Caso di studio di Metodi Avanzati di Programmazione

AA 2021-2022

Corso A

Data Mining

Lo scopo del data mining è l'estrazione (semi) automatica di *conoscenza* nascosta in voluminose basi di dati al fine di renderla disponibile e direttamente utilizzabile

Aree di Applicazione

1. previsione

utilizzo di valori noti per la previsione di quantità non note (es. stima del fatturato di un punto vendita sulla base delle sue caratteristiche)

2. classificazione

individuazione delle caratteristiche che indicano a quale gruppo un certo caso appartiene (es. discriminazione tra comportamenti ordinari e fraudolenti)

3. Regressione

Predizione del valore di un attributo numerico associato a un esempio sulla base di valori osservati per altri attributi dell'esempio medesimo

3. segmentazione

individuazione di gruppi con elementi omogenei all'interno del gruppo e diversi da gruppo a gruppo (es. individuazione di gruppi di consumatori con comportamenti simili)

4. associazione

individuazione di elementi che compaiono spesso assieme in un determinato evento (es. prodotti che frequentemente entrano nello stesso carrello della spesa)

5. sequenze

individuazione di una cronologia di associazioni (es. percorsi di visita di un sito web)

. . .

Regressione

Considerando dati storici relativi a passati clienti e pagamenti, predire l'ammontare del debito del cliente con la banca

Dati di un nuovo cliente: Paolo Rossi, 35,37.000, architetto, Bari, ?

Regressione

- Apprendimento induttivo da esempi per imparare la definizione di una funzione di regressione
- Gli esempi usati per l'apprendimento sono descritti come vettori di coppie attributo-valore per i quali è nota l'attributo classe (target)
- Nella regressione l'attributo target è numerico

Regressione: KNN

Dato

- un training set (X,Y)
- un esempio **x** denominato query per il quale il valore y sia sconosciuto
- un intero k > 0

Predice il valore sconosciuto di y associato ad **x** identificando i **k** esempi del training set più vicini ad **x** e restituendo la media dei valori y nei k vicini selezionati

Input

Input: una collezione di esempi di apprendimento (training set), ciascun esempio è una tupla di valori per un prefissato insieme di attributi (variabili indipendenti)

$$\mathbf{X} = \{X_1, X_2, ..., X_m\}$$

e un attributo di classe numerico (variabile dipendente/target). L'attributo X_i è descritto come continuo o discreto a seconda che i sui valori siano numerici o nominali.

L'attributo di classe Y è numerico e ha valori nell'insieme dei numeri reali

Input & query

X1	X2	Y
A	В	1
A	В	2
Е	В	2
E	C	3
F	C	4
A	C	2

QUERY

$$X1=A & X2=B Y=?$$

K=1

 Calcolo le distanze tra ciascun esempio nel training set e l'esempio query rispetto ai valori assunti dalle variabili indipendenti X

X1	X2	Y
A	B	1
A	B	2
Е	В	2
Е	C	3
F	C	4
A	C	2

Distanza di Hamming con variabili categoriche

• Identifico i k esempi di training più vicini rispetto a X1 e X2 e restituisco la media della variabile dipendenti nei vicini selezionati

X1	X2	Y
A	B	1
A	B	2
Е	В	2
E	C	3
F	C	4
A	C	2

Distanza di Hamming con variabili categoriche

$$Y=(1+2)/2=1.5$$

Input & query

X 1	X2	Y
A	В	1
A	В	2
E	В	2
E	C	3
F	C	4
A	C	2

QUERY

X1=A & X2=B Y=?

K=2

• Identifico i k esempi di training più vicini rispetto alle variabili indipendenti X1 e X2 e restituisco la media della variabile dipendenti nei vicini selezionati

X1	X2	Y
A	B	1
A	B	2
E	B	2
Е	C	3
F	C	4
A	C	2

Distanza di Hamming con variabili categoriche

$$Y=(1+2+2+2)/4=1.75$$

Input & query con variabili indipendenti numeriche?

X1	X2	Y
1	10	1
2	50	2
4	100	2
5	60	3
8	20	4
4	40	2

$$K=1$$

1-distanza con minMax Scaler

$$d(\langle x_1, x_2, ..., x_m \rangle, \langle x'_1, x'_2, ..., x'_m \rangle) = \sum_{i=1,...,m} |x_i - x'_i|$$

Min-max scaler

• Usato per transformare il training set in modo che tutte le variabili indipendenti abbiamo lo stesso range [0, 1]

newValue =(value- min)/(max-min)

• Dove min e max sono rispettivamente minimo e massimo nella variabile indipendente da scalare

KNN Input & query

X 1	X2	Y
1	10	1
2	50	2
4	100	2
5	60	3
8	20	4
4	40	2

$$K=1$$

Applicare minmax scaler a ciascuna variabile indipendente numerica del training set

Training set	X1	X2	Y	Scaled Trainign set	scaledX1	scaledX2	Y
	1	10	1		0	0	1
	2	50	2		0,142857	0,444444	2
	4	100	2		0,428571	1	2
	5	60	3		0,571429	0,55556	3
	8	20	4		1	0,111111	4
	4	40	2		0,428571	0,333333	2
min	1	10					
max	8	100					

QUERY

X1=1 & X2=110= B Y=?

• Scalare il query point applicando minimo e massimo determinati per ciascuna variabile indipendente nel training set

X 1	X2	Y					
1	50	???	\ m	in	1	10	
			m	ax	8	100	
				scaledX1	scaled	IX2	Y
				0	0,4444	444	???

• Calcolo le distanze tra ciascun esempio nel training set (scalato con minmax scaler) e l'esempio query (scalato con il medesimo minmax scaler usato sul training set) rispetto ai valori assunti dalle variabili indipendenti

d(<0,0>,<0,0.444>)	0,444444444
d(<0.142,0.444>,<0,0.444>)	0,1428571429
d(<0.428,1>,<0,0.444>)	0,9841269841
d(<0.571,0.555>,<0,0.444>)	0,6825396825
d(<1,0.111>,<0,0.444>)	1,3333333333
d(<0.428,0.333>,<0,0.444>)	0,5396825397

							4. Annice	
Training set	X1	X2	Y	Scaled Tra	ainign set	scaledX1	scaledX2	Y
	1	10	1			0	<mark>0</mark>	1
	2	50	2			0,142857	0,444444	2
	4	100	2			0,428571	1	2
	5	60	3			0,571429	0,55556	3
	8	20	4			1	0,111111	4
	4	40	2			0,428571	0,333333	2
•	1	10		scaledX1	scaledX	$2 \qquad Y$		
min	I	10		0	0,44444	4 ???)	
max	8	100		V	0,77777	-		

$$0,4444444444$$
 $0,1428571429$
 $0,9841269841$
 $0,6825396825$
 $1,33333333333$
 $0,5396825397$
 $K=1 \rightarrow Y=2$
 $K=2 \rightarrow Y=1.5$
 $K=3 \rightarrow y=1.666$

- Nel caso di variabili indipendenti miste
 - Si applica la distanza di Hamming alle variabili discrete
 - Si applica minmax scaler + 1-distanza alle variabile continue

Training set	X1	X2	Y	S	caled Train	nign set	X1	scaledX2	Y
	A	10	1				A	0	1
	A	50	2				A	0,444444444	2
	Е	100	2				Е	1	2
	Е	60	3				Е	0,555555556	3
	F	20	4				F	0,1111111111	4
	A	40	2				A	0,3333333333	2
				QU	ERY				
		10		X1=	=A & X	2=50	$= \mathbf{B} \cdot \mathbf{Y}$	<i>'</i> =?	
min		10		K=	1				
max		100	X1	X2_	Y				
			A		222	min		10	
						max		100	
		X1	sca	ledX2	Y				
		Α		44444	??'	-			

								<u> – Dr. A. A</u>	vvice_		
Training set	X1	X2	Y		Scaled Trainign	set	X1	scaledX2		Y	
	A	10	1				A		0	1	
	A	50	2				A	0,44444	<mark>44444</mark>	2	
	Е	100	2				Е		1	2	
	Е	60	3				Е	0,55555	55556	3	
	F	20	4				F	0,11111	111111	4	
	A	40	2				A	0,33333	33333	2	
					X 1	SC	scaledX2 Y		-		
					Α	0,	44444	??	?		
min		10									
max 100				K	$K=1 \rightarrow Y=2$						
D(<a 0=""><a 0.444="">) 0.444444444444444444444444444444444444				K	$K=2 \rightarrow Y=2$						
D(<a,0>,<a,0.444>)</a,0.444></a,0>				K K	$K=3 \rightarrow Y=1.666$						
D(<e,1>,<a,0.444>) 1,555555556</a,0.444></e,1>				<mark>о</mark> б							
D(<e,0.555>,<a,0.444>) 1,1111111111</a,0.444></e,0.555>											
D(<f,0.111>,<a,0.444>) 1,3333333333</a,0.444></f,0.111>											
D(<a,0.333>,<a,0.444>) 0,1111111111</a,0.444></a,0.333>											

Caso di studio

- Progettare e realizzare un sistema client-server denomianto "KNNMiner".
- Il server include funzionalità di data mining per l'apprendimento di modelli KNN e uso degli stessi come strumento di previsione.
- Il client è un applicativo Java che consente di effettuare previsioni usufruendo del servizio di predizione remoto

Istruzioni

- Non si riterrà sufficiente un progetto non sviluppato in tutte le su parti (client-server, serializzazione,...
- Le estensioni aggiungono funzionalità, non le rimuovono