Dust gap opening in protoplanetary discs with PHANTOM

Giovanni Dipierro University of Leicester

with Guillaume Laibe, Giuseppe Lodato and Daniel J. Price

Motivations

How to open gaps in mm dust?

What is the physics behind their morphology?

Dust radial evolution

$$v_{\text{dust},R} = v_{\text{drag}} + v_{\text{drift}} = \frac{v_{\text{gas},R}}{1 + \text{St}^2} + \frac{1}{\text{St} + \text{St}^{-1}} \frac{1}{\rho_{\text{g}} \Omega_{\text{k}}} \frac{\partial P}{\partial R}$$

Gap opening process in viscous gas discs

Dust gap-opening: high mass planets

High mass planet: 1 M_j

Dust gap-opening: high mass planets

Criterion for the creation of pressure maxima (found numerically in 2D and 3D simulations):

$$M_{
m p} \gtrsim M_{
m th} \sqrt{37lpha + 0.01}$$
 with $M_{
m th} = 3 M_{\star} \left(rac{H}{R}
ight)^3$ (Ataiee et al 2018)

Dust:

- Small dust (St<<1): follows the gas: gap of width ~ 2 4 H (Duffel et al. 2013)
- For St ~ 1: dust trapping at the gap edges: deep gap (Pardekooper & Mellema 2004/6, Zhu et al 2014)

 Role of the drag: assist gap opening from both inside and outside the planet orbit

Dust gap-opening: low mass planets

Dust gap-opening: low mass planets (Dipierro et al. 2016)

Gas:

Unperturbed by planet: $M_{\rm p} \lesssim M_{\rm th} \sqrt{37\alpha + 0.01}$

Dust:

St < 1: follows the gas (no gap)

St \sim 1: drag tends to close the gap most efficiently

Drag: assist gap opening from inside and resist it from outside the planet orbit

Dust gap-opening: low mass planets

Gap opening by low mass planets

Dipierro & Laibe (2017)

$$\frac{\partial \mathbf{v}_{g}}{\partial t} + (\mathbf{v}_{g} \cdot \nabla) \mathbf{v}_{g} = \frac{K}{\rho_{g}} (\mathbf{v}_{d} - \mathbf{v}_{g}) - \nabla(\Phi + \Phi_{p,g}) - \frac{1}{\rho_{g}} (\nabla P - \nabla \cdot \sigma)$$

$$\frac{\partial \mathbf{v}_{d}}{\partial t} + (\mathbf{v}_{d} \cdot \nabla) \mathbf{v}_{d} = -\frac{K}{\rho_{d}} (\mathbf{v}_{d} - \mathbf{v}_{g}) - \nabla(\Phi + \Phi_{p,d})$$

where
$$K = \frac{\rho_{\rm d}\rho_{\rm g}}{\tau_{\rm s} \left(\rho_{\rm d} + \rho_{\rm g}\right)}$$
 $\nabla \Phi_{\rm p}|_{\theta} = \frac{\Lambda}{r}$ $\Lambda(r) = {\rm sgn}(r - r_{\rm p})f \frac{(\mathcal{G}M_{\rm p})^2}{\Omega_{\rm p}^2} \frac{1}{\Delta^4}$

Goldreich & Tremaine 1979

Different prescriptions for the tidal torque in gas and dust:

$$\Delta_{\rm g} = \max(|r - r_{\rm p}|, H, r_{\rm H})$$

$$\Delta_{\rm d} = \max(|r - r_{\rm p}|, r_{\rm H})$$

Outer gap edge

Dipierro & Laibe (2017)

Time required to evacuate all the dust contained between r_p and r_p + r_H

$$t_{\rm open} = \frac{\Delta J}{|{\rm dJ/dt}|} \sim \left(\frac{M_{\rm p}}{M_{\star}}\right)^{-1/3} \Omega_{\rm k}^{-1}$$

Time required to fill the gap by the radial inward drift induced by drag

$$t_{\text{close}} = \frac{r_{\text{H}}}{v_{\text{d},r}} = \frac{(1+\epsilon)(1+\text{St}^2)}{-\zeta \text{St} + (6+3\zeta)\alpha} \frac{v_{\text{k}}}{c_{\text{s}}^2} r_{\text{H}}$$

Refilling condition: $t_{\rm open} \leq t_{\rm close}$

$$\frac{M_{\rm p}}{M_{\star}} \sim {\rm St}^{-3/2} \left(\frac{H}{r_{\rm p}}\right)^3$$

Application to Elias 24 and HL Tau

HL Tau

3D SPH dust/gas simulation:

• 3 planets with mass 0.08, 0.1 and 0.5 M_J at 13.2, 32.3 and 68.7 AU

Low mass regime

Intermediate mass regime

3 planets with mass 0.08, 0.1 and 0.5 M_J at 13.2, 32.3 and 68.7 AU

3D dust/gas simulations

Initial conditions: $\Sigma_{g-d} \propto r^{-0.7}$ with dust mass of mm grains $0.0017~M_{\odot}$, dust to gas ratio 0.1 Planet with initial mass $0.15~M_J$, initially located at 65 au After 85 orbits (at 65 au) the planet reaches a mass $0.7~M_J$ and migrates from 65 to 61.7 au

Disc structure

- Planet's co-orbital gas surface density drops to $\sim 60\%$ of its initial value.
- mm grains accumulates at the pressure maximum
- non uniform gas distribution across the outer disc regions leads to a gradient in the dust radial velocities

ALMA simulated observation

Reasonable match to the gap and ring like structure observed in Elias 24

Change of concavity at ~0.7" is explained by the differential radial motion of large dust grains from the outer radius

Conclusions

- Dust gaps do not necessarily indicate gas gaps (see also Rosotti+2016)
- Low mass planets open gaps in the dust: *resisted* by drag outside and *assisted* by drag *inside*, while high mass planets open dust gaps assisted by drag

Grain size-dependent criterion for dust gap opening in discs:

$$\frac{M_{\rm p}}{M_{\star}} \gtrsim 1.38 \left| \frac{\partial \log P}{\partial \log r} \right|_{r_{\rm p}}^{3/2} {\rm St}^{-3/2} \left(\frac{H}{r_{\rm p}} \right)^3$$

Estimate of the location of the outer edge of the dust gap:

$$\frac{\Delta_{\text{gap}}}{r_{\text{p}}} \simeq 0.87 \left| \frac{\partial \log P}{\partial \log r} \right|_{r_{\text{p}}}^{-1/4} \text{St}^{1/4} \left(\frac{H}{r_{\text{p}}} \right)^{-1/2} \left(\frac{M_{\text{p}}}{M_{\star}} \right)^{1/2}$$

• Major features of HL Tau and Elias 24 are well reproduced by assuming the presence of planets with mass in the range $[0.1,0.8] M_I$