- 1. Verify that the ℓ_1 -norm on \mathbb{R}^n defined by $||x||_1 = \sum_{i=1}^n |x|$ for $x \in \mathbb{R}^n$ is a norm on \mathbb{R}^n . (10%)
- 2. The operator norm on $\mathbb{R}^{m \times n}$ induced by two norms $\|\cdot\|_a$ on \mathbb{R}^m and $\|\cdot\|_b$ on \mathbb{R}^n is defined by

$$||X||_{a,b} = \sup\{||Xu||_a : ||u||_b \le 1\}$$

for $X \in \mathbb{R}^{m \times n}$. Verify that

$$||X||_{1,1} = \max_{j=1,\dots,n} \sum_{i=1}^{n} |X_{ij}|.$$

(10%)

- 3. Show that the dual norm of ℓ_1 -norm is the ℓ_{∞} -norm. (10%)
- 4. The trace of a square matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ is defined as $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$. Show that:
 - (a) tr(AB) = tr(BA) for $A, B \in \mathbb{R}^{n \times n}$. (5%)
 - (b) $\operatorname{tr}(tA+B) = t\operatorname{tr}(A) + \operatorname{tr}(B)$ for $A, B \in \mathbb{R}^{n \times n}$ and $t \in \mathbb{R}$. (5%)
- 5. Let $\langle \ , \ \rangle$ be the inner product on \mathbb{R}^n . Prove the Cauchy-Schwarz inequality that for $x,y\in\mathcal{R}^n$,

$$\left|\langle x, y \rangle\right|^2 \le \langle x, x \rangle \langle y, y \rangle.$$

(10%)

6. Verify that that Frobenious inner product on $\mathbb{R}^{m\times n}$ defined by

$$\langle X, Y \rangle_F = \operatorname{tr}(X^T Y)$$

for $X, Y \in \mathbb{R}^{m \times n}$ is an inner product. (10%)

- 7. Read Appendix A.4. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Consider $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) = ||Ax b||_2^2$ for $x \in \mathbb{R}^n$. Show that
 - (a) $\nabla f(x) = 2A^T(Ax b)$. (10%)
 - (b) $\nabla^2 f(x) = 2A^T A$. (10%)
- 8. For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, it has an eigenvalue (spectral) decomposition

$$A = Q\Lambda Q^T$$
,

where $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix such that $Q^T Q = QQ^T = I$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix with entries that are eigenvalues of A.

(a) Show that

$$tr A = \sum_{i=1}^{n} \lambda_i.$$

(5%)

- (b) Show that $x^T A x \ge 0$ for any $x \in \mathbb{R}^n$ if and only if $\lambda_i \ge 0$ for i = 1, ..., n. (A is called positive semidefinite if all the eigenvalues λ_i are nonnegative.) (10%)
- (c) Let $\lambda_{\max} = \max\{\lambda_1, \dots, \lambda_n\}$ and $\lambda_{\min} = \min\{\lambda_1, \dots, \lambda_n\}$. Show that

$$\lambda_{\min} x^T x < x^T A x < \lambda_{\max} x^T x$$
.

(10%)