Math 653 Henry Woodburn

Homework 5

- 1. Let $m \geq 2$ and set $\mathbb{Z}_m^* := \{k \in \mathbb{Z}_m : \gcd(k, m) = 1\}.$
 - a. First we show that every element of \mathbb{Z}_m^* generates \mathbb{Z}_m . We want to show there are m distinct cosets in the cyclic subgroup generated by k. Let n be the smallest positive integer such that $nk + m\mathbb{Z} = m\mathbb{Z}$. Then nk is the least common multiple of k and m. But since $\gcd(k,m) = 1$, we must have nk = mk and n = m. Then k generates \mathbb{Z}_m .

Now take some element l such that gcd(l, m) > 1. Then there is some r such that m = nr and l = pr. Then nl is a multiple of both l and m, and n < m. Then n is the order of l, and l does not generate \mathbb{Z}_m .

b. We will show \mathbb{Z}_m^* is a group under multiplication. Clearly it contains the identity 1 since $\gcd(1,m)=1$. To show inverses, let $n\in\mathbb{Z}_m^*$. Then by applying the euclidean algorithm, there are integers a and b such that an+bm=1 and thus an=1-bm. Then we have $an+m\mathbb{Z}=1+m\mathbb{Z}$, and inverse of a is n in \mathbb{Z}_m^* .

Finally suppose $a, b \in \mathbb{Z}_m^*$. If p is a prime which divides m and ab, then p must divide either a or b. But this is impossible. Then $ab \in \mathbb{Z}_m^*$.

- c. Suppose gcd(a, m) = 1. Then any element of $a + m\mathbb{Z}$ is also relatively prime with m, and thus $a + m\mathbb{Z}$ generates \mathbb{Z}_m^* . Then the cyclic group generated by $a + m\mathbb{Z}$ under multiplication must be at most order m, and thus $(a + m\mathbb{Z})^{\varphi(m)} = 1 + m\mathbb{Z}$, where $\varphi(m)$ is the order of \mathbb{Z}_m^* . But $(a + m\mathbb{Z})^{\varphi(m)} = a^{\varphi(m)} + m\mathbb{Z} = 1 + m\mathbb{Z}$, and we have $a^{\varphi(m)} \equiv m \mod m$.
- d. Suppose gcd(a, b) = 1. Then $\mathbb{Z}_a \times \mathbb{Z}_b$ is a group of order ab. Moreover, the order of the element $(1_a, 1_b)$ is the least common multiple of the orders a and b of 1_a and 1_b , which must be ab. We have shown (1, 1) generates $\mathbb{Z}_a \times \mathbb{Z}_b$, and thus $\mathbb{Z}_a \times \mathbb{Z}_b$ is a cyclic group isomorphic to \mathbb{Z}_{ab} .

Then $\mathbb{Z}_a \times \mathbb{Z}_b$ has the same number of generators as \mathbb{Z}_{ab} . Let $p \in \mathbb{Z}_a$ and $q \in \mathbb{Z}_b$ both be generators with order a and b respectively. By homework 2 problem 3, the order of (p,q) is the least common multiple of a and b, ab. Then (p,q) generates $\mathbb{Z}_a \times \mathbb{Z}_b$, along with every other pair of generators. Then there are $\varphi(a)\varphi(b)$ generators of $\mathbb{Z}_a \times \mathbb{Z}_b$ and thus of \mathbb{Z}_{ab} . Finally, we have shown that this number is precisely $\varphi(ab)$, so that $\varphi(ab) = \varphi(a)\varphi(b)$.

Let p be a prime number. Then the only divisors of p are itself and one. Then every number $1, 2, \ldots, p-1$ is relatively prime with p and $\varphi(p) = p-1$.

To calculate $\varphi(p^n)$, note that if we have $\gcd(m,p^n)>1$ for some $1\leq m\leq p^n$, then m must be a multiple of p less than or equal to p^n . There are p^{n-1} such numbers. Then the remaining p^n-p^{n-1} numbers are relatively prime to p^n and $\varphi(p^n)=p^n-p^{n-1}$.

Combining the above results, let $m = p_1^{a_1} \cdot p_2^{a_2} \cdots p_n^{a_n}$. In the above result, notice that $\varphi(p^n) = p^n - p^{n-1} = p^n (1 - \frac{1}{p})$. Then we can write

$$\varphi(m) = \prod_{i=1}^{n} \varphi(p_i^{a_i}) = \prod_{i=1}^{n} p_i^{a_i} (1 - \frac{1}{p_i}) = m \prod_{i=1}^{n} (1 - \frac{1}{p_i}).$$

Let $a \in \mathbb{Z}$ and let p be prime. If a is a multiple of p, we have

$$a^p \equiv 0 \mod p = a \mod p$$
.

Otherwise, a is relatively prime with p, and we have $a^{\varphi(p)} = a^{p-1} = 1 \mod p$ and thus

$$a^p = a \mod p$$
.