附 录

114.44	· GSK980MDi 系列外形尺寸 ····································	419
1.1	GSK980MDi(8.4 液晶屏)外形尺寸 ······	419
1.2	GSK980MDi-V(8.4 液晶屏)外形尺寸 ······	420
	GSK980MDi-H(8.4 液晶屏)外形尺寸 ······	
	GSK980MDi(10.4 液晶屏横式)外形尺寸	
1.5	GSK980MDi-V(10.4 液晶屏竖式)外形尺寸	
附录二	、 附加面板外形安装尺寸	·· 425
2.1	AP01A 外形尺寸······	425
2.2	AP03A 外形尺寸	426
附录三	I/O 分线器和 I/O 单元····································	429
3.1	MCT01B	429
3.2	MCT06-R·····	431
3.3	MCT07 · · · · · · · · · · · · · · · · · · ·	431
3.4	IOR-20TP(总线转脉冲 I/O 单元)········	432
附录四	刚性攻丝说明	435
4.1	主轴齿轮比设置	435
4.2	相关参数设置	436
附录五	报警信息······	437
附录六	GSK980MDi 与 GSK980MDc 面板地址差异说明 ····································	449
附录六		
附录七	: 主轴使用功能·······	·· 453
附录七 7.1	ニ 主轴使用功能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• 453 ••• 453
附录七 7.1 7.1	主轴使用功能······ 模拟主轴 ······ .1 双模拟主轴控制······	•• 45 3 ••• 453 ••• 454
附录七 7.1 7.1 7.1	主轴使用功能 模拟主轴 .1 双模拟主轴控制 .2 单模拟主轴控制	•• 45 3 ••• 453 ••• 454 ••• 455
附录七 7.1 7.1 7.1 7.2	主轴使用功能······ 模拟主轴 ······ .1 双模拟主轴控制······	•• 453 ••• 453 ••• 454 ••• 455 ••• 455
附录七 7.1 7.1 7.1 7.2 7.3	主轴使用功能 模拟主轴 .1 双模拟主轴控制 .2 单模拟主轴控制 T 型换档	••• 45 3 ••• 453 ••• 454 ••• 455 ••• 455
附录七 7.1 7.1 7.1 7.2 7.3 7.4	主轴使用功能 模拟主轴 .1 双模拟主轴控制 .2 单模拟主轴控制 T 型换档 M 型换档	••• 453 ••• 453 ••• 454 ••• 455 ••• 455 ••• 459
附录七 7.1 7.1 7.1 7.2 7.3 7.4 7.5 7.6	主轴使用功能 模拟主轴 .1 双模拟主轴控制 .2 单模拟主轴控制 T型换档 M型换档 主轴输出的 PLC 控制 有关信号说明 模拟主轴接线图	•• 453 ••• 453 ••• 454 ••• 455 ••• 455 ••• 459 ••• 460 ••• 462
附录七 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7	主轴使用功能 模拟主轴 1 双模拟主轴控制 2 单模拟主轴控制 T型换档 M型换档 主轴输出的 PLC 控制 有关信号说明 模拟主轴接线图 串行主轴	453 454 455 455 459 462 462
形录七 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	主轴使用功能 模拟主轴 .1 双模拟主轴控制 .2 单模拟主轴控制 T型换档 M型换档 主轴输出的 PLC 控制 有关信号说明 模拟主轴接线图 串行主轴 主轴定向功能	••• 453 ••• 454 ••• 455 ••• 455 ••• 459 ••• 462 ••• 463
形录七 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	主轴使用功能 模拟主轴 1 双模拟主轴控制 2 单模拟主轴控制 T型换档 M型换档 主轴输出的 PLC 控制 有关信号说明 模拟主轴接线图 串行主轴	••• 453 ••• 454 ••• 455 ••• 455 ••• 459 ••• 462 ••• 463
附录七 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 附录八 8.1	主轴使用功能 模拟主轴 .1 双模拟主轴控制 .2 单模拟主轴控制 M型换档 主轴输出的 PLC 控制 有关信号说明 模拟主轴接线图 串行主轴 主轴定向功能 地址定义	•• 453 ••• 454 ••• 455 ••• 455 ••• 459 ••• 462 ••• 463 ••• 465
附录七 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 附录八 8.1 8.2 以	模拟主轴 模拟主轴控制 .2 单模拟主轴控制 2 单模拟主轴控制 T型换档 4 型换档 直轴输出的 PLC 控制 4 专信号说明 模拟主轴接线图 4 专行主轴 主轴定向功能 5 本准梯形图功能说明 地址定义 5 协能配置	453 454 455 455 459 462 463 465 468
附录七 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 附录八 8.1 8.2 以	模拟主轴使用功能 .1 双模拟主轴控制 .2 单模拟主轴控制 .7 型换档 M 型换档 主轴输出的 PLC 控制 有关信号说明 模拟主轴接线图 串行主轴 主轴定向功能 标准梯形图功能说明 地址定义 功能配置 .1 第一主轴旋转控制	••• 453 ••• 454 ••• 455 ••• 455 ••• 459 ••• 462 ••• 463 ••• 465 ••• 468 ••• 468
附录七 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 附录八 8.1 8.2 写 8.2	基轴使用功能 模拟主轴 .1 双模拟主轴控制 .2 单模拟主轴控制 M型换档 主轴输出的 PLC 控制 有关信号说明 模拟主轴接线图 串行主轴 主轴定向功能 水准梯形图功能说明 地址定义 功能配置 .1 第一主轴旋转控制 .2 第二主轴旋转控制	••• 453 ••• 454 ••• 455 ••• 455 ••• 459 ••• 462 ••• 463 ••• 465 ••• 468 ••• 468
附录七 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 附录八 8.1 8.2 以 8.2 8.2 8.2	基轴使用功能 模拟主轴 1 双模拟主轴控制 2 单模拟主轴控制 T 型换档 M 型换档 主轴输出的 PLC 控制 有关信号说明 模拟主轴接线图 串行主轴 主轴定向功能 体准梯形图功能说明 地址定义 功能配置 1 第一主轴旋转控制 2 第二主轴旋转控制	••• 453 ••• 454 ••• 455 ••• 455 ••• 457 ••• 462 ••• 465 ••• 468 ••• 469 ••• 470

8.2.5	M 型自动换挡473
8.2.6	主轴转速开关量控制475
8.2.7	循环启动和进给保持476
8.2.8	冷却控制477
8.2.9	润滑控制477
8.2.10	程序段选跳478
8.2.11	机床锁478
8.2.12	辅助锁478
8.2.13	程序单段479
8.2.14	程序空运行479
8.2.15	选择停479
8.2.16	行程限位与急停479
8.2.17	三色灯481
8.2.18	复位时光标返回481
8.2.19	刚性攻丝482
8.2.20	主轴准停/主轴定向482
8.2.21	外接手脉控制483
8.2.22	CS 轴切换 ·······483
8.2.23	分度台松紧控制484
8.2.24	防护门功能485
8.2.25	抱闸控制486
8.2.26	主轴松紧刀486
8.2.27	BT40 圆盘刀库 ······487
8.2.28	斗笠式刀库491
8.2.29	炮塔刀库495
8.2.30	M10/M11 翻转控制 ······497
8.2.31	主轴倍率498
8.2.32	工作灯499
8.2.33	排屑499
8.2.34	附加面板信号499
8.2.35	手脉试切500
8.2.36	工件吹气500

附 录

約

附录一 GSK980MDi系列外形尺寸

1.1 GSK980MDi (8.4 液晶屏) 外形尺寸

GSK980MDi-V (8.4 液晶屏) 外形尺寸

用户安装开孔图

1.3 GSK980MDi-H (8.4 液晶屏) 外形尺寸

▶ 主机

▶ 操作面板

1.4 GSK980MDi (10.4 液晶屏横式) 外形尺寸

▶ 主机

附

> 操作面板

1.5 GSK980MDi-V (10.4 液晶屏竖式) 外形尺寸

▶ 主机

阼

▶ 操作面板

附录二 附加面板外形安装尺寸

2.1 AP01A 外形尺寸

AP01A: GSK980MDi 的附加面板,可在面板下方拼装,外形及安装尺寸如下。

380±0.2 402⁺²

2.2 AP03A 外形尺寸

AP03A: GSK980MDi-V的附加面板,可在面板下方拼装,外形及安装尺寸如下。

用户安装开孔图

附

附录三 I/O分线器和I/O单元

3.1 MCT01B

① 放大图如下: (虚线部分无效)

② 放大图如下:

电路图如下。

3.2 MCT06-R

MCT06-R 分线器由带 8 个基本继电器分线器基本模块、继电器扩展模块(每个扩展模块带 8 个继电器)两个个模块中的一个或几个组合而成,根据用户需求的不同可配置成四种规格型号。

型号		MCT06-R1	MCT06-R2	MCT06-R3	MCT06-R4
	外形尺寸 (mm*mm)	180*125	255*125	330*125	405*125
组	分线器基本模块	1 个	1 个	1 个	1 个
成	继电器扩展模块	0个(0个继电器)	1个(带8个继电器)	2个(带16个继电器)	3个(带24个继电器)

3.3 MCT07

MCT07 适配 IOL-10F 扩展 I/O 单元。

3.4 IOR-20TP(总线转脉冲 I/O 单元)

通过 IOR-20TP 总线转脉冲 I/O 单元,GSK980MDi 可适配脉冲接口的主轴伺服驱动单元。

▶ 接口地址

总线转脉冲 I/O 单元接口如下(主轴接口与 GSK980MDc 的主轴接口一致)。

CN22 脉冲主轴接口(25芯 DB 孔)

CN41 模拟主轴接口 1 (9 芯 DB 针)

CN52通信接口(9芯DB孔)

说明:

- 1) CN22 脉冲轴接口里的 X、Y 地址从 X70、Y70 开始, I/O 单元上的其它 X、Y 地址从 X71、Y71 开始。
- 2) CN41 模拟主轴接口和 CN52 通信接口为预留接口,暂不使用。

信号	说明	
CP5+、CP5-	第 5 轴脉冲信号	
DIR5+、DIR5-	第5轴方向信号	
ALM5 (X70.3)	第 5 轴/主轴报警信号	
RDY5	第5轴准备好信号	
PC5	第5轴零点信号	
SVC	模拟电压输出	
SET5	第5轴脉冲禁止信号	
EN5	第5轴使能信号	

	标准梯形图功能定义				
地址	符号	功能			
X70.0	VPO	主轴速度/位置状态到位信号			
X70.1	SAR	速度到达信号			
X70.2	COIN	主轴定位完成			
X70.3	SPAL	主轴报警信号			
Y70.0	VP	主轴速度/位置切换信号			
Y70.1	TAP	刚性攻丝信号			
Y70.2	SRV	主轴逆时针旋转			
Y70.3	SFR	主轴顺时针旋转			

Sty.

> 相关参数

6 0 2 LTOP

LTOP =1: 各主轴总线转脉冲功能有效;

=0: 各主轴总线转脉冲功能无效。

3	7	1	0
3	7	1	2
3	7	6	0

主轴个数(1~3) 主轴类型(0: 档位主轴; 1: 模拟主轴; 2: 串行主轴) 各Cs主轴关联的进给轴(0: Cs轴无效; 1: X轴; 2: Y轴; 3: Z轴; 4: 4th轴; 5: 5th轴)

|--|

|--|

ALM4=1: 4th轴报警信号为低电平报警;

=0: 4th轴报警信号为高电平报警。

ALM5=1: 5th轴报警信号为低电平报警;

=0: 5th轴报警信号为高电平报警。

0 0 5	ABP5 ABP4
v v c	1121

ABP4=1: 4th轴脉冲按两相正交输出(需重新开机);

=0: 4th轴脉冲按(脉冲+方向)输出(需重新开机)。

ABP5=1:5th轴脉冲按两相正交输出(需重新开机);

= 0: 5th轴脉冲按(脉冲+方向)输出(需重新开机)。

▶ 注意问题

- 1) GSK980MDi 中主轴需设为串行主轴且 CS 功能有效时才可使用总线转脉冲功能。
- 2) 使用总线转脉冲 I/O 单元时不需要把远程 IO (701.0 号参数)设为有效。
- 3) 使用定向时需要把驱动单元 OSTA 定向信号接到 CN62 的 Y3.0 (37 号脚)。
- 4) 脉冲主轴需要回零时要把编码器接到 I/O 单元编码器接口 (CN21), 并且把电子齿轮比设在系统 参数, 回零时使用回零方式 D 进行回零。
- > 参考接线图(IOR-20TP 配 GS3000 经济型主轴伺服):

		CNC	GS300	00 系列经济	型	
	CIVC			主轴伺服驱动单元		
	22	SRV (Y5.2)	20	CCW		
	23	SFR (Y5.3)	5	CW		
	20	VP(Y5.0)	38	PSTI		
	21	TAP(Y5.1)	6	GAIN		
	19	EN5	23	SON		
接			24	COM-		
CN1	3 或		28	COIN-		
5 (2	9 或	0V	29	ZOUT-		
接 CN15(25PIN,2 排针	16		26	PSTO-		
N,			25	ALM-		
排:	11	+24V	39	COM+		
针	4	ALM5	9	ALM+		
	5	VPO	10	PSTO+		
	6	X5.1	41	PSR	+立:	
	8	X5.2	12	COIN+	按 CP	
	13	SVC	44	VCMD+	接 CN1 (44PIN 3排针)	
	12	SVC-GND	14	VCMD-	44P]	
	1	CP5+	2	PULS+	\mathbf{Z}	
	14	CP5-	17	PULS-	3排	
2		DIR5+	1	SIGN+	针)	
	15	DIR5-	16	SIGN-		
	10	PC5	13	ZOUT+		
接	8	PAO+	19	PAO+		
CN21(15F	7	PAO-	4	PAO-		
	6	PBO+	18	PBO+		
	5	PBO-	3	PBO-		
IN,2	4	PZO+	31	PZO+		
排	3	PZO-	32	PZO-		
	8 OSTA					
		金属外壳技	妾屏蔽			

外

附录四 刚性攻丝说明

4.1 主轴齿轮比设置

CNC 端计算公式:

$$\frac{CMR}{CMD} = \frac{\delta}{\alpha} \times \frac{Z_M}{Z_D}$$

$$\alpha = \delta \times \frac{Z_M}{Z_D} \times \frac{CMD}{CMR}$$

CMR: 主轴指令倍乘系数。 CMD: 主轴指令分频系数。

α: 脉冲当量, 主轴电机接受一个脉冲转动的角度。

δ: CNC 的最小输入指令单位。(0.001°、0.01°或 0.0001°),此值和主轴每一转的移动量对应(相关数据 参数 5216),如数据参数 5216 设置为 1000 时, δ =360/1000=0.360°。

Z_M: 丝杠端齿轮的齿数。

Zp: 电机端齿轮的齿数。

主轴伺服驱动单元端计算公式:

主轴伺服驱动单元的参数 12、13 分别对应位置指令脉冲分频分子,位置指令脉冲分频分母,主轴伺服驱动单元的齿轮比计算公式如下:

$$P \times G = 4 \times N \times C$$

则:

$$G = \frac{4 \times N \times C}{P} = 4 \times N \times C \times \frac{\alpha}{360} = \frac{4 \times C}{360} \times \delta \times \frac{Z_M}{Z_D} \times \frac{CMD}{CMR}$$

其中, P: 电机旋转一圈(360°)需要的脉冲数, 与 CNC 端的对应关系为: $P = 360/\alpha$

G: 驱动单元的电子齿轮比, G=位置指令脉冲分频分子/位置指令脉冲分频分母。

N: 电机的圈数, 为1。

C: 反馈编码器的线数。

刚性攻丝时,为了提高加工精度,一般将主轴伺服驱动的齿轮比设置为 1: 1,即上式中 G=1,从而有以下推论过程:

$$\frac{4 \times C}{360} \times \delta \times \frac{Z_M}{Z_D} \times \frac{CMD}{CMR} = 1 \qquad \frac{CMR}{CMD} = \frac{4 \times C}{360} \times \delta \times \frac{Z_M}{Z_D}$$

以配 DAP03 为例,C=1024,主轴与电机直连, $Z_{\text{M}}/Z_{\text{D}}$ =1,CNC 数据参数 5216 推荐设置为 1000(此时第 5 轴增量系统为 0.001°)(如果第 5 轴的的增量系统为 0.0001°,则此参数推荐值为 10000),即 $\delta = \frac{360}{1000}$ °。

$$\frac{CMR}{CMD} = \frac{4 \times 1024}{360} \times \frac{360}{1000} \times \frac{1}{1} = \frac{512}{125}$$

因此,数据参数 5221 设置为 512,5231 设置为 125。

- FILE

4.2 相关参数设置

CNC 与刚性攻丝功能有关的参数如下。

参数	参数意义	调整说明	推荐值
0187	5th 轴的类型设置	th 轴的类型设置 把 5th 轴设置为旋转轴。	
0588	刚性攻丝切换属性设置	设置刚性攻丝切换,显示等相关属性。	0000, 0000
1010	系统可设置的轴数	设置系统轴数为5轴。	5
5216	刚性攻丝时主轴每一转的移 动量。	根据主轴伺服驱动的反馈编码器线数设置。	1000(1u)、 10000(0.1u)
5221	刚性攻丝的主轴指令倍乘系数(第1挡齿轮)		512
5222	刚性攻丝的主轴指令倍乘系数(第2挡齿轮)		1
5223	刚性攻丝的主轴指令倍乘系数(第3挡齿轮)		1
5224	刚性攻丝的主轴指令倍乘系数(第4挡齿轮)		1
5231	刚性攻丝的主轴指令分频系数(第1挡齿轮)	具体的设置方法见附录四的"4.1 主轴齿轮比设置"。	125
5232	刚性攻丝的主轴指令分频系数(第2挡齿轮)		1
5233	刚性攻丝的主轴指令分频系数(第3挡齿轮)		1
5234	5234 刚性攻丝的主轴指令分频系 数(第 4 挡齿轮)		1
5261	刚性攻丝进刀时的加减速时 间常数	攻丝速度越高,时间设置越大。	80~110
5271	刚性攻丝退刀时的加减速时 间常数(0:使用进刀时的时 间常数)	攻丝速度较低(500 以下)的时候可以不设置该参数,速度 较高时设置该参数,避免退刀影响加工。	0
5211	刚性攻丝退刀时的倍率值	如果退刀时乱牙,则需要适当的增加此参数。	0
5321	刚性攻丝中主轴的反向间隙 量(第1档齿轮)		0
5322	刚性攻丝中主轴的反向间隙 量(第2档齿轮)		0
5323	刚性攻丝中主轴的反向间隙 量(第3档齿轮)	根据主轴各档齿轮的间隙大小进行设置。	0
5324	刚性攻丝中主轴的反向间隙 量(第4档齿轮)		0

附录五 报警信息

报警类型: 0-CNC 错误; 1-CNC 警告; 2-PLC 错误; 3-PLC 警告。

清除方式: 0-按复位键清除; 1-按取消键清除;

2-按复位键或取消键清除; 3-同时按复位键和取消键清除; 4-必须上电才能清除。

————— 报警号,	清除			
类型	方式			
000, 0	0	急停报警,ESP 输入开路。		
001, 0	0	被调用的程序不存在或打开失败。		
002, 0	0	非法G指令。		
003, 0	0	单个指令字的字符数小于2或大于11。		
004, 0	0	指定的牙距F超出有效范围。		
006, 0	0	指定的段号格式错误(不在段首)或超出范围。		
008, 0	0	圆弧指令中圆弧中心地址 I, J, K 指定在选择平面以外的轴上。		
010, 0	0	在同一个程序段中重复输入了相同的指令地址。		
011, 0	0	在同一个程序段输入的指令字超过 100 个。		
012, 0	0	指令值非法或超出有效范围。		
013, 0	0	主轴模拟电压控制无效状态输入了无效的 S 指令。		
014, 0	0	在一个程序段中,不能同时指定00组和01组G指令。		
015, 0	0	主轴模拟电压控制无效状态执行了自动换档指令的 M 指令。		
016, 0	0	刀具长度补偿序号指定错误或超出有效范围(0~32)。		
017, 0	0	刀具号小于数据参数 No.5025 或者大于数据参数 No.5026 的设定值。		
018, 0	0	圆弧数据有误(或超出数据参数 NO.3410 设定的半径允许误差值)。		
019, 0	0	刀具寿命管理中,刀具组号超出范围(1~32)。		
020, 0	0	刀具半径补偿号超出有效范围(0~32)。		
021, 0	0	圆弧指令 G02 或 G03 中给出的 I, J, K 不正确。		
022, 0	0	附加轴(4th,5th轴)不能参与圆弧插补联动。		
023, 0	0	速度 F 值指定错误或超出数据参数 NO.027 允许的范围。		
024, 0	0	程序中缺少 G11。		
025, 0	0	刀具寿命管理中,当前刀具组内无刀具。		
026, 0	0	刀具寿命管理中,当前刀具组未定义。		
027, 0	0	刀具寿命管理中,当前组内刀具数超过8。		
028, 0	0	刀具寿命管理无效,不得使用 G10 L3 指令。		
029, 0	0	G11 不能编在 G10 之前。		
030, 0	0	半径补偿时,不能变更补偿平面。		
031, 0	0	倒角时不能进行平面切换、刀具长度补偿及坐标系变动。		
032, 0	0	指定圆弧的平面内没有移动量,不能完成螺旋线插补。		
033, 0	0	建立或变更半径补偿时,需同时指定相关移动量。		
034, 0	0	半径补偿时,指定的圆弧数据有误(或补偿方式指定错误)。		
035, 0	0	半径补偿时,不可使用 G31。		
036, 0	0	倒角格式错误(或倒角后面程序段不是 G01G02G03 或倒角程序段间指定了允许的非移动指令以外的指令)。		

报警号, 类型	清除 方式	报警内容
037, 0	0	程序段字符数超过 256 个字符。
038, 0	0	公英制的切换,必须在主程序的开头单独指定。
039, 0	0	建立半径补偿时,不能同时指定倒角。
041, 0	0	程序注释书写格式错误(括号不匹配)。
042, 0	0	不能在 G02,G03,G04,G31,G92,G142,G143 下,指定 G43,G44,G49,H。
042, 0	0	宏程序中,计算结果超出允许范围(数据溢出)。
044, 0	0	指定 G66 的程序段中,不能同时指定 00、01 组 G 代码。
045, 0	0	指定 G07.1 的程序段中,不能同时指定 G43, G44, G49, H。
046, 0	0	指定 G52 的程序段中,不能同时指定 G43,G44,G49,H。
047, 0	0	倒角间非移动指令段多于 10 行。
050, 0	0	DNC 方式下不能执行程序跳转。
092, 0	0	调用子程序的循环次数指定错误。
093, 0	0	倒角时不能同时指定 M98 调用子程序或同时指定 L 和 U 指令。
094, 0	0	子程序不能调用主程序。
095, 0	0	子程序调用时不能够调用程序O0000 或未输入子程序号或子程序号非法。
096, 0	0	子程序的嵌套层数超过 4 层。
097, 0	0	被调用的程序是当前程序(主程序)。
099, 0	0	半径补偿时,不能执行跳转。
100, 0	0	半径补偿时,不能执行跳转(GOTO, DO, END)。
101, 0	0	宏语句格式指定错误。
102, 0	0	宏语句中 DO, END 标号不是 1, 2, 3。
103, 0	0	宏语句中 DO, END 格式指定错误(或跳转进入了循环)。
104, 0	0	宏语句中括号不匹配或格式指定错误。
105, 0	0	宏语句中除数不能为 0。
106, 0	0	宏语句中指定的反正切 ATAN 格式错误。
107, 0	0	宏语句中 LN 的反对数为 0 或小于 0。
108, 0	0	宏语句中开平方不能为负数。
109, 0	0	宏语句中正切 TAN 的结果为无穷。
110, 0	0	宏语句中反正余弦 ASIN 或 ACOS 的操作数超出-1 到 1 范围。
111, 0	0	宏语句中指定的变量类型不存在或错误。
112, 0	0	宏语句中 GOTO 或 M99 跳转的程序段号不存在或超出范围。
113, 0	0	宏程序模态调用(G66)时,不能进行 M98 调用及 M99 跳转。
114, 0	0	宏程序调用(G65 或 G66)必须指定在程序段首。
117, 0	0	宏语句中空变量(#0)不能作为运算结果。
118, 0	0	G65, G66 中指定的自变量 I, J, K 的个数超过 10 个。
119, 0	0	G65, G66 中 P 所调用的宏程序不在范围。
120, 0	0	宏语句中的只读属性变量不允许进行写操作。
121, 0	0	宏语句中赋予系统变量的值不能是空(Null)。
122, 0	0	宏程序调用(G65 或 G66)没有指定 P 值或 G65 没有指定 H 运算。
123, 0	0	G65 H_ 格式指定错误。
124, 0	0	G65 中指令了非法的 H 指令。
125, 0	0	宏语句中需正确指定操作数及个数。
126, 0	0	G65 H99 指定的报警号超出范围(P:0~99)。
	<u> </u>	<u> </u>

		附录五 报警信息 	
报警号,	清除		
类型	方式	报警内容	
127, 0	0	宏语句中指定的操作数不是整数,无法转换成二进制数。	
128,0	0	宏语句中指定的操作数不是二进制数。	
129, 0	0	半径补偿为预读方式,故无法取得正确的宏变量值。	
130, 0	0	主轴编码器线数不在范围(100~5000)。	
131, 0	0	使用 CS 轴之前,请先设置旋转轴功能有效。	
132, 0	0	宏语句中指定的操作数的数值过大或超出有效长度。	
133, 0	0	宏程序逻辑运算数据错误(逻辑运算操作数或者结果不为0或1)。	
150, 0	0	可编程镜像、比例缩放和坐标系旋转指令的程序段中,不能同时指定 00,01,07,08,11,12,14,16,22 组 G 代码。	
151, 0	0	在可编程镜像、比例缩放和坐标系旋转方式下,不能指定 G92 操作。	
152, 0	0	在可编程镜像、比例缩放和坐标系旋转方式下,不能指定 G28, G29, G30 操作。	
153, 0	0	在可编程镜像、比例缩放和坐标系旋转方式下,不能指定 G52~G59 操作。	
154, 0	0	在可编程镜像、比例缩放和坐标系旋转方式下,不能指定 G17~G19 变更平面操作。	
155, 0	0	在半径补偿方式下,不能指定可编程镜像,比例缩放和坐标系旋转方式。	
156, 0	0	在坐标系旋转方式中,指定的旋转角度超出范围(-360°~360°)。	
157, 0	0	运算的结果超出了系统的最大指令值。	
158, 0	0	比例缩放中,编程或参数指定的缩放倍率不能为零。	
159, 0	0	不能在比例缩放和坐标系旋转方式下指定镜像指令 G51.1, G50.1。	
160, 0	0	固定循环中进行坐标系旋转时,需指定 G17 为旋转指定平面。	
161, 0	0	不能在极坐标,可编程镜像,坐标系旋转或比例缩放方式下切换公英制。	
160 0		在可编程镜像,比例缩放和坐标系旋转方式下,不能指定固定循环指令 G110~G115、	
162, 0	0	G134~G139 以及连续钻孔指令 G140~G143。	
165, 0	0	固定循环下不能执行 G53 指令。	
166, 0	0	回机械零点完成之前,不能执行 G53 指令。	
170, 0	0	不能在 G00 模式下指定圆柱插补方式有效。	
171, 0	0	指定圆柱插补时,需(且只能)设定一个平行于基本轴的旋转轴。	
172, 0	0	需在半径补偿取消的状态下,进入和退出圆柱插补。	
173, 0	0	当前平面下的圆柱插补的旋转轴指定或属性设置错误。	
174, 0	0	圆柱插补中,指定了非法的 G 代码,如:平面切换,坐标系变动,极坐标指令及包含 G00 的运动指令等。	
175, 0	0	圆柱插补中,不能进行可编程镜像,比例缩放,坐标系旋转操作。	
176, 0	0	圆柱插补或极坐标指令方式时,圆弧不能使用 IJK 编程(请指令 R 编程)。	
177, 0	0	圆柱插补中,不能变更刀具长度补偿。	
178, 0	0	圆柱插补中,不能再指定与旋转插补轴平行的基本轴指令。	
179, 0	0	转进给(G95)下,不能进行圆柱插补。	
180, 0	0	圆柱插补撤销的轴地址错误。	
181, 0	0	重复建立圆柱插补的轴地址与之前的不同。	
185, 0	0	极坐标指令方式时,不能指定倒角功能。	
186, 0	0	在极坐标指令方式下,不能指定 G17~G19 变更平面。	
187, 0	0	在极坐标指令方式下,不能指定 G54~G59 变更坐标系。	
188, 0	0	在极坐标指令方式下,不能指定换刀功能。	
205, 0	0	未定义 K 值。	
206, 0	0	未定义Ⅰ值。	
207, 0	0	I值过小。	

T TARIFE L		GSK760MDI 家列机制加工中心数注承机 探目仪用于
报警号, 类型	清除 方式	报警内容
208, 0	0	未定义J值。
209, 0	0	J 值过小。
210, 0	0	U 值过大或 I, J 过小。
211, 0	0	J 值过大。
212, 0	0	K 值过小。
213, 0	0	U 值小于刀具半径。
214, 0	0	I, J 过小或 K 过大而发生过切。
215, 0	0	矩形连续钻孔有误:没有指定J值或指定的第一边的终点和起点相同导致无法确定矩形。
216, 0	0	G140~G143 连续钻孔时,没有指定钻孔方式(G73~G89)。
217, 0	0	全圆上的钻孔数不能少于 2 个。
218, 0	0	G74, G84 中未指定牙距 F 值。
219, 0	0	固定循环钻孔间隔过小。
230, 0	0	S 值为 0.主轴无法进给。
231, 0	0	S值超过刚性攻丝允许的最高主轴转速。
232, 0	0	M29 和 G74/G84 指令之间指定了其它轴移动指令。
233, 0	0	刚性攻丝方式 G61.0 信号异常。
234, 0	0	刚性攻丝旋转轴转速过快。
235, 0	0	执行 M29 需定位时,不可与 G74,G84 共段。
236, 0	0	使用刚性攻丝前,先要指定 5th 轴为旋转轴。
237, 0	0	G10 指定数据异常。
238, 0	0	G10 指定的 P 值不在 0~6 范围内。
239, 0	0	G10 指定的 P 值不在 1~48 范围内。
240, 0	0	指定附加工件坐标系时,P值不在1~48范围内。
250, 0	0	半径补偿时,由于补偿起点和圆弧起点相同导致无法进行半径补偿。
251, 0	0	导致半径补偿运算出错。
252, 0	0	导致在半径补偿过程中圆弧加工段的终点不在圆弧上。
253, 0	0	在加工轨迹上相邻两点坐标相同,导致无法进行半径补偿。
254, 0	0	在圆弧加工段中圆心与圆弧起点相同,导致无法进行半径补偿。
255, 0	0	在圆弧加工段中圆心与圆弧终点相同,导致无法进行半径补偿。
256, 0	0	圆弧半径小于刀尖半径,无法进行半径补偿。
257, 0	0	编程有误,导致半径补偿中,在当前刀尖半径下两圆弧轨迹无交点。
258, 0	0	在建立半径补偿时指定了圆弧指令。
259, 0	0	撤消半径补偿时指定了圆弧指令。
260, 0	0	半径补偿干涉检查有过切现象。
261, 0	0	导致半径补偿在当前刀尖半径下直线接圆弧轨迹无交点。
262, 0	0	导致半径补偿中在当前刀尖半径下圆弧接直线轨迹无交点。
263, 0	0	半径补偿状态下,指定平面内非移动指令段过多,刀补缓冲溢出。
264, 0	0	不能在 G02, G03 模态下暂时撤消半径补偿。
271, 0	0	指定的倒角长度过长或倒角段过短。
272, 0	0	倒角平面错误。
273, 0	0	倒角点不在指定的直线上。
274, 0	0	倒 角点不在指定的圆弧上。
277, 0	0	指定的倒角长度不在范围。
	1	

报警号,	清除	
类型	方式	报警内容
278, 0	0	螺旋线插补时,不能指定倒角功能。
279, 0	0	圆弧倒角数据错误。
280, 0	0	检索的目标程序不存在。
281, 0	0	检索的目标程序号超过 9999。
2001, 0	3	参数开关已打开。
2002, 0	0	CNC 初始化失败。
2003, 0	0	零件程序打开失败。
2004, 0	0	零件程序保存失败。
2005, 0	0	零件程序新建失败。
2006, 0	0	输入了非法指令字。
2007, 0	0	存储器存储容量不够。
2008, 0	0	程序号超出范围。
2009, 0	0	当前操作权限禁止编辑宏程序。
2010, 0	0	PLC 程序(梯形图)打开失败。
2011, 0	0	PLC 程序(梯形图)编辑软件版本不符。
2012, 0	0	PLC 程序(梯形图)一级程序过长。
2013, 0	0	编辑键盘或操作面板故障。
2014, 0	4	存储器故障,请检修或重新上电再试。
2015, 0	0	DNC 通信出错,请检查硬件连接和波特率。
2016, 0	0	参数文件保存失败。
2017, 0	0	文件系统出错。
2018, 0	0	轴输出伺服接口不能相同。
2019, 0	0	程序装载中,文件指针有误。
2020, 0	0	程序装载中,文件指针定位有误。
2021, 0	0	程序装载中,文件读取有误。
2022, 0	0	程序定位有误。
2023, 0	0	使用 Cs 轴轮廓控制,需设置旋转轴功能有效。
2024, 0	0	轴名不能相同。
2025, 0	0	不能同时设置两个 CS 轴有效。请修改参数。
2026, 0	0	CNC 文件删除失败。
2027, 0	0	USB 读写文件出错:请重新接入设备进行操作。
2028, 0	0	文件拷贝出错。
2029, 0	0	文件重载失败。
2030, 0	0	程序装载失败:存在程序段过长,一段超出255个字符。
2050, 0	0	参数文件打开失败。使用标准出厂参数。
2051, 0	0	参数装载错误。使用标准出厂参数。
2052, 0	0	掉电保存区数据校验出错:系统复位掉电保存区:请回零成功后,重新开始机床操作。
2053, 0	0	掉电保存的数据校验出错,系统恢复标准值,请回零成功后,重新开始机床操作。
2054, 0	4	该参数的修改,需重新上电方能生效。
2055, 0	4	系统已经升级与更新,需重新上电方能生效。
2056, 0	4	当前工作梯形图已变更,请重新上电。
2057, 0	0	系统使用 CNC 盘文件启动。请确认加工程序。
2058, 0	4	恢复参数备份成功,请重新上电。

报警号,	清除	LIT Wife L. pha
类型	方式	报警内容
2059, 0	4	串口通信更新参数后,需重新上电方能生效。
2060, 0	4	最小增量系统发生变化,请重新上电,并确认相关参数范围及设置后,再开始机床操作。
2061, 0	4	附加轴(4th,5th轴)的最小增量系统的设置错误,不得小于当前系统的最小增量系统(IS-B,
2001, 0	4	IS-C),请重新设定。
2062, 0	0	用户设定的速度参数值超过系统允许的最高速度。请修改参数。
2063, 0	0	速度参数值超过系统允许的最高速度,相关参数值已被修正.请查阅确认后,再开始机床操作。
2064, 0	0	非模拟主轴控制下,不可修改多主轴相关参数。
2065, 0	0	梯形图文件数据写入出错,请重新升级当前工作梯形图。
2066, 0	0	用户设定起始刀位号大于最大刀位号。
2067, 0	0	用户设定最大行程超出系统最大范围。
2068, 0	4	螺补位置号设置有误,请修改 3620~3622 号参数。
2069, 1	2	U 盘断开后重新连接,如果当前打开的 U 盘程序曾经修改,请重载该程序!
3001, 0	0	未指定 G29 指令的中间点。
3002, 0	0	未定义档位的最高转速。请检查数据参数 NO.3741~NO.3744。
3003, 0	0	运行速度太快。
3004, 0	0	由于主轴停止转动,进给被停止。
3005, 0	0	螺纹加工主轴转速太低。
3006, 0	0	主轴旋转方向与指令规定的方向不同。
3007, 0	0	主轴转速波动值超出数据参数 NO.4900 设定的最大值。
3008, 0	0	Cs 轴工作中,暂不允许切换主轴工作方式。
3009, 0	0	参考点未建立,不能返回第2,3,4参考点。
3010, 0	0	主轴未切换到位置控制方式,不可移动 CS 轴。
3011, 0	0	超出X轴正向软件行程限制。
3012, 0	0	超出Y轴正向软件行程限制。
3013, 0	0	超出Z轴正向软件行程限制。
3014, 0	0	超出 4th 轴正向软件行程限制。
3015, 0	0	超出 5th 轴正向软件行程限制。
3016, 0	0	超出X轴负向软件行程限制。
3017, 0	0	超出Y轴负向软件行程限制。
3018, 0	0	超出Z轴负向软件行程限制。
3019, 0	0	超出 4th 轴负向软件行程限制。
3020, 0	0	超出 5th 轴负向软件行程限制。
3021, 0	0	X轴正向超程。
3022, 0	0	Y轴正向超程。
3023, 0	0	Z轴正向超程。
3024, 0	0	4th 轴正向超程。
3025, 0	0	5th 轴正向超程。
3026, 0	0	X轴负向超程。
3027, 0	0	Y轴负向超程。
3028, 0	0	Z轴负向超程。
3029, 0	0	4th 轴负向超程。
3030, 0	0	5th 轴负向超程。
3031, 0	0	X轴驱动单元未准备就绪。
3032, 0	0	Y轴驱动单元未准备就绪。

报警号,	清除	
类型 类型	方式	报警内容
3033, 0	0	Z 轴驱动单元未准备就绪。
3034, 0	0	4th 轴驱动单元未准备就绪。
3035, 0	0	5th 轴驱动单元未准备就绪。
3541, 0	4	DNC 光标数据出错。请重新开机。
3542, 0	4	G54~G59 数据出错。请重新开机。
3543, 0	4	G29 数据出错。请重新开机。
3544, 0	4	G80 数据出错。请重新开机。
3545, 0	4	G112~115 数据出错。请重新开机。
3546, 0	4	G136~139 数据出错。请重新开机。
3547, 0	4	刀补号数据出错。请重新开机。
3548, 0	4	CNC 急停处理不成功。请重新开机。
3549, 0	4	X 轴写 FPGA 超时,请重新开机,回零后再开始操作。
3550, 0	4	Y 轴写 FPGA 超时,请重新开机,回零后再开始操作。
3551, 0	4	Z 轴写 FPGA 超时,请重新开机,回零后再开始操作。
3552, 0	4	4th 轴写 FPGA 超时,请重新开机,回零后再开始操作。
3553, 0	4	5th 轴写 FPGA 超时,请重新开机,回零后再开始操作。
3560, 0	4	连续钻孔数据出错。请重新开机。
3561, 0	4	宏程序数据出错。请重新开机。
3562, 0	4	FPGA 出错过多。请与系统研发室联系。
3563, 0	4	电压过低报警:请确保电压稳定后重新上电,并执行机械回零处理操作。
3570, 0	4	掉电保存的数据恢复出错。必须先返回参考点成功后,才能进行机床操作。
4000, 1	2	最近一次掉电保存 NVRAM 数据时间太短。
2900, 0	4	载入系统配置文件出错请确认文件 cnc.cfg 存在!
2901, 0	4	载入参数配置文件出错请确认文件 param.cfg 存在!
2902, 0	0	载入参数值文件出错。
2903, 0	0	载入刀补文件出错。
2904, 0	0	载入螺补文件出错。
2905, 0	0	载入工件坐标系文件出错。
2906, 0	0	启动 PLC 程序出错请确认梯形图程序存在且正确!
2909, 0	4	限时停机时间已到,系统无法正常工作,请联系销售人员。
2910, 1	2	已经恢复参数为伺服 1u 公制机床的标准参数。
2911, 1	2	已经恢复参数为伺服 0.1u 公制机床的标准参数。
2912, 1	2	已经恢复参数为伺服 lu 英制机床的标准参数。
2913, 1	2	已经恢复参数为伺服 0.1u 英制机床的标准参数。
2920, 1	4	限时停机时间已到,权限自动降到最后一级。请联系销售人员。
2921, 1	0	系统几天之内将到达停机时间。为避免停机造成损失,请联系销售人员,提前解除限制。
2922, 1	0	停机操作密码为默认密码,安全考虑请更改密码!
2999, 0	0	未找到该报警相关信息,请更新资源文件。
3002, 0	0	未定义档位的最高转速,请检查数据参数 NO.3741~NO.3744。
3003, 0	0	运行速度太快。
3004, 0	0	由于主轴停止转动,进给被停止。
3005, 0	0	螺纹加工主轴转速太低。
3006, 0	0	主轴旋转方向与指令规定的方向不同。

_	-	
57.		1
~		ı

报警号, 类型	清除 方式	报警内容
3007, 0	0	主轴转速波动值超出数据参数 NO.4900 设定的最大值。
3008, 0	0	Cs 轴工作中,暂不允许切换主轴工作方式。
3009, 0	0	Cs 轴切换失败。
3010, 0	0	主轴未切换到位置控制方式,不可移动 CS 轴。
3011, 0	0	超出X轴正向软件行程限制。
3012, 0	0	超出Y轴正向软件行程限制。
3013, 0	0	超出Z轴正向软件行程限制。
3014, 0	0	超出 4th 轴正向软件行程限制。
3015, 0	0	超出 5th 轴正向软件行程限制。
3016, 0	0	超出 X 轴负向软件行程限制。
3017, 0	0	超出 Y 轴负向软件行程限制。
3018, 0	0	超出 Z 轴负向软件行程限制。
3019, 0	0	超出 4th 轴负向软件行程限制。
3020, 0	0	超出 5th 轴负向软件行程限制。
3021, 0	0	X轴正向超程。
3022, 0	0	Y轴正向超程。
3023, 0	0	Z轴正向超程。
3024, 0	0	4th 轴正向超程。
3025, 0	0	5th 轴正向超程。
3026, 0	0	X轴负向超程。
3027, 0	0	Y轴负向超程。
3028, 0	0	Z轴负向超程。
3029, 0	0	4th 轴负向超程。
3030, 0	0	5th 轴负向超程。
3031, 0	0	X轴驱动单元未准备就绪。
3032, 0	0	Y轴驱动单元未准备就绪。
3033, 0	0	Z 轴驱动单元未准备就绪。
3034, 0	0	4th 轴驱动单元未准备就绪。
3035, 0	0	5th 轴驱动单元未准备就绪。
3036, 0	0	主轴驱动单元未准备就绪。
3050, 0	0	G37 测量区内,测量信号无效。
3051, 0	0	未进入测量区,测量信号已有效。
3052, 0	0	执行 G37 时,刀补号不能为 0。
3053, 0	0	检测主轴速度到达信号超时。
3050, 0	0	G37 测量区内,测量信号无效。
3060, 0	0	X 轴驱动发生抖动。请调整驱动单元参数,消除抖动。
3061, 0	0	Y 轴驱动发生抖动。请调整驱动单元参数,消除抖动。
3062, 0	0	Z 轴驱动发生抖动。请调整驱动单元参数,消除抖动。
3063, 0	0	A4 轴驱动发生抖动。请调整驱动单元参数,消除抖动。
3064, 0	0	A5 轴驱动发生抖动。请调整驱动单元参数,消除抖动。
3065, 0	0	A6 轴驱动发生抖动。请调整驱动单元参数,消除抖动。
3541, 0	4	DNC 光标数据出错。请重新开机。
3542, 0	4	G54~G59 数据出错。请重新开机。

<u> </u>		附求五 接責信息	
报警号,	清除	报警内容	
类型 	方式		
3543, 0	4	G29 数据出错。请重新开机。	
3544, 0	4	G80 数据出错。请重新开机。	
3545, 0	4	G112~115 数据出错。请重新开机。	
3546, 0	4	G136~139 数据出错。请重新开机。	
3547, 0	4	刀补号数据出错。请重新开机。	
3548, 0	4	CNC 急停处理不成功。请重新开机。	
3549, 0	4	X 轴写 FPGA 超时,请重新开机,回零后再开始操作	
3550, 0	4	Y 轴写 FPGA 超时,请重新开机,回零后再开始操作	
3551, 0	4	Z 轴写 FPGA 超时,请重新开机,回零后再开始操作	
3552, 0	4	4th 轴写 FPGA 超时,请重新开机,回零后再开始操作	
3553, 0	4	5th 轴写 FPGA 超时,请重新开机,回零后再开始操作	
3560, 0	4	连续钻孔数据出错。请重新开机。	
3561, 0	4	宏程序数据出错。请重新开机。	
3562, 0	4	FPGA 出错过多。请与系统研发室联系。	
3563, 0	4	电压过低报警:请确保电压稳定后重新上电,并执行机械回零处理操作。	
3564, 0	4	FPGA 初始化失败。	
3570, 0	4	掉电保存的数据恢复出错。必须先返回参考点成功后,才能进行机床操作。	
3601, 0	4	远程 I/O 参数有效,但连接不到远程 I/O,请修改参数后重新开机或检查通讯线缆。	
3602, 0	4	远程 I/O 进入异常状态,请检查远程 I/O 或是重新上电。	
3603, 0	4	远程 I/O 通讯断开,请检查通讯线缆是否正常连接。需重新上电。	
3610, 0	4	机床面板连接失败,请检查通讯线缆是否正常连接,需重新上电。	
3701, 0	3	系统与子网关连接断开。	
3702, 0	3	主网关与子网关线缆断开。	
3703, 0	3	主网关与子网关连接断开。	
3800, 1	4	远程 I/O 通讯异常,单位时间内出错率太高,请检查远程 I/O 单元设备或通讯线缆是否正常。	
4000, 1	2	最近一次掉电保存 NVRAM 数据时间太短。	
4003, 0	0	当前模拟电压指令输出不为 0,不能修改相关参数!	
4100, 1	4	NVRAM 坐标数据异常,请重新断电后机械回零并重新对刀。	
4103, 1	4	NVRAM 坐标方向信息异常,请重新断电后机械回零并重新对刀。	
4105, 1	4	NVRAM 刀补信息异常,请重新断电后机械回零并重新对刀。	
4107, 1	4	NVRAM 刀补信息异常,请重新断电后机械回零并重新对刀。	
4110, 1	4	NVRAM 螺补信息异常,请重新断电后机械回零并重新对刀。	
4441, 0	0	主轴驱动单元 1 未准备就绪。	
4442, 0	0	主轴驱动单元 2 未准备就绪。	
4443, 0	0	主轴驱动单元 3 未准备就绪。	
4480, 0	0	主轴输出接口定义错误或重复。请重新设置数据参数 NO3761。	
4481, 0	0	主轴关联的进给轴设置错误或重复。请检查参数 NO3760。	
4482, 0	0	启用伺服电机主轴,需关联的进给轴为无效轴或 CS 轴。	
4483, 0	0	主轴没有关联相应的进给轴,不能启用伺服电机主轴功能。请检查参数 NO3760。	
4484, 0	0	主轴定位轴不允许手动控制。	
4500, 0	4	GSK-Link 通讯从机号冲突。	
4501, 0	4	执行了 GSK-Link 诊断测试,请重新上电。	
4600, 0	4	总线连接断开。	

7/4	
附	
录	I
3 \	I
	I

报警号, 类型	清除 方式	报警内容
4601, 0	4	枚举超时。
4602, 0	4	总线连接建立通信失败。
4603, 0	4	总线连接延时测试设备失败。。
4604, 0	4	总线通信参数配置失败。
4605, 0	4	总线通信配置超时。
4606, 0	4	总线主站通信返回 CP0 阶段。
4607, 0	4	系统设置的从站个数与实际不匹配。
4608, 0	4	从站设备的轴名(逻辑地址)与系统的有效轴不匹配。
4610, 0	4	MDT 数据丢失。
4611, 0	4	MST 数据丢失。
4612, 0	0	MDT 数据校验错误。
4613, 0	0	GDT 数据校验错误。
4620, 0	4	IDN16, 24 配置失败。
4621, 0	4	IDN32, 35 配置失败。
4622, 0	4	IDN5030, 5031, 5033 配置失败。
4630, 0	4	I/O 单元配置失败。
4631, 0	4	I/O 单元从机号被自动匹配,请重新上电。
4632, 0	4	网关从机号被自动匹配,请重新上电。
4641, 0	0	第1轴"绝对式编码器数值"通信异常,包括通信错误、超时等。
4642, 0	0	第2轴"绝对式编码器数值"通信异常,包括通信错误、超时等。
4643, 0	0	第3轴"绝对式编码器数值"通信异常,包括通信错误、超时等。
4644, 0	0	第 4 轴"绝对式编码器数值"通信异常,包括通信错误、超时等。
4645, 0	0	第 5 轴"绝对式编码器数值"通信异常,包括通信错误、超时等。
4651, 0	0	主轴 1"绝对式编码器数值"通信异常,包括通信错误、超时等。
4652, 0	0	主轴 2"绝对式编码器数值"通信异常,包括通信错误、超时等。
4653, 0	0	主轴 3"绝对式编码器数值"通信异常,包括通信错误、超时等。
4661, 0	0	第1轴"编码器单圈位置数值"通信异常,包括通信错误、超时等。
4662, 0	0	第2轴"编码器单圈位置数值"通信异常,包括通信错误、超时等。
4663, 0	0	第3轴"编码器单圈位置数值"通信异常,包括通信错误、超时等。
4664, 0	0	第4轴"编码器单圈位置数值"通信异常,包括通信错误、超时等。
4665, 0	0	第5轴"编码器单圈位置数值"通信异常,包括通信错误、超时等。
4671, 0	0	主轴 1"编码器单圈位置数值"通信异常,包括通信错误、超时等。
4672, 0	0	主轴 2"编码器单圈位置数值"通信异常,包括通信错误、超时等。
4673, 0	0	主轴 3"编码器单圈位置数值"通信异常,包括通信错误、超时等。
4702, 0	0	系统配备绝对式编码器时,设置参考点时保存参考点参数文件失败,请重新设置参考点。
4703, 0	0	系统配备绝对式编码器时,读取参考点参数文件失败,请重新设定参考点。
4711, 0	0	X 轴配备绝对式编码器时,上电检测到机床的实际位置与系统记忆的位置误差超出允许范围,
4/11, 0	U	请手动返回参考点或重新设定参考点。
4712, 0	0	Y轴配备绝对式编码器时,上电检测到机床的实际位置与系统记忆的位置误差超出允许范围,
7/12, 0	Ü	请手动返回参考点或重新设定参考点。
4713, 0	0	Z轴配备绝对式编码器时,上电检测到机床的实际位置与系统记忆的位置误差超出允许范围,
7/13, 0	U	请手动返回参考点或重新设定参考点。
4714, 0	0	4th 轴配备绝对式编码器时,上电检测到机床的实际位置与系统记忆的位置误差超出允许范
7/17, 0	U	围,请手动返回参考点或重新设定参考点。

		附录五 报警信息 		
报警号,	清除	. LT 1884 . L. 1984 .		
类型	方式	报警内容		
4715, 0	0	5th 轴配备绝对式编码器时,上电检测到机床的实际位置与系统记忆的位置误差超出允许范		
4/13, 0	U	围,请手动返回参考点或重新设定参考点		
4716, 0	0	6th 轴配备绝对式编码器时,上电检测到机床的实际位置与系统记忆的位置误差超出允许范		
4710, 0	U	围,请手动返回参考点或重新设定参考点		
4721, 0	0	X轴配备绝对式编码器时,上电时机床坐标初始化出错,请重新设定参考点。		
4722, 0	0	Y轴配备绝对式编码器时,上电时机床坐标初始化出错,请重新设定参考点。		
4723, 0	0	Z轴配备绝对式编码器时,上电时机床坐标初始化出错,请重新设定参考点。		
4724, 0	0	4th 轴配备绝对式编码器时,上电时机床坐标初始化出错,请重新设定参考点。		
4725, 0	0	5th 轴配备绝对式编码器时,上电时机床坐标初始化出错,请重新设定参考点。		
4726, 0	0	6th 轴配备绝对式编码器时,上电时机床坐标初始化出错,请重新设定参考点。		
4741, 1	0	X轴配备绝对式编码器时未设定参考点,请在机床调试正常后设置参考点。		
4742, 1	0	Y轴配备绝对式编码器时未设定参考点,请在机床调试正常后设置参考点。		
4743, 1	0	Z轴配备绝对式编码器时未设定参考点,请在机床调试正常后设置参考点。		
4744, 1	0	4th 轴配备绝对式编码器时未设定参考点,请在机床调试正常后设置参考点。		
4745, 1	0	5th 轴配备绝对式编码器时未设定参考点,请在机床调试正常后设置参考点。		
4746, 1	0	6th 轴配备绝对式编码器时未设定参考点,请在机床调试正常后设置参考点。		
4751, 0	0	X 轴配备绝对式编码器时,上电检测到 CNC 或驱动单元的齿轮比、轴移动方向信号与成功建		
		立机械零点时的不同,请核对参数或重新设定参考点。		
4752, 0	0	Y 轴配备绝对式编码器时,上电检测到 CNC 或驱动单元的齿轮比、轴移动方向信号与成功建立机械零点时的不同,请核对参数或重新设定参考点。		
		Z 轴配备绝对式编码器时,上电检测到 CNC 或驱动单元的齿轮比、轴移动方向信号与成功建立		
4753, 0	0	机械零点时的不同,请核对参数或重新设定参考点		
		4th 轴配备绝对式编码器时,上电检测到 CNC 或驱动单元的齿轮比、轴移动方向信号与成功		
4754, 0	0	建立机械零点时的不同,请核对参数或重新设定参考点。		
	0	5th 轴配备绝对式编码器时,上电检测到 CNC 或驱动单元的齿轮比、轴移动方向信号与成功		
4755, 0		建立机械零点时的不同,请核对参数或重新设定参考点。		
4554	0	6th 轴配备绝对式编码器时,上电检测到 CNC 或驱动单元的齿轮比、轴移动方向信号与成功建		
4756, 0		立机械零点时的不同,请核对参数或重新设定参考点。		
4761, 0	4	X轴的绝对式编码器电池电压过低,请更换电池并重新设定参考点。		
4762, 0	4	Y轴的绝对式编码器电池电压过低,请更换电池并重新设定参考点。		
4763, 0	4	Z轴的绝对式编码器电池电压过低,请更换电池并重新设定参考点。		
4764, 0	4	4th 轴的绝对式编码器电池电压过低,请更换电池并重新设定参考点。		
4765, 0	4	5th 轴的绝对式编码器电池电压过低,请更换电池并重新设定参考点。		
4766, 0	4	6th 轴的绝对式编码器电池电压过低,请更换电池并重新设定参考点。		
4771, 0	0	X 轴配备绝对式编码器时,未设定参考点位置,不能返回参考点。		
4772, 0	0	Y 轴配备绝对式编码器时,未设定参考点位置,不能返回参考点。		
4773, 0	0	Z 轴配备绝对式编码器时,未设定参考点位置,不能返回参考点。		
4774, 0	0	4th 轴配备绝对式编码器时,未设定参考点位置,不能返回参考点。		
4775, 0	0	5th 轴配备绝对式编码器时,未设定参考点位置,不能返回参考点。		
4776, 0	0	6th 轴配备绝对式编码器时,未设定参考点位置,不能返回参考点。		
4781, 0	0	X轴配备绝对式编码器时,检测到运行中位置超出允许范围。		
4782, 0	0	Y轴配备绝对式编码器时,检测到运行中位置超出允许范围。		
4783, 0	0	Z轴配备绝对式编码器时,检测到运行中位置超出允许范围。		
4784, 0	0	4th 轴配备绝对式编码器时,检测到运行中位置超出允许范围。		

Ľ

报警号, 类型	清除 方式	报警内容		
4785, 0	0	5th 轴配备绝对式编码器时,检测到运行中位置超出允许范围。		
4786, 0	0	6th 轴配备绝对式编码器时,检测到运行中位置超出允许范围。		
4791, 0	0	轴 1 请配置为绝对式编码器。		
4792, 0	0	轴 2 请配置为绝对式编码器。		
4793, 0	0	轴 3 请配置为绝对式编码器。		
4794, 0	0	轴 4 请配置为绝对式编码器。		
4795, 0	0	轴 5 请配置为绝对式编码器。		
4806, 0	4	系统参数被修改,请重新开机。		
4809, 0	4	伺服参数被修改,请将所有的设备重新上电。		

쏏

附录六 GSK980MDi与GSK980MDc面板地址差异说明

按键	GSK980MDc	GSK980MDc-V	GSK980MDi	GSK980MDi-V	
AESET			X24.0		
X 回零灯			Y22.7		
Y 回零灯			Y22.6		
Z 回零灯			Y22.5		
4 th 回零灯			Y22.4		
5 th 回零灯	Y21.2		Y22	2.3	
° 🔲			X18.6		
单段			Y18.7		
			X18.7		
跳段			Y18.6		
			X19.0		
机床锁			Y18.5		
° mst			X19.1		
辅助锁			Y18.4		
°			X19.2		
空运行			Y18.3		
°O			X20.0		
选择停			Y21.7		
°_IT_X1_	X19.4	1	X24.1		
₩ F0	Y19.7	7	Y24.1		
°ILX10	X19.5	5	X24	4.2	
W 25%	Y19.6		Y24.2		
ÎTLX100	X19.6	5	X26.0		
W 50%	Y19.5		Y26.0		
<u>اللـــــــــــــــــــــــــــــــــــ</u>	X19.7		X19.4		
W100%	Y21.5 Y19.7				
			X23.0		
傳外起动			Y20.0		
° A			X22.7		
进给保持			Y21.0		
· Plan			X20.2		
6 4th			Y19.3		
*		T	X21.2		
	×	×	Y28	8.1	
Sth ⊕5th			X20.1		
			Y21.6		
Sth &			X25.6		
	×	×	Y28	3.4	

按键	GSK980MDc	GSK980MDc-V	GSK980MDi	GSK980MDi-V
₹ 7	X21.0		X2	0.4
	×	×	Y2	8.3
°~	X20.4		X2	1.0
L _e _Y			Y21.4	
°42r			X20.3	
l az			Y19.4	
Z			X21.1	
	×	×	Y2	8.0
°\\			X20.5	
©x			Y19.2	
			X20.7	
	×	×	Y2	8.2
°N.			X20.6	
快速移动			Y18.1	
° Z >			X18.0	
編辑			Y23.7	
© ©			X18.1	
自动			Y23.6	
° E			X18.2	
MDI			Y23.5	
° -			X18.3	
回参考点			Y23.4	
° 📵			X18.4	
手脉			Y23.3	
°	X18.5			
手动	Y23.2			
ONC	X19.3		X2	6.3
DNC	Y18.2		Y26.3	
° 1/1	X23.5		X1	9.3
K1	Y22.3		Y1	8.2
0	X23.1		X19.7	×
K2	Y22.0		Y21.5	×
	X23.3	×	×	×
К3	Y24.0	×	×	× ×
0	X23.2	×	×	×
K4	Y22.1	×	×	×
》	X21.4		X26.6	
	Y23.0			6.6
°- \$ -	X21.6			6.5
润滑	Y20.7			6.5
○□◇	X21.7			
			Y19.1	

附录六 GSK980MDi 系列与 GSK980MDa 系列面板地址差异说明

按键	GSK980MDc	GSK980MDc-V	GSK980MDi	GSK980MDi-V
° = 10 49			X21.3	
逆时针转			Y23.1	
°⊒o			X21.5	
主轴停止			Y18.0	
°			X25.7	
主轴准停			Y21.3	
° □0 %+			X22.1	
主抽倍率增		Γ	Y20.6	
_ □[]1100%	×	×	X25	.5
主給倍率100%	×	×	Y21	.1
0_		<u> </u>	X22.4	
二D % — 主 抽信率 减			Y20.3	
			X22.3	
。 ************************************			Y20.4	
° ₩₩100%			X26.7	
进给倍率100%			Y26.7	
*** %—			X22.6	
进给倍率减			Y20.1	
ALM	Y24.2	Y22.2		
READY	Y24.1	l	Y22	.1
RUN	Y24.3	3	Y22	.0
•	×	X26.0	X22	.0
换刀手	×	Y26.0	Y19	.0
*)&%\$C	×	X26.1	×	×
刀库旋转	×	Y26.1	×	×
	X,	X26.2	×	×
夹刀/松刀	×	Y26.2	×	×
***** ()	×	X26.3	X24	7
刀库进(倒)	×	Y26.3	Y24	
£ 5 ()	×	X26.4	X24	
刀库退(回)	×	Y26.4	Y24	
€.3.	×	X	×	X27.0
刀库回零	×	×	X	Y27.0
£ 5	×	×	X21	
顺时针选刀	×	×	Y23	
£ 5	×	X	X21	
逆时针选刀	×	×	Y20	
19 3	×	×	X19.6	×
排馬	×	×	Y19.5	×

ß	5

按键	GSK980MDc	GSK980MDc-V	GSK980MDi	GSK980MDi-V
#####	×	×	X2	6.4
分度台松/禁	X	×	Y2	6.4
See.	×	×	X19.5	×
工作灯	×	×	Y19.6	×
N.	×	×	×	X27.1
Z轴锁住	×	×	×	Y27.1
O @Trial	×	×	×	X27.2
手脉试切	×	×	×	Y27.3
档位/刀号			705	•
(见下图)		Y	725	

坩	地址	档位		
b7	b6	b5	b4	711111111111111111111111111111111111111
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8

	地址	刀号		
b3	b2	b1	b0	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8

说明:"×"表示没有这个按键或者灯。

附录七 主轴使用功能

CNC 按主轴的控制方式,把主轴分为: 开关量主轴、模拟主轴和串行主轴。在开关量主轴下, CNC 通 过把S代码变为开关量输出给主轴,来控制主轴的速度;在模拟主轴下,CNC通过把S代码变为模拟量输出 给主轴,来控制主轴的速度;在串行主轴下,CNC通过总线把S代码输出给伺服,来控制主轴的速度。CNC 通过发出 SIMSPL 和 SERSPX 信号,来通知 PLC 当前 CNC 控制主轴的方式。

主轴方式信号 SIMSPL **SERSP**

- 信号类型: NC→PLC
- 信号功能: NC 通过对 SIMSPL 和 SERSP 置以 0 或 1,设置主轴的控制方式,然后传给 PLC,通知 PLC 当前的主轴控制方式。
- 信号动作:

主轴控制方式	SIMSPL	SERSP
开关量	0	0
模拟主轴	1	0
串行主轴	1	1

信号地址

F200	
F225	

	SIMSPL			
		SERSP3	SERSP2	SERSP1

模拟主轴 7.1

S 指令由加工程序输入,指定 CNC 控制的模拟主轴速度。

S 指令通过主轴转速而被赋予,但实际进行控制的是主轴电机。因此,CNC 需要通过某种手段,了解连 接的主轴和主轴电机的齿轮。

齿轮换档处理:

虽然 S 指令指定主轴速度, 但实际的控制对象为主轴电机。因此, 主轴电机的速度和档位之间必须有一 定的对应关系。机床决定使用哪一齿轮档, CNC 输出与该齿轮档位相对应的主轴转速。有如下 2 种齿轮选择 方式。

Μ型:

对应 S 指令, CNC 基于事先在数据参数中所设定的各齿轮的转速范围选择齿轮, 并根据齿轮选择信 号输出(GR40、GR3O、GR2O、GR1O)向 PMC 通知要选择的齿轮级数。(齿轮为 4 级) 此外, CNC 执行 对应所选(输出到齿轮选择信号输出)齿轮的主轴速度输出。

当所需要的齿轮档位不够四档时,将未用的档位的数据参数中10V对应的转速设置为0。

Τ型

在机械侧作出使用哪个齿轮的决定,向齿轮选择信号输入(GR1、GR2)输入齿轮级数(齿轮为 4 级)。CNC 执行对应所输入的齿轮的主轴速度输出。

7.1.1 双模拟主轴控制

当选择 T 型换档功能时,可以控制两个模拟主轴,一个 S 代码用于指令这些主轴中的任一个,选择哪个主轴由来自 PLC 的信号决定,并分别具有齿轮换档功能。

S 代码作为速度指令送至由主轴选择信号(SWS1、SWS2)选定的主轴,每个主轴以指定速度旋转。如果一个主轴没有收到主轴选择信号,它以之前的速度继续旋转。这就允许各主轴在同一时间以不同的速度旋转。每个主轴都有各自的主轴停止信号和主轴使能信号。

主轴选择信号 SWS1、SWS2 (G27.0、G27.1)

- 信号类型: PLC→NC
- 信号功能:在多主轴工作方式控制 NC 的 S 指令是否输出给主轴。 SWS1 为"1"时,输出速度指令到第 1 主轴;SWS1 为"0"时,不输出速度指令到第 1 主轴。 SWS2 为"1"时,输出速度指令到第 2 主轴;SWS2 为"0"时,不输出速度指令到第 2 主轴。
- 信号地址:

I	G27				SWS2	SWS1
	0				2112	2

主轴停止信号 KSSTP1、KSSTP2(G27.3、G27.4)

- 信号类型: PLC→NC
- 信号功能: KSSTP1 为 "1" 时, 第 1 主轴模拟电压接通; KSSTP1 为 "0" 时, 第 1 主轴模拟电压 断开。KSSTP2 为 "1" 时, 第 2 主轴模拟电压接通; KSSTP2 为 "0" 时, 第 2 主轴模拟电压断开。
- 信号地址:

G27 KSSTP2 KSSTP1

所有主轴停止信号 KSSTP (G29.6)

- 信号类型: PLC→NC
- 信号功能: KSSTP 为"1"时,模拟电压接通; KSSTP 为"0"时,不输出模拟电压。
- 信号地址:

	7				
G29		KCCTD			
G2)		170011			

速度指令选择信号 SIND (G33.7)

- 信号类型: PLC→NC
- 信号功能: SIND 为"1"时,选择 PLC 指令的速度; SIND 为"0"时,选择 S 指令的速度。
- 信号地址:

	-					
~		CITATIO				1
1 (233						
033		SHID				

● 双模拟主轴控制

当通过 SWS1 信号选择第 1 主轴时, SIND 信号用于决定主轴模拟电压由 PLC 还是 CNC 控制, R01I 到 R12I 信号用于设定主轴模拟电压。这些信号不影响第 2 主轴。

多主轴控制方法的框图如下。

7.1.2 单模拟主轴控制

单模拟主轴控制的控制方法如下框图。

7.2 T型换档

- S 代码/SF 信号输出: CNC 中的模拟主轴控制功能将 S 指令值以二进制编码输出给 PLC (F22~F25)。但不输出 SF。
- 齿轮换档方法:

第 1 主轴每个档位对应的最大主轴速度由 CNC 数据参数来设定,齿轮档位选择信号为 2 位编码信号 (GR1,GR2),第 2 主轴每个档位对应的最大主轴速度由 CNC 数据参数设定,齿轮档位由 GR21、GR22 选择。信号与档位的关系如下。

	GR2(G28.2)	GR1(G28.1)	档位	主轴最高转速参数号
	0	0	1	数据参数 NO.3741 S1
第1主轴	0	1	2	数据参数 NO.3742S1
	1	0	3	数据参数 NO.3743 S1
	1	1	4	数据参数 NO.3744S1
	GR22(G29.1)	GR21(G29.0)		
	0	0	1	数据参数 NO.3741S2
第2主轴	0	1	2	数据参数 NO.3742 S2
	1	0	3	数据参数 NO.3743 S2
	1	1	4	数据参数 NO.3744 S2

同一 S 指令,在不同的档位下的,模拟电压输出有如下所示的线性关系。

假设数据参数 S1: NO.3741=1000; NO.3742=2000; NO.3743=4000; NO.3744=5000。当主轴速度 S=800 时,

G28.1=0, G28.2=0, 处在1档时

$$U1 = \frac{800}{1000} \times 10 = 8V$$

G28.1=1, G28.2=0, 处在2档时:

$$U2 = \frac{800}{2000} \times 10 = 4V$$

G28.1=0, G28.2=1, 处在3档时:

$$U3 = \frac{800}{4000} \times 10 = 2V$$

G28.1=1, G28.2=1, 处在4档时:

$$U4 = \frac{800}{5000} \times 10 = 1.6V$$

输出电压值的计算式:
$$U = \frac{S指令值}{$$
当前档位的最高转速 $\times 10$

● S12 位代码(R12O~R01O, F36~F37) (R12O2~R01O2, F236~F237)输出: 通过齿轮换档的处理, NC 计算出各档的主轴速度,即 S12 位代码信号 R12O~R01O (0~4095), R12O2~R01O2 (0~4095) 输出给主轴变频器和 PLC。10V 电压与 S12 位代码之间的关系如下图。

S12 位代码的确定输出:

由 SIND/SIND2 信号 (G33.7/G35.7) 确定第 1/2 主轴速度指令选用 NC 计算所得的 S12 位代码数据 (R12 O \sim R01 O)(R12 O $2\sim$ R01 O2)还是用 PLC 所指定的 12 位代码输入信号(主轴电机速度指令信号 R12I \sim R01I、R12I2 \sim R01I2)。若选用 PLC 输出的主轴速度,则主轴速度指令由 12 位代码输入信号设定。

● 电压偏移:

得到主轴速度指令 S12 位代码(0~4095)后,可通过数据参数 NO.3730(模拟电压输出 10V 时的电

压补偿值)和数据参数 NO.3730 (模拟电压输出 0V 时的电压补偿值)对主轴速度指令值进行最后的补偿和钳制调节。公式如下:以第1主轴为例。

主轴速度输出值 =
$$\frac{9999 + NO.021 - NO.036}{9999} \times S12$$
位代码 + $NO.036 \times \frac{4095}{9999}$

● 停止输出条件:

当指令了 S0 时,输出到主轴的指令被复位为 0。M05、急停或 CNC 复位不能使 NC 的主轴速度输出指令复位为 0。

● 模拟主轴接口:

CNC 通过模拟主轴接口电路, 把经过调节的主轴速度输出值, 以模拟电压的方式输出至主轴变频器。

7.3 M型换档

此换档方式只能在单模拟主轴下才有效。

选择 M 型换档时,根据数据参数的设定值和 S 指令值,CNC 作出判断,并输出给 PLC,指定为主轴转速所需的齿轮级数。(GR40、GR30、GR2O、GR1O<F034.3、F034.2、F034.1、F034.0>)

输出 S 代码后,只有在 CNC 侧针对 PLC 发出齿轮的切换指示时才输出 SF 信号。

当自动运行输入指令 $S0\sim S9999$ 中的其中一个时,向主轴电机输出通过数据参数事先设定的对应 4 个齿轮的转速范围的主轴电机的旋转指令。同时输出此时的齿轮选择信号。切换齿轮选择信号时还输出 SF。

齿轮选择信号的含义如下所示。

GR10 (F34.3)	GR10 (F34.2)	GR20 (F34.1)	GR10 (F34.0)	选择的档位
0	0	0	1	第1档
0	0	1	0	第 2 档
0	1	0	0	第3档
1	0	0	0	第 4 档

模拟主轴向主轴电机的速度指令输出如下:作为 $0V\sim10V$ 的模拟电压,向模拟电压信号SVC输出。M型换档有两种方式可以选择,由状态参数SGB设置,

SGB: 齿轮换档方法:

0: M 型换档方式 A;

1: M型换档方式B

下面举例说明这两种换档方式。

M 型换档方式 A:

上图中,有关数据说明如下:

- ✓ 常数 Vmax: 主轴电机最大箝制速度 (S12 位代码值), 即数据参数 NO.3736。
- ✓ 常数 Vmin: 主轴电机最小箝制速度 (S12 位代码值), 即数据参数 NO.3735。
- ✓ 主轴速度 A: 指令电压 10V 时的最高转速,即数据参数 NO.3741。
- ✓ 主轴速度 B: 指令电压 10V 时的最高转速,即数据参数 NO.3742。
- ✓ 主轴速度 C: 指令电压 10V 时的最高转速,即数据参数 NO.3743。
- ✓ 主轴速度 D: 指令电压 10V 时的最高转速,即数据参数 NO.3744。

M 型换档方式 B:

此换档方式可分别在数据参数中设定各档齿轮的切换转速。

上图中有关参数如下:

- ◆ 常数 Vmax: 主轴电机最大箝制速度 (S12 位代码值), 即数据参数 NO. 3736
- ◆ 常数 Vmin: 主轴电机最小箝制速度 (S12 位代码值), 即数据参数 NO. 3735
- ◆ Vmax1: 从齿轮档 1 切换到齿轮档 2 时的主轴电机转速(S12 位代码值), 即数据参数 NO.3751
- ◆ Vmax2: 从齿轮档 2 切换到齿轮档 3 时的主轴电机转速(S12 位代码值), 即数据参数 NO.3752
- ◆ Vmax3: 从齿轮档 3 切换到齿轮档 4 时的主轴电机转速(S12 位代码值), 即数据参数 NO.3753
- ◆ 主轴速度 A: 指令电压 10V 时的最高转速,即数据参数 NO.3741
- ◆ 主轴速度 B: 指令电压 10V 时的最高转速,即数据参数 NO.3742
- ◆ 主轴速度 C: 指令电压 10V 时的最高转速,即数据参数 NO.3743
- ◆ 主轴速度 D: 指令电压 10V 时的最高转速,即数据参数 NO.3744
- 当指令 S 代码时,有关时序图如下。

不切换齿轮选择信号时:

在此情况下,不输出 SF 信号,在输出新的值的主轴速度指令后,自动转移到下一个程序段执行。 当齿轮档选择信号变化时:

切换齿轮选择信号时, CNC 首先输出齿轮选择信号。而后经过数据参数 No.3010 设定的时间(TMF) 后输出 SF 信号。再经过相同的 TMF 后输出新的主轴速度指令。PLC 在接收到 SF 信号的时刻切换齿轮,并返还切换完成后 FIN 信号。SF 与 FIN 的交换,与 S 代码输出时相同。 其余信号同单模拟主轴中的有关主轴信号。

7.4 主轴输出的 PLC 控制

可以通过 PLC 进行主轴速度控制,执行的操作如下:

- 1: 通过将 SIND 置 1, 使控制方式从 NC 方式切换到 PLC 方式。
- 2: 把 PLC 计算的主轴电机速度数据设置在 PLC 主轴控制信号 R01I~R12I 中。

当由 PLC 控制时,主轴电机速度不受与 CNC 有关主轴速度指令的任何信号(如主轴倍率信号)或参数设置(主轴最大转速)的影响。

主轴电机速度指令选择信号 SIND (G33.7)

第 2 主轴速度指令选择信号 SIND2 (G35.7)

- 信号类型: PLC→NC
- 信号功能:用于选择是由 CNC 还是由 PLC 控制主轴电机速度。

SIND=1:根据由PLC发出的速度指令(R01I~R12I)控制主轴电机。

SIND=0: 根据由 CNC 发出的速度指令控制主轴电机。用 S 指令规定的主轴速度被输出

● 信号地址:

G33	SIND				
G35	SIND2				

S12 位代码输入信号 R01I~R12I (G32.0~G33.3)

第 2 主轴 S12 位代码输入信号 R01I2~R12I2(G34.0~G35.3)

● 信号类型: PLC→NC

- 信号功能:由 PLC 发出的用于输入主轴电机的速度指令值。以二进制形式指定主轴电机速度。它的值从 0 到 4095。
- 信号地址:

G32	
G33	
G34	
G35	

R08I	R07I	R06I	R05I	R04I	R03I	R02I	R01I
				R12I	R11I	R10I	R09I
R08I2	R07I2	R06I2	R05I2	R04I2	R03I2	R02I2	R01I2
				R12I2	R11I2	R10I2	R09I2

7.5 有关信号说明

主轴速度倍率信号 SOV10~SOV13、SOV24~SOV27 (G30)

- 信号类型: PLC→NC
- 信号功能: PLC 给 G30 赋值, 然后传给 NC, NC 根据 G30 的值确定不同的主轴速度倍率。SOV10~SOV13 编码与倍率值的应关系如下, SOV10~SOV13 用于第 1 主轴, SOV24~SOV27用于第 2 主轴。

SOV13~SOV10 (G30.3~G30.0)	主轴倍率
0111	50%
0110	60%
0010	70%
0011	80%
0001	90%
0000	100%
0100	110%
0101	120%

- 注意事项:在攻丝循环和螺纹切削下主轴倍率功能无效。
- 信号地址:

SOV27 SOV26 SOV25 S	SOV24 SOV13	SOV12	SOV11	SOV10
---------------------	-------------	-------	-------	-------

齿轮选择信号 GR1, GR2 (G28.1, G28.2)

第 2 主轴齿轮选择信号(GR21, GR22、G29.0、G29.1)

- 信号类型: PLC→CNC
- 信号功能:该信号通知 CNC 当前所选的档位,具体动作见前面所述。
- 信号地址:

G29
G28

				GR22	GR21
			GR2	GR1	

S12 位代码信号 R010~R12O(F036.0~F037.3)R01O2~R12O2(F236.0~F237.3)

- 信号类型: NC→PLC
- 信号功能:该信号将 NC 主轴控制功能计算的主轴速度指令值转换为 0~4095 的数据且将结果输出 给 PLC。10V 电压与 S12 位代码之间的关系如下图。

信号地址:

F36	
F37	
F236	
F237	

R08O	R07O	R06O	R05O	R04O	R03O	R02O	R01O
				R12O	R110	R10O	R09O
R08O2	R07O2	R06O2	R05O2	R04O2	R03O2	R02O2	R01O2
				R12O2	R11O2	R10O2	R09O2

主轴速度到达信号

主轴速度到达信号 SAR(G29.4)为输入信号,作为 CNC 启动切削进给的条件。通常用于主轴达到指定速 度后,启动切削进给。此时,用传感器检测主轴速度,所检测的速度通过 PLC 送至 NC。

当在编辑 PLC 程序处理主轴速度到达时,如果主轴速度改变指令和切削进给指令同时发出,则 CNC 会 根据主轴速度改变前的状态确定的 SAR 信号启动切削进给。为避免出现这种问题,在发出 S 指令和切削进给 指令后,需要对 SAR 信号进行延时监测,延时时间由数据参数 NO.3740 设定。

使用 SAR 信号时,须设置对应的状态参数.

主轴速度到达信号 SAR (G029.4):

- 信号类型: PLC→NC
- 信号功能: 当 PLC 将 G29.4 设为 1 时,传给 NC,通知 NC 可以启动切削进给。若 G29.4 为 0,则 不能启动切削进给。
- 注意事项:通常该信号用于通知 CNC 主轴已经达到指定主轴的速度。因此,须在主轴实际速度达 🛼 到指定值后,把该信号置为1。在以下状态下 CNC 检测 SAR 信号:
 - A: 从快速移动切换至切削进给方式后,在开始第一个进给(移动指令)程序段的分配 前,当读入进给程序段且经过对应数据参数设定的时间后,开始检测 SAR。
 - B: 在 S 代码指令后, 开始第一个进给指令程序段分配前, 其检测等待时间与上述 A 相 同。
 - C: 当 S 代码和进给运动在同一程序段中指令时, S 代码输出后, 经过数据参数 NO.3740 设置的时间后检测 SAR 信号,如果 SAR 信号为 1,则进给开始。
- 信号地址:

	_				
G29			SAR		

主轴实际速度信号检测 F40, F41, F202, F203:

- 信号类型: NC→PLC
- 信号功能: NC 检测到的当前主轴的实际转速。F40、F41 为第 1 主轴用,F202、F203 为第 2 主轴用。
- 信号地址:

F40	AR7	AR6	AR5	AR4	AR3	AR2	AR1	AR0
F41	AR15	AR14	AR13	AR12	AR11	AR10	AR9	AR8
F202	AR72	AR62	AR52	AR42	AR32	AR22	AR12	AR02
F203	AR152	AR142	AR132	AR122	AR112	AR102	AR92	AR82

7.6 模拟主轴接线图

7.7 串行主轴

串行主轴通过总线方式控制的主轴,最多可以控制 3 个主轴(模拟主轴只能设置两个主轴)。 系统通过总线用 G、F 信号和伺服进行通讯,不需要 I/O 信号,其他信号和控制逻辑都和模拟主轴一致。

主轴正转信号 SFRA、SFRB、SFRC(G70.5、G74.5、G78.5)

- 信号类型: PLC→NC
- 信号功能: SFRA 为 "1" 时,第 1 主轴正转。 SFRB 为 "1" 时,第 2 主轴正转。 SFRC 为 "1" 时,第 3 主轴正转。
- 信号地址:

G70
G74
G78

SF	RA		
SF	RB		
SF	RC		

ניוני

主轴反转信号 SRVA、SRVB、SRVC(G70.4、G74.4、G78.4)

- 信号类型: PLC→NC
- 信号功能: SFRA 为 "1"时,第1主轴反转。 SFRB 为 "1"时,第2主轴反转。 SFRC 为 "1"时,第3主轴反转。
- 信号地址:

G70
G74
G78

	SRVA		
	SRVB		
	SRVC		

主轴速度到达信号 SARA、SARB、SARC(F45.4、F49.4、F53.4)

- 信号类型: NC→PLC
- 信号功能: SARA 为 "1"时,第1主轴速度到达。 SARB 为 "1"时,第2主轴速度到达。 SARC 为 "1"时,第3主轴速度到达。
- 信号地址:

F45
F49
F53

	SARA		
	SARB		
	SARC		

7.8 主轴定向功能

只有串行主轴才能进行定向。

定向启动信号 ORCMA、ORCMB、ORCMC(G70.2、G74.2、G78.2)

- 信号类型: PLC→NC
- 信号功能: ORCMA 为 "1"时,启动第1主轴定向。 ORCMB 为 "1"时,启动第2主轴定向。 ORCMC 为 "1"时,启动第3主轴定向。
- 信号地址:

_	
	G70
	G74
	G78

		ORCMA	
		ORCMB	
		ORCMC	

定向完成信号 ORARA、ORARB、ORARC(F45.2、F49.2、F53.2)

- 信号类型: NC→PLC
- 信号功能: ORARA 为 "1"时,第 1 主轴定向完成。 ORARB 为 "1"时,第 2 主轴定向完成。 ORARC 为 "1"时,第 3 主轴定向完成。
- 信号地址:

F45
F49
F53

		ORARA	
		ORARB	
		ORARC	

定向过程: 启动定向->主轴按照伺服驱动设定的定向速度和方向旋转->收到定向完成信号时结束定向。

附录八 标准梯形图功能说明

8.1 地址定义

CN61	PLC地址	地址符号	地址定义的功能	备注		
1	X0.0	TDEC	刀盘回零到位检测	BT40圆盘型/斗笠		
2	X0.1	SP	外接进给保持信号			
3	X0.2	ТРСН	气缸压力检测	BT40圆盘型/斗笠		
4	X0.3					
5	X0.4	TCOT	刀位计数	BT40圆盘型/斗笠		
6	X0.5	ESP	外接急停信号	固定地址		
7	X0.6	THCH	刀套水平到位检测/刀盘后退到位检测	BT40圆盘型/斗笠		
8	X0.7	TVCH	刀套垂直到位检测/刀盘前进到位检测	BT40圆盘型/斗笠		
9	X1.0	THSP	圆盘刀库换刀臂停止检测	BT40圆盘型		
10	X1.1	THGT	圆盘刀库换刀臂抓刀检测	BT40 圆盘型		
11	X1.2	THZP	圆盘刀库换刀臂原点检测	BT40 圆盘型		
12	X1.3					
13	X1.4	ST	外接启动信号			
14	X1.5	JOGT	外接主轴松紧刀输入	BT40圆盘型/斗笠		
15	X1.6	SAGT	防护门信号/润滑液位低信号			
16	X1.7	TRCH	主轴松刀到位检测	BT40圆盘型/斗笠		
29	X2.0	TGCH	主轴紧刀到位检测	BT40圆盘型/斗笠		
30	X2.1	THOV	圆盘刀库换刀臂电机过载	BT40圆盘型		
31	X2.2	TTOV	刀盘电机过载	BT40圆盘型/斗笠		
32	X2.3					
33	X2.4					
34	X2.5					
35	X2.6					
36	X2.7	LTXN	X轴负向限位			
37	X3.0	LTXP	X轴正向限位			
38	X3.1	LTYN	Y轴负向限位			
39	X3.2	LTYP	Y轴正向限位			
40	X3.3	DTLO	分度台松开到位			
41	X3.4	DTCL	分度台夹紧到位			
42	X3.5	SKIP	跳转信号	固定地址		
43	X3.6	LTZN	Z轴负向限位			
44	X3.7	LTZP	Z轴正向限位			
17~20	悬空					
21~24	0V					
25~28	悬空					

CN62	PLC地址	地址符号	地址定义的功能	备注
1	Y0.0	COOL	冷却信号	
2	Y0.1	LUBR	润滑输出信号	
3	Y0.2	SRDY	抱闸释放信号	
4	Y0.3	SRV	主轴逆时针转信号	
5	Y0.4	SFR	主轴顺时针转信号	
6	Y0.5	BLOW	工件吹气	
7	Y0.6	WLIGHT	工作灯	
8	Y0.7	SPZD	主轴制动信号	
9	Y1.0	GEAR1	主轴机械档位信号1	
10	Y1.1	GEAR2	主轴机械档位信号2	
11	Y1.2	GEAR3	主轴机械档位信号3	
12	Y1.3	GEAR4	主轴机械档位信号4	
13	Y1.4	THOR	刀套垂直	BT40 圆盘型/斗笠
14	Y1.5	TVER	刀套水平	BT40 圆盘型/斗笠
15	Y1.6	TCW	刀盘电机顺时针转	BT40 圆盘型/斗笠
16	Y1.7	TCCW	刀盘电机逆时针转	BT40 圆盘型/斗笠
29	Y2.0	TROT	主轴松紧刀输出	BT40圆盘型/斗笠
30	Y2.1	THOT	圆盘刀库换刀臂输出电机	BT40圆盘型
31	Y2.2	CLPY	三色灯-黄灯	
32	Y2.3	CLPG	三色灯-绿灯	
33	Y2.4	CLPR	三色灯-红灯	
34	Y2.5	TKNOUT	排屑反转输出	MDi-H下有效
35	Y2.6	TKOUT	排屑正转输出	
36	Y2.7	ALTO	翻转输出信号	
37	Y3.0			
38	Y3.1	ITLS	分度台松开信号	
39	Y3.2	ITCP	分度台夹紧信号	
40	Y3.3			
41	Y3.4			
42	Y3.5	SPZD2	第二主轴制动	第二主轴控制
43	Y3.6			
44	Y3.7			
17~19	0V			
20~25	24V			
26~28	0V			

附录八 标准梯形图功能说明

CN31	PLC地址	地址符号	地址定义的功能	备注
5	X6.0	EHDX	外接手脉X轴选	
6	X6.1	EHDY	外接手脉Y轴选	
8	X6.2	EHDZ	外接手脉Z轴选	
25	X7.5	EHD4	外接手脉4th轴选	
7	X7.1	EHD5	外接手脉5th轴选	
9	X6.3	EMP0	外接X1倍率	
22	X6.4	EMP1	外接X10倍率	
23	X6.5	EMP2	外接X100倍率	
1	HA+			
2	HA-			
3	HB+			
4	HB-			
7	悬空			
10~13	0V			
14~16	5V			
17~18	24V			
19~21	悬空			
24、26	悬空			

CN15	PLC地址	地址符号	地址定义的功能	备注
8	X5.0	SPAL	主轴1报警输入信号	
9	X5.1			
6	Y5.0	SRV	主轴1逆时针旋转	
7	Y5.1	SFR	主轴1顺时针旋转	
3	Y5.2			
4	GND			
5	SVC			
2	0V			
1	+24V			

CN16	PLC地址	地址符号	地址定义的功能	备注
8	X8.0	SPAL2	主轴2报警输入信号	
9	X8.1			
6	Y8.0	SRV2	主轴2逆时针旋转	
7	Y8.1	SFR2	主轴2顺时针旋转	
3	Y8.2			
4	GND			
5	SVC			
2	0V			
1	+24V			

其他地址定义请参考"第三篇 安装连接"。

修

8.2 功能配置

8.2.1 第一主轴旋转控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
		机床面板主轴顺时针转键		X21.7	
松)台口		机床面板主轴逆时针转键		X21.3	
输入信号		机床面板主轴停止键		X21.5	
	SPAL	主轴报警信号		X5.0	
	CDV		CN62.4	Y0.3	
	SRV	主轴逆时针转信号		Y5.1	
	SFR	主轴顺时针转信号	CN62.5	Y0.4	
松山岸县				Y5.0	
输出信号	SPZD	主轴制动信号	CN62.8	Y0.7	
		机床面板主轴逆时针转指示灯		Y23.1	
		机床面板主轴顺时针转指示灯		Y19.1	
		机床面板主轴停止指示灯		Y18.0	
	M03	主轴顺时针转指令信号			
指令输入	M04	主轴逆时针转指令信号			
	M05	主轴停止指令信号			

● 控制参数

 3712
 主轴类型(0: 开关量主轴; 1: 模拟主轴; 2: 串行主轴)

K0010 MTSS RSJG

RSJG=1: 复位时, CNC不关闭主轴、冷却、润滑输出信号;

=0: 复位时, CNC关闭主轴、冷却、润滑输出信号。

MTSS =1: 执行M30时不停止主轴;

=0: 执行M30时停止主轴。

DT0021
DT0022
DT0023

M代码执行持续时间
主轴停止到制动输出的延迟时间
主轴制动输出时间

● 动作时序

主轴动作时序如下图所示。

注: DT022 为从发出主轴停止信号到发出主轴制动信号的延迟时间; DT023 为主轴制动保持时间。

● 控制逻辑

CNC 上电后,SSTP 输出有效。在 SSTP 输出有效时,执行 M03 或 M04,对应的 SRV 或 SFR 输出有效并保持,同时关闭 SSTP 输出;SFR 或 SRV 输出有效时,执行 M05,关闭 SFR 或 SRV 的输出,SSTP 输出有效并保持;主轴制动 SPZD 信号输出延时由 PLC 数据 DT022(主轴停止指令输出到主轴制动 SPZD 信号输出之间的延时时间)设定,制动信号保持的时间由 PLC 数据 DT023(主轴制动输出时间)设定:

如当前主轴处于顺时针转或逆时针转状态,则执行 M04 或 M03 时,产生 PLC 报警 A0.3: M03、M04 指定错误。

注 1: CNC 外部急停或主轴报警时,关闭主轴旋转输出信号,同时输出 SSTP 信号。

注 2: CNC 复位时,由 PLC 状态 K0010 的 RSJG 位设置是否取消 SFR、SRV 的输出;

当 RSJG=0 时, CNC 复位关闭 SFR、SRV 的输出;

当 RSJG=1 时, CNC 复位, SFR、SRV 的输出状态保持不变。

注 3: 执行 M30 时,由 PLC 状态 K0010 的 MTSS 位设置是否取消 SFR、SRV 的输出。

注 4: CNC 检测到主轴报警信号 SPAL 后,产生 3036 号报警:主轴驱动单元未准备就绪,同时 F35.0 置 1。

注 5: 主轴模拟量控制时, 当输出的电压 > 0 时, 主轴使能信号有效。

注 6: 串行主轴控制时不需要连接 1/0 信号, 系统和伺服通过总线进行通讯(主轴正转信号: G70.5, 珠主轴反转信号: G70.4)。

8.2.2 第二主轴旋转控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号	SPAL2	第二主轴报警信号		X8.0	
	SRV2	第二主轴逆时针转信号		Y8.0	
输出信号	SFR2	第二主轴顺时针转信号		Y8.1	
	SPZD	第二主轴制动信号	CN62.42	Y3.5	
指令输入	M73	第二主轴顺时针转指令信号			
	M74	第二主轴逆时针转指令信号			
	M75	第二主轴停止指令信号			

注: 第一主轴相关信号参照主轴旋转控制说明。

● 参数控制

3710	系统主轴数					
3712	主轴类型(0: 开关量主轴;1: 模拟主轴;2: 串行主轴)					
DT0021	M代码执行持续时间					
DT0022	主轴停止到制动输出的延迟时间					
DT0023	主轴制动输出时间					
K0013	EMS					

EMS =0: 多主轴功能无效:

=1: 多主轴功能有效。

● 多主轴功能说明

S 代码作为指定选定主轴速度旋转,如果一个主轴对应的选择信号没有选通,它将以之前的速度继续旋转。这样就能实现多个主轴在同一时间内以不同的速度旋转。

● 多主轴控制说明

- ▶ 多主轴功能只有主轴处于模拟电压方式控制下才有效。
- ▶ M03/M04 S□□□□ 切换为第一主轴且主轴正反转。
- ▶ M73/M74 S□□□□ 切换为第二主轴且主轴正反转。
- ➤ M05/M75 第一主轴/第二主轴停止正反转。
- ▶ 操作面板逆时针转按键灯、主轴停止按键灯、顺时针转按键灯只反应第一主轴的旋转状态,不反映第二主轴的旋转状态。

● 时序图

● 控制逻辑

CNC 上电后,系统当前处于第一主轴状态。系统通过 M03、M04 控制第一主轴的正反转输出。M73、M74 为切换到第二主轴进行主轴正反转输出。完成切换后,对当前主轴的控制逻辑跟主轴旋转中的主轴控制逻辑一致。

如当前第二主轴处于顺时针转或逆时针转状态,则执行 M74 或 M73 时,产生 PLC 报警 A0.7: M73、M74 指定错误。

- 注1: 输入 S 值为指定主轴下的速度变更。
- 注 2: 切换主轴时,如果将要切换的主轴正在旋转,则切换时,必须输入跟将要切换主轴旋转方向一致的 M 指令或者先停止将要切换的主轴旋转,否则将产生 PLC 报警:主轴旋转方向指定错误。
- 注 3: CNC 外部急停或者主轴报警时,关闭多主轴旋转输出信号,同时输出停止信号。
- 注 4: 串行主轴控制时不需要连接 1/0 信号, 系统和伺服通过总线进行通讯(主轴正转信号: G74. 5, 珠主轴反转信号: G74. 4)。

8.2.3 第三主轴旋转控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号	SPAL	第三主轴报警信号		X5.0	
输出信号	SRV1	第三主轴逆时针转信号		Y5.0	
机四日子	SFR1	第三主轴顺时针转信号		Y5.1	
	M83	第三主轴顺时针转指令信号			
指令输入	M84	第三主轴逆时针转指令信号			
	M85	第三主轴停止指令信号			

● 参数控制

 3710
 系统主轴数

 3712
 主轴类型 (0: 开关量主轴; 1: 模拟主轴; 2: 串行主轴)

 K0013
 EMS
 SP3

EMS =0: 多主轴功能无效;

=1: 多主轴功能有效。

SP3 =0: 第3主轴无效;

=1: 第3主轴有效。

● 多主轴控制说明

- ▶ 多主轴功能只有主轴处于模拟电压方式控制下才有效。
- ▶ M03/M04 S□□□□ 切换为第一主轴且主轴正反转。
- ▶ M73/M74 S□□□□ 切换为第二主轴且主轴正反转。
- ▶ M83/M84 S□□□□ 切换为第三主轴且主轴正反转。
- ➤ M05/M75/M85 第一主轴/第二主轴/第三主轴停止。
- ▶ 操作面板逆时针转按键灯、主轴停止按键灯、顺时针转按键灯只反应第一主轴的旋转状态,不反映第三主轴的旋转状态。

● 控制逻辑

第三主轴旋转控制逻辑跟第二主轴旋转控制逻辑一致。当第三主轴设为有效时,X5.0、Y5.0、Y5.1 为第三主轴控制信号,第三主轴类型设为模拟主轴时使用模拟主轴1(CN15)输出端口。

- 注 1: 输入 S 值为指定主轴下的速度变更
- **注 2**: 切换主轴时,如果将要切换的主轴正在旋转,则切换时,必须输入跟将要切换主轴旋转方向一致的 M 指令或者先停止将要切换的主轴旋转,否则将产生 PLC 报警:主轴旋转方向指定错误。
- 注 3: CNC 外部急停或者主轴报警时,关闭多主轴旋转输出信号,同时输出停止信号
- 注 4: 串行主轴控制时不需要连接 1/0 信号, 系统和伺服通过总线进行通讯(主轴正转信号: G78.5, 珠主轴反转信号: G78.4)。

8.2.4 T型自动换挡

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	ASP1	第一档主轴到位信号	CN61.7	X0.6	
┃ 輸入信号	ASP2	第二档主轴到位信号	CN61.8	X0.7	
+制八百 与	ASP3	第三档主轴到位信号	CN61.9	X1.0	
	ASP4	第四档主轴到位信号	CN61.10	X1.1	
	GEAR1	主轴机械档位信号1	CN62.9	Y1.0	
输 出信号	GEAR2	主轴机械档位信号2	CN62.10	Y1.1	
柳山口力	GEAR3	主轴机械档位信号3	CN62.11	Y1.2	
	GEAR4	主轴机械档位信号4	CN62.12	Y1.3	
	M41	主轴自动换挡第一档			
指令输入	M42	主轴自动换挡第二档			
	M43	主轴自动换挡第三档			
	M44	主轴自动换挡第四档			

● 功能描述

主轴自动换挡功能用于控制自动切换机械档位,CNC 执行 $S \square \square \square \square$ 代码时,根据当前 M 指令控制 对应参数(M41~M44 分别控制数据参数 N03741~N03744)计算输出给主轴伺服或者变频器的模 拟电压,控制主轴实际转速与 S 代码的转速一致。

● 参数控制

K 参数:

K13		SPCD						SPCH	SPSE
-----	--	------	--	--	--	--	--	------	------

SPCD=1: 主轴自动换挡功能有效;

=0: 主轴自动换挡功能无效。

SPCH=1: 主轴自动换挡到位检测信号无效;

=0: 主轴自动换挡到位检测信号有效。

SPSE =1: 主轴自动换挡输出档位信号保持;

=0: 主轴自动换挡输出档位信号不保持。

数据参数:

3741 S1	GRMAX1(第一主轴第一档的主轴最高转速)
3742 S1	GRMAX2(第一主轴第二档的主轴最高转速)
3743 S1	GRMAX3(第一主轴第三档的主轴最高转速)
3744 S1	GRMAX4(第一主轴第四档的主轴最高转速)

PLC 参数:

DT32	主轴自动换挡速度设置(0~4095)			
DT33	主轴自动换挡关闭原档位时间			
DT34	主轴自动换挡到位以后,延时结束时间			
DT35	自动换挡检测时间			
DT50	换挡摆动间隔时间			
DT51	换挡摆动输出时间			

DT33: 初始化为 5s, 用户根据需要调整该参数,应避免设置时间过短而主轴未能切换到低速换挡导致主轴损坏,该参数设置过长,则时间性相对较低,影响加工效率。

DT34: 初始化为 5s,用户根据需要调整,该参数设置过短则在 M 指令完成时间内不能到达指定档位速度,设置过长则影响加工效率。

● 动作时序

1、到位检测信号有效(K13.1=0)时: 控制逻辑描述下的动作时序如下。

2、到位检测信号无效(K13.1=1)时:

● 控制逻辑

- ▶ 将 K13.7 参数设置为 1 的时候, 主轴自动换挡功能有效;
- ▶ 执行 M41、M42、M43、M44 中任意一个代码,判断输入档位跟当前档位是否一致,一致则不进行换挡;
- ▶ 换挡开始时,按参数 DT30 设置值输出模拟电压给主轴伺服或者变频器;
- ▶ 延时参数 DT33 (换挡时间 1) 后,关闭原档位输出信号同时输出新的换挡信号;
- ▶ 检测换挡是否到位,如果不到位则等待到位信号;
- ➤ 在 DT35 设置时间内,如果换挡未到位则提示报警 A1.0。

换挡到位后,延时参数 DT34 (换挡时间 2),根据当前档位按参数 NO3741~NO3744 设置值输出模拟电压,换挡结束。

- 注 1: 必须在选择主轴转速是模拟电压控制方式下,主轴自动换挡功能才有效。
- 注2: 主轴功能无效时, 执行 M41~M44 将报警。
- 注 3: 主轴换挡功能转换需检测到位信号, 检测到位信号后换挡功能才完成。

8.2.5 M 型自动换挡

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	ASP1	第一档主轴到位信号	CN61.7	X0.6	
输入信号	ASP2	第二档主轴到位信号	CN61.8	X0.7	
一 	ASP3	第三档主轴到位信号	CN61.9	X1.0	
	ASP4	第四档主轴到位信号	CN61.10	X1.1	
	GEAR1	主轴机械档位信号1	CN62.9	Y1.0	
输出信号	GEAR2	主轴机械档位信号2	CN62.10	Y1.1	
柳山口口	GEAR3	主轴机械档位信号3	CN62.11	Y1.2	
	GEAR4	主轴机械档位信号4	CN62.12	Y1.3	
指令输入	M41	主轴自动换挡第一档			
	M42	主轴自动换挡第二档			
1日文制八	M43	主轴自动换挡第三档			
	M44	主轴自动换挡第四档			

功能描述

选择 M 型换档时,根据数据参数的设定值和 S 指令值, CNC 作出判断是否进行换挡,并输出给 PLC, 指定主轴转速所需的齿轮级数。

参数控制

K 参数:

K13 SPCD	EMS	SPMT				SPCH	SPSE
----------	-----	------	--	--	--	------	------

SPCD =1: 主轴自动换挡功能有效;

=0: 主轴自动换挡功能无效。

EMS =1: 多主轴功能有效;

=0: 多主轴功能无效。

SPMT =1: 主轴自动换挡类型为 M 型;

=0: 主轴自动换挡类型为 T型。

SPCH =1: 主轴自动换挡到位检测信号无效;

=0: 主轴自动换挡到位检测信号有效。

SPSE =1: 主轴自动换挡输出档位信号保持;

=0: 主轴自动换挡输出档位信号不保持。

数据参数:

3735
3736
3741 S1
3742 S1
3743 S1
3744 S1

M型换挡时,主轴电标	几最小钳制速度(12位代码值)
M型换挡时,主轴电标	几最大钳制速度(12位代码值)
GRMAX1(第一主	轴第一档的主轴最高转速)
GRMAX2(第一主	轴第二档的主轴最高转速)
GRMAX3(第一主	轴第三档的主轴最高转速)
GRMAX4(第一主	轴第四档的主轴最高转速)

PLC 参数:

DT32
DT33
DT34
DT35
DT50
DT51

主轴自动换挡速度设置(0~4095)					
主轴自动换挡关闭原档位时间					
主轴自动换挡到位以后,延时结束时间					
自动换挡时间					
换挡摆动间隔时间					
换挡摆动输出时间					

DT33: 初始化为 5s, 用户根据需要调整该参数, 应避免设置时间过短而主轴未能切换到低速换挡 导致主轴损坏; 该参数设置过长,则时间性相对较低,影响加工效率。

DT34: 初始化为 5s, 用户根据需要调整, 该参数设置过短则在 M 指令完成时间内不能到达指定档 位速度,设置过长则影响加工效率。

动作时序

控制逻辑描述下的动作时序如下:

● 控制逻辑

- ▶ 将 K13.7 和 K13.5 参数设置为 1 的时候, M 型自动换挡功能有效;
- ▶ 执行 S 指令,判断是否需要换挡,需要换挡时输出对应档位信号(F34.0~F34.3);
- ▶ 换挡开始时,按参数 DT30 设置值输出模拟电压给主轴伺服或者变频器;
- ▶ 延时参数 DT33 (换挡时间 1) 后,关闭原档位输出信号同时输出新的换挡信号;
- ▶ 检测换挡是否到位,如果不到位则等待到位信号;
- ➤ 在 DT35 设置时间内,如果换挡未到位或者未完成,则提示报警 A1.0。 换挡到位后,延时参数 DT34 (换挡时间 2),根据当前档位按参数 NO3741~NO3744 设置值输出模 拟电压,换挡结束。
- 注 1: 必须在选择主轴转速是模拟电压控制方式下,主轴自动换挡功能才有效。
- 注 2: M 型自动换挡只能在单模拟主轴下才有效。
- 注 3: 主轴换挡功能转换需检测到位信号, 检测到位信号后换挡功能才完成。

8.2.6 主轴转速开关量控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	GEAR1	主轴机械档位信号1	CN62.9	Y1.0	
松山片日	GEAR 2	主轴机械档位信号 2	CN62.10	Y1.1	
输出信号	GEAR 3	主轴机械档位信号3	CN62.11	Y1.2	
	GEAR 4	主轴机械档位信号 4	CN62.12	Y1.3	
	S01	主轴档位信号1指令信号			
	S02	主轴档位信号2指令信号			
指令输入	S03	主轴档位信号3指令信号			
	S04	主轴档位信号4指令信号			
	S00	主轴档位信号取消指令信号			

● 控制参数

0	0	1			ACS		
对	应F地	址			F200.4		

ACS =1: 主轴转速模拟电压或总线控制;

=0: 主轴转速开关量控制。

8	1
	=

1	7	3					ESCD
对	应F地	址					F211.4

ESCD =0: 急停时不关 S 代码; =1: 急停时关S代码。

DT0019	S代码执行时间
DT0024	档位主轴换档延迟时间

● 控制逻辑

CNC上电时,GEAR1~GEAR4输出无效。执行S01、S02、S03、S04中任意一个指令,对应的S信号输出有效并保持,同时取消其余3个S信号的输出。执行S00指令时,取消GEAR1~GEAR4的输出,GEAR1~GEAR4同一时刻仅一个有效。

8.2.7 循环启动和进给保持

● 相关信号

信号类型	信号 符号	信号意义	对应引脚	PLC状态	CNC诊断
			CN78.7	X9.0	GSK980MDi-H下无效
		外接循环启动信号	CN65	X28.0	只在GSK980MDi-H有效
				X1.4	
<i>t</i> △) <i>t</i> ⇒ □			CN78.6	X9.1	GSK980MDi-H下无效
输入信号		 外接进给保持信号	CN65	X28.1	GSK980只在MDi-H有效
		外接近组 体持 旧 9		X0.1	
		机床面板循环启动键信号		X23.0	GSK980MDi-H是X22.5
		机床面板进给保持键信号		X22.7	
		机床面板循环启动指示灯		Y20.0	
		机床面板进给保持指示灯		Y21.0	
输出信号		外接循环启动指示灯	CN78.2	Y9.0	GSK980MDi-H下无效
御山行与		外按個外戶刻個小科	CN65	Y29.0	只在GSK980MDi-H有效
		外接进给保持指示灯	CN78.1	Y9.1	GSK980MDi-H下无效
		介 按 应 知 体 行 相 小 闪	CN65	Y29.1	只在GSK980MDi-H有效
指令输入	M00	进给保持信号		F9.7	

● 控制参数

1	7	2		MST	MSP			
对应F地址			F210.6	F210.5				

MST =1: 外接循环启动信号无效;

=0: 外接循环启动信号有效.

MSP=1: 外接进给保持信号无效;

=0: 外接进给保持信号有效,此时必须外接暂停开关,否则 CNC 显示"暂停"报警。

(1)

8.2.8 冷却控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		机床面板冷却键信号		X21.4	
松山信具		机床面板冷却启动指示灯		Y23.0	
输出信号	COOL	冷却输出信号	CN62.1	Y0.0	
+L A tA)	M08	冷却开启指令信号			
指令输入	M09	冷却关闭指令信号			

● 控制参数

K0010 MTCC RSJG

RSJG=1: 复位时, CNC 不关闭主轴、冷却、润滑输出信号;

=0: 复位时, CNC关闭主轴、冷却、润滑输出信号;

MTCC =1: 执行 M30 时不关闭冷却输出信号;

=0: 执行M30时关闭冷却输出信号。

● 功能描述

CNC 上电后, COOL 输出无效。执行 M08 指令, COOL 输出有效, 冷却泵开; 执行 M09 指令, 取消 COOL 输出, 冷却泵关。

注1: CNC 复位时,由 PLC 状态 K10 的 RSJG 位设置是否关闭冷却输出。

注 2: M09 无对应的输出信号, 执行 M09 取消 M08 的输出。

注 3: 执行 M30 时,由 PLC 状态 K10 的 MTCC 位设置是否关闭冷却输出。

8.2.9 润滑控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		机床面板润滑键信号		X21.6	
松山岸里		机床面板润滑启动指示灯		Y20.7	
输出信号	LUBR	润滑输出信号	CN62.2	Y0.1	
比 & 於)	M32	润滑开启指令信号			
指令输入	M33	润滑关闭指令信号			

● 控制参数

DT0016
DT0017
DT0018

自动润滑间隔时间
润滑输出时间
上电润滑时间 >0: 上电润滑有效

● 功能描述

GSK980MDi 标准梯形图定义的润滑功能有两种,非自动润滑和自动润滑,通过 PLC 数据进行设置:

DT0017=0: 非自动润滑和翻转润滑:

>0: 自动润滑和翻转润滑,可设置 DT16 和参数 K19 的 BITO。

DT0018=0: 上电润滑无效;

>1: 上电润滑有效。

录

1、翻转润滑

当 DT17 设置大于 0, DT16 等于 0, 为系统翻转润滑控制, 翻转润滑是指: 手动启动润滑后, 在 DT17 设置的时间内进行润滑, 当到达时间以后, 系统结束润滑。下一次启动润滑, 必须再次手动启动润滑按键。

2、自动润滑

系统上电后经过 DT0016 设置的时间后,开始润滑 DT0017 设置的时间,然后停止输出,再重复经过 DT0016 设置的时间然后输出润滑,依次循环。自动润滑时,M32、M33 指令无效。当处于自动润滑期间,当前润滑没有启动时,按面板手动润滑键,也可以启动润滑输出,输出时间为 DT17,输出结束后,重新开始自动润滑循环;若当前润滑启动了,按面板手动润滑键可以结束当前润滑输出,重新开始自动润滑循环。

8.2.10 程序段选跳

在程序中不想执行某一段程序段而又不想删除该程序段时,可选择程序段选跳功能。当程序段段首具有"/"号且程序段选跳开关打开(机床面板跳段按键输入有效)时,在自动运行时此程序段跳过不运行。

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		机床面板程序选跳键		X18.7	
输出信号		机床面板程序跳选指示灯		Y18.6	

● 功能描述

- 1、 当程序跳段信号有效时,段首带"/"标记的程序段被跳过不执行;
- 2、 程序选跳功能只在自动方式、录入方式、DNC 方式下才有效。

8.2.11 机床锁

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		机床面板机床锁键		X19.0	
输出信号		机床面板机床锁指示灯		Y18.5	

● 功能描述

- 1、 机床锁在任何方式下都有效;
- 2、 程序运行时,不可切换机床锁状态。

8.2.12 辅助锁

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		机床面板辅助锁键		X19.1	
输出信号		机床面板辅助锁指示灯		Y18.4	

● 功能描述

辅助锁在自动方式、录入方式或 DNC 方式下有效。

8.2.13 程序单段

● 相关信号

信号	类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入	信号		机床面板单段键		X18.6	
输出	信号		机床面板程序单段指示灯		Y18.7	

● 功能描述

程序单段在自动方式、录入方式或 DNC 方式下有效。

8.2.14 程序空运行

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		机床面板空运行键		X19.2	
输出信号		机床面板程序空运行指示灯		Y18.3	

● 功能描述

- 1、程序空运行在自动方式、录入方式或 DNC 方式下有效;
- 2、程序运行时,不可以切换空运行状态。

8.2.15 选择停

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		机床面板选择停键		X20.0	
指令输入	M01	选择停指令		F9.6	
输出信号		机床面板选择停指示灯		Y21.7	

● 功能描述

在自动、录入、DNC 操作方式下,按 健使选择停按键指示灯亮,则表示进入选择停状态; 此时程序运行到 M01 指令时,将被"暂停"。需再次按 概率起动键,程序才继续往下执行。

8.2.16 行程限位与急停

● 相关信号

1、正负超程信号独立处理:

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	ESP	外接急停信号	CN61.6	X0.5	
	LTXN	X轴负向限位	CN61.36	X2.7	
	LTXP	X轴正向限位	CN61.37	X3.0	
	LTYN	Y轴负向限位	CN61.38	X3.1	
	LTYP	Y轴正向限位	CN61.39	X3.2	
输入信号	LTZN	Z轴负向限位	CN61.43	X3.6	
	LTZP	Z轴正向限位	CN61.44	X3.7	
	LT4N	4 th 轴负向限位	CN61.40	X3.3	
	LT4P	4 th 轴正向限位	CN61.41	X3.4	
	LT5N	5 th 轴负向限位	CN61.30	X2.1	
	LT5P	5 th 轴正向限位	CN61.31	X2.2	

2、正负超程信号合用处理时超程信号:

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	LTXP	X轴限位	CN61.37	X3.0	
	LTYN	Y轴限位	CN61.38	X3.1	
	LTYP	Z轴限位	CN61.39	X3.2	
	LT4N	4 th 轴限位	CN61.40	X3.3	
	LT4P	5 th 轴限位	CN61.41	X3.4	

● 控制参数

1	7	2			MESP		
对	应F地	址			F210.3		

MESP=0: 外接急停功能有效; =1: 外接急停功能无效。

K15	LTEN1	LTEN2	LT5	LT4		LTHL

LTHL =1: 超程信号与+24V断开报警;

=0: 超程信号与+24V导通报警;

LT4 =1: 4th轴外接超程信号有效;

=0: 4th轴外接超程信号无效;

LT5 =1: 5th轴外接超程信号有效;

=0:5th轴外接超程信号无效;

LTEN1, LTEN2 =10: 正负超程信号独立处理;

=01: 正负超程信号合用处理;

=00: 超程无效;

=11: 超程无效。

● 机床外部连接

当 LTEN 为 0 (不检测轴外接超程信号时),外接急停、行程开关连接方式推荐如下图所示(以三轴为例):

● 控制逻辑

急停控制: 当急停开关的触点断开时, ESP 信号与+24V 断开, CNC 急停报警。此时, CNC 停止脉冲输出。除上述处理的功能外, 急停报警时也可由梯形图定义其它功能。 超程控制:

- 1、当出现外接超程报警时,将工作方式切换到手动或者手脉方式下,反方向移动报警轴直到超程 信号翻转后,按复位键报警解除。
- 2、使用正负超程信号合用处理方式时,每个轴只有一个超程触点,通过轴的移动方向来判断正负 超程报警。

8.2.17 三色灯

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	CLPY	三色灯-黄灯	CN62.31	Y2.2	
输出信号	CLPG	三色灯-绿灯	CN62.32	Y2.3	
	CLPR	三色灯-红灯	CN62.33	Y2.4	

● 功能说明

黄灯(常态,非运行非报警),绿灯(自动运行中),红灯(系统报警)。

8.2.18 复位时光标返回

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		MDI 面板复位键		X24.0	

● 控制参数

K0010					RESB

RESB =1: 复位时光标返回功能有效;

=0: 复位时光标返回功能无效。

● 功能说明

当 K10 的 RESB 设置为 1 时,在自动方式下按复位键(X24.0)时,系统复位且光标返回程序开头。

8.2.19 刚性攻丝

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入指令	M29	刚性攻丝指定信号			
	F76.3	位置方式切换信号			
CEÆ □	F45.6	伺服刚性攻丝状态			
GF信号	G70.3	伺服刚性攻丝参数切换信号			
	G61.0	刚性攻丝切换成功			

● 功能说明

执行 M29 时,输出 F76.3 信号,伺服主轴从速度向位置切换,并发出刚性攻丝参数切换信号 G70.3 来调用攻丝参数,切换完成后,伺服主轴发出 F45.6 信号,PLC 接收到此信号后,置 G61.0 为 1,然后 M29 执行完毕。执行过程如下:

M29-->F76.3=1-->G70.3=1-->F45.6=1-->G61.0=1-->G4.3

当执行 M29, 进行刚性攻丝切换时, 若在 DT15 时间内没有检测 F45.6, 则报警 A0.2: 执行 M29 后, 执行 M29 后, 检测刚性攻丝反馈信号超时。

8.2.20 主轴准停/主轴定向

● 相关信号`

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号		面板主轴定向按键		X25.7	
制八石 与		主轴定向按键指示灯		Y21.3	
输入指令	M19	定向位置1指令			
相八1日マ	M20	定向位置2指令			
GF信号	G70.2	定向启动信号			
GF信号	F45.2	定向完成信号			

● 功能描述

伺服主轴在速度方式时,可以实现主轴定向功能。当主轴定向时,取消主轴旋转输出;当主轴旋转输出时,取消主轴定向输出。当输出主轴定向信号 G70.2 后,若在 DT14 时间内没有检测到定向完成信号 F45.2,则报警 A0.4:主轴定向时,检测定向反馈信号超时。

驱动单元相关参数:

- ✓ PA103: 定向位置1低位
- ✓ PA104: 定向位置 1 高位
- ✓ PA105: 定向位置 2 低位
- ✓ PA106: 定向位置 2 高位

8.2.21 外接手脉控制

● 相关信号`

信号类型	信号符号	信号意义	对应引脚	PLC状态	C NC诊断
	EHDX	外接手脉 X 轴选择	CN31.5	X6.0	
	EHDY	外接手脉 Y 轴选择	CN31.6	X6.1	
	EHDZ	外接手脉 Z 轴选择	CN31.8	X6.2	
tA)片口	EHD4	外接手脉 4th 轴选择	CN31.19	X7.5	
输入信号	EHD5	外接手脉 5th 轴选择	CN31.7	X7.1	
	EMP0	外接手脉/增量 0.001	CN31.9	X6.3	
	EMP1	外接手脉/增量 0.01	CN31.22	X6.4	
	EMP2	外接手脉/增量 0.1	CN31.23	X6.5	
	EMP3	外接手脉/增量 1	CN31.20	X7.2	

相关参数

K0016	NMAX	EMKJ	BLFD			

BLFD =1: 外接手脉倍率放大 10 倍有效;

=0: 外接手脉倍率放大 10 倍无效。

EMKJ =1: 外接手脉使能按键一直按住时有效,系统面板上的手脉轴选和倍率按键无效(×1000 倍率键除外);

=0: 外接手脉使能按键点按时有效;

NMAX =1: 手脉方式下, ×1000 倍率键有效;

=0: 手脉方式下,×1000倍率键无效。

功能描述

支持 5 轴的外接手脉,可以适配 PSG-100-05E/L、ZSSY2080 外接手脉,具体接线请参照手脉的相关 资料。

8.2.22 CS 轴切换

相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
控制指令 M14 M15	CS 轴从速度到位置切换				
12前11令	M15	CS 轴从位置到速度切换			
GF信号	G27.7	速度/位置切换信号			
	F44.1	位置方式切换完成信号			

功能说明

旋转轴 CS 功能有效时,执行 M14 可以从速度方式切换到位置方式, M15 可以从位置方式切换到速 度方式。当执行 M14/M15 进行切换时,关闭主轴旋转输出;

当 CS 轴从速度到位置切换时, 若在 DT29 的时间内没有收到位置状态信号 F44.1, 则报警 A0.5: 执行 M14 后,检测位置方式反馈信号超时;

当 CS 轴从位置到速度切换时, 若在 DT30 的时间内没有取消位置状态信号 F44.1, 则报警 A0.6: 执行 M15 后, 检测速度方式反馈信号超时。

8.2.23 分度台松紧控制

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	DTLO	分度台松开到位信号	CN61.40	X3.3	
	DTCL	分度台夹紧到位信号	CN61.41	X3.4	
输入信号		机床面板分度台松紧按键		X26.4	
	BUCLP	分度台松开信号		F61.0	
	BCLP	分度台夹紧信号		F61.1	
		分度台松开输出	CN62.38	Y3.1	
		分度台夹紧输出	CN62.39	Y3.2	
		第 4 轴使能关闭信号		G126.3	
输出信号		第 5 轴使能关闭信号		G126.4	
		机床面板分度台松紧按键指示灯		Y26.4	
	BEUCL	分度台松开完成反馈信号		G38.0	
	BECLP	分度台夹紧完成反馈信号		G38.1	
指令输入	M22	分度台松开			
1日で制八	M23	分度台夹紧			

● 相关参数

K0017	ITI	SVOFF					DAAN	ADHL
-------	-----	-------	--	--	--	--	------	------

ADHL=1: 分度台输出信号保持;

=0: 分度台输出信号不保持;

DAAN =1: 分度台控制轴为第5轴;

=0: 分度台控制轴为第4轴;

SVOFF=1: 夹紧和松开时, 伺服断开功能有效;

=0: 夹紧和松开时,伺服断开功能无效。

ITI =1: 分度台分度功能有效;

=0: 分度台分度功能无效。

注: K17.1 号参数要与系统 NO. 1030 数据参数设置一致,才能正确进行分度轴的手动移动和回零操作。

DT0012 分度台松开/夹紧超时时间,默认为10000ms。

分度台执行松开时,如果在 DT12 设置时间内,不能检测到 X3.3 松开到位信号,系统报警;分度台执行夹紧时,如果在 DT12 设置时间内,不能检测到 X3.4 夹紧到位信号,系统报警。

DT0013

0: 需检测分度台松紧到位信号;

>0: 不检测到位信号,分度台松紧执行时间

默认值为0,分度台松开夹紧需要检测到位信号。

DT0038	分度台松开时,延时输出伺服使能的时间
DT0039	分度台夹紧时,延时关闭伺服使能的时间

● 动作时序图

● 控制逻辑

分度台松开: 执行分度轴移动指令或 M22 时,输出 Y3.1。收到分度台松开到位信号 X3.3 时,停止 Y3.1 输出,同时输出分度台伺服使能信号。

分度台夹紧:分度台旋转完成或执行 M23 时,输出 Y3.2,同时关闭分度台伺服使能信号。收到分度台夹紧到位信号 X3.4 时,停止 Y3.2 输出。

手动移动分度轴时,需要分度台松开到位后,才能移动,否则报警。

8.2.24 防护门功能

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输入信号	SAGT	防护门打开/关闭反馈信号	CN61.15	X1.6	

● 相关参数

	_					
K0014				SGSP	SPB	SDR

SDR =1: 防护门功能有效;

=0: 防护门功能无效.

SPB =1: SAGT 与+24V 导通防护门关闭;

=0: SAGT 与+24V 断开防护门关闭.

SGSP=1: 运行中打开防护门不关主轴和冷却;

=0: 运行中打开防护门关主轴和冷却。

● 功能说明

GSK980MDi 标准梯形图提供防护门功能,当防护门参数 K14.0 设置有效的时候,打开防护门,系统将产生提示信息:防护门未关闭.

系统在自动方式下,点按循环启动,防护门未关闭则提示报警:防护门未关闭,禁止自动运行; 系统在自动运行的途中打开防护门,系统立即启动暂停,并且产生提示信息:防护门未关闭。这个 时候是否关闭主轴和冷却,则由参数 K14.2 决定。当设置不关闭系统主轴和冷却的时候,关上防护 门后启动系统,系统将继续之前的状态运行。当设置关闭系统主轴和冷却和主轴以后,关上防护门 后启动系统,需重新打开主轴和冷却。

8.2.25 抱闸控制

● 相关信号

信号类型	地址符号	信号意义	CNC引脚	PLC地址	CNC诊断
输出信号	SRDY	抱闸控制信号输出	CN62.3	Y0.2	

● 相关参数

	-				
K0018		CDID			l
K0018		SKID			i l
					1

SRID =1: 系统控制抱闸功能有效; =0: 系统控制抱闸功能无效。

DT37

系统上电后松开抱闸的延时时间。初始化为4s

● 功能描述

系统上电后延时 DT37 设定的时间输出抱闸松开信号 Y0.2。当产生急停报警或驱动报警时,关闭 Y0.2 输出,使 Z 轴电机抱闸,直到报警消除后再输出 Y0.2。

8.2.26 主轴松紧刀

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
JOGT		手动主轴松紧刀控制	CN61.14	X1.5	
输入信号	TACT	主轴松刀到位检测	CN61.16	X1.7	
	TGGH	主轴紧刀到位检测	CN61.29	X2.0	
输出信号	TROT	主轴松紧刀输出	CN62.29	Y2.0	
控制指令	M54	主轴松刀			
	M55	主轴紧刀			

● 控制参数

K0011			ELHA					
-------	--	--	------	--	--	--	--	--

ELHA=1: 主轴松紧刀功能有效; =0: 主轴松紧刀功能无效。

DT0031

主轴松紧刀检测延时时间

主轴执行紧刀时,如果在 DT31 设置时间内,不能检测到 X2.0 紧刀到位信号,系统报警;主轴执行松刀时,如果在 DT31 设置时间内,不能检测到 X1.7 松刀到位信号,系统报警。

● 功能说明

主轴松紧刀功能跟主轴旋转有着严格的互锁的关系,以避免使用中损坏主轴,互锁关系如下: 主轴松刀时,禁止启动主轴旋转,否则报警;

主轴旋转时,禁止启动主轴松紧刀,否则报警;

手动主轴松紧刀在任何方式下均可执行。手动松紧刀为长按有效,按住松刀按钮不放则表示主轴松刀,松开则主轴夹紧。

M

8.2.27 BT40 圆盘刀库

● 适用范围

该梯形图适用于 BT40(20 把刀)以及与其类似刀库的逻辑使用。

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
	TDEC	回零到位检测	CN61.1	X0.0	
	TPCH	气缸压力检测	CN61.3	X0.2	
	TCOT	刀位计数	CN61.5	X0.4	
	THCH	刀套水平到位	CN61.7	X0.6	
	TVCH	刀套垂直到位	CN61.8	X0.7	
	THSP	圆盘刀库换刀臂停止检测	CN61.9	X1.0	
输入信号	THGT	圆盘刀库换刀臂抓刀检测	CN61.10	X1.1	
	THZP	圆盘刀库换刀臂原点检测	CN61.11	X1.2	
	JOGT	主轴松紧刀控制	CN61.14	X1.5	
	TRCH	主轴松刀到位检测	CN61.16	X1.7	
	TGCH	主轴紧刀到位检测	CN61.29	X2.0	
	THOV	换刀臂电机过载	CN61.30	X2.1	
	TTOV	刀盘电机过载	CN61.31	X2.2	
	THOR	刀套垂直输出	CN62.13	Y1.4	
	TVER	刀套水平输出	CN62.14	Y1.5	
か 出信号	TCW	刀盘电机顺时针转	CN62.15	Y1.6	
制 田 行 写	TCCW	刀盘电机逆时针转	CN62.16	Y1.7	
	TROT	松刀输出	CN62.29	Y2.0	
	THOT	换刀臂输出电机	CN62.30	Y2.1	

● 相关参数

K0011	HALT1	HALT2					APCH	DBUG	ı
-------	-------	-------	--	--	--	--	------	------	---

DBUG =1: 开启刀库调试模式;

=0: 关闭刀库调试模式。

APCH =1: 不检测气缸压力过低;

=0: 检测气缸压力过低。

HALT1、HALT2参数设置如下:

	BT40型刀库	斗笠式刀库	刀库功能无效	炮塔刀库
HALT1	1	0	0	1
HALT2	0	1	0	1

K0012		TKEY	TCCH	TCHL		

TCHL=1: 刀位计数信号低电平有效;

=0: 刀位计数信号高电平有效。

TCCH =1: 刀位计数信号检测功能有效;

=0: 刀位计数信号检测功能无效。

TKEY=1: 系统面板刀库相关按键屏蔽;

=0: 系统面板刀库相关按键不屏蔽。

K	5

DT40	刀库计数信号感应有效时间,默认100ms
DT41	刀库计数信号间隔时间最小值,默认500ms
DT42	刀库计数信号间隔时间最大值,默认1000ms

系统状态参数:

173 TMANL

TMANL = 0: 自动换刀 = 1: 手动换刀

数据参数:

5026 最大刀位号

6044 6045 6046 调用子程序的其实M代码 调用子程序的其实M代码对应的起始程序号(0-9999) 调用子程序的M代码允许个数(0-8000; 0: 表示该功能无效)

将上述三个参数设置为:

6044	6
6045	9001
6046	1

设置完成后,可以通过 M6来调用换刀宏程序 P9001,而无须用 M98来调用宏程序。

● M 功能指令

M54: 主轴刀具松开。

M55: 主轴刀具夹紧。

M62: 主轴定向和刀套倒下同时进行。

M65: 刀套倒下。

M66: 刀套抬起。

M68: 换刀臂抓刀(换刀马达第一次启动)。

M69: 换刀臂换刀(换刀马达第二次启动)。

M70: 换刀臂回原位(换刀马达第三次启动)。

M19: 主轴定向。

M1000: 初始化刀号。设置D409~D442为初始值。

● PMC 数据表

1、 D 地址 (一字节二进制数):

D407 为当前机床刀库刀套数目,初始化为 20,用户可根据机床的刀套数实时修改。

D408 为目标刀套号,初始值为 0。

D409 为当前刀套号, 初始设定值 0。

D410 主轴上的刀具号,默认为 0

D411-430 为刀套 1-20 内的刀具号, 初始设定值为 1-20。

2、C 地址:

C21: 刀库手动、刀盘回零计数器。

C22: 刀库顺时针旋转计数器。

C23: 刀库逆时针旋转计数器。

● 操作说明

在将 K 参数 K11.7=1 和状态参数 No173.6=0 设置完以后,可以对 BT50 类型 20 工位及以下的刀库

进行操作。(BT50 刀库逻辑兼容 BT40 刀库逻辑)

■ 刀盘机械回零

在回零方式下,按顺时针选刀按键,刀盘旋转,当检测到零点信号(X0.0)信号以后,刀盘停止旋转。该功能可用于系统调试以及重新更换刀具时使用。

■ 手动方式下换刀

在手脉、手动、单步方式下,设置 K21.2=0, 按系统顺时针/逆时针选刀按键, 刀盘将顺时针/逆时针旋转一个刀位, 完成手动换刀。

■ 自动方式下换刀流程

■ 预选刀功能

程序运行时,输入 T 指令进行换刀。刀盘立即旋转寻找目标刀套,同时 T 辅助功能结束, 程序继续运行。在调用 M6 换刀宏程序后,如果刀盘旋转未结束,则等待刀盘运行结束,再进行刀套动作。编程时,如果在 M6 调用宏程序前完成刀盘旋转,则能减少换刀时间,提高加工效率。

■ 换刀臂动作

K11.0=0 时,需主轴定向和回参考点完成,才能对换刀臂进行动作。

K11.0=1 开启刀库调试模式时,则可以直接对换刀臂进行动作。

■ 异常处理

当刀盘出现乱刀的时候处理如下:

- 1: 当前刀套处于正确的刀具倒下的位置上,则只需在录入方式下,打开参数开关,将正确的对应刀具一一输入到 D411-D430 当中,并最后将当前刀套号输入 D409 内即完成调整;
- 2: 当前刀套未到位且产生刀套错乱时,则需要手动或者自动移动当前刀套到正确的刀具倒下位置上,再在录入方式下,输入对应的刀具信息到 D411-D430 当中,最后将当前刀套号输入 D409 内则完成刀具调整。

■ 相关报警和限制

报警地址	报警号	报警内容	互锁逻辑
E45.0	40.4	主轴定向时,检测定向反馈信号超时	检查主轴定向超时,停止定向
F45.2	A0.4	(F45.2)	
X0.2	A1.1	气缸压力低	压力低不能进行正确的换刀
	A1.2	刀盘旋转时间过长	避免刀盘旋转损坏
X2.2	A1.3	刀盘电机过载	刀盘过载停止操作刀库
X0.6	A1.4	刀盘旋转时,刀套必须水平到位	防止损坏刀盘
X2.1	A1.5	换刀臂电机过载	电机过载停止操作刀库
X1.7	A2.0	松刀检测超时报警	松刀没到位松刀时间过长
X2.0	A2.1	紧刀检测超时报警	紧刀没到位紧刀时间过长
X1.7	A2.2	松刀状态下不能主轴旋转	松刀下不能旋转
X1.5	A2.3	主轴旋转下不能主轴松紧刀	主轴旋转不能松紧刀
	A3.7	K11.3 设为 0,圆盘刀库在刀具夹紧时不	防止刀具夹紧时进行换刀会损坏机床
	A3.7	能进行刀臂动作	防止刀兵犬系的 近行 换刀云坝外机床
X0.7	A4.0	圆盘刀库刀套倒下超时,请检查完成信号	 没检查到倒下完成信号,刀套倒下动作时间过长
Α0.7	A4.0	(X0.7)	(X位直列图下几风旧号, 刀套图下郊[F时间是长
X0.6	A4.1	圆盘刀库刀套抬起超时,请检查完成信号	 没检查到抬起完成信号,刀套抬起动作时间过长
A0.0	A4.1	(X0.6)	(大型量到11亿元从6 7, / 安加尼郊下市内及长
X1.0	A4.2	圆盘刀库换刀臂换刀检测信号超时,请检	 没检测到抓刀和停止信号,换刀臂动作超时
X1.1	114.2	查信号(X1.0、X1.1)	权应规划加/J/IFIT 正 旧 寸, 沃/J 自约TF 匝 II
X1.2	A4.3	圆盘刀库换刀臂回原位检测信号超时,请	 没检测到刀臂回原点信号,换刀臂动作超时
711.2	117.3	检查完成信号(X1.2)	及四级为7月日外然旧 J, 1人7月9月F起时
X1.0		 圆盘刀库手动换刀臂旋转检查完成信号	 手动下没检查到倒下完成,刀套倒下动作时间按
X1.1	A4.4	超时,请检查信号(X1.0、X1.1、X1.2)	过长
X1.2		ACE-17 内型中国 J(AII.0 / AII.1 / AII.2)	

■ 注意事项

- 1、CNC 界面显示的 T 代表当前主轴上使用的刀号,并不是当前刀盘的刀盘号;
- 2、在自动、录入、DNC 方式下指定的 T 指令代表刀号,并不是刀盘号;
- 3、刀盘选刀时,只是旋转刀盘,预选对应的刀,CNC界面的T显示不变;
- 4、刀库回零时,刀盘旋转到刀套号为1的位置,CNC界面的T显示不变;
- 5、执行 M69 时, 当前主轴上的刀号和当前刀套里面的刀具互换并更新当前刀具显示;
- 6、数据参数 5026 的设置值要和刀盘的刀套数一致。

● 宏程序相关

■ 宏变量

1、#1000 (G54.0) 刀盘旋转、主轴定向、刀套倒下完成信号

2、#1002 (G54.2) T 代码等于主轴上刀号, 换刀结束

■ 宏程序

主程序:

O0001 (O0001) //换刀主程序

T01

G00 X□ //预选刀可以在加工同时完成刀盘旋转

.....

M6 //通过 M 指令来调用换刀子程序,不用 M98 调用

T05 M6 M30

换刀子程序:

O9001(O9001)

N1 #501=#4003 //保存 G90/G91 信息

N2 IF[#1002EQ1] GOTO 12 //换刀目标刀等于当前主轴上的刀,则跳转

N3 M62 //主轴定向和刀套倒下同时进行

N4 G91 G30 Z0 //回到换刀参考点

N5 IF[#1000EQ1] GOTO 7 //等待回参考点、刀盘旋转、主轴定向、刀套倒下完成 N6 GOTO 5 //回参考点、刀盘旋转、主轴定向、刀套倒下未完成

N7 M68 //换刀臂马达第一次启动(换刀臂抓刀)

N8 M54 //主轴刀具松开

N9 M69 //换刀臂马达第二次启动(换刀臂换刀)

N10 M55 //主轴刀具夹紧

N11 M70 //换刀臂马达第三次启动(换刀臂回原位)

N12 G#501 //恢复保存 G90/G91 的值

M99

8.2.28 斗笠式刀库

信号类型	地址符号	信号意义	CNC引脚	PLC地址	CNC诊断
	TDEC	回零到位检测	CN61.1	X0.0	
	TPCH	气缸压力检测	CN61.3	X0.2	
	TCOT	刀位计数	CN61.5	X0.4	
	THCH	刀盘后退到位	CN61.7	X0.6	
输入信号	TVCH	刀盘前进到位	CN61.8	X0.7	
	JOGT	主轴松紧刀控制	CN61.14	X1.5	
	TRCH	主轴松刀到位检测	CN61.16	X1.7	
	TGCH	主轴紧刀到位检测	CN61.29	X2.0	
	TTOV	刀盘电机过载	CN61.31	X2.2	
	THOR	刀盘前进输出	CN62.13	Y1.4	
	TVER	刀盘后退输出	CN62.14	Y1.5	
输出信号	TCW	刀盘电机顺时针转	CN62.15	Y1.6	
	TCCW	刀盘电机逆时针转	CN62.16	Y1.7	
	TROT	主轴松紧刀输出	CN62.29	Y2.0	

巛

● 相关参数

K0011 HALT1 HALT2 APCH DEBG

DBUG =1: 开启刀库调试模式;

=0: 关闭刀库调试模式。

APCH =1: 检测气缸压力过低;

=0: 不检测气缸压力过低。

HALT1、HALT2参数设置如下:

	BT40型刀库	斗笠式刀库	刀库功能无效	炮塔刀库
HALT1	1	0	0	1
HALT2	0	1	0	1

K0012 TKEY ARSE TCCH TCHL

TCHL=1: 刀位计数信号低电平有效;

=0: 刀位计数信号高电平有效。

TCCH =1: 刀位计数信号检测功能有效;

=0: 刀位计数信号检测功能无效。

ARSE =1: 刀库进退输出信号保持;

=0: 刀库进退输出信号不保持。

TKEY=1: 系统面板刀库相关按键屏蔽;

=0: 系统面板刀库相关按键不屏蔽。

DT40	
DT41	
DT42	

刀库计数信号感应有效时间,默认100ms	
刀库计数信号间隔时间最小值,默认500ms	
刀库计数信号间隔时间最大值,默认1000ms	

系统状态参数:

74.700.00	_				
173		TMANL			

TMANL =0: 自动换刀;

=1: 手动换刀。

数据参数:

5026

最大刀位号

6044	
6045	
6046	

调用子程序的其实M代码
调用子程序的其实M代码对应的起始程序号(0-9999)
调用子程序的M代码允许个数(0-8000; 0: 表示该功能无效)

将上述三个参数设置为:

6044	6
6045	9000
6046	1

设置完成后,可以通过 M6来调用换刀宏程序 P9000,而无效用 M98来调用宏程序。

● M 功能指令

M54: 主轴刀具松开 M55: 主轴刀具夹紧

M65: 刀盘向右(靠近主轴) M66: 刀盘向左(离开主轴) M60: 启动刀库旋转

M61: 换刀完成, 更新系统刀具信息

M19: 主轴定向

M1000: 初始化刀号。D409、D410设为1。

● PMC 数据表

1、D地址(一字节二进制数):

D407 为当前机床刀库刀套数目,初始化为 20,用户可根据机床的刀套数实时修改。

D409 为当前刀套号, 初始设定值 0。

D408 为目标刀套号, 初始设定值 0。

2、C 地址:

C21: 刀库手动、刀盘回零计数器。

C22: 刀库顺时针旋转计数器。

C23: 刀库逆时针旋转计数器。

● 操作说明

在将K参数K11.6=1和状态参数No173.6=0设置完以后,可以对斗笠式刀库进行操作。

■ 刀盘机械回零

在回零方式下,按顺时针选刀按键,刀盘旋转,当检测到零点信号(X0.0)信号以后,刀盘停止旋转。该功能可用于系统调试以及重新更换刀具时使用。

■ 手动选刀

在手脉、手动、单步方式下,设置 K21.2=0, 按系统面板顺时针/逆时针选刀按键, 刀盘将顺时针/逆时针旋转一个刀位, 完成手动换刀。

■ 宏程序调用换刀流程

■ 异常处理

当刀盘出现乱刀的时候处理如下:

当前刀套处于正确的刀具倒下的位置上,则只需在录入方式下,打开参数开关,将当前刀套号输入D409、D410内即完成调整。

■ 相关报警和限制

报警地址	报警号	报警内容	互锁逻辑
F45.2	A0.4	主轴定向时,检测定向反馈信号超时	检查主轴定向超时,停止定向
		(F45.2)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
X0.2	A1.1	气缸压力低	压力低不能进行正确的换刀
	A1.2	刀盘旋转时间过长	避免刀盘旋转损坏
X2.2	A1.3	刀盘电机过载	刀盘过载停止操作刀库
VO C	A1.6	斗笠刀库启动刀盘旋转时,	防止损坏刀盘
X0.6	A1.0	Z 轴未离开第 2 参考点	
X1.7 A2.0		松刀检测超时报警	松刀没到位松刀时间过长
X2.0 A2.1		紧刀检测超时报警	紧刀没到位松刀时间过长
X1.7 A2.2		松刀状态下不能主轴旋转	松刀下不能旋转
X2.0	A2.3	主轴旋转下不能主轴松紧刀	主轴旋转不能松紧刀
V0.7	A4.5	斗笠刀库刀盘进检查信号超时,	까상산폐좌고유충进 <i>제산부</i> 무
X0.7	A4.5	请检查完成信号(X0.7)	没能检测到刀盘前进到位信号,超时
VO C	A 4 C	斗笠刀库刀盘退检查信号超时,	况终校测到卫盘与进到 <i>位</i>
X0.6	A4.6	请检查完成信号(X0.6)	没能检测到刀盘后退到位信号,超时

■ 注意事项

- 1、CNC 界面显示的 T 代表当前主轴上使用的刀号,并不是当前刀盘的刀盘号;
- 2、在自动、录入、DNC 方式下指定的 T 指令代表刀号,并不是刀盘号;
- 3、刀盘选刀时,只是刀盘旋转刀相应刀位,CNC界面的T显示不变;
- 4、在回零方式下,按面板换刀键(GSK980MDi 竖式),刀盘旋转到刀套号为 1 的位置,CNC 界面的 T 显示不变;
- 5、数据参数 5025、5026 的设置值要和刀盘的刀套数一致。

● 宏程序相关

■ 宏变量

#1000 (G54.0) T代码等于主轴上刀号,换刀结束。

■ 宏程序

主程序:

O0001 (O0001) //换刀主程序

T01 //刀盘会旋转到主轴上刀具号的刀套位置

M6 //通过 M 指令来调用换刀子程序,不用 M98 调用

.

T05

M6

M30

换刀子程序:

O9000(O9000)

N1 #501=#4003 //保存 G90/G91 信息 N2 #502=#4002 //保存 G17/G18/G19 信息

N3 IF[#1000EQ1] GOTO 14 //换刀目标刀等于当前主轴上的刀,则跳转

S

录

N4 G17 G91 G30 Z0	//回到第二参考点
N5 M19	//主轴定向完成
N6 M65	//刀盘向右推进
N7 M54	//刀具松开

N8 G30 Z0 P3//回到第三参考点N9 M60//启动刀盘旋转N10 G30 Z0 P2//回到第二参考点

N11 M55 //刀具夹紧 N12 M66 //刀盘向左推进

N13 M61 //换刀完成,更新刀具信息

N14 G#501 G#502 //恢复保存的 G90/G91 与 G17/G18/G19 的值

M99

特别说明:程序中 G30 Z0 P3 设置第三参考点的目的为: 1、减少行程,提高效率; 2、避免经常撞击回零开关,减少回零开关的元器件损耗。建议将该位置设置在回零开关之下但不影响刀盘旋转的位置。

8.2.29 炮塔刀库

● 相关信号

信号类型	地址符 号	信号意义	CNC引脚	PLC地址	CNC诊断
	TDEC	回零到位检测	CN61.1	X0.0	
松)	TPCH	气缸压力检测	CN61.3	X0.2	
输入信号	TCOT	刀位计数	CN61.5	X0.4	
	TTOV	刀盘电机过载	CN61.31	X2.2	
输出信号	TCW	刀盘电机顺时针转	CN62.15	Y1.6	
11111日 与	TCCW	刀盘电机逆时针转	CN62.16	Y1.7	

● 相关参数

K0011	HALT1	HALT2					APCH	DEBG
-------	-------	-------	--	--	--	--	------	------

DBUG =1: 开启刀库调试模式;

=0: 关闭刀库调试模式。 APCH =1: 检测气缸压力过低;

=0: 不检测气缸压力过低。

HALT1、HALT2参数设置如下:

BT40型刀库		斗笠式刀库	刀库功能无效	炮塔刀库
HALT1	1	0	0	1
HALT2	0	1	0	1

	_					
K0012				TCHL		

TCHL=1: 刀位计数信号低电平有效; =0: 刀位计数信号高电平有效。

系统状态参数:

7117011100				
173	TMANI			

TMANL =0: 自动换刀; =1: 手动换刀。 546 EXLM

EXLM =0: 第二组软限位无效; =1: 第二组软限位有效。

数据参数:

5026 最大刀位号

6044
6045
6046

调用子程序的其实M代码
调用子程序的其实M代码对应的起始程序号(0-9999)
调用子程序的M代码允许个数(0-8000; 0: 表示该功能无效)

将上述三个参数设置为:

6044	6
6045	9002
6046	1

设置完成后,通过 M6 来调用换刀子程序 O9002。

1270

第二组软限位正向位置机床坐标

换刀时Z轴软限位会切换到第二组正向限位。

● M 功能指令

M60: 启动刀库旋转

M1000: 初始化刀号。D409、D410设为1。

PMC 数据表

D地址 (一字节二进制数):

D409 为当前刀套号,初始设定值 0。 D408 为目标刀套号,初始设定值 0

● 操作说明

在将K参数K11.7=1、K11.6=1和状态参数No173.6=0设置完以后,可以对炮塔刀库进行操作。

■ 刀盘机械回零

在回零方式下,按刀库回零按键,刀盘旋转,当同时检测到零点信号(X0.0)信号及刀位计数信号(X0.4)以后,刀盘停止旋转。系统更新刀号为1号刀。

■ 手动选刀

在手脉、手动、单步方式下,按系统面板顺时针/逆时针选刀按键,刀盘将顺时针/逆时针旋转一个刀位,完成手动换刀。

■ 相关报警和限制

报警地址	报警号	报警内容	互锁逻辑
F45.2	A0.4	主轴定向时,检测定向反馈信号超时(F45.2)	检查主轴定向超时,停止定向
X0.2	A1.1	气缸压力低	压力低不能进行正确的换刀
	A1.2	刀盘旋转时间过长	避免刀盘旋转损坏
X2.2	A1.3	刀盘电机过载	刀盘过载停止操作刀库
	A6.2	主轴没定向,不能进入换刀区	防止损坏刀盘
	A6.3	Z 轴不在第 2 参考点,不能旋转刀盘	防止损坏刀盘
	A6.4	Z 轴不在第 2 参考点,不能进行刀库回零	防止损坏刀盘
	A6.5	在换刀区内不能启动程序,避免撞刀	防止损坏刀盘

■ 注意事项

- 1、刀盘旋转时, Z轴需先返回第二参考点(G91 G30 Z0)。
- 2、单独执行 T 指令时系统不进行刀盘旋转,执行 M60 后进行刀盘旋转控制。

● 宏程序相关

■ 宏变量

#1000 (G54.0) T代码等于主轴上刀号,换刀结束

■ 宏程序

主程序:

O0001 (O0001) //换刀主程序

T** M06 //调用换刀子程序换刀

.

M30

换刀子程序:

O9002(O9002)

N1 #501=#4003 //保存 G90/G91 信息

N2 #502=#4002 //保存 G17/G18/G19 信息

N3 IF[#1000EQ1] GOTO 10 //换刀目标刀等于当前主轴上的刀,则跳转

N4 G17 G91 G28 Z0 //回到第一参考点

N5 M19 //主轴定向

N6 G30 Z0 //回到第二参考点,由机械完成刀具与主轴脱扣

N7 M60 //启动刀盘旋转

N8 G28 Z0 //回到第一参考点,由机械完成主轴与刀具扣合

N9 M05 //取消定向

N10 G#501 G#502 //恢复保存的 G90/G91 与 G17/G18/G19 的值

M99

● 调试步骤

- 1) 设好 5026、6044~6046、K11 号参数。
- 2) K11.0=1, 打开调试模式。
- 3)设置好主轴定向位置。
- 4)移动 Z 轴到使刀具与主轴脱扣位置,把此位置设为 Z 轴第二参考点位置(1241号参数)。
- 5)移动 Z轴回到机床零点位置。
- 6) 按下单段按键, 执行 T** M6 进行换刀。
- 7)调试完成后把 K11.0 设为 0,关闭调试模式。

8.2.30 M10/M11 翻转控制

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输出信号	ALTO	M10M11 翻转输出信号	CN62.36	Y2.7	
	M10	Y2.7 输出			
控制指令	M11	Y2.7 取消输出			

8.2.31 主轴倍率

通过 K10.7 可以设置主轴倍率的范围。

SPDR =0: 主轴倍率范围为 50%~120%;

=1: 主轴倍率范围为 0%~150%。

主轴倍率范围为50%~120%时的编码如下。

十进制	Gn30.3~Gn30.0	主轴倍率
7	0111	50%
6	0110	60%
2	0010	70%
3	0011	80%
1	0001	90%
0	0000	100%
4	0100	110%
5	0101	120%

主轴倍率范围为0%~150%时的编码如下。

十进制	Gn30.3~Gn30.0	主轴倍率
7	0111	50%
6	0110	60%
2	0010	70%
3	0011	80%
1	0001	90%
0	0000	100%
4	0100	110%
5	0101	120%
8	1000	130%
9	1001	140%
11	1011	150%
10	1010	0%
14	1110	10%
15	1111	20%
13	1101	30%
12	1100	40%

注: K19.0 设为1使用附加面板主轴倍率时主轴倍率范围固定为50%~120%。

8.2.32 工作灯

● 相关信号

信号类型	信号类型 信号符号 信号意义		对应引脚	PLC状态	CNC诊断
输入信号		机床面板工作灯按键		X19.5	
输出信号		机床面板工作灯按键指示灯		Y19.6	
制山石 5	WKLT	工作灯输出信号	CN62.35	Y0.6	

8.2.33 排屑

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
於) /		机床面板排屑按键		X19.6	
输入信号		GSK980MDi-H 机床面板排屑反转按键		X24.5	只GSK980MDi-H有效
		机床面板排屑按键指示灯		Y19.5	
输出信号		GSK980MDi-H 机床面板排屑反转指示灯		Y27.5	只 GSK980MDi-H有效
制山石 5	TKOUT	排屑输出信号	CN62.35	Y2.6	
	TKNOUT	GSK980MDi-H 排屑反转输出信号	CN62.34	Y2.5	只 GSK980MDi-H有效

M38: 排屑正转输出有效; M39: 排屑正转输出无效。

8.2.34 附加面板信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
		主轴倍率旋钮	CN66	X29.4~X29.7	GSK980MDi-H下无效
		GSK980MDi-H 机床面板,主轴倍率旋钮		X23.4~X23.7	只 GSK980MDi-H有效
		进给倍率旋钮	CN67	X29.0~X29.3	GSK980MDi-H下无效
		GSK980MDi-H 机床面板,进给倍率旋钮		X23.0~X23.3	只 GSK980MDi-H有效
		循环启动	CN78.7	X9.0	GSK980MDi-H下无效
		GSK980MDi-H 机床面板,循环启动	CN65	X28.0	只 GSK980MDi-H有效
输入信号		进给保持	CN78.6	X9.1	GSK980MDi-H下无效
		GSK980MDi-H 机床面板,进给保持	CN65	X28.1	只 GSK980MDi-H有效
		急停信号	CN78.4	X9.3	
		三位开关进给停	CN66	X29.7	GSK980MDi-H下无效
		GSK980MDi-H 机床面板,三位开关进给停	CN63	X27.1	只 GSK980MDi-H有效
		三位开关主轴停	CN78	X9.2	GSK980MDi-H下无效
		GSK980MDi-H 机床面板,三位开关主轴停	CN63	X27.0	只 GSK980MDi-H有效
输出信号		循环启动按键灯	CN78.2	Y9.0	GSK980MDi-H下无效
		GSK980MDi-H 机床面板,循环启动按键灯	CN65	Y29.0	只 GSK980MDi-H有效
		进给保持按键灯	CN78.1	Y9.1	GSK980MDi-H下无效
		GSK980MDi-H 机床面板,循环启动按键灯	CN65	Y29.1	只 GSK980MDi-H有效

附

● 相关参数

K0019						SWI		APESP	APRI
-------	--	--	--	--	--	-----	--	-------	------

APRI =0: 附加面板倍率开关无效;

=1: 附加面板倍率开关有效。

APESP=0: 附加面板急停信号无效;

=1: 附加面板急停信号有效。

SWI =0: 附加面板三位开关无效:

=1: 附加面板三位开关有效。

● 功能说明

- 1) 当系统连接附加面板时,设置 K19.0=1 才能使用附加面板的主轴倍率和进给倍率波段开关。
 - a) 附加面板倍率开关设为有效时,主机面板上的主轴倍率和进给倍率调节按键无效。
- 2) 在程序运行时,三位开关拨到进给停位置时,程序暂停。重新拨到进给允许位置时,程序继续运行。
 - a) 在程序运行时,三位开关拨到主轴停位置时,主轴停止。重新拨到主轴允许位置时,主轴 重新启动。
 - b) 主轴定向、换档摆动和程序不运行状态下主轴不受三位开关控制。

8.2.35 手脉试切

● 相关信号

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
		K2 按键		X19.7	
输入信号		手脉试切按键(GSK980MDi-V)		X27.7	
		手脉试切按键(GSK980MDi-H)		X26.2	

● 功能说明

在自动方式下,按手脉试切按键,切换到手脉试切状态,然后再按循环启动,通过摇手脉来运行加工程序。手脉试切速度通过系统数据参数 790 号设置。

8.2.36 工件吹气

信号类型	信号符号	信号意义	对应引脚	PLC状态	CNC诊断
输出信号	BLOW	工件吹气输出信号		Y0.5	
比么於)	M07	工件吹气开启指令			
指令输入	M09	工件吹气关闭指令			