Tarea 1

Lino AA Notarantonio, lino@tec.mx Entrega: Miércoles, 28 de agosto de 2019

August 28, 2019

Problema 1 El sueldo de Roberto consiste de una monto constante de \$6,500 más una parte variable, que depende del número de horas que trabaja a lo largo de la semana.

Escribe una ecuación lineal para el sueldo de Roberto.

Solución La parte variable del sueldo depende del número de horas, x, que trabaja Roberto. Por lo tanto,

$$sueldo = mx + 6500$$

El valor numérico de la pendiente se determina conociendo el sueldo en dos semanas sucesivas, $sueldo_1$, $sueldo_2$, y el número de horas x_1 , x_2 , trabajadas durante estas dos semanas:

$$\frac{sueldo_2 - sueldo_1}{x_2 - x_1} = m$$

Problema 2 Escribe una ecuación para la parábola con concavidad hacia arriba y que pasa por el origen y el punto con coordenadas (4,0). Verifica que el vértice de la parábola tiene coordenada x=2.

Solución Una ecuación de una parábola que pasa por el origen tiene el valor c=0:

$$y = ax^2 + bx$$

Si la parábola pasa también por el punto de coordenadas (4,0), entonces el polinomio de segundo grado asociado tiene también como raíz x=4.

Por lo tanto, la ecuación deseada es

$$y = x(4 - x).$$

La coordenadas en x del vértice es x = -b/(2a) = -4/(-2) = 2, que también se puede encontrar por simetría (punto medio de las dos raíces).

Problema 3 Determina centro y radio de las circunferencias a continuación

$$x^{2} + y^{2} + 6y = 0$$
$$x^{2} + 8x + y^{2} - 10y = 8$$
$$9x^{2} + 9y^{2} - 54y = 0$$

Solución Completando el cuadrado,

$$x^{2} + y^{2} + 6y = 0 \Leftrightarrow x^{2} + (y+3)^{2} = 9$$

se reconoce que es un círculo, con centro en 0, -3) y radio 3. Completando los cuadrados,

$$x^{2} + 8x + y^{2} - 10y = 8 \Leftrightarrow (x+4)^{2} + (y-5)^{2} = 49$$

se reconoce que es un círculo, con centro en (-4,5) y radio 7. Dividiendo la expresión entre 9, se encuentra

$$x^2 + y^2 - 6y = 0$$

Completando el cuadrado, se reconoce que es un círculo, con centro (0,3) y radio 3.

Problema 4 Un fabricante de aparatos domésticos determina que la utilidad de vender x hornos de microondas por semana es igual a

$$y = x(650 - x) + 400.$$

Determina la coordenada x del vértice de la parábola y calcula el valor correspondiente de la y. Por medio de la gráfica determina que el valor de la y así calculado corresponde a la utilidad máxima.

Solución La coordenada en x de la parábola es $x^* = 650/2 = 325$. El valor de la utilidad asociada es $y = -(325)^2 + 650(325) + 400 = 106,025$.

Para una parábola con concavidad hacia abajo, el vértice es el valor máximo de la variable y, por lo que este valor de utilidad corresponde al máximo.

Problema 5 Se estima que el costo de conducir un nuevo automóvil está dado por la fórmula (ecuación de una línea recta)

$$C = 0.65k + 16,000,$$

donde k representa el número de kilómetros conducidos por año.

- ¿Qué representa el término constante en la ecuación? Solución El término constante corresponde al costo de operar el automóvil, cuando k=0. Este valor se puede interpretar como el costo fijo de operar el vehículo.
- ¿A qué corresponde la pendiente de la ecuación?
 Solución La pendiente corresponde al costo marginal de operar el vehículo; es decir, el costo adicional cuando se maneja el automóvil un kilómetro adicional.
- Si Anselmo ha comprado este automóvil y quiere gastar anualmente entre \$35,000 y \$45,000, ¿cuál es el rango de kilómetros que podrá recorrer? Solución La doble desigualdad asociada es

$$35000 \leq C \leq 45000 \quad \Leftrightarrow \quad 35000 \leq .65k + 16000 \leq 45000$$

es decir,

$$19000 \le .65k \le 29000.$$

Redondeado al kilómetro más cercano, Anselmo podrá manejar no menos de 29231 y no más de 44615 kilómetros.