$R \cdot I \cdot T$

Rochester Institute of Technology of Dubai Department of Electrical Engineering and Computing

NSSA-102 Computer System Concepts

Fall 2023/2024

Instructor: Qusai Hasan

Homework 3

Student name: NIHAR GANDUI

Question1 [2.5 marks].

Consider the below diagram for the CPU we studied in unit07. Note that I assigned names, shown in red color, to some of the wires.

Fill-in the below to determine which wire is selected (i.e., used) during the execution of an **ADD instruction**, elaborate <u>why</u> for each wire?

wire	Is the wire used (yes or no)? why?	wire	Is the wire used (yes or no)? why?
W1	yes. Because we are getting	W6	yes. No constants and ratus are 12 bit register
W2	yes. Because we get rate &	W7	No Since we don't have
W3	yes. Dushnation regist	W8	yes. Since we are not
W4	yy To give the final	W9	No - Siña no load on store
W5	yes. Since they are 32 bit values and no consteans	W10	Yes.

$R \cdot I \cdot T$

Rochester Institute of Technology of Dubai Department of Electrical Engineering and Computing

Question2 [2 marks].

Assume we have a MIPS assembly program with 20 instructions. We want to execute this program on two machines: machine A and machine B. Machine A has a single-cycle processor with frequency = 0.5 GHz. Machine B has a 5-stage pipelined processor with frequency = 2 GHz.

- A. What is the clock cycle time (in nanoseconds) for machine A?
- B. What is the clock cycle time (in nanoseconds) for machine B? \rightarrow 0.5 n \leq
- C. Calculate execution time (in nanoseconds) for machine A?→ ∪ n ≤
- D. Calculate execution time (in nanoseconds) for machine B?

 → 2 ns

Show your work in the space below for all questions A - D.

A.
$$T = \frac{1}{2} = \alpha ns$$

B.
$$7 = \frac{1}{f} = \frac{1}{a} = 0.5 \text{ ns}$$

$$D \cdot Exection B = 0.5 \times 20 = 20$$
 s

$R \cdot I \cdot T$

Rochester Institute of Technology of Dubai Department of Electrical Engineering and Computing

Question3 [2.5 marks].

Assume we have a 1MB cache with 32-byte blocks. How many misses and hits would the below for-loop incur? Assume each array element needs 4 bytes of memory.

Hint: note that the loop has a total of $256 \times 3 = 768$ accesses.

Hint: recall the example we solved together in slide 13 in unit 08.

- A. Number of blocks in the cache is 2 Blocks
- B. Number of cache misses is 64 Misses
- C. Number of cache hits is 704 H?18

Show your work in the space below for all questions A - C.

The seaso:

Ali) = Ali] × Ali]

Be u + y

The standard or any of the season of the sea

Question4 [1 mark]

Compare between Personal Computer and Super Computers?

Personal Computers

(PC's)

- > For Daily use and inimal general
 purpose uses.
- They have a cost/performance tradely, which means, more cost, more performance,

Super Computers =

- > Used for high end seignhific calculations
- > Enormous contrallies, but have a small morket share
- -> Expensine.