Please check the examination deta	ails below	before entering	your candidate information		
Candidate surname		0	ther names		
Pearson Edexcel International Advanced Level	Centre	Number	Candidate Number		
Tuesday 14 January 2020					
Afternoon (Time: 1 hour 30 minu	ıtes)	Paper Refe	rence WFM01/01		
Mathematics International Advance Further Pure Mathema		•	Advanced Level		
You must have: Mathematical Formulae and Sta	tistical 7	ābles (Blue)	, calculator		

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1	$\mathbf{A} = \begin{pmatrix} p \\ -2 \end{pmatrix}$	-5
1.	$A = \begin{pmatrix} -2 \end{pmatrix}$	p+3

(a)	Determine the valu	les of the constant p	for which A is singular	ar.

(3)

Given that p = 3

(b) determine
$$A^{-1}$$

(3)

Question 1 continued		blan
		Q1
	(Total 6 marks)	

2. Given that $x = -\frac{1}{3}$ is a root of the equation

$$3x^3 + kx^2 + 33x + 13 = 0 \qquad k \in \mathbb{R}$$

determine

(a) the value of k,

(2)

(b) the other 2 roots of the equation in the form a + ib, where a and b are real numbers.

(1)
(4)
\ - /

estion 2 continued	

Leave blank

(2)

3. (a) Use the standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that for all positive integers n

$$\sum_{r=1}^{n} r^2 (2r+3) = \frac{n}{2} (n+1)(n^2+3n+1)$$
(4)

(b) Hence calculate the value of	$\sum_{r=10}^{25} r^2 (2r+3)$
----------------------------------	-------------------------------

estion 3 continued	

4. $z_1 = p + 5i$, $z_2 = 9 + 8i$ and $z_3 = \frac{z_1}{z_2}$

where p is a real constant.

(a) Determine z_3 in the form x + iy, where x and y are in terms of p

(3)

(b) Determine the exact value of the modulus of \boldsymbol{z}_2

(1)

Given that the argument of z_1 is $\frac{\pi}{3}$

- (c) (i) determine the exact value of p
 - (ii) determine the exact value of the modulus of z_3

(3)

_			
_			
_			

Overtion 4 continued	blank
Question 4 continued	
	Q4
(Total 7 marks)	

	<u>3</u>	
5.	$f(x) = x^4 - 12x^{2} + 7$	$x \geqslant 0$

(a) Show that the equation f(x) = 0 has a root, α , in the interval [2, 3].

(2)

(b) Taking 2.5 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to find a second approximation to α , giving your answer to 2 decimal places.

(c) Show that your answer to (b) gives α correct to 2 decimal places.

(2)

nestion 5 continued	

 $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$

The transformation represented by **A** maps the point R(3p-13, p-4), where p is a constant, onto the point R'(7, -2)

(a) Determine the value of *p*

(3)

The point S has coordinates (0, 7)

Given that O is the origin,

(b) determine the area of triangle *ORS*

(2)

The transformation represented by A maps the triangle ORS onto the triangle OR'S'

(c) Hence, using your answer to part (b), determine the area of triangle OR'S'

(2)

	Le
	bl
Question 6 continued	

Leave blank

Question 6 continued		

(1)

- 7. The equation $3x^2 + px 5 = 0$, where p is a constant, has roots α and β .
 - (a) Determine the value of
 - (i) $\alpha\beta$

(ii)
$$\left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$$

- (b) Obtain an expression, in terms of p, for
 - (i) $\alpha + \beta$

(ii)
$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$$
 (3)

Given that

$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$$

- (c) determine the value of p.
- (d) Using the value of p found in part (c), obtain a quadratic equation, with integer coefficients, that has roots $\left(\alpha + \frac{1}{\beta}\right)$ and $\left(\beta + \frac{1}{\alpha}\right)$

nestion 7 continued		L
nestion / continued		b
	Question 7 continued	

Leave blank

uestion 7 contin	ued		

stion 7 continued	

8. A rectangular hyperbola, H, has Cartesian equation xy = 16

The point $P\left(4t, \frac{4}{t}\right)$, $t \neq 0$, lies on H.

(a) Use calculus to show that an equation of the normal to H at P is

$$ty - t^3x = 4 - 4t^4$$

(5)

The point A on H has parameter t = 2

The normal to H at A meets H again at the point B.

(b) Determine the exact value of the length of AB.

(6)

The tangent to H at A meets the y-axis at the point C.

(c) Determine the exact area of triangle ABC.

(3)

]
nection 9 continued	
uestion 8 continued	

Leave blank

Question 8 continued		

	blank
Question 8 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	Q8
(Total 14 mark	(s)

Prove by induction that, for $n \in \mathbb{Z}^+$, f(n) is a multiple of 9

(6)

(ii) A sequence of numbers is defined by

$$u_1 = 2 \qquad u_2 = 6$$

$$u_{n+2} = 3u_{n+1} - 2u_n \qquad n \in \mathbb{Z}^+$$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 2(2^n - 1)$$

(6)

nestion 9 continued	

Leave blank

uestion 9 continued		

uestion 9 continued	
restion 5 continued	

Question 9 continued	blank
	Q9
(Total 12 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	