

Delivicas Dado Vum espaço vetorial
con produto intervo, e uje V. Dixmos
Definição: Dado V um espaço vetorial com produto interno, e u, V E V. Dizmos que u v Dão perpendiculares se Zu, V> = O e subte caso devotamos
/24,V>=0 e subte caso devotamos
MIV.
Exemplo: en Ra Considere a aplicação
Exemplo: em R ² Considere a aplicação 2., :> i R ² x R ² → R dada por:
$\mathcal{U} = (\chi_{1}, y_{2}), V = (\chi_{2}, y_{2})$
v
24, v> = 2x1 x2 - xiy2 - x2y1 + 2y1 y2
,
Vale que L, > é um produto intervo em
\mathcal{K}^{\sim} .
.,,),, , , , , , , , , , , , , , , , ,
$M = 2/N_{1}M_{2}$, $\Delta M_{1}M_{7} = \Delta R_{1} - N_{1}M_{2} - V_{1}X_{1} + 2y^{2}$
$=2x^{2}-2xy+3y^{2}$
$M = 2 \pi_{1} y$, $2 \mu_{1} \mu_{7} = 2 \pi^{2} - 2 \mu_{7} + 2 \mu^{2}$ $= 2 \pi^{2} - 2 \mu_{7} + 2 \mu^{2}$ $= 2 (2^{2} - 2 \mu_{7} + 2 \mu^{2})$
Worma: Sija V um espaço vetorial sobre
V (D OUT) Home and 1/ma Norma 1ma
K (R ou I), L'emos que uma Norma em V é uma aplicação.
V & MING GIMONGO,
H.ll:V->RCR
Latisfazudo:
il tvel, llv1170 e llv11=0, se somente se, V=0 (vetor vulo).
V=O (vetor Nulo).

ii) frev, Mark = M. Mrll + Lek (Rout) AER Komamos o modulo, selET Lomamos o modulo de I: (77) = 12 iii) // x+y/1 < 1/x/1 + //y/1, desiqual dade Lian quelar Ideia: a vorma mede o comprimento de um vetor vo espaço vetorial. 11VII: a medida de Kamarlos de V Teverna: Al Vé Um espaço Vetorial com um produto interno L. Y, então a aplica-cão 11.11; V - DR dada poi: Mull = < un 7/2, é uma vorma em V. Dizemos que a vorma é incluzida pelo produto intervo. Teorema: Designeal doche de Cauchy-Achury Alja V um espaço com produto intervo 2,7 estone llull= <u, y>1/2 Vale que para quaisquell 11, VEV: 1 Lujus 1 = 1/1411. 1/11

se men são tais $11 + 11^2 = 11 + 11 + 11 + 11 = 11$ Simpre que Mull=2u,v> (vorma é indu-zida pelo produto intervo.