Proximity Measure for Binary Attributes

A contingency table for binary data

- Distance measure for symmetric binary variables
- $d(i,j) = \frac{r+s}{q+r+s+t}$
- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{q+r+s}$
- Jaccard coefficient (*similarity* measure for asymmetric binary variables): $sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$
- Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

	thin Cross's scharges	Town Cyes,	7				
Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P-> Positive	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N-> Negative	N	N	N

_					_		·		_ ,	
		•			•			_	•	_
	Ge	nder is	6	a symn	netric at	tribu	ute	(not co	unted ir	1)

- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0
- Distance: $d(i, j) = \frac{r+s}{q+r+s}$

$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33 \frac{1}{2}$		M	lary	
2+0+1		1	0	Σ_{row}
$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67 / 3$	1	1	1	2
Jim	0	2	2	4
$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$	\sum_{col}	3	Mary 0 1 2 3	6

		Jin	1	
		1	0	Σ_{row}
	1	1	1	2
Jack	0	1	3	4
	\sum_{col}	2	4	6

	Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
1	Jack	M-1	Y~	N / 0	P-> Positive 1	N / 0	N/0	N / 0
	Mary	F/0	Y/1	N/O	PI	N/O	P / 1	N~O
	Jim	M ~ 1	Y /	P _ 1	N-> Negative 0	N / 0	N / 0	N ~0

mary

		1	0	SUM
Jack	1	2 °4	17	3
	0	15	3 ₄	4
	SUM	3	4	

(Symmetric)

$$d(i, j) = \frac{r+s}{q+r+s+t}$$

$$= \frac{1+1}{2+1+1+3} = \frac{2}{7}$$

≠**ให้ลูท**ร, ทัพาราว

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M-1	Y-1	N/0	P- Positive 1	N / 0	N/0	N / 0
Mary	F / 0	Y-1	N/O	P	$N \sim 0$	P / 1	N ~ 0
Jim	M / 1	Y /	P/_1	N-> Negative 0	N / 0	N / 0	N ~0

Jack กับ Jim

moกัน 2 จากทั้งแมด

Symmetric นับเอาไม่ให้สูทร

Proximity Measure for Categorical Attributes

- ภูชิอ, อาชีพ, สำรัชว, แถว,...
- ☐ Categorical data, also called nominal attributes
 - Example: Color (red, yellow, blue, green), profession, etc.

- Method 1: Simple matching
 - \square m: # of matches, p: total # of variables

- Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_f\}$
 - Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $z_{if} = \frac{r_{if} 1}{M_f 1}$ freshman $\frac{1-1}{4-1} = \frac{o}{3}$ นาระ ยะนำวงกังยุกกรุทุทษณ์ 2
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1

ลำกับท่ำทำในเราอวแท่ลงช่อนลัวจาก น้ำ มา เรียว

Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

พาวกันน การการที่ที่
$$d(i,j) = \frac{\sum_{f=1}^p w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^p w_{ij}^{(f)}}$$
 log Distance ท้อนพฤวกต์แลง Columns

- \square If f is numeric: Use the normalized distance
- ☐ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise
- \Box If f is ordinal
 - Compute ranks z_{if} (where $z_{if} = \frac{r_{if} 1}{M_f 1}$)
 - ☐ Treat z_{if} as interval-scaled

Cosine Similarity of Two Vectors แ้นต์สัพท์จากบทดาม สากลาะเท่าๆกัน ไม่สามารถ ทอทค่ ได้ถ้ามี document ที่เป็นแน้วส่อเพิ่มเข้ามาเพราะจานานคำมันเยอะมาก มันต์ในสากลาท่ากันไม่ได้

A document can be represented by a bag of terms or a long vector, with each attribute recording the *frequency* of a particular term (such as word, keyword, or

phrase) in the document

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Other vector objects: Gene features in micro-arrays

- กลัวกระยะนาวระนาวมุม
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Example: Calculating Cosine Similarity

Calculating Cosine Similarity: $d_1 \bullet d_2$ $cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

- where \bullet indicates vector dot product, ||d||: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

☐ First, calculate vector dot product

$$d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

■ Then, calculate $||d_1||$ and $||d_2||$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

Calculate cosine similarity: $cos(d_1, d_2) = 25/(6.481 \times 4.12) = 0.94$