Ideal Position in Voting Model

July 31, 2024

Abstract

1 Introduction

2 Deterministic Model

We denote the policy space is \mathbb{R}^m and the set of voters $N = \{v_1, v_2, \cdots, v_n\}$, and their utility function $u_i : \mathbb{R}^m \to \mathbb{R}$ which is smooth(or C^2 , second differentiable) and concave, where $v_i \in \mathbb{R}^m$ is the ideal position (maximum point of f_i), for the *i*-th voter, $1 \le i \le n$. For the two candidates P_1 and P_2 , P_1 chooses a position first, and P_2 chooses a position later. After both candidates complete their actions, the voters will vote for the candidate close to them separately. In general, for each position x such that P_1 chooses, we could find a region S(x) as a subset of policy space \mathbb{R}^m such that P_2 can choose any position in this region to beat P_1 .

For given information of voters (i.e. all f_i), we denote $\alpha : \mathbb{R}^m \to \mathbb{R}^+, \alpha(x) = \mu(S(x))$, where $\mu(\cdot)$ is the Lebesgue measure.

Theorem 2.1. α is a convex function. (expected)

We denote the collections of dominant voters as $\mathcal{M} = \{M \subset N : \#M \geq \frac{1}{2} \#N\}$. For a collection of voters M and a given position x P_1 chooses, we denote the region for P_2 could win all voters in M as V_M , denote the region for P_2 could win the ith voter as $B_i(x)$.

$$B_{i}(x) = \{ y \in \mathbb{R}^{m} f_{i}(y) \geq f_{i}(x) \}, \quad V_{M}(x) = \bigcap_{i \in M} B_{i}(x)$$

$$\alpha(x) = \mu \left(\bigcup_{M \subset \mathcal{M}} \bigcap_{i \in M} B_{i}(x) \right)$$

$$= \mu \left(\bigcup_{M \subset \mathcal{M}} V_{M}(x) \right)$$

$$= \sum_{M \subset \mathcal{M}} \mu \left(V_{M}(x) \right) - \sum_{M_{1}, M_{2} \subset \mathcal{M}} \mu \left(V_{M_{1}}(x) \cap V_{M_{2}}(x) \right) + \cdots$$

$$= \sum_{M \subset \mathcal{M}} \mu \left(V_{M}(x) \right) - \sum_{M_{1}, M_{2} \subset \mathcal{M}} \mu \left(V_{M_{1} \cup M_{2}}(x) \right) + \cdots$$

To be proofed

2.1 Weaker Version

If all voters stand at an extreme point of the set of voters' ideal position, the conclusion is true in \mathbb{R}^2 . (could be extended to \mathbb{R}^m)

3 Probablistic Model

3.1 Model given by [Sch07]

The utility function of voter i with ideal position v_i and a candidate position z_i is

$$u_{ij}(v_i, z_j) = u_{ij}^*(v_i, z_j) + \varepsilon_{ij},$$

where

$$u_{ij}^*(v_i, z_j) = \lambda_i - \beta ||v_i - z||^2.$$

Here, u_{ij}^* is the observable utility for voter i associated with party/candidate j. λ_j is the valence of agent/candidate/party j, and β is a positive constant. The terms $\{\varepsilon_{ij}\}$ are the stochastic errors. We assume that all ε_{ij} 's are iid drawed from distribution Ψ , which is the Type I extreme value distribution and takes the closed form

$$\Psi(h) = \exp(-(\exp -h)).$$

The probability for a voter i to choose party j is that

$$p_{ij} = \Pr[u_{ij}(v_i, z_j) > u_{il}(x_i, z_l)], l \neq j.$$

The expected vote share for agent j is $V_j(\mathbf{z}) = \sum_{i=1}^n p_{ij}$, where the **z** is the vector of all candidates' positions.

In the model given above, the expected voter share for candidate j is,

$$V_j(\mathbf{z}) = \sum_{i=1}^n \frac{\exp(u_{ij}^*(v_i, z_j))}{\sum_j \exp(u_{ik}^*(v_i, z_k))}.$$

Remark 3.1. (The norm is convex (by definition)) and (the function x^2 is non-decreasing (in positive half-axis) and convex) jointly imply that the square of a norm is convex, which implies that u_{ij}^* is concave. The function e^x is convex and non-decreasing We denote $G: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \frac{x}{x+k}$ for some positive k. It's easy to verify that G is strictly concave and increasing. We recall that u_i is strictly concave. Hence $G \circ f_i$ is strictly concave, which implies $\mathbb{E}_z(x)$ is concave.

$$P_{ij} = \frac{e^{f_i(x_j)}}{e^{f_i(x_1)} + e^{f_i(x_2)}}, \quad j = 1, 2$$

For a position $z \in \mathbb{R}^m$ that P_1 chooses, P_2 can choose a position to maximize his expectation:

$$\mathbb{E}_z : \mathbb{R}^m \to \mathbb{R}^+, \quad \mathbb{E}_z(x) = \sum_{i=1}^n \frac{e^{f_i(x)}}{e^{f_i(x)} + e^{f_i(z)}}$$

However, the objective function may not be concave.

3.2 Modificated Model

All utility functions f_i are strictly concave, positive, and second-differentiable.

If the two candidate choose position x_1 and x_2 , denote the probability for voter i to voter candidate P_j is P_{ij} , $1 \le i \le n, j = 1, 2$,

$$P_{ij} = \frac{f_i(x_j)}{f_i(x_1) + f_i(x_2)}, \quad j = 1, 2$$

For a position $z \in \mathbb{R}^m$ that P_1 chooses, P_2 can choose a position to maximize his expectation:

$$\mathbb{E}_z : \mathbb{R}^m \to \mathbb{R}^+, \quad \mathbb{E}_z(x) = \sum_{i=1}^n \frac{f_i(x)}{f_i(x) + f_i(z)}$$

Theorem 3.1. Given a fixed position z, the function $\mathbb{E}_z(x)$ is (strictly) concave.

Proof. We denote $G: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \frac{x}{x+k}$ for some positive k. It's easy to verify that G is strictly concave and increasing. We recall that f_i is strictly concave. Hence $G \circ f_i$ is strictly concave, which implies $\mathbb{E}_z(x)$ is concave.

Theorem 3.2. (Pure Strategy Nash Equilibrium) There exist a unique $x^* \in \mathbb{R}^m$ such that (x^*, x^*) is the pure strategy Nash equilibrium, i.e.

$$\arg \max_{x \in \mathbb{R}^m} \mathbb{E}_{x^*}(x) = \arg \max_{x \in \mathbb{R}^m} \sum_{i=1}^n \frac{f_i(x)}{f_i(x) + f_i(x^*)} = x^*$$

which implies $\mathbb{E}_{x^*}(x^*) = n/2$

Proof. Step 1: Let $V \subset \mathbb{R}^m$ be the convex hull of the ideal positions of voters. Denote $h: V \to \mathbb{R}^m$, $h(z) = \arg\max_{x \in \mathbb{R}^m} \mathbb{E}_z(x)$. h is well-defined due to the strictly convexity of $\mathbb{E}_z(x)$. Claim $h(z) = \arg\max_{x \in V} \mathbb{E}_z(x)$ such that $h: V \to V$.

Step 2: Prove h is continous w.r.t. z. Done by implicit function theorem with the condition $\mathbb{E}_z(x)$ is second differentiable w.r.t. x.

Step 3: h is a continuous function from a convex compact set to itself; by Brouwer fixed-point theorem, there exists a fixed point x^* such that $h(x^*) = x^*$. Uniqueness is trivial.

Brouwer fixed-point theorem: Every continuous function from a nonempty convex compact subset K of a Euclidean space to K itself has a fixed point.

Remark 3.2. Example:

$$\mathbb{E}_x(y) = y^2 - x^2 + \frac{n}{2}, -1 < x, y < 1$$

where $x, y \in \mathbb{R}^1$ represents the two candidates' position.(0,0) is a PNE here. $\mathbb{E}_x(y) + \mathbb{E}_y(x) = n, E_x(x) = \frac{n}{2}$.

Proposition 3.2.1. the gradient of the objective function $\nabla \mathbb{E}_z$ is lipschiz continuous.

Remark 3.3. The gradient descent algorithm solves the maximization point of \mathbb{E}_z .

4 Deterministic Dynamic Game

4.1 Discrete-Time Game + Probablistic Model

Cor 6.2 states a sufficient and necessary condition for existence of optimal strategy. The strategies $\gamma_k^{j*}, k \in K, j = 1, 2$, where K is the total time phase, provide a saddle-point solution if and only if, there exist function $V(k, \cdot) : \mathbb{R}^{2m} \to \mathbb{R}, k \in K$ s.t.

$$V(k,x) = \min_{u_k^1} \max_{u_k^2} \{V(k+1,x+u_k^1+u_k^2)\}, \ V(K,x) = q(x), \ V(K+1,x) = 0$$

where $x_{k+1} = f_k(x_k, u_k^1, u_k^2) = x_k + u_k^1 + u_k^2$. The unique saddle point value of the game is $V(1, x_1)$, where x_1 is the initial state.

4.2 Continuous-Time Game + Probablistic Model

We fit the probabilistic model in the dynamic game. The set of n voters is $N = \{1, 2, \dots, n\}$ and the policy space is \mathbb{R}^m . Predisribed fixed time T to end the voting game. The state space is \mathbb{R}^{2m} , which describes the two candidates' position positions (first m-entries for P_1 and the latter for P_2). The strategy space,

$$\Gamma^1 = \{ \gamma : [0, T] \times \mathbb{R}^{2m} \to \mathbb{R}^m \oplus \mathbf{0} \} | \gamma \text{ is continuously differentiable, Image}(\gamma) \subset B_{\mathbf{0}}(1) \}$$

$$\Gamma^2 = \{ \gamma : [0, T] \times \mathbb{R}^{2m} \to \mathbf{0} \oplus \mathbb{R}^m | \gamma \text{ is continuously differentiable, Image}(\gamma) \subset B_{\mathbf{0}}(1) \}$$

for any pure strategy the candidates choose, it's continuously differentiable, and the speed of action is less than 1. For any given pure strategy γ^1, γ^2 , the evolution function is defined as,

$$\frac{dx}{dt} := f(t, x, u_1, u_2) = u_1 + u_2 = \gamma^1(t, x) + \gamma^2(t, x)$$

the f is the general notation used in dynamic games. We denote the objective function,

$$L = \int_0^T g(t, x, u^1, u^2) dt + q(T, x(T))$$

at here, $g \equiv 0$ and T is fixed. To make it simple, we just write L = q(x(T)). We consider the probabilistic voting model and the objective function L is P_2 's expectation. For example, let f_i be the utility functions for each voter and, $p_1, p_2 \in \mathbb{R}^m$ are the final position of the two candidates,

$$L = q(x(T)) = q(p_1, p_2) = \sum_{i=1}^{n} \frac{f_i(p_2)}{f_i(p_1) + f_i(p_2)}$$

then P_1 is the minimizer, and P_2 is the maximizer, since it's a zero-sum game.

Theorem 4.1. Cor6.6 (Equation 6.75, for feedback pattern) in Tamer Basar: The sufficient condition for γ^{1*}, γ^{2*} to be the optimal (the saddle strategy) is, there exists continuously differentiable function $V: [0,T] \times \mathbb{R}^{2m} \to \mathbb{R}$ satisfies the Bellman's equation:

$$-\frac{\partial V}{\partial t} = \min_{u^1} \max_{u^2} \langle \frac{\partial V}{\partial x}, u^1 + u^2 \rangle$$
$$= \max_{u^2} \min_{u^1} \langle \frac{\partial V}{\partial x}, u^1 + u^2 \rangle$$
$$= \langle \frac{\partial V}{\partial x}, \gamma^{1*}(t, x) + \gamma^{2*}(t, x) \rangle$$

where the $\langle \cdot \rangle$ denotes the general inner product in the Euclidean space.

Remark 4.1. The interchangeability is named Issac's condition. Denote the first m-entries variables is x_1 , the latter m-entries is x_2 . The Issac's condition is automatically satisfied,

$$\min_{u^1} \max_{u^2} \langle \frac{\partial V}{\partial x}, u^1 + u^2 \rangle = \min_{u^1} \max_{u^2} \left[\langle \frac{\partial V}{\partial x_1}, u^{1'} \rangle + \langle \frac{\partial V}{\partial x_2}, u^{2'} \rangle \right] = \min_{u^1} \langle \frac{\partial V}{\partial x_1}, u^{1'} \rangle + \max_{u^2} \langle \frac{\partial V}{\partial x_2}, u^{2'} \rangle$$

where $u^{1'}$ is the vector in \mathbb{R}^m consisted of first m-entries of u^{1} . A similar definition is applied on $u^{2'}$.

Remark 4.2. We consider the constraint that $||u^1||_2, ||u^2||_2 \le 1$, we can simplifize

$$\min_{u^{1}} \langle \frac{\partial V}{\partial x_{1}}, u^{1'} \rangle \ge -||u^{1}||_{2} \cdot ||\frac{\partial V}{\partial x_{1}}||_{2} \ge -||\frac{\partial V}{\partial x_{1}}||_{2}
\max_{u^{2}} \langle \frac{\partial V}{\partial x_{2}}, u^{2'} \rangle \le ||\frac{\partial V}{\partial x_{2}}||_{2}$$

which are both from Cauchy-Schwarz inequality and take equality when $u^{1'}$ lies on the oppsite direction of $\frac{\partial V}{\partial x_1}$ and $u^{2'}$ lis on the same direction $\frac{\partial V}{\partial x_2}$. The PDE is simplified as,

$$\begin{split} -||\frac{\partial V}{\partial x_1}||_2 + ||\frac{\partial V}{\partial x_2}||_2 &= -\frac{\partial V}{\partial t}\\ initial\ condition: V(T,x) = q(x), \forall x\\ boundary\ condition: V(x_1,x_2,t) = 1\ for\ large\ |x_1|,\\ V(x_1,x_2,t) = 0\ for\ large\ |x_2|, \end{split}$$

the boundary condition is due to x_1 is the minimizer and x_2 is the maximizer. The ideal position should be in the convex hull of voters' ideal positions.

Remark 4.3.

$$V(x,T) = q(x) = q(x_1, x_2) = \sum_{i=1}^{n} \frac{g_i(x_2)}{g_i(x_1) + g_i(x_2)}, q_{x_1} = \sum_{i=1}^{n} \frac{-g_i(x_2)}{(g_i(x_1) + g_i(x_2))^2} \times g'(x_1)$$
$$q_{x_2} = \sum_{i=1}^{n} \frac{g'_i(x_2)g_i(x_1)}{(g_i(x_1) + g_i(x_2))^2}$$

in high dimensions, it's $||q_{x_1}||_2 = \sum_{i=1}^n g_i(x_2)||\nabla g_i(x_1)||_2$. In the case that the initial state (x_0^1, x_0^2) satisfies $||q_{x_1}||_2 = ||q_{x_2}||_2$, then V is time independent, i.e., $\frac{\partial V}{\partial t} \equiv 0$. This means the value of the game is given by $q(x_0^1, x_0^2)$ and it holds for any election period T.

Remark 4.4.

$$V(x_1, x_2, t)$$

the optimal value start from time t and position x_1, x_2 , given fixed duration T.

5 Implementation

We consider the discrete-time version and based on the result in 4.1, for K time-step, $k=0,1,\cdots K$, $x_1,x_2\in\mathbb{R}^2$ represents the candidates' position separately. $V:\{0,1,\cdots,K\}\times\mathbb{R}^4\to\mathbb{R}^+$ means the saddle value from input time-step k and the input candidates' positions x_1,x_2 at this stage.

$$V(k, x_1, x_2) = \min_{u_k^1} \max_{u_k^2} \{V(k+1, x_1 + u_k^1, x_2 + u_k^2)\}, V(K, x_1, x_2) = q(x_1, x_2),$$

$$V(0, x_1, x_2) = \underbrace{\min_{u_1^1} \max_{u_2^1} \min_{u_1^2} \max_{u_1^2} \cdots \min_{u_1^K} \max_{u_2^K} q}_{K \min \max} \left(x_1 + \sum_{i=1}^K u_i^1, x_2 + \sum_{i=1}^K u_i^2 \right)$$

We assume the speed of each time-step is small ϵ and u_k^j , $1 \le k \le K$, j = 1, 2. For numerical approximation, finite random choices for each u_k^j and brute-force search for the optimal strategy.

5.1 Example

The policy space is $[-1/2, 1/2] \times [-1/2, 1/2] \subset \mathbb{R}^2$,

$$q_1(x_1, x_2) = \cos^2(||x_1||_2\pi) + \sin^2(||x_2||_2\pi)$$

$$q_2(x_1, x_2) = \frac{\exp(x_{21}^2 - x_{22}^2 - 1)}{\exp(x_{21}^2 - x_{22}^2 - 1) + \exp(x_{11}^2 - x_{12}^2 - 1)}$$

$$q_3(x_1, x_2) = \frac{\exp(\frac{1}{100||x_2||_2})}{\exp(\frac{1}{100||x_1||_2}) + \exp(\frac{1}{100||x_2||_2})}$$

$$q = \frac{1}{4} \cdot (q_1 + q_2 + q_3) \in [0, 1]$$

where $x_1 = (x_{11}, x_{12})^T$, $x_2 = (x_{21}, x_{22})^T$ and q represents the payoff function of candidate P_2 (corresponding to x_2). P_1 (corresponding to x_1) is the minimizer and P_2 is the maximizer. We also have $q(x_1, x_2) + q(x_2, x_1) = 1$. In the case K = 4, $\epsilon = 0.02$ (moving distance in each step), the following 2 figures show the different behaviour of the two candidates.

References

[Sch07] Norman Schofield. The mean voter theorem: Necessary and sufficient conditions for convergent equilibrium. The Review of Economic Studies, 74(3):965–980, 2007.

0.2 -0.1 -0.0 --0.1 --0.2 -0.0 0.1 0.2

Figure 1: Initial position: $x_1 = (-0.06, -0.06)$ and $x_2 = (0.06, 0.06)$. Two candidates simultaneously move to the center (closer and closer)

Figure 2: Initial position: $x_1 = (-0.2, -0.2)$ and $x_2 = (0.2, 0.2)$. Two candidates simultaneously move further and further