1 Monotonie a extrémy

Zadání. Vyšetřete monotonii a lokální extrémy funkce

$$f(x) = \arctan(x|x-2|).$$

Řešení. Nejprve rozdělme naši práci dle linearity funkce |x-2| na svém definičním oboru, tj.

$$f(x) = \begin{cases} \arctan(2x - x^2), & x \in (-\infty, 2]; \\ \arctan(x^2 - 2x), & x \in (2, \infty). \end{cases}$$

Dále stanovme derivaci

$$f'(x) = \begin{cases} \frac{2 - 2x}{1 + (2x - x^2)^2}, & x \in (-\infty, 2]; \\ \frac{2x - 2}{1 + (x^2 - 2x)^2}, & x \in (2, \infty). \end{cases}$$

Lomená funkce f' ovšem může nabývat nulové hodnoty pouze v nulových bodech polynomu v činiteli. Naše úloha hledání lokálních extrému se tedy zjednodušuje na rovnice 2-2x a 2x-2, obě s řešením $x_1=1$. Máme tedy dva body podezřelé z extrému, a to $x_1=1$ a $x_2=2$.

Jednoduchou úvahou o určení monotonie diferencovatelné funkce na intervalu pomocí znaménka první derivace lze poukázat na fakt, že

$$f'(0) > 0,$$
 $f'(1,5) < 0,$ $f'(3) > 0.$

Opravdu tedy body x_1 , x_2 rozdělují definiční obor funkce f na intervaly monotonie $(-\infty, 1)$, (1, 2), $(2, \infty)$, přičemž funkce f je rostoucí na $(-\infty, 1)$ a na $(2, \infty)$, klesající na (1, 2). Zároveň pak $x_1 = 1$ je bod lokálního maxima a $x_2 = 2$ lokálního minima.

Zadání. Určete maximum a minimum funkce f na intervalu I:

$$f(x) = \ln(5 - 4x - x^2),$$
 $I = [-3, 0].$

Řešení. Nejprve určeme derivaci

$$f'(x) = \frac{2x+4}{x^2+4x-5}.$$

Tato funkce nabývá nulové hodnoty pouze v bodě $x_0 = -2 \in I$. Stejnou úvahou jako v první úloze zjistěme, že

$$f'(-3) > 0, f'(-1) < 0.$$

Funkce je tedy rostoucí na [-3, -2), klesající na (-2, 0] a v bodě $x_0 = -2$ má lokální maximum. Bod x_0 je tedy zároveň maximem na intervalu I a minimem je jeden z krajních bodů intervalu. Jelikož platí

$$f(-3) \approx 2.079 > 1.609 \approx f(0)$$
.

minimem na intervalu I je bod f(0).