A Generative Model for Volume Rendering

Matthew Berger, Jixian Li, and Joshua A. Levine University of Arizona

Introduction

- Technique to synthesize and analyze volume-rendered images
- Using Generative Adversarial Model (GAN) model
- Dataset: volume rendered images, conditioned on
 - 1) viewpoint
 - 2) transfer function for opacity and color
- Byproduct
 - Guide the user in transfer function editing
 - Transform transfer function into a view-invariant latent space

Overall Process

Traditional Volume Renedering

- A basic algorithm
- Input parameter:
 - Input volumetric scalar field
 - Viewpoint
 - Opacity and color transfer function
- Composting

$$\mathbf{I}(x,y)_{i+1} = \mathbf{I}(x,y)_i + (1-\tau_i')\mathbf{c}_i\tau_i$$

$$\tau_{i+1}' = \tau_i' + (1-\tau_i')\tau_i,$$

(a) Volume Rendering

GAN based volume rendering

- This paper instead view volume rendering as a purely computational process
 - Using a generative model to approximate the function (see the right figure)
- Inputs:
 - viewpoints and TFs
- Outputs:
 - volume rendered images

Traing process

- Data preparation
 - Viewpoint
 - Randomly sampled
 - Opacity TF
 - Sample from a Gaussian mixture model
 - Randomly sample number of modes in the GMM (1-5)
 - Each model -> Gaussian model with a random mean and std
 - Color TF
 - First sample random color at opacity TF GMM means & scalar value global optimal
 - Then piecewise lerp

Network training

- Use GAN as a model
 - input of G: viewpoint and transfer function
 - Viewpoint information
 - nv parameters $v \in R^{nv}$
 - nv = 5 for azimuth, elevation, inplane rotation, and distance to the camera
 - TF information
 - to $\in \mathbb{R}^{nt}$
 - $tc \in R^{3nt}$
 - nt = 256, which is the sample step
 - Output of G: a color image I \in

- input of D: viewpoint, transfer function & an image
- Output of D: score 0-1 –
 whether the image is a true
 volume-rendering or is fake one
 produced by G

Network training (cont'd)

adversarial loss in a GAN

$$L_{adv}(G,D) = \mathbb{E}_{\mathbf{I},\mathbf{w} \sim p_{data}} \log(D(\mathbf{w},\mathbf{I})) + \mathbb{E}_{\mathbf{w} \sim p_{vis}} \log(D(\mathbf{w},G(\mathbf{w}))), \tag{4}$$

 generator and discriminator compete in a min-max game

$$\min_{G} \max_{D} L_{adv}(G,D).$$

Network design

- Generating 256x256 image difficult
 - Only at that time, InSituNet generate 256x256 image in one stage
- Solution: break the problem into two simpler generation tasks
 - Both represented as separate GANs

Opacity GAN

Network structure

Objective

 Combine adversarial loss with autoencoder loss

$$\min_{G} \max_{D} L_{adv}(G,D) + \|G_{dec}(G_{enc}(\mathbf{t}_{o})) - \mathbf{t}_{o}\|_{2}^{2},$$

Opacity-to-Color Translation GAN

The generator for the opacity-to-color translation GAN

- discriminator very similar to the Opacity GAN's discriminator
 - Main addition: inclusion of the color TF transformation
- Objective:

$$\min_{G} \max_{D} L_{adv}(G,D) + \lambda \|G(\mathbf{v},\mathbf{t}_{o},\mathbf{t}_{c}) - I\|_{1},$$

- I the ground truth image
- λ weights the importance of the I_1 loss.

Applications

- 1st application: transfer function sensitivity and exploration
- transfer function sensitivity σ : R -> R²⁵⁶

$$\sigma(R) = \nabla_{\mathbf{t}_o} \|G_t((G_o(\mathbf{v}, \mathbf{t}_o)), \mathbf{v}, \mathbf{t}_o, \mathbf{t}_c)\|_R,$$

- 1st feed input parameters into the network
- 2nd compute the I₂ norm of a region R
- 3rd perform backpropagation to compute opacity TF gradient

Visulization techniques

- Region Sensitivity Plots
 - plot σ directly with the opacity TF
- Example: right-hand side of the figure above
 - Region Sensitivity Plot for a user-specified region

Visulization techniques

- Scalar Value Sensitivity Field
 - 1st define a grid resolution r & divide the image into r x r blocks
 - 2nd $\sigma(R) = \nabla_{\mathbf{t}_o} \|G_t((G_o(\mathbf{v}, \mathbf{t}_o)), \mathbf{v}, \mathbf{t}_o, \mathbf{t}_c)\|_R,$
 - Compute TF sensitivity for for each block
 - Produce 3-tensor $S \in \mathbb{R}^{256xrxr}$
- Example: left hand-side in the figure above

Applications

- 2nd application: Exploring the Opacity TF Latent Space
- Make use of the 8-dim latent space for transfer function
- Steps:
 - 1. sample the latent space
 - Perfrom uniform sampling
 - Decode each sample to reconstruct a TF
 - Encode the set of TFs back into the latent space
 - 2. 2D Projection
 - Use t-SNE to project the latent vector into 2D space

Exploring the Opacity TF Latent Space (cont'd)

- Steps:
 - 3. Structured Latent Space Browsing
 - brush a 4 x 4 rectangular grid on the 2D projection
 - For a given cell, compute the mean & synthesize the image from the mean
 - Eg. Figure c (left)

(c) Transfer Function Latent Space Projection

Exploring the Opacity TF Latent Space (cont'd)

- Steps:
 - 4. Latent Space Interpolation
 - For a given point in the 2D projection (highlighted in blue, lower left)
 - scattered data interpolation of latent opacity
 - synthesized image shown at the upper-right

(c) Transfer Function Latent Space Projection

experimental results

• Steps:

- Dataset characteristics (left)
- Quantitative evaluation of the model (right)

Dataset	Resolution	Precision	Size (MB)	Rendering Model	Training Images Creation	Image RMSE	Color EMD
Combustion	170 × 160 × 140	float	15	No Illumination	2.7 hours	0.046	0.011
				Direct Illumination	5 hours	0.060	0.011
				Global Illumination	14 hours	0.060	0.010
Engine	$256 \times 256 \times 110$	byte	7	No Illumination	3 hours	0.061	0.015
Visible Male	$128 \times 256 \times 256$	byte	8	Global Illumination	14 hours	0.075	0.013
Foot	$256 \times 256 \times 256$	byte	16	No Illumination	3.3 hours	0.064	0.017
Jet	$768 \times 336 \times 512$	float	504	No Illumination	4 hours	0.086	0.022
Spathorynchus	$1024 \times 1024 \times 750$	byte	750	Global Illumination	5 days	0.116	0.020

experimental results

Discussion

- Potential future work
 - Train the network in-situ
 - Design a network to learn from both time-varying and multivariant data
 - Improve the quality of results
 - Apply depth based measurements
 - Explore different ways of sampling views and TFs
 - maybe data-driven manner
 - explore different kinds of TFs
 - One direction is 2D transfer functions
 - let the GAN condition on the volume
 - Consider GAN to synthsize TFs rather than images