# Old School vs. New School: Comparing Transition-Based Parsers with and without Neural Network Enhancement

MIRYAM DE LHONEUX, SARA STYMNE & JOAKIM NIVRE



TLT15, 20 January 2016

#### **Overview**

- Introduction
- Treebank Sampling
- **3** Comparing Parsing Accuracy
- 4 Impact of Training Size on Neural Network Parsing
- **5** Error Analysis
- **6** Conclusion



#### **Motivation**

- UD treebanks
  - are growing in number and size at a fast pace
  - make our models generalisable across languages and domains

#### **Motivation**

- UD treebanks
  - are growing in number and size at a fast pace
  - make our models generalisable across languages and domains
- Parsing models enhanced by neural networks
  - have seen a large boost in accuracy
  - are expensive to optimise

#### **Motivation**

- UD treebanks
  - are growing in number and size at a fast pace
  - make our models generalisable across languages and domains
- Parsing models enhanced by neural networks
  - have seen a large boost in accuracy
  - are expensive to optimise

#### Our proposal

Work on a small but representative sample of UD treebanks

#### **Motivation**

Straka et al. (2015) trained Parsito, a neural network parser for UD Limited comparison with MaltParser (Nivre et al., 2007).

#### **Motivation**

Straka et al. (2015) trained Parsito, a neural network parser for UD Limited comparison with MaltParser (Nivre et al., 2007).

#### This Work

Carry out a comparison of the 2 on a small sample



#### Selection criteria

• typological variety:

- typological variety:
  - 8 different fine-grained and 5 coarse-grained families

- typological variety:
  - 8 different fine-grained and 5 coarse-grained families
  - isolating, morphologically-rich and inflecting languages

- typological variety:
  - 8 different fine-grained and 5 coarse-grained families
  - isolating, morphologically-rich and inflecting languages
  - non-projectivity

- typological variety:
  - 8 different fine-grained and 5 coarse-grained families
  - isolating, morphologically-rich and inflecting languages
  - non-projectivity
- variety in treebanks sizes and domains

- typological variety:
  - 8 different fine-grained and 5 coarse-grained families
  - isolating, morphologically-rich and inflecting languages
  - non-projectivity
- variety in treebanks sizes and domains
- availability of morphological features

- typological variety:
  - 8 different fine-grained and 5 coarse-grained families
  - isolating, morphologically-rich and inflecting languages
  - non-projectivity
- variety in treebanks sizes and domains
- availability of morphological features
- quality of the treebank (according to UD validation tests)

| language               | coarse       | fine         | main argument for inclusion |
|------------------------|--------------|--------------|-----------------------------|
| Czech                  | indo-eur     | balto-slavic | largest UD treebank         |
| Chinese                | sino-tibetan | sinitic      | isolating language          |
| Finnish                | uralo-altaic | finno-ungric | many different domains      |
| English                | indo-eur     | germanic     | largest + full manual check |
| ${\sf AncientGreekPR}$ | indo-eur     | hellenic     | amount of non-projectivity  |
| Kazakh                 | uralo-altaic | turkic       | smallest; full manual check |
| Tamil                  | dravidian    | tamil        | small; language family      |
| Hebrew                 | afro-asiatic | semitic      | language family             |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

| language               | coarse       | fine         | main argument for inclusion |
|------------------------|--------------|--------------|-----------------------------|
| Czech                  | indo-eur     | balto-slavic | largest UD treebank         |
| Chinese                | sino-tibetan | sinitic      | isolating language          |
| Finnish                | uralo-altaic | finno-ungric | many different domains      |
| English                | indo-eur     | germanic     | largest + full manual check |
| ${\sf AncientGreekPR}$ | indo-eur     | hellenic     | amount of non-projectivity  |
| Kazakh                 | uralo-altaic | turkic       | smallest; full manual check |
| Tamil                  | dravidian    | tamil        | small; language family      |
| Hebrew                 | afro-asiatic | semitic      | language family             |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

| language               | coarse       | fine         | main argument for inclusion |
|------------------------|--------------|--------------|-----------------------------|
| Czech                  | indo-eur     | balto-slavic | largest UD treebank         |
| Chinese                | sino-tibetan | sinitic      | isolating language          |
| Finnish                | uralo-altaic | finno-ungric | many different domains      |
| English                | indo-eur     | germanic     | largest + full manual check |
| ${\sf AncientGreekPR}$ | indo-eur     | hellenic     | amount of non-projectivity  |
| Kazakh                 | uralo-altaic | turkic       | smallest; full manual check |
| Tamil                  | dravidian    | tamil        | small; language family      |
| Hebrew                 | afro-asiatic | semitic      | language family             |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

| language       | coarse       | fine         | main argument for inclusion |
|----------------|--------------|--------------|-----------------------------|
| Czech          | indo-eur     | balto-slavic | largest UD treebank         |
| Chinese        | sino-tibetan | sinitic      | isolating language          |
| Finnish        | uralo-altaic | finno-ungric | many different domains      |
| English        | indo-eur     | germanic     | largest + full manual check |
| AncientGreekPR | indo-eur     | hellenic     | amount of non-projectivity  |
| Kazakh         | uralo-altaic | turkic       | smallest; full manual check |
| Tamil          | dravidian    | tamil        | small; language family      |
| Hebrew         | afro-asiatic | semitic      | language family             |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

| language               | coarse       | fine         | main argument for inclusion |
|------------------------|--------------|--------------|-----------------------------|
| Czech                  | indo-eur     | balto-slavic | largest UD treebank         |
| Chinese                | sino-tibetan | sinitic      | isolating language          |
| Finnish                | uralo-altaic | finno-ungric | many different domains      |
| English                | indo-eur     | germanic     | largest + full manual check |
| ${\sf AncientGreekPR}$ | indo-eur     | hellenic     | amount of non-projectivity  |
| Kazakh                 | uralo-altaic | turkic       | smallest; full manual check |
| Tamil                  | dravidian    | tamil        | small; language family      |
| Hebrew                 | afro-asiatic | semitic      | language family             |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

| coarse       | fine                                                                                            | main argument for inclusion                                                                                                                    |
|--------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| indo-eur     | balto-slavic                                                                                    | largest UD treebank                                                                                                                            |
| sino-tibetan | sinitic                                                                                         | isolating language                                                                                                                             |
| uralo-altaic | finno-ungric                                                                                    | many different domains                                                                                                                         |
| indo-eur     | germanic                                                                                        | largest + full manual check                                                                                                                    |
| Rindo-eur    | hellenic                                                                                        | amount of non-projectivity                                                                                                                     |
| uralo-altaic | turkic                                                                                          | smallest; full manual check                                                                                                                    |
| dravidian    | tamil                                                                                           | small; language family                                                                                                                         |
| afro-asiatic | semitic                                                                                         | language family                                                                                                                                |
|              | indo-eur<br>sino-tibetan<br>uralo-altaic<br>indo-eur<br>PRindo-eur<br>uralo-altaic<br>dravidian | indo-eur balto-slavic sino-tibetan sinitic uralo-altaic finno-ungric indo-eur germanic PRindo-eur hellenic uralo-altaic turkic dravidian tamil |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

| language               | coarse       | fine         | main argument for inclusion |
|------------------------|--------------|--------------|-----------------------------|
| Czech                  | indo-eur     | balto-slavic | largest UD treebank         |
| Chinese                | sino-tibetan | sinitic      | isolating language          |
| Finnish                | uralo-altaic | finno-ungric | many different domains      |
| English                | indo-eur     | germanic     | largest + full manual check |
| ${\sf AncientGreekPR}$ | indo-eur     | hellenic     | amount of non-projectivity  |
| Kazakh                 | uralo-altaic | turkic       | smallest; full manual check |
| Tamil                  | dravidian    | tamil        | small; language family      |
| Hebrew                 | afro-asiatic | semitic      | language family             |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

| language               | coarse       | fine         | main argument for inclusion |
|------------------------|--------------|--------------|-----------------------------|
| Czech                  | indo-eur     | balto-slavic | largest UD treebank         |
| Chinese                | sino-tibetan | sinitic      | isolating language          |
| Finnish                | uralo-altaic | finno-ungric | many different domains      |
| English                | indo-eur     | germanic     | largest + full manual check |
| ${\sf AncientGreekPR}$ | indo-eur     | hellenic     | amount of non-projectivity  |
| Kazakh                 | uralo-altaic | turkic       | smallest; full manual check |
| Tamil                  | dravidian    | tamil        | small; language family      |
| Hebrew                 | afro-asiatic | semitic      | language family             |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

| language               | coarse       | fine         | main argument for inclusion |
|------------------------|--------------|--------------|-----------------------------|
| Czech                  | indo-eur     | balto-slavic | largest UD treebank         |
| Chinese                | sino-tibetan | sinitic      | isolating language          |
| Finnish                | uralo-altaic | finno-ungric | many different domains      |
| English                | indo-eur     | germanic     | largest + full manual check |
| ${\sf AncientGreekPR}$ | indo-eur     | hellenic     | amount of non-projectivity  |
| Kazakh                 | uralo-altaic | turkic       | smallest; full manual check |
| Tamil                  | dravidian    | tamil        | small; language family      |
| Hebrew                 | afro-asiatic | semitic      | language family             |

 $\textbf{Table 1}: \ \mathsf{Treebank} \ \mathsf{Sample}$ 

UDPipe (Straka et al., 2016):

- Pretrained models
- Optimised using UDPipe's random hyperparameter search

#### UDPipe (Straka et al., 2016) :

- Pretrained models
- Optimised using UDPipe's random hyperparameter search

#### MaltParser:

- Arc-standard swap system with lazy oracle
- Feature model optimised with MaltOptimizer (Ballesteros and Nivre, 2016).

UDPipe (Straka et al., 2016) :

- Pretrained models
- Optimised using UDPipe's random hyperparameter search

#### MaltParser:

- Arc-standard swap system with lazy oracle
- Feature model optimised with MaltOptimizer (Ballesteros and Nivre, 2016).

UDPipe used for tagging POS and morphological features

UDPipe (Straka et al., 2016) :

- Pretrained models
- Optimised using UDPipe's random hyperparameter search

#### MaltParser:

- Arc-standard swap system with lazy oracle
- Feature model optimised with MaltOptimizer (Ballesteros and Nivre, 2016).

UDPipe used for tagging POS and morphological features

SyntaxNet (Andor et al., 2016):

reported results





# Impact of Training Size on Neural Network Parsing

Learning curve experiment:

### Learning curve experiment:

MaltParser: arc-standard swap with lazy oracle and extended

feature model

UDPipe: arc-standard swap with lazy oracle and default

hyperparameters

#### Learning curve experiment:

MaltParser: arc-standard swap with lazy oracle and extended

feature model

UDPipe: arc-standard swap with lazy oracle and default

hyperparameters

Splits: 1K to max with 50K splits zoom on small data sizes: 1K to 15K

#### Expectation



Training size

### Reality





udpipe



udpipemaltparser



## **Error Analysis**



## **Error Analysis**

 Inspired by McDonald and Nivre (2007): comparison of the accuracy of 2 parsers on a variety of graph and linguistics factors

## **Error Analysis**

- Inspired by McDonald and Nivre (2007): comparison of the accuracy of 2 parsers on a variety of graph and linguistics factors
- ullet Concatenating 9K of all development sets + all development set for Kazakh and Tamil

## **Error Analysis: Relation Length**



## **Error Analysis: Sentence Length**











# **Error Analysis: POS tags**



# **Error Analysis: POS tags**



# **Error Analysis: POS tags**





### Conclusion

• UDPipe outperforms MaltParser with large training size

#### **Conclusion**

- UDPipe outperforms MaltParser with large training size
- The learning curve of UDPipe is steeper than MaltParser

#### **Conclusion**

- UDPipe outperforms MaltParser with large training size
- The learning curve of UDPipe is steeper than MaltParser
- But flattens out in the same way as MaltParser

#### **Conclusion**

- UDPipe outperforms MaltParser with large training size
- The learning curve of UDPipe is steeper than MaltParser
- But flattens out in the same way as MaltParser
- MaltParser suffers more than UDPipe from longer sentences/dependencies

#### **Conclusion**

- UDPipe outperforms MaltParser with large training size
- The learning curve of UDPipe is steeper than MaltParser
- But flattens out in the same way as MaltParser
- MaltParser suffers more than UDPipe from longer sentences/dependencies

#### **Future Work**

#### **Conclusion**

- UDPipe outperforms MaltParser with large training size
- The learning curve of UDPipe is steeper than MaltParser
- But flattens out in the same way as MaltParser
- MaltParser suffers more than UDPipe from longer sentences/dependencies

#### **Future Work**

• Effect of beam search

#### Conclusion

- UDPipe outperforms MaltParser with large training size
- The learning curve of UDPipe is steeper than MaltParser
- But flattens out in the same way as MaltParser
- MaltParser suffers more than UDPipe from longer sentences/dependencies

#### **Future Work**

- Effect of beam search
- More fine-grained error analysis

### References

- Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized transition-based neural networks. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.
- Miguel Ballesteros and Joakim Nivre. 2016. MaltOptimizer: Fast and effective parser optimization. *Natural Language Engineering* 22(2):187–213.
- Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency parsing models. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). pages 122–131.
- Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülşen Eryiğit, Sandra Kübler, Svetoslav Marinov, and Erwin Marsi. 2007. MaltParser: A language-independent system for data-driven dependency parsing. Natural Language Engineering 13(2):95–135.
- Milan Straka, Jan Hajič, and Straková. 2016. UDPipe: trainable pipeline for processing CoNLL-U files performing tokenization, morphological analysis, pos tagging and parsing. In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)*. European Language Resources Association (ELRA). Paris. France.
- Milan Straka, Jan Hajič, Jana Straková, and Jan Hajič jr. 2015. Parsing universal dependency treebanks using neural networks and search-based oracle. In *Proceedings of Fourteenth International Workshop on Treebanks and Linguistic Theories (TLT14)*.