CS141: Intermediate Data Structures and Algorithms

Yan Gu

Greedy algorithm

Optimization problem:

- Find a set (or a sequence) of "items"
- That satisfy some constraints and simultaneously optimize (i.e., maximize or minimize) some objective function

Greedy strategy

- Adds items to the solution one-by-one
- Always choose the current best solution
- No backtracking

Activity selection (task scheduling)

- Given a set of activities $S = \{a_1, a_2, ..., a_n\}$ where
 - Each activity i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
 - An activity a_i happens in the half-open time interval $[s_i, f_i]$.
 - Two activities are said to be **compatible** if they **do not overlap**.
- The problem is to find a maximum-size compatible subset, i.e., a one with the maximum number of activities.

Solution: earliest finish first!
Always choose the one that
finishes earliest

Prove the optimality of a greedy algorithm: activity selection

- 1. Greedy Choice: The greedy choice is part of the answer
 - The earliest finish activity a_m is part of some optimal solution

- 2. Optimal Substructure: The optimal solution to the big problem contains the optimal solution to the sub-problem
 - Optimal solution $\{a_i, ...\}$ without a_i is "the best solution of S {those incompatible with a_i }"
 - Best solution with a_i is $\{a_i\} \cup$ "the best solution of $S \{those incompatible with <math>a_i\}$ "

Huffman Tree and Huffman Codes

We have piles of pebbles:

- We want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy (Let's assume you need to move both piles)
 - (e.g., merging 12 and 7 results in a new pile of size (12+7=)19, and cost you 19 units of energy
- How can we merge all of them with the least energy?

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging
- 12 7 8 15 4

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

Energy cost: 19

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

Energy cost: 19 +27

- · We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

Energy cost: 19 +27 +42

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

Energy cost: 19 +27 +42 +46 = **134**

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

Energy cost: 19

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

Energy cost: 19 +23

- · We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

Energy cost: 19 +23 +42

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

Energy cost: 19 +23 +42 +46 = 130

Merge pebbles – Can you design a greedy solution?

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Use a tree to represent the trace of merging

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Always merge the two with the fewest pebbles!
- 12 7 8 15 4

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Always merge the two with the fewest pebbles!

- · We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Always merge the two with the fewest pebbles!

Energy cost: 11 +19

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Always merge the two with the fewest pebbles!

Energy cost: 11 +19 +27

- We have pebble piles and want to merge them into one pile, but
 - We can only merge two of them at a time
 - Merging two piles of size a and b cost you a+b units of energy
- Always merge the two with the fewest pebbles!

Energy cost: 11 + 19 + 27 + 46 = 103

• You may need to move a pile multiple times (its size counts in the cost for multiple times)

Pay 8 again when

• The pile size will be charged at all of its ancestors!

(moving 42) 15 Cost: 134

getting the pile 46

- You may need to move a pile multiple times (its size counts in the cost for multiple times)
- The pile size will be charged at all of its ancestors!
- How many times do you need to move the pile 8?

• The depths of it! (the number of ancestors)

Total cost: $4 \times 3 + 7 \times 3 + 8 \times 2 + 12 \times 2 + 15 \times 2 = 103$

 $3 + 12 \times 4 + 15 \times 2 = 134$

- You may need to move a pile multiple times (its size counts in the cost for multiple times)
- The pile size will be charged at all of its ancestors!
- How many times do you need to move the pile 8?
 - The depths of it! (the number of ancestors)
- $cost = \sum_{leaf} t \times d(t)$ d(t) is the depth of pile t in the merging tree

• $cost = \sum_{leaf} t \times d(t)$ d(t) is the depth of pile t in the merging tree

Total cost:
$$4 \times 3 + 7 \times 3 + 8 \times 2 + 12 \times 2 + 15 \times 2 = 103$$

Total cost:
$$4 \times 3 + 7 \times 2 + 8 \times 2 + 12 \times 3 + 15 \times 2 = 108$$

Merge pebbles – Why greedy is good? (intuitively)

• $cost = \sum_{leaf} t \times d(t)$ d(t) is the depth of pile t in the merging tree

Total cost: $4 \times 3 + 7 \times 3 + 8 \times 2 + 12 \times 2 + 15 \times 2 = 103$

- Should make two smallest piles deepest
- There are always two leaves in the deepest level
- We can always merge them first
- Optimal substructure: the problem size decreases by 1
 - n-1 piles of pebbles to merge, minimize energy
- A formal prove is in the textbook, and more explanation will be given later in this lecture

However, why do we care about moving pebble piles???

Huffman Codes

Encoding

- How data is represented?
- Fixed-size codes, e.g., ASCII
 - A: 1000001 (65)
 - B: 1000010 (66)
- Variable-size codes, e.g., Morse Codes
 - A: •—
 - B: —•••
 - E: •
 - T: —

Example: Morse Code

7 --••

Prefix Codes

- No code is allowed to be a prefix of another code
- To encode, simply concatenate all the codes
- Decoding does not entail any ambiguity
- Example:
 - Message 'JAVA'
 - a = "0", j = "11", v = "10"
 - Encoded message "110100"
 - Decoding "110100" greedily decode it!

character	Prefix code	Non prefix code
Α	00	00
В	01	001
С	101	11
D	100	111
E	11	01

0011101

Trie

- We can use a trie to find prefix codes
- the characters are stored at the external nodes
- a left child (edge) means 0
- a right child (edge) means 1
- No code can be prefix of another code

Morse code (not a prefix code)

Source: Wikipedia

Example of Decoding

- Encoded text: 00010011
- Text = ?
- Encoded text: 0001101011
- Text = ?

$$D = 10$$

Example of Decoding

- encoded text: 01011011010000101001011011010
- Very expensive to check all possibilities
- Use the tree!
- text: ABRACADABRA (11 characters)
 - ASCII: 77 bits
 - Our encoding: 29 bits

A=010

B = 11

C = 00

D = 10

R=011

Example of Encoding

- Message: 'ABRACADABRA' (11 characters)
- Encoded message: '01011011010000101001011011010'
- Length: 29 bits

Total length: $5 \times 3 + 2 \times 2 + 1 \times 2 + 1 \times 2 + 2 \times 3 = 29$

The length of the code for character c is just its depth d(c)!

A = 010

B=11

C=00

D=10

R=011

Example of Encoding

- Message: 'ABRACADABRA' (11 characters)
- Encoded message: '001011000100001100101100'
- Length: 24 bits

Total length: $5 \times 2 + 1 \times 3 + 1 \times 3 + 2 \times 2 + 2 \times 2 = 24$

The length of the code for character c is just its depth d(c)!

Optimal Encoding Problem

- Given a set C of n characters, for each character $c \in C$. Let c. freq be the frequency of c in the file
- We would like to find a prefix encoding for each $c \in C$ with a length d(c) such that we minimize the total cost

$$cost = \sum_{c \in C} c.freq \times d(c)$$

Total length: $5 \times 2 + 1 \times 3 + 1 \times 3 + 2 \times 2 + 2 \times 2 = 24$

Optimal Encoding Problem

- Given a set C of n characters, for each character $c \in C$. Let c. freq be the frequency of c in the file.
- We would like to find a prefix encoding for each $c \in C$ with a length d(c) such that we minimize the total cost

$$cost = \sum_{c \in C} c.freq \times d(c)$$

- That's the same with our pebble merging problem!
 - Frequency = initial pebble pile size
- Solution: Huffman Codes

Huffman codes

- Find the two characters with the least frequency x and y
 - Find to piles of pebbles with smallest size
- Combine them in to one temporary character (internal node) with frequency x+y
 - Combine them into one pile of size x + y
- Repeat until there is only one node
 - Repeat until there is only one pile

"ABRACADABRA"

A,5 B,2 C,1 D,1 R,2

"ABRACADABRA"

"ABRACADABRA"

Encoding

"ABRACADABRA"

0 10 111 0 1100 0 1101 0 10 111 0

Length= 23

Optimal!

Encoding

"ABRACADABRA"

0 111 10 0 1100 0 1101 0 111 10 0

Length= 23

Optimal!

Encoding

"ABRACADABRA"

0 110 10 0 1110 0 1111 0 110 10 0

Length= 23

Optimal!

Construction of Huffman Tree

Note: Can also be done in linear time

Huffman(C)

- n=|C|
- Q=C // construct a priority queue of all character's frequency

- for i = 1 to n-1
 - allocate a new node z
 - z.left = x = Extract-Min(Q)
 - z.right = y = Extract-Min(Q)
 - z.freq = x.freq + y.freq
 - Insert(Q, z)
- return Extract-Min(Q) // Root of the tree

$$T(n) = \Theta(n \log n)$$

Optimality of Huffman Codes

- Greedy-choice
 - The greedy choice yields an optimal solution.
- Optimal substructure
 - The optimal solution for the bigger problem contains the optimal solution of the subproblem.
- Similar to the pebble merging
- Detailed proof in the textbook

Optimal substructure

"ABRACADABRA"

Merging C and D

- They must share the same prefix p, and ending with 0 and 1, respectively
- Consider them as a whole: the frequency of p is 1+1=2.
- Create a new node (represents the prefix p) of frequency 2

Optimal substructure

"ABRA(p0)A(p1)ABRA"

A,5 B,2 p, 2 R,2 C = p0 D = p1

Merging C and D

- They must share the same prefix p, and ending with 0 and 1, respectively
- Consider them as a whole: the frequency of p is 1+1=2.
- Create a new node (represents the prefix p) of frequency 2
- Repeat the process find the string for p recursively

What cannot be solved by greedy strategies?

- Different candies have different "values" (say, how much you like them)
- With a fixed budget of S dollars, how to maximize the total value?
- No known greedy algorithm can solve this ②
- A lot of variants: 0/1 knapsack, unlimited knapsack, k-knapsack, ...

Knapsack problem

- Your little brother is attending university this year
- Unfortunately, he did not get an offer from UCR, and he has to go to the east coast, and needs to take a flight

\$70, 5lb

A simplified case: unlimited knapsack

- Overall weight limit: 8 lb, we can take an unlimited number of each item
- Item 1: 5 lb, \$150
- Item 2: 4 lb, \$100
- Item 3: 2 lb, \$10
- Solution 1: Item 1 + Item 3, value: \$160
- Solution 2: Item 2 * 2, value: \$200
- Greedy strategy does not provide the optimal solution
- A naïve solution? Try all possibilities!

A naïve algorithm

```
Item 1: 5 lb, $150
Item 2: 4 lb, $100
Item 3: 2 lb, $10
```

```
suitcase(8):
Case 1: first put item 1,
total value = suitcase(3) + 150
Case 2: first put item 2,
total value = suitcase(4) + 100
Case 3: first put item 3,
total value = suitcase(6) + 10
```

```
int suitcase(int leftWeight) {
  int curBest = 0;
  foreach item of (weight, value)
    if (leftWeight >= weight)
       curBest = max(curBest, suitcase(leftWeight - weight) + value);
  return curBest;
                                         Recursive call
```

answer = suitcase(8);

This algorithm takes exponential time, and only works for very small instances

Execution Recurrence Tree

Execution Recurrence Tree

A naïve algorithm

```
int suitcase(int leftWeight) {
  int curBest = 0;
  foreach item (weight, value)
     if (leftWeight >= weight)
       curBest = max(curBest, suitcase(leftWeight - weight) + value);
  return curBest;
answer = suitcase(8);
```

CS141: Intermediate Data Structures and Algorithms

Next 3.5 lectures:

Dynamic Programming

Programming?

- Program (noun) \ 'prō- gram , -grəm \
 - a sequence of coded instructions that can be inserted into a mechanism (such as a computer)
- Programming (noun) \ 'prō- gra-min , -gra-\
 - a plan of action to accomplish a specified end
- In dynamic programming, or linear programming, the word programming means a "tabular solution method"
 - In fact, the concept of dynamic programming was proposed before computers, and was a subarea of operating research
 - Without a computer and memory, you have to write down the intermediate results on a piece of paper, and in a table