

General Electric's Future: Entering the Flow Battery Industry via a Joint Venture

Aarthi Katakam, Derek He, Shraavasti Bhat, Dionne Yeung, Manya Gauba

Roadmap

Overview

General Electric and the Flow Battery industry

Recommendation

How General Electric should enter the Flow Battery industry to maximize outcomes

GE Business Lines and Restructuring

GE is spinning off GE Vernova, which houses GE Renewable Energy and GE Power, to achieve 3 key objectives:

- 1) Make management closer to customer
- 2) **Reduce** the **operational complexity**, including reducing product lines
- 3) **Increase** geographic **specificity**, especially the US market

GE Vernova's Challenges

GE's Renewable Business Became Unprofitable Starting in 2019.

- Supply chain challenges caused cost inflation
- Unstable demand due to expiring tax incentives
- Risky revenue profile with 79% non-recurring revenue

What are Flow Batteries (Long Duration Energy Storage)?

Increase value of renewable energy solutions (extend from ~25% to 80+% capacity utilization)

Rechargeable batteries that store energy in liquid chemical solutions.

Easy to scale by adjusting the tank size. This feature makes it suitable for Long Duration Energy Storage (LDES)

Able to separate energy storage capacity from power output

LDES primarily creates value for the grid, with a TAM of ~\$200B and CAGR of ~32% until 2040

- Utility-scale applications like energy shifting, capacity provision, and T&D optimization have ~90% of TAM
- Energy shifting, capacity provision are service-based revenues
- Expected ~65 140 TWh installed by 2040
- ~32% CAGR for battery demand by 2040

(Source: McKinsey LDES Whitepaper)

Research Question

What strategies should General Electric pursue to **increase profitability** and **establish a sustainable competitive advantage** using flow battery technology in the utility-scale storage market?

Restore previous ATH net margins of 8%

Increase service-based revenue to 50%

Sustainable competitive advantage through 2040

Roadmap

Overview

General Electric and the Flow Battery industry

Recommendation

How General Electric should enter the Flow Battery industry to maximize outcomes

General Electric should pursue initial engagements of forming a joint venture with LDES companies for after restructuring is complete.

Restructuring (Present)

Post-restructuring

Initial engagements: scope potential companies and lay foundation for partnership

Establish joint venture: finalize deal and launch

Implementation: Seek to establish a Joint Venture (JV) with an LDES company

- Collaborate via joint venture with ESS Inc., a startup that pioneers iron flow batteries
- Integrate ESS's technology into GE's current grid offerings by complementing its lithium ion batteries with LDES

Leverage core competencies of both companies

General Electric

- Holistic grid solutions (data services and T&D)
- Wind OEM

ESS Inc.

- Cutting-edge LDES technology
- Cost leadership

GE Grid Solutions are enhanced with iron flow batteries

- >15% improvement in capital efficiency than lithium ion batteries
- 40% less cost of ownership
- Better performance: no capacity degradation, unlimited cycling
- Designed for a 25-year operating life, which aligns with typical IPP and utility wind and solar project lifespans of 25+ years
- Cleanest and most environmentally friendly; made of iron, salt, and water

Disruptive Business Model: Creates Value across Stakeholder Touchpoints

Preliminary financials indicate significant upside potential of JV in 2025 (~9% IRR)

Pursuing initial engagements to form the JV balances restructuring goals with long-term strategy

Balancing Portfolios: GE's R&D aligns with JV

GE should prioritize Horizon 1 R&D on wind, data services, T&D infrastructure, with some Horizon 3 innovation on electrochemical R&D

Horizon 1

- Process innovation improving performance and scalability of core competencies
 - Onshore wind, offshore wind, T&D infrastructure, energy storage, digital solutions, and cybersecurity
- Digital software patents

Horizon 2

- Investing in different sources of renewable energy to improve diversification of power generation
 - Nuclear and other clean energy fuels

Horizon 3

- Ambitious research projects to set new industry trends, such as immortal and self-healing lithium ion batteries
- Electrochemical flow batteries

Ambidexterity: Pursuing *initial engagements* for a JV maximizes technological compatibility

Cons of Launching JV During Restructuring

Joint ventures are a large management burden, which is **misaligned with the goals of restructuring.**

Flow battery technology is still in R&D-phase.

Initial Engagements During Restructuring:

GE has **clear visibility** into future reduced restructured product lines

Flow battery development can be tailored to GE hardware.

Flow battery technology will improve in cost and performance by the end of GE's restructuring.

Cons of Engagements After Restructuring

Lack of early-planning creates **technological compatibility risk**, creating hardware integration challenges.

Competition from other renewable energy OEMs for leading LDES technologies.

Managerial Levers Allow for Organizational and Cultural Compatibility Post-Restructuring

Goal alignment & Communication

Set up an **incentive structure**, **performance plan**, and profit shares

Short duplicated communication channels between two organization

Bridge cultural differences

JV aligns with GE's goal to focus on US market over international customers after restructuring

Emphasize shared values: Environmental,
sustainability, lean
culture and transparency

Maintain "lean" & customer centricity

Partially restaff employees on LDES-GE technology alignment

Flat organizational structure

JV increases GE's customer centricity due to deals using more customer pain points

Conclusion

By pursuing initial engagements for a joint venture with LDES companies until restructuring is complete, GE can balance their restructuring goals with long-term strategy to maximize outcomes.

Thank you

Appendix

Presentation outline

- 1. Introduce GE and its problem:
- 2. Introduce LDES, value proposition, and its general market potential, research question
- 3. Recommendation Description
 - **a. Implementation** / Recommendation: Target to establish a Joint Venture with LDES companies, where GE specializes in the grid software, integrative hardware, and renewable energy generation while the partner specializes in the LDES hardware technology
 - **b. Business Model Selection** / Business Case
 - c. Financial Analysis
- 4. Recommendation Justification / Compatibility
 - a. Balancing Portfolios / Core Competencies and their horizons
 - **b. Ambidexterity** / Technical Compatibility: Pursue initial engagements with LDES companies to establish future joint ventures during GE's restructuring
 - **c. Managerial Levers** / Cultural and Organizational Compatibility:
- 5. Summary

LDES Value Proposition

Assessment of LDES-driven business cases

Application		Case example	Customer example	IRR(potential improvement)	Value drivers for LDES	Key unlocks
\$	Energy shifting, capacity provision, and T&D optimization Stability services provision (eg, inertia)	US-based utility	Integrated utilities with significant RE build-out and transmission bottlenecks between generation and demand	~3% (+11%)	T&D optimization Capacity provision CO ₂ e cost savings RE curtailment reduction	Market mechanisms enab remuneration of CO ₂ e bene-fits for LDES asset owners Regulatory options or incentives ensure WACC commensurate with RE development Sustained carbon price in line with NDCs ¹
1	Firming for PPAs	RE developer in Australia	RE developers or owners looking to serve corporate RE PPAs with firmed capacity	~7%	Firmed capacity RE PPA premiums	Increase certainty for LDE developers through long-term contracting
*	Isolated island grid optimization	Isolated island integrated utility in the US	Integrated utilities serving isolated island power systems with decarbonization ambitions but limited interconnectivity	~7% (+5%)	Production cost savings CO ₂ e cost savings	Regulatory options or incentives ensure WACC commensurate with RES development
×	Optimization of energy for industries with remote/ unreliable grids	Diesel-powered copper mine in Chile	Industrial customers looking to reduce the costs of energy supply and reduce carbon footprint of products	~15% (+4%)	Production cost savings CO ₂ e cost savings	Market mechanisms enab remuneration of CO ₂ e benefits for LDES asset owners
[] 1. N	On-demand RE peak power	RE developer in India	RE developer in India providing morning and evening peak supply as well as off-peak generation	~10% (+2%)	Peak and off- peak power supply	Increased electricity pricin spread and higher need for clean dispatchable peakin power

Overview of LDES applications

Energy shifting, capacity provision, and T&D optimization

Peak generation from renewables does not align with peak demand for electricity. LDES can play a role in shifting electricity from times of high supply to times of high demand.

Firming for RE PPAs

Renewable power-purchase agreements can use LDES to ensure that businesses can procure 100% renewable electricity.

Alongside this, LDES provides value in other ways, for example ...

- Supporting island grids

Power systems that are not connected to a large grid can use LDES to generate reliable power (e.g., a power grid on a small island)

Providing stability services

Electricity grids require stability. LDES can be used to correct instabilities (e.g., transmission outages can be rectified by LDES).

Supporting industries wiremote or unreliable grid

Large power users can use LDES ensure reliable power in areas whithey are isolated from the grid or tigrid is unreliable (e.g., remote hea industry).

ESS Performance Advantages

6-12 hrs **⊗ESS**™ Operational Flexibility Li-Ion Unlimited cycles, no capacity loss ESS™ Longer Asset Life 6,000 cycles¹ Li-Ion Superior Ambient **ESS**■ -5°C to 50°C 20°C to 25°C **Operating Temperature** Li-Ion Safe and non-toxic No thermal runaway SESS™ Safety Li-Ion

GE R&D Spend

GE's competitive advantage lies not in the hardware itself, but rather the full delivery of their grid solutions, with supporting hardware like transmission and distribution infrastructure, optimized systems performance, backed with data analytics.

GE overview, challenges, restructuring, recommendation overview

GE is in the process of restructuring its core business. Spinning off GE Vernova, which houses GE Renewable Energy and GE Power.

The Covid-19 pandemic, supply chain disruptions, inflation, and political uncertainties have especially impacted wind power businesses across the renewable energy industry.

Improved energy storage offerings (LDES) can help mitigate price volatility and maintain margins.

