URBAN EXODUS?

HOUSING MARKET STRUCTURE AND INTERREGIONAL MIGRATION REVISITED

Thomas de Graaff

December 8, 2020

Vrije Universiteit Amsterdam Tinbergen Institute Amsterdam

Background: two different cultures (Breiman, 2001)

In economics:

- causal impact of x on y
- focuses on $\hat{\beta}$
- marginal effect

Background: two different cultures (Breiman, 2001)

In economics:

- causal impact of x on y
- focuses on $\hat{\beta}$
- marginal effect

Outside economics:

- model performance
- focuses on \hat{y}
- prediction of total effect

Urban Exodus?

Housing market, urban regions and interregional migration: why bother?

- Possible drivers of urban out-migration?
 - suburbanisation of poverty (Hochstenbach and Musterd, 2018)
 - crowding out of the housing market by short-term rentals (Koster et al., 2018)
 - Influx of high-skilled migrants (Beckers and Boschman, 2019)

Housing market, urban regions and interregional migration: why bother?

- Possible drivers of urban out-migration?
 - suburbanisation of poverty (Hochstenbach and Musterd, 2018)
 - crowding out of the housing market by short-term rentals (Koster et al., 2018)
 - Influx of high-skilled migrants (Beckers and Boschman, 2019)
- Dutch housing market: tight & regulated
 - large shortage of housing
 - decrease in housing transactions
 - large regional variation

Housing market, urban regions and interregional migration: why bother?

- Possible drivers of urban out-migration?
 - suburbanisation of poverty (Hochstenbach and Musterd, 2018)
 - crowding out of the housing market by short-term rentals (Koster et al., 2018)
 - Influx of high-skilled migrants (Beckers and Boschman, 2019)
- Dutch housing market: tight & regulated
 - large shortage of housing
 - decrease in housing transactions
 - large regional variation
- Large literature on external effects of home-ownership (Dietz and Haurin, 2003)
 - negative: moving costs (Oswald, 1996, 1999)

My contributions to the literature

- Large empirical (economic) literature on impact home-ownership as drivers of interregional migration, but:
 - usually concerns marginal effect of home-ownership
 - less attention to predictions for the whole network
- Literature on impact of social renting on migration flows is scarce (De Graaff et al., 2009)
 - In the Netherlands social renting is a large phenomenon (pprox 24% of total housing stock)
 - Social renting rights only valid within city
 - \bullet Social renting is an urban phenomenon (e.g. \approx 40–50% in Amsterdam)

So, this paper

- **Does what?** Estimates the impact of housing market structure on Dutch interregional migration flows using a multilevel gravity model
 - UK context by Congdon (2010)
 - social relations model cf. Koster and Leckie (2014)
 - Statistical Rethinking from McElreath (2020)
 - ggplot2 code from Solomon Kurz (2020)
 - **Aim** To predict regional migration flows using housing market structure, regional specific and regional-pair specific effects

There are at least two levels in migration (I use three)

There are at least two levels in migration (I use three)

Observed migration flows Migration between i and j with friction (e.g., distance) attributes (obs = $R^2 - R$)

REGION;

REGION;

There are at least two levels in migration (I use three)

Observed migration flows Migration between i and j with friction (e.g., distance) attributes (obs = $R^2 - R$)

REGION;

REGION;

Observed push & pull factors Attributes of i and j (obs = R)

There are at least two levels in migration (I use three)

Observed migration flows Migration between i and j with friction (e.g., distance) attributes (obs = $R^2 - R$)

$$\begin{array}{c} \text{REGION}_{i} \end{array} \longrightarrow \begin{array}{c} \textbf{X}_{ij} \end{array}$$

Observed push & pull factors Attributes of *i* and *j* (obs = R)

Observed flows within regional dyads migration from $i \to j$ is correlated with migration from $j \to i$ (obs $= \frac{R^2 - R}{2}$)

$$\begin{array}{c} \text{REGION}_i \end{array} \longrightarrow \begin{array}{c} \\ \\ \end{array}$$

 Hierarchical, mixed effects, varying intercept/parameter, shrinkage, partial pooling models

- Hierarchical, mixed effects, varying intercept/parameter, shrinkage, partial pooling models
- Increasingly used for model performance and flexibility

- Hierarchical, mixed effects, varying intercept/parameter, shrinkage, partial pooling models
- Increasingly used for model performance and flexibility
- Simultaneous modeling at various levels (e.g., cities, regions, flows, individuals)
 - no two-stage models anymore
 - precision (standard errors) is correct

- Hierarchical, mixed effects, varying intercept/parameter, shrinkage, partial pooling models
- Increasingly used for model performance and flexibility
- Simultaneous modeling at various levels (e.g., cities, regions, flows, individuals)
 - no two-stage models anymore
 - precision (standard errors) is correct
- Partial pooling: For example, origin specific effects are drawn from a distribution: $o_i \sim \text{Normal}(\alpha, \sigma)$
 - $\sigma \longrightarrow 0$: complete pooling
 - $\sigma \longrightarrow \infty$: no pooling (fixed effects)

Data: migrations flows in 2018

- Panel for the period 2012–2018
 - estimation: 2012-2017
 - out-of-sample prediction: 2018
- Migration flows between 40 Dutch regions
- Variance ≫ mean: over-dispersion

Data: regional housing structure in 2018

- Positive correlation between population and share social renting (0.46)
- Negative correlation between share social renting and share home-ownership (-0.88)

Data: regional housing structure in 2018 (cont.)

Figure 1: Share of homeownership

Figure 2: Share of social renting

Modeling framework: traditional gravity modeling

$$\log(\mathsf{Migrants}_{ij}) = o_i + d_j + \gamma \log(\mathsf{dist}_{ij}) + \epsilon_{ij}$$

Origin and destination specific regional effects for multilateral resistance (Anderson and Van Wincoop, 2003), but:

- what about zeros in Migrants;;?
- how to incorporate housing structure in the presence of o_i and d_i?
- over-dispersion and heteroskedasticity (Silva and Tenreyro, 2006)

Poisson versus negative binomial¹

- Counts of migrants
- Constraints should hold

$$\sum_{j=1}^{R} \widehat{\mathsf{Migrants}}_{ij} = O_i \qquad \sum_{j=1}^{R} \widehat{\mathsf{Migrants}}_{ij} = D_j$$

- poisson: ✓
- negative binomial: X
- multilevel structure already controls for overdispersion

 $^{^{1}\}mbox{We urge researchers to resist the siren song of the Negative Binomial (Head and Mayer, 2014)}$

$$\mathsf{Migrants}_{ij} \sim \mathsf{Poisson}(\lambda_{ij})$$

 $\mathsf{Migrants}_{ii} \sim \mathsf{Poisson}(\lambda_{ii})$

(flow of migrants)

$$\begin{split} & \mathsf{Migrants}_{ij} \sim \mathsf{Poisson}(\lambda_{ij}) \\ & \mathsf{Migrants}_{ji} \sim \mathsf{Poisson}(\lambda_{ji}) \\ & \mathsf{log}(\lambda_{ij}) = \alpha + o_i + d_j + \mathsf{dyad}_{ii} + \end{split} \tag{flow of migrants}$$

$$\begin{aligned} & \mathsf{Migrants}_{ij} \sim \mathsf{Poisson}(\lambda_{ij}) \\ & \mathsf{Migrants}_{ji} \sim \mathsf{Poisson}(\lambda_{ji}) \\ & \mathsf{log}(\lambda_{ij}) = \alpha + o_i + d_j + \mathsf{dyad}_{ij} + \\ & & \mathsf{X}_i \beta_i + \mathsf{X}_j \beta_j \\ & \mathsf{log}(\lambda_{ji}) = \alpha + o_j + d_i + \mathsf{dyad}_{ji} + \\ & & \mathsf{X}_i \beta_i + \mathsf{X}_i \beta_i \end{aligned} \tag{explanatory variables}$$

$$\begin{split} & \mathsf{Migrants}_{ij} \sim \mathsf{Poisson}(\lambda_{ij}) \\ & \mathsf{Migrants}_{ji} \sim \mathsf{Poisson}(\lambda_{ji}) \\ & \mathsf{log}(\lambda_{ij}) = \alpha + o_i + d_j + \mathsf{dyad}_{ij} + \\ & \mathbf{X}_i \beta_i + \mathbf{X}_j \beta_j \\ & \mathsf{log}(\lambda_{ji}) = \alpha + o_j + d_i + \mathsf{dyad}_{ji} + \\ & \mathbf{X}_j \beta_i + \mathbf{X}_i \beta_j \\ & \begin{pmatrix} o_i \\ d_i \end{pmatrix} \sim \mathsf{MVNormal} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_o^2 & \sigma_o \sigma_d \rho \\ \sigma_o \sigma_d \rho & \sigma_d^2 \end{pmatrix} \right) \\ & \mathsf{(varying region effects)} \end{split}$$

$$\begin{split} & \mathsf{Migrants}_{ij} \sim \mathsf{Poisson}(\lambda_{ij}) \\ & \mathsf{Migrants}_{ji} \sim \mathsf{Poisson}(\lambda_{ji}) \\ & \mathsf{log}(\lambda_{ij}) = \alpha + o_i + d_j + \mathsf{dyad}_{ij} + \\ & & \mathsf{X}_i \beta_i + \mathsf{X}_j \beta_j \\ & \mathsf{log}(\lambda_{ji}) = \alpha + o_j + d_i + \mathsf{dyad}_{ji} + \\ & & \mathsf{X}_j \beta_i + \mathsf{X}_i \beta_j \\ & \begin{pmatrix} o_i \\ d_i \end{pmatrix} \sim \mathsf{MVNormal} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_o^2 & \sigma_o \sigma_d \rho \\ \sigma_o \sigma_d \rho & \sigma_d^2 \end{pmatrix} \right) \\ & & (\mathsf{varying region effects}) \\ & \begin{pmatrix} \mathsf{dyad}_{ij} \\ \mathsf{dyad}_{ji} \end{pmatrix} \sim \mathsf{MVNormal} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{\mathsf{dyad}}^2 & \sigma_{\mathsf{dyad}}^2 \rho_{\mathsf{dyad}} \\ \sigma_{\mathsf{dyad}}^2 \rho_{\mathsf{dyad}} & \sigma_{\mathsf{dyad}}^2 \end{pmatrix} \right) \\ & & (\mathsf{varying dyad effects}) \end{split}$$

Out-of-sample prediction for 2018 (R^2 = 0.98)

Estimation results

parameter	mean	standard deviation
intercept	4.48	0.14
origin:		
log(population)	1.08	0.04
log(homeownership)	1.85	0.11
log(social renting)	1.39	0.08
destination:		
log(population)	0.95	0.03
log(homeownership)	-0.67	0.10
log(social renting)	-0.09	0.07
migrants flow:		
log(distance)	-1.62	0.02
standard deviations:		
origin	0.51	0.06
destination	0.31	0.04
dyad	0.39	0.01
correlation		
origin-destination	0.84	0.05
dyad	0.80	0.01

Bold: 89% credible intervals do not include zero

Samples are drawn using the NUTS sampler from STAN using 4 chains, each with $4{,}000$ iterations and $1{,}000$ warm-up samples

Correlation between origin and destination $\rho = 0.84$

Asymmetric push and pull factors

Dyad specific effects $\rho_{dyad} = 0.80$

Results are robust to

year

Results are robust to

- year
- interaction effects with population

Results are robust to

- year
- interaction effects with population
- inclusion of household size

Results are robust to

- year
- interaction effects with population
- inclusion of household size
- spatial autocorrelation in regional effects:

$$o_i, d_j \sim \text{MVNormal}(0, \mathbf{K})$$

 $\mathbf{K}_{ij} = \eta^2 \exp(-\rho^2 \mathbf{D}_{ij})$

Results are robust to

- year
- interaction effects with population
- inclusion of household size
- spatial autocorrelation in regional effects:

$$o_i, d_j \sim \text{MVNormal}(0, \mathbf{K})$$

 $\mathbf{K}_{ij} = \eta^2 \exp(-\rho^2 \mathbf{D}_{ij})$

Modest spatial autocorrelation

Conclusions

Main results

- housing structure asymmetric impact on migration
 - positive on push/negative on pull
- No indication for specific urban exodus in period 2012–2017
 - time-trends?
- impact social renting smaller than homeowership (Boyle, 1998)
 - social housing is like a different ball game

Powerful Bayesian multilevel gravity model:

- predictive power—shrinkage
- flexibility

Supplementary materials

Paper, presentation, data and code can be retrieved from the project's GitHub page:

https://github.com/Thdegraaff/migration_gravity

Thank you!

References i

Anderson, J. E. and E. Van Wincoop (2003). "Gravity with gravitas: a solution to the border puzzle". In: *American economic review* 93.1, pp. 170–192.

Beckers, P. and S. Boschman (2019). "Residential choices of foreign highly skilled workers in the Netherlands and the role of neighbourhood and urban regional characteristics". In: *Urban Studies* 56.4, pp. 760–777.

Boyle, P (1998). "Migration and housing tenure in South East England". In: *Environment and Planning A* 30.5, pp. 855–866.

Breiman, L. et al. (2001). "Statistical modeling: The two cultures (with comments and a rejoinder by the author)". In: *Statistical science* 16.3, pp. 199–231.

Congdon, P. (2010). "Random-effects models for migration attractivity and retentivity: a Bayesian methodology". In: *Journal of the Royal Statistical Society: Series A (Statistics in Society)* 173.4, pp. 755–774.

References ii

De Graaff, T., M. Van Leuvensteijn, and C. Van Ewijk (2009). "Homeownership, social renting and labor mobility across Europe". In: Homeownership and the labour market in Europe, pp. 53–81.

Dietz, R. D. and D. R. Haurin (2003). "The social and private micro-level consequences of homeownership". In: *Journal of urban Economics* 54.3, pp. 401–450.

Head, K. and T. Mayer (2014). "Gravity equations: Workhorse, toolkit, and cookbook". In: *Handbook of international economics*. Vol. 4. Elsevier, pp. 131–195.

Hochstenbach, C. and S. Musterd (2018). "Gentrification and the suburbanization of poverty: Changing urban geographies through boom and bust periods". In: *Urban Geography* 39.1, pp. 26–53.

Koster, H., J. van Ommeren, and N. Volkhausen (2018). Short-term rentals and the housing market: Quasi-experimental evidence from Airbnb in Los Angeles. Tech. rep.

References iii

Koster, J. M. and G. Leckie (2014). "Food sharing networks in lowland Nicaragua: an application of the social relations model to count data". In: *Social Networks* 38, pp. 100–110.

McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press.

Oswald, A. J. (1996). A conjecture on the explanation for high unemployment in the industrialized nations: Part I. Tech. rep.

 (1999). "The housing market and Europes unemployment: a non-technical paper". In: Homeownership and the labour Market in Europe.

Silva, J. S. and S. Tenreyro (2006). "The log of gravity". In: *The Review of Economics and statistics* 88.4, pp. 641–658.