

Algorithmen und Datenstrukturen

Wintersemester 2018/19 10. Vorlesung

Das Auswahlproblem

"Kleine Vorlesungsevaluierung": Ergebnisse

Was läuft gut?	
Angemessenes Tempo	11
Gute Erklärungen	79
Es wird auf Fragen eingegangen	32
Gute Folien	61
Gute Vorlesungsstruktur	20
Viele anschauliche Beispiele	16
Studierende werden miteinbezogen	24
Kompetenter Dozent	1
Gute Buchempfehlung	1
Zwischentests	2
Gute Übungsaufgaben	4
Engagierter Dozent	7
Erklärungen an der Tafel	3
Umfangreiche Informationen	1
Nutzung des Mikrofons	21
Gute Lernatmosphäre in der VL	5
Donnerstags ab 8:30 Uhr	2
IPE-Grafiken	1
Dozent spricht frei	1

"Kleine Vorlesungsevaluierung": Ergebnisse

Was sollte verbessert werden?

711 langeam

Zu langsam	_
Tempo zu schnell	23
Viel zu schneller Einstieg	1
Anfangs zu schnell, mittlerweile ok	1
Teilweise sehr abstrakter Inhalt	4
Zu viele Vorkenntnisse nötig	20
Übungen zu schwer, da Vorlesungsstoff zum Teil zur Bearbeitung unzureichend	9
Zu viel Stoff pro Vorlesungseinheit/zu schnelle Abarbeitung einzelner Themen	6
Folien werden bei vielen Änderungen unübersichtlich. Folien ab & zu "aufräumen"	9
Eine kurze Pause in der Mitte der Vorlesung	2
Antworten von Studierenden nochmal kurz erläutern	1
Vorkurs für ADS	1
Kurze Wh. der letzten Vorlesung am Anfang oder wenn Stoff aufgegriffen wird	5
Mehr Erklärungen in den Folien um diese daheim nachzuarbeiten	5
Pseudocode anfangs genauer erklären	1
Mehr Beispiele	4
Eindeutige Definitionen der Grundlagen	2
Keine Zeit für Diskussionen	1
Praktische Anwendungen des Stoffs erläutern	4
Weniger Sortieralgorithmen	1
Mehr PABS-Aufgaben	1

"Kleine Vorlesungsevaluierung": Ergebnisse

Übungsaufgaben schwer verständlich.	3
Kritik an fehlender Mitarbeit weglassen.	1
Es fehlt richtiges Skript mit zusätzlichen Beispielen & ausführlichen Erklärungen.	7
Mehr Zeit für Denkaufgaben.	4
Es wird nicht lang genug auf Stoff eingegangen (z.B. O-Notation).	1
Undeutlich wann die Regularitätsbedingung der Meistermethode gebraucht wird.	3
Mehr Zeit für Grundlagen	1
Anfangs evtl mal Java-Code statt Pseudocode präsentieren	1
Begriffe werden teilweise nicht erklärt	1
Die Vorlesung ist scheiße, weil der Dozent Arrays mit Index 1 anfängt.	9
A[I-r] statt $A[Ir]$	1
Skript morgens online stellen, so dass man es für Notizen ausdrucken kann.	4
Übungslösungen evtl. online fehlt oder zumindest beim Übungsleiter	1
Übungsleiter ist etwas penibel	1
Besseres Bestimmen der Wahrscheinlichkeit der Indikator-Zufallsvariablen	1
Deutsche Version von Carmen online öffentlich machen	1
Repititorium nicht nur vor Nachklausur sondern (auch?) vor Erstklausur.	1
Skripte mit Buch verbinden.	1
8 Uhr ist zu früh	1
Mehr Tafeleinsatz	1
Algorithmen ein bisschen näher erklären:	
z.B. was ist $A[i]$? z.B. an einem Bild auch bei HeapSort (wie 8. Vorlesung).	1

Analyse von Messreihen

Problem: Gegeben eine Reihe von n Messwerten A[1..n],

finde einen "guten" Mittelwert.

Beispiel:

Beob.:

Der Median ist stabiler gegen Ausreißer als das arithmetische Mittel.

Berechnung?

Das Auswahlproblem

Aufgabe: Gegeben ein Feld A[1..n],

finde das i.-kleinste Element von A.

Lösung: Sortiere und gib A[i] zurück!

Worst-Case-Laufzeit: $\Theta(n \log n)$ [wenn man nichts über die Verteilung der Zahlen weiß]

Geht das besser?

Spezialfälle

```
i = \lfloor \frac{n+1}{2} \rfloor: Median
                  Geht das auch in linearer Zeit??
                  i = 1: Minimum
i = n: Maximum
```

```
Minimum(int[]A)
  min = A[1]
  for i = 2 to A.length do
     if min > A[i] then min = A[i]
  return min
```

Anzahl Vergleiche = n - 1

Ist das *optimal*? Betrachte ein K.O.-Turnier.

Bis ein Gewinner feststeht, muss jeder – außer dem Gewinner – mindestens einmal verlieren.

Also sind n-1 Vergleiche optimal.

Eine Randbemerkung...

Def. Sei $V_{\text{minmax}}(n)$ die Anz. der Vgl., die man braucht um

Minimum und Maximum von n Zahlen zu bestimmen.

Klar: $V_{\text{minmax}}(n) \leq 2 \cdot V_{\text{min}}(n) = 2(n-1)$

Frage: Geht es auch mit weniger Vergleichen? (n gerade)

Ist das *optimal*?

Auswahl per Teile & Herrsche

Zur Erinnerung...

```
Randomized QuickSort(int[] A, int \ell, r)

if \ell < r then
Randomized
Partition(A, \ell, r)
QuickSort(A, \ell, m-1)
QuickSort(A, \ell, m+1, r)
```



```
Finde i.-kleinstes Element in A[\ell..r]!
```

```
RandomizedSelect(int[] A, int \ell, r, i)
if \ell == r then return A[\ell]
m = RandomizedPartition(A, \ell, r)
k = m - \ell + 1 // A[m] ist k.-kleinstes El.
                                von A[\ell..r]
if i == k then
   return A[m]
else
   if i < k then
       return RSelect(A, \ell, m-1, i)
   else
       return RSelect(A, m+1, r, i-k)
```

Ist Ihnen klar warum?

Anz. Vgl. von RandomizedSelect ist ZV; hängt von *n* und *i* ab.

Geh davon aus, dass das gesuchte i. Element immer im größeren Teilfeld liegt.

- \Rightarrow resultierende Zufallsvariable V(n) ist
 - obere Schranke für tatsächliche Anzahl von Vergleichen
 - unabhängig von i

$$V(n) = \underbrace{V_{\mathsf{Part}}(n)}_{V(n-2)} + \left\{ \begin{array}{l} V(n-1) \\ V(n-2) \\ \vdots \\ V(\lfloor \frac{n}{2} \rfloor) \\ \vdots \\ V(n-2) \\ V(n-2) \\ V(n-1) \end{array} \right. \text{ falls } m = 1 \\ \text{falls } m = 2 \\ \text{falls } m = \lfloor \frac{n}{2} \rfloor + 1 \\ \text{falls } m = n - 1 \\ \text{falls }$$

$$\Rightarrow E[V(n)] \le n - 1 + 2 \cdot \frac{1}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[V(k)] \le \frac{?}{c \cdot n} \quad \text{(für ein)}$$

Substitutionsmethode

Wir schreiben f(n) für E[V(n)].

Dann gilt
$$f(n) \le n + \frac{2}{n} \sum_{k=|n/2|}^{n-1} f(k)$$

Wir wollen prüfen, ob es ein c > 0 gibt, so dass $f(n) \le cn$.

Also:
$$f(n) \le n + \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k$$
 [laut Annahme]

Aufgabe:

Bestimmen Sie ein c, so dass $f(n) \le cn!$ (Ignorieren Sie das Abrunden $| \dots | .$)

Bem.: Wir sind *nicht* an $\sum_{k=1}^{n/2} f(k)$ interessiert – siehe letzte Folie. Die Indizes sind wichtig!

$$E[V(n)] \le n-1+2\cdot\frac{1}{n}\sum_{k=\lfloor n/2\rfloor}^{n-1}E[V(k)]$$

Substitutionsmethode

Wir schreiben f(n) für E[V(n)].

Dann gilt
$$f(n) \le n + \frac{2}{n} \sum_{k=|n/2|}^{n-1} f(k)$$

Wir wollen prüfen, ob es ein c > 0 gibt, so dass $f(n) \le cn$.

Also:
$$f(n) \leq n + \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k \quad \text{[laut Annahme]}$$

$$= n + \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \right)$$

$$= n + \frac{2c}{n} \left(\frac{n(n-1)}{2} - \frac{\lfloor n/2 \rfloor (\lfloor n/2 \rfloor - 1)}{2} \right)$$

$$\leq n + \frac{c}{n} \left(n(n-1) - (n/2 - 1)(n/2 - 2) \right)$$

$$\leq n + c \cdot \frac{3n+2}{4} = cn - \left(c \cdot \frac{n-2}{4} - n \right) \geq 0$$

$$\leq cn \quad \text{falls } c \geq \frac{4n}{n-2} = \frac{4}{1-2/n} \xrightarrow{n \to \infty} 4^+$$

Für jedes $\varepsilon > 0$ gilt:

$$E[V(n)] \le n - 1 + 2 \cdot \frac{1}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[V(k)] \le \underbrace{(4+\varepsilon)n}_{n \ge \frac{8}{\varepsilon}+2}$$

Ergebnis und Diskussion

Satz. Das Auswahlproblem kann in erwartet linearer Zeit

gelöst werden.

Genauer: Für jedes $\varepsilon > 0$ gilt, dass man in einer Folge von

 $n \geq \frac{8}{\varepsilon} + 2$ Zahlen die *i*.-kleinste Zahl $(1 \leq i \leq n)$ mit

erwartet $(4 + \varepsilon)n$ Vergleichen finden kann.

Frage: Geht das auch *deterministisch*, d.h. ohne Zufall?

M.a.W.: Kann man das Auswahlproblem auch im

schlechtesten Fall in linearer Zeit lösen?

Vorbereitung

Wir verwenden wieder Teile-und-Herrsche – aber diesmal mit einer garantiert **guten** Aufteilung in Teilfelder. d.h. *balanciert:*

jede Seite sollte $\geq \gamma n$ Elem. enthalten, für ein festes $0 < \gamma \leq \frac{1}{2}$.

Wir gehen für die Analyse wieder davon aus, dass alle Elemente verschieden sind.

```
Partition'(A, \ell, r, pivot)
  pivot = A[r]
  i = \ell - 1
  for j = \ell to r > 4 do
      if A[j] \leq pivot then
          i = i + 1
           Swap(A, i, j)
  \mathsf{Swap}(A, i+1, r)
  return i+1
```

Select: deterministisch

$Select(A, \ell, r, i)$

- 1. Teile die n Elem. der Eingabe in $\lfloor n/5 \rfloor$ 5er-Gruppen und eine Gruppe mit den restlichen (n mod 5) Elem.
- 2. Sortiere jede der $\lceil n/5 \rceil$ Gruppen und bestimme ihren Median.
- 3. Bestimme rekursiv den Median x der Gruppen-Mediane.
- 4. $m = \text{Partition}'(A, \ell, r, x); k = m \ell + 1$ // A[m] k.-kleinstes El.
- 5. if i == k then return A[m] else

 if i < k then

 return $Select(A, \ell, m 1, i)$ else

 return Select(A, m + 1, r, i k)Anzahl \bullet $\geq 3 \left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil 2 \right) \geq \frac{3n}{10} 6$

Select: deterministisch

$Select(A, \ell, r, i)$

- 1. Teile die n Elem. der Eingabe in $\lfloor n/5 \rfloor$ 5er-Gruppen und eine Gruppe mit den restlichen (n mod 5) Elem.
- 2. Sortiere jede der $\lceil n/5 \rceil$ Gruppen und bestimme ihren Median.
- 3. Bestimme rekursiv den Median x der Gruppen-Mediane.
- 4. $m = \text{Partition}'(A, \ell, r, x); k = m \ell + 1$ // A[m] k.-kleinstes El.

Schritt 3

Beob. Es genügt wieder, Vergleiche zu zählen!

Partition': $\approx 1n$, Sortieren: $\approx \frac{n}{5} \cdot V_{IS}(5) = 2n \text{ Vgl.}$

Ansatz:

$$V(n) \le \begin{cases} V(\lceil n/5 \rceil) + V(7n/10+6) + 3n & \text{falls } n \ge n_0, \\ O(1) & \text{Schritt 5} \end{cases}$$
 sonst.

Beob. Es genügt wieder, Vergleiche zu zählen! Partition': $\approx 1n$, Sortieren: $\approx \frac{n}{5} \cdot V_{IS}(5) = 2n$ Vgl.

Ansatz:

$$V(n) \le egin{cases} V(\lceil n/5 \rceil) + V(7n/10 + 6) + 3n & \text{falls } n \ge n_0, \\ O(1) & \text{sonst.} \end{cases}$$

Behauptung:

Es gibt $c, n_0 > 0$, so dass für alle $n \ge n_0$ gilt: $V(n) \le cn$.

$$\Rightarrow V(n) \le c \cdot (n/5+1) + c \cdot (7n/10+6) + 3n \qquad \stackrel{?!}{\ge} 0$$

$$= c \cdot (9n/10+7) + 3n = cn - (c \cdot (n/10-7) - 3n)$$
falls $c \ge \frac{3n}{n/10-7} = \frac{30}{1-70/n} \underset{n \to \infty}{\longrightarrow}$

Beob. Es genügt wieder, Vergleiche zu zählen! Partition': $\approx 1n$, Sortieren: $\approx \frac{n}{5} \cdot V_{\text{IS}}(5) = 2n \text{ Vgl.}$

Ansatz:

$$V(n) \le egin{cases} V(\lceil n/5 \rceil) + V(7n/10+6) + 3n & \text{falls } n \ge n_0, \\ O(1) & \text{sonst.} \end{cases}$$

Behauptung:

Es gibt $c, n_0 > 0$, so dass für alle $n \ge n_0$ gilt: $V(n) \le cn$.

$$\Rightarrow V(n) \le c \cdot (n/5+1) + c \cdot (7n/10+6) + 3n$$

$$= c \cdot (9n/10+7) + 3n = cn - (c \cdot (n/10-7) - 3n)$$
falls $c \ge \frac{3n}{n/10-7} = \frac{30}{1-70/n} \xrightarrow[n \to \infty]{} 30^+$ bzw. $n \ge \frac{70c}{c-30}$.

 \Rightarrow für jedes $\varepsilon > 0$ und $n \ge \frac{2100}{\varepsilon} + 70$ gilt: $V(n) \le (30 + \varepsilon) \cdot n$

verbessern?

Hausaufgabe!

Beob. Es genügt wieder, Vergleiche zu zählen!

Partition': $\approx 1n$, Sortieren: $\approx \frac{n}{5} \cdot V_{IS}(5) = 2n \text{ Vgl.}$

Ansatz:

$$V(n) \le \begin{cases} V(\lceil n/5 \rceil) + V(7n/10 + 6) + 3n & \text{falls } n \ge n_0, \\ O(1) & \text{sonst.} \end{cases}$$

Behauptung:

Es gibt $c, n_0 > 0$, so dass für alle $n \ge n_0$ gilt: $V(n) \le cn$.

$$\Rightarrow V(n) \le c \cdot (n/5+1) + c \cdot (7n/10+6) + 3n$$

$$= c \cdot (9n/10+7) + 3n = cn - (c \cdot (n/10-7) - 3n)$$
falls $c \ge \frac{3n}{n/10-7} = \frac{30}{1-70/n} \xrightarrow[n \to \infty]{} 30^+$ bzw. $n \ge \frac{70c}{c-30}$.

 \Rightarrow für jedes $\varepsilon > 0$ und $n \ge \frac{2100}{\varepsilon} + 70$ gilt: $V(n) \le (30 + \varepsilon) \cdot n$

Ergebnis und Diskussion

Satz: Das Auswahlproblem kann auch im schlechtesten

Fall in linearer Zeit gelöst werden.

Genauer: Für jedes $\varepsilon > 0$ gilt, dass man in einer Folge von

 $n \geq 2100/\varepsilon + 70$ Zahlen die i.-kleinste Zahl mit

höchstens $(30 + \varepsilon)n$ Vergleichen finden kann.

Literatur: Randomized Algorithms [Motwani+Raghavan, Cambridge U Press, '95] Algorithmen und Zufall [Vorlesungsskript, Jochen Geiger, Uni KL]

- Der Algorithmus LazySelect [Floyd & Rivest, 1975] löst das Auswahlproblem mit WK $1 O(1/\sqrt[4]{n})$ mit $\frac{3}{2}n + o(n)$ Vgl.
- Die besten deterministischen Auswahl-Algorithmen (sehr kompliziert!) benötigen 3n Vergleiche im schlechtesten Fall.
- Jeder deterministische Auswahl-Alg. benötigt im schlechtesten Fall mindestens $\frac{2n}{n}$ Vergleiche.

