Table 2.1 Resistivity, thermal coefficient of resistivity α_0 at 273K (0 °C) for various metals. The resistivity index n in $\rho \propto T^n$ or some of the metals is also shown.

Metal	ρ_0 (n Ω m)	$\alpha_0 (1/K)$	n	Comment
Aluminum, Al	25.0	1/233		
Antimony, Sb	38	1/196		
Copper, Cu	15.7	1/232	1.15	
Gold, Au	22.8	1/251		
Indium, In	78.0	1/196		
Platinum, Pt	98	1/255	0.94	
Silver, Ag	14.6	1/244	1.11	
Tantalum, Ta	117	1/294	0.93	
Tin, Sn	110	1/217	1.11	
Tungsten, W	50	1/202	1.20	
Iron, Fe	84.0	1/152	1.80	Magnetic metal; 273 < T < 1043K
Nickel, Ni	59.0	1/125	1.72	Magnetic metal; 273 < T < 627K

Table 2.2 The effect of alloying on the resistivity

Material	Resistivity at 20 °C	α ₀ at 20 °C		
	$\mathbf{n}\Omega$ m	1/K		
Nickel	69	0.006		
Chrome	129	0.003		
Nichrome (80%Ni-20%Cr)	1120	0.0003		

TABLE 2.3 Nordheim Coefficient (at 20° C) for Dilute Alloys

Solute in Solvent	Nordheim	Maximum Solubility at
(Element in matrix)	coefficient	25°C at.%
	nΩ m	
Au in Cu matrix	5500	100
Mn in Cu matrix	2900	24
Ni in Cu matrix	1570	100
Sn in Cu matrix	2900	0.6
Zn in Cu matrix	300	30
Cu in Au matrix	450	100
Mn in Au matrix	2410	25
Ni in Au matrix	790	100
Sn in Au matrix	3360	5
Zn in Au matrix	950	15

Data extracted from various sources: Electronics Engineers' Handbook, Second Edition, ed. by D.G. Fink and D. Christiansen (McGraw-Hill, New York, 1982), section 6 (Properties of Materials by I.A. Blech), J.K. Stanley, Electrical and Magnetic Properties of Metals (American Society for Metals, Metals Park, Ohio, 1963) and Solubility data from Constitution of Binary Alloys, Second Edition, M. Hansen and K. Anderko (McGraw-Hill, New York, 1985)

From Principles of Electronic Materials and Devices, Second Edition, S.O. Kasap (© McGraw-Hill, 2002)

http://Materials.Usask.Ca

Table 2.4 Hall coefficient and Hall mobility ($\mu_H = |\sigma R_H|$) of selected metals.

Metal	n [m ⁻³]	R_H (Experimental) [m ³ A ⁻¹ s ⁻¹]	$\mu_H = \sigma R_H $
			$\frac{[\text{m}^2 \text{V}^{-1} \text{ s}^{-1}]}{10^{-4}}$
	$\times 10^{28}$	$\times 10^{-11}$	$\times 10^{-4}$
Ag	5.85	-9.0	57
Al	18.06	-3.5	13
Au	5.90	-7.2	31
Be	24.2	+3.4	?
Cu	8.45	-5.5	32
Ga	15.3	-6.3	3.6
In	11.49	-2.4	2.9
Mg	8.60	-9.4	22
Na	2.56	-25	53

[Data extracted from various sources, including *Physics Handbook*, C. Nording and J. Österman (Chartwell-Bratt Ltd., 1982)]

Table 2.5 Typical thermal conductivities of various classes of materials at 25 °C.

Pure metal	Nb	Fe	Zn	W	Al	Cu	Ag
$\kappa (W m^{-1} K^{-1})$	52	80	113	178	250	390	420
Metal alloys	Stainless Steel	55Cu-45Ni	70Ni-30Cu	1080	Bronze	Brass (63Cu-	Dural (95Al-
				Steel	(95Cu-	37Zn)	4Cu-1Mg)
					5Sn)		
$\kappa (W m^{-1} K^{-1})$	12 - 16	19.5	25	50	80	125	147
Ceramics	Glass-	Silica-fused	S_3N_4	Alumina	Saphire	Beryllia	Diamond
and glasses	borosilicate	(SiO_2)		(Al ₂ O ₃)	(Al ₂ O ₃)	(BeO)	
$\kappa (W m^{-1} K^{-1})$	0.75	1.5	20	30	37	260	~1000
Polymers	Polypropylene	PVC	Polycarbonate	Nylon	Teflon	Polyethylene	Polyethylene
				6,6		low density	high density
$\kappa (W m^{-1} K^{-1})$	0.12	0.17	0.22	0.24	0.25	0.3	0.5

Table 2.6 Typical resistivity values for thin metal films (polycrystalline) in microelectronics.

Metal	Bulk ρ (Ω m) ($\times 10^{-8}$)	Film ρ (Ω m) ($\times 10^{-8}$)	Comment
Aluminum	2.67	2.8 - 3.3	Vacuum evaporated
Gold	2.2	2.4	Vacuum evaporated or sputtered
Nickel	6.9	12	Vacuum evaporated or sputtered
Molybdenum	5.7	10	Sputtered and annealed

[Data from C.R.M. Grovenor, *Microelectronic Materials* (Adam Hilger, Bristol, IOP Publishing. Ltd., 1989), p.197 and K.L. Chopra and I. Kaur, *Thin Film Device Applications* (Plenum Press, New York, 1983) Chapter 4. p. 130]