

test

Max Mustermann

Fachhochschule Trier

18. Juli 2015

Table of content

eins

Komplexität

Implementierung

test

Ursprüngliche Implementierung

Ursprüngliche Implementierung

► Einzelschritte:

Ursprüngliche Implementierung

- Einzelschritte:
 - ▶ Initialisieren der Arrays je O(m)

18. Juli 2015 Max Mustermann 7

- Einzelschritte:
 - ▶ Initialisieren der Arrays je O(m)
 - ▶ Abarbeiten der grauen Knoten O(m)

- Einzelschritte:
 - Initialisieren der Arrays je O(m)
 - ► Abarbeiten der grauen Knoten *O*(*m*)
 - ▶ Bestimmen des Minimums *O*(*m*)

18. Juli 2015 Max Mustermann 9

- Einzelschritte:
 - Initialisieren der Arrays je O(m)
 - ► Abarbeiten der grauen Knoten *O*(*m*)
 - ▶ Bestimmen des Minimums *O*(*m*)
 - ▶ Aktualisieren der Nachfolger $O(deg(v)) \rightarrow O(k)$

- Einzelschritte:
 - ▶ Initialisieren der Arrays je O(m)
 - ► Abarbeiten der grauen Knoten *O*(*m*)
 - Bestimmen des Minimums O(m)
 - ▶ Aktualisieren der Nachfolger $O(deg(v)) \rightarrow O(k)$
- ▶ insgesamt Komplexität O(m²)

Implementierung mit Heap

Vorteile:

Implementierung mit Heap

- Vorteile:
 - ► Heapoperationen in *O*(*logm*)

Implementierung mit Heap

- Vorteile:
 - Heapoperationen in O(logm)
 - ▶ Bestimmen des Minimums in *O*(*logm*)

Implementierung mit Heap

- Vorteile:
 - ► Heapoperationen in *O*(*logm*)
 - ▶ Bestimmen des Minimums in O(logm)
- ▶ insgesamt Komplexität O(k * logm)

Eigenschaften

► Programmiersprache: Python

- ► Programmiersprache: Python
- Umsetzung mit Heap (Priority Queue)

- Programmiersprache: Python
- ▶ Umsetzung mit Heap (Priority Queue)
- ▶ keine Speicherung der Farbstufen wie bei Dijkstra

- ▶ Programmiersprache: Python
- Umsetzung mit Heap (Priority Queue)
- ▶ keine Speicherung der Farbstufen wie bei Dijkstra
 - kürzerer und übersichtlicherer Code

Kompletter Code

Eingabe

leer

Algorithmus

Initialisierung

Algorithmus

- Initialisierung
- Erweitern

Algorithmus

- Initialisierung
- Erweitern
- Aktualisieren

Rekursives Bestimmen des Pfades

leer

Aufruf

leer