REGRESIÓN LINEAL

CLASE 17

REGRESIÓN LINEAL

Regresión lineal: modelo estadístico basado en la idea de que la relación entre dos variables puede explicarse mediante la fórmula

$$y = \beta x + \varepsilon$$
, donde

- y: variable dependiente
- x: variable independiente o predictora
- β : coeficientes de la regresión
- $\varepsilon = \hat{y} \beta x$: error, o diferencia entre valor predicho y valor real.

- Inferencia → la regresión lineal permite entender mejor las relaciones entre variables, y qué variable predictora es capaz de predecir una proporción importante de los cambios en la variable dependiente. Por ahora, *no buscamos predecir y*.
- Correlación → ← causalidad: el que se detecte una correlación entre dos variables, no implica que haya una relación causal.

REGRESIÓN LINEAL SIMPLE

Si asumimos un modelo lineal para dos variables (x,y), entonces éstas cumplen las ecuaciones:

$$y_{1} = \beta_{0} + \beta_{1}x_{1} + \epsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{2} + \epsilon_{2}$$

$$\vdots$$

$$y_{n} = \beta_{0} + \beta_{1}x_{n} + \epsilon_{n}$$

$$y = y_{0}$$

Error cuadrático medio:

MSE = S(
$$\beta_0, \beta_1$$
) = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x)^2$

Estimación de coeficientes de la regresión:

$$\hat{\beta}_0, \hat{\beta}_1 = \operatorname{argmin} S(\beta_0, \beta_1)$$
 \longrightarrow $\frac{\partial S}{\partial \beta_0} = 0, \frac{\partial S}{\partial \beta_1} = 0$

REGRESIÓN LINEAL SIMPLE

¿Qué representan los coeficientes β ?

- x: variable independiente o predictora
- y: variable dependiente o respuesta
- β_0 : intercepto
- β_1 : pendiente, representa el cambio en y para un cambio unitario en x

¿Qué tan bueno es el ajuste del modelo lineal?

- MSE: mean squared error → se minimiza
- R^2 : coeficiente de correlación, indica la fracción de la variación en y que queda explicada por la variación en x.

$$R^2=1 \rightarrow$$
 ajuste perfecto

$$R^2=0 \rightarrow ajuste \sim promedio de y$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

REGRESIÓN LINEAL MÚLTIPLE

¿Qué representan los coeficientes β ?

- x: variable independiente o predictora
- y: variable dependiente o respuesta
- β: contribución de cada variable x al cambio en y

$$y_{1} = \beta_{0} + \beta_{1}x_{11} + \beta_{2}x_{12} + \dots + \beta_{n}x_{1p} + \epsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{21} + \beta_{2}x_{22} + \dots + \beta_{n}x_{2p} + \epsilon_{2}$$

$$\vdots$$

$$y_{n} = \beta_{0} + \beta_{1}x_{n1} + \beta_{2}x_{n2} + \dots + \beta_{n}x_{2p} + \epsilon_{n}$$

$$y = X\beta + \epsilon$$

¿Qué tan bueno es el ajuste del modelo lineal? -> hay varias métricas

- MSE: mean squared error
- RMSE: root-mean squared error
- R^2 : coeficiente de correlación, indica la fracción de la variación en y que queda explicada por la variación en x.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

ALGORITMOS DE ML

ALGORITMOS

Procedimiento, o conjunto de pasos o reglas para lograr una tarea (ordenar, buscar, clasificar, etc.)

Tipos de algoritmos en Ciencia de Datos:

- Algoritmos de preparación y procesamiento de datos (ing. de datos)
 - Ej: sorting, MapReduce, Pregel
- Algoritmos de optimización para estimación de parámetros
 - Ej: descenso de gradiente, Newton, mínimos cuadrados
- Algoritmos de aprendizaje de máquina: para predecir, clasificar, o clusterizar.
- Para una tarea dada, pueden proponerse múltiples algoritmos posibles
 - Hay un que puede identificarse como "mejor", en base a métricas de eficiencia y tiempo computacional.

Desafíos:

- Comprender qué tipo de algoritmo usar dependiendo del contexto del problema y las suposiciones de base.
- Implementarlo

MACHINE LEARNING: TAREAS COMUNES

- Regresión: predicción de un valor real para cada ítem
- Clasificación: asignación de una categoría a cada ítem de un conjunto
- Clustering: particionar un set de ítems en subconjuntos homogéneos
- Ranking: aprender a ordenar ítems de acuerdo a algún criterio
 - Ej: buscadores web
- Reducción de dimensionalidad: transformar una representación de ítems en una representación con menos dimensiones, pero preservando algunas propiedades de la representación inicial.
 - Ej: preprocesamiento de imágenes digitales para tareas de visión de computador (computer vision)

Aprendizaje Supervisado

Métodos de Regresión

Predictores y Outcomes

Ejemplo:

Predecir el consumo de combustible de un auto a partir de sus características de diseño.

Predictores y Outcomes

 \diamond Para predecir Y, asumimos que se relaciona con X mediante una función desconocida f:

$$Y = f(X) + \varepsilon$$

- ❖ Problema de **inferencia** \Rightarrow encontrar \hat{f} , la estimación de f
- ❖ Problema de **predicción** ⇒ predecir el valor de *Y* para distintos sets de observaciones $(x_{i,1}, ..., x_{i,p})$.
 - No nos interesa la forma de f, sino sólo las predicciones \hat{y}_i :

$$\hat{y}_i = \hat{f}(x_{i,1}, \dots, x_{i,p}).$$

Regresión k-Nearest Neighbors (kNN)

- Una forma simple de predecir una respuesta cuantitativa para una observación:
 - ♦ usamos el promedio de las respuestas a otras observaciones más cercanas a ella → los knearest neighbors

$$\hat{y}_n = \frac{1}{k} \sum_{i=1}^k y_{n_i}$$

Donde $\{x_{n1}, ..., x_{nk}\}$ son las k observaciones más similares (cercanas) a x_i

Resumen de Algoritmos de ML

Aprendizaje	Tarea	Algoritmo	Métrica	Parámetros
Supervisado	Regresión	Regresión kNN Regresión lineal	RMSE R ²	k (nº de vecinos)
	Clasificación	Regresión logística Clasificación kNN	Accuracy Recall Precision F-score	k (nº de vecinos)
No supervisado	Clustering	k-means Aglomerativo	SSE (inercia)	k (nº de clusters)
	Reducción de dimensionalidad	PCA	Varianza explicada	Nº de componentes