ES3011 – Control Engineering 2021C	
Homework #5	

|--|

1.) (10 pts) Please consider the system described by the open-loop transfer function:

$$G(s) = \frac{s-2}{(s+1)(s^2+6s+24)}$$

If this system is controlled by a proportional feedback controller with gain K, determine the range of K for stability of the closed loop system.

Assigned: 2/25/2021 Due: 3/4/2021 @ 11:59 pm **2.)** (**30 pts**) For each of the unity-feedback control systems whose open-loop transfer functions are given below, please (a) Determine if the system is stable; (b) Determine the steady-state error of the system for unit step, and unit ramp inputs.

System 1:
$$G(s) = \frac{1}{s(s+1)(s+3)}$$

System 2:
$$G(s) = \frac{s+5}{s^2-7s+12}$$

Assigned: 2/25/2021 Due: 3/4/2021 @ 11:59 pm

ES3011 – Control Engineering 2021C Homework #5	Assigned: 2/25/2021 Due: 3/4/2021 @ 11:59 pm		
Name:	ID:		
3.) (30 pts) Please solve Problem B-5-13 from analytically whenever possible and use MATLAB if		(Please solve	this problem

ES3011 – Control Engineering 2021C Homework #5	Assigned: 2/25/2021 Due: 3/4/2021 @ 11:59 pm
Name:	ID:
4.) (10 pts) Please solve Problem B-5-15 from Canalytical calculations to solve this problem)	Ogata (page 267). (You are free to use MATLAB or