

Optimization in Machine Learning: Lecture 4

Convex Optimization

by Xiaolin Huang

xiaolinhuang@sjtu.edu.cn

SEIEE 2-429

Institute of Image Processing and Pattern Recognition

http://www.pami.sjtu.edu.cn/

Convex Optimization and Properties

Linear and Quadratic Programing

Vector Optimization

Convex Optimization

- convex optimization is to minimize a convex function over a convex set
 - convex combination
 - convex sets
 - operations that preserve convexity
 - separating hyperplane
 - supporting hyperplane

Convex Optimization and Properties

Linear and Quadratic Programing

Vector Optimization

Standard form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the object or cost or loss function
- $f_i: \mathbf{R}^n \to \mathbf{R}$ are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$ are the equality constraint functions
- implicit constraint: the domain of the problem (i.e., of all the above functions)

Standard form

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the object or cost or loss function
- $f_i: \mathbf{R}^n \to \mathbf{R}$ are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$ are the equality constraint functions
- implicit constraint: the domain of the problem (i.e., of all the above functions)
- feasible solution, feasible set, problem is feasible

feasibility problem

find
$$x$$

s. t. $f_i(x) \le 0, i = 1, ..., m$

 $h_i(x) = 0, i = 1, ..., p$

min 0

s.t.
$$f_i(x) \le 0, i = 1, ..., m$$

 $h_i(x) = 0, i = 1, ..., p$

Convex Optimization

min
$$f_0(x)$$

s. t. $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

"convex optimization is to minimize a convex function over a convex set"

- $f_0: \mathbf{R}^n \to \mathbf{R}$ is convex
- $f_i: \mathbf{R}^n \to \mathbf{R}$ are convex
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are affine

Standard Form Convex Optimization Problem

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $a_i^{\mathsf{T}} x = b_i, i = 1, ..., p$

"convex optimization is to minimize a convex function over a convex set"

- $f_0: \mathbf{R}^n \to \mathbf{R}$ is convex
- $f_i: \mathbf{R}^n \to \mathbf{R}$ are convex
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are affine

min
$$x_1^2 + x_2^2$$

s.t. $x_1/(1+x_2^2) \le 0$
 $(x_1 + x_2)^2 = 0$

it not a convex optimization problem but is equivalent to a convex problem

min
$$x_1^2 + x_2^2$$

s. t. $x_1 \le 0$
 $x_1^2 + x_2^2 = 0$

Local and Global Optima

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$

a feasible solution is (globally) optimal if there is no better feasible solution

 $h_i(x) = 0, i = 1, ..., p$

$$f_0(x^*) \le f_0(x), \forall x: f_i(x) \le 0, h_i(x) = 0$$

- a feasible problem does not necessarily have a optimal solution
 - infinite set: min $a^{T}x + b$
 - infinite value: $\min 1/x$, s.t. 0 < x < 2

Local and Global Optima

a feasible solution is (globally) optimal if there is no better feasible solution

$$f_0(x^*) \le f_0(x), \forall x: f_i(x) \le 0, h_i(x) = 0$$

a feasible solution is locally optimal if there is no better feasible solution
 around it

$$\exists \varepsilon > 0, \hat{x} \leq f_0(x), \forall x: f_i(x) \leq 0, h_i(x) = 0, ||x - \hat{x}|| \leq \varepsilon$$

Convex Optimization Problem

"convex optimization is to minimize a convex function over a convex set"

any locally optimal point of a convex problem is (globally) optimal

Proof. \hat{x} is locally optimal but not globally optimal:

- (1): $\exists x^*, f_0(x^*) < f_0(\hat{x})$
- (2): the convex combination from \hat{x} to x^* : $x(\theta) = (1 \theta)\hat{x} + \theta x^*, \theta \in (0,1)$ $f_0(x(\theta)) \le (1 \theta)f_0(\hat{x}) + \theta f(x^*) < f_0(\hat{x}), \theta \in (0,1)$
- (3) contradicts local optimality:

$$\exists \varepsilon > 0, f_0(\hat{x}) \le f_0(x), \forall x : f_i(x) \le 0, h_i(x) = 0, ||x - \hat{x}|| \le \varepsilon$$

Equivalent Convex Problems

- two optimization problems are (informally) equivalent, if the solution of one could be readily obtained from the solution of the other, and vice-versa
- eliminating equality constraints:

min
$$f_0(x)$$

s. t. $f_i(x) \le 0, i = 1, ..., m$
 $a_i^{\mathsf{T}} x = b_i, i = 1, ..., p$

min $f_0(Fz + x_0)$
s. t. $f_i(Fz + x_0) \le 0, i = 1, ..., m$

where
$$Ax = b$$
 \longrightarrow $x = Fz + x_0$

- linear equality constraints in theory are easy to handle
- in practice, if F is to obtained, and x_0 could be found

could we eliminate equation constraints in this way?

•
$$h_i(x) \leq 0, -h_i(x) \leq 0$$

•
$$a_i^{\mathsf{T}} x \leq b_i, -a_i^{\mathsf{T}} x \leq -b_i$$

Equivalent Convex Problems

- two optimization problems are (informally) equivalent, if the solution of one could be readily obtained from the solution of the other, and vice-versa
- introducing equality constraints:

min
$$f_0(x)$$

s. t. $f_i(x) \le 0, i = 1, ..., m$ $f_0(Fz + x_0)$
s. t. $f_i(Fz + x_0) \le 0, i = 1, ..., m$
 $a_i^T x = b_i, i = 1, ..., p$

• it could be very useful

$$\min_{x} \lambda \|x\|_{1} + \|B - Ax\|_{2}^{2}$$

$$\min_{x,z} \lambda \|z\|_{1} + \|B - Ax\|_{2}^{2}$$
s. t. $x = z$

- g non-smooth but separable
- h smooth but non-separable

Equivalent Convex Problems

- two optimization problems are (informally) equivalent, if the solution of one could be readily obtained from the solution of the other, and vice-versa
- introducing slack variables for linear inequalities:

$$\min_{\mathbf{s.t.}} f_0(x)$$

$$\mathbf{s.t.} \quad a_i^{\mathsf{T}} x \le b_i, i = 1, ..., m$$

it is also very useful when meet piecewise linear functions flexible but non-smooth:
 11 norm, LAD, hinge loss max error, (leaky) ReLu

目录 Contents

1 Convex Optimization and Properties

Linear and Quadratic Programing

Vector Optimization

Linear Programming

- minimize a linear function over a polyhedron
- convex problem with a linear objective and affine constraints

Transportation Problem

- two products I and II with different profit
- three resources A, B, and C with different inventories

	Product I	Product II	inventory
Resource A	0	5	15
Resource B	6	2	24
Resource C	1	1	5
Profit	2	1	

max
$$2x_1 + x_2$$

s.t. $5x_2 \le 15$
 $6x_1 + 2x_2 \le 24$
 $x_1 + x_2 \le 5$

Transportation Problem

- transport goods from m suppliers with production amounts a_1 , a_2 , ..., a_m
- n demanders/customers need production amounts b_1 , b_2 , ..., b_n
- the unit price from the *i*-th supplier to the *j*-th customer c_{ij}
- the transportation amount from the *i*-th supplier to the *j*-th customer x_{ij}

max
$$\sum_{i} \sum_{j} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1, 2, ..., m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, j = 1, 2, ..., n$$

$$x_{ij} \ge 0, \forall i, j$$
how about non-balance?
$$\sum a_i \ne \sum b_j$$

Assignment Problem

- we have n workers for n jobs with cost c_{ij}
- Boolean variable $x_{ij} = \begin{cases} 1, & \text{if person } i \text{ is assinged to job } j \\ 0, & \text{otherwise} \end{cases}$

Hungarian algorithm: better than treating AP as TP

$$\min \sum_{i}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \qquad \min \sum_{i}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\text{s.t. } \sum_{j=1}^{n} x_{ij} = 1, i = 1, 2, \dots m$$

$$\sum_{i=1}^{m} x_{ij} = 1, j = 1, 2, \dots, n$$

$$\sum_{i=1}^{m} x_{ij} = 1, j = 1, 2, \dots, n$$

$$x_{ij} \in \{0,1\}, \forall i, j \qquad x_{ij} \geq 0, \forall i, j$$

- relaxation is a typical way to deal with integer variable
- the gap is zero, for standard assignment problem

Linear Programming

largest error control

- establish a linear function $f(a) = x^{T}a$ to approach observations $\{a_i, b_i\}_{i=1}^{m}$
- the residual $r_i = b_i x^{\mathsf{T}} a_i$

• we want to obtain the least largest error $\max_{i} |r_i|$

$$\min_{x} \max_{i} |b_{i} - x^{T} a_{i}| \longrightarrow \min_{x,s} s$$
s.t. $b_{i} - x^{T} a_{i} \le s, i = 1,2,..., m$

$$-(b_{i} - x^{T} a_{i}) \le s, i = 1,2,..., m$$

- can you verify its convexity?
- can you image the equivalence to an LP?

Linear Programming

- portfolio optimization
 - there are *m* stocks could be investigated
 - the return for each stock is p_i , i = 1, 2, ..., m, a random with probability ρ
 - the ratio of investigation for each stock is x_i
 - the overall return is $p^T x$, again a random
- maximize the estimated return, while control the largest loss

$$\max_{x} \int p^{\mathsf{T}} x \, d\rho(p) \quad \text{s.t.} \quad \sup_{p \sim \rho} (-p^{\mathsf{T}} x) < C, \sum x_i = 1, x_i \ge 0$$

• if we use historical data p_{ij} to present ρ

$$\max_{x} \sum_{j} p_{.j}^{\mathsf{T}} x \text{ s.t. } \max_{j} \left(-p_{.j}^{\mathsf{T}} x \right) < C, \sum_{i} x_{i} = 1, x_{i} \ge 0$$

Linear-fractional Programming

$$d = f = 0$$

min
$$\frac{c^{\mathsf{T}}x + d}{e^{\mathsf{T}}x + f}$$
s. t.
$$Gx \le h$$

$$Ax = b$$

$$e^{\mathsf{T}}x + f > 0$$

$$y = \frac{x}{e^{\mathsf{T}}x + f}$$
$$z = \frac{1}{e^{\mathsf{T}}x + f}$$

• Linear-fractional Programming is equivalent to the following LP

$$x, y \in \mathbf{R}^n$$
$$z \in \mathbf{R}$$

min
$$c^{T}y + dz$$

s. t. $Gy \le hz$
 $Ay = bz$
 $e^{T}y + fz = 1$
 $z \ge 0$

Linear-fractional Programming

$$d = f = 0$$

$$z = 1$$

$$x = y$$

$$\min \frac{c^{\top}x}{e^{\top}x}$$
s. t. $Gx \le h$

$$Ax = b$$

$$e^{\top}x > 0$$

Linear-fractional Programming is equivalent to the following LP

min
$$c^{\mathsf{T}}y$$

s. t. $Gy \leq h$
 $Ay = b$
 $e^{\mathsf{T}}y = 1$

a useful and typical trick for **Homogeneous** object, e.g., in PCA, CCA, ICA, ..., also in dual norm, steepest descent...

Quadratic Programming

min
$$\frac{1}{2}x^{T}Px + q^{T}x + r$$

s. t. $Gx \le h$
 $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, the objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Quadratic Programming

least squares

- establish a linear function $f(a) = x^{T}a$ to approach observations $\{a_i, b_i\}_{i=1}^{m}$
- the residual $r_i = b_i x^{\mathsf{T}} a_i$
- we want to obtain the least sum of squared error

$$\min_{x} \sum (b_i - x^{\mathsf{T}} a_i)^2$$

Quadratic Programming

- variance is in a quadratic form
- linear programing with random cost

min
$$c^{T}x$$

s. t. $Gx \le h$
 $Ax = b$
when c is random
s. t. $Gx \le h$

$$Ax = b$$

- stochastic optimization
- portfolio optimization

$$\max_{x} \ \bar{p}x + \gamma \sum (p_{\cdot,j}^{\mathsf{T}} x - \bar{p}x)^{2} \ \text{s.t.} \ \sum x_{i} = 1, x_{i} \ge 0$$

Quadratic Constraint

$$\max_{x} \ \bar{p}x \text{ s.t. } \sum (p_{\cdot,j}^{\mathsf{T}}x - \bar{p}x)^{2} \le C, \sum x_{i} = 1, x_{i} \ge 0$$

Quadratically Constrained Quadratic Programming (QCQP)

min
$$\frac{1}{2}x^{T}P_{0}x + q_{0}^{T}x + r_{0}$$

s. t. $\frac{1}{2}x^{T}P_{i}x + q_{i}^{T}x + r_{i} \le 0, i = 1, 2, ..., m$
 $Ax = b$

portfolio optimization

$$\max_{x} \ \bar{p}x \text{ s.t. } \gamma \sum (p_{\cdot,j}^{\mathsf{T}} x - \bar{p}x)^{2} < C, \sum x_{i} = 1, x_{i} \ge 0$$

Second-order Cone Programming

min
$$f^{\mathsf{T}}x$$

s.t. $||A_i\mathbf{x} + b_i||_2 \le c_i^{\mathsf{T}}x + d_i, i = 1, ..., m$
 $Fx = g$

min

Second-order Cone Programming (SOCP)

- convexity: $(A_i x + b_i, c_i^{\mathsf{T}} x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$
- more general than QCQP ($c_i = 0$) and LP ($A_i = 0$)
- when parameters are random

$$\begin{aligned} & \text{min} \quad c^{\top} x \\ & \text{s. t.} \quad a_i^{\top} x \leq b_i, i = 1, ..., m \\ & \quad a_i \in \{ \overline{a_i} + P_i u, \|u\|_2 \leq 1 \} \end{aligned}$$

$$\sup_{a_{i} \in \{\overline{a_{i}} + P_{i}u, \|u\|_{2} \le 1\}} a_{i}^{\top} x \le b_{i}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$a_{i}^{\top} x + \sup_{\|u\|_{2} \le 1} u^{\top} P_{i}^{\top} x = a_{i}^{\top} x + \|P_{i}^{\top} x\|_{2}$$

s. t. $a_i^{\mathsf{T}} x + ||P_i^{\mathsf{T}} x||_2 \le b_i, i = 1, ..., m$

目录 Contents

1 Convex Optimization and Properties

2 Linear and Quadratic Programing

Vector Optimization

Generalized inequality constraints

convex problem with generalized inequality constraints

min
$$f_0(x)$$

s. t. $f_i(x) \leq_{K_i} 0, i = 1, ..., m$
 $Ax = b$

• f_0 is convex and f_i is convex w.r.t. proper cone K_i

$$f_i(\theta x_1 + (1 - \theta)x_2) \leq_{K_i} \theta f_i(x_1) + (1 - \theta)f_i(x_2)$$

- $K = S_+^n$: matrix convexity
 - for any z, $z^T f(x)z$ is a convex function
 - $f(X) = XX^{\mathsf{T}}$ is matrix convex

Generalized inequality constraints

min
$$f_0(x)$$

s. t. $f_i(x) \leq_{K_i} 0, i = 1, ..., m$
 $Ax = b$

• f_0 is convex and f_i is convex w.r.t. proper cone K_i

$$f_i(\theta x_1 + (1 - \theta)x_2) \leq_{K_i} \theta f_i(x_1) + (1 - \theta)f_i(x_2)$$

conic form problem

min
$$c^{\mathsf{T}}x$$

s.t. $Fx + g \leq_K 0$
 $Ax = b$

SDP and LMI

min
$$c^{\mathsf{T}}x$$

s. t. $x_1F_1 + x_2F_2 + \cdots x_nF_n + G \leq 0$
 $Ax = b$

Vector optimization

convex problem with generalized inequality defined objective

min (w. r. t.
$$K$$
) $f_0(x)$
s. t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

where $f_0: \mathbb{R}^n \to \mathbb{R}^q$, and K is a proper cone in \mathbb{R}^q

we could use *K* to measure a **partial** order for vectors

for x and y, it is not necessary that they can be compared

•
$$K = \mathbb{R}^2_+, x \leq_K y$$
 means $(x_1 - y_1, x_2 - y_2) \in \mathbb{R}^2_+$, i.e., $x_1 \leq y_1, x_2 \leq y_2$

$$\bullet \quad \binom{3}{2} \leqslant_K \binom{4}{2}$$

■
$$\binom{3}{2}$$
 $\binom{4}{1}$ neither \leq_K nor \geq_K holds

Vector optimization

convex problem with generalized inequality defined objective

min (w. r. t.
$$K$$
) $f_0(x)$
s. t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

where $f_0: \mathbb{R}^n \to \mathbb{R}^q$, and K is a proper cone in \mathbb{R}^q

minimal element:
 it is better than all the other element → optimal solution

- minimum element:
 - there is no element better than it
 - → Pareto optimal/ efficient

Scalarization

to find the Pareto optimal,

min (w. r. t.
$$K$$
) $f_0(x)$
s. t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

• we could choose $\lambda >_{K^*} 0$ and solve a scalar problem

min
$$\lambda^{\mathsf{T}} f_0(x)$$

s. t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

- optimal solution for a scalar problem is Pareto-optimal
- convex problem: can find (almost) all Pareto-optimal points by scalarization

Regularized least squares

we want to minimize both the regression loss and the model complxity

min (w. r. t.
$$\mathbf{R}_{+}^{2}$$
) ($||Ax - b||_{2}^{2}$, $||x||_{2}^{2}$)

by scalarization

$$\min ||Ax - b||_2^2 + \lambda ||x||_2^2$$
$$\lambda > 0$$

Convex Optimization and Properties

Linear and Quadratic Programing

Vector Optimization

Conclusion and Home Work

- convex optimization is to minimize a convex function over a convex set
 - standard formulation and equivalent transformation
 - local and global optimum
 - LP, QP, QCQP, SOCP
 - vector optimization and Pareto optimum

• Excise 4.9: LP and its solution

Excise 4.15: integer programming and its relaxation

Excise 4.22: QCQP and its solution

THANKS

