# MULTI-TASK LEARNING WITH DEEP NEURAL NETWORKS: A SURVEY

#### Michael Crawshaw

Department of Computer Science George Mason University mcrawsha@gmu.edu

SURVEY PAPER PRESENTATION

ABHISHEK BAIS

GRADUATE STUDENT, SOFTWARE ENGINEERING, SJSU





A baby learns general motor skills while learning to walk, augments, and uses later in life to perform more complex tasks such as playing soccer

# MULTI-TASK LEARNING CLOSELY REFLECTS HUMANS LEARNING

#### MORE FORMALLY

MULTI-TASK LEARNING IS A SUBFIELD OF MACHINE LEARNING IN WHICH MULTIPLE TASKS ARE SIMULTANOUSLY LEARNED BY A SHARED MODEL



IMPROVED DATA EFFICIENCY

REDUCED OVERFITTING THROUGH SHARED REPRESENTATIONS FAST LEARNING BY LEVERAGING AUXILLARY INFORMATION

Advantages



CHOSING TASKS TO BE LEARNT TOGETHER IS NON-TRIVIAL

Challenges



# WHAT DOES THE PAPER FOCUS ON?

Multi-Task Learning
Architectures

Multi-Task Learning Optimization Methods Multi-Task Relationship Learning



#### MULTI-TASK LEARNING ARCHITECTURES



Figure 1: Architecture for TCDCN (Zhang et al., 2014). The base feature extractor is made of a series of convolutional layers which are shared between all tasks, and the extracted features are used as input to task-specific output heads.

### TASK DOMAIN - COMPUTER VISION



Figure 6: Network architecture of (Liu et al., 2015a). The input is converted to a bag-of-words representation and hashed into letter 3-grams, followed by a shared linear transformation and nonlinear activation function. This shared representation is passed to task-specific outhead heads to compute final outputs for each task.

### TASK DOMAIN - NLP



Figure 12: OmniNet architecture proposed in (Pramanik et al., 2019). Each modality has a separate network to handle inputs, and the aggregated outputs are processed by an encoder-decoder called the Central Neural Processor. The output of the CNP is then passed to several task-specific output heads.

## MULTI MODAL



Figure 13: Learned branching architecture proposed in (Lu et al., 2017). At the beginning of training, each task shares all layers of the network. As training goes on, less related tasks branch into clusters, so that only highly related tasks share as many parameters.

#### LEARNED - BRANCHED SHARING



Figure 16: A learned parameter sharing scheme with AdaShare (Sun et al., 2019b). Each layer in the network is either included or ignored by each task, so that each task uses a subnetwork which is (likely) overlapping with other tasks.

### LEARNED - MODULAR SHARING



Figure 18: Example Neural Module Network execution (Andreas et al., 2016). The semantic structure of a given question is used to dynamically instantiate a network made of modules that correspond to the elements of the question.

# CONDITIONAL – NEURAL MODULE NETWORKS



#### MULTI-TASK OPTIMIZATION METHODS



Kendalet.al., 2017

#### LOSS WEIGHTING - BY UNCERTAINTY



Figure 20: Task scheduling visualization from (Sharma et al., 2017). A meta task-decider is trained to sample tasks with a training signal that encourages tasks with worse relative performance to be chosen more frequently.

Sharma et. al., 2017

# TASK SCHEDULING



Figure 21: Multi-task GREAT model (Sinha et al., 2018). An auxiliary network takes a gradient vector for a single task's loss and tries to classify which task the gradient vector came from. The network gradients are then modulated to minimize the performance of the auxiliary network, to enforce the condition that gradients from different task functions have statistically indistinguishable distributions.

GREAT by Sinha et. al., 2018

## GRADIENT MODULATION



Figure 22: Two architectures from the Distral framework for RL (Teh et al., 2017). On the left is an architecture which employs both of the main ideas behind Distral: KL-regularization of single-task policies with the multi-task policy and a two-column policy for each task, where one column is shared between all tasks. On the right is an architecture which only employs KL-regularization of the single-task policies.

Distral by Teh et. al., 2017

## KNOWLEDGE DISTILLATION



#### GROUPING TASKS

Partitions group of tasks into clusters so they can be trained collectively

Example: Standley et.al., 2019



TRANSFER RELATIONSHIPS

Learns transfer relationship between tasks Example: Taskonomy by Zamir et. al., 2018

#### MULTI-TASK RELATIONSHIP LEARNING



Figure 24: An example partitioning of a group of tasks into clusters with positive transfer (Standley et al., 2019).

Standley et. al., 2019

# GROUPING TASKS



Figure 25: Task taxonomies for a collection of computer vision tasks as computed in Taskonomy (Zamir et al., 2018). An edge from task i to task j denotes that task i is an ideal source task to perform transfer learning on task j.

Zamir et. al., 2018

# TRANSFER RELATIONSHIPS

#### 5.1 Computer Vision Benchmarks

 NYU-v2 (Silberman et al., 2012) is a dataset of RGB-depth images from 464 indoor scenes with 1449 densely labeled images and over 400,000 unlabeled images. The labeled images are labeled for instance segmentation, semantic segmentation, and scene classification, and all images contain depth values for each pixel. All images are frames extracted from video sequences.

#### 5.2 Natural Language Processing Benchmarks

Unless otherwise specified, it can be assumed that the text within a corpus is English.

Penn Treebank (Marcus et al., 1993) is a corpus of text consisting of 4.5 million words. The text is aggregated
from multiple sources including scientific abstracts, news stories, book chapters, computer manuals, and more, and
contains Part-of-Speech tags and syntactical structure annotations.

#### 5.3 Reinforcement Learning Benchmarks

Arcade Learning Environment (Bellemare et al., 2013) (or ALE) is a diverse collection of hundreds of Atari 2600 games, where observations are given to the agent as raw pixels. These games were originally designed to be a challenge for the human video game player, so they present a challenge for modern RL agents in aspects such as exploration and learning with sparse rewards.

#### 5.4 Multi-Modal Benchmarks

 Flickr30K Captions (Young et al., 2014) is a collection of 30,000 photographs obtained from the image hosting website Flickr, with over 150,000 corresponding captions.

## **MULTI-TASK BENCHMARKS**

### CONCLUSION



MULI-TASK LEARNING IMPORTANT STEP TOWARDS AI WITH HUMAN LIKE QUALITIES