Paul Gustafson

Texas A&M University - Math 607 Instructor: Thomas Schlumprecht

HW 9

1 If $f \in L_1(0,\infty)$, define

$$g(s) = \int_0^\infty e^{-st} f(t) dt, \quad 0 < s < \infty.$$

Prove that g(s) is differentiable on $(0, \infty)$ and that

$$g'(s) = -\int_0^\infty t e^{-st} f(t) dx, \quad 0 < s < \infty.$$

Proof. Let $s \in (0, \infty)$ and $0 \le |h| \le s/2$. We have $|e^{-st}f(t)| \le |f(t)|$, so $e^{-st}f(t) \in L_1$. Hence

$$\frac{g(s+h) - g(s)}{h} = \int_0^\infty \frac{e^{-(s+h)t} - e^{-st}}{h} f(t) dt.$$

By the Mean Value theorem, we have

$$\left| \frac{e^{-(s+h)t} - e^{-st}}{h} f(t) \right| \le \sup_{h \in (-s/2, s/2)} \left| -te^{-(s+h)t} \right| |f(t)|$$

$$= te^{-(s/2)t} |f(t)|$$

$$\le C_s |f(t)|$$

Hence, by the DCT,

$$\lim_{h \to 0} \frac{g(s+h) - g(s)}{h} = \int_0^\infty \frac{d}{ds} e^{-st} f(t) = -\int_0^\infty t e^{-st} f(t) \, dx.$$

2 Let (Ω, μ, Σ) be a finite measure space and (f_n) be a sequence of measurable functions on Ω . Suppose that for each $\omega \in \Omega$ there is an $M_{\omega} \in \mathbb{R}$ so that for all $k \in \mathbb{N}$, $|f_k(\omega)| \leq M_{\omega}$. Let $\epsilon > 0$. Show that there is a measurable $A \subset \Omega$ and an $M \in \mathbb{R}$ so that $\mu(\Omega \setminus A) < \epsilon$ and $f_k(\omega) < M$ for all $k \in \mathbb{N}$ and all $\omega \in A$.

Proof. Let $\epsilon > 0$ and $E_j := \bigcap_n \{f_n < j\}$. Then (E_j) is increasing and $\bigcup_j E_j = \Omega$. Hence $\lim_j \mu(E_j) = \mu(\Omega)$. Since $\mu(\Omega) < \infty$, we can pick M such that $\mu(\Omega \setminus E_M) = \mu(\Omega) - \mu(E_M) < \epsilon$. Moreover, if $\omega \in E_M$, then $f_k(\omega) < M$ for all k.

3 57/page 77. Show that $\int_0^\infty e^{-sx}x^{-1}\sin x\,dx = \arctan(s^{-1})$ for s>0 by integrating $e^{-sxy}\sin x$ with respect to x and y. (Hints: $\tan(\frac{\pi}{2}-\theta)=\cot\theta$ and Exercise 31d.)

Proof. For fixed x>0, we have $|e^{-sxy}\sin x|\in L_1(1,\infty)$. Moreover, since $\left|\frac{\sin x}{x}\right|\leq 1$ for all x>0, we have $(x\mapsto e^{-sx}x^{-1}\sin x)\in L_1(0,\infty)$. Thus, by Tonelli's theorem, $(x\mapsto e^{-sxy}\sin x)\in L_1((0,\infty)\times(1,\infty))$. Thus, we have

$$\int_0^\infty e^{-sx}x^{-1}\sin x \, dx = s \int_0^\infty \int_1^\infty e^{-sxy}\sin x \, dy dx$$

$$= s \int_1^\infty \int_0^\infty e^{-sxy}\sin x \, dx dy$$

$$= s \int_1^\infty \int_0^\infty e^{-sxy}\sin x \, dx dy$$

$$= \frac{s}{2i} \int_1^\infty \int_0^\infty e^{(i-sy)x} - e^{(-i-sy)x} \, dx dy$$

$$= \frac{s}{2i} \int_1^\infty \left[\frac{1}{i-sy} e^{(i-sy)x} + \frac{1}{i+sy} e^{(-i-sy)x} \right]_{x=0}^\infty \, dy$$

$$= -\frac{s}{2i} \int_1^\infty \frac{1}{i-sy} + \frac{i+sy}{dy} \, dy$$

$$= \int_1^\infty \frac{s}{1+s^2y^2} \, dy$$

$$= \int_s^\infty \frac{1}{1+u^2} \, du$$

$$= \frac{\pi}{2} - \arctan(s)$$

$$= \arctan\cot(s)$$

$$= \arctan(s^{-1})$$

4 60/page 77. $\Gamma(x)\Gamma(y)/\Gamma(x+y)=\int_0^1 t^{x-1}(1-t)^{y-1}\,dt$ for x,y>0. (Recall that Γ was defined in Section 2.3. Write $\Gamma(x)\Gamma(y)$ as a double integral and use the argument of the exponential as a new variable of integration.)

Proof. We have $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ for $\Re z > 0$. Thus

$$\begin{split} \Gamma(x)\Gamma(y) &= \left(\int_0^\infty s^{x-1}e^{-s}\,ds\right)\left(\int_0^\infty t^{y-1}e^{-t}\,dt\right) \\ &= \int_0^\infty \int_0^\infty s^{x-1}t^{y-1}e^{-s-t}\,dsdt \\ &= \int_0^\infty \int_0^\infty s^{x-1}(u-s)^{y-1}e^{-u}\,duds \end{split}$$

5 Given a bounded function $f:[a,b]\to\mathbb{R}$, define

$$H(x) = \lim_{\delta \to 0} \sup_{|x-y| \le \delta} f(y), \text{ and } h(x) = \lim_{\delta \to 0} \inf_{|x-y| \le \delta} f(y)$$

- a) For $x \in [a, b]$, f continuous at $x \iff H(x) = h(x)$.
- **b)** Assume now that (P_k) is an increasing sequence of partitions of [a,b] for which the mesh converges to zero. Write $P_k = (t_0^{(k)}, t_1^{(k)}, \dots, t_{n_k}^{(k)})$. Define for $x \in [a, b]$,

$$G(x) = \lim_{k \to \infty} G_{P_k}(x)$$
 and $g(x) = \lim_{k \to \infty} g_{P_k}(x)$,

where for a partition $P = (t_0, t_1, \dots, t_n)$

$$G_P = \sum_{i=1}^n \chi_{(t_{i-1},t_i]} \sup_{t \in (t_{i-1},t_i]} f(t) \text{ and } g_P = \sum_{i=1}^n \chi_{(t_{i-1},t_i]} \inf_{t \in (t_{i-1},t_i]} f(t).$$

Prove that H = G and h = g m-a.e.

c) Show that f is Riemann integrable \iff the set of discontinuities of f has Lebesgue measure zero.

Proof. Let $H_{\delta}(x) = \sup_{|x-y| \leq \delta} f(y)$ and $h_{\delta}(x) = \inf_{|x-y| \leq \delta} f(y)$. For fixed x, note that $H_{\delta}(x)$ is an increasing function of δ , and $h_{\delta}(x)$ is a decreasing function of δ .

For (a), suppose f is continuous at x. Let $\epsilon > 0$. Pick $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ for all $|x - y| < \delta$. Then $f(x) \le H_{\delta} \le f(x) + \epsilon$ and $f(x) - \epsilon \le h_{\delta} \le f(x)$. By the monotinicity of H_{δ} and h_{δ} in δ , it follows that for $0 < \gamma \le \delta$ we have $f(x) \le H_{\gamma} \le f(x) + \epsilon$ and $f(x) - \epsilon \le h_{\gamma} \le f(x)$. Thus $\lim_{\delta \to 0} H_{\delta} = f(x) = \lim_{\delta \to 0} h_{\delta}$.

For the converse, we assume that H(x) = h(x). Suppose $f(x) \neq H(x)$. Note that $h(x) \leq f(x) \leq H(x)$. Hence h(x) < H(x), a contradiction. Hence f(x) = H(x) = h(x). Let $\epsilon > 0$. Pick $\delta > 0$ such that $H_{\delta} - f(x) < \epsilon$ and $f(x) - h_{\delta} < \epsilon$. Then if $|x - y| < \delta$, we have $f(y) - f(x) \leq H_{\delta}(x) - h(y) < \epsilon$ and $f(y) - f(x) \geq h_{\delta}(x) - f(x) > -\epsilon$.

For (b), I first claim that H is upper semicontinuous. Let $x_n \to x$. Let $\epsilon > 0$. Pick $\delta > 0$ such that $H_\delta(x) - H(x) < \epsilon$. Then if $|x-y| < \delta/2$ we have $H(y) \le H_{\delta/2}(y) \le H_\delta(x) < H(x) + \epsilon$. Therefore, $\limsup H(x_n) \le H(x) + \epsilon$ for every $\epsilon > 0$, so H is upper semicontinuous. A similar argument (or taking negatives) shows that h is lower semicontinuous.

For any partition P we have $G_P > H$, so G > H. Suppose $m(\{G > H\}) > 0$. Then by continuity from below, there exists n > 0 such that $m(\{G - H > 1/n\}) > 0$.

For (c), note that if $x_n \to x$ we have $\limsup f(x_n) = \limsup H(x_n) \le H(x)$ and $\liminf f(x_n) \le \liminf h(x_n) \le h(x)$. Hence, if H(x) = h(x), then f(x) is continuous at x. The converse is also true. Thus, for (c), it suffices to show that f is Riemann integrable $\iff H = h$ a.e.

Recall that f is Riemann integrable \iff for every (P_k) with mesh converging to zero we have $\int G_{P_k} - g_{P_k} \to 0$. Since $G_{P_k} - g_{P_k}$ is decreasing in k, by the DCT we have $\lim_k \int G_{P_k} - g_{P_k} = \int \lim_k G_{P_k} - g_{P_k} = \int H - h$. Thus f is Riemann integrable $\iff H = h$ a.e.

6 Problem 30/page 60. Hint: AM-GM. Show that $\lim_{k\to\infty} \int_0^k x^n (1-k^{-1}x)^k dx = n!$

Proof. Using Exercise (4), we have

$$\int_0^k x^n (1 - k^{-1}x)^k dx = k^{n+1} \int_0^1 (u)^n (1 - u)^k du$$

$$= k^{n+1} \frac{\Gamma(n+1)\Gamma(k+1)}{\Gamma(n+k+2)}$$

$$= n \left(\frac{k}{k+1}\right) \left(\frac{k}{k+2}\right) \cdots \left(\frac{k}{k+n+1}\right)$$

$$\to n$$

as $k \to \infty$, $k \in \mathbb{N}$.

7 Problem 1/88. Let ν be a signed measure on (X, \mathcal{M}) . If (E_j) is an increasing sequence in \mathcal{M} , the $\nu(\bigcup_1^\infty E_j) = \lim_{j \to \infty} \nu(E_j)$. If (E_j) is a decreasing sequence in \mathcal{M} and $\nu(E_1)$ is finite, then $\nu(\bigcap_1^\infty E_j) = \lim_{j \to \infty} \nu(E_j)$.

Proof. For the first part, we have

$$\nu(\bigcup_{1}^{\infty} E_{j}) = \nu(E_{1} \cup \bigcup_{1}^{\infty} E_{j+1} \setminus E_{j})$$

$$= \nu(E_{1}) + \sum_{1}^{\infty} \nu(E_{j+1} \setminus E_{j})$$

$$= \lim_{J \to \infty} \nu(E_{1}) + \sum_{1}^{J} \nu(E_{j+1} \setminus E_{j})$$

$$= \lim_{J \to \infty} \nu(E_{1} + \bigcup_{1}^{J} \nu(E_{j+1} \setminus E_{j})$$

$$= \lim_{J \to \infty} \nu(E_{J+1}).$$

For the second part, first note that if $A \subset E_1$ with $A \in \mathcal{M}$ then $\nu(A) + \nu(E_1 \setminus A) = \nu(E_1)$. Since $\nu(E_1)$ is finite, $\nu(A)$ must be finite. Hence $\nu(E_1 \setminus A) = \nu(E_1) - \nu(A)$. Using this fact and the previous part, we have

$$\nu(\bigcap_{1}^{\infty} E_{j}) = \nu(E_{1} \setminus \bigcup_{1}^{\infty} (E_{1} \setminus E_{j}))$$

$$= \nu(E_{1}) - \lim_{j \to \infty} \nu(E_{1} \setminus E_{j})$$

$$= \nu(E_{1}) - \lim_{j \to \infty} \nu(E_{1}) - \nu(E_{j})$$

$$= \lim_{j \to \infty} \nu(E_{j})$$

8 Problem 4/88. If ν is a signed measure and λ, μ are positive measures such that $\nu = \lambda - \mu$, then $\lambda \geq \nu^+$ and $\mu \geq \nu^-$.

Proof. Suppose not. WLOG there exists a measurable set A such that $\lambda(A) < \nu^+(A)$. From the Haar decomposition, there exists a partition $P \cup N = X$ where P contains the support of ν^+ and N contains the support ν^- . Then $\lambda(A \cap P) \leq \lambda(A) < \nu^+(A) = \nu(A \cap P) = \lambda(A \cap P) - \mu(A \cap P) < \lambda(A \cap P)$, a contradiction.

- **9** Problem 7/88. Suppose that ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$.
- **a.** $\nu^+(E) = \sup\{\nu(F) : F \in \mathcal{M}, F \subset E\}$ and $\nu^-(E) = -\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\}.$
- **b.** $|\nu|(E) = \sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{1}^{n} E_j = E\}.$

Proof. For (a), we have the partition $X = P \cup N$ where P and N contain the support of ν^+ and ν^- respectively. Hence $\nu^+(E) = \nu(E \cap P) \leq \sup\{\nu(F) : F \in \mathcal{M}, F \subset E\}$. On the other hand, if $F \in \mathcal{M}, F \subset E$ then $\nu(F) = \nu^+(F) - \nu^-(F) \leq \nu^+(F) \leq \nu^+(E)$. The ν^- part follows from applying the first part to $-\nu$.

For (b), let $K = \sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{1}^{n} E_j = E\}$. We have $|\nu|(E) = \nu^+(E) + \nu^-(E) = |\nu(E \cap P)| + |\nu(E \cap N)| \leq K$. On the other hand, if $(E_j)_1^n$ is a partition of E then $\sum_{1}^{n} |\nu(E_j)| = \sum_{1}^{n} |\nu^+(E_j) - \nu^-(E_j)| \leq \sum_{1}^{n} |\nu|(E_j) \leq |\nu|(E)$.