Synchronization (cont.)

High Level Synchronization

• Barriers (All work being performed by any thread is guaranteed to be completed at barrier exit). Usage:

```
#pragma omp barrier
```

• For OpenMP Tasks, the barrier is the **taskwait** clause. Usage:

```
#pragma omp taskwait
```

Critical Section provides for mutual exclusion: only one thread can enter critical section at a time

atomic also provides mutual exclusion by making sure read/write to memory location is
 rotected and singular. (Different from critical clause, which can be any sequence/type of code)

```
#pragma omp atomic
```

Synchronization (cont.) > Semaphores. 2 = xoms Low Level Synchronization OpenMP Simple Locks: A lock is available if it is unset omp_lock_t myLock; // the lock object omp_init_lock(&myLock); // initialize to unset #pragma omp parallel omp_set_lock(&myLock); Increment (lai chomicady locked) // do some work unset omp_unset_lock(&myLock); decrement omp_destroy_lock(&myLock); // destroy/deallocate lock • Can also test if a lock is set or not (without blocking) by calling: omp_test_lock(&myLock); // returns true if set, false otherwise scenario 1

- OpenMP Nested Locks:
 - A set is an increment, an unset is a decrement.
 - Can be locked a number of times. Doesn't unlock until you have unset it as many times it was locked

```
omp_nest_lock_t myLock;
omp_init_nest_lock(&myLock);
omp_set_nest_lock(&myLock);
omp_unset_nest_lock(&myLock);
omp_destroy_nest_lock(&myLock);
omp_destroy_nest_lock(&myLock);
```


NO CR	Scenario 2	: Synchronization	$\underbrace{Red \longrightarrow Green \longrightarrow Blue}$
1 lock. 3 locks.	→ seb (blue) → set (green) → set (red)	set(gween)	set (blue)
Set/increment	5		į
unset Idecrement	Unset (green)	····-	
	UBCC (J)	unset (blue) =
lode er	gineering.	-	unset (red)