BAYES FORMULA

 The Bayes theorem gives us the following formula to compute the probability that the record belongs to class Ci:

$$P(C_i|X_1,\ldots,X_p) = \frac{P(X_1,\ldots,X_p|C_i)P(C_i)}{P(X_1,\ldots,X_p|C_1)P(C_1) + \cdots + P(X_1,\ldots,X_p|C_m)P(C_m)}.$$

Where

Ci : classes of interest

X1,X2,...Xp: Variables which co-exist with Classes of interest

Example : Telecom Customers

- A telecom firm has many customers. Each customer either talks for the duration of more than 100 minutes or less than 100 minutes. The firm has launched a plan for the customers who talk more specially to optimize the amount spent by them on bills.
- Call Centre staff had been instructed to call some customers. In that operation, some customers bought the new plan and others didn't.
- In this case each customer is a record, and the response of interest, Y
 = {Bought ,Not Bought}, has two classes: C1 = Bought and C2 = Not
 Bought.

Talks for more than 100 min? (TT >= 100)	Gender	Response
У	male	not bought
n	male	not bought
n	female	not bought
n	female	not bought
n	male	not bought
n	male	not bought

y	male	bought
у	female	bought
n	female	bought
У	female	bought

Assuming independence

$$P(Buy|Male,TT \ge 100)$$

 $= \frac{P(Male,TT \ge 100 \mid Buy) P(Buy)}{P(Male,TT \ge 100 \mid Buy) P(Buy) + P(Male,TT \ge 100 \mid Not Buy) P(Not Buy)}$

 $=\frac{P(Male|Buy)P(TT\geq 100|Buy)P(Buy)}{P(Male|Buy)P(TT\geq 100|Buy)P(Buy)+P(Male|Not\ Buy)P(TT\geq 100|Not\ Buy)P(Not\ Buy)}$

$$= \frac{\frac{1}{4} \times \frac{3}{4} \times \frac{4}{10}}{\frac{1}{4} \times \frac{3}{4} \times \frac{4}{10} + \frac{4}{6} \times \frac{1}{6} \times \frac{6}{10}}$$

= 0.529

(TT >= 100)	Gender	Response
У	male	not bought
n	male	not bought
n	female	not bought
n	female	not bought
n	male	not bought
n	male	not bought
У	male	bought
у	female	bought
n	female	bought
У	female	bought

P(Buy|Female, TT>=100 == n) = 0.31034483 P(Buy|male, TT>=100 == n) = 0.06976744 P(Won't Buy|Female, TT>=100 == n) = 0.68965517 P(Won't Buy|male, TT>=100 == n) = 0.93023256 P(Buy|Female, TT>=100 == y) = 0.87096774