Lecture 3 Word Classification and ML

Deep Learning with NLP

A neuron: Function, Parameter, Cost, Optimiser, and Gradient

- Input: x=number of apple given by Lisa
- Output: y=number of banana received by Lisa
- Parameter: Need to be estimated
 - 1. Function
 - data: input,output
 - model: Y = WX + b
 - 2. Parameter
 - estimate the w,b to optimise objective function
 - 3. Cost
 - Sqare loss: $C(w,b) = \sum (y_n \hat{y}_n)^2$
 - 4. Optimiser
 - $argmin \ C(w, b)$
 - $-\,w,b\in[-\infty,\infty]$
 - 5. Gradient

$$-\,\hat{w} = w - lr * grads$$

 $\hat{w}' = \hat{w} - lr * (current \ y - desired \ y) * grads(current) * existing input)$

Parapeters vs Hyper-parameter

1. Parameters:

- tunable components of model
- learnt from training data
- Eg. probabilities, feature weights

2. Hyper-parameters:

- Variables that controls how parameters are learnt
- Chosen a priori or tuned using held-out data
- Eg. Model size(depth,complexity), learning rate

Non-linear Neural Network

Multilayer Perceptron

- 1. Loss function:
 - S(y) = O(wx + b)
 - ullet $O(t)=rac{1}{1+e^{-t}}$

2. Objective function

layer 1=input features

layer 2=add and or combinations

$$y = (w_1x + b_1)S_1 + (w_2x + b_2)S_2 + (w_3x + b_3)S_3$$

a. Layer 1: $S_1 = O(w_4x + b_4)$

b. Layer 2: $S_2 = O(w_5S_1 + w_6S_3 + b_5)$

c. Layer 1: $S_3 = O(w_7x + b_6)$

Evaluation

Score nomalization and Cost function

			<u> </u>
Problem type	Last-layer activation	Loss (Cost) function	Example
Binary classification	sigmoid	Binary Cross Entropy	Sentiment analysis (Positive/ Negative)
Multi-class, single-label classification	softmax	Categorical Cross Entropy	Part-of-Speech tagging Named Entity Recognition
Multi-class, multi-label classification	sigmoid	Binary Cross Entropy	Multi-topic classification, one can have multiple topics
Regression to arbitrary values	None	MSE (Mean Squared Error)	Predict house price
Regression to values between 0 and 1	sigmoid	MSE or Binary Cross Entropy	Engine health assessment where 0 is broken, 1 is new

Parameter update

1. Backpropagation

2. Gradient(=slope)

3. Gradient decent optimisation

Summary

