

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

CONTINUOUS ASSESSMENT TEST - I

Program : B.E/B.Tech-CSE/IT Max. Marks: 30

Course : Compiler Design Time : 1 Hour

Course code: SCS1303 Sem : V

Batch : 2018-2022 Date : 23-09-2020

Part-A	Answer ALL the questions	$(5\times2=1)$
r ar t-A	Allswei ALL the questions	(<i>3×4</i> −.

Q.No	Questions	CO(L)
1.	Construct NFA for the regular expression: i. ab* a* ii. a(b* a*)	1(5)
2.	Compare Ambiguous and Unambiguous grammar.	2(4)
3.	Demonstrate the use of input buffer in Lexical Phase of Compiler.	1(3)
4.	Discuss the rules for eliminating Left recursion and Left Factoring with suitable example.	2(2)
5.	Explain the role of symbol table and error handler in a compiler.	1(2)

Part-B	Answer ALL the questions	$(2\times10=20)$
--------	--------------------------	------------------

Q.No	Questions	CO(L)	
6.	Construct the Minimized DFA for (a* b*)*.	1(5)	
	(OR)		

7.	Construct the Minimized DFA for ab(a b)* .	1(5)

	Consider the following Grammar:		
8.	$E \rightarrow E + T \mid T$		
	$T \rightarrow T * F \mid F$		
	$\mathbf{F} \rightarrow (\mathbf{E}) \mid \mathbf{id}$		2(4)
	a. Eliminate Left recursion.	(2 marks)	2(4)
	b. Compute FIRST() and FOLLOW().	(3 marks)	
	c. Construct the Predictive parsing table.	(2 marks)	
	d. Parse the input string: (id+id)*id\$	(3 marks)	

(OR)

	Consider the following Grammar:		
	S→ iCtSeS iCtS a		
	$\mathbf{C} \rightarrow \mathbf{b}$		
9.	a. Eliminate Left Factoring.	(2 marks)	2(4)
	b. Compute FIRST() and FOLLOW().	(3 marks)	
	c. Construct the Predictive parsing table.	(3 marks)	
	d. Can an ambiguous grammar be LL(1) ?Justify.	(2 marks)	