Homework 1 • Graded

Student

周洛君

Total Points

52 / 60 pts

Question 1

Questions 0 and 1 8 / 8 pts

- + 4 pts A minor mistake (including no appropriate explanation/step)
- + 2 pts A major mistake or two minor mistakes
- + 0 pts Totally wrong or empty

Question 2

Question 2 12 / 12 pts

✓ + 12 pts Correct

- + 10 pts A minor mistake (including no appropriate explanation/step in 2.2)
- + 8 pts A major mistake or two minor mistakes
- + 0 pts Totally wrong or empty

Question 3

Question 3 6 / 6 pts

- + 4 pts A minor mistake
- + 2 pts A major mistake or two minor mistakes
- + 0 pts Totally wrong or empty

Question 4

12 / 16 pts

- + 16 pts Correct
- + 14 pts A minor mistake
- → + 12 pts A major mistake or two minor mistakes
 - + 10 pts A major mistake and other mistakes
 - + 8 pts Two major mistakes
 - + 4 pts Some reasonable efforts
 - + 0 pts Totally wrong or empty

major mistake: this is the answer of 4-2.

Question 5

Question 5 6 / 6 pts

- - + 4 pts A minor mistake
 - + 2 pts A major mistake or two minor mistakes
 - + 0 pts Totally wrong or empty

Question 6

Question 6 4 / 6 pts

- + 6 pts Correct
- - + 2 pts A major mistake or two minor mistakes
 - + 0 pts Totally wrong or empty

Question 7

Question 7 4 / 6 pts

- + 6 pts Correct
- - + 2 pts A major mistake or two minor mistakes
 - + 0 pts Totally wrong or empty

Digital System Design and Lab: HW1

Lo Chun, Chou R13922136

March 4, 2025

1

Since the following operation is correct:

$$024 + 043 + 013 + 033 = 201$$

Let base $= k \in \mathbb{Z}^+, k > 4$

We can formulate the following equations:

$$4+3+3+3 \pmod{k} = 13 \pmod{k} = 1$$
 (1)

$$2+4+1+3+c_1 \pmod{k} = 10+c_1 \pmod{k} = 0$$
 (2)

$$0 + 0 + 0 + 0 + c_2 \pmod{k} = c_2 \pmod{k} = 2$$
 (3)

Where c_1, c_2 are the carry-out generated by the addition of the previous digits.

By (1), and k > 4, we knew that the possible values of k are 6, 12.

Case 1: k = 6

Suppose k = 6, we have:

$$4+3+3+3\pmod{6} = 13\pmod{6} = 1$$
 (1)

$$2+4+1+3+c_1 \pmod{6} = 10+c_1 \pmod{6} = 0$$
 (2)

$$0 + 0 + 0 + 0 + c_2 \pmod{6} = c_2 \pmod{6} = 2$$
 (3)

By (1), we knew that $c_1=2$, thus equation (2) holds since $10+2=12\equiv 0\pmod 6$. Similarly, we knew that $c_2=2$, thus equation (3) holds since $0+2=2\equiv 2\pmod 6$.

Therefore, k = 6 is a valid solution.

Case 2: k = 12

Suppose k = 12, we have:

$$4+3+3+3\pmod{12} = 13\pmod{12} = 1$$
 (1)

$$2+4+1+3+c_1 \pmod{12} = 10+c_1 \pmod{12} = 0$$
 (2)

$$0 + 0 + 0 + 0 + c_2 \pmod{12} = c_2 \pmod{12} = 2$$
 (3)

By (1), we knew that $c_1 = 1$ since $\lfloor 13 \div 12 \rfloor = 1$, however, this contradicts with equation (2) since $10 + 1 = 11 \not\equiv 0 \pmod{12}$.

Therefore, k = 12 is not a valid solution.

The only possible base is k = 6.

 $\mathbf{2}$

(1)

Decimal	weighted code				
Decimai	8	4	-2	-1	
0	0	0	0	0	
1	0	1	1	1	
2	0	1	1	0	
$\frac{2}{3}$	0	1	0	1	
$\frac{4}{5}$	0	1	0	0	
5	1	0	1	1	
6	1	0	1	0	
7	1	0	0	1	
8	1	0	0	0	
9	1	1	1	1	

(2)

Decimal (d)	9-d	weighted code for $9-d$			
		8	4	-2	-1
0	9	1	1	1	1
1	8	1	0	0	0
2	7	1	0	0	1
3	6	1	0	1	0
4	5	1	0	1	1
5	4	0	1	0	0
6	3	0	1	0	1
7	2	0	1	1	0
8	1	0	1	1	1
9	0	0	0	0	0

By obersving the table, and by the fact that 9-d is the complement of d, we can see that the weighted code for 9-d is the complement of the weighted code for d.

Which means that to obtain the code of 9-d, we could simply flip the bits of the code of d.

Find the complemet of the function by only DeMorgan's laws and involution law:

$$F(A, B, C, D) = AB'C + (A' + B + D)(ABD' + B')$$

As required, we can only use the below properties:

$$(AB)' = A' + B'$$
$$(A+B)' = A'B'$$
$$(A')' = A$$

$$F'(A, B, C, D) = (AB'C)' \cdot [(A' + B + D) \cdot (ABD' + B')]'$$

$$= [(AB')' + C'] \cdot [(A' + B + D)' + (ABD' + B')']$$

$$= (A' + B + C') \cdot [(A' + B)' D' + (ABD')' B]$$

$$= (A' + B + C') \cdot [AB'D' + ((AB)' + D) B]$$

$$= (A' + B + C') \cdot [AB'D' + (A' + B' + D) B]$$

$$= (A' + B + C') \cdot (AB'D' + A'B + BD)$$

4

(1)

The switching algebra expression is:

$$D \cdot \{ [(A'+B') \cdot C] + (A \cdot C') \}$$

$$= D \cdot (A'C + B'C + AC')$$

$$= A'CD + B'CD + AC'D$$

(2)

(3)

We can convert the original expression into SOP form:

$$A'CD + B'CD + AC'D$$

$$= (A'C + B'C + AC') \cdot D$$

$$= [(A' + B')C + AC'] \cdot D$$

$$= (A' + B' + C') \cdot (A + C) \cdot D$$

Obtain sum of product form:

```
 (A+B+C+D)(A'+B'+C+D')(A'+C)(A+D)(B+C+D) \\ = \{[A+(B+C+D)](B+C+D)\}(A'+B'+C+D')(A'+C)(A+D) \\ = [A(B+C+D)+(B+C+D)(B+C+D)](A'+B'+C+D')(A'+C)(A+D) \\ = [AB+AC+AD+(B+C+D)](A'+B'+C+D')(A'+C)(A+D) \\ = (B+C+D)(A'+B'+C+D')(A'+C)(A+D) \\ = (B+C+D)[A'+(B'+C+D')C](A+D) \\ = (B+C+D)[A'D+A(B'+C+D')C] \\ = (B+C+D)[A'D+AB'C+AC+ACD'] \\ = (B+C+D)[A'D+AB'C+AC] \\ = (B+C+D)[A'D+AC] \\ = A'BD+A'CD+A'D+ABC+AC+ACD \\ = A'D+AC \quad \Box
```


Obtain product of sums form:

$$\begin{split} BCD + C'D' + B'C'D + CD \\ = C'D' + B'C'D + CD \\ = (C' + D)(C + D') + B'(C + D')' \\ = [(C' + D) + B'][(C + D')' + (C' + D)] \\ = (B' + C' + D)(C'D + C' + D) \\ = (B' + C' + D)(C' + D) \\ = B'(C' + D) + (C' + D)(C' + D) \\ = B'(C' + D) + (C' + D) \\ = C' + D \quad \Box \end{split}$$

Inputs			Outmut
A	В	C	Output
0	0	0	0
1	0	0	0
0	1	0	0
0	0	1	0
1	1	0	1
0	1	1	1
1	0	1	1
1	1	1	1

From the table we can form the sum of products expression:

$$ABC' + A'BC + AB'C + ABC$$
$$=ABC' + AB'C + BC \quad \Box$$