Polynomials

 $Problems\ about\ polynomials$

Problem 1 Explain what is meant by a polynomial in a variable x.

Problem 2 Given:

$$3x^7 - x^5 + x^4 - 16x^3 + 27 = a_7x^7 + a_6x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0$$

Find a_0 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 .

Problem 3 *Given:*

$$6x^5 + a_4x^4 - x^2 + a_0 = a_5x^5 - 24x^4 + a_3x^3 + a_2x^2 - 5$$

Find a_0 , a_1 , a_2 , a_3 , a_4 , a_5 .

Problem 4 Is it true that polynomials are equal if and only if their coefficients are equal? Explain your reasoning.

Problem 5 Is it true that numbers are equal if and only if their digits are equal? Explain your reasoning.

Problem 6 Explain how to add two polynomials. Explain, in particular, how "collecting like terms" is an application of the properties of arithmetic.

Problem 7 Explain how to multiply two polynomials.

Author(s): Bart Snapp and Brad Findell

Problem 8 Here is an example of the polynomial division algorithm:

$$\begin{array}{r}
x-3 \\
x^2+3x+1 \overline{\smash{\big)}[t] x^3+0x^2+x+1} \\
x^3+3x^2+x \\
011 [t] -3x^2+0x+1 \\
-3x^2-9x-3 \\
412 9x+4
\end{array}$$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 9 State the Division Theorem for polynomials. Give some relevant and revealing examples of this theorem in action.

Problem 10 Given a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

can you find two numbers L and U such that $L \leq p(x) \leq U$ for all x? If so, explain why. If not, explain why not.

Problem 11 Consider all polynomials of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where the a_i 's are integers. If you substitute an integer for x will you always get an integer out? Explain your reasoning.

Problem 12 Consider the following polynomial:

$$p(x) = \frac{x^2}{2} + \frac{x}{2}$$

Will p(x) always returns an integer when an integer is substituted for x? Explain your reasoning.

Problem 13 Fix some integer value for x and consider all polynomials of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where the a_i 's are integers greater than or equal to 0. Which numbers can be represented by such polynomials? Explain your reasoning.

Problem 14 Find a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that a_i 's are integers greater than or equal to 0 and less than 2 such that p(2) = 35. Discuss how your answer compares to the representation of 35 in base two. Explain your reasoning.

Problem 15 Find a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that a_i 's are integers greater than or equal to 0 and less than 7 such that p(7) = 234. Discuss how your answer compares to the representation of 234 in base seven. Explain your reasoning.

Problem 16 Find a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that a_i 's are integers greater than or equal to 0 and less than 10 such that p(10) = 18. Discuss how your answer compares to the representation of 18 in base ten. Explain your reasoning.

Problem 17 Find a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that a_i 's are integers greater than or equal to 0 and less than 15 such that p(15) = 201. Discuss how your answer compares to the representation of 201 in base fifteen. Explain your reasoning.

Problem 18 Fix some integer value for x and consider all polynomials of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where the a_i 's are integers greater than or equal to 0 and less than x. Which numbers can be represented by such polynomials? Explain your reasoning. Big hint: Base x.

Problem 19 Fix some integer value for x and consider all polynomials of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where the a_i 's are integers greater than or equal to 0 and less than 10. Which numbers can be represented by such polynomials? Explain your reasoning.

Problem 20 Consider $x^2 + x + 1$. This can be thought of as a "number" in base x. Express this number in base (x + 1), that is, find b_0 , b_1 , b_2 such that

$$b_2(x+1)^2 + b_1(x+1) + b_0 = x^2 + x + 1.$$

Explain your reasoning.

Problem 21 Consider $x^2 + 2x + 3$. This can be thought of as a "number" in base x. Express this number in base (x - 1), that is, find b_0 , b_1 , b_2 such that

$$b_2(x-1)^2 + b_1(x-1) + b_0 = x^2 + 2x + 3.$$

Explain your reasoning.

Problem 22 Consider $x^3 + 2x + 1$. This can be thought of as a "number" in base x. Express this number in base (x - 1), that is, find b_0 , b_1 , b_2 , b_3 such that

$$b_3(x-1)^3 + b_2(x-1)^2 + b_1(x-1) + b_0 = x^3 + 2x + 1.$$

Explain your reasoning.

Problem 23 If the polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is thought of as a "number" in base x, describe two different ways to find the base (x-1) coefficients of p(x).