## Machine Learning 1

Lead Management- Group Assignment

IIITB Data Science Course 2

By: Hari Thapliyal & Papu Rai

#### **Problem Statement**

X Education sells professional courses. Lead Database is built using various marketing initiatives. Current conversion rate is 30%. We need to build a model using ML algorithms which can predict the conversion of a given lead.

We need to assign Lead Score to each lead.

Identify a probability cut-off level which will give accuracy of 80%.

All those leads which has probability above than this cut-off would be treated as hot-lead.

Prepare an approach which will optimize the time of sales team.

#### **Analysis Approach**

- 1. Duplicate Information Field Treatment
  - Identify fields which contains same information
  - Keep single field if any two fields has same information
- 2. Impute null values of numeric fields
- 3. Remove fields, with high % of null values and cannot be imputed
- 4. Remove Fields, which has 99+ % same information in the field.
- 5. Replace "Select" with np.nan wherever needed
- 6. Null Value Treatment for Categorical Fields (Detail in next page)
- 7. Visualize the distribution of data for categorical fields
- 8. Visualize the distribution of data for numerical fields

#### Analysis Approach Cont...

- 9. Visualize the distribution of data of categorical fields pre and post imputation
- 10. Prediction Using PCA
- 11. Prediction Using RFE
- 12. Prediction Using Statsmodel
- 13. Model Evaluation Using ROC
- 14. Choosing a Model
- 15. Metrics Using Selected Model
- 16. Identify Important Fields using VIF
- 17. Prepare a List of Leads along with Lead Score

# Impute Categorical Variable

- Impute with with modes: For smaller null values percentage fields
  For every catergorical columns with less % of null values
  - Identify mode
  - Replace null values with mode
  - Perform numeric encoding
  - Create dummy fields
  - Merge all dummy fields to main dataset and remove corresponding original fields.
- Impute using Logistic Regression method: For high null values percentage fields
  For every catergorical columns with high % of null values
  - Scale numberic fileds
  - For every categorical columns which has null values
    - Perform numeric encoding for the given columns, null value is assigned 0.
    - Perform logistic regression using for non-null values
    - Predict categories for null categories using logistic regression

#### Results - In Business Terms

5 Important Fields from Dataset Which are important for Prediction are

- 1. Lead Profile
- 2. Lead Quality
- 3. Last Notable Activity
- 4. Occupation
- 5. Tags

#### VIF of Selected Variables

| Dummy Variable | VIF  |
|----------------|------|
| Tags_6         | 1.03 |
| LeadPro_3      | 1.02 |
| Tags_7         | 1.02 |
| Tags_4         | 1.01 |
| Tags_8         | 1    |
| Tags_25        | 1    |
| LeadQ_5        | 0.68 |
| Occu_3         | 0.57 |
| LeadPro_5      | 0.4  |
| NotableAct_9   | 0.23 |
| Tags_3         | 0.14 |
| Tags_9         | 0.08 |
| Tags_12        | 0.02 |

#### **Prediction Result on Test Data**

30% of the Given data is Test Data

Cut off: 0.65 %

Accuracy: 0.91

Recall: 0.92

Precision: 0.86

Specificity: 0.90

Error Rate: 0.09

FPR 0.10

FNR: 0.08

**Confusion Metrics Test Data** 

TN FP

**FN TP** 

[1533 162]

[85 992]

# Visualizations of the most Important Results

### Distribution of Categorical Variables



### Distribution of Categorical Variables



### Distribution of Important Numeric Variables



# Distribution of Asymetrique Profile Score Before and After Null Value Treament





#### Relationship Between Numerical Variables



#### **Model Evaluation**



#### **Cut-Off Curve**



# **Header Rows from Output**

| Converted | Probablity | predicted | Lead_Score | Lead Number |
|-----------|------------|-----------|------------|-------------|
| 1         | 0.929096   | 1         | 92         | 615582      |
| 0         | 0.004537   | 0         | 0          | 588939      |
| 0         | 0.015996   | 0         | 1          | 621242      |
| 0         | 0.230766   | 0         | 23         | 589803      |
| 0         | 0.043034   | 0         | 4          | 651441      |

