Date: 25 /8/

Three Phase Power, Energy Measurement

Lin

To measure the Power and Energy consumed by a three phase resistive load.

Materials Required

S. No.	Name of the apparatus	Range / Type	Quantity 1 No.	
1	32 Amps, 3 pole Fuse Switch	- 1		
2 U.P.F. Watt meters double element 3 Ammeter		0-300 W	1 No.	
		0 - 10 A	1 No.	
4	Voltmeter	0 - 300 V	1 No.	
5	Three Phase Energy Meter	Digital	1 No.	
6	Wooden Board	4" x 3.5"	1 No.	
7	Wires	1/18*	As required	

Theory

Assuming the phase sequence to be RYB, the phase voltages are V_{RN} , V_{NN} and V_{SN} . Let the phase angle between the phase voltage and phase current be Φ degree. If the load is assumed to be inductive in nature then current in each phase lags the phase voltage by Φ degrees.

Vector diagram

Taking V_{RN} as reference voltage, Wattmeter reading W₁ = V_{BY} I_B cos

Measurement of Freegy StopWatch

S No	V	エ	Time (sed)	Frergy P=JZV_J_T_	Freigy Stom Wett Meter
1	410	1 12	290	205940-841	118900
2	ц10	1.9	185	249616504	14415
3	410	3-3	128	299 963-487	173184
4	410	4.1	105	305715-6208	176505
5	410	4-6	85	277665-065	160310

	Table	mea surem	nent of	POWA
1	SNº	ν	I,	W
	1	440	() ()	360
	2	440	2-6	840
	3	440	3.4	1200
	4	Luc O	4.4	1520
	5	kud	4-6	1680

$$W_{1} = V_{BY} I_{B} \cos (30 - \Phi)$$
Wattmeter reading $W_{2} = V_{RY} I_{R} \cos$

$$= V_{RY} I_{R} \cos (30 + \Phi)$$
Total power = $W = W_{1} + W_{2}$

$$= V_{BY} I_{B} \cos (30 - \Phi) + V_{RY} I_{R} \cos (30 + \Phi)$$
But
$$V_{BY} = V_{RY} = V_{L} \text{ and } I_{B} = I_{R} = I_{L}$$

$$W = V_{L} I_{L} \cos (30 - \Phi) + V_{L} I_{L} \cos (30 + \Phi)$$

$$= V_{L} I_{L} \cos (30 - \Phi) + \cos (30 + \Phi)$$

= $V_L I_L [\cos 30 .\cos \Phi + \sin 30.\sin \Phi + \cos 30 \cos \Phi - \sin 30. \sin \Phi]$

= V_L I_L 2 cos 30 cos Φ

= V_L I_L 2 x√ 3 / 2 .cos Φ

W = √3. V_L I_L cos Φ watts

This shows that two wattmeter is sufficient to measure total power in a 3 phase star system

Circuit Diagram

Observation

Type of Load (W)	W1 (KW)	W2 (KW)	I1 Amps	I2 Amps	Vph Volts	W1+W2 KW	P KW	Energy
	7							

Result

Thus the power and energy where measured for a 3 phase supply connected to a 3 phase star connected resistive load.