Indexed and Fibred Sets

Emily

February 27, 2023

INTRODUCTION

This chapter contains a discussion of the un/straightening equivalence in the context of sets, as well as general constructions with indexed and fibred sets, like dependent sums and dependent products.

Contents

1	Indexed Sets			
	1.1	Foundations	2	
	1.2	Change of Indexing		
	1.3	Dependent Sums	6	
	1.4	Dependent Products	7	
	1.5	Internal Homs	9	
	1.6	Adjointness of Indexed Sets	9	
2	Fibr	ed Sets	9	
	2.1	Foundations	9	
	2.2	Change of Base	14	
	2.3	Dependent Sums	15	
	2.4	Dependent Products	17	
	2.5	Internal Homs	20	
	2.6	Adjointness for Fibred Sets	21	
3	Un/Straightening for Indexed and Fibred Sets			
	3.1	Straightening for Fibred Sets	21	
	3.2	Unstraightening for Indexed Sets		
	3.3	The Un/Straightening Equivalence	28	

Α	App	Appendix Miscellany		
	A.1	Other Kinds of Un/Straightening	29	
В	Арр	endix Other Chapters	29	

1 Indexed Sets

1.1 Foundations

Let *K* be a set.

DEFINITION 1.1.1 ► INDEXED SETS

A *K*-indexed set is a functor $X: K_{disc} \rightarrow Sets$.

REMARK 1.1.2 ► UNWINDING DEFINITION 1.1.1

By Categories, Proposition 1.5.1, a K-indexed set consists of a K-indexed collection

$$X^{\dagger} : K \to \mathsf{Obj}(\mathsf{Sets}),$$

of sets, assigning a set $X_x^{\dagger} \stackrel{\text{def}}{=} X_x$ to each element x of K.

DEFINITION 1.1.3 ► MORPHISMS OF INDEXED SETS

A morphism of K-indexed sets from $X: K_{disc} \to \mathsf{Sets}$ to $Y: K_{disc} \to \mathsf{Sets}^1$ is a natural transformation

$$f: X \Longrightarrow Y$$
, $K_{\text{disc}} \underbrace{\int_{Y}^{X}}_{Y} \text{Sets}$

from X to Y.

¹ Further Terminology: Also called a K-indexed map of sets from X to Y.

REMARK 1.1.4 ► UNWINDING DEFINITION 1.1.3

In detail, a **morphism of** *K***-indexed sets** consists of a *K*-indexed collection

$$\{f_x\colon X_x\to Y_x\}_{x\in K}$$

of maps of sets.

Definition 1.1.5 \blacktriangleright The Category of K-Indexed Sets

The **category of** K**-indexed sets** is the category $\mathsf{ISets}(K)$ defined by

$$\mathsf{ISets}(K) \stackrel{\mathsf{def}}{=} \mathsf{Fun}(K_{\mathsf{disc}}, \mathsf{Sets}).$$

REMARK 1.1.6 ► UNWINDING DEFINITION 1.1.5

In detail, the **category of** K-indexed sets is the category ISets(K) where

- · Objects. The objects of ISets(*K*) are *K*-indexed sets;
- · Morphisms. The morphisms of $\mathsf{ISets}(K)$ are morphisms of K-indexed sets;
- · *Identities.* For each $X \in \mathsf{Obj}(\mathsf{ISets}(K))$, the unit map

$$\mathbb{1}_X^{\mathsf{ISets}(K)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathsf{ISets}(K)}(X,X)$$

of ISets(K) at X is defined by

$$\operatorname{id}_X^{\operatorname{ISets}(K)} \stackrel{\text{def}}{=} \left\{ \operatorname{id}_{X_x} \right\}_{x \in K};$$

· Composition. For each $X, Y, Z \in \mathsf{Obj}(\mathsf{ISets}(K))$, the composition map

$$\circ_{X,Y,Z}^{\mathsf{ISets}(K)} \colon \operatorname{Hom}_{\mathsf{ISets}(K)}(Y,Z) \times \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Z)$$

of $\mathsf{ISets}(K)$ at (X,Y,Z) is defined by

$$\{g_x\}_{x\in K} \circ_{XYZ}^{\mathsf{lSets}(K)} \{f_x\}_{x\in K} \stackrel{\text{def}}{=} \{g_x \circ f_x\}_{x\in K}.$$

DEFINITION 1.1.7 ► THE CATEGORY OF INDEXED SETS

The **category of indexed sets** is the category ISets defined as the Grothendieck construction of the functor ISets: Sets^{op} \rightarrow Cats of Proposition 1.2.5:

$$ISets \stackrel{\text{def}}{=} \int^{Sets} ISets.$$

REMARK 1.1.8 ► UNWINDING DEFINITION 1.1.7

In detail, the category of indexed sets is the category ISets where

- · Objects. The objects of ISets are pairs (K, X) consisting of
 - The Indexing Set. A set K;
 - · The Indexed Set. A K-indexed set $X: K_{disc} \rightarrow Sets$;
- · *Morphisms*. A morphism of ISets from (K, X) to (K', Y) is a pair (ϕ, f) consisting of
 - · The Reindexing Map. A map of sets $\phi: K \to K'$;
 - The Morphism of Indexed Sets. A morphism of K-indexed sets $f\colon X\to \phi_*(Y)$ as in the diagram

$$f: X \to \phi_*(Y),$$

$$K_{\text{disc}} \xrightarrow{\phi} K'_{\text{disc}}$$

$$X \xrightarrow{f} Y$$
Sets:

· *Identities.* For each $(K, X) \in Obj(ISets)$, the unit map

$$\mathbb{F}^{\mathsf{ISets}}_{(K,X)} \colon \mathsf{pt} \to \mathsf{ISets}((K,X),(K,X))$$

of ISets at (K, X) is defined by

$$id_{(K,X)}^{\mathsf{ISets}} \stackrel{\mathsf{def}}{=} (\mathsf{id}_K, \mathsf{id}_X).$$

· Composition. For each $\mathbf{X}=(K,X),\mathbf{Y}=(K',Y),\mathbf{Z}=(K'',Z)\in \mathrm{Obj}(\mathrm{ISets})$, the composition map

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{ISets}}\colon \mathsf{ISets}(\mathbf{Y},\mathbf{Z})\times \mathsf{ISets}(\mathbf{X},\mathbf{Y}) \to \mathsf{ISets}(\mathbf{X},\mathbf{Z})$$

of ISets at (X, Y, Z) is defined by

$$(\psi, g) \circ (\phi, f) \stackrel{\text{def}}{=} (\psi \circ \phi, (g \star id_{\phi}) \circ f),$$

as in the diagram

for each $(\phi, f) \in \mathsf{ISets}(\mathbf{X}, \mathbf{Y})$ and each $(\psi, g) \in \mathsf{ISets}(\mathbf{Y}, \mathbf{Z})$.

1.2 Change of Indexing

Let $\phi \colon K \to K'$ be a function and let X be a K'-indexed set.

DEFINITION 1.2.1 ► CHANGE OF INDEXING OF INDEXED SETS

The **change of indexing of** X **to** K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X) \stackrel{\text{def}}{=} X \circ \phi_{\mathsf{disc}}.$$

REMARK 1.2.2 ► UNWINDING DEFINITION 1.2.1

In detail, the **change of indexing of** X **to** K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X)_x \stackrel{\text{def}}{=} X_{\phi(x)}$$

for each $x \in K$.

Proposition 1.2.3 ► Functoriality of Change of Indexing

The assignment $X \mapsto \phi^*(X)$ defines a functor

$$\phi^*$$
: ISets(K') \rightarrow ISets(K),

where

· Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K'))$, we have

$$[\phi^*](X) \stackrel{\text{def}}{=} \phi^*(X);$$

· Action on Morphisms. For each $X,Y\in \mathsf{Obj}(\mathsf{ISets}(K'))$, the action on Homsets

$$\phi_{X,Y}^* \colon \operatorname{Hom}_{\operatorname{ISets}(K')}(X,Y) \to \operatorname{Hom}_{\operatorname{ISets}(K)}(\phi^*(X),\phi^*(Y))$$

of ϕ^* at (X, Y) is the map sending a morphism of K'-indexed sets

$$f = \{f_x \colon X_x \to Y_x\}_{x \in K'}$$

from X to Y to the morphism of K-indexed sets defined by

$$\phi^*(f) \stackrel{\text{def}}{=} \left\{ f_{\phi(x)} : X_{\phi(x)} \to Y_{\phi(x)} \right\}_{x \in K}.$$

PROOF 1.2.4 ► PROOF OF PROPOSITION 1.2.3

Omitted.

PROPOSITION 1.2.5 ► FUNCTORIALITY OF CATEGORIES OF K-INDEXED SETS

The assignment $K \mapsto \mathsf{ISets}(K)$ defines a functor

ISets: Sets^{op}
$$\rightarrow$$
 Cats.

where

· Action on Objects. For each $K \in \text{Obj}(\mathsf{Sets})$, we have

$$[\mathsf{ISets}](K) \stackrel{\mathsf{def}}{=} \mathsf{ISets}(K);$$

· Action on Morphisms. For each $K, K' \in \mathsf{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\mathsf{ISets}_{K,K'} \colon \mathsf{Sets}^{\mathsf{op}}(K,K') \to \mathsf{Fun}(\mathsf{ISets}(K),\mathsf{ISets}(K'))$$

of ISets at (K, K') is the map defined by

$$\mathsf{ISets}_{K,K'}(\phi) \stackrel{\mathsf{def}}{=} \phi^*$$

for each $\phi \in \mathsf{Sets}^{\mathsf{op}}(K, K')$.

PROOF 1.2.6 ➤ PROOF OF PROPOSITION 1.2.5

Omitted.

1.3 Dependent Sums

Let $\phi: K \to K'$ be a function and let X be a K-indexed set.

DEFINITION 1.3.1 ► DEPENDENT SUMS OF INDEXED SETS

The **dependent sum of** X is the K'-indexed set $\Sigma_{\phi}(X)^{1}$ defined by

$$\Sigma_{\phi}(X) \stackrel{\text{\tiny def}}{=} \mathsf{Lan}_{\phi}(X) \text{,}$$

and hence given by

$$\Sigma_{\phi}(X)_{x} \cong \coprod_{y \in \phi^{-1}(x)} X_{y}$$

for each $x \in K'$.

¹ Further Notation: Also written $\phi_*(X)$.

PROPOSITION 1.3.2 ► FUNCTORIALITY OF DEPENDENT SUMS

The assignment $X \mapsto \Sigma_{\phi}(X)$ defines a functor

$$\Sigma_{\phi} \colon \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

· Action on Objects. For each $X \in \mathsf{Obj}(\mathsf{ISets}(K))$, we have

$$\left[\Sigma_{\phi}\right](X) \stackrel{\text{def}}{=} \Sigma_{\phi}(X);$$

· Action on Morphisms. For each $X,Y\in \mathrm{Obj}(\mathsf{ISets}(K))$, the action on Homsets

$$\Sigma_{\phi|X,Y} \colon \operatorname{Hom}_{\operatorname{\mathsf{ISets}}(K)}(X,Y) \to \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{ISets}}(K')} \bigl(\Sigma_{\phi}(X), \Sigma_{\phi}(Y)\bigr)$$

of Σ_{ϕ} at (X,Y) is the map sending a morphism of K-indexed sets

$$f:X\to Y$$

to the morphism of K'-indexed sets defined by

$$\begin{split} \Sigma_{\phi}(f) &\stackrel{\text{def}}{=} \mathsf{Lan}_{\phi}(f); \\ &\cong \coprod_{y \in \phi^{-1}(X)} f_{y}. \end{split}$$

PROOF 1.3.3 ► PROOF OF PROPOSITION 1.3.2

Omitted.

1.4 Dependent Products

Let $\phi \colon K \to K'$ be a function and let X be a K-indexed set.

DEFINITION 1.4.1 ► DEPENDENT PRODUCTS OF INDEXED SETS

The **dependent product of** X is the K'-indexed set $\Pi_{\phi}(X)^{1}$ defined by

$$\Pi_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(X),$$

and hence given by

$$\Pi_{\phi}(X)_x \cong \prod_{y \in \phi^{-1}(x)} X_y$$

for each $x \in K'$.

¹Further Notation: Also written $\phi_!(X)$.

Proposition 1.4.2 ► Functoriality of Dependent Products

The assignment $X \mapsto \Pi_{\phi}(X)$ defines a functor

$$\Pi_{\phi} \colon \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

· Action on Objects. For each $X \in \mathsf{Obj}(\mathsf{ISets}(K))$, we have

$$[\Pi_{\phi}](X) \stackrel{\text{def}}{=} \Pi_{\phi}(X);$$

· Action on Morphisms. For each $X,Y\in \mathsf{Obj}(\mathsf{ISets}(K))$, the action on Homsets

$$\Pi_{\phi|X,Y} \colon \operatorname{Hom}_{\operatorname{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\operatorname{ISets}(K')} \left(\Pi_{\phi}(X), \Pi_{\phi}(Y) \right)$$

of Π_ϕ at (X,Y) is the map sending a morphism of K-indexed sets

$$f: X \to Y$$

to the morphism of K'-indexed sets defined by

$$\Pi_{\phi}(f) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(f);$$

$$\cong \prod_{y \in \phi^{-1}(x)} f_{y}.$$

1.5 Internal Homs 9

PROOF 1.4.3 ► PROOF OF PROPOSITION 1.4.2

Omitted.

1.5 Internal Homs

Let K be a set and let X and Y be K-indexed sets.

DEFINITION 1.5.1 ► INTERNAL HOM OF INDEXED SETS

The internal Hom of indexed sets from X to Y is the indexed set $\operatorname{Hom}_{\operatorname{ISets}(K)}(X,Y)$ defined by

$$\operatorname{Hom}_{\operatorname{ISets}(K)}(X,Y) \stackrel{\text{def}}{=} \operatorname{Sets}(X_x,Y_x)$$

for each $x \in K$.

1.6 Adjointness of Indexed Sets

Let $\phi: K \to K'$ be a map of sets.

Proposition 1.6.1 ► Adjointness of Indexed Sets

We have a triple adjunction

$$(\Sigma_{\phi} \dashv \phi^* \dashv \Pi_{\phi}): \quad \mathsf{ISets}(K) \xleftarrow{\Sigma_{\phi}} \bot \mathsf{ISets}(K').$$

PROOF 1.6.2 ➤ PROOF OF PROPOSITION 1.6.1

This follows from Kan Extensions, Item 2 of Proposition 1.1.6.

2 Fibred Sets

2.1 Foundations

Let K be a set.

DEFINITION 2.1.1 ► FIBRED SETS

A *K*-fibred set is a pair (X, ϕ) consisting of

- · The Underlying Set. A set X, called the **underlying set of** (X, ϕ) ;
- · The Fibration. A map of sets $\phi: X \to K$.

$$\phi^{-1}(x) \stackrel{\text{def}}{=} \mathsf{pt} \times_{[x], K, \phi} X, \qquad \qquad \downarrow^{-1} \qquad \downarrow^{\phi} \\ \mathsf{pt} \xrightarrow{[x]} K.$$

DEFINITION 2.1.2 ► MORPHISMS OF FIBRED SETS

A morphism of K-fibred sets from (X,ϕ) to (Y,ψ) is a function $f\colon X\to Y$ such that the diagram¹

commutes.

$$f_{x}^{*} : \phi^{-1}(x) \to \psi^{-1}(x)$$

given by the dashed map in the diagram

¹Further Terminology: The **fibre of** (X,ϕ) **over** $x\in K$ is the set $\phi^{-1}(x)$ (also written ϕ_x) defined by

¹Further Terminology: The **transport map associated to** f **at** $x \in K$ is the function

DEFINITION 2.1.3 ► THE CATEGORY OF K-FIBRED SETS

The **category of** K**-fibred sets** is the category FibSets(K) defined as the slice category Sets $_{K}$ of Sets over K:

$$\mathsf{FibSets}(K) \stackrel{\mathsf{def}}{=} \mathsf{Sets}_{/K}.$$

REMARK 2.1.4 ► UNWINDING DEFINITION 2.1.3

In detail FibSets(K) is the category where

- · Objects. The objects of FibSets(K) are pairs (X, ϕ) consisting of
 - · The Fibred Set. A set X;
 - · The Fibration. A function $\phi: X \to K$;
- · *Morphisms*. A morphism of FibSets(K) from (X, ϕ) to (Y, ψ) is a function $f: X \to Y$ making the diagram

commute;

· *Identities.* For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, the unit map

$$\mathbb{1}_{(X,\phi)}^{\mathsf{FibSets}(K)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathsf{FibSets}(K)}((X,\phi),(X,\phi))$$

of FibSets(K) at (X, ϕ) is given by

$$\operatorname{id}_{(X,\phi)}^{\operatorname{FibSets}(K)}\stackrel{\operatorname{def}}{=}\operatorname{id}_X$$
,

as witnessed by the commutativity of the diagram

in Sets:

- Composition. For each $\mathbf{X}=(X,\phi),\mathbf{Y}=(Y,\psi),\mathbf{Z}=(Z,\chi)\in \mathrm{Obj}(\mathrm{FibSets}(K)),$ the composition map

$$\circ^{\mathsf{FibSets}(K)}_{\mathbf{X},\mathbf{Y},\mathbf{Z}} \colon \mathsf{Hom}_{\mathsf{FibSets}(K)}(\mathbf{Y},\mathbf{Z}) \times \mathsf{Hom}_{\mathsf{FibSets}(K)}(\mathbf{X},\mathbf{Y}) \to \mathsf{Hom}_{\mathsf{FibSets}(K)}(\mathbf{X},\mathbf{Z})$$
 of $\mathsf{FibSets}(K)$ at $(\mathbf{X},\mathbf{Y},\mathbf{Z})$ is defined by

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{FibSets}(K)} \stackrel{\mathsf{def}}{=} \circ_{X,Y,Z}^{\mathsf{Sets}},$$

as witnessed by the commutativity of the diagram

in Sets.

DEFINITION 2.1.5 ► THE CATEGORY OF FIBRED SETS

The **category of fibred sets** is the category FibSets defined as the Grothendieck construction of the functor FibSets: Sets^{op} \rightarrow Cats of Proposition 2.2.4:

$$FibSets \stackrel{\text{def}}{=} \int^{Sets} FibSets.$$

REMARK 2.1.6 ► UNWINDING DEFINITION 2.1.5

In detail, the category of fibred sets is the category FibSets where

- · Objects. The objects of FibSets are pairs $(K, (X, \phi_X))$ consisting of
 - · The Base Set. A set K;
 - · The Fibred Set. A K-fibred set $\phi_X : X \to K$;
- · Morphisms. A morphism of FibSets from $(K, (X, \phi_X))$ to $(K', (Y, \phi_Y))$ is a pair (ϕ, f) consisting of
 - · The Base Map. A map of sets $\phi: K \to K'$;

· The Morphism of Fibred Sets. A morphism of K-fibred sets

$$f: (X, \phi_X) \to \phi_Y^*(Y),$$
 $X \xrightarrow{f} Y \times_{K'} K$

$$\downarrow pr_2$$
 $K;$

· *Identities.* For each $(K, X) \in Obj(FibSets)$, the unit map

$$\mathbb{F}^{\mathsf{FibSets}}_{(K,X)}$$
: pt $\to \mathsf{FibSets}((K,X),(K,X))$

of FibSets at (K, X) is defined by

$$id_{(K,X)}^{\mathsf{FibSets}} \stackrel{\mathsf{def}}{=} (id_K, \sim),$$

where \sim is the isomorphism $X \to X \times_K K$ as in the diagram

$$X \xrightarrow{\phi_X} X \times_K K$$

$$\downarrow^{\phi_X} pr_2$$

$$K:$$

· Composition. For each $\mathbf{X}=(K,X),\mathbf{Y}=(K',Y),\mathbf{Z}=(K'',Z)\in \mathrm{Obj}(\mathrm{FibSets})$, the composition map

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{FibSets}} \colon \mathsf{FibSets}(\mathbf{Y},\mathbf{Z}) \times \mathsf{FibSets}(\mathbf{X},\mathbf{Y}) \to \mathsf{FibSets}(\mathbf{X},\mathbf{Z})$$

of FibSets at (X, Y, Z) is defined by

$$g \circ \overset{\mathsf{FibSets}}{\mathbf{x}.\mathbf{y.z}} f \stackrel{\mathsf{def}}{=} (g \times_{K'} \mathsf{id}_K) \circ f$$

as in the diagram

for each $f \in \mathsf{FibSets}(\mathbf{X}, \mathbf{Y})$ and each $g \in \mathsf{FibSets}(\mathbf{Y}, \mathbf{Z})$.

2.2 Change of Base

Let $f: K \to K'$ be a function and let (X, ϕ) be a K'-fibred set.

DEFINITION 2.2.1 ► CHANGE OF BASE FOR FIBRED SETS

The **change of base of** (X, ϕ) **to** K is the K-fibred set $f^*(X)$ defined by

$$f^{*}(X) \stackrel{\text{def}}{=} (K \times_{K'} X, \operatorname{pr}_{1}), \qquad f^{*}(X) \stackrel{\operatorname{pr}_{2}}{\longrightarrow} X$$

$$\downarrow \phi$$

$$K \xrightarrow{f} K'.$$

PROPOSITION 2.2.2 ► FUNCTORIALITY OF CHANGE OF BASE

The assignment $X \mapsto f^*(X)$ defines a functor

$$f^*$$
: FibSets(K') \rightarrow FibSets(K),

where

· Action on Objects. For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K'))$, we have

$$f^*(X, \phi) \stackrel{\text{def}}{=} f^*(X);$$

· Action on Morphisms. For each $(X,\phi),(Y,\psi)\in \mathsf{Obj}(\mathsf{FibSets}(K'))$, the action on Hom-sets

$$f_{X,Y}^*$$
: $\mathsf{Hom}_{\mathsf{FibSets}(K')}(X,Y) \to \mathsf{Hom}_{\mathsf{FibSets}(K)}(f^*(X),f^*(Y))$

 $g: (X, \phi) \to (Y, \psi)$

of
$$f^*$$
 at $((X,\phi),(Y,\psi))$ is the map sending a morphism of K' -fibred sets

to the morphism of K-fibred sets given by the dashed morphism in the diagram

PROOF 2.2.3 ► PROOF OF PROPOSITION 2.2.2

Omitted.

Proposition 2.2.4 ► Functoriality of Categories of K-Fibred Sets

The assignment $K \mapsto \mathsf{FibSets}(K)$ defines a functor

FibSets: Sets^{op} \rightarrow Cats,

where

· Action on Objects. For each $K \in \text{Obj}(\mathsf{Sets})$, we have

$$[FibSets](K) \stackrel{\text{def}}{=} FibSets(K);$$

· Action on Morphisms. For each $K, K' \in \mathsf{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\mathsf{Sets}_{/(-)|K,K'} \colon \mathsf{Sets}^\mathsf{op}(K,K') \to \mathsf{Fun}(\mathsf{FibSets}(K),\mathsf{FibSets}(K'))$$

of $\mathsf{Sets}_{/(-)}$ at (K,K') is the map sending a map of $\mathsf{sets}\, f\colon K\to K'$ to the functor

$$\mathsf{Sets}_{/f} \colon \mathsf{Fib}\mathsf{Sets}(K') \to \mathsf{Fib}\mathsf{Sets}(K)$$

defined by

$$\operatorname{\mathsf{Sets}}_{/f} \stackrel{\mathsf{def}}{=} f^*.$$

PROOF 2.2.5 ► PROOF OF PROPOSITION 2.2.4

Omitted.

2.3 Dependent Sums

Let $f: K \to K'$ be a function and let (X, ϕ) be a K-fibred set.

DEFINITION 2.3.1 ► DEPENDENT SUMS FOR FIBRED SETS

The **dependent sum**¹ of (X, ϕ) is the K'-fibred set $\Sigma_f(X)^2$ defined by

$$\Sigma_f(X) \stackrel{\text{def}}{=} (\Sigma_f(X), \Sigma_f(\phi))$$
$$\stackrel{\text{def}}{=} (X, f \circ \phi).$$

 1 The name "dependent sum" comes from the fact that the fibre $\Sigma_f(\phi)^{-1}(x)$ of $\Sigma_f(X)$ at $x\in K'$ is given by

$$\Sigma_f(\phi)^{-1}(x) \cong \coprod_{y \in f^{-1}(x)} \phi^{-1}(y);$$

see Item 2 of Proposition 2.3.2.

² Further Notation: Also written $f_*(X)$.

PROPOSITION 2.3.2 ▶ PROPERTIES OF DEPENDENT SUMS OF FIBRED SETS

Let $f: K \to K'$ be a function.

1. Functoriality. The assignment $X \mapsto \Sigma_f(X)$ defines a functor

$$\Sigma_f : \mathsf{FibSets}(K) \to \mathsf{FibSets}(K'),$$

where

· Action on Objects. For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, we have

$$\Sigma_f(X, \phi) \stackrel{\text{def}}{=} (\Sigma_f(X), \Sigma_f(\phi));$$

· Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \mathsf{Obj}(\mathsf{FibSets}(K)),$ the action on Hom-sets

$$\Sigma_{f|X,Y}$$
: $\mathsf{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \mathsf{Hom}_{\mathsf{FibSets}(K)}(\Sigma_f(X),\Sigma_f(Y))$

of Σ_f at $((X,\phi),(Y,\psi))$ is the map sending a morphism of K-fibred sets

$$g: (X, \phi) \to (Y, \psi)$$

to the morphism of K'-fibred sets defined by

$$\Sigma_f(g) \stackrel{\text{def}}{=} g.$$

2. Interaction With Fibres. We have a bijection of sets

$$\Sigma_f(\phi)^{-1}(x) \cong \coprod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

PROOF 2.3.3 ▶ PROOF OF PROPOSITION 2.3.2

Item 1: Functoriality

Omitted.

Item 2: Interaction With Fibres

Indeed, we have

$$\Sigma_{f}(\phi)^{-1}(x) \stackrel{\text{def}}{=} \mathsf{pt} \times_{[x], K', f \circ \phi} X$$

$$\cong \{(a, y) \in X \times K \mid f(\phi(a)) = x\}$$

$$\cong \coprod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

2.4 Dependent Products

Let $f: K \to K'$ be a function and let (X, ϕ) be a K-fibred set.

DEFINITION 2.4.1 ► DEPENDENT PRODUCTS FOR FIBRED SETS

The **dependent product**¹ of (X, ϕ) is the K'-fibred set $\Pi_f(X)^2$ consisting of³

· The Underlying Set. The set $\Pi_f(X)$ defined by

$$\begin{split} \Pi_f(X) &\stackrel{\mathrm{def}}{=} \coprod_{x \in K'} \Gamma_{f^{-1}(x)}^{\phi} \left(\phi^{-1} \Big(f^{-1}(x) \Big) \right) \\ &\stackrel{\mathrm{def}}{=} \left\{ (x, h) \in \coprod_{x \in K'} \mathsf{Sets} \Big(f^{-1}(x), \phi^{-1} \Big(f^{-1}(x) \Big) \Big) \, \middle| \, \phi \circ h = \mathsf{id}_{f^{-1}(x)} \right\}; \end{split}$$

· The Fibration. The map of sets

$$\Pi_f(\phi) \colon \coprod_{x \in K'} \Gamma_{f^{-1}(x)}^{\phi} \left(\phi^{-1} \left(f^{-1}(x) \right) \right) \to K$$

defined by sending a map $h: f^{-1}(x) \to \phi^{-1}(f^{-1}(x))$ to its index $x \in K$.

$$\Pi_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y);$$

see Item 2 of Proposition 2.4.3.

 $^{^1}$ The name "dependent product" comes from the fact that the fibre $\Pi_f(\phi)^{-1}(x)$ of $\Pi_f(X)$ at $x\in K'$ is given by

² Further Notation: Also written $f_1(X)$.

³We can also define dependent products via the internal **Hom** in FibSets(K'):

$$\Pi_{f}(X,\phi) \stackrel{\text{def}}{=} \Big(K' \times_{\mathbf{Hom}_{\mathsf{FibSets}(K')}(f,f)} \underbrace{\mathbf{Hom}_{\mathsf{Sets}/K'}(f,f \circ \phi), \mathsf{pr}_{1}}_{f}\Big), \qquad \underset{pr_{1}}{\underset{pr_{1}}{\bigvee}} \xrightarrow{\mathsf{Pr}_{2}} \underbrace{\mathbf{Hom}_{\mathsf{Sets}/K'}(f,f \circ \phi)}_{f}$$

where the bottom map is defined by

$$I(x) \stackrel{\text{def}}{=} \mathrm{id}_{f^{-1}(x)}$$

for each $x \in K'$.

EXAMPLE 2.4.2 ► **EXAMPLES OF DEPENDENT PRODUCTS OF SETS**

Here are some examples of dependent products of sets.

1. Spaces of Sections. Let K=X, $K'=\operatorname{pt}$, and let $\phi\colon E\to X$ be a map of sets. We have a bijection of sets

$$\Pi_{!_X}(\phi) \cong \Gamma_X(\phi)$$

$$\cong \{ h \in \mathsf{Sets}(X, E) \mid \phi \circ h = \mathsf{id}_X \}.$$

2. Function Spaces. Let K = K' = pt. We have a bijection of sets

$$\mathsf{Sets}(X,Y) \cong \Pi_{!_Y}(!_Y^*(Y)).$$

PROPOSITION 2.4.3 ▶ PROPERTIES OF DEPENDENT PRODUCTS OF FIBRED SETS

Let $f: K \to K'$ be a function.

1. Functoriality. The assignment $X \mapsto \Pi_f(X)$ defines a functor

$$\Pi_f : \mathsf{FibSets}(K) \to \mathsf{FibSets}(K'),$$

where

· Action on Objects. For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, we have $\Pi_f(X, \phi) \stackrel{\mathsf{def}}{=} \Pi_f(X);$

· Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \mathsf{Obj}(\mathsf{FibSets}(K)),$ the action on Hom-sets

$$\Pi_{f|X,Y} \colon \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{FibSets}}(K)}(X,Y) \to \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{FibSets}}(K')} \left(\Pi_f(X), \Pi_f(Y) \right)$$

of Π_f at $((X,\phi),(Y,\psi))$ is the map sending a morphism of K-fibred sets

$$g: (X, \phi) \to (Y, \psi)$$

to the morphism of K'-fibred sets from

$$\Pi_f(X) \stackrel{\mathrm{def}}{=} \left\{ (x,h) \in \coprod_{x \in K'} \mathsf{Sets} \Big(f^{-1}(x), \phi^{-1} \Big(f^{-1}(x) \Big) \Big) \, \middle| \, \phi \circ h = \mathsf{id}_{f^{-1}(x)} \right\};$$

tο

$$\Pi_f(Y) \stackrel{\mathrm{def}}{=} \left\{ (x,h) \in \coprod_{x \in K'} \mathsf{Sets} \Big(f^{-1}(x), \psi^{-1} \Big(f^{-1}(x) \Big) \Big) \, \middle| \, \psi \circ h = \mathsf{id}_{f^{-1}(x)} \right\};$$

induced by the composition

$$\begin{split} \mathsf{Sets}\Big(f^{-1}(x),\phi^{-1}\Big(f^{-1}(x)\Big)\Big) &= \mathsf{Sets}\Big(f^{-1}(x),[\psi\circ g]^{-1}\Big(f^{-1}(x)\Big)\Big) \\ &= \mathsf{Sets}\Big(f^{-1}(x),g^{-1}\Big(\psi^{-1}\Big(f^{-1}(x)\Big)\Big)\Big) \\ &\stackrel{g_*}{\longrightarrow} \mathsf{Sets}\Big(f^{-1}(x),g\Big(g^{-1}\Big(\psi^{-1}\Big(f^{-1}(x)\Big)\Big)\Big)\Big) \\ &\stackrel{\iota_*}{\longrightarrow} \mathsf{Sets}\Big(f^{-1}(x),\psi^{-1}\Big(f^{-1}(x)\Big)\Big), \end{split}$$

where $\iota: g(g^{-1}(\psi^{-1}(f^{-1}(x)))) \hookrightarrow \psi^{-1}(f^{-1}(x))$ is the canonical inclusion.

2. Interaction With Fibres. We have a bijection of sets

$$\Pi_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

$$\begin{split} \psi \circ \left[\Pi_f(g) \right] (h) & \stackrel{\text{def}}{=} \psi \circ (g \circ h) \\ &= (\psi \circ g) \circ h \\ &= \phi \circ h \\ &= \operatorname{id}_{f^{-1}(x)}. \end{split}$$

¹Note that the section condition is satisfied: given $(x,h) \in \Pi_f(X)$, we have

2.5 Internal Homs 20

PROOF 2.4.4 ▶ PROOF OF PROPOSITION 2.4.3

Item 1: Functoriality

Omitted.

Item 2: Interaction With Fibres

Indeed, we have

$$\begin{split} \Pi_f(\phi)^{-1}(x) &\stackrel{\mathrm{def}}{=} \left\{ (y,h) \in \Pi_f(X) \, \middle| \, \left[\Pi_f(\phi) \right](h) = x \right\} \\ &\stackrel{\mathrm{def}}{=} \left\{ (y,h) \in \Pi_f(X) \, \middle| \, y = x \right\} \\ &\cong \left\{ h \in \mathsf{Sets} \Big(f^{-1}(x), \phi^{-1} \Big(f^{-1}(x) \Big) \Big) \, \middle| \, \phi \circ h = \mathsf{id}_{f^{-1}(x)} \right\} \\ &\cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y) \end{split}$$

for each $x \in K'$.

2.5 Internal Homs

Let K be a set and let (X, ϕ) and (Y, ψ) be K-fibred sets.

DEFINITION 2.5.1 ► INTERNAL HOM OF FIBRED SETS

The internal Hom of fibred sets from (X,ϕ) to (Y,ψ) is the fibred set $\operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y)$ consisting of

- The Underlying Set. The set $\operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y)$ defined by

$$\operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y) \stackrel{\text{def}}{=} \coprod_{x \in K} \mathsf{Sets}\Big(\phi^{-1}(x),\psi^{-1}(x)\Big);$$

· The Fibration. The map of sets1

$$\phi_{\operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y)} : \underbrace{\operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y)}_{\mathbb{L} \subseteq \mathbb{L}} \operatorname{Sets} \left(\phi^{-1}(x), \psi^{-1}(x)\right)$$

defined by sending a map $f: \phi^{-1}(x) \to \psi^{-1}(x)$ to its index $x \in K$.

$$\phi_{\mathsf{Hom}_{\mathsf{FibSets}(K)}(X,Y)|x} \cong \mathsf{Sets}\Big(\phi^{-1}(x),\psi^{-1}(x)\Big)$$

for each $x \in K$.

¹The fibres of the internal **Hom** of FibSets (K) are precisely the sets Sets $\Big(\phi^{-1}(x), \psi^{-1}(x)\Big)$, i.e. we have

2.6 Adjointness for Fibred Sets

Let $f: K \to K'$ be a map of sets.

PROPOSITION 2.6.1 ► ADJOINTNESS FOR FIBRED SETS

We have a triple adjunction

$$(\Sigma_f\dashv f^*\dashv \Pi_f)\colon \ \mathsf{FibSets}(K) \overset{\Sigma_f}{\longleftarrow} \mathsf{FibSets}(K').$$

PROOF 2.6.2 ▶ PROOF OF PROPOSITION 2.6.1

Omitted.

3 Un/Straightening for Indexed and Fibred Sets

3.1 Straightening for Fibred Sets

Let K be a set and let (X, ϕ) be a K-fibred set.

DEFINITION 3.1.1 ► THE STRAIGHTENING OF A FIBRED SET

The **straightening of** (X, ϕ) is the *K*-indexed set

$$\operatorname{St}_K(X,\phi)\colon K_{\operatorname{disc}}\to\operatorname{Sets}$$

defined by

$$\operatorname{St}_K(X,\phi)_x \stackrel{\text{def}}{=} \phi^{-1}(x)$$

for each $x \in K$.

PROPOSITION 3.1.2 ▶ PROPERTIES OF STRAIGHTENING FOR FIBRED SETS

Let *K* be a set.

1. Functoriality. The assignment $(X, \phi) \mapsto \mathsf{St}_K(X, \phi)$ defines a functor

$$\mathsf{St}_K \colon \mathsf{Fib}\mathsf{Sets}(K) \to \mathsf{ISets}(K)$$

· Action on Objects. For each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$, we have

$$[\operatorname{St}_K](X,\phi) \stackrel{\text{def}}{=} \operatorname{St}_K(X,\phi);$$

· Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \mathsf{Obj}(\mathsf{FibSets}(K)),$ the action on Hom-sets

$$\mathsf{St}_{K|X,Y} \colon \mathsf{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \mathsf{Hom}_{\mathsf{ISets}(K)}(\mathsf{St}_K(X),\mathsf{St}_K(Y))$$

of St_K at (X, Y) is given by sending a morphism

$$f: (X, \phi) \to (Y, \psi)$$

of K-fibred sets to the morphism

$$\operatorname{St}_K(f) \colon \operatorname{St}_K(X, \phi) \to \operatorname{St}_K(Y, \psi)$$

of K-indexed sets defined by

$$\operatorname{St}_K(f) \stackrel{\text{def}}{=} \left\{ f_x^* \right\}_{x \in K},$$

where f_x^* is the transport map associated to f at $x \in K$ of Definition 2.1.2.

2. Interaction With Change of Base/Indexing. Let $f\colon K\to K'$ be a map of sets. The diagram

$$\mathsf{FibSets}(K') \xrightarrow{f^*} \mathsf{FibSets}(K)$$

$$\mathsf{St}_{K'} \downarrow \qquad \qquad \qquad \mathsf{St}_{K}$$

$$\mathsf{ISets}(K') \xrightarrow{f^*} \mathsf{ISets}(K)$$

commutes.

3. Interaction With Dependent Sums. Let $f\colon K\to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{FibSets}(K) & \xrightarrow{\Sigma_f} & \mathsf{FibSets}(K') \\ & & & & & & \downarrow \\ \mathsf{St}_K & & & & \downarrow \\ \mathsf{St}_{K'} & & & & \downarrow \\ \mathsf{ISets}(K) & \xrightarrow{\Sigma_f} & \mathsf{ISets}(K') \end{array}$$

commutes.

4. Interaction With Dependent Products. Let $f\colon K\to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{Sets}_{/K} & \stackrel{\Pi_f}{\longrightarrow} & \mathsf{FibSets}(K') \\ \\ \mathsf{St}_K & & & & & \mathsf{St}_{K'} \\ \\ \mathsf{ISets}(K) & \stackrel{\Pi_f}{\longrightarrow} & \mathsf{ISets}(K') \end{array}$$

commutes.

PROOF 3.1.3 ▶ PROOF OF PROPOSITION 3.1.2

Item 1: Functoriality

Omitted.

Item 2: Interaction With Change of Base/Indexing

Indeed, we have

$$\operatorname{St}_{K}(f^{*}(X,\phi))_{x} \stackrel{\text{def}}{=} \operatorname{St}_{K}(K \times_{K'} X)_{x}$$

$$\stackrel{\text{def}}{=} \left(\operatorname{pr}_{1}^{K \times_{K'} X}\right)^{-1}(x)$$

$$= \left\{(k,y) \in K \times_{K'} X \middle| \operatorname{pr}_{1}^{K \times_{K'} X}(k,y) = x\right\}$$

$$= \left\{(k,y) \in K \times_{K'} X \middle| k = x\right\}$$

$$= \left\{(k,y) \in K \times X \middle| k = x \text{ and } f(k) = \phi(y)\right\}$$

$$\stackrel{\text{def}}{=} \left\{y \in X \middle| \phi(y) = f(x)\right\}$$

$$\stackrel{\text{def}}{=} f^{*}\left(\phi^{-1}(x)\right)$$

$$\stackrel{\text{def}}{=} f^{*}\left(\operatorname{St}_{K'}(X,\phi)_{x}\right)$$

for each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K'))$ and each $x \in K$, and similarly for morphisms.

Item 3: Interaction With Dependent Sums

Indeed, we have

$$\mathsf{St}_{K'} (\Sigma_f (X, \phi))_x \stackrel{\mathsf{def}}{=} \Sigma_f (\phi)^{-1} (x)$$

$$\cong \coprod_{y \in X} \phi^{-1}(y)$$

$$f(y) = x$$

$$\cong \Sigma_f \left(\phi^{-1}(x) \right)$$

$$\stackrel{\text{def}}{=} \Sigma_f \left(\mathsf{St}_K(X, \phi)_x \right)$$

for each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$ and each $x \in K'$, where we have used Item 2 of Proposition 2.3.2 for the first bijection, and similarly for morphisms.

Item 4: Interaction With Dependent Products

Indeed, we have

$$\mathsf{St}_{K'} \big(\mathsf{\Pi}_f(X, \phi) \big)_x \stackrel{\text{def}}{=} \mathsf{\Pi}_f(\phi)^{-1}(x)$$

$$\cong \prod_{\substack{y \in X \\ f(y) = x}} \phi^{-1}(y)$$

$$\cong \mathsf{\Pi}_f \Big(\phi^{-1}(x) \Big)$$

$$\stackrel{\text{def}}{=} \mathsf{\Pi}_f \big(\mathsf{St}_K(X, \phi)_x \big)_x$$

for each $(X, \phi) \in \mathsf{Obj}(\mathsf{FibSets}(K))$ and each $x \in K'$, where we have used Item 2 of Proposition 2.4.3 for the first bijection, and similarly for morphisms.

3.2 Unstraightening for Indexed Sets

Let K be a set and let X be a K-indexed set.

DEFINITION 3.2.1 ► THE UNSTRAIGHTENING OF AN INDEXED SET

The **unstraightening of** X is the K-fibred set

$$\phi_{\mathsf{Un}_K} \colon \mathsf{Un}_K(X) \to K$$

consisting of

· The Underlying Set. The set $Un_K(X)$ defined by

$$\mathsf{Un}_K(X) \stackrel{\mathrm{def}}{=} \coprod_{x \in K} X_x;$$

· The Fibration. The map of sets

$$\phi_{\mathsf{Un}_K} \colon \mathsf{Un}_K(X) \to K$$

defined by sending an element of $\coprod_{x \in K} X_x$ to its index in K.

Proposition 3.2.2 ▶ Properties of Unstraightening for Indexed Sets

Let *K* be a set.

1. Functoriality. The assignment $X \mapsto Un_K(X)$ defines a functor

$$\mathsf{Un}_K \colon \mathsf{ISets}(K) \to \mathsf{FibSets}(K)$$

· Action on Objects. For each $X \in \mathsf{Obj}(\mathsf{ISets}(K))$, we have

$$[\mathsf{Un}_K](X) \stackrel{\mathsf{def}}{=} \mathsf{Un}_K(X);$$

· Action on Morphisms. For each $X,Y\in \mathsf{Obj}(\mathsf{ISets}(K))$, the action on Hom-sets

$$\mathsf{Un}_{K|X,Y}\colon \mathsf{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \mathsf{Hom}_{\mathsf{FibSets}(K)}(\mathsf{Un}_K(X),\mathsf{Un}_K(Y))$$

of Un_K at (X,Y) is defined by

$$\mathsf{Un}_{K|X,Y}(f) \stackrel{\mathsf{def}}{=} \coprod_{x \in K} f_x^*.$$

2. Interaction With Fibres. We have a bijection of sets

$$\phi_{\mathsf{Un}_K}^{-1}(x) \cong X_x$$

for each $x \in K$.

3. As a Pullback. We have a bijection of sets

$$\mathsf{Un}_K(X) \cong K_{\mathsf{disc}} \times_{\mathsf{Sets}} \mathsf{Sets}_*, \qquad \bigvee^{\mathsf{J}} \qquad \bigvee_{\begin{subarray}{c} \mathsf{K}_{\mathsf{disc}} \end{subarray}} \mathsf{Sets}_*$$

4. As a Colimit. We have a bijection of sets

$$\mathsf{Un}_K(X) \cong \mathsf{colim}(X).$$

5. Interaction With Change of Indexing/Base. Let $f\colon K\to K'$ be a map of sets. The diagram

$$|\mathsf{Sets}(K') \xrightarrow{f^*} |\mathsf{Sets}(K)|$$

$$|\mathsf{Un}_{K'}| \qquad \qquad |\mathsf{Un}_{K}|$$

$$\mathsf{FibSets}(K') \xrightarrow{f^*} |\mathsf{FibSets}(K)|$$

commutes.

6. Interaction With Dependent Sums. Let $f: K \to K'$ be a map of sets. The diagram

$$|\mathsf{Sets}(K) \xrightarrow{\Sigma_f} |\mathsf{Sets}(K')|$$

$$|\mathsf{Un}_K| \qquad \qquad \mathsf{Un}_{K'}$$

$$|\mathsf{FibSets}(K) \xrightarrow{\Sigma_f} |\mathsf{FibSets}(K')|$$

commutes.

7. Interaction With Dependent Products. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{ISets}(K) & \xrightarrow{\Pi_f} & \mathsf{ISets}(K') \\ & \cup_{\mathsf{N}_K} & & & \bigcup_{\mathsf{N}_{K'}} \\ \mathsf{FibSets}(K) & \xrightarrow{\Pi_f} & \mathsf{FibSets}(K') \end{array}$$

commutes.

PROOF 3.2.3 ▶ PROOF OF PROPOSITION 3.2.2

Item 1: Functoriality

Omitted.

Item 2: Interaction With Fibres

Omitted.

Item 3: As a Pullback

Omitted.

Item 4: As a Colimit

Clear.

Item 5: Interaction With Change of Indexing/Base

Indeed, we have

$$\begin{aligned} \mathsf{Un}_K(f^*(X)) &\stackrel{\mathrm{def}}{=} \mathsf{Un}_K(X \circ f) \\ &\stackrel{\mathrm{def}}{=} \coprod_{x \in K} X_{f(x)} \\ &\cong \left\{ (x, (y, a)) \in K \times \coprod_{y \in K'} X_y \,\middle|\, f(x) = y \right\} \\ &\cong K \times_{K'} \coprod_{y \in K'} X_y \\ &\stackrel{\mathrm{def}}{=} K \times_{K'} \mathsf{Un}_{K'}(X) \\ &\stackrel{\mathrm{def}}{=} f^*(\mathsf{Un}_{K'}(X)) \end{aligned}$$

for each $X \in \operatorname{Obj}(\operatorname{ISets}(K'))$. Similarly, it can be shown that we also have $\operatorname{Un}_K(f^*(\phi)) = f^*(\operatorname{Un}_{K'}(\phi))$ and that $\operatorname{Un}_K \circ f^* = f^* \circ \operatorname{Un}_{K'}$ also holds on morphisms.

Item 6: Interaction With Dependent Sums

Indeed, we have

$$\begin{aligned} \mathsf{Un}_{K'}\big(\Sigma_f(X)\big) &\stackrel{\mathrm{def}}{=} \coprod_{x \in K'} \Sigma_f(X)_x \\ &\cong \coprod_{x \in K'} \coprod_{y \in f^{-1}(x)} X_y \\ &\cong \coprod_{y \in K} X_y \\ &\cong \mathsf{Un}_K(X) \\ &\stackrel{\mathrm{def}}{=} \Sigma_f(\mathsf{Un}_K(X)) \end{aligned}$$

for each $X \in \operatorname{Obj}(\operatorname{ISets}(K))$, where we have used Item 2 of Proposition 2.3.2 for the first bijection. Similarly, it can be shown that we also have $\operatorname{Un}_{K'}(\Sigma_f(\phi)) = \Sigma_f(\phi_{\operatorname{Un}_K})$ and that $\operatorname{Un}_{K'} \circ \Sigma_f = \Sigma_f \circ \operatorname{Un}_K$ also holds on morphisms.

Item 7: Interaction With Dependent Products

Indeed, we have

$$\begin{split} \operatorname{Un}_{K'} \Big(\Pi_f(X) \Big) & \stackrel{\mathrm{def}}{=} \coprod_{x \in K'} \Pi_f(X)_x \\ & \cong \coprod_{x \in K'} \prod_{y \in f^{-1}(x)} X_y \\ & \cong \left\{ (x, h) \in \coprod_{x \in K'} \operatorname{Sets} \Big(f^{-1}(x), \phi_{\operatorname{Un}_K}^{-1} \Big(f^{-1}(x) \Big) \Big) \, \middle| \, \phi \circ h = \operatorname{id}_{f^{-1}(x)} \right\} \\ & \stackrel{\mathrm{def}}{=} \Pi_f \Big(\coprod_{y \in K} X_y \Big) \\ & \stackrel{\mathrm{def}}{=} \Pi_f (\operatorname{Un}_K(X)) \end{split}$$

for each $X \in \operatorname{Obj}(\operatorname{ISets}(K))$, where we have used Item 2 of Proposition 2.4.3 for the first bijection. Similarly, it can be shown that we also have $\operatorname{Un}_{K'}(\Pi_f(\phi)) = \Pi_f(\phi_{\operatorname{Un}_K})$ and that $\operatorname{Un}_{K'} \circ \Pi_f = \Pi_f \circ \operatorname{Un}_K$ also holds on morphisms.

3.3 The Un/Straightening Equivalence

THEOREM 3.3.1 ► UN/STRAIGHTENING FOR INDEXED AND FIBRED SETS

We have an isomorphism of categories

$$(\operatorname{St}_K \dashv \operatorname{Un}_K)$$
: $\operatorname{FibSets}(K) \underbrace{\overset{\operatorname{St}_K}{\bigcup_{\operatorname{Un}_K}}} \operatorname{ISets}(K)$.

Proof 3.3.2 ▶ Proof of Theorem 3.3.1

Omitted.

Appendices

A Miscellany

A.1 Other Kinds of Un/Straightening

REMARK A.1.1 ► OTHER KINDS OF UN/STRAIGHTENING

There are also other kinds of un/straightening for sets, where Sets is replaced by **Rel** or Span:

· Un/Straightening With **Rel**, I. We have an isomorphism of sets

$$Rel(A, B) \cong Sets(B \times A, \{true, false\}).$$

· Un/Straightening With **Rel**, II. We have an equivalence of categories

$$\mathsf{LaxFun}(K_{\mathsf{disc}}, \mathbf{Rel}) \overset{\mathrm{eq.}}{\cong} \mathsf{Cats}^{\mathsf{fth}}_{/K_{\mathsf{disc}}},$$

where $\mathsf{Cats}^{\mathsf{fth}}_{/K_{\mathsf{disc}}}$ is the full subcategory of $\mathsf{Cats}_{/K_{\mathsf{disc}}}$ spanned by the faithful functors.

· Un/Straightening With Span, I. We have an isomorphism of sets

$$\mathsf{Span}(A,B) \cong \mathsf{Sets}(A \times B, \mathbb{N} \cup \{\infty\}).$$

· Un/Straightening With Span, II. We have an equivalence of categories

$$\mathsf{LaxFun}(K_{\mathsf{disc}},\mathsf{Span}) \stackrel{\mathsf{eq.}}{\cong} \mathsf{Cats}_{/K_{\mathsf{disc}}}.$$

B Other Chapters

Logic and Model Theory

- 1. Logic
- 2. Model Theory

Type Theory

- 3. Type Theory
- 4. Homotopy Type Theory

Set Theory

- 5. Sets
- 6. Constructions With Sets
- 7. Indexed and Fibred Sets
- 8. Relations
- 9. Posets

Category Theory

- 10. Categories
- 11. Constructions With Categories

- 12. Limits and Colimits
- 13. Ends and Coends
- 14. Kan Extensions
- 15. Fibred Categories
- 16. Weighted Category Theory

Categorical Hochschild Co/Homology

- Abelian Categorical Hochschild Co/Homology
- Categorical Hochschild Co/Homology

Monoidal Categories

- 19. Monoidal Categories
- 20. Monoidal Fibrations
- 21. Modules Over Monoidal Categories
- 22. Monoidal Limits and Colimits
- 23. Monoids in Monoidal Categories
- 24. Modules in Monoidal Categories
- 25. Skew Monoidal Categories
- 26. Promonoidal Categories
- 27. 2-Groups
- 28. Duoidal Categories
- 29. Semiring Categories

Categorical Algebra

- 30. Monads
- 31. Algebraic Theories
- 32. Coloured Operads
- 33. Enriched Coloured Operads

Enriched Category Theory

- 34. Enriched Categories
- 35. Enriched Ends and Kan Extensions
- 36. Fibred Enriched Categories
- Weighted Enriched Category Theory

Internal Category Theory

38. Internal Categories

- 39. Internal Fibrations
- 40. Locally Internal Categories
- 41. Non-Cartesian Internal Categories
- 42. Enriched-Internal Categories

Homological Algebra

- 43. Abelian Categories
- 44. Triangulated Categories
- 45. Derived Categories

Categorical Logic

- 46. Categorical Logic
- 47. Elementary Topos Theory
- 48. Non-Cartesian Topos Theory

Sites, Sheaves, and Stacks

- 49. Sites
- 50. Modules on Sites
- 51. Topos Theory
- 52. Cohomology in a Topos
- 53. Stacks

Complements on Sheaves

54. Sheaves of Monoids

Bicategories

- 55. Bicategories
- 56. Biadjunctions and Pseudomonads
- 57. Bilimits and Bicolimits
- 58. Biends and Bicoends
- 59. Fibred Bicategories
- 60. Monoidal Bicategories
- 61. Pseudomonoids in Monoidal Bicategories

Higher Category Theory

- 62. Tricategories
- 63. Gray Monoids and Gray Categories
- 64. Double Categories
- 65. Formal Category Theory
- 66. Enriched Bicategories

67. Elementary 2-Topos Theory

Simplicial Stuff

- 68. The Simplex Category
- 69. Simplicial Objects
- 70. Cosimplicial Objects
- 71. Bisimplicial Objects
- 72. Simplicial Homotopy Theory
- 73. Cosimplicial Homotopy Theory

Cyclic Stuff

- 74. The Cycle Category
- 75. Cyclic Objects

Cubical Stuff

- 76. The Cube Category
- 77. Cubical Objects
- 78. Cubical Homotopy Theory

Globular Stuff

- 79. The Globe Category
- 80. Globular Objects

Cellular Stuff

- 81. The Cell Category
- 82. Cellular Objects

Homotopical Algebra

- 83. Model Categories
- 84. Examples of Model Categories
- 85. Homotopy Limits and Colimits
- 86. Homotopy Ends and Coends
- 87. Derivators

Topological and Simplicial Categories

- 88. Topologically Enriched Categories
- 89. Simplicial Categories
- 90. Topological Categories

Quasicategories

- 91. Quasicategories
- 92. Constructions With Quasicategories
- 93. Fibrations of Quasicategories
- Limits and Colimits in Quasicategories
- 95. Ends and Coends in Quasicategories
- 96. Weighted ∞-Category Theory
- 97. ∞-Topos Theory

Cubical Quasicategories

98. Cubical Quasicategories

Complete Segal Spaces

99. Complete Segal Spaces

∞ -Cosmoi

100. ∞-Cosmoi

Enriched and Internal ∞-Category Theory

- 101. Internal ∞-Categories
- 102. Enriched ∞-Categories
- $(\infty, 2)$ -Categories
- 103. $(\infty, 2)$ -Categories
- 104. 2-Quasicategories
- (∞, n) -Categories
- 105. Complicial Sets
- 106. Comical Sets

Double ∞-Categories

107. Double ∞-Categories

Higher Algebra

- 108. Differential Graded Categories
- 109. Stable ∞-Categories
- 110. ∞-Operads
- 111. Monoidal ∞-Categories

- 112. Monoids in Symmetric Monoidal ∞-Categories
- 113. Modules in Symmetric Monoidal ∞-Categories
- 114. Dendroidal Sets

Derived Algebraic Geometry

- 115. Derived Algebraic Geometry
- 116. Spectral Algebraic Geometry

Condensed Mathematics

117. Condensed Mathematics

Monoids

- 118. Monoids
- 119. Constructions With Monoids
- 120. Tensor Products of Monoids
- 121. Indexed and Fibred Monoids
- 122. Indexed and Fibred Commutative Monoids
- 123. Monoids With Zero

Groups

- 124. Groups
- 125. Constructions With Groups

Algebra

- 126. Rings
- 127. Fields
- 128. Linear Algebra
- 129. Modules
- 130. Algebras

Near-Semirings and Near-Rings

- 131. Near-Semirings
- 132. Near-Rings

Semirings

- 133. Semirings
- 134. Commutative Semirings

- 135. Semifields
- 136. Semimodules

Hyper-Algebra

- 137. Hypermonoids
- 138. Hypersemirings and Hyperrings
- 139. Quantales

Commutative Algebra

140. Commutative Rings

More Algebra

- 141. Plethories
- 142. Graded Algebras
- 143. Differential Graded Algebras
- 144. Representation Theory
- 145. Coalgebra
- 146. Topological Algebra

Real Analysis, Measure Theory, and Probability

- 147. Real Analysis
- 148. Measure Theory
- 149. Probability Theory
- 150. Stochastic Analysis

Complex Analysis

- 151. Complex Analysis
- 152. Several Complex Variables

Functional Analysis

- 153. Topological Vector Spaces
- 154. Hilbert Spaces
- 155. Banach Spaces
- 156. Banach Algebras
- 157. Distributions

Harmonic Analysis

158. Harmonic Analysis on \mathbb{R}

Differential Equations

159. Ordinary Differential Equations

160. Partial Differential Equations

p-Adic Analysis

- 161. p-Adic Numbers
- 162. p-Adic Analysis
- 163. p-Adic Complex Analysis
- 164. p-Adic Harmonic Analysis
- 165. p-Adic Functional Analysis
- 166. p-Adic Ordinary Differential Equations
- 167. p-Adic Partial Differential Equations

Number Theory

- 168. Elementary Number Theory
- 169. Analytic Number Theory
- 170. Algebraic Number Theory
- 171. Class Field Theory
- 172. Elliptic Curves
- 173. Modular Forms
- 174. Automorphic Forms
- 175. Arakelov Geometry
- 176. Geometrisation of the Local Langlands Correspondence
- 177. Arithmetic Differential Geometry

Topology

- 178. Topological Spaces
- 179. Constructions With Topological Spaces
- 180. Conditions on Topological Spaces
- 181. Sheaves on Topological Spaces
- 182. Topological Stacks
- 183. Locales
- 184. Metric Spaces

Differential Geometry

- 184. Topological and Smooth Manifolds
- 185. Fibre Bundles, Vector Bundles, and Principal Bundles

- 186. Differential Forms, de Rham Cohomology, and Integration
- 187. Riemannian Geometry
- 188. Complex Geometry
- 189. Spin Geometry
- 190. Symplectic Geometry
- 191. Contact Geometry
- 192. Poisson Geometry
- 193. Orbifolds
- 194. Smooth Stacks
- 195. Diffeological Spaces

Lie Groups and Lie Algebras

- 196. Lie Groups
- 197. Lie Algebras
- 198. Kac-Moody Groups
- 199. Kac-Moody Algebras

Homotopy Theory

- 200. Algebraic Topology
- 201. Spectral Sequences
- 202. Topological K-Theory
- 203. Operator K-Theory
- 204. Localisation and Completion of Spaces
- 205. Rational Homotopy Theory
- 206. *p*-Adic Homotopy Theory
- 207. Stable Homotopy Theory
- 208. Chromatic Homotopy Theory
- 209. Topological Modular Forms
- 210. Goodwillie Calculus
- 211. Equivariant Homotopy Theory

Schemes

- 212. Schemes
- 213. Morphisms of Schemes
- 214. Projective Geometry
- 215. Formal Schemes

Morphisms of Schemes

216.	Finiteness Conditions on Mor-	241. De Rham Cohomology		
	phisms of Schemes	242. Derived de Rham Cohomology		
217.	Étale Morphisms	243. Infinitesimal Cohomology		
Topic	s in Scheme Theory	244. Crystalline Cohomology		
-	•	245. Syntomic Cohomology		
	Varieties	246. The de Rham–Witt Complex		
	Algebraic Vector Bundles	247. <i>p</i> -Divisible Groups		
220.	Divisors	248. Monsky–Washnitzer Cohomology		
Funda	amental Groups of Schemes	249. Rigid Cohomology		
224	The Étale Tanalogy	250. Prismatic Cohomology		
	The Étale Topology The Étale Fundamental Group	Algebraic K -Theory		
	Tannakian Fundamental Groups	251 Tapalogical Cyclic Hamalogy		
	Nori's Fundamental Group Scheme	251. Topological Cyclic Homology		
	and the second s	252. Topological Hochschild Homology253. Topological André–Quillen Homo-		
225.	Étale Homotopy of Schemes	logy		
Coho	mology of Schemes	254. Algebraic <i>K-</i> Theory		
226.	Local Cohomology	255. Algebraic <i>K</i> -Theory of Schemes		
	Dualising Complexes			
	Grothendieck Duality	Intersection Theory		
	·	256. Chow Homology		
Group	Schemes	257. Intersection Theory		
229.	Flat Topologies on Schemes	Monodromy Groups in Algebraic Geome-		
230.	Group Schemes	try		
231.	Reductive Group Schemes	258. Monodromy Groups		
232.	Abelian Varieties			
233.	Cartier Duality	Algebraic Spaces		
234.	Formal Groups	259. Algebraic Spaces		
Defor	rmation Theory	260. Morphisms of Algebraic Spaces		
	•	261. Formal Algebraic Spaces		
	Deformation Theory	Dallama Manusfaud Charles		
236.	The Cotangent Complex	Deligne–Mumford Stacks		
Étale	Cohomology	262. Deligne–Mumford Stacks		
237.	Étale Cohomology	Algebraic Stacks		
238.	ℓ-Adic Cohomology	263. Algebraic Stacks		
239.	Pro-Étale Cohomology	264. Morphisms of Algebraic Stacks		
Crysta	alline Cohomology	Moduli Theory		
240	Hochschild Cohomology	265. Moduli Stacks		

Motives

- 266. Tannakian Categories
- 267. Vanishing Cycles
- 268. Motives
- 269. Motivic Cohomology
- 270. Motivic Homotopy Theory

Logarithmic Algebraic Geometry

271. Log Schemes

Analytic Geometry

- 272. Real Algebraic Geometry
- 273. Complex-Analytic Spaces
- 274. Rigid Spaces
- 275. Berkovich Spaces
- 276. Adic Spaces
- 277. Perfectoid Spaces

p-Adic Hodge Theory

- 278. Fontaine's Period Rings
- 279. The *p*-Adic Simpson Correspondence

Algebraic Geometry Miscellanea

- 280. Tropical Geometry
- 281. \mathbb{F}_1 -Geometry

Physics

- 282. Classical Mechanics
- 283. Electromagnetism
- 284. Special Relativity
- 285. Statistical Mechanics
- 286. General Relativity
- 287. Quantum Mechanics
- 288. Quantum Field Theory
- 289. Supersymmetry
- 290. String Theory
- 291. The AdS/CFT Correspondence

Miscellany

- 292. To Be Refactored
- 293. Miscellanea
- 294. Questions