.175	
L13	Aside: HW3 Q7c.
A	We flip a fair com a number of
	times.
	Show H + att
	an Gios se as Tilde as action
	Show that getting n-1 or n heads in In flips is as tilledy as getting n or n+1 heads in 2n+1 flips.
an talan makan da aran ya Magalian da aran ya kanan ya ya ya ana da a Manadan ya ya kanan da aran da aran da a	

#Plips 21+1 or nt 1 P(nHor (n+1)H in 2n+1 flips) P((n-1) H in 2n flips). P(H in naxt flip) + P(nH in 2n flips). P(Hor Tin rent flip) P((n+1)H in 2nflips)-P(T in next flip) P((n-1)Hin 2n flips)= P ((n+1)# in 2n flips)= (n+1) (2n) = (2n) (symmetry of Pascals) Thrus: P (m-d)+ in 2n flups) = P (cn+d)+ in 2n Thus = P ((n-1)+ (n 2n fups) + P(n+ in 2n fups) = P (moltor nH in an Puips)

5	
	The Subtraction Principle / The Power of Negative Trunking
	Negative Trunking
	0
Q	Flip a can 5 times tow many ways
	con we get at least one it and at least one T?
	least one T?
AI	Emmerate: # H # T #ways
	0 × 5 1
	(1) (5)
	Favorable 2 3 (5)
	outcomes 31 2 (3)
	(4)
	5 / 0×
	Thus answer is (51+(5)+(3)+(4).
-	
A2	Table highlights that it is easier to.
	count the unfavorable outcomes, of
	which there are only two. all heads and all tails.
	and all tails.
	Since we know the # possible outcomes
	unitten.
	2 - 2

There are 6 people sitting around a table on labelled chairs. Two of them, Poter and Paul, are bitter enemies who refuse to sit together. How many Scaling arrangements are there. Note: if everyone just notates one seat to the left, say, then this counts as a different arrangement. Pick a Seat for Peter. (6 possibilities) 2. Paul can sit in neither the scot to the left nor right of Peter: - Paul can sit in one of the 3 D's. Seat the remaining people: 3rd person choices for 6th 11

	Thus, there are 6.3.41. ways to seat the
	people
A2	The reentine approach to this question is to
,	Subtract # unfavorable arrangements from
±	The negative approach to this question is to subtract # unfavorable arrangements from # possible arrangements.
	An unfavorable arrangement is one
	An unfavorable arrangement is one where Peter and Paul are scated next
	To one another. In how many chay's can
-	this occur?
1-	# pairs of adjacent seats = 6
2.	# pairs of adjacent seats = 6 # ways to seat Peter and Paul in chosen seats
3.	= 2 #ways to seat romaining people = 4!
=7	#unfamorable arrangements = 6-2-41.
	# possible awangements = 6!
\Rightarrow	# favorable arrangements = 6! - 6-2-4!
	= 6(5-2)41
	= 6-3.41.
	which is the same answer we got before.

table with labeled chairs). How many ways can we pick a subset of 3 people containing no neighbors? Al. Negative Approach. 19 3: Count #ways we can pick the people s.t. at least two of them are reighbors 1. ways to pick two neighbors: (1,2), (2,3), (2,3), (20,1)=> 20 ways. 2. Hways to pick 3rd member of set?
You might think the answer is 18
Since we have already chizen 2 of
the 20 people. However this overcounts: 12 (34) 5 67 - 0 => (23,4), {3,4,5}, ... 123(45)67000) (3,4,5] (4,5,6],0 1234(56)700=)000, 84,5,63,85,63,73,00 Evidently, the overcounting anses

when the 3rd member 18 chosen to be a neighbor of the 1st or 2rd member. Overwinting can be avoided by (i) excluding one neighbor of the original pair from becoming the 3rd member = 17. =) # 3-sets w at least 2 neighbors = 20.17. (ii) subtract I for each time a 3-set is double-counted, which is 20 (once for each of (1,2), (2,3),..., (19,20), (20,1)). #3-sets w at least 2 neighbors = 20.18 - 20 = 20(18-1) = 20.17. There is another way to count the 3-sets of at least two neighbors. Partition the sets into those containing 2 and 1. 3-sets w/ 2 neighbors (only):

	20 choices for the pair, and 16 choices for the remaining person:
	the remaining person:
	3-sets to exclude
	12 (3 4) \$ 67. [2,3,4] [3,4,5].
	12 3 (4 5) 67 {3,45}, {4,5;6}
	$12(34) $67 \{2,34\}, \{3,4,5\}.$ $123(45) 67 \{3,4,5\}, \{4,5,6\}.$ $123(45) 67 \{3,4,5\}, \{4,5,6\}.$ $123(56) 7 \{4,5,6\}, \{5,6\}, 7\}.$
	h 6
100	
=)	#ways = 20-16
2.	3-sets w/ 3 neighbors: 20 choices.
	(123), (234), (345),, (19201), (20,1,2)
	Then
	# 3-Sets w/ at least 2 nbrs = 20.16 + 20
	= 20.17
	as before.
	Finally: Aways to pick 3 people s.t. no
	Finally: Hways to pick 3 people s.t. no 2 of them are neighbors 18:
	(3) - 20017
	Aways to choose
	3 people from 20.

Consider Simplest example: 9-#ways to choose B: 7-3=4 (exclude A and his nors) A2: (A,B,C) #ways. showed wor? Direct (1,3,5) ((1,3,6) (1,4,6) (1,53) (16,3) ? (164) (357)] 24,6) 7 (3,5,1)) 24,7) (2,5,7)]1 (3,6,1) J1 2,6,4)]1 (3,7,5)] 1 (3,1,5)] (27,4)72 (3,1,6) Pattern: ·· XAXBX ·· Shared nor ". not cardidates for (.) #ways = 7-5 o no shared nor 's ·XAX · · · XBX · 6 Cannut be either way " condidates for c = Hways many ways to choose B sit. it

2 ways. How many ways to choose B s.t. it => #ways o original problem in elements + (20-5 choose duose c B s.t. it doesn't Sharos nor showe nor with A WHAA. 20 (2.15 + 15.14) = 20.15.16 3 people; in which the people are pid irrelevant. We can "forget"

Thus

ways to choose 3 people s.t. no 2 are not $\frac{20.15.16}{16}$ This is the same as the original answer, $\binom{20}{3}$ - 20.17, since $\frac{20.15.16}{3!} = 20.5.8 = 20.40$ and: $\binom{20}{3} - 20.17 = \frac{20.19.18}{6} - 20.17$ $= 20 \left[19.3 - 17 \right]$ $= 20 \left[57 - 17 \right]$
