

Introdução à Engenharia Química e Bioquímica

Aula 8
MIEQB
ano lectivo de 2020/2021

Sumário da aula

Balanços a processos com várias etapas unitárias

- Como resolver
- Noções de Reciclo e de by-pass

Processos com várias etapas unitárias

- Na indústria, muito raramente um processo é constituído apenas por uma etapa unitária;
- A maioria dos processos são constituídos por várias etapas sequenciais;
- Um sistema é qualquer conjunto de etapas ou porção do processo que possa ser representado por uma fronteira ou "bloco";
- O tratamento matemático é igual a qualquer balanço material com a diferença de que poderá ser necessário o tratamento de vários subsistemas para obter suficientes equações.

Processos com várias etapas unitárias IEQB 2020/2021

=> Balanços materiais desenvolvidos para cada sistema particular

Balanço material ao PROCESSO GLOBAL

• Raramente um processo industrial é 100% eficiente (exemplo: uma reacção tem uma conversão inferior a 100% => existência de reagente em excesso) => Necessário reciclar matéria para optimizar o processo!

• O sistema **não é cumulativo**, ou seja, no estado estacionário o reciclo não acumula matéria à alimentação.

Objectivos:

- poupança de reagentes; recuperação de catalisadores
- diluir uma dada corrente
- controlar uma dada variável de processo
- circular fluido térmico

- O "bypass" tem características semelhante ao reciclo. Neste caso parte da alimentação é reencaminhada directamente para a corrente de saída sem passar pela etapa.
 - => alterar a composição e propriedades do produto

3.7)

Uma solução aquosa de dicromato de potássio - 33% - é submetida ao processo de cristalização esquematizado na seguinte figura:

Sabe-se que:

- i) a corrente alimentada ao cristalizador contém 49.4% de dicromato de potássio;
- ii) os cristais contêm 5% de humidade;
- iii) a corrente de recirculado contêm 36.36% de dicromato de potássio.

Efectue o <u>balanço material ao processo</u> sabendo que o caudal de alimentação ao processo é de 4500 kg.h⁻¹. Todas as composições indicadas são mássicas.

Uma solução aquosa de dicromato de potássio - 33% - é submetida ao processo de cristalização esquematizado na seguinte figura:

Sabe-se que:

- i) a corrente alimentada ao cristalizador contém 49.4% de dicromato de potássio;
- ii) os cristais contêm 5% de humidade;
- iii) a corrente de recirculado contêm 36.36% de dicromato de potássio.

Efectue o balanço material ao processo sabendo que o caudal de alimentação ao processo é de 4500 kg.h⁻¹. Todas as composições indicadas são mássicas.

Balanço material ao PROCESSO GLOBAL

Balanço material ao PROCESSO GLOBAL

BM global:
$$m_1 = m_3 + m_5$$
 BM global a A:
$$x_{A1}m_1 = x_{A3}m_3 + x_{A5}m_5 \longrightarrow 0.33 \times 4500 = 0 + 0.95 \ m_5$$

$$\longrightarrow m_5 = 1563.2 \ k_g/h$$

$$\longrightarrow m_3 = 2936.8 k_g/h$$

Balanço material ao Cristalizador+Filtro

BM global:
$$m_4 = m_6 + m_5 \qquad \longrightarrow m_4 = m_6 + 1563.2$$
 BM global a A:
$$x_{A4}m_4 = x_{A6}m_6 + x_{A5}m_5 \longrightarrow 0.494 \times m_4 \\ = 0.95 \times 1563.2 + 0.3636 \, m_6$$

$$\longrightarrow m_6 = 5466.4 k_g/h$$

$$\longrightarrow m_4 = 7029.6 k_g/h$$

Balanço material ao Evaporador

BM global:
$$m_{_2}=m_{_3}+m_{_4}$$

BM global a A: $x_{A2}m_2 = x_{A3}m_3 + x_{A4}m_4$

$$m_2 = 9966.4 \ kg/h$$
 $x_{A2} \times 9966.4 = 0 + 0.494 \times 7029.6$ $x_{B2} = 65.16\%$

Pretende-se reduzir o teor em água de um sólido, de 15% p/p para 7% p/p. Para tal utiliza-se um secador de ar funcionando em contracorrente, tal como indicado na figura

Sabe-se que:

- i) a alimentação de ar ao processo (ar fresco) contém 0.01 kg de água / kg ar seco;
- ii) a corrente de ar reciclado contém 0.1 kg de água / kg de ar seco;
- iii) a corrente de ar alimentada ao secador contém 0.03 kg de água / kg de ar seco.

Calcule:

- a) A quantidade de ar necessária para secar 100 kg de sólidos húmidos;
- b) A razão de reciclagem (ar reciclado / ar fresco).

Pretende-se reduzir o teor em água de um sólido, de 15% p/p para 7% p/p.

Sabe-se que:

- i) a alimentação de ar ao processo (ar fresco) contém 0.01 kg de água / kg ar seco;
- ii) a corrente de ar reciclado contém 0.1 kg de água / kg de ar seco;
- iii) a corrente de ar alimentada ao secador contém 0.03 kg de água / kg de ar seco.

kg	1	2	3	4	5	6	7
А							
В							
С							
Total	100						

C - Ar "seco"

kg	1	2	3	4	5	6	7
А			-	-	-	-	-
В							
С	-	-					
Total	100						

C - Ar "seco"

kg	1	2	3	4	5	6	7
А	85		-	-	-	-	-
В	15						
С	-	-					
Total	100						

kg	1	2	3	4	5	6	7
Α	85 =	→ 85	-	-	-	-	-
В	15						
С	-	-					
Total	100						

Base de cálculo

Neste caso era pedido o ar fresco necessário para secar 100 Kg de sólidos húmidos, logo o mais fácil é considerar 100kg de sólidos húmidos na corrente 1.

kg	1	2	3	4	5	6	7	
А	85	85	-	-	-	-	-	
В	15	6.4	Os sólidos são os mesmos. A sua percentagem aumenta na corrente 2 porque estão mais secos.					
С	-	-						
Total	100	91.4	85 kg de sá	olidos secos	estão nara C	13%		
85 kg de sólidos secos estão para 93% assim como xkg de água estão para 7% Ou seja 6.4 kg de B								

C - Ar "seco"

Balanço material ao PROCESSO GLOBAL

$$m_6 = 105.2kg$$

C - Ar "seco"

Balanço material ao SECADOR

$$m_4 = m_7 + m_3 \Leftrightarrow m_7 = m_4 - m_3 = 126.6-96.6 = 30 \text{ kg}$$

Massa do ar reciclado

kg	1	2	3	4	5	6	7
Α	85	85	-	-	-	-	-
В	15	6.4					
С	-	-					
Total	100	91.4	96.6	126.5	135.1	105.2	30

a) 96.6 kg de ar

b)
$$\frac{m_7}{m_3} = 0.31$$