Undecidability CSCI 338

Computability Hierarchy

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is decidable.

Proof:

A language L is <u>decidable</u> if there is a TM that recognizes L and rejects everything else. (i.e. halts on all input)

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is decidable.

Proof:

 M_5 = on input $\langle M, \omega \rangle$

- 1. Run M on ω .
- 2. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

A language L is <u>decidable</u> if there is a TM that recognizes L and rejects everything else. (i.e. halts on all input)

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is decidable.

Proof:

 M_5 = on input $\langle M, \omega \rangle$

- 1. Run M on ω .
- 2. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

What if *M* loops (doesn't terminate)?

A language L is <u>decidable</u> if there is a TM that recognizes L and rejects everything else. (i.e. halts on all input)

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is decidable.

Proof:

$$M = \text{on input } \langle M, \omega \rangle$$

Not a Decider!!!

- 1. Run M ar ω .
 2. If M accepts, scere. If M rejects, reject.

What if *M* loops (doesn't terminate)?

A language L is <u>decidable</u> if there is a TM that recognizes L and rejects everything else (i.e. halts on all input)

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: ?

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable.

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider: $H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider: $H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$

Make a new TM D:

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider: $H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$

Make a new TM D:

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider: $H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$

Make a new TM D:

D = on input $\langle N \rangle$, for TM N1. Run H on $\langle N, \langle N \rangle \rangle$.

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider: $H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$ Make a new TM D: $D = \text{on input } \langle N \rangle, \text{ for } TM N$ String encoding of N1. Run H on $\langle N, \langle N \rangle \rangle$.

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$$

Make a new TM D:

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$$

Make a new TM D:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$?

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$$

Make a new TM *D*:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if } ? \\ \text{reject, if } ? \end{cases}$

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$$

Make a new TM *D*:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if ?} \\ \text{reject, if ?} \end{cases}$

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) =$$
 {accept, if M accepts ω reject, if M does not accept ω

Make a new TM *D*:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if ?} \\ \text{reject, if ?} \end{cases}$

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) =$$
 {accept, if M accepts ω reject, if M does not accept ω

Make a new TM *D*:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if } D \text{ does not accept } \langle D \rangle \\ \text{reject, if } \end{cases}$

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$$

Make a new TM *D*:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if } D \text{ does not accept } \langle D \rangle \\ \text{reject, if } D \text{ accepts } \langle D \rangle \end{cases}$

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$$

Make a new TM *D*:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if } D \text{ does not accept } \langle D \rangle \\ \text{reject, if } D \text{ accepts } \langle D \rangle \end{cases}$

D accepts $\langle D \rangle$, so long as D does not accept $\langle D \rangle$.

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) =$$
 {accept, if M accepts ω reject, if M does not accept ω

Make a new TM D:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if } D \text{ does not accept } \langle D \rangle \\ \text{reject, if } D \text{ accepts } \langle D \rangle \end{cases}$

D accepts $\langle D \rangle$, so long as D does not accept $\langle D \rangle$.

 \Rightarrow TM D cannot exist \Longrightarrow TM H cannot exist \Longrightarrow A_{TM} is undecidable

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) = \begin{cases} \text{accept, if } M \text{ accepts } \omega \\ \text{reject, if } M \text{ does not accept } \omega \end{cases}$$

Make a new TM D.

No algorithm can determine (with a 'yes' or 'no') whether or not an algorithm or program will accept some input.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if } D \text{ does not accept } \langle D \rangle \\ \text{reject, if } D \text{ accepts } \langle D \rangle \end{cases}$

D accepts $\langle D \rangle$, so long as D does not accept $\langle D \rangle$.

 \Rightarrow TM D cannot exist \Longrightarrow TM H cannot exist \Longrightarrow A_{TM} is undecidable

Claim: The set of all possible Turing machines is countable.

Proof: ?

I.e. You can list all Turing machines in an ordered list.

Claim: The set of all possible Turing machines is countable.

Proof: Encode each TM as a binary string and sort in lexicographic order.

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) =$$
 {accept, if M accepts ω reject, if M does not accept ω

Make a new TM D:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if } D \text{ does not accept } \langle D \rangle \\ \text{reject, if } D \text{ accepts } \langle D \rangle \end{cases}$

D accepts $\langle D \rangle$, so long as D does not accept $\langle D \rangle$.

 \Rightarrow TM D cannot exist \Longrightarrow TM H cannot exist \Longrightarrow A_{TM} is undecidable

Consider each TM M and its string representation $\langle M \rangle$:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
$\overline{M_1}$					
M_2					
M_3					
M_4					
•					

Consider each TM M and its string representation $\langle M \rangle$:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •	
$\overline{M_1}$	r	a	r	r		
M_2	а	r	r	(a),	K	
M_3	r	a	a	r		Result of running
M_4	r	r	a	r	• • •	H on $\langle M_2,\langle M_4 \rangle \rangle$
•				•		$H = Decider for A_{TM}$

Consider each TM M and its string representation $\langle M \rangle$:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •	$\langle D \rangle$	•••
M_1	r	a	r	r		а	_
M_2	а	r	r	а		r	
M_3	r	a	а	r		а	
M_4	r	r	а	r	• • •	а	• • •
•			,		•••		
D	?	?	?	?		?	
•							•••
D	?	?	?	?	•••	?	٠

 $H = \text{Decider for } A_{TM}$

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, accept.

Consider each TM M and its string representation $\langle M \rangle$:

$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •	$\langle D \rangle$	• • •
r	a	r	r		а	_
a	r	r	a		r	
r	a	a	r		а	
r	r	а	r	• • •	а	• • •
				•••		
а	?	?	?		?	
						•••
	r r r	r a r r	r a r r a a r r	r a r r a r a r r a a r r r a r a r a r a c a a a c a a a c a a a c a a a c a a a c a a b c a a c c a a c c a a c c a a c c a a c c a a c c a a c c a a c c a a c c a a c c a a c c c a c <	r a r r a r a r : r a r : r a r : r a r : r a r : r a r : r a r : r a r : r a r : r a r : r a r : r a r : r a r : r a r : r a r : r :	r a a r a r a r a a r a a a r a a a r a

 $H = \text{Decider for } A_{TM}$

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, accept.

Consider each TM M and its string representation $\langle M \rangle$:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	•••
M_1		a	r	r		а	
M_2	a	r	r	a		r	
M_3	r	a	a	r		a	
M_4	r	r	а	r	• • •	а	• • •
•					•••		
D	а	a	r	а		?	
•							•••
•							•••

 $H = \text{Decider for } A_{TM}$

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, accept.

Consider each TM M and its string representation $\langle M \rangle$:

)	$\langle D \rangle$	• • •	$\langle M_4 \rangle$	$\langle M_3 \rangle$	$\langle M_2 \rangle$	$\langle M_1 \rangle$	
	а		r	r	a	r	M_1
	r		а	r	r	а	M_2
	a		r	а	a	r	M_3
	a	• • •	r	а	r	r	M_4
		•••		;			:
	(?)		а	r	a	а	D
	••						•
	r a 	•••	r r		r a	a r r	M_2 M_3 M_4 \vdots D

D is a TM, so it must be in the list and H is a decider, so every entry must be filled out as "accept" or "reject".

 $H = \text{Decider for } A_{TM}$

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, accept.

Computability Hierarchy

Halting Problem

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof:

Halting Problem

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof:

We are going to show that a decider for $HALT_{TM}$ can be used to build a decider for A_{TM} .

 $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a} \}$ TM and M accepts ω

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

 $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a} \}$ TM and M accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a} \}$ TM and M accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} : S = on input $\langle M, \omega \rangle$ 1.

> $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a} \}$ TM and M accepts ω

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle M, \omega \rangle$$

1. Run H on $\langle M, \omega \rangle$.

$$A_{TM} = \{\langle M, \omega \rangle : M \text{ is a} \}$$

TM and M accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle M, \omega \rangle$$

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).

 $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a} \}$ TM and M accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle M, \omega \rangle$$

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).
- 3. If H accepts, run M on ω until it halts.

 $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a} \}$ TM and M accepts $\omega \}$

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle M, \omega \rangle$$

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).
- 3. If H accepts, run M on ω until it halts.
- 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

 $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a} \}$ TM and M accepts ω

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle M, \omega \rangle$$

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).
- 3. If H accepts, run M on ω until it halts.
- 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

S is a decider for A_{TM} , which is a contradiction.

 $\therefore HALT_{TM}$ is undecidable.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

```
S = \text{on input } \langle M, \omega \rangle
```

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).
- 3. If H accepts, run M on ω until it halts.
- 4. If M accepts, accept. If M rejects, reject.

S is a decider for A_{TM} , which is a contradiction.

 $\therefore HALT_{TM}$ is undecidable.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

New problem <

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

```
S = \text{on input } \langle M, \omega \rangle
```

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).
- 3. If H accepts, run M on ω until it halts.
- 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

S is a decider for A_{TM} , which is a contradiction. $\rightarrow HALT_{TM}$ is undecidable.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

New problem <

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} . Known undecidable problem

$$S = \text{on input } \langle M, \omega \rangle$$

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If *H* rejects, reject (i.e. *M* does not halt on
- 3. If H accepts, run M on ω until it halts,
- 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

S is a decider for A_{TM} , which is a contradiction. \rightarrow \rightarrow $HALT_{TM}$ is undecidable.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

New problem

✓

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

 Known undecidable problem Build a TM S that decides A_{TM} .

 $S = \text{on input } \langle M, \omega \rangle$ 1. Run H on $\langle M, \omega \rangle$ Input to known problem

S is a decider for A_{TM} , which is a contradiction. \rightarrow HALT_{TM} is undecidable.

 $ightharpoonup HALT_{TM}$ is undecidable.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

New problem

✓ Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider. Known undecidable problem Build a TM S that decides A_{TM} . $S = \text{on input } \langle M, \omega \rangle$ > Input to known problem 1. Ru Decider S is a decider for A_{TM} , which is a contradiction.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle M, \omega \rangle$$

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).
- 3. If H accepts, run M on ω until it halts.
- 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

S is a decider for A_{TM} , which is a contradiction.

 $\therefore HALT_{TM}$ is undecidable.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

Used $HALT_{TM}$ decider to make decider for A_{TM} DID NOT use A_{TM} decider to make decider for $HALT_{TM}$

- 3. If H accepts, run M on ω until it halts.
- 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

S is a decider for A_{TM} , which is a contradiction.

 $\therefore HALT_{TM}$ is undecidable.

Fact: Magic Wands

Cannot Exist

Fact: Magic Wands

Cannot Exist

Use?

Hypothetical SuperSaw 2.0

Do?

Build a magic wand

Conclude?

?

Fact: Magic Wands

Cannot Exist

Use?

Hypothetical SuperSaw 2.0

Do?

Build a magic wand

Conclude?

SuperSaw 2.0 saw cannot exist

Use?	Something Assumed to Exist Hypothetical SuperSaw 2.0
Do?	Something Impossible
	Build a magic wand
Conclude?	Assumed Thing Cannot Exist
	SuperSaw 2.0 saw cannot exist

Fact: Magic Wands
Cannot Exist

Something Assumed to Exist Use? $HALT_{TM}$ Decider **Something Impossible** Do? Build an A_{TM} Decider Conclude? **Assumed Thing Cannot Exist**

Use?	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Something Impossible
	Build an A_{TM} Decider
Conclude?	Assumed Thing Cannot Exist
	$HALT_{TM}$ Decider can't exist

Use?	Magic Wand	Something Assumed to Exist $HALT_{TM}$ Decider
Do?		Something Impossible
	Bake a Cake	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
	?	$HALT_{TM}$ Decider can't exist

Use?	Magic Wand	Something Assumed to Exist $HALT_{TM}$ Decider
Do?		Something Impossible
	Bake a Cake	Build an A_{TM} Decider
Conclude?	_	Assumed Thing Cannot Exist
	Nothing	<i>HALT_{TM}</i> Decider can't exist

Use?	Magic Wand	Something Assumed to Exist $HALT_{TM}$ Decider
Do?		Something Impossible
	Go Back in Time	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
		<i>HALT_{TM}</i> Decider can't exist

Use?	Magic Wand	Something Assumed to Exist $HALT_{TM}$ Decider
Do?		Something Impossible
	Go Back in Time	Build an A_{TM} Decider
Conclude?	Nothing	Assumed Thing Cannot Exist
		HALT _{TM} Decider can't exist

Use?	Something Impossible Magic Wand	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Any Task	Something Impossible
	Go Back in Time	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
		HALT _{TM} Decider can't exist

Use?	Something Impossible	Something Assumed to Exist
	Magic Wand	<i>HALT_{TM}</i> Decider
Do?	Any Task	Something Impossible
	Go Back in Time	Build an A_{TM} Decider
Conclude?	Nothing	Assumed Thing Cannot Exist
		<i>HALT_{TM}</i> Decider can't exist

Use?	Something Impossible A_{TM} Decider	Something Assumed to Exist $HALT_{TM}$ Decider
Do?	Any Task	Something Impossible
	Build $HALT_{TM}$ Decider	Build an A_{TM} Decider
Conclude?		Assumed Thing Cannot Exist
		HALT _{TM} Decider can't exist

Use?	Something Impossible	Something Assumed to Exist
USE:	A_{TM} Decider	<i>HALT_{TM}</i> Decider
Do?	Any Task	Something Impossible
	Build <i>HALT_{TM}</i> Decider	Build an A_{TM} Decider
Conclude?	Nothing	Assumed Thing Cannot Exist
		$HALT_{TM}$ Decider can't exist

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle M, \omega \rangle$$

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).
- 3. If H accepts, run M on ω until it halts.
- 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

S is a decider for A_{TM} , which is a contradiction.

 $\therefore HALT_{TM}$ is undecidable.