Data Structures and Algorithms

Lecture 7: Quick Sort

Department of Computer Science & Technology
United International College

Outline

- Introduction to Quick Sort
- Quick Sort Components
 - Partitioning
 - Small Array Strategy
 - Picking the Pivot
- Cost Analysis

Introduction

- Fastest sorting algorithm in practice
 - A lot of variations exist
- Not Stable
 - Average case cost: O(N log N)
 - Worst case cost: $O(N^2)$
 - But, the worst case seldom happens.
- Another divide-and-conquer algorithm

Quick sort, another divide-and-conquer algorithm

- DIVIDE
- CONQUER
- COMBINE

Divide

- Pick an element v in S
 - v is called the pivot
 - Many ways to pick a pivot
- Partition $S \{v\}$ into two disjoint groups

```
• S1 = \{x \in S - \{v\} \mid x \le v\}
```

•
$$S2 = \{x \in S - \{v\} \mid x > = v\}$$

Recursively divide \$1 and \$2

Conquer

• If there is no more than 1 element in s, return directly.

Combine

- No action is needed.
- The SOrted S1 (when the recursion is done) followed by \boldsymbol{v} , followed by the SOrted S2 (when the recursion is done), make a SOrted new list.

Example

Pick a pivot	2	6	1	4	9	5	3	0	7	8
Partition	2	3	1	0	4	5	6	9	7	8
Pick a pivot	2	3	1	0	4	5	6	9	7	8
Partition	0	1	3	2	4	5	6	9	7	8
Pick a pivot	dner	1	3	2	4	5	6	9	7	8
Partition	Conquer	1	2	3	4	5	6	9	7	8

Conquer

The right half can be solved similarly

Nothing is done in conquer and combine

"DIVIDE" IS THE KEY

Animation

- Animation
- Note that
 - There are various methods to choose a pivot
 - There are various methods to partition a sub-array

Pseudo Code

```
QUICKSORT(A, left, right)

1. IF left >= right

2. return

3. q = PARTITION(A, left, right)

4. //q is the position of the pivot

5. QUICKSORT(A, left, q-1)

6. QUICKSORT(A, q+1, right)
```

Partitioning

- Partitioning
 - This is a key step of the quicksort algorithm
 - Goal: given the picked pivot, partition the remaining elements into two smaller sets
 - Many ways to implement how to partition
 - Even the slightest deviations may cause surprisingly bad results.
- We will learn an easy and efficient partitioning strategy here.
- How to pick a pivot will be discussed later

Want to partition an array A[left .. right]

- 1. Get the pivot element out of the way by swapping it with the last element. (Swap pivot and A[right])
- 2. Let i start at the first element and j start at the nextto-last element
 - 1. i = left, j = right 1

Goal:

- A[left..i] are smaller or equal to the pivot
- A[j..right] are greater or equal to the pivot Strategy:
- When i < j
 - Move i right, skipping over elements smaller than the pivot
 - Move j left, skipping over elements greater than the pivot
 - When both i and j have stopped
 - A[i] >= pivot
 - A[j] <= pivot { A[i] and A[j] should now be swapped}

- When i and j have stopped and i is to the left of j (thus legal)
 - Swap A[i] and A[j]
 - And then both elements are on the "correct" side
 - After swapping
 - A[i] <= pivot
 - A[j] >= pivot
 - Repeat the process until i and j cross

i and j cross now!

- When i and j have crossed
 - Swap A[i] and pivot
- Result:
 - -A[p] <= pivot, for p < i
 - -A[p] >= pivot, for p > 1
- Partition complete


```
PARTITION(A, left, right)
    p = PIVOT(A, left, right)
  //p is the position of the pivot
  swap A[p] and A[right]
   i = left, j = right-1, pivot = A[right]
5.
   WHII F true
6.
       WHILE i<right AND A[i]<pivot
         j++
       WHILE j>=left AND A[j]>pivot
8.
9.
10. IF i<j
11.
         swap A[i] and A[j]
12.
      ELSE
13.
          BREAK
    swap A[i] and A[right]
```

0_ 000

Small arrays

- For very small arrays, quicksort does not perform as well as insertion sort
 - how small depends on many factors, such as the time spent making a recursive call, the compiler, etc
- Do not use quicksort recursively for small arrays
 - Instead, use a sorting algorithm that is efficient for small arrays, such as insertion sort

Quick Sort + Small Array Strategy

```
QUICKSORT(A, left, right)

1. IF left >= right - 10

2. INSERTIONSORT(A, left, right)

3. RETURN

4. q = PARTITION(A, left, right)

5. //q is the position of the pivot

6. QUICKSORT(A, left, q-1)

7. QUICKSORT(A, q+1, right)
```

Picking the PIVOT

Strategy I

- Use the first element as pivot
 - if the input is random, ok
 - if the input is presorted (or in reverse order)
 - all the elements go into S2 (or S1)
 - this happens consistently throughout the recursive calls
 - Results in O(n²) behavior

Strategy II

- Choose the pivot randomly
 - generally safe
 - random number generation can be expensive

Strategy III

- Use the median of the array
 - The median is the middle element if the array is sorted. For example, if there are 9 elements in the array, the median is the 5th largest one.
 - Partitioning always cuts the array into roughly half
 - An optimal quicksort: O(N log N)
 - However, expensive to find the exact median
 - e.g., sort an array to pick the value in the middle

Strategy IV

- We will use median of three
 - Compare just three elements: the left most, right most and center
 - Swap these elements if necessary so that
 - A[left] = Smallest
 - A[right] = Largest
 - A[center] = Median of three
 - Pick A[center] as the pivot
 - Swap A[center] and A[right 1] so that pivot is at second last position
 - · WHY?

Median3 Example

median3	2	6	1	4	9	5	3	0	8	7
reposition	2	6	1	4	7	5	3	0	8	9
pick pivot	2	6	1	4	7	5	3	0	8	9
swap	2	6	1	4	8	5	3	0	7	9
		•						•		

```
PARTITION(A, left, right)
    MEDIAN3(A, left, right)
   // MEDIAN3 repositions the left, center
  // and the right elements
  i = left+1, j = right-2, pivot = A[right-1]
   WHILE true
6.
       WHILE A[i] < pivot
         i++
                            No boundary
8.
      WHILE A[j]>pivot
                           check. Why?
9.
       IF i<j
10.
11.
         swap A[i] and A[j]
12.
         i++, j--
13.
      ELSE
14.
         BREAK
    Swap A[i] and A[right-1]
15.
```

Quicksort Faster than Mergesort

- Both quicksort and mergesort take O(N log N) in the average case.
- Why is quicksort faster than mergesort?
 - The inner loop consists of an increment/decrement (by 1, which is fast), a test and a jump.
 - There is no extra juggling as in mergesort.

Analysis

- Assumptions
 - Pivot Selection: Median of 3
 - Base Case: Array size <= 10</p>
- Running time T(n)
 - Divide
 - Pivot selection: O(1)
 - Partitioning: O(n)
 - Recursive calls: T(i) + T(n-i-1)
 - i: number of elements in S1
 - Conquer and Combine: O(1)

$$T(n)=T(i)+T(n-i-1)+O(n)$$

Worst-Case Analysis

- What will be the worst case?
 - The pivot is the smallest element, all the time
 - Partition is always unbalanced

$$T(N) = T(N-1) + cN$$
 $T(N-1) = T(N-2) + c(N-1)$
 $T(N-2) = T(N-3) + c(N-2)$
 \vdots
 $T(2) = T(1) + c(2)$
 $T(N) = T(1) + c\sum_{i=2}^{N} i = O(N^2)$

Best-case Analysis

- What will be the best case?
 - Partition is perfectly balanced
 - Pivot is always in the middle (median of the array)

```
= 2T(n/2) + n
T(n)
        = 2[2T(n/2^2) + n/2] + n
         = 2^2T(n/2^2) + 2n
         = 2^3T(n/2^3) + 3n
         = 2^{i}T(n/2^{i}) + i*n
Let i = log(n),
         = nT(n/n) + n*log(n)
         = O(n*log(n))
```

Average-Case Analysis

- Assume
 - Each of the sizes for S1 is equally likely
- This assumption is valid for our pivoting (median-of-three) strategy
- On average, the running time is O(N log N)

Covered in

DESIGN AND ANALYSIS OF ALGORITHMS

Consider special cases

- When all elements are the same?
- Other cases?

Analysis of Quick Sort

Best-case Running Time	O(nlog(n))
Worst-case Running Time	O(n²)
Average Running Time	O(nlog(n))

- Quick sort is not stable
- But it is the fastest in practice
- The worst case seldom happens

