# The Solution of Recursion Practice

YAO ZHAO

# Practice: trace the computation for the tower of Hanoi like P.3?



# **Practice:**

1. Find the number of ways a 2\*n rectangle can be tiled with rectangular tiles of size 2\*1.



2\*1



2\*6

# **Solution:**



$$F(n) = F(n-1)+F(n-2)$$
  
 $F(1) = 1$   
 $F(2) = 2$   
Same problem as climbing stairs.

# **Practice:**

#### 2. Enter a string and print out all permutations of the characters in the string.

Example:

Input: abc

Output: abc, acb, bac, bca, cab, cba

# Solution:



### Practice:

#### 3. Enter a string and print out all combinations of the characters in the string.

Example:

Input: abc

Output: a, b, c, ab, bc, ac, abc

# Solution:

Output number =  $C_n^1 + C_n^2 + C_n^3 + \cdots + C_n^n$ If we want to print out all  $C_n^i$  strings,

 $X_1X_2X_3...X_n$  all combinations of i characters

choose  $X_1$ 

abandon  $X_1$ 

$$X_1$$
  $X_2X_3 \dots X_n$  all combinations of i-1 characters

 $X_2X_3 \dots X_n$  all combinations of i characters

 $\begin{array}{c} X_1X_2X_3\dots X_n \\ \text{choose } X_1 \\ \hline X_2X_3\dots X_n \\ \text{all combinations of i-1 characters} \\ \hline \text{choose } X_2 \\ \hline \end{array}$ 

 $X_3 \dots X_n$  all combinations of i-1 characters

 $X_3 \dots X_n$  all combinations of icharacters

abandon  $X_2$ 

choose 
$$X_{n-i+1}$$

$$X_{n-i+2} \dots X_n$$

all combinations of i-1 characters