الگوریتم موازی برای درخت فراگیر کمینه بر روی MOT

- ورودی: یک گراف وزندار (ماتریس مجاورت $n \times n : n \times n$ رأس و حداکثر n^{r} یال)
- خروجی: درخت فراگیر کمینه (یالهای گراف که درخت را میسازند مشخص میشوند)
 - ساختار: $2D ext{-MOT}$ که رأسهای درخت سطر i و ستون i در هم ادغام شده باشند.
- پردازنده ی(i,j) در توری متناظر است با یال (i,j) که در ابتدا وزن آن یال w(i,j) را ذخیره می کند.
 - i متناظر است با رأس i

• رأسها افراز می شوند به مجموعه هایی که یکی از اعضای آن مجموعه leader i باشد i=L(i) است. هر رأس i=L(i) خود را در L(i) ذخیره می کند. اگر i=L(i) باشد i=L(i) است. مجموعه ای که i=L(i) آن است را i=L(i) می گوییم.

• در ابتدا هر رأس به تنهایی یک مجموعه است. در انتها فقط یک مجموعه داریم که یالهای آن MST است.

قضیه: سبک ترین یال که دو رأس از دو مجموعهی مختلف را به هم وصل می کند جزء MST است.

كليات الگوريتم

- (تا این که فقط یک مجموعه داشته باشیم) او $\lg n$
- به صورت موازی هر leader نزدیک ترین leader به خود را پیدا می کند.
 - هر leader مجموعه اش را در نزدیک ترین مجموعه ادغام می کند.
- انجام کار فوق به صورت موازی موجب ادغام تعدادی مجموعه و تولید مجموعههای بزرگ تر می کند. تعداد مجموعهها حداقل نصف می شود.
 - پس از ادغام باید leader جدید انتخاب شود.

i المارهی P(i) نزدیک ترین P(i) به leader پیدا کردن

 $S_{P(i)}$ وزن سبک ترین یال بین W(i)

- رأس i i را برای برگها درخت افقی و عمودی می فرستد.
 - پردازندهی (i,j)، مقادیر (i,j)، مقادیر U(i,j)، را دارد.
- بر روی درخت ستونی، اگر $L(i) \neq L(j) \neq L(j)$ باشد W(i,j) باشد اگر ارسال می شود و مینیمم گرفته می شود.
- رأس j سبک ترین یالی که یک سرش S_j است و یک سر دیگرش S_k که $k \neq j$ را به دست می آورد.
 - اگر u(i) و w(i) و v(i) و اخیره می کند. اگر
 - این کار در $\log n$ مرحله انجام می شود.

ادغام مجموعهها

- اگر (i, P(i)) را یالهای یک گراف جهت دار (i, P(i)) در نظر بگیریم،
- هر مسیری را که در $\mathcal G$ دنبال کنیم به یک حلقه بین (i,j) می رسیم که j=P(i)
 - leader جدید رأس با کم ترین شماره در هر حلقه انتخاب می شود.
- برای این کار باید در اولین گام در هر حلقه ی (i,j) اگر i leader i نهایی است، P(j)=i و P(i)=i

- در انتها کافی است که هر رأس i (هم leader هر رأس کافی است که هر رأس کا کافی است که هر رأس کا در انتها کافی است که هر رأس کا در انجام دهد.
- نشان می دهیم که عملهای $P(i) \leftarrow P(P(i))$ و $P(i) \leftarrow P(D(i))$ را می توان در $P(i) \leftarrow P(D(i))$ داد.

پس در مجموع الگوریتم $O(\lg^n)$ است. این الگوریتم را می توان در $O(\lg^n)$ هم انجام داد. به کتاب لایتون مراجعه کنید.

پردازش موازی

$$Z(i) = X(Y(i))$$
 انجام عمل

- X(i) به برگهای درخت سطر i ارسال می شود.
- در همان زمان درخت ستونی j برگ Y(j)ام را انتخاب می کند.
 - بنابراین X(Y(j)) انتخاب شده و به ریشه ارسال می شود.