Space X	$\pi_0(X)$	$\pi_1(X)$	$H_0(X)$	$H_1(X)$	$H_2(X)$	$H_3(X)$
\mathbb{R}^n		0	Z	0		
\mathbb{R}^n-k pts						
B^n		0		0		
S^0		0	0	0	0	0
S^1		Z	Z	Z	0	0
S^2		0	Z	0	Z	0
S^3		0	Z	0	0	?
$S^n, n \geq 4$		0	Z	0	0	0
S^n-k pts						
$T^2 = S^1 imes S^1$		$\mathbb{Z} \times \mathbb{Z}$	Z	$Z\oplus Z$		
$\prod_n S^1$		$F_n\cong\prod_n\mathbb{Z}$	Z	$F_n^{(ab)} = igoplus_n \mathbb{Z}$		
$\prod_n S^1 - k$ pts						
$\bigvee_n S^1$	0	$*_n\mathbb{Z}$	Z			
\mathbb{RP}^1	0	Z	Z	Z		0
\mathbb{RP}^2	0	\mathbb{Z}_2	Z	\mathbb{Z}_2	Z	0
\mathbb{RP}^3	0	\mathbb{Z}_2	Z	\mathbb{Z}_2	0	Z
$\mathbb{RP}^n, n \geq 4$	0	\mathbb{Z}_2	Z	\mathbb{Z}_2	0	\mathbb{Z}_2
\mathbb{CP}^1	0	0		0		
$\mathbb{CP}^n, n \geq 2$	0	0		0		
Mobius Band						
Klein Bottle				$\mathbb{Z} imes \mathbb{Z}_2$		
Gr(n,k)						
S^3- Hopf Link						
n -fold dunce cap						

Notation

- $A \times B$ and $\prod X_i$ are direct products of groups, $A \oplus B$ and $\bigoplus X_i$ are direct sums. These are equivalent when there are finitely many terms involved; the latter is a subspace of the former when there are infinitely many terms.
- A * B is a free product, $*_n \mathbb{Z}$ is the **free group** on n generators
- ullet $igoplus_n \mathbb{Z}$ is the **free abelian group** on n generators
 - o Every free abelian group is $igoplus_{i \in I} \mathbb{Z}$ for some set I.
 - $\circ (*_n \mathbb{Z})^{ab} = \bigoplus_n \mathbb{Z}.$
 - $\circ x \in \langle a_1, \cdots, a_n \rangle \implies x = \sum_n c_i a_i$ for some $c_i \in \mathbb{Z}$ (integer linear combination of generators)
- ullet $\mathbb{RP}^n=S^n/S^0=S^n/\mathbb{Z}_2$

- $\mathbb{CP}^n = S^{2n+1}/S^1$
- G(n,k) where $G(n,1)=\mathbb{RP}^n$ is the real n-dimensional grassman manifold, also the set of k dimensional subspaces of \mathbb{R}^n .

Spheres

- $\pi_i(S^n) = 0$ for i < n, $\pi_n(S^n) = \mathbb{Z}$
 - Not necessarily true that $\pi_i(S^n) = 0$ when i > n!!!
 - lacksquare E.g. $\pi_3(S^2)=\mathbb{Z}$ by Hopf fibration
- $H_i(S^n) = \mathbf{1}[i \in 0, n]$
- $H_n(\bigvee_i X_i) \cong \bigoplus_i H_n(X_i)$ for "good pairs"
 - \circ Corollary: $H_n(\bigvee_k S^n) = \mathbb{Z}^k$
- $S^n/S^k \simeq S^n \vee \Sigma S^k$
 - $\circ \Sigma S^n = S^{n+1}$
- S^n has the CW complex structure of 2 k-cells for each $0 \le k \le n$.

Torii

- $\pi_k(\times_n S^1) = 0$ for $k \ge 2$.
- $ullet H_k(imes_nS^1)=igoplus_{inom{n}{k}}^{-1}\mathbb{Z}^n$

Projective Spaces

- $\mathbb{RP}^n = S^n/\mathbb{Z}_2$, an antipodal action.
- $\pi_k(\mathbb{RP}^n)=\pi_k(S^n)$ for $k\geq 2\,\pi_1(\mathbb{RP}^n)=\mathbb{Z}_2$ for n>1.
- $\pi_k(\mathbb{CP}^n)=\pi_k(S^{2n+1})$ for $k\geq 3$
- $\bullet \ \ H_i(\mathbb{RP}^n) = \mathbb{Z} \cdot \mathbb{1}[i=0] + \mathbb{Z} \cdot \mathbb{1}[i=n, n \text{ odd})] + \mathbb{Z}_2 \cdot \mathbb{1}[\mathbb{1} \leq i < n, i \text{ odd}]$

	Homotopy groups of real projective spaces												
	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}	
RP^1	Z	0	0	0	0	0	0	0	0	0	0	0	
RP^2	Z_2	Z	Z	Z_2	Z_2	Z_{12}	Z_2	Z_2	Z_3	Z_{15}	Z_2	$Z_2 \times Z_2$	
RP^3	Z_2	0	Z	Z_2	Z_2	Z_{12}	Z_2	Z_2	Z_3	Z_{15}	Z_2	$Z_2 \times Z_2$	
RP^4	Z_2	0	0	Z	Z_2	Z_2	$Z \times Z_{12}$	$Z_2 \times Z_2$	$Z_2 \times Z_2$	$Z_{24} \times Z_3$	Z_{15}	Z_2	

	Homotopy groups of complex projective spaces												
	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}	
CP^1	0	Z	Z	Z_2	Z_2	Z_{12}	Z_2	Z_2	Z_3	Z_{15}	Z_2	$Z_2 \times Z_2$	
CP^2	0	Z	0	0	Z	Z_2	Z_2	Z_{24}	Z_2	Z_2	Z_2	Z_{30}	
CP^3	0	Z	0	0	0	0	Z	Z_2	Z_2	Z_{24}	0	0	
CP^4	0	Z	0	0	0	0	0	0	Z	Z_2	Z_2	Z_{24}	

Theorems

- Techniques:
 - Fundamental group:
 - Van Kampen
 - Covering space actions?

•
$$\pi_1(X/\Gamma) = \Gamma$$
 when $\pi_1(X) = 0$ and Γ acts freely

- Homotopy Groups
 - Hurewicz
- Homology Groups

 - Excision?
- $\pi_k(X)$ for $k \geq 2$ is always abelian.
- Rank π_0/H_0 = number of connected components.
- $\pi_1(X) = \mathbb{Z}$ iff X is simply connected.
- $H_1(X) = \mathbf{Ab}(\pi_1(X))$ (the abelianization of the fundamental group.)
- $\pi_k(\prod X_i)\cong\prod\pi_k(X_i)$ (homotopy groups commute with products)
- $\pi_1(\bigvee_n X_i) = *_n \pi_1(X_i)$ (fundamental groups of wedges split into free products)
- ullet X simply connected implies $\pi_k(X)\cong H_k(X)$ for first nonvanishing H_k
- X an n-1 connected space implies $\pi_k(X) \cong H_k(X)$ for all $2 < k \le n$. (k=1 case is abelianization)
- For $n \ge k+2$, $\pi_{n+k}(S^n)$ does not depend on n. i.e., Homotopy groups stabilize. Diagonals show where diagonals become constant:

	Homotopy groups of spheres												
	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}	
S^1	Z	0	0	0	0	0	0	0	0	0	0	0	
S^2	0	\overline{Z}	Z	Z_2	Z_2	Z_{12}	Z_2	Z_2	Z_3	Z_{15}	Z_2	$Z_2 \times Z_2$	
S^3	0	0	Z	Z_2	Z_2	Z_{12}	Z_2	Z_2	Z_3	Z_{15}	Z_2	$Z_2 \times Z_2$	
S^4	0	0	0	Z	Z_2	Z_2	$Z \times Z_{12}$	$Z_2 \times Z_2$	$Z_2 \times Z_2$	$Z_{24} \times Z_3$	Z_{15}	Z_2	
S^5	0	0	0	0	Z	Z_2	Z_2	Z_{24}	Z_2	Z_2	Z_2	Z_{30}	
S^6	0	0	0	0	0	Z	Z_2	Z_2	Z_{24}	0	Z	Z_2	
S^7	0	0	0	0	0	0	Z	Z_2	Z_2	Z_{24}	0	0	
S^8	0	0	0	0	0	0	0	Z	Z_2	Z_2	Z_{24}	0	

Matrix Groups

• General list:

$$\circ O_n, U_n, SO_n, SU_n, Sp_n$$

•
$$\pi_k(U_n) = \mathbb{Z} \cdot \mathbf{1}[k \text{ odd}] \ \pi_1(U_n) = 1$$

•
$$\pi_k(SU_n) = \mathbb{Z} \cdot \mathbf{1}[k \text{ odd}] \ \pi_1(SU_n) = 0$$

•
$$\pi_k(U_n) = \mathbb{Z}_2 \cdot \mathbf{1}[k = 0, 1/8] + \mathbb{Z} \cdot 1[k = 3, 7/8]$$

•
$$\pi_k(SP_n) = \mathbb{Z}_2 \cdot \mathbf{1}[k = 4, 5/8] + \mathbb{Z} \cdot \mathbf{1}[k = 3, 7/8]$$

A1.1.3.4 Exceptional groups

	Homotopy groups of exceptional groups												
	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}	
G_2	0	0	Z	0	0	Z_3	0	Z_2	Z_6	0	$Z \times Z_2$	0	
F_4	0	0	Z	0	0	0	0	Z_2	Z_2	0	$Z \times Z_2$	0	
E_6	0	0	Z	0	0	0	0	0	Z	0	Z	Z_{12}	
E_7	0	0	Z	0	0	0	0	0	0	0	Z	Z_2	
E_8	0	0	Z	0	0	0	0	0	0	0	0	0	

•