Hands-on Project

Matteo Saveriano

Human-centered Assistive Robotics

Technische Universität München

Hands-on Project

Arrange groups of three students (S1, S2, S3)

Task for each group:

- Implement 3 models (S1+S2+S3)
- Implement a model-based RL approach (S1)
- Implement a model-free approach (S2)
- Implement an approach based on optimal control
 OR on deep RL (S3)
- Each student is allowed to propose a creative solution
- Compare the performance of the approaches (S1+S2+S3)

Report

Structure:

- Sec. 1: Introduction (Max 5 sentences) (S1 + S2 +S3)
- Sec. 2: Model-based RL (S1)
 - 2.1 Algorithm
 - 2.2 Results
- Sec. 3: Model-free RL (S2)
 - 3.1 Algorithm
 - 3.2 Results
- Sec. 4: Optimal Control / Deep RL (S3)
 - ...
- Sec. 5: Comparison and Discussion (S1 + S2 + S3)
- Sec. 6: Conclusion (Max 5 sentences) (S1+S2+S3)
- Max 4 pages ICRA template

Hands-on Project

Three different systems and learning problems

 For each system, apply three approaches and compare the results

 Besides this, you are free to propose creative solutions with more complex problems

Mass-Spring-Damper

- System data: m= 1kg, k=1N/m, c=0Ns/m
- Bring the system to 1.5m
- Compare different approaches

Inverted pendulum

- Balance the pendulum in the upper vertical position $heta(t_f)=\pi$, with heta(0)=0, $\dot{ heta}(0)=0$
- A motor provides the torque $\,\mathcal{T}\,$
- m = 1Kg, s = 1m, c = 0.2Ns/m

Cartpole

- Parameter of the system m=0.2 kg, M=1kg, l=0.5m, c=0.2Ns/m
- Balance the pendulum on the vertical position
- Try different initial angles $\theta_0 = 10 \deg, \ \theta_0 = 180 \deg, \ \theta_0 = 90 \deg$

If you want to do more

 MuJoCo Engine – free for educational projects: https://www.roboti.us/index.html

 Tensor Flow, tool for deep networks: https://www.tensorflow.org/tutorials/

OpenAl Gym

https://arxiv.org/abs/1606.01540

Why you are asked to model systems

Modeling and simulating the systems is part of the project

In general, it is fine to use tools to model complex systems

 It is important to know how to model (simple) systems

 Without modeling skills, intuition about the physics does not usually develop

Evaluation of Learning Algorithms

 Discuss in the report the comparative performance of the different algorithms

- Some criteria commonly used...
 - Accuracy
 - Number of Interactions with external world
 - Data Required for learning
 - Learning time
 - Prior knowledge required
 - Control Energy

Exercise 1

- Use the PILCO algorithm to find a controller that brings the state of the system used in the last lesson at x=0.6m
- Design a suitable Reward Function
- Choose a suitable policy representation
- Assess the performance in terms of number of rollouts, control energy, and accuracy

Exercise 2 (optional)

- Use PILCO to find a policy that brings the mass in the unstable equilibrium state
- The system start from the stable equilibrium state
- Define a reward function and select a policy representation

