CMPE 212 Principles of Digital Design

Lecture 8

Analyzing Switching Circuits

February 17, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Lecture's Overview

Previous Lecture:

- → Introduction to combinational circuits (Truth table and Derivation of logic function)
- → Minterms and Maxterms
- → Sum of products and product of sums
- → Canonical form of switching functions (conversion from simplified to canonical form)

This Lecture:

- → Analyzing switching circuits using algebraic methods
- → Analysis of timing diagram

Combinational Logic

- □ Translates a set of inputs into a set of outputs according to one or more mapping functions.
- ☐ Inputs and outputs for a combination logic unit normally have two distinct (binary) values: high and low, 1 and 0, or 5 volt and 0 volt.
- The outputs of a combinational logic unit (CLU) are strictly functions of the inputs, and the outputs are updated immediately after the inputs change. A set of inputs $i_0 i_n$ are presented to the CLU, which produces a set of outputs according to mapping functions $f_0 f_m$

* Slide is courtesy of M. Murdocca and V. Heuring

Minterm

- A product term in which each variable is present either in true or in complement form
- For n variables, there are 2^n unique minterms.

	Minterm	Product
000	m_0	ĀĒC
001	m_1	Ā B C
010	m_2	ĀBC
011	m_3	ĀBC
100	m_4	A B C
101	m_5	A B C
110	m ₆	$AB\overline{C}$
111	m ₇	ABC

Canonical SOP Form

- A Boolean function expressed as a sum of minterms.
- Example: $f(A,B,C) = AB + \overline{A}C + A\overline{C}$

$$= \overline{A} \overline{B}C + \overline{A}BC + A \overline{B} \overline{C} + AB \overline{C} + ABC$$

$$= m_1 + m_3 + m_4 + m_6 + m_7 = \sum m(1, 3, 4, 6, 7)$$

Fruth table with row numbers

Row No.	Α	В	С	f(A,B,C)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Maxterm

- A summation term in which each variable is present either in true or in complement form.
- For n variables, there are 2^n unique maxterms.

	Maxterm	Sum
000	M_0	A + B + C
001	M_1	$A + B + \overline{C}$
010	M_2	$A + \overline{B} + C$
011	M_3	$A + \overline{B} + \overline{C}$
100	M_4	Ā + B + C
101	M_5	$\overline{A} + B + \overline{C}$
110	M ₆	$\overline{A} + \overline{B} + C$
111	M_7	$\overline{A} + \overline{B} + \overline{C}$

Canonical POS Form

A Boolean function expressed as a product of maxterms.

• Example:
$$f(A,B,C) = AB + \overline{A}C + A\overline{C}$$

= $(A + B + C)(A + \overline{B} + C)(\overline{A} + B + \overline{C})$
= $M_0 M_2 M_5 = \Pi M(0, 2, 5)$

Fruth table with row numbers

Row No.	Α	В	С	f(A,B,C)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Canonical Forms

- A canonical form completely defines a Boolean function. That is, for every input the canonical form specifies the value of the function.
- Canonical forms of a particular switching function are Unique
- To determine a canonical form:
 - Construct truth table and sum minterms corresponding to 1 outputs, or multiply maxterms corresponding to 0 outputs.
 - Alternatively, use Shannon's expansion theorem:

$$-f(x_1, x_2, \dots, x_n) = x_1 \cdot f(1, x_2, \dots, x_n) + \overline{x_2} \cdot f(0, x_2, \dots, x_n)$$
$$-f(x_1, x_2, \dots, x_n) = [x_1 + f(1, x_2, \dots, x_n)] [\overline{x_2} + f(0, x_2, \dots, x_n)]$$

- Two Dodoon functions are identical if and only if their conor
- Two Boolean functions are identical if and only if their canonical forms are identical.

Converting to Canonical Form

Example:
$$f(x) = AB + A\bar{C} + \bar{A}C$$

 $= AB(C + \bar{C}) + A\bar{C}(B + \bar{B}) + \bar{A}C(B + \bar{B})$
 $= ABC + AB\bar{C} + A\bar{C}B + A\bar{C}\bar{B} + \bar{A}CB + \bar{A}C\bar{B}$
 $= ABC + AB\bar{C} + AB\bar{C} + A\bar{B}\bar{C} + \bar{A}BC + \bar{A}\bar{B}C$
 $= m_7 + m_6 + m_6 + m_4 + m_3 + m_1$
 $= \sum m(1,3,4,6,7)$

Example:
$$f(A, B, C) = A(A + \overline{C})$$

$$A = (A + \bar{B})(A + B)$$

$$= (A + \bar{B} + \bar{C})(A + \bar{B} + C)(A + B + \bar{C}) (A + B + C)$$

$$= M_3 M_2 M_1 M_0$$

$$(A + \bar{C}) = (A + \bar{C} + \bar{B}) (A + \bar{C} + B)$$

= $(A + \bar{B} + \bar{C}) (A + B + \bar{C}) = M_3 M_1$

$$f(A,B,C) = (M_3M_2M_1M_0)(M_3M_1) = M(0,1,2,3)$$

Analysis of Combinational Circuits

- ☐ Digital circuits are designed by transforming a word description of a function into a switching equation and then a circuit
 - → Digital circuit analysis is the opposite process
- ☐ A digital circuit can be described by:
 - 1) Switching function (algebraic method)
 - 2) Hardware design language module
 - 3) Truth tables

- 4) Timing diagram
- ☐ Analysis of a logic circuit is used to:
 - > determine that its behavior matches specifications
 - transform the circuit to a different format to optimize the implementation

Algebraic Method

- Derive the Boolean expression and then apply axioms and theorems to simplify
- Example: Simplify the following circuit

Algebraic Simplification

$$f(a,b,c) = \overline{(b \oplus \overline{c}) + \overline{ab} \cdot \overline{a} + c}$$

$$\overline{f}(a,b,c) = (b \oplus \overline{c}) + \overline{ab} \cdot \overline{a} + \overline{c} = b \cdot c + \overline{b} \cdot \overline{c} + \overline{ab} \cdot \overline{a} + \overline{c}$$

$$= b \cdot c + \overline{b} \cdot \overline{c} + (\overline{a} + \overline{b}) \cdot (a \cdot \overline{c})$$

$$= b \cdot c + \overline{b} \cdot \overline{c} + \overline{a} \cdot a \cdot \overline{c} + \overline{b} \cdot a \cdot \overline{c}$$

$$= b \cdot c + \overline{b} \cdot \overline{c} + 0 + a \cdot \overline{b} \cdot \overline{c} = b \cdot c + \overline{b} \cdot \overline{c} \cdot (1 + a)$$

$$= b \cdot c + \overline{b} \cdot \overline{c} = (b \odot c)$$

$$f(a,b,c) = \overline{(b \odot c)} = (b \oplus c)$$

Example: Algebraic Method

$$f(a,b,c) = \overline{(a \oplus b)(b \oplus c)}. (\overline{a} + \overline{b} + \overline{a+c})$$

Algebraic Simplification

$$f(a,b,c) = \overline{(a \oplus b)(b \oplus c)}. (\overline{a} + \overline{b} + \overline{a + c})$$

$$= \overline{(a \oplus b)(b \oplus c)} + \overline{(\overline{a} + \overline{b} + \overline{a + c})}$$

$$= (a \oplus b)(b \oplus c) + (\overline{a} + \overline{b})(a + c)$$

$$= (a\overline{b} + \overline{a}b)(b\overline{c} + \overline{b}c) + \overline{a}a + \overline{a}c + \overline{b}a + \overline{b}c$$

$$= a\overline{b}b\overline{c} + a\overline{b}bc + \overline{a}bb\overline{c} + \overline{a}b\overline{b}c + 0 + \overline{a}c + \overline{b}a + \overline{b}c$$

$$= 0 + a\overline{b}c + \overline{a}b\overline{c} + \overline{a}c + \overline{b}a + \overline{b}c$$

$$= \overline{a}b\overline{c} + \overline{a}c + \overline{b}a + \overline{b}c$$
Consensus
$$= \overline{a}b\overline{c} + \overline{a}c + \overline{b}a = \overline{a}(b\overline{c} + c) + a\overline{b}$$

$$= \overline{a}(b + c) + a\overline{b} = \overline{a}b + \overline{a}c + a\overline{b} = (a \oplus b) + \overline{a}c$$

Mohamed Younis

Truth Table Method

Build the truth table for the circuit and then derive a simplified switching function using SOP or POS

☐ Example:

to simplify the previous circuit

$$\prod M(0,1,7)$$

a	b	c	$\overline{(a \oplus b)(b \oplus c)}$. $(\overline{\overline{a} + \overline{b}} + \overline{a + c})$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$f(a,b,c) = (a+b+c)(\overline{a}+\overline{b}+c)(\overline{a}+\overline{b}+\overline{c}) = (a+b+c)(\overline{a}+\overline{b})$$

$$= a\overline{a} + a\overline{b} + b\overline{a} + b\overline{b} + \overline{a}c + \overline{b}c = a\overline{b} + b\overline{a} + \overline{a}c + \overline{b}c$$

$$= a\overline{b} + b\overline{a} + \overline{a}c + \overline{b}c = a\overline{b} + b\overline{a} + \overline{a}c = (a\oplus b) + \overline{a}c$$

Timing Diagram

- ☐ Apply a sequence of input and observe corresponding output
- ☐ Useful for analyzing the propagation delay:

Ti	Input	Output	
Time	(A, B, C)	f ₁ (A, B, C)	f ₂ (A, B, C)
t _o	000	0	0
t ₁	001	1	1
t ₂	010	1	0
t ₃	011	0	1
t ₄	100	0	0
t ₅	101	0	1
t ₆	110	1	1
t ₇	111	1	0

$$f_1(A, B, C) = \sum m(1,2,6,7)$$

$$f_2(A, B, C) = \sum_{i=1}^{n} m(1,3,5,6)$$

Propagation Delay

Propagation delay is the time for the output to become ready after the input gets changed

- Propagation delay depends on the microelectronics technology and size
- Rising and falling time may differ

$$> t_{PD} = \frac{1}{2} (t_{PDH} + t_{PDL})$$

Important Physical Characteristics

- Physical characteristics vary depending on the microelectronics technology used in the design and fabrication
- > There is a trade-off between speed and power dissipation

Logic family	Propagation Delay t _{PD} (ns)	Power Dissipation Per Gate (mW)	Technology
7400	10	10	Standard TTL
74H00	6	22	High-speed TTL
74L00	33	1	Low-power TTL
74LS00	9.5	2	Low-power Schottky TTL
74\$00	3	19	Schottky TTL
74ALS00	3.5	1.3	Advanced low-power Schottky TTL
74AS00	3	8	Advanced Schottky TTL
74HC00	8	0.17	High-speed CMOS

ABC	Y=f(A,B,C)
000	0
001	1
010	0
011	0
100	1
101	1
110	1
111	0

$$f(A, B, C) = \sum m(1,4,5,6)$$

Conclusion

□ **Summary**

- → Canonical form of switching functions (conversion from simplified to canonical form)
- → Analyzing switching circuits using algebraic methods (Truth table and Derivation of logic function)
- → Analysis of timing diagram
- → Effect of physical characteristics (propagation delay and power dissipation)

□ Next Lecture

→ Synthesis of combinational logic circuits

Reading assignment: Section 2.4 in the textbook