UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804

Deklarationsinhaber FRITZ EGGER GmbH & Co. OG Holzwekstoffe

Herausgeber Institut Bauen und Umwelt e.V. (IBU)

Programmhalter Institut Bauen und Umwelt e.V. (IBU)

Deklarationsnummer EPD-EGG-20140196-IBA1-DE

Ausstellungsdatum 17.12.2014
Gültig bis 16.12.2019

EGGER DHF FRITZ EGGER GmbH & Co. OG Holzwerkstoffe

www.bau-umwelt.com / https://epd-online.com

1. Allgemeine Angaben

Fritz EGGER GmbH & Co. OG Holzwerkstoffe

Programmhalter

IBU - Institut Bauen und Umwelt e.V.

Panoramastr. 1 10178 Berlin

Deutschland

Deklarationsnummer

EPD-EGG-20140196-IBA1-DE

Diese Deklaration basiert auf den Produktkategorienregeln:

Holzwerkstoffe, 07-2012

(PCR geprüft und zugelassen durch den unabhängigen Sachverständigenausschuss)

Ausstellungsdatum

17.12.2014

Gültig bis

16.12.2019

Mennages

Prof. Dr.-Ing. Horst J. Bossenmayer (Präsident des Instituts Bauen und Umwelt e.V.)

Dr. Burkhart Lehmann (Geschäftsführer IBU)

DHF Platten

Inhaber der Deklaration

FRITZ EGGER GmbH & Co. OG Holzwerkstoffe Unternehmenszentrale Weiberndorf 20 A-6380 St. Johann in Tirol

Deklariertes Produkt/deklarierte Einheit

1 Kubikmeter DHF Platte

Gültigkeitsbereich:

Dieses Dokument bezieht sich auf DHF Platten, welche in der Egger Holzwerkstoffe Wismar GmbH & Co. KG, Am Haffeld 1, 23970 Wismar, Deutschland, hergestellt werden. Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, Ökobilanzdaten und Nachweise ist ausgeschlossen.

Verifizierung

Die CEN Norm EN 15804 dient als Kern-PCR

Verifizierung der EPD durch eine/n unabhängige/n Dritte/n gemäß ISO 14025

intern

X

extern

Manfred Russ,

Unabhängige/r Prüfer/in vom SVA bestellt

2. Produkt

2.1 Produktbeschreibung

DHF Platten sind im Trockenverfahren hergestellte plattenförmige Holzwerkstoffe auf Basis von Holzfasern und werden vorwiegend als diffusionsoffene, wärmedämmende und zum Teil mittragende Beplankung in Dach und Wand eingesetzt. Die Werkstoffplatten sind im Kantenbereich mit Nut-und-Feder-Profil versehen.

Die Durchschnittsdaten spiegeln die für die DHF Platten spezifische Produktionssituation für eine Dichte von 625 kg/m³ wieder. Bei der Datenerhebung werden die Produktionsschritte Faseraufbereitung, DHF Plattenproduktion und Endfertigung, Verpackung und Versand betrachtet.

2.2 Anwendung

DHF Platten erfüllen die Anforderung als Unterdeckplatte des Typs UDP-A gemäß der Richtlinie des Zentralverbandes des Deutschen Dachdeckerhandwerks (ZVDH) und werden bei Bedarf als Behelfseindeckung verwendet. Gemäß der Zulassung /Z-9.1-454/ des Deutschen Instituts für Bautechnik (DIBt) werden sie als diffusionsoffene und ggf. mittragende Außenbeplankung in der GK 0 nach /DIN 68800-2/ in Dach- und Außenwandkonstruktionen eingesetzt.

2.3 Technische Daten

Bautechnische Daten

Bezeichnung	Wert	Einheit									
Rohdichte nach /EN 323/	600 - 650	kg/m³									
Flächengewicht d=15mm	9,4	kg/m²									
Biegezugfestigkeit (längs) nach /EN 310/	17	N/mm ²									
Biegezugfestigkeit (quer) nach /EN 310/	17	N/mm ²									
Elastizitätsmodul (längs) nach /EN 310/	2000	N/mm²									
Elastizitätsmodul (quer) nach /EN 310/	2000	N/mm²									
Materialfeuchte bei Auslieferung	5 - 12	%									
Wärmeleitfähigkeit	0,1	W/(mK)									
Wasserdampfdiffusionswiderstand szahl nach /EN ISO 12572/	11	-									
Dimensionsänderung in Plattenebene nach /EN 318/	0,04	%/%									
Dickenquellung nach /EN 317/	6,5	%									

In der Tabelle werden nur für das Produkt relevante Eigenschaften gemäß PCR Holzwerkstoffe aufgeführt.

2.4 Inverkehrbringung/Anwendungsregeln

Für das Inverkehrbringen in der EU gilt die Verordnung (EU) Nr. 305/2011 vom 9.März 2011. Die Produkte benötigen eine Leistungserklärung unter Berücksichtigung von /EN 13986:2004 Holzwerkstoffe zur Verwendung im Bauwesen - Eigenschaften, Bewertung der Konformität und Kennzeichnung/ bzw. /EN 14964:2006 Unterdeckplatten für Dachdeckungen - Definitionen und Eigenschaften/ und die CE-Kennzeichnung.

Für die Verwendung gelten die jeweiligen nationalen Vorschriften, in Deutschland die allgemeine bauaufsichtliche Zulassung /Z-9.1-454/.

DHF Platten sind plattenförmige Holzwerkstoffe gemäß /EN 622-5 (Plattentyp MDF.RWH)/ .

DHF Platten können in tragenden und aussteifenden Bauteilen (außen liegende Wandbeplankungen oder Dachschalungen) bzw. verfalzten Unterdeckungen im Dach- und Außenwandbereich eingesetzt werden.

2.5 Lieferzustand

Format (mm)	Dicke	Dicke (mm)							
Länge x Breite	13	15							
4-seitig Nut-Feder, ungeschliffen									
2500 x 1250		X							
2500 x 675		Х							
2-seitig Nut-Feder, ungeschliffen									
2800 x 1250	х	Х							
3000 x 1250		х							

2.6 Grundstoffe/Hilfsstoffe

DHF Platten zwischen 12 und 20 mm Stärke mit einer mittleren Dichte von 600-650 kg/m³ bestehend aus (Angabe in Massen-% je 1 m³ Fertigung):

- Holzfasern ca. 88%
- Wasser ca. 5-7%
- PMDI-Leim ca. 4%
- Paraffinwachsemulsion <1%
- Additiv

Holzmasse: Zur Produktion von DHF-Platten kommen ausschließlich frisches Holz aus

Durchforstungsmaßnahmen sowie

Sägewerksresthölzer überwiegend der Holzart Fichte und Kiefer zum Einsatz.

PMDI (Polymeres Diphenylmethandiisocyanat)-

Leim: Zum Einsatz kommt MDI (Diphenylmethan – Diisocyanat), ein Polyharnstoff-Vorprodukt, welches bei der Plattenherstellung in PUR (Polyurethan) und Polyharnstoff umgewandelt wird. Diese dienen der Bindung der Holzfasern.

Wachsemulsion: Zur Hydrophobierung (Verbesserung der Feuchtebeständigkeit) wird der Rezeptur eine Paraffinwachsemulsion zugeführt. Trennmittel: Trennmittel zur Vermeidung von Anbackungen am Pressblech.

2.7 Herstellung

Entrindete Holzstämme bzw. auch Hackgut werden auf eine definierte Größe zerkleinert und nachher in einem Kocher bei hohem Druck gekocht und über Mahlscheiben zu Holzfasern zerrieben. Diese Holzfasern werden beleimt und in einer kontinuierlich arbeitenden Streustation zu einem Endlos-Faserkuchen gestreut. Dieser Kuchen wird ebenso endlos durch eine kontinuierliche Heißpresse gefördert und dabei immer weiter auf die gewünschte Enddicke

verdichtet. Nach der Presse wird der endlose Plattenstrang auf das erforderliche Rohplattenmaß zugeschnitten und in großen Kühlsternwendern auf Raumtemperatur gekühlt. Die Platten werden anschließend in der Endfertigung auf das Plattenendmaß zugeschnitten und mit Nut-und Feder-Profil versehen, verpackt und für den Versand gelagert.

Die Produktion umfasst die folgenden Prozessschritte:

- 1. Entrindung der Stämme
- Zerspanung des Holzes zu Spänen und Hackschnitzel
- 3. Kochen der Späne und Hackschnitzel
- 4. Zerfaserung im Refiner
- 5. Trocknung der Fasern auf ca. 2-3 % Restfeuchte
- 6. Beleimung der Fasern mit Harzen
- 7. Streuung der beleimten Fasern auf ein Formband
- Verpressen der Fasermatte in einer kontinuierlich ' arbeitenden Heißpresse
- Aufteilen und Besäumen des Faserstranges zu Rohplattenformaten
- 10. Auskühlen der Rohplatten in Sternkühlwendern
- 11. Abstapelung zu Großstapeln
- 12. Endfertigung / Nut-und Feder-Anlage

Alle während der Produktion anfallenden Reste (Besäum- und Fräsreste) werden ausnahmslos einer thermischen Verwertung zugeführt.

2.8 Umwelt und Gesundheit während der Herstellung

Maßnahmen zur Vermeidung von Gesundheitsgefährdungen / -belastungen während des Herstellungsprozesses: Aufgrund der Herstellungsbedingungen sind keine über die gesetzlichen und anderen Vorschriften hinausgehenden Maßnahmen zum Gesundheitsschutz erforderlich. Die MAK-Werte (maximale Arbeitsplatzkonzentration - /MAK- und BAT-Werte-Liste 2014/) werden an jeder Stelle der Anlage deutlich unterschriften.

Luft: Die produktionsbedingt entstehende Abluft wird entsprechend den gesetzlichen Bestimmungen gereinigt. Emissionen liegen deutlich unterhalb der TA

Wasser/Boden: Belastungen von Wasser und Boden entstehen nicht. Produktionsbedingte Abwässer werden intern zu einem Großteil (80 %) aufbereitet und der Produktion wieder zugeführt.

Schallschutzmessungen haben ergeben, dass alle innerhalb und außerhalb der Produktionsanlagen ermittelten Werte weit unterhalb der für Deutschland geltenden Anforderungen liegen. Lärmintensive Anlagenteile wie die Zerspanung sind durch bauliche Maßnahmen entsprechend gekapselt.

Das Werk Wismar ist seit 01-2012 für effizientes Energiemanagement nach /ISO 50001/ durch den TÜV Nord zertifiziert.

2.9 Produktverarbeitung/Installation

DHF-Platten können mit üblichen (elektrischen)
Maschinen gesägt und gebohrt werden.
Hartmetallbestückte Werkzeuge insbesondere bei
Kreissägen sind dabei zu bevorzugen. Bei der
Verwendung von Handgeräten ohne Absaugung sollte
Atemschutz getragen werden.
Ausführliche Informationen und
Verarbeitungsempfehlungen sind unter
www.egger.com/bauprodukte erhältlich.

2.10 Verpackung

Für die Transportverpackung ab Werk werden Unterleger aus Holzwerkstoffstreifen, Kartonage, Stahlbänder und

recyclebare PE-Folie (nur Nut-und-Feder-Platten) eingesetzt.

2.11 Nutzungszustand

Inhaltsstoffe im Nutzungszustand: Die Inhaltsstoffe von EGGER DHF entsprechen in ihren Anteilen jenen der Grundstoffzusammensetzung in Punkt 1 "Grundstoffe". Die Platten können im Awendungsbereich der Nutzungsklasse 2

Awendungsbereich der Nutzungsklasse 2 (Feuchtbereich) nach /EN 1995-1-1/ eingesetzt werden.

2.12 Umwelt & Gesundheit während der Nutzung

Bei normaler, dem Verwendungszweck von EGGER DHF entsprechender Nutzung sind keine gesundheitlichen Schäden und Beeinträchtigungen zu erwarten.

Gefährdungen für Wasser, Luft/Atmosphäre und Boden können bei bestimmungsgemäßer Anwendung von EGGER DHF nicht entstehen.

2.13 Referenz-Nutzungsdauer

Die Nutzungsdauer der DHF Platten in der Konstruktion beträgt im Durchschnitt 50 Jahre /BMVBS 2011/. (Es erfolgte keine Berechnung nach ISO 15686 /ISO 15686/)

2.14 Außergewöhnliche Einwirkungen

Brand

Rauchgasentwicklung / Rauchdichte: Entsprechend der Rauchentwicklung und Rauchdichte von Massivholz. Toxizität der Brandgase: Durch den

Umwandlungsprozess bei der Verbrennung kann unter bestimmten Brandbedingungen neben üblichen Brandgasen aus den in den Platten enthaltenen PMDI-Harzen Cyanwasserstoff (Blausäure) freigesetzt werden. Aufgrund der Toxizität der entstehenden Brandgase, dürfen Reste der genannten Produkte nur in dafür zugelassenen geschlossenen Anlagen, keinesfalls jedoch in irgendeiner Art von offenem Feuer verbrannt werden.

Wechsel des Aggregatzustandes (brennendes Abtropfen/Abfallen): Ein brennendes Abtropfen ist nicht möglich, da EGGER DHF Platten bei Erwärmung nicht flüssig werden.

Brandschutz

Bezeichnung	Wert
Baustoffklasse nach /EN 13501-1/	D

Brennendes Abtropfen nach /EN 13501-1/	d0
Rauchgasentwicklung nach /EN 13501-1/	s2

Wasser

Es werden keine Inhaltsstoffe ausgewaschen, die wassergefährdend sein könnten (vgl. Eluatanalyse, EOX). Gegen dauerhafte Wassereinwirkung sind DHF Platten nicht beständig, schadhafte Stellen nach z.B. begrenzter Hochwassereinwirkung können aber lokal leicht ausgewechselt werden.

Mechanische Zerstörung

Das Bruchbild von EGGER DHF zeigt ein relativ sprödes Verhalten, wobei es an den Bruchkanten der Platten zu keinen glatten Bruchflächen kommt.

2.15 Nachnutzungsphase

Wiederverwendung

Mit Schraubenverbindngen befestigte DHF-Platten können bei Umbau oder Beendigung der Nutzungsphase eines Gebäudes im Falle eines selektiven Rückbaus problemlos getrennt erfasst und für die gleiche Anwendung oder andere als die ursprüngliche Anwendung wiederverwendet werden. Voraussetzung dafür ist, dass die Holzwerkstoffplatten nicht vollflächig verklebt sind.

Energetische Verwertung (in dafür zugelassenen Anlagen):

Mit dem hohen Heizwert von ca. 16 MJ/kg (abhängig von der Plattenfeuchte) ist eine energetische Verwertung zur Erzeugung von Prozessenergie und Strom (KWK-Anlagen) von auf der Baustelle anfallenden Plattenresten sowie Platten aus Abbruchmaßnahmen der Deponierung vorzuziehen.

2.16 Entsorgung

Anfallende Reste von DHF Platten sollen in erster Linie einer stofflichen Verwertung zugeführt werden. Ist dies nicht möglich, müssen diese einer energetischen Verwertung anstatt einer Deponierung zugeführt werden (Abfallschlüssel nach /EAK Europäischer Abfallkatalog/: 170201/030103).

Die Materialien der Transportverpackungen können bei sortenreiner Sammlung dem Recycling zugeführt werden. Eine externe Entsorgung kann im Einzelfall mit dem Hersteller geregelt werden.

2.17 Weitere Informationen

Weiterführende Informationen zu Herstellung, Umwelt und Nachhaltigkeit, sonstigen Services sowie Händlernachweise gibt es im Internet unter www.egger.de/Bauprodukte.

3. LCA: Rechenregeln

3.1 Deklarierte Einheit

Die Deklaration bezieht sich auf die Herstellung von einem Kubikmeter DHF Platte.

DHF Platten weisen eine mittlere Dichte von 625 kg/m³ auf

Angabe der deklarierten Einheit

anguse der dendamenten Emmen										
Bezeichnung	Wert	Einheit								
Deklarierte Einheit	1	m ³								
Umrechnungsfaktor zu 1 kg	0,0016	-								
Massebezug	625	kg/m³								

3.2 Systemgrenze

Es handelt sich um eine "von der Wiege bis zum Werkstor, mit Optionen" EPD. Die Lebenszyklusanalyse für die betrachteten Produkte umfasst die Lebenswegabschnitte "Produktstadium", sowie "Gutschriften und Lasten jenseits der Grenzen des Produktsystems".

Die Systeme beinhalten somit folgende Stadien gemäß /EN 15804/: Produktstadium (Module A1-A3):

- A1 Rohstoffbereitstellung und –verarbeitung sowie Verarbeitungsprozesse von als Inputdienenden Sekundärstoffen
- A2 Transport zum Hersteller.
- A3 Herstellung

Nachdem das Produkt als gehacktes Altholz den *Endof-Waste* Status erreicht hat, wird angenommen, dass das Produkt einer Biomasseverbrennung zugeführt wird, welche thermische und elektrische Energie produziert. Daraus entstehende Wirkungen und Gutschriften sind im Modul D deklariert.

3.3 Abschätzungen und Annahmen

Zur Berechnung der Nettoflüsse wird von der Gesamtmasse des Produkts (625 kg/m³), jene Masse abgezogen, die theoretisch in A1-A3 als Altholz zur Energiebereitstellung genutzt werden könnte. Für DHF Platten ergibt sich ein Gesamteinsatz von 322 kg atro (absolut trocken) Altholz in der Produktionphase. Diese Masse kann theoretisch beim Lebensende der Platten in Modul A1-A3 rückgeführt werden. Somit erreicht nur der berechnete Nettofluss Modul D.

3.4 Abschneideregeln

Es wurden alle Daten aus der Betriebsdatenerhebung berücksichtigt. Damit wurden auch Stoffströme mit einem Anteil von kleiner als 1 % bilanziert. Es kann davon ausgegangen werden, dass die Summe der vernachlässigten Prozesse 5 % der Wirkungskategorien daher nicht übersteigt und die Abschneidekriterien gemäß /EN 15804/ erfüllt sind.

3.5 Hintergrunddaten

Alle relevanten HintergrundDatensätze wurden der Datenbank der Software /GaBi 6/ (GABI 6 2013) entnommen die nicht älter als 10 Jahre ist. Die verwendeten Daten wurden unter konsistenten, zeitlichen und methodischen Randbedingungen erhoben.

3.6 Datenqualität

Die Datenerfassung für die untersuchten Produkte erfolgte direkt am Produktionsstandort für das Geschäftsjahr 2012/13 auf Basis eines von der Consulting Firma PE International erstellten Fragebogens. Die In- und Outputdaten wurden von

Egger zur Verfügung gestellt und auf Plausibilität geprüft. Somit ist von einer guten Repräsentativität der Daten auszugehen.

3.7 Betrachtungszeitraum

Es wurden alle Primärdaten aus der Betriebsdatenerhebung der Firma Egger des Jahres 2012/13 berücksichtigt, d.h. alle für die Rezeptur eingesetzten Ausgangsstoffe, der Energiebedarf und alle direkten Produktionsabfälle wurden in der Bilanzierung berücksichtigt. Für die In- und Outputs wurden die tatsächlichen Transportdistanzen und Transportmittel (L:LKW, S:Sattelzug, Z:Zug) angesetzt.

3.8 Allokation

Die Zurechnung von Energiegutschriften für im Biomassekraftwerk produzierten Strom und thermische Energie im *End-of-Life* erfolgt nach Heizwert des Inputs, wobei auch die Effizienz der Anlage mit eingeht. Die Gutschrift für die thermische Energie errechnet sich aus dem Datensatz "EU27: Thermische Energie aus Erdgas PE "; die Gutschrift für Strom aus dem Datensatz "EU27: StromMix PE". Die Berechnung der vom Input abhängigen Emissionen (z.B. CO2, HCI, SO2 oder Schwermetalle) im *End-of-Life* erfolgte nach stofflicher

Zusammensetzung der eingebrachten Sortimente. Die technologieabhängigen Emissionen (z.B. CO) werden nach Abgasmenge zugerechnet. Abfälle wurden ebenfalls gesamt der Produktion zugerechnet. Die Vorkette für den Forst wurde nach /Hasch 2002/ in der Aktualisierung von Rüter und Albrecht 2007 bilanziert. Bei Sägewerksresthölzern werden der Forstprozess und dazugehörige Transporte gemäß Volumenanteil (bzw. Trockenmasse) dem Holz zugerechnet, aus den Sägewerksprozessen werden dem Sägewerksrestholz keine Belastungen zugerechnet. Zur Abgrenzung der Stoffströme von anderen im Werk hergestellten Produkten wird ein Berechnungsschlüssel im Controlling des Herstellers angewandt. Demnach werden die jeweiligen In- und Outputflüsse den Produkten nach Volumen zugeordnet.

3.9 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD Daten nur möglich, wenn alle zu vergleichenden Datensätze nach /EN 15804/ erstellt wurden und der Gebäudekontext, bzw. die produktspezifischen Leistungsmerkmale, berücksichtigt werden.

4. LCA: Szenarien und weitere technische Informationen

Das End-of-Life nimmt eine thermische Verwertung der DHF Platten als Sekundärbrennstoff an, da Holzwerkstoffe das Ende der Abfalleigenschaft nach dem Ausbau aus dem Gebäude erreichen. Die thermische Verwertung ist mit einer Aufbereitungsquote der DHF Platten von 100 % modelliert. Dieses Szenario stellt eine Annahme dar. Bei der Verwendung des Datensatzes im Gebäudekontext ist es unumgänglich eine realistische Aufbereitungsquote anzunehmen. Im End-of-Life werden die DHF Platten in einem Biomassekraftwerk verbrannt, welches dem EU-Durchschnitt entspricht. Somit wurden die Emissionsfaktoren, die Stromauskopplung und die

Effizienz an den EU-Durchschnitt angepasst.

Wiederverwendungs- Rückgewinnungs- und Recyclingpotential (D), relevante Szenarioangaben

Bezeichnung	Wert	Einheit
Feuchte bei thermischer	12	%
Verwertung	12	/0
Nettofluss in Modul D (Feuchte	296	ka
12%)	290	kg
Heizwert Holz (Annahme	16	MJ/kg
Ausgleichsfeuchte von 12%)	10	ivio/kg

5. LCA: Ergebnisse

ANG	ABE D	DER S	YSTE	MGRE	NZEN	(X = IN	I ÖK(DBILAI	NZ EI	NTHALT	EN; N	IND = I	MODU	IL NIC	HT DE	KLARIERT)
m des Bauwerks					Nutz	rungssta		Entsorgungsstadium			um	Gutschriften und Lasten außerhalb der Systemgrenze				
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung / Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben des Gebäudes	Rückbau / Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs- Rückgewinnungs- oder Recyclingpotenzial
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5		B7	C1	C2	C3	C4	D
Х	Х	X	MND	MND	MND	MND	MND	MND	MNE		MND	MND	MND	MND	MND	X
ERGE	EBNIS	SE D	ER ÖK	OBIL	ANZ U	MWEL	.TAUS	WIRK	UNG	EN: 1 m	3 DHF	Platte				
			Param	eter				Einheit			A1-A3				D	
			es Erwäm					kg CO ₂ -Äd			-7,49E+				1,821	
			der stratos					g CFC11-Äq.] 3,30E-9						-1,25E-7		
	versau		otenzial v			sser	[kr	[kg SO ₂ -Äq.] 3,44E+0 g (PO ₄) ³ - Äq.] 9,68E-1					-	-1,77E-1 2,61E-3		
	Bildu		ntial für tro			on	[k	kg Ethen Äq.] 2,70E+0						2,62E-2		
	nzial für d	den abiot	ischen Ab	bau nicht	fossiler R	essource	n	[kg Sb Äq.] 2,49E-4						-2,86E-5		
			oiotischen					[MJ]		3,24E+3 TZ: 1 m³ DHF Platte				-3,83E+3		
ERGE	EBNIS	SE D	ER OK	OBIL	ANZ R	ESSO	URCE	NEINS	ATZ	: 1 m³ D	HF PI	atte				
			Parar					Einheit			A1-A3 D					
			Primären					[MJ]	5,47E+3				IND			
	Emeue		imärenerg rneuerbai			utzung		[MJ]	1,07E+4 1,62E+4				IND -5,95E+2			
	Nicht-e		are Primär			eträger		[MJ] 1,62E+4 [MJ] 2,61E+3						-5,95L IND		
N	licht-erne	euerbare	Primären	ergie zur	stofflichen	Nutzung		[MJ] 7,76E+2					IND			
		Total nich	nt emeuerl	bare Prim	ärenergie			[MJ] 3,38E+3					-5,01E+3			
			atz von Se					[kg] 0,00E+0					0,00E+0			
	N		rbare Sek uerbare S					[MJ] 5,95E+3 [MJ] 0,00E+0					0,00E+0 0,00E+0			
	- 14		von Süßv					[m³] 7,35E-1					-1.14E+0			
ERGE	BNIS	SE D	ER ÖK	OBIL	ANZ O	UTPU	T-FLÜ		JND A			GORIE	EN:		<u> </u>	
	ERGEBNISSE DER ÖKOBILANZ OUTPUT-FLÜSSE UND ABFALLKATEGORIEN: 1 m³ DHF Platte															
	Parameter							Einheit		Α	1-A3				D	
Gefährlicher Abfall zur Deponie							[kg]		1,	46E-1	-4,51E-1			i-1		
Entsorgter nicht gefährlicher Abfall							[kg]			67E+0				3,43E		
Entsorgter radioaktiver Abfall						[kg]			75E-2				-4,69E			
Komponenten für die Wiederverwendung Stoffe zum Recycling						[kg]		0,0	00E+0 00E+0		IND					
Stoffe zum Recycling Stoffe für die Energierückgewinnung						[kg] [kg]			IND		IND IND					
Exportierte elektrische Energie						[MJ]			IND				IND			
	Exportierte thermische Energie						[MJ]			IND				IND		

6. LCA: Interpretation

Die folgende Interpretation enthält eine Zusammenfassung der Ökobilanzergebnisse bezogen auf eine funktionelle Einheit von 1m³ DHF Platte.

Der abiotische Verbrauch elementarer Ressourcen ist hauptsächlich von der Rohstoffbereitstellung dominiert (90%). Hierbei spielt vor allem das in der Faseraufbereitung eingesetzte Klebesystem eine große Rolle.

Der abiotische Verbrauch fossiler Ressourcen (ADP fossil) ist zu 95% auf die Rohstoffbereitstellung zurück zu führen. Der Einsatz nicht erneuerbarer Ressourcen wie Rohöl (54%), Erdgas (37%) und Kohle (5%) oder Lignit (4%) stellen die Haupttreiber dieser Umweltkategorie dar.

Das Versauerungspotential ist zu einem Großteil durch die Prozessemissionen der DHF Platten Produktion verursacht. Hierbei handelt es sich um anorganische Emissionen in die Luft. Stickstoffmonoxid (85%) stellt einen Haupttreiber des Versauerungspotentials, welcher zu einem großen Teil in der Faseraufbereitung entsteht, dar. Darüber hinaus tragen Stickoxide zu 9% zur Versauerung bei.

Das Eutrophierungspotential ist ebenfalls von den Prozessemissionen dominiert. In diesem Zusammenhang spielen Emissionen in die Luft (99%) eine tragende Rolle. Analog zum Versauerungspotential wird das Eutrophierungspotential signifikant von anorganischen Emissionen wie Stickstoffmonoxid (79%) und Lachgas (11%) beeinflusst. Stickstoffmonoxid entsteht vor allem

in der Faseraufbereitung, wohingegen Lachgas in der Plattenproduktion emittiert wird.

Das Treibhauspotential nimmt eine besondere Stellung ein, da durch die Sequestrierung von Kohlenstoff im Holz negative Werte in der Bilanz entstehen. Die Speicherung des Kohlenstoffs während des Baumwachstums schlägt sich in der Rohstoffbereitstellung nieder. Den größten Treiber der globalen Erwärmung stellen die Prozessemissionen (10% der Wirkung) dar. Hier spielen die CO2-Emissionen während der Faseraufbereitung eine wichtige Rolle.

Das Ozonabbaupotential wird zu 83% von der Rohstoffbereitstellung verursacht. R114 (Dichlortetrafluorethan) und R22 (Dichlorfluormethan) sind organische Emissionen in die Luft, die den Hauptverursacher des Ozonabbaupotentials von 1m³ DHF Platten darstellen. Diese Emissionen fallen hauptsächlich in den Vorketten der in der Faseraufbereitung eingesetzten Klebesysteme, Hackschnitzel und des Stroms an.

Die durch die Produktion von 1 m³ DHF Platte entstehende Photooxidantienbildung kann zu 96% auf die Prozessemissionen zurückgeführt werden. Diese Wirkungskategorie wird durch organische Emissionen in die Luft bestimmt, welche fast ausschließlich auf die Formaldehyd-Emissionen während der Faseraufbereitung zurück zu führen sind.

Die Abbildung (siehe oben) zeigt die Haupteinflussfaktoren des Primärenergiebedarfs der DHF Platten. Der Primärenergieverbrauch von nicht erneuerbaren Energieträgern ist zu 95% der Rohstoffbereitstellung, also den Vorketten der Rohstoffe, zuzuordnen. Hierbei sind es vor allem die in der Faseraufbereitung eingesetzten Rohstoffe (98%), die einen signifikanten Einfluss auf das Ergebnis haben. Der Bedarf an Primärenergie von nicht erneuerbaren Ressourcen in der Produktion von 1m³ DHF Platte setzt sich zu 53% aus dem Leimsystem, 19% dem Hackschnitzeleinsatz, 16% der Emulsion, 3% Rundholzeinsatz und 3% dem Trennmittel zusammen.

Der Bedarf an Primärenergie von erneuerbaren Energieträgern ist zu 63% auf die Rohstoffbereitstellung, 20 % den Einsatz thermischer Energie und 14% dem Strombedarf zurück zu führen. Strom und thermische Energie stammen aus der werkseigenen KWK-Anlage, in welche zu einem hohen Anteil Biomasse verwertet wird und somit ein hoher

Einsatz erneuerbarer Energieträger gegeben ist. Der Bedarf an erneuerbaren Energieträgern in der Rohstoffbereitstellung wird zu einem hohen Anteil durch den Hackschnitzeleinsatz und auch durch die Rundholzbereitstellung erzeugt.

Der Wasserverbrauch für 1m³ DHF Platte beträgt im Produktstadium (Modul A1-A3) 0,735m³ Wasser und im *End-of-Life* (Modul D) werden Gutschriften über 1,14m³ angerechnet. Während der Produktion resultiert der Wasserverbrauch hauptsächlich aus der Faseraufbereitung. Hier haben die Vorketten des Klebesystems (81%) und der Hackschnitzel (33%) einen großen Einfluss.

Das Abfallaufkommen der DHF Produktion ist dominiert durch entsorgten, nicht gefährlichen Abfall. Gefährlicher Abfall zur Deponie und entsorgter, radioaktiver Abfall spielen hier eine untergeordnete Rolle.

7. Nachweise

7.1 Formaldehyd

Messstelle: WKI Wilhelm-Klauditz-Institut - Fraunhofer

Gesellschaft, Braunschweig

Prüfberichte: QA-2014-0431 DHF-Platten

Datum: 14.01.2014

Ergebnis: Die Prüfung des Formaldehydgehaltes wurde nach der Kammermethode nach /EN 717-1/ durchgeführt. Die Ergebnisse entsprechen wie bei PMDI-Verleimung zu erwarten der Emission von naturbelassenem Holz: 0,02 ppm für DHF, 15 mm

7.2 MDI-Emission

Messstelle: Wessling - Beratende Ingenieure GmbH,

Altenberge

Prüfbericht: Projekt-Nr.: IAL-08-0437

Datum: 30.10.2008

Ergebnis: Die Prüfung der PUR verleimten DHF-Platten erfolgte nach den Prüfvorschriften des /RAL UZ 76/ und /BIA 7670/.

Die Emissionen von MDI und anderen Isocyanaten lagen für beide Plattentypen unterhalb der Nachweisgrenze des Analyseverfahrens. Die Anforderungen des /RAL-UZ 76/ für MDI-Emissionen werden damit erfüllt.

7.3 Schwermetalle/Eluat Messstelle:

MFPA Leipzig GmbH, Geschäftsbereich I; Leipzig WKI Wilhelm-Klauditz-Institut - Fraunhofer

Gesellschaft, Braunschweig

Prüfbericht, Datum:

UB 1.1 / 08 – 162 DHF-Platten vom 15.08.2008 QA-2014-0476 DHF-Platten vom 14.01.2014

Ergebnis: MFPA: Die Bestimmung der eluierbaren Schwermetalle erfolgte gemäß /EN 71-3/. Folgende Werte wurden bestimmt [mg/kg]: Antimon <1, Arsen <0,5, Barium 16, Cadmium 0,19, Chrom <0,2, Blei <0,5, Quecksilber <0,01, Selen <1.

WKI: Bestimmung mittels mikrowellenunterstütztem Druckaufschluss mit konzentrierter Säure . Folgende Werte wurden bestimmt [mg/kg]: Arsen <0,1; Blei 0,1; Cadmium <0,1; Chrom 0,1; Kupfer 0,7; Quecksilber <0,1.

7.4 Toxizität der Brandgase

Messstelle: Energie- und Prozesstechnik Aachen

GmbH, Bereich Rauchgastoxikologie

Prüfbericht: 16/2014 für DHF-Platten Material-

nummer B4061603 **Datum:** 04.06.2014

Ergebnis: Die Bestimmung der toxischen Brandgase erfolgte gemäß /DIN 4102 Teil 1/ – Klasse A bei 400° C. Die Prüfungen erfolgten nach PA-III-Beschluss 22/1 mit Abdeckung der seitlichen Schnittkanten. Bei 400°C Prüftemperatur betrug die relative Gewichtsabnahme der Probe 61,7%. Am Ende der Prüfung befand sich weißer, dichter Rauch im Inhalationsraum. Die Ergebnisse zeigen, dass sich unter den gewählten Versuchsbedingungen bei einer Temperatur von 400°C keine Chlorverbindungen (HCI-Nachweisgrenze 1ppm) und keine Schwefelverbindungen (SO2-Nachweisgrenze 1ppm) nachgewiesen werden konnten.

Nach 30 Minuten wurden 30.000ppm Kohlenmonoxid im Inhalationsraum gemessen, alle anderen chemischen Verbindungen sind für diesen Zeitraum

nicht nachweisbar. Nach 60 Minuten ergaben sich im Inhalationsraum folgende Konzentrationen: Kohlenmonoxid 50.000ppm, Kohlendioxid 20.000ppm, Cyanwasserstoff 10ppm. Chlorwasserstoff und Schwefeldioxid waren nicht nachweisbar (n.n.). Die Blausäurekonzentration (HCN-Nachweisgrenze 2ppm) entspricht der Konzentration, wie sie auch aus Holz unter gleich Bedingungen emittiert wird. Die unter den gewählten Versuchsbedingungen freigesetzten gasförmigen Emissionen entsprechend weitgehend den Emissionen, die unter gleichen Bedingungen aus Holz freigesetzt werden.

7.5 VOC

DHF -Platten werden ausschließlich als Außenbeplankung, außen liegende Unterdeckung verwendet - keine Prüfung.

7.6 Lindan/PCP

Messstelle: WKI Wilhelm-Klauditz-Institut - Fraunhofer

Gesellschaft, Braunschweig

Prüfbericht: QA-2013-1627 Fremdüberwachung des

Gehaltes von PCP und Lindan vom

Datum: 30.07.2013

Ergebnis: /PA-C-12:2006-02/ "Bestimmung Pentachlorphenol (PCP) und g-Hexachlor-cyclohexan (Lindan) in Holz und Holzwerkstoffen": Nach der Extrahierung der enthaltenen Stoffe wurden die

Lösungen derivatisiert, aufgearbeitet und anschließend

gaschromatographisch analysiert.

Die Werte für PCP und Lindan liegen unterhalb der

Nachweisgrenze von 0,1 mg/kg.

8. Literaturhinweise

Institut Bauen und Umwelt e.V., Berlin (Hrsg.):

Allgemeine Grundsätze

Allgemeine Grundsätzefür das EPD-Programm des Instituts Bauen und Umwelt e.V. (IBU), 2013-04.

Produktkategorienregeln für Bauprodukte Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Hintergrundbericht. 2013-04.

ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

EN 15804

EN 15804:2012-04, Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products.

BIA 7670; BIA 7670, Hexamethylendiisocyanat (HDI) **Prüfvorschriften des RAL-Umweltzeichen** RAL-UZ 76 (Holzwerkstoffe)

BMVBS 2011 Leitfaden Nachhaltiges Bauen, 2011, BMVBS Deutschland

CML 2001-April 2013; Institute of Environmental Sciences, Leiden University, The Netherlands: Handbook on impact categories "CML 2001",

http://www.leidenuniv.nl/cml/ssp/projects/lca2/index.ht ml

DIN 68800-2:2012 Holzschutz - Teil 2: Vorbeugende bauliche Maßnahmen im Hochbau

DIN 4102-1: 1998-05; Brandverhalten von Baustoffen und Bauteilen - Teil 1: Baustoffe; Begriffe, Anforderungen und Prüfungen

EAK, Europäischer Abfallkatalog EAK oder "European Waste Cataloge EWC" in der Fassung der Entscheidung der Kommission 2001/118/EG vom 16. Januar 2001 zur Änderung der Entscheidung 2000/532/EG über ein Abfallverzeichnis

EN 1995-1-1: Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau; Deutsche Fassung EN 1995-1-1:2004 + AC:2006 + A1:2008

EN 622-5:2009; Faserplatten, Anforderungen an Faserplatten im Trockenprozess (MDF), Deutsche Fassung DIN EN 922-5:2010

EN 13501-1:2010; Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten; Deutsche Fassung EN 13501-1:2007+A1:2009

EN 13986:2004; Holzwerkstoffe zur Verwendung im Bauwesen - Eigenschaften, Bewertung der Konformität und Kennzeichnung; Deutsche Fassung DIN EN 13986:2005

EN 14964:2006 Unterdeckplatten für Dachdeckungen - Definitionen und Eigenschaften; Deutsche Fassung EN 14964:2006

EN 310:Holzwerkstoffe; Bestimmung des Biege-Elastizitätsmoduls und der Biegefestigkeit; Deutsche Fassung EN 310:1993

EN 317: Spanplatten und Faserplatte; Bestimmung der Dickenquellung nach Wasserlagerung; Deutsche Fassung EN 317:1993

EN 318: Holzwerkstoffe - Bestimmung von Maßänderungen in Verbindung mit Änderungen der relativen Luftfeuchte; Deutsche Fassung EN 318:2002

EN 319: Spanplatten und Faserplatten; Bestimmung der Zugfestigkeit senkrecht zur Plattenebene; Deutsche Fassung EN 319:1993

EN 321:Holzwerkstoffe - Bestimmung der Feuchtebeständigkeit durch Zyklustest; Deutsche Fassung EN 321:2001

EN 323:1993; Holzwerkstoffe; Bestimmung der Rohdichte; Deutsche Fassung EN 323:1993

EN 324:2005; Holzwerkstoffe; Bestimmung der Plattenmaße; Teil 1: Bestimmung der Dicke, Breite und Länge; Deutsche Fassung EN 324-1:2005

EN 71-3 Sicherheit von Spielzeug - Teil 3: Migration bestimmter Elemente; Deutsche Fassung EN 71-3:2013

EN ISO 12572:2001 Wärme- und feuchteschutztechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung der Wasserdampf-Durchlässigkeit

EN ISO 50001:2011, Energiemanagementsysteme - Anforderungen mit Anleitung zur Anwendung (ISO 50001:2011); Deutsche Fassung EN ISO 50001:2011

GaBi 6 2013 (A); Software system and databases for life cycle engineering, Copyright, TM Stuttgart, Echterdingen 19922013

GaBi 6 2013 (B), Dokumentation der GaBi 5 Datensätze der Datenbank zur Ganzheitlichen Bilanzierung. LBP, Universität Stuttgart und PE International, 2013.

http://documentation.gabisoftware.com/

Hasch, J. (2002), Ökologische Betrachtung von Holzspan und Holzfaserplatten, Diss., Uni Hamburg überarbeitet 2007: Rueter, S. (BFH HAMBURG; Holztechnologie), Albrecht, S. (Uni Stuttgart, GaBi)

IBU Anleitung 2013; Teil B Anforderungen an die EPD für Holzwerkstoffe: PCR Anleitungstexte für gebäudebezogene Produkte und Dienstleistungen der Bauproduktgruppe Holzwerkstoffe

ISO 14040:2006-10, Umweltmanagement Ökobilanz Grundsätze und Rahmenbedingungen (EN ISO 14040:2006); Deutsche und Englische Fassung EN ISO 14040:2006

ISO 14044:2006-10, Umweltmanagement Ökobilanz Anforderungen und Anleitungen (ISO 14044:2006); Deutsche und Englische Fassung EN ISO 14044:2006

MAK- und BAT-Werte-Liste 2014: Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte, Deutsche Forschungsgemeinschaft, Wiley-VCH Verlag GmbH & Co. KgaA, 2014

PA-C-12:2006-02 "Bestimmung von Pentachlorphenol (PCP) und g-Hexachlorcyclohexan (Lindan) in Holz und Holzwerkstoffen", WKI-HM-2:2002-05

Produktdatenblatt für Unterdeckplatten aus Holzfasern - ZVDH e.V. Fachregelwerk , 2012

Prüfvorschriften des RAL-Umweltzeichen - RAL-UZ76 (Holzwerkstoffe) "Bestimmung der MDI-Emission gemäß BIA 7670 – Prüfkammermethode"

Z-9.1-454 Allgemeine bauaufsichtliche Zulassung des DIBt Berlin, EGGER DHF, 2009

Anmerkung EGGER: ein nochmaliges Zitieren der Prüfberichte aus dem Abschnitt 7. NACHWEISE ist aus unserer Sicht nicht erforderlich, da sie mit Prüfnummer, Prüfstelle und Datum bereits eindeutig benannt sind.

Institut Bauen und Umwelt e.V.

Herausgeber

Institut Bauen und Umwelt e.V. Panoramastr.1 10178 Berlin Deutschland Tel +49 (0)30 3087748- 0 Fax +49 (0)30 3087748- 29 Mail info@bau-umwelt.com Web www.bau-umwelt.com

Institut Bauen und Umwelt e.V.

Programmhalter

 Institut Bauen und Umwelt e.V.
 Tel
 +49 (0)30 3087748- 0

 Panoramastr.1
 Fax
 +49 (0)30 3087748- 29

 10178 Berlin
 Mail
 info@bau-umwelt.com

 Deutschland
 Web
 www.bau-umwelt.com

Ersteller der Ökobilanz

 PE International
 Tel
 +43 (0) 1/ 8907820

 Hütteldorferstr 63-65
 Fax
 +43 (0) 1/ 890782010

 A1150 Wien
 Mail
 t.daxner@pe-international.com

 Austria
 Web
 www.pe-international.com

Inhaber der Deklaration

Fritz EGGER GmbH & Co.OG Weiberndorf 20 A-6380 St. Johann in Tirol Austria Tel +43 (0) 50 600-0 Fax +43 (0) 50 600-10111 Mail info-sjo@egger.com Web http://www.egger.com