PDokumentacja projektu zaliczeniowego

Przedmiot: Inżynieria oprogramowania

Temat: Automatyzacja i optymalizacja Huty Szkła "Julia"

Autorzy: Paweł Bornikowski i Mikolaj Ćwiertniak

Grupa: I1-211A Kierunek: informatyka

Rok akademicki: ... Poziom i semestr: I/4

Tryb studiów: stacjonarne

1 Spis treści

2	О	Odnośniki do innych źródeł			
3	S	Słownik pojęć			
4	W	Vprowadzenie	5		
	4.1	Cel dokumentacji	6		
	4.2	Przeznaczenie dokumentacji	6		
	4.3	Opis organizacji lub analiza rynku	6		
	4.4	Analiza SWOT organizacji	6		
5	$\mathbf{S}_{\mathbf{I}}$	pecyfikacja wymagań	7		
	5.1	Charakterystyka ogólna	7		
	5.2	Wymagania funkcjonalne	8		
	5.3	Wymagania niefunkcjonalne	13		
6	Z	arządzanie projektem	14		
	6.1	Zasoby ludzkie	14		
	6.2	Harmonogram prac	14		
	6.3	Etapy/kamienie milowe projektu	15		
7	\mathbf{Z}	arządzanie ryzykiem	16		
	7.1	Lista czynników ryzyka	16		
	7.2	Ocena ryzyka	16		
	7.3	Plan reakcji na ryzyko	16		
8	\mathbf{Z}	arządzanie jakością	17		
	8.1	Scenariusze i przypadki testowe	17		
9	P	rojekt technicznyError! Bookmark no	t defined.		
	9.1	Opis architektury systemu	20		
	9.2	Technologie implementacji systemu	21		
	9.3	Diagramy UML	21		
	9.4	Charakterystyka zastosowanych wzorców projektowych	28		
	9.5	Projekt bazy danych	28		
	9.6	Projekt interfejsu użytkownika	29		
	9.7	Procedura wdrożenia	36		
1	0	Dokumentacja dla użytkownika	37		
1	1	Podsumowanie	38		
	11.1	Szczegółowe nakłady projektowe członków zespołu	38		

12	Inne informac	je	3	9
----	---------------	----	---	---

- 2 marzec Zapoznanie się z zadaniem oraz wymyślenie tematu projektu.
- 9 marzec Rozpoczęcie punktu 4(Wprowadzenie).
- 23 marzec Zakończenie punktu 4.
- 30 marzec Rozpoczęcie punktu 5.1.
- 6 kwiecień Zakończenie punktu 5.1 i rozpoczęcie punktu 5.2 oraz zapoznanie się z Visual Paradigm.
- 9 kwiecień Kontynuacja punktu 5.2 oraz wykonanie wykresów.
- 20 kwiecień Zakończenie punktu 5.2, 6 oraz 7.
- 27 kwiecień Punkt kontrolny.
- 4 maj Punkt 8
- 11 maja- Punkt 9
- 18 maja 10 i 11 Punkt
- 25 maja Implementacja
- 1 czerwiec Implementacja
- 15 czerwiec Implementacja
- 22 czerwiec Oddanie pracy

2 Odnośniki do innych źródeł

- Zarządzania projektem sugerowane JazzHub
- Wersjonowanie kodu sugerowany Git (hosting np. na Bitbucket lub Github), ew. SVN
- System obsługi defektów np. Bitbucket, JazzHub

3 Słownik pojęć

Pracownik hali – Osoba zatrudniana przez Hute Szkła "Julia", która pracuje na hali. Operator systemu – Osoba, która zajmuje się nadzorowaniem oraz kontrolą systemu. Magazynier – Osoba pracująca na magazynie.

4 Wprowadzenie

4.1 Cel dokumentacji

Dokumentacja przedstawia i ułatwia działanie systemu informatycznego stworzonego dla Huty Szkła "Julia".

4.2 Przeznaczenie dokumentacji

Dokumentacja została stworzonach dla Huty Szkła "Julia" w Piechowicach.

4.3 Opis organizacji lub analiza rynku

Organizacja, dla której stworzony został system informatyczny jest hutą szkła dekoracyjnego. System zautomatyzuje produkcję wyrobów szklanych w hucie i pozwoli na oszczędności w materiałach i zasobach ludzkich. Huta Szkła "Julia" jest jedną z niewielu wytwórni w Polsce, która zajmuje się produkcja ozdób szklanych i produktów codziennego użytku ze szkła kryształowego. Firma dostarcza swoje wyroby do sklepów budowlanych i dekoracyjnych, oraz prowadzi własną sprzedaż przez internet.

4.4 Analiza SWOT organizacji

Tylko jeśli dla konkretnej organizacji Wystarczy sama tabela 2x2 (silne-słabe-szanse-zagrożenia)

Silne: -mała konkurencja na rynku -renomowany producent -wyrób prestiżowy	Szanse: -lepsze prosperowanie przez wzgląd na rozwój technologi	
Słabe: -mały popyt -wymagająca produkcja	Zagrożenia: -podwyżka cen materiałów -brak popytu	

5 Specyfikacja wymagań

5.1 Charakterystyka ogólna

5.1.1 Definicja produktu

System pozwala na oszczędności i zwiększenie produkcji poprzez automatyzacje i optymalizacje działania Huty Szkła "Julia".

5.1.2 Podstawowe założenia

System informatyczny stworzony przez nas pozwoli zastąpić część obowiązków pracowników maszynami, które pozwolą zwiekszyć wydajność. Maszyny będą ustawione w formie lini produkcyjnej. Pomiędzy stacjami odbywa się konrtola jakości wytwarzanego szkła. Każda maszyna jest wyposażona w czujnik ciepła i przekazuje na żywo swój status do głównego komputera obsługującego całą halę. Wszyscy pracownicy otrzymują plakietki magnetyczne, które odbijają przy wejściu i wyjściu na halę, a te informacje będą przekazywane do bazy danych. System komunikuje się z magazynem sprawdzając jego stan i optymalizuje zamówienia. W przypadku awarii system jest gotowy na zareagowanie by ograniczyc straty w produkcji.

5.1.3 Cel biznesowy

Organizacja chce przyśpieszyć produkcje co wpłynie na zwiększenie dochodu.

5.1.4 Użytkownicy

- -Pracownicy hali,
- -Operator systemu,
- -Magazynierzy.

5.1.5 Korzyści z systemu

- -Operator systemu ma pełen dostęp do wszystkich funkcji.
- -Magazynierzy mają dostęp tylko do części magazynowej systemu.
- -Pracownicy hali posiadają dostęp tylko do częścii systemu w zależności przy jakiej maszynie pracują.
- -Pracownicy są kontrolowani na podstawie kart magnetycznych.

5.1.6 Ograniczenia projektowe i wdrożeniowe

- -Budżet wyznaczony przez zleceniodawcę projektu
- -Czas wykonania nałożony przez Hutę szkła
- -podłączenie i instalacja maszyn zajmuje się firma zewnętrzna co może wpłynąć na czas wykonania projektu

Projekt jak każdy inny jest ograniczony przez 3 główne parametry czas, budżet oraz zakres i jakość .zadaniem kierownika jest utrzymacie tych 3 parametrów w równowadze.

5.2 Wymagania funkcjonalne

5.2.1 Lista wymagań

- -Karty magnetyczne i skanery.
- -Magazyn.
- -Odpowiednia ilość pracowników.
- -Odpowiednie kwalifikacje pracowników.
- -System chłodzenia.
- -Maszyny na hali.

5.2.2 Diagramy przypadków użycia

5.2.3 Szczegółowy opis wymagań

każde na nowej stronie wg następujących punktów:

- Numer 001
- Czytniki kart i skanery
- Uzasadnienie biznesowe Pracownicy kontrolowani na podstawie kart magnetycznych
- Wszyscy pracownicy
- Scenariusze, dla każdego z nich:
 - Dostarczenie kart pracownikom, zamontowanie i skonfigurowanie skanerów

o Przebieg działań:

- .1. Menager przekazuje kart pracownikom.
- .2. Skonfigurowanie skanerów i kart przez pracowników z działu IT.
- o Efekty Kontrola pracowników i szczegółowe dane w bazie danych.
- o Wymagania niefunkcjonalne BRAK
- o Częstotliwość 4
- o Istotność − 4

- Numer 002
- Magazyn
- Uzasadnienie biznesowe Kontrola i automatyzacja działania magazynu
- Magazynierzy
- Scenariusze, dla każdego z nich:
 - o Podłączenie systemu magazynowego pod system główny
 - Przebieg działań:
 - .1. Konfiguracja systemu magazynowego i jego bazy danych.
 - o Efekty warunki końcowe
 - Wymagania niefunkcjonalne szczegółowe wobec poszczególnych wymagań funkcjonalnych
 - o Częstotliwość na skali 1-5 lub BN-BW
 - Istotność inaczej: zależność krytyczna, znaczenie na skali 1-5 lub BN-BW

- Numer 003
- Produkcja szkła
- Uzasadnienie biznesowe Przyspieszenie produkcji i zwiększenie zarobkó huty
- Pracownicy hali
- Scenariusze, dla każdego z nich:
 - o Maszyny na hali podłączone do systemu
 - o Przebieg działań:
 - .1. Piec podgrzewa składniki tworząc mase szklaną,
 - .2. Wybór formy –pracownik,
 - .3. Maszyna wlewa mase do formy,
 - .4. Maszyna chłodzi szkło,
 - .5. Maszyna wyciąga gotowy wyrób szklany,
 - .6. Sprawdzenie jakości -pracownik,
 - .7. Pakowanie szkła.
 - o Efekty Wyrób szklany
 - Wymagania niefunkcjonalne brak
 - o Częstotliwość 4
 - o Istotność − 4

5.3 Ważne!

Elementy od warunków początkowych do końca mogą być grupowane, tj. specyfikacja pojedynczego przypadku użycia może zawierać:

- pojedynczy przebieg działań (scenariusz główny) oraz ew. scenariusze alternatywne, albo
- wiele przebiegów głównych wraz z ew. scenariuszami alternatywnymi wtedy każdy z przebiegów głównych powinien być opisany wg tych punktów (od warunków początkowych do końca).

5.4 Wymagania niefunkcjonalne

wobec całego systemu

- 1. Wydajność w odniesieniu do konkretnych sytuacji funkcji systemu
- 2. Bezpieczeństwo utrata, zniszczenie danych, zniszczenie innego systemu przez nasz wraz z działaniami zapobiegawczymi i ograniczającymi skutki
- 3. Zabezpieczenia
- Inne cechy jakości najlepiej ilościowo, żeby można było zweryfikować (zmierzyć)
 adaptowalność, dostępność, poprawność, elastyczność, łatwość konserwacji, przenośność, awaryjność, testowalność, użyteczność
- 1. Wydajność: Kontrola prędkości produkcji.
- 2. Bezpieczeństwo: System chłodzenia, wyłącznik awaryjny, kopia zapasowa danych
- 3. Zabezpieczenie: Karty magnetyczne,
- 4. Inne cechy jakości: Adaptowalność, łatwość konserwacji, testowalność, użyteczność.

6 Zarządzanie projektem

6.1 Zasoby ludzkie

- -Specjalista automatyk,
- -Specjalista mechatronik,
- -Zespół programistów(liczba zależna od budżetu),
- -Osoba zażądzająca projektem

6.2 Harmonogram prac

Etapy:

- -Planowanie
 - 1. Utworzenie szkicu projektu
 - 2.Podpisanie umowy z klientem
- -Design
 - 1.Prototyp
 - 2.Makieta
 - 3. Opinia klienta
- -Tworzenie systemu
 - 1.Struktura
 - 2. Moduły dodatkowe
 - 3.Testowanie
- -Wdrożenie
 - 1.Opinia klienta
 - 2.Stres testy
- -Domknięcie projektu
 - 1.Prace Serwisowe
 - 2. Finalizacja projektu

6.3 Etapy/kamienie milowe projektu

- -Planowanie
- -Design
- -Tworzenie systemu
- -Wdrożenie
- -Domknięcie projektu

7 Zarządzanie ryzykiem

7.1 Lista czynników ryzyka

- -Nie uczciwi pracownicy
- -Pożar
- -Brak odpowiednich zasobów magazynie

7.2 Ocena ryzyka

prawdopodobieństwo i wpływ

Prawdopodobieństwo		Wpływ(0-10)
Nie uczciwi pracownicy – Małe		10
Pożar - Małe		10
Brak odpowiednich zasobó magazynie – Bardzo małe	W	7

7.3 Plan reakcji na ryzyko

- -Karty magnetyczne do kontroli pracowników
- -System chłodzenia maszyn
- -System przeciwpożarowy
- -Przycisk bezpieczeństwa
- -Moduł kontrolujący magazyn

8 Zarządzanie jakością

8.1 Scenariusze i przypadki testowe

szczegółowy plan testowania systemu – głównie testowanie funkcjonalności; każdy scenariusz od nowej strony, musi zawierać co najmniej następujące informacje (sugerowany układ tabelaryczny, np. wg szablonu podanego w osobnym pliku lub na wykładzie):

- numer 100
- nazwa scenariusza karty magnetyczne
- kategoria modułowy
- opis testowanie poprawności działania urządzeń zczytujących informacje z kart magnetycznych oraz kompatybilość z bazą danych
- tester pracownik hali
- termin zgodnie z wykresem Gantta
- narzędzia wspomagające brak
- przebieg działań

Lp.	Tester	Działanie systemu
1	Odbicie karty	Zapisanie informacji o
		godzinie i id pracownika w
		bazie danych

• Urządzenie zczytuje jako dane wejsciowe godzine i id pracownika i przekazuje je do bazy danych

- numer 200
- nazwa scenariusza system chłodzenia
- kategoria modułowy
- opis testowanie poprawności działania systemu chłodzenia w sytuacjach zwiekszenie się temperatury ponad normę oraz awarii maszyn
- tester pracownik hali
- termin zgodnie z wykresem Gantta
- narzędzia wspomagające brak
- przebieg działań

Lp.	Tester	Działanie systemu
1	Umyślne zwiększenie	Czujnik przekazuje
	tempreratury urządzenia do	informacje o temperaturze
	którego jest połączony	do systemu
	czujnik	
2		System reaguje adekwatnie
		do tempreratury i wybiera
		najbardziej wydajny sposób
		na chłodzenie

- Urządzenie zczytuje jako dane wejsciowe temperature z czujnika i reaguje adekwatnie do temperatury i wybiera najbardziej wydajny sposób na chłodzenie
- Tester powinien sprawdzić system pod względem wielu wariantów gdy maszyna się przegrzewa

- numer 300
- nazwa scenariusza magazyn
- kategoria modułowy
- opis testowanie poprawności działania wymiany informacji pomiędzy systemem a magazynem
- tester tester
- termin zgodnie z wykresem Gantta
- narzędzia wspomagające brak
- przebieg działań

Lp.	Tester	Działanie systemu
1	Regularnie aktualizuje stan magazynu	System na podstawie danych z magazynu oblicza możliwości produkcyjne fabryki dodatkowo biorąc pod uwage możliwości systemu chłodzenia oraz ilość pracowników znajdujących się aktualnie
		fabryki dodatkowo biora pod uwage możliwość systemu chłodzenia ora ilość pracownikó

- System na podstwie danych przekazanych przez magazyniera oblicza możliwości produkcyjne maszyn
- Tester przekazuje przykładowe ilości ton piachu używanego do produkcji, na podstawie której system oblicza możliwości wydajnościowe

8.2 Opis architektury systemu

8.3 Technologie implementacji systemu

- -MySql
- -Python
- -PyQt(GUI)

8.4 Diagramy UML

8.4.1 Diagram(-y) klas

8.4.2 Diagram(-y) czynności

8.4.3 Diagramy sekwencji

8.4.4 Inne diagramy

Diagram działania chłodzenia:

Diagram działania maszyny do produkcji wyrobów szklanych:

8.5 Charakterystyka zastosowanych wzorców projektowych

informacja opisowa wspomagana diagramami (odsyłaczami do diagramów UML); jeśli wykorzystano wzorce projektowe, to należy wykazać dwa z nich

8.6 Projekt bazy danych

Projekty szczegółowe tabel

Baza danych w MySQL składa się z 3 tabel odpowiadających za główne filary systemu obsługującego hutę szkła. System zbiera informacje ze wszystkich 3 tabel i wyświetla odpowiednie informacje w systemie danemu użytkownikowi co pozwala łatwo ograniczać dostęp i go udzielać na odpowiednie stanowiska

8.7 Projekt interfejsu użytkownika

Co najmniej dla głównej funkcjonalności programu – w razie wątpliwości, uzgodnić z prowadzącym zajęcia

8.7.1 Lista głównych elementów interfejsu

- -ekran logowania
- -panel kontroli
- -panel bazy danych

8.7.2 Przejścia między głównymi elementami

8.7.3 Projekty szczególowe poszczególnych elementów

każdy element od nowej strony z następującą minimalną zawartością:

- numer 1
- nazwa formularz logowania
- projekt graficzny:

- numer 2
- nazwa panel kontroli
- zrzut ekranu:

- numer 3
- nazwa panel bazy danych
- zrzut ekranu:

8.8 Procedura wdrożenia

jeśli w harmonogramie nie są wystarczające (a zapewne nie są)

9 Dokumentacja dla użytkownika

Opcjonalnie – dla chętnych

Na podstawie projektu docelowej aplikacji, a nie zaimplementowanego prototypu architektury

4-6 stron z obrazkami (np. zrzuty ekranowe, polecenia do wpisania na konsoli, itp.)

- pisana językiem odpowiednim do grupy odbiorców czyli najczęściej nie do informatyków
- może to być przebieg krok po kroku obsługi jednej głównej funkcji systemu, kilku mniejszych, instrukcja instalacji lub innej pomocniczej czynności.

10 Podsumowanie

10.1 Szczegółowe nakłady projektowe członków zespołu

Paweł Bornikowski	Mikołaj Ćwiertniak
Diagramy czynności	Diagramy UML
Implementacja	Architektura bazy danych
Łączenie programu z bazą danych	Uzupełnienie szablonu

11 Inne informacje

Instrukcja znajduje się na GitHub. https://github.com/maulator/IO