Microbiome Analysis

How do we describe microbiomes?

• How do we compare microbiomes?

Important ecological concepts

- How is biodiversity defined and measured?
- Component of biodiversity:
 - RICHNESS
 - EVENNESS
- Species richness: number of different species in a habitat/sample
- Species relative abundance: number of each species relative to total number of all species in a sample (number of reads per OTU in a sample relative to total number of reads in that sample)
- Species evenness: how close in numbers each species in an environment are; distribution

Simple example:

- Alpha diversity: Diversity within a single sample (Alone)
- Beta diversity: Diversity Between samples
- Gamma diversity: total diversity in a landscape

SIMPLE EXAMPLE

Species richness

Size adjusted according to abundance

Phylogenetic relationship

Metrics used to describe diversity measure different aspects of the community

Alpha metrics

- Richness: observed species, chao1
- Diversity (Richness and Abundance / Evenness): Shannon, Simpson
- Phylogenetic: PD, Faith's PD or PD_whole tree

Beta diversity

- Diversity <u>b</u>etween samples
- Single metric to describe difference or similarity between samples
- Non-phylogenetic metrics
- Phylogenetic metrics

 Raw unweighted Unifrac: sum of branch length that is unique to one environment or the other

$$u = \frac{\sum_{i=1}^{N} l_i |A_i - B_i|}{\sum_{i=1}^{N} l_i \max(A_i, B_i)}$$

 l_i is the branch length between node i and its parent, and Ai and Bi are indicators equal to 0 or 1 as descendants of node i are absent or present in communities A and B respectively

A = red, B= blue, branches in common are purple, branches unique to A are red and unique to B are blue. Presence/absence metric.

 Raw weighted Unifrac: Branch lengths are weighted by the relative abundance of sequences

$$u = \sum_{i}^{n} b_{i} \times \left| \frac{A_{i}}{A_{T}} - \frac{B_{i}}{B_{T}} \right|$$

Here, n is the total number of branches in the tree, b_i is the length of branch i, A_i and B_i are the number of descendants of branch i from communities A and B respectively, and A_T and B_T are the total number of sequences from communities A and B respectively. In order to control for unequal sampling effort, A_i and B_i are divided by A_T and B_T .

- Normalised weighted Unifrac: takes abundance and normalises branch length
 - Rapidly evolving lineages (with long branch length can skew unifrac)

Unweighted Unifrac does not take abundance into account Weighted Unifrac takes abundance into account – branch lengths weighted by relative abundance

Completely genetically different communities D=1 Exactly same communities D=0

PCoA is a method to explore and to visualize similarities or dissimilarities of data. It starts with a similarity matrix or dissimilarity matrix (= distance matrix) and assigns for each item a location in a low-dimensional space (2D or 3D graphics).

	Sample1	Sample2	Sample3	Sample4	Sample5	Sample6	Sample7	Sample8	Sample9	Sample10
sample1	-0.45272	0.11954	-0.081764	0.037794	-0.14426	-0.054638	0.03717	-0.045374	-0.0079748	-0.12573
sample2	-0.47655	0.089467	-0.067195	0.056111	-0.12911	0.057788	-0.025686	0.066917	-0.12545	-0.020286
sample3	-0.38372	0.045654	-0.098504	0.019517	0.2348	-0.16791	-0.019422	0.00015095	0.306	0.059276
sample4	0.40561	0.1961	-0.26087	0.35721	0.064719	0.049181	-0.058984	0.036286	-0.030997	-0.024002
sample5	-0.49884	0.076615	-0.10997	0.0848	-0.065639	-0.033154	-0.05038	0.02358	0.0064334	-0.069332
sample6	-0.46592	0.13353	-0.088553	0.026915	-0.092687	0.013809	0.07571	0.056925	-0.052395	0.028462
sample7	0.06255	0.12978	-0.049563	-0.43325	0.16133	0.3547	0.043509	0.064613	0.019788	0.085759
sample8	0.084894	0.017048	0.21576	-0.088903	-0.022797	-0.050414	0.17675	0.5677	0.063088	-0.15751
sample9	0.41945	0.28248	-0.12415	0.014038	-0.085404	-0.052874	-0.05431	0.0076042	0.039428	-0.01937
sample10	-0.44193	0.073919	-0.11333	0.070209	-0.095491	-0.048107	0.00069784	-0.0089602	-0.029425	0.082447

