Algoritmos y Estructuras de Datos III, TP2

Nicolás Chehebar, Matías Duran, Lucas Somacal

${\rm \acute{I}ndice}$

1.	Problema 1	2
	1.1. El Problema	2
	1.1.1. Descripcion	
	1.1.2. Ejemplos	2
	1.2. El Algoritmo sin podas	2
	1.2.1. Resumen	2
	1.3. Complejidad	2
	1.4. Experimentación	2
	1.4.1. Contexto	2
	1.4. Experimentación 1.4.1. Contexto 1.5. Conclusiones	2
2.	Problema 2.1	2
3.	Problema 2.2	2
4.	Problema 3	2

1. Problema 1

1.1. El Problema

1.1.1. Descripcion

Planteado de otra forma, el problema a resolver consiste en una situación en la que tenemos n trabajos $t_1, t_2, ..., t_n$ y dada cualquier división de los trabajos en dos secuencias $A = (t_{a_1}, t_{a_2}, ..., t_{a_{|A|}})$ y $B = (t_{b_1}, t_{b_2}, ..., t_{b_{|B|}})$ con $a_i < a_j \wedge b_i < b_j sii < j$ (cada secuencia representa las impresiones que realizo una impresona) tiene asociado un costo; donde este viene dado por la suma del costo de A y el de B. El costo de A es $\sum_{i=1}^{|A|} costo(t_{a_i}, t_{a_{i-1}})$ donde costo es una función que toma valores en \mathbb{N}_0 y $costo(t_i, t_j)$ esta definidio si i > j con $i \in [1, 2, ..., n] \wedge j \in [0, 1, ..., n-1]$ y represnta el costo de poner el trabajo i sobre el j (el costo de poner sobre el trabajo t_0 es el de ponerlo sobre la máquina vacía y $a_0 = 0$). El costo de B se calcula análogamente.

El problema pide dados los trabajos y la funcion de costo, dar A o B que minimice el costo y decir cuanto es este costo (basta dar uno de los dos ya que el otro se deduce por ser el complemento -en el conjunto de trabajos-)

1.1.2. Ejemplos

 $\frac{4}{2}$

 \blacksquare En el caso en que la entrada es 300 $\ 3$ tenemos 4 trabajos que sacando el primero son excesivamente 300 $\ 3$ $\ 3$ 300 $\ 3$ 3 $\ 3$

caros de poner por primera vez en una maquina, luego si ponemos todos en la misma, el costo sera 2+3+3+3=11 y una máquina tendrá todos los trabajos (si todos no estan en la misma, en algun momento pagamos 300 y el costo ya seria mayor a 11).

1.2. El Algoritmo sin podas

1.2.1. Resumen

1.3. Complejidad

1.4. Experimentación

1.4.1. Contexto

La experimentacion se realizó toda en la misma computadora, cuyo procesador era Intel(R) Atom(TM) CPU N2600 © 1.60GHz, de 36 bits physical, 48 bits virtual, con una memoria RAM de 2048 MB. Para experimentar, se calculó el tiempo que tardaba el algoritmo sin considerar el tiempo de lectura y escritura ni el tiempo que llevaba armar la matriz (ya que se leía un dato, se escribía la matriz y luego se leia el siguiente). El tiempo se medía no como tiempo global sino como tiempo de proceso, calculando la cantidad de ticks del reloj (con el tipo clock_t de C++) y luego se dividìa el delta de ticks sobre CLOCKS_PER_SEC. En todos los experimentos el tiempo se mide en segundos.

- 1.5. Conclusiones
- 2. Problema 2.1
- 3. Problema 2.2
- 4. Problema 3