Calculus II Lecture 10

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Polar Coordinates

Todor Milev 2020

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Polar Coordinates 4/10

Polar Coordinates

 The polar coordinate system is an alternative to the Cartesian coordinate system.

- Choose a point in the plane called O (the origin).
- Draw a ray starting at O. The ray is called the polar axis. This ray is usually drawn horizontally to the right.

- Let *P* be a point in the plane.
- Let θ denote the angle between the polar axis and the line OP.
- Let *r* denote the length of the segment *OP*.
- Then P is represented by the ordered pair (r, θ) .

Polar Coordinates 4/10

Polar Coordinates

 The polar coordinate system is an alternative to the Cartesian coordinate system.

- Choose a point in the plane called *O* (the origin).
- Draw a ray starting at O. The ray is called the polar axis. This ray is usually drawn horizontally to the right.

• The letters (x, y) imply Cartesian coordinates and the letters (r, θ) - polar. When we use other letters, it should be clear from context whether we mean Cartesian or polar coordinates. If not, one must request clarification.

Polar Coordinates 5/10

- **1** What if θ is negative?
- What if r is negative?
- What if r is 0?

- Positive angles θ are measured in the counterclockwise direction from O. Negative angles are measured in the clockwise direction.
- Points with polar coordinates $(-r, \theta)$ and (r, θ) lie on the same line through O and at the same distance from O, but on opposite sides.
- If r = 0, then $(0, \theta)$ represents O for all values of θ .

Polar Coordinates 6/10

- There are many ways to represent the same point.
- We could use a negative θ .
- We could go around more than once.
- We could use a negative r.

Polar Coordinates 7/10

- Let P_1 be point with polar coordinates (r_1, θ_1) .
- Let P_2 be point with polar coordinates (r_2, θ_2) .

Observation

 P_1 coincides with P_2 if one of the three mutually exclusive possibilities holds:

- $r_1 = r_2 \neq 0$ and $\theta_2 = \theta_1 + 2k\pi, k \in \mathbb{Z}$,
- $r_1 = -r_2 \neq 0$ and $\theta_2 = \theta_1 + (2k+1)\pi, k \in \mathbb{Z}$,
- $r_1 = r_2 = 0$ and θ is arbitrary.

Polar Coordinates 7/10

- Let P_1 be point with polar coordinates (r_1, θ_1) .
- Let P_2 be point with polar coordinates (r_2, θ_2) .

Observation

 P_1 coincides with P_2 if one of the three mutually exclusive possibilities holds:

- $r_1 = r_2 \neq 0$ and $\theta_2 = \theta_1 + 2k\pi, k \in \mathbb{Z}$,
- $r_1 = -r_2 \neq 0$ and $\theta_2 = \theta_1 + (2k+1)\pi, k \in \mathbb{Z}$,
- $r_1 = r_2 = 0$ and θ is arbitrary.

Polar Coordinates 8/10

• How do we go from polar coordinates to Cartesian coordinates?

- Suppose a point has polar coordinates (r, θ) and Cartesian coordinates (x, y).
- How do we go from Cartesian coordinates to polar coordinates?

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$\cos \theta = \frac{x}{r}$$

$$\sin \theta = \frac{y}{r}$$

$$r^2 = x^2 + y^2$$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \arcsin(\frac{y}{r}) \text{ if } x > 0$$

$$= \arccos(\frac{x}{r}) \text{ if } y > 0$$

$$= \arctan(\frac{y}{y}) \text{ if } x > 0$$

Polar Coordinates 9/10

Example

Convert the point $(2, \frac{\pi}{3})$ from polar to Cartesian coordinates.

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2\left(\frac{1}{2}\right) = 1$$

$$y = r \sin \theta = 2 \sin \frac{\pi}{3} = 2 \left(\frac{\sqrt{3}}{2} \right) = \sqrt{3}$$

Therefore the point with polar coordinates $(2, \frac{\pi}{3})$ has Cartesian coordinates $(1, \sqrt{3})$.

Polar Coordinates 10/10

Example

Represent the point with Cartesian coordinates (1,-1) in terms of polar coordinates.

- Suppose r is positive.
- $\tan \theta = -1$ for $\theta = \frac{3\pi}{4}, \frac{7\pi}{4}$, and many other angles.
- (1, -1) is in the fourth quadrant.
- Of the two values above, only $\theta = \frac{7\pi}{4}$ gives a point in the fourth quadrant.
- \Rightarrow one representation of (1, -1) in polar coordinates is $(\sqrt{2}, \frac{7\pi}{4})$.
- $\left(\sqrt{2}, -\frac{\pi}{4}\right)$ is another.

$$r = \pm \sqrt{x^2 + y^2}$$
$$= \sqrt{1^2 + (-1)^2}$$
$$= \sqrt{2}$$

$$\tan \theta = \frac{y}{x}$$

$$= -\frac{y}{x}$$