Employee Data Analysis

Data Source: https://www.kaggle.com/datasets/tawfikelmetwally/employee-dataset

Importing primary libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

(1) Data loading

emp=pd.read_csv('/content/Employee.csv')

first 3 rows emp.head(3)

\Rightarrow		Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	ExperienceInCurrentDomain	LeaveOrNot	
	0	Bachelors	2017	Bangalore	3	34	Male	No	0	0	11.
	1	Bachelors	2013	Pune	1	28	Female	No	3	1	
	2	Bachelors	2014	New Delhi	3	38	Female	No	2	0	

last 3 rows
emp.tail(3)

	Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	${\tt ExperienceInCurrentDomain}$	LeaveOrNot	\blacksquare
4650	Masters	2018	New Delhi	3	27	Male	No	5	1	11.
4651	Bachelors	2012	Bangalore	3	30	Male	Yes	2	0	
4652	Bachelors	2015	Bangalore	3	33	Male	Yes	4	0	

(2) Exploring the dataset

Dimensions of the dataset

```
emp.shape (4653, 9)
```

Checking the data types for each column

emp.dtypes

Education	object
JoiningYear	int64
City	object
PaymentTier	int64
Age	int64
Gender	object
EverBenched	object
ExperienceInCurrentDomain	int64
LeaveOrNot	int64
dtype: object	

Plotting different variables

a. Checking for no.of distinct values in each column in the dataset

emp.nunique()

Education	3
JoiningYear	7
City	3

```
PaymentTier 3
Age 20
Gender 2
EverBenched 2
ExperienceInCurrentDomain 8
LeaveOrNot 2
dtype: int64
```

b. Number of employees gender wise

```
plt.figure(figsize=(4,4))
sns.set_style('whitegrid')
col={'Male':'green','Female':'red'}
e=sns.countplot(data=emp,x='Gender',palette=col)
for i in e.containers:
    e.bar_label(i)
```


c. Exploring Education level of employees

```
plt.figure(figsize=(4,4))
col={'Male':'green','Female':'red'}
m=sns.countplot(data=emp,x='Education',hue='Gender',palette=col)
for i in m.containers:
    m.bar_label(i)
```


d. Employees from different cities

```
plt.figure(figsize=(4,4))
col={'Male':'green','Female':'red'}
s=sns.countplot(data=emp,x='City',hue='Gender',palette=col)
for i in s.containers:
    s.bar_label(i)
```


e. Year of joining

```
plt.figure(figsize=(5,5))
col={'Male':'green','Female':'red'}
s=sns.countplot(data=emp,x='JoiningYear',hue='Gender',palette=col)
for i in s.containers:
    s.bar_label(i)
```


More employees joined in the year 2017

f. Age of employees

```
sns.set(font_scale=0.5)
plt.figure(figsize=(7,7))
col={'Male':'green','Female':'red'}
f=sns.countplot(data=emp,x='Age',hue='Gender',palette=col)
for i in f.containers:
    f.bar_label(i)
```


plt.figure(figsize=(7,7))
d=sns.FacetGrid(emp,col='Gender')
d.map(sns.countplot,'Age')

<seaborn.axisgrid.FacetGrid at 0x7e632ac57dc0>
<Figure size 700x700 with 0 Axes>

g. Payment and joining year

sns.set(font_scale=0.6)
sns.lineplot(data=emp,x='JoiningYear',y='PaymentTier',hue='Gender')

<Axes: xlabel='JoiningYear', ylabel='PaymentTier'>

h. Number of employees benched

```
sns.set(font_scale=0.6)
col={'Male':'green','Female':'red'}
s=sns.countplot(data=emp,x='EverBenched',hue='Gender',palette=col)
for i in s.containers:
    s.bar_label(i)
```


i. Experience

```
sns.set(font_scale=0.6)
plt.figure(figsize=(6,6))
sns.set_style('whitegrid')
col={'Male':'green','Female':'red'}
s=sns.countplot(data=emp,x='ExperienceInCurrentDomain',hue='Gender',palette=col)
for i in s.containers:
    s.bar_label(i)
```


sns.set(font_scale=0.6)
plt.figure(figsize=(6,6))
sns.set_style('whitegrid')
col={'Male':'green','Female':'red'}
s=sns.countplot(data=emp,x='LeaveOrNot',hue='Gender',palette=col)
for i in s.containers:
 s.bar_label(i)

k. Correlation

sns.set(font_scale=0.8)
corr=emp.corr()
sns.heatmap(corr,annot=True,fmt='.2f')

