

X 7	x ² 49	$MEAN = \frac{2}{2} = \frac{31}{6} = \frac{5.1667}{6}$
4	16	STANDARD DEVIATION = $\left \frac{\xi x^2}{\xi x} - \left \frac{\xi x}{\xi x} \right ^2$
3	9	n (n)
6	36	$= \frac{171}{(71)^2} = 1.3437$
6	36	$\sqrt{6}$
5	25	VARIANCE = (SD)
$\chi = 31$	2x2 = 171	$= (1.3437)^2$
Sum (Total)		= 1.80556

2) FREQUENCY DISTRIBUTION TABLE (SINGLE VALUE TABLE)

	χ²	D	ı	4	9		
	n/mark	0	1	2	3		_
	f	10	S	25	60	2f = 100	
$fx = f \times x$	fx	0	5	50	180	2fx = 235	
$fx^2 = f \times x^2$	fx²	0	5	100	540	Efx2 = 645	

$$MEAN = \frac{2fx}{2} = \frac{235}{100} = 2.35$$

$$SD = 0.963068$$

$$VARIANCE = (SD)^2 = (0.963068)^2 = 0.9275$$

3) FREQUENCY DISTRIBUTION TABLE (RANGE TABLE)

Χ²	25	625	2025	
x = Mid Value of X a+b 2 X	5	25	45	
x/mauks	0<2510	10< x < 40	40< <u>x</u> <u><</u> 50	
f	40	30	10	2f = 80
fx	200	750	450	2fx = 1400
fx²	1000	18750	20250	2fx2=40000

MEAN =
$$\frac{2fx}{2f} = \frac{1400}{80} = 17.5$$

PROBABILITY DISTRIBUTION TABLE

X²	1	4	9	16		
X	1	2	3	4		
P(x)	0.2	P= 0.4	0 - 1	0 - 3	$\leq \rho(\alpha) = 1$	
χ.ρ(χ)	0-2	0 · 8	0.3	1.2	E(X)= 2.5 -	Mean
χ². ρ(x)	0.2	1.6	0.9	4.8	$E(\chi^2) = 7.5$	does not mean anyth itself

$$0.2+p+0.1+0.3=1$$

1) Sum
$$\int_{\Gamma} \rho(x) = 1$$

EXPECTED VALUE OF X = MEAN =
$$E(X)$$

$$E(X) = \{ [x \cdot p(x)] \}$$

3) EXPECTED VALUE OF
$$X^2 = E(X^2) = \sum_{x \in X} x^2 \cdot P(x)$$

4) STANDARD DEVIATION =
$$\sqrt{E(x^2) - [E(x)]^2}$$

= $\sqrt{7.5 - (2.5)^2}$
= 1.11803

5) VARIANCE =
$$(SD)^2 = (1.11803)^2 = 1.25$$

STANDARD DEVIATION

RAW DATA

$$SD = \left| \frac{2x^2}{n} - \left(\frac{2x}{n} \right)^2 \right|$$

FREQUENCY TABLE

$$SD = \sqrt{\frac{2fx^2}{2f}} - \left(\frac{2fx}{2f}\right)^2$$

PROBABILITY TABLES

$$SD = \int E(x^2) - \left[E(x)\right]^2$$

