Практическое занятие № 2

Тема: Расчет СМО М/М/1.

Цель: Приобретение практических навыков расчета показателей оперативности обработки данных с помощью системы массового обслуживания M/M/1.

Язык программирования, ПО и библиотеки: python 3.х, установленный пакет библиотек Anaconda.

Порядок выполнения практического занятия

- 1. Создайте новый проект. Скопируйте файл $pz2_var1.py$ (или $pz2_var2.py$ в зависимости от варианта) в свою локальную папку. Далее для упрощения номер варианта опустим и будем именовать данный файл как pz2.py.
- 2. Добавьте файлы с библиотекой генерации случайных величин $(rand_destribution.py)$ и имитационной моделью $(smo_im.py)$ в директорию с файлом pz2.py.
- 3. Откройте файл *pz2.py* и запустите его на выполнение.

Должен быть построен один из графиков, представленных на рисунке 1, в зависимости от варианта. Это результат имитационного моделирования (ИМ) СМО М/М/1 в зависимости от коэффициента загрузки системы.

Рисунок 1. Результат имитационного моделирования СМО М/М/1

4. Обратите внимание на следующий код в *pz2.py*

```
jobs_count = 100000
roes = np.linspace(0.1, 0.95, 20)
```

Переменная *jobs_count* задает число заявок, которые должны быть обслужены в процессе ИМ. Массив значений *roes* содержит 20 значений коэффициента загрузки в диапазоне от 0.1 до 0.95.

5. Разберем последующий код на примере первого варианта. От второго варианта он будет отличаться лишь тем, что вместо w (времен ожидания) в обозначениях будут присутствовать буквы v (времена пребывания).

В сроках ниже создаются пустые массивы. В них мы в дальнейшем будем сохранять значения времен ожиданий, рассчитанных по формуле (wl_teor) и полученных с помощью ИМ (wl_im). Также создаем массив для накопления относительных ошибок ИМ errors, для накопления вероятностей состояния в СМО для значения коэффициента загрузки 0.95.

```
w1_im_mass = []
w1_teor_mass = []
errors = []
p_095_teor = []
p_095_im = []
```

Далее запускаем цикл по значениям коэффициентов загрузки и производим ИМ от каждого из значений р.

```
for i, ro in enumerate(roes):
    smo = smo_im.SmoIm(n)
    smo.set_sources(l, 'M')
    mu = l/(ro*n)
    smo.set_servers(mu, 'M')
    smo.run(jobs_count)

w1_im = smo.w[0]
    w1 im mass.append(w1 im)
```

В стоках выше создается экземпляр ИМ smo. Далее задается поток заявок как экспоненциальный с параметром λ . Поэтому в исследуемой модели на первом месте буква «М», от «Markovian» или «memoryless» — марковский или обладающий свойством отсутствия последействия (отсутствием памяти). Далее задается распределение времени обслуживания заявок в канале обслуживания, где μ — интенсивность обслуживания заявок. Закон

распределения времен обслуживания также экспоненциальный. Методом *run()* класса *SmoIm*, которому передается число требуемых к обслуживанию заявок, ИМ запускается. Как видно из двух последних строк кода, в процессе ИМ происходит накопление значений времен ожидания заявок в системе. Значения начальных моментов времен ожидания и пребывания заявок в СМО после завершения ИМ доступны в полях *smo.w* и *smo.v* соответственно. По умолчанию в процессе моделирования происходит накопление значений для трех начальных моментов. Поскольку мы собираем только значения средних, то для доступа к ним используем оператор [0].

При коэффициенте загрузки 0.95 производим сохранение вероятностей состояний СМО (рассчитанных по формуле и полученных в ходе ИМ).

```
if i == len(roes) - 1:
    p_095_im = smo.get_p()
    p_095_teor = get_p(mu, 1)
```

В оставшейся части кода происходит вывод графика и значений вероятностей состояний. Для графика задается его заголовок, оси, передаются значения массивов для отображения по оси абсцисс (roes) и ординат (w1 im mass).

```
fig, ax = plt.subplots()
ax.plot(roes, w1_im_mass, label="VM")
ax.set_xlabel('ro')
ax.set_ylabel('w1')
plt.legend()
plt.show()
```

6. Вам необходимо дописать код так, чтобы в процессе моделирования осуществлялся также расчет теоретических значений времен ожиданий (для второго варианта – времен пребываний).

В коде выше есть заготовка для функций расчета:

```
def get_w_teor(mu, 1):
    """
        Функция расчета среднего времени ожидания в СМО М/М/1
        mu - интенсивность обслуживания заявок в канале
        1 - интенсивность входящего потока заявок
    """
        # напишите код здесь
        pass
        return variance, coev
```

Необходимо дописать ее код самостоятельно, заменив строку *pass*. Вы можете отладить эту функцию отдельно, создав еще один файл с расширением .*py*. После завершения написания кода, запустите его на выполнение. В зависимости от выбранного варианта должен получиться график, похожий на представленный на рисунке 2.

Рисунок 2. Сравнение ИМ и математического расчета СМО М/М/1

Среднее время ожидания в СМО от коэффициента загрузки

-	ro		ИМ		Теор	От	н. ошибка,	%
_	0.100		0.011	 	0.011	 	-0.566	
	0.145	1	0.024	1	0.024		1.415	
	0.189	1	0.043	1	0.044		1.862	
	0.234	1	0.073	1	0.072		-2.590	
	0.279	1	0.112	1	0.108		-3.445	
	0.324	- 1	0.155	- 1	0.155	1	0.244	
	0.368	İ	0.211	i	0.215	ĺ	1.840	
	0.413	Ī	0.282	ĺ	0.291	ĺ	3.105	
	0.458	i	0.397	i	0.387	ĺ	-2.579	
	0.503	İ	0.498	i	0.508	ĺ	1.962	
	0.547	i	0.640	i	0.662	ĺ	3.310	
	0.592	i	0.830	i	0.860	i	3.452	
	0.637	i	1.104	i	1.117	i	1.188	
	0.682	i	1.438	i	1.459	ĺ	1.450	
	0.726	i	2.070	i	1.928	i	-7.398	
	0.771	i	2.638	i	2.597	i	-1.582	
	0.816	i	3.645	i	3.613	i	-0.883	
	0.861	i	5.653	i	5.309	i	-6.473	
	0.905	i	11.757	i	8.650	İ	-35.911	
	0.950	i	15.218	i	18.050	İ	15.688	

Первые 20 вероятностей состояний в СМО при коэффициенте загрузки го=0.95

Nº		им 		Teop
0		0.048	I	0.050
1	I	0.046		0.047
2		0.044		0.045
3		0.040		0.043
4		0.038		0.041
5		0.037		0.039
6		0.035		0.037
7		0.034		0.035
8		0.032		0.033
9		0.030		0.032
10		0.029		0.030
11		0.027		0.028
12		0.026		0.027
13		0.025		0.026
14		0.024		0.024
15		0.023		0.023
16		0.022		0.022
17		0.021		0.021
18		0.020		0.020
19		0.019		0.019

- 7. Попробуйте кратно изменить число заявок, требуемых для обслуживания в процессе ИМ. Например, вместо 10000 установите 1000 или 100000. Как изменится точность оценок в зависимости от числа заявок? Ответьте на контрольные вопросы в конце ПЗ. Сделайте выводы о проделанной работе.
- 8. Итоговый отчет должен быть представлен в виде программы, при запуске которой производятся соответствующие расчеты, выводится график в зависимости от вашего варианта.
- 9. Будьте готовы ответить на **контрольные вопросы** по практическому занятию:
 - 1) Каким образом устроена нотация Кендалла?
 - 2) Какую модель СМО вы исследовали?
- 3) Как зависит среднее время ожидания заявок в системе от коэффициента загрузки?
- 4) Как зависит точность оценок, полученных с помощью ИМ, от числа обработанных заявок?
- 5) Как зависит точность получаемых ИМ оценок от коэффициента загрузки системы?

- 6) Напишите формулу среднего времени ожидания заявок в СМО M/M/1.
- 7) Напишите формулу среднего времени пребывания заявок в СМО M/M/1.
- 8) Напишите формулу среднего числа заявок в системе для СМО ${
 m M/M/1}.$
 - 9) Напишите формулу среднего числа заявок в очереди в СМО М/М/1.
- 10) Каково условие существования стационарного режима для данной СМО?
- 11) Напишите выражение для вероятности отсутствия заявок в системе (вероятности нулевого ожидания).
- 12) Напишите выражения для расчета стационарных вероятностей состояний СМО М/М/1 (вероятностей наличия в системе 0, 1, 2 и т.д. заявок).