

FCC PART 15.247 TEST REPORT

For

Autel Robotics Co., Ltd.

9th Floor, Bldg.B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan, Shenzhen, China

FCC ID: 2AGNTEF7RC2409A

Report Type: Product Type:

Original Report EVO series

Report Number: RSZ180104002-00B

Report Date: 2018-02-26

Candy Li

Reviewed By: RF Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone,

Candy, Li

Shenzhen, Guangdong, China Tel: +86-755-33320018

Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP* or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	4
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	12
BLOCK DIAGRAM OF TEST SETUP	13
SUMMARY OF TEST RESULTS	14
TEST EQUIPMENT LIST	15
FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE	16
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	17
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
Test Data	19
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	22
EUT SETUP	22
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
Applicable Standard	
TEST PROCEDURE	
Test Data	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	63
APPLICABLE STANDARD	

TEST PROCEDURE	
Test Data	63
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	66
APPLICABLE STANDARD	66
TEST PROCEDURE	66
Test Data	66
FCC §15.247(e) - POWER SPECTRAL DENSITY	79
APPLICABLE STANDARD	79
Test Procedure	
Test Data	79

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Autel Robotics Co., Ltd.*'s product, model number: EF7(FCC ID: 2AGNTEF7RC2409A) or the "EUT" in this report was a *EVO series*, which was measured approximately: 190 mm (L) \times 181 mm (W) \times 60 mm (H), rated with input voltage: DC 3.6 V powered by battery.

Report No.: RSZ180104002-00B

*All measurement and test data in this report was gathered from production sample serial number: 1702939 (Assigned by BACL, shenzhen). The EUT supplied by the applicant was received on 2018-01-04.

Objective

This report is prepared on behalf of *Autel Robotics Co., Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

Submissions with the plane unit of a system with FCC ID: 2AGNTEVORC582409A.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		uncertainty	
Occupied Channel Bandwidth		±5%	
RF output pov	ver, conducted	±1.5dB	
Unwanted Emission, conducted		±1.5dB	
Emissions,	Below 1GHz	±4.70dB	
radiated	Above 1GHz	±4.80dB	
Temperature		±1°C	
Supply voltages		±0.4%	

FCC Part 15.247 Page 4 of 99

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

Report No.: RSZ180104002-00B

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 382179, the FCC Designation No.: CN5001.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15.247 Page 5 of 99

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 2.4GHz: 1.4MHz mode, 72 channels are provided to testing

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2403.5	36	2439.5
2	2404.5		
3	2405.5	•••••	
•••••			2474.5
35	2438.5	72	2475.5

Report No.: RSZ180104002-00B

CH1, CH36, CH72 was tested.

For 2.4GHz: 10MHz mode, 65 channels are provided to testing

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2407.5	33	2439.5
2	2408.5	•••••	
3	3 2409.5		•••••
••••	•••••	•••••	
•••••	•••••	•••••	•••••
	•••••	64	2470.5
32	2438.5	65	2471.5

CH1, CH33, CH65 was tested.

For 2.4GHz: 20MHz mode, 51 channels are provided to testing

Channel	Channel Frequency (MHz) Channel		Frequency (MHz)	
1	2412.5	26	2437.5	
2	2413.5			
3	2414.5			
	•••••			
	•••••			
•••••	•••••	50	2461.5	
25	2436.5	51	2462.5	

CH1, CH26, CH51 was tested.

FCC Part 15.247 Page 6 of 99

Channel	Channel Frequency (MHz)		Frequency (MHz)	
1	906	11	916	
2	907	12	917	
3	908	13	918	
4	909	14	919	
5	910	15	920	
6	911	16	921	
7	912	17	922	
8	913	18	923	
9	914	19	924	
10	915	/	/	

CH1, CH11, CH19 was tested.

For 900MHz: 10MHz mode, 13 channels are provided to testing

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	909	8	916
2	910	9	917
3	911	10	918
4	912	11	919
5	913	12	920
6	914	13	921
7	915	/	/

CH1, CH8, CH13 was tested.

For 900MHz: 20MHz mode, 3 channels are provided to testing

Channel	el Frequency (MHz) Channe		Frequency (MHz)
1	914	3	916
2	915	/	/

CH1, CH2, CH3 was tested.

FCC Part 15.247 Page 7 of 99

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"secureCRT" software was used during test.

For 2.4GHz band:

Antenna 03 or Antenna 04: MISO mode

Itam	Data	Power level				Power level		
Item	rate	Low channel Middle channel High channel						
1.4M Mode	0.3 Mbps	16	16	16				
10M Mode	10 Mbps	16	15	16				
20M Mode	20 Mbps	16	16	15				

Report No.: RSZ180104002-00B

For 900MHz band:

Antenna 01 or Antenna 02: MISO mode

Itam	Data	Power level				Power level		
Item	rate	Low channel	Middle channel	High channel				
1.4M Mode	0.3 Mbps	17	17	17				
10M Mode	10 Mbps	17	17	17				
20M Mode	20 Mbps	17	17	17				

Duty cycle

For 900MHz Antenna 01 & 02:

Item	Duty Cycle (%)	T(ms)	1/T(kHz)	VBW Setting	10log(1/x)
1.4M Mode	84.18	4.263	0.23	1kHz	0.75
10M Mode	80.81	4.047	0.25	1kHz	0.93
20M Mode	82.82	4.247	0.24	1kHz	0.82

FCC Part 15.247 Page 8 of 99

1.4M Mode

Date: 16.JAN.2018 16:22:36

10M Mode

Date: 16.JAN.2018 15:31:45

FCC Part 15.247 Page 9 of 99

20M Mode

Report No.: RSZ180104002-00B

Date: 16.JAN.2018 16:51:47

For 2.4GHz Antenna 03 & 04:

Item	Duty Cycle (%)	T(ms)	1/T(kHz)	VBW Setting	10log(1/x)
1.4M Mode	80.25	4.038	0.25	1kHz	0.96
10M Mode	80.39	4.071	0.25	1kHz	0.95
20M Mode	80.58	4.071	0.25	1kHz	0.94

FCC Part 15.247 Page 10 of 99

1.4M Mode

Date: 2.FEB.2018 19:12:11

10M Mode

Date: 16.JAN.2018 13:44:32

FCC Part 15.247 Page 11 of 99

20M Mode

Report No.: RSZ180104002-00B

Date: 16.JAN.2018 14:14:02

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Autel	Battery for Plane	/	/
Autel	Adapter	/	/
/	Load Terminal	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-Shielding Detachable AC Cable	0.8	Adapter	Socket
Un-Shielding Un-detachable DC Cable With Ferrite Core	0.5	Adapter	Battery
Un-Shielding Detachable USB Cable	0.8	Adapter	EUT
Un-Shielding Un-detachable AC Cable	1.5	Socket	LISN

FCC Part 15.247 Page 12 of 99

Block Diagram of Test Setup

For Conducted Emissions:

FCC Part 15.247 Page 13 of 99

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i) & §1.1307 (b) (1) & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RSZ180104002-00B

FCC Part 15.247 Page 14 of 99

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Condu	cted Emissions	Test		
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2017-08-04	2018-08-04
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2017-12-07	2018-12-07
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2017-11-19	2018-05-21
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR
N/A	Conducted Emission Cable	N/A	UF A210B-1- 0720-504504	2017-11-12	2018-05-12
	Radia	ated Emission T	est		
A.H.System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2017-04-24	2018-04-24
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2017-05-21	2018-05-21
НР	Amplifier	HP8447E	1937A01046	2017-11-19	2018-05-21
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2017-12-17	2020-12-16
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2017-12-07	2018-12-07
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	104PEA	218124002	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	RG-214	1	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	RG-214	2	2017-11-19	2018-05-21
Ducommun Technologies	Horn Antenna	ARH-4223- 02	1007726-04	2017-12-29	2020-12-28
Ducommun Technologies	Pre-amplifier	ALN- 22093530-01	991373-01	2017-08-03	2018-08-03
Sinoscite	Band Reject Filter	BSF2402- 2480MN- 0898-001	N/A	2017-05-21	2018-05-21
	RF	Conducted Tes	t		
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200120	2017-12-05	2018-12-05
Ducommun technologies	RF Cable	RG-214	3	2017-11-22	2018-05-22
WEINSCHEL	10dB Attenuator	5324	AU 3842	2017-11-22	2018-05-22
WEINSCHEL	3dB Attenuator	N/A	N/A	2017-11-23	2018-05-22

Report No.: RSZ180104002-00B

FCC Part 15.247 Page 15 of 99

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RSZ180104002-00B

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

Please refer to SAR test report: RSZ180104002-20.

FCC Part 15.247 Page 16 of 99

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ180104002-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has two external antennas arrangement for 2.4GHz, which is permanently attached and the antenna gain is 2.0dBi, fulfill the requirement of this section. And EUT has two internal antennas arrangement for 900MHz, which is permanently attached and the antenna gain is -3.0dBi. Please refer to the EUT photos.

For the four antennas, one pair for 900MHz RF signal and the other pair for 2.4GHz RF signal. The two pairs of antennas do not work at the same time. And antennas use MISO mode in a pair of antennas, one antenna is used for transmitting signals and two antennas are used for receiving signals.

Result: Compliance.

FCC Part 15.247 Page 17 of 99

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Report No.: RSZ180104002-00B

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 18 of 99

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Report No.: RSZ180104002-00B

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zeng on 2018-01-30.

EUT operation mode: Transmitting (worst case for 2.4GHz, 1.4M mode, Low channel)

FCC Part 15.247 Page 19 of 99

AC 120 V/60 Hz, Line:

EMI Auto Test L

Report No.: RSZ180104002-00B

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.302500	41.4	19.9	60.2	18.8	QP
0.348750	40.4	19.9	59.0	18.6	QP
0.853250	35.3	19.7	56.0	20.7	QP
0.971210	37.7	19.8	56.0	18.3	QP
1.125350	42.4	19.8	56.0	13.6	QP
1.180330	40.9	19.8	56.0	15.1	QP
0.302500	34.7	19.9	50.2	15.5	Ave.
0.348750	32.8	19.9	49.0	16.2	Ave.
0.853250	29.1	19.7	46.0	16.9	Ave.
0.971210	31.6	19.8	46.0	14.4	Ave.
1.125350	35.2	19.8	46.0	10.8	Ave.
1.180330	33.8	19.8	46.0	12.2	Ave.

FCC Part 15.247 Page 20 of 99

AC 120V/60 Hz, Neutral:

EMI Auto Test N

Report No.: RSZ180104002-00B

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.348750	40.3	20.0	59.0	18.7	QP
0.352690	39.5	20.0	58.9	19.4	QP
0.837490	34.9	19.8	56.0	21.1	QP
0.975570	36.3	19.9	56.0	19.7	QP
1.042190	41.6	19.9	56.0	14.4	QP
1.128930	42.0	19.9	56.0	14.0	QP
0.348750	33.3	20.0	49.0	15.7	Ave.
0.352690	33.5	20.0	48.9	15.4	Ave.
0.837490	28.3	19.8	46.0	17.7	Ave.
0.975570	30.4	19.9	46.0	15.6	Ave.
1.042190	36.3	19.9	46.0	9.7	Ave.
1.128930	35.3	19.9	46.0	10.7	Ave.

Correction Factor = LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
 Corrected Amplitude = Reading + Correction Factor
 Margin = Limit - Corrected Amplitude

FCC Part 15.247 Page 21 of 99

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Report No.: RSZ180104002-00B

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 22 of 99

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RSZ180104002-00B

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
	1MHz	10 Hz Note 1	/	Ave.
	1MHz	>1/T Note 2	/	Ave.

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.247 Page 23 of 99

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

Report No.: RSZ180104002-00B

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zeng on 2018-01-18 and 2018-02-02.

EUT operation mode: Transmitting (Pre-scan with each antenna for 900MHz and 2.4GHz, worst case as below)

FCC Part 15.247 Page 24 of 99

For 900MHz:

30 MHz~1 GHz: (worst case for 1.4M Mode, High channel)

Full Spectrum

Report No.: RSZ180104002-00B

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
32.954250	20.06	108.0	V	107.0	-3.4	40.00	19.94
143.366750	23.05	101.0	V	280.0	-6.4	43.50	20.45
148.978500	22.60	142.0	V	267.0	-6.6	43.50	20.9
698.612125	27.16	121.0	V	324.0	4.6	46.00	18.84
834.654250	32.10	105.0	V	141.0	9.7	46.00	13.90
853.517750	33.19	107.0	V	114.0	10.9	46.00	12.81

FCC Part 15.247 Page 25 of 99

1 GHz-10 GHz:

Frequency	Receiver		Turntable	Rx An	itenna		Corrected		C Part /205/209		
(MHz)	Reading (dBµV)	PK/QP/Ave.	-	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)		
	Low Channel (906 MHz) 1.4M Mode										
906	95.89	QP	125	1.2	Н	9.4	105.29	/	/		
906	94.82	QP	163	1.0	V	9.4	104.22	/	/		
901.52	32.31	QP	163	1.0	Н	9.6	41.91	85.29	43.38		
901.52	32.72	QP	360	1.0	V	9.6	42.32	84.22	41.90		
1812	76.02	PK	263	1.4	Н	-4.87	71.15	74	2.85		
1812	56.74	Ave.	263	1.4	Н	-4.87	51.87	54	2.13		
1812	76.24	PK	191	1.4	V	-4.87	71.37	74	2.63		
1812	57.02	Ave.	191	1.4	V	-4.87	52.15	54	1.85		
2718	49.54	PK	197	1.6	Н	-0.01	49.53	74	24.47		
2718	31.65	Ave.	197	1.6	Н	-0.01	31.64	54	22.36		
2718	52.16	PK	266	1.3	V	-0.01	52.15	74	21.85		
2718	34.21	Ave.	266	1.3	V	-0.01	34.20	54	19.80		
		Mic	ddle Channe	el (916 N	МHz) 1.	4M Mode					
916	95.34	QP	312	1.0	Н	9.1	104.44	/	/		
916	95.20	QP	312	1.2	V	9.1	104.30	/	/		
1832	75.69	PK	291	2.3	Н	-4.87	70.82	74	3.18		
1832	56.12	Ave.	291	2.3	Н	-4.87	51.25	54	2.75		
1832	76.12	PK	178	1.7	V	-4.87	71.25	74	2.75		
1832	56.64	Ave.	178	1.7	V	-4.87	51.77	54	2.23		
1832	75.69	PK	291	2.3	Н	-4.87	70.82	74	3.18		
		Hi	gh Channel	(924 M	(Hz) 1.4	M Mode					
924	94.69	QP	125	1.0	Н	8.9	103.59	/	/		
924	93.53	QP	196	1.0	V	8.9	102.43	/	/		
928.46	32.71	QP	360	1.1	Н	9.6	42.31	83.59	41.28		
928.46	33.32	QP	10	1.3	V	9.6	42.92	82.43	39.51		
1848	75.84	PK	158	1.6	Н	-4.87	70.97	74	3.03		
1848	56.71	Ave.	158	1.6	Н	-4.87	51.84	54	2.16		
1848	75.63	PK	65	1.8	V	-4.87	70.76	74	3.24		
1848	56.38	Ave.	65	1.8	V	-4.87	51.51	54	2.49		
		L	ow Channel	l (909 M	(Hz) 10	M Mode					
909	89.84	QP	0	1.1	Н	9.4	99.24	/	/		
909	88.84	QP	136	1.1	V	9.4	98.24	/	/		
901.65	54.07	QP	180	1.2	Н	9.6	63.67	79.24	15.57		
901.65	54.56	QP	360	1.0	V	9.6	64.16	78.24	14.08		
1818	74.32	PK	13	2.3	H	-4.87	69.45	74	4.55		
1818	53.24		13	2.3	Н	-4.87	48.37	54	5.63		
		Ave.	-								
1818	74.84	PK	214	2.4	V	-4.87	69.97	74	4.03		
1818	53.45	Ave.	214	2.4	V	-4.87	48.58	54	5.42		

Report No.: RSZ180104002-00B

FCC Part 15.247 Page 26 of 99

Reading (dBµV)		Turntable	Rx Antenna			Corrected	FCC Part 15.247/205/209		
uDμ v j	PK/QP/Ave.		Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)	
Middle Channel (916 MHz) 10M Mode									
89.43	QP	360	1.1	Н	9.1	99.72	/	/	
88.79	QP	360	1.2	V	9.1	99.49	/	/	
75.34	PK	337	1.8	Н	-4.87	70.47	74	3.53	
52.11	Ave.	337	1.8	Н	-4.87	47.24	54	6.76	
75.6	PK	318	2.4	V	-4.87	70.73	74	3.27	
53.04	Ave.	318	2.4	V	-4.87	48.17	54	5.83	
Į.	Hi	igh Channel	l (921 M	(Hz) 10	M Mode		l.		
89.32	QP	235	1.2	Н	8.9	98.22	/	/	
89.38	QP	1	1.6	V	8.9	98.28	/	/	
54.3		155	1.8	Н	9.6	63.90	78.22	14.32	
		131		V	9.6			14.82	
		43						6.89	
52.16	Ave.	43	2.0	Н	-4.87	47.29	54	6.71	
73.53	PK	151	1.8	V	-4.87	68.66	74	5.34	
	Ave.			V	-4.87		54	5.43	
		l .		(Hz) 20			-		
87.27	QP	240	1.2	Н	9.1	96.37	/	/	
86.34	QP	37	1.9	V	9.1	95.44	/	/	
52.88	QP	186	2.6	Н	9.6	62.48	76.37	13.89	
51.8	QP	184	2.4	V	9.6	61.40	75.44	14.04	
69.67	PK	218	1.7	Н	-4.87	64.80	74	9.20	
50.67	Ave.	218	1.7	Н	-4.87	45.80	54	8.20	
71.67	PK	242	2.1	V	-4.87	66.80	74	7.20	
52.15	Ave.				-4.87	47.28	54	6.72	
T T					t	-	<u> </u>		
							/	/	
							/	/	
				1				8.90	
							-	8.61	
								6.82	
	88.79 75.34 52.11 75.6 53.04 89.32 89.38 54.3 53.86 71.98 52.16 73.53 53.44 87.27 86.34 52.88 51.8 69.67 71.67	89.43 QP 88.79 QP 75.34 PK 52.11 Ave. 75.6 PK 53.04 Ave. Hi 89.32 QP 89.38 QP 54.3 QP 53.86 QP 71.98 PK 52.16 Ave. 73.53 PK 53.44 Ave. Lo 87.27 QP 86.34 QP 52.88 QP 51.8 QP 51.8 QP 69.67 PK 50.67 Ave. 71.67 PK 52.15 Ave. Mic 88.04 QP 87.6 QP 69.97 PK 50.26 Ave. 72.05 PK	89.43 QP 360 88.79 QP 360 75.34 PK 337 52.11 Ave. 337 75.6 PK 318 53.04 Ave. 318 High Channe 89.32 QP 235 89.38 QP 1 54.3 QP 155 53.86 QP 131 71.98 PK 43 52.16 Ave. 43 73.53 PK 151 Low Channel 87.27 QP 240 86.34 QP 37 52.88 QP 186 51.8 QP 184 69.67 PK 218 50.67 Ave. 218 71.67 PK 242 Middle Channel 88.04 QP 149 87.6 QP 189 69.97 PK 319	89.43 QP 360 1.1 88.79 QP 360 1.2 75.34 PK 337 1.8 52.11 Ave. 337 1.8 75.6 PK 318 2.4 High Channel (921 M 89.32 QP 235 1.2 89.38 QP 1 1.6 54.3 QP 155 1.8 53.86 QP 131 2.2 71.98 PK 43 2.0 73.53 PK 151 1.8 Low Channel (914 M 1.8 Low Channel (914 M 1.8 87.27 QP 240 1.2 86.34 QP 37 1.9 52.88 QP 186 2.6 51.8 QP 184 2.4 69.67 PK 218 1.7 71.67 PK 242 2.1 Middle Channel (915) 2.1	89.43 QP 360 1.1 H 88.79 QP 360 1.2 V 75.34 PK 337 1.8 H 52.11 Ave. 337 1.8 H 75.6 PK 318 2.4 V 53.04 Ave. 318 2.4 V High Channel (921 MHz) 10 89.32 QP 235 1.2 H 89.38 QP 1 1.6 V 89.38 QP 1 1.6 V 54.3 QP 155 1.8 H 53.86 QP 131 2.2 V 71.98 PK 43 2.0 H 73.53 PK 151 1.8 V 53.44 Ave. 151 1.8 V Low Channel (914 MHz) 20 87.27 QP 240 1.2 H 86.34 QP 37	89.43 QP 360 1.1 H 9.1 88.79 QP 360 1.2 V 9.1 75.34 PK 337 1.8 H -4.87 52.11 Ave. 337 1.8 H -4.87 55.6 PK 318 2.4 V -4.87 53.04 Ave. 318 2.4 V -4.87 53.04 Ave. 318 2.4 V -4.87 High Channel (921 MHz) 10M Mode 89.32 QP 235 1.2 H 8.9 89.38 QP 1 1.6 V 8.9 9 54.3 QP 155 1.8 H 9.6 53.86 QP 131 2.2 V 9.6 71.98 PK 43 2.0 H -4.87 52.16 Ave. 43 2.0 H -4.87 53.44 Ave. 151 1	89.43 QP 360 1.1 H 9.1 99.72 88.79 QP 360 1.2 V 9.1 99.49 75.34 PK 337 1.8 H -4.87 70.47 52.11 Ave. 337 1.8 H -4.87 47.24 75.6 PK 318 2.4 V -4.87 70.73 53.04 Ave. 318 2.4 V -4.87 48.17 High Channel (921 MHz) 10M Mode 89.32 QP 235 1.2 H 8.9 98.22 89.38 QP 1 1.6 V 8.9 98.28 54.3 QP 155 1.8 H 9.6 63.90 53.86 QP 131 2.2 V 9.6 63.46 71.98 PK 43 2.0 H -4.87 47.29 73.53 PK 151 1.8 V	89.43 QP 360 1.1 H 9.1 99.72 / 88.79 QP 360 1.2 V 9.1 99.49 / 75.34 PK 337 1.8 H -4.87 70.47 74 52.11 Ave. 337 1.8 H -4.87 70.73 74 55.04 Ave. 318 2.4 V -4.87 70.73 74 53.04 Ave. 318 2.4 V -4.87 48.17 54 High Channel (921 MHz) 10M Mode 89.32 QP 235 1.2 H 8.9 98.22 / 89.38 QP 1 1.6 V 8.9 98.28 / 54.3 QP 155 1.8 H 9.6 63.90 78.22 53.86 QP 131 2.2 V 9.6 63.46 78.28 71.98 PK 43 <	

FCC Part 15.247 Page 27 of 99

Frequency (MHz)	Receiver ,		Turntable	Rx Antenna			Corrected	1 15 /4 ///05//09		
	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	High Channel (916 MHz) 20M Mode									
916	87.97	QP	187	1.3	Н	9.1	97.07	/	/	
916	86.88	QP	180	1.2	V	9.1	95.98	/	/	
928	56.52	QP	196	1.1	Н	9.6	66.12	77.07	10.95	
928	56.85	QP	30	1.2	V	9.6	66.45	75.98	9.53	
1832	73.52	PK	50	1.8	Н	-4.87	68.65	74	5.35	
1832	52.03	Ave.	50	1.8	Н	-4.87	47.16	54	6.84	
1832	70.96	PK	86	2.3	V	-4.87	66.09	74	7.91	
1832	52.81	Ave.	86	2.3	V	-4.87	47.94	54	6.06	

Note:

 $\label{eq:corrected_factor} \begin{aligned} & \text{Corrected Factor} = \text{Antenna factor} \ (RX) + \text{Cable Loss} - \text{Amplifier Factor} \\ & \text{Corrected Amplitude} = \text{Corrected Factor} + \text{Reading} \end{aligned}$

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

FCC Part 15.247 Page 28 of 99

Pre-scan with 10M Mode, High channel for Peak

Horizontal

Vertical

FCC Part 15.247 Page 29 of 99

For 2.4GHz:

30 MHz~1 GHz: (worst case for 1.4M Mode, Low channel)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
30.307812	14.20	149.0	V	265.0	0.1	40.00	25.80
484.810000	16.07	231.0	Н	226.0	2.1	46.00	29.93
541.933500	18.90	238.0	Н	34.0	4.6	46.00	27.10
700.186375	21.55	390.0	V	171.0	6.7	46.00	24.45
785.373625	24.26	399.0	V	202.0	8.6	46.00	21.74
898.228375	25.16	287.0	V	34.0	9.7	46.00	20.84

FCC Part 15.247 Page 30 of 99

1 GHz-25 GHz:

Frequency	Receiver		Turntable Rx Antenn		ntenna	Corrected	Corrected		C Part /205/209	
(MHz)	Reading (dBµV)	ding DK/OP/Avo Degree Height Polar (dR/r	Factor (dB/m)	Amplitude (dBµV/m)		Margin (dB)				
1.4M Mode										
Low Channel (2403.5 MHz)										
2403.50	82.26	PK	338	1.2	Н	33.92	116.18	/	/	
2403.50	71.09	Ave.	338	1.2	Н	33.92	105.01	/	/	
2403.50	86.52	PK	275	1.3	V	33.92	120.44	/	/	
2403.50	74.45	Ave.	275	1.3	V	33.92	108.37	/	/	
2343.56	28.12	PK	309	2.3	V	33.83	61.95	74	12.05	
2343.56	13.87	Ave.	309	2.3	V	33.83	47.70	54	6.30	
2485.62	27.23	PK	202	1.6	V	34.08	61.31	74	12.69	
2485.62	13.48	Ave.	202	1.6	V	34.08	47.56	54	6.44	
4807.00	47.41	PK	60	1.7	V	5.84	53.25	74	20.75	
4807.00	33.56	Ave.	60	1.7	V	5.84	39.40	54	14.60	
7210.50	58.39	PK	321	1.0	V	14.00	72.39	74	1.61	
7210.50	38.52	Ave.	321	1.0	V	14.00	52.52	54	1.48	
			Middle Cl	hannel (2439.5N	MHz)				
2439.50	82.77	PK	59	1.5	Н	33.92	116.69	/	/	
2439.50	72.36	Ave.	59	1.5	Н	33.92	106.28	/	/	
2439.50	87.29	PK	232	2.1	V	33.92	121.21	/	/	
2439.50	77.79	Ave.	232	2.1	V	33.92	111.71	/	/	
4879.00	47.75	PK	46	1.3	V	6.21	53.96	74	20.04	
4879.00	34.68	Ave.	46	1.3	V	6.21	40.89	54	13.11	
7318.50	54.27	PK	63	1.4	V	13.60	67.87	74	6.13	
7318.50	38.72	Ave.	63	1.4	V	13.60	52.32	54	1.68	
			High Cha	annel (2	475.5 M	IHz)				
2475.50	84.45	PK	300	2.4	Н	34.08	118.53	/	/	
2475.50	69.87	Ave.	300	2.4	Н	34.08	103.95	/	/	
2475.50	90.89	PK	172	1.8	V	34.08	124.97	/	/	
2475.50	76.12	Ave.	172	1.8	V	34.08	110.20	/	/	
2358.64	27.34	PK	145	2.3	V	33.92	61.26	74	12.74	
2358.64	13.58	Ave.	145	2.3	V	33.92	47.50	54	6.50	
2484.39	37.79	PK	33	1.7	V	34.08	71.87	74	2.13	
2484.39	14.12	Ave.	33	1.7	V	34.08	48.20	54	5.80	
4951.00	53.24	PK	210	1.5	V	7.82	61.06	74	12.94	
4951.00	33.12	Ave.	210	1.5	V	7.82	40.94	54	13.06	
7426.50	56.71	PK	358	2.0	V	13.02	69.73	74	4.27	
7426.50	35.34	Ave.	358	2.0	V	13.02	48.36	54	5.64	

Report No.: RSZ180104002-00B

FCC Part 15.247 Page 31 of 99

Frequency	Re	eceiver	Turntable	Rx Aı	ntenna		Corrected		C Part //205/209	
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
10M Mode										
Low Channel (2407.5 MHz)										
2407.50	79.22	PK	296	1.7	Н	33.92	113.14	/	/	
2407.50	66.47	Ave.	296	1.7	Н	33.92	100.39	/	/	
2407.50	83.12	PK	182	1.3	V	33.92	117.04	/	/	
2407.50	69.24	Ave.	182	1.3	V	33.92	103.16	/	/	
2389.67	38.88	PK	21	1.7	V	33.92	72.80	74	1.20	
2389.67	15.14	Ave.	21	1.7	V	33.92	49.06	54	4.94	
2485.67	27.31	PK	119	1.8	V	34.08	61.39	74	12.61	
2485.67	13.68	Ave.	119	1.8	V	34.08	47.76	54	6.24	
4815.00	46.35	PK	359	1.5	V	5.84	52.19	74	21.81	
4815.00	31.55	Ave.	359	1.5	V	5.84	37.39	54	16.61	
7222.50	55.20	PK	54	1.7	V	14.00	69.20	74	4.80	
7222.50	34.75	Ave.	54	1.7	V	14.00	48.75	54	5.25	
			Middle Cl	nannel (2439.5N	ИHz)				
2439.50	75.68	PK	333	1.8	Н	33.92	109.60	/	/	
2439.50	64.74	Ave.	333	1.8	Н	33.92	100.66	/	/	
2439.50	80.63	PK	128	1.5	V	33.92	114.55	/	/	
2439.50	68.02	Ave.	128	1.5	V	33.92	101.94	/	/	
4879.00	63.01	PK	3	1.1	V	6.21	69.22	74	4.78	
4879.00	46.74	Ave.	3	1.1	V	6.21	52.95	54	1.05	
7318.50	46.52	PK	262	1.6	V	13.60	60.12	74	13.88	
7318.50	33.58	Ave.	262	1.6	V	13.60	47.18	54	6.82	
	•		High Cha	nnel (2	471.5 M	(Hz)				
2471.50	76.61	PK	198	1.2	Н	34.08	110.69	/	/	
2471.50	64.09	Ave.	198	1.2	Н	34.08	98.17	/	/	
2471.50	81.26	PK	154	1.7	V	34.08	115.34	/	/	
2471.50	68.64	Ave.	154	1.7	V	34.08	102.72	/	/	
2319.61	27.04	PK	80	2.3	V	33.83	60.87	74	13.13	
2319.61	13.22	Ave.	80	2.3	V	33.83	47.05	54	6.95	
2483.50	37.26	PK	48	2.4	V	34.08	71.34	74	2.66	
2483.50	17.78	Ave.	48	2.4	V	34.08	51.86	54	2.14	
4943.00	62.64	PK	347	1.8	V	6.21	68.85	74	5.15	
4943.00	46.65	Ave.	347	1.8	V	6.21	52.86	54	1.14	

FCC Part 15.247 Page 32 of 99

Frequency		eceiver	Turntable	Rx Ar	itenna		Corrected		C Part /205/209	
(MHz)		Factor (dB/m)	Amplitude (dBµV/m)	Limit	Margin (dB)					
20M Mode										
Low Channel (2412.5 MHz)										
2412.50	78.11	PK	300	2.0	Н	33.92	112.03	/	/	
2412.50	65.21	Ave.	300	2.0	Н	33.92	99.13	/	/	
2412.50	81.85	PK	150	2.2	V	33.92	115.77	/	/	
2412.50	68.12	Ave.	150	2.2	V	33.92	102.04	/	/	
2389.91	37.68	PK	357	1.1	V	33.92	71.60	74	2.40	
2389.91	18.87	Ave.	357	1.1	V	33.92	52.79	54	1.21	
2485.28	27.13	PK	2	1.2	V	34.08	61.21	74	12.79	
2485.28	13.36	Ave.	2	1.2	V	34.08	47.44	54	6.56	
4825.00	60.15	PK	330	2.5	V	5.84	65.99	74	8.01	
4825.00	44.31	Ave.	330	2.5	V	5.84	50.15	54	3.85	
			Middle Cl	hannel (2437.5N	MHz)				
2437.50	75.78	PK	55	2.2	Н	33.92	109.70	/	/	
2437.50	64.35	Ave.	55	2.2	Н	33.92	98.27	/	/	
2437.50	82.86	PK	29	1.1	V	33.92	116.78	/	/	
2437.50	69.01	Ave.	29	1.1	V	33.92	102.93	/	/	
4875.00	62.10	PK	168	1.0	V	6.21	68.31	74	5.69	
4875.00	45.67	Ave.	168	1.0	V	6.21	51.88	54	2.12	
			High Cha	annel (2	462.5 M	IHz)				
2462.50	78.64	PK	299	1.7	Н	34.08	112.72	/	/	
2462.50	65.13	Ave.	299	1.7	Н	34.08	99.21	/	/	
2462.50	80.12	PK	144	2.1	V	34.08	114.20	/	/	
2462.50	66.48	Ave.	144	2.1	V	34.08	100.56	/	/	
2346.58	27.13	PK	94	2.4	V	33.83	60.96	74	13.04	
2346.58	13.36	Ave.	94	2.4	V	33.83	47.19	54	6.81	
2483.79	32.48	PK	209	2.2	V	34.08	66.56	74	7.44	
2483.79	18.60	Ave.	209	2.2	V	34.08	52.68	54	1.32	
4925.00	60.67	PK	163	1.2	V	6.21	66.88	74	7.12	
4925.00	42.35	Ave.	163	1.2	V	6.21	48.56	54	5.44	

Note:

 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

And for the pre-scan is performed with the 2400-2483.5MHz band filter.

FCC Part 15.247 Page 33 of 99

Pre-scan with 1.4M Mode, Low channel, for Peak

Horizontal

Date: 25.JAN.2018 17:44:25

FCC Part 15.247 Page 34 of 99

Vertical

Date: 25.JAN.2018 17:21:35

FCC Part 15.247 Page 35 of 99

Horizontal

FCC Part 15.247 Page 36 of 99

Vertical

FCC Part 15.247 Page 37 of 99

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSZ180104002-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24~25 ℃
Relative Humidity:	50~56 %
ATM Pressure:	100.9~101.0 kPa

The testing was performed by Vincent Zeng from 2018-01-16 to 2018-02-26.

Test Result: Pass.

Please refer to the following table and plots.

EUT operation mode: Transmitting

FCC Part 15.247 Page 38 of 99

For 900MHz Antenna 01:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)		
	1.4	M Mode			
Low	906	1.123	≥500		
Middle	916	1.086	≥500		
High	924	1.128	≥500		
	10M Mode				
Low	909	9.036	≥500		
Middle	916	9.055	≥500		
High	921	9.023	≥500		
	20M Mode				
Low	914	18.096	≥500		
Middle	915	18.077	≥500		
High	916	18.095			

Report No.: RSZ180104002-00B

FCC Part 15.247 Page 39 of 99

1.4M Mode Low Channel

Date: 16.JAN.2018 16:14:06

Middle Channel

Date: 16.JAN.2018 16:07:16

FCC Part 15.247 Page 40 of 99

High Channel

Date: 16.JAN.2018 16:02:43

10M Mode

Low Channel

Date: 16.JAN.2018 15:17:48

FCC Part 15.247 Page 41 of 99

Middle Channel

Date: 16.JAN.2018 15:30:37

High Channel

Date: 16.JAN.2018 15:38:02

FCC Part 15.247 Page 42 of 99

20M Mode

Report No.: RSZ180104002-00B

Low Channel

Date: 16.JAN.2018 16:39:55

Middle Channel

Date: 16.JAN.2018 16:50:01

FCC Part 15.247 Page 43 of 99

High Channel

Date: 16.JAN.2018 16:45:01

FCC Part 15.247 Page 44 of 99

For 900MHz Antenna 02:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)		
	1.4	M Mode			
Low	906	1.109	≥500		
Middle	916	1.100	≥500		
High	924	1.114	≥500		
	10M Mode				
Low	909	9.068	≥500		
Middle	916	9.055	≥500		
High	921	9.023	≥500		
	20M Mode				
Low	914	18.096	≥500		
Middle	915	18.077	≥500		
High	916	18.095	≥500		

Report No.: RSZ180104002-00B

FCC Part 15.247 Page 45 of 99

1.4M Mode

Report No.: RSZ180104002-00B

Low Channel

Date: 16.JAN.2018 16:13:07

Middle Channel

Date: 16.JAN.2018 16:06:34

FCC Part 15.247 Page 46 of 99

High Channel

Date: 16.JAN.2018 16:01:53

10M Mode

Low Channel

Date: 16.JAN.2018 15:17:06

FCC Part 15.247 Page 47 of 99

Middle Channel

Date: 16.JAN.2018 15:29:59

High Channel

Date: 16.JAN.2018 15:37:09

FCC Part 15.247 Page 48 of 99

20M Mode

Report No.: RSZ180104002-00B

Low Channel

Date: 16.JAN.2018 16:39:20

Middle Channel

Date: 16.JAN.2018 16:49:04

FCC Part 15.247 Page 49 of 99

High Channel

Date: 16.JAN.2018 16:44:28

FCC Part 15.247 Page 50 of 99

For 2.4GHz Antenna 03:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)		
	1.4	M Mode			
Low	2403.5	1.163	≥500		
Middle	2439.5	1.163	≥500		
High	2475.5	1.075	≥500		
	10M Mode				
Low	2407.5	9.006	≥500		
Middle	2439.5	9.034	≥500		
High	2471.5	9.013	≥500		
	20M Mode				
Low	2412.5	18.084	≥500		
Middle	2437.5	18.187	≥500		
High	2462.5	18.100	≥500		

FCC Part 15.247 Page 51 of 99

1.4M Mode

Report No.: RSZ180104002-00B

Low Channel

Date: 26.FEB.2018 21:23:53

Middle Channel

Date: 26.FEB.2018 21:37:52

FCC Part 15.247 Page 52 of 99

High Channel

Date: 27.JAN.2018 20:09:46

10M Mode

Low Channel

Date: 16.JAN.2018 13:36:47

FCC Part 15.247 Page 53 of 99

Middle Channel

Date: 16.JAN.2018 13:42:29

High Channel

Date: 16.JAN.2018 13:49:20

FCC Part 15.247 Page 54 of 99

20M Mode

Report No.: RSZ180104002-00B

Low Channel

Date: 16.JAN.2018 14:03:59

Middle Channel

Date: 16.JAN.2018 14:10:39

FCC Part 15.247 Page 55 of 99

High Channel

Date: 16.JAN.2018 14:18:08

FCC Part 15.247 Page 56 of 99

For 2.4GHz Antenna 04:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)		
	1.4	M Mode			
Low	2403.5	1.173	≥500		
Middle	2439.5	1.163	≥500		
High	2475.5	1.094	≥500		
	10M Mode				
Low	2407.5	9.071	≥500		
Middle	2439.5	9.034	≥500		
High	2471.5	9.045	≥500		
	20M Mode				
Low	2412.5	18.084	≥500		
Middle	2437.5	18.123	≥500		
High	2462.5	18.100	≥500		

FCC Part 15.247 Page 57 of 99

1.4M Mode

Report No.: RSZ180104002-00B

Low Channel

Date: 26.FEB.2018 21:28:59

Middle Channel

Date: 26.FEB.2018 21:32:13

FCC Part 15.247 Page 58 of 99

High Channel

Date: 27.JAN.2018 20:10:42

10M Mode

Low Channel

Date: 16.JAN.2018 13:38:55

FCC Part 15.247 Page 59 of 99

Middle Channel

Date: 16.JAN.2018 13:43:15

High Channel

Date: 16.JAN.2018 13:50:13

FCC Part 15.247 Page 60 of 99

20M Mode

Report No.: RSZ180104002-00B

Low Channel

Date: 16.JAN.2018 14:04:49

Middle Channel

Date: 16.JAN.2018 14:11:38

FCC Part 15.247 Page 61 of 99

High Channel

Date: 16.JAN.2018 14:19:19

FCC Part 15.247 Page 62 of 99

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSZ180104002-00B

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Vincent Zeng on 2018-01-16.

EUT operation mode: Transmitting

FCC Part 15.247 Page 63 of 99

For 900MHz:

Channel	Frequency (MHz)	Max Conducted Peak Output Power Antenna 01 (dBm)	Max Conducted Peak Output Power Antenna 02 (dBm)	Limit (dBm)	
		1.4M Mode			
Low	906	25.23	25.42	30	
Middle	916	25.33	25.45	30	
High	924	25.48	25.46	30	
	10M Mode				
Low	909	23.39	23.53	30	
Middle	916	23.80	23.72	30	
High	921	23.75	23.84	30	
	20M Mode				
Low	914	23.43	23.35	30	
Middle	915	23.31	23.37	30	
High	916	23.46	23.36	30	

Report No.: RSZ180104002-00B

Channel	Frequency (MHz)	Max Conducted Average Output Power Antenna 01 (dBm)	Max Conducted Average Output Power Antenna 02 (dBm)	Limit (dBm)	
		1.4M Mode			
Low	906	16.83	16.77	30	
Middle	916	16.79	16.75	30	
High	924	16.74	16.79	30	
	10M Mode				
Low	909	16.51	16.56	30	
Middle	916	16.53	16.75	30	
High	921	16.66	16.52	30	
20M Mode					
Low	914	16.55	16.57	30	
Middle	915	16.67	16.61	30	
High	916	16.68	16.56	30	

FCC Part 15.247 Page 64 of 99

For 2.4GHz:

Channel	Frequency (MHz)	Max Conducted Peak Output Power Antenna 03 (dBm)	Max Conducted Peak Output Power Antenna 04 (dBm)	Limit (dBm)	
		1.4M Mode			
Low	2403.5	29.91	29.70	30	
Middle	2439.5	29.57	29.43	30	
High	2475.5	28.60	29.07	30	
	10M Mode				
Low	2407.5	26.59	26.55	30	
Middle	2439.5	25.34	25.36	30	
High	2471.5	24.13	24.09	30	
20M Mode					
Low	2412.5	21.01	20.99	30	
Middle	2437.5	21.25	21.47	30	
High	2462.5	21.02	21.02	30	

Channel	Frequency (MHz)	Max Conducted Average Output Power Antenna 03	Max Conducted Average Output Power Antenna 04	Limit (dBm)	
		(dBm)	(dBm)		
		1.4M Mode			
Low	2403.5	15.79	15.89	30	
Middle	2439.5	15.75	15.91	30	
High	2475.5	15.86	15.85	30	
	10M Mode				
Low	2407.5	15.64	15.64	30	
Middle	2439.5	15.67	15.85	30	
High	2471.5	15.69	15.87	30	
20M Mode					
Low	2412.5	15.53	15.51	30	
Middle	2437.5	15.58	15.68	30	
High	2462.5	15.61	15.69	30	

FCC Part 15.247 Page 65 of 99

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSZ180104002-00B

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24~25 ℃
Relative Humidity:	50~56 %
ATM Pressure:	100.9~101.0 kPa

The testing was performed by Vincent Zeng from 2018-02-09 to 2018-02-11.

EUT operation mode: Transmitting

Test Result: Compliance

Please refer to the following plots.

FCC Part 15.247 Page 66 of 99

For 900MHz Antenna 01

1.4M Mode: Band Edge, Left Side

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 14:21:10

1.4M Mode: Band Edge, Right Side

Date: 10.FEB.2018 14:23:22

FCC Part 15.247 Page 67 of 99

10M Mode: Band Edge, Left Side

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 15:17:42

10M Mode: Band Edge, Right Side

Date: 10.FEB.2018 15:35:22

FCC Part 15.247 Page 68 of 99

20M Mode: Band Edge, Left Side

Date: 10.FEB.2018 15:53:08

20M Mode: Band Edge, Right Side

Date: 10.FEB.2018 16:07:38

FCC Part 15.247 Page 69 of 99

For 900MHz Antenna 02

1.4M Mode: Band Edge, Left Side

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 14:21:43

1.4M Mode: Band Edge, Right Side

Date: 10.FEB.2018 14:26:28

FCC Part 15.247 Page 70 of 99

10M Mode: Band Edge, Left Side

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 15:16:35

10M Mode: Band Edge, Right Side

Date: 10.FEB.2018 15:37:57

FCC Part 15.247 Page 71 of 99

20M Mode: Band Edge, Left Side

Date: 10.FEB.2018 15:51:06

20M Mode: Band Edge, Right Side

Date: 10.FEB.2018 16:09:21

FCC Part 15.247 Page 72 of 99

For 2.4GHz Antenna 03

1.4M Mode: Band Edge, Left Side

Report No.: RSZ180104002-00B

Date: 9.FEB.2018 09:23:42

1.4M Mode: Band Edge, Right Side

Date: 9.FEB.2018 10:11:03

FCC Part 15.247 Page 73 of 99

10M Mode: Band Edge, Left Side

Date: 9.FEB.2018 09:33:13

10M Mode: Band Edge, Right Side

Date: 11.FEB.2018 19:31:59

FCC Part 15.247 Page 74 of 99

20M Mode: Band Edge, Left Side

Date: 11.FEB.2018 19:38:34

20M Mode: Band Edge, Right Side

Date: 11.FEB.2018 19:56:22

FCC Part 15.247 Page 75 of 99

For 2.4GHz Antenna 04

1.4M Mode: Band Edge, Left Side

Report No.: RSZ180104002-00B

Date: 9.FEB.2018 10:12:31

1.4M Mode: Band Edge, Right Side

Date: 9.FEB.2018 10:08:23

FCC Part 15.247 Page 76 of 99

10M Mode: Band Edge, Left Side

Date: 9.FEB.2018 09:59:36

10M Mode: Band Edge, Right Side

Date: 11.FEB.2018 19:33:49

FCC Part 15.247 Page 77 of 99

20M Mode: Band Edge, Left Side

Date: 11.FEB.2018 19:40:03

20M Mode: Band Edge, Right Side

Date: 11.FEB.2018 19:57:59

FCC Part 15.247 Page 78 of 99

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSZ180104002-00B

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: 3kHz≤ RBW≤100 kHz.
- 3. Set the VBW $> 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24~25 ℃	
Relative Humidity:	50~56 %	
ATM Pressure:	100.9~101.0 kPa	

The testing was performed by Vincent Zeng from 2018-02-10 to 2018-02-11.

EUT operation mode: Transmitting

Test Result: Pass

FCC Part 15.247 Page 79 of 99

For 900MHz:

Channel	Frequency (MHz)	Antenna 01 (dBm/3kHz)	Antenna 02 (dBm/3kHz)	Limit (dBm/3kHz)				
	1.4M Mode							
Low	906	2.67	3.50	≤8				
Middle	916	3.04	3.00	≤8				
High	924	2.80	2.88	≤8				
	10M Mode							
Low	909	-5.58	-6.72	≤8				
Middle	916	-4.23	-5.69	≤8				
High	921	-4.94	-5.69	≤8				
20M Mode								
Low	914	-8.34	-8.37	≤8				
Middle	915	-8.38	-9.70	≤8				
High	916	-8.62	-8.27	≤8				

Report No.: RSZ180104002-00B

FCC Part 15.247 Page 80 of 99

Power Spectral Density, 1.4M Mode Low Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 14:03:15

Power Spectral Density, 1.4M Mode Middle Channel

Date: 10.FEB.2018 14:15:42

FCC Part 15.247 Page 81 of 99

Power Spectral Density, 1.4M Mode High Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 14:29:32

Power Spectral Density, 10M Mode Low Channel

Date: 10.FEB.2018 15:13:01

FCC Part 15.247 Page 82 of 99

Power Spectral Density, 10M Mode Middle Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 15:32:13

Power Spectral Density, 10M Mode High Channel

Date: 10.FEB.2018 15:40:11

FCC Part 15.247 Page 83 of 99

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 15:47:13

Power Spectral Density, 20M Mode Middle Channel

Date: 10.FEB.2018 15:59:04

FCC Part 15.247 Page 84 of 99

Power Spectral Density, 20M High Channel

Date: 10.FEB.2018 16:00:45

Antenna 02

Power Spectral Density, 1.4M Mode Low Channel

Date: 10.FEB.2018 14:01:20

FCC Part 15.247 Page 85 of 99

Power Spectral Density, 1.4M Mode Middle Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 14:18:34

Power Spectral Density, 1.4M Mode High Channel

Date: 10.FEB.2018 14:30:43

FCC Part 15.247 Page 86 of 99

Power Spectral Density, 10M Mode Low Channel

Date: 10.FEB.2018 15:15:02

Power Spectral Density, 10M Mode Middle Channel

Date: 10.FEB.2018 15:30:20

FCC Part 15.247 Page 87 of 99

Power Spectral Density, 10M Mode High Channel

Date: 10.FEB.2018 15:38:52

Power Spectral Density, 20M Mode Low Channel

Date: 10.FEB.2018 15:49:06

FCC Part 15.247 Page 88 of 99

Power Spectral Density, 20M Mode Middle Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 15:57:10

Power Spectral Density, 20M Mode High Channel

Date: 10.FEB.2018 16:02:11

FCC Part 15.247 Page 89 of 99

For 2.4GHz:

Channel	Frequency (MHz)	Antenna 03 (dBm/3kHz)	Antenna 04 (dBm/3kHz)	Limit (dBm/3kHz)				
	1.4M Mode							
Low	2403.5	3.33	2.44	≤8				
Middle	2439.5	2.27	2.71	≤8				
High	2475.5	1.28	1.98	≤8				
10M Mode								
Low	2407.5	-6.78	-6.07	≤8				
Middle	2439.5	-7.90	-8.61	≤8				
High	2471.5	-7.34	-7.22	≤8				
	20M Mode							
Low	2412.5	-10.38	-10.69	≤8				
Middle	2437.5	-10.06	-10.51	≤8				
High	2462.5	-11.88	-11.00	≤8				

FCC Part 15.247 Page 90 of 99

Power Spectral Density, 1.4M Mode Low Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 13:40:21

Power Spectral Density, 1.4M Mode Middle Channel

Date: 10.FEB.2018 13:45:38

FCC Part 15.247 Page 91 of 99

Power Spectral Density, 1.4M Mode High Channel

Date: 10.FEB.2018 13:53:17

Power Spectral Density, 10M Mode Low Channel

Date: 10.FEB.2018 13:16:05

FCC Part 15.247 Page 92 of 99

Power Spectral Density, 10M Mode Middle Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 13:18:05

Power Spectral Density, 10M Mode High Channel

Date: 11.FEB.2018 19:29:34

FCC Part 15.247 Page 93 of 99

Power Spectral Density, 20M Mode Low Channel

Report No.: RSZ180104002-00B

Date: 11.FEB.2018 19:42:49

Power Spectral Density, 20M Mode Middle Channel

Date: 11.FEB.2018 19:48:30

FCC Part 15.247 Page 94 of 99

Power Spectral Density, 20M Mode High Channel

Date: 11.FEB.2018 19:51:06

Antenna 04

Power Spectral Density, 1.4M Mode Low Channel

Date: 10.FEB.2018 13:37:27

FCC Part 15.247 Page 95 of 99

Power Spectral Density, 1.4M Mode Middle Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 13:48:20

Power Spectral Density, 1.4M Mode High Channel

Date: 10.FEB.2018 13:50:19

FCC Part 15.247 Page 96 of 99

Power Spectral Density, 10M Mode Low Channel

Report No.: RSZ180104002-00B

Date: 10.FEB.2018 13:35:31

Power Spectral Density, 10M Mode Middle Channel

Date: 10.FEB.2018 13:21:02

FCC Part 15.247 Page 97 of 99

Power Spectral Density, 10M Mode High Channel

Date: 11.FEB.2018 19:30:12

Power Spectral Density, 20M Mode Low Channel

Date: 11.FEB.2018 19:43:48

FCC Part 15.247 Page 98 of 99

Power Spectral Density, 20M Mode Middle Channel

Report No.: RSZ180104002-00B

Date: 11.FEB.2018 19:49:18

Power Spectral Density, 20M Mode High Channel

Date: 11.FEB.2018 19:52:46

***** END OF REPORT *****

FCC Part 15.247 Page 99 of 99