1 Derivada de Schwarz

Definição 1.1. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^{∞} . A derivada de Schwarz de f é a função S_f definida por

$$S_f(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2$$

para todo x tal que $f'(x) \neq 0$.

Exemplo 1.2. 1. Se $f(x) = F_{\mu}(x)$, então $S_f(x) = \frac{-6}{(1-2x)^2} < 0$ para todo $x \neq \frac{1}{2}$.

- 2. Se $f(x) = e^x$, então $S_f(x) = -\frac{1}{2} < 0$ para todo x.
- 3. Se $f(x) = \sin x$, então $S_f(x) = -1 \frac{3}{2}(\tan^2 x) < 0$ para todo x.

Lema 1.3. Se $S_f < 0$ e x_0 é ponto de mínimo local de f', então $f'(x_0) \le 0$.

Demonstração. Se $f'(x_0) \neq 0$, então $S_f(x_0) = \frac{f'''(x_0)}{f'(x_0)} - \frac{3}{2} \frac{f''(x_0)}{f'(x_0)} < 0$. Sendo x_0 ponto de mínimo local de f', temos que $f''(x_0) = 0$ e $f'''(x_0) \geq 0$ e, portanto, $f'(x_0) < 0$.

Lema 1.4. Se $S_f < 0$ e a < b < c são pontos fixos de f, com $f'(b) \le 1$, então f possui ponto crítico em (a,b).

Demonstração. Pelo Teorema do Valor Médio, existem $r \in (a,b)$ e $s \in (b,c)$ tais que f'(r) = f'(s) = 1. Observe que f' restrita ao intervalo [r,s] possui mínimo global, pois é contínua. Como $b \in (r,s)$ e $f'(b) \leq 1$, temos que f' possui mínimo local em (r,s). Utilizando Lema anterior e o Teorema do Valor Intermediário, a demonstração está concluída.

Lema 1.5. Se $S_f < 0$ e a < b < c < d são pontos fixos de f, então f possui ponto crítico em (a, d).

Demonstração. Se $f'(b) \leq 1$ ou $f'(c) \leq 1$, o resultado é verdadeiro pelo Lema anterior. Se f'(b) > 1 e f'(c) > 1, existem $r, t \in (b, c)$ tais que r < t, f(r) > r e f(t) < t. Pelo Teorema do Valor Médio, existe $s \in (r, t)$ tal que f'(s) < 1. Portanto, f' possui mínimo local em (b, c). Utilizando Lema 1.3 e o Teorema do Valor Intermediário, a demonstração está concluída.

Lema 1.6. Se $S_f < 0$, então $S_{f^n} < 0$ para todo $n \ge 1$.

Demonstração. Se $S_f < 0$ e $S_g < 0$, então $S_{f \circ g} < 0$. De fato,

$$S_{f \circ g}(x) = \frac{(f \circ g)'''(x)}{(f \circ g)'(x)} - \frac{3}{2} \left(\frac{(f \circ g)''(x)}{(f \circ g)'(x)} \right)^2$$
$$= S_f(g(x))(g'(x))^2 + S_g(x) < 0$$

para todo x tal que $(f \circ g)'(x) \neq 0$. Por indução, $S_{f^n} < 0$ para todo $n \geq 1$.

Lema 1.7. Se f possui finitos pontos críticos, então f^n possui finitos pontos críticos para todo $n \ge 1$.

Demonstração. Pelo Teorema do Valor Médio, f possui ponto crítico entre dois elementos de $f^{-1}(c)$. Como f possui finitos pontos críticos, $f^{-1}(c)$ é finito. Além disso, se $f^{-k}(c)$ é finito, então $f^{-(k+1)}(c) = \{x \in \mathbb{R} : f(f^k(x)) = c\}$ é finito pois $f^{-1}(c)$ é finito e, por hipótese de indução, $f^{-k}(c_i)$ é finito para cada $c_i \in f^{-1}(c)$. Portanto, $f^{-n}(c)$ é finito para todo $n \geq 1$.

Desse modo, $(f^n)'(x) = \prod_{k=0}^{n-1} f'(f^k(x)) = 0$ se e somente se $f^k(x)$ é ponto crítico de f para algum $k = 1, \ldots, n-1$. Assim, o conjunto de pontos críticos de f^n é finito pois é dado pela união dos conjuntos $\bigcup_{k=0}^{n-1} f^{-k}(c_i)$, onde c_i é ponto crítico de f.

Lema 1.8. Se $S_f < 0$ e f possui finitos pontos críticos, então f^n possui finitos pontos fixos para todo $n \ge 1$.

Demonstração. Se f^n possui infinitos pontos fixos para algum n > 1, então f^n possui infinitos pontos críticos de acordo com o Lema 1.5. Essa implicação contradiz o Lema anterior. Desse modo, f^n possui finitos pontos fixos para todo $n \ge 1$.

Teorema 1.9 (Singer). Se $S_f < 0$ e f possui n pontos críticos, então f possui no máximo n+2 órbitas periódicas não repulsoras.

Demonstração. Sejam p um ponto periódico não repulsor de f de período m e $g=f^m$. Desse modo, p é um ponto fixo não repulsor de g, ou seja, $|g'(p)| \leq 1$. Defina K o maior intervalo que contém p e que está contido em $\{x \in \mathbb{R} : \lim_{k \to \infty} g^k(x) = p\}$, a base de atração de p.

Suponha que K é limitado e |g'(p)| < 1. Vamos mostrar que K é aberto, $g(K) \subset K$ e g preserva os pontos extremos de K.

Como |g'(p)| < 1, existe uma vizinhança V de p contida na base de atração p. Se $x \in K$, existe n tal que $f^n(x) \in V$. Sendo f^n contínua, $(f^n)^{-1}(V)$ é um aberto em K que contém x e, portanto, K é aberto.

Seja K=(a,b). Se $g(a)\in K$, existe uma vizinhança V de g(a) contida em K. Sendo g contínua, $g^{-1}(V)$ é uma vizinhança de a contida na base de atração de p, o que contraria o fato de K ser maximal. Analogamente, $g(b)\notin K$. Como $g(K)\subset K$ e g é contínua, temos que $g(\{a,b\})\subset \{a,b\}$

Desse modo, ocorre um dos três casos abaixo. Vamos mostrar que em cada caso, g possui ponto crítico em K.

- a) Se g(a) = a e g(b) = b, g possui ponto crítico em K pelo Lema 1.4.
- b) Se g(a) = b e g(b) = a, considerando $h = g^2$ e utilizando novamente o Lema 1.4, h possui ponto crítico em K. Como $g(K) \subset K$, g possui ponto crítico em K.

c) Se g(a) = g(b), g possui ponto crítico em K pelo Teorema do Valor Médio.

Suponha que K é limitado e |g'(p)| = 1. Pelo Lema anterior, g possui finitos pontos fixos e, portanto, são isolados.

Se g'(p)=1 e, para x numa vizinhança de p, f(x)>x quando x>p e f(x)< x quando x< p, então g'(p)=1 é mínimo local de g' maior que zero, o que contradiz o Lema 1.3. Se g'(p)=-1, basta considerar $h=g^2$ e obter o mesmo resultado. Portanto, p é atrator em pelo menos 1 lado. Desse modo, K é um intervalo não trivial, $g(K)\subset K$ e g preserva os pontos extremos de K. Assim, é possível concluir de maneira análoga que g possui ponto crítico em K.

Portanto, se K é limitado e $|g'(p)| \leq 1$, então g possui ponto crítico $x_0 \in K$. Pela Regra da Cadeia, $g'(x_0) = (f^m)'(x_0) = \prod_{k=0}^{m-1} f'(f^k(x_0)) = 0$ e, desse modo, $f^i(x_0)$ é ponto crítico de f para algum $i = 0, \ldots, m-1$.

Não é possível obter a mesma conclusão se K não é limitado. Mas, observando que existem no máximo dois intervalos desse tipo, a demonstração está concluída.

Corolário 1.10. $F_{\mu}(x) = \mu x(1-x), \ \mu > 0, \ possui no máximo 1 órbita periódica não repulsora.$

Demonstração. Pelo Teorema anterior, F_{μ} possui no máximo 3 órbitas periódicas não repulsoras. Como $\lim_{n\to\infty} |F_{\mu}^n(x)| = \infty$ se |x| é suficientemente grande, temos que se K é como na demonstração anterior, então é limitado e a demonstração está concluída.

Se $F_4(x) = 4x(1-x)$, $x \in [0,1]$, então o ponto crítico de F_4 é eventualmente fixo em 0, que é repulsor. Pelo Corolário acima, todas as órbitas periódicas de F_4 são repulsoras. Utilizando o fato que $S_{F_4} < 0$ é possível mostrar mais sobre F_4 . Por exemplo, é possível mostrar que F_4 é caótica.

Se $q = \frac{1}{4}$ e $p = \frac{3}{4}$, então F(q) = p e F(p) = p. Defina J = [q, p) e $J' = \left(q, \frac{1}{2}\right) \cup \left(\frac{1}{2}, p\right)$. Observe que $F_4(J') = (p, 1)$, ou seja, $F_4(x) \notin J$ quando $x \in J'$.

Afirmação. Se $x \in J'$, existe $n \ge 2$ tal que $F_4^n(x) \in J$.

Demonstração. Como $F_4^2(J')=(0,p)$, basta mostrar que se $x\in(0,q)$, então $F_4^n(x)\in J$ para algum $n\geq 1$.

Seja $x \in (0,q)$ e suponha que $F_4^n(x) < q$ para todo $n \ge 1$. Observando que F_4 é estritamente crescente em (0,q], a sequência $(F_4^n(x))_n$ é monótona limitada e, portanto, possui um limite $L \le q$. Sendo F_4 contínua,

$$L = \lim_{n \to \infty} F_4^n(x) = \lim_{n \to \infty} F_4^{n+1}(x) = \lim_{n \to \infty} F_4(F_4^n(x)) = F_4(L)$$

o que é um absurdo. Portanto, a demonstração está concluída.

Com base na afirmação anterior, podemos definir

$$\phi(x) = \min\{n \ge 2 : F_4^n(x) \in J\}$$

para todo $x \in J'$, ou seja, $\phi(x)$ é a menor iterada de F_4 em x que retorna para J. Assim, é possível construir a função R, denominada como função de primeiro retorno de F_4 em J. Precisamente, $R: J' \to J$ é dada por

$$R(x) = F_4^{\phi(x)}(x)$$

Também podemos definir também os intervalos $I_n^- = \{x \in (q, \frac{1}{2}) : \phi(x) = n\}$ e $I_n^+ = \{x \in (\frac{1}{2}, p) : \phi(x) = n\}$ para todo $n \ge 2$. Esses intervalos possuem propriedades que estão retratadas na Afirmação abaixo.

Afirmação. Para todo $n \geq 2$,

- i. $I_n^- \notin da \ forma \ (l_n, r_n], \ (F_4^n)'(I_n^-) < 0, \ F_4^n(l_n) = p, \ F_4^n(r_n) = q \ e \ r_n = l_{n+1}.$
- ii. $I_n^+ \notin da \text{ form } a[l_n, r_n), (F_4^n)'(I_n^+) > 0, F_4^n(l_n) = q, F_4^n(r_n) = p e l_n = r_{n+1}.$

Demonstração. Se T é o Tent Map, temos que T e F_4 são conjugados topologicamente pelo difeomorfismo crescente $\tau(x) = \sin^2\left(\frac{\pi}{2}x\right)$, ou seja, $\tau \circ T = F_4 \circ \tau$ em [0,1]. Desse modo, bastar demonstrar um resultado análogo para T. Vamos provar a afirmação ii. A afirmação i segue por simetria.

Inicialmente, podemos definir $J = \left[\frac{1}{3}, \frac{2}{3}\right)$ pois $T\left(\frac{1}{3}\right) = \frac{2}{3}$ e $T\left(\frac{2}{3}\right) = \frac{2}{3}$. Além disso, é fácil ver por indução que $T^n: \left[\frac{1}{2}, \frac{1}{2} + \frac{1}{2^n}\right] \to [0, 1]$ é um difeomorfismo linear crescente para todo $n \geq 2$. Observe que $T^n\left(\frac{1}{2} + \frac{1}{2^{n+1}}\right) = \frac{1}{2}$.

Desse modo, existem $l_n \in \left(\frac{1}{2}, \frac{1}{2^{n+1}}\right)$ e $r_n \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n}\right)$ tais que $T^n(l_n) = \frac{1}{3}$ e $T^n(r_n) = \frac{2}{3}$. Definindo $I_n^+ = [l_n, r_n)$ temos que $T^n(x) \in J$ se o somente se $x \in I_n^+$.

Fazendo a mesma construção para T^{n+1} , temos que $l_n, r_{n+1} \in \left(\frac{1}{2}, \frac{1}{2^{n+1}}\right)$ e $T^{n+1}(l_n) = T(T^n(l_n)) = T\left(\frac{1}{3}\right) = \frac{2}{3} = T^{n+1}(r_{n+1})$. Desse modo $l_n = r_{n+1}$.

Afirmação. Se $S_f < 0$ e f' não se anula no intervalo limitado I, então o mínimo de f' em I ocorre em algum ponto extremo de I.

Demonstração. Como $S_f = S_{-f}$, podemos considerar f'(I) > 0 sem perda de generalidade. Se f' possui um ponto de mínimo x_0 no interior de I, então $f'(x_0) \leq 0$ de acordo com o Lema 1.3, o que é um absurdo.

Afirmação. |R'(x)| > 1 para todo $x \in J'$.

Demonstração. Sejam $I_n^+ = [l_n, r_n)$ e $W_n = (\frac{1}{2}, l_n)$. De acordo com a Afirmação anterior, para mostrar que $(F_4^n)'(I_n^+) > 1$ é suficiente mostrar que $(F_4^n)'(l_n) > 1$ e $(F_4^n)'(r_n) > 1$.

Observe que $F_4^n(I_n^+) = J$ e $F_4^n(W_n) \supset (0,q)$ para todo $n \geq 2$. Como os tamanhos de I_n^+ e W_n são menores que $\frac{1}{4}$, o Teorema do Valor Médio afirma que existem $x_k' \in W_k$ e $x_k \in (l_n, r_n)$ tais que $(F_4^n)'(x_k') > 1$ e $(F_4^n)'(x_k) > 1$. Como $l_n \in (x_k', x_k)$ e $(F_4^n)'$ não pode assumir mínimo local positivo em (x_k', x_k) , temos que $(F_4^n)'(l_n) > 1$.

Por outro lado, $(F_4^n)'(r_n) = F_4'(F_4^{n-1}(r_n))(F_4^{n-1})'(r_n) = F_4'(q)(F_4^{n-1})'(l_{n-1}) > 1$, pois ambos os termos são maiores que 1.

A demostração de que $(F_4^n)'(I_n^-)<-1$ é feita de maneira análoga. Desse modo, |R'(x)|>1 para todo $x\in J'$.

Afirmação. O conjunto de pontos periódicos de F_4 é denso em [0,1].

Demonstração. Seja U um intervalo aberto contido em [0,1]. Se $F_4^n(U) \supset U$, para algum $n \geq 1$, o resultado está demonstrado.

Como $|F_4'(x)| > 1$ para todo $x \notin J$, existe $U_0 \subset U$ e $n \ge 1$ tal que $V = F_4^n(U_0) \subset J$. Como |R'(x)| > 1 para todo $x \in J'$, existe $V_0 \subset V$ e $m \ge 1$ tal que $R^m(V_0)$ contém algum ponto de descontinuidade de R. Portanto, existe $k \ge 1$ tal que $p \in F_4^k(V_0)$. Como é possível estender qualquer vizinhança de p por iteração de F_4 até cobrir [0,1], existe $l \ge 1$ tal que $F_4^{k+l}(V_0) \supset [0,1]$ e o resultado é imediato.

Por fim, é possível mostrar, utilizando as ideias da demonstração da Afirmação anterior, que F_4 é topologicamente transitiva e depende sensivelmente das condições iniciais e, portanto, é caótica.

2 Bifurcação

Teorema 2.1 (Função Implícita). Seja $F: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe \mathcal{C}^{∞} e suponha que

1.
$$F(x_0, y_0) = c$$

2.
$$F_y(x_0, y_0) \neq 0$$

Então existem uma vizinhança I de x_0 e uma função $f:I\to\mathbb{R}$ de classe \mathcal{C}^∞ tal que

1.
$$f(x_0) = y_0$$

2.
$$F(x, f(x)) = c \text{ para todo } x \in I$$

3.
$$f'(x) = -\frac{F_x(x)}{F_y(x)}$$
 para todo $x \in I$