

PLAN DE LA PRÉSENTATION

INTRODUCTION

Contexte

- Travail pour la ville de Seattle
- Objectif : ville neutre en émissions de carbone en 2050
- Etude sur la consommation et les émissions des bâtiments non destinés à l'habitation
- Données disponibles : relevés effectués par les agents de la ville
- Evaluation de l'ENERGY STAR Score

DÉCOUVERTE DES DONNÉES

- Présentation des datasets
- Data cleaning
- Préparation à l'analyse exploratoire

PRÉSENTATION DES DATASETS

Deux datasets initiaux : données de 2015 et 2016

• pour 2015 : 3341 lignes 47 colonnes

• pour 2016 : 3377 lignes 46 colonnes

	OSEBuildingID	DataYear	BuildingType	PrimaryPropertyType	PropertyName	TaxParcelIdentificationNumber	Location	CouncilDistrictCode	Neighborhoo
0	1	2015	NonResidential	Hotel	MAYFLOWER PARK HOTEL	659000030	{'latitude': '47.61219025', 'longitude': '-122	7	DOWNTOW
1	2	2015	NonResidential	Hotel	PARAMOUNT HOTEL	659000220	{'latitude': '47.61310583', 'longitude': '-122	7	DOWNTOW
2	3	2015	NonResidential	Hotel	WESTIN HOTEL	659000475	{'latitude': '47.61334897', 'longitude': '-122	7	DOWNTOW
3	5	2015	NonResidential	Hotel	HOTEL MAX	659000640	{'latitude': '47.61421585', 'longitude': '-122	7	DOWNTOW
4	8	2015	NonResidential	Hotel	WARWICK SEATTLE HOTEL	659000970	{'latitude': '47.6137544', 'longitude': '-122	7	DOWNTOW

Premier cleaning

Fayz El Razaz – Projet n°3

24/05/2022

DATA CLEANING

Suppression des features non suffisamment remplies

Suppression des features pour éviter le data leakage

Uniformisation des noms de features

Concaténation de tables sur un maximum de features

Fayz El Razaz – Projet n°3 24/05/2022

DATA CLEANING

Traitement des outliers

Fayz El Razaz – Projet n°3

ANALYSE EXPLORATOIRE

ANALYSE EXPLORATOIRE

Fayz El Razaz – Projet $n^{\circ}3$ 24/05/2022 10

PRÉPARATION DES DONNÉES

- Feature engineering
- Encodage des variables

12

PRÉPARATION DES DONNÉES

Passage au logarithme sur les variables d'intérêt

ENCODAGE DES VARIABLES

Utilisation de OneHotEncoder

OSEBuildingID	DataYear	Building Type
---------------	----------	----------------------

0	1	2015	NonResidential
1	2	2015	NonResidential
2	3	2015	NonResidential
3	5	2015	NonResidential
4	8	2015	NonResidential

BuildingType_NonResidential	Building Type_Nonresidential COS	BuildingType_SPS- District K-12	PrimaryPropertyType_Distribution Center
1.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0

MODÈLES UTILISÉS

Régression

Random Forest

Support vector Regression

XGBoost

MÉTHODOLOGIE GÉNÉRALE

Recherche des hyperparamètres optimaux avec GridSearch

CrossValidation

Calcul du RMSE pour évaluer la performance du modèle sur les données de test pour contrôle de l'overfitting

Comparaison des RMSE pour évaluer l'impact de l'ENERGYSTARScore

RÉGRESSION LINÉAIRES - RÉSULTATS

Consommation d'énergie

Emissions de CO2

17

RÉGRESSION - DIFFÉRENCE

Consommation d'énergie

Emissions de CO2

RANDOM FOREST - RÉSULTATS

Consommation d'énergie

Emissions de CO2

19

RANDOM FOREST - RÉSULTATS

Consommation d'énergie

Emissions de CO2

XGBOOST-RÉSULTATS

Consommation d'énergie

Emissions de CO2

Fayz El Razaz – Projet n°3 24/05/2022 21

TABLEAU RÉCAP DES ERREURS RELATIVES

23

TABLEAU RÉCAP AVEC L'ENERGYSTARSCORE

CONCLUSION

Travail mené sur des données structurées

Mise en place de modèles d'apprentissage supervisé

Le meilleur modèle semble être celui des forêts aléatoires

L'ENERGY STAR Score semble inutile

Les prévisions sont imprécises, et les erreurs restent importantes

Il serait fortuit d'avoir d'autres informations sur les bâtiments (présence de panneau solaire, immeuble intelligent, matériau de construction, évolution de la consommation annuelle...) pour améliorer les prévisions

