Few-Shot Lifelong Learning: A Tiny Survey

By 李想 2021.5.28

Background: Lifelong learning 终身学习

• Lifelong learning (Incremental learning, Continual Learning):

The ability to sequentially learn new tasks without forgetting previous ones.

Background: Lifelong learning

Challenge:

- Knowledge Retention: 不要遗忘过去所学
 - 捡了芝麻丢西瓜
- Knowledge Transfer: 知识迁移
- Model Expansion: 模型扩展

Catastrophic Forgetting

- Multi-task vs Lifelong Learning :
- Computation issue: 训练需要所有数据(e.g. 1000个task)
- Storage issue: 保存所有数据

Background: Lifelong learning

Evaluation

$$\mathsf{Accuracy} = \frac{1}{T} \sum_{i=1}^{T} R_{T,i}$$

Backward Transfer =

$$\frac{1}{T-1} \sum_{i=1}^{T-1} R_{T,i} - R_{i,i}$$

Forward Transfer =

$$\frac{1}{T-1} \sum_{i=2}^{T} R_{i-1,i} - R_{0,i}$$

		Test on							
		Task 1	Task 2		Task T				
Ranc	l Init.	R0,1	R0,2		Ro,T				
After	Task 1	R1,1	R1,2		R1,T				
Training	Task 2	R2,1	R2,2		R ₂ ,T				
	Task T-1	RT-1,1	RT-1,2		RT-1,T				
	Task T	RT,1	RT,2		RT,T				

• 由于遗忘,BWT一般为负,很少为正,越大越好

Background: Few-Shot Learning 少样本学习

- Learning from a small (single) number of labeled data points
- 对于测试中新的class, 无需大量标注数据对模型进行重新训练, 而是利用少量(几个)带标签数据使模型迅速适应到新的类别特征分类中。
- Mostly, using Meta Learning: Learn to learn
 - Metric-based: Relation network, Prototypical network, Induction network......
 - Optimization-based: MAML.....

Dynamic Few-Shot Visual Learning without Forgetting

CVPR 2018

From few-shot learning point of view Where the story begin.....

Introduction

Motivation:

- The learning of the novel categories needs to be fast
- To not sacrifice any accuracy on the initial categories (不要遗忘)
- **Goal**: Not only is able to recognize base categories, but also learns to dynamically recognize novel categories from only a few training examples (provided only at test time) while also not forgetting the base ones or requiring to be re-trained on them

在动态地利用少样本学习新的category时,不遗忘训练时的category,不需要重新训练

Methodology

Methodology

Cosine-similarity based recognition model

• Use cosine similarity function between the feature representations and the classification weight vectors to get classification score.

Few-shot classification weight generator

Feature averaging based weight inference

$$w'_{avg} = \frac{1}{N'} \sum_{i=1}^{N'} \overline{z}'_i$$

Attention-based weight inference: between new category and base category

$$w'_{att} = \frac{1}{N'} \sum_{i=1}^{N'} \sum_{b=1}^{K_{base}} Att(\phi_q \overline{z}'_i, k_b) \cdot \overline{w}_b$$

Experimental Results

Models	5-Shot learn	$ing - K_{no}$	_{vel} =5	1-Shot learning – K_{novel} =5			
Wodels	Novel	Base	Both	Novel	Base	Both	
Matching-Nets [25]	$68.87 \pm 0.38\%$	_	_	$ 55.53 \pm 0.48\%$	_	_	
Prototypical-Nets [22]	$72.67 \pm 0.37\%$	62.10%	32.70%	$54.44 \pm 0.48\%$	52.35%	26.68%	
Ours				1			
Cosine Classifier	$72.83 \pm 0.35\%$	70.68%	51.89%	$54.55 \pm 0.44\%$	70.68%	39.17%	
Cosine Classifier & Avg. Weight Gen	$74.66 \pm 0.35\%$	70.92%	60.26%	$55.33 \pm 0.46\%$	70.45%	48.56%	
Cosine Classifier & Att. Weight Gen	$ $ 74.92 \pm 0.36%	70.88%	60.50%	$ $ 58.55 \pm 0.50%	70.73%	50.50%	
Ablations							
Dot Product	$64.58 \pm 0.38\%$	63.59%	31.80%	$46.09 \pm 0.40\%$	63.59%	24.76%	
Dot Product & Avg. Weight Gen	$60.30 \pm 0.39\%$	62.15%	46.41%	$44.31 \pm 0.40\%$	61.99%	39.05%	
Dot Product & Att. Weight Gen	$ 67.81 \pm 0.37\%$	62.11%	48.70%	$ 53.88 \pm 0.48\%$	62.28%	42.41%	
Ablations				1			
Cosine w/ ReLU.	$71.04 \pm 0.36\%$	72.51%	58.16%	$52.91 \pm 0.45\%$	72.51%	43.17%	
Cosine w/ ReLU. & Avg. Weight Gen	$71.30 \pm 0.38\%$	72.47%	59.33%	$53.19 \pm 0.45\%$	71.70%	49.53%	
Cosine w/ ReLU. & Att. Weight Gen	$73.03 \pm 0.38\%$	72.26%	61.05%	$ 56.09 \pm 0.54\%$	72.34%	51.25%	

Few-Shot Lifelong Learning

AAAI 2021

Introduction

Motivation:

- Many real-world classification problems often have classes with very few labeled training samples —— <u>Few-shot learning</u>
- All possible classes may not be initially available for training, and may be given incrementally —— <u>Lifelong learning</u>

• Issues:

- Overfitting: Training the entire network on classes with very few samples
- <u>Catastrophic Forgetting</u>: Model will not have access to old classes when new classes become available for training.

Problem Setting

- A sequence of labeled training sets: $D^1, D^2, \dots, D^t = \{(x_j^t, y_j^t)\}_{j=1}^{|D^t|}$
- Each training set has a classes set : L^t ,where $L^i \cap L^j = \emptyset$, $i \neq j$
- The first training set D^1 consists of base classes (large number of training examples per class)
- The remaining training set $D^{t>1}$ as few-shot training set
 - C classes and K training examples per class (C-way K-shot setting)
- Incrementally trained on : D^1, D^2, \dots , and only D^t available at t^{th} training session
- After training session t^{th} , evaluate on all the encountered classes in L^1, \ldots, L^t

Methodology

- **Reduce overfitting**: Choose very few *unimportant* session trainable parameters to train on new classes.
- Knowledge Retain: The important parameters in the model are not affected.
- <u>Unimportant para</u>: All parameters in a layer having absolute value lower than the threshold 低绝对值
- session trainable parameters
- important parameters
- unimportant parameters

Methodology: Base class

- Feature extractor Θ^F ; Fully connected classifier Θ^C
- All parameters of the network are trainable: CE loss

$$L_{D^{(1)}}(\mathbf{x}, y) = F_{CE}(\Theta_C(\Theta_F(\mathbf{x})), y)$$

Obtain the class prototypes: Average features of the same class

$$Pr[c] = \frac{1}{N_c} \sum_{k=1}^{N} \mathbb{I}_{(y_k=c)}(\Theta_F(\mathbf{x}_k))$$

• Self-Supervised Auxiliary Task: 旋转图片以增强数据做自监督辅助任务 Rotation prediction network Θ^R in parallel with Θ^C

$$L_{D^{(1)}}(\mathbf{x}, y) = F_{CE}(\Theta_C(\Theta_F(\mathbf{x})), y) + F_{CE}(\Theta_R(\Theta_F(\mathbf{x})), y^r)$$

Methodology: New class

• Train session trainable para: Triplet loss 拉近同类,推远异类

$$L_{TL}(x_i, x_j, x_k) = \max(d(\Theta_F(x_i), \Theta_F(x_j)) - d(\Theta_F(x_i), \Theta_F(x_k)), 0)$$

• Ensure not deviate far from previous values: l1-Regularization loss

$$L_{RL} = \sum_{i=1}^{N_p^t} ||w_i^t - w_i^{t-1}||_1$$

Minimize similarity between prototypes of old and new: Cosine sim

$$L_{CL} = \sum_{i=1}^{N_{Pr}^{t}} \sum_{j=1}^{N_{Pr}^{rev}} F_{cos}(Pr^{t}[i], Pr^{prev}[j])$$

• Total loss: $L(D^{(t>1)}) = L_{TL} + L_{CL} + \lambda L_{RL}$

Experimental Results

Method	Sessions								Our Relative			
Wiethod	1	2	3	4	5	6	7	8	9	10	11	Improvements
Ft-CNN (Tao et al. 2020)	68.68	44.81	32.26	25.83	25.62	25.22	20.84	16.77	18.82	18.25	17.18	+28.37
Joint-CNN (Tao et al. 2020)	68.68	62.43	57.23	52.80	49.50	46.10	42.80	40.10	38.70	37.10	35.60	+9.95
iCaRL (Rebuffi et al. 2017)	68.68	52.65	48.61	44.16	36.62	29.52	27.83	26.26	24.01	23.89	21.16	+24.39
EEIL (Castro et al. 2018)	68.68	53.63	47.91	44.20	36.30	27.46	25.93	24.70	23.95	24.13	22.11	+23.44
NCM (Hou et al. 2019)	68.68	57.12	44.21	28.78	26.71	25.66	24.62	21.52	20.12	20.06	19.87	+25.68
TOPIC (Tao et al. 2020)	68.68	62.49	54.81	49.99	45.25	41.40	38.35	35.36	32.22	28.31	26.28	+19.27
FSLL (Ours)	68.72	65.67	62.33	58.10	55.44	52.66	51.17	50.27	48.31	47.25	45.55	0
FSLL* (Ours)	72.77	69.33	65.51	62.66	61.10	58.65	57.78	57.26	55.59	55.39	54.21	-
FSLL*+SS (Ours)	75.63	71.81	68.16	64.32	62.61	60.10	58.82	58.70	56.45	56.41	55.82	-1

Experimental Results

Incremental Few-shot Text Classification with Multi-round New Classes: Formulation, Dataset and System

NAACL 2021 Story in NLP

Introduction

Challenges:

- For the <u>learning process</u>, the system should incrementally learn new classes round by round without re-training on the examples of preceding classes;
- For the <u>performance</u>, the system should perform well on new classes without much loss on preceding classes.

Tasks:

- Intent classification: understanding the intents under user queries
- Relation classification: determine the correct relation between two entities in a given sentence

Problem Formulation

Training data:

- Provided with m rounds of new classes sequentially $\{C_n^1, ..., C_n^m\}$
- Each round C_n^i has h new classes: $C_n^i = \{C_{n,1}^i, \dots, C_{n,h}^i\}$
- Each new class only has k examples ($k \in [1,5]$)
- k not fixed, varies for different new classes in the same round $k_{-}C_{n,s}^{i} \neq k_{-}C_{n,t}^{i}$ (更符合实际)
- With base classes: $C_b = \{C_{b,1}, C_{b,2}, \cdots, C_{b,g}\}$
- No Dev data: 现实应用中没有dev data供我们选择best model

Testing data:

- Without base classes: $C_n^1 \cup \cdots \cup C_n^m \cup C_o$
- With base classes: $C_b \cup C_n^1 \cup \cdots \cup C_n^m \cup C_o$

Methodology

- *Entailment*: casts the text classification problem into textual entailment
 - Positive pair: (x_i, y_i) 文本 x_i 与其golden label y_i
 - Negative pair: (x_i, y_j) 文本 x_i 与其他label $y_j \in C_n^i, y_j \neq y_i$

Training strategy

- RoBERT输入[CLS] x [SEP] y [SEP]做二分类, x与y是否为真
- 首先在大量文本蕴含数据集上做fine-tune

Inference strategy

- 模型预测出概率>0.5的所有class中最大的作为预测结果
- 若不存在,则预测为 C_o

Datasets

	IF	S-Inten	T	IFS-RELATION				
	#class	#train	#test	#class	#train	#test		
$\overline{C_b}$	20	2088	800	10	5000	400		
C_n^1	10	30	400	10	30	400		
C_n^2	10	30	400	10	30	400		
C_n^3	10	30	400	10	30	400		
C_n^4	10	30	400	10	30	400		
C_n^5	10	30	400	10	30	400		
C_o	7	_	280	10	-	400		

Single-domain

Multi-domain

Experimental Results

		$igcap_n^1$	C_n^2	C_n^3	C_n^4	C_n^5	C_o
(<u>S</u>	DNNC	55.50±2.27					72.29 ± 0.20
C_n^1	ENTAILMENT	65.17 ± 1.36					75.43 ± 0.41
	Hybrid	70.08 ± 0.77					78.25 ± 0.19
-	DNNC	64.58 ± 0.42	77.75±1.08				61.72 ± 0.90
C_n^2	ENTAILMENT	64.08 ± 2.04	76.33 ± 1.01				64.68 ± 0.71
	Hybrid	74.25±1.34	86.67±1.01				64.39 ± 0.27
	DNNC	65.25±1.67	79.58±1.50	64.67±1.93			50.25 ± 0.52
C_n^3	ENTAILMENT	75.50±1.63	83.83 ± 0.62	75.25 ± 1.24			56.56 ± 2.43
	Hybrid	74.25 ± 1.08	85.92±1.05	76.58±1.05			53.09 ± 1.73
	DNNC	66.75±0.54	79.08 ± 0.51	60.50 ± 2.35	62.25±1.08		42.56±0.76
C_n^4	ENTAILMENT	68.33 ± 1.16	72.67 ± 0.77	68.58 ± 1.90	69.50 ± 1.34		53.92 ± 0.75
	Hybrid	73.75±1.41	85.50±1.06	71.67±1.53	75.83±2.44		52.75 ± 0.63
C_n^5	DNNC	65.33 ± 0.62	76.75±1.59	62.83±3.17	59.75±2.83	57.25±2.32	36.66±1.07
	ENTAILMENT	67.58 ± 0.82	73.50 ± 1.24	67.83 ± 0.47	71.83 ± 0.66	73.75 ± 0.74	50.95 ± 0.68
	Hybrid	70.75±1.27	82.50±1.27	72.42±0.96	76.67±1.05	71.00 ± 0.41	47.05 ± 1.60

Table 2: System performance without base classes on the benchmark IFS-INTENT. Horizontal direction: different groups of testing classes (base classes C_b , five rounds of novel classes (C_n^1, \dots, C_n^5) and the OOD classes C_o); vertical direction: timeline of incremental learning over new rounds of novel classes. Numbers are averaged over results of three random seeds.

		C_b	C_n^1	C_n^2	C_n^3	C_n^4	C_n^5	C_o
	ProtoNet	87.25±0.10						53.4 ± 10.68
	DyFewShot	81.04±1.91						55.01 ± 2.52
C_b	DNNC	95.96 ± 0.68						61.89 ± 4.78
	ENTAILMENT	96.42±0.41						64.73 ± 3.84
	Hybrid	96.12 ± 0.12						58.92 ± 1.22
2	ProtoNet	85.83±1.94	31.67±1.48					43.66 ± 3.08
100	DyFewShot	81.29±1.56	00.00 ± 0.00					39.33 ± 1.25
C_n^1	DNNC	95.75 ± 0.41	74.83 ± 1.64					64.54 ± 2.02
	ENTAILMENT	94.42 ± 0.21	75.42 ± 1.56					56.38 ± 5.29
·	Hybrid	95.62 ± 1.00	77.75 ± 0.25					58.41 ± 5.10
2	ProtoNet	83.92 ± 0.33	24.92±5.54	38.83 ± 3.43				31.14 ± 9.83
-	DyFewShot	81.29±1.56	00.00 ± 0.00	00.50 ± 0.71				33.94 ± 1.42
C_n^2	DNNC	95.42 ± 0.62	72.92 ± 4.37	75.08 ± 3.30				49.02 ± 3.23
	ENTAILMENT	94.29 ± 0.16	71.92 ± 1.45	84.83±1.33				48.12 ± 3.20
	Hybrid	96.44±0.19	76.75 ± 2.75	75.00 ± 1.00				42.11 ± 0.30
	ProtoNet	81.08±2.06	24.33±5.54	30.67 ± 6.17	22.50 ± 1.34			23.62 ± 6.99
	DyFewShot	81.29 ± 1.56	00.00 ± 0.00	00.50 ± 0.71	00.00 ± 0.00			27.48 ± 1.24
C_n^3	DNNC	95.67 ± 0.33	68.17 ± 2.37	66.33 ± 5.02	71.25 ± 3.78			45.69 ± 1.73
	ENTAILMENT	92.71 ± 0.41	70.75 ± 0.54	82.83±2.16	73.92±2.52			29.34 ± 3.31
	Hybrid	95.44 ± 0.44	73.62 ± 0.62	71.62 ± 2.62	73.50 ± 0.75			33.69 ± 3.66
	ProtoNet	81.17±2.52	17.83 ± 2.58	31.75±0.94	24.92±1.90	22.25±3.19		28.19 ± 4.78
	DyFewShot	81.54 ± 1.71	00.25 ± 0.35	00.17 ± 0.24	00.00 ± 0.00	00.00 ± 0.00		23.52 ± 1.51
C_n^4	DNNC	95.29 ± 0.16	68.75 ± 2.35	66.75 ± 3.82	67.00 ± 3.40	57.75 ± 1.41		42.09 ± 3.72
	ENTAILMENT	91.67 ± 0.36	65.92 ± 2.18	79.92±1.78	73.75 ± 0.74	69.08 ± 0.12		45.73 ± 2.80
	Hybrid	95.69±0.06	72.12 ± 0.62	67.75 ± 1.25	70.25 ± 0.25	72.62 \pm 1.38		38.85 ± 0.89
	ProtoNet	80.00 ± 2.65	21.83 ± 5.45	29.17±3.70	24.67±3.12	23.17±3.60	30.33 ± 4.17	29.24 ± 2.96
	DyFewShot	81.50 ± 1.27	00.08 ± 0.12	00.83 ± 0.62	00.00 ± 0.00	00.00 ± 0.00	00.50 ± 0.71	21.23 ± 1.34
C_n^5	DNNC	95.12 ± 0.47	67.50 ± 0.89	67.92 ± 4.70	64.42±4.17	52.42 ± 1.20	53.33 ± 2.09	30.46 ± 5.92
	ENTAILMENT	89.17±0.60	65.08 ± 2.45	78.50±0.94	69.08±1.12	68.25 ± 0.35	70.67±1.30	39.48 ± 1.45
	Hybrid	95.56±0.06	68.75±2.75	67.38 ± 0.62	63.75 ± 1.75	65.12 ± 3.62	61.62 ± 2.38	37.65 ± 0.44

Table 4: System performance with base classes on the benchmark IFS-INTENT.

Comments

• Pro :

- 提出无需base class的新任务
- 任务设置更贴合实际应用情况
- 根据新任务构建了新的dataset

• Con :

- 方法上亮点不足
- 更偏向传统地解决intention classification和relation classification任务,而没有针对incremental few-shot任务特点来设计method

Thanks

Q&A