Problem 1. On an open set $U \subset \mathbb{R}^{\ltimes}$ show that the exterior derivative d is the only operator $d: \Omega^p(U) \to \Omega^{p+1}(U)$ satisfying:

- (a) $d(\omega + \eta) = d\omega + d\eta$
- (b) $\omega \in \Omega^p(U), \eta \in \Omega^q(U) \Rightarrow d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^p \omega \wedge d\eta$
- (c) $f \in \Omega^0(U) \Rightarrow df(X) = X(f)$
- (d) $f \in \Omega^0(U) \Rightarrow d(df) = 0$

Deduce that d is independent of the coordinate system used to define it.

Proof. First note that due to the linearity of d (pull out a bump function) that given a point p the value of $d\omega_p$ only relies on a neighborhood of p.

Now suppose that d' was another operator that fulfilled the same properties as d. Then given $\omega = f dx_{i_1} \wedge \cdots \wedge dx_{i_n} \in \Omega^p(U)$ through repeated applications of (b) we have

$$d'(fdx_{i_1} \wedge \dots \wedge dx_{i_p}) = d'fdx_{i_1} \wedge \dots \wedge dx_{i_p} - \sum_{1}^{p} (-1)^p fdx_{i_1} \wedge \dots \wedge d'dx_{i_j} \wedge \dots \wedge dx_{i_p}$$

However $d'dx_{i_j} = d'd'x_{i_j} = 0$ and d'f = df hold by (c), (d) and the fact that d applied to a zero-form is not affected by coordinates we have that

$$d'fdx_{i_1}\wedge\cdots\wedge dx_{i_p} - \sum_{1}^{p} (-1)^p fdx_{i_1}\wedge\cdots\wedge d'dx_{i_j}\wedge\cdots\wedge dx_{i_p} = df\wedge dx_{i_1}\wedge\cdots\wedge dx_{i_p} = d(fdx_{i_1}\wedge\cdots\wedge dx_{i_p})$$

which shows that d = d'.

Since d is unique and at a point only depends on a neighborhood of said point given two neighborhoods of a point p called U, V even if they have different coordinate systems must agree on $U \cap V$. Thus it must be the case that d is independent of coordinate systems.

Problem 2. On the unit circle S^1 in the plane, let $\theta = \arctan(y/x)$ be the usual polar coordinate. Show that $d\theta$ makes sense on S^1 and is a closed 1-form which is not exact.

If we calculate $d\theta$ we get

$$d\theta = \frac{\partial \theta}{\partial x}dx + \frac{\partial \theta}{\partial y}dy = \frac{-ydx}{x^2 + y^2} + \frac{xdy}{x^2 + y^2}$$

However since we are on the unit circle the bottom term becomes 1. Thus $d\theta = -ydx + xdy$. Since θ is not continuous when x = 0 we cannot directly apply $d^2 = 0$ to θ . However there are only two points where θ is discontinuous. If we throw out those points we have $d^2\theta = 0$. Since $d^2\theta$ is a smooth 2-form on S^1 we cannot have nonzero points when x = 0 as that would violate the smoothness. Thus $d^2\theta$ is uniformly zero which shows that $d\theta$ is closed.

To see that it is not closed evaluate the integral $\int_{S^1} d\theta$. If it were closed the integral would be zero however it is 2π . Therefore θ is not exact.

Problem 3. For $\omega \in \Omega^1(M)$, verify the special case $d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y])$ of the invariant formula mentioned above Definition 2.4.

Proof. Let $\omega = f dx \in \Omega^1(M)$. Then

$$\begin{split} d\omega(X,Y) &= d(fdx)(X,Y) \\ &= df \wedge dx(X,Y) \\ &= df(X)dx(Y) - df(Y)dx(X) \\ &= XfYx - YfXx \\ &= (XfYx + fXYx) - (YfXx + fYXx) - f(XYx - YXx) \\ &= X(fYx) - Y(fXx) - f[X,Y]x \\ &= X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]) \end{split}$$

which completes the proof.