Presentación - Trabajo final - Algoritmo QD

Grupo 8

Iavicoli Dulcet, Listorti, Loscalzo Bianchi

Introducción:

Algoritmo QD:

- Algoritmo para aproximar las raíces de un polinomio.
- Puede obtener todas las raíces en un mismo procedimiento.
- Requiere: Polinomio completo con coeficientes reales y no nulos.

Método de Bairstow:

- Para un polinomio con raíces co-modulares.

Preprocesamiento:

- En caso de no estar completo el polinomio.

Algoritmo Quotient-Difference (QD)

Sea un P(x) un polinomio completo, de raíces reales:

Cálculo de los valores de qi y ei para la iteración 0.

$$q_1^{(0)} = \frac{-a_{n-1}}{a_n}$$
 ; $q_i^{(0)} = 0 \quad \forall i = 2, 3, \cdots, n$

$$e_i^{(0)} = \frac{\alpha_{n-i-1}}{\alpha_{n-i}} \quad \forall i = 1, 2, \cdots, n-2, n-1 \quad ; \qquad e_0^{(0)} = e_n^{(0)} = 0$$

Cálculo de los valores de qi y ei para el resto de las iteraciones.

$$\begin{split} q_i^{(m+1)} &= e_i^{(m)} - e_{i-1}^{(m)} + q_i^{(m)} & \forall i = 1, 2, \cdots, n \\ e_i^{(m+1)} &= \frac{q_{i-1}^{(m+1)}}{q_i^{(m+1)}} \cdot e_i^{(m)} & \forall i = 1, 2, \cdots, n-1 \\ e_0^{(m+1)} &= e_n^{(m+1)} = 0 \end{split}$$

Tabla de valores del método:

Con las sucesivas iteraciones, las columnas qi los valores convergen en valores reales. En las columnas ei, los valores en primer caso convergen a cero u oscilarán entre distintos valores, en cuyo debemos recurrir al método de Bairstow.

Método QD con raíces complejas: Algoritmo de Bairstow

¿Qué pasa frente a polinomios con raíces complejas?...¿Y con raíces de igual módulo?

En estos casos las columnas del error no tienden a anularse...

teración 0	ee	q1 3.58000	e1	q2 0.86988	e2	q3 0.66000	е3	q4 0.00000	e4	q5 0.00000	e5
	0.00000		-0.78571	1.55844	0.77273	-2.59626	-1.82353		-0.32258	0.32258	0.00000
1	0.00000	2.71429	-0.45113		-1.28731		1.05422	1.50095	-0.06933		0.00000
2	0.00000	2.26316	-0.14397	0.72226	0.45401	-0.25473	-1.56192	0.37740	-0.07199	0.39191	0.00000
3	0.00000	2.11919	-0.08969	1.32024	-0.78084	-2.27066	1.28448	1.86733	-0.01789	0.46390	0.00000
4	0.00000	2.02949	-0.02780	0.62909	0.25486	-0.20533	-3.53421	0.56496	-0.01525	0.48179	0.00000
5	0.00000	2.00169	-0.01266	0.91176	-1.11655	-3.99440	3.61341	4.08392	-0.00186	0.49704	0.00000
6	0.00000	1.98903	0.00122	-0.19213	4,27459	0.73556	2.30222	0.46865	-0.00198	0.49890	0.00000
7	0.00000	1.99025	0.00251	4.08123	1.29540	-1.23680	3.41674	-1.83555	0.00054	0.50087	0.00000
8	0.00000	1.99276	0.00350	2.78332	1.61748	3.47534	-5.16321	-5.25175	-0.00005	0.50033	0.00000
9	0.00000	1.99626	0.00204	1.16234	0.89795	-0.87039	-6.49890	-0.08860	0.00029	0.50038	0.00000
10	0.00000	1.99830	0.00128	1.25825	-0.51903	-6.66724	6.24873	6.41059	0.00002	0.50009	0.00000
11	0.00000	1.99959	0.00120	0.73794	-0.87978	0.10052	10.06383	0.16188	0.00002	0.50007	0.00000
12	0.00000	2.00006	0.00047	0.66677	1.08520	10.23504	-9.73623	-9.90187	-0.00007	0.50000	0.00000
13		2.00022	-0.86093	-0.41859	4.10658	1.58401	1.01813	-0.16564	0.00001	0.50001	
14	0.00000	2.00018		3.68893	0.000	-1.50444	10%339730305	-1.18377		0.49999	0.00000
15	0.00000	2.00012	-0.00006	2.01291	1.67518	0.97186	0.80112	No ti	-0.00000 ende a cer	009	0.00000
16	Tiende a	cero	-0.00006	1.20417	-0.80880	0.14448	-1.63617	-0.54071	and and a	0.50860	0.00000
17		2.00003	-0.00004	1.10717	-0.89784	4.19053	3.94980	-4.29772	-0.00000	0.50000	0.00000
18	0.00000	2.00001	-0.00002	0.73989	-0.36730	0.50780	-4.05002	-0.24770	0.00000	0.50000	0.00000
19	0.00000	2.00000	-0.00001	0.48781	-0.25208	2.73543	1.97554	-2.22324	-0.00000	0.50000	0.00000
20	0.00000	2.00000	-0.00000	-0.92575	1.41357	2.54336	-1.60564	-0.61761	0.00000	0.50000	0.00000
21	0.00000	2.00000	0.00000	2.95780	3.88356	-0.95030	0.38990	-1.00750	-0.00000	0.50000	0.00000
22	0.00000	2.00000	0.00000	1.71007	-1.24773	0.71080	0.41337	-1.42087	0.00000	0.50000	0.00000
	0.00000		0.00000		0.51862		-0.82631		-0.00000		0.00000

teración 0	e0	-0.50000	el	q2 0.00000	e2	q3 0.00000	e3	q4 0.00000	e4
	0.00000		8.00000		0.12500	40 1000000	-6.00000		0.00000
1	0.00000	-8.50000	7.64706	8.12500	-0.09423	-6.12500	5.87755	6.00000	0.00000
2	0.00000	-0.85294	3.44016	0.38371	0.03763	-0.15322	-4.69722	0.12245	0.00000
3		-4.29310	100	3.86150		-4.88807		4.81967	
4	0.00000	-1.19880	3.09431	0.71956	-0.04763	-0.20894	4.63150	0.18817	0.00000
5	0.00000	-3.05611	1.85732	2.59071	0.01383	-4.39395	-4.17118	4.35936	0.00000
	0.00000	-1.48164	1.57448	0.99278	-0.02346	-0.23216	4.13834	0.22102	0.00000
6	0.00000		1.05498		0.00549		-3.93977		0.00000
7	0.00000	-2.53662	0.85395	2.05325	-0.01116	-4.17741	3.92409	4.16079	0.00000
8	0.00000	-1.68267	0.60297	1.18814	0.00227	-0.24216	-3.83554	0.23670	0.00000
9		-2.28565	SALES SECTION	1.79339		-4.07997		4.07223	
10	0.00000	-1.81254	0.47311	1.31510	-0.00517	-0.24654	3.82826	0.24397	0.00000
11	0.00000	-2.15581	0.34327	1.65934	0.00097		-3.78844	4.03241	0.00000
	0.00000		0.26422		Co-mo	dular	3.78512		0.00000
12	0.00000	-1.89159	0.19454	1.39277		_	-3.76721	0.24729	0.00000
13	0.00000	-2.08613	0.14806	1.58773	-0.00106	-4.01610	3.76572	4.01450	0.00000
14		-1.93807		1.43860		-0.24932		0.24879	
15	0.00000	-2.04797	0.10991	1.54869	0.00018	-4.00719	-3.75769	4.00648	0.00000
16	0.00000	-1.96486	0.08311	1.46510	-0.00048	-0.24970	3.75702	0.24946	0.00000
	0.00000		0.06197	44 98500000	0.00008	70 00000000	-3.75343	89 - Revolutions	0.00000
17	0.00000	-2.02683	0.04669	1.52715	-0.00021	-4.00321	3.75313	4.00289	0.00000
18	0.00000	-1.98014	0.03491	1.48025	0.80004	-0.24987	-3.75153	0.24976	0.00000
19	0.00000	-2.01505	0.02625	1.51519	-0.00010	-4.00143	3.75139	4.00129	0.00000
20		-1.98880	1 1000	1.48885		-0.24994	11111	0.24989	
21	0.00000	-2.00845	0.01965	1.50851	0.00002	-4.00064	-3.75068	4.00057	0.00000
22	0.00000	-1.99369	0.01476	1,49371	-0.80004	-0.24997	3.75062	0.24995	0.00000
	0.00000		0.01106		0.00001		-3.75030		0.00000
23	0.00000	-2.00475	0.00830	1.50478	-0.00002	-4.00028	3.75028	4.00025	0.00000
								•	

Método QD con raíces complejas: Algoritmo de Bairstow

Este problema de la diferencia de cocientes lo solucionamos combinando el algoritmo QD con el método de Bairstow. ¿De qué manera?

Hallando un factor cuadrático del tipo

$$x^2 - u * x - v$$

cuyas raíces sean las complejas conjugadas que estamos buscando.

Para obtener este factor cuadrático es que recurrimos a un método iterativo.

Método QD con raíces complejas: Algoritmo de Bairstow

Para calcular el factor cuadrático inicial calculamos sus coeficientes como:

$$u_0 = q_i^m + q_{i+1}^m \quad y \quad v_0 = q_i^{m-1} \cdot q_{i+1}^m$$

Con esto obtenemos un factor aproximado que contiene a ambas raíces complejas pero que es necesario refinar, para que, al realizar la división sintética, el residuo de la división resultante entre el polinomio y el factor sea lo más cercano a cero posible, para ello iteramos de la siguiente forma:

Método QD: Algoritmo de Bairstow

$$u_{m+1} = u_m + h_m$$

$$v_{m+1} = v_m + k_m$$

Llamando h y k a los incrementos parciales de los coeficientes.

$$h_{m} = \frac{q_{m} \cdot p_{m-3} - q_{m-1} \cdot p_{m-2}}{(p_{m-2})^{2} - p_{m-1} \cdot p_{m-3}}$$

$$k_{m} = \frac{q_{m-1} \cdot p_{m-1} - q_{m} \cdot p_{m-2}}{(p_{m-2})^{2} - p_{m-1} \cdot p_{m-3}}$$

Donde los q y p que se ven en las ecuaciones de los incrementos provienen de la doble división sintética que se aplica sobre el polinomio P(X)

Criterio de convergencia:

- Cuando el método converge hacia los valores del factor el residuo tiende a cero.
- Este método tiene la ventaja de que tiene convergencia cuadrática al igual que el método de Newton-Raphson

Preprocesamiento de un polinomio

Traslación efectuada sobre la indeterminada

$$P(x)$$
 $P(x+c)$

$$Q(x) = P(x + c) = \sum b_k (x - c)^k$$

Siendo
$$b_k = (P_k * c)/k!$$

Preprocesamiento de un polinomio

Transformación recíproca

$$P(x) \rightarrow x^n P(1/x)$$
 donde n es el grado de $P(x)$

Se genera un polinomio de la forma:

$$Q(x) = x^n P(1/x)$$

Raíces de $Q(x) = Raíces de P(x)^{-1}$

Casos Analizados

- 1. Polinomio completo con todas sus raíces reales
- 2. Polinomio completo con raíces reales y complejas.
- 3. Polinomio completo con raíces cercanas.
- 4. Polinomio incompleto con raíces reales y co-modulares.
- 5. Polinomio completo con raíces co-modulares.

Todos los casos y sus comparaciones se realizaron con una tolerancia de 0.0001

1. Polinomio completo con todas sus raíces reales

$$f(x)=x^3-4x^2+x+6$$

Iteración	e0	ql	el	q2	e2	q3	e3
	0.00000		-0.00102	,	-0.00110		0.00000
14		3.00203		1.99760		-0.99963	
	0.00000		-0.00068		0.00055		0.00000
15		3.00136		1.99883		-1.00018	
	0.00000		-0.00045		-0.00027		0.00000
16		3.00090		1.99901		-0.99991	
	0.00000		-0.00030		0.00014		0.00000
17		3.00060		1.99944		-1.00005	
	0.00000		-0.00020		-0.00007		0.00000
18		3.00040		1.99958		-0.99998	
	0.00000		-0.00013		0.00003		0.00000
		x ₄ =3.00040)1	x ₂ =1.999576		x ₂ =-0.999977	

1. Polinomio completo con todas sus raíces reales

$$f(x)=x^3-4x^2+x+6$$

	Comparación con otros métodos										
Raíces Exactas	Q-D En 19 iteraciones	Punto Fijo Sistemático	Newton-Raphson								
x ₁ =3	x ₁ =3.000401	x ₁ =3.00000 En 20 iteraciones, x ₀ =2.7, Intervalo [2.7:3.5]	x ₁ =3.00000 En 7 iteraciones, x ₀ =2.6								
x ₂ =2	x ₂ =1.999576	x ₂ =2.0000 En 5 iteraciones, x ₀ =1.9, Intervalo [1.9:2.1]	$x_2=2.0000$ En 4 iteraciones, $x_0=1.5$								
x ₃ =-1	x ₃ =-0.999977	x_3 =-1.0000 En 21 iteraciones, x_0 =-2 Intervalo [-2:0]	x ₃ =-1.0000 En 7 iteraciones,x ₀ =-5.0								

2. Polinomio completo con raíces reales y complejas

$$f(x) = x^5 - 3.5x^4 + 2.75x^3 + 2.125x^2 - 3.875x + 1.25$$

[teración	e0	ql	el	q2	e2	q3	e3	q4	e4	q5	e5
	0.00000		0.00000	2	-11.95024		-0.00021		-0.00000		0.00000
95		2.00000		-11.86005		13.86000		-0.99995		0.50000	RESERVE
	0.00000		-0.00000		13.96540		0.00002		0.00000		0.00000
96		2.00000		2.10535		-0.10538		-0.99996		0.50000	RESERVE
	0.00000		-0.00000		-0.69905		0.00015		-0.00000		0.00000
97		2.00000		1.40630		0.59381		-1.00011		0.50000	RESERVE
	0.00000		-0.00000		-0.29517		-0.00025		0.00000		0.00000
98		2.00000		1.11112		0.88874		-0.99986		0.50000	RESERVE
	0.00000		-0.00000		-0.23610		0.00028		-0.00000		0.00000
99		2.00000		0.87503		1.12511		-1.00014		0.50000	RESERVE
	0.00000		-0.00000		-0.30357		-0.00025		0.00000		0.00000
100		2.00000		0.57146		1.42843		-0.99989		0.50000	

 $x_1 = 2.00000$

 x_2 = Bairstow

 x_3 = Bairstow

 $x_{A} = -0.99989$

 $x_5 = 0.50000$

2. Polinomio completo con raíces reales y complejas.

$$f(x) = x^5 - 3.5x^4 + 2.75x^3 + 2.125x^2 - 3.875x + 1.25$$

Comparación con otros métodos

Raíces Exactas	Q-D 100 iteraciones	Punto Fijo Sistemático	Newton-Raphson
x ₁ = 2	x ₁ = 2.00000	(no se pudo aplicar método correctamente)	$x_1 = 2.0000$ En 12 iteraciones, $x_0 = 1.7$
x ₂ = 1+0.5i	x ₂ = 1.00000+0.50000i		$x_2 = 1.00000 + 0.50000 i$ En 6 iteraciones, $x_0 = 0.8 + 0.4i$
x ₃ = 1 - 0.5i	x ₃ = 1.00000-0.500000i		$x_3 = 1.00000 - 0.50000i$ En 6 iteraciones, $x_0 = 0.8 - 0.4i$
x ₄ = -1	x ₄ = -1.00006		$x_4 = -1.00000$ En 5 iteraciones, $x_0 = -1.5$
$x_5 = 0.5$	x ₅ = 0.50000		$x_3 = 0.5000$ En 5 iteraciones, $x_0 = 1.0$

3. Polinomio completo con raíces cercanas.

$$f(x) = x^3 - 21.009x^2 + 147.126026x - 343.441182$$

Iteración	e0	ql	el	q2	e2	q3	e3
	0.00000		-0.00010		-0.00010		0.00000
367		7.04107		7.00290		6.96503	
	0.00000		-0.00010		-0.00010		0.00000
368		7.04096		7.00290		6.96513	
	0.00000		-0.00010		-0.00010		0.00000
369		7.04086		7.00290		6.96524	
	0.00000		-0.00010		-0.00010		0.00000
370		7.04076		7.00291		6.96534	
	0.00000		-0.00010		-0.00010		0.00000
371		7.04066		7.00291		6.96544	
	0.00000		-0.00010		-0.00010		0.00000
372		7.04056		7.00291		6.96554	
	0.00000		-0.00010		-0.00010		0.00000
		$x_1 = 7.04045$		x ₂ = 7.00291		x ₃ = 6.96564	

3. Polinomio completo con raíces cercanas.

$$f(x) = x^3 - 21.009x^2 + 147.126026x - 343.441182$$

	Comparación con otros métodos										
Raíces Exactas	Q-D En 373 iteraciones	Punto Fijo Sistemático	Bisección								
x ₁ = 7.002	x ₁ = 7.04045	Las raíces se encuentran demasiado cerca	x ₁ = 7.002 En 4 iteraciones Intervalo [7.001:7.0023]								
x ₂ = 7.003	x ₂ = 7.00291	Convergen a un valor pero habrá divergencia para	x ₂ = 7.002 En 4 iteraciones Intervalo [7.002:7.0035]								
x ₃ = 7.004	x ₃ = 6.96564	Ajustar a un valor siguiente.	x ₃ = 7.004 En 4 iteraciones Intervalo [7.003:7.0045]								

4. Polinomio incompleto con raíces reales y co-modulares

$$f(x) = x^4 - 10x^2 + 9$$

Como este es un polinomio incompleto se tuvo que realizar una transformación sobre la indeterminada. En este caso con un c=0.5:

Iteración	e0	ql	el	q2	e2	q3	e3	q4	e4
	0.00000	-	0.00059		0.00000		-0.00000		0.00000
27		-3.50025		2.50025		-1.50000		0.50000	
	0.00000		0.00043		-0.00000		0.00000		0.00000
28		-3.49982		2.49982		-1.50000		0.50000	
1111	0.00000	-	0.00030		0.00000		-0.00000		0.00000
29		-3.50013		2.50013		-1.50000		0.50000	
	0.00000		0.00022		-0.00000		0.00000		0.00000
30		-3.49991		2.49991		-1.50000		0.50000	
	0.00000	-	0.00015		0.00000		-0.00000		0.00000
31		-3.50006		2.50006		-1.50000		0.50000	
	0.00000		0.00011		-0.00000		0.00000		0.00000
		x ₁ =-3.49995		x ₂ =2.4999	5	x ₃ =-1.5000	0	x ₄ =0.5000	0

4. Polinomio incompleto con raíces reales y co-modulares

$$f(x) = x^4 - 10x^2 + 9$$

Para mejorar el análisis se volvió a calcular las raíces pero con un factor de traslación de c=0.01:

Iteración	e0	ql	el	q2	e2	q3	e3	q4	e4
	0.00000		-0.00010		0.00000		-0.00000		0.00000
1745		-3.01005		2.99005		-1.01000		0.99000	
	0.00000		0.00010		-0.00000		0.00000		0.00000
1746		-3.00995		2.98995		-1.01000		0.99000	
	0.00000		-0.00010		0.00000		-0.00000		0.00000
1747		-3.01005		2.99005		-1.01000		0.99000	
	0.00000		0.00010		-0.00000		0.00000		0.00000
1748		-3.00995		2.98995		-1.01000		0.99000	
	0.00000		-0.00010		0.00000		-0.00000		0.00000
1749		-3.01005		2.99005		-1.01000		0.99000	
	0.00000		0.00010		-0.00000		0.00000		0.00000
1750		-3.00995		2.98995		-1.01000		0.99000	
	0.00000		-0.00010		0.00000		-0.00000		0.00000
	×	: ₁ =-3.0100!	5	x ₂ =2.9900	5	x ₃ =-1.0100	0	x ₄ =0.99000	

4. Polinomio incompleto con raíces reales y co-modulares $f(x) = x^4-10x^2+9$

	Comparación con otro método										
Raíces exactas	Q-D con c=0.5 En 32 iteraciones	Q-D con c=0.01 En 1751 iteraciones	Punto Fijo Sistemático								
x ₁ =-3	x ₁ =-3.49995	x ₁ =-3.01005	$x_1 = -3.000002$ En 18 iteraciones, $x_0 = -3.5$, Intervalo [-3.5:-2.7]								
x ₂ = 3	x ₂ =2.49995	x ₂ =2.99005	x ₂ =2.999999 En 20 iteraciones, x ₀ =2.7, Intervalo [2.7:3.5]								
x ₃ = -1	x ₃ =-1.50000	x ₃ =-1.01000	x ₃ =-1.000003 En 4 iteraciones, x ₀ =-1.5, Intervalo [-1.5:-0.7]								
x ₄ = 1	x ₄ =0.50000	x ₄ =0.99000	x ₄ =0.999996 En 8 iteraciones, x ₀ =0.7, Intervalo [0.7:1.5]								

5. Polinomio completo con raíces co-modulares

$$f(x) = x^4 + 2x^3 - 3x^2 - 8x - 4$$

Iteración	e0	ql	e1	q2	e2	q3	e3	q4	e4
	0.00000		-0.90000		0.00000		0.00011		0.00000
95		-2.50000		2.50000		-1.01049		-0.98951	
	0.00000		0.90000		-0.00000		0.00011		0.00000
96		-1.60000		1.60000		-1.01038		-0.98962	
	0.00000		-0.90000		0.00000		0.00011		0.00000
97		-2.50000		2.50000		-1.01027		-0.98973	
	0.00000		0.90000		-0.00000		0.00010		0.00000
98		-1.60000		1.60000		-1.01017		-0.98983	
	0.00000		-0.90000		0.00000		0.00010		0.00000
99		-2.50000		2.50000		-1.01007		-0.98993	
	0.00000		0.90000		-0.00000		0.00010		0.00000
100		-1.60000		1.60000		-1.00997		-0.99003	
	0.00000		-0.90000		0.00000		0.00010		0.00000
	0.00000		-0.90000		0.00000		0.00010		0.0000

 x_1 =Bairstow

 x_2 = Bairstow

 $x_3 = -1.00998$

 $x_4 = -0.990032$

5. Polinomio completo con raíces co-modulares

$$f(x) = x^4 + 2x^3 - 3x^2 - 8x - 4$$

Comparación con otro método

Raíces exactas	Q-D En 100 iteraciones	Punto Fijo Sistemático	Punto Fijo Sistemático
x ₁ =2	x ₁ =2.00000	x ₁ =1.999998 En 48 iteraciones, x ₀ =1.0, Intervalo [1.0:3.0]	$x_1=1.999998$ En 21 iteraciones, $x_0=1.5$, Intervalo [1.5:2.5]
x ₂ =-2	x ₂ =-2.00000	x ₂ =-1.999976 En 22 iteraciones, x ₀ =-2.2, Intervalo [-2.2:-1.9]	$x_2 = -2.00000$ En 10 iteraciones, $x_0 = -2.0$, Intervalo [-2.2:-1.9]
x ₃ = -1	x ₃ =-1.009868	x ₃ =-1.005746 En 65 iteraciones, x ₀ =-1.5, Intervalo [-1.5:-0.5]	x ₃ =-1.005746 En 49 iteraciones, x ₀ =-1.2, Intervalo [-1.2:-0.8]
× ₄ = -1	x ₄ =-0.990132	x ₄ =-1.005746 En 65 iteraciones, x ₀ =-1.5, Intervalo [-1.5:-0.5]	x ₄ =-1.005746 En 49 iteraciones, x ₀ =-1.2, Intervalo [-1.2:-0.8]

Conclusiones:

Desventajas:

- Gran cantidad de iteraciones, con respecto a otros métodos.
- Necesidad de preprocesamiento si el polinomio no está completo.
- Las raíces deben estar lo suficientemente separadas entre sí.
- Las raíces deben ser reales.

Ventajas:

- Obtención de todas las raíces en un solo proceso.
- Obtención de raíces complejas con el método de Bairstow.
- No tiene necesidad de ingresar valores cercanos a alguna posible raíz.