

Applied Statistics

Introduction to Probability Theory

Release FS24

Why probability theory?

"The most important questions of life are, for the most part, really only problems of probability." – Pierre Simon de Laplace

(xkcd.com)

Why probability theory?

- Statistics is closely linked to probability theory
- Aim of probability theory: modeling phenomena with uncertainty
- Aim of statistics: performing inference for probabilistic models

Statistics and probability theory

- Probability theory:
 - modeling systems with uncertainty
 - predicting data generated by such a system
- Statistics:
 - collecting data
 - describing a model
 - inferring model parameters

Statistics and probability theory

(Source: Meier (2014))

Learning objectives

- ► Know the basic concepts of probability: event, sample space, probability measure
- Draw and read Venn diagrams
- Calculate a binomial coefficient and know its application

Probability theory

- Experiments are always "random": under "same conditions", we get different results
- Reasons for randomness:
 - Inherent randomness: e.g. the noise of a signal is by definition not deterministic
 - ► Incomplete control of experimental conditions: e.g. due to natural variation between individuals (even within individuals)
 ⇒ not fully controllable experimental environment
- Aim of probability theory: describe variability of the results

Important concepts

Definition (Elementary event, event, sample space, σ -algebra)

An **elementary event** ω is a possible outcome of an experiment. The **sample space** Ω is the set of all elementary events. An **event** A is a subset of the sample space $(A \subset \Omega)$. The σ -algebra $\mathcal F$ is the collection of all events considered.

Examples:

- 1. Rolling a die. Sample space: all possible numbers we can get, hence $\Omega = \{1, 2, \dots, 6\}$. Possible event "die shows an even number": $A = \{2, 4, 6\}$.
- 2. Sampling one person from this class. Elementary event: sampling one particular person, e.g. the lecturer. Example of an event: sampling a man.

Venn diagram: visualization of events

Events and set operations visualized with **Venn diagrams**:

De Morgan's laws

Proposition (De Morgan's laws)

Let A and B be events. Then, $(A \cap B)^c = A^c \cup B^c$ and $(A \cup B)^c = A^c \cap B^c$.

Probability

Definition (Probability)

Let Ω be a sample space and \mathcal{F} a σ -algebra. A **probability measure** is a function $P:\mathcal{F}\to [0,1]$ that assigns a value between 0 and 1 to an event $A\subset \Omega$: $P(A)\in [0,1]$.

It obeys the following properties (axioms of Kolmogorov):

- i) $0 \le P(A) \le 1$ for every event $A \subset \Omega$
- ii) $P(\Omega) = 1$
- iii) $P(A \cup B) = P(A) + P(B)$ for disjoint (mutually exclusive) events A and B.

Probability

Examples (continued):

- 1. Rolling a die: for each number $\omega \in \{1, ..., 6\}$, the probability is $P(\{\omega\}) = \frac{1}{6}$. The probability to get an even number is $P(A) = P(\{2\} \cup \{4\} \cup \{6\}) = P(\{2\}) + P(\{4\}) + P(\{6\}) = \frac{1}{2}$.
- 2. Sampling one person from this class room (n people): the probability of sampling the lecturer is $P(\{\omega\}) = P(\{JW\}) = \frac{1}{n}$. The probability of sampling a man depends on the number of men in this room.

Probability of unions

As a natural consequence of the axioms of Kolmogorov, we can calculate the probability of unions in general.

Proposition (Probability of unions)

Let A and B be events. Then, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. More general: let A_1, A_2, \ldots, A_n be events. Then,

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i_1=1}^n P(A_{i_1}) - \sum_{i_1=1}^{n-1} \sum_{i_2=i_1+1}^n P(A_{i_1} \cap A_{i_2}) + \sum_{i_1=1}^{n-2} \sum_{i_2=i_1+1}^{n-1} \sum_{i_3=i_2+1}^n P(A_{i_1} \cap A_{i_2} \cap A_{i_3}) - \ldots$$

Interpretation of probabilities

Frequentist interpretation: P(A) is the relative frequency of event A in "infinitely many" experiments

Relative frequency of event A = "head" after tossing a coin n times

Discrete probability spaces

- Assume finite (or countable) sample space: $\Omega = \{\omega_1, \omega_2, \dots\}$
- ▶ Probability of an event $A \subset \Omega : P(A) = \sum_{i:\omega_i \in A} P(\{\omega_i\})$
- Normalization: $P(\Omega) = \sum_{i \geq 1} P(\{\omega_i\}) = 1$
- ▶ If Ω is *finite*, we often have $P\left(\{\omega_i\}\right) = 1/|\Omega|$, i.e. every elementary event is equally probable. (Examples: rolling a die, sampling a person)

$$\implies$$
 P(A) = $\frac{\#\text{favorable cases}}{\#\text{possible cases}} = \frac{|A|}{|\Omega|}$

This is called a Laplace experiment.

Combinatorics

- Combinatorics is the Art of Counting
- Binomial coefficient counts number of possibilities to choose k out of n elements without replacement:

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 2 \cdot 1}$$

$$\qquad \qquad \binom{n}{k} = \binom{n}{n-k} \qquad (0 \le k \le n)$$

$$\binom{n}{0} = \binom{n}{n} = 1$$

Example

Probability to get 17 times head when flipping 50 times a coin:

$$\frac{|\#17\mathsf{head}|}{|\Omega|} = \frac{\binom{50}{17}}{2^{50}} \approx 0.0087$$

Probability that at least 2 out of 23 people have the same birthday: What do you guess?

 \hookrightarrow see Problem 2.13?

References

Lukas Meier. Statistik und Wahrscheinlichkeitsrechnung. Lecture notes, 2014.