コンピュータシステム基礎後編演習問題 I クラス名列番号:

氏名:

注意事項 命令一覧表 (Instruction Table を印刷する) を参照して、各問題の空欄に適切な 16 進コードまたは数値を記入しなさい. なお各問題のプログラムでは、エミュレータのシートで記述してある MM 番地列と Operation 列は省略してある. なお、Lbl は Label 列、v-s は value-sign 列、RR または RM はアセンブラ表記の Mnemonic 列、Op1 は第 1 オペランド列、Op2 は第 2 オペランド列、Branch C は分岐命令での分岐条件列である. また、GR ワード番号の指定がない場合は GR#6~GR#F を下記として使う.

GR#6: Op1上位ワード

GR#7: Op2上位ワード

GR#8:サブルーチン先頭番地

GR#9:サブルーチン復帰番地

GR#A: Op1下位ワード

GR#B: Op2下位ワード

GR#C:カウンタ

GR#D:ワークワード

GR#E:ワークワード

GR#F:ワークワード

手計算の問題: [問 1]と[問 2]に答えなさい (番地による数値ワード指定)

Lbl		Instru	ıction		v-s	RR	RM	Op1	Op2	Branch C	Comment
v0	0	0	0	0	٧						数値データ
v1	3	Α	F	9	٧						数値データ
v2	2	3	Е	1	٧						数値データ
									! ! ! !		
	8	Α	>	0			L	GR#A	Lbl-v0		プログラム開始
	В	Α	٧	1			S	GR#A	Lbl-v1		[問1] この命令実行後のGR#Aの値を書きなさい
	Α	Α	٧	2			Α	GR#A	Lbl-v2	 	[間2] この命令実行後のGR#Aの値を書きなさい
	0	1	0	0		HLT					終了停止

注:答えの数値は逆算で検算すること.

問1の答え		
問 2 の答え		

機械命令プログラミングの問題

● 問題 PE1.1 (2) GR#A ← (GR#B+GR#C)×3-GR#D×2

GR#B, GR#C, GR#D には数値データがロードしてあるものとする. ×3の計算は、加算結果を退避させてから式全体を×2で計算し、退避してある値を1回加算して行う. ここではオーバーフローはないものとする.

1	Α	В	С		AR	 GR#B	GR#C	 プログラム開始
		Α	В	?		 GR#A	GR#B	 退避
1	В	В	D		SR	 GR#B	GR#D	
		В	В	?		 GR#B	GR#B	 ×2
1	Α	Α	В		AR	 GR#A	GR#B	
0	1	0	0		HLT	 		 終了停止

● 問題 PE1.1 (3) [F0h] ← [0Ch] + [0Dh] + [0Eh] (番地による数値ワード指定)

第1項をGRワードにロードしてから残りの項をレジスタ・メモリ加算する.

					?					プログラム開始:第1項を GR#A ヘロード
A	4	Α			?		Α	GR#A		
A	4	Α			?		Α	GR#A		
			F	0	?				MM-F0	
0)	1	0	0		HLT				終了停止

● 問題 PE1.1 (4) [F0h] ← [0Ch]×10 (番地による数値ワード指定)

×2まで計算したらGRワードに退避しておき、×8を計算したらそれに加算する.

8	Α	0	С			L	GR#A	мм-ос	プログラム開始
		Α	Α	?			GR#A	GR#A	×2
1	8	В	Α		LR		GR#B	GR#A	-
		Α	Α	?			GR#A	GR#A	-
		Α	Α	?			GR#A	GR#A	-
		Α	В	?			GR#A	GR#B	-
D	Α	F	0			ST	GR#A	MM-F0)
0	1	0	0		HLT			<u>}</u>	終了停止

● 問題 PE1.1 (5) [11h] /8 を計算し、商を[F0h] に剰余(余り)を[F1h] にストアする

例題 PE1.1 (4) のシフトビット数とマスク処理のビット数を増やす(番地による数値ワード指定)

8	Α	1	1			L	GR#A	MM-11	! 	プログラム開始
1	8	Е	Α		LR		GR#E	GR#A	 	
9	F			?		LA	GR#F		 	マスク値を設定
		Е	Е	?			GR#E	GR#E	 	以下/8 の計算
		Е	Е	?			GR#E	GR#E	 	
		Е	Ш	?			GR#E	GR#E	 	
D	Е	Ŧ	0			ST	GR#E	MM-F0	 	
		Α	F	?			GR#A	GR#F	 	マスク処理
D	Α	F	1			ST	GR#A	MM-F1	 	
0	1	0	0		HLT				 	終了停止

● 問題 PE1.3 (1) [F0h] ← max([0Fh], [10h], [11h]) (max は最大値を意味する. 数値は負の場合を含む2の補数形式). 負の場合を含む2の補数形式の数値の大小比較は, 正数は MSB を'1'に負数は MSB を'0'にしてから比較命令 1C(またはC)を用いる. これには数値に8000hを加算してから比較すればよい. 元の値に戻すには再度8000hを加算する.

/ 0											
	9	Е	0	1			LA	GR#E	Imv-01		プログラム開始:(準備) GR#E に 0001h を設定
	2	5	Е	Е		ESD		GR#E	GR#E		(準備)1 ビット転シフトして 8000h にする
	8	Α	0	F			L	GR#A	MM-0F	<u></u>	
	1	Α	Α	Е		AR		GR#A	GR#E		8000h を加算
	8	В	1	0			L	GR#B	MM-10		
	1	Α	В	Е		AR		GR#B	GR#E	<u></u>	8000h を加算
	1	С	Α	В		CR		GR#A	GR#B		
			g	2	?				Lbl-g2		(> or =)なら分岐
					?						上書き
g2	8	В	1	1			L	GR#B	MM-11	 	
	1	Α	В	Е		AR		GR#B	GR#E	<u></u>	
	1	С	Α	В		CR		GR#A	GR#B	-	
			დ	3	?				Lbl-g3		(> or =)なら分岐
					?					-	上書き
g3					?					-	8000h を加算(元に戻す)
	D	Α	F	0			ST	GR#A	мм-го	-	
	0	1	0	0		HLT					終了停止

● **問題 PE1.3 (2)** [F0h] ← | [11h] − [0Ch] | (差を求め, 負数の場合は絶対値に変換する) 負数判定は差を求める演算(減算)の CC で行う.

	8	Α	1	1			L	GR#A	MM-11		プログラム開始
		Α	0	О	?			GR#A	MM-0C	 	
			g	4	?				Lbl-g4		結果が正数またはゼロ(+ or 0)なら分岐
	9	F	0	0			LA	GR#F	Imv-00	 	以下絶対値変換
			F	Α	?			GR#F	GR#A	 	
			Α	F	?			GR#A	GR#F		
g4	D	Α	F	0			ST	GR#A	MM-F0	! 	
	0	1	0	0		HLT			 	 	終了停止

● 問題 PE1.3 (3) [F0h] ← | [11h] | (負数の場合は絶対値に変換する)

加減算結果ではないデータワードの負数判定は1ビット上位シフト(元のデータは保存)で行う.

	8	Α	1	1			L	GR#A	MM-11		プログラム開始
			Е	Α	?		_	GR#E	GR#A	<u>-</u>	
			g	5	?				Lbl-g5		正数またはゼロ(符号ビットが'0':CC=0)なら分岐
	9	F	0	0			LA	GR#F	Imv-00	 	以下絶対値変換
			F	Α	?			GR#F	GR#A	<u> </u> 	
			Α	F	?			GR#A	GR#F	!	
g5	D	A	F	0			ST	GR#A	MM-F0	!	
	0	1	0	0		HLT				!	終了停止

● 問題 PE1.3 (4) GR#A の値が奇数ならそのまま, 偶数なら2で割って[F0h]にストアする.

奇数判定のためのLSBのCCセットは1ビット下位シフト(元のデータは保存)で行う.

	8	Α	٧	3			L	GR#A	Lbl-v3 -	プログラム開始:(準備) GR#A ← [v3]
			В	Α	?			GR#B	GR#A	奇数判定
			g	6	?				Lbl-g6	奇数 (CC=1) なら分岐
	D	В	F	0			ST	GR#B	MM-F0	
	7	F	g	7			ВС	m=F	Lbl-g7 forced	
g6	D	Α	F	0			ST	GR#A	MM-F0	
g7	0	1	0	0		HLT				終了停止

● 問題 PE1.3 (5) GR#A ≠ GR#B のとき, 大きい方を[F0h]にストアする

(数値は負の場合を含む2の補数形式). GR#A, GR#B の内容は保存する. =のときはストアしない.

	8	Α	1	0			L	GR#A	MM-10	-	プログラム開始:(準備) GR#A ← [10h]
	8	В	1	1			L	GR#B	MM-11	i !	(準備)GR#B ← [11h]
	9	Е	0	1			LA	GR#E	Imv-01	†	(準備)GR#E に 0001h を設定
	2	5	Е	Е		ESD		GR#E	GR#E	<u>-</u>	(準備) 1 ビット下位回転シフトして 8000h にする
	1	8	6	Α		LR		GR#6	GR#A	 	GR#A の内容を保存するため GR#6 にコピー
	1	8	7	В		LR		GR#7	GR#B	<u>-</u>	GR#B の内容を保存するため GR#7 にコピー
	1	Α	6	Е		AR		GR#6	GR#E	<u>-</u>	8000h を加算
	1	Α	7	Е		AR		GR#7	GR#E	 	8000h を加算
			6	7	?			GR#6	GR#7	 	比較
			g	9	?				Lbl-g9	<u> </u>	(=)なら分岐
			bg	Α	?				Lbl-gA		(<)なら分岐
	D	Α	F	0			ST	GR#A	MM-F0	 	
	7	F	g	9			ВС	m=F	Lbl-g9	forced	
gA	D	В	F	0			ST	GR#B	MM-F0	 	
g9	0	1	0	0		HLT				 	終了停止

コンピュータシステム基礎後編演習問題 II クラス名列番号:

氏名:

● 問題 PE2.1 (1) GR#0 の上位バイトと下位バイトをそれぞれ GR#1, GR#2 の下位バイトに分けて格納する

	8	0	٧	i			L	GR#0	Lbl-vi		プログラム開始:(準備) GR#O ← [vi]
	1	8	1	0		LR		GR#1	GR#0	† 	GR#1 ← GR#0 (上位バイト用にコピー)
	1	8	2	0		LR		GR#2	GR#0	 	GR#2 ← GR#0 (下位バイト用にコピー)
	9	С			?		LA	GR#C		-	GR#C にシフト回数(カウント初期値)を設定
	9	F	0	1			LA	GR#F	Imv-01	¦ ⊢ ¦	GR#F に減算用 1h を設定
g1	2	3	1	1		SD		GR#1	GR#1	<u>-</u>	GR#1 ← sd GR#1 (下位シフト, ループ処理開始)
	1	В	O	F		SR		GR#C	GR#F	 	GR#C のシフト回数を-1
			æ	1	?				Lbl-g1		残りのシフト回数が>0 の正数ならラベル g1 〜分岐
	9	3	F	F			LA	GR#3	Imv-FF	<u></u>	GR#3 にマスク値を設定
			2	3	?			GR#2	GR#3	 	GR#2 and GR#3 (マスク処理)
	0	1	0	0		HLT				! ⊢ !	終了停止

● 問題 PE2.1 (2) 1 バイトデータ 57h に含まれる2値の'1'の数を計数し[F0h]にストアする

注:あらゆる1バイトデータに対応できるプログラムにすること.

	9	Α	5	7			LA	GR#A	Imv-57	<u></u>	プログラム開始: GR#A ← 57h
	9	В	0	0			LA	GR#B	Imv-00	 	GR#B をゼロクリア
	9	С			?		LA	GR#C		 	GR#Cにシフト回数?(カウント初期値)を設定
	9	Е	0	1			LA	GR#E	Imv-01	 	GR#E に加減算用数値 1h を設定
g3	2	3	Α	Α		SD		GR#A	GR#A	 	GR#A ← sd GR#A (下位シフト,ループ処理開始)
			დ	2	?				Lbl-g2	<u> </u>	CC=0 ならラベル g2 へ分岐
	1	Α	В	Е		AR		GR#B	GR#E	 	GR#B を+1
g2	1	В	С	Е		SR		GR#C	GR#E	<u></u>	GR#C のシフト回数を-1
			bg	3	?				Lbl-g3		残りのシフト回数が>0の正数ならラベル g3 へ分岐
	D	В	F	0			ST	GR#B	MM-F0	 	[F0h] ← GR#B
	0	1	0	0		HLT				<u>-</u> -	終了停止

● 問題 PE2.1 (3) 数値 5h の値を二乗し[F0h]にストアする

5h を 5h 回加算する

	9	Α	0	0			LA	GR#A	Imv-00	プログラム開始:GR#A をゼロクリア
	9	В	0	5			LA	GR#B	Imv-05	GR#B に数値 5h を設定
	1	8	С	В		LR		GR#C	GR#B	GR#C に加算回数 5h を設定(GR#B をコピー)
	9	Е	0	1			LA	GR#E	Imv-01	GR#E に減算用数値 1h を設定
g4	1	Α	Α	В		AR		GR#A	GR#B	GR#A + GR#B (ループ処理開始)
			С	Е	?			GR#C	GR#E	GR#C の加算回数(カウント)を−1
			g	4	?				Lbl-g4	残りの加算回数が>0 の正数ならラベル g4 へ分岐
	D	Α	F	0			ST	GR#A	мм-ғо	[F0h] ← GR#A
	0	1	0	0		HLT				終了停止

例題 PE3.1 (1) [F1h][F0h] ← [05h][04h]+[07h][06h] (2ワード加算)

GR#A と GR#6, GR#B と GR#7 をペアレジスタとして用いる(後者が上位ワード用)

2 ワード加算サブルーチンを用いる. ([IA2] 1) 参照) そのプログラムで, 下位ワード加算前と加算後の第1 オペランドの数値から上位ワードへのキャリー (桁上げ) の有無を判定する. キャリーがある場合は加算後の絶対値が加算前の絶対値より小さくなる.

- '		.,	•—		-,	· > 1\rightarrow 1\rightarrow 1		- ,	-		
	8	Α	0	4			L	GR#A	MM-04		プログラム開始 : GR#A に 0p1 下位ワードをロード
	8	6	0	5			L	GR#6	MM-05		GR#6 に 0p1 上位ワードをロード
	8	В	0	6			L	GR#B	MM-06		GR#B に 0p2 下位ワードをロード
	8	7	0	7			L	GR#7	MM-07		GR#7 に 0p2 上位ワードをロード
	9	D	0	1			LA	GR#D	Imv-01		GR#D にキャリー(桁上げ)用の 1h を設定
	9	8	s	0			LA	GR#8	Lbl-s0		GR#8 にサブルーチン先頭ラベル s0 を設定
	0	5	9	8		BALR		GR#9	GR#8	forced	サブルーチン s0 へ分岐
	D	Α	F	0			ST	GR#A	MM-F0		0p1 下位ワードを F0h 番地ヘストア
	D	6	F	1			ST	GR#6	MM-F1		0p1 上位ワードを F1h 番地ヘストア
	0	1	0	0		HLT					終了停止
											以下, 2ワード加算サブルーチン
s0			Е	Α	?			GR#E	GR#A		退避
	1	Α	Α	В		AR		GR#A	GR#B		下位ワード加算
			Α	Е	?			GR#A	GR#E		0p1 と退避してある 0p1 とを比較
	7	Α	g	4			ВС	m=A	Lbl-g3	> or =, + or 0	(> or =)ならキャリー無しでラベル g4 へ分岐
			6	D	?			GR#6	GR#D		0p1 上位ワードにキャリーを加算
g4	1	Α	6	7		AR		GR#6	GR#7		上位ワード加算
	0	7	F	9		BCR		m=F	GR#9	forced	GR#9 の復帰番地へ無条件分岐

例題 PE3.1 (2) [F1h][F0h] ← [07h][06h]/4 (2ワード除算, 小数点以下切捨て)

2ワード連結nビット下位シフトサブルーチンを用いる(**[IA3] 2)** 参照). そのプログラムで,上位ワードの下位シフトでの LSB からのアンダーフロービットを下位シフト済み下位ワードの MSB へ合成する処理を行う.

	8	Α	0	6			L	GR#A	MM-06		プログラム開始:R#Aに Op1 下位ワードをロード
	8	6	0	7			L	GR#6	MM-07		GR#6 に 0p1 上位ワードをロード
	9	D	0	1			LA	GR#D	Imv-01	 	GR#D に数値 1h を設定
	2		Е	D	?			GR#E	GR#D	 	合成用数値 8000h を作成
	9	С			?		LA	GR#C			カウンタ用 GR#C に回数 ?h を設定
	9	8	S	1			LA	GR#8	Lbl-s1		GR#8 にサブルーチン先頭ラベル s1 を設定
	0	5	9	8		BALR		GR#9	GR#8	forced	サブルーチン s1 へ分岐
	D	Α	F	0			ST	GR#A	MM-F0		0p1 下位ワードを F0h 番地へストア
	D	6	F	1			ST	GR#6	MM-F1		0p1 上位ワードを F1h 番地へストア
	0	1	0	0		HLT					終了停止
											以下2ワード連結 n ビット上位シフトサブルーチン
s1	2	3	Α	Α		SD		GR#A	GR#A		GR#A の 0p1 下位ワードを 1 ビット下位シフト
	2	3	6	6		SD		GR#6	GR#6		GR#6 の 0p1 上位ワードを 1 ビット下位シフト
			g	5	?				Lbl−g5		CC=0 ならラベル g5 へ分岐
			Α	Е	?			GR#A	GR#E		シフトした 0p1 下位ワードに 8000h を合成
g5	1	В	С	D		SR		GR#C	GR#D		カウンタ用 GR#C を−1
	7	2	S	1			ВС	m=2	Lbl-s1	>, +	>0 の正数ならラベル s1 へ分岐
	0	7	F	9		BCR		m=F	GR#9	forced	GR#9 の復帰番地へ無条件分岐

● 問題 PE3.1 (1) [F1h][F0h] ← [07h][06h] - [09h][08h] (2ワード減算)

下位ワード減算で絶対値が 0p1<0p2 のときは 0p1 上位ワードからボロー(借り)が発生するため前もって-1 する. サブルーチンは使用しない. ([IA2] 2) 参照)

	8	Α	0	6			L	GR#A	MM-06	プログラム開始: GR#A に Op1 下位ワードをロード
	8	6	0	7			L	GR#6	MM-07	GR#6 に Op1 上位ワードをロード
	8	В	0	8			L	GR#B	MM-08	GR#Bに Op2 下位ワードをロード
	8	7	0	9			L	GR#7	мм-09	GR#7 に 0p2 上位ワードをロード
	9	D	0	1			LA	GR#D	Imv-01	GR#D にボロー用 0001h を設定
			Α	В	?			GR#A	GR#B	下位ワードの 0p1 と 0p2 を比較
			g	4	?				Lbl-g4	0p1 が小でなければ (> or = なら) 分岐
			6	D	?			GR#6	GR#D	上位ワードの 0p1 からボローを減算
g4	1	В	Α	В		SR		GR#A	GR#B	下位ワード減算
	1	В	6	7		SR		GR#6	GR#7	上位ワード減算
	D	Α	F	0			ST	GR#A	MM-F0	0p1 下位ワードを F0h 番地へストア
	D	6	F	1			ST	GR#6	MM-F1	0p1 上位ワードを F1h 番地へストア
	0	1	0	0		HLT				終了停止

● 問題 PE3.1 (2) [07h]の値を2ワード演算で1024倍し [F1h] [F0h] にストアする

2ワード連結nビット上位シフトサブルーチンを使用する ([IA3] 1) 参照)

	8	Α	0	7			L	GR#A	MM-07	プログラム開始:GR#A に Op1 下位ワードをロード
	9	6	0	0			LA	GR#6	Imv-00	0p1 上位ワードをゼロクリア
	9	D	0	1			LA	GR#D	Imv-01	GR#D に数値 1h を設定
	9	С			?		LA	GR#C		カウンタ用 GR#C にシフト回数を設定
	9	8	S	2			LA	GR#8	Lbl-s2	GR#8 にサブルーチン先頭ラベル s2 を設定
	0	5	9	8		BALR		GR#9	GR#8 forced	サブルーチン s1 へ分岐
	D	Α	F	0			ST	GR#A	мм-ғо	0p1 下位ワードを F0h 番地ヘストア
	D	6	F	1			ST	GR#6	MM-F1	0p1 上位ワードを F1h 番地へストア
	0	1	0	0		HLT				終了停止
										以下 2 ワード連結 n ビット上位シフトサブルーチン
s2			6	6	?			GR#6	GR#6	上位ワードを1ビット上位シフト
			Α	Α	?			GR#A	GR#A	下位ワードを1ビット上位シフト
	7	8	g	3			ВС	m=8	Lbl-g3 =, 0	CC=0 ならラベル g3 へ分岐
			6	D	?			GR#6	GR#D	0verflow した'1'を上位ワードの LSB に合成
g3	1	В	С	D		SR		GR#C	GR#D	GR#C のシフト回数を-1
	7	2	s	2			вс	m=2	Lbl-s2 >, +	残りのシフト回数が>0 の正数ならラベル s2 へ分岐
	0	7	F	9		BCR		m=F	GR#9 forced	GR#9 の復帰番地へ無条件分岐

「以上」