# Soft Computing Clustering - II

Dr. Chun-Hao Chen

### **Outline**

1. Clustering Validation Techniques

2. An Object belongs to Many Clusters

3. Clustering without Number of Clusters

4. Today's Extra Task

### **How to Evaluate Clustering Results**



✓ Given the following clustering results



➡ We need clustering validation techniques

## **Clustering Validation Techniques**



- ✓ Types of validation techniques
  - External indices
    - ✓ Based on some "gold standards"
    - ✓ Validate a partition by comparing it with the correct partition (Arbelaitz et al.'13)
  - Internal indices
    - ✓ Based on some statistics of the results
    - ✓ Validate a partition by examining just the partitioned data (Arbelaitz et al.'13)

## **Validation Techniques – External Indices**



✓ Given two binary matrices A and B of the same dimensions

|                  |   | В |   |
|------------------|---|---|---|
|                  |   | 1 | 0 |
| Λ                | 1 | a | b |
| $\boldsymbol{A}$ | 0 | С | d |

- Matching coefficient: (a+d)/(a+b+c+d)
- Jaccard coefficient: a / (a+b+c)

# An Example - Jaccard coefficient (1)

- ✓ Jaccard coefficient  $\rightarrow$  0 ≤ J(A, B) ≤ 1
  - Proportion of dividing instances into correct groups
  - Given two sets as follows:

| 7 | D |
|---|---|
|   | 7 |
| - | _ |

|   | 1 | 0 |
|---|---|---|
| 1 | a | b |
| 0 | С | d |

Jaccard coefficient: a / (a+b+c)

Set A: Clustering result of cluster  $A = \{2, 4, 6\}$ 

Set B: Ground true of the cluster  $B = \{0, 1, 2, 3, 4, 5, 6\}$ 



$$J(A, B) = |A \cap B| / |A \cup B|$$

$$= |2, 4, 6| / |0, 1, 2, 3, 4, 5, 6|$$

$$= 0.5$$

# An Example - Hubert's Γ Statistics (↑)

- $\checkmark X=[X(i,j)]$  and Y=[Y(i,j)] are two  $n \times n$  matrix
  - X(i, j): similarity of object i and object j
  - $Y(i, j) = \begin{cases} 1 & \text{if objects } i \text{ and } j \text{ are in same cluster,} \\ 0 & \text{otherwise.} \end{cases}$
  - $\bullet$  Hubert's  $\Gamma$  statistic represents the point serial correlation:

$$\Gamma = \frac{1}{M} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left( \frac{X(i,j) - \overline{X}}{\sigma_{X}} \right) \left( \frac{Y(i,j) - \overline{Y}}{\sigma_{Y}} \right), -1 \le \Gamma \le 1$$

where M = n (n - 1) / 2 is the number of entries in the double sum

A higher value of Γ represents the better clustering quality

### An Example - Hubert's Γ Statistics (Cont.)



- $\checkmark X=[X(i,j)]$  and Y=[Y(i,j)] are two  $n \times n$  matrix
- ✓ Let X and Y after standardization are shown as follows

X(i, j): similarity of object i and object j

Y = [Y(i, j)]: A clustering result

|                 |   | Obje | CLJ |     |
|-----------------|---|------|-----|-----|
|                 | 0 | 1.0  | 0.6 | 0.2 |
| object <i>i</i> |   | 0    | 0.3 | 0.4 |
| obje            |   |      | 0   | 0.1 |
|                 |   |      |     | 0   |

ohiect i



| 0 | 1 | 0 | 1 | _             | 0 | 0.64 | -1.29 | 0.64  |
|---|---|---|---|---------------|---|------|-------|-------|
|   | 0 | 1 | 0 | Normalization |   | 0    | 0.64  | -1.29 |
|   |   | 0 | 1 | Norma         |   |      | 0     | 0.64  |
|   |   |   | 0 |               |   |      |       | 0     |

$$\Gamma = \frac{1}{M} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left( \frac{X(i,j) - \overline{X}}{\sigma_{X}} \right) \left( \frac{Y(i,j) - \overline{Y}}{\sigma_{Y}} \right), -1 \le \Gamma \le 1$$

Hence, the value of  $\Gamma$  = (1.73\*0.64 + 0.51\*-1.29 + ...+ -1.02\*0.64) / 6 = -0.79 / 6 = -0.13

#### **Other Validation Indices**

- ✓ Cluster Validation Indices
  - C-index (Hubert and Schultz, 1976)
  - Davis-Bouldin index (Davies and Bouldin, 1979)
  - Dunn's index (Dunn, 1974)
  - Goodman-Kruskal index (Goodman and Kruskal, 1954)
  - Silhouette index (Rousseeuw, 1987)

# **Discussion 1**

#### k-means clustering



In k-means clustering algorithm, each data point should belong to a group. Do you think it reasonable?

# An Example

- **✓** ASUS
  - ZenBook Duo UX481FL → Laptop
  - ZenFone 6 (ZS630KL) → Smart Phone



```
"Computer Manufacturing"
or
"Smart Phone Manufacturing"
or
Both?
```

## **Two Solutions**

- ✓ Solution I PoCluster algorithm
- ✓ Solution II Soft clustering algorithm (Fuzzy c-means algorithm)
  - By applying soft computing on the k-means clustering

# **PoCluster Algorithm - Concept**



- ✓ Continue previous example
  - ASUS (華碩) belongs to "Computer Manufacturing" and "Smart Phone Manufacturing" with degree 0.75 and 0.25
  - Acer (宏碁) belongs to "Computer Manufacturing" and "Smart Phone Manufacturing" with degree 0.8 and 0.2
  - Compal (仁寶) belongs to "Computer Manufacturing" and "Smart Phone Manufacturing" with degree 0.9 and 0.1

Similarity(ASUS, Acer)  $\rightarrow$  Above 90% >0.9  $\rightarrow$ 1
Similarity(ASUS, Compal)  $\rightarrow$  Around 80% 0.9~0.8  $\rightarrow$  2

|        | ASUS | Acer | Compal |
|--------|------|------|--------|
| ASUS   | -    | 1    | 2      |
| Acer   | 1    | -    | 2      |
| Compal | 2    | 2    | -      |

# **PoCluster Algorithm**

- ✓Input
  - E: An ordered list of edges (Can be generate from a similarity matrix)
- **✓** Output
  - A PoCluster
- √ Three Steps
  - Step 1: Select objects O with minimum value from  $E^t$  and  $E^{t+1} = E^t O$
  - Step 2: Let i = 0 and O be a cluster  $C^{i+1}$  and  $PoCluster = PoCluster <math>\cup C^{i+1}$
  - Step 3: If  $E^{t+1}$  is not empty, repeat Steps 2 & 3
  - Step 4: Output *PoCluster*

|   | Α | В | С | D | Ε |
|---|---|---|---|---|---|
| Α | 0 | 2 | 1 | 2 | 3 |
| В | 2 | 0 | 2 | 1 | 1 |
| С | 1 | 2 | 0 | 1 | 2 |
| D | 2 | 1 | 1 | 0 | 4 |
| Е | 3 | 1 | 2 | 4 | 0 |





# As a Result We Get





| d   | $\operatorname{cliqueset}(d)$ |
|-----|-------------------------------|
| d=1 | AC, BD, CD, BE                |
| d=2 | $ARCD_{_{j}}RCE$              |
| d=3 | ABCE                          |
| d=4 | ABCDE                         |



# **A PoCluster**

- ✓ One single element can belong to multiple clusters
- ✓ Reserve more information than other clustering approaches



# **Case Study – Drug Dispensing Error**

√ Find clusters for drug dispensing error prevention



# **Input Dataset - Drug Dataset**

### ✓ 915 drugs with 10 attributes

|                | Drug <sub>1</sub> |     | Drug <sub>141</sub> |     | Drug <sub>915</sub> |
|----------------|-------------------|-----|---------------------|-----|---------------------|
| Generic Name   |                   | ••• | CARBAMAZEPINE C.R   | ••• | •••                 |
| Trade Name     |                   |     | TEGRETOL C.R. TAB   |     | •••                 |
| Pharmacology   |                   | ••• | 6910                | ••• | •••                 |
| Location       | •••               | ••• | 架C                  | ••• | •••                 |
| Dose Amount    |                   | ••• | 200MG               |     |                     |
| Fifth Number   |                   | ••• | 2                   |     |                     |
| Dose Form Unit |                   | ••• | TAB                 |     |                     |
| Shape          |                   |     | 凸長圓形                | ••• | •••                 |
| Color          |                   | ••• | 橙色                  | *** | •••                 |
| Size           |                   |     | 5.5*12              |     |                     |

# Input Dataset - Dispensing Error Cases

- ✓ Drug dispensing error cases
- √e.g.

|                | Drug1 (Correct)   | Drug2 (Incorrect)                   |  |
|----------------|-------------------|-------------------------------------|--|
| ID             | 141               | 143                                 |  |
| Generic Name   | CARBAMAZEPINE C.R | CARBIDOPA/L-DOPA<br>25/100(SINEMET) |  |
| Trade Name     | TEGRETOL C.R. TAB | SINEMET 25/100                      |  |
| Pharmacology   | 6910              | 6954                                |  |
| Location       | 架C                | 少4C                                 |  |
| Dose Amount    | 200MG             | 125MG                               |  |
| Fifth Number   | 2                 | 2                                   |  |
| Dose Form Unit | TAB               | TAB                                 |  |
| Shape          | 凸長圓形              | 扁橢型                                 |  |
| Color          | 橙色                | 黃色                                  |  |
| Size           | 5.5*12            | 7*13                                |  |

#### **The First Problem Should be Handed**



### √ How to generate the similarity matrix for drugs

|                | Drug <sub>1</sub> | ••• | Drug <sub>141</sub> | ••• | Drug <sub>915</sub> |
|----------------|-------------------|-----|---------------------|-----|---------------------|
| Generic Name   |                   | ••• | CARBAMAZEPINE C.R   |     |                     |
| Trade Name     |                   |     | TEGRETOL C.R. TAB   |     |                     |
| Pharmacology   | ***               |     | 6910                |     |                     |
| Location       | •••               |     | 架C                  |     |                     |
| Dose Amount    | ***               |     | 200MG               |     | ***                 |
| Fifth Number   | ***               |     | 2                   |     |                     |
| Dose Form Unit |                   |     | TAB                 |     |                     |
| Shape          |                   |     | 凸長圓形                |     | •••                 |
| Color          | ***               |     | 橙色                  |     |                     |
| Size           |                   |     | 5.5*12              |     | ***                 |



?

#### **Similarity Matrix**

|                | D <sub>1</sub> | D <sub>2</sub> |   | D <sub>m</sub> |
|----------------|----------------|----------------|---|----------------|
| D <sub>1</sub> | -              |                |   |                |
| D <sub>2</sub> |                | -              |   | •••            |
|                |                |                | _ |                |
| D <sub>m</sub> |                |                |   | -              |

# **Data Preprocessing**

|                | Drug1                | Drug2                       |
|----------------|----------------------|-----------------------------|
| ID             | 141                  | 143                         |
| Generic Name   | CARBAMAZEPINE<br>C.R | CARBAMAZEPINE<br>(TEGRETOL) |
| Trade Name     | TEGRETOL C.R.<br>TAB | SINEMET 25/100              |
| Pharmacology   | 6910                 | 6954                        |
| Location       | 架C                   | 少4C                         |
| Dose Amount    | 200MG                | 125MG                       |
| Fifth Number   | 2                    | 2                           |
| Dose Form Unit | TAB                  | TAB                         |
| Shape          | 凸長圓形                 | 扁橢型                         |
| Color          | 橙色                   | 黃色                          |
| Size           | 5.5*12               | 7*13                        |

|             |        | Pair N |
|-------------|--------|--------|
|             | T1     | 0.204  |
|             |        |        |
|             | T2     | 0      |
|             | T4     | 0.150  |
|             | NED1   | 0.719  |
|             | NED2   | 0.882  |
| <b>&gt;</b> | NED4   | 0.804  |
|             | Pharma | 1      |
|             | Loca   | 0      |
|             | Dose   | 0      |
|             | Form   | 2      |
|             | Shape  | 0      |
|             | Color  | 0      |
|             | Size   | 0      |

T1, 2, and 4 > 0.116 NED1, 2, and 4 < 0.659

# **Data Preprocessing (Cont.)**

|        | Pair N |
|--------|--------|
| T1     | 0.204  |
| T2     | 0      |
| T4     | 0.150  |
| NED1   | 0.719  |
| NED2   | 0.882  |
| NED4   | 0.804  |
| Pharma | 1      |
| Loca   | 0      |
| Dose   | 0      |
| Form   | 2      |
| Shape  | 0      |
| Color  | 0      |
| Size   | 0      |

T1, 2, and 4 > 0.116

NED1, 2, and 4 < 0.659

|        | Pair N |
|--------|--------|
| T1     | 1      |
| T2     | 0      |
| T4     | 0      |
| NED1   | 0      |
| NED2   | 0      |
| NED4   | 0      |
| Pharma | 1      |
| Loca   | 0      |
| Dose   | 0      |
| Forms  | 2      |
| Shape  | 0      |
| Color  | 0      |
| Size   | 0      |

# **Data Preprocessing (Cont.)**



|                | D1  |     | D141              | <br>D915 |
|----------------|-----|-----|-------------------|----------|
| Generic Name   |     |     | CARBAMAZEPINE C.R | <br>     |
| Trade Name     |     |     | TEGRETOL C.R. TAB | <br>     |
| Pharmacology   | ••• |     | 6910              | <br>     |
| Location       | *** |     | 架C                | <br>     |
| Dose Amount    |     |     | 200MG             | <br>     |
| Fifth Number   |     |     | 2                 | <br>     |
| Dose Form Unit |     | ••• | ТАВ               | <br>     |
| Shape          |     |     | 凸長圓形              | <br>     |
| Color          |     |     | 橙色                | <br>•••  |
| Size           |     |     | 5.5*12            | <br>     |



T1, NED1, T2, NED2, T4, NED4, Loca, Dose, Pharma, Form, Size, Shape, Color

#### 13 Drug-Drug Matrices

| A | ttr <sub>1</sub> |                 | D              | 1              | D   | 2              | ••• |   | D  | m              |    |   |
|---|------------------|-----------------|----------------|----------------|-----|----------------|-----|---|----|----------------|----|---|
|   | At               | tr <sub>2</sub> |                | D <sub>1</sub> |     | D <sub>2</sub> |     |   |    | D <sub>m</sub> |    |   |
| D |                  | Д               | ttr            | n              | D   | 1              | D   | 2 |    |                | D  | m |
| D | D <sub>1</sub>   | _               | _              |                |     | 1              |     |   |    |                |    |   |
|   | D <sub>2</sub>   |                 | P <sub>1</sub> |                | Ī   | 1              | ••• |   | •• | •              |    |   |
|   |                  | D               | 2              |                | ••• |                | -1  | 1 |    |                |    |   |
| D | D <sub>n</sub>   |                 |                |                |     |                |     |   | -  | 1              |    |   |
|   |                  | D               | m              |                |     |                | ••• |   |    | •              | -1 |   |

# **Logic Regression Model**

#### 13 Drug-Drug Matrices



#### **Use LR to Generate the Similarity Matrix**







Similarity Matrix

|                | D <sub>1</sub> | D <sub>2</sub> |    | D <sub>m</sub> |
|----------------|----------------|----------------|----|----------------|
| D <sub>1</sub> | -1             |                |    |                |
| D <sub>2</sub> |                | -1             |    |                |
|                |                |                | -1 |                |
| D <sub>m</sub> |                |                |    | -1             |

**Regression Function** 

## An Example

Drug141= CARBAMAZEPINE C.R Drug143= CARBAMAZEPINE (TEGRETOL)

|   | T1 | <b>T2</b> | <b>T4</b> | N1 | N2 | N4 | Ph | Lo | Do | Fo | Sh | Со | Si |
|---|----|-----------|-----------|----|----|----|----|----|----|----|----|----|----|
| i | 1  | 0         | 0         | 0  | 0  | 0  | 1  | 0  | 0  | 2  | 0  | 0  | 0  |



Value = 1.5382\*(T1)+0.8398\*(NED1)-0.2054\*(T2)+0.1425\*(NED2)+0.3912\*(T4) +0.4466\*(NED4)+0.9301\*(Pharma)+0.8858\*(Loca)+1.2563\*(Dose) +1.1272\*(Form)-0.3184\*(Shape)+0.0533\*(Color)+0.3505\*(Size)-2.4398



Value = 2.2829



|                  | D <sub>1</sub> |        | D <sub>141</sub> | D <sub>m</sub> |
|------------------|----------------|--------|------------------|----------------|
| D <sub>1</sub>   | -1             |        |                  |                |
|                  |                | -<br>1 |                  |                |
| D <sub>143</sub> |                |        | 2.28             |                |
| D <sub>m</sub>   |                |        | •••              | -1             |

# **Discretization & Clustering Result**



| Level | Low | Up |
|-------|-----|----|
| 1     | -2  | 0  |
| 2     | 0   | 2  |
| 3     | 2   | 3  |
| 4     | 3   | 7  |

#### Final Similarity Matrix

|     | 1  | 2  | 3  |    | 915 |
|-----|----|----|----|----|-----|
| 1   | -1 | 2  | 3  |    | 1   |
| 2   | 2  | -1 | 4  |    | 3   |
| 3   | 3  | 4  | -1 |    | 4   |
| ••• |    |    |    | -1 |     |
| 915 | 1  | 3  | 4  |    | -1  |

#### **Clustering Result**



PoCluster Algorithm

# **Clustering Analysis**



- ✓ Take "CARBAMAZEPINE C.R" as an example
- ✓ The following two slides show that
  - First, it can definitely find out the drug which is very similar to the queried one in Medicine Name
  - Second, we find that some drugs with low similarity with the queried one in Medicine Name, but similar in environmental attributes, such as Dose form, Classification and etc.

# **Clustering Analysis (Cont.)**



# **Clustering Analysis (Cont.)**



# Solution II - Soft (Fuzzy) Clustering



#### √k-means clustering



#### Membership Matrix M

|    | Cluster <sub>1</sub> | Cluster <sub>2</sub> |
|----|----------------------|----------------------|
| P1 | 1                    | 0                    |
| P2 | 1                    | 0                    |
| P3 | 0                    | 1                    |
| P4 | 0                    | 1                    |
| P5 | 0                    | 1                    |

# **Soft (Fuzzy) Clustering (Cont.)**

- ✓ Fuzzy k-means (Dunn, 1973)
  - Data can belong to two or more clusters

|    | Cluster <sub>1</sub> | Cluster <sub>2</sub> |
|----|----------------------|----------------------|
| P1 | 1                    | 0                    |
| P2 | 1                    | 0                    |
| P3 | 0                    | 1                    |
| P4 | 0                    | 1                    |
| P5 | 0                    | 1                    |



|    | Cluster <sub>1</sub> | Cluster <sub>2</sub> |
|----|----------------------|----------------------|
| P1 | 0.9                  | 0.1                  |
| P2 | 0.85                 | 0.15                 |
| P3 | 0.15                 | 0.85                 |
| P4 | 0.10                 | 0.90                 |
| P5 | 0.05                 | 0.95                 |

0 or 1

[0, 1]

# **An Example**

- ✓ Assume
  - ●5 basketball players: P1, P2, P3, P4, P5
  - •Two attributes: Speed and Weight

|        | P1          | P2         | Р3          | P4          | P5          |
|--------|-------------|------------|-------------|-------------|-------------|
| Speed  | 10sec(100m) | 9sec(100m) | 11sec(100m) | 20sec(100m) | 13sec(100m) |
| Weight | 65kg        | 60kg       | 80kg        | 99kg        | 70kg        |

- ✓ Illustrate how k-means clustering algorithm work
  - Number of cluster k = 2

## Step 1

- ✓Initialize *k* centers
  - Randomly generate
  - $\bullet e.g. \ C_1(61, 10) \ and \ C_2(66, 11)$

|        | P1          | P2         | Р3          | P4          | P5          |
|--------|-------------|------------|-------------|-------------|-------------|
| Speed  | 10sec(100m) | 9sec(100m) | 11sec(100m) | 17sec(100m) | 15sec(100m) |
| Weight | 65kg        | 60kg       | 80kg        | 85kg        | 75kg        |



### Step 2

✓ Calculate fuzzy value of each object to every group

P5

0.305

0.695

• e.g.  $\mu_{C1}(P5)$ 



$$||x_1 - c_1||^2 = (75-61)^2 + (15-10)^2 = 221$$
  
 $||x_1 - c_2||^2 = (75-66)^2 + (15-11)^2 = 97$ 

$$\mu_{C_1}(x_1) = \frac{1}{\sum_{j=1}^{2} \left(\frac{\|x_1 - c_1\|^2}{\|x_1 - c_j\|^2}\right)} = \frac{1}{\left(\frac{\|x_1 - c_1\|^2}{\|x_1 - c_1\|^2}\right) + \left(\frac{\|x_1 - c_1\|^2}{\|x_1 - c_2\|^2}\right)}$$

$$= \frac{1}{\frac{221}{221} + \frac{221}{97}} = \frac{1}{1 + 2.783} = 0.305$$

$$\mu_{C_2}(x_1) = \frac{1}{\sum_{j=1}^{2} \left(\frac{\|x_1 - c_2\|^2}{\|x_1 - c_j\|^2}\right)} = \frac{1}{\frac{97}{221} + \frac{97}{97}}$$

$$= \frac{1}{0.439 + 1} = 0.695$$
Cluster<sub>1</sub> Cluster<sub>2</sub>

# **After Step 2**

✓ Form the U<sup>(0)</sup> matrix

|    | Cluster <sub>1</sub> | Cluster <sub>2</sub> |
|----|----------------------|----------------------|
| P5 | 0.305                | 0.695                |
| P2 | 0.952                | 0.048                |
| P1 | 0.111                | 0.889                |
| Р3 | 0.351                | 0.649                |
| P4 | 0.388                | 0.612                |

# Step 3

#### ✓ Calculate new centers

|    | Cluster <sub>1</sub> | Cluster <sub>2</sub> |
|----|----------------------|----------------------|
| P5 | 0.305                | 0.695                |
| P2 | 0.952                | 0.048                |
| P1 | 0.111                | 0.889                |
| Р3 | 0.351                | 0.649                |
| P4 | 0.388                | 0.612                |

$$C_1 = \frac{\sum_{i=1}^{5} (\mu_{C_1}(x_i))^2 \times x_i}{\sum_{i=1}^{5} (\mu_{C_1}(x_i))^2}$$

$$C_1 = \frac{0.305^2(60, 9) + 0.952^2(65, 10) + 0.111^2(75, 15) + 0.351^2(80, 11) + 0.388^2(85, 17)}{0.305^2 + 0.952^2 + 0.111^2 + 0.351^2 + 0.388^2}$$
$$= (\frac{87.96}{1.284}, \frac{13.98}{1.284}) = (68.50, 10.88)$$

$$C_2 = \frac{0.695^2(60,9) + 0.048^2(65,10) + 0.889^2(75,15) + 0.649^2(80,11) + 0.612^2(85,17)}{0.695^2 + 0.048^2 + 0.889^2 + 0.649^2 + 0.612^2}$$
$$= (\frac{153.93}{2.07}, \frac{27.22}{2.07}) = (74.36,13.15)$$

# **After Step 3**

✓ New Centers



## **Steps 4 & 5**

- ✓ Step 4: Calculate U<sup>(1)</sup> matrix
  - The same as Step 2
- ✓ Step 5: Reach the stop criterion or not
  - If  $||U^{(r+1)} U^{(r)}|| < \varepsilon$ , Then STOP.
  - Otherwise repeat Steps 3 and 4

## Fuzzy *k*-means Algorithm

- ✓ Five Steps
  - 1. Initialize *k* centers
  - 2. Calculate  $U^{(r)}$  (=[ $u_{ii}$ ]) matrix
  - 3. Calculate the new centers
  - 4. Calculate  $U^{(r+1)}$  (=[ $u_{ij}$ ]) matrix
  - 5. If  $||U^{(r+1)} U^{(r)}|| < \varepsilon$ , Then STOP; Otherwise repeat Steps 3 and 4

### Discussions

# What are the key points of the fuzzy c-means algorithm?

### The Formulas

$$\mu_{xk} = \frac{1}{\sum_{j \in K} \left(\frac{d^2(x,k)}{d^2(x,j)}\right)^{\frac{1}{m-1}}}$$



Calculate
Membership Values

$$k = \frac{\sum_{x \in X} \mu_{xk}^m x}{\sum_{x \in X} \mu_{xk}^m}$$



Calculate New Center

## In The Example ..

 $\checkmark$  The parameter m was set at 2

$$\mu_{xk} = \frac{1}{\sum_{j \in K} \left(\frac{d^2(x,k)}{d^2(x,j)}\right)^{\frac{1}{m-1}}}$$



$$\mu_{xk} = \frac{1}{\sum_{j \in K} (\frac{d^2(x,k)}{d^2(x,j)})}$$

$$k = \frac{\sum_{x \in X} \mu_{xk}^m x}{\sum_{x \in X} \mu_{xk}^m}$$



$$k = \frac{\sum_{x \in X} \mu_{xk}^2 x}{\sum_{x \in X} \mu_{xk}^2}$$

## When Variable m with Large Value

$$\checkmark m = 10$$

$$\mu_{C_1}(x_1) = \frac{1}{\sum_{j=1}^{2} \left(\frac{\|x_1 - c_1\|^2}{\|x_1 - c_j\|^2}\right)} = \frac{1}{\left(\frac{\|x_1 - c_1\|^2}{\|x_1 - c_1\|^2}\right) + \left(\frac{\|x_1 - c_1\|^2}{\|x_1 - c_2\|^2}\right)}$$

$$= \frac{1}{\frac{221}{221} + \frac{221}{97}} = \frac{1}{1 + 2.783} = 0.305$$

$$\mu_{xk} = \frac{1}{\sum_{j \in K} \left(\frac{d^2(x, k)}{d^2(x, j)}\right)^{\frac{1}{m-1}}}$$



$$\mu_{C_{1}}(x_{1}) = \frac{1}{\sum_{j=1}^{2} \left(\frac{\|x_{1} - c_{1}\|^{2}}{\|x_{1} - c_{j}\|^{2}}\right)^{\frac{1}{10-1}}} = \frac{1}{\left(\frac{\|x_{1} - c_{1}\|^{2}}{\|x_{1} - c_{1}\|^{2}}\right)^{\frac{1}{10-1}}} + \left(\frac{\|x_{1} - c_{1}\|^{2}}{\|x_{1} - c_{1}\|^{2}}\right)^{\frac{1}{10-1}}} = \frac{1}{\left(\frac{221}{221}\right)^{\frac{1}{10-1}} + \left(\frac{221}{07}\right)^{\frac{1}{10-1}}} = \frac{1}{1 + (2.783)^{\frac{1}{10-1}}} = > 0.305$$

$$\mu_{xk} = \frac{1}{\sum_{j \in K} \left(\frac{d^2(x,k)}{d^2(x,j)}\right)^{\frac{1}{m-1}}}$$

For  $u_{xk}$ , The parameter *m* is used to control the sensitive of the distance between data point and centers

# When Variable *m* with Large Value (Cont.)



$$\checkmark m = 10$$

$$C_1 = \frac{0.305^2(60, 9) + 0.952^2(65, 10) + 0.111^2(75, 15) + 0.351^2(80, 11) + 0.388^2(85, 17)}{0.305^2 + 0.952^2 + 0.111^2 + 0.351^2 + 0.388^2}$$
$$= (\frac{87.96}{1.284}, \frac{13.98}{1.284}) = (68.50, 10.88)$$



$$\begin{split} C_1 &= \frac{0.305^{10}(60,9) + 0.952^{10}(65,10) + 0.111^{10}(75,15) + 0.351^{10}(80,11) + 0.388^{10}(85,17)}{0.305^{10} + 0.952^{10} + 0.111^{10} + 0.351^{10} + 0.388^{10}} \\ &= (<68.50, <10.88) \end{split}$$

$$k = \frac{\sum_{x \in X} \mu_{xk}^m x}{\sum_{x \in X} \mu_{xk}^m}$$

For k,
The parameter m is used to control the changing sensitive of the centers

# **Discussion 2**

✓ Clustering results with k = 2



Do we have any approach to get clusters without the *k* value?

# **Cluster Affinity Search Technique**

- ✓Input
  - S: a symmetric  $n \times n$  Similarity Matrix ,  $S(i, j) \in [0, 1]$
  - t: Affinity Threshold (0 < t < 1)
- ✓ Method
  - 1. Choose a seed for generating a new cluster
  - 2. ADD: add qualified items to the cluster
  - 3. REMOVE: remove unqualified items from the stable cluster
  - 4. Repeat Steps 1-3 till no more clusters can be generated

# **Step 1: Select A Seed**

- ✓ Assume we have five data objects
  - $\bullet$  *U* = {1, 2, 3, 4, 5}
  - Affinity Threshold t = 0.5



#### Similarity matrix

|   | 1 | 2   | 3   | 4   | 5   |
|---|---|-----|-----|-----|-----|
| 1 | 1 | 0.2 | 0.8 | 0.1 | 0.5 |
| 2 |   | 1   | 0.4 | 0.7 | 0.4 |
| 3 |   |     | 1   | 0.3 | 0.6 |
| 4 |   |     |     | 1   | 0.5 |
| 5 |   |     |     |     | 1   |

# **Step 2: ADD Phase**



$$a(1) = 1$$
 $a(2) = 0.2$ 
 $a(3) = 0.8 \text{ max} \ge t^* | C_{\text{open}} |$ 
 $a(4) = 0.1 = 0.5 * 1$ 
 $a(5) = 0.5$ 

#### Similarity matrix

|   | 1 | 2   | 3   | 4   | 5   |
|---|---|-----|-----|-----|-----|
| 1 | 1 | 0.2 | 0.8 | 0.1 | 0.5 |
| 2 |   | 1   | 0.4 | 0.7 | 0.4 |
| 3 |   |     | 1   | 0.3 | 0.6 |
| 4 |   |     |     | 1   | 0.5 |
| 5 |   |     |     |     | 1   |

# **Step 2: ADD Phase (Cont.)**



| Similarity matrix |   |     |     |     |     |  |
|-------------------|---|-----|-----|-----|-----|--|
|                   | 1 | 2   | 3   | 4   | 5   |  |
| 1                 | 1 | 0.2 | 0.8 | 0.1 | 0.5 |  |
| 2                 |   | 1   | 0.4 | 0.7 | 0.4 |  |
| 3                 |   |     | 1   | 0.3 | 0.6 |  |
| 4                 |   |     |     | 1   | 0.5 |  |
| 5                 |   |     |     |     | 1   |  |

# **Step 2: ADD Phase (Cont.)**





|   | 1 | 2   | 3   | 4   | 5   |
|---|---|-----|-----|-----|-----|
| 1 | 1 | 0.2 | 0.8 | 0.1 | 0.5 |
| 2 |   | 1   | 0.4 | 0.7 | 0.4 |
| 3 |   |     | 1   | 0.3 | 0.6 |
| 4 |   |     |     | 1   | 0.5 |
| 5 |   |     |     |     | 1   |

# **Step 3: Remove Phase**





#### a(1) = 1 + 0.8 + 0.5 = 2.3





#### Cluster<sub>1</sub>



$$a(5) = 0.5 + 0.6 + 1 = 2.1$$
 min >  $t | C_{\text{open}} |$   
=  $0.5*3$   
=  $1.5$ 

Similarity matrix

|   | $\mathcal{S}^{\mathrm{IIII}}$ | Hari | LV III | aurix |     |
|---|-------------------------------|------|--------|-------|-----|
|   | 1                             | 2    | 3      | 4     | 5   |
| 1 | 1                             | 0.2  | 0.8    | 0.1   | 0.5 |
| 2 |                               | 1    | 0.4    | 0.7   | 0.4 |
| 3 |                               |      | 1      | 0.3   | 0.6 |
| 4 |                               |      |        | 1     | 0.5 |
| 5 |                               |      |        |       | 1   |

# **Step 4: Repeat Steps 1-3**

✓ The Final Clustering Results



**Repeat Add and Remove** 

## **Discussion**

- ✓ Input
  - S: a symmetric  $n \times n$  Similarity Matrix  $S(i, j) \in [0, 1]$
  - t: Affinity Threshold (0 < t < 1)
- ✓ Method
  - 1. Choose a seed for generating a new cluster
  - 2. ADD: add qualified items to the cluster
  - 3. REMOVE: remove unqualified items from the stable cluster
  - 4. Repeat Steps 1-3 till no more clusters can be generated

# What are the key points of the CAST algorithm?

## **Conclusions**

- ✓ Advanced Clustering Algorithms
  - Objects can belong multiple Clusters
    - ✓ PoCluster algorithm
    - ✓ Case Study: Drug Dispensing Error
    - ✓ Fuzzy c-means clustering algorithm
  - Clustering without number of groups
    - ✓ CAST