

October 1987 Revised March 2002

CD4046BC

Micropower Phase-Locked Loop

General Description

The CD4046BC micropower phase-locked loop (PLL) consists of a low power, linear, voltage-controlled oscillator (VCO), a source follower, a zener diode, and two phase comparators. The two phase comparators have a common signal input and a common comparator input. The signal input can be directly coupled for a large voltage signal, or capacitively coupled to the self-biasing amplifier at the signal input for a small voltage signal.

Phase comparator I, an exclusive OR gate, provides a digital error signal (phase comp. I Out) and maintains 90° phase shifts at the VCO center frequency. Between signal input and comparator input (both at 50% duty cycle), it may lock onto the signal input frequencies that are close to harmonics of the VCO center frequency.

Phase comparator II is an edge-controlled digital memory network. It provides a digital error signal (phase comp. II Out) and lock-in signal (phase pulses) to indicate a locked condition and maintains a 0° phase shift between signal input and comparator input.

The linear voltage-controlled oscillator (VCO) produces an output signal (VCO Out) whose frequency is determined by the voltage at the VCO $_{\rm IN}$ input, and the capacitor and resistors connected to pin C1 $_{\rm A}$, C1 $_{\rm B}$, R1 and R2.

The source follower output of the VCO $_{IN}$ (demodulator Out) is used with an external resistor of 10 k Ω or more.

The INHIBIT input, when high, disables the VCO and source follower to minimize standby power consumption. The zener diode is provided for power supply regulation, if necessary.

Features

- Wide supply voltage range: 3.0V to 18V
- \blacksquare Low dynamic power consumption: 70 μW (typ.) at $f_0=10$ kHz, $V_{DD}=5V$
- VCO frequency: 1.3 MHz (typ.) at V_{DD} = 10V
- Low frequency drift: 0.06%/°C at V_{DD} = 10V with temperature
- High VCO linearity: 1% (typ.)

Applications

- · FM demodulator and modulator
- · Frequency synthesis and multiplication
- · Frequency discrimination
- · Data synchronization and conditioning
- Voltage-to-frequency conversion
- · Tone decoding
- · FSK modulation
- · Motor speed control

Ordering Code:

Order Number	Package Number	kage Number Package Description		
CD4046BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow		
CD4046BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide		

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Block Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & -0.5 \text{ to } +18 \text{ V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & -0.5 \text{ to V}_{\text{DD}} +0.5 \text{ V}_{\text{DC}} \\ \text{Storage Temperature Range (T}_{\text{S}}) & -65^{\circ}\text{C to } +150^{\circ}\text{C} \end{array}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD}) 3 to 15 V_{DC} Input Voltage (V_{IN}) 0 to V_{DD} V_{DC} Operating Temperature Range (T_A) -55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

0	Parameter	Conditions	-5	–55°C		+25°C			+125°C	
Symbol		Conditions		Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	Pin 5 = V _{DD} , Pin 14 = V _{DD} ,								
		Pin 3, $9 = V_{SS}$								
		$V_{DD} = 5V$		5		0.005	5		150	
		$V_{DD} = 10V$		10		0.01	10		300	μΑ
		$V_{DD} = 15V$		20		0.015	20		600	
		Pin 5 = V _{DD} , Pin 14 = Open,								
		Pin 3, $9 = V_{SS}$								
		$V_{DD} = 5V$		45		5	35		185	
		V _{DD} = 10V		450		20	350		650	μΑ
		V _{DD} = 15V		1200		50	900		1500	
V _{OL}	LOW Level Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		V _{DD} = 10V		0.05		0	0.05		0.05	V
		V _{DD} = 15V		0.05		0	0.05		0.05	
V _{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		V _{DD} = 10V	9.95		9.95	10		9.95		V
		V _{DD} = 15V	14.95		14.95	15		14.95		
V _{IL}	LOW Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	
	Comparator and Signal In	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or 13.5V		4.0		6.25	4.0		4.0	
V _{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		
	Comparator and Signal In	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$	11.0		11.0	8.25		11.0		
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	(Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	(Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	All Inputs Except Signal Input								
		$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μΑ
C _{IN}	Input Capacitance	Any Input (Note 3)							7.5	pF
P _T	Total Power Dissipation	$f_0 = 10 \text{ kHz}, R1 = 1 \text{ M}\Omega,$								
		$R2 = \infty$, $VCO_{IN} = V_{CC}/2$								
		$V_{DD} = 5V$				0.07				
		V _{DD} = 10V				0.6				mW
		V _{DD} = 15V				2.4				

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: \mathbf{I}_{OH} and \mathbf{I}_{OL} are tested one output at a time.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CO SECT	ION		10			1
I _{DD}	Operating Current	$f_0 = 10 \text{ kHz}, R1 = 1 \text{ M}\Omega,$				
		$R2 = \infty$, $VCO_{IN} = V_{CC}/2$				
		$V_{DD} = 5V$		20		
		$V_{DD} = 10V$		90		μΑ
		$V_{DD} = 15V$		200		
MAX	Maximum Operating Frequency	C1 = 50 pF, R1 = 10 k Ω ,				
		$R2 = \infty, VCO_{IN} = V_{DD}$				
		$V_{DD} = 5V$	0.4	8.0		
		V _{DD} = 10V	0.6	1.2		МН
		$V_{DD} = 15V$	1.0	1.6		
	Linearity	$VCO_{IN} = 2.5V \pm 0.3V,$				
		$R1 \geq 10 \; k\Omega, \; V_{DD} = 5V$		1		
		$VCO_{IN} = 5V \pm 2.5V$,				%
		$R1 \geq 400 \text{ k}\Omega, \text{ V}_{DD} = 10\text{V}$		1		,,,
		$VCO_{IN} = 7.5V \pm 5V$,				
		$R1 \ge 1 M\Omega$, $V_{DD} = 15V$		1		
	Temperature-Frequency Stability	%/°C < 5c1/f. V _{DD}				
	No Frequency Offset, f _{MIN} = 0	R2 = ∞				
		$V_{DD} = 5V$		0.12-0.24		
		$V_{DD} = 10V$		0.04-0.08		%/°
		V _{DD} = 15V		0.015-0.03		
	Frequency Offset, $f_{MIN} \neq 0$	$V_{DD} = 5V$		0.06-0.12		
		$V_{DD} = 10V$		0.05-0.1		%/°
		V _{DD} = 15V		0.03-0.06		
VCO _{IN}	Input Resistance	$V_{DD} = 5V$		10 ⁶		
		V _{DD} = 10V		10 ⁶		MΩ
		V _{DD} = 15V		10 ⁶		
VCO	Output Duty Cycle	$V_{DD} = 5V$		50		
		$V_{DD} = 10V$		50		%
		V _{DD} = 15V		50		
THL	VCO Output Transition Time	$V_{DD} = 5V$		90	200	ns
THL		$V_{DD} = 10V$		50	100	ns
		V _{DD} = 15V		45	80	
	MPARATORS SECTION		T	1		1
ζIN	Input Resistance					
	Signal Input	$V_{DD} = 5V$	1	3		
		$V_{DD} = 10V$	0.2	0.7		
		V _{DD} = 15V	0.1	0.3		MS
	Comparator Input	$V_{DD} = 5V$		10 ⁶		
		V _{DD} = 10V		10 ⁶		
	1000 1100 11 11/16	V _{DD} = 15V		10 ⁶		
	AC-Coupled Signal Input Voltage Sensitivity	C _{SERIES} = 1000 pF				
	,	f = 50 kHz			400	
		V _{DD} = 5V		200	400	١,
		$V_{DD} = 10V$		400	800	m\
		V _{DD} = 15V		700	1400	
EMODUL						

AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VCO _{IN} -	Offset Voltage	$RS \ge 10 \text{ k}\Omega, V_{DD} = 5V$		1.50	2.2	
V_{DEM}		$RS \ge 10 \ k\Omega, \ V_{DD} = 10V$		1.50	2.2	V
		$RS \ge 50 \text{ k}\Omega, V_{DD} = 15V$		1.50	2.2	
	Linearity	RS ≥ 50 kΩ				
		$VCO_{IN}=2.5V\pm0.3V,V_{DD}=5V$		0.1		
		$VCO_{IN} = 5V \pm 2.5V$, $V_{DD} = 10V$		0.6		%
		$VCO_{IN} = 7.5V \pm 5V, \ V_{DD} = 15V$		0.8		
ZENER DIO	DE	·				
V _Z	Zener Diode Voltage	$I_Z = 50 \mu A$	6.3	7.0	7.7	V
R _Z	Zener Dynamic Resistance	I _Z = 1 mA		100		Ω

Note 5: AC Parameters are guaranteed by DC correlated testing.

Phase Comparator State Diagrams

FIGURE 2.

Typical Performance Characteristics

Typical Center Frequency vs C1 for R1 = 10 k Ω , 100 k Ω and 1 M Ω

Typical Frequency vs C1 for R2 = 10 k Ω , 100 k Ω and 1 M Ω

 $\textbf{Note:} \ \, \text{To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_0) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator I, P_D (Total) = P_D (f_0) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator I, P_D (Total) = P_D (f_0) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator I, P_D (Total) = P_D (f_0) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator I, P_D (Total) = P_D (f_0) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator I, P_D (Total) = P_D (f_0) + P_D (f_0) +$ $\label{eq:comparator} \text{Comparator II, } P_D \text{ (Total)} = P_D \text{ (} f_{MIN} \text{)}.$

Typical Performance Characteristics (Continued)

Typical VCO Power Dissipation at Center Frequency vs R1

FIGURE 8.

Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_{O}) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

Typical Performance Characteristics (Continued) Typical VCO Power Dissipation at f_{MIN} vs R2

Typical Source Follower Power Dissipation vs R_S

Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_O) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

Typical Performance Characteristics (Continued)

FIGURE 11. Typical VCO Linearity vs R1 and C1

Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_O) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

Design Information

This information is a guide for approximating the value of external components for the CD4046B in a phase-locked-loop system. The selected external components must be within the following ranges: R1, R2 \geq 10 k Ω , R_S \geq 10 k Ω , C1 \geq 50 pE

In addition to the given design information, refer to Figure 5, Figure 6, Figure 7 for R1, R2 and C1 component selections.

Using Phase Comparator I			Using Phase Comparator II			
Characteristics	VCO Without Offset	VCO With Offset	VCO Without Offset	VCO With Offset		
	R2 = ∞		R2 = ∞			
VCO Frequency	IMAX IO IMIN VDD/2 VDD VCO INPUT VOLTAGE	MAX formal 2 formal 1 formal 2	IMAX In the second sec	'MAX to		
For No Signal Input		stem will adjust equency, f _o	VCO in PLL system will adjust to lowest operating frequency, f _{min}			
Frequency Lock		2 f _L = full VCO f	frequency range			
Range, 2 f _L		$2 f_L = f_m$	_{nax} – f _{min}			
Frequency Capture Range, 2 f _C	1N O O BUT T1 = R3 C2 = C2	$2f_{\rm C}\approx\frac{1}{\pi}\sqrt{\frac{2\pif_{\rm L}}{\tau1}}$				
Loop Filter Component Selection	1N ○	For 2 f _C , see Ref.	(f _C =f _L)			
Phase Angle Between	90° at center frequen	cy (f _o), approximating	Always 0° in lock			
Single and Comparator	0° and 180° at ends	s of lock range (2 f _L)				
Locks on Harmonics	Ye	es	No			
of Center Frequency						
Signal Input Noise	Hi	gh	L	ow		
Rejection						

Design Information (Continued)

	Using Phase	Comparator I	Using Phase Comparator II			
Characteristics	VCO Without Offset	VCO With Offset	VCO Without Offset	VCO With Offset		
	R2 = ∞		R2 = ∞			
VCO Component	Given: fo.	Given: fo and fL.	Given: f _{max} .	Given: f _{min} and f _{max} .		
Selection	Use fo with	Calculate f _{min}	Calculate fo from	Use f _{min} with		
	Figure 5 to	from the equation	the equation	Figure 6 to		
	determine R1 and C1.	$f_{min} = f_o - f_L$.	$f_0 = \frac{f_{max}}{2}$.	to determine R2 and C1.		
		Use f _{min} with Figure 6 to		Calculate		
		determine R2 and C1.		f _{max} f _{min}		
			Use fo with Figure 5 to			
		Calculate	determine R1 and C1.	Use		
		f _{max}		f _{max}		
		f _{min}		f _{min} with Figure 7		
		from the equation		to determine ratio		
		$\frac{f_{\text{max}}}{f_{\text{min}}} = \frac{f_{\text{O}} + f_{\text{L}}}{f_{\text{O}} - f_{\text{L}}}.$		R2/R1 to obtain R1.		
		Use				
		f _{max} f _{min} with Figure 7				
		to determine ratio R2/				
		R1 to obtain R1.				

References

G.S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965. Floyd Gardner, "Phaselock Techniques", John Wiley & Sons, 1966.

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com