HGHsc/ABINIT

HGHk-sc NCPP dataset / ABINIT 7.10.2

name and version of the code: $ABINIT\ 7.10.2$

type of basis set: plane waves

method: norm-conserving pseudopotentials (HGHk-sc)

GENERAL INFORMATION

exchange-correlation functional PBE

relativistic scheme core fully relativistic

valence scalar relativistic (Koelling-Harmon)

assignment of core / valence states – see table (Z_{val})

basis set size $ext{cut-off energy} = 250\,\mathrm{Ry}$

k-mesh density see table (k-point mesh in the full 1st Brillouin zone of the conventional cell *kpts*, and number

of irreducible k-points # k)

temperature corresponding to 0.01 eV

METHOD-SPECIFIC INFORMATION

none

ADDITIONAL COMMENTS

The ASE script used to generate these data has been included after the table.

REFERENCES

potentials

- [1] http://cp2k.web.psi.ch/potentials/
- [2] S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703–1710 (1996).
- [3] C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641–3662 (1998).
- [4] M. Krack, Theor. Chem. Acc. 114, 145–152 (2005).

code

- [5] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty and D. C. Allan, *Comput. Mater. Sci.* 25, 478–492 (2002).
- [6] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah and J. W. Zwanziger, Comput. Phys. Commun. 180, 2582–2615 (2009).
- [7] M. Torrent, F. Jollet, F. Bottin, G. Zérah, X. Gonze, Comput. Mater. Sci. 42, 337–351, (2008).

scalar relativity

[8] D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State 10, 3107–3114 (1977).

Table I. Calculation settings and results per element: valence Z_{val} , k-point mesh in the full 1st Brillouin zone of the conventional cell kpts and number of irreducible k-points # k, equilibrium volume per atom V_0 , bulk modulus B_0 , pressure derivative of the bulk modulus B_1 .

			,, , , , ,	T	D [0=]	P []
	Z_{val} [-]	kpts [-]	# k [-]	V_0 [Å ³ /atom]	B_0 [GPa]	B_1 [-]
Н	1	28×28×20	7840	17.422	10.262	2.683
He	2	$40 \times 40 \times 22$	8 800	17.781	0.865	6.201
Li	3	$38 \times 38 \times 38$	27436	20.210	13.848	3.345
$_{\mathrm{Be}}$	4	$52 \times 52 \times 28$	18928	7.893	122.959	3.332
В	3	$26 \times 26 \times 24$	8112	7.223	234.668	3.435
\mathbf{C}	4	$48 \times 48 \times 12$	6912	11.633	207.213	3.551
N	5	$16 \times 16 \times 16$	176	28.794	53.568	3.666
O	6	$26 \times 24 \times 24$	3744	18.681	50.004	3.518
\mathbf{F}	7	$16 \times 28 \times 14$	3136	19.292	33.769	3.730
Ne	8	$22 \times 22 \times 22$	286	24.799	1.730	9.142
Na	9	$32 \times 32 \times 32$	16384	37.586	7.489	6.691
Mg	10	$36 \times 36 \times 20$	6480	23.201	38.235	-12.582
Al	3	$24 \times 24 \times 24$	364	16.460	77.517	4.861
Si	4	$32 \times 32 \times 32$	16384	20.355	88.278	4.278
Р	5	$30 \times 8 \times 22$	1320	21.260	68.722	4.313
\mathbf{S}	6	$38 \times 38 \times 38$	27436	17.035	84.313	4.049
Cl	7	$12 \times 24 \times 12$	864	38.257	19.302	4.372
Ar	8	$16 \times 16 \times 16$	120	52.181	0.755	7.308
K	9	$20 \times 20 \times 20$	220	73.602	3.594	3.773
Ca	10	$18 \times 18 \times 18$	165	42.276	17.618	3.379
Sc	11	$34 \times 34 \times 20$	5780	24.630	54.548	3.392
Ti	12	$40 \times 40 \times 22$	8 800	17.414	111.829	3.603
V	13	$34 \times 34 \times 34$	969	13.473	182.469	3.911
Cr	14	$36 \times 36 \times 36$	1140	12.175	136.321	7.032
Mn	15	$28 \times 28 \times 28$	2744	12.006	119.492	5.921
Fe	16	$36 \times 36 \times 36$	1140	11.464	177.303	7.785
Co	17	$46 \times 46 \times 24$	12696	10.915	210.008	5.081
Ni	18	$28 \times 28 \times 28$	560	10.925	193.949	4.730
Cu	19	$28 \times 28 \times 28$	560	11.955	144.750	5.652
Zn	20	$44 \times 44 \times 20$	9680	15.234	74.393	4.628
Ga	13	$22 \times 12 \times 22$	1452	20.439	46.913	7.184
Ge	4	$30 \times 30 \times 30$	13500	24.071	57.597	4.789
As	5	$30 \times 30 \times 10$	4500	22.565	68.686	4.278
Se	6	$26 \times 26 \times 20$	6760	29.726	47.199	4.445
Br	7	$12 \times 24 \times 12$	432	39.336	22.570	4.842
Kr	8	$16 \times 16 \times 16$	120	65.867	0.649	7.221
Rb	9	$18 \times 18 \times 18$	165	91.058	2.794	3.799
Sr	10	$16 \times 16 \times 16$	120	54.452	11.304	5.145
Y	11	$32 \times 32 \times 18$	4608	32.884	41.228	3.132
Zr	12	$36 \times 36 \times 20$	6480	23.353	93.903	3.270
Nb	13	$30 \times 30 \times 30$	680	18.141	170.147	3.696
Мо	14	$32\times32\times32$	816	15.819	259.942	4.350
Тс	15	$42\times42\times22$	9702	14.477	299.499	4.529
Ru	16	$42\times42\times24$	10584	13.802	312.577	4.875
Rh	17	$26 \times 26 \times 26$	455	14.090	257.333	5.209
Pd	18	$26 \times 26 \times 26$	455	15.369	169.094	5.544
Ag	19	$24 \times 24 \times 24$	364	18.022	89.845	6.078
Cd	12	$38 \times 38 \times 18$	6498	22.869	44.751	6.972
Ou	12	30/130/110	0 100	1 22.000	11.101	0.012

HGHsc/ABINIT

 $\operatorname{HGHk\text{-}sc}$ NCPP dataset / ABINIT 7.10.2

In	13	$30 \times 30 \times 20$	1200	27.664	35.871	5.068
Sn	4	$26 \times 26 \times 26$	8788	37.094	34.150	4.716
Sb	5	$26 \times 26 \times 8$	2704	31.977	50.220	4.513
Te	6	$26 \times 26 \times 16$	5408	35.162	44.717	4.702
I	7	$12 \times 22 \times 10$	330	50.546	18.567	5.055
Xe	8	$14 \times 14 \times 14$	84	86.827	0.542	7.182
Cs	9	$16 \times 16 \times 16$	120	116.830	1.962	3.608
Ba	10	$20 \times 20 \times 20$	220	63.430	8.747	2.063
Lu	N/A	N/A	N/A	N/A	N/A	N/A
Hf	12	$36 \times 36 \times 20$	6480	22.470	107.014	3.374
Ta	13	$30 \times 30 \times 30$	680	18.151	193.434	3.533
W	14	$32 \times 32 \times 32$	816	15.999	303.367	4.101
Re	15	$42{\times}42{\times}22$	9702	14.818	367.741	4.401
Os	16	$42{\times}42{\times}24$	10584	14.137	403.796	4.799
Ir	17	$26 \times 26 \times 26$	455	14.342	354.960	5.096
Pt	18	$26 \times 26 \times 26$	455	15.603	253.682	5.477
Au	19	$24 \times 24 \times 24$	364	17.888	143.464	6.011
$_{\mathrm{Hg}}$	12	$24 \times 24 \times 28$	1092	29.405	8.379	9.825
Tl	13	$32 \times 32 \times 18$	4608	31.484	27.024	5.472
Pb	14	$20 \times 20 \times 20$	220	32.047	39.979	5.605
Bi	15	$26 \times 26 \times 8$	2704	36.970	42.722	4.668
Po	6	$30 \times 30 \times 30$	680	37.627	45.541	5.012
Rn	8	$14 \times 14 \times 14$	84	93.350	0.539	7.197

```
script for the Atomic Simulation Environment (ASE)
S. R. Bahn, K. W. Jacobsen, Comput. Sci. Eng. 4, 56–66 (2002)
https://wiki.fysik.dtu.dk/ase/
import os
import sys
import time
import numpy as np
import ase.db
from ase.units import Rydberg
from ase.utils import opencew
from ase.calculators.calculator import kpts2mp
from ase.io.trajectory import PickleTrajectory
from ase.calculators.abinit import Abinit
from ase.test.tasks.dcdft import DeltaCodesDFTCollection as Collection
collection = Collection()
if len(sys.argv) == 1:
   names = collection.names
else:
   names = [sys.argv[1]]
c = ase.db.connect('dcdft_abinit_hgh.db')
ecut = 250
kptdensity = 16.0 # this is converged
width = 0.01
ecutsm = 0.0
fband = 1.5
tolsym = 1.e-12
linspace = (0.98, 1.02, 5) # eos numpy's linspace
linspacestr = ''.join([str(t) + 'x' for t in linspace])[:-1]
code = 'abinit' + '-' + '_c' + str(ecut) + '_e' + linspacestr
code = (code + '_k' + str(kptdensity) + '_w' + str(width) + '_s' + str(ecutsm) +
       '_t' + str(tolsym))
for name in names:
    # save all steps in one traj file in addition to the database
    # we should only used the database c.reserve, but here
    # traj file is used as another lock ...
    fd = opencew(name + '_' + code + '.traj')
    if fd is None:
        continue
    traj = PickleTrajectory(name + '_' + code + '.traj', 'w')
    atoms = collection[name]
    if name == 'Mn': \# fails to find the right magnetic state
```

atoms.set_initial_magnetic_moments([10., 20., -10., -20.])

HGHsc/ABINIT

 ${
m HGHk\text{-}sc}$ ${
m NCPP}$ dataset / ${
m ABINIT}$ 7.10.2

```
if name == 'Co': # fails to find the right magnetic state
   atoms.set_initial_magnetic_moments([10., 10.])
if name == 'Ni': # fails to find the right magnetic state
    atoms.set_initial_magnetic_moments([10., 10., 10., 10.])
cell = atoms.get_cell()
kpts = tuple(kpts2mp(atoms, kptdensity, even=True))
kwargs = {}
# loop over EOS linspace
for n, x in enumerate(np.linspace(linspace[0], linspace[1], linspace[2])):
    id = c.reserve(name=name, ecut=ecut,
                   linspacestr=linspacestr,
                   kptdensity=kptdensity, width=width, ecutsm=ecutsm,
                   fband=fband, tolsym=tolsym,
                   x=x
    if id is None:
        continue
    # perform EOS step
    atoms.set_cell(cell * x, scale_atoms=True)
    # set calculator
    atoms.calc = Abinit(
        pps='hgh.k', # uses highest valence hgh.k pps
        label=name + '_' + code + '_' + str(n),
        xc='PBE',
        kpts=kpts,
        ecut=ecut*Rydberg,
        occopt=3,
        tsmear=width,
        ecutsm=ecutsm,
        toldfe=1.0e-6,
        nstep=900,
        pawovlp=-1, # bypass overlap check
        fband=fband,
        # http://forum.abinit.org/viewtopic.php?f=8&t=35
        chksymbreak=0,
        tolsym=tolsym,
        prtwf=0,
        prtden=0,
    atoms.calc.set(**kwargs) # remaining calc keywords
    t = time.time()
    atoms.get_potential_energy()
    c.write(atoms,
            name=name, ecut=ecut,
            linspacestr=linspacestr,
            kptdensity=kptdensity, width=width, ecutsm=ecutsm,
            fband=fband, tolsym=tolsym,
            x=x,
            time=time.time()-t)
    traj.write(atoms)
    wfk = name + '_' + code + '_' + str(n) + 'o_WFK'
    if os.path.exists(wfk): os.remove(wfk)
    del c[id]
```