

Why sequence models?

Examples of sequence data

Speech recognition

"The quick brown fox jumped over the lazy dog."

Music generation

Sentiment classification

"There is nothing to like in this movie."

DNA sequence analysis -> AGCCCCTGTGAGGAACTAG

AGCCCCTGTGAGGAACTAG

Machine translation

Voulez-vous chanter avec moi?

Do you want to sing with me?

Video activity recognition

Running

Name entity recognition

Yesterday, Harry Potter met Hermione Granger.

Andrew Ng

Notation

Motivating example

NLP

Harry Potter and Hermione Granger invented a new spell. \rightarrow \times $\langle 1 \rangle$ \times $\langle 2 \rangle$ $\langle 3 \rangle$ Tx = 9 1 (2) (2) (3) \rightarrow 4. \times (i)<t> $T_{X}^{(i)} = 9$

Representing words

x: Harry Potter and Hermione Granger invented a new spell.

Representing words

x: Harry Potter and Hermione Granger invented a new spell.

$$\chi$$
<1> χ <2> χ <3> ... χ <9>

And = 367 Invented = 4700 A = 1 New = 5976 Spell = 8376 Harry = 4075 Potter = 6830 Hermione = 4200 Gran... = 4000

Recurrent Neural Network Model

Why not a standard network?

Problems:

- Inputs, outputs can be different lengths in different examples.
- > Doesn't share features learned across different positions of text.

He said, "Teddy Roosevelt was a great President."

He said, "Teddy bears are on sale!"

Forward Propagation a - Wax x $a^{<T_{\chi}-1>}$ $a^{(0)} = \vec{o}$. $a^{(1)} = g_1(W_{aa} a^{(0)} + W_{ax} x^{(1)} + b_a) \in tanh | Rely$ $a^{(1)} = g_2(W_{aa} a^{(1)} + b_y) \in Signoid$ act = g(Waa act-1) + Wax x + ba)

g(t) = g(Wya act) + by)

Andrew Ng

Simplified RNN notation

$$a^{< t>} = g(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

$$\hat{y}^{< t} = g(W_{ya}a^{< t} + b_y)$$

Backpropagation through time

Forward propagation and backpropagation

Forward propagation and backpropagation

Different types of RNNs

Examples of sequence data

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

Video activity recognition

Name entity recognition

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec moi?

Yesterday, Harry Potter met Hermione Granger. "The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger. Andrew Ng

Examples of RNN architectures

Examples of RNN architectures

Summary of RNN types

Language model and sequence generation

What is language modelling?

Speech recognition

The apple and pair salad.

The apple and pear salad.

$$P(\text{The apple and pair salad}) = 3.2 \times 10^{-13}$$

$$P(\text{The apple and pear salad}) = 5.7 \times 10^{-10}$$

Language modelling with an RNN

Training set: large corpus of english text.

The Egyptian Mau is a bread of cat. <EOS>

Sampling novel sequences

Andrew Ng

Character-level language model

>> Vocabulary = [a, aaron, ..., zulu, <UNK>] > Vocabulag = [a,b,c,...,2, u,o,i,o,...,9, A,...,2] y(1) y (2) y (2) (a) Cat overage $\hat{v}^{<1>}$ $\hat{v}^{<2>}$ $\hat{v}^{<3>}$ $a^{<2>|}$ $a^{<1>|}$

Sequence generation

News

President enrique peña nieto, announced sench's sulk former coming football langston paring.

"I was not at all surprised," said hich langston.

"Concussion epidemic", to be examined.

The gray football the told some and this has on the uefa icon, should money as.

Shakespeare

The mortal moon hath her eclipse in love.

And subject of this thou art another this fold.

When besser be my love to me see sabl's.

For whose are ruse of mine eyes heaves.

Vanishing gradients with RNNs

Gated Recurrent Unit (GRU)

RNN unit 9 (F) < E-1> (t) tanh

$$a^{} = g(W_a[a^{}, x^{}] + b_a)$$

[Cho et al., 2014. On the properties of neural machine translation: Encoder-decoder approaches] (Chung et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling)

Andrew Ng

Full GRU

$$\tilde{c}^{} = \tanh(W_c[\tilde{c}^{}, x^{}] + b_c)$$

$$W = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$C = \sigma(W_v[c^{}, x^{}] + b_c)$$

$$C = \sigma(W_v[c^{}, x^{}] + b_c)$$

$$C = \sigma(W_v[c^{}, x^{}] + b_c)$$

The cat, which ate already, was full.

LSTM (long short term memory) unit

GRU and LSTM

GRU

LSTM

$$\underbrace{\tilde{c}^{< t>}}_{c} = \tanh(W_{c}[\Gamma_{r} * \underline{c^{< t-1>}}, x^{< t>}] + b_{c})$$

$$\underline{\Gamma}_{u} = \sigma(W_{u}[c^{< t-1>}, x^{< t>}] + b_{u})$$

$$\underline{\Gamma}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{u})$$

$$\underline{\Gamma}_{r} = \sigma(W_{r}[c^{< t-1>}, x^{< t>}] + b_{r})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{r})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{r})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t>}] + b_{v})$$

$$\underline{C}^{< t>}_{v} = \sigma(W_{v}[c^{< t-1>}, x^{< t}] + b_{v}$$

$$\underline{C}^{< t} = \sigma(W_{v}[c^{< t-1>}, x^{< t}] + b_{v}$$

$$\underline{C}^{< t} = \sigma(W_{v}[c^{< t-1>}, x^{< t}] + b_{v}$$

$$\underline{C}^{< t} = \sigma(W_{v}[c^{< t-1>}, x^{< t}] + b_{v}$$

$$\underline{C}^{< t} = \sigma(W_{v}[c^{< t-1>}, x^{< t}] + b_{v}$$

$$\underline{C}^{< t} = \sigma(W_{v}[c^{< t-1>}, x^{< t}] + b_{v}$$

$$\underline{C}^{< t} = \sigma(W_{v$$

LSTM units

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

[Hochreiter & Schmidhuber 1997. Long short-term memory]

Andrew Ng

LSTM in pictures

Recurrent Neural Networks

Bidirectional RNN

Getting information from the future

He said, "Teddy bears are on sale!"

He said, "Teddy Roosevelt was a great President!"

Bidirectional RNN (BRNN) 1 4 4 14 <1> 3CB ₹(4s (2> (1) Acydic graph Telly

WILSTM

BRNN

Recurrent Neural Networks

Deep RNNs

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Word representation

Word representation

```
V = [a, aaron, ..., zulu, <UNK>]
```

1-hot representation

				\mathcal{N}	
Man	Woman	King	Queen	Apple	Orange
(5391)	(9853)	(4914)	(7157)	(456)	(6257)
	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$
Octa	09853	Ť	1	1	T

N= 10,000

I want a glass of orange _____.

I want a glass of apple_____.

Featurized representation: word embedding

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	√ Orange (6257)	
1 Gender			-0.95	0.97	0.00	0.01	
300 Royal	0.0	0.62	0.93	0.95	-0.01	0.00	•
Age	0.03	8.62	0.7	0.69	0.03	-0.02	
Food	6.04	6.01	0.02	0.01	0.95	0.97	
Size Cost V aliv- verb	es391	Q 9853		I want I want	a glass of o	range <u>juic</u> apple <u>juic</u> . Andrew	.· Ng

Visualizing word embeddings

Using word embeddings

Named entity recognition example

Transfer learning and word embeddings

- Learn word embeddings from large text corpus. (1-100B words)
 (Or download pre-trained embedding online.)
- 2. Transfer embedding to new task with smaller training set. (say, 100k words) → 10,000 → 300
 - 3. Optional: Continue to finetune the word embeddings with new data.

Properties of word embeddings

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)	
Gender	1	1	-0.95	0.97	0.00	0.01	
Royal	0.01	0.02	0.93	0.95	-0.01	0.00	
Age	0.03	0.02	0.70	0.69	0.03	-0.02	
Food	0.09	0.01	0.02	0.01	0.95	0.97	
CS391 Cman — Cwaman ≈ [-2] Man → Woman & King → ? Queen							
Mon -> Woman & Fing -> ! Queen & [-2] Conon-Russman & Cking - C?							
man cosoman v ting ?							

Analogies using word vectors

 $e_{man} - e_{woman} \approx e_{king} - e_{y} e_{w}$

Find word wi arg max Sim (2w, Exing - 2mon + 2 mon m)

30 - 75%

Cosine similarity

$$\Rightarrow sim(e_w, e_{king} - e_{man} + e_{woman})$$

Man:Woman as Boy:Girl

Ottawa:Canada as Nairobi:Kenya

Big:Bigger as Tall:Taller

Yen:Japan as Ruble:Russia

Embedding matrix

In practice, use specialized function to look up an embedding.

> Embelling

Learning word embeddings

Other context/target pairs

Nearby 1 word

I want a glass of orange juice to go along with my cereal.

Context: Last 4 words.

4 words on left & right

Last 1 word

Context: Last 4 words.

A words on left & right

Orange ?

skip grom

Andrew Ng

Word2Vec

Skip-grams

I want a glass of orange juice to go along with my cereal.

Target juice Orange qlass Oronge

Model

Vocab size = 10,000k

Andrew Ng

Problems with softmax classification

$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$
Hierahil rottom.

$$\sum_{j=1}^{10,000} e^{\theta_j^T e_c}$$

Avin

How to sample the context c?

Negative sampling

Defining a new learning problem

I want a glass of orange juice to go along with my cereal.

Model

Softmax:
$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

$$P(y=1|c,t) = c\left(0,000\right)$$
Orange (257)
$$O_{(1)57} \rightarrow E \rightarrow e_{(1)57}$$
Oyuice?

context target? word juice orange king book Loisos pivol problem Andrew Ng

Selecting negative examples

+	\sim	
context	word target?	
orange	juice 1	the, of, and,
orange	king 0	•
orange	book 0	
orange	the $ $ 0	
orange	$\setminus \text{of} \qquad \bigcirc$	
	T	
$P(\omega_i) =$	f(v:)	
$I(\omega)$	(0,000 + (w;)3/4	\ \ \ \ \ \ \
	(0,000) F(w; 3/4	↑
	J	

GloVe word vectors

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

Model

Minimize
$$\sum_{j=1}^{1000} \int_{0}^{100} \int_{0$$

A note on the featurization view of word embeddings

		Woman (9853)	_	•	
` Gender	-1	1	-0.95	0.97	<u> </u>
Royal	0.01	0.02	0.93	0.95	\leftarrow
Age	0.03	0.02	0.70	0.69	4
Food	0.09	0.01	0.02	0.01	

minimize
$$\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i - b_j' - \log X_{ij})^2$$

$$(A0_i)^T (A^T e_j) = 0.7447$$

NLP and Word Embeddings

Sentiment classification

Sentiment classification problem

 $x \rightarrow y$

The dessert is excellent.

Service was quite slow.

Good for a quick meal, but nothing special.

Completely lacking in good taste, good service, and good ambience.

Simple sentiment classification model

Andrew Ng

RNN for sentiment classification softmax $a^{<4>}$ $a^{<2>|}$ $a^{<3>}$ <10> e_{4966} e_{4427} e_{3882} e_{330} e_{1852} lacking in nany-to-one Completely ambience good obsert

NLP and Word Embeddings

Debiasing word embeddings

The problem of bias in word embeddings

Man:Woman as King:Queen

Man:Computer_Programmer as Woman:Homemaker

Father:Doctor as Mother: Nurse X

Word embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the <u>text used to train the</u> model.

Addressing bias in word embeddings

1. Identify bias direction.

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Basic models

$$\chi$$
<1> χ <2> χ <3> χ <4> χ <5>

Jane visite l'Afrique en septembre

→ Jane is visiting Africa in September.

Image captioning

 $y^{<1>}y^{<2>}$ $y^{<3>}$ $y^{<4>}$ $y^{<5>}$ $y^{<6>}$ A cat sitting on a chair

[Mao et. al., 2014. Deep captioning with multimodal recurrent neural networks]
[Vinyals et. al., 2014. Show and tell: Neural image caption generator]
[Karpathy and Li, 2015. Deep visual-semantic alignments for generating image descriptions]

Picking the most likely sentence

Machine translation as building a conditional language model

Finding the most likely translation

French

Jane visite l'Afrique en septembre.

$$P(y^{<1>}, ..., y^{} | x)$$

- → Jane is visiting Africa in September.
- → Jane is going to be visiting Africa in September.
- → In September, Jane will visit Africa.
- Her African friend welcomed Jane in September.

$$\underset{y<1>,...,y}{\text{arg max}} P(y^{<1>},...,y^{} | x)$$

Why not a greedy search?

- → Jane is visiting Africa in September.
- Jane is going to be visiting Africa in September. P(Jan is 50ix (x)) > P(Jone is 1)

Beam search

Beam search algorithm

B=3 (bean width)

Beam search (B = 3)

$$P(y^{<1>}, y^{<2>} | x)$$

jane visits africa in september. <EOS>

Refinements to beam search

Andrew Ng

Beam search discussion

large B: better result, slower small B: worse result, faster

Beam width B?

Unlike exact search algorithms like BFS (Breadth First Search) or DFS (Depth First Search), Beam Search runs faster but is not guaranteed to find exact maximum for arg max P(y|x).

Error analysis on beam search

Example

-> RNN -> Recum Seal

BT

Jane visite l'Afrique en septembre.

Human: Jane visits Africa in September.

Algorithm: Jane visited Africa last September. $(\hat{y}) \leftarrow RNN$ computes $P(\hat{y}|x) \geq P(\hat{y}|x)$

Error analysis on beam search

p(y*(x)

Human: Jane visits Africa in September. (y^*)

Algorithm: Jane visited Africa last September. (\hat{y})

Case 1:
$$P(y^*|x) > P(\hat{y}|x) \leftarrow$$

ag mox P(y/x)

Beam search chose \hat{y} . But y^* attains higher P(y|x).

Conclusion: Beam search is at fault.

Case 2:
$$P(y^*(x) \leq P(\hat{y}(x) \leq$$

 y^* is a better translation than \hat{y} . But RNN predicted $P(y^*|x) < P(\hat{y}|x)$.

Conclusion: RNN model is at fault.

Error analysis process

Human	Algorithm	$P(y^* x)$	$P(\hat{y} x)$	At fault?
Jane visits Africa in September.	Jane visited Africa last September.	2 × 10-10	1 x 10-10	BR CRR.

Figures out what faction of errors are "due to" beam search vs. RNN model

Bleu score (optional)

Evaluating machine translation

French: Le chat est sur le tapis.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

MT output: the the the the the the.

Precision: Modified precision:

Bley mobilisqued enderstudy

Bleu score on bigrams

Example: Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat. <

MT output: The cat the cat on the mat. ←

	Count	Courtclip	
the cat	Count 2 (1	
cat the	(<		et
cat on	(<	(-	
on the	1 ←	1 6	
the mat	←	(6	

[Papineni et. al., 2002. Bleu: A method for automatic evaluation of machine translation]

Bleu score on unigrams

Example: Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

→ MT output: The cat the cat on the mat.

count (unigram)

unigrame & count (unigram)

unigrame & count (unigram)

unigrame & count (unigram)

unigrame & count (unigram)

Bleu details

$$p_n$$
 = Bleu score on n-grams only

Combined Bleu score:
$$\mathbb{R}^p \exp\left(\frac{1}{2} \sum_{n=1}^{\infty} \mathbb{P}^n\right)$$

$$BP = \begin{cases} 1 & \text{if MT_output_length} > \text{reference_output_length} \\ & \text{exp}(1 - \text{MT_output_length}/\text{reference_output_length}) & \text{otherwise} \end{cases}$$

Attention model intuition

The problem of long sequences

Jane s'est rendue en Afrique en septembre dernier, a apprécié la culture et a rencontré beaucoup de gens merveilleux; elle est revenue en parlant comment son voyage était merveilleux, et elle me tente d'y aller aussi.

Jane went to Africa last September, and enjoyed the culture and met many wonderful people; she came back raving about how wonderful her trip was, and is tempting me to go too.

Sentence length

Attention model intuition visits -Africa Jone <°> م ديري ر لادين 2/(1/1) **\$**<2> $\hat{v}^{<3>}$ $a^{<0>}$ $\dot{\chi}$ <1> l'Afrique en visite septembre jane

Attention model

[Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate]

Andrew Ng

Computing attention $\alpha^{\langle t,t'\rangle}$

 $\alpha^{< t,t'>}$ = amount of attention $y^{< t>}$ should pay to $\alpha^{< t'>}$

Attention examples

July 20th 1969 \longrightarrow 1969 - 07 - 20

23 April, 1564 →

1564 - 04 - 23

Visualization of $\alpha^{\langle t,t'\rangle}$:

Audio data

Speech recognition

Speech recognition problem

Attention model for speech recognition

CTC cost for speech recognition

(Connectionist temporal classification)

Basic rule: collapse repeated characters not separated by "blank"

Audio data

Trigger word detection

What is trigger word detection?

Amazon Echo (Alexa)

Baidu DuerOS (xiaodunihao)

Apple Siri (Hey Siri)

Google Home (Okay Google)

Trigger word detection algorithm

Conclusion

Summary and thank you

Specialization outline

- 1. Neural Networks and Deep Learning
- 2. Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
- 3. Structuring Machine Learning Projects
- 4. Convolutional Neural Networks
- 5. Sequence Models

Deep learning is a super power

Please buy this from shutterstock and replace in final video.

www.shutterstock.com · 331201091

Thank you.

- Andrew Ng

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Sequence to sequence models

Transformers Intuition

Transformers Motivation

Increased complexity, sequential

RNN

GRU

Transformers Intuition

- Attention + CNN
 - Self-Attention
 - Multi-Head Attention

Sequence to sequence models

Self-Attention

Self-Attention Intuition

A(q,K,V) = attention-based vector representation of a word

RNN Attention

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_{\mathcal{X}}} \exp(e^{})}$$

Transformers Attention

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k^{\langle i \rangle})}{\sum_{j} \exp(q \cdot k^{\langle j \rangle})} v^{\langle i \rangle}$$

$$x^{<1>}$$
 Jane

$$\chi^{<2>}$$
 visite

$$\chi^{<1>}$$
 $\chi^{<2>}$ $\chi^{<3>}$ $\chi^{<4>}$ $\chi^{<5>}$ Jane visite l'Afrique en septembre

$$\chi$$
<4>

$$x^{<5>}$$
eptembre

Self-Attention

Sequence to sequence models

Multi-Head Attention

Multi-Head Attention

Sequence to sequence models

Transformers

Transformer Details

<SOS>Jane visits Africa in September <EOS>

