

CLAIMS

What is claimed is:

- 1 1. A method for preventing information losses due to
2 network node failure, the method comprising the steps of:
 - 3 operatively connecting at least one backup node to a
 - 4 primary node;
 - 5 synchronizing the at least one backup node and the
 - 6 primary node;
 - 7 receiving, from a first endpoint, ingress traffic in
 - 8 the primary node;
 - 9 replicating the ingress traffic to the at least one
 - 10 backup node;
 - 11 outputting, from the primary mode, primary egress
 - 12 traffic;
 - 13 outputting, from the at least one backup node,
 - 14 backup egress traffic;
 - 15 determining if the primary node has failed;
 - 16 transmitting, to a second endpoint, the primary
 - 17 egress traffic if it is determined that the primary node
 - 18 has not failed; and
 - 19 transmitting, to the second endpoint, the backup
 - 20 egress traffic from a selected one of the at least one

21 backup nodes if it is determined that the primary node
22 has failed,

23 wherein the backup egress traffic from the selected
24 one of the at least one backup nodes replaces the primary
25 egress traffic to the second endpoint and the backup node
26 becomes the primary node for subsequent traffic.

1 2. The method of claim 1, wherein the primary node and
2 the at least one backup node are network routers.

1 3. The method of claim 1, wherein the primary node and
2 the at least one backup node are security engines for
3 receiving encrypted ingress traffic and outputting
4 decrypted egress traffic.

1 4. The method of claim 1, wherein the step of
2 synchronizing the at least one backup node and the
3 primary node further comprises the steps of:

4 transmitting synchronization information from the
5 primary node to the at least one backup node.

1 5. The method of claim 4, wherein the step of
2 transmitting synchronization information from the primary
3 node to the at least one backup node further comprises
4 the steps of:

5 transmitting at least one checkpoint message from
6 the primary node to the at least one backup node, wherein

RECORDED MAILING RECEIPT

7 the at least one checkpoint message includes static
8 information relating to the primary node as well as any
9 outstanding session context for the primary node.

1 6. The method of claim 5, further comprising the steps
2 of:

3 receiving, from the at least one backup node, a
4 checkpoint message acknowledgment for each of said at
5 least one checkpoint messages;

6 determining whether each of the checkpoint message
7 acknowledgments were received prior to a change in flow
8 state;

9 transmitting a synchronization declaration from the
10 primary node to the at least one backup node if it is determined
11 that each of the checkpoint message
12 acknowledgments were received prior to a change in flow
13 state; and

14 transmitting at least one new checkpoint message
15 from the primary node to the backup node if it is determined
16 that each of the checkpoint packet acknowledgments was
17 not received prior to a change in flow state.

1 7. The method of claim 4, further comprising the steps
2 of:

3 periodically assessing synchronization maintenance
4 between the primary node and the at least one backup
5 node.

6 8. The method of claim 7, wherein the step of
7 periodically assessing synchronization maintenance
8 further comprises the step of:

9 transmitting at least a portion of internal
10 state information from the primary node to the at least
11 one backup node sufficient to permit replication of
12 primary node traffic on the at least one backup node.

1 9. An apparatus for preventing information losses due
2 to network node failure, the apparatus comprising:

3 a primary node;

4 at least one backup node operatively connected to
5 the primary node;

6 synchronizing means operatively connected to the
7 primary node and the backup node for synchronizing the at
8 least one backup node and the primary node;

9 means for receiving ingress traffic in the primary
10 node from a first endpoint;

11 means for replicating the ingress traffic to the at
12 least one backup node;

13 means for outputting primary egress traffic from the
14 primary node;

15 means for outputting backup egress traffic from the
16 at least one backup node;

17 determining means operatively connected to the
18 primary node and the at least one backup node for
19 determining whether the primary node has failed;

20 means for transmitting the primary egress traffic
21 from the primary node to a second endpoint if the
22 determining means determine that the primary node has not
23 failed; and

24 means for transmitting the backup egress traffic
25 from a selected one of the at least one backup nodes to
26 the second endpoint if the determining means determine
27 that the primary node has failed.

1 10. The apparatus of claim 9, wherein the primary node
2 and the at least one backup node are network routers.

1 11. The apparatus of claim 9, wherein the primary node
2 and the at least one backup node are security engines for
3 receiving encrypted ingress traffic and outputting
4 decrypted egress traffic.

1 12. The apparatus of claim 9, wherein the synchronizing
2 means further comprise:

3 means for transmitting synchronization information
4 from the primary node to the at least one backup node.

1 13. The apparatus of claim 12, wherein the means for
2 transmitting synchronization information further
3 comprise:

4 means for transmitting at least one checkpoint
5 message from the primary node to the at least one backup
6 node, wherein the at least one checkpoint message
7 includes static information relating to the primary node
8 as well as any outstanding session context for the
9 primary node.

1 14. The apparatus of claim 13, further comprising:

2 means for receiving in the primary node, from the at
3 least one backup node, a checkpoint message
4 acknowledgment for each of said at least one checkpoint
5 packets;

6 second determining means for determining whether
7 each of the checkpoint message acknowledgments were
8 received prior to a change in flow state;

9 means for transmitting a synchronization declaration
10 from the primary node to the at least one backup node if
11 is it determined that each of the checkpoint message

12 acknowledgments were received prior to a change in flow
13 state; and

14 means for transmitting at least one new checkpoint
15 message from the primary node to the backup node if it is
16 determined that each of the checkpoint message
17 acknowledgments was not received prior to a change in
18 flow state.

1 15. The apparatus of claim 12, further comprising:

2 means for periodically assessing synchronization
3 maintenance between the primary node and the at least one
4 backup node.

5 16. The apparatus of claim 15, wherein the means for
6 periodically assessing synchronization maintenance
7 further comprise:

8
9 means for transmitting at least a portion of an
10 internal state of the primary node to the backup node
11 sufficient to permit replication of primary node traffic
12 on the at least one backup node..

1 17. An article of manufacture for preventing information
2 losses due to network node failure, the article of
3 manufacture comprising:

4 at least one processor readable carrier; and

DRAFTING STYLING SHEET
1. LINES: 1/2" HORIZONTAL, 1/4" VERTICAL
2. SPACING: 1/4" LINE, 1/2" PARAGRAPH
3. LETTERS: 10 PT. 45° ANGLED
4. NUMBERS: 10 PT. 45° ANGLED
5. TABLES: 10 PT. 45° ANGLED
6. FIGURES: 10 PT. 45° ANGLED
7. CANCELLATION: 10 PT. 45° ANGLED
8. FONTS: HELVETICA, 10 PT.

5 instructions carried on the at least one carrier;
6 wherein the instructions are configured to be
7 readable from the at least one carrier by at least one
8 processor and thereby cause the at least one processor to
9 operate so as to:

10 synchronize a primary node and at least one
11 operatively connected backup node;

12 receive, from a first endpoint, ingress traffic;

13 replicate the ingress traffic to the at least one
14 backup node;

15 output, from the primary node, primary .. egress
16 traffic related to the ingress traffic;

17 output, from the at least one backup node, backup
18 egress traffic related to the ingress traffic;

19 determine if the primary node has failed;

20 transmit, from the primary node, primary egress
21 traffic related to the ingress traffic to a second
22 endpoint if it is determined that the primary node has
23 not failed; and

24 transmit, from a selected one of the at least one
25 backup nodes, backup egress traffic to the second
26 endpoint if it is determined that the primary node has
27 failed,

28 wherein the backup egress traffic replaces the
29 primary egress traffic to the second endpoint and the
30 selected one of the at least one backup nodes becomes the
31 primary node for subsequent traffic.

1 18. The article of manufacture of claim 17, wherein the
2 instructions further cause the at least one processor to
3 operate so as to:

4 transmit synchronization information from the
5 primary node to the at least one backup node.

1 19. The article of manufacture of claim 18, wherein the
2 instructions further cause the at least one processor to
3 operate so as to:

4 transmit at least one checkpoint message from the
5 primary node to the at least one backup node, wherein the
6 at least one checkpoint message includes static
7 information relating to the primary node as well as any
8 outstanding session context for the primary node.

1 20. The article of manufacture of claim 19, wherein the
2 instructions further cause the at least one processor to
3 operate so as to:

4 receive, from the at least one backup node, a
5 checkpoint message acknowledgment for each of said at
6 least one checkpoint messages;

7 determine whether each of the checkpoint message
8 acknowledgments were received prior to a change in flow
9 state;

10 transmit a synchronization declaration from the
11 primary node to the at least one backup node if is it
12 determined that each of the checkpoint message
13 acknowledgments were received prior to a change in flow
14 state; and

15 transmit at least one new checkpoint message from
16 the primary node to the backup node if is determined that
17 each of the checkpoint message acknowledgments was not
18 received prior to a change in flow state.

1 21. The article of manufacture of claim 18, wherein the
2 instructions further cause the at least one processor to
3 operate so as to:

4 periodically assess synchronization maintenance
5 between the primary node and the at least one backup
6 node.

1 22. A computer data signal embodied in a carrier wave
2 readable by a computing system and encoding a computer
3 program of instructions for executing a computer process
4 performing the method recited in claim 1.