

软件开发环境国家重点实验室

State Key Laboratory of Software Development Environment

离散数学(1): 数理逻辑

Discrete Mathematics (1): Mathematical Logic

第一章 命题逻辑

赵永望

zhaoyw@buaa.edu.cn

北京航空航天大学 计算机学院

命题逻辑

• 命题逻辑研究的是命题的推理演算

- · 先看个命题逻辑谜题:
 - 一个岛上居住着两类人:骑士和无赖。骑士说的都是真话,无赖只会说假话。你碰到两个人A和B,如果A说"B是骑士",而B说"我们两个是两类人",判断A和B是什么人?
 - 设p = "A是骑士", q = "B是骑士"
 - (1)假设p为真,则q也为真,则 " $(p \land \neg q) \lor (\neg p \land q)$ " 为真,产生矛盾!!
 - (2)假设p为假,则q也为假,则"(p ∧ q) ∨ (¬p ∧ ¬q)"为真,符合!!

论域举例: 自然数域

- · 论域:任何科学理论都有它的研究对象,这些对象构成一个不空的集合,称为论域,论域是一个数学系统。
- 对象: 0, 1, 2, 3,
 - 自然数集合
- 运算: +, -, *, /, mod,
- · 关系: =, >, <,

论域举例: 自然数域

- 加法运算法则
- 乘法运算法则
- 除法运算法则

结合律、交换律、分配律等

论域举例: 自然数域

- 证明: (a+b+c)*d=a*d+b*d+c*d
 - (a + b + c) * d = (a + b)*d + c*d = a*d + b*d + c*d
- 证明: 12 * 12 = 4 * 36
 - 12 * 12 = (10+2)*12 = 10*12+2*12 = 120 + 24 = 144
 - -4*36 = 4*(30+6) = 4*30 + 4*6 = 120 + 24 = 144

最简单的论域—逻辑域

- · 定义:逻辑对象是真和假,也称为逻辑真值,简称真值, 记为1和0。
- 逻辑真值集合是{0,1}。
- 在真值集合上可以定义逻辑运算和逻辑关系。
 - 真值集合以及逻辑运算、逻辑关系统称为逻辑域
 - 定义:表达逻辑真值的变元,称为逻辑变元,简称变元。
 - 一般用小写英文字母表示: p, q, r, t,

最简单的论域—逻辑域(续)

- · 逻辑对象: {0,1}
- 逻辑关系: {=, |= }
- 真值表
 - 一组逻辑自变量与一个逻辑因变量的对应表
 - n个自变量,1个因变量,n元函数

真值表定义逻辑运算和关系

■ 逻辑运算(联结词)

内容

- 1.1. 命题和联结词
- · 1.2. 公式和真值赋值
- ・1.3. 等值演算
- ・1.4. 对偶定理
- · 1.5. 联结词的完全集
- ・1.6. 范式
- 1.7. 逻辑推论

自然语言与命题

- 自然语言是人们思维和交际的工具,也是一种表达观念的 符号系统。
- 自然语言由各种句式的语句组成,如陈述句、疑问句、感 叹句、祈使句等等。
- 陈述句是表达一个事实的语句。
- 陈述句的意义就是对一个事实的判断,即确定陈述句是真, 还是假。

命题与命题变元

- 命题
 - 命题逻辑的基本要素
 - 它是一个陈述句,具有确定的真假意义,不能既真又假
- · 疑问句、指令句等不是命题
 - "你是谁?","请认真学习离散数学!"
- · 真命题: 陈述句为真的命题, 用1或T表示
- · 假命题: 陈述句为假的命题, 用0或F表示
- · {0,1}称为真值集合,假命题的真值为0,真命题的真值为1
- · 命题变元: p, q, r, s, t等
 - 例如: p="雪是白色的"
 - __例如: p=0

软件开发环境国家重点实验室 State Key Labriation of Software Development Fouriermen

命题判断

- "雪是白色的",真命题
- 2>9, 假命题
- · 人类于21世纪在月球居住,命题(但不知道真假)
- x + y > 5, 不是命题
- "我正在说谎",不是命题
 - 说谎者悖论,命题的意义自相矛盾

简单/复合命题

简单命题(原子命题)

- 由简单陈述句表述的命题
- 命题逻辑不再分析简单命题的内部结构

复合命题

- 自然语言使用联结词将简单句组合成复合句
- "北京在广州南面,而且北京航空航天大学在北京"
- 复合句表述的命题称为"复合命题"
- 构成复合命题的命题,称为它的"支命题"
- 复合命题的真值,由其支命题的真值和联结词共同决定

联结词

- 定义1.1: 0和1称为0元真值函数。设 $n \ge 1$,称 $\{0,1\}^n$ 到 $\{0,1\}$ 的函数为n元真值函数。真值函数也称为联结词
- 什么是函数?

・ 0元真值函数,实际上就是常量,有两种: 0和1

联结词

• 1元真值函数,有4种。为什么?

р	F1(p)	F2(p)	F3(p)	F4(p)
0	0	0	1	1
1	0	1	0	1

-
$$F1(p) = 0$$
 $F2(p) = p$ $F3(p) = \neg p$ $F4(p) = 1$

· 2元真值函数,有多少种? (2⁴ = 16)

р	q	$p \wedge q$	$p \lor q$	$p \oplus q$	p ightarrow q	$p \leftrightarrow q$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

•_N元真值函数,有2^{2ⁿ}种

真值表

- · 真值表由逻辑变量每种取值组合以及相对应的唯一值列表 组成。
 - 每个逻辑变量均有0、1两种取值
 - 按二进制数递增方式排列起来
 - 每个逻辑公式为一列
 - 将对应的逻辑函数值写相应位置上

真值表			
p	q	p∧q	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

真值表			
p	q	p∨q	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

逻辑联结词「

• 定义1.2: 设p是逻辑变量, p的否定运算记为¬p, 读作非p。

• 一个陈述句的否定

真值表		
p	¬р	
0	1	
1	0	

- 逻辑联接词¬的含义:
- 非
- **■** ¬1=0
- **■** ¬(¬0) =¬1=0
- -(5 > 3) = -1 = 0
- $-(5 > 3) = (5 \le 3) = 0$

逻辑联结词 ^

· 定义1.3: 设p和q是逻辑变量, p和q的合取运算记为p^q, 读作p且q。

真值表			
p	q	p∧q	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

- 逻辑联接词△的含义:
- 并且

•
$$(\neg 0) \land 1=1 \land 1=1$$

•
$$(5>3) \land (4>2) = 1 \land 1=1$$

•
$$(5<3) \land (4>2) = 0 \land 1=1$$

逻辑联结词 >

· 定义1.3:设p和q是逻辑变量,p和q的析取运算记为pvq,读作p或q。

真值表				
$p \mid q \mid p \lor q$				
0	0	0		
0	1	1		
1	0	1		
1	1	1		

- 逻辑联接词\的含义:
- ■或者

- **■** 1∨0=1
- $1 \land (\neg 1) \lor (\neg 0) = 1 \land 0 \lor 1 = 0 \lor 1 = 1$
- $(5<3) \lor (4>2) = 0 \lor 1=1$

逻辑联结词 →

- · 定义1.3: 设p和q是逻辑变量,p和q的<mark>蕴涵运算</mark>记为p→q,读 作如果p则q。
- p称为前件,q称为后件

真值表				
$p \mid q \mid p \rightarrow q$				
0	0	1		
0	1	1		
1	0	0		
1	1	1		

- 逻辑联接词→的含义:
- 如果...,则...。

•
$$((-1) \land 1) \rightarrow (0 \lor (-1))$$

$$= (0 \land 1) \rightarrow (0 \lor 0)$$

•
$$(5 > 3) \rightarrow (5 > 0) = 1 \rightarrow 1 = 1$$

•
$$(3 > 5) \rightarrow (5 > 0) = 0 \rightarrow 1 = 1$$

•
$$(3 > 5) \rightarrow (0 > 5) = 0 \rightarrow 0 = 0$$

逻辑联结词 ↔

· 定义1.3: 设p和q是逻辑变量, p和q的互蕴涵运算记为p↔q, 读作p当且仅当q。

真值表			
p	q	p↔q	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

- 逻辑联接词↔的含义:
- 当且仅当

$$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$$

软件开发环境国家重点实验] State Key Laborator of Software Development Frontom

逻辑联结词 ①

· 定义1.3: 设p和q是逻辑变量,p和q的异或运算记为p⊕q,读作p与q异或。

真值表			
$p \mid q \mid p \oplus q$			
0	0	0	
0	1	1	
1	0	1	
1	1	0	

- 逻辑联接词⊕的含义:
- 异或
- **■** (1⊕0)⊕(1⊕1)
- **■** =1⊕0
- **=** =1
- 考虑: (x>1)⊕(x≤1)和(x>2)⊕(x<1)</p>
- $p \oplus q = (p \land \neg q) \lor (\neg p \land q)$

相等关系

· 定义:设p和q是逻辑变量,p和q的等关系记为p=q,读作p与 q相等。

真值表			
$p \mid q \mid p=q$			
0	0	1	
0	1	0	
1	0	0	
1	1	1	

- 逻辑关系词=的含义:
- 相等

推论关系

- · 定义:设p和q是逻辑变量,p和q的推论关系记为pfq,读作p 推出q。
- · p称为前提,q称为结论

真值表				
p	p q p =q			
0	0	ĺ		
0	1	1		
1	0	0		
1	1	1		

- 逻辑关系词 |的含义:
- 推出

命题符号化

- "李明是计算机系的学生,他住在312室或者313室"
 - $p \wedge (q \oplus r)$
- 如果我下班早且不累,就去商店看看
 - $(p \land (\neg q)) \rightarrow r$
- "燕子飞回来是春天来了的必要条件"
 - p: 燕子飞回来
 - q:春天来了
 - $q \rightarrow p$
- 如果明天下雨,就不开运动会而照常上课
 - $p \to ((\neg q) \land r)$

内容

- 1.1. 命题和联结词
- 1.2. 公式和真值赋值
- ・1.3. 等值演算
- ・1.4. 对偶定理
- · 1.5. 联结词的完全集
- ・1.6. 范式
- 1.7. 逻辑推论

什么是公式(formula)

・ 数学公式: (x + sin y) × 2

· x + + y sin: 是表达式, 但不是公式

• 命题逻辑公式:

- -0,1
- p, q, r
- $p \land q, p \lor q, \neg p, p \rightarrow q,$
- $-p \wedge q \vee p$

• 定义1.4: 命题变元称为原子公式

命题合式公式Well-formed formula

- ・定义1.5:
 - (1).常量0和1是合式公式;
 - (2).命题变元是合式公式;
 - (3).若Q,R是合式公式,则(¬Q)、(Q∧R)、(Q∨R)、
 - (Q→R)、(Q↔R)、(Q⊕R)是合式公式;
 - (4).只有有限次应用(1)—(3)构成的公式是合式公式。

合式公式举例

• $(Q \rightarrow 0) \lor (Q \rightarrow 1)$

•
$$\neg Q \land (P \rightarrow Q) \rightarrow \neg P$$

• $(P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R)$

• $(Q \rightarrow R) \rightarrow (Q \land P \rightarrow R \land P)$

公式复杂度及合式公式序

· 公式P的复杂度表示为FC(P)

- 常量0和1,复杂度为0。
- 命题变元复杂度为0,如果p是命题变量,则 FC (p)=0。
- 如果公式P=¬Q,则FC(P)=FC(Q)+1。
- 如果公式 $P=Q \land R$,或
- $P=Q \vee R$,或
- \mathbf{P} = $\mathbf{Q}
 ightarrow \mathbf{R}$,或
- $P=Q\leftrightarrow R$,或
- P=Q ⊕ R, 或
- 则FC (P)= $\max\{FC(Q), FC(R)\}+1$ 。

联结词的优先级

- 联结词的优先级
 - 从高到低的顺序排列为: \neg 、 \land 、 \lor 、⊕ 、 \rightarrow 、 \leftrightarrow
 - 一同一个联结词连续多次出现且无括号,则按从左至右的顺序运算
- · 在满足运算次序不变的情况下,运用联结词的 。 优先级规则可以减少合式公式括号

联结词的优先级

- $(((((p \land q) \lor r) \lor q) \rightarrow p) \oplus q) \leftrightarrow r$ $= ((((p \land q \lor r) \lor q) \rightarrow p) \oplus q) \leftrightarrow r$ $= (((p \land q \lor r \lor q) \rightarrow p) \oplus q) \leftrightarrow r$ $= ((p \land q \lor r \lor q \rightarrow p) \oplus q) \leftrightarrow r$ $= (p \land q \lor r \lor q \rightarrow p) \oplus q \leftrightarrow r$
- $\mathbf{p} \wedge \mathbf{q} \wedge \mathbf{r} \wedge \mathbf{s} = ((\mathbf{p} \wedge \mathbf{q}) \wedge \mathbf{r}) \wedge \mathbf{s}$

合式公式判断

判断¬(p∧q) ↔ (¬p∨¬q) 合式公式

p, q是合式公式 ¬p, ¬q, p∧q是合式公式 ¬(p∧q),(¬p∨¬q)是合式公式 $\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$ 是合式公式

合式公式判断 (续)

• 判断(p → 0) ∧ (q → 1)是合式公式

- 0,1合式公式
- p, q是合式公式
- $(p \rightarrow 0)$, $(q \rightarrow 1)$ 是合式公式
- (p → 0) ∧ (q → 1)是合式公式

命题逻辑公式的含义:真值

- · 对于一个命题逻辑合式公式, 其逻辑真值是什么?
 - 什么情况下为真?
 - 什么情况下为假?
- 一个合式公式与逻辑真值之间的对应关系。

真值表

- · 真值表由逻辑变量每种取值组合以及相对应的唯一值列表 组成。
 - 每个逻辑变量均有0、1两种取值
 - 按二进制数递增方式排列起来
 - 每个逻辑公式为一列
 - 将对应的逻辑函数值写相应位置上
- 真值表用来定义联结词
- 真值表用来计算合式公式
- 真值表用来验证运算性质

真值表						
p	q	p∧q				
0	0	0				
0	1	0				
1	0	0				
1	1	1				

真值表						
p	q	p∨q				
0	0	0				
0	1	1				
1	0	1				
1	1	1				

真值表

• 计算合式公式

р	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
0	0	0	1	1	1	1	1
0	1	0	1	1	0	1	1
1	0	0	1	0	1	1	1
1	1	1	0	0	0	0	1

软件开发环境国家重点实验室 State Key Jahristory of Software Development Fouriermen

真值赋值函数

- ・定义1.6:从全体命题变元集合P到逻辑集合 $\{0,1\}$ 的函数,称为真值赋值函数,记为v。
 - $-v: P \Rightarrow \{0, 1\}$
- ·设v是真值赋值函数,命题变元 $p \in P$,用 p^v 表示 v赋给p的真值, $p^v \in \{0, 1\}$ 。

合式公式的真值: 公式的语义

- 设S是联结词的集合是{¬, ∧, ∨, ⊕, →, ↔}。
- 由S生成的合式公式Q在真值赋值v下的真值指派v(Q):
- (1) v(0) = 0, v(1) = 1
- (2) 若Q是命题变元p,则 $v(oldsymbol{Q}) = oldsymbol{p}^v$
- (3) 若Q₁,Q₂是合式公式
 - 若Q= \neg Q₁,则 $v(Q) = \neg v(Q_1)$
 - 若Q=Q₁ \wedge Q₂,则 $v(Q) = v(Q_1) \wedge v(Q_2)$
 - 若Q=Q₁ \vee Q₂,则 $v(Q) = v(Q_1) \vee v(Q_2)$
 - 若Q=Q₁ \rightarrow Q₂, 则 $v(Q) = v(Q_1) \rightarrow v(Q_2)$
 - 若Q=Q₁ \leftrightarrow Q₂,则 $v(Q) = v(Q_1) \leftrightarrow v(Q_2)$
 - 若Q=Q₁ \oplus Q₂,则 $v(Q) = v(Q_1) \oplus v(Q_2)$

- 求公式 $\neg(p \land q) \leftrightarrow \neg p \lor \neg q$ 真值
- ・ 首先将公式 $\neg(p \land q) \leftrightarrow \neg p \lor \neg q$ 按公式产生结构逐次分解成 $p \land q, \neg(p \land q), \neg p, \neg q, \neg p \lor \neg q$ 等子公式,而后分别求其 值,最后求得公式 $\neg(p \land q) \leftrightarrow \neg p \lor \neg q$ 真值。

р	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
0	0	0	1	1	1	1	1
0	1	0	1	1	0	1	1
1	0	0	1	0	1	1	1
1	1	1	0	0	0	0	1

真值表求合式公式逻辑值有容易、直观的优点。

当命题变量较多时,命题变量真值有组合数大,公式复杂,难以计算等缺点。

真值赋值定理

- 定理1.1:设Q是公式, v_1 和 v_2 是真值赋值,对于Q中出现的任何命题变元p,都有 $p^{v_1}=p^{v_2}$,则有 $v_1(Q)=v_2(Q)$
- 证明:对公式Q进行归纳
 - Q=0
 - Q=1
 - **Q=p** (命题变元)
 - Q是合式公式
 - 若Q=¬Q₁,由 $v_1(Q_1) = v_2(Q_1)$ 得 $v_1(Q) = v_2(Q)$
 - 若Q=Q₁ \wedge Q₂,由 $v_1(Q_1) = v_2(Q_1)$ 和 $v_1(Q_2) = v_2(Q_2)$ 得。。。
 - 若Q=Q₁ \vee Q₂,由 $v_1(Q_1) = v_2(Q_1)$ 和 $v_1(Q_2) = v_2(Q_2)$ 得。。。
 - 若Q=Q₁ \rightarrow Q₂,由 $v_1(Q_1) = v_2(Q_1)$ 和 $v_1(Q_2) = v_2(Q_2)$ 得。。。
 - 若Q=Q₁ \leftrightarrow Q₂,由 $v_1(Q_1) = v_2(Q_1)$ 和 $v_1(Q_2) = v_2(Q_2)$ 得。。。
 - 若Q=Q₁ \oplus Q₂,由 $v_1(Q_1) = v_2(Q_1)$ 和 $v_1(Q_2) = v_2(Q_2)$ 得。。。

公式的可满足性和有效性

- · 定义1.7: 设Q是公式。
- (1)如果真值赋值v使得v(Q)=1,则称v满足Q。
- · (2)如果每个真值赋值都满足Q,则称Q为有效式, 或称为永真式,也称为重言式。
 - (3)如果每个真值赋值都不满足Q,则称Q为永假 式,也称为矛盾式,不可满足式。
- ・(4)如果至少有一个真值赋值满足Q,则称Q为可 满足式。

	真值 赋值	р	q	$p \wedge q$	$\neg (p \land q)$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$	$\neg(p \land q) \leftrightarrow p \land q$
	v_1	0	0	0	1	1	0
	v_2	0	1	0	1	1	0
nment	v_3	1	0	0	1	1	0
nent Enviro	v_4	1	1	1	0	1	0

可满足式

永真式

永假式

公式的可满足性和有效性

· 永真式都是可满足式

· 公式Q是可满足式, 当且仅当它不是永假式

· 公式Q是永真式,当且仅当¬Q是永假式

· 公式Q是永假式,当且仅当¬Q是永真式

代换/替换

· 定义1.8: 用 $B_1, ..., B_n$ 公式分别代换公式Q中的不同命题变元 $p_1, ..., p_n$ 得到的公式记为

$$Q[p_1/B_1,...,p_n/B_n]$$
 或 $Q_{B_1,...,B_n}^{p_1,...,p_n}$,

称为Q的代换实例。

· 代换产生新的公式

$$(p \land \neg p \to q)_{r \to p, r}^{p, q}$$

$$= (r \to p) \land \neg (r \to p) \to r \qquad (p/r \to p, q/r)$$

代换定理

· 定理1.2:设 $p_1, ..., p_n$ 是不同命题变元, $\mathbf{Q}, B_1, ..., B_n$ 是公式。则对于每个真值赋值v,

,则对于母子强阻赋值
$$v$$
, $v(Q_{B_1,...,B_n}^{p_1,...,p_n})=v[p_1 \,/\, v(B_1),...,p_n \,/\, v(B_n)](oldsymbol{Q})$

- 其中真值赋值 $v' = v[p_1 / v(B_1), ..., p_n / v(B_n)]$ 定义如下:

$$p^{v'} = \begin{cases} v(B_1) & \textit{若p是p}_1 \\ & \cdots \\ v(B_n) & \textit{若p是p}_n \\ p^v & \text{否则} \end{cases}$$

- · 证明:对Q进行归纳。
- ・(1)若Q是p_i,其中1≤i≤n,则

$$v(Q_{B_1,...,B_n}^{p_1,...,p_n}) = v(B_i) = v'(Q)$$

· (2)若Q是除 $_{p_1,\ldots,p_n}$ 之外的命题变元p,则

$$v(Q_{B_1,...,B_n}^{p_1,...,p_n}) = v(p) = v'(Q)$$

(3)若Q是0元联结词c,则

$$v(Q_{B_1,...,B_n}^{p_1,...,p_n}) = v(c) = v'(Q)$$

• (4)设 $Q_1,...,Q_k$ 是复杂度小于m的公式,并且

$$v(Q_{iB_1,\ldots,B_n}^{p_1,\ldots,p_n}) = v'(Q_i)$$

· 若Q是F $Q_1,...,Q_k$,其中F是k元联结词,是 长度等于m的公式,则是

$$v(Q_{B_{1},...,B_{n}}^{p_{1},...,p_{n}}) = F(v((Q_{1})_{B_{1},...,B_{n}}^{p_{1},...,p_{n}}),...,v((Q_{k1})_{B_{1},...,B_{n}}^{p_{1},...,p_{n}}))$$

$$= F(v'(Q_{1}),...,v'(Q_{k})) = v'(F(Q_{1},...,Q_{k}) = v'(Q)$$

定理1.3

- 定理1.3: 设Q是公式
 - (1) 若Q是永真式,则A的每个代换实例都是永真式
 - (2) 若Q是永假式,则A的每个代换实例都是永假式

・证明

- (1)任取永真式Q的代换实例 $Q_{B_1,\ldots,B_n}^{p_1,\ldots,p_n}$, 对于每个真值赋值v,

$$v(Q_{B_1,...,B_n}^{p_1,...,p_n}) = v[p_1 / v(B_1),...p_n / v(B_n)](Q) = 1$$

所以 $Q_{B_1,\ldots,B_n}^{p_1,\ldots,p_n}$ 是永真式。

- (2)可同样证明。

- p →(q →p)是永真式
- · 设Q,R是任意公式
- [p/Q, q/R]

$$-\mathbf{Q} = \neg \mathbf{p} \lor \neg \mathbf{q}$$
, $\mathbf{R} = \neg (\mathbf{p} \lor \mathbf{r})$

$$-(\neg p \lor \neg q) \rightarrow (\neg (p \lor r) \rightarrow (\neg p \lor \neg q))$$
是永真式

内容

- 1.1. 命题和联结词
- · 1.2. 公式和真值赋值
- ・1.3. 等值演算
- ・1.4. 对偶定理
- 1.5. 联结词的完全集
- ・1.6. 范式
- 1.7. 逻辑推论

公式等值的定义

- 定义1.9: 设A和B是公式,如果对于每个真值赋值v,都有v(A) = v(B),则称 "A和B等值",也称 "A与B逻辑等价",记为 $A \Leftrightarrow B$
- · 显然 $A \Leftrightarrow B$, 当且仅当 $A \leftrightarrow B$ 是永真式
- · 两个公式是否等价,可以用真值表来判断

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
0	0	0	1	1	1	1	1
0	1	0	1	1	0	1	1
1	0	0	1	0	1	1	1
1	1	1	0	0	0	0	1

公式等值演算的重要依据

- · 重要依据:定理1.3:设Q是公式
 - (1) 若Q是永真式,则A的每个代换实例都是永真式
 - (2) 若Q是永假式,则A的每个代换实例都是永假式
- ・ 所以有:
 - 根据¬ $(p \land q) \leftrightarrow ¬p \lor ¬q$ 是永真式
 - 而¬(A ∧ B) ↔ ¬A ∨ ¬B是上式的代换实例
 - 所以¬(A∧B) ↔ ¬A∨¬B也是永真式

等值式模式

交换律	Q∨R⇔Q∨R	$Q \land R \Leftrightarrow R \land Q$	Q⊕R⇔R⊕Q
结合律	$(P\lor Q)\lor R\Leftrightarrow P\lor (Q\lor R)$	$(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$	$(P \oplus Q) \oplus R \Leftrightarrow P \oplus (Q \oplus R)$
分配律	P∨(Q∧R)	P∧(Q∨R)	P∧(Q⊕R)
	\Leftrightarrow (P \lor Q) \land (P \lor R)	\Leftrightarrow (P \land Q) \lor (P \land R)	\Leftrightarrow (P \land Q) \oplus (P \land R)
德●摩根律	$\neg (Q \lor R) \Leftrightarrow \neg Q \land \neg R$	$\neg (Q \land R) \Leftrightarrow \neg Q \lor \neg R$	
幂等律	Q√Q⇔Q	$Q \land Q \Leftrightarrow Q$	
同一律	Q∧1⇔Q	Q∨0⇔Q	
吸收律	$Q\lor(Q\land R)\Leftrightarrow Q$	$Q \land (Q \lor R) \Leftrightarrow Q$	
零律	Q∨1⇔1	Q∧0⇔0	
排中律	Q∨¬Q⇔1	双重否定律	¬¬Q⇔Q
矛盾律	Q∧¬Q⇔0	假言易位	$Q \rightarrow R \Leftrightarrow \neg R \rightarrow \neg Q$

其他等值式模式

- P⊕P⇔0
- P⊕1⇔¬P
- $P \rightarrow Q \Leftrightarrow \neg P \lor Q$
- $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$
 - $P \oplus Q \Leftrightarrow (\neg P \land Q) \lor (P \land \neg Q)$
 - P⊕Q⇔¬(P↔Q)

• 结合律

 $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$

 $(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$

 $(P \oplus Q) \oplus R \Leftrightarrow P \oplus (Q \oplus R)$

p	q	r	(p \(\text{q} \) \(\text{r} \)	$p \lor (q \lor r)$	$(p \lor q) \lor r \leftrightarrow p \lor (q \lor r)$
0	0	0	0	0	1
State Key I shoratory of Software Development Enginement O O O 1	0	1	1	1	1
Mare Deve	1	0	1	1	1
O O	1	1	1	1	1
	0	0	1	1	1
	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

• 分配律

 $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

 $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$

 $P \land (Q \oplus R) \Leftrightarrow (P \land Q) \oplus (P \land R)$

	p	q	r	$p \lor (q \land r)$	$(p \lor q) \land (p \lor q)$	$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor q)$
软件扩及址范国系重点实验室 State Key I aboratory of Software Development Environment	0	0	0	0	0	1
E III 3	0	0	1	0	0	1
Myare Dev	0	1	0	0	0	1
z 坏境 atom of So	0	1	1	1	1	1
年 井 2 Key Labor	1	0	0	1	1	1
大 State	1	0	1	1	1	1
	1	1	0	1	1	1
	1-	1	1	1	1	1

真值表验证等值

• 交換律

 $Q \lor R \Leftrightarrow R \lor Q$

 $Q \land R \Leftrightarrow R \land Q$

 $Q \oplus R \Leftrightarrow R \oplus Q$

p	q	$q \lor r$	$q \lor r$	$q \lor r \leftrightarrow q \lor r$
0	0	0	0	1
0	1	0	0	1
1	0	0	0	1
1	1	1	1	1

真值表验证等值

・徳・摩根律

$$\neg (Q \lor R) \Leftrightarrow \neg Q \land \neg R$$

$$\neg (Q \land R) \Leftrightarrow \neg Q \lor \neg R$$

p	q	$\neg (q \lor r)$	$\neg q \land \neg r$	$\neg (q \lor r) \leftrightarrow \neg q \land \neg r$
0	0	1	1	1
0	1	0	0	1
1	0	0	0	1
1	1	0	0	1

・ 定义:设合式公式Q 和R,存在等式序列Q₀,...,Q゚, 其中, $Q \Leftrightarrow Q_0$, $R \Leftrightarrow Q_n$, 并且 $Q_k \Leftrightarrow Q_{k+1}$, 则称 $Q_0,...,Q_n$ 为等值演算。

• 例1.5: 证明p→(q→r)⇔p∧q→r

•
$$p \rightarrow (q \rightarrow r)$$

•
$$\Leftrightarrow \neg p \lor (\neg q \lor r)$$

•
$$\Leftrightarrow \neg (p \land q) \lor r$$

•
$$\Leftrightarrow$$
 p \land q \rightarrow r

$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$

结合律

摩根律

 $P \rightarrow Q \Leftrightarrow \neg P \lor Q$

软件开发环境国家重点实验室

• 证明 $(p \rightarrow r) \land (q \rightarrow r) \Leftrightarrow (p \lor q) \rightarrow r$

• $(p \rightarrow r) \land (q \rightarrow r)$

•
$$\Leftrightarrow (\neg p \lor r) \land (\neg q \lor r)$$

•
$$\Leftrightarrow (\neg p \land \neg q) \lor r$$

$$\cdot \Leftrightarrow \neg(p \lor q) \lor r$$

$$\cdot \Leftrightarrow (p \lor q) \to r$$

$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$

$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$

• 证明:
$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \rightarrow q) \rightarrow (p \rightarrow r)$$

•
$$p \rightarrow (q \rightarrow r)$$

•
$$\Leftrightarrow \neg p \lor (q \to r)$$

•
$$\Leftrightarrow \neg p \lor \neg q \lor r$$

•
$$\Leftrightarrow$$
 $((\neg p \lor \neg q) \land 1) \lor r$

•
$$\Leftrightarrow$$
 $((\neg p \lor \neg q) \land (\neg p \lor p)) \lor r$

•
$$\Leftrightarrow \neg p \lor (\neg q \land p) \lor r$$

•
$$\Leftrightarrow (\neg q \land p) \lor \neg p \lor r$$

•
$$\Leftrightarrow \neg(\neg p \lor q) \lor \neg p \lor r$$

•
$$\Leftrightarrow \neg(p \rightarrow q) \lor (p \rightarrow r)$$

•
$$\Leftrightarrow$$
 $(p \rightarrow q) \rightarrow (p \rightarrow r)$

$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$

$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$

同一律

排中律

分配律

交换律

摩根律

 $P \rightarrow Q \Leftrightarrow \neg P \lor Q$

 $P \rightarrow Q \Leftrightarrow \neg P \lor Q$

- · 例1.6:用等值演算证明p⊕(q^r)→p∨q∨r是永真式。
- $p \oplus (q \land r) \rightarrow p \lor q \lor r$
- $\Leftrightarrow \neg (p \oplus (q \land r)) \lor p \lor q \lor r$
- $\Leftrightarrow \neg ((p \land \neg (q \land r)) \lor (\neg p \land (q \land r))) \lor p \lor q \lor r$
- $\Leftrightarrow \neg (p \land \neg (q \land r)) \land \neg (\neg p \land (q \land r)) \lor p \lor q \lor r$
- \Leftrightarrow $(\neg p \lor \neg \neg (q \land r)) \land (\neg \neg p \lor \neg (q \land r)) \lor p \lor q \lor r$
- \Leftrightarrow $(\neg p \lor (q \land r)) \land (p \lor \neg q \lor \neg r) \lor p \lor q \lor r$
- \Leftrightarrow $(\neg p \lor (q \land r) \lor p \lor q \lor r) \land (p \lor \neg q \lor \neg r \lor p \lor q \lor r)$
- \Leftrightarrow $(\neg p \lor p \lor (q \land r) \lor q \lor r) \land (p \lor \neg q \lor p \lor q \lor r \lor \neg r)$
- \Leftrightarrow $(1 \lor (q \land r) \lor q \lor r) \land (p \lor \neg q \lor p \lor q \lor 1)$
- ⇔ 1 ∧ 1 ⇔ 1

内容

- 1.1. 命题和联结词
- · 1.2. 公式和真值赋值
- ・1.3. 等值演算
- ・1.4. 对偶定理
- · 1.5. 联结词的完全集
- ・1.6. 范式
- 1.7. 逻辑推论

对偶定理

・定义1.10

- 设Q是由{0,1,¬,∨,∧}生成的公式,将Q中的 \和 \ 互换,0和1互换得到Q*,称Q*与Q互 为对偶式。

- $-(p \lor q) \land r$ 和 $(p \land q) \lor r$
- $-\neg(p\lor0)$ 人1 和 $\neg(p\land1)\lor0$

・定义1.11

-如果真值赋值 \mathbf{v}_1 和 \mathbf{v}_2 满足对每个命题变元 \mathbf{p}_1 , $\mathbf{p}_1 \neq \mathbf{p}_2$,则称 \mathbf{v}_1 和 \mathbf{v}_2 是相反的。

对偶定理(证明略)

- 定理1.4: 设Q是由 $\{0,1,\neg,\lor,\land\}$ 生成的公式, Q*与Q互为对偶式, v和v'是相反的真值赋值, 则 $\mathbf{v}(\mathbf{Q}^*)=\neg\mathbf{v}'(\mathbf{Q})$ 。
- 证明:
- · 1.Q的复杂度为0, 定理成立
 - -(1)若Q为命题变元p,

则Q*也为p, $v(p)=\neg v'(p)$ 。

- -(2)若Q为0,则Q*为1, $v(1)=\neg v'(0)$ 。
- -(3)若Q为1,则Q*为0, $v(0)=\neg v'(1)$ 。

- 2.假设对于复杂度不超过n的每个公式Q, v(Q*)=¬v'(Q)。
- · 3.证明复杂度等于n, 定理成立。
- (1)若Q为¬R, v(R*)=¬v'(R), 并且Q*为¬R*。
 因此, v(Q*)=v(¬R*)=¬v(R*)=¬v'(R)=¬v'(¬R)=¬

(3)若Q为R∨S, v(R*)=¬v'(R)且v(S*)=¬v'(S),
 并且Q*为R*∧S*。

因此,v(Q*)=v(R*^S*)=v(R*)^v(S*) =¬v'(R)^¬v'(S)= v'(¬R^¬S)=v'(¬(R > S))= ¬v'(R > S)= ¬v'(Q)

对偶定理

- 定理1.5: 设Q,R是由{0,1,¬,∨,∧}生成的公式,Q*与Q互为对偶式,R*与R互为对偶式。如果Q⇔R,则Q*⇔R*。
- 证明:
 - -任取真值赋值v,令v'是与v相反的真值赋值,因为Q⇔R,所以v'(Q)=v'(R),因此,v(Q*)=¬v'(Q)=¬v'(R)=v(R*)
 - 所以, $Q^* \Leftrightarrow R^*$ 。

用对偶定理证明等值式

- 例1.9: 证明等值式:
- (1) $(p \land q) \lor (\neg p \lor (\neg p \lor q)) \Leftrightarrow \neg p \lor q$
- (2) $(p \lor q) \land (\neg p \land (\neg p \land q)) \Leftrightarrow \neg p \land q$
- · 证明: 等值式(1)
 - $-(\mathbf{p} \wedge \mathbf{q}) \vee (\neg \mathbf{p} \vee (\neg \mathbf{p} \vee \mathbf{q}))$
 - $\Leftrightarrow (\mathbf{p} \land \mathbf{q}) \lor (\neg \mathbf{p} \lor \neg \mathbf{p} \lor \mathbf{q})$
 - $-\Leftrightarrow (p\land q)\lor \neg p\lor q$
 - $\Leftrightarrow \neg p \lor q$
- 证明: 等值式(2)
 - 对偶定理

内容

- 1.1. 命题和联结词
- · 1.2. 公式和真值赋值
- ・1.3. 等值演算
- ・1.4. 对偶定理
- · 1.5. 联结词的完全集
- ・1.6. 范式
- 1.7. 逻辑推论

- b→d ⇔ ¬b∧d
- $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p) = (\neg p \lor q) \land (p \lor \neg q)$
- $p \oplus q \Leftrightarrow (p \land \neg q) \lor (\neg p \land q)$
- · 结论:

¬, ∧, ∨, →, ↔, ⊕不是独立的逻辑的最少联结词是什么?

完全集

- 定义1.12: 设F是n元联结词, $p_1,p_2,...,p_n$ 是不同的命题变元。如果公式Q中不出现除 $p_1,p_2,...,p_n$ 之外的命题变元,并且 $Q \Leftrightarrow Fp_1,p_2,...,p_n$,则称Q定义F。
- 如果存在由联结词集合S生成的公式来定义F,则称F可由S定义。如:S= $\{\neg, \land, \lor\}$
 - $-\mathbf{p} \rightarrow \mathbf{q} \Leftrightarrow \neg \mathbf{p} \lor \mathbf{q}$
 - $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p) = (\neg p \lor q) \land (p \lor \neg q)$
 - $-\mathbf{p}\oplus\mathbf{q}\Leftrightarrow(\mathbf{p}\wedge\neg\mathbf{q})\vee(\neg\mathbf{p}\wedge\mathbf{q})$

· 定义1.13: 设S是联结词集合。如果每个 n(n>0)元的联结词都可由S定义,则称S为 完全集。

• 定理1.6: {¬,^,∨}是完全集。

• (p/0,q/1), (p/1,q/0)

 $\mathbf{F}_7 = (\neg \mathbf{p} \land \mathbf{q}) \lor (\mathbf{p} \land \neg \mathbf{q})$

• (p/0,q/1),(p/1,q/1)

 $\mathbf{F}_{11} = (\neg \mathbf{p} \land \mathbf{q}) \lor (\mathbf{p} \land \mathbf{q})$

• (p/0,q/1), (p/1,q/0), (p/1,q/1)

 $\mathbf{F}_{15} = (\neg \mathbf{p} \land \mathbf{q}) \lor (\mathbf{p} \land \neg \mathbf{q}) \lor (\mathbf{p} \land \mathbf{q})$

p	q	F ₁	F ₂	F ₃	F4	F ₅	F ₆	F ₇	F8	F9	F10	F ₁₁	F12	F ₁₃	F ₁₄	F ₁₅	F16
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- · 定理1.6: {¬,∧,∨}是完全集。
- 证明: $\mathfrak{P}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$ 是不同命题变 元,可以找出定义F的由 $\{\neg, \land, \lor\}$ 生成的公式Q。
- 若Fp₁p₂…p_n是永假式,取Q为p₁ △ ¬p₁。
- 若 $\mathbf{F}\mathbf{p}_1\mathbf{p}_2...\mathbf{p}_n$ 是可满足式,满足 $\mathbf{F}\mathbf{p}_1\mathbf{p}_2...\mathbf{p}_n=1$ 的真值赋值 为 $(p_1/a_1^1,...,p_n/a_n^1),.....(p_1/a_1^m,...,p_n/a_n^m)$,则取Q为

$$(\widetilde{p}_1^1 \wedge \ldots \wedge \widetilde{p}_n^1) \vee \ldots \vee (\widetilde{p}_1^m \wedge \ldots \wedge \widetilde{p}_n^m)$$

- 其中

- 任取真值赋值v, v(Q)=1
- 当且仅当有1 \leq i \leq m,使 $V(\widetilde{p}_1^i \wedge \cdots \wedge \widetilde{p}_n^i) = 1$
 - 当且仅当 $v(\widetilde{p}_1^i) \wedge \ldots \wedge v(\widetilde{p}_n^i) = 1$
 - 当且仅当 $V(\widetilde{p}_1^i) = \ldots = V(\widetilde{p}_n^i) = 1$
 - 当且仅当 $v = (p_1/a_1^i,...,p_n/a_n^i)$
- 所以Q \Leftrightarrow F $\mathbf{p_1p_2...p_n}$, $\{\neg,\wedge,\vee\}$ 是完全集。
- 证毕

· 定理1.7: 如果完全集S₁中的每个联结词 都可由联结词集合S。定义,则S。也是完全 集。

· 定义1.13:如果从完全集S中去掉任何 一个联结词就成为不完全的了,就称S 为极小完全集。

定理1.8:以下联结词集合是极小完全 集。

(1)
$$\{\neg, \land\}$$
, (2) $\{\neg, \lor\}$, (3) $\{\neg, \to\}$

{¬, ^}是极小完全集

- · 证明:
- ・第一步: 证明{¬,△}是完全集
- ・因为p∨q⇔¬(¬p∧¬q),所以∨可由{¬,∧}定义。
- ¬,∧,∨都可由{¬,∧}定义,并且{¬,∧,∨}是完全集, 所以{¬,∧}也是完全集。

{¬, ^}是极小完全集

- · 第二步: 证明{¬,△}是极小完全集。
- · (1) 证明{/}不是完全集。
 - 即一不能由 / 来定义
 - 对于公式「p,是否可以用只有p和^生成的公式Q来定义?
 - 公式Q的模式: p^p^...^p
 - Q可以定义¬p,要求:
 - ・对于任意真值赋值v, v(Q) = v(¬p)
 - 但是令真值赋值v=(p/1),则v(Q)=1,但v(¬p)=0, 所以Q不能定义¬

{¬, ^}是极小完全集

- ・(2)证明{¬}不是完全集。
 - 取一元联结词F使F(0)=F(1), F不能由¬来定义
 - 任取命题p,令真值赋值 v_1 =(p/1)和 v_2 =(p/0),
 - 任取由{¬}生成只出现命题变元p的公式Q,
 - 公式Q的模式: ¬¬…¬p
 - 则v₁(Q)≠v₂(Q),而v₁(Fp)=v₂(Fp),所以Q不能定义F。
 - F不能由{¬}定义。{¬}不是完全集。

{¬,∨}是极小完全集

- · 证明:
- 第一步: 证明{¬, ∨}是完全集
- 因为p ∧ q⇔¬(¬p ∨ ¬q), 所以∧可由{¬, ∨}定
 义。
- ¬,∧,∨都可由{¬,∨}定义,并且{¬,∧,∨}是完全 集,所以{¬,∨}也是完全集。

{¬,∨}是极小完全集

- · 第二步: 证明{¬,∨}是极小完全集。
- · (1)证明{--}不是完全集(见前述证明)
- · (2)证明{\\}不是完全集(和证明 \ 一样)
 - 即一不能由 / 来定义
 - 对于公式「p,是否可以用只有p和 > 生成的公式 Q来定义?
 - 公式Q的模式: pvpv...vp
 - Q可以定义¬p,要求:
 - ・ 对于任意真值赋值v, v(Q) = v(¬p)
 - 但是令真值赋值v=(p/1),则v(Q)=1,但v(¬p)=0, 所以Q不能定义¬

{¬,→}是极小完全集

•证明:

- · 第一步: 证明{¬, →}是完全集
 - 因为p△q=¬(¬p∨¬q)=¬(p→¬q),所以△可由{¬,→}定义。
 - -¬,△都可由{¬,→}定义,并且{¬,△}是完全 集,所以{¬,→}也是完全集。

{¬,→}是极小完全集

- 第二步:证明{¬,→}是极小完全集。
- (1)证明{¬}不是完全集(见前述证明)
- (2)证明{→}不是完全集
 - 即「不能由→来定义
 - 对于公式「p,是否可以用只有p和→生成的公式 Q来定义?
 - 公式Q的模式: p→p→…→p
 - Q可以定义¬p,要求:
 - → 对于任意真值赋值v, v(Q) = v(¬p)
 - 但是令真值赋值v=(p/1),则v(Q)=1,但v(¬p)=0, 所以Q不能定义¬

软件开发环境国家重点实验 itale Key Laborator of Software Development Foxfoor

{⊕, ↔}不是完全集

- 例1.10
- · 证明不是完全集: 找一个联结词,不能用⊕,↔定义
- · 我们看联结词 / 和两个命题变元p,q
- 对于真值赋值v1=(p/0,q/0), v2=(p/0,q/1), v3=(p/1,q/0), v4=(p/1,q/1), 可以归纳证明每个由{⊕, ↔}生成的、不出现p,q之外命题变元的公式A, v1(A), v2(A), v3(A), v4(A)中有偶数个1,而在p ∧ q的真值表是1个1、3个0

所以∧不能由{⊕, ↔}定义

内 容

- 1.1. 命题和联结词
- · 1.2. 公式和真值赋值
- ・1.3. 等值演算
- ・1.4. 对偶定理
- 1.5. 联结词的完全集
- ・1.6. 范式
- 1.7. 逻辑推论

范式

• 许多形式化不同的公式是等值的:

- $\neg (p \rightarrow q) \lor r \Leftrightarrow \neg (\neg p \lor q) \lor r \Leftrightarrow (p \land \neg q) \lor r$
- $\Leftrightarrow (p \lor r) \land (\neg q \lor r)$
- $\Leftrightarrow (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r)$

· 结论:

- 公式唯一性??
- 等值公式有唯一的表示?
- 判断公式等值的第三种方式—范式比较
 - 第1种: 真值表
 - 第2种: 等值演算

软件开发环境国家重点实验 state Key Laboratory of Software Development Environn

范式定义

- · 定义1.14:原子公式和原子公式的否定统称为文字。如果一个文字恰为另一个文字的否定,则称它们为相反文字。
 - 文字:p, 相反文字:¬p
- 定义1.15: 设n是正整数, Q₁,....,Q_n都是文字, 则称
 - $Q_1 \vee ... \vee Q_n$ 为简单析取式
 - $Q_1 \wedge ... \wedge Q_n$ 为简单合取式
 - -如($\mathbf{p} \lor \mathbf{q} \lor \mathbf{r}$), ($\mathbf{p} \land \neg \mathbf{q} \land \mathbf{r}$)

析取/合取范式

- · 定义1.16: 设n是正整数。
 - 若R₁,....,Rn都是简单合取式,则称R₁∨...∨Rn
 为析取范式。
 - 若R₁,....,Rn都是简单析取式,则称R₁ △... △Rn 为合取范式。
 - 简单合取式的析取是析取范式,
 - $-(p \land \neg q \land r) \lor (p \land \neg q \land r) \lor (\neg p \land \neg q \land r)$
 - 简单析取式的合取是合取范式,
 - $-(p\lor q\lor r)\land (p\lor \neg q\lor r)\land (p\lor \neg q\lor r)$

范式举例:例1.11

- $(p \lor q \rightarrow r) \rightarrow p$
- $\Leftrightarrow (\neg(p \lor q) \lor r) \to p$
- $\Leftrightarrow \neg(\neg(p\lor q)\lor r)\lor p$
- \Leftrightarrow $(p \lor q) \land \neg r \lor p$
- \Leftrightarrow (p \vee q \vee p) \wedge (\neg r \vee p)
- \Leftrightarrow (p \vee q) \wedge (\neg r \vee p)
- \Leftrightarrow $\mathbf{p} \land (\neg \mathbf{r} \lor \mathbf{p}) \lor \mathbf{q} \land (\neg \mathbf{r} \lor \mathbf{p})$
- \Leftrightarrow p \vee q $\wedge \neg$ r \vee q \wedge p
- \Leftrightarrow p \vee (q $\wedge \neg$ r)
- \Leftrightarrow p \land (r $\lor \neg$ r) \lor (q $\land \neg$ r)
- \Leftrightarrow $\mathbf{p} \wedge \mathbf{r} \vee \mathbf{p} \wedge \neg \mathbf{r} \vee (\mathbf{q} \wedge \neg \mathbf{r})$

合取范式

析取范式

不唯一

等值的析取范式和合取范式不唯一

极大项和极小项

· 定义1.17:设n是正整数, $p_1,.....,p_n$ 是不同的命题变元。若对于每个i, Q_i 是 p_i 或 p_i ,则称:

 $Q_1 \vee ... \vee Q_n$ 为关于 $p_1,...,p_n$ 的极大项, $Q_1 \wedge ... \wedge Q_n$ 为关于 $p_1,...,p_n$ 的极小项。

每个 Q_i 都有两种取值: p_i 或 $\neg p_i$,所以关于 $p_1,...,p_n$ 的极大项和极小项都有 2^n 个。

极大项和极小项

- · 极大项是一类特殊的简单析取式
- ・极小项是一类特殊的简单合取式

- · 极大项和极小项中,不允许出现相反的文字,也不允许一个文字出现多次
 - -p^¬q^p不是极小项
 - -p^¬q^¬q不是极小项

主析取范式和主合取范式

- · 定义1.18: 设m是自然数。
 - $若R_1,....,R_m$ 是关于 $p_1,....,p_n$ 的不同极小项,则称 $R_1 \lor ... \lor R_m$ 为关于 $p_1,....,p_n$ 的主析取范式。
 - $若R_1,...,R_m$ 是关于 $p_1,...,p_n$ 的不同极大项,则称 $R_1 \land ... \land R_m$ 为关于 $p_1,...,p_n$ 的主合取范式。

- 主析取范式和主合取范式统称为主范式。

公式的主析取/主合取范式

- 定义1.19:设公式Q中出现的命题变元为p₁,p₂,...,p_n,
- · R是关于 $p_1, p_2, ..., p_n$ 的主析取范式(主合取范式),并且 $Q \Leftrightarrow R$,
- · 则称R为Q的主析取范式(主合取范 式)。

公式的主析取/主合取范式

· 按照某种顺序排列命题变元,以及极小项和极大项,则每个公式有唯一的主析取范式和主合取范式

- · 公式A的主析取范式,包含所有使A为真的真值赋 值所对应的极小项
- · 公式A的主合取范式,包含所有使A为假的真值赋 值所对应的极大项

• $\mathbf{F}_7 = (\mathbf{p} \vee \mathbf{q}) \wedge (\neg \mathbf{p} \vee \neg \mathbf{q})$

$$\mathbf{F}_7 = (\neg \mathbf{p} \land \mathbf{q}) \lor (\mathbf{p} \land \neg \mathbf{q})$$

• $\mathbf{F}_{11} = (\mathbf{p} \vee \mathbf{q}) \wedge (\neg \mathbf{p} \wedge \mathbf{q})$

$$\mathbf{F}_{11} = (\neg p \land q) \lor (p \land q)$$

• $\mathbf{F}_{15} = (\neg \mathbf{p} \lor \neg \mathbf{q})$

$$F_{15} = (\neg p \land q) \lor (p \land \neg q) \lor (p \land q)$$

p	q	F ₁	F ₂	F ₃	F4	F ₅	F ₆	F ₇	F8	F9	F10	F 11	F12	F ₁₃	F ₁₄	F15	F16
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

主范式变换步骤

- · 联接词等值变换
- (1) 消去联接词→、→、⊕将公式由 ∧、 ∨、¬表示
 - $\blacksquare Q \rightarrow R \Leftrightarrow \neg Q \lor R$
 - $\blacksquare Q \leftrightarrow R \Leftrightarrow (Q \to R) \land (R \to Q)$
 - $Q \oplus R \Leftrightarrow (\neg Q \land R) \lor (Q \land \neg R)$
- ・徳.摩根律
- · (2)应用德.摩根律¬内移或消去约束公式的¬变换为约束 变元
 - $-\neg (Q \lor R) \Leftrightarrow \neg Q \land \neg R \quad \neg (Q \land R) \Leftrightarrow \neg Q \lor \neg R$

主范式变换步骤

・分配律

- (3)应用分配律求取合取范式或析取范式
- $\mathsf{Q} \vee (\mathsf{R} \wedge \mathsf{S}) \Leftrightarrow (\mathsf{Q} \vee \mathsf{R}) \wedge (\mathsf{Q} \vee \mathsf{S})$
- $\, \mathsf{Q} \wedge (\mathsf{R} \vee \mathsf{S}) \Leftrightarrow (\mathsf{Q} \wedge \mathsf{R}) \vee (\mathsf{Q} \wedge \mathsf{S})$
- · 矛盾律与排中律
 - (4)应用矛盾律与排中律求主合取范式或主析 取范式
 - $-Q \land \neg Q \Leftrightarrow 0 \quad Q \lor \neg Q \Leftrightarrow 1$

・交換律

- (5) 应用交换律变元位置排序
- $\mathbf{Q} \vee \mathbf{R} \Leftrightarrow \mathbf{R} \vee \mathbf{Q} \quad \mathbf{Q} \wedge \mathbf{R} \Leftrightarrow \mathbf{R} \wedge \mathbf{Q}$

求公式的主合取范式

- 例1.12: $A = (\neg p \rightarrow r) \land (q \leftrightarrow p)$ 的主合取范式
- $\Leftrightarrow (\neg p \rightarrow r) \land (q \rightarrow p) \land (p \rightarrow q)$
- \Leftrightarrow (p \lor r) \land (\neg q \lor p) \land (\neg p \lor q) 合取式,非主合取式
- ◆(p∨r∨q∧¬q)∧(¬q∨p∨r∧¬r)∧(¬p∨q∨r∧¬r)
 缺某个变元x,用(x∧¬x)补上
- \Leftrightarrow $(p \lor r \lor q) \land (p \lor r \lor \neg q) \land (\neg q \lor p \lor r)$ $\land (\neg q \lor p \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r)$
- \Leftrightarrow (p \lor q \lor r) \land (p \lor ¬q \lor r) \land (p \lor ¬q \lor r) 去掉1 \uparrow \land (p \lor ¬q \lor ¬r) \land (¬p \lor q \lor r) \land (¬p \lor q \lor ¬r)
- \Leftrightarrow $(p \lor q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r)$

由主合取式求主析取式

- $A \Leftrightarrow (p \lor q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r)$
- · 出现5个极大项,使A为假的真值赋值是这5个极大项所对 应的真值赋值
- 那么使¬A为假,即A为真的真值赋值是其余3个极大项所 对应的真值赋值,因此¬A的主合取范式是其余3个极大项 的合取
- $\neg A \Leftrightarrow (p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor \neg r)$
- $A \Leftrightarrow \neg (p \lor q \lor \neg r) \lor \neg (\neg p \lor \neg q \lor r) \lor \neg (\neg p \lor \neg q \lor \neg r)$
- \Leftrightarrow $(\neg p \land \neg q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land r)$

求公式的主析取范式

- $(p \rightarrow q) \land \neg (\neg p \lor \neg q) \rightarrow p \land q$
- $\Leftrightarrow (\neg p \lor q) \land \neg (\neg p \lor \neg q) \rightarrow p \land q$
- $\Leftrightarrow \neg((\neg p \lor q) \land \neg(\neg p \lor \neg q)) \lor p \land q$
- $\Leftrightarrow \neg(\neg p \lor q) \lor (\neg p \lor \neg q) \lor p \land q$
- \Leftrightarrow $(p \land \neg q) \lor \neg p \lor \neg q \lor (p \land q)$
- \Leftrightarrow $(p \land \neg q) \lor \neg p \land (q \lor \neg q) \lor \neg q \lor (p \land q)$
- \Leftrightarrow $(p \land \neg q) \lor \neg p \land q \lor \neg p \land \neg q \lor \neg q \lor (p \land q)$
- \Leftrightarrow $(p \land \neg q) \lor \neg p \land q \lor \neg p \land \neg q \lor (p \lor \neg p) \land \neg q \lor (p \land q)$
- \Leftrightarrow $(p \land \neg q) \lor \neg p \land q \lor \neg p \land \neg q \lor p \land \neg q \lor \neg q \lor \neg p \land \neg q \lor \neg$
- $\Leftrightarrow p \land q \lor p \land \neg q \lor \neg p \land q \lor \neg p \land \neg q$

・定理:

- -任何公式等值于某一析取范式
- -任何公式等值于某一合取范式
- -每一公式有唯一的主析取范式
- -每一公式有唯一的主合取范式

· 定理1.9:设在公式Q中出现n个命题变元,以下条件是等价的。

- -(1)Q是永真式。
- -(2)Q的主析取范式中包含了所有的极小项,即它是2ⁿ个极小项的析取。
- -(3)Q的主合取范式中不包含任何极大项, 即它是0个极大项的合取,也就是1。

· 定理1.10:设在公式Q中出现n个命题变元,则以下条件是等价的。

- -(1)Q是永假式。
- -(2)Q的主合取范式中包含了所有的极大项,即它是2ⁿ个极大项的合取。
- -(3)Q的主析取范式中不包含任何极小项,即它是0个极小项的析取,也就是0。

内容

- 1.1. 命题和联结词
- · 1.2. 公式和真值赋值
- ・1.3. 等值演算
- ・1.4. 对偶定理
- 1.5. 联结词的完备性
- ・1.6. 范式
- 1.7. 逻辑推论

逻辑推论一从三段论看

- · 公式取值, v(Q) =?
 - 任意赋值函数为真
 - 任意赋值函数为假
 - 有的赋值函数为真,有的赋值函数为假
- · 可满足的公式之间的关系?
 - 当v(Q→R)=1, v(Q)=1, v(R)=??

Q	R	Q	Q→R	R
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

逻辑推论一从传递律看

• 当 $v(Q\rightarrow R)=1, v(R\rightarrow S)=1, v(Q\rightarrow S)=??$

	Q	R	S	$\mathbf{Q} \rightarrow \mathbf{R}$	$R \rightarrow S$	$Q \rightarrow S$
	0	0	0	1	1	1
ıt.	0	0	1	1	1	1
lopment Environment	0	1	0	1	0	1
Developmen	0	1	1	1	1	1
of Software	1	0	0	0	1	0
State Key Laboratory	1	0	1	0	1	1
State Ke	1	1	0	1	0	0
	_ 1	1	1	1	1	1

重要定律与定理

充分理由律(三段论): Q,Q→R⊨R

・ 传递律: P→Q,Q→R⊨P→R

反证律:如果Γ,¬Q⊨R, Γ,¬Q⊨¬R, 则Γ⊨Q

· 归谬律:如果Γ,Q⊨R, Γ,Q⊨¬R, 则Γ⊨¬Q

• 排中律: ⊨(Q∨¬Q)

矛盾律: ⊨¬(Q∧¬Q)

逻辑推论

- $\Gamma = \{Q_1, ..., Q_n\}$
- 定义1.20:若真值赋值ν满足公式集合Γ中的每个公式,则称ν满足Γ。若有真值赋值满足Γ,则称Γ是可满足的,否则称Γ是不可满足的。
 - $v(Q_1) = 1,, v(Q_n) = 1$
- · 定义1.21:设厅是公式的集合,Q是公式。如果每个满足 Γ 的真值赋值都满足Q,则称Q是 Γ 的逻辑推论,记为 $\Gamma \models Q$ 。若 $\Gamma \models Q$ 不成立,记为 $\Gamma \not\models Q$ 。将 $\emptyset \models Q$ 记为 $\models Q$
 - 如果v(Γ) = 1, 则v(Q) = 1
 - 只要前提真,结论就一定真
 - 真值表的含义
 - 若Γ={Q₁,...,Q_n},则将Γ简记为Q₁,...,Q_n⊨Q。

推理形式

- 每一推理形式都相当于一个真值形式。
 - 正确的推理形式相当于一个重言式。
 - 一错误的推理形式虽然也有一个相当的真值形式,但不 是重言式。
 - 判别一推理形式是否正确,就是要判别其相当的蕴涵 式是不是一个重言式。

正确推理形式

$$-((p\rightarrow q)\land p)\rightarrow q$$

错误推理形式

$$-((p\rightarrow q)\land \neg p)\rightarrow \neg q$$

三段论证明

- 例题1.14: 证明Q, Q→R⊨R
- 证明:
 - 若真值赋值v,使 $\mathbf{v}(\mathbf{Q})=1$, $\mathbf{v}(\mathbf{Q}\rightarrow\mathbf{R})=1$, $v(Q) \rightarrow v(R) = 1$, 则v(R) = 1。
 - 所以Q, Q→R ⊨ R

传递律证明

- 例题1.15: 证明Q \rightarrow R, R \rightarrow S \models Q \rightarrow S
- 证明:
 - 设真值赋值v,使v(Q→R)=v(R →S)=1
 - 若v(Q)=0,则 $v(Q\rightarrow S)=1$
 - 若v(Q)=1, $v(Q)\rightarrow v(R)=1$, 则v(R)=1 $v(R)\rightarrow v(S)=1$, 所以v(S)=1, 因此, $v(Q)\rightarrow v(S)=1$
 - 因此, $Q\rightarrow R$, $R\rightarrow S$ ⊨ $Q\rightarrow S$

- 例题1.16: Q→R, S→W, Q∨S ⊨ R∨W
- 证明:
 - 设真值赋值v使v(Q→R)=v(S→W)=v(Q√S)=1, 则v(Q)=1或v(S)=1。
 - · 若v(Q)=1,则由v(Q→R)=1得出v(R)=1。
 - · 若v(S)=1,则由v(S→W)=1得出v(W)=1。
 - -无论哪种情况皆有 $v(R \lor W)=1$ 。

- 例题1.17: p→q ⊭ p→q⊕r
- · 证明:
 - 需要找出一个真值赋值v使v(p→q)=1,但 是v(p→q⊕r)=0
 - -取v使得v(p)=v(q)=1,则v(q⊕r)=0,则 v(p→q⊕r)=0。

- · 定理1.11: 设Q是公式,则 ⊨ Q当且仅当Q 是永真式。
- ・证明
 - -充分性:设 ⊨ Q,任取真值赋值v,因为 v(Q)=1。因此,Q是永真式。
 - -必要性:设Q是永真式,显然 ⊨ Q。

证毕

· 定理1.12: 设Q₁,...,Qn, R是公式, Q1,...,Qn ⊨ R, 当且仅当Q1 ∧.... Qn→R是永真式。

・证明

- 充分性: 设 $Q_1,...,Q_n$ ⊨ R。 任取真值赋值V。
- 如果 $v(Q_1 \land ... \land Q_n)=1$,则 $v(Q_1)=....=v(Q_n)=1$,则v(R)=1,则: $v(Q_1 \land ... \land Q_n) \rightarrow v(R)=v(Q_1 \land ... \land Q_n \rightarrow R)=1$ 。因此 $v(Q_1 \land ... \land Q_n) \rightarrow R$ 是永真式。
- 必要性: 设 $Q_1 \land ... \land Q_n \rightarrow R$ 是永真式,任取真值赋值v,若v(Q_1)=.....=v(Q_n)=1,则v($Q_1 \land ... \land Q_n$)=1,故v(Q_1)=1。因此 Q_1 ,..., $Q_n ⊨ R$

- 定理1.13: 设Q, R是公式。
 Q⇔R当且仅当 Q ⊨ R且R ⊨ Q。
- ・证明
 - $-\mathbb{Q} \Leftrightarrow \mathbb{R}$
 - 当且仅当 Q↔R是永真式
 - 当且仅当 Q→R和R→Q都是永真式
 - -当且仅当 Q ⊨ R且R ⊨ Q
- ・证毕

· 定理1.14: 设Γ是公式的集合, Q和R是公式, 则

 $\Gamma \cup \{Q\} \models R$ 当且仅当 $\Gamma \models Q \rightarrow R$ 。

・证明

- 若 Γ ∪{Q} \models R,则任意真值赋值v使 Γ 中公式皆真且 v(Q)=1,则有v(R)=1。所以v(Q→R)=1,所以 Γ \models Q→R。
- 若 Γ ⊨ Q→R,则任意真值赋值v使 Γ 中公式皆真,则有 v(Q→R)=1。
- 又若v(Q)=1,则v(R)=1。所以Γ ∪{Q} ⊨ R。

・证毕

- ・定理1.15:设n是正整数。公式集 $\{Q_1,\ldots,Q_n\}$ 是可满足的当且仅当 $Q_1 \land \ldots \land Q_n$ 是可满足式。
- 证明:
 - 公式集 $\{Q_1, \dots, Q_n\}$ 是可满足,当且仅当存在真值赋值v,v $\{Q_1 \land \dots \land Q_n\}$ = 1 = $\sigma(Q_1) \land \dots \land \sigma(Q_n)$
 - 当且仅当v(Q₁)=...= σ(Q_n)=1
 - 当且仅当v(Q₁/、....,Qn)=1

- · 定理1.16: 设 Γ 是公式的集合, Γ 是不可满足的,当且仅当每个公式都是 Γ 的逻辑推论。
- 证明:
 - 充分性:公式集Γ是不可满足,A为任意公式,则显然每个满足Γ的真值赋值v使的v(A)=1,因为满足Γ的真值赋值根本不存在

- 必要性:每个公式都是 Γ 的逻辑推论,则 Γ = 0,若有真值赋值v满足 Γ ,则v(0)=1,这是不可能的。所以,没有真值赋值v满足 Γ

本 节 完! 问题与解答?

