COSC 4820 Closure of FD's

Kim Buckner

University of Wyoming

Jan. 27, 2023

Why Closure

- Answers the question "Does some FD follow from a set of FD's?"
- Some knowledge about FD's is helpful.
- Basically
 - Compute closure of left side of the FD in question
 - Requires a set of FD's that are satisfied by the relation in question
 - Closure used to answer question "Is right side of the subject in the closure?"
 - If true, then the FD follows from the set.

Algorithm

- INPUT: A set of attributes A and a set of FD's S
- OUTPUT: The closure (X) of the set of attributes
 - split FD's as necessary
 - \bigcirc initialize X = A

 - \bigcirc add D to X
 - lacksquare when no more can be added to X, X is the closure of A

Result

- We make this claim
- $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ follows from a set of FD's S iff all of B_1,B_2,\ldots,B_m are in $\{A_1,A_2,\ldots,A_n\}^+$

Remember from FD Rules

- A set of FD's follows from another if
 - every relation satisfying the second
 - also satisfies the first
- ullet If S and T are equivalent then
 - ullet T follows from S and
 - S follows from T

Transitive Rule

- Formalizes what we have already talked about
- If $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ and $B_1B_2\cdots B_m \to C_1C_2\cdots C_k$ hold in relation R then $A_1A_2\cdots A_n \to C_1C_2\cdots C_k$ also holds in R
- Use closure to see this

Basis

- Which FD's to use to represent a set S?
- ullet Basis is any set equivalent to S
- A minimal basis, B, meets 3 conditions:
 - \bigcirc All FD's in B have singleton right sides
 - ② If any FD is removed from B it is no longer a basis
 - \odot For any FD, F, in B, if one or more attributes are removed from the left side of F, the result is no longer a basis

Projecting Functional Dependencies (1)

- I have a relation with a set of FD's
- I project a set of attributes from this relation
- Which, if any FD's from the original set still hold?

Projecting Functional Dependencies (2)

- They are the ones
 - That follow from the original set
 - That involve only attributes in the projected version of the relation
 - Whose number is exponential in the number of attributes in the projected relation

How do we do this?

- Of course there is an algorithm
- Start with
 - S, set of FD's that hold for relation R.
 - ullet Lets call the set of attributes for R, A
 - $R_1 = \pi_L(R)$, and its attributes are A_1
- ullet Output the set, T, of FD's that hold for R_1

Process of the algorithm

- Initialize $T = \emptyset$
- $\begin{tabular}{ll} \hline \textbf{O} & For each $X\subseteq A_1$ compute X^+ with respect to S. \\ \hline & May involve elements of A not in A_1. \\ \hline & Add to T all non-trivial FD's $X\to K$ s.t. \\ \hline & K\in X^+$ and $K\in A_1$. \\ \hline \end{tabular}$
- $oldsymbol{\circ}$ T is now a basis for the FD's that hold in R_1 , but may not be minimal. Make minimal by . . .

Process of the algorithm

- If $F \in T$ and F follows from other FD's in T, remove F from T
- Let $Y \to B$ be in T, with at least two attributes in Y. Let Z be Y with one attribute removed. If $Z \to B$ follows from FD's in T (including $Y \to B$) then replace $Y \to B$ with $Z \to B$.
- Repeat (a) and (b) until no more changes can be made to T