Probability and Random Process (SWE3026)

JinYeong Bak
jy.bak@skku.edu
College of Computing, SKKU

H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at https://www.probabilitycourse.com, Kappa Research LLC, 2014.

Classification of Natural Phenomena

• Deterministic phenomenon

Observed the same result when the conditions are the same

Random phenomenon

Observed different results even the conditions are the same

Mathematical Model

Procedure

- Identification of model
- Solution for certain quantities of interest (mathematics)
- Verification of model (physical experiment)
- Modification of model (based on experimental results)

Usage of mathematical model

- Applying to similar other situations & predicting the outcome (Analysis)
- Suggesting alternative solution for a given problem (Design)

Probability

Coin toss

- The probability that a coin toss will come up heads is 50% (if the coin is fair)
- The coin will come up heads about ½ of the time if we flip the coin a lot

Probability - Language Model

A set is an unordered collection of things (elements).

•
$$A = \{\clubsuit, \diamondsuit\}$$
 $\diamondsuit \in A; \ \heartsuit \notin A$

•
$$B = \{1, 2, 3\};$$

•
$$C = \{x^2 : x = 1, 2, 3\} = \{1, 4, 9\};$$

•
$$D = \{H, T\};$$

- The set of natural numbers, $\mathbb{N}=\{1,2,3,\cdots\}$.
- The set of integers, $\mathbb{Z}=\{\cdots,-3,-2,-1,0,1,2,3,\cdots\}.$
- The set of real number \mathbb{R} .

Set A is a subset of set B if every element of A is also an element of B. We write $A \subset B$, where " \subset " indicates "subset".

$$A \subset B \equiv (x \in A) \Rightarrow (x \in B)$$

Example:

- $E = \{1, 4\}; \quad C = \{1, 4, 9\} \implies E \subset C.$
- $\mathbb{N} \subset \mathbb{Z}$.

A=B if and only if $A\subset B$ and $B\subset A$.

Example:

- $\{1,2,3\} = \{3,2,1\}$ $\{a,a,b\} = \{a,b\}$

Universal set: The set of all things that we could possibly consider in a given context.

S = Universal set $= \Omega$;

 $\emptyset = \text{Null set}; \ \emptyset = \{\};$

For any set A; $\emptyset \subset A$.

Venn Diagrams

In a Venn diagram any set is depicted by a closed surface.

Union: The union of two sets A and B is denoted by $A \cup B$ and consist of all objects in A or B.

 $x \in (A \cup B)$ if and only if $(x \in A)$ or $(x \in B)$.

$$\{1,2\} \cup \{3\} = \{1,2,3\}$$

Intersection:

The intersection of two sets A and B is denoted by $A \cap B$ and consist of all objects in both A and B.

Complement:

The complement of a set A, denoted by $A^c,$ is the set of all elements in S (Ω) that are Not in A

Difference (subtraction):

The subtraction of set B from A (A-B) is all elements in A that are not in B.

$$A - B = A \cap B^c$$
; $(x \in A)$ and $(x \notin B)$.

Mutually exclusive set (disjoint):

Two sets A and B are mutually exclusive (or disjoint) if $A \cap B = \emptyset$.

 $\clubsuit A_1, A_2, \cdots, A_n$ are m.e. if $A_i \cap A_j = \emptyset, \ i \neq j$.

Partition:

A collection of sets A_1, A_2, \cdots, A_n is a Partition of S if

- a) They are disjoint.
- b) $A_1 \cup A_2 \cup A_3 \cup \cdots A_n = S$

Theorem: De Morgan's law

$$(A \cup B)^c = \overline{A \cup B} = A^c \cap B^c$$

Example:

Let $S = \{1, 2, 3, 4, 5, 6\}$, and $A = \{1, 2\}$, $B = \{2, 4, 6\}$.

a) $A \cup B$

- b) $A \cap B$

d) B^c

- f) $(A \cup B)^c$ g) $A^c \cap B^c$

 \triangleright The sets $\{1,2\}$, $\{3,4,5\}$, $\{6\}$ form a partition of S.

Theorem: Distributive law

•
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

•
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Functions

 $f:X\to Y$.

X: Domain

 $Y: \mathsf{Co} ext{-}\mathsf{domain}$

 $\forall x \in X, f(x) \in Y$

Range: the set of all the possible values of f(x). (Range $\subset Y$)

Functions

Example:

Consider the function $f:\mathbb{R} \to \mathbb{R},$ defined as $f(x)=x^2.$

$$X = Y = \mathbb{R};$$

$$\operatorname{Range}(f) = \mathbb{R}^+ = \{x \in \mathbb{R} | x \geq 0\}.$$

 \succ one-to-one (invertible): $f(x_1) = f(x_2) \implies x_1 = x_2$

Cardinality of a set A is the number of elements in A; |A|.

- $\succ A$ set is finite if $|A| < \infty$.
- ightharpoonup A set if countable if it is finite Or the elements of A can be enumerated or listed in a sequence a_1,a_2,a_3,\cdots , that is,

$$A = \bigcup_{k=1}^{\infty} \{a_k\}, \qquad A = \{a_1, a_2, a_3, \cdots\}$$

Ex: $\mathbb{N} = \{1, 2, 3, \cdots\}$ is countable.

Uncountable: Not countable.

e.g.,
$$\mathbb{R}; [0,1]$$

Equivalently: $oldsymbol{A}$ set is countably infinite if it is in one-to-one correspondence with

$$N=\{1,2,3,\cdots\}=igcup_{k=1}^{\infty}\{k\}$$

Example:

 \mathbb{Z} (set of integers) is countable (countably infinite).

Because
$$\mathbb{Z}=\{0,1,-1,2,-2,3,-3,\cdots\}$$
 \uparrow \uparrow \uparrow \uparrow a_1 a_2 a_3

Example:

Show that a set of the form
$$B=igcup_{i,j=1}^\infty\{b_{ij}\}=igcup_{i}^\infty\sum_{j}^\infty\{b_{ij}\}$$
 is countable.

Example:

Show that the positive rational number form a countable set: $\mathbb{Q}^+ = \bigcup_{i,j=1}^\infty \{\frac{i}{j}\}.$

Example:

Show that the positive rational number form a countable set:

$$\mathbb{Q}^+ = \bigcup_{i,j=1}^{\infty} \{\frac{i}{j}\}.$$

But \mathbb{R} is not countable.

In fact, any interval [a, b] where b > a is not countable.

$$[a,b]=\{x\in\mathbb{R},\;a\leq x\leq b\}$$

$$[a,b) = \{x \in \mathbb{R}, \ a \leq x < b\}$$

But \mathbb{R} is not countable.

Proof) Proof by contradiction

```
We assume that f(n)=r, n \in N; \ r \in R, 0 < r < 1 f(1)=0.11233 \dots \\ f(2)=0.23458 \dots \\ f(3)=0.84635 \dots \\ f(4)=0.25494 \dots \\ f(5)=0.69473 \dots
```

But \mathbb{R} is not countable.

Proof) Proof by contradiction

```
We assume that f(n) = r, n \in N; r \in R, 0 < r < 1 f(1) = 0.11233 \dots f(2) = 0.23458 \dots f(3) = 0.84635 \dots f(4) = 0.25494 \dots f(5) = 0.69473 \dots
```

We can make a new number x = 0.24704 ... by following this rule Extract nth number and Add 1 (if the number is 9, change it to 0)