Theorem: Let V, W be finite-dimensional vector spaces over F with bases  $B = \{v_1, v_2, ..., v_n\}$ ,  $C = \{w_1, w_2, ..., w_m\}$ , respectively, and let  $T \in \mathcal{F}(V, W)$ . Then there exists a unique vector  $A \in F^{mxn}$  such that

$$m_e(TN) = A \mathcal{M}_B(v) \quad \forall \ v \in V.$$

Moreover, the columns of A are  $M_{e}(T|v_{s})$ ,  $M_{e}(T|v_{s})$ ,...,  $M_{e}(T|v_{s})$ 

$$A = [m_e(\tau_{(v_i)})|m_e(\tau_{(v_i)})|--|m_e(\tau_{(v_i)})].$$

Recall that  $\mathfrak{M}_{B}$ ,  $\mathfrak{M}_{E}$  are linear. Let  $v \in V$  and suppose  $X = \mathfrak{M}_{B}(v)$ , that is, suppose  $V = \frac{2}{J} \times_{J} v_{J}$ ,  $\mathcal{T}_{head}$   $A \mathfrak{M}_{B}(v) = A \times_{J} = \sum_{i=1}^{n} \times_{J} \mathfrak{M}_{E}(T(v_{j}))$   $= \sum_{i=1}^{n} \times_{J} \mathfrak{M}_{E}(T(v_{j}))$ 

Thus A satisfier

as desired.

Now suppose BEFMEN also satisfies

Then

$$\Rightarrow$$
 AM<sub>B</sub>( $y_j$ ) = BM<sub>B</sub>( $y_j$ )  $\forall j=1,2,-,n$ 

$$\Rightarrow$$
 Aej = Bej  $\forall j=1,2,--,n$  (since  $m(v_j)=e_j$  by defin)

$$\Rightarrow$$
  $A = B$ .

(Here we used the fact that for any matrix MEFMAY,

Mej = M; if ej is the jth standard basis vector for FM)

Thus A is unique, and the proof is complete.

We write  $\mathfrak{M}(T)$  or  $\mathfrak{M}(T)$  for the metrix A of the previous theorem, and call  $\mathfrak{M}_{8,e}(T)$  the metrix of the livear way T with respect to the baser B of V and e of W. Thus

 $g_{e}(T(v)) = m_{g,c}(T) m_{g}(v) \quad \forall v \in V.$ 

M (T) represents T in the sense of the following commutation Big. diagrams



MeT= me(T)me ← T= me me me

Example: Define D: P3 -> P2 by Op=p'. We use the Standard bases:

$$B = \{1, x, x^2, x^3\}$$
 for  $P_3$ ,  
 $C = \{1, x, x^2\}$  for  $P_2$ .

What is  $\mathcal{M}_{\mathfrak{G},e}(0)$ ?

Solution: We have 
$$P_3 \cong \mathbb{R}^4$$
,  $\mathcal{O}_2 \cong \mathbb{R}^3$ , so

$$D: \mathcal{P}_3 \to \mathcal{P}_2 \implies \mathcal{M}_{8,e}(0) \in \mathbb{R}^{3\times 4}$$

We have

$$D(1) = O \Rightarrow \mathcal{M}_{e}(O(1)) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$D(x) = 1 \implies \mathcal{M}_{e}(0(x)) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathcal{D}(x^2) = 2x \Rightarrow \mathcal{M}_{e}(0/x^2) = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$\mathcal{D}(x^3) = 3x^2 \Longrightarrow \mathcal{M}_{\mathcal{C}}(\mathcal{O}(x^3)) = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}.$$

Thus

$$\mathcal{M}_{0,e}(0) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Example Define T: P3 -> P3 by T(p(x)) = (x+1)p'(x).

We use B = {1,x,x3,x3} on both the domain and condomain:

$$T(1) = 0 \Rightarrow \mathcal{M}_{\mathcal{B}}(T(1)) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$T(x) = (x+1), l = x+1 \Rightarrow \mathcal{M}_{\mathcal{B}}(T(x)) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\int_{-\infty}^{\infty} (x^2) = (x+1) \cdot 2x = 2x + x^2 = ) \mathcal{M}_{\mathcal{B}}(\int_{-\infty}^{\infty} (x^2)) = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \end{bmatrix}$$

Therefor,

$$\mathcal{M}_{\mathcal{B},\mathcal{B}}(T) = \begin{bmatrix} 0 & 1 & 6 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Theorem: Suppose V and Warr finite dimensional vector spaces over a field F, and let dim(V)=n, dim(W)=m. Then  $L(V,W) \cong F^{m\times n}$ .

In fact, given bases B for V and C for W, MB, e: LlV, W) -> Fmm
is an isonorphism.

Proof: We must prove that MB, e is linear and invertible.

Suppose  $T, S \in \mathcal{L}(V,W)$ . Then  $\mathcal{M}_{B,e}$  (T+s) is the mixing matrix in  $F^{mxu}$  satisfying

 $\mathcal{M}_{e}((T+s)(v)) = \mathcal{M}_{\mathfrak{G},e}(T+s)\mathcal{M}_{\mathfrak{G}}(v) \quad \forall v \in V.$ 

But

 $\mathcal{M}_{e}((T+S)(V)) = \mathcal{M}_{e}(T(V)+S(V)) \quad (by defin of T+S)$   $= \mathcal{M}_{e}(T(V)) + \mathcal{M}_{e}(S(V)) \quad (sind me is linear)$   $= \mathcal{M}_{g,e}(T) \mathcal{M}_{g,e}(S) \mathcal{M}_{g}(V)$   $= (\mathcal{M}_{g,e}(T) + \mathcal{M}_{g,e}(S)) \mathcal{M}_{g}(V) \quad \forall Ve V,$ 

which shows that

$$\mathcal{M}_{\mathcal{B},e}(T+S) = \mathcal{M}_{\mathcal{B},e}(T) + \mathcal{M}_{\mathcal{B},e}(S)$$

(since More (T)+ Mr. (5) is also an element of Fmxm).

Similarly, if Ted(v, w) and a eF, the

$$\mathcal{M}_{e}((\alpha T)(v)) = \mathcal{M}_{e}(\alpha T(v))$$

$$= \alpha \mathcal{M}_{e}(T(v))$$

$$= \alpha \left( \mathcal{M}_{g,e}(T) \mathcal{M}_{g}(v) \right)$$

$$= (\alpha \mathcal{M}_{g,e}(T)) \mathcal{M}_{g}(v) \quad \forall v \in V,$$

and hence

$$\mathcal{M}_{\mathcal{B},e}(\omega T) = \alpha \mathcal{M}_{\mathcal{B},e}(T).$$

Thus Mare is linear.

Now suppose Tel(v,w) and  $M_{B,e}(T)=0$ , Then  $gM_{e}(T|v|)=0gM_{B}(v)\quad\forall\ v\in V$ 

Thus  $g(g_{B,e}) = \{0\}$ , which show that  $g(g_{B,e})$  is njecture.

Finally, suppose  $A \in F^{m \times n}$ , Define L:  $F^n \to F^n$  by  $L(x) = Ax \quad \forall x \in F^n$ 

and T: V > W by

(\*) T= me Lm.

Note that TELlV,W) (the composition of linear maps is livear). Moreover,

 $(*) \Rightarrow \mathcal{M}_{e} T = L \mathcal{M}_{g}$   $\Rightarrow (\mathcal{M}_{e} T) |_{U} = (L \mathcal{M}_{g}) |_{U} \quad \forall v \in V$   $\Rightarrow \mathcal{M}_{e} (T |_{U}) = A \mathcal{M}_{g} |_{U} \quad \forall v \in V$   $\Rightarrow A = \mathcal{M}_{g, e} (T).$ 

This shows that Mare is surjecture, and the proof is complete.

Theoren: Let V, W, Z be finite-dimensional vector spaces over F, and let B, C, D be bases for V, W, Z, respectively. If  $T \in \mathcal{L}(V, W)$  and  $S \in \mathcal{L}(W, Z)$ , then

MO,D(STI= Me,D(S) MB,E(T).

Proof: Assume n=dim(V), n=dim(W), p=dim(Z), ad defin

$$A = \mathcal{M}_{e,\vartheta}(s), \quad L_A : F^{m}_{\to} F^{P}, \ L_A(x) = Ax \quad \forall x \in F^{m},$$

Then

=) ST = 
$$M_g^{-1}L_A M_e M_e^{-1}L_B M_B$$
=  $M_g^{-1}L_A L_B M_B$ 
=  $M_g^{-1}L_A L_B M_B$ ,

when Lab: Fn=Fo (p=d,m(2)), Lab(x)=(AB)x YXETT.

But this implies that

and have that

$$AB = \mathcal{M}_{0,D}(ST),$$

as desired.