Processamento Digital de Sinais

Fabrício Gomes

fgs.fabricio@gmail.com

Aula 6

Apresentação disponível no GitHub: https://github.com/fgsfabricio/PDS_Unisul

2018.1

Revisão - Tipo de Sistemas

Sistemas Causais

- Sistema para o qual a saída não depende de sequências de entradas futuras, ou seja, depende de valores da sequência para $n \le n_0$.
- Isso implica que, se $x_1[n] = x_2[n]$ para $n \le n_0$, então $y_1[n] = y_2[n]$ para $n \le n_0$.

Exemplo 4: Verificar se os sistemas abaixo são causais.

$$y[n] = x[-n]$$
$$y[n] = 5x[n-10]$$

Revisão - Tipo de Sistemas

Sitemas Estáveis

- Um sistema é estável no sentido entrada limitada saída limitada (BIBO, do inglês bounded-input, bounded-output) se, e somente se, toda sequência limitada de entrada produzir uma sequência limitada de saída.
- Ou seja, se o $max(|x[n]|) < \infty \Rightarrow max(|y[n]|) < \infty$

Exemplo 5: Verificar se o sistema abaixo é estável.

$$y[n] = nx[n]$$

Sinais Elementares

Amostra Unitária

$$\delta[n] = \begin{cases} 0, n \neq 0 \\ 1, n = 0 \end{cases}$$

Sinais Elementares

Degrau Unitário

$$u[n] = \begin{cases} 0, n < 0 \\ 1, n \ge 0 \end{cases}$$

Sinais Elementares

Rampa Unitária

$$r[n] = \begin{cases} 0, n < 0 \\ n, n \ge 0 \end{cases}$$

Revisão - Sinais Singulares

Encontrar x[n] em termos de r[n] e u[n].

Revisão - Sinais Singulares

Illustrar graficamente y[n] = r[n] - r[n-2] - 2u[n-3].

Revisão - Sinais Singulares

Resolva a convolução dos seguintes sinais:

$$y[n] = (u[n] - u[n - 4]) * (r[n] - r[n - 2] - 2u[n - 4])$$

Revisão de Senoides

Desmos Editor

Revisão de Senoides

Parâmetros da Senoide

$$x(t) = a\cos(2\pi f t + \theta)$$

- Amplitude *a*
- Frequência f
- Fase θ
- Desmos Editor