绝密★启用前 试卷类型: A

福建省部分地市 2024 届高中毕业班第一次质量检测

数学试题答案及评分参考

2024.1

-、单项选择题:

题号	1	2	3	4	5	6	7	8
答案	В	A	C	В	D	D	С	A

二、多项选择题:

题号	9	10	11	12
答案	ВС	BD	AC	ACD

三、填空题:

13.
$$-\frac{3}{5}$$
; 14. 2

15.
$$\sqrt{2}$$
;

13.
$$-\frac{3}{5}$$
; 14. 24; 15. $\sqrt{2}$; 16. $\sqrt{26}$; $(\frac{4\sqrt{5}}{5}, 2)$.

三、解答题: 本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

17. (10分)

已知 $\triangle ABC$ 的内角A, B, C的对边分别为a, b, c, 且 $a^2 \cos B + ab \cos A = 2c$.

(1) 求 a:

(2) 若
$$A = \frac{2\pi}{3}$$
, 且 \triangle ABC 的周长为 $2 + \sqrt{5}$, 求 \triangle ABC 的面积.

$$\therefore A + B + C = \pi , \quad \therefore \sin(A + B) = \sin C , \qquad \cdots$$

$$\therefore a \sin C = 2 \sin C,$$

$$\therefore 0 < C < \pi , \quad \therefore \sin C > 0 ,$$

(2)由(1)知a=2,

$$\therefore S = \frac{1}{2}bc \sin A = \frac{1}{2}\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{4}.$$
18. (12 \(\frac{1}{12}\))

如图, 在四棱锥 E-ABCD中, AD//BC, 2AD=BC=2, $AB=\sqrt{2}$, $AB\perp AD$, $EA\perp$ 平面 ABCD, 过点 B 作平面 $\alpha\perp BD$.

- (1) 证明: 平面 α // 平面 EAC;
- (2) 已知点 F 为棱 EC 的中点,若 EA = 2,求直线 AD 与平面 FBD 所成角的正弦值.

证明: (1) 设AC 与 BD的交点为O,

 $\therefore AD//BC$, $\exists AB \perp AD$, $\therefore AB \perp BC$,

$$AD=1$$
, $AB=\sqrt{2}$, $AB\perp AD$,

 $\mathbb{H} AB = \sqrt{2}$, BC = 2, $AB \perp BC$,

$$\therefore \angle ABD = \angle BCA$$
,

 $\therefore \angle BAC + \angle ABD = \angle BAC + \angle BCA$,

$$\therefore AB \perp BC$$
, $\therefore \angle BAC + \angle BCA = 90^{\circ}$,

 $\therefore \angle BAC + \angle ABD = 90^{\circ}$

 $: EA \bot$ 平面 ABCD , BD ⊂ 平面 ABCD ,

- $\therefore EA \perp BD$,
- \therefore EA \(\cap AC = A\), EA, AC \(\cap \Pi\) m EAC,
- ∴ BD ⊥ 平面 EAC,

又 $: \alpha \perp BD$, 且 $B \notin$ 平面 EAC,

- ∴平面 α // 平面 EAC5 分
- (2) (方法一) $: AB \perp AD$, $EA \perp$ 平面 ABCD,
- ∴ AB, AD, AE 两两垂直.

如图,以A为原点,AB,AD,AE分别为x轴,

y轴,z轴,建立空间直角坐标系A-xyz,

则 A(0,0,0) , D(0,1,0) , $B(-\sqrt{2},0,0)$,

$$E(0,0,2)$$
, $C(-\sqrt{2},2,0)$,

∴
$$\overrightarrow{AD} = (0,1,0)$$
, $\overrightarrow{BD} = (\sqrt{2},1,0)$, $\overrightarrow{BC} = (0,2,0)$, $\overrightarrow{BE} = (\sqrt{2},0,2)$,8 $\cancel{\Box}$

:点F 为棱EC 的中点,

$$\therefore \overrightarrow{BF} = \frac{1}{2} (\overrightarrow{BC} + \overrightarrow{BE}) = (\frac{\sqrt{2}}{2}, 1, 1), \qquad \dots \qquad \dots \qquad 9 \ \text{ft}$$

设平面 FBD 的一个法向量为 n = (x, y, z),

$$\operatorname{III} \left\{ \frac{\overrightarrow{BD} \cdot \mathbf{n} = 0}{\overrightarrow{BF} \cdot \mathbf{n} = 0}, \quad \vdots \right\} \begin{cases} \sqrt{2}x + y = 0, \\ \frac{\sqrt{2}}{2}x + y + z = 0, \end{cases}$$

取 x = 2 , 得 $y = -2\sqrt{2}$, $z = \sqrt{2}$,

$$\operatorname{II} \sin \theta = |\cos \langle \overrightarrow{AD}, \boldsymbol{n} \rangle| = \frac{|\overrightarrow{AD} \cdot \boldsymbol{n}|}{|\overrightarrow{AD} \parallel \boldsymbol{n}|} = \frac{|-2\sqrt{2}|}{1 \times \sqrt{4+8+2}} = \frac{2\sqrt{7}}{7},$$

(方法二) 如图, 取AC中点M, 连接FM,

: F 为棱 EC 的中点,

$$\therefore FM = \frac{EA}{2} = 1 , \quad \exists FM//EA ,$$

 $: EA \perp$ 平面 ABCD,

高三数学参考答案及评分标准 第

∴ FM ⊥ 平面 ABCD, ······6 分

$$: OM \subset$$
 平面 $ABCD$, $:: FM \bot OM$,

$$AB \perp AD$$
, $AB \perp BC$,

易知 \triangle OBC ~ \triangle ODA,

$$\therefore \frac{OA}{OC} = \frac{DA}{BC} = \frac{1}{2},$$

$$\therefore OA = \frac{OC}{2} = \frac{\sqrt{6}}{2}, \quad \text{Iff } OA = \frac{AC}{3} = \frac{\sqrt{6}}{3},$$

$$\mathbb{X} AM = \frac{AC}{2} = \frac{\sqrt{6}}{2}, \quad \therefore OM = AM - OA = \frac{\sqrt{6}}{6},$$

 $\therefore BD \perp$ 平面 EAC , $OF \subset$ 平面 EAC ,

 $\therefore BD \perp OF$,

$$: S_{\Delta FBD} = \frac{1}{2} \times BD \times OF = \frac{1}{2} \times \sqrt{3} \times \sqrt{\frac{7}{6}} = \frac{\sqrt{14}}{4},$$

设h为A到平面BFD的距离,

$$\because V_{\scriptscriptstyle A-BFD} = V_{\scriptscriptstyle F-ABD} \; , \quad \because \frac{1}{3} S_{\scriptscriptstyle \Delta BFD} \cdot h = \frac{1}{3} S_{\scriptscriptstyle \Delta ABD} \cdot FN \; ,$$

记直线 AD 与平面 FBD 所成角为 θ ,则 $\sin \theta = \frac{h}{AD} = \frac{2\sqrt{7}}{7}$,

19. (12分)

已知数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_2=2a_1=4$,当 $n\in {\bf N}^*$,且 $n\geq 2$ 时, $S_{n+1}=3S_n-2S_{n-1}$.

(1) 证明: $\{a_n\}$ 为等比数列;

(2) 设
$$b_n = \frac{a_n}{(a_n - 1)(a_{n+1} - 1)}$$
, 记数列 $\{b_n\}$ 的前 n 项和为 T_n , 若 $T_m + \frac{1}{7 \times 2^{m-2}} > 1$, 求正整

数m的最小值.

∴ 当 $n \ge 2$ 时, $S_{n+1} - S_n = 2(S_n - S_{n-1})$,

$$\therefore a_{n+1} = 2a_n \ (n \ge 2) \ , \qquad \cdots 3 \ \text{fb}$$

$$\therefore a_2 = 2a_1 = 4$$
, $\therefore a_{n+1} = 2a_n \ (n \in \mathbb{N}^*)$, $\coprod a_1 = 2$,

$$\therefore b_n = \frac{a_n}{(a_n - 1)(a_{n+1} - 1)} = \frac{2^n}{(2^n - 1)(2^{n+1} - 1)} = \frac{1}{2^n - 1} - \frac{1}{2^{n+1} - 1},$$

$$\therefore T_n = (1 - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{7}) + \dots + (\frac{1}{2^{n-1} - 1} - \frac{1}{2^n - 1}) + (\frac{1}{2^n - 1} - \frac{1}{2^{n+1} - 1}) = 1 - \frac{1}{2^{n+1} - 1}, \dots 9$$

$$T_m + \frac{1}{7 \times 2^{m-2}} > 1$$
, $1 - \frac{1}{2^{m+1} - 1} + \frac{1}{7 \times 2^{m-2}} > 1$,

$$\therefore 2^{m-2} > 1, \quad \therefore m-2 > 0, \quad \therefore m > 2,$$

已知甲、乙两支登山队均有n名队员,现有新增的4名登山爱好者a,b,c,d将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同.先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.

- (1) 求a, b, c三人均被分至同一队的概率;
- (2) 记甲、乙两队的最终人数分别为 n_1 , n_2 , 设随机变量 $X=|n_1-n_2|$, 求E(X).

解: (1) a , b , c 三人均被分至同一队当且仅当三人同分至甲队或同分至乙队.

设事件 A= "a 被分至甲队", B= "b 被分至甲队", C= "c 被分至甲队",

当a即将摸球时,箱中有2个红球和2个黑球,则a被分至甲队即a摸出红球的概率为

当a被分至甲队时,箱中有2个红球和3个黑球,则b被分至甲队即b摸出红球的概率为

当a, b均被分至甲队时,箱中有2个红球和4个黑球,则c被分至甲队即c摸出红球的

:.
$$P(AB) = P(A)P(B \mid A) = \frac{1}{2} \times \frac{2}{5} = \frac{1}{5}$$
,

同理可知,新增登山爱好者a, b, c均被分至乙队的概率也为 $\frac{1}{15}$,

X=4 表明新增的 4 名登山爱好者均被分至甲队或乙队,

$$\therefore P(X=4) = 2 \times \frac{2 \times 2 \times 2 \times 2}{4 \times 5 \times 6 \times 7} = \frac{4}{105};$$

X = 2 表明新增的 4 名登山爱好者中有 3 名均被分至同一队,其余 1 名则被分至另一队,设新增的第 k (k = 1, 2, 3, 4) 名登山爱好者被单独分至甲队或乙队,

......9 分

X=0表明新增的 4 名登山爱好者中各有 2 名被分至甲队和乙队,

21. (12分)

已知函数 $f(x) = a \ln x - \frac{x-1}{x+1}$ 有两个极值点 x_1 , x_2 .

(1) 求实数a 的取值范围;

(2) 证明:
$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} > \frac{a - 2a^2}{a - 1}$$
.

若 $a \le 0$,则 $f'(x) \le 0$ 在 $(0,+\infty)$ 上恒成立,

f(x) 在 $(0,+\infty)$ 上单调递减,不可能有两个极值点,与题设矛盾,

:: f(x) 有两个极值点 x_1 , x_2 ,

:. 关于 x 的方程 $ax^2 + 2(a-1)x + a = 0$ (a > 0) 有两个相异的正实数根 x_1 , x_2 ,3 分

解得 $0 < a < \frac{1}{2}$,

不妨设 $0 < x_1 < 1 < x_2$,

化简可得
$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{a \ln x_1 - \frac{x_1 - 1}{x_1 + 1} - a \ln x_2 + \frac{x_2 - 1}{x_2 + 1}}{x_1 - x_2} = \frac{a \ln \frac{x_1}{x_2} - \frac{2(x_1 - x_2)}{(x_1 + 1)(x_2 + 1)}}{x_1 - x_2}$$

$$= \frac{a \ln \frac{x_1}{x_2}}{x_1 - x_2} - \frac{2}{x_1 x_2 + 1 + x_1 + x_2},$$
 7 \cancel{D}

欲证
$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} > \frac{a - 2a^2}{a - 1}$$
,只需证 $\frac{1 - 2a}{a - 1} < \frac{\ln x_1 - \ln x_2}{x_1 - x_2} - 1$,只需证 $\frac{a}{1 - a} < \frac{\ln x_1 - \ln x_2}{x_1 - x_2}$,

只需证
$$\frac{2}{x_1 + x_2} < \frac{\ln x_1 - \ln x_2}{x_1 - x_2}$$
, 只需证 $\frac{1}{2} \ln \frac{x_1}{x_2} < \frac{\frac{x_1}{x_2} - 1}{\frac{x_1}{x_2} + 1}$,

由(1)知, 当
$$a = \frac{1}{2}$$
时, $ax^2 + 2(a-1)x + a = \frac{1}{2}(x-1)^2 \ge 0$, 即 $f'(x) \ge 0$,

$$:: 0 < t < 1, :: f(t) < f(1) = 0, : ∃ \frac{1}{2} \ln t - \frac{t-1}{t+1} < 0, : ∃ \frac{1}{2} \ln t < \frac{t-1}{t+1},$$

$$\therefore \frac{f(x_1) - f(x_2)}{x_1 - x_2} > \frac{a - 2a^2}{a - 1} .$$

22. (12分)

在平面直角坐标系xOy中,点P(1,0),点A为动点,以线段AP为直径的圆与Y轴相切,记A的轨迹为 Γ ,直线AP交 Γ 于另一点B.

- (1) 求Γ的方程;
- (2) $\triangle OAB$ 的外接圆交 Γ 于点C (不与O , A , B 重合),依次连接O , A , C , B 构成凸四边形OACB ,记其面积为S .
 - (i) 证明: \triangle ABC 的重心在定直线上;
 - (ii) 求S的取值范围.

(2) (i)如图,设 $A(x_1,y_1)$, $B(x_2,y_2)$, $C(x_3,y_3)$,

(方法一) : O , A , C , B 四点共圆 ,

∴
$$\angle OAB = \angle OCB$$
,4 $\frac{1}{2}$

由对称性可知直线 OA , AB , OC , BC 的斜率存在,

不妨设其分别为 k_1 , k_2 , k_3 , k_4 ,

且 OA , AB , OC , BC 的倾斜角为 α_1 , α_2 , α_3 , α_4 ,

$$\therefore \angle OAB = \alpha_2 - \alpha_1$$
, $\angle OCB = \alpha_4 - \alpha_3$,

$$\therefore \angle OAB = \angle OCB$$
, $\therefore \tan \angle OAB = \tan \angle OCB$,

$$\therefore \frac{k_2 - k_1}{1 + k_1 k_2} = \frac{k_4 - k_3}{1 + k_3 k_4} \quad \text{(1)},$$

$$\therefore k_1 = \frac{y_1}{x_1} = \frac{y_1}{\frac{1}{4}y_1^2} = \frac{4}{y_1},$$

∴同理可得
$$k_2 = \frac{4}{y_1 + y_2}$$
 , $k_3 = \frac{4}{y_3}$, $k_4 = \frac{4}{y_2 + y_3}$,

 $\mathbb{P}[y_1(y_1+y_2)=y_3(y_2+y_3), \mathbb{P}[y_1-y_3)(y_1+y_2+y_3)=0,$ $\therefore y_1 \neq y_3, \quad \therefore y_1 + y_2 + y_3 = 0, \quad \mathbb{I} \frac{1}{3} (y_1 + y_2 + y_3) = 0,$ $\therefore \triangle ABC$ 的重心的纵坐标为 $\frac{1}{3}(y_1+y_2+y_3)$, (方法二) : O , A , C , B 四点共圆,设该圆方程为 $x^2 + y^2 + dx + ey = 0$, $\therefore y_1$, y_2 , y_3 即为关于 y 的方程 $y^3 + (4d+16)y + 16e = 0$ 的 3 个根, ……5 分 则 $y^3 + (4d+16)y + 16e = (y-y_1)(y-y_2)(y-y_3)$, $(y-y_1)(y-y_2)(y-y_3) = y^3 - (y_1 + y_2 + y_3)y^2 + (y_1y_2 + y_2y_3 + y_1y_3)y - y_1y_2y_3$ 由 y^2 的系数对应相等得, $y_1 + y_2 + y_3 = 0$, 即 $\frac{1}{3}(y_1 + y_2 + y_3) = 0$, (ii) 记 \triangle *OAB* 和 \triangle *ABC* 的面积分别为 S_1 和 S_2 , 设直线 AB: x = my + 1, 联立 $\begin{cases} x = my + 1, \\ y^2 = 4x, \end{cases}$ 消去 x, 得 $y^2 - 4my - 4 = 0$, $\therefore y_1 + y_2 = 4m, \quad y_1 y_2 = -4,$ $\therefore S_1 = \frac{1}{2} \cdot |OP| \cdot |y_1 - y_2| = \frac{1}{2} \cdot \sqrt{16m^2 + 16} = 2\sqrt{m^2 + 1} , \qquad 8 \text{ }$ 由(i)得, $y_3 = -(y_1 + y_2) = -4m$, $|AB| = x_1 + x_2 + 2 = m(y_1 + y_2) + 4 = 4m^2 + 4$, C 到直线 AB 的距离 $d = \frac{|8m^2 - 1|}{\sqrt{m^2 + 1}}$, $\therefore S_2 = \frac{1}{2} \cdot |AB| \cdot d = \frac{1}{2} \cdot (4m^2 + 4) \cdot \frac{|8m^2 - 1|}{\sqrt{m^2 + 1}} = 2\sqrt{m^2 + 1} |8m^2 - 1|,$

不妨设 m>0,且 A 在第一象限,即 $y_1>0$, $y_2<0$, $y_3=-4m<0$,

依次连接 O , A , C , B 构成凸四边形 OACB , $\therefore y_3 = -(y_1 + y_2) < y_2$, 即 $-y_1 < 2y_2$,

$$\mathbb{X}$$
: $y_1 y_2 = -4$, $\therefore \frac{4}{y_2} < 2y_2$, $\mathbb{P} y_2^2 < 2$, $\mathbb{P} -\sqrt{2} < y_2 < 0$,

$$: S = 2\sqrt{m^2 + 1}(1 + |8m^2 - 1|) = 16m^2\sqrt{m^2 + 1},$$

设
$$t = \sqrt{m^2 + 1}$$
,则 $t > \frac{3\sqrt{2}}{4}$,

$$\Leftrightarrow f(t) = 16t(t^2 - 1)$$
, $\bigcup f'(t) = 16(3t^2 - 1)$,

$$:: t > \frac{3\sqrt{2}}{4}, :: f'(t) = 16(3t^2 - 1) > 0, :: f(t)$$
在区间 $(\frac{3\sqrt{2}}{4}, +\infty)$ 上单调递增,

$$\therefore f(t) > f(\frac{3\sqrt{2}}{4}) = \frac{3\sqrt{2}}{2},$$