2) For each of the following conditions, determine the position of E_{Fi} , compute $E_F - E_{Fi}$, and draw a carefully dimensioned energy band diagram (for instance, use graph paper) for the Si sample. Assume temperature independence for effective mass and use m_p^* = $0.81m_0$ and $m_n^* = 1.18m_0$. NOTE: E_g (Si) = 1.08 eV at 450 K and 1.015 eV at 650 K. (20) points)

a) T = 300 K,
$$N_a \ll N_d$$
, $N_d = 10^{15}$ cm⁻³

b) T = 300 K,
$$N_a = 10^{16}$$
 cm⁻³, $N_d << N_a$

a) T = 300 K,
$$N_a << N_d$$
, $N_d = 10^{15}$ cm⁻³
b) T = 300 K, $N_a = 10^{16}$ cm⁻³, $N_d << N_a$
c) T = 300 K, $N_a = 9 \times 10^{15}$ cm⁻³, $N_d = 10^{16}$ cm⁻³
d) T = 450 K, $N_a = 0$, $N_d = 10^{14}$ cm⁻³

d) T = 450 K,
$$N_a = 0$$
, $N_d = 10^{14}$ cm⁻³

e) T = 650 K,
$$N_a = 0$$
, $N_d = 10^{14}$ cm⁻³

- 3) E-Book, problem 4.17 (9 points)
- **4.17** Silicon at T = 300 K is doped with arsenic atoms such that the concentration of electrons is $n_0 = 7 \times 10^{15}$ cm⁻³. (a) Find $E_c E_F$. (b) Determine $E_F E_v$. (c) Calculate p_0 . (d) Which carrier is the minority carrier? (e) Find $E_F E_{Fi}$.