

# Modul pro procesory ATMEL ATtiny v pouzdru SO8

Jakub Kákona, Milan Horkel

Standardní modul pro nejmenší procesory ATMEL rodiny ATtiny. Obsahuje jenom procesor, připojovací hřebínky, programovací konektor a tlačítko reset.





# 1. Technické parametry

| Parametr     | Hodnota                   | Poznámka                 |
|--------------|---------------------------|--------------------------|
| Procesor     | ATtiny v pouzdru SO8      | Například ATtiny13V-10SU |
| Napájení     | 1.8V 5V                   | Dle procesoru            |
| Spotřeba     | 1.2 mA / 5 V 0.4 mA / 2 V | 9.6 MHz : 8, interní RC  |
| Programování | ATMEL 6pin ISP            | Podpora debugWIRE        |
| Rozměry      | 40 x 20 x 15 mm           | Výška nad základnou      |



## 2. Popis konstrukce

#### 2.1. Úvodem

Standardní modul pro práci s nejmenšími procesory ATMEL ATtiny v pouzdru SO8. Konstrukce je natolik jednoduchá, že nevyžaduje další komentáře.

### 2.2. Zapojení modulu



Dioda D1 slouží jako ochrana před přepólováním napájení. Předpokládá se, že napájecí zdroj má "rozumné" omezení proudu. Pozor proto napájení z akumulátorů, které dají obrovské proudy.

Programovací konektor je standardní ATMEL šestipinový konektor. Procesory jsou vybaveny ladicím rozhraním debugWIRE, které používá signál RESET na vývodu 1. Proto se kondenzátor C3 standardně neosazuje.

## 2.3. Zapojení použitých IO

Každý vývod procesoru má obvykle mnoho různých funkcí, proto se nezapomeňte před výběrem procesoru kouknout do příslušného katalogového listu. Modul je obecný a je možné osadit jej různými procesory a postupem času se objevují další a další.

#### 2.4. Mechanická konstrukce

Standardní modulek pro stavebnici MLAB s rohovými sloupky k připevnění na nosnou desku.



## 3. Osazení a oživení

#### 3.1. Osazení





| Reference                   | Hodnota               | Reference             | Hodnota              |  |
|-----------------------------|-----------------------|-----------------------|----------------------|--|
| Odpory                      |                       | Integrované obvody    |                      |  |
| R2                          | 100                   | U1                    | ATtiny (pouzdro SO8) |  |
| R1                          | 10k                   | Mechanické součástky  |                      |  |
| Keramické kondenzátory      |                       | SW1                   | P-B1720              |  |
| C2                          | 100nF                 | J1, J4                | JUMP2x3              |  |
| C3                          | #100nF (neosazuje se) | J2, J3                | JUMP2X4              |  |
| Elektrolytické kondenzátory |                       | Konstrukční součástky |                      |  |
| C1                          | 10uF/6.3V             | 4ks                   | Šroub M3x12          |  |
| Diody                       |                       | 4ks                   | Podložka M3          |  |
| D1                          | 1N4007SMD             | 4ks                   | Sloupek M3x5         |  |

#### 3.2. Oživení

Není co oživovat. Stačí nahrát Vaším oblíbeným programátorem program do procesoru a zkontrolovat funkčnost.

Procesory této řady jsou obvykle nastaveny na interní RC oscilátor s kmitočtem 9.6MHz ale pozor s předděličem 1:8.

# 4. Programové vybavení

## 4.1. Ukázkový program

Procesor bez programu je k ničemu. Základem je rozběhnout i ten nejprimitivnější program a pak už se dá vylepšovat a vylepšovat. Níže uvedený ukázkový program jen bliká LED diodou ale to je základ.

### 4.1.1. Zapojení

Připojte LED diodu mezi PB3 a zem (nezapomeňte dát do série s diodou odpor tak asi  $330\Omega$ ). Katoda diody patří na zem. Nezapomeňte připojit napájení.



#### 4.1.2. Přeložení programu

Otevřete AVR Studio a založte nový projekt pro Váš procesor ATtiny. Nakopírujte, třeba myší, zdrojový text do hlavního programu a přeložte (volba Build F7). Vše by mělo proběhnout bez chyby.

#### 4.1.3. Programování a ladění

Otevřete debugger a nastavte v něm druh debuggeru a cílovou součástku (volba Debug/Select Platform and Device). Pokud nemáte hardwarový debugger nastavte simulátor. Tím se nastaví typ součástky i pro programátor.

Protože defaultní nastavení frekvence procesoru je 9.6MHz ale je nastaven interní předdělič na 1:8 je třeba u programátoru nastavit maximální komunikační rychlost na cca 250KHz (maximálně 1/4 frekvence procesoru). Tedy pokud to Vás programátor umožňuje.

Zbývá program naprogramovat do součástky. Pokud máte hardwarový debugger (třeba ATMEL Dragon) můžete program krokovat, zasahovat do registrů procesoru a podobně.

Ale pozor. Povolení rozhraní debugWIRE má za následek, že přestane fungovat ISP programování dokud debugWIRE nevypnete. Vypínač je totiž v konfiguračním slově procesoru a pamatuje se.

#### 4.1.4. Zdrojový text

```
// Program BLIK pro ATtiny
#define F CPU 1200000UL // 9.6MHz je deaultni frekvence interniho
                        // RC oscilatoru a default predelic 1:8
#include <avr/io.h>
#include <util/delay.h> // Zpozdeni o libovolny pocet ms
void xDelay ms(unsigned int Time)
 for(;Time!=0;Time--)
    delay_ms(1);
                       // Knihovni procedura ma velmi omezen
}
                        // maximalni cas zpozdeni
#define MASK 0x08
                   // Port PB3 (nekoliduje s ISP)
// Hlavni program
int main()
 DDRB |= MASK;
                     // Nastav port PBO jako vystup
 // Nekonecna smycka
 for(;;)
                     // Nastav 1
   PORTB |= MASK;
   xDelay ms(500); // Pockej 1/2 sekundy
   PORTB &= ~MASK; // Nastav 0
   xDelay ms(500); // Pockej 1/2 sekundy
  }
 return 0;
}
```