Project 4: Kaggle -Chicago West Nile Virus

Group 3 DJ | Nazira | Sean | Shuyi

Introduction

Problem Statement

*

Ultimate aim
Prevent transmission
of the mosquito-borne
West Nile Virus.

01 Data Cleaning

Data Cleaning

- Break down date column into years, months and weeks
 - Observe any seasonality
- Calculate number of traps set and total number of mosquitoes caught based on year and month
- Identify any duplicate traps

```
# Which addresses is trap T009 associated with?
train[train['trap']=='T035']['address'].value_counts()

# Which addresses is trap T009 associated with?
train[train['trap']=='T009']['address'].value_counts()

# Which addresses is trap T009 associated with?
train[train['trap']=='T009']['address'].value_counts()

# Which addresses is trap T009 associated with?

# Which addresses, is trap T009 associat
```

Combining duplicate records (for traps capturing more than 50 mosquitoes)

Data Cleaning - Weather

- Imputing all missing values with np.nan
- One-hot encoding 'codesum' values as there are more than 10 categories
 - Create dummy variables for different conditions
- Tidying 'stnpressure' values with median values
- Impute median values from different weather conditions for missing 'sealevel' and 'avgspeed' values

O2Exploratory Data Analysis

Counting Mosquitoes against Trap Location

TRAIN

Spraying Trends

WNV Trends

Significance of Mosquitoes

Drop 'unspecified culex'

Addressing Multi-collinearity

- Dropping features such as 'tmax', 'tmin' and 'dewpoint' → highly correlated with 'tavg'
- 'Sealevel' is highly correlated with 'stnpressure'
- 'Avgspeed' is highly correlated with 'resultspeed'

Zooming in to 'WnvPresent'

- After doing Polynomial Features, there were
 49 features.
- Top 5 positively correlated
 - Mosquito Breed (Pipiens)
 - Zooming in to specific week(s)
 - Time period (month)
 - Humidity
 - Time lag
- Top 5 negatively correlated
 - Temperature range
 - Station
 - Mosquito Breed (Restuans)
 - Average Wind Speed
 - Time Lag

Feature Engineering

- Creating more features:
 - Humidity
 - Interaction between Temperature and Total Precipitation
 - Lagging weather measurements (5/10-day rolling averages)
 - Averaging: Temperature (Min and Max), Dewpoint, Station Pressure, Sea Level, Average Speed and Humidity
 - Sum: Precipitation Total, Raining, Misty, Daylight Minutes
 - Temperature range
 - Daylight Exposure

03 Pre-processing & Modeling

Breaking our work flow down

Feature engineering

Future considerations

- Trap bias: There could be a bias for certain traps (Given that a particular trap may always capture more mosquitos, etc)
- Time clustering: Outbreaks will possibly influence the days before and after it (They tend to cluster in the dimension of time too)

Silhouette Score: 0.7178209562748543 Number of outliers: 39 (0.84% of samples)

Number of clusters: 78

DBSCAN for ['latitude', 'longitude', 'nummosquitos'] ϵ = 0.04 Min. Clusters = 4

Pipeline; Building our models

Method Used: SMOTE sampling -----

Class Balance BEFORE

0.0 0.9459 1.0 0.0541

Name: wnvpresent, dtype: float64

Number of rows: 5915

Class Balance AFTER

0.0 0.5 1.0 0.5

Name: wnvpresent, dtype: float64

Number of rows: 11190

m	odel	train_auc_cv	f1	recall	precision	train_auc	test_auc	auc_diff
	gb	0.981540	0.261780	0.547445	0.172018	0.984820	0.812343	0.172477
	svc	0.985760	0.240876	0.240876	0.240876	0.990639	0.772468	0.218171
	ada	0.956751	0.239658	0.613139	0.148936	0.959185	0.791350	0.167834
	xgb	0.993239	0.217617	0.153285	0.375000	0.998321	0.838572	0.159749
	lr	0.821628	0.180498	0.635036	0.105200	0.827767	0.739272	0.088494
	et	0.988801	0.165049	0.124088	0.246377	0.999937	0.770904	0.229033
	rf	0.997149	0.164948	0.116788	0.280702	0.999936	0.816768	0.183168
	dt	0.955336	0.153846	0.138686	0.172727	0.999937	0.567881	0.432056

Model selection; Hyperparams tuning

	Features	Importances
1	week	0.130479
0	month	0.053143
33	cluster_31	0.033728
80	PIPIENS	0.031945
6	cluster_4	0.031897
25	cluster_23	0.031414
35	cluster_33	0.030620
62	cluster_60	0.025945
87	sealevel	0.025865
75	cluster_73	0.025526
9	cluster_7	0.024153
20	cluster_18	0.023776
88	resultspeed	0.023362
63	cluster_61	0.022122
43	cluster_41	0.021143

Cost Benefit Analysis

Spraying Entire Chicago

\$100,366

Adulticide (Zenivex E4) at USD 0.67 per acre* Multiplied by Entire Area of Chicago at 149,800 acres

Spraying target areas

Adulticide (Zenivex E4) at USD 0.67 per acre* Multiplied by Entire Area of Chicago at 149,800 acres

Approximate Medical Cost

\$187,500

of treating 15 Cases of WNV

Acute symptoms:

- 1. Initial medical cost: \$25,000.
- 2. Long term medical cost: \$22,000.

Fever related symptoms:

1. Initial medical cost: \$7.500.

Approximate Loss of Productivity Cost

\$143,250

of 15 patients unfit for work

For patients <60 y: USD 191 per day Assuming 2 acute cases, and combined total of 750 days of sick days

Savings

\$230,384

In the scenario that one blanket spray of adulticides prevents 15 cases

Using SHAP to identify model decision making:

Using SHAP to identify model decision making:

Targeted spraying:

- 1. From the risk map visualization, we can see that there are clusters where WNV are higher occurring. These locations should be targeted before they start to spike.
 - 2. It might be efficient to start spraying sites based on seasonal spikes in July-August before WNV peaks in August and September.
 - 3. Monitor wind speed to identify periods of slower wind speeds as it is likely to mean that mosquitoes tend to travel over a larger area during this period.
 - 4. Control mosquito breeding grounds through surveillance and education.

Conclusion

Conclusion

1. The final model ran to predict WNV risk was a. XGBoost

Using ROC AUC score metric for model evaluation, we managed to achieve a score of 0.84.

This score indicates a high level of class separability and shows that the probability of making a correct class prediction is high.

Our model also successfully allowed us to identify patterns for targeted insecticide spraying for cost savings and efficiency.

Thanks

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

List of references (West Mile Virus)

1. The drivers of West Nile virus human illness in the Chicago, Illinois, USA area: Fine scale dynamic effects of weather, mosquito infection, social, and biological conditions

Surendra Karki, William M. Brown, John Uelmen, Marilyn O'Hara Ruiz, Rebecca Lee Smith

Published: May 21, 2020 https://doi.org/10.1371/journal.pone.0227160

5. Hopkins Medicine https://www.hopkinsmedicine.org/health/conditions-and-diseases/west-nile-virus

List of references (other data modelling)

- 1. https://towardsdatascience.com/a-go-at-kaggle-723447f8d95f
- 2. https://medium.com/@vijay.swamy1/where-in-chicago-will-the-west-nile-virus-occur-8b6b6d50c94a
- 3. https://github.com/zql321/DSIFProjects/tree/main/ML%20Prediction%20West%20Nile%20Virus%20Project%204

- 4. https://github.com/zzeniale/West-Nile-Virus-prediction
- 5. https://github.com/xbno/DSI-Projects/tree/master/Unassigned%20Project
- 6. https://github.com/zql321/DSIFProjects/tree/main/ML%20Prediction%20West%20Nile%20Virus%20Project%204

List of references (Cost Benefit Analysis)

- 1. https://thebottomlinegroup.com/20-cost-saving-ideas-for-the-workplace/
- 2. https://www.cmmcp.org/pesticide-information/pages/zenivex-e4-etofenprox#:~:text=Zenivex%20is%20an%2 Oinsecticide%20that,of%20sunlight%20and%2For%20microorganisms
- 3. Area of Chicago: 149,800 acres https://www.chicago.gov/city/en/about/facts.html
- 4. Spray used by Chicago is Zenivex E4 https://www.fox32chicago.com/news/chicago-to-spray-insecticide-to-protect-against-west-nile-virus
- 5. Cost of Spray https://www.centralmosquitocontrol.com/-/media/files/centralmosquitocontrol-na/us/resources-lit%20files/zenivex%20cost%20comparison%20fact%20sheet.pdf
- 6. Medical Costs in Chicago https://www.sciencedaily.com/releases/2014/02/140210184713.htm
- 7. Population Affected by WNV in Chicago, 2014 https://www.nbcchicago.com/news/local/illinois-reports-first-west-nile-virus-deaths-of-2014/63948/
- 8. Productivity Costs in Micago https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322011/

