Bachelor of Engineering Electronic Engineering (HONS)

Headphone Amplifier Design

By

Specter

Student ID: X00097568

Date : March 2, 2015

Electronic Engineering Department

Contents

T	Sim	iple transistor circuit	3
	1.1	Transistor basic property	3
	1.2	Find R_e	4
	1.3	Find R_o	5
	1.4	Limit current gain	6
	1.5	Add voltage divider	7
2	Neg	gative Feedback	9
	2.1	Simple Negative Feedback system	9
	2.2	Implement Using Op-amp	9
	2.3	Implement Using transistor	11
3	Cur	rrent Source	13
	3.1	Single current source circuit	13
	3.2	Use current source to replace output resistor	14
4	Out	cput Stage	15
	4.1	Class A Output Stage	15
	12	Class AR Output Stage	16

List of Figures

1.1	Single transistor circuit	3
1.2	Single transistor circuit simulation data	3
1.3	V_{be} and I_c curve	4
1.4	Re model	5
1.5	DC sweep on V3 in Figure 1.1	5
1.6	Ro model	6
1.7	Basic transistor circuit with R_c and R_e	6
1.8	Output of the circuit in Figure 1.7	7
1.9	Add voltage divider and capacitors	8
2.1	simple negative feedback system	9
2.2	Implement negative feedback circuit with Op-amp	10
2.3	Op-amp feedback simulation result curve	10
2.4	Implement negative feedback circuit with transistor	11
2.5	transistor feedback circuit simulation result	12
3.1	single current source circuit	13
3.2	single current source circuit simulation result	14
3.3	the circuit after adding current source	14
4.1	Class A output stage	15
4.2	Class A output stage simulation result	16
4.3	Class A DC operating current simulation data	16
4.4	Class AB output stage	16
4.5	Class AV output stage simulation resut	17
4.6	Class AB output stage DC operating current	17

Simple transistor circuit

1.1 Transistor basic property

Figure 1.1 shows the basic NPN bipolar junction transistor circuit.

Figure 1.1: Single transistor circuit

We can get transistor operating state from simulation result as Figure 1.2. It's obvious that I_C and I_E is proximately 200 times greater than I_B which is the main function of transistor.

chapter 1 DC Operating Point Analysis			
	Variable	Operating point value	
1	I(Q2[IB])	7.09789 u	
2	I(Q2[IC])	2.02293 m	
3	I(Q2[IE])	-2.03003 m	

Figure 1.2: Single transistor circuit simulation data

Equation 1.1 defines β which is the most important parameter of transistor.

$$\beta = \frac{I_C}{I_B} \tag{1.1}$$

1.2 Find R_e

	-I(Q2[IE])
x1	657.7000m
у1	2.0300m
x 2	0.0000
у2	2.0685p
dx	-657.7000m
dy	-2.0300m
dy/dx	3.0866m
1/dx	-1.5205

Figure 1.3: V_{be} and I_c curve

After running DC sweep command on V4 in circuit of Figure 1.1, We can get the curve of Figure 1.3. This illustrate that when $V_b e = 657.7 \text{mV}$, $I_e = 2 \text{mA}$.

If we zoom in Figure 1.3 like shown in Figure 1.4, the relationship between V_{be} and I_e is linear which is same as resistor and we called R_e . Then we can get its value with

$$R_e = \frac{dx}{dy} = \frac{143.472u}{10.66u} = 13.459\Omega$$

Because we know $I_e = 2mA$,

$$Re = \frac{V}{I_e} = \frac{V}{2mA} = 13.459\Omega$$

$$V = 2mA \times 13.459 \approxeq 26mV$$

Therefore, we can calculate ${\cal R}_e$ with ${\cal I}_e$ in future using

$$R_e = \frac{26mV}{I_e} \tag{1.2}$$

Figure 1.4: Re model

6.9700k

1.3 Find R_o

If we run DC sweep on V3 and we can get a curve like Figure 1.5.

1/dx

Figure 1.5: DC sweep on V3 in Figure 1.1

When we zoom in the curve and We can find that it's almost linear like Figure 1.6. It means that there is an equivalent resistor cross between collector and emiter terminal ie. R_o .

$$R_o = \frac{\Delta V}{\Delta I} = \frac{404.7665\mu}{10.1598n} \approx 39.84 \times 10^3 \Omega$$

Because $I_e = 2mA$,

$$V = 2mA \times 39.84 \times 10^{3} \Omega = 79.68 \approx 80$$

Therefore, We can calculate R_o using

$$R_o = \frac{80}{I_e} \tag{1.3}$$

	1 (Q2[10])	
x1	657.7629m	
y1	1.9893m	
x 2	658.1677m	
у2	1.9893m	
dx	404.7665µ	
dy	10.1598n	
dy/dx	25.1004µ	
1/dx	2.4706k	

Figure 1.6: Ro model

1.4 Limit current gain

Generally, we need a method to control the current gain as we want. Figure 1.7 is a simply solution by adding transistor R_C and R_E .

Figure 1.7: Basic transistor circuit with R_c and R_e

We can derive voltage gain A_V with Equation 1.4. And in circuit in Figure 1.7, A_V is approximate 5 theoretically.

$$A_V \triangleq \frac{V_{out}}{V_{in}} \approx -\frac{R_C}{R_E} \tag{1.4}$$

Figure 1.8: Output of the circuit in Figure 1.7

From simulation result in Figure 1.8, the practical $A_V = \frac{7.6486m}{2m} = 3.8243$ which is close to theoretic value.

1.5 Add voltage divider

As we know, we need make sure $V_{be} > 0.65V$ for transistor operating correctly. But in practical application, it's hard to keep input signal always meeting this requirement. So we can add capacitor and voltage divider solve this problem like Figure 1.9. In which, capacitor block the original DC voltage of input signal and voltage divider add the DC voltage which we require to signal. Finally, we use another capacitor for outputting pure AC signal form our circuit.

Figure 1.9: Add voltage divider and capacitors $\,$

Negative Feedback

2.1 Simple Negative Feedback system

Figure 2.1: simple negative feedback system

Figure 2.1 show a simple negative feedback system in which A is ideal amplifier and B is feedback network.

$$\frac{V_{out}}{V_{in}} = B$$

2.2 Implement Using Op-amp

In Figure 2.2, an Op-amp 741 is used to implement the negative feedback circuit in Figure 2.1. 741 is part A while R1 and R2 form feedback network.

$$\frac{V_{out}}{V_{in}} = B = \frac{R1 + R2}{R2} = \frac{10K + 1K}{1K} = 11$$

From simulation result in Figure 2.3,

$$B = \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{2.1972}{199.8674m} = 10.99328$$

Obviously, the simulation result is very close to our estimation.

Figure 2.2: Implement negative feedback circuit with Op-amp

	V(in)	V(out)
x1	6.7433m	6.7433m
y1	-99.9112m	-1.0862
x2	6.2453m	6.2453m
y2	99.9562m	1.1110
dx	-498.0000µ	-498.0000µ
dy	199.8674m	2.1972
dy/dx	-401.3402	-4.4121k
1/dx	-2.0080k	-2.0080k

Figure 2.3: Op-amp feedback simulation result curve

2.3 Implement Using transistor

Figure 2.4: Implement negative feedback circuit with transistor

In Figure 2.4 circuit, Op-amp replaced by circuit in Figure 1.9. R12 and R15 make up feedback network which $B = \frac{R15 + R12}{R12} = 11$. As we see in Figure 2.3, the output is reverse to input. Therefore, we add another transistor Q6 to eliminate the phase difference of signal.

Apparently, there's no phase difference between input and output signal. The voltage gain of circuit in Figure 2.4 is $Gain = \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{2.0534}{198.8221m} = 10.3707$. It's also very close to theory result.

	V(in)	V(out)
		_
x1	11.2431m	11.2431m
y1	99.3884m	1.0254
x2	10.7451m	10.7451m
y2	-99.4337m	-1.0281
dx	-498.0000µ	-498.0000µ
dy	-198.8221m	-2.0534
dy/dx	399.2412	4.1234k
1/dx	-2.0080k	-2.0080k

Figure 2.5: transistor feedback circuit simulation result

Current Source

3.1 Single current source circuit

Figure 3.1: single current source circuit

Generally, we need a constant current source in circuit and the most classic one shows in Figure 3.1.

As we know the forward voltage cross a diode is about 0.65V which is approximately equal to V_{be} of transistor.

$$V_B = 2 \times V_{diode} = V_{be} + V_{R_{33}}$$

Therefore:

$$V_{R_{33}} = V_{diode} = 0.65V$$

$$I_e = \frac{V_{R_{33}}}{R_{33}} = \frac{0.65V}{1150\Omega} = 565.217\mu A$$

From Figure 3.2, we can see simulation result is close to the value we calculated. This simple circuit are able to supply constant current.

DC Operating Point Analysis

	Variable	Operating point value
1	@qq9[ic]	503.27881 u
2	@qq9[ie]	-505.07050 u

Figure 3.2: single current source circuit simulation result

3.2 Use current source to replace output resistor

Now we can use current source to replace the R_{16} in circuit of Figure 2.4. Current source can supply stable current output. Till this step, we have finished the voltage amplifier part circuit but current of output is still enough to drive a headphone.

Figure 3.3: the circuit after adding current source

Output Stage

4.1 Class A Output Stage

In Figure 4.1, transistor Q2 and resistor R1 made up of Class A output stage.

Figure 4.1: Class A output stage

As we can see in Figure 4.2, output signal of class A output stage is good enough to follow the input signal.

But from DC operating simulation result in Figure 4.3 we know Class A will consume a lot of current from battery and resistor R1 also waste a lot of power. It's can't acceptable because the final circuit is powered by battery.

Figure 4.2: Class A output stage simulation result

DC Operating Point Analysis

	Variable	Operating point value
1	I(Q2[IE])	-109.82711 m

Figure 4.3: Class A DC operating current simulation data

4.2 Class AB Output Stage

For better efficiency, we tried Class AB output stage which showed in Figure 4.4. Transistor Q4 and Q5 are used for amplifying upper and lower part of input signal. Resistor R10 and R11 and transistor Q7 are made up of V_{be} multiplier. In this case, it generate $2V_{be}$ cross between collector and emitter of Q7 which eliminates the crossover distortion caused by V_{be} of Q4 and Q5.

Figure 4.4: Class AB output stage

Finally, we can see from Figure 4.5 there is almost no distortion in output signal.

Figure 4.5: Class AV output stage simulation resut

DC Operating Point Analysis

	<u> </u>	<u> </u>
	Variable	Operating point value
1	I(Q4[IE])	-809.46708 u
2	I(Q5[IC])	804.62548 u

Figure 4.6: Class AB output stage DC operating current

In Figure 4.6, we know that DC operating current of Class AB output stage is much smaller than Class A. Therefore, Class AB output stage much more efficient and meet our requirement.