

Bestandsmanagement unter stochastischen Bedingungen (Sicherheitsbestandsplanung)

physischer Lagerbestand (inventory on hand)

$$I^{\mathrm{P}}$$

Bestellbestand (outstanding orders)

$$I^{\rm O}$$

Fehlbestand (backorders)

$$I^{\mathrm{B}}$$

Fehlmenge (backordered demand) \leftarrow Achtung: Stromgröße!

B

Netto-Lagerbestand (net inventory)

$$I^{N} = I^{P} - I^{B}$$

disponibler Lagerbestand I (inventory position)

$$I^{\mathrm{D}} = I^{\mathrm{N}} + I^{\mathrm{O}}$$

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248								
Bestellbestand $I_t^{ m O}$									
Fehlbestand $I_t^{ m B}$									
Nettobestand $I_t^{ m N}$	248								
disponibler Bestand $I_t^{ m D}$	248								

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248								
Bestellbestand $I_t^{ m O}$		0							
Fehlbestand $I_t^{ m B}$									
Nettobestand $I_t^{ m N}$	248								
disponibler Bestand $I_t^{ m D}$	248								

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248	189							
Bestellbestand $I_t^{ m O}$		0							
Fehlbestand $I_t^{ m B}$									
Nettobestand $I_t^{ m N}$	248								
disponibler Bestand $I_t^{ m D}$	248								

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248	189							
Bestellbestand $I_t^{ m O}$		0							
Fehlbestand $I_t^{ m B}$		0							
Nettobestand $I_t^{ m N}$	248								
disponibler Bestand $I_t^{ m D}$	248								

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248	189							
Bestellbestand $I_t^{ m O}$		0							
Fehlbestand $I_t^{ m B}$		0							
Nettobestand $I_t^{ m N}$	248	189							
disponibler Bestand $I_t^{ m D}$	248								

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248	189							
Bestellbestand $I_t^{ m O}$		0							
Fehlbestand $I_t^{ m B}$		0							
Nettobestand $I_t^{ m N}$	248	189							
disponibler Bestand $I_t^{ m D}$	248	189							

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
hysischer Bestand $I_t^{ m P}$	248	189							
Bestellbestand $I_t^{ m O}$		0	400						
Fehlbestand $I_t^{ m B}$		0							
Nettobestand $I_t^{ m N}$	248	189							
disponibler Bestand $I_t^{ m D}$	248	189							

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
hysischer Bestand $I_t^{ m P}$	248	189							
Bestellbestand $I_t^{ m O}$		0	400	400	400	400	400		
Fehlbestand $I_t^{ m B}$		0							
Nettobestand $I_t^{ m N}$	248	189							
disponibler Bestand $I_t^{ m D}$	248	189							

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248	189	135	85	2	0	0	255	
Bestellbestand $I_t^{ m O}$									
Fehlbestand $I_t^{ m B}$									
Nettobestand $I_t^{ m N}$	248	189	135	85	2	-42	- 99	255	
disponibler Bestand $I_t^{ m D}$	248	189	535	485	402	358	301	255	

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$									
Bestellbestand I_t^{O}									
Fehlbestand $I_t^{ m B}$		0	0	0	0	42	99	0	0
Nettobestand $I_t^{ m N}$	248	189	135	85	2	-42	- 99	255	201
disponibler Bestand $I_t^{ m D}$	248	189	535	485	402	358	301	255	201

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248	189	135	85	2	0	0	255	201
Bestellbestand $I_t^{ m O}$		0	400	400	400	400	400	0	0
Fehlbestand $I_t^{ m B}$									
Nettobestand $I_t^{ m N}$	248	189	135	85	2	-42	- 99	255	201
disponibler Bestand $I_t^{ m D}$	248	189	535	485	402	358	301	255	201

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$									
Bestellbestand $I_t^{ m O}$									
Fehlbestand $I_t^{ m B}$		0	0	0	0	42	99	0	0
Nettobestand $I_t^{ m N}$	248	189	135	85	2	-42	- 99	55	1
disponibler Bestand $I_t^{ m D}$	248	189	335	285	202	358	301	255	201

Periode t	0	1	2	3	4	5	6	7	8
Nachfrage d_t	_	59	54	50	83	44	57	46	54
physischer Bestand $I_t^{ m P}$	248	189	135	85	2	0	0	255	201
Bestellbestand $I_t^{ m O}$		0	400	400	400	400	400	0	0
Fehlbestand $I_t^{ m B}$									
Nettobestand $I_t^{ m N}$	248	189	135	85	2	-42	- 99	255	201
disponibler Bestand $I_t^{ m D}$	248	189	535	485	402	358	301	255	201

Periode t		1	2	3	4	5	6	7	8
Nachfrage d_t		59	54	50	83	44	57	46	54
physischer Bestand $\mathit{I}_{t}^{\mathrm{P}}$	248	189	135	85	2	0	0	55	1
Bestellbestand $I_t^{ m O}$		0	200	200	200	400	400	200	200
Fehlbestand $I_t^{ m B}$		0	0	0	0	42	99	0	0
Nettobestand $I_t^{ m N}$	248	189	135	85	2	-42	- 99	55	1
disponibler Bestand $I_t^{ m D}$	248	189	335	285	202	358	301	255	201

Modellierung der Zeitachse

Zeitachse

Überwachungsintervall

- periodische Lagerüberwachung
- ► kontinuierliche Lagerüberwachung

Eintreffen der Nachfrage

- periodisch
- zeitkontinuierlich

Lieferservicekriterien eines Lagers

Die Lieferserviceleistung eines Lagers: Retrospektive Sicht

α -Servicegrad

 $\alpha=1-$ relative Häufigkeit des Fehlmengenereignisses

α -Servicegrad

 $\alpha = 1$ – relative Häufigkeit des Fehlmengenereignisses

β -Servicegrad

$$\beta = 1 - \frac{\text{durchschnittliche Fehlmenge}}{\text{durchschnittliche Nachfragemenge}}$$

α -Servicegrad

 $\alpha = 1$ – relative Häufigkeit des Fehlmengenereignisses

β -Servicegrad

$$\beta = 1 - \frac{\text{durchschnittliche Fehlmenge}}{\text{durchschnittliche Nachfragemenge}}$$

γ -Servicegrad

$$\gamma = 1 - \frac{\text{durchschnittlicher periodenbezogener Fehlbestand}}{\text{durchschnittliche Nachfragemenge}}$$

Beispiel

Periode	Nachfrage	Bestand	Bestellung oder	Fehlbestand	Fehlmenge
		(physisch)	Wareneingang	(Periodenende)	(pro Zyklus)
1	50	350		_	_
2	58	292		_	_
3	44	248		_	_
4	59	189	\Rightarrow	_	_
5	54	135		_	_
6	50	85		_	_
7	83	2		_	_
8	44	_		4 2	_
9	57	_	←	99	99
10	46	255		_	_
11	54	201	\Rightarrow	_	_
12	74	127		_	_
13	64	63		_	_
14	46	17 I		_	_
15	57	_		1 40	_
16	38	_	←	1 78	78
17	34	288		_	_
18	58	230	\Rightarrow	_	_
19	53	177		_	_
20	54	123		_	_
21	18	105		_	_
22	44	61		_	_
23	54	7 I	←	0	0
24	46	361		_	_
25	38	323		_	_
26	14	309		_	_
27	55	254		_	_
28	56	198	\Rightarrow	_	_
29	36	162		_	_
30	57	105		_	_
31	71	34		_	_
32	60	_		1 26	_
33	45	_	←	1 71	71
34	42	287		_	_
35	35	252		_	_
36	67	185	\Rightarrow	_	_
37	40	145		_	_
38	45	100		_	_
39	59	41		_	_
40	33	8 I		_	_
41	50	_	←	1 42	42
42	67	291		_	_
43	16	275		_	_
44	46	229	\Rightarrow	_	_
45	32	197		_	_
46	40	157		_	_
47	77	80		_	_
48	51	29		_	_
49	28	1	←	0	0
50	60	341		_	_

$$\alpha_{\text{Periode}} = 1 - \frac{7}{50} = 86 \%$$

$$\alpha_{\rm Zyklus} = 1 - \frac{4}{6} = 33.\bar{3}\,\%$$

$$\beta = 1 - \frac{5.8}{49.18} = 88.21\%$$

$$\gamma = 1 - \frac{7.96}{49.18} = 83.81\%$$

(aus Tempelmeier (2006))

Lieferservicekriterien im Bestandsmanagement: Prospektive Sicht

α -Servicegrad

 $\alpha = 1$ – relative Häufigkeit des Fehlmengenereignisses

β -Servicegrad

$$\beta = 1 - \frac{\text{durchschnittliche Fehlmenge}}{\text{durchschnittliche Nachfragemenge}}$$

γ -Servicegrad

$$\gamma = 1 - \frac{\text{durchschnittlicher periodenbezogener Fehlbestand}}{\text{durchschnittliche Nachfragemenge}}$$

(aus Tempelmeier (2006))

$$\mathrm{E}\left\{ \text{Lieferunf\"{a}hig-} \right\} \approx \frac{\mathrm{E}\left\{ \text{Fehlbestand} \right\}}{\mathrm{Bestand} + \mathrm{E}\left\{ \text{Fehlbestand} \right\}} \cdot \mathrm{Wiederbeschaffungszeit}$$

α -Servicegrad

$$\alpha = 1 - P$$
 [Fehlmenge > 0]

β -Servicegrad

$$\beta = 1 - \frac{E\{Fehlmenge\}}{E\{Nachfragemenge\}}$$

γ -Servicegrad

$$\gamma = 1 - \frac{\mathrm{E}\left\{\mathrm{periodenbezogener} \ \mathrm{Fehlbestand}\right\}}{\mathrm{E}\left\{\mathrm{Nachfragemenge}\right\}}$$

(erwartete) Dauer der Lieferunfähigkeit

α -Servicegrad

$$\alpha = 1 - P$$
 [Fehlmenge > 0]

β -Servicegrad

$$\beta = 1 - \frac{E\{Fehlmenge\}}{E\{Nachfragemenge\}}$$

γ -Servicegrad

$$\gamma = 1 - \frac{\mathrm{E}\left\{\mathrm{periodenbezogener} \ \mathrm{Fehlbestand}\right\}}{\mathrm{E}\left\{\mathrm{Nachfragemenge}\right\}}$$

(erwartete) Dauer der Lieferunfähigkeit

$$\mathrm{E}\left\{ \begin{aligned} &\mathrm{Lieferunf\ddot{a}hig-}\\ &\mathrm{keitsdauer} \end{aligned} \right\} \approx \frac{\mathrm{E}\left\{ \mathsf{Fehlbestand} \right\}}{\mathsf{Bestand} + \mathrm{E}\left\{ \mathsf{Fehlbestand} \right\}} \cdot \mathsf{Wiederbeschaffungszeit}$$

(erwartete) Reichweite

 $\mathbb{E}\left\{ \mathsf{Reichweite} \right\} = \mathsf{Wiederbeschaffungszeit} - \mathbb{E}\left\{ \mathsf{Lieferunf\"{a}higkeits} \mathsf{dauer} \right\}$

Wahrscheinlichkeitsverteilung der **Reichweite** N des Meldebestands s (bei einer (s,q)-Politik; d. h., bei einem Restbestand in Höhe von s wird die Menge q nachbestellt)

[Die periodenbezogenen Nachfragemengen sind unabhängig, stochastisch wie D verteilt.]

$$P[N = 0] = P[D > s] = 1 - P[D \le s]$$

$$P[N=n] = P\left[\sum_{t=1}^{n} D \le s\right] - P\left[\sum_{t=1}^{n+1} D \le s\right]$$
 $(n=1,2,\ldots)$

Bei normalverteilten Nachfragemengen ($D \sim N(\mu_D, \sigma_D)$):

$$P[N = 0] = 1 - \Phi\left(\frac{s - \mu_D}{\sigma_D}\right)$$

$$P[N = n] = \Phi\left(\frac{s - n \cdot \mu_D}{\sqrt{n} \cdot \sigma_D}\right) - \Phi\left(\frac{s - (n+1) \cdot \mu_D}{\sqrt{n+1} \cdot \sigma_D}\right) \qquad (n = 1, 2, ...)$$

- > s = 400
- $\blacktriangleright \mu_D = 100$
- ▶ $\sigma_D = 30$
- ► Wiederbeschaffungszeit *L*

- > s = 400
- $\mu_D = 100$
- $ightharpoonup \sigma_D = 30$
- ▶ Wiederbeschaffungszeit $L = \ell = 5$

$$P[N = 0] = P[J = 5] = 1 - \Phi\left(\frac{400 - 100}{30}\right) \approx 0$$

$$P[N = 1] = P[J = 4] = \Phi\left(\frac{400 - 100}{30}\right) - \Phi\left(\frac{400 - 200}{\sqrt{2} \cdot 30}\right) = 0.0000$$

$$P[N = 2] = P[J = 3] = \Phi\left(\frac{400 - 200}{\sqrt{2} \cdot 30}\right) - \Phi\left(\frac{400 - 300}{\sqrt{3} \cdot 30}\right) = 0.0271$$

$$P[N = 3] = P[J = 2] = \Phi\left(\frac{400 - 300}{\sqrt{3} \cdot 30}\right) - \Phi\left(\frac{400 - 400}{\sqrt{4} \cdot 30}\right) = 0.4728$$

$$P[N = 4] = P[J = 1] = \Phi\left(\frac{400 - 400}{\sqrt{4} \cdot 30}\right) - \Phi\left(\frac{400 - 500}{\sqrt{5} \cdot 30}\right) = 0.4319$$

- > s = 400
- $\mu_D = 100$
- ▶ $\sigma_D = 30$
- ▶ Wiederbeschaffungszeit $L = \ell = 5$

n	$j = \ell - n$	$v_1 = \frac{s - n \cdot \mu_D}{\sqrt{n} \cdot \sigma_D}$	$\Phi(v_1)$	$v_2 = \frac{s - (n+1) \cdot \mu_D}{\sqrt{n+1} \cdot \sigma_D}$	$\Phi(v_2)$	$\boxed{ \text{P}[N = n] = \text{P}[J = j] }$
1	4	10.00	0.9999	4.71	0.9999	0.0000
2	3	4.71	0.9999	1.92	0.9728	0.0271
3	2	1.92	0.9728	0.00	0.5000	0.4728
4	1	0.00	0.5000	-1.49	0.0681	0.4319
5	0	-1.49	0.0681	-2.72	0.0098	0.0583

- ightharpoonup s = 400, q = 1000
- $\blacktriangleright \mu_D = 100$
- $ightharpoonup \sigma_D = 30$
- ▶ Wiederbeschaffungszeit $L = \ell = 5$

n	$j = \ell - n$	$v_1 = \frac{s - n \cdot \mu_D}{\sqrt{n} \cdot \sigma_D}$	$\Phi(v_1)$	$v_2 = \frac{s - (n+1) \cdot \mu_D}{\sqrt{n+1} \cdot \sigma_D}$	$\Phi(v_2)$	P[N=n] = P[J=j]
1	4	10.00	0.9999	4.71	0.9999	0.0000
2	3	4.71	0.9999	1.92	0.9728	0.0271
3	2	1.92	0.9728	0.00	0.5000	0.4728
4	1	0.00	0.5000	-1.49	0.0681	0.4319
5	0	-1.49	0.0681	-2.72	0.0098	0.0583

$$E\{J\} \approx \frac{100}{400 + 100} \cdot 5 = 1$$

Beispiel Reichweite N und Lieferunfähigkeitsdauer J

$$ightharpoonup s = 400, q = 1000$$

$$\mu_D = 100$$

$$ightharpoonup \sigma_D = 30$$

▶ Wiederbeschaffungszeit $L = \ell = 5$

n	$j = \ell - n$	$v_1 = \frac{s - n \cdot \mu_D}{\sqrt{n} \cdot \sigma_D}$	$\Phi(v_1)$	$v_2 = \frac{s - (n+1) \cdot \mu_D}{\sqrt{n+1} \cdot \sigma_D}$	$\Phi(v_2)$	$\boxed{ \text{P}[N = n] = \text{P}[J = j] }$
1	4	10.00	0.9999	4.71	0.9999	0.0000
2	3	4.71	0.9999	1.92	0.9728	0.0271
3	2	1.92	0.9728	0.00	0.5000	0.4728
4	1	0.00	0.5000	-1.49	0.0681	0.4319
5	0	-1.49	0.0681	-2.72	0.0098	0.0583

$$E\{J\} \approx \frac{100}{400 + 100} \cdot 5 = 1$$

laut Tabelle: $E\{J\} = 1.4588$

Lieferunfähigkeitsdauer ist Obergrenze für die lagerbedingte Lieferzeit (Kundenwartezeit)

(aus Tempelmeier (2006))

Beispiel

Periode	Periode Nachfrage Bestand (physisch) 1 50 350		Bestellung oder Wareneingang	Fehlbestand (Periodenende)	Fehlmenge (pro Zyklus)
1			,, ar circingang	(1 eriodenende)	(pro Zykius)
2	58	292		_	_
3				_	_
	44			_	_
4	59	189	\Rightarrow	_	_
5	54	135		_	_
6	50	85		_	_
7	83	2			_
8	44	_		1 42	_
9	57	_	←	99	99
10	46	255		_	_
11	54	201	\Rightarrow	_	_
12	74	127		_	_
13	64	63		_	_
14	46	17		_	_
15	57	_		1 40	_
16	38	_	←	1 78	78
17	34	288		_	_
18	58	230	\Rightarrow	_	_
19	53	177		_	_
20	54	123		_	_
21	18	105		_	_
22	44	61		_	_
23	54	7 I	←	0	0
24	46	361	_	_	_
25	38	323		_	_
26	14	309			
27	55	254			
28	56	198	\Rightarrow	_	
29	36	162	<i>→</i>	_	
				_	_
30	57	105		_	
31	71	34			_
32	60	_		26	-
33	45		←	1 71	71
34	42	287		_	_
35	35	252		_	_
36	67	185	\Rightarrow	_	_
37	40	145		_	_
38	45	100		_	_
39	59	41		_	_
40	33	8 I		_	_
41	50	_	←	1 42	42
42	67	291		_	_
43	16	275		_	_
44	46	229	\Rightarrow	_	_
45	32	197		_	_
46	40	157		_	_
47	77	80		_	_
48	51	29		_	_
49	28	1	←	0	0
50	60	341		_	_

$$\alpha_{\text{Periode}} = 1 - \frac{7}{50} = 86 \,\%$$

$$\alpha_{\rm Zyklus} = 1 - \frac{4}{6} = 33.\bar{3}\,\%$$

$$\beta = 1 - \frac{5.8}{49.18} = 88.21\%$$

$$\gamma = 1 - \frac{7.96}{49.18} = 83.81 \%$$

(aus Tempelmeier (2006))

Beispiel Wahrscheinlichkeitsverteilung der Lieferzeit

$$P[W = 0] = 0.86$$

$$P[W = 1] = 0.08$$

$$P[W = 2] = 0.06$$

Beispiel Wahrscheinlichkeitsverteilung der Lieferzeit

$$P[W = 0] = 0.86$$

$$P[W = 1] = 0.08$$

$$P[W = 2] = 0.06$$

Kundenorientierte Servicevorgaben:

▶
$$P[W = 0] \ge 90\%$$
, $P[W \le 1] \ge 95\%$, $P[W \le 2] = 100\%$

Beispiel Wahrscheinlichkeitsverteilung der Lieferzeit

$$P[W = 0] = 0.86$$

$$P[W = 1] = 0.08$$

$$P[W = 2] = 0.06$$

Kundenorientierte Servicevorgaben:

▶
$$P[W = 0] \ge 90\%$$
, $P[W \le 1] \ge 95\%$, $P[W \le 2] = 100\%$

▶
$$P[W = 0] \ge 90\% = \beta$$

▶
$$P[W \le 1] \ge 95\%$$

▶
$$E\{W\} \le 0.5$$

Beispiel Wahrscheinlichkeitsverteilung der Lieferzeit

- ▶ vier Lieferanten mit unterschiedlichen Wiederbeschaffungszeiten
- ightharpoonup (s, q = 500)-Lagerhaltungspolitik
- $\mu_D = 100, \ \sigma_D = 30$
- $\beta = 90\%$

Beispiel Wahrscheinlichkeitsverteilung der Lieferzeit

- vier Lieferanten mit unterschiedlichen Wiederbeschaffungszeiten
- ightharpoonup (s, q = 500)-Lagerhaltungspolitik
- $\blacktriangleright \mu_D = 100, \ \sigma_D = 30$
- $\beta = 90\%$

Wiederbeschaffungszeit	Lieferzeit W						$E\{W\}$	$\sqrt{\operatorname{Var}\left\{W\right\}}$
ℓ	0	1	2	3	4	5		
5	0.90	0.0828	0.0168	0.0004	0.0000	0.0000	0.1176	0.3739
10	0.90	0.0759	0.0216	0.0024	0.0001	0.0000	0.1267	0.4116
15	0.90	0.0708	0.0244	0.0044	0.0004	0.0000	0.1344	0.4431
30	0.90	0.0613	0.0275	0.0089	0.0020	0.0003	0.1525	0.5173

Ein abnehmender Händler bräuchte für

- ho $\beta=95\,\%$ bei $\ell=5$ ein s=228, bei $\ell=30$ ein s=250
- $ightharpoonup eta = 99\,\%$ bei $\ell = 5$ ein s = 312, bei $\ell = 30$ ein s = 383

Kundenklassen im Bestandsmanagement

Kundenklassendifferenzierung

Gemeinsamer Lagerbestand

— s. o. —

Getrennter Lagerbestand

Rationierung/Trennung der Bestände nach Kundenklassen

Offerierung verschieden langer Lieferzeiten oder unterschiedlich hoher Serviceniveaus

Reservierung/Rationierung eines Teil des Lagerbestands; ab einem gewissen kritischen Bestand (critical level) werden nur noch Kunden höherer Priorität beliefert

- differenzierte Marktbearbeitung möglich
 (im Gegensatz zu einem gemeinsamen Sicherheitsbestand)
- ► Ausgleichseffekte bis zum kritischen Bestand möglich (im Gegensatz zu einem getrennten Lagerbestand)

Entscheidungen über die Höhe des Sicherheitsbestands

Sicherheitsbestand

Überschuss des Ziellagerbestands ("Vorrat" x) über die erwartete zu deckende Nachfrage-/Bedarfsmenge $\mathbb{E}\{Y\}$ im Risikozeitraum, der zu überbrücken ist

Sicherheitsbestand = $x - \mathbb{E}\{Y\}$

Nachfrage-/Bedarfsmenge im Risikozeitraum

Nachfrage-/Bedarfsmenge im Risikozeitraum

Nachfragemenge über zwei Tage hinweg als Summe von zwei täglichen Nachfragemengen ${\cal D}$

$$Y^{(2)} = D + D \Longrightarrow \mathbf{P}\left[Y^{(2)} = y\right] = \sum_{d=\max\{0, y-d_{\mathsf{max}}\}}^{\min\{y, d_{\mathsf{max}}\}} \mathbf{P}\left[D = d\right] \cdot \mathbf{P}\left[D = y - d\right]$$

Nachfragemenge über drei Tage hinweg als Summe von drei täglichen Nachfragemengen D (mit $Y^{(2)} = D + D$ als Summe über zwei Tage hinweg)

$$Y^{(3)} = D + Y^{(2)} \Longrightarrow P\left[Y^{(3)} = y\right] = \sum_{d=\max\{0, y - d_{\mathsf{max}}\}}^{\min\{y, d_{\mathsf{max}}\}} P\left[D = d\right] \cdot P\left[Y^{(2)} = y - d\right]$$

Nachfragemenge über n Tage hinweg als Summe von n täglichen Nachfragemengen D (mit $Y^{(n-1)} = D + \cdots + D$ als Summe über n-1 Tage hinweg)

$$Y^{(n)} = D + Y^{(n-1)} \Longrightarrow \mathbf{P}\left[Y^{(n)} = y\right] = \sum_{d=\max\{0,y-d_{\mathsf{max}}\}}^{\min\{y,d_{\mathsf{max}}\}} \mathbf{P}\left[D = d\right] \cdot \mathbf{P}\left[Y^{(n-1)} = y - d\right]$$

Nachfrage-/Bedarfsmenge im Risikozeitraum

Beispiel Länge des Risikozeitraums (n = 3 Tage)

Bedarfsmenge über 3 Tage hinweg als Summe von 3 täglichen Nachfragemengen D (mit $Y^{(2)} = D + D$ als Summe über 2 Tage hinweg)

$$Y^{(3)} = D + Y^{(2)} \Longrightarrow \mathbf{P}\left[Y^{(3)} = y\right] = \sum_{d=\max\{0,y-d_{\mathsf{max}}\}}^{\min\{y,d_{\mathsf{max}}\}} \mathbf{P}\left[D = d\right] \cdot \mathbf{P}\left[Y^{(2)} = y - d\right]$$

$$Y^{(2)} = D + Y^{(1)} = D + D \Longrightarrow P\left[Y^{(2)} = y\right] = \sum_{d=\max\{0, y - d_{\mathsf{max}}\}}^{\min\{y, d_{\mathsf{max}}\}} P\left[D = d\right] \cdot P\left[D = y - d\right]$$

	y	0 ME	1 ME	2 ME	3 ME	4 ME	5 ME	6 ME
Ur	$P\left[Y^{(3)} = y\right]$	0.015625	0.09375	0.234375	0.3125	0.234375	0.09375	0.015625

Erwartungswert der täglichen Nachfragemenge D

$$\mathbf{E}\left\{D\right\} = \sum_{d=0}^{d_{\text{max}}} d \cdot \mathbf{P}\left[D = d\right] =: \mu_D$$

Varianz der täglichen Nachfragemenge D

$$\operatorname{Var}\left\{D\right\} = \sum_{d=0}^{d_{\max}} (d - \mu_D)^2 \cdot \operatorname{P}\left[D = d\right] =: \sigma_D^2$$

Standardabweichung der täglichen Nachfragemenge D

$$\sqrt{\operatorname{Var}\left\{D\right\}} = \sqrt{\sigma_D^2} = \sigma_D$$

Variationskoeffizient der täglichen Nachfragemenge D

$$CV\{D\} = \frac{\sigma_D}{\mu_D}$$

Erwartete Nachfragemenge im Risikozeitraum von n Tagen:

$$E\{Y\} = n \cdot E\{D\} = n \cdot \mu_D =: \mu_Y$$

Varianz der Nachfragemenge im Risikozeitraum von n Tagen:

$$Var \{Y\} = n \cdot Var \{D\} = n \cdot \sigma_D^2 =: \sigma_Y^2$$

Standardabweichung der Nachfragemenge im Risikozeitraum von n Tagen:

$$\sqrt{\operatorname{Var}\{Y\}} = \sqrt{n \cdot \operatorname{Var}\{D\}} = \sqrt{n \cdot \sigma_D^2} = \sqrt{n} \cdot \sigma_D =: \sqrt{\sigma_Y^2} = \sigma_Y$$

Variationskoeffizient der Nachfragemenge im Risikozeitraum von n Tagen:

$$CV\{Y\} = \frac{\sigma_Y}{\mu_Y}$$

Erwartete Nachfragemenge im Risikozeitraum von n Tagen:

$$E\{Y\} = n \cdot E\{D\} = n \cdot \mu_D =: \mu_Y$$

Varianz der Nachfragemenge im Risikozeitraum von n Tagen:

$$Var \{Y\} = n \cdot Var \{D\} = n \cdot \sigma_D^2 =: \sigma_Y^2$$

Standardabweichung der Nachfragemenge im Risikozeitraum von n Tagen:

$$\sqrt{\operatorname{Var}\{Y\}} = \sqrt{n \cdot \operatorname{Var}\{D\}} = \sqrt{n \cdot \sigma_D^2} = \sqrt{n} \cdot \sigma_D =: \sqrt{\sigma_Y^2} = \sigma_Y$$

Variationskoeffizient der Nachfragemenge im Risikozeitraum von n Tagen:

$$CV\{Y\} = \frac{\sigma_Y}{\mu_Y}$$

Beispiel Länge des Risikozeitraums (n = 3 Tage)

y	0 ME	1 ME	2 ME	3 ME	4 ME	5 ME	6 ME
P[Y=y]	0.015625	0.09375	0.234375	0.3125	0.234375	0.09375	0.015625

Erwartete Nachfragemenge im Risikozeitraum von n Tagen:

$$E\{Y\} = n \cdot E\{D\} = n \cdot \mu_D =: \mu_Y$$

Varianz der Nachfragemenge im Risikozeitraum von n Tagen:

$$Var \{Y\} = n \cdot Var \{D\} = n \cdot \sigma_D^2 =: \sigma_Y^2$$

Standardabweichung der Nachfragemenge im Risikozeitraum von n Tagen:

$$\sqrt{\operatorname{Var}\{Y\}} = \sqrt{n \cdot \operatorname{Var}\{D\}} = \sqrt{n \cdot \sigma_D^2} = \sqrt{n} \cdot \sigma_D =: \sqrt{\sigma_Y^2} = \sigma_Y$$

Variationskoeffizient der Nachfragemenge im Risikozeitraum von n Tagen:

$$CV\{Y\} = \frac{\sigma_Y}{\mu_Y}$$

Beispiel Länge des Risikozeitraums (n=3 Tage)

$$E\{Y\} = 3 \cdot E\{D\} = 3 \cdot 1 = 3$$
, $Var\{Y\} = 3 \cdot Var\{D\} = 3 \cdot 0.5 = 1.5$

Bedarfsmenge im Risikozeitraum: Spezielle Verteilungen

Normalverteilte Nachfragemengen — Dichtefunktion/Momente:

$$f_D(d) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot \left(\frac{d-\mu}{\sigma}\right)^2} \iff \operatorname{E}\{D\} =: \mu_D \iff \operatorname{Var}\{D\} =: \sigma_D^2$$

$$\mu_Y = n \cdot \mu_D \iff \sigma_Y^2 = n \cdot \sigma_D^2 \iff \sigma_Y = \sqrt{n} \cdot \sigma_D$$

Bedarfsmenge im Risikozeitraum: Spezielle Verteilungen

Normalverteilte Nachfragemengen — Dichtefunktion/Momente:

$$f_D(d) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot \left(\frac{d-\mu}{\sigma}\right)^2} \iff \operatorname{E}\{D\} =: \mu_D \iff \operatorname{Var}\{D\} =: \sigma_D^2$$

$$\mu_Y = n \cdot \mu_D \iff \sigma_Y^2 = n \cdot \sigma_D^2 \iff \sigma_Y = \sqrt{n} \cdot \sigma_D$$

Es gilt die Reproduktionseigenschaft! Ebenso für ...

Gammaverteilte Nachfragemengen — Dichtefunktion/Momente:

$$f_D(d) = \frac{\lambda^{\alpha} \cdot d^{\alpha - 1}}{\Gamma(\alpha)} \cdot e^{-\lambda \cdot d} \iff \operatorname{E} \{D\} = \frac{\alpha}{\lambda} =: \mu_D \iff \operatorname{Var} \{D\} = \frac{\alpha}{\lambda^2} =: \sigma_D^2$$

$$\implies \alpha = \frac{\sigma_D^2}{\lambda^2} \iff \lambda = \frac{\alpha}{\mu_D} \implies \operatorname{CV} \{D\} = \frac{\frac{\sqrt{\alpha}}{\lambda}}{\frac{\lambda}{\alpha}} = \frac{\sqrt{\alpha}}{\alpha} = \frac{1}{\sqrt{\alpha}} \iff \alpha = \frac{1}{\operatorname{CV} \{D\}^2}$$

$$\alpha_Y = \frac{1}{\operatorname{CV} \{Y\}^2} = \left(\frac{\mu_Y}{\sigma_Y}\right)^2 = \left(\frac{n \cdot \mu_D}{\sqrt{n} \cdot \sigma_D}\right)^2 = \frac{n^2 \cdot \mu_D^2}{n \cdot \sigma_D^2} = n \cdot \frac{\mu_D^2}{\sigma_D^2} = n \cdot \frac{1}{\operatorname{CV} \{D\}^2} = n \cdot \alpha$$

$$\lambda_Y = \frac{\alpha_Y}{\mu_Y} = \frac{n \cdot \alpha}{n \cdot \mu_D} = \frac{\alpha}{\mu_D} = \lambda$$

Fehlmengen

Fehlmengen

Eine Fehlmenge B tritt auf, wenn die Nachfrage-/Bedarfsmenge Y im Risikozeitraum den Vorrat x übersteigt.

$$P[B = y - x] = P[Y - x = y - x] = P[Y = y]$$
 $(y > x)$

$$f_B(y - x) = f_{Y-x}(y - x) = f_Y(y) (y > x)$$

$$P[B=0] = P[Y-x \le 0] = P[Y \le x]$$
 $(y \le x)$

P[Fehlmenge] = 1 - P[B = 0] = P[Y > x]

 $1 - P[Fehlmenge] = P[B = 0] = P[Y \le x] = \alpha$ -Servicegrad

$$B = \max\{Y - x, 0\} =: [Y - x]^{+}$$

$$E\{B\} = \begin{cases} E\{[Y - x]^{+}\} = \int_{y=x}^{y_{\text{max}}} (y - x) \cdot f_{Y}(y) \, dy & (x \ge 0) \\ E\{Y\} = \int_{y=0}^{y_{\text{max}}} y \cdot f_{Y}(y) \, dy & (x < 0) \end{cases}$$

Spezialfall: Normalverteilte Nachfrage-/Bedarfsmengen

Vielfach wird angenommen, dass Y normalverteilt sei mit den Parametern μ_Y und σ_Y — mit der Rechtfertigung, dass

- ▶ ... auch D normalverteilt ist.
- $ightharpoonup \dots$ der Risikozeitraum so lang ist, dass gemäß zentralem Grenzwertwertsatz die Summe Y von aufeinanderfolgenden (unabhängigen) Nachfragemengen D eine normalverteilte Zufallsvariable ist.

Dann gilt:

 $ightharpoonup Z:=rac{Y-\mu_Y}{\sigma_Y}$ ist standardnormalverteilt mit $\mu_Z=0$ und $\sigma_Z=1$.

►
$$P[Y \le y] = F_Y(y) = F_Z\left(\frac{y - \mu_Y}{\sigma_Y}\right) = \Phi\left(\frac{y - \mu_Y}{\sigma_Y}\right)$$

►
$$E\{[Y - x]^+\} = E\{B_Y(x)\} = \int_x^\infty (y - x) \cdot f_Y(y) \, dy = \sigma_Y \cdot E\{B_Z(v)\}$$

►
$$E\{[Z-v]^+\} = E\{B_Z(v)\} = \int_v^{\infty} (z-v) \cdot \phi(z) dz \approx \phi(v) - v \cdot (1-\Phi(v))$$