

Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil

Dionisio Uendro Carlos Leonardo Uieda* Yaoguo Li Valéria Cristina Ferreira Barbosa Marco Antonio Braga Glauco Angeli Guilherme Gravina Peres

Carajás survey area

N1 plateau

N1 plateau

Target: hematite hard (3.6 g/cm³) soft (3.4 g/cm³)

The data

N1 geology

Gzz

N1 geology

Gzz

3D inversion

2 methods

(1) Planting anomalous densities

Uieda, L., and V. C. F. Barbosa (2012), Robust 3D gravity gradient inversion by planting anomalous densities, *Geophysics*, 77(4), G55–G66, doi:10.1190/geo2011-0388.1

(2) Smooth inversion

Li, Y. (2001), 3-D inversion of gravity gradiometer data, *SEG Expanded Abstracts*, 20, 1470–1473, doi:10.1190/1.1816383

Planting anomalous densities

New predicted data

Smooth inversion

Mesh

$$min \ \phi(p) = \phi_d + \mu \phi_p$$

Densities

$$min \ \phi(p) = \phi_d + \mu \phi_p$$

Densities Data misfit $min \ \phi(p) = \phi_d + \mu \phi_p$

Densities Data misfit $min \ \phi(p) = \phi_d + \mu \phi_p$

Smoothness + depth weights

Densities Data misfit

$$\min \phi(p) = \phi_d + \mu \phi_p$$

Smoothness + depth weights

subject $a \le p \le b$

Different methods

- Different approaches
- Different constraints
- Common data

Common target

Inversion parameters

- Gzz component = 9,053 obs
- Cell size = 75 m
 - Planting = 581,440 cells
 - -Smooth = 1,520,960 cells (larger mesh)

<u>Seeds</u>

Results

Cross-section

Smooth

Smooth

Smooth

Planting anomalous densities

Conclusions

- Joint interpretation
- Preliminary results
- Compatible solutions
- Agree with boreholes
- Concentrated above 300 m
- Bellow 200 m could be jaspilite
 - Same density contrast

Acknowledgements

Colorado School of Mines, USA

Observatório Nacional, Brazil

Vale S.A.