DATA 602 Project Presentation by James Ding

This is a presentation about Flight Distance & Airtime in 2019

Introduction

Objective:

Analyze & Visualize & Predict Flight Distance & Airtime

Motivation:

Save \$ for airlines (Fuel Consumption)

Entertainment Preparation

Data Set:

Flight Delays & Cancellation Dataset (2019-2023)

How?
Descriptive Statistics
Inferential Statistics

Domain Introduction

Analyzing and visualizing Flight Distance & Air Time in the Aviation Industry: Why is it important?

- ★ Customer Satisfaction & Loyalty
- ★ Operational Efficiency
- ★ Cost Management
- ★ Safety and Compliance
- ★ Strategic Planning and Scheduling
- ★ Risk Management
- ★ Competitive Advantage
- ★ Visual Communication

Dataset

Flight Delay and Cancellation Dataset (2019-2023)

Source: Kaggle (origin: data was collected by the US Department of Transportation, Bureau of Transportation Statistics)

Format: csv

Original sample size = 1,048,576 flights

Guiding Questions

- Distance average? By month?
- Air time average? By month?
- Proportion average? (Velocity)
- Linear relationship between distance & airtime

Visualization

Descriptive Analysis (Average Distance/Air Time)

	Distance	Air time	velocity
n	100,000	97945	97945
mean	799.59	111.43	6.74
sd	590.79	70.35	1.2
median	640	93	6.85
max	5095	663	10.55
min	31	10	1.42
range	5064	653	9.14

Visualization P.2 (Avg Distance/Air Time by Month)

- Null Hypothesis (Ho)
 - There is no statistically significant relationship between Distance & Air Time
 - Ho: B=0
- Alternative Hypothesis (Ha)
 - As the flight distance increases, the air time increases
 - Ha: B>0

```
Call:
lm(formula = AIR TIME ~ DISTANCE, data = df 2019 sorted)
Residuals:
   Min 10 Median 30
                                 Max
-88.362 -6.441 -1.394 5.398 106.571
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.769e+01 6.929e-02 255.3 <2e-16 ***
DISTANCE 1.170e-01 6.973e-05 1677.7 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 12.88 on 97950 degrees of freedom
 (2048 observations deleted due to missingness)
Multiple R-squared: 0.9664, Adjusted R-squared: 0.9664
F-statistic: 2.815e+06 on 1 and 97950 DF, p-value: < 2.2e-16
```


- Intercept: 17.69 minutes
 - When Distance = 0
- Every Distance (1 mile): 0.117 ~7 seconds
 - Change in minutes
- P_value : 2e-16 < 0.05
 - We reject the Null Hypothesis test
- RSE: 12.88
 - Observed Vs prediction
- R Square:96.64%
 - A very strong fit of the model
 - 96.64% of variability in air time can be explained by distance
- F-statistic: 2.815e+06
 - Extremely high, strong evidence against null hypothesis
- T-distribution: (Confint())
 - Intercept: (17.553360,17.8249668)
 - Distance: (0.116854,0.1171273)

Prediction

predicted_air_time ← predict(air_time_model,
newdata = new_data)

Distance = 5000

Predicted Airtime: 602.6423

Predicted Interval: (577.3874,627.8971)

rows_with_long_distance ← subset(df_2019_sorted, DISTANCE > 5000, AIR_TIME)

3 flights with 5095 distances Airtimes are (638,634,547)

638 - 0.117 * 95 = 626.885

634 - 0.117 * 95 = 622.885

547 - 0.117 * 95 = 535.885

Avg: **595.2183** (Predicted **602.6423**)

Conclusion

- There is a strong linear relationship between distance & air time
- Around 800 miles are travelled per flight
- Average air time is 112 minutes
- Based on our inferential statistics
 - We reject the null hypothesis
- There is a significant statistical relationship between distance & air time that as the flight distance increase by a mile, air time increase by 0.117 minutes (7 seconds)

What's next?

- Comfortably packing enough entertainment for my next flight
- Important statistics to calculate fuel required for aircraft
- Save money for airlines

References:

- Patrick Zel, (2023). Flight Delay and Cancellation Dataset 2019-2023 [Data set]. Kaggle. Retrieved from https://www.kaggle.com/datasets/patrickzel/flight-delay-and-cancellation-dataset-2019-2023
- In the preparation of this work, I received assistance from OpenAI's ChatGPT, which provided guidance on syntax for the R programming language and advice on citation formats.

Thank you. Please feel free to ask any questions. 😄