Learning-based State Estimation in Distribution Systems with Limited Real-Time Measurements

Jose Gómez de la Varga Joint work with S. Pineda, J. M. Morales and Á. Porras

$$h_{P_1} = V_1 V_2 \left(-g \cos(-\theta_2) + b \sin(-\theta_2) \right) + g V_1^2$$

$$h_{Q_1} = V_1 V_2 \left(-g \sin(-\theta_2) - b \cos(-\theta_2) \right) - b V_1^2$$

$$h_{P_2} = V_2 V_1 (-g \cos \theta_2 + b \sin \theta_2) + gV_2^2$$

$$h_{Q_2} = V_2 V_1 (-g \sin \theta_2 - b \cos \theta_2) - bV_2^2$$

Measurements
$$z = [P_1, Q_1, P_2, Q_2]^T$$

State Vector $x = [V_1, V_2, \theta_2]^T$

$$x = [V_1, V_2, \theta_2]^T$$

Weighted Least Squares

$$\hat{x} \in \arg\min_{x} (z - h(x))^{T} W(z - h(x))$$

$$W = diag\{\sigma_{1}^{-2}, \dots, \sigma_{m}^{-2}\}$$

In theory...

... but in practice

Heterogenous scan rates

Sensor failures

Communication errors or saturation

Malicious attacks

Electrical blackouts

Ugly truth

Unobservable in real time

Unobservable in real-time. Now what?

Pseudo-measurement Generation

 $\hat{P}_2, \hat{Q}_2 = f(P_1, Q_1)$

State Forecasting

 $\hat{V}_1, \hat{V}_2, \hat{\theta}_2 = g(P_1, Q_1)$

Pure Statistics! Both ignore Physics & Network

What if...?

Find Any $\tilde{V}_1, \tilde{V}_2, \tilde{\theta}_2$

such that
$$P_1 = \tilde{V}_1 \tilde{V}_2 \left(-g \cos\left(-\tilde{\theta}_2\right) + b \sin\left(-\tilde{\theta}_2\right) \right) + g \tilde{V}_1^2$$
$$Q_1 = \tilde{V}_1 \tilde{V}_2 \left(-g \sin\left(-\tilde{\theta}_2\right) - b \cos\left(-\tilde{\theta}_2\right) \right) - b \tilde{V}_1^2$$

$$\tilde{P}_2 = \tilde{V}_2 \tilde{V}_1 \left(-g \cos \tilde{\theta}_2 + b \sin \tilde{\theta}_2 \right) + g \tilde{V}_2^2$$

$$\tilde{Q}_2 = \tilde{V}_2 \tilde{V}_1 \left(-g \sin \tilde{\theta}_2 - b \cos \tilde{\theta}_2 \right) - b \tilde{V}_2^2$$

Connected through network parameters (losses)

Given
$$g,b,P_1,Q_1 \implies P_2$$
 Q_2

Pseudo-measurement Generation

Learn &

Generate

Pseudo-measurements

State estimation

State Forecasting

 $\hat{V}_1, \hat{V}_2, \hat{\theta}_2 = f(P_1, Q_1)$

$$\hat{P}_2, \hat{Q}_2 = f(P_1, Q_1)$$

Historical

data

New Features

$$\hat{P}_2, \hat{Q}_2 = f(P_1, Q_1, \tilde{P}_2, \tilde{Q}_2)$$

$$\hat{V}_1, \hat{V}_2, \hat{\theta}_2 = f(P_1, Q_1, \tilde{P}_2, \tilde{Q}_2)$$

Enhanced State Forecasting

Simulation setup

IEEE 33 Bus Test Case

33 nodes 37 lines

(1)

Operating conditions chosen randomly

$$V = (0.95, 1.05) p.u.$$

$$\theta = (-15, +15)^{\circ}$$

Measurements obtained adding a Gaussian noise

$$(V,\theta) \sim \mathcal{N}(0,0.001^2)$$

$$(P,Q) \sim \mathcal{N}(0,0.01^2)$$

a: 1 FTU + 15 SCADA + 5 PMU (V, P_f, Q_f) (P, Q) (V, θ)

d: 18 Smart Meters (P,Q)

$$m_a = 43$$

$$m_d = 36$$

$$n = 65 \left(\theta_1 = 0\right)$$

Learning functions f and g: Linear Regression

Training: 8 000 instances

Test: 2 000 instances

ACCURACY (RMSE) IN THE ESTIMATION OF THE STATE AND THE POWER VARIABLES

Method	V	θ	P	Q	P_f	Q_f
State Forecasting (SF)	0.021	0.086	22.03	32.84	14.53	21.56
Pseudo-measurements (PM)	0.085	0.097	21.79	32.76	15.87	22.24
Enhanced State Forecasting (SF*)	0.018	0.085	20.06	31.77	13.40	20.96
Enhanced pseudo-measurements (PM*)	0.041	0.087	19.94	31.59	13.48	20.97

- Enhanced versions improve all variables
- SF/SF* minimizes state error
- PM/PM* minimizes power error

ΔRMSE FOR VARYING VARIABILITY AND MEASUREMENT DATA

PM vs. PM*

Variability	# PMU	# SCADA	$\Delta \mathrm{RMSE}\left(V ight)$	$\Delta \mathrm{RMSE}\left(S_f ight)$
Low	5	15	0.015	0.065
Medium	5	15	0.044	0.729
High	5	15	0.070	1.957
Medium	15	5	0.002	0.070

- Improvement increases as variability rises
- Available measurements that connect multiple states (SCADA) work better

Takeaways... in a nutshell

Learning

Real-time observability

Available

Delayed

Unobservable SE

State Variability High Low

Measurements SCADA PMU

Improved Estimation Off-the-self

Learning-based State Estimation in Distribution Systems with Limited Real-Time Measurements

Jose Gómez de la Varga Joint work with S. Pineda, J. M. Morales and Á. Porras

