

Department of Electrical Engineering IIT Hyderabad

ID 1370 - Digital Signal Processing

Class Test - 1 Max: 25 Marks

Name:

Jan. 14, 2019

Roll Number:

1 hour

1. A discrete-time signal is defined as

$$x[n] = \begin{cases} 1 + \frac{n}{2}, & -4 \le n \le -1 \\ (-1)^n \left(1 - \frac{n}{2}\right), & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$$

Sketch the following signals: (a) x[n], (b) x[n-3], (c) x[3-n], (d) x[2n], (e) $x[n-1]\delta[n-3]$ (f) Any arbitrary signal x[n] can be expressed as a sum of its even component $x_e[n]$ and its odd component $x_o[n]$, where $x_e[n] = \frac{1}{2}(x[n] + x[-n])$, and $x_o[n] = \frac{1}{2}(x[n] - x[-n])$. Determine and sketch the even and odd components of the above signal x[n].

e),
$$x[n] = 0 + n$$

$$\frac{1}{2} \left(\frac{1}{2} - \frac{d(n+3)}{2} + \frac{d(n+1)}{2} + \frac{d(n-3)}{2} - \frac{d(n-1)}{2} \right) + \frac{d(n-1)}{2} + \frac{d(n-1)}{$$

2. The following input-output pairs have been observed during the operation of a time-invarinat system:

$$\begin{array}{cccc} x_1[n] = \{1,0,2\} & \longrightarrow & y_1[n] = \{0,1,2\} \\ x_2[n] = \{0,0,3\} & \longrightarrow & y_2[n] = \{0,1,0,2\} \\ x_3[n] = \{0,0,0,1\} & \longrightarrow & y_3[n] = \{1,2,1\} \end{array}$$

where \uparrow denotes the 0th time-index. Can you draw any conclusions regarding the linearity of the system? What is the unit sample response of the system? (5)

Above system would be linear if it follows:
$$\left(ax_1[n] + bx_2[n] + cx_3[n] \longrightarrow ay_1[n] + by_2[n] + cy_3[n] \right)$$

From the set of expressions in the ques., we have ->

$$x_1(n) = x_3(n+3) + \frac{2}{3} x_2(n) = 0$$

But,

$$f_1[n] - f_3[n+3] + 2 f_2[n] \neq 0$$

For example, at $n=1$ above expussion simplifies to $(5/3)$.

$$h(n) = \{1, 2, 1, 0, 0\}$$

3. A continuous-time signal

$$x(t) = \sin(20\pi t) + \cos(40\pi t)$$

is sampled with a sampling period T_s to obtain the discrete-time signal

$$x[n] = \sin\left(\frac{\pi n}{5}\right) + \cos\left(\frac{2\pi n}{5}\right)$$

- (a) Determine a choice for T_s consistent with this information?
- (b) Is your choice of T_s in Part (a) unique? If so, explain why. If not, specify another choice of T_s consistent with the information given.

a)
$$20 \times t$$
 | $t = n \times t$ = $\frac{\pi n}{5}$

$$\Rightarrow$$
 20 T_S = $\frac{8}{5}$

$$T_{s} = \frac{1}{100} sec$$

Sin
$$\left(\frac{\pi n}{5}\right) = \sin\left(2\kappa\pi n + \frac{\pi n}{5}\right)$$
 where $\kappa \in \mathbb{Z}$

$$\frac{1}{5} = \frac{2K+1}{5} = \frac{10K+1}{5}$$

$$T_{s} = \frac{10k+1}{100}$$
 sec.
Eq: $T_{s} = \frac{11}{100}$ sec.

4. Determine the output of an initially relaxed LTI discrete-time system characterized by unit sample response,

$$h[n] = \begin{cases} \left(\frac{1}{2}\right)^n, & n \ge 0\\ 0, & \text{otherwise} \end{cases}$$

to the input signal

Also, y[n]=0 + nco

$$x[n] = \begin{cases} 1, & 0 \le n \le 10 \\ 0, & \text{otherwise} \end{cases}$$

$$\frac{y(n)}{z} = \frac{y(n)}{x} + h(n)$$

$$= \frac{y(n)}{x} + h(n-k)$$

$$\frac{y(n)}{x} = \frac{y(n-k)}{x}$$

$$\frac{y(n)}{x} = \frac{y(n-k)}{x}$$

$$\frac{y(n)}{x} = \frac{y(n)}{x} + h(n-k)$$

$$\frac{y(n)}{x} = \frac{y(n-k)}{x}$$

$$\frac{y($$

(5)