CS-235: Computer Organization & Assembly Language

Intel Memory Architecture

Topic # 8

Book Reference

- Intel Microprocessor by Barry B. Brey (8th Edition)
- Chapter 10

Basics of Memory Architecture

- Stores large number of bits
- m x n: m rows of n bits each
- k = Log₂(m) address input signals
- or $m = 2^k$ rows
- e.g., 4k x 8 memory:12 address inputs8 data lines
- Memory access
- r/w: selects read or write
- enable: read or write only when asserted

Memory Types

- Traditional ROM/RAM distinctions
 - ROM read only, bits stored without power
 - RAM read and write, lose stored bits without power
- Traditional distinctions blurred
 - Advanced ROMs can be written to
 - e.g., EEPROM
 - Advanced RAMs can hold bits without power
 - e.g., NVRAM, DDRAM
- Write Ability
 - Speed, a memory can be written
- Storage Permanence (Reliability)
 - ability of memory to hold stored bits after they are written

Write Ability

- Ranges of Write Ability
- High End processor writes to memory simply and quickly e.g., RAM
- Middle Range processor writes to memory, but slower e.g., FLASH, EEPROM
- Lower Range special equipment, "programmer", must be used to write to memory e.g., EPROM, OTP ROM
- Low End bits stored only during fabrication e.g., Mask-programmed ROM

Performance (Reliability)

Range of Storage Permanence

- High End
 essentially never loses bits
 e.g., mask-programmed ROM
- Middle Range
 holds bits days, months, or years after memory's power
 source turned off
 e.g., NVRAM
- Lower Range holds bits as long as power supplied to memory e.g., SRAM
- Low End begins to lose bits almost immediately after written e.g., DRAM

Performance

Write ability and storage permanence of memories, showing relative degrees along each axis (not to scale).

Basic Types of RAM

- SRAM: Static RAM
 - Memory cell uses Flip-Flop to store a Bit
 - Requires 6 Transistors
 - Holds Data as long as power supplied

Memory Cell Internals

Basic Types of RAM

- SRAM: Static RAM
 - Memory cell uses Flip-Flop to store a Bit
 - Requires 6 Transistors
 - Holds Data as long as power supplied

Basic Types of RAM

- SRAM: Static RAM
 - Memory cell uses Flip-Flop to store a Bit
 - Requires 6 Transistors
 - Holds Data as long as power supplied
- DRAM: Dynamic RAM
 - Memory cell uses MOS transistor and capacitor to store a bit
 - More compact than SRAM
 - "Refresh" required due to capacitor leakage
 - word's cells refreshed when read
 - Typical refresh rate 15.625 micro sec
 - Slower to access than SRAM

Memory Cell Internals

- Memory Size needed often differs from size of readily available Memories
 - Required size 4K x 16 but available size is 2K x 8
- When available Memory is larger
 - simply ignore unneeded high-order address bits and higher data lines
- When available Memory is smaller
 - compose several smaller memories into one larger memory

Connect side-by-side to increase width of words

Connect side-by-side to increase width of words

Connect side-by-side to increase width of words

- Connect top to bottom to increase number of words
 - Added high-order address line selects smaller memory containing desired word using a decoder

Composing Memory: Decoder

- Connect top to bottom to increase number of words
 - Added high-order address line selects smaller memory containing desired word using a decoder

- Connect top to bottom to increase number of words
 - Added high-order address line selects smaller memory containing desired word using a decoder

- Connect top to bottom to increase number of words
 - Added high-order address line selects smaller memory containing desired word using a decoder

Combine techniques to increase number and width of words

Activity

Compose 1K x 8 ROM into a 2K x 16 ROM

Activity

Compose 1K x 8 ROM into a 2K x 16 ROM

Interfacing Signals

- Interfacing memory with CPU
 - Address Lines
 - Data Lines
 - Control Lines

Enable, Read, Write, Ready, Size etc.

8088 Minimum Memory Interface

Minimum-mode 8088 memory interface

Memory Control Signals

ALE

Address Latch Enable: used to latch the address in external memory

 IO/\overline{M}

Input-output/Memory: signal external circuity whether memory or I/O bus cycle in progress

 DT/\bar{R}

Data Transmit/Receive: signal external circuity whether 8088 is transmitting or receiving data over the bus.

 \overline{WR}

Write: identifies a write cycle in progress

 \overline{RD}

Read: identifies a read cycle in progress

 \overline{DEN}

Data Enable: used to enable data bus.

Minimum-mode 8088 memory interface

 \overline{SSO}

Status Line: identifies whether a code or data access is in progress

[25]

8088 : Maximum Memory Interface

Maximum-mode 8088 memory interface

Memory Control Signals

 Maximum Mode Memory Control Signals

MRDC - Memory Read Command

MWTC – Memory Write Command

AMWC – Advanced Memory Write Command

Maximum-mode 8088 memory interface

Sta	tus In	puts	CPU Cycle	8288 Command				
<u>S</u> 2	S ₁	S ₀						
0	0	0	Interrupt Acknowledge	ĪNTA				
0	0	1	Read I/O Port	IORC				
0	1	0	Write I/O Port	IOWC, AIOWC				
0	1	1	Halt	None				
1	0	0	Instruction Fetch	MRDC				
1	0	1	Read Memory	MRDC				
1	1	0	Write Memory	MWTC, AMWC				
1	1	1	Passive	None				

8088 Memory Read Cycle (min. mode)

8088 Memory Write Cycle (min. mode)

Reading Assignment

 Maximum Mode Read and Write Memory Bus cycles

Hardware Organization

8086 microprocessor (memory is only 1M bytes) 80286 microprocessor

80386SX microprocessor

80386SL microprocessor (memory is 32M bytes)

80386SLC microprocessor (memory is 32M bytes)

Hardware Organization

80386DX microprocessor 80486SX microprocessor 80486DX microprocessor

Memory Address Decoding: NAND

Inputs					Output								
Enable Sele				ele	ct	Output							
G2A	G2B	Gl	С	В	Α	0	1	2	3	4	5	6	7
	X	X	X	X	X	1	1	1	1	1	1	1	1
Χ		Χ	X	X	X	1	1	1	1	1	1	1	1
Χ	X	0	X	X	X	1	1	1	1	1	1	1	1
Û	0	1	0	0	0	Ü	1	1	1	1	1	1	1
Û	0	1	0	0	1	1	0	1	1	1	1	1	1
Û	0	1	0		0	1	1	0	1	1	1	1	1
0	0	1	0		1	1	1	1	Ü	1	1	1	1
0	0	1	1	0	0	1	1	1	1	O	1	1	1
Û	0	1	1	0	1	1	1	1	1	1	0	1	1
0	0	1	1	1	0	1	1	1	1	1	1	Ü	1
0	0		1		1	1	1	1	1	1	1	1	0

Memory Interfacing

FIGURE 10–20 Three 27256 EPROMs interfaced to the 8088 microprocessor.

Memory Address

Method 3

Programmable Logic Devices (PLDs)

These devices implement a Boolean function against each memory chip connection

E-g. Programmable Logic Array (PLA)

HM6264 & 27C256 RAM/ROM devices

Low-cost low-capacity memory devices

- First two numeric digits indicate device type
 - -RAM: 62
 - -ROM: 27
- Subsequent digits
 - HM6264 → 8KB (13 address lines, 8 data lines)
 - 27C256 → 32KB (15 address lines, 8 data lines)

Questions?

THANK YOU!