Introduction to Deep learning with R

S. Donnet

SatRdays, Paris, Feb. 2019

Example: Digit Recognition

Figure 1: Recognition of handwritten digits

Example: Digit Recognition

Figure 2: Recognition of handwritten digits

- ▶ Each image *i* of digit is of size $28 \times 28 = 784$ pixels
- ▶ Each pixel j is associated with a gray level $x_i^j \in \{0, ..., 255\}$

Example: Digit Recognition

- ▶ The gray levels are stored in a vector $\mathbf{x}_i = (x_i^r)_{r=1...p}, p = 784$
- ▶ $y_i \in \{0, \dots, 9\}$: image label
 - \triangleright y_i : observed / known for a learning sample
 - ightharpoonup y must be predicted for a new image x

Formally

- We consider n objects (images, texts, sound ...), described by p characteristics.
- For each object i, these characteristics are stored in a vector $\mathbf{x}_i = (x_i^1, \dots, x_i^p)$ of \mathbb{R}^p .
- \blacktriangleright An output variable y_i is each object i is assigned
 - ▶ If $y_i \in \mathbb{R}^p$: we talk about regression
 - ▶ If $y_i \in E$ with E set, we talk about
 - discriminating if $E = \{0, 1\}$;
 - classification if $E = \{0, ..., 9\}$ for example
 - ▶ shape recognition if E = {dog, groundhog, ...}
- ▶ **Goal**: predict the output *y* for a new set of characteristics **x**
- ► How do we do it?: learn (on a set of learning data = training) a prediction rule or classification and provide this rule to apply it to x

Other examples

- ► Face recognition on pictures E = { family members }
- ▶ Recognition of the political edge by speach analysis

What's the difference between estimation and learning?

- Statistical tradition / estimation :
 - Concept of model is central with an explanatory purpose
 - Seeking to approach reality, propose a model possibly based on a physical theory, economic,
 - Interpretation of the role of each explanatory variable in the process is important.
- Learning: the objective is essentially the prediction,
 - best model is not necessarily the one that best fits the true model.
 - theoretical framework is different and error control requires another approach: choices based on prediction quality criteria
 - ▶ Interpretability is less important

So what about the good old (generalized) linear model?

$$y_i \sim \mathcal{F}$$
 with $\phi(\mathbb{E}[y_i]) = \mathbf{x}^T \beta$

- ▶ If the dimensions of the problem (n, p) are reasonable
- If model assumptions (linearity) and distributions are verified
- ► THEN: statistical modeling techniques issued from the general linear model are optimal (maximum likelihood)
- ▶ We will not do better, especially in the case of small samples

But...

- As soon as the distribution hypotheses are not verified,
- As soon as the supposed relations between the variables or with the variable of interest are not linear
- As soon as the data volume is important (big data),

We will consider other methods that will over-rate rudimentary statistical models.

Deep learning: introduction

 Definition (attempt): set of learning methods that attempt to model data with complex architectures combining various non-linear transformations

$$\mathbf{x} \mapsto f(\mathbf{x}, \theta)$$
 such that $y \simeq f(\mathbf{x}, \theta)$

- The basic building blocks of Deep Learning are neural networks.
- ▶ These bricks are combined to form **deep neural networks**.

Application areas

These techniques have led to significant progress in the following areas:

- image and sound processing: facial recognition, automatic speech recognition (transformation of a voice into written text),
- computer vision: to imitate the human vision (machine seeing several objects at once),
- automatic processing of natural language,
- text classification (eg spam detection).

Infinite amount of potential applications

Different types of architectures for neural networks

- Multilayer Perceptrons: the oldest and simplest
- Convolutional neural networks: very efficient for image processing
- Recurrent neural networks, useful for sequential data (texts or time series)
- All are based on deep layers of layers
- Requires intelligent optimization algorithms (stochastic in general), careful initialization and a smart choice of structure.
- Impressive results but few theoretical justifications for the moment

Artificial neuron

- ▶ A neuron is a non-linear application in its parameters that associates an output $f(\mathbf{x})$ to an input vector \mathbf{x} :
- ▶ More precisely, the j-th neuron f_j is written

$$f_j(\mathbf{x}) = \phi(\langle w_j, \mathbf{x} \rangle + b_j)$$

where

- $\vee < w_j, \mathbf{x} > = \sum_{r=1}^p w_i^r x^r$
- ► The quantities $w_j = (w_j^1, ..., w_j^p)$ are the weights of the input variables $(x^1, ..., x^p)$
- b_i is the bias of neuron j.
- $ightharpoonup \phi$ is the activation function

Basic model involving one neuron

We explain the output variable y by

$$y \simeq f(\mathbf{x}, \theta) = \phi(\langle w, \mathbf{x} \rangle + b)$$

▶ If $\phi(z) = z$ and we only have one neurone \Rightarrow classical linear function

Choice of the activation function ϕ

▶ If $Y \in \{0,1\}$ and we want to predict P(Y = 1|x) : logistic function

$$\phi(z) = \frac{1}{1 + e^{-z}} \in [0, 1]$$

▶ Generalization: If $Y \in E$ (E finite space of cardinal K) and we want to predict P(Y = e|x): softmax

$$\phi(z_1,\ldots,z_K) = \left(\frac{e^{z_j}}{\sum_{j=1\ldots K} e^{z_j}}\right)_{j=1\ldots K}$$

- ▶ Hyperbolic tangent function : $\phi = \tanh : \mathbb{R} \mapsto [-1, 1]$
- ▶ Threshold function : $\phi(z) = 1_{z>s} \in \{0,1\}$
- Rectified linear unit (ReLU) $\phi(z) = max(z,0)$
 - OK to predict positive values. Continuous but non differentiable

Plots

Various differentiability properties : important when we will have to optimize the \boldsymbol{w} et \boldsymbol{b}

Neural networks or multilayer perceptrons

- Structure composed of different hidden layers of neurons whose outputs serve as inputs to the neurons of the next layer
- Activation functions are the same in the different layers, only the last is different (adapted to the objective: classification or regression)

Example

Figure 3: Example of neural network

- ▶ Input layer : as many nodes as variables x^r : p
- ► Hidden layer : number of neurons, to be set but the user (here 4 then 3)
- Output layer : 1 node = y

Neural network: formally

Let J_{ℓ} be the number of neurons in layer ℓ

- ▶ Layer 0 : $h^0(\mathbf{x}) = \mathbf{x} \in \mathbb{R}^p$
- For hidden layers $\ell = 1 \dots L$:
 - lacksquare We create J_ℓ neurons : for every $j=1\dots J_\ell$:

$$a_{j}^{(\ell)}(\mathbf{x}) = b_{j}^{(\ell)} + \sum_{m=1}^{J_{\ell-1}} W_{jm}^{(\ell)} h_{m}^{(\ell-1)}(\mathbf{x})$$

= $b_{j}^{(\ell)} + \langle W_{j}^{(\ell)}, h^{(\ell-1)}(\mathbf{x}) \rangle$

$$h_j^{(\ell)}(\mathbf{x}) = \phi(a_j^{(\ell)}(\mathbf{x}))$$

With vectors and matrices :

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

where $W^{(\ell)}$ is matrix of size $J_\ell imes J_{\ell-1}$

Neural network: formally

▶ For the last layer $\ell = L + 1$:

$$a^{(L+1)}(\mathbf{x}) = b^{(L+1)} + W^{(L+1)}h^{(L)}(\mathbf{x}) \in \mathbb{R}^J$$

 $h^{(L+1)}(\mathbf{x}) = \psi(a^{(L+1)}(\mathbf{x}))$

Neural network: finally

- $ightharpoonup W^{(\ell)}$ is a weight matrix with J_ℓ rows and $J_{\ell-1}$ columns.
- $lacksymbol{ iny} W^{(L+1)}$ is a weight matrix with 1 row and J_L colums $y \in \mathbb{R}$

$$\mathbf{x} \mapsto f(\mathbf{x}, \theta) = \psi(a^{(L+1)}(\mathbf{x}))$$

- If we are in a regression context $\psi(z) = z$,
- If we are in a binary classification context ψ is the sigmoid function (prediction in [0,1]).
- If we are in a multiclass classification framework : $\psi = softmax$

Neural Network:

- ▶ Basic architecture since each layer depends on the previous layer and not on the neurons of the same layer (⇒ recurrent neural networks)
- Parameters to tune or fit:
 - number of layers
 - number of neurons in each layer
 - hidden layer activation functions (ϕ)
 - \blacktriangleright Choice of the output activation function (ψ) driven by the dataset

Recurrent neural networks

► The output of a neuron can be the input of a neuron of the same layer.

Theoretical result

- ▶ Hornik (1991) proved that any smooth bounded function from \mathbb{R}^p to \mathbb{R} can be approximated by a one layer neural network with a finite number of neurons with the same activation function ϕ and $\psi = id$.
- Interesting result from a theoretical point of view.
- In practice :
 - Required number of neurons can be very large.
 - Strength of deep leargning derives from the number of hidden layers

Parameters estimation

A quantity to minimize / maximize : loss function

- Parameters to estimate : $\theta =$ weights $W^{(\ell)}$ ans bias $b_i^{(\ell)}$
- Classically: estimation by maximizing the (log)-likelihood
- ▶ Loss function: = log likelihood
 - ▶ In the regression framework : $Y \sim \mathcal{N}(f(\mathbf{x}, \theta), I)$

$$\ell(f(\mathbf{x},\theta),Y) = \|Y - f(\mathbf{x},\theta)\|^2$$

▶ For the binary classification $\{0,1\}$: $Y \sim \mathcal{B}(1,f(\mathbf{x},\theta))$

$$\ell(f(\mathbf{x},\theta),Y) = -Y\log(f(\mathbf{x},\theta)) - (1-Y)\log(1-f(\mathbf{x},\theta))$$

(cross-entropy)

▶ For the multiclass classification

$$\ell(f(\mathbf{x},\theta),Y) = -\sum_{\mathbf{x}} \mathbf{1}_{Y=e} \log p_{\theta}(Y=e|\mathbf{x})$$

Loss function: remark

- Ideally, we would like to minimize the classification error but it is not a differentiable function
- ▶ So we resort to the "cross-entropy" which can be differentiated

Penalized empirical risk

- We won't minimize just for one observation but for all of them
- ▶ For a training sample $(\mathbf{x}_i, Y_i)_{i=1...n}$

$$L_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i, \theta), Y_i)$$

Penalization :

$$L_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(f(\mathbf{x}_i, \theta), Y_i) + \lambda \Omega(\theta)$$

with, for instance, $\Omega(\theta) = \sum_{\ell,i,j} (W_{ij}^{(\ell)})^2$ or $\Omega(\theta) = \sum_{\ell,i,j} |W_{ij}^{(\ell)}|$ to avoid overfitting.

Minimization by Stochastic gradient descent.

Algorithm (by Rumelhart et al (1988))

- lacktriangle Choose an initial value of parameters heta and a learning rate η
- Repeat until a minimum is reached:
 - Split randomy the training set into N_B batches of size m $(n = m \times N_B)$
 - for each batch B set:

$$\theta := \theta - \eta \frac{1}{m} \sum_{i \in B} \nabla_{\theta} \left\{ \ell(f(\mathbf{x}_i, \theta), Y_i) + \lambda \Omega(\theta) \right\}$$

Remarks:

- Each iteration is called an epoch.
- ▶ The number of epochs is a parameter to tune
- ▶ Difficulty comes from the computation of the gradient

Calculus of the gradient for the regression

- $Y \in \mathbb{R}$.
- $P_i = \ell(f(\mathbf{x}_i, \theta), Y_i) = (Y_i f(\mathbf{x}_i, \theta))^2$
- lacktriangle For any activation function ϕ (hidden layers) and ψ

Partial derivatives of R_i with respect to the weights of the last layer

- ▶ Derivatives of $R_i = (Y_i f(\mathbf{x}_i, \theta))^2 = (Y_i h^{(L+1)}(\mathbf{x}_i))^2$ with respect to $(W_i^{(L+1)})_{j=1...J_i}$
- $a^{(L+1)}(\mathbf{x}) = b^{(L+1)} + W^{(L+1)}h^{(L)}(\mathbf{x}) \in \mathbb{R}^J$

$$f(\mathbf{x}, \theta) = h^{(L+1)}(\mathbf{x})$$

$$= \psi(a^{(L+1)}(\mathbf{x}))$$

$$= \psi\left(b^{(L+1)} + \sum_{j=1}^{J_L} W_j^{(L+1)} h_j^{(L)}(\mathbf{x})\right)$$

$$\frac{\partial R_i}{\partial W_i^{(L+1)}} = -2\left(Y_i - f(\mathbf{x}_i, \theta)\right) \psi'\left(a^{(L+1)}(\mathbf{x}_i)\right) h_j^{(L)}(\mathbf{x}_i)$$

Partial derivatives of R_i with respect to the weights of the layer L-1

▶ Derivatives of
$$R_i = \left(Y_i - h^{(L+1)}(\mathbf{x}_i)\right)^2$$
 with respect to $(W_{im}^{(L)})_{j=1...J_L,m=1...J_{L-1}}$

$$\frac{\partial R_i}{\partial W_{im}^{(L)}} = -2(Y_i - f(\mathbf{x}_i, \theta)) \psi'\left(a^{(L+1)}(\mathbf{x}_i)\right) \frac{\partial}{\partial W_{im}^{(L)}} a^{(L+1)}(\mathbf{x}_i)$$

Partial derivatives of R_i with respect to the weights of the layer L-2

$$a^{(L+1)}(\mathbf{x}) = b^{(L+1)} + \sum_{j=1}^{J_L} W_j^{(L+1)} h_j^{(L)}(\mathbf{x})$$

$$= b^{(L+1)} + \sum_{j=1}^{J_L} W_j^{(L+1)} \phi \left(b_j^{(L)} + \sum_{m=1}^{J_{L-1}} W_{jm}^{(L)} h_m^{(L-1)}(\mathbf{x}) \right)$$

$$\frac{\partial}{\partial W_{jm}^{(L)}} a^{(L+1)}(\mathbf{x}_{i}) = W_{j}^{(L+1)} \phi' \left(b_{j}^{(L)} + \sum_{m=1}^{J_{L-1}} W_{jm}^{(L)} h_{m}^{(L-1)}(\mathbf{x}_{i}) \right) \\
\times h_{m}^{(L-1)}(\mathbf{x}_{i}) \\
= W_{j}^{(L+1)} \phi'(a_{j}^{L}(\mathbf{x}_{i})) h_{m}^{(L-1)}(\mathbf{x}_{i})$$

Forward-Backward algorithm (at each iteration)

After some light effort, recurrence formula

- Given the current parameters
 - ▶ Forward step : From layer 1 to layer L+1, compute the $a_i^{\ell}(\mathbf{x}_i), \phi(a_i^{\ell}(\mathbf{x}_i))$
 - **Backward step**: From layer L + 1 to layer 1, compute the partial derivatives (recurrence formula update)

Tuning the algorithm

- \triangleright η : learning rate of the gradient descent
 - lacktriangleright if η too small, really slow convergence with possibly reaching of a local minimum

 - Adaptive choice of η (decreasing η)
- Batch calculation reduces the number of quantities to be stored in the forward / backward

Obviously

Many improved versions of the maximisation algorithm (momentum correction, Nesterov accelerated gradient, etc...)

Automatic differentiation

Success of the neural network comes from automatic differentiation, i.e. automatisation of the previously described forward-backward procedure to compute the derivatives: Tensorflow

More complexe neural networks

Convolutional neural network (CNN)

- ▶ LeNet by LeCun et al., 1998
- ▶ When we transform an image into a vector : loss of spatial coherence of the image (shapes, . . .)
- CNN revolutionized Image Analysis (LeCun)
- Composed of different convolution layers, pooling layers and fully connected layers.

In one picture

Figure 4: Architecture of a convolutive neural network (Stanford credit)

Convolution layer

- ▶ Image $\mathcal{I}(u, v, c)$: each pixelwith (u, v) is described by C color levels (channels), par exemple RGB (red, green, blue) \Rightarrow : array of size (M, N, C)
- ► Each neuron relies on a linear combination of the signals of a small region of the image:

$$K_{u,v} * \mathcal{I}(c) = \sum_{n=-k}^{k} \sum_{m=-k}^{k} K_{I}(n,m,c) \mathcal{I}(u+m,v+n,c)$$

$$h_{u,v} = \phi(K_{u,v} * \mathcal{I}(c) + b_{u,v})$$

- We obtain a new neuron by moving this window
 - ▶ The amount by which the filter shifts is the **stride**
 - ▶ if we don't move a lot : redundancy of information
 - ▶ if we move a lot: loss of information

Pooling layer (subsampling)

- Averaging or computing maximum on small areas
- lacktriangledown ϕ can be applied before or after pooling
- Allows to reduce the dimension (number of variables to be treated) but also to make the network less sensitive to possible translations of the image

Finally

▶ After several layers and convolution / pooling, we apply one or more layers of *fully connected layers* (= network shown before)

Towards increasingly complex network architectures

- Networks now much more complex
- ► Can be processed with Graphical Processor Unit (GPU) cards
- Results of the Large Scale Visual Recognition Challenge (ILSVRC)

Figure 5: Error rate and depths of the network

Conclusion

- Ultra-fast vision of the definition of a deep neural network
- In practice: expertise is based on how to combine layers and different types of neurons (see practice here after)
- References:
 - Wikipedia
 - Wikistat course by Philippe Besse (Toulouse)
- The state of the s
- ▶ Reference book: Deep Learning by Yoshua Bengio
- Video https://www.college-de-france.fr/site/yann-lecun/ course-2016-02-12-14h30.htm
- Results and conferences by Francis Bach