МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ реральное государственное автономное образовательное учреждение высшего образовани

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет"

Высшая школа информационных технологий и интеллектуальных систем

УТВЕРЖДАЮ

Программа дисциплины

Параллельное программирование

Направление подготовки: 09.03.04 - Программная инженерия

Профиль подготовки: Технологии разработки информационных систем

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2020

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО
- 2. Место дисциплины (модуля) в структуре ОПОП ВО
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)
- 4.2. Содержание дисциплины (модуля)
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 7. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины (модуля) к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья
- 13. Приложение №1. Фонд оценочных средств
- 14. Приложение №2. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 15. Приложение №3. Перечень информационных технологий, используемых для освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

Программу дисциплины разработал(а)(и) доцент, к.н. Насрутдинов М.Ф. (кафедра компьютерной математики и информатики, отделение педагогического образования), Marat.Nasrutdinov@kpfu.ru; доцент, к.н. (доцент) Шемахин А.Ю. (Кафедра радиофизики, Высшая школа киберфизических систем и прикладной электроники), Aleksandr.Shemakhin@kpfu.ru

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО

Обучающийся, освоивший дисциплину (модуль), должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции		
	Владение навыками моделирования, анализа и использования формальных методов конструирования программного обеспечения, способность формализовать предметную область программного проекта и разработать спецификации для компонентов программного продукта		
ПК-6	Способность оценивать временную и емкостную сложность программного обеспечения		

Обучающийся, освоивший дисциплину (модуль):

Должен знать:

Знать основные определения и понятия, использующиеся в параллельном программировании.

Должен уметь:

Объяснять, что представляют собой различные параллельные архитектуры и модели программирования.

Разрабатывать эффективные параллельные алгоритмы решения заданных задач.

Отлаживать и исправлять ошибки в параллельных программах.

Должен владеть:

Навыками реализации заданных параллельных алгоритмов, используя технологии MPI, OpenMP и MapReduce.

Уметь анализировать быстродействие параллельного кода, определять 'бутылочные горлышки' и оптимизировать быстродействие этого кода.

Уметь анализировать сложность параллельных алгоритмов в зависимости от размера задачи и числа процессоров.

Должен демонстрировать способность и готовность:

2. Место дисциплины (модуля) в структуре ОПОП ВО

Данная дисциплина (модуль) включена в раздел "Б1.В.08 Дисциплины (модули)" основной профессиональной образовательной программы 09.03.04 "Программная инженерия (Технологии разработки информационных систем)" и относится к вариативной части.

Осваивается на 3 курсе в 5 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) на 108 часа(ов).

Контактная работа - 54 часа(ов), в том числе лекции - 18 часа(ов), практические занятия - 36 часа(ов), лабораторные работы - 0 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 18 часа(ов).

Контроль (зачёт / экзамен) - 36 часа(ов).

Форма промежуточного контроля дисциплины: экзамен в 5 семестре.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)

N	Разделы дисциплины / модуля	Семестр	(в часах)			Самостоятельная работа
			Лекции	Практические занятия	лабораторные работы	-
1.	Тема 1. Параллелизм аппаратного и программного обеспечения	5	2	6	0	2
2.	Тема 2. Технология MPI	5	2	6	0	2
3.	Тема 3. Технология OpenMP	5	2	6	0	2
4.	Тема 4. Разработка параллельных программ	5	6	8	0	4
5.	Тема 5. Модель распределенных вычислений MapReduce	5	6	10	0	8
	Итого		18	36	0	18

4.2 Содержание дисциплины (модуля)

Тема 1. Параллелизм аппаратного и программного обеспечения

Архитектура фон Неймана. Процессы, подпроцессы, многозадачность. Модификации модели фон Неймана. Кэш. Виртуальная память. Параллелизм на уровне инструкций. Многопоточность на уровне аппаратного обеспечения. Классификация Флинна. Системы SIMD. Системы MIMD. Взаимосоединение сетей. Когерентность кэша. Разделяемая память и распределенная память.

Тема 2. Технология MPI

Компиляция и запуск MPI-программ. Коммуникаторы. Программы SPMD. Отправление и получение сообщений. Взаимодействие точка-точка. Формула трапеции в MPI. Ввод и вывод. Коллективная коммуникация. Производные типы данных MPI. Анализ быстродействия MPI-программ. Параллельный алгоритм сортировки чет-нечет.

Тема 3. Технология OpenMP

Компиляция и запуск OpenMP-программ. Формула трапеции в OpenMP. Область видимости переменных. Условие редукции. Директива "параллельный for". Сортировка в OpenMP: "пузырек" и чет-нечет. Планирование циклов. Передача сообщений. Критические секции и замки. Кэш, когерентность кэша и ложное разделение. Безопасность подпроцессов.

Тема 4. Разработка параллельных программ

Задача об n телах. Параллелизация решения задачи об n телах в OpenMP. Параллелизация решения задачи об n телах в MPI. Поиск по дереву. Рекурсивный поиск в глубину. Нерекурсивный поиск в глубину. Структуры данных для последовательных реализаций. Быстродействие последовательных реализаций. Параллельный поиск по дереву. Реализация в OpenMP. Реализация в MPI и статическое разбиение. Реализация в MPI и динамическое разбиение.

Teма 5. Модель распределенных вычислений MapReduce

Распределенные файловые системы. Исторический обзор возникновения. Парадигма MapReduce. Алгоритмы, использующие MapReduce: умножение матрицы на вектор, операции реляционной алгебры, умножение матриц. Расширения MapReduce. Модель стоимости связи. Теория сложности для MapReduce. Реализации MapReduce.

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства образования и науки Российской Федерации от 5 апреля 2017 года №301)

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений"

Устав федерального государственного автономного образовательного учреждения "Казанский (Приволжский) федеральный университет"

Правила внутреннего распорядка федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет"

Локальные нормативные акты Казанского (Приволжского) федерального университета

6. Фонд оценочных средств по дисциплине (модулю)

Фонд оценочных средств по дисциплине (модулю) включает оценочные материалы, направленные на проверку освоения компетенций, в том числе знаний, умений и навыков. Фонд оценочных средств включает оценочные средства текущего контроля и оценочные средства промежуточной аттестации.

В фонде оценочных средств содержится следующая информация:

- соответствие компетенций планируемым результатам обучения по дисциплине (модулю);
- критерии оценивания сформированности компетенций;
- механизм формирования оценки по дисциплине (модулю);
- описание порядка применения и процедуры оценивания для каждого оценочного средства;
- критерии оценивания для каждого оценочного средства;
- содержание оценочных средств, включая требования, предъявляемые к действиям обучающихся, демонстрируемым результатам, задания различных типов.

Фонд оценочных средств по дисциплине находится в Приложении 1 к программе дисциплины (модулю).

7. Перечень литературы, необходимой для освоения дисциплины (модуля)

Освоение дисциплины (модуля) предполагает изучение основной и дополнительной учебной литературы. Литература может быть доступна обучающимся в одном из двух вариантов (либо в обоих из них):

- в электронном виде через электронные библиотечные системы на основании заключенных КФУ договоров с правообладателями;
- в печатном виде в Научной библиотеке им. Н.И. Лобачевского. Обучающиеся получают учебную литературу на абонементе по читательским билетам в соответствии с правилами пользования Научной библиотекой.

Электронные издания доступны дистанционно из любой точки при введении обучающимся своего логина и пароля от личного кабинета в системе "Электронный университет". При использовании печатных изданий библиотечный фонд должен быть укомплектован ими из расчета не менее 0,5 экземпляра (для обучающихся по ФГОС 3++ - не менее 0,25 экземпляра) каждого из изданий основной литературы и не менее 0,25 экземпляра дополнительной литературы на каждого обучающегося из числа лиц, одновременно осваивающих данную дисциплину.

Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля), находится в Приложении 2 к рабочей программе дисциплины. Он подлежит обновлению при изменении условий договоров КФУ с правообладателями электронных изданий и при изменении комплектования фондов Научной библиотеки КФУ.

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

The Message Passing Interface (MPI) standard - http://www.mcs.anl.gov/research/projects/mpi/index.html The OpenMP API specification for parallel programming - http://openmp.org/wp/
Информационно-аналитический центр по параллельным вычислениям - http://parallel.ru/

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Вид работ	Методические рекомендации			
лекции	Студентам необходимо посещать лекции и вести конспект лекций вслед за изложением материала преподавателем. Рекомендуется прорабатывать конспект в течение дня после лекции и просматривать его вновь накануне следующей лекции. В случае обнаружения ошибок или возникновения вопросов по предыдущему материалу необходимо обратиться к преподавателю.			

Вид работ	работ Методические рекомендации				
практические занятия	Для подготовки к практическим занятиям студенту рекомендуется предварительно прорабатывать как лекционный материал, так и материал предыдущих практических занятий. Основой для подготовки служит добросовестное выполнение домашнего задания. После изучения теоретического материала следует приступить к решениям задач по данной теме. Для многих задач курса существуют алгоритмы для их решения. В случае существования алгоритма решения задачи, необходимо разобрать все шаги работы этого алгоритма, обосновать, почему он останавливается через конечное число шагов и почему он дает необходимый результат.				
самостоя- тельная работа	Самостоятельная работа студентов состоит из двух основных частей - проработка лекционного материала и выполнения домашних заданий. Для освоения теоретического и практического материала, в случае, когда конспектов оказывается недостаточным, или для более детальной проработки отдельных тем рекомендуется использовать литературу, указанную в соответствующем разделе. Все возникающие вопросы рекомендуется заранее четко сформулировать и впоследствии обсудить с преподавателем.				
экзамен	Залогом успешной сдачи экзамена является работа в течение всего семестра. Непосредственную подготовку к экзамену рекомендуется разделить на два этапа. На первом этапе прорабатываются все экзаменационные вопросы и формулируются вопросы к преподавателю в рамках консультации по разделам, недостаточно подробно описанным в рамках лекционного курса или более трудным в освоении материала. После консультации происходит окончательная проработка и закрепление материала по всем экзаменационным вопросам.				

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем, представлен в Приложении 3 к рабочей программе дисциплины (модуля).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Материально-техническое обеспечение образовательного процесса по дисциплине (модулю) включает в себя следующие компоненты:

Помещения для самостоятельной работы обучающихся, укомплектованные специализированной мебелью (столы и стулья) и оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду КФУ.

Учебные аудитории для контактной работы с преподавателем, укомплектованные специализированной мебелью (столы и стулья).

Компьютер и принтер для распечатки раздаточных материалов.

Мультимедийная аудитория.

Компьютерный класс.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;

- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 09.03.04 "Программная инженерия" и профилю подготовки "Технологии разработки информационных систем".

Приложение 2 к рабочей программе дисциплины (модуля) Б1.В.08 Параллельное программирование

Перечень литературы, необходимой для освоения дисциплины (модуля)

Направление подготовки: 09.03.04 - Программная инженерия

Профиль подготовки: Технологии разработки информационных систем

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2020

Основная литература:

- 1.Карепова, Е. Д. Основы многопоточного и параллельного программирования: учебное пособие / Карепова Е.Д. Красноярск: Сибирский федеральный университет, 2016. 356 с.: ISBN 978-5-7638-3385-0. Текст : электронный. URL: https://znanium.com/catalog/product/966962 (дата обращения: 04.03.2020). Режим доступа : по подписке.
- 2. Богачёв, К. Ю. Основы параллельного программирования: учебное пособие / К. Ю. Богачёв. 4-е изд. Москва: Лаборатория знаний, 2020. 345 с. ISBN 978-5-00101-758-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/135516 (дата обращения: 04.03.2020). Режим доступа: для авториз. пользователей.
- 3. Борзунов, С. В. Практикум по параллельному программированию: учебное пособие / Борзунов С.В. Санкт-Петербург: БХВ-Петербург, 2017. 236 с. ISBN 978-5-9909805-0-1. Текст: электронный. URL: https://znanium.com/catalog/product/978561 (дата обращения: 04.03.2020). Режим доступа: по подписке.
- 4. Федотов, И. Е. Модели параллельного программирования: практическое пособие / Федотов И.Е. Москва : СОЛОН-Пр., 2017. 392 с. (Библиотека профессионала) ISBN 978-5-91359-222-4. Текст : электронный. URL: https://znanium.com/catalog/product/858609 (дата обращения: 04.03.2020). Режим доступа : по подписке.
- 5. Топорков, В. В. Модели распределенных вычислений: монография / В. В. Топорков. Москва: ФИЗМАТЛИТ, 2011. 320 с. ISBN 5-9221-0495-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/2339 (дата обращения: 04.03.2020). Режим доступа: для авториз. пользователей.

Дополнительная литература:

- 1.Немцова, Т. И. Программирование на языке высокого уровня. Программирование на языке С++: учебное пособие / Т.И. Немцова, С.Ю. Голова, А.И. Терентьев ; под ред. Л.Г. Гагариной. Москва : ИД 'ФОРУМ' : ИНФРА-М, 2018. 512 с. (Среднее профессиональное образование). ISBN 978-5-16-102802-5. Текст : электронный. URL: https://znanium.com/catalog/product/918098 (дата обращения: 04.03.2020). Режим доступа : по полимске
- 2. Канцедал, С. А. Алгоритмизация и программирование: учебное пособие / С.А. Канцедал. Москва: ИД 'ФОРУМ': ИНФРА-М, 2018. 352 с. (Среднее профессиональное образование). ISBN 978-5-16-100506-4. Текст: электронный. URL: https://znanium.com/catalog/product/938923 (дата обращения: 04.03.2020). Режим доступа: по подписке.
- 3. Кузнецов, А. С. Теория вычислительных процессов : учебник / А. С. Кузнецов, Р. Ю. Царев, А. Н. Князьков. Красноярск : Сибирский федеральный университет, 2015. 184 с. ISBN 978-5-7638-3193-1. Текст : электронный. URL: https://znanium.com/catalog/product/549796 (дата обращения: 04.03.2020). Режим доступа : по подписке.

Приложение 3 к рабочей программе дисциплины (модуля) Б1.В.08 Параллельное программирование

Перечень информационных технологий, используемых для освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

Направление подготовки: 09.03.04 - Программная инженерия

Профиль подготовки: Технологии разработки информационных систем

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2020

Освоение дисциплины (модуля) предполагает использование следующего программного обеспечения и информационно-справочных систем:

Операционная система Microsoft Windows 7 Профессиональная или Windows XP (Volume License)

Пакет офисного программного обеспечения Microsoft Office 365 или Microsoft Office Professional plus 2010

Браузер Mozilla Firefox Браузер Google Chrome

Adobe Reader XI или Adobe Acrobat Reader DC

Kaspersky Endpoint Security для Windows

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен обучающимся. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, учебно-методические комплексы, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен обучающимся. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

