CAPSTONE PROJECT REPORT

Ву,

Ann Raichel John

PG Program in DSBA, Great Learning

INTRODUCTION & PROBLEM STATEMENT

- Healthcare is an important domain to determine an individual's life. Money is an important factor in Healthcare sector where the Insurance companies plays a major role.
- The company provides a support in financial base to each individual by helping in hospital or health bills. If an individual is unaware of his health and routine check-up's/ follow-ups may affect his/her life in hospital which may be a risk factor to an insurance company.
- In order to optimize the insurance-cost, analyzing various parameters of an individual may help to reduce the risk of financial company.
- The objective of this project is to develop a predictive model that helps:
 - Understand the key factors influencing insurance cost.
 - Predict and optimize insurance premiums for individuals based on health and lifestyle indicators.

Data Set Information

Table 1: Data information

Dataset	25000 rows and 24 columns							
Target variable	Insurance cost, continuous variable							
ML model	Supervised ML							
Data Nature	Regression analysis							
Data cleaning	Missing / Null values Treated with median for bmi & year_last_admitted							
	No duplicate valuesSpelling errors corrected							
Feature engineering	Columns created – bmi_category and years_since_admission							
Encoding	New column - cholesterol_level_encoded							

Dataset Information

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000 entries, 0 to 24999
Data columns (total 24 columns):
    Column
                                    Non-Null Count Dtype
    applicant id
                                    25000 non-null int64
    years of insurance with us
                                    25000 non-null int64
    regular checkup lasy year
                                    25000 non-null int64
    adventure sports
                                    25000 non-null int64
    Occupation 0
                                    25000 non-null object
    visited_doctor_last_1_year
                                    25000 non-null int64
    cholesterol level
                                    25000 non-null object
    daily avg steps
                                    25000 non-null int64
                                    25000 non-null int64
    heart_decs_history
                                    25000 non-null int64
    other major decs history
                                    25000 non-null int64
    Gender
                                    25000 non-null object
    avg_glucose_level
                                    25000 non-null int64
 13
    bmi
                                    24010 non-null float64
    smoking status
                                    25000 non-null object
    Year last admitted
                                    13119 non-null float64
    Location
                                    25000 non-null object
    weight
                                    25000 non-null int64
   covered by any other company
                                    25000 non-null object
    Alcohol
                                    25000 non-null object
    exercise
                                    25000 non-null
                                                    object
    weight change in last one year
                                    25000 non-null int64
    fat percentage
                                    25000 non-null int64
 23 insurance cost
                                    25000 non-null int64
dtypes: float64(2), int64(14), object(8)
memory usage: 4.6+ MB
```

Figure 1: Data information on datatypes.

c											
	count	unique	top	freq	mean	std	min	25%	50%	75%	max
applicant_id 25	0.000	NaN	NaN	NaN	17499.5	7217.022701	5000.0	11249.75	17499.5	23749.25	29999.0
years_of_insurance_with_us 25	0.000	NaN	NaN	NaN	4.08904	2.606612	0.0	2.0	4.0	6.0	8.0
regular_checkup_lasy_year 25	5000.0	NaN	NaN	NaN	0.77368	1.199449	0.0	0.0	0.0	1.0	5.0
adventure_sports 25	0.000	NaN	NaN	NaN	0.08172	0.273943	0.0	0.0	0.0	0.0	1.0
Occupation 2	25000	3	Student	10169	NaN	NaN	NaN	NaN	NaN	NaN	NaN
visited_doctor_last_1_year 25	5000.0	NaN	NaN	NaN	3.1042	1.141663	0.0	2.0	3.0	4.0	12.0
cholesterol_level 2	25000	5	150 to 175	8763	NaN	NaN	NaN	NaN	NaN	NaN	NaN
daily_avg_steps 25	5000.0	NaN	NaN	NaN	5215.88932	1053.179748	2034.0	4543.0	5089.0	5730.0	11255.0
age 25	0.000	NaN	NaN	NaN	44.91832	16.107492	16.0	31.0	45.0	59.0	74.0
heart_decs_history 25	0.000	NaN	NaN	NaN	0.05464	0.227281	0.0	0.0	0.0	0.0	1.0
other_major_decs_history 25	5000.0	NaN	NaN	NaN	0.09816	0.297537	0.0	0.0	0.0	0.0	1.0
Gender 2	25000	2	Male	16422	NaN	NaN	NaN	NaN	NaN	NaN	NaN
avg_glucose_level 25	0.000	NaN	NaN	NaN	167.53	62.729712	57.0	113.0	168.0	222.0	277.0
bmi 24	4010.0	NaN	NaN	NaN	31.393328	7.876535	12.3	26.1	30.5	35.6	100.6
smoking_status 2	25000	4	never smoked	9249	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Year_last_admitted 13	3119.0	NaN	NaN	NaN	2003.892217	7.581521	1990.0	1997.0	2004.0	2010.0	2018.0
Location 2	25000	15	Bangalore	1742	NaN	NaN	NaN	NaN	NaN	NaN	NaN
weight 25	5000.0	NaN	NaN	NaN	71.61048	9.325183	52.0	64.0	72.0	78.0	96.0
covered_by_any_other_company 2	25000	2	N	17418	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Alcohol 2	25000	3	Rare	13752	NaN	NaN	NaN	NaN	NaN	NaN	NaN
exercise 2	25000	3	Moderate	14638	NaN	NaN	NaN	NaN	NaN	NaN	NaN
weight_change_in_last_one_year 25	5000.0	NaN	NaN	NaN	2.51796	1.690335	0.0	1.0	3.0	4.0	6.0
fat_percentage 25	5000.0	NaN	NaN	NaN	28.81228	8.632382	11.0	21.0	31.0	36.0	42.0
insurance_cost 25	5000.0	NaN	NaN	NaN	27147.40768	14323.691832	2468.0	16042.0	27148.0	37020.0	67870.0

Figure 2: Data summary

EXPLORATORY DATA ANALYSIS

Performed Univariate analysis for all features including target variable to learn distribution of all variables (Figure 3 & 4)

Figure 3: EDA 1

Figure 4: EDA 2

BIVARIATE ANALYSIS

BIVARIATE ANALYSIS

INSURANCE COST – FEATURE RELATIONSHIPS

Table 2: Feature relationship summary

Weight	Strong positive correlation – higher weight \rightarrow higher cost
Weight Change	Negative correlation – less activity linked to higher cost
Years of Insurance with Us	No correlation
Avg Glucose Level	No clear relationship
Daily Avg Steps	No significant relationship
Age	No significant relationship
Heart Disease / Other Major Illness	No correlation observed
Years of Admission	Longer history (11–20 yrs) → higher cost
Regular Check-ups	More check-ups → slightly lower cost
Adventure Sports	Slightly higher cost among active participants
Cholesterol Level (200–225)	Mild increase in cost observed
Covered by Other Company	Associated with higher insurance cost
Occupation, Gender, Smoking, etc.	No meaningful relationship

DATA PREPARATION AND MODEL BUILDING

Table 3: Data Preparation & Model building summary

Model Linear	Regression analysis						
Data preparation	,						
Dropped column applicant_	_id for model building						
Outlier detection and treatment	Used IQR method and treated outliers						
Splitted the data into Train and test Number of rows in train data = 17500 Number of rows in train data = 7500	 Defined X for independent variables and Y for target variable Created dummy variables, added constant Splitted data in 70:30 ratio 						
Linear regression model building	Linear regression model building						
check • MA							

MODEL BUILDING -LINEAR REGRESSION

	OLS Regression Results								
Dep. Variable:	insurance	e_cost R	-squared:		0.9	45			
Model:			dj. R-square	d:	0.9				
Method:	Least So		-statistic:		1.118e+	04			
Date:	Sat, 28 Jur		rob (F-stati		0.				
Time:		:57:12 L	og-Likelihoo	d:	-1.6693e+	-05			
No. Observations	:	17500 A	IC:		3.339e+	-05			
Df Residuals:		17472 B	IC:		3.341e+	-05			
Df Model:		27							
Covariance Type:	nonr	robust							
		coef	std err	t	P> t	[0.025	0.975]		
const				-194.557		-8.32e+04			
years_of_insuran						-45.789			
regular_checkup_						-701.251			
adventure_sports				1.018			5.6e-11		
visited_doctor_l	ast_1_year					-79.891			
daily_avg_steps		-0.0300		-1.107	0.268				
age		2.7156	1.579		0.086	-0.380	5.811		
heart_decs_histo		-1.683e-11			0.000	-1.99e-11			
other_major_decs		-3.553e-12			0.000	-3.7e-12			
avg_glucose_leve		0.3948			0.331				
weight		1462.1779			0.000				
weight_change_in	_last_one_year				0.000	142.177			
fat_percentage		-0.3840			0.901				
cholesterol_leve					0.160				
Years_since_admi		308.7663			0.000				
Occupation_Salar	ied	85.6449	74.331	1.152	0.249	-60.052	231.342		

	RMSE	MAE	R-squared	Adj. R-squared	MAPE
0	3361.429138	2700.7052	0.945276	0.945179	15.13952

Test Performance

Training Performance

rest Per formance					
	RMSE	MAE	R-squared	Adj. R-squared	MAPE
0	3322.303772	2690.187342	0.945379	0.945152	14.923196

Figure 7: LR Model building

- Model was well-fitted and generalized well to unseen data.
- Values shows that there was no signs of overfitting or underfitting.
- Seems like features were strong, and target modeling was effective.

LINEAR REGRESSION ASSUMPTIONS

	feature	VIF	1 1 ////
	0 const	277.200557	OLS Regression Results
	1 years_of_insurance_with_us	1.084652	
	2 regular_checkup_last_year	1.031342	Dep. Variable: insurance_cost R-squared: 0.945
	3 adventure_sports	NaN	Model: OLS Adj. R-squared: 0.945
	4 visited_doctor_last_1_year	1.038667	Method: Least Squares F-statistic: 5.031e+04
	5 daily_avg_steps	1.061165	Date: Sat, 28 Jun 2025 Prob (F-statistic): 0.00
	6 age	1.000899	Time: 21:00:51 Log-Likelihood: -1.6694e+05
	7 heart_decs_history	NaN	No. Observations: 17500 AIC: 3.339e+05
	8 other_major_decs_history	NaN	Df Residuals: 17493 BIC: 3.340e+05
	9 avg_glucose_level	1.001896	Df Model: 6
1		1.754490	Covariance Type: nonrobust
1		1.172145	
1		1.104885	coef std err t P> t [0.025
1		1.431172	
1		1.559064	const -8.221e+04 297.540 -276.292 0.000 -8.28e+04
1		1.324811	years_of_insurance_with_us -26.3056 10.153 -2.591 0.010 -46.206
1		1.658478	regular_checkup_last_year -645.8177 28.163 -22.931 0.000 -701.021
1		1.301879	adventure_sports 1.496e-10 5.46e-13 274.045 0.000 1.49e-10
	8 smoking_status_formerly smoked	1.478197	heart_decs_history -4.999e-11 1.83e-13 -272.815 0.000 -5.03e-11
1		1.587139	weight 1461.9696 3.598 486.291 8.800 1454.917
2		1.416420	weight_change_in_last_one_year 173.7986 16.243 10.700 0.000 141.962
2		1.082248	Years_since_admission 309.3255 22.853 13.535 0.000 264.531
2		2.766150	covered_by_any_other_company_Y 1210.2474 57.377 21.093 0.000 1097.783
2		2.764576	
2		1.587139	Omnibus: 568.852 Durbin-Watson: 1.981
2		8 299270	Prob(Omnibus): 0.000 Jarque-Bera (JB): 688.185
2		11 144043	Skew: 0.395 Prob(JB): 3.65e-150
2	,,	11.144043	Kurtosis: 3.566 Cond. No. 2.87e+18
2		7.656289	
3		6.843999	
, 3	bmi_category_Obesity III	6.843999	n.
í			

..... 0.975] -8.16e+04 -6,405 -590.615 1.51e-10 -4.96e-11 1469.023 205.636 354.119 1322.712

ShapiroResult(statistic=0.9881370009861654, pvalue=2.0678052801854352e-35)

[('F statistic', 1.0021299907290038), ('p-value', 0.4604222008267006)]

Figure 8: Linear Regression Assumptions

VIF score check -

Multicollinearity

LINEAR REGRESSION ASSUMPTIONS

Table 4: Linear Regression Assumptions - summary

	Linear regression assumptions								
	1. Multicollinearity	 Checked for VIF Score, symmetrically dropped columns bmi_category I and II to attain ideal VIF score Rechecked the model performance, much effect not observed(R2 – 0.945) Checked p-value of independent variables, removed all variables having p-value>0.05 Rechecked the performance, no change in R2 							
/	2. Linearity and Independence	No pattern is observed. Hence, the assumptions of linearity and independence are satisfied.							
/	3. Normality	 Since p-value < 0.05, the residuals are not normal as per the Shapiro-Wilk test. The residuals are not normal, as an approximation, we can accept this distribution as close to being normal. So, the assumption is satisfied. 							

4. Homoscedascity

• p-value > 0.05, i.e 0.483. we can say that the residuals are homoscedastic. So, this assumption is satisfied.

- The train and test RMSE and MAE are low and comparable. So, our model is not suffering from overfitting.
- Hence, we can conclude the model olsmodel4(final) is good for prediction as well as inference purposes.

Final Model - Summary

With our linear regression model, we have been able to capture ~94 of the variation in our data.

The model indicates that the most significant factors affecting the insurance cost are the following:

- regular checkup last year
- weight
- weight change in last 1 year
- year since admission
- insurance covered by other company

FINAL MODEL SUMMARY

	OLS Regr	ession	Results				
						===	
Dep. Variable:	insurance_cos	t R-s	squared:		0.9	945	
Model:	OL	S Adj	j. R-squared	d:	0.9	945	
Method:	Least Square	s F-9	statistic:		5.031e-	+04	
Date:	Sat, 28 Jun 202	5 Pro	ob (F-stati	stic):	0	.00	
Time:	21:03:3	6 Log	g-Likelihoo	d:	-1.6694e-	+05	
No. Observations:	1750	O AIC	:		3.339e-	+05	
Df Residuals:	1749	3 BIG	:		3.340e-	+05	
Df Model:		6					
Covariance Type:	nonrobus	t					
		coef	std err	t	P> t	[0.025	0.975]
const	-8.22	1e+04	297.540	-276.292	0.000	-8.28e+04	-8.16e+04
years_of_insurance	with_us -26	.3056	10.153	-2.591		-46.206	
regular_checkup_las	st_year -645	.8177	28.163	-22.931	0.000	-701.021	-590.615
adventure_sports	1.49	6e-10	5.46e-13	274.045	0.000	1.49e-10	1.51e-10
heart_decs_history	-4.99	9e-11	1.83e-13	-272.815	0.000	-5.03e-11	-4.96e-11
weight	1461	.9696	3.598	406.291		1454.917	
weight_change_in_la	st_one_year 173	.7986	16.243	10.700	0.000	141.962	205.636
Years_since_admiss:	ion 309	.3255	22.853	13.535	0.000	264.531	354.119
covered_by_any_oth	er_company_Y 1210	.2474	57.377	21.093	0.000	1097.783	1322.712
						===	
Omnibus:	568.85	2 Dur	rbin-Watson	:	1.9	981	
Prob(Omnibus):	0.00	0 Jar	rque-Bera (:	JB):	688.		
Skew:	0.39	5 Pro	ob(JB):		3.65e-	150	
Kurtosis:	3.56	6 Cor	nd. No.		2.87e-	+18	
						===	
Notes:							
[1] Standard Errors						ectly specif	ied.
[2] The smallest es	igenvalue is 1.16e	-29. Th	nis might i	ndicate that	t there are		

Tr	Training Performance									
	RMSE	MAE	R-squared	Adj. R-squared	MAPE					
0	3363.102908	2702.192815	0.945222	0.945194	15.152233					
Te	st Performa	nce								
	RMSE	MAE	R-squared	Adj. R-squared	MAPE					
0	3321.75315	2689.953861	0.945397	0.945332	14.918289					

Figure 9: Final Model

strong multicollinearity problems or that the design matrix is singular.

ENSEMBLING TECHNIQUES – DECISION TREE REGRESSOR

Figure 10: Decision Tree Regressor

TRAIN	TEST
PERFORMANCE	PERFORMANCE
R ² Score: 0.95	R ² Score: 0.95
MAE: 2532.861	MAE: 2525.739
MSE: 9894087.4787	MSE: 9938145.3981

DECISION TREE REGRESSOR – HYPERTUNING

TRAIN	TEST
PERFORMANCE	PERFORMANCE
R ² Score: 0.947	R ² Score: 0.947
MAE: 2650.34	MAE: 2627.35
RMSE: 3290.81	RMSE: 3277.87

Figure 11: Decision Tree Regressor Hypertuned performance

RANDOM FOREST REGRESSOR & HYPER-PARAMETER TUNING

TRAIN	TEST		
PERFORMANCE	PERFORMANCE		
R ² Score: 0.99	R ² Score: 0.95		
MAE: 905.589	MAE: 2406.79		
RMSE; 1148.10	RMSE: 3039.03		

Figure 12: Random Forest regressor

BAGGING REGRESSOR AND HYPER-PARAMETER TUNING

TRAIN	TEST	
PERFORMANCE	PERFORMANCE	
R ² Score: 0.99	R ² Score: 0.95	
MAE: 1005.04	MAE: 2520.25	
RMSE: 1362.76	RMSE: 3196.08	

TRAIN	TEST
PERFORMANCE	PERFORMANCE
R ² Score: 0.98	R ² Score: 0.95
MAE: 1207.44	MAE: 2511.22
RMSE: 1603.85	RMSE: 3174.72

Figure 13: Bagging Regressor

BOOSTING REGRESSOR & HYPER-PARAMETER TUNING

TRAIN	TEST
PERFORMANCE	PERFORMANCE
R ² Score: 0.99	R ² Score: 0.95
MAE: 905.59	MAE: 2406.79
RMSE: 1148.10	RMSE: 3039.03

 TRAIN
 TEST

 PERFORMANCE
 PERFORMANCE

 R² Score: 0.95
 R² Score: 0.95

 MAE: 2309.87
 MAE: 2356.45

 RMSE: 2875.20
 RMSE: 2937.92

Figure 14: Boosting Regressor

GRADIENT BOOSTING REGRESSOR & HYPER TUNING

TRAIN	TEST
PERFORMANCE	PERFORMANCE
R ² Score: 0.95	R ² Score: 0.95
MAE: 2371.29	MAE: 2384.08
RMSE: 2947.64	RMSE: 2964.58

TRAIN	TEST
PERFORMANCE	PERFORMANCE
R ² Score: 0.95	R ² Score: 0.95
MAE: 2309.87	MAE: 2356.45
RMSE: 2875.20	RMSE: 2937.92

Figure 15: Gradient Boosting Regressor

XGBOOST REGRESSOR & HYPERPARAMETER TUNING

TRAIN	TEST
PERFORMANCE	PERFORMANCE
R ² Score: 0.97	R ² Score: 0.95
MAE: 1661.54	MAE: 2446.71
RMSE: 2117.23	RMSE: 3072.006

Figure 16: XGBooster regressor

TRAIN	TEST
PERFORMANCE	PERFORMANCE
R ² Score: 0.95	R ² Score: 0.95
MAE: 2309.87	MAE: 2356.87
RMSE: 2875.20	RMSE: 2937.92

ENSEMBLING TECHNIQUES

- Checked various ensemble techniques on the train and test set
- Carried out Hypertuning for each model
- Since, the model is regressive analysis, we have used MAE/MSE and R² as the metrics to check their performance.
- Following techniques were performed

Training perfo	rmance comparison:					
	Decision Tree Estimator	Random Forest Tuned	Bagging Estimator Tuned	Adabosst Classifier Tuned	Gradient Boost Classifier Tuned	XGBoost Classifier Tuned
RMSE	3290.813375	1148.104899	2875.208119	3261.278989	2814.967617	2875.208119
MAE	2650.349398	905.589586	2309.877448	2689.273159	2257.882674	2309.877448
R- squared	0.947322	0.993588	0.959787	0.948263	0.961455	0.959787
MAPE	13.765495	4.345967	11.286928	15.319856	10.920485	11.286928
Testing perfo	rmance comparison:					
Testing perfo	rmance comparison: Decision Tree Estimator	Random Forest Tuned	Bagging Estimator Tuned	Adabosst Classifier Tuned	Gradient Boost Classifier Tuned	XGBoost Classifier Tuned
Testing perfo	Decision Tree					
	Decision Tree Estimator	Tuned	Tuned	Tuned	Tuned	Tuned
RMSE	Decision Tree Estimator 3277.874081	Tuned 3039.037581	Tuned 2937.926204	Tuned 3234.294017	Tuned 2938.188465	Tuned 2937.926204

Figure 17: Ensembling techniques performance's comparison

INSIGHTS

- Random Forest had the best training performance but a slightly higher RMSE on test data.
- Bagging Regressor and XGBoost showed a better balance between training and testing performance, making them great choices if generalization is the priority.
- The feature importance is given below: Dominant predictor is weight—strongly associated with insurance_cost or health status.
- Other important features are insurance covered by other company, years since admission, regular check up last year

Figure 18: Feature importance

CONCLUSION

- In this project, a regression model is built to predict insurance costs based on health and lifestyle factors.
- After trying multiple models, XGBooster Regressor gave the best results.
- It was found that weight is the most important factor influencing insurance costs, while other features had very little impact.
- This insight can help insurance companies focus more on weight-related health risks when planning policies.