Effective Dirac neutrino masses and baryogenesis

with gauged Baryon number

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group & UNICAMP http://gfif.udea.edu.co

Focus on arXiv:¿¿¿¿¿.????? In collaboration with

Andréa Disser (IIII.A) Meless Tenserife (

Andrés Rivera (UdeA), Walter Tangarife (Loyola University Chicago)

Electroweak baryogenesis

Problems

- Standard model (SM) $m_h \sim$ 40 GeV. \odot
- Beyond the SM: Source of CP contains fields charged under SM
 - ightarrow too large electric dipole moments 😩

Dark sectors

- Inert SM-singlet complex scalar field which acquires vev with temperature to have strong electroweak phase transition
- CP violation (CPV) triggered in dark sectors through SM gauge singlets
 - → CPV Yukawa between SM-singlet complex scalar and SM-singlet quiral fermions \(\to\)

Dark sectors

Local $U(1)_{\mathcal{X}}$

 $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\overline{\Psi}\mathcal{D}\Psi - h\overline{\Psi}\Psi S$ Diracness protected chiral fermion dark matter $m_{\Psi} = h\langle S \rangle$

Relic abundance

Active Symmetry: $\mathcal{X} \to X$: $\Psi \overline{\Psi} \to SMSM$ Dark Symmetry: $\mathcal{X} \to D$: $\Psi \overline{\Psi} \to \gamma_D \gamma_D$

$$\overline{\Psi}\Psi = \psi_1\psi_2 + \psi_1^{\dagger}\psi_2^{\dagger} \rightarrow \psi_{\alpha}$$
, $\alpha = 1, \dots N' \rightarrow N' > 4$

Local $U(1)_{\mathcal{X}}$

 $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\overline{\Psi}\mathcal{D}\Psi - h\overline{\Psi}\Psi S$ Diracness protected chiral fermion dark matter $m_{\Psi} = h\langle S \rangle$

Relic abundance:

Active Symmetry: $\mathcal{X} \to X$: $\Psi \overline{\Psi} \to \mathsf{SM}\,\mathsf{SM}$

Dark Symmetry: $\mathcal{X} \to \mathcal{D}$: $\Psi \overline{\Psi} \to \gamma_{\mathcal{D}} \gamma_{\mathcal{D}}$

multi-component dark matter

$$\overline{\Psi}\Psi = \psi_1\psi_2 + \psi_1^{\dagger}\psi_2^{\dagger} \rightarrow \psi_{\alpha}$$
, $\alpha = 1, \dots N' \rightarrow N' > 4$

Standard model extended with $U(1)_{\mathcal{X}}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_\mathcal{X}$
L^{\dagger}	2	+1/2	1
Q^{\dagger}	2	-1/6	q
d_R	1	-1/2	d
u_R	1	+2/3	и
e_R	1	-1	e
Н	2	-1/2	h
ψ_{lpha}	1	0	n_{α}

Table 1: q = l = u = d = e = 0 for $\mathcal{X} = D$

Dark symmetry: q = l = u = d = e = 0

Diophantine equations

$$\sum_{
ho=1}^{N} n_{
ho} = 0$$
 and $\sum_{
ho=1}^{N} n_{
ho}^{3} = 0$. (1)

Active symmetry

If the set of integers has one integer, m, repeated three times, the extra gauge Abelian symmetry can be identified as one *active* symmetry, $U(1)_X$, with $N_{\text{chiral}} = N-3$ right-handed singlet chiral fermions with X-charges $n_1, n_2, \ldots n_{N_{\text{chiral}}}$.

They SM X-charges be written in terms of m and a free parameter that we choose to be the X-charge of the conjugate of the SM lepton doublet, L

$$u = \frac{4L}{3} - m$$
, $d = m - \frac{2L}{3}$, $Q = -\frac{L}{3}$, $e = m - 2L$, $h = L - m$,

Ejemplo:

$$(-1, -1, -1, 1, 1, 1) \rightarrow (-m, -m, -m, m, m, m)$$

 $(1, 1, 1, -4, -4, 5) \rightarrow m = 1$

6

September 24, 2021

Set of N integers between -30 and 30 with sum and cubic sum up to zero for 4<N<13

Anomalies

Solutions obtained with the python package: anomalies based on the method to find anomaly free solutions of the standard model extended with an Abelian Dark Symmetry with N right-handed singlet chiral fields described in arXiv:1905.13729 [PRL]:

Data scheme

- T: integer lists → input to obtain the 'solution' by using the anomalies package
- . 'k': integer lists → input to obtain the 'solution' by using hte anomalies package

• 'solution': list
$$ightarrow$$
 of integers, z_i which satisfy $\sum_{i=1}^N z_i = 0$ and $\sum_{i=1}^N z_i^3 = 0$

'n': integer → number of integers in 'solution'. N

USAGE

#Example of JSON file usage in Python with pandas (see also ison module) >>> import pandas as pd >>> df=pd.read_json('solutions.json')

>>> df[:2] solution acd n

0 [1, 2] [0, -3] [1, 5, -7, -8, 9] 1 5 1 [-2, -1] [0, -1] [2, 4, -7, -9, 10] 1 5

390074 solutions with $5 \le N \le 12$ integers until [32] [JSON]

views downloads See more details.

OpenAIRE

Versions

Effective Dirac neutrino mass operator

$$\mathcal{L}_{\mathrm{eff}} = h_{
u}^{lpha i} \left(
u_{Rlpha}
ight)^{\dagger} \, \epsilon_{ab} \, L_{i}^{a} \, H^{b} \left(rac{S^{*}}{\Lambda}
ight)^{\delta} + \mathrm{H.c.}, \qquad \mathrm{with} \, \, i = 1, 2, 3 \, ,$$

S is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry with D or X-charge

$$s = -(\nu + m)/\delta, \tag{2}$$

Diracness of non-zero DM and Dirac neutrinos masses from $U(1)_{\mathcal{X}}$

Starting from the extended dataset with the solutions with N integers to the Diophantine equations (1) we apply the following steps

- Check that the solution has two (three) repeated integers to be identified as ν and fix $N_{\nu}=2~(N_{\nu}=3)$.
- For $\delta=1,2,\ldots$ and all the possible combinations for m and ν in the solution, including m=0, find the s value compatible with the effective Dirac neutrino mass operator of D- $(4+\delta)$ according to eq. (2).
- Interpret the integers in the solution that are different from m and ν as the D-charges for m=0 or the X-charges for $m\neq 0$, of a set of singlet chiral fermions: ψ_i , $i=1,\ldots,N_{\text{chiral}}-N_{\nu}$. Then select the solutions for which the condition

$$|n_i + n_j| = |s|, \tag{3}$$

which guarantees that all the singlet chiral fermions, ψ_i , acquire masses after the spontaneous symmetry breaking of the gauge Abelian symmetry through $\langle S \rangle$.

Unconditional stability

Two DM candidates with *unconditional* stability. This happens when there are two remnant symmetries such that $\mathbb{Z}_{|s|} \cong \mathbb{Z}_p \otimes \mathbb{Z}_q$ with p and q coprimes and |s| = pq, which guarantee the stability of each lightest state under \mathbb{Z}_p and \mathbb{Z}_q respectively, without imposing any kinematical restriction. For the two DM candidates associated to the set of chiral fields ψ_i and χ_j , we consider below the following two possibilities for |s|

- $\mathbb{Z}_6 \cong \mathbb{Z}_2 \otimes \mathbb{Z}_3$: solutions with at least a set of chiral fields with $\psi_i \sim \left[\omega_6^2 \vee \omega_6^4\right]$ under \mathbb{Z}_6 , and at least a set of chiral fields with $\chi_i \sim \omega_6^3$ under \mathbb{Z}_6 ,
- $\mathbb{Z}_{14} \cong \mathbb{Z}_2 \otimes \mathbb{Z}_7$: solutions with at least a set of chiral fields with $\psi_i \sim \left[\omega_{14}^2 \vee \omega_{14}^6 \vee \omega_{14}^8 \vee \omega_{14}^{10} \vee \omega_{14}^{12}\right]$ under \mathbb{Z}_{14} and at least a set of chiral fields with $\chi_i \sim \omega_{14}^7$ under \mathbb{Z}_{14} ,

where $\omega_{|s|} = e^{i2\pi/|s|}$.

Figure 1: Distribution of solutions with N integers to the Diophantine equations (1) which allow the effective Dirac neutrino operator at D-4 + δ for at least two right-handed neutrinos and have non-vanishing Dirac o Majorana masses for the other singlet chiral fermions in the solution.

48 type of representative solutions

Solution	N	$N_{ m chiral}$	m	ν	δ	s	N_D	N_M	G_D	G_M
(1, -2, -3, 5, 5, -6)	6	6	0	5	1	-5	2	0	1	0
(3, 3, 3, -5, -5, -7, 8)	7	4	3	-5	2	1	1	0	1	0
(1, -2, 3, 4, 6, -7, -7, -7, 9)	9	9	0	-7	1	7	3	0	1	0
(1, 1, -4, -5, 9, 9, 9, -10, -10)	9	9	0	9	1	-9	3	0	2	0
(1, 2, -6, -6, -6, 8, 9, 9, -11)	9	6	-6	9	1	-3	2	0	1	0
(1, -3, 8, 8, 8, -12, -12, -17, 19)	9	6	8	-12	2	2	2	1	1	1
(8, 8, 8, -12, -12, 15, -17, -23, 25)	9	6	8	-12	2	2	2	0	1	0
(1, -2, -2, 3, 3, -4, -4, 6, 6, -7)	10	10	0	6	1	-6	3	2	2	2
(1, -2, -2, 3, 4, -5, -5, 7, 7, -8)	10	10	0	-5	1	5	4	0	2	0
(1, -2, -2, 3, 5, -6, -6, 8, 8, -9)	10	10	0	-6	1	6	4	0	2	0
(2, 2, 3, 4, 4, -5, -6, -6, -7, 9)	10	10	0	2	1	-2	4	2	2	2
(1, 1, 5, 5, 5, -6, -6, -6, -9, 10)	10	10	0	1	1	-1	4	0	3	0
(2, 2, 4, 4, -7, -7, -9, -9, 10, 10)	10	10	0	10	2	-5	3	0	2	0
(1, 2, 2, -3, 6, 6, -8, -8, -9, 11)	10	10	0	-8	1	8	4	1	2	1
(1, -2, -3, 5, 6, -8, -9, 11, 11, -12)	10	10	0	11	1	-11	4	0	1	0
(1, 1, -3, 4, 4, -7, 8, -10, -10, 12)	10	10	0	-10	2	5	4	0	2	0
(1, 1, -2, -2, -4, 6, -10, 11, 12, -13)	10	10	0	-2	1	2	3	2	1	2
(3, 4, 4, 4, 4, -5, -8, -8, -11, 13)	10	10	0	-8	1	8	2	4	1	4
(4, 4, 5, 6, 6, -9, -10, -10, -11, 15)	10	10	0	6	1	-6	4	0	2	0
(1, -2, -4, 7, 7, -10, -12, 14, 14, -15)	10	10	0	14	1	-14	3	2	1	2
(1, 2, 2, -3, 4, -6, 12, -13, -14, 15)	10	10	0	2	1	-2	4	1	1	1
(1, 4, 4, -7, 8, 8, -9, -12, -12, 15)	10	10	0	8	1	-8	4	2	2	2
(1, 2, 2, -9, -9, 16, 16, 17, -18, -18)	10	10	0	-18	1	18	3	2	2	2
(1, -3, -6, 7, -10, 11, -16, 18, 18, -20)	10	10	0	18	2	-9	4	0	1	0

48 type of representative solutions

Solution	N	$N_{\rm chiral}$	m	ν	δ	s	N_D	N_M	G_D	G_M
(1, -4, 5, -6, -6, 10, -14, 15, 20, -21)	10	10	0	-6	1	6	4	0	1	0
(2, -3, -6, 7, 12, -14, -14, 17, 20, -21)	10	10	0	-14	1	14	4	1	1	1
(3, 6, 6, -7, 8, 8, -14, -14, -17, 21)	10	10	0	-14	1	14	4	1	2	1
(8, 8, 9, 10, 10, -13, -18, -18, -27, 31)	10	10	0	-18	1	18	4	1	2	1
(1, 1, 1, -2, -2, -5, -5, 6, 6, 7, -8)	11	8	1	-2	1	1	3	0	2	0
(1, -2, -2, -2, -3, 4, 4, -5, 6, 7, -8)	11	8	-2	4	1	-2	3	1	1	1
(1, 1, 2, 2, 2, -4, -4, 7, -8, -9, 10)	11	8	2	-4	1	2	2	2	1	2
(2, 2, 2, -4, -4, -5, 7, -8, 9, 10, -11)	11	8	2	-4	1	2	3	0	1	0
(1, -2, -3, -3, -3, 5, 5, -7, 8, 10, -11)	11	8	-3	5	2	-1	3	0	1	0
(3, 3, 3, -4, -4, 7, 7, -8, -9, -9, 11)	11	8	3	-9	2	3	3	0	2	0
(1, 3, 5, -6, -6, -6, 8, -9, 12, 12, -14)	11	8	-6	12	1	-6	3	1	1	1
(1, -2, 6, 6, 6, -7, 8, -9, -12, -12, 15)	11	8	6	-12	1	6	3	0	1	0
(1, 3, 3, 6, 6, 6, -7, -10, -12, -12, 16)	11	8	6	-12	1	6	2	2	1	2
(1, -2, -2, -2, 3, 3, 4, 4, -5, -5, -5, 6)	12	9	-5	-2	1	7	3	0	2	0
(1, 1, -3, 4, 5, 5, 5, -6, -7, -7, -8, 10)	12	9	5	-7	1	2	3	2	1	2
(1, 1, 1, -2, 4, -7, -7, -7, 8, 9, 9, -10)	12	9	-7	9	1	-2	2	3	1	3
(1, 1, -3, -3, -5, -5, -5, 7, 7, 7, 9, -11)	12	9	-5	7	1	-2	3	2	2	2
(1, -3, -3, -3, 4, 6, 7, 9, -10, -10, -10, 12)	12	9	-3	-10	1	13	3	0	1	0
(1, 1, 1, 3, 3, -5, 7, 7, -11, -11, -11, 15)	12	9	1	-11	1	10	3	1	2	1
(1, 1, 1, 3, 5, 5, -5, 5, -9, -9, -13, 15)	12	9	5	-9	2	2	2	3	1	3
(1, -2, -2, 3, 6, -10, -10, -10, 13, 14, 14, -17)	12	9	-10	14	1	-4	4	2	2	2
(1, -3, 9, -11, -13, -13, -13, 15, 15, 15, 21, -23)	12	9	-13	15	1	-2	3	1	1	1

Multi-component dark matter I

Figure 2. Noushau of massive Diversual Maisurus ferminasius analytima of the 40 times of calculinas of

Figure 2. Compare Fig. 2 host for recombing any actions of manager Disease and Mainesse formations in solar

Solution: (3, 3, 3, -5, -5, -7, 8)

Field	$SU(2)_L$	$U(1)_Y$	$U(1)_X$	$U(1)_{B-L}$		
Q_i	2	1/6	L/3	1/3		
u_{Ri}	1	2/3	4L/3 - 3	1/3		
d_{Ri}	1	-1/3	3 - 2L/3	1/3		
L_i	2	-1/2	-L	-1		
e_{Ri}	1	-1	3 – 2 <i>L</i>	-1		
ν_{Rlpha}	1	0	-5	-5/3		
ψ_1	1	0	- 7	-7/3		
ψ_{2}	1	0	8	8/3		
Н	2	1/2	L – 3	0		
S	1	0	1	1/3		
$\overline{\sigma_1^-}$	1	-1	2L	2		
σ_2^-	1	-1	(-2-2L)	-8/3		

Table 2: X and proper B-L normalized charges for the first solution in Table ??, (333-5-5-78), for which m=3, $\nu=-5$, $\delta=2$ and therefore from eq. (2), s=1. For the column $U(1)_{B-L}$ we fix

Neutrino phenomenology

with J. Calle and O. Zapata: arXiv:2103.15328 [PRD]

Figure 4:

Large GNI, CLFV and LHC dileptons signals

Dark matter phenomenology

Michael Duerr, Pavel Fileviez Perez,... arXiv:1506.05107, arXiv:1409.8165

with J. Calle and O. Zapata: arXiv:1909.09574 [PRD]

18

Dark matter phenomenology

Figure 6:

Conclusions

- One thousand solutions
- 48 types of solutions: N, N_{chiral} , δ , N_D , N_M , G_D , G_M
- The scalar realizations of the effective Dirac neutrino mass operator feature a set of parameters which explain independently the neutrino oscillations and the phenomenology of a multi-component and multi-generational dark matter sector. Large GNI, CLFV, LHC dileptons

In general, we can see that multi-component and multi-generation DM candidates are the trend for gauge Abelian extensions of the SM with massive singlet chiral fermions compatible with the effective Dirac neutrino mass operator of dimension

One parameter $U(1)_X$ SM extension

Fields	SU(2) _L	$U(1)_Y$	$U(1)_X$	$U(1)_{B-L}$	$U(1)_R$	$U(1)_D$	$U(1)_G$	$U(1)^*_{\mathcal{D}}$
L	2	-1/2	1	-1	0	-3/2	-1/2	0
Q	2	-1/6	<i>−I</i> /3	1/3	0	1/2	1/6	0
d_R	1	-1/2	1 + 2I/3	1/3	1	0	2/3	0
u_R	1	+2/3	-1-41/3	1/3	-1	1	-1/3	0
e_R	1	-1	1+2/	-1	1	-2	0	0
Н	2	1/2	-1 - I	0	-1	1/2	-1/2	0
$\sum_{\alpha} n_{\alpha}$	1	0	-3	-3	-3	-3	-3	0
$\sum_{\alpha} n_{\alpha}^3$	1	0	-3	-3	-3	-3	-3	0

solutions with $\sum n_{\alpha} = -3$ and $\sum n_{\alpha}^{3} = -3$

Table 3: Possible solutions with at least two repeated charges and until six chiral fermions.

[†] General $\sum n_{lpha}=0$ solutions: see D.B Costa, et al, arXiv:1905.13729 [PRL]

Or··· combine known solutions with $\sum n_{\alpha} = 0$ and $\sum n_{\alpha}^{3} = 0$

Table 3: Possible solutions with at least two repeated charges and until six chiral fermions.

[†] General $\sum n_{lpha}=0$ solutions: see D.B Costa, et al, arXiv:1905.13729 [PRL]

Or··· combine known solutions

$$(\nu_{R1}, \nu_{R2}, \psi_{N-2}, \cdots)$$

$$(-1, -1, -1)$$

$$(-4, -4, +5)$$

$$\left(-\frac{2}{3}, -\frac{2}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$$

$$\left(-\frac{8}{5}, -\frac{8}{5}, -\frac{2}{5}, -\frac{7}{5}, +2\right)$$

$$\left(-1, -1, -\frac{10}{7}, -\frac{4}{7}, -\frac{2}{7}, \frac{9}{7}\right)$$

$$\left(-\frac{5}{3}, -\frac{5}{3}, -\frac{7}{3}, \frac{8}{3}\right)$$

Ref

hep-ph/0611205, S. Khalil [JPG]

arXiv:0706.0473, Montero, V. Pleitez [PLB]

Not known solution for one-loop neutrino Majorana masses with local $U(1)_x$.

arXiv:1607.04029. S. Patra . W. Rodeiohann. C. Yaguna [JHEP]

arXiv:1812.05523, with J. Calle, C. Yaguna, Ó. Zapata [PRD]

1808.03352, with N. Bernal, C. Yaguna, Ó. Zapata [PRD]

ln progress...

 ν_{R1}

E. Ma, R. Srivastava: arXiv:1411.5042 [PLB]

 $\mathrm{U}(1)_{B-L} \stackrel{\langle S \rangle}{\to} Z_2$

Table 3: Possible solutions with at least two repeated charges and until six chiral fermions.

[†] General $\sum n_{\alpha}=0$ solutions: see D.B Costa, et al, arXiv:1905.13729 [PRL]

Type-I arXiv:1808.03352, II arXiv:1607.04029, III arXiv:1908.04308

$$U(1)_{B-L} \rightarrow Z_7$$

$$U(1)_{B}$$

$$\mathcal{L} = y(N_R)^{\dagger} L \cdot \langle H \rangle + y' \langle S \rangle N_R N_R + \text{h.c}$$

$$m_{\text{Majorana}}^{
u} \stackrel{+}{=} \frac{h_{
u}}{\Lambda} L \cdot HL \cdot H \frac{S}{\Lambda}$$

Type-I arXiv:1808.03352

Also new terms arise from spontaneous breakdown of a new gauge symmetry

ν_{R3}	ν_{R2}	5
-1	-1	2

$$\mathcal{L} = y(N_R)^{\dagger} L \cdot \langle H \rangle + y' \langle S \rangle N_R N_R + \text{h.c}$$

$$m_{\text{Majorana}}^{\nu} \stackrel{+}{=} \frac{h_{\nu}}{\Lambda} L \cdot HL \cdot H\frac{S}{\Lambda}$$

Type-I arXiv:1808.03352

Also new terms arise from sponta neous breakdown of a new gauge symmetry

ν_{R3}	ν_{R2}	$\overline{\psi_{L1}}$	$\psi_{ extit{R}1}$	$\psi_{\it R2}$	$\overline{\psi_{L2}}$	S	S'
1	_1/	_ 10	_ 4			2	
	7	7	7			_	

One loop topologies $U(1)_{B-L} \oplus Z_2 \oplus Z_2$

One loop topologies $U(1)_{B-L}$ only!

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

T1-3-E

Fields: f _i	$(\nu_{R3})^{\dagger}$	$(\nu_{R2})^{\dagger}$	$(\nu_{R1})^{\dagger}$	ψ_{L}	$(\psi_R)^{\dagger}$	5
(A)	+4	+4	-5	-r	r	+3
(B)	+ =	+ =	+ =	7	$-\frac{10}{5}$	+=
		9	9	9	9	9

 $\psi_{L,R} \to \text{Singlet fermions (quiral)}$

 $\Psi_{L,R} \to \text{Vector-like doublet fermions}$

 $\sigma \to \mathsf{Singlet} \ \mathsf{scalar}$

 ηo Doublet scalar

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

$SD^3M+SSDM$: σ_a (a=1,2) with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

 $\psi_{L,R} \to {\sf Singlet\ fermions\ (quiral)}$

 $\Psi_{L,R} o$ Vector-like doublet fermions : 10/5

 $\sigma \rightarrow \mathsf{Singlet\ scalar}: 15/5$

Fields: fi	$(\nu_{R3})^{\dagger}$	$(\nu_{R2})^{\dagger}$	$(\nu_{R1})^{\dagger}$	ψ_L	$(\psi_R)^{\dagger}$	S
(A)	+4	+4	-5	-r	r	+3
(B)	+ = 5	$+\frac{8}{5}$	$+\frac{2}{5}$	7 - 5	$-\frac{10}{5}$	$+\frac{3}{5}$
		J	J	9	<u> </u>	

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

$SD^3M + SSDM$: σ_a (a = 1, 2)

$$M_{\psi}=h_1\langle S\rangle$$
, $y_2=0$:

$$\mathcal{L} = \mathcal{L}_{\text{SD}^3\text{M}} + \textit{h}_{3}^{\textit{ia}}\widetilde{(\Psi_{\textit{R}})} \cdot \textit{L}_{\textit{i}}\,\sigma_{\textit{a}} + \textit{h}_{2}^{\textit{\beta a}}\left(\nu_{\textit{R}\beta}\right)^{\dagger}\psi_{\textit{L}}\,\sigma_{\textit{a}}^* - \textit{V}(\sigma_{\textit{a}},\textit{S},\textit{H})\,.$$

with A.F Rivera, W. Tangarife, arXiv:1906.09685 [PRD]

Radiative Type-I seesaw oLocal: only $U(1)_{B-L}!$ arXiv:1812.05523, with J. Calle, C. Yaguna, Ó. Zapata [PRD]

For radiative Dirac models with only $U(1)_X$ see also:

arXiv:1812.01599, 1901.06402, 1902.07259,

1903.01477, 1904.07407, 1907.08630, 1910.09537

1909.00833 1907.11557, 1909.09574

 $\mathcal{O}(50)$ new models mostly with

Example: $U(1)_{B-1}$

Pheno analysis with

A. Rivera, W. Tangarife, arXiv:1906.09685 [PRD]

Dirac Radiative Type-I seesaw with Majorana mediators with J. Calle and Ó. Zapata, arXiv:1909.09574

L	2	-1/2	0
Q	2	-1/6	0
d_R	1	-1/2	0
u_R	1	+2/3	0
e_R	1	-1	0
Н	2	1/2	0
 η	2	1/2	1
5	1	0	2
σ	1	0	3
ν_{R1}	1	0	-4
ν_{R2}	1	0	-4
ν_{R3}	1	0	5
N_{R1}	1	0	1
N_{R2}	1	0	1
N_{R3}	1	0	1
TOTAL			0 26

 $\mathsf{U}(1)_{\mathcal{D}}$

1 10103	00(L)L	0(-)1	O(1)D
L	2	-1/2	0
Q	2	-1/6	0
d_R	1	-1/2	0
u_R	1	+2/3	0
e_R	1	-1	0
Н	2	1/2	0
η	2	1/2	1
S	1	0	2
σ	1	0	3
ν_{R1}	1	0	-4
ν_{R2}	1	0	-4
ν_{R3}	1	0	5
N_{R1}	1	0	1
N_{R2}	1	0	1
N_{R3}	1	0	1
TOTAL			0 26

 $U(1)_{\mathcal{D}}$

Fields

	()-
L	2
Q	2
d_R	1
u_R	1
e_R	1
Н	2
η	2
S	1
σ	1
ν_{R1}	1
ν_{R2}	1
ν_{R3}	1
N_{R1}	1
N_{R2}	1

 $SU(2)_L$

Fields

 N_{R3}

 $\xi_{L\alpha}$

 $U(1)_Y$

-1/2

-1/6

-1/2

+2/3

 $\frac{1/2}{1/2}$

0

0

0

 $U(1)_X$

-1/3

1 + 2I/3

 $\frac{-1 - 4I/3}{1 + 2I}$

3/4 - I 3/2

13/4

3/4

3/4

3/4 26

i icius	30(2)L
L	2
Q	2
d_R	1
u_R	1
e_R	1
Н	2
η	2
5	1
σ	1
ν_{R1}	1
ν_{R2}	1
ν_{R3}	1
N_{R1}	1
N_{R2}	1

1

 N_{R3}

 $\xi_{L\alpha}$

Fields SU(2),

 $U(1)_Y$

-1/2

-1/6

-1/2

+2/3

 $\frac{1/2}{1/2}$

0

0

0

 $U(1)_{B-L}$

-1

1/3

1/3

1/3

7/4 3/2 13/4

-4

5 3/4

3/4

3/4

3/4 26

$$\begin{split} \mathcal{L} \supset &- g' \, Z'_{\mu} \sum_{F} q_{F} \overline{F} \gamma^{\mu} F + \sum_{\phi} \left| \left(\partial_{\mu} + i \, g' \, q_{\phi} \, Z'_{\mu} \right) \phi \right|^{2} \\ &- \left[h_{i\alpha} \overline{L}_{i} \widetilde{\eta} N_{R\alpha} + y_{j\alpha} \overline{\nu_{R_{j}}} \sigma^{*} N_{R\alpha}^{c} + k_{\alpha} \overline{N_{R\alpha}^{c}} N_{R\alpha} S^{*} + \text{h.c.} \right] - \mathcal{V}(H, S, \eta, \sigma) \,. \end{split}$$

 $F\left(\phi\right)$ denote the new fermions (scalars)

$$\begin{split} \mathcal{V}(H,S,\eta,\sigma) = & V(H) + V(S) + V(\eta) + V(\sigma) \\ & + \lambda_{HS}(H^{\dagger}H)(S^{*}S) + \lambda_{2}(H^{\dagger}H)(\sigma^{*}\sigma) + \lambda_{3}(H^{\dagger}H)(\eta^{\dagger}\eta) \\ & + \lambda_{4}(S^{*}S)(\sigma^{*}\sigma) + \lambda_{5}(S^{*}S)(\eta^{\dagger}\eta) + \lambda_{6}(\eta^{\dagger}\eta)(\sigma^{*}\sigma) + \lambda_{7}(\eta^{\dagger}H)(H^{\dagger}\eta) \\ & + \lambda_{8}(\eta^{\dagger}HS^{*}\sigma + \text{h.c.}) \,, \end{split}$$

Neutrino masses and LFV

$$(\mathcal{M}_{\nu})_{ij} = \frac{1}{32\pi^{2}} \frac{\lambda_{8} v_{S}^{2} v_{H}}{m_{\eta_{R}^{0}}^{2} - m_{\sigma_{R}^{0}}^{2}} \sum_{\alpha=1}^{3} h_{i\alpha} k_{\alpha} y_{j\alpha}^{*} \left[F\left(\frac{m_{\eta_{R}^{0}}^{2}}{M_{N_{\alpha}}^{2}}\right) - F\left(\frac{m_{\sigma_{R}^{0}}^{2}}{M_{N_{\alpha}}^{2}}\right) \right] + (R \to I),$$

where $F(x) = x \log x/(x-1)$.

$$\left| \sum_{\alpha} h_{2\alpha} h_{1\alpha}^* \right| \lesssim 0.02 \left(\frac{m_{\chi}}{2 \, \text{TeV}} \right)^2.$$

Singlet-doblet complet Day scotogenic DM $V(\eta, \sigma, H)$ $h_{i\alpha}\overline{L_i}\tilde{\eta}N_{R\alpha}$ $g' Z'_{\mu} \sum_{F} q_{F} \overline{F} \gamma^{\mu} F$ $k_{\alpha}N_{R\alpha}^{c}N_{R\alpha}S^{*}$ Dark radiation portal Dark scalar portal

scotogenic DM

 $h_{i\alpha}\overline{L_i}\tilde{\eta}N_{R\alpha}$

A. Ibarra, C. Yaguna, Ó. Zapata, arXiv:1601.01163 [PRD]

scotogenic DM $h_{i\alpha}\overline{L_i}\tilde{\eta}N_{R\alpha}$ $N_{R2}\to \Sigma$ with A. Rivera, arXiv:1907.11938

$$(\chi_1^0 \ \chi_2^0)^T = R(N_R \ \Sigma)^T$$

$$\xi = rac{\left|M_{\Sigma} - m_{\chi_1^0}
ight|}{m_{\chi_1^0}}$$

 $h_{ilpha}\overline{L_i} ilde{\eta}N_{Rlpha} \ N_{R2} o\Sigma$ with A. Rivera, arXiv:1907.11938

$$\sigma v \left(\chi_1^0 \chi_1^0 \to \gamma \gamma \right) = \frac{|\mathcal{B}|^2}{32\pi m_{\chi_1^0}^2}$$

 $M_{\Sigma} \left(-2mM_{H^{\pm}}^2 - M_{\Sigma}M_{H^{\pm}}^2 + m^2M_{\Sigma} + 2mM_{\Sigma}^2 + M_{\Sigma}^3\right) C_0 \left(0, -m^2, m^2; M_{\Sigma}^2, M_{\Sigma}^2, M_{H^{\pm}}^2\right)$ $(M_{H^{\pm}}^2 - M_{\Psi}^2)(M_{H^{\pm}}^2 + m^2 - M_{\Psi}^2)$ $2M_{\Sigma}(m + M_{\Sigma})C_0(0, 0, 4m^2; M_{\Sigma}^2, M_{\Sigma}^2, M_{\Sigma}^2)$ $-M_{H^+}^2 - m^2 + M_{\Sigma}^2$ $\alpha m^2 \sin(\alpha) \cos(\alpha) Y_{\nu}^{\alpha} Y_{\nu}^{\alpha} \left[m_{\nu}^2 C_0 \left(0, -m^2, m^2; m_{\nu}^2, m_{\nu}^2, m_{\nu}^2\right) \right]$ $m_{e_{s}}^{2}\left(m_{e_{s}}^{2}+m^{2}-m_{u}^{2}\right)C_{0}\left(0,-m^{2},m^{2};m_{e_{s}}^{2},m_{e_{s}}^{2},m_{e_{s}}^{2},m_{q}^{2}\right) \\ \perp 2m_{e_{s}}^{2}C_{0}\left(0,0,4m^{2};m_{e_{s}}^{2},m_{e_{s}}^{2},m_{e_{s}}^{2},m_{e_{s}}^{2}\right)$ $\alpha m^2 \cos^2(\alpha) (Y_{\Sigma}^{\alpha})^2 \left[m_n^2 C_0 (0, -m^2, m^2; m_n^2, m_n^2, m_{\ell_t}^2) \right]$ $m_{e_c}^2 \left(m_{e_c}^2 + m^2 - m_n^2\right) C_0 \left(0, -m^2, m^2; m_{e_t}^2, m_{e_t}^2, m_\eta^2\right) = 2m_{e_c}^2 C_0 \left(0, 0, 4m^2; m_{e_t}^2, m_{e_t}^2, m_{e_t}^2\right)$ $\sqrt{2\alpha m^2 \sin^2(\alpha)(Y_v^a)^2} \left[m_n^2 C_0 \left(0, -m^2, m^2; m_n^2, m_n^2, m_n^2 \right) \right]$ $m_{e_i}^2 \left(m_{e_i}^2 + m^2 - m_{\eta}^2\right) C_0 \left(0, -m^2, m^2; m_{e_i}^2, m_{e_i}^2, m_{e_i}^2\right) = 2m_{e_i}^2 C_0 \left(0, 0, 4m^2; m_{e_i}^2, m_{e_i}^2, m_{e_i}^2\right)$ $8\sqrt{2}\alpha m^2 \cos^2(\alpha)M_W^2$ $\pi \left(M_V^2 - M_W^2\right) \left(4v_O^2 + v_A^2\right) \left(m^2 - M_V^2 + M_W^2\right) \left(m^2 + M_V^2 - M_W^2\right)$ $4(m^2 - M_W^2)(M_\Sigma^2 - M_W^2)(m^2 - M_\Sigma^2 + M_W^2)C_0(0, 0, 4m^2; M_W^2, M_W^2, M_W^2)$ $+2M_{\Sigma}(2m-M_{\Sigma})(M_{\Sigma}^2-M_W^2)(m^2+M_{\Sigma}^2-M_W^2)C_0(0,0,4m^2;M_{\Sigma}^2,M_{\Sigma}^2,M_{\Sigma}^2)$ $-(m^2 - M_{\Sigma}^2 + M_W^2)(-M_W^2(m^2 + M_{\Sigma}^2) - 4mM_{\Sigma}(m^2 + M_{\Sigma}^2 - M_W^2) + 4M_{\Sigma}^4 + M_W^4)$ $C_0 \left(0, -m^2, m^2; M_W^2, M_{\Sigma}^2\right) - M_{\Sigma} \left(m^2 + M_{\Sigma}^2 - M_W^2\right) \left(4m^3 - 3m^2M_{\Sigma} + M_{\Sigma}^3 - M_{\Sigma}M_W^2\right)$ $C_0 (0, -m^2, m^2; M_V^2, M_V^2, M_W^2)$

 $f_{ilpha} \overline{L_i} ilde{\eta} N_{Rlpha}$ F. Molinaro, C. Yaguna, Ó. Zapata,

arXiv:1405.1259 [ICAP]

$$l\left(\eta^{+}\right) = 3 \times 10^{5} \text{cm}\left(\frac{M_{1}}{1 \text{GeV}}\right) \left(\frac{1 \text{TeV}}{m_{\eta^{+}}}\right)^{2}$$

$$\lesssim 3 \text{ meters} \left(\frac{1 \text{TeV}}{m_{\eta^{+}}}\right)^{2} \text{ for } M_{1} \lesssim 1 \text{MeV}$$

$$N_R N_R \to \nu_R \nu_R$$

$$\Delta N_{\rm eff} \sim 0.2$$

 $k_{\alpha}\overline{N_{R\alpha}^{c}}N_{R\alpha}S^{*}$ $Q_{\partial_{\mathcal{T}_{Padiation}}}N_{Portal}$

 $g' Z'_{\mu} \sum_{F} q_{F} \overline{F} \gamma^{\mu} F$

Dark scalar portal

(One-loop) Dirac neutrino masses

To explain the smallness of Dirac neutrino masses choose $\mathrm{U}(1)_X$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{\mathsf{T.L}} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_X$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{\mathsf{T.L}} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

• Forbids Majorana term: $\nu_R \nu_R$

To explain the smallness of Dirac neutrino masses choose $U(1)_X$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} \left(\nu_{R} \right)^{\dagger} L \cdot HS + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_X$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} \left(\nu_{R} \right)^{\dagger} L \cdot HS + \text{h.c}$$

Enhancement to the effective number of degrees of freedom in the early Universe $\Delta N_{\rm eff} = N_{\rm eff} - N_{\rm eff}^{\rm SM}$ (see arXiv:1211.0186)

 $\mathrm{U}(1)_{B-L} \stackrel{\langle S \rangle}{\to} Z_N$

From 1210.6350 and 1805.02025: $\Delta N_{ ext{eff}} = 3 \left(T_{ u_R} / T_{ u_L} ight)^4$

$$\begin{split} \Gamma_{\nu_R}(T) &= n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to \bar{f} f) v \rangle \\ &= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos \theta), \\ s &= 2pq (1 - \cos \theta), \qquad \qquad f_{\nu_R}(k) = 1/(e^{k/T} + 1) \\ n_{\nu_R}(T) &= g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), \qquad \qquad \text{with } g_{\nu_R} = 2 \\ \sigma_f(s) &\simeq \frac{N_C^f (Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{Z'}}\right)^4, \quad \text{In the limit } M_{Z'}^2 \gg s. \end{split}$$

with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N [g(T) + 21/4]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{
m dec}^{
u_R})=H(T_{
m dec}^{
u_R}).$$

A. Solaguren-Beascoa, M. C. Gonzalez-Garcia: arXiv:1210.6350 [PLB]

From 1210.6350 and 1805.02025: $\Delta N_{\text{eff}} = 3 (T_{\nu_P}/T_{\nu_I})^4$

$$\begin{split} \Gamma_{\nu_R}(T) &= n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to \bar{f} f) v \rangle \\ &= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos\theta), \\ s &= 2pq(1 - \cos\theta), \qquad \qquad f_{\nu_R}(k) = 1/(e^{k/T} + 1) \\ n_{\nu_R}(T) &= g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), \qquad \qquad \text{with } g_{\nu_R} = 2 \\ \sigma_f(s) &\simeq \frac{N_C^f (Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{Z'}}\right)^4, \quad \text{In the limit } M_{Z'}^2 \gg s. \end{split}$$
 with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N [g(T) + 21/4]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{\text{dec}}^{\nu_R}) = H(T_{\text{dec}}^{\nu_R}).$$

Conclusions

It makes sense to focus our attention on models tha can account for neutrino masses and dark matter (DM) without adhoc symmetries

One-loop Dirac neutrino masses

A single $U(1)_X$ gauge symmetry to explain both the smallnes of Dirac neutrino masses and the stability of Dirac fermion dark matter

- Spontaneously broken $U(1)_X$ generates a radiative Dirac neutrino masses
- A remnant symmetry makes the lightest field circulating the loop stable and good dark matter candidate.
- For T1-2-A: Either Singet Doublet Dirac Dark Matter or Singlet Scalar Dark Matter with extra scalar and vector portal
- Dark symmetry for Majorana mediatiors

