Exercise 11.5

1. In the given figure. $\overrightarrow{AX} \parallel \overrightarrow{BY} \parallel \overrightarrow{CZ} \parallel \overrightarrow{DU} \parallel \overrightarrow{EV}$ and $\overrightarrow{AB} \cong \overrightarrow{BC} \cong \overrightarrow{CD} \cong \overrightarrow{DE}$ if $\overrightarrow{mMN} = 1$ cm then

find the length of \overline{LN} and \overline{LQ}

Given

In given figure $\overrightarrow{AX} \parallel \overrightarrow{BY} \parallel \overrightarrow{CZ} \parallel \overrightarrow{DU} \parallel \overrightarrow{EV}$,

$$\overrightarrow{AB} \cong \overrightarrow{BC} \cong \overrightarrow{CD} \cong \overrightarrow{DE}$$
, mMN = 1cm

Required:

To find mLN and mLQ

Statement	Reasons
AXIIBYIICZIIDUIIEV	Given
$\overrightarrow{AB} \cong \overrightarrow{BC} \cong \overrightarrow{CD} \cong \overrightarrow{DE}$	Given
BC≅ MN	$ \cdot $ lines through A, B, C, D, E cut \overline{LQ} in
$\overline{NP} \cong \overline{PQ}$	points L, M, N, P, Q.
$m\overline{MN} = 1cm$	Given
$\overline{LN} = 2\overline{MN}$	
=2(1)	$\therefore \overline{MN} = 1cm$
=2cm	
LQ=4MN	*
$= 4 \times 1$ $= 4 cm$	
_ TC III	

2. Take a line segment of length 5cm and divide it into five congruent parts.

[Hint: Draw an acute angle ∠BAX. On AX take

$$\overrightarrow{AP} \cong \overrightarrow{PQ} \cong \overrightarrow{QR} \cong \overrightarrow{RS} \cong \overrightarrow{ST}$$
.

Joint T to B. Draw line parallel to TB from the points P, Q, R and S.]

Construction:

- (i) Take a line segment AB of 5cm long.
- (ii) Draw an acute angle ∠BAX.
- (iii) Mark 5 points on \overline{AX} at equal distance starting from point A.
- (iv) Join the last point (mark)T to B.
- (v) Draw SF, RE, QD, PC parallel to TB these line segments meet AB at F,E,D,C points.

Result: AB has been divided into five equal points

$$\overline{AC} \cong \overline{CD} \cong \overline{DE} \cong \overline{FB}$$

- 3. Fill in the blanks.
- (i) In a parallelogram opposite sides are.... (Parallel / Congruent)
- (ii) In a parallelogram opposite angles are (Equal / Congruent)
- (iii) Diagonals of a parallelogram each other at a point. (Intersect)
- (iv) Medians of a triangle are(Concurrent)
- (v) Diagonal of a parallelogram divides the parallelogram into two triangles. (Congruent)
- 4. In parallelogram ABCD
 - (i) $m\overline{AB} \dots \cong \dots m\overline{DC}$
 - (ii) $m\overline{BC}...\cong...m\overline{AD}$

- (iii) $m\angle 1 \cong ...m\angle 3....$ (iv) $m\angle 2 \cong ...m\angle 4....$ B $\frac{2}{1}$ B $\frac{3}{14}$
- 5. Find the unknowns in the given figure.

Given: Let ABCD be the given figure with

$$\overline{AB} \cong \overline{CD}$$

To Find: m°, n°, x°, y°

Proof:

Statement	Reasons
ABCD is a Parallelogram	$\overline{AB} \cong \overline{CD}$
	$\overline{\mathrm{AD}} \cong \overline{\mathrm{BC}}$
$\angle n = 75^{\circ}$	Opposite interior angles
$m^{o} + 75^{o} = 180^{o}$	supplementary angles
$m^{\circ} = 180^{\circ} - 75^{\circ} = 105^{\circ}$	
$x^{\circ} = m^{\circ}$	
$x^{o} = 105^{o}$	
$x^{\circ} + y^{\circ} = 180^{\circ}$	supplementary angles
$y^{\circ} = 180^{\circ} - x^{\circ}$	
$y^{o} = 180^{o} - 105^{o}$	
$y^{\circ} = 75^{\circ}$	
	l D

6. If the given figure ABCD is a parallelogram, then find x, m.

Given: ABCD is a parallelogram with angles as shown To Find x° and m°

Statement	Reasons
$11 \text{ x}^{\circ} = 55^{\circ}$	Opposite angles of parallelogram
$\begin{cases} x^{o} = \frac{55^{o}}{11} = 5^{o} \\ x^{o} = 5^{o} \end{cases}$	
$(5m + 10)^{\circ} + 55^{\circ} = 180^{\circ}$	Int. supplementary angles
$(5m + 10)^{\circ} = 180^{\circ} - 55^{\circ}$	
$5m^{\circ} + 10^{\circ} = 125^{\circ}$	
$5\text{m}^{\circ} = 125^{\circ} - 10^{\circ}$	
$\int 5m^{\circ} = 115^{\circ}$	
$m^{\circ} = 23^{\circ}$	

7. The given figure LMNP is a parallelogram. Find the value of m, n.

Given: The parallelogram LMNP with lengths and angles as shown to find: m° and n°

Proof:

Statement	Reasons
4m + n = 10(i)	Opposite sides of llgm
$8m - 4n = 8 \dots (ii)$	Opposite side of ligm
Multiplying (i) by 4	
16m + 4n = 40 (iii)	
Adding (i) and (iii)	

$$8m - 4n = 8$$

$$16m + 4n = 40$$

$$24m = 48$$

$$m = \frac{48}{24} = 2$$
Put in (i)
$$4(2) + n = 10$$

$$8 + n = 10$$

$$n = 10 - 8 \implies n = 2$$

8. In the question 7, sum of the opposite angles of the parallelogram is 110°, find the remaining angles.

Given: LMNP is a parallelogram with angles 55°, 55° as shown To Find: All angles

Proof:

Statement	Reasons
$\angle LPN + 55^{\circ} = 180^{\circ}$	Interior angles
$\angle LPN = 125^{\circ}$	
Also	
$\angle m = \angle P$	Opposite angles
\angle m = 125°	$\therefore \angle P = 125^{\circ}$