,2=0,6$$

$$2P(A)=0,8$$

$$P(A)=0,4 \ .$$

10. Έχουμε διαδοχικά $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$= \frac{1}{2} + \left(1 - \frac{2}{3}\right) - \frac{1}{12}$$

$$= \frac{1}{2} + \frac{1}{3} - \frac{1}{12}$$

$$= \frac{6}{12} + \frac{4}{12} - \frac{1}{12} = \frac{9}{12} = \frac{3}{4}.$$

11. Έχουμε

$$P(A \cup B) \le P(A) + P(B) \Leftrightarrow P(A) + P(B) - P(A \cap B) \le P(A) + P(B)$$

 $\Leftrightarrow 0 \le P(A \cap B)$ που ισχύει.

12. Έστω A το ενδεχόμενο να έχει κάρτα D και B το ενδεχόμενο να έχει κάρτα V. Έχουμε $P(A)=\frac{25}{100}$, $P(B)=\frac{55}{100}$, $P(A\cap B)=\frac{15}{100}$. Επομένως $P(A\cup B)=P(A)+P(B)-P(A\cap B) = \frac{25}{100}+\frac{55}{100}-\frac{15}{100}=\frac{65}{100}$, δηλαδή $\mathbf{65\%}$.

13. Έστω A το ενδεχόμενο να έχει υπέρταση και B το ενδεχόμενο να έχει στεφανιαία νόσο. Έχουμε

$$P(A) = \frac{10}{100}, \ P(B) = \frac{6}{100} \ \text{kai} \ P(A \cap B) = \frac{2}{100}.$$

α) Έχουμε

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{10}{100} + \frac{6}{100} - \frac{2}{100} = \frac{14}{100}, \, \delta\eta\lambda\alpha\delta\dot{\eta} \,\, \mathbf{14\%}.$$

β) Το ενδεχόμενο να έχει το άτομο μόνο μια ασθένεια είναι το $(A-B) \cup (B-A)$. Τα ενδεχόμενα (A-B) και (B-A) είναι ασυμβίβαστα.

B-A

Επομένως
$$P((A-B) \cup (B-A)) = P(A-B) + P(B-A)$$

 $= P(A) - P(A \cap B) + P(B) - P(A \cap B)$
 $= P(A) + P(B) - 2P(A \cap B)$
 $= \frac{10}{100} + \frac{6}{100} - \frac{4}{100} = \frac{12}{100}$, δηλαδή 12%.

14. Έστω A το ενδεχόμενο να μαθαίνει αγγλικά και B το ενδεχόμενο να μαθαίνει γαλλικά. Έχουμε $P(A) = \frac{80}{100}$, $P(B) = \frac{30}{100}$ και $P(A \cap B) = \frac{20}{100}$.

Άρα
$$P((A \cup B)') = 1 - P(A \cup B)$$
$$= 1 - P(A) - P(B) + P(A \cap B)$$
$$= 1 - \frac{80}{100} - \frac{30}{100} + \frac{20}{100} = \frac{10}{100}, \, \delta \eta \lambda \alpha \delta \dot{\eta} \, \mathbf{10\%}.$$

Β' ΟΜΑΔΑΣ

1. i)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \kappa + \lambda - \mu$$
.

ii)
$$P((A \cup B)') = 1 - P(A \cup B) = 1 - \kappa - \lambda + \mu$$
.

iii)
$$P((A-B) \cup (B-A)) = P(A-B) + P(B-A)$$

 $= P(A) - P(A \cap B) + P(B) - P(A \cap B)$
 $= P(A) + P(B) - 2P(A \cap B)$
 $= \kappa + \lambda - 2\mu$.

2. Αν A και B τα ενδεχόμενα να μην έχει ένα νοικοκυριό τηλεόραση και Βίντεο αντιστοίχως, θα είναι $P(A) = \frac{15}{100}$ και $P(B) = \frac{40}{100}$ και $P(A \cap B) = \frac{10}{100}$. Επομένως η ζητούμενη πιθανότητα θα είναι:

$$P((A \cup B)') = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(A \cap B)]$$
$$= 1 - \left(\frac{15}{100} + \frac{40}{100} - \frac{10}{100}\right) = 1 - \frac{45}{100} = \frac{55}{100}, \, \delta\eta\lambda\alpha\delta\dot{\eta} \,\, 55\%.$$

$$\frac{P(A)}{P(A')} = \frac{3}{4}$$

$$\frac{P(A)}{1 - P(A)} = \frac{3}{4}$$

$$4P(A) = 3 - 3P(A)$$

$$7P(A) = 3,$$

$$P(A') = 1 - P(A) = \frac{4}{7}.$$

4. Av P(A) = x, tote P(A') = 1 - x, oftou 0 < x < 1.

Έχουμε
$$\frac{1}{P(A)} + \frac{1}{P(A')} \ge 4 \Leftrightarrow \frac{1}{x} + \frac{1}{1-x} \ge 4$$

$$\Leftrightarrow 1-x+x \ge 4x(1-x)$$

$$\Leftrightarrow 1-x+x \ge 4x-4x^2$$

$$\Leftrightarrow 4x^2-4x+1 \ge 0$$

$$\Leftrightarrow (2x-1)^2 \ge 0$$
 που ισχύει.

5. • Ecoume
$$A\cap B\subseteq A$$

$$P(A\cap B)\leq P(A)$$

$$P(A\cap B)\leq 0,6 \tag{1}$$

• Ecoure
$$P(A \cup B) \le 1$$

$$P(A) + P(B) - P(A \cap B) \le 1$$

$$0.6 + 0.7 - P(A \cap B) \le 1$$

$$0.6 + 0.7 - 1 \le P(A \cap B)$$

$$0.3 \le P(A \cap B)$$
 (2)

από τις (1) και (2) προκύπτει ότι:

$$0.3 \le P(A \cap B) \le 0.6$$
.

6.
$$P(B)-P(A') \leq P(A \cap B) \Leftrightarrow P(B)-1+P(A) \leq P(A \cap B)$$

$$\Leftrightarrow P(B)+P(A)-P(A \cap B) \leq 1$$

$$\Leftrightarrow P(A \cup B) \leq 1 \qquad \text{που ισχύει}.$$

3.3 ΣΥΝΔΥΑΣΤΙΚΗ

Α΄ ΟΜΑΔΑΣ

1. • Κάθε τρόπος ντυσίματος αντιστοιχεί σε μια πεντάδα:

σακάκι - παντελόνι - πουκάμισο - κάλτσες - παπούτσια.

Η 1η θέση της πεντάδας μπορεί να συμπληρωθεί με 3 τρόπους, η 2η με 4, η 3η με 5, η 4η με 10 και η 5η με 2 τρόπους. Επομένως υπάρχουν συνολικά

$$3 \cdot 4 \cdot 5 \cdot 10 \cdot 2 = 1200$$
 τρόποι.

- Αν το σακάκι που θα φορεθεί είναι ορισμένο, τότε η 1η θέση της πεντάδας μπορεί να συμπληρωθεί με ένα μόνο τρόπο. Επομένως υπάρχουν $1\cdot 4\cdot 5\cdot 10\cdot 2=400$ διαφορετικές πεντάδες και η ζητούμενη πιθανότητα είναι ίση με $\frac{400}{1200}=\frac{1}{3}$.
- Έχουμε να συμπληρώσουμε επτά θέσεις.
 Καθεμιά από τις τρεις πρώτες μπορεί να συμπληρωθεί με 24 τρόπους, όσα είναι και τα γράμματα του ελληνικού αλφαβήτου.

Η 4η θέση μπορεί να συμπληρωθεί με 9 τρόπους, αφού ο αριθμός πρέπει να είναι τετραψήφιος και επομένως δεν μπορεί να αρχίζει με 0. Τέλος καθεμιά από τις υπόλοιπες τρεις θέσεις μπορεί να συμπληρωθεί με 10 τρόπους. Αρα υπάρχουν συνολικά

$$24 \cdot 24 \cdot 24 \cdot 9 \cdot 10 \cdot 10 \cdot 10 = 124.416.000$$
 διαφορετικές πινακίδες.

Αν μια πινακίδα αρχίζει με φωνήεν και τελειώνει σε άρτιο ψηφίο, τότε η 1η θέση μπορεί να συμπληρωθεί με 7 τρόπους, όσα δηλαδή είναι τα φωνήεντα, ενώ η τελευταία θέση μπορεί να συμπληρωθεί με 5 τρόπους, όσα δηλαδή είναι τα άρτια ψηφία. Επομένως το πλήθος των πινακίδων αυτών είναι

$$7 \cdot 24 \cdot 24 \cdot 9 \cdot 10 \cdot 10 \cdot 5 = 18.144.000$$

και η ζητούμενη πιθανότητα είναι ίση με

$$\frac{7 \cdot 24 \cdot 24 \cdot 9 \cdot 10 \cdot 10 \cdot 5}{24 \cdot 24 \cdot 24 \cdot 9 \cdot 10 \cdot 10 \cdot 10} = \frac{7 \cdot 5}{24 \cdot 10} = \frac{7}{48} \approx 14,6\% \ .$$

3. • Το 1ο άτομο μπορεί να καθίσει σε μια οποιαδήποτε από τις 6 θέσεις δηλαδή έχει 6 επιλογές. Αφού καθίσει το 1ο άτομο, το 2ο άτομο μπορεί να καθίσει σε μια από τις υπόλοιπες 5 θέσεις, δηλαδή έχει 5 επιλογές κτλ. Έτσι το πλήθος των τρόπων με τους οποίους μπορούν να καθίσουν 4 άτομα σε 6 θέσεις είναι

6.5.4.3 = 360, όσες δηλαδή και οι διατάξεις των 6 ανά 4.

- Αν η τελευταία θέση μείνει κενή, τότε τα 4 άτομα μπορούν να καθίσουν με $5\cdot 4\cdot 3\cdot 2=120\ \text{τρόπους}\ \text{και επομένως}\ \eta\ \zetaητούμενη\ πιθανότητα είναι ίση με } \frac{120}{360}=\frac{1}{3}\ .$
- **4.** Έχουμε 4+3=7 άτομα και επομένως υπάρχουν 7! τρόποι για να μπουν σε μια σειρά.
 - Τα αγόρια μπορούν να μπουν σε μια σειρά με 4! τρόπους και τα κορίτσια με 3! τρόπους. Επίσης μπορούν να προηγούνται στη σειρά τα αγόρια ή τα κορίτσια. Έτσι έχουμε συνολικά 4!·3!·2 τρόπους

με τους οποίους μπορούν να μπουν σε μια σειρά όλα μαζί τα αγόρια και όλα μαζί τα κορίτσια και η ζητούμενη πιθανότητα είναι ίση με

$$\frac{4! \cdot 3! \cdot 2}{7!} = \frac{4! \cdot 3! \cdot 2}{4! \cdot 5 \cdot 6 \cdot 7} = \frac{1 \cdot 2 \cdot 3 \cdot 2}{5 \cdot 6 \cdot 7} = \frac{2}{35} \approx 5,7\%.$$

5. Exoure
$$\binom{v}{\kappa} = \frac{v!}{\kappa!(v-\kappa)!} \kappa \alpha i \binom{v}{v-\kappa} = \frac{v!}{(v-\kappa)!(v-v+\kappa)!} = \frac{v!}{(v-\kappa)!\kappa!}$$
.

Ara $\binom{v}{\kappa} = \binom{v}{v-\kappa}$.

6. • Γνωρίζουμε ότι δύο σημεία ορίζουν ένα ευθύγραμμο τμήμα με άκρα τα σημεία αυτά και δεν παίζει ρόλο η σειρά των άκρων. Έτσι τα σημεία *A* και *B* ορίζουν το τμήμα *AB* και *BA*.

Επομένως τα 8 σημεία $A_1,A_2,..,A_8$ ορίζουν συνολικά $egin{pmatrix} 8 \\ 2 \end{pmatrix}$ = 28 ευθύγραμμα τμήματα.

•Το πλήθος των τμημάτων που δεν διέρχονται από το A, είναι $\binom{7}{2}$ και επομένως η ζητούμενη πιθανότητα είναι ίση με

$$\frac{\binom{7}{2}}{\binom{8}{2}} = \frac{\frac{7!}{2! \cdot 5!}}{\frac{8!}{2! \cdot 6!}} = \frac{6}{8} = \frac{3}{4}.$$

Β' ΟΜΑΔΑΣ

Για να φτιάξουμε έναν αριθμό, πρέπει να συμπληρώσουμε τις θέσεις μιας τετράδας. Επειδή τα ψηφία μπορεί να επαναλαμβάνονται, κάθε θέση μπορεί να συμπληρωθεί με 5 τρόπους και επομένως μπορούμε να φτιάξουμε 5·5·5·5 = 5⁴ διαφορετικούς αριθμούς. Οι τετραψήφιοι αριθμοί με διαφορετικά ψηφία είναι όσες και οι διατάξεις

1^{η}	2^{η}	3^{η}	4^{η}
5	5	5	5
τρόποι	τρόποι	τρόποι	τρόποι

1^{η}	2^{η}	3^{η}	4^{η}
5	4	3	2
τρόποι	τρόποι	τρόποι	τρόποι

των 5 ανά 4, δηλαδή 5·4·3·2·1. Άρα, η ζητούμενη πιθανότητα είναι ίση με

$$\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5^4} = \frac{4 \cdot 3 \cdot 2}{5^3} = \frac{24}{125} = 0,192, \, \delta \eta \lambda \alpha \delta \dot{\eta} \, 19,2\%.$$

- 2. Το πλήθος των μεταθέσεων των ν στοιχείων είναι ν!.
 - •Το πλήθος των μεταθέσεων που αρχίζουν με 1 είναι (ν-1)! και επομένως αυτές που δεν αρχίζουν με 1 είναι

$$v!-(v-1)!=(v-1)!\cdot v-(v-1)!=(v-1)!(v-1)$$

Αρα η πιθανότητα του ενδεχομένου μια τυχαία από τις ν! μεταθέσεις να μην αρχίζει από 1 είναι ίση με

$$\frac{(v-1)!(v-1)}{v!} = \frac{(v-1)!(v-1)}{(v-1)!v} = \frac{v-1}{v} = 1 - \frac{1}{v}$$

- 3. Το πλήθος των διαφορετικών τρόπων με τους οποίους μπορούν να καθίσουν σε μια σειρά 10 φίλοι είναι 10!.
 - Αν ο Κώστας και η Ελένη καθίσουν δίπλα δίπλα, τότε είναι σαν να έχουμε 9 άτομα σε μια σειρά και επομένως υπάρχουν 9! τρόποι διάταξής τους. Επειδή όμως σε μια τέτοια διάταξη μπορεί να καθίσει πρώτα ο Κώστας και ύστερα η Ελένη ή αντιστρόφως, οι διαφορετικοί τρόποι είναι τελικά 9!·2. Άρα η ζητούμενη πιθανότητα είναι ίση με $\frac{9!\cdot 2}{10!} = \frac{2}{10} = \frac{1}{5}$, δηλαδή 20%.
- **4.** Το κάθε άτομο μπορεί να έχει γεννηθεί σε μια οποιαδήποτε από τις τέσσερις εποχές, άρα υπάρχουν συνολικά $4 \cdot 4 \cdot 4 \cdot 4 = 4^4$ δυνατές περιπτώσεις.
 - Για να υπολογίσουμε το πλήθος των περιπτώσεων στις οποίες τα 4 άτομα έχουν γεννηθεί σε διαφορετικές εποχές σκεπτόμαστε ως εξής:

Το 1ο άτομο μπορεί να έχει γεννηθεί σε μια από τις 4 εποχές.

Το 2ο άτομο μπορεί να έχει γεννηθεί σε μια από τις 3 άλλες εποχές.

Το 3ο άτομο μπορεί να έχει γεννηθεί σε μια από τις 2 άλλες εποχές.

Το 4ο άτομο μπορεί να έχει γεννηθεί στη μία εποχή που απομένει.

Επομένως υπάρχουν συνολικά 4·3·2·1 ευνοϊκές περιπτώσεις. Άρα η ζητούμενη πιθανότητα είναι ίση με

$$\frac{4 \cdot 3 \cdot 2 \cdot 1}{4^4} = \frac{3 \cdot 2 \cdot 1}{4^3} = \frac{6}{64} = \frac{3}{32}, \, \text{dhadh 9,375\%}.$$

- 5. Το πλήθος των δυνατών τρόπων με τους οποίους μπορούμε από 7+6=13 άτομα να επιλέξουμε 4 είναι $\binom{13}{4}$.
 - i) Αν όλα τα άτομα που θα επιλέξουμε είναι γυναίκες, τότε υπάρχουν $\binom{6}{4}$ διαφορετικοί τρόποι και η ζητούμενη πιθανότητα είναι ίση με

$$\frac{\binom{6}{4}}{\binom{13}{4}} = \frac{\frac{6!}{4!2!}}{\frac{13!}{4!9!}} = \frac{4! \cdot 6! \cdot 9!}{2! \cdot 4! \cdot 13!} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{10 \cdot 11 \cdot 12 \cdot 13} = \frac{3}{11 \cdot 13} = \frac{3}{143} \cdot \frac{3}{11 \cdot 13} = \frac{3$$

ii) Το ενδεχόμενο ένα τουλάχιστον άτομο να είναι άνδρας είναι αντίθετο με το ενδεχόμενο όλα να είναι γυναίκες. Άρα η ζητούμενη πιθανότητα είναι ίση με

$$1 - \frac{3}{143} = \frac{140}{143}$$
.

iii) Όταν στα 4 άτομα που θα επιλέξουμε το ένα είναι γυναίκα, τότε τα άλλα τρία θα είναι άνδρες. Έχουμε $\binom{6}{1}$ τρόπους να επιλέξουμε τη γυναίκα και $\binom{7}{3}$ τρόπους να επιλέξουμε τους άνδρες. Επομένως υπάρχουν $\binom{6}{1}$ · $\binom{7}{3}$ τρόποι να περιέχεται στα τέσσερα άτομα μια μόνο γυναίκα και άρα η ζητούμενη πιθανότητα είναι ίση με

$$\frac{\binom{6}{1} \cdot \binom{7}{3}}{\binom{13}{4}} = \frac{6 \cdot \frac{7!}{3!4!}}{\frac{13!}{4!9!}} = \frac{6 \cdot 4! \cdot 7! \cdot 9!}{3! \cdot 4! \cdot 13!} = \frac{42}{143}.$$

6. Το πλήθος των διαφορετικών τρόπων με τους οποίους μπορούμε από τις 20 ασφάλειες να πάρουμε 4 είναι $\binom{20}{4}$.

Το κουτί θα γίνει αποδεκτό, αν βρεθούν μια ή καμιά ελαττωματική ασφάλεια.

Η πιθανότητα να μη βρεθεί καμιά ελαττωματική ασφάλεια είναι $\frac{\binom{13}{4}}{\binom{20}{4}}$.

Η πιθανότητα να βρεθεί ακριβώς μια ελαττωματική ασφάλεια είναι $\frac{\binom{15}{3} \cdot \binom{5}{1}}{\binom{20}{4}}.$

Επειδή τα δύο ενδεχόμενα είναι ασυμβίβαστα, η ζητούμενη πιθανότητα είναι ίση με

$$\frac{\binom{15}{4}}{\binom{20}{4}} + \frac{\binom{15}{3} \cdot \binom{5}{1}}{\binom{20}{4}} = \frac{7 \cdot 13}{17 \cdot 19} + \frac{5 \cdot 7 \cdot 13}{3 \cdot 17 \cdot 19} = \frac{728}{969} \cong \textbf{75\%} \; .$$

- 7. Κάθε τρίγωνο θα έχει τις δύο κορυφές του στη μια ευθεία και την τρίτη κορυφή του στην άλλη ευθεία. Από τα 10 σημεία της ε_1 μπορούμε να επιλέξουμε δύο ως κορυφές ενός τριγώνου με $\begin{pmatrix} 10\\2 \end{pmatrix}$ τρόπους. Η τρίτη κορυφή του τριγώνου μπορεί να επιλεγεί με τόσους τρόπους, όσα είναι τα σημεία που έχουμε ορίσει στην ε_2 , δηλαδή με 20 τρόπους. Επομένως υπάρχουν $20 \cdot \binom{10}{2}$ τρίγωνα με τις δύο κορυφές τους στην ε_1 και την τρίτη στην ε_2 . Ανάλογα βρίσκουμε ότι υπάρχουν $10 \cdot \binom{20}{2}$ τρίγωνα με τις δύο κορυφές στην ε_2 και την τρίτη στην ε_1 . Άρα υπάρχουν συνολικά $20 \cdot \binom{10}{2} + 10 \cdot \binom{20}{2} = \mathbf{2.800}$ τρίγωνα.
 - Επειδή, όπως είδαμε, υπάρχουν $20\cdot \binom{10}{2}$ τρίγωνα με τη μια πλευρά τους στην ε_1 , η ζητούμενη πιθανότητα είναι ίση με

$$\frac{20 \cdot \binom{10}{2}}{20 \cdot \binom{10}{2} + 10 \cdot \binom{20}{2}} = \frac{900}{2.800} = \frac{9}{28}.$$

8. Το αποτέλεσμα των ν ρίψεων ενός νομίσματος είναι μια διατεταγμένη ν-άδα κάθε θέση της οποίας μπορεί να συμπληρωθεί με 2 τρόπους, δηλαδή με K (κεφαλή) ή Γ (γράμματα). Επομένως ο δειγματικός χώρος έχει $\underbrace{2 \cdot 2 \cdot 2 \cdots 2}_{v \text{ παράγοντες}} = 2^v \text{ στοιχεία. Αφού δεν θα υπάρχουν διαδοχικές ρίψεις με το}$

ίδιο αποτέλεσμα, οι ευνοϊκές περιπτώσεις είναι δύο, οι $K\Gamma K\Gamma K\Gamma ...$ και η $\Gamma K\Gamma K\Gamma K\Gamma ...$. Άρα η ζητούμενη πιθανότητα είναι ίση με $\frac{2}{2^{\nu}} = \frac{1}{2^{\nu-1}}$.

- **9.** Έστω O_1 , O_2 , O_3 οι οδηγοί και K_1 , K_2 , K_3 αντιστοίχως τα κλειδιά τους. Οι διάφοροι τρόποι με τους οποίους μπορεί να διανεμηθούν τα κλειδιά στους οδηγούς φαίνονται στον παρακάτω πίνακα:
 - Επειδή το ενδεχόμενο A πραγματοποιείται μια μόνο φορά, έχουμε $P(A) = \frac{1}{6}$.
 - Επειδή το ενδεχόμενο B πραγματοποιείται τρεις φορές, έχουμε $P(B) = \frac{3}{6} = \frac{1}{2}$.
 - Επειδή το ενδεχόμενο Γ πραγματοποιείται δύο φορές, έχουμε $P(\Gamma) = \frac{2}{6} = \frac{1}{3}$.

-	_	_
$O_{_1}$	O_2	O_3
$K_{_1}$	K_2	K_3
$K_{_1}$	K_3	K_2
K_2	$K_{_1}$	K_3
K_2	$K_{_3}$	$K_{_1}$
K_3	$K_{_1}$	K_2
K_3	K_2	K_{1}

10. Το πλήθος των διαφορετικών τρόπων με τους οποίους μπορούμε από $10+12=22\ \text{μαθητές να επιλέξουμε 3 είναι} \binom{22}{3}. Αν όλοι οι μαθητές είναι αγόρια, τότε υπάρχουν \binom{12}{3}$ τρόποι επιλογής, ενώ αν όλοι είναι κορίτσια, τότε υπάρχουν $\binom{10}{3}$ τρόποι επιλογής. Άρα η ζητούμενη πιθανότητα είναι ίση με

$$\frac{\binom{12}{3} + \binom{10}{3}}{\binom{22}{3}} = \frac{220 + 120}{1540} = \frac{340}{1540} = \frac{17}{77}.$$

11. Σε 4 ρίψεις ενός ζαριού το πλήθος των δυνατών αποτελεσμάτων είναι 6·6·6·6 = 6⁴. Το ενδεχόμενο να μη φέρουμε 6 στις 4 ρίψεις ενός ζαριού έχει 5·5·5·5 = 5⁴ ευνοϊκές περιπτώσεις. Επομένως η πιθανότητα να φέρουμε ένα τουλάχιστον 6 στις 4 ρίψεις ενός ζαριού είναι ίση με

$$1 - \frac{5^4}{6^4} = 1 - \frac{625}{1296} = \frac{671}{1296} \approx 0,518.$$

• Σε 24 ρίψεις δύο ζαριών το πλήθος των δυνατών αποτελεσμάτων είναι 36·36··36 = 36²⁴. Το ενδεχόμενο να μη φέρουμε εξάρες στις 24 ρίψεις δύο

ζαριών έχει
$$\underbrace{35 \cdot 35 \cdots 35}_{24 \text{ μαράγοντες}} = 35^{24}$$
 ευνοϊκές περιπτώσεις.

Επομένως η πιθανότητα να φέρουμε μια τουλάχιστον φορά εξάρες στις 24 ρίψεις δύο ζαριών είναι ίση με

$$1 - \frac{35^{24}}{36^{24}} = 1 - \left(\frac{35}{36}\right)^{24} \approx 1 - 0,5086 \approx \mathbf{0,491}.$$

Παρατηρούμε ότι 0.518 > 0.491, δηλαδή η πιθανότητα να φέρουμε ένα τουλάχιστον 6 στις 4 ρίψεις ενός ζαριού είναι μεγαλύτερη από την πιθανότητα να φέρουμε μια τουλάχιστον φορά εξάρες στις 24 ρίψεις δύο ζαριών.

3.4 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ - ΑΝΕΞΑΡΤΗΤΑ ΕΝΔΕΧΟΜΕΝΑ

Α΄ ΟΜΑΔΑΣ

- 1. Στη ρίψη ενός ζαριού ο δειγματικός χώρος είναι $\Omega = \{1,2,3,4,5,6\}$. Το ενδεχόμενο να φέρουμε ζυγό αριθμό είναι $A = \{2,4,6\}$. Επομένως η πιθανότητα να φέρουμε 6 είναι ίση με $\frac{1}{3}$.
- 2. Τα "σπαθιά" σε μια τράπουλα είναι συνολικά 13 εκ των οποίων τα 3 είναι φιγούρες. Άρα η ζητούμενη πιθανότητα είναι ίση με $\frac{3}{13}$.

3. •
$$P(A|B) = \frac{4}{5}$$

$$\frac{P(A \cap B)}{P(B)} = \frac{4}{5}$$

$$P(A \cap B) = \frac{4}{5} \cdot P(B)$$

$$4 \cap B = \frac{4}{5} \cdot \frac{1}{4} = \frac{1}{5}$$

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{5}}{\frac{1}{2}} = \frac{2}{5}$$

•
$$P(A' \cup B) = P(A') + P(B) - P(A' \cap B)$$

 $= 1 - P(A) + P(B) - (P(B) - P(A \cap B))$
 $= 1 - P(A) + P(B) - P(B) + P(A \cap B)$
 $= 1 - P(A) + P(A \cap B)$
 $= 1 - \frac{1}{2} + \frac{1}{5} = \frac{7}{10}$.

4.
$$P(B|A) = \frac{1}{4}$$

$$\frac{P(A \cap B)}{P(A)} = \frac{1}{4}$$

$$P(A \cap B) = \frac{1}{4} \cdot P(A)$$

$$P(A \cap B) = \frac{1}{4} \cdot \frac{2}{3} = \frac{1}{6}.$$

$$E \pi o \mu \acute{e} v \omega \varsigma$$

$$P(A \cup B) = \frac{5}{6}$$

$$P(A) + P(B) - P(A \cap B) = \frac{5}{6}$$

5. Έστω A το ενδεχόμενο να φέρουμε 6 στην 1η ρίψη και B το ενδεχόμενο να φέρουμε περιττό αριθμό στη 2η ρίψη. Επομένως επειδή τα A και B είναι ανεξάρτητα έγουμε

 $\frac{2}{2} + P(B) - \frac{1}{6} = \frac{5}{6}$

 $P(A \cap B) = P(A) \cdot P(B) = \frac{1}{6} \cdot \frac{3}{6} = \frac{1}{12}$.

 $P(B) = \frac{5}{6} + \frac{1}{6} - \frac{2}{3}$, $\triangle \rho \alpha P(B) = \frac{1}{3}$.

6. Έστω A το ενδεχόμενο η 1η μπάλα να είναι μαύρη και B το ενδεχόμενο η 2η μπάλα να είναι κόκκινη. Επειδή επανατοποθετήσαμε την 1η μπάλα στο κουτί, τα A και B είναι ανεξάρτητα και επομένως

$$P(A \cap B) = P(A) \cdot P(B) = \frac{8}{14} \cdot \frac{6}{14} = \frac{12}{49}$$

7. • Επειδή τα Α και Β είναι ανεξάρτητα έχουμε διαδοχικά

$$P(A\cap B) = P(A)\cdot P(B)$$

$$\frac{1}{5} = \frac{1}{4}\cdot P(B)$$

$$\text{ara}$$

$$P(B) = \frac{4}{5}.$$
 • Exoure
$$P(A\cup B) = P(A) + P(B) - P(A\cap B)$$

$$= \frac{1}{4} + \frac{4}{5} - \frac{1}{5} = \frac{17}{20}.$$

- 8. i) Επειδή $P(A) = \frac{1}{3}$ και $P(A|B) = \frac{2}{3}$, δηλαδή $P(A) \neq P(A|B)$, τα A και B δεν είναι ανεξάρτητα.
 - ii) Αν τα A και B ήταν ξένα μεταξύ τους τότε $P(A \cap B) = 0$ και επομένως $P\Big(A\big|B\Big) = \frac{P(A \cap B)}{P(B)} = 0 \quad \text{και όχι} \quad \frac{2}{3} \quad \text{Άρα τα } A \text{ και } B \text{ δεν είναι ξένα μεταξύ τους}.$

iii) Ecoume
$$P(A)\cdot P\Big(B\big|A\Big) = P(B)\cdot P\Big(A\big|B\Big)$$

$$\frac{1}{3}\cdot\frac{1}{2} = P(B)\cdot\frac{2}{3}$$

$$P(B) = \frac{1}{4}\,.$$

9. Έχουμε
$$P(A|B) + P(A'|B) = \frac{P(A \cap B)}{P(B)} + \frac{P(A' \cap B)}{P(B)}$$
$$= \frac{P(A \cap B) + P(A' \cap B)}{P(B)}$$
$$= \frac{P(A \cap B) + P(B) - P(A \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1.$$

10. Έστω A το ενδεχόμενο ο μαθητής να έχει αποτύχει στα Μαθηματικά και B το ενδεχόμενο να έχει αποτύχει στη Φυσική. Έχουμε $P(A)=\frac{25}{100}\,,\ P(B)=\frac{15}{100}$ και $P(A\cap B)=\frac{10}{100}\,.$

i)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{10}{100}}{\frac{15}{100}} = \frac{10}{15} = \frac{2}{3} \approx 67\%$$

ii)
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{10}{100}}{\frac{25}{100}} = \frac{10}{25} = \frac{2}{5} \approx 40\%$$
.

Β' ΟΜΑΔΑΣ

1. Για να διέρχεται ρεύμα από το A στο B αρκεί ένας τουλάχιστον από τους διακόπτες να είναι κλειστός. Επειδή οι διακόπτες λειτουργούν ανεξαρτήτως ο ένας από τον άλλον, η πιθανότητα να είναι και οι δύο κλειστοί είναι 0,8 · 0,8. Επομένως η πιθανότητα να είναι ένας τουλάχιστον κλειστός είναι ίση με

$$0.8 + 0.8 - 0.8 \cdot 0.8 = 1.6 - 0.64 = 0.96$$
, $\delta \eta \lambda \alpha \delta \dot{\eta}$ **96%**.

2. Αν A και B είναι τα ενδεχόμενα να πάθουν βλάβη η πρώτη και η δεύτερη μηχανή αντιστοίχως, τότε το ενδεχόμενο να πάθει βλάβη η μια μόνο μηχανή είναι το $(A-B) \cup (B-A)$.

Έχουμε
$$P((A-B) \cup (B-A)) = P(A-B) + P(B-A)$$
$$= P(A) - P(A \cap B) + P(B) - P(A \cap B)$$
$$= P(A) + P(B) - 2P(A \cap B)$$
$$= \frac{10}{100} + \frac{10}{100} - 2 \cdot \frac{10}{100} \cdot \frac{10}{100}$$
$$= \frac{10}{100} + \frac{10}{100} - \frac{2}{100} = \frac{18}{100}, \, \delta \eta \lambda \alpha \delta \eta \, 18\%.$$

3. Έστω Π και P τα ενδεχόμενα το πλοίο να έρχεται από Πειραιά και Ραφήνα αντιστοίχως, και A το ενδεχόμενο να φθάνει με καθυστέρηση. Σύμφωνα με τα δεδομένα έχουμε το δεντροδιάγραμμα:

i) Η πιθανότητα να φθάνει το πλοίο με καθυστέρηση είναι ίση με

$$P(A) = \frac{60}{100} \cdot \frac{10}{100} + \frac{40}{100} \cdot \frac{5}{100} = \frac{6}{100} + \frac{2}{100} = \frac{8}{100}$$
, $\delta \eta \lambda \alpha \delta \dot{\eta}$ 8%.

ii)
$$P(\Pi|A) = \frac{P(\Pi \cap A)}{P(A)} = \frac{P(\Pi)P(A|\Pi)}{P(A)} = \frac{\frac{60}{100} \cdot \frac{10}{100}}{\frac{8}{100}} = \frac{\frac{6}{100} \cdot \frac{10}{100}}{\frac{8}{100}} = \frac{\frac{6}{100} \cdot \frac{10}{100}}{\frac{8}{100}} = \frac{6}{8} = \frac{3}{4}, \delta \eta \lambda \alpha \delta \dot{\eta}$$
 75%.

4. Έστω A και Γ τα ενδεχόμενα το άτομο να είναι άνδρας ή γυναίκα αντιστοίχως, και K το ενδεχόμενο να καπνίζει.

Σύμφωνα με τα δεδομένα έχουμε το δεντροδιάγραμμα:

Ζητάμε την $P(\Gamma|K)$. Έχουμε

$$P(\Gamma|K) = \frac{P(\Gamma \cap K)}{P(K)} = \frac{P(\Gamma)P(K|\Gamma)}{P(K)}$$
$$= \frac{\frac{40}{100} \cdot \frac{30}{100}}{\frac{60}{100} \cdot \frac{50}{100} + \frac{40}{100} \cdot \frac{30}{100}} = \frac{40 \cdot 30}{60 \cdot 50 + 40 \cdot 30} = \frac{2}{7}.$$

5. Έστω A το ενδεχόμενο να κερδίσει το 1ο άτομο και B το ενδεχόμενο να κερδίσει το 2ο άτομο. Προφανώς $P(A) = \frac{1}{\nu}$.

$$\begin{split} P(B) &= P[(B \cap A) \cup (B \cap A')] = P(B \cap A) + P(B \cap A') \\ &= P(A)P(B|A) + P(A')P(B|A') = \frac{1}{v} \cdot \frac{0}{v-1} + \frac{v-1}{v} \cdot \frac{1}{v-1} = \frac{1}{v} \,. \\ \text{Άρα} \qquad P(A) &= P(B). \end{split}$$

6. Έστω A το ενδεχόμενο "το οικόπεδο από το πρώτο κτήμα να είναι γωνιακό" και B το ενδεχόμενο "το οικόπεδο από το δεύτερο κτήμα να είναι γωνιακό".

Έχουμε
$$P(A) = \frac{4}{9}$$
 και $P(B) = \frac{4}{12}$.

i) Επειδή η επιλογή των οικοπέδων γίνεται ανεξάρτητα από κάθε κτήμα έχουμε

$$P(A \cap B) = P(A) \cdot P(B) = \frac{4}{9} \cdot \frac{4}{12} = \frac{4}{27}$$
 ii) Έχουμε
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{4}{9} + \frac{4}{12} - \frac{4}{27} = \frac{17}{27}.$$
 iii) Έχουμε
$$P((A \cup B)') = 1 - P(A \cup B) = 1 - \frac{17}{27} = \frac{10}{27}.$$

7. Έστω *Y* το ενδεχόμενο το άτομο που επιλέξαμε να είναι υγιές και *Θ* το τεστ να είναι θετικό. Σύμφωνα με το πρόβλημα έχουμε το δεντροδιάγραμμα:

Έχουμε

$$\begin{split} P\big(Y'\big|\mathcal{\Theta}\big) &= \frac{P(Y'\cap\mathcal{\Theta})}{P(\mathcal{\Theta})} = \frac{P(Y')P(\mathcal{\Theta}\big|Y')}{P(\mathcal{\Theta})} \\ &= \frac{\frac{1}{1000} \cdot \frac{95}{100}}{\frac{999}{1000} \cdot \frac{1}{100} + \frac{1}{1000} \cdot \frac{95}{100}} = \frac{95}{999 + 95} \\ &= \frac{95}{1094} \approx 0,087, \, \delta\eta\lambda\alpha\delta\eta \,\, \textbf{8,7\%}. \end{split}$$

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. Έχουμε

$$P(\Omega) = 1$$

$$P(0) + P(1) + P(2) + \dots + P(100) = 1$$

$$P(0) + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{100}} = 1$$

$$P(0) = 1 - \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{100}}\right).$$

Όμως
$$\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{100}} = \frac{1}{2} \cdot \frac{\left(\frac{1}{2}\right)^{100} - 1}{\frac{1}{2} - 1} = \frac{1}{2} \cdot \frac{1 - \frac{1}{2^{100}}}{\frac{1}{2}} = \mathbf{1} - \frac{\mathbf{1}}{\mathbf{2}^{100}}.$$

$$Aρα \qquad P(0) = 1 - 1 + \frac{1}{2^{100}} = \frac{\mathbf{1}}{\mathbf{2}^{100}}.$$

- **2.** Επειδή $P(A') \le 0.28$ έχουμε $1 P(A) \le 0.28$, οπότε $P(A) \ge 0.72$ και επειδή $P(B') \le 0.71$, έγουμε $1 P(B') \le 0.71$, οπότε $P(B) \ge 0.29$.
 - i) Έχουμε διαδοχικά $P(A\cap B) \geq 1,01 P(A\cup B)$ $P(A\cap B) \geq 1,01 P(A) P(B) + P(A\cap B)$ $P(A) + P(B) \geq 1,01 \text{ που ισχύει.}$
 - ii) Αν ήταν $A \cap B = \emptyset$, τότε θα είχαμε $P(A \cup B) = P(A) + P(B) \ge 0,72 + 0,29 = 1,01 \ \text{που είναι άτοπο,}$ αφού γνωρίζουμε ότι $P(A \cup B) \le 1.$
- 3. Έχουμε

4. • Χωρίς επανατοποθέτηση

Έστω A_1 και M_1 τα ενδεχόμενα η 1η μπάλα να είναι άσπρη ή μαύρη αντιστοίχως, και A_2 και M_2 τα ενδεχόμενα η 2η μπάλα να είναι άσπρη ή μαύρη αντιστοίχως.

Σύμφωνα με το πρόβλημα έχουμε το δεντροδιάγραμμα:

Έχουμε

$$\begin{split} P(M_2) &= P[(M_2 \cap A_1) \cup (M_2 \cap M_1)] = P(M_2 \cap A_1) + P(M_2 \cap M_1) \\ &= P(A_1) P\Big(M_2 \Big| A_1\Big) + P(M_1) P\Big(M_2 \Big| M_1\Big) \\ &= \frac{\kappa}{\kappa + \lambda} \cdot \frac{\lambda}{\kappa + \lambda - 1} + \frac{\lambda}{\kappa + \lambda} \cdot \frac{\lambda - 1}{\kappa + \lambda - 1} \\ &= \frac{\lambda}{(\kappa + \lambda)(\kappa + \lambda - 1)} \cdot (\kappa + \lambda - 1) = \frac{\lambda}{\kappa + \lambda}. \end{split}$$

• Με επανατοποθέτηση

Αν επανατοποθετήσουμε την 1η μπάλα στο κουτί, τότε προφανώς η πιθανότητα του ενδεχομένου να είναι η 2η μπάλα μαύρη είναι ίση με $\frac{\lambda}{\kappa + \lambda}$

Παρατηρούμε ότι, με επανατοποθέτηση ή χωρίς επανατοποθέτηση της 1ης μπάλας στην κάλπη, η πιθανότητα του ενδεχομένου να είναι η 2η μπάλα μαύρη είναι ίδια.

5. i) Έχουμε
$$P(B) = P(A \cap B) + P(A' \cap B)$$
, επομένως $P(A' \cap B) = P(B) - P(A \cap B)$
$$= P(B) - P(A) \cdot P(B)$$
$$= P(B)(1 - P(A))$$
$$= P(B) \cdot P(A').$$

ii) Ομοίως έχουμε

$$P(A \cap B') = P(A) - P(A \cap B)$$

$$= P(A) - P(A) \cdot P(B)$$

$$= P(A)(1 - P(B))$$

$$= P(A) \cdot P(B').$$

iii) Έχουμε
$$B' = (A \cap B') \cup (A' \cap B')$$

$$P(B') = P(A \cap B') + P(A' \cap B')$$

$$P(B') = P(A) \cdot P(B') + P(A' \cap B')$$

$$P(B')(1 - P(A)) = P(A' \cap B')$$

$$P(B') \cdot P(A') = P(A' \cap B').$$

Βάσει του ν. 3966/2011 τα διδακτικά βιβλία του Δημοτικού, του Γυμνασίου, του Λυκείου, των ΕΠΑ.Λ. και των ΕΠΑ.Σ. τυπώνονται από το ITYE - ΔΙΟΦΑΝΤΟΣ και διανέμονται δωρεάν στα Δημόσια Σχολεία. Τα βιβλία μπορεί να διατίθενται προς πώληση, όταν φέρουν στη δεξιά κάτω γωνία του εμπροσθόφυλλου ένδειξη «ΔΙΑΤΙΘΕΤΑΙ ΜΕ ΤΙΜΗ ΠΩΛΗΣΗΣ». Κάθε αντίτυπο που διατίθεται προς πώληση και δεν φέρει την παραπάνω ένδειξη θεωρείται κλεψίτυπο και ο παραβάτης διώκεται σύμφωνα με τις διατάξεις του άρθρου 7 του νόμου 1129 της 15/21 Μαρτίου 1946 (ΦΕΚ 1946,108, Α').

Απαγορεύεται η αναπαραγωγή οποιουδήποτε τμήματος αυτού του βιβλίου, που καλύπτεται από δικαιώματα (copyright), ή η χρήση του σε οποιαδήποτε μορφή, χωρίς τη γραπτή άδεια του Υπουργείου Παιδείας, Έρευνας και Θρησκευμάτων / ΙΤΥΕ - ΔΙΟΦΑΝΤΟΣ.

Κωδικός Βιβλίου: 0-22-0089 ISBN 978-960-06-2362-8

