Bayes

Lendo os dados

V.C.Parro

Primavera - 2020

Objetivos do módulo

Questão frequente

O que preciso conhecer além dos comandos de machine learning?

Objetivos

- 1. Capacidade de análise dos principais algoritmos.
- 2. **Tradução** das equações em pseudo códigos.
- 3. **Tradução** dos pseudo códigos em códigos Python.
- 4. Capacidade de modelagem probabilística.
- Aplicação de testes estatísticos para avaliação de resultados.
- Repertório de algoritmos e aplicações.

Metodologia

- 1. Análise teórica dos fundamentos.
- 2. **Codificação** dos algoritmos resultantes.
- 3. **Visualização** e interpretação de resultados.
- 4. **Repertório** de conceitos probabilísticos.
- 5. Repertório de testes estatísticos.
- 6. Repertório de métodos de análise.
- 7. Uso de base de dados consolidadas e experimentais.

Metáfora que define o curso

Cenário preliminar:

Suponha que uma pessoa não sabia qual é realmente sua capacidade de poupança. Isso a impede de planejar como conduzir os anos futuros. Tal falta de informação é compensada pela capacidade desta pessoa obter rendimentos variáveis para sue trabalho: precisa mais, trabalha mais, o que depende da demanda - **risco**.

Metáfora que define o curso

Organização:

A organização da força de trabalho e das despesas e investimentos proporciona a possibilidade de estimativa da capacidade de poupança. Uma conclusão possível é que a poupança "real"não atenda o objetivo desta pessoa quando analisada a luz do desejo de trabalho: redução de risco e estabecimento espectativa. **Como compatilizar?**

Introdução

Tomada de decisão

Uma decisão era sensata, mesmo que levasse a conseqüências desastrosas, se as evidências disponíveis indicassem que era a melhor decisão a se tomar; e uma decisão foi tola, mesmo que tenha levado às consequências mais felizes possíveis, se não fosse razoável esperar essas consequências.

Herodotus

Regressão linear

Figura 1: Regressão linear - erros aleatórios e sistemáticos.

Separação

Figura 2: Separação de dados.

A variável tempo - processo estocástico

Figura 3: Valores das ações em função do tempo.

Por que agora?

- 1. 1952 Stochastic Gradient Descent.
- 2. 1956 Perceptron pesos ajustáveis.
- 3. 1986 Backpropagation multicamadas.
- 4. 1995 Redes convolucionais "profundas".

Probabilidade

Probabilidade

"...a teoria das probabilidades é basicamente, o senso comum que se reduz ao cálculo: faz-nos apreciar com precisão o que as mentes percebem por um tipo de instinto, sem que elas frequentemente sejam capazes de percebê-lo."

Pierre Simon de Laplace, Sur les probabilités

Moedas, dados, urnas, bolas e cartas

- 1. A Sequência premiada da mega sena.
- 2. Previsão do tempo.
- 3. Prefeitos das capitais em 2020.
- 4. Campeão brasileiro de 2020.
- 5. Número de infectados com o corona virus em Dezembro de 2020.

O problema de Monty-hall^a

^aO problema de Monty Hall, também conhecido por paradoxo de Monty Hall é um problema matemático e paradoxo que surgiu a partir de um concurso televisivo dos Estados Unidos chamado Lets Make a Deal, exibido na década de 1970 - https://towardsdatascience.com/solving-the-monty-hall-problem-with-bayes-theorem-893289953e1

Escolhemos a primeira carta

- Existe apenas um Às entre as três cartas.
- Se virarmos um Às seremos ganhadores, caso contrário perdemos.
- Qual a nossa chance de ganhar?

Trocamos?

- · A mesa vira a última carta.
- A mesa sabe onde está o Às.
- Qual a nossa chance se trocamos?

Possibilidades

Possibilidades

A mesa sabe onde está o Às.

Trocamos?

- · A mesa vira a última carta.
- A mesa não sabe onde está o Às.
- Qual a nossa chance se trocamos?

Sistematizar

- Combinatória.
- Permutas.
- Condicionais.

Linguagem natural^a

^aExemplo do livro:

https://web.stanford.edu/~jurafsky/slp3/4.pdf

Linguagem natural

frase: predictable with no fun

Esta frase transmite uma sensação positiva ou negativa?

Probabilidade

Vocabulário

Conjuntos	Probabilidade	Notação
Universo	Espaço amostral	S
Elemento	Resultado	S
Subconjunto	Evento	E
Conjunto nulo	Evento impossível	Ø
Conjunto simples	Evento isolado	$E = \{s\}$

Axiomas

- 1. $P(E) \ge 0 \ \forall E$
- 2. P(S) = 1
- 3. $P(E_1 \cup E_2) = P(E_1) + P(E_2)$, considerando eventos mutualmente exclusivos: $E_1 \cap E_2 = \emptyset$.

Probabilidade: eventos discretos e contáveis

$$P(E) = \sum_{(i,j): s_{ij} \in E} P[s_{ij}]$$

$$= \frac{N_E}{N_S}$$
 Número de resultados no evento **E**
Número total de resultados em **S**

Para o caso de um dado com faces **equiprováveis e dois lançamentos:**

$$P(s_{ij}) = \frac{1}{36}$$

Conjuntos e lógica

Figura 5: Operações lógicas.

Conjuntos e lógica

Figura 6: Operações lógicas.

Eventos não mutuamente exclusivos

Figura 7: Eventos não mutuamente exclusivos.

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \tag{1}$$

Probabilidade condicional

Figura 8: Eventos não mutuamente exclusivos.

$$P(E_1|E_2) = \frac{P(E_1, E_2)}{P(E_2)} \tag{2}$$

No caso das moedas a intersecção é nula. Os eventos são independentes.

Probabilidade condicional

Dos pacientes que chegam na emergência 25% são homens hipertensos.

$$P(Hipertenso|Homem) = \frac{P(Hipertenso, Homem)}{P(Homem)}$$
 (3)

Qual a probabilidade de um paciente ser hipertenso sabendo-se que é homem?

Uma outra forma de olhar

$$P(E_1, E_2) = P(E_1 | E_2) P(E_2)$$
 (4)

No caso das moedas a intersecção é nula. Os eventos são independentes.

Independência

$$P(E_1|E_2) = P(E_1) (5)$$

O caso do dado é um bom exemplo.

Teorema de Bayes

$$P(E_1|E_2) = \frac{P(E_2|E_1)P(E_1)}{p(E_2)}$$
 (6)

- 1. $P(E_1|E_2)$ posterior ou "a posteriori".
- 2. $P(E_2|E_1)$ likelihood ou verossimilhança.
- 3. $P(E_1)$ prior ou "a priori", "crença" acerca da probabilidade de ocorrência de ocorrer o evento E_1 .
- 4. $P(E_2)$ evidence ou evidência.

Monty Hall

$$P(As|Q) = \frac{P(Q|As)P(As)}{p(Q)} \tag{7}$$

Como adaptar para um classificador?

$$P(Label|Feature) = \frac{P(Feature|Label)P(Label)}{P(Feature)}$$
(8)

$$P(Causa|Efeito) = \frac{P(Efeito|Causa)P(Causa)}{P(Efeito)}$$
(9)

$$P(Patologia|Sintoma) = \frac{P(Sintoma|Patologia)P(Patologia)}{P(Sintoma)} \tag{10} \label{eq:10}$$

Formalizando o classificador

Como estimar a qual classe um evento está associado?

Para uma determinada categoria c, em um conjunto de categoria \mathcal{C} , desejamos estimar a categoria \hat{c} a qual o documento d pertence.

$$\hat{c} = \max_{c \in \mathscr{C}} P(c/d) \tag{11}$$

Utilizando Bayes:

$$\hat{c} = \max_{c \in \mathscr{C}} \frac{\overbrace{P(d/c)}^{verossimilhana} \overbrace{P(c)}^{apriori}}{P(d)}$$
(12)

p(d) para o conjunto de categorias \mathscr{C} é constante.

Eventos independentes

O documento d é formado por um conjunto de *features*.

$$d \to f_1, f_2, f_3, \dots, f_n$$
 (13)

Utilizando Bayes para um conjunto de "features" 39

$$C_{NB} = \max_{c \in \mathscr{C}} P(c) \prod_{f \in \mathscr{F}} P(f|c)$$
 (14)

Forma final

O conjunto de "features" \mathscr{F} pode ser representado por um conjunto de palavras \mathscr{W} que representem o que desejamos capturar.

$$C_{NB} = \max_{c \in \mathscr{C}} P(c) \prod_{i \in \mathscr{W}} P(w_i | c)$$
 (15)

No formato log():

$$C_{NB} = \max_{c \in \mathscr{C}} \left\{ \log(P(c)) + \log \left(\sum_{i \in \mathscr{W}} \log(P(w_i|c)) \right) \right\}$$
 (16)

Voltando ao problema inicial

Linguagem natural

frase: predictable with no fun

Esta frase transmite uma sensação positiva ou negativa?

Documentos - d

frase: predictable with no fun

Categoria	Documentos
N	just plain boring
N	entirely predictable and lacks energy
N	no surprises and very few laughs
Р	very powerful
Р	the most fun film of the summer

Estimando valores

$$\hat{P}(c) = \frac{N_c}{N_D}$$

$$\hat{P}(w_i | vertc) = \frac{contagem(w_i, c)}{\sum_{w \in V} contagem(w, c)}$$
(17)

Correção de Laplace

$$\hat{P}(c) = \frac{N_c}{N_D}$$

$$\hat{P}(w_i/vertc) = \frac{contagem(w_i, c) + 1}{\sum_{w \in V} contagem(w, c) + 1}$$
(18)

Regressor NB

Como adaptar para um regressor?

$$P(y|\theta_0, \theta_1, \dots, \theta_p) = \frac{P(\theta_0, \theta_1, \dots, \theta_p|y)P(y)}{P(\theta_0, \theta_1, \dots, \theta_p)}$$
(19)

considerando eventos independentes:

$$P(y|\theta_0,\theta_1,\ldots,\theta_p) = \frac{\overbrace{P(\theta_0|y)} \quad P(\theta_1|y)(\theta_p|y)P(y)}{P(\theta_0,\theta_1,\ldots,\theta_p)} \tag{20}$$

Literatura

Literatura

o sinal e o ruído e o e o ruído e o ruído e por que tantas e o r previsões falham e outras não e o ruí nate silver e o ruído o ruído e intrínseca

Literatura

