Let,
$$P(x, y) \Longrightarrow f(f(x) + y) = x f(1 + xy)$$

Now,
$$P(1, y) \Longrightarrow f(f(1) + y) = f(1 + y)$$

$$\Longrightarrow f(y+nz) = f(y)$$
, for all $y > \max(1, f(1)), n \in \mathbb{N}$ where, $z = |1 - f(1)|$

If z > 0, take some x < 1, then, there exists some $n \in \mathbb{N}$, such that, 1 + nz > f(x)

take,
$$y = \frac{1 + nz - f(x)}{1 - x}$$
, then, $P(x, y) \Longrightarrow x = 1$, contradiction!

So,
$$f(1) = 1$$

Now, if,
$$(x-1)(f(x)-1) > 0$$
 for some $x \in \mathbb{R}^+$, then, $P\left(x, \frac{f(x)-1}{x-1}\right) \Longrightarrow x = 1$

So,
$$x > 1 \iff f(x) < 1$$
 and $x < 1 \iff f(x) > 1$

So,
$$P(x,1) \Longrightarrow x f(1+x) = f(f(x)+1) < 1 \Longrightarrow f(1+x) < \frac{1}{x} \Longrightarrow \lim_{x \longrightarrow \infty} f(x) = 0$$

Again,
$$f(1+x) < \frac{1}{x}$$
, $P(x, y - f(x)) \Longrightarrow f(y) = x f(1 + x (y - f(x))) < \frac{x}{x(y - f(x))} = \frac{1}{y - f(x)}$ for all $y > f(x)$

But, we showed, $\forall \varepsilon > 0, \exists x > 0$ such that, $f(x) < \varepsilon$

So,
$$f(y) < \frac{1}{y - f(x)}$$
 is equivalent to,

$$\forall \varepsilon > 0, \exists x > 0, \text{ such that, } f(x) < \varepsilon \Longrightarrow f(y) < \frac{1}{y - f(x)} < \frac{1}{y - \varepsilon} \text{ for all } y > \varepsilon > f(x)$$

Which is
$$f(y) \le \frac{1}{y}$$
 for all $y > 0$

Now,
$$P(x, 1 - f(x))_{x > 1} \Longrightarrow f(1 + x(1 - f(x))) = \frac{1}{x} \le \frac{1}{1 + x(1 - f(x))} \Longrightarrow f(x) \ge \frac{1}{x}$$

So,
$$f(x) = \frac{1}{x}$$
 for all $x \ge 1$

Now, if y < 1, take x > 1 such that, xy > 1

Then,
$$P(x, y - \frac{1}{x}) \Longrightarrow f(y) = x f(1 + x(y - \frac{1}{x})) = x f(xy) = \frac{x}{xy} = \frac{1}{y}$$

Hence,
$$f(x) = \frac{1}{x}$$
 for all $x > 0$