SRN						
SKIN						

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE20EC101

May 2022: END SEMESTER ASSESSMENT- B.TECH. I/II SEMESTER **UE20EC101 – Electronic Principles and Devices**

Tim	ne: 1	80 mins Answer All Questions Max Marks:	100
1.	a	With a neat circuit diagram Explain Forward and Reverse Characteristics of a semiconductor Diode. Discuss the effect of Temperature on V-I Characteristics.	8 M
	b	Use Second approximation for a diode to determine the unknown values for the following.	6M
		(i) Determine I_D and V_o for the circuit shown in the Figure below. (ii) Determine I and V_o for the circuit shown in the Figure below	
		$+ V_{D_2} - V_0$ $+ V_1 - R_1$ $+ V_1 - R_1$ $+ V_2 - V_0$ $+ V_1 - R_1$ $+ V_1 - R_1$ $+ V_2 - V_0$ $+ V_1 - R_1$ $+ V_1 - R_1$ $+ V_1 - R_2$ $+ V_1 - R_1$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_1$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - R_2$ $+ V_1 - R_2$ $+ V_2 - V_0$ $+ V_1 - V_$	
	С	Using Shockley's equation, Find the diode current I_d for a silicon Diode if the applied voltage V_D =0.71 V if the Reverse Saturation is 4 x 10^{-12} A at a temp of 30^{0} C. Consider (η =1). Find the new I_d if the temperature is increased by 20^{0} C.assuming same V_D .	6M
2.	a	Calculate the RMS value of the ripple voltage for the FWR if a $100\mu F$ Capacitor is connected to a load drawing 50mA of current. What is the dc voltage at the output if the peak rectified output voltage is 30V and frequency is 50Hz? Also find the ripple factor.	7M
	b	With a neat diagram, explain the working principle of Full wave Rectifier with Centre tapped Transformer and derive the expression for V_{dc} and V_{rms}	6M
	С	Determine the range of values of Vi that will maintain the Zener diode in the "on" state for the following Circuit. $V_{I} = 18V V_{I_{ZM}} = 60 \text{ mA}$ $V_{I_{ZM}} = 60 \text{ mA}$	7M
3.	a	Explain the following Logical gates and realize using any Universal Gates. (i) NOR (ii) XOR (iii) AND (iv) NOT	8 M

CDN						
SKIN						

	b	With Characteristic Table and a neat circuit Diagram using ONLY NAND Gates, explain	6 M
		JK Flip flop.	
	c	Define shift register. Draw the circuit diagram for 4-bit shift register and explain with example.	6 M
4.	a	With a neat diagram, explain the Input and output V-I characteristics of PNP Common	7M
		Base BJT. Find the value of α and I_B , if $I_E = 1.32 \text{mA}$ and $I_C = 1.11 \text{mA}$.	
	b	With a neat block diagram, explain Communication System.	7M
	c	What are the Principles of Cellular Communication? Explain	6 M
5	a	Give the Differences between Microprocessor and Microcontroller	8M
	b	Explain the Data Flow Model of ARM Processor with a neat diagram.	4 M
•	c	With examples illustrate the usage of embedded systems for the following various Applications.	8 M