SEQUENCE LISTING

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA

<120> Ameliorative agent for low vasopressin concentration

<130> PH-944-PCT

<150> JP 11-189322

<151> 1999-07-02

<160> 75

<170> PatentIn Ver. 2.0

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 1

aaatagccct tgaccaggca

20

<210> 2

<211> 38

<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
(100)	
<400> 2	
ctggttcggc ccacctctga aggttccaga atcgatag	38
<210> 3	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 3	
ggatcccggg ccagtggata gacagatg	28
(0.10)	
<210> 4	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
WILL TO THE STATE OF THE STATE	
<400> 4	

<210> 5

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 5

gttttcccag tcacgac

17

<210> 6

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 6

caggaaacag ctatgac

17

<210> 7

<211> 31

<212> DNA

<213> Artificial Sequence

<220>	
<223> Synthetic DNA	
<400> 7	
gtctaagctt ccaccatgaa acttcgggct c	31
<210> 8	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
(0.00)	
<220>	
<223> Synthetic DNA	
<400> 8	
tgttggatcc ctgcagagac agtgaccaga	20
	30
<210> 9	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 9	
gtctgaattc aagcttccac catggggttt gggctg	36
<210> 10	

```
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
⟨400⟩ 10
                                                                   41
tttcccgggc ccttggtgga ggctgaggag acggtgacca g
<210> 11
<211> 109
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 11
gtctgaattc aagcttagta cttggccagc ccaaggccaa ccccacggtc accctgttcc 60
cgccctcctc tgaggagctc caagccaaca aggccacact agtgtgtct
                                                                 109
<210> 12
<211> 110
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
```

<400> 12				
ggtttggtgg tctccactcc cgcctt	gacg gggctgccat	ctgccttcca	ggccactgtc	60
acageteceg ggtagaagte actgat	caga cacactagtg	tggccttgtt		110
<210> 13				
<211> 98				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Synthetic DNA				
<400> 13				
ggagtggaga ccaccaaacc ctccaa	acag agcaacaaca	agiacgcggc	cagcagctac	60
ctgagcctga cgcccgagca gtggaa	gtcc cacagaag		į	98
⟨210⟩ 14				
<211> 106				
<212> DNA				
<213> Artificial Sequence				
4				
<220>				
<223> Synthetic DNA				
(122)				
<400> 14		-		
tgttgaattc ttactatgaa cattct			gtgctccctt	60
catgogtgac ctggcagctg tagotte	ctgt gggacttcca	ctgctc		106

<210> 15		
<211> 43		
<212> DNA		
<213> Artificial	Sequence	
<220>		
<223> Synthetic D	NA	
<400> 15		
gtctgaattc aagctt	agta cttggccagc ccaaggccaa ccc	43
(010) 10		
<210> 16		
<211> 20		
<212> DNA	Caruanaa	
<213> Artificial	Sequence	
<220>		
<223> Synthetic D	NA	
<400> 16		
tgttgaattc ttacta	tgaa	20
<210> 17		
<211> 39		
<212> DNA		
<213> Artificial	Sequence	
<220>		
<223> Synthetic D	NA	

⟨400⟩ 17	
caacaagtac gcggccagca gctacctgag cctgacgcc	39
⟨210⟩ 18	
⟨211⟩ 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 18	
gtagctgctg gccgcgtact tgttgttgct ctgtttgga	39
⟨210⟩ 19	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
/99 n\	
<220>	
<223> Synthetic DNA	
<400> 19	
gtctgaattc aagcttagtc ctaggtcgaa ctgtggctgc accatc	46
<210> 20	
<211> 34	
<212> DNA	

<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 20	
tgttgaattc ttactaacac tctcccctgt tgaa	34
<210> 21	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 21	
gtctaagctt ccaccatggc ctggactcct ctctt	35
<210> 22	
⟨211⟩ 48	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Synthetic DNA	
<400> 22	
tgttgaattc agatctaact acttacctag gacagtgacc ttggtccc	48

```
<210> 23
<211> 128
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 23
```

gtctaagctt ccaccatggg gtttgggctg agctgggttt tcctcgttgc tcttttaaga 60 ggtgtccagt gtcaggtgca gctggtggag tctgggggag gcgtggtcca gcctgggagg 120 tccctgag 128

<211> 125 <212> DNA <213> Artificial Sequence

<210> 24

<220>

<400> 24

<223> Synthetic DNA

accattagta gtggtggtag ttacacctac tatccagaca gtgtgaaggg gcgattcacc 60 atctccagag acaattccaa gaacacgctg tatctgcaaa tgaacagcct gagagctgag 120 gacac 125

<210> 25 <211> 132

<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 25	
ctaccaccac tactaatggt tgccacccac tccagcccct tgcctggagc ctggcggacc	60
caagacatgc catagctact gaaggtgaat ccagaggctg cacaggagag tctcagggac	120
ctcccaggct gg	132
<210> 26	
<211> 110	
<212> DNA	
<213> Artificial Sequence	
/990\	
<220> <223> Synthetic DNA	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
<400> 26	
tgttggatcc ctgaggagac ggtgaccagg gttccctggc cccagtaagc aaagtaagtc	60
atastastat statement when the	110
<210> 27	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	

cggtcaagct cac

```
<223> Synthetic DNA
 <400> 27
 gtctaagctt ccaccatggg gtttgggctg
                                                                 30
 <210> 28
 <211> 30
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 28
tgttggatcc ctgaggagac ggtgaccagg
                                                                 30
<210> 29
<211> 133
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 29
acaaagette caccatggee tggacteete tettettett etttgttett cattgeteag 60
gttctttctc ccagcttgtg ctgactcaat cgccctctgc ctctgcctcc ctgggagcct 120
```

```
<210> 30
<211> 118
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 30
agcaagatgg aagccacagc acaggtgatg ggattcctga tcgcttctca ggctccagct 60
ctggggctga gcgctacctc accatctcca gcctccagtc tgaggatgag gctgacta
                                                                  118
<210> 31
<211> 128
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 31
ctgtggcttc catcttgctt aagtttcatc aagtaccgag ggcccttctc tggctgctgc 60
tgatgccatt caatggtgta cgtactgtgc tgactactca aggtgcaggt gagcttgacc 120
gaggctcc
                                                                  128
<210> 32
<211> 114
<212> DNA
```

<213> Artificial Sequence

<220>		
<223> Synthetic DNA		
<400> 32		
cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca	ccctcacaaa	60
ttgttcctta attgtatcac ccacaccaca gtaatagtca gcctcatcct	caga	114
<210> 33		
⟨211⟩ 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic DNA		
<400> 33		
acaaagcttc caccatg	17	
<210> 34		
<210> 34 <211> 19		
<212> DNA		
<213> Artificial Sequence		
(=xo) in viriotal boquenoc		
<220>		
<223> Synthetic DNA		
<400> 34		
cttggatccg ggctgacct	19	

⟨210⟩ 35	
<211> 75	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 35	
cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca cgtacacaaa	
ttgttcctta attgt	75
<210> 36	
<211> 43	
<212> DNA	
<213> Artificial Sequence	
(210) Milliolal Sequence	
<220>	
<223> Synthetic DNA	
<400> 36	
aaaggateet taagateeat caagtaeega gggggettet etg	43
<210> 37	
<211> 46	
<212> DNA	
<213> Artificial Sequence	

<220>	
<223> Synthetic DNA	
<400> 37	
acaaagetta gegetaeete accateteea geeteeagee tgagga	46
(0.10)	
<210> 38	
<211> 111	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Synthetic DNA</pre>	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
<400> 38	
cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca cgtacacaaa	60
ttgttcctta attgtatcac ccacaccaca gatatagtca gcctcatcct c	111
<210> 39	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 39	
cttctctggc tgctgctgat accattcaat ggtgtacgta ct	42

<210> 40	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
(100)	
<400> 40	
cgagggccct tctctggctg ctgctg	26
<210> 41	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 41	
gagaagggcc ctargtacst gatgrawctt aagca	35
<210> 42	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	

<212> PRT

<400> 42	
cacgaattca ctatcgattc tggaaccttc agagg	35
<210> 43	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 43	
ggcttggagc tcctcaga	18
<210> 44	
<210> 44 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 44	
gacagtggtt caaagttttt	20
<210> 45	
<211> 118	

<213> Mus musculus

<400> 45

Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser Phe Ser Leu Gly Ala

1 5 10

15

Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr

20

25

30

Ile Glu Trp Tyr Gln Gln Gln Pro Leu Lys Pro Pro Lys Tyr Val Met

35

40

45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp

50

55

60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Asp Arg Tyr Leu Ser Ile Ser

65

70

75

80

Asn Ile Gln Pro Glu Asp Glu Ala Met Tyr Ile Cys Gly Val Gly Asp

85

90

95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Val

100

105

110

Thr Val Leu Gly Gln Pro

115

<210> 46

<211> 118

<212> PRT

<213> Mus musculus

<400> 46

Glu Val Gln Leu Val Glu Ser Gly Gly Asp Leu Val Lys Pro Gly Gly

1

5

10

15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

20	2	5	30
Gly Met Ser Trp II	e Arg Gln Thr Pr	o Asp Lys Arg	Leu Glu Trp Val
35	40		45
Ala Thr Ile Ser Se	Gly Gly Ser Ty	r Thr Tyr Tyr	Pro Asp Ser Val
50	55	60	
Lys Gly Arg Phe Th	lle Ser Arg As	p Asn Ala Lys .	Asn Thr Leu Tyr
65	70	75	80
Leu Gln Met Ser Se	Leu Lys Ser Gl	u Asp Thr Alai	Met Phe Tyr Cys
8	;	90	95
Ala Arg Gln Thr Th	Met Thr Tyr Ph	e Ala Tyr Trp	Gly Gln Gly Thr
100	10	5	110
Leu Val Thr Val Se	Ala		
115			
<210> 47			
<211> 116			
<212> PRT			
<213> Homo sapiens			
<400> 47			
Gln Leu Val Leu Th	Gln Ser Pro Se	r Ala Ser Ala	Ser Leu Gly Ala
1)	10	15
Ser Val Lys Leu Th	Cys Thr Leu Se	r Ser Gln His	Ser Thr Tyr Thr
20	2	5	30
Ile Glu Trp His Gl	ı Gln Gln Pro Gl	u Lys Gly Pro	Arg Tyr Leu Met
35	40		45
Lys Leu Lys Gln As	Gly Ser His Se	r Thr Gly Asp	Gly Ile Pro Asp
50	55	60	
Arg Phe Ser Gly Se	r Ser Ser Gly Al	a Glu Arg Tyr I	Leu Thr Ile Ser

6	<u>.</u>				7()				7	5				80
Se	r Lei	u Gl	n Se	r Gli	ı Asp	Gli	u Ala	a As	р Ту	r Ty	r Cy:	s Gl	y Va	l Gl	y Asp
				8	5				90)				9	5
Thi	r Ile	e Ly	s Gli	ı Glı	n Phe	· Vai	l Ty	r Va	l Phe	e Gly	y Gly	y Gl	y Thi	r Lys	s Leu
			100)				10	ō				110)	
Thi	· Val	l Lei	ı Gly	I											
		118	<u>.</u>												
<21	0> 4	18													
<21	1> 1	.18													
<21	2> P	RT													
<21	3> H	omo	sapi	ens											
<40	0> 4	8													
Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	Leu	Gly	Ala
1				5					10					15	
Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	Thr	Tyr	Thr
			20					25					30		
He	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Lys	Tyr	Leu	Met
		35					40					45			
Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	He	Pro	Asp
	50					55					60				
Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	Thr	Ile	Ser
65					70					75					80
Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	Val	Gly	Asp
				85					90					95	
Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	Thr	Lys	Leu
			100					105					110		
Thr	Val	Leu	Gly	Gln	Pro										

<210> 49 <211> 118 <212> PRT <213> Homo sapiens <400> 49 Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala 1 5 10 15 Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr 20 25 30 Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys Tyr Val Met 35 40 45 Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp 50 55 60 Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser 65 70 75 Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp 85 90 Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu 100 105 110 Thr Val Leu Gly Gln Pro

<210> 50

<211> 118

<212> PRT

<213> Homo sapiens

<40	0> 5	0													
Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	Leu	Gly	Ala
1				5					10)				15	
Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	Thr	Tyr	Thr
			20					25					30		
Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Arg	Tyr	Leu	Met
		35					40					45			
Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	He	Pro	Asp
	50					55					60				
Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	Thr	Ile	Ser
65					70					75					80
Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	Val	Gly	Asp
				85					90					95	
Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	Thr	Lys	Leu
			100					105					110		
Thr	Val	Leu	Gly	Gln	Pro										
		115													
<210	> 51														
<211	> 11	8													
<212	> PR	T													
<213	<213> Homo sapiens														
<400	> 51														
Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser :	Leu	Gly	Ala
1				5					10					15	
Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	Thr	Tyr	Thr
			20					25					30		

He	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Arg	g Tyi	· Val	Met
		35					40	l				45	.		
Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	I I I e	e Pro	Asp
	50					55					60)			
Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	Thr	· Ile	Ser
65					70					75					80
Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	' Val	Gly	Asp
				85					90					95	
Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	Thr	Lys	Leu
			100					105					110		
Thr	Val	Leu	Gly	Gln	Pro										
		115													
<210> 52															
<21	1> 13	18													
<213	2> PF	TS													
<213	3> Hc	omo s	sapie	ens											
<400	0> 52	2													
Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	Leu	Gly	Ala
1				5					10					15	
Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	Thr	Tyr	Thr
			20					25					30		
Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Lys	Tyr	Leu	Met
		35					40					45			
Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	Ile	Pro	Asp
	50					55					60				
Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	Thr	He	Ser
65					70					75					80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro <210> 53 <211> 118 <212> PRT <213> Homo sapiens <400> 53 Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro

<213> Homo sapiens

```
<210> 54
<211> 118
<212> PRT
<213> Homo sapiens
⟨400⟩ 54
Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala
  1
                  5
                                      10
                                                           15
Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr
             20
                                  25
                                                      30
Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys Tyr Val Met
         35
                              40
                                                  45
Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp
     50
                          55
                                              60
Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser
 65
                     70
                                          75
Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp
                 85
                                      90
Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu
            100
                                 105
                                                     110
Thr Val Leu Gly Gln Pro
        115
<210> 55
<211> 118
<212> PRT
```

<400> 55
Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala
1 5 10 15
Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr
20 25 30
Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Val Met
35 40 45
Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp
50 55 60
Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser
65 70 75 80
Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp
85 90 95
Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu
100 105 110
Thr Val Leu Gly Gln Pro
115
Z910\ FC
<210> 56 <211> 119
<211> 118 12
<212> PRT
<213> Homo sapiens
<400> 56
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Pro Asp Ser Val $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Gln Thr Thr Met Thr Tyr Phe Ala Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ser

115

<210> 57

<211> 411

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 57

atg aac ttc ggg ctc agc ttg att ttc ctt gcc ctc att tta aaa ggt Met Asn Phe Gly Leu Ser Leu Ile Phe Leu Ala Leu Ile Leu Lys Gly

-15

-10

-5

gtc	cag	tgt	gag	gtg	caa	ctg	gtg	gag	tct	ggg	gga	gac	tta	gtg	aag	96
Val	Gln	Cys	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Asp	Leu	Val	Lys	
		-1	1				5					10				
cct	gga	ggg	tcc	ctg	aaa	ctc	tcc	tgt	gca	gcc	tct	gga	ttc	act	ttc	144
Pro	Gly	Gly	Ser	Leu	Lys	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	
	15					20					25					
agt	agc	tat	ggc	atg	tct	tgg	att	cgc	cag	act	cca	gac	aag	agg	ctg	192
Ser	Ser	Tyr	Gly	Met	Ser	Trp	Ile	Arg	Gln	Thr	Pro	Asp	Lys	Arg	Leu	
30					35					40					45	
gag	tgg	gtc	gca	acc	att	agt	agt	ggt	ggt	agt	tac	acc	tac	tat	cca	240
Glu	Trp	Val	Ala	Thr	Ile	Ser	Ser	Gly	Gly	Ser	Tyr	Thr	Tyr	Tyr	Pro	
				50					55					60		
gac	agt	gtg	aag	ggg	cga	ttc	acc	atc	tcc	aga	gac	aat	gcc	aag	aac	288
Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn	
			65					70					75			
									aag							336
Thr	Leu		Leu	Gln	Met	Ser		Leu	Lys	Ser	Glu	Asp	Thr	Ala	Met	
		80					85					90				
									act							384
Phe		Cys	Ala	Arg	Gln		Thr	Met	Thr	Tyr		Ala	Tyr	Trp	Gly	
200	95	a a +	- t -	-4-		100	1.1				105					
		act														411
	GIY	Thr	Leu	vai		vai	ser	Ala								
110					115											
<210	> 58	3														

<211> 411

<212> DNA

<213> Homo sapiens

```
<220>
 <221> CDS
 <222> (1).. (411)
<220>
<221> mat_peptide
<222> (58).. (411)
<400> 58
atg ggg ttt ggg ctg agc tgg gtt ttc ctc gtt gct ctt tta aga ggt
                                                                    48
Met Gly Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
                 -15
                                     -10
                                                           -5
gtc cag tgt cag gtg cag ctg gtg gag tct ggg gga ggc gtg gtc cag
                                                                    96
Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
         -1
               1
                               5
                                                  10
cct ggg agg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc
                                                                    144
Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
     15
                          20
                                              25
agt agc tat ggc atg tct tgg gtc cgc cag gct cca ggc aag ggg ctg
                                                                    192
Ser Ser Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 30
                      35
                                          40
                                                              45
gag tgg gtg gca acc att agt agt ggt ggt agt tac acc tac tat cca
                                                                   240
Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Pro
                  50
                                      55
                                                          60
gac agt gtg aag ggg cga ttc acc atc tcc aga gac aat tcc aag aac
                                                                   288
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
```

75

336

70

acg ctg tat ctg caa atg aac agc ctg aga gct gag gac acg gct gtg

<211> 9

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 80 85 90 tat tac tgt gcg aga cag act act atg act tac ttt gct tac tgg ggc 384 Tyr Tyr Cys Ala Arg Gln Thr Thr Met Thr Tyr Phe Ala Tyr Trp Gly 95 100 105 cag gga acc ctg gtc acc gtc tcc tca 411 Gln Gly Thr Leu Val Thr Val Ser Ser 110 115 <210> 59 <211> 11 <212> PRT <213> Homo sapiens <400> 59 Lys Ala Ser Gln Asp Val Asn Thr Ala Val Ala 1 5 10 <210> 60 <211> 7 <212> PRT <213> Homo sapiens <400> 60 Ser Ala Ser Asn Arg Tyr Thr 1 5 <210> 61

```
<212> PRT
<213> Homo sapiens
<400> 61
Gln Gln His Tyr Ser Thr Pro Phe Thr
                  5
  1
<210> 62
<211> 5
<212> PRT
<213> Homo sapiens
<400> 62
Pro Tyr Trp Met Gln
 1
<210> 63
<211> 16
<212> PRT
<213> Homo sapiens
<400> 63
Ser Ile Phe Gly Asp Gly Asp Thr Arg Tyr Ser Gln Lys Phe Lys Gly
                                     10
                                                         15
<210> 64
<211> 11
<212> PRT
<213> Homo sapiens
```

<400> 64

Gly Leu Arg Arg Gly Gly Tyr Tyr Phe Asp Tyr

1

5

10

<210> 65

<211> 411

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

⟨400⟩ 65

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48

Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15

-10

-5

tct ttc tcc caa ctt gtg ctc act cag tca tct tca gcc tct ttc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser Phe Ser

-1 1

5

10

ctg gga gcc tca gca aaa ctc acg tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15

20

25

acg tac acc att gaa tgg tat cag caa cag cca ctc aag cct cct aag 192

Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Leu Lys Pro Pro Lys 30 35 40 tat gtg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tct gga tcc agc tct ggt gct gat cgc tac ctt 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Asp Arg Tyr Leu 65 70 75 agc att tcc aac atc cag cca gaa gat gaa gca atg tac atc tgt ggt 336 Ser Ile Ser Asn Ile Gln Pro Glu Asp Glu Ala Met Tyr Ile Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tat gtt ttc ggc ggt ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aag gtc act gtc cta ggt cag ccc 411 Thr Lys Val Thr Val Leu Gly Gln Pro 110 115 <210> 66 <211> 411 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)... (411)

<220>

<221> mat_peptide

<400> 66

15

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15 -10 -5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

-1 1 5 10

20

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

25

acg tac acc att gaa tgg cat cag cag cag cca gag aag ggc cct cgg 192 Thr Tyr Thr Ile Glu Trp His Gln Gln Gln Pro Glu Lys Gly Pro Arg

30 35 40 45

tac ttg atg aaa ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Leu Met Lys Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60

att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu

65 70 75

acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt 336

Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly

80 85 90

gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly

95 100 105 acc aaa ctg acc gtc cta ggt cag ccc 411

Thr Lys Leu Thr Val Leu Gly Gln Pro

<210> 67

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)... (411)

<220>

<221> mat_peptide

<222> (58).. (411)

⟨400⟩ 67

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48

Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15 -10 -5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

-1 1 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15 20 25

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct aag 192 Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys

30 35 40 45

tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240

<400> 68

Tyr	Leu	Met	Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	
				50					55					60		
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
Ile	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	tac	tgt	ggt	336
Thr	Ile	Ser	Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	
		80					85					90				
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384
Val	Gly	Asp	Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	
	95					100					105					
acc	aaa	ctg	acc	gtc	cta	ggc	cag	ccc								411
Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	Pro								
110					115											
<210)> 68	3														
<211	> 4]	11														
<212)> Di	NA														
<213	> Ho	omo s	sapie	ens												
ė																
<220	>															
<221	> CI)S														
<222	> (1	i)	(411)													
<220	\rangle															
<221	> ma	ıt_pe	ept id	le												
<222	> (5	58)	(411	.)												

ate	gcc	tgg	act	cct	cto	ttc	tto	tto	: ttt	gtt	ct	t cat	tgo	t ca	a ggt	48
Met	Ala	Trp	Thr	Pro	Leu	Phe	Phe	Phe	Phe	Val	Lei	ı His	cys	Sei	Gly	
				-15)				-10	l				_[)	
tct	ttc	tcc	cag	ctt	gtg	ctg	act	caa	tcg	ccc	tct	gcc	tct:	gcc	tcc:	96
Ser	Phe	Ser	Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Sei	: Ala	Ser	Ala	Ser	
		-1	1				5					10)			
ctg	gga	gcc	tcg	gtc	aag	ctc	acc	tgc	acc	ttg	agt	agt	cag	cac	agt	144
Leu	Gly	Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	
	15					20					25					
acg	tac	acc	att	gaa	tgg	tat	cag	cag	cag	cca	gag	aag	ggc	cct	aag	192
Thr	Tyr	Thr	Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Lys	
30					35					40					45	
tac	gtg	atg	gat	ctt	aag	caa	gat	gga	agc	cac	agc	aca	ggt	gat	ggg	240
Tyr	Val	Met	Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	
				50					55					60		
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
Ile	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	tac	tgt	ggt	336
Thr	Ile	Ser	Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	
		80					85					90				
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384
Val	Gly	Asp	Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	
	95					100					105					
acc	aaa	ctg	acc	gtc	cta	ggc	cag	ccc								411
Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	Pro								
110					115											

<210> 69

```
<211> 411
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1).. (411)
<220>
<221> mat_peptide
<222> (58)... (411)
<400> 69
atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt
                                                                    48
Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly
                -15
                                     -10
                                                           -5
tet tte tee cag ett gtg etg act caa teg eee tet gee tet gee tee
                                                                    96
Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser
         -1
               1
                               5
                                                   10
ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt
                                                                    144
Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser
     15
                          20
                                              25
acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct agg
                                                                    192
Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg
 30
                     35
                                          40
                                                              45
tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg
                                                                    240
```

60

288

Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly

att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc

55

50

Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 110 115 <210> 70 <211> 411 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1).. (411) <220> <221> mat_peptide <222> (58).. (411) <400> 70 atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15-10-5

tct	ttc	tcc	cag	ctt	gtg	ctg	act	caa	tcg	ccc	tct	gcc	tct	gcc	tcc	96
Ser	Phe	Ser	Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	
		-1	1				5					10				
ctg	gga	gcc	tcg	gtc	aag	ctc	acc	tgc	acc	ttg	agt	agt	cag	cac	agt	144
Leu	Gly	Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	
	15					20					25					
acg	tac	acc	att	gaa	tgg	tat	cag	cag	cag	cca	gag	aag	ggc	cct	agg	192
Thr	Tyr	Thr	Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Arg	
30					35					40					45	
tac	gtg	atg	gat	ctt	aag	caa	gat	gga	agc	cac	agc	aca	ggt	gat	ggg	240
Tyr	Val	Met	Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	
				50					55					60		
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
He	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	tac	tgt	ggt	336
Thr	He	Ser	Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	
		80					85					90				
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384
Val	Gly	Asp	Thr	He	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	
	95					100					105					
acc	aaa	ctg	acc	gtc	cta	ggc	cag	ccc								411
Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	Pro								
110					115											
10 10	·															

<210> 71

<211> 411

<212> DNA

<213> Homo sapiens

```
<220>
 <221> CDS
 <222> (1).. (411)
 <220>
 <221> mat_peptide
<222> (58).. (411)
<400> 71
atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt
                                                                    48
Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly
                 -15
                                     -10
                                                          -5
tet tte tee cag ett gtg etg act caa teg eee tet gee tee
                                                                   96
Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser
         -1
              1
                               5
                                                  10
ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt
                                                                   144
Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser
     15
                         20
                                              25
acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct aag
                                                                   192
Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Pro Glu Lys Gly Pro Lys
 30
                     35
                                         40
                                                              45
tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg
                                                                   240
Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly
                 50
                                     55
                                                          60
att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc
                                                                   288
Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu
```

75

336

70

acc atc tcc agc ctc cag tct gag gat gag gct gac tat atc tgt ggt

65

Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 115 110 <210> 72 <211> 411 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1).. (411) <220> <221> mat_peptide <222> (58).. (411) <400> 72 atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15-10-5tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96

43/48

10

Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

5

-1 1

ctg	gga	gcc	tcg	gtc	aag	ctc	acc	tgc	acc	ttg	agt	agt	cag	cac	agt	144
Leu	Gly	Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	
	15					20					25					
acg	tac	acc	at t	gaa	tgg	tat	cag	cag	cag	cca	gag	aag	ggc	cct	agg	192
Thr	Tyr	Thr	Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Arg	
30					35					40					45	
tac	ctg	atg	gat	ctt	aag	caa	gat	gga	agc	cac	agc	aca	ggt	gat	ggg	240
Tyr	Leu	Met	Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	
				50					55					60		
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
Ile	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	atc	tgt	ggt	336
Thr	Ile	Ser	Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Ile	Cys	Gly	
		80					85					90				
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384
Val	Gly	Asp	Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	
	95					100					105					
acc	aaa	ctg	acc	gtc	cta	ggc	cag	ccc								411
Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	Pro								
110					115											

<210> 73

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

```
<222> (1).. (411)
<220>
\langle 221 \rangle mat_peptide
```

<400	0> 73	3														
atg	gcc	tgg	act	cct	ctc	ttc	ttc	ttc	ttt	gtt	ctt	cat	tgc	tca	ggt	48
Met	Ala	Trp	Thr	Pro	Leu	Phe	Phe	Phe	Phe	Val	Leu	His	Cys	Ser	Gly	
				-15					-10					-5		
tct	ttc	tcc	cag	ctt	gtg	ctg	act	caa	tcg	ccc	tct	gcc	tct	gcc	tcc	96
Ser	Phe	Ser	Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	
		-1	1				5					10				
ctg	gga	gcc	tcg	gtc	aag	ctc	acc	tgc	acc	ttg	agt	agt	cag	cac	agt	144
Leu	Gly	Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	
	15					20					25					
acg	tac	acc	att	gaa	tgg	tat	cag	cag	cag	cca	gag	aag	ggc	cct	aag	192
Thr	Tyr	Thr	Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Lys	
30					35					40					45	
tac	gtg	atg	gat	ctt	aag	caa	gat	gga	agc	cac	agc	aca	ggt	gat	ggg	240
Tyr	Val	Met	Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	
				50					55					60		
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
Ile	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	atc	tgt	ggt	336
Thr	Ile	Ser	Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	He	Cys	Gly	
		80					85					90				
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384

Val Gly Asp	Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	
95				100					105					
acc aaa ctg	acc	gtc	cta	ggc	cag	ccc								411
Thr Lys Leu	Thr	Val	Leu	Gly	Gln	Pro								
110			115											
<210> 74														
<211> 411														
<212> DNA														
<213> Homo	sapi	ens												
<220>														
<221> CDS														
<222> (1)	(411)	ı												
<220>														
<221> mat_p	ept i	le												
<222> (58)	(41)	1)												
<400> 74														
atg gcc tgg	act	cct	ctc	ttc	ttc	ttc	ttt	gtt	ctt	cat	tgc	tca	ggt	48
Met Ala Trp	Thr	Pro	Leu	Phe	Phe	Phe	Phe	Val	Leu	His	Cys	Ser	Gly	
		-15					-10					-5		
tct ttc tcc	cag	ctt	gtg	ctg	act	caa	tcg	ccc	tct	gcc	tct	gcc	tcc	96
Ser Phe Ser	Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	
-1	1				5					10				
ctg gga gcc	tcg	gtc	aag	ctc	acc	tgc	acc	ttg	agt	agt	cag	cac	agt	144
Leu Gly Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	
15				20					25					

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct agg 192 Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg 30 35 40 tac gtg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att eet gat ege tte tea gge tee age tet ggg get gag ege tae ete 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat atc tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 110 115 <210> 75 <211> 34 <212> PRT <213> Homo sapiens <400> 75 Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln 1 5 10 15

30

Asp Leu Arg Arg Arg Phe Phe Leu His His Leu Ile Ala Glu Ile His

25

20

Thr Ala