Sat Solver Optimisations

Anatoly Weinstein

January 3, 2024

This document contains research into optimisations of CNF-SAT problems.

1 Definitions

BOOL Boolean Function. A boolean function $f: V \subseteq Variables \to \{\bot, \top\}$ with truthy sets $P \subseteq \mathcal{P}(Variables)$ yields \top (truthy) if $V \in P$, else yields \bot (falsy).

SAT Boolean Satisfyability Equation. We define a boolean formula by the following context-free grammar with start variable S, a given variable set $Variable = \{x_i : i \in [n-1]\}$ of n variables and a set of binary operations $Operation = \{\cdot, +, \oplus, \dots\}$ and an assigned boolean function $f_{Operation} : \mathcal{P} \subseteq \{L, R\} \rightarrow \{\bot, \top\}$, where L and R is the truthiness of left and right respectively.

$$S \rightarrow (S)$$

$$S \rightarrow S Operation S$$

$$S \rightarrow \neg S$$

$$S \rightarrow Variable$$

The boolean equation is satisfied with interpretation P, if there is an interpretation X with $f_{SAT}(X) = \top$.

CNF Unmixed conjunctive normal form. We define a boolean formula in conjunctive normal form by the following context- free grammar with start variable S and a given variable set $Variable = \{x_i : i \in [n-1]\}$ of n variables.

The notation $(a + \overline{b}) \cdot (b + \overline{c} + \overline{d}) \cdot (\overline{a} + \overline{c})$ will be used as a set of literal sets $\{\{a, \neg b\}, \{b, \neg c, \neg d\}, \{\neg a, \neg b\}\}$ in this paper.

2 Transformation Techniques

U-SAT Unmixed conjunctive normal form. Given a CNF-SAT formula, we call it unmixed, if every disjunction consists of either positive or negated literals.

A polynomial time reduction $SAT \leq_p U - SAT$ for an equation $S_E \to U_E$ would be:

 $\forall D \in S$:

TODO De Morgan

3-CNF-SAT Three-literals conjunctive normal form. Given a CNF-SAT formula, we call it n - SAT, if every disjunction consists of exactly n-literals.

TODO Proof

U3-SAT Three-literals unmixed conjunctive normal form. Given a CNF-SAT formula, we call it U3-SAT, if it is unmixed and every disjunction consists of exactly 3-literals.

TODO

3 Optimisation Techniques

Zugzwang. Common Literals. If a disjunction consists of one literal, the value of this literal is fixed.

$$S = X \cdot A(X) \rightarrow (f_{SAT}(Y) \Rightarrow X \in Y)$$

Contradiction. Contradictional Disjunctions.

A formula with contradictional disjunctions is not satisfiable.

$$\forall A: X \cdot \neg X \cdot A(X) = \bot$$

Common Contradicting Literals. Disjunction with common contradictional part.

$$(A+B)\cdot (\neg A+C)\cdot X=(AC+B\overline{A})\cdot X$$

Common Literals. Disjunction with common part.

$$(A+B)\cdot (A+C)\cdot X = (A+BC)\cdot X$$

Connected Component. Two independent sets of variables. If there exists two sets of variables A and B, such that $\forall a \in A, b \in B \not\supseteq D : a \in D \land b \in D$, then you can create two equations as following and solve them independently with reduced variable count.

$$\forall V \in \{A, B\} : S_V = \{d \in D \ \forall \ l \in d : \ l \in V\}$$