

$$R_{Th} = (R_1 \parallel R_2) + R_3 = (3 \parallel 6) + 2$$

= $3 \times (\frac{1 \times 2}{1 + 2}) + 2 = 4 \Omega$

$$R_{Th} = (R_1 \parallel R_2) + R_3 = (3 \parallel 6) + 2$$

$$= 3 \times \left(\frac{1 \times 2}{1 + 2}\right) + 2 = 4 \Omega$$

Find R_L for which P_L is maximum.

$$R_{Th} = (R_1 \parallel R_2) + R_3 = (3 \parallel 6) + 2$$

= $3 \times (\frac{1 \times 2}{1 + 2}) + 2 = 4 \Omega$

Find R_L for which P_L is maximum.

$$R_{Th} = (R_1 \parallel R_2) + R_3 = (3 \parallel 6) + 2$$

= $3 \times (\frac{1 \times 2}{1 + 2}) + 2 = 4 \Omega$

Find R_L for which P_L is maximum.

$$R_{Th} = (R_1 \parallel R_2) + R_3 = (3 \parallel 6) + 2$$

= $3 \times (\frac{1 \times 2}{1 + 2}) + 2 = 4 \Omega$

Find R_L for which P_L is maximum.

$$R_{Th} = (R_1 \parallel R_2) + R_3 = (3 \parallel 6) + 2$$

= $3 \times (\frac{1 \times 2}{1 + 2}) + 2 = 4 \Omega$

$$V_{
m oc} = V_{
m oc}^{(1)} + V_{
m oc}^{(2)} = 8 + 8 = 16 \,
m V$$

Find R_L for which P_L is maximum.

$$R_{Th} = (R_1 \parallel R_2) + R_3 = (3 \parallel 6) + 2$$

= $3 \times (\frac{1 \times 2}{1 + 2}) + 2 = 4 \Omega$

Use superposition to find V_{oc} :

 P_L is maximum when $R_L=R_{Th}=4\,\Omega$

$$\Rightarrow i_L = V_{Th}/(2\,R_{Th}) = 2\,A$$

$$P_I^{max} = 2^2 \times 4 = 16 \, W$$
.

$$\equiv \begin{cases} A & B \\ & &$$

$$\equiv \begin{cases} A & B \\ 3\Omega \\ \Rightarrow R_{\mathsf{Th}} = 7\Omega \end{cases}$$

Note: i = 0 (since there is no return path).

$$\begin{aligned} V_{AB} &= V_A - V_B \\ &= (V_A - V_C) + (V_C - V_B) \\ &= V_{AC} + V_{CB} \\ &= 24 \, V + 36 \, V = 60 \, V \end{aligned}$$

 R_{Th} :

Note: i = 0 (since there is no return path).

$$\begin{aligned} V_{AB} &= V_A - V_B \\ &= (V_A - V_C) + (V_C - V_B) \\ &= V_{AC} + V_{CB} \\ &= 24 \, V + 36 \, V = 60 \, V \end{aligned}$$

$$\begin{aligned} V_{\text{Th}} &= 60\,\text{V} \\ R_{\text{Th}} &= 7\,\Omega \end{aligned}$$

Note: i = 0 (since there is no return path).

$$V_{AB} = V_A - V_B$$

= $(V_A - V_C) + (V_C - V_B)$
= $V_{AC} + V_{CB}$
= $24 V + 36 V = 60 V$

$$V_{\mathsf{Th}} = 60\,\mathsf{V}$$
 $\mathsf{R}_{\mathsf{Th}} = 7\,\Omega$

SEQUEL file: ee101_thevenin_1.sqproj

SEQUEL file: ee101_thevenin_1.sqproj

Connect a voltage source between A and B.

Plot i versus v.

 $V_{oc}\!=\!intercept$ on the v-axis.

 $I_{\text{sc}} = \text{intercept on the i-axis.}$

SEQUEL file: ee101_thevenin_1.sqproj

Connect a voltage source between A and B.

Plot i versus v.

 $V_{oc}\!=\!intercept$ on the v-axis.

 $I_{sc} = intercept$ on the i-axis.

SEQUEL file: ee101_thevenin_1.sqproj

Connect a voltage source between A and B.

Plot i versus v.

 V_{oc} = intercept on the v-axis.

 $I_{sc} = intercept$ on the i-axis.

$$V_{oc} = 60 \ V, \ I_{sc} = 8.57 \ A$$

$$R_{Th} = V_{sc}/I_{sc} = 7 \Omega$$

SEQUEL file: ee101_thevenin_1.sqproj

Connect a voltage source between A and B.

Plot i versus v.

 V_{oc} = intercept on the v-axis.

 I_{sc} = intercept on the i-axis.

$$V_{oc} = 60 \ V, \ I_{sc} = 8.57 \ A$$

$$R_{Th} = V_{sc}/I_{sc} = 7~\Omega$$

* Consider the open circuit case.

* Consider the open circuit case.

Thevenin circuit: $V_{AB} = V_{Th}$.

* Consider the open circuit case.

Thevenin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$.

* Consider the open circuit case.

Thevenin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the open circuit case.

Thevenin circuit:
$$V_{AB} = V_{Th}$$
.
Norton circuit: $V_{AB} = I_N R_N$.
 $\Rightarrow V_{Th} = I_N R_N$.

* Consider the short circuit case.

* Consider the open circuit case.

Thevenin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the short circuit case.

Thevenin circuit: $I_{sc} = V_{Th}/R_{Th}$.

* Consider the open circuit case.

Thevenin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the short circuit case.

Thevenin circuit: $I_{sc} = V_{Th}/R_{Th}$. Norton circuit: $I_{sc} = I_N$.

* Consider the open circuit case.

Thevenin circuit: $V_{AB} = V_{Th}$. Norton circuit: $V_{AB} = I_N R_N$. $\Rightarrow V_{Th} = I_N R_N$.

* Consider the short circuit case.

Thevenin circuit: $I_{sc} = V_{Th}/R_{Th}$. Norton circuit: $I_{sc} = I_N$. $\Rightarrow R_{Th} = R_N$.

$$i = 3 A \times \frac{5}{5+10}$$
= 1 A

$= 1 \,\mathsf{A}$

 $i=3\,A\times\frac{5}{5+10}$

 5Ω

 $10\,\Omega$

Home work:

* Find *i* by superposition and compare.

Home work:

- * Find *i* by superposition and compare.
- * Compute the power absorbed by each element, and verify that $\sum P_i = 0$.