Khôlles de Mathématiques \mathbb{HXII} Formules de Taylor et D.L

N. CLOAREC

Du 16-01-17 au 04-02-17

Exercice 1 Donner un développement limité à l'ordre 3 en 0 de

$$(1+\sin x)^{\frac{1}{x}}$$

Exercice 2 Donner un équivalent en 1 de

$$x^{x^x} - x^x$$

Exercice 3 Montrer que l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x e^{x^2}$ admet une application réciproque définie sur \mathbb{R} et former le $DL_5(0)$ de f^{-1} .

Exercice 4 Donner un développement limité à l'ordre 16 en 0 de

$$(\sin x - \sin x)^2 (\tan x - \tan x)^3$$

Exercice 5 Donner un développement limité à l'ordre 100 en 0 de

$$\ln\left(\sum_{k=0}^{99} \frac{x^k}{k!}\right)$$

Exercice 6 Montrer que l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x - \sin x$ admet une application réciproque définie sur \mathbb{R} et former le $DL_6(0)$ de f^{-1} .

Exercice 7 Montrer qu'il existe $(a,b) \in \mathbb{R}^2$, que l'on calculera, tel que, lorsque l'entier n tend vers l'infini :

$$\int_0^1 (1+x^2)^{\frac{1}{n}} \, \mathrm{d}x = a + \frac{b}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Exercice 8 Montrer que, au voisinage de $+\infty$,

$$u_n = \int_{n^2}^{n^3} \frac{\mathrm{d}t}{1+t^2} \sim \frac{1}{n^2}$$

Exercice 9 Former le développement asymptotique à la précision $\frac{1}{n}$ de

$$I_n = \int_0^1 \frac{\mathrm{d}x}{1 + x^n}$$

quand l'entier n tend vers l'infini.

Exercice 10 Soit (u_n) une suite décroissante de réels telle que

$$u_n + u_{n+1} \sim \frac{1}{n}$$

- a) Montrer que (u_n) converge vers 0^+ .
- b) Donner un équivalent simple de (u_n) .

Exercice 11

- a) Soit $n \in \mathbb{N}$. Montrer que l'équation $x^n + \ln x = 0$ possède une unique solution $x_n > 0$.
- b) Déterminer la limite de x_n .
- c) On pose $u_n = 1 x_n$. Justifier que $nu_n \sim -\ln u_n$ puis déterminer un équivalent de u_n .

Exercice 12 Soient $x_1, \ldots, x_n \in \mathbb{R}_+^*$. Montrer que

$$\sqrt[\alpha]{\frac{x_1^{\alpha} + \ldots + x_n^{\alpha}}{n}} \xrightarrow[\alpha \to 0]{} \sqrt[n]{x_1 \ldots x_n}$$