(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年3月6日(06.03.2003)

PCT

(10) 国際公開番号

(51) 国際特許分類7:

WO 03/019475 A1

G06T 7/00

(21) 国際出願番号:

PCT/JP02/08433

(22) 国際出願日:

2002年8月21日(21.08.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-253700 2001年8月23日(23.08.2001)

(71) 出願人 (米国を除く全ての指定国について): ソニー株 式会社 (SONY CORPORATION) [JP/JP]; 〒141-0001 東京都品川区北品川6丁目7番35号 Tokyo (JP).

佐部 浩太郎 (SABE, Kohtaro) [JP/JP]; 〒141-0001 東 京都 品川区 北品川6丁目7番35号 ソニー株式 会社内 Tokyo (JP). 河本 献太 (KAWAMOTO,Kenta) [JP/JP]; 〒141-0001 東京都 品川区 北品川 6 丁目 7 番 35号 ソニー株式会社内 Tokyo (JP).

0041 東京都 中央区 新富一丁目1番7号 銀座ティー ケイビル 澤田・宮田・山田特許事務所 Tokyo (JP).

- (81) 指定国 (国内): CN, JP, KR, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

(74) 代理人: 山田 英治, 外(YAMADA, Eiji et al.); 〒104-

添付公開書類:

国際調査報告書

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 横野 順 (YOKONO,Jun) [JP/JP]; 〒141-0001 東京都 品川区 北 品川6丁目7番35号ソニー株式会社内 Tokyo (JP).

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: ROBOT APPARATUS, FACE RECOGNITION METHOD, AND FACE RECOGNITION APPARATUS

(54) 発明の名称: ロボット装置、顔認識方法及び顔認識装置

(57) Abstract: A robot includes a face extraction unit for extracting a feature of a face contained in an image picked up by a CCD camera and a face recognition unit for recognizing a face according to the face extraction result obtained by the face extraction unit. The face extraction unit is composed of a Gabor filter for filtering an image by using a plurality of filters having direction selectivity and different frequency components. The face recognition unit is composed of a support vector machine for mapping the face extraction result onto a non-linear space and obtaining a hyperplane for separation in the space, thereby distinguishing face from non-face. The robot can recognize a user face in a dynamically changing environment within a predetermined time.

/続葉有/

(57) 要約:

ロボットは、CCDカメラによる撮像画像に含まれる顔の特徴を抽出する顔抽出部と、前記顔抽出部による顔抽出結果を基に顔を認識する顔認識部を備えている。顔抽出部は方位選択性を持ち周波数成分の異なる複数のフィルタを用いて画像をフィルタリングするガボア・フィルタで構成され、顔認識部は顔抽出結果を非線型な空間に一度写像して該空間内で分離する超平面を求めることにより顔と非顔とを識別するサポート・ベクタ・マシーンで構成される。動的に変化する環境下でロボットはユーザの顔を一定時間内に認識することができる。

WO 03/019475 PCT/JP02/08433

1

明細書

ロボット装置、顔認識方法及び顔認識装置

5 [技術分野]

10

15

25

本発明は、動的に変化する作業環境下で一定時間内に応答できるようなヒューマン・インターフェースを備えたロボット装置、並びに、ロボット用にヒューマン・インターフェースとして適用することができる顔認識方法及び顔認識装置に係り、動的に変化する作業環境下でユーザの顔を一定時間内に認識することができるロボット装置、並びに、顔認識方法及び顔認識装置に関する。

さらに詳しくは、本発明は、モーフィングなどの位置合わせを行なう必要なく、 回転、位置などの変化に対してロバストな顔認識を行なうロボット装置、顔認識 方法及び顔認識装置に係り、特に、照明条件やカメラ・パラメータが異なる環境 下でロバストな顔認識を行なうロボット装置、顔認識方法及び顔認識装置に関す る。

「背景技術」

20 顔認識の技術は、ユーザに負担をかけない個人認証システムをはじめとして、 性別の識別など、マンマシン・インターフェースに幅広く適用が可能である。初 期は横顔を使った認識技術も検討されたが、現在は、正面画像の認識技術が中心 となっている。

顔認識に関する研究は、パターン認識理論を検証する上でベンチマーク的な位置付けを持っており、古くからさまざまな手法が開発されてきた。そこで想定されていたアプリケーションは、セキュリティシステムにおける認証や大規模データベースからの人物検索など、静的な環境下で正確性を要するものがほとんどである。

ところで、近年、外観形状が犬などの動物に模して形成され、エンターテイン

10

15

20

メントとしてのロボット装置が提供されている。例えば、ソニー株式会社は、2000年11月25日に2足歩行の人間型ロボット"SDR-3X"を公表した。この種の脚式移動ロボットは、不安定で姿勢制御や歩行制御が難しくなるが、階段や梯子の昇降や障害物の乗り越えなど、整地・不整地の区別を問わない柔軟な歩行・走行動作を実現できるという点で優れている。さらにロボットのインテリジェンスを高め、自律的な装置動作を可能とすることにより、同じ住空間において人間とロボットが共存することも夢ではなくなる。

インテリジェントなロボット装置は、外部からの情報(例えば、周囲環境の情報など)や内部の状態(例えば、感情状態など)などに応じて目や脚などを自律的に動作させることで、動物のような仕草を表出させることができる。

このようなロボット装置の出現により、動的に変化する作業環境下で一定時間内に応答できるようなヒューマン・インターフェース技術が要求されてきており、その1つとしてロボット装置による顔識別を挙げることができる。例えば、顔識別を利用することにより、ロボット装置は、多くの中からユーザ(飼い主又はともだち、若しくは正当なユーザ)を識別することができ、ユーザ毎にリアクションを変えるなどして、よりエンターテインメント性のあるものとなる。

ロボット装置への適用が求められている顔認識技術は、セキュリティ・システムにおける認証や大規模データベースからの人物検索などの適用分野とは相違し、 多少不正確であっても、動的に変化する環境下で一定時間内に応答できることである。

こうしたロボット装置に搭載される顔識別のアプリケーションでは、ある与えられた1枚のシーンの中から人物を識別するという問題に加え、次のような問題を解決する必要がある。

- (1) ロボット装置自身が移動するため、環境の変化やその多様性を許容しなく 25 てはならない。
 - (2) 人間とロボット装置の位置関係も変化するため、インタラクション中に人間を視野内に入れ続ける必要がある。
 - (3)数多くのシーン画像から人物の識別に使える画像を選び出し、総合的に判断しなくてはならない。

PCT/JP02/08433

3

(4) ある時間内に応答しなくてはならない。

従来、顔認識の手法は、ニューラル・ネットワークを用いた方法や、顔画像の各輝度値を要素とするベクトル空間に主成分分析 (Principal Components Analysis: PCA) を適用する手法 (固有空間法) などが主流であったが、これら従来技術には以下のような欠点がある。

まず、ニューラル・ネットワークによる顔認識では、インクリメンタルな学習 が不可能である。

また、固有顔による方法の場合、直交する部分線形空間を仮定している(すなわち、2枚の顔画像の平均をとると人の顔になる)が、実際には線形でないことが多く、このために、モーフィング(morphing)あるいはアラインメント(alignmemt)と呼ばれる正確な位置合わせが必要となる。この前処理により、位置、回転、大きさに対して正規化し、その影響をなくそうとするものもあるが、なかなかうまく処理できないこともあり、認識性能を低下させる原因になっている。また、顔空間の次元を著しく小さくしてその空間での分離をするため、高次元の特徴が失われる可能性もある。

また、上述したいずれの顔認識方法であっても、照明条件の変化やカメラ・パラメータの変化、ノイズ、位置、回転に対して影響を受け易く、ノイズ・フィルタリングやモーフィングなどの前処理を必要とする。また、汎化能力の点でも疑問が残る。

20

25

15

5

10

「発明の開示]

本発明の目的は、動的に変化する作業環境下で一定時間内に応答できるような ヒューマン・インターフェースを備えたロボット装置、並びに、ロボット用にヒ ューマン・インターフェースとして適用することができる、優れた顔認識方法及 び顔認識装置を提供することにある。

本発明のさらなる目的は、動的に変化する作業環境下でユーザの顔を一定時間内に認識することができる、優れたロボット装置、顔認識方法及び顔認識装置を提供することにある。

本発明のさらなる目的は、照明条件やカメラ・パラメータが異なる環境下でロバストな顔認識を行なうことができる、優れたロボット装置、顔認識方法及び顔認識装置を提供することにある。

本発明のさらなる目的は、モーフィングなどの位置合わせを行なう必要なく、 回転、位置などの変化に対してロバストな顔認識を行なうことができる、優れた ロボット装置、顔認識方法及び顔認識装置を提供することにある。

本発明のさらなる目的は、モーフィングなどの位置合わせを行なう必要なく、 回転、位置などの変化に対してロバストな顔認識を行なうことができる、優れた ロボット装置、顔認識方法及び顔認識装置を提供することにある。

10

25

5

本発明は、上記課題を参酌してなされたものであり、その第1の側面は、自律 的に行動するロボット装置であって、

顔画像を入力する画像入力手段と、

方位選択性を持ち周波数成分の異なる複数のフィルタを用いることにより、前 15 記顔画像の特徴量を抽出する顔特徴量抽出手段と、

前記顔特徴量抽出手段による顔特徴量抽出結果を、カーネル関数を用いて非線 形な写像を行ない、該写像後の特徴空間内で分離する超平面を求めることにより、 特定の顔と、該特定の顔以外の顔とを識別する顔識別手段と、

を具備することを特徴とするロボット装置である。

20 ここで、前記顔特徴量抽出手段はガボア・フィルタで構成することができる。 また、前記顔識別手段はサポート・ベクタ・マシンで構成することができる。

本発明の第1の側面によれば、ロボット装置は、入力画像に対してモーフィングなどの位置合わせを行なうことなく、すなわち、回転や位置などの変化に対してロバストな顔認識を行なうことができる。すなわち、ロボット装置は、動的に変化する作業環境下でユーザの顔を一定時間内に認識することができ、各ユーザ毎の対応を実時間で行うことができる。

ここで、前記顔特徴量抽出手段は、認識タスクに応じて前記ガボア・フィルタ の種類を変更するフィルタ変更手段をさらに備えていてもよい。

また、前記顔特徴量抽出手段は、低周波でのフィルタリングではフィルタリン

ことができる。

グ後のイメージをダウンサンプリングして次元を落すようにすることができる。 ダウンサンプリングされた各ベクトルを一列に並べて、長いベクトルを構成して、 後段の顔識別手段に渡す。

5 また、本発明の第2の側面は、ロボット用のヒューマン・インターフェースと して適用可能な顔認識装置又は顔認識方法であって、

顔画像を入力する画像入力手段又はステップと、

方位選択性を持ち周波数成分の異なる複数のフィルタを用いることにより、前 記顔画像の特徴量を抽出する顔特徴量抽出手段又はステップと、

10 前記顔特徴量抽出手段又はステップによる顔特徴量抽出結果を、カーネル関数を用いて非線形な写像を行ない、該写像後の特徴空間内で分離する超平面を求めることにより、特定の顔と、該特定の顔以外の顔とを識別する顔識別手段又はステップと、

を具備することを特徴とする顔認識装置又は顔認識方法である。

15 ここで、前記顔特徴量抽出手段はガボア・フィルタで構成することができる。また、前記顔識別手段はサポート・ベクタ・マシンで構成することができる。

本発明の第2の側面に係る顔認識装置又は顔認識方法によれば、入力画像に対してモーフィングなどの位置合わせを行なうことなく、すなわち、回転や位置などの変化に対してロバストな顔認識を行なうことができる。すなわち、動的に変化する作業環境下であってもユーザの顔を一定時間内に認識することができる。したがって、本発明の第2の側面に係る顔認識装置又は顔認識方法をロボット装置に適用することにより、該ロボット装置は、ユーザ毎に異なるリアクションを遅延時間なく実行することができるなど、エンターティンメント性を向上させる

25 ここで、前記顔特徴量抽出手段又はステップは、認識タスクに応じて前記ガボ ア・フィルタの種類を変更するフィルタ変更手段又はステップをさらに備えてい てもよい。

また、前記顔特徴量抽出手段又はステップは、低周波でのフィルタリングでは フィルタリング後のイメージをダウンサンプリングして次元を落すようにするこ とができる。ダウンサンプリングされた各ベクトルを一列に並べて、長いベクト ルを構成して、後段の顔認識手段又はステップに渡す。

本発明のさらに他の目的、特徴や利点は、後述する本発明の実施形態や添付す 5 る図面に基づくより詳細な説明によって明らかになるであろう。

[図面の簡単な説明]

図1は、本発明の実施に供される脚式移動ロボット100を前方から眺望した 10 様子を示た図である。

図2は、本発明の実施に供される脚式移動ロボット100を後方から眺望した 様子を示た図である。

図3は、本実施形態に係る脚式移動ロボット100が具備する自由度構成モデルを模式的に示した図である。

15 図4は、脚式移動ロボット100の制御システム構成を模式的に示した図である。

図5は、本実施形態に係るロボット装置100の処理動作を実現するための制御プログラムのソフトウェア構成を模式的に示した図である。

図6は、ミドルウェア・レイヤ140の具体なソフトウェア構成を詳細に示し 20 た図である。

図7は、アプリケーション・レイヤ141の具体なソフトウェア構成を詳細に 示した図である。

図8は、行動モデル・ライブラリ170の具体的なソフトウェア構成を詳細に示した図である。

25 図 9 は、各行動モデル 1 7 0 - 1 ~ 1 7 0 - n から次の行動を決定するための 有限確率オートマトンの仕組みを示した図である。

図10は、自己の行動モデル170-1~170-nを形成するノードNOD $E0\sim NODEn$ にそれぞれ対応させて用意された状態遷移表を示した図である。 図11は、本実施形態に係る顔認識システム1000の学習段階における機能

構成を示したブロック図である。

図12は、本実施形態に係る顔認識システム1000の認識段階における機能 構成を示したブロック図である。

図13は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示 5 した図である。

図14は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図15は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

10 図16は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図17は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図18は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示 15 した図である。

図19は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図20は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

20 図21は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図22は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図23は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示 25 した図である。

図24は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図25は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図26は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図27は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

5 図28は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示 した図である。

図29は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図30は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示 10 した図である。

図31は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図32は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

15 図33は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図34は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図35は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図36は、本実施形態で使用されるガボア・フィルタの空間領域での様相を示した図である。

図37は、入力画像の一例を示した図である。

図38は、図37に示す入力画像を、図13に示すガボア・フィルタでフィル 25 タリングした結果を示した図である。

図39は、図37に示す入力画像を、図14に示すガボア・フィルタでフィルタリングした結果を示した図である。

図40は、図37に示す入力画像を、図15に示すガボア・フィルタでフィルタリングした結果を示した図である。

図41は、図37に示す入力画像を、図16に示すガボア・フィルタでフィルタリングした結果を示した図である。

図42は、図37に示す入力画像を、図17に示すガボア・フィルタでフィルタリングした結果を示した図である。

5 図43は、図37に示す入力画像を、図18に示すガボア・フィルタでフィル タリングした結果を示した図である。

図44は、図37に示す入力画像を、図19に示すガボア・フィルタでフィルタリングした結果を示した図である。

図45は、図37に示す入力画像を、図20に示すガボア・フィルタでフィル 10 タリングした結果を示した図である。

図46は、図37に示す入力画像を、図21に示すガボア・フィルタでフィルタリングした結果を示した図である。

図47は、図37に示す入力画像を、図22に示すガボア・フィルタでフィルタリングした結果を示した図である。

15 図48は、図37に示す入力画像を、図23に示すガボア・フィルタでフィルタリングした結果を示した図である。

図49は、図37に示す入力画像を、図24に示すガボア・フィルタでフィルタリングした結果を示した図である。

図50は、図37に示す入力画像を、図25に示すガボア・フィルタでフィルタリングした結果を示した図である。

図51は、図37に示す入力画像を、図26に示すガボア・フィルタでフィルタリングした結果を示した図である。

図52は、図37に示す入力画像を、図27に示すガボア・フィルタでフィルタリングした結果を示した図である。

25 図53は、図37に示す入力画像を、図28に示すガボア・フィルタでフィル タリングした結果を示した図である。

図54は、図37に示す入力画像を、図29に示すガボア・フィルタでフィルタリングした結果を示した図である。

図55は、図37に示す入力画像を、図30に示すガボア・フィルタでフィル

PCT/JP02/08433

タリングした結果を示した図である。

図56は、図37に示す入力画像を、図31に示すガボア・フィルタでフィルタリングした結果を示した図である。

図57は、図37に示す入力画像を、図32に示すガボア・フィルタでフィルタリングした結果を示した図である。

図58は、図37に示す入力画像を、図33に示すガボア・フィルタでフィルタリングした結果を示した図である。

図59は、図37に示す入力画像を、図34に示すガボア・フィルタでフィルタリングした結果を示した図である。

10 図60は、図37に示す入力画像を、図35に示すガボア・フィルタでフィルタリングした結果を示した図である。

図61は、図37に示す入力画像を、図36に示すガボア・フィルタでフィルタリングした結果を示した図である。

図62は、画像中の顔の大きさと距離の関係を示した図である。

15 図63は、各顔の大きさの画像を高速フーリエ変換して周波数領域のピークを 求める処理を説明するための図である。

図64は、距離とガボア・フィルタの周波数の関係を示した図である。

図65は、距離情報を利用したガボア・フィルタによる顔抽出処理の手順を示したフローチャートである。

20

[発明を実施するための最良の形態]

以下、図面を参照しながら本発明の実施形態について詳解する。

25 後述する本発明の実施形態は、本発明を、外観形状がヒトに模して形成された 2 足脚式移動のロボット装置すなわちヒューマノイド・ロボット (humanoid robot) に適用したものである。但し、本発明の要旨はこれに限定されるものでは なく、例えば犬などの4 足脚式移動ロボットにも同様に本発明を適用することが できる。

本実施形態に係るロボット装置は、外部からの情報(例えば、周囲環境の情報など)や内部の状態(例えば、感情状態など)などに応じて目や脚等を自律的に動作させることで、リアリティのある仕草を表出させている。そして、このロボット装置は、ヒューマン・インターフェースとしての顔認識機能を装備して、ユーザ(友達又は飼い主)などの顔を識別することができるものとして構成されており、顔認識結果に基づいて、ユーザ毎に異なるリアクションを形成することができる。

A. ロボットの構成

15

20

25

10 図1及び図2には本発明の実施に供される脚式移動ロボット100を前方及び 後方の各々から眺望した様子を示している。さらに、図3には、この脚式移動ロ ボット100が具備する関節自由度構成を模式的に示している。

図3に示すように、脚式移動ロボット100は、2本の腕部と頭部1を含む上肢と、移動動作を実現する2本の脚部からなる下肢と、上肢と下肢とを連結する体幹部とで構成された、複数の肢を備えた構造体である。

頭部1を支持する首関節は、首関節ヨー軸2と、首関節ピッチ軸3と、首関節ロール軸4という3自由度を有している。

また、各腕部は、肩関節ピッチ軸8と、肩関節ロール軸9と、上腕ヨー軸10と、肘関節ピッチ軸11と、前腕ヨー軸12と、手首関節ピッチ軸13と、手首関節ロール軸14と、手部15とで構成される。手部15は、実際には、複数本の指を含む多関節・多自由度構造体である。但し、手部15の動作はロボット100の姿勢制御や歩行制御に対する寄与や影響が少ないので、本明細書ではゼロ自由度と仮定する。したがって、各腕部は7自由度を有するとする。

また、体幹部は、体幹ピッチ軸5と、体幹ロール軸6と、体幹ヨー軸7という3自由度を有する。

また、下肢を構成する各々の脚部は、股関節ヨー軸16と、股関節ピッチ軸17と、股関節ロール軸18と、膝関節ピッチ軸19と、足首関節ピッチ軸20と、足首関節ロール軸21と、足部22とで構成される。本明細書中では、股関節ピッチ軸17と股関節ロール軸18の交点は、本実施形態に係る脚式移動ロボット

100の股関節位置を定義する。人体の足部22は実際には多関節・多自由度の足底を含んだ構造体であるが、本実施形態に係る脚式移動ロボット100の足底はゼロ自由度とする。したがって、各脚部は6自由度で構成される。

以上を総括すれば、本実施例に係る脚式移動ロボット100全体としては、合計で3+7×2+3+6×2=32自由度を有することになる。但し、エンターティンメント向けの脚式移動ロボット100が必ずしも32自由度に限定される訳ではない。設計・製作上の制約条件や要求仕様などに応じて、自由度すなわち関節数を適宜増減することができることは言うまでもない。

5

上述したような脚式移動ロボット100が持つ各自由度は、実際にはアクチュエータを用いて実装される。外観上で余分な膨らみを排してヒトの自然体形状に近似させること、2足歩行という不安定構造体に対して姿勢制御を行うことなどの要請から、アクチュエータは小型且つ軽量であることが好ましい。本実施例では、ギア直結型で且つサーボ制御系をワンチップ化してモータ・ユニットに内蔵したタイプの小型ACサーボ・アクチュエータを搭載することとした。なお、この種のACサーボ・アクチュエータに関しては、例えば本出願人に既に譲渡されている特開2000-299970号公報(特願平11-33386号)に開示されている。

図4には、脚式移動ロボット100の制御システム構成を模式的に示している。この制御システムは、コントロール部116と、このロボット装置100の動力 源としてのバッテリ117とで構成され、例えば、脚式移動ロボットの機体胴体 部やその背面部に搭載されている。コントロール部116は、CPU (Central Processing Unit) 110と、DRAM (Dynamic Random Access Memory) 111 と、フラッシュROM (Read Only Memory) 112と、PC (Personal Computer) カード・インターフェース回路113及び信号処理回路114が内部バス115 を介して相互に接続されることにより構成される。また、機体には、ロボット装置100の向きや動きの加速度を検出するための角速度センサ118及び加速度 センサ119なども装備されている。

また、機体の頭部には、外部の状況を撮像するための CCD (Charge Coupled Device:電荷結合素子) カメラ 120 と、ユーザからの「撫でる」や「叩く」と

いった物理的な働きかけにより受けた圧力を検出するためのタッチ・センサ121と、前方に位置する物体までの距離を測定するための距離センサ122と、外部音を集音するためのマイクロフォン123と、鳴き声等の音声を出力するためのスピーカ124などがそれぞれ機体上の所定位置に配設されている。ここで、CCDカメラ120は、顔識別において顔画像を撮像するための画像入力手段を構成する。

さらに、各脚部ユニットの関節部分や、各脚部ユニット及び胴体部ユニットの各連結部分、並びに頭部ユニット及び胴体部ユニットの連結部分などには、それぞれ自由度数分のアクチュエータ125-1~125-n及びポテンショメータ126-1~126-nが配設されている。例えば、アクチュエータ125-1~125-nはそれぞれ1つのサーボモータによって構成される。これらサーボモータの駆動により、脚部ユニットが制御されて、目標の姿勢あるいは動作に遷移する。

そして、前述した角速度センサ118、加速度センサ119、タッチ・センサ15 121、距離センサ122、マイクロフォン123、スピーカ124、並びに各ポテンショメータ126-1~126-nなどの各種センサ、及び各アクチュエータ125-1~125-nは、それぞれ対応するハブ127-1~127-nに集線された後に、コントロール部116の信号処理回路114と接続されている。また、CCDカメラ120及びバッテリ117は、それぞれ信号処理回路114と直接接続されている。

信号処理回路114は、上述の各センサから供給されるセンサ・データや画像データ、及び音声データを逐次取り込んで、これらをそれぞれ内部バス115を介してDRAM111内の所定のアドレスに適宜格納する。また、信号処理回路114は、これとともにバッテリ117から供給されるバッテリ残量を表すバッテリ残量データを逐次取り込み、これも同様にDRAM111内の所定のアドレスに格納する。

このようにしてDRAM111に格納された各センサ・データ、画像データ、音声データ、並びにバッテリ残量データは、この後、CPU110がこのロボット装置100の機体の動作制御を行う際に利用可能となる。

10

15

実際上、CPU110は、ロボット装置100の電源が投入された初期時、胴体部ユニット2の図示しないPCカード・スロットに装填されたメモリ・カード128又はフラッシュROM112に格納された制御プログラムをPCカード・インターフェース回路113経由で又は直接読み出して、これをDRAM111にロードする。

また、CPU110は、このようなプログラム・ロードの後、上述したように信号処理回路114よりDRAM111に逐次格納されている各センサ・データ、画像データ、音声データ、並びにバッテリ残量データに基づいて、自己及び機体周囲の状況や、使用者からの指示及び働きかけの有無などを判断するようになっている。

さらに、CPU110は、CPU110は、CPU110は、CPU110は、CPU110は、CPU110は、CPU110は、CPU110は、CPU110は、CPU110は、CPU1110は、CP

また、このようなプログラム実行の際、CPU110は、必要に応じて音声データを生成して、これを信号処理回路114経由で音声信号としてスピーカ24に与えることにより、当該音声信号に基づく音声を外部に出力させたりする。

このようにして、このロボット装置100においては、自己及び周囲の状況や、 20 使用者からの指示及び働きかけに応じて自律的に行動し得るように構成されてい る。

B. 制御プログラムのソフトウェア構成

図5には、本実施形態に係るロボット装置100の処理動作を実現するための 25 制御プログラムのソフトウェア構成を模式的に示している。

同図に示すように、デバイス・ドライバ・レイヤ130は、この制御プログラムの最下位層に位置し、複数のデバイス・ドライバからなるデバイス・ドライバ・セット31から構成されている。この場合、各デバイス・ドライバは、CCDカメラ20(図4を参照のこと)やタイマなどの通常のコンピュータ処理に用いら

れるハードウェアに直接アクセスすることを許されたオブジェクトであり、一般 には、対応するハードウェアからの割り込みに応答して処理を開始するようになっている(割り込みハンドラ)。

また、ロボティック・サーバ・オブジェクト132は、デバイス・ドライバ・レイヤ130の最下位層に位置し、例えば上述の各種センサやアクチュエータ125-1~125-nなどのハードウェアにアクセスするためのインターフェースを提供するソフトウェア群でなるバーチャル・ロボット133と、電源の切換えなどを管理するソフトウェア群でなるパワー・マネージャ134と、他のさまざまのデバイス・ドライバを管理するソフトウェア群でなるデバイス・ドライバ・

10 マネージャ135と、ロボット装置100の機構を管理するソフトウェア群でなるデザインド・ロボット136とで構成される。

マネージャ・オブジェクト137は、オブジェクト・マネージャ138及びサービス・マネージャ139から構成される。オブジェクト・マネージャ138は、ロボティック・サーバ・オブジェクト132、ミドルウェア・レイヤ140、及びアプリケーション・レイヤ141に含まれる各ソフトウェア群の起動や終了を管理するソフトウェア群である。また、サービス・マネージャ139は、メモリカード128(図4を参照のこと)に格納されたコネクション・ファイルに記述されている各オブジェクト間の接続情報に基づいて各オブジェクトの接続を管理するソフトウェア群である。

20 ミドルウェア・レイヤ140は、ロボティック・サーバ・オブジェクト132 の直近上位に位置し、画像処理や音声処理など本実施形態に係るロボット装置100の基本的な機能を提供するソフトウェア群から構成される。また、アプリケーション・レイヤ141は、ミドルウェア・レイヤ40の直近上位に位置し、当該ミドルウェア・レイヤ140を構成する各ソフトウェア群によって処理された25 処理結果に基づいてロボット装置100の行動を決定するためのソフトウェア群から構成される。

図6には、ミドルウェア・レイヤ140の具体なソフトウェア構成を詳細に示している。

同図に示すように、ミドルウェア・レイヤ140は、騒音検出用、温度検出用、

20

25

明るさ検出用、音階認識用、距離検出用、姿勢検出用、タッチセンサ用、動き検出用、及び色認識用の各信号処理モジュール150~158、並びに入力セマンティクス・コンバータ・モジュール159などを有する認識系ミドルウェア160と、出力セマンティクス・コンバータ・モジュール168、姿勢管理用、トラッキング用、モーション再生用、歩行用、転倒復帰用、及び、音再生用の各信号処理モジュール161~167などを有する出力系ミドルウェア169とで構成される。

認識系ミドルウェア160の各信号処理モジュール150~158は、ロボティック・サーバ・オブジェクト132のバーチャル・ロボット133によりDR 10 AM11(図4を参照のこと)から読み出される各センサ・データや画像データ (顔画像データ)及び音声データのうちの対応するデータを取り込んで、当該データに基づいて所定の処理を施して、処理結果を入力セマンティクス・コンバータ・モジュール159に与える。ここで、例えば、バーチャル・ロボット133 は、所定の通信規約によって、信号の授受あるいは変換をする部分として構成されている。

入力セマンティクス・コンバータ・モジュール159は、これら各信号処理モジュール150~158から与えられる処理結果に基づいて、「うるさい」、「暑い」、「明るい」、「ボールを検出した」、「転倒を検出した」、「撫でられた」、「叩かれた」、「ドミソの音階が聞こえた」、「動く物体を検出した」、又は、「障害物を検出した」、「人Aを見つけた(認識した)」などの自己及び周囲の状況を認識したり、使用者からの指令及び働きかけを認識して、認識結果をアプリケーション・レイヤ141に出力するようになっている。

図7には、アプリケーション・レイヤ141の具体なソフトウェア構成を詳細に示している。同図に示すように、アプリケーション・レイヤ141は、行動モデルライブラリ170、行動切換えモジュール171、学習モジュール172、感情モデル173、及び本能モデル174の5つのモジュールで構成される。

図8には、行動モデル・ライブラリ170の具体的なソフトウェア構成を詳細に示している。同図に示すように、行動モデル・ライブラリ170には、「バッテリ残量が少なくなった場合」、「転倒復帰する」、「障害物を回避する場合」、「感情

10

15

20

25

を表現する場合」、「ボールを検出した場合」、「人Aを見つけた (認識した)」などのあらかじめ選択された幾つかの条件項目に対応させて、それぞれ独立した行動モデル $170-1\sim170-n$ が設けられている。

そして、これら行動モデル170-1~170-nは、それぞれ入力セマンティクス・コンバータ・モジュール159から認識結果が与えられたときや、最後の認識結果が与えられてから一定時間が経過したときなどに、後述するように、必要に応じて感情モデル173に保持されている対応する情動のパラメータ値や、本能モデル174に保持されている対応する欲求のパラメータ値を参照しながら後続の行動をそれぞれ決定して、この決定結果を行動切換えモジュール171に出力するになっている。

なお、本実施形態の場合、各行動モデル $170-1\sim170-n$ は、次の行動を決定する手法として、図9に示すような有限確率オートマトンと呼ばれるアルゴリズムを用いる。有限確率オートマトンによれば、同図に示すように、1つのノード (状態) NODE $0\sim$ NODEnから他のいずれのノードNODE $0\sim$ NODEnに遷移するかを各ノードNODE $0\sim$ NODEnに置移するかを各ノードNODE $0\sim$ NODEnに間を接続するアークARC $1\sim$ ARCnに対してそれぞれ設定された遷移確率 $P1\sim$ Pnに基づいて確率的に決定することができる。

具体的には、各行動モデル $170-1\sim170-n$ は、それぞれ自己の行動モデル $170-1\sim170-n$ を形成するノードNODE $0\sim$ NODEnにそれぞれ対応させて、これらノードNODE $0\sim$ NODEn毎に、図10に示すような状態遷移表180を有している。

この状態遷移表180では、そのノードNODE0~NODEnにおいて遷移 条件とする入力イベント(認識結果)が「入力イベント名」の行に優先順に列記 され、その遷移条件についてのさらなる条件が「データ名」及び「データ範囲」 の行における対応する列に記述されている。

例えば、図10に示す状態遷移表180で表されるノードNODE100では、「ボールを検出 (BALL)」という認識結果が与えられた場合に、当該認識結果とともに与えられるそのボールの「大きさ (SIZE)」が「0から1000」の範囲であることが他のノードに遷移するための条件となっている。同様に、「障害

10

15

物を検出 (OBSTACLE)」という認識結果が与えられた場合には、当該認識結果とともに与えられるその障害物までの「距離 (DISTANCE)」が「0から 100」の範囲であることが他のノードに遷移するための条件である。

また、このノードNODE 100では、認識結果の入力がない場合においても、行動モデル $170-1\sim170-n$ が周期的に参照する感情モデル173及び本能モデル174にそれぞれ保持された各情動及び各欲求のパラメータ値のうち、感情モデル173に保持された「喜び (JOY)」、「驚き (SURPRISE)」、若しくは「悲しみ (SUDNESS)」のいずれかのパラメータ値が「50から 100」の範囲であるときには、他のノードに遷移することができるようになっている。

また、状態遷移表180では、「他のノードへの遷移確率」の欄における「遷移 先ノード」の列にそのノードNODE0~ NODEnから遷移できるノード名が 列記されているとともに、「入力イベント名」、「データ値」及び「データの範囲」 の行に記述されたすべての条件が揃ったときに遷移できる他の各ノードNODE 0~NODEnへの遷移確率が「他のノードへの遷移確率」の欄内の対応する箇所にそれぞれ記述されており、そのノードNODE0~NODEnに遷移する際に出力すべき行動が「他のノードへの遷移確率」の欄における「出力行動」の行に記述されている。なお、「他のノードへの遷移確率」の欄における「出力行動」の行い記述されている。なお、「他のノードへの遷移確率」の欄における各行の確率の 和は100[%]となる。

20したがって、図10に示す状態遷移表180で表されるノードNODE100では、例えば「ボールを検出(BALL)」し、そのボールの「SIZE(大きさ)」が「0から1000」の範囲であるという認識結果が与えられた場合には、「30[%]」の確率で「ノードNODE120 (node 120)」に遷移でき、そのとき「ACTION1」の行動が出力すなわち機体動作が実行されることとなる。

25 各行動モデル170-1~170-nは、それぞれこのような状態遷移表18 0として記述されたノードNODE0~ NODEnがいくつも繋がるようにして構成されている。したがって、入力セマンティクス・コンバータ・モジュール159から認識結果が与えられたときなどに、対応するノードNODE0~NODEnの状態遷移表を利用して確率的に次の行動を決定し、決定結果を行動切換

えモジュール171に出力するようなっている。また、図10に示す状態遷移表に、「人Aを見つけた (認識した)」という入力イベント名を持つエントリを用意し、さらに遷移条件などを記述しておくことにより、ロボット装置100が特定のユーザを認識したときに起こすべきリアクションを規定することができる。

5 図7に示した行動切換えモジュール171は、行動モデル・ライブラリ170 の各行動モデル170-1~170-nからそれぞれ出力される行動のうち、あらかじめ定められた優先順位の高い行動モデル170-1~170-nから出力された行動を選択して、当該行動を実行すべき旨のコマンド(以下、これを「行動コマンド」という。)をミドルウェア・レイヤ140の出力セマンティクス・コンバータモジュール168に送出するようになっている。なお、本実施形態においては、図8において下側に表記された行動モデル170-1~170-nほど優先順位が高く設定されているものとする。

また、行動切換えモジュール171は、行動完了後に出力セマンティクス・コンバータ・モジュール168から与えられる行動完了情報に基づいて、その行動が完了したことを学習モジュール172、感情モデル173、並びに本能モデル174に通知する。

一方、学習モジュール172は、入力セマンティクス・コンバータ・モジュール159から与えられる認識結果のうち、「叩かれた」や「撫でられた」など、使用者からの働きかけとして受けた教示の認識結果を入力する。

20 そして、学習モジュール 172 は、この認識結果及び行動切換えモジュール 171 からの通知に基づいて、「叩かれた(叱られた)」ときにはその行動の発現確率を低下させ、「撫でられた(誉められた)」ときにはその行動の発現確率を上昇させるように、行動モデル・ライブラリ 170 における対応する行動モデル 170

25 他方、感情モデル 1 7 3 は、「喜び(joy)」、「悲しみ(sadness)」、「怒り(anger)」、「驚き(surprise)」、「嫌悪(disgust)」及び「恐れ(fear)」の合計 6 つの情動について、各情動毎にその情動の強さを表すパラメータを保持している。そして、感情モデル 1 7 3 は、これら各情動のパラメータ値を、それぞれ入力セマンティクス・コンバータ・モジュール 1 5 9 から与えられる「叩かれた」及び「撫でら

25

れた」などの特定の認識結果と、経過時間及び行動切換えモジュール 171から の通知となどに基づいて周期的に更新する。

具体的には、感情モデル173は、入力セマンティクス・コンバータ・モジュール159から与えられる認識結果と、そのときのロボット装置100の行動と、前回更新してからの経過時間となどに基づいて所定の演算式により算出されるそのときのその情動の変動量を Δ E[t]、現在のその情動のパラメータ値をE[t]、その情動の感度を表す係数をkeとして、下式(1)によって次の周期におけるその情動のパラメータ値E[t+1]を算出し、これを現在のその情動のパラメータ値E[t]と置き換えるようにして、その情動のパラメータ値を更新する。また、感情モデル173は、これと同様にしてすべての情動のパラメータ値を更新する。

$$E[t+1] = E[t] + ke \times \Delta E[t] \qquad \cdots (1)$$

15 なお、各認識結果や出力セマンティクス・コンバータ・モジュール 168 からの通知が各情動のパラメータ値の変動量 ΔE [t] にどの程度の影響を与えるかはあらかじめ決められている。例えば、「叩かれた」といった認識結果は、「怒り」を表す情動のパラメータ値の変動量 ΔE [t] に大きな影響を与える。また、「撫でられた」といった認識結果は、「喜び」を表す情動のパラメータ値の変動量 ΔE [t] に大きな影響を与えるようになっている。

ここで、出力セマンティクス・コンバータ・モジュール168からの通知とは、いわゆる行動のフィードバック情報(行動完了情報)であり、行動の出現結果の情報である。感情モデル173は、このような情報によっても感情を変化させる。これは、例えば、「吠える」といった行動により怒りの感情レベルが下がるといったようなことである。なお、出力セマンティクス・コンバータ・モジュール168からの通知は、上述した学習モジュール172にも入力されている。学習モジュール172は、その通知に基づいて行動モデル170-1~170-nの対応する遷移確率を変更する。

なお、行動結果のフィードバックは、行動切換えモジュレータ171の出力(感

情が付加された行動)によりなされるものであってもよい。

一方、本能モデル174は、「運動欲(exercise)」、「愛情欲(affection)」、「食欲(appetite)」及び「好奇心(curiosity)」の互いに独立した4つの欲求について、これら欲求毎にその欲求の強さを表すパラメータを保持している。そして、本能モデル174は、これらの欲求のパラメータ値を、それぞれ入力セマンティクス・コンバータ・モジュール159から与えられる認識結果や、経過時間及び行動切換えモジュール171からの通知などに基づいて周期的に更新する。

$$I[k+1] = I[k] + ki \times \Delta I[k] \qquad \cdots (2)$$

20 なお、認識結果及び出力セマンティクス・コンバータ・モジュール168からの通知などが各欲求のパラメータ値の変動量 Δ I [k] にどの程度の影響を与えるかはあらかじめ決められている。例えば、出力セマンティクス・コンバータ・モジュール168からの通知は、「疲れ」のパラメータ値の変動量 Δ I [k] に大きな影響を与えるようになっている。

一方、ミドルウェア・レイヤ140の出力セマンティクス・コンバータ・モジュール168は、図6に示したように、上述のようにしてアプリケーション・レ

イヤ141の行動切換えモジュール171から与えられる「前進」、「喜ぶ」、「鳴 く」又は「トラッキング (ボールを追いかける)」といった抽象的な行動コマンド を出力系セマンティックス・コンバータ・モジュール169内の対応する信号処 理モジュール161~167に与える。

そして、これら信号処理モジュール161~167は、行動コマンドが与えら れると、当該行動コマンドに基づいて、その行動を行うために対応するアクチュ エータ125-1~125-n (図4を参照のこと) に与えるべきサーボ指令値 や、スピーカ124から出力する音の音声データなどの駆動データを生成して、 これらのデータをロボティック・サーバ・オブジェクト132のバーチャル・ロ ボット133及び信号処理回路114を順次介して対応するアクチュエータ12 10 5-1~125-n又はスピーカ124に順次送出する。

このようにしてロボット装置100においては、制御プログラムに基づいて、 自己(内部)及び周囲(外部)の状況や、使用者からの指示及び働きかけに応じ た自律的な行動を行うことができるようになされている。

15

20

25

5

C. ロボット装置による顔識別

インテリジェントなロボット装置には、動的に変化する作業環境下で一定時間 内に応答できるようなヒューマン・インターフェース技術が要求されている。本 実施形態に係るロボット装置100は、顔認識技術を適用することにより、多く の中からユーザ (飼い主又はともだち、若しくは正当なユーザ) を識別するとと もに、認識結果に基づいて(すなわちユーザに応じて)リアクションを制御する ことによって、より高いエンターティンメント性を実現する。

本実施形態に係る顔認識システム1000は、動的に変化する環境下で一定時 間内に応答することができるが、CCDカメラによる撮像画像から顔パターンを 抽出する顔抽出処理部1001と、抽出された顔パターンを基に顔を認識する顔 認識部1002で構成される。本実施形態では、顔パターンを抽出する(顔画像 の特徴量を抽出する) 顔抽出処理には、方位選択性を持ち周波数成分の異なる複 数のフィルタを用いることにより、前記顔画像の特徴量を抽出する「ガボア・フ ィルタリング (Gabor Filtering)」を採用している。また、顔パターンから顔を WO 03/019475 PCT/JP02/08433

認識する顔認識処理には、カーネル関数を用いて非線形な写像を行ない、該写像後の特徴空間内で分離する超平面を求めることにより、特定の顔と、該特定の顔以外の顔とを識別する「サポート・ベクタ・マシーン (Support Vector Machine: SVM)」を採用している。

5 この顔認識システム1000は、顔パターンを顔認識部が学習する学習段階と、 学習されたデータを基に、撮像画像から抽出された顔パターンを認識する認識段 階を持つ。

図11には、本実施形態に係る顔認識システム1000の学習段階の構成を、 また、図12には、同顔認識システム1000の認識段階の構成をそれぞれ示し ている。

学習段階においては、図11に示すように、CCDカメラから入力されたユーザの撮像画像をガボア・フィルタリング1001で顔抽出した結果がサポート・ベクタ・マシーン1002に投入される。サポート・ベクタ・マシーン1002では、外部から供給される学習用のデータすなわち教師データを用いて、暫定的な識別関数を得る。

また、識別段階においては、図12に示すように、CCDカメラから入力されたユーザの撮像画像をガボア・フィルタリング1001で顔抽出した結果がサポート・ベクタ・マシーン1002に投入される。サポート・ベクタ・マシーン1002では、暫定的に得られた識別関数をさまざまなデータベース上の画像に試して顔の検出を行なう。そして、検出に成功したものを顔データとして出力する。また、検出に失敗したものを非顔データとして学習データに追加して、さらに学習をし直す。

以下では、ガボア・フィルタリングとサポート・ベクタ・マシーンについて、 それぞれ詳細に説明する。

ガボア・フィルタリング:

10

15

20

25

人間の視覚細胞には、ある特定の方位に対して選択性を持つ細胞が存在することが既に判っている。これは、垂直の線に対して発火する細胞と、水平の線に反応する細胞で構成される。ガボア・フィルタリングは、これと同様に、方位選択

性を持つ複数のフィルタで構成される空間フィルタである。

ガボア・フィルタは、ガボア関数によって空間表現される。ガボア関数g(x,y)は、下式(3)に示すように、コサイン成分からなるキャリアs(x,y)と、2次元ガウス分布状のエンベロープ $w_r(x,y)$ とで構成される。

5

$$g(x,y) = s(x,y) \quad w_r(x,y) \qquad \cdots (3)$$

キャリアs(x,y)は、複素関数を用いて、下式(4)のように表現される。ここで、座標値 (u_0,v_0) は空間周波数を表し、また、Pはコサイン成分の位10 相を表す。

$$s(x, y) = \exp(j(2\pi(u_0x + v_0y) + P))$$
 ...(4)

上式 (4) に示すキャリアは、下式 (5) に示すように、実数成分Re (s(x, y)) と虚数成分 Im (s(x, y)) に分離することができる。

$$Re(s(x,y)) = cos(2\pi(u_0x + v_0y) + P) \qquad ...(5)$$

$$Im(s(x,y)) = sin(2\pi(u_0x + v_0y) + P)$$

一方、2次元ガウス分布からなるエンベロープは、下式(6)のように表現される。

$$w_r(x,y) = K \exp(-\pi(a^2(x-x_0)_r^2+b^2(y-y_0)_r^2))$$
 ...(6)

ここで、座標値 (x_0, y_0) はこの関数のピークであり、定数 a 及び b はガウ z ス分布のスケール・パラメータである。また、添え字 z は、下式 z に示すような回転操作を意味する。

25

$$(x - x_0)_r = (x - x_0)\cos\theta + (y - y_0)\sin\theta \qquad \dots (7)$$

$$(y - y_0)_r = -(x - x_0)\sin\theta + (y - y_0)\cos\theta$$

したがって、上式(4)及び上式(6)より、ガボア・フィルタは、下式(8) に示すような空間関数として表現される。

$$g(x,y) = K \exp(-\pi(a^{2}(x-x_{0})_{r}^{2}+b^{2}(y-y_{0})_{r}^{2})) \qquad \dots (8)$$

$$\exp(j(2\pi(u_{0}x+v_{0}y)+P))$$

本実施形態に係る顔抽出部1001は、8種類の方向と3通りの周波数を採用して、合計24個のガボア・フィルタを用いて顔抽出処理を行なう。本実施形態で使用されるガボア・フィルタの空間領域での様相を図13~図36に示しておく。このうち、図13~図20は、方向を22.5度ずつずらした高周波成分のガボア・フィルタである。また、図21~図28は、方向を22.5度ずつずらした中周波成分のガボア・フィルタである。また、図29~図36は、方向を22.5度ずつずらした低周波成分のガボア・フィルタである。但し、各図における濃淡は紙面に直交する座標軸方向の成分に相当すると理解されたい。

15 ガボア・フィルタのレスボンスは、 G_i を i 番目のガボア・フィルタとし、i 番目のガボアの結果(Gabor Jet)を J_i とし、入力イメージをIとし、すると、以下の式(9)で表される。式(9)の演算は、実際には高速フーリエ変換を用いて高速化することができる。

20
$$J_i(x,y) = G_i(x,y) \otimes I(x,y)$$
 ...(9)

図37に示すような入力画像(但し、入力画像は20×20画素とする)を、図13~図36に示す各ガボア・フィルタでフィルタリングされた結果を、図38~図61に示しておく。ガボア・フィルタは、たいていすべての周波数を埋め

尽くすことができる。

作成したガボア・フィルタの性能を調べるためには、フィルタリングして得られた画像を再構築することによって行なう。再構築されたイメージHは、下式(10)のように表される。

5

$$H(x,y) = \sum_{i=1}^{0} a_{i} J_{i}(x,y) \qquad ... (10)$$

そして、入力画像 I と再構築された画像 H とのエラーE は、下式($1\,1$)のように表される。

10

20

25

$$E = \frac{1}{2} \|I(x,y) - H(x,y)\|^{2} = \frac{1}{2} \sum_{x,y} (I(x,y) - H(x,y))^{2}$$

$$= \frac{1}{2} \sum_{x,y} \left(I(x,y) - \sum_{i=1}^{Q} a_{i} J_{i}(x,y) \right)^{2} = \frac{1}{2} \sum_{x,y} \left(I(x,y) - \sum_{i=1}^{Q} a_{i} G_{i} \otimes I \right)^{2}$$
... (11)

このエラーEを最小にするような最適なaを求めることにより再構築すること 15 ができる。

サポート・ベクタ・マシーン:

本実施形態では、顔認識に関して、パターン認識の分野で最も学習汎化能力が 高いとされるサポート・ベクタ・マシーン (SVM) を用いて該当する顔か否か の識別を行なう。

SVM自体に関しては、例えばB. sholkopf, C. Burges, A. Smola, "Advance in Kernel Methods Support Vector Learning", The MIT Press, 1999.) を挙げることができる。本発明者らが行なった予備実験の結果からは、SVMによる顔認識方法は、主成分分析(PCA)やニューラル・ネットワークを用いる手法に比べ、良好な結果を示すことが判っている。

SVMは、識別関数に線形識別器(パーセプトロン)を用いた学習機械であり、カーネル関数を使うことで非線形空間に拡張することができる。また、識別関数の学習では、クラス間分離のマージンを最大にとるように行なわれ、その解は2次数理計画法を解くことで得られるため、グローバル解に到達できることを理論的に保証することができる。

通常、パターン認識の問題は、テスト・サンプル $\mathbf{x}=(\mathbf{x}\,\mathbf{1}\,,\mathbf{x}\,\mathbf{2}\,,...,\mathbf{x}\,\mathbf{n})$ に対して、以下の識別関数 \mathbf{f} (\mathbf{x}) を求めることである。

$$f(x) = \sum_{j=1}^{n} w_j x_j + b \qquad \cdots (12)$$

10

ここで、SVMの学習用の教師ラベルを以下のようにおく。

$$y = (y1, y2, ..., yn)$$
 ... (13)

15 すると、SVMにおける顔パターンの認識を以下に示す制約条件の下での重み 因子wの二乗の最小化する問題としてとらえることができる。

$$y_i \left(w^T x_i + b \right) \ge 1 \qquad \qquad \cdots \quad (14)$$

20 このような制約のついた問題は、ラグランジュの未定定数法を用いて解くこと ができる。すなわち、以下に示すラグランジュをまず導入して、

$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{l} \alpha_i \left(y_i \left((x_i^T w + b) - 1 \right) \right) \qquad \cdots (15)$$

25 次いで、下式に示すように、b, wの各々について偏微分する。

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial w} = 0 \tag{16}$$

この結果、SVMにおける顔パターンの識別を以下に示す2次計画問題として とらえることができる。

5

$$\max \sum \alpha i - \frac{1}{2} \sum \alpha i \alpha j y i y j^T x j \qquad \dots (17)$$

制約条件: $\alpha i \ge 0$, $\sum \alpha i y i = 0$

特徴空間の次元数が、訓練サンプルの数よりも少ない場合は、スラック変数 ξ 10 ≥ 0 を導入して、制約条件を以下のように変更する。

$$y_i (w^T x_i + b) \ge 1 - \xi_i$$
 ... (18)

最適化については、以下の目的関数を最小化する。

15

$$\frac{1}{2} \|w\|^2 + C \sum \xi_i$$
 ... (19)

上式(19)において、Cは、制約条件をどこまで緩めるかを指定する係数であり、実験的に値を決定する必要がある。

20

$$\max \sum \alpha i - \frac{1}{2} \sum \alpha i \alpha j y i y j^{T} x j \qquad \cdots (20)$$

制約条件: $0 \le \alpha i \le C$, $\sum \alpha i y i = 0$

しかし、上式(20)のままでは、非線型の問題を解くことはできない。そこで、本実施形態では、カーネル関数 $K(\mathbf{x},\mathbf{x}')$ を導入して、一旦、高次元の空間に写像して(カーネル・トリック)、その空間で線形分離することにしている。したがって、元の空間では非線型分離していることと同等となる。

カーネル関数は、ある写像Φを用いて下式のように表される。

$$K(x,x') = \Phi(x)^{\mathrm{T}} \Phi(x') \qquad \qquad \cdots (21)$$

10 また、式 (12) に示した識別関数も、以下のように表すことができる。

$$f(\Phi(x)) = w^{T} \Phi(x) + b \qquad \dots (22)$$
$$= \sum aiyiK(x, xi) + b$$

また、学習に関しても、以下に示す2次計画問題としてとらえることができる。

15

5

$$\max \sum \alpha i - \frac{1}{2} \sum \alpha i \alpha j y i y j x j K(Xi, xj) \qquad \cdots (23)$$

制約条件: $0 \le \alpha i \le C$, $\sum \alpha i y i = 0$

カーネルとしては、以下に示すガウシアン・カーネル (RBF (Radius Basic 20 Function)) などを用いることができる。

$$K(x,x') = \exp\left(-\frac{|x-x'|^2}{\sigma^2}\right) \qquad \cdots (24)$$

なお、ガボア・フィルタリングに関しては、認識タスクに応じてフィルタの種 類を変更するようにしてもよい。

低周波でのフィルタリングでは、フィルタリング後のイメージすべてをベクトルとして持っているのは冗長である。そこで、ダウンサンプリングして、ベクトルの次元を落すようにしてもよい。ダウンサンプリングされた24種類のベクトルを一列に並べ、長いベクトルにする。

また、本実施形態において顔パターンの認識に適用されるSVMは、特徴空間を2分する識別器なので、「人A」か「人Aでない」かを判別するように学習する。そのため、データベースの画像中から、まず人Aの顔画像を集め、ガボア・フィルタリング後のベクトルに「人Aでない」というラベルを貼る。一般に、集める顔画像の数は、特徴空間の次元より多い方がよい。10人の顔を認識したい場合は、同様に、「人Bである」、「人Bでない」…のように、それぞれの人に対して1つの識別器を構成する。

このような学習により、例えば、「人A」と「人Aでない」を分けるサポート・ベクタが求まる。SVMは、特徴空間を2つに仕切る識別器であり、新しい顔画像が入力されてきたときに、やはりガボア・フィルタリングのベクトルが、求めたサポート・ベクタが構成する境界面のどちら側にあるかで認識結果を出力する。そして、境界に対して、「人A」の領域にあれば「人A」と認識することができる。また、「人Aではない」領域であれば「人Aでない」と認識される。

20 CCDカメラなどから入力される入力画像から顔の部分として切り取られる領域は一定ではない。このため、特徴空間で認識したいカテゴリとは離れた点に投影される可能性がある。したがって、目や鼻、口といった特徴を持つパーツを推定してアフィン変換によりモーフィングすることにより認識率が向上する可能性がある。

25 また、認識性能を上げるために、ブートストラップ手法を採用することができる。学習に用いる画像とは別に画像を撮影して、ブートストラップに用いる。これは、学習した識別器が誤った認識結果を出したときに、その入力画像を学習セットに投入して学習し直すことを意味する。

また、認識性能を上げるために、認識結果の時間変化を見る方法もある。最も

簡単な方法では、10回中8回「人A」と認識されたら「人A」と認識するなどである。他に、カルマン・フィルタを用いた予測法なども提案されている。

他の実施形態

10

15

20

5 上述したように、顔抽出部1001では、認識タスクに応じて前記ガボア・フィルタの種類を変更することができる。ここで言うガボア・フィルタの種類とは、具体的には、周波数の数と各周波数、方向の数と各方向を設定することを指す。

上述した例では、ガボア・フィルタの周波数を3種類用意しているが、周波数が1つだけでも顔画像を認識することができる。勿論、認識率が低下する可能性はあるが、このことは計算量の削減にもつながる。限られた計算機資源を動作制御や内部状態(感情や本能)制御などの多くのプログラムで消費するエンターティンメント・ロボットにおいては、計算量の削減は大きなメリットとなる。

本実施形態に係る顔認識システム1000を搭載するロボット100(図1~3を参照のこと)においては、例えば2台のカメラによるステレオ視から距離情報を取得するように構成されている。この距離情報を用いて、ガボア・フィルタを工夫することができる。

顔の大きさと距離の関係は前もって求めることができる。また、顔画像の大きさとガボア・フィルタの周波数との間には一定の関係がある。つまり、顔画像が小さいときには高い周波数で特徴抽出を行なう必要があるが、顔画像が大きいときには低い周波数でよい。

顔領域だけ切り取られた画像入力でない場合には、画像全体から、どこに顔があり、その顔が誰であるかを識別しなくてはならない。このような場合、距離画像の分布から、その距離に応じた周波数を選択するということができる。そして、その結果を後続のサポート・ベクタ・マシン(SVM:後述)で識別する。

25 以下では、距離情報を利用したガボア・フィルタによる顔抽出処理の手順について説明する。

[準備]

1:画像中での顔の大きさ (T画素×T画素)と距離 (Mcm) の関係を求める。

図62において、横軸に距離、縦軸に顔画像の大きさをとる。ここで、縦軸は顔画像が正方領域であるとし、その辺の長さをとっている。これは、例えば、ある決められた距離で画像を撮影し、この中で顔領域がどのくらいの大きさであるかを人間が計測する。

5

- 2:各大きさの顔画像を高速フーリエ変換 (FFT) により、周波数領域でのピークを求める (図 6 3 を参照のこと)。さまざまな大きさの顔画像を撮影し、それぞれの周波数のピークを求める。
- 3:距離と周波数の関係を求める(図64を参照のこと)。上記1,2を基に、図64に示す距離と周波数の関係を求める

[認識] (図65を参照のこと)

- 1:ある画像に対して距離を求める
- 15 (画像中の各画素に対して3次元座標が決定される)。
 - 2:距離から周波数を求める。 準備の手順3で得られた関係から周波数を求める
- 20 3:求められた周波数のガボア・フィルタにより特徴抽出する。
 - 4:得られた画像をサポート・ベクタ・マシンで識別し、特定顔か非特定顔であるかを求める。

25 <u>追補</u>

以上、特定の実施例を参照しながら、本発明について詳解してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が該実施例の修正や代用を成し得ることは自明である。

本発明の要旨は、必ずしも「ロボット」と称される製品には限定されない。す

なわち、電気的若しくは磁気的な作用を用いて人間の動作に似せた運動を行う機械装置であるならば、例えば玩具等のような他の産業分野に属する製品であっても、同様に本発明を適用することができる。

要するに、例示という形態で本発明を開示してきたのであり、本明細書の記載 内容を限定的に解釈するべきではない。本発明の要旨を判断するためには、冒頭 に記載した特許請求の範囲の欄を参酌すべきである。

「産業上の利用可能性]

10 本発明によれば、動的に変化する作業環境下で一定時間内に応答できるような ヒューマン・インターフェースを備えたロボット装置、並びに、ロボット用にヒ ューマン・インターフェースとして適用することができる、優れた顔認識方法及 び顔認識装置を提供することができる。

また、本発明によれば、動的に変化する作業環境下でユーザの顔を一定時間内 15 に認識することができる、優れたロボット装置、顔認識方法及び顔認識装置を提 供することができる。

また、本発明によれば、モーフィングなどの位置合わせを行なう必要なく、回転、位置などの変化に対してロバストな顔認識を行なうことができる、優れたロボット装置、顔認識方法及び顔認識装置を提供することができる。

20 また、本発明によれば、照明条件やカメラ・パラメータが異なる環境下でロバストな顔認識を行なうことができる、優れたロボット装置、顔認識方法及び顔認識装置を提供することができる。

WO 03/019475 PCT/JP02/08433

34

請求の範囲

1. 自律的に行動するロボット装置であって、

顔画像を入力する画像入力手段と、

5 方位選択性を持ち周波数成分の異なる複数のフィルタを用いることにより、前 記顔画像の特徴量を抽出する顔特徴量抽出手段と、

前記顔特徴量抽出手段による顔特徴量抽出結果を、カーネル関数を用いて非線 形な写像を行ない、該写像後の特徴空間内で分離する超平面を求めることにより、 特定の顔と、該特定の顔以外の顔とを識別する顔識別手段と、

- 10 を具備することを特徴とするロボット装置。
 - 2. 前記顔特徴量抽出手段はガボア・フィルタで構成され、前記顔識別手段はサポート・ベクタ・マシンで構成される、

ことを特徴とする請求項1に記載のロボット装置。

15

- 3. 前記顔特徴量抽出手段は、認識タスクに応じて前記ガボア・フィルタの種類を変更するフィルタ変更手段をさらに備える、
- ことを特徴とする請求項1に記載のロボット装置。
- 20 4. 前記顔特徴量抽出手段は、低周波でのフィルタリングではフィルタリング後のイメージをダウンサンプリングして次元を落すようにする、 ことを特徴とする請求項1に記載のロボット装置。

 - 5. 顔画像を入力する画像入力手段と、
- 25 方位選択性を持ち周波数成分の異なる複数のフィルタを用いることにより、前 記顔画像の特徴量を抽出する顔特徴量抽出手段と、

前記顔特徴量抽出手段による顔特徴量抽出結果を、カーネル関数を用いて非線 形な写像を行ない、該写像後の特徴空間内で分離する超平面を求めることにより、 特定の顔と、該特定の顔以外の顔とを識別する顔識別手段と、

35

を具備することを特徴とする顔認識装置。

- 6. 前記顔特徴量抽出手段はガボア・フィルタで構成され、前記顔識別手段はサポート・ベクタ・マシンで構成される、
- 5 ことを特徴とする請求項5に記載の顔認識装置。
 - 7. 前記顔特徴量抽出手段は、認識タスクに応じて前記ガボア・フィルタの種類 を変更するフィルタ変更手段をさらに備える、

ことを特徴とする請求項5に記載の顔認識装置。

10

20

25

- 8. 前記顔特徴量抽出手段は、低周波でのフィルタリングではフィルタリング後のイメージをダウンサンプリングして次元を落すようにする、 ことを特徴とする請求項5に記載の顔認識装置。
- 15 9. 顔画像を入力する画像入力ステップと、

方位選択性を持ち周波数成分の異なる複数のフィルタを用いることにより、前 記顔画像の特徴量を抽出する顔特徴量抽出ステップと、

前記顔特徴量抽出ステップによる顔特徴量抽出結果を、カーネル関数を用いて 非線形な写像を行ない、該写像後の特徴空間内で分離する超平面を求めることに より、特定の顔と、該特定の顔以外の顔とを識別する顔識別ステップと、 を具備することを特徴とする顔認識方法。

- 10. 前記顔特徴量抽出ステップではガボア・フィルタを用いて入力画像から顔の特徴量が抽出され、前期顔識別ステップではサポート・ベクタ・マシンを用いて特定の顔と該特定の顔以外の顔とを識別する、
 - ことを特徴とする請求項9に記載の顔認識方法。
 - 11. 前記顔特徴量抽出ステップは、認識タスクに応じて前記ガボア・フィルタの種類を変更するフィルタ変更ステップをさらに備える、

ことを特徴とする請求項9に記載の顔認識方法。

- 12. 前記顔特徴量抽出ステップでは、低周波でのフィルタリングではフィルタリング後のイメージをダウンサンプリングして次元を落すようにする、
- 5 ことを特徴とする請求項9に記載の顔認識方法。

図1

PCT/JP02/08433

図2

図り

6/26

7/26

<u>図</u>

)
~	_
3	<

	2		node 600	ACTION 4												
率Di																1
他のノードへの遷移確率Di	(-	node 1000	MOVE BACK				200g	2000	100%						
1000	l	a	node 120 node 120 node 1000	ACTION 1 ACTION 2 MOVE BACK		40%	20%									
	1	A	node 120	ACTION 1	30%											
デームターゲータの範囲					0, 1000					0.100	100	2	50, 100	50 100	- 1	
	ı				SIZE					CLE DISTANCE 0. 100	2	500	SURPRISE	SINDIESS	2001	
コナイベントタ	アン・アン				BALL	₽AT	1	Ē	MOTION	OBSTAC! E						
	`	node100	演教牛 /一ド	王七千町	-		7 0	2	4	Ľ		0	7		0	

PCT/JP02/08433

図11

図12

12/26

図13

図14

図15

図16

13/26

図17

図18

図19

図20

14/26

図21

図22

図23

図24

15/26

図25

図26

図27

図28

16/26

図29

図30

図31

図32

図33

図34

図35

図36

図37

図38

図39

図40

図41

図42

図43

図44

20/26

図45

図46

図47

図48

21/26

図49

図50

図51

図52

図53

図54

図55

図56

23/26

図57

図58

図59

図60

PCT/JP02/08433

24/26

図61

図63

図65

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/08433

A CT A	SSIFICATION OF SUBJECT MATTER						
	Int.Cl ⁷ G06T7/00						
According	g to International Patent Classification (IPC) or to both n	ational classification and IPC					
	DS SEARCHED						
Minimum	documentation searched (classification system followed	by classification symbols)					
Int	Cl ⁷ G06T7/00-7/60						
Documen	tation searched other than minimum documentation to th	e extent that such documents are included	in the fields searched				
Electronic	c data base consulted during the international search (nan	ne of data base and, where practicable, sea	rch terms used)				
010	,UI						
C DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category'		· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.				
Х	JP 2001-208524 A (Sony Corp.	.),	1,3-5,7-9,				
v	03 August, 2001 (03.08.01),		11-12				
Υ.	Full text; Figs. 1 to 2 (Family: none)	· •	2,6,10				
	(13.112.)						
A	JP 11-53525 A (Matsushita El	ectric Industrial Co.,	1-12				
	Ltd.),						
	26 February, 1999 (26.02.99); Full text; Fig. 1						
	(Family: none)						
Y	P. Jonathon. Phillips, Suppor		2,6,10				
	Applied to Face Recognition. Proceedings of Neural Information	, To appear in					
	24 February, 1999 (24.02.99)						
	102667, pages 1 to 9						
	<u> </u>						
× Fur	ther documents are listed in the continuation of Box C.	See patent family annex.					
	ial categories of cited documents:	"T" later document published after the inte					
	ment defining the general state of the art which is not dered to be of particular relevance	priority date and not in conflict with the understand the principle or theory und					
"E" earli	er document but published on or after the international filing	"X" document of particular relevance; the	claimed invention cannot be				
"L" docu	ment which may throw doubts on priority claim(s) or which is	considered novel or cannot be conside step when the document is taken alone					
	to establish the publication date of another citation or other al reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive ste	claimed invention cannot be				
"O" docu	ment referring to an oral disclosure, use, exhibition or other	combined with one or more other such	documents, such				
	means combination being obvious to a person skilled in the art P document published prior to the international filing date but later "&" document member of the same patent family						
than	than the priority date claimed						
	e actual completion of the international search October, 2002 (08.10.02)	Date of mailing of the international search 29 October, 2002 (2					
00	00000017 2002 (00.10.02)	25 00000001, 2002 (2					
Nama	mailing address of the ISA/	Authorized officer					
	mailing address of the ISA/ anese Patent Office	Authorized officer					
Jup			ļ				
Facsimile	No.	Telephone No.					

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/08433

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of t	Relevant to claim No.		
A	WO 97/37326 A1 (Sarnoff Corp.), 09 October, 1997 (09.10.97), Full text; all drawings & JP 2000-507726 A			4,8,12
X Y	WO 99/53443 A1 (Eyematic Interfaces 21 October, 1999 (21.10.99), Full text; Fig. 4 & JP 2002-511620 A	Inc.),		1,3-5,7-9, 11-12 2,6,10
A	WO 00/53281 A1 (Namco Ltd.), 14 September, 2000 (14.09.00), Page 10; Fig. 2 (Family: none)			1-4
				·
	•			
	•			

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

国際出願番号 PCT/JP02/08433

	属する分野の分類(国際特許分類(IPC)) Cl ⁷ G06T7/00				
り、領水ナル	⇒ - - - - / \mg	·	, . 		
	テった分野 N小限資料(国際特許分類(IPC))				
	Cl ⁷ G06T7/00 ~ 7/60				
最小限資料以外	トの資料で調査を行った分野に含まれるもの				
国際調査で使用	用した電子データベース (データベースの名称、 T	調査に使用した用語)			
a golde)	1 Emil b 1, we shoth				
C. 関連する 引用文献の	5と認められる文献 		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	請求の範囲の番号		
X	JP 2001-208524 A	•	1, 3-5, 7-9, 11		
]. 	2001.08.03,全文,第1-	- 2 図(ファミリーなし)	-12		
Ϋ́		ᅙᄱᆇᄴ ᆉ ᄼᆚᆡ	2, 6, 10		
A	│JP 11-53525 A(松下賃 │1999.02.26,全文,第1圓		1-12		
Y	P. Jonathon. Phillips, Support Vecto	or Machines Applied to Face	2, 6, 10		
	Recognition., To appear in Proceed				
	Processing 98,1999.02.24(受入),PB	3-99-102667, p1-9			
x C欄の続き	きにも文献が列挙されている。		川紙を参照。		
* 引用文献の	カカテブリ <i>ー</i>	の日の後に公表された文献			
	車のある文献ではなく、一般的技術水準を示す	「丁」国際出願日又は優先日後に公表			
もの 「Con Engance	カロボの山麓さなけたかっても 2 以 「国際山麓ロ	出願と矛盾するものではなく、	発明の原理又は理論		
	頭日前の出願または特許であるが、国際出願日 公安されたもの	の理解のために引用するもの 「X」特に関連のある文献であって、	当該文献のみで発明		
	主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考	えられるもの		
1	くは他の特別な理由を確立するために引用する 理由を付す)	「Y」特に関連のある文献であって、 上の文献との、当業者にとって			
「〇」口頭に。	よる開示、使用、展示等に言及する文献	よって進歩性がないと考えられ			
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了	国際調査を完了した日 08.10.02 国際調査報告の発送日 29.10.02				
	国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 5 H 2955				
	国特許庁 (ISA/JP) 邸便番号100-8915	展岡 剛	B)		
	東京都千代田区霞が関三丁目 4番 3 号 電話番号 03-3581-1101 内線 3531				
L		l			

国際出願番号 PCT/JP02/08433

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO97/37326 A1 (サーノフ コーポレーション) 1997.10.09,全文、全図 & JP 2000-507726 A	4, 8, 12
x	WO99/53443 A1 (アイマティック・インターフェイシ ズ・インコーポレイテッド) 1999.10.21,全文,第4図	1, 3-5, 7-9, 11 -12
Y	& JP 2002-511620 A	2, 6, 10
A	WO00/53281 A1 (株式会社ナムコ) 2000.09.14,10ページ,第2図 (ファミリーなし)	1-4
	·	
	·	
		·
	·	
		·
		-

A. 発明の原 Int.	スする分野の分類(国際特許分類(IPC)) Cl ⁷ G06T7/00					
B. 調査を行						
調査を行った最	- J.					
最小限資料以外	トの資料で調査を行った分野に含まれるもの					
国際調査で使用	用した電子データベース(データベースの名称、 T	調査に使用した用語)				
	ると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	さは、その関連する箇所の表示	関連する 請求の範囲の番号			
X Y A	JP 2001-208524 A 2001.08.03,全文,第1- JP 11-53525 A(松下 1999.02.26,全文,第15 P. Jonathon. Phillips, Support Vecto	- 2 図(ファミリーなし) 電器産業株式会社) 図(ファミリーなし)	1, 3-5, 7-9, 11 -12 2, 6, 10 1-12 2, 6, 10			
	Recognition., To appear in Proceed Processing 98, 1999. 02. 24(受入), PB	lings of Neural Information	2,0,10			
x C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。			
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願目前の出願または特許であるが、国際出願日以後に公表された文献であって、出願と矛盾するものではなく、発明の原理又は理認の提供に必要されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願目前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献						
国際調査を完了した日 08.10.02 国際調査報告の発送日 29.10.02						
	の名称及びあて先 同性軟序 (ISA / IB)	特許庁審査官(権限のある職員)	5H 2955			
1	日本国特許庁 (ISA/JP)					

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Ά	WO97/37326 A1 (サーノフ コーポレーション) 1997. 10. 09, 全文、全図 & JP 2000-507726 A	4, 8, 12
х	WO99/53443 A1 (アイマティック・インターフェイシ ズ・インコーポレイテッド) 1999.10.21,全文,第4図	1, 3-5, 7-9, 11 -12
Y	& JP 2002-511620 A	2, 6, 10
A	WO00/53281 A1 (株式会社ナムコ) 2000.09.14,10ページ,第2図 (ファミリーなし)	1-4
	·	·
		·

様式PCT/ISA/210(第2ページの続き) (1998年7月)