Input:	Noisy and incomplete data tensor \mathcal{Y}_{Ω} , rank r, resolution parameter H.
1: for	$\pi \in \mathcal{H} = \{-1, \dots, -\frac{1}{H}, 0, \frac{1}{H}, \dots, 1\} $ do
2:	Random initialization of tensor factors $\boldsymbol{A}_k = [\boldsymbol{a}_1^{(k)}, \dots, \boldsymbol{a}_r^{(k)}] \in \mathbb{R}^{d_k \times r}$ for all $k \in [K]$.
3:	while not convergence do

for $k = 1, \ldots, K$ do Update A_k while holding others fixed: $A_k \leftarrow \arg\min_{A_k \in \mathbb{R}^{d_k \times r}} \sum_{\omega \in \Omega} |\mathcal{Y}(\omega) - \pi| F(\mathcal{Z}(\omega) \operatorname{sgn}(\mathcal{Y}(\omega) - \pi)),$

where $F(\cdot)$ is the large-margin loss, and $\mathcal{Z} = \sum_{s \in [r]} a_s^{(1)} \otimes \cdots \otimes a_s^{(K)}$ is a rank-r tensor. end for

where
$$F(\cdot)$$
 is the large-margin loss, and $\mathcal{Z} = \sum_{s \in [r]} \boldsymbol{a}_s^{(1)} \otimes \cdots \otimes \boldsymbol{a}_s^{(K)}$ is a rank- r tensor.
6: **end for**
7: **end while**

end while

7: end while
$$(K)$$

end while
$$(1) \cap (K)$$

Beturn
$$\mathcal{F} \leftarrow \sum_{\boldsymbol{a}} \boldsymbol{a}^{(1)} \otimes \ldots \otimes \boldsymbol{a}^{(K)}$$

Return
$$\mathcal{Z}_{\pi} \leftarrow \sum_{s \in [r]} \boldsymbol{a}_s^{(1)} \otimes \cdots \otimes \boldsymbol{a}_s^{(K)}$$
.

8: Return
$$\mathcal{Z}_{\pi} \leftarrow \sum_{s \in [r]} \boldsymbol{a}_s^{(r)} \otimes \cdots \otimes \boldsymbol{a}_s^{(r)}$$
.

Output: Estimated signal tensor $\hat{\Theta} = \frac{1}{2H+1} \sum_{\pi \in \mathcal{H}} \operatorname{sgn}(\mathcal{Z}_{\pi}).$

Algorithm 1 Nonparametric tensor completion