You may remove these pages from your test.

Constants

1 atm = 101.325 kPa = 1.01325 bar = 14.696 psi
$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$
 $e = 1.602 \times 10^{-19} \text{ C}$

$$1 \text{ eV} = 1.602 \text{ x } 10^{-19} \text{ J} \qquad \varepsilon_0 = 8.854 \times 10^{-12} \frac{\text{F}}{\text{m}} \qquad R = 8.314 \frac{J}{mol \cdot K} = 0.082067 \frac{L \cdot atm}{mol \cdot K}$$

$$T_{(K)} = T_{(^{\circ}C)} + 273.15$$
 $k = 8.62 \times 10^{-5} \frac{eV}{atom K}$ $k = 1.38 \times 10^{-23} \frac{J}{atom K}$ $F = 96486 \text{ C} \cdot \text{mol}^{-1}$

Microstructure

$$LD = {^{\#}/_{Length}} \quad LPF = \frac{length \ of \ atoms}{length \ of \ vector} \quad PD = {^{\#}/_{Area}} \quad PPF = \frac{area \ of \ atoms}{area \ of \ plane} \quad V = \frac{4}{3}\pi r^3$$

$$A = \pi r^2 \quad A_{\Delta} = \frac{1}{2}bh \qquad \rho = \frac{n \cdot A}{V_C \cdot N_A} \qquad \rho = \frac{m}{V} \qquad \rho = \frac{n_A A_A + n_C A_C}{V_C N_A} \qquad APF = \frac{V_S}{V_C}$$

$$N = \frac{N_A \rho}{A} \quad N_v = N \exp\left(-\frac{Q_v}{kT}\right) \qquad a = 2\sqrt{2}R \qquad a = \frac{4}{\sqrt{3}}R$$

Mechanical Behaviour

$$\sigma = \frac{F}{A} \quad \varepsilon = \frac{\Delta l}{l_o} \quad \sigma = E \varepsilon \quad \sigma_{3-point \ bend} = \frac{_{3FL}}{_{2w \cdot h^2}} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Electrical Behaviour

$$\sigma = n|e|\mu_e + h|e|\mu_h \qquad \sigma = n|e|\mu_e \qquad \sigma = h|e|\mu_h$$

Thermodynamics -

$$PV = nRT$$
 $\Delta U = q + w$ $\Delta U = q - P_{ext}\Delta V$ $H \equiv U + PV$ $G \equiv H - TS$ $\Delta S = \frac{q_{rev}}{T}$

For process at constant T: $\Delta G = \Delta H - T\Delta S$ $q = mc\Delta T = nC_p\Delta T$ $\Delta G = \Delta H - T\Delta S$

$$W_{phase} = \frac{length\ of\ opposite\ side\ of\ lever}{total\ length\ of\ lever}$$
 For $aA + bB \rightarrow cC + dD$, $Q = \frac{a_C^c \cdot a_D^d}{a_A^d \cdot a_B^d}$

 v_i : stoichiometric coefficient Assuming no phase change, constant C_p :

$$\Delta H_{reaction}^{\circ} = (\Sigma v_i \Delta H_{f,i}^{\circ})_{products} - (\Sigma v_i \Delta H_{f,i}^{\circ})_{reactants}$$

$$\Delta S_{reaction}^{\circ} = (\Sigma v_i \Delta S_{m,i}^{\circ})_{products} - (\Sigma v_i \Delta H_{m,i}^{\circ})_{reactants}$$

$$\Delta G_{reaction}^{\circ} = \Delta H_{reaction}^{\circ} - T \Delta S_{reaction}^{\circ} \qquad \qquad \Delta G_{reaction} = \Delta G^{\circ} + RT lnQ$$

$$\Delta G^{\circ} = -RTlnK$$

Electrochemistry

$$E = E^{\circ} - \frac{RT}{nF} lnQ$$
 $E = E^{\circ} - \frac{0.0592}{n} lnQ$, at 25°C $I = \frac{nC}{t}$ $w = nFE^{\circ}$

		9			33			φ			0			0			<u> </u>	l		
	0 2 4	4.0026	10	Ne	20.183	18	Ā	39.948	36	ᅐ	83.80	54	Xe	131.30	98	R	(222)			
		VIIA	6	ட	18.998	17	ರ	35.453	35	Br	79.91	53	-	126.90	98	Αŧ	(210)			
		VIA	œ	0	15.999	16	S	32.064	34	Se	78.96	52	Te	127.60	84	Ъ	(210)			
		۸	7	z	14.007	15	۵	30.974	33	As	74.922	51	Sb	121.75	83	Bi	208.98			
		IVA	9	O	12.011	14	S	28.086	32	Ge	72.59	20	Sn	118.69	82	Pb	207.19			
		HIA	2	В	10.811	13	A	26.982	31	Ga	69.72	49	드	114.82	81	F	204.37			
								IIB	30	Zn	65.37	48	Р	112.40	80	Η̈́	200.59			
	a			diate				IB	59	Cn	63.54	47	Ag	107.87	62	Au	196.97			
Metal	Nonmetal			Intermediate					28	ž	58.71	46	Pd	106.4	78	£	195.09			
							II/	}	27	ပိ	58.933	45	Rh	102.91	77	<u>-</u>	192.2			
	-				_				56	Fe	55.847	44	Ru	101.07	9/	Os	190.2			
	Atomic number		Atomic weight					VIIB	25	M	54.938	43	ည	(66)	75	Re	186.2			
	- Atomic		Atom					VIB	24	Ö	51.996	42	Мо	95.94	74	>	183.85			
	Key 29	63.54						۸B	23	>	50.942	41	QN	92.91	73	Та	180.95			
			•					IVB	22	F	47.90	40	Zr	91.22	72	Ŧ	178.49			
								IIIB	21	Sc	44.956	39	>	88.91	Rare	earth	series	Acti-	nide	series
		HA	4	Be	9.0122	12	M	24.312	20	Ca	40.08	38	S	87.62	99	Ba	137.34	88	Ra	(526)
	4 - I	1.0080	8	:_	6.939	11	Na	22.990	19	¥	39.102	37	Rb	85.47	55	Cs	132.91	87	Ŧ	(223)
																				_

	57	58	69	09	61	62	63	64	65	99	29	89	69	70	71
Rare earth series	Гa	Ce	Ā	PN	Pm	Sm	En	PS	Tp	ò	운	ъ	H	ΥÞ	'n
	138.91	140.12	140.91	144.24	(145)	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
	68	06	91	92	93	94	95	96	97	86	66	100	101	102	103
Actinide series	Ac	Ч	Pa	>	Np	Pu	Am	Cm	æ	Ç	Es	Fm	Md	%	Lw
	(227)	232.04	(231)	238.03	(237)	(242)	(243)	(247)	(247)	(249)	(254)	(253)	(256)	(254)	(257)

STANDARD FORMATION ENTHALPY, STANDARD ENTROPY AND STANDARD FORMATION GIBBS ENERGY AT 298.15 K

Species	$\Delta_f H^{\circ}$ [kJ/mol]	S° [J/mol·K]	$\Delta_{f} G^{oldsymbol{\circ}}$ [kJ/mol]
C (s, graphite)	0	5.74	0
CH ₄ (g)	-74.81	186.2	-50.75
$C_2H_2(g)$	-83.9	200.93	
C ₃ H ₈ (g)	-103.8	269.9	-23.49
CaC ₂ (s)	-59.8	70.3	
CaF ₂ (s)	-1225	68.87	-1162
CaF ₂ (I)	-1186	92.6	
Ca(OH) ₂ (s)	-987.0	83.0	
CO ₂ (g)	-393.5	213.6	-394.4
Cu ₂ O (s)	-168.6	93.1	
Cu ₂ O (I)	-154.79		
Cu (s)		33.2	
Fe (s)	0	27.3	0
Fe ₂ O ₃ (s)	-824.2	87.4	
$H_2(g)$		130.68	
$H_2O(g)$	-241.8	188.7	-228.6
$H_2O(I)$	-285.8	69	
$O_2(g)$	0	205.0	0

MISCELLANEOUS ENTHALPIES

Substance	Reaction	ΔH [kJ/mol]
F-F	Bond dissociation	157
F	Electron affinity	-328
	$F(g) \rightarrow F^{-}(g)$	
Ca	Second Ionization energy	1734
	Ca (g) \rightarrow Ca ²⁺ (g)	

SPECIFIC HEATS AND HEAT CAPACITIES

01 =01		A A OI I I E O
Substance	Specific Heat c [J/g·K]	Molar Heat Capacity C _p [J/mol·K]
CO ₂ (g)	0.843	37.1
Air (g)	1.0	
H ₂ O (g)	2.03	36.4
H ₂ O (I)	4.184	75.3
H ₂ O (s)	2.09	37.7

TEMPERATURES AND ENTHALPIES OF PHASE CHANGES

· · · · · · · · · · · · · · · · · · ·			O	· • • • • • • • • • • • • • • • • • • •
Substance	Melting Point [°C]	∆ _{fus} H° [kJ/mol]	Boiling Point [°C]	∆ _{vap} H° [kJ/mol]
Al	658	10.6	2467	284
Ca	851	9.33	1487	162
CH ₄	-182	0.92	-164	8.18
H_2O	0	6.01	100	40.7
Fe	1530	14.9	2735	354