Deep Learning Homework 1

FEYZULLAH ASILLIOGLU - 150121021

Question 1 - Gradient Descent/Ascent Implementation

This question implements gradient descent and gradient ascent algorithms for a complex objective function. The implementation includes:

- A new objective function with similar complexity but different characteristics
- Momentum-based gradient descent/ascent for better convergence
- Improved visualization with gradient paths
- Numerical gradient computation for robustness

Figure 1: Contour plot of the objective function

Figure 2: Gradient ascent paths with momentum

Figure 3: Gradient descent paths with momentum

Question 2 - Polynomial Regression

This question implements polynomial regression with different degrees and regularization techniques. The implementation includes:

- Linear regression (1st degree polynomial)
 10th degree polynomial regression
 Lasso regularization with coordinate descent

- Cross-validation for model selection
- Feature normalization for numerical stability

Figure 4: First-order polynomial fit with cross-validation

Figure 5: 10th degree polynomial fit with cross-validation

Figure 6: 10th degree polynomial with Lasso regularization

Question 3 - Logistic Regression

This question implements logistic regression with various improvements:

- Mini-batch gradient descent

- L2 regularization
 Early stopping
 Learning rate decay
 Multiple evaluation metrics

Figure 7: Logistic regression decision boundary and training loss