PHYS598 - Data Analysis - March 14, 2019

Reading the data in the structure-specific CSV file as an R "dataframe"

```
DVH.CTV7000 <- read.csv("CTV7000.csv", header = TRUE, row.names = NULL)

DVH.CTV5940 <- read.csv("CTV5940.csv", header = TRUE, row.names = NULL)

DVH.Brainstem <- read.csv("Brainstem.csv", header = TRUE, row.names = NULL)

DVH.BrainstemMarg <- read.csv("BrainstemMarg.csv", header = TRUE, row.names = NULL)

DVH.ParotidLT <- read.csv("ParotidLT.csv", header = TRUE, row.names = NULL)

DVH.ParotidRT <- read.csv("ParotidRT.csv", header = TRUE, row.names = NULL)

DVH.Pharynx <- read.csv("Pharynx.csv", header = TRUE, row.names = NULL)

DVH.SpinalCord <- read.csv("SpinalCord.csv", header = TRUE, row.names = NULL)

DVH.SpinalCordMarg <- read.csv("SpinalCordMarg.csv", header = TRUE, row.names = NULL)

DVH.SubmandLT <- read.csv("SubmandLT.csv", header = TRUE, row.names = NULL)

DVH.SubmandRT <- read.csv("SubmandRT.csv", header = TRUE, row.names = NULL)
```

Most important structures with specific dose parameters

```
CTV7000_D95 = DVH.CTV7000[,c(1,3,98)]
CTV7000_D99 = DVH.CTV7000[,c(1,3,102)]
CTV7000_D20 = DVH.CTV7000[,c(1,3,23)]
CTV5940_D99 = DVH.CTV5940[,c(1,3,102)]
CTV5940_D95 = DVH.CTV5940[,c(1,3,98)]
CTV5940_D20 = DVH.CTV5940[,c(1,3,23)]
Brainstem_D1 = DVH.Brainstem[,c(1,3,4)]
ParotidLT_D50 = DVH.ParotidLT[,c(1,3,53)]
ParotidRT_D50 = DVH.ParotidRT[,c(1,3,53)]
SpinalCord_D1 = DVH.SpinalCord[,c(1,3,4)]
```

Obtaining the row numbers with new patient

```
#Deleting NA entries
CTV7000_D99 <- CTV7000_D99[complete.cases(CTV7000_D99),]
CTV5940_D99 <- CTV5940_D99[complete.cases(CTV5940_D99),]
Brainstem_D1 <- Brainstem_D1[complete.cases(Brainstem_D1),]
ParotidLT_D50 <- ParotidLT_D50[complete.cases(ParotidLT_D50),]
ParotidRT_D50 <- ParotidRT_D50[complete.cases(ParotidRT_D50),]
SpinalCord_D1 <- SpinalCord_D1[complete.cases(SpinalCord_D1),]

CTV7000_ptrows<- c(1);
for (i in 1:(length(CTV7000_D99[,1])-1))
{
    if (!(CTV7000_D99[i,1] == CTV7000_D99[i+1,1]))
        {CTV7000_ptrows <- c(CTV7000_ptrows,i+1)}
}

CTV5940_ptrows<- c(1);</pre>
```

```
for (i in 1:(length(CTV5940_D99[,1])-1))
  if (!(CTV5940 D99[i,1] == CTV5940 D99[i+1,1]))
    CTV5940_ptrows <- c(CTV5940_ptrows,i+1)}</pre>
}
Brainstem_ptrows<- c(1);</pre>
for (i in 1:(length(Brainstem_D1[,1])-1))
  if (!(Brainstem_D1[i,1] == Brainstem_D1[i+1,1]))
    Brainstem_ptrows <- c(Brainstem_ptrows,i+1)}</pre>
}
ParotidLT_ptrows<- c(1);</pre>
for (i in 1:(length(ParotidLT D50[,1])-1))
{
  if (!(ParotidLT_D50[i,1] == ParotidLT_D50[i+1,1]))
    ParotidLT_ptrows <- c(ParotidLT_ptrows,i+1)}</pre>
}
ParotidRT_ptrows<- c(1);</pre>
for (i in 1:(length(ParotidRT D50[,1])-1))
  if (!(ParotidRT D50[i,1] == ParotidRT D50[i+1,1]))
    ParotidRT_ptrows <- c(ParotidRT_ptrows,i+1)}</pre>
}
SpinalCord_ptrows<- c(1);</pre>
for (i in 1:(length(SpinalCord_D1[,1])-1))
  if (!(SpinalCord_D1[i,1] == SpinalCord_D1[i+1,1]))
    SpinalCord_ptrows <- c(SpinalCord_ptrows,i+1)}</pre>
}
# Max function for tables with NA
my.max <- function(x) ifelse( !all(is.na(x)), max(x, na.rm=T), NA)</pre>
my.min <- function(x) ifelse( !all(is.na(x)), min(x, na.rm=T), NA)</pre>
library("RColorBrewer")
```

```
## Warning: package 'RColorBrewer' was built under R version 3.5.2
#Initializing a color vector to help us color code our graphs for each
patient
color = brewer.pal(n = 10,name = "Spectral")
color = colorRampPalette(color)(60)
```

Plotting CTV7000 D95% in time

```
plot(NULL,xlab="Fraction Number (/33)", ylab="CTV7000 D95%",xlim =
c(0,33),ylim = c(my.min(CTV7000_D95$D95.Gy) - 2,my.max(CTV7000_D95$D95.Gy) +
2))

#Iterating through the patients and plotting trends in D95% with fraction
number
for (i in 1:(length(CTV7000_ptrows)-1) )
{
    rm(vec)
    ind1 = CTV7000_ptrows[i]
    ind2 = CTV7000_ptrows[i+1]-1
    vec <- data.frame(Fraction.Number = CTV7000_D95[c(ind1:ind2),2], D95.Gy =
CTV7000_D95[c(ind1:ind2),3])
    points(vec$Fraction.Number,vec$D95.Gy,pch = 19, col = color[i])
    lines(vec$Fraction.Number,vec$D95.Gy,pch = 19, col = color[i])
}

## Warning in rm(vec): object 'vec' not found</pre>
```


more or less consistent

Brainstem D1%

```
plot(NULL,xlab="Fraction Number (/32)", ylab="Brainstem D1%",xlim =
c(0,32),ylim = c(my.min(Brainstem_D1$D1.Gy) - 2,my.max(Brainstem_D1$D1.Gy) +
2))

#Iterating through the patients and plotting trends with fraction number
for (i in 1:(length(Brainstem_ptrows)-1) )
{
    rm(vec)
    ind1 = Brainstem_ptrows[i]
    ind2 = Brainstem_ptrows[i+1]-1
    vec <- data.frame(Fraction.Number = Brainstem_D1[c(ind1:ind2),2], D1.Gy =
Brainstem_D1[c(ind1:ind2),3])
    points(vec$Fraction.Number,vec$D1.Gy,pch = 19, col = color[i])
    lines(vec$Fraction.Number,vec$D1.Gy,pch = 19, col = color[i])
}</pre>
```


also consistent

Parotid LT D50%

```
plot(NULL,xlab="Fraction Number (/33)", ylab="Dose Distribution (Gy)", main =
"Parotid LT D50%",xlim = c(0,33),ylim = c(my.min(ParotidLT_D50$D50.Gy) -
2,my.max(ParotidLT_D50$D50.Gy) + 2))
```

```
#Iterating through the patients and plotting trends with fraction number
for (i in 1:(length(ParotidLT_ptrows)-1) )
{
   rm(vec)
   ind1 = ParotidLT_ptrows[i]
   ind2 = ParotidLT_ptrows[i+1]-1
   vec <- data.frame(Fraction.Number = ParotidLT_D50[c(ind1:ind2),2], D50.Gy =
ParotidLT_D50[c(ind1:ind2),3])
   points(vec$Fraction.Number,vec$D50.Gy,pch = 19, col = color[i])
   lines(vec$Fraction.Number,vec$D50.Gy,pch = 19, col = color[i])
}</pre>
```

Parotid LT D50%

Parotid RT D50%

```
library("RColorBrewer")
#Initializing a color vector to help us color code our graphs for each
patient
color = brewer.pal(n = 10,name = "Spectral")
color = colorRampPalette(color)(60)

#R needs a generic "plot" call before "points" or "lines" can be superimposed

plot(NULL,xlab="Fraction Number (/33)", ylab="Dose Distribution (Gy)", main =
"Parotid RT D50%",xlim = c(0,33),ylim = c(my.min(ParotidRT_D50$D50.Gy) -
2,my.max(ParotidRT_D50$D50.Gy) + 2))
```

```
#Iterating through the patients and plotting trends with fraction number
for (i in 1:(length(ParotidRT_ptrows)-1) )
{
    rm(vec)
    ind1 = ParotidRT_ptrows[i]
    ind2 = ParotidRT_ptrows[i+1]-1
    vec <- data.frame(Fraction.Number = ParotidRT_D50[c(ind1:ind2),2], D50.Gy =
ParotidRT_D50[c(ind1:ind2),3])
    points(vec$Fraction.Number,vec$D50.Gy,pch = 19, col = color[i])
    lines(vec$Fraction.Number,vec$D50.Gy,pch = 19, col = color[i])
}</pre>
```

Parotid RT D50%

• both parotids are changing quite a bit in time.

Plotting Full DVH plots in 2D

- to visualize the spread, and what changes look like beyond just conventional $\ensuremath{\mathsf{Dxx\%}}$

```
library("RColorBrewer")
#Initializing a color vector to help us color code our graphs for each
patient
color = brewer.pal(n = 5,name = "Dark2")
color = colorRampPalette(color)(5)

DVHplot.ParotidRT <- function(x,y)
{
    plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)",xlim =
c(0,100), ylim = c(my.min(DVH.ParotidRT[,c(4:103)]) -</pre>
```

```
2,my.max(DVH.ParotidRT[,c(4:103)]) + 2), main="2D Graph of Patient-Specific
DVHS for Parotid RT")
     for (i in x:y )
{
     for (j in 0:(ParotidRT_ptrows[i+1]-ParotidRT_ptrows[i] - 1) )
          ind1 = ParotidRT ptrows[i] + j
          lines(seq(1,100,1),DVH.ParotidRT[ind1,c(4:103)],pch = 19, col = color[i-
     }
}
}
DVHplot.ParotidLT <- function(x,y)</pre>
{
     plot(NULL, xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)", xlim =
c(0,100), ylim = c(my.min(DVH.ParotidLT[,c(4:103)]) -
2,my.max(DVH.ParotidLT[,c(4:103)]) + 2), main="2D Graph of Patient-Specific
DVHS for Parotid LT")
     for (i in x:y )
     for (j in 0:(ParotidLT_ptrows[i+1]-ParotidLT_ptrows[i] - 1) )
          ind1 = ParotidLT ptrows[i] + j
          lines(seq(1,100,1),DVH.ParotidLT[ind1,c(4:103)],pch = 19, col = color[i-100,1],pch = 10, col = color[i-100,1],pch = color[i-10
x+1])
     }
}
DVHplot.CTV7000 <- function(x,y)
     plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)",xlim =
c(0,100), ylim = c(my.min(DVH.CTV7000[,c(4:103)]) -
2,my.max(DVH.CTV7000[,c(4:103)]) + 2), main="2D Graph of Patient-Specific
DVHS for CTV7000")
     for (i in x:y)
     for (j in 0:(CTV7000 ptrows[i+1]-CTV7000 ptrows[i] - 1) )
          ind1 = CTV7000_ptrows[i] + j
           lines(seg(1,100,1),DVH.CTV7000[ind1,c(4:103)],pch = 19, col = color[i-
x+1)
     }
}
}
```

Looking at CTV7000 again:

```
DVHplot.CTV7000(1,5)
```


DVHplot.CTV7000(6,10)

2D Graph of Patient-Specific DVHS for CTV7000

DVHplot.CTV7000(11,15)

DVHplot.CTV7000(16,20)

2D Graph of Patient-Specific DVHS for CTV7000

DVHplot.CTV7000(21,25)

DVHplot.CTV7000(26,30)

2D Graph of Patient-Specific DVHS for CTV7000

DVHplot.CTV7000(31,35)

DVHplot.CTV7000(36,40)

2D Graph of Patient-Specific DVHS for CTV7000

DVHplot.CTV7000(41,45)

DVHplot.CTV7000(46,50)

2D Graph of Patient-Specific DVHS for CTV7000

DVHplot.CTV7000(51,55)

DVHplot.CTV7000(56,59)

2D Graph of Patient-Specific DVHS for CTV7000

Parotid RT

DVHplot.ParotidRT(6,10)

DVHplot.ParotidRT(16,20)

DVHplot.ParotidRT(26,30)

DVHplot.ParotidRT(36,40)

DVHplot.ParotidRT(46,50)

DVHplot.ParotidRT(56,58)

DVHplot.ParotidLT(6,10)

DVHplot.ParotidLT(11,15)

2D Graph of Patient-Specific DVHS for Parotid L1

DVHplot.ParotidLT(16,20)

DVHplot.ParotidLT(21,25)

2D Graph of Patient-Specific DVHS for Parotid L1

DVHplot.ParotidLT(26,30)

DVHplot.ParotidLT(31,35)

2D Graph of Patient-Specific DVHS for Parotid L1

DVHplot.ParotidLT(36,40)

DVHplot.ParotidLT(41,45)

2D Graph of Patient-Specific DVHS for Parotid L1

DVHplot.ParotidLT(46,50)

DVHplot.ParotidLT(51,55)

2D Graph of Patient-Specific DVHS for Parotid L1

DVHplot.ParotidLT(56,58)

Plotting Lag 1 Difference

to visualize whether there is a systematic trend

```
lagParotidRT <- function(x,y) {</pre>
maxlist <- c(0)
minlist <- c(0)
for (i in x:y) #first 5 patients
  for (j in 0:(ParotidRT_ptrows[i+1]-ParotidRT_ptrows[i] - 2) ) #time index
    ind1 = ParotidRT_ptrows[i] + j
    ind2 = ind1 + 1
    t1 = DVH.ParotidRT[ind1,c(4:103)]
    t2 = DVH.ParotidRT[ind2,c(4:103)]
    lagdiff = t1-t2
    maxlist <- c(maxlist,max(lagdiff))</pre>
    minlist <- c(minlist,min(lagdiff))</pre>
  }
}
plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)",main =
"Lag 1 Differencing for Parotid RT", xlim = c(0,100), ylim =
c(min(minlist),max(maxlist)))
for (i in x:y)
```

```
for (j in 0:(ParotidRT ptrows[i+1]-ParotidRT ptrows[i] - 2) ) #time index
    ind1 = ParotidRT_ptrows[i] + j
    ind2 = ind1 + 1
    t1 = DVH.ParotidRT[ind1,c(4:103)]
    t2 = DVH.ParotidRT[ind2,c(4:103)]
    lagdiff = t1-t2
    lines(seq(1,100,1),lagdiff, col = color[i-x+1])
      }
}
}
lagParotidLT <- function(x,y) {</pre>
maxlist <- c(0)
minlist <- c(0)
for (i in x:y) #first 5 patients
  for (j in 0:(ParotidLT ptrows[i+1]-ParotidLT ptrows[i] - 2) ) #time index
    ind1 = ParotidLT_ptrows[i] + j
    ind2 = ind1 + 1
   t1 = DVH.ParotidLT[ind1,c(4:103)]
   t2 = DVH.ParotidLT[ind2,c(4:103)]
    lagdiff = t1-t2
    maxlist <- c(maxlist,max(lagdiff))</pre>
    minlist <- c(minlist,min(lagdiff))</pre>
  }
}
#print(max(maxlist))
plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)",main =
"Lag 1 Differencing for Parotid LT", xlim = c(0,100), ylim =
c(min(minlist), max(maxlist)))#, asp = 2)
for (i in x:y) #first 5 patients
  for (j in 0:(ParotidLT_ptrows[i+1]-ParotidLT_ptrows[i] - 2) ) #time index
    ind1 = ParotidLT ptrows[i] + j
    ind2 = ind1 + 1
   t1 = DVH.ParotidLT[ind1,c(4:103)]
   t2 = DVH.ParotidLT[ind2,c(4:103)]
    lagdiff = t1-t2
    lines(seq(1,100,1), lagdiff, col = color[i-x+1])
```

```
}
}
lagCTV7000 <- function(x,y) {</pre>
maxlist <- c(0)
minlist \leftarrow c(0)
for (i in x:y) #first 5 patients
  for (j in 0:(CTV7000_ptrows[i+1]-CTV7000_ptrows[i] - 2) ) #time index
    ind1 = CTV7000_ptrows[i] + j
    ind2 = ind1 + 1
    t1 = DVH.CTV7000[ind1,c(4:103)]
    t2 = DVH.CTV7000[ind2,c(4:103)]
    lagdiff = t1-t2
    maxlist <- c(maxlist,max(lagdiff))</pre>
    minlist <- c(minlist,min(lagdiff))</pre>
  }
}
#print(max(maxlist))
plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)",main =
"Lag 1 Differencing for CTV7000", xlim = c(0,100), ylim =
c(min(minlist),max(maxlist)))#,asp = 2)
for (i in x:y) #first 5 patients
  for (j in 0:(CTV7000_ptrows[i+1]-CTV7000_ptrows[i] - 2) ) #time index
    ind1 = CTV7000_ptrows[i] + j
    ind2 = ind1 + 1
    t1 = DVH.CTV7000[ind1,c(4:103)]
    t2 = DVH.CTV7000[ind2,c(4:103)]
    lagdiff = t1-t2
    lines(seq(1,100,1), lagdiff, col = color[i-x+1])
      }
}
```

Lag 1 for CTV7000

```
lagCTV7000(1,5)
```

Lag 1 Differencing for CTV7000

lagCTV7000(6,10)

Lag 1 Differencing for CTV7000

lagCTV7000(11,15)

Lag 1 Differencing for CTV7000

lagCTV7000(16,20)

Lag 1 Differencing for CTV7000

lagCTV7000(21,25)

Lag 1 Differencing for CTV7000

lagCTV7000(26,30)

Lag 1 Differencing for CTV7000

lagCTV7000(31,35)

Lag 1 Differencing for CTV7000

lagCTV7000(36,40)

Lag 1 Differencing for CTV7000

lagCTV7000(41,45)

Lag 1 Differencing for CTV7000

lagCTV7000(46,50)

Lag 1 Differencing for CTV7000

lagCTV7000(51,55)

Lag 1 Differencing for CTV7000

lagCTV7000(56,59)

Lag 1 Differencing for CTV7000

Lag 1 for Parotid RT

Lag 1 Differencing for Parotid RT

lagParotidRT(6,10)

Lag 1 Differencing for Parotid RT

Lag 1 Differencing for Parotid RT

lagParotidRT(16,20)

Lag 1 Differencing for Parotid RT

Lag 1 Differencing for Parotid RT

lagParotidRT(26,30)

Lag 1 Differencing for Parotid RT

Lag 1 Differencing for Parotid RT

lagParotidRT(36,40)

Lag 1 Differencing for Parotid RT

Lag 1 Differencing for Parotid RT

lagParotidRT(46,50)

Lag 1 Differencing for Parotid RT

Lag 1 Differencing for Parotid RT

lagParotidRT(56,58)

Lag 1 Differencing for Parotid RT

Lag 1 Differencing for Parotid LT

lagParotidLT(6,10)

Lag 1 Differencing for Parotid LT

Lag 1 Differencing for Parotid LT

lagParotidLT(16,20)

Lag 1 Differencing for Parotid LT

Lag 1 Differencing for Parotid LT

lagParotidLT(26,30)

Lag 1 Differencing for Parotid LT

Lag 1 Differencing for Parotid LT

lagParotidLT(36,40)

Lag 1 Differencing for Parotid LT

Lag 1 Differencing for Parotid LT

lagParotidLT(46,50)

Lag 1 Differencing for Parotid LT

Lag 1 Differencing for Parotid LT

lagParotidLT(56,58)

Lag 1 Differencing for Parotid LT

Vertical Translation

• to visualize random effects - random noise?

```
library("RColorBrewer")
#Initializing a color vector to help us color code our graphs for each
patient
color = brewer.pal(n = 10, name = "Spectral")
color = colorRampPalette(color)(60)
verticaltranslation.ParotidRT <- function(x,y)</pre>
plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)", main =
"Vertical Translation for Parotid RT", x = c(0,100), y = c(0,30), y = c(0,30), y = c(0,30)
= 2
for (i in x:y)
  vtrans <- c()
  for (j in 4:103)
    ind1 = ParotidRT ptrows[i]
    ind2 = ParotidRT ptrows[i+1] - 1
    mindose = min(DVH.ParotidRT[ind1:ind2,j])
    maxdose = max(DVH.ParotidRT[ind1:ind2,j])
    trans = maxdose-mindose
    vtrans <- c(vtrans, trans)</pre>
  }
  lines(seq(1,100,1), vtrans, col = color[i-x+1])
}
}
verticaltranslation.ParotidLT <- function(x,y)</pre>
plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)", main =
"Vertical Translation for Parotid LT" ,xlim = c(0,100), ylim = c(0,30))#, asp
= 2)
for (i in x:y)
  vtrans <- c()
  for (j in 4:103)
    ind1 = ParotidLT_ptrows[i]
    ind2 = ParotidLT ptrows[i+1] - 1
    mindose = min(DVH.ParotidLT[ind1:ind2,j])
    maxdose = max(DVH.ParotidLT[ind1:ind2,j])
    trans = maxdose-mindose
    vtrans <- c(vtrans, trans)</pre>
```

```
}
  lines(seq(1,100,1), vtrans, col = color[i-x+1])
}
}
verticaltranslation.CTV7000 <- function(x,y)</pre>
plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)", main =
"Vertical Translation for CTV7000", x = c(0,100), y = c(0,45), asp = c(0,45)
2)
for (i in x:y)
  vtrans <- c()
  for (j in 4:103)
    #mindose = min(DVH.CTV7000[CTV7000 ptrows[i]:CTV7000 ptrows[i+1]],j)
    #dvol = DVH.CTV7000[CTV7000 ptrows[i]:CTV7000 ptrows[i+1],j]
    ind1 = CTV7000_ptrows[i]
    ind2 = CTV7000_ptrows[i+1] - 1
    #print(ind2)
    mindose = min(DVH.CTV7000[ind1:ind2,j])
    maxdose = max(DVH.CTV7000[ind1:ind2,j])
    trans = maxdose-mindose
    vtrans <- c(vtrans, trans)</pre>
  lines(seq(1,100,1), vtrans, col = color[i-x+1])
}
}
verticaltranslation.CTV7000(1,59)
```

Vertical Translation for CTV7000

verticaltranslation.ParotidLT(1,58)

Vertical Translation for Parotid LT

verticaltranslation.ParotidRT(1,58)

Vertical Translation for Parotid RT

Taking the slope and standard error of each dose parameter with resepct with time

Sample function that looks at each dose parameter separately and fits a line corresponding to the change in that parameter with respect to time. Return Values: 1. Maximum slope of a line of best fit when considering all dose parameters - adaptive radiaton therapy related, greatest systematic trend 2. Index of the maximum slope 3. Maximum standard error of a line of best fit when considering all dose considering all dose parameters - daily set up realted, greatest random noise 4. Index of the maximum standard error

Parotid RT

```
featuresParotidRT <- function(i)
{

vecSlope = rep(NA,100)
vecSlopeSE = rep(NA,100)

numEl = ParotidRT_ptrows[i+1] - ParotidRT_ptrows[i]
vecInd = c(ParotidRT_ptrows[i]:(ParotidRT_ptrows[i+1] - 1))

for (j in 1:100)
    {
       vecDoseParam = DVH.ParotidRT[vecInd,3+j]
       vecFraction = DVH.ParotidRT[vecInd,3]
       # Weighting the first observation (CTsim) more heavily to ensure line of</pre>
```

```
best fit passess through it
  vecWeights = rep(1,numEl)
  vecWeights[1] <- 100</pre>
  lm.fit = lm(vecDoseParam ~ vecFraction, weights = vecWeights)
  #Lm.fit = Lm(vecDoseParam ~ vecFraction)
  #plot(NULL,xlab="Structure Volume (%)", ylab="Dose Distribution (Gy)",xlim
= c(0,33), y = c(my.min(DVH.ParotidRT[vecInd,c(3+j)]) -
2, my.max(DVH.ParotidRT[vecInd, c(3+j)]) + 2), main="2D Graph of Temporal Dose
Parameter Change for Parotid RT")
  #points(vecFraction, vecDoseParam, col = "blue")
  #abline(lm.fit, lwd = 3, col = "red")
  #vecIntercept[j] = coef(summary(lm.fit))[1,1]
  vecSlope[j] = coef(summary(lm.fit))[2,1]
  vecSlopeSE[j] = coef(summary(lm.fit))[2,2]
}
maxSlope = max(vecSlope)
maxSlopeInd = which.max(vecSlope)
maxSlopeSE = max(vecSlopeSE)
maxSlopeSEInd = which.max(vecSlopeSE)
plot(NULL,xlab="Fraction Number", ylab="Dose Parameter Value (Gy)",xlim =
c(0,33), ylim = c(my.min(DVH.ParotidRT[vecInd,maxSlopeInd+3]) -
2,my.max(DVH.ParotidRT[vecInd,maxSlopeInd+3]) + 2), main="2D Graph of
Temporal Dose Parameter Change for Parotid RT (at max slope)")
points(vecFraction, DVH.ParotidRT[vecInd,maxSlopeInd+3], col = "blue")
lmMax.fit = lm(DVH.ParotidRT[vecInd,maxSlopeInd+3] ~ vecFraction, weights =
vecWeights)
abline(lmMax.fit,lwd = 3, col = "red")
returnVec = c(maxSlope, maxSlopeInd, maxSlopeSE, maxSlopeSEInd)
}
library("openxlsx")
## Warning: package 'openxlsx' was built under R version 3.5.2
numRows = length(ParotidRT ptrows) - 1
ptMat_toExport = matrix(nrow = numRows, ncol = 4)
for (i in 1:numRows){
  ptMat_toExport[i,] = featuresParotidRT(i)
```

of Temporal Dose Parameter Change for Parotid RT


```
write.xlsx(ptMat_toExport,file = "exportTest_ParotidRT.xlsx")
```

Using the data extracted and ML methods:

```
#Domain-based Feature Selection
Data_ParotidRT.Select =
Data_ParotidRT.Full[c(1:34,36:60),c(5:8,13:14,23,28:31)]

Clustering
plot(NULL,xlab="Index", ylab="Slope",xlim = c(0,100), ylim = c(my.min(Data_ParotidRT.Select[,8]), my.max(Data_ParotidRT.Select[,8])),
main="Index and Value of Maximum Slope for Parotid RT")
points(Data_ParotidRT.Select[,9], Data_ParotidRT.Select[,8], col = "blue")
```

Index and Value of Maximum Slope for Parotid R


```
plot(NULL,xlab="Index", ylab="Slope",xlim = c(0,100), ylim =
c(my.min(Data_ParotidRT.Select[,10]), my.max(Data_ParotidRT.Select[,10])),
main="Index and Value of Maximum SlopeSE for Parotid RT")
points(Data_ParotidRT.Select[,11], Data_ParotidRT.Select[,10], col = "blue")
```

Index and Value of Maximum SlopeSE for Parotid I


```
##All Data
Predictors = Data_ParotidRT.Select[,c(1:7)]
Response = Data_ParotidRT.Select[,c(9)]

set.seed(2)
train = sample(1:nrow(Predictors),35)
Predictors.train = Predictors[train,]
Predictors.test = Predictors[-train,]
Response.train = Response[train]
Response.test = Response[-train]
```

Simple Classification Tree

```
result.tree = tree(Response.train~.,Predictors.train)
summary(result.tree)
##
## Regression tree:
## tree(formula = Response.train ~ ., data = Predictors.train)
## Variables actually used in tree construction:
## [1] "ChangeBMI"
                               "Parotid_RT_Dmean_init" "T.Stage"
## [4] "Cancer.Site"
                               "InitialBMI"
## Number of terminal nodes: 6
## Residual mean deviance: 289 = 8381 / 29
## Distribution of residuals:
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
## -21.170 -7.667
                     0.000
                             0.000
                                     6.200 49.830
```

