Algorytmy Metaheurystyczne - TSP (L1)

Piotr Maciejończyk 24 października 2023

1 Minimum Spanning Tree (MST)

W poniższej tabeli podane są moje wyniki dotyczące obliczenia długości MST dla każdego podanego pliku:

Nazwa pliku	Długość MST
xqf131	474
xqg237	897
pbl395	1124
pka379	1151
pma343	1179
pbk411	1180
pbn423	1201
pbm436	1269
bcl380	1444
xql662	2240

Do obliczenia MST posłużyłem się algorytmem Kruskala. Można zauważyć tendencję, iż wraz ze wzrostem liczby wierzchołków grafie, rośnie również długość minimalnego drzewa rozpinającego. Długość ta zależy również od sposobu w jaki rozmieszczone są wierzchołki, lecz trywialnym jest, że im więcej wierzchołków na płaszczyźnie, tym więcej krawędzi trzeba utworzyć, co w efekcie skutkuje dłuższym drzewem MST.

Poniżej przedstawiam także wygenerowane przeze mnie MST dla wszystkich 10 plików:

Rysunek 1: Drzewa MST

2 Cykle komiwojażera na podstawie MST

W poniższej tabeli podane są moje wyniki dotyczące obliczenia długości cykli komiwojażera na podstawie utworzonych wcześniej MST dla każdego podanego pliku:

Nazwa pliku	Długość cyklu
xqf131	739
xqg237	1356
pbl395	1760
pka379	1845
pma343	1760
pbk411	1809
pbn423	1869
pbm436	1953
bcl380	2196
xql662	3513

Dla każdego pliku, moje wyniki dla długości cykli TSP wygenerowanych na podstawie obliczonych MST spełnia zależność:

$$length(TSP_{mst}) \le 2 \cdot length(MST)$$

Przy tworzeniu powyższych cykli, skorzystałem z krawędzi MST, a potem wykonałem algorytm przeszukiwania w głąb. Poniżej znajdują się wygenerowane przeze mnie cykle dla każdego z przykładów:

Rysunek 2: Cykle TSP wykonane na podstawie MST

3 Cykle losowe

Losowałem kolejno 1000 permutacji wierzchołków dla każdego z plików i obliczyłem żądane wartości, które umieściłem w poniższej tabeli:

Nazwa pliku	Avg10	Avg50	Minimalna wartość
xqf131	4306	4146	3967
xqg237	11765	11496	11136
pbl395	19180	18898	18233
pka379	35171	34368	33236
pma343	34112	33275	32450
pbk411	21580	21269	20937
pbn423	21860	21533	21101
pbm436	22417	22051	21662
bcl380	24625	24171	23465
xql662	51058	50360	49439

Jak można zauważyć powyżej, wyniki można przedstawić w następujący sposób:

$$MIN_{value} \le AVG_{50} \le AVG_{10}$$

Dla lepszego zobrazowania otrzymanych wyników z wszystkich zadań, stworzyłem wykres liniowy porównujący długość drzew MST, długość wygenerowanych na ich podstawie cykli, długość minimalnego wylosowanego cyklu, średnią minimalną długość dla każdych 10/50 kolejnych losowań. Wykres znajduje się poniżej:

Rysunek 3: Porównanie wyników