Novice CV/VLM Workshop

Image Processing, Computer Vision, and Your First Vision Language Model

Ming Hao Data Scientist @ FWD

Table of Contents

1 Introduction to Computer Vision

Using Object
Detection Models

Hands-on

Deploying pretrained VLM to FastAPI Hands-on

2 Image Processing with OpenCV

Hands-on

Introduction to Vision Language Models
Hands-on

Introduction to Computer Vision

Fundamentals of Computer Vision

What is Computer Vision?

- A branch of AI that teaches computers to see and understand visual data in a way that mimics human vision
- Utilizes algorithms to analyse and interpret visual inputs

Adapted from <u>viso.ai</u>

Analog Comparison

Human Vision vs Computer Vision

What Computers See - Pixel Values

What we see

Grayscale
(Black and White)

What computers see

157	153	174	268	160	162	129	353	172	167	356	156
156	182	163			62	33		110	210	180	354
180	180	50	14	54			33	49	106	150	181
206	133		134	181	100	130	204	164		56	180
194	*	187	251	237	299	239	228	227			201
172	194	207	233	283	214	220	259	228	11	74	206
188		179	209	185	215	211	198	126			169
188	**	166	м	10	168	134	11	31	62		148
198	168	191	165	186	227	178	143	182	114	36	190
205	174	188	252	236	291	149	176	228		95	234
190	216	114	149	236	187		150		38	218	341
190	224	147	100	227	210	127	162	36	9	255	224
190	214	173	66	183	143		80		100	249	215
187	196	236	75						217	258	211
188	202	237	140	0			100	200	120	243	294
196	204	128	207	177	121	123	200	176	13	26	218

157	163	174	168	150	162	129	151	172	161	196	16
166	182	163	74	75	62	33	17	110	210	180	16
180	180	50	14	34	6	10	33	40	106	159	18
206	109	5	124	131	111	120	204	166	16	56	18
194	68	137	261	237	239	239	228	227	87	n	20
172	106	207	233	233	214	220	239	228	56	74	20
188		179	209	186	216	211	158	139	76	20	16
189	97	166	84	10	168	194	11	31	62	22	14
199	168	191	193	150	227	178	143	182	106	36	19
206	174	166	252	236	231	149	178	228	43	95	23
190	216	116	149	236	187	86	160	79	36	218	24
190	224	147	108	227	210	127	102	36	101	256	22
190	214	173	66	103	143	95	50	2	109	249	21
187	196	236	75	1	81	47	0	6	217	255	21
183	202	237	145	0	0	12	108	200	136	243	29
196	206	123	207	177	121	122	200	175	19	96	22

Array of Pixel values

Colored Images could be coded in RGB (Red, Green, Blue), HSL (Hue, Saturation, Lightness), etc, which would be channels (depth) of pixel value arrays.

Image Processing with OpenCV

Hands On

Using Object Detection Models

Hands On

Common Problem Types in Computer Vision

Features

Applications

Image Tagging, Scene Understanding, Content moderation

Classification

Bounding Box

Rob Fac: Sel

Multiple objects

Robot navigation, Facial Recognition Self Driving Cars Segment Mask

Medical Image Diagnosis Aerial Image processing

What is Object Detection?

Localizing and identifying objects within an image.

Tasks:

Where **Localization:** Pinpointing the

bounding box (rectangular frame)

around the detected object.

What Classification: Assigning a class

label to the object (e.g. bus,

person, dog).

Score Confidence Score: Indicating the

model's certainty in the detection

and classification.

Single-Shot Detector (SSD)

SSD is just one technique; explore the CV/VLM educational content for more!

Two Components

- 1. Backbone model: Pre-trained image CNN (Resnet, VGG)
- SSD Head: More convolutional layers added to the backbone, whereby the outputs are bounding boxes and classes of the objects in the spatial locations.

Single-Shot Detector (SSD) Innovations

Applies various feature map grid cell sizes
 (e.g. 8x8, 6x6, ..., 1x1) to detect objects of different sizes [image pyramid]

- Anchor Boxes

This is all done in the SSD Head network!

YOLO v8 Architecture

This is another popular Object Detection algorithm.

YOLOv8 has also integrated other submodules

- <u>Classify</u> models pretrained on the <u>ImageNet</u> dataset.
- <u>Detect</u>, <u>Segment</u> and <u>Pose</u> models pretrained on the <u>COCO</u> dataset (with track mode).

- Latest version: YOLO v8
- Adapted from <u>Brief summary of YOLOv8 model structure · GitHub</u>

Introduction to Multimodal Models

What are multimodal models?

Multimodal models

Definition

Multimodal models are models that integrates information from multiple modalities (e.g. text, image, videos, audio, gestures) to create a unified representation.

By leveraging different types of data, multimodal models can perform tasks that involve complex interactions between modalities and thus understand and reason about the world in more comprehensive way.

Multimodal models and their importance

The key importance of multimodal models in computer vision are:

- 1. Richer Understanding
- 2. Better Performance
- 3. Facilitate Emerging Properties

(left) The emerging
properties of
pre-training on web-scale
interleaved image-text
data: multimodal
in-context-learning.VLM
(Flamingo)

Adapted from <u>Alayrac et al.</u> (2022) via

CLIP (Contrastive Language-Image Pre-training) Connecting Text and Image

"CLIP is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similar to the zero-shot capabilities of GPT-2 and 3. We found CLIP matches the performance of the original ResNet50 on ImageNet "zero-shot" without using any of the original 1.28M labeled examples, overcoming several major challenges in computer vision."

Approach

CLIP: Connecting text and images (openai.com)

CLIP (Contrastive Language-Image Pre-training) Details

Given a batch of N (image, text) pairs, predict which of the N × N possible (image, text) pairings across a batch actually occurred.

Author constructed a new dataset of 400 million (image, text) pairs collected from a variety of publicly available sources on the Internet

Multi-model embedding space Maximize the cosine similarity of image vs text

Optimized for a symmetric cross entropy loss.

- openai/CLIP: CLIP (Contrastive Language-Image Pretraining), github.com
- CLIP: Connecting text and images (openai.com)

Deploying pretrained VLM to FastAPI

Hands On

