# UGA Algebra Qualifying Exam Questions (Spring 2011 – Spring 2021)

D. Zack Garza

# **Table of Contents**

## **Contents**

| Ta | ble o             | Contents                                           | 2        |
|----|-------------------|----------------------------------------------------|----------|
| 1  | Grou              | p Theory: General                                  | 7        |
|    | 1.1               | Spring 2020 #2                                     | 7        |
|    | 1.2               |                                                    | 7        |
|    | 1.3               | Spring 2012 #2 🔭                                   | 8        |
|    | 1.4               | Spring 2017 #1 🔭                                   | 8        |
|    | 1.5               | Fall 2016 #1                                       | 8        |
|    | 1.6               | Fall $2015 \ \#1$ $\rarphi$                        | 8        |
|    | 1.7               | Spring 2015 #1                                     | 9        |
|    | 1.8               | Fall 2014 #6                                       | 9        |
|    | 1.9               | Spring 2013 #3                                     | 9        |
|    | 1.10              | Fall 2019 Midterm #1                               | 9        |
|    | 1.11              | Fall 2019 Midterm #4                               | 9        |
|    |                   | Fall 2019 Midterm $\#5$ $\rar$                     | 9        |
|    |                   |                                                    | 10       |
|    |                   |                                                    |          |
| 2  |                   | l January January January (1984)                   | 10       |
|    | 2.1               | Fall 2019 #1                                       |          |
|    | 2.2               | Fall 2019 Midterm #2                               |          |
|    | 2.3               | Fall 2013 #2                                       |          |
|    | 2.4               | Spring 2014 #2                                     |          |
|    | 2.5               | Fall 2014 #2                                       |          |
|    | 2.6               | Spring 2016 #3                                     |          |
|    | 2.7               | Spring 2017 #2                                     |          |
|    | 2.8               | Fall 2017 #2                                       |          |
|    | 2.9               | Fall 2012 #2                                       |          |
|    |                   | Fall 2018 #1 $^{rac{1}{2}}$                       |          |
|    |                   | Fall 2019 #2 $^{\lowerightarrow}$                  |          |
|    |                   | Spring 2021 #3                                     |          |
|    |                   | Fall 2020 #1                                       |          |
|    | 2.14              | Fall 2020 #2                                       | 15       |
| 3  | Grou              | ps: Group Actions                                  | 15       |
| •  | 3.1               | Fall 2012 #1                                       |          |
|    | 3.2               | Fall 2015 #2                                       |          |
|    | 3.3               | Spring 2016 #5                                     |          |
|    | 3.4               |                                                    | тэ<br>16 |
|    | $\frac{3.4}{3.5}$ |                                                    | 16       |
|    | <b>3.</b> 3       | raii 2010 #2 + · · · · · · · · · · · · · · · · · · | τO       |
| 4  | Grou              | ps: Classification                                 | 17       |
|    |                   |                                                    | 17       |

Table of Contents

|   | 4.2   | Spring 2019 #3 🏌        |                 |
|---|-------|-------------------------|-----------------|
|   | 4.3   | Spring 2012 #3          | 17              |
|   | 4.4   | Fall 2016 #3            | 18              |
|   | 4.5   | Spring 2018 #1 🐈        | 18              |
|   |       |                         |                 |
| 5 |       | ps: Simple and Solvable | 19              |
|   | 5.1   | * Fall 2016 #7 🔭        | 19              |
|   | 5.2   | Spring 2015 #4          | 19              |
|   | 5.3   | Spring 2014 #1          | 19              |
|   | 5.4   | Fall 2013 #1            |                 |
|   | 5.5   | Spring 2013 #4          | 20              |
|   | 5.6   | Fall 2019 Midterm #3    |                 |
|   |       |                         |                 |
| 6 | Con   | mutative Algebra        | 20              |
|   | 6.1   | Spring 2020 #5 🙀        |                 |
|   | 6.2   | Fall 2019 #3            |                 |
|   | 6.3   | Fall 2019 #6 🛟          | 21              |
|   | 6.4   | Spring 2019 #6 🐈        | 22              |
|   | 6.5   | Fall 2018 #7 🐆          | 22              |
|   | 6.6   | Spring 2018 #5          | 23              |
|   | 6.7   | Spring 2018 #8          |                 |
|   | 6.8   | Fall 2017 #5            |                 |
|   | 6.9   | Fall 2017 #6            |                 |
|   |       | Spring 2017 #3          |                 |
|   |       | Spring 2017 #4          |                 |
|   | 6.12  | Spring 2016 #8          | 25              |
|   |       | Fall 2015 #3            |                 |
|   |       | Fall 2015 #4            |                 |
|   | 6.15  | Spring 2015 #7          | 26              |
|   |       | Fall 2014 #7            |                 |
|   |       |                         |                 |
|   |       | Fall 2014 #8            |                 |
|   |       |                         |                 |
|   |       | Spring 2014 #6          |                 |
|   |       | Fall 2013 #3            | 27              |
|   |       | Fall 2013 #4            |                 |
|   |       | Spring 2013 #1          |                 |
|   |       | Spring 2013 #2          |                 |
|   |       | Spring 2021 #5          |                 |
|   | 6.25  | Spring 2021 #6          | 29              |
| 7 | Field | s and Galois Theory     | 29              |
| • | 7.1   | * Fall 2016 #5          | 29              |
|   | 7.2   | * Fall 2013 #7          |                 |
|   | 7.3   | Fall 2019 #4            | $\frac{29}{29}$ |
|   | 7.4   | Fall 2019 #7            |                 |
|   | 7.4   | Spring 2019 #2 *        |                 |
|   | 7.6   | Spring 2019 #8          |                 |
|   | 7.0   | Spring 2019 #8 +7       | 32<br>39        |
|   | , ,   | PRODUCTION TO A 17      | ~ /             |

Contents

| 7.8  | Spring 2018 #2 🔭         |
|------|--------------------------|
| 7.9  | Spring 2018 #3 🚼         |
| 7.10 | Spring 2020 #4           |
| 7.11 | Spring 2020 #3           |
|      | Fall 2017 #4             |
|      | Fall 2017 #3             |
|      | Spring 2017 #7           |
|      | Spring 2017 #8           |
|      | Fall 2016 #4             |
|      | Spring 2016 #2           |
|      |                          |
|      |                          |
|      | Fall 2015 #5             |
|      | Fall 2015 #6             |
|      | Spring 2015 #2           |
|      | Spring 2015 #5           |
|      | Fall 2014 #1             |
|      | Fall 2014 #3             |
|      | Spring 2014 #3           |
| 7.26 | Spring 2014 #4           |
| 7.27 | Fall 2013 #5             |
| 7.28 | Fall 2013 #6             |
| 7.29 | Spring 2013 #7           |
| 7.30 | Spring 2013 #8           |
| 7.31 | Fall 2012 #3             |
| 7.32 | Fall 2012 #4             |
|      | Spring 2012 #1           |
|      | Spring 2012 #4 4         |
|      | Fall 2019 Midterm #6     |
|      | Fall 2019 Midterm #7     |
|      | Fall 2019 Midterm #8     |
|      | Fall 2019 Midterm #9     |
|      | Spring 2021 #4           |
|      | Spring 2021 #7           |
|      | Fall 2020 #3             |
|      | Fall 2020 #4             |
| 1.42 | ran 2020 #4              |
| Mod  | lules 4.                 |
| 8.1  | General Questions        |
|      | 8.1.1 Fall 2018 #6 📅     |
|      | 8.1.2 Fall 2019 Final #2 |
|      | 8.1.3 Spring 2018 #6     |
|      | 8.1.4 Spring 2018 #7     |
|      | 8.1.5 Fall 2016 #6       |
|      | 8.1.6 Spring 2016 #4     |
|      |                          |
|      |                          |
|      | 8.1.8 Fall 2012 #6       |
|      | 8.1.9 Fall 2019 Final #1 |
|      | 8.1.10 Fall 2020 #6      |

Contents 4

8

|          | 8.2   | Torsion        | n and th                                                | he St            | ruct | ure                                     | Th         | eor | em |     |   |     |     |     |     |   |     |     |     |     |     | • | <br>    | • | 46        |
|----------|-------|----------------|---------------------------------------------------------|------------------|------|-----------------------------------------|------------|-----|----|-----|---|-----|-----|-----|-----|---|-----|-----|-----|-----|-----|---|---------|---|-----------|
|          |       | 8.2.1          | * Fall 2                                                |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | 8.2.2          | * Sprin                                                 | ng 20            | 19 # | <b>≠</b> 5 <sup>†</sup>                 | <b>+</b> . |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 46        |
|          |       | 8.2.3          | * Sprin                                                 |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | 8.2.4          | Spring                                                  |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | 8.2.5          | Spring                                                  |                  |      | i.                                      |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | 8.2.6          | Fall 20                                                 |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | 8.2.7          | Fall 20                                                 |                  |      |                                         | - L        |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | 8.2.8          | Fall 20                                                 |                  |      | • • • • • • • • • • • • • • • • • • • • | i.         |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | 8.2.9          | Fall 20                                                 |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | Fall 20                                                 |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | Fall 20                                                 |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                |                                                         |                  | L.   |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | 8.2.12         | Fall 20                                                 | 20 #             | 1    | •                                       |            | •   |    |     |   |     | • • | • • |     | • |     | • • |     |     |     | • | <br>    | • | 52        |
| <b>a</b> | Line  | ar Alge        | bra: Di                                                 | ลซดท             | aliz | ahili                                   | itv        |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | <b>52</b> |
|          | 9.1   |                | 17 #7                                                   |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          | 9.2   |                | $2015 \ \#$                                             |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          | 9.3   |                | 2013 #<br>016 #2                                        |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 2019 #                                                  |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          | 9.4   | Spring         | 2019 #                                                  | =1 +1            |      | • •                                     |            | •   |    |     |   |     | • • | • • |     | • |     | • • |     |     |     | • | <br>    | • | 93        |
| 10       | Line  | ar Alge        | bra: M                                                  | isc              |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 53        |
|          | 10.1  | Sprir  → Sprir | ng 2012                                                 | #6               |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 53        |
|          | 10.1  | → Sprin        | ng 2012                                                 | $\frac{11}{417}$ |      | • •                                     | • •        | •   |    | • • | • | • • | • • | • • | • • | • | • • | •   | • • | • • | • • | • | <br>• • | • | 5/1       |
|          |       | _              | 1g 2014<br>12 #7                                        | 4.7              |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 12 #1                                                   |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 12 #6                                                   | E.               |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | ***                                                     | i.               |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 15 #7                                                   | i.               |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 14 #4                                                   |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 15 #8                                                   |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 18 #4                                                   |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 18 #5                                                   | L.               |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 19 #8                                                   |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       |                | 2013 #                                                  |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          | 10.13 | 3Fall 20       | 20 #8                                                   | ٠.               |      |                                         |            | •   |    |     |   |     |     |     |     | • |     |     |     |     |     | • | <br>    | • | 58        |
| 11       | Lino  | ar Algo        | bra: Ca                                                 | moni             | cal  | Eor                                     | <b></b>    |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 59        |
|          |       | _              | ng 2012                                                 |                  | K    | FULL                                    |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 59        |
|          |       | -              | $ \begin{array}{c} 1g & 2012 \\ 1g & 2020 \end{array} $ | **               | L.   |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         | • | 59<br>59  |
|          |       |                | _                                                       | **               |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   |           |
|          |       | -              | ng 2012                                                 | **               | - L  |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 59        |
|          |       |                | 19 Fina                                                 |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 60        |
|          |       |                | 19 Fina                                                 |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 60        |
|          |       |                | 2016 #                                                  |                  |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 60        |
|          |       |                | 2020 #                                                  | 10.1             |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 60        |
|          |       |                | 2019 #                                                  | - L              |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 61        |
|          |       |                | 2018 #                                                  | 100              |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 61        |
|          |       |                | 2017 #                                                  | - L              |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 62        |
|          |       |                | 2016 #                                                  | 100              |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   | <br>    |   | 62        |
|          | 11.19 | 2Spring        | 2015 #                                                  | 46               |      |                                         |            |     |    |     |   |     |     |     |     |   |     |     |     |     |     |   |         |   | 62        |

Contents 5

| 11.13Fall 2014 #5   |  |  |  |  |  |  |      |  |  |  |  |  |  |  |  |  |  |    |
|---------------------|--|--|--|--|--|--|------|--|--|--|--|--|--|--|--|--|--|----|
| 11.14Spring 2013 #5 |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  | 63 |
| 11.15Spring 2021 #1 |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  | 63 |
| 11 16Fall 2020 #5   |  |  |  |  |  |  |      |  |  |  |  |  |  |  |  |  |  | 63 |

Contents 6

# **1** Group Theory: General

### 1.1 Spring 2020 #2

Let H be a normal subgroup of a finite group G where the order of H and the index of H in G are relatively prime. Prove that no other subgroup of G has the same order as H.

Work this problem.

### 1.2 Spring 2019 #4 😽

For a finite group G, let c(G) denote the number of conjugacy classes of G.

a. Prove that if two elements of G are chosen uniformly at random, then the probability they commute is precisely

$$\frac{c(G)}{|G|}.$$

- b. State the class equation for a finite group.
- c. Using the class equation (or otherwise) show that the probability in part (a) is at most

$$\frac{1}{2} + \frac{1}{2[G:Z(G)]}.$$

Here, as usual, Z(G) denotes the center of G.

#### Concepts Used:

- Notation: X/G is the set of G-orbits
- Notation:  $X^g = \{x \in x \mid g \cdot x = x\}$
- Burnside's formula:  $|G||X/G| = \sum |X^g|$ .

#### Strategy:

Burnside.

### 1.3 Spring 2012 #2

Let G be a finite group and p a prime number such that there is a normal subgroup  $H \subseteq G$  with  $|H| = p^i > 1$ .

- a. Show that H is a subgroup of any Sylow p-subgroup of G.
- b. Show that G contains a nonzero abelian normal subgroup of order divisible by p.

# 

Let G be a finite group and  $\pi: G \to \operatorname{Sym}(G)$  the Cayley representation.

(Recall that this means that for an element  $x \in G$ ,  $\pi(x)$  acts by left translation on G.)

Prove that  $\pi(x)$  is an odd permutation  $\iff$  the order  $|\pi(x)|$  of  $\pi(x)$  is even and  $|G|/|\pi(x)|$  is odd

# $\sim$ 1.5 Fall 2016 #1 $\stackrel{ extstyle \sim}{ extstyle \sim}$

Let G be a finite group and  $s, t \in G$  be two distinct elements of order 2. Show that subgroup of G generated by s and t is a dihedral group.

Recall that the dihedral groups of order 2m for  $m \geq 2$  are of the form

$$D_{2m} = \left\langle \sigma, \tau \mid \sigma^m = 1 = \tau^2, \tau \sigma = \sigma^{-1} \tau \right\rangle.$$

# $\sim$ 1.6 Fall 2015 #1 $\stackrel{ extstyle op}{\sim}$

Let G be a group containing a subgroup H not equal to G of finite index. Prove that G has a normal subgroup which is contained in every conjugate of H which is of finite index.

1.3 Spring 2012 #2

### 1.7 Spring 2015 #1

For a prime p, let G be a finite p-group and let N be a normal subgroup of G of order p. Prove that N is contained in the center of G.

Let G be a group and H, K < G be subgroups of finite index. Show that

$$[G: H \cap K] \le [G: H] [G: K].$$

# 

Let P be a finite p-group. Prove that every nontrivial normal subgroup of P intersects the center of P nontrivially.

$$\sim$$
 1.10 Fall 2019 Midterm #1  $\stackrel{ extstyle o}{}$ 

Let G be a group of order  $p^2q$  for p,q prime. Show that G has a nontrivial normal subgroup.

## $\sim$ 1.11 Fall 2019 Midterm #4 $\stackrel{ extstyle o}{}$

Let p be a prime. Show that  $S_p = \langle \tau, \sigma \rangle$  where  $\tau$  is a transposition and  $\sigma$  is a p-cycle.

## $\sim$ 1.12 Fall 2019 Midterm #5 $\stackrel{ extstyle }{\sim}$

Let G be a nonabelian group of order  $p^3$  for p prime. Show that Z(G) = [G, G].

1.7 Spring 2015 #1

### 1.13 Spring 2021 #2

Let  $H \subseteq G$  be a normal subgroup of a finite group G, where the order of H is the smallest prime p dividing |G|. Prove that H is contained in the center of G.

# 2 | Groups: Sylow Theory

### 2.1 Fall 2019 #1 🦙

Let G be a finite group with n distinct conjugacy classes. Let  $g_1 \cdots g_n$  be representatives of the conjugacy classes of G. Prove that if  $g_i g_j = g_j g_i$  for all i, j then G is abelian.

#### Concepts Used:

• Centralizer:

$$C_G(h) = Z(h) = \{g \in G \mid [g, h] = 1\}$$
 Centralizer

• Class equation:

$$|G| = \sum_{\substack{\text{One } h \text{ from each conjugacy class}}} \frac{|G|}{|Z(h)|}$$

• Notation:

$$\begin{split} h^g &= ghg^{-1} \\ h^G &= \left\{h^g \ \middle| \ g \in G\right\} \quad \text{Conjugacy Class} \\ H^g &= \left\{h^g \ \middle| \ h \in H\right\} \\ N_G(H) &= \left\{g \in G \ \middle| \ H^g = H\right\} \supseteq H \quad \text{Normalizer}. \end{split}$$

### 2.2 Fall 2019 Midterm #2

Let G be a finite group and let P be a sylow p-subgroup for p prime. Show that N(N(P)) = N(P) where N is the normalizer in G.

### 2.3 Fall 2013 #2

Let G be a group of order 30.

- a. Show that G has a subgroup of order 15.
- b. Show that every group of order 15 is cyclic.
- c. Show that G is isomorphic to some semidirect product  $\mathbb{Z}_{15} \rtimes \mathbb{Z}_2$ .
- d. Exhibit three nonisomorphic groups of order 30 and prove that they are not isomorphic. You are not required to use your answer to (c).

# 

Let  $G \subset S_9$  be a Sylow-3 subgroup of the symmetric group on 9 letters.

- a. Show that G contains a subgroup H isomorphic to  $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$  by exhibiting an appropriate set of cycles.
- b. Show that H is normal in G.
- c. Give generators and relations for G as an abstract group, such that all generators have order 3. Also exhibit elements of  $S_9$  in cycle notation corresponding to these generators.
- d. Without appealing to the previous parts of the problem, show that G contains an element of order 9.



Let G be a group of order 96.

- a. Show that G has either one or three 2-Sylow subgroups.
- b. Show that either G has a normal subgroup of order 32, or a normal subgroup of order 16.

# $\sim$ 2.6 Spring 2016 #3 $\stackrel{\triangleright}{}$

2.3 Fall 2013 #2

- a. State the three Sylow theorems.
- b. Prove that any group of order 1225 is abelian.
- c. Write down exactly one representative in each isomorphism class of abelian groups of order 1225.

### 2.7 Spring 2017 #2



- a. How many isomorphism classes of abelian groups of order 56 are there? Give a representative for one of each class.
- b. Prove that if G is a group of order 56, then either the Sylow-2 subgroup or the Sylow-7 subgroup is normal.
- c. Give two non-isomorphic groups of order 56 where the Sylow-7 subgroup is normal and the Sylow-2 subgroup is *not* normal. Justify that these two groups are not isomorphic.

### 2.8 Fall 2017 #2



a. Classify the abelian groups of order 36.

For the rest of the problem, assume that G is a non-abelian group of order 36. You may assume that the only subgroup of order 12 in  $S_4$  is  $A_4$  and that  $A_4$  has no subgroup of order 6.

- b. Prove that if the 2-Sylow subgroup of G is normal, G has a normal subgroup N such that G/N is isomorphic to  $A_4$ .
- c. Show that if G has a normal subgroup N such that G/N is isomorphic to  $A_4$  and a subgroup H isomorphic to  $A_4$  it must be the direct product of N and H.
- d. Show that the dihedral group of order 36 is a non-abelian group of order 36 whose Sylow-2 subgroup is not normal.

### 2.9 Fall 2012 #2



Let G be a group of order 30.

- a. Show that G contains normal subgroups of orders 3, 5, and 15.
- b. Give all possible presentations and relations for G.
- c. Determine how many groups of order 30 there are up to isomorphism.

### 2.10 Fall 2018 #1 🦙



- a. Show that P is contained in every Sylow p-subgroup of G.
- b. Let M be a maximal proper subgroup of G. Show that either  $P \subseteq M$  or  $|G/M| = p^b$  for some  $b \le c$ .

#### Concepts Used:

- Sylow 2: All Sylow *p*-subgroups are conjugate.
- $|HK| = |H||K|/|H \cap K|$ .
- Lagrange's Theorem:  $H \leq G \implies |H| \mid |G|$

### 2.11 Fall 2019 #2 🦙



- a. Prove that at least one of Q and R is normal in G.
- b. Prove that G has a cyclic subgroup of order 35.
- c. Prove that both Q and R are normal in G.
- d. Prove that if P is normal in G then G is cyclic.

2.9 Fall 2012 #2

#### Concepts Used:

- The pqr theorem.
- Sylow 3:  $|G| = p^n m$  implies  $n_p \mid m$  and  $n_p \cong 1 \pmod{p}$ .
- Theorem: If  $H, K \leq G$  and any of the following conditions hold, HK is a subgroup:
  - $-H \leq G \text{ (wlog)}$
  - [H, K] = 1
  - $-H \leq N_G(K)$
- **Theorem**: For a positive integer n, all groups of order n are cyclic  $\iff n$  is squarefree and, for each pair of distinct primes p and q dividing n,  $q-1 \neq 0 \pmod{p}$ .
- Theorem:

$$A_i \leq G, \quad G = A_1 \cdots A_k, \quad A_k \cap \prod_{i \neq k} A_i = \emptyset \implies G = \prod A_i.$$

- The intersection of subgroups is a again a subgroup.
- Any subgroups of coprime order intersect trivially?

### 2.12 Spring 2021 #3



- a. Show that every group of order  $p^2$  with p prime is abelian.
- b. State the 3 Sylow theorems.
- c. Show that any group of order  $4225 = 5^2 \cdot 13^2$  is abelian.
- d. Write down one representative from each isomorphism class of abelian groups of order 4225.

### 2.13 Fall 2020 #1



- a. Using Sylow theory, show that every group of order 2p where p is prime is not simple.
- b. Classify all groups of order 2p and justify your answer. For the nonabelian group(s), give a presentation by generators and relations.

### 2.14 Fall 2020 #2

Let G be a group of order 60 whose Sylow 3-subgroup is normal.

- a. Prove that G is solvable.
- b. Prove that the Sylow 5-subgroup is also normal.

# **3** | Groups: Group Actions

### 3.1 Fall 2012 #1

Let G be a finite group and X a set on which G acts.

- a. Let  $x \in X$  and  $G_x := \{g \in G \mid g \cdot x = x\}$ . Show that  $G_x$  is a subgroup of G.
- b. Let  $x \in X$  and  $G \cdot x := \{g \cdot x \mid g \in G\}$ . Prove that there is a bijection between elements in  $G \cdot x$  and the left cosets of  $G_x$  in G.

### 3.2 Fall 2015 #2

Let G be a finite group, H a p-subgroup, and P a sylow p-subgroup for p a prime. Let H act on the left cosets of P in G by left translation.

Prove that this is an orbit under this action of length 1.

Prove that xP is an orbit of length  $1 \iff H$  is contained in  $xPx^{-1}$ .

# $\sim$ 3.3 Spring 2016 #5 $\stackrel{ extstyle \sim}{ extstyle \sim}$

Let G be a finite group acting on a set X. For  $x \in X$ , let  $G_x$  be the stabilizer of x and  $G \cdot x$  be the orbit of x.

a. Prove that there is a bijection between the left cosets  $G/G_x$  and  $G \cdot x$ .

2.14 Fall 2020 #2

b. Prove that the center of every finite p-group G is nontrivial by considering that action of Gon X = G by conjugation.

### 3.4 Fall 2017 #1



Suppose the group G acts on the set A. Assume this action is faithful (recall that this means that the kernel of the homomorphism from G to Sym(A) which gives the action is trivial) and transitive (for all a, b in A, there exists g in G such that  $g \cdot a = b$ .)

a. For  $a \in A$ , let  $G_a$  denote the stabilizer of a in G. Prove that for any  $a \in A$ ,

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = \{1\}.$$

b. Suppose that G is abelian. Prove that |G| = |A|. Deduce that every abelian transitive subgroup of  $S_n$  has order n.





- a. Suppose the group G acts on the set X. Show that the stabilizers of elements in the same orbit are conjugate.
- b. Let G be a finite group and let H be a proper subgroup. Show that the union of the conjugates of H is strictly smaller than G, i.e.

$$\bigcup_{g \in G} gHg^{-1} \subsetneq G$$

c. Suppose G is a finite group acting transitively on a set S with at least 2 elements. Show that there is an element of G with no fixed points in S.

#### Concepts Used:

- Orbit:  $G \cdot x := \{g \cdot x \mid g \in G\} \subseteq X$
- Stabilizer:  $G_x := \{g \in G \mid g \cdot x = x\} \leq G$  Orbit-Stabilizer:  $G \cdot x \simeq G/G_x$ .
- $abc \in H \iff b \in a^{-1}Hc^{-1}$
- Set of orbits for  $G \curvearrowright X$ , notated X/G.
- Set of fixed points for  $G \curvearrowright X$ , notated  $X^g$ .
- Burnside's Lemma:  $|X/G| \cdot |G| = \sum_{g \in G} |X^g|$

- Number of orbits equals average number of fixed points.

# 4 Groups: Classification

### 4.1 Spring 2020 #1

- a. Show that any group of order 2020 is solvable.
- b. Give (without proof) a classification of all abelian groups of order 2020.
- c. Describe one nonabelian group of order 2020.

Work this problem.

How many isomorphism classes are there of groups of order 45?

Describe a representative from each class.

#### Concepts Used:

- Sylow theorems:
- $n_p \cong 1 \pmod{p}$
- $n_p \mid m$ .

Revisit, seems short.

### 4.3 Spring 2012 #3

17

Let G be a group of order 70.

a. Show that G is not simple.

Groups: Classification

b. Exhibit 3 nonisomorphic groups of order 70 and prove that they are not isomorphic.

### 4.4 Fall 2016 #3



### 4.5 Spring 2018 #1 🍃

- a. Use the Class Equation (equivalently, the conjugation action of a group on itself) to prove that any p-group (a group whose order is a positive power of a prime integer p) has a nontrivial center.
- b. Prove that any group of order  $p^2$  (where p is prime) is abelian.
- c. Prove that any group of order  $5^2 \cdot 7^2$  is abelian.
- d. Write down exactly one representative in each isomorphism class of groups of order  $5^2 \cdot 7^2$ .

#### Concepts Used:

- Centralizer:  $C_G(x) = \{g \in G \mid [gx] = 1\}.$
- Class Equation:  $|G| = |Z(G)| + \sum [G : C_G(x_i)]$
- G/Z(G) cyclic  $\iff G$  is abelian.

$$G/Z(G) = \langle xZ \rangle \iff g \in G \implies gZ = x^m Z$$

$$\iff g(x^m)^{-1} \in Z$$

$$\iff g = x^m z \text{ for some } z \in Z$$

$$\implies gh = x^m z_1 x^n z_2 = x^n z_2 x^m z_1 = hg.$$

- Every group of order  $p^2$  is abelian.
- Classification of finite abelian groups.

# **5** Groups: Simple and Solvable

### 5.1 \* Fall 2016 #7

- a. Define what it means for a group G to be solvable.
- b. Show that every group G of order 36 is solvable.

Hint: you can use that  $S_4$  is solvable.

### 5.2 Spring 2015 #4

Let N be a positive integer, and let G be a finite group of order N.

a. Let  $\operatorname{Sym} G$  be the set of all bijections from  $G \to G$  viewed as a group under composition. Note that  $\operatorname{Sym} G \cong S_N$ . Prove that the Cayley map

$$C: G \to \operatorname{Sym} G$$
  
 $g \mapsto (x \mapsto gx)$ 

is an injective homomorphism.

- b. Let  $\Phi : \operatorname{Sym} G \to S_N$  be an isomorphism. For  $a \in G$  define  $\varepsilon(a) \in \{\pm 1\}$  to be the sign of the permutation  $\Phi(C(a))$ . Suppose that a has order d. Prove that  $\varepsilon(a) = -1 \iff d$  is even and N/d is odd.
- c. Suppose N > 2 and  $n \equiv 2 \pmod{4}$ . Prove that G is not simple.

Hint: use part (b).

### 5.3 Spring 2014 #1

Let p, n be integers such that p is prime and p does not divide n. Find a real number k = k(p, n) such that for every integer  $m \ge k$ , every group of order  $p^m n$  is not simple.

### 5.4 Fall 2013 #1

Let p, q be distinct primes.

- a. Let  $\bar{q} \in \mathbb{Z}_p$  be the class of  $q \pmod{p}$  and let k denote the order of  $\bar{q}$  as an element of  $\mathbb{Z}_p^{\times}$ . Prove that no group of order  $pq^k$  is simple.
- b. Let G be a group of order pq, and prove that G is not simple.

# 

Define a simple group. Prove that a group of order 56 can not be simple.

# 

Show that there exist no simple groups of order 148.

# 6 | Commutative Algebra

# $\sim$ 6.1 Spring 2020 #5 $\ref{}$

Let R be a ring and  $f: M \to N$  and  $g: N \to M$  be R-module homomorphisms such that  $g \circ f = \mathrm{id}_M$ . Show that  $N \cong \mathrm{im} f \oplus \ker g$ .

# $\sim$ 6.2 Fall 2019 #3 $\stackrel{\triangleright}{}$

Let R be a ring with the property that for every  $a \in R, a^2 = a$ .

- a. Prove that R has characteristic 2.
- b. Prove that R is commutative.

5.4 Fall 2013 #1

#### Concepts Used:

• Todo

#### Strategy:

- Just fiddle with direct computations.
- Context hint: that we should be considering things like  $x^2$  and a + b.

### 6.3 Fall 2019 #6 🦙

 $\sim$ 

Let R be a commutative ring with multiplicative identity. Assume Zorn's Lemma.

a. Show that

$$N = \{ r \in R \mid r^n = 0 \text{ for some } n > 0 \}$$

is an ideal which is contained in any prime ideal.

- b. Let r be an element of R not in N. Let S be the collection of all proper ideals of R not containing any positive power of r. Use Zorn's Lemma to prove that there is a prime ideal in S.
- c. Suppose that R has exactly one prime ideal P . Prove that every element r of R is either nilpotent or a unit.

#### Concepts Used:

- Prime ideal:  $\mathfrak{p}$  is prime iff  $ab \in \mathfrak{p} \implies a \in \mathfrak{p}$  or  $b \in \mathfrak{p}$ .
- Silly fact: 0 is in every ideal!
- **Zorn's Lemma:** Given a poset, if every chain has an upper bound, then there is a maximal element. (Chain: totally ordered subset.)
- Corollary: If  $S \subset R$  is multiplicatively closed with  $0 \notin S$  then  $\{I \leq R \mid J \cap S = \emptyset\}$  has a maximal element.

Prove this

• **Theorem:** If R is commutative, maximal  $\implies$  prime for ideals.

Prove this

• **Theorem:** Non-units are contained in a maximal ideal. (See HW?)

### 6.4 Spring 2019 #6 🦙

Let R be a commutative ring with 1.

Recall that  $x \in R$  is nilpotent iff xn = 0 for some positive integer n.

- a. Show that every proper ideal of R is contained within a maximal ideal.
- b. Let J(R) denote the intersection of all maximal ideals of R. Show that  $x \in J(R) \iff 1 + rx$  is a unit for all  $r \in R$ .
- c. Suppose now that R is finite. Show that in this case J(R) consists precisely of the nilpotent elements in R.

#### Concepts Used:

• Definitions:

$$\begin{split} N(R) &\coloneqq \left\{ x \in R \ \middle| \ x^n = 0 \text{ for some } n \right\} \\ J(R) &\coloneqq \cap_{\mathfrak{m} \in \mathrm{mSpec}} \mathfrak{m}. \end{split}$$

• Zorn's lemma: if P is a poset in which every chain has an upper bound, P contains a maximal element.

### 6.5 Fall 2018 #7 🦙

Let R be a commutative ring.

a. Let  $r \in R$ . Show that the map

$$r \bullet : R \to R$$
  
 $x \mapsto rx.$ 

is an R-module endomorphism of R.

b. We say that r is a **zero-divisor** if  $r \bullet$  is not injective. Show that if r is a zero-divisor and  $r \neq 0$ , then the kernel and image of R each consist of zero-divisors.

- c. Let  $n \geq 2$  be an integer. Show: if R has exactly n zero-divisors, then  $\#R \leq n^2$  .
- d. Show that up to isomorphism there are exactly two commutative rings R with precisely 2 zero-divisors.

You may use without proof the following fact: every ring of order 4 is isomorphic to exactly one of the following:

$$\frac{\mathbb{Z}}{4\mathbb{Z}}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2+t+1)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2-t)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2)}.$$

#### Concepts Used:

- Todo
- See 1964 Annals "Properties of rings with a finite number of zero divisors"

### 6.6 Spring 2018 #5

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} x & u \\ -y & -v \end{pmatrix}$$

over a commutative ring R, where b and x are units of R. Prove that

$$MN = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix} \implies MN = 0.$$

### 6.7 Spring 2018 #8

Let R = C[0,1] be the ring of continuous real-valued functions on the interval [0,1]. Let I be an ideal of R.

- a. Show that if  $f \in I$ ,  $a \in [0,1]$  are such that  $f(a) \neq 0$ , then there exists  $g \in I$  such that  $g(x) \geq 0$  for all  $x \in [0,1]$ , and g(x) > 0 for all x in some open neighborhood of a.
- b. If  $I \neq R$ , show that the set  $Z(I) = \{x \in [0,1] \mid f(x) = 0 \text{ for all } f \in I\}$  is nonempty.

c. Show that if I is maximal, then there exists  $x_0 \in [0,1]$  such that  $I = \{f \in R \mid f(x_0) = 0\}$ .

# $\sim$ 6.8 Fall 2017 #5 $\stackrel{\triangleright}{}$

A ring R is called *simple* if its only two-sided ideals are 0 and R.

- a. Suppose R is a commutative ring with 1. Prove R is simple if and only if R is a field.
- b. Let k be a field. Show the ring  $M_n(k)$ ,  $n \times n$  matrices with entries in k, is a simple ring.

# $\sim$ 6.9 Fall 2017 #6 $\stackrel{ ightharpoonup}{\sim}$

For a ring R, let U(R) denote the multiplicative group of units in R. Recall that in an integral domain R,  $r \in R$  is called *irreducible* if r is not a unit in R, and the only divisors of r have the form ru with u a unit in R.

We call a non-zero, non-unit  $r \in R$  prime in R if  $r \mid ab \implies r \mid a$  or  $r \mid b$ . Consider the ring  $R = \{a + b\sqrt{-5} \mid a, b \in Z\}$ .

- a. Prove R is an integral domain.
- b. Show  $U(R) = \{\pm 1\}.$
- c. Show  $3, 2 + \sqrt{-5}$ , and  $2 \sqrt{-5}$  are irreducible in R.
- d. Show 3 is not prime in R.
- e. Conclude R is not a PID.

# 

Let R be a commutative ring with 1. Suppose that M is a free R-module with a finite basis X.

- a. Let  $I \subseteq R$  be a proper ideal. Prove that M/IM is a free R/I-module with basis X', where X' is the image of X under the canonical map  $M \to M/IM$ .
- b. Prove that any two bases of M have the same number of elements. You may assume that the result is true when R is a field.

6.8 Fall 2017 #5

### 6.11 Spring 2017 #4



Prove that R is not a UFD.

(You may assume Gauss' lemma)

b. Prove that  $\mathbb{Z}[2\sqrt{2}]$  is not a UFD.

*Hint:* let  $p(x) = x^2 - 2$ .

### 6.12 Spring 2016 #8

Let R be a simple rng (a nonzero ring which is not assume to have a 1, whose only two-sided ideals are (0) and R) satisfying the following two conditions:

- i. R has no zero divisors, and
- ii. If  $x \in R$  with  $x \neq 0$  then  $2x \neq 0$ , where  $2x \coloneqq x + x$ .

Prove the following:

- a. For each  $x \in R$  there is one and only one element  $y \in R$  such that x = 2y.
- b. Suppose  $x, y \in R$  such that  $x \neq 0$  and 2(xy) = x, then yz = zy for all  $z \in R$ .

You can get partial credit for (b) by showing it in the case R has a 1.

### 6.13 Fall 2015 #3

Let R be a rng (a ring without 1) which contains an element u such that for all  $y \in R$ , there exists an  $x \in R$  such that xu = y.

Prove that R contains a maximal left ideal.

6.11 Spring 2017 #4

Hint: imitate the proof (using Zorn's lemma) in the case where R does have a 1.

# $\sim$ 6.14 Fall 2015 #4 $\stackrel{ wo}{\sim}$

Let R be a PID and  $(a_1) < (a_2) < \cdots$  be an ascending chain of ideals in R. Prove that for some n, we have  $(a_j) = (a_n)$  for all  $j \ge n$ .

# $\sim$ 6.15 Spring 2015 #7 $\stackrel{ extstyle \sim}{ extstyle \sim}$

Let R be a commutative ring, and  $S \subset R$  be a nonempty subset that does not contain 0 such that for all  $x, y \in S$  we have  $xy \in S$ . Let  $\mathcal{I}$  be the set of all ideals  $I \subseteq R$  such that  $I \cap S = \emptyset$ .

Show that for every ideal  $I \in \mathcal{I}$ , there is an ideal  $J \in \mathcal{I}$  such that  $I \subset J$  and J is not properly contained in any other ideal in  $\mathcal{I}$ .

Prove that every such ideal J is prime.

$$\sim$$
 6.16 Fall 2014 #7  $\stackrel{\triangleright}{}$ 

Give a careful proof that  $\mathbb{C}[x,y]$  is not a PID.

$$\sim$$
 6.17 Fall 2014 #8  $\stackrel{ extstyle o}{}$ 

Let R be a nonzero commutative ring without unit such that R does not contain a proper maximal ideal. Prove that for all  $x \in R$ , the ideal xR is proper.

You may assume the axiom of choice.



Let R be a commutative ring and  $a \in R$ . Prove that a is not nilpotent  $\iff$  there exists a commutative ring S and a ring homomorphism  $\varphi : R \to S$  such that  $\varphi(a)$  is a unit.

6.14 Fall 2015 #4

Note: by definition, a is nilpotent  $\iff$  there is a natural number n such that  $a^n = 0$ .

### 6.19 Spring 2014 #6

R be a commutative ring with identity and let n be a positive integer.

- a. Prove that every surjective R-linear endomorphism  $T: \mathbb{R}^n \to \mathbb{R}^n$  is injective.
- b. Show that an injective R-linear endomorphism of  $R^n$  need not be surjective.

### 6.20 Fall 2013 #3

- a. Define *prime ideal*, give an example of a nontrivial ideal in the ring  $\mathbb{Z}$  that is not prime, and prove that it is not prime.
- b. Define *maximal ideal*, give an example of a nontrivial maximal ideal in  $\mathbb{Z}$  and prove that it is maximal.

### 6.21 Fall 2013 #4

Let R be a commutative ring with  $1 \neq 0$ . Recall that  $x \in R$  is nilpotent iff  $x^n = 0$  for some positive integer n.

- a. Show that the collection of nilpotent elements in R forms an ideal.
- b. Show that if x is nilpotent, then x is contained in every prime ideal of R.
- c. Suppose  $x \in R$  is not nilpotent and let  $S = \{x^n \mid n \in \mathbb{N}\}$ . There is at least on ideal of R disjoint from S, namely (0).

By Zorn's lemma the set of ideals disjoint from S has a maximal element with respect to inclusion, say I. In other words, I is disjoint from S and if J is any ideal disjoint from S with  $I \subseteq J \subseteq R$  then J = I or J = R.

Show that I is a prime ideal.

6.19 Spring 2014 #6

d. Deduce from (a) and (b) that the set of nilpotent elements of R is the intersection of all prime ideals of R.

### 6.22 Spring 2013 #1

Let R be a commutative ring.

- a. Define a  $maximal\ ideal$  and prove that R has a maximal ideal.
- b. Show than an element  $r \in R$  is not invertible  $\iff r$  is contained in a maximal ideal.
- c. Let M be an R-module, and recall that for  $0 \neq \mu \in M$ , the annihilator of  $\mu$  is the set

$$\operatorname{Ann}(\mu) = \left\{ r \in R \mid r\mu = 0 \right\}.$$

Suppose that I is an ideal in R which is maximal with respect to the property that there exists an element  $\mu \in M$  such that  $I = \operatorname{Ann}(\mu)$  for some  $\mu \in M$ . In other words,  $I = \operatorname{Ann}(\mu)$  but there does not exist  $\nu \in M$  with  $J = \operatorname{Ann}(\nu) \subsetneq R$  such that  $I \subsetneq J$ .

Prove that I is a prime ideal.

### 6.23 Spring 2013 #2

- a. Define a Euclidean domain.
- b. Define a unique factorization domain.
- c. Is a Euclidean domain an UFD? Give either a proof or a counterexample with justification.
- d. Is a UFD a Euclidean domain? Give either a proof or a counterexample with justification.

### 6.24 Spring 2021 #5

Suppose that  $f(x) \in (\mathbb{Z}/n\mathbb{Z})[x]$  is a zero divisor. Show that there is a nonzero  $a \in \mathbb{Z}/n\mathbb{Z}$  with af(x) = 0.

### 6.25 Spring 2021 #6



b. Let R be a subset of  $\mathbb{Z}[x]$  consisting of all polynomials

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

such that  $a_k$  is even for  $1 \le k \le n$ . Show that R is a subring of  $\mathbb{Z}[x]$ .

c. Show that R is not Noetherian.

Hint: consider the ideal generated by  $\left\{2x^k \mid 1 \leq k \in \mathbb{Z}\right\}$ .

# **7** Fields and Galois Theory

# $\sim$ 7.1 $_{\star}$ Fall 2016 #5 $\stackrel{ extstyle }{ extstyle }$

How many monic irreducible polynomials over  $\mathbb{F}_p$  of prime degree  $\ell$  are there? Justify your answer.

$$\sim$$
 7.2  $\star$  Fall 2013 #7  $\stackrel{\blacktriangleright}{}$ 

Let  $F = \mathbb{F}_2$  and let  $\overline{F}$  denote its algebraic closure.

- a. Show that  $\overline{F}$  is not a finite extension of F.
- b. Suppose that  $\alpha \in \overline{F}$  satisfies  $\alpha^{17} = 1$  and  $\alpha \neq 1$ . Show that  $F(\alpha)/F$  has degree 8.

# $\sim$ 7.3 Fall 2019 #4 $^{\updownarrow}$

Let F be a finite field with q elements. Let n be a positive integer relatively prime to q and let  $\omega$  be a primitive nth root of unity in an extension field of F. Let  $E = F[\omega]$  and let k = [E:F].

a. Prove that n divides  $q^k - 1$ .

- b. Let m be the order of q in  $\mathbb{Z}/n\mathbb{Z}^{\times}$ . Prove that m divides k.
- c. Prove that m = k.

#### Revisit, tricky!

#### Concepts Used:

- $\mathbb{F}^{\times}$  is always cyclic for  $\mathbb{F}$  a field.
- Lagrange:  $H \leq G \implies \#H \mid \#G$ .

### 7.4 Fall 2019 #7 🦮



Let  $\zeta_n$  denote a primitive nth root of  $1 \in \mathbb{Q}$ . You may assume the roots of the minimal polynomial  $p_n(x)$  of  $\zeta_n$  are exactly the primitive nth roots of 1.

Show that the field extension  $\mathbb{Q}(\zeta_n)$  over  $\mathbb{Q}$  is Galois and prove its Galois group is  $(\mathbb{Z}/n\mathbb{Z})^{\times}$ .

How many subfields are there of  $\mathbb{Q}(\zeta_{20})$ ?

#### Concepts Used:

- Galois = normal + separable.
- Separable: Minimal polynomial of every element has distinct roots.
- Normal (if separable): Splitting field of an irreducible polynomial.
- $\zeta$  is a primitive root of unity  $\iff o(\zeta) = n$  in  $\mathbb{F}^{\times}$ .
- $\varphi(p^k) = p^{k-1}(p-1)$
- The lattice:



### 7.5 Spring 2019 #2 🦙

Let  $F = \mathbb{F}_p$ , where p is a prime number.

- a. Show that if  $\pi(x) \in F[x]$  is irreducible of degree d, then  $\pi(x)$  divides  $x^{p^d} x$ .
- b. Show that if  $\pi(x) \in F[x]$  is an irreducible polynomial that divides  $x^{p^n} x$ , then  $\deg \pi(x)$  divides n.

#### Concepts Used:

- Go to a field extension.
  - Orders of multiplicative groups for finite fields are known.
- $\mathbb{GF}(p^n)$  is the splitting field of  $x^{p^n} x \in \mathbb{F}_p[x]$ .
- $x^{p^d} x \mid x^{p^n} x \iff d \mid n$
- $\mathbb{GF}(p^d) \stackrel{\cdot}{\leq} \mathbb{GF}(p^n) \iff d \mid n$
- $x^{p^n} x = \prod f_i(x)$  over all irreducible monic  $f_i$  of degree d dividing n.

### 7.6 Spring 2019 #8 💝

7.5 Spring 2019 #2 👉

Let  $\zeta = e^{2\pi i/8}$ .

- a. What is the degree of  $\mathbb{Q}(\zeta)/\mathbb{Q}$ ?
- b. How many quadratic subfields of  $\mathbb{Q}(\zeta)$  are there?
- c. What is the degree of  $\mathbb{Q}(\zeta, \sqrt[4]{2})$  over  $\mathbb{Q}$ ?

#### Concepts Used:

- $\zeta_n \coloneqq e^{\frac{2\pi i}{n}}$ , and  $\zeta_n^k$  is a primitive nth root of unity  $\iff \gcd(n,k) = 1$ 
  - In general,  $\zeta_n^k$  is a primitive  $\frac{n}{\gcd(n,k)}$ th root of unity.
- $\deg \Phi_n(x) = \varphi(n)$   $\varphi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$ 
  - Proof: for a nontrivial gcd, the possibilities are

$$p, 2p, 3p, 4p, \cdots, p^{k-2}p, p^{k-1}p.$$

•  $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong \mathbb{Z}/(n)^{\times}$ 

### 7.7 Fall 2018 #3 🦮

Let  $F \subset K \subset L$  be finite degree field extensions. For each of the following assertions, give a proof or a counterexample.

- a. If L/F is Galois, then so is K/F.
- b. If L/F is Galois, then so is L/K.
- c. If K/F and L/K are both Galois, then so is L/F.

#### Concepts Used:

• Every quadratic extension over  $\mathbb Q$  is Galois.

### 7.8 Spring 2018 #2 🦙



- a. Find the splitting field K of f, and compute  $[K:\mathbb{Q}]$ .
- b. Find the Galois group G of f, both as an explicit group of automorphisms, and as a familiar abstract group to which it is isomorphic.
- c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between  $\mathbb{Q}$  and k.

Not the nicest proof! Would be better to replace the ad-hoc computations at the end.

#### Concepts Used:

• Todo

### 7.9 Spring 2018 #3 🦙

Let K be a Galois extension of  $\mathbb{Q}$  with Galois group G, and let  $E_1, E_2$  be intermediate fields of K which are the splitting fields of irreducible  $f_i(x) \in \mathbb{Q}[x]$ .

Let 
$$E = E_1 E_2 \subset K$$
.

Let  $H_i = \operatorname{Gal}(K/E_i)$  and  $H = \operatorname{Gal}(K/E)$ .

- a. Show that  $H = H_1 \cap H_2$ .
- b. Show that  $H_1H_2$  is a subgroup of G.
- c. Show that

$$Gal(K/(E_1 \cap E_2)) = H_1H_2.$$

#### Concepts Used:

- The Galois correspondence:
  - $H_1 \cap H_2 \rightleftharpoons E_1 E_2,$
  - $-H_1H_2 \rightleftharpoons E_1 \cap E_2.$

### 7.10 Spring 2020 #4

~

Let  $f(x) = x^4 - 2 \in \mathbb{Q}[x]$ .

- a. Define what it means for a finite extension field E of a field F to be a Galois extension.
- b. Determine the Galois group  $\operatorname{Gal}(E/\mathbb{Q})$  for the polynomial f(x), and justify your answer carefully.
- c. Exhibit a subfield K in (b) such that  $\mathbb{Q} \leq K \leq E$  with K not a Galois extension over  $\mathbb{Q}$ . Explain.

### 7.11 Spring 2020 #3

. ~

Let E be an extension field of F and  $\alpha \in E$  be algebraic of odd degree over F.

- a. Show that  $F(\alpha) = F(\alpha^2)$ .
- b. Prove that  $\alpha^{2020}$  is algebraic of odd degree over F.

### 7.12 Fall 2017 #4



- a. Let f(x) be an irreducible polynomial of degree 4 in  $\mathbb{Q}[x]$  whose splitting field K over  $\mathbb{Q}$  has Galois group  $G = S_4$ .
  - Let  $\theta$  be a root of f(x). Prove that  $\mathbb{Q}[\theta]$  is an extension of  $\mathbb{Q}$  of degree 4 and that there are no intermediate fields between  $\mathbb{Q}$  and  $\mathbb{Q}[\theta]$ .
- b. Prove that if K is a Galois extension of  $\mathbb{Q}$  of degree 4, then there is an intermediate subfield between K and  $\mathbb{Q}$ .

### 7.13 Fall 2017 #3

~

Let F be a field. Let f(x) be an irreducible polynomial in F[x] of degree n and let g(x) be any polynomial in F[x]. Let p(x) be an irreducible factor (of degree m) of the polynomial f(g(x)).

Prove that n divides m. Use this to prove that if r is an integer which is not a perfect square, and n is a positive integer then every irreducible factor of  $x^{2n} - r$  over  $\mathbb{Q}[x]$  has even degree.



Let F be a field and let  $f(x) \in F[x]$ .

- a. Define what a splitting field of f(x) over F is.
- b. Let F now be a finite field with q elements. Let E/F be a finite extension of degree n > 0. Exhibit an explicit polynomial  $g(x) \in F[x]$  such that E/F is a splitting field of g(x) over F. Fully justify your answer.
- c. Show that the extension E/F in (b) is a Galois extension.



a. Let K denote the splitting field of  $x^5-2$  over  $\mathbb Q$ . Show that the Galois group of  $K/\mathbb Q$  is isomorphic to the group of invertible matrices

$$\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right)$$
 where  $a \in \mathbb{F}_5^{\times}$  and  $b \in \mathbb{F}_5$ .

b. Determine all intermediate fields between K and  $\mathbb{Q}$  which are Galois over  $\mathbb{Q}$ .



Set  $f(x) = x^3 - 5 \in \mathbb{Q}[x]$ .

- a. Find the splitting field K of f(x) over  $\mathbb{Q}$ .
- b. Find the Galois group G of K over  $\mathbb{Q}$ .

c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between  $\mathbb{Q}$  and K.

## 7.17 Spring 2016 #2

Let  $K = \mathbb{Q}[\sqrt{2} + \sqrt{5}].$ 

- a. Find  $[K:\mathbb{Q}]$ .
- b. Show that  $K/\mathbb{Q}$  is Galois, and find the Galois group G of  $K/\mathbb{Q}$ .
- c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between  $\mathbb{Q}$  and K.

## 7.18 Spring 2016 #6

Let K be a Galois extension of a field F with [K : F] = 2015. Prove that K is an extension by radicals of the field F.

# 7.19 Fall 2015 #5 $\stackrel{ extstyle \sim}{ extstyle \sim}$

Let 
$$u = \sqrt{2 + \sqrt{2}}$$
,  $v = \sqrt{2 - \sqrt{2}}$ , and  $E = \mathbb{Q}(u)$ .

- a. Find (with justification) the minimal polynomial f(x) of u over  $\mathbb{Q}$ .
- b. Show  $v \in E$ , and show that E is a splitting field of f(x) over  $\mathbb{Q}$ .
- c. Determine the Galois group of E over  $\mathbb Q$  and determine all of the intermediate fields F such that  $\mathbb Q \subset F \subset E$ .

# 7.20 Fall 2015 #6

a. Let G be a finite group. Show that there exists a field extension K/F with Gal(K/F) = G.

You may assume that for any natural number n there is a field extension with Galois group  $S_n$ .

- b. Let K be a Galois extension of F with |Gal(K/F)| = 12. Prove that there exists an intermediate field E of K/F with [E:F] = 3.
- c. With K/F as in (b), does an intermediate field L necessarily exist satisfying [L:F]=2? Give a proof or counterexample.

# $\sim$ 7.21 Spring 2015 #2 $\stackrel{ extstyle }{\sim}$

Let  $\mathbb{F}$  be a finite field.

- a. Give (with proof) the decomposition of the additive group  $(\mathbb{F}, +)$  into a direct sum of cyclic groups.
- b. The *exponent* of a finite group is the least common multiple of the orders of its elements. Prove that a finite abelian group has an element of order equal to its exponent.
- c. Prove that the multiplicative group  $(\mathbb{F}^{\times}, \cdot)$  is cyclic.

# $\sim$ 7.22 Spring 2015 #5 $\stackrel{ extstyle }{\sim}$

Let  $f(x) = x^4 - 5 \in \mathbb{Q}[x]$ .

- a. Compute the Galois group of f over  $\mathbb{Q}$ .
- b. Compute the Galois group of f over  $\mathbb{Q}(\sqrt{5})$ .

## 

Let  $f \in \mathbb{Q}[x]$  be an irreducible polynomial and L a finite Galois extension of  $\mathbb{Q}$ . Let  $f(x) = g_1(x)g_2(x)\cdots g_r(x)$  be a factorization of f into irreducibles in L[x].

- a. Prove that each of the factors  $g_i(x)$  has the same degree.
- b. Give an example showing that if L is not Galois over  $\mathbb{Q}$ , the conclusion of part (a) need not hold.

#### 7.24 Fall 2014 #3

Consider the polynomial  $f(x) = x^4 - 7 \in \mathbb{Q}[x]$  and let  $E/\mathbb{Q}$  be the splitting field of f.

- a. What is the structure of the Galois group of  $E/\mathbb{Q}$ ?
- b. Give an explicit description of all of the intermediate subfields  $\mathbb{Q} \subset K \subset E$  in the form  $K = \mathbb{Q}(\alpha), \mathbb{Q}(\alpha, \beta), \cdots$  where  $\alpha, \beta$ , etc are complex numbers. Describe the corresponding subgroups of the Galois group.

# $\sim$ 7.25 Spring 2014 #3 $\stackrel{\triangleright}{}$

Let  $F \subset C$  be a field extension with C algebraically closed.

- a. Prove that the intermediate field  $C_{\text{alg}} \subset C$  consisting of elements algebraic over F is algebraically closed.
- b. Prove that if  $F \to E$  is an algebraic extension, there exists a homomorphism  $E \to C$  that is the identity on F.

# $\sim$ 7.26 Spring 2014 #4 $\stackrel{ extstyle }{\sim}$

Let  $E \subset \mathbb{C}$  denote the splitting field over  $\mathbb{Q}$  of the polynomial  $x^3 - 11$ .

a. Prove that if n is a squarefree positive integer, then  $\sqrt{n} \notin E$ .

Hint: you can describe all quadratic extensions of  $\mathbb{Q}$  contained in E.

- b. Find the Galois group of  $(x^3 11)(x^2 2)$  over  $\mathbb{Q}$ .
- c. Prove that the minimal polynomial of  $11^{1/3} + 2^{1/2}$  over  $\mathbb{Q}$  has degree 6.

# $\sim$ 7.27 Fall 2013 #5 $\stackrel{ extstyle \sim}{ extstyle \sim}$

Let L/K be a finite extension of fields.

7.24 Fall 2014 #3

- a. Define what it means for L/K to be separable.
- b. Show that if K is a finite field, then L/K is always separable.
- c. Give an example of a finite extension L/K that is not separable.

#### 7.28 Fall 2013 #6

Let K be the splitting field of  $x^4 - 2$  over  $\mathbb{Q}$  and set  $G = \operatorname{Gal}(K/\mathbb{Q})$ .

- a. Show that  $K/\mathbb{Q}$  contains both  $\mathbb{Q}(i)$  and  $\mathbb{Q}(\sqrt[4]{2})$  and has degree 8 over  $\mathbb{Q}/$
- b. Let  $N = \operatorname{Gal}(K/\mathbb{Q}(i))$  and  $H = \operatorname{Gal}(K/\mathbb{Q}(\sqrt[4]{2}))$ . Show that N is normal in G and NH = G.

Hint: what field is fixed by NH?

c. Show that  $\operatorname{Gal}(K/\mathbb{Q})$  is generated by elements  $\sigma, \tau$ , of orders 4 and 2 respectively, with  $\tau \sigma \tau^{-1} = \sigma^{-1}$ .

Equivalently, show it is the dihedral group of order 8.

d. How many distinct quartic subfields of K are there? Justify your answer.

## 7.29 Spring 2013 #7

Let  $f(x) = g(x)h(x) \in \mathbb{Q}[x]$  and  $E, B, C/\mathbb{Q}$  be the splitting fields of f, g, h respectively.

- a. Prove that Gal(E/B) and Gal(E/C) are normal subgroups of  $Gal(E/\mathbb{Q})$ .
- b. Prove that  $Gal(E/B) \cap Gal(E/C) = \{1\}.$
- c. If  $B \cap C = \mathbb{Q}$ , show that  $Gal(E/B) Gal(E/C) = Gal(E/\mathbb{Q})$ .
- d. Under the hypothesis of (c), show that  $Gal(E/\mathbb{Q}) \cong Gal(E/B) \times Gal(E/C)$ .
- e. Use (d) to describe  $Gal(\mathbb{Q}[\alpha]/\mathbb{Q})$  where  $\alpha = \sqrt{2} + \sqrt{3}$ .

## 7.30 Spring 2013 #8

7.28 Fall 2013 #6

Let F be the field with 2 elements and K a splitting field of  $f(x) = x^6 + x^3 + 1$  over F. You may assume that f is irreducible over F.

- a. Show that if r is a root of f in K, then  $r^9 = 1$  but  $r^3 \neq 1$ .
- b. Find  $\operatorname{Gal}(K/F)$  and express each intermediate field between F and K as  $F(\beta)$  for an appropriate  $\beta \in K$ .

# $\sim$ 7.31 Fall 2012 #3 $\stackrel{\triangleright}{}$

Let  $f(x) \in \mathbb{Q}[x]$  be an irreducible polynomial of degree 5. Assume that f has all but two roots in  $\mathbb{R}$ . Compute the Galois group of f(x) over  $\mathbb{Q}$  and justify your answer.

# $\sim$ 7.32 Fall 2012 #4 $\stackrel{\triangleright}{\sim}$

Let  $f(x) \in \mathbb{Q}[x]$  be a polynomial and K be a splitting field of f over  $\mathbb{Q}$ . Assume that  $[K : \mathbb{Q}] = 1225$  and show that f(x) is solvable by radicals.

$$\sim$$
 7.33 Spring 2012 #1  $\stackrel{ extstyle }{\sim}$ 

Suppose that  $F \subset E$  are fields such that E/F is Galois and |Gal(E/F)| = 14.

- a. Show that there exists a unique intermediate field K with  $F \subset K \subset E$  such that [K : F] = 2.
- b. Assume that there are at least two distinct intermediate subfields  $F \subset L_1, L_2 \subset E$  with  $[L_i : F] = 7$ . Prove that  $\operatorname{Gal}(E/F)$  is nonabelian.

# $\sim$ 7.34 Spring 2012 #4 $\stackrel{ extstyle \sim}{ extstyle \sim}$

Let  $f(x) = x^7 - 3 \in \mathbb{Q}[x]$  and  $E/\mathbb{Q}$  be a splitting field of f with  $\alpha \in E$  a root of f.

a. Show that E contains a primitive 7th root of unity.

b. Show that  $E \neq \mathbb{Q}(\alpha)$ .

## $\sim$ 7.35 Fall 2019 Midterm #6 $\stackrel{ extstyle e$

Compute the Galois group of  $f(x) = x^3 - 3x - 3 \in \mathbb{Q}[x]/\mathbb{Q}$ .

## $\sim$ 7.36 Fall 2019 Midterm #7 $\stackrel{ extstyle \sim}{ extstyle \sim}$

Show that a field k of characteristic  $p \neq 0$  is perfect  $\iff$  for every  $x \in k$  there exists a  $y \in k$  such that  $y^p = x$ .

# $\sim$ 7.37 Fall 2019 Midterm #8 $\stackrel{ o}{\sim}$

Let k be a field of characteristic  $p \neq 0$  and  $f \in k[x]$  irreducible. Show that  $f(x) = g(x^{p^d})$  where  $g(x) \in k[x]$  is irreducible and separable.

Conclude that every root of f has the same multiplicity  $p^d$  in the splitting field of f over k.

# $\sim$ 7.38 Fall 2019 Midterm #9 $\stackrel{ extstyle \sim}{ extstyle \sim}$

Let  $n \geq 3$  and  $\zeta_n$  be a primitive *n*th root of unity. Show that  $[\mathbb{Q}(\zeta_n + \zeta_n^{-1}) : \mathbb{Q}] = \varphi(n)/2$  for  $\varphi$  the totient function. 10.

Let L/K be a finite normal extension.

- a. Show that if L/K is cyclic and E/K is normal with L/E/K then L/E and E/K are cyclic.
- b. Show that if L/K is cyclic then there exists exactly one extension E/K of degree n with L/E/K for each divisor n of [L:K].

# $\sim$ 7.39 Spring 2021 #4 $^{ extstyle \sim}$

Define

$$f(x) := x^4 + 4x^2 + 64 \in \mathbb{Q}[x].$$

- a. Find the splitting field K of f over  $\mathbb{Q}$ .
- b. Find the Galois group G of f.
- c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between  $\mathbb{Q}$  and K.



Let p be a prime number and let F be a field of characteristic p. Show that if  $a \in F$  is not a pth power in F, then  $x^p - a \in F[x]$  is irreducible.

#### Strategy:

- By contrapositive, show that  $f(x) := x^p a \in \mathbb{F}[x]$  reducible  $\implies a$  is a pth power in  $\mathbb{F}$ .
- Eventually show  $a^{\ell} = b^p$  for some  $\ell \in \mathbb{N}$  and some  $b \in \mathbb{F}$ , then  $\gcd(\ell, p) = 1$  forces b = a and  $\ell = n$ .
- Use the fact that the constant term of any  $g \in \mathbb{F}[x]$  is actually in  $\mathbb{F}$ .

#### Concepts Used:

- Reducible:  $f \in \mathbb{F}[x]$  is reducible iff there exists  $g, h \in \mathbb{F}[x]$  nonconstant with f = gh.
  - Importantly, this factorization needs to happen in  $\mathbb{F}[x]$ , since we can *always* find such factorizations in the splitting field SF(f)[x].
- Bezout's identity:  $gcd(p,q) = d \implies$  there exist  $s,t \in \mathbb{Z}$  such that

$$sp + tq = d$$
.

## 7.41 Fall 2020 #3

a. Define what it means for a finite extension of fields E over F to be a Galois extension.

- b. Determine the Galois group of  $f(x) = x^3 7$  over  $\mathbb{Q}$ , and justify your answer carefully.
- c. Find all subfields of the splitting field of f(x) over  $\mathbb{Q}$ .

#### 7.42 Fall 2020 #4

Let K be a Galois extension of F, and let  $F \subset E \subset K$  be inclusions of fields. Let  $G := \operatorname{Gal}(K/F)$  and  $H := \operatorname{Gal}(K/E)$ , and suppose H contains  $N_G(P)$ , where P is a Sylow p-subgroup of G for p a prime. Prove that  $[E:F] \equiv 1 \pmod{p}$ .

# 8 | Modules

#### 8.1 General Questions

#### $\sim$

#### 8.1.1 Fall 2018 #6 🦙

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with  $N \subsetneq P \subsetneq M$ .

- a. Show that an R-submodule N of M is maximal  $\iff M/N$  is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- b. Let M be a  $\mathbb{Z}$ -module. Show that a  $\mathbb{Z}$ -submodule N of M is maximal  $\iff \#M/N$  is a prime number.
- c. Let M be the  $\mathbb{Z}$ -module of all roots of unity in  $\mathbb{C}$  under multiplication. Show that there is no maximal  $\mathbb{Z}$ -submodule of M.

#### Concepts Used:

• Todo

7.42 Fall 2020 #4 43

#### 8.1.2 Fall 2019 Final #2

Consider the  $\mathbb{Z}$ -submodule N of  $\mathbb{Z}^3$  spanned by

$$f_1 = [-1, 0, 1],$$
  

$$f_2 = [2, -3, 1],$$
  

$$f_3 = [0, 3, 1],$$
  

$$f_4 = [3, 1, 5].$$

Find a basis for N and describe  $\mathbb{Z}^3/N$ .

#### 8.1.3 Spring 2018 #6

Let

$$\begin{split} M &= \{ (w, x, y, z) \in \mathbb{Z}^4 \mid w + x + y + z \in 2\mathbb{Z} \} \\ N &= \left\{ (w, x, y, z) \in \mathbb{Z}^4 \mid 4 \mid (w - x), \ 4 \mid (x - y), \ 4 \mid (y - z) \right\}. \end{split}$$

- a. Show that N is a  $\mathbb{Z}$ -submodule of M .
- b. Find vectors  $u_1, u_2, u_3, u_4 \in \mathbb{Z}^4$  and integers  $d_1, d_2, d_3, d_4$  such that

$$\{u_1,u_2,u_3,u_4\} \qquad \qquad \text{is a free basis for } M$$
 
$$\{d_1u_1,\ d_2u_2,\ d_3u_3,\ d_4u_4\} \qquad \qquad \text{is a free basis for } N$$

c. Use the previous part to describe M/N as a direct sum of cyclic  $\mathbb{Z}$ -modules.

## 8.1.4 Spring 2018 #7

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called  $\langle p \rangle$  -primary if for every  $m \in M$  there exists k > 0 such that  $p^k m = 0$ .

- a. Suppose M is  $\langle p \rangle$ -primary. Show that if  $m \in M$  and  $t \in R$ ,  $t \notin \langle p \rangle$ , then there exists  $a \in R$  such that atm = m.
- b. A submodule S of M is said to be *pure* if  $S \cap rM = rS$  for all  $r \in R$ . Show that if M is  $\langle p \rangle$ -primary, then S is pure if and only if  $S \cap p^k M = p^k S$  for all  $k \geq 0$ .

## 8.1.5 Fall 2016 #6

Let R be a ring and  $f: M \to N$  and  $g: N \to M$  be R-module homomorphisms such that  $g \circ f = \mathrm{id}_M$ . Show that  $N \cong \mathrm{im} f \oplus \ker g$ .

8.1 General Questions 44

#### 8.1.6 Spring 2016 #4

Let R be a ring with the following commutative diagram of R-modules, where each row represents a short exact sequence of R-modules:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

Prove that if  $\alpha$  and  $\gamma$  are isomorphisms then  $\beta$  is an isomorphism.

#### 8.1.7 Spring 2015 #8

Let R be a PID and M a finitely generated R-module.

a. Prove that there are R-submodules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

such that for all  $0 \le i \le n-1$ , the module  $M_{i+1}/M_i$  is cyclic.

b. Is the integer n in part (a) uniquely determined by M? Prove your answer.

#### 8.1.8 Fall 2012 #6

Let R be a ring and M an R-module. Recall that M is *Noetherian* iff any strictly increasing chain of submodule  $M_1 \subsetneq M_2 \subsetneq \cdots$  is finite. Call a proper submodule  $M' \subsetneq M$  intersection-decomposable if it can not be written as the intersection of two proper submodules  $M' = M_1 \cap M_2$  with  $M_i \subsetneq M$ .

Prove that for every Noetherian module M, any proper submodule  $N \subseteq M$  can be written as a finite intersection  $N = N_1 \cap \cdots \cap N_k$  of intersection-indecomposable modules.

## 8.1.9 Fall 2019 Final #1

Let A be an abelian group, and show A is a  $\mathbb{Z}$ -module in a unique way.

8.1 General Questions 45

#### 8.1.10 Fall 2020 #6

Let R be a ring with 1 and let M be a left R-module. If I is a left ideal of R, define

$$IM := \left\{ \sum_{i=1}^{N < \infty} a_i m_i \mid a_i \in I, m_i \in M, n \in \mathbb{N} \right\},\,$$

i.e. the set of finite sums of of elements of the form am where  $a \in I, m \in M$ .

- a. Prove that  $IM \leq M$  is a submodule.
- b. Let M,N be left R-modules, I a nilpotent left ideal of R, and  $f:M\to N$  an R-module morphism. Prove that if the induced morphism  $\overline{f}:M/IM\to N/IN$  is surjective, then f is surjective.

#### 8.2 Torsion and the Structure Theorem



#### 8.2.1 \* Fall 2019 #5 \*

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

$$Tor(M) = \{ m \in M \mid \exists r \in R, \ r \neq 0, \ rm = 0 \}.$$

- a. Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- b. Give an example where Tor(M) is not a submodule of M.
- c. If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.

#### Concepts Used:

• One-step submodule test.

#### 8.2.2 \* Spring 2019 #5 \*

Let R be an integral domain. Recall that if M is an R-module, the rank of M is defined to be the maximum number of R-linearly independent elements of M.

- a. Prove that for any R-module M, the rank of Tor(M) is 0.
- b. Prove that the rank of M is equal to the rank of of  $M/\operatorname{Tor}(M)$ .
- c. Suppose that M is a non-principal ideal of R.

Prove that M is torsion-free of rank 1 but not free.

#### Concepts Used:

Todo

:::{.solution}

 $Proof\ (of\ a).$ 

- Suppose toward a contradiction Tor(M) has rank  $n \ge 1$ .
- Then Tor(M) has a linearly independent generating set  $B = \{\mathbf{r}_1, \dots, \mathbf{r}_n\}$ , so in particular

$$\sum_{i=1}^{n} s_i \mathbf{r}_i = 0 \implies s_i = 0_R \, \forall i.$$

- Let  $\mathbf{r}$  be any of of these generating elements.
- Since  $\mathbf{r} \in \text{Tor}(M)$ , there exists an  $s \in R \setminus 0_R$  such that  $s\mathbf{r} = 0_M$ .
- Then  $s\mathbf{r}=0$  with  $s\neq 0$ , so  $\{\mathbf{r}\}\subseteq B$  is not a linearly independent set, a contradiction.

Proof (of b).

- Let n = rank M, and let B = {r<sub>i</sub>}<sub>i=1</sub><sup>n</sup> ⊆ R be a generating set.
  Let M̃ := M/Tor(M) and π : M → M′ be the canonical quotient map.

Claim:

$$\tilde{\mathcal{B}} \coloneqq \pi(\mathcal{B}) = \{\mathbf{r}_i + \text{Tor}(M)\}$$

is a basis for M.

Note that the proof follows immediately.

Proof (of claim: linearly independent).

• Suppose that

$$\sum_{i=1}^{n} s_i(\mathbf{r}_i + \text{Tor}(M)) = \mathbf{0}_{\tilde{M}}.$$

• Then using the definition of coset addition/multiplication, we can write this as

$$\sum_{i=1}^{n} (s_i \mathbf{r}_i + \text{Tor}(M)) = \left(\sum_{i=1}^{n} s_i \mathbf{r}_i\right) + \text{Tor}(M) = 0_{\tilde{M}}.$$

- Since  $\tilde{\mathbf{x}} = 0 \in \tilde{M} \iff \tilde{\mathbf{x}} = \mathbf{x} + \operatorname{Tor}(M) \text{ where } \mathbf{x} \in \operatorname{Tor}(M), \text{ this forces } \sum s_i \mathbf{r}_i \in \operatorname{Tor}(M).$
- Then there exists a scalar  $\alpha \in R^{\bullet}$  such that  $\alpha \sum s_i \mathbf{r}_i = 0_M$ .
- Since R is an integral domain and  $\alpha \neq 0$ , we must have  $\sum s_i \mathbf{r}_i = 0_M$ .
- Since  $\{\mathbf{r}_i\}$  was linearly independent in M, we must have  $s_i = 0_R$  for all i.

Proof (of claim: spanning).

- Write  $\pi(\mathcal{B}) = \{\mathbf{r}_i + \text{Tor}(M)\}_{i=1}^n$  as a set of cosets.
- Letting  $\mathbf{x} \in M'$  be arbitrary, we can write  $\mathbf{x} = \mathbf{m} + \text{Tor}(M)$  for some  $\mathbf{m} \in M$  where  $\pi(\mathbf{m}) = \mathbf{x}$  by surjectivity of  $\pi$ .
- Since  $\mathcal{B}$  is a basis for M, we have  $\mathbf{m} = \sum_{i=1}^{n} s_i \mathbf{r}_i$ , and so

$$\mathbf{x} = \pi(\mathbf{m})$$

$$\coloneqq \pi \left( \sum_{i=1}^{n} s_i \mathbf{r}_i \right)$$

$$= \sum_{i=1}^{n} s_i \pi(\mathbf{r}_i) \quad \text{since } \pi \text{ is an } R\text{-module morphism}$$

$$\coloneqq \sum_{i=1}^{n} s_i (\mathbf{r}_i + \text{Tor}(M)),$$

which expresses  $\mathbf{x}$  as a linear combination of elements in  $\mathcal{B}'$ .

Proof (of c).

Notation: Let  $0_R$  denote  $0 \in R$  regarded as a ring element, and  $\mathbf{0} \in R$  denoted  $0_R$  regarded as a module element (where R is regarded as an R-module over itself)

Proof (that M is not free).

- Claim: If  $I \subseteq R$  is an ideal and a free R-module, then I is principal.
  - Suppose I is free and let  $I = \langle B \rangle$  for some basis, we will show |B| = 1 >
  - Toward a contradiction, suppose  $|B| \geq 2$  and let  $m_1, m_2 \in B$ .
  - Then since R is commutative,  $m_2m_1 m_1m_2 = 0$  and this yields a linear dependence
  - So B has only one element m.
  - But then  $I = \langle m \rangle = R_m$  is cyclic as an R- module and thus principal as an ideal of R.
  - Now since M was assumed to not be principal, M is not free (using the contrapositive of the claim).

Proof (that M is rank 1).

- For any module, we can take an element  $\mathbf{m} \in M^{\bullet}$  and consider the cyclic submodule  $R\mathbf{m}$
- Since M is not principle, it is not the zero ideal, and contains at least two elements. So we can consider an element  $\mathbf{m} \in M$ .
- We have  $\operatorname{rank}_R(M) \geq 1$ , since  $R\mathbf{m} \leq M$  and  $\{m\}$  is a subset of some spanning set.
- R**m** can not be linearly dependent, since R is an integral domain and  $M \subseteq R$ , so  $\alpha \mathbf{m} = \mathbf{0} \implies \alpha = 0_R$ .
- Claim: since R is commutative,  $rank_R(M) \leq 1$ .
  - If we take two elements  $\mathbf{m}, \mathbf{n} \in M^{\bullet}$ , then since  $m, n \in R$  as well, we have nm = mn and so

$$(n)\mathbf{m} + (-m)\mathbf{n} = 0_R = \mathbf{0}$$

is a linear dependence.

#### M is torsion-free:

- Let  $\mathbf{x} \in \text{Tor } M$ , then there exists some  $r \neq 0 \in R$  such that  $r\mathbf{x} = \mathbf{0}$ .
- But  $\mathbf{x} \in R$  as well and R is an integral domain, so  $\mathbf{x} = 0_R$ , and thus  $Tor(M) = \{0_R\}$ .

#### 8.2.3 \* Spring 2020 #6 \*

Let R be a ring with unity.

- a. Give a definition for a free module over R.
- b. Define what it means for an R-module to be torsion free.
- c. Prove that if F is a free module, then any short exact sequence of R-modules of the following form splits:

$$0 \to N \to M \to F \to 0$$
.

d. Let R be a PID. Show that any finitely generated R-module M can be expressed as a direct sum of a torsion module and a free module.

You may assume that a finitely generated torsionfree module over a PID is free.

#### 8.2.4 Spring 2012 #5

Let M be a finitely generated module over a PID R.

- a.  $M_t$  be the set of torsion elements of M, and show that  $M_t$  is a submodule of M.
- b. Show that  $M/M_t$  is torsion free.
- c. Prove that  $M \cong M_t \oplus F$  where F is a free module.

## 8.2.5 Spring 2017 #5

Let R be an integral domain and let M be a nonzero torsion R-module.

- a. Prove that if M is finitely generated then the annihilator in R of M is nonzero.
- b. Give an example of a non-finitely generated torsion R-module whose annihilator is (0), and justify your answer.

#### 8.2.6 Fall 2019 Final #3

Let R = k[x] for k a field and let M be the R-module given by

$$M = \frac{k[x]}{(x-1)^3} \oplus \frac{k[x]}{(x^2+1)^2} \oplus \frac{k[x]}{(x-1)(x^2+1)^4} \oplus \frac{k[x]}{(x+2)(x^2+1)^2}.$$

Describe the elementary divisors and invariant factors of M.

#### 8.2.7 Fall 2019 Final #4

Let I = (2, x) be an ideal in  $R = \mathbb{Z}[x]$ , and show that I is not a direct sum of nontrivial cyclic R-modules.

#### 8.2.8 Fall 2019 Final #5

Let R be a PID.

- a. Classify irreducible R-modules up to isomorphism.
- b. Classify indecomposable R-modules up to isomorphism.

#### 8.2.9 Fall 2019 Final #6

Let V be a finite-dimensional k-vector space and  $T:V\to V$  a non-invertible k-linear map. Show that there exists a k-linear map  $S:V\to V$  with  $T\circ S=0$  but  $S\circ T\neq 0$ .

#### 8.2.10 Fall 2019 Final #7

Let  $A \in M_n(\mathbb{C})$  with  $A^2 = A$ . Show that A is similar to a diagonal matrix, and exhibit an explicit diagonal matrix similar to A.

## 8.2.11 Fall 2019 Final #10

Show that the eigenvalues of a Hermitian matrix A are real and that  $A = PDP^{-1}$  where P is an invertible matrix with orthogonal columns.

#### 8.2.12 Fall 2020 #7

Let  $A \in \operatorname{Mat}(n \times n, \mathbb{R})$  be arbitrary. Make  $\mathbb{R}^n$  into an  $\mathbb{R}[x]$ -module by letting  $f(x) \cdot \mathbf{v} := f(A)(\mathbf{v})$  for  $f(\mathbf{v}) \in \mathbb{R}[x]$  and  $\mathbf{v} \in \mathbb{R}^n$ . Suppose that this induces the following direct sum decomposition:

$$\mathbb{R}^n \cong \frac{\mathbb{R}[x]}{\langle (x-1)^3 \rangle} \oplus \frac{\mathbb{R}[x]}{\langle (x^2+1)^2 \rangle} \oplus \frac{\mathbb{R}[x]}{\langle (x-1)(x^2-1)(x^2+1)^4 \rangle} \oplus \frac{\mathbb{R}[x]}{\langle (x+2)(x^2+1)^2 \rangle}.$$

- a. Determine the elementary divisors and invariant factors of A.
- b. Determine the minimal polynomial of A.
- c. Determine the characteristic polynomial of A.

# **Linear Algebra: Diagonalizability**

9.1 Fall 2017 #7

Let F be a field and let V and W be vector spaces over F.

Make V and W into F[x]-modules via linear operators T on V and S on W by defining  $X \cdot v = T(v)$ for all  $v \in V$  and  $X \cdot w = S(w)$  for all  $w \in W$ .

Denote the resulting F[x]-modules by  $V_T$  and  $W_S$  respectively.

- a. Show that an F[x]-module homomorphism from  $V_T$  to  $W_S$  consists of an F-linear transformation  $R: V \to W$  such that RT = SR.
- b. Show that  $VT \cong WS$  as F[x]-modules  $\iff$  there is an F-linear isomorphism  $P: V \to W$ such that  $T = P^{-1}SP$ .
- c. Recall that a module M is simple if  $M \neq 0$  and any proper submodule of M must be zero. Suppose that V has dimension 2. Give an example of F, T with  $V_T$  simple.
- d. Assume F is algebraically closed. Prove that if V has dimension 2, then any  $V_T$  is not simple.

## 9.2 Spring 2015 #3

Let F be a field and V a finite dimensional F-vector space, and let  $A, B : V \to V$  be commuting F-linear maps. Suppose there is a basis  $\mathcal{B}_1$  with respect to which A is diagonalizable and a basis  $\mathcal{B}_2$  with respect to which B is diagonalizable.

Prove that there is a basis  $\mathcal{B}_3$  with respect to which A and B are both diagonalizable.



Let A, B be two  $n \times n$  matrices with the property that AB = BA. Suppose that A and B are diagonalizable. Prove that A and B are simultaneously diagonalizable.



Let A be a square matrix over the complex numbers. Suppose that A is nonsingular and that  $A^{2019}$  is diagonalizable over  $\mathbb{C}$ .

Show that A is also diagonalizable over  $\mathbb{C}$ .

#### Concepts Used:

- A is diagonalizable iff  $\min_{A}(x)$  is separable.
  - See further discussion here.

# 10 | Linear Algebra: Misc

# $\sim$ 10.1 $\star$ Spring 2012 #6 $\stackrel{ extstyle ext$

Let k be a field and let the group  $G = GL(m, k) \times GL(n, k)$  acts on the set of  $m \times n$  matrices  $M_{m,n}(k)$  as follows:

$$(A,B) \cdot X = AXB^{-1}$$

where  $(A, B) \in G$  and  $X \in M_{m,n}(k)$ .

9.2 Spring 2015 #3 53

- a. State what it means for a group to act on a set. Prove that the above definition yields a group action.
- b. Exhibit with justification a subset S of  $M_{m,n}(k)$  which contains precisely one element of each orbit under this action.

# $\sim$ 10.2 $\star$ Spring 2014 #7

Let  $G = \mathrm{GL}(3,\mathbb{Q}[x])$  be the group of invertible  $3 \times 3$  matrices over  $\mathbb{Q}[x]$ . For each  $f \in \mathbb{Q}[x]$ , let  $S_f$  be the set of  $3 \times 3$  matrices A over  $\mathbb{Q}[x]$  such that  $\det(A) = cf(x)$  for some nonzero constant  $c \in \mathbb{Q}$ .

a. Show that for  $(P,Q) \in G \times G$  and  $A \in S_f$ , the formula

$$(P,Q) \cdot A := PAQ^{-1}$$

gives a well defined map  $G \times G \times S_f \to S_f$  and show that this map gives a group action of  $G \times G$  on  $S_f$ .

b. For  $f(x) = x^3(x^2 + 1)^2$ , give one representative from each orbit of the group action in (a), and justify your assertion.

## $\sim$ 10.3 Fall 2012 #7 $\stackrel{ extstyle }{\sim}$

Let k be a field of characteristic zero and  $A, B \in M_n(k)$  be two square  $n \times n$  matrices over k such that AB - BA = A. Prove that det A = 0.

Moreover, when the characteristic of k is 2, find a counterexample to this statement.

# $\sim$ 10.4 Fall 2012 #8 $\stackrel{ extstyle }{\sim}$

Prove that any nondegenerate matrix  $X \in M_n(\mathbb{R})$  can be written as X = UT where U is orthogonal and T is upper triangular.

#### 10.5 Fall 2012 #5

Let U be an infinite-dimensional vector space over a field  $k, f: U \to U$  a linear map, and  $\{u_1, \dots, u_m\} \subset U$  vectors such that U is generated by  $\{u_1, \dots, u_m, f^d(u_1), \dots, f^d(u_m)\}$  for some  $d \in \mathbb{N}$ .

Prove that U can be written as a direct sum  $U \cong V \oplus W$  such that

- 1. V has a basis consisting of some vector  $v_1, \dots, v_n, f^d(v_1), \dots, f^d(v_n)$  for some  $d \in \mathbb{N}$ , and
- $2. \ W$  is finite-dimensional.

Moreover, prove that for any other decomposition  $U \cong V' \oplus W'$ , one has  $W' \cong W$ .

#### 10.6 Fall 2015 #7

- ~
- a. Show that two  $3 \times 3$  matrices over  $\mathbb{C}$  are similar  $\iff$  their characteristic polynomials are equal and their minimal polynomials are equal.
- b. Does the conclusion in (a) hold for  $4 \times 4$  matrices? Justify your answer with a proof or counterexample.

## 10.7 Fall 2014 #4

Let F be a field and T an  $n \times n$  matrix with entries in F. Let I be the ideal consisting of all polynomials  $f \in F[x]$  such that f(T) = 0.

Show that the following statements are equivalent about a polynomial  $g \in I$ :

- a. g is irreducible.
- b. If  $k \in F[x]$  is nonzero and of degree strictly less than g, then k[T] is an invertible matrix.

#### 10.8 Fall 2015 #8



55

10.5 Fall 2012 #5

Let V be a vector space over a field F and V its dual. A symmetric bilinear form (-,-) on V is a map  $V \times V \to F$  satisfying

$$(av_1 + bv_2, w) = a(v_1, w) + b(v_2, w)$$
 and  $(v_1, v_2) = (v_2, v_1)$ 

for all  $a, b \in F$  and  $v_1, v_2 \in V$ . The form is nondegenerate if the only element  $w \in V$  satisfying (v, w) = 0 for all  $v \in V$  is w = 0.

Suppose (-,-) is a nondegenerate symmetric bilinear form on V. If W is a subspace of V, define

$$W^{\perp} := \left\{ v \in V \mid (v, w) = 0 \text{ for all } w \in W \right\}.$$

- a. Show that if X, Y are subspaces of V with  $Y \subset X$ , then  $X^{\perp} \subseteq Y^{\perp}$ .
- b. Define an injective linear map

$$\psi: Y^{\perp}/X^{\perp} \hookrightarrow (X/Y)^{\check{}}$$

which is an isomorphism if V is finite dimensional.

## 10.9 Fall 2018 #4 🦙

Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically closed).

Let  $\varphi:V\to V$  be a linear transformation. Prove that there exists a decomposition of V as  $V=U\oplus W$ , where U and W are  $\varphi$ -invariant subspaces of V,  $\varphi|_U$  is nilpotent, and  $\varphi|_W$  is nonsingular.

Revisit

## 10.10 Fall 2018 #5 🦙

~

Let A be an  $n \times n$  matrix.

a. Suppose that v is a column vector such that the set  $\{v, Av, ..., A^{n-1}v\}$  is linearly independent. Show that any matrix B that commutes with A is a polynomial in A.

10.8 Fall 2015 #8

b. Show that there exists a column vector v such that the set  $\{v, Av, ..., A^{n-1}v\}$  is linearly independent  $\iff$  the characteristic polynomial of A equals the minimal polynomial of A.

#### Concepts Used:

- Powers of A commute with polynomials in A.
- The image of a linear map is determined by the image of a basis

#### Strategy:

- Use Cayley-Hamilton to relate the minimal polynomial to a linear dependence.
- Get a lower bound on the degree of the minimal polynomial.
- Use  $A \curvearrowright k[x]$  to decompose into cyclic k[x]-modules, and use special form of denominators in the invariant factors.
- Reduce to monomials.

## 10.11 Fall 2019 #8

~

Let  $\{e_1, \dots, e_n\}$  be a basis of a real vector space V and let

$$\Lambda := \left\{ \sum r_i e_i \mid r_i \in \mathbb{Z} \right\}$$

Let  $\cdot$  be a non-degenerate  $(v \cdot w = 0 \text{ for all } w \in V \iff v = 0)$  symmetric bilinear form on V such that the Gram matrix  $M = (e_i \cdot e_j)$  has integer entries.

Define the dual of  $\Lambda$  to be

$$\check{\Lambda} \coloneqq \{ v \in V \mid v \cdot x \in \mathbb{Z} \text{ for all } x \in \Lambda \}.$$

- a. Show that  $\Lambda \subset \mathring{\Lambda}$ .
- b. Prove that  $\det M \neq 0$  and that the rows of  $M^{-1}$  span  $\Lambda$ .
- c. Prove that  $\det M = |\mathring{\Lambda/\Lambda}|$ .

#### Todo, missing part (c).

10.11 Fall 2019 #8

## 10.12 Spring 2013 #6 😽



Let V be a finite dimensional vector space over a field F and let  $T: V \to V$  be a linear operator with characteristic polynomial  $f(x) \in F[x]$ .

- a. Show that f(x) is irreducible in  $F[x] \iff$  there are no proper nonzero subspaces W < V with  $T(W) \subseteq W$ .
- b. If f(x) is irreducible in F[x] and the characteristic of F is 0, show that T is diagonalizable when we extend the field to its algebraic closure.

Is there a proof without matrices? What if V is infinite dimensional?

How to extend basis?

#### Concepts Used:

- Every  $\mathbf{v} \in V$  is T-cyclic  $\iff \chi_T(x)/\mathbb{k}$  is irreducible.
  - $\implies$ : Same as argument below.
  - $\Leftarrow$ : Suppose f is irreducible, then f is equal to the minimal polynomial of T.
- Characterization of diagonalizability: T is diagonalizable over  $F \iff \min_{T,F}$  is squarefree in  $\overline{F}[x]$ ?

## 10.13 Fall 2020 #8



Let  $A \in \operatorname{Mat}(n \times n, \mathbb{C})$  such that the group generated by A under multiplication is finite. Show that

$$\operatorname{Tr}(A^{-1}) = \overline{\operatorname{Tr}(A)},$$

where  $\overline{(-)}$  denotes taking the complex conjugate and Tr(-) is the trace.

# $oldsymbol{1}oldsymbol{1}$ Linear Algebra: Canonical Forms

# $\sim$ 11.1 $\star$ Spring 2012 #8 $\stackrel{\blacktriangleright}{}$ $\sim$

Let V be a finite-dimensional vector space over a field k and  $T: V \to V$  a linear transformation.

- a. Provide a definition for the minimal polynomial in k[x] for T.
- b. Define the *characteristic polynomial* for T.
- c. Prove the Cayley-Hamilton theorem: the linear transformation T satisfies its characteristic polynomial.



Let  $T:V\to V$  be a linear transformation where V is a finite-dimensional vector space over  $\mathbb{C}$ . Prove the Cayley-Hamilton theorem: if p(x) is the characteristic polynomial of T, then p(T)=0. You may use canonical forms.



Consider the following matrix as a linear transformation from  $V := \mathbb{C}^5$  to itself:

$$A = \left(\begin{array}{ccccc} -1 & 1 & 0 & 0 & 0 \\ -4 & 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{array}\right).$$

- a. Find the invariant factors of A.
- b. Express V in terms of a direct sum of indecomposable  $\mathbb{C}[x]$ -modules.
- c. Find the Jordan canonical form of A.

#### 11.4 Fall 2019 Final #8

Exhibit the rational canonical form for

- A ∈ M<sub>6</sub>(Q) with minimal polynomial (x 1)(x² + 1)².
  A ∈ M<sub>10</sub>(Q) with minimal polynomial (x² + 1)²(x³ + 1).

#### 11.5 Fall 2019 Final #9

Exhibit the rational and Jordan canonical forms for the following matrix  $A \in M_4(\mathbb{C})$ :

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -2 & -2 & 0 & 1 \\ -2 & 0 & -1 & -2 \end{array}\right).$$

## 11.6 Spring 2016 #7

Let  $D = \mathbb{Q}[x]$  and let M be a  $\mathbb{Q}[x]$ -module such that

$$M \cong \frac{\mathbb{Q}[x]}{(x-1)^3} \oplus \frac{\mathbb{Q}[x]}{(x^2+1)^3} \oplus \frac{\mathbb{Q}[x]}{(x-1)(x^2+1)^5} \oplus \frac{\mathbb{Q}[x]}{(x+2)(x^2+1)^2}.$$

Determine the elementary divisors and invariant factors of M.

## 11.7 Spring 2020 #7

Let

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 6 & 1 \\ -16 & -16 & -2 \end{bmatrix} \in M_3(\mathbf{C}).$$

- a. Find the Jordan canonical form J of A.
- b. Find an invertible matrix P such that  $P^{-1}AP = J$ .

You should not need to compute  $P^{-1}$ .

c. Write down the minimal polynomial of A.

## 11.8 Spring 2019 #7 🦙

Let p be a prime number. Let A be a  $p \times p$  matrix over a field F with 1 in all entries except 0 on the main diagonal.

Determine the Jordan canonical form (JCF) of A

- a. When  $F = \mathbb{Q}$ ,
- b. When  $F = \mathbb{F}_p$ .

Hint: In both cases, all eigenvalues lie in the ground field. In each case find a matrix P such that  $P^{-1}AP$  is in JCF.

#### Strategy:

- Work with matrix of all ones instead.
- Eyeball eigenvectors.
- Coefficients in minimal polynomial: size of largest Jordan block
- Dimension of eigenspace: number of Jordan blocks
- We can always read off the *characteristic* polynomial from the spectrum.

#### Concepts Used:

• Todo

#### 11.9 Spring 2018 #4

Let

$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 1 & -3 \\ 1 & 2 & -4 \end{bmatrix} \in M_3(\mathbb{C})$$

a. Find the Jordan canonical form J of A.

b. Find an invertible matrix P such that  $P^{-1}AP = J$ .

You should not need to compute  $P^{-1}$ .

## 11.10 Spring 2017 #6

Let A be an  $n \times n$  matrix with all entries equal to 0 except for the n-1 entries just above the diagonal being equal to 2.

- a. What is the Jordan canonical form of A, viewed as a matrix in  $M_n(\mathbb{C})$ ?
- b. Find a nonzero matrix  $P \in M_n(\mathbb{C})$  such that  $P^{-1}AP$  is in Jordan canonical form.

## 11.11 Spring 2016 #1

Let

$$A = \begin{pmatrix} -3 & 3 & -2 \\ -7 & 6 & -3 \\ 1 & -1 & 2 \end{pmatrix} \in M_3(\mathbb{C}).$$

- a. Find the Jordan canonical form J of A.
- b. Find an invertible matrix P such that  $P^{-1}AP = J$ . You do not need to compute  $P^{-1}$ .

## 11.12 Spring 2015 #6

Let F be a field and n a positive integer, and consider

$$A = \left[ \begin{array}{ccc} 1 & \dots & 1 \\ & \ddots & \\ 1 & \dots & 1 \end{array} \right] \in M_n(F).$$

Show that A has a Jordan normal form over F and find it.

Hint: treat the cases  $n \cdot 1 \neq 0$  in F and  $n \cdot 1 = 0$  in F separately.

## 11.13 Fall 2014 #5

Let T be a  $5 \times 5$  complex matrix with characteristic polynomial  $\chi(x) = (x-3)^5$  and minimal polynomial  $m(x) = (x-3)^2$ . Determine all possible Jordan forms of T.

## 11.14 Spring 2013 #5

Let  $T: V \to V$  be a linear map from a 5-dimensional  $\mathbb{C}$ -vector space to itself and suppose f(T) = 0 where  $f(x) = x^2 + 2x + 1$ .

- a. Show that there does not exist any vector  $v \in V$  such that Tv = v, but there does exist a vector  $w \in V$  such that  $T^2w = w$ .
- b. Give all of the possible Jordan canonical forms of T.

## 11.15 Spring 2021 #1

Let m

$$A \coloneqq \begin{bmatrix} r & 1 & -1 \\ -6 & -1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \in \operatorname{Mat}(3 \times 3, \mathbb{C}).$$

- a. Find the Jordan canonical form J of A.
- b. Find an invertible matrix P such that  $J = P^{-1}AP$ .

You should not need to compute  $P^{-1}$ 

c. Write down the minimal polynomial of A.

## 11.16 Fall 2020 #5

Consider the following matrix:

$$B \coloneqq \begin{bmatrix} 1 & 3 & 3 \\ 2 & 2 & 3 \\ -1 & -2 & -2 \end{bmatrix}.$$

- a. Find the minimal polynomial of B.
- b. Find a  $3 \times 3$  matrix J in Jordan canonical form such that  $B = JPJ^{-1}$  where P is an invertible matrix.

11.16 Fall 2020 #5