SWIFTPICK

CS-GY 6513 Big Data Final Project Professor Juan Rodriguez

Name:

Ping Chang (ypc231), Kevin Lee (kl3642), Guan Cherng Lin (gl2547), Wei-heng Lin (whl318)

Table of contents

01

Intro and Methodology

What is SwiftPick?

03

Demo

SwiftPick in action

02

EDA & Results

Taxi trip insights and analysis

04

Conclusion

What can we improve?

What are we proposing?

The motivation behind this project stems from the increasing demand for data-driven decision-making in the ride-sharing industry. As the volume of data generated by these platforms continues to grow, there is a compelling need for efficient tools that can handle large datasets and extract meaningful insights.

This project focuses on creating a web application that empowers users to input specific time windows and geographical locations to obtain insights into average trip costs and strategic recommendations for drivers to maximize profitability.

Intro & Methodology

What is SwiftPick?

In the dynamic landscape of urban transportation, the advent of big data has opened unprecedented avenues for enhancing the efficiency and customer experience of taxi services.

Web App

Interactive big data web application

Predictions

Accurately predicting the cost of taxi rides

Insights

Intelligently guiding drivers to optimal pickup locations

Technologies Used

EDA & Results

Data Exploration

Utili

Utilizing data from 2022 onwards

Data Exploration

Focussing on yellow taxi data

Machine Learning

K-Means Clustering

- To identify most favorable areas for driver positioning
- Clustering geographical coordinates
- Incorporated time-specific data analysis

Zone_PU	DOLocationID	PULocationID	Passenger_count	Trip_distance	time_diff	tpep dropoff_datetime	tpep_pickup_datetime	
Midtown North	162	163		0.54	-21	2022-12-31 14:43:37	2022-12-31 14:39:43	0
Queensbridge/Ravenswood		193		1.54	14	2022-12-31 15:25:34	2022-12-31 15:14:12	1
West Chelsea/Hudson Yards	249	246		2.20	-21	2023-01-01 14:52:58	2023-01-01 14:39:59	2
Lenox Hill East	177	140		11.69	-29	2023-01-01 15:06:57	2023-01-01 14:31:15	3
Manhattan Valley	239	151		1.61	-17	2023-01-01 14:50:40	2023-01-01 14:43:04	4

	Cluster	Centroid	Longitude	Centroid Latitude
0	1		-73.784329	40.640388
1	3		-73.871681	40.773241
2	4		-73.958292	40.785653
3	2		-73.996985	40.733642
4	0		-73.975715	40.762317

K-Means Processing

- Identifies high-demand area clusters
- Generate location specific recommendations
- Position to reduce idle time (maximize profitability)

Architecture & Demo

Web App Architecture

Future & Conclusion

"The future depends on what we do in the present."

Future Implementations

Real-time Data Collection

Collaborate with real-time data to present real-time estimations

Platform Integration

Apache Kafka MongoDB

Expand Scopes in ML

More details added, more effective data processing

User-centric Upgrades

More comprehensive and beneficial for both drivers and passengers

Conclusion

What is SWIFTPICK?

The application pioneers the use of predictive technology in urban transportation.

Our Solutions

- Analyzing data of taxi ride in the past
- Integrating location data in real time
- Predict fares and guiding drivers to optimal pick-up locations.

Technology

- Pyspark/ Matplotlib
- Machine Learning
- Web development

The Future

What We Have Learned?

Thanks!

Q&A

