University of Toronto (Mississauga Campus)

CSC411- Machine Learning and Data Mining

Neural Network Toolbox in Matlab

Tutorial 4 – Feb 9th, 2007

Basic Neural Network Toolbox Flow Diagram

	newlin	newp	newff
Description	Create a linear layer	Create a perceptron	Create a feed-forward
_			backpropagation network
model	net=newlin(PR,S,ID,L	Net=newp(PR,S,TF,LF)	Net=newff(PR,[S1 S2SN],(TF1
	R)		TF2TFN},BTF, BLF, PF)
PR	RX2 matrix of min and n	nax values for R input elemer	nts
S / Si	S: Number of elements (1	neurons) in the output	Si: Size of ith layer
****	vector		
ID	Input delay vector,		
	default = [0]		
LR	Learning rate,		
	default = 0.01		
TF		Transfer function:	TFi: Transfer function at ith layer
		(hardlim or hardlims)	(purelin, logsig or tansig)
BTF			BTF: Backprop network training
			function: (trainlm, trainbfg,
			trainrp, traingd or traingdx)
LF/BLF		LF: Learning function:	BLF: Backprop weight/bias
		(learnp or learnpn)	learning function: (learngd or
			learngdm)
PF	Performance measure:	Performance measure:	Performance measure:
	mse	mae	(mse or mae)

Ļ		newlin	newp	newff
	ΓF		Transfer function:	TFi: Transfer function at ith layer
			(hardlim or hardlims)	(purelin, logsig or tansig)

Transfer functions:

Used in newp:

hardlim (Hard Limit Trans Function)

hardlims (Symmetric Hard Lim Trans Function)

Ц				
		newlin	newp	newff
	TF		Transfer function:	TFi: Transfer function at ith layer
			(hardlim or hardlims)	(purelin, logsig or tansig)

Used in newff:

Tan-Sigmoid Tran Function

	newlin	newp	newff
Description	Create a linear layer	Create a perceptron	Create a feed-forward
			backpropagation network
BTF			BTF: Backprop network training
			function: (trainlm, trainbfg,
			trainrp, traingd or traingdx)

trainIm → trainbfg→trainrp

	newlin	newp	newff
Description	Create a linear layer	Create a perceptron	Create a feed-forward
			backpropagation network
LF/BLF		LF: Learning function:	BLF: Backprop weight/bias
		(learnp or learnpn)	learning function: (learngd or
			learngdm)
PF	Performance measure:	Performance measure:	Performance measure:
	mse	mae	(mse or mae)

Learning Function: learnp or learnpn

If input vectors have a large variance in their lengths, the *learnpn* can be faster than *learnp*

Performance Function: mse or mae

mse: Mean squared error performance function

mae: Mean absolute error performance function

Basic Neural Network Toolbox Flow Diagram

Neural Network Training: adapt and train

	Adapt	Train	
Syntax	$[\mathbf{net}, \mathbf{Y}, \mathbf{E}, Pf, Af] = adapt(\mathbf{net}, \mathbf{P}, T, Pi, Ai)$	[net, tr]=train(net,P,T,Pi,Ai)	
Parameters	Net: network		
	P: Network inputs		
	T: Network targets, default = 0 (optional in	adapt)	
	Pi: Initial input delay conditions, default =0	(optional)	
	Ai: Initial layer delay conditions, default =() (optional)	
Returns	Net: new network	Net: new network	
	Y: Network outputs	Tr: Training record (i.e., epoch)	
	E: Network Errors		
	Pf: Final input delay conditions		
	Af: Final layer delay conditions		
Related	Net adaptFcn='trains' Net trainFcn='trainb': batch training		
concepts		Net trainFcn = 'trainc': online training	
Conclusions	Adapt takes more time then Train		
	 Train provides more choice in training functions (gradient descent, Levenberg- 		
	Marquardt, etc)		
	For static networks, Usually train is a better choice		

Basic Neural Network Toolbox Flow Diagram

Neural Network Simulation: sim

```
aim simulates neural networks
[Y, Pf, Af] = sim(net, P, Pi, Ai) takes.
      net. - Network
      P - Network inputs.
      Pi – Initial input delay conditions, default = zeros.
      Ai – Initial layer delay conditions, default = zeros.
and returns,
      Y - Network outputs.
      Pf - Final input delay conditions.
      Af - Final layer delay conditions.
```

Example – Rewrite XOR Problem

XOR

I₁ I₂ Out

Network Structure Creation

Matlab Command: newlin, newp, newff

Training the Network

Matlab Command: train or adapt

Simulation

Matlab Command: sim

```
%Input Data P
           P = [1 \ 1 \ 0 \ 0; \ 1 \ 0 \ 1 \ 0];
           %Target Data T
           T = [0 \ 1 \ 1 \ 0];
     Monstruct the Neural Network
     %net = newff(PR, [S1..Sn], {TF1 ...TFn}, BTF, BLF, PF);
net=newff([0 1; 0 1], [2 1], { tansig 'purelin'}, 'trainlm');
     WUpdate the parameters for the training
    net.trainParam.epochs=10000;
    net. trainParam. show=5:
        %Train the neural network
        net=train(net, P, T);
         %Simulate the neural network
         Y=sim(net, P);
```

References:

- Matlab Help Desk: http://www-ccs.ucsd.edu/matlab/helpdesk.html
- Neural Network Toolbox in Matlab 2006:

http://www.control.hut.fi/Kurssit/AS-74.3115 /Materiaali /Material2007/ Neural_Network Toolbox Slides.pdf

•Neural Network Toolbox: A tutorial for the Course Computational Intelligence: http://www.igi.tugraz.at/lehre/EW/tutorials/nnt_intro/nnt_intro.pdf