BINF 8211/6211 Design and Implementation of Bioinformatics Databases Lecture #5

Dr. D. Andrew Carr Dept. Bioinformatics and Genomics UNCC Spring 2016

Keys

- Keys:
 - one or more attributes that define another attribute
 - Attribute part of a key is called the key attribute
 - Composite keys have more than 1 attribute
 - Super key
 - Key that uniquely identifies each row
 - Candidate key
 - Minimal super key
 - PRIMARY KEY and Foreign key
 - Very important

Primary and Foreign Keys

- Primary keys
 - Attributes
 - Super keys
 - Unique and not null
 - Should (Must) provide entity integrity.
- Foreign Keys
 - Reference primary keys in associate tables.
 - Referential integrity is predicated on the foreign key being present as a primary key in another table or being null.

Eight fundamental operators of relational algebra pt 1.

- SELECT
 - Restrict
 - Horizontal subset of the data
- PROJECT
 - All values in a given attribute
 - Vertical subset of the data
- INTERSECT
 - From set theory, overlap between tables
- DIFFERENCE
 - The non-overlapping entries between tables
- UNION
 - Combination of tables with shared attribute spaces

Eight fundamental operators of relational algebra pt 2.

PRODUCT

- Cartesian product from mathematics
 - All combine with all

DIVIDE

- Complicated and requires 2d to 1d relationship
- Returns the intersection between specific attribute, entity pairs

JOIN

- This is the fundamental tool of the RDBMS system.
- Natural Join
 - Rows and columns that have common attributes
 - PRODUCT → SELECT → PROJECT
- LEFT OUTER, RIGHT OUTER
 - Keeps all the values from 1 table and merges with the other table where it can

Data Dictionary

- AKA: System Catalog
- By definition: "detailed accounting of all of the tables."
- For each table:
 - Attribute names
 - Types
 - Constraints
 - Key type
 - Range

ER modeling topics

- Documenting and graphing relationships using IE and Chen conventions
- Specifying and graphically communicating constraints
 - The Chen convention allows more complete conceptual modeling
 - The IE convention translates more directly to implementation

ER Modeling tools

- For this class
 - MySQL Workbench
 - http://dev.mysql.com/downloads/workbench/ 5.1.html
 - Open source
 - Free
 - Easy to use
- Other acceptable tools
 - Microsoft Visio
 - Oracle

Modeling Behaviors

- Entity information to communicate
 - The attributes describing the entity
 - The relationships between entities
 - Whether one entity is existence dependent on another
- Relationship information to communicate
 - The Cardinality (is it 1:1, 1:m, M:N)
 - Attributes may belong to the relationship rather than to either entity
 - Relationships may be weak or strong
- Attribute Behavior to watch out for
 - Attributes combining two types of information that you might want to use separately are composite attributes
 - Required attributes must have a value, optional attributes can be left empty
 - One or a combination of attribute values must uniquely identify each attribute instance (so these cannot be optional).

Relationships: Connectivity and Cardinality

- Relationships must be expressed as one of three types.
 - Connectivity is what that type is (1:1, 1:M, N:M)
 - Cardinality is more specific is 1:M really 1:3? Or 0:3?
 - This is described using a range, e.g. (0,3)
 - Some dictionaries are not inclusive of one or both ends (greater than 0 but not 0, for example).
 - Graphically the range is place adjacent to the connector.

One-to-one Relationships

- Formally: if there can only be zero or one *instance* of entity A for zero or one *instance* of entity B then there is a one-to-one relationship
 - A predicted gene coding sequence makes zero or one protein in prokaryotes
 - Probe complementarity to zero or one transcripts and a given transcript is complementary to zero or one probe

One-to-Many Relationships

- Formally: if there are two entities, A and B and if A_i is related to zero, one, or more instances of entity B and B_i is related to zero or one instance of entity A then this is a one-to-many relationship.
- A [human]mother may have zero, one or many birth children, but a child may have only one biological mother

Many-to-Many relationships

• Formally, this relationship exists if, for two entities A and B, for an instance A_i there can be zero, one, or many instances of B_i and, for instance B_i , there can be zero, one, or many instances of A_i .

Many-to-Many relationships

NGS example

Documenting ER Models: Chen Style

- The ER conceptual model paradigm is by Chen, there are several variants of the graphical representation style.
- Chen style
 - Entities are in rectangles
 - Attributes are in ovals connected to the entities
 - Relationships are in diamonds
 - Uses arrows to show the cardinality of the relationship
 - The single arrow pointing to Gene means a Protein belongs to (maps to) at most one Gene(zero or one)
 - The double arrow pointing to the Protein means that a Gene can code for more than one Protein (zero, one or many presumably this is in Eukaryotes)

Chen Alternative Styles - 1

- You may replace the arrows with numbers and letters that express the *cardinality* of the relationship.
 - '1' indicates a protein comes from one gene
 - 'M' indicates 'many'
 - You can set more specific constraints, such as
 - there must be a gene before a protein can exist (1,1)
 - a gene might be restricted to no more than 10 protein isomers and there must be at least one isomer (1,10).

Chen Alternative Styles -2

- To make the relationship sensible reading in both directions
 - remove the relationship name from the diamond (some versions remove the diamond also)
 - add the relationship description and its inverse on the correct entity edges
- Indicate a *weak* entity (existence-dependent) by putting a double box around it
 - But note that if there are many 'parents' (entities with similar 1:M relationships) you won't know which is meant to impose the mandatory relationship.

The Information Engineering Style

- Entities are represented by rectangles with a list of attributes the entity name is the first attribute and is set off in some way.
- Connectors carry more information
 - | means one and only one (mandatory relationship)
 - 0 | means zero or one
 - > | means one or more (mandatory relationship)
 - >0 means zero, one or more

Note: The symbols are written 90° to the connector line.

IE Relationship Diagram

ER Modeling tools

- For this class
 - MySQL Workbench
 - http://dev.mysql.com/downloads/workbench/ 5.1.html
 - Open source
 - Free
 - Easy to use
- Other acceptable tools
 - Microsoft Visio
 - Oracle