Számítógépes Grafika

Hajder Levente és Baráth Dániel hajder@inf.elte.hu

> Eötvös Loránd Tudományegyetem Informatikai Kar

> > 2019/2020. I. félév

Tartalom

- Tartalom
 - Motiváció
- ② Grafikus szerelőszalag
 - Áttekintés
 - Modellezési transzformácó
 - Nézeti transzformácó
 - Perspektív transzformácó
 - Vágás
 - Raszterizáció
 - Megjelenítés
 - Triviális hátlapeldobás
 - Festő algoritmus
 - Z-buffer
- 3 Lokális illumináció

Tartalom

- 1 Tartalom
 - Motiváció
- ② Grafikus szerelőszalag
 - Áttekintés
 - Modellezési transzformácó
 - Nézeti transzformácó
 - Perspektív transzformácó
 - Vágás
 - Raszterizáció
 - Megjelenítés
 - Triviális hátlapeldobás
 - Festő algoritmus
 - Z-buffer
- 3 Lokális illumináció

Grafikus szerelőszalag

- A színterünkről készített kép elkészítésének műveletsorozatát nevezik grafikus szerelőszalagnak (angolul graphics pipeline)
- A valósidejű alkalmazásoknak lényegében a színterünk leírását kell csak átadnia, a képszintézis lépéseit a grafikus szerelőszalag végzi
- A szerelőszalagban több koordináta-rendszer váltás is történik
 mindent feladatot a hozzá legjobban illeszkedő rendszerben próbálunk elvégezni

Grafikus szerelőszalag

- Lépései főbb műveletek szerint:
 - Modellezési transzformáció
 - Nézeti transzformáció
 - Perspektív transzformáció
 - Vágás
 - Homogén osztás
 - Raszterizáció
 - Megjelenítés
- A grafikus szerelőszalag eredménye egy kép (egy kétdimenziós pixeltömb, aminek minden elemében egy színérték található)

Transzformációk

- A szerelőszalag transzformációinak feladata: a modelltérben adott objektumot "eljuttatni" a képernyő-térbe
- Lépései:

modell k.r.

- \rightarrow világ k.r.
 - \rightarrow kamera k.r.
 - → normalizált eszköz k.r.
 - ightarrow képernyő k.r.

Szerelőszalag bemeneti adatai

- Ábrázolandó tárgyak geometriai modellje
- Virtuális kamera adatai (nézőpont és látógúla)
- A képkeret megadása (az a pixeltömb, amire a színterünk síkvetületét leképezzük)
- A színtérben található fényforrásokhoz és anyagokhoz tartozó megvilágítási adatok

Attekintes

Pipeline

- Minden egyes primitív végigmegy az összes lépésen
- Az egyes lépések az eredményüket a következőnek továbbítják
- Többféleképpen megadható és csoportosítható mi csak egy példát írtunk fel (pl. hol "színezünk"?)

Koordináta-rendszerek

- Modell KR:
 Az objektumok saját koordináta-rendszerükben adottak.
- Világ KR:
 Az objektumok egymáshoz viszonyított helyzete itt adott, ahogy a kamera/szem pozicó és az absztrakt fényforrások pozicója is.
- Kamera KR:
 A koordináták a kamera poziciója és orientációjához relatíven adottak.

Koordináta-rendszerek

- Normalizált eszköz KR: A hardverre jellemző, $[-1,1] \times [-1,1] \times [0,1]$ kiterjedésű KR.
- Képernyő KR:
 A megjelenítendő képnek (képernyő/ablak) megfelelő KR
 (balkezes, bal-felső "sarok" az origó).

Tartalom

- 1 lartalom
 - Motiváció
- 2 Grafikus szerelőszalag
 - Áttekintés
 - Modellezési transzformácó
 - Nézeti transzformácó
 - Perspektív transzformácó
 - Vágás
 - Raszterizáció
 - Megjelenítés
 - Triviális hátlapeldobás
 - Festő algoritmus
 - Z-buffer
- 3 Lokális illumináció

Modellezési transzformácó

Modellezési transzformácó

- A saját (modell) koordináta-rendszerben adott modelleket a világ-koordináta rendszerben helyezi el
- Tipikusan minden modellre különböző (lehet a színterünk két eleme csak a világtrafóban különbözik!)
- Jellemzően affin transzformációk
- Gyakorlatban: ez a Model (vagy World) mátrix a kódjainkban

Tartalom

Tartalom

- Tartalom
 - Motiváció
- ② Grafikus szerelőszalag
 - Áttekintés
 - Modellezési transzformácó
 - Nézeti transzformácó
 - Perspektív transzformácó
 - Vágás
 - Raszterizáció
 - Megjelenítés
 - Triviális hátlapeldobás
 - Festő algoritmus
 - Z-buffer
- 3 Lokális illumináció

Nézeti transzformácó

Nézeti transzformáció

- A világ koordináta-rendszert a kamerához rögzített koordináta-rendszerbe viszi át.
- A transzformáció a kamera tulajdonságaiból adódik.
- Gyakorlatban: ez a View mátrix.

Kamera transzformácó

- Tulajdonságok, mint sugárkövetés esetén: eye, center, up
- Ebből kapjuk a nézeti koordináta-rendszer tengelyeit:

$$w = \frac{eye - center}{|eye - center|}$$
$$u = \frac{up \times w}{|up \times w|}$$
$$v = w \times u$$

Kamera transzformácós mátrix

 Mátrixot kapjuk: áttérés az -eye origójú, u, v, w koordinátarendszerbe:

$$T_{View} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & -eye_x \\ 0 & 1 & 0 & -eye_y \\ 0 & 0 & 1 & -eye_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Tartalom

- 1 Tartalom
 - Motiváció
- ② Grafikus szerelőszalag
 - Áttekintés
 - Modellezési transzformácó
 - Nézeti transzformácó
 - Perspektív transzformácó
 - Vágás
 - Raszterizáció
 - Megjelenítés
 - Triviális hátlapeldobás
 - Festő algoritmus
 - Z-buffer
- 3 Lokális illumináció

Párhuzamos vetítés

 A mátrix ami megadja egyszerű, például az XY síkra való vetítés

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Emlékeztető: 3. EA
- A nézeti csonkagúla által határolt térrészt normalizált eszköz KR-be viszi át
- \bullet Ami benne volt a csonkagúlában, az lesz benne a $[-1,1]\times[-1,1]\times[0,1]$ (vagy $[-1,1]\times[-1,1]\times[-1,1])$ tartományban
- A transzformáció a kamerán átmenő vetítő sugarakból párhuzamosokat csinál
- A transzformáció a kamerapozíciót a végtelenbe tolja
- Gyakorlatban: ez a *Projection* mátrix

Perspektív transzformácó

- Emlékeztető: tulajdonságok
 - függőleges és vízszintes nyílásszög (fovx, fovy) vagy az alap oldalainak az aránya és a függőleges nyílásszög (fovy, aspect),
 - a közeli vágósík távolsága (near),
 - a távoli vágósík távolsága (far)

Középpontos vetítés

Középpontos vetítés

Vagyis:

$$x' = \frac{x}{z}d$$

$$y' = \frac{y}{z}d$$

$$z' = \frac{z}{z}d = c$$

Középpontos vetítés

 Az origó, mint vetítési középpont és egy, attól a Z tengely mentén d egységre található, XY síkkal párhuzamos vetítősíkra való vetítés mátrixa:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix}$$

• Homogén osztás után $(\frac{z}{d}$ -vel) a fentit kapjuk

Normalizált látógúla

- ullet Figyeljünk: a szerelőszalagunk ezen pontján a kamera -Z felé néz és az origóba van
- A fenti térből térjünk át egy "normalizáltabb" gúlába aminek nyílásszöge x és y mentén is 90 fokos!

Normalizált látógúla

Mátrix alakban:

$$\begin{bmatrix} 1/\tan\frac{fovx}{2} & 0 & 0 & 0 \\ 0 & 1/\tan\frac{fovy}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Normalizált látógúla

• Ezután már csak a közeli és a távoli vágosík z koordinátáit kell a normalizálásnak megfelelően átképezni (-1, 1 vagy 0, 1-re):

$$T_{Projection} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{far}{far - near} & \frac{near*far}{near - far} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Tartalom

- 1 Tartalom
 - Motiváció
- ② Grafikus szerelőszalag
 - Áttekintés
 - Modellezési transzformácó
 - Nézeti transzformácó
 - Perspektív transzformácó
 - Vágás
 - Raszterizáció
 - Megjelenítés
 - Triviális hátlapeldobás
 - Festő algoritmus
 - Z-buffer
- 3 Lokális illumináció

Vágás

Vágás

- Cél: ne dolgozzunk feleslegesen azokkal az elemekkel, amikből nem lesz pixel (nem jelennek majd meg).
- Megoldás (kísérlet):
 - Végezzük el a homogén osztást!
 - 2 Vágjunk le, ami kilóg a $[-1,1] \times [-1,1] \times [0,1]$ -ből!
- Probléma: vegyünk egy olyan szakaszt, ami átlóg a kamera mögé!
- Ez a szakasz átmegy egy ideális ponton ⇒ a szakasz képe nem egyezik meg a transzformált pontokat összekötő szakasszal!
- Ez az átfordulási probléma.

Vágás

Vágás homogén koordinátákban

- Megoldás (valóban): Vágás homogén koordinátákban
- Legyen: $[x_h, y_h, z_h, h] = \mathbf{M}_{Proj}[x_c, y_c, z_c, 1]$
- Cél: $(x, y, z) := (x_h/h, y_h/h, z_h/h) \in [-1, 1] \times [-1, 1] \times [0, 1],$ azaz

Legyen h > 0, és

$$-1 < x < 1$$

 $-1 < y < 1$
 $0 < z < 1$

Ebből kapjuk:

$$-h < x_h < h$$
$$-h < y_h < h$$
$$0 < z_h < h$$

Tartalom

- Tartalom
 - Motiváció
- ② Grafikus szerelőszalag
 - Áttekintés
 - Modellezési transzformácó
 - Nézeti transzformácó
 - Perspektív transzformácó
 - Vágás
 - Raszterizáció
 - Megjelenítés
 - Triviális hátlapeldobás
 - Festő algoritmus
 - Z-buffer
- 3 Lokális illumináció

Raszterizáció

- Ne feledjük: eddig minden primitív, amiről beszéltünk folytonos objektum volt
- Azonban nekünk egy diszkrét térben, a képernyő képpontjain kell dolgoznunk
- A primitívek folytonos teréből át kell térni ebbe a diszkrét térbe, ezt hívják raszterizációnak

Raszterizáció

- Olyan geometriai primitíveket kell választanunk, amelyeket gyorsan tudunk raszterizálni
- Mi lehet ilyen? Jó lenne pl. ha egyik pixelhez tartozó felületi pontjának koordinátái alapján könnyen számítható lenne a szomszédos pixelekhez tartozó pontok koordinátái, illetve ha síkbeli is lenne...
- A háromszög ilyen!
- Minden egyéb felületet ilyen primitívekkel (lényegében: síklapokkal) közelítünk

 tesszeláció

Raszterizáció

GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN v4 v6

GL_QUAD_STRIP

GL_POLYGON

GL_QUADS

Tesszeláció

- Vigyázzunk: "szép" (teljes oldalakban illeszkedő), 6-reguláris háromszög vagy "szép", 4-reguláris négyszöghálóval nem lehet bármit lefedni degenerált esetek nélkül!
- A fenti reguláris topológiákkal a végtelen síklap, vagy a végtelen hengerpalást, vagy pedig a tórusz topológiájának megfelelő felületek írhatóak le.

Tesszeláció

Tesszeláció

Tartalom

- 1 Tartalom
 - Motiváció
- ② Grafikus szerelőszalag
 - Áttekintés
 - Modellezési transzformácó
 - Nézeti transzformácó
 - Perspektív transzformácó
 - Vágás
 - Raszterizáció
 - Megjelenítés
 - Triviális hátlapeldobás
 - Festő algoritmus
 - Z-buffer
- 3 Lokális illumináció

Takarási feladat

- Feladat: eldönteni, hogy a kép egyes részein milyen felületdarab látszik.
- Objektum tér algoritmusok:
 - Logikai egységenként dolgozunk, nem függ a képernyő felbontásától.
 - Rossz hír: nem fog menni.
- Képtér algoritmusok:
 - Pixelenként döntjük el, hogy mi látszik.
 - Ilyen a sugárkövetés is.

Triviális hátlapeldobás, Back-face culling

- Feltételezés: Az objektumaink "zártak", azaz ha nem vagyunk benne az objektumban, akkor sehonnan sem láthatjuk a felületét belülről.
- Körüljárási irány: rögzítsük, hogy a poligonok csúcsait milyen sorrendben kell megadni:
 - óramutató járásával megegyező (clockwise, CW)
 - óramutató járásával ellentétes (counter clockwise, CCW)
- Ha a transzformációk után a csúcsok sorrendje nem egyezik meg a megadással, akkor a lapot hátulról látjuk

 nem kell kirajzolni, eldobható.

Festő algoritmus

- Rajzoljuk ki hátulró előre haladva a poligonokat!
- Ami közelebb van, azt később a rajzoljuk ⇒ ami takarva van, takarva lesz.
- Probléma: hogyan rakjuk sorrendbe a poligonokat?
- Már háromszögeknél is van olyan eset, amikor nem lehet sorrendet megadni.

Megjelenítés

Festő algoritmus

Z-buffer algoritmus

- Képtérbeli algoritmus
- Minden pixelre nyílvántartjuk, hogy ahhoz milyen mélységérték tartozott.
- Ha megint újra erre a pixelre rajzolnánk (Z-test):
 - Ha az új Z érték mélyebben van, akkor ez e pont takarva van
 ⇒ nem rajzolunk
 - Ha a régi Z érték mélyebben van, akkor az új pont kitakarja azt ⇒ rajzolunk, eltároljuk az új Z értéket.

Z-buffer

- Z-buffer vagy depth buffer: külön memóriaterület.
- Képernyő/ablak méretével megegyező méretű tömb.
- Pontosság: a közeli és távoli vágósík közti távolságtól függ.
- Minden pixelhez tartozik egy érték a bufferből.
- Ezzel kell összehasonlítani, és ide kell írni, ha a pixel átment a Z-teszten.
- Gyakorlatban:
 - 16-32 bites elemek
 - Hardveres gyorsítás
 - Pl: közeli vágósík: t, távoli: 1000t, akkor a Z-buffer 98%-a a tartomány első 2%-át írja le.

Z-buffer

Lokális illumináció

 Ha már megvannak a primitívjeink pixelekre való leképezései, valahogyan számítsunk színeket

Saját színnel árnyalás

- Minden objektumhoz/primitívhez egy színt rendelenünk, és kirajzoláskor el lesz a pixelek értéke.
- Leggyorsabb: az ilumináció gyakorlatilag egyetlen értékadás.
- Borzasztó: se nem valósághű, se nem szép.

Saját színnel árnyalás

Konstans árnyalás, Flat shading

- A megvilágítást poligononként egyszer számítjuk ki, a szín homogén a lapon belül.
- Gyors: a műveletek száma a poligonok számától függ, a pixelek számától független.
- Van hogy használható: íves részeket nem tartalmazó, diffúz, egyszinű objektumokra

Konstans árnyalás

Lokális illumináció

Gouraud árnyalás

- A megvilágítást csúcspontonként számítjuk ki, a lapon lineáris interpolációval számítjuk a színeket.
- Lassabb: N db megvilágítás számítás + minden pixelre interpoláció.
- Szebb: az árnyalás minősége nagyban függ a poligonok számától. Nagy lapokon nem tud megjelenni a csillanás.

Gouraud árnyalás

Phong árnyalás

- Csak a normálvektorokat interpoláljuk, a megvilágítást minden pixelre kiszámítjuk.
- Leglassabb: pixelek száma db megvilágítás számítás.
- Legszebb: az árnyalás minősége nem függ a poligonok számától. Csillanás akár poligon közepén is meg tud jelenni.

Phong árnyalás

Gouraud vs Phong árnyalás

