Time of Flight (TOF) Analysis Update

Samip Basnet and Andrea Giammanco

July 2, 2020

Outline

- Board selection criteria and measured TOF with/without ϕ -cut
- Back-reconstructed raw elevation angle, θ_{raw} , distribution
- **2D** measured TOF vs θ_{raw} distribution
- 1D Measured TOF and θ_{raw} distribution with forward/backward selection
- Resolution power calculation
- Some considerations

[Note: For all the plots in this work 4 stations golden track selected data from runs 915 to 934 was used.]

Figure: Y and Z hits positions in Station 1 and Station 4

- Boards in the X-views (i.e., #1, #13) were selected a logical "AND" of gray boxes
- Similarly, a logical "AND" of pink boxes was used to select Y boards (i.e., #2, #14)

measured TOF distributions for X and Y views

Figure: measured TOF (without delay) for both views after relevant boards selection with and without the ϕ -cut: (90 $< \phi <$ 270)

- \rightarrow We were puzzled by the "shoulder" and the mismatch of minimization results for Y-view.
- \rightarrow Then we realized that our selection was not really the same: we were missing a 90 $< \phi <$ 270 cut that she applies for the purpose of this study!

Back-reconstructed raw θ

Figure: Red histogram represents reconstructed θ_{reco} from the ntuples; Back-reconstructed θ_{raw} is given by blue histogram.

 \rightarrow Back-reconstruction was done with the following condition:

IF 90
$$<\phi<$$
 270, THEN, $\theta_{\it raw}=-\theta_{\it reco}$

measured TOF vs θ_{raw}

Figure: Right Panel: messured TOF (X-view) vs θ_{raw} Left Panel: messured TOF (Y-view) vs θ_{raw}

ightarrow We believe the two islands (more clear in Y-view) represent "forward" and "backward" muons

measured TOF with θ_{raw} cuts

Figure: TOF Distribution (both views). The red curves/histos represent TOF distribution with $\theta_{raw} < 0$, and the blue curves/histos represent TOF distribution with $\theta_{raw} > 0$.

 \rightarrow The curves are Gaussian functions fitted to the relevant histograms

θ_{raw} with measured TOF cuts

Figure: θ_{raw} Distributions. The red curves/histos represent θ_{raw} distribution with TOF < 0, and the blue curves/histos represent θ_{raw} distribution with $TOF \ge 0$.

 \rightarrow The curves are polynomial functions (rank=5) fitted to the relevant histograms

Some considerations

- In this short study, an estimation of resolution powers calculation for two TOFs and two θ_{raw} was done
- Among all the distributions studied here, TOF in Y-view discriminates the best between "forward" and "backward" muons as it has the best resolution power
- However, it will be ideal to combine all four of these quantities to help separate out forward and backward muons

■ Any comments, feedback, and suggestions are most welcome.

Thank you for your attention

Resolution power: which quantity discriminates better?

Resolution Power =
$$\frac{m_{fwd} - m_{bck}}{\sqrt{(\sigma_{fwd})^2 + (\sigma_{bck})^2}}$$
(1)

Distributions	Resolution power
mes ToF (X-view)	1.85
mes ToF (Y-view)	2.85
θ_{raw} (with ToFX)	0.56*
θ_{raw} (with ToFY)	1.46*

Table: Resolution power estimation

 \rightarrow * Not fitting parameters are used for mean and σ calculation for these distributions.