

Module 2 - Kubernetes

Kubernetes Tooling

Module Overview

- Walkthrough of Azure Bridge to Kubernetes
- Kubernetes Toolset Overview
 - Visual Studio
 - Visual Studio Code
 - Minikube
- Working with HELM
- Understanding the role of Init Containers

Kubernetes Dev Tools

- Kubernetes has a large community supporting various toolset.
 - Visual Studio Kubernetes templates
 - VS Code Kubernetes extensions.
 - Helm Package manager for Kubernetes.
 - Minikube Single node cluster running Kubernetes.
 - Kubectl CLI to run command against Kubernetes cluster.
 - Many more..

Visual Studio: Kubernetes Tools

 Install the Visual Studio Tools for Kubernetes extension

 Adds template that generates Dockerfile and Helm Chart

Or, can directly add
 Kubernetes support to
 existing Core app

Visual Studio Code: Kubernetes Tools

- A Visual Studio Code extension available in Preview Mode
- Helps you...
 - Install Helm, Draft and Minikube
 - Create a new or connect to an existing Kubernetes cluster
 - Deploy an app to Azure Kubernetes Service
 - Track the status of your deployment
 - Load a resource from the Kubernetes API
 - Show logs
 - Show events

Demo:

Visual Studio 2019

Show Kubernetes Tooling

Bridge to Kubernetes (in preview)

Tooling to enable team collaboration across microservice applications

- The team shares running (development) instance in an AKS cluster
- Developers use personal "spaces" on their machine to locally develop their services
- But, test from end-to-end in the AKS cluster without replicating dependencies
- Enables teams to work with large microservice applications and rapidly iterate and debug code directly in Kubernetes using Visual Studio 2019 or Visual Studio Code

Demo: Bridge to Kubernetes

Bridge to Kubernetes Walkthrough

Minikube

- Runs a single-node Kubernetes cluster inside a VM on your local machine
- Develop locally with Kubernetes
- Minikube supports Kubernetes features such as:
 - Services, Deployment, Pods
 - NodePorts
 - ConfigMaps and Secrets
 - Dashboards
 - Container Runtime: Docker, rkt and CRI-O
 - Enabling CNI (Container Network Interface)
 - Ingress

Demo:

Minikube

Show Minikube

Helm

The package manager for Kubernetes

Why Helm?

- Manage Complexity
- Easy Updates
- Simple Sharing
- Rollbacks

Helm

HELM

- Package manager for Kubernetes-based applications
- Streamlines installing/managing applications
 - Perform consistent releases without dealing with dozens of files
 - Update/rollback releases as needed
- Package and preconfigure Kubernetes resources into Charts
 - Manage and share your own application chart packages
 - Leverage other popular software packaged as charts
 - Create reproducible builds of Kubernetes applications
 - Manage you Kubernetes manifest files

Helm | Charts

- Helm packages are called Charts
- Chart.yaml describes the chart
- Charts contains one or more templates
- Charts can be persisted on disk, or pulled from remote chart repositories (e.g. GitHub, private blob on Azure)
- Azure Container Registry can be used as a Helm chart repository
 - Private, secure, integrates with build pipelines
 - Provides geo-replication

Helm | Voting Application Charts

Voting application has frontend and backend components

```
! Chart.yaml ●

1 apiVersion: v1
2 appVersion: "1.0"
3 description: A frontend voting application chart.
4 name: voting-frontend
5 version: 1.0.0
```

```
! values.yaml x

1     backendApp:
2     name: voting-backend
3     replicaCount: 1
4     image: redis
5     tag: latest
6     ports:
7     containerPort: 6379
```

```
! Chart.yaml ×
1    apiVersion: v1
2    appVersion: "1.0"
3    description: A backend voting application chart.
4    name: voting-backend
5    version: 1.0.0
```

Helm | Voting Application Charts

- Kubernetes Deployments and Services references values from values.yaml file, which store default values
- { .Values.[Key] } resolves to a particular key-value entry in the relevant values.yaml file
- Templates Functions that implements datadriven templates for generating textual output:
- { quote .Values.frontend.replicaCount} will result in output replicas: "2" instead of replicas: 2

```
apiVersion: apps/v1beta1
kind: Deployment
metadata:
  name: {{ template "voting-app.fullname" .}}-dep
spec:
  replicas: {{ .Values.frontendApp.replicaCount }}
  strategy:
    rollingUpdate:
        maxSurge: 1
        maxUnavailable: 1
    minReadySeconds: 5
  template:
        metadata:
        labels:
        app: {{ .Values.frontendApp.name }}
        release: {{ .Release.Name }}
```

Frontend application deployment definition in YAML

```
apiVersion: apps/v1beta1
kind: Deployment
 name: {{ template "voting-app.fullname" .}}-dep
  replicas: 1
  template:
   metadata:
      labels:
       app: {{ .Values.backendApp.name }}
      containers:
      - name: {{ .Values.backendApp.name }}
        image: "{{ .Values.backendApp.image }}:{{
        .Values.backendApp.tag }}"
        ports:
        - containerPort: {{
        .Values.backendApp.ports.containerPort }}
         name: redis
```

Backend application deployment definition in YAML

Demo: Helm

Installing multi-container voting application using Helm

Init Containers

- Similar to app containers, but used for start-up related code...
 - Run utilities or custom code not included in app image
 - Block or delay app containers until some set of preconditions are met
- All Init Containers must to run to completion before the app container can start
 - A Pod can have multiple Init Containers
 - Each executes sequentially
 - Each must complete successfully before the next one can start

Container Start-Up Process

• Here is a more detailed view of the container start-up process...

Demo: Init Containers

Delay app container start using Init Container

Module Summary

- Many tools support Kubernetes development
 - Visual Studio
 - Visual Studio Code
 - Minikube
- HELM is a package manager for Kubernetes deployments
- Init Containers enable preprocessing before app containers start
- Bridge to Kubernetes supports microservice team development in Kubernetes

Lab: Module 5

Kubernetes Application Development & Toolset

