

What is NP space?

Where does this come from?

* Can every problem which can be checked/verified quickly by a computer also be solved quickly by a computer?

- Ex: Finding prime #s:
 - checking if # is prime vs. actually finding prime #s

Another example...

- * Rock piling problem \Rightarrow NP prob
 - Collection of rocks with diff masses
 - Want to make 2 towers with = masses
- Can easily verify if certain division of rocks work
 - Simply verify both towers have same mass by summing up, very efficient
- Very hard to solve
 - With 100 rocks calc how many combos there are
 - Even quantum computers won't be able to solve

Classes of Problems

* Can classify problems into different types (P = Polynomial runtime, NP = Nondeterministic polynomial runtime, etc.)

P vs NP

- * So far \Rightarrow have learned problems in P space
 - Can solve quickly
 - Can verify quickly
 - Except for a few like TSP
- * Some problems fall in NP domain
 - Can verify quickly
 - Cannot always solve quickly
 - Only some problems part of NP are part of P which means they can be solved quickly
- * No formal proof has been done to show that NP is harder than P in reality
 - P equals NP means that can solve fundamentally difficult problems with easy solution like figuring out how to put together broken glass

So how do we work with NP problems?

- * Compare relative difficulty of diff problems
 - Use inequalities
- * Reduction
 - Problem X is AT LEAST as hard as Problem Y ⇒ solving X would solve Y
 - Y <= pX</p>

2 important lemmas

(8.1) Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

(8.2) Suppose $Y \leq_p X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Summary of NP

https://www.youtube.com/watch?v=OY41QYPI8cw

https://www.youtube.com/ watch?v=EHp4FPyajKQ

Problem Statement

- * Vertex cover
 - Set of nodes s.t. each edge of the graph is incident to at least one node of this set
- * Independent set
 - Set of nodes S is independent if no 2 nodes in S are joined by an edge or are adjacent

Examples

- * Want to find largest possible independent set
 - Ex: {3, 4, 5} vs {1, 4, 5, 6}
- * Want to find smallest vertex cover
 - Ex: {1, 2, 6, 7} vs {2, 3, 7"{

Figure 8.1 A graph whose largest independent set has size 4, and whose smallest vertex cover has size 3.

Objective

- * Try to reduce this problem and compare with another problem so we can understand its relative difficulty because this is NP problem and is unsolvable
- * Pose question differently so we have

YES OR NO answer

 Give graph G and # k, can we construct and independent set of size k?

Objective (cont.)

- * Already simplified question
- * Want to find problems relative difficulty and reduce it's runtime complexity using **INEQUALITY SIGN**
- * Can't solve either independent set or vertex cover but can show they are equally hard by showing IS <= p * VC & VC <= p * IS

Important Lemma

(8.3) Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover.

Try showing this is true!!!

Using this lemma we can conclude...

- (8.4) Independent Set ≤_P Vertex Cover.
- (8.5) Vertex Cover ≤_P Independent Set.
- 8.4: if we can solve Vertex Cover ⇒ we can decide whether G has an IS of size at least k by asking if G has a vertex cover at most K
- 8.5: if we can solve IS ⇒ we can decide whether G has a VC of of at most K by asking if G has an IS of size at least K

3-sat problem

- Boolean problem
- Want the problem to yield answer 1
- Different clauses with several variables

$$(x_1 \vee \overline{x_2}), (\overline{x_1} \vee \overline{x_3}), (x_2 \vee \overline{x_3}).$$

- Truth assignment v that sets all variables to 1 is NOT a satisfying argument vs. to 0 is a satisfying assignment ⇒ each clause MUST evaluate to 1 and have OR operators in between terms of each clause
 - 3 sat when 3 variables
 - Assign 0 or 1 to each variable (F and T)

3-Sat <= p * IS

- * Want to reduce 3-SAT
- * Somehow need to encode boolean constraints of 3-SAT into graph for IS
- * Homework Task: Go over this problem and try to see if can try solving
 - Will post solutions and see if enough time in next session to go over

Problem statement

* Assign colors to nodes of graph s.t. it satisfies the following constraint

Constraint:

No pair of adjacent nodes have same color

Some vocabulary

- * Chromatic number = MINIMUM # of colors required to color graph
 - Varies depending on problem statement
- Vertex coloring
 - Coloring nodes so that no pair of adj nodes have same color
- * Edge coloring
 - Coloring edges so no pair of adj edges have same color

Summary of NP

https://www.youtube.com/watch?v=OY41QYPI8cw

https://www.youtube.com/watch?v=EHp4FPyajKQ

