

1277163

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

January 24, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.

APPLICATION NUMBER: 60/610,474

FILING DATE: *September 16, 2004*

RELATED PCT APPLICATION NUMBER: *PCT/US04/41282*

Certified by

Under Secretary of Commerce
for Intellectual Property
and Director of the United States
Patent and Trademark Office

0911942
2047 U.S.PTO

PTO/SB/16 (08-03)

Approved for use through 07/31/2006. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

Express Mail Label No. EV 509623664 US

19249
U.S. PTO
60/610474

INVENTOR(S)			
Given Name (first and middle [if any])	Family Name or Surname	Residence (City and either State or Foreign Country)	
Donata	Sizemore	Brentwood, Missouri	
Additional inventors are being named on the 1 separately numbered sheets attached hereto			
TITLE OF THE INVENTION (500 characters max)			
Live Avirulent Microbes As Vaccines For Anthrax and Plague			
Direct all correspondence to: CORRESPONDENCE ADDRESS			
<input checked="" type="checkbox"/> Customer Number:	29425		
OR			
<input checked="" type="checkbox"/> Firm or Individual Name	Leon R. Yankwich		
Address	Yankwich & Associates		
Address	201 Broadway		
City	Cambridge	State	MA
Country	United States of America	Telephone	617-374-3700
Fax	617-374-0055		
ENCLOSED APPLICATION PARTS (check all that apply)			
<input checked="" type="checkbox"/> Specification Number of Pages	10	<input type="checkbox"/>	CD(s), Number _____
<input checked="" type="checkbox"/> Drawing(s) Number of Sheets	15	<input type="checkbox"/>	Other (specify) _____
<input type="checkbox"/> Application Date Sheet. See 37 CFR 1.76			
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT			
<input type="checkbox"/>	Applicant claims small entity status. See 37 CFR 1.27.		
<input checked="" type="checkbox"/>	A check or money order is enclosed to cover the filing fees. (check no. 5399)		
<input type="checkbox"/>	The Director is hereby authorized to charge filing fees or credit any overpayment to Deposit Account Number: 50-0268		
<input type="checkbox"/>	Payment by credit card. Form PTO-2038 is attached.		
			FILING FEE Amount (\$)
			160.00
The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.			
<input type="checkbox"/>	No.		
<input checked="" type="checkbox"/>	Yes, the name of the U.S. Government agency and the Government contract number are: _____ Department of Defense (JVAP), subcontract under DynPort Vaccine Co., LLC, no. DPSC-02-02257		

Respectfully submitted,

[Page 1 of 2]

Date September 16, 2004

SIGNATURE

REGISTRATION NO. 30,237

TYPED or PRINTED NAME Leon R. Yankwich

(if appropriate)
Docket Number. AVA-440.2 PRV

TELEPHONE 617-374-3700

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop Provisional Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

PROVISIONAL APPLICATION COVER SHEET
Additional Page

PTO/SB/16 (08-03)

Approved for use through 07/31/2006. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Docket Number **AVA-440.2 PRV**

INVENTOR(S)/APPLICANT(S)		
Given Name (first and middle [if any])	Family or Surname	Residence (City and either State or Foreign Country)
Steven	Tinge	Lebanon, Illinois
Lawrence	Thomas	Easton, Massachusetts
Kenneth	Roland	St. Louis, Missouri
Sims	Kochi	Brookline, Massachusetts
Kevin	Killeen	Milton, Massachusetts

[Page 2 of 2]

Number 1 of 1

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of:	Sizemore et al.	
Serial No.:	(not yet assigned)	Examiner:
Filed:	(concurrently herewith)	Art Unit:
Entitled:	Live Avirulent Microbes As Vaccines for Anthrax and Plague	

Atty. Docket No.: AVA-440.2 PRV

Commissioner for Patents
P. O. Box 1450
Alexandria, VA 22313-1450

CERTIFICATE OF EXPRESS MAIL

The undersigned hereby certifies that this certificate and the papers and fees identified below as being transmitted herewith are being deposited with the United States Postal Service as "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated below and are addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

The following items are transmitted herewith:

1. Provisional Application For Patent Coversheet (2 pages) (in duplicate)
2. Specification (10 pages)
3. Drawings (15 sheets)
4. Check No. 5399 in the amount of \$ 160.00 to cover provisional patent application filing fee.
5. Return Postal Card

Express Mail # EV 509623664 US

date of deposit: September 16, 2004

Nasim G. Memon

LIVE AVIRULENT MICROBES AS VACCINES FOR ANTHRAX AND PLAGUE

FIELD OF THE INVENTION

[0001] The present invention relates to live attenuated bacterial vectors to deliver protective antigens for eliciting an immune response in a mammal against *B. anthracis* and/or *Y. pestis*.

BACKGROUND OF THE INVENTION

[0002] Anthrax is an infectious bacterial disease caused by *Bacillus anthracis*. It occurs most commonly in wild and domestic herbivores (sheep, goats, camels, antelope, cattle, etc.) but may also occur in humans. Infection can occur by cutaneous exposure, by ingestion (gastrointestinal anthrax), or by inhalation (pulmonary anthrax). 95% of anthrax infections in humans occur by cutaneous infection, either from contact with unvaccinated, infected animals in an agricultural setting, or by handling contaminated animal products (meat, leather, hides, hair, wool, etc.) in an industrial setting.

[0003] Cutaneous anthrax is fatal in about 20% of cases if untreated, but it can usually be overcome with appropriate antimicrobial therapy. Inhalation or gastrointestinal anthrax infection is much more serious and much more difficult to treat. Inhalation anthrax results in respiratory shock and is fatal in 90%-100% of cases; gastrointestinal anthrax results in severe fever, nausea and vomiting, resulting in death in 25%-75% of cases.

[0004] An effective vaccine against anthrax was developed in the United States in the 1950s and 1960s, and a vaccine was approved by the FDA in 1970.

[0005] In recent years the threat of airborne transmission of anthrax has been thought to increase as *B. anthracis* was identified as a possible agent for biological warfare. (See, e.g., U.S. Congress, Office of Technology Assessment, *Proliferation of Weapons of Mass Destruction: Assessing the Risks*, OTA-ISC-559 (Washington, D.C.; U.S. Government Printing Office, August 1993); www.anthrax.osd.mil.) This

threat has now been realized in the past few years in the form of mailed anthrax spores, resulting in several deaths. Whereas historically only individuals at high risk, such as veterinarians, livestock handlers, wool shearers, abbatoire workers, etc., needed to consider being vaccinated, the threat to military personnel of the possibility of biological weapons deployment caused the United States military to adopt a sweeping anthrax vaccination program in 1997, under which it was intended to administer the anthrax vaccine to 2.4 million military personnel in all branches of service. (See, e.g., Secretary of Defense, Memorandum for Secretaries of the Military Departments et al., May 18, 1998, *Implementation of the Anthrax Vaccination Program for the Total Force*.)

[0006] The only mass produced anthrax vaccine, Anthrax Vaccine Adsorbed (or AVA, commercial name BioThrax™), is a noninfectious sterile filtrate of an attenuated strain of *B. anthracis*, adsorbed to aluminum hydroxide (alum) adjuvant, with ≤ 0.02% formaldehyde and 0.0025% benzethonium chloride added. (Friedlander et al., *JAMA*, 282(22):2104-2106 (1999).) The course of vaccination consists of six subcutaneous injections of 0.5 mL doses of vaccine over eighteen months, with annual boosters to maintain immunity. This vaccination is believed to provide immunity that is 90%-100% effective against aerosol anthrax challenge, based on animal studies and incidental human data. (Friedlander et al., *id.*)

[0007] While the AVA is effective, the vaccine strain employed (i.e., a non-proteolytic, non-capsulated mutant strain of *B. anthracis*, V770-NP1-R) has some disadvantageous characteristics: Despite its mutations, the strain retains a sporogenic and fully toxigenic phenotype, and use of the whole strain in vaccine production results in lot-to-lot variability in levels of Protective Antigen, as well as inclusion of PA degradation products and other bacterial products, which may include EF and LF. (Farchaus, J., et al., *Applied & Environmental Microbiol.*, 64(3):982-991 (1998).)

[0008] Plague is caused by the Gram-negative bacterium, *Yersinia pestis*, and is one of the oldest documented infectious diseases. Plague manifests in humans in bubonic or pneumonic form, depending on the route of transmission (flea bite or airborne, respectively) and the systems affected (cutaneous or pulmonary, respectively). Inhalation anthrax and pneumonic plague are the most serious forms of anthrax and plague disease and thus aerosolization would likely be the manner employed to administer the weaponized form of these agents. The lethal route of each pathogen initiates infection at the mucosal surface of the respiratory tract.

[0009] Traditional vaccine approaches have focused on parenteral vaccination, which principally elicits the production of systemic antibody (immunoglobulin G, IgG) and not mucosal antibody (sIgA). Pre-clinical immunogenicity and efficacy studies evaluating the current anthrax vaccine (Anthrax Vaccine Adsorbed, or AVA), suggest that the presence of protective antigen (PA)-specific IgG correlates with

protection. Additional studies have demonstrated that functional antibody, capable of neutralizing PA activity *in vitro* is also a reliable surrogate marker for protection. Pre-clinical immunogenicity and efficacy studies evaluating candidate plague vaccines (based on *Yersinia pestis* F1 capsule or V antigen) have demonstrated that serum IgG is a reliable correlate of protection against experimental plague challenge, although T-lymphocyte responses may also contribute to protective immunity. The FDA-approved anthrax vaccine requires a dosing regimen that requires six injections over eighteen months. The vaccine takes several months to induce protective immunity and is reported to elicit undesirable reactions in a large number of vaccinees. For their part, candidate plague vaccines share the requirement of a multi-dose injection regimen and do not provide reliable protection against the pneumonic form of the disease.

[0010] During the Cold War, the United States and Soviet biological weapons programs developed techniques to aerosolize *Y. pestis* with the intent of facilitating the dissemination of the Plague bacterium. There is currently no commercially available vaccine against either cutaneous (bubonic) or respiratory (pneumonic) forms of Plague. An injectable, formaldehyde-killed *Y. pestis* whole cell vaccine was available, until recently, to vaccinate military and laboratory personnel at risk, and provided partial protection against bubonic plague. The vaccine's capacity to protect against pneumonic Plague was questionable however, an important consideration for a vaccine intended to protect against an airborne threat. The ability of this vaccine to protect against Pneumonic plague was not surprising, given that most parenterally administered vaccines elicit the production of serum (immunoglobulin G) and not mucosal (secretory immunoglobulin A) antibodies. This directly and adversely affects the readiness of our armed forces and homeland defenders.

[0011] In view of this background, there is a need for improved methods and vaccine compositions for immunization against anthrax and/or plague that are effective to raise an immune response against *B. anthracis* and/or *Y. pestis* but without generating unwanted side effects. These needs are addressed by the present invention, disclosed herein.

SUMMARY OF THE INVENTION

[0012] Efficacy studies evaluating anthrax and plague vaccines in animals have shown that antibodies specific for "Protective Antigen" or PA (anthrax) and F1 and V antigens (plague) are potential correlates with protection. This parameter was used to select potential attenuated Δ phoP/Q *Salmonella typhimurium* constructs expressing PA, F1, V, F1-V (fusion protein), or fragments of PA and V from Asd⁺ balanced-lethal plasmids to maintain stable antigen-producing Salmonella vectors in the absence of antibiotic

selection. Various plasmid expression vectors were evaluated that either secreted the antigen, placed the antigen in the outer membrane, or expressed the antigen in the bacterial cell cytoplasm.

[0013] *Salmonella typhimurium* M020 is being developed by AVANT as an oral, single-dose, Plague vaccine candidate. Strain M020 was attenuated through the partial deletion of the *Salmonella phoP/Q* virulence regulon. A deletion in the *asd* gene was subsequently introduced to support a balanced-lethal plasmid maintenance system. *Salmonella typhimurium* M020 harbors a multi-functional plasmid that encodes Asd and a genetic fusion of the *Y. pestis* F1 and V antigens ("F1-V"). Strain M020 was genetically stable during laboratory growth and expressed moderate levels of F1-V that remained localized in the bacterial cytoplasm.

[0014] To evaluate immunogenicity, mice were orally inoculated with frozen inocula of 1×10^9 CFU on days 0 and 14. Retained inocula samples were evaluated by Western blot after feeding to demonstrate the desired antigen was still being expressed. Naïve mice and mice inoculated with a live bacterial vector expressing no antigen were included as controls. Serum was collected at day zero prior to immunization from 10 mice and again at 2 and 4 weeks post-boost and evaluated for IgG antibodies against Salmonella vector and target antigen.

[0015] Two strains were found to induce high levels of serum IgG specific to the expressed heterologous antigen. The strains were M020, which expresses soluble F1-V in the bacterial cell cytoplasm and M023, which expresses soluble V at extremely high levels in the bacterial cell cytoplasm. End-point titers (reciprocal of highest dilution above 0.1 OD450 as measured by ELISA) for serum IgG specific to V antigen for M020 vaccinated mice ranged from 100-1600 at 2 weeks post-boost and 400-6400 at 4 weeks post-boost. End-point titers for M023 ranged from 1600-6400 at 2 weeks post-boost and 800-25600 at 4 weeks post-boost. End-point titers for serum IgG specific to F1-V for M020 ranged from 100-6400 at 2 weeks post-boost and 400-6400 at 4 weeks post-boost.

[0016] Improved results were observed in a recently developed rabbit immunogenicity model. New Zealand White rabbits given a single intra-gastric dose of *S. typhimurium* M020 (approximately 2×10^{10} cfu) showed significant antibody titers against F1 (800-3200), V antigen (6400-51,200), and F1-V (12,800-51,200) on day 20 following immunization (results of an intra-gastric M020 boost are pending). Collectively, these results demonstrate that F1-V expressed by an attenuated strain of *S. typhimurium* was recognized by immunized mice and rabbits eliciting the production of high levels of antibodies.

[0017] Currently six additional candidates are undergoing testing. Based on these early comparisons the most promising results were obtained from cytoplasmic localized F1-V and V antigens.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] Figure 1 is a chart listing the *S. typhimurium* strains constructed and tested as anthrax and plague vaccine candidates, showing the cell bank ID number, the strain and plasmid ID number, the particular antigen expressed, and the area in which it is localized (e.g., the cytoplasm, secreted, etc.), the plasmid replicon/ori, and the genotype of the particular strain.

[0019] Figures 2a-c are photographs showing the antigen expression (on 12-15% SDS-PAGE gels) in primary inoculum of each evaluated strain. Depending upon the candidate, overnight cultures, mid-log cultures, TCA precipitants, periplasmic fractions, outer membrane fractions, or soluble and insoluble fraction of whole cell lysates were prepared. The following designations represent the particular sample preparation: "WCL" represents whole cell lysate preparations; "TCA" represents trichloroacetic acid precipitated protein fractions; "OMP" represents outer membrane protein fractions; "S" represents soluble protein fractions; and "I" represents insoluble protein fractions.

[0020] Figures 3a-c are charts showing the mouse serum IgG response specific to *S. typhimurium* LPS antigen, indicating that the immune systems of the test mice had been exposed to the respective *S. typhimurium* vaccine candidates. The charts illustrate the particular *S. typhimurium* anthrax and/or plague vaccine candidates, the strain ID number, the particular attenuating mutation in the *S. typhimurium*, the heterologous antigen expressing plasmid(s), and the Optical density (OD) measurement at 450nm (the wavelength at which anti-*S. typhimurium* LPS antibodies are absorbed).

[0021] Figure 4 is a plasmid map of plasmid pMEG-1621, which expresses F1-V fusion protein antigen localized in the cytoplasm when used to transform *S. typhimurium*.

[0022] Figure 5 is a plasmid map of plasmid pMEG-1707, which expresses F1 antigen protein localized in the cytoplasm when used to transform *S. typhimurium*.

[0023] Figure 6 is a plasmid map of plasmid pMEG-1692, which expresses the V antigen protein localized in the cytoplasm when used to transform *S. typhimurium*.

[0024] Figure 7a is a plasmid map of plasmid pMEG-1967, which expresses the F1 and V antigen proteins localized in the cytoplasm when used to transform *S. typhimurium*.

[0025] Figure 7b is a plasmid map of plasmid pMEG-1968, which also expresses the F1 and V antigen proteins localized in the cytoplasm when used to transform *S. typhimurium*, but with the pUC replicon.

[0026] Figure 8 is a chart showing the OD values and endpoint titers to an F1-V fusion antigen induced by five attenuated *S. typhimurium*-vectored *Y. pestis* candidates.

[0027] Figure 9 is a chart showing the OD values and endpoint titers to F1 induced by M022, M020, M048, and M049.

[0028] Figure 10 is a chart showing the OD values and endpoint titers to V antigen induced by M020, M023, M048, and M049 attenuated *S. typhimurium*-vectored *Y. pestis* candidates.

[0029] Figure 11 is a chart showing the optimized plague study designed to evaluate the combination of vaccine candidates and the timing of vaccination.

[0030] Figure 12 is a chart showing the serum IgG F1 and V endpoint titer data at 2 and 5 weeks post-boost.

[0031] Figure 13 is a chart showing the serum IgG F1-V and LPS endpoint titer data and OD values at 2 and 4 weeks post-boost.

[0032] Figure 14 is a chart showing the serum IgG F1, V, and F1-V rabbit titer data at day 20, 29, 43 and 13 days post-boost.

DETAILED DESCRIPTION

[0033] The potential exposure of humans to bioterrorism agents, such as *Bacillus anthracis* and *Yersinia pestis*, has prompted the investigation of new vaccines to counteract these threats. Employing attenuated bacterial vectors to deliver protective antigens, such as the protective antigen (PA) of *B. anthracis* and/or the F1, V, or F1-V (fusion protein) antigens of *Y. pestis*, are presented herein. Delivery of heterologous antigens by attenuated bacteria, especially *S. typhimurium*, is disclosed, and the influence of antigen localization within the delivering cell is shown to effect vaccine efficacy.

[0034] Attenuated ΔphoP/Q *Salmonella typhimurium* constructs expressing PA, F1, V, F1-V (fusion protein) or fragments of PA and V from Asd⁺ balanced-lethal plasmids (to maintain stable antigen producing Salmonella vectors in the absence of antibiotic selection) are presented herein. Various plasmid expression vectors were evaluated that either secreted the antigen, placed the antigen in the outer membrane, or expressed the antigen in the bacterial cell cytoplasm.

Strain Construction:

Basic Strategy:

[0035] Primers for PCR were designed for each target antigen or fragment with appropriate restriction enzyme sites designed within the flanking 5' and 3'ends.

[0036] PCR products (i.e., inserts) and plasmid vectors were digested with the appropriate restriction enzymes.

[0037] PCR products and plasmid vectors were cleaned and ligated overnight at 17°C.

[0038] Ligated products were drop dialyzed and electroporated into MGN055, an *E.coli* host strain, for screening.

[0039] Plasmids were screened by either PCR or restriction enzyme digestion for insert of interest.

[0040] Plasmids confirmed to contain the proper insert were electroporated into MGN5670.

Evaluation of Expression:

Basic Strategy:

[0041] Depending upon the candidate, overnight cultures, mid-log cultures, TCA precipitants, periplasmic fractions, outer membrane fractions, or soluble and insoluble fraction of whole cell lysates were prepared.

[0042] A portion of each preparation was run on 12-15% SDS-PAGE gels.

[0043] One gel was stained with Gel Code, a coomassie stain.

[0044] One gel was blotted to nitrocellulose and a western blot analysis was performed with the appropriate antiserum to verify expression.

Preparation of Inoculum from Frozen Cell Banks:

[0045] A standing overnight culture was started by thawing 1 vial of the frozen cell bank at 37° C. 5 μ l of the thawed cells was used to inoculate 10ml of LB (Luria-Bertani). Cultures were then incubated as standing cultures at 37° C overnight. In addition, 95mL of LB was placed in a 500-ml flask and pre-warmed at 37° C overnight.

[0046] The following day, cultures were diluted 1:20 by adding 5ml to 95-ml of pre-warmed LB. Cultures were incubated at 37° C in a shaking incubator and monitored until OD600 values reached 1.0.

[0047] The culture was centrifuged, and the pellet resuspended in 5ml peptone glycerol. This gave a titer of approximately 2×10^{10} CFU/ml, or 1×10^9 CFU in a 50 μ l dose. The inoculum was then distributed into 1ml aliquots in pre-labeled cryovials, titered, and stored at -70° C. After at least 24 hours in the freezer, one vial was removed and thawed at 37° C to check the titer after a freeze/thaw cycle.

[0048] On the day mice were inoculated, one vial of inoculum was thawed at 37° C, 100 μ l was removed for titering, and 50 μ l volume fed to 5-10 mice. Remaining inoculum was used to start overnight cultures, which were used to evaluate the expression of target antigen.

Evaluation of Candidates in BALB/c mice:

[0049] Female MSP BALB/c mice 6-8 weeks of age from Taconic were acclimated for 1 week.

[0050] 10 naïve mice were heart bled for background serum titers. In some studies, all mice were pre-bled by tail vein puncture.

[0051] On days 0 and 14 of the experiment, the inoculum was thawed, titered, and a 50 ml volume was given to each mouse by pipette feeding.

[0052] Mice were monitored daily.

[0053] At 2 and 4 weeks post-boost, heart blood was drawn from a set five mice from each group.

[0054] Blood was allowed to clot and spun.

[0055] Serum was collected and stored at -20° C until evaluated in ELISA assays.

ELISA Assays:

LPS:

[0056] *S. typhimurium* LPS was prepared in 0.2% TCA and used to coat Immulon I-flat bottom 96-well plates. Incubate plates at 37° C for 2 hours.

[0057] Serum was diluted 1:100 for initial readings or 1 to 2 dilutions for endpoint titers.

[0058] Plates were washed with TBS/0.1% Tween 20 and diluted serum added to samples in duplicate, then incubated for 1 hour at 37° C.

[0059] Plates were washed with TBS/0.1% Tween 20. Appropriate anti-mouse diluted detection antibody conjugated with Peroxidase or Alkaline Phosphatase was added and incubated at 37° C for 1 hour. Plates were washed with TBS/0.1% Tween 20.

[0060] Plates were developed with either BluePhos or TMP kits. The reaction was allowed to develop to known standard, and then stopped with either 2.5%EDTA tetrasodium salt or 1M phosphoric acid (H_4PO_4).

Protein:

[0061] Plates coated with 1-10 µg of protein per 1 ml in PBS were stored overnight at 4° C.

[0062] Plates were dumped the following day and blocking solution (2% casein filler) was added incubated for 30 minutes at room temperature.

[0063] Serum samples were diluted in 2% casein and added to wells in duplicate, incubated for 2 hours at room temperature.

[0064] The plates were washed and the detection method outlined above followed.

Results:

[0065] Serum IgG endpoint titers (reciprocal of highest dilution above 0.1 OD450 as measured by ELISA) specific to the heterologous antigen(s) have been used to evaluate 22 potential attenuated *S. typhimurium*-vectored anthrax and plague candidates. To date, this project has identified five plague candidates. M020 vaccinated mice developed endpoint titers at 2- and 4- weeks post-boost specific to: (i)V antigen ranging from 100-1600 and 200- 3200, (ii) F1 antigen ranging from 0-400, and (iii) F1-V fusion ranging from 100-6400 and 400-6400. M023 vaccinated mice developed endpoint titers at 2- and/or 4-weeks post-boost specific to: (i) V antigen ranging from 800-3200 and 1600-51200 and (ii) F1-V fusion ranging from 3200-12800 and 3200-102400. M022 vaccinated mice developed endpoint titers at 2- and 4-weeks post-boost specific to: (i) F1 antigen ranging from 0-1600 and 400-6400 and (ii) F1-V fusion ranging from 0-1600 and 400-6400. At 4-weeks post-boost, M048 vaccinated mice developed endpoint titers specific to: (i) V antigen ranging from 400-25600, (ii) F1 antigen showed no response, and (iii) F1-V fusion ranging from 1600-102400. At 4-weeks post-boost, M049 vaccinated mice developed endpoint titers specific to: (i) V antigen ranging from 0-1600, (ii) F1 antigen ranging from 200-6400, and (iii) F1-V fusion ranging from 400-6400. Based on these early comparisons, promising results were obtained from cytoplasmic localized F1-V fusion-expressing constructs, V-expressing constructs, and F1- and V-expressing constructs.

[0066] New Zealand White rabbits given a single intra-gastric dose of *S. typhimurium* M020 (approximately 2×10^{10} cfu) showed significant antibody titers against F1 (800-3200), V antigen (6400-51,200), and F1-V (12,800-51,200) on day 20 following immunization (results of an intra-gastric M020 boost are pending). Collectively, these results demonstrate that F1-V expressed by an attenuated strain of *S. typhimurium* was recognized by immunized mice and rabbits eliciting the production of high levels of antibodies.

ABSTRACT OF THE DISCLOSURE

Oral vaccines against anthrax (*Bacillus anthracis*) and plague (*Yersinia pestis*) based on the delivery of protective antigens by attenuated, live bacterial vectors derived from *Salmonella enterica* (serovar Typhimurium) are disclosed.

Figure 1: *S. typhimurium*-Vectored Anthrax and Plague Vaccine Candidates

Cell Bank	Strain	Antigen/ Location	Replicon	Genotype
M028	MGN7063 (pMEG-1773)	HlyA::PA63 Secreted	pUC Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M032	MGN7078 (pMEG-1773)	HlyA::PA63 Secreted	pUC Asd+	$\Delta cya-27 \Delta cyp-28 \Delta asdA16$
M024	MGN6830 (pMEG-1668)	OmpS::PA(Dom4) Surface	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M030	MGN7067 (pMEG-1777)	HlyA::Fl-V Secreted	pUC Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M020	MGN6795 (pMEG-1621)	F1-V Cytoplasm	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M025	MGN6993 (pMEG-1740)	OmpS::V(140-275) Surface	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M023	MGN6973 (pMEG-1692)	V Cytoplasm	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M035	MGN7123 (pMEG-1820)	Inp::HAR+Dom4 of PA Surface	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M039	MGN7237 (pMEG-1852)	PpagC+HlyR+HlyC+HlyA::PA63(long) Secreted	pBR Asd+	$\Delta cya-27 \Delta cyp-28 \Delta asdA16$
M040	MGN7265 (pMEG-1862)	PpagC+HlyA::PA63(short) Secreted	pBR Asd+	$\Delta cya-27 \Delta cyp-28 \Delta asdA16$
M041	MGN7269 (pMEG-1867)	Dom3,4 of PA Cytoplasm	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M036	MGN7152 (pMEG-1811)	V::Dom3,4 of PA Cytoplasm	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M037	MGN7176 (pMEG-1823)	HlyR+HlyC+HlyA+HlyB+HlyD::V Secreted	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M022	MGN6928 (pMEG-1707)	F1 Cytoplasm	pUC Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M044	MGN7428 (pMEG-1923)	PpagC+PA63 Cytoplasm	pBR Asd+	$\Delta cya-27 \Delta cyp-28 \Delta asdA16$
M045	MGN7416 (pMEG-1934)	F1 Operon Surface	pSC101 Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M047	MGN7283 (pMEG-612) (+pMEG-1841 chaperone)	Inp::PA63 Surface	pBR Asd+ p15A GlnA+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$ $\Delta glnA1$
M048	MGN7483 (pMEG-1967)	F1 and V Cytoplasm	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M049	MGN7484 (pMEG-1968)	F1 and V Cytoplasm	pUC Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M052	MGN7503 (pMEG-1985)	HAR+Dom4 Cytoplasm	pBR Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M054	MGN7526 (pMEG-1992)	PelB::PA83 (optimized sequence) Periplasm	Runaway Asd+	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$
M055	MGN7532 (pMEG-1994)	PelB::PA83 (optimized sequence) Periplasm	pBR GlnA+	$\Delta phoPQ956 \Delta glnA1$
M019	MGN6476 (pYA3342)	Vector only negative control	pBR	$\Delta phoPQ956 \Delta asdA19(pBAD.C2)$

Highlighted candidates induced immune responses in mice. See data below.

Figure 2a.: Antigen Expression in Primary Inoculum of each evaluated strain

BEST AVAILABLE COPY

Figure 2b.: Antigen Expression in Primary Inoculum of each evaluated strain

WCL= Whole Cell Lysate
TCA= TCA Precipitated Protein
OMP= Outer Membrane Protein
S= Soluble Protein
I= Insoluble Protein

REST AVAILABLE COPY

Figure 2c.: Antigen Expression in Primary Inoculum of each evaluated strain

WCL = Whole Cell Lysate
TCA = TCA Precipitated Protein
OMP = Outer Membrane Protein
S = Soluble Protein
I = Insoluble Protein

©EST AVAILABLE COPY

Figure 4: Plasmid pMEG-1621

M020

Figure 5: Plasmid pMEG-1707

M022

Figure 6: Plasmid pMEG-1692

M023

Figure 7a. Plasmid pMEG-1967

Figure 7b. Plasmid pMEG-1968

M048

M049

Figure 8: OD Values and Endpoint titers to an F1-V fusion antigen induced by five attenuated *S. typhimurium*-vectored *Y. pestis* candidates

		2 weeks post boost		4 weeks post boost	
	Mouse ID	OD 630 value	Titer	Mouse ID	OD 630 value
M020 F1-V	296	1.812	3200	301	1.804
	297	1.473	1600	302	0.818
	298	1.790	6400	303	1.531
	299	0.071	100	304	0.679
	300	1.937	6400	305	2.137
	Avg.	1.417	3540		1.393
		2 weeks post boost		4 weeks post boost	
M023 V	316	1.030	3200	321	1.407
	317	1.458	6400	322	0.879
	318	1.270	6400	323	0.987
	319	1.592	12800	324	1.787
	320	1.339	12800	325	1.989
	Avg.	1.323	8320		1.409
		2 weeks post boost		4 weeks post boost	
M022 F1	521	0.077	200	526	0.492
	522	0.288	800	527	0.207
	523	-0.027	<100	528	1.927
	524	0.736	1600	529	1.451
	525	0.524	800	530	2.080
	Avg.	0.319	700		1.231
		2 weeks post boost		4 weeks post boost	
M048 F1+V pBR				751	1.353
				752	1.629
	No data for this timepoint			753	1.644
				754	1.569
				755	0.559
	Avg.				1.350
		2 weeks post boost		4 weeks post boost	
M049 F1+V pUC				756	1.223
				757	1.333
	No data for this timepoint			758	1.042
				759	0.096
				760	0.286
	Avg.				0.796

Figure 9: OD values and endpoint titers to F1 induced by M022, M020, M048, and M049

Group ID	Mouse #	OD value	2 weeks		4 weeks	
			Endpoint Titer	Mouse #	OD values	Endpoint Titer
M022 F1 Cytolasmic TphoP	521	0.346	200	526	2.254	800
	522	1.304	800	527	0.838	400
	523	0.033	100	528	2.287	800
	524	2.082	1600	529	3.668	3200
	525	1.755	800	530	3.868	6400
	Avg.	1.104	700	Avg.	2.623	2320
M020 F1-V Cytolasmic TphoP	296	0.905	200	101	0.061	<100
	297	0.529	200	302	0.11	100
	298	0.818	200	303	0.121	100
	299	0.302	100	304	0.09	<100
	100	1.159	400	305	0.826	200
	Avg.	0.511	210	Avg.	242	80
M048 F1+V pBR				751	0.023	<100
				752	0.028	<100
				753	0.030	<100
				754	0.036	<100
				755	0.021	<100
				Avg.	0.026	<100
M049 F1+V pUC				756	1.779	6400
				757	1.304	6400
				758	0.688	1600
				759	0.125	100
				760	0.322	400
				Avg	0.44	3000

Figure 10: OD Values and endpoint titers to V antigen induced by M020, M023, M048, and M049:attenuated *S. typhimurium*-vectored *Y. pestis* candidates

		2 weeks post boost			4 weeks post boost		
	Mouse ID	OD 630 value	Titer	Mouse ID	OD 630 value	Titer	
M020 F1-V	296	1.581	1600	301	1.929	800	
	297	1.555	800	302	0.706	200	
	298	1.628	1600	303	1.884	1600	
	299	0.053	100	304	0.793	200	
	300	1.766	1600	305	2.578	3200	
	Avg.	1.316	1140		1.578	1200	
		2 weeks post boost			4 weeks post boost		
M023 V	316	1.450	800	321	2.160	3200	
	317	1.914	3200	322	1.601	1600	
	318	1.784	1600	323	1.940	3200	
	319	1.848	3200	324	2.936	51200	
	320	1.834	1600	325	2.698	12800	
	Avg.	1.766	2080		2.267	14400	
		2 weeks post boost			4 weeks post boost		
M048 F1+V pBR				751	1.821	3200	
				752	2.318	6400	
			No data for this timepoint	753	2.436	25600	
				754	1.826	12800	
				755	0.775	400	
	Avg.				1.835	9680	
		2 weeks post boost			4 weeks post boost		
M049 F1+V pUC				756	0.334	100	
				757	0.429	200	
			No data for this timepoint	758	0.973	1600	
				759	-0.023	<100	
				760	1.161	100	
					0.574	400	

Figure 11: Optimized Plague Study- Evaluating Combination of Candidates and Timing of Vaccination

Strain or combination of strains:	1° inoculation:	Boost:	Blood draw times:	Testing for serum responses to :	Number of animals:
F1-V	Day 0	Day 14	Weeks 4 and 6	Salmonella LPS and F1 and V	10
F1-V	Day 0	Day 28	Weeks 4 and 6	Salmonella LPS and F1 and V	10
F1 and V strains together	Day 0 both	Day 14 both	Weeks 4 and 6	Salmonella LPS and F1 and V	10
F1 and V strains together	Day 0 for F1 Day 3 for V	Day 14 F1 Day 17 V	Weeks 4 and 6	Salmonella LPS and F1 and V	10
F1-V and F1	Day 0 F1-V	Day 14 F1	Weeks 4 and 6	Salmonella LPS and F1 and V	10
F1-V and V	Day 0 F1-V	Day 14 V	Weeks 4 and 6	Salmonella LPS and F1 and V	10
F1-V and F1 and V	Day 0 F1-V	Day 14 F1 Day 15 V	Weeks 4 and 6	Salmonella LPS and F1 and V	10
F-V	Day 0,3	Day 14	Weeks 4 and 6	Salmonella LPS and F1 and V	10
Vector only	Day 0	Day 14	Weeks 4 and 6	Salmonella LPS and F1 and V	10
Naïve	N/A	N/A	Background: prior to inoculation	Salmonella LPS and F1 and V	10

Strains tested:

F1-V= M020= MGN6795, ?*phoP/Q S. typhimurium* with pMEG1621; pBR *asd^t* vector expressing F1-V
 F1= M022= MGN6928, ?*phoP/Q S. typhimurium* with pMEG1707; pUC *asd^t* vector expressing F1
 V= M023= MGN6973, ?*phoP/Q S. typhimurium* with pMEG1692; pBR *asd^t* vector expressing F1-V
 Vector only= M019= MGN6476, ?*phoP/Q S. typhimurium* with pYA3342; pBR *asd^t* vector

Figure 12: Serum IgG F1 and V Endpoint Titer Data at 2 and 4 weeks Post-boost

ELISA	F1-V Day 0, Day 14	F1 and V Day 0, Day 14			F1 Day 0, Day 14			F1-V Day 0 F1 Day 14			F1-V Day 0, Day 14		
		F1-V Day 0, Day 28	F1 and V Day 0, Day 14	F1 Day 0, Day 14	F1-V Day 0 F1 Day 14	F1-V Day 0 V Day 14	F1-V Day 14	F1-V Day 0 F1 Day 14	F1-V Day 0 V Day 14	F1-V Day 14	F1-V Day 15	Native	
F1	200	<12.5	3200	1600	800	50	12800	50	12800	50	<12.5	<12.5	
Endpoint	400	<12.5		6400	200	>25	800	400	400	400	(pooled serum)	(pooled serum)	
2 weeks	100	25	6400	1600	50	50	200	400	400	200	100	100	
Post-boost	200	<12.5	12800	800	<25	200	400	800	800	200	100	100	
F1	400	12.5	1600	1600	400	400	400	400	400	400	400	400	
Endpoint	100	800	12800	800	800	25	50	50	800	800	800	800	
4 weeks	25	200	12800	3200	100	25	25	25	800	800	800	800	
Post-boost	50	100	6400	51200	800	<25	100	100	100	100	100	100	
V	<25	800	25600	25600	800	<25	400	400	400	400	200	200	
Endpoint	800	<12.5	6400	6400	6400	6400	51200	51200	51200	51200	800	800	
2 weeks	800	800	6400	6400	800	12800	25600	25600	25600	25600	1600	1600	
Post-boost	3200	<12.5	3200	1600	100	6400	6400	6400	6400	6400	800	800	
V	25600	400	12800	1600	200	3200	3200	3200	3200	3200	6400	6400	
Endpoint	12800	12800	800	3200	800	1600	3200	3200	3200	3200	<25	<25	
4 weeks	25	12800	1600	800	100	1600	3200	3200	3200	3200	(pooled serum)	(pooled serum)	
Post-boost	100	1600	25	400	400	1600	400	400	400	400	200	200	
	400	6400	12800	800	100	200	3200	3200	3200	3200	400	400	
	400	12800	1600	6400	<25	1600	1600	1600	1600	1600	1600	1600	

*10 mice were inoculated as indicated then 5 were sacrificed at 2 weeks post-boost. Another 5 mice were then sacrificed at 4 weeks post-boost.

Figure 13: Serum IgG F1-V and LPS Endpoint Titer Data and OD values at 2 and 4 weeks Post-boost

	F1-V		LPS		F1-V		LPS		F1-V		LPS	
	Endpoint	Post-boost										
2 weeks	800	<12.5	12800	6400	3200	6400	1600	<12.5	12800	6400	25600	6400
4 weeks	800	100	12800	6400	800	800	1600	1600	12800	6400	25600	800
Post-boost	400	400	12800	6400	800	50	6400	25600	12800	6400	25600	400
2 weeks	400	<12.5	12800	800	200	200	6400	12800	12800	6400	25600	800
4 weeks	1600	200	12800	1600	200	200	6400	12800	12800	6400	25600	800
Post-boost	25600	25600	12800	12800	3200	3200	6400	12800	12800	6400	25600	12800
2 weeks	200	12800	6400	800	200	200	6400	6400	6400	6400	6400	<25
4 weeks	400	1600	6400	6400	800	800	6400	800	800	800	800	<25
Post-boost	400	6400	25600	51200	800	800	25600	800	204800	1600	1600	<25
2 weeks	400	12800	25600	25600	400	400	6400	6400	204800	1600	1600	<25
4 weeks	0.011	0.856	0.299	0.784	0.912	0.917	0.226	0.179	0.001	0.001	0.001	<25
Post-boost	0.075	0.022	NA	0.999	0.459	0.955	1.349	0.673	0.049	0.049	0.049	<25
2 weeks	0.741	0.692	0.577	0.293	0.417	0.186	0.683	0.355	0.316	0.084	0.316	<25
4 weeks	0.567	0.030	0.560	0.549	0.179	0.447	0.815	0.193	0.140	0.070	0.140	<25
Post-boost	0.993	0.060	0.714	0.700	0.337	0.649	0.481	0.224	1.003	0.077	0.077	<25
2 weeks	1.144	1.627	0.550	1.630	1.246	0.434	0.634	0.947	0.340	0.007	0.340	<25
4 weeks	0.366	1.458	0.800	1.151	0.973	1.182	0.547	0.968	0.897	0.003	0.897	<25
Post-boost	0.385	0.642	0.401	1.308	0.249	0.684	0.639	0.534	0.050	0.006	0.050	<25
2 weeks	0.365	1.782	0.241	0.536	0.227	1.829	0.095	0.481	0.114	0.031	0.114	<25
4 weeks	1.049	1.841	1.241	1.676	1.190	0.691	1.184	0.240	0.005	0.005	0.005	<25

Figure 14: Immunogenicity of *S. typhimurium* vectoring F1-V antigen in a rabbit model

Serum IgG Titer ¹ to:	Rabbit #	Prebleed	Day 20	Day 29	Day 43	13 days post-boost ³
F1	641	<100	800	800	1600	1600
	642	<100	3200	1600	1600	3200
	643	<100	3200	1600	1600	3200
	644	<100	3200	6400	25600	25600
	GMT ²	<100	2263	1902	3200	4525
V antigen	641	<100	6400	3200	6400	25600
	642	<100	6400	6400	12800	51200
	643	<100	25600	6400	6400	51200
	644	<100	51200	12800	25600	51200
	GMT	<100	15222	6400	10763	43054
F1-V	641	<100	12800	12800	6400	25600
	642	<100	51200	51200	25600	51200
	643	<100	12800	25600	12800	51200
	644	<100	25600	51200	51200	102400
	GMT	<100	21527	30444	18102	51200

¹Reciprocal dilution; ²geometric mean titer; ³animals boosted orally with 2×10^{10} cfu M020 on day 44

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/041282

International filing date: 09 December 2004 (09.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/610,474

Filing date: 16 September 2004 (16.09.2004)

Date of receipt at the International Bureau: 09 February 2005 (09.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse