МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра механики, мехатроники и робототехники

ПОСТРОЕНИЕ ТРЕХМЕРНОЙ МОДЕЛИ ВАЛА В ПРОГРАММНОМ ПАКЕТЕ КОМПАС

Методические указания по выполнению лабораторной и самостоятельной работ по курсу «Проектирование мехатронных систем» для студентов направления 221000.62 «Мехатроника и робототехника»

УДК 62.231

Составители Е.Н. Политов, Л.Ю. Ворочаева

Рецензент

Кандидат технических наук, доцент В.Я. Мищенко

Построение трехмерной модели вала в программном пакете Компас: методические указания по выполнению лабораторной и самостоятельной работ по курсу «Проектирование мехатронных систем» / Юго-Зап. гос. ун-т; сост. Е.Н. Политов, Л.Ю. Ворочаева. Курск, 2015. 25 с.

Методические указания содержат сведения по построению трехмерной модели тела вращения в программном пакете Компас. Приведены варианты задания, пример проектирования модели многоступенчатого вала и создания основных конструктивных элементов, используемых в телах вращения.

Методические указания соответствуют требованиям программы, утверждённой учебно-методическим объединением (УМО).

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл.печ.л. 1,4. Уч.-изд.л. 1,3. Тираж 30 экз. Заказ. Бесплатно. Юго-Западный государственный университет. 305040 Курск, ул. 50 лет Октября, 94.

Содержание

Задание	4						
Ход выполнения работы							
Создание файла детали	7						
Построение тела вращения. Способ 1	8						
Построение тела вращения. Способ 2	12						
Определение свойств детали	14						
Создание шпоночного паза. Построение касательной	17						
плоскости							
Построение радиусов скругления в эскизе	21						
Построение радиусов скругления в трехмерной модели	22						
Построение фасок	24						
Рекомендательный список литературы	25						

Задание

1 Построить трехмерную модель вала в соответствии со схемой, изображенной на рис. 1, выбирая номер варианта с численными значениями параметров из табл. 1, двумя приведенными в методическом пособии способами.

- 2 На каждой ступени вала построить фаску $1 \times 45^{\circ}$.
- 3 Между всеми ступенями вала построить радиусы скругления 1 мм.
- 4 Построить на валу два шпоночных паза на ступенях вала № 3 и № 5 в соответствии с ГОСТ 23360-78, используя рис. 2 и численные данные табл. 2. В табл. 1 указан угол между двумя шпоночными пазами. Располагать шпоночный паз симметрично относительно ступени вала.

Рис. 1 Схема вала

Рис. 2 Выполнение шпоночного паза на валу

Табл. 2 - Размеры сечений шпоночных пазов, мм

d		b	L	4	
Св.	до	D	L	t_1	
6	8	2	6÷2	1,2	
			0		
8	10	3	6÷3	1,8	
			6		
10	12	4	8÷4	2,5	
			5		
12	17	5	10÷	3,0	
			56		
17	22	6	14÷	3,5	
			70		
22	30	8	18÷	4,0	
			90		
30	38	10	22÷	5,0	
			110		
38	44	12	28÷	5,0	
			140		

 $l_2 \! = \! l_6 \! = \! L_v \! + \! B$, где L_v — длина втулки, B — ширина подшипника качения.

Табл. 1 - Численные значения параметров вала

1 aoJ	I. I - Числ	енные зна	чения пар	аметров ва	ила								
No	d_I	d_2 , d_6	d_3	d_4	d_5	d_7	l_{I}	l_3	l_4	l_5	l_7	L_{v}	∠ между шпоноч ными пазами,
1	7	8	10	16	11	6	12	14	5	13	12	8	0
2	10	12	14	20	16	8	16	21	11	16	18	10	90
3	8	10	12	20	14	7	15	18	6	16	16	6	180
4	13	15	18	26	20	11	13	20	10	18	14	5	0
5	12	17	20	30	24	14	10	18	16	22	17	7	90
6	7	10	13	18	12	8	18	14	11	18	14	9	180
7	7	9	11	17	12	6	14	18	13	12	14	10	0
8	14	20	24	34	28	16	11	22	11	24	20	12	90
9	18	25	30	38	32	20	15	28	10	30	13	11	180
10	9	12	16	24	17	10	14	18	7	16	20	10	0
11	12	15	20	26	18	13	12	20	12	18	19	12	90
12	6	9	12	20	13	7	17	14	11	16	22	7	180
13	18	20	26	35	28	19	14	24	10	22	14	8	0
14	13	17	22	28	20	12	13	18	8	20	20	9	90
15	17	20	28	34	24	15	17	22	11	24	17	6	180
16	6	10	14	19	13	8	10	14	9	18	12	10	0
17	11	15	21	27	20	13	12	18	10	20	11	9	90
18	8	12	17	23	16	10	14	20	12	14	10	6	180
19	6	9	13	18	11	5	12	14	7	12	17	7	0
20	5	8	11	17	10	7	14	18	10	14	10	10	90
21	18	25	32	39	30	21	15	28	14	26	16	12	180
22	25	30	36	48	39	21	13	30	7	34	12	11	0
23	14	17	24	30	22	13	13	24	9	22	16	9	90
24	9	12	17	27	14	8	16	16	8	14	13	10	180

Ход выполнения работы

Рассмотрим построение трехмерной модели вала со следующими численными значениями параметров (мм): d_1 =24, d_2 =30, d_3 =44, d_4 =56, d_5 =40, d_6 =30, d_7 =24, l_1 =18, l_2 =24, l_3 =36, l_4 =22, l_5 =40, l_6 =24, l_7 =10. Угол между шпоночными пазами 0^0 .

Создание файла детали

Для создания новой детали выполните команду Φ айл — Cоздать или нажмите кнопку Cоздать \Box на панели Cтандартная.

В диалоговом окне укажите тип создаваемого документа Деталь и нажмите кнопку OK.

На экране появится окно новой детали. Нажмите кнопку *Сохранить* на панели *Стандартная*.

В поле Имя файла диалогового окна сохранения документов введите имя детали - Вал.

Нажмите кнопку Сохранить.

В окне Информация о документе просто нажмите кнопку ОК. Поля этого окна заполнять не обязательно.

Построение тела вращения. Способ 1

Выберите плоскость, в которой будете делать эскиз, в Дереве *модели*, например, Плоскость XY.

При этом она выделится, как показано на рисунке.

На верхней панели нажмите кнопку *Создать эскиз Плоскость XY* примет вид:

Нажмите кнопку *Непрерывный ввод объектов* $^{\square}$ на панели инструментов *Геометрия* $^{\square}$.

Из точки начала координат постройте замкнутую ломаную приблизительные вертикали откладывая радиусов ступеней вала, а по горизонтали – приблизительные длины ступеней. Так как вал состоит из 7 ступеней, в эскизе должно быть 7 участков. Причем горизонтальных при указании положения контура, необходимо добиться последней срабатывания точки привязки Выравнивание, обеспечивающей расположение строящейся точки и начала координат на одной горизонтальной линии.

Чтобы замкнуть линию, нажмите на панели свойств команду *Замкнуть* .

Если отрезки линий получились наклонными, на панели управления *Параметризация* выберите *Горизонтальность* или *Вертикальность* и щелкните по наклонному отрезку левой клавишей мыши.

Для получения точной геометрии контура нужно проставить размеры. Для этого на панели инструментов *Размеры* выберите подпункт *Линейные размеры* и установите требуемые значения размеров отрезков линий. Размеры проставляются между двумя точками контура вала. Для простановки вертикальных размеров точкой отсчета является начало координат.

Численное значение размера задается в поле *Выражение* окна Установить значение размера. После этого нажимаем OK.

Для придания размерам нужной ориентации на панели свойств нажмите кнопку *Вертикальный* или *Горизонтальный*.

Измените стиль горизонтального отрезка, являющегося проекцией оси вала, с *Основная* на *Осевая*. Этот отрезок будет выполнять роль оси вращения. Для этого на отрезке выполните двойной щелчок левой клавишей мыши и на панели свойств в списке окна *Стиль* выберите *Осевая*.

Для построения сплошного тела нажмите кнопку *Сфероид* на закладке *Параметры* панели свойств.

Нажмите кнопку *Создать объект* - система выполнит

построение тела вращения.

Построение тела вращения. Способ 2

Выберите плоскость, в которой будете делать эскиз, в Дереве *модели*, например, Плоскость XY.

При этом она выделится, как показано на рисунке.

На верхней панели нажмите кнопку *Создать эскиз* **—**. *Плоскость XY* примет вид:

На панели инструментов *Геометрия* Выберите вкладку *Окружность* Постройте окружность произвольного диаметра, центр которой совпадает с началом координат.

Используя вкладку *Диаметральный размер* на панели инструментов *Размеры* , задайте окружности диаметр, соответствующий диаметру вала d_1 .

На панели инструментов *Редактирование детали* выберите операцию *Выдавливание*.

На панели свойств укажите расстояние (l_1) , на которое необходимо выдавить окружность.

Нажмите кнопку Создать объект - на панели свойств.

Выберите плоскость, на которой необходимо эскиз следующей ступени вала.

Повторите ранее указанные операции, надстраивая вал и изменяя диаметр и расстояние выдавливания до d_7 и l_7 .

Определение свойств детали

Щелкните правой клавишей мыши в любом пустом месте окна модели. Из контекстного меню выполните команду *Свойства*.

Панель свойств примет вид.

Введите наименование детали в окне Наименование на панели свойств.

Введите обозначение детали в окне Обозначение на панели свойств.

Обозначение детали выполняется в соответствии с примером.

РГР-221000-10.ВЛЮ-25.00.00.ХХ

10 – год выполнения РГР,

ВЛЮ - Ф.И.О.,

25 – номер варианта,

ХХ – номер детали.

Определите цвет детали в окне *Цвет*, зеркальность, блеск, прозрачность в окне *Оптические свойства* для лучшего различения деталей на сборках.

Для определения материала, из которого изготовлена деталь, переключитесь на вкладку Π араметры MДX нажмите кнопку Bыбрать материал из списка

В окне Плотность материалов раскройте необходимый раздел и укажите марку материала.

Нажмите OK. Для завершения диалога определения свойств детали нажмите кнопку Cosdamb объект -.

Создание шпоночного паза. Построение касательной плоскости

Для создания шпоночного паза нужно построить вспомогательную плоскость для размещения его эскиза. Эта

плоскость должна быть касательной к цилиндрическому участку вала, на котором нужно построить паз.

На панели инструментов выберите *Вспомогательная геометрия* №. В раскрывающемся списке *Смещенная плоскость* выберите *Касательная плоскость*.

Укажите цилиндрическую поверхность вала, нажав по ней левой клавишей мыши.

В Дереве модели укажите плоскость, относительно которой необходимо построить касательную плоскость. В данном случае это Плоскость XY.

Для окончательного выбора нужного варианта размещения касательной плоскости нажмите кнопку $Положение\ 1$ или $Положение\ 2$ на панели свойств.

Нажмите кнопку *Создать объект* **→** – система выполнит построение касательной плоскости.

На касательной плоскости постройте эскиз, выделив касательную плоскость в *Дереве модели* и нажав кнопку *Эскиз* .

Начертите прямоугольник произвольного размера, выбрав на панели инструментов *Геометрия* № вкладку *Прямоугольник*.

Первой точкой укажите начало координат, а второй – середину боковой стороны прямоугольника.

Проставьте размеры длины (L) и ширины (b) прямоугольника, выбрав на панели инструментов Pазмеры подпункт Jинейные размеры, а также размер для размещения шпоночного паза относительно ступени вала.

Построение радиусов скругления в эскизе

Постройте радиусы скругления шпоночного паза. Для этого на панели *Геометрия* Выберите пункт *Скругление* .

На панели свойств задайте радиус скругления, равный половине ширины шпоночного паза (b/2).

Выделите левой клавишей мыши две смежные стороны прямоугольника. Система автоматически построит радиус скругления.

Аналогичным образом строим все радиусы скругления.

Закройте эскиз, нажав . На панели инструментов выберите Редактирование детали и затем операцию Вырезать выдавливанием.

Вырезать выдавливанием Вырезание тела выдавливания

На нижней панели укажите свойства операции выдавливания: прямое направление , на расстояние равное глубине шпоночного паза (t_1) .

Нажмите *Создать объект* **Ч**. Аналогичным образом постройте второй шпоночный паз.

Построение радиусов скругления в трехмерной модели

Для выполнения радиусов скругления между ступенями вала на вкладке панели инструментов Pedakmupoвahue demanu выберите операцию Ckpyznehue . На панели свойств задайте значение радиуса скругления.

Укажите ребро, которое необходимо скруглить.

Нажмите Создать объект ┵.

Постройте радиусы скругления на каждой границе ступеней вала.

Построение фасок

На панели инструментов выберите $Pedakmupoвание \ demaли$ и затем операцию $\Phi acka$. На панели свойств задайте длину фаски 1 мм.

Выделите ребро, на котором необходимо создать фаску.

Нажмите кнопку Создать объект

Аналогичным образом постройте фаски на всех ребрах ступеней вала.

Рекомендательный список литературы

- 1. Большаков В.П., Бочков А.Л. Основы 3D-моделирования. Питер. 2012. 304 с.
- 2. Большаков В.П., Тозик В.Т., Чагина А.В. Инженерная и компьютерная графика. БХВ-Петербург. 2012. 208 с.
- 3. КОМПАС 3D V15. Руководство пользователя. АСКОН. 2014. 526 с.
- 4. Ганин Н.Б. Трехмерное проектирование в КОМПАС-3D. ДМК-Пресс. 2012. 784 с.
- 5. Герасимов А.А. Новые возможности КОМПАС-3D V13. Самоучитель. БХВ-Петербург. 2011. 288c.