Algorytmy Macierzowe

Laboratorium nr. 2

Artur Gęsiarz, Błażej Kapkowski

1. Cel Zadania:

Celem zadania było zaimplementowanie rekurencyjnych algorytmów odwracania macierzy oraz obliczania wyznaczników. W zadaniu zaimplementowane zostały cztery algorytmy:

- Rekurencyjne odwracanie macierzy metoda umożliwiająca odwrócenie macierzy poprzez rozbijanie jej na mniejsze podmacierze i iteracyjne znajdowanie odwrotności.
- **Rekurencyjna eliminacja Gaussa** rekurencyjna metoda do obliczania wyznacznika, redukująca macierz do postaci trójkątnej poprzez operacje elementarne.
- Rekurencyjna LU faktoryzacja metoda rozkładu macierzy na iloczyn macierzy dolnotrójkątnej i górnotrójkątnej, z wykorzystaniem podziału na mniejsze podmacierze.
- Rekurencyjne liczenie wyznacznika technika obliczania wyznacznika macierzy poprzez rozbijanie jej na mniejsze podmacierze i iteracyjne wyznaczanie mniejszych wyznaczników.

2. Rekurencyjne odwracanie macierzy

Odwracanie macierzy metodą rekurencyjną polega na wykorzystaniu dekompozycji macierzy na mniejsze podmacierze, a następnie obliczaniu odwrotności tych podmacierzy w sposób rekurencyjny. Algorytm ten opiera się na rozkładzie macierzy na mniejsze podmacierze, z których każda może być odwrócona osobno, a następnie odpowiednie wyniki są scalane, by uzyskać odwrotność całej macierzy.

```
def invert(A):
    n = A_shape[0]
    mid = n // 2
    if n == 1:
         A[0, 0] += 1e-17
         return np.array([[1 / A[0, 0]]]), 1
    A11, A12, A21, A22 = split_matrix(A)
  count = [0] * 16
 # A11_inv = inverse(A11)
  A11_inv, count[0] = invert(A11)
 # S22 = A22 - A21 @ A11_inv @ A12
  S22, count[1] = strassen(A21, A11_inv)
  S22, count[2] = strassen(S22, A12)
  S22, count[3] = A22 - S22, mid**2
 # S22_inv = inverse(S22)
  S22_{inv}, count[4] = invert(S22)
 B11, count[5] = strassen(A11_inv, A12)
 B11, count[6] = strassen(B11, S22 inv)
B11, count[7] = strassen(B11, A21)
 B11, count[8] = strassen(B11, A11_inv)
B11, count[9] = A11_inv + B11, mid
B12, count[10] = strassen(A11_inv, A12)
B12, count[11] = strassen(B12, S22_inv)
 B12, count[12] = -1 * B12, mid**2
```

```
# B21 = -S22_inv @ A21 @ A11_inv
B21, count[13] = strassen(S22_inv, A21)
B21, count[14] = strassen(B21, A11_inv)
B21, count[15] = -1 * B21, mid**2

# B22 = S22_inv
B22 = S22_inv
return np.vstack((np.hstack((B11, B12)), np.hstack((B21, B22)))), sum(count)
```

• Wyniki:

Oszacowanie złożoności obliczeniowej:

Algortym dzieli macierz na cztery podmacierze A11, A12, A21, A22, a nastepnie rekurencyjne oblicza odwrotności tych macierzy.

Dla kazdego wywołania funkcji invert, zloznosc obliczniowa jest zwiazana z:

- 1. Wywołaniem funkcji rekurencyjnych dla podmacierzy, ktore maja rozmar $\frac{n}{2}x\frac{n}{2}$.
- 2. Wykonaniem operacji na podmacierzach, takich jak mnozenie macierzy $O(n^{2.81})$,

$$T(n) = 2 * T\left(\frac{n}{2}\right) + 4 * \left(\frac{n}{2}\right)^{2} + 10 \cdot \left(\frac{n}{2}\right)^{2.807}$$

$$T(n) = O(n^{2.807})$$

3. Rekurencyjna eliminacja Gaussa

Eliminacja Gaussa służy do obliczania wyznacznika macierzy kwadratowej poprzez przekształcenie jej w macierz trójkątną górną. Algorytm bazuje na modyfikacji elementów macierzy w taki sposób, aby uzyskać wszystkie wartości poniżej przekątnej równe zero. Finalnie wyznacznik macierzy można obliczyć jako iloczyn elementów znajdujących się na przekątnej tej trójkątnej macierzy.

Poniżej opis poszczególnych fragmentów kodu:

Funkcja gauss_det służy do obliczenia wyznacznika macierzy przy użyciu eliminacji Gaussa. Na początku sprawdza wymiar macierzy. Jeśli macierz ma wymiar 1, zwraca jedyny element jako wyznacznik.

```
def gauss_det(matrix):
    global flops

n = len(matrix)

if n == 1:
    return matrix[0][0]
```

Poniższy fragment kodu sprawdza, czy element na przekątnej głównej wiersza i jest równy zero. Jeśli tak, algorytm próbuje zamienić ten wiersz z innym wierszem poniżej, który ma element niezerowy w tej samej kolumnie. W przeciwnym wypadku wyznacznik wynosi zero i zwracana jest wartość 0

Dla każdego wiersza poniżej aktualnie przetwarzanego, algorytm oblicza współczynnik ratio, który jest ilorazem elementu w danym wierszu i kolumnie przez element na przekątnej głównej bieżącego wiersza. Następnie aktualizuje każdy element wiersza poprzez odjęcie iloczynu ratio i wartości elementu z aktualnie przetwarzanego wiersza. To tworzy zerowe elementy poniżej przekątnej.

```
for j in range(i + 1, n):
    ratio = matrix[j][i] / matrix[i][i]
    flops += 1

    for k in range(i, n):
        matrix[j][k] -= ratio * matrix[i][k]
        flops += 2
```

Po uzyskaniu macierzy trójkątnej górnej, wyznacznik jest obliczany jako iloczyn elementów na przekątnej głównej.

```
det = 1
   for i in range(n):
     det *= matrix[i][i]
     flops += 1
   return det
```

• Wyniki:

Oszacowanie złożoności obliczeniowej:

W pierwszym kroku algorytm sprawdza, czy element na przekątnej jest równy zero. Jeśli tak, zamienia odpowiednie wiersze, co w najgorszym przypadku może wymagać do n operacji dla każdej kolumny. Zatem ta część ma złożoność O(n^2). Eliminacja dolnego trójkąta: Dla każdego elementu poniżej przekątnej, algorytm wykonuje operacje arytmetyczne, aby uzyskać zera w odpowiednich miejscach.

Na pierwszym etapie, dla pierwszej kolumny, trzeba zredukować n - 1 elementów, co wymaga operacji O(n) na każdym elemencie, w tym odejmowania i mnożenia.

Na drugim etapie (dla drugiej kolumny), redukcja dotyczy n-2 elementów, co znowu wymaga O(n) operacji na każdym elemencie, i tak dalej.

Suma operacji w tej części to:

$$O(n) + O(n-1) + O(n-2) + + O(1) = O(\frac{n(n-1)}{2}) = O(n^2)$$

Operacje te są powtarzane dla każdego elementu poniżej przekątnej, co daje łącznie złożoność $\mathbf{O}(n^3)$ dla całego kroku eliminacji.

Po zakończeniu eliminacji, wyznacznik jest obliczany jako iloczyn elementów na przekątnej, co wymaga O(n) operacji, więc nie zmienia on złożoności.

4. Rekurencyjna LU faktoryzacja

LU faktoryzacja to metoda rozkładu macierzy na iloczyn dwóch macierzy: L - dolnotrójkątnej oraz U - górnotrójkątnej. Rekurencyjna metoda LU faktoryzacji polega na rozbijaniu macierzy A na mniejsze podmacierze i znajdowaniu dla nich odpowiednich macierzy

```
def lu_factorization(A):
    n = A.shape[0]
    mid = n // 2

if n == 1:
    return np.array([[1]]), A.copy(), 0

flops = [0] * 10
    A11, A12, A21, A22 = split_matrix(A)
```

```
L11, U11, flops[0] = lu_factorization(A11)
U11_inv, flops[1] = invert(U11)
L21, flops[2] = strassen(A21,U11_inv)
L11_inv, flops[3] = invert(L11)
U12, flops[4] = strassen(L11_inv, A12)
S, flops[5] = strassen(A21, U11_inv)
S, flops[6] = strassen(S, L11_inv)
S, flops[7] = strassen(S, A12)
S, flops[8] = A22 - S, mid**2
L22, U22, flops[9] = lu_factorization(S)
 L = np.block([
     [L11, np.zeros((mid, n - mid))],
     [L21, L22]
 1)
 U = np.block([
     [U11, U12],
     [np.zeros((n - mid, mid)), U22]
 1)
 return L, U, sum(flops)
```

• Wyniki:

Oszacowanie złożonosci obliczeniowej:
 Dzielimy macierz A na cztery podmacierze.

Dla każdej z tych podmacierzy (poza operacjami Strassena i inwersjami) wywoływana jest rekurencja. Tak więc, mamy 4 wywołania funkcji LU dla podmacierzy o rozmiarze n/2.

Mnożenie macierzy Strassena wykonuje się na podmacierzach o rozmiarze $\frac{n}{2}$. Stressen wykonuje 7 mnozen macierzy.

Dla każdej z macierzy wykonujemy inwersję, co wymaga rozwiązania układu równań, którego złożoność jest rowna $O(n^3)$ w najgorszym przypadku.

$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{3}{2} * \left(\frac{n}{2}\right)^3 + 5 * \left(\frac{n}{2}\right)^{2.807}$$

$$T(n) = \frac{3}{2^{3.807}}n^{2.807} + n^2$$

5. Rekurencyjne liczenie wyznacznika

Algorytm rekurencyjny obliczania wyznacznika macierzy, przedstawiony w poniższym kodzie, opiera się na **rozwinięciu Laplace'a**. Rozwój ten polega na wyznaczeniu wyznacznika macierzy przez rozwinięcie po pierwszym wierszu i zastosowanie tzw. **minora** i **kofaktora** dla każdego elementu tego wiersza.

Funkcja det_rec oblicza wyznacznik macierzy metodą rekurencyjną:

Jeśli macierz jest 1x1, zwraca jej jedyny element jako wyznacznik.

Jeśli macierz jest 2x2, wyznacznik obliczany jest bezpośrednio ze wzoru det = ad-bc

```
def det_rec(matrix):
    global flops

if len(matrix) == 1:
    return matrix[0][0]

if len(matrix) == 2:
    flops += 3
    return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]
```

Dla macierzy o wymiarze większym niż 2x2, funkcja wykorzystuje rozwinięcie Laplace'a po pierwszym wierszu:

Obliczanie kofaktora: Dla każdego pierwszego elementu kolumny, algorytm oblicza kofaktor – mnożnik, który zależy od pozycji elementu i wartości samego elementu.

Tworzenie podmacierzy: Algorytm tworzy podmacierz, która jest macierzą (n-1)x(n-1) powstałą przez usunięcie wiersza 0 i kolumny col z oryginalnej macierzy. **Rekurencyjne wywołanie**: Wywołuje funkcję det_rec na podmacierzy, aby obliczyć wyznacznik podmacierzy.

Sumowanie kofaktorów: Obliczony wyznacznik jest dodawany do głównego wyznacznika det po przemnożeniu przez odpowiedni kofaktor.

```
det = 0
  for col in range(len(matrix)):
        submatrix = [row[:col] + row[col + 1:] for row in matrix[1:]]
        cofactor = (-1) ** col * matrix[0][col]

        flops += 1

        det += cofactor * det_rec(submatrix)

        flops += 1
```

Wyniki:

• Oszacowanie złożoności obliczeniowej:

Rozważmy macierz n x n. Algorytm rozwinięcia Laplace'a oblicza wyznacznik przez rozwinięcie wzdłuż pierwszego wiersza, co wymaga wykonania n wywołań funkcji det_rec dla podmacierzy o rozmiarze (n-1)x(n-1). Dla każdego z tych wywołań tworzona jest podmacierz i wywoływana jest funkcja rekurencyjna.

Oznaczmy złożoność obliczeniową algorytmu dla macierzy n x n jako T(n). Wówczas rekurencyjnie możemy zapisać:

$$T(n) = nT(n-1)$$

nT(n-1) to Koszt rekursji, ponieważ algorytm wykonuje n wywołań dla podmacierzy o rozmiarze (n-1)x(n-1).

Rozwinięcie: $T(n)=n\cdot T(n-1)=n\cdot ((n-1)\cdot T(n-2)=n\cdot (n-1)\cdot (n-2)\cdot T(n-3)=itd.$

Patrząc na rozwinięcie, widzimy, że tworzy się ciąg zależny od n(n-1)(n-2)(n-3)... = n!

co oznacza, że: T(n) = O(n!).