Formale Semantik

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Deutsche-Syntax

Inhalt

- 1 Inferenz und Bedeutung
- 2 Referentielle Semantik
 - Organization
 - Syllabus
 - Course StructureOur subject
 - Linguistic theories
 - Semiotics
 - Generative Grammar
 - Levels of representation
 A referential framework
 - The simple case
 - Complex cases
 - Some fundamental semantic notions
 - Entailment
 - Presupposition
 - Ambiguity, Synonymy, Vagueness, ...
 - From reference to sense
 - Referential and non-referential NPs
 - A 'reference' for complex terms?
 - Sentences refer to o and 1
 - Sense and reference
 - We're talking in fragments: F1
 - A syntax
 - The semantics: individuals, sets, functions, T-sentences
 - Bottom-up evaluation
- Mengen und Funktionen
 Sets and Functions
 - The naive concept
 - Elements, subsets, power sets
 - Union, intersection, etc.
 - Functions and Relations
 - Ordered pairs/sets, n-tuples, Cartesian products

- Trees
- C-command
 Model theory
- Models and valuations
- Assignment functions
- Modified assignment functions
 Droblems with natural language
- Problems with natural language
- Restricted quantification
- Variable binding and scope
- Pre-spellout movement
- LF movement
- Quantification in English: F2
- Movement rules
- Fragment F2
- 7 Einfach getypte höherstufige λ -Sprachen
- Preliminaries
 - Different but related semantics
 - Sets and charactersitic functions
 Functional application
 - Simply typed languages
 - New names for old categories
 - The syntax of types
 - Higher orders
 - Summed up semantics for a higher-order language
 - Lambda languages
 - From set constructor to the functional λ abstractor
 - General syntax/semantics for λ languages

Formale Semantik

- A glimpse at quantification in Montague's system
- 8 Intensionalität
 - Intensionality
 - Problems with extensionality and non-dimensional models
 Intensions
 - Inter
 - A formal account of intensions

Main textbooks

- Chierchia & McConnell-Ginet, Meaning and Grammar
- Partee, ter Meulen & Wall, Mathematical Methods in Linguistics
- Blackburn, Bos & Striegnitz, Learn Prolog now!
- Blackburn & Bos, Computational Semantics for Natural Language

Roland Schäfer Formale Semantik 2 / 287

Further reading

- Bucher, Einführung in die angewandte Logik
- Sag, Wasow & Bender, Syntactic Theory
- Dowty, Tense, Time Adverbs, and Compositional Semantic Theory
- Partee, Noun Phrase Interpretation and Type-shifting Principles
- Copestake, Flickinger & Sag Minimal Recursion Semantics

Roland Schäfer Formale Semantik 3 / 287

The three sessions

- Formal Semantics, 90 min. on Wednesday
- PROLOG, 30 min. on Wednesday
- Tutorial, 90 min. on Friday
- Summer course (implementation), 1 week

Roland Schäfer Formale Semantik 4 / 287

The first weeks: Preliminaries (subject to changes)

```
Session 1 Introduction to Referential Semantics
(CM chap. 1 & 2)
Session 2 Set theory, ordering theory, statement logic
(PMW chap. 1 - 6)
Session 3 Predicate calculi (PMW chap. 7 & 8)
```

Roland Schäfer Formale Semantik 5 / 287

The middle weeks: First steps (subject to changes)

```
Session 4 Quantification and model theory (CM chap. 3)
Session 5 Quantification in English (CM chap. 3)
Session 6 Intensionality (CM chap. 5)
Session 7 Tense, modals, complementizers (CM chap. 5)
Session 8 \lambda (CM chap. 7)
```

Roland Schäfer Formale Semantik 6 / 287

The final weeks: Advanced topics (subject to changes)

```
Session 9 Word meaning (CM chap. 8)
Session 10 Generalized quantifiers (CM chap. 7)
Session 11 Type shifting (Partee)
Session 12 Underspecified scope (Copestake et al.)
Session 13 Backup session
Session 14 Final test on 2004-07-13
```

Roland Schäfer Formale Semantik 7 / 287

What meaning could mean

- The meaning of an expression is the idea conveyed by it.
- ...is the mental image it creates.
- ...is what a speaker wants to achieve by uttering it.
- ...is the set of objects to which it refers (for example in the case of nouns).

Roland Schäfer Formale Semantik 8 / 287

What the study of meaning could be

- The study of the intellectual concepts perceivable in the world.
- ...of how the brain processes expressions, relates it to (fields of) cognitive concepts.
- ...of how a discourse of planful and intelligent agents (humans) is structured.
- ...of the correspondences between expressions and objects; and of how expressions are combined to be used productively.

Roland Schäfer Formale Semantik 9 / 287

What this class is about

- Which objects do words refer to?
- What makes sentences true?
- How is the informational value of sentences related to their logical structure?
- How can sentences be unambiguously interpreted?

Roland Schäfer Formale Semantik 10 / 287

What this class is **not** about

- what words mean,
- how the brain works with sentences,
- the structure of discourse (at least not much).

Roland Schäfer Formale Semantik 11 / 287

The theory of signs: a triangle

Roland Schäfer Formale Semantik 12 / 287

Semantics in the Chomskian T-model

Roland Schäfer Formale Semantik 13 / 287

LF is just the logical form

- No interpretation proper at LF.
- Movement transformations after the sentence has been uttered.
- At the LF level, sentences have a form compatible to their logic.
- Why? Syntax itself is often inadequate to express all alternatives of a sentence's logical representation.

Roland Schäfer Formale Semantik 14 / 287

Some properties of language

- aboutness
- referential nature
- informative
- objectiveness (of content)
- But which linguistic elements refer to what?

Roland Schäfer Formale Semantik 15 / 287

Names

an individual name $\ \ \longrightarrow \ \$ one object in the world

Harald Schmidt

Roland Schäfer Formale Semantik 16 / 287

Common nouns

a common noun \longrightarrow lots of objects soldier

etc.

Roland Schäfer Formale Semantik 17 / 287

Adjectives

an adjective \longrightarrow lots of different objects of different kinds

is human

Roland Schäfer Formale Semantik 18 / 287

Sentences

a sentence

a situation. a fact, ...

A humming bird is hovering over a red flower.

not at all (object type mismatch)

Roland Schäfer Formale Semantik 19 / 287

Frege's Principle: Meaning is compositional

- A humming bird \longrightarrow one of many individuals
- is hovering \longrightarrow a property of that individual
- over \longrightarrow a relation between individuals
- $a red \longrightarrow a$ property of another individual
- flower \longrightarrow the other one of many individuals
- is hovering over a red flower \longrightarrow a complex property.

Roland Schäfer Formale Semantik 20 / 287

Recursion: infinite use of finite means

- Frege's principle is indispensable!
- Harald Schmidt is human.
- Harald Schmidt is human and tall.
- Harald Schmidt is human and tall and male.
- Harald Schmidt is human and tall and male and not blue.
- Harald Schmidt is human and tall and male and not blue and grumpy in the morning...

Roland Schäfer Formale Semantik 21 / 287

Basic semantics judgements

- entailment
- presupposition
- ambiguity
- synonymy

Roland Schäfer Formale Semantik 22 / 287

Entailment: pure logic

- A: This is electronic.
- B: This is a presentation.
- C follows logically: This is an electronic presentation.
- $A, B \vdash C$
- A ⊬ C
- *B* ⊬ *C*

Roland Schäfer Formale Semantik 23 / 287

Entailment: pure logic, formally

- D: Harald Schmidt is human.
- E follows logically: Something is human.
- D ⊢ E
- ullet D \wedge D follows logically: Harald Schmidt is human and Harald Schmidt is human.

• $D \vdash D \land D$

Roland Schäfer Formale Semantik 24 / 287

Tests: X entails Y if...

- When X is true, Y is true.
- A situation described by Y is also described by X.
- The information given by Y is fully contained in the information given by X.

• One cannot say X is true and Y is false.

Roland Schäfer Formale Semantik 25 / 287

Entailments?

- Harald Schmidt is a talkmaster. \rightarrow Harald Schmidt is human.
- Harald Schmidt is tall. → Someone is tall.
- Some humans are tall. \rightarrow Harald Schmidt is tall.
- I have listened to Paul Kalkbrenner's new 12" on bpitchcontrol. \rightarrow Paul Kalkbrenner has released a 12" on bpitchcontrol.
- After I had a Beck's, I installed RedHat on my PC. \rightarrow I had a Beck's.
- After the bootloader had failed to boot RedHat on my PC, I had another Beck's. \to RedHat has never booted on my PC.
- My flatmate likes Beck's. \rightarrow My flatmate hates beer.
- ullet Harald Schmidt cancelled his show. o Harald Schmidt's show was cancelled.

Roland Schäfer Formale Semantik 26 / 287

Presuppostion: the background

- A: Willy Brandt is the current chancelor of the FRG.
- B: If Willy Brandt is the current chancelor of the FRG, why doesn't he do something?
- C: Willy Brandt is not the current chancelor of the FRG.
- A and B presuppose D: Willy Brandt is alive., C doesn't.
- A, B, and C presuppose E: There is a chancelor of the FRG.
- Note: A ⊢ D, A ⊢ E
- But: B / D, B / E, C / E

Roland Schäfer Formale Semantik 27 / 287

Presuppostion: two tests

- Presuppositions are triggered by all sorts of sentences (incl. negations, modals, conditionals, etc.).
- Presuppositions can be negated while the sentence which presupposes them remains true. Entailments cannot be negated while keeping the entailing sentence true.

Roland Schäfer Formale Semantik 28 / 287

Ambiguity in syntax

- She saw the man with a telescope.
- She [saw the man] with a telescope.
- She saw [the man with a telescope].

Roland Schäfer Formale Semantik 29 / 287

Ambiguity in semantics: scope

- Everybody loves somebody.
- Every person loves at least one other person. (Needn't be the same.)
- There is one person loved by everyone

Roland Schäfer Formale Semantik 30 / 287

Synonymy

- Lexical synonymy: humming bird $\stackrel{\text{lex}}{\equiv}$ colibri
- $A \equiv B \text{ iff } A \vdash B \text{ and } B \vdash A$

Roland Schäfer Formale Semantik 31 / 287

Noun-like expressions and complex NPs

- I saw a man.
- I saw the green wobbly thing crawling near.
- I saw it.

Roland Schäfer Formale Semantik 32 / 287

Problems with referential NPs

- The dark subatomic particles in the universe have a total mass much larger than the visible subatomic particles.
- Problems with referential semantic theories don't concern Rumpletweezer.
- and of course, vagueness (e.g., Sorites Paradox)

Roland Schäfer Formale Semantik 33 / 287

Problems with non-referential NPs

- some guy
- not the faintest trace of blood
- any axiom of Zermelo-Fraenkel set theory

Roland Schäfer Formale Semantik 34 / 287

Beyond pointin-at-and-naming

We need a logic to explain for effects like:

my humming bird's favorite flower is red - some flower is red

Roland Schäfer Formale Semantik 35 / 287

Some content-synonymous simple expressions

- a: colibri
- b: humming bird
- c: a brunette lady
- d: a brown-haired dame
- e: the primates
- f: the apes and humans
- $a \stackrel{lex}{\equiv} b$, $c \stackrel{lex}{\equiv} d$, $e \stackrel{lex}{\equiv} f$

Roland Schäfer Formale Semantik 36 / 287

Some content-synonymous complex expressions

- A: A colibri is hovering over a red flower.
- B: A humming bird is hovering over a red flower.
- C: Lauren Bacall was a brunette lady
- D: Lauren Bacall was a brown-haired dame
- E: Primates are intelligent.
- F: The apes and humans are inteligent.
- A \equiv B, C \equiv D, E \equiv F

Roland Schäfer Formale Semantik 37 / 287

Two axioms

- Ax1 Two expressions (e.g., NPs, sentences) that are synonymous have the same reference.
- Formally: $A \equiv B$ then A = B
- Note: [A] is applicable to simplex and complex expressions A; it just produces the reference of A.
- Ax2 If we replace expression B within expression A with the synonymous expression C, then A does not change its reference.
- Formally: If [B] = [C] then [[A B]] = [[A C]]

Roland Schäfer Formale Semantik 38 / 287

One common property of sentences: the truth value

- A: Lauren Bacall was a brunette lady. (assumed to be true in the actual world)
- B: My cat sleeps quietly. (assumed to be true in the actual world)

Roland Schäfer Formale Semantik 39 / 287

First conclusion

- [TA] = The truth value of 'Lauren Bacall was a brunette lady' is 1.
- [TB] = The truth value of 'My cat sleeps quietly' is 1.
- Such that $A \equiv [TA]$ and $B \equiv [TB]$. (Check: Whenever A is true, [TA] is true and v.v.)
- So, by Ax1 [A] = [[TA]] and [B] = [[TB]]

Roland Schäfer Formale Semantik 40 / 287

Second conclusion

- Check the denotations of the contained NPs: [the truth value of A] = [the truth value of B] = 1
- Such that by Ax2:
- $\llbracket \lceil \mathsf{T} \mathsf{A} \rceil \rrbracket = \llbracket \lceil \mathsf{T} \mathsf{B} \rceil \rrbracket$
- Why? Exchanging the referentially identical NPs 'the truth value of A' and 'the truth value of B' in the otherwise identical sentences '_ is 1' forces us to conclude by Ax2 that also the whole sentences must have the same reference. Our book (CM) is a bit vague on that point.

Roland Schäfer Formale Semantik 41 / 287

Final conclusion

$$[A] = [[TA]] = [[TB]] = [B] = 1$$

Sentences denote truth values.

Roland Schäfer Formale Semantik 42 / 287

Advantages of truth values

- indirect encoding of 'richer' semantics (One must know the truth conditions of a sentence and the state of affairs to decide about the truth of a sentence.)
- a minimal common semantic property of sentences
- easily computable in a formal system (binary)
- their logic provides a basis for 'richer' semantics (cf. second half of class)

Roland Schäfer Formale Semantik 43 / 287

Frege also thought, reference couldn't be all

Туре	Reference	Sense
NP	individuals	individual concepts
	Venus	
VP	sets	property concepts
	humming birds	
S	1 or O	thoughts
	I like cats.	

Roland Schäfer Formale Semantik 44 / 287

Some terminology

- reference = extension = what we're dealing with first
- sense = intension = what we will be dealing with later
- proposition = the intensions of sentences as informational content: The 'thought that S'.

Roland Schäfer Formale Semantik 45 / 287

Decomposing compositionality and composing truth

- How are sentences compositionally built up?
- What do their parts denote?
- How does the denotation of the parts contribute to the whole.
- T-sentences: S of L is true in v iff p.
- S a sentence, L a language, v a state of affairs, p a statement of the truth conditions.

Roland Schäfer Formale Semantik 46 / 287

A phrase-structure grammar

- $\bullet \ \, \mathsf{S} \to \mathsf{N} \; \mathsf{VP}$
- $S \rightarrow S conj S$
- $\bullet \ S \to neg \ S$
- $\bullet \ \, \mathsf{VP} \to \mathsf{V_i}$
- $\bullet \ VP \to V_t \ N$

A lexicon

- ullet N o Herr Webelhuth, Frau Eckardt, the Turm-Mensa
- ullet $V_i
 ightarrow is relaxed, is creative, is stupid$
- $\bullet \ V_t \to \textit{prefers}$
- conj \rightarrow and, or
- $neg \rightarrow it$ is not the case that

Roland Schäfer Formale Semantik 48 / 287

Simple denotiations

- [Herr Webelhuth] = Herr Webelhuth
- [Frau Eckardt] = Frau Eckardt
- [the Turm-Mensa] = the Turm-Mensa
- [is relaxed] = {x:x is relaxed}
- [is creative] = {x:x is creative}
- [is stupid] = {x:x is stupid}
- [[prefers]] = {\langle x,y \rangle : x prefers y}

Roland Schäfer Formale Semantik 49 / 287

Some words don't really 'denote', they act like functions

•
$$\llbracket \textit{neg} \rrbracket = \left[egin{array}{c} 1
ightarrow 0 \ 0
ightarrow 1 \end{array} \right]$$

•
$$\llbracket and \rrbracket = \begin{bmatrix} \langle 1,1 \rangle \to 1 \\ \langle 1,0 \rangle \to 0 \\ \langle 0,1 \rangle \to 0 \\ \langle 0,0 \rangle \to 0 \end{bmatrix}$$

$$ullet exttt{ [or]} = egin{bmatrix} \langle 1,1
angle
ightarrow 1 \ \langle 1,0
angle
ightarrow 1 \ \langle 0,1
angle
ightarrow 1 \ \langle 0,0
angle
ightarrow 0 \end{bmatrix}$$

Roland Schäfer Formale Semantik 50 / 287

T-sentences: rule-to-rule

- $\llbracket \llbracket \llbracket S \ N \ VP \rrbracket \rrbracket \rrbracket = 1 \ \text{iff} \ \llbracket N \rrbracket \in \llbracket VP \rrbracket$, else o
- [[s S1 conj S2]] = [conj] (([S1],[S2]))
- [[s neg S]] = [neg] ([S])
- $\llbracket \llbracket V_t \ N \rrbracket \rrbracket = \{x: \langle x, \llbracket N \rrbracket \rangle \in \llbracket V_t \rrbracket \}$
- semantics for non-branching nodes: pass-up

Roland Schäfer Formale Semantik 51 / 287

A starting point for our computation

Herr Webelhuth is relaxed.

- Circumstances (Model): Herr Webelhuth is an element of the set of relaxed individuals.
- ullet (1) The syntax is well-formed by S ightarrow N VP
- (2) for N: [Herr Webelhuth] = Herr Webelhuth
- (3) for VP: [is relaxed] = {x: x is relaxed}
- (4) for S: $[[S \ N \ VP]] = 1 \ iff <math>[N] \in [VP]$, else O

Roland Schäfer Formale Semantik 52 / 287

A starting point for our computation

The tree:

1 since $[Herr Webelhuth] \in [is relaxed]$ VP [Herr Webelhuth] [is relaxed]

Roland Schäfer Formale Semantik 53 / 287

We compute syntactic representations, not flat sentences

($_{S1}$ Frau Eckardt is creative) and it is not the case that ($_{S2}$ Herr Webehlhuth is relaxed) and ($_{S3}$ Frau Eckardt prefers the Turm-Mensa).

Roland Schäfer Formale Semantik 54 / 287

A starting point for our computation

Circumstances: Herr Webelhuth is relaxed, Frau Eckardt is creative, and Frau Eckardt does not prefer the Turm-Mensa:

Roland Schäfer Formale Semantik 55 / 287

What is a set?

- a freely defined unordered collection of discrete objects
 - numbers,
 - people,
 - pairs of shoes,
 - ▶ words, ...
- not necessarily for any purpose
- no object occurs more than once

Roland Schäfer Formale Semantik 56 / 287

Set definition and elements: ∈

- $M_1 = \{a, b, c\}$
- N₁ = {'my book'}
 vs. N₂ = {my book}
 vs. N₃ = {'my', 'book'}
- ill-formed: N₄ = {'my', book}
- defined by a property of its members:
 M₂ = {x:x is one of the first three letters of the alphabet}
- alternatively:
 M₂ = {x||x is one of the first three letters of the alphabet}
- U: the universal set (contains every discrete object)

Roland Schäfer Formale Semantik 57 / 287

Equality: =

- Two sets with contain exactly the same members are equal.
- independent of definition:

```
{a,b,c} = 
{x:x is one of the first three letters of the alphabet}
```

• {x:x is human} = {x:x is from the planet earth and x can speak}

Roland Schäfer Formale Semantik 58 / 287

Subsets: ⊂

- A set N which holds no member which is not in M is a subset of M: $N \subseteq M$
- $\{a\} \subseteq \{a,b,c\}$
- the inverse: the superset

Roland Schäfer Formale Semantik 59 / 287

- A set N which holds no member which is not in M and which is not equal to M is a proper subset of M: $N \subset M$
- So, actually: $\{a\} \subset \{a,b,c\}$ and $\{a,b,c\} \subseteq \{a,b,c\}$. Note that:
- $M \subseteq M$ but $M \not\subset M$
- $\{\{a\}\} \not\in \{a, b, c\}$
- $\{\} \subset \{a,b,c\}$ (or any set), $\{\}$ is sometimes written \emptyset

Roland Schäfer Formale Semantik 60 / 287

Elements vs. subsets

- All professors of English Linguistics are human.
 Herr Webelhuth is a professor of English Linguistics.
- w = Herr Webelhuth
 E = the set of professors of English Linguistics
 H = the set of human beings
- $w \in E \& E \subset H \Rightarrow w \in H$

Roland Schäfer Formale Semantik 61 / 287

Elements vs. subsets

- But: Professors of English Linguistics are numerous.
- N = the set of sets with numerous members
- $w \in E \& E \in N \not\Rightarrow w \in P$
- Hence: *Herr Webelhuth is numerous.

Roland Schäfer Formale Semantik 62 / 287

Power sets: 6

- For any set M: $\wp(M) = \{X | X \subseteq M\}$
- for M= $\{a, b, c\}$: $\wp(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b, c\}, \{b, c\}\}$
- Why is the empty set in the power set of every set ...
- ...and why is the empty a set a proper subset of every set?

Roland Schäfer Formale Semantik 63 / 287

Union \cup and intersection \cap

- For any sets M and N: $M \cup N = \{x | | x \in M \text{ or } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$
- For any sets M and N: $M \cap N = \{x | x \in M \text{ and } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b\}$ then $M \cap N = \{a, b\}$
- as a general principle (Consitency): $M \subseteq N$ iff $M \cup N = N$ and $M \subseteq N$ iff $M \cap N = M$

Roland Schäfer Formale Semantik 64 / 287

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcup_{i \in I} M = \{a, b, c\}$
- $\bigcap M = \{x | x \in Y \text{ for every } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}$ then $\bigcap M = \{a\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcap_{i \in I} M = \{a\}$

Roland Schäfer Formale Semantik 65 / 287

Difference - and complement \ and '

- For any two sets M and N: $M N = \{x | x \in M \text{ and } x \notin N\}$
- $M = \{a, b, c\}, N = \{a\}, M N = \{b, c\}$
- For any two sets M and N: $M \setminus N = \{x | x \in N \text{ and } x \notin M\}$
- $O = \{a, b, c, k\} M \setminus O = \{k\}$
- the universal complement: $M' = \{x | x \in U \text{ and } x \notin M\}$ (U the universal set)

Roland Schäfer Formale Semantik 66 / 287

Trivial equalities

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...
- Associativiy for \cup and \cap : $(M \cup N) \cup O = M \cup (N \cup O)$...
- Distributivity for \cup and \cap : $M \cup (N \cap O) = (M \cup N) \cap (M \cup O)$...
- Identity: $M \cup \emptyset = X$, $M \cup U = U$...what about \cap

Roland Schäfer Formale Semantik 67 / 287

More interesting equalities

- Complement laws: $M \cup \emptyset = M$, M'' = M, $M \cap M' = \emptyset$, $X \cap U = U$
- DeMorgan: $(M \cup N)' = M' \cap X' \dots$

Roland Schäfer Formale Semantik 68 / 287

How to define an ordered pair

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $(a, b) = \{\{a\}, \{a, b\}\}$
- · orderend n-tuples defined recursively
- $\langle a, b \rangle \neq \langle b, a \rangle$
- first and second coordinate of the tuple

Roland Schäfer Formale Semantik 69 / 287

Cartesian products

- sets of ordered pairs
- · tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | | x \in S_1 \text{ and } y \in S_2 \}$
- for an arbitrary number of sets: $S_1 \times \cdots \times S_n = \{\langle x_1, x_2, \dots, x_n \rangle | | x_i \in S_i \}$
- $\langle x_1, x_2, \dots, x_n \rangle$ abbreviated \vec{x}
- for $S \times S \times \cdots$: n-fold products $S^n = {\vec{s} || s_i \in S \text{ for } 1 \le i \le n}$

Roland Schäfer Formale Semantik 70 / 287

Defintion of relations

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...
- formalization: Rab, aRb
- $a \in A$ and $b \in B$: $R \subseteq A \times B$, R is from A (domain) to B (range)
- R from A to A is in A

Roland Schäfer Formale Semantik 71 / 287

Complement, inverse

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - Arr R' = all pairs $\langle b,a \rangle$ s.t. it is false that the first member is the teacher of the second member
- inverse: $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b: Herr Webelhuth is the teacher of Herr Schäfer.
 - ▶ R^{-1} = all pairs $\langle b, a \rangle$ where a is the teacher of b: Herr Schäfer is the inverse-teacher of Herr Webelhuth.

Roland Schäfer Formale Semantik 72 / 287

Functions

- A function F from A to B is a relation s.t. for every $a \in A$ there is exactly on tuple $\langle a, b \rangle \in A \times B$ s.t. a is the first coordinate.
- partial function from A to B: for some $a \in A$ there is no tuple $\langle a, b \rangle \in A \times B$, F is not defined for some a

Roland Schäfer Formale Semantik 73 / 287

Injection, surjection, bijection

- B the range of F, F is **into** B
- F from A to B is **onto (a surjection)** B iff there is no $b_i \in B$ s.t. there is no $\langle a, b_i \rangle \in F$
- F from A to B is **one-to-one (an injection)** iff there are no two pairs s.t. $\langle a_i, b_j \rangle \in F$ and $\langle a_k, b_i \rangle \in F$
- one-to-one, onto, and total function: correspondence (bijection)

Roland Schäfer Formale Semantik 74 / 287

Composition

- One can take the range of a function and make it the domain of another function.
- A function $F_1:A\to B$ and a function $F_2:B\to C$ can be composed as B(A(a)), short $B\circ A$
- the compound function can be empty, it will be total if both A and B are bijections.

Roland Schäfer Formale Semantik 75 / 287

Reflexivity

A relation R in $A = \{a, b, \ldots\}$ is...

	if	(ex.)
reflexive	for every $a \in A$: $\langle a, a \rangle \in R$	
irreflexive non-reflexive	for every $a \in A$: $\langle a, a \rangle \notin R$ for some $a \in A$: $\langle a, a \rangle \notin R$	A: physical objects is the father of has hurt

Roland Schäfer Formale Semantik 76 / 287

Symmetry

A relation R in $A = \{a, b, \ldots\}$ is...

	if	(ex.)
symmetric	for every $\langle a,b\rangle\in R$: $\langle b,a\rangle\in R$	has the same car as
asymmetric	for every $\langle a,b\rangle\in R$: $\langle b,a\rangle\not\in R$	has a different car than
non-symmetric	for some $\langle a,b\rangle\in R$: $\langle b,a\rangle\not\in R$	is the sister of
anti-symmetric	for every $\langle a,b\rangle\in R$: $a=b$	beats oneself not every human does

Roland Schäfer Formale Semantik 77 / 287

Transitivity

A relation R in $A = \{a, b, \ldots\}$ is...

	if	(ex.)
transitive	if $\langle a,b\rangle\in R$ and $\langle b,c\rangle\in R$	is to the left of
	then $\langle a,c \rangle \in R$	
intransitive	the above is never the case	is the father of
non-transitive	the above is sometimes not the case	likes

Roland Schäfer Formale Semantik 78 / 287

Connectedness

A relation R in $A = \{a, b, \ldots\}$ is...

	if	(ex.)
connected	for every $a, b \in A$, $a \neq b$:	>
	either $\langle a,b \rangle \in R$ or $\langle b,a \rangle \in R$	(A: the natural numbers)
non-connected	for some $a, b \in A$	likes
	the above is not the case	

Roland Schäfer Formale Semantik 79 / 287

Equivalence relations

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R)$
- is as stupid as
- partition the range into equivalence classes: $A = \{a, b, c, d\}$, for example $P_{A_1} = \{\{a, b\}, \{c\}, \{d\}\}$
- not {{a}, {b, c}} or {{a, b}, {b, c}, {d}}

Roland Schäfer Formale Semantik 80 / 287

Defining ordering relations

An ordering relation R in A is ...

- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \rightarrow \langle a,c\rangle \in R)$...plus ...
- irreflexive and asymmetric: **strict order**
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$
- reflexive and anti-symmetric: weak order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$

Roland Schäfer Formale Semantik 81 / 287

Orders: an example

- a strict order: greater than (>) in $\mathbb N$
- what is the corresponding weak order
- ≥

Roland Schäfer Formale Semantik 82 / 287

- minimal: x is not preceded
- least: x precedes every other lement
- maximal: x is not succeeded
- greatest: x succeeds every other element
- well-ordering: total order, every subset has a least element

Roland Schäfer Formale Semantik 83 / 287

The number of elements...

- $A = \{a, b, c\}$
- $B = \{a, b, c\}$
- obviously, A = B (equal)
- there is an R from A to B s.t. $R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\}$
- for every set C with the same number of elements (e.g., $C = \{1, 2, 3\}$): $R = \{\langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 3 \rangle\}$
- such relations are one-to-one correspondences

Roland Schäfer Formale Semantik 84 / 287

Denumerable sets

- N is infinite
- for every A there is some R_{card}
 - a one-to-one correspondence
 - from A's members to the first n members of \mathbb{N}
 - ▶ s.t. *n* is the cardinality of A, ||A||
- sets A,B with ||A|| = ||B|| are equivalent
- $\|\mathbb{N}\| = \aleph^0$

Roland Schäfer Formale Semantik 85 / 287

A problem

- for some sets there is no such R_{card}
- no way of bringing their elements into an exhaustive linear order
- no problem with \mathbb{Q} :

 $\langle 0, 1 \rangle$

 $\langle 0, 2 \rangle$

 $\langle 0, 3 \rangle$

 $\langle 1, 0 \rangle$

 $\langle 1, 1 \rangle$ $\langle 1, 2 \rangle$

 $\langle 1, 3 \rangle$

 $\langle 2, 0 \rangle$

 $\langle 2, 1 \rangle$

 $\langle 2, 2 \rangle$

 $\langle 2, 3 \rangle$

Roland Schäfer Formale Semantik 86 / 287

The non-denumerable real numbers

- now: \mathbb{R}
- \bullet some elements cannot be represented as an ordered pair of two elements of $\mathbb N$
- in [0,1], every real can be represented as 0.abcdefg..., $a,b,c,d,e,f,g,... \in \{0,1,2,3,4,5,6,7,8,9\}$

Roland Schäfer Formale Semantik 87 / 287

Trying to enumerate

• an enumeration of [0,1] in \mathbb{R} ?

Roland Schäfer Formale Semantik 88 / 287

Failing to enumerate

• What about an x_m which differs from x_n at a_{nn}

- It won't be in the array...
- ℝ is non-denumerable
- If $||A|| = \aleph^0$ then $||\wp(A)|| = 2^{\aleph_0}$ (cf. Partee et al. 62f.)

Roland Schäfer Formale Semantik 89 / 287

The book (PMW:87-246) deals with logic far more in-depth than we do. Only what is mentioned on the slides is relevant for the test. Reading the whole chapter from PMW will do you no harm, though.

Roland Schäfer Formale Semantik 90 / 287

Theories

- a collection of statements (propositions)
- axioms (statements accepted to be true)
- maybe based on observations (induction)
- statements that follow from the axioms (deduction)
- predictions beyond the axioms
- rechecking for usability: e.g., Russell's paradox

Roland Schäfer Formale Semantik 91 / 287

Proofs

- axioms: atomic truths of your theory
- theorem: a proposition you want to prove
- lemma: subsidiary propositions (used to prove the theorem)
- corollary: propositions proved while proving some axiom

Roland Schäfer Formale Semantik 92 / 287

A method of reasoning

- logic does not generate truths
- formalizing statements, predications etc.
- rules of deduction from axioms to theorems
- empirical (induction) and exact (deduction) science
- aiming at an adequate model of the world (e.g., heliocentric universe)

Roland Schäfer Formale Semantik 93 / 287

Why logic for semantics?

- truth-conditional
- compositional behavior of propositions and connectives
- a logic for entailments
- ullet why, e.g.: It is not the case that someone is happy. o Nobody is happy.

Roland Schäfer Formale Semantik 94 / 287

Atomic formulas: statements

- statements/propositions = the atoms
- a propositional symbol p: a well-formed formula (wff)
- ex.: Herr <u>K</u>eydana is a passionate cyclist.: k
- [k]=1 or o (depending on corresponding **model**)

Roland Schäfer Formale Semantik 95 / 287

Complex (molecular) formulas

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in $\{0,1\}$
- If p and q are wff's, then
 - → ¬p
 - ▶ p∨q
 - ▶ p∧q
 - p → q
 - ▶ p↔q

is also a wff (a molecular term).

Roland Schäfer Formale Semantik 96 / 287

Complex (molecular) formulas

- syntax: restricts forms of wff's to make them interpretable
- define functors: functions in $\{\langle 0,1\rangle, \langle 1,0\rangle, 0,1\}$
- If p and q are wff's, then
 - ▶ ¬p (negation)
 - ▶ p∨q (disjunction)
 - ▶ $p \land q$ (conjunction)
 - ▶ $p \rightarrow q$ (conditional)
 - ▶ $p \leftrightarrow q$ (biconditional)

is also a wff.

Roland Schäfer Formale Semantik 97 / 287

Complex (molecular) formulas

- syntax: restricts forms of wff's to make them interpretable
- define functors: functions in $\{\langle 0,1\rangle, \langle 1,0\rangle, 0,1\}$
- If p and q are wff's, then
 - ▶ ¬p (negation 'not')
 - ▶ p∨q (disjunction 'or')
 - p∧q (conjunction 'and')
 - ▶ $p \rightarrow q$ (conditional 'if')
 - ▶ $p \leftrightarrow q$ (biconditional 'iff')

is also a wff.

Roland Schäfer Formale Semantik 98 / 287

Functions and truth tables

standard defintion:

$$\llbracket \neg \rrbracket = \left[\begin{array}{c} 1 \to 0 \\ 0 \to 1 \end{array} \right]$$

• but most widely used: truth tables

Roland Schäfer Formale Semantik 99 / 287

Disjunction

р	\vee	q
1	1	1
1	1	0
0	1	1
0	0	0

- Herr Keydana is a passionate cyclist **or** we all love logic.
- *K*∨L

Roland Schäfer Formale Semantik 100 / 287

Conjunction

р	\land	q
1	1	1
1	0	0
0	0	1
0	0	0

- Herr Keydana is a passionate cyclist **and** we all love logic.
- K∧L

Roland Schäfer Formale Semantik 101 / 287

Conditional

р	\rightarrow	q
1	1	1
1	0	0
0	1	1
0	1	0

- *If* it rains, *then* the streets get wet.
- $R \rightarrow S$

Roland Schäfer Formale Semantik 102 / 287

Any problems with that?

If it rains, the streets get wet.

- it is raining (1), the streets are wet 1:1
- it is raining (1), the streets are dry 0:0
- it is not raining (o), the streets are wet 1:1
- it is not raining (o), the streets are dry 0:1
- ex vero non sequitur falsum

Roland Schäfer Formale Semantik 103 / 287

Biconditional

р	\leftrightarrow	q
1	1	1
1	0	0
0	0	1
0	1	0

- If and only if your score is above 50, then you pass the semantics exam.
- $S \leftrightarrow P$

Roland Schäfer Formale Semantik 104 / 287

Scope of functors

- brackets are facultative
- or set non-default functor scope
- default scope

Roland Schäfer Formale Semantik 105 / 287

•
$$p \land \neg q \lor r \rightarrow \neg s$$

- $p \wedge (\neg q) \vee r \rightarrow (\neg s)$
- $(p \land (\neg q)) \lor r \rightarrow (\neg s)$
- $((p \land (\neg q)) \lor r) \rightarrow (\neg s)$
- $(((p \land (\neg q)) \lor r) \rightarrow (\neg s))$

Roland Schäfer Formale Semantik 106 / 287

Large truth tables

- for n atoms in the term: 2^n lines
- alternating blocks of 1's and 0's under every atom
- $2^{(m-1)}$ times '1' followed by $2^{(m-1)}$ times '0' for the m-th atom from the right

• until 2^n lines are reached

Roland Schäfer Formale Semantik 107 / 287

р	^	_	q	V	r	\rightarrow	_	s
1			1		1			1
1 1 1 1 1 1			1		1			0
1			1		0			1
1			1		0			0
1			0		1			1
1			0		1			0
1			0		0			1
1			0		0			0
0			1		1 1			1
0			1		1			0
0			1		0			1
0			1		0			0
0			0		1			1
0			0		1			0
0 0 0 0 0 0			0		0			1
0			0		0			0

Roland Schäfer Formale Semantik 108 / 287

Roland Schäfer Formale Semantik 109 / 287

Roland Schäfer Formale Semantik 110 / 287

Roland Schäfer Formale Semantik 111 / 287

Roland Schäfer Formale Semantik 112 / 287

Roland Schäfer Formale Semantik 113 / 287

Assignments: a contingent example

р	\wedge	_	q	\ \	r	\rightarrow	_	s
1	0	0	1	1	1	0	0	1
1	0	0	1	1	1	1	1	0
1	0	0	1	0	0	1		1
1	0	0	1	0	0	1	0 1 0 1	0
1	1	1	0	1	0 1 1	0	0	1
1	1	1	0	1	1	1	1	0
1	1	1	0	1	0	0	0	1
1	1	1	0	1	0	1	1	0
0	0	0	0 1 1	1	0 1 1	0	0	1 0
0	0	0		1		0 1 1	0 1 0 1 0	
0	0	0	1	0	0	1	0	1
0	0 0	0	1	0	0	1	1	0
0		1	0	1	1	0		1
0	0	1	0	1	1	1	0	0
1 1 1 1 1 1 0 0 0 0 0	0	1	0	0	0	1	0	1
0	0	1	0	0	0	1	1	0

Roland Schäfer Formale Semantik 114 / 287

Tautology

- take $p \vee \neg p$
- truth-table: $\begin{array}{c|cccc} p & \lor & \neg & p \\ \hline 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ \end{array}$
- true under every assignment, it is valid
- by law of excluded middle: for every P, P $\lor \neg$ P is true

Roland Schäfer Formale Semantik 115 / 287

Contradiction

• take $p \land \neg p$

	р	\land	\neg	р
• truth-table:	1	0	0	1
	0	0	1	0

• false under every assignment, called contradictory

Roland Schäfer Formale Semantik 116 / 287

Contingency

• take $p \wedge p$

• truth-table:
$$\begin{array}{c|cccc} p & \land & p \\ \hline 1 & 1 & 1 \\ \hline 0 & 0 & 0 \end{array}$$

• the truth value depends on the assignemt

Roland Schäfer Formale Semantik 117 / 287

What are laws?

- notice: similarities of set theory and logic
- non-trivial exact nature of their equivalence
- laws state equivalences of (types of) wff
- truth-conservative rewriting of wff's
- any subformula which is a tautology (T) or contradiction (F):

ignore by Identity Laws (Id.):

- $P \lor F) \Leftrightarrow P, (P \lor T) \Leftrightarrow T$
- $P \land F) \Leftrightarrow F, (P \land T) \Leftrightarrow P$

Roland Schäfer Formale Semantik 118 / 287

Equivalences: ⇔

- X ⇔ Y: X has the same truth-conditions as Y
- derivability of laws and rules (convenient redundancies)
- Idempotency (Idemp.):
 - $\triangleright (P \lor P) \Leftrightarrow P$
 - \triangleright $(P \land P) \Leftrightarrow P$
 - ▶ Peter walks and Peter walks. ⇔ Peter walks.

Roland Schäfer Formale Semantik 119 / 287

Simple laws

- Associative Laws for ∨ and ∧ (Assoc.):
 - $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
 - ► ((He walks or she talks) or we walk.) ⇔ (He walks or (she talks or we walk.))
- Commutative Laws for ∨ and ∧ (Comm.):
 - $\blacktriangleright (P \lor Q) \Leftrightarrow (Q \lor P)$
 - ▶ Peter walks or Sue snores. ⇔ Sue snores or Peter walks.
- Distributive Laws for ∨∧ and ∧∨ (Distr.):
 - $\blacktriangleright (P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$
 - (Sue snores) and (Peter walks or we talk).
 - \Leftrightarrow (Sue snores and Peter walks) or (Sue snores and we talk).

Roland Schäfer Formale Semantik 120 / 287

Laws dealing with tautology and contradiction

Complement Laws:

- ▶ Tautology (T): $(P \lor \neg P) \Leftrightarrow \mathbf{T}$
- ▶ Contradiction (F): $(P \land \neg P) \Leftrightarrow \mathbf{F}$
- ▶ Double Negation (DN): $(\neg \neg P) \Leftrightarrow P$
- It is not the case that Sandy is not walking.
 ⇔ Sandy is walking.

Roland Schäfer Formale Semantik 121 / 287

Conditionals Laws

• Implication (Impl.):

Ρ	\rightarrow	Q	\Leftrightarrow	_	Ρ	\vee	Q
-	1	1		0	1	1	1
1	0	0		0	1	0	0
0	1	1		1	0	1	1
0	1	0		1	0	1	0

• Contraposition (Contr.):

Ρ	\rightarrow	Q	\Leftrightarrow	¬	Q	\rightarrow	\neg	Ρ
1	1	1		0	1	1 0 1 1	0	1
	0			1	0	0	0	1
0	1	1		0	1	1	1	0
0	1	0		1	0	1	1	0

Roland Schäfer Formale Semantik 122 / 287

DeMorgan (DeM)

- DeMorgan's Laws:

 - ▶ alternatively: $\overline{P \lor Q} \Leftrightarrow \overline{P} \land \overline{Q}$
 - $\qquad \qquad \neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$
 - consequently: $\overline{\overline{P} \vee \overline{Q}} \Leftrightarrow \overline{\overline{P}} \wedge \overline{\overline{Q}} \Leftrightarrow P \wedge Q$

Roland Schäfer Formale Semantik 123 / 287

The Modus Ponens (MP)

Definition:

DCI	Denniuon.							
Р	\rightarrow	Q	premise 1					
P			premise 2					
		Q	conclusion					

- or: $(P \rightarrow Q) \land (P) \rightarrow (Q)$
- (1) If It rains, the streets get wet. (2) It is raining. \rightarrow The streets are getting wet.

Roland Schäfer 124 / 287

MP: a truth table illustration

- Premises are always set to be true!
- the table:

 $P \rightarrow C$

1 1 1

1 0 0

011

010

Roland Schäfer Formale Semantik 125 / 287

MP: a truth table illustration

- The conditional must be true.
- cancel the 'false' row

 $P \rightarrow Q$

1 1 1

1 0 0

011

0 1 0

Roland Schäfer Formale Semantik 126 / 287

MP: a truth table illustration

- P must be true.
- cancel the 'false' rows, Q can only be true:

 $P \rightarrow C$

1 1 1

1 0 0

0 1 1

0 1 0

Roland Schäfer Formale Semantik 127 / 287

The Modus Tollens (MT)

Definition:

• the table illustration:

```
P → Q

1 1 1 (by premise 2)

1 0 0 (by premise 1)

0 1 1 (by premise 2)

0 1 0
```

Roland Schäfer Formale Semantik 128 / 287

The Syllogisms

- Hypothetical Syllogism (HS):
 - $((P \to Q) \land (Q \to R)) \to (P \to R)$
 - (1) If it rains, the streets get wet. (2) If the streets get wet, it smells nice. → If it rains, it smells nice.
- Disjunctive Syllogism (DS):
 - $\blacktriangleright ((P \lor Q) \land (\neg P)) \rightarrow (Q)$
 - ▶ (1) Either Peter sleeps or Peter is awake. (2) Peter isn't awake.
 - ightarrow Peter sleeps.

Roland Schäfer Formale Semantik 129 / 287

Trivial rules

- Simplification (Simp.):
 - $(P \land Q) \rightarrow P$
 - (1) It is raining and the sun is shining. \rightarrow It is raining.
- Conjunction (Conj.):
 - $\blacktriangleright \ (P) \land (Q) \rightarrow (P \land Q)$
 - \blacktriangleright (1) It is raining. (2) The sun is shining. \rightarrow It is raining and the sun is shining.
- Addition (Add.):
 - $\blacktriangleright \ (P) \to (P \land Q)$
 - lacksquare (1) It is raining. o It is raining or the sun is shining.
 - What if Q is instantiated as true or false by another premise?

Roland Schäfer Formale Semantik 130 / 287

A sample proof

- Prove $p \lor q$ from $(p \lor q) \to \neg (r \land \neg s)$ and $r \land \neg s$
- The proof:

$$\begin{array}{ccc} & & & & & & & \\ 1 & (p \lor q) \to \neg (r \land \neg s) & & & \\ 2 & r \land \neg s & & & & \\ \hline & p \lor q & & & 1,2,MT \end{array}$$

Roland Schäfer Formale Semantik 131 / 287

Weak compositionality in SL

- properties/relations vs. individuals
- Martin is an expert on inversion and Martin is a good climber.
- ...becomes $E \wedge C$
- compositionality resticted to level of connected propositional atoms

Roland Schäfer Formale Semantik 132 / 287

Some desirable deductions

- important generalizations about all and some individuals (which have property P)
- 'all P \rightarrow some P'
- 'Martin P \rightarrow some P'

Roland Schäfer Formale Semantik 133 / 287

Atoms of PC

- individual variables: $x, y, z, x_1, x_2 \dots$
- individual constants: a, b, c, . . .
- variables and constants: terms
- predicate symbols (taking individual symbols or tuples of them): A, B, C, . . .
- quantifiers: existential \exists (or \lor) and universal \forall (or \land)
- plus the connectives of SL

Roland Schäfer Formale Semantik 134 / 287

Some syntax

- for an *n*-ary predicate P and terms $t_1 ldots t_n$, $P(t_1 ldots t_n)$ or $Pt_1 ldots t_n$ is a wff.
- possible prefix, function (bracket) and infix notation:
 Pxy, P(x, y), xPy
- syntax for connectives from SL
- for any wff ϕ and any variable x, $(\exists x)\phi$ and $(\forall x)\phi$ are wff's

Roland Schäfer Formale Semantik 135 / 287

Semantic for individual constants

- denote individuals
- a model \mathcal{M} contains a set of individuals D
- the valuation function V (or F): from constants to individuals in D
- for some \mathcal{M}_1 : D = {Martin, Kilroy, Scully}
- $V_{\mathcal{M}_1}(m) = Martin$
- $V_{\mathcal{M}_1}(k) = Kilroy$, $V_{\mathcal{M}_1}(s) = Scully$

Roland Schäfer Formale Semantik 136 / 287

Semantics for predicate symbols

- denote relations (sets of n-tuples)
- $\llbracket P \rrbracket^{\mathcal{M}_1} = \{ Martin, Kilroy \}$ or $V_{\mathcal{M}_1}(P) = \{ Martin, Kilroy \}$
- $V_{\mathcal{M}_1}(Q) = \{\langle Martin, Kilroy \rangle, \langle Martin, Scully \rangle, \langle Kilroy, Kilroy \rangle, \langle Scully, Scully \rangle \}$
- s.t. $\llbracket P(m) \rrbracket^{\mathcal{M}_1} = \llbracket P \rrbracket^{\mathcal{M}_1}(\llbracket m) \rrbracket^{\mathcal{M}_1}) = 1$ iff $\llbracket m \rrbracket^{\mathcal{M}_1} \in \llbracket P \rrbracket^{\mathcal{M}_1}$

Roland Schäfer Formale Semantik 137 / 287

Semantics for connectives and quantifiers

- connectives: 'apply to' formulas (semantically truth-valued), semantics as in SL
- $(\forall x)\phi$ = 1 iff ϕ is true for every $d \in D$ assigned to every occurrence of x in ϕ
- $(\exists x)\phi$ = 1 iff ϕ is true for at least one $d \in D$ assigned to every occurrence of x in ϕ
- algorithmic instruction to check wff's containing Q's
- check outside-in (unambiguous scoping)

Roland Schäfer Formale Semantik 138 / 287

Dependencies

• universal quantifiers can be swapped:

$$(\forall \mathbf{x})(\forall \mathbf{y})\phi \Leftrightarrow (\forall \mathbf{y})(\forall \mathbf{x})\phi$$

• same for existential quantifiers:

$$(\exists x)(\exists y)\phi \Leftrightarrow (\exists y)(\exists x)\phi$$

- whereas: $(\exists x)(\forall y)\phi \Rightarrow (\forall y)(\exists x)\phi$
- example in \mathcal{M}_1 :
 - $\blacktriangleright \ \llbracket (\forall \mathbf{x})(\exists \mathbf{y})\mathbf{Q}\mathbf{x}\mathbf{y} \rrbracket^{\mathcal{M}_1} = 1$
 - but: $[(\exists y)(\forall x)Qxy]^{\mathcal{M}_1}=0$
 - direct consequence of algorithmic definition
 - if ∃∀ is true, ∀∃ follows

Roland Schäfer Formale Semantik 139 / 287

Hints on quantifiers

- domain of quantifiers: D (universe of discourse)
- $\forall x$ checks for truth of some predication for all individuals
- $\exists x (Px \land \neg Px)$ is a contradiction
- $\forall x (Wx \land \neg Wx)$ is a contradiciton, $\forall x$ 'checks' for an empty set by def.
- standard form of NL quantification: $\forall x (Wx \rightarrow Bx)$ 'All women are beautiful.'
- standard form of NL existential quantification: $\exists x (Wx \land Bx)$ 'Some woman is beautiful.'

Roland Schäfer Formale Semantik 140 / 287

Functor/quantifier practice

- by def., functors take formulas, not terms:
 - ► ¬Wm 'Mary doesn't weep.'
 - ▶ $(\exists x)(Gx \land Wx)$ 'Some girl weeps.'
 - ▶ *W¬x
 - \rightarrow *($\exists \neg x$)(Gx)
- quantifiers take variables, not constants:
 - ▶ $(\forall x)(Ox \rightarrow Wx)$ 'All ozelots are wildcats.'
 - ▶ *(∀o)(Wo)
- negates the wff, not the q:
 - $(\neg \forall x)$ Px but $\neg (\forall x)$ Px

Roland Schäfer Formale Semantik 141 / 287

Scope

- quantifiers bind variables
- free variables (constants) are unbound
- no double binding $*(\forall x \exists x) Px$
- Q scope: only the first wff to its right:
 - ▶ $(\forall x)Px \lor Qx$
 - $(\forall x)(Px \lor Qx) = (\forall x)Px \lor (\forall x)Qx$
 - $\overline{(\exists x)Px} \to \underline{(\forall y)}(Qy \land Ry)$
 - ▶ $(\exists x)Px \land Qx$ (second x is a unbound)
- no double-naming

Roland Schäfer Formale Semantik 142 / 287

Universal \vee and \wedge

- \exists and \forall 'or' and 'and' over the universe of discourse (hence: \bigvee and \bigwedge)
- $(\forall x)$ P $x \Leftrightarrow Px_1 \land Px_2 \land ... \land Px_n$ for all x_n assigned to $d_n \in D$
- $(\exists x)Px \Leftrightarrow Px_1 \lor Px_2 \lor \ldots \lor Px_n$ for all x_n assigned to $d_n \in D$
- hence: $\neg(\forall x)Px \Leftrightarrow \neg(Px_1 \land Px_2 \land \ldots \land Px_n)$
- with DeM: $\overline{Px_1 \wedge Px_2 \wedge \ldots \wedge Px_n}$
- $\Leftrightarrow \overline{Px_1} \vee \overline{Px_2} \vee \ldots \vee \overline{Px_n}$
- $\Leftrightarrow (\exists x) \neg Px$

Roland Schäfer Formale Semantik 143 / 287

Quantifier negation (QN)

- $\neg(\forall x)Px \Leftrightarrow (\exists x)\neg Px$
- $\neg(\exists x)Px \Leftrightarrow (\forall x)\neg Px$
- $\neg(\forall x)\neg Px \Leftrightarrow (\exists x)Px$
- $\bullet \ \neg(\exists x)\neg Px \Leftrightarrow (\forall x)Px$

Roland Schäfer Formale Semantik 144 / 287

The distribution laws

• the conjunction of universally quantified formulas:

$$(\forall x)(Px \land Qx) \Leftrightarrow (\forall x)Px \land (\forall x)Qx$$

• the disjunction of existentially quantified formulas:

$$(\exists x)(Px \lor Qx) \Leftrightarrow (\exists x)Px \lor (\exists x)Qx$$

- not v.v.: $(\forall x)Px \lor (\forall x)Qx \Rightarrow (\forall x)(Px \lor Qx)$
- why?

Quantifier movement (QM)

- desirable format: prefix + matrix
- Movement Laws for antecedents of conditionals:

$$(\exists x) Px \to \phi \Leftrightarrow (\forall x) (Px \to \phi)$$
$$(\forall x) Px \to \phi \Leftrightarrow (\exists x) (Px \to \phi)$$

- Movement Laws for Q's in disjunction, conjunction, and the consequent of conditionals: Just move them to the prefix!
- condition: x must not be free in ϕ .
- i.e.: Watch your variables!

Roland Schäfer Formale Semantik 146 / 287

Let's formalize:

- Paul Kalkbrenner is a musician and signed on bpitchcontrol.
- Herr <u>S</u>. installed <u>RedHat</u> and not every <u>Linux</u> distribution is <u>e</u>asy to install.
- All talkmasters are human and Harald Schmidt is a talkmaster.
- Some talkmasters are not musicians.
- Heiko Laux owns Kanzleramt records and does not like any Gigolo artist.
- Some <u>h</u>umans are neither <u>t</u>alkmasters nor do they <u>o</u>wn <u>K</u>anzleramt records.

Roland Schäfer Formale Semantik 147 / 287

Universal instantiation ($-\forall$) and generalization ($+\forall$)

- $(\forall x)Px \rightarrow Pa$
- always applies
- can use any variable/constant
- $Pa \rightarrow (\forall x)Px$
- iff Pa was instantiated by $-\forall$

Roland Schäfer Formale Semantik 148 / 287

Existential generalization $(+\exists)$ and instantiation $(-\exists)$

- $Pa \rightarrow (\exists x)Px$ for any individual constant a
- always applies
- $(\exists x)Px \rightarrow Pa$ for some indiv. const.
- always applies (there is a minimal individual for $\exists x$)
- for some $(\exists x)Px$ and $(\exists x)Qx$ the minimal individual might be different
- hence: When you apply EI, always use fresh constants!

Roland Schäfer Formale Semantik 149 / 287

One sample task

- (1) Herr Keydana drives a Golf. (2) Anything that drives a golf is human or a complex program simulating an artificial neural net. (3) There are no programs s.a.a.n.n. which are complex enough to drive a Golf.
- Formalize and prove: At least one human exists.
- (1) Dk
- (2) $(\forall x)(Dx \rightarrow Hx \lor Px)$
- (3) $\neg(\exists x)(Px \wedge Dx)$
- (∃x)Hx

Roland Schäfer Formale Semantik 150 / 287

The proof

```
(1)
          Dk
(2)
         (\forall x)(Dx \rightarrow Hx \lor Px)
(3)
         \neg(\exists x)(Px \land Dx)
(4)
          (\forall x) \neg (Px \wedge Dx)
                                            3,QN
(5)
         (\forall x)(\neg Px \vee \neg Dx)
                                         4.DeM
(6)
      (\forall x)(Dx \rightarrow \neg Px)
                                           5,Comm,Impl
(7)
                                           6.−∀(1)
       \mathsf{Dk} 	o \neg \mathsf{Pk}
(8)
         \neg Pk
                                            1.7.MP
(9)
                                           2,−∀(1)
       \mathsf{Dk} \to \mathsf{Hk} \lor \mathsf{Pk}
(10) Hk \lor Pk
                                            1,9,MP
(11)
          Hk
                                            8,10,DS
          (\exists x)Hx
                                            10.+∃
```

Roland Schäfer Formale Semantik 151 / 287

Back to semantics: F1

- before we turn to quantification in F1/F2 English:
- names refer to individuals
- itr. verbs refer to sets of individuals
- tr. verbs refer to sets of ordered pairs of individuals
- sentences refer to truth values

Roland Schäfer Formale Semantik 152 / 287

Reference of pronouns

- This drives a Golf.
- this = a pronominal NP
- denotes an individual
- but not rigidly
- fixed only within a specific context (SOA)

Roland Schäfer Formale Semantik 153 / 287

Pronouns and variables

- quantified expression: $(\forall x)Px$
- for all assignments of 'this', 'this' has property P
- Q evaluation in PC is algorithmic
- variables interpreted like definite pronominal NPs (within a fixed context)

Roland Schäfer Formale Semantik 154 / 287

Categories and lexicon

- $a \rightarrow \text{const}$, var
- conn $\rightarrow \land, \lor, \rightarrow, \leftrightarrow$
- $neg \rightarrow \neg$
- $\mathbf{Q} \rightarrow \exists, \forall$

Categories and lexicon

- $\bullet \ pred_1 \to P\text{, }Q$
- $pred_2 \rightarrow R$
- $pred_3 \rightarrow S$
- const \rightarrow b, c
- $var \rightarrow x_1, x_2, ..., x_n$

Roland Schäfer Formale Semantik 156 / 287

Phrase structure

- wff \rightarrow pred_n $a_1 a_2 ... a_n$
- $\bullet \ wff \to neg \, wff$
- $\bullet \ \, \text{wff} \rightarrow \text{wff con wff}$
- wff \rightarrow (Q var) wff

Roland Schäfer Formale Semantik 157 / 287

A wff without Q

Roland Schäfer Formale Semantik 158 / 287

A wff with Q's

Roland Schäfer Formale Semantik 159 / 287

Definition of c-command

- Node A c-commands (constituent-commands) node B iff
 - ► A does not dominate B and
 - and the first branching node dominating A also dominates B.
- The definition in CM allows a node to dominate itself.

Roland Schäfer Formale Semantik 160 / 287

Configurational binding

- in configurational tree-structures:
- A variables is bound by the closest c-commanding coindexed quantifier.
- scope = binding domain

Roland Schäfer Formale Semantik 161 / 287

A wff with Q's

Roland Schäfer Formale Semantik 162 / 287

Refinement of PC semantics

- remember T-sentences: S of L is true in v iff p.
- M is a model of the accessible universe of discourse
 - $ightharpoonup \mathcal{M} = \langle U_n, V_n \rangle$
 - $ightharpoonup U_n$ = the set of accessible individuals (domain)
 - \triangleright V_n = a valuation function which assigns
 - ★ individuals to names
 - ★ sets of n-tuples of indivuiduals to pred_n
- **g** is function from variables to individuals in \mathcal{M}
- we evaluate: $[\![\alpha]\!]^{\mathcal{M}_n,g_n}$
- the extension of α relative to \mathcal{M}_n and g_n

Roland Schäfer Formale Semantik 163 / 287

Fixed and context-bound denotation

- V_n valuates statically
- · Q's require flexible valuation of pronominal matrices
- g_n is like V_n for constants, only flexible
- it can iterate through Un
- initial assignment can be anything:

$$egin{aligned} egin{aligned} egin{aligned} oldsymbol{x}_1 & = \left[egin{array}{c} oldsymbol{x}_1 & o & ext{Herr Webelhuth} \ oldsymbol{x}_2 & o & ext{Frau Eckardt} \ oldsymbol{x}_3 & o & ext{Turm} & o & ext{Mensa} \end{aligned}
ight] \end{aligned}$$

Roland Schäfer Formale Semantik 164 / 287

Iterating through Un

- for each Q loop, one modification
- read $g_n [d/x_m]$ as "...relative to g_n where x_m is reassigned to d"
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Frau\ Eckardt$
- ullet $[x_2]^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$

Roland Schäfer Formale Semantik 165 / 287

Interpreting with g_n

- $\llbracket (\forall x_1) P x_1 \rrbracket^{\mathcal{M}_1, g_1}$
- start with initial assignment: $[x_1]^{\mathcal{M}_1,g_1} = Webelhuth$ check: $[Px_1]^{\mathcal{M}_1,g_1}$
- modify: $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$ check: $[Px_1]^{\mathcal{M}_1,g_1}$
- modify: $[x_1]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/x_1]} = \mathsf{Mensa}$ check: $[\mathsf{P}x_1]^{\mathcal{M}_1,g_1}$
- iff the answer was never 0, then $[(\forall x_1)Px_1]^{\mathcal{M}_1,g_1}=1$

Roland Schäfer Formale Semantik 166 / 287

Multiple Q's: subloops

- $[(\forall x_1)(\exists x_2)Px_1x_2]^{\mathcal{M}_1,g_1}$
- $[x_1]^{\mathcal{M}_1,g_1} = Webelhuth$
 - $[x_2]^{\mathcal{M}_1,g_1} = \mathsf{Eckardt}$
 - $[x_2]^{\mathcal{M}_1,g_1[Webelhuth/x_2]} = Webelhuth$
- $[x_1]^{\mathcal{M}_1,g_1[Eckardt/x_1]} = Eckardt$

 - $[x_2]^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/x_1]\mathsf{Webelhuth}/x_2]} = \mathsf{Webelhuth}$
 - $[x_2]^{\mathcal{M}_1,g_1[[\mathsf{Eckardt}/\mathsf{x}_1]\mathsf{Mensa}/\mathsf{x}_2]} = \mathsf{Mensa}$
- $[x_1]^{\mathcal{M}_1,g_1[\mathsf{Mensa}/\mathsf{x}_1]} = \mathsf{Mensa}$
 - $\qquad \qquad \blacksquare \mathbf{x}_2 \rrbracket^{\mathcal{M}_1, g_1 [\mathit{Mensa/x}_1]} = \mathit{Eckardt}$

 - lacksquare lacksquare

Roland Schäfer Formale Semantik 167 / 287

Natural weirdness

- quantifying expressions in NL beyond \forall and \exists
- some seem to work differently:
- All patients adore Dr. Rick <u>D</u>agless M.D. (∀x₁)Px₁ → Ax₁d (ok)
- but: Most patients adore Dr. Rick <u>D</u>agless M.D. $(MOST x_1)Px_1 \rightarrow Ax_1d$ (wrong interpretation)
- domain should be the set of patients, not individuals
- For NL: Assume that the checking domain for Q is the set denoted by CN.

Roland Schäfer Formale Semantik 168 / 287

Scope ambiguities

- c-command condition on binding/scope fails in NL
- no PNF's in NL
- Q and common noun (CN) usually in-situ (e.g., argument position)
- ambiguities independent of Q position
 - Everybody loves somebody. (ELS)
 - $(\forall \mathbf{x}_1)(\exists \mathbf{x}_2) \mathbf{L} \mathbf{x}_1 \mathbf{x}_2$
 - $\blacktriangleright (\exists x_2)(\forall x_1) L x_1 x_2$
- Q ambiguity cannot be structural (e.g., \exists will never c-command \forall)

Roland Schäfer Formale Semantik 169 / 287

Cases of overt movement and traces

- wh movement:
- What; will Agent Cooper solve t;?
- passive movement:
- (Laura Palmer); was killed t_i.
- raising verbs:
- (Laura Palmer); seems t; to be dead.

•

Roland Schäfer Formale Semantik 170 / 287

Levels of representation

- construction of an independent representational level LF
- could use movement mechanism as used at surface level
- All quantifiers adjoin to the left periphery of S at LF.
- LF is constructed by syntactic rules!

Roland Schäfer Formale Semantik 171 / 287

Ambiguities at LF

- [S''] everybody; [S'] somebody; [S] t; loves t; [S]
- $[s'' \text{ somebody}_j [s' \text{ everybody}_i [s t_i \text{ loves } t_j]]]$

•

Roland Schäfer Formale Semantik 172 / 287

The Q raising rule

$$[s X NP Y] \Rightarrow [s' NP_i [s X t_i Y]]$$

- specify a PS as input and output
- QR rule also introduces coindexing of traces

Roland Schäfer Formale Semantik 173 / 287

Syntax

- copies all definitions from F1
- adds appropriate definitions of quantifying determiners etc.
 - ► Det → every, some
 - ► NP → DetN_{common-count}
- adds the QR rule
- assume introduction of reasonable syntactic types/rules without specifying
- ullet assume admissible (reasonable, possible) models ${\cal M}$

Roland Schäfer Formale Semantik 174 / 287

Semantics for QR output: every

A sentence containing the trace t_i with an adjoined NP_i (which consists of *every* plus the common noun β) extend to 1 iff for each individual u in the universe U which is in the set referred to by the common noun β , S denotes 1 with u assigned to the pronominal trace t_i . g is modified iteratively to check that.

Roland Schäfer Formale Semantik 175 / 287

Semantics for QR output: some, a

(similar)

Roland Schäfer Formale Semantik 176 / 287

Einfach getypte höherstufige λ -Sprachen

Montague and the generative tradition

- Chierchia & McConnell-Ginet, Heim & Kratzer, etc.: GB-ish semantics
- both syntax and LF in phrase structures
- LF as a proper linguistic level of representation
- Montague: direct translation of NL into logic
- Monatgue's LF is just a notational system for NL semantics

Roland Schäfer Formale Semantik 177 / 287

Targets for this week

- Learn to tell the difference between the montagovian and generative approach.
- See the advantage of a general theory of typed languages.
- Understand how λ languages allow dramatically elegant formalizations.
- ... while keeping in mind that these devices are extensions to our PC representation for NL semantics.

Roland Schäfer Formale Semantik 178 / 287

Denotations

- denotations in set/function-theoretic terms
- a characteristic function (CF) S of a set S: S(a) = 1 iff $a \in S$, else 0
- a CF 'checks' individuals into a set
- denotations can be stated as sets or their CF

Roland Schäfer Formale Semantik 179 / 287

Generalizing combinatory semantic operations

- Montague generally used CF's in definitions
- evaluating [S [NP Mary] [VP sleeps]] as a matter of functional application (FA):
 - ▶ $\llbracket Mary \rrbracket^{\mathcal{M},g} = Mary in \mathcal{M}$
 - [sleeps] $^{\mathcal{M},g}$ be the CF of the set of sleepers in \mathcal{M}
 - $\qquad \qquad \mathbb{\llbracket} \mathsf{S} \mathbb{\rrbracket}^{\mathcal{M},g} = \mathbb{\llbracket} \mathsf{sleeps} \mathbb{\rrbracket}^{\mathcal{M},g} (\mathbb{\llbracket} \mathsf{Mary} \mathbb{\rrbracket}^{\mathcal{M},g})$
 - ideally: generalize to all nodes

Roland Schäfer Formale Semantik 180 / 287

The superscript notation

- all functions from S₁ to S₂
- $S_2^{S_1}$
- for $T = \{0, 1\}$
 - ► T^D: all pred₁
 - ► $T^{D \times D}$: all pred₂

Roland Schäfer Formale Semantik 181 / 287

Some new names

- base for Dowty et al.: L_1 , a first-order predicate language as we know it
- · semantic renaming of types:
 - ▶ terms: (e) (entity-denoting)
 - ▶ formulas: (t) (truth-valued)
 - ▶ pred₁: ⟨e, t⟩
 - ▶ pred₂: ⟨e, ⟨e, t⟩⟩

Roland Schäfer Formale Semantik 182 / 287

Possible denotations of types

- D_{α} possible denotation (a set) of expressions of type α
- $D_{\langle e \rangle} = U$ (Dowty et al.'s A)
- $D_{(t)} = \{0, 1\}$
- recursively: $D_{\langle \alpha, \beta \rangle} = D_{\langle \beta \rangle}^{D_{\langle \alpha \rangle}}$
- ullet e.g., $D_{\langle e,t
 angle}=D_{\langle t
 angle}^{D_{\langle e
 angle}}$
- $\bullet \ D_{\langle e,\langle e,t\rangle\rangle} = (D_{\langle t\rangle}^{D_{\langle e\rangle}})^{^{D_{\langle e\rangle}}}$
- ullet just a systematic way of naming types, model-theoretic interpretations still by V, g

Roland Schäfer Formale Semantik 183 / 287

Defining types

- in our PS syntax: S as start symbol
- in the typed system: sentences should be of type $\langle t \rangle$
- complex types: functions from \(\epsilon \) to \(\tau \)
 or generally from any (complex) type to any (comlex) type

Roland Schäfer Formale Semantik 184 / 287

Complex types as functions

- saturation of complex types by FA:
 - γ is of type $\langle e, \langle e, t \rangle \rangle$, δ of $\langle e, t \rangle$, α and β of $\langle e \rangle$
 - then $\gamma(\alpha)$ is of type $\langle e, t \rangle$
 - and $\delta(\beta)$ is of type $\langle t \rangle$
- for any pred₂ P and its arguments a_1, a_2 , $P(a_2)(a_1)$ is a wff
- connectives are of types $\langle t, t \rangle$ (\neg), $\langle t, \langle t, t \rangle \rangle$ (\wedge , etc.)

Roland Schäfer Formale Semantik 185 / 287

General semantics of typed languages

- generalized CF/FA approach
- ⟨*e*⟩-types (terms):

$$[a_n]^{\mathcal{M},g} = V(a_n)$$
$$[x_n]^{\mathcal{M},g} = g(x_n)$$

• the rest: functional application

$$[\![\delta(\alpha)]\!]^{\mathcal{M},\mathbf{g}} = [\![\delta]\!]^{\mathcal{M},\mathbf{g}} ([\![\alpha]\!]^{\mathcal{M},\mathbf{g}})$$

Roland Schäfer Formale Semantik 186 / 287

Refinement

- Type is the set of types
- recursively defined complex types $\langle a, b \rangle$: infinite
- type label $\langle \alpha \rangle$
- vs. set of meaningful expressions of that type: $ME_{\langle \alpha \rangle}$

Roland Schäfer Formale Semantik 187 / 287

Higher order

- first order languages: variables over individuals ($\langle e \rangle$ -types)
- n-order: variables over higher types ($\langle e, t \rangle$ -types etc.)
- $P_{\langle e,t\rangle}$ or $Q_{\langle e,\langle e,t\rangle\rangle}$: constants of higher types
- so: $\mathbf{v}_{1_{\langle e,t\rangle}}\left[\mathbf{v}_{1}(\mathbf{m})\right]$
- if V(m) = Mary, v_1 is the set of all of Mary's properties

Roland Schäfer Formale Semantik 188 / 287

Typing variables

- we write:
 - $\mathbf{v}_{n_{(\alpha)}}$ for the n-th variable of type $\langle \alpha \rangle$
 - ▶ Dowty et al.: $v_{n,\langle\alpha\rangle}$
- alternatively abbreviated by old symbols x_1 , a, P, etc.

Roland Schäfer Formale Semantik 189 / 287

Constants, variables, functions

- non-logical constant α : $[\![\alpha]\!]^{\mathcal{M},g} = V(\alpha)$
- variable α : $[\![\alpha]\!]^{\mathcal{M},g} = V(\alpha)$
- $\alpha \in \langle a, b \rangle, \ \beta \in a$, then $[\![\alpha(\beta)]\!]^{\mathcal{M},g} = [\![\alpha]\!]^{\mathcal{M},g} ([\![\beta]\!]^{\mathcal{M},g})$

Roland Schäfer Formale Semantik 190 / 287

Logical constants and quantifiers

- logical constants interpreted as functions in {0,1} as usual
- if $\mathbf{v}_{1_{\langle \alpha \rangle}}$ is a variable and $\phi \in \mathit{ME}_t$ then $[\![(\forall \mathbf{v}_1)\phi]\!]^{\mathcal{M},g} = 1\mathit{iff}$ for all $a \in D_{\alpha}$ $[\![\phi]\!]^{\mathcal{M},g[a/\mathbf{v}_1]} = 1$

Roland Schäfer Formale Semantik 191 / 287

An example

- quantified variable of type $\langle e, t \rangle$: $v_{0_{\langle e, t \rangle}}$
- $\bullet \ \forall \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{j}) \rightarrow \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{d}) \right]$
- for $j, d \in ME_{\langle e \rangle}$
- one property of every individual: being alone in its union set
- hence, j = d
- else in $\forall v_{0_{\langle e,t\rangle}}$, \forall wouldn't hold

Roland Schäfer Formale Semantik 192 / 287

Defining non

- productive adjectival prefix: non-adjacent, non-local, etc.
- inverting the characteristic function of the adjective
- result denotes complement of the original adjective in $D_{\langle e \rangle}$
- adjective: $\langle e, t \rangle$, non: $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$
- a function h s.t. for every $k \in D_{\langle e,t \rangle}$ and every $d \in D_{\langle e \rangle}$ (h(k))(d) = 1 iff k(d) = 0 and (h(k))(d) = 0 iff k(d) = 1

Roland Schäfer Formale Semantik 193 / 287

Argument deletion

- understood objects in: I eat. Vanity kills. etc.
- eat is in $ME_{\langle e,\langle e,t\rangle\rangle}$
- assume a silent logical constant: R_0 in $ME_{\langle\langle e,\langle e,t\rangle\rangle,\langle e,t\rangle\rangle}$
- a function h s.t. for all $k \in D_{\langle e, \langle e, t \rangle \rangle}$ and all $d \in D_{\langle e \rangle}$ h(k)(d) = 1 iff there is some $d' \in D_{\langle e \rangle}$ s.t. k(d')(d)=1
- passives as similar subject deletion

Roland Schäfer Formale Semantik 194 / 287

All there is to λ

- a new variable binder
- allows abstraction over wff's of arbitrary complexity
- similar to $\{x || \phi\}$ (read as 'the set of all x s.t. ϕ ')
- we get $\lambda x [\phi]$
- on Montague's typewriter: $\hat{x}[\phi]$
- does not create a set but a function which can be taken as the CF of a set

Roland Schäfer Formale Semantik 195 / 287

λ abstraction

- for every wff ϕ , any $x \in Var$, and any $a \in Con$
- λ abstraction: $\phi \to \lambda x \left[\phi^{[a/x]}\right](a)$
- read $\phi^{(a/x)}$ as 'phi with every a replaced by x'
- x can be of any type

Roland Schäfer Formale Semantik 196 / 287

Two informal examples

- $\lambda x_{\langle e \rangle}[L(x)]$ is the characteristic function of the set of those individuals $d \in D_{\langle e \rangle}$ which have property L
- $\lambda x_{\langle e,t\rangle}[x(l)]$ is the characteristic function of the set of those properties $k \in D_{\langle e,t\rangle}$ that the individual l has

Roland Schäfer Formale Semantik 197 / 287

λ conversion

- $\lambda x [L(x)]$ is the abstract of L(a) (with some individual a)
- hence, it holds: $\lambda x [L(x)](a) \Leftrightarrow L(a)$
- for every wff ϕ , any $x \in Var$, and any $a \in Con$
- λ conversion: $\lambda x [\phi](a) \rightarrow \phi^{[x/a]}$

Roland Schäfer Formale Semantik 198 / 287

λ in and out

- $\lambda \mathbf{x} \left[\phi \right] \left(\mathbf{a} \right) \leftrightarrow \phi^{\left[\mathbf{x} / \mathbf{a} \right]}$
- not just syntactically, since truth conditions are equivalent
- $\lambda x [\phi] (a) \Leftrightarrow \phi^{[x/a]}$
- notice: $\lambda x_{\langle \alpha \rangle} [\phi]$ is in $ME_{\langle \alpha, t \rangle}$
- while ϕ (as a wff) is in $ME_{\langle t \rangle}$

Roland Schäfer Formale Semantik 199 / 287

The full rules

- Dowty et al., 102f. (Syn C.10 and Sem 10)
- If $\alpha \in ME_{\alpha}$ and $u \in Var_b$, then $\lambda u [\alpha] \in ME_{\langle b,a \rangle}$.
- If $\alpha \in ME_a$ and $u \in Var_b$ then $[\![\lambda u \ [\alpha]\!]]^{\mathcal{M},g}$ is that function h from D_b into D_a s.t. for all objects k in D_b , h(k) is equal to $[\![\alpha]\!]^{\mathcal{M},g[k/u]}$.

Roland Schäfer Formale Semantik 200 / 287

The non example revised (Dowty et al., 104)

- $\bullet \ \forall \mathbf{X} \forall \mathbf{V}_{0^{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[(\mathbf{non}(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}))(\mathbf{X}) \leftrightarrow \neg(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{X})) \right]$
- $\bullet \ \forall {v_0}_{\langle e,t\rangle} \left[\lambda x \left[(\mathbf{non}({v_0}_{\langle e,t\rangle}))(x) \right] = \lambda x \left[\neg ({v_0}_{\langle e,t\rangle}(x)) \right] \right]$
- $\forall \mathbf{v}_{0_{\langle e,t\rangle}} \left[\mathbf{non}(\mathbf{v}_{0_{\langle e,t\rangle}}) = \lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle e,t\rangle}}(\mathbf{x})) \right] \right]$ (since $\lambda \mathbf{x} \left[\mathbf{non}(\mathbf{v})(\mathbf{x}) \right]$ is unnecessarily abstract/ η reduction)
- $\bullet \ \lambda \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\mathbf{non}(\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}) = \lambda \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{x})) \right] \right] \right]$
- and since that is about all assignments for $\lambda v_{0_{\langle e,t\rangle}}$:

$$\mathbf{non} = \lambda \mathbf{V}_{0_{\langle e,t \rangle}} \left[\lambda \mathbf{X} \left[\neg \mathbf{V}_{0_{\langle e,t \rangle}}(\mathbf{X}) \right] \right]$$

Roland Schäfer Formale Semantik 201 / 287

Mary is non-adjacent.

(translate 'adjacent' as $c_{0_{\langle e,t\rangle}}$, 'Mary' as $c_{0_{\langle e\rangle}}$, ignore the copula)

Roland Schäfer Formale Semantik 202 / 287

The behavior of quantified NPs

- syntactically like referential NPs
- semantically like PC quantifiers
- $\bullet \ \ \textit{Every student walks.:} \ \forall \mathsf{v}_{0_{\langle \mathsf{e} \rangle}} \left[\mathsf{c}_{0_{\langle \mathsf{e},\mathsf{t} \rangle}}(\mathsf{v}_{0_{\langle \mathsf{e} \rangle}}) \rightarrow \mathsf{c}_{1_{\langle \mathsf{e},\mathsf{t} \rangle}}(\mathsf{v}_{0_{\langle \mathsf{e} \rangle}}) \right]$
- Some student walks.: $\forall \mathbf{v}_{0_{\langle e \rangle}} \left[\mathbf{c}_{0_{\langle e,t \rangle}}(\mathbf{v}_{0_{\langle e \rangle}}) \wedge \mathbf{c}_{1_{\langle e,t \rangle}}(\mathbf{v}_{0_{\langle e \rangle}}) \right]$
- making referential NPs and QNPs the same type?

Roland Schäfer Formale Semantik 203 / 287

A higher type

- $\bullet \ \lambda \mathbf{v}_{0_{\langle e,t\rangle}} \forall \mathbf{v}_{0_{\langle e\rangle}} \left[\mathbf{c}_{0_{\langle e,t\rangle}} (\mathbf{v}_{0_{\langle e\rangle}}) \rightarrow \mathbf{v}_{0_{\langle e,t\rangle}} (\mathbf{v}_{0_{\langle e\rangle}}) \right]$
- a second order function
- characterizes the set of all predicates true of every student
- $\bullet \ \ \mathsf{equally:} \ \lambda \mathsf{v}_{0_{\langle e,t\rangle}} \exists \mathsf{v}_{0_{\langle e\rangle}} \left[\mathsf{c}_{0_{\langle e,t\rangle}}(\mathsf{v}_{0_{\langle e\rangle}}) \wedge \mathsf{v}_{0_{\langle e,t\rangle}}(\mathsf{v}_{0_{\langle e\rangle}}) \right] \\$

Roland Schäfer Formale Semantik 204 / 287

Combining with some predicate

Roland Schäfer Formale Semantik 205 / 287

Targets for this week

- Understand that we have been exclusively dealing with extensions so far.
- Acknowledge that the approach fails in certain constructions.
- Learn how one can define an intensional calculus on top of the extensional one.
- See how that solves many problems with extensional logic for NL.

Roland Schäfer Formale Semantik 206 / 287

Some examples

- Stockhausen will write another opera.
- Had Arno Schmidt cut down on drinking, he would still be alive.
- Gustave Moreau believes that estheticism rules.

Roland Schäfer Formale Semantik 207 / 287

Simple extensions?

- syntactic types are no problem
- truth conditions impossible to define for static models (tense)
- ... and for just one state of affairs (modals, believe type verbs)

Roland Schäfer Formale Semantik 208 / 287

What are intensions?

Туре	Reference	Sense
NP	individuals	individual concepts
	Venus	
VP	sets	property concepts
	humming birds	
S	1 or O	thoughts or propositions
	I like cats.	

Roland Schäfer Formale Semantik 209 / 287

Properties of intensions

- · can't be just truth conditional
- encode knowledge about not just the actual but all possible and/or past/future states of affairs (PSOAs)
- therefore still involved in defining truth conditions
- not mental representations
- mediate between internal knowledge and truth-values

Roland Schäfer Formale Semantik 210 / 287

PSOAs have their own logic

- PSOAs are logically constrained
- observe the more than just thruth-valued failure of:
- In 1985 Arno Schmidt will be planning to have finished 'Julia oder Die Gemälde' by August 1914.
- incompatible to our knowledge of PSOA logic

Roland Schäfer Formale Semantik 211 / 287

A touch of parellel universes?

- Maria could know Arno Schmidt in person.
- is true not to facts but to an infinite number of optional SOAs s.t.:
 - ▶ A.S. is not a workaholic, does not drink 2 liters of coffee in the morning, does not drink a bottle of *Klarer* in the afternoon, consequently has never had any heart attacks
 - nothing of the above, but Maria was born 20 years earlier
 - nothing of the above, but A.S. rose from the dead in 2003, etc.

Roland Schäfer Formale Semantik 212 / 287

Propositions and PSOAs

- assume a set of all PSOAs
- PSOAs: determined by which propositions correspond to true sentences within the world they represent
- each proposition splits the set of PSOAs into two subsets:
- ...the SOAs under which its corresponding sentence is true
- ...the subset under which its corresponding sentence is false

Roland Schäfer Formale Semantik 213 / 287

Coordinates

- for each possible distinction in truth values of the whole of the propositional sentences: one possible world $(w \in W)$
- for each point in time: one possible temporal state of each world (instant $i \in I$)
- representation of temporarily ordered world-time coordinates $\langle w, i \rangle \in W \times I$

Roland Schäfer Formale Semantik 214 / 287

The nature of propositions

- propositions = intensions of sentences (formulas)
- remember the condition: every possible truth-value configuration for the full set of possible sentences constitutes a member of the set of possible worlds
- hence: every sentence is characterized by the set of worlds in which it is true
- this characterization: its intension
- the proposition of a sentence/formula: the characteristic function of the set of world/world-time pairs in which it is true

Roland Schäfer Formale Semantik 215 / 287

Propositions as functions

- a propositional function p
- is a function from $W \times I$ to $\{0,1\}$

Roland Schäfer Formale Semantik 216 / 287

Your evening prayer

- If we know the state of affairs, we know for every sentence whether it is true!
- If we know which sentences are true, we know the state of affairs!
- It is quite difficult to state what other kind of knowledge (or information) should exist. So for now we assume there isn't any.
- Since we agree that sentences denote truth values, and that the truth of a sentence depends on the state of affairs (=world), the function from all possible worlds to truth values characterizes sentences under all thinkable conditions.
- Hence, we call that function the intension of the sentence.

Roland Schäfer Formale Semantik 217 / 287

Entailment

- defintion of intensions of sentences (propositions): characteristic functions
- equivalently: propositions are sets of possible worlds
- entailment turns out as a subset-relation: $p \subseteq q$:

Roland Schäfer Formale Semantik 218 / 287

Synonymy

- synonymy turns out as set equivalence:
- p = q

Roland Schäfer Formale Semantik 219 / 287

Contradiction

- contradiction turns out as an empty intersection:
- $p \cap q = \emptyset$

Roland Schäfer Formale Semantik 220 / 287

Negation

- negation turns out as a complement:
- p/W

Roland Schäfer Formale Semantik 221 / 287

Quantification over worlds

- new modal sentence/wff operators:
 - ▶ necessarily p: □p
 - ► possibly p: **\p**
- What does it mean for a proposition to be necessary/possible?

Roland Schäfer Formale Semantik 222 / 287

Necessity as universal quantification

- if $\Box p$ then $(\forall w) [p(w) = 1]$ (p as characteristic function)
- such that W = p (p as set):

Roland Schäfer Formale Semantik 223 / 287

Possibility as existential quantification

- if $\Diamond p$ then $(\exists w) [p(w) = 1]$ (characteristic function)
- such that $p \neq \emptyset$ (set):

Roland Schäfer Formale Semantik 224 / 287

A larger tuple

- $\mathcal{M} = \{W, I, <, U, V\}$
 - ▶ W, a set of worlds
 - ▶ *I*, a set of instants
 - <, an ordering relation in I</p>
 - ▶ *U*, the set of individuals
 - V, a valuation function for constants
- evaluate an expression α : $[\![\alpha]\!]^{\mathcal{M},w,i,g}$

Roland Schäfer Formale Semantik 225 / 287

Intensional interpretation of individual constants

- the President of the United States, the Pope, Bond (in the sense of 'the actor currently playing Bond')
- for $\beta \in Cons_{ind}$, $V(\beta)$ is a function from $W \times I$ to U

Roland Schäfer Formale Semantik 226 / 287

... and pred_ns

- walks etc. denotes different sets (or CFs) at different $\langle w, i \rangle$ coordinates
- for $\beta \in Cons_{pred_n}$, $V(\beta)$ is a function from $W \times I$ to $\wp U^n$ ($U^n = U_1 \times U_2 \times \ldots \times U_n$)

Roland Schäfer Formale Semantik 227 / 287

The Chierchia approach: predicates/sentences

- simple sentences/predicates: $\beta = \delta(t_1, t_2, \dots, t_n)$
- $[\beta]^{\mathcal{M}, \mathbf{w}, \mathbf{i}, \mathbf{g}} = 1$ iff
- $\bullet \ \langle \llbracket t_1 \rrbracket^{\mathcal{M}, w, i, g}, \llbracket t_2 \rrbracket^{\mathcal{M}, w, i, g}, \ldots, \llbracket t_n \rrbracket^{\mathcal{M}, w, i, g} \rangle \in \llbracket \delta \rrbracket^{\mathcal{M}, w, i, g}$
- with: $[t_1]^{\mathcal{M},w,i,g} = V(t_1)(\langle w,i \rangle)$, etc.
- In an intensional type-theoretic language, we could define new functional types and try to use FA where possible.

Roland Schäfer Formale Semantik 228 / 287

Quantification

- if $\psi = \forall x \phi$ then
- ... $\llbracket \psi
 rbracket^{\mathcal{M}, \mathbf{w}, \mathbf{i}, \mathbf{g}} = 1$ iff for all $\mathbf{u} \in \mathbf{U}$
- $\bullet \ ... \llbracket \phi \rrbracket^{\mathcal{M}, \mathbf{w}, \mathbf{i}, \mathbf{g}[\mathbf{u}/\mathbf{x}]} = 1$
- nothing new here

Roland Schäfer Formale Semantik 229 / 287

Modalities

- if $\psi = \Box x \phi$ then
- ... $\llbracket \psi
 rbracket^{\mathcal{M}, \mathbf{w}, \mathbf{i}, \mathbf{g}} = 1$ iff for all $\mathbf{w}' \in \mathbf{W}$
- ...and all $i' \in I$
- ... $\llbracket \phi \rrbracket^{\mathcal{M}, \mathbf{w}', \mathbf{i}', \mathbf{g}} = 1$

Roland Schäfer Formale Semantik 230 / 287

A similarity of \forall and \Box

- as: $\forall x [P(x) \rightarrow Q(x)] \rightarrow [\forall x P(x) \rightarrow \forall x Q(x)]$
- and not vice-versa
- it holds that: $\Box [\psi \to \phi] \to [\Box \psi \to \Box \phi]$
- but not vice-versa!

Roland Schäfer Formale Semantik 231 / 287

Some validities

- $\exists x \Box P(x) \rightarrow \Box \exists x P(x)$
- $\exists x \Diamond P(x) \leftrightarrow \Diamond \exists x P(x)$
- $\forall x \Box P(x) \leftrightarrow \Box \forall x P(x)$ (Carnap-Barcan)
- $\forall x \Diamond P(x) \rightarrow \Diamond \forall x P(x)$

Roland Schäfer Formale Semantik 232 / 287

Targets for this week

- Understand how simple tense logic can be represented by operators shifting i indices.
- See why tense operators are sentence operators.
- See why a multi-dimensional theory of tenses and a better handling of tense embedding are required.
- See how we restrict (different types of) propositional backgrounds.
- Understand how opaque contexts affect meaning (incl. believe type verbs).
- Get a first idea of why we need the up operator ^.

Roland Schäfer Formale Semantik 233 / 287

Will, was... and always

- present: no operator (ϕ 'it is the case that ϕ ')
- past: P (P ϕ 'it was the case that ϕ ')
- future: **F** (**F** ϕ 'it will be the case that ϕ ')
- it will always be the case... ($\mathbf{G} = \neg \mathbf{F} \neg \phi$)
- it was always the case... ($\mathbf{H} = \neg \mathbf{P} \neg \phi$)

Roland Schäfer Formale Semantik 234 / 287

Evaluation

- PD(a) 'Arno Schmidt (has?) died.'
- relative to the current $\langle w, i \rangle$: $[PD(a)]^{\mathcal{M}, w, i, g}$
- ...is true iff there is some i', $\langle i', i \rangle \in \langle$ and
- $[\![\mathbf{PD}(\mathbf{a})]\!]^{\mathcal{M},\mathbf{w},\mathbf{i}',\mathbf{g}} = 1$

Roland Schäfer Formale Semantik 235 / 287

Like it or not...

- tense operators (TOp) are sentence (wff) Op's
- raise it to sentence-scopal position
- TP/IP position is motivated by copular/auxiliary elements
- He is stupid. vs. Kare-wa bakarashi-i.
- He was stupid. vs. Kare-wa bakarashi-katta.
- What_i did you expect t_i? vs. Nani-o yokishi-ta-ka.

Roland Schäfer Formale Semantik 236 / 287

New ps rules

- $T' \rightarrow TVP$ (adds tense to VP)
- $TP \rightarrow NP T'$
- TP \rightarrow TP conj TP
- $\bullet \ \, \mathsf{TP} \to \mathsf{neg} \,\, \mathsf{TP}$
- $[TP NP T VP] \Rightarrow [TP T NP VP]$ (T raising)

Roland Schäfer Formale Semantik 237 / 287

Quantification over instants

- $\llbracket \mathbf{PTP} \rrbracket^{\mathcal{M}, \mathbf{w}, \mathbf{i}, \mathbf{g}} = 1$
- iff among all $\langle i_n, i \rangle \in \langle$
- there is at least one s.t. $\llbracket \mathit{TP} \rrbracket^{\mathcal{M}, \mathsf{w}, \mathsf{i}', g} = 1$

Roland Schäfer Formale Semantik 238 / 287

Valuations as in Chierchia's M₃

- U: domain of quantification
- $V(\beta)$: non-relativized function for all β which are not a proper name
- $V(\beta)(\langle w, i \rangle)$: V valuates β to a function from world-time pairs to the denotata of the predicate (sets of individuals, tuples of them, etc.)

Roland Schäfer Formale Semantik 239 / 287

Natural tenses

- NL tenses beyond TOp's:
- Arno Schmidt had already read Poe when he started writing 'Zettels Traum'.
- Gosh, I forgot to feed the cat.
- shifts of evaluation time

Roland Schäfer Formale Semantik 240 / 287

Reichenbach

	past (R <s)< th=""><th>present (R,S)</th><th>future (S<r)< th=""></r)<></th></s)<>	present (R,S)	future (S <r)< th=""></r)<>
anterior(E <r)< td=""><td>E<r<s< td=""><td>E<r,s< td=""><td>S<e<r< td=""></e<r<></td></r,s<></td></r<s<></td></r)<>	E <r<s< td=""><td>E<r,s< td=""><td>S<e<r< td=""></e<r<></td></r,s<></td></r<s<>	E <r,s< td=""><td>S<e<r< td=""></e<r<></td></r,s<>	S <e<r< td=""></e<r<>
	er war gegangen	er ist gegangen	S,E <r< td=""></r<>
			E <s<r< td=""></s<r<>
			er wird gegangen sein
simple(E,R)	E,R <s< td=""><td>E,R,S</td><td>S<e,r< td=""></e,r<></td></s<>	E,R,S	S <e,r< td=""></e,r<>
	er ging	er geht	er wird gehen
posterior(R <e)< td=""><td>R<e<s< td=""><td>R,S<e< td=""><td>S<r<e< td=""></r<e<></td></e<></td></e<s<></td></e)<>	R <e<s< td=""><td>R,S<e< td=""><td>S<r<e< td=""></r<e<></td></e<></td></e<s<>	R,S <e< td=""><td>S<r<e< td=""></r<e<></td></e<>	S <r<e< td=""></r<e<>
	R <s,e< td=""><td>er wird gehen</td><td>*er wird gehen werden</td></s,e<>	er wird gehen	*er wird gehen werden
	R <s,e< td=""><td></td><td></td></s,e<>		
	R <s<e< td=""><td></td><td></td></s<e<>		
	*er würde gehen		

Roland Schäfer Formale Semantik 241 / 287

Embedded tenses and adverbials

- A man was born who will be king.
- P(a man is born F(who be king))?
- Yesterday, Maria woke up happy.
- Y(P(Maria wake up happy)) ?

Roland Schäfer Formale Semantik 242 / 287

Types of modal expressions

- tense forms: I eat up to 100 nachos a minute.
- mood: Responderet alius minus sapienter.
- modal auxiliaries: Herr Webelhuth can look like Michael Moore.
- adverbs: Maybe Herr Keydana will show up.
- affixes: Frau Eckardt is recognizable.

Roland Schäfer Formale Semantik 243 / 287

The logical form of modal operators

- like tense: sentence operators
- modal Aux in English is tense-insensitive (evidence for Infl)
- $\bullet \ \square$ and \lozenge in intensional predicate calculi (IPC): exploit the full set of possible worlds
- in NL: evaluation of modal expressions against restricted conversational backgrounds

Roland Schäfer Formale Semantik 244 / 287

The background

- different sets of possible worlds under consideration for different types of modal expressions
- different types of modality: different sets of admitted possible worlds
- we call the conversationally relevant background the set of $\langle w, i \rangle$ pairs relevant to the interpretation of the sentence

Roland Schäfer Formale Semantik 245 / 287

Root/Logical modality

- Agent Cooper cannot solve the mystery.
- translated into root modal IPC: $\neg \lozenge S(c, m)$
- wrong interpretation: Under no possible circumstances can Cooper solve the mystery.
- usually, some obvious facts constitute the background:
 - he could, but some relevant information is missing
 - he could, but is sick
 - he could, but ...

Roland Schäfer Formale Semantik 246 / 287

Epistemic modality

- Leo Johnson must be the murderer of Laura Palmer.
- in accordance with the known facts (e.g., in episode 7 of Twin Peaks):
 - Leo Johnson is a violent person.
 - Leo smuggles cocaine, Laura was addicted to it.
 - ► Leo is connected to Jacques Renault who is the bartender of *One Eyed Jack's* where Laura worked as a prostitute.
 - **.**..
- which constitute the epistemic background, the sentence is true
- known facts narrow down the root background

Roland Schäfer Formale Semantik 247 / 287

Deontic modality

- Agent Cooper must not solve the mystery.
- assume:
 - there is some U.S. law which allows a local sheriff to ask the FBI to keep out of local murder investigations
 - ▶ Sheriff Truman has asked the FBI headquarters to keep out of the Palmer investigation
 - as a special agent, Cooper is required to obey Bureau policy
- Deontic backgrounds are narrowed down by normative rules and moral ideals.
- statable in propositional form (ten commandments, law, ...)

Roland Schäfer Formale Semantik 248 / 287

Sets of propositions

- specify the kind of background against which you evaluate under the given situation
- we need: a function from $\langle w, i \rangle$ to the relevant background set of $\langle w_n, i_m \rangle$
- reuse g: $g(\langle w, i \rangle) = \{p_1, p_2, \dots, p_n\} = \{\langle w, i \rangle_1, \langle w, i \rangle_2, \dots, \langle w, i \rangle_n\}$
- such that all possible worlds are: $\bigcap g(\langle w, i \rangle)$

Roland Schäfer Formale Semantik 249 / 287

CP structures: that

- that is a complementizer, it turns a sentence into an argument.
- ps rule: $CP \rightarrow CIP$
- [IP Racine believes [CP that [IP theatre rules]]]
- CP (fully fledged sentence) receives theta role by believe under government.

Roland Schäfer Formale Semantik 250 / 287

Weak Infl and PRO

- gerunds:
 [IP Stockhausen has plans [IP to write another 29 hour opera]]
- incomplete embedded IP, no subject
- internal theta role of has plans: to IP
- external theta role of write: to?
- PRO, controlled by the subject of has plans:
 [IP Stockhausen has plans [IP PRO to write another 29 hour opera]]

Roland Schäfer Formale Semantik 251 / 287

Propositional attitudes

- verbs like believe: propositional attitude verbs
- content of the believe: a pice of information held to be true by the believer, hence a proposition, a $\langle w_n, i_m \rangle$
- signalling one element in the background assumed by the believer
- belief: $\langle w, i \rangle$ is an element of the proposition of CP

Roland Schäfer Formale Semantik 252 / 287

Translating that as^

- value of propositional attitude (PA) verbs: functions $[\langle w, i \rangle \to \langle u_n, p \rangle]$ with $u_n \in U$, p a proposition (set of $\langle w_n, i_m \rangle$) and compatible to u_n 's background
- $up(\hat{\chi})$: an operator which gives the intension of an expression χ
- the full logic of ^ and ~ as designed by Montague next week
- rids us of the problem that the belief content looks truth-conditional (a sentence) but doesn't contribute to the embedding sentence's truth-value. PA verbs take intensions as arguments.

Roland Schäfer Formale Semantik 253 / 287

Meet B.J. Ortcutt

- Quine's story: Ralph knows...
- Bernard J.Ortcutt, the nice guy on the beach.
- He sees a strange guy with a hat in the dark alley a spy?
- Ortcutt just likes to behave funny on the way to his pub...
- and actually is sinister guy in the alley!
- Only Ralph doesn't know.

Roland Schäfer Formale Semantik 254 / 287

Is Ralph insane?

- What's the truth value of...
- Ralph believes that the guy from the beach is a spy.
- true: since Ortcutt and the guy in the hat are one individual
- false: since Ralph doesn't know that and in a way 'doesn't believe it'

Roland Schäfer Formale Semantik 255 / 287

de dicto and de re

- the Russelian interpretation for *the* like \exists with a uniqueness condition (as a GQ): $\lambda Q \lambda P \left[\exists x \left[Q(x) \wedge P(x) \right] \wedge \forall y \left[Q(y) \leftrightarrow y = x \right] \right]$
- in a raising framework: ambiguity between THE and believe
- $[_{IP}$ the guy from the beach, $[_{IP}$ Ralph believes $[_{CP}$ that x_i is a spy]]]
- makes the sentence true: the de re reading
- Ralph believes [CP that [IP the guy from the beach; [IP Xi is a spy]]]
- makes the sentence false: the de dicto reading

Roland Schäfer Formale Semantik 256 / 287

Rigid designators

- Yuri Gagarin might now have been the first man in space.
- some Mickey Mouse LFs:
- \(\rightarrow \text{THE(first-man-in-space)(not-be-Gagarin)} \)
- at some $\langle w_n, i_m \rangle$ the first individual in space is not Y.G.
- THE(first-man-in-space)(◊[not-be-Gagarin])
- at $\langle w, i \rangle$ the first individual in space (definitely Y.G.) is not Y.G. in an accessible world
- Names are rigid designators across world-time-pairs, definite descriptions aren't.

Roland Schäfer Formale Semantik 257 / 287

Chierchia's formalization

- CP has its own subject, to-IPs don't (PRO)
- PRO must be interpreted, in our examples by coindexation with the matrix subject
- infinitive embedding verbs: functions from world-time pairs to sets of individuals which have a certain property, the intension of a predicate P
- John tries to sing.
- try(j, ^swim)

Roland Schäfer Formale Semantik 258 / 287

Beyond truth functionality

- $\llbracket \phi \rrbracket^{\mathcal{M},w,i,g}$ and $\llbracket \mathbf{P} \rrbracket^{\mathcal{M},w,i,g}$ don't truth conditionally determine $\llbracket \mathbf{P} \phi \rrbracket^{\mathcal{M},w,i,g}$
- Iceland was once covered with a glacier.
- **F**, **B**, \Diamond , \square are not fully truth functional
- Leibnitz Law of identity of individuals for logics containing '=' failing in opaque contexts
- 'former', 'alleged', etc. are not intersective adjectives like 'red'
- Frege: sometimes expressions denote a sense
- again: individual concepts (variable function on indices) vs. names (constant)

Roland Schäfer Formale Semantik 259 / 287

intension relative to models

• for a name
$$d$$
: $\llbracket d
rbracket^{\mathcal{M},g}_{arphi} = egin{bmatrix} \langle w_1,t_1
angle & \rightarrow & b \ \langle w_2,t_1
angle & \rightarrow & b \ \langle w_1,t_2
angle & \rightarrow & b \ \langle w_2,t_2
angle & \rightarrow & b \ \langle w_1,t_3
angle & \rightarrow & b \ \langle w_2,t_3
angle & \rightarrow & b \end{bmatrix}$

Roland Schäfer Formale Semantik 260 / 287

• for an individual concept denoting expression *m*:

$$\bullet \hspace{0.1cm} \llbracket m \rrbracket^{\mathcal{M},g}_{\varsigma'} = \left[\begin{array}{ccc} \langle w_1,t_1 \rangle & \rightarrow & a \\ \langle w_2,t_1 \rangle & \rightarrow & c \\ \langle w_1,t_2 \rangle & \rightarrow & b \\ \langle w_2,t_2 \rangle & \rightarrow & c \\ \langle w_1,t_3 \rangle & \rightarrow & c \\ \langle w_2,t_3 \rangle & \rightarrow & b \end{array} \right]$$

Roland Schäfer Formale Semantik 261 / 287

• for a one place predicate B:

$$\bullet \hspace{0.1cm} \llbracket B \rrbracket^{\mathcal{M},g}_{\varphi} = \left[\begin{array}{ccc} \langle w_1,t_1 \rangle & \rightarrow & \{a,b\} \\ \langle w_2,t_1 \rangle & \rightarrow & \{b,c\} \\ \langle w_1,t_2 \rangle & \rightarrow & \{a,c\} \\ \langle w_2,t_2 \rangle & \rightarrow & \{a\} \\ \langle w_1,t_3 \rangle & \rightarrow & \{b,c\} \\ \langle w_2,t_3 \rangle & \rightarrow & \{a,b,c\} \end{array} \right]$$

Roland Schäfer Formale Semantik 262 / 287

Intensions of formulas

• formula ϕ : $\llbracket \phi \rrbracket_{\varphi}^{\mathcal{M},g}$ is a function from indices to truth values

$$\bullet \quad \llbracket \mathsf{B}(m) \rrbracket_{\mathsf{g}'}^{\mathcal{M},g} = \left[\begin{array}{ccc} \langle \mathsf{w}_1,\mathsf{t}_1 \rangle & \to & 1 \\ \langle \mathsf{w}_2,\mathsf{t}_1 \rangle & \to & 1 \\ \langle \mathsf{w}_1,\mathsf{t}_2 \rangle & \to & 0 \\ \langle \mathsf{w}_2,\mathsf{t}_2 \rangle & \to & 0 \\ \langle \mathsf{w}_1,\mathsf{t}_3 \rangle & \to & 1 \\ \langle \mathsf{w}_2,\mathsf{t}_3 \rangle & \to & 1 \end{array} \right]$$

$$\bullet \ \llbracket B(n) \rrbracket_{\varphi}^{\mathcal{M},g} = \begin{bmatrix} \langle w_1, t_1 \rangle & \to & 0 \\ \langle w_2, t_1 \rangle & \to & 1 \\ \langle w_1, t_2 \rangle & \to & 1 \\ \langle w_2, t_2 \rangle & \to & 0 \\ \langle w_1, t_3 \rangle & \to & 1 \\ \langle w_2, t_3 \rangle & \to & 1 \end{bmatrix}$$

Roland Schäfer Formale Semantik 263 / 287

Intensions of formulas

- again, the proposition $\llbracket Bm \rrbracket_{q'}^{\mathcal{M},g}$ is a set of indices $(\langle w_i,t_j \rangle)$
- from the extension at all indices, compute the intension
- $[\![\alpha]\!]_{\alpha}^{\mathcal{M},g}(\langle \mathbf{W}_i, \mathbf{t}_j \rangle) = [\![\alpha]\!]^{\mathcal{M},\mathbf{W}_i,\mathbf{t}_j,g}$

Roland Schäfer Formale Semantik 264 / 287

Intensions of variables

- constant function on indices
- will play a great role, so remember!
- $\llbracket u \rrbracket_{q'}^{\mathcal{M},g}(\langle w_i, t_j \rangle) = g(u)$

Roland Schäfer Formale Semantik 265 / 287

What expressions denote

- sometimes expressions denote individuals, sets of individuals, truth values...
- and sometimes they denote intensions (functions)
- alternatively: introduce rules which access an expression's extension/intension as appropriate

Roland Schäfer Formale Semantik 266 / 287

Up and down

- Church/Montague: for an extension-denoting expression α , α denotes α 's intension
- $\llbracket \hat{B}m \rrbracket^{\mathcal{M},w,i,g} = \llbracket Bm \rrbracket^{\mathcal{M},g}_{g'}$
- α and $\hat{\alpha}$ are just denoting expressions
- for an intension-denoting expression α : $[\check{\alpha}]^{\mathcal{M}, w, i, g} = [\![\alpha]\!]^{\mathcal{M}, g}(\langle w, t \rangle)$

Roland Schäfer Formale Semantik 267 / 287

Down-up and up-down

- observe: $[\hat{\alpha}]^{\mathcal{M}, w, i, g} = [\alpha]^{\mathcal{M}, w, i, g}$ for any $\langle w, t \rangle$
- but not always: $\llbracket \tilde{\alpha} \rrbracket^{\mathcal{M},w,i,g} = \llbracket \alpha \rrbracket^{\mathcal{M},w,i,g}$ for any $\langle w,t \rangle$
- can easily be the case for intension-denoting expressions

Roland Schäfer Formale Semantik 268 / 287

Non-equality

Roland Schäfer Formale Semantik 269 / 287

Non-equality

• k' extension (e.g., at $\langle w_1, t_2 \rangle$): $\llbracket k \rrbracket_{\zeta'}^{\mathcal{M}, g} (\langle w_1, t_2 \rangle) =$

$$\bullet \quad \llbracket \mathbf{k} \rrbracket^{\mathcal{M}, \mathbf{w}_1, \mathbf{t}_2, g} = \left[\begin{array}{ccc} \langle \mathbf{w}_1, \mathbf{t}_1 \rangle & \rightarrow & a \\ \langle \mathbf{w}_1, \mathbf{t}_2 \rangle & \rightarrow & b \\ \langle \mathbf{w}_2, \mathbf{t}_1 \rangle & \rightarrow & \mathbf{c} \\ \langle \mathbf{w}_2, \mathbf{t}_2 \rangle & \rightarrow & d \end{array} \right]$$

- $\bullet \ \ \text{however:} \ \llbracket^{\sim} k \rrbracket^{\mathcal{M}, w_1, t_2, g} = \left[\begin{array}{ccc} \langle w_1, t_1 \rangle & \rightarrow & a \\ \langle w_1, t_2 \rangle & \rightarrow & b \\ \langle w_2, t_1 \rangle & \rightarrow & d \\ \langle w_2, t_2 \rangle & \rightarrow & b \end{array} \right]$
- since: $[\![k]\!] \mathcal{M}, w_1, t_1, g = a$ $[\![k]\!] \mathcal{M}, w_1, t_2, g = b$ $[\![k]\!] \mathcal{M}, w_2, t_1, g = d$ $[\![k]\!] \mathcal{M}, w_2, t_2, g = b$

Roland Schäfer Formale Semantik 270 / 287

A typed higher order λ language with = and $^{^{\wedge}}/^{^{\sim}}$

- \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \mathbf{F} , \mathbf{P} , \square , = (syncategorematically)
- t, e ∈ Type (Con_{type}, Var_{type})
- if $a, b \in Type$, then $\langle a, b \rangle \in Type$
- if $a \in Type$, then $\langle s, a \rangle \in Type$
- s ∉ Type

Meaningful expressions

- ME_{type}
- abstraction: if $\alpha \in ME_a$, $\beta \in Var_b$, $\lambda \beta \alpha \in ME_{\langle b,a \rangle}$
- FA: if $\alpha \in ME_{\langle a,b \rangle}$, $\beta \in ME_a$ then $\alpha(\beta) \in ME_b$
- if $\alpha, \beta \in ME_a$ then $\alpha = \beta \in ME_t$

Roland Schäfer Formale Semantik 272 / 287

Interpretations of ^ and *

- if $\alpha \in ME_a$ then $\hat{\alpha} \in ME_{s,a}$
- if $\alpha \in ME_{\langle s,a \rangle}$ then $\alpha \in ME_a$

	type	variables	constants
•	е	x, y, z	a, b, c
	$\langle s, \pmb{e} \rangle$	x, y, z	_
	$\langle e, t \rangle$	X, Y	walk′, A, B
	$\langle\langle s,e\rangle,t\rangle$	Q	rise′, change′
	$\langle s, \langle e, t \rangle \rangle$	P	_
	$\langle \boldsymbol{e}, \boldsymbol{e} \rangle$	P	Sq
	$\langle e, \langle e, t \rangle \rangle$	R	Gr, K
	$\langle e, \langle e, e \rangle \rangle$	_	Plus

Roland Schäfer Formale Semantik 273 / 287

The model

- $\langle A, W, T, <, F \rangle$
- $D_{\langle a,b\rangle} = D_b^{D_a}$
- $D_{\langle s,a\rangle} = D_a^{W\times T}$
- 'senses' = **possible** denotations
- actual intensions chosen from the set of senses
- now: F(expression)=intenstion (itself a function)
- s.t. intension(index)=extention
- instead of: F(expression)(index)=extemsion

Roland Schäfer Formale Semantik 274 / 287

Some interpretations

- $[\![\lambda u \alpha]\!]^{\mathcal{M},w,i,g}$, $u \in Var_b$, $\alpha \in ME_a$ is a function h with domain D_b s.t. $x \in D_b$, $h(x) = [\![\alpha]\!]^{\mathcal{M},w,t,g'}$ with g' exactly like g except g'(u) = x
- $[\![\alpha]\!]^{\mathcal{M},w,i,g}$ is a function h from $W \times T$ to denotations of α 's type s.t. at every $\langle w',t' \rangle \in W \times T [\![\alpha]\!]^{\mathcal{M},w',t',g} = h(\langle w',t' \rangle) = [\![\alpha]\!]^{\mathcal{M},w,i,g}(\langle w',t' \rangle)$

Roland Schäfer Formale Semantik 275 / 287

Some examples

- $\alpha = \beta$ at $\langle w, t \rangle$ might be true, but $\hat{\alpha} = \hat{\beta}$ need not be 1 at that same index
- on types:
 - e individuals
 - $\langle s, e \rangle$ individual concepts ('present Queen of England')
 - $\langle s, \langle e, t \rangle \rangle$ properties of inidviduals
 - $\langle e, t \rangle$ sets of individuals
 - $\langle\langle s,e\rangle,t\rangle$ sets of individual concepts

Roland Schäfer Formale Semantik 276 / 287

Some examples

- on properties:
 - \triangleright $\langle s, \langle a, t \rangle \rangle$ properties of denotations of *a*-type expressions
 - $\langle s, \langle e, t \rangle \rangle$ properties of individuals
 - $\langle s, \langle \langle s, t \rangle, t \rangle \rangle$ properties of propositions
- from relations $\langle e, \langle e, t \rangle \rangle$ to relations-in-intensions $\langle s, \langle e, \langle e, t \rangle \rangle \rangle$

Roland Schäfer Formale Semantik 277 / 287

On indices

- In IL indices are never denoted by expressions!
- Expressions denote functions in the domain of indices.
- hence: $\langle s, a \rangle$ never applied to some typed argument (s is not a type!)
- useful thing: We never talk about indices!
- since often $\check{\ }\alpha(\beta)$ is needed for $\alpha\in \mathit{ME}_{\langle \mathsf{s},\langle e,\mathsf{t}\rangle\rangle}$ and $\beta\in \mathit{ME}_e$, abbr. $\alpha\{\beta\}$

Roland Schäfer Formale Semantik 278 / 287

Nec

- former problem with **Nec** as $\langle t, t \rangle$: non-compositional extensional interpretation
- Nec $\in ME_{\langle \langle \mathbf{s}, \mathbf{t} \rangle, \mathbf{t} \rangle}$ $\{0, 1\}^{(\{0, 1\}^{W \times T})}$
- from (from indices to truth values = propositions) to truth values
- we could give $\Box \phi$ as $\mathbf{Nec}(\hat{\ }\phi)$

Roland Schäfer Formale Semantik 279 / 287

- 'former' as in 'a former member of this club'
- instead of $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$
- intensionally: $\langle \langle s, \langle e, t \rangle \rangle, \langle e, t \rangle \rangle$
- extensions at all indices accessible via intension: those individuals bearing property $\langle e, t \rangle$ not at current but at some past index qualify
- formally: $[\![\mathbf{For}]\!]_{\zeta'}^{\mathcal{M},g}$ is a func. h s.t. for any property k, $h(\langle w,t\rangle)(k)$ is the set $k(\langle w,t'\rangle)$ for all t' < t.
- So, for any individual $x h(\langle w, t \rangle)(k)(x) = 1$ iff $k(\langle w, t' \rangle)(x) = 1$ for some t' < t.

Roland Schäfer Formale Semantik 280 / 287

- relations between individuals and propositions
- $\langle \langle s, t \rangle, \langle e, t \rangle \rangle$
- $Bel(\hat{B}(m))(j)$ John believes that Miss America is bald.
- take the model from page 134 (Dowty et al.):
- $[B(m)]^{M,w_2,t_1,g} = 1$ since $[m]^{M,w_2,t_1,g} = [n]^{M,w_2,t_1,g}$
- however: $[\hat{B}(m)]^{M,w_2,t_1,g} \neq [\hat{B}(n)]^{M,w_2,t_1,g}$

Roland Schäfer Formale Semantik 281 / 287

de dicto

- Bel($\hat{B}(m)(j)$) 'John believes that Miss America is bald.'
- Bel($\hat{B}(n)(j)$) 'John believes that Norma is bald.'
- needn't be equal: John can take worlds other than $\langle w_2,t_1\rangle$ into account where $[\![n]\!]\neq [\![m]\!]$
- $\alpha = \beta \to \left[\phi \leftrightarrow \phi^{[\alpha/\beta]}\right]$ is true iff α is not in the scope of $\hat{\ }, \mathbf{F}, \mathbf{P}, \square$ (oblique contexts)
- however: $\alpha = \beta \rightarrow [\phi \leftrightarrow \phi^{[\alpha/\beta]}]$

Roland Schäfer Formale Semantik 282 / 287

de re

- like so: $\lambda x [Bel(\hat{B}(x)])(j)](m)$
- the above is true at an index $\langle w, t \rangle$ iff $[\![\mathbf{Bel}(\hat{\ }[B(x)])(j)]\!]^{w,t} = 1$ if $[\![m]\!]^{w,t} = x$, i.e. if John is in a believe-rel with $\hat{\ }(B(x))$ s.t. g(x) = m (by semantics of λ)
- Why is $\hat{B}(B(x))$ not equal to $\hat{B}(B(m))$?
- constant m: non-rigid designator relativized to indices
- variable x: a rigid designator by def. of g (for the relevant checking case with g(x) = MissAmerica
- the above: a belief about 'whoever m is'
- λ conversion is restricted in IL!

Roland Schäfer Formale Semantik 283 / 287

Once again

- John believes that a republican will win.
- $\exists x [Rx \wedge \mathbf{Bel}(j, \hat{\ } [FW(x)])]$
- $\mathbf{Bel}(j, \mathbf{F} \exists x [R(x) \land W(x)])$

Roland Schäfer Formale Semantik 284 / 287

Literatur I

Roland Schäfer Formale Semantik 285 / 287

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Roland Schäfer Formale Semantik 286 / 287

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.

Roland Schäfer Formale Semantik 287 / 287