NP -> MTND limitada polinomalmente
Completude NP

NãORE



- Reduções de Tempo Polinomial
  - Problemas em NP podem ser reduzidos entre eles por meio de reduções de tempo polinomial
  - Tais problemas são: NP-Completos
- Revelam afinidades entre problemas

# 'Reduções' maior molor 4

- τ é uma redução polinomial de A para B
   Se τ transforma instância:
  - polinomial



 $() \Rightarrow X \neq T$   $() \Rightarrow X \neq T$   $() \Rightarrow X \in P$   $() \Rightarrow X \in P$   $() \Rightarrow X \in P$ 

- Reduzir A para B
  - Evidência de que B é no mínimo mais complexo que A
  - Se B for eficientemente solúvel, A também é
  - Se A exigir um tempo exponencial, B também exigirá



- Propriedades
  - Se τ1 é uma redução polinomial de L1 para L2, e τ2 é uma redução polinomial de L2 para L3, então a composição τ1. τ2 é uma redução polinomial de L1 para L3
  - Uma linguagem é dita NP-Completa se
    - L pertence a NP
    - Se existe um L' em NP tal que L' possa ser reduzido polinomialmente a L  $| \ \ \in \mathcal{VP} \ | \ \ \in \mathcal{W}$

#### Classe NP-Difícil

 Diz-se que um problema Y é NP-difícil se, para todo problema X em NP, existe redução polinomial de X para Y

 Um problema NP-Difícil é pelo menos tão difícil quanto qualquer problema em NP



- Conjunto de problemas
  - P *-*
  - NP
  - NP-Completo
  - NP-Difícil









#### **Exemplo**

- Satisfatibilidade ∈ N?
  - Dada uma fórmula booleana,nas variáveis
    - x1, . . . , xn, existe uma atribuição
    - t: {x1, ..., xn} que a torna verdadeira?

- $\Phi = (x1) ^ (-x1 \vee -x2 \vee x3) ^ (-x3)$ .
  - Se t(x1) = VERDADE, t(x2) = FALSO, t(x3) = FALSO, então  $t(\Phi)$  = VERDADE

#### Exemplo

- Sistemas Lineares 0-1 E
  - Dadas uma matriz A e um vetor b, Ax >= b
     possui uma solução tal que xi = 0 ou xi = 1 para todo i?

$$x1 \ge 1$$
  
-  $x1 - x2 + x3 \ge -1$   
-  $x3 \ge 0$ 

- tem uma solução 0-1?
  - Sim! x1 = 1, x2 = 0 e x3 = 0 é solução.

#### **Exemplo**

#### • Redução:

 A transformação T recebe uma fórmula booleana e devolve um sistema linear Ax >=b tal que é satisfatível se e somente se o sistema Ax >= b admite uma solução 0-1

$$\Phi = (x1) ^ (-x1 v -x2 v x3) ^ (-x3)$$
 $x1 >= 1$ 
 $(1 - x1) + (1 - x2) + x3 >= 1$ 
 $(1 - x3) >= 1$