

Day 39 機器學習

LASSO, Ridge Regression

楊証琨

知識地圖 機器學習-模型選擇 - 線性模型 - LASSO 回歸/ Ridge 回歸

機器學習基礎模型建立

監督式學習 Supervised Learning

前處理 Processing 探索式 數據分析 Exploratory Data Analysis 特徵 工程 Feature Engineering 模型 選擇 Model selection

參數調整 Fine-tuning

集成 Ensemble 非監督式學習 Unsupervised Learning

> 分群 Clustering

降維 Dimension Reduction

模型選擇 Model selection

概論

驗證基礎

預測類型

評估指標

基礎模型 Basic Model

線性回歸 Linear Regression

邏輯斯回歸 Logistic Regression

套索算法 LASSO

嶺回歸 Ridge Regression

樹狀模型 Tree based Model

決策樹 Decision Tree

隨機森林 Logistic Regression

梯度提升機 Gradient Boosting Machine

本日知識點目標

- 了解 Lasso, Ridge 回歸的基本定義
- Lasso, Ridge 回歸的差異
- L1/L2的意義與使用

機器學習模型中的目標函數

- 機器學習模型的目標函數中有兩個非常重要的元素
 - · 損失函數 (Loss function)
 - · 正則化 (Regularization)
- 損失函數衡量預測值與實際值的差異,讓模型能往正確的方向學習
- 正則化則是避免模型變得過於複雜,造成過擬合 (Over-fitting)

回歸模型與正規化

- 前兩天學習到的回歸模型,我們只有提到損失函數會用 MSE 或 MAE
- 為了避免 Over-fitting,我們可以把正則化加入目標函數中,此時目標 函數 = 損失函數 + 正則化
- · 正則化可以<mark>懲罰模型的複雜度</mark>,當模型越複雜時其值就會越大

正則化函數

- 正則化函數是用來衡量模型的複雜度
- ◎ 該怎麼衡量?有 L1 與 L2 兩種函數
- α weights
- L2: α (weights)²
- 這兩種都是希望模型的參數數值不要太大,原因是參數的數值變小,噪音對最終輸出的結果影響越小,提升模型的泛化能力,但也讓模型的擬合能力下降

LASSO, Ridge Regression

- LASSO為 Linear Regression加上 L1
- Ridge 為 Linear Regression 加上 L2
- 其中有個超參數 α 可以調整正則化的強度
- ◎ 簡單來說,LASSO 與 Ridge 就是回歸模型加上不同的正則化函數

常見問題

Q: Lasso 跟 Ridge 都是回歸問題的模型,那麼在使用時應該先用哪個模型跑呢?

A:從模型的特性來看,Lasso 使用的是 L1 regularization,這個正則化的特性會讓模型變得較為稀疏,除了能做特徵選取外,也會讓模型變得更輕量,速度較快。實務上因為訓練回歸模型非常容易,可以兩者都跑跑看,在比較準確率,應該不會有太大的差異!

請跳出PDF至官網Sample Code&作業 開始解題

