Settima Esercitazione

Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 cittá, le cui distanze reciproche sono indicate in tabella:

cittá	2	3	4	5	6
1	17	10	20	35	_
2		11	21	_	15
3			_	6	7
4				29	30
5					26

Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo. Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4. Risolvere il problema con il metodo del $Branch\ and\ Bound$, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{56} , x_{26} , x_{36} .

Esercizio 2. Si consideri il problema di caricare un container di volume pari a 6 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene puó essere inserito al massimo una volta).

Beni	1	2	3	4
Valori	21	15	14	13
Volumi	5	2	4	3

Calcolare una valutazione inferiore del valore ottimo applicando un algoritmo greedy. Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo $0 \le x_i \le 1$. Risolvere il problema con il "Branch and Bound".

SOLUZIONI

Esercizio 1.

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

3-albero:
$$(1,2)(1,4)(2,6)(3,5)(3,6)(5,6)$$
 $v_I(P) = 91$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo pi vicino a partire dal nodo 4.

ciclo:
$$4 - 1 - 3 - 5 - 6 - 2$$
 $v_S(P) = 98$

c) Risolvere il problema con il metodo del *Branch and Bound*, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{56} , x_{26} , x_{36} .

Esercizio 2. Si consideri il problema di caricare un container di volume pari a 6 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene pu essere inserito al massimo una volta).

Beni	1	2	3	4
Valori	21	15	14	13
Volumi	5	2	4	3

a) Calcolare una valutazione inferiore del valore ottimo applicando un algoritmo greedy.

sol. ammissibile =
$$(0, 1, 0, 1)$$
 $v_I(P) = 28$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo $0 \le x_i \le 1$.

ottimo rilassamento =
$$\left(\frac{1}{5}, 1, 0, 1\right)$$
 $v_S(P) = 32$

2