TTT4180 Technical Acoustics - Assignment 7

Nicholas Bresina, Department of Electronic Systems, NTNU Trondheim, Norway nicholdb@stud.ntnu.no

Introduction

This assignment in the Technical Acoustics course (TTT4180) revolves around the transmission-line matrix (TLM) simulation technique used for acoustic waves and studying a variety of acoustic wave propagation scenarios by simulation. The report is split into two parts, where the first part provides a brief description of methods used for an own implementation of TLM simulation in Python. After, some results are presented and discussed, which were gen-10 erated from said implementation. The second part 11 contains further analysis of sound pressure with re-12 spect to distance, surface reflections, and the effect of 13 a noise screen on the sound pressure level. Instead of 14 using the own implementation, this part uses a given 15 Matlab implementation called TLMfig. Lastly, the 16 report gives a brief outlook with a discussion of diffi-17 culties encountered during this assignment and final conclusions.

Python Implementation

To analyze the propagation of a wave in a pipe a 2D TLM implementation was needed. Python was chosen, as it provides all of the necessary features in li-23 braries such as Numpy for arrays and linear algebra 24 and Matplotlib for plotting the results.

1.1 Methods

The implementation is strongly based on the article provided with the assignment that describes TLM [1]. Nevertheless the most significant parts will be 29 described in this section. 30

The main idea is to replace the continuous space with a mesh of so-called nodes, as shown in Fig. ??.

Figure 1: Example for TLM mesh placed on a pipe with dimensions L×W

1.2	Results	33
1.3	Discussion	34
2	TLMFig	35
2.1	Results	36
2.2	Discussion	37
3	Conclusion	38
4	References	39
Re	References	

References

[1] Y. Kagawa, T. Tsuchiya, B. Fujii, and K. Fujioka. Discrete huygens' model approach to sound wave propagation. Journal of Sound and Vibration, 218(3):419-444, 1998.

41

42

43