Consider the following translation key:

P _: _ is a pelican

Q_:_is a bird

 R_{-} : _ is a mammal

S _ _: _ flies higher than _

a: Petros

b: Polly

1. Match the sentences in English to their translation in predicate logic given the translation key above:

♦ Petros is a bird.

 $\Rightarrow \neg \exists x (Rx \land Px)$

♦ Petros is not a mammal.

 \Leftrightarrow Sba

♦ Every pelican is a bird.

 $\Rightarrow \neg Ra$

♦ No mammal is a pelican.

 $\Rightarrow \exists x (Qx \land Px)$

♦ Some birds are pelicans.

 $\Rightarrow \forall x (Px \supset Qx)$

→ Polly flies higher than Petros

 $\Rightarrow Qa$

2. Determine which of the following are atomic formulas, non-atomic formulas, or neither:

(a) $\forall x \forall y Rxy$

(d) $\exists x (Qa \supset Pf)$

(b) $\forall y_1 QRy_1$

(e) $\forall (Px \supset T_2x)$

(c) Px

(f) $\forall x (Px \supset \exists y Tx)$

- 3. Mark the free variables in the following formulas:
 - (a) $\exists x (Py \lor Qy)$

(c) $\forall z \forall x_1 (Rx_1z \supset \exists xTxz)$

(b) $\forall y \exists x T x y z a$

- (d) $\exists z_1 \forall x (Tx \supset S_4 z_1) \land \exists x (T_1 x \land S_4 z_1)$
- 4. Which of the above are open formulas? Which are closed?
- 5. Translate the following sentences given the key above:
 - (a) Every pelican is a bird but not every bird is a pelican.
 - (b) Unless Petros is a mammal, all pelicans are birds.
 - (c) Something flies higher than something else.
 - (d) Nothing flies higher than itself.

.