Linear Algebra

Chapter 3: Matrices

University of Seoul School of Computer Science Minho Kim

Table of contents

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Outline

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Matrices in Action

- Matrices as functions on vectors. → "linear operators"
- Matrices transform a vector into another vector. (Problem 1)
- Matrices transform a parallelogram into another one. (Problem 2-3)
- What happens if we apply successive transformations? (Problem 4)
- Can we concatenate two successive transformations? Is it commutative? (Problem 5-7)

Outline

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Matrices

Definition

A matrix is a rectangular array of numbers called the entries, or elements, of the matrix.

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}] = [a_{ij}]_{m \times n} = [\mathbf{u}_1 \cdots \mathbf{u}_n] = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_m \end{bmatrix}$$

where

$$egin{aligned} m{u}_j = \left[egin{array}{c} a_{1j} \ drawtooldows \ a_{mj} \end{array}
ight] & ext{ and } & m{v}_i = [a_{i1} \cdots a_{in}] \end{aligned}$$

A matrix can be considered as

- "a row vector of column vectors" or
- "a column vector of row vectors"

Special Matrices

Square matrix

$$\left[\begin{array}{cc} 1 & -2 \\ 3 & 0 \end{array}\right]$$

Diagonal matrix

$$\left[\begin{array}{cc} -2 & 0 \\ 0 & 1 \end{array}\right]$$

Scalar matrix

$$\left[\begin{array}{cc} -2 & 0 \\ 0 & -2 \end{array}\right] = -2 \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Identity matrix

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Two matrices are equal if

- they have the same size and
- their corresponding entries are equal.

Matrix Operations

Addition

$$A + B = [a_{ij} + b_{ij}]$$

Scalar multiplication

$$cA = c[a_{ij}] = [ca_{ij}]$$

Difference

$$A - B = A + (-B)$$

Matrix Multiplication

Definition

If A is an $m \times n$ matrix and B is an $n \times r$ matrix, then the **product** C = AB is an $m \times r$ matrix. The (i,j) entry of the product is computed as follows:

$$c_{ij} = a_{i1}b_{1j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

The (i, j) entry is the dot product of the ith row vector of A and the jth column vector of B.

$$\left[egin{array}{c} oldsymbol{a_1} \ oldsymbol{a_n} \ oldsymbol{b_n} \ oldsymbol{a_n} \ oldsymbol$$

Example 3.7

Matrices and Linear Systems

Example 3.8

If we consider the matrix as a row vector of column vectors,

$$\begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & 1 \\ 2 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= x_1 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$$

Picking Columns or Rows

Theorem 3.1

Let A be an $m \times n$ matrix, e_i a $1 \times m$ standard unitvector, and e_j an $n \times 1$ standard unitvector. Then

- a. e_iA is the *i*th row of A and
- b. Ae_j is the *j*th column of A.

$$\begin{bmatrix} 0 & \cdots & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \vdots & & & & \\ & \mathbf{a}_i & & & \\ & \vdots & & & \\ & \vdots & & & \\ & \mathbf{a}_m \end{bmatrix} = \mathbf{a}_i$$

$$\left[egin{array}{c|c|c} oldsymbol{a}_1 & \cdots & oldsymbol{a}_j & \cdots & oldsymbol{a}_n \end{array}
ight] \left[egin{array}{c|c|c} oldsymbol{0} & dots & dot$$

Partitioned Matrices

$$\begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ \hline 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix} = \begin{bmatrix} I & B \\ O & C \end{bmatrix}$$

- Matrices composed of submatrices
- Partitioned into blocks

Submatrices in GNU Octave

```
M=[1,2,3;
   4,5,6;
   7,8,9]
  M(2,:)=[4,5,6]
  ► M(:,1)=[1;
            4;
            71
  M(2:3,1:2)=[4,5;
                7,8]
```

Different Views on Matrix Multiplications

- Notation: " $A \in \mathbb{R}^{m \times n}$ " means "A is an $m \times n$ matrix."
- Outer product expansion of AB:
 - $A \in \mathbb{R}^{m \times n}$ as a row vector of column vectors
 - ▶ $B \in \mathbb{R}^{n \times r}$ as a column vector of row vectors

$$AB = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = a_1b_1 + \cdots + a_nb_n$$

- $ightarrow a_k b_k \in \mathbb{R}^{m \times r}$ ($a_k b_k$ is an $m \times r$ matrix.)
- Another view
 - $A \in \mathbb{R}^{m \times n}$ as a column vector of row vectors
 - ► $B \in \mathbb{R}^{n \times r}$ as a row vector of column vectors

$$AB = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} \begin{bmatrix} b_1 & \cdots & b_r \end{bmatrix} = \begin{bmatrix} a_1b_1 & \cdots & a_1b_j & \cdots & a_1b_r \\ \vdots & \vdots & \vdots \\ a_ib_1 & \cdots & a_ib_j & \cdots & a_ib_r \\ \vdots & \vdots & \vdots \\ a_mb_1 & \cdots & a_mb_j & \cdots & a_mb_r \end{bmatrix}$$

$$\rightarrow a_ib_j \in \mathbb{R}$$

Block Multiplication

$$\begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 & 0 \\ \hline 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 7 & 2 \end{bmatrix} \begin{bmatrix} 4 & 3 & 1 & 2 & 1 \\ -1 & 2 & 2 & 1 & 1 \\ 1 & -5 & 3 & 3 & 1 \\ \hline 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} & A_{11}B_{13} + A_{12}B_{23} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} & A_{21}B_{13} + A_{22}B_{23} \end{bmatrix}$$

Why is it possible?

Matrix Powers

For a square matrix $A \in \mathbb{R}^{n \times n}$,

$$A^k = AA \cdots A$$

For nonnegative integers r and s,

- $A^rA^s = A^{r+s}$
- $(A^r)^s = A^{rs}$
- → Example 3.13 (Mathematical induction)
 - For convenience, we define $A^0 := I_n = I$.

Transpose

Definition: Transpose

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^T obtained by interchanging the rows and columns of A. That is, the ith column of A^T is the ith row of A for all i.

- $(A^T)_{ij} = A_{ji}$ for all i and j.
- ightharpoonup For column vectors u and v,

$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^T \boldsymbol{v}.$$

Definition: Symmetric matrix

A square matrix A is symmetric if $A^T = A$ -that is, if A is equal to its own transpose.

Outline

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Properties of Addition and Scalar Multiplication

Theorem 3.2: Algebraic Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be matrices of the same size and let c and d be scalars. Then

- a. A + B = B + A (commutativity)
- b. (A+B)+C=A+(B+C) (associativity)
- c. A + O = A (O is the identity element of the addition operator)
- d. A + (-A) = O (-A is the inverse element of A w.r.t. the addition operator)
- e. c(A + B) = cA + cB (distributivity)
- f. (c+d)A = cA + dA (distributivity)
- g. c(dA) = (cd)A
- **h.** 1A = A

Linear Combination of Matrices

$$c_1 A_1 + c_2 A_2 + \dots + c_k A_k$$

► Example 3.16

"The matrix
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 is a linear combination of the matrices $\begin{bmatrix} b_{11} & b_{12} \\ b21 & b_{22} \end{bmatrix}$ and $\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$." \Leftrightarrow "The vector $\begin{bmatrix} a_{11} \\ a_{12} \\ a_{21} \end{bmatrix}$ is a linear combination of the vectors

 $\left[egin{array}{c} a_{22}\ b_{11}\ b_{12}\ b_{21}\ \end{array}
ight]$ and $\left[egin{array}{c} c_{11}\ c_{12}\ c_{21}\ \end{array}
ight]$."

Linear Combination of Matrices (cont'd)

- Span of a set of matrices (Example 3.17)
- ▶ The matrices A_1, A_2, \cdots, A_k of the same size are linearly independent if the only solution of the equation

$$c_1 A_1 + c_2 A_2 + \dots + c_k A_k = O$$

is the trivial one: $c_1 = c_2 = \cdots = c_k = 0$.

Example 3.18

Properties of Matrix Multiplication

- Example 3.19
 - Is matrix multiplication commutitative?
 - Is this statement true? "If $A^2 = O$, then A = O"

Theorem 3.3: Properties of Matrix Multiplication

Let A, B, and C be matrices (whose size are such that the indicated operations can be performed) and let k be a scalar. Then

- a. A(BC) = (AB)C (associativity)
- b. A(B+C) = AB + AC (left distributivity)
- c. (A + B)C = AC + BC (right distributivity)
- d. k(AB) = (kA)B = A(kB)
- e. $I_m A = A = A I_n$ if $A \in \mathbb{R}^{m \times n}$ (multiplicative identity)
 - $(A+B)^2 = A^2 + 2AB + B^2$? (Example 3.20)

Properties of the Transpose

Theorem 3.4: Properties of the Transpose

Let A and B be matrices (whose size are such that the indicated operations can be performed) and let k be a scalar. Then a. $(A^T)^T = A$

b.
$$(A + B)^T = A^T + B^T$$

c.
$$(kA)^T = k(A^T)$$

d. $(AB)^T = B^T A^T$

e.
$$(A^r)^T = (A^T)^r$$
 for all nonnegative integers r

$$(A_1 + A_2 + \dots + A_k)^T = ?$$

• $(A_1 A_2 \cdots A_k)^T = ? \rightarrow \text{Exercise } 33$

Theorem 3.5

- a. If A is a square matrix, then $A + A^T$ is a symmetric matrix.
- b. For any matrix A, (not necessarily square matrix) AA^T and A^TA are symmetric matrices.

Outline

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Solving an Equation

$$a+x=b$$
 $\Rightarrow -a+(a+x)=-a+(b)$ $\Rightarrow (-a+a)+x=b-a$
 $\Rightarrow 0+x=b-a$ $\Rightarrow x=b-a$

$$ax = b \Rightarrow \frac{1}{a}(ax) = \frac{1}{a}(b) \Rightarrow \left(\frac{1}{a}(a)\right)x = \frac{b}{a} \Rightarrow 1 \cdot x = \frac{b}{a} \Rightarrow x = \frac{b}{a}$$

How to solve the equation " $a \star x = b$ "?

Find the inverse element of a, say a', with respect to the (binary) operator * to get the identity element of *, say I, on the left-hand side.
 a'+(a+x) = a'+b ⇒ (a'+a)+x = a'+b ⇒ I+x = a'+b ⇒ x = a'+b

$$a' \star (a \star x) = a' \star b \Rightarrow (a' \star a) \star x = a' \star b \Rightarrow I \star x = a' \star b \Rightarrow x = a' \star b$$

2. Now we have only x on the left-hand side therefore can solve the equation.

$$x = a' \star b$$

Is it always possible? Which properties should the operator * have?

Solving the Linear System Ax = b

 $Ax = b \Rightarrow A'(Ax) = A'b \Rightarrow (A'A)x = A'b \Rightarrow Ix = A'b \Rightarrow x = A'b$ Two questions:

- When can we find such a matrix A'?
- How can we compute A'?

Definition: Inverse Matrix

If A is an $n \times n$ matrix, an inverse of A is an $n \times n$ matrix A' with the property that

$$AA' = I$$
 and $A'A = I$

where $I = I_n$ is the $n \times n$ identity matrix. If such an A' exists, then A is called **invertible**.

- $AA' = A'A = I \rightarrow A$ and A' are square matrices
- A non-square matrix may or may not have a left-inverse or a right-inverse. → "pseudoinverse" (p.594)
- In fact, we only need to try either "AA' = I" or "A'A = I" to check if A' is the inverse of A. (Theorem 3.13, p.172)

Inverse Matrix

Questions:

- How can we know when a matrix has an inverse?
- If a matrix does have an inverse, how can we find it?
- Can a matrix have more than one inverse matrix?

Theorem 3.6

If A is an invertible matrix, then its inverse is unique.

- "THE" inverse $\rightarrow A^{-1}$
- Why " A^{-1} "?

Solving a Linear System using the Inverse Matrix

Theorem 3.7

If A is an invertible $n \times n$ matrix, then the system of linear equations given by Ax = b has the unique solution $x = A^{-1}b$ for any $b \in \mathbb{R}^n$.

"Existence" and "uniqueness"

Inverse Matrix of a 2×2 Matrix

Theorem 3.8

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then

1. A is invertible if $ad - bc \neq 0$, in which case

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

- 2. If ad bc = 0, then A is not invertible.
 - $\det A = ad bc$ determinant of A (Section 4.2)
 - "A is invertible iff $\det A \neq 0$ " \rightarrow True for all square matrices.

Solving a Linear System

- Gauss-Jordan (or Gaussian) elimination vs. computing the inverse matrix
- Which is better? Why?(See the remark on p.165 and Excercise 13)

Properties of Invertible Matrices

Theorem 3.9

If A is an invertible matrix

- a. then A^{-1} is invertible and $(A^{-1})^{-1} = A$
- **b.** and c is a nonzero scalar, then cA is an invertible matrix and $(cA)^{-1} = \frac{1}{2}A^{-1}$
- c. and B is an invertible matrix of the same size, then AB is invertible and (socks-and-shoes rule) $(AB)^{-1} = B^{-1}A^{-1}$ **cf.**) $(AB)^{T} = B^{T}A^{T}$
- d. then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$
- e. then A^n is invertible for all nonnegative integers n and $(A^n)^{-1} = (A^{-1})^n$
 - $(A_1 A_2 \cdots A_n)^{-1} = ?$
 - $(A+B)^{-1} = A^{-1} + B^{-1}$? \rightarrow Exercise 19
 - $A^{-n} := (A^{-1})^n = (A^n)^{-1}$ \rightarrow " $A^rA^s = A^{r+s}$ " and " $(A^r)^s = A^{rs}$ " holds for all integers

r and s, if A is invertible.

Elementary Matrices

Example:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 7 \\ -1 & 0 \\ 8 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 8 & 3 \\ -1 & 0 \end{bmatrix}$$

→ Row-interchanging by multiplying an matrix.

Definition

An **elementary matrix** is any matrix that can be obtained by performing an elementary row operation on an identity matrix.

- $ightharpoonup R_i \leftrightarrow R_j$
- kR_i
- $ightharpoonup R_i + kR_j$

Elementary Matrices (cont'd)

Theorem 3.10

Let E be the elementary matrix obtained by performing an elementary row operation on I_n . If the same elementary row operation is performed on an $n \times r$ matrix A, the result is the same as the matrix EA.

Applying elementary row operations E_1 , E_2 and E_3 , in this order, to a matrix A is the same as applying the operations to I first and then applying the resulting matrix:

$$E_3(E_2(E_1A)) = (E_3E_2E_1I)A$$

- "Elementary row operations are reversible."
 - ⇒ "Elementary matrices are invertible."

Theorem 3.11

Each elementary matrix is invertible, and its inverse is an elementary matrix of the same type.

The Fundamental Theorem of Invertible Matrices

What does it mean that "a matrix is invertible"?

Theorem 3.12: The Fundamental Theorem of Invertible Matrices: Version 1

Let A be an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible.
- **b.** Ax = b has a unique solution for every $b \in \mathbb{R}^n$.
- c. Ax = 0 has only the trivial solution.
 - \rightarrow Columns of A are linearly independent.
- d. The reduced row echelon form of A is I_n .
- e. A is a product of elementary matrices. (Example 3.29)

The Fundamental Theorem of Invertible Matrices (cont'd)

The power of the "Fundamental Theorem":

Theorem 3.13

Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

Theorem 3.14

Let A be a square matrix. If a sequence of elementary row operations reduces A to I, then the same sequence of elementary row operations transforms I into A^{-1} .

► Theorem 3.14 \rightarrow We can compute A^{-1} via Gauss-Jordan elimination.

Computing the Inverse of an $n \times n$ Matrix

Elementary row operations to yield

$$[A|I] \longrightarrow [I|A^{-1}]$$

Several views:

- 1. Gauss-Jordan elimination performed on an $n \times 2n$ augmented matrix.
- 2. Solving the matrix equation $AX = I_n$ for an $n \times n$ matrix X.
- 3. Solving n linear systems

$$A\mathbf{x}_1 = \mathbf{e}_1, A\mathbf{x}_2 = \mathbf{e}_2, \cdots, A\mathbf{x}_n = \mathbf{e}_n$$

 $\rightarrow [A|\mathbf{e}_1 \ \mathbf{e}_2 \cdots \mathbf{e}_n] = [A|I_n]$

▶ If A cannot be reduced to I, then A is not invertible.

Outline

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Matrix Factorization/Decomposition

Integer/prime factorization

$$20 = 2 \cdot 3 \cdot 5$$

Polynomial factorization

$$2x^2 + 7x + 3 = (2x+1)(x+3)$$

 Matrix factorization: Representation of a matrix as a product of two or more other matrices

$$\left[\begin{array}{cc} 3 & -1 \\ 9 & -5 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array}\right] \left[\begin{array}{cc} 3 & -1 \\ 0 & -2 \end{array}\right]$$

- LU factorization → Sec 3.4
- QR factorization → Sec 5.3
- SVD (Singular Value Decomposition) → Sec 7.4

Revisiting Gaussian Elimination

Example 3.33

$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 3 \\ -2 & 5 & 5 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 3 \\ -2 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -3 & -3 \\ -2 & 5 & 5 \end{bmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 + R_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 0 & -3 & -3 \\ -2 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -3 & -3 \\ 0 & 6 & 8 \end{bmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 + 2R_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 0 & -3 & -3 \\ 0 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -3 & -3 \\ 0 & 0 & 2 \end{bmatrix} =: \mathbf{U}$$

$$A \rightarrow E_3 E_2 E_1 A = \mathbf{U} \rightarrow A = (E_3 E_2 E_1)^{-1} \mathbf{U} \rightarrow A = (E_1^{-1} E_2^{-1} E_3^{-1}) \mathbf{U}$$

$$E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -2 & 1 \end{bmatrix} =: \mathbf{L}$$

$$A = L \mathbf{U} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Revisiting Gaussian Elimination (cont'd)

Assuming no row interchange is required, let A be reduced to U (using Gaussian elimination) as $U = (E_m E_{m-1} \cdots E_1)A$.

- ▶ To reduce a matrix to row echelon form, we only need one type of elementary operation: $R_i \leftarrow R_i kR_j$ where i > j. (Why?)
- The elementary matrix associated with the above operation is unit lower triangular (ULT) matrix. (Why?)
- Since
 - the inverse of a ULT matrix is also a ULT matrix, (Why? See Excercise 30) and
 - the product of ULT matrices is also a ULT matrix (Why? See Excercise 29)
 - $E_1^{-1}E_2^{-1}\cdots E_m^{-1}$ is also a ULT matrix.
- Therefore,

$$U = (E_m E_{m-1} \cdots E_1) A$$

$$\to A = (E_m E_{m-1} \cdots E_1)^{-1} U = (E_1^{-1} E_2^{-1} \cdots E_m^{-1}) U = L U.$$

LU Factorization

Example 3.33

$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 3 \\ -2 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 0 & -3 & -3 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A = L \qquad U$$
unit lower upper triangular triangular matrix matrix (p.160)
$$\begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ * & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ * & * & \cdots & * & 1 \end{bmatrix} \begin{bmatrix} * & * & \cdots & * & * \\ 0 & * & \cdots & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & * \\ 0 & 0 & \cdots & 0 & * \end{bmatrix}$$

Definition

Let A be a square matrix. A factorization of A as A = LU, where L is unit lower triangular and U is upper triangular, is called an LU factorization of A.

LU Factorization (cont'd)

Questions:

- Does an LU factorization always exist?
- ▶ How can we find the *LU* factorization of a matrix?
- Is it unique?
- Why is it useful?

Theorem 3.15

If A is a square matrix that can be reduced to row echelon form without using any row interchanges, then A has an LU factorization.

 \rightarrow Why? \rightarrow See the remarks on p.179-180.

Solving a Linear System Using LU Factorization

For the linear system

$$Ax = b$$

if A has an LU factorization A=LU, we can solve the linear system as follows:

- 1. Solve Ly = b for y, where y := Ux, by forward substitution.
- 2. Solve y = Ux for x by back substitution.
 - Example 3.34 (p.180)
 - Why is this method good?

How to Find A=LU? - Without Any Row Interchange Example 3.35

1.
$$R_2 - 2R_1 \rightarrow$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix}$$

2.
$$R_3 - \frac{1}{1}R_1 \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ \frac{1}{1} & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix}$$

3.
$$R_4 - (-3)R_1 \rightarrow$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & * & 1 & 0 \\ -3 & * & * & 1 \end{bmatrix}$$

4.
$$R_3 - \frac{1}{2}R_2 \rightarrow$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & \frac{1}{2} & 1 & 0 \\ -3 & * & * & 1 \end{bmatrix}$$

5.
$$R_4 - 4R_2 \rightarrow$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & \frac{1}{2} & 1 & 0 \\ -3 & 4 & * & 1 \end{bmatrix}$$

6.
$$R_4 - (-1)R_3 \rightarrow$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & \frac{1}{2} & 1 & 0 \\ -3 & 4 & -1 & 1 \end{bmatrix}$$

- The order is important! (See the remark on p.183)
 → from top to bottom, column by column from left to right
- Why does it work?
- Does this always work?

Is LU Factorization Unique for a Matrix?

Theorem 3.16

If ${\cal A}$ is an invertible matrix that has an LU factorization, then L and ${\cal U}$ are unique.

P^TLU Factorization

What if we need row exchange during Gauss elimination?

Example (p.184)

$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & 2 \\ -1 & 1 & 4 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 5 \\ 0 & 3 & 3 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 3 \\ 0 & 0 & 5 \end{bmatrix} = U = PE_1A$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & 2 \\ -1 & 1 & 4 \end{bmatrix}$$

Let's exchange the 2nd and 3rd rows first!

$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & 2 \\ -1 & 1 & 4 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 4 \\ 3 & 6 & 2 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 3 \\ 0 & 0 & 5 \end{bmatrix} = U = E_2 PA$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & 2 \\ -1 & 1 & 4 \end{bmatrix}$$

P^TLU Factorization - With Row Interchange

Permutation matrix

- Product of row interchange matrices
- Constructed by permutating the rows of an identity matrix
 - → related to "picking a row of a matrix"

With the permutation matrix P,

$$EPA = U \rightarrow A = (EP)^{-1}U = P^{-1}E^{-1}U = P^{-1}LU$$

Theorem 3.17

If P is a permutation matrix, then $P^{-1} = P^{T}$.

- $A = P^{-1}LU = P^{T}LU$
- ▶ *P* is an *orthogonal matrix*. (Sec 5.1)

Definition: P^TLU Factorization

Let A be a square matrix. A factorization of A as $A = P^T L U$, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular, is called a $P^T L U$ factorization of A.

P^TLU Factorization (cont'd)

• Does P^TLU factorization exist for any matrix?

Theorem 3.18

Every square matrix has a P^TLU factorization.

- Is it unique? → See the remark on p.186
- How about the zero matrix?
- How can we solve the linear system Ax = b where $A = P^T LU$? (See Excercise 27 28 on p.188)
 - 1. $A\mathbf{x} = \mathbf{b} \rightarrow P^T L U \mathbf{x} = \mathbf{b} \rightarrow L U \mathbf{x} = P \mathbf{b}$
 - 2. Let b' := Pb then solve ULx = b' via forward substitution followed by back substitution.
- How about rectangular matrices? http://en.wikipedia.org/wiki/LU_decomposition

Outline

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Geometry and Algebra

Geometry	Algebra
Lines & planes (through the origin) Direction vectors for lines & planes Dimension of lines & planes	Subspaces Basis How to define?

- * Let $\mathscr P$ be a plane through the origin in $\mathbb R^3$.
 - ▶ What is the difference between \mathbb{R}^2 and \mathscr{P} ?
 - What is the difference between the vectors in \mathbb{R}^2 and \mathscr{P} ?
 - Operations on the vectors in P?
 - Are the vectors in \$\mathcal{P}\$ two-dimensional or three-dimensional?
 - More in Chapter 6

Review on Lines and Planes Through The Origin

Let ℓ be a line through the origin with direction vector d.

- The vector form of ℓ is " $\mathbf{x}(t) = t\mathbf{d}$."
- Any vector in ℓ is of the form td for some t.
- Any vector in ℓ is a linear combination of d
- $\ell = \operatorname{span}(d)$

Let $\mathscr P$ be a plane through the origin with direction vectors u and v.

- ▶ The vector form of \mathscr{P} is "x(s,t) = su + tv."
- Any vector in $\mathscr P$ is of the form $s \boldsymbol u + t \boldsymbol v$ for some s and t.
- Any vector in $\mathscr P$ is a *linear combination* of u and v.
- $\mathscr{P} = \operatorname{span}(\boldsymbol{u}, \boldsymbol{v})$

Subspaces

- ▶ The set of vectors in \mathbb{R}^2 are closed under (i) addition and (ii) scalar multiplication.
- How about the vectors in a plane (through the origin) in \mathbb{R}^3 ?
 - \rightarrow Yes!
 - the vectors are 3-dimensional vectors
 - the plane is 2-dimensional
- How can we describe the plane then?

Subspaces (cont'd)

Definition

A subspace of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that

- 1. The zero vector **0** is in *S*.
- 2. If u and v are in S, then u + v is in S. (S is closed under addition.)
- 3. If u is in S and c is a scalar, then cu is in S. (S is closed under scalar multiplication.)

Conditions 2&3

 \rightarrow S is closed under linear combinations:

If u_1, u_2, \cdots, u_k are in S and c_1, c_2, \cdots, c_k are scalars, then $c_1u_1+c_2u_2+\cdots+c_ku_k$ is in S.

- Example 3.37
 - Every line and plane through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3 .
 - The dimension of vectors does not matter!
 - \rightarrow Can be generalized beyond \mathbb{R}^3

Subspaces and Spanning Sets

Are the followings subspaces?

- ▶ A plane through the origin in \mathbb{R}^3 ? → Example 3.37
- A line through the origin in \mathbb{R}^2 or \mathbb{R}^3 ?
- **▶** {0}?
- Example 3.39/3.40?
- → The dimension of the vectors does not matter!
 - $ightharpoonup \mathbb{R}^2$ is the span of two linearly independent vectors (Sec 2.3)
 - $ightharpoonup \mathbb{R}^2$ looks the same as a plane through the origin
- \rightarrow A plane through the origin is the span of two linearly independent vectors.

Theorem 3.19

Let v_1, v_2, \dots, v_k be vectors in \mathbb{R}^n . Then $\mathrm{span}(v_1, v_2, \dots, v_k)$ is a subspace of \mathbb{R}^n .

 $ightarrow \mathrm{span}\left(m{v}_1,\cdots,m{v}_k
ight)$ is the subspace spanned by $m{v}_1,\cdots,m{v}_k$.

Subspaces Associated with Matrices: Row Spaces and Column Spaces

For a matrix $A \in \mathbb{R}^{m \times n}$ and a column vector $\boldsymbol{x} \in \mathbb{R}^n$,

Ax

can be viewed as a linear combination of the columns of $\cal A$.

How about

 $\boldsymbol{x}A$

with a row vector $x \in \mathbb{R}^m$ and a matrix $A \in \mathbb{R}^{m \times n}$?

Subspaces Associated with Matrices: Row Spaces and Column Spaces (cont'd)

Definition

Let $A \in \mathbb{R}^{m \times n}$.

- 1. The row space of A is the subspace row(A) of \mathbb{R}^n spanned by the rows of A.
- 2. The column space of A is the subspace col(A) of \mathbb{R}^m spanned by the columns of A.
 - A.k.a. range of A. (Why?)

Subspaces Associated with Matrices: Row Spaces and Column Spaces (cont'd)

Example 3.41

- ▶ $b \in col(A) \Leftrightarrow$ "There exist some x such that Ax = b" \Leftrightarrow "Ax = b is consistent"
- $w \in row(A) \Leftrightarrow "w \text{ can be represented as a l.c. of the rows of } A"$
 - \Leftrightarrow "w and the rows of A are linearly dependent."
 - \Leftrightarrow " $\begin{bmatrix}A\\w\end{bmatrix}$ can be reduced to $\begin{bmatrix}A'\\0\end{bmatrix}$ without moving w" or
 - " $A^T \mathbf{x} = \mathbf{w}^T$ is consistent"
 - Elementary row operations create linear combination of rows.
 - 2. There is a linear combination of w and the rows of A which results in a zero vector 0. (Why?)
 - 3. w is a linear combination of the rows of A.

Subspaces Associated with Matrices: Row Spaces and Column Spaces (cont'd)

Do the elementary row operations change the row space of a matrix?

Theorem 3.20

Let B be any matrix that is row equivalent to (See the definition on p.72) a matrix A. Then row(B) = row(A).

► How about the column spaces? $col(B) \neq col(A)$! (See the warning on p.199.)

Subspaces Associated with Matrices: Null Spaces

Is the set of solutions of a homogeneous linear system a subspace?

Theorem 3.21

Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous linear systems Ax = 0. Then N is a subspace of \mathbb{R}^n .

What is it called?

Definition: Null Space

Let A be an $m \times n$ matrix. The **null space** of A is the subspace of \mathbb{R}^n consisting of solutions of the homogeneous linear system Ax = 0. It is denoted by null(A).

A.k.a. kernel

Solutions of a Linear System

See p.61

Theorem 3.22

Let A be a matrix whose entries are real numbers. For any system of linear equations Ax = b, exactly one of the following is true:

- 1. There is no solution.
- 2. There is a unique solution.
- 3. There are infinitely many solution.
 - Can be proved using the fact that the null space of a matrix is a subspace.
 - Except {0}, there are infinitely many vectors in a subspace.

Basis

- Which vectors do we need to generate a line or a plane (through the origin), respectively?
- How can we generalize this fact?

Definition: Basis

A basis for a subspace S of \mathbb{R}^n is a set of vectors in S that

- 1. spans S and
- 2. is linearly independent.
 - A basis is a maximal independent set and a minimal spanning set. (Why?)
 - What happens if we add a vector to a basis?
 - What happens if we remove a vector from a basis?
 - ▶ Example: $e_1, \cdots, e_n \in \mathbb{R}^n \to \mathsf{standard}$ basis
 - For a subspace, how many bases are there?

Finding a Basis for row(A)

Let U be a row echelon form of A.

- 1. By Theorem 3.20, row(A) = row(U).
- 2. Apparently, the nonzero rows of U span row(U) hence row(A).
- 3. In addition, the nonzero rows of U are linearly independent. (Why?)
- 4. Therefore, the set of the nonzero rows of U are a basis of row(U) hence row(A).
 - How to know if the basis is correct?
 - Can all the rows of A be represented as a linear combination of the vectors in the basis?
 - Are they linearly independent?
 - # of vectors in a basis of row(A) = # of leading variables of A
 - Example 3.45

Finding a Basis for col(A)

Let U be a row echelon form of A.

- 1. Ax = 0 and Ux = 0 have the same solution. I.e., null(A) = null(U) (Why?)
 - i Let $A = P^T L U$.
 - ii If $x \in \text{null}(U)$ then $x \in \text{null}(A)$ since $Ax = P^T L(Ux) = 0$.
 - iii If $x \in \text{null}(A)$ then $x \in \text{null}(U)$ since $Ux = (P^T L)^{-1}(Ax) = 0$.
- 2. If Ux = 0 has a nontrivial solution, any non-pivot column of U is a linear combination of the pivot columns U. (Why?)
 - i The non-pivot columns correspond to *free variables*, therefore we can set any value for those variables.
 - ii Assign 1 to one of the non-pivot columns and 0 to rest of them. Then that column can be represented by a linear combination of pivot columns. (Example 3.47)
- 3. Therefore, we do not need the non-pivot columns to span col(U).

Finding a Basis for col(A) (cont'd)

- 4. The pivot columns of $\operatorname{col}(\mathit{U})$ are linearly independent. (Why?)
- 5. Therefore, the pivot columns of U are a basis of col(U).
 - All the columns of U can be represented by a l.c. of the pivot columns of U.
 - ullet The pivot columns of U are linearly independent.
- 6. Since the columns of A have the same dependence relation as U, the set of the columns of A corresponding to the pivot columns of U is a basis of col(A).
 - A solution of Bx = 0 represents a dependence relation of the columns of B. (Why?)
 - # of vectors in a basis of col(A) = # of leading variables of A
 - Example 3.47

Finding a Basis for null(A)

Let R be the **reduced** row echelon form of A.

- 1. Ax = 0 and Rx = 0 have the same solution.
- 2. From Rx = 0, any leading variable can be expressed as a linear combination of free variables.
- Therefore, the solution can be expressed as a linear combination of (column) vectors where the coefficients are the free variables.
- 4. Since those vectors are linearly independent, (Why?) they form a basis of null(A).
 - Why do we need a reduced row echelon form, not a row echelon form?
 - ▶ # of vectors in a basis of null(A) = # of free variables of A
 - Example 3.48

Finding a Basis for a Subspace (Summary)

Procedure to find bases for row(A), col(A), and null(A)

- 1. Find the reduced row echelon form R of A.
- 2. Use the nonzero row vectors of R (containing the leading 1s) to form a basis for row(A).
- 3. Use the column vectors of A that correspond to the columns of R containing the leading 1s (the pivot columns) to form a basis for $\operatorname{col}(A)$.
- 4. Solve for the leading variables of Rx = 0 in terms of the free variables, set the free variables equal to parameters, substitute back into x, and write the result as a linear combination of f vectors (where f is the number of free variables). These f vectors form a basis for $\operatorname{null}(A)$.
 - (Non-reduced) row echelon form is enough for row(A) and col(A). (p.200)

Dimension

- How many direction vectors do we need to defined a line/plane?
- How many vectors do we need for a basis?

Theorem 3.23: The Basis Theorem

Let S be a subspace of \mathbb{R}^n . Then any two bases for S have the same number of vectors.

What do we call the number?

Definition: Dimension

if S is a subspace of \mathbb{R}^n , then the number of vectors in a basis for S is called the dimension of S, denoted $\dim S$.

- $\dim\{0\} = ?$
- $ightharpoonup \dim \mathbb{R}^n = ?$

Rank

 $\dim(\operatorname{row}(A)) = ? \dim(\operatorname{col}(A)) = ? \dim(\operatorname{null}(A)) = ? (\mathsf{Example} \ 3.50)$

Theorem 3.24

The row and column spaces of a matrix \boldsymbol{A} have the same dimension.

• What do we call $\dim(\text{row}(A))$ or $\dim(\text{col}(A))$?

Definition: Rank

The rank of a matrix A is the dimension of its row and column spaces and is denoted by rank(A).

- ▶ Is this definition equivalent to the one on p.75? Why?
- ▶ What is the relation between rank(A) and $rank(A^T)$?

Theorem 3.25

For any matrix A,

$$rank(A^T) = rank(A)$$

Nullity

 \bullet dim(null(A)) =?

Definition: Nullity

The **nullity** of a matrix A is the dimension of its null space and is denoted by $\operatorname{nullity}(A)$.

- ightharpoonup nullity(A)
- Dimension of the solution space of Ax = 0
- Number of free variables in the solution of Ax = 0

All the above are the same. Why?

- See Theorem 2.2 on p.75
 - \rightarrow What is the relation between rank(A) and nullity(A)?

Theorem 3.26: The Rank Theorem

If A is an $m \times n$ matrix, then

$$rank(A) + nullity(A) = n$$

Fundamental Theorem of Invertible Matrices: Ver 2

Theorem 3.27

Let A be an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible.
- **b.** Ax = b has a unique solution for every b in \mathbb{R}^n .
- c. Ax = 0 has only the trivial solution.
- d. The reduced row echelon form of A is I_n .
- $e. \ A$ is a product of elementary matrices.
- f. rank(A) = n
- **g.** nullity(A) = 0
- h. The column vectors of A are linearly independent.
- i. The column vectors of A span \mathbb{R}^n .
- j. The column vectors of A form a basis for \mathbb{R}^n .
- k. The row vectors of A are linearly independent.
- l. The row vectors of A span \mathbb{R}^n .
- m. The row vectors of A form a basis for \mathbb{R}^n .

Applications

- A set of n vectors is a basis for \mathbb{R}^n either one of the condition (p.196) of a basis. (Why?)
- Example 3.52

Theorem 3.28

Let A be an $n \times m$ matrix. Then

- a. $rank(A^TA) = rank(A)$
- **b.** The $n \times n$ matrix $A^T A$ is invertible iff rank(A) = n.
- → Prove them using the Rank Theorem and the Fundamental Theorem!

Coordinates

- Given direction vectors, in how many ways can we represent a vector in a line/plane as a linear combination of them?
- What is the relation between vectors in a subspace and a basis for that subspace?

Theorem 3.29

Let S be a subspace of \mathbb{R}^n and let $\mathcal{B} = \{v_1, v_2, \cdots, v_k\}$ be a basis for S. For every vector v in S, there is exactly one way to write v as a linear combination of the basis vectors in \mathcal{B} :

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

• Once a basis $\mathcal{B} = \{v_1, \dots, v_k\}$ for S is fixed, any vector v in S can be represented *uniquely* by the coefficients c_1, \dots, c_k .

Coordinates (cont'd)

What do we call the "way" (coefficients of unique linear combination for v)?

Definition: Coordinates

Let S be a subspace of \mathbb{R}^n and let $\mathcal{B}=\{v_1,v_2,\cdots,v_k\}$ be a basis for S. Let v be a vector in S, and write $v=c_1v_1+c_2v_2+\cdots+c_kv_k$. Then c_1,c_2,\cdots,c_k are called the coordinates of v with respect to \mathcal{B} , and the column vector

$$[oldsymbol{v}]_{\mathcal{B}} = egin{bmatrix} c_1 \ c_2 \ dots \ c_k \end{bmatrix}$$

is called the coordinate vector of v with respect to \mathcal{B} .

What does the Cartesian coordinate of a vector mean?

Outline

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Matrices as Functions

"A function transforms a real number into another real number."

$$f: \mathbb{R} \to \mathbb{R}$$

Matrices as functions acting on vectors: "An $m \times n$ matrix A transforms a column vector in \mathbb{R}^n into another column vector in \mathbb{R}^m ."

$$A \in \mathbb{R}^{m \times n} : \mathbb{R}^n \to \mathbb{R}^m$$

- transformation, mapping or function T_A defined by the matrix A
- domain of T_A : \mathbb{R}^n
- codomain of T_A : \mathbb{R}^m
- image of ${m x} \in \mathbb{R}^n$ under (the action of) T_A : $T_A({m x}) = A{m x}$
- range of T_A : $\{y \in \mathbb{R}^m | y = Ax \text{ for some } x \in \mathbb{R}^n\} = \operatorname{col}(A)$ (Excercise 54)

Linear Transformations

What kind of transformations are they (transformations by matrices)?

Definition: Linear Transformation

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation if

- 1. T(u + v) = T(u) + T(v) for all u and v in \mathbb{R}^n and
- **2.** T(cv) = cT(v) for all v in \mathbb{R}^n and for all scalars c.

Remark

 $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if

$$T(c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2)=c_1T(\boldsymbol{v}_1)+c_2T(\boldsymbol{v}_2)$$

for all v_1, v_2 in \mathbb{R}^n and scalars c_1, c_2 .

- See Exercise 53.
- $T(c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k) = ?$

Linear Transformations (cont'd)

Are all the matrix transformations linear transformations?

Theorem 3.30

Let A be an $m \times n$ matrix. Then the matrix transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T_A(\boldsymbol{x}) = A\boldsymbol{x}$$
 (for \boldsymbol{x} in \mathbb{R}^n)

is a linear transformation.

Examples: Example 3.56 (reflection), 3.57 (rotation)

Linear Transformations (cont'd)

How about its converse? Are all the linear transformations from \mathbb{R}^n to \mathbb{R}^m matrix transformations?

Theorem 3.31

Let $T:\mathbb{R}^n\to\mathbb{R}^m$ be a linear transformation. Then T is a matrix transformation. More specifically, $T=T_A$, where A is the $m\times n$ matrix

$$A = \left[\begin{array}{c|c} T(\boldsymbol{e}_1) & T(\boldsymbol{e}_2) & \cdots & T(\boldsymbol{e}_n) \end{array} \right]$$

- A: "standard matrix of the linear transformation T"
- Examples: Example 3.58 (rotation), 3.59 (projection)

Linear Transformations (cont'd)

Notation

- T_A denotes the linear (matrix) transformation defined by the matrix A.
- [T] denotes the standard matrix of a linear transformation T.

$$\rightarrow [T_A] = A \text{ and } T_{\lceil T \rceil} = T \text{ (p.221)}$$

- What kinds ot linear transformations are there?
 - Reflection (Example 3.56)
 - Rotation (Example 3.57, 3.58)
 - Projection (Example 3.59)
 - ...And more Scaling, Shearing, Squeezing
 See http://en.wikipedia.org/wiki/Linear_transformation.
 - Translation...?
- Non-linear transformations
 - \rightarrow Excercises 7-10 (p.222)

Successive Linear Transformations

Composition of two functions

$$(f \circ g)(x) = f(g(x))$$

• Composition of two linear transformations $T: \mathbb{R}^m \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^p$

$$(S \circ T)(\boldsymbol{x}) = S(T(\boldsymbol{x}))$$

Theorem 3.32

Let $T:\mathbb{R}^m\to\mathbb{R}^n$ and $S:\mathbb{R}^n\to\mathbb{R}^p$ be linear transformations. Then $S\circ T:\mathbb{R}^m\to\mathbb{R}^p$ is a linear transformation. Moreover, their standard matrices are related by

$$[S \circ T] = [S][T]$$

Inverse of Linear Transformations

- We can consider the **Identity transformation** defined as " $I_n: \mathbb{R}^n \to \mathbb{R}^n$ such that $I_n(v) = v$ for every v in \mathbb{R}^n ."
- How can we define an inverse transformation of a linear transformation?

Definition

Let S and T be linear transformations from \mathbb{R}^n to \mathbb{R}^n . Then S and T are inverse transformations if $S \circ T = I_n$ and $T \circ S = I_n$.

- What is the standard matrix of the identity transformation?
- Does every linear transformation have its inverse?
 - → invertible transformations
- Is it unique?

Inverse of Linear Transformations (cont'd)

Theorem 3.33

Let $T:\mathbb{R}^n\to\mathbb{R}^n$ be an invertible linear transformation. Then its standard matrix [T] is an invertible matrix, and

$$[T^{-1}] = [T]^{-1}$$

• "The matrix of the inverse is the inverse of the matrix." → "The (standard) matrix of the inverse (transformation) is the inverse (matrix) of the (standard) matrix (of the transformation)."

Proving the Associativity of Matrix Multiplication

 Associativity of matrix multiplication (Theorem 3.3(a) on p.156)

$$A(BC) = (AB)C$$

Can be proved using the fact that

$$A(BC)=(AB)C\quad \text{iff}\quad R\circ (S\circ T)=(R\circ S)\circ T$$
 where $R=T_A$, $S=T_B$ and $T=T_C$.

Outline

Introduction: Matrices in Action

Matrix Operations

Matrix Algebra

The Inverse of a Matrix

The LU Factorization

Subspaces, Basis, Dimension, and Rank

Introduction to Linear Transformations

Applications

Applications

- ▶ Robotics → More on "Computer Graphics" course!
- Markov chains
- Population growth
- Graphs and Digraphs
- Error-correcting codes

Markov Chain

- Represents an evolving process consisting of a finite number of states.
- At each step, the process may be in one of the states.
- At the next step, the process can remain in its present state or switch to one of the other states.
- The state changes based on the transition probability that depends only on the present state and not on the past history of the process.
- Every Markov chain has a unique steady state vector.
 (Chap 4)

Population Growth

- "Leslie model" by P.H.Leslie (1945)
- Describes the growth of the female portion of a population.
- Every female is assumed to have a maximum lifespan.
- The females are divided equally into age classes.
- Leslie matrix: Defined by birthrates and survival probabilities of each class.
- The proportion of the population in each class is approaching a steady state. (Chap 4)

Graphs and Digraphs

- A graph consists of a finite set of vertices and edges.
- A graph can be described by an adjacency matrix.
- Path, length of a path, k-path, circuit (closed path), simple path
- Digraph: a graph with directed edges