Devoir Surveillé, 3 novembre 2015 Durée 2h00, documents interdits

Exercice 1 – Soit p un nombre premier.

- 1) Soit a un nombre premier. Combien y a-t-il dans $\mathbb{F}_p[X]$ de polynômes unitaires irréductibles de degré a? Indication: se servir de la décomposition en produit d'irréductibles unitaires du polynôme $X^{p^a} X$ dans $\mathbb{F}_p[X]$.
- 2) Soient a et b deux nombres premiers <u>distincts</u>.

Montrer que dans $\mathbb{F}_p[X]$, il y a $\frac{p^{ab}-p^a-p^b+p}{ab}$ polynômes irréductibles unitaires de degré ab.

- 3) Ce résultat montre que dans \mathbb{Z} , $ab \mid p^{ab} p^a p^b + p$. Retrouver cette relation de divisiblité en utilisant le petit théorème de Fermat.
- **4)** Soient a, b et c trois nombres premiers <u>deux à deux distincts</u>. Combien y a-t-il dans $\mathbb{F}_p[X]$ de polynômes unitaires irréductibles de degré abc?
- 5) La formule établie dans la question 2 montre qu'il y a 9 polynômes irréductibles de degré 6 dans $\mathbb{F}_2[X]$. On se propose de retrouver ce résultat de façon élémentaire.
- a) Dans $\mathbb{F}_2[X]$, combien y a-t-il de polynômes irréductibles de degré 2, de degré 3 et de degré 4? Dresser leur liste.
- b) Soit $P(X) = X^6 + a_5 X^5 + a_4 X^4 + a_3 X^3 + a_2 X^2 + a_1 X + a_0 \in \mathbb{F}_2[X]$. Montrer que P(X) n'a pas de racine dans $\mathbb{F}_2[X]$ si et seulement si $a_0 = 1$ et $|\{1 \le i \le 5; a_i = 1\}|$ est impair.
 - c) Combien y a-t-il dans $\mathbb{F}_2[X]$ de polynômes de degré 6 sans racine dans \mathbb{F}_2 ?
- d) Parmi ceux-ci, combien y en a-t-il qui sont réductibles dans $\mathbb{F}_2[X]$? Indication : les dénombrer en observant les décompositions possibles en produits d'au moins deux irréductibles de degré ≥ 2 .
 - e) Conclure.

Exercice 2 -

- 1) Soit p un nombre premier. Quels sont les sous-corps de \mathbb{F}_{p^4} ?
- 2) Soit $x \in \mathbb{F}_{p^4}$. Quel est le degré de $P_x(X)$, le polynôme minimal de x sur \mathbb{F}_p ? On distinguera les cas suivant l'appartenance de x à tel ou tel sous-corps de \mathbb{F}_{p^4} .
- 3) On pose $Q_x(X) = (X x)(X x^p)(X x^{p^2})(X x^{p^3})$. Quelle relation y a-t-il entre $Q_x(X)$ et $P_x(X)$?
- 4) Établir la liste des polynômes unitaires irréductibles de degré 2 de $\mathbb{F}_3[X]$.
- 5) En déduire que le polynôme $P(X) = X^4 X^3 1 \in \mathbb{F}_3[X]$ est irréductible.
- 6) Combien y a-t-il dans $\mathbb{F}_3[X]$ de polynômes unitaires irréductibles de degré 4?

- 7) On identifie \mathbb{F}_{81} à $\mathbb{F}_3[X]/(P(X))$ et on note α la classe de X dans \mathbb{F}_{81} . Quels sont les ordres possibles de α dans \mathbb{F}_{81}^{\times} ?
- 8) Calculer de façon économique α^{16} et α^{40} . Le polynôme P(X) est-il primitif?
- 9) Combien y a-t-il dans $\mathbb{F}_3(X)$ de polynômes unitaires irréductibles primitifs de degré 4?
- 10) Montrer que $\beta = \alpha^3 + \alpha^2 + 1$ appartient à un sous-corps strict de \mathbb{F}_{81} que l'on précisera.
- 11) Déterminer $P_{\beta}(X)$.

Exercice 3 -

- 1) Montrer que dans $\mathbb{F}_2[X]$, le polynôme $\sum_{k=0}^{10} X^k$ est irréductible. 2) Montrer que dans $\mathbb{F}_2[X]$, le polynôme $\sum_{k=0}^{20} X^k$ est produit de tous les irréductibles de degré 2 et 3 et de 2 irréductibles de degré 6.
- 3) Montrer que dans $\mathbb{F}_2[X]$, le polynôme $Q(X) = \sum_{k=0}^{30} X^k$ est produit de 6 irréductibles de degré 5, que l'on notera $P_i(X)$ $(1 \le i \le 6)$.
- 4) Montrer que pour tout $i, P_i(X)$ est primitif.
- 5) Soit $P(X) = X^5 + X^2 + 1 \in \mathbb{F}_2[X]$. Montrer (sans faire le quotient de Q(X) par P(X)) qu'il existe i tel que $P(X) = P_i(X)$.
- 6) On considère la suite $(s_i)_{i\geqslant 0}\in\mathbb{F}_2^{\mathbb{N}}$ définie par $s_0=s_1=s_2=s_3=s_4=1$ et par la relation de récurrence linéaire $s_{i+5} = s_{i+2} + s_i$ (pour tout $i \ge 0$). Montrer que $(s_i)_{i \ge 0}$ est périodique. Déterminer sa période sans calculer les premiers termes de la suite.
- 7) On identifie \mathbb{F}_{32} à $\mathbb{F}_2[X]/(P(X))$. On note α la classe de X dans \mathbb{F}_{32} . Calculer $\mathrm{Tr}(1)$, $\operatorname{Tr}(\alpha)$, $\operatorname{Tr}(\alpha^2)$, $\operatorname{Tr}(\alpha^3)$ et $\operatorname{Tr}(\alpha^4)$.
- 8) En déduire un entier $k \ge 0$ tel que $s_i = \text{Tr}(\alpha^{k+i})$ pour tout $i \ge 0$.