Introduction to Jet Physics from QCD

Jesse Thaler

KEK — January 16, 2017

From Last Week

theoretical calculations (energy flow)

reconstruction ≈ 1 -to-1 @ LHC (e.g. particle flow)

nonperturbative confinement (hadronization)

perturbative gluonic radiation (parton shower) short-distance collision (hard scattering)

QCD Renaissance

Theory c. 2008—present

New Jet Algorithms

Loop/Leg/Log Explosion

Jet Substructure

[Anti-k_T: Cacciari, Salam, Soyez, 2008; see also Delsart, 2006] [N³LO: Anastasiou, Duhr, Dulat, Herzog, Mistlberger, 2015] [BDRS: Butterworth, Davison, Rubin, Salam, 2008; see also Seymour, 1991, 1994]

Jet Substructure

Boosting the Search for New Phenomena

[Last Thursday & Friday]

Pushing the Boundaries of Quantum Field Theory

[Today & Tuesday]

Dynamics of Jet Formation

First Light on Jets

Jets @ SPEAR, 1975

Gluons @ PETRA, 1979

Event shapes to probe jet formation

Four Decades of Jets and QCD UA2, 1982

Jet algorithms: interpret cluster of hadrons as quasi-parton

Jets are not automatic!

Quirky World (QCD with only top quark)

Can't break color flux tubes!

Just "toponium" and glueballs!

Quasi-Conformal World $(\beta \approx 0, g \approx 4\pi)$

No hierarchy of scales! All "spherical" events!

Jets are emergent property of QCD

Jet = quark/gluon + radiation + ambiguities ($m_J \approx 10\% p_{TJ}$)

Confinement/Liberation

Potential between two heavy quarks (from lattice calculation)

[SESAM, 2005]

(3) = string breaking

[pictures from coffeeshopphysics.com]

String picture gives jet basics

String breaks easily: Quark/gluon direction ≈ Jet direction

String has energy density: Massless quarks/gluons → Massive jet

String breaks by popping quarks: Jets are mostly $q \bar{q}$ bound states (mesons)

String is color singlet: Jets are fundamentally ambiguous

(2) = linear confinement

(3) = string breaking

[pictures from coffeeshopphysics.com]

Yes, jets really are massive

Messiness is also a property of QCD

Jet = desired radiation from hard quark/gluon + additional contamination

Identifying Jets

What is a Jet?

A physical phenomena:

Emergent feature of confining gauge theories

An analysis technique:

Method to interpret hadronic final states

Freedom to use different analysis strategies for different physical questions

Generic Jet Algorithm

Inputs:

Outputs:

$$\{p_1, p_2, \dots, p_k\}_{\text{hadrons}} \Rightarrow \{p_1, p_2, \dots, p_N\}_{\text{jets}}$$

Unless otherwise stated:

$$\sum_{i \in \text{jet}} p_i = p_{\text{jet}}$$

(aka "E-scheme recombination", other schemes also plausible)

Remember, projects are massive:
$$p_{
m jet}^2 = \left(\sum_{i \in
m jet} p_i\right)^2 \geq \sum_{i \in
m jet} m_i^2 \geq m_{
m quark/gluon}^2$$

Coordinate System for Jets

Typically: Cluster hadrons within characteristic radius R

Anti-kt Sequential Recombination

Ask me offline if you want to learn more

At LHC: R = 0.4 for standard jets R = 0.8 for "fat" jets

Uniform catchment area (for hardest jet)

Dijet Spectrum

Dijet Resonance?

Diboson Resonance? (all hadronic channel)

Inspiration to study the substructure of jets

The Soft/Collinear Limit of QCD

Calculational Control

Energy flow of partons

Energy flow of hadrons

Relies crucially on string breaking

Perturbative Jet Calculations

Energy flow of partons

Good approximation to jet structure

For jet substructure: multiple soft/collinear emissions (resummation) typically more important than single hard emission (fixed order)

An Instructive Calculation

Every theorist should do this once

Collinear Limit

Gluon close to quark

2→3 process
5 total phase space variables
3 Euler angles
5 - 3 = 2 relevant variables

$$(I-z) E_{I}$$

$$e^{+}e^{-} \rightarrow q\bar{q}g$$

$$E_{I} + E_{2} = E_{CM}$$

$$E_{2} + E_{3} + E_{4} + E_{5} +$$

As
$$\theta \to 0$$
: $t_1 \simeq \frac{1}{4} z (1-z) \theta^2$ $t_2 \simeq z$
$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}z \, \mathrm{d}\theta} \simeq \sigma_0 \frac{\alpha_s}{\pi} C_F \frac{1}{\theta} \frac{1 + (1-z)^2}{z}$$
 (remember the Jacobian!) Collinear singularity

Key: Collinear Limit is Universal

Collinear splittings are process independent

$$d\sigma_{2\to n} = d\sigma_{2\to n-1} dP_{i\to jk}$$

$$\mathrm{d}P_{i\to jk} = \frac{\mathrm{d}\theta}{\theta}\,\mathrm{d}z\,P_{i\to jk}(z)$$
Collinear Altarelli-Parisi splitting function

Soft & collinear limit particularly simple

$$\begin{array}{c|c} \theta \to 0 \ \& \ z \to 0: \end{array} \qquad \begin{array}{c|c} z \\ \hline \\ \text{Splitting} \\ \text{Probability:} \end{array} \qquad \mathrm{d}P_{i \to ig} = \frac{2\alpha_s}{\pi} C_i \frac{\mathrm{d}\theta}{\theta} \, \frac{\mathrm{d}z}{z} \\ \hline \\ \text{Collinear Soft singularity singularity} \end{array}$$

In this limit, only difference between hard quark and hard gluon is C_i (i.e. both emit soft gluons)

Color Factors: SU(N) SU(3)

Quark: $C_F (N^2 - I)/(2N)$ 4/3

Gluon: C_A N 3

What about soft/collinear singularities?

Probability:
$$dP_{i\rightarrow ig} = \frac{2\alpha_s}{\pi}C_i\frac{d\theta}{\theta}\frac{dz}{z}$$

KLN Theorem:

IRC divergences cancel by order-by-order in α_s expansion

Effectively:
$$virtual + \int \frac{d\theta}{\theta} \frac{dz}{z} = finite$$

Restricting integration range gives Note: logarithms (possibly large)

Infrared/Collinear Safety

IRC Safe Observable: Insensitive to IR or C emissions

[Tomorrow's talk will challenge this lore!]

Examples from Jet Substructure

Jet pt:
$$\displaystyle \sum_{i \in \mathrm{jet}} p_{T,i}$$
 IRC Safe

ptD:
$$\sum_{i \in \text{jet}} \frac{p_{T,i}^2}{p_{T\text{jet}}^2} \quad \text{IR Safe C Unsafe}$$

 $i \in jet$

IRC Unsafe

Jet Mass:
$$\sum_{i,j \in \text{jet}} p_i \cdot p_j$$
 IRC Safe

[JDT, Van Tilburg, 1011.2268, 1108.2701]

 $i \in jet$

Grooming from First Principles

From Last Week

Jet Trimming

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

R_{sub}: subjet radius

z_{cut}: fractional energy threshold

From Last Week

Jet Trimming

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

R_{sub}: subjet radius

z_{cut}: fractional energy threshold

Trimmed Jet Mass:

3 TeV quark jets

First-principles QCD (MLL)

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Soft/Collinear Phase Space

Basis for parton shower

$$\mathrm{d}P_{i\to ig} = \frac{2\alpha_s}{\pi}C_i\frac{\mathrm{d}\theta}{\theta}\,\frac{\mathrm{d}z}{z}$$
 Uniform in logarithmic plane

Eikonal Hard Quark/Gluon...

Soft/Collinear Phase Space

Basis for parton shower

$$\mathrm{d}P_{i\to ig} = \frac{2\alpha_s}{\pi}C_i\frac{\mathrm{d}\theta}{\theta}\,\frac{\mathrm{d}z}{z}$$
 Uniform in logarithmic plane

Eikonal Hard Quark/Gluon...

...Surrounded by Soft Gluon Haze

Soft/Collinear Phase Space

Basis for parton shower

Immediate Observations:

Arbitrary emissions?

Captures (some) physics at all orders in α_s

Soft/collinear singularities?

Logarithmic plane extends up and to the right

IRC safe observables?

Smooth behavior in singular limit (virtual contributions at infinity)

Soft/Collinear Phase Space

Basis for parton shower

Other Known Effects:

Color coherence?

At large N, emissions
effectively ordered by angle

Multiple emissions?

Calculations below assume one emission sets observable

Matrix element corrections?
Should supplement semi-classical picture with quantum effects

Predicting Trimmed Jet Mass

Straightforward to replace $E_{jet} \rightarrow p_{Tjet}$

When strongly ordered, one emission dominates:

$$\log \frac{1}{\rho} \simeq \log \frac{1}{z_{\text{dom}}} + 2\log \frac{R}{\theta_{\text{dom}}}$$

Restrictions from trimming:

$$\theta_{\rm dom} < R_{\rm sub} \implies \text{No restriction}$$

 $\theta_{\rm dom} > R_{\rm sub} \implies z_{\rm dom} > z_{\rm cut}$

$$\log \frac{1}{\rho} \simeq \log \frac{1}{z_{\text{dom}}} + 2\log \frac{R}{\theta_{\text{dom}}}$$

$$dP_{i\to ig} = \frac{2\alpha_s}{\pi} C_i \frac{d\theta}{\theta} \frac{dz}{z}$$

Hardest/widest emission sets mass

$$\log \frac{1}{\rho} \simeq \log \frac{1}{z_{\text{dom}}} + 2\log \frac{R}{\theta_{\text{dom}}}$$

$$dP_{i\to ig} = \frac{2\alpha_s}{\pi} C_i \frac{d\theta}{\theta} \frac{dz}{z}$$

Cumulative Probability:

i.e. trimmed mass is below some maximum value

Differentiate to find cross section

Veto harder/wider emissions

Hardest/widest emission sets mass

$$\log \frac{1}{\rho} \simeq \log \frac{1}{z_{\text{dom}}} + 2\log \frac{R}{\theta_{\text{dom}}}$$

$$dP_{i\to ig} = \frac{2\alpha_s}{\pi} C_i \frac{d\theta}{\theta} \frac{dz}{z}$$

Immediately understand kink locations

$$\Delta = e^{-\frac{2\alpha_s}{\pi}C_i}$$

$$dP_{i\to ig} = \frac{2\alpha_s}{\pi} C_i \frac{d\theta}{\theta} \frac{dz}{z}$$

Resummation vs. Fixed-Order

Ordinary jet mass

40 60 80 100 120 140

Systematically Improvable

Strongly-Ordered Limit: Leading logarithmic terms (i.e. $\alpha_s \log^2 \rho$)

Higher-Order Effects:

Running α_s,

Multiple Emissions,

Energy/Momentum Recoil

Full Splitting Functions,

Soft Color Correlations,

Fixed-Order Corrections,

Non-global Logarithms, ...

(Many effects already included in realistic parton showers)

Systematically Improvable

Strongly-Leading lo (i.e.

HigherRu
Multip
Energy/Mo
Full Split
Soft Colo
Fixed-Ord
Non-globa

(Many effect: realistic |

First NNLL + $O(\alpha_s^2)$ calculation for substructure in pp

Preview of Tomorrow

Unsafe Calculations?

$$p(\pmb{z_g}) = \Big(\text{undefined} \; \Big) + \alpha_s \Big(\quad \text{infinity} \quad \Big) + \alpha_s^2 \Big(\quad \text{infinity}^2 \quad \Big) + \dots$$

Can you still make perturbative predictions for IRC unsafe observables?

Jet Substructure

Boosting the Search for New Phenomena

[Last Thursday & Friday]

Pushing the Boundaries of Quantum Field Theory

[Today & Tuesday]