Array-Based Sequences

Python Sequence Classes

- Python has built-in types, list, tuple, and str.
- Each of these sequence types supports indexing to access an individual element of a sequence, using a syntax such as A[i]
- Each of these types uses an **array** to represent the sequence.
 - An array is a set of memory locations that can be addressed using consecutive indices, which, in Python, start with index 0.

Arrays of Characters or Object References

 An array can store primitive elements, such as characters, giving us a compact array.

An array can also store references to objects.

Compact Arrays

- Primary support for compact arrays is in a module named array.
 - That module defines a class, also named array, providing compact storage for arrays of primitive data types.
- The constructor for the array class requires a type code as a first parameter, which is a character that designates the type of data that will be stored in the array.

primes = array('i', [2, 3, 5, 7, 11, 13, 17, 19])

Type Codes in the array Class

Python's array class has the following type codes:

Code	C Data Type	Typical Number of Bytes
'b'	signed char	1
'B'	unsigned char	1
'u'	Unicode char	2 or 4
'h'	signed short int	2
'H'	unsigned short int	2
'i'	signed int	2 or 4
'I'	unsigned int	2 or 4
'1'	signed long int	4
'L'	unsigned long int	4
'f'	float	4
'd'	float	8

Insertion

- □ In an operation add(i, o), we need to make room for the new element by shifting forward the n i elements A[i], ..., A[n-1]
- □ In the worst case (i = 0), this takes O(n) time

Element Removal

- □ In an operation remove(i), we need to fill the hole left by the removed element by shifting backward the n i 1 elements A[i + 1], ..., A[n 1]
- □ In the worst case (i = 0), this takes O(n) time

Performance

- In an array based implementation of a dynamic list:
 - The space used by the data structure is O(n)
 - Indexing the element at I takes O(1) time
 - add and remove run in O(n) time in worst case
- In an add operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one...

Growable Array-based Array List

- In an add(o) operation (without an index), we could always add at the end
- When the array is full, we replace the array with a larger one
- How large should the new array be?
 - Incremental strategy: increase the size by a constant c
 - Doubling strategy: double the size

```
Algorithm add(o)
if t = S.length - 1 then
A \leftarrow \text{new array of}
size ...
for i \leftarrow 0 to n-1 do
A[i] \leftarrow S[i]
S \leftarrow A
n \leftarrow n+1
S[n-1] \leftarrow o
```

Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time
 T(n) needed to perform a series of n add(o) operations
- We assume that we start with an empty stack represented by an array of size 1
- We call amortized time of an add operation the average time taken by an add over the series of operations, i.e., T(n)/n

Incremental Strategy Analysis

- We replace the array k = n/c times
- The total time T(n) of a series of n add operations is proportional to

$$n + c + 2c + 3c + 4c + \dots + kc =$$

$$n + c(1 + 2 + 3 + \dots + k) =$$

$$n + ck(k + 1)/2$$

- Since c is a constant, T(n) is $O(n + k^2)$, i.e., $O(n^2)$
- \square The amortized time of an add operation is O(n)

Doubling Strategy Analysis

- We replace the array $k = \log_2 n$ times
- \neg The total time T(n) of a series of n add operations is proportional to

$$n + 1 + 2 + 4 + 8 + ... + 2^{k} = n + 2^{k+1} - 1 = 3n - 1$$

- \Box T(n) is O(n)
- The amortized time of an add
 operation is O(1)

geometric series

