Year 3 — Number Theory

Based on lectures by Professor Henri Johnston Notes taken by James Arthur

Autumn Term 2021

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Contents

1	Div	isibility	2
	1.1	Division Algorithm	2
	1.2	Greatest Common Divisor	2
	1.3	Euclids Algorithm	4
	1.4	Extended Euclidean Algorithm	4

1 Divisibility

1.1 Division Algorithm

Definition 1.1 (Well Ordering Principle). Every non-empty subset of \mathbb{N}_0 contains a least element

Theorem 1.2 (Division Algorithm). Given a $a \in \mathbb{Z}$ and a $b \in \mathbb{N}_1$ there exists unique integers q and r satisfying a = bq + r and $0 \le r < b$.

The proof splits into uniqueness and existence.

Proof. We shall first prove existence, define $S := \{a - xb : x \in \mathbb{Z} \text{ and } a - xb \ge 0\}$. We know $S \ne 0$ since,

- if $a \ge 0$, then choose m = 0, then $a mb = a \ge 0$
- if a < 0, then let a = m, so $a mb = a ab = (-a)(b 1) \ge 0$ since -a > 0 and $b > 0^1$

Hence S is non-empty subset of \mathbb{N}_0 and so by the well ordering principle S must contain a least element $r \geq 0$. Since $r \in S$, then we have there exists a $q \in \mathbb{Z}$ such that a - qb = r and so a = qb + r. Now it remains to check that r < b, so assume for a contradiction that $r \geq b$, then let there be a $r_1 = r - b \geq 0$. Then,

$$a = qb + r = qb + (r_1 + b) = (q + 1)b + r_1$$

and so $a - (q+1)b = r_1 \in S$ and is smaller than r, a contradiction.

Now let us show uniqueness, assume that there exist another pair q', r' such that a = q'b + r' where $0 \le r' < b$. Then form a = a + qb + r = q'b + r' we have that, (q - q')b = r' - r. If q = q', then we must have r = r', suppose for a contradiction that this isn't true, then,

$$b \le |q - q'||b| = |r - r'|$$

However, since $0 \le r, r' < b$ and so |r - r'| < b which gives a contradiction.

1.2 Greatest Common Divisor

Let us start with a theorem.

Theorem 1.3. Let $a, b \in \mathbb{Z}$, $\exists d \in \mathbb{N}_0$ and non-unique $x, y \in \mathbb{Z}$ such that,

- (i) $d \mid a \text{ and } d \mid b$
- (ii) and if $e \in \mathbb{Z}$, $e \mid a$ and $e \mid b$, then $e \mid d$
- (iii) d = ax + by

Proof. If a = b = 0, then d = 0

Suppose that $a \neq b \neq 0$, then let

$$S := \{am + bn : m, n \in \mathbb{Z} \text{ and } am + bn > 0\}$$

Now $a^2 + b^2 > 0$ so S is non-empty and a subset of \mathbb{N}_1 . Hence, by the Well ordering principle then there must be some minimum element d. Then we can write d = ax + by by definition of S.

By the division Algorithm, a = qs + r for some $q, r \in \mathbb{Z}$ with $0 \le q < d$. Suppose for a contradiction that $r \ne 0$. Then,

$$0 < r = a - qd = a - q(ax + by) = (1 - qx)a - qby$$

¹I think this is wrong, I don't see this as true.

Hence, $r \in S$. But r < d, contradiciting the minimality of d in S. So we must have r = 0, i.e $d \mid a$. The same works for $d \mid b$.

Suppose that $e \in \mathbb{Z}$, $e \mid a$ and $e \mid b$. Then e divides any linear combination of a and b, so $e \mid d$. Suppose that $e \in \mathbb{N}_1$ also satisfies (i) and (ii). Then, $e \mid d$ and $d \mid e$ and so $d = \pm e$, but $d, e \geq 0$ and so d = e. Thus d is unique.

Note that this is a standard trick to prove that integers divide, by just proving that r = 0 by contradiction.

Corollary 1.4. If $a, b \in \mathbb{Z}$ then there exists a unique $d \in \mathbb{N}_1$ such that.

- (i) $d \mid a$ and $d \mid b$
- (ii) if $e \in \mathbb{Z}$, then $e \mid a$ and $e \mid b$ then $e \mid d$

Proof. The existence of a d is given by the theorem. In the proof of uniqueness we only use (i) and (ii). \square

Definition 1.5 (Greatest Common Divisor). Let $a, b \in \mathbb{Z}$. Them d of the previous corollary is just the greatest common divisor of a and b, written gcd(a, b). Also sometimes seen as hcf(a, b).

If gcd(a, b) = 1, then a and b are coprime.

Identity (Bezouts Identity). Given $a, b \in \mathbb{Z}$ there exist $x, y \in \mathbb{Z}$ such that gcd(a, b) = ax + by.

Proposition 1.6. Let $a, b, c \in \mathbb{Z}$, then,

- (i) gcd(a, b) = gcd(b, a)
- (ii) gcd(a, gcd(b, c)) = gcd(gcd(a, b), c)
- (iii) gcd(ac, bc) = |c| gcd(a, b)
- (iv) gcd(1, a) = gcd(a, 1) = a
- (v) gcd(0, a) = gcd(a, 0) = |a|
- (vi) $c \mid \gcd(a, b)$ if and only if $c \mid a$ and $c \mid b$
- (vii) gcd(a + cb, b) = gcd(a, b)

Then we can consider the following remark,

Remark. Note that gcd(a, b) = 0 if and only if, a = b = 0. Otherwise, $gcd(a, b) \ge 1$.

Proof. Checking these properties are pretty simple, for (vi) just use Bezouts.

We shall prove (iii), so let $d = \gcd(a, b)$ and $e = \gcd(ac, bc)$. By (vi), $cd \mid e = \gcd(ac, bc)$ since $cd \mid ac$ and $cd \mid bc$. Then by Bezouts, there exists $x, y \in \mathbb{Z}$ such that d = ax + by. Then,

$$cd = acx + bcy$$

and as $e \mid ac$ and $e \mid bc$ and so by linearity we have $e \mid cd$. Therefore, |e| = |cd| and so, e = |c|d.

Now, let's prove (vii), let $e = \gcd(a + bc, b)$ and $f = \gcd(a, b)$. Then $e \mid (a + bc)$ and $e \mid b$. Thus by linearity, we have $e \mid a$. Hence, $e \mid a$ and $e \mid b$ so by property (vi), we have $e \mid f$. Similarly we can get that $f \mid a + bc$ and $f \mid b$ and so again my (vi) we have e = f as $f, e \geq 0$.

Lemma 1.7 (Euclids Lemma). Let $a, b, c \in \mathbb{Z}$. If $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Proof. Suppose that $a \mid bc$ and gcd(a,b) = 1. By Bezouts, we get that for some $x,y \in \mathbb{Z}$ we get 1 + ax + by. Hence, c = acx + bcy, but $a \mid acx$ and $a \mid bcy$, so $a \mid c$ by linearity.

Theorem 1.8 (Solubility of linear equations in \mathbb{Z}). Let $a, b, c \in \mathbb{Z}$. The equation,

$$ax + by = c$$

is soluble with $x, y \in \mathbb{Z}$ if and only if $\gcd(a, b) = c$

Proof. Let $d = \gcd(a, b)$. Then $d \mid a$ and $d \mid b$ so if there exists $x, y \in \mathbb{Z}$ such that c = ax + by then $d \mid c$ by linearity of divisibility. Now, suppose that $d \mid c$. Then we can write c = qd for some $q \in \mathbb{Z}$. By Bezouts, there exists some $x', y' \in \mathbb{Z}$ such that d = ax' + by'. Hence, c = qd = aqx' + bqy' and so x = qx' and y = qy' gives a suitable solution.

1.3 Euclids Algorithm

Theorem 1.9 (Euclids Algorithm). Let $a, b \in \mathbb{N}_1$ with a > b > 0 and $b \nmid a$. Let $r_0 = a$, $r_1 = b$ and apply the division Algorithm repeatedly to obtain a sequence of remainders defined successively,

$$r_0 = r_1 q_1 + r_2 & 0 < r_2 < r_1 \\ r_1 = r_2 q_2 + r_3 & 0 < r_3 < r_2 \\ \vdots \\ r_{n-2} = r_{n-1} q_{n-1} + r_n & 0 < r_n < r_{n-1} \\ r_{n-1} = r_n q_n + r_{n+1} & r_{n+1} = 0$$

Then the last non-zero remainder, r_n is the gcd(a, b).

Proof. There is a stage at which $r_{n+1} = 0$ because the r_i are strictly decreasing non-negative integers. We have,

$$\gcd(r_i, r_{i+1}) = \gcd(r_{i+1}q_{i+1} + r_{i+2}r_{i+1})$$
$$= \gcd(r_{i+2}r_{i+1})$$
$$= \gcd(r_{i+1}, r_{i+2})$$

Applying this result repeatedly,

$$\gcd(a,b) = \gcd(r_0, r_1)$$

$$= \gcd(r_2, r_3)$$

$$= \dots$$

$$= \gcd(r_{n-1}, r_n)$$

$$= r_n$$

Where the last equality is because $r_n \mid r_{n-1}$

Remark. One can also use Euclids Algorithm to find the $x, y \in \mathbb{Z}$ Bezouts Identity state to exist by working backwards. These aren't unique.

1.4 Extended Euclidean Algorithm

Instead of doing Euclids, and working backwards we can compute our bezouts x, y during euclids. This is the extended Euclids Algorithm. This time we are going to define sequences of integers x_i and y_i , such that $r_i = ax_i + by_i$. Recall that r_n is the last non-zero remainder and that $r_n = \gcd(a, b)$. Therefore

 $gcd(a,b) = r_n = ax_n + by_n$ and so $(x,y) := (x_n, y_n)$.

We have that $r_0 = a$ and $r_1 = b$. Hence, we see $r_0 = 1 \times a + 0 \times b$ and $r_1 = 0 \times a + 1 \times b$, and so we set $(x_0, y_0) := (1, 0)$ and $(x_1, y_1) := (0, 1)$. So, now we consider for $i \ge 2$ we have a pair (x_j, y_j) for j < i. Then $r_{i-2} = r_{i-1}q_{i-1} + r_i$ and so,

$$\begin{aligned} r_i &= r_{i-2} - r_{i-1} q_{i-1} \\ &= (ax_{i-2} + by_{i-2}) + (ax_{i-1} + by_{i-1}) q_{i-1} \\ &= a(x_{i-2} - x_{i-1} q_{i-1}) + b(y_{i-2} - y_{i-1} q_{i-1}) \end{aligned}$$

Thus we set $x_i := x_{i-2} - x_{i-1}q_{i-1}$ and $y_i := y_{i-2} - y_{i-1}q_{i-1}$. These can be defined recursively this way.

$$(x_i, y_i) := (x_{i-2}, y_{i-2}) - q_{i-1}(x_{i-1}, y_{i-1})$$

Example. We compute $\gcd(841,160)$ use Extended Euclidean Algorithm.

i	r_{i-2}		r_{i-1}		q_{i-1}		r_i	x_i	y_i
0							841	1	0
1							160	0	1
2	841	=	160	×	5	+	41	1	-5
3	160	=	41	×	3	+	37	-3	16
4	41	=	37	×	1	+	4	4	-21
5	37	=	4	×	9	+	1	-39	205
6	4	=	1	×	4	+	0		

Therefore, $gcd(841, 160) = 1 = 841 \times (-39) + 160 \times 205$.