Семинар по визуализации и генерации признаков

При подготовке презентации использованы материалы:

- А. Г. Дьяконова (<u>https://goo.gl/cRWSwU</u>)
- Виктора Кантора (<u>https://vk.com/data_mining_in_action</u>)
- Евгения Соколова (https://github.com/esokolov/ml-minor-hse)
- Статьи Хабрахабра (https://habrahabr.ru/company/mlclass/blog/248129/)

Работа над задачей

- Визуализация данных (Exploratory analysis)
- Предобработка данных (+ разделение выборки)
- Построение бейзлайна
- Доработка модели:
 - выбор алгоритма, подбор гиперпараметров
 - генерация новых признаков (feature engineering)
 - о настройка композиции алгоритмов

Работа над задачей

- Визуализация данных (Exploratory analysis)
- Предобработка данных (+ разделение выборки)
- Построение бейзлайна
- Доработка модели:
 - выбор алгоритма, подбор гиперпараметров
 - о генерация новых признаков (feature engineering) + отбор признаков
 - о настройка композиции алгоритмов

Работа над задачей

- Визуализация данных (Exploratory analysis)
- Предобработка данных (+ разделение выборки)
- Построение бейзлайна
- Доработка модели:
 - выбор алгоритма, подбор гиперпараметров
 - генерация новых признаков (feature engineering)
 - о настройка композиции алгоритмов

в каком порядке?

Задачи визуализации

- какую предобработку данных нужно провести
- какие признаки/объекты могут быть полезными/вредными для решения, какие признаки добавить
- какие методы лучше использовать для предсказания
- каковы особенности задачи, какую метрику использоваться
- поиск ошибок в данных

Типы графиков

- линия
- scatter (точки) рекомендуется ставить параметр прозрачности!
- boxplot (показывает среднее и разброс вещественного признака [в разрезе категориального])
- гистограмма (разбивает вещественную ось на интервалы и считает второй параметр в каждом интервале)
- круговая гистограмма (доли категориальных признаков)

1. Визуальный просмотр части данных

data.head() # pd.DataFrame method

Правильно ли прочитались данные?

Какие признаки? (тип: вещественные, натуральные, бинарные, категориальные, порядковые, текстовые...)

Какая задача? (в привычных случаях регрессия/классификаця)

Нет ли видимых ошибок в данных? (склеившиеся столбцы, неправильно прочитанные точки в дробях)

2. Просмотр статистик признаков

data.describe() # pd.DataFrame method

Много ли пропусков?

Одинаковый ли масштаб признаков?

Константные признаки?

Ошибки в данных (например, странное значение минимума/максимума)

3. Гистограммы признаков

data.hist # pd.DataFrame method

Есть ли константные признаки?

Есть ли редкие категории? (для них будет сложно выучить надежные значение параметров) Обратить внимание на подозрительные и неожиданные области гистограмм

Обратите особое внимание на целевой признак! Правильно ли выбрана метрика?

Отдельно распределения для обучающей и контрольной выборок!

4. Графики признак - целевой признак

Выводы делать опасно, но прикинуть, что может оказаться полезным, можно.

5. Понижение размерности

Специальные методы (MDS, tSNE) для более наглядных картинок

Общие советы

• Визуализация dummy-признаков (Id)

Распространенные типы данных

- Вещественные признаки
- Категориальные признаки
- Даты и время
- Координаты ("географические признаки")
- Тексты
- Изображения

Вещественные признаки

- Нелинейные трансформации
- Дискретизация
 - о по порогам (по визуализации)
 - о округление
 - о кластеризация значений
- Агрегация нескольких признаков в один (сумма, максимум по семантике)

Даты и время

- дата → день недели, месяц, год
- время → время суток, час, минута
- праздник / выходной (бинарный признак)
- циклическое кодирование
- признаки на основе разности
 - о два временных признака
 - между объектами
 - время до важного события (праздника)
 - о количество прошедших секунд с какого-то момента

Даты и время как правило нужно учитывать при разделении выборки!

Географические признаки

- Проекции на разные оси
- Кластеризация
- Плотность точек в данной области
- Расстояния до центров кластеров, важных географических объектов

Категориальные признаки

- Label encoding repeat several times :) (не для линейных моделей)
- One-hot encoding
- Count encoding (число / доля объектов с таким значением)
- Хеширование repeat several times :)
- Усреднение значений вещественного признака по категориям (совсем не обязательно целевого)
- По значению целевого признака (счетчики и усреднение) Су-оценки!

Можно учитывать взаимодействия признаков! (с малым числом категорий)

Текстовые признаки

Текст - последовательность символов

Разные уровни:

- в данных есть строковый признак: без пробела / относительно мало вариантов → в категориальные признаки
- в данных есть строковый признак длинное предложение / цельный текст → свои методы генерации признаков (фиксированная размерность)
- объект текст → свои методы обработки последовательностей переменной длины (RNN, HMM...)

Тексты

Текст - последовательность символов

- в данных есть строковый признак: без пробела / относительно мало вариантов → в категориальные признаки
- в данных есть строковый признак длинное предложение / цельный текст → свои методы генерации признаков (фиксированная размерность)
- объект текст → свои методы обработки последовательностей переменной длины (RNN, HMM...)
 в курсе по текстам, ГО, БММО

Два уровня: character-based vs word-based

Предобработка текстовых данных

- 1. Удаление служебных символов: тегов, знаков, [пунктуации]...
- 2. [Приведение к нижнему регистру]
- 3. Токенизация разделение на слова (дефисы? пунктуация?)
- 4. Нормализация
 - 1. Стемминг удаление окончаний
 - 2. Лемматизация приведение слова к нормальной форме
- 5. Удаление стоп-слов

Признаки из текстов

- . Мешок слов
 - Для каждого слова: сколько раз встретилось / встретилось или нет

$$d \to (n_1, \dots, n_W)$$

71 the	31 garden
22 and	19 of
19 to	19 house
18 in	18 white
12 trees	12 first
11 a	11 president
8 for	7 as
7 gardens	7 rose
7 tour	6 on
6 was	6 east
6 tours	5 planting
5 he	5 is
5 grounds	5 that
5 gardener	4 history
4 text-decoration	4 john
4 kennedy	4 april
4 been	4 today
4 with	4 none
4 adams	4 spring
4 at	4 had
3 mrs	3 lawn

Признаки из текстов

- . Мешок слов: $d o (n_1, \dots, n_W)$
- . Tf-Idf представление

$$d o (TF(1)IDF(1)\dots TF(W)IDF(W))$$

$$TF(i) = \frac{n_i}{n}, \, n = \sum_{i=1}^W n_i$$

$$IDF(i) = \frac{N}{N_i} \buildrel {}^{\mathrm{BCEIO}}_{\mathrm{документов}} \buildrel {}^{\mathrm{BCEIO}}_{\mathrm{документов}} \buildrel {}^{\mathrm{BCEIO}}_{\mathrm{документов}}$$

Признаки из текстов

- Мешок слов и TF-IDF для n-грамм
- Мешок буквосочетаний (устойчивость к опечаткам)
- Скрытые представления
 - усреднение word2vec
 - doc2vec
 - o из RNN
 - матричные разложения (например, тематическое моделирование)

Признаки для изображений

• Выходы слоев предобученной нейросети

Классические признаки для изображений

- гистограммы яркости не учитывают порядок пикселей
- гистограммы градиентов (фильтр Собеля) уже как-то учитывают
- и другие штуки из Computer Vision курс Конушина А. С. на ФКН

"Глобальные" методы

- Кластеризация объектов
- Расстояния до эталонных объектов
- Выходы других алгоритмов как признаки
- Понижение размерности (РСА, автокодировщики) особенно для разреженных данных

Итого: популярные приемы генерации признаков

- кластеризация → новый признак кластер
- отношения с другими объектами и признаками (расстояния, разности значений признаков)
- понижение размерности

Итого по генерации признаков

- Генерация признаков тесно связана с data exploration
- Что подойдет и заработает очень сильно зависит от задачи
- Одним sklearn не обойтись, очень полезным оказывается pandas + numpy

Отбор признаков и отбор объектов

Картинка из слайдов Дьяконова А. Г.

В удалении объектов - третья ситуация

Отбор признаков

Зачем:

- скорость работы алгоритмов
- повышение качества
- борьба с переобучением

Методы отбора признаков

- Статистические методы: оценивается зависимость целевого признака от других (фильтрация) обычно одномерные методы
- Отбор с помощью моделей (feature_importance_)
- Методы-обертки: выбор признаков, дающих лучшее качество для модели

Корреляция

$$R_{j} = \frac{\sum_{i=1}^{\ell} (x_{ij} - \bar{x}_{j})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{\ell} (x_{ij} - \bar{x}_{j})^{2} \sum_{i=1}^{\ell} (y_{i} - \bar{y})^{2}}}$$

- Чем больше $|R_i|$, тем информативнее признак
- Учитывает только линейную связь
- $x_{i\,i}$ значение j-го признака на i-м объекте
- $\overline{x_i}$ среднее значение j-го признака
- y_i значение целевой переменной на i-м объекте
- \bar{y} среднее значение целевой переменной

T-score

$$R_{j} = \frac{|\mu_{1} - \mu_{2}|}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

- Для задач бинарной классификации
- Чем больше R_i , тем информативнее признак
- μ_1 , μ_2 средние значения признаков в первом и втором классах
- σ_1^2 , σ_2^2 дисперсии
- n_1 , n_2 число объектов в первом и втором классах

F-score

$$R_{j} = \frac{\sum_{k=1}^{K} \frac{n_{j}}{K-1} (\mu_{j} - \mu)^{2}}{\frac{1}{\ell - K} \sum_{k=1}^{K} (n_{j} - 1) \sigma_{j}^{2}}$$

- Для задач многоклассовой классификации
- Чем больше R_i , тем информативнее признак
- $\mu_1, ..., \mu_K$ средние значения признаков в классах
- μ среднее значение признака по всей выборке
- $\sigma_1^2, ..., \sigma_K^2$ дисперсии
- n_1 , ..., n_K число объектов в первом и втором классах

Для категориальных признаков - взаимная информация

$$MI = \sum_{x_i \in X} \sum_{y_j \in Y} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i) p(y_j)}$$

Отбор с помощью моделей

- L1-регуляризация
- feature_importance_ в деревьях и лесах

Решающие деревья

- Чем сильнее уменьшили H(X), тем лучше признак
- Уменьшение критерия:

$$H(X_m) - \frac{|X_l|}{|X_m|} H(X_l) - \frac{|X_r|}{|X_m|} H(X_r)$$

• Важность признака R_j : просуммируем уменьшения по всем вершинам, где разбиение делалось по признаку j

Отбор с помощью моделей

Случайный лес

- ullet Сумма важностей R_j по всем деревьям
- Чем больше, тем важнее признак
- Учитывается важность признаков в совокупности

Методы-обертки

- Переставить значения признака и оценить падение в качестве
- Качество работы алгоритма для подмножества признаков

Итого по отбору признаков

- Разные методы выделят разные признаки, универсального рецепта нет
- Лучше выбирать одним методом, а предсказывать другим

Трансформация ответов

Иногда качество решения задачи уже после обучения можно повысить, трансформируя предсказания модели

Примеры:

- "Нормализация" целевого признака до обучения и возвращение в исходную шкалу после
- Подбор порогов при предсказании порядковых величин