Lecture 17
Dynamic set partitions
and the union-find algorithm
EECS-214

- Division of elements of a set into disjoint groups
- Formally, given a set S, a partition $P = \{ P_1, ..., P_n \}$ is
 - A set of non-empty subsets of S
 - i.e. for all i, $\{\} \neq P_i \subseteq S$
 - Such that
 - Every element of S is a member of exactly one element of P
 - Or equivalently, the P_i are
 - Disjoint

$$P_i \cap P_j = \{\}$$
 for all $i \neq j$

$$S = \bigcup_{P_i \in P} P_i$$

- Division of elements of a set into disjoint groups
- Formally, given a set S, a partition $P = \{ P_1, ..., P_n \}$ is
 - A set of non-empty subsets of S
 - i.e. for all i, $\{\} \neq P_i \subseteq S$
 - Such that
 - Every element of S is a member of exactly one element of P
 - Or equivalently, the P_i are
 - Disjoint

$$P_i \cap P_j = \{\} \text{ for all } i \neq j$$

$$S = \bigcup_{P_i \in P} P_i$$

- Division of elements of a set into disjoint groups
- Formally, given a set S, a partition $P = \{ P_1, ..., P_n \}$ is
 - A set of non-empty subsets of S
 - i.e. for all i, $\{\} \neq P_i \subseteq S$
 - Such that
 - Every element of S is a member of exactly one element of P
 - Or equivalently, the P_i are
 - Disjoint

$$P_i \cap P_j = \{\} \text{ for all } i \neq j$$

$$S = \bigcup_{P_i \in P} P_i$$

- Division of elements of a set into disjoint groups
- Formally, given a set S, a partition $P = \{ P_1, \dots, P_n \}$ is
 - A set of non-empty subsets of S
 - i.e. for all i, $\{\} \neq P_i \subseteq S$
 - Such that
 - Every element of S is a member of exactly one element of P
 - Or equivalently, the P_i are
 - Disjoint

$$P_i \cap P_j = \{\} \text{ for all } i \neq j$$

$$S = \bigcup_{P_i \in P} P_i$$

Partitions and equivalence relations

Remember equivalence relations?

- Relation (call it ≡)
 - Over some set S
- That has the properties of
 - Reflexivity
 - $x \equiv x$
 - Transitivity
 - If $x \equiv y$ and $y \equiv z$
 - Then $x \equiv z$
 - Symmetry
 - If $x \equiv y$, then $y \equiv x$
- Divide elements into equivalence classes
 - Two elements, $x, y \in S$, are in the same equivalence class iff $x \equiv y$
 - Equivalence class of x is $[x] = \{ y \mid x \equiv y \}$

Partitions and equivalence relations are **interchangeable** ideas

- Equivalence classes form a partition of S
- Given a partition, we can construct an equivalence relation from it
 - $-a \equiv b$ iff a and b are in the same set within the partition

Connected components

- Connectivity in an undirected graph is an equivalence relation
 - $-a \equiv b$ iff there is a path between a and b
- Its equivalence classes are essentially its connected components
- They form a partition of the nodes
 - Every node belongs to exactly one connected component

Connected components

 How do we compute the partition?

LabelConnectedComponents()

component = 0

for each node in graph
if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++


```
LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
    LCCVisit(node, component)
    component++
```


LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++


```
LabelConnectedComponents()

component = 0

for each node in graph
  if node not visited
    LCCVisit(node, component)
    component++
```


LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++


```
LabelConnectedComponents()

component = 0

for each node in graph
  if node not visited
    LCCVisit(node, component)
    component++
```


LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

LabelConnectedComponents()

component = 0

for each node in graph
 if node not visited
 LCCVisit(node, component)
 component++

Testing if two nodes are connected

This lets us test connectivity in constant time

- Just look up the component numbers of the two nodes
- And check if they're the same

Testing if two nodes are connected

- Oh, your boss called
- They want to add an edge

You don't mind do you?

 How do we modify this to allow us to incrementally merge equivalence classes?

Basic idea:

Remember that component 0
is "really" component 1

Basic idea:

- Remember that component 0
 is "really" component 1
- Then don't compare the component numbers directly
- Compare the "real" component numbers

12

Example:

- Node 0 and node 11 are connected
 - Because node 0 is in component 0
 - But component 0 is really component 1
 - And node 11 is also in component 1

12

Computing connected components

- In fact, we can use this idea to replace the depth-first search
- And compute the connected components directly

2 8

Note: this is going to be hand-wavy, but we'll make the algorithms precise later

Computing connected components

Here's the idea

Computing connected components

Here's the idea

Start by assuming every node is in its own connected component

Here's the idea

- Start by assuming every node is in its own connected component
- Pick an edge

Here's the idea

- Start by assuming every node is in its own connected component
- Pick an edge
- Merge the components of the two nodes
 - By remembering that one
 - Is in the component of the other

Pick another edge

- Pick another edge
- Merge again

- Now we have that
 - 1 is really in 4's component
 - 3 is really in 2's component

Pick another edge

- Pick another edge
- Merge again
 - 4 is now in 2's component
 - But 1 is in 4's component
 - So really, 1, 3, and 4 are all in 2's component

- And we end up with arrows
- From all the nodes in a connected component

- And we end up with arrows
- From all the nodes in a connected component
- Flowing to a single node in each component

- And we end up with arrows
- From all the nodes in a connected component
- Flowing to a single node in each component
- These are called the representatives of the components

Each component forms a tree

- With arrows pointing from children to parents
- With the representative as its root
- So they collectively form a forest

To decide if two nodes are connected

To decide if two nodes are connected

- Follow the arrows to their representatives
 - Easy to do because each node only has one edge pointing out
 - Except representatives, who have none
- Check if they have the same representative

The cool thing is

To merge two components

The cool thing is

- To merge two components
- All we have to do is add a pointer
 - From one component's representative
 - To the other's

The cool thing is

- To merge two components
- All we have to do is add a pointer
 - From one component's representative
 - To the other's
- Now they both have the same representative

- This is a handwavy version of a general algorithm
- Called the union-find algorithm
- For working with partitions of sets

12

6

```
class SetElement {
   SetElement parent;
}
```

- Keep a parent pointer for each element of the set
 - Points to its parent in the tree
 - Representatives are roots, so parent is null
 - Or it's often set to itself
 - Which saves some work later

12

6

 We start with all the elements in their own groups in the partition

- We start with all the elements in their own groups in the partition
- So they're all their own representatives

12

To union (merge) two groups together

- Just make the representative of one
- Be the parent of the representative of the other

12

To union (merge) two groups together

- Just make the representative of one
- Be the parent of the representative of the other

- Just make the representative of one
- Be the parent of the representative of the other

- Just make the representative of one
- Be the parent of the representative of the other

- Just make the representative of one
- Be the parent of the representative of the other

- Just make the representative of one
- Be the parent of the representative of the other

(slow version)

```
// Find the representative // Merge the groups of a
// for e's group
Find(SetElement e) {
 while (e.parent != null)
   e = e.parent;
 return e;
```

```
// and b together
Union(SetElement a, SetElement b)
 ar = Find(a);
  br = Find(b);
 if (ar != br)
   ar.parent = br;
```

Complexity analysis

```
// Find the representative
// for e's group
Find(SetElement e) {
 while (e.parent != null)
   e = e.parent;
 return e;
```

```
// Merge the groups of a
 // and b together
 Union(SetElement a, SetElement b)
   ar = Find(a);
   br = Find(b);
   if (ar != br)
    ar.parent = br;
```

Complexity analysis

```
// Find the representative
// for e's group

Find(SetElement e) {
    while (e.parent != null)
        e = e.parent;
    return e;
}
```

```
// Merge the groups of a
// and b together
Union(SetElement a, SetElement b)
  if (ar != br)
    ar.parent = br;
```

The worst-case running time of each algorithm is the height of the tree

Complexity analysis

```
// Find the representative
// for e's group
Find(SetElement e) {
  while (e.parent != null)
        e = e.parent;
  return e;
}
```

```
// Merge the groups of a
// and b together
Union(SetElement a, SetElement b)
  if (ar != br)
   ar.parent = br;
```

But the worst-case height of the tree is the number of nodes :-(

How do we make it better?

How do we make it better?

- Balance the tree!
- Keep track of the heights of the trees
- Always add the shorter one to the bigger one

Union by rank (height)

```
class SetElement {
   SetElement parent;
   int rank;
}
```

```
Union(SetElement a, SetElement b)
 ar = Find(a);
 br = Find(b);
 if (ar == br) return;
 if (ar.rank < br.rank)
   ar.parent = br;
 else if (ar.rank > br.rank)
   br.parent = ar;
 else {
   br.parent = ar;
   ar.rank = ar.rank + 1;
```

Complexity

- Union by rank guarantees the trees are balanced
- So their **heights** are $O(\log n)$
- And so the complexities are Union and Find are also $O(\log n)$

But it turns out we can actually do better

Saving redundant work

- If we call Find on the same node twice
- We run up the chain twice
- Why not cache the original result?

Path compression

- Just update the parent of the element
- To point directly at the representative
- And while you're at it, update all the nodes on the path to the representative too!

```
Find(SetElement a) {
  if (a.parent == null)
    return a;
  a.parent = Find(a.parent);
  return a.parent;
}
```

Complexity analysis

• The bad news is that Find is still O(log n) in the worst case

So what's the good news?

Amortized complexity analysis

- It's only $O(\log n)$ the first time you do a lookup on a node
- After that, it's constant time!
 - At least until you do another merge

- Tarjan proved that the amortized complexity of both union and find is $O(\alpha(n))$
- Great! What's $\alpha(n, n)$?

The Ackermann function

There's this function called the **Ackermann** function:

$$A(m,n) = \begin{cases} n+1, & \text{if } m=0\\ A(m-1,1), & \text{if } m>0 \text{ and } n=0\\ A\big(m-1,A(m,n-1)\big), & \text{otherwise} \end{cases}$$

The Ackermann function

Here's Wikipedia's table of values for Ackermann's function:

Values of A(m, n)	٧	'al	ues	of	A	m.	n))
-------------------	---	-----	-----	----	---	----	----	---

m\n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n + 2 = 2 + (n + 3) - 3
2	3	5	7	9	11	$2n + 3 = 2 \cdot (n+3) - 3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13	65533	2 ⁶⁵⁵³⁶ – 3	$2^{2^{65536}} - 3$	$2^{2^{2^{65536}}} - 3$	$2^{2^{-2}} - 3$
-	$=2^{2^2}-3$	$=2^{2^{2^2}}-3$	$=2^{2^{2^{2^{2}}}}-3$	$=2^{2^{2^{2^{2^{2}}}}}-3$	$=2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	n+3

It grows really really fast.

- $\alpha(n)$ is the inverse of A(n, n)
- It grows really really slowly

m\n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n + 2 = 2 + (n + 3) - 3
2	3	5	7	9	11	$2n + 3 = 2 \cdot (n+3) - 3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13	65533	2 ⁶⁵⁵³⁶ – 3	2 - 5	$2^{2^{2^{65536}}} - 3$	$2^{2^{-2}} - 3$
	$=2^{2^2}-3$	$=2^{2^{2^2}}-3$	$=2^{2^{2^{2^{2}}}}-3$	$=2^{2^{2^{2^{2^{2}}}}}-3$	$=2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	n+3

- It grows comically slowly
- α (the number of subatomic particles in the universe) < 4

m\n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n + 2 = 2 + (n + 3) - 3
2	3	5	7	9	11	$2n + 3 = 2 \cdot (n+3) - 3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13	65533	2 ⁶⁵⁵³⁶ – 3	2 - 5	$2^{2^{2^{65536}}} - 3$	$2^{2^{-2}} - 3$
	$=2^{2^2}-3$	$=2^{2^{2^2}}-3$	$=2^{2^{2^{2^{2}}}}-3$	$=2^{2^{2^{2^{2^{2}}}}}-3$	$=2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	n+3

Did I mention it grows slowly?

m\n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n + 2 = 2 + (n + 3) - 3
2	3	5	7	9	11	$2n + 3 = 2 \cdot (n+3) - 3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13	65533	2 ⁶⁵⁵³⁶ – 3	2 - 5	$2^{2^{2^{65536}}} - 3$	$2^{2^{-2}} - 3$
	$=2^{2^2}-3$	$=2^{2^{2^2}}-3$	$=2^{2^{2^{2^{2}}}}-3$	$=2^{2^{2^{2^{2^{2}}}}}-3$	$=2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	n+3

So slowly that it might as well be constant

m\n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n + 2 = 2 + (n + 3) - 3
2	3	5	7	9	11	$2n + 3 = 2 \cdot (n+3) - 3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13	65533	2 ⁶⁵⁵³⁶ – 3	$2^{2^{65536}} - 3$	$2^{2^{2^{65536}}} - 3$	$2^{2^{-2}} -3$
	$=2^{2^2}-3$	$=2^{2^{2^2}}-3$	$=2^{2^{2^{2^2}}}-3$	$=2^{2^{2^{2^{2^{2}}}}}-3$	$=2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2$	$\underbrace{n+3}$

Amortized complexity analysis

- Tarjan proved that the amortized complexity of both union and find is $O(\alpha(n))$
- So for all practical purposes, it's O(1)
- That's pretty cool

Incremental connected components

- Add parent and rank fields to each node
- For each edge (u,v)Union(u, v)
- To test whether two nodes are connected check Find(u) == Find(v)

Amortized complexity

• For each edge (u,v)
Union(u, v) $O(\alpha(V)E) \cong O(E)$

 To test whether two nodes are connected check

Find(u) == Find(v)

 $O(\alpha(V)) \cong O(1)$

Amortized complexity

• For each edge (u,v)
Union(u, v) $O(\alpha(V)E) \cong O(E)$

 To test whether two nodes are connected check
 Find(u) == Find(v)

$$O(\alpha(V)) \cong O(1)$$

 So we can compute connected component incrementally and still do it in linear time

Oh crap! I don't understand the Ackermann function at all! Do I need to know this for the quiz??!?!?

- No
- You just need to understand
 - The union-find algorithm with union by rank and path compression
 - That it's effectively O(1) amortized time
 - Why you might want to keep track of partitions on a set
 - E.g. to compute connected components or equivalence classes

Reading

• Read Chapter 21, sections 1-3