(PH 2010)

gate 2

EE24Btech11041 - Mohit

	symmetric tensor P_{ij} with the	e indices i and j runn	ning from 1 to 5. The	
independent com	ponents of the tensor is			(PH 2010)
a) 3	b) 10	c) 9	d) 6	
2) The value of the	integral $\int_{c} \frac{e^{z} \sin z}{z^{2}} dz$, where the	contour C is the unit	t circle: $ z - 2 = 1$, is	s (PH 2010)
a) $2\pi i$	b) 4 <i>πi</i>	c) πi	d) 0	
3) The eigenvalues	of the matrix $ \begin{pmatrix} 2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ are			(PH 2010)
a) 5,2,-2	b) -5,-1,-1	c) 5,1,-1	d) -5,1,1	
4) If $f(x) = \begin{cases} 0 & \text{for } x = 3 \\ 0 & \text{then the Laplace} \end{cases}$	for $x < 3$, for $x \ge 3$, transform of $f(x)$ is			(PH 2010)
a) $s^{-2}e^{3x}$	b) $s^2 e^{-3x}$	c) s^{-2}	d) $s^{-2}e^{-3x}$	
5) The valence electa) Electrical condb) Thermal condu	•	ne the following propo	erty of a metal.	(PH 2010)
c) Shear modulusd) Metallic lustre6) Consider X-ray of	•	a face-centered-cubi	ic (fcc) lattice. The l	attice plane
	1			(PH 2010)
a) (2, 1, 2)	b) (1, 1, 1)	c) (2, 0, 0)	d) (3, 1, 1)	
7) The Hall coefficient	ent, R_H , of sodium depends of	n		(PH 2010)
b) The charge car	harge carrier mass and carrie rier density and relaxation tin rier density only	•		

8) The Bloch theorem states that within a crystal, the wavefunction, $\psi(\mathbf{r})$, of an electron has the form

d) The effective charge carrier mass

- a) $\psi(\mathbf{r}) = u(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$ where $u(\mathbf{r})$ is an arbitrary function and **k** is an arbitrary vector
- b) $\psi(\mathbf{r}) = u(\mathbf{r})e^{i\mathbf{G}\cdot\mathbf{r}}$ where $u(\mathbf{r})$ is an arbitrary function and **G** is a reciprocal lattice vector
- c) $\psi(\mathbf{r}) = u(\mathbf{r} + \mathbf{\Lambda})e^{i\mathbf{G}\cdot\mathbf{r}}$ where $u(\mathbf{r}) = u(\mathbf{r} + \mathbf{\Lambda})$, $\mathbf{\Lambda}$ is a lattice vector and \mathbf{G} is a reciprocal lattice vector
- d) $\psi(\mathbf{r}) = u(\mathbf{r} + \mathbf{\Lambda})e^{i\mathbf{k}\cdot\mathbf{r}}$ where $u(\mathbf{r}) = u(\mathbf{r} + \mathbf{\Lambda})$, $\mathbf{\Lambda}$ is a lattice vector and \mathbf{k} is an arbitrary vector
- 9) In an experiment involving a ferromagnetic medium, the following observations were made. Which one of the plots does NOT correctly represent the property of the medium? (T_c is the Curie temperature)

(PH 2010)

a)

10) The thermal conductivity of a given material reduces when it undergoes a transition from its normal state to the superconducting state. The reason is:

(PH 2010)

- a) The Cooper pairs cannot transfer energy to the lattice
- b) Upon the formation of Cooper pairs, the lattice becomes less efficient in heat transfer
- c) The electrons in the normal state lose their ability to transfer heat because of their coupling to the Cooper pairs
- d) The heat capacity increases on transition to the superconducting state leading to a reduction in thermal conductivity
- 11) The basic process underlying the neutron β decay is

(PH 2010)

a)
$$d \rightarrow u + e^- + \overline{\nu}_e$$

c)
$$s \rightarrow u + e^- + \overline{\nu}_e$$

d) $u \rightarrow d + e^- + \overline{\nu}_e$

b)
$$d \rightarrow u + e^-$$

d)
$$u \rightarrow d + e^- + \overline{\nu}$$

12) In the nuclear shell model, the spin parity of ${}^{15}N$ is given by

(PH 2010)

a) $\frac{1}{2}^{-}$

b) $\frac{1}{2}^{+}$

c) $\frac{3}{2}^{-}$

d) $\frac{3}{2}^+$

13) Match the reactions on the left with the associated interactions on the right.

(i) Strong

- (ii) Electromagnetic
- (1) $\pi^{+} \to \mu^{+} + \nu_{\mu}$ (2) $\pi^{0} \to \gamma + \gamma$ (3) $\pi^{0} + n \to \pi^{-} + p$
- (iii) Weak

(PH 2010)

a) (1, iii), (2, ii), (3, i)

c) (1, ii), (2, i), (3, iii)

b) (1, i), (2, ii), (3, iii)

d) (1, iii), (2, i), (3, ii)