Our aim is to estimate the parameters of the simultaneous equations model

$$y_1 = \alpha_1 y_2 + e_1$$

$$y_2 = \alpha_2 y_1 + \beta_1 x_1 + \beta_2 x_2 + e_2$$

We assume that x_1 and x_2 are exogenous and uncorrelated with the error terms e_1 and e_2 .

a. Solve the two structural equations for the reduced-form equation for y_2 , that is, $y_2 = \pi_1 x_1 + \pi_2 x_2 + v_2$. Express the reduced-form parameters in terms of the <u>structural parameters</u> and the reduced-form error in terms of the structural parameters and e_1 and e_2 . Show that y_2 is correlated with e_1 . Ans.

(1)
$$y_1 = \alpha_1 y_2 + e_1$$
 ; (2) $y_2 = \alpha_2 y_1 + \beta_1 x_1 + \beta_2 x_2 + e_2$

將(1)代入(2),可得出:

$$y_2 = \alpha_2 y_1 + \beta_1 x_1 + \beta_2 x_2 + e_2$$

= $\alpha_2 (\alpha_1 y_2 + e_1) + \beta_1 x_1 + \beta_2 x_2 + e_2$
= $\alpha_1 \alpha_2 y_2 + \alpha_2 e_1 + \beta_1 x_1 + \beta_2 x_2 + e_2$

整理:

$$(1 - \alpha_1 \alpha_2)y_2 = \beta_1 x_1 + \beta_2 x_2 + \alpha_2 e_1 + e_2$$

因此, y_2 的 reduced-form 為:

$$y_2 = \frac{\beta_1}{1 - \alpha_1 \alpha_2} x_1 + \frac{\beta_2}{1 - \alpha_1 \alpha_2} x_2 + \frac{\alpha_2}{1 - \alpha_1 \alpha_2} e_1 + \frac{1}{1 - \alpha_1 \alpha_2} e_2 = \pi_1 x_1 + \pi_2 x_2 + v_2$$

其中:

$$\pi_1 = \frac{\beta_1}{1 - \alpha_1 \alpha_2}$$
, $\pi_2 = \frac{\beta_2}{1 - \alpha_1 \alpha_2}$, $\nu_2 = \frac{\alpha_2}{1 - \alpha_1 \alpha_2} e_1 + \frac{1}{1 - \alpha_1 \alpha_2} e_2$

因為 v_2 中含有 e_1 ,且 α_2 不為零(假設模型有意義)而 e_1 是 y_1 的誤差項,所以 y_2 與 e_1 有相關性, y_2 是内生變數(endogenous variable)。

 y_2 與 e_1 的條件共變異數不為 0:

$$\begin{aligned} \text{COV}(y_2, e_1 \mid \mathbf{x}) &= E(y_2 e_1 \mid \mathbf{x}) \\ &= E\left[\left(\pi_1 x_1 + \pi_2 x_2 + \frac{e_2 + \alpha_2 e_1}{1 - \alpha_1 \alpha_2} \right) e_1 \middle| \mathbf{x} \right] \\ &= \pi_1 x_1 E(e_1 \mid \mathbf{x}) + \pi_2 x_2 E(e_1 \mid \mathbf{x}) + \frac{E(e_2 e_1 \mid \mathbf{x}) + \alpha_2 E(e_1^2 \mid \mathbf{x})}{1 - \alpha_1 \alpha_2} \\ &= 0 + 0 + \frac{0 + \alpha_2 \sigma_1^2}{1 - \alpha_1 \alpha_2} \\ &= \frac{\alpha_2 \sigma_1^2}{1 - \alpha_1 \alpha_2} \end{aligned}$$

只要 $\alpha_2 \neq 0$,上式即不為 0,表示 y_2 與 e_1 有相關性,存在內生性問題。

b. Which equation parameters are consistently estimated using OLS? Explain.

Ans.

在這個模型中,兩條方程式都無法直接用 OLS 得到一致估計值。

第一個方程式 $y_1 = \alpha_1 y_2 + e_1$ 中的解釋變數 y_2 與誤差項 e_1 相關,因此 OLS 無法一致估計 α_1 。

第二個方程式 $y_2=\alpha_2y_1+\beta_1x_1+\beta_2x_2+e_2$ 中解釋變數 y_1 也受 y_2 影響(y_1 是內生的),因此 OLS 也無法一致估計 α_2 。

c. Which parameters are "identified," in the simultaneous equations sense? Explain your reasoning.

Ans.

 y_1 和 y_2 各有一條方程式,共有 M = 2 個方程式,因此每個方程式要被識別,至少需要有 M–1 = 1 個外生 變數被排除。

方程式 (1) 中,外生變數 x_1 和 x_2 都被排除。排除的外生變數數量為 2,大於所需的 M–1 = 1,因此方程式 (1) "identified"。

方程式 (2) 中,所有外生變數 x_1 和 x_2 都被包含,沒有任何外生變數被排除。排除的外生變數數量為 0,小於所需的 M-1=1,因此方程式 (2) "not identified"。

結論:方程式 (1) 中的參數 α_1 是 已識別的,可以一致估計。方程式 (2) 中的參數 α_2,β_1,β_2 是 未識別的,無 法一致估計。

d. To estimate the parameters of the reduced–form equation for y_2 using the method of moments (MOM), which was introduced in Section 10.3, the two moment equations are

$$N^{-1} \sum_{i=1}^{n} x_{i1} (y_2 - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$
$$N^{-1} \sum_{i=1}^{n} x_{i2} (y_2 - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$

Explain why these two moment conditions are a valid basis for obtaining consistent estimators of the reduced–form parameters.

Ans.

 x_1 和 x_2 是外生的,與模型中的隨機誤差項 v_2 不相關,所以條件期望值為 $0: E(x_{i1}v_{i2} \mid \mathbf{x}) = E(x_{i2}v_{i2} \mid \mathbf{x}) = 0$ 由 (a):

$$y_2 = \frac{\beta_1}{1 - \alpha_1 \alpha_2} x_1 + \frac{\beta_2}{1 - \alpha_1 \alpha_2} x_2 + \frac{e_2 + \alpha_2 e_1}{1 - \alpha_1 \alpha_2} = \pi_1 x_1 + \pi_2 x_2 + v_2 ,$$
其中 $v_2 = \frac{e_2 + \alpha_2 e_1}{1 - \alpha_1 \alpha_2}$ 。
將 $v_2 = \frac{e_2 + \alpha_2 e_1}{1 - \alpha_1 \alpha_2}$ 代入條件期望值:

$$E\left[x_{ik}v_{2} \mid \mathbf{x}\right] = E\left[x_{ik} \cdot \left(\frac{e_{2} + \alpha_{2}e_{1}}{1 - \alpha_{1}\alpha_{2}}\right) \middle| \mathbf{x}\right]$$

$$= E\left[\frac{1}{1 - \alpha_{1}\alpha_{2}}x_{ik}e_{2} \middle| \mathbf{x}\right] + E\left[\frac{\alpha_{2}}{1 - \alpha_{1}\alpha_{2}}x_{ik}e_{1} \middle| \mathbf{x}\right]$$

$$= \frac{1}{1 - \alpha_{1}\alpha_{2}}E(x_{ik}e_{2} \mid \mathbf{x}) + \frac{\alpha_{2}}{1 - \alpha_{1}\alpha_{2}}E(x_{ik}e_{1} \mid \mathbf{x})$$

$$= 0 + 0 = 0$$

因為 x_{ik} 是外生的,與 e_1 和 e_2 不相關,所以 $E(x_{ik}e_2 \mid \mathbf{x}) = 0$ 、 $E(x_{ik}e_1 \mid \mathbf{x}) = 0$ 。 當樣本量趨於無限大時,這些樣本矩條件會收斂到對應的總體矩條件 $E(x_1v_2 \mid \mathbf{x}) = E(x_2v_2 \mid \mathbf{x}) = 0$,使得矩條件成立,可以正確估計 reduced—form 的參數 π_1, π_2 。

e. Are the MOM estimators in part (d) the same as the OLS estimators? Form the sum of squared errors function for $y_2 = \pi_1 x_1 + \pi_2 x_2 + v_2$ and find the first derivatives. Set these to zero and show that they are equivalent to the two equations in part (d).

Ans.

reduced-form 方程式: $y_2 = \pi_1 x_1 + \pi_2 x_2 + v_2$

OLS 的目標是最小化誤差平方和(sum of squared errors): $S(\pi_1, \pi_2) = \sum_{i=1}^{N} (y_{2i} - \pi_1 x_{i1} - \pi_2 x_{i2})^2$

對 π_1, π_2 分別取一階導數,並令導數為零以求解:

$$\frac{\partial S}{\partial \pi_1} = -2\sum_{i=1}^N x_{i1}(y_{2i} - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0 \qquad ; \qquad \frac{\partial S}{\partial \pi_2} = -2\sum_{i=1}^N x_{i2}(y_{2i} - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$

兩式除以 -2 後,得到的條件如下:

$$\sum_{i=1}^{N} x_{i1}(y_{2i} - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0 \qquad ; \qquad \sum_{i=1}^{N} x_{i2}(y_{2i} - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$

比較第 (d) 小題中 method of moments (MOM) 所使用的兩個矩條件,除了常數項 N^{-1} 外,OLS 的一階條件與 MOM 的矩條件完全相同。由於常數項不影響等式為零的條件,因此這兩組條件是等價的。

f. Using $\sum x_{i1}^2 = 1$, $\sum x_{i2}^2 = 1$, $\sum x_{i1}x_{i2} = 0$, $\sum x_{i1}y_{1i} = 2$, $\sum x_{i1}y_{2i} = 3$, $\sum x_{i2}y_{1i} = 3$, $\sum x_{i2}y_{2i} = 4$, and the two moment conditions in part (d) show that the MOM/OLS estimates of π_1 and π_2 are $\hat{\pi}_1 = 3$ and $\hat{\pi}_2 = 4$. Ans.

展開第一個條件
$$\sum_{i=1}^{N} x_{i1}(y_{2i} - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$
: $\sum x_{i1} y_{2i} - \pi_1 \sum x_{i1}^2 - \pi_2 \sum x_{i1} x_{i2} = 0$

代入數值得:
$$3 - \hat{\pi}_1 \cdot 1 - \hat{\pi}_2 \cdot 0 = 0$$
,可解出: $\hat{\pi}_1 = 3$

展開第二個條件
$$\sum_{i=1}^{N} x_{i2}(y_{2i} - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$
: $\sum x_{i2} y_{2i} - \pi_1 \sum x_{i1} x_{i2} - \pi_2 \sum x_{i2}^2 = 0$

代入數值得:
$$4 - \hat{\pi}_1 \cdot 0 - \hat{\pi}_2 \cdot 1 = 0$$
,可解出: $\hat{\pi}_2 = 4$

因此,我們得到 MOM(或 OLS)估計值為: $\hat{\pi}_1 = 3 \cdot \hat{\pi}_2 = 4$

g. The fitted value $\hat{y}_2 = \hat{\pi}_1 x_1 + \hat{\pi}_2 x_2$. Explain why we can use the moment condition $\sum \hat{y}_{i2} \left(y_{i1} - \alpha_1 y_{i2} \right) = 0$ as a valid basis for consistently estimating α_1 . Obtain the IV estimate of α_1 . Ans.

結構方程式 $y_1 = \alpha_1 y_2 + e_1$,但 y_2 是內生變數(見 11.1a),不能直接用 OLS。

不過, $\hat{y}_2 = \hat{\pi}_1 x_1 + \hat{\pi}_2 x_2$ 是 y_2 的外生預測值(reduced–form 預測值),僅由 x_1 和 x_2 組成,與 e_1 不相關。因此,可以把 \hat{y}_2 當作工具變數來估計 α_1 。

此時的矩條件為:
$$\sum_{i=1}^{N} \hat{y}_{i2}(y_{i1} - \alpha_1 y_{i2}) = 0$$
 整理可得: $\sum \hat{y}_{i2} y_{i1} - \alpha_1 \sum \hat{y}_{i2}^2 = 0$ \Rightarrow $\hat{\alpha}_1 = \frac{\sum \hat{y}_{i2} y_{i1}}{\sum \hat{y}_{i2} y_{i2}}$

代入值:
$$\hat{y}_2 = \hat{\pi}_1 x_1 + \hat{\pi}_2 x_2 = 3x_1 + 4x_2$$
, $\sum x_{i1} y_{1i} = 2$, $\sum x_{i2} y_{1i} = 3$, $\sum x_{i1} y_{2i} = 3$, $\sum x_{i2} y_{2i} = 4$,

計算分子:
$$\sum \hat{y}_{i2}y_{i1} = \sum (3x_{i1} + 4x_{i2})y_{1i} = 3\sum x_{i1}y_{1i} + 4\sum x_{i2}y_{1i} = 3 \cdot 2 + 4 \cdot 3 = 18$$

計算分母:
$$\sum \hat{y}_{i2}y_{i2} = \sum (3x_{i1} + 4x_{i2})y_{i2} = 3\sum x_{i1}y_{i2} + 4\sum x_{i2}y_{i2} = 3 \cdot 3 + 4 \cdot 4 = 25$$

因此,IV 估計量為:
$$\hat{\alpha}_1 = \frac{\sum \hat{y}_{i2} y_{i1}}{\sum \hat{y}_{i2} y_{i2}} = \frac{18}{25} = 0.72$$

h. Find the 2SLS estimate of α_1 by applying OLS to $y_1 = \alpha_1 \hat{y}_2 + e_1^*$. Compare your answer to that in part (g).

Ans.

在一個 沒有截距 的簡單迴歸模型中,OLS 估計量為:
$$\hat{\alpha}_1 = \frac{\sum x_i y_i}{\sum x_i^2}$$
在 2SLS 設定下,將 x 換成 $\hat{y}_2 \setminus y$ 換成 y_1 ,得到: $\hat{\alpha}_{1,2SLS} = \frac{\sum \hat{y}_{i2} y_{i1}}{\sum \hat{y}_{i2}^2}$

使用 \hat{y}_{i2} 作為工具變量(instrumental variable, IV),因為 \hat{y}_{i2} 是由外生變量 x_{i1} 和 x_{i2} 構成的,與模型的誤差無關。這樣可以解決同時方程模型中內生性問題,得到一致的 α_1 估計值。

證明等價性:

目標:證明
$$\hat{\alpha}_{1,2SLS} = \frac{\sum \hat{y}_{i2} y_{i1}}{\sum \hat{y}_{i2}^2} = \hat{\alpha}_{1,IV} = \frac{\sum \hat{y}_{i2} y_{i1}}{\sum \hat{y}_{i2} y_{i2}}$$
,因此需證明 $\sum \hat{y}_{i2}^2 = \sum \hat{y}_{i2} y_{i2}$

由於殘差為:
$$\hat{v}_2 = y_2 - \hat{y}_2$$
 \Rightarrow $\hat{y}_2 = y_2 - \hat{v}_2$

代入
$$\hat{y}_2 = y_2 - \hat{v}_2$$
,得出 分母: $\sum \hat{y}_{i2}^2 = \sum \hat{y}_{i2}(y_{i2} - \hat{v}_{i2}) = \sum \hat{y}_{i2}y_{i2} - \sum \hat{y}_{i2}\hat{v}_{i2}$
由於 $\sum \hat{y}_{i2}\hat{v}_{i2} = \sum (\hat{\pi}_1 x_{i1} + \hat{\pi}_2 x_{i2})\hat{v}_{i2} = \hat{\pi}_1 \sum x_{i1}\hat{v}_{i2} + \hat{\pi}_2 \sum x_{i2}\hat{v}_{i2} = 0$
因 OLS 的基本性質:回歸變數 x_{i1}, x_{i2} 與殘差 \hat{v}_{i2} 正交(即: $\sum x_{i1}\hat{v}_{i2} = 0$, $\sum x_{i2}\hat{v}_{i2} = 0$)

因此 分母:
$$\sum \hat{y}_{i2}^2 = \sum \hat{y}_{i2} y_{i2} - \sum \hat{y}_{i2} \hat{v}_{i2} = \sum \hat{y}_{i2} y_{i2} - 0 = \sum \hat{y}_{i2} y_{i2}$$

故得證 $\hat{\alpha}_{1,2SLS} = \frac{\sum \hat{y}_{i2} y_{i1}}{\sum \hat{y}_{i2}^2} = \frac{\sum \hat{y}_{i2} y_{i1}}{\sum \hat{y}_{i2} y_{i2}} = \hat{\alpha}_{1,IV}$

可知在給定的模型設定和使用的工具變數下,2SLS和IV方法在數學上是等價的。