MATH2033 Mathematical Analysis

Lecture Note 3 Countability

Basic definition of countability – An intuitive approach

In order to develop a formal definition of countability, we first review how to count the elements in a set S.

We let $S = \{A, B, C, D, \#, \$, ©, \varnothing\}$

Intuitive approach

The easiest way to count the elements in the set is to assign positive integers (from 1 to n) to each of the elements. For example,

1 2 3 4 5 6 7 8
$$S = \{A, B, C, D, \#, \$, \odot, \odot\}$$

So we can conclude that there are 8 elements in the set *S*.

Mathematical formulation

The counting scheme can be described by a mapping f from the set S and the subset of positive integer \mathbb{N} :

We say the set S is *countable* if there is such a counting scheme.

If the set S is finite in the sense that it contains *finitely many elements*, then one can construct the counting scheme (or mapping) easily so that <u>every finite</u> set is always countable.

If the set *S* contains infinitely many elements, then the set is countable (or more formally *countably* infinite) if we are able to construct a counting scheme such that one can count *all* elements in the set.

The mapping f is seen to be *bijective*.

Definition (Countability)

An *infinite set* S is said to be *countably infinite* if and only if there exists a bijection map f from \mathbb{N} to S, where \mathbb{N} is the set of positive integers.

A set *S* is said to be countable if and only if it is either finite or countably infinite.

Remarks

- By considering the opposite of the statement, then we say a set is *uncountable* if such bijection map does not exist.
- If an infinite set S is countably infinite, then there is one-to-one correspondence between the elements in S and the set of positive integers
 N. In this case, one can express the set S as

$$S = \{a_1, a_2, a_3, \dots \}$$

Prove that the set of integers $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ is countable.

Solution

The key step is to construct a bijection between \mathbb{Z} and \mathbb{N} . One can consider the following mapping $f: \mathbb{N} \to \mathbb{Z}$ defined by

$$f(1) = 0$$
, $f(2n) = n$, $f(2n + 1) = -n$.

where n = 1,2,3,...

One can show that the mapping f is bijective. Hence, the set \mathbb{Z} is countable.

Prove that the set defined by $\mathbb{N} \times \mathbb{N} = \{(a, b) | a \in \mathbb{N}, b \in \mathbb{N}\}$ is countable.

Solution

To construct the counting scheme, we list the elements in $\mathbb{N} \times \mathbb{N}$ as an *array* and consider the following strategy:

Step 1: Count the elements in the first diagonal
$$(m+n=2)$$
 (1,1) (1,2) (1,3) (1,4) ... Step 2: Count the elements in the second diagonal $(m+n=3)$ (3,1) (3,2) (3,3) (3,4) ... Step 3: Count the elements in the third diagonal $(m+n=4)$ (4,1) (4,2) (4,3) (4,4) ... \vdots \vdots \vdots \vdots \vdots \vdots

Then the corresponding mapping $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ can be described as

$$f\left(\sum_{k=2}^{m+n-1} (k-1) + n\right) = (m,n).$$

One can check that the mapping is bijective (left as exercise). So the set $\mathbb{N} \times \mathbb{N}$ is countable.

Example 3 (Uncountable set)

Show that the interval (0,1) is *uncountable*.

Solution

We shall prove this using "proof by contradiction". Suppose that the set is countable and there is a bijection $f: \mathbb{N} \to (0,1)$, then we can list the elements in the following way:

$$f(1) = 0. \, a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} \dots \dots \\ f(2) = 0. \, a_{21} a_{22} a_{23} a_{24} a_{25} a_{26} \dots \dots \\ f(3) = 0. \, a_{31} a_{32} a_{33} a_{34} a_{35} a_{36} \dots \dots \\ f(4) = 0. \, a_{41} a_{42} a_{43} a_{44} a_{45} a_{46} \dots \dots \\ f(5) = 0. \, a_{51} a_{52} a_{53} a_{54} a_{55} a_{56} \dots \dots \\ f(6) = 0. \, a_{61} a_{62} a_{63} a_{64} a_{65} a_{66} \dots \dots \\ \vdots$$

Next, we argue that this counting scheme cannot cover all elements in the set.

We consider an element $x \in [0,1)$

$$x = 0.b_1b_2b_3...,$$

where the digits $b_1, b_2, ...$ are chosen such that $b_k \neq a_{kk}$ (i.e. the k^{th} decimal place of x must be different from that of f(k)) for all k = 1, 2, ...

More precisely, we set

$$b_k = \begin{cases} 1 & if \ a_{kk} \neq 1 \\ 2 & if \ a_{kk} = 1 \end{cases}$$

Since $b_k \neq a_{kk}$ for $k \in \mathbb{N}$, so $x \neq f(k)$ for all k = 1,2,... Hence, the mapping f is not surjective. It leads to contradiction. Thus, [0,1) is uncountable.

Remark of Example

In this example, we can see the difference between countably infinite set and uncountable set.

- For countably infinite set, we are still able to find a way to count all elements (although we cannot finish within finite time)
- For uncountable set, there are too many elements which we cannot find a counting method that can count *every element* in the set.

Show that the set $A = \{0,1\} \times \{0,1\} \times \{0,1\} \times \cdots$ is uncountable.

Solution

Suppose that A is countable and there is a bijection $f: \mathbb{N} \to A$ such that

$$f(1) = (a_{11}, a_{12}, a_{13}, a_{14}, \cdots)$$

$$f(2) = (a_{21}, a_{22}, a_{23}, a_{24}, \cdots)$$

$$f(3) = (a_{31}, a_{32}, a_{33}, a_{34}, \cdots)$$

$$f(4) = (a_{41}, a_{42}, a_{43}, a_{44}, \cdots)$$

$$\vdots$$

Next, we consider an element $x=(b_1,b_2,b_3,\cdots)$ which $b_k=\begin{cases} 1 & if \ a_{kk}=0 \\ 0 & if \ a_{kk}=1 \end{cases}$ for $k=1,2,3,\ldots$

Since $b_k \neq a_{kk}$ for all k = 1,2,..., it implies that $x \neq f(k)$ for all $k \in \mathbb{N}$ and the function f is not surjective (and hence not bijective). So it leads to contradiction and the set A should be uncountable.

Some properties of countability

In this section, we shall explore some properties of countability which are useful in analyzing the countability of some complicated sets.

Theorem 1

We let A, B be two sets and let $f: A \rightarrow B$ be a function.

- (Injection theorem) Suppose that f is injective and B is countable, then A is countable.
- (Surjection theorem) Suppose that f is surjective and A is countable, then B is countable
- (Bijection theorem) Suppose that f is bijective, then A is countable if and only if B is countable.

This theorem suggests that one can examine the countability of a set A by considering another set B which is known to be countable or uncountable and constructing a mapping f (injective/surjective/bijective) between these two sets.

Prove that the set of rational numbers $\mathbb{Q} = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N} \right\}$ is countable.

Solution

We consider a mapping $f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$ as

$$f(m,n) = \frac{m}{n}.$$

One can show that f is surjective. Since for any $r \in \mathbb{Q}$, r can be written as $\frac{m}{n}$ for some $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. By taking $(m, n) \in \mathbb{Z} \times \mathbb{N}$, we get $f(m, n) = \frac{m}{n} = r$.

Since \mathbb{Z} is countable, one can write the elements of \mathbb{Z} as $\mathbb{Z} = \{a_1, a_2, a_3, ...\}$. Then one can use the similar method in Example 2 and show that $\mathbb{Z} \times \mathbb{N}$ is countable.

Therefore, we deduce from surjection theorem that $\mathbb Q$ is countable.

Remark of Example 5

Note that the mapping f is not injective. For example, $f(3,6) = f(2,4) = \frac{1}{2}$.

We learnt from Example 3 that the open interval (0,1) is uncountable. Using this fact and show that any open interval (a,b) with a < b is also uncountable.

Solution

To see this, we consider a mapping $f: \underbrace{(0,1)}_{uncountable} \to \underbrace{(a,b)}_{"target"}$ defined by f(x) = a + (b-a)x.

One can show that *f* is bijective:

- (Injective) For any $x_1, x_2 \in (0,1)$ such that $f(x_1) = f(x_2)$, we have $f(x_1) = f(x_2) \Rightarrow a + (b-a)x_1 = a + (b-a)x_2 \Rightarrow x_1 = x_2$.
- **(Surjective)** For any $y \in (a, b)$, we take $x = \frac{y-a}{b-a} \in (0,1)$. One can see that $f(x) = a + (b-a)\left(\frac{y-a}{b-a}\right) = y$.

So f is injective and surjective and hence bijective.

Since (0,1) is uncountable, it follows from bijection theorem that (a,b) is also uncountable.

©Exercise: Show that [a, b), (a, b] and [a, b] are uncountable.

We let A_1 and A_2 be two non-empty sets which A_1 is uncountable, show that

$$A_1 \times A_2 = \{(a_1, a_2) | a_1 \in A_1 \text{ and } a_2 \in A_2\}.$$

is also uncountable.

We let c be an element in A_2 and consider a mapping $f: A_1 \to A_1 \times A_2$ defined by

$$f(a_1) = (a_1, c).$$

One can see that f is injective since

$$f(a_1) = f(a_2) \Rightarrow (a_1, c) = (a_2, c) \Rightarrow a_1 = a_2.$$

(*On the other hand, f may not be surjective)

Since the domain A_1 is uncountable, it follows from the *contrapositive* of injection theorem that $A_1 \times A_2$ is also uncountable.

Proof of Theorem 1

Part 1: Proof of injection theorem

It is sufficient to consider the case when A is an infinite set since A must be countable if A is finite. Note that

- If A is an infinite set, then B must also be infinite set (why?).
- Since B is countable, then there is a bijective function $g: \mathbb{N} \to B$ and the set B can be expressed as $B = \{b_1, b_2, b_3, \dots\}$.
- Since $f: A \to B$ is injective, then there exists an inverse function $f^{-1}: f(A) \to A$. Since $f(A) \subseteq B$, we can write $f(A) = \{b_{n_1}, b_{n_2}, b_{n_3}, \dots\}$. Thus, $A = \{a_{n_1}, a_{n_2}, a_{n_3}, \dots\}$, where $a_{n_k} = f^{-1}(b_{n_k})$.

Then, one can construct a bijective function $h: \mathbb{N} \to A$ as $h(k) = a_{n_k} = f^{-1}(b_{n_k})$.

Therefore, the set *A* is countable.

Part 2: Proof of surjection theorem

Similar to part 1, we just need to consider the case when B is an infinite set.

Since f is surjective, then for any $y \in B$, there exists $x \in A$ such that f(x) = y. So we get B = f(A).

14 MATH2033 Mathematical Analysis

Lecture Note 3: Countability

As A is countable, so A can be expressed as $A = \{a_1, a_2, a_3, ...\}$ and

$$B = f(A) = \{f(a_1), f(a_2), f(a_3), \dots\}.$$

(*Minor technical step) By removing repeated elements, we have

$$B = \{ f(a_{n_1}), f(a_{n_2}), f(a_{n_3}), \dots \}.$$

Hence, we can construct a bijective mapping $h: \mathbb{N} \to B$ as $h(k) = f(a_{n_k})$.

So we can conclude that *B* is countable.

Part 3: Proof of bijection theorem

We divide the proof into two parts:

"⇒" part:

If A is countable, since f is surjective (as it is bijective), it follows from surjection theorem that B is countable.

"←" part:

If B is countable, since f is injective (as it is bijective), it follows from injection theorem that A is countable.

Theorem 2

- 1. (Countable subset theorem) We let A, B be two sets which $A \subseteq B$. If B is countable, then A is also countable.
- 2. **(Countable union theorem)** We let $A_1, A_2, A_3, ...$ be countable collection of sets which are countable, then $\bigcup_{n=1}^{\infty} A_n$ is countable.
- 3. We let $A_1, A_2, ..., A_n$ be n countable sets, then $A_1 \times A_2 \times ... \times A_n$ is also countable.
- 4. If A is uncountable and B is countable, then $A \setminus B$ is uncountable.

Remark of Theorem 2

- By taking the contrapositive of countable subset theorem, we have A is uncountable implies B is uncountable.
- The countable union theorem can be rephrased as follows: "We let S be a countable and suppose the set A_S is countable for all $S \in S$, then $\bigcup_{S \in S} A_S$ is countable."
- The 3rd statement is valid for *finite* product and it may *not* hold for infinite product (see Example 4 for a counter example)

Proof of Theorem 2

<u>Proof of (1):</u> It suffices to consider the case when A is an infinite set (since A is automatically countable if it is finite). Then B must also be infinite set as $B \supseteq A$. Since B is countably infinite, we write $B = \{b_1, b_2, b_3, \dots\}$. As $A \subseteq B$, then $A = \{b_{n_1}, b_{n_2}, b_{n_3}, \dots\}$. Then one can construct a bijection function $f: \mathbb{N} \to A$ as $f(k) = b_{n_k}$. So A is countable.

Proof of (2)

We will consider the case when all A_ks are countably infinite, i.e. $A_k=\{a_{k1},a_{k2},a_{k3},...\}$. We express the elements of $S=A_1\cup A_2\cup A_3\cup...$ as an array, i.e.

a_1	a_{12}	a_{13}	a_{14}	•••	
a_2	a_{22}	a_{23}	a_{24}	•••	$oldsymbol{k}^{th}$ row contains
a_3	a_{32}	a_{33}	a_{34}	•••	the elements of A_k
a_4	a_{42}	a_{43}	a_{44}	•••	
:	:	:	:	••	

Using similar method as in Example 2, we construct the mapping $f: \mathbb{N} \to S$ as

$$f\left(\sum_{k=1}^{m+n-1}(k-1)+n\right)=a_{mn}, \qquad m,n\in\mathbb{N}.$$

17 MATH2033 Mathematical Analysis

Lecture Note 3: Countability

Provided that all $a_{ij}s$ are distinct (*see remark below), the mapping f will be bijective. Thus, S is countable.

*Remark: If there is common element, then this element will be counted more than once and the mapping f will only be surjective. But since $\mathbb N$ is countable, it follows from surjection theorem that S is countable.

Proof of (3)

We first argue that if A and B are countable, then $A \times B$ is also countable.

Assume that both A and B are infinite sets, then the two sets A and B can be expressed as $A = \{a_1, a_2, a_3, \dots \}$ and $B = \{b_1, b_2, b_3, \dots \}$.

To construct the bijective function from \mathbb{N} to $A \times B$, we first express the elements in $A \times B$ as an array:

```
(a_1,b_1) (a_1,b_2) (a_1,b_3) (a_1,b_4) ...

(a_2,b_1) (a_2,b_2) (a_2,b_3) (a_2,b_4) ...

(a_3,b_1) (a_3,b_2) (a_3,b_3) (a_3,b_4) ...

(a_4,b_1) (a_4,b_2) (a_4,b_3) (a_4,b_4) ...

\vdots \vdots \vdots \vdots \vdots
```

Using similar method as in Example 2, we construct the mapping $f: \mathbb{N} \to A \times B$ as

$$f\left(\sum_{k=1}^{m+n-1}(k-1)+n\right)=(a_m,b_n), \qquad m,n\in\mathbb{N}.$$

Since f is seen to be bijective (by construction), so $A \times B$ is countable.

The case for n countable sets A_1, A_2, \dots, A_n can be proved using *induction* as follows:

- When n=1, we have $A_1 \times ... \times A_n = A_1$ which is clearly countable.
- Suppose that the statement is true for n=k (i.e. $A_1\times A_2\times ...\times A_k$ is countable). Since A_{k+1} is countable, it follows from the above result that the set

$$A_1 \times A_2 \times ... \times A_{k+1} = \underbrace{(A_1 \times A_2 \times \cdots \times A_k)}_{countable} \times \underbrace{A_{k+1}}_{countable}$$

is countable.

By induction, we conclude that $A_1 \times A_2 \times ... \times A_n$ is countable for all $n \in \mathbb{N}$.

Proof of (4)

Suppose that $A \setminus B$ is countable. Note that

$$A = (A \backslash B) \cup (A \cap B).$$

Since $A \cap B \subseteq B$ is countable by countable subset theorem, it follows from countable union theorem that A is also countable and there is a contradiction.

19 MATH2033 Mathematical Analysis

Lecture Note 3: Countability

In the context of examining countability, the theorem 2 suggests that one can check the countability of a set A by expressing the set as a combination (union, intersection, complement etc.) of some simple sets which their countabilities are known.

Example 8

Determine if a set defined by

$$A = \{x \in \mathbb{R} | x^6 + 6x - 3 \in \mathbb{Q}\}$$

is countable.

⊗Solution

One can express the set A into

$$A = \{x \in \mathbb{R} | x^6 + 6x - 3 = y, \ y \in \mathbb{Q}\} = \bigcup_{y \in \mathbb{Q}} \underbrace{\{x \in \mathbb{R} | x^6 + 6x - 3 = y\}}_{B_y}.$$

For a fixed value of y, the equation $x^6 + 6x - 3 - y = 0$ has at most 6 real roots. So the set B_y has at most 6 elements and must be countable.

Since \mathbb{Q} is also countable, it follows from countable union theorem that the set $A = \bigcup_{\gamma \in \mathbb{Q}} B_{\gamma}$.

- (a) Show that the set of irrational number is uncountable.
- **(b)** We let $A_1, A_2, A_3, ...$ be a countable collection of non-empty sets which A_1 is countable and A_2 is uncountable. Show that
 - (i) $\bigcap_{n=1}^{\infty} A_n = A_1 \cap A_2 \cap A_3 \cap \dots \text{ is countable}$
 - (ii) $\bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup A_3 \cup \dots \text{ is uncountable}$

⊗Solution

- (a) Note that the set of irrational number can be expressed as $\mathbb{R}\setminus\mathbb{Q}$. Since \mathbb{Q} is countable and $\mathbb{R}\supseteq(0,1)$ is uncountable (since (0,1) is uncountable), it follows from the 4th statement that $\mathbb{R}\setminus\mathbb{Q}$ is uncountable.
- **(b)** (i) Note that $\bigcap_{n=1}^{\infty} A_n = A_1 \cap A_2 \cap A_3 \cap ... \subseteq A_1$ and A_1 is countable, it follows from countable subset theorem that $\bigcap_{n=1}^{\infty} A_n$ is countable.
 - (ii) Since $\bigcup_{n=1}^{\infty} A_n \supseteq A_2$ and A_2 is uncountable, it follows from the countable subset theorem (see remark) that $\bigcup_{n=1}^{\infty} A_n$ is uncountable.

We say a real number x is an algebraic number if and only if it is the solution of some polynomial with integer coefficients. That is, x satisfies

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = 0$$
,

where $a_n \in \mathbb{Z} \setminus \{0\}$, a_0 , a_1 , ..., $a_{n-1} \in \mathbb{Z}$ and $n \in \mathbb{N}$.

Otherwise, we say x is transcendental number if it is not algebraic number.

Show that there exists a transcendental number.

Solution

One can prove the existence by studying the set of transcendental number. We let A be the set of algebraic number and it can be expressed as

$$A = \left\{ x \in \mathbb{R} \middle| \begin{array}{l} a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = 0 \ for \ some \ n \\ for \ some \ n \in \mathbb{N}, (a_n, a_{n-1}, \dots, a_1, a_0) \in (\mathbb{Z} \backslash \{0\}) \times \mathbb{Z} \times \dots \mathbb{Z} \times \mathbb{Z} \end{array} \right\}$$

Then the set of transcendental number is seen to be $T = \mathbb{R} \backslash A$.

We first examine the set A. Note that the set A can be expressed as

$$A = \bigcup_{n \in \mathbb{N}} \underbrace{\left\{ x \in \mathbb{R} \middle| \begin{array}{c} a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = 0 \text{ for some } n \\ \text{for some } (a_n, a_{n-1}, \dots, a_1, a_0) \in (\mathbb{Z} \backslash \{0\}) \times \mathbb{Z} \times \dots \mathbb{Z} \times \mathbb{Z} \end{array} \right\}}_{A_n}$$

$$=\bigcup_{n\in\mathbb{N}}\left(\bigcup_{\substack{(a_n,a_{n-1}\dots,a_0)\\\in(\mathbb{Z}\backslash\{0\})\times\dots\mathbb{Z}\times\mathbb{Z}}}\{x\in\mathbb{R}|a_nx^n+a_{n-1}x^{n-1}+\dots+a_2x^2+a_1x+a_0=0\}\right)$$

Note that $a_nx^n+a_{n-1}x^{n-1}+\cdots+a_2x^2+a_1x+a_0=0$ has at most n roots, then the set $\{x\in\mathbb{R}|a_nx^n+a_{n-1}x^{n-1}+\cdots+a_2x^2+a_1x+a_0=0\}$ is finite (has at most n elements) and therefore countable.

Since both \mathbb{Z} and $\mathbb{Z}\setminus\{0\}\subseteq\mathbb{Z}$ are countable, then $(\mathbb{Z}\setminus\{0\})\times...\mathbb{Z}\times\mathbb{Z}$ is countable. It follows that countable union theorem that A_n is countable.

As \mathbb{N} is countable, it implies that $A = \bigcup_{n \in \mathbb{N}} A_n$ is also countable.

Since \mathbb{R} is uncountable, then it follows that $T = \mathbb{R} \setminus A$ is uncountable and is non-empty. So there exists transcendental number x.

Determine if the set defined by

$$S = \{3x^3 + 2y + 2 | x \in \mathbb{R}, y \in \mathbb{Q}\}\$$

is countable.

⊗ Solution

One can observe that the set is likely to be uncountable since the number of choices of x is uncountable. To prove this claim, we prick an element $y_0 \in \mathbb{Q}$ and consider a subset

$$S^* = \{3x^3 + 2y_0 + 2 | x \in \mathbb{R}\} \subseteq S.$$

Next, we consider a mapping $f: \mathbb{R} \to S^*$ by

$$f(x) = 3x^3 + 2y_0 + 2.$$

Since f(x) is increasing function, we can argue that f is injective. On the other hand, for any $z \in S^*$ and $z = 3x_0^3 + 2y_0 + 2$, we can take $x = x_0$ such that f(x) = z. So f is also surjective. Therefore, f(x) is bijection. Hence, we deduce that

> bijection theorem.

countable subset theorem

 \mathbb{R} is uncountable

 \Rightarrow S^* is uncountable

 \Rightarrow $S \supseteq S^*$ is uncountable.