

Artificial Neural Networks

[2500WETANN]

José Oramas

Convolutional Neural Networks

[Part 1 - Foundations]

José Oramas

Previous lecture

[Shallow / Deep Neural Networks]

Recap Previous Lecture

Recap Previous Lecture

- Universal Approximation Theorem
- Use gradients to optimize weights w.r.t. prediction (loss function)
- Use of ReLU instead of sigmoid activation functions when going deeper
- \bullet In the early days → provide forward/backward operations

Convolutional Neural Networks

[Part 1 - Foundations]

Let's consider the case of visual data

Image Recognition task

Given:

- an input image x

Do:

predict a label y(out of a set of class labels)

Some Motivations

Locality

Neighbooring pixels are highly correlated.

Translation Invariance

Meaningful patterns can appear anywhere

Translation Invariance

Meaningful patterns can appear anywhere

Compositionality

Learning feature hierarchies

Yes, but...

How to put that in practice?

■ Digital image → 2D pixel matrix

■ Digital image → 2D pixel matrix

- Digital image → 2D pixel matrix
- Our previous network expects a vector of numbers as input

- Digital image → 2D pixel matrix
- Our previous network expects a vector of numbers as input

- Digital image → 2D pixel matrix
- Our previous network expects a vector of numbers as input

- Digital image → 2D pixel matrix
- Our previous network expects a vector of numbers as input

Dense fully-connected layer

$$\sum_{i=1}^d w_i x_i + b$$

$$\sum_{i=0}^{d} \mathbf{w}_i \mathbf{x}_i, \quad x_0 := 1$$

Dense fully-connected layer

$$\sum_{i=1}^{d} \mathbf{w}_i \mathbf{x}_i + \mathbf{b}$$

$$\sum_{i=0}^{d} \mathbf{w}_i \mathbf{x}_i, \quad \mathbf{x}_0 := 1$$

Dense fully-connected layer

$$\sum_{i=1}^d rac{oldsymbol{w}_i oldsymbol{x}_i + oldsymbol{b}}{oldsymbol{w}_i oldsymbol{x}_i}, \quad x_0 := 1$$

i covers the entire input [image] space

Connecting Neighboring Regions

Connecting Neighboring Regions

Connecting Neighboring Regions

From Locally Connected to Convolutions

From Locally Connected to Convolutions

From Locally Connected to Convolutions

Response/feature map

- The kernel slides across the input
- Produces an output (or response) for every location where it is evaluated
- Repeating the process with *k* multiple kernels produces multiple features maps (channels)

- Inputs an ouputs are usually "data cubes" [Tensors]
- Filter reponses across inputs are aggregated

Putting everything together

Convolutional Neural Network

*Promotes Compositionality

Convolution Operations

Variants

Break

See you in 15 mins.

Convolution Operations

Variants

[Every considered point lies within the input]

[Every considered point lies within the input]

Full Convolution

[At least one value of the kernel covers the input]

Full Convolution

[At least one value of the kernel covers the input]

Full Convolution

[At least one value of the kernel covers the input]

[Kernel evaluated (centered) at every location of the input]

[Kernel evaluated (centered) at every location of the input]

Strided Convolution

Strided Convolution

Strided Convolution

Strided Convolution

Variants: Dilated Convolution (aka. Atrous Convolution)

kernel are spread]

Variants: Dilated Convolution (aka. Atrous Convolution)

*Effective for increasing the receptive field

kernel are spread]

Other

Other Variants: Pooling

Other Variants: Pooling

^{*}Effective for decreasing the scale

Other Variants: 1x1 Convolutions

- Perform a neuron-level operation
- Integration over the channels

Other Variants: 1x1 Convolutions

- Perform a neuron-level operation
- Integration over the channels

*Effective for modifying number of channels

input 0 1 2 3 4 5 6 7 8 0

1D Convolutions

1D Convolutions

1D Convolutions

1D Convolutions

3D Convolutions

[Finally:D]

- ConvNets enable introducing data characteristics
 - (locality, position invariance, compositionality, etc.)

- ConvNets enable introducing data characteristics
 - (locality, position invariance, compositionality, etc.)
- There are serveral ways to define a convolution
 - Full | same | valid | dilated | strided

- ConvNets enable introducing data characteristics
 - (locality, position invariance, compositionality, etc.)
- There are serveral ways to define a convolution
 - Full | same | valid | dilated | strided
- Some types of convolutions may have "special" effects
 - Strided → decrease spatial resolution
 - Dilated→ increase receptive field
 - 1x1 → modify the number of channels

- ConvNets enable introducing data characteristics
 - (locality, position invariance, compositionality, etc.)
- There are serveral ways to define a convolution
 - Full | same | valid | dilated | strided
- Some types of convolutions may have "special" effects
 - Strided → decrease spatial resolution
 - Dilated→ increase receptive field
 - 1x1 → modify the number of channels

Next Lecture

Revelant Architectures:

[AlexNet, VGG-Net, GoogLeNet, ResNet, *-Net]

Homework

Before the next session: Read the AlexNet paper

Available in Blackboard > ANN > Content > Theory Lectures > Session-4....

References

- Kunihiko Fukushima, Sei Miyake, Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position, Pattern Recognition, Volume 15, Issue 6. 1982.
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel, *Handwritten digit recognition with a back-propagation network*. NeurIPS 1989
- Y. Lecun, L. Bottou, Y. Bengio and P. Haffner. *Gradient-based Learning Applied to Document Recognition*. Proceedings of IEEE, 1998
- A. Krizhevsky, I. Sutskever, G. E. Hinton. *ImageNet Classification with Deep Convolutional Neural Networks*. NeurIPS 2012
- Y. LeCun, K. Kavukcuoglu and C. Farabel. Convolutional Networks and Applications in Vision
- D. E. Rumelhart, G. E. Hinton & R. J. Williams. Learning representations by back-propagating errors. 1986
- L. Antanas, M. van Otterlo, J. Oramas, T. Tuytelaars and L. De Raedt. *There are Plenty of Places like Home: Using Hierarchies and Relational Representations for Distance-based Image Understanding*. Neurocomputing 2014.

Convolutional Neural Networks

[ConvNets, CNNs]

