Visualization

Rachel Zhang (yz2334) 7/17/2020

Newest ROH

Load different session for various visualization.

```
\#load("\sim/Documents/Research/MLJournalPaper/Data/Final\ Script/sessions/newestROH.RData")
load("~/Documents/Research/MLJournalPaper/Data/Final Script/sessions/Allcurve.RData")
texreg(list(reg[[1]], reg[[2]], reg[[3]], reg[[4]], reg[[5]], reg[[6]], reg[[7]], reg[[8]], reg[[9]], reg[[10]], reg[[11]], reg[[12]]))
Only plot Regression, SVR, additive pickup, and Random Forest.
ME4 = ME\_ALL[-13, c(1,3,8,9)] #c(1,3,8,9)]
rownames(ME4) = agg
ME4melt = melt(as.matrix(ME4), varnames=c('DBA', 'Model'))
ME4melt$DBA = factor(ME4melt$DBA, levels = agg)
               levels = c(pasteO('DBA', agg)))
ME4melt$Model = factor(ME4melt$Model,
              levels=c('apk','mpk','reg','nn','knn','wknn', 'dtree', 'rf','svr'))
plotME1 = ggplot(ME4melt, aes(x=DBA, y=value, group=Model, color=Model)) +
  geom line(aes(color=Model), size=1)+
  geom point(aes(color=Model), size=1)+
  scale color manual(values=j1)+
# scale color brewer(palette="Set2")+
  xlab('DBA') + ylab('Mean Errors') +
  theme minimal() +
  theme(legend.position = 'none') #+ylim(0,15)+
# theme(axis.text.x = element_text(vjust=1)) #angle=45,
MAE4 = MAE_ALL[-13, c(1,3,8,9)]
rownames(MAE4) = agg
MAE4melt = melt(as.matrix(MAE4), varnames=c('DBA', 'Model'))
MAE4melt$DBA = factor(MAE4melt$DBA, levels = agg)
```

·-	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10	Model 11	Model 12
(Intercept)	2.00***	2.68***	3.85***	4.53***	4.83***	6.27***	6.77***	10.94***	17.48***	21.78***	27.40***	32.50***
	(0.52)	(0.69)	(0.78)	(0.88)	(0.92)	(0.95)	(1.09)	(1.62)	(1.83)	(1.91)	(2.04)	(1.93)
DOWMonday	0.50	0.98	-0.13	0.97	1.72	1.21	1.98	7.43***	8.55***	10.41***	12.92***	12.19***
	(0.52)	(0.69)	(0.79)	(0.88)	(0.91)	(0.97)	(1.11)	(1.63)	(1.97)	(2.13)	(2.39)	(2.52)
DOWTuesday	-0.15	1.04	-0.42	-1.65	-1.48	-2.40^*	-1.57	2.65	2.90	4.68^{*}	3.94	3.24
	(0.55)	(0.72)	(0.81)	(0.90)	(0.95)	(1.00)	(1.14)	(1.71)	(2.06)	(2.24)	(2.53)	(2.67)
DOWWednesday	-0.52	0.11	0.66	-0.47	-0.98	-1.72	-1.62	1.53	1.76	2.64	2.93	2.19
	(0.50)	(0.66)	(0.76)	(0.85)	(0.88)	(0.93)	(1.07)	(1.62)	(1.95)	(2.13)	(2.41)	(2.53)
DOWThursday	1.04^{*}	1.70**	2.07**	2.35^{**}	2.07^{*}	0.99	1.19	3.29^{*}	2.75	2.96	4.26	3.46
	(0.49)	(0.65)	(0.74)	(0.84)	(0.88)	(0.92)	(1.05)	(1.60)	(1.93)	(2.11)	(2.38)	(2.50)
DOWFriday	1.06^{*}	2.80***	3.09***	3.70***	4.44***	3.40***	2.93**	4.48**	2.80	2.56	3.09	3.09
	(0.52)	(0.67)	(0.77)	(0.87)	(0.90)	(0.94)	(1.08)	(1.65)	(1.98)	(2.16)	(2.45)	(2.58)
DOWSaturday	1.43**	2.59***	3.27^{***}	4.20***	4.77***	4.27***	4.10***	4.41**	1.74	0.99	0.61	-0.60
	(0.50)	(0.66)	(0.76)	(0.85)	(0.88)	(0.94)	(1.08)	(1.64)	(1.96)	(2.14)	(2.42)	(2.55)
ROH1	1.17^{***}											
	(0.08)											
ROH2	-0.07	1.24***										
	(0.13)	(0.13)										
ROH3	-0.13	-0.12	1.21^{***}									
	(0.14)	(0.18)	(0.14)									
ROH4	0.01	-0.33	-0.30	0.93***								
	(0.14)	(0.18)	(0.21)	(0.17)								
ROH5	-0.02	0.18	-0.00	-0.01	1.12^{***}							
	(0.15)	(0.21)	(0.24)	(0.27)	(0.18)							
ROH6	0.33^{*}	0.39	0.50^{*}	0.50	0.34	1.70***						
	(0.15)	(0.20)	(0.23)	(0.26)	(0.27)	(0.18)						
ROH7	-0.28**	-0.29^*	-0.28	-0.22	-0.22	-0.42^{*}	1.36***					
	(0.10)	(0.14)	(0.16)	(0.18)	(0.19)	(0.19)	(0.07)					
ROH14	0.01	-0.04	-0.14	-0.15	-0.20^*	-0.23^*	-0.15	1.40***				
	(0.05)	(0.07)	(0.08)	(0.09)	(0.09)	(0.10)	(0.11)	(0.12)				
ROH21	0.03	0.00	0.06	-0.01	0.02	0.03	-0.15	-0.32	1.11***			
	(0.05)	(0.07)	(0.08)	(0.09)	(0.10)	(0.10)	(0.12)	(0.18)	(0.15)			
ROH30	-0.08	-0.06	-0.11	-0.11	-0.13	-0.12	-0.10	-0.04	-0.10	1.05***		
	(0.05)	(0.06)	(0.07)	(0.08)	(0.08)	(0.09)	(0.10)	(0.15)	(0.19)	(0.12)		
ROH60	-0.01	-0.02	0.04	0.04	0.03	-0.04	-0.00	0.10	0.17	0.08	1.45^{***}	
	(0.06)	(0.08)	(0.09)	(0.11)	(0.11)	(0.12)	(0.13)	(0.21)	(0.25)	(0.27)	(0.25)	
ROH90	0.03	0.03	0.05	0.04	0.06	0.12	0.06	-0.18	-0.16	-0.08	-0.24	1.31***
	(0.06)	(0.08)	(0.10)	(0.11)	(0.11)	(0.12)	(0.14)	(0.21)	(0.25)	(0.28)	(0.31)	(0.17)
\mathbb{R}^2	0.97	0.95	0.94	0.92	0.91	0.90	0.87	0.70	0.56	0.47	0.32	0.24
$Adj. R^2$	0.97	0.95	0.94	0.92	0.91	0.90	0.86	0.68	0.54	0.45	0.30	0.22
Num. obs.	296	296	296	296	200	2 296	296	296	296	296	296	296
RMSE	2.22	2.96	3.42	3.84	4.04	4.30	4.95	7.55	9.10	9.95	11.26	11.87

p < 0.001, p < 0.01, p < 0.05

```
levels = c(pasteO('DBA', aqq)))
MAE4melt$Model = factor(MAE4melt$Model,
             levels=c('apk','mpk','reg','nn','knn','wknn', 'dtree', 'rf','svr'))
plotMAE1 = ggplot(MAE4melt, aes(x=DBA, y=value, group=Model, color=Model)) +
  geom line(aes(color=Model), size=1)+
  geom_point(aes(color=Model), size=1)+
# scale_color_manual(values=j1)+
# scale_color_brewer(palette="Set2")+
  xlab('DBA') + ylab('Mean Absolute Errors') +
  theme minimal() +
  theme(legend.position = 'none')
  \#+ylim(0,15)+
# theme(axis.text.x = element text(angle=45, vjust=0.5))
MPE4 = MPE ALL[-13, c(1,3,8,9)]
rownames(MPE4) = agg
MPE4melt = melt(as.matrix(MPE4), varnames=c('DBA', 'Model'))
MPE4melt$DBA = factor(MPE4melt$DBA, levels = agg)
              levels = c(pasteO('DBA', aqq)))
MPE4melt$Model = factor(MPE4melt$Model,
             levels=c('apk','mpk','reg','nn','knn','wknn', 'dtree', 'rf','svr'))
plotMPE1 = ggplot(MPE4melt, aes(x=DBA, y=value, group=Model, color=Model)) +
  geom line(aes(color=Model), size=1)+
  geom_point(aes(color=Model), size=1)+
  scale color manual(values=j1)+
# scale_color_brewer(palette="Set2")+
  xlab('DBA') + ylab('Mean Percentage Errors') +
    theme_minimal() +
  theme(legend.position = 'none') #+ylim(0,15)+
# theme(axis.text.x = element_text(angle=45, vjust=0.5))
MAPE4 = MAPE\_ALL[-13, c(1,3,8,9)]
rownames(MAPE4) = agg
MAPE4melt = melt(as.matrix(MAPE4), varnames=c('DBA', 'Model'))
MAPE4melt$DBA = factor(MAPE4melt$DBA, levels = agg)
              levels = c(pasteO('DBA', aqq)))
MAPE4melt$Model = factor(MAPE4melt$Model.
```

```
levels=c('apk','mpk','reg','nn','knn','wknn', 'dtree', 'rf','svr'))
plotMAPE1 = ggplot(MAPE4melt, aes(x=DBA, y=value, group=Model, color=Model)) +
  geom line(aes(color=Model), size=1)+
  geom_point(aes(color=Model), size=1)+
  scale color manual(values=j1)+
# scale_color_brewer(palette="Set2")+
 xlab('DBA') + ylab('Mean Absolute Percentage Errors') +
   theme_minimal() +
 theme(legend.position = 'none') #+ylim(0,15)+
# theme(axis.text.x = element_text(angle=45, vjust=0.5))
SDE4 = SDE_ALL[-13, c(1,3,8,9)]
rownames(SDE4) = agg
SDE4melt = melt(as.matrix(SDE4), varnames=c('DBA', 'Model'))
SDE4melt$DBA = factor(SDE4melt$DBA, levels = agg)
               levels = c(pasteO('DBA', agg)))
SDE4melt$Model = factor(SDE4melt$Model,
             levels=c('apk','mpk','reg','nn','knn','wknn', 'dtree', 'rf','svr'))
plotSDE1 = ggplot(SDE4melt, aes(x=DBA, y=value, group=Model, color=Model)) +
  geom line(aes(color=Model), size=1)+
 geom point(aes(color=Model), size=1)+
  scale color manual(values=j1)+
# scale color brewer(palette="Set2")+
 xlab('DBA') + ylab('Standard Deviation Errors') +
  theme minimal() \#+ylim(0,15)+
# theme(axis.text.x = element_text(angle=45, vjust=0.5))
grid_arrange_shared_legend(plotME1, plotMPE1, plotMAE1, plotMAPE1, plotSDE1, nrow=1)
```

