Statistical Inference - Naïve Bayes -

Artificial Intelligence

Ko, Youngjoong

Index

1. Essential Probability Concepts

2. Joint Probability Distribution

3. Density Estimation

4. Naïve Bayes Classifier

Essential Probability Concepts

• Marginalization:
$$P(B) = \sum_{v \in \text{values}(A)} P(B \land A = v)$$

- Conditional Probability: $P(A \mid B) = \frac{P(A \land B)}{P(B)}$
- Bayes' Rule: $P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$
- Independence:

$$A \bot B \quad \leftrightarrow \quad P(A \land B) = P(A) \times P(B)$$

$$\leftrightarrow \quad P(A \mid B) = P(A)$$

$$A \bot B \mid C \quad \leftrightarrow \quad P(A \land B \mid C) = P(A \mid C) \times P(B \mid C)$$

Joint Distribution

Experimental Settings

- Suppose each of two urns contains twice as many red balls as blue balls
- Suppose one ball is randomly selected from each urn
- > Red ball: 2/3, blue ball: 1/3

Joint probability distribution

	A=Red	A=Blue	P(B)
B=Red	(2/3)(2/3)=4/9	(1/3)(2/3)=2/9	4/9+2/9=2/3
B=Blue	(2/3)(1/3)=2/9	(1/3)(1/3)=1/9	2/9+1/9=1/3
P(A)	4/9+2/9=2/3	2/9+1/9=1/3	

Joint Distribution

Learning a Joint Distribution

Step 1:

Build a JD table for your attributes in which the probabilities are unspecified

A	В	С	Prob
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Step 2:

Then, fill in each row with:

$$\hat{P}(\text{row}) = \frac{\text{records matching row}}{\text{total number of records}}$$

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Fraction of all records in which A and B are true but C is false

Joint Distribution

Example of Learning a Joint PD

This Joint PD was obtained by learning from three attributes in the UCI "Adult" Census Database [Kohavi 1995]

- Our joint distribution learner is an example of something called Density Estimation
- A Density Estimator learns a mapping from a set of attributes to a probability

Compare it against the two other major kinds of models:

Test-set criterion for estimating performance on future data

- Evaluating a Density Estimator
 - Given a record x, a density estimator M can tell you how likely the record is:

$$\hat{P}(\mathbf{x} \mid M)$$

- The density estimator can also tell you how likely the dataset is:
 - Under the assumption that all records were independently generated from the Density Estimator's JD (that is, i.i.d.)

$$\hat{P}(\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \ldots \wedge \mathbf{x}_n \mid M) = \prod_{i=1}^n \hat{P}(\mathbf{x}_i \mid M)$$
dataset

- Example Small Dataset: Miles Per Gallon From the UCI repository (thanks to Ross Quinlan)
 - 192 records in the training set

mpg	modelyear	maker	
good	75to78	asia	
bad	70to74	america	
bad	75to78	europe	
bad	70to74	america	
bad	70to74	america	
bad	70to74	asia	
bad	70to74	asia	
bad	75to78	america	
:	:	:	
:		:	
:	:	:	
bad	70to74	america	
good	79to83	america	
bad	75to78	america	
good	79to83	america	
bad	75to78	america	
good	79to83	america	
good	79to83	america	
bad	70to74	america	
good	75to78	europe	
bad	75to78	europe	

- Example Small Dataset: Miles Per Gallon From the UCI repository (thanks to Ross Quinlan)
 - 192 records in the training set

- Log Probabilities
 - For decent sized data sets, this product will underflow

$$\hat{P}(\text{dataset} \mid M) = \prod_{i=1}^{n} \hat{P}(\mathbf{x}_i \mid M)$$

 Therefore, since probabilities of datasets get so small, we usually use log probabilities

$$\log \hat{P}(\text{dataset} \mid M) = \log \prod_{i=1}^{n} \hat{P}(\mathbf{x}_i \mid M) = \sum_{i=1}^{n} \log \hat{P}(\mathbf{x}_i \mid M)$$

Example Small Dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

192 records in the training set

Bayes' Rule

• Recall Baye's Rule:

$$P(\text{hypothesis} \mid \text{evidence}) = \frac{P(\text{evidence} \mid \text{hypothesis}) \times P(\text{hypothesis})}{P(\text{evidence})}$$

Equivalently, we can write:

$$P(Y = y_k \mid X = \mathbf{x}_i) = \frac{P(Y = y_k)P(X = \mathbf{x}_i \mid Y = y_k)}{P(X = \mathbf{x}_i)}$$

where X is a random variable representing the evidence and Y is a random variable for the label

This is actually short for:

$$P(Y = y_k \mid X = \mathbf{x}_i) = \frac{P(Y = y_k)P(X_1 = x_{i,1} \land \dots \land X_d = x_{i,d} \mid Y = y_k)}{P(X_1 = x_{i,1} \land \dots \land X_d = x_{i,d})}$$

where X_j denotes the random variable for the j^{th} feature

Idea: Use the training data to estimate

$$P(X \mid Y)$$
 and $P(Y)$.

Then, use Bayes rule to infer $P(Y|X_{\mathrm{new}})$ for new data

$$P(Y=y_k\mid X=\mathbf{x}_i) = \frac{P(Y=y_k)P(X_1=x_{i,1}\wedge\ldots\wedge X_d=x_{i,d}\mid Y=y_k)}{P(X_1=x_{i,1}\wedge\ldots\wedge X_d=x_{i,d}\mid Y=y_k)}$$
 Unnecessary, as it turns out

• Recall that estimating the joint probability distribution $P(X_1, X_2, \dots, X_d \mid Y)$ is not practical

Problem: estimating the joint PD or CPD isn't practical

Severely overfits, as we saw before

However, if we make the assumption that the attributes are independent given the class label, estimation is easy!

$$P(X_1, X_2, \dots, X_d \mid Y) = \prod_{j=1}^d P(X_j \mid Y)$$

- In other words, we assume all attributes are conditionally independent given $\,Y\,$
- Often this assumption is violated in practice, but more on that later...

Training Naïve Bayes

Estimate $P(X_j \mid Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

$$P(play) = ?$$
 $P(\neg play) = ?$ $P(Sky = sunny | play) = ?$ $P(Sky = sunny | \neg play) = ?$ $P(Humid = high | play) = ?$ $P(Humid = high | \neg play) = ?$...

Slide Credit: Eric Eaton

Training Naïve Bayes

Estimate $P(X_j \mid Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

$$P(\text{play}) = 3/4$$
 $P(\neg \text{play}) = 1/4$ $P(\text{Sky} = \text{sunny} \mid \text{play}) = ?$ $P(\text{Sky} = \text{sunny} \mid \neg \text{play}) = ?$ $P(\text{Humid} = \text{high} \mid \text{play}) = ?$... $P(\text{Humid} = \text{high} \mid \neg \text{play}) = ?$...

Training Naïve Bayes

Estimate $P(X_j \mid Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	Play?
sunny						yes
sunny						yes
rainy	cold	high	strong	warm	change	no
sunny						yes

$$P(\text{play}) = 3/4 \qquad P(\neg \text{play}) = 1/4$$

$$P(\text{Sky} = \text{sunny} \mid \text{play}) = 1 \qquad P(\text{Sky} = \text{sunny} \mid \neg \text{play}) = ?$$

$$P(\text{Humid} = \text{high} \mid \text{play}) = ? \qquad P(\text{Humid} = \text{high} \mid \neg \text{play}) = ?$$

Slide Credit: Eric Eaton

Training Naïve Bayes

Estimate $P(X_j \mid Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy						no
sunny	warm	high	strong	cool	change	yes

$$P(\text{play}) = 3/4$$
 $P(\neg \text{play}) = 1/4$ $P(\text{Sky} = \text{sunny} | \text{play}) = 1$ $P(\text{Sky} = \text{sunny} | \neg \text{play}) = 0$ $P(\text{Humid} = \text{high} | \text{play}) = ?$ $P(\text{Humid} = \text{high} | \neg \text{play}) = ?$

Slide Credit: Eric Eaton

Training Naïve Bayes

Estimate $P(X_j \mid Y)$ and P(Y) directly from the training data by counting!

Sky	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	Forecast	Play?
		normal				yes
		high				yes
rainy	cold	high	strong	warm	change	no
		high				yes

$$P(\text{play}) = 3/4$$
 $P(\neg \text{play}) = 1/4$ $P(\text{Sky} = \text{sunny} \mid \text{play}) = 1$ $P(\text{Sky} = \text{sunny} \mid \neg \text{play}) = 0$ $P(\text{Humid} = \text{high} \mid \text{play}) = 2/3$ $P(\text{Humid} = \text{high} \mid \neg \text{play}) = ?$...

Training Naïve Bayes

Estimate $P(X_j \mid Y)$ and P(Y) directly from the training data by counting!

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
		high				no
sunny	warm	high	strong	cool	change	yes

$$\begin{array}{ll} P(\text{play}) = 3/4 & P(\neg \text{play}) = 1/4 \\ P(\text{Sky} = \text{sunny} \mid \text{play}) = 1 & P(\text{Sky} = \text{sunny} \mid \neg \text{play}) = 0 \\ P(\text{Humid} = \text{high} \mid \text{play}) = 2/3 & P(\text{Humid} = \text{high} \mid \neg \text{play}) = 1 \\ \dots & \dots \end{array}$$

Slide Credit: Eric Eaton

Laplace Smoothing

- Notice that some probabilities estimated by counting might be zero
 - Possible overfitting!
- Fix by using Laplace smoothing:
 - Adds 1 to each count

$$P(X_j = v \mid Y = y_k) = \frac{c_v + 1}{\sum_{v' \in \text{values}(X_j)}}$$

where

- c_v is the count of training instances with a value of v for attribute j and class label y_k
- $|\mathrm{values}(X_j)|$ is the number of values X_j can take on

Laplace Smoothing

- Notice that some probabilities estimated by counting might be zero
 - Possible overfitting!
- Fix by using Laplace smoothing:
 - Adds 1 to each count

$$P(X_j = v \mid Y = y_k) = \frac{c_v + 1}{\sum_{v' \in \text{values}(X_j)}}$$

where

- c_v is the count of training instances with a value of v for attribute j and class label y_k
- $|\mathrm{values}(X_j)|$ is the number of values X_j can take on

Training Naïve Bayes with Laplace Smoothing

Estimate $P(X_j \mid Y)$ and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	<u>Play?</u>
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
		high				no
sunny	warm	high	strong	cool	change	yes

$$P(\text{play}) = 3/4 \qquad P(\neg \text{play}) = 1/4$$

$$P(\text{Sky} = \text{sunny} \mid \text{play}) = 4/5 \qquad P(\text{Sky} = \text{sunny} \mid \neg \text{play}) = 1/3$$

$$P(\text{Humid} = \text{high} \mid \text{play}) = 3/5 \qquad P(\text{Humid} = \text{high} \mid \neg \text{play}) = 2/3$$
...

Slide Credit: Eric Eaton

- Using the Naïve Bayes Classifier
 - Now, we have

$$P(Y = y_k \mid X = \mathbf{x}_i) = \frac{P(Y = y_k) \prod_{j=1}^d P(X_j = x_{i,j} \mid Y = y_k)}{P(X = \mathbf{x}_i)}$$

This is constant for a given instance, and so irrelevant to our prediction

- In practice, we use log-probabilities to prevent underflow
- ullet To classify a new point ${f x}$,

$$h(\mathbf{x}) = \underset{y_k}{\operatorname{arg\,max}} \ P(Y = y_k) \prod_{j=1}^{d} P(X_j = x_j \mid Y = y_k)$$

$$= \underset{y_k}{\operatorname{arg\,max}} \ \log P(Y = y_k) + \sum_{j=1}^{d} \log P(X_j = x_j \mid Y = y_k)$$

$$= \underset{y_k}{\operatorname{arg\,max}} \ \log P(Y = y_k) + \sum_{j=1}^{d} \log P(X_j = x_j \mid Y = y_k)$$

- The Naïve Bayes Classifier Algorithm
 - For each class label y_k
 - Estimate $P(Y = y_k)$ from the data
 - For each value $x_{i,j}$ of each attribute \mathbf{X}_i
 - Estimate $P(X_i = x_{i,j} \mid Y = y_k)$
 - Classify a new point via:

$$h(\mathbf{x}) = \underset{y_k}{\arg \max} \log P(Y = y_k) + \sum_{j=1}^{a} \log P(X_j = x_j \mid Y = y_k)$$

 In practice, the independence assumption doesn't often hold true, but Naïve Bayes performs very well despite it

- Computing Probabilities (Not Just Predicting Labels)
 - NB classifier gives predictions, not probabilities, because we ignore P(X) (the denominator in Bayes rule)
 - Can produce probabilities by:
 - For each possible class label y_k , compute

$$\tilde{P}(Y = y_k \mid X = \mathbf{x}) = P(Y = y_k) \prod_{j=1}^{a} P(X_j = x_j \mid Y = y_k)$$

This is the numerator of Bayes rule, and is therefore off the true probability by a factor of α that makes probabilities sum to 1

–
$$\alpha$$
 is given by
$$\alpha = \frac{1}{\sum_{k=1}^{\# classes} \tilde{P}(Y=y_k \mid X=\mathbf{x})}$$

Class probability is given by

$$P(Y = y_k \mid X = \mathbf{x}) = \alpha \tilde{P}(Y = y_k \mid X = \mathbf{x})$$

The Naïve Bayes Graphical Model

- Nodes denote random variables
- Edges denote dependency
- Each node has an associated conditional probability table (CPT), conditioned upon its parents

Example NB Graphical Model

Data:

Example Using NB for Classification

Play?	P(Play)
yes	3/4
no	1/4

Temp	Play?	P(Temp Play)
warm	yes	4/5
cold	yes	1/5
warm	no	1/3
cold	no	2/3

Sky	Play?	P(Sky Play)
sunny	yes	4/5
rainy	yes	1/5
sunny	no	1/3
rainy	no	2/3

Humid	Play?	P(Humid Play)
high	yes	3/5
norm	yes	2/5
high	no	2/3
norm	no	1/3

$$h(\mathbf{x}) = \underset{y_k}{\arg \max} \log P(Y = y_k) + \sum_{j=1}^{d} \log P(X_j = x_j \mid Y = y_k)$$

Goal: Predict label for x = (rainy, warm, normal)

Example Using NB for Classification

x = (rainy, warm, normal)

Predict label for:

Play?	P(Play)
yes	3/4
no	1/4

Temp	Play?	P(Temp Play)
warm	yes	4/5
cold	yes	1/5
warm	no	1/3
cold	no	2/3

Sky	Play?	P(Sky Play)
sunny	yes	4/5
rainy	yes	1/5
sunny	no	1/3
rainy	no	2/3

Humid	Play?	P(Humid Play)
high	yes	3/5
norm	yes	2/5
high	no	2/3
norm	no	1/3

$$P(\text{play} \mid \mathbf{x}) \propto \log P(\text{play}) + \log P(\text{rainy} \mid \text{play}) + \log P(\text{warm} \mid \text{play}) + \log P(\text{normal} \mid \text{play})$$

$$\propto \log 3/4 + \log 1/5 + \log 4/5 + \log 2/5 = \boxed{-1.319} \quad \text{PLAY}$$

$$P(\neg \text{play} \mid \mathbf{x}) \propto \log P(\neg \text{play}) + \log P(\text{rainy} \mid \neg \text{play}) + \log P(\text{warm} \mid \neg \text{play}) + \log P(\text{normal} \mid \neg \text{play})$$
$$\propto \log 1/4 + \log 2/3 + \log 1/3 + \log 1/3 = -1.732$$