ALTERNATING CURRENT DPP-1

(a) $\frac{E_0}{\pi}$

(b) $\frac{E_0}{2}$

(JEE MAINS)

EXERCISE 1

The power is transmitted from a power house on high voltage ac because

	(a) Electric current travels	s faster at higher <i>volts</i>
	(b) It is more economical	due to less power wastage
	(c) It is difficult to genera	te power at low voltage
	(d) Chances of stealing tra	nsmission lines are minimized
2.	The potential difference V	and the current <i>i</i> flowing through an instrument in an ac circuit of frequency <i>f</i> are given
	by $V = 5 \cos \omega t$ volts and .	$I=2\sin \omega t$ amperes (where $\omega=2\pi f$). The power dissipated in the instrument is
	(a) Zero	(b) 10 W
	(c) 5 W	(d) 2.5 W
9	In an ac circuit, V and I are	
3⋅		
	$V = 100 \sin(100 t) volts, I$	= 100 $\sin\left(100 t + \frac{\pi}{3}\right) mA$. The power dissipated in circuit is
	(a) 10 ⁴ watt	(b) 10 watt
	(c) 2.5 watt	(d) 5 watt
4.	Alternating current can no	t be measured by dc ammeter because
	(a) ac cannot pass through	n dc ammeter
	(b) Average value of comp	
	(c) ac is virtual	
	(d) ac changes its direction	
5.		dc is in ohms. In ac, the resistance
J .	(a) Will remain same	(b) Will increase
	(c) Will decrease	(d) Will be zero
6.		given by $i = 4\cos(\omega t + \phi)$ amperes, then the r.m.s. value of current is
0.	ii iiistaiitaiicous current is	
	(a) 4 amperes	(b) $2\sqrt{2}$ amperes
	(c) $4\sqrt{2}$ amperes	(d) Zero amperes
7.	In an ac circuit, peak value	of voltage is 423 volts. Its effective voltage is
	(a) 400 <i>volts</i>	(b) 323 volts
	(c) 300 <i>volts</i>	(d) 340 volts
8.	In an ac circuit $I = 100 \sin \theta$	200 πt . The time required for the current to achieve its peak value will be
	(a) $\frac{1}{100}$ sec	(b) $\frac{1}{200}$ sec
		1
	(c) $\frac{1}{200}$ sec	(d) $\frac{1}{400}$ sec
	500	400
9.		nating current is 6 amp, then r.m.s. value of current will be
	(a) 3A	(b) $3\sqrt{3} A$
	(c) $3\sqrt{2} A$	(d) $2\sqrt{3} A$
10.	A generator produces a vo	Itage that is given by $V = 240 \sin 120 t$, where t is in seconds. The frequency and r.m.s.
	voltage are	
	(a) 60 Hz and 240 V	(b) 19 Hz and 120 V
	(c) 19 <i>Hz</i> and 170 V	(d) 754 Hz and 70 V
11.		value of the voltage in an ac circuit, the $r.m.s.$ value of the voltage will be

	(a) 155.6 <i>volts</i>	(b) 220.0 <i>volts</i>	
	(c) 311.0 <i>volts</i>	(d) 440 <i>volts</i>	
13.	A sinusoidal ac currer	t flows through a resistor of resista	ance R . If the peak current is I_p , then the power dissipated
	is		
	(a) $I_p^2 R \cos \theta$	(b) $\frac{1}{2}I_p^2R$	
	(c) $\frac{4}{\pi}I_p^2R$	(d) $\frac{1}{\pi}I_p^2R$	
	π^{r_p}	$\pi^{\frac{1_p}{n}}$	
14.	A 40 Ω electric heater circuit is approximate		ins supply. The peak value of electric current flowing in the
	(a) 2.5 A	(b) 5.0 A	
	(c) 7 <i>A</i>	(d) 10 A	
15.	The frequency of ac m	ains in India is	
	(a) $30 c/s$ or Hz		
16.	(c) $60 c/s$ or Hz	(d) $120 c/s$ or Hz	taken by the alternating current in reaching from zero to
10.		he peak value of current will be	taken by the alternating current in reaching from zero to
	(a) $2 \times 10^{-2} sec$ and 1	and the second s	X Y
	(b) $1 \times 10^{-2} sec$ and 7.		
	(c) $5 \times 10^{-3} sec$ and 7	.07 amp	
	(d) $5 \times 10^{-3} sec$ and 1	4.14 amp	Y
17.	The root mean square	value of the alternating current is	equal to
	(a) Twice the peak va		Y
	(b) Half the peak value	ie	
	(c) $\frac{1}{\sqrt{2}}$ times the pe	ak value	
	V Z		
	(d) Equal to the peak		
18.	The peak value of an	alternating e.m.f. E is given by E	$=E_0\cos\omega t$ is 10 <i>volts</i> and its frequency is 50 Hz. At time
	$t = \frac{1}{600} sec$, the insta	ntaneous e.m.f. is	
	600	Y	
	(a) 10 V	(b) $5\sqrt{3} V$	
	(c) 5 V	(d) 1 V	
19.	If a current I given by	$I_0 \sin \left(\omega t - \frac{\pi}{2}\right)$ flows in an ac circ	uit across which an ac potential of $E = E_0 \sin \omega t$ has been
	applied then the now	er consumption <i>P</i> in the circuit will	l he
	applied, their the pow	in the creat will	· bc
	E_0I_0		
	(a) $P = \frac{-0.0}{\sqrt{2}}$	(b) $P = \sqrt{2}E_0I_0$	
	$Y_{E_0I_0}$	(b) $P = \sqrt{2}E_0I_0$ (d) $P = 0$	
	(a) $P = \frac{E_0 I_0}{\sqrt{2}}$ (c) $P = \frac{E_0 I_0}{2}$	(d) $P = 0$	
			(
20.	In an ac circuit, the i	nstantaneous values of e.m.f. and	current are $e = 200 \sin 314 t \ volt $ and $i = \sin \left(314 t + \frac{\pi}{3} \right)$
	ampere. The average	power consumed in watt is	

(c) $\frac{E_0}{\sqrt{\pi}}$

(a) 200

(c) 50

(b) 100 (d) 25

(d) $\frac{E_0}{\sqrt{2}}$

12. The peak value of 220 volts of ac mains is

21.	An ac generator produced a	an output voltage $E = 170 \sin 377 \ t \ volts$, where t is in seconds. The frequency of ac voltage
	is	ar surpart to tage 2 170 smr 377 170 ms ; more the inspectation requestes; state to tage
	(a) 50 Hz	(b) 110 Hz
	(c) 60 Hz	(d) 230 Hz
22.	In general in an alternating	
22.	(a) The average value of co	
	(b) The average value of so	
	(c) Average power dissipa	
		etween voltage and current is zero
23.	An afternating current is gi	iven by the equation $i=i_1\cos\omegat+i_2\sin\omegat$. The $r.m.s.$ current is given by
	(a) $\frac{1}{-}(i_1+i_2)$	(b) $\frac{1}{-}(i+i)^2$
	(a) $\frac{1}{\sqrt{2}}(i_1 + i_2)$ (c) $\frac{1}{\sqrt{2}}(i_1^2 + i_2^2)^{1/2}$	$\sqrt{2}$ $\sqrt{2}$
	(2, 2) $(2, 2)$	$\frac{1}{(2+2)/2}$
	(c) $\frac{1}{\sqrt{2}}(l_1 + l_2)$	(a) $\frac{1}{2}(l_1 + l_2)$
24.	In an ac circuit, the currer	In the series of the series o
	power consumption is	
	(a) 20 watts	(b) 40 watts
	(c) 1000 watts	(d) 0 watt
0.5		red to 220 V, 50 Hz supply. Then the peak value of voltage is
25.	(a) 210 V	(b) 211 V
	(c) 311 V	(d) 320 V
26		e alternating current is measured by hot wire ammeter as 10 <i>ampere</i> . Its peak value will
26.	be	e alternating current is measured by not wire animieter as 10 umper e. Its peak value win
	(a) 10 A	(b) 20 A
	(c) 14.14 A	(d) 7.07 A
27.		is 220 <i>volt</i> . What does this represent
	(a) Mean voltage	
	(b) Peak voltage	
	(c) Root mean voltage	
	(d) Root mean square volt	rage V
28.	The $r.m.s.$ voltage of dome	stic electricity supply is 220 volt . Electrical appliances should be designed to withstand
	an instantaneous voltage o	f
	(a) 220 V	(b) 310 V
	(c) 330 V	(d) 440 V
29.		converted into dc is known as
	(b) Purification	(b) Amplification
	(c) Rectification	(d) Current amplification
30.		e <i>V</i> and current <i>I</i> , the power dissipated is
	(a) VI	
	(b) $\frac{1}{2}VI$	
	2 🏏	
	(c) $\frac{1}{\sqrt{2}}VI$	
	$\sqrt{2}$	
	(d) Depends on the phase	between V and I
31.	For an ac circuit $V = 15 \sin \theta$	ωt and $I = 20 \cos \omega t$ the average power consumed in this circuit is
	(a) 300 <i>Watt</i>	(b) 150 Watt
	(c) 75 Watt	(d) zero
32.		ith dc and then ac of same voltage then it will shine brightly with
	(a) AC	
	(b) DC	

22	(c) Brightness will be in 1(d) Equally with both An ac supply gives 20 Vr.	ratio 1/1.4 $m.s.$ which passes through a 10 Ω resistance. The power dissipated in it is
33.	(a) $90\sqrt{2} W$	(b) 90 W
	_	(d) 45 W
34.		nating voltage is 50 $cycles/sec$ and its amplitude is 120 V . Then the $r.m.s.$ value of voltage
	(a) 101.3 <i>V</i> (c) 70.7 <i>V</i>	(b) 84.8 <i>V</i> (d) 56.5 <i>V</i>
35.		connected to a source of an alternating potential $V = 220 \sin(100 \pi t)$. The time taken
	the current to change from	n its peak value to <i>r.m.s</i> value is
	(a) 0.2 sec	(b) 0.25 sec
	(c) $25 \times 10^{-3} sec$	(d) $2.5 \times 10^{-3} sec$
36.	Voltage and current in an a	ac circuit are given by $V = 5 \sin \left(100 \pi - \frac{\pi}{6} \right)$ and $I = 4 \sin \left(100 \pi + \frac{\pi}{6} \right)$
	(a) Voltage leads the curr	rent by 30°
	(b) Current leads the volt	age by 30 °
	(c) Current leads the volt	age by 60 °
	(d) Voltage leads the curr	eent by 60°
37.	and the second s	en to be 220 V. What would be the average e.m.f. during a positive half cycle
0,	(a) 198 <i>V</i>	(b) 386V
	(c) 256V	(d) None of these
38.	In an ac circuit, the <i>r.m.s.</i>	value of current, I_{rms} is related to the peak current, I_0 by the relation
	(a) $I_{rms} = \frac{1}{\pi}I_0$	(b) $I_{rms} = \frac{1}{\sqrt{2}}I_0$
	(c) $I_{rms} = \sqrt{2}I_0$	(d) $I_{ms} = \pi I_0$
39.	An alternating voltage is r	epresented as $E = 20 \sin 300 t$. The average value of voltage over one cycle will be
	(a) Zero	(b) 10 <i>volt</i>
	(c) $20\sqrt{2}$ volt	(d) $\frac{20}{\sqrt{2}}$ volt
40.	The ratio of peak value an	d <i>r.m.s</i> value of an alternating current is
	(a) 1	(b) $\frac{1}{2}$
	(c) $\sqrt{2}$	(d) $1/\sqrt{2}$
41.	A 280 ohm electric bulb is	s connected to $200V$ electric line. The peak value of current in the bulb will be
	(a) About one ampere	(b) Zero
	(c) About two ampere	(d) About four ampere
42.	An ac source is rated at 22	oV, 50 Hz. The time taken for voltage to change from its peak value to zero is
	(a) 50 sec	(b) 0.02 sec
	(c) 5 sec	(d) 5×10^{-3} sec
43.		an ac, circuit is $10V$, then the peak value of potential is
	(a) $\frac{10}{\sqrt{2}}$	(b) $10\sqrt{2}$
	(c) $20\sqrt{2}$	(d) $\frac{20}{\sqrt{2}}$

by

44.	A lamp consumes only 50	% of peak power in an a.c. circuit. What is the phase difference between the applied voltage
	and the circuit current	
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$
	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{2}$
45.	If an alternating voltage i $E = 141 \sin(628 t)$, then the	s represented as ne <i>rms</i> value of the voltage and the frequency are respectively
	(a) 141 V, 628 Hz	(b) 100 V, 50 Hz
	(c) $100 V, 100 Hz$	(d) 141 V, 100 Hz
46.	The maximum value of a.	c. voltage in a circuit is 707 <i>V</i> . Its <i>rms</i> value is
	(a) 70.7 V	(b) 100 V
	(c) 500 V	(d) 707 V
		EXERCISE 2
1.	Choke coil works on the p	principle of
	(a) Transient current	(b) Self induction
	(c) Mutual induction	(d) Wattless current
2.	A choke coil has	
	(a) High inductance and	
	(b) Low inductance and	
	(c) High inductance and(d) Low inductance and	
9	Choke coil is used to cont	
3.	(a) ac	(b) dc
	(c) Both ac and dc	(d) Neither ac nor dc
4.	Current in the circuit is w	
	(a) Inductance in the cir	cuit is zero
	(b) Resistance in the circ	
	(c) Current is alternating	
	(d) Resistance and induc	
5.	(a) 0 to $\pi/2$	e.m.f. and current in <i>LCR</i> series ac circuit is
	(a) 0 to $\pi/2$	(b) $\pi/4$
6.		o a rheostat in ac circuit as
	(a) It consumes almost z	
	(b) It increases current	
	(c) It increases power	
	(d) It increases voltage	
7•	An alternating e.m.f. is ap the circuit is or	plied to purely capacitive circuit. The phase relation between e.m.f. and current flowing in
	In a circuit containing cap	pacitance only
	(a) e.m.f. is ahead of cur	
	(b) Current is ahead of e	.m.f. by $\pi/2$
	(c) Current lags behind of	
	(d) Current is ahead of e	
8.		to a resistive circuits. Which of the following is true
		tage and both are in same phase
	(c) Current and voltage a	the voltage and both are in same phase
		y be true depending upon the value of resistance
9.		ated in a pure inductor of inductance L when an ac current is passing through it, is

11.	A resonant ac circuit cont electrical oscillations will b	tains a capacitor of capacitance $10^{-6}F$ and an inductor of $10^{-4}H$. The frequency of the
	(a) $10^5 Hz$	(b) 10 Hz
	(c) $\frac{10^5}{2\pi} Hz$	(d) $\frac{10}{2\pi}Hz$
12.	Power delivered by the sou	rce of the circuit becomes maximum, when
		(b) $\omega L = \frac{1}{\omega C}$
	(c) $\omega L = -\left(\frac{1}{\omega C}\right)^2$	(d) $\omega L = \sqrt{\omega C}$
13.		nnected in series with a resistance R and an inductance L If the potential drop across the
		coss the inductance is 150 V , then the applied voltage is
	(a) 350 V	(b) 250 V
	(c) 500 V	(d) 300 V and an inductance of 20 H . If an ac voltage of 120 V and frequency
14.		cuit, the current would be nearly
	(a) 0.32 amp	(b) 0.016 amp
	(c) 0.48 amp	(d) 0.80 amp
15.		two alternating circuits. The first circuit contains only inductance and the other contains
	e de la companya de	uency of the e.m.f. of ac is increased, the effect on the value of the current will be
	(a) Increases in the first ci	rcuit and decreases in the other
	(b) Increases in both the c	ircuits
	(c) Decreases in both the	circuits Y
		ircuit and increases in the other
16.	A capacitor is a perfect insu	
	(a) Alternating currents	
	(c) Both ac and dc	
17.	In a circuit containing an in	nductance of zero resistance, the e.m.f. of the applied ac voltage leads the current by
	(a) 90°	(b) 45°
	(c) 30°	(d) 0°
18.	In a pure inductive circuit	or In an ac circuit containing inductance only, the current
	(a) Leads the e.m.f. by 90°	
	(b) Lags behind the e.m.f.	
		sometime lags behind the e.m.f.
	(d) Is in phase with the e.r	
19.	the resistance is 12 V , the v	
	(a) 16 <i>volts</i>	(b) 10 volts
	(c) 8 volts	(d) 6 volts

An alternating current of frequency f' is flowing in a circuit containing a resistance R and a choke L in series. The

(b) $\frac{1}{4}LI^2$

(a) $R + 2\pi fL$ (b) $\sqrt{R^2 + 4\pi^2 f^2 L^2}$

(c) $\sqrt{R^2 + L^2}$ (d) $\sqrt{R^2 + 2\pi f L}$

(Inductance of the coil *L* and current *I*)

impedance of this circuit is

(d) Zero

(a) $\frac{1}{2}LI^2$

(c) $2Li^2$

20.		and an inductance of $\frac{1}{\pi}$ henry are connected in series to a	a ac voltage of 20 <i>volts</i> and 200 <i>Hz</i>			
	frequency. The phase angle between the voltage and current is					
	(a) $\tan^{-1} \frac{4}{3}$	(b) $\tan^{-1} \frac{3}{4}$				
	(c) $\tan^{-1} \frac{3}{2}$	(d) $\tan^{-1} \frac{2}{5}$				
21.	The power factor of <i>LCF</i>	R circuit at resonance is				
	(a) 0.707	(b) 1				
	(c) Zero	(d) 0.5				
22.		a condenser of 10 μF and a resistance of 50 Ω are consare same. The reactance of either of them will be	nected in series. The reactances of			
	(a) 100 Ω	(b) 30 Ω				
	(c) 3.2 Ω	(d) 10 Ω				
23.	The natural frequency o	f a <i>L-C</i> circuit is equal to				
	(a) $\frac{1}{2\pi}\sqrt{LC}$	(b) $\frac{1}{2\pi\sqrt{LC}}$				
	(c) $\frac{1}{2\pi}\sqrt{\frac{L}{C}}$	(d) $\frac{1}{2\pi}\sqrt{\frac{C}{L}}$	` \ Y			
	$(C) \overline{2\pi} \sqrt{C}$	(d) $\frac{1}{2\pi}\sqrt{L}$				
24.	An alternating voltage	$E = 200\sqrt{2} \sin(100 t)$ is connected to a 1 <i>microfarad</i> cap	acitor through an ac ammeter. The			
	reading of the ammeter					
	(a) 10 <i>mA</i>	(b) 20 mA				
	(c) 40 mA	(d) 80 mA				
25.		an inductor of inductance $0.5\ H$ and a capacitor of capa	citance 8 μF in series. The current			
		m when the angular frequency of ac source is				
	(a) 500 <i>rad/sec</i>	(b) $2 \times 10^5 rad/sec$				
-6	(c) 4000 rad/sec	(d) 5000 rad/sec				
26.		pation in a pure capacitance in ac circuit is				
	(a) $\frac{1}{2}CV^2$	(b) CV^2				
		Y Y				
	(c) $\frac{1}{4}CV^2$	(d) Zero				
o=	In a region of uniform	magnetic induction $B = 10^{-2}$ tesla, a circular coil of radi	na oo am and nasistanaa -0 ahm is			
27.						
		nich is perpendicular to the direction of <i>B</i> and which for amplitude of the alternating current induced in the coil is				
	(a) $4\pi^2 mA$	(b) 30 mA				
	(c) 6 mA	(d) 200 mA				
28,		tains a resistance of 10 ohm and an inductance of 2.0 her				
		oplied to this circuit, the current in the circuit would be n	early			
	(a) 0.32 amp	(b) 0.16 amp				
	(c) 048 amp	(d) 0.80 amp	·			
29.	per second is	g $L=8.0$ henry, $C=0.5$ μF and $R=100$ ohm in ser	ries. The resonance frequency in			
	(a) 600 radian	(b) 600 Hz				
	(c) 500 radian	(d) 500 Hz				
30.	In LCR circuit, the capachanged from L to	citance is changed from C to $4C$. For the same resonant fi	requency, the inductance should be			
	(a) 2 <i>L</i>	(b) L/2				
	(c) L/4	(d) 4 <i>L</i>				
31.		connected across a pure inductor of inductance 0.70 her ing through the inductor is	ry. If the frequency of the source is			

	(a) 4.55 <i>amps</i>	(b) 0.355 amps
	(c) 0.455 amps	(d) 3.55 amps
32.	The impedance of a circuit	consists of 3 <i>ohm</i> resistance and 4 <i>ohm</i> reactance. The power factor of the circuit is
	(a) 0.4	(b) 0.6
	(c) 0.8	(d) 1.0
33.	L, C and R denote inducta	nce, capacitance and resistance respectively. Pick out the combination which does not
	have the dimensions of fre	quency
	(a) 1	R
	(a) $\frac{1}{RC}$	(b) $\frac{R}{L}$
	\sim 1	C
	(c) $\frac{1}{\sqrt{LC}}$	(d) $\frac{C}{L}$
34.	The power factor of a good	choke coil is
94.	(a) Nearly zero	(b) Exactly zero
	(c) Nearly one	(d) Exactly one
0.5		uctance of 0.5 henry and capacitance of $10 \times 10^{-6} F$ are connected in series through 50
35.	Hz ac supply, then impeda	
	(a) 1.876	(b) 18.76
	(c) 189.72	(d) 101.3
36.		rce of frequency 100 Hz is joined to a combination of a resistance, a capacitance and a
30.		al difference across the coil, the resistance and the capacitor is 46, 8 and 40 <i>volt</i>
		otive force of alternating current source in <i>volt</i> is
	(a) 94	(b) 14
	(c) 10	(d) 76
3 7•	A 10 ohm resistance, 5 m.	H coil and 10 μ F capacitor are joined in series. When a suitable frequency alternating
	current source is joined t	o this combination, the circuit resonates. If the resistance is halved, the resonance
	frequency	
	(a) Is halved	(b) Is doubled
	(c) Remains unchanged	(d) In quadrupled
38.		sical quantities inductance, capacitance and resistance respectively. The combination
	representing dimension of	
	(a) LC	(b) $(LC)^{-1/2}$
	(c) $\left(\frac{L}{C}\right)^{-1/2}$	$\frac{C}{c}$
	(c)	
39.	In a series circuit $R =$	300 Ω , $L=0.9$ H, $C=2.0$ μF and $\omega=1000$ rad/sec . The impedance of the
	circuit is	
	(a) 1300 Ω	(b) 900 Ω
	(c) 500 Ω	(d) 400Ω
40.		(0.4)
40.	In a <i>L-R</i> circuit, the value of	of L is $\frac{0.4}{1000}$ henry and the value of R is 30 ohm. If in the circuit, an alternating e.m.f. of
40.		of <i>L</i> is $\left(\frac{0.4}{\pi}\right)$ henry and the value of <i>R</i> is 30 ohm. If in the circuit, an alternating <i>e.m.f.</i> of
40.	200 volt at 50 cycles per se	c is connected, the impedance of the circuit and current will be
401		
40.	200 volt at 50 cycles per se	c is connected, the impedance of the circuit and current will be
	 200 volt at 50 cycles per set (a) 11.4 Ω 17.5 A (c) 40.4 Ω 5 A 	c is connected, the impedance of the circuit and current will be (b) $30.7 \Omega, 6.5 A$ (d) $50 \Omega, 4 A$
41.	 200 volt at 50 cycles per set (a) 11.4 Ω 17.5 A (c) 40.4 Ω 5 A 	c is connected, the impedance of the circuit and current will be (b) $30.7 \Omega 6.5A$ (d) $50 \Omega 4A$ then used in the domestic ac power supply (220 <i>volt</i> , 50 <i>cycles</i>) is 100 <i>ohm</i> . The self
	200 <i>volt</i> at 50 cycles per set (a) $11.4 \Omega 17.5 A$ (c) $40.4 \Omega 5 A$ The reactance of a coil where	c is connected, the impedance of the circuit and current will be (b) $30.7 \Omega 6.5A$ (d) $50 \Omega 4A$ then used in the domestic ac power supply (220 <i>volt</i> , 50 <i>cycles</i>) is 100 <i>ohm</i> . The self
	200 <i>volt</i> at 50 cycles per set (a) $11.4 \Omega, 17.5 A$ (c) $40.4 \Omega, 5 A$ The reactance of a coil whinductance of the coil is near	c is connected, the impedance of the circuit and current will be (b) $30.7 \Omega.6.5A$ (d) $50 \Omega.4A$ then used in the domestic ac power supply (220 $volt$, 50 $cycles$) is 100 ohm . The selfarly
	200 <i>volt</i> at 50 cycles per set (a) $11.4 \Omega, 17.5 A$ (c) $40.4 \Omega, 5 A$ The reactance of a coil with inductance of the coil is net (a) $3.2 \ henry$ (c) $2.2 \ henry$	c is connected, the impedance of the circuit and current will be (b) $30.7\Omega6.5A$ (d) $50\Omega4A$ (en used in the domestic ac power supply (220 <i>volt</i> , 50 <i>cycles</i>) is 100 <i>ohm</i> . The self orly (b) $0.32henry$

(c)
$$\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]^{-1/2}$$

(d)
$$\left[(R\omega)^2 + \left(L\omega - \frac{1}{C\omega} \right)^2 \right]^{1/2}$$

43. The reactance of a 25 μF capacitor at the ac frequency of 4000 Hz is

(a)
$$\frac{5}{\pi}$$
 ohm

(b)
$$\sqrt{\frac{5}{\pi}} ohm$$

(d)
$$\sqrt{10}$$
 ohm

44. The frequency for which a 5μ capacitor has a reactance of $\frac{1}{1000}$ ohm is given by

(a)
$$\frac{100}{\pi}MHz$$

(b)
$$\frac{1000}{\pi} Hz$$

(c)
$$\frac{1}{1000}$$
 Hz

45. An e.m.f. $E = 4\cos(1000 t)$ volt is applied to an LR-circuit of inductance 3 mH and resistance 4 ohms. The amplitude of current in the circuit is

(a)
$$\frac{4}{\sqrt{7}}$$

(c)
$$\frac{4}{7}A$$

46. In an ac circuit, a resistance of R *ohm* is connected in series with an inductance *L*. If phase angle between voltage and current be 45°, the value of inductive reactance will be

(a)
$$\frac{R}{4}$$

(b)
$$\frac{R}{2}$$

(d) Cannot be found with the given data

47. A coil of inductance L has an inductive reactance of X_L in an AC circuit in which the effective current is I. The coil is made from a super-conducting material and has no resistance. The rate at which power is dissipated in the coil is

(b)
$$IX_I$$

$$(c)$$
 I^2X .

(d)
$$IX_L^2$$

48. The phase difference between the current and voltage of *LCR* circuit in series combination at resonance is

(b)
$$\pi / 2$$

(c)
$$\pi$$

(d)
$$-\pi$$

49. In a series resonant circuit, the ac voltage across resistance R, inductance L and capacitance C are 5 V, 10 V and 10 V respectively. The ac voltage applied to the circuit will be

50. When 100 *volt* dc is applied across a coil, a current of 1 *amp* flows through it. When 100 volt ac at 50 cycle s^{-1} is applied to the same coil, only 0.5 ampere current flows. The impedance of the coil is

(a)
$$100 \Omega$$

(d)
$$400 \Omega$$

51.	The coefficient of indu	ction of a choke coil is $0.1H$ and resistance is 12Ω . If it is connected to an alternating current
		O Hz, then power factor will be
	(a) 0.32	(b) 0.30
	(c) 0.28	(d) 0.24
52.	For series <i>LCR</i> circuit	
		l potential difference across resistance are in same phase
		I potential difference at inductor coil have phase difference of $\pi/2$
		ce at capacitor and inductor have phase difference of $\pi/2$
		ce across resistance and capacitor have phase difference of $\pi/2$
53.	In a purely resistive ac	
99.	(a) Lags behind the e	
	(b) Is in phase with the	
	(c) Leads the e.m.f. in	
		n half the cycle and lags behind it in the other half
54.		nd 6Ω reactance are present in an ac series circuit then the impedance of the circuit will be
	(a) 20 <i>ohm</i>	(b) 5 ohm
	(c) 10 ohm	(d) $14\sqrt{2}$ ohm
55.		d a 0.21 henry inductor are connected in series to an ac source operating at 20 <i>volts</i> , 50
33.		ise angle between the current and the source voltage is
	(a) 30°	(b) 40°
	(c) 80°	(d) 90°
56.		se difference between virtual voltage and virtual current, when the current in the circuit is
	wattless	(h) +=0
	(a) 90° (c) 180°	(b) 45° (d) 60°
F7		cy of a circuit is f. If the capacitance is made 4 times the initial values, then the resonant
57 •	frequency will become	
	- 1 1 - J	
	(a) f/2	
	(a) f/2 (c) f	(b) 2f (d) f/4
58.	(c) f	(b) 2f
58.	(c) f	(b) 2f (d) f/4
	(c) fIn the non-resonant ci(a) Resistive(c) Inductive	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above
	(c) fIn the non-resonant ci(a) Resistive(c) InductiveIn an ac circuit, the po	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V
	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pand 20 V. The total po	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V otential difference across the circuit is
	(c) fIn the non-resonant ci(a) Resistive(c) InductiveIn an ac circuit, the po	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V
	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pe and 20 V. The total po (a) 20.0 V (c) 31.9 V A 220 V, 50 Hz ac sou	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V tential difference across the circuit is (b) 25.6 V
59.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pand 20 V. The total po (a) 20.0 V (c) 31.9 V A 220 V, 50 Hz ac sou current in the circuit	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V tential difference across the circuit is (b) 25.6 V (d) 53.5 V tree is connected to an inductance of 0.2 H and a resistance of 20 ohm in series. What is the
59.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pand 20 V. The total po (a) 20.0 V (c) 31.9 V A 220 V, 50 Hz ac sou current in the circuit (a) 10 A	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V tential difference across the circuit is (b) 25.6 V (d) 53.5 V arce is connected to an inductance of 0.2 H and a resistance of 20 ohm in series. What is the (b) 5A
59. 60.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pe and 20 V. The total po (a) 20.0 V (c) 31.9 V A 220 V, 50 Hz ac sou current in the circuit (a) 10 A (c) 33.3 A	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V itential difference across the circuit is (b) 25.6 V (d) 53.5 V irce is connected to an inductance of 0.2 H and a resistance of 20 ohm in series. What is the (b) 5 A (d) 3.33 A
59.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pe and 20 V. The total po (a) 20.0 V (c) 31.9 V A 220 V, 50 Hz ac sou current in the circuit (a) 10 A (c) 33.3 A	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V tential difference across the circuit is (b) 25.6 V (d) 53.5 V arce is connected to an inductance of 0.2 H and a resistance of 20 ohm in series. What is the (b) 5A
59. 60.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pand 20 V. The total po (a) 20.0 V (c) 31.9 V A 220 V, 50 Hz ac sou current in the circuit (a) 10 A (c) 33.3 A An LCR circuit contains of	(b) $2f$ (d) $f/4$ rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V tential difference across the circuit is (b) $25.6 V$ (d) $53.5 V$ arce is connected to an inductance of 0.2 H and a resistance of 20 O
59. 60.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pand 20 V. The total po (a) 20.0 V (c) 31.9 V A 220 V, 50 Hz ac sou current in the circuit (a) 10 A (c) 33.3 A An LCR circuit contains	 (b) 2f (d) f/4 rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V itential difference across the circuit is (b) 25.6 V (d) 53.5 V irce is connected to an inductance of 0.2 H and a resistance of 20 ohm in series. What is the (b) 5 A (d) 3.33 A
59. 60.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pand 20 V. The total po (a) 20.0 V (c) 31.9 V A 220 V, 50 Hz ac sou current in the circuit (a) 10 A (c) 33.3 A An LCR circuit contains of	(b) $2f$ (d) $f/4$ rcuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above otential difference across an inductance and resistance joined in series are respectively 16 V tential difference across the circuit is (b) $25.6 V$ (d) $53.5 V$ arce is connected to an inductance of 0.2 H and a resistance of 20 O
59. 60.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pand 20 V . The total po (a) 20.0 V (c) 31.9 V A 220 V , 50 Hz ac sout current in the circuit (a) 10 A (c) 33.3 A An LCR circuit contains of (a) $\frac{10^5}{2\pi}s^{-1}$ (c) $2\pi \times 10^5 s^{-1}$ In a series LCR circuit	(b) $2f$ (d) $f/4$ required that will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above of the above of the that difference across an inductance and resistance joined in series are respectively 16 V the that difference across the circuit is (b) $25.6 V$ (d) $53.5 V$ are is connected to an inductance of 0.2 H and a resistance of 20 O
59.60.61.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pe and 20 V . The total po (a) 20.0 V (c) 31.9 V A 220 V , 50 Hz ac sou current in the circuit (a) 10 A (c) 33.3 A An LCR circuit contains of (a) $\frac{10^5}{2\pi}s^{-1}$ (c) $2\pi \times 10^5 s^{-1}$ In a series LCR circuit and the voltage is	(b) $2f$ (d) $f/4$ required the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above oftential difference across an inductance and resistance joined in series are respectively 16 V itential difference across the circuit is (b) $25.6 V$ (d) $53.5 V$ arce is connected to an inductance of 0.2 H and a resistance of 20 O
59.60.61.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the peand 20 V . The total po (a) 20.0 V (c) 31.9 V A 220 V , 50 Hz ac sourcurrent in the circuit (a) 10 A (c) 33.3 A An LCR circuit contains of (a) $\frac{10^5}{2\pi}s^{-1}$ In a series LCR circuit and the voltage is (a) 30 o	(b) $2f$ (d) $f/4$ required the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above of the above of the above of the across an inductance and resistance joined in series are respectively $16\ V$ the the across the circuit is (b) $25.6\ V$ (d) $53.5\ V$ are is connected to an inductance of $0.2\ H$ and a resistance of $20\ ohm$ in series. What is the (b) $5\ A$ (d) $3.33\ A$ is $R = 50\ \Omega$, $L = 1\ mH$ and $C = 0.1\ \mu F$. The impedance of the circuit will be minimum for a frequency (b) $\frac{10^6}{2\pi}\ s^{-1}$ (d) $2\pi \times 10^6\ s^{-1}$ 4, resistance $R = 10\Omega$ and the impedance $Z = 20\Omega$. The phase difference between the current
59.60.61.62.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pand 20 V . The total po (a) 20.0 V (c) 31.9 V A 220 V , 50 Hz ac south current in the circuit (a) 10 A (c) 33.3 A An LCR circuit contains of (a) $\frac{10^5}{2\pi}s^{-1}$ (c) $2\pi \times 10^5 s^{-1}$ In a series LCR circuit and the voltage is (a) 30° (c) 60°	(b) $2f$ (d) $f/4$ recuit, what will be the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above of tential difference across an inductance and resistance joined in series are respectively $16\ V$ tential difference across the circuit is (b) $25.6\ V$ (d) $53.5\ V$ arce is connected to an inductance of $0.2\ H$ and a resistance of $20\ ohm$ in series. What is the (b) $5A$ (d) $3.33\ A$ is $R = 50\ \Omega$, $L = 1\ mH$ and $C = 0.1\ \mu F$. The impedance of the circuit will be minimum for a frequency (b) $\frac{10^6}{2\pi}\ s^{-1}$ (d) $2\pi \times 10^6\ s^{-1}$ (e) $2\pi \times 10^6\ s^{-1}$ (f) 45° (g) 45° (g) 45° (h) 45° (h) 45° (h) 45° (h) 45° (h) 45°
59.60.61.	(c) f In the non-resonant ci (a) Resistive (c) Inductive In an ac circuit, the pe and 20 V . The total po (a) 20.0 V (c) 31.9 V A 220 V , 50 Hz ac sou current in the circuit (a) 10 A (c) 33.3 A An LCR circuit contains of (a) $\frac{10^5}{2\pi}s^{-1}$ In a series LCR circuit and the voltage is (a) 30 $^{\circ}$ (c) $60 ^{\circ}$ A series ac circuit cons	(b) $2f$ (d) $f/4$ required the nature of the circuit for frequencies higher than the resonant frequency (b) Capacitive (d) None of the above of the above of the above of the across an inductance and resistance joined in series are respectively $16\ V$ the the across the circuit is (b) $25.6\ V$ (d) $53.5\ V$ are is connected to an inductance of $0.2\ H$ and a resistance of $20\ ohm$ in series. What is the (b) $5\ A$ (d) $3.33\ A$ is $R = 50\ \Omega$, $L = 1\ mH$ and $C = 0.1\ \mu F$. The impedance of the circuit will be minimum for a frequency (b) $\frac{10^6}{2\pi}\ s^{-1}$ (d) $2\pi \times 10^6\ s^{-1}$ 4, resistance $R = 10\Omega$ and the impedance $Z = 20\Omega$. The phase difference between the current

	(c) 50	(d) $200/2\pi$					
64.	An alternating e.m.f. of free	quency $v \left(= \frac{1}{2\pi\sqrt{LC}} \right)$ is applied to a series <i>LCR</i> circuit. For this frequency of	the applied				
	e.m.f.						
	(a) The circuit is at resonance and its impedance is made up only of a reactive part						
	(b) The current in the circuit is in phase with the applied e.m.f. and the voltage across <i>R</i> equals this applied emf						
	phase of the current in	across the inductance and capacitance equals the applied e.m.f. which is 18 the circuit	J° ahead of				
		e circuit is $\omega L/R$ or $1/\omega CR$ and this is a measure of the voltage magnificatio	n (produced				
	by the circuit at resona	ance) as well as the sharpness of resonance of the circuit					
65.		, the ac source has voltage $V=20\cos(\omega t)$ volts with $\omega=2000~rad/sec$. the a	mplitude of				
	the current will be nearest						
	(a) 2 <i>A</i> (b) 3.3 <i>A</i>	6 Ω					
	(b) $3.3A$ (c) $2/\sqrt{5}A$						
		5 mH, 4Ω 50 μF					
	(d) $\sqrt{5}A$						
66.	The value of the current th source of 200 <i>V</i> and 50 <i>Hz</i>	arough an inductance of $1H$ and of negligible resistance, when connected the resistance, is $(a) 0.637A (b) 1.637A$	rough an ac				
	(c) 2.637A	(d) 3.637 A					
67.	The quality factor of <i>LCR</i> of	circuit having resistance (R) and inductance (L) at resonance frequency (ω)	is given by				
	(a) $\frac{\omega L}{R}$	(b) $\frac{R}{\omega L}$					
	(c) $\left(\frac{\omega L}{R}\right)^{1/2}$	(d) $\left(\frac{\omega L}{R}\right)^2$					
68.	Power factor is maximum i						
	(a) $X_L = X_C$	(b) $R=0$					
	(c) $X_L = 0$	(d) $X_C = 0$					
69.	In an ac circuit the reactand coil to the current through	ce of a coil is $\sqrt{3}$ times its resistance, the phase difference between the voltage the coil will be	ge across the				
	(a) $\pi/3$	(b) $\pi/2$					
	(c) $\pi/4$	(d) $\pi/6$					
70.		acitor is 1 farad. In dc circuits, its effective resistance will be					
	(a) Zero	(b) Infinite					
F74	(c) 1 ohm	(d) $1/2$ ohm tlags behind the voltage by $\pi/3$. The components in the circuit are					
71.	(a) R and L	(b) R and C					
	(c) L and C	(d) Only R					
72.	The reactance of a coil whe	n used in the domestic ac power supply (220 volts, 50 cycles per second) is 50	o ohms. The				
	inductance of the coil is ne						
	(a) 2.2 henry	(b) 0.22 henry					
79	(c) 1.6 <i>henry</i> In an ac circuit, the power	(d) 0.16 henry					
73.		it contains an ideal resistance only					
	(b) Is unity when the circu	it contains an ideal resistance only					
		t contains an ideal inductance only					
		t contains an ideal inductance only					
74•	The impedance of this com		d ac circuit.				
	(a) 30 <i>ohm</i> (c) 50 <i>ohm</i>	(b) 40 <i>ohm</i> (d) 60 <i>ohm</i>					
	(c) Jo onin	(a) Journal of the control of the co					

	(c) Zero reactance	(d) Infinite reactance
76.	The coil of choke in a circu	it en
1	(a) Increases the current	
	(b) Decreases the current	
	(c) Does not change the c	urrant
	(d) Has high resistance to	
77•		gs behind the voltage by a phase difference of $\pi/2$. The circuit contains which of the
	following	
	(a) Only R	(b) Only L
	(c) Only <i>C</i>	(d) R and C
78.	The inductive reactance of	an inductor of $\frac{1}{\pi}$ henry at 50 Hz frequency is
	50	
	(a) $\frac{50}{\pi}$ ohm	(b) $\frac{\pi}{}$ ohm
	(c) 100 <i>ohm</i>	(d) 50 ohm
79.	An oscillator circuit consis	sts of an inductance of $0.5mH$ and a capacitor of $20 \mu F$. The resonant frequency of the
	circuit is nearly	
	(a) 15.92 <i>Hz</i>	(b) 159.2 Hz
	(c) 1592 Hz	(d) 15910 Hz
80.	Reactance of a capacitor of	f capacitance $C\mu F$ for ac frequency $\frac{400}{\pi}$ Hz is 25Ω . The value C is
		n
	(a) $50 \mu F$	(b) 25 μF
	(c) $100 \mu F$	(d) 75 μF
81.		ircuit having resistance (R) and inductance (L) connected in series and an angular velocity
01.	ω is	ir curt having resistance (IV) and inductance (LI) connected in series and an angular velocity
	(a) $R/\omega L$	(b) $R/(R^2 + \omega^2 L^2)^{1/2}$
	(c) $\omega L/R$	(b) $R/(R^2 + \omega^2 L^2)^{1/2}$ (d) $R/(R^2 - \omega^2 L^2)^{1/2}$
0-		
82.		11Ω , an inductive reactance of 25Ω and a capacitative resistance of 18Ω . It is connected
	to an ac source of $260V$ and	d 50Hz. The current through the circuit (in amperes) is
	(a) 11	(b) 15
	(c) 18	(d) 20
83.	A 0.7 henry inductor is con	nnected across a $120V - 60$ Hz ac source. The current in the inductor will be very nearly
Ŭ		
	(a) 4.55 amp	(b) 0.055 amp
	(a) 4.55 amp	(b) 0.355 amp
	(c) 0.455 amp	(d) 3.55 amp
84.		n an ac, circuit. Inductance of 0.1 <i>H</i> is connected with it in series. If equation of ac e.m.f.
	is $5 \sin 50t$ then the phase	difference between current and e.m.f. is
	(a) -\pi	$^{\pi}$
	(a) $\frac{1}{2}$	(b) $\frac{\pi}{6}$
	(c) $\frac{\pi}{}$	
	(c) $\frac{\pi}{4}$	(d) o
	4	
85.		L and resistor of resistance R are joined in series and connected by a source of frequency
	ω . Power dissipated in the	
	$(R^2 + \omega^2 L^2)$	V^2R
	(a) $\frac{(R^2 + \omega^2 L^2)}{V}$	(b) $\frac{1}{(R^2 + \omega^2 L^2)}$
		(d) $\frac{\sqrt{R^2 + \omega^2 L^2}}{V^2}$
	(c) $\frac{V}{(R^2 + \omega^2 L^2)}$	$\sqrt{R^2 + \omega^2 L^2}$
	$\frac{(C)}{(R^2 + \omega^2 L^2)}$	$\frac{(u)}{V^2}$
86.	In a ac circuit of capacitan	ce the current from potential is
00.		co the current from potential is
	(a) Forward	
	(b) Backward	
	(c) Both are in the same p	phase

For high frequency, a capacitor offers

(b) Less reactance

(a) More reactance

- (d) None of these
- 87. A coil of 200 Ω resistance and 1.0 H inductance is connected to an ac source of frequency $200/2\pi Hz$. Phase angle between potential and current will be
 - (a) 30°
- (b) 90°
- (c) 45°
- (d) oo
- **88.** In a *LCR* circuit the pd between the terminals of the inductance is 60 *V*, between the terminals of the capacitor is 30 *V* and that between the terminals of resistance is 40 *V*. the supply voltage will be equal to
 - (a) 50 V
- (b) 70 V
- (c) 130 V
- (d) 10 V
- **89.** Radio frequency choke uses core of
 - (a) Air
- (b) Iron
- (c) Air and iron
- (d) None of these
- **90.** In a LCR circuit capacitance is changed from C to 2C. For the resonant frequency to remain unchanged, the inductance should be change from L to
 - (a) 4L

- (b) 2L
- (c) L/2
- (d) L/4
- **91.** In an LCR series ac circuit, the voltage across each of the components, L, C and R is 50V, the voltage across the LC combination will be
 - (a) 50V
- (b) $50\sqrt{2} V$
- (c) 100V
- (d) o V(zero)
- **92.** A coil has $L = 0.04 \, H$ and $R = 12 \, \Omega$. When it is connected to 220V, 50Hz supply the current flowing through the coil, in amperes is
 - (a) 10.7
- (b) 11.7
- (c) 14.7
- (d) 12.7
- **93.** The current in series *LCR* circuit will be maximum when ω is
 - (a) As large as possible
 - (b) Equal o natural frequency of *LCR* system
 - (c) \sqrt{LC}
 - (d) $\sqrt{1/LC}$
- **94.** An inductor *L* and a capacitor *C* are connected in the circuit as shown in the figure. The frequency of the power supply is equal to the resonant frequency of the circuit. Which ammeter will read zero ampere

(a) A_1

- (b) A₂
- (c) A_3
- (d) None of these
- **95.** Which of the following components of a *LCR* circuit, with ac supply, dissipates energy
 - (a) *L*
- (b) *R*
- (c) C

- (d) All of these
- **96.** In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current leads the voltage by 45° . The value of C is
 - (a) $\frac{1}{2\pi f(2\pi f L + R)}$
 - (b) $\frac{1}{\pi f(2\pi fL + R)}$
 - (c) $\frac{1}{2\pi f(2\pi fL R)}$

(d)
$$\frac{1}{\pi f(2\pi fL - R)}$$

- **97.** In an *A.C.* circuit the current
 - (a) Always leads the voltage
 - (b) Always lags behind the voltage
 - (c) Is always in phase with the voltage
 - (d) May lead or lag behind or be in phase with the voltage
- **98.** For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency

- (a) $2500 \ rad s^{-1}$ and $5\sqrt{2} \ A$
- (b) $2500 \ rad s^{-1}$ and 5A
- (c) $2500 \ rad s^{-1}$ and $\frac{5}{\sqrt{2}} A$
- (d) $25 \ rad s^{-1} \ and \ 5\sqrt{2} \ A$

EXERCISE 3

- 1. When 100 *volts* dc is supplied across a solenoid, a current of 1.0 amperes flows in it. When 100 *volts* ac is applied across the same coil, the current drops to 0.5 ampere. If the frequency of ac source is 50 *Hz*, then the impedance and inductance of the solenoid are
 - (a) 200 Ω and 0.55 henry (b) 100 Ω and 0.86 henry
 - (c) 200 Ω and 1.0 henry (d) 100 Ω and 0.93 henry
- 2. In an *LR*-circuit, the inductive reactance is equal to the resistance *R* of the circuit. An e.m.f. $E = E_0 \cos(\omega t)$ applied to the circuit. The power consumed in the circuit is
 - (a) $\frac{E_0^2}{R}$
- (b) $\frac{E_0^2}{2R}$
- (c) $\frac{E_0^2}{4R}$
- (d) $\frac{E_0^2}{8R}$
- 3. One 10 V, 60 W bulb is to be connected to 100 V line. The required induction coil has self inductance of value $(f = 50 \ Hz)$
 - (a) 0.052 H
- (h) 2 12 H
- (c) 16.2 mH
- (d) 1.62 mH
- 4. In the circuit given below, what will be the reading of the voltmeter
 - (a) 300 V
 - (b) 900 V
 - (c) 200 V
 - (d) 400 V

5. In the circuit shown below, what will be the readings of the voltmeter and ammeter

- (a) 800 V, 2A
- (b) 300 V, 2A

- (c) 220 V, 2.2 A
- (d) 100 V, 2A
- **6.** A bulb and a capacitor are connected in series to a source of alternating current. If its frequency is increased, while keeping the voltage of the source constant, then
 - (a) Bulb will give more intense light
 - (b) Bulb will give less intense light
 - (c) Bulb will give light of same intensity as before
 - (d) Bulb will stop radiating light
- 7. An alternating e.m.f. of angular frequency ω is applied across an inductance. The instantaneous power developed in the circuit has an angular frequency
 - (a) $\frac{\omega}{4}$

(b) $\frac{\omega}{2}$

(c) ω

- (d) 2ω
- 8. The voltage of an ac source varies with time according to the equation $V = 100 \sin 100 \pi \cos 100 \pi$ where t is in seconds and V is in volts. Then
 - (a) The peak voltage of the source is 100 *volts*
 - (b) The peak voltage of the source is 50 volts
 - (c) The peak voltage of the source is $100 / \sqrt{2}$ volts
 - (d) The frequency of the source is 50 Hz
- **9.** The diagram shows a capacitor C and a resistor R connected in series to an ac source. V_1 and V_2 are voltmeters and A is an ammeter

Consider now the following statements

- I. Readings in A and V_2 are always in phase
- II. Reading in V_1 is ahead in phase with reading in V_2
- III. Readings in A and V_1 are always in phase which of these statements are/is correct
- (a) I only
- (b) II only
- (c) I and II only
- (d) II and III only
- 10. In the circuit shown in figure neglecting source resistance the voltmeter and ammeter reading will respectively, will be

- (a) oV, 3A
- (b) 150V, 3A
- (c) 150V, 6A
- (d) oV, 8A
- 11. The voltage of an ac supply varies with time (t) as $V = 120 \sin 100 \pi t \cos 100 \pi t$. The maximum voltage and frequency respectively are
 - (a) 120 volts, 100 Hz
- (b) $\frac{120}{\sqrt{2}}$ volts, 100 Hz
- (c) 60 *volts*, 200 Hz
- (d) 60 volts, 100 Hz
- 12. In the circuit shown in the figure, the ac source gives a voltage $V = 20 \cos(2000 \ t)$. Neglecting source resistance, the voltmeter and ammeter reading will be

(v)

An ac source of angular frequency ω is fed across a resistor r and a capacitor C in series. The current registered is I. If now the frequency of source is changed to $\omega/3$ (but maintaining the same voltage), the current in then circuit is

(a) 0V, 0.47A

(c) 0V, 1.4 A

(a) 0.35 *mH*

(c) 3.5 mH

will be

(a) 3A (c) $2\sqrt{3}A$

(a) 2A(b) 2.4 A(c) Zero(d) 1.7 A

Match the following

(2) $x_0 \sin \omega t \cos \omega t$

(3) $x_0 \sin \omega t + x_0 \cos \omega t$

(a) 1. (i), 2. (ii), 3. (iii)

(c) 1. (i), 2. (iii), 3. (ii)

Currents

(1) $x_0 \sin \omega t$

14.

15.

(b) 1.68V, 0.47A

A telephone wire of length 200 km has a capacitance of 0.014 μF per km. If it carries an ac of frequency 5 kHz, what should be the value of an inductor required to be connected in series so that the impedance of the circuit is minimum

In a certain circuit current changes with time according to $i = 2\sqrt{t}$. r.m.s. value of current between t = 2 to t = 4s

(d) 5.6V, 1.4A

(b) 35 mH

(d) Zero

(b) $3\sqrt{3}A$

(d) $(2-\sqrt{2})A$

r.m.s. values

(b) 1. (ii), 2. (iii), 3. (i)

 $R = 55\Omega$

found to be halved. Calculate the ratio of reactance to resistance at the original frequency ω

(d) None of these

(i) x_0

The reading of ammeter in the circuit shown will be

(b)
$$\frac{\sqrt{5}R}{2}$$
, $\tan^{-1}\left(\frac{1}{2}\right)$

(c)
$$\sqrt{5}X_C$$
, $\tan^{-1}(2)$

(d)
$$\sqrt{5}R$$
, $\tan^{-1}\left(\frac{1}{2}\right)$

- In the adjoining ac circuit the voltmeter whose reading will be zero at resonance is
 - (a) V_1
 - (b) V_2
 - (c) V_3
 - (d) V_4

- In the adjoining figure the impedance of the circuit will be
 - (a) 120 ohm
 - (b) 50 ohm
 - (c) 60 ohm
 - (d) 90 ohm

If $i = t^2$ 0 < t < T then *r.m.s.* value of current is **23.**

(a)
$$\frac{T^2}{\sqrt{2}}$$

(b)
$$\frac{T^2}{2}$$

(c)
$$\frac{T^2}{\sqrt{5}}$$

- (d) None of these
- **24.** Is it possible
 - (a) Yes
 - (b) No
 - (c) Cannot be predicted
 - (d) Insufficient data to reply
- 10 A
- In a series circuit $C = 2\mu F$, L = 1mH and $R = 10 \Omega$, when the current in the circuit is maximum, at that time the ratio of the energies stored in the capacitor and the inductor will be
 - (a) 1:1
- (b) 1:2
- (c) 2:1
- (d) 1:5

ANSWER KEY

EXERCISE 1

1	b	2	а	3	С	4	b	5	b
6	b	7	С	8	d	9	С	10	С
11	d	12	С	13	b	14	С	15	b
16	d	17	С	18	b	19	d	20	С
21	С	22	а	23	С	24	d	25	С
26	С	27	d	28	b	29	С	30	d
31	d	32	d	33	b	34	b	35	d
36	С	37	а	38	b	39	а	40	С
41	а	42	d	43	b	44	b	45	С
46	С								

EXERCISE 2

1	b	2	а	3	а	4	b	5	а
6	а	7	b	8	С	9	d	10	b
11	С	12	b	13	b	14	b	15	d

16	b	17	a	18	b	19	а	20	а
21	b	22	d	23	b	24	b	25	а
26	d	27	С	28	b	29	С	30	С
31	С	32	b	33	d	34	а	35	С
36	С	37	С	38	b	39	С	40	d
41	b	42	b	43	а	44	а	45	d
46	С	47	а	48	а	49	С	50	b
51	b	52	С	53	b	54	С	55	С
56	а	57	a	58	b	59	b	60	d
61	а	62	С	63	а	64	bd	65	а
66	а	67	a	68	a	69	а	70	b
71	а	72	d	73	bc	74	С	75	b
76	b	77	b	78	С	79	С	80	а
81	b	82	d	83	С	84	С	85	b
86	а	87	С	88	а	89	а	90	С
91	d	92	d	93	d	94	С	95	b
96	а	97	d	98	b				

EXERCISE 3

1	а	2	С	3	а	4	С	5	С
6	а	7	d	8	b	9	b	10	d
11	d	12	d	13	а	14	С	15	b
16	С	17	а	18	d	19	b	20	b
21	d	22	С	23	С	24	а	25	d