Applied Machine Learning

- Receptive field
- Deep Convolutional Neural Network for Image Classification
- Preprocessing images

Stacking Convolutional Layers

- Stacks of convolutional layers
 - Input: $x \times y \times 1$

$$12 \times 12 \times 1$$

- Layer 1: Convolutional + ReLU
 - strides 3, kernel

$$3 \times 3 \times 1$$

• Output $\frac{x}{3} \times \frac{y}{3} \times 1$

$$4 \times 4 \times 1$$

• Receptive field:

$$3 \times 3$$

Layer 2: Convolutional + ReLU

$$3 \times 3 \times 1$$

• Output:
$$\frac{x}{2} \times \frac{y}{2} \times 1$$

$$2 \times 2 \times 1$$

Receptive field:

$$9 \times 9$$

Stacking Layers and Receptive Fields

- The size of the Receptive Field
 - depends on kernel size and stride length at all previous layers
- Resolution:
 - from finer grain to coarser grain
- Receptive field in Pooling Layer is similar
 - stride length and patch size
- Frequently
 - Layer 1: stride lenght of 1, kernels: *n*
 - Next layers: stride length of 2 or more, kernels: increase by some factor, at least 2

Image Classification

- Image classification
 - Input: Image $x \times y \times c$
 - Input Layer: Convolutional + ReLU, stride 1
 - Intermediate Layers:
 - Convolutional: stride 2 or more, occasionally 1
 - Non-linear (ReLU or others)
 - Pooling: stride 2, patch [2 × 2]
 - One last fully connected layer + ReLU to flatten
 - Output Layer: Fully Connected + ReLU + softmax
 - One output per class
 - dropout probability

Image Classification

- Training
 - Input dataset
 - large and representative
 - if different networks will be compared, they should be trained with the same dataset
 - preprocessing input
 - size
 - normalization
 - channels
 - brightness
 - images with dominant colors
 - $pixel_{i,j} mean_{i,j}$
 - hardware: GPUs allow parallelization

- Receptive field
- Deep Convolutional Neural Network for Image Classification
- Preprocessing images

Applied Machine Learning