

E62-433T20S User Manual

433MHz 100mW Wireless Module

目录

1. OVERVIEW	3
1.1 Introduction	3
1.2 FEATURES.	
2. SPECIFICATION AND PARAMETER	4
2.1 Limit parameter	4
2.2 OPERATING PARAMETER	
3 SIZE AND PIN DEFINITION	5
4 CONNECT TO MCU	6
5 FUNCTION DESCRIPTION	7
5.1 RESET	7
5.2.1 Indication of UART output	7
5.2.2 Indication of wireless transmitting	7
5.2.3 Configuration procedure of module	
5.6.4 Notes for AUX	8
6.OPERATING MODE	9
6.2 Transmission mode (Mode 0)	10
6.3. CONFIGURE MODE (MODE 1)	10
7.INSTRUCTION FORMAT	10
7.1 Default parameter	11
7.2 READING OPERATING PARAMETERS	11
7.3 READING VERSION NUMBER	11
7.4 PARAMETER SETTING INSTRUCTION.	11
8. HARDWARE DESIGN	14
9 FAQ	15
9.1 COMMUNICATION RANGE IS TOO SHORT	15
9.2 MODULE IS EASY TO DAMAGE	15

9.3 BER(BIT ERROR RATE) IS HIGH.	15
10 PRODUCTION GUIDANCE	15
11 E62 SERIES	16
12 ANTENNA RECOMMENDATION	16
13.PACKAGE FOR BATCH ORDER	17
REVISION HISTORY	18
ABOUT US	18

1. Overview

1.1 Introduction

E62-433T20S is a full-duplex wireless transceiver module with TTL level output, operates at 425-450MHz (default: 433MHz), transparent transmission is available. Module features FHSS (Frequency-Hopping Spread Spectrum). During the transmitting procedure, both sides will perform frequency-hopping operation automatically in at most 52 channels on the basis of frequency-hopping logic (the number of FHSS channel and sequence are configurable.), which greatly improves the anti-

interference performance. The 433M frequency hopping technology is in the front row of this industry.

Module features TDD (Time Division Duplex). User can transmit data while receiving, not have to wait for the end of receiving. The module can transmit data continuously with some particular combination of air data rate (like air data rate is 64k, 9600bsp) and baud rate. Under this circumstance, there is no limitation for the size of the data user can transmit in one transmission operation and it achieve a very low latency communication link.

The module features FEC (Forward Error Correction) algorithm, which ensure its high coding efficiency & good correction performance. In the case of sudden interference, it can correct the interfered data packets proactively, so that the reliability & transmission range are improved correspondingly. But without FEC, those data packets can only be dropped.

1.2 Features

- Communication distance tested is up to 1km
- Maximum transmission power of 100mW, software multi-level adjustable;
- Support the global license-free ISM 433MHz band;
- Support air date rate of 16kbps ~ 128kbps;
- Support advanced FHSS frequency hopping, improve anti-interference performance.
- Based on TDD, time division full duplex bidirectional pass-through can be realized.
- Low power consumption for battery supplied applications;
- Support 3.3V~5.2V power supply, power supply over 5.0V can guarantee the best performance;
- Industrial grade standard design, support -40 ~ 85 °C for working over a long time;
- IPEX/external/spring, user can choose accordingly.

1.3 Application

- Home security alarm and remote keyless entry;
- Smart home and industrial sensors;
- Wireless alarm security system;
- Building automation solutions;

- Wireless industrial-grade remote control;
- Health care products;
- Advanced Meter Reading Architecture(AMI);
- Automotive industry applications.

2. Specification and parameter

2.1 Limit parameter

Main parameter	Performance		Remarks
	Min.	Max.	
Power supply (V)	0 5.2		Voltage over 5.2V will cause permanent
	U	3.2	damage to module
Blocking power (dBm)	- 10		Chances of burn is slim when modules
	-	10	are used in short distance
Operating temperature (°C)	-40	85	-

2.2 Operating parameter

N	Performance			Remark	
		Min	Тур.	Max.	Kelikik
Oper	rating voltage (V)	3.3	5.0	5.2	≥5.0 V ensures output power
Comm	unication level (V)		3.3		For 5V TTL, it may be at risk of
		1	3.3	-	burning down
Operati	ng temperature (°C)	-40	-	85	Industrial design
Operatir	ng frequency (MHz)	425	-	450.5	Support ISM band
Power	Power Transmitting current [mA] consumption Receiving current [mA]		102	-	Instant power consumption
consumption			34	-	-
Turn-off current [μA]		1	4	-	Software is shut down
Max	Tx power (dBm)	19.6	20.0	21.4	-
Receivin	Receiving sensitivity (dBm)			-107	Air data rate is 64kbps
Air	Air data rate (bps)		64k	128k	Controlled via user's programming

Main parameter	Description	Remark
Distance for reference	1000m	Test condition: clear and open area, antenna gain: 5dBi, antenna height: 2.5m, air data rate: 64kbps
TX length	1024 Byte	Internal automatic time division logic subcontracting
Buffer	2048 Byte	Internal Buffer

Modulation	GFSK	-
Communication interface	UART	-
Package	DIP	-
Connector	2.00mm	-
Size 17*30mm		-
Antenna IPEX/EXTERNAL/SPRING		50 ohm impedance

3 Size and pin definition

No.	Name	Direction	Function
1	MO	Input	Work with M1 to decide 4 working modes of module (not suspended, if
1 M0 (weak pull-up)		(weak pull-up)	not used, could be grounded).

2	LOCK	Input	Module synchronization indication: high level indicates that both sides of communication have been synchronized, and data transmission can be carried out; low level indicates that both sides have not been synchronized, at which time data transmission will lead to data loss	
3	RXD	Input	TTL UART inputs, connects to external (MCU, PC) TXD output pin. Can be configured as open-drain or pull-up input.	
4	TXD	Output	TTL UART outputs, connects to external RXD (MCU, PC) input pin. Can be configured as open-drain or push-pull output	
5	AUX	Output	To indicate module 's working status & wakes up the external MCU. During the procedure of self-check initialization, the pin outputs low level. Can be configured as push-pull output (suspending is allowed).	
6	VCC	Input	Power supply: 2.1~5.5V DC	
7	GND	Input	Ground	
8	ANT	Output	Antenna interface (hf signal output pin)	
9	GND	Output/Input	Antenna interface (high frequency signal reference ground)	
10	GND	Output	Ground	
11	GND	Output	Ground	

4 Connect to MCU

No.	Description (STM8L MCU)				
1	The UART module is TTL level., please collect with MCU.				
2	For some MCU works at 5VDC, it may need to add 4-10K pull-up resistor for the TXD & AUX pin.				

5 Function description

5.1 Reset

□When the module is powered, AUX outputs low level immediately, conducts hardware self-check and sets the operating mode based on user's parameters. During the process, the AUX remains low level. After the process completed, the AUX outputs high level and starts to work as per the operating mode combined by M1 and M0. Therefore, users need to wait the AUX rising edge as the start of module's normal work.

5.2 AUX description

- AUX Pin can be used as indication for wireless send & receive buffer and self-check.
- It can indicate whether there are data that are not sent yet via wireless way, or whether all wireless data has been sent through UART, or whether the module is still in the process of self-check initialization.

5.2.1 Indication of UART output

To wake up external MCU

Timing Sequence Diagram of AUX when TXD pin transmits

5.2.2 Indication of wireless transmitting

- Buffer (empty): the internal 256 bytes data in the buffer are written to the RFIC (Auto sub-packaging).
- When AUX=1, the user can input data less than 256 bytes continuously without overflow. Buffer (not empty): when AUX=0, the internal 256 bytes data in the buffer have not been written to the RFIC completely. If the user starts to transmit data at this circumstance, it may cause overtime when the module is waiting for the user data, or transmitting wireless sub package.
- When AUX = 1, it does not mean that all the UART data of the module have been transmitted already, perhaps the last packet of data is still in transmission.

Timing Sequence Diagram of AUX when RXD pin receives

5.2.3 Configuration procedure of module

• Only happened when power-on resetting or exiting sleep mode

Timing Sequence Diagram of AUX when self-check

5.6.4 Notes for AUX

No.	Description							
	For function 1 & function 2 mentioned above, the priority should be given to the one with low level output, which means							
1	if it meets each of any low level output condition, AUX outputs low level, if none of the low level condition is met, AUX							
	outputs high level.							
2.	When AUX outputs low level, it means the module is busy & cannot conduct operating mode checking. Within 1ms since							
2	AUX outputs high level, the mode switch will be completed.							
3	After switching to new operating mode, it will not work in the new mode immediately until AUX rising edge lasts for							
3	2ms. If AUX stays on the high level, the operating mode switch can be affected immediately.							
4	When the user switches to other operating modes from mode 3 (sleep mode) or it's still in reset process, the module will							
4	reset user parameters, during which AUX outputs low level.							

5.7 LOCK description

1	Due to the characteristics of TDD and frequency modulation spread spectrum, the module can operate at the same time.
2	Lock is used to indicate the synchronization situation for both side (transmitter and receiver). When lock is high level, synchronization completed, communication is available. Otherwise when lock is low level, synchronization completed, communication is unavailable (data lost).

6.Operating mode

Contents in below table are the introduction of input status of M1 & M0 and their corresponding mode: •

Mode(0-3)	M1	M0	Mode introduction	Remark
Mode 0 Transmittin	0	0	UART and wireless channel are open, transparent transmission is on.	Both side must be in module 0 when transmitting.
Mode 1 configuratio	0	1	Serial port at fixed 9600bps baud rate, wireless off, configurable parameters	-See detailed explanation of working parameters

6.1 Mode switch

No.	Remarks				
	The user can decide the operating mode by the combination of M1 and M0. The two GPIO of MCU can be used to				
	switch mode. After modifying M1 or M0, it will start to work in new mode 1 ms later if the module is free. If there are				
1	any serial data that are yet to finish wireless transmitting, it will start to work in new mode after the UART transmitting				
1	finished. After the module receives the wireless data & transmits the data through serial port, it will start to work in new				
	mode after the transmitting finished. Therefore, the mode-switch is only valid when AUX outputs 1, otherwise it will				
	delay.				
	For example, in mode 0 or mode 1, if the user inputs massive data consecutively and switches operating mode at the				
2	same time, the mode-switch operation is invalid. New mode checking can only be started after all the user's data process				
2	completed. It is recommended to check AUX pinout status and wait 2ms after AUX outputs high level before switching				
	the mode.				
	If the module switches from other modes to stand-by mode, it will work in stand-by mode only after all the remained				
	data process completed. The feature can be used to save power consumption. For example, when the transmitter works in				
3	mode 0, after the external MCU transmits data "12345", it can switch to sleep mode immediately without waiting the				
	rising edge of the AUX pin, also the user's main MCU will go dormancy immediately. Then the module will transmit all				
	the data through wireless transmission & go dormancy 1ms later automatically, which reduces MCU working time &				
	save power.				
4	Likewise, this feature can be used in any mode-switch. The module will start to work in new mode within 1ms after				

	completing present mode task, which enables the user to omit the procedure of AUX inquiry and switch mode swiftly. For example, when switching from transmitting mode to receiving mode, the user MCU can go dormancy before mode-switch, using external interrupt function to get AUX change so that the mode-switch can be realized.
5	This operation is very flexible and efficient. It is totally designed on the basis of the user MCU's convenience, at the same time the work load and power consumption of the whole system has been reduced and the efficiency of whole system is largely improved.

6.2 Transmission mode (Mode 0)

Type	When M0 = 0, module works in mode 0
Ordinary transmitting operation	User can transmit the data when the modules are synced (PINLOCK = 1(high level)). Benefit of the TDD feature, user can perform transmitting while receiving. The maximum size of the data which can be transmit at one time is 2048 Bytes. After the AUX has turned to 0(low-level), User can perform another 2048 Bytes transmitting operation. The TDD feature is available whatever the air data rate or the baud rate is.
Continuous transmitting operation	The module can transmit data continuously with some particular combination of air data rate and baud rate, which has been show below. Air Data Rate = 16Kbps, Baud rate <= 2400bps; Air Data Rate = 32Kbps, Baud rate <= 4800bps; Air Data Rate = 64Kbps, Baud rate <= 9600bps; Air Data Rate = 128Kbps, Baud rate <= 19200bps; Notes: Although higher air data rate brings lower transmission delay and it allows user transmits the data continuously at higher baud rate, the communication range will be shorter.

6.3. Configure mode (Mode 1)

Туре	When M0 = 1, module works in mode 1.
Transmitting	N/A. User can configure the module at baud rate = 9600bps, parity = 8N1.
Receiving	N/A. User can configure the module at baud rate = 9600bps, parity = 8N1.

7.Instruction format

In command mode (mode 2: M1=1, M0=0), it supports below instructions on list.

Only support 9600 and 8N1 format when setting

No.	Instruction format	Illustration
1	C0 + working parameters	C0+5 bytes working parameters are sent in hexadecimal format. 6 bytes in total and must be send in succession. (Save the parameters when power-down)
2	C1 C1 C1	Three C1 are sent in hexadecimal format. The module returns the saved parameters and must be send in succession.
3	C2 + working parameters	C2 + 5 bytes working parameters are sent in hexadecimal format. 6 bytes in total and must be send in succession. (Do not save the parameters when power-down)

4	C3 C3 C3	Three C3 are sent in hexadecimal format. The module returns the version information and they must be send in succession.
5	C4 C4 C4	Three C4 are sent in hexadecimal format. The module will reset one time and they must be send in succession.
6	C5+C5+C5	Three C5 are sent in hexadecimal format. The module returns the current RSSI signal strength value

7.1 Default parameter

	Default parameter values: C0 01 0A 1A 0A 44						
Model	Frequency	Address	Channel	launch mode	Baud rate	Parity	Transmitting power
E62-433T20S	425- 450.5MHz	1	10	64kbps	9600	8N1	100mW

7.2 Reading operating parameters

Instruction format	Description		
C1+C1+C1	In parameter setting mode (M0=1), User gives the module instruction (HEX format): C1 C1 C1, Module returns the present configuration parameters.		
	For example, C0 01 0A 1A 0A 44.		

7.3 Reading version number

Instruction format	ormat Description		
	In command mode (M0=0, M1=1),		
C3+C3+C3	User gives the module instruction (HEX format): C3 C3 C3, Module returns its present version number, for example C3 62 xx yy. 62 here means the module model (E62 series); xx is the version number and yy refers to the other module features.		

7.4 Parameter setting instruction

C0 and C2 are operating parameters. The difference between C0 command and C2 command is that C0 command will write parameters into the internal flash memory and can be saved when power-down, while C2 command cannot be saved when power-down, because C2 command is temporarily mend instruction. C2 is recommended for the occasion that need to change the operating parameters frequently, such as C2 01 0A 1A 0A 44

No.	Item	Description	Notes
0	HEAD	Fix 0xC0 or 0xC2, it means this frame data	• Must be 0xC0 or 0xC2
		is control command	C0: Save the parameters when power-down
			C2: Do not save the parameters when power-down

1	ID	Frequency-hopping sequence ID (default 01H)	Frequency-hopping sequence is decided by frequency-hopping ID, both sides must keep the same.
2	FHSS nums	The quantity of frequency hopping channel (default 0AH)	Both sides must keep the same. The more quantity of frequency-hopping channel, the better anti-interference while synchronization time is longer for both sides. Otherwise the less quantity of frequency-hopping channel, the worse anti-interference while synchronization time is shorter.
3	SPED	Rate parameter, including UART baud rate and air data rate 7, 6 UART parity bit 00: 8N1 (default) 01: 8O1 10: 8E1 11: 8N1 (equal to 00)	UART mode can be different between communication parties
		5, 4, 3 TTLUART baud rate (bps) 000: 1200bps 001: 2400bps 010: 4800bps 011: 9600bps (default) 100: 19200bps 101: 38400bps 110: 57600bps 111: 115200bps	UART baud rate can be different between communication parties The UART baud rate has nothing to do with wireless transmission parameters & won't affect the wireless transmit/receive features.
		2, N/A	0 is recommended.
		1, 0 Air data rate (bps) 00: 16Kbps 01: 32Kbps	 The lower the air data rate, the longer the transmitting distance, better anti-interference performance and longer transmitting time The air data rate must keep the same for both

		10: 64Kbps (default) 11: 128Kbps	communication parties.
4	CHAN	Communication frequency (425M+CHAN*0.5M) default 0AH	 00H- 33H, for 425 – 450.5MHz When the frequency-hopping quantity sets as 1, the module works only at the fixed frequency (425M + CHAN * 0.5M). Otherwise the module works at a band (425MHz+CHAN*0.5MHz+FHSS_nums*0.5MHz).
5	OPTIO N	7, 0 is recommended.	
		6 IO drive mode (default 1) 1: TXD and AUX push-pull outputs, RXD pull-up inputs 0: TXD, AUX open-collector outputs, RXD open-collector inputs	This bit is used to the module internal pull-up resistor. It also increases the level's adaptability in case of open drain. But in some cases, it may need external pull-up resistor.
			• 0 is recommended.
		5, 4, 3, 0 is recommended. 2 FEC switch 0: Turn off FEC 1: Turn on FEC (Default)	 After turn off FEC, the actual data transmission rate increases while anti-interference ability decreases. Also, the transmission distance is relatively short. Both communication parties must keep on the same pages about turn-on or turn-off FEC.
			The external power must make sure the ability of current output more than 300mA and ensure the power supply ripple within 100mV. Low power transmission is not recommended due to its low power supply efficiency.
		1, 0 transmission power (approximation) 00: 20dBm (Default) 01: 17dBm 10: 13dBm 11: 10dBm	

For example: The meaning of No.3 "S PED" byte:

The binary bit of the byte	7	6	5	4	3	2	1	0
The specific value (user configures)	0	0	0	1	1	0	1	0

M eaning	UART parity bit 8N1	UART baud rate is 9600		Air data rate is 64k	
Corresponding hexadecimal	1			A	

8. Hardware design

- It is recommended to use a DC stabilized power supply. The power supply ripple factor is as small as possible, and the module needs to be reliably grounded.;
- Please pay attention to the correct connection of the positive and negative poles of the power supply. Reverse
 connection may cause permanent damage to the module;
- Please check the power supply to ensure it is within the recommended voltage otherwise when it exceeds the maximum value the module will be permanently damaged;
- Please check the stability of the power supply, the voltage can not be fluctuated frequently;
- When designing the power supply circuit for the module, it is often recommended to reserve more than 30% of the margin, so the whole machine is beneficial for long-term stable operation.;
- The module should be as far away as possible from the power supply, transformers, high-frequency wiring and other parts with large electromagnetic interference.;
- High-frequency digital routing, high-frequency analog routing, and power routing must be avoided under the module. If it is necessary to pass through the module, assume that the module is soldered to the Top Layer, and the copper is spread on the Top Layer of the module contact part(well grounded), it must be close to the digital part of the module and routed in the Bottom Layer;
- Assuming the module is soldered or placed over the Top Layer, it is wrong to randomly route over the Bottom Layer
 or other layers, which will affect the module's spurs and receiving sensitivity to varying degrees;
- It is assumed that there are devices with large electromagnetic interference around the module that will greatly affect the performance. It is recommended to keep them away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done;
- Assume that there are traces with large electromagnetic interference (high-frequency digital, high-frequency analog, power traces) around the module that will greatly affect the performance of the module. It is recommended to stay away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done.
- If the communication line uses a 5V level, a 1k-5.1k resistor must be connected in series (not recommended, there is still a risk of damage);
- Try to stay away from some physical layers such as TTL protocol at 2.4GHz, for example: USB3.0;
- The mounting structure of antenna has a great influence on the performance of the module. It is necessary to ensure that the antenna is exposed, preferably vertically upward. When the module is mounted inside the case, use a good antenna extension cable to extend the antenna to the outside;
- The antenna must not be installed inside the metal case, which will cause the transmission distance to be greatly weakened.

9 FAQ

9.1 Communication range is too short

- The communication distance will be affected when obstacle exists.
- Data lose rate will be affected by temperature, humidity and co-channel interference.
- The ground will absorb and reflect wireless radio wave, so the performance will be poor when testing near ground.
- Sea water has great ability in absorbing wireless radio wave, so performance will be poor when testing near the sea.
- The signal will be affected when the antenna is near metal object or put in a metal case.
- Power register was set incorrectly, air data rate is set as too high (the higher the air data rate, the shorter the distance).
- The power supply low voltage under room temperature is lower than 2.5V, the lower the voltage, the lower the transmitting power.
- Due to antenna quality or poor matching between antenna and module.

9.2 Module is easy to damage

- Please check the power supply source, ensure it is 2.0V~3.6V, voltage higher than 3.6V will damage the module.
- Please check the stability of power source, the voltage cannot fluctuate too much.
- Please make sure antistatic measure are taken when installing and using, high frequency devices have electrostatic susceptibility.
- Please ensure the humidity is within limited range, some parts are sensitive to humidity.
- Please avoid using modules under too high or too low temperature.

9.3 BER(Bit Error Rate) is high

- There are co-channel signal interference nearby, please be away from interference sources or modify frequency and channel to avoid interference;
- Poor power supply may cause messy code. Make sure that the power supply is reliable.
- The extension line and feeder quality are poor or too long, so the bit error rate is high;

10 Production guidance

This type is DIP module, when the welder welds the module, he must be welding according to the anti-static regulation. This product is allergic to static, randomly welding the module will have the chance of damaging it permanently.

11 E62 series

Model No.	Core IC	Frequency Hz	Tx power dBm	Distance km	Data Rate	Package	Size mm	Interface
E62-433T20S	-	433M	20	1	16k~128k	SMD	17 * 30	IPEX/external/spring
E62-433T30D	-	433M	30	3	16k~128k	DIP	37 * 60	SM A-K
E62-433T20D	-	433M	20	1	16k~128k	DIP	21 * 36	SM A-K

12 Antenna recommendation

The antenna is an important role in the communication process. A good antenna can largely improve the communication system. Therefore, we recommend some antennas for wireless modules with excellent performance and reasonable price.

Model No.	Туре	Frequency Hz	Interface	Gain dBi	Height	Cable	Function feature
TX433-NP-4310	Soft PCB antenna	433M	SM A-J	2	43.8*9. 5mm	-	Built-in flexibility,FPC soft antenna
TX433-JW-5	Rubber antenna	433M	SM A-J	2	50mm	-	Flexible & omnidirectional
TX433-JWG-7	Rubber antenna	433M	SM A-J	2.5	75mm	-	Flexible & omnidirectional
TX433-JK-20	Rubber antenna	433M	SM A-J	3	210mm	-	Flexible &omnidirectional
TX433-JK-11	Rubber antenna	433M	SM A-J	2.5	110mm	-	Flexible & omnidirectional
TX433-XP-200	Sucker antenna	433M	SM A-J	4	19cm	200cm	Sucker antenna, High gain
TX433-XP-100	Sucker antenna	433M	SM A-J	3.5	18.5cm	100cm	Sucker antenna, High gain
TX433-XPH-300	Sucker antenna	433M	SM A-J	6	96.5cm	300cm	Car carrying Sucker antenna, High gain
TX433-JZG-6	Rubber antenna	433M	SM A-J	2.5	52mm	-	Short straight &comnidirectional
TX433-JZ-5	Rubber antenna	433M	SM A-J	2	52mm	-	Short straight &comnidirectional
TX490-XP-100	Sucker antenna	490M	SM A-J	50	12cm	100cm	Sucker antenna, High gain
TX490-JZ-5	Rubber antenna	490M	SM A-J	50	50mm	-	Short straight &omnidirectional

13.Package for batch order

Unit: mm Each Layer: 20 pcs Each Package: 5 layers

Revision history

version	Date	Description	Issued by
1.00	2017/12/13	Initial version	huaa
1.10	2018/01/30	module name change	huaa
1.20	2018/10/25	version updating	huaa

About us

Technical support: support@cdebyte.com

Documents and RF Setting download link: www.ebyte.com

Thank you for using Ebyte products! Please contact us with any questions or suggestions: info@cdebyte.com

Fax: 028-64146160 ext. 821

Web: www.ebyte.com

Address: Innovation Center D347, 4# XI-XIN Road, Chengdu, Sichuan, China

