Soit α un réel strictement supérieur à 1.

On désigne par $\left(u_{n}\right)$ la suite définie sur IN par : $u_{0}=2\alpha$ et pour tout $n\in IN$, $u_{n+1}=\frac{\alpha^{2}+u_{n}^{2}}{2\pi}$

- **1.** Montrer que pour tout $n \in IN$, on a : $U_n > \alpha$.
- **2.** Montrer que la suite (u_n) est monotone. En déduire que (u_n) est convergente.
- **3.a.** Montrer que pour tout $n \in IN$, on a : $0 < u_{n+1} \alpha \le \frac{1}{2}(u_n \alpha)$.
 - $\textbf{b.} \ \text{En d\'eduire que pour tout } n \in IN, \ \text{on a} : \ u_n \alpha \ \leq \ \alpha \bigg(\frac{1}{2}\bigg)^n \ . \ D\acute{e}terminer \ alors \ \lim_{n \ \rightarrow \ +\infty} u_n \ .$
- **4.a.** Montrer que pour tout $n \in IN^*$, on a : $\alpha n < \sum_{k=1}^n u_k \le \alpha n + \alpha \left| 1 \left(\frac{1}{2}\right)^n \right|$.
- **b.** Déterminer alors $\lim_{n \to +\infty} \sum_{k=0}^{n} u_k$ et $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n} u_k$.

Exercice2:

Soit f la fonction définie sur IR par : $f(x) = \frac{x}{1+x^2}$.

On définit la suite $\left(u_{n}\right)$ définie sur IN par : $u_{0}=1$ et pour tout $n\in IN$, $u_{n+1}=f\left(u_{n}\right)$.

- **1.a.** Montrer que pour tout $n \in IN$, $u_n > 0$.
 - **b.** Etudier la monotonie de la suite (u_n) . En déduire (u_n) est convergente et déterminer sa limite.
- **2.a.** Vérifier que pour tout $k \in \mathbb{N}$, $\frac{1}{H^2} \frac{1}{H^2} = 2 + u_k^2$. En déduire que pour tout $\in \mathbb{N}^*$, $\frac{1}{H^2} = 2n + 1 + \sum_{k=0}^{n-1} u_k^2$.
 - **b.** Montrer que pour tout $n \in IN^*$, $u_n \le \frac{1}{\sqrt{2n+1}}$. En déduire $\lim_{n \to +\infty} u_n$.
- **4.** Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{n=1}^{n} f\left(\frac{k}{n^2}\right)$.
 - **a.** Montrer que pour tout $x \in \mathbb{R}_+$, $x \frac{x^2}{2} \le f(x) \le x$.
 - **b.** Montrer que pour tout $n \in \times$, $\frac{n+1}{2n} \frac{(n+1)(2n+1)}{12n^3} \leq S_n \leq \frac{n+1}{2n}$. (On donne $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$, $n \in IN^*$).
 - **c.** En déduire que la suite (S_n) est convergente et calculer $\lim_{n \to +\infty} S_n$

Exercice3:

On considère la suite (u_n) définie sur IN par : $u_0 = 1$ et pour tout $n \in IN$, $u_{n+1} = \frac{u_n}{\left(1 + \sqrt{u_n}\right)^2}$.

- **1.a.** Montrer que pour tout $n \in IN$, $u_n > 0$
 - **b.** Montrer que la suite (u_n) est décroissante. En déduire que (u_n) est convergente.
- **2.** Soit (v_n) la suite définie sur IN par : $v_n = \frac{1}{\sqrt{11}}$.
 - **a.** Montrer que (v_n) est une suite arithmétique de raison égale à 1.
- **b.** Exprimer alors V_n puis u_n en fonction de n et déterminer $\lim_{n \to \infty} u_n$.
- **3.** Pour tout $n \in IN^*$, on pose $s_n = \sum_{k=1}^{n} u_k$.
 - a. Montrer que la suite (s_n) est croissante.
 - **b.** Montrer que pour tout $k \in \mathbb{N}^*$, $u_k \leq \frac{1}{k} \frac{1}{k+1}$. En déduire que pour tout $n \in \mathbb{N}^*$, $s_n \leq 1 \frac{1}{n+1}$.
 - **c.** Montrer alors que la suite (s_n) est convergente et donner un encadrement de sa limite.

Exercice4:

On considère la suite (u_n) définie sur IN* par : $u_n = \sum_{k=1}^n \frac{k^2}{n^3 + k}$.

 $\textbf{1. D\'{e}montrer que pour tout } n \in IN^{\star}, \ \frac{\left(n+1\right)\!\left(2n+1\right)}{6\!\left(n^2+1\right)} \leq u_n \leq \frac{n\!\left(2n+1\right)}{6\!\left(n^2-n+1\right)}.$

$$(\text{On donne } \sum_{k=1}^n k^2 = \frac{n \left(n+1\right) \! \left(2n+1\right)}{6} \text{ , } n \, \in \, I\! N^*).$$

2. En déduire que (u_n) est convergente et calculer sa limite.

Exercice5:

On considère la suite (u_n) définie sur IN^* par : $u_n = \frac{1}{n} \sum_{k=1}^n cos \left(\frac{1}{\sqrt{n+k}} \right)$.

- $\textbf{1. Montrer que pour tout } n \in IN^*, \ \frac{\sqrt{2n}}{2} \leq \sum_{k=1}^n \frac{1}{\sqrt{n+k}} \leq \frac{n}{\sqrt{n+1}} \ . \ En \ déduire \lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{\sqrt{n+k}} \ .$
- 2. Soit f la fonction définie sur $[0, \frac{\pi}{2}]$ par : $f(x) = 1 x \cos x$

Etudier les variations de f sur $[0, \frac{\pi}{2}]$. En déduire que pour tout $x \in [0, \frac{\pi}{2}]$, $\cos x \ge 1 - x$.

3. Montrer que pour tout $n \in IN^*$, $1 - \frac{1}{\sqrt{n+1}} \le u_n \le 1$. En déduire $\lim_{n \to +\infty} u_n$.

Exercice6:

On considère la suite (u_n) définie sur IN par : $u_0 = 1$ et pour tout $n \in IN$, $u_{n+1} = u_n + \frac{1}{u_n}$

- **1.a.** Montrer que pour tout $n \in IN$, $u_n > 0$.
 - **b.** Etudier la monotonie de la suite (u_n) .
- **2.a.** Pour tout $k \in IN$, exprimer $u_{k+1}^2 u_k^2$ en fonction de u_k^2 .

 - **c.** Montrer que pour tout $n \in IN^*$, $u_n^2 \ge 2n + 1$. En déduire $\lim_{n \to +\infty} u_n$.

Exercice7:

- **1.** On considère la suite (u_n) définie sur IN^* par : $u_1 = 2$ et pour tout $n \in IN^*$, $u_{n+1} = 2 + \frac{n^2}{u_n}$.
- **a.** Montrer, par récurrence que, pour tout entier $n \ge 2$, $n < u_n < n+1$. En déduire $\lim_{n \to +\infty} u_n$.
- **b.** Montrer que la suite (u_n) est croissante.
- **2.** Soit (v_n) la suite définie sur IN^* par : $v_n = \frac{1}{u_n n} 1$.
 - **a.** Calculer V_1 et montrer que pour tout $n \in IN^*$, $V_{n+1} = \frac{1}{V_n + \frac{1}{n}}$.
- **b.** Montrer, par récurrence, que pour tout $n \in IN^*$, $1 \frac{1}{n} \le v_n \le 1$ puis déterminer $\lim_{n \to +\infty} v_n$ et $\lim_{n \to +\infty} \left(u_n n\right)$.
- 3. Pour tout $n \in IN^*$, on pose $s_n = \frac{1}{n^2} \sum_{k=1}^n k v_k$
 - $\textbf{a. Montrer que pour tout } n \in IN^*, \ \textbf{S}_n \frac{n+1}{2n} = \frac{1}{n^2} \sum_{k=1}^n k \left(\textbf{V}_k 1 \right).$
- **b.** Montrer que pour tout entier $k \ge 1$, $\left| k \left(v_k 1 \right) \right| \le 1$.
- $\textbf{c.} \text{ En d\'eduire que pour tout } n \in IN^*, \ \left| s_n \frac{n+1}{2n} \right| \leq \frac{1}{n} \text{ puis d\'eterminer } \lim_{n \, \to \, +\infty} s_n \, .$

Exercice8:

Soit f la fonction définie sur [2, + ∞ [par : $f(x) = \frac{x^2}{2x-2}$.

- **1.** Etudier les variations de f sur $[2, +\infty[$.
- **2.** On considère la suite (u_n) définie sur IN par : $u_0 = 4$ et pour tout $n \in IN$, $u_{n+1} = f(u_n)$.
- a. Montrer que pour tout $n \in IN$, $u_n \geq 2$.
- **b.** Montrer que la suite (u_n) est monotone. En déduire que (u_n) est convergente et précisera limite.

- **3.a.** Montrer que pour tout $n \in IN$, $u_{n+1} 2 \le \frac{1}{2} (u_n 2)$.
 - **b.** En déduire que pour tout $n \in IN$, $u_n 2 \le \left(\frac{1}{2}\right)^{n-1}$. Retrouver $\lim_{n \to +\infty} u_n$.
- $\textbf{4. Pour tout } n \in IN^*, \ S_n = \frac{2}{n^4} \sum_{k=1}^n k^3 u_k = \frac{2}{n^4} \Big(u_1 + 2^3 u_2 + \ldots + n^3 u_n \Big).$
- **a.** Montrer que pour tout $n \in IN^*$, $\sum_{k=1}^{n} k^3 = \frac{n^2 (n+1)^2}{4}$
- $\textbf{b.} \ \text{En d\'eduire que pour tout } n \in IN^{\star}, \ S_n \left(1 + \frac{1}{n}\right)^2 = \frac{2}{n^4} \sum_{k=1}^n k^3 \left(u_k 2\right).$
- $\textbf{c. Montrer que pour tout } n \in IN^{\star}, \ \left|S_n \left(1 + \frac{1}{n}\right)^2\right| \leq \frac{4}{n} \left(1 \frac{1}{2^n}\right) \text{ puis déterminer } \lim_{n \to +\infty} S_n \ .$

Exerice9:

Soit (u_n) la suite définie sur IN par : $u_0 = 1$ et pour tout $n \in IN$, $u_{n+1} = u_n + \frac{2}{u_n}$.

- 1. Montrer que pour tout $n \in IN$, $u_n > 0$.
- **2.a.** Montrer que pour tout $n \in IN$, $u_{n+1}^2 u_n^2 \ge 4$.
 - **b.** En déduire que pour tout $n \in IN$, $u_n \ge 2\sqrt{n}$. Déterminer alors $\lim_{n \to +\infty} u_n$.
- **3.** Soit (v_n) la suite définie sur IN^* par : $v_n = u_{n+1}^2 u_n^2$.

 $\text{Montrer que pour tout } n \, \in \, IN^{^*}, \ \, \boldsymbol{v}_n \, \leq \, 4 + \frac{1}{n} \, \, \text{puis déterminer } \lim_{n \, \to \, +\infty} \boldsymbol{v}_n \, \, .$

- **4.a.** Montrer que pour tout $n \in IN^*$, $\frac{1}{2k} \le \sqrt{k} \sqrt{k-1}$.
 - **b.** En déduire que pour tout $n \in IN^*$, $\sum_{k=1}^n \frac{1}{k} \le 2\sqrt{n}$.
- **5.** Soit (S_n) la suite définie sur IN^* par : $S_n = \sum_{k=1}^n V_k$.
 - **a.** Montrer que pour tout $n \in IN^{\star}, \ S_{n} \leq 4n + 2\sqrt{n}$.
 - **b.** Calculer alors $\lim_{n \to +\infty} \left(\frac{u_n^2}{n} \right)$.

Exercice10:

On considère les suites réelles (u_n) et (v_n) définie sur IN par : $u_0 = 3$ et pour tout $n \in IN$, $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_n = \frac{7}{u_n}$.

- 1. Montrer, par récurrence, que pour tout $n \in IN$, $u_n > 0$ et $v_n > 0$.
- **2.a.** Montrer que pour tout $n \in IN, \ \left(u_n + v_n\right)^2 28 = \left(u_n v_n\right)^2.$
 - **b.** En déduire que pour tout $n \in IN$, $u_{n+1} v_{n+1} = \frac{1}{4u_{n+1}} (u_n v_n)^2$.
 - $\textbf{c.} \text{ Prouver que pour tout } n \in IN, \ \boldsymbol{u}_n \boldsymbol{v}_n \, \geq 0.$
- 3. Montrer que la suite (v_n) et décroissante. En déduire que la suite (v_n) est croissante.
- **4.a.** En s'aidant de la question **2.c**) et de la question **3.b**), démontrer que pour tout $n \in IN$, $u_n \ge \frac{21}{8}$.
 - b. Utiliser le résultat précédent et le résultat 2.b), pour tout démontrer que :

pour tout
$$n \in IN$$
, $u_{n+1} - v_{n+1} \le \frac{1}{10} (u_n - v_n)^2$.

- **c.** En déduire, à l'aide d'un raisonnement par récurrence, que pour tout $n \in IN$, $u_n v_n \le \frac{1}{10^{2^n-1}}$.
- **d.** Sachant que $\lim_{n \to +\infty} \left(\frac{1}{10^{2^n 1}} \right) = 0$, déterminer $\lim_{n \to +\infty} \left(u_n v_n \right)$.
- **5.** Conclure que les suite (u_n) et (v_n) sont adjacentes et déterminer leur limite commune.