LEE is not preserved under bisimulation collapse of chart interpretations of star expressions with 1 and unary star (part of LICS authors' response)

March 20, 2020

Abstract

Added responses to questions and remarks by a reviewer, including the illustration of the example of the chart translation that violates the property LEE for a star expression with 1.

1 LEE may fail for chart interpretation of star expressions with 1

The chart translation for the process semantics of (general) star expressions with deadlock 0, empty step 1, choice +, concatentation \cdot , and unary star iteration (\cdot)* is defined by means of the transition system specification:

$$\frac{e_{i}\downarrow}{(e_{1}+e_{2})\downarrow} \qquad \frac{e_{1}\downarrow}{(e_{1}\cdot e_{2})\downarrow} \qquad \frac{e_{2}\downarrow}{(e^{*})\downarrow} \qquad \\
\underline{e_{i}\stackrel{a}{\rightarrow}e'_{i}} \qquad e_{1}\stackrel{a}{\rightarrow}e'_{1} \qquad e_{1}\downarrow \qquad e_{2}\stackrel{a}{\rightarrow}e'_{2} \qquad e^{*}\stackrel{a}{\rightarrow}e'}{e_{1}\cdot e_{2}\stackrel{a}{\rightarrow}e'_{1}\cdot e_{2}} \qquad e^{*}\stackrel{a}{\rightarrow}e'_{2} \qquad e^{*}\stackrel{a}{\rightarrow}e'\cdot e^{*}$$

Interpretations of (general) star expressions are charts in the more general sense that immediate termination is now possible at arbitrary vertices (as opposed to only in the special vertex $\sqrt{}$ as in the submission). As a consequence, condition (L3) of for a chart \mathcal{L} to be a loop chart has to be adapted (from 'not containing $\sqrt{}$ ' in the special case) to: Immediate termination is only permitted at the start vertex of \mathcal{L} . The definitions of the properties LEE and LLEE are then based on the adapted definition of loop (sub-)chart.

The chart translation C(e) of the star expression $e := (a \cdot (1 + c \cdot 0) + b \cdot (1 + d \cdot 0))^*$ is the chart on the left below with $e_1 := (1 \cdot (1 + c \cdot 0)) \cdot e$, $e_2 := (1 \cdot (1 + d \cdot 0)) \cdot e$, $e_3 := (1 \cdot 0) \cdot e$, and where permitted immediate termination in a vertex is indicated by a double circle.

C(e) is a bisimulation collapse. But it does not satisfy LEE: C(e) contains two loop subcharts induced by the cycling transitions at e_1 and e_2 that can be eliminated successively, see the picture above, where the loop-entry transitions that are eliminated in the two steps are emphasized. The resulting chart C''

does not contain loop subcharts any more, because taking, for example, a transition from e_1 to e_2 as an entry-transition does not yield a loop subchart, because in the induced subchart immediate termination is not only possible at the start vertex e_1 but also in the body vertex e_2 , in contradiction to the (adapted form, see above) of (L3). But while \mathcal{C}'' does not contain a loop subchart any more, it still has an infinite trace. It follows that $\mathcal{C}(e)$ does not satisfy LEE.

This example shows:

- (i) The chart translation of star expressions (with 1 and $(\cdot)^*$) does not satisfy LEE in general.
- (ii) The bisimulation collapse of the chart translation of star expressions (with 1 and $(\cdot)^*$) does not satisfy LEE in general.

A remedy, mentioned in the author's response, point (3.a.), is to define a translation of star expressions into 1-charts, that is, charts with special 1-transitions. For the example of the star expression e above and its chart translation $\mathcal{C}(e)$ the following 1-chart translation $\underline{\mathcal{C}}(e)$ that satisfies LEE, and a LLEE-witness $\widehat{\underline{\mathcal{C}}(e)}$ of $\underline{\mathcal{C}}(e)$ can be used:

Here the dotted transitions indicate 1-transitions. Note that in $\underline{\mathcal{C}}(e)$ only e permits immediate termination, but, unlike in $\mathcal{C}(e)$, not e_1 and e_2 . The chart translation $\mathcal{C}(e)$ of e then arises as the 'induced chart' of the 1-chart translation $\mathcal{C}(e)$ with induced transitions that correspond to paths that start with a (potentially empty) 1-transition path and a final proper action transition. For example the looping transition from e_1 to e_1 in $\mathcal{C}(e)$ arises as the induced transition in $\underline{\mathcal{C}}(e)$ that is the path that consists of the 1-transition from e_1 to e and the e-transition from e to e_1 .

2 Responses to other remarks and questions

• In Definition 3.8, what is the motivation of the definition of the directly loops-back-to relation $_d \subseteq ?$ The definition of $_d \subseteq$ is motivated by the property of the irreflexive (see Lemma A.9) loops-back-to relation \subseteq to linearly order the \subseteq -successors of vertices:

$$w \subseteq v_1 \land w \subseteq v_2 \implies v_1 \subseteq v_2 \lor v_1 = v_2 \lor v_2 \subseteq v_1. \tag{1}$$

(This property also extends to the transitive closure \subseteq of \subseteq , and the reflexive–transitive closure \subseteq of \subseteq , which are partial orders by Lemma A.10.) In view of (1), $_d\subseteq$ defines the direct, or immediate, \subseteq -successor. The alternative definition that reviewer 4 suggests:

$$w \mathrel{_d} \mathsf{G} \mathrel{v} \ : \Longleftrightarrow \ w \mathrel{_{\textstyle \hookrightarrow}} v \wedge \forall u \big[\, w \mathrel{_{\textstyle \hookrightarrow}} u \, \Longrightarrow \, v \to_{\mathrm{bo}}^* u \, \big]$$

is also possible. We have chosen to define $_d$; purely from $_{\hookrightarrow}$ in order to focus on $_d$; as the director immediate-successor relation with respect to $_{\hookrightarrow}$ in view of (1).

 \triangleright We will highlight (1) as a motivation for the definition of ${}_{d}$.

• Use of RSP[®] in the proofs of Lemma 5.7 and Proposition 5.8, but not for Lemma 5.4 and Proposition 5.5.

Reviewer 4 is completely right in observing this fact from the proofs.

- ▶ We will mention this fact explicitly.
- In Definition 6.1, what is the motivation of the definition of the entry/body-labeling $\hat{C}_{w_2}^{(w_1)}$ of the connect- w_1 -through-to- w_2 chart $C_{w_2}^{(w_1)}$ with respect to a entry/body-labeling \hat{C} of C?

For understanding the definition of the entry/body-labeling $\hat{\mathcal{C}}_{w_2}^{(w_1)}$ it is not important to already understand the context in which it will be used later. Only that it defines an entry/body-labeling of the connect- w_1 -through-to- w_2 chart $\mathcal{C}_{w_2}^{(w_1)}$ in the sense of Definition 3.2. I.p., that every transition of $\mathcal{C}_{w_2}^{(w_1)}$ gets <u>precisely one</u> marking-labeled version in $\hat{\mathcal{C}}_{w_2}^{(w_1)}$. But clearly, the definition of $\mathcal{C}_{w_2}^{(w_1)}$ has been chosen in such a way that later the correctness of transformations I, II, and III can be shown.

The definition of $\hat{C}_{w_2}^{(w_1)}$ is 'conservative' in the sense that it gives <u>precedence</u> to the marking labels of already existing transitions in \hat{C} over the marking labels of redirections of transitions. A transition $\tau = \langle v, \langle a, l \rangle, w_1 \rangle$ in \hat{C} (whose underlying transition $\langle v, a, w_1 \rangle$ of C gives rise to the redirected transition $\langle v, a, w_1 \rangle$ in the connect- w_1 -through-to- w_2 chart $C_{w_2}^{(w_1)}$) is used as the redirected transition $\tau_{w_2} = \langle v, \langle a, l \rangle, w_2 \rangle$ for $\hat{C}_{w_2}^{(w_1)}$ only if there is not already a transition $\tau' = \langle v, \langle a, l' \rangle, w_2 \rangle$ present in \hat{C} where τ' has the same source, action label, and target as τ_{w_2} , but possibly a different marking label l'. Otherwise the redirection τ_{w_2} is not added to $\hat{C}_{w_2}^{(w_1)}$, but the already existing transition τ' of the entry/body-labeling \hat{C} is kept.

This definition of the entry/body-labeling $\hat{C}_{w_2}^{(w_1)}$ for $C_{w_2}^{(w_1)}$ prevents the formation of two different transitions $\tau_{w_2} = \langle v, \langle a, l \rangle, w_2 \rangle$ and $\tau' = \langle v, \langle a, l' \rangle, w_2 \rangle$ of the same transition $\langle v, a, w_2 \rangle$ of $C_{w_2}^{(w_1)}$ but with different marking labels $l \neq l'$. That is not permitted for entry/body-labelings, see Definition 3.2.

The definition of $\hat{C}_{w_2}^{(w_1)}$ has, due to its respect for marking labels of undirected transitions, useful properties that we exploit in the correctness proof.

 \triangleright We will mention the conservativity of the definition of $\hat{\mathcal{C}}_{w_2}^{(w_1)}$ with respect to the use of marking labels for unredirected transitions in relation to marking labels of redirected transitions.