Enunţuri:

1. Fie
$$A = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 2 & 3 & 2 & -1 \\ 3 & 2 & 4 & 2 \end{pmatrix}$$
.

- (a) Determinați dimensiunea subspațiului $L=\left\{x\in\mathbb{R}^4|Ax=0\right\}$ și o bază a acestuia;
- (b) Determinați o descompunere $\mathbb{R}^4 = L \oplus L_0$;
- (c) Descompuneți vectorul x = (1, 2, 1, 2) ca suma dintre un vector din L și unul din L_0 .
- 2. Fie aplicația liniară $T: \mathbb{R}^3 \to \mathbb{R}^3$,

$$T(x,y,z) = (-7x + 2y + 2z, -8x + 3y + 2z, -32x + 8y + 9z).$$

- (a) Determinați matricea lui T în raport cu baza canonică;
- (b) Fie baza $\mathcal{B} = \{v_1, v_2, v_3\}$, unde $v_1 = (1, 1, 4), v_2 = (1, 0, 4), v_3 = (0, 1, -1)$. Determinați matricea lui T în raport cu baza \mathcal{B} .
- 3. Fie aplicația liniară $T: \mathbb{R}^4 \to \mathbb{R}^3$,

$$T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 + x_4, 2x_1 - 3x_2 + x_3 - x_4, x_1 - 2x_2 - 2x_4).$$

Determinați cîte o bază în Ker(T) și în Im(T).

4. Fie V un spațiu vectorial și $L \subset V$ un subspațiu. Fie

$$Ann(L) := \{ f \in V^* | f(x) = 0, \forall x \in L \}.$$

- (a) Dacă dim(V) = n și dim(L) = m determinați dim(Ann(L)).
- (b) Dacă $V = \mathbb{R}^4$ (văzut ca spațiul vectorilor coloană), V^* văzut ca spațiul vectorilor linie și L = Span((1,0,1,1),(-2,1,1,0)), determinați Ann(L).
- 5. Fie $V^{**}:=(V^*)^*$. Să se arate că există un izomorfism $\Phi:V^{**}\to V$ care nu depinde de alegerea unei baze.

Exercițiile 4 și 5 constituie temă bonus (contează la nota finală de seminar). Indicații:

- 1. (a) Rezolvaţi sistemul şi găsiţi un sistem fundamental de soluţii;
 - (b) Completați baza lui L la o bază a lui \mathbb{R}^4 . Spațiul L_0 este generat de vectorii adăugați.
 - (c) Orice $x \in \mathbb{R}^4$ trebuie să se scrie ca $x = x_0 + x_1$ cu $x_0 \in L_0$ şi $x_1 \in L$. Observați că dacă ați determinat unul dintre acești vectori (să zicem x_1 atunci $x_0 = x x_1$). O metodă ar fi pornind de la observația că $Ax = Ax_0 + Ax_1$.
- 2. Aplicați definiția în ambele cazuri. Sau la punctul b) folosiți formula de schimbare a bazei pentru aplicații liniare. Se poate aplica și metoda Gauss!
- 3. Ker(T) se calculează cu definiția. Pentru Im(T) folosiți faptul că un sistem de generatori in acesta este format de imaginea unui sistem de generatori din \mathbb{R}^4 .

Dacă trimiteți rezolvările pe e-mail veți primi feed-back. Pentru întrebări folosiți Zulip, streamul Algebra si Geometrie/131 (va trebui să faceți un cont în prealabil).