Week 2 Workshop Example Solutions

Example 6:

The initial voltage at t = 0 across the capacitor is v(0) = 10 V×4 k Ω /10 k Ω = 4 V.

For $0 \le t \le 0.5$ ms, $\tau = R_2C = 4000 \times 0.25 \times 10^{-6} = 1$ ms, $1/\tau = 1000$. $v(t) = 4 \exp(-1000t) u(t) V$.

At t = 0.5 ms, $V_1 = v(0.5 \text{ ms}) = 4 \exp(-0.5) = 2.4261 \text{ V}$

For 0.5 ms \leq t, the final value is $v(\infty)$ = 20 V×4 k $\Omega/10$ k Ω = 8 V. R_{eq} = R_2 | | R_3 = 2.4 k Ω

For 0.5 ms \leq t, τ = R_{eq}C = 2400×0.25×10⁻⁶ = 0.6 ms, $1/\tau$ = 1666.6667 (1/s).

For $0.5 \text{ ms} \leq t$,

 $v(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] = [8 - 5.5739exp(-1666.6667(t - 0.0005))] \ u(t) \ V(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) \ u(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ v(t) \ u(t) = [8 + (2.4261 - 8)exp(-1666.6667(t - 0.0005))] \ u(t) \ u($