Step 1: HAMPATH ∈ NP

CERTIFICATE: A sequence of vertices y.

VERIFICATION: a(< G, u, v), < y >)

- Check whether y has n vertices. If not, return 0.
- Check whether $y = (y_1, y_2, \dots, y_n)$ 0; Repeated vertices; if so, return 0.
- Check whether $(y_i, y_{i+1}) \in E$ for $i = 1, \dots, n-1$ and whether $\{y_n, y_1\} \in E$. If some of the tests fail, then return 0.
- Check whether $y_1 = u$ and $y_n = V$. If not, return 0; otherwise return 1.

A runs in Polynomial Time since

- 1. runs in O(n) steps
- 2. runs in O(n) steps
- 3. runs in O(n) steps
- 4. runs in O(n) steps

So, A runs in O(n) steps

It is easy to see A is a correct verification algorithm for HAMPATH.

Step 2: HAMCYCLE ≤ p HAMPATH

Idea for the reduction. Given G, pick an arbitrary vertex u and create a new Vertex u' connected it to all the neighbors of u, in the new graph G'. A Hamiltonian in G corresponds to a Hamiltonian path from u to u' in G'.

Example:

The only case for which this reduction fails is $G: u \cdot 0 - 0$ since G has no Hamiltonian cycles but has a Hamiltonian path between u and u'

G':

Therefore, we treat the case (V) = 2 separately in the algorithm.

Step 3: Reduction Algorithm

Algorithm F(< G >)

Let
$$G = (V, E)$$
. If $|V| = 2$, then return $|V| = (V' = \{u, v\}, E' = \emptyset) |V'| = (V' = \{u, v\}, E' = \emptyset)$, $\mu, V > 0$

Select a vertex u in G $E' \leftarrow E$.

For each v in V do

If $\{u,v\} \in E$ then $E' \leftarrow E' \cup \{u'v\}$

Return < G' = (V', E'), u, u' >;

Step 4:

• The reduction works that is G has a Hamiltonian cycle if and only if G' has a Hamiltonian path from u to u' (\Rightarrow) let $C = (V_1 = u, V_2, \dots V_n)$ be a Hamiltonian cycle in G (we can assume $V_i = u$ with loss of generate) it is easy to see that $(V_1 = u, V_2, V_3 - \dots - V_n, V_{n+1} = u')$ is a Hamiltonian path between u and u' in G' since $(V_1, V_2 - \dots - V_n)$ are distinct vertices in G so $(V_1 = u, V_2, \dots - \dots - V_n, V_{n+1} = u')$ are distinct vertices in G': more over if $\{V_i, V_{i+1}\} \in E$ $i = 1, 2, \dots, n$ and $\{V_n, u\} \in E$ then $\{V_i, V_{i+1}\} \in E'$, $i = 1, 2, \dots, n$ and $\{V_n, u'\} \in E'$ (\Leftarrow)

• Let $P = (u = V_1, V_2, V_3 - \cdots - V_n, V_{n+1} = u')$ be a Hamiltonian path in G' then $(V_1, V_2, \cdots - V_n, V_{n+1} = u')$ are distinct vertices in G'. So $(V_1, V_2, \cdots - V_n)$ are distinct in G. more over, since $\{V_i, V_{i+1}\} \in E'$, $i = 1, 2, \cdots - n$ and $\{u', V_i\} \in E'$ then we conclude $\{V_i, V_{i+1}\} \in E$, $i = 1, 2, \cdots - n$ and $\{u, v_i\} \in E'$. Moreover, since $i = 1, 2, \cdots - n$ and $\{u, v_i\} \in E'$. Moreover, since $i = 1, 2, \cdots - n$ and $\{u', v_i\} \in E'$. Moreover, since $i = 1, 2, \cdots - n$ and $\{u', v_i\} \in E'$.

Step 5: F runs in Polynomial time

Copying G into G', takes time $O(n^2)$ where n = |V|. Creating u' and its incidence edges takes time in O(n). Therefore, F runs in $O(n^2)$.