Control Systems

G V V Sharma*

CONTENTS

1 Frequency Response Analysis

1	Frequency Response Analysis		1	1.1 Polar Plot
	1.1	Polar Plot	1	1.2 Direct and Inverse Polar Plot
	1.2	Direct and Inverse Polar Plot	1	1.3 Bode Plot
	1.3 1.4	Bode Plot	1	1.4 Transient Response from Bode Plot2 Stability in Frequency Domain
•	G4 . 1. 11	'	1	2.1 Nyquist Criterion
2	2.1	ity in Frequency Domain Nyquist Criterion	1	2.2 Nyquist Criterion2.3
	2.2	Nyquist Criterion	1	
	2.3	Name is the A.D. and Harmite	1	2.4 Nyquist and Routh-Hurwitz
	2.4 2.5	Nyquist and Routh-Hurwitz .	1	2.5 Nyquist
	2.6	Nyquist	1 1	2.6 Nyquist
	2.0	11944151	1	3 Design in Frequency Domain
3	Design in Frequency Domain		1	3.1
	3.1		1	
	3.2		1	3.2
	3.3	Lag Compensator	1	3.3 Lag Compensator
	3.4	Lead Compensator	1	3.4 Lead Compensator
	3.5 3.6	Compensator for Overshoot .	1 3	3.5 Compensator for Overshoot
	3.7	Lead Compensator	3	3.1. For a unity feedback system given below refer,
	3.8		3	3.5.1, with
	3.9		3	
	3.10		3	$G(s) = \frac{K}{s(s+5)(s+11)}$ (3.1.1)
4	PID (Controller Design	3	
	4.1	PD	3	X(s) + T T T T T T
	4.2	PID	3	$\xrightarrow{\Lambda(s)} + \left(\begin{array}{c} \Sigma \end{array} \right) \longrightarrow C(s) \qquad \left \begin{array}{c} \Gamma(s) \end{array} \right $

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/ketan/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 3.5.1

Find the value of the gain, K, of the uncompensated system operating at 30% overshoot.

Solution:

The damping ratio ζ is given by:

$$\zeta = -\frac{\ln \frac{\%OS}{100}}{\sqrt{\pi^2 + \ln \frac{\%OS}{100}^2}}$$
(3.1.2)

Therefore, solving the above equation with %OS = 30, we get,

$$\zeta = 0.358 \tag{3.1.3}$$

Further, we need to find the point on the root locus which crosses the 0.358 damping ratio line.

Let this point be $-\sigma_d + j\omega_d$, where σ_d is the exponential damping frequency and ω_d is the damped frequency of oscillation.

And the relation between σ_d and ω_d is given by,

$$\omega_d = \sigma \tan(\arccos \zeta)$$
 (3.1.4)

where,

$$\sigma_d = \zeta \omega_n \tag{3.1.5}$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} \tag{3.1.6}$$

 ω_n is the natural frequency.

Now, by solving the below equation and equating the real and imaginary parts to zero,

$$1 + G(-\sigma_d + i\omega_d) = 0 (3.1.7)$$

We get,

$$\sigma_d = 1.464$$
 (3.1.8)

$$\omega_d = 3.818$$
 (3.1.9)

$$Gain, K = 218.6$$
 (3.1.10)

3.2. Evaluate the performance in terms of peak time and settling time as well as find K_{ν} of the uncompensated system.

Solution:

The peak time, T_p is given by,

$$T_p = \frac{\pi}{\omega_d} \tag{3.2.1}$$

And, settling time is given by,

$$T_s = \frac{4}{\sigma_d} \tag{3.2.2}$$

So, we get,

$$T_p = 0.823$$
 (3.2.3)

$$T_s = 2.732$$
 (3.2.4)

$$K_{v} = \lim_{s \to 0} sG(s) \tag{3.2.5}$$

$$\lim_{s \to 0} \left(\frac{K}{(s+5)(s+11)} \right) = \frac{218.6}{(5)(11)}$$
 (3.2.6)

$$\implies K_{\nu} = 3.975$$
 (3.2.7)

- 3.3. Design a lag-lead compensator to:
 - a) Decrease the peak time by a factor of 2
 - b) Decrease the percent overshoot by a factor of 2
 - c) Improve the steady state error by a factor of 30

Solution:

Lead Design: Using the required specifications, we can calculate the damping ratio and the natural frequency, Using eq. 3.1.2, we get,

$$\zeta = 0.517 \tag{3.3.1}$$

And,

$$\omega_d = \frac{\pi}{T_p} = \omega_n \sqrt{1 - \zeta^2} = 7.634.$$
 (3.3.2)

Hence, $\omega_n = 8.919$.

Thus, the desired pole is located at,

$$-\zeta\omega_n + j\omega_n \sqrt{1 - \zeta^2} = -4.61 + j7.634$$
(3.3.3)

Let us now assume a lead compensator zero at -5. The summation of the system's original poles and lead compensator zero to the design point is -171.2. Thus, the compensator pole must contribute 171.2° - 180° = -8.8° .

Refer figure 3.5.2 for clarification.

$$\tan(8.8^\circ) = \frac{7.634}{p_c - 4.61} \tag{3.3.4}$$

Hence, $p_c = 53.92$.

Therefore, the compensated open-loop transfer

function is,

$$\frac{K}{s(s+11)(s+53.92)} \tag{3.3.5}$$

Evaluating the gain for this function at the desired pole, we get K = 4430.

Lag Design:

The lead compensated $K_v = 7.469$.

We need an improvement over the lead compensated system of,

$$\frac{(30)(3.975)}{7.469} = \frac{119.25}{7.469} \tag{3.3.6}$$

$$\implies = 15.97 \tag{3.3.7}$$

$$K_{v} = \lim_{s \to 0} sG(s) \tag{3.3.8}$$

Choose p_c (compensator pole) = 0.001, we get z_c (compensator zero) = 0.001597. Thus, the compensator is given by,

$$G_{lag}(s) = \frac{s + 0.01597}{s + 0.001}$$
 (3.3.9)

So, the final compensated open loop transfer function is,

$$C(s)G(s) = \frac{4430(s + 0.01597)}{s(s + 11)(s + 53.92)(s + 0.001)}$$
(3.3.10)

Plot the graph after adding a lag-lead compensator.

Solution:

See Fig. 3.5.3 generated by

codes/ep18btech11016/ep18btech11016.py

Fig. 3.5.3

- 3.6
- 3.7 Lead Compensator
- 3.8
- 3.9
- 3.10
- 4 PID Controller Design
- 4.1 PD
- 4.2 PID