SECTION A

Choose the *best* answer for each question, and record it on the supplied test answer sheet. Each question is worth one mark. Answer all thirty (30) questions.

QUESTION 1

Consider the following formula:

$$\log_a \left(\frac{a^4 b^x}{(a^2)^3 b^y} \right)$$

Which of the following is equal to the formula above?

- (a) $\frac{x y + \log_b a^{-2}}{\log_b a}$
- (b) $\frac{(x-y)(\log_b a^{-2})}{\log_a b}$
- (c) $\frac{xy + \log_b a^{-3}}{\log_b a}$
- (d) $\frac{2-\log_a b^{x-y}}{\log_b a}$

QUESTION 2

Consider the following made-up definition:

A *thingamabob* is an integer whose binary representation (with no leading zeros) is the NOT of itself when reversed. For example, 12 is a thingamabob since its binary representation is 1100 and when reversed this becomes 0011, the NOT of 1100.

Which of the following is a thingamabob?

- (a) 48
- (b) 56
- (c) 32
- (d) None of the above

QUESTION 3

Recall that a divisor of z is an integer x such that x|z, and a prime number x is a number whose only positive divisors are itself and 1.

Which of the following sets is equal to the set of all positive prime divisors of 100?

- (a) $\{x \in \mathbb{Z} : x > 1 \land x \mid 100 \land \forall y \in \mathbb{Z}^+ y \mid x \land y > 1 \land y \neq x)\}$
- (b) $\{x \in \mathbb{Z} : x > 1 \lor x \mid 100 \lor \neg (\exists y \in \mathbb{Z}^+ y \mid x \lor y > 1 \lor y \neq x)\}$
- (c) $\{x \in \mathbb{Z} : x > 1 \land x \mid 100 \land \neg (\exists y \in \mathbb{Z}^+ y \mid x \land y > 1 \land y \neq x)\}$
- (d) $\{x \in \mathbb{Z} : x > 1 \land x \mid 100 \land \{y \in \mathbb{Z}^+ : y \mid x\} = \emptyset\}$

CAB203T1.211 cont/...

QUESTION 4

Suppose that a Boolean formula A is a tautology. Then:

- (a) Any other formula B logically implies A.
- (b) A logically implies any other satisfiable formula B.
- (c) A is logically equivalent to any formula B that is not a contradiction.
- (d) A is also contingent.

QUESTION 5

Consider the following proposition:

$$p = \exists e \in S \ \forall x \in S \ ex = x$$

Which of the following is logically equivalent to p above?

- (a) e = 1
- (b) $\neg (\forall e \in S \ \neg (\exists x \in S \ ex \neq x))$
- (c) $\neg (\exists e \in S \ \neg (\forall x \in S \ ex = x))$
- (d) $\neg (\forall e \in S \ \exists x \in S \ ex \neq x)$

QUESTION 6

Consider the following proof:

Proof. Suppose that there are a finite number (say n) of primes, $p_1, p_2, \dots p_n$. Let $q = p_1 p_2 \dots p_n + 1$. Now for any $j \in \{1 \dots n\}$ we have

$$q-1=(p_1\dots p_{j-1}p_{j+1}\dots p_n)p_j$$

so $q \equiv 1 \pmod{p_j}$. So q has no prime divisors and hence is prime. But clearly $q \geq p_j$ for all j, so q is a new prime that is not in our list of all primes.

Hence there is an infinite number of primes.

This proof is *best* described as:

- (a) A proof by contradiction
- (b) A proof by contrapositive
- (c) A proof by counterexample
- (d) A proof by construction

CAB203T1.211 cont/...

QUESTION 7

Suppose that we have the following block of code:

$$x = x + 1$$
$$y = x * x$$

Supposing that the block has a pre-condition $\{x \ge 10\}$, which of the following is *not* a possible post-condition of the block?

- (a) $\{y \ge 121\}$
- (b) $\{y = (x+1)^2\}$
- (c) $\{x \ge 10 \land y \ge 10\}$
- $(d) \qquad \{y \ge x\}$

QUESTION 8

The *inverse* of a relation $R \subseteq A \times A$ is given by :

$$R^{-1} = \{(s, t) : (t, s) \in R\}$$

To distinguish between this definition of inverse and that usually applied to functions, we will call this the *relational inverse*, and call the inverse of a function the *functional inverse*.

Which of the following *not* true about the relationship between relational inverses and functional inverses?

- (a) Since a function is a relation, it has a relational inverse. Thus every function has a functional inverse.
- (b) The functional inverse of a function f, when viewed as a relation, is also the relational inverse of f viewed as a relation.
- (c) Since a function is a relation, we can always find the relational inverse for any function, but it is not necessarily the functional inverse.
- (d) Given a function f, if f's relational inverse is also a function, then it is the functional inverse of f.

QUESTION 9

A *clique* in a graph G = (V, E) is a set of vertices $C \subseteq V$ such that every vertex in C is adjacent to every other vertex in C. Which of the following is true about cliques?

- (a) In every graph G, every clique in G is a connected component
- (b) Every subset of a clique is also a clique
- (c) If the number of vertices in C is even then the induced subgraph on C is bipartite
- (d) Cliques cannot have a cycle of odd length

CAB203T1.211 cont/...

QUESTION 10

Suppose that we have a finite state automaton given as a state change diagram. Recall that a state change diagram is like a directed graph, but it has labels on the edges and loops (edges from a vertex to itself) are allowed.

Which of the following is *not* true?

- (a) If there is a sequence of inputs that will take the FSA from state s to state t then there is a directed path in the state change diagram from s to t.
- (b) If the FSA is in some state s and receives an input, the resulting state will be adjacent to s.
- (c) If there exists an input that causes the FSA to accept, then the state change diagram is acyclic.
- (d) If the FSA is in some state s and after receiving some inputs, it is again in state s then the state change diagram contains a directed cycle or loop.

END OF PAPER

SECTION Appendix

Answers: a, b, c, a, d, a, b, a, b, c

D 10			4 1 1 . 1 1	
Base-10	Hexadecimal			
0	0		0000	
1	1		0001	
2	2		0010	
3	3	0011		
4	4	0100		
5	5	0101		
6	6	0110		
7	7		0111	
8	8		1000	
9	9		1001	
10	A		1010	
11	В		1011	
12	C		1100	
13	D		1101	
14	E		1110	
15	F		1111	
θ (in degrees) $\sin \theta \cos \theta$				
	0	0	1	

θ (in degrees)	$\sin \theta$	$\cos \theta$
0	0	1
30	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
60	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
90	1	0