Clase nº8

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

8 de Septiembre 2021

Objetivo de la clase

- Integrar una función racional por medio de fracciones simples o parciales.
- ▶ Integrar funciones racionales en seno y coseno.

clase pasada

Ejemplo 36

$$\int \frac{3x-2}{x^2+x+1} \, dx =$$

Clase pasada

Ejemplo 36		

Clase pasada

Ejemplo 36		

Ejemplo 37

$$\int \frac{x+1}{3x^2+6x+9} \, dx =$$

Ejemplo 37		

Ejemplo 37		

Integración de funciones racionales en seno y coseno

Si R(u,v) denota una función racional de las variables u y v. Una función de tipo $R(\sin x,\cos x)$ se integra usando la substitución $t=\tan\left(\frac{x}{2}\right)$. Utilizando las identidades trigonométricas tenemos que:

- a) $\cos x = \frac{1-t^2}{1+t^2}$
- b) $\sin x = \frac{2t}{1+t^2}$
- c) $t = tan(\frac{x}{2})$ es equivalente a $x = 2 \arctan t$. Por lo tanto,

$$dx = \frac{2}{1+t^2}dt.$$

Integración de funciones racionales en seno y coseno

Utilizando a), b) y c) podemos ver que la integral de una función racional en $\sin x, \cos x$ se puede transformar en una integral de una función racional en la variable t. Es decir, tendremos algo de la forma

$$I = \int R(\sin x, \cos x) \, dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2}{1+t^2} \, dx.$$

La que puede ser integrada por los métodos estudiados.

Ejemplo 38 $\int \frac{1}{2\cos x - 3\sin x} dx$

Ejemplo 38		

Ejemplo 39

$$\int \frac{1}{\sin x + 1} \, dx$$

Ejemplo 39		

Ejercicio propuesto

Calcular con el método anterior:

a)
$$\int \sec x \, dx$$

b)
$$\int \csc x \, dx$$

Ejercicios: calcular y comprobar

1.
$$\int \frac{4}{(x-5)^2} dx = \frac{-4}{x-5} + C \text{ (utilizar sumas parciales)}$$

2.
$$\int \frac{2x+43}{x^2+x-12} dx = -5 \ln|x+4| + 7 \ln|x-3| + C.$$

3.
$$\int \frac{4x-5}{x^2+4x+20} dx = 2\ln(x^2-4x+20) + \frac{3}{4}\arctan\left(\frac{x}{4} - \frac{1}{2}\right) + C.$$

4.
$$\int \frac{1}{x^3 - 1} dx =$$

$$\frac{1}{1} dx =$$

$$\frac{1}{1} dx =$$

$$\frac{1}{3}\ln|x-1| - \frac{1}{6}\ln|x^2 + x + 1| - \frac{1}{\sqrt{3}}\arctan\left(\frac{2x+1}{\sqrt{3}}\right) + C, \ x \neq 1$$

$$\int \frac{1}{3}\ln|x-1| - \frac{1}{6}\ln|x^2 + x + 1| - \frac{1}{\sqrt{3}}\arctan\left(\frac{2x+1}{\sqrt{3}}\right) + C$$

5.
$$\int \frac{1}{\sin x - \cos x + 1} dx = \ln \left| \frac{\tan \left(\frac{x}{2} \right)}{\tan \left(\frac{x}{2} \right) + 1} \right| + C$$

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
Jewart, James	trascendentes tempranas	Learning	2021	
2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
2	Juan de	de una variable	Hill	1994
2	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
3	Ziii Deliilis G.	con Aplicaciones	THOMSON	2001
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.