4/5/3 DIALOG(R) File 351: Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

009240301

WPI Acc No: 1992-367719/199245

XRAM Acc No: C92-163297

Strong transcriptional promoter from Kluyveromyces lactis - provides efficient expression of heterologous proteins e.g. human serum albumin in yeast

Patent Assignee: RHONE POULENC RORER SA (RHON); RHONE-POULENC RORER SA (RHON)

Inventor: FLEER R; FOURNIER A; MAYAUX J; YEH P Number of Countries: 026 Number of Patents: 016

Patent Family:

Pat	tent No	Kind	Date	App	plicat No	Kind	Date	Week	
EP	511912	A1	19921104	EP	92401206	A	19920428	199245	В
WO	9219751	Al	19921112	WO	92FR375	Α	19920428	199248	
FR	2676070	A1	19921106	FR	915294	A	19910430	199301	
ZA	9203083	Α	19930127	ZA	923083	Α	19920428	199310	
ΑU	9217892	Α	19921221	AU	9217892	A	19920428	199311	
				WO	92FR375	Α	19920428		
NZ	,242543	A	19931026	NZ	242543	Α	19920429	199345	
FΙ	9304806	Α	19931029	WO	92FR375	Α	19920428	199402	
				FI	934806	Α	19931029		
NO	9303654	Α	19931011	WO	92FR375	Α	19920428	199404	
				NO	933654	A	19931011		
ΕP	584166	A1	19940302	ΕP	92910339	Α	19920428	199409	
				WO	92FR375	Α	19920428		
JP	6506602	W	19940728	JP	92510457	Α	19920428	199434	
				WO	92FR375	Α	19920428		
HU	67448	T	19950428	WO	92FR375	Α	19920428	199523	
				HU	933087	Α	19920428		
AU	658630	В	19950427	AU	9217892	Α	19920428	199525	
US	5646012	Α	19970708	WO	92FR375	A	19920428	199733	
				US	93140093	Α	19931101		
				US	95483639	A	19950607		
ΕP	584166	B1	19980325	EP	92910339	Α	19920428	199816	
				WO	92FR375	Α	19920428		
DE	69224902	E	19980430	DE	624902	Α	19920428	199823	
				ΕP	92910339	Α	19920428		
				WO	92FR375	A	19920428		
ES	2113948	Т3	19980516	EP	92910339	A	19920428	199826	

Priority Applications (No Type Date): FR 915294 A 19910430

Cited Patents: 3.Jnl.Ref; EP 361991

Patent Details:

Patent No Kind Lan Pg Filing Notes Main IPC

EP 511912 A1 F 22 C12N-015/81

Designated States (Regional): PT

WO 9219751 A1 F 27 C12N-015/81

Designated States (National): AU CA FI HU JP KR NO US

Designated States (Regional): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

FR 2676070 **A1** 31 C12N-015/29

ZA 9203083 34 C12N-000/00 Α

AU 9217892 Α C12N-015/81 Based on patent WO 9219751

EP 584166 A1 F C12N-015/81 Based on patent WO 9219751

```
Designated States (Regional): AT BE CH DE DK ES FR GB GR IT LI LU NL SE
JP 6506602
             W
                      C12N-015/67
                                    Based on patent WO 9219751
HU 67448
             Т
                       C12N-015/81
                                    Based on patent WO 9219751
AU 658630
             В
                      C12N-015/11
                                    Previous Publ. patent AU 9217892
                                    Based on patent WO 9219751
US 5646012
             Α
                    23 C12P-021/02
                                    Cont of application WO 92FR375
                                     Cont of application US 93140093
EP 584166
             B1 F 22 C12N-015/81
                                    Based on patent WO 9219751
   Designated States (Regional): AT BE CH DE DK ES FR GB GR IT LI LU NL PT
   SE
DE 69224902
             Ε
                       C12N-015/81
                                    Based on patent EP 584166
                                    Based on patent WO 9219751
ES 2113948
             Т3
                      C12N-015/81
                                    Based on patent EP 584166
NZ 242543
                      C12N-015/12
             Α
FI 9304806
             A
                       C12N-000/00
NO 9303654
             Α
                      C12N-000/00
```

Abstract (Basic): EP 511912 A

New DNA sequences (A) contain all or part of a specified 2249 bp sequence reproduced in the specification or of its complementary strand, or of a deriv. of these. (A) has the activity of a transcriptional promoter. Also new are (1) recombinant DNA (A') contg. (A) and (2) recombinant cells contg. (A) or (A').

Pref., (A') contains 1 or more structural genes plus segments which cause secretion of expression products. Partic. (A') is part of an expression plasmid of the autonomous or integrating types.

USE/ADVANTAGE - (A) is a very efficient promoter in yeasts, esp. Kluyveromyces and is used to express recombinant genes partic. simultaneous expression in 2 opposite orientations. These genes are esp. those of pharmaceutical or nutritional interest, esp. that for human serum albumin (HSA)(

Dwg.0/14

Title Terms: STRONG; TRANSCRIBING; PROMOTE; KLUYVEROMYCES; LACTIS; EFFICIENCY; EXPRESS; HETEROLOGOUS; PROTEIN; HUMAN; SERUM; ALBUMIN; YEAST Derwent Class: B04; D16

International Patent Class (Main): C12N-000/00; C12N-015/11; C12N-015/12; C12N-015/29; C12N-015/67; C12N-015/81; C12P-021/02

International Patent Class (Additional): C07H-021/04; C07K-019/765;

C12N-001/16; C12N-001/19; C12N-015/14; C12N-015/66

File Segment: CPI

12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 92401206.5

(22) Date de dépôt : 28.04.92

(51) Int. Cl.5: C12N 15/81, C12N 1/19,

C12P 21/02

30 Priorité: 30.04.91 FR 9105294

(43) Date de publication de la demande : 04.11.92 Bulletin 92/45

84 Etats contractants désignés :

① Demandeur : RHONE-POULENC RORER SA 20, avenue Raymond Aron F-92160 Antony (FR) 72 Inventeur : Fleer, Reinhard
1 Allée Port Royal, Résidence de l'Abbaye
F-91190 Gif Sur Yvette (FR)
Inventeur : Fournier, Alain
28 Avenue Roger Salengro
F-92000 Chatenay Malabry (FR)
Inventeur : Mayaux, Jean-François
21 ter Boulevard de la République
F-92260 Fontenay aux Roses (FR)
Inventeur : Yeh, Patrice
11bis, rue Lacépède
F-75005 Paris (FR)

(74) Mandataire: Savina, Jacques et al Rhône-Poulenc Rorer S.A. Direction Brevets (t144) 20 avenue Raymond Aron F-92165 Antony Cédex (FR)

- (54) Promoteur de levure et son utilisation.
- (57) L'invention concerne des séquences d'ADN comprenant tout ou partie du promoteur du gène PGK de K.lactis, ou d'un dérivé de celui-ci, et possèdant une activité de promoteur transcriptionnel. Elle concerne également l'utilisation de ces séquences pour l'expression de gènes recombinés.

FIGURE 3

5

15

La présente invention concerne le domaine de la biologie moléculaire. Plus particulièrement, elle concerne une nouvelle séquence d'ADN présentant une activité de promoteur transcriptionnel, des vecteurs d'expression contenant cette séquence, et son utilisation pour la production de protéines, et par exemple de protéines hétérologues. L'invention concerne aussi les cellules recombinées contenant cette séquence d'ADN.

Les progrès accomplis dans le domaine de la biologie moléculaire ont permis de modifier des microorganismes pour leur faire produire des protéines hétérologues. En particulier, de nombreuses études génétiques ont porté sur la bactérie E. coli. Toutefois, l'application industrielle de ces nouveaux modes de production est encore limitée, en particulier par les problèmes d'efficacité d'expression des gènes dans ces microorganismes recombinés. Aussi, dans le but d'augmenter les performances de ces systèmes de production, des recherches ont été effectuées afin d'isoler des promoteurs forts, permettant d'obtenir des niveaux élevés d'expression de protéines hétérologues. Chez E.coli, on peut citer en particulier les promoteurs des opérons tryptophane et lactose.

Plus récemment, chez la levure <u>S. cerevisiae</u>, des études ont porté sur des promoteurs dérivés de gènes impliqués dans la glycolyse. On peut citer notamment les travaux sur le promoteur du gène de la 3-phosphoglycerate kinase <u>PGK</u> (Dobson et al., Nucleic Acid Res. <u>10</u>, 1982, 2625; Hitzeman et al., Nucleic Acid Research 1982, 7791), sur celui du gène de la glyceraldéhyde-3-phosphate déshydrogénase <u>GAPDH</u> (Holland et al., J.Biol.Chem. <u>254</u>, 1979, 9839; Musti et al., Gene <u>25</u>, 1983, 133), sur celui du gène de l'alcool déshydrogénase 1 <u>ADH1</u> (Bennentzen et al., J.Biol.Chem. <u>257</u>, 1982, 3018; Denis et al., J.Biol.Chem. <u>25</u>, 1983, 1165), ou sur celui du gène de l'enolase 1 <u>ENO1</u> (Uemura et al., Gene <u>45</u>, 1986. 65).

Récemment, des outils génétiques ont été développés afin de se servir de la levure Kluyveromyces comme cellule hôte pour la production de protéines recombinantes. La mise en évidence d'un plasmide de type 2-micron originaire de K-drosophilarum (plasmide pKD1 - EP 241 435) a permis d'établir un système hôte/vecteur très efficace pour la production de protéines recombinantes (EP 361 991). Cependant, les promoteurs utilisés dans ce système n'ont jamais été optimisés. En particulier, il s'agit essentiellement de promoteurs hétérologues, c'est-à-dire provenant d'autres microorganismes, tel que notamment S.cerevisiae. Cette situation peut engendrer différents inconvénients, et notamment limiter l'activité du promoteur à cause de l'absence de certains éléments de la machinerie transcriptionnelle (par exemple de transactivateurs), présenter une certainee toxicité pour la cellule hôte due à une absence de régulation, ou affecter la stabilité du vecteur.

Dans ces conditions, le manque de promoteurs homologues forts chez <u>Kluyveromyces</u> constitue un facteur limitant dans l'exploitation industrielle de ce système d'expression.

La Demanderesse a maintenant identifié, cloné et séquencé une région du génome de Kluyveromyces lactis présentant une activité de promoteur transcriptionnel (voir figure 1). Plus précisément, cette région correspond au promoteur du gène PGK de K.lactis. Cette région, ou des dérivés ou fragments de celle-ci, peut être utilisée de manière très performante pour la production de protéines recombinantes chez les levures du genre Kluyveromyces. Il est entendu que cette séquence peut également être utilisée dans d'autres organismes hôtes.

Par ailleurs, l'analyse de la région du génome de <u>Kluyveromyces</u> obtenue a permis de mettre en évidence 2 phases de lecture dans les 2 orientations opposées (voir figure 2). Cette observation indique que le brin complémentaire de la région présentée sur la figure 1 possède également une activité promotrice agissant dans l'autre orientation.

Un objet de la présente invention réside donc dans une séquence d'ADN comprenant tout ou partie de la séquence présentée à la figure 1 ou de son brin complémentaire, ou d'un dérivé de celles-ci, et possédant une activité de promoteur.

Au sens de la présente invention, on entend par dérivé, toute séquence obtenue à partir de la séquence donnée dans la figure 1 par modifications structurales (mutations, délétions, substitutions, additions, fragmentations ...) conservant une activité de promoteur. En particulier, les mutations peuvent porter sur un ou plusieurs nucléotides, et les additions et/ou substitutions peuvent porter sur des éléments de régulation, ou des régions activatrices telles que les "UAS".

Lorsqu'un dérivé est réalisé, son activité de promoteur transcriptionnel peut être mise en évidence de plusieurs façons, et en particulier en plaçant sous le contrôle de la séquence étudiée, un gène de résistance ou un marqueur de complémentation. Toute autre technique connue de l'homme de l'art peut bien évidemment être utilisée à cet effet.

Un objet plus particulier de l'invention concerne une séquence d'ADN correspondant à la région comprise entre les 2 phases ouvertes ORF PGK et ORF X, telle que présentée sur la figure 6.

Un autre objet de l'invention concerne un ADN recombinant comprenant une séquence d'ADN telle que définie ci-dessus.

Cet ADN recombinant peut contenir par exemple la séquence promotrice présentée à la figure 1 ou un dérivé de celle-ci, dans laquelle est inséré un site de restriction, facilitant l'utilisation de cette séquence comme promoteur, "portable".

Préférentiellement, cet ADN recombinant contient en outre un ou plusieurs gènes de structure.

25

35

40

50

Encore plus préférentiellement, l'ADN recombinant contient également des signaux permettant la sécretion du produit d'expression du ou desdits gènes de structure.

Dans un mode de réalisation particulier de l'invention, l'ADN recombinant fait partie d'un plasmide d'expression, qui peut être à réplication autonome ou intégratif.

En particulier, des vecteurs à réplication autonome peuvent être obtenus en utilisant des séquences à réplication autonomes (ARS) chez l'hôte choisi. Notamment, chez la levure, il peut s'agir d'origines de réplication dérivées de plasmides connus (pKD1, 2μ, etc).

Les vecteurs intégratifs peuvent être obtenus notamment en utilisant des séquences homologues à certaines régions du génome de l'hôte, permettant, par recombinaison homologue, l'intégration du vecteur.

La séquence présentée sur la figure 1 a été obtenue par criblage d'une banque d'ADN génomique total de Kluyveromyces lactis au moyen d'une sonde hétérologue provenant du gène PGK de S. cerevisiae. La Demanderesse a en effet montré qu'il est possible de cloner une région promotrice chez Kluyveromyces, par hybridation à partir de sondes hétérologues correspondant à un gène de S. cerevisiae. Les détails du clonage de la séquence sont donnés dans les exemples. La région intergénique peut ensuite être isolée à partir de cette séquence, notamment par insertion de sites de restriction en utilisant la technique d'amplification par PCR comme indiqué dans les exemples.

Un autre objet de l'invention concerne les cellules recombinées contenant une séquence d'ADN telle que définie ci-avant.

Avantageusement, les cellules sont choisies parmi les levures, et encore plus préférentiellement, parmi les levures du genre Kluyveromyces. Il est entendu cependant que l'invention couvre toute les cellules recombinées dans lesquelles les régions promotrices de l'invention sont actives.

Ces cellules peuvent être obtenues par toute méthode permettant d'introduire un ADN étranger dans une cellule. Il peut s'agir notamment de transformation, électroporation, ou toute autre technique connue de l'homme de l'art.

Un autre objet de l'invention concerne l'utilisation d'une séquence telle que précédemment définie pour l'expression de gènes recombinés.

Comme l'illustrent les exemples, les séquences d'ADN selon l'invention permettent en effet une production à des niveaux élevés de protéines recombinantes.

Par ailleurs, l'activité promotrice bidirectionnelle des séquences de l'invention permet une utilisation particulièrement avantageuse. Notamment, il est possible d'utiliser ces séquences dans les 2 orientations possibles, pour l'expression simultanée de plusieurs gènes de structure.

Avantageusement, l'invention conceme l'utilisation d'une séquence telle que précédemment définie pour l'expression simultanée, dans les 2 orientations opposées, de gènes recombinés.

Avantageusement, les séquences de l'invention peuvent être utilisées pour l'expression de gènes codant pour des protéines d'intérêt pharmaceutique ou agroalimentaire. A titre d'exemple, on peut citer les enzymes (tels que notamment la superoxide dismutase, la catalase, les amylases, les lipases, les amidases, la chymosine etc.), les dérivés sanguins (tels que la sérum-albumine, l'alpha- ou la béta-globine, le facteur VIII, le facteur IX, le facteur van Willebrand, la fibronectine, l'alpha-1 antitrypsine etc.), l'insuline et ses variants, les lymphokines (telles que les interleukines, les interférons, les facteurs de stimulation des colonies (G-CSF, GM-CSF, M-CSF...), le TNF, le TRF etc.), les facteurs de croissance (tels que l'hormone de croissance, l'érythropoiétine, le FGF, l'EGF, le PDGF, le TGF etc.), les apolipoprotéines, des polypeptides antigéniques pour la réalisation de vaccins (hépatite, cytomégalovirus, Eppstein-Barr, herpes etc.), ou encore des fusions de polypeptides telles que notamment des fusions comportant une partie active fusionnée à une partie stabilisatrice (par exemple des fusions entre l'albumine ou des fragments d'albumine et le récepteur ou une partie d'un récepteur de virus (CD4, etc)).

L'invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

LEGENDE DES FIGURES

Figure 1 : Séquence nucléotidique de la région de 2,2 kb du fragment chromosomique situé en amont du codon d'initiation de la traduction du gène PGK de K.lactis possédant l'activité promotrice.

Figure 2: Analyse des phases ouvertes de lecture. Les demi-traits verticaux représentent des codons d'initiation de la traduction. Les traits verticaux entiers représentent des codons stop. Les régions claires mettent en évidence les phase ouvertes de lecture (ORF X et ORF PGK).

<u>Figure 3</u>: Carte de restriction du plasmide pYG610. La région noire correspond à la région isolée du génome de K.lactis.

Figure 4: Stratégie de séquençage du fragment Xbal de 2,5 kb.

Figure 5 : Séquence et localisation des oligodéoxynucléotides utilisés dans la réaction de PCR, pour l'insertion d'un site Hindill en -6 de l'ATG de la séquence de la figure 1. Les oligodéoxynucléotides sont représentés en italique. L'ATG correspond au codon d'initiation de la traduction du gène PGK.

Figure 6: Séquence nucléotidique de la région intergénique du fragment 2,2 kb. 6(a): oligodéoxynucléotides utilisés dans la réaction de PCR. 6(b): Fragment Sal(I)-HindIII correspondant aux nucléotides 1343 à 2246 sur la séquence de la figure 1.

<u>Figure 7</u>: Stratégie de construction du plasmide pYG45.

<u>Figure 8</u>: Stratégie de construction de cassettes d'expression de la sérum-albumine humaine.

<u>Figure 9</u>: Stratégie de construction du plasmide pYG65.

Figure 10: Stratégie de construction du plasmide pYG70.

Figure 11: Stratégie de construction du plasmide pYG72.

Figure 12: Stratégie de construction du vecteur pYG621.

Figure 13: Mise en évidence par "Northem blot" de l'expression du gène de l'albumine humaine sous la dépendance du promoteur PGK de K.lactis. Les échantillons correspondent à 10μg d'ARN total. 18S et 28S sont les positions des ARN ribosomiques 18S et 28S. ALB = fragments reconnus par la sonde correspondant au gène de l'albumine; URA = fragments reconnus par la sonde correspondant au gène URA A de K.lactis servant de témoin de dépôt.

Figure 14: Mise en évidence de la production d'albumine dans les souches transformées par le vecteur d'expression pYG621 contenant le promoteur PGK de K-lactis. Les échantillons correspondent à 30 μl de sumageant de culture ; les bandes au niveau du marqueur 66 kd correspondent à l'albumine. M = marqueurs de masse moléculaire : anhydrase carbonique bovine (31Kd), ovalbumine (45Kd), BSA (66Kd), phosphorylase b de lapin (92kd).

EXEMPLES

1/ Isolement de la région promotrice du gene PGK de K lactis.

La séquence présentée sur la figure 1 a été obtenue par criblage d'une banque d'ADN génomique total de Kluyveromyces lactis CBS2359 au moyen d'une sonde hétérologue provenant du gène PGK de S. cerevisiae (Dobson et al., Nucleic Acid Res. 1982, 10, 2625). Plus précisément, la sonde utilisée correspond au fragment N-terminal Pvul-EcoRl de 1,3 kb du gène PGK de S. cerevisiae.

En "Southern blot" (Southern et al., J.Biol.Chem., 1975, 98, 503), la sonde utilisée s'hybride avec deux fragments différents lorsque l'ADN génomique est digéré par XBal. L'un d'eux, de 2,5 kb environ, a été isolé par criblage d'une banque génomique restreinte de

K. lactis CBS2359, constituée de fragments d'ADN coupés par Xbal, d'une taille comprise entre 2 et 3 kb, introduits dans le plasmide pUC18 au site Xbal. Une banque de 500 clones a ainsi été constituée, puis criblée avec la sonde hétérologue décrite ci-dessus.

Par hybridation sur colonies, un clone a pu être identifié et son ADN plasmidique a été préparé. Ce plasmide (pYG610) contient un fragment d'ADN génomique de 2,5 kb, dont la carte de restriction est présentée à la figure 3. Le plasmide pYG611 contient le même insert dans la direction opposée (voir figure 8).

Dans une seconde étape, le fragment de 2,5 kb ainsi isolé a été séquencé, en utilisant la méthode de Sanger (Sanger et al., Proc.Nat.Acad.Sci 74, 1977, 5463). Pour cela, le fragment issu de pYG611 a d'abord été sous-cloné dans les bactériophages M13tg130 et M13_tg131. La stratégie de séquençage du fragment est schématisée sur la figure 4.

L'analyse de la séquence obtenue montre que le fragment isolé contient une partie codant pour la région N-terminale de la protéine Pgk de Kluyveromyces lactis (0,3 kb), et 2,2 kb correspondant à la région promotrice située en amont du site d'initiation de la traduction. Elle montre de plus que, dans l'orientation opposée par rapport au gène PGK, se situe une seconde phase de lecture située à environ 0,9 kb en amont de l'ATG du gène PGK (figure 2).

La comparaison de cette séquence avec celle du promoteur du gène <u>PGK</u> de <u>S. cerevisiae</u> fait apparaitre l'absence d'homologie particulière, notamment avec son élément de régulation. Cette séquence correspond donc à une région promotrice entièrement originale, très distincte de celles déjà décrites, sur le plan de sa structure, et par conséquent sur le plan de sa régulation.

2/ Construction de vecteurs d'expression pour la production de proteines hétérologues :

Cet exemple illustre l'utilisation des capacités promotrices de la séquence de 2,2 kb de la séquence de la figure 1 et de séquences dérivées.

a) Insertion d'un site de restriction en -6 de l'ATG.

L'insertion de ce site permet ensuite d'introduire en aval du promoteur obtenu tout gène que l'on désire exprimer. Pour des raisons de compatibilité avec des vecteurs d'expression existant (EP 361 991), des promoteurs "portables" ont été construits sous forme de fragments Sall-HindIII.

Un site HindIII a été introduit en position -6 par rapport au site d'initiation de la traduction (ATG) du gène PGK en utilisant la technique d'amplification par PCR (Mullis et al., Meth.Enzymol. 155, 1987, 335). Dans ce but, 2 oligodéoxynucléotides ont été utilisés, qui sont présentés sur la figure 5.

L'oligodéoxynucléotide A correspond à la sé-

35

40

45

quence située à 467 pb en amont du codon ATG, au niveau d'un site HindIII, qui sera ainsi remplacé par un site Sall lors de l'amplification. L'oligodéoxynucléotide B correspond à la séquence en amont du site d'initiation, et permet d'introduire un site HindIII en position -6.

7

Le fragment obtenu par PCR a été inséré entre les sites <u>Sall</u> et <u>HindIII</u> du bactériophage M13tg130 afin de vérifier par séquençage que des mutations ne sont pas apparues lors de l'amplification.

b) Construction de cassettes d'expression de la sérum-albumine humaine : figure 8.

L'ADN recombinant de 474 pb obtenu ci-dessus a été introduit au niveau des sites Sall et HindIII, dans le plasmide pYG45 (figure 7) pour obtenir le vecteur pYG614 (figure 8). Le plasmide pYG45 contient une cassette d'expression constituée du promoteur et du terminateur du gène PGK de S. cerevisiae entre lesquels, au niveau d'un site HindIII, est inséré le gène codant pour la prépro-sérum-albumine humaine (séquence prépro-HSA). pYG45 est dérivé de pYG18 (voir brevet EP 361 991) par sous-clonage du fragment Sall-BamHI contenant la cassette d'expression HSA, dans les sites correspondants du vecteur plC-20RDH (figure 7). pIC-20RDH est obtenu par digestion du plasmide pIC-20R (March et al., Gene 32, 1984, 481) avec l'enzyme HindIII, remplissage des extrémités avec le fragment Klenow de la polymérase I d'E.coli et recircularisation avec la T4 DNA ligase.

A partir du plasmide pYG614, le fragment Sall-Sacl peut être isolé par digestion. Il contient : une région promotrice dérivée de la séquence de la figure 1, le gène de l'albumine et le terminateur du gène PGK de S. cerevisiae. Il constitue une cassette d'expression qui peut être insérée dans un plasmide pour constituer un vecteur d'expression.

Une autre cassette d'expression peut être obtenue à partir du plasmide pYG614, par clonage du fragment AfIIII-Sacl contenant une partie du promoteur PGK de l'invention, le gène de l'albumine (prépro-HSA) et le terminateur PGK de S. cerevisiae dans le plasmide pYG611 décrit préalablement. Ceci génère le plasmide pYG615. Le fragment Sall-Sacl contenant : la région promotrice de la figure 1 entière, le gène codant pour la prépro-sérum-albumine, et le terminateur du gène PGK de S. cerevisiae, peut ensuite être isolé par digestion. Ce fragment constitue une seconde cassette d'expression de l'albumine utilisant la séquence promotrice de l'invention.

 c) Construction de vecteurs d'expression de l'albumine.

Des vecteurs d'expression de l'albumine peuvent être construits par insertion des cassettes d'expression obtenues ci-dessus dans des plasmides navettes K.lactis/E.coli tels que pYG72 (figure 10). En particulier, un vecteur d'expression a été obtenu (vecteur pYG621) par insertion du fragment Sall-Sacl de pYG615 contenant la cassette d'expression de l'albumine dans le vecteur pYG72 (voir figure 10). Ce vecteur correspond au plasmide pKan 707 (voir EP 361 991) dans lequel le fragment Sacl contenant le gène URA3 a été éliminé, ainsi que le site unique HindIII présent dans le gène aph pour faciliter les constructions ultérieures. Le gène aph code pour l'aminoglycoside 3'-phosphotransférase (I) (Oka et al., J. Mol-Biol. 147, 1981, 217) et est utilisé comme marqueur de résistance au G418 chez la levure. Le fragment Pstl du plasmide pKan707 contenant le gène aph a été sous-cloné dans le bactériophage M13mp7 pour donner le vecteur pYG64 (figure 9). Le site HindIII présent dans ce gène a été détruit par mutagénèse dirigée selon la méthode décrite par Taylor et al. (Nucleic Acid Res. 13, 1985, 8749). Le plasmide résultant a été appelé pYG65 (figure 9). L'oligodéoxynucléotide utilisé pour la mutagénèse avait la séquence 5'-GAA ATG CAT AAG CTC TTG CCA TTC TCA CCG -3' et transformait le triplet CTT codant pour l'acide aminé 185 (Leu) en CTC. Ce changement ne modifie pas la séquence protéigue résultante. Pour construire le plasmide pYG72, la partie contenant le réplican bactérien du vecteur pKan707 a été isolée par digestion avec l'enzyme EcoRI et recircularisation avec la T4 DNA ligase pour obtenir pYG69. Le fragment Pstl présent dans ce dernier vecteur contenant le gène aph a été remplacé par le fragment équivalent muté provenant de pYG65. Cette construction a été appelée pYG70. La séquence de pKD1 de 4,7 kb comprise entre les sites EcoRI et SacI a été introduite dans ce dernier vecteur pour obtenir pYG72. Le vecteur pYG621 (figure 11) a été obtenu par insertion du fragment Sall-SacI contenant la cassette d'expression de l'albumine provenant de pYG615.

3/ Construction d'une cassette permettant d'utiliser la région promotrice dans les 2 orientations.

Cette construction a été obtenue par introduction d'un site Sall et d'un site HindIII de part et d'autre de la région comprise entre les 2 phases ouvertes de lecture identifiées sur la figure 2: ORF PGK et ORF X, soit au niveau des nucléotides 1343 et 2246 sur la figure 1.

Cette construction a été réalisée par la technique de PCR en utilisant d'une part l'oligodéoxynucléotide A qui introduit un site Sall en position -1 par rapport au site d'initiation de la traduction du gène PGK, et d'autre part l'oligodéoxynucléotide B qui introduit un site HindIII en position -1 par rapport au site d'initiation de la traduction du gène X (voir figure 6(a)). Ensuite, pour éliminer un site HindIII présent dans la région promotrice, 3 réactions de PCR ont été effectuées en utilisant à chaque étape le plasmide pYG610

comme matrice:

- les 2 premières, pour amplifier les régions de part et d'autre du site <u>Hind</u>III en utilisant les oligodéoxynueléotides A et B couplés respectivement aux oligodéoxynucléotides C et D (figure 6). Ces 2 derniers sont complémentaires et permettent d'introduire une mutation ponctuelle au niveau du site HindIII interne :
- la dernière, en utilisant les 2 produits d'amplification précédents comme amorce, pour générer le fragment final contenant la région promotrice modifiée.

Cette région peut ensuite être introduite dans les vecteurs décrits dans l'exemple 2, et utilisée comme promoteur bidirectionnel.

4/ Expression d'albumine

Le vecteur pYG621 a été introduit par transformation dans la souche K.lactis MW98-8C (CBS 579.88), en utilisant la technique éthylène glycol/diméthylsulfoxyde (Durrens et al., 1990, Curr.Genet. 18, 7). Cette souche dérive de la souche sauvage CBS2359 et présente le génotype : Mat_, uraA, LysA, argA, K+, cir. Les levures transformées sont sélectionnées pour le phénotype "G418-resistant" que confère le plasmide pYG621 sur milieu YPD (extrait de levure 10 g/l, peptone 20 g/l, glucose 20 g/l) contenant de la généticine à 0,2 g/l. Des souches transformées par le plasmide pYG72 ne contenant pas de cassette d'expression ont été sélectionnées pour servir de témoin dans les tests de production. Par ailleurs, afin de comparer l'efficacité du promoteur PGK de K.lactis selon l'invention par rapport à celui de S.cerevisiae, des souches transformées par le vecteur pYG19 ont également été sélectionnées. Le vecteur pYG19 est analogue au vecteur pYG621, sauf que le gène de l'albumine est sous le controle du promoteur PGK de S.cerevisiae (EP 361 991).

a) Analyse des ARNm:

Les cellules sont cultivées à 28°C en milieu sélectif YPD (extrait de levure 10 g/l, peptone 20 g/l, glucose 20 g/l) contenant de la généticine à 0,2 g/l. Les ARN totaux sont extraits (Sherman et al., Methods in Yeast Genetics, Cold Spring Harbor Laboratoty, 1986, 143) et séparés par électrophorèse sur gel d'agarose. Suivant la méthode de "Northern blot" (Maniatis et al., 1982 Molecular cloning, Cold Spring Harbor, Laboratory Press), les ARN sont hybridés à une sonde correspondant au gène de structure de l'albumine (fragment HindIII-HindIII de 1,9 kb) provenant du vecteur pYG18 (figure 7). L'autoradiographie montre clairement une bande de 2,3 kb spécifique de l'albumine (figure 13). Par ailleurs, il apparait clairement que le taux de transcription du gène de l'albumine est bien supérieur dans les souches contenant une région promotrice de l'invention (pYG621), que dans celles contenant le promoteur PGK intact de S. cerevisiae (pYG19).

b) Analyse des protéines :

Les cellules sont cultivées en erlenmeyers dans un milieu sélectif YPD (extrait de levure 10 g/l, peptone 20 g/l, glucose 20 g/l) contenant de la généticine à 0,2 g/l à 28°C sous agitation. Après 96 heures de culture, 30 µl de sumageant sont prélevés et mélangés à un volume équivalent de tampon Laemmli 2X (Laemmli, 1970, Nature 227, 680). Après chauffage à 96°C pendant 10 minutes, les protéines de l'échantillon sont ensuite séparées sur gel de polyacrylamide SDS 8,5 %. La production d'albumine est ensuite révélée par coloration du gel au bleu de coomassie, puis est évaluée pour les différents vecteurs utilisés. La figure 14 montre que les 4 clones obtenus séparément par transformation de la souche MW98-8C par le vecteur pYG621 sécrètent beaucoup plus d'albumine que ceux obtenus par transformation avec le vecteur pYG19.

Il est clair que la région promotrice de l'invention permet une excellente production d'albumine par la levure, supérieure à celle obtenue avec le promoteur PGK de S.cerevisiae. Cette région, ou des formes réduites ou dérivées de celle-ci, constituent un outil industriel important pour les systèmes de production microbiologiques, et plus particulièrement eucaryotes.

Revendications

35

40

45

50

- Séquence d'ADN comprenant tout ou partie de la séquence présentée à la figure 1 ou de son brin complémentaire, ou d'un dérivé de celles-ci, et possédant une activité de promoteur transcriptionnel.
- Séquence d'ADN selon la revendication 1 comprenant tout ou partie de la séquence présentée sur la figure 6(b).
- ADN recombinant comprenant une séquence d'ADN selon les revendications 1 ou 2.
- ADN recombinant selon la revendication 3 caractérisé en ce qu'il contient en outre un ou plusieurs gènes de structure.
- ADN recombinant selon la revendication 4 caractérisé en ce qu'il contient également des signaux permettant la sécretion du produit d'expression du ou desdits gènes de structure.
- 6. ADN recombinant selon l'une quelconque des re-

55

vendications 3 à 5 caractérisé en ce qu'il fait partie d'un plasmide d'expression, qui peut être à réplication autonome ou intégratif.

- Cellule recombinée contenant une séquence d'ADN ou un ADN recombinant selon l'une quelconque des revendications précédentes.
- 8. Cellule recombinée selon la revendication 7 caractérisée en ce qu'il s'agit d'une levure.
- Cellule recombinée selon la revendication 8 caractérisée en ce qu'il s'agit d'une levure du genre Kluyveromyces.
- Utilisation d'une séquence d'ADN selon l'une quelconque des revendications 1 à 6 pour l'expression de gènes recombinés.
- 11. Utilisation selon la revendication 10 pour l'expression simultanée, dans les 2 orientations opposées, de gènes recombinés.
- Utilisation selon l'une des revendications 10 ou 11 pour l'expression de gènes codant pour des protéines d'intérêt pharmaceutique ou agroalimentaire.
- 13. Procédé de préparation d'une protéine recombinante par expression de son gène dans un hôte cellulaire caractérisé en ce que l'expression dudit gène est sous le contrôle d'une séquence selon la revendication 1.
- Procédé selon la revendication 13 caractérisé en ce que la protéine est la sérum-albumine humaine.

40

10

15

25

30

45

50

55

EP 0 511 912 A1

TCTAGATITA GCGGGTCATC GAAATTTAGT AGCGAGTCTA TTAGGGACCA GAGTTGCAAC	10	20	30	40	50	60
CTGAGGTTTA ATGCGTCATC CTGTCGTTGC TTCAAGTTCC CCACTGAAT CACTTGGACA	TCTAGATTTA					
190	CTGAGGTTTA	ATGCGTCATC	CTGTCGTTGC	TTCAAGTTCC	CCACTTGAAT	CACTTGGACA
250 260 270 280 290 300 300 310 320 330 340 350 350 360 370 380 340 350 360 370 380 380 340	130	140	150	160	170	180
	AACCGTTTCA	TTGGTTTGAG	GAAGGTGACG	GATCTGGGTA	GAAACTGGAC	TACTGCATCT
310 320 330 340 350 360 360 360 370 380 390 400 410 420	190	200	210	220	230	240
	GTTGGTAGTC	TTGATGCCAT	GGTGATGAGC	CATTGCCATT	GGAAAAGAGT	GAATTCAGAT
AGCCATGTTT CCARACAGTTC TTCGGAATCT GCCGGTGTGG AAACGAGTAT TTCGGAGTAC 370 380 390 400 410 420 AATCTCGGTG GTTGCGTTAT CTGAGAGGAT GGTGTAGTGG TTTGATGTTC CTGTGTGAAA 430 440 450 460 470 480 GATGATGCAG AGCTGATCAA CGGATTCGAC TTGGTACAC CTTCGTTCAC TTCTCCTCGT 490 500 510 520 530 540 TTCCCGTTAC CTGTTTGGT TTCCTCATAC ATTGGTACC TTCCTCATAC TTCCTCATAC TTCCGCATAC CTTCGTCATAC CTTCGTCATAC CTTGGTAATG CTTCGTCATAC CTTGGTAATG CTTGGTAATG CTTGGTAATG CTTGGTAATG CTTGGTAATG CTTGGTAATG CTTGGTCATAC CTTGGTAACACCTC CTGGACACCTCT CTGGACACCTCT CTGAACCACCTC CTGAACCACCTC TTGATCATCTC TTGTTCTCATA AGGAAACAACATC TGAACTCTGA ACTTTCTCAA AGGAAACAACATC TGAACTCTGA AGGTTTGAACACTTC TGAACTCTGA AGGTTTGAAACATTTTGAACATTTGAACATTTGAACATTTGAACATTTGAACATTTGAACATTTCAACATTCC TTAACACCACTAC	250	260	270	280	290	300
	TCCAAGATTT	GGTCAATGAT	TGATTTTGTA	AGATTGAGAT	CGTAATCCTG	ATACTCTTTG
AATCTCGGTG GTTGCGTTAT CTGAGAGGAT GGTGTAGTGG TTTGATGTTG CTGTGTGAAA 430	310	320	330	340	350	360
	AGCCATGTTT	CCAACAGTTC	TTCGGAATCT	GCCGGTGTGG	AAACGAGTAT	TTCGGAGTAC
GATGATGCAG AGCTGATCAA CGATTCGAC TGGGAGATCA CTTCGTTCAC TTCTCCTGG 490 500 510 520 530 540 TTCCCGTTAC CTGTTTGCGT TTCCTCATAC ATTGGTACGC TATCCTCATC TTCAGATAAC 550 560 570 580 590 600 GAAATATCAA ACTCATCGGA ATCGGACGCG TCGTTCAAAT CGCCCTCATC CTTGGTAATG 610 620 630 640 650 660 TCTTTGAACC GGTCGAGAAG GTTGAGAATC TCTGTCGGAA CACCACCCTG CGGCGTATAC 670 680 690 700 710 720 CAGAACCAGA ATAAATTGTA GCACATCTTA ACTTTCTCA AGGAAACATC TGAACTCTGA 730 740 750 760 770 780 TCAGACCATT CCGTAAGTAT ACTGTTCTCG TGAATTTATG AGGGTAAGAC 790 800 810 820 830 840 TCTGAGATCA TTGATGACA TTATCTG	370	380	390	400	410	420
	AATCTCGGTG	GTTGCGTTAT	CTGAGAGGAT	GGTGTAGTGG	TTTGATGTTG	CTGTGTGAAA
TTCCCGTTAC CTGTTTGCGT TTCCTCATAC ATTGGTACGC TATCCTCATC TTCAGATAAC	430	440	450	460	470	480
	GATGATGCAG	AGCTGATCAA	CGATTCGAAC	TGGGAGATCA	CTTCGTTCAC	TTCTTCCTGG
GAAATATCAA ACTCATCGGA ATCGGACGCG TCGTTCAAAT CGCCCTCATC CTTGGTAATG 610 620 630 640 650 660 TTCTTGAACC GGTCGAGAAG GTTGAGAATC TCTGTCGGAA CACCACCCTG CGGCGTATAC 670 680 690 700 710 720 CAGAACCAGA ATAAATTGTA GCACATCTTA ACTTTCTCA AGGAAACATC TGAACTCTGA 730 740 750 760 770 780 TCAACGCATT CCGTAAGTAT ACTGTTTGCC TTGATCTCTGG TGAATTTATG AGGGTAAGAC 790 800 810 820 830 840 TCTGAGATCA TAAGTAACTG TTGAGCATCG AGTTTGAAAT TAGCGATCTG 850 860 870 880 890 900 GAAAGATGCG GTACCACTGC TTTGATGACA TTATCTGGCG GGTTCAACGG TACCAATTCC 910 920 930 940 950 960 TGCAAGAATA GCGAAGCCAA TGA	490	500	510	520	530	540
	TTCCCGTTAC	CTGTTTGCGT	TTCCTCATAC	ATTGGTACGC	TATCCTCATC	TTCAGATAAC
610 620 630 640 650 650 660 TTCTTGAACC GGTCGAGAAG GTTGAGAATC TCTGTCGGAA CACCACCTG CGGCGTATAC 670 680 690 700 710 720 CAGAACCAGA ATAAATTGTA GCACATCTTA ACTTTCTCTA AGGAAACATC TGAACTCTGA 730 740 750 760 770 780 TCAACGCATT CCGTAAGTAT ACTGTTTGCC TTGTCTCTGG TGAATTTATG AGGGTAAGAC 790 800 810 820 830 840 TCTGAGATCA TAAGTAACTG TTGAGCATCG AAGTTGTGT AGTTTGAAAT TAGGGATCTG 850 860 870 880 890 900 GAAAGATGCG GTACCACTGC TTTGATGACA TTATCTGGCG GGTTCAACGG TACCAATTCC 910 920 930 940 950 760 TGCAAGAATA GCGAATCCAA CGGTTTTAAC TCAGAGTAAT GGTTGATCAA CTCGATGAAA 970 980 990 1000 1010 1020 ACGTCCCAAT GGATGGATG CATCAAGTGT TGATGTTCCA CCAAATTAAG ACAATATTC 1030 1040 1050 1060 1070 1080 GTAACGTTTT CGAGTGAAAC TGACAGGGC CTGCCCTCAG CACTCGTAGA CACGAGTAAC 1090 1100 1110 1120 1130 1140 GTCTTGAGAC CTCTCGTACA GGGAAGCGAC ATATCGTTCA ATAGACTATG GAACAAAGTG 1150 1160 1170 1180 1190 1200 TACACCGCAG CGATATCCTT GCATTTGCAA AACGATTGAA TAAGTGACGT CGATGCTAAA	550	560	570	580	590	600
	GAAATATCAA	ACTCATCGGA	ATCGGACGCG	TCGTTCAAAT	CGCCCTCATC	CTTGGTAATG
CAGAACCAGA ATAAATTGTA GCACATCTTA ACTITICTCTA AGGAAACATC TGAACTCTGA 730 740 750 760 770 780 TCAACGCATT CCGTAAGTAT ACTGTTTGCC TTGTCTCTGG TGAATTTATG AGGGTAAGAC 790 800 810 820 830 840 TCTGAGATCA TAAGTAACTG TTGAGCATCG AGTTTGTAAAT TAGGGATCTG 850 860 870 880 890 900 GAAAGATGCG GTACCACTGC TTTGATGACA TTATCTGGCG GGTTCAACGG TACCAATTCC 910 920 930 940 950 960 TGCAAGAATA GCGAATCCAA CGGTTTTAAC TCAGAGTAAT GGTTGATCAA CTCGATGAAA 970 980 990 1000 1010 1020 ACGTCCCAAT GGATGGATTG CATCAAGTGT TGATGTTCCA CCAAATTATC 1030 1040 1050 1060 1070 1080 GTAACGTTTC CGAGTGAAC TGACCGGGC	610 TTCTTGAACC	620 GGTCGAGAAG	630 GTTGAGAATC	640 TCTGTCGGAA	650 CACCACCCTG	660 CGGCGTATAC
TCAACGCATT CCGTAAGTAT ACTGTTTGCC TTGTCTCTGG TGAATTTATG AGGGTAAGAC 790 800 810 820 830 840 TCTGAGATCA TAAGTAACTG TTGAGCATCG AAGTTGTTGT AGTTTGAAAT TAAGGGATCTG 850 860 870 880 890 900 GAAAGATGCG GTACCACTGC TTTGATGACA TTATCTGGCG GGTTCAACGG TACCAATTCC 910 920 930 940 950 960 TGCAAGAATA GCGAATCCAA CGGTTTTAC TCAGAGTAAT GTTGATCAA CTCGATGAAA 970 980 990 1000 1010 1020 ACGTCCCAAT GGATGGATTG CATCAAGTGT TGATGTTCCA CCAAATTAAG ACAATATTTC 1030 1040 1050 1060 1070 1080 1080 GTAACGTTTT CGAGTGAAAC TGACACGGGC CTGCCCTCAG CACTCGTAGA CACGAGTAAC 1090 1100 1110 1120 1130 1140	670	680	690	700	710	720
	CAGAACCAGA	ATAAATTGTA	GCACATCTTA	ACTITCTCTA	AGGAAACATC	TGAACTCTGA
### TCTGAGATCA TAAGTAACTG TTGAGCATCG AAGTTGTTGT AGTTTGAAAT TAGGGATCTG ### 850	730	740	750	760	770	780
	TCAACGCATT	CCGTAAGTAT	ACTGTTTGCC	TTGTCTCTGG	TGAATTTATG	AGGGTAAGAC
GAAAGATGCG GTACCACTGC TITGATGACA TITATCTGGCG GGTTCAACGG TACCAATTCC 910 920 930 940 950 960 TGCAAGAATA GCGAATCCAA CGGTTTTAAC TCAGAGTAAT GGTTGATCAA CTCGATGAAA 970 980 990 1000 1010 1020 ACGTCCCAAT GGATGGATTG CATCAAGTGT TGATGTTCCA CCAAATTAAG ACAATATTTC 1030 1040 1050 1060 1070 1080 GTAACGTTTT CGAGTGAAAC TGACACGGGC CTGCCCTCAG CACTCGTAGA CACGAGTAAC 1090 1100 1110 1120 1130 1140 GTCTTGAGAC CTCTCGTACA GGGAAGCGAC ATATCGTTCA ATAGACTATG GAACAAAGTG 1150 1160 1170 1180 1190 1200 TACACCGCAG CGATATCCTT GCATTTGCAA AACGATTGAA TAAGTGACGT CGATGCTAAA 1210 1220 1230 1240 1250 1260						
TGCAAGAATA GCGAATCCAA CGGTTTTAAC TCAGAGTAAT GGTTGATCAA CTCGATGAAA 970 980 990 1000 1010 1020 ACGTCCCAAT GGATGGATTG CATCAAGTGT TGATGTTCCA CCAAATTAAG ACAATATTTC 1030 1040 1050 1060 1070 1080 GTAACGTTTT CGAGTGAAAC TGACACGGGC CTGCCCTCAG CACTCGTAGA CACGAGTAAC 1090 1100 1110 1120 1130 1140 GTCTTGAGAC CTCTCGTACA GGGAAGCGAC ATATCGTTCA ATAGACTATG GAACAAAGTG 1150 1160 1170 1180 1190 1200 TACACCGCAG CGATATCCTT GCATTTGCAA AACGATTGAA TAAGTGACGT CGATGCTAAA 1210 1220 1230 1240 1250 1260	850	860	870	880	890	900
	GAAAGATGCG	GTACCACTGC	TTTGATGACA	TTATCTGGCG	GGTTCAACGG	TACCAATTCC
ACGTCCCAAT GGATGGATTG CATCAAGTGT TGATGTTCCA CCAAATTAAG ACAATATTTC 1030 . 1040 1050 1060 1070 1080 GTAACGTTTT CGAGTGAAAC TGACACGGGC CTGCCCTCAG CACTCGTAGA CACGAGTAAC 1090 1100 1110 1120 1130 1140 GTCTTGAGAC CTCTCGTACA GGGAAGCGAC ATATCGTTCA ATAGACTATG GAACAAAGTG 1150 1160 1170 1180 1190 1200 TACACCGCAG CGATATCCTT GCATTTGCAA AACGATTGAA TAAGTGACGT CGATGCTAAA 1210 1220 1230 1240 1250 1260						
### GTAACGTTTT CGAGTGAAAC TGACACGGGC CTGCCCTCAG CACTCGTAGA CACGAGTAAC 1090						
1090 1100 1110 1120 1130 1140 GTCTTGAGAC CTCTCGTACA GGGAAGCGAC ATATCGTTCA ATAGACTATG GAACAAAGTG 1150 1160 1170 1180 1190 1200 TACACCGCAG CGATATCCTT GCATTTGCAA AACGATTGAA TAAGTGACGT CGATGCTAAA 1210 1220 1230 1240 1250 1260	1030	1040	1050	1060	1070	1080
	GTAACGTTTT	CGAGTGAAAC	TGACACGGGC	CTGCCCTCAG	CACTCGTAGA	CACGAGTAAC
1150 1160 1170 1180 1190 1200 TACACCGCAG CGATATCCTT GCATTTGCAA AACGATTGAA TAAGTGACGT CGATGCTAAA 1210 1220 1230 1240 1250 1260	1090	1100	1110	1120	1130	1140
1210 1220 1230 1240 1250 1260	1150	1160	1170	1180	1190	1200
TCCTGGATAA GTACGCTGGT ATCGTGTAAG CCCATGAGAA CGACACGTTC CTCATCACTA	1210	1220	1230	1240	1250	1260

EP 0 511 912 A1

		Met			
	TCAAGAATTA				
	2240				
AACCATCAAC	AATATTTAAA	TATATCTGTT	GCTACATTAA	GAGTTACT <u>TC</u>	<u>AGA</u> AATAACA
2170	2180	2190	2200	2210	2220
CTATTCATTA	TCAATCTATT	CAACTCAATT	GGTTATTATT	TTCATCTTTT	TGTCATCCTA
2110	2120	2130	2140	2150	2160
CATATAAATA	TACGTCAAAA	GGGGATTCAT	TAATTAGAAA	ATTCTCTTTT	TCAATAGTTG
2050	2060	2070	2080	2090	2100
ATTCATTGTC	TCATGGTTTT	GGCTTTTTGG	CTTTTGTCTT	TTAAAGCTAT	ATCAACTTTA
1990	2000	2010	2020	2030	2040
GTCTTCTGAT	TCTAATTCTC	ATTCGAAATC	CTCTACAGTT	AATGAATTGC	TTGACATGAC
1930	1940	1950	1960	 1970	1980
CTATACTCAT	CTTGCTTCCC	TTAAGCGTTC	TCACGATTCG	TTCGCTGCCC	TTCTTCAAGA
1870	1880	1890	1900	1910	1920
CTGTCGCTCG	CCCCACAGAA	CCTCACCCGA	GAACCACACA	TTACACGCCG	CCAGCTCCCA
1810	1820	1830	1840	1850	1860
CHGMACACCC	CACAGCAAAT	GCACCACGCT	ACGTAGATCA	GGAAGCTTAA	CTCTAGCGAC
1750	1760	1770	1780	1790	1800
ARGCCCAGAG	TCTGGTCCCC	CCGGAGTCTT	CCCAAAACAA	GAAGCTGACA	CATGTTGACA
1690	1700	1710	1720	1730	1740
CGTTGGCACG	TGACATGGAA	TATCGAAGAA	AGAAAAAAA	AAACGATCTC	GTCCTAGTGG
1630	1640	1650	1660	1670	1680
GTGATTGATG	ATTTGACACG	ACTAGAAAAG	AGAACGAAAA	AGGGAAATTC	ATGTCACGTG
1570	1580	1590	1600	1610	1620
AGTCTACAAT	ATTCAGCATT	CAGCATTCAG	TATACAGCAT	ATGGCTAAAT	GATCACAAAT
1510	1520	1530	1540	1550	1560
ATTTCCGGTA	ATCCAATTGT	CTGTCTGCTC	AGTTTAGCAC	ATGTATAGTA	CGTTGCACAT
1450	1460	1470	1480	1490	1500
GTTTGAAGTA	AGAATATTTG	CITGTITTA	TGGTATCAAA	GGTATATGTT	GTAGAAGACA
	1400				
TACCCTTTC) 1340 A AAGCCATGTA	135U CCTTAAATCT	1360 TCATCCTTGG	1370 CAAGTAGATT	1380 CATCGGGTGT
GAAGCCGAA(1280 TGTTGTCTTC	1290 AGTGGGGATT	1300 GGTTCGACAT	1310	1320
107					

FIGURE 1 (suite)

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

EP 0 511 912 A1

Oligodésoxynucléotide A
5'CATGTCGACTTTTATTAATTCTTGATCGAT3'
SalI
Oligodésoxynucléotide B
5'ATGAAGCTTAAATCTTCATCCTTGGC3'
HindIII
Oligodésoxynucléotide C
5'GGGTGAGGTTCTGTGGGGCGAGCGACAGGTCGCTAGAGTTAAGCATCCTGATC3'
(Position: 439 à 492)

Oligodésoxynucléotide D 5'GATCAGGATGCTTAACTCTAGCGACCTGTCGCTCGCCCCACAGAACCTCACCC3' (Position: 439 à 492)

HindIII 10 20 30 40 50 addetettaa atetteatee tiggeaagta gatteategg gigigitiga agtaagaata 60 ttcgaaAATT TAGAAGTAGG AACCGTTCAT CTAAGTAGCC CACACAAACT TCATTCTTAT TTTGCTTGTT TTTATGGTAT CAAAGGTATA TGTTGTAGAA GACAATTTCC GGTAATCCAA 120 AAACGAACAA AAATACCATA GTTTCCATAT ACAACATCTT CTGTTAAAGG CCATTAGGTT TTGTCTGTCT GCTCAGTTTA GCACATGTAT AGTACGTTGC ACATAGTCTA CAATATTCAG 180 AACAGACAGA CGAGTCAAAT CGTGTACATA TCATGCAACG TGTATCAGAT GTTATAAGTC CATTCAGCAT TCAGTATACA GCATATGGCT AAATGATCAC AAATGTGATT GATGATTTGA 240 GTAAGTCGTA AGTCATATGT CGTATACCGA TTTACTAGTG TTTACACTAA CTACTAAACA CACGACTAGA AAAGAGAACG AAAAAGGGAA ATTCATGTCA CGTGCGTTGG CACGTGACAT 300 GTGCTGATCT TTTCTCTTGC TTTTTCCCTT TAAGTACAGT GCACGCAACC GTGCACTGTA GGAATATCGA AGAAAGAAAA AAAAAAACGA TCTCGTCCTA GTGGAAGCCC AGAGTCTGGT 360 CCTTATAGCT TCTTTCTTTT TTTTTTTGCT AGAGCAGGAT CACCTTCGGG TCTCAGACCA CCCCCCGGAG TCTTCCCAAA ACAAGAAGCT GACACATGTT GACACAGAAC ACCCCACAGC 420 GGGGGGCCTC AGAAGGGTTT TGTTCTTCGA CTGTGTACAA CTGTGTCTTG TGGGGTGTCG AAATGCACCA CGCTACGTAG ATCAGGATGC TTAACTCTAG CGACCTGTCG CTCGCCCCAC 480 TTTACGTGGT GCGATGCATC TAGTCCTACG AATTGAGATC GCTGGACAGC GAGCGGGGTG AGAACCTCAC CCGAGAACCA CACATTACAC GCCGCCAGCT CCCACTATAC TCATCTTGCT 540 TCTTGGAGTG GGCTCTTGGT GTGTAATGTG CGGCGGTCGA GGGTGATATG AGTAGAACGA TCCCTTAAGC GTTCTCACGA TTCGTTCGCT GCCCTTCTTC AAGAGTCTTC TGATTCTAAT 600 AGGGAATTCG CAAGAGTGCT AAGCAAGCGA CGGGAAGAAG TTCTCAGAAG ACTAAGATTA TCTCATTCGA AATCCTCTAC AGTTAATGAA TTGCTTGACA TGACATTCAT TGTCTCATGG 660 AGAGTAAGCT TTAGGAGATG TCAATTACTT AACGAACTGT ACTGTAAGTA ACAGAGTACC TTTTGGCTTT TTGGCTTTTG TCTTTTAAAG CTATATCAAC TTTACATATA AATATACGTC 720 AAAACCGAAA AACCGAAAAC AGAAAATTTC GATATAGTTG AAATGTATAT TTATATGCAG AAAAGGGGAT TCATTAATTA GAAAATTCTC TTTTTCAATA GTTGCTATTC ATTATCAATC 780 TTTTCCCCTA AGTAÁTTAAT CTTTTAAGAG AAAAAGTTAT CAACGATAAG TAATAGTTAG TATTCAACTC AATTGGTTAT TATTTTCATC TTTTTGTCAT CCTAAACCAT CAACAATATT 840 ATAAGTTGAG TTAACCAATA ATAAAAGTAG AAAAACAGTA GGATTTGGTA GTTGTTATAA TAAATATATC TGTTGCTACA TTAAGAGTTA CTTCAGAAAT AACAAAAAA TCGATCAAGA 900 ATTTATATAG ACAACGATGT AATTCTCAAT GAAGTCTTTA TTGTTTTTTT AGCTAGTTCT ATTAATAAAA Agtcgac 917 TAATTATTTT Tcagctg 10 SalI 20 30 40 50 60

FIGURE 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

FIGURE 13

FIGURE 14

Office européen RAPPORT DE RECHERCHE EUROPEENNE Numero de la denande

EP 92 40 1206

DOCUMENTS CONSIDERES COMME PERTINENTS Citation du document avec indication, en cas de besoin, Revendication				CLASSEMENT DE LA		
atégorie	des parties perti		cenceraée	DEMANDE (Int. Cl.5)		
x	EP-A-0 361 991 (RHONE-PO	ULENC SANTE) 4 Avril	1-12	C12N15/81		
	1990	•		C12N1/19		
	* revendications 13-16 *			C12P21/02		
			- 1			
Y	NUCLEIC ACIDS RESEARCH.		1-12			
•	vol. 18, no. 2, 25 Janvi	er 1990. ARLINGTON.	- 1			
	VIRGINIA US					
	page 365;		1			
	A FOURNIER, R. FLEER, P	YEH AND JF. MAYALIX:				
	The primary structure of	f the 3-phosphoglycerate				
	kinase (PGK) gene from)	luvveromyces lactis'				
	* le document en entier		1 1			
	Te apparent an anata					
Y	BIOTECHNOLOGY		1-12			
T	vol. 8, no. 2, Février	gen NEW YORK US				
	pages 135 - 139;	1330, 1424 10111 00	ļ			
	J.A. VAN DEN BERG ET AL	· ! Kluwerowces as a				
	host for heterologous gr	na expression:	į į			
	expression and secretion	of prochymosin'				
	* page 135, colonne 2,	igne 21 - page 135.				
	colonne 2, ligne 39; fi	ure 1 *		DOMAINES TECHNIQUES		
	Colonne 2, Tighe 33, Ti	,0.0		RECHERCHES (Int. CL5)		
٨	JOURNAL OF BASIC MICROS	(OLOGY	Ì			
^	vol. 28, no. 4, 1988, B		1	C12N		
	pages 211 - 220;			C12P		
1	X.J. CHEN ET AL.: 'A ge	ne-closing system for	ĺ			
1	Kluyveromyces lactis an	d isolation of a				
ł	chromosomal gene requir	ed for killer toxin				
ļ	production'	j				
1	* page 214, ligne 13 -	page 214. ligne 32 *		•		
	" page 214, Tighe 10	aga act, tight ac				
l			1			
1						
	1					
			1			
	1					
l			1	1		
			ļ			
	1	Ĭ				
<u></u>	1					
Le	présent rapport a été établi pour to					
	Lies de la recherche	Date d'achivement de la recherche		Contrador .		
il	LA HAYE	22 JUIN 1992	VAN	I PUTTEN A,J.		
 	CATEGORIE DES DOCUMENTS	TTES T: tháng co	principe à la base de	l'invention		
	CAIRGURE DES DUCUMENTS	B : document	T : théorie ou principe à la base de l'invention B : éocument de brevet antérieur, mais publié à la			
X:Y:	erticulièrement pertinent à lui seul		pôt ou après cette dai a demande	•		
Y	articulièrement pertinent en combinaire autre document de la même catégorie	L : cité gour é	D : cité dans la demande L : cité pour d'autres raisons			
A	urière-pina technologique		& : membre de la même famille, document correspondant			
	livalgation non-écrite	a : merne s	A . MARCH A SA OR DAMES AND			