Instituto Superior Técnico

LICENCIATURA EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Probabilidades e Estatística Resumo Teórico

João Barreiros C. Rodrigues,
nº 99968 , aka Ex-Machina,

 2^{nd} semester 2022

CONTENTS CONTENTS

Contents

1	Definição Axiomática de Probabilidade, segundo Kolmagorov	
	1.1	Consequências da definição axiomática
	1.2	Proposição da Probabilidade Condicionada
	1.3	Lei das Probabilidades Compostas
	1.4	Lei da Probabilidade Total
		141 Teorema de Bayes

1 Definição Axiomática de Probabilidade, segundo Kolmagorov

1.1 Consequências da definição axiomática

Propriedade 0

$$0 \ge P(A) \le 1, \forall A \in \mathfrak{A} \tag{1}$$

Propriedade 1

$$P(\overline{A}) = 1 - P(A) \iff P(\overline{A}) + P(A) = 1 = \Omega \tag{2}$$

Propriedade 2

$$P(A) = P(A) \iff P(A) - P(A) = 0 \iff P(\emptyset) = 0 = \overline{\Omega}$$
 (3)

Propriedade 3

$$P(A \backslash B) = P(A) - P(A \cap B) \tag{4}$$

Propriedade 4

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{5}$$

1.2 Proposição da Probabilidade Condicionada

Deriva da Ideia de que se um evento B ocorreu, qual a probabilidade do evento A suceder. Assim têm-se, para um evento B com P(B) > 0:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{6}$$

- 1.3 Lei das Probabilidades Compostas
- 1.4 Lei da Probabilidade Total
- 1.4.1 Teorema de Bayes