Unsigned Multiplication

Multiplication of Unsigned Numbers

- (13) Multiplicand M
- (11) Multiplier Q

- (143) Product P
- (a) Manual multiplication algorithm

Multiplication of two fixed-point binary numbers in signed magnitude representations is done by a process of successive shift and add operations

Multiplication of Unsigned Numbers

- The process consists of looking at successive bits of the multiplier, LSB first.
- If the multiplier bit is a 1 → multiplicand is copied down
 - $0 \rightarrow$ zeroes are copied down.
- The number copied down in successive lines are shifted one position to the left from the previous number finally the numbers are added and their sum forms a product.
- Sign of the product is determine from the signs of the multiplicand and multiplier.
 - If they are alike the sign of the product is positive.
 - It they are unlike the sign of the product is negative

Array Multiplier

Array Multiplier

Combinational logic & Array Implementation

Sequential Circuit Multiplier

(a) Register configuration

Final Version

Sequential Circuit Multiplier

(b) Multiplication example

Sequential circuit binary multiplier.

Multiplication Hardware First version

Signed Multiplication

Signed Multiplication

 Considering 2's-complement signed operands, what will happen to (-13)×(+11) if following the same method of unsigned multiplication?

Sign extension of negative multiplicand.

Signed Multiplication

- For a negative multiplier, a straightforward solution is to form the 2'scomplement of both the multiplier and the multiplicand and proceed as in the case of a positive multiplier.
- This is possible because complementation of both operands does not change the value or the sign of the product.
- A technique that works equally well for both negative and positive multipliers – Booth algorithm.

 Consider in a multiplication, the multiplier is positive 0011110, how many appropriately shifted versions of the multiplicand are added in a standard procedure?

Normal multiplication schemes

- Handles both positive and negative multipliers uniformly
- it achieves some efficiency in the number of additions required when the multiplier has a few large blocks of 1s.

 Since 0011110 = 0100000 – 0000010, if we use the expression to the right, what will happen?

Booth multiplication schemes.

Multiplier		Version of multiplicand	
Bit i	Bit $i-1$	selected by bit i	
0	0	$0 \times M$	
0	1	$+ 1 \times M$	
1	0	$-1 \times \mathbf{M}$	
1	1	$0 \times M$	

Booth multiplier recoding table.

The Booth technique for recoding multipliers is summarized in Figure

• In general, in the Booth scheme, -1 times the shifted multiplicand is selected when moving from 0 to 1, and +1 times the shifted multiplicand is selected when moving from 1 to 0, as the multiplier is scanned from right to left.

Booth recoding of a multiplier.

The transformation is called skipping over 1s.

Booth Algorithm: Example

Booth multiplication with a negative multiplier.

Fast Multiplication

Bit-Pair Recoding of Multipliers

- Derived directly from the Booth algorithm
- Group the Booth-recoded multiplier bits in pairs

Example of bit-pair recoding derived from Booth recoding

Bit-Pair Recoding of Multipliers

Multiplier bit-pair		Multiplier bit on the right	Multiplicand
i + 1	i	i-1	selected at position i
0	0	0	$0 \times M$
0	0	1	+ 1 × M
0	1	0	$+1\times M$
0	1	1	$+2\times M$
1	0	0	$-2 \times M$
1	0	1	$-1 \times M$
1	1	0	$-1 \times M$
1	1	1	$0 \times M$

(b) Table of multiplicand selection decisions

Bit-Pair Recoding of Multipliers

Bit-Pair Recoding

Multiplication requiring only n/2 summands.

Booth

Ripple-carry and carry-save arrays for a 4×4 multiplier.

The delay through the carry-save array is somewhat less than delay through the ripple-carry array. This is because the S and C vector outputs from each row are produced in parallel in one full-adder delay.

- Consider the addition of many summands
 - ➤ Group the summands in threes and perform carry-save addition on each of these groups in parallel to generate a set of S and C vectors in one full-adder delay
 - ➤ Group all of the S and C vectors into threes, and perform carry-save addition on them, generating a further set of S and C vectors in one more full-adder delay
 - Continue with this process until there are only two vectors remaining
 - ➤ They can be added in a RCA or CLA to produce the desired product

A multiplication example used to illustrate carry-save addition

The multiplication example from Figure 9.17 performed using carry-save addition.

Schematic representation of the carry-save addition operations

Integer Division

Longhand division examples.

Restoring Division

Circuit arrangement for binary division.

Restoring Division

Do the following three steps n times:

- Shift A and Q left one bit position.
- Subtract M from A, and place the answer back in A.
- If the sign of A is 1, set q₀ to 0 and add M back to A (that is, restore A); otherwise, set q₀ to 1.

Restoring Division

A restoring division example.

Non-Restoring Division

Stage 1: Do the following two steps *n* times:

- If the sign of A is 0, shift A and Q left one bit position and subtract M from A; otherwise, shift A and Q left and add M to A.
- 2. Now, if the sign of A is 0, set q_0 to 1; otherwise, set q_0 to 0.

Stage 2: If the sign of A is 1, add M to A.

A non-restoring division example.

Non-Restoring Division