CS 225

Symbols and Formulas

Fall 2020

$\underline{\mathbf{Logic}}$

 $\underline{\mathbf{Symbols:}} \, \geq \, \leq \, \neq \, \, \neg \, \, \sim \, \, \wedge \, \, \vee \, \, \oplus \, \, \equiv \, \rightarrow \, \leftrightarrow \, \, \Box \, \, \exists \, \, \forall \,$

<u>Identities:</u>

$\sim (\sim p) \equiv p$	Double Negation
$p \wedge \mathbb{T} \equiv p p \vee \mathbb{F} \equiv p$	Identity
$p \vee \mathbb{T} \equiv \mathbb{T} p \wedge \mathbb{F} \equiv \mathbb{F}$	Domination
$p \wedge p \equiv p p \vee p \equiv p$	Idempotent
$p \vee q \equiv q \vee p p \wedge q \equiv q \wedge p$	Commutative
$(p\vee q)\vee r\equiv p\vee (q\vee r)$	Associative
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	Associative
$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	Distributive
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Distributive
$\sim (p \land q) \equiv \sim p \lor \sim q$	DeMorgan's
$\sim (p \vee q) \equiv \sim p \wedge \sim q$	Demorgan's
$p \vee (p \wedge q) \equiv p$	Absorption
$p \land (p \lor q) \equiv p$	Absorption
$p \to q \equiv \sim q \to \sim p$	Contrapositive
$p \oplus q \equiv q \oplus p$	Contrapositive
$p \to q \equiv \sim p \vee q$	Implication
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	Biconditional Equivalence
$(p \land q) \to r \equiv p \to (q \to r)$	Exporation
$(p \to q) \land (p \to \sim q) \equiv \sim p$	Absurdity
$p \vee q \equiv \sim p \to q$	Alternate Implication
$p \wedge q \equiv \sim (p \to \sim q)$	Alternate Implication
$\sim (p \to q) \equiv p \land \sim q$	Alternate Implication
$\sim \ \forall \ x P(x) \equiv \ \exists \ x \sim P(x)$	DeMorgan's for Quantifiers
$\sim \exists x Q(x) \equiv \forall x \sim Q(x)$	De Morgan's for Quantifiers A conditional statement $p \to q$ can also
	be read as:

- If p then q
- \bullet p implies q
- If p, q
- p only if q
- \bullet q if p
- q unless $\sim p$
- \bullet q when p
- ullet q whenever p
- ullet q follows from p
- p is a sufficient condition for q (p is sufficient for q)
- q is a necessary condition for p (q is necessary for p)