CS5339 Machine Learning Linear Algebra Background

Lee Wee Sun School of Computing National University of Singapore leews@comp.nus.edu.sg

Semester 2, 2019/20

Linear Algebra

We will go through linear algebra background that is useful for the course.

Outline

- Basic Definitions
- 2 Eigenvalues and Eigenvectors
- Positive Definite Matrices
- 4 Singular Value Decomposition

ore Deminitions

ullet The inner product of two d dimensional vectors ${f u},{f v}\in\mathbb{R}^d$ is

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^d u_i v_i.$$

- We also denote the inner product as u^Tv or u · v.
- We also have $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$ where θ is the angle between \mathbf{u} and \mathbf{v} .

Norms

- The Euclidean norm (ℓ_2 norm) is $\|\mathbf{u}\|_2 = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$.
- The ℓ_1 norm is $\|\mathbf{u}\|_1 = \sum_{i=1}^d |u_i|$.
- The ℓ_{∞} norm is $\|\mathbf{u}\|_{\infty} = \max_{i} |u_{i}|$.
- When the subscript is not used, we refer to the Euclidean norm.

• The span of a set of vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ is a subspace containing all vectors $\sum_{i=1}^{k} \alpha_i \mathbf{u}_i$, where $\alpha_i \in \mathbb{R}$.

- If *U* is linearly independent, then $\sum_i a_i \mathbf{u}_i = 0$ implies $a_i = 0$ for i = 1, ..., k.
- We say U is a basis of a subspace V if it is linearly independent and spans V.
- The dimension of V is the size of a basis of V.
- We call U orthogonal if $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 0$ for $i \neq j$.
- In addition, U is orthonormal if $\|\mathbf{u}_i\| = 1$ for all i.

- $U^TU = I$ where I is the identity matrix, diagonal with 1's on the diagonal: this is because $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ if $i \neq j$ and equals 1 otherwise.
- If U is square, then $U^T = U^{-1}$.
- Multiplication by U preserves distances: $||U\mathbf{x}||^2 = \langle U\mathbf{x}, U\mathbf{x} \rangle = \mathbf{x}^T U^T U\mathbf{x} = ||\mathbf{x}||^2$

Singular Value Decomposition

- The range is the span of its column, $y = A\mathbf{u}$.
- The null space is all the vectors \mathbf{v} satisfying $A\mathbf{v} = 0$.
- The rank of A is the dimension of its range.
- The transpose A^T is the matrix whose entry (i, j) equals the entry (i, i) of A. A is symmetric if $A^T = A$.

Outline

- Basic Definitions
- 2 Eigenvalues and Eigenvectors
- Positive Definite Matrices
- 4 Singular Value Decomposition

Eigenvalues and Eigenvectors

- For a matrix $A \in \mathbb{R}^{d,d}$, a non-zero vector \mathbf{u} is an eigenvector with eigenvalue λ if $A\mathbf{u} = \lambda \mathbf{u}$.
- Example [1]: Consider the matrix

$$S = \begin{pmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• The matrix has rank 3. The 3 non-zero eigenvalues are $\lambda_1=30,\ \lambda_2=20,\$ and $\lambda_3=10.$ The corresponding eigenvectors are

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{x}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

• Consider a vector $\mathbf{v} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$. We can always write \mathbf{v} as a linear combination of the eigenvectors of S.

$$\mathbf{v} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} = 2\mathbf{x}_1 + 4\mathbf{x}_2 + 6\mathbf{x}_3.$$

• If we multiply \mathbf{v} by S,

$$S\mathbf{v} = S(2\mathbf{x}_1 + 4\mathbf{x}_2 + 6\mathbf{x}_3)$$

= $2S\mathbf{x}_1 + 4S\mathbf{x}_2 + 6S\mathbf{x}_3$
= $2\lambda_1\mathbf{x}_1 + 4\lambda_2\mathbf{x}_2 + 6\lambda_3\mathbf{x}_3$
= $60\mathbf{x}_1 + 80\mathbf{x}_2 + 6\mathbf{x}_3$.

Some observations:

- Since x_i is an eigenvector, the output direction after multiplying by S is unchange: $S\mathbf{x}_i = \lambda_i \mathbf{x}_i$.
- But the magnitude is changed, by the factor λ_i .
- If λ_i is small, the output in the direction \mathbf{x}_i is small. If we set it to zero, the resulting vector would still be a good approximation to the original vector.

- **Theorem 1:** (SSBD Theorem C.1 (Spectral Decomposition)) If $A \in \mathbb{R}^{d,d}$ is a symmetric matrix of rank k, then there exists an orthonormal basis of \mathbb{R}^d , $\mathbf{u}_1, \dots, \mathbf{u}_d$, such that each \mathbf{u}_i is an eigenvector of A.
 - A can be written as $A = \sum_{i=1}^{d} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$, where each λ_i is the eigenvalue corresponding to the eigenvector \mathbf{u}_i .
 - This can be written equivalently as $A = U\Sigma U^T$, where the columns of U are the vectors $\mathbf{u}_1, \dots, \mathbf{u}_d$, and Σ is a diagonal matrix with $\Sigma_{i,i} = \lambda_i$.

- Continued ...
 - The number of λ_i which are nonzero is the rank of the matrix.
 - The eigenvectors which correspond to the nonzero eigenvalues span the range of A.
 - The eigenvectors which correspond to zero eigenvalues span the null space of *A*.

Outline

- Basic Definitions
- 2 Eigenvalues and Eigenvectors
- Positive Definite Matrices
- 4 Singular Value Decomposition

Positive Definite Matrices

- A symmetric matrix $A \in \mathbb{R}^{d,d}$ is positive definite if all its eigenvalues are positive. It is positive semidefinite if all its eigenvalues are non-negative.
- **Theorem 2:** (SSBD Theorem C.2) Let $A \in \mathbb{R}^{d,d}$ be a symmetric matrix. Then, the following are equivalent definitions of positive semidefiniteness of A:
 - All the eigenvalues of A are nonnegative.
 - For every vector \mathbf{u} , $\langle \mathbf{u}, A\mathbf{u} \rangle \geq 0$.
 - There exists a matrix B such that $A = BB^T$.

Outline

- Basic Definitions
- 2 Eigenvalues and Eigenvectors
- 3 Positive Definite Matrices
- 4 Singular Value Decomposition

Singular Value Decomposition

Basic Definitions

- Let $A \in \mathbb{R}^{m,d}$ be a matrix of rank r.
- Unit vectors $\mathbf{v} \in \mathbb{R}^d$ and $\mathbf{u} \in \mathbb{R}^m$ are called the right and left singular vectors of A with corresponding singular value $\sigma > 0$ if

$$A\mathbf{v} = \sigma \mathbf{u} \text{ and } A^T \mathbf{u} = \sigma \mathbf{v}.$$

• First we show that if we can find r orthonormal singular vectors with positive singular values, then we can decompose $A = U\Sigma V^T$ with U containing the left singular vectors, V the right singular vectors, and Σ is a $r \times r$ diagonal matrix with the singular values in the diagonal.

Lemma 3: (SSBD Lemma C.3) Let $A \in \mathbb{R}^{m,d}$ be a matrix of rank r. Assume that $\mathbf{v}_1, \ldots, \mathbf{v}_r$ is an orthonormal set of right singular vectors of A, $\mathbf{u}_1, \ldots, \mathbf{u}_r$ is an orthonormal set of corresponding left singular vectors of A, and $\sigma_1, \ldots, \sigma_r$ are the corresponding singular values. Then,

$$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T.$$

It follows that if U is a matrix whose columns are the \mathbf{u}_i 's, V is a matrix whose columns are the \mathbf{v}_i 's, and Σ is a diagonal matrix with $\Sigma_{i,i} = \sigma_i$, then

$$A = U\Sigma V^T$$
.

- From $A^T \mathbf{u} = \sigma \mathbf{v}$, any right singular vector of A must be in the range of A^T .
- Therefore $\mathbf{v}_1, \dots, \mathbf{v}_r$ is an orthonormal basis for the range of A^T .
- Complete it into an orthonormal basis of \mathbb{R}^d by adding the vectors $\mathbf{v}_{r+1}, \dots, \mathbf{v}_d$.
 - Note that these v's are orthogonal to the columns of A^T (rows of A).

- If j > r, $A\mathbf{v}_i = 0$ as \mathbf{v}_i is orthogonal to the rows of A. Similarly $B\mathbf{v}_i = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{v}_i = 0$ due to the orthogonality of \mathbf{v}_i with \mathbf{v}_i .
- For *i* < *r*

$$B\mathbf{v}_j = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{v}_j = \sigma_j \mathbf{u}_j = A\mathbf{v}_j$$

from the definition of left and right singular vectors.

Lemma 4: (SSBD Lemma C.4) \mathbf{v} , \mathbf{u} are right and left singular vectors of A with singular value σ iff \mathbf{v} is an eigenvector of A^TA with corresponding eigenvalue σ^2 and $\mathbf{u} = \sigma^{-1}A\mathbf{v}$ is an eigenvector of AA^T with corresponding eigenvalue σ^2

• Suppose σ is a singular value of A with right and left singular values \mathbf{v} and \mathbf{u} . Then

$$A^T A \mathbf{v} = \sigma A^T \mathbf{u} = \sigma^2 \mathbf{v},$$

and

$$AA^T\mathbf{u} = \sigma A\mathbf{v} = \sigma^2\mathbf{u}.$$

- For the other direction, if $\lambda \neq 0$ is an eigenvalue of A^TA with corresponding eigenvector \mathbf{v} then $\lambda > 0$ because A^TA is positive semidefinite.
- Let $\sigma = \sqrt{\lambda}$. We first show that $\mathbf{u} = \sigma^{-1}A\mathbf{v}$ is the corresponding eigenvector for AA^T .

$$AA^T\mathbf{u} = AA^TA\mathbf{v}/\sigma = A\sigma^2\mathbf{v}/\sigma = \sigma^2\mathbf{u}.$$

Hence

Basic Definitions

$$A\mathbf{v} = \sigma \mathbf{u},$$

and

$$A^{T}\mathbf{u} = \frac{1}{\sigma}A^{T}A\mathbf{v} = \frac{\sigma^{2}}{\sigma}\mathbf{v} = \sigma\mathbf{v}.$$

We can now use SSBD Lemma C.4 to prove that a matrix A always has decomposition $A = U\Sigma V^T$.

Corollary 5: (SSBD Corollary C.6 (The SVD theorem)) Let $A \in \mathbb{R}^{m,d}$ with rank r. Then $A = U\Sigma V^T$ where Σ is an $r \times r$ matrix with nonzero singular values of A and the columns of U, V are orthonormal left and right singular vectors of A. Furthermore, for all i, $\Sigma_{i,i}^2$ is an eigenvalue of A^TA , the i-th column of V is the corresponding eigenvector of A^TA and the i-th column of U is the corresponding eigenvector of AA^T .

- We will argue that the rank of A^TA is r when the rank of A is r later.
- Given that A^TA is a symmetric positive semidefinite matrix with rank r, SSBD Theorem C.2 states that there is a decomposition $A^TA = V\Sigma V^T$ with r nonzero (positive) eigenvalues of A^TA corresponding to r eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ of A^TA .
- Using SSBD Lemma C.4, we find that $\mathbf{u}_1, \dots, \mathbf{u}_r$ and $\mathbf{v}_1, \dots, \mathbf{v}_r$ are left and right singular vectors corresponding to singular values $\sigma_1, \dots, \sigma_r$.
- Applying SSBD Lemma C.3 completes the proof.

- We now argue that the rank of A^TA is the same as the rank of A.
 - Let x be in the null space of A. This means that Ax = 0implying that $A^T A \mathbf{x} = 0$. So the null space of A is a subset of the null space of A^TA .
 - Now, let x be in the null space of A^TA . This means that $A^T A \mathbf{x} = 0$ which implies that $\mathbf{x}^T A^T A \mathbf{x} = 0$ or $||A \mathbf{x}||^2 = 0$. So Ax must equal 0, implying that the null space of A^TA is a subset of the null space of A.

We now consider approximating the matrix. The Frobenius norm of a matrix A is defined as

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^d a_{ij}^2}.$$

 $\sigma_1 > \sigma_2 > \dots, \sigma_r$, then

$$\begin{aligned} \mathbf{v}_1 &= \mathrm{argmax}_{\mathbf{v} \in \mathbb{R}^n : \|\mathbf{v}\| = 1} \|A\mathbf{v}\| \\ \mathbf{v}_2 &= \mathrm{argmax}_{\mathbf{v} \in \mathbb{R}^n : \|\mathbf{v}\| = 1, \langle \mathbf{v}, \mathbf{v}_1 \rangle = 0} \|A\mathbf{v}\| \\ &\vdots \\ \mathbf{v}_r &= \mathrm{argmax}_{\mathbf{v} \in \mathbb{R}^n : \|\mathbf{v}\| = 1, \forall i < r, \langle \mathbf{v}, \mathbf{v}_i \rangle = 0} \|A\mathbf{v}\|. \end{aligned}$$

Proof:

- ullet Let $V \in \mathbb{R}^{d,r}$ be the matrix of right singular vectors corresponding to $\sigma_1 > \sigma_2 > \dots, \sigma_r$.
- ullet It suffices to consider vectors $oldsymbol{v}$ in the span of the columns of V: any component v' orthogonal to V has $Av' = IJ\Sigma V^T v' = 0$. We can hence write $\mathbf{v} = V\mathbf{x}$.
- From the orthonormality of U and V

$$||A\mathbf{v}||^2 = ||AV\mathbf{x}||^2 = ||U\Sigma V^T V\mathbf{x}||^2 = ||U\Sigma \mathbf{x}||^2$$

= $||\Sigma \mathbf{x}||^2 = \sum_{i=1}^n \sigma_i^2 x_i^2$.

Note that $\|\mathbf{x}\| = 1$ as $\|\mathbf{v}\| = 1$. Furthermore, $\langle \mathbf{v}_i, \mathbf{v} \rangle = 0$ corresponds to $x_i = 0$. When $\|\mathbf{v}\| = 1$, maximizing $\|A\mathbf{v}\|^2$ subject to $\langle \mathbf{v}_i, \mathbf{v} \rangle = 0 \ \forall j < i \ \text{gives} \ \mathbf{x} = e_i$, the unit vector with 1 in position i and zero elsewhere. This implies that the solution is the *i*-th singular vector of A.

Lemma 7: Given a rank r matrix A and an orthonormal set of r vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ that span the rows of A, the Frobenius norm of A satisfies $\|A\|_F^2 = \sum_{j=1}^r \|A\mathbf{v}_i\|^2$. Furthermore, if $A = A_1 + A_2$ with $\mathbf{v}_1, \ldots, \mathbf{v}_k$ spanning the rows of A_1 and $\mathbf{v}_{k+1}, \ldots, \mathbf{v}_r$ spanning the rows of A_2 , for k < r, then $\|A_1 + A_2\|_F^2 = \|A_1\|_F^2 + \|A_2\|_F^2$. If the orthonormal set is the set of singular vectors, then $\|A\mathbf{v}_i\|^2 = \sigma_i^2$, where $\sigma_1, \ldots, \sigma_r$ are the singular values.

- Assume that the matrix $A \in \mathbb{R}^{m,d}$ represents m data points in d dimension where each point i, \mathbf{a}_i is represented as a row i in the matrix
- \(\mathbb{a}_i, \mathbb{v}_j\)\) is then the coefficient of projection of \(\mathbb{a}_i\) in the direction of \(\mathbb{v}_j\).
- Similarly, $A\mathbf{v}_j$ is a vector of the projection coefficients of all the data points in the direction of \mathbf{v}_i .

- Furthermore, the *j*-th coefficient of **b** is $\langle \mathbf{a}_i, \mathbf{v}_j \rangle$ giving $\|\mathbf{a}_i\|^2 = \sum_i \langle \mathbf{a}_i, \mathbf{v}_j \rangle^2$.
- To compute the square of the Frobenius norm, we can sum the coefficients over all the rows

$$||A||_F^2 = \sum_{i=1}^m ||\mathbf{a}_i||^2 = \sum_{i=1}^m \sum_{j=1}^r \langle \mathbf{a}_i, \mathbf{v}_j \rangle^2 = \sum_{j=1}^r \sum_{i=1}^m \langle \mathbf{a}_i, \mathbf{v}_j \rangle^2$$
$$= \sum_{j=1}^r ||A\mathbf{v}_j||^2.$$

• If $A = A_1 + A_2$ as described, the squared norm of each row can also be decomposed into two orthogonal components $\|\mathbf{a}_{1i} + \mathbf{a}_{2i}\|^2 = \sum_{j=1}^k \langle \mathbf{a}_{1j}, \mathbf{v}_j \rangle^2 + \sum_{j=k+1}^r \langle \mathbf{a}_{2j}, \mathbf{v}_j \rangle^2$ giving

$$\|A_1 + A_2\|_F^2 = \sum_{j=1}^k \|A_1 \mathbf{v}_j\|^2 + \sum_{j=k+1}^r \|A_2 \mathbf{v}_j\|^2.$$

Consequently,

$$||A_1 + A_2||_F^2 = ||A_1||_F^2 + ||A_2||_F^2.$$

• From the properties of the singular vectors, $A\mathbf{v}_j = \sigma_j \mathbf{u}_j$. So $||A\mathbf{v}_j||^2 = \sigma_j^2 ||\mathbf{u}_j||^2 = \sigma_j^2$.

- From the properties of singular vectors, $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$ gives the vector of projection coefficients. Hence $\sigma_i \mathbf{u}_i \mathbf{v}_i^T$ gives the projection of the matrix in the direction \mathbf{v}_i , i.e. row i of $\sigma_i \mathbf{u}_i \mathbf{v}_i^T$ is the projection of data point *i* onto the vector \mathbf{v}_i .
- Summing up over the first k singular vectors

$$A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T,$$

we get the projection of A onto the space spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_k$.

Theorem 8: A_k gives the best rank k approximation to A in the Frobenius norm with $||A - A_k||_F^2 = \sum_{i=k+1}^r \sigma_i^2$. *Proof:*

From Lemma 7, $||A - A_k||_F^2 = ||A||_F^2 - ||A\mathbf{w}_1||^2 - \dots - ||A\mathbf{w}_k||^2$ for an orthonormal basis $\mathbf{w}_1, \dots, \mathbf{w}_k$.

Hence, we seek an orthonormal basis that maximizes $||A\mathbf{w}_1||^2 + \cdots + ||A\mathbf{w}_k||^2$.

We show that $\mathbf{v}_1, \dots, \mathbf{v}_k$ maximizes the expression by induction:

- The base case of rank 1 is true by Lemma 6.
- Assume that this is true for the first k basis and consider the best k+1 bases. Let W be the k+1 dimensional subspace that gives the best approximation. Assume bases $(\mathbf{w}_1, \dots, \mathbf{w}_{k+1})$ for W.

- \mathbf{w}_{k+1} can be chosen to be orthogonal to $\mathbf{v}_1, \dots, \mathbf{v}_k$ since W is of higher dimension than k: choose a vector that is orthogonal to the projections of $\mathbf{v}_1, \dots, \mathbf{v}_k$ onto W.
- By Lemma 6, \mathbf{v}_{k+1} maximizes $||A\mathbf{v}||^2$ among all unit vectors orthogonal to $\mathbf{v}_1, \dots, \mathbf{v}_k$. Hence $||A\mathbf{w}_{k+1}||^2 \le ||A\mathbf{v}_{k+1}||^2$. By induction hypothesis, we also have

$$||A\mathbf{w}_1||^2 + \cdots + ||A\mathbf{w}_k||^2 \le ||A\mathbf{v}_1||^2 + \cdots + ||A\mathbf{v}_k||^2,$$

giving

Basic Definitions

$$||A\mathbf{w}_1||^2 + \dots + ||A\mathbf{w}_{k+1}||^2 \le ||A\mathbf{v}_1||^2 + \dots + ||A\mathbf{v}_{k+1}||^2.$$

• From Lemma 7, $||A - A_k||_F^2 = \sum_{i=k+1}^r \sigma_i^2$.

Another matrix norm of interest is the 2-norm or spectral norm:

$$||A||_2 = \max_{\mathbf{x}: ||\mathbf{x}|| \le 1} ||A\mathbf{x}||.$$

From Lemma 6, the 2-norm of a matrix is equal to its first singular value σ_1 .

References

1 The material is mostly taken from Appendix C of SSBD.

References I

[1] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. *Introduction to information retrieval*. Vol. 1. 1. Cambridge university press Cambridge, 2008.