()

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

34028. 2016

```
1.0—2015 «
                     1.2—2015 «
     1
     2
     3
       8
               2016 . Ns 50)
                                  ( 3166)004-97
              3166) 004-97
                                     AM
                                     GE
                                     KG
                                     RU
                                                                                          31
2017 .
            232-
                                                     34028-2016
                                        1
                                                2018 .
     5
                                                                      52544-2006
     6
                                  10884-94
                    5781—82.
                                           » (
                                                                                        ),
                                              (www.gost.ru)
                                                                                            2017 .
                                                                                  31
                   52544-2006
              2018 .
                                                                             ©
                                                                                              , 2017
```

Ш

1			1
2			1
3			2
4			4
5			4
6			,
-			14
7			17
8			
9	()	21
10	(,	22
11			23
	()	24
	()	29
	(,	
	()	31
	()	35
	()	38
	()	
			39
	()	
			40
			42

DEPERTURE STENT PERVINDOBSHIMO
TO TEXHVIPOTOM
N METPOTOM

DEPENDING BENTHOLING
TO TEXHVIECKOMY DELYTIMPOBAHMO
NO TEXHVIECKOMY
NO TEXHVIECKOM
NO TEXHVIE

DEPENDING BENTATION DEPARTMENT OF TEXTIVE CROWN DETPONORMY DETYNNORMY DETYNNO

Reinforcing rolled products for reinforced concrete constructions. Specifications

—2018—01—01

1 240, 400. 500 600.

. 800 1000. .

,

28:

12.1.005—88

12.3.002—75

2603—79 3282—74

7565—81 (377-2—89) , .

7566—94 , , , , -

10922—2012 , , -

12004-81

```
12026—76
        12354—81
        12359—99 (
                      4946-77)
        12360-82
        12361-2002
        12365—84
        14019-2003 (
                        7438:1985)
        14098—2014
        18895—97
        21014—88
        22536.0—87
          22536.1—88
        22536.2-87
        22536.3—88
        22536.4—88
        22536.S-87 (
                        629-82)
        22536.6—88
        22536.7—88
        22536.8—87
        22536.9—88
        22536.10-88
        22536.11-87
        22536.12-88
        22867—77
        23732-2011
        26007-83
        26877-2008
        27809—95
          30136-95 (
                          8457-1—89)
   3
   3.1
   3.2
   3.3
( )
               (_{02})
```

```
d_M,
       3.4
       3.5
                                                                         F_H,
                                                                                  2:
       3.6
                                                                             :( .
                                                                                             1-4):
       3.6.1
       3.6.2
       3.7
       3.7.1
                                   h (ft<sub>t</sub>),
                                                                                                                       )
       3.7.2
                                                (,
       3.7.3
                                                                                                 le,,
      1—4).
       3.7.4
                                       1-4).
       3.7.5
       3.7.6
                                       ( ,),
       3.7.7
                                                             ): d,
                                                                                                         1
                                                                                                            . 2
   1.2 4); d<sub>(</sub>—
                                                       3).
       3.7.8
                                                                                                                          f_R:
       3.8
5 % ( = 0.95)
                          10 % ( - 0.90)
                                                               C<sub>mjn</sub>:
       3.9
       3.10
                                                                       #:
       3.11
       3.12
       3.13
       3.14
                                                       %:
       3.15
                                                  %:
       3.16
```

```
34028-2016
    3.17 :
    3.18
    3.19
    4
    4.1
    4.1.1
                                       , ( _{02}). / ^{2},— : 240. 400. 500, 600;
                                        : , 800. 1000.
                      , (< <sub>02</sub>), / <sup>2</sup>. —
                                                        :1 .2 . .4 ,
    4.1.2
    4.1.3
                          ( ):
                                    ( 1):
                          ( ):
    4.1.4
    )
                                                                                    5
                                                                                                240.
400. 500. 600,
                    . 800. 1000;
                                                                             6:
   )
    1)
    2)
          (
    3)
    4)
    5)
    4.1.5
                              240:
                                                  500,
                                                        600.
                                                                                1000
                                         : 400,
                                                                       800
    4.1.6
                                                     1
  1 2.
    4.2
                                                                           );
                                                 ( ) —
                                                              ( / <sup>2</sup>):
                         (O_t)
    5
    5.1
```

IV

61.

4

5.1.1

75 %

50 2590.
10 4 2590.
5.1.2 , , 1 , 1 1.

1 — , 1

d			VMVbwu H	pvf*owMviea	3		1		0/
d _H .	f _H . ²	1	2	3	4	5		1	. %,
4.0	12.6	-	_	X		X	0.099		_
4.5	15.9					Х	0.125	-	
5.0	19.6			Х		Х	0.154	-	
5.5	23.8			х		Х	0.187	-	
6.0	28.3		х	Х	х	Х	0.222	±8.0	-2.0 -8.0
6.5	33.2			Х		Х	0.261	-	-6.0
7.0	38.5	Х	х	Х	х	Х	0.302	-	
7.5	44.2			Х		Х	0.347	-	
8.0	50.3	Х	х		Х	Х	0.395	-	
8.5	56.7			Х		Х	0.445		
9.0	63.6	Х	х	х	х	Х	0.499	* * X V(V	-1.0 -6.0
9.5	70.9			Х		Х	0.556		
10.0	78.5	Х	х	Х	х	Х	0.617		
11.0	95.0	х	х	Х	х	Х	0,746		
12,0	113.1	Х	х	Х	х	Х	0.888	-	
13.0	132.7	Х	х		х	Х	1.042		
14.0	153.9	Х	х		х	Х	1.208		
15.0	176.7	Х	х		х	Х	1.387	-	
16.0	201.1	Х	х		Х	Х	1,578		-1.0
17.0	227.0	Х	х		х	Х	1.782	ſ.	-5.0
18.0	254.5	Х	х		Х	Х	1.998	-	
19.0	283.5	Х	х		х	Х	2.226		
20.0	314.2	Х	х				2.466	1	
22.0	380.1	Х	х				2.984		
25.0	490.9	Х	х				3.853	1	
28.0	615.8	Х	х				4.834	.40	-1.0
32.0	804.3	х	х				6.313	±4.0	-4.5
36.0	1017.9	Х	х				7.990		
40.0	1256.6	Х	х				9.865		

```
1
      2
                                    3
                                              3
                                                                   1
                ±4,0%.
                 800 1000
      3
                                                               10
                                                                   40
      4
            7.85 / <sup>3</sup>.
      6
      .
7
                                                                 2)
     5.1.3
                          240. 400, 500. 600
                          800 1000
     5.1.4
                                                           6,0 18.0 :
     5.1.5
                   ( );
                             ( 1);
                                      €0 12.0 .
                                              — 6.0; 9.0; 12.0 (11.7
                                                                         11,9); 18.0 .
                                                         (
                                                            1)
     (
                 2 )
                                        3%
     5.1.6
                           100 .
                                                                                    -+25
     5.1.7
                                                              22.0
     5.1.8
     5.1.9
3 4.
                                                                10%
                                             5.0
                                     0.5
     5.1.9.1
                                                              3
                                                                 4.
                            70 %,
                                              4/
                                                       100%.
                                                                                                    (1)
                                           xHj0^2-c/J)
                                         , %;
                       —7.85 / <sup>3</sup>.
                                           , :
                        — 0.60—0.85;
                       — 1.05—1.30;
             --- 0,60--- 0.80.
     5.2
     5.2.1
                                                             4 .
                                          — 1 . 2 .
```

{ 1	—4}	U,	1 { 1}	2 { 2}	< * }. 4 { 4}	
		4 10.0 . .10.0 » 22.0 . » 22.0	0,05 d _H	0.070 d _H 0.065 0.060	0,05 d _H	
		4.0	0.5\$ * 1.00	055rf _M 1.00 ^		
		. 10.0 22,0 .		050rf _H 1.00« .		
		. 22.0		045d _M 1,00<^		
	1*	4.0 40.0 .	35* 90* .	35* 75* .		
«'*	-	4.0 40.0 .	45*	45*		
le _f	-	4.0 40.0 .	2 , (1, -	0.25srf _H		
,	(1)	4.0 8.0 . . 8.0 » 14.0 » » 14.0» 25.0 » » 25.0	1.0 1.2 1.6 2.4	1.0 1.2 1.6 2.4	4 3—0.10 [^] .	
	(2)	. 6.0 8.0 . 6.0 ×14,0 » » 14.0» 25,0 » » 25.0	2.2 2.5 3.0 4.2	2.2 2.5 3.0 4.2	4 .	
1.		4,0 6.0 . . 6.0 » 6.0 » » 8.0 » 10.0 » » 10.0 » 40.0 »		0-039 (0-045 (0-052 (C _m 0.056 (C _{fin})	**,)	

11 »! .

2 — ^ . 2,5 7.

```
5.2.1.1
                 400. ASOO. 600.
                                                          1 . 2 . . 4 .
5.2.1.2
                  800. 1000
                                                 2 .
          2.
5.2.1.3
5.2.1.4
                  (1 . 2 . . 4 )
5.2.2
                   1 ( 1)
                                               1, 2 4
                                                       3.
                                                       A-A
                                  1
5.2.3
                   2 (
                             2)
 (
                         2
          2 .
                                              1.2 4
                                                           3.
```


3 —

»				
	(11	(2)		
1.	+	-		
2.	+	+		
3.	+	+		
4.	4	+		
5.	4	+		

— -» , (2)


```
5.2.9
                                                                    1 . 2 .
                                         /<sub>R</sub> 2.
     (
                                      1 .2 .
                                                   4
     5.2.10
                                                                                                    (f_R)
                                             2
     5.2.11
                                                                             2 —
                                 d_2.
     5.2.12
     5.2.13
                                                        ( .
                                                                                     1-4)
     5.2.14
                                                                                                 2.
                                                                   f_R,
                                               95 % ( * 0.95).
     5.3
     5.3.1
     5.3.2
                                                                                                  3.
     5.3.3
                                3.
     5.3.4
                    3.
     5.3.5
                            2)
                                       3. 4 5
                                                                3.
( 2).
                                                                                          (100±10) °.
                                             60
(20 * .
     5.4
     5.4.1
                                                                                 4.
```

		,%.							
		Si			S	N		As	
240	0.22 <0.25)	0.05—0,30 (0.03—0.33)	0.65 (0.70)	0.050 (0.055)	0.050 (0.055)	0.012 (0.013)	0.30 (0.30)	0.08 (0.08)	

		. %.						
		Si			S	N		As
400. 500. 600	0,22 (0.24)	0.90 (0.95)	1.60 (1.70)	0.050 (0.055)	0.050 (0.055)	0.012 (0.013)	0.35 (0,35)	_
800. 1000	0.32 (0.34)	2,40 (2.45)	2.30 (2.35)	0.040 (0.045)	0.040 (0.045)	0.012 (0.013)	_	0.08 (0.08)

```
1
2
3
                                                 ,
( ) ,
0,20 (0.22) %.
                  0.10 %
   V. Nb,
                                                               0.15 %.
   .
5
6
7
                   Al Ti
                            0.025 %
                              N 0,001 %
                                                     0.005 %.
, Al. Ti. V
                    . N 0,012 %,
Nb. 8
          Ν
                                                     Ν
  5.5
  5.5.1
                                 21014.
  5.5.2
                                                         ( )
  5.5.3
                                      5
                                                     3.
                 1/4
                                   2.
               10 %
                       _{\mathsf{R}}
  5.6
  5.6.1
                                                   {20 'jo)*C
                        5.
   5—
```

						. 9	6
	•	, («0.2)- ^{//447} 2	. / 2		*5		* «
240		240	380	_	25.0		_
400		390	590	_	16.0		5.0
500		500	600	1,05	14.0	2.0	2.5
€00	_	600	700	1.05	12.0	2.0	2.5

						. %	, o
	*	e _t (« , 2	/ 2	/ »< 0.2)	"S	*	a
	400	600	700	1.05	12.0	2.0	2.5
800	400	800	1000	_	8.0	2.0	2.5
1000	450	1000	1250	_	7.0	2.0	2.5

1 2 (6 500. 600. . 800 1000 400. 2 3 3. 90 / 2. 500. 3 3. **50** / ² /,{ 2^01*03. £ (6,^) 2.0 • 10* / ².

5.6.1.1 . 800 1000 . 5 1 %.

5.6.2 , , , (5) , (50) , 90 % (0.90) , 90 % — S_{5} , 8 . 8.14.

5.7 5.7.1 240 180* 500 5.7.2 400 180*; 600 90* 6; 600 1000 — 45* 5d_H. 400. 500. 600

16 .	
. 16	и

5.7.3 400. 500. 600. . 800, 1000

5.7.4

34028—	2016					
5.8						
5.8.1 5.8.2			,	40 —	7566 ,	
5.8.3					•	:
- - 2	: ().	,		,	
5.8.4			,	,	:	
•		; / :				
5.8.5	1.8 .					
5.8.6)		,		(
). 5.8.7						8.
5.8.8					,	
5.8.9	; «	».	,			
5.9						
5.9.1 5.9.2		2 .	_ 2	7566. 2 10		
5.9.3				(1)	
5.9.4 5.9.5						,
	30136	,		, 503. ,		, 3282.
6					,	
6.1				400, 500	600.	
6.1.1 6.1.1.1					40	
		,	,		,	
•		1	: 1—±4.5%; 2— 1	% 3%.		

```
6.1.1.2
                                                                                     3
                                                                                        6 -
              7%.
     6.1.2
                                                                                                 5.2.
     6.1.3
     6.1.3.1
                                                                       :
                             400. 500
                                           600
                                                                                               ( )
0,26 (0.28) %
5
     7.
     6.1.4
                                                            1
     6.1.4.1
                              240 .
                                                                          3.
                             ( )
     6.1.4.2
       400. 500. 600
                                   4;
     6.1.4.3
                               400 . 500
                                                600
                                      4:
                                               500
                                                        600
                                    V, Nb.
                                                                 0.10 %
                                    0.15 %.
            0.05 %:
                                     ( ). %,
      400 -0,62 (0.64),
      500 . 600 —0.50 (0,52).
                                          ( )
                          ( ).
             90 %
                                                    5 7;
     6.1.4.4
                                    500
                                              600
       V. Nb.
                                                                                        , %,
                                    , :
                            --- 0.26--- 0.50 (0,52):
             12
                                --0.30---0.50(0.52):
      . 12»
              18 »
      » 20»
                28 »
                                  -0.35-0,50(0.52):
     • 32»
               40 *
                                  -0,40-0.50(0,52).
     6.1.4.4».
                                   6.1.4.3.
     6.1.5
     6.1.5.1
                                         7.
```

7—

	e,(o _{fi7}). / ² .	. / 2.	< /	%.	(_%)
	IC^)	{ ^}	(«)	*5	
400	390	590		10	
500	500	600	1.08	10	5
600	600	700		14	
400	390	590			
A5Q0	500	600	1.15—1.35 ^min ^max)	16	7
600	600	700	'HIIII'HIAX)		

1 400. 2 3. 90 / 2. 2 500. 3 3. 3. 0 / 2

	400	500. 600
		2
{ ,^=0.6 / ²	270	300
<1 (-). / 2		150
I.	1	200 .
() ,		140

() 6.1.7 40 . 6.2 , 800 1000, 1 4. 6.2.1 800 1000 5.2, 6.2.2 6.2.3 3 7%. 6.2.4 6.2.4.1 , 800 1000 : 4;

```
( <sub>3<</sub> ), %,
                                                                   0.65 (0.67).
                                             ( )
                            ( ).
                                                         5.
              90 %
      6.2.5
      6.2.5.1
                                                       7
                                                                     600.
                                                                                               ( )
      6.2.6
100 .
      6.2.7
     6.2.7.1
                                                          (20 ') *
                                                                                              4 %
                                                                                                       1000
                                70 %
( <sub>o</sub> )
     6.2 .2
                                                                          85 %
                                           0 02
5.
                              , ( <sub>02</sub>)
     6.3
              8
                            6.2.7.2»),
     (
     7
      8
      8.1
                                                7566
      8.2
                                        0.03 %.
                                                                               — 0.15 %.
      8.3
              ( )—
                                 ( . );
                                       8.14
                                                                                                     (
                                                                                                           )
                                                                    8.14
      8.4
                                                                     9.
```

9—

		((}	, ,	
				1)
,				
		,		,
1 21	1		2	
	5 %	-		
	5%			
()31	1		2	
,(^ *	1		2	
< «,(. ¹	1		2	_
85 8 8 24	1		2	
	1		2	
	1		2	
	1		2	
11).	(
2>	,	70	-	
3> () ,	· ().	10 %	-	
.5 ()		9		-
8.6		,		
1 ,		150	_	
8.6.1 ,	2	3	,	-
			5 7.	
8.7 8.8	— 7565.		(
) — 7564. 8.9 9.5,				-
9.5.				
8.10 8.11	_			-
. —		,		

```
8.12
                                                             (
       8.13
       8.13.1
       )
(
                          :O<sub>min</sub>—
       8.13.2
       8.13.3
                                                                                        «X»
                                           ( \ _{0} \ _{2}). \ / \ ( \ _{0} \ _{2}), \ 6_{5} \ (6 \ 8 \ )
                                                                                                                    5
                                                                                                                              7
                                                        «X»
                                                                                                                                       (2)
       • 10 / <sup>2</sup>— ,( <sub>02</sub>) .
                      aJa_{T}(_{02}),
       • 0,01 —
       *0.3% —
                     6 ( ).
       •1%—
                      65
       8.13.3.1
                                                                                           «X»
                           / ( 0 2)
                                                                                                                              ( ):
                                                                               ( ).
       8.13.4
                                            8.13.2
                                                         8.13.3.
       8.13.4.1
       8.14
       8.14.1
                                                                                                                                    f_R
                                     , , ( _0 _2 ). / ( _0 _2 ) \, 6_5 (
       8.14.2
                                                                                                                           6
              200
                                                ),
                                                                       )
                        5.
       8.14.3
                                               f_R
                                                                                                                                    ,( <sub>02</sub>).
                                                                                                                           / ( <sub>0 2</sub>) C<sub>min</sub>)
      ( <sub>02</sub>),
                       65
                                                                                      =0,95
  - 0.90
                      (6_5 	ext{ d}_{max}),
                                                                        3
                                                                            4.
                                                                                                5 7.
       8.14.4
                                                                        ), 6 (6_5 \, S_{max})
                                         f_R.
                                                                                                                                       (3)
                                                                                                                                       (4)
                                                           +S
                                                                              10 ( f_R, . ( _{02}) / ( _{02}));
                                           90%—
       •5% ( -0.95)
```

34028-2016

-10 % (=0,90) 90 %— 11 ((8 8)); s— ; C_{mm}, — , . 2.5 7.

10 — , 5%

		?					
S	3.40	13	2.40	30	2.08	150	1.82
6	3.09	14	2.36	40	2.01	200	1.79
7	2.89	15	2.33	50	1.97	250	1.78
8	2.75	16	2.30	60	1.93	300	1.77
9	2.65	17	2.27	70	1.90	400	1.75
10	2.57	18	2.25	80	1.89	500	1.75
11	2.50	19	2.23	90	1.87	1000	1.71
12	2.45	20	2.21	100	1.86	•»	1.64

11 — , 10%

5	2.74	13	1.93	30	1.66	150	1.43
6	2.49	14	1.90	40	1.60	200	1.41
7	2.33	15	1.87	50	1.56	250	1.40
8	2.22	16	1.84	80	1.53	300	1.39
9	2.13	17	1.82	70	1.51	400	1.37
10	2.07	18	1.80	80	1.49	500	1.36
11	2.01	19	1.78	90	1.48	1000	1.34
12	1.97	20	1.77	100	1.47		1.28

8.14.5

•

8.14.7 -

.

8.14.8 8 , 8.14.4. - 8.13.

```
8.14.9
      8.15
                                                      ),
                                                                              2):
                                                    1
( . . . );
                                         (
                                                   ):
                                                                        (f_R);
                                                                                             );
                         ( 1
                                   2);
                                                                 (,
                                                                           <sub>2</sub>);
                                          (< );
                                                                                  (< )
                                                                                                        (< )
                                      (5)
                                                                                                         (8 <sub>1</sub> )
                800. 1000 (
                                                    );
                                                                                         . 800. 1000 (
                     );
                                      );
                                                                                              (
                                                 ),
                                    (
                                                                                                           : /<sub>R></sub>
             (65
                                   );
      •
8.15.1
      9
                                     (
                                                       )
      9.1
```

-.

```
9.2
                                                                           12359 —
                                                                                           12361.
                                                                                                          12365.
                                                            12354.
     18895.
                     22536.0 —
                                         22536.12.
                                                            27809*.
    9.3
                                                      )/5 ( + NiV15.
                                                                                                             (5)
   . . . V. , . Ni —
    9.4
                              N_{9KB} = 0.8(0.52AI \quad 0.29 \quad 0.27V \quad 0.15Nb).
                                                                                                             (6)
  Al. Ti. V. Nb —
                                      . %.
    9.5
               400, 400 , 500, 500 . 600. 600
               800
                     1000 —
    9.6
    9.7
    9.8
    9.9
               1
                                                      12004.
    9.10
                                                                         26877.
    9.11
                                                                                         ),
                                     7564
                                                   12004.
    9.12
                                                      12004
    9.12.1
                                                                                                  < <sub>0 2</sub>.
                                                           0.2 %.
    9.12.2
                                                    , ( <sub>02</sub>)
                                          1.
    9.12.3
800 1000
    50 *
                                      5
                                                                                       15
    9.13
                                                       14019.
    9.14
    9.15
    9.16
    9.17
                               26007.
    9.18
                                                                      ( \ _{0} \ _{02})
           12004.
     10
     10.1
                                                                           7566.
                                                                     54153—2010 «
                                                                    52804—2007 «
```

10.2						
	,		•			
11						
11.1		40.0.000				
11.2		12.3.002.	,	0.3	,	
11.3				[1].		
,	,		0,1 %	,	,	
	0,01 %.	,				
	,					
11.4	•					
<)	12.1.005.					

34028-2016

()

AT WILLIAM TA

*

. ,

.1

.4 (1 ,) 2-6, 1 . 2- — 2 .3- — 4 — 4 .

.5 — fa 1 .2 . 4 (.1) (.):

, KFr sinp -')

- , : 1 2 -2; -3;

* 19

__ : !— , : _ , .

. (.2)

-

34028—2016

 $\frac{(\text{nd}, -2e) < \text{fr}_{,4} \times \text{ft} \times !> \times, <)}{4ndJ}$ < .)

F\$*0.83 1 (.4)

h- , : U- .

·

(.5)

Рисунок А.4

Ffe, F\$, Fr / -

. 11 1 ,2 . 4 — .4.

.1 —

>						1							
	d.	-	h					6					
			*		d,.d ₂ .			0	-		•		
<* -	-	-		-			- %						max
6	5.75		0.5	±0.25	6.75	5		0.5	1	0.5			
	7.5		0.75	±0.20	9	7		0.75	1.25	0.75			
10	9.3		1		11.3	8		1	1.5	1			
12	11	+0.3	1.25		13.5	8		1	2	1.25			
14	13	-0.5	1.25		15.5	12		1	2	1.25			
16	15		1.5	-	18	14		1.5	2	1.5			
18	17		1.5	-	20	14	, 4 ±10	1.5	2	1.5	*		*
20	19		1.5		22	16	±10	1.5	2	1.5	40	40	S7U
22	21	+0.4	1.5		24	18		1.5	2	1.5			
25	24	-0.5	1.5		27	20		1.5	2	1.5			
28	26.5		2		30.5	20		1.5	2.5	2			
32	30.5	+0.4	2	±0.7	34.5	20		2	3	2			
36	34.5	-0.7	2.5	±0.1	39.5	24		2	3	2.5			
40	38.5		2.5		43.5	24		2	3	2.5			

2 —

	d.				t.	UU					
	*	*1	, .	d,.rf ₂ .	*	-					
	»	*				.%					max
	5.8		0.4	7.0	4		0.6	1.9			
8	7.7		0.6	9.3	5		0.8	2.5			
10	9.5		0.8	11.5	6		1.0	3.1			
12	11.3	+0.3	1.0	13.7	7		1.2	3.8			
14	13.3	-0.5	1.1	15.9	8		1.4	4.4			
16	15.2		1.2	16.0	9		1.6	5.0			
16	17.1		1.3	20.1	10	.45	1.8	5.6	45*	25*	75*
20	19.1		1.4	22.3	11	±15	2.0	6.3	70	35*	75*
22	21.1	+0.4	1.5	24.5	12		2.2	6.9			
25	24.1	-0.5	1.7	27.7	13		2.5	7.9			
28	27.0		1.9	31.0	15		2.8	8.8			
32	30.7	+0.4	2.2	35.1	16		3.2	10.0			
36	34.5	-0.7	2.4	39.5	18		3.6	11.3			
40	38.4		2.7	43.8	20		4.0	12.5			

-	ft, ,	4			1,			II,		
d _H .	π, ,	-		-	. %					max
4	0.30	4.1	.00	3		0.3	1.0			
4.5	0.34	4.6	±0.2	3		0.3	1.1			
5	0.36	5.1	.0.25	3.5		0.35	1.2			
5.5	0.36	5.7	±0,25	3.5		0.35	1.4			
6	0.40	6,2		4.5		0.4	1.5			
6.5	0.40	6.7	.0.2	4.5		0.4	1.8			
7.0	0.46	7.3	±0.3	5		0.5	1.8			
7.5	0.46	7.8		5	±15	0.5	1.9	45*	35*	75*
8.0	0.56	8.3		6		0.6	2.0			
8.5	0.56	8.9	±0.4	6		0.6	2.2			
9.0	0.60	9.4	±0.4	6		0.8	2.3			
9.5	0.60	9.9		6		0.8	2.4			
10.0	0.65	10.5	.05	7		0.8	2.5			
11.0	0.80	11.6	±0.5	8		1.0	2.8			
12.0	0.90	12.6	±0.6	8		1.2	3.0			

A —

			dj.	1	'-					
	, .	-		-	. %	6				max
4.0	0.32	4.23	.2	4		0.4	0.75			
4.5	0.33	4.72	.2	4		0.4	0.85			
5.0	0.36	5.24	±0.25	4		0.4	0.95			
5.5	0.43	5.81	±0.25	5		0.5	1.05			
	0.44	6.31		5		0.6	1.15			
6.5	0.50	6.86	±0, 6	5		0.6	1.25			
7.0	0.51	7.35	±0,0	5		0.6	1.35			
7.5	0.59	7.92		6		0.6	1.45			
8.0	0.60	8.41		6		0.6	1.50			
8.5	0.68	8.98	±0.4	6	X IO	0.6	1.65	AtL*	35"	75*
9.0	0.76	9.55	±0.4	7	_	0.7	1.75		33	75
9.5	0.78	10.05		7		0.7	1.85			
10.0	0.79	10.55	.05	7		0.8	1.90			
11.0	0.98	11.74	±0.5	8.5		0.9	2.15			
12.0	1.00	12.72	±₫,Ѣ	8.5		1.2	2.30			
13.0	1.15	13.84	±0,0	10		12	2.55			
14.0	1.20	14.84	.0.7	10		12	2.70			
15.0	1.24	15.98	±0.7	10		12	2.90			
16.0	1.30	17.00	.00	12		1.4	3.10			
18.0	1.40	19.20	±0.8	12		1.4	3.50			

()

Рисунок Б.1 — Схема устройства для изгиба

20*

34028-2016

.4			20 /	,	-	
.5		•		,		
.6	•	/				
			f - *3.5 d_M .			(.1)
d_H —		, (.1); , .			
.7 .8	()	(5)			.1.	
.1—						

</th <th></th>	
16 8 .	5*
. 16 25 .	8*
. 25 50	10d,,

.9 .

() .1 . 1.1 : 500. .1. . 1.2 .16. .2. .1 . (.1.3) . 1.4 .2 .2.1 (. .2 .26). .2.2 .36 .2.3 .2) (8 .1. .2.4 .2.5 .26) (.) 2. .2.6) .4. » mnxoBHvaw

anoi-iuinw

.1 —

_____/

_

.1—

400	1		4
500	2	800	5
600	3	1000	6

.2—

				*
«	»		-	1
«		»		2
«	-	»		3

. 2

. 2		
		-
« « »	_	4
« »	_	5
« »		6
« »	_	7
« »		8
« »	_	9
« - » (« - »)	-	10
« »	_	11
« »	_	12
« - »	_	13
« - »	_	14
« »	_	15
« »	_	16
« »	_	17
« »		18
« »	_	19
« » « - »	_	20
« 8 - »()	_	21
« »	_	22
« »	_	23
« »	_	24
« »	3	25
« - »	_	26
« »		29
« — »	_	31
. « - »	_	33
« - »		34
« - »	_	35
« »()	_	36
« - »		37
« - » . —« 3« »		38
« - »	_	39
« - »	_	923

8.2.7 1 12 . .4.

. —

1	&
12	-/

.4—

1	
12	vj/f/fj/minimm

· .

()

.1 () -

.1.

.1

	10—25				_
	20—40				_
-	10—40		_	_	3
-	6—40		3	_	3
	4—40				_
	—22	_	_	6	3

__ _» , . . .

·

, -III (400) 14098. - (15- 14098). (4<//>/,).

.3.2

-III (400) . 2. 3 4 3.

· (23- 14098)

« », -

• (Cl- 14098) -

10922 . 400. .4

.4.1 400 , 500 . 600 . , 10922 12004 400.

.,

```
700 / <sup>2</sup> —
                                       600 / 2
                                                                  400 500
                                                                           ( . .
90*
     .4.
                    0, (< 2) ,
   ,( ^}—
    .4.4
                                                                             500 / 2
            400
                                                                600
                     500
                                   600 / 2 —
     .4.5
                                                                 5d<sub>n</sub> – 12
                 ( .2).
```


34028-2016

.2—

. .4.6 , .4.2— .4.5. ()

, , () 9000 . 12 . 240: -12*9000- 240 34028—2016 1 . 8 , () 11700 . 10 . 1. 2. 500. 1 (2): 1 - - *11700- 1- 2- 500-6 - 2 34028—2016

 1 .
 ,
 ()
 ,
 10 .
 .

 1.
 2.
 500.

 1 - -10- 1-082- 500 34028—2016 10 . (): *- - 2- 500 34028—2016* 2 . 8 , 12 . 2. 500, 2 - 12- 2- 500 34028—2016 6.1.4.2 2 . (1). 15 . . (): 2 - 1-15*9000- 1- 600 34028—2016 2 . (1). 15 . 1. 600. (), (). (), (): 2 - 1-15*9000- 1- 600 34028—2016

34028-2016

()

- = : (.2)

• /= -

8.

2 .

(

.1

200

, 2 %.

.1—

.4 , 2603.

4142. 22867. 12026. : 600 50 350 (. 23732).

.5 .5.1 98 * —100 ' . 0.9 ₂ (5.7).

* 51999—2002 . ».

.5.2 - 0.9a₀₂W. (.1) , 3. W— (.2) d— .5.3 (.) G, . .5.4 $G = \frac{P}{g}G_0$. (.4) G L .1. .5.5 8 6.1.7 6.2.6

8.207.

.5.6

669.14-122:006.354 77.140.15

,

www.90stinfo.ru info@eostinfo.ru