Way to Electromagnetic (EM) waves

Outline

- Last review of Maxwell's equations: How all terms fit together
- Orthogonality of \overrightarrow{E} and \overrightarrow{B} and transverse character of EM waves
- Travelling Electric and Magnetic fields: Plane wave
- Solving Maxwell's equations
- Poynting vector: Energy Momentum
- Propagation, Polarization and incidence of EM waves on matter: conductor vs dielectric

Summarizing

Time independent
$$\left(\frac{\partial}{\partial t} = 0\right)$$

No current or steady

Time dependent
$$\left(\frac{\partial}{\partial t} \neq \mathbf{0}\right)$$
Acceleration

Electrostatics

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad \longrightarrow \text{Gauss's law} \qquad \longrightarrow \vec{\nabla} \cdot \vec{E}(t) = \frac{\rho(t)}{\varepsilon_0}$$

$$\vec{\nabla} \times \vec{E} = 0 \qquad \longrightarrow \vec{E} = -\vec{\nabla}\varphi \qquad \longrightarrow \text{Poisson}$$
Equation
$$\vec{\nabla} \times \vec{E}(t) = -\frac{\partial \vec{B}(t)}{\partial t} \qquad \longrightarrow \text{Faraday's law}$$

Magnetostatics

IN WHAT FOLLOWS

$$ho(t)$$
 $\vec{E}(t)$ $\vec{J}(t)$ $\vec{B}(t)$

All these functions are time variable

But for a sake of simplicity the variable t is dropped

A special attention must be payed to the forth Maxwell's equation

How the charge conservation law became sacred!

Ampere's law
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$
 M

Maxwell's questioning

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{B}) = \mu_0 \vec{\nabla} \cdot \vec{J}$$
 The flux of a current out of a closed surface is zero

COMON SENSE: The flux of a current out of a closed surface = the **DECREASE** of charge inside. So it cannot be in general zero

$$\vec{\nabla} \vec{j} = -\frac{\partial \rho}{\partial t}$$

Something is wrong with Ampere's law

Maxwell's correction

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{\boldsymbol{j}} + \frac{\mathbf{1}}{\boldsymbol{c}^2} \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla}.(\vec{\nabla}\times\vec{B}) = \mu_0 \vec{\nabla}.\vec{J} + \frac{1}{c^2} \underbrace{\vec{\nabla}.\vec{E}}_{\partial t}$$

From Gauss law

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{B}) = \mu_0 \vec{\nabla} \cdot \vec{J} + \frac{1}{\varepsilon_0 c^2} \frac{\partial \rho}{\partial t} = 0$$

$$\vec{0}$$

$$\vec{0}$$

$$\frac{1}{\varepsilon_0 \mu_0} = c^2$$

Charge conservation law

$$\vec{\nabla} \cdot \vec{\boldsymbol{J}} = -\frac{\partial \rho}{\partial t}$$

To date no one has found an experiment that disagrees with this statement

Charge conservation

$$\vec{\nabla} \cdot \vec{\boldsymbol{j}} = -\frac{\partial \rho}{\partial t}$$

If charges are flowing out of closed surface it means that their density inside the volume bounded y this surface is decreasing **UNLESS** the difference is supplied by an external source (closed circuit)

Reminder

- Differential forms of Maxwell's equations manipulate <u>vectors</u>
- Integral forms of Maxwell's equations manipulate <u>scalars</u>

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

What if things are varying with time?

$$\frac{\partial}{\partial t} (\vec{\nabla} \cdot \vec{E}) = \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial t}$$

$$+ \quad \left| \frac{\partial \rho}{\partial t} = - \vec{\nabla} \vec{j} \right|$$

$$\frac{\partial}{\partial t}(\vec{\nabla}.\vec{E}) = \frac{1}{\varepsilon_0} \frac{\partial \rho}{\partial t} + \begin{vmatrix} \partial \rho \\ \partial t \end{vmatrix} = -\vec{\nabla}\vec{j} \implies \varepsilon_0 \frac{\partial}{\partial t}(\vec{\nabla}.\vec{E}) = -\vec{\nabla}\vec{j} \implies \varepsilon_0 \frac{\partial}{\partial t}(\vec{\nabla}.\vec{E}) + \vec{\nabla}.\vec{j} = \mathbf{0}$$

Let's now take a look at equation (4)

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{\boldsymbol{j}} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \cdot \left[c^2 \vec{\nabla} \times \vec{B} \right] = \frac{\vec{\nabla} \vec{J}}{\varepsilon_0} + \frac{\partial \vec{\nabla} \cdot \vec{E}}{\partial t}$$

$$\varepsilon_0 \frac{\partial}{\partial t} (\vec{\nabla} \cdot \vec{E}) + \vec{\nabla} \cdot \vec{J} = \mathbf{0}$$

$$\varepsilon_0 \frac{\partial}{\partial t} (\vec{\nabla} . \vec{E}) + \vec{\nabla} . \vec{j} = \mathbf{0}$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
 Valid all the time

A beautiful experiment illustrating the pertinence of Maxwell's approach

The charge source Q(r, t) is leaky radially (symmetrically)

$$\frac{\partial Q(r,t)}{\partial t} = -4\pi r^2 j(r)$$

Current is a scalar field

We should expect a magnetic field circulating along a loop around the current density vectors

How can a field change direction?

Maxwell finding saves the situation

$$E(r,t) = \frac{Q(r,t)}{4\pi\varepsilon_0 r^2}$$

$$\vec{\partial E} = \frac{1}{4\pi\varepsilon_0 r^2} \frac{\partial Q(r,t)}{\partial t} = \frac{j(r)}{\varepsilon_0}$$

$$j(r) = \frac{l}{A} \qquad A = 4\pi r^2$$

$$j(r) = \frac{l}{A} \qquad B = \vec{0}$$
Fourth Maxwell's equation
$$\vec{B} = \vec{0}$$
No magnetic field

Two sources of magnetic fields cancel each other out

⇒ There can be no magnetic field

Electromagnetic (EM) waves

Maxwell's theory

1865

 $\frac{\partial B}{\partial t} \rightarrow \text{Source of } E(x,t)$ $\frac{\partial E}{\partial t} \rightarrow \text{Source of } B(x,t)$ + Hertz's experiments

1888 (23 years later!)

Mechanical waves need medium to propagate

EM waves do not need any medium to propagate

BUT both are based on the same equations

Momentum

Energy

EM waves

Maxwell equations and EM waves

Faraday's law

 $\Rightarrow \frac{\partial B}{\partial t} \rightarrow \text{Source of } E(x,t) \text{ proved by emf induction}$

Ampere's and Maxwell's law

 $\Rightarrow \frac{\partial E}{\partial t} \rightarrow \text{Source of } B(x,t) \text{ proved by displacement current}$

$$\frac{\partial E}{\partial t} \leftrightarrow \frac{\partial B}{\partial t}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\varepsilon_0 \qquad \mu_0$$

$$\frac{1}{\varepsilon_0 \mu_0} = c^2$$

Maxwell motivation (1864) was to understand this extraordinary result

Characteristics of the medium

Static point charge

Static field \vec{E}

Moving point charge (steady velocity)

Static fields \vec{E} and \vec{B}

To produce EM wave, the charge MUST accelerate

$$\frac{\partial E}{\partial t} \leftrightarrow \frac{\partial B}{\partial t}$$

Every accelerated charge radiates EM energy

- This makes classical atom unstable
- The orbiting electron has a centripetal acceleration

Quantum mechanics handles this issue

How can we accelerate a charge?

Simple harmonic oscillation

The two systems are in permanent acceleration except when passing through the equilibrium position

Today's circuit

Original Hertz experiment 1888

Question:

- 1) Is it possible to have a purely <u>Electric wave</u> or <u>Magnetic wave</u> propagating through empty space?
- 2) No wave along the z axis: Why?

Electrostatic

$$\vec{E} = \frac{1}{4\pi \epsilon_0} \frac{q}{r^2} \vec{e}_r$$

Both perpendicular to each other but **NOT ALWAYS** whether the charges are <u>static</u> or in <u>uniform motion</u>

Magnetostatic

 $\vec{B} = \frac{\mu_0}{4\pi} \frac{q}{r^2} \vec{v} \times \vec{e}_r$

Maxwell's equations require **ORTHOGONALITY ALL THE TIME**

ONLY ONE SOLUTION: THE CHARGES MUST ACCELERATE

Orthogonality of \vec{E} and \vec{B} and transverse character of EM waves

Expressing the traveling \vec{E} and \vec{B} in complex exponential forms

$$\vec{E} = \sum_{1}^{3} E_{0m} \vec{u} e^{i(\vec{k}.\vec{r} - \omega t)} \qquad \vec{B} = \sum_{1}^{3} B_{0m} \vec{u} e^{i(\vec{k}.\vec{r} - \omega t)} \qquad m = (x, y, z) \vec{u} = (\vec{l}, \vec{l}, \vec{k})$$

$$\vec{E} = (E_{0x}\vec{i} + E_{0y}\vec{j} + E_{0z}\vec{k})e^{[i(k_xx + k_yy + k_zz - \omega t)]}$$

$$\vec{B} = (B_{0x}\vec{i} + B_{0y}\vec{j} + B_{0z}\vec{k})e^{[i(k_xx + k_yy + k_zz - \omega t)]}$$

$$\vec{k} = k_{x}\vec{i} + k_{y}\vec{j} + k_{z}\vec{k}$$

 $\vec{k} = k_{\chi}\vec{\imath} + k_{y}\vec{\jmath} + k_{z}\vec{k}$ \vec{k} direction of propagation)

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\vec{k} \cdot \vec{r} = k_x x + k_y y + k_z z$$

Orthogonality of \vec{E} and \vec{B} : Demonstration based on Faraday's and Maxwell's laws

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{\boldsymbol{j}} + \frac{\mathbf{1}}{\boldsymbol{c}^2} \frac{\partial \vec{E}}{\partial t}$$

From Faraday's law

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Expressing the traveling \vec{E} and \vec{B} in complex exponential forms

$$\vec{E} = \sum_{1}^{3} E_{0m} \vec{u} e^{i(\vec{k}.\vec{r} - \omega t)}$$

$$\vec{B} = \sum_{1}^{3} B_{0m} \vec{u} e^{i(\vec{k}.\vec{r} - \omega t)}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{k} \times \vec{E} = \omega \vec{B}$$

$$\vec{B} \perp \vec{k}$$
 and $\vec{B} \perp \vec{E}$

 $\hat{\boldsymbol{k}}$ indicate the direction of propagation

What about \overrightarrow{E} and \overrightarrow{k} ?

From Maxwell's (Ampere's corrected) law

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$
 in free space $\vec{\nabla} \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$

The same treatment as in previous slide

Transverse character of the EM wave: Demonstration based on Gauss's laws

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

From Gauss's law in a space charge free

$$\vec{\nabla} \cdot \vec{E} = 0$$

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$i(k_x E_x + k_y E_y + k_z E_z) = 0$$

EM waves are Orthogonal and Transverse

$$\vec{k} \cdot \vec{E} = 0$$

The electric field \vec{E} is orthogonal to the direction of propagation

From Gauss's law applied to \vec{B}

$$\vec{k} \cdot \vec{B} = 0$$

The magnetic field \vec{B} is orthogonal to the direction of propagation

Consequence on the relation between E and B

$$\vec{k} \times \vec{E} = \omega \vec{B}$$

$$kE = \omega B$$

$$E = \frac{\omega}{k}B$$

$$E = cB$$

E = cB $B \ll E$ In most practical cases it is E that matters

Acceleration creates a transverse wave

Remark on vectors

In general a vector has 3 components and each component depends on four variables (x, y, z, t)

$$\vec{V} = V_x(x, y, z, t)\vec{i} + V_y(x, y, z, t)\vec{j} + V_z(x, y, z, t)\vec{k}$$

If the vector has only one single component

$$\vec{V} = V_y(x, y, z, t)\vec{j}$$

BUT

Still this component can be function of the four variables

Plane wave

Assumptions

Homogeneous unbounded medium (vacuum):

No absorption and no reflection

• Source of EM wave consists of **an infinite plan perpendicular** to the direction of propagation On every plane, \vec{E} and \vec{B} keep the **same** <u>direction</u>, same <u>magnitude</u> and same <u>phase</u>

A more realistic approach to the plane wave

Away from a spatially limited source, a spherical wave is more realistic...

... And very far away from the source it may look like a plane wave...

Plane wave

Assumptions

• For a plane wave each field has one component which depends on only two variables (x, t)

$$\frac{\partial E_y}{\partial y} = 0$$
 and $\frac{\partial B_z}{\partial z} = 0$

Plane EM wave and the relation $c=\frac{1}{\sqrt{\varepsilon_0\mu_0}}$

Postulating a configuration for a Plane wave

- E_{γ} and B_{z} are constant in every point in a **given plane at a given position** x
- Both fields move together in the + x-direction with a speed c (unknown)

Is this configuration of a plane wave consistent with the four Maxwell's equations?

Could \vec{E} or \vec{B} have an x — component ?

A) Gauss's law: Flux of the fields

 $\vec{\nabla} \cdot \vec{E} = 0$ when no net charges inside the Gaussian surface

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{E} = E_y \vec{J} \qquad \qquad \vec{B} = B_z \vec{k}$$

$$E_z = 0 \qquad \qquad B_y = 0$$

$$\vec{E} \perp \vec{B} \qquad \qquad \vec{E} \perp \vec{B}$$

What about E_{χ} and B_{χ} ?

Gauss's law would be violated if \vec{E} and \vec{B} had each a x — component. Why?

Gauss law requires that

$$\vec{\nabla} \cdot \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$\parallel \qquad \parallel \qquad \parallel \qquad \parallel \qquad \qquad \parallel \qquad \qquad 0$$

$$0 \qquad 0 \qquad 0$$

 E_{χ} MUST be either constant or = 0

 E_y MUST be constant in the whole yz plane $\vec{E}(x,t) = E_y(x,t)\vec{j}$

See slide #32 If E_x exists and because it must be constant \Rightarrow

$$\oint_A \vec{E} \cdot d\vec{A} = E_x(x_1)A_1 - E_x(x_0)A_1 = 0$$
 (No charge enclosed)

The problem is that constant fields store **infinite energy!**

 \vec{E} and \vec{B} MUST be perpendicular to each other **AND** perpendicular to the direction of propagation

The same result holds for magnetic field

$$B_x = 0$$

EM waves are transverse

Direction of propagation

Other major properties of the fields \vec{E} and \vec{B} resulting from Maxwell's equations

B) Faraday's law: circulation of the \overrightarrow{E} field

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

$$\oint \vec{E} \cdot d\vec{l} = -Ea = -\frac{d\Phi_B}{dt}$$

During time dt the front wave moves cdt

Area changes by
$$acdt$$

$$E = cB$$

Required by Faraday's law

Consequence of E = Bc

Consider a free charge interacting with an electromagnetic wave

$$q$$
 \overrightarrow{v}

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$\frac{F_B}{F_E} = \frac{vB}{E} = \frac{v}{c}$$

Unless the charge is relativistic $F_B \ll F_E$

In most situations electromagnetic waves are essentially an electric phenomenon

C) Ampere's law: circulation of the \overrightarrow{B} field (Maxwell's part)

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

There is no current $\vec{J} = \vec{0}$

Along ef: the wave front still did not reach $\Rightarrow \int \vec{B} \cdot d\vec{l} = 0$

Along
$$fg$$
 and $he: \vec{E} \perp d\vec{l} \Rightarrow \int \vec{B} \cdot d\vec{l} = 0$

There MUST be a electric flux Φ_E through the rectangle

According to right hand rule \vec{E} must be along +y axis

$$\oint \vec{B} \cdot d\vec{l} = Ba = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

During time dt the front wave moves cdt

Area changes by *acdt*

$$\frac{d\Phi_E}{dt} = Eac$$

 $B = \mu_0 \varepsilon_0 cE$

Required by Maxwell's law

Faraday's law

and

Maxwell's law

$$E = cB$$

$$B = \mu_0 \varepsilon_0 cE$$

$$c = \frac{1}{\mu_0 \varepsilon_0 c}$$

$$c \Rightarrow \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Direction of propagation

 $\vec{E}(x,t)$

AND $\vec{B}(x,t)$

MUST be in phase in space and time

• Unlike all the other types of waves, EM waves require **NO MEDIUM** through/along which to travel. **EM waves can travel through empty space (vacuum)!**

• Speed of light is independent of speed of observer! We could be heading toward a light beam at the speed of light, but we would still measure c as the speed of the beam!

Not intuitive at all!

$$c = 299792458 \text{ m/s}$$

Summary

Time depended Maxwell's equations

Charge conservation

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \vec{j} = -\frac{\partial \rho}{\partial t}$$

Concept of flow of charge

$$m = (x, y, z)$$
 $\vec{u} = (\vec{i}, \vec{j}, \vec{k})$

$$\vec{E} = \sum_{1}^{3} E_{0m} \vec{u} e^{i(\vec{k} \cdot \vec{r} - \omega t)}$$

EM wave generation
$$m = (x, y, z) \quad \vec{u} = (\vec{i}, \vec{j}, \vec{k}) \qquad \vec{B} = \sum_{1}^{3} B_{0m} \vec{u} e^{i(\vec{k}.\vec{r} - \omega t)}$$

Solution not necessarily a sin wave

$$f(\vec{r},t) = g(\vec{k}.\vec{r} - \omega t) + h(\vec{k}.\vec{r} - \omega t)$$

$$\vec{k} \times \vec{E} = \omega \vec{B}$$

$$B = \frac{E}{c}$$

$$B = \mu_0 \varepsilon_0 c E$$

Transverse waves

$$\frac{1}{\varepsilon_0 \mu_0} = c^2$$

With these we are now ready to obtain the wave equations!

Plane traveling EM Wave equation

$$\vec{E}(x,t) = E_y(x,t)\vec{j}$$

$$\vec{B}(x,t) = B_z(x,t)\vec{k}$$

WAVE EQUATIONS

...From integral forms of Maxwell's equation...

Faraday's law: circulation of the \overrightarrow{E} field

 $\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint \vec{B} \cdot d\vec{A}$

Stokes' vs Gauss's theorem

$$\begin{array}{c|c}
 & E_{y}(x) \\
\hline
 & A_{x} \\
\hline
 & E_{y}(x) \\
\hline
 & A_{y} \\
\hline
 & A_{y} \\
\hline
 & A_{x} \\
\hline
 & A_{y} \\
\hline
 & A_{x} \\
\hline
 & A_{y} \\
\hline
 &$$

$$\oint \vec{E} \cdot d\vec{l} = E_y(x + \Delta x)\Delta y - E_y(x)\Delta y$$

$$E_{y}(x + \Delta x) = E_{y}(x) + \frac{\partial E_{y}}{\partial x} \Delta x + \cdots$$

$$\oint \vec{E} \cdot d\vec{l} = \frac{\partial E_y}{\partial x} \Delta x \Delta y$$

$$-\frac{d}{dt} \iint \vec{B} \cdot d\vec{A} = -\frac{\partial B_z}{\partial t} \Delta x \Delta y$$

We start here and go counterclockwise

$$\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$$

Ampere's law: circulation of the \overrightarrow{B} field (Maxwell's part)

Again Stokes' vs Gauss's theorem

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \varepsilon_0 \frac{d}{dt} \iint \vec{E} \cdot d\vec{A}$$

$$\oint \vec{B} \cdot d\vec{l} = B_z(x)\Delta z - B_z(x + \Delta x)\Delta z$$

$$B_z(x + \Delta x) = B_z(x) + \frac{\partial B_z}{\partial x}\Delta x + \cdots$$

$$\oint \vec{B} \cdot d\vec{l} = -\frac{\partial B_z}{\partial x} \Delta x \Delta z$$

$$\mu_0 \varepsilon_0 \frac{d}{dt} \iint \vec{E} \cdot d\vec{A} = \mu_0 \varepsilon_0 \frac{\partial E_y}{\partial t} \Delta x \Delta y$$

$$-\frac{\partial B_z}{\partial x} = \mu_0 \varepsilon_0 \frac{\partial E_y}{\partial t}$$

Plane traveling EM Wave equation

$$\frac{\partial E_{y}}{\partial x} = -\frac{\partial B_{z}}{\partial t}$$

$$\frac{\partial (\partial E_{y})}{\partial x^{2}} = -\frac{\partial (\partial B_{z})}{\partial t} = -\frac{\partial (\partial B_{z})}{\partial t}$$

$$\frac{\partial (\partial E_{y})}{\partial x} = -\frac{\partial (\partial E_{y})}{\partial t} = -\frac{\partial (\partial B_{z})}{\partial t}$$

$$\frac{\partial^2 E_y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2}$$

$$\mu_0 \varepsilon_0 = \frac{1}{c^2}$$

$$-\frac{\partial B_z}{\partial x} = \left(\mu_0 \varepsilon_0 \frac{\partial E_y}{\partial t}\right)$$

$$\int \left(-\frac{\partial^2 B_z}{\partial x^2} \right) = \mu_0 \varepsilon_0 \frac{\partial}{\partial x} \left(\frac{\partial E_y}{\partial t} \right) = \left(\mu_0 \varepsilon_0 \frac{\partial}{\partial t} \left(\frac{\partial E_y}{\partial x} \right) \right)$$

$$\frac{\partial^2 B_z}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 B_z}{\partial t^2}$$

Compare these wave equations to a mechanical wave equation

Electromagnetic wave

$$\frac{\partial^2 E_y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2}$$

$$\frac{\partial^2 B_Z}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 B_Z}{\partial t^2}$$

$$E = E_{\mathcal{Y}}(x, t)$$

$$\vec{E} = \vec{E}_y(\vec{r}, t)$$

Mechanical wave

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

$$B=B_Z(x,t)$$

$$\vec{B} = \vec{B}_Z(\vec{r}, t)$$

For more complex waves

Superposition principle applies

Superposing many waves

Superposing many $\vec{E}'s$ and $\vec{B}'s$

$$\vec{E} = \sum \vec{E}' s$$
 $\vec{B} = \sum \vec{B}' s$

Remark:

• The wave equation is dispersionless. Thus any function of the form $f(\vec{k}.\vec{r} - \omega t)$ satisfies the equation provided Maxwell's constrains apply (cross products between \vec{k} , \vec{E} and \vec{B})

$$\vec{k} \times \vec{B} = -\frac{\omega}{c^2} \vec{E}$$
 and $\vec{k} \times \vec{E} = \omega \vec{B}$

• \vec{E} and \vec{B} waves do not have to be sinusoidal. As the wave equation is <u>linear</u> the solution could be any <u>linear combination</u> of sinusoidal function by Fourier transform

Energy and momentum in electromagnetic waves

The Poynting vector \overrightarrow{S}

We already know that both \vec{E} and \vec{B} fields carry energy

Waves contain energy

- Microwave ovens
- Radio transmitters
- Laser for eye surgery
- Etc...

From electro and magnetostatic

u = Total energy density

$$u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2\mu_0} B^2$$

$$B = \mu_0 \varepsilon_0 cE$$
Slide #43

The energy density due to \overrightarrow{E} is equal to the energy density due to \overrightarrow{B} field

$$u = \varepsilon_0 E^2 = \frac{B^2}{\mu_0}$$

As both $\overrightarrow{\pmb{E}}$ and $\overrightarrow{\pmb{B}}$ fields vary in space and time, \pmb{u} also depends on space and time

Concept of flow of energy and momentum \equiv flow of charges \equiv flow of heat

Poynting vector and Poynting theorem

Electromagnetic energy flow and the Poynting vector

Energy transferred / unit time / unit area = power transferred / unit area

Volume dV = Acdt

The energy contained in this volume after the wave has traveled the distance cdt

$$dW = udV = (\varepsilon_0 E^2)(Acdt)$$

Energy flow (unit area / unit time) or power transferred / unit area

$$S = \frac{1 \, dW}{A \, dt} = \varepsilon_0 c E^2$$

Concept of flow of energy

$$\vec{S}(x,t) = \frac{1}{\mu_0} \vec{E}(x,t) \times \vec{B}(x,t) = \frac{1}{\mu_0} [\vec{J}E_{max}cos(kx - \omega t)] \times [\vec{k}B_{max}cos(kx - \omega t)]$$

$$S_{x}(x,t) = \frac{E_{max}B_{max}}{\mu_{0}}\cos^{2}(kx - \omega t) = \frac{E_{max}B_{max}}{2\mu_{0}}[1 + \cos^{2}(kx - \omega t)]$$

$$\vec{S}_{av} = S_{av}\vec{i}$$

$$S_{av} = \frac{E_{max}B_{max}}{2\mu_0}$$

This expresses the intensity of sinusoidal EM wave in vacuum

$$I = S_{av} = \frac{1}{2} \varepsilon_0 c E_{max}^2$$

Question: The Poynting vector does vary with time. Why our eyes do not see this variation when hit by light coming from a bulb?

Answer: Because the oscillation frequency is too high $! 5 \times 10^{14} \ Hz$

What about waves propagating in a dielectric?

Vacuum

$$u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2\mu_0} B^2 = u_E + u_B$$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

$$I = S_{av} = \frac{1}{2} \varepsilon_0 c E_{max}^2$$

Dielectric

$$\varepsilon_0 \to \varepsilon = \varepsilon_0 \varepsilon_r$$

$$\mu_0 \to \mu = \mu_0 \mu_r$$

$$c \to v = \frac{1}{\sqrt{\varepsilon\mu}}$$
 $E = vB$ $B = \varepsilon\mu\nu B$

In vacuum $u_E^0 = u_B^0$

In Dielectric $u_E^D = u_B^D$

Question: How does the intensity (power/area) change with distance r?

Consider a point source S that is emitting EM waves isotropically (equally in all directions) at a rate P_s . Assume energy of waves is conserved as they spread from source.

$$I = \frac{Power}{Area} = \frac{P_S}{4\pi r^2}$$

Ex:
$$E_0 = 100V/m$$
 $\langle \vec{S} \rangle = 13W/m^2$ (visible light)

$$\langle \vec{S} \rangle = 13W/m^2$$

This is not harmful

$$Ex: E_0 = 1000V/m$$

Ex:
$$E_0 = 1000V/m$$
 $\langle \vec{S} \rangle = 1.3kW/m^2$

$$\langle \vec{S} \rangle = \frac{3.9 \times 10^{26} W}{(150 \times 10^9)^2 m^2}$$

$$\langle \vec{S} \rangle = 1.4 kW/m^2$$

Exposing to sun rays could be very dangerous

Propagation, Polarization and incidence of EM waves on matter: conductor vs dielectric

To avoid confusion between $\overrightarrow{\boldsymbol{k}}$ as a wave number vector $\overrightarrow{\boldsymbol{k}}$ as a unit vector along z —axis

$$(\vec{i}, \vec{j}, \vec{k},) \rightarrow (\hat{i}, \hat{j}, \hat{k})$$

Definition of polarization

The direction of the linear polarization = The axis along which the \vec{E} field points

The polarization plane is defined by the two vectors

This is a linear vertical polarization

Two particular types of linear polarization

Two distinct and \perp planes of \vec{E} vibration

Polarization along any arbitrary direction

$$\overrightarrow{n}.\overrightarrow{k}=0$$

and

$$\vec{k} \cdot \vec{E} = 0$$

 $\widehat{\boldsymbol{n}}$ and $\overrightarrow{\boldsymbol{k}}$ define the plane of vibration of \overrightarrow{E}

$$\widehat{n} = \cos\theta \widehat{j} + \sin\theta \widehat{k}$$

$$\vec{E}(\vec{r},t) = E_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)} \hat{n}$$

$$\vec{B}(\vec{r},t) = B_0 e^{i(\vec{k}.\vec{r}-\omega t)} (\vec{k} \times \hat{n})$$

$$E = cB$$

$$\vec{B}(\vec{r},t) = \frac{E_0}{c} e^{i(\vec{k}\cdot\vec{r}-\omega t)} (\vec{k} \times \hat{n}) = \frac{1}{c} \vec{k} \times \vec{E}$$

\vec{E} field along any direction in the xy — plane

 $\overrightarrow{E} \perp \overrightarrow{B} \Rightarrow$ and both fields have two components.

Linear combination: $\vec{E} = E_x \hat{\imath} + E_y \hat{\jmath}$ and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath}$ is also a solution of Maxwell's equation

$$\vec{E}_{x} = E_{0x}\cos(\omega t - kz)\hat{i}$$

$$\vec{E}_{y} = E_{0y}\cos(\omega t - kz + \delta)\hat{j}$$

$$\vec{B}_{x} = -\frac{1}{c}E_{0x}\cos(\omega t - kz + \delta)\hat{i}$$

$$\vec{B}_{y} = \frac{1}{c}E_{0y}\cos(\omega t - kz)\hat{j}$$

 $(\vec{E}_{\chi} \text{ and } \vec{B}_{\chi}) \text{ or } (\vec{E}_{\chi} \text{ and } \vec{B}_{\chi}) \text{ fields are in phase}$

The two components of the **SAME** field are not necessarily in phase $(\vec{E}_x \text{ and } \vec{E}_y)$ or $(\vec{B}_x \text{ and } \vec{B}_y)$

Special case #1

x - y plane

 $\delta=0$ no dephasing between \vec{E}_{χ} and \vec{E}_{y} both reach max and min at the same time

 \vec{E} is linearly polarized in the this direction

Special case #2

 $\delta = \frac{\pi}{2}$ quadrature of phase between \vec{E}_x and \vec{E}_y

When $\overrightarrow{E}_{\chi}$ is max, $\overrightarrow{E}_{\gamma}$ is zero and vice versa

$$\vec{E} = E_{0x}\cos(\omega t - kz)\hat{\imath} + E_{0y}\cos\left(\omega t - kz + \frac{\pi}{2}\right)\hat{\jmath}$$

$$\vec{B} = -B_{0x} \cos\left(\omega t - kz + \frac{\pi}{2}\right)\hat{\imath} + B_{0y} \cos(\omega t - kz)\hat{\jmath}$$

Although \vec{E}_{χ} or \vec{E}_{γ} may be zero at any moment, they are never zero at the same time \vec{E} is never zero

$$E_{0x}=E_{0y}$$
 and $B_{0x}=B_{0y}$

Clockwise circularly polarized EM wave

Clockwise elliptically polarized EM wave

Polarization counterclockwise

From the source: left-handed /anticlockwise circularly polarized wave.

From the receiver: right-handed /clockwise circularly polarized wave

From the source: right-handed / clockwise circularly polarized wave.

From the receiver: left-handed / anticlockwise circularly polarized wave

Linear polarization

Random emission of EM waves

Linear Polarizer

Linearly polarized of EM waves

Circular polarization

Normal incidence of an EM wave: The case vacuum/matter

Vacuum / Conductor

Vacuum / Dielectric

Given an EM wave propagating along a given direction

Interpose a medium along the direction of propagation

Boundary condition at the surface

+

AND

Full description of the interaction

$$\vec{k} \times \vec{B} = -\frac{\omega}{c^2} \vec{E}$$

$$\vec{k} \times \vec{E} = \omega \vec{B}$$

A vertical EM wave propagating along the x-direction

Boundary conditions at the surface

For Normal components we use Gauss theorem

For Tangential components we use Stokes theorem

Gaussian surface = Pillbox

$$D = \epsilon E$$

Boundary conditions at the surface No free charges ($\rho_{free}=0$) and no current $J_{free}=0$

For electric field $D = \epsilon E$

Reminder $\vec{\nabla} \cdot \vec{D} = \rho_{free}$

$$\vec{\nabla} \cdot \vec{D} = 0$$

$$D_1^{\perp} = D_2^{\perp}$$

$$\varepsilon_1 E_1^{\perp} = \varepsilon_2 E_2$$

Stokes theorem
$$\oint \vec{E} \cdot d\vec{l}$$

$$E_1^{\parallel} = E_2^{\parallel}$$

(deals with the tangential components)

For magnetic field
$$H = \frac{B}{\mu}$$

Reminder $\oint \frac{\vec{B}}{\mu} \cdot d\vec{l} = J_{free}$

Gauss theorem $\vec{\nabla} \cdot \vec{B} = 0$

$$B_1^{\perp} = B_2^{\perp}$$

Stokes theorem

$$H_1^{\parallel} = H_2^{\parallel}$$

$$\frac{B_1^{\parallel}}{\mu_1} = \frac{B_2^{\parallel}}{\mu_2}$$

Normal incidence of a linear polarized EM wave: Reflection and Transmission

Normal incidence of a linear polarized EM wave: Reflection and Transmission

Do <u>conductor</u> and <u>dielectric</u> behave similarly?

Intuitive vs deductive approaches

$$\vec{k} \times \vec{E} = \omega \vec{B}$$

$$\vec{k} \times \vec{B} = -\frac{\omega}{c^2} \vec{E}$$

The electric field has not changed direction

Is it the only possibility?

Incident

$$\vec{E}^R // \vec{E}^I$$

Intuitive approach

The superposition principle applied to an incident and a reflected wave

of the conductor

Perfect conductor
$$\vec{E}_{tan}^I + \vec{E}_{tan}^R = \vec{0}$$

$$\left|\overrightarrow{E}_{tan}^{I}\right| = \left|\overrightarrow{E}_{tan}^{R}\right|$$

Question: What produces the reflected Electric and magnetic field?

Answer:

The surface currents that must be present to make \vec{E} exactly zero at the surface is the source of the magnetic field.

Deductive approach

Incidence

$$\vec{E}^I(x,t) = E_0^I e^{i(k_1 x - \omega t)} \hat{j}$$

$$\vec{B}^I(x,t) = B_0^I e^{i(\mathbf{k_1}x - \omega t)} \hat{\mathbf{k}} = \frac{E_0^I}{\mathbf{v_1}} e^{i(\mathbf{k_1}x - \omega t)} \hat{\mathbf{k}}$$

Transmission

$$\vec{E}^T(x,t) = E_0^T e^{i(\mathbf{k}_2 x - \omega t)} \hat{\mathbf{j}}$$

$$\vec{B}^T(x,t) = B_0^T e^{i(k_2 x - \omega t)} \hat{k} = \frac{E_0^T}{v_2} e^{i(k_2 x - \omega t)} \hat{k}$$

To avoid confusion between $\overrightarrow{\boldsymbol{k}}$ as a wave number vector $\overrightarrow{\boldsymbol{k}}$ as a unit vector along z —axis

$$(\vec{i}, \vec{j}, \vec{k},) \rightarrow (\hat{i}, \hat{j}, \hat{k})$$

If medium 1 = vacuum $v_1 = c$

If medium 2 = conductor $v_2 = 0$

Why?

Reflection

The wave number vector \overrightarrow{k} changes to opposite direction

$$\vec{E}^R(x,t) = E_0^R e^{i(-k_1 x - \omega t)} \hat{j}$$

$$\vec{B}^R(x,t) = -\frac{E_0^R}{v_1} e^{i(-k_1 x - \omega t)} \hat{k}$$

two possible configurations

$$\vec{k} \times \vec{E} = \omega \vec{B}$$

$$\vec{k} \times \vec{B} = -\frac{\omega}{c^2} \vec{E}$$

$$\vec{E}^R(x,t) = -E_0^R E_0 e^{i(-k_1 x - \omega t)} \hat{\boldsymbol{j}}$$

$$\vec{B}^R(x,t) = \frac{E_0^R}{v_1} e^{i(-k_1 x - \omega t)} \hat{k}$$

Which one of the two reflection configurations holds for a conductor and for a dielectric?

$$\vec{E}^I(x,t) = E_0^I e^{i(\mathbf{k_1}x - \omega t)} \hat{\mathbf{y}}$$

$$\vec{B}^I(x,t) = \frac{E_0^I}{v_1} e^{i(k_1 x - \omega t)} \hat{z}$$

Tool box

$$\vec{k} \times \vec{E} = \omega \vec{B}$$

$$\vec{k} \times \vec{B} = -\frac{\omega}{c^2} \vec{E}$$

Let's take the first configuration

Which one of the two reflection configurations holds for a conductor and for a dielectric

Boundary conditions

In normal incidence, only tangential components matter

$$\vec{E}^I(\bot) = \vec{E}^R(\bot) = \vec{E}^T(\bot) = \vec{0}$$

$$\vec{B}^I(\bot) = \vec{B}^R(\bot) = \vec{B}^T(\bot) = \vec{0}$$

$$\vec{E}^R(x,t) = E_0^R e^{i(-k_1 x - \omega t)} \hat{\boldsymbol{y}}$$

$$\vec{B}^R(x,t) = -\frac{E_0^R}{v_1} e^{i(-k_1 x - \omega t)} \hat{z}$$

$$\vec{E}^I + \vec{E}^R = \vec{E}^T$$

$$E^I + E^R = E^T$$

$$\vec{H}^I + \vec{H}^R = \vec{H}^T$$

$$\vec{H}^I + \vec{H}^R = \vec{H}^T \qquad \qquad \qquad \frac{1}{\mu_1} \left(\frac{E_0^I}{\boldsymbol{v_1}} \right) - \frac{1}{\mu_1} \left(\frac{E_0^R}{\boldsymbol{v_1}} \right) = \frac{1}{\mu_2} \left(\frac{E_0^T}{\boldsymbol{v_2}} \right) \qquad \qquad \text{Solving for } E^R \quad \text{and } E^T$$

Reflection

$$\vec{E}^R(x,t) = \left(\frac{1-\beta}{1+\beta}\right) E_0^I e^{i(-k_1 x - \omega t)} \hat{\boldsymbol{j}}$$

$$\vec{E}^R(x,t) = \left(\frac{1-\beta}{1+\beta}\right) E_0^I e^{i(-\mathbf{k_1}x-\omega t)} \hat{\mathbf{j}} \quad \text{and} \quad \vec{B}^R(x,t) = -\frac{1}{\mathbf{v_1}} \left(\frac{1-\beta}{1+\beta}\right) E_0^I e^{i(-\mathbf{k_1}x-\omega t)} \hat{\mathbf{k}}$$

$$\vec{B}^R(x,t) = -\left(\frac{1-\beta}{1+\beta}\right) B_0^I e^{i(-k_1 x - \omega t)} \hat{k}$$

$$\beta = \frac{\mu_1 v_1}{\mu_2 v_2}$$

Transmission

$$\vec{E}^T(x,t) = \left(\frac{2}{1+\beta}\right) E_0^I e^{i(\mathbf{k}_2 x - \omega t)} \hat{\mathbf{j}}$$

and
$$\vec{B}^T(x,t) = B_0^T e^{i(\mathbf{k_2}x - \omega t)} \hat{\mathbf{k}} = \frac{E_0^T}{\mathbf{v_2}} e^{i(\mathbf{k_2}x - \omega t)} \hat{\mathbf{k}}$$

$$\vec{B}^T(x,t) = \frac{\mathbf{v_1}}{\mathbf{v_2}} \left(\frac{2}{1+\beta} \right) B_0^I e^{i(\mathbf{k_2}x - \omega t)} \hat{\mathbf{k}}$$

Case of vacuum / conductor

$$\beta = \frac{\mu_0 c}{\mu_2 v_2}$$

 $v_2 = 0$ wave does not penetrate the conductor

$$\beta = \infty$$

It is the second configuration of slide#85 that holds

$$\vec{E}^R(x,t) = -E_0^I e^{i(-k_1 x - \omega t)} \hat{\boldsymbol{j}}$$

$$\vec{E}^{I}(x,t) = E_0^{I} e^{i(k_1 x - \omega t)} \hat{j}$$

$$\vec{R}^{I}$$

Boundary conditions are necessary

The tool box

$$\vec{k} \times \vec{E} = \omega \vec{B}$$

$$\vec{k} \times \vec{B} = -\frac{\omega}{c^2} \vec{E}$$

is not enough

At the surface of the **conductor** the electric field cancels as expected from electrostatic and from the intuitive approach

The reflected electric field must be inverted

What fraction of the incident energy is reflected and what fraction is transmitted

Poynting vector

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \qquad I = S_{av} = \frac{1}{2} \varepsilon v E_{max}^2$$

$$R = \frac{I_R}{I_I} = \left(\frac{E_0^R}{E_0^I}\right)^2 = \left(\frac{1-\beta}{1+\beta}\right)^2$$

$$T = \frac{I_T}{I_I} = \frac{\varepsilon_2 v_2}{\varepsilon_1 v_1} \left(\frac{E_0^T}{E_0^I}\right)^2 = \frac{\varepsilon_2 v_2}{\varepsilon_1 v_1} \left(\frac{2}{1+\beta}\right)^2$$

$$R + T = 1$$

Energy conservation

Metal is a good reflector

What happens to the magnetic field at the surface of the conductor?	

$$\beta = \frac{\mu_0 c}{\mu_2 v_2}$$

 $v_2 = 0$ does not penetrate the conductor

$$\beta = \infty$$

$$\vec{B}^R(x,t) = B_0^I e^{i(-k_1 x - \omega t)} \hat{k}$$

$$\vec{B}^T(x,t) = 0\hat{k}$$

At the surface the direction of the magnetic field remains unchanged

The conductor induces a quadrature phase shift

Perfect conductor $\Rightarrow \vec{E}_{tan} = \vec{0}$

Dephasing $\frac{\pi}{2}$

The conductor induces a quadrature phase shift

To obtain <u>standing waves</u> the second conductor **MUST** be placed at a **nodal** plane of \vec{E} like this one and parallel to the first conductor

Question: What is the energy contained in a standing wave?

What is the intensity in a standing wave?

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$
 + $E_y(x,t) = +2E_{max} sinkx sin\omega t$ $B_z(x,t) = +2B_{max} coskx cos\omega t$

$$S_x = \frac{E_{max}B_{max}sin2kxsin2\omega t}{\mu_0}$$

$$I = S_{av} = \langle S_x \rangle_t = 0$$

As expected from two equal waves traveling in opposite directions, each transporting energy

$$\vec{S}^I + \vec{S}^R = \vec{0}$$

While using waves to transmit power, it is important to avoid reflections that give rise to standing waves

Oblique incidence of a linear polarized EM wave: Reflection and Transmission

$$\vec{E}^R(\vec{r},t) = E_0^R e^{i(\vec{k}_R \cdot \vec{r} - \omega t)}$$

$$\vec{B}^R(\vec{r},t) = \frac{1}{v_1} \left(\vec{k}_R \times \vec{E}^R(\vec{r},t) \right)$$

$$\vec{E}^I(\vec{r},t) = E_0^I e^{i(\vec{k}_I \cdot \vec{r} - \omega t)}$$

$$\vec{B}^{I}(\vec{r},t) = \frac{1}{v_1} \left(\vec{k}_I \times \vec{E}^{I}(\vec{r},t) \right)$$

$$\vec{E}^{T}(\vec{r},t) = E_0^T e^{i(\vec{k_T} \cdot \vec{r} - \omega t)}$$

$$\vec{E}^{T}(\vec{r},t) = E_0^T e^{i(\vec{k_T}\cdot\vec{r}-\omega t)}$$

$$\vec{B}^{T}(\vec{r},t) = \frac{1}{v_2} \left(\vec{k_T} \times \vec{E}^{T}(\vec{r},t)\right)$$

Monochromatic wave

 $\omega = kv$ is the same for all three waves

$$k_I. v_1 = k_R. v_1 = k_T. v_2$$

$$k_I = k_R = \frac{v_2}{v_1} k_T = \frac{n_1}{n_2}$$

 n_i = index of refraction of medium $i = \frac{c}{v_i}$

Boundary conditions at the plane of separation

$$\vec{E}^I(\vec{r},t) + \vec{E}^R(\vec{r},t)$$

$$\vec{B}^I(\vec{r},t) + \vec{B}^R(\vec{r},t)$$

$$\vec{E}^T(\vec{r},t)$$

$$\vec{B}^T(\vec{r},t)$$

$$E_0^I e^{i(\vec{k_I}.\vec{r}-\omega t)} + E_0^R e^{i(\vec{k_R}.\vec{r}-\omega t)} = E_0^T e^{i(\vec{k_T}.\vec{r}-\omega t)}$$

$$= E_0^T e^{i(\vec{k_T}.\vec{r}-\omega t)}$$

$$y.k_{Iy} + z.k_{Iz} = y.k_{Ry} + z.k_{Rz} = y.k_{Ty} + z.k_{Tz}$$

$$k_{Iy} = k_{Ry} = k_{Ty}$$
$$k_{Iz} = k_{Rz} = k_{Tz}$$

Three laws follow

1) \vec{k}_I , \vec{k}_R and \vec{k}_T form a single plane: plane of incidence

2)
$$\theta_I = \theta_R$$
 Law of reflection or Fermat's law

3)
$$\frac{\sin\theta_T}{\sin\theta_I} = \frac{n_1}{n_2}$$
 Law of refraction or Snell's law

$$\vec{E}^{I}(\vec{r},t) = E_0^I e^{i(\vec{k}_I \cdot \vec{r} - \omega t)}$$

$$\vec{k}_{I} \cdot \vec{r} = \vec{k}_{R} \cdot \vec{r} = \vec{k}_{T} \cdot \vec{r}$$

$$\vec{E}^{R}(\vec{r}, t) = E_{0}^{R} e^{i(\vec{k}_{R} \cdot \vec{r} - \omega t)}$$

$$\vec{E}^{T}(\vec{r}, t) = E_{0}^{T} e^{i(\vec{k}_{T} \cdot \vec{r} - \omega t)}$$

$$\vec{E}^R(\vec{r},t) = E_0^R e^{i(\vec{k}_R \cdot \vec{r} - \omega t)}$$

$$\vec{E}^T(\vec{r},t) = E_0^T e^{i(\vec{k_T}\cdot\vec{r}-\omega t)}$$

Exponent factors are all equal

Boundary conditions (slide #79)

$$\varepsilon_1(E_0^I + E_0^R)_x = \varepsilon_2(E_0^T)_x$$
 Normal components at the interface
$$(B_0^I + B_0^R)_x = (B_0^T)_x$$

$$(E_0^I + E_0^R)_{y,z} = (E_0^T)_{y,z}$$

$$\frac{1}{\mu_1} (B_0^I + B_0^R)_{y,z} = \frac{1}{\mu_2} (B_0^T)_{y,z}$$

Tangential components at the interface

Reflection

$$\vec{E}^R(x,t) = \left(\frac{\alpha - \beta}{\alpha + \beta}\right) E_0^I e^{i(-k_1 x - \omega t)} \hat{\boldsymbol{j}}$$

$$\vec{E}^R(x,t) = \left(\frac{\alpha - \beta}{\alpha + \beta}\right) E_0^I e^{i(-k_1 x - \omega t)} \hat{\boldsymbol{\jmath}} \quad \text{and} \quad \vec{B}^R(x,t) = -\frac{1}{v_1} \left(\frac{1 - \beta}{1 + \beta}\right) E_0^I e^{i(-k_1 x - \omega t)} \hat{\boldsymbol{z}}$$

$$\vec{B}^{R}(x,t) = -\left(\frac{\alpha - \beta}{\alpha + \beta}\right) B_0^{I} e^{i(-k_1 x - \omega t)} \hat{k}$$

$$\alpha = \frac{\cos \theta_T}{\cos \theta_I}$$

Normal incidence

Transmission

$$\beta = \frac{\mu_1 v_1}{\mu_2 v_2}$$

$$\alpha = 1$$

$$\vec{E}^T(x,t) = \left(\frac{2}{\alpha + \beta}\right) E_0^I e^{i(k_2 x - \omega t)} \hat{\boldsymbol{j}}$$

and
$$\vec{B}^T(x,t) = B_0^T e^{i(k_2 x - \omega t)} \hat{k} = \frac{E_0^T}{v_2} e^{i(k_2 x - \omega t)} \hat{k}$$

$$\vec{B}^T(x,t) = \frac{\mathbf{v_1}}{\mathbf{v_2}} \left(\frac{2}{\alpha + \beta} \right) B_0^I e^{i(k_2 x - \omega t)} \hat{\mathbf{k}}$$