OPTIMIZATION THEORY

RE6124019 Matthew

Due date: 12:00, October 01, 2023

1 Property 5:

The set of $n \times n$ symmetric matrices \mathbf{S}^n , positive semidefinite (PSD) cone \mathbf{S}^n_+ , and positive definite (PD) cone \mathbf{S}^n_{++} are all convex sets.

Proof:

Let $X, Y \in S^n$ and $\theta \in [0, 1]$.

According to the properties of symmetric matrices, we know:

1.
$$X^T = X, Y^T = Y$$

2.
$$(X+Y)^T = X^T + Y^T = X + Y$$

Then,

$$[\theta X + (1 - \theta)Y]^T = \theta X^T + (1 - \theta)Y^T = \theta X + (1 - \theta)Y$$

Because θ is a constant.

Therefore $\theta X + (1 - \theta)Y \in S^n$, S^n is convex.

2 Property 10:

The set of n × n symmetric matrices \mathbf{S}^n , the set of PSD matrices \mathbf{S}^n_+ and the set of PD matrices $\mathbf{S}^n_{++} \cup \{0\}$ are all cones.

Proof:

2.1 Symmetric Matrices S^n :

- Closure under scalar multiplication: Let $X \in \mathbf{S}^n$ and $\alpha \geq 0$ be a scalar. Then, αX is also symmetric because $(\alpha X)^T = \alpha X^T = \alpha X$.
- Closure under addition: Let $X, Y \in \mathbf{S}^n$. Then, X + Y is symmetric because $(X + Y)^T = X^T + Y^T = X + Y$. Therefore, \mathbf{S}^n is a cone.

2.2 Positive Semidefinite Matrices S_{+}^{n} :

- Closure under scalar multiplication: Let $X \in \mathbf{S}^n_+$ and $\alpha \geq 0$ be a scalar. Then, αX is also positive semidefinite because for any vector v, $v^T(\alpha X)v = \alpha(v^TXv) \geq 0$ since X is positive semidefinite.
- Closure under addition: Let $X, Y \in \mathbf{S}^n_+$. Then, X + Y is positive semidefinite because for any vector v, $v^T(X + Y)v = v^TXv + v^TYv \ge 0$ since both X and Y are positive semidefinite.

Therefore, \mathbf{S}_{+}^{n} is a cone.

2.3

Positive Definite Matrices $\mathbf{S}_{++}^n \cup \{0\}$:

- Closure under scalar multiplication: Let $X \in \mathbf{S}_{++}^n \cup \{0\}$ and $\alpha \geq 0$ be a scalar. Then, αX is also positive definite because for any vector $v \neq 0$, $v^T(\alpha X)v = \alpha(v^TXv) > 0$ since X is positive definite.
- Closure under addition: Let $X,Y \in \mathbf{S}^n_{++} \cup \{0\}$. Then, X+Y is positive definite because for any vector $v \neq 0$, $v^T(X+Y)v = v^TXv + v^TYv > 0$ since both X and Y are positive definite.

Therefore, $\mathbf{S}_{++}^n \cup \{0\}$ is a cone.

In conclusion, the sets \mathbf{S}^n , \mathbf{S}^n_+ , and $\mathbf{S}^n_{++} \cup \{0\}$ are all cones.

3 Interesting Question:

Since convex hull, affine hull, and conic hull of a finite set $S = \{x_1, \dots, x_n\}$ can be written as

conv
$$S = \{\theta_1 x_1 + ... + \theta_n x_n \mid \theta_1 + ... + \theta_n = 1, \theta_i \ge 0\}$$
,
aff $S = \{\theta_1 x_1 + ... + \theta_n x_n \mid \theta_1 + ... + \theta_n = 1\}$,
conic $S = \{\theta_1 x_1 + ... + \theta_n x_n \mid \theta_i \ge 0\}$,

one may conclude that conv $S = \text{aff } S \cap \text{conic } S$. Is this conclusion correct? If so, please prove it; otherwise, give a counterexample.

Proof by Contradiction:

We believe that this conclusion is incorrect, i.e., there exists a counterexample where conv $S \neq \text{aff } S \cap \text{conic } S$.

Consider a simple counterexample with $S = \{x_1, x_2\}$, where $x_1 = (1, 0)$ and $x_2 = (0, 1)$. We have:

conv
$$S = \{\theta_1 x_1 + \theta_2 x_2 \mid \theta_1 + \theta_2 = 1, \ \theta_1, \theta_2 \ge 0\},$$

aff $S = \{\theta_1 x_1 + \theta_2 x_2 \mid \theta_1 + \theta_2 = 1\},$
conic $S = \{\theta_1 x_1 + \theta_2 x_2 \mid \theta_1, \theta_2 \ge 0\}.$

Calculations yield:

conv
$$S = \{(t, 1 - t) \mid 0 \le t \le 1\},$$

aff $S = \{(t, 1 - t) \mid 0 \le t \le 1\},$
conic $S = \{(t, 1 - t) \mid 0 \le t \le 1\}.$

Thus, conv S = aff S = conic S.

However, conv $S \neq$ aff $S \cap$ conic S because their definitions do not imply equality. Therefore, this serves as a counterexample, proving the original conclusion incorrect.