EE769 Intro to ML Linear Regression

Amit Sethi Faculty member, IIT Bombay

Learning outcomes

- Write the objective of regression
- Write the expression for analytical solution
- Decompose the loss into bias and variance
- Add regularization to least square
- Write the algorithm for computational solution

Outline

- Utility of linear regression
- Problem setup
- Bias-variance decomposition
- Regularization
- Iterative solution

Utility of linear regression

Simplest to code

Simplest to understand mathematically

Nonlinear feature extraction can be used with linear solution

Problem setup

Assuming ideal prediction is linear w.r.t. input

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D$$

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

Or linear with respect to features

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

Measured output has stochastic noise

Assuming Gaussian noise

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

Likelihood of observation

Assuming identically independently distributed samples

$$\ln p(\mathbf{t}|\mathbf{w}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

Maximizing likelihood

Set gradients w.r.t. w to zero

$$\nabla \ln p(\mathbf{t}|\mathbf{w}, \beta) = \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}}$$

$$0 = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} - \mathbf{w}^{\mathrm{T}} \left(\sum_{n=1}^{N} \boldsymbol{\phi}(\mathbf{x}_n) \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \right)$$

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

Source: PRML book by C Bishop

Expected loss (MSE) (1/3) Bias-variance decomposition

$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

$$\frac{\delta \mathbb{E}[L]}{\delta y(\mathbf{x})} = 2 \int \{y(\mathbf{x}) - t\} p(\mathbf{x}, t) \, dt = 0$$

$$y(\mathbf{x}) = \frac{\int t p(\mathbf{x}, t) \, dt}{p(\mathbf{x})} = \int t p(t|\mathbf{x}) \, dt = \mathbb{E}_t[t|\mathbf{x}]$$

$$\{y(\mathbf{x}) - t\}^2 = \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] + \mathbb{E}[t|\mathbf{x}] - t\}^2$$

$$= \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 + 2\{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\} \{\mathbb{E}[t|\mathbf{x}] - t\} + \{\mathbb{E}[t|\mathbf{x}] - t\}^2$$

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 p(\mathbf{x}) \, d\mathbf{x} + \int \{\mathbb{E}[t|\mathbf{x}] - t\}^2 p(\mathbf{x}) \, d\mathbf{x}.$$

Expected loss (MSE) (2/3) Bias-variance decomposition

$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) \, dt$$

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) \, d\mathbf{x} + \int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^2$$

$$\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^2 + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2$$

$$+2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.$$

Expected loss (MSE) (3/3) Bias-variance decomposition

$$\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x}) \}^2 \right]$$

$$= \underbrace{\{ \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x}) \}^2 + \mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \}^2 \right]}_{\text{variance}}$$

$$\text{expected loss} = (\text{bias})^2 + \text{variance} + \text{noise}$$

$$(\text{bias})^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) \, d\mathbf{x}$$

$$\text{variance} = \int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^2 \right] p(\mathbf{x}) \, d\mathbf{x}$$

$$\text{noise} = \int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

Regularization using L2 penalty

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q \qquad \sum_{j=1}^{M} |w_j|^q \leqslant \eta$$

$$\sum_{j=1}^{M} |w_j|^q \leqslant \eta$$

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

$$E_W(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

Geometry of Lp regularization

Iterative optimization

Iterative minimization of convex objectives

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

Recursive least square update

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}_n) \boldsymbol{\phi}_n$$
$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}_n) \boldsymbol{\phi}_n - \eta \lambda \mathbf{w}^{(\tau)}$$