2. Q-Value Iteration

Consider an Markov Decision Process with 6 states $s \in \{0,1,2,3,4,5\}$ and 2 actions $a \in \{C,M\}$, defined by the following transition probability functions

For states 1, 2, and 3:

$$T\left(s,M,s-1\right) =1$$

$$T\left(s,C,s+2\right)=0.7$$

$$T\left(s,C,s
ight) =0.3$$

For state 0:

$$T\left(s,M,s
ight) =1$$

$$T\left(s,C,s
ight) =1$$

For states 4 and 5:

$$T\left(s,M,s-1\right) =1$$

$$T\left(s,C,s
ight) =1$$

Note that all transition probabilities not defined by the above are equal to $\boldsymbol{0}.$

The rewards R are defined by:

$$R\left(s,a,s'
ight)=\left|\left(s'-s
ight)^{rac{1}{3}}
ight|orall s
eq s',$$

and
$$R\left(s,a,s
ight)=\left(s+4
ight)^{rac{-1}{2}}$$
 , $orall s
eq 0$.

$$R\left(0,M,0
ight)=R\left(0,C,0
ight)=0$$
 Also, the discount factor $\gamma=0.6$.

We initialize $Q_0\left(s,a\right)=0\, orall s\in\{0,1,2,3,4,5\}$ and $orall a\in\{C,M\}$.

1

1/1 point (graded)

We can conclude from this information that 0 is a terminal state.

● True

False

Solution:

From the transition probabilities, we can see that no matter which action you take, once you are in state 0, you can never leave.

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

2

6.0/6.0 points (graded)

Input the Q-values $Q_{1}\left(s,a\right)$ correct to 3 decimal places after one Q-value iteration

$$Q_{1}\left(0,M
ight)=igg|$$
 0 wo Answer: 0

$$Q_1\left(0,C\right)= \boxed{egin{array}{c} extstyle ext$$

$$Q_{1}\left(1,M
ight)= \boxed{ 1}$$
 $ightharpoonup
ightarrow
m Answer: 1$

$$Q_{1}\left(2,M
ight) = oxed{1}$$
 Answer: 1

$$Q_{1}\left(3,M
ight) =igg|$$
 1 $ightharpoonup$ Answer: 1

$$Q_{1}\left(4,M
ight)=igg|$$
 1 $ightharpoonup$ Answer: 1

$$Q_{1}\left(5,M
ight)=igg|$$
 1 $ightharpoonup$ Answer: 1

Solution:

1.
$$Q_{1}\left(0,M
ight)$$
: $Q_{1}\left(0,M
ight)=0$ because $R\left(0,M,0
ight)=0$ and $T\left(0,M,s'
ight)=0$ $orall s'
eq0$

2.
$$Q_{1}\left(0,C
ight)$$
: $Q_{1}\left(0,C
ight)=0$ because $R\left(0,C,0
ight)=0$ and $T\left(0,C,s'
ight)=0$ $orall s'
eq0$

3.
$$Q_1(1,M)$$
: $\left|(0-1)^{\frac{1}{3}}\right|=1$

4.
$$Q_{1}\left(1,C
ight):0.7*\left|\left(3-1
ight)^{rac{1}{3}}
ight|+0.3*5^{rac{-1}{2}}=0.882+0.134=1.016$$

5.
$$Q_{1}\left(2,M\right)$$
: Just as in $Q_{1}\left(1,M\right)$

6.
$$Q_{1}\left(2,C
ight)$$
: $0.7*\left|\left(3-1
ight)^{rac{1}{3}}
ight|+0.3*5^{rac{-1}{2}}=0.882+0.122=1.004$

7.
$$Q_{1}\left(3,M\right)$$
: Just as in $Q_{1}\left(1,M\right)$

8. $Q_1\left(3,C\right)$: $0.7*\left|\left(3-1\right)^{rac{1}{3}}\right|+0.3*5^{rac{-1}{2}}=0.882+0.113=0.995$ 9. $Q_{1}\left(4,M
ight)$: Just as in $Q_{1}\left(1,M
ight)$ 10. $Q_1(4,C)$: $8^{\frac{-1}{2}}=0.354$ 11. $Q_{1}\left(5,M\right)$: Just as in $Q_{1}\left(1,M\right)$ 12. $Q_1(5,C)$: $9^{\frac{-1}{2}}=0.333$ Submit You have used 2 of 4 attempts • Answers are displayed within the problem 3 3.0/3.0 points (graded) What are the values $V_{1}\left(s
ight)$ corresponding to $Q_{1}\left(s,a
ight)$? **✓ Answer:** 0 $V_{1}\left(1
ight) =% {\displaystyle\int\limits_{0}^{\infty }} \left[{\left\langle {1,0,0,0}
ight\rangle } \right] \left[{\left\langle {1,0,0,0}
ight\rangle } \right] dt$ **✓ Answer:** 1.016 1.0161088135763985 $V_{1}\left(2
ight) =% {\displaystyle\int\limits_{0}^{\infty }} \left[{\left\langle {1,0,0,0}
ight\rangle _{1}} \left[{\left\langle {1,0,0,0}
ight\rangle _{1}}
ight] \left[{\left\langle {1,0,0,0}
ight\rangle _{1}} \left[{\left\langle {1,0,0,0}
ight\rangle _{1}}
ight] \left[{\left\langle {1,0,0,0}
ight\rangle _{$ 1.00441922206557 **✓ Answer:** 1.004 $V_1(3) = 1$ **✓** Answer: 1 $V_{1}\left(4\right) =$ **✓** Answer: 1 $V_1\left(5
ight) =$ **✓** Answer: 1 **Solution:** Because: $V_{1}\left(s
ight)=\max_{a}Q_{1}\left(s,a
ight)$ You have used 1 of 2 attempts Submit • Answers are displayed within the problem 4 5/5 points (graded) What are the optimal policies we get from $Q_1\left(s,a\right)$? $\pi^*(1) =$ ● C \bigcirc M C

○ M	
$\pi^*(3) =$	
○ C	
$\pi^*(4) =$	
○ C	
$\pi^*(5) =$	
○ C	
Solution:	
We pick the policy corresponding to the $V_{1}\left(s ight)$ i.e. $\pi^{*}(s)$ = $\mathop{argmax}\limits_{a}Q_{1}\left(s,a ight)$	
Submit You have used 2 of 2 attempts	
Answers are displayed within the problem	
Discussion	Show Discussion
Topic: Unit 5 Reinforcement Learning (2 weeks) :Homework 6 / 2. Q-Value Iteration	
	© All Rights Reserved