CS 5990 (Advanced Data Mining) - Assignment #2

Maximum Points: 100 pts.

Bronco ID: 017314921 Last Name: Panda First Name: Subham

Answers:

1) Binary Classification Problem:

a) The entropy of the collection of training examples with respect to the class attribute

$$Entropy = -\sum_{i=0}^{c-1} p_i(t)log_2p_i(t)$$

$$p(+) = \frac{4}{9} = 0.44$$

$$p(-) = \frac{5}{9} = 0.55$$

$$\therefore E = -0.44 log_2 0.44 - 0.55 log_2 0.55$$

$$= -0.44(-1.1844) - 0.55(-0.8625)$$

$$= 0.52 + 0.47$$

$$= 0.9911$$

b) The information gains of a1 and a2 relative to the training examples is Information Gain = P-M

Information Gain:

$$Gain_{split} = Entropy(p) - \sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)$$

Parent node, p is split into k partitions (children) n_i is number of records in child node i

$$Entropy(p) = 0.9911$$

$$E(a_1) = \frac{4}{9} \left[-\frac{3}{4} log_2 \left(\frac{3}{4} \right) - \frac{1}{4} log_2 \left(\frac{1}{4} \right) \right] + \frac{5}{9} \left[-\frac{1}{5} log_2 \left(\frac{1}{5} \right) - \frac{4}{5} log_2 \left(\frac{4}{5} \right) \right]$$

$$\therefore Information Gain(a_1) = Entropy(p) - E(a_1)$$
$$= 0.9911 - 0.7616 = 0.2294$$

$$\begin{split} E(a_2) &= \frac{4}{9} \left[-\frac{2}{4} log_2 \left(\frac{2}{4} \right) - \frac{2}{4} log_2 \left(\frac{2}{4} \right) \right] + \frac{5}{9} \left[-\frac{2}{5} log_2 \left(\frac{2}{5} \right) - \frac{3}{5} log_2 \left(\frac{3}{5} \right) \right] \\ &= 0.9839 \\ \therefore Information Gain(a_2) = Entropy(p) - E(a_2) \\ &= 0.9911 - 0.9839 = 0.0072 \end{split}$$

c) For a_3 , the information gain for every possible split using the efficient computation technique which includes sorting, splitting, filling class distribution

For a ₃	+	_	+		+	- +	-
Sorted Values	1.0	3.0	4.0	5.0 5.0	6.0	7.0 7.0	8.0
Split Values	0.5	2.0	3.5	4.5	5.5	6.5	7.5
+		13	13	2 2	2 2	3 1	4 0
_		0 5	1 4	1 4	3 2	3 2	4 1
$Entropy(a_3)$		0.8484	0.9885	0.9183	0.9838	0.9728	0.8889
Information $Gain(a_3)$		0.1427	0.0026	0.0728	0.0072	0.0183	0.1022

- \therefore The best split for a_3 occurs at split value 2.0 with an information gain of 0.1427
- d) According to the information gain a_1 produces the best split.

e)

$$Gain Ratio = \frac{Gain_{split}}{Split Info} \qquad Split Info = -\sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

$$SI(a_1) = -\frac{4}{9} \log_2 \frac{4}{9} - \frac{5}{9} \log_2 \frac{5}{9}$$

$$= -0.4444(-1.17) - 0.5555(-0.848)$$

$$= 0.991$$

$$SI(a_2) = 0.991$$

$$SI(a_3) = -\frac{1}{9} \log_2 \frac{1}{9} - \frac{8}{9} \log_2 \frac{8}{9}$$

$$= -0.1111(-3.17) - 0.8888(-0.16993)$$

$$0.503$$

$$GR(a_1) = \frac{0.2294}{0.991} = 0.231$$

$$GR(a_2) = \frac{0.0072}{0.991} = 0.0072$$

$$GR(a_3) = \frac{0.1427}{0.991} = 0.2836$$

 \therefore a_3 has best split according to gain ratio as per information gain.

f)

$$Gini\ Index = 1 - \sum_{i=0}^{c-1} p_i(t)^2$$

$$GI(a_1) = \frac{4}{9} \left[1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2 \right] + \frac{5}{9} \left[1 - \left(\frac{1}{5}\right)^2 - \left(\frac{4}{5}\right)^2 \right] = 0.3444$$

$$GI(a_2) = \frac{5}{9} \left[1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 \right] + \frac{4}{9} \left[1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 \right] = 0.4889$$

 \therefore Gini Index of a_1 is smaller & it produces better split.

g) Classification Error Rate

Classification error =
$$1 - \max[p_i(t)]$$

But using shortcut method:

Minority = 1+1 =2 Minority = 1+1 =2

$$E(t)a_1 = \frac{2}{9} = 0.222$$
 $E(t)a_2 = \frac{4}{9} = 0.444$

Since E(t) of a_1 is less than a_2

 \therefore a_1 will provide best split according to the classification error rate.

2) Two-level decision tree:

a)

X	\mathcal{C}_1	C_2		
0	60	60		
1	40	40		

$$Class_{err}(X) = \frac{40 + 40}{200} = 0.4$$

Y	c_1	C_2
0	40	60
1	60	40

$$Class_{err}(Y) = \frac{40 + 40}{200} = 0.4$$

$$Class_{err}(Z) = \frac{30 + 30}{200} = 0.3$$

Z is the lowest in terms of classification error and is chosen as the splitting attribute at level 1.

Now, $\mathbf{Z} = 0$

X	C_1	C_2
0	15	45
1	25	25

Y	C_1	C_2
0	15	45
1	15	25

$$Class_{err}Z_0(X,Y) = \frac{15+15}{100} = 0.3$$

Now, $\mathbf{Z} = 1$

X	C_1	C_2
0	45	15
1	25	15

Y	C_1	C_2
0	25	15
1	45	15

$$Class_{err}Z_1(X,Y) = \frac{15+15}{100} = 0.3$$

b) Overall error rate of the induced tree is $\frac{(15+15+15+15)}{200} = 0.3$

3) Model decision tree:

Ground Truth	В	? +	I	3 –	<i>C</i> +		<i>C</i> –	
Predicted	+	_	+	_	+	_	+	_
Training - ID	1, 2	NA	3	4	5,6	7, 9, 10	8	NA
Validation - ID	11	NA	12	NA	13, 15	NA	NA	14
Test - ID	23	21	16	NA	17,22	NA	19	18, 20

a) The generalization error rate of the tree using the optimistic approach

$$err_{tr} = \frac{5}{10} = 0.5$$

b) The generalization error rate of the tree using the pessimistic approach with factor of 0.5

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

$$err_{gen}(T) = \frac{5}{10} + 0.5 \left(\frac{4}{10}\right) = 0.7$$

c) The generalization error rate of the tree using the validation set

$$err_{gen}(V) = \frac{1}{5} = 0.2$$

d) Accuracy of the model on the test set

	ID	Total
True Positive (TP)	17,22,23	3
True Negative (TN)	18,20	2
False Positive (FP)	16,19	2
False Negative (FN)	21	1

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{3+2}{3+2+2+1} = 0.625$$

$$Precision(P) = \frac{TP}{TP + FN} = \frac{3}{3+2} = 0.6$$

Recall (R) =
$$\frac{TP}{TP + FN} = \frac{3}{3+1} = \frac{3}{4} = 0.75$$

$$F1 \, Score = 2 * \frac{PR}{P+R} = \frac{2(0.6)(0.75)}{0.6+0.75} = \frac{0.9}{1.35} = 0.667$$

4) ROC Curve:

Class	+	+	_	_	+	-	_	+	+	_
Threshold	0.01	0.03	0.04	0.05	0.09	0.31	0.38	0.45	0.61	0.68
>=										
TP	5	4	3	3	3	2	2	2	1	0
FP	5	5	5	4	3	3	2	1	1	1
TN	0	0	0	1	2	2	3	4	4	4
FN	0	1	2	2	2	3	3	3	4	5
TPR	1.0	8.0	0.6	0.6	0.6	0.4	0.4	0.4	0.2	0.0
FPR	1.0	1.0	1.0	0.8	0.6	0.6	0.4	0.2	0.2	0.2

5) Python program (decision tree.py)

6) Python program (roc_curve.py)