

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS
Washington, D.C. 20231
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/410,646	10/01/1999	DAVID A. EDWARDS	99-TK-262	7191

7590 09/24/2002

LISA K JORGENSEN
STMICROELECTRONICS INC
1310 ELECTRONICS DRIVE
MAIL STOP 2346
CARROLLTON, TX 75006

EXAMINER

MASKULINSKI, MICHAEL C

ART UNIT

PAPER NUMBER

2184

DATE MAILED: 09/24/2002

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/410,646	EDWARDS ET AL.	
	Examiner	Art Unit	
	Michael C Maskulinski	2184	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 07 August 2002.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-25 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-25 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 01 October 1999 is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
- 11) The proposed drawing correction filed on _____ is: a) approved b) disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.
- 12) The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

- 13) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.
- 14) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
- a) The translation of the foreign language provisional application has been received.
- 15) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) Paper No(s). _____ |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449) Paper No(s) _____ | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

Claim Rejections - 35 USC § 112

1. In response to the Applicant's amendment of claims 17-23, the Examiner has withdrawn the rejection under 35 USC § 112.

Double Patenting

2. The Examiner maintains that claim 1 is provisionally rejected under the judicially created doctrine of obviousness-type double patenting as being unpatentable over claim 5 of co-pending Application No. 09/410,642. The body of the rejection can be found in the first Office Action, paper no. 5.

Claim Rejections - 35 USC § 102

3. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

4. Claims 1, 3, 7-9, 11-14, 16, and 18-25 are rejected under 35 U.S.C. 102(b) as being anticipated by Wolff et al., U.S. Patent 4,486,826.

Referring to claims 1, 16, 25:

a. In column 3, lines 61-64, Wolff et al. disclose that the A and B buses each carry an identical set of cycle definition, address, data, parity and other signals that can be compared to warn of erroneous information transfer between units

(packets of information, wherein each packet comprises a number of fields containing information).

b. In column 2, lines 31-35, Wolff et al. disclose a computer system, which has a processor module with a processing unit, a random access memory unit, and peripheral control units (plurality of modules), and it has a single bus structure which provides all information transfers between the several units of the module.

c. In column 2, lines 48-56, Wolff et al. disclose that the computer system provides fault detection at the level of each functional unit within a processor module. To attain this feature, error detectors monitor hardware operations within each unit and check information transfers between the units (circuitry for determining if the information satisfies one or more conditions).

d. In column 2, lines 48-56, Wolff et al. disclose that the detection of an error causes the processor module to isolate the bus or unit which caused the error from transferring information to other units (circuitry for preventing a module from putting further information onto said interconnect in response to the determination that the information satisfies one or more conditions).

Referring to claim 3, in column 3, lines 57-68, Wolff et al. disclose that the bus carries cycle-definition, address (address of the information), data, parity, and other signals that can be compared to warn of erroneous information transfer between units (match conditions). Requests and responses are inherent to the information mentioned

Art Unit: 2184

above because an address is sent to a device to request data and in response the data is sent.

Referring to claim 7, in column 2, lines 48-56, Wolff et al. disclose that the detection of an error causes the processor module to isolate the bus or unit which caused the error from transferring information to other units (prevent one or more modules from being granted access to the interconnect). Further, in column 40, lines 63-68 continued in column 41, lines 1-2, Wolff et al. disclose a broken flip-flop (preventing circuitry) to disable the drivers of a peripheral device in response to a fault.

Referring to claim 8, in column 40, lines 56-68 continued in column 41, lines 1-2, Wolff et al. disclose a comparator that compares peripheral (module) output signals (information on interconnect) with corresponding output signals from the check control section (match conditions). In response to an invalid comparison, the comparator switches a so-called broken flip-flop to disable the drivers (determining circuitry using a comparator).

Referring to claims 9 and 11, in column 25, lines 32-40, Wolff et al. disclose that the central processing unit (circuit) has two subsystems and control circuits within the unit that take the unit off-line upon detection of an error (precondition: enabled or not enabled). Further, in column 40, lines 56-68 continued in column 41, lines 1-2, Wolff et al. disclose a comparator that compares peripheral (module) output signals (information on interconnect) with corresponding output signals from the check control section (match conditions). In response to an invalid comparison, the comparator switches a so-called broken flip-flop to disable the drivers (preventing circuitry).

Referring to claims 12 and 13, in figures 5A, 5B, and 1, and in column 28, lines 21-35, Wolff et al. disclose latch 120 which is between the interconnect and the processor module (circuitry external to said circuit). The latch provides temporary storage of output data so that in the event any error is reported on the buses, the operating sequence in which the error was reported can be duplicated and the data retransmitted on the A bus 42 (external circuitry is enabled).

Referring to claim 14, in column 3, lines 57-68, Wolff et al. disclose that the bus carries cycle-definition (type of transaction to which the information relates), address (address of the information), data, parity, and other signals that can be compared to warn of erroneous information transfer between units (match conditions). The information comprising packets of information, requests, and response is inherent to the information mentioned above that is sent over a bus.

Referring to claim 18, in column 20, lines 35-55, Wolff et al. disclose an arbitration network (arbiter) which provides an automatic hardware determination of which unit, or pair of partner units, that requests access to the bus structure (interconnect) has priority to initiate an operating cycle (granted access). In column 3, lines 34-47, Wolff et al. disclose that upon detection of an error-manifesting fault in any unit, that unit is isolated and placed off-line so that it cannot transfer information to other units of the module (preventing circuitry). As stated above upon detection of an error in a unit, that unit is isolated and taken off-line, therefore, the unit cannot participate in the arbitration (module prevented from putting information onto the interconnect is prevented from winning an arbitration).

Referring to claim 19, in column 20, lines 35-55, Wolff et al. disclose that the processor module (determining circuitry) has two arbitration networks (arbiter) connected to bus A and bus B.

Referring to claim 20, in the abstract, Wolff et al. disclose a bus.

Referring to claims 21, 22, and 23, in column 2, lines 48-63, Wolff et al. disclose error detectors (debug module) at the level of each functional unit (module). Further, in column 40, lines 63-68 continued in column 41, lines 1-2, Wolff et al. disclose a comparator, which switches a so-called broken flip-flop to disable the drivers upon detection of an error (preventing circuitry). The comparator is part of the control unit, which is part of the functional unit (determining circuitry in said debug module).

Referring to claim 24:

- a. In column 2, lines 31-35, Wolff et al. disclose a computer system, which has a processor module with a processing unit, a random access memory unit, and peripheral control units (plurality of modules), and it has a single bus structure (interconnect) which provides all information transfers between the several units of the module.
- b. In column 3, lines 61-64, Wolff et al. disclose that the A and B buses each carry an identical set of cycle definition, address, data, parity and other signals that can be compared to warn of erroneous information transfer between units (packets of information, wherein each packet comprises a number of fields containing information).

- c. In column 2, lines 48-56, Wolff et al. disclose that the detection of an error causes the processor module to isolate the bus or unit which caused the error from transferring information to other units (circuitry for preventing a module from putting further information onto said interconnect).
- d. In column 20, lines 35-55, Wolff et al. disclose an arbitration network (arbiter) which provides an automatic hardware determination of which unit, or pair of partner units, that requests access to the bus structure (interconnect) has priority to initiate an operating cycle (granted access). In column 3, lines 34-47, Wolff et al. disclose that upon detection of an error-manifesting fault in any unit, that unit is isolated and placed off-line so that it cannot transfer information to other units of the module (preventing circuitry). As stated above upon detection of an error in a unit, that unit is isolated and taken off-line, therefore, the unit cannot participate in an arbitration (module prevented from putting information onto the interconnect is prevented from winning an arbitration).

Claim Rejections - 35 USC § 103

- 5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

6. Claims 4-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wolff et al., U.S Patent 4,486,826 as applied to claim 6 above, and further in view of Cepulis, U.S. Patent 6,055,596.

Referring to claim 4, in column 40, lines 63-68 continued in column 41, lines 1-2, Wolff et al. disclose a so-called broken flip-flop to disable the drivers of a peripheral device (module) in order to prevent it from putting further information onto the bus (interconnect). However, Wolff et al. don't explicitly disclose using a register for preventing a module from putting information onto the interconnect. In column 75, lines 3-10, Cepulis discloses that the CPU can power up one of the slots by writing a "1" to a corresponding bit of a slot enable register and disable the slot by writing a "0" to this bit. It would have been obvious to one of ordinary skill at the time of the invention to include the slot enable register of Cepulis into the system of Wolff et al. A person of ordinary skill in the art would have been motivated to make the modification because as disclosed by Wolff et al. a switching means is needed to disconnect a peripheral device. The slot enable register of Cepulis is one type of switching means used to disconnect a peripheral device.

Referring to claim 5, in column 75, lines 3-10, Cepulis discloses that the CPU can power up one of the slots by writing a "1" to a corresponding bit of a slot enable register and disable the slot by writing a "0" to this bit (the register comprises one bit for each module and the value of said bit determines if the respective module is prevented from putting further information into the interconnect).

Art Unit: 2184

Referring to claim 6, in column 75, lines 3-10, Cepulis discloses a slot enable register with a corresponding bit for each slot (the location being independent of the address of the module).

7. Claim 10 is rejected under 35 U.S.C. 103(a) as being unpatentable over Wolff et al., U.S. Patent 4,486,826 as applied to claim 13 above, and further in view of Ardini, Jr. et al., U.S. Patent 4,918,693. In column 40, lines 56-68 continued in column 41, lines 1-2, Wolff et al. disclose a comparator that compares peripheral (module) output signals (information on interconnect) with corresponding output signals from the check control section (match conditions). In response to an invalid comparison, the comparator switches a so-called broken flip-flop to disable the drivers (determining circuitry using a comparator). However, Wolff et al. don't explicitly disclose satisfying a precondition by having match conditions occurring a predetermined number of times. In column 8, lines 9-14, Ardini, Jr. et al. disclose a diagnostic program that, after a certain number of parity error signals are received from board 202, it will send a code to disable the parity check circuit output. It would have been obvious to one of ordinary skill at the time of the invention to include the parity error signal threshold of Ardini, Jr. et al. into the system of Wolff et al. A person of ordinary skill in the art would have been motivated to make the modification because a parity check circuit can become faulty so that it continuously generates a parity error signal on its output (see Ardini, Jr. et al.: column 8, lines 7-9). In this case, to check for a faulty parity circuit would require a precondition.

8. Claim 15/1 is rejected under 35 U.S.C. 103(a) as being unpatentable over Wolff et al., U.S. Patent 4,486,826 as applied to claim 1 above, and further in view of Pizzica,

Art Unit: 2184

U.S. Patent 5,652,754. In column 2, lines 48-56, Wolff et al. disclose that the computer system provides fault detection at the level of each functional unit within a processor module. To attain this feature, error detectors monitor hardware operations within each unit and check information transfers between the units (circuitry for determining if said at least part of said information satisfies one or more conditions). However, Wolff et al. don't explicitly disclose storing circuitry to store the information which satisfies the at least one condition. In column 2, lines 53-60, Pizzica discloses a signature storage device that stores a fault free signature from a functional digital module and faulty signatures obtained by shorting and opening each of the circuit nodes thereof. It would have been obvious to one of ordinary skill at the time of the invention to include the faulty signature storing of Pizzica into the system of Wolff et al. A person of ordinary skill in the art would have been motivated to make the modification because *the recorded signatures can be used for subsequent pass/fail determination of digital modules that are tested* (see Pizzica: column 1, lines 46-48).

9. Claim 17 is rejected under 35 U.S.C. 103(a) as being unpatentable over Wolff et al., U.S. Patent 4,486,826 as applied to claim 22 above, and further in view of Bershteyn et al., U.S. Patent 5,678,028. In the abstract, Wolff et al. disclose a fault-tolerant computer system comprising a processor unit, a memory unit, one or more peripheral control units, and a bus structure. However, Wolff et al. don't explicitly disclose that these circuits are an integrated circuit. In the Background of Bershteyn et al., a system-on-a-chip debugger is disclosed. It would have been obvious to one of ordinary skill at the time of the invention to make the system of Wolff et al. into the

system-on-a-chip debugger of Bershteyn et al. into the. A person of ordinary skill in the art would have been motivated to make the modification because an entire system can be fabricated on a single wafer decreasing the cost of the entire system (see Bershteyn et al.: column 1, lines 45-67).

Response to Arguments

10. Applicant's arguments filed August 7, 2002 have been fully considered but they are not persuasive.

With respect to the Applicant's arguments that "Wolff et al. does [sic] not show or suggest using a packet interconnect. Wolff et al. contemplate monitoring a [sic] the signals that pass on an interconnect (see column 4, lines 64-68), but not packets," the Examiner respectfully disagrees. As stated by the Applicant, "A common definition of a packet in a data communication network is: 'A group of bits, including data and control elements that is switched and transmitted as a unit' (Modern Dictionary of Electronics, Sixth Ed., Howard W. Sams & Company, 1988)." In column 3, lines 61-64, Wolff et al. disclose that *the A and B buses each carry an identical set* (a group of bits) *of cycle definition, address* (control elements), *data* (data), *parity and other signals that can be compared to warn of erroneous information transfer between units*.

With respect to the Applicant's arguments that "[Moreover,] Wolff et al. do not monitor information from the interconnect as that term is used in the instant application. Wolff et al. suggest monitoring the signals to detect error conditions, and suggest deriving parity information from the signals, but do not show or suggest directly monitoring the information itself. There is a significant difference between monitoring

signals for an error condition, and monitoring information contained within a packet as called for by independent claims 1, 22, 33, and 34," the Applicant's arguments fail to comply with 37 CFR 1.111(b) because they amount to a general allegation that the claims define a patentable invention without specifically pointing out how the language of the claims patentably distinguishes them from the references.

With respect to the Applicant's arguments that "[In particular,] the Office Action asserts that the 'information comprising packets of information' is inherent is incorrect," and that "[Further,] the assertion in the Office Action that the cycle definition signal suggests the limitation of claim three plainly misconstrues the reference," the Examiner agrees and has changed his position in the above rejections accordingly.

Conclusion

11. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Michael C Maskulinski whose telephone number is (703) 308-6674. The examiner can normally be reached on Mon-Thu 7:30-5 and Fri. 7:30-4 (second Fri.).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Robert Beausoleil can be reached on (703) 305-9713. The fax phone numbers for the organization where this application or proceeding is assigned are (703) 746-7239 for regular communications and (703) 746-7238 for After Final communications.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is (703) 305-3900.

MM
September 17, 2002

ROBERT BEAUSOLEIL
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2100