Versuch Nr. 301

Leerlaufspannung und Innenwiderstand von Spannungsquellen

Sara Krieg sara.krieg@udo.edu Marek Karzel marek.karzel@udo.edu

Durchführung: 30.10.2018 Abgabe: 06.11.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie		3	
2	Dur	chführung	4	
3	Aus	wertung	5	
	3.1	Bestimmung von U_0 und R_i der Monozelle	5	
	3.2	Bestimmung von U_0 und R_i der Monozelle mit Gegenspannung	7	
		Bestimmung von U_0 und R_i des Rechteckausgangs eines RC-Generators .		
	3.4	Bestimmung von U_0 und R_i des Sinusausgangs eines RC-Generators	11	
	3.5	Systematischer Fehler eines in Reihe geschalteten Voltmeters	11	
	3.6	Leistungskurve	12	
4	Disk	kussion	13	

1 Theorie

Ziel des Versuches ist es, Leerlaufspannungen und Innenwiderstände verschiedener Spannungsquellen zu bestimmen.

Unter dem Begriff "Spannungsquelle" wird ein Gerät verstanden, dass über einen endlichen Zeitraum konstante elektrische Leistung liefern kann. Beispiele sind Galvanische Elemente, Dynamos oder LC - Generatoren. Als Leerlaufspannung U_0 bezeichnet man diejenige Spannung, die anliegt, wenn der Quelle kein Strom I entnommen wird. Wird ein Verbraucher an die Quelle angeschlossen, sinkt die "Klemmspanung" U_k auf einem Wert unter U_0 ab. Es gilt also $U_k < U_0$. Dies kann man durch die Zuordnung eines Innenwiederstandes R_i zu der Spannungsquelle erklären. Das Ersatzschaltbild einer realen Spannungsquelle ist in Abbildung 1 in dem gestrichelten Bereich dargestellt.

Abbildung 1: Ersatzschaltbild für eine reale Spannungsquelle mit Lastwiderstand R_a

Das Zweite Kirchhoffsche Gesetz, die Maschenregel, besagt, dass die Summe der Leerlaufspannungen gleich der Summe der Spannungsabfälle an den Widerständen der Masche ist. Angewandt auf unsere Schaltung ergibt sich:

$$U_k = I \cdot R_a = U_0 - I \cdot R_i \tag{1}$$

Daraus folgt direkt, dass U_k mit zunehmdem Stromfluss abnehmen muss. Möchte man nun U_0 messen, ist es dementsprechend sinnvoll ein Spannungsmessgerät mit hohem Innenwiderstand zu verwenden. Da $I=\frac{U}{R}$ gilt, wird durch einen hohen Widerstand der durch das Messgerät fließende Strom minimiert. Dadurch kann in (1) $I\cdot R_i$ vernachlässtig werden, sodass $U_0\approx U_k$ gilt.

 R_i sorgt außerdem dafür, dass der Spannungsquelle keine beliebig hohe elektische Leistung entnommen werden kann. Das wird deutlich durch Betrachtung der Leistung:

$$P = I^2 \cdot R_a \tag{2}$$

Durch Umformen von (1) nach I ergibt sich:

$$I = \frac{U_0}{R_a + R_i} \tag{3}$$

Einsetzen von (3) in (2) liefert:

$$P = \frac{U_0^2 \cdot R_a}{(R_a + R_i)^2} \tag{4}$$

Dies ist eine Funktion für die Leistung, die abhängig von R_a ist. Untersucht man $P(R_a)$ genauer, so stellt man fest, dass die Funktion ein Maximum durchläuft. Um festzustellen, an welcher Stelle dieses Maximum liegt, wird (4) zunächst abgeleitet.

$$\frac{\partial P}{\partial R_a} = \frac{U_0^2 \cdot (R_i^2 - Ra^2)}{(R_a + R_i)^4} \tag{5}$$

Das Maximum ergibt sich nun durch Nullsetzen der ermittelten Ableitung.

$$\begin{split} \frac{\partial P}{\partial R_a} &= 0 \\ \Leftrightarrow U_0^2 (R_i^2 - R_a^2) &= 0 \\ \Leftrightarrow R_a &= R_i \end{split}$$

Der letzte Schritt ergibt sich, da $R_a, R_i > 0$ gilt. Das bedeutet, dass die Leistung genau dann maximal wird, wenn der Innenwiderstand R_i der Spannungsquelle genau dem Lastwiderstand R_a entspricht. Diesen Fall nennt man Leistungsanpassung.

Auch Generatoren kann ein Innenwiderstand zugeordnet werden. Dieser muss allerdings eine differentielle Größe

$$R_i = \frac{\mathrm{d}U_k}{\mathrm{d}I} \tag{6}$$

sein, da die Änderung des Belastungsstroms das elektrische Verhalten des Generators beeinflusst.

[sample]

2 Durchführung

Bei diesem Experiment werden vier Messungen durchgeführt.

Zunächst wird die Leerlaufspannung einer Monozelle unmittelbar mit einem Spannungsmesser ermittelt. Der Eingangswiderstand R_v wird dabei notiert.

Danach wird die Klemmspannung U_k in Abhängigkeit vom Belastungsstrom I gemessen. Dazu wird der Aufbau gemäß 2 verwendet. Der Belastungswiderstand R_a wird in einem Bereich von 0 - 50Ω variiert. Dabei werden 14 Messwerte für U_k und I notiert.

Abbildung 2: Messschaltung zur Bestimmung von U_0 und R_i

Im nächsten Schritt wird eine Gegenspannung an die Monozelle gemäß 3 angelegt. Diese ist zirka 2V größer als die Leerlaufspannung U_0 . Dadurch fließt ein Strom in entgegengesetzter Richtung durch die Schaltung. Wie zuvor wird U_k in Abhängigkeit von I gemessen.

Abbildung 3: Verwendung einer Gegenspannung

Bei der letzten Messung benutzt man einen Aufbau gemäß 2. Statt einer Monozelle als Spannungsquelle wird allerdings der Sinus- und Rechteckausgang eines RC - Generators verwendet. Für jeden Ausgang werden jeweils 11 und 17 Messwerte notiert. Bei der Rechteckspannung liegt der Variationsbereich von R_a bei 20 - 250 Ω und bei der Sinusspannung bei 0.1 - 5 k Ω . Zu beachten ist, dass die Eichung der Messgeräte nur für einen bestimmten Frequenzbereich gültig sind. Deswegen wird die Frequenz der Spannungen auf einen Wert in diesem Bereich festgelegt.

3 Auswertung

3.1 Bestimmung von U_0 und R_i der Monozelle

Es wird die Klemmspannung U_k in Abhängigkeit des Stromes I gemessen. Die aufgenommenen Werte sind in Tabelle 1 aufgeführt.

Es wird eine lineare Regression durchgeführt, um die Leerlaufspannung und den Innenwiderstand zu berechnen. Hierfür verwenden wir Python mit der Bibliothek Numpy. Es ergibt sich die in 4 dargestellte Ausgleichsgerade:

$$U(I) = m \cdot I + b \tag{7}$$

Mit den Parametern

Tabelle 1: Spannungs- und Stromwerte der Monozelle

U_k / V	I/mA
1.550	25.0
1.525	27.5
1.500	31.0
1.450	38.0
1.425	46.0
1.400	49.5
1.350	57.0
1.300	61.5
1.250	77.5
1.200	85.0
1.100	110.0
0.700	175.0
0.450	215.0
0.400	225.0

$$m = (-5,6550 \pm 0,0776) \frac{V}{A}$$
 (8)

$$b = (1,6800 \pm 0,0085) \,\mathrm{V} \tag{9}$$

Durch Vergleich mit 1 ergeben sich somit die gesuchten Größen zu:

$$R_i = (5,6550 \pm 0,0776) \, \Omega \tag{10}$$

$$U_0 = (1,6800 \pm 0,0085) \,\mathrm{V} \tag{11}$$

Man erkennt, dass der Wert für die Leerlaufspannung annäherend mit den zuvor gemessenen Wert $U_0=1,65\,\mathrm{V}$ übereinstimmt. Die Abweichung entsteht durch einen systematischen Fehler, der durch den endlichen Innenwiderstand des Voltmeters entsteht. Dazu wird das Ohmsche Gesetz auf R_i und R_v angewendet, nach I umgestellt und in 1 angewendet.

$$\begin{split} U_k &= U_0 - \frac{U_0}{R_i + R_v} \cdot R_i \\ \Leftrightarrow U_0 &= U_k \cdot (1 + \frac{R_i}{R_v}) \end{split}$$

Der systematische Fehler beträgt somit:

$$\Delta U = U_k \cdot \frac{R_i}{R_v} \tag{12}$$

Abbildung 4: Strom- und Spannungsmesswerte einer Monozelle mit Regression

Mit den Werten $U_k=1,65\,\mathrm{V},\ R_i=5,655\,\Omega$ und $R_v=10\,\mathrm{M}\Omega$ ergibt sich der Wert $\Delta U=933\,\mathrm{nV}.$ Dies ist im Vergleich zur gemessenen Spannung verschwindend gering.

3.2 Bestimmung von U_0 und R_i der Monozelle mit Gegenspannung

Nun wird die gleiche Messung mit einer angelegten Gegenspannung durchgeführt. Die gemessenen Werte sind in Tabelle 2 aufgeführt.

Auch hier wird eine lineare Regression mittels Phyton und Numpy durchgeführt. Das Resultat findet sich in Abbilgung 5.

Die Ausgleichsgerade hat eine positive Steigung. Dies liegt daran, dass der Strom in entgegengesetzter Richtung durch die Monozelle fließt. Die Geradengleichung lautet gemäß 7. Dabei ergeben sich diesmal die Parameter:

$$m = (6,0770 \pm 0,0576) \frac{\text{V}}{\text{A}}$$
$$b = (1,6587 \pm 0,0061) \text{ V}$$

Damit ergibt sich für die gesuchten Werte analog, wobei der Strom mit einem umgekehrten Vorzeichen versehen wird.

Tabelle 2: Spannungs- und Stromwerte der Monozelle unter Gegenspannung

U_k / V	I/mA
1.900	40.0
1.925	42.0
1.950	45.5
1.975	52.5
2.000	55.5
2.050	65.0
2.100	73.0
2.150	82.5
2.200	90.0
2.250	101.0
2.300	105.0
2.400	120.0
2.500	140.0
2.700	170.0
3.000	220.0

 ${\bf Abbildung~5:~Strom~-~und~Spannungsmesswerte~einer~Monozelle~bei~Verwendung~einer~}$ Gegenspannung

$$R_i = (6,0770 \pm 0,0576) \,\Omega$$

$$U_0 = (1,6587 \pm 0,0061) \,\mathrm{V}$$

Es ist zu erkennen, dass der errechnete Wert für die Leerlaufspannung und der gemessene bei diesem Aufbau noch besser übereinstimmen.

3.3 Bestimmung von U_0 und R_i des Rechteckausgangs eines RC-Generators

Es werden U_k und I von einer Rechteckspannung gemessen. Die Messwerte sind in Tabelle 3 aufgeführt.

Tabelle 3: Spannungs- und Stromwerte der Rechteckspannung

U_k / V	I/mA
0.54	2.15
0.52	2.50
0.50	2.85
0.48	3.25
0.46	3.65
0.42	4.55
0.38	5.20
0.35	5.80
0.30	6.75
0.25	7.7
0.20	8.55

Auch hier wird eine lineare Regression durchgeführt mittels Python und Numpy. Die Messwerte und Ausgleichsgerade sind in Abbildung 6 zu sehen.

Die Parameter ergeben sich diesmal gemäß 7 zu:

$$m = (-52,3500 \pm 0,4829) \frac{\text{V}}{\text{A}}$$

$$b = (0,6520 \pm 0,0025) \text{ V}$$

Somit ergeben sich gemäß Formel 1 folgende Werte:

$$\begin{split} R_i &= (52{,}3500 \pm 0{,}4829)\,\Omega \\ U_0 &= (0{,}6520 \pm 0{,}0025)\,\mathrm{V} \end{split}$$

Abbildung 6: Strom- und Spannungsmesswerte einer Rechteckspannung

Tabelle 4: Spannungs- und Stromwerte der Sinusspannung

U_k/V	I/mA
2.100	0.355
2.000	0.600
1.900	0.650
1.800	0.850
1.750	0.950
1.700	1.050
1.650	1.100
1.600	1.200
1.550	1.275
1.500	1.350
1.450	1.425
1.400	1.500
1.375	1.575
1.300	1.650
1.250	1.725
1.000	2.125
0.750	2.550

3.4 Bestimmung von U_0 und R_i des Sinusausgangs eines RC-Generators

Es werden U_k und I von einer Sinusspannung gemessen. Die Messwerte sind in Tabelle 4 aufgeführt.

Auch hier wird eine lineare Regression durchgeführt mittels Python und Numpy. Die Messwerte und Ausgleichsgerade sind in Abbildung 7 zu sehen.

Abbildung 7: Strom- und Spannungsmesswerte einer Sinusspannung

Die Parameter ergeben sich diesmal gemäß 7 zu:

$$m = (624,1170 \pm 7,8725) \frac{\text{V}}{\text{A}}$$

$$b = (2,339 \pm 0,011) \text{ V}$$

Somit ergeben sich gemäß Formel 1 folgende Werte:

$$\begin{split} R_i &= (624,\!1170 \pm 7,\!8725)\,\Omega \\ U_0 &= (2,\!339 \pm 0,\!011)\,\mathrm{V} \end{split}$$

3.5 Systematischer Fehler eines in Reihe geschalteten Voltmeters

Nun soll die Schaltung, die in Abbildung 1 dargestellt ist, so variiert werden, dass das Voltmeter in Reihe geschaltet wird. Dabei verändert sich die Klemmspannung U_k nach der 2. Kirchhoffschen Regel:

$$U_k = U_{am} + U_{vm} + U_{Ra} \tag{13}$$

$$U_k = R_{am} \cdot I + R_{vm} \cdot I + R_a \cdot I \tag{14}$$

Dabei bezeichnet U_{am} die Spannung, die über das Amperemeter, U_{vm} , die über das Voltmeter und U_{Ra} , die über den Widerstand abfällt.

Entgegen unser vorherigen Betrachtung kann hier U_0 nicht als U_k angenommen werden. Dies liegt daran, dass das Voltmeter mit einem hochohmigen Innenwiderstand behaftet ist.

3.6 Leistungskurve

Aus den Messwerten in Kapitel 4.1 werden der Belastungswiderstand und die im Widerstand umgesetzte Leistung berechnet. Die Werte sind in Tabelle 5 aufgetragen:

Tabelle 5: Errechnete Leistungswerte

U_k / V	I/mA	R_a / Ω	P/W
1.550	25.0	62.00	0.039
1.525	27.5	55.45	0.042
1.500	31.0	48.39	0.047
1.450	38.0	38.16	0.055
1.425	46.0	30.98	0.066
1.400	49.5	28.28	0.069
1.350	57.0	23.68	0.077
1.300	61.5	21.14	0.080
1.250	77.5	16.13	0.097
1.200	85.0	14.12	0.102
1.100	110.0	10.00	0.121
0.700	175.0	4.00	0.123
0.450	215.0	2.09	0.096
0.400	225.0	1.77	0.890

Nach Formel 4 wird nun die Leistung P gegen den Belastungswiderstand R_a aufgetragen und die Theoriekurve in Abbildung 8 eingetragen, die sich mit den Werten

$$R_i = 5,66 \,\Omega$$

 $U_0 = 1,68 \, \text{V}$

ergibt.

Abbildung 8: Umgesetzte Leistung aufgetragen gegen den Lastwiderstand

4 Diskussion