

Recap

Reconstruction

Topics for this session

Quadrature Sampling of Band-pass signals

Sampling of Band pass signals – software/digital radio used to receive AM or FM signals

- Output of modulation
- For reconstruction fs ≥ Nyquist rate

Highest signal frequency

Quadrature Sampling of Band-pass signals

PES UNIVERSITY ONLINE

fs varies from 2W to 4W

Canonical representation of Band-pass signal is

$$g(t) = g_I(t)\cos(2\pi f_c t) - g_Q(t)\sin(2\pi f_c t)$$

- $g_I(t)$ In-phase component
- $g_Q(t)$ Quadrature component

Quadrature Sampling of Band-pass signals

$$g(t).2\cos(2\pi f_c t) = g_I(t)2\cos^2(2\pi f_c t) - g_I(t)2\cos(2\pi f_c t)\sin(2\pi f_c t)$$

$$= g_I(t) [1 + \cos(4\pi f_c t)] - g_Q(t) \sin(4\pi f_c t)$$

Low pass filter output is $g_I(t)$ In-phase component

Quadrature Sampling of Band-pass signals

$$g(t).2\sin(2\pi f_c t) = g_I(t)2\sin(2\pi f_c t)\cos(2\pi f_c t) -$$

$$g_Q(t)2\sin^2(2\pi f_c t)$$

$$= g_I(t)\sin(4\pi f_c t) - g_Q(t) [1 - \cos(4\pi f_c t)]$$

Low pass filter output is $-g_Q(t)$

Quadrature component

Quadrature Sampling of Band-pass signals

Reconstruction process

$$g_I(t) \cdot \cos(2\pi f_c t) - g_Q(t) \sin(2\pi f_c t) = g(t)$$

