- 1. Which one of the following sentences has the same meaning as "(if there is) no pain, (then there is) no gain"?
 - a. Pain is sufficient for gain.
 - b. There is pain unless there is no gain.
 - c. Pain implies gain.
 - d. There is gain when there is pain.
- 2. Which one of the following states satisfies $x < 4 \land (b[x] \neq 3 \rightarrow b[x] > b[0])$?
 - a. $\{x = 1, b = (2, 1, 5, 3, 4)\}$
 - b. $\{x = 2, b = (1, 4, 3, 2, 5)\}$
 - c. $\{x = 3, b = (5, 3, 2, 4, 1)\}$
 - d. $\{x = 4, b = (4, 2, 1, 5, 3)\}$
- 3. Which one of the following statements is equivalent to Java/C program fragment:

while
$$(++x>n)$$
 { $y*=x++;$ }

- a. x := x + 1; while x > n do x := x + 1; y := y * x; x := x + 1 od
- b. x := x + 1; while x > n do y := y * x; x := x + 1; x := x + 1 od
- c. while x > n do x := x + 1; y := y * x; x := x + 1 od; x := x + 1
- d. **while** x > n **do** y := y * x; x := x + 1; x := x + 1 **od**; x := x + 1
- 4. Let $W \equiv x \coloneqq 3$; while x > 0 if x % 2 = 1 then $x \coloneqq x 1$ else $x \coloneqq x/2$ fi do. What is τ where $\langle W, \sigma \rangle \rightarrow^* \langle E, \tau \rangle$?
 - a. $\{x = 0\}$
 - b. $\sigma[x \mapsto 0]$
 - c. \perp_e
 - d. \perp_d
- 5. Let $W \equiv \operatorname{do} x > y \to x \coloneqq x 1 \ \Box x < y \to x \coloneqq x + 1 \ \operatorname{od}$. Which one of the following is a possible $M(W, \sigma)$?
 - a. $\{\{x=3, y=4\}\}$
 - b. $\{\{x=0, y=0\}\}$
 - c. $\{\{x = -1, y = -3\}, \{x = 2, y = 4\}\}$
 - d. $\{\perp_d\}$
- 6. Which of the following states satisfies $\{x > 1\}$ if x > y then x := x 1 fi $\{x = 1\}$?
 - a. $\{x = 1; y = 2\}$
 - b. $\{x = 2; y = 2\}$
 - c. $\{x = 3; y = 4\}$
 - d. $\{x = 4; y = 2\}$
- 7. Let $M(S, \sigma) = \{\tau\}$ where $\tau \in \Sigma_1$. Which of the following proposition about S must be true?
 - a. $M(S, \sigma) \not\models F$
 - b. $M(S, \sigma) \models T$
 - c. S is loop-free.
 - d. *S* is deterministic.

- 8. Let $\vDash_{tot} \{x \ge 0\}$ S_1 $\{x \le 1\}$ and $\vDash_{tot} \{x \le 0\}$ S_2 $\{x \ge 1\}$. Which of the following triples must be valid under total correctness?
 - a. $\{x \ge 0\} S_1; S_1 \{x \le 1\}$
 - b. $\{x \le 0\} S_2; S_2 \{x \ge 1\}$
 - c. $\{x \ge 0\} S_1; S_2 \{x \ge 1\}$
 - d. $\{x \le 0\} S_2; S_1 \{x \le 1\}$
- 9. If deterministic program S diverges on σ , then which one of the following must be true for arbitrary q?
 - a. $\sigma \vDash wlp(S,q)$
 - b. $\sigma \vDash wp(S,q)$
 - c. $\sigma \not\models wlp(S,q)$
 - d. None of the above.
- 10. Define predicate function greatest(a, b, c) which returns True if and only if array a contains the greatest integer (or one the greatest integers) among arrays a, b and c. You may assume that a, b and c are all non-empty one-dimensional arrays of integers.

11. Calculate $wlp\ (IF,\ x=y)$, where $IF \equiv \mathbf{if}\ x < y\ \mathbf{then}\ x \coloneqq x+1\ \mathbf{else}\ y \coloneqq y-1\ \mathbf{fi}$. Do not logically simplify your solution.