

Generic Cryptographic Interface

Documentation Steve Wagner

December 17, 2015

Laboratory for Embedded Systems and Communication Electronics Hochschule Offenburg Prof. Axel Sikora Andreas Walz

Statutory declaration

I declare that	I have authored this thesis indepe	endently, that I have not us	sed other than the declared			
sources / resources, and that I have explicitly marked all material which has been quoted either						
literally or by	content from the used sources.					
Offenburg,						
	Date	Signature				

Abstract

Contents

1	Initialisation of the interface	1
2	Context management 2.1 Creation of a context 2.1.1 Hash context 2.1.2 Signature (for generating) context 2.1.3 Signature (for verifying) context 2.1.4 Cipher context 2.1.5 Diffie-Hellmann context 2.2 Clone an existing context 2.2.1 Hash context 2.2.2 Both signature context 2.3 Delete an existing context	. 2 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .
3	Hash 3.1 Algorithm of hash	
4	Signature 4.1 Signature configuration 4.1.1 RSA 4.1.2 Digital Signature Algorithm (DSA) 4.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA) 4.1.4 Block-Cipher-Based Message Authentication Code (CBC-MAC / CMAC) 4.1.5 keyed-Hash Message Authentication Code (HMAC) 4.2 Steps to sign	. 2
5	Generate key pair 5.1 Configuration of a key pair 5.1.1 RSA	
6	Cipher 6.1 Configuration of a symmetric cipher	. 6

7	Generate Diffie-Hellmann key pair		
	7.1	Configuration of a Diffie-Hellmann key pair	7
		7.1.1 Diffie-Hellmann (DH)	
		7.1.2 Elliptic Curve Diffie Hellmann (ECDH)	7
	7.2	Steps to generate a Diffie-Hellmann key pair	7
8	Calc	culate a Diffie-Hellmann shared secret	8
	8.1	Steps to calculate a shared secret	8
9	Pseu	udo-Random Number Generator	9
	9.1	Generate a pseudo-random number	9
	9.2	Seed a pseudo-random number	9
10	Key	management	10
	10.1	Save a key as big number and get an ID	10
		Get a saved key with his ID	10
	10.3	Delete a key	10
Bil	oliogi	raphy	11

1 Initialisation of the interface

2 Context management

- 2.1 Creation of a context
- 2.1.1 Hash context
- 2.1.2 Signature (for generating) context
- 2.1.3 Signature (for verifying) context
- 2.1.4 Cipher context
- 2.1.5 Diffie-Hellmann context
- 2.2 Clone an existing context
- 2.2.1 Hash context
- 2.2.2 Both signature context
- 2.3 Delete an existing context

- 3 Hash
- 3.1 Algorithm of hash
- 3.2 Steps to hash

4 Signature

- 4.1 Signature configuration
- 4.1.1 RSA
- 4.1.2 Digital Signature Algorithm (DSA)
- 4.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
- 4.1.4 Block-Cipher-Based Message Authentication Code (CBC-MAC / CMAC)
- 4.1.5 keyed-Hash Message Authentication Code (HMAC)
- 4.2 Steps to sign

5 Generate key pair

- 5.1 Configuration of a key pair
- 5.1.1 RSA
- 5.1.2 Digital Signature Algorithm (DSA)
- 5.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
- 5.2 Steps to generate a key pair

6 Cipher

- 6.1 Configuration of a symmetric cipher
- 6.2 Configuration of an asymmetric cipher
- 6.3 Encrypt a plaintext
- 6.4 Decrypt a ciphertext

7 Generate Diffie-Hellmann key pair

- 7.1 Configuration of a Diffie-Hellmann key pair
- 7.1.1 Diffie-Hellmann (DH)
- 7.1.2 Elliptic Curve Diffie Hellmann (ECDH)
- 7.2 Steps to generate a Diffie-Hellmann key pair

- 8 Calculate a Diffie-Hellmann shared secret
- 8.1 Steps to calculate a shared secret

9 Pseudo-Random Number Generator

- 9.1 Generate a pseudo-random number
- 9.2 Seed a pseudo-random number

10 Key management

- $10.1\,$ Save a key as big number and get an ID
- 10.2 Get a saved key with his ID
- 10.3 Delete a key

Bibliography

[1] Christof Paar and Jan Pelzl. *Understanding cryptography: a textbook for students and practitioners*. Springer Berlin Heidelberg, Berlin; Heidelberg [u.a.], 2. corr. printing edition, 2010.