MXCHIP® 智能硬件解决方案提供商

产品手册

嵌入式 Wi-Fi 模块

版本: 2.1

日期: 2017-3-29

EMW3165

编号: DS0007C

概要

特性

- 包含一个 Cortex-M4 微控制器和一个 IEEE 802.11 b/g/n 射频芯片
 - 100MHz 的 Cortex-M4 内核
 - 2M 字节的片外 SPI flash 和 512K 字 节的片内 flash
 - 128K 字节的 RAM
- 工作电压: 3V-3.6V

外设

- 22 个 GPIO 引脚
- JTAG/SWD 调试接口
- Wi-Fi 连接属性
 - 支持 802.11 b/g/n
 - WEP,WPA/WPA2,PSK
 - 16.5dBm@11b,14.5dBm@11g,13.5dB m@11n
 - 接收灵敏度: -87 dBm
 - Station, Soft AP 和 WiFi Direct
 - 支持 EasyLink
 - 板载 PCB 天线, 外接天线 IPEX 连接器
 - CE, FCC 适用
- ▶ 工作温度: -30℃ ~+85℃

应用

● 智能 LED

- 智能家居/家电
- 医疗保健
- 工业自动化
- POS 支付
- 智能公交网络

模块型号

模块类型	天线型号	说明
EMW3165	PCB 天线	默认
EMW3165-E	IPEX 天线	可选

硬件框图

版权声明

未经许可,禁止使用或复制本手册中的全部或 任何一部分内容,这尤其适用于商标、机型命名、 零件号和图形。

版本更新说明

日期	版本	更新内容		
2015-1-26	1.0	初始文档		
2015-7-3	1.1	1.更新 5.1 节, 天线类型; 2.更新 6.2 节, 推荐封装尺寸; 3.更新 6.3 节, 生产指南; 4.更新 6.4 节, 注意事项; 5.增加第 7 章, 参考电路图 6.增加第 8 章, 5V UART- 3.3V UART 转换参考电路		
2015-7-30	1.2	更新第4页第5条翻译		
2015-9-10	1.3	更新第1章,功能简介		
2015-12-21	1.4	更新硬件框图,总装机械尺寸图 更新 standby 模式下功耗		
2016-5-5	1.5	更新 5V UART-3.3V UART 转换电路		
2016-5-11	1.6	更新 EMW3165 标签信息		
2016-6-14	1.7	更新首页 WiFi 连通性内容		
2016-7-7	1.8	校正第 4 页-P 图片错误,19 页-P 图标题错误 更新文档格式		
2016-7-12	1.9	增加第二章通过 ROHS 认证的信息		
2016-7-13	2.0	更新模块外观标签		
2017-3-29	2.1	更新表 12 工作温度		

目录

熌	安		1
版和	本更新	兑明	1
1.	产品征	简介	5
	1.1	EMW3165 标签信息	6
	1.2	引脚排列	6
	1.3	引脚定义	8
		1.3.1 EMW3165 模块封装定义	8
		1.3.2 EMW3165 引脚定义	
2.		S 声明	
3.	电气	参数	
	3.1	工作环境	
	3.2	绝对最大额定值(电压)	
	3.3	电流功耗	
		3.3.1 Wi-Fi 模式	
		3.3.2 微控制模式	
	2.4	3.3.3 普通操作模式下的功耗	
	3.4	数字 I/O 口参数	
		3.4.1 数字 I/O 口静态参数	
	3.5	3.4.2 IRESET 引牌多数	
	3.6	静电放电	
	3.7	静态 LATCH-UP	
	3.8	其它 MCU 电气参数	
4.		参数	
4.	オリク 火き 4.1	>双	
	7.1	4.1.1 IEEE802.11b 模式	-
		4.1.2 IEEE802.11g 模式	
		4.1.3 IEEE802.11n mode	
5.	天线	言息	
	5.1	天线类型	23
	5.2	PCB 天线净空区	24
	5.3	外接天线连接器	25
6.	总装	言息及生产指导	26
	6.1	总装尺寸图	26
	6.2	生产指南(请务必要仔细阅读)	26
	6.3	注意事项	28
	6.4	存储条件	29
	6.5	二次回流温度曲线	30
7.	参考!	电路	31

8.	模块 MOQ 与包装信息	
9.	销售与技术支持信息	34
	图目录	
	图 1 EMW3165 硬件框图	5
	图 2 EMW3165 外观图	6
	图 3 引脚排列图	
	图 4 推荐封装示意图	7
	图 5 EMW3165 模块封装定义	
	图 6样品拆分测试点	12
	图 7 EMW3165	23
	图 8 EMW3165-E	
	图 9 EMW3165-B	23
	图 10 PCB 天线最小净空区(单位: mm)	
	图 11 外接天线连接器尺寸图	
	图 12 俯视图	
	图 13 侧视图	26
	图 14 湿度卡	27
	图 15 存储条件示意图	
	图 16 参考回流温度曲线	30
	图 17 电源参考电路	31
	图 18 USB 转串口参考电路	31
	图 19 EMW3165 外部接口参考设计	32
	图 20 3. 3V UART- 5V UART 转换电路	32
	主日寻	
	表目录	
	表 1 EMW3165 引脚定义	8
	表 2 电压参数	13
	表 3 电流参数	13
	表 4 绝对最大额定值	13
	表 5 Wi-Fi 模式电流功耗	14
	表 6 微控制器 Run 模式下一般最大电流功耗	14

表	7 微控制器 Stop 模式一般最大功耗电	15
表	8 微控制器 Standby 模式下一般最大功耗电流	15
表	9 普通操作模式下功耗电流	16
表	10 GPIO 静态参数	16
表	11 nRESET 引脚参数	17
	12 温湿度条件	
表	13 静电释放参数	18
表	14 静态 latch-up 参数	18
表	15 射频标准	19
	16 IEEE802.11bRF 基本属性	
	17 IEEE802.11b RF 发送属性	
表	18 IEEE802.11b RF 接收属性	20
	19 IEEE802.11g RF 基本属性	
表	20 IEEE802.11g RF 发送属性	20
表	21 IEEE802.11g RF 接收属性	21
表	22 IEEE802.11n RF 发送属性	21
	23 IEEE802.11n RF 接收特性	22
表	24 模块 MOO 与包装信息	33

1. 产品简介

EMW3165 是上海庆科(MXCHIP)推出的低功耗、小体积、低成本嵌入式 Wi-Fi 模块,内置高性能低功耗 Cortex-M4 微控制器、128KB RAM + 512KB Flash + 2MB 串行 Flash,并具有多种模拟、数字外设接口,3.3V 单电源供电,邮票孔封装形式。该模块运行 MiCO 物联网操作系统,支持二次开发,用户可以利用 MiCO 的 TCP/IP 协议栈、多种安全加密算法来实现各种嵌入式 Wi-Fi 应用。我们还提供一系列独立的固件来满足不同的应用场景,如 UART——Wi-Fi 透明传输、EasyLink 配置、各种云接入服务等。

下图是 EMW3165 模块的硬件框图,主要包括四大部分:

- Cortex-M4 微控制器
- WLAN MAC/BB/RF/ANT
- 控制器和外设
- 电源管理

图 1 EMW3165 硬件框图

1.1 EMW3165 标签信息

图 2 EMW3165 外观图

标签信息:

CE2200: CE 认证标识

FCC ID P53-EMW3165: FCC ID 号

CMIIT ID 2015DP1385: SRRC 核准号

EMW3165/EMW3165-E: 模块型号

D0BAE411DB22: MAC 地址(每个模块有唯一的 MAC 地址)

-1617: 生产批次

Linked by MXCHIP: 制造商

1.2 引脚排列

EMW3165 共有两排引脚(1x20+1x21),引脚间距为1mm。

EMW3165 模块为"邮票孔"封装,有利于 SMT 贴片或者手工焊接。

引脚如图 4 所示:

图 3 引脚排列图

阻焊开窗和焊盘大小一致, SMT 建议钢网厚度 0.12mm-0.14mm。

封装示意图如下图所示:

图 4 推荐封装示意图

1.3 引脚定义

1.3.1 EMW3165 模块封装定义

Datasheet

图 5 EMW3165 模块封装定义

1.3.2 EMW3165 引脚定义

表 1 EMW3165 引脚定义

引脚	名称	型	电平	多选功能	用户
1	-	-		无连接	NC
2	PB2	I/O	FT	BOOT1	√
3	5 -	-	-	无连接	NC
4	PA7	I/O	FT	Flash_SPI1_MOSI	×
5	PA15	I/O	FT	Flash_SPI1_NSS	×
6	PB3	I/O	FT	Flash_SPI1_SCK	×

引脚	名称	樊型	电平	多选功能	用户	
7	PB4	I/O	FT	Flash_SPI1_MISO	×	
8	PA2	I/O	FT	TIM2_CH3,TIM5_CH3,TIM9_CH1, I2S2_CKIN,USART2_TX, ADC1_2	×DEBUG_OUT(用户不可用)	
9	PA1	I/O	FT	TIM2_CH2,TIM5_CH2,SPI4_MOSI/I2S4_SD, USART2_RTS, ADC1_1	× (EasyLink)	
10	VBAT	S	-	-	×	
11	-	-		无连接	NC	
12	PA3	I/O	FT	TIM2_CH4,TIM5_CH4,TIM9_CH2,	×DEBUG_IN(用户不可用)	
13	NRST	I/O	FT	RESET,复位	×	
14	PA0	I	TC	Wi-Fi 唤醒 MCU	×	
15	-	-	-	无连接	NC	
16	PC13	I/O	FT	RTC_AMP1, RTC_OUT, RTC_TS	√	
17	PB10	I/O	FT	TIM2_CH3,I2C2_SCL,	√	
18	PB9	I/O	FT	TIM4_CH4,TIM11_CH1,I2C1_SDA, SPI2_NSS/I2S2_WS,I2C2_SDA	√	
19	PB12	I/O	FT	TIM1_BKIN,I2C2_SMBA,SPI2_NSS/I2S2_WS,	√	
20	GND	S	-	-	×	
21	GND	S	-	- ×		
22	-	-	-	 无连接	NC	
23	-	-	-	无连接	NC	
24	-	-	-	无连接	NC	
25	PA14	I/O	FT	SWD_SWCLK	×	

引脚	名称	樊型	电平	多选功能	用户
26	PA13	I/O	FT	SWD_SWDIO	×
27	PA12	I/O	FT	TIM1_ETR, SPI5_MISO, USART1_RTS,	√
28	-	-	-	无连接	NC
29	PA10	I/O	FT	TIM1_CH3, SPI5_MOSI/I2S5_SD, USART1_RX, USB_FS_ID	√ USER_UART_RX
30	PB6	I/O	FT	TIM4_CH1, I2C1_SCL, USART1_TX	√ USER_UART_TX
31	PB8	I/O	FT	TIM4_CH3, TIM10_CH1,I2C1_SCL, SPI5_MOSI/I2S5_SD, I2C3_SDA	√
32	-	-		无连接	NC
33	PB13	I/O	FT	TIM1_CH1N, SPI2_SCK/I2S2_CK, SPI4_SCK/I2S4_CK,	√
34	PA5	I/O	TC	TIM2_CH1/TIM2_ET, SPI1_SCK/I2S1_CK, ADC1_5	√
35	PA11	I/O	FT	TIM1_CH4, SPI4_MISO, USART1_CTS, USART6_TX, USB_FS_DM	√
36	PB1	I/O	FT	TIM1_CH3N, TIM3_CH4,	× (BOOT)
37	PB0	I/O	FT	TIM1_CH2N,TIM3_CH3,	×STATUS
38	PA4	I/O	TC	SPI1_NSS/I2S1_WS,SPI3_NSS/I2S3_WS,	√
39	VDD	S	-	-	×
40	VDD	S	-	-	×
41	ANT	-	-	External Antenna Pad	×

说明:

- 1. 设计时请注意 PIN10、PIN39、PIN40 均需接 VDD 3V3 电源, PIN20、PIN21 均需接地;
- 2. PIN8、PIN12 只可用作二次烧录、ATE 和 QC 自动检测;
- 3. PIN29、PIN30 用作用户串口透传通讯,进入 bootloader 模式;
- 4. S表示电源电压引脚, I表示输入引脚, I/O表示输入输出引脚;

- 5. FT 作为输入时最高耐压 5V, 当配置为模拟输入/输出或时钟震荡电路时最高电压不超过 VCC。
- 6. TC表示常规输入/输出电压为 3.6V;
- 7. 4~7 引脚不能被用于其它接口,因为其已经被用于 SPI1 的片外 flash 接口;
- 8. 用 SWD (25、26 接口) 代替 JTAG 来调试/下载固件;
- 9. "√"表示用户可以使用的引脚, "×"表示用户不可用引脚, 其中包括两路串口, 一路 SPI
- 10. 其它功能引脚请查询 STM32F411xE 说明;

注意:

开发者在 MICO 系统上开发应用时可以自定义或修改 EMW3165 的引脚定义。 由本公司开发的固件引脚定义除外,具体请参阅固件用户手册。

2. ROHS 声明

EMW3165 在全球领先的检验,鉴定,测试和认证的权威机构 SGS 通过认证,验证要求参考欧盟 ROHS 指令 2002/95/EC 的重订指令 2011/65/EU。

验证方法:

- 1. 参考 IEC 62321-2:2013, 拆分申请者提供的样品;
- 2. 参考 IEC 62321-1: 2013, 对报告照片标示中的样品进行下列测试分析:
 - 1) 参考 IEC 62321-3-1:2013, 用能量色散 X 射线荧光分析仪器进行筛选
 - 2) 湿法化学测试
 - a) 参考 IEC 62321-5:2013, 用 ICP-OES 测定镉的含量;
 - b) 参考 IEC 62321-5:2013, 用 ICP-OES 测定铅的含量;
 - c) 参考 IEC 62321-4:2013,用 ICP-OES 测定汞的含量;
 - d) 参考 IEC 62321:2008, 用点测试法或比色法测定六价铬的含量;
 - e) 参考 IEC 62321:2008,用 GC-MS 测定多溴联苯和多溴二苯醚的含量。

验证结论:

依据对所提供样品的相关验证,铅,汞,镉,六价铬,多溴联苯,多溴二苯醚的测试结果均符合欧盟 ROHS 指令 2002/95/EC 的重订指令 2011/65/EU 附录 II 的限值要求。

样品拆分测试点如下图:

图 6样品拆分测试点

EMW3165ROHS 测试报告请前往庆科官网: www.mxchip.com 下载。

3. 电气参数

3.1 工作环境

EMW3165 在输入电压低于最低额定电压下工作不稳定,电源设计时需要注意。电压参数如下:

表 2 电压参数

<i>bh</i> 口) ¼ no	タル	详细			
符号	说明	条件	最小值	典型值	最大值	单位
$V_{ m DD}$	电源电压		3.0	3.3	3.6	v

额定电流参数如下:

表 3 电流参数

符号	描述	最小值	单位
IVDD	流入 VDD 电源侧的总电流	320	mA
110	由任何一个 IO 输入输出引脚和控制引脚输出的电流	25	mA
IIO	由任何一个 IO 输入输出引脚和控制引脚输出的电流源	-25	mA

额定功率仅为压力测试参数,该环境下工作会给模块造成永久性损坏。

3.2 绝对最大额定值(电压)

模块在超出绝对最大额定值工作会给硬件造成永久性伤害。最大额定值下不利于设备工作。同时,长时间在最大额定值下工作会影响模块的可靠性。

表 4 绝对最大额定值

符号	说明	最小值	最大值	单位
V_{DD}	电源电压	-0.3	4.0	V
V _{OUT}	5V 耐压引脚输出电压	-0.3	5.5	V
V _{IN}	其他引脚输入电压	-0.3	V _{DD} +0.3	V

在不同的工作模式下,模块实际工作电流参数有变化。

3.3 电流功耗

3.3.1 Wi-Fi 模式

Wi-Fi 模式下电流功耗如表 5 所示:

表 5 Wi-Fi 模式电流功耗

符号	说明	条件	典型值	单位
I_{RF}	SLEEP ⁴	-	200	μА
I_{RF}	Rx(Listen) ²	-	52	mA
I_{RF}	Rx(Active) ³	-	59	mA
I_{RF}	Power Save ^{5, 6}	-	1.9	mA
I_{RF}	Tx CCK ^{7, 10}	11 Mbps at 18.5 dBm	320	mA
I_{RF}	Tx OFDM ⁸ ,10	54 Mbps at 15.5 dBm	270	mA
I_{RF}	Tx OFDM ⁹ ,10	65 Mbps at 14.5 dBm	260	mA

注解:

- 1. 电源关闭;
- 2. 载波侦听 (CCA) ——无载体;
- 3. 载波检测(CS)——Rx 检测;
- 4. Beacon 间隔休眠;
- 5. Beacon 信号间隔 102.4ms, DTIM 是 1, 信号宽度 1ms@1Mbps;
- 6. 在WLAN 低功耗模式下,以下模块将被关闭:晶体振荡器,基带PLL,AFE,RFPLL,射频;
- 7. 芯片端口 CCK 功率。占空比是 100%。(包含功率放大器影响)
- 8. 芯片端口 OFDM 功率。占空比是 100%。(包含功率放大器影响)
- 9. 芯片端口 16dBm 的 OFDM 功率。占空比是 100%。(包含功率放大器影响)
- 10. 通过主动查询温度和动态控制发送占空比,用以避免片内温度超限。

3.3.2 微控制模式

微控制器 Run 模式下,一般最大电流功耗如表 6 所示:

表 6 微控制器 Run 模式下一般最大电流功耗

か ロ	では、		环境温度	单位	
1 7 등	余什	(MHz)	典型值	最大值	井瓜
	LI Zaro I.F.I.	100	21.0	23.3	
I _{MCU}	外部时钟, 所有外设使能	84	17.0	19.2	mA
		64	12.0	13.2	

符号	k7 /LL	时钟频率	环境温度	环境温度 Ta=25 ℃	
1寸 亏	条件	(MHz)	典型值	最大值	单位
I_{MCU}	外部时钟, 所有外设使能	50	9.5	10.4	
	外部时钟, 所有外设使能	20	4.5	5.8	
		100	12.0	14.6	
I_{MCU}	Al Arm Lel.	84	10.0	11.9	mA
	外部时钟, 所有外设不使能	64	7.0	8.4	
	// II // Ø:1 Kill	50	5.5	6.6	
		20	2.5	3.7	

微控制器 Stop 模式下的一般最大电流功耗如表 7 所示:

表 7 微控制器 Stop 模式一般最大功耗电

<i>የተ</i> 🗆	↔ ₩1-	∇ III	环境温	₩ /÷	
符号	参数	条件 	典型值	最大值	单位
	主调节器使用	Flash 工作在停止模式,	114	145	
	低功耗调节器使用	所有晶振关闭,无独立看门狗	43	68	
I_{MCU}	主调节器使用		76	105	uA
	低功耗调节器使用	Flash 工作在深度低功耗模式 所有晶振关闭,无独立看门狗	14	38	
	低功耗低压调节器使用	/// 13 日日 ((本) (下) 3 / () () () () () () () () () (10	30	

微控制器 Standby 模式下的一般最大电流功耗如表 8 所示:

表 8 微控制器 Standby 模式下一般最大功耗电流

符号	<i>₹</i> -₩r	参数 条件 -		单位
打石	少 级	余件	环境温度 Ta=25 ℃	半业
Ţ	待机模式下的电源电流	低速振荡器和 RTC(实时时钟)开启	3.0	11 A
I _{MCU}	1寸机铁八下的电源电弧	低速振荡器和 RTC(实时时钟)关闭	2.1	μА

3.3.3 普通操作模式下的功耗

EMW3165 普通操作模式下的电流功耗如表 9 所示:

表 9 普通操作模式下功耗电流

ケロ	矣 米h	条件	最小值	平均值	最大值	单位
符号		宋	TA=25 ℃	TA=25 ℃	TA=25 ℃	半江
		无 Wi-Fi 数据传输	2.8	7.2	75	mA
		UDP 模式接收数据,速率为 20kbps ¹	2.8	12	262	mA
I_{Module}	EMW3165 总功耗电流	UDP 模式发送数据,速率为 20kbps ¹	3	24	280	mA
	76.937tu-6100	射频关闭,MCU 进入待机模式 ²	37	40	45	μА
		接入 AP	52	74	340	mA

注意:

- 1. 环境温度 $Ta = 25 \, \text{℃}$,单片机 Flash 存储器的数据运算频率为 100 MHz (ART accelerator (自适应实时存储器)加速器启用)。当无任务挂起时, 固件程序每 250 ms,进入一次停止模式,此时 Wi-Fi 子系统接入无线接入点,并运行在省电模式。该模式发送功耗为 IEEE 802.11 n @ $14.5 \, \text{dBm}$ 。AP 的信标间隔周期为 100 ms,DTIM = $1 \, \text{s}$
- 2. Wi-Fi 连接断开。
- 3. 依据不同的固件功能,这些数据可能不同。

3.4 数字 I/O 口参数

3.4.1 数字 I/O 口静态参数

I/O 口输出电压如表 11 所示:

表 10 GPIO 静态参数

符号	参数	条件	最小值	典型值	最大值	单位
V	FT 和 NRST 输入输出端口的输 入低电平最大电压值	170 270	-	-	$0.3V_{DD}$	V
V _{IL}	BOOTO 输入输出端口的输入低电平最大电压值	1.7V ~ 3.6V	-	-	$0.1V_{DD} + 0.1$	V
V 7	FT 和 NRST 输入输出端口的输入高电平最小电压值	1.7V ~ 3.6V	$0.7 m V_{DD}$	-	-	V
V _{IH}	BOOTO 输入输出端口的输入高 电平最小电压值	1./V ~ 3.0V	0.17V _{DD} +0.7	-	-	V
V _{HYS}	FT 和 NRST 输入输出端口输入 滞后电压值	1.7V ~3.6V	$0.1 m V_{DD}$	-	-	V
	BOOT0 输入输出端口输入滞后		0.1	-	-	

符号	参	鯵数	条件	最小值	典型值	最大值	单位
	电压值						
R_{PU}	等效弱上拉	所有引脚, PA10 除外	$V_{IN}=V_{SS}$	30	40	50	kΩ
	电阻	PA10		7	10	14	
R_{PD}	等效弱下拉	所有引脚, PA10 除外	$V_{IN}=V_{DD}$	30	40	50	kΩ
	电阻	PA10		7	10	14	
C _{IO}	输入输出引脚	电容	-	-	5		pF

3.4.2 nRESET 引脚参数

RESET 引脚驱动采用 CMOS 技术,与一个固定上拉电阻 R_{PU} 相连。EMW3165 采用 RC 复位电路,以确保上电时模块精确复位。如果用户需手动复位,只要将外部控制信号与 RESET 引脚相连,但是控制信号必须处于开漏模式。

nRESET 引脚参数如表 11 所示:

表 11 nRESET 引脚参数

符号	参数	条件	最小值	典型值	最大值	单位
V _F (NRST)	NRST 输入可滤波脉冲电压	-	-0.5	1	0.8	V
V _{NF} (NRST)	NRST 输入不可滤波脉冲电压	1	2	-	V _{DD} +0.5	V
R_{PU}	上拉电阻	$V_{IN} = V_{SS}$	30	40	50	kΩ
T _{NRST_OUT}	产生复位脉冲持续时间	内部复位源	20	ı	-	us

3.5 温度与湿度

模块工作环境的温度与湿度参数如表 12 所示:

表 12 温湿度条件

符号	名称	最大	单位
TSTG	存储温度	-55 to +85	°C
TA	工作温度	-30 to +85	$^{\circ}$ C
Humidity	非冷凝,相对湿度	95	%

Datasheet [Page 18]

3.6 静电放电

表 13 静电释放参数

符号	名称	名称	等级	最大值	单位位
V _{ESD} (HBM)	静电释放电压 (人体模型)	TA= +25 ℃ 遵守 JESD22-A114	2	2000	V
V _{ESD} (CDM)	静电释放电压 (放电设备模型)	TA=+25 ℃ 遵守 JESD22-C101	II	500	V

3.7 静态 latch-up

所有参数经测试完全通过 EIA/JESD 78A IC 标准。静态 latch-up 参数如表 14 所示:

表 14 静态 latch-up 参数

符号	参数	条件	等级
LU	静态 latch-up 等级	TA=+105 ℃ 按照 JESD78A	II level A

3.8 其它 MCU 电气参数

更多信息请自行下载,参阅 STM32F411xE 用户手册。

4. 射频参数

4.1 基本射频参数

表 15 射频标准

项目	说明
工作频率	2.412~2.484GHz
Wi-Fi 无线标准	IEEE802.11b/g/n
调制类型	11b: DBPSK, DQPSK,CCK for DSSS 11g: BPSK, QPSK, 16QAM, 64QAM for OFDM 11n: MCS0~7,OFDM*
数据传输速率	11b: 1,2,5.5 和 11Mbps 11g: 6,9,12,18,24,36,48,54Mbps 11n: MCS0~7,72.2Mbps
天线类型	PCB 天线 (默认) IPX 外接天线(可选)

4.1.1 IEEE802.11b 模式

IEEE802.11b 模式下 RF 属性如表 16、17、18 所示:

表 16 IEEE802.11bRF 基本属性

参数项	详细
调制类型	DSSS / CCK
频率范围	2400MHz~2484MHz
通道	CH1 to CH14
数据传输速率	1, 2, 5.5, 11Mbps

表 17 IEEE802.11b RF 发送属性

发送特性	最小值.	典型值	最大值	单位	
	发送输出功率				
11b 目标功率	13.5	16.2	16.5	dBm	
频谱掩码@目标功率					
fc +/-11MHz to +/-22MHz	-	-41.73	-30	dBr	
fc > +/-22MHz	-	-51.89	-50	dBr	
频率误差	-20	3.9	+20	ppm	

发送特性	最小值.	典型值	最大值	单位
Constellation Error(峰值 EVM)@ 目标功率				
1~11Mbps	-	-25.52	-9	dB

表 18 IEEE802.11b RF 接收属性

接收特性	最小值.	典型值	最大值	单位
最小输入电平灵敏度				
1Mbps (FER ≤ 8%)	-	-87	-83	dBm
2Mbps (FER ≤ 8%)	-	-85	-80	dBm
5.5Mbps (FER ≦ 8%)	<u></u>	-83	-79	dBm
11Mbps (FER ≦ 8%)	-	-80	-76	dBm

4.1.2 IEEE802.11g 模式

IEEE802.11g 模式下 RF 属性如表 19、20、21 所示:

表 19 IEEE802.11g RF 基本属性

参数项	详细
调试类型	OFDM
频率范围	2400MHz~2484MHz
通道	CH1 to CH14
数据传输速率	6, 9, 12, 18, 24, 36, 48, 54Mbps

表 20 IEEE802.11g RF 发送属性

发送特性	最小值.	典型值	最大值	单位		
发射输出功率						
11g 目标功率	11.5	14.16	14.5	dBm		
频谱掩码@目标功率						
fc +/-11MHz	-	-31.61	-20	dBr		
fc +/-20MHz	-	-40.73	-28	dBr		
fc > +/-30MHz	-	-43.54	-40	dBr		
频率误差	-20	3.9	+20	ppm		
Constellation Error(峰值 EVM)@目标功率						
54Mbps		-28.52	-25	dB		

表 21 IEEE802.11g RF 接收属性

接收特性	最小值.	典型值	最大值	单位
最小输入电平灵敏度				
6Mbps (FER≦10%)	-	-87	-82	dBm
9Mbps (FER≦10%)	-	-85	-80	dBm
12Mbps (FER ≦10%)	-	-84	-79	dBm
18Mbps (FER≦10%)	-	-82	-77	dBm
24Mbps (FER ≦10%)	-	-80	-74	dBm
36Mbps (FER ≦10%))-	-79	-70	dBm
48Mbps (FER ≦10%)	-	-77	-66	dBm
54Mbps (FER ≦10%)	-	-75	-65	dBm

4.1.3 IEEE802.11n mode

IEEE802.11n 模式下 RF 属性如表 22、23、24 所示:

参数项	详细
调制类型	MIMO-OFDM
通道	CH1 to CH14
数据传输速率	MCS0/1/2/3/4/5/6/7

表 22 IEEE802.11n RF 发送属性

发送特性	最小值.	典型值	最大值	单位	
发送输出功率					
11n HT20 目标功率	10.5	13.43	13.5	dBm	
频谱掩码@目标功率					
fc +/-11MHz	-	-30.23	-20	dBr	
fc +/-20MHz	-	-38.48	-28	dBr	
fc > +/-30MHz	-	-44.8	-40	dBr	
频率误差	-20	3.9	+ 20	ppm	
Constellation Error(峰值 EVM)@目标功率					
MCS7	-	-28.59	-28	dBm	

表 23 IEEE802.11n RF 接收特性

接收特性	最小值.	典型值	最大值	单位
最小输入	电平灵敏度			
MCS0 (FER≦10%)	-	-85	-82	dBm
MCS1 (FER≦10%)	-	-83	-79	dBm
MCS2 (FER≦10%)	-	-82	-77	dBm
MCS3 (FER≦10%)	-	-80	-74	dBm
MCS4 (FER≦10%)	-	-78	-70	dBm
MCS5 (FER≦10%)	-	-74	-66	dBm
MCS6 (FER≦10%)	-	-72	-65	dBm
MCS7 (FER≦10%)	-	-69	-64	dBm

5. 天线信息

5.1 天线类型

EMW3165 有 PCB 内嵌天线、外接天线和天线贴盘三种天线接入方式。默认方式是 PCB 内嵌天线。

用户可用以下方法修改天线接入方式: (EMW3165 配备电阻—— $0\Omega/0402$ 在红色方框标出,可供用户更换天线接入方式)。

图 7 EMW3165

图 8 EMW3165-E

图 9 EMW3165-B

5.2 PCB 天线净空区

在 Wi-Fi 模块上使用 PCB 内嵌天线时,需要确保主板 PCB 和其它金属器件距离至少 15mm 以上。如条件不允许,请使用 U.F.L 连接器安装外接天线。

下图阴影部分标示区域,需远离金属器件、传感器、干扰源以及其它可能造成信号干扰的材料

图 10 PCB 天线最小净空区(单位: mm)

Datasheet [Page 25]

5.3 外接天线连接器

图 11 外接天线连接器尺寸图

6. 总装信息及生产指导

6.1 总装尺寸图

EMW3165 机械尺寸俯视图如下图所示:(单位:mm)

图 12 俯视图

EMW3165 机械尺寸侧视图如下图所示:(单位:mm)

图 13 侧视图

6.2 生产指南(请务必要仔细阅读)

- 庆科出厂的邮票口封装模块必须由 SMT 机器贴片,并且拆开包装烧录固件后 24 内必须贴片完成, 否则要重新抽真空包装,贴片前要对模块进行烘烤。
 - SMT 贴片需要仪器

[Page 27]

- 3. (1) 回流焊贴片机
- 4. (2) AOI 检测仪
- 5. (3) 口径 6-8mm 吸嘴
- 烘烤需要设备:
 - 6. (1) 柜式烘烤箱
 - 7. (2) 防静电、耐高温托盘
 - 8. (3) 防静电耐高温手套
- 庆科出厂的模块存储条件如下(存储环境如 5.4 节图示):
 - 防潮袋必须储存在温度<30 ℃,湿度<85%RH的环境中。
 - 干燥包装的产品,其保质期应该是从包装密封之日起6个月的时间。
 - 密封包装内装有湿度指示卡。

图 14 湿度卡

- 庆科出厂模块需要烘烤,湿度指示卡及烘烤的几种情况如下所述:
 - 拆封时如果温湿度指示卡读值 30%、40%、50%色环均为蓝色,需要对模块进行持续烘烤 2 小时;
 - 拆封时如果湿度指示卡读取到30%色环变为粉色,需要对模块进行持续烘烤4小时;
 - 拆封时如果湿度指示卡读取到30%、40%色环变为粉色,需要对模块进行持续烘烤6小时;
 - 拆封时如果湿度指示卡读取到 30%、40%、50%色环均变为粉色,需要对模块进行持续烘烤 12 小时.
- 烘烤参数如下:
 - 烘烤温度: 125℃±5℃;

- 报警温度设定为 130℃;
- 自然条件下冷却<36℃后,即可以进行 SMT 贴片;
- 干燥次数: 1次;
- 如果烘烤后超过12小时没有焊接,请再次进行烘烤。
- 如果拆封时间超过3个月,禁止使用SMT工艺焊接此批次模块,因为PCB沉金工艺,超过3个月焊盘氧化严重,SMT贴片时极有可能导致虚焊、漏焊,由此带来的种种问题我司不承担相应责任;
- SMT 贴片前请对模块进行 ESD (静电放电,静电释放)保护;
- 请根据回流焊曲线图进行 SMT 贴片,峰值温度 245°C,回流焊温度曲线如 5.5 节图 10 所示;
- 为了确保回流焊合格率,首次贴片请抽取 10%产品进行目测、AOI 检测,以确保炉温控制、器件吸附方式、摆放方式的合理性,之后的批量生产建议每小时抽取 5-10 片进行目测、AOI 测试。

6.3 注意事项

- 在生产全程中各工位的操作人员必须戴静电手套;
- 烘烤时不能超过烘烤时间;
- 烘烤时严禁加入爆炸性、可燃性、腐蚀性物质;
- 烘烤时,模块应用高温托盘放入烤箱中,保持每片模块之间空气流通,同时避免模块与烤箱内壁 直接接触;
- 烘烤时请将烘烤箱门关好,保证烘烤箱封闭,防止温度外泄,影响烘烤效果;
- 烘烤箱运行时尽量不要打开箱门, 若必须打开, 尽量缩短可开门时间;
- 烘烤完毕后, 需待模块自然冷却至<36℃后, 方可戴静电手套拿出, 以免烫伤;
- 操作时,严防模块底面沾水或者污物;
- 庆科出厂模块温湿度管控等級为 Level3,存储和烘烤条件依据 IPC/JEDEC J-STD-020。

图 15 存储条件示意图

6.5 二次回流温度曲线

建议使用焊锡膏型号: SAC305, 无铅。回流次数不超过 2 次

EMW3165

7. 参考电路

EMW3165 用户参考电路如下图 17 电源参考电路、图 18 USB 转串口参考电路、图 19 外部接口参考设计所示供用户参考。

图 17 电源参考电路

图 18 USB 转串口参考电路

图 19 EMW3165 外部接口参考设计

EMW3165 UART 为 3.3V UART,如果用户使用芯片的 UART 为 5V 电压,则需要把 5V UART 转成 3.3V UART,方能与 EMW3165 UART 通讯,5V-3.3V UART 转换电路请参考图 20 所示电路。

图 20 3. 3V UART- 5V UART 转换电路

8. 模块 MOQ 与包装信息

表 24 模块 MOQ 与包装信息

料号	MOQ(pcs) (6 小箱)	出货包装方式 (托盘/卷带)	每个托盘存放 模块数(pcs)	每小箱托盘数 (个)	每小箱模块数 量(pcs)
EMW3165	1800	托盘	30	10+1	300
EMW3165-E	1800	托盘	30	10+1	300

备注:每小箱托盘数量 10+1 表示: 10 个托盘装有 WiFi 模块,1 个空托盘放最上层作保护用。

9. 销售与技术支持信息

如果需要咨询或购买本产品,请在办公时间拨打电话咨询上海庆科信息技术有限公司。

办公时间:

星期一至星期五上午: 9:00~12:00, 下午: 13:00~18:00

联系电话: +86-21-52655026

联系地址:上海市普陀区金沙江路 2145 弄 5 号 9 楼

邮编: 200333

Email: sales@mxchip.com