

Introduction to FPGAs

Chun-Jen Tsai and Lan-Da Van Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Fall, 2020

History of the FPGAs

- Before the invention of Field Programmable Gate Array (FPGA), there are many different programmable IC such as PLA, PAL, CPLD, etc.
 - These programmable IC's have very limited logic capacity.
 - CPLD IC's are still popular in industry because their "digital logic programs" do not disappear when the power is off.
- ◆ R. H. Freeman invented first practical FPGA in 1985[†].
 - Freeman and Vonderschmitt co-funded Xilinx in 1984.
 - Xilinx is the first fabless IC design house in the world.
 - TSMC enters the IC OEM business for fabless IC design houses in 1987.

Combinational PLDs

- Programmable two-level logic
 - an AND array and an OR array

Diagram of 32x8 ROM

- programmable interconnections
 - close (two lines are connected)
 - or open
 - A fuse that can be blown by applying a high voltage pulse

PLA Example

W = ABC' + A'B'CD'

x = A + BCD

y = A'B + CD + B'D'

z = w + AC'D' + A'B'C'D

Programming Concept of the FPGA

- Theoretically speaking, creating a digital logic on an FPGA strictly follows the "stored program concept" of software programming.
 - Thus, FPGA coding should be regarded as "software coding".
- Stored program concept: The computing behavior of a piece of hardware is controlled by information stored in memory devices.

Digital Circuits in an FPGA

- The basic ideas of FPGA's is to inter-connect small "truth tables" to emulate complex digital circuits.
 - In an FPGA, these tables are called "Lookup Table" (LUT).

Table 1 input output 0000 Table 5 0001 () input output 1111 0000 0 0001 0 Table 4 input output 1111 0000 () Each table is equivalent to a n-to-1 gate, where n = 4 or 6 for Xilinx FPGA's. 0001 1111

Programmability of the FPGA

- FPGA still adopts the "stored program concept".
 - Both the n-to-1 gates and the wires can be programmed.

A Generic Logic Cell

Mat 3

Basic logic cell (LC) structure:

Features of SRAM-based LUT

- SRAM is often used to implement LUT, the properties of this type of LUT is as follows:
 - n-bit input LUT can handle function of 2^n different inputs.
 - All logic functions take the same amount of area.
 - All functions have the same delay.
 - For CMOS custom logics, XOR is much slower than NAND.
 - Burns power even at idle
- An LUT is more "powerful" than a two-input gate.
 - Gate-count is not a good measure of FPGA logic cost.
 - For static gate, n input NAND/NOR gate has ~ 2n transistors.
 - For an FPGA LC, 4-input LUT has 128 transistors in SRAM,
 96 in multiplexer.

Function Implementation with LUTs

The datapath that implements F = A'B'C + A'BC' + AB is as follows, the LUT4 has entries as follows:

$X_1X_2X_3X_4$	F
0000	0
000 1	0
001 0	1
001 1	1
111 1	1

LUT4 table entries (red means don't care)

A function with more than 4 variables can always be decomposed to the sum (OR) of 4-variable function.

Carry Chains in FPGA

- Since additions are very important, many FPGAs have dedicated circuits for carry calculation and propagation.
 - Both carry look-ahead and carry-ripple adders can be implemented efficiently on FPGAs.

Review: Look-ahead Carry Generator

Mat 3

A look-ahead carry adder is more efficient than a carry-ripple adder:

Review: Look-ahead Carry Generator

Programmable Interconnect Points

The routing wires in an FPGA is programmed using a single-bit SRAM cell connected to a transistor:

Connect/disconnect a single wire:

Routing a signal:

Interconnect Architecture

- On an FPGA, we must be able to control
 - Connections from wiring channels to LCs
 - Connections between wires in the wiring channels

Place and Route Problem

- Wiring among LCs are organized into channels.
 - Channels are arranged horizontally and vertically on the chip.
 - There are many wires per channel.
- Connections between wires made at programmable interconnection points
- An EDA tool must choose:
 - Channels from source to destination
 - Wires within the channels

Xilinx FPGA Family

Mat 3

- The Xilinx FPGA generations are coupled with the TSMC manufacturing process.
 - Usually two lines of product before the TSMC 28nm process
- Old products before the 28 nm TSMC process
 - Virtex-II / Spartan-2 (130 nm)Virtex-4 / Spartan-3 (90nm)
 - Virtex-5 (65 nm)
 - Virtex-6 (40 nm)/ Spartan-6 (45 nm)
- New products after the 28 nm TSMC process
 - Virtex-7 / Kintex-7 / Artix-7 / Zynq-7 (28 nm)
 - Virtex UltraScale / Kintex UltraScale (20nm)
 - Virtex UltraScale+ / Zynq UltraScale+ (16 nm FinFET+)

19

6-input LUT

Xilinx FPGA Architecture

Mat 3

Xilinx FPGAs are composed of CLBs, BRAMs, Multipliers (in DSP slices), CMTs, and IOBs.

XC7A35T:

- 2,600 CLBs
- 1800 Kb BRAMs
- 90 25x18-bit multipliers
- 5 CMTs

CLB Architecture of Artix-7

- The CLB architecture of an Artix-7 FPGA:
 - The main resources for logic synthesis
 - Each CLB contains two slices, each slice four logic cells.
 - Each CLB is connected to a switch matrix.
 - Carry chain runs vertically in a column from one slice to the one above.

CLB Architecture of Spartan II

- Each CLB contains four logic cells, organized as a pair of slices.
- Each slice has a fourinput lookup table, logic for carry and control, and a D-type flip-flop.
- Spartan II part family provides the flexibility and capacity of an onchip block RAM.
- 1 CLB = 2 slices = 4 logic cells

Slice Structure

Mat 3

The left-hand and right-hand slices have different architecture:

WT6 can be used as a shift-register or a small RAM block, i.e., a distributed RAM

Artix-7 Slice Structure (SliceM)

Synthesis of a Large Multiplexor

- Several 2-to-1 MUXes can be combined to form a large mux.
- Large mux consumes FPGA resources significantly and creating long signal path delay.
 - Please use them wisely.

Configurable LUT6 or LUT5

Mat 3

Each 6-input LUT can also be configured as two 5input LUT's for logic synthesis:

Multi-Purpose LUT in SliceM

Mat 3

The LUTs in SliceM can also be configured as either 32-bit shift registers or 32-bit RAM blocks (called distributed RAM).

LUT as Distributed RAM

- LUT can be used as Distributed RAM.
 - Each unit is a 32×1 RAM, where 5 of the LUT input lines becomes the address lines of a RAM block.
 - LUTs can be cascaded to increase RAM size.
 - Each LUTs can be used to Implement either
 - a 64×1-bit RAM
 - a 32×2-bit RAM
 - a 32×1-bit RAM with dual output ports
- Synchronous write
- Synchronous / Asynchronous read
 - Output flip-flop is used for synchronous read.

LUT as Shift Register

- Each LUT can be configured as a shift register.
 - Bit depth of the shift register is configurable from 1 to 32 bits.
 - The 5 of the input lines of the LUT is used to set the depth of the shift register.
- Multiple LUTs can be cascaded to form larger shift registers.

DSP Slice

- Each DSP slice contains:
 - 25x18 multiplier, 25-bit pre-adder, 48-bit ALU, 17-bit shifter
 - Configurable pipeline

Configuring SRAM-based FPGA

- There are several ways to configure an FPGA.
 - A host PC configures FPGA using JTAG interface, not good for "turn-key" systems.
 - FPGA boots in master mode, reads configuration data from a flash ROM (or SD card) through the SPI bus.
 - FPGA boots in slave mode, a microcontroller (through GPIO) or a CPLD can be used to configure an FPGA.

Behavior of FPGA Configuration

Mat 3

- When a Xilinx FPGA is configured or reconfigured, every cells are initialized.
 - Configuration has the same effect as a global reset and it sets/presets all the flip-flops and initializes all RAM cells.

FDC – D Flip-flops with asynchronous clear FDP – D Flip-flops with asynchronous preset

References

- Mentor Graphics, The Design Warrior's Guide to FPGAs Devices, Tools, and Flows, ISBN 0750676043, 2004.
- Xilinx, 7 Series FPGAs Configurable Logic Block User Guide, Xilinx UG474, v1.8, Sep. 27, 2016.
- P. Garrault and B. Philofsky, HDL Coding Practices to Accelerate Design Performance, Xilinx WP231, Jan. 6, 2006.
- Xilinx, Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs, XAPP462, Jan. 2006.
- M. Peattie, Using a Microprocessor to Configure Xilinx FPGAs via Slave Serial or SelectMAP Mode, Xilinx AN502, Aug. 2009.

