BigQuery

프로젝트 및 데이터 세트 만들기

- 수업시간에 다룬 아래 링크로 들어가 Google Cloud Platform Project를 하나 생성합니다.
- 단, 이때 프로젝트 이름에 언더바(underscore, _)가 들어가면 안 됩니다!

https://console.cloud.google.com/bigguery v - 0 ⑤ SQL 작업공간 - BigQuery - Go: x + C a console.cloud.google.com/projectselector2/bigquery?supportedpurview=project 其 □ 日 日 日本 Q, 검색 제품, 리소스, 문서(/) 5 0 A I SQL 작업공간 BigQuery 프로젝트 만들기 이 페이지를 보려면 프로젝트를 선택하세요 Q SQL 작업공간 데이터 전송 예약된 쿼리 Analytics Hub 마이그레이션 SQL 변환 모니터링 BI Engine 歐 출시노트

Personal

Google

Account

SNU

G Suite

Account

• 그런 다음 아래 링크를 클릭하면 아래 이미지처럼 왼쪽 탭에 bigquery-public-data가 하나 생성됩니다.

https://console.cloud.google.com/bigquery?project=bigquery-public-data&page=project

● 펼쳐서 사용할 데이터 하나를 골라줍니다 (웬만하면 ml-dataset 중 하나를 고르는게 편할 것 같습니다... 나머지는 전처리 고민이 많아 보여요)

● 데이터를 하나 골랐다면, 해당 데이터를 클릭한 뒤 DETAIL로 들어가 Table ID를 복사합니다.

- 만들어둔 프로젝트로 돌아간 뒤, 데이터를 한 번 확인해봅니다.
- Query: SELECT * FROM `TABLE_ID`
 - 주의: 여기서 Table ID 주변 첨자는 "(따옴표)가 아니라 숫자 키 1 옆에 있는 `` (grave accent)
 - Mac의 경우 한글 입력상태에서는 _(option)과 동시에 눌러야 합니다.

- 데이터 세트를 만들기 위해서는 프로젝트 옆 점 3개 버튼을 누르면 나오는 "Create dataset" 버튼을 눌러준 뒤, 나타나는 팝업창에 데이터 세트 아이디를 임의로 만들어서 입력해줍니다.
- 단데이터 세트 아이디에는 dash(-)는 안 되고 언더바(_)만 사용 가능!

학습 데이터 생성

- 무료계정(Sandbox)의 특성상 public dataset마저도 그대로 사용할 수 없기 때문에 학습 데이터를 만들기 위해서는 CREATE VIEW를 통해 VIEW를 만들어줘야 합니다.
- 단, VIEW를 만들 때 주의할 점은
 - 한 번 만들어진 VIEW는 수정이 불가능합니다. 따라서 VIEW를 만든 이후에 feature selection을 할 수 없고, 먼저 사용할 feature를 고른 다음 VIEW로 불러와야 합니다.
 - 몇 종류의 전처리는 VIEW를 만들 때 수행해주는 것이 좋습니다.
 - 날짜 형식에서 연도와 월 변수를 뽑는 경우 (2022.05.15 -> 2022, 5)
 - NULL value 제거
 - Training test prediction용 데이터를 직접 구분해주는 경우
 - 실행해본 결과 prediction용 데이터는 직접 구분해주는 것이 좋을 것 같습니다...
 안해주니까 전체 데이터를 대상으로 prediction하네요
 - 그런 의미에서 데이터 고를 때도 prediction 구분 기준을 만들 수 있는 데이터를 고르는 게 좋아 보입니다(ex. 데이터 고유 아이디가 부여되어 있다든지...)

• 데이터를 살펴봅시다.

미리 걸러낼 수 있는 부분은 아예 걸러낸 다음에 VIEW로 만들어주는 것이 편할 것 같습니다...

pay_0 ~ pay_6은 범위를 벗어나는 값이 너무 많아 아예 배제!

● VIEW 만들 수 있는 쿼리

```
CREATE OR REPLACE VIEW `card_data.card_view` AS
SELECT limit_balance, sex, marital_status, age,
(bill_amt_1+bill_amt_2+bill_amt_3+bill_amt_4+bill_amt_5+bill_amt_6)/6 AS
avg_bill_amt,
                                                                                          전처리
(pay_amt_1+pay_amt_2+pay_amt_3+pay_amt_4+pay_amt_5+pay_amt_6)/6 AS
avg_pay_amt,
default_payment_next_month,
CASE
WHEN education_level = '1' THEN '1'
WHEN education_level = '2' THEN '2'
WHEN education_level = '3' THEN '3'
FLSF '0'
END AS education,
CASE
WHEN MOD(CAST(id AS INTEGER), 10) < 7 THEN "training"
WHEN MOD(CAST(id AS INTEGER), 10) >= 7 AND MOD(CAST(id AS INTEGER), 10) <
                                                                                       Training / Validation / Test 구분
9 THEN "evaluation"
ELSE "prediction"
END AS annotation
FROM `bigquery-public-data.ml_datasets.credit_card_default`
                                                                             NULL Value 제거
WHERE marital_status > '0' and education_level > '0'
```

● 만들어진 VIEW 확인

• CSV file로 저장 및 확인 가능!

데이터 전처리 및 모델 생성

- 기본적으로 모델 생성과 동시에 전처리를 지정할 수 있습니다.
 - (개인적으로 전처리는 label encoding, 더미변수화와 표준화 정도만 해주면 충분할 것 같습니다.)
- 전처리에는 크게 2가지!
 - 모델을 생성할 때 수동 전처리하는 방법
 - SQL 구문을 활용한 전처리 (주로 더미변수화)
 - BigQuery에서 직접 제공하는 사전처리 함수를 사용한 전처리 (주로 표준화)

 https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-preprocessing-functions
 - TRANSFORM 명령어를 사용한 자동 전처리
- 주의할점
 - TRANSFORM을 사용하는 경우, TRANSFORM에 명시한 Feature만 모델에 포함되는 것 같습니다.
 - 모델 생성 후 SCHEMA를 통해서 확인할 수 있음
 - 이 말인즉슨 TRANSFORM을 사용하면 전처리가 필요 없는 값도 자동으로 전처리를 해줘야 하는 문제 발생
 - TRANSFORM을 사용할 경우, target variable이 반드시 TRANSFORM 안에 포함되어야 합니다!

모델 생성시 SQL을 통한 수동 전처리 전체 쿼리

WHERE annotation = "training"

```
CREATE OR REPLACE MODEL `card data.card model manual2`
OPTIONS (
model_type = "LOGISTIC_REG",
auto_class_weights=TRUE,
data_split_method="NO_SPLIT",
                                                       Target에도 전처리를 해주었다면, 전처리 후
input_label_cols=["is_default"
                                                       생성해준 column 이름을 Target에 넣어주어야함!
) AS
SELECT
IF (sex = '1', 1, 0) AS is_male,
IF (marital_status = '1', 1, 0) AS is_married,
IF (marital_status = '2', 1, 0) AS is_single,
IF (education = '1', 1, 0) AS is_graduate,
                                                                 One-hot Encoding SQL query
IF (education = '2', 1, 0) AS is_univ,
IF (education = '3', 1, 0) AS is_high,
IF (default_payment_next_month = '1', 1, 0) AS is_default,
ML.STANDARD_SCALER(limit_balance) OVER() as std_balance,
ML.STANDARD_SCALER(age) OVER() as std_age,
                                                                 표준화 using 사전처리 함수
ML.STANDARD_SCALER(avg_bill_amt) OVER() as std_bill,
ML.STANDARD_SCALER(avg_pay_amt) OVER() as std_pay
FROM `card_data.card_view`
```

- TRANSFORM을 통한 자동 전처리
 - 그냥 변수만 집어넣으면 알아서 아래와 같이 해준다고 합니다.

Feature Type	TRANSFORM 변환 내역	비고
숫자형 (INT64, NUMERIC, BIGNUMERIC, FLOAT64)	Standardization	변수에서 평균을 빼고 표준편차로 나누는 작업
BOOLEAN, STRING, BYTES, DATE, DATETIME, TIME	One-hot Encoding	한 Feature에 K개의 서로 다른 값이 있다면 K-1개의 변수가 새로 생성
ARRAY	Multi-hot Encoding	마 청 & 전 사 처럼 N 개의 feature를 개짜리의 bit로

● TRANSFORM을 통한 자동 전처리 전체 쿼리

• 결과 비교

- 결과 비교
- Score Table
- 자동 전처리

● 수동 전처리

Aggregate Metrics @

Threshold ②	0.5000
Precision 2	0.2760
Recall 2	0.7069
Accuracy 2	0.5371
F1 score 2	0.3970
Log loss 🔞	0.6867
ROC AUC @	0.6379

Aggregate Metrics @

Threshold 2	0.5000
Precision 2	0.2727
Recall ②	0.6846
Accuracy 2	0.5386
F1 score 🔞	0.3901
Log loss 🛭	0.6869
ROC AUC @	0.6261

ROC Curve

• 자동 전처리

• 수동 전처리

모델 options 설정

- 어떤 모델을 사용할지, Training-validation을 어떤 비율로 분할할지, hyper-parameter는 어떻게 할지를 모두 결정
 - OPTIONS()라는 명령 안에 넣어서 처리
- 모델 설정
 - o model_type="사용할_모델_이름"의 형식으로 지정하며, 사용할 수 있는 모델에는 다음이 있습니다. (하이라이트된 부분은 hyper-parameter tuning 가능 모델)
 - Regression:
 - LINEAR_REG, BOOSTED_TREE_REGRESSOR, DNN_REGRESSOR,
 DNN_LINEAR_COMBINED_REGRESSOR, AUTOML REGRESSOR,
 - Classification:
 - LOGISTIC_REG, BOOSTED_TREE_CLASSIFIER, DNN_CLASSIFIER, DNN_LINEAR_COMBINED_CLASSIFIER, AUTOML CLASSIFIER
 - Others
 - KMEANS, MATRIX_FACTORIZATION, TENSORFLOW, PCA, ARIMA, AUTOENCODER
 - 참고로, 여기서 사용하는 boosting 방법은 XGBoost를 따른다고 합니다.

Data-split method

- Training-Validation 비율 나누는 방법을 정하는 argument
- 주로 "DATA_SPLIT_METHOD"와 "DATA_SPLIT_EVAL_FRACTION"를 사용합니다.
- DATA_SPLIT_METHOD의 값으로는 'AUTO_SPLIT', 'RANDOM', 'CUSTOM', 'SEQ', 'NO_SPLIT'를 사용하며
 - 이중 AUTO_SPLIT, RANDOM, NO_SPLIT을 제일 많이 사용할 것 (같습니다...)
 - AUTO_SPLIT
 - 데이터가 500개보다 적은 경우 전체를 학습에 사용
 - 데이터가 500 ~ 50000개인 경우 데이터의 20%를 validation set으로 사용
 - 50000개보다 많은 경우 10000개를 validation set으로 사용

RANDOM

- Scikit-learn train_test_split의 shuffle과 비슷하게 데이터를 랜덤으로 추출
- 이 경우 DATA_SPLIT_EVAL_FRACTION에 몇 %를 validation으로 사용할지 지정해야 합니다.
- NO_SPLIT
 - 이미 validation set으로 사용할 데이터까지 지정해둔 경우에 사용합니다.

Model Evaluation & Prediction

Evaluation

기본적인 쿼리의 형태는 아래와 같습니다.

- 이때, TRANSFORM을 통해 전처리를 해준 경우, 여기서 다시 TRANSFORM을 사용하지 않아도 됩니다.
 - 원칙적으로는 TRANSFORM 속에 있던 column들은 모두 SELECT query에 포함해주어야 한다고 하지만, 포함하든 포함하지 않든 결과는 동일한 것 같습니다.
- 한편, 수동으로 전처리를 한 경우 전처리에 사용한 query를 그대로 모두 옮겨 적어주어야 합니다.
 - 실제 dataset의 column과 전처리 도중에 새로 생겨난 column이 서로 달라지는 문제가 발생하기 때문
- 다만 자동 전처리의 경우 Evaluation과 Prediction을 할 때마다 전처리를 수행하기 때문에, 수동 전처리의 경우보다 시간이 더 오래 걸릴 수는 있습니다.

• 자동 전처리 사용했을 때의 쿼리

수동 전처리 사용했을 때의 쿼리

```
SELECT * FROM
ML.EVALUATE(MODEL `card_data.card_model_manual`,
   SELECT
   IF (sex = '1', 1, 0) AS is_male,
   IF (marital_status = '1', 1, 0) AS is_married,
   IF (marital_status = '2', 1, 0) AS is_single,
   IF (education = '1', 1, 0) AS is_graduate,
   IF (education = '2', 1, 0) AS is_univ,
   IF (education = '3', 1, 0) AS is_high,
   IF (default_payment_next_month = '1', 1, 0) AS is_default,
   ML.STANDARD_SCALER(limit_balance) OVER() as std_balance,
   ML.STANDARD_SCALER(age) OVER() as std_age,
   ML.STANDARD_SCALER(avg_bill_amt) OVER() as std_bill,
   ML.STANDARD_SCALER(avg_pay_amt) OVER() as std_pay
   FROM `card_data.card_view`
   WHFRE annotation="evaluation"
```

• 자동 전처리 사용했을 때의 Validation 결과

Query results **≛** SAVE RESULTS ▼ **JSON** JOB INFORMATION RESULTS **EXECUTION DETAILS** log_loss Row precision recall f1_score roc_auc accuracy 0.73913043478260865 0.26315789473684209 0.53146853146853146 0.38812785388127852 0.6878599702258581 0.64870429570429566

• 수동 전처리 사용했을 때의 Validation 결과

Query results							
JOB	INFORMATION	RESULTS	JSON	EXECUTION DETAILS			
Row	precision	recall		accuracy	f1_score	log_loss	roc_auc
1	0.2523364485981308	233644859813081 0.70434782608695656		0.52097902097902093 0.37	0.37155963302752293	0.63549550449550452	

Prediction

• 자동 전처리 사용했을 때의 쿼리

```
SELECT * FROM
ML.PREDICT(MODEL `card_data.card_model2`,
(
    SELECT *
    FROM `card_data.card_view`
    WHERE annotation="prediction"
)
)
```

• 수동 전처리 사용했을 때의 쿼리

```
SELECT * FROM
ML.PREDICT(MODEL `card_data.card_model_manual`,
 SELECT
 IF (sex = '1', 1, 0) AS is_male,
 IF (marital_status = '1', 1, 0) AS is_married,
 IF (marital_status = '2', 1, 0) AS is_single,
 IF (education = '1', 1, 0) AS is_graduate,
 IF (education = '2', 1, 0) AS is_univ,
 IF (education = '3', 1, 0) AS is_high,
 IF (default_payment_next_month = '1', 1, 0) AS is_default,
 ML.STANDARD_SCALER(limit_balance) OVER() as std_balance,
 ML.STANDARD_SCALER(age) OVER() as std_age,
 ML.STANDARD_SCALER(avg_bill_amt) OVER() as std_bill,
 ML.STANDARD_SCALER(avg_pay_amt) OVER() as std_pay
 FROM `card data.card view`
 WHERE annotation="prediction"
```

- Prediction
- 자동 전처리 사용했을 때의 결과

Query results

JOE	INFORMATION	RESULTS	JSON	EXECUTION DETAILS	
Row	predicted_default_pa	yment_next_month	≎ pred	dicted_default_payment_next_month_probs	
1	1 • [{ "label": "1", "prob": "0.51157269938864525" }, { "label": "0", "prob": "0.488-			bel": "1", "prob": "0.51157269938864525" }, { "label": "0", "prob": "0.48842730061135475" }]	
2	0		[{ "label": "1", "prob": "0.497601823353766" }, { "label": "0", "prob": "0.502398176646234" }]		
3	0		▼ [{ *la	bel": "1", "prob": "0.49201102678921171" }, { "label": "0", "prob": "0.50798897321078829" }]	
4	0		▼ [{ *la	bel": "1", "prob": "0.4825089987874272" }, { "label": "0", "prob": "0.51749100121257285" }]	
5	1		▼ [{ *la	bel": "1", "prob": "0.505870782333104" }, { "label": "0", "prob": "0.494129217666896" }]	

• 수동 전처리 사용했을 때의 쿼리

Query results

JOB	INFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	predicted_is_default	≎ predicted	d_is_default_pr	obs
1	1	▼ [{ "label":	"1", "prob": "0.5	3584485029369855"), { "label": "0", "prob": "0.46415514970630145" }]
2	1	▼ [{ "label":	"1", "prob": "0.5	0576087811048931"), { "label": "0", "prob": "0.49423912188951069" }]
3	1	▼ [{ "label":	"1", "prob": "0.5	3123538712964058"), { "label": "0", "prob": "0.46876461287035942" }]
4	1	▼ [{ "label":	"1", "prob": "0.5	32785386955933" }, { "label": "0", "prob": "0.467214613044067" }]
5	0	▼ [{ "label":	"1", "prob": "0.4	9601932818982442" }, { "label": "0", "prob": "0.50398067181017558" }]

(Optional) Hyper-parameter tuning

○ 역시 OPTIONS()에 계속해서 추가해줌으로써 수행할 수 있고, 들어갈 수 있는 argument로는 다음이

있다. Parameter	의미	가능한 값들	예시 및 기타
NUM_TRIALS	Tuning에 사용할 모델의 최대 개수	정수형, 1 ~ 100	
MAX_PARALLEL_TRIALS	Tuning에서 동시에 돌아갈 모델의 개수	정수형, 1 ~ 5	
HPARAM_TUNING_ALGO RITHM	Tuning 알고리즘	'VIZIER_DEFAULT', 'RANDOM_SEARCH', 'GRID_SEARCH' 중 1	VIZIER_DEFAULT가 default & recommended
조정 및 실험해 hyperparameter hyperparameter 후보들		HPARAM_RANGE(min, max), HPARAM_CANDIDATES([c andidates]) 중 1	ex. boosting의 경우 MAX_TREE_DEPTH=HP ARAM_RANGE(3, 6)
HPARAM_TUNING_OBJE CTIVES	Tuning 모델 평가에 사용할 지표	STRING	"roc_auc", "mean_squared_error"

https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-hyperparameter-tuning

- (Optional) Hyper-parameter tuning (continued)
 - 전체 쿼리 및 best model 확인
 - https://medium.com/google-cloud/hyperparameter-tuning-directly-within-bigquery-ml-a0affb0991ae

```
CREATE OR REPLACE MODEL `card data.card model5`
TRANSFORM(
sex, marital_status, education,
default_payment_next_month,
limit_balance, age, avg_bill_amt, avg_pay_amt
OPTIONS (
model_type = "BOOSTED_TREE_CLASSIFIER",
num_trials = 5.
max_tree_depth=hparam_range(3, 6),
learn_rate=hparam_candidates([0, 0.1, 0.25, 0.4]),
auto_class_weights=TRUE.
data_split_method="NO_SPLIT",
input_label_cols=["default_payment_next_month"]
) AS
SELECT
* EXCEPT(annotation)
FROM `card_data.card_view`
WHERE annotation = "training"
```


- (Optional) Hyper-parameter tuning (continued)
 - Prediction의 경우 자동으로 best model을 사용해서 prediction함

```
SELECT * FROM
ML.PREDICT(MODEL `card_data.card_model5`, (
    SELECT * FROM `card_data.card_view`
    WHERE annotation="prediction"
)
)
```


- 느낀점
 - 왜 쓰지...
 - 데이터 찾는 게 은근히 까다롭다...
 - 데이터 찾는 팁(?)
 - 텍스트 적고 숫자 많은 데이터
 - Row 수가 꽤 많은 데이터 (최소 3000개 이상)
 - ID 등 뭔가 임의의 식별자가 포함된 데이터 → Training Validation Prediction 나누기 쉬움
 - 검색해보면서 훑어본 거지만 뭔가 trip에 관련된 데이터나 cms_medicare 안에 들어 있는데이터가 해볼 만해 보였습니다...