Conditional random field

LING 572

Fei Xia

Week 6: 2/11/2010

Highlights

- CRF is a form of undirected graphical model
- Proposed by Lafferty, McCallum and Pereira in 2001
- Used in many NLP tasks: e.g., Named-entity detection
- Types:
 - Linear-chain CRF
 - Skip-chain CRF
 - General CRF

Outline

Graphical models

Linear-chain CRF

Skip-chain CRF

Graphical models

Graphical model

- A graphical model is a probabilistic model for which a graph denotes the conditional independence structure between random variables:
 - Nodes: random variables
 - Edges: dependency relation between random variables

- Types of graphical models:
 - Bayesian network: directed acyclic graph (DAG)
 - Markov random fields: undirected graph

Bayesian network

Bayesian network

- Graph: directed acyclic graph (DAG)
 - Nodes: random variables
 - Edges: conditional dependencies
 - Each node X is associated with a probability function P(X | parents(X))

Learning and inference: efficient algorithms exist.

An example

(from http://en.wikipedia.org/wiki/Bayesian_network)

Another example

Bayesian network: properties

Local Markov property: each variable X_i is conditionally independent of its nondecendants given its parents variables.

$$P(X_{1},...,X_{n})$$

$$= \prod_{i=1}^{n} P(X_{i}|X_{1},...,X_{i-1}))$$

$$= \prod_{i=1}^{n} P(X_{i}|parents(X_{i}))$$

$$P(A, B, C, D, E) = P(B)P(E)P(A|B, E)P(C|A)P(D|E)$$

$$P(B, E|C, D) = \frac{P(B, E, C, D)}{P(C, D)} = \frac{\sum_{A} P(A, B, C, D, E)}{\sum_{A} \sum_{B} \sum_{E} P(A, B, C, D, E)}$$

Naïve Bayes Model

$$P(X,Y) = P(f1, f2, ..., f_n, Y)$$

$$= P(Y)P(f_1|Y)...P(f_n|Y)$$

$$= P(Y)\prod_{k=1}^{n} P(f_k|Y)$$

HMM

- State sequence: X_{1,n+1}
- Output sequence: O_{1,n}

$$P(O_{1,n}, X_{1,n+1}) = \pi(X_1) \prod_{i=1}^{n} (P(X_{i+1} \mid X_i) P(O_i \mid X_{i+1}))$$

Generative model

 It is a directed graphical model in which the output (i.e., what to be predicted) topologically precede the input (i.e., what is given as observation).

Naïve Bayes and HMM are generative models.

Markov random field

Markov random field

Also called "Markov network"

- It is a graphical mode in which a set of random variables have a Markov property:
 - Local Markov property: A variable is conditionally independent of all other variables given its neighbors.

$$P(X_i|X_j, ne(X_i)) = P(X_i|ne(X_i))$$

Cliques

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by adding one more vertex.
- A maximum clique is a clique of the largest possible size in a given graph.

Clique factorization

G = (V, E) be an undirected graph.

cl(G) be the set of cliques of G.

$$P(X) = \frac{1}{Z} \prod_{C \in cl(G)} \phi_C(X_C)$$

Conditional Random Field

Definition. Let G = (V, E) be a graph such that $\mathbf{Y} = (\mathbf{Y}_v)_{v \in V}$, so that \mathbf{Y} is indexed by the vertices of G. Then (\mathbf{X}, \mathbf{Y}) is a conditional random field in case, when conditioned on \mathbf{X} , the random variables \mathbf{Y}_v obey the Markov property with respect to the graph: $p(\mathbf{Y}_v \mid \mathbf{X}, \mathbf{Y}_w, w \neq v) = p(\mathbf{Y}_v \mid \mathbf{X}, \mathbf{Y}_w, w \sim v)$, where $w \sim v$ means that w and v are neighbors in G.

A CRF is a random field globally conditioned on the observation X.

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{\Psi_A \in G} \exp \left\{ \sum_{k=1}^{K(A)} \lambda_{Ak} f_{Ak}(\mathbf{y}_A, \mathbf{x}_A) \right\}$$

Linear-chain CRF

Motivation

- Squence labeling problem: e.g., POS tagging
 - HMM: Find best sequence, but cannot use rich features
 - MaxEnt: Use rich features, but may not find the best sequence

Linear-chain CRF: HMM + MaxEnt

Relations between NB, MaxEnt, HMM, and CRF

Linear-chain CRF

$$f_{j}(y_{t-1}, y_{t}, x, t) = \begin{cases} 1 & (y_{t-1} = IN) \land (y_{t} = NNP) \land (x_{t} = Sept) \\ 0 & otherwise \end{cases}$$

$$F_{j}(y, x) = \sum_{t=1}^{T} f_{j}(y_{t-1}, y_{t}, x, t)$$

$$P(y|x) = \frac{1}{Z(x)} exp(\sum_{j} \lambda_{j} F_{j}(y, x))$$

$$= \frac{1}{Z(x)} exp(\sum_{j} (\lambda_{j} \sum_{t=1}^{T} f_{j}(y_{t}, y_{t-1}, x, t)))$$

$$= \frac{1}{Z(x)} exp(\sum_{j} \sum_{t=1}^{T} (\lambda_{j} f_{j}(y_{t}, y_{t-1}, x, t)))$$

$$= \frac{1}{Z(x)} exp(\sum_{t=1}^{T} \sum_{j} (\lambda_{j} f_{j}(y_{t}, y_{t-1}, x, t)))$$

$$= \frac{1}{Z(x)} \prod_{t=1}^{T} exp(\sum_{j} (\lambda_{j} f_{j}(y_{t}, y_{t-1}, x, t)))$$

$$= \frac{1}{Z(x)} \prod_{t=1}^{T} \phi_{t}(y_{t}, y_{t-1}, x)$$

Training and decoding

$$P(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \phi_t(y_t, y_{t-1}, x)$$

$$\phi_t(y_t, y_{t-1}, x) = exp(\sum_j (\lambda_j f_j(y_t, y_{t-1}, x, t)))$$

- Training: estimate λ_j
 - similar to the one used for MaxEnt
 - Ex: L-BFGS
- Decoding: find the best sequence y
 - similar to the one used for HMM
 - Viterbi algorithm

Skip-chain CRF

Motivation

- Sometimes, we need to handle long-distance dependency, which is not allowed by linear-chain CRF
- An example: NE detection
 - "Senator John Green ... Green ran ..."

Linear-chain CRF:

$$P(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \phi_t(y_t, y_{t-1}, x)$$

$$\phi_t(y_t, y_{t-1}, x) = exp(\sum_k (\lambda_k f_k(y_t, y_{t-1}, x, t)))$$

Skip-chain CRF:

$$P(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \phi_t(y_t, y_{t-1}, x) \left[\prod_{(u,v) \in D} \phi_{uv}(y_u, y_v, x) \right]$$

$$\phi_t(y_t, y_{t-1}, x) = exp(\sum_k (\lambda_k f_k(y_t, y_{t-1}, x, t)))$$

$$\phi_{uv}(y_u, y_v, x) = exp(\sum_k (\lambda_{2k} f_{2k}(y_u, y_v, x, u, v)))$$

Summary

- Graphical models:
 - Bayesian network (BN)
 - Markov random field (MRF)
- CRF is a variant of MRF:
 - Linear-chain CRF: HMM + MaxEnt
 - Skip-chain CRF: can handle long-distance dependency
 - General CRF
- Pros and cons of CRF:
 - Pros: higher accuracy than HMM and MaxEnt
 - Cons: training and inference can be very slow