PLACEHOLDER

Julien Gabet Mars-June, 2018

Introduction

This is an interesting introduction to an interesting subject

1 Definitions

Definition

The annotated terms are defined by the following grammar:

Definition

We define a cut-eliminating reduction rule as follows:

```
\begin{aligned} \epsilon_x.P||_x 0_x &\leadsto P & P||_x x \to y \leadsto P[y/x] & \text{those two rules are symmetrical} \\ & (P|_x Q)||_x \lambda_x y.R \leadsto P||_x (Q[y/x]||_y R) \\ & \lambda_x y.R||_x (P|_x Q) \leadsto (R||_x P)||_y Q[y/x] \\ & \bar{u}_x \langle v \rangle.P||_x u_x (t).Q \leadsto P||_x Q[v/t] & \text{this rule is symmetrical} \\ & \epsilon_x.P||_y Q \leadsto \epsilon_x.(P||_y Q) & \lambda_x y.P||_z Q \leadsto \lambda_x y.(P||_z Q) & \text{those two are as well} \\ & u_x(t).P||_y Q \leadsto u_x(t).(P||_y Q) & \bar{u}_x \langle v \rangle.P||_y Q \leadsto \bar{u}_x \langle v \rangle.(P||_y Q) & \text{those two are as well} \\ & (P|_x Q)||_y R \leadsto (P||_y R)|_x Q & \text{if } y \text{ only appeard in } P \\ & (P|_x Q)||_y R \leadsto P|_x (Q||_y R) & \text{if } y \text{ only appeard in } Q \end{aligned}
```

Proposition

confluence of \rightsquigarrow up to \cong

Remark: that commuting prefixes is not nice looking

Definition

Define the \rightarrow and \equiv restrictions of the two preceding relations here

2 A typing system that works with cut elimination

Definition Define the typing system here Proposition Cut elimination holds and terminates ▷ proof here Proposition cut elimination works under the restrained → and ≡ ▷ proof here

3 Links with the usual π -calculus

Definition

Define π -calculus

Definition

Define projection $\lfloor \cdot \rfloor$

Proposition

Something about \rightarrow and \equiv related to projection

▷ proof here

Open about \leadsto here or in the conclusion.

Conclusion

A nice conclusion and working trails for later here.