

MPO 634 - Assignment 02 Spring 2020

Ivenis Pita

Ivenis, might you be able to use the Matlab code of problem eda06_02.m in the supplemental code .zip file at this site to do the above exercise: fitting your data as a mean, seasonal cycle, and trend without any need for gap filling.

d = G m + residual

d'd = d'G m

 $\mathbf{m} = (\mathbf{d}'\mathbf{G})(\mathbf{d}'\mathbf{d})$ in Matlab's clever notation for left-multiplying by an inverse.

```
clear variables
close all
stn=50250; %Station ID
%% reading data
load(['/MATLAB Drive/Data_Analysis/Assignment_02/mat_' num2str(stn) '.mat']);clear titl
eval(['time=mat_' num2str(stn) '(:,1);'])
eval(['elev=mat_' num2str(stn) '(:,2);'])
clear mat *
%% organizing time
time=time - 1721058.5;%datenum format
ind_t=time>=datenum([2002 9 18 0 0 0]); % selecting data from Sep/2002 to Aug/2004
time=time(ind t);
elev=elev(ind_t);
clear ind t
time=datestr(time,'dd-mm-yyyy HH');
time=datenum(time, 'dd-mm-yyyy HH');
t=min(time):1/24:max(time);
t=datestr(t,'dd-mm-yyyy HH');
t=datenum(t,'dd-mm-yyyy HH');
d=nan(size(t));
[ind1,loc1]=ismember(time,t);
[ind2,loc2]=ismember(t,time);
d(ind2)=elev(ind1);
d=d-nanmean(d);
%harmonical Analysis
[tide_struc,xout]=t_tide(d,'interval',1,'start_time',t(1));
```

```
number of standard constituents used: 68
Points used: 16935 of 16935
percent of var residual after lsqfit/var original: 25.04 %
Greenwich phase computed, no nodal corrections
```

Using nonlinear bootstrapped error estimates
Generating prediction without nodal corrections, SNR is 2.000000
percent of var residual after synthesis/var original: 26.12 %

date: 31-Mar-2020

nobs = 16935, ngood = 16935, record length (days) = 705.62

start time: 18-Sep-2002
rayleigh criterion = 1.0

Greenwich phase computed, no nodal corrections

x0 = -0.00203, x trend= 0

var(x) = 0.16306 var(xp) = 0.12057 var(xres) = 0.042595 percent var predicted/var original= 73.9 %

tidal amplitude and phase with 95% CI estimates

tide	freq	amp	amp_err	pha	pha_err	snr
*SA	0.0001141	0.0537	0.038	113.85	45.27	2
SSA	0.0002282	0.0257	0.033	85.72	96.55	0.61
MSM	0.0013098	0.0091	0.035	189.09	178.38	0.12
MM	0.0015030	0.0213	0.032	146.58	115.16	0.45
MSF	0.0013122	0.0213	0.032	72.13	120.33	0.5
MF	0.0030501	0.0204	0.040	39.86	58.41	1.1
ALP1	0.0343966	0.0012	0.040	203.53		0.29
201	0.0343900	0.0012	0.002	200.85	47.74	1.5
		0.0038	0.003	200.65	54.36	1.3
SIG1 *Q1	0.0359087	0.0032	0.003	254.95		1.4e+02
*RHO1			0.003		5.05	
		0.0089		248.37	17.60	7.2
*01	0.0387307	0.1262	0.003	289.69	1.30	1.8e+03
TAU1		0.0035	0.003	136.95	50.31	1.5
BET1	0.0400404	0.0029	0.003	300.81	69.99	1
*NO1	0.0402686	0.0073	0.003	47.02	23.56	5.5
CHI1		0.0010	0.002	349.30	157.30	0.22
PI1	0.0414385	0.0029	0.002	27.33	53.15	1.4
*P1	0.0415526	0.0258	0.003	15.43	6.93	67
*S1	0.0416667	0.0167	0.003	177.90	10.53	36
*K1	0.0417807	0.0686	0.003	22.33	2.24	4.8e+02
	0.0418948	0.0013	0.003	87.08		0.26
PHI1		0.0012	0.002	48.71	129.50	0.28
THE1		0.0031	0.003	117.82	53.68	1.3
J1	0.0432929	0.0027	0.003	18.56	61.87	1
*S01	0.0446027	0.0043	0.003	160.69		2.4
001	0.0448308	0.0035	0.003	236.75		1.5
UPS1	0.0463430	0.0015	0.002	305.16	119.45	0.44
OQ2	0.0759749	0.0044	0.005	174.46	68.34	0.97
EPS2	0.0761773	0.0003	0.003	300.78	217.23	0.008
*2N2	0.0774871	0.0190	0.005	220.85	13.86	17
*MU2	0.0776895	0.0247	0.005	228.60	11.10	29
*N2	0.0789992	0.0580	0.005	242.95	4.51	1.5e+02
*NU2	0.0792016	0.0089	0.004	258.11	26.81	4.2
GAM2	0.0803090	0.0062	0.005	193.83	45.88	1.8
*H1	0.0803973	0.0084	0.005	20.78	32.22	3
*M2	0.0805114	0.3630	0.005	177.93	0.78	5.8e+03
H2	0.0806255	0.0061	0.005	297.83	42.19	1.5
MKS2	0.0807396	0.0044	0.004	260.86	59.93	0.99
*LDA2	0.0818212	0.0081	0.004	118.29	27.51	3.6
*L2	0.0820236	0.0093	0.004	222.61	29.97	5.1
*T2	0.0832193	0.0081	0.004	215.54	31.15	4.1
*S2	0.0833333	0.2389	0.005	195.84	1.13	2.4e+03
*R2	0.0834474	0.0077	0.005	201.97	33.33	2.8
*K2	0.0835615	0.0903	0.005	201.16	3.10	4e+02
MSN2	0.0848455	0.0042	0.004	341.44	63.69	0.87
*ETA2	0.0850736	0.0131	0.004	218.99	19.44	12
*M03	0.1192421	0.0446	0.005	344.59	6.66	92

```
0.1207671 0.0679 0.004 189.21
                                   3.70 2.6e+02
*M3
*SO3 0.1220640 0.0217 0.005 99.61 12.42 20
*MK3 0.1222921 0.0295 0.005 91.43 10.62
                                             36
*SK3 0.1251141 0.0188 0.005 270.15 13.26
                                            15
*MN4 0.1595106 0.0296 0.002 312.99 4.89 1.9e+02
*M4 0.1610228 0.0558 0.002 11.67
                                   2.42 5.9e+02
SN4 0.1623326 0.0019 0.002 113.53 71.72 0.87
*MS4 0.1638447 0.0299 0.002 137.02
                                   4.29 1.6e+02
*MK4 0.1640729 0.0111 0.003 147.82 12.35 19
S4 0.1666667 0.0011 0.002 213.60 108.13
                                          0.37
SK4 0.1668948 0.0013 0.002 219.70 99.58
                                          0.43
*2MK5 0.2028035 0.0032 0.001 210.49 25.23
                                          6.6
1.3
2SK5 0.2084474 0.0014 0.001 288.34 59.95
2MN6 0.2400221 0.0004 0.001
                            70.31 121.51
                                          0.33
                    0.001 131.54 18.29
*M6 0.2415342 0.0024
                                           11
*2MS6 0.2443561 0.0065
                    0.001 151.01
                                   6.71
                                             74
*2MK6 0.2445843
                     0.001
             0.0027
                            160.20
                                   18.23
                                             12
*2SM6 0.2471781
             0.0035
                     0.001
                            190.77
                                   13.63
                                             21
                                  16.66
*MSK6 0.2474062 0.0024
                     0.001 207.31
                                            11
3MK7 0.2833149 0.0008 0.001 22.96 67.08
                                            1.1
*M8 0.3220456 0.0012 0.001 201.78 33.30
                                            2.4
```

```
d=d-xout;
%Deliberating add NaN into my timeseries
%d(10000:11000)=nan;
%Setting matrix length
M=32; %number of frequencies I'd decompose my data
N=length(d);
tt=t;
clear t
% set up time
Dt=60*60;% [s]
tmin=0.0;
tmax = tmin+Dt*(N-1);
t = tmin + Dt*[0:N-1]';
% nyquist frequencies
%Nf=(Dt)/2;
Nf = N/2 + 1;
fmax = 1/(2*Dt);
Df = fmax/(N/2);
f = Df*[0:Nf-1]';
Nw=Nf;
wmax = 2*pi*fmax;
Dw = wmax/(N/2);
w = Dw*[0:Nw-1]';
% set up G
G=zeros(N,M);
% zero frequency column
G(:,1)=nanmean(d);
```

```
% interior M/2-1 columns
for i = [1:M/2-1]
   j = 2*i;
   k = j+1;
    G(:,j) = cos(w(i+1).*t);
    G(:,k)=sin(w(i+1).*t);
end
% nyquist column
G(:,M)=cos(w(end).*t);
G(:,M) = Cos(w(Nw).*t);
% plot spectral density
figure(1)
clf;
% plot columns of G vs time
j=1;
for i = [1 round([M/5:M/5:M])]
    subplot(1,6,j);
    j=j+1;
    set(gca,'LineWidth',2);
    hold on;
    set(gca,'XAxisLocation','top');
    axis( [-2, 2, tmin, tmax] );
    plot( G(:,i), t, 'k-','LineWidth',2);
    plot( G(:,i), t, 'k.', 'LineWidth',2);
    xlabel(sprintf('col %d',i));
    if (i==1)
    ylabel('time, s');
    end
end
```


Calculating m and the residual

```
m=nan(size(G,2),1);
for j=1:size(G,2)
    m(j) = (d'*G(:,j)) \setminus (d'*d);
end
residual=d-G*m;
%% Plot the data, predicted and residual
figure
clf
set(gca,'LineWidth',2);
hold on;
set(gca,'XAxisLocation','top');
xlim( [tt(1) tt(end)] );
plot(tt,G*m,'k-','linewidth',2)
hold on
plot(tt,residual,'b-','linewidth',2)
plot(tt,d,'r-','linewidth',2)
datetick('x','mm-yyyy','keepticks')
legend('G*m','Residual','Data')
```


Spectral Analysis

```
win =1; %Hanning window
ci =95; %Confidence interval 95%
smo =2*24; %no smoothing
[h0,f,c]=specs(d,length(d),1/24,win,smo,ci);
sc
         =1-(ci/100);
chi1
         =c(:,3);
clo1
         =c(:,4);
med
         =c(:,5);
         =1./f; %Period
figure %plot spectral analysis
%loglog(f,abs(h0),'k'), hold on
loglog((1./f), abs(h0), 'k'), hold on
%line([.25 .25], [clo1(1)+5 chi1(1)+5], 'color', 'r', 'Linewidth',4)
ylabel('Energy [m^2/cp days]')
%xlabel('Frequency [c/days]')
xlabel('Period [days]')
grid on
set(gca,'FontName','Helvetica','FontSize',16,'FontWeight','Bold')
```


Creating a new G matrix with specific frequencies

```
M=3;%number of frequencies I'd decompose my data
%T_specific=[0.25, 0.35,0.5,1,4,8,15];%days
T_specific=[8,20];%days
T_specific=T_specific.*(24*60*60);
f_specific=(1./T_specific);%[Hz]
% % nyquist frequencies
% %Nf=(Dt)/2;
% Nf=N/2+1;
% fmax = 1/(2*Dt);
% Df = fmax/(N/2);
% f = Df*[0:Nf-1]';
% Nw=Nf;
% wmax = 2*pi*fmax;
% Dw = wmax/(N/2);
w = Dw*[0:Nw-1]';
% set up G
G1=zeros(N,M);
% zero frequency column
G1(:,1) = nanmean(d);
```

```
%% interior M/2-1 columns
% for i = [1:M/2]
      j = 2*i;
%
응
      k = j+1;
%
      G1(:,j)=cos(2*pi.*f_specific(i).*t);
응
      G1(:,k)=sin(2*pi.*f_specific(i).*t);
% end
% interior M/2-1 columns
for i = [2:M]
    G1(:,i)=cos(2*pi.*f_specific(i-1).*t);
end
%Calculating trend
G1(:,4)=d-detrend(d);
% plot spectral density
figure(1)
clf;
% plot columns of G vs time
j=1;
for i = 1:4
    subplot(1,4,i)
    set(gca,'LineWidth',2);
    hold on;
    set(gca,'XAxisLocation','top');
    axis( [-2, 2, tmin, tmax] );
    axis ij;
    plot( G1(:,i), t, 'k-', 'LineWidth',2);
    plot( G1(:,i), t, 'k.', 'LineWidth',2);
    xlabel(sprintf('col %d',i));
    if (i==1)
    ylabel('time, s');
    end
end
```


Calculating m and the residual

```
m1=nan(size(G1,2),1);
for j=1:size(G1,2)
    m1(j) = (d'*G1(:,j)) \setminus (d'*d);
end
residual1=d-G1*m1;
%% Plot the data, predicted and residual
figure
clf
set(gca,'LineWidth',2);
hold on;
set(gca,'XAxisLocation','top');
xlim( [tt(1) tt(end)] );
plot(tt,G1*m1,'k-','linewidth',2)
hold on
plot(tt,residual1,'b-','linewidth',2)
plot(tt,d,'r-','linewidth',2)
datetick('x','mm-yyyy','keepticks')
legend('G1*m1','Residual 1','Data')
```

