Linear and Convex Optimization Homework 03

Qiu Yihang, 2021/10/14-10/17

1. Proof:

We prove the proposition by contradiction.

Assume M is not a convex set, i.e.

$$\exists x_1, x_2 \in M, \exists \theta \in [0,1] \text{ s.t. } \mathbf{z} \triangleq \theta x_1 + \bar{\theta} x_2 \notin M \text{ (where } \bar{\theta} = 1 - \theta).$$

By definition of M, we have $x_1, x_2 \in S$ and $f(x_1) = f(x_2) < f(z)$ (otherwise, $z \in M$).

Since S is convex, $z \in S$.

Since f is a convex function, $f(z) = f(\theta x_1 + \bar{\theta} x_2) \le \theta f(x_1) + \bar{\theta} f(x_2) = f(x_1)$.

Therefore, $f(z) \le f(x_1) < f(z)$. Contradiction!

Thus, M is a convex set.

Qed.

2. Proof:

We prove the proposition by contradiction.

Since f is a convex function, $\forall \theta \in [0,1], \ f(\theta x + \bar{\theta} y) \leq \theta f(x) + \bar{\theta} f(y).$

Assume $\exists \theta_1 \in [0,1]$ s.t. $f(\theta_1 x + \overline{\theta_1} y) < \theta_1 f(x) + \overline{\theta_1} f(y)$. Obviously $\theta_1 \notin \{0,1,\theta_0\}$.

Case 1. $\theta_1 \in (0, \theta_0)$.

We have
$$\theta_0 x + \overline{\theta_0} y = \frac{\overline{\theta_0}}{\overline{\theta_1}} (\theta_1 x + \overline{\theta_1} y) + \frac{\theta_0 \overline{\theta_1} - \overline{\theta_0} \theta_1}{\overline{\theta_1}} x$$
.

Since
$$\frac{\overline{\theta_0}}{\overline{\theta_1}} + \frac{\theta_0\overline{\theta_1} - \overline{\theta_0}\theta_1}{\overline{\theta_1}} = \frac{\theta_0\overline{\theta_1} + \overline{\theta_0}(1 - \theta_1)}{\overline{\theta_1}} = \frac{\theta_0\overline{\theta_1} + \overline{\theta_0}\theta_1}{\overline{\theta_1}} = 1$$
,

 $\theta_0 x + \overline{\theta_0} y$ is a convex combination of $\theta_1 x + \overline{\theta_1} y$ and x.

Let
$$\varphi = \frac{\overline{\theta_0}}{\overline{\theta_1}} \in (0,1)$$
 (since $\theta_1 \in (0,\theta_0), \theta_0 \in (0,1)$). Then $\overline{\varphi} = 1 - \varphi = \frac{\theta_0 \overline{\theta_1} - \overline{\theta_0} \theta_1}{\overline{\theta_1}} \in (0,1)$.

Since f is a convex function,

$$f(\theta_0 x + \overline{\theta_0} y) \le \varphi f(\theta_1 x + \overline{\theta_1} y) + \overline{\varphi} f(x)$$

$$< (\varphi \theta_1 + \overline{\varphi}) f(x) + \varphi \overline{\theta_1} f(y) = \theta_0 f(x) + \overline{\theta_0} f(y).$$

However, $f(\theta_0 x + \overline{\theta_0} y) = \theta_0 f(x) + \overline{\theta_0} f(y)$.

Contradiction!

Case 2. $\theta_1 \in (\theta_0, 1)$.

The proof is similar as Case 1.

In conclusion, for the same $x, y, f(\theta x + \bar{\theta} y) = \theta f(x) + \bar{\theta} f(y)$ holds for any $\theta \in [0,1]$.

3.(a) Solution:

f(x) is convex. The proof is as follows.

$$f(\mathbf{x})$$
 can be rewritten in the following form: $f(\mathbf{x}) = \left(x_1 + \frac{1}{2}x_3\right)^2 + \left(x_2 + \frac{1}{2}x_3\right)^2$.

First we prove that
$$\left(\theta\left(u_{1}+\frac{1}{2}u_{2}\right)+\bar{\theta}\left(v_{1}+\frac{1}{2}v_{2}\right)\right)^{2} \leq \theta\left(u_{1}+\frac{1}{2}u_{2}\right)^{2}+\bar{\theta}\left(v_{1}+\frac{1}{2}v_{2}\right)^{2}$$

$$\Leftrightarrow (\theta-\theta^{2})\left(\left(u_{1}+\frac{1}{2}u_{2}\right)^{2}+\left(v_{1}+\frac{1}{2}v_{2}\right)^{2}-2\left(u_{1}+\frac{1}{2}u_{2}\right)\left(v_{1}+\frac{1}{2}v_{2}\right)\right) \geq 0$$

$$\Leftrightarrow (\theta-\theta^{2})\left(u_{1}+\frac{1}{2}u_{2}-v_{1}-\frac{1}{2}v_{2}\right)^{2} \geq 0. \qquad (\theta \in [0,1] \Rightarrow \theta-\theta^{2} \geq 0)$$

Let $\mathbf{x} = (x_1, x_2, x_3), \mathbf{y} = (y_1, y_2, y_3).$

$$f(\theta x + \bar{\theta} y) - \theta f(x) - \bar{\theta} f(y)$$

$$= \left(\theta \left(x_1 + \frac{1}{2}x_3\right) + \bar{\theta} \left(y_1 + \frac{1}{2}y_3\right)\right)^2 - \theta \left(x_1 + \frac{1}{2}x_3\right)^2 - \bar{\theta} \left(y_1 + \frac{1}{2}y_3\right)^2 + \left(\theta \left(x_2 + \frac{1}{2}x_3\right) + \bar{\theta} \left(y_2 + \frac{1}{2}y_3\right)\right)^2 - \theta \left(x_2 + \frac{1}{2}x_3\right)^2 - \bar{\theta} \left(y_2 + \frac{1}{2}y_3\right)^2 > 0 + 0 = 0$$

Therefore, f(x) is convex.

Another Proof:
$$\nabla f = (2x_1 + x_3, 2x_2 + x_3, x_1 + x_2 + x_3), \ \nabla^2 f = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

$$2 \ge 0, 1 \ge 0, \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 \ge 0, \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1 \ge 0, \begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0 \ge 0 \Rightarrow \nabla^2 f \ge \mathbf{0}.$$
By Theorem, $f(\mathbf{x})$ is convex.

(b) Solution:

f(x) is convex. The proof is as follows.

$$\nabla f = \left(-\frac{1}{x_1^2 x_2}, -\frac{1}{x_1 x_2^2} \right), \ \nabla^2 f = \begin{pmatrix} \frac{2}{x_1^3 x_2} & \frac{1}{x_1^2 x_2^2} \\ \frac{1}{x_1^2 x_2^2} & \frac{2}{x_1 x_2^3} \end{pmatrix}.$$

Since $x = (x_1, x_2) \in \mathbb{R}^2_{++}$,

$$\frac{2}{x_1^3 x_2} > 0, \frac{2}{x_1 x_2^3} > 0, \begin{vmatrix} \frac{2}{x_1^3 x_2} & \frac{1}{x_1^2 x_2^2} \\ \frac{1}{x_1^2 x_2^2} & \frac{2}{x_1 x_2^3} \end{vmatrix} = \frac{3}{x_1^4 x_2^4} > 0.$$

i.e.
$$\nabla^2 f > \mathbf{0}$$
.

By Theorem, we know f(x) is a convex function.

(c) Solution:

f(x) is neither convex nor concave. The proof is as follows.

Let
$$x = (1,3), y = (3,1), \theta = \frac{1}{2}$$
. Then $\bar{\theta} = \frac{1}{2}, \theta x + \bar{\theta} y = (2,2)$.

$$f(x) = 9, f(y) = 3, f(\theta x + \bar{\theta} y) = 8 > 6 = \frac{1}{2}(9+3) = \theta f(x) + \bar{\theta} f(y).$$

Thus, f(x) is not convex.

Let
$$\mathbf{x} = (1,1), \mathbf{y} = (1,3), \theta = \frac{1}{2}$$
. Then $\bar{\theta} = \frac{1}{2}, \theta \mathbf{x} + \bar{\theta} \mathbf{y} = (1,2)$.

$$f(x) = 1, f(y) = 9, f(\theta x + \bar{\theta} y) = 4 < 5 = \frac{1}{2}(1+9) = \theta f(x) + \bar{\theta} f(y).$$

Thus, f(x) is not concave.

In conclusion, we know f(x) is neither convex nor concave.

(d) Solution:

 $\underline{f(x)}$ is neither convex nor concave. The proof is as follows.

Let
$$x = (1,1), y = (3,3), \theta = \frac{1}{2}$$
. Then $\bar{\theta} = \frac{1}{2}, \theta x + \bar{\theta} y = (2,2)$.

$$f(x) = 1, f(y) = \sqrt{3}, f(\theta x + \bar{\theta} y) = \sqrt{2} = \frac{2\sqrt{2}}{2} > \frac{1}{2} (1 + \sqrt{3}) = \theta f(x) + \bar{\theta} f(y).$$

Thus, f(x) is not convex.

Let
$$x = (1,3), y = (3,1), \theta = \frac{1}{2}$$
. Then $\bar{\theta} = \frac{1}{2}, \theta x + \bar{\theta} y = (2,2)$.

$$f(\mathbf{x}) = \frac{1}{\sqrt{3}}, f(\mathbf{y}) = 3, f(\theta \mathbf{x} + \bar{\theta} \mathbf{y}) = \sqrt{2} = \frac{6\sqrt{2}}{6} < \frac{9+\sqrt{3}}{6} = \frac{1}{2} \left(\frac{1}{\sqrt{3}} + 3 \right) = \theta f(\mathbf{x}) + \bar{\theta} f(\mathbf{y}).$$

Thus, f(x) is not concave.

In conclusion, we know f(x) is neither convex nor concave.

(e) Solution:

CASE 01. $\alpha = 0$.

We have
$$f(x) = x_2 \cdot \nabla f = (0,1), \ \nabla^2 f = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{0}.$$

Thus, f(x) is both convex and concave.

CASE 02. $\alpha = 1$.

We have
$$f(x) = x_1 \cdot \nabla f = (1,0), \ \nabla^2 f = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{0}.$$

Thus, f(x) is both convex and concave.

CASE 03. $0 < \alpha < 1$.

$$\nabla f = (\alpha x_1^{\alpha - 1} x_2^{1 - \alpha}, (1 - \alpha) x_1^{\alpha} x_2^{-\alpha}),$$

$$\nabla^2 f = \begin{pmatrix} \alpha(\alpha - 1) x_1^{\alpha - 2} x_2^{1 - \alpha} & \alpha(1 - \alpha) x_1^{\alpha - 1} x_2^{-\alpha} \\ \alpha(1 - \alpha) x_1^{\alpha - 1} x_2^{-\alpha} & \alpha(\alpha - 1) x_1^{\alpha} x_2^{-\alpha - 1} \end{pmatrix}.$$
Since $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2_{++},$

$$\alpha(\alpha - 1) x_1^{\alpha - 2} x_2^{1 - \alpha} < 0, \alpha(\alpha - 1) x_1^{\alpha} x_2^{-\alpha - 1} < 0,$$

$$\begin{vmatrix} \alpha(\alpha - 1) x_1^{\alpha - 2} x_2^{1 - \alpha} & \alpha(1 - \alpha) x_1^{\alpha - 1} x_2^{-\alpha} \\ \alpha(1 - \alpha) x_1^{\alpha - 1} x_2^{-\alpha} & \alpha(\alpha - 1) x_1^{\alpha} x_2^{-\alpha - 1} \end{vmatrix}$$

$$= \alpha(\alpha - 1) x_1^{\alpha - 2} x_2^{-\alpha - 1} (x_2^2 + x_1^2 + 2x_1 x_2)$$

$$= \alpha(\alpha - 1) x_1^{\alpha - 2} x_2^{-\alpha - 1} (x_1 + x_2)^2 < 0$$
i.e.
$$\nabla^2 f < \mathbf{0}.$$

By Theorem, we know f(x) is a concave function.

In conclusion, f(x) is {concave. $\alpha \in (0,1)$ both convex and concave. $\alpha = 0$ or $\alpha = 1$

4. Proof:

For any $\mathbf{x}=(x_1,x_2)\in\mathbb{R}^2$, $\mathbf{y}=(y_1,y_2)\in\mathbb{R}^2$, $\theta\in[0,1]$, let $\bar{\theta}=1-\theta$. Since $f_1(x)$ and $f_2(x)$ are strictly convex, we have $\theta f_i(x_i)+\bar{\theta} f_i(y_i)>f_i(\theta x_i+\bar{\theta} y_i)$, $i\in\{1,2\}$. Thus,

$$f(\theta x + \bar{\theta} y) = f_1(\theta x_1 + \bar{\theta} y_1) + f_2(\theta x_2 + \bar{\theta} y_2)$$

$$< \theta f_1(x_1) + \bar{\theta} f_1(y_1) + \theta f_2(x_2) + \bar{\theta} f_2(y_2)$$

$$= \theta (f_1(x_1) + f_2(x_2)) + \bar{\theta} (f_1(y_1) + f_2(y_2)) = \theta f(x) + \bar{\theta} f(y).$$

Therefore, $f(x_1, x_2)$ is a strictly convex function.

Now we prove $f(x_1, x_2) = x_1^2 + x_2^4$ is strictly convex.

We know $f_1(x) = x^2$, $f_2(x) = x^4$ are both strictly convex.

From the conclusion proved above, we know $f(x_1, x_2) = f_1(x_1) + f_2(x_2)$ is strictly convex.

Qed.

5. Proof:

First we prove the sufficiency. Assume f is convex.

For any $x, y \in C$. Let d = y - x, $g(t) = \nabla f(x + td)^T d$. Thus, $g'(t) = d^T \nabla^2 f(x + td) d$. Since f is convex, $\nabla^2 f \ge 0$.

Since C is convex, $x + td \in C$, $g'(t) = d^T \nabla^2 f(x + td) d \ge 0$, i.e. g(t) is increasing on [0,1].

Thus, $[g(0) - g(1)](0 - 1) \ge 0$, i.e.

$$-(\nabla f(\mathbf{x})^T \mathbf{d} - \nabla f(\mathbf{y})^T \mathbf{d}) = (\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^T (-\mathbf{d}) \ge \mathbf{0},$$

i.e.

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0, \quad \forall x, y \in C.$$

Now we prove the necessity. Assume $\forall x, y \in C$, $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$.

Let
$$\mathbf{d} = \mathbf{x} - \mathbf{y}$$
, $h(t) = f(\mathbf{y} + t\mathbf{d})$. Thus, $h'(t) = \nabla f(\mathbf{y} + t\mathbf{d})^T \mathbf{d}$.

For any $x, y \in C$, since C is convex, $\forall \alpha_1, \alpha_2 \in [0,1], \alpha_1 x + \overline{\alpha_1} y \in C, \alpha_2 x + \overline{\alpha_2} y \in C$

(where
$$\overline{\alpha}_i = 1 - \alpha_i, i \in \{1,2\}$$
).

Let $\alpha_1 < \alpha_2$.

Thus,

$$\begin{split} \langle \nabla f(\alpha_1 \mathbf{x} + \overline{\alpha_1} \mathbf{y}) - \nabla f(\alpha_2 \mathbf{x} + \overline{\alpha_2} \mathbf{y}), (\alpha_1 \mathbf{x} + \overline{\alpha_1} \mathbf{y}) - (\alpha_2 \mathbf{x} + \overline{\alpha_2} \mathbf{y}) \rangle \\ &= (\alpha_1 - \alpha_2) \left(\nabla f(\alpha_1 \mathbf{x} + \overline{\alpha_1} \mathbf{y}) - \nabla f(\alpha_2 \mathbf{x} + \overline{\alpha_2} \mathbf{y}) \right)^T \mathbf{d} \ge 0 \end{split}$$

i.e.

$$\nabla f(\alpha_1 \mathbf{x} + \overline{\alpha_1} \mathbf{y})^T \mathbf{d} \leq \nabla f(\alpha_2 \mathbf{x} + \overline{\alpha_2} \mathbf{y})^T \mathbf{d}, \qquad \forall \ \alpha_1, \alpha_2 \in [0,1], \alpha_1 < \alpha_2.$$

i.e.

$$h'(\alpha_1) \leq h'(\alpha_2), \qquad \forall \; \alpha_1, \alpha_2 \in [0,1], \alpha_1 < \alpha_2.$$

By <u>Lagrange Mean Value Theorem</u>, for any $\theta \in (0,1)$, exist $\varphi_1 \in (0,\theta)$, $\varphi_2 \in (0,1)$ s.t.

$$\frac{h(\theta)-h(0)}{\theta-0}=h'(\varphi_1), \frac{h(1)-h(\theta)}{1-\theta}=h'(\varphi_2).$$

Since $1 > \varphi_2 > \theta > \varphi_1 > 0$, we have $h'(\varphi_1) \le h'(\varphi_2)$.

Thus,

$$\frac{h(\theta) - h(0)}{\theta} \le \frac{h(1) - h(\theta)}{\bar{\theta}} \Leftrightarrow \bar{\theta}h(\theta) - \bar{\theta}h(0) \le \theta h(1) - \theta h(\theta)$$
$$\Leftrightarrow h(\theta) \le \bar{\theta}h(0) + \theta h(1)$$

i.e.

$$f(\theta x + \bar{\theta} y) \le \bar{\theta} f(y) + \theta f(x).$$
 $\forall x, y \in C, \forall \theta \in (0,1).$

Considering when $\theta \in \{0,1\}$, obviously $f(\theta x + \bar{\theta} y) = \bar{\theta} f(y) + \theta f(x)$, we have

$$f(\theta x + \bar{\theta} y) \le \bar{\theta} f(y) + \theta f(x).$$
 $\forall x, y \in C, \forall \theta \in [0,1].$

Therefore, f is convex.

In conclusion, f is convex iff. $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$, $\forall x, y \in C$.