

IIR First-Order Low-Pass Filter: 3 dB Bandwidth Analysis (via ChatGPT)

Filter Equation:

$$y[n] = (1 - \alpha) * y[n - 1] + \alpha * x[n]$$

where $0 < \alpha < 1$

3 dB Bandwidth Formula:

$$f_3dB = -ln(1 - \alpha) / (2\pi) * f_s$$

Explanation:

- This defines the cutoff frequency (in Hz) where the output power falls by half (-3 dB).
- The frequency is expressed relative to the sampling rate f_s (typically 1 Hz in time-based applications).
- As α increases, the filter reacts faster and allows more bandwidth through.

Observations:

- Small α → slow response → narrow bandwidth
- Large $\alpha \rightarrow$ fast response \rightarrow wide bandwidth
- When $\alpha \rightarrow 1$, the cutoff frequency approaches Nyquist (0.5 * f s)

Use Cases:

- α is often tuned to match a desired cutoff frequency or smoothing behavior.
- This formula helps convert between intuitive "speed of reaction" and formal filter characteristics.

Generated by ChatGPT · OpenAI