

Introduction to the Project

The goal is to uncover insights that contribute to drug safety and pharmacovigilance by identifying relationships between health variables.

The analysis is performed using Python, a versatile language used extensively in data analysis and signal detection in the pharmaceutical industry.

Importing Required Libraries & reading file

Libraries for Data Analysis

```
Pandas: For data manipulation and cleaning.

Matplotlib & Seaborn: For data visualization.

Numpy: For numerical operations.
```

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_csv('Drug safety and pharmacovigilance.csv')

Reading the CSV File:

- The dataset is read using pd.read_csv() to load it into a Pandas DataFrame.
- This step allows you to begin working with the data and apply various analyses.

Dataset Overview

```
print(data.head())
print(data.tail())
print(f"Dataset shape: {data.shape}")
print(data.info())
print(data.isnull().sum()) # Check for missing values
print(data.describe())
               BP Cholesterol Na_to_K
   Age Sex
                                          Drug
                          HIGH
                                 25.355
              HIGH
                                        DrugY
              LOW
                          HIGH
                                13.093
                                         drugC
              LOW
                          HIGH
                                 10.114
                                        drugC
            NORMAL
                          HIGH
                                 7.798
                                         drugX
               LOW
                          HIGH
                                 18.043
                                        DrugY
                  BP Cholesterol
                                 Na_to_K
     Age Sex
                 LOW
                                  11.567
                            HIGH
                            HIGH
```

HIGH

NORMAL

NORMAL

9.894

11.349 drugX

drugX

drugX

Dataset shape: (200, 6)

198

M NORMAL

NORMAL

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

LOW

# Column Non-Nu	ill Count Dtype
0 Age 200 no	n-null int64
1 Sex 200 no	n-null object
2 BP 200 no	n-null object
3 Cholesterol 200 no	n-null object
4 Na_to_K 200 no	n-null float64
5 Drug 200 no	n-null object
<pre>dtypes: float64(1), int64(1), object(4)</pre>	
memory usage: 9.5+ KB	
None	
Age 0	
Sex 0	
BP 0	
Cholesterol 0	
Na_to_K 0	
Drug 0	
dtype: int64	
Age Na	_to_K
count 200.000000 200.0	00000
mean 44.315000 16.0	84485
std 16.544315 7.2	23956
min 15.000000 6.2	69000
25% 31.000000 10.4	45500
50% 45.000000 13.9	36500

19.380000

Dataset Description:

- The dataset contains 200 rows and 6 columns.
- Columns include: Age, Sex, BP (Blood Pressure), Cholesterol, Na_to_K (Sodium-to-Potassium ratio), and Drug.
 - data.tail(): Displays the last few rows of the dataset for a quick
 preview.
 - data.shape: Provides the dimensions of the dataset (200 rows, 6 columns).
 - data.info(): Displays
 information about the data
 types and missing values.
 - data.describe(): Shows summary statistics of numerical columns.

Data Cleaning and Handling Missing Value

- Checking for Missing Values:
- We use data.isnull().sum()
 to check for any missing
 values.

```
print(data.isnull().sum()) # Check for missing values

Age     0
Sex     0
BP     0
Cholesterol     0
Na_to_K     0
Drug     0
dtype: int64
```

- Handling Missing Data:
 - Missing or NaN values were identified in some columns like Cholesterol.
 - We can choose to either fill or remove the rows with missing values.

Age Distribution:

• A histogram was plotted to understand the distribution of the Age variable.

The histogram shows the distribution of age in the dataset, allowing us to identify the most common age ranges.

Data Visualization - Distribution of Age

```
# Age distribution
plt.figure(figsize=(5,2))
sns.histplot(df['Age'], kde=True, bins=10)
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
```


Blood Pressure (BP) Categories

Understanding BP Categories:

- The BP column indicates the blood pressure categories: HIGH, NORMAL, and LOW.
- A countplot was used to visualize the distribution of patients across these categories.

• This countplot shows how many patients fall into each blood pressure category, providing insights into the data distribution.

```
In [74]: # Plot blood pressure categories
    plt.figure(figsize=(5,3))
    sns.countplot(x='BP', data=data)
    plt.title('Blood Pressure Categories Distribution')
    plt.xlabel('Blood Pressure Category')
    plt.ylabel('Count')
    plt.show()
Blood Pressure Categories Distribution
```


Boxplots to Analyze Distribution by Sex (Na to Potassium Ratio)

Na to Potassium Ratio by Sex:

This boxplot examines how the Na to Potassium ratio differs between males and females in the dataset.

Plot Details:

- X-axis: Gender (Sex)
- Y-axis: Na to Potassium Ratio (Ratio of Sodium to Potassium levels)
- Key Insights:
- The boxplot displays the distribution of the Na to Potassium ratio for both males and females, showing the median, interquartile range (IQR), and potential outliers.
- This can help detect any gender-based differences in the sodium-to-potassium balance, which may be useful in pharmacovigilance for understanding how gender influences drug safety outcomes.

```
# Sex distribution
plt.figure(figsize=(4,3))
sns.countplot(x='Sex', data=df)
plt.title('Sex Distribution')
plt.xlabel('Sex')
plt.ylabel('Count')
plt.show()
```


Correlation Analysis

```
n [81]: # Calculate the correlation matrix using the correct column names
    corr_matrix = df[['Age', 'Cholesterol', 'Na_to_K']].corr()

plt.figure(figsize=(5,2))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
    plt.title('Correlation Matrix')
    plt.show()
```


Correlation Matrix:

A correlation matrix was plotted to see the relationships between age, cholesterol, and sodium-to-potassium ratio.

The heatmap helps us understand how strongly the numerical variables are correlated with each other, which is essential for identifying potential factors impacting drug safety.

Scatter Plot - Na/K Ratio vs Age

Scatter Plot:

A scatter plot was created to check the relationship between the sodium-to-potassium ratio and age.

This scatter plot helps visualize the relationship between age and sodiumto-potassium ratio, indicating if there's any noticeable trend or outliers.

In [54]: df.plot.scatter(x='Na_to_K',y='Age') # to check variable scatter with respect to other variable
Out[54]: <AxesSubplot:xlabel='Na_to_K', ylabel='Age'>

Conclusion

Key Findings:

- The dataset provides important insights into cholesterol levels, blood pressure, and sodium-to-potassium ratio across different age groups and sexes.
- Visualizations such as histograms, boxplots, and scatter plots have been effective in understanding the distribution and relationships between variables.
- These insights can contribute to further analysis in drug safety and pharmacovigilance by identifying potential risk factors.

