Universidade Federal de Pernambuco Centro de Ciências Sociais Aplicadas Departamento de Ciências Contábeis e Atuariais

CT509 – Fundamentos de Álgebra Linear Prof. Renata Alcoforado

Primeira Avaliação

Regras do jogo: Esta avaliação deve ser enviada até a o final da aula síncrona de hoje, dia 14/03 (10 horas da manhã), no classroom, através de foto ou scanner. A avaliação deve ter sido manuscrita, no papel e na letra do aluno(a). Todos os cálculos devem ser apresentados, em caso de constar apenas a resposta, a mesma será desconsiderada.

 Um construtor tem contratos para construir três estilos de casa: moderno, mediterrâneo e colonial. A quantidade de material empregada em cada tipo de casa é dada pela matriz:

	Ferro	Madeira	Vidro	Tinta	Tijolo
Moderno	[6	25	15	8	18]
$Mediterr \^aneo$	5	20	12	10	21
Colonial	L 8	27	9	5	14

- a) Se ele vai construir 8, 5 e 13 casas do tipo moderno, mediterrâneo e colonial, respectivamente, quantas unidades de cada material serão empregadas?
- b) Suponha agora que os preços por unidade de ferro, madeira, vidro, tinta e tijolo sejam, respectivamente, 15, 8, 6, 2 e 11 reais. Qual é o preço unitário de cada tipo de casa?
- c) Qual o custo total do material empregado?
- 2) Suponhamos que em uma determinada região, a cada ano quatro por cento da população rural migra para as cidades, enquanto que apenas um por cento da população urbana migra para o meio rural. Se todas as demais condições permanecerem estáveis, as condições políticas não mudarem, e estas porcentagens de migração continuarem as mesmas, qual deve ser a relação entre as populações urbana e rural desta região a longo prazo?

3) Considere o sistema

$$\begin{cases} x + 6y - 8z = 1 \\ 2x + 6y - 4z = 0 \end{cases}$$

- $\begin{cases} x+6y-8z=1\\ 2x+6y-4z=0 \end{cases}$ a) Verifique que a matriz $X_1=\begin{bmatrix} x\\y\\z \end{bmatrix}=\begin{bmatrix} -1\\\frac{1}{3}\\0 \end{bmatrix}$ é uma solução para o sistema.
- b) Resolva o sistema e verifique que toda "matriz-solução" é da forma

$$X_1 = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \lambda \begin{bmatrix} -4 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1/3 \\ 0 \end{bmatrix}$$

Em que $\lambda \in \mathbb{R}$.

4) Dada a matriz

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 2 \\ 5 & 1 & 7 \end{bmatrix}$$

Calcule:

- a) O determinante de A utilizando o desenvolvimento de Laplace
- b) adj(A)
- c) A^{-1}
- 5) Seja $\beta = \{e_1, e_2\}$, em que $e_1 = (1, 1)$ e $e_2 = (0, 1)$
 - a) $W = \{ae_1 + be_2 | a, b \in \mathbb{R}\}\$ é subespaço de \mathbb{R}^2 ? Se sim, prove.
 - b) Mostre que o conjunto $\{(1, 1), (0, 1)\}$ é base de $V = \mathbb{R}^2$
 - c) Seja $\beta'=\{(1,0),(0,1)\}$ base de \mathbb{R}^2 , calcule $[I]_{eta}^{eta'}$.

Let the game begin