Topics in Modern Geometry

Problems class 13

1 Points of clarification

- 1. The finiteness of the generating set for Qu. 4 of Homework 3 follows from the fact that $\mathbb{C}[x_0,\ldots,x_n]$ is Noetherian, which in turn follows from Hilbert's basis theorem.
- 2. The Zariski closure of a set $X \subset \mathbb{P}^n$ is the smallest Zariski closed set $\overline{X} \subset \mathbb{P}^n$ (i.e. set of the form $\overline{X} = \mathbb{V}(I)$ for a homogeneous ideal $I \subset \mathbb{C}[x_0, \dots, x_n]$) such that $X \subset \overline{X}$. Equivalently, $\overline{X} = \bigcap_{X \subset Z} Z$ where the intersection runs over all Zariski closed subsets $Z \subset \mathbb{P}^n$.
- 3. A regular function on a projective variety $X \subset \mathbb{P}^n$ is a rational function $f \in \mathbb{C}(X)$ which is regular at all points $p \in X$.
- 4. An embedding $f: X \to \mathbb{P}^n$ is a morphism from X into \mathbb{P}^n which is an isomorphism from X onto the image $f(X) \subset \mathbb{P}^n$.

2 More problems

In addition to Homework sheet 3, you can use these problems as further practice questions. They are mostly taken from Reid's *Undergraduate algebraic geometry*.

Extension problems to Homework 3

- 1. (**Qu.** 6+)
 - (a) Show that $\mathbb{P}^1 \times \mathbb{P}^1 \ncong \mathbb{P}^2$ by finding two lines $L_1, L_2 \subset \phi(\mathbb{P}^1 \times \mathbb{P}^1) \subset \mathbb{P}^3$ with $L_1 \cap L_2 = \emptyset$. (Compare with Bézout's theorem later on in the course.)
 - (b) Try generalising your solution to the case of $\mathbb{P}^m \times \mathbb{P}^n$.
- 2. (Qu. 7+) Compare the closed sets $\mathbb{V}(I'), \mathbb{V}(\widetilde{I}) \subset \mathbb{P}^3$. What are their irreducible components?
- 3. (Qu. 10+) Find the equation of the image $\overline{\phi(L)} \subset \mathbb{P}^2$ where L is the line given by:

$$x + y + z = 0, \qquad \qquad x + y = 0, \qquad \qquad x = 0$$

Additional problems

- 4. Write down the three standard affine charts of $C \subset \mathbb{P}^2$ and find the intersection points of C with the coordinate axes of \mathbb{P}^2 , where C is one of the following curves:
 - (a) $y^2z = x^3 + axz^2 + bz^3$ where $a, b \in \mathbb{C}$,
 - (b) $x^2y^2 + y^2z^2 + z^2x^2 = 2xyz(x+y+z)$,
 - (c) $xz^3 = (x^2 + z^2)y^2$.
- 5. Find dom π and dom ψ in Example 18.1 of the lecture notes.
- 6. Show that the map $f: \mathbb{P}^1 \to \mathbb{P}^d$ given by $f(u:v) = (u^d: u^{d-1}v: \ldots: uv^{d-1}: v^d)$ is an embedding. The image $f(\mathbb{P}^1) \subset \mathbb{P}^d$ is called a rational normal curve of degree d.
- 7. The second Veronese embedding of \mathbb{P}^2 is the map $v: \mathbb{P}^2 \to \mathbb{P}^5$ given by

$$v(a:b:c) = (a^2:ab:ac:b^2:bc:c^2).$$

Show that v is an embedding of \mathbb{P}^2 . Show that v sends lines in \mathbb{P}^2 to conics in \mathbb{P}^5 , and conics in \mathbb{P}^2 to rational normal curves of degree 4 in \mathbb{P}^5 .