Unit No. 10

Graphs of Functions

Review Exercise No. 10

Question No.1

	4 •	are given	• 4	1 4	4 4 1		41	4 4.
HAIIP	ontions	are given	against	each stai	tement	HINCIPCIA	the carre	ct antian
ı vuı	opuons	aic zivcii	azamst	cacii sta			uic coi i c	ct option.

(i) x=5 represents: (a) x-axis (b) y-axis (c) line || to x-axis (d) line || to y-axis (ii) Slope of the line y=5x+3 is: (a) 3 (b) -3(c) 5 (d) -5(iii) The y- intercepts of y = -2 x - 1 is: (a) -2(b) 2 (c) -1 (d) 1 (iv) The graph of y=x2, cuts the x-axis at: (a) x = 0(b) x = 1(c) x = -1(d) x = 2(v) The graph of 3x represents: (a) growth (b) decay (c) both (a) and (b) (d) a line (vi) The graph of y = -x 2 + 5 opens:

(a) upward

(b) downward

- (c) left side
- (d) right side

(vii) The graph of y = x2 - 9 opens:

(a) upward

- (b) downward
- (c) left side
- (d) right side

(viii)
$$y = 5x$$
 is _____ function.

- (a) linear
- (b) quadratic
- (c) cubic

(d) exponential

(ix) Reciprocal function is:

(a)
$$y = 7x$$

(b)
$$y = x2$$

(c)
$$y = 2x^2$$

(d)
$$y = 5x^3$$

(x)
$$y = -3x^3 + 7$$
 is _____ function.

(a) exponential

(b) cubic

- (c) linear
- (d) reciprocal

Question No.2

Plot the graph of the following functions:

(i) $y = 3^{-x}$ for x from -2 to 4

Solution:

Type: Exponential function.

Here
$$x = -2, -1, 0, 1, 2, 3, 4$$

By putting these values in $y = 3^{-x}$, we can find y:

If
$$x = -2$$
; $y = 3^{-(-2)} = 3^2 = 9$

If
$$x = -1$$
; $y = 3^{-(-1)} = 3^1 = 3$

If
$$x = 0$$
; $y = 3^{-(0)} = 1$

If
$$x = 1$$
; $y = 3^{-(1)} = 3^{-1} = 1/3$

If
$$x = 2$$
; $y = 3^{-(2)} = 3^{-2} = 1/9$

If
$$x = 3$$
; $y = 3^{-(3)} = 3^{-3} = 1/27$

If
$$x = 4$$
; $y = 3^{-(4)} = 3^{-4} = 1/81$

	A	В	С	D	Е	F	G
x-axis	-2	-1	0	1	2	3	4
y-axis	9	3	1	1/3	1/9	1/27	1/81

Graphical Representation:

(ii)
$$y = 2/x, x \neq 0$$

Solution:

Type: Quadratic function.

Here
$$x = -2, -1, 1, 2, 3, 4$$

By putting these values in $y = 3^{-x}$, we can find y:

If
$$x = -2$$
; $y = 2 / -2 = -1$

If
$$x = -1$$
; $y = 2 / -1 = -2$

If
$$x = 1$$
; $y = 2 / 1 = 2$

If
$$x = 2$$
; $y = 2/2 = 1$

If
$$x = 3$$
; $y = 2/3$

If
$$x = 4$$
; $y = 2/4 = 1/2$

Table:

	Α	В	C	D	E	F
x-axis	-2	-1	1	2	3	4
y-axis	-1	-2	2	1	2/3	1/2

Graphical Representation:

Question No.3

Sales for a new magazine are expected to grow according to the equation:

 $S = 200000 (1 - e^{-0.05t})$, where t is given in weeks.

- (a) Plot graph of sales for the first 50 weeks.
- (b) Calculate the number of magazines sold, when t = 5 and t = 35.

Solution (a):

$$S = 200000 (1 - e^{-0.05t})$$

Given Weeks =
$$1, 2, 3, ... 50$$

To solve, we assume weeks = t = 0, 10, 20, 30, 40, 50

Now, calculating Sale:

i). S when
$$t = 0$$

$$S = 200000 (1 - e^{-0.05(0)})$$

$$S = 200000 (1 - e^{0}) = 200000 (1 - 1) = 200000 (0) = 0$$

ii). S when t = 10

$$S = 200000 \; (1 - e^{-0.05(10)})$$

$$S = 200000 (1 - e^{-0.5}) = 200000 (1 - 0.6065) = 200000 (0.3935) = 78700$$

iii). S when t = 20

$$S = 200000 (1 - e^{-0.05(20)})$$

$$S = 200000 (1 - e^{-1}) = 200000 (1 - 0.3679) = 200000 (0.6321) = 126420$$

v). S when
$$t = 30$$

$$S = 200000 (1 - e^{-0.05(30)})$$

$$S = 200000 (1 - e^{-1.5}) = 200000 (1 - 0.2231) = 200000 (0.7769) = 155374$$

vi). S when t = 40

$$S = 200000 (1 - e^{-0.05(40)})$$

$$S = 200000 (1 - e^{-2}) = 200000 (1 - 0.1353) = 200000 (0.8647) = 172940$$

vii). S when t = 50

$$S = 200000 (1 - e^{-0.05(50)})$$

$$S = 200000 (1 - e^{-2.5}) = 200000 (1 - 0.2183) = 200000 (0.7817) = 156340$$

Table:

	A	В	C	D	Е	F
x-axis t.(weeks)	0	10	20	30	40	50
y-axis S.(Sales)	0	78700	126420	155374	172940	156340

Graphical Representation:

Solution (b): Calculating the number of magazines sold, when t = 5 and t = 35.

I). S when t = 5

$$S = 200000 (1 - e^{-0.05(5)})$$

$$S = 200000 \; (1 - e^{-0.25}) = 200000 \; (1 - 0.7788) = 200000 \; (0.2212) = 44240$$

II). S when t = 35

$$S = 200000 (1 - e^{-0.05(35)})$$

$$S = 200000 (1 - e^{-1.75}) = 200000 (1 - 0.1738) = 200000 (0.8262) = 165240$$

Question No. 4

Plot the graph of following for x from -5 to 5:

(i)
$$y = x^2 - 3$$

(ii)
$$y = 15 - x^2$$

Solution (i):

$$y = x^2 - 3$$

Take
$$x = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5$$

Now, calculating for y:

$$y = (-5)^2 - 3 = 25 - 3 = 22$$

$$y = (-4)^2 - 3 = 16 - 3 = 13$$

$$y = (-3)^2 - 3 = 9 - 3 = 6$$

$$y = (-2)^2 - 3 = 4 - 3 = 1$$

$$y = (-1)^2 - 3 = 1 - 3 = -2$$

$$y = (0)^2 - 3 = 0 - 3 = -3$$

$$y = (1)^2 - 3 = 1 - 3 = -2$$

$$y = (2)^2 - 3 = 4 - 3 = 1$$

$$y = (3)^2 - 3 = 9 - 3 = 6$$

$$y = (4)^2 - 3 = 16 - 3 = 13$$

$$y = (5)^2 - 3 = 25 - 3 = 22$$

	A	В	С	D	Е	F	G	Н	I	J	K
x-axis	-5	-4	-3	-2	-1	0	1	2	3	4	5
y-axis	22	13	6	1	-2	-3	-2	1	6	13	22

Graphical Representation:

Solution (ii):

$$y = 15 - x^2$$

Take
$$x = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5$$

Now, calculating for y:

$$y = 15 - (-5)^2 = 15 - 25 = -10$$

$$y = 15 - (-4)^2 = 15 - 16 = -1$$

$$y = 15 - (-3)^2 = 15 - 9 = 6$$

$$y = 15 - (-2)^2 = 15 - 4 = 11$$

$$y = 15 - (-1)^2 = 15 - 1 = 14$$

$$y = 15 - (0)^2 = 15 - 0 = 15$$

$$y = 15 - (1)^2 = 15 - 1 = 14$$

$$y = 15 - (2)^2 = 15 - 4 = 11$$

$$y = 15 - (3)^2 = 15 - 9 = 6$$

$$y = 15 - (4)^2 = 15 - 16 = -1$$

$$y = 15 - (5)^2 = 15 - 25 = -10$$

	A	В	С	D	Е	F	G	Н	I	J	K
x-axis	-5	-4	-3	-2	-1	0	1	2	3	4	5
y-axis	-10	-1	6	11	14	15	14	11	6	-1	-10

Graphical Representation:

Question No.5

Plot the graph of $y = \frac{1}{2}(x + 4)(x - 1)(x - 3)$ from -5 to 4.

Solution:

$$y = \frac{1}{2}(x+4)(x-1)(x-3)$$

Take
$$x = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4$$

Now, calculating for y:

I). when
$$x = -5$$

$$y = \frac{1}{2}(-5+4)(-5-1)(-5-3) = \frac{1}{2}(-1)(-6)(-8) = \frac{1}{2}(-48) = -24$$

II). when
$$x = -4$$

$$y = \frac{1}{2}(-4+4)(-4-1)(-4-3) = \frac{1}{2}(0)(-5)(-7) = \frac{1}{2}(0) = 0$$

III). when x = -3

$$y = \frac{1}{2}(-3 + 4)(-3 - 1)(-3 - 3) = \frac{1}{2}(1)(-4)(-6) = \frac{1}{2}(24) = 12$$

IV). when x = -2

$$y = \frac{1}{2}(-2+4)(-2-1)(-2-3) = \frac{1}{2}(2)(-3)(-5) = \frac{1}{2}(30) = 15$$

V). when x = -1

$$y = \frac{1}{2}(-1+4)(-1-1)(-1-3) = \frac{1}{2}(3)(-2)(-4) = \frac{1}{2}(24) = 12$$

VI). when x = 0

$$y = \frac{1}{2}(0+4)(0-1)(0-3) = \frac{1}{2}(4)(-1)(-3) = \frac{1}{2}(12) = 6$$

VII). when x = 1

$$y = \frac{1}{2}(1+4)(1-1)(1-3) = \frac{1}{2}(5)(0)(-2) = \frac{1}{2}(0) = 0$$

VIII). when x = 2

$$y = \frac{1}{2}(2+4)(2-1)(2-3) = \frac{1}{2}(6)(1)(-1) = \frac{1}{2}(-6) = -3$$

IX). when x = 3

$$y = \frac{1}{2}(3+4)(3-1)(3-3) = \frac{1}{2}(7)(2)(0) = \frac{1}{2}(0) = 0$$

X). when x = 4

$$y = \frac{1}{2}(4+4)(4-1)(4-3) = \frac{1}{2}(8)(3)(1) = \frac{1}{2}(24) = 12$$

Table:

	A	В	С	D	Е	F	G	Н	I	J
x-axis	-5	-4	-3	-2	-1	0	1	2	3	4
y-axis	-24	0	12	15	12	6	0	-3	0	12

Graphical Representation:

Question No.6

The supply and demand functions for a particular market are given by the equations: $Ps = Q^2 + 5$ and $Pd = Q^2 - 10Q$, where P represents price and Q represents quantity, Sketch the graph of each function over the interval

$$Q = -20$$
 to $Q = 20$.

Solution:

$$Ps = O^2 + 5$$

Given:
$$Q = -20$$
 to $Q = 20$

Take
$$Q = -20, -15, -10, -5, 0, 5, 10, 15, 20$$

Now, calculating for Ps:

$$Q = -20$$
; $P_S = (-20)^2 + 5 = 400 + 5 = 405$

$$Q = -15$$
; $Ps = (-15)^2 + 5 = 225 + 5 = 230$

$$Q = -10$$
; $P_S = (-10)^2 + 5 = 100 + 5 = 105$

$$Q = -5$$
; $Ps = (-5)^2 + 5 = 25 + 5 = 30$

$$Q = 0$$
; $Ps = (0)^2 + 5 = 0 + 5 = 5$

$$Q = 5$$
; $P_S = (5)^2 + 5 = 25 + 5 = 30$

$$Q = 10$$
; $P_S = (10)^2 + 5 = 100 + 5 = 105$

$$Q = 15$$
; $P_S = (15)^2 + 5 = 225 + 5 = 230$

$$Q = 20$$
; $Ps = (20)^2 + 5 = 400 + 5 = 405$

Table:

	A	В	С	D	Е	F	G	Н	I
x-axis Q	-20	-15	-10	-5	0	5	10	15	20
y-axis Ps	405	230	105	30	5	30	105	230	405

$$Pd = Q^2 - 10Q$$

Given:
$$Q = -20$$
 to $Q = 20$

Take
$$Q = -20, -15, -10, -5, 0, 5, 10, 15, 20$$

Now, calculating for Pd:

$$Q = -20$$
; $Pd = (-20)^2 - 10(-20) = 400 + 200 = 600$

$$Q = -15$$
; $Ps = (-15)^2 - 10(-15) = 225 + 150 = 375$

$$Q = -10$$
; $Ps = (-10)^2 - 10(-10) = 100 + 100 = 200$

$$Q = -5$$
; $Ps = (-5)^2 - 10(-5) = 25 + 50 = 75$

$$Q = 0$$
; $Ps = (0)^2 - 10(0) = 0 - 0 = 0$

$$Q = 5$$
; $Ps = (5)^2 - 10(5) = 25 - 50 = -25$

$$Q = 10$$
; $Ps = (10)^2 - 10(10) = 100 - 100 = 0$

$$Q = 15$$
; $Ps = (15)^2 - 10(15) = 225 - 150 = 75$

$$Q = 20$$
; $Ps = (20)^2 - 10(20) = 400 - 200 = 200$

	A	В	С	D	Е	F	G	Н	I
x-axis Q	-20	-15	-10	-5	0	5	10	15	20
y-axis Ps	600	375	200	75	0	-25	0	75	200

Graphical Representation:

The Supply function $Ps = Q^2 + 5$ is plotted in blue.

The Demand function $Pd = Q^2 - 10Q$ is plotted in green.

Question No.7

A television manufacturer company make 40 inches LEDs. The cost of manufacturing x LEDs is C(x) = 60,000 + 250 x and the revenue from selling x LEDs is R(x) = 1200 x. Find the break-even point and find the profit or loss when 100 LEDs are sold. Identify the break-even point graphically.

Solution:

$$C(x) = 60,000 + 250 x$$

Take; x = 0, 20, 40, 60, 80

Now, calculating for C(x):

$$x = 0$$
; $C(x) = 60,000 + 250(0) = 60,000 + 0 = Rs. 60,000$

$$x = 20$$
; $C(x) = 60,000 + 250(20) = 60,000 + 5000 = Rs. 65,000$

$$x = 40$$
; $C(x) = 60,000 + 250 (40) = 60,000 + 10000 = Rs. 70,000$

$$x = 60$$
; $C(x) = 60,000 + 250 (60) = 60,000 + 15000 = Rs. 75,000$

$$x = 80$$
; $C(x) = 60,000 + 250 (80) = 60,000 + 20000 = Rs. 80,000$

	A	В	С	D	Е
x-axis x	0	20	40	60	80
y-axis C(x) Rs.	60000	65000	70000	75000	80000

$$R(x) = 1200 x$$

Take; x = 0, 20, 40, 60, 80

Now, calculating for C(x):

$$x = 0$$
; $R(x) = 1200(0) = 0$

$$x = 20$$
; $R(x) = 1200 (20) = 24000$

$$x = 40$$
; $R(x) = 1200 (40) = 48000$

$$x = 60$$
; $R(x) = 1200 (60) = 72000$

$$x = 80$$
; $R(x) = 1200 (80) = 96000$

	A	В	С	D	Е
x-axis x	0	20	40	60	80
y-axis C(x) Rs.	0	24000	48000	72000	96000

Graphical Representation:

Break-even point is (63, 75790)

If profit is realized then S.P > C.P

Profit = 1200x - (60000 + 250x)

Profit = 1200x-60000-250x

Profit = 1200x-250x-60000

Profit = 950x-60000

For 100 LEDs, x = 100

 $Profit = 950 \times 100-60000$

	Page 11
Profit = 95000-60000	
Profit = Rs.35000	