Сингулярное разложение

Сингулярное разложение (Singular Values Decomposition, SVD) является удобным методом при работе с матрицами. Сингулярное разложение показывает геометрическую структуру матрицы и позволяет наглядно представить имеющиеся данные. Сингулярное разложение используется при решении самых разных задач — от приближения методом наименьших квадратов и решения систем уравнений до сжатия и распознавания изображений. Используются разные свойства сингулярного разложения, например, способность показывать ранг матрицы и приближать матрицы данного ранга. Так как вычисления ранга матрицы — задача, которая встречается очень часто, то сингулярное разложение является довольно популярным методом.

Определение SVD

Теорема 1 (Дж. Форсайт). Для любой вещественной $(n \times n)$ -матрицы A существуют две вещественные ортогональные $(n \times n)$ -матрицы U и V такие, что

$$U^T A V = \Lambda.$$

Более того, можно выбрать U и V так, чтобы диагональные элементы Λ имели вид

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r > \lambda_{r+1} = \ldots = \lambda_n = 0,$$

r de r - pahr матрицы A. B частности, если A невырождена, то

$$\lambda_1 > \lambda_2 > \dots > \lambda_n > 0.$$

Индекс r элемента λ_r есть фактическая размерность собственного пространства матрицы A.

Столбцы матриц U и V называются соответственно левыми и правыми сингулярными векторами, а значения диагонали матрицы Λ называются сингулярными значениями.

Пусть $A-(m\times n)$ -матрица и ей в соответствие поставлен линейный оператор, также обозначаемый A. Формулу сингулярного разложения $A=U\Lambda V^T$ можно переформулировать в геометрических терминах. Линейный оператор, отображающий элементы пространства \mathbb{R}^n в элементы пространства \mathbb{R}^n представим в виде последовательно выполняемых линейных операций вращения, растяжения и вращения. Число ненулевых элементов на диагонали матрицы Λ есть фактическая размерность матрицы Λ .

Поэтому компоненты сингулярного разложения наглядно показывают геометрические изменения при отображении линейным оператором A множества векторов из одного векторного пространства в другое.

Например, матрица

$$A = \begin{pmatrix} 0.96 & 1.72 \\ 2.28 & 0.96 \end{pmatrix}$$

имеет сингулярное разложение

$$A = U\Lambda V^{T} = \begin{pmatrix} 0.6 & -0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0.8 & 0.6 \\ 0.6 & -0.6 \end{pmatrix}^{T}$$

Легко увидеть, что матрицы U и V ортогональны,

$$U^TU = UU^T = I$$
, также $V^TV = VV^T = I$,

и сумма квадратов значений их столбцов равна единице; для каждой из матриц $0.6^2 + 0.8^2 = 1$.

Наивный алгоритм SVD

Рассмотрим приближенное линейное описание матрицы $A = \{a_{ij}\}$ вида

$$a_{ij} = \sum_{k=1}^{r} u_{ik} \lambda_k v_{kj} + c_{ij}, \tag{1}$$

где i = 1, ..., m и j = 1, ..., n.

Значения $u_{ik}, \lambda_k, v_{kj}$ для данного значения k найдены из условия минимума выражения

$$\varepsilon^2 = \sum_{i=1}^m \sum_{j=1}^n c_{ij}^2,\tag{2}$$

при ограничениях нормировки

$$\sum_{i=1}^{n} u_{ik}^2 = \sum_{i=1}^{m} v_{kj}^2 = 1 \tag{3}$$

и упорядоченности $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_r \geq ... \geq 0$.

Выражения (1), (2), (3) запишем в матричных обозначениях:

$$\begin{split} A &= U\Lambda V^T + C,\\ \varepsilon^2 &= \operatorname{tr}(CC^T) = \|C\|^2,\\ U^TU &= VV^T = I, \end{split}$$

где матрицы $U = \{u_{kj}\}, \Lambda = \operatorname{diag}\{\lambda_k\}, V = \{v_{ik}\}$. Если значение r достаточно велико, то C=(0). Так будет заведомо при $r \geq \min\{m,n\}$. Минимальное значение r, при котором выполнимо равенство $A = U\Lambda V^T$, равно рангу матрицы A.

Один из возможных алгоритмов нахождения сингулярного разложения заключается в следующем. Найдем последовательно векторы $\mathbf{u}_k, \mathbf{v}_k$ и сингулярные числа λ_k

для k = 1, ..., r. В качестве этих векторов берутся нормированные значения векторов \mathbf{a}_k и \mathbf{b}_k соответственно: $\mathbf{u}_k = \frac{\mathbf{a}_k}{\|\mathbf{a}_k\|}$, $\mathbf{v}_k = \frac{\mathbf{b}_k}{\|\mathbf{b}k\|}$. Векторы \mathbf{a}_k и \mathbf{b}_k находятся как пределы последовательностей векторов $\{\mathbf{a}_{k_i}\}$ и $\{\mathbf{b}_{k_i}\}$, соответственно $\mathbf{a}_k = \lim(\mathbf{a}_{k_i})$ и $\mathbf{b}_k = \lim(\mathbf{b}_{k_i})$. Сингулярное число λ_k находится как произведение норм векторов: $\lambda_k = \|\mathbf{a}_k\| \cdot \|\mathbf{b}_k\|$.

Процедура нахождения векторов \mathbf{u}_k , \mathbf{v}_k начинается с выбора наибольшей по норме строки \mathbf{b}_{1_1} матрицы A. Для k=1 формулы нахождения векторов \mathbf{a}_{1_i} , \mathbf{b}_{1_i} имеют вид:

$$\mathbf{a}_{1_i} = rac{A\mathbf{b}_{1_i}^T}{\mathbf{b}_{1_i}\mathbf{b}_{1_i}^T}, \quad \mathbf{b}_{1_{i+1}} = rac{\mathbf{a}_{1_i}^TA}{\mathbf{a}_{1_i}^T\mathbf{a}_{1_i}}, \quad i = 1, 2, ...$$

Для вычисления векторов \mathbf{u}_k , \mathbf{v}_k при k=2,...,r используется вышеприведенная формула, с той разницей, что матрица A заменяется на скорректированную на k-м шаге матрицу $A_{k+1} = A_k - \mathbf{u}_k \lambda_k \mathbf{v}_k$.

TODO: Написать в чем недостаток по сравнению со стандартным разложением, включающем разложение Холесского. Картинка.

Сингулярное разложение и собственные значения матрицы

Сингулярное разложение обладает свойством, которое связывает задачу отыскания сингулярного разложения и задачу отыскания собственных векторов. (Собственный вектор \mathbf{x} матрицы A — такой вектор, при котором выполняется условие $A\mathbf{x} = \lambda \mathbf{x}$, число λ называется собственным числом.) Так как матрицы U и V ортогональные, то есть

$$U^T U = V V^T = I, (4)$$

где I — единичная матрица размерности $r \times r$, то из (4) следует, что

$$AA^{T} = U\Lambda V^{T}V\Lambda U^{T} = U\Lambda^{2}U^{T},$$

$$A^{T}A = V\Lambda U^{T}U\Lambda V^{T} = V\Lambda^{2}V^{T}.$$
(5)

Умножая оба выражения справа соответственно на U и V получаем

$$AA^{T}U = U\Lambda^{2},$$

$$A^{T}AV = V\Lambda^{2}.$$
(6)

Из выражения (6) следует, что столбцы матрицы U являются собственными векторами матрицы AA^T , а квадраты сингулярных чисел $\Lambda = \operatorname{diag}(\lambda_1,...,\lambda_r)$ ее собственными значениями. Также столбцы матрицы V являются собственными векторами матрицы A^TA , а квадраты сингулярных чисел являются ее собственными значениями.

Пространства матрицы и SVD

Сингулярное разложение позволяет найти ортогональные базисы различных векторных пространств разлагаемой матрицы. В теореме о сингулярном разложении (Форсайт) рассматривается матрица размером $(m \times m)$,

$$A_{(m \times m)} = U_{(m \times m)} \Lambda_{(m \times m)} V_{(m \times m)}^T.$$

Существует так называемое экономное представление сингулярного разложения матрицы.

$$A_{(m \times n)} = U_{(m \times m)} \Lambda_{(m \times n)} V_{(n \times n)}^T$$

Согласно этому представлению при m>n, диагональная матрица Λ имеет пустые строки, а при m< n — пустые столбцы. Поэтому существует еще одно экономное представление

$$A_{(m \times n)} = U_{(m \times r)} \Lambda_{(r \times r)} V_{(r \times n)}^T,$$

в котором $r = \min(m, n)$.

Нуль-пространство матрицы A — набор векторов \mathbf{x} , для которого справедливо высказывание $A\mathbf{x} = \mathbf{0}$. Собственное пространство матрицы A — набор векторов \mathbf{b} , при котором уравнение $A\mathbf{x} = \mathbf{b}$ имеет ненулевое решение для \mathbf{x} . Обозначим \mathbf{u}_k и \mathbf{v}_k столбцы матриц U и V. Тогда разложение $A = U\Lambda V^T$ может быть записана в виде: $A = \sum_{k=1}^r A_k$, где $A_k = \mathbf{u}_k \lambda_k \mathbf{v}_k^T$. Если сингулярное значение $\lambda_k = 0$, то $A\mathbf{v}_k = \mathbf{0}$ и \mathbf{v}_k находится в нуль-пространстве матрицы A, а если сингулярное значение $\lambda_k \neq 0$, то вектор \mathbf{u}_k находятся в собственном пространстве матрицы A. Следовательно, можно сконструировать базисы для различных векторных подпространств, определенных матрицей A. Набор векторов $\mathbf{v}_1, \dots, \mathbf{v}_k$ в векторном пространстве V формирует базис для V, если любой вектор \mathbf{x} из V можно представить в виде линейной комбинации векторов $\mathbf{v}_1, \dots, \mathbf{v}_k$ единственным способом. Пусть V_0 будет набором тех столбцов \mathbf{v}_k , для которых $\lambda_k \neq 0$, а V_1 — все остальные столбцы \mathbf{v}_k . Также, пусть U_0 будет набором столбцов \mathbf{u}_k , для которых $\lambda_k \neq 0$, а U_1 — все остальные столбцы \mathbf{u}_k , включая и те, для которых k > n. Тогда, если r — количество ненулевых сингулярных значений, то имеется r столбцов в наборе V_0 и n-r столбцов в наборе V_1 и U_1 , а также m-n+r столбцов в наборе U_0 . Каждый из этих наборов формирует базис векторного пространства матрицы A:

 V_0 — ортонормальный базис для ортогонального комплементарного нуль-пространства A,

 V_1 — ортонормальный базис для нуль-пространства A,

 U_0 — ортонормальный базис для собственного пространства A,

 U_1 — ортонормальный базис для ортогонального комплементарного нуль-пространства A.

Сингулярное разложение и нормирование матриц

Рассмотрим изменение длины вектора \mathbf{x} до и после его умножения справа матрицу A. Евклидова норма вектора определена как

$$\|\mathbf{x}\|_2^2 = \mathbf{x}^T \mathbf{x}.$$

При умножении вектора \mathbf{x} на матрицу A справа, длина результирующего вектора $A\mathbf{x}$ изменяется. Если матрица A ортогональна, длина вектора $A\mathbf{x}$ остается неизменной. В противном случае, с помощью выражения $\frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|}$, можно вычислить, насколько матрица A растянула вектор \mathbf{x} . Таким образом, евклидова норма матрицы, есть максимальный коэффициент растяжения вектора.

Евклидова норма матрицы определяется так. Пусть \mathbf{x} является n-мерным вектором, и A — матрица размерности $(m \times n)$. Тогда Евклидова норма матрицы

$$||A||_E = \max_{\|\mathbf{x}\|=1} \left(\frac{||A\mathbf{x}||}{\|\mathbf{x}\|}\right).$$

Альтернативной Евклидовой норме является норма Фробениуса:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}.$$

Если известно сингулярное разложение, то обе эти нормы легко узнать. Пусть $U\Lambda V^T$ — сингулярное разложение $(m\times n)$ -матрицы A. Тогда

$$||A||_E = \lambda_1,$$

И

$$||A||_F = \sqrt{\sum_{k=1}^r \lambda_k^2}.$$

Сингулярные значения матрицы A — это длины осей эллипсоида, заданного множеством $\{A\mathbf{x}|1=\|\mathbf{x}\|_2\}$. (картинка)

Нахождение псевдообратной матрицы с помощью SVD

Классическая задача наименьших квадратов ставиться следующим образом. Даны действительная $(m \times n)$ -матрица A и действительный (m)-вектор Y. Требуется найти действительный (n)-вектор \mathbf{w} , минимизирующий Евклидову длину вектора невязки,

$$||Y - A\mathbf{w}||_2 \longrightarrow \min.$$

Решение задачи наименьших квадратов —

$$\mathbf{w} = (A^T A)^{-1} (A^T Y).$$

Для отыскания решения **w** требуется обратить матрицу A^TA . Рассмотрим более общий случай обращения матриц.

Если $(m \times n)$ -матрица A является вырожденной или прямоугольной, то обратной матрицы A^{-1} для нее не существует. Однако, для A может быть найдена псевдообратная матрица A^+ — такая матрица, для которой выполняются условия

$$A^{+}A = I_{n},$$

 $AA^{+} = I_{m},$
 $A^{+}AA^{+} = A^{+},$
 $AA^{+}A = A.$ (7)

Пусть найдено разложение матрицы A вида

$$A = U\Lambda V^T,$$

где $\Lambda = \mathrm{diag}(\lambda_1,...,\lambda_r), \ r = \min(m,n)$ и $U^TU = I_m, VV^T = I_n.$ Тогда справедлива

Теорема 2. Матрица $A^+ = V^T \Lambda^{-1} U$ является для матрицы A псевдообратной.

Доказательство. Согласно теореме 1 и определению (7),
$$A^+A = V\Lambda^{-1}U^TU\Lambda V^T = I_n$$
, $AA^+ = U\Lambda V^TV\Lambda^{-1}U^T = I_m$.

Усеченное обращение матриц

Алгоритм обращения матрицы посредством усеченного сингулярного разложения состоит в следующем. Пусть матрица исходных данных A представлена в виде $A = U\Lambda V^T$. Тогда при нахождении обратной матрицы $A^+ = V\Lambda^{-1}U^T$ в силу ортогональности матриц U и $V\colon U^TU = VV^T = I$, и в силу условия убывания диагональных элементов матрицы $\Lambda = \mathrm{diag}(\lambda_1,...,\lambda_n)$, псевдообратная матрица A^+ будет более зависеть от тех элементов матрицы Λ , которые имеют меньшие значения, чем от первых сингулярных чисел. Действительно, если, по условию теоремы о сингулярном разложении матрица A имеет сингулярные числа $\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_n$, то сингулярные числа матрицы A^+ равны $\Lambda^{-1} = \mathrm{diag}(\frac{1}{\lambda_1},...,\frac{1}{\lambda_n})$ и $\frac{1}{\lambda_1} \leqslant \frac{1}{\lambda_2}... \leqslant \frac{1}{\lambda_n}$. Считая первые r сингулярных чисел определяющими собственное пространство матрицы A, используем при обращении матрицы A первые r сингулярных чисел. Тогда обратная матрица A^+ будет найдена как $A^+ = V\Lambda_r^{-1}U^T$.

Определим усеченную псевдообратную матрицу A_r^+ как

$$A_r^+ = V\Lambda_r^{-1}U^T, (8)$$

где $\Lambda_r^{-1} = \mathrm{diag}(\lambda_1^{-1},...,\lambda_r^{-1},0,...,0)$ — диагональная матрица размерности $n \times n.$