Analisi II - terza parte

Successioni e serie di funzioni

Motivazioni

Problemi

Sia una famiglia di funzioni "semplici" $(P_0, P_1, ..., P_n)$ linearmente indipendenti, $\varphi : E \to \mathbb{R}(o\mathbb{C})$.

Si pone il seguente problema

- 1. Data $f: E \to \mathbb{R}(o\mathbb{C})$ esiste una succesione $(c_n)_n \in \mathbb{R}(o\mathbb{C})$ t.c. la serie $\sum c_n \cdot \varphi_n$ converge in qualche caso a f in E?
- 2. Data una successioe $(c_n)_n$ in $\mathbb R$, la serie $\sum c_n\cdot arphi_n$ converge a qualche $f:E o\mathbb R(o\mathbb C)$?

Succesione di funzioni

Sia $(f_n)_n$ una successione di funzioni $f_n:E o\mathbb{R}(o\mathbb{C})$ e sia $f:E o\mathbb{R}(o\mathbb{C})$ come si definisce una convergenza di $(f_n)_n$?

Convergenza puntuale

Siano $(f_n)_n$ una successione di funzioni $f_n:E o\mathbb{R}(o\mathbb{C})$ e $f:E o\mathbb{R}(o\mathbb{C})$. Si dice che $(f_n)_n$ converge puntualmente a f su E se $\forall x\in E\lim_n f_n(x)=f(x)$ cioè $(\forall x\in E)(\forall \varepsilon>0)(\exists n = n)$ ($n>n = |f_n(x)-f(x)|<\varepsilon$)

Osservazione

 $ar{n}$ dipende da arepsilon, ma anche da x, $ar{n}=ar{n}(arepsilon,x)$ nella convergenza puntuale ----//--data 25/9--//----

Teorema

Siano $(f_n)_n$ una successione di funzioni $f_n:[a,b] o \mathbb{R}$ e $f:[a,b] o \mathbb{R}$, si ha:

1. se $(f_n)_n$ converge uniformemente a f in [a,b] e f_n continua $\forall n$ su [a,b], allora f è continua, cioè $\forall x_o \in [a,b] \lim_{x \to x_o} f(x) = f(x_0) \Leftrightarrow \lim_{x \to x_o} (\lim_n f_n(x)) = \lim_n (\lim_{x \to x_o} f_n(x))$

2. Se $(f_n)_n$ converge uniformemente a f su [a,b] e f_n è integrabile $\forall n$, allora f è integrabile e $\int_a^b f(x) dx = \lim_n \int_a^b f_n(x) dx \Leftrightarrow \int_a^b (\lim_n f_n(x)) dx = \lim_n \int_a^b f_n(x) dx$, Teorema del passaggio al limite sotto al segno di integrale

3. Se $(f_n)_n$ converge puntualmente a f in [a,b], f_n è derivabile $\forall n$ e $(f'_n)_n$ converge uniformemente a g su [a,b] allora f è derivaile e f'=g in $[a,b]\Leftrightarrow \frac{d}{dx}\lim_n f_n(x)=\lim_n \frac{d}{dx}f_n(x)$, in [a,b]

Serie di funzioni

Sia $(f_n)_n$ una successione di funzioni con $f_n:E o\mathbb{R}(o\mathbb{C})$, $\forall n$ poniamo $s_1(x)=f_1(x)$, $s_n(x)=f_1(x)+...+f_n(x)$, $\forall x\in E$. La coppia $((f_n)_n,(s_n)_n)$ si dice serie di funzioni e si indica con $\sum f_n$

• Se $(s_n)_n$ coverge puntualmente o uniformemente a $s:E o \mathbb{R}(o\mathbb{C})$ si dice che la serie $\sum f_n$ converge puntualmente (risp. uniformemente) con somma s su E

Condizione necessaria per la convergenza uniforme di serie di funzioni

Se $\sum f_n$ converge uniformemente in E allora $(f_n)_n$ deve convergere uniformemente a 0 in E

Criteri di convergenza uniforme per serie di funzioni

Criterio di Cauchy per la convergenza uniforme

$$\sum f_n$$
 converge uniformemente in $E\Leftrightarrow (orall arepsilon>0)(\exists \bar{n})(orall x\in E)(orall n)(orall p)(n>ar{n}\Rightarrow |f_{n+1}(x)+...+f_{n+p}(x)|$

M-test di Weierstrass

Sia $\sum f_n$, $f_n:E o \mathbb{R}(o\mathbb{C})$, una serie di funzioni. Se esiste $(M_n)_n$ in \mathbb{R} t.c.

1.
$$|f_n(x)| \leq M_n$$
, $orall x \in E$, $orall n$

2. $\sum M_n$ converge $\Rightarrow \sum f_n$ converge uniformemente in E

NB: Spesso sarà $M_n = \displaystyle \sup_{x \in E} f_n(x)$

Criterio di Leibniz per la convergenza uniforme

Sia
$$\sum (-1)^n f_n(x)$$
, con $f_n:E o \mathbb{R}$, una serie di funzioni
Se $orall n$ si ha

1. $f_n(x) > 0$, $\forall x \in E$

2. $f_{n+1}(x) < f_n(x)$, $orall x \in E$

Allora si ha che $\sum (-1)^n f_n(x)$ conv. uniformemente su $E \Leftrightarrow (f_n) o 0$ uniformemente su E

(da condizione necessaria diventa, ora, sufficiente)

Inoltre, vale la seguente stima d'errore

$$|s(x) - s_n(x)| < f_{n+1}(x)$$
, $orall n$, $orall x \in E$

Teorema di passaggio al limite per le serie di funzioni

Sia $\sum f_n$ una serie di funzioni, con $f_n:E o\mathbb{R}$ e sia $f:E o\mathbb{R}$ Si ha:

- 1. Se $\sum f_n o f$ uniformemente in [a,b] e f_n continua in [a,b], cioè $orall x_0\in [a,b]$, $\lim_{x o x_0}(\sum f_n(x))=f(x_0)=\sum f_n(x_0)=\sum (\lim_{x o x_0}f_n(x))$
- 2. Se $\sum f_n$ converge uniformemente con somma f e f_n integrabile $\forall n$, allora f è integrabile in [a,b] e $\int_a^b f(x)dx = \sum \int_a^b f_n(x)dx \Leftrightarrow \int_a^b (\sum f_n(x))dx = \sum \int_a^b f_n(x)dx$
- 3. Se $\sum f_n$ converge puntualmente in [a,b] con somma f, f_n è derivabile $\forall n$ su [a,b] e $\sum f'_n$ converge uniformemente su [a,b] con somma g, allora f è derivabile e $f'=g\Leftrightarrow \frac{d}{dx}(\sum f_n(x))=\sum \frac{d}{dx}f_n(x)$, su [a,b]

Sviluppabilità in serie di potenze

Serie di potenze in ${\mathbb R}$

Siano $(a_n)_n$ una succ. in $\mathbb R$ e $x_0 \in \mathbb R$ fissati.

Posto, $orall n \in \mathbb{N}^+$, $f_n(x) = a_n(x-x_0)^n$, con $x_0 \in \mathbb{R}$.

La serie difunzioni $\sum f_n = \sum a_n (x-x_0)^n$ è la serie di potenze di centro x_0 , a coefficienti reali (a_n)

NB: $0^0=1$ in questo contesto

Lemma di Abel

Se $\sum a_n(x-x_0)^n$ converge in $\bar x
eq x_0$, $\bar x \in \mathbb{R} \setminus \{x_0\}$, allora la serie convereg assolutamente $orall x \in \mathbb{R}$ t.c. $|x-x_0| < |\bar x - x_0|$

Dimostrazione

Poichè $\sum a_n(x-x_0)^n$ converge, si ha $\lim_n a_n(\bar x-x_0)^n=0$ m quindi esiste M<0 t.c. $|a_n(x-x_0)^n| < M$, $\forall n$

Risulta, per
$$x\in\mathbb{R}$$
 t.c. $|x-x_0|<|ar{x}-x_0|$ che $|a_n(x-x_0)^n|=|a_n(rac{x-x_0}{ar{x}-x_0})^n(ar{x}-x_0)^n|=|a_n(ar{x}-x_0)^n||rac{x-x_0}{ar{x}-x_0})^n|=|a_n(ar{x}-x_0)^n||rac{x-x_0}{ar{x}-x_0})^n|=|a_n(ar{x}-x_0)^n||+|a_n(ar{x}-x_0)^n||=|a_n(ar{x}-x_0)^n||+|a_n(ar{x}-x_0)^n|+|a_n(ar{x}-x_0$

Poichè la serie $\sum M \cdot q^n$ converge (serie geometrica), per il criterio del confronto $\sum |a_n(x-x_0)^n|$ converge e quindi $\sum a_n(x-x_0)^n$ converge

Osservazione

Sotto le ipotesi del Lemma di Abel

- $\sum a_n(x-x_0)^n$ converge puntualmente in $]x_0-(\overset{-}{x}-x_0),x_0+(\overset{-}{x}-x_0)[$
- ullet $\sum a_n (x-x_0)^n$ converge uniformemente in $]x_0-r,x_0+r[$, con $0< r<|ar x-x_0|$

Insieme di convergenza

Poniamo $I = \{x \in \mathbb{R} | \sum a_n (x - x_0)^n ext{ converge} \}$

• Raggio di convergenza Poniamo $R=\sup\{|x-x_0|:x\in I\}$ (*) Si ha $R\geq 0$, $R\in [0,+\infty[U\{+\infty\}$

Teorema

Il raggio R definito da (*) soddisfa:

- (a)
 - 1. se $x \in \mathbb{R}$ è t.c. $|x-x_0| < R$, allora $\sum a_n (x-x_0)^n$ converge (assolutamente)
 - 2. se $x \in \mathbb{R}$ è t.c. $|x-x_0| > R$, allora $\sum a_n (x-x_0)^n$ non converge
- (b)
 - $\circ \ \mbox{ se } R' \in [0,+\infty[U\{+\infty\} \mbox{ verifica le condizioni 1. e 2.}$ allora R'=R, con R definito da (*)
 - (a) Sono le proprietà caratteristiche del raggio di convergenza

Dimostrazione

• (a) Sia R il raggo di convergenza definito da (*) Poniamo 1. Sia $x\in\mathbb{R}$ t.c. $|x-x_0|< R$. Per la caratterizzazione dell'estremo superiore $\exists \overset{-}{x}\in I$ t.c.

 $|x-x_0| < |ar{x}-x_0 < R$, per il Lemma di Abel la serie converge assolutamente.

Poniamo 2. Se, per assurdo, esistesse $\bar{x}\in\mathbb{R}$ con $|\bar{x}-x_0|>R$ t.c. $\sum a_n(x-x_0)^n$ sia covergente allora si contraddice la definizione di estremo superiore.

- (b) Sia $R' \in [0,+\infty[U\{+\infty\}$, si verificano 1. e 2.
- 1. se R' verifica 1., allora $R' \leq R$
- 2. Se R' verifica 2., allora $R' \geq R$ Si ha R' = R

Teorema di struttura dell'insieme di convergenza

L'insieme di convergenza I è un insieme connesso (intervallo o punto singolo) e verifica:

- $I=\mathbb{R}$ se $R=+\infty$
- $ullet \ |x_0-R,x_0+R[\subset I\subset]x_0-R,x_0+R[$, $0< R< +\infty$
- $I = \{x_0\}$ se R = 0

Dimostrazione

Segue dalle proprietà di $\mathbb R$

Osservazioneù

Sia R il raggio di convergenza, si ha:

- ullet se $|x-x_0| < R, \sum a_n (x-x_0)^n$ converge puntualmente
- ullet $\forall r | 0 < r < R$, $\sum a_n (x-x_0)^n$ converge uniformemente su $]x_0-r, x_0+r[$

Proprietà della funzione somma (di serie di funzioni)

Sia $\sum a_n(x-x_0)^n$ una serie di potenze avente raggio di convergenza R<0. Poniamo $intI=I_R=]x_0-R, x_0+R[$ se $0< R<+\infty$ (= \mathbb{R} se $R=+\infty$) e per ogni $x\in I_R$, $f(x)=\sum a_n(x-x_0)^n$

Teorema integrazione termine a termine

La somma
$$f$$
 è continua in I_R e $\int_{x_0}^x a_n(t-x_0)^n dt = \sum rac{a_n}{n+1}(x-x_0)^{n+1}$ $orall x \in \mathbb{R}.$ Inoltre il raggio di convergenza di $\sum rac{a_n}{n+1}(x-x_0)^{n+1}$ è R

Teorema derivazione termine a termine

La funzione somma è derivabile in I_R e $f'(x)=\sum rac{d}{dx}(a_n(x-x_0)^n)=\sum n\cdot a_n(x-x_0)^n-1$, $\forall x\in\mathbb{R}$ Inoltre il raggio di convergenza di $\sum n\cdot a_n(x-x_0)^n-1$ è R

Corollario

La funzione somma è derivabile infinte volte in I_R e, $orall k \in \mathbb{N}^+$,

$$f_n^{(k)}(x) = \sum rac{d^k}{dx^k} (a_n(x-x_0)^n) = \sum_{n=k}^{+\infty} n \cdot (n-1) \cdot ... \cdot (n-k+1) a_n(x-x_0)^{n-k}$$

(da n=k perchè tutti gil altri termini vanno a zero)

Sviluppabilità in serie di Taylor

Sia $\sum a_n(x-x_0)^n$ una serie di potenza con raggio di convergenza R>0 e sia f(x) la sua somma, $f(x)=\sum a_n(x-x_0)^n$ in I_R . f appartiene a C^∞ in I_R e, $\forall k\in\mathbb{N}^+$, $f^{(k)}(x_0)=\sum n\cdot(n-1)\cdot\ldots\cdot(n-k+1)a_n(x-x_0)^{n-k}$ in I_R In particolare, $f^{(k)}(x_0)=k!a_k$, $\forall k\in\mathbb{N}$ ($f^{(0)}(x_0)=f(x_0)$) pertanto

$$f(x) = \sum a_n (x-x_0)^n = \sum rac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$

Serie di Taylor

Sia $f:]x_0-h,x_0+h[o\mathbb{R}$ di classe $C^\infty.$ La serie $\sum rac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ si dice serie di Taylor con punto iniziale x_0

Osservazione

La ridotta (n+1)-esima di $\sum rac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ è $s_{n+1}(x)=\sum rac{f^{(N)}}{N!}(x-x_0)^N$ è il polinomio di Taylor di f di punto iniziale x_0 avente ordine n

ullet Una funzione f si dice sviluppabile in serie di Taylor di punto iniziale x_0 se esiste h>0 t.c.

$$f(x)=\sumrac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$
 , $orall x\in]x_0-h,x_0+h[$

Osservazione

La somma di una serie di potenze avente R>0 è sviluppabile in serie di Taylor su I_R

Problema

Data $f \in C^{\infty}$, sotto quali ipotesi f è sviluppabile in serie di Taylor?

Osservazione

Essere di classe C^∞ non è condizione sufficiente per la sviluppabile in serie di Taylor

Teorema - condizione sufficiente per la sviluppabile in serie di Taylor

Se $f:]x_0-h,x_0+h[o\mathbb{R}$, h>0, è di classe C^∞ ed esiste M>0 t.c. $orall n\in\mathbb{N}$ $|f^{(n)}(x)|\leq Mrac{n!}{h^n}$, in $]x_0-h,x_0+h[$

allora f è sviluppabile in serie di Taylor di punto iniziale x_0 in $]x_0-h,x_0+h[$. Inoltre, la serie converge uniformemente a f su $[x_0-k,x_0+k]$, $\forall k < h$

Dimostrazione

$$\forall n \in \mathbb{N}^+, \text{ si ha } |s_{n+1}(x) - f(x)| = |f(x) - P_{n,x_0}(x)| = |\frac{f^{(N+1)}(\xi_{N+1})}{(N+1)!}(x - x_0)^{N+1}| = |f^{(N+1)}(\xi_{N+1})| \frac{|x - x_0|^{N+1}}{(N+1)!}) \leq M \frac{(N+1)!}{h^{N+1}} \frac{|x - x_0|^{N+1}}{(N+1)!} = M(\frac{|x - x_0|}{h})^{N+1}, \text{ Essendo } |\xi_{N+1} - x_0| < |x - x_0| < h$$
 Poichè $0 \leq \frac{|x - x_0|}{h} < 1$, Si ha $|f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \to 0$, per $N \to +\infty$ E quando $\sum \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$ converge a $f(x)$, $\forall x \in]x_0 - h, x_0 + h[$ Fissato $0 < h < k$ si ottiene, per $x \in [x_0 - k, x_0 + k]$, $|f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \leq M(\frac{k}{h})^{N+1}$ e quindi $\sup_{]x_0 - h, x_0 + h[} |f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \to 0$, per $N \to +\infty$

Dunque la successione delle ridotte converge e dunque la serie donverge uniformemente a f in $]x_0-h,x_0+h[$

Oservazione

La condizione $\exists M>0$ è tale che $\forall n$, $|f^{(n)}(x)|\leq M\frac{n!}{h^n}$, in $]x_0-h,x_0+h[$ e, in particolare verificata se $\exists K>0$ t.c., $\forall n|f^{(n)}(x_0)|\leq K$ Infatti si ha $\frac{n!}{h^n}\to +\infty$, se $n\to +\infty$

Funzioni analitiche

Si dice che f è analitica in [a,b] se f è sviluppabile in serie di Taylor di punto iniziale x_0 , $\forall x \in]a,b[$

L'insieme delle funzioni analitiche in]a,b[si indica con H(]a,b[)

Osservazione

$$C^0([a,b[)\supset C^1([a,b[)\supset...\supset C^n([a,b[)\supset...\supset C^\infty([a,b[)\supset H([a,b[),$$
 in $\mathbb R$

Spazi metrici

Sia (\mathbb{S},d) uno spazio metrico

Sfera aperta e sfera chiusa

Siano $x_0 \in \mathbb{S}$ e r>0. L'insieme $\mathbb{B}(x_0,r)=\{x\in \mathbb{S}: d(x,x_0)< r\}$. Si dice sfera aperta (chiusa) di centro x_0 e raggio r

Intorno di un punto

Sia $x_0\in\mathbb{S}$. Un'insieme $U\subseteq S$. Si dice intorno di x_0 se esiste k>0 t.c. $\mathbb{B}(x_0,r)\subseteq S$. L'insieme degli intorni di x_0 si indica con \mathfrak{J}_{x_0}

(Alcune) proprietà degli intorni

Sia $x_0 \in \mathbb{S}$. Si ha

- 1. $(\forall u \in \mathfrak{J}_{x_0})(\forall \mathbb{V} \subseteq \mathbb{S})(\mathbb{U}_S \subseteq \mathbb{V} \Rightarrow \mathbb{V} \in \mathfrak{J}_{x_0})$
- 2. $(\forall U, V \in \mathfrak{J}_{x_0})(U \cap \mathbb{V} \in \mathfrak{J}_{x_0})$
- 3. $(\forall x,y\in\mathbb{S})[x
 eq y\Rightarrow (\exists U\in\mathfrak{J}_x)(\exists\mathbb{V}\in\mathfrak{J}_y)U\cap\mathbb{V}=\emptyset]$

Punto di accumulazione

Siano $E\subseteq\mathbb{S}$ e $x_0\in\mathbb{S}$. Si dice che x_0 è di accumulazione per E se in ogni intorno di x_0 ci sono infiniti punti di E o, equivalentemente, in ogni intorno di x_0 c'è almeno un punto di E diverso da x_0

Chiusura di un insiemee insieme chiuso

Sia $E\subseteq \mathbb{S}$. L'insieme $E=ch(E)=E\cup \{x\in \mathbb{S}: x \text{ è di accumulazione per } E\}$, si dice chiusura di E

Un insieme E si dice chiuso se E=clE

Punto interno

 $E\subseteq \mathbb{S}$, $x_0\in E$. Si dice che x_0 è un punto interno a E se esiste almeno un intorno di x_0 , U, t.c. $U\subset E$.

Interno di un insieme aperto

Sia $E\subseteq \mathbb{S}$. L'insieme $E=intE=\{x\in E: x ext{ è interno a}E\}$, si dice interno di E

Punto di frontiera

Siano $E\subseteq\mathbb{S}$ e $x_0\in\mathbb{S}$. x_0 è di frontiera per E se in ogni intorno di x_0 ci sono punti di E e punti del complementare di E (CE)

Frontiera di un insieme

 $frE=\{x\in\mathbb{S}:x$ è di frontiera per $E\}$ si dice frontiera di E

Insieme limitato.

Sia $E\subseteq \mathbb{S}$. Si dice che E è limitato se esiste $x_0\in E$ e raggio r>0 t.c. $E\subseteq B(x_0,r)$ e, equivalentemente, $\sup_{x,y\in E}d(x,y)<+\infty$. $diam(E)=\sup_{x,y\in E}d(x,y)$

Funzioni da \mathbb{R}^n in \mathbb{R}^m

Una funzione $f: E(\subseteq \mathbb{R}^n) o \mathbb{R}^m$ è del tipo $f(x) = f(x_1,...x_n) = \begin{pmatrix} f_1(x_1,...x_n) \\ ... \\ f_m(x_1,...x_n) \end{pmatrix}$ con $x = (x_1,...x_n)^T$ e $f_i: E o \mathbb{R}$ per i=1,...,n

Campi scalari

$$N=$$
 2, $M=$ 1, $f:E(\subseteq\mathbb{R})
ightarrow\mathbb{R}$

Insiemi di livello

Sia $f:E(\subseteq\mathbb{R}) o\mathbb{R}$ un campo scalare Per ogni $k\in\mathbb{R}$, l'insieme $L_k(f)=\{x\in E:f(x)=k\}$ si dice insieme di livello

Curve parametriche

- $N=1, M\geq 2$, Sia $\gamma:I(\subseteq\mathbb{R})\to\mathbb{R}^m$ con I intervallo. La coppia $(\gamma,\gamma(I))$ si dice curva parametrica di cui γ è la parametrizzazione e $\Gamma=\gamma(I)$ è il sostegno
- ullet M=2, $Y:I o \mathbb{R}^2$, $\gamma(t)=(x(t),y(t))^T$ è il sostegno

Campi vettoriali

$$N=M\geq 2$$
 , $g:E(\subseteq\mathbb{R}^N) o\mathbb{R}^N$

Limiti di funzioni da \mathbb{R}^n in \mathbb{R}^m (dati dalla distanza euclidea)

Sia $f: E(\subseteq \mathbb{R}^N) o \mathbb{R}^N$ e sia $x_0 \in \mathbb{R}^N$ di accumulazione per E. Si dice $\lim_{\underline{x} - x_0} \underbrace{l}_- \in \mathbb{R}^N$ se $(\forall \mathbb{V} \in \mathfrak{J}_l)(\exists U \in \mathfrak{J}_{x_0})(\forall \underline{x} \in E)(\underline{x} \in U \setminus \{x_0\}) \Rightarrow f(\underline{x}) \in \mathbb{R}^N$

$$\mathbb{V}) \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall \underline{x} \in E)(0 < d(\underline{x}, x_0) < \delta \Rightarrow d(f(\underline{x}), l) < \varepsilon)$$

Quindi supporremo che E sia aperto e lo indicheremo con A.

Derivata parziale

Sia $\{e_1,...e_n\}$ una base canonica di \mathbb{R}^n e sia $\mathop{v}=e_i$ per un certo i=1,...,n.

Sia $x_0\in int E$. La derivata direzionale $\dfrac{\partial f}{\partial e_i}(x_0)$ si dice derivata parziale i-esima di f in x_0 e si

indica con
$$rac{\partial f}{\partial x_i}(x_0) = f_{x_i}(x_0)$$

La ragione della notazione è la seguente:

$$egin{aligned} rac{\partial f}{\partial e_i}(x_0) &= \lim_{t o 0} rac{f(x_0 + tv) + f(x_0)}{t} = \ &\lim_{t o 0} rac{f(x_1^0, ..., x_i^0 + t, ..., x_n^0) - f(x_1^0, ..., x_n^0)}{t} = \ &\lim_{x_i o x_i^0} rac{f(x_{0_1}, ..., x_i, ..., x_{0_n}) - f(x_{0_1, ..., x_{0_n}})}{x_i - x_i^0} \end{aligned}$$

Unicità di a

Siano
$$\underline{a},\underline{b}\in\mathbb{R}^n$$
 t.c. $\forall\underline{x}\in\mathbb{R}^n$, $L(\underline{x})=<\underline{x},\underline{a}>$, $L(\underline{x})=<\underline{x},\underline{b}$, cioè $<\underline{x},\underline{a}-\underline{b}>=0$. Se $\underline{x}=\underline{a}-\underline{b}$, si ha $<\underline{a}-\underline{b},\underline{a}-\underline{b}>=0$, cioè $||\underline{a}-\underline{b}||^2=0$ Pertanto, si conclude che $||\underline{a}-\underline{b}||=0\Rightarrow\underline{a}=\underline{b}$

Calcolo differenziale per $f: \mathbb{R}^N o \mathbb{R}^M$

Problema

Siano $f:\mathbb{R}^N o \mathbb{R}^M$ e $x_0 \in E$. Come nel caso N=M=1 si vuol definire la "derivata" di f in x_0 . in modo da poter costruire una funzione lineare che approssima efficacemente f in prossimità di x_0

NB: il rapporto incrementale non esiste per $N \geq 2$

Campo scalare, derivata direzionale

Siano $f:E(\subseteq\mathbb{R}^N) o\mathbb{R}$ e $x_0\in int E$. Consideriamo la retta $x=x_0+tv$, $t\in\mathbb{R}$, con $v\in \mathbb{R}^N$, ||v||=1. Poichè $x_0\in int E$, $\exists \delta>0$ t.c. $x=x_0+tv\in E$, $orall |t|<\delta$. Consideriamo la funzione $f(x_0+t_{\stackrel{-}{u}}):]-\delta, \delta[o\mathbb{R}$

Derivata direzionale: se esiste finito $\lim_{t o 0}$