FORMULA SHEET

STAT 620 – Dr. Myung

Discrete R.V.

X	S_X	PMF	E(X)	Var(X)	MGF
Ber(p)	$\{0,1\}$	$p^x(1-p)^{1-x}$	p	p(1 - p)	$(1-p) + pe^t$
Bin(n,p)	$\{0,1,\ldots,n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$[(1-p)+pe^t]^n$
$\mathrm{HG}(N_1,N_2,n)$	$x \leqslant n, x \leqslant N_1, n - x \leqslant N_2$	$\frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}}$	$n\left(\frac{N_1}{N}\right)$	$n\left(\frac{N_1}{N}\right)\left(\frac{N_2}{N}\right)\left(\frac{N-n}{N-1}\right)$	
Geom(p)	$\{1,2\ldots\}$	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t} \text{ for } t < -\ln(1-p)$
NB(r, p)	$\{r,r+1\ldots\}$	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r \text{ for } t < -\ln(1-p)$
$Poisson(\lambda)$	$\{0,1,\ldots,\}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^t-1)}$