STAT 332: 05-1 Regression Estimators

Tanvir Deol

Summary:

- \bullet Regression estimation of the mean $\hat{\mu}_{reg}$
 - Point estimate
 - Derive mean and variance of estimator
 - \bullet Calculate confidence intervals for the mean based on $\hat{\mu}_{reg}$
 - \bullet Compare $\hat{\mu}_{reg}$ to other estimators of the mean

Regression Estimation

Suppose relationship between x and y in population has a non-zero intercept. Like such:

$$y_i = \alpha + \beta x_i + R_i$$

 R_i : "noise" which has a mean of 0

- This is known as the residual
- It is the only random part of the equation
- Everything else is NOT random

This shows the difference between a line with and without an intercept.

- Blue line is the regression line (LOBF) $\mathbf{w}/$ intercept
- Black line is the original ratio line (goes through 0) w/o intercept

Regression Estimation of the Mean

Since $y_i \approx \alpha + \beta x_i$ we have: (we say approx because we left out the error term)

$$\frac{1}{N} \sum_{i \in U} y_i \approx \frac{1}{N} \sum_{i \in U} [\alpha + \beta x_i]$$
$$= \frac{1}{N} [N\alpha + \beta \sum_{i \in U} x_i]$$
$$= \alpha + \beta \mu_x$$

Which gives us that:

$$\mu_{v} \approx \alpha + \beta \mu_{x}$$

Here U is universe and $\mu_x = \sum_{i \in U} x_i$ (the population mean for X).

Using the information above we can define our **regression estimate** of μ_{ν} :

$$\hat{\mu}_{reg} = \hat{\alpha} + \hat{\beta}\mu_x$$

Ordinary Least Squares (LS) allows us to estimate α and β :

$$\hat{\beta} = \frac{\sum_{i \in S} (x_i - \bar{x}) y_i}{\sum_{i \in S} (x_i - \bar{x})^2}$$

This is the estimated slope

$$\hat{\alpha} = \bar{y} - \hat{b}\bar{x}$$

This is the estimated intercept

If we substitute $\hat{\alpha}$ in the $\hat{\mu}_{reg}$ expression then we can rewrite the regression estimate as

$$\begin{split} \hat{\mu}_{reg} &= \hat{\alpha} + \hat{\beta}\mu_x \\ &= (\bar{y} - \hat{\beta}\bar{x}) + \hat{\beta}\mu_x \\ &= (\hat{\mu}_y - \hat{\beta}\hat{\mu}_x) + \hat{\beta}\mu_x \\ &= \hat{\mu}_y + \hat{\beta}(\mu_x - \hat{\mu}_x) \end{split}$$

The $\hat{\beta}(\mu_x - \hat{\mu}_x)$ part of the equation is called the **additive corrective factor for** $\hat{\mu}_y = \bar{y}$

Adjustment term/Additive Corrective Factor $\hat{\beta}[\mu_x - \hat{\mu}_x]$

If $\hat{\beta}>0$ (i.e larger values of x correspond to larger values of y) (Corr(x,y) >0) then

- if $\mu_x > \hat{\mu}_x$ then the sample average for the y variate $\hat{\mu}_y$ is adjusted upward
- basically thats a positive correction
- if the slope is negative, then the correction happens in negative direction

Note:

The regression estimate "drags" \bar{y} (sample mean of y aka $\hat{\mu}_y$) towards μ_y (the population mean) Why is this important?

- Because our sample can be biased based on our sampling protocol
- \bar{y} could be a lot higher or a lot lower than the "true" population mean
- that is where the correction factor saves the day

Properties

The estimator for the regression estimate is $\tilde{\mu}_{reg} = \tilde{\mu}_Y + \tilde{\beta}[\mu_X - \tilde{\mu}_X]$. We want to show this estimator is unbiased. By considering when n (sample size) gets very large and then taking the expectation of the estimator.

$$\begin{split} \tilde{\mu}_{reg} &= \tilde{\mu}_Y + \tilde{\beta} [\mu_X - \tilde{\mu}_X] \\ \tilde{\mu}_{reg} - \mu_Y &= \tilde{\mu}_Y - \mu_Y + [\tilde{\beta} - \beta + \beta] [\mu_X - \tilde{\mu}_X] \\ \tilde{\mu}_{reg} - \mu_Y &= \tilde{\mu}_Y - \mu_Y + \beta [\mu_X - \tilde{\mu}_X] + \underbrace{[\tilde{\beta} - \beta]}_{A} \underbrace{[\mu_X - \tilde{\mu}_X]}_{B} \end{split}$$

Pay attention to A and B, as n becomes very large those parts go to 0. So what we actually get for large n is:

$$\tilde{\mu}_{reg} - \mu_Y \approx [\tilde{\mu}_Y - \mu_Y] + \beta [\mu_X - \tilde{\mu}_X]$$

Expectation

Now we take the expectation of the estimator to prove that it is unbiased. Recall from SRSWOR that $E[\tilde{\mu}_Y] = \mu_Y$ and $E[\tilde{\mu}_X] = \mu_X$.

$$\begin{split} E[\tilde{\mu}_{reg} - \mu_Y] &\approx E\{[\tilde{\mu}_Y - \mu_Y] + \beta[\mu_X - \tilde{\mu}_X]\} \\ &= E[\tilde{\mu}_Y - \mu_Y] + \beta E[\mu_X - \tilde{\mu}_X] \\ &= 0 \end{split}$$

Note that μ_Y, μ_X are constants so their expectation is themselves. Given the above expectation, we can prove $\tilde{\mu}_{reg}$ is unbiased since:

$$E[\tilde{\mu}_{reg} - \mu_Y] \approx 0 \Rightarrow E[\tilde{\mu}_{reg}] - \mu_Y \approx 0 \Rightarrow E[\tilde{\mu}_{reg}] \approx \mu_Y$$

Therefore we've proven the estimator is approx unbiased under SRSWOR.

Variance

Now we establish variance. Recall that $\tilde{\mu}_{reg} - \mu_Y \approx [\tilde{\mu}_Y - \mu_Y] + \beta[\mu_X - \tilde{\mu}_X]$ for large n. So we get:

$$\begin{split} Var(\tilde{\mu}_{reg}) &= Var(\tilde{\mu}_{reg} - \mu_{Y}) \\ &\approx Var(\tilde{\mu}_{reg} - \mu_{Y} + \beta[\mu_{X} - \tilde{\mu}_{X}]) \\ &= Var(\tilde{\mu}_{e}) \end{split}$$

Where e_i is defined as $e_i = y_i - \mu_Y + \beta(\mu_X - x_i)$ and μ_e is defined as $\mu_e = \frac{1}{N} \sum_{i \in U} e_i = \mu_Y - \mu_Y + \beta(\mu_X - \mu_X) = 0.$

Sample Variance

By applying the results from SRSWOR to our new variable e we get:

$$E[\tilde{\mu}_e] = \mu_e = 0$$

$$Var(\tilde{\mu}_e) = (1 - \frac{n}{N}) \frac{\sigma_e^2}{n}$$

Where σ_e^2 s:

$$\sigma_e^2 = \frac{1}{N-1} \sum_{i \in U} \underbrace{(e_i - \mu_e)^2}_{\mu_e = 0}$$

$$= \frac{1}{N-1} \sum_{i \in U} e_i^2$$

$$= \frac{1}{N-1} \sum_{i \in U} [y_i - \mu_Y + \beta(\mu_X - x_i)]^2$$

That was the **population variance** of the residuals e_i . Now we will get the **sample variance** of the estimated residuals (from a least squares fit of the sample data):

$$\hat{\sigma}_{e}^{2} = \frac{1}{n-1} \sum_{i \in s} \left[y_{i} - \bar{y} + \hat{\beta}(\bar{x} - x_{i}) \right]^{2}$$

$$= \frac{1}{n-1} \sum_{i \in s} \left[y_{i} - \bar{y} - \hat{\beta}(x_{i} - \bar{x}) \right]^{2}$$

$$= \frac{1}{n-1} \sum_{i \in s} \left[y_{i} + (-\bar{y} + \hat{\beta}\bar{x}) - \hat{\beta}x_{i} \right]^{2}$$

$$= \frac{1}{n-1} \sum_{i \in s} \left[y_{i} - \hat{\alpha} - \hat{\beta}x_{i} \right]^{2}$$