MATH 239 Winter 2013 Assignment 8

Due Friday, March 22, 10am

TOTAL: 50 POINTS

For a graph G, let p be the number of vertices and q be the number of edges.

- 1. Let G be a connected graph that has a single cycle of length n. Prove that G has exactly n distinct spanning trees.
- 2. Let G be a connected graph with spanning tree T. Pick a vertex w of T. For any vertex v of G, let d(v) be the length of the unique path in T from v to w. Suppose that for any edge e = uv of G that is not in T, d(u) d(v) is an odd number. Show that G is bipartite.
- 3. This problem generalizes Platonic graphs. Let G be a connected planar graph where every vertex has degree at least 3. We say that G is special if there is a positive integer k, positive distinct integers $d_1^*, \ldots, d_k^* \geq 3$, and positive integers m_1, \ldots, m_k such that every vertex v is of degree $m_1 + \cdots + m_k$ and that faces containing v are exactly m_1 faces of degree d_1^* , m_2 faces of degree d_2^* , and so on, up to m_k faces of degree d_k^* . The Platonic graphs are the cases where k = 1: a cube has k = 1, $m_1 = 3$, $d_1^* = 4$; a dodecahedron has k = 1, $m_1 = 3$, $d_1^* = 5$. The edge graph of a soccer ball has k = 2, $m_1 = 2$, $d_1^* = 6$, $m_2 = 1$, $d_2^* = 5$. In other words at every vertex of a soccer ball, there are two hexagons and one pentagon.
 - (a) Show that

$$(m_1+m_2+\cdots+m_k)p=2q.$$

(b) Show that the number of faces of degree d_i^* is

$$s_i = \frac{m_i p}{d_i^*}.$$

(c) Prove by using Euler's formula that

$$\frac{1}{m_1 + m_2 + \dots + m_k} \left(1 + \frac{m_1}{d_1^*} + \frac{m_2}{d_2^*} + \dots + \frac{m_k}{d_k^*} \right) = \frac{1}{2} + \frac{1}{q}.$$

- 4. Let G be a connected planar graph in which every face has degree exactly 3 and every vertex has degree at least 4. Prove that G has at least 12 edges.
- 5. Show for $n \geq 3$ the following graphs are planar by describing a planar embedding. Please give an example of your explanation for n = 4.
 - (a) Let G be the graph with 2n vertices labelled v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_n with 3n edges of the form $v_i v_{i+1}$, $w_i w_{i+1}$, and $v_i w_i$ for $i = 1, \ldots, n$. Note: we use the convention that $v_{n+1} = v_1$.
 - (b) Let G be the graph with 2n vertices labelled v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_n such that there are 4n edges of the form: $v_i v_{i+1}, w_i w_{i+1}, v_i w_i$, and $v_i w_{i+1}$ for $i = 1, \ldots, n$.