List of tables

Table 1– Research questions and theoretical anchors (DoI/TAM)	17
Table 2 - Pool-level Bitcoin miner revenue and implied hashrate	38
Table 3 – Sensitivity analysis: Power-Cost Dominance in Mining	40
Table 4 – Drivers of validator participation (proof-of-stake)	43
Table 5 – Selected Security Token Case Studies (2023–2025)	
Table 6 – Oracles Secured value	56
Table 7 – Blockchains Layer 1	62
Table 8 – DEX Volume & Market Cap	66
Table 9 – Yield activity	68
Table 10 – Perps Volume	72
Table 11 – CEX Transparency	74
Table 12 – Deal size	86
Table 13 – Stage Bucket	87
Table 14 – Deal categories	87
Table 15 – Comparable Companies Valuation Metrics	89
Table 16 – Exchange-Traded Funds (Spot BTC/ETH): Net Flow, AUM, Volume	91
Table 17 – Public Companies Holding Bitcoin as Treasury Assets (with Estimated BTC)	93
Table 18 – Mini-bios for low-literacy participants	96
Table 19 – Mini-bios for high-literacy participants	97
Table 20 – Interview participants (roles, seniority, knowledge, value-chain position)	98
Table 21 – Interview themes to implementation mapping (DoI/TAM)	101
Table 22 – Proposition and Key Evidence	106

1. 4. INITIAL RESEARCH QUESTIONS

Preface. The initial research questions were intentionally broad and numerous to allow tailoring during early interviews and to surface blind spots. After several interviews and a clearer definition of scope, they were consolidated into three final research questions, presented in §1.4.1, which guide the analysis and conclusions in Chapters 6–7.

Table 1- Research questions and theoretical anchors (DoI/TAM)

RQ#	Research Question	Theoretical Anchor
		(DoI/TAM)
RQ1	How do financial institutions perceive the relative	Relative Advantage
	advantage of tokenized investment funds compared to	(DoI)
	traditional fund structures?	
RQ2	How is the perceived relative advantage of stablecoins	Relative Advantage
	shaped by their speed, cost, and compliance features in	(DoI)
	payment operations?	
RQ3	How do financial professionals perceive the added value	Relative Advantage
	of using VASP services compared to traditional custody	(DoI)
	and exchange providers, in terms of efficiency, trust, or	
	regulatory alignment?	
RQ4	How do financial professionals assess the compatibility	Compatibility (DoI)
	of blockchain-based systems with existing infrastructure	
	and workflows?	
RQ5	How does the perceived compatibility of tokenized assets	Compatibility (DoI)
	with compliance and legal frameworks influence their	
	adoption?	
RQ6	What specific features of blockchain services contribute	Complexity (DoI)
	to perceptions of complexity among traditional financial	
	actors?	

pool users who obfuscate their template signatures, and operators choosing privacy-preserving or nonstandard announcement paths. The largest identifiable pools (e.g., AntPool, F2Pool, ViaBTC) collectively account for most of the remaining revenue. This pattern suggests that effective decentralization hinges on the dispersion of independently governed hashrate— not node counts— and on the economics that sustain miners' participation.

Table 2 - Pool-level Bitcoin miner revenue and implied hashrate

Pool	Share (%)	Total Revenue	Avg Daily	Avg Implied	
		(USD)	Revenue	Hashrate	
			(USD)	(EH/s)	
Unknown	52.75	\$20,172,874,47	\$18,456,427	287.37	
		0			
AntPool	15.63	\$5,977,147,991	\$5,468,571	85.15	
F2Pool	14.21	\$5,433,770,901	\$4,971,428	77.41	
ViaBTC	12.61	\$4,822,471,675	\$4,412,142	68.70	
SBI Crypto	2.13	\$815,065,635	\$745,714	11.61	
Braiins Pool	1.24	\$475,454,954	\$435,000	6.77	
BTC.com	0.71	\$271,688,545	\$248,571	3.87	
Ultimus	0.53	\$203,766,409	\$186,429	2.90	
Poolin	0.18	\$67,922,136	\$62,143	0.97	

Source. Blockchain.com Explorer — Mining Information (Hashrate Distribution; Miners Revenue; Total Hash Rate from Aug 15, 2022–Aug 11, 2025). Retrieved 2025-08-13

3. 3. 3. PoW Miner Economics: NPV Sensitivity and Power-Cost Dominance (2022–2025)

Using pool-share and revenue data from 15 August 2022 to 11 August 2025, I show that miner economics for a Poolin-sized counterfactual (fixed 0.18% network share; fleet ≈0.972 EH/s) hinge primarily on the *price of power* (USD/kWh). With explicit operating costs— energy, hosting surcharge, maintenance, overhead, and insurance— NPV turns positive only under cheap electricity and efficient hardware. For example, holding r = 12% p.a., fee = 2%, uptime = 95%,

Table 3 – Sensitivity analysis: Power-Cost Dominance in Mining

Efficiency	Power	Operating	FCF NPV	FCF NPV	Disc.	Disc.
(J/TH)	(\$/kW	CF/day	(Low capex)	(High	Payback	Payback
	h)	(USD)		capex)	(Low)	(High)
17	0.05	\$26,316	\$6,783,233	\$-	815 days	1,358
				2,695,873		days
17	0.06	\$22,549	\$3,291,889	\$-	974 days	1,654
				6,187,217		days
17	0.08	\$15,014	\$-3,690,799	\$-	1,603	2,976
				13,169,905	days	days
20	0.05	\$21,201	\$2,043,436	\$-	1,047	1,794
				7,435,670	days	days
20	0.06	\$16,769	\$-2,064,028	\$-	1,392	2,501
				11,543,133	days	days
25	0.05	\$12,677	\$-5,856,225	\$-	2,010	4,035
				15,335,331	days	days
25	0.06	\$7,137	\$-10,990,554	\$-	5,609	No
				20,469,660	days	payback
25	0.08	\$-3,944	\$-21,259,213	\$-	No	No
				30,738,319	payback	payback
30	0.05	\$4,153	\$-13,755,886	\$-	No	No
				23,234,992	payback	payback
30	0.06	\$-2,496	\$-19,917,081	\$-	No	No
				29,396,187	payback	payback
30	0.08	\$-15,793	\$-32,239,472	\$-	No	No
				41,718,577	payback	payback

Methods note. Daily cash flows are discounted with daily compounding: $PV = CF/(1+r)^{(t/365)}$ at r = 12% p.a. Assumptions: fee 2%, uptime 95%, hosting surcharge \$0.005/kWh, maintenance Calculation 2025-08-17. Source: Author

Table 4 – Drivers of validator participation (proof-of-stake)

Driver	Increases validator participation	Notes
	when	
Net staking yield	Gross yield (issuance + fees + MEV)	Dominant variable; compare directly to
	rises or commissions/OPEX fall	r (opportunity cost).
Opportunity cost r	r is low relative to net yield	If net yield $< r \rightarrow$ negative NPV vs.
		holding the token.
Slashing risk	Low probability × loss (good	Expected loss = $p(slashing) \times stake \times$
	operational security)	penalty.
Client/diversity	Validator set uses diverse clients/infra	Reduces correlated failures and
		systemic slashing.
Liquidity & custody	More solo/pooled options with low	Concentration risk if few providers
	commission	dominate.

Source: Author. Notes. PoS validator economics— dominant drivers and how they affect NPV. Formulas: Gross staking yield \approx issuance% + priority fees + MEV. Net validator APR \approx gross yield – commission – infra OPEX – expected slashing loss. Dominant spread S \equiv (net validator APR – r). S > 0 \rightarrow positive NPV; S < 0 \rightarrow negative NPV.

3. 3. 6. Performance and Security Trade-off

Beyond PoW and PoS, numerous consensus algorithms exist (Proof of Authority, Delegated PoS, Byzantine Fault Tolerance variants, etc.), each balancing throughput, security, and decentralization differently. The performance-security trade-off is a recurring theme. Generally, more decentralized and open systems (lots of nodes, global participation) tend to have lower raw performance due to coordination overhead and security constraints. For example, Bitcoin's conservatism in throughput is directly tied to maintaining a high security margin against double-spending. On the other hand, permissioned chains or newer consensus methods can push performance higher (thousands of transactions per second in some cases) by reducing the number of validators or using more centralized consensus at the cost of some decentralization. Croman et

review of the EU DLT Pilot noted limited uptake and highlighted legal/interoperability frictions (ESMA, 2025).

Table 5 – Selected Security Token Case Studies (2023–2025)

Issuer /	Instrument	Size &	Platform /	Jurisdiction	Settlement	Source(s)
Project		Currency	Rail	/ Legal	(target)	
HKSAR	Multi-	HK\$6bn	HSBC	Hong Kong	T+1 (vs.	НКМА,
Governme	currency	eq. (HKD,	Orion via	law; CMU	T+5)	2024;
nt (Green	digital	USD,	HKMA	registrar		HSBC,
Bond)	bond	EUR,	CMU			2024
		CNH)				
AIIB	USD	USD 300m	Euroclear	English	Near-real-	AIIB,
(Digitally	digital note		D-FMI	law note;	time DvP	2024;
Native	(5-yr)			DLT		Euroclear,
Note)				infrastructu		2024
				re		
EIB (GBP	Sterling	£50m	HSBC	Luxembour	Same-day	EIB, 2023
Digital	digital		Orion	g DLT		
Bond)	bond		(private) +	issuance		
			public	law		
			mirror			

Regulatory Mapping (EU & Selected Jurisdictions)

- EU MiFID II/MiFIR: Security tokens that qualify as financial instruments follow securities rules; non-financial-instrument utility tokens fall outside MiFID and may be under MiCA.
- EU DLT Pilot Regime (2023–2026): Sandbox for DLT infrastructures; ESMA (2025) notes three authorised venues and low uptake with legal/operational complexities.
- MiCA (EU): Covers crypto-assets not in MiFID (incl. utility tokens); issuer whitepapers and CASP obligations apply.
- Hong Kong (SFC): Tokenised securities are 'securities' under SFO; 2023 circulars set expectations on AML/KYC and custody.

using multiple data sources, median values, time-weighted averages, and other techniques to make oracle inputs more attack-resistant.

3. 6. 4. Market Snapshot — Oracles

Oracle usage is highly concentrated: Chainlink is the default infrastructure layer, combining the broadest chain coverage with the highest value secured, which signals deep trust across major DeFi venues. Pyth shows strong multi-chain reach and growing traction, while RedStone is scaling quickly with a modular approach that appeals to newer protocols. Chronicle and "Internal" oracles secure large sums despite fewer chains— these are more concentrated deployments with high value per chain, reflecting tight integrations and stricter control. Mid-tier providers such as Switchboard, API3, DIA, Band, UMA, Stork, and Supra occupy specific niches or ecosystems. The presence of TWAP highlights that some protocols still lean on on-chain DEX pricing mechanisms rather than external networks. Overall, breadth (chains) and depth (value secured) tell a consistent story: a dominant incumbent, a fast-rising second tier, and a long tail optimized for particular chains, assets, or governance models.

Table 6 – Oracles Secured value

Oracle	Chains	Secured value
Chainlink	454	\$57.011b
Chronicle	8	\$8.035b
Internal	45	\$6.89b
RedStone	84	\$6.699b
Pyth	285	\$5.848b
Edge	4	\$2.764b
Switchboard	21	\$2.103b
Supra	14	\$740.44m
Stork	31	\$732.02m
Api3	39	\$444.96m
UMA	8	\$253.59m

targeting retail consumers). The choice for a project might also consider community and longevity – Bitcoin and Ethereum have the longest track records and most decentralized communities, which can be important for trust. Solana, being newer and more "Silicon Valley" VC-backed in its early growth, carries more technology risk but also potential agility in updates.

Table 7 – Blockchains Layer 1

Project	Active	FDV	Coin	Fees (30d)	Daily active
	addrs	market cap	volume		users
	(monthly)		(30d)		
Bitcoin	10.8 M (-	\$2.3 T (-	\$1.3 T	\$15.2 M	489.4 K
(BTC)	0.4%)	4.7%)	(+22.3%)	(+1.4%)	(+3.8%)
Ethereum	9.6 M	\$522.7 B	\$1.1 T	\$40.2 M (-	550.7 K
(ETH)	(+23.0%)	(+15.6%)	(+41.5%)	15.2%)	(+9.0%)
BNB Chain	46.4 M (-	\$121.2 B	\$56.1 B	\$10.7 M	4.9 M
(BNB)	0.1%)	(+10.6%)	(+70.1%)	(+3.4%)	(+12.9%)
Solana	56.2 M (-	\$113.8 B (-	\$266.9 B	\$41.5 M	3.5 M (-
(SOL)	20.2%)	8.5%)	(+9.2%)	(+11.9%)	5.2%)
Tron (TRX)	14.4 M	\$33.5 B	\$51.7 B	\$420.2 M	2.6 M
	(+1.8%)	(+12.1%)	(+15.3%)	(+16.6%)	(+5.5%)
TON (TON)	1.4 M (-	\$16.8 B (-	\$8.8 B	\$570.5 K (-	105.1 K
	13.5%)	1.9%)	(+41.9%)	12.8%)	(+16.0%)
Avalanche	663.6 K (-	\$10.7 B (-	\$21.8 B	\$633.4 K	45.0 K (-
(AVAX)	55.9%)	9.1%)	(+43.1%)	(+28.7%)	49.0%)
Aptos	10.0 M	\$5.3 B (-	\$13.0 B	\$406.2 K	682.5 K (-
(APT)	(+6.1%)	16.4%)	(+57.1%)	(+383.1%)	2.9%)
NEAR	51.1 M	\$3.2 B (-	\$7.6 B	\$319.3 K	3.0 M (-
Protocol	(+11.6%)	15.6%)	(+7.9%)	(+23.9%)	1.8%)
(NEAR)					

Table 8 – DEX Volume & Market Cap

Project	Trading	FDV	Token	Fees	DAU
	volume	market	volume	(30d)	(latest)
	(30d)	cap	(30d)		
Uniswap (UNI)	\$107.5 B	\$10.6 B	\$18.0 B	\$95.7 M	750.5 K
pump.fun (PUMP)	\$3.1 B	\$3.1 B	\$11.8 B	\$30.3 M	152.2 K
Curve (CRV)	\$8.8 B	\$2.0 B	\$9.8 B	\$4.7 M	2.6 K
PancakeSwap (CAKE)	\$143.0 B	\$973.5 M	\$3.9 B	\$121.0	437.8 K
				M	
Raydium (RAY)	\$41.5 B	\$1.9 B	\$3.6 B	\$66.5 M	1.1 M
Aerodrome (AERO)	\$21.6 B	\$2.4 B	\$2.7 B	\$15.6 M	60.4 K
SushiSwap (SUSHI)	\$290.8 M	\$225.6 M	\$1.4 B	\$580.2 K	21.2 K
SUN (SUN)	\$468.6 M	\$1.1 B	_	_	_
Orca (ORCA)	\$18.7 B	\$172.2 M	\$1.1 B	\$11.5 M	56.3 K
Maverick Protocol (MAV)	\$44.3 M	\$117.5 M	\$836.1 M	\$5.8 K	27.4 K
IDEX (IDEX)	\$0.0	\$25.7 M	\$715.9 M	\$0.0	
Thena (THE)	\$156.1 M	\$107.7 M	\$669.4 M	\$182.9 K	4.0 K
Cetus (CETUS)	\$97.5 M	\$664.4 M	_	_	_
0x (ZRX)	\$0.0	\$249.6 M	\$580.3 M	\$0.0	0.0
Loopring (LRC)	\$122.6 M	\$504.8 M			
Velodrome (VELO)	\$1.1 B	\$113.3 M	\$367.3 M	\$684.9 K	7.3 K
WOO (WOO)	\$166.5 M	\$340.1 M			
Balancer (BAL)	\$1.0 B	\$96.1 M	\$328.9 M	\$604.6 K	27.0 K
Shadow (SHADOW)	\$768.1 M	\$53.4 M	\$314.3 M	\$1.7 M	3.1 K
Biswap (BSW)	\$43.7 M	\$15.0 M	_	_	

Source: Token Terminal. (n.d.). DEX dashboards. Retrieved August 21, 2025.

Table 9 – Yield activity

Project	Trading	FDV	Token	Fees (30d)	DAU (latest)
	volume	market	volume		
	(30d)	cap	(30d)		
		(latest)			
Aave (AAVE)	\$26.9 B	\$4.8 B	\$15.2 B	\$91.8 M	9.0 K
Morpho (MORPHO)	\$3.2 B	\$2.2 B	\$748.0 M	\$15.8 M	2.4 K
Spark (SPK)	\$2.1 B	\$758.4 M	\$10.5 B	68.0	_
Fluid (FLUID)	\$1.4 B	\$691.0 M	\$93.0 M	\$8.5 M	6.4 K
Onyx Protocol (XCN)	\$619.6 M	\$826.5 M		_	_
Kamino (KMNO)	\$1.7 B	\$577.9 M	\$563.1 M	_	_
Maple Finance (SYRUP)	\$1.3 B	\$501.9 M	\$3.3 B	\$7.4 M	_
Compound (COMP)	\$1.2 B	\$464.5 M	\$1.6 B	\$5.2 M	226.0
JustLend DAO (JST)	\$334.8 M	\$1.2 B			_
Euler (EUL)	\$1.4 B	\$277.0 M	\$86.1 M	\$5.6 M	1.5 K
Dolomite (DOLO)	\$116.7 M	\$227.8 M	\$830.4 M	\$817.3 K	412.0
Venus (XVS)	\$805.6 M	\$183.9 M	\$301.3 M	\$2.7 M	613.0
Moonwell (WELL)	\$232.0 M	\$142.8 M	\$134.7 M	\$1.1 M	1.5 K
Avalon Finance (AVL)	\$140.8 M	\$323.8 M			
Goldfinch (GFI)	\$98.4 M	\$70.6 M	\$23.1 M	\$162.7	3.0

Source: Token Terminal. (n.d.). Lending / Money Markets dashboards. Retrieved August 21, 2025.

3. 8. 5. Derivatives (Perpetuals)

Perpetual futures (often called perpetual swaps) are margined derivatives with no expiry date. Instead of converging at a maturity, the contract price is kept close to an external index (a basket of spot prices) through a periodic "funding rate" exchange between longs and shorts: when the perp trades above the index, longs typically pay shorts; when it trades below, shorts pay longs. This mechanism allows continuous trading and price anchoring without settlement, and it is now widely documented in the academic literature on blockchain-based markets (Schär, 2021). In decentralized finance, two implementation patterns dominate. A first family uses hybrid designs

Table 10 – Perps Volume

Project	Notional	FDV	Token	Fees	DAU
	volume	(latest)	volume	(30d)	(latest)
	(30d)		(30d)		
dYdX (DYDX)	\$8.6 B	\$627.9 M	\$498.4 M	\$1.9 M	2.6 K
GMX (GMX)	\$8.4 B	\$157.6 M	\$1.1 B	\$10.0 M	1.6 K
SynFutures (F)	\$2.4 B	\$72.9 M	\$276.0 M	\$506.2 K	2.7 K
ApolloX (APX)	\$1.5 B	\$288.0 M	\$32.9 M	\$369.1 K	174
Merkle Trade (MKL)	\$618.6 M	\$6.3 M	\$160.2 K	\$241.8 K	102
HMX (HMX)	\$201.5 M	_	\$1.1 M	\$70.0 K	22
MUX (MCB)	\$75.2 M	\$10.3 M	\$138.7 K	\$52.3 K	18
Synthetix (SNX)	\$71.0 M	\$228.6 M	\$538.7 M	\$315.1 K	8
Kwenta (KWENTA)	\$65.9 M	\$8.8 M	\$129.3 K	\$20.6 K	3
BMX (BMX)	\$28.0 M	\$19.3 M	\$2.0 M	\$58.9 K	97
Hegic (HEGIC)	\$3.6 M	\$72.2 M	\$5.0 M	\$163.0 K	6
IPOR Protocol (IPOR)	\$2.3 M	\$0.0	\$213.1	0.0	_
Perpetual Protocol (PERP)	\$1.5 M	\$41.9 M	\$283.3 M	\$1.6 K	10
Polynomial Protocol	\$489.7 K	\$293.3	0.0	0.0	_
Holdstation (HOLD)	\$244.7 K	\$38.9 M	\$34.3 M	\$211.1	2
Volmex	\$3.7 K	\$11.1	0.0	_	_

Source: Token Terminal. (n.d.). Derivatives / Perps dashboards. Retrieved August 21, 2025.

3. 8. 7. Liquid Staking (LSTs) and Re-/Restaking

Liquid staking tokens (LSTs) convert a locked proof-of-stake position into a transferable claim that accrues staking rewards while remaining usable as collateral across DeFi. In practice, designs differ: some tokens "rebase" by increasing the holder's balance as rewards accrue, while others are reward-bearing claims whose unit price drifts upward with pooled rewards. A recent peer-reviewed study in the Journal of Futures Markets shows that LSTs exhibit a persistent "liquid-staking basis," i.e., a price spread versus the native asset, and that this basis widens when LST

Table 10 – Perps Volume

Project	Notional	FDV	Token	Fees	DAU
	volume	(latest)	volume	(30d)	(latest)
	(30d)		(30d)		
Lido Finance (LDO)	\$38.3 B	\$1.3 B	\$5.8 B	\$84.1 M	461.0
Rocket Pool (RPL)	\$2.8 B	\$160.2 M	\$410.8 M	_	8.0
Jito (JTO)	\$2.8 B	\$1.7 B	\$1.3 B	\$39.1 M	646.3 K
Marinade (MNDE)	\$2.0 B	\$115.2 M	\$66.3 M	\$12.5 M	112.0
cbETH	\$1.9 B	_	_	_	_
Liquid Collective	\$1.6 B		_	—	3.0
StakeWise (SWISE)	\$1.4 B	\$24.2 M	\$1.1 M	\$1.8 M	74.0
Swell (SWELL)	\$1.3 B	\$103.7 M	\$572.4 M	0.0	—
Stader (SD)	\$671.3 M	\$83.8 M	\$490.8 M	\$80.8 K	13.0
Symbiotic	\$405.0 M		_	_	245.0
Frax Ether	\$398.4 M	_	\$900.1 K	0.0	_
BENQI Liquid Staking	\$369.2 M	_	\$2.1 M	_	50.0
StakeStone	\$99.7 M	_	_	_	11.0
Ankr (ANKR)	\$41.3 M	\$157.4 M	\$521.4 M	_	1.0
StaFi (FIS)	\$9.0 M	\$19.0 M	\$374.0 M	0.0	_
Allstake	_	_	_	_	_

Source: Token Terminal. (n.d.). Liquid Staking dashboards. Retrieved August 21, 2025.

3. 9. EXCHANGE (CEX)

In regulatory terms, an exchange is a market intermediary that matches and executes orders and gives access to price discovery and liquidity. Under the FATF framework, an exchange that swaps virtual assets for fiat or other virtual assets— or transfers/safekeeps customers' assets—qualifies as a Virtual Asset Service Provider (VASP) and must be licensed/registered and comply with AML/CFT controls (e.g., customer due diligence and the "travel rule"). In the EU, exchanges

Table 11 – CEX Transparency

Exchange	Assets	Inflows	Spot vol	Open	Avg	Custom-range
		(1m)	(24h)	interest	levera	inflow
				(24h)	ge	
Binance	\$183.385b	\$1.489b	\$18.967b	\$38.966b	0.24x	\$1.99b
OKX	\$28.126b	\$3.663b	\$10.929b	_	0.39x	\$362.17m
Bybit	\$23.924b	\$270.68m	\$3.037b	\$25.448b	1.06x	-\$330.04m
Robinhood	\$21.69b	-\$844.61m				-\$835.73m
Bitfinex	\$27.391b	\$38.34m	\$249.97	\$2.115b	0.10x	\$5.63m
			m			
Gemini	\$9.856b	\$211.25m				_
HTX	\$7.189b	-\$778.05m	\$3.198b	\$9.008b	1.27x	-\$662.2m
Gate	\$8.566b	-\$101.13m	\$3.053b	\$19.534b	3.03x	_
Bitget	\$5.713b	-\$122.28m	\$3.288b	\$25.038b	4.40x	-\$157.08m
BitMEX	\$5.589b	-\$52.0m	\$75,942	\$1.93b	0.35x	-\$72.67m
Deribit	\$5.05b	-\$45.96m	\$3.667b	_	0.73x	-\$274.63m
KuCoin	\$5.076b	-\$144.14m	\$1.682b	\$4.163b	0.99x	-\$147.57m
MEXC	\$4.058b	\$2.575b	\$2.953b	\$8.899b	2.32x	\$2.59b
Crypto.com	\$3.838b	-\$140.32m	\$3.602b	\$2.223b	0.62x	-\$142.65m
Bitstamp	\$3.158b	\$427.04m				_

DefiLlama. (n.d.). CEX transparency. Retrieved August 22, 2025

3. 9. 2. Exchange Evolution & Trust: From Early Faucets to FTX – Building Institutional Confidence

In the early days of cryptocurrency (circa 2009–2013), obtaining Bitcoin or other crypto often involved informal methods such as "faucets" (websites that gave small amounts of Bitcoin for free) or peer-to-peer forums. As the industry grew, centralized exchanges became the primary on-ramp for users – these are companies like Mt. Gox (the dominant Bitcoin exchange in 2013),

4. 3. 2. Valuation Benchmarks

Median post-money valuations cluster by stage— top buckets include Series C+: USD 2300.0m, Series B: USD 1250.0m, Series A: USD 160.0m. Valuation fields are sparse and indicative

4. 3. 3. Investor Landscape

Recurring leads and ecosystem specialisation are summarised in the Excel pack's league tables. Associated volume inflates counts versus deployed capital when allocations are undisclosed.

4. 3. 4. Finance's implication

Cycle and concentration patterns argue for disciplined pacing and reserves. Token vs equity liquidity paths differ materially (TGE/unlocks vs M&A/IPO). Platform and validator dependencies require custody and counterparty controls. Debt terms should tighten when market depth is thin.

Table 12 – Deal size

Deal	Date range	Total	Median	Mean	Top-10	HHI by
		capital	deal	deal	share (%)	category
		(USD	(USD m)	(USD m)		(0-1)
		billions)				
6080	2014-06 to	121.37	5.00	19.96	11.5	0.296
	2025-08					

Table 13 – Stage Bucket

Stage Bucket	Total (USD m)	Deals	Median (USD m)
Unspecified	29,058.88	1134	6.00
Token Sale/SAFT	19,815.62	529	9.00
Series B	15,804.95	259	31.00
Series A	15,419.35	903	10.90
Series C+	13,892.97	109	80.00
Seed	10,996.38	2170	3.20
Debt/Convertible	6,017.79	112	5.21
Public/IPO	5,900.25	105	8.82
Bridge/Strategic	2,858.88	226	5.40
Pre-Seed	1,346.47	502	1.80
Grant	262.35	31	1.50

Table 14 – Deal categories

Deal category	Total (USD m)	Deals	Median (USD m)
DeFi & CeFi	34,588.98	1413	4.90
Web3 Infrastructure & Tools	19,023.68	875	6.00
Base Layers & Scaling	13,524.54	372	9.95
NFT, Gaming & Metaverse	7,940.97	570	4.72
AI, Analytics & Data	2,140.22	218	5.00
Security & Audits	650.23	47	6.00
Social, DAO & Identity	351.38	28	5.00

Table 15 – Comparable Companies Valuation Metrics

Company	EV/Revenue (x)	EV/EBITDA (x)	Source
Coinbase (COIN)	14.71×	32.58×	WSJ Markets
Marathon Digital (MARA)	10.34×	5.79×	Yahoo Finance
Bitfarms (BITF)	2.46×	16.52×	WSJ Markets
Block (SQ)	1.91×	18.82×	WSJ Markets
PayPal (PYPL)	2.33×	10.94×	WSJ Markets
Adyen (ADYEN)	13.81×	23.04×	Yahoo Finance

Note. TTM = trailing twelve months. N/M = not meaningful (negative EBITDA or negative enterprise value). Enterprise value to Revenue (EV/Revenue) and Enterprise value to EBITDA (EV/EBITDA) — TTM, retrieved August 22, 2025.

4. 5. FROM NICHE TO MAINSTREAM: THE RISE OF CRYPTO ETFS/ETPS

Crypto exchange-traded exposure has moved from niche to mainstream in just a few years: Canada authorised the first physically backed Bitcoin ETF in February 2021, establishing a template for regulated, exchange-listed crypto exposure (via the Ontario Securities Commission), and the U.S. followed on 10 January 2024 by approving multiple spot Bitcoin ETPs, later greenlighting spot Ether products in May 2024. Evidence from peer-reviewed studies shows that the launch of spot crypto ETFs/ETPs increased Bitcoin's perceived legitimacy, price impact, and liquidity (Finance Research Letters, 2024) and that ETF introductions reshape market microstructure— e.g., the Bitcoin futures market around BITO— by shifting investor composition and improving liquidity without harming long-run efficiency (International Review of Financial Analysis, 2025). One-year flow analytics further document rapid AUM concentration in a small number of funds and price-elastic net flows, indicating demand is tightly coupled to underlying spot returns (Economics Letters, 2025). In Europe, most exchange-traded crypto products are structured as ETPs/ETNs rather than UCITS ETFs because UCITS diversification rules (the 5/10/40 logic in Article 52) constrain single-asset funds; MiCA explicitly excludes "financial instruments," so crypto ETFs/ETNs remain under the legacy UCITS/MiFID perimeter rather than

Table 16 – Exchange-Traded Funds (Spot BTC/ETH): Net Flow, AUM, Volume

Ticker	Issuer	Net flow (USD)	AUM (USD)	Volume (USD)
IBIT	BlackRock	BlackRock -\$127.5m		\$2.142b
FBTC	Fidelity	-\$31.8m	\$22.316b	\$319.14m
ETHA	BlackRock	\$233.6m	\$14.787b	\$1.189b
ARKB	Ark/21Shares	-\$43.3m	\$4.689b	\$83.81m
BITB	Bitwise	\$0	\$2.124b	\$71.16m
HODL	VanEck	\$0	\$1.917b	\$11.04m
BTCO	Invesco/Galaxy	\$0	\$615.95m	\$5.86m
EZBC	Franklin	\$3.2m	\$600.79m	\$3.88m
	Templeton			
ETHW	Bitwise	\$7m	\$537.73m	\$32.87m
ETHV	VanEck	\$6.2m	\$253.59m	\$7.83m
BTCW	WisdomTree	\$0	\$176.52m	\$2.8m
EZET	Franklin	\$0	\$80.18m	\$2.64m
	Templeton			
QETH	Invesco/Galaxy	\$0	\$32.99m	\$1.12m
FETH	Fidelity	\$28.5m	\$55.79m	
ETH	Grayscale	\$6.4m	\$0	\$146.73m
ETHE	Grayscale	\$5.9m	\$0	\$148.95m

Note. Values are reproduced as provided by the user. Abbreviations: m = million, b = billion.

4. 6. CORPORATE ADOPTION OF BITCOIN: A MANAGERIAL LENS ON RISK-RETURN AND LIQUIDITY

Companies who add bitcoin to corporate treasuries typically cite three goals: (1) portfolio diversification and macro hedging, (2) capital-markets signaling and investor-base expansion, and (3) financing optionality. Empirically, recent studies find that bitcoin can improve risk-adjusted performance in mixed-asset portfolios in many (though not all) windows, consistent with a diversifier role rather than a universal safe haven (Baur & Oll, 2022; Kang, 2025). At the macro

4. 6. 1. Market Snapshot — Companies treasure

Table 17 – Public Companies Holding Bitcoin as Treasury Assets (with Estimated BTC)

Company	USD Value	Est. BTC @ \$116,515
MicroStrategy	\$52,413,816,248.14	449,846.08
TwentyOne Capital	\$4,889,812,001.60	41,967.23
MetaPlanet	\$1,933,490,337.47	16,594.35
MARA	\$1,848,194,442.12	15,862.29
Tesla	\$1,293,334,884.44	11,100.16
Hut 8	\$1,002,612,165.65	8,605.01
CleanSpark	\$978,478,952.30	8,397.88
SpaceX	\$931,061,016.15	7,990.91
Riot Platforms	\$796,353,687.91	6,834.77
Semler Scientific	\$567,270,903.55	4,868.65

Note. "Est. BTC" divides the USD value by the BTC spot price shown in the header; rounding to 2 decimals. Figures are point-in-time and indicative; holdings may be distributed across wallets and subject to price changes. Source list: Arkham Intel — Treasury Company tag (22 August 2025)

5. 3. 1. Mini-bios for low-literacy participants

Table 18 – Mini-bios for low-literacy participants

Pseudonym	Role & sector (≤40 words)	Dominant viewpoint
P1	Rolling-stock technician at Italy's state	Prefers regulated bank rails for
	rail operator; daily tasks revolve around	routine payments; sees crypto
	physical infrastructure, not fintech.	useful only for small
		discretionary buys (e.g., a
		low-value NFT) and stresses that
		client funds must be "al sicuro"
		(safe).
P2	Administrative clerk in the Italian public	Values digital security and sees
	sector; uses government "app IO" and	tokenization's promise in
	SPID digital ID for e-government	stronger identity/authentication,
	services; minimal exposure to blockchain.	but believes adoption hinges on
		widespread uptake by public
		bodies.
P3	Accounting assistant at a Luxembourg	Questions the practical use-case
	SME; familiar with SEPA but not with	of tokenised funds—"our
	RWA.	custodian already gives
		same-day NAV".
P4	Law-student intern at an	Sees regulation as a
	asset-management boutique; coursework	pre-condition for safety but is
	includes broader digital-law frameworks	unclear on operational steps to
	(e.g., GDPR, PSD2), but no hands-on	onboard investors.
	DLT work.	

Source: Author's interviews (2025).

5. 3. 2. Mini-bios for high-literacy participants

Table 19 – Mini-bios for high-literacy participants

Pseudonym	Role & sector (≤40 words)	Signature insight
P5	Regulatory lawyer at Homsy Legal;	Tokenized funds can cut
	advises EU fund managers on MiCA	intermediated costs by up
	compliance.	to 30 % and increase liquidity;
		warns the annual MiCA audit
		cadence is the biggest schedule
		risk.
P9	Policy officer at CSSF (Luxembourg	Risk-assessment guidance and
	supervisor).	key-management standards,
		setting the regulatory baseline
		for VASPs and banks.
P11	Head of Digital Assets Operations at	Built API connectors to
	Swissquote Bank Europe.	core-banking; cites whitepaper
		approvals and ongoing audit
		requirements as the hardest
		MiCA hurdles.
P10	Strategy lead at WM Datenservice /	Stresses governance structures &
	Deutsche Börse digital-assets unit.	dedicated budgets as
		accelerators; promotes modular
		compliance frameworks for
		cross-border MiCA variability.

Source: Author's interviews (2025).

5. 3. 3. Respondent overview (chronological order)

Table 7: -1 preserves the chronological sequence of the raw transcripts while masking identities. A sealed key table links pseudonyms to real names and is stored on drive for audit purposes.

Table 20 – Interview participants (roles, seniority, knowledge, value-chain position)

ID	Role	Seniority	Knowledge	Value-chain
				position
P1	Operations	Mid	Low	Bank
P2	Strategy	Junior	Low	Asset manager
P3	Compliance / Operations	Mid	Low	Consultancy
P4	Strategy	Junior	Low	Regulator liaison
P5	Compliance / Legal	Senior	High	Legal-tech vendor
P6	Operations	Senior	High	VASP exchange
P7	Risk (cyber)	Senior	High	Tech vendor
P8	Compliance / Strategy	Senior	High	Consultancy
P9	Regulator	Senior	High	Supervisor
P10	Strategy / IT	Senior	High	Tech vendor
P11	Strategy	Senior	High	Bank
P12	IT / Operations	Senior	High	Bank
P13	Strategy	Mid	High	Market-data
				provider
P14	Strategy	Mid	Medium	Custodian
P15	Operations	Mid	Medium	VASP support

Source: Author's interviews (2025).

5. 4. 2. High-literacy insights sub-analysis

A targeted review of expert transcripts (P5, P9, P10, P11) surfaced four institution-level enablers and friction points absent from the low-literacy set:

Table 21 – Interview themes to implementation mapping (DoI/TAM)

Illustrative quote	DoI/TAM	Implementation takeaway
	linkage	
"Governance disclosures and	Complexity	Allocate audit-readiness squads
reserve-audit mandates stand out."	(CX)	and budget early to de-risk
(P5, 00:26)		timelines.
"We built connectors to our core	Compatibility	Provide reference middleware and
banking APIs, translating on-chain	(CP)	data-mapping templates in vendor
events into internal postings."		toolkits.
(P11, 00:02)		
"Firms with clear governance	Trialability (TR)	Embed steering-committee KPIs
structures and allocated budgets	→ Adoption	into pilot charters to secure
move faster from pilot to	intent	scale-up funding.
production." (P10, 00:02)		
"We issued specific guidance on	Observability	Leverage regulator whitepapers as
Vasp risk assessments and	(OB)	third-party validation in
key-management standards." (P9,		stakeholder comms.
00:20)		

Source: Author's interviews (2025).

Analytic contrast. Experts converge on institutional capability (APIs, governance, audits), while non-experts stress personal safety and cost. This divergence supports proposition P-CP-SC that

6. 2. PROPOSITION MAPPING TABLE

Table 22 – Proposition and Key Evidence

Proposition	Support Level	Key Evidence (Respondent Codes & Brief Quote)
P-RA	Supported	P5: "reducing fees minutes instead of days"; P11: "transaction speed, cost reduction, failure rates."; EXT-A: "available solutions are already good Revolut, Wise" (shows baseline against which RA must be proven to low-literacy users).
P-CP	Partially Supported	P11: "connectors to our core banking APIs"; P5: "legacy batch vs. instant; data-mapping challenges."; EXT-M: "speed of instant bank transfers is already satisfying" (indicates compatibility gap perception among medium-literacy users).
P-CX	Supported	P5: "governance disclosures and reserve-audit mandates"; P11: "approvals and ongoing audit coordination across teams."; EXT-D: "wouldn't know if a platform was trustworthy unless my bank endorsed it" (reflects perceived complexity/trust barrier for low-literacy users).
P-TR	Supported	P11: "validating FX netting in under two hours"; P5: "pilots expose gaps and build support"; P10: "governance + budgets move faster."; EXT-VZ: "would only consider using if merchants visibly accept it" (shows trialability trigger for non-experts).