

THE INFINITE POWER OF INNOVATION

TL431/TL431A/TL431B

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

DESCRIPTION

The TL431/TL431A/TL431B series precision adjustable three terminal shunt voltage regulators are pin-to-pin compatible with the industry standard TL431. The output voltage of this reference is programmable by using two external resistors from 2.5V to 36V.

These devices offer low output

impedance for improved load regulation. The typical output impedance of these devices is $200m\Omega$. These devices find application in the feedback path of switching power supplies, OVP crowbar circuits, reference for A/D, D/A, and as zener diodes with improved turn-on characteristics.

NOTE: For current data & package dimensions, visit our web site: http://www.linfinity.com.

PRODUCT HIGHLIGHT

PRECISION PROGRAMMABLE REFERENCES

KEY FEATURES

- INITIAL VOLTAGE REFERENCE ACCURACY OF 0.4% (TL431B)
- SINK CURRENT CAPABILITY 1mA to 100mA
- $f\square$ Typical output dynamic impedance less than $200 m \Omega;$ Typical output impedance of the
 - TL431B LESS THAN $100 \text{m}\Omega$
- ADJUSTABLE OUTPUT VOLTAGE FROM 2.5V TO 36V
 AVAILABLE IN SURFACE-MOUNT PACKAGES
- LOW OUTPUT NOISE
- TYPICAL EQUIVALENT FULL RANGE TEMPERATURE COEFFICIENT OF 30ppm/°C
- ☐ DIRECT PIN-TO-PIN REPLACEMENT FOR INDUSTRY STANDARD TL431 AND TL1431

PACKAGE ORDER INFORMATION							
T _A (°C)	Initial Tolerance	DM Plastic SOIC 8-pin	LP Plastic TO-92 3-pin				
0 to 70	2%	TL431CDM	TL431CLP				
	1%	TL431ACDM	TL431ACLP				
	0.4%	TL431BCDM	TL431BCLP				
	2%	TL431IDM	TL431ILP				
-40 to 85	1%	TL431AIDM	TL431AILP				
	0.4%	TL431BIDM	TL431BILP				

Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (i.e. TL431CDMT)

TO-92 (LP) package also available in ammo-pack.

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

156°C/W

ABSOLUTE MAXIMUM RATINGS (Note 1)

Cathode to Anode Voltage (V _{KA}) (Note 2)	0.3V to 37V
Reference Input Current (I _{RFF})	
Continuous Cathode Current (I _K)	
Operating Junction Temperature	
Plastic (DM, LP Packages)	150°C
Storage Temperature Range	
Lead Temperature	

- Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal. Pin numbers refer to DIL packages only.
- Note 2. Voltage values are with respect to the anode terminal unless otherwise noted.

THERMAL DATA

DM PACKAGE:

THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA} 165°C/W

LP PACKAGE:

THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{_{JA}}$

Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow

BLOCK DIAGRAM

PACKAGE PIN OUTS

DM PACKAGE (Top View)

LP PACKAGE (Top View)

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

ELECTRICAL CHARACTERISTICS (Note 3)

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for TL431C/TL431AC/TL431BC with 0°C \leq T_A \leq 70°C, TL431I/TL431AI/TL431BI with -40°C \leq T_A \leq 85°C.)

Parameter		Symbol	Test Conditions	TL431/431A/431B			Units
			lest Conditions		Тур.	Max.	Units
Reference Input Voltage	TL431	V _{REF}	$I_{K} = 10 \text{mA}, V_{KA} = V_{REF}, T_{A} = 25 ^{\circ} \text{C}$	2440	2495	2550	m۷
	TL431A		$I_{K} = 10 \text{mA}, V_{KA} = V_{REF}, T_{A} = 25 ^{\circ}\text{C}$	2470	2495	2520	m۷
	TL431B		$I_{K} = 10 \text{mA}, V_{KA} = V_{REF}, T_{A} = 25 ^{\circ}\text{C}$	2490	2500	2510	m۷
Reference Drift	TL431C		$I_K = 10 \text{mA}, V_{KA} = V_{REF}$		4	17	m۷
	TL431I		$I_K = 10 \text{mA}, V_{KA} = V_{REF}$		5	30	m۷
	TL431AC		$I_K = 10 \text{mA}, V_{KA} = V_{REF}$		4	17	m۷
	TL431AI	ΔV_{KA}	$I_K = 10 \text{mA}, V_{KA} = V_{REF}$		5	30	m۷
	TL431BC		$I_K = 10 \text{mA}, V_{KA} = V_{REF}$		4	15	m۷
	TL431BI		$I_K = 10 \text{mA}, V_{KA} = V_{REF}$		5	20	m۷
Voltage Ratio, Ref to Cathode	TL431, TL431A		$I_K = 10 \text{mA}, V_{KA} = 2.5 \text{V to } 36 \text{V}$		-1.4	-2.7	mV/\
(Note 4)	TL431B		$I_K = 10 \text{mA}, V_{KA} = 2.5 \text{V to } 36 \text{V}$		-1.1	-2	mV/\
Reference Input Current	TL431,TL431A	I _{REF}	$V_{KA} = V_{REF}$, $T_A = 25$ °C		2	4	μΑ
	TL431B		$V_{KA} = V_{REF}$, $T_A = 25$ °C		1.5	1.9	μΑ
			$V_{KA} = V_{REF}$, $T_A = Operating Range$			2.3	μΑ
Minimum Operating Current		I _{MIN}	$V_{KA} = V_{REF}$ to 36V		0.4	1	mA
Off-State Cathode Current	TL431	I _{OFF}	$V_{KA} = V_{REF}$ to 36V, $T_A = 25$ °C		0.1	1	μΑ
	TL431A		$V_{KA} = V_{REF}$ to 36V, $T_A = 25$ °C		0.1	1	μΑ
	TL431B		$V_{KA} = V_{REF}$ to 36V, $T_A = $ Operating Range			2	μA
			$V_{KA} = 36V, V_{REF} = 0V, T_{A} = 25^{\circ}C$		0.18	0.5	μΑ
Dynamic Impedance	TL431	IZ _{KA} I	$V_{KA} = V_{REF}$, $I_{K} = 1$ mA to 100mA, $f \le 1$ kHz, $T_{A} = 25$ °C		0.2	0.5	Ω
	TL431B		$V_{KA} = V_{REF}, I_{K} = 1 \text{ mA to } 100 \text{ mA}, f \le 1 \text{ kHz}, T_{A} = 25 ^{\circ}\text{C}$		0.1	0.2	Ω

Note 3. These parameters are guaranteed by design.

 $\label{eq:Note 4.} \begin{array}{ll} \frac{\Delta V_{\text{REF}}}{\Delta V_{\text{KA}}} & \text{Ratio of change in reference input voltage} \\ \text{to the change in cathode voltage}. \end{array}$

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

GRAPH / CURVE INDEX

Characteristic Curves

FIGURE

- 1. REFERENCE INPUT VOLTAGE vs. FREE-AIR TEMPERATURE
- 2. REFERENCE INPUT CURRENT vs. FREE-AIR TEMPERATURE
- 3. CATHODE CURRENT vs. CATHODE VOLTAGE
- 4. CATHODE CURRENT vs. CATHODE VOLTAGE
- 5. OFF-STATE CATHODE CURRENT vs. FREE-AIR TEMPERATURE
- **6.** RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE vs. FREE-AIR TEMPERATURE
- 7. EQUIVALENT INPUT NOISE VOLTAGE vs. FREQUENCY

FIGURE INDEX

Parameter Measurement Information

FIGURE

- **8.** TEST CIRCUIT FOR $V_{KA} = V_{REF}$
- **9.** TEST CIRCUIT FOR $V_{KA} > V_{REF}$
- 10. TEST CIRCUIT FOR I_{OFF}

Typical Characteristics

FIGURE

- 11. EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD
- 12. SMALL-SIGNAL VOLTAGE AMPLIFICATION vs. FREQUENCY
- 13. REFERENCE IMPEDANCE vs. FREQUENCY
- 14. PULSE RESPONSE
- 15. STABILITY BOUNDARY CONDITIONS

Application Information

FIGURE

- 16. SHUNT REGULATOR
- 17. SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD
- 18. HIGH CURRENT SHUNT REGULATOR
- 19. CROWBAR CIRCUIT
- 20. VOLTAGE MONITOR
- 21. PRECISION CONSTANT-CURRENT SINK

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

CHARACTERISTIC CURVES

FIGURE 1. — REFERENCE VOLTAGE vs. FREE-AIR TEMPERATURE

FIGURE 2. — REFERENCE CURRENT vs. FREE-AIR TEMPERATURE

FIGURE 3. — CATHODE CURRENT vs. CATHODE VOLTAGE

FIGURE 4. — CATHODE CURRENT vs. CATHODE VOLTAGE

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

CHARACTERISTIC CURVES

FIGURE 5. — OFF-STATE CATHODE CURRENT vs. FREE-AIR TEMPERATURE

FIGURE 6. — RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE vs. FREE-AIR TEMPERATURE

FIGURE 7. — EQUIVALENT INPUT NOISE VOLTAGE vs. FREQUENCY

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

PARAMETER MEASUREMENT INFORMATION

FIGURE 8 — TEST CIRCUIT FOR $V_{KA} = V_{REF}$

FIGURE 9 — TEST CIRCUIT FOR $V_{KA} > V_{REF}$

FIGURE 10 - TEST CIRCUIT FOR I $_{\mathrm{OFF}}$

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

TYPICAL CHARACTERISTICS

FIGURE 11. — EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD

Test Circuit for 0.1Hz to 10Hz Equivalent Input Noise Voltage

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

TYPICAL CHARACTERISTICS

FIGURE 12. — SMALL-SIGNAL VOLTAGE AMPLIFICATION vs. FREQUENCY

Test Circuit for Voltage Amplification

FIGURE 13. — REFERENCE IMPEDANCE vs. FREQUENCY

Test Circuit for Reference Impedance

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

TYPICAL CHARACTERISTICS

FIGURE 14. — PULSE RESPONSE

Test Circuit for Pulse Response

FIGURE 15. — STABILITY BOUNDARY CONDITIONS

* The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial V_{KA} and I_{K} conditions with $C_{L}=0$. V_{BATT} and C_{L} were then adjusted to determine the ranges of stability.

Test Circuit for Curve A

Test Circuit for Curves B, C, and D

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

APPLICATION INFORMATION

Note: R should provide $\geq 1\,\text{mA}$ cathode current to the TL431/A & TL1431 at minimum V_{BATT} .

FIGURE 16 — SHUNT REGULATOR

FIGURE 17 — SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD

FIGURE 18 — HIGH CURRENT SHUNT REGULATOR

Note: Refer to the stability boundary conditions in Figure 15 to determine allowable values for C.

FIGURE 19 — CROWBAR CIRCUIT

PRECISION PROGRAMMABLE REFERENCES

PRODUCTION DATA SHEET

APPLICATION INFORMATION

Note: R3 and R4 are selected to provide the desired LED intensity and ≥ 1mA cathode current to the TL431/A & TL431B at the available V+.

FIGURE 20 — VOLTAGE MONITOR

$$I_{\odot} = \left(\frac{V_{REF}}{R_{S}}\right)$$

FIGURE 21 — PRECISION CONTANT-CURRENT SINK

PRODUCTION DATA - Information contained in this document is proprietary to LinFinity, and is current as of publication date. This document may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.

