Prova di Comunicazioni Numeriche

17 Gennaio 2019

Es. 1 - Siano dati due filtri con risposta impulsiva $h_1(t) = \exp(-\alpha t)u(t)$ e $h_2(t) = \exp(-\beta t)u(t)$ con α e β costanti positive e $\alpha \neq \beta$. 1) Si mettano in serie i due filtri suddetti e si calcolino la risposta impulsiva e la risposta in frequenza del sistema equivalente totale. 2) All'ingresso del sistema costituito dai due filtri in serie è posto rumore termico N(t) con densità spettrale di potenza pari a $S_N(f) = \frac{N_0}{2}$. Si calcoli la potenza del processo all'uscita del sistema.

Es. 2 - In un sistema di comunicazione numerico in banda passante il segnale trasmesso è $s(t) = \sum_k x [k] p(t-kT) \cos(2\pi f_0 t + \varphi)$, con $f_0 \gg \frac{1}{T}$, dove i simboli x[k] appartengono all'alfabeto $A = \{-1, +3\}$ e hanno probabilita' a priori $P(-1) = \frac{2}{3}$ e $P(3) = \frac{1}{3}$, e $p(t) = 2B \mathrm{sinc}^2(Bt) \cos(\pi Bt)$. La risposta impulsiva del canale è $c(t) = \delta(t)$. Il canale introduce anche rumore w(t) Gaussiano additivo bianco in banda la cui densità spettrale di potenza è $S_W(f) = \frac{N_0}{2} \left[\mathrm{rect} \left(\frac{f-f_0}{2/T} \right) + \mathrm{rect} \left(\frac{f+f_0}{2/T} \right) \right]$. Il segnale ricevuto r(t) è in ingresso al ricevitore in Figura 1. La risposta impulsiva del filtro in ricezione è quella di un passa basso ideale di banda $\frac{3}{2}B$. Il segnale in uscita al filtro in ricezione è campionato con passo di campionamento $T = \frac{1}{B}$ e i campioni costituiscono l'ingresso del decisore che ha soglia di decisione pari a $\lambda = 0$. Determinare:

1) L'energia media per simbolo trasmesso, 2) Determinare il valore di θ per cui si ha assenza di cross-talk, 3) Verificare se è soddisfatta la condizione di Nyquist, 4) Calcolare la potenza di rumore in uscita al filtro in ricezione P_{nu} , 5) Calcolare la probabilità di errore sul bit, $P_E(b)$.

Fig. 1