# 《泛函分析选讲》

## 习题参考解答



吴瀚霖 hlwu.bnu@gmail.com

2018年4月23日

## 目录

| 第一章  | 紧算子的谱理论            | 2  |
|------|--------------------|----|
| 1.1  | 有界线性算子的谱           | 2  |
| 1.2  | 紧算子                | 7  |
| 1.3  | 紧算子的谱理论            | 13 |
| 1.4  | Hilbert-Schmidt 定理 | 18 |
| 第二章  | Banach 代数          | 22 |
| 2.1  | 代数准备知识             | 22 |
| 2.2  | Banach 代数          | 25 |
| 2.3  | 例子与应用              | 30 |
| 2.4  | C*代数               | 34 |
| 2.5  | Hilbert空间上的正常算子    | 36 |
| 参老☆☆ | <del>-1</del>      | 40 |

## 第一章 紧算子的谱理论

### 1.1 有界线性算子的谱

习题 1.1.1 设  $\mathscr X$  是一个有限维 Banach 空间, $A:\mathscr X\to\mathscr X$  为有界线性算子。 则对于任意  $\lambda\in\mathbb C$ ,  $\lambda$  必为A的正则值或特征值之一.

**证明**: 若 A 为有限维空间  $\mathcal{X}$  上的有界算子, 则 A 可由矩阵  $(a_{ij})$  表示. A 单射当且仅 当 A 满射. 从而 $\lambda I - A$  可逆当且仅当  $\lambda E - A$  可逆. 而当

- $\det(\lambda E A) = 0$  时,  $\lambda \in \sigma(A)$ ;
- $\det(\lambda E A) \neq 0 \text{ pt}, \lambda \in \rho(A)$ .

故对 $\forall$  $\lambda$  ∈  $\mathbb{C}$ ,  $\lambda$  必为 A 的正则值或特征值.

习题 1.1.2 设  $\mathscr X$  为一个 Banach 空间. 证明  $\mathscr L(\mathscr X)$  中的可逆(有有界逆)算子集为开集.

证明:  $\forall A \in \mathcal{L}(\mathcal{X}) \ \perp A^{-1} \in \mathcal{L}(\mathcal{X}). \ \forall T \in \mathcal{L}(\mathcal{X}) \ \perp \|T - A\|_{\mathcal{L}(\mathcal{X})} < \frac{1}{\|A^{-1}\|}.$ 

$$||T^{-1}|| = ||(T - A + A)^{-1}||$$

$$= ||A^{-1}(I + (T - A)A^{-1})^{-1}||$$

$$\leq ||A^{-1}|| \cdot ||(I + (T - A)A^{-1})^{-1}||$$

$$< \infty.$$

由引理1.1.9,  $\|(T-A)A^{-1}\| \le \|T-A\| \cdot \|A^{-1}\| < 1$ . 故  $\mathcal{L}(\mathcal{X})$  中的可逆算子为开集.  $\square$ 

习题 1.1.3 考虑  $\ell^2$  上的左推移算子

$$A: (\xi_1, \xi_2, \cdots) \mapsto (\xi_2, \xi_3, \cdots),$$

证明 $\sigma_p(A) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}, \sigma_c(A) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ 且  $\sigma_r(A) = \emptyset$ .

证明: 首先说明A是有界线性算子且||A|| = 1. 设

$$x = (x_1, x_2, \dots, x_n, \dots) \in \ell^2,$$
  
 $y = Ax = (x_2, x_3, \dots, x_{n+1}, \dots).$ 

有

$$||Ax||^2 = \sum_{n=2}^{\infty} |x_n|^2 \le \sum_{n=1}^{\infty} |x_n|^2 = ||x||^2 \Longrightarrow ||Ax|| \le ||x|| \Longrightarrow ||A|| \le 1.$$

另一方面,  $x' := (0, 1, 0 \cdots)$ , 则 $Ax' = (1, 0, 0, \cdots)$ ,  $\|Ax'\| = \|x'\|$ . 故  $\|A\| = \sup_{x \neq \theta} \frac{\|Ax\|}{\|x\|} = 1$ .

- (1) 当 $|\lambda| > 1$ 时, $|\lambda| > ||A|| \Longrightarrow \lambda \in \rho(A)$ .
- (2)  $D := \{\lambda \in \mathbb{C} : |\lambda| < 1\}. \ \forall \lambda \in D, \{\lambda^n\}_{n=0}^{\infty} \in \ell^2.$  因为

$$A(1, \lambda, \lambda^2, \cdots) = (\lambda, \lambda^2, \cdots) = \lambda(1, \lambda, \lambda^2, \cdots),$$

所以 $\lambda \in \sigma_p(A)$ .

(3) 先考虑 $\lambda=1$ 时. 首先证明 $(I-A)^{-1}$ 存在.  $\forall x\in\ell^2,$  若(I-A)x=0, 则

$$(x_1, x_2, \cdots) = (x_2, x_3, \cdots).$$

于是  $x = x_1(1, 1, \cdots)$ . 又因为 $x \in \ell^2$ , 所以 $x_1 = 0$ , 从而 $x = \theta$ . 即 $(I - A)^{-1}$ 存在.

下证
$$R(I-A) \neq \ell^2$$
,但 $\overline{R(I-A)} = \ell^2$ .

$$y_1 = x_1 - x_2$$

$$y_2 = x_2 - x_3$$

$$\dots$$

$$y_k = x_k - x_{k+1}$$

$$\implies \sum_{j=1}^k y_j = x_1 - x_{k+1}.$$

即 $x_{k+1} = x_1 - \sum_{j=1}^k y_j$ . 易知, 非零分量为有限个的 $y \in R(I - A)$ . 事实上, 设y的非零分量个数为K, 取 $x_1 = \sum_{j=1}^k y_j$ ,

$$x_{k+1} = \begin{cases} x_1 - \sum_{j=1}^k y_j, k = 1, 2, \dots, K \\ 0, k > K \end{cases}.$$

由上式可知,  $x \in \ell^2$ .

存在 $y \in \ell^2$ , 但是 $y \notin R(I-A)$ . 事实上, 取 $y = \{\frac{1}{j}\}_{j=1}^{\infty} \in \ell^2$ . 则

$$x_{k+1} = x_1 - \sum_{j=1}^{k} \frac{1}{j} \to -\infty, \ k \to \infty.$$

所以,  $x \notin \ell^2$ , 也就是说 $y \notin R(I - A)$ , 那么 $R(I - A) \neq \ell^2$ .

下证 $\overline{R(I-A)}=\ell^2$ , 为此, 设 $\xi:=\{\xi_k\}_{k\in\mathbb{N}}, \forall \varepsilon\in(0,\infty)$ . 存在 $N\in\mathbb{N}$ , 使得 $\sum_{k=N+1}^{\infty}|\xi_k|^2<\varepsilon$ . 令  $y:=\{y_j\}_{j\in\mathbb{N}}$ . 其中

$$y_j = \begin{cases} \xi_j, j \le N \\ 0, j > N. \end{cases}$$

有

$$||y - \xi||_{\ell^2} = ||\{\xi_j - y_j\}_{j=N+1}^{\infty}||_{\ell^2} = \sum_{k=N+1}^{\infty} |\xi_k|^2 < \varepsilon.$$

故 $\overline{R(I-A)} = \ell^2$ . 从而 $1 \in \sigma_c(A)$ .

其次, 对于一般的 $\lambda$ 使 $|\lambda|=1$ . 可以划归为 $\lambda=1$  的情形. 事实上,

$$(\lambda I - A)x = y \iff \lambda x_k - x_{k+1} = y_k \iff \frac{x_k}{\lambda^k} - \frac{x_{k+1}}{\lambda^{k+1}} = \frac{y_k}{\lambda^{k+1}}, k = 1, 2, \cdots$$

令 $\xi_k = \frac{x_k}{\lambda^k}, \eta_k = \frac{y_k}{\lambda^{k+1}}, k = 1, 2, \cdots$ . 则有 $\xi_k - \xi_{k+1} = \eta_k, k = 1, 2, \cdots$ . 即划归为 $\lambda = 1$  的情形.

习题 1.1.4 考虑 $L^2(0,+\infty)$ 上的微分算子:

$$A: x(t) \mapsto x'(t).D(A) = H^{1}(0, +\infty).$$

证明 $\sigma_p(A) = \{\lambda \in \mathbb{C} : Re\lambda < 0\}$ .  $\sigma_c(A) = \{\lambda \in \mathbb{C} : Re\lambda = 0\}$ 且 $\sigma_r(A) = \emptyset$ . 其中 $Re\lambda$ 表示 $\lambda$  的实部.

证明: 记 $\Omega := (0, \infty)$ . 由Meyers-Serrin定理有

$$H^1(\Omega) = \{ u \in L^2(\Omega) : \widetilde{d}^{\alpha} u \in L^2(\Omega), |\alpha| = 1 \}.$$

其中 $\langle \widetilde{du}, \varphi \rangle = (-1)^{|\alpha|} \langle u, \widetilde{d}^{\alpha} \varphi \rangle. \ \forall \varphi \in C_c^{\infty}(\Omega).$ 

先证明A是闭算子. 只需证明当 $\{u_n\}_{n\in\mathbb{N}}\subset D(A)$ . 且

$$\begin{cases} u_n \to u \text{ in } L^2(\Omega) \\ u'_n \to v \text{ in } L^2(\Omega) \end{cases} (n \to \infty).$$

时, 有 $u \in D(A)$ , 且u' = v.  $\forall \varphi \in C_c^{\infty}(\Omega), \langle u'_n, \varphi \rangle = -\langle u_n, \varphi' \rangle$ . 从而由

$$|\langle u_n, \varphi' \rangle - \langle u, \varphi' \rangle| = |\langle u_n - u, \varphi' \rangle| \le ||u_n - u||_{L^2(\Omega)} ||\varphi'||_{L^2(\Omega)} \to 0. (n \to \infty).$$

类似可以证明 $\langle u'_n, \varphi \rangle \to \langle v, \varphi \rangle, n \to \infty$ . 即 $\langle v, \varphi \rangle = -\langle u, \varphi' \rangle, \forall \varphi \in C_c^{\infty}(\Omega)$  成立. 由弱导数的定义知 $u' = v \in L^2(\Omega)$ . 从而 $u \in H^1(\Omega)$ , 且u' = v. 故A 为闭算子.

再证 $\sigma_p(A) = \{\lambda \in \mathbb{C} : Re\lambda > 0\}$ . 考虑方程 $(\lambda I - A)u = 0$ , 即 $u' - \lambda u = 0$ . 由PDE知系数光滑从而弱解也光滑. 解ODE,  $u' - \lambda u = 0$ . 得u = 0 或 $ce^{\lambda x} \in L^2(\Omega)$ . 故 $(\lambda I - A)^{-1}$ 不存在.  $\lambda \in \sigma_p(A)$ .

再证 $\sigma_c(A) = \{\lambda \in \mathbb{C} : Re\lambda = 0\}$ . 先说明 $R(\lambda I - A) \subsetneq L^2(\Omega)$ . 令 $v(x) := \frac{e^{\lambda x}}{x+1} \in L^2(\Omega)$ . 由 $(\lambda I - A)u = v$ 得

$$u(x) = e^{\lambda x} [u(0) - \int_0^x e^{-\lambda t} v(t) dt]$$
$$= e^{\lambda x} [u(0) - \ln(x+1)] \notin L^2(\Omega).$$

故 $R(\lambda I - A) \subsetneq L^2(\Omega)$ .

再证 $\overline{R(\lambda I-A)}=L^2(\Omega)$ . 因 $C_c^\infty(\Omega)=L^2(\Omega)$ ,故只需说明 $R(\lambda I-A)\supset C_c^\infty(\Omega)$ . 事实上,对 $\forall v\in C_c^\infty(\Omega)$ .  $\exists M_v$ ,使得supp $v\subset (0,M_v)$ . 由 $(\lambda I-A)u=v$ ,得 $u(x)=e^{\lambda x}[u(0)-\int_0^x e^{-\lambda x}v(t)dt]$ . 令  $u(0):=\int_0^{M_v} e^{-\lambda t}v(t)dt$ . 则

$$u(x) = \begin{cases} e^{\lambda x} \int_{x}^{M_{v}} e^{-\lambda x} v(t) dt, & x \in (0, M_{v}) \\ 0, & x \in (M_{v}, \infty). \end{cases}$$

满足 $u \in H^1(\Omega)$ . 即 $R(\lambda I - A) \supset C_c^{\infty}(\Omega)$ . 故 $\overline{\lambda I - A} = L^2(\Omega)$ .

最后说明 $\rho(A) \supset \{\lambda \in \mathbb{C} : Re\lambda > 0\}$ . 设 $Re\lambda > 0$ , 此时 $ce^{\lambda x} \notin L^2(\Omega)$ . 从而 $(\lambda I - A)^{-1}$ 存在. 断言 $R(\lambda I - A) = L^2(\Omega)$ . 事实上, 对 $\forall v \in L^2(\Omega)$ . 令 $u(x) = e^{\lambda x} \int_0^\infty e^{\lambda t} v(t) dt = \int_0^\infty e^{-\lambda s} v(s+x) ds$ . 则u 满足 $u' - \lambda u = v$  且 $u \in H^1(\Omega)$ . 由Minkovski不等式, 有

$$||u||_{L^{2}(\Omega)} = \left| \left| \int_{0}^{\infty} e^{-\lambda x} v(s+x) ds \right| \right|_{L^{2}(\Omega)}$$

$$= \int_{0}^{\infty} |e^{-\lambda s}| ds ||v||_{L^{2}(\Omega)}$$

$$= \frac{1}{Re\lambda} ||v||_{L^{2}(\Omega)}$$

$$\leq \infty.$$

即 $R(\lambda I - A) = L^2(\Omega)$ . 由命题1.1.4知,  $\lambda \in \rho(A)$ . 故 $\rho(A) = \{\lambda \in \mathbb{C} : Re\lambda > 0\}$ . 又 因 $\rho(A) \cup \sigma_p(A) \cup \sigma_c(A) \cup \sigma_r(A) = \mathbb{C}$  且互不相交, 故结论得证.

习题 1.1.5 (1) 证明(1.1.1)和(1.1.2)成立

- (2) 利用 $S^n y = \sum_{k=0}^n A^k y$ 给出引理1.1.9的另一个证明.
- (3)  $\forall x \in \mathbb{R}$ , 定义 $\mathbb{R}$ 上的线性算子 $A_x : y \mapsto xy, \forall y \in \mathbb{R}$ . 利用此算子说明当|x| < 1时.

$$(1-x)^{-1} = \sum_{k=0}^{\infty} x^k$$

只是(1.1.3)的一个特例.

证明: (1)因为 $\|\sum_{n=0}^{N}A^n\|_{\mathscr{L}(\mathscr{X})} \leq \sum_{n=0}^{N}\|A^n\|_{\mathscr{L}(\mathscr{X})} \leq \sum_{n=0}^{N}\|A\|_{\mathscr{L}(\mathscr{X})}^n$ . 所以 $\forall k, N \in \mathbb{N}$ ,

$$\|\sum_{n=N}^{N+k}A^n\|_{\mathscr{L}(\mathscr{X})}\leq \sum_{n=N}^{N+k}\|A\|_{\mathscr{L}(\mathscr{X})}^n\xrightarrow{\|A\|_{\mathscr{L}(\mathscr{X})}<1}0, N\to\infty.$$

故 $\{\sum_{n=0}^N A^n\}_{N\in\mathbb{N}}$ 为 $\mathcal{L}(\mathcal{X})$ 中的基本列. 而 $\mathcal{L}(\mathcal{X})$  为Banach空间, 故此基本列收敛, 设 其极限为 $\sum_{n=0}^{\infty} A^n$ . 由此, 有

$$\| \sum_{n=0}^{\infty} A^n \|_{\mathscr{L}(\mathscr{X})} \le \| \sum_{n=0}^{\infty} A^n - \sum_{n=0}^{N} A^n \|_{\mathscr{L}(\mathscr{X})} + \| \sum_{n=0}^{N} A^n \|_{\mathscr{L}(\mathscr{X})}$$
$$\le \| \sum_{n=0}^{\infty} A^n - \sum_{n=0}^{N} A^n \|_{\mathscr{L}(\mathscr{X})} + \sum_{n=0}^{N} \|A\|_{\mathscr{L}(\mathscr{X})}^n.$$

 $\textstyle \diamondsuit N \to \infty, \; \textstyle \overleftarrow{\eta} \| \sum_{n=0}^{\infty} A^n \|_{\mathscr{L}(\mathscr{X})} \leq \sum_{n=0}^{\infty} \|A\|_{\mathscr{L}(\mathscr{X})}^n.$  $\forall x \in \mathscr{X}.$ 

$$\|\sum_{n=N}^{N+k}A^nx\|_{\mathscr{X}}\leq \sum_{n=N}^{N+k}\|A\|_{\mathscr{L}(\mathscr{X})}^n\|x\|_{\mathscr{X}}\xrightarrow{\|A\|_{\mathscr{L}(\mathscr{X})}<1}0, N\to\infty.$$

故 $\{\sum_{n=0}^{N} A^n x\}_{N\in\mathbb{N}}$ 为 $\mathcal{X}$ 中的基本列. 由 $\mathcal{X}$  的完备性知其有极限, 记其极限为 $\sum_{n=0}^{\infty} A^n x$ .  $||y - y_k||_{\mathscr{X}} = ||\sum_{n=k+1}^{\infty} A^n x|| \to 0, k \to \infty.$ 

(2)  $\forall y \in \mathcal{X}$ . 由压缩映射原理知, 存在唯一的 $x_y \in \mathcal{X}$ . 使得 $Sx_y = x_y$ . 即y = $(I-A)^{-1}x_y$ . 令 $\widetilde{x}=\lim_{n\to\infty}S^ny$ . 又由 $S^ny=\sum_{k=0}^nA^ky$  及(1.1.2) 式知 $\widetilde{x}\in\mathscr{X}$ . 因S连续,则 $S\widetilde{x}=S(\lim_{n\to\infty}S^ny)=\lim_{n\to\infty}S^{n+1}y=\widetilde{x}$ . 由压缩映射原理的唯一性知,

 $\widetilde{x}=x_y, \ \mathbb{P}$ 

$$y = (I - A)x_y = (I - A)\widetilde{x} = (I - A)(\lim_{n \to \infty} S^n)y.$$

由y的任意性知,  $(I-A)(\lim_{n\to\infty}S^n)=I$ . 类似可证 $(\sum_{n=0}^\infty A^n)(I-A)=I$ . 故

$$(I - A)^{-1} = \sum_{n=0}^{\infty} A^n.$$

且

$$||(I-A)^{-1}|| \le \sum_{n=0}^{\infty} ||A||^n = \frac{1}{1-||A||}.$$

(3) 当|x| < 1时, $|A_x||_{\mathscr{L}(\mathbb{R})} < 1$ . 由(2)知, $(I-A)^{-1} = \sum_{n=0}^{\infty} A_x^n$ . 故 $(I-A)(\sum_{n=0}^{\infty} A_x^n) = I$ . 注意到I = 1 且 $A_x(1) = x$ ,知

$$(1-x)(\sum_{n=0}^{\infty} x^n) = 1.$$

从而
$$(1-x)^{-1} = \sum_{n=0}^{\infty} x^n$$
.

习题 1.1.6 (补充题)  $\sigma(A^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(A)\}$ 

证明: 因 $A^{-1} \in \mathcal{L}(\mathcal{X})$ , 则 $0 \in \rho(A)$ 且 $0 \in \rho(A^{-1})$ . 下证

$$\rho(A^{-1}) = \{\lambda^{-1} : \lambda \in \rho(A) \setminus \{0\}\} \cup \{0\}.$$

若 $\lambda \in \rho(A)\setminus\{0\}$ , 则 $(\lambda I - A)^{-1} \in \mathcal{L}(\mathcal{X})$ . 对 $\forall x \in \mathcal{X}$ , 方程

$$(\lambda^{-1}I - A^{-1})y = x$$

有唯一解 $y = -\lambda A(\lambda I - A)^{-1}x \in \mathscr{X}$ . 从而 $R(\lambda^{-1}I - A^{-1}) = \mathscr{X}$ , 又因 $A^{-1}\mathscr{L}(\mathscr{X})$ , 由命题1.1.4 知 $\lambda^{-1} \in \rho(A)$ . 故 $\rho(A^{-1}) \supset \{\lambda^{-1} : \lambda \in \rho(A) \setminus \{0\}\} \cup \{0\}$ .

若
$$\lambda \in \rho(A^{-1}) \setminus \{0\}$$
,同上可证 $\lambda^{-1} \in \rho((A^{-1})^{-1}) = \rho(A)$ . 故

$$\rho(A^{-1}) \subset \{\lambda^{-1} : \lambda \in \rho(A) \setminus \{0\}\} \cup \{0\}.$$

从而 $\sigma(A^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(A)\}.$ 

### 1.2 紧算子

习题 1.2.1 设 $\mathcal{X}$ , $\mathcal{Y}$ 为Banach空间.  $A:\mathcal{X}\to\mathcal{Y}$ 为线性算子. 证明以下三条等价:

(1) A为全连续算子;

- (2) 对 $\mathscr{X}$ 中任意弱收敛于 $\theta$ 的点列 $\{x_n\}_{n\in\mathbb{N}}$ . 均有 $\{Ax_n\}_{n\in\mathbb{N}}$  在 $\mathscr{Y}$  中强收敛于 $\theta$ .
- (3) 存在 $x_0 \in \mathcal{X}$ 且对 $\mathcal{X}$ 中任意弱收敛于 $x_0$  的点列 $\{x_n\}_{n\in\mathbb{N}}$ ,均有 $\{Ax_n\}_{n\in\mathbb{N}}$  在 $\mathcal{Y}$ 中强收敛于 $Ax_0$ .

证明:  $(1)\Rightarrow(2)$  因A为全连续算子.  $\forall \{x_n\}_{n\in\mathbb{N}}\subset \mathscr{X}$  且 $x_n\to\theta, n\to\theta$ . 根据全连续算子的定义知 $Ax_n\to A\theta, n\to\infty$ . 又因A 为线性算子, 知 $A\theta=\theta$ . 故 $\{Ax_n\}_{n\in\mathbb{N}}$ 在 $\mathscr{Y}$ 中强收敛于 $\theta$ .

(2) ⇒(3) 设 $\forall x_n \rightarrow n \rightarrow \infty$ , 则 $x_n - x_0 \rightarrow \theta$ . 由(2)知 $A(x_n - x_0) \rightarrow \theta$ , 于是 $Ax_n \rightarrow Ax_0$ .

(3)⇒(1) 若 $\exists x_0 \in \mathscr{X}, \ \forall \{x_n\}, \ x_n \to x_0, n \to \infty.$  有 $Ax_n \to Ax_0, n \to \infty.$  那么,  $\forall x \in \mathscr{X}, \ \forall \{x'_n\} \subset \mathscr{X}$  且  $x'_n \to x, n \to \infty.$  则对于  $\forall f \in \mathscr{X}^*, \ f(x'_n) \to f(x), n \to \infty.$  那么

$$|f(x'_n - x + x_0) - f(x_0)| = |f(x'_n) - f(x) + f(x_0) - f(x_0)|$$
$$= |f(x'_n) - f(x)| \to 0, n \to \infty.$$

故 $x'_n - x + x_0 \rightarrow x_0$ . 则

$$A(x'_n - x + x_0) \to A(x_0)$$

$$\Longrightarrow A(x'_n) - A(x) + A(x_0) \to A(x_0)$$

$$\Longrightarrow A(x'_n) \to A(x), n \to \infty.$$

所以A为全连续算子.

习题 1.2.2 记 $S_n$ 如引理1.2.26之证明. 证明:  $\{S_n\}_{n\in\mathbb{N}}$ 一致有界当且仅当, 对 $\forall n\in\mathbb{N}, C_n\in\mathscr{X}^*$ .

证明:  $S_n(x) := \sum_{i=1}^n C_i(x)e_i$ .

 $(\Rightarrow)$  若 $\{S_n\}_{n\in\mathbb{N}}$ 一致有界. 则 $\forall n\in\mathbb{N}, \exists M>0, 使得<math>\|S_n\|_{\mathscr{L}(\mathscr{X})}\leq M.$ 

$$||C_n(x)e_n|| = ||S_n(x) - S_{n-1}(x)|| \le 2M||x||_{\mathscr{X}},$$

而  $\forall n \in \mathbb{N}, \|C_n\|_{\mathscr{L}(\mathscr{X})} \leq 2M \|e_n\|_{\mathscr{X}}^{-1}.$  故 $\forall n \in \mathbb{N}, C_n \in \mathscr{X}^*.$ 

(秦) 若 $\forall n \in \mathbb{N}, C_n \in \mathscr{X}^*$ ,而  $\forall n \in \mathbb{N}, \exists M_n > 0$ ,使得 $\|C_n\|_{\mathscr{L}(\mathscr{X})} \leq M_n$ . 由 $\|x - S_n(x)\| \to 0, n \to \infty$ . 故 $\exists N_0 > 0$ ,当 $n > N_0$  时,

$$||S_n(x)|| \le ||x||_{\mathscr{X}} + 1. \tag{1.2.1}$$

$$||S_n(x)||_{\mathscr{X}} = ||\sum_{i=1}^n C_i(x)e_i||_{\mathscr{X}} \le M_0 N_0 ||e_0||_{\mathscr{X}} ||x||_{\mathscr{X}},$$
(1.2.2)

其中 $M_0 := \max\{M_1, \dots, M_{N_0}\}, \|e_0\|_{\mathscr{X}} := \max\{\|e_1\|, \dots, \|e_{N_0}\|\}.$  由(1.2.1) 和(1.2.2) 知,  $\exists \widetilde{M} > 0, \forall x \in \mathscr{X}$ ,

$$\sup_{n\in\mathbb{N}} \|S_n(x)\|_{\mathscr{X}} \le \widetilde{M}.$$

则由共鸣定理, 知 $\{S_n\}_{n\in\mathbb{N}}$ 一致有界.

习题 1.2.3 证明: 若 $\mathscr{X}$ 为无穷维Banach空间,则 $\mathscr{X}$ 上紧算子没有有界逆.

证明: 若不然,  $A \in \mathfrak{C} \coprod A$ 有有界逆, 即 $A^{-1} \in \mathscr{L}(\mathscr{X})$ . 由命题1.2.6(vi) 可知,  $AA^{-1} = I \in \mathfrak{C}(\mathscr{X})$ .  $\forall B \in \mathscr{X} \coprod B$  为有界集,  $\overline{I(B)}$ 为 $\mathscr{X}$  中的紧集. 从而 $\overline{B}$ 为 $\mathscr{X}$ 中的紧集, 故 $\overline{B}$ 自列紧.

 $\forall \{x_n\}_{n\in\mathbb{N}} \subset B \subset \overline{B}$ ,由 $\overline{B}$  是自列紧的知 $\{x_n\}_{n\in\mathbb{N}}$ 有收敛子列,故B是列紧的.由[2]推论1.4.30: "B\*空间 $\mathscr{X}$  是有穷维的,当且仅当任意有界集是列紧的."可知 $\mathscr{X}$  是有穷维的.矛盾.

习题 1.2.4 设 $\mathcal{X}$ 为Banach空间,  $A \in \mathcal{L}(\mathcal{X})$ . 满足对 $\forall x \in \mathcal{X}$ ,

$$||Ax||_{\mathscr{X}} \ge \alpha ||x||_{\mathscr{X}}.$$

其中 $\alpha$ 为一正常数.证明A紧当且仅当 $\mathcal{X}$ 是又穷维的.

证明: ( $\Leftarrow$ )若dim  $\mathscr{X} < \infty$ . 由注记1.2.4知,  $A \in \mathfrak{C}(\mathscr{X})$ .

 $(\Rightarrow)$  令 $Ax = \theta$ . 若 $\|Ax\|_{\mathscr{X}} \ge \alpha \|x\|_{\mathscr{X}}$ , 知 $x = \theta$ . 故A为单射. 从而 $A^{-1}$ 存在.  $\forall x \in \mathscr{X}$ , 令y = Ax. 则

$$||y||_{\mathscr{X}} \ge \alpha ||A_{-1}y||_{\mathscr{X}} \Rightarrow ||A^{-1}||_{\mathscr{X}} \le \frac{1}{\alpha}.$$

故A有有界逆. 由习题3知, dim  $\mathcal{X} < \infty$ .

习题 1.2.5 设 $p \in [1,\infty]$ .  $\{\omega_n\}_{n \in \mathbb{N}} \subset \mathbb{C}$  且  $\lim_{n \to \infty} \omega_n = 0$ . 证明算子

$$T: \{\xi_n\} \to \{\omega_n \xi_n\}_{n \in \mathbb{N}}$$

是 $\ell^p$ 上的紧算子.

证明:  $\forall \xi = (\xi_1, \xi_2, \dots, \xi_n, \dots) \in \ell^p$ .  $\Diamond T_N \xi = (\omega_1 \xi_1, \omega_2 \xi_2, \dots, \omega_n \xi_n, 0, \dots)$ . 下证 $T_N \xi$  为 $\ell^p$ 上的有界线性算子.

①线性:  $\forall \xi, \eta \in \ell^p$ ,

$$T_N(\alpha\xi + \beta\eta) = (\omega(\alpha\xi_1 + \beta\eta_1), \cdots, \omega(\alpha\xi_N + \beta\eta_N), 0, \cdots)$$
$$= (\alpha\omega_1\xi_1, \cdots, \alpha\omega_N\xi_N, 0, \cdots) + (\alpha\omega_1\eta_1, \cdots, \alpha\omega_N\eta_N, 0, \cdots)$$
$$= \alpha T_N\xi + \beta T_N\eta.$$

②有界性:

$$||T_N||_{\mathscr{L}(\ell^p)} = \sup_{\|\xi\|_{\ell^p}=1} ||T_N\xi||_{\ell^p} = \sup_{\|\xi\|_{\ell^p}=1} \left(\sum_{i=1}^N |\omega_i\xi_i|^p\right)^{1/p}.$$

$$||T_N||_{\mathcal{L}(\ell^p)} \le M \sup_{\|\ell^p\|=1} \left( \sum_{i=1}^N |\xi_i|^p \right)^{1/p}$$

$$\le M \sup_{\|\ell^p\|=1} ||\xi||_{\ell^p}$$

$$= M.$$

由①, ②知  $T_N \in \mathcal{L}(\ell^p)$ . 再由注记1.2.4及dim  $R(T_N) < \infty$ 知 $T_N \in \mathfrak{C}(\ell^p)$ . 因

$$||T_N \xi - T \xi||_{\ell^p} = \left(\sum_{i=N+1}^{\infty} |\omega_i \xi_i|^P\right)^{1/p} \le \sup_{n>N} |\omega_n| ||\xi||_{\ell^p}.$$

故

$$||T - T_N||_{\mathscr{L}(\ell^p)} = \sup_{\|\xi\|_{\ell^p} = 1} ||T\xi - T_N\xi||_{\ell^p} \le \sup_{n \ge N} |\omega_n| \to 0, N \to \infty.$$

由命题1.2.6(iii)知 $T \in \mathfrak{C}(\ell^p)$ .

习题 1.2.6 设H是Hilbert空间, A是H上紧算子.  $\{e_n\}_{n\in\mathbb{N}}$  是H 的规范正交集. 证明

$$\lim_{n \to \infty} (Ae_n, e_n) = 0.$$

证明: 因 $\{e_n\}$ 为H的规范正交集,所以由Bessel不等式有 $\forall x \in \mathcal{X}, \sum_{n=1}^{\infty} |(x, e_n)|^2 \le \|x\|^2$ . 于是 $\lim_{n \to \infty} (x, e_n) = 0, \forall x \in H$  成立.

 $\forall f \in \mathscr{X}^*$ , 由F·Riesz定理,存在唯一的 $y_f \in \mathscr{X}$ ,使 $f(x) = (x, y_f)$ . 故 $f(e_n) = (e_n, y_f) = \overline{(y_f, e_n)}$ ,由于 $y_f \in \mathscr{X}$ ,故 $\lim_{n \to \infty} (y_f, e_n) = 0$ . 于是 $\lim_{n \to \infty} \overline{(y_f, e_n)} = 0$ ,从而  $\lim_{n \to \infty} f(e_n) = 0$ ,故 $e_n \to 0$ .

由命题1.2.14知, A是全连续算子, 故 $Ae_n \to 0$ . 由[2]习题2.5.18知, 在H中 $x_n \to x_0, y_n \to y_0$ , 有 $(x_n, y_n) \to (x_0, y_0)$ . 故  $\lim_{n \to \infty} (Ae_n, e_n) = 0$ .

习题 1.2.7 证明注记1.2.23中的 $\ell^2(\Gamma)$ 为Hilbert空间.

**证明**: 首先证明 $\ell^2$ (Γ)为内积空间.

$$①(f,g) = \sum_{x \in \Gamma} f(x)g(x) = \sum_{x \in \Gamma} g(x)f(x) = (g,f).$$

$$2(f, f) = \sum_{x \in \Gamma} [f(x)]^2 \ge 0.$$

$$(3)(f,f) = \sum_{x \in \Gamma} [f(x)]^2 = 0 \Leftrightarrow f(x) \equiv 0.$$

下证完备性. 任取 $\ell^2(\Gamma)$ 中的基本列 $f^{(n)}$ , 则

$$||f_m - f_n||_{\ell^2(\Gamma)} := \left\{ \sum_{x \in \Gamma} |f_m(x) - f_n(x)|^2 \right\}^{1/2} \to 0, m, n \to \infty.$$

那么,  $|f_m(x) - f_n(x)| \to 0, m, n \to \infty$ . 即 $\{f_n(x)\}_{n \in \mathbb{N}}$ 为 $\mathbb{R}$ 中的Cauchy 列. 可设其极限函数

$$f(x) = \begin{cases} \lim_{n \to \infty} f_n(x), x \in \bigcup_{n=1}^{\infty} \{x \in \Gamma : f_n(x) \neq 0\}, \\ 0, \cancel{\sharp} \stackrel{\sim}{\text{\rm tc}}. \end{cases}$$

那么

$$||f_n - f||_{\ell^2(\Gamma)} = \left\{ \sum_{x \in \Gamma} \lim_{m \to \infty} |f_n(x) - f_m(x)|^2 \right\}^{1/2}$$
(Fatou \(\forall \) \(\frac{1}{m}\) \(\left\) \(

$$\lim_{n \to \infty} \|f_n - f\|_{\ell^2(\Gamma)} \le \lim_{n \to \infty} \lim_{m \to \infty} \left\{ \sum_{x \in \Gamma} |f_n(x) - f_m(x)|^2 \right\} = 0.$$

即 $f_n \to f$  in  $\ell^2(\Gamma)$ .  $||f||_{\ell^2(\Gamma)} \le ||f_n - f||_{\ell^2(\Gamma)} + ||f_n||_{\ell^2(\Gamma)} < \infty$ . 完备性得证.

习题 1.2.8 设 $\mathscr{X}$ 为线性赋范空间, $\mathscr{Y}$ 为Hilbert空间.证明 $\overline{F(\mathscr{X},\mathscr{Y})}=\mathfrak{C}(\mathscr{X},\mathscr{Y})$ .

习题 1.2.9 设 $\mathscr{X}$ 为线性赋范空间, $\mathscr{Y}$ 为具有Schauder基的Banach空间.证明 $\overline{F(\mathscr{X},\mathscr{Y})}=\mathfrak{C}(\mathscr{X},\mathscr{Y}).$ 

习题 1.2.10 (补充题) 定义
$$T: \begin{cases} \ell^2 \to \ell^2 \\ \{\xi_i\}_{i \in \mathbb{N}} \mapsto \{\sum_{j=1}^{\infty} a_{ij}\xi_j\}_{i \in \mathbb{N}}. \end{cases}$$
 其中 $\{a_{ij}\}_{i,j \in \mathbb{N}} \subset \mathbb{C}.$  满足 $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2 < \infty.$ 

- i) 证明T是 $\ell^2$ 上的紧算子.
- ii) 举例说明: 存在无穷维的矩阵 $(a_{ij})$ 使 $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}|a_{ij}|^2=\infty$ . 但按上述定义的T 仍然是紧算子.
- iii) 若 $\forall i \neq j, a_{ij} = 0$ . 证明: T是紧算子 $\Longleftrightarrow a_{mm} \to 0, n \to \infty$ .

证明: i)  $\diamondsuit T_N(\{\xi_i\}_{i\in\mathbb{N}}) := \{\sum_{j=1}^\infty a_{ij}\xi_j, \cdots, \sum_{j=1}^\infty a_{Nj}\xi_j, 0, \cdots\}, \, \text{则dim}(R(T)) < \infty.$  往证 $T_N \in \mathcal{L}(\ell^2)$ .

$$||T_N||_{\mathscr{L}(\ell^2)} := \sup_{\|\xi\|_{\ell^2} = 1} ||T_N \xi||_{\ell^2}$$

$$= \sup_{\|\xi\|_{\ell^2} = 1} \left\{ \sum_{i=1}^N |\sum_{j=1}^\infty a_{ij} \xi_j|^2 \right\}^{1/2}$$
(Cauchy-Schwarz 不禁式)  $\leq \left\{ \sum_{i=1}^N \sum_{j=1}^\infty |a_{ij}|^2 \right\} < \infty.$ 

从而 $T_N \in F(\ell^2)$ . 由注记知 $T_N \in \mathfrak{C}(\ell^2)$ .

$$||T - T_N||_{\mathscr{L}(\ell^2)} = \sup_{|\xi|_{\ell^2} = 1} \left\{ \sum_{i=N+1}^{\infty} |\sum_{j=1}^{\infty} a_{ij} \xi_j|^2 \right\}^{1/2}$$

$$\leq \sup_{\|\xi\|_{\ell^2} = 1} \left\{ \sum_{i=N+1}^{\infty} (\sum_{j=1}^{\infty} |a_{ij}|^2) (\sum_{j=1}^{\infty} |xi_j|^2) \right\}^{1/2}$$

$$= \left\{ \sum_{i=N+1}^{\infty} \sum_{j=N+1}^{\infty} |a_{ij}|^2 \right\}^{1/2}, N \to \infty.$$

从而由命题1.2.6(iii)知,  $T \in \mathfrak{C}(\ell^2)$ .

ii) 令

$$(a_{ij}) = \begin{pmatrix} 1 & 0 & \cdots & 0 & \cdots \\ 0 & \frac{1}{\sqrt{2}} & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\sqrt{n}} & \cdots \\ \vdots & \vdots & & \vdots & \ddots \end{pmatrix}.$$

则  $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2 = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$ . 由例题1.3.7知, T 为紧算子.

iii) 由习题1.2.5知,  $a_{m,m} \to 0, m \to 0 \Longrightarrow T \in \mathfrak{C}(\ell^2)$ . 若 $T \in \mathfrak{C}(\ell^2)$ , 则 $T \in \mathcal{L}(\ell^2)$ . 于 是

$$||T||_{\mathscr{L}(\ell^2)} = \sup_{\|\xi\|_{\ell^2} = 1} ||T\xi||_{\ell^2} \le \left(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2\right)^{1/2} < \infty.$$

 $\iiint_{m\to\infty} a_{m,m} = 0.$ 

#### 紧算子的谱理论 1.3

习题 1.3.1 举例说明Banach空间 $\mathcal{X}$ 及 $A \in \mathfrak{C}(\mathcal{X})$ , 但 $0 \notin \sigma(A)$ .

 $\mathbf{M}: \mathbb{D}$   $\mathbb{E} \mathbb{N}$  , 取 $\mathcal{X}:=\mathbb{R}^n$ . 定义A:=I. 对 $\mathcal{X}$  中任意有界集B,  $\overline{I(B)}=\overline{B}$  为有界闭集. 由于有限维Banach 空间中紧集 $\iff$ 有界闭集. 故I 为紧算子. 又由于 $I^{-1} = I \in \mathcal{L}(\mathbb{R}^n)$ . 故 $0 \notin \sigma(A)$ .

习题 1.3.2 举例说明注记1.3.4情形(i)中的连续谱,情形(ii)中的连续谱,剩余谱,情 形(iii) 中的剩余谱.

 $\mathbf{H}: (i) \ \mathbb{R}\{\lambda_i\}_{i\in\mathbb{Z}_+}, \lambda_i\neq 0, \forall i\in\mathbb{Z}_+ \ \mathbb{L}\lambda_i\to 0, i\to\infty.$  定义

$$\ell^2(\mathbb{Z}) := \left\{ \{x_n\}_{n \in \mathbb{Z}} : \left(\sum_{n \in \mathbb{Z}} x_n^2\right)^{1/2} < \infty \right\}$$

和

$$T_1: \begin{cases} \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z}) \\ (\cdots, x_{-2}, x_{-1}, x_0, x_1, x_2, \cdots) \mapsto (\cdots, \lambda_2 x_{-2}, \lambda_1 x_{-1}, \lambda_0 x_0, \lambda_1 x_1, \lambda_2 x_2, \cdots), \end{cases}$$
T. 是坚管子、東京上、对于Ym  $\in \mathbb{N}$ 、完义

则 $T_1$ 是紧算子. 事实上, 对于 $\forall m \in \mathbb{N}$ . 定义

$$T_1^{(m)}(\{x_n\}_{n\in\mathbb{Z}}) := \{\cdots, 0, \lambda_m x_{-m}, \cdots, \lambda_0 x_0, \cdots, \lambda_m x_m, 0, \cdots\},$$

则 $T_1^{(m)} \in \mathscr{F}(\ell^2(\mathbb{Z}))$ . 由 $\lim_{i \to \infty} \lambda_i = 0$  知,  $\forall \varepsilon > 0, \exists N^* \in \mathbb{N},$ 使当 $i > N^*$ 时,  $|\lambda_i| < \varepsilon$ . 此时

$$||T_1^{(m)} - T_1||_{\mathscr{L}(\ell^2(Z))} = \sup_{||x||=1} ||(T_1(m) - T_1)x||_{\ell^2(\mathbb{Z})}$$
$$= \sup_{||x||=1} \left\{ \sum_{|n|>m} |\lambda_n|^2 |x_n|^2 \right\}^{1/2} < \varepsilon.$$

对于 $T_1$ , 寻找到了一列有穷秩算子, 且依范数收敛到 $T_1$ , 故 $T_1 \in \mathfrak{C}(\ell^2(\mathbb{Z}))$ . 由于 $\dim(\ell^2(\mathbb{Z})) = \infty$ , 又由定理1.3.1(i)知,  $0 \in \sigma(T_1)$ .

先证 $\sigma(T_1) = \{0\}$ . 事实上, 对 $\forall \lambda \in \mathbb{C} \setminus \{0\}$ . 若 $\{x_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$  满足 $(\lambda I - T_1)(\{x_n\}_{n \in \mathbb{Z}}) = \theta$ , 则 $\lambda x_n - \lambda_{|n-1|} x_{n-1} = 0$ ,  $\forall n \in \mathbb{Z}$ . 故

$$x_n = \begin{cases} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\lambda^n} x_0, n \in \mathbb{N} \\ \frac{\lambda^{|n|}}{\lambda_1 \lambda_2 \cdots \lambda_{|n|}} x_0, n \in \mathbb{Z} \backslash \mathbb{Z}_+. \end{cases}$$

由此及 $\{x_n\}_{n\in\mathbb{Z}}\in\ell^2(\mathbb{Z})$ 有 $x_0=0\Longrightarrow\{x_n\}_{n\in\mathbb{Z}}=\theta$ . 即 $\sigma(T_1)=\{0\}$ .

再证 $\{0\} = \sigma_c(T_1)$ . 注意到若 $\{x_n\}_{n\in\mathbb{Z}} \in \ell^2(\mathbb{Z})$  满足 $T_1(\{x_n\}_{n\in\mathbb{Z}}) = \theta$ . 则对 $\forall n \in \mathbb{Z}, \lambda_{|n|}x_n = 0 \Rightarrow x_n = 0$ . 所以 $\{x_n\}_{n\in\mathbb{Z}} = \theta$ . 即 $0 \notin \sigma_p(T_1)$ 且 $T_1$ 为单射,因此 $T_1^{-1}$ 存在.又因为 $\{e_n\}_{n\in\mathbb{Z}} \subset R(T_1)$  且 $\{e_n\}_{n\in\mathbb{Z}}$ 为 $\ell^2(\mathbb{Z})$  的一组Schauder 基. 故 $\overline{R(T_1)} = \ell^2(\mathbb{Z})$ . 因此 $\{0\} = \sigma_c(T_1)$ . 即 $T_1$ 满足要求.

(ii)-(a)(连续谱) 令 $\ell^2(\mathbb{Z})$ ,  $T_1$ 如(i)中. 给定 $m \in \mathbb{N}$  与 $\{\lambda_1\}_{i=1}^m \subset \mathbb{C}$ . 定义

$$T_2: \left\{ \begin{array}{c} \mathbb{C}^m \to \mathbb{C}^m \\ (x_1, \cdots, x_m) \mapsto (\lambda_1 x_1, \cdots, \lambda_m x_m) \end{array} \right.$$

和

$$A_1: \left\{ \begin{array}{c} \mathbb{C}^m \oplus \ell^2(\mathbb{Z}) \to \mathbb{C}^m \oplus \ell^2(\mathbb{Z}) \\ x \oplus y \mapsto T_2 x \oplus T_1 y \end{array} \right.$$

且对 $\forall x \oplus y \in \mathbb{C}^m + \ell^2(\mathbb{Z}), \|x + y\|_{\mathbb{C}^m \oplus \ell^2(\mathbb{Z})} := \|x\|_{\mathbb{C}^m} + \|y\|_{\ell^2(\mathbb{Z})}.$  则 $A_1$  为紧算子且 $\sigma(A_1) = \sigma_c(A_1) \cup \sigma_p(A_1).$  其中 $\sigma(A_1) = \{0\}, \sigma(A_1) = \{\lambda_i\}_{i=1}^m.$ 

(ii)-(b)(剩余谱) 令 $T_2$ 如(a)中所示, 给定 $\{\mu_i\}_{i=1}^{\infty} \subset \mathbb{C}, \mu_i \neq 0. \forall i \in \mathbb{N} \ \underline{\mathrm{I}} \mu_i \to 0, i \to \infty$ . 定义

$$T_3: \left\{ \begin{cases} \ell^2 \to \ell^2 \\ \{a_k\}_{k \in \mathbb{N}} \mapsto \{0, \mu_1 a_1, \mu_2 a_2, \dots \} \end{cases} \right.$$

和

$$A_2: \left\{ \begin{array}{l} \mathbb{C}^m \oplus \ell^2 \to \mathbb{C}^m \oplus \ell^2 \\ x \oplus y \mapsto T_2 x \oplus T_3 y. \end{array} \right.$$

且对 $\forall x \oplus y \in \mathbb{C}^m \oplus \ell^2, \|x \oplus y\|_{\mathbb{C}^m \oplus \ell^2} := \|x\|_{\mathbb{C}^m} + \|y\|_{\ell^2}.$  则 $A_2$ 为紧算子且 $\sigma(A_2) = \sigma_r(A_2) \cup \sigma_p(A_2).$  其中 $\sigma_r(A_2) = \{0\}, \sigma_p(A_2) = \{\lambda_i\}_{i=1}^m.$ 

(iii) 令 $T_3$ 和 $\{\mu_i\}_{i\in\mathbb{N}}$ 如(ii)所示. 定义

$$T_4: \begin{cases} \ell^2 \to \ell^2 \\ \{a_k\}_{k \in \mathbb{N}} \mapsto \{\mu_k a_k\}_{k \in \mathbb{N}}. \end{cases}$$

和

$$A_3: \begin{cases} \ell^2 \oplus \ell^2 \to \ell^2 \oplus \ell^2 \\ x \oplus y \mapsto T_3 x \oplus T_4 y. \end{cases}$$

且对 $\forall x \oplus y \in \ell^2 \oplus \ell^2$ ,  $\|x \oplus y\|_{\ell^2 \oplus \ell^2} := \|x\|_{\ell^2} + \|y\|_{\ell^2}$ . 则 $A_3$  为紧算子且 $\sigma(A_3) = \sigma_r(A_3) \cup \sigma_r(A_3)$ , 其中 $\sigma_r(A_3) = \{0\}$ ,  $\sigma_r(A_3) = \{\mu_i\}_{i \in \mathbb{N}}$ .

习题 1.3.3 设 $\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ ,在 $\ell^2$ 上定义算子

$$A:(x_1,x_2,\cdots)\to(a_1x_1,a_2x_2,\cdots)$$

- (1) 证明: A在 $\ell^2$ 上有界当且仅当 $\{a_n\}_{n\in\mathbb{N}}$  为有界数列.
- (2) 若A有界. 求 $\sigma(A)$ .

证明:  $(1)(\Rightarrow)$  反证法. 若 $\sup_{i\in\mathbb{N}}|a_i|=\infty$ , 对 $\forall k\in\mathbb{N}$ , 取 $e_k:=(0,0,\cdots,1,0,\cdots)$ . 则 $\|Ae_k\|_{\ell^2}=1$ . 故由算子范数定义知 $\|A\|\geq\|Ae_k\|_{\ell^2}=|a_k|$ . 因此 $\infty=\sup_{k\in\mathbb{N}}|a_k|\leq\|A\|$ . 这与 $A\in\mathcal{L}(\ell^2)$  矛盾. 即 $\sup_{i\in\mathbb{N}}|a_i|<\infty$ . 即 $\{a_i\}_{i\in\mathbb{N}}$  为有界数列.

(⇐) A显然为线性算子且对 $\forall x \in \ell^2$ , 有

$$||Ax||_{\ell^2} = \left[\sum_{i \in \mathbb{N}} |a_i x_i|^2\right]^{1/2} \le \sup_{i \in \mathbb{N}} |a_i| ||x||_{\ell^2}.$$

于是 $||A|| \le \sup_{i \in \mathbb{N}} |a_i| < \infty$ . 故 $A \in \mathcal{L}(\ell^2)$ .

(2) 取 $\lambda := a_i$ , 和 $e_i = (0, 0, \dots, 0, 1, 0, \dots), i \in \mathbb{N}$ . 因 $(\lambda I - A)e_i = \theta$ . 故 $\lambda \in \sigma_p(A) \subset \sigma(A)$ . 又由A 有界及推论1.1.11 知 $\sigma(A)$  闭. 故 $\overline{\{a_i : i \in \mathbb{N}\}} \subset \sigma(A)$ .

下证 $\sigma(A) \subset \overline{\{a_i : i \in \mathbb{N}\}}$ , 为此只需证明 $\forall \lambda \in \overline{\{a_i : i \in \mathbb{N}\}}$ , 有 $\lambda \notin \sigma(A)$ . 事实上, 对 $\forall \lambda \notin \overline{\{a_i : i \in \mathbb{N}\}}$ 与 $x \in \ell^2$ 满足

$$(\lambda I - A)(x_1, x_2, \cdots) = ((\lambda - a_1)x_1, (\lambda - a_2)x_2, \cdots) = \theta.$$

 $f(x_i) = 0, \forall i \in \mathbb{N}, \quad \mathbb{N} = \theta. \quad \text{故}(\lambda I - A) \quad \text{为单射}, \quad \mathbb{N}(\lambda I - A)^{-1} \quad \text{存在.} \quad \text{注意到对} \forall \lambda \notin \overline{\{a_i : i \in \mathbb{N}\}}, \quad \text{存在正常数} c, \quad \text{使得对} \forall i \in \mathbb{N}, \quad \overline{q} | \lambda - a_i | > c. \quad \text{由此及}(\lambda I - A)^{-1} \quad \text{存在且}$  对 $\forall x \in \ell^2$ ,

$$(\lambda I - A)^{-1}(x_1, x_2, \cdots) = (\frac{1}{\lambda - a_1} x_1, \frac{1}{\lambda - a_2} x_2, \cdots)$$

知 $(\lambda I - A)^{-1}$ 有界. 又因若 $y_i = (y_1, y_2, \dots) \in \ell^2$ , 则 $x = (x_1, x_2, \dots) := (\frac{y_1}{\lambda - a_1}, \frac{y_2}{\lambda - a_2}, \dots) \in \ell^2$ , 且 $(\lambda I - A)x = y$ . 即 $R(\lambda I - A) = \ell^2$ . 故 $(\lambda I - A)^{-1} \in \mathcal{L}(\ell^2)$ . 因此 $\lambda \in \sigma(A)$ . 从而有 $\sigma(A) \subset \overline{\{a_i : i \in \mathbb{N}\}}$ . 综上得 $\sigma(A) = \overline{\{a_i : i \in \mathbb{N}\}}$ .

习题 1.3.4 在C[0,1]中考虑映射 $T: x(t) \to \int_0^t x(s)ds, \forall x \in C[0,1]$ . 证明

- (i) T是紧算子.
- (ii) 求 $\sigma(T)$ 及T的一个非平凡的闭的不变子空间.

证明: (i) 定义

$$k(s,t) = \begin{cases} 1, 0 \le s \le t \le 1 \\ 0, 0 \le t < s \le 1 \end{cases},$$

则 $k(s,t) \in L^2([0,1] \times [0,1])$ . 且对 $\forall x \in C[0,1]$ 和 $t \in [0,1]$ ,

$$Tx(t) = \int_0^t x(s)ds = \int_0^1 k(s,t)x(s)ds.$$

由于 $C([0,1]\times[0,1])$  在 $L^2([0,1]\times[0,1])$ 中稠, 故习 $\{k_n\}_{n\in\mathbb{N}}\subset C([0,1]\times[0,1])$ . 使得 $k_n\to k$  in  $L^2([0,1]\times[0,1])$ . 注意到对 $\forall x\in C([0,1])$  与 $t\in[0,1]$ . 类似于例1.2.17 可证

$$T_N x(t) := \int_0^1 k_n(s, t) x(s) ds$$

为紧算子. 且有Holder不等式知

$$||T_N x - T x||_{L^2} = \left\{ \int_0^1 \left| \int_0^1 [k_n(s,t) - k(s,t)] x(s) ds \right|^2 dt \right\}^{1/2}$$

$$\leq \left\{ \int_0^1 \left[ \int_0^1 |k_n(s,t) - k(s,t)|^2 \right] \left[ \int_0^1 |x(s)|^2 ds \right] dt \right\}^{1/2}$$

$$\leq ||x|| ||k_n - k||_{L^2([0,1] \times [0,1])}.$$

所以

$$||T_n - T|| \le ||k_n - k||_{L^2([0,1] \times [0,1])} \to 0, n \to \infty.$$

由此及命题1.2.6(iii)知T为紧算子.

(ii) 由T紧及定理1.3.1(i)知 $0 \in \sigma(T)$ . 下证 $\sigma(T) = \{0\}$ . 为此只需证明 $r_{\sigma}(T) = \lim_{n \to \infty} ||T_n||^{1/n} = 0$ . 事实上, 注意到对 $\forall x \in C[0,1]$  与 $t \in [0,1]$ . 有

$$Tx(t) = \int_0^t x(s)ds$$
  
$$T^2x(t) = \int_0^t \int_0^u x(s)dsdu = \int_0^t (t-s)x(s)ds.$$

由此及数学归纳法知, 对 $\forall n \in \mathbb{N}$ ,

$$T^{n}x(t) = \frac{1}{(n-1)!} \int_{0}^{t} (t-s)^{n-1}x(s)ds.$$

故

$$||T^n x|| \le \frac{1}{(n-1)!} \max_{t \in [0,1]} \left| \int_0^t (t-s)^{n-1} x(s) ds \right| \le \frac{1}{n!} ||x||.$$

于是 $||T^n|| \le \frac{1}{n!}$ . 故 $\lim_{n \to \infty} ||T^n||^{1/n} = 0$ , 因此 $\sigma(T) = \{0\}$ .

下面说明T存在非平凡不变子空间,为此只需证 $\{0\} = \sigma_r(T)$ . 事实上,由T 的定义与微积分基本定理知 $R(T) = \{y \in C^1[0,1] : y(0) = 0\}$ . 注意到若 $Tx = \theta$ . 则 $x = \theta$ . 故T 为单射,即 $T^{-1}$ 存在.由此及 $x \equiv 1 \in C[0,1]$ ,但 $1 \notin \overline{R(T)}$  知 $0 \in \sigma_r(T)$ . 故T 存在非平凡的不变子空间.

$$|x(0)| = |x(0) - x_n(0)| \le ||x - x_n|| \to 0, n \to \infty.$$

于是x(0) = 0. 即 $x \in \Omega$ , 故 $\Omega$ 闭.

习题 1.3.5 (补充题) 给定数列
$$\{a_n\}_{n=1}^{\infty}$$
, 定义 $A: \begin{cases} \ell^1 \to \ell^1 \\ \{x_i\}_{i \in \mathbb{N}} \to \{a_i x_i\}_{i \in \mathbb{N}}. \end{cases}$ 证明:

- (1)  $A \in \mathcal{L}(\ell^1) \iff \sup_{n \in \mathbb{N}} |a_n| < \infty.$
- (2)  $A^{-1} \in \mathcal{L}(\ell^1) \iff \inf_{n \in \mathbb{N}} |a_n| > 0.$
- (3)  $A \in \mathfrak{C}(\ell^1) \iff \lim_{n \to \infty} a_n = 0.$

证明: (1) 同习题1.2.2(i).

(2) (⇒) 若 $A^{-1} \in \mathcal{L}(\ell^1)$ , 则∃ $M \in (0, \infty)$ . 使得 $\forall x \in \ell^1$ ,  $||Ax||_{\ell^1} \ge M||x||_{\ell^1}$ . 取 $e_n := (0, 0, \dots, 0, 1, 0, \dots)$ ,  $\forall n \in \mathbb{N}$ . 则有 $|a_n| = ||Ae_n||_{\ell^1} \ge M||e_n||_{\ell^1} = m$ . 于是 $\inf_{n \in \mathbb{N}} |a_n| > 0$ .

( $\Leftarrow$ ) 若 $\inf_{n\in\mathbb{N}}|a_n|>0$ , 则对 $\forall n\in\mathbb{N}$ , 有 $|a_n|>0$ , 定义

$$B: \left\{ \begin{aligned} \ell^1 &\to \ell^1 \\ (x_1, x_2, \cdots) &\mapsto (a_1^{-1} x_1, a_2^{-1} x_2, \cdots) \end{aligned} \right.$$

则AB = BA = I. 故 $A^{-1} = B$ . 由(1)知,

$$||A^{-1}||_{\mathscr{L}(\ell^1)} = ||B||_{\mathscr{L}(\ell^1)} \le \sup_{n \in \mathbb{N}} |a_n^{-1}| = \frac{1}{\inf_{n \in \mathbb{N}} |a_n|} < \infty.$$

故 $A^{-1} \in \mathcal{L}(\ell^1)$ .

- (3) (⇐) 同习题1.2.5.
- (⇒) 反证法. 若  $\lim_{n\to\infty} a_n \neq 0$ ,则∃ $\varepsilon_0 > 0$ ,及{ $a_n$ } $_{n\in\mathbb{N}}$ 的子列{ $a_{n_k}$ } $_{k\in\mathbb{N}}$ . 使得对于∀ $k \in \mathbb{N}$ ,  $|a_{n_k}| \geq \varepsilon_0 > 0$ ,取 $e_{n_k} := (0,0,\cdots,0,1,0,\cdots)$ . 则{ $a_{n_k}$ } $_{k\in\mathbb{N}}$ 为 $\ell^1$ 中有界列,但对于∀ $l \in \mathbb{N}$ ,  $||Ae_k Ae_{n_{k_l}}||_{\ell^1} = |a_{n_k}| + |a_{k_l}| \geq 2\varepsilon_0 > 0$ . 即{ $Ae_{n_k}$ } $_{k\in\mathbb{N}}$ 没有收敛子列. 从而 $A \notin \mathcal{L}(\ell^1)$ ,矛盾.

### 1.4 Hilbert-Schmidt 定理

习题 **1.4.1** 设H为复Hilbert空间, 且A为H上的有界线性算子. 证明 $A + A^*$ ,  $AA^*$ ,  $A^*A$ 均 为对称算子. 且

$$||A^*A||_{\mathscr{L}(H)} = ||A^*A||_{\mathscr{L}(H)} = ||A||^2_{\mathscr{L}(H)}.$$

证明: (i) ①

$$((A + A^*)x, y) = (Ax, y) + (A^*x, y)$$
$$= (x, A^*y) + (x, Ay)$$
$$= (x, (A + A^*)y).$$

所以A + A\*是对称算子.

- ②  $(AA^*x, y) = (A^*x, A^*y) = (x, AA^*y)$ . 所以 $AA^*$ 是对称算子.
- ③  $(A^*Ax, y) = (Ax, Ay) = (x, A^*Ay)$ . 所以 $A^*A$ 是对称算子.
- (2) 因为 $(AA^*x,x) = (A^*x,A^*x) = \|A^*x\|_H^2$ . 所以

$$||AA^*||_{\mathscr{L}(H)} = \sup_{||x||_H = 1} |(AA^*x, x)| = \sup_{||x||_H = 1} ||A^*x||_H^2 = ||A^*||_{\mathscr{L}(H)}^2.$$

同理

$$||A^*A||_{\mathscr{L}(H)} = \sup_{||x||_H = 1} |(A^*Ax, x)| = \sup_{||x||_H = 1} ||Ax||_H^2 = ||A||_{\mathscr{L}(h)}^2.$$

又因 $\|A^*\|_{\mathscr{L}(H)} = \|A\|_{\mathscr{L}(H)}, \,\,$ 故 $\|AA^*\|_{\mathscr{L}(H)} = \|A^*A\|_{\mathscr{L}(H)} = \|A\|_{\mathscr{L}(H)^2}.$ 

习题 1.4.2 设 H 为 复 H ilbert 空间,且 A 为 H 上 的 有 界 线 性 算 子,满 足  $(Ax,x) \geq 0, \forall x \in H$ ,且  $(Ax,x) = 0 \Leftrightarrow x = \theta$ . 证 明

$$||Ax||_H^2 \le ||A||_{\mathscr{L}(H)}(Ax, x), \forall x \in H.$$

证明: 设a(x,y)=(Ax,y),则 $a(\cdot,\cdot)$ 为 $H\times H\to\mathbb{K}$ 上的共轭双线性函数,由《泛函分析 (上册)》命题1.6.9有

$$|a(x,y)| \le [a(x,x)a(y,y)]^{1/2}, \forall x, y \in H.$$

那么

$$|(Ax,y)|^2 \le (Ax,x)(Ay,y).$$

在上式中,  $\diamondsuit y = Ax$ , 则

$$||Ax||_H^4 \le (Ax, x)(A^2x, Ax)$$
  
$$< (Ax, x)||A^2x||_H ||Ax||_H.$$

所以 $||Ax||_H^4 \le ||A||_{\mathscr{L}(H)} ||Ax||_H^2$ . 即得 $||Ax||_H^4 \le ||A||_{\mathscr{L}(H)} (Ax, x)$ .

习题 1.4.3 设H为复Hilbert空间, 且A为H上的对称紧算子. 令

$$m(A) := \inf_{\|x\|_H = 1} (Ax, x), \ M(A) := \sup_{\|x\|_H = 1} (Ax, x).$$

证明:

- (1) 若 $m(A) \neq 0$ , 则 $m(A) \in \sigma_p(A)$ ;
- (2) 若 $M(A) \neq 0$ , 则 $M(A) \in \sigma_p(A)$ .

证明: (1) 因A为紧算子,则 $\sigma(A)\setminus\{0\} = \sigma_p(A)\setminus\{0\}$ . 从而为证 $m(A) \in \sigma_p(A)$ ,只需证 $m(A) \in \sigma(A)$ . 令B := A - m(A)I,则 $B \in \mathcal{L}(H)$ ,且对 $\forall x, \|x\|_H = 1$ ,有 $(Bx, x) = (Ax, x) - m(A) \geq 0$ . 从而对 $\forall x \in H, (Bx, x) \geq 0$ . 从而对 $\forall t \in R$  及 $\|x\|_H = 1$ ,

$$0 \le (B(tBx + x), tBx + x) = t^2(B^2x, Bx) + 2t||Bx||_H + (Bx, x).$$

于是 $4\|Bx\|_H^4 \le 4\|B\|_H^3(Bx,x)$ . 取  $\inf_{\|x\|_H=1} = 0$ , 若 $m(A) \notin \sigma(A)$ , 则 $m(A) \in \rho(A)$ . 从 而 $B^{-1} \in \mathcal{L}(H)$ . 取 $\{x_n\}_{n \in \mathbb{N}} \subset \{x \in H : \|x\|_H = 1\}$ 使得 $\|Bx_n\| \to 0, n \to \infty$ , 则

$$1 = ||x_n|| = ||B^{-1}Bx_n|| \le ||B^{-1}|| ||Bx_n|| \to 0.$$

矛盾. 故 $m(A) \in \sigma(A)$ .

(2) 记B := -A, 则

$$m(B) = \inf_{\|x\|_{H}=1}(Bx, x) = \inf_{\|x\|_{H}=1}(-Ax, x) = -\sup_{\|x\|_{H}=1}(Ax, x) = -M(A).$$

由(1)知 $m(B) \in \sigma_p(B)$ ,从而 $-M(A) \in \sigma_p(-A)$ .故 $M(A) \in \sigma_p(A)$ .

习题 1.4.4 设H为复Hilbert空间, 且A为H上的对称紧算子, 证明

- (1) 若A非零,则A至少有一个非零本征值.
- (2) 若M是A的非零闭不变子空间,则M上必含有A 的本征值.

**证明**: (1) 由定理1.4.6知,  $\exists x_0 \in H$ ,  $||x_0||_H = 1$ 使得

$$|(Ax_0, x_0)| = \sup_{\|x\|_H = 1} (Ax, x) = \|A\|_{\mathscr{L}(H)},$$

且 $Ax_0 = (Ax_0, x_0)x_0$ . 因为A非零, $\|x_0\|_H = 1$ ,故 $(Ax_0, x_0) \neq 0$ ,且 $(Ax_0, x_0)$ 位A的非零本征值.

(2) 由命题1.4.5(ii)及命题1.2.6(iv)知, A|M还是对称紧算子.

若 $A|_{M} \neq 0$ ,同(1)中的结果, $\exists x_{0} \in M, \|x_{0}\|_{H} = 1$ .使得 $A|_{M}x_{0} = (A|_{M}x_{0}, x_{0})x_{0}$ .

于是
$$(A|_M x_0, x_0)$$
为 $A|_M$ 的本征值.

习题 1.4.5 设H为复Hilbert空间,则 $P \in \mathcal{L}(H)$ 为H上的正交投影算子当且仅当

$$(Px, x) = ||Px||_H^2, \ \forall x \in H.$$

证明:  $(\Rightarrow)$  因 $P \in \mathcal{L}(H)$ 是H的正交投影算子. 设M 是一个闭的线性子空间. 由正交分解定理, 对 $\forall x, y \in H$ , 有

$$x = x_M + x_{M^{\perp}}, (x_M \in M, x_{M^{\perp}} \in M^{\perp})$$
  
 $y = y_M + y_{M^{\perp}}. (y_M \in M, y_{M^{\perp}} \in M^{\perp})$ 

有P的定义知,  $x_M = Px, y_M = Py$ . 故

$$(Px, y) = (x_M, y_M + y_{M^{\perp}}) = (x_m, y_m) = (x, Py).$$

所以P对称. 因此 $(P^2x,x) = (Px,Px) = \|Px\|_{H^2}$ . 又因 $P^2 = P$ ,故 $(Px,x) = \|Px\|_H^2$ . ( $\Leftarrow$ ) 因 $(Px,x) = \|Px\|_H^2 \in \mathbb{R}$ ,故P是对称算子(由命题1.4.5(i)). 又因

$$(Px, x) = ||Px||_H^2 = (Px, Px) = (P^2x, x),$$

所以 $((P-P^2)x,x)=0, \forall x\in H.$  再由[2] 习题1.6.1中的极化恒等式, 有

$$((P - P^2)x, y) = 0, \forall x, y \in H.$$

所以 $P = P^2$ .

令M=P(H), 可知M闭. 事实上, 设 $\{x_n\}_{n\in\mathbb{N}}\subset M$ , 且有 $Px_n\to y$ ,  $P^2x_n=Px_n\to Py$ . 所以 $P=Py\in M$ . 故M是闭的. 下证P是正交投影算子. 对 $\forall x\in H$ , 有 $x=Px+(I-P)x, Px\in M$ . 又因 $\forall y\in H$ ,

$$((I - P)x, Py) = (x, Py) - (Px, Py) = (x, Py) - (x, P2y) = 0.$$

从而 $(I-P)x \in M^{\perp}$ , 即P为 $H \to M$ 的正交投影算子.

### 第二章 Banach 代数

#### 2.1 代数准备知识

习题 2.1.1 在注记2.1.8中, 若 $\mathcal{A}$ 为一个Banach代数, 并在 $\hat{\mathcal{A}}$  上赋予范数

$$||(x, \alpha)|| := ||x|| + |\alpha||$$
.

证明 $\hat{A}$ 是一个Banach代数.

证明: ① 由习题2.1.3知, 总是一个代数.

- ② 首先说明 $\|\cdot\|$ 是范数.  $\forall (a, \lambda) \in \hat{\mathcal{A}}$ ,
- i)  $\|(a,\lambda)\| \ge 0$ 显然成立.  $\|(a,\lambda)\| = 0 \Leftrightarrow \|a\| + \|\lambda\| = 0 \Leftrightarrow \|a\| = 0 = \|\lambda\| \Leftrightarrow (a,\lambda) = (\theta,0).$
- ii)  $\|(a,\lambda)+(b,\mu)\|=\|(a+b,\lambda+\mu)\|=\|a+b\|+|\lambda+\mu|\leq \|a\|+\|b\|+|\lambda|+|\mu|=\|(a,\lambda)\|+\|(b,\mu)\|.$ 
  - iii)  $\|\alpha(a,\lambda)\| = \|(\alpha a, \alpha \lambda)\| = \|\alpha a\| + \|\alpha \lambda\| = |\alpha|(\|a\| + |\lambda|) = |\lambda|\|(a,\lambda)\|.$

再证其完备性. 设 $\{(a_n, \lambda_n)\}_{n\in\mathbb{N}}$ 为 $\hat{\mathscr{A}}$ 中的基本列. 由 $\mathscr{A}$  和 $\mathbb{C}$ 的完备性知,  $\exists a\in\mathscr{A}, \lambda\in\mathbb{C}$ , 使

$$||a_n - a|| \to 0, |\lambda_n - \lambda| \to 0.$$

那么

$$||(a_n, \lambda_n) - (a, \lambda)|| = ||a_n - a|| + |\lambda_n - \lambda| \to 0.$$

故ঐ完备. ঐ在||·||下是一个完备的Banach空间.

③ 最后证明 $\|(a,\lambda)(b,\lambda)\| \le \|(a,\lambda)\|\|(b,\lambda)\|$ .

$$\begin{split} \|(a,\lambda)(b,\mu)\| &= \|(ab+\lambda b + \mu a,\lambda \mu)\| \\ &= \|ab+\lambda b + \mu a\| + \|\lambda \mu\| \\ &\leq \|ab\| + |\lambda| \|b\| + |\mu| \|a\| + |\lambda \mu| \\ &\leq \|a\| \|b\| + |\lambda| \|b\| + |\mu| \|a\| + |\lambda| |\mu| \\ &= (\|a\| + |\lambda|)(\|b\| + |\mu|) \\ &= \|(a,\lambda)\| \|(b,\mu)\|. \end{split}$$

综上, *Â*是一个Banach代数.

习题 2.1.2 证明定义2.1.1中(a+b)(c+d) = ac + bc + ad + bd等价于

$$\begin{cases} (a+b)c = ac + bc \\ a(c+d) = ac + ad. \end{cases}$$

且 $(\lambda \mu)(ab) = (\lambda a)(\mu b)$ 等价于

$$\begin{cases} \lambda(ab)c = (\lambda a)b \\ \lambda(ab) = a(\lambda b). \end{cases}$$

证明: ① ( $\Rightarrow$ ) 若(a+b)(c+d) = ac+bc+ad+bd. 取 $d=\theta$ , 则(a+b)c=ac+bc. 同理 取 $b=\theta$ , 则a(c+d) = ac+ad.

(⇐) 若

$$\begin{cases} (a+b)c = ac + bc \\ a(c+d) = ac + ad. \end{cases}$$

則(a+b)(c+d) = (a+b)c + (a+b)d = ac + bc + ad + bd.

② 
$$(\Rightarrow)$$
  $\diamondsuit \mu = 1$ ,  $\# \lambda(ab) = (\lambda a)b$ ,  $\forall \lambda \in \mathbb{C}$ .  $\diamondsuit \lambda = 1$ ,  $\# \mu(ab) = a(\mu b)$ ,  $\forall \mu \in \mathbb{C}$ .  $(\Leftarrow)$   $(\lambda \mu)(ab) = (\lambda \mu a)b = \mu(\lambda a)b = (\lambda a)(\mu b)$ .

习题 2.1.3 设 $\hat{A}$ 为一个代数, 令 $\hat{A} = \mathcal{A} \times \mathbb{C}$  并且规定 $\hat{A}$  上代数运算如下:

$$\alpha(a,\lambda) + \beta(b,\mu) := (\alpha a + \beta b, \alpha \lambda + \beta \mu).$$
$$(a,\lambda)(b,\mu) := (ab + \lambda b + \mu a, \lambda \mu).$$

 $(a,\lambda),(b,\mu)\in \hat{\mathcal{A}},\alpha\beta\in\mathbb{C}.$  证明 $\hat{\mathcal{A}}$  为一个代数.

证明: ① 易验证必满足线性空间的八条性质, 故必 为线性空间.

② 结合律:

$$[(a,\lambda)(b,\mu)](c,\xi) = (a,\lambda)[(b,\mu)(c,\xi)].$$

3

$$[(a,\lambda) + (b,\mu)](c,\xi) = (a,\lambda)(c,\xi) + (b,\mu)(c,\xi),$$
$$(a,\lambda)[(c,\xi) + (d,\eta)] = (a,\lambda)(c,\xi) + (a,\lambda)(d,\eta).$$

4

$$\alpha[(a,\lambda)(b,\mu)] = [\alpha(a,\lambda)](b,\mu),$$
  
$$\alpha[(a,\lambda)(b,\mu)] = (a,\lambda)[\alpha(b,\mu)].$$

综上, 必为一个代数.

习题 2.1.4 (补充题) 设  $\mathscr{A}$  是一个代数.  $x,y \in \mathscr{A}$ , 记  $G(\mathscr{A})$  为  $\mathscr{A}$  中的全体可逆元.

- i) 若 $x, xy \in G(\mathscr{A})$ , 证明 $y \in G(\mathscr{A})$ .
- ii) 若 $xy, yx \in G(\mathscr{A})$ . 证明 $x, y \in G(\mathscr{A})$ .
- iii) 说明可能存在xy = e, 但 $yx \neq e$ 的情况.
- iv) 若xy = e且 $yx = z \neq e$ . 说明z是非平凡幂等元. $(z^2 = z, z \neq 0)$

证明: i) 因 $x, xy \in G(\mathscr{A})$ . 则 $y = x^{-1}xy$ . 故 $y(x^{-1}xy)^{-1} = e$ . 由于 $G(\mathscr{A})$ 是群, 故 $y \in G(\mathscr{A})$ .

- ii) 因 $x,y \in G(\mathscr{A})$ , 则 $xy(xy)^{-1}=e$ . 从而 $x^{-1}=y(xy)^{-1}$ . 即 $x \in G(\mathscr{A})$ . 类似可证 $y \in G(\mathscr{A})$ .
  - iii)  $\diamondsuit \mathscr{A} := \mathscr{L}(\ell^2)$ .  $\diamondsuit$

$$x: \begin{cases} \ell^2 \to \ell^2 \\ \{a_n\}_{n \in \mathbb{N}} \mapsto (a_2, a_3, \cdots) \end{cases}, y: \begin{cases} \ell^2 \to \ell^2 \\ \{a_n\}_{n \in \mathbb{N}} \mapsto (0, a_1, a_2, \cdots) \end{cases}.$$

易知满足条件.

iv) 因为 $z^2 = (yx)(yx) = y(xy)x = yx = z$ , 故只需证 $z \neq \theta$ . 事实上, 若 $z = \theta$ , 则 $\theta = (yx)y = y(xy) = y$ . 从而 $xy = x\theta = \theta$ . 矛盾. 所以z 是非平凡幂等元.

### 2.2 Banach 代数

习题 2.2.1 证明例 2.2.6 中 《 完备.

证明:  $S^1$ 是平面上的单位圆周且

$$\mathscr{A} := \{ u \in C(S^1) : u(e^{i\theta}) = \sum_{n \in \mathbb{Z}} c_n e^{in\theta}, \sum_{n \in \mathbb{Z}} |c_n| < \infty \}.$$

范数 $||u|| = \sum_{n \in \mathbb{Z}} |c_n|$ .

设 $\{u^{(m)}\}$ 为 $\mathscr{A}$ 中的基本列.  $u^{(m)}(e^{i\theta})=\sum_{n\in\mathbb{Z}}c_n^{(m)}e^{in\theta}$ . 则

$$||u^{(m)} - u^{(\ell)}|| = \sum_{n \in \mathbb{Z}} |c_n^{(m)} - c_n^{(\ell)}| \to 0, m, \ell \to \infty.$$

即对 $\forall n \in \mathbb{Z}$ , 有 $|c_n^{(m)} - c_n^{(\ell)}| \to 0, m, \ell \to \infty$ . 故对 $\forall n \in \mathbb{Z}, \{c_n^{(m)}\}$  为 $\mathbb{C}$  中的基本列. 由 $\mathbb{C}$ 的 完备性, 可设其极限为 $c_n$ . 令 $u(e^{i\theta}) = \sum_{n \in \mathbb{N}} c_n e^{in\theta}$ . 因为

$$\max_{\theta \in [0,2\pi]} |(u_j - u)(e^{i\theta})| = \max_{\theta \in [0,2\pi]} \left| \sum_{n \in \mathbb{Z}} (c_n^{(j)} - c_n)(e^{i\theta}) \right| \le \sum_{n \in \mathbb{Z}} |c_n^{(j)} - c_n| \to 0, j \to \infty.$$

即 $u_i \Rightarrow u$ . 故 $u \in C(S^1)$ .

$$\|u^{(m)} - u\| = \sum_{n \in \mathbb{Z}} |c_n^{(m)} - c_n^{(\ell)}|$$
$$= \sum_{n \in \mathbb{Z}} (\lim_{\ell \to \infty} (c_n^{(m)} - c_n^{\ell})$$
(Fatou 引理)  $\leq \lim_{\ell \to \infty} \sum_{n \in \mathbb{Z}} |c_n^{(m)} - c_n^{(\ell)}|.$ 

再令 $m \to \infty$ . 则

$$\lim_{m \to \infty} \|u^{(m)} - u\| \le \lim_{m \to \infty} \lim_{\ell \to \infty} \sum_{n \in \mathbb{Z}} |c_n^{(m)} - c_n^{(\ell)}| = 0.$$

 $\mathbb{P}u^{(m)} \to u, m \to \infty. \ \mathbb{Z}$ 

$$||u|| \le ||u^{(m)} - u|| + ||u^{(m)}|| < \infty.$$

故 $u \in \mathcal{A}$ . 完备性得证.

习题 2.2.2 设 $\mathscr{B}$ 及其他记号同定理2.2.13且商模 $\|[\cdot]\|$ 定义如定理2.2.13的证明. 证明 $\|[e]\|=1$ 且

$$\inf_{x \in [a], y \in [b]} \|xy\| = \inf_{x \in [a]} \|x\| \inf_{y \in [b]} \|y\|.$$

证明: (1)  $\mathcal{B} = \mathcal{A}/J$ ,  $\|a\| = \inf_{x \in [a]} \|x\|$ ,  $\forall a \in \mathcal{B}$ . 由商模的定义知 $\|[e]\| = \inf_{x \in [e]} \|x\| \le \|e\| = 1$ . 又因为J是极大理想,故由命题2.1.13 知, $e \notin J$ . 故 $[e] \neq [\theta]$ . 由此及 $\|[e]\| = \|[ee]\| = \|[ee]\| \le \|[ee]\| \cdot \|[ee]\|$ . 进一步知 $\|[ee]\| \ge 1$ . 故 $\|[ee]\| = 1$ .

(2) 一方面, 由下确界的定义,  $\forall \varepsilon > 0, \exists \widetilde{x} \in [a], \widetilde{y} \in [b], 满足$ 

$$\inf_{x \in [a]} \|x\| + \varepsilon \geq \|\widetilde{x}\| \geq 0, \inf_{y \in [b]} \|x\| + \varepsilon \geq \|\widetilde{y}\| \geq 0.$$

故

$$(\inf_{x\in[a]}\|x\|+\varepsilon)(\inf_{y\in[b]}\|y\|+\varepsilon)\geq \|\widetilde{x}\|\cdot\|\widetilde{y}\|\geq \|\widetilde{x}\widetilde{y}\|\geq \inf_{x\in[a],y\in[b]}\|xy\|.$$

由 $\varepsilon$ 的任意性知

$$\inf_{x \in [a], y \in [b]} \|xy\| \ge \inf_{x \in [a]} \|x\| \inf_{y \in [b]} \|y\|.$$

另一方面,由定理2.2.13知, $\mathscr{B}=\mathscr{A}/J\cong\mathbb{C}$ . 即对 $\forall [a]\in\mathscr{B}, [a]=z[e]$ ,其中[e]为单位元.  $z\in\mathbb{C}, |z|=\|[a]\|$ . 故对于 $[a], [b]\in\mathscr{B}$ . 设 $[a]=z_1[e], [b]=z_2[e], z_1, z_2\in\mathbb{C}$ 且 $|z_1|=\|[a]\|, |z_2|=\|[b]\|$ .  $\forall x\in[a], \, \exists x\in[e], \, \forall x\in[e], \, \forall y\in[b], \, \exists x\in[e], \, \forall y\in[b], \, \exists x\in[e], \, \forall y\in[b], \, \exists x\in[e], \, \forall x\in[e], \, \forall x\in[e], \, \exists x', y'\in J, \, \forall x\in[e], \, \exists x', y'\in[e], \,$ 

$$\inf_{x \in [a], y \in [b]} ||xy|| = \inf_{\widetilde{x}, \widetilde{y} \in [e]} ||(z_1 z_2) \widetilde{x} \widetilde{y}||$$

$$= \inf_{\widetilde{x}, \widetilde{y} \in [e]} ||z_1| \cdot ||z_2||| \widetilde{x} \widetilde{y}||$$

$$= ||[a]|| \cdot ||[b]|| \inf_{\widetilde{x}, \widetilde{y} \in [e]} ||\widetilde{x}, \widetilde{y}||$$

$$\geq ||[a]|| \cdot ||[b]||$$

$$= \inf_{x \in [a]} ||x|| \inf_{y \in [b]} ||y||.$$

习题 2.2.3 设业是有单位元的Banach代数,  $a,b \in \mathcal{A}$ . 证明:

- (1) 若e-ab可逆, 则e-ba也可逆.
- (2) 若非零复数 $\lambda \in \sigma(ab)$ , 则 $\lambda \in \sigma(ba)$ .
- (3) 若a可逆, 则 $\sigma(ab) = \sigma(ba)$ .

- 证明: (1) 设e-ab的逆为A, 则 $(e-ab)A=e\Rightarrow A-abA=e\Rightarrow bA-babA=eb=b\Rightarrow (e-ab)(bA)=b\Rightarrow (e-ba)(bAa)=ba\Rightarrow (e-ba)(bAa)-(e-ba)=e\Rightarrow (e-ba)(bAa-e)=e$ . 同理(bAa+e)(e-ba)=e. 故e-ba 可逆.
- (2) 若 $\lambda \in \sigma(ab)$ . 即 $\lambda e ab \notin G(\mathscr{A})$ . 要证 $\lambda \in \sigma(ba)$ . 即要证 $\lambda e ba \notin G(\mathscr{A})$ . 利用反证法. 若 $\lambda e ba \in G(\mathscr{A})$ . 即e ba 可逆. 则 $e (\frac{1}{\lambda}b)a$  可逆. 由(1) 的结论知 $e \frac{1}{\lambda}ab$  可逆. 故 $\lambda e ab$  可逆矛盾. 所以 $\lambda \in \sigma(ba)$ .
  - (3) 由(2)知,  $\sigma(ba)\setminus\{0\} = \sigma(ba)\setminus\{0\}$ . 故只需证明, 若 $0 \in \sigma(ab)$ , 则 $0 \in \sigma(ba)$ .

证明: 设 $\{a_n\}_{n\in\mathbb{N}}\subset\mathscr{A}$ , 且 $a_n\to a$ ,  $\varphi(a_n)\to b$ . 则 $a\in\mathscr{A}$ . 由闭图像定理, 要证 $\varphi$ 连续, 只需 $\varphi(a)=b$ . 不妨设 $\varphi$ 非零. 若 $\varphi$  是零映射, 即 $\forall a\in\mathscr{A}$ ,  $\varphi(a)=0$ . 则 $\varphi(a_n)=\theta$ . 结论显然成立.

设 $\triangle_{\mathscr{B}}$ 为 $\mathscr{B} \to \mathscr{C}$ 上的非零同态全体.  $\forall h \in \triangle_{\mathscr{B}}$ . 记 $\psi := h \circ \varphi$ . 下证 $\psi \not\in \mathscr{A} \to \mathscr{C}$  的非零连续同态.

① 由 $\varphi$ 是 $\mathscr{A} \to \mathscr{B}$ 的同态知,  $\psi$ 是 $\mathscr{A} \to \mathscr{C}$ 的同态. 事实上,  $\forall a_1, a_2 \in \mathscr{A}.\lambda, \mu \in \mathscr{C}.$  有

$$\varphi(\lambda a_1 + \mu a_2) = h \circ \varphi(\lambda a_1 + \mu a_2) = h(\lambda \varphi(a_1) + \mu \varphi(a_2))$$
$$= \lambda (h \circ \varphi)(a_1) + \mu (h \circ \varphi)(a_2) = \lambda \psi(a_1) + \mu \psi(a_2).$$

$$\psi(a_1 a_2) = h \circ \varphi(a_1 a_2) \xrightarrow{\varphi \exists \overline{x}} h(\varphi(a_1)\varphi(a_2)) = \varphi(a_1)\varphi(a_2).$$

- ② 又由 $\varphi$ 与h均为非零, 知 $\psi$ 也非零.
- ③ 又由命题2.2.14知,  $\forall a \in \mathcal{A}$ ,  $|\psi(a)| \leq ||a||$ . 即 $\psi$ 连续.

故 $\psi$ 是 $\mathscr{A} \to \mathscr{C}$ 的非零连续同态. 由假设知 $\lim_{n\to\infty} \varphi(a_n) = b$ ,  $\lim_{n\to\infty} a_n = a$ . 故

$$h(b) = h(\lim_{n \to \infty} \varphi(a_n)) = \lim_{n \to \infty} h \circ \varphi(a_n) = \lim_{n \to \infty} \psi(a_n)$$
$$= \psi(\lim_{n \to \infty} a_n) = \psi(a) = h(\varphi(a)).$$

故 $h(\varphi(a) - b) = 0$ , 对 $\forall h \in \triangle_{\mathscr{B}}$  均成立. 即 $\varphi(a) \to b \in \ker h$  对 $\forall h \in \triangle_{\mathscr{B}}$ 成立.

记i为注记2.2.17, 即:

$$i: \left\{ \begin{array}{l} \mathfrak{M} \to \triangle_{\mathscr{B}} \\ J \mapsto \varphi_J. \end{array} \right.$$

由引理2.2.19知i为双射. 故 $\forall h \in \triangle_{\mathscr{B}}$ . 都存在 $J \in \mathfrak{M}$ , 使得 $h_J = h$ . 故 $\varphi(a) - b \in \ker h_J$ 对 $\forall h_J \in \triangle_{\mathscr{B}}$ 成立.

由i为双射,即 $\varphi(a)-b\in\ker h_J$ 对 $\forall J\in\mathfrak{M}$  均成立.又由引理2.2.18知 $\ker h_J=J$ . 故 $\varphi(a)-b\in J, \forall J\in\mathfrak{M}$  成立.即

$$\varphi(a) - b \in \cap_{J \in \mathfrak{M}} J$$
.

又由 $\mathscr{B}$ 是半单的. 故 $\cap_{J\in\mathfrak{M}}=\{\theta\}$ . 故 $\varphi(a)-b=\theta$ , 即 $\varphi(a)=b$ .

习题 2.2.5 证明定理: 设义是一个集合, 又设对于每一点 $x \in \mathcal{X}$ 指定了 $\mathcal{X}$ 的一个集族 $\mathcal{U}_x$ , 它们满足

- (i)  $\forall x \in \mathcal{X}, \mathcal{U}_x \neq \emptyset; \ \text{wr} \ U \in \mathcal{U}_x, \ \text{M} \ x \in U;$
- (ii) 如果 $U, V \in \mathcal{U}_x$ , 则 $U \cup V \in \mathcal{U}_x$ ;
- (iii) 如果 $U \in \mathcal{U}_x$ , 并且 $U \subset V$ , 则 $V \in \mathcal{U}_x$ ;
- (iv) 如果 $U \in \mathcal{U}_x$ , 则存在 $V \in \mathcal{U}_x$ 满足:  $V \subset U$ 且对 $\forall y \in V$ , 有 $V \in \mathcal{U}_y$ .

则 $\mathscr{X}$ 有唯一的拓扑 $\tau$ 使得对于每一个 $x \in \mathscr{X}$ ,子集族 $\mathscr{U}_x$ 恰是x 在拓扑空间( $\mathscr{X}, \tau$ )中的邻域系.

设 $\mathscr{X}$ 是一个Banach空间,对任意的 $n \in \mathbb{N}, \varepsilon \in (0, +\infty)$ 及 $\{x_1, x_2, \cdots, x_n\} \subset \mathscr{X},$ 定义

$$V(\varepsilon, x_1, x_2, \cdots, x_n) := \{ \varphi \in \mathcal{X} * : |\varphi(x_i)| < \varepsilon, i \in \{1, 2, \cdots, n\} \}.$$

城 $\mathscr{X}$ \*的任一个含有一个形如(2.2.6)的集合的子集为 $\mathscr{X}$ \* 中零泛函的一个邻域. 证明所有的这样的邻域构成 $\mathscr{X}$ \* 原点的邻域系, 且该邻域系及其平移可以唯一确定 $\mathscr{X}$ \* 的\* 弱拓扑, 并且 $\mathscr{X}$ \* 依此\*弱拓扑构成拓扑线性空间.

证明: 参考[3]第61页, 定理2.3.3.

习题 2.2.6 用定理1.1.14即"有界线性算子A,  $\sigma(A) \neq \emptyset$ " 来证明定理2.2.10 即"可除Banach 代数 $\mathscr{A}$ 等距同构与 $\mathbb{C}$ ".

证明: 令 $\mathscr{B}$  :=  $\{ze: z \in \mathbb{C}\}$ . 为证 $\mathscr{A}$  等距同构于 $\mathscr{C}$ . 只需证 $\mathscr{A} = \mathscr{B}$ . 即对 $\forall a \in \mathscr{A}, \exists z \in \mathbb{C}$ , 使得a = ze. 若不然,  $\exists a_0 \in \mathscr{A}$ , 使得 $\forall z \in \mathbb{C}, a \neq ze$ . 由 $\mathscr{A}$ 可除知,  $(ze - a_0)^{-1}$ 存在. 对此 $a_0$ , 定义

$$f_{a_0}: \left\{ \begin{array}{l} \mathscr{A} \to \mathscr{A} \\ x \mapsto a_0 x. \end{array} \right.$$

则 $f_{a_0} \in \mathcal{L}(A)$ . 由此及定理1.1.14知,  $\sigma(f_{a_0}) \neq \varnothing$ . 注意到对 $\forall z \in \mathbb{C}$ .  $zI - f_{a_0}$ 为单射, 且 $\forall y \in \mathbb{A}$ ,

$$(zI - f_{a_0})((ze - a_0)^{-1}y) = (ze - a_0)(ze - a_0)^{-1}y = y.$$

即 $zI - f_{a_0}$ 为单射. 故由性质1.1.4知 $(zI - f_{a_0})^{-1} \in \mathcal{L}(A)$ . 即

$$z \in \rho(f_{a_0}) \Rightarrow \mathbb{C} = \rho(f_{a_0}) \Rightarrow \sigma(f_{a_0}) = \varnothing.$$

矛盾.

习题 2.2.7 证明以下两条等价.

- (1) 设  $\mathcal{X}$  为 Banach 空间,  $\forall A \in \mathcal{L}(\mathcal{X}), \sigma(A) \neq \emptyset$ .
- (2) 设业是有单位元的Banach代数.则 $\forall a \in \mathcal{A}, \ \sigma(a) \neq \emptyset$ .

证明:  $(2) \Rightarrow (1)$ : 若 $\mathscr{X}$ 为Banach空间,则 $\mathscr{L}(\mathscr{X})$  是交换的,有单位元的Banach代数. 从而由(2) 知,  $\forall A \in \mathscr{L}(\mathscr{X}), \sigma(A) \neq \varnothing$ . 即(1)成立.

 $(2) \Rightarrow (2)$ : 对任意给定 $a \in A$ . 定义

$$f_a: \left\{ \begin{array}{c} \mathscr{A} \to \mathscr{A} \\ x \mapsto ax. \end{array} \right.$$

那么,  $f_a \in \mathcal{L}(\mathcal{A})$ . 由此及(1)知,  $\sigma(f_a)$ 非空. 即 $\exists \lambda \in \mathbb{C}$ , 使得 $\lambda I - f_a$ 非单射或非满射.

若 $\lambda I - f_a$ 非单射: 即 $\exists x, y \in \mathscr{A}$ , 使得 $x \neq y$  且 $(\lambda I - f_a)x = (\lambda I - f_a)y$ . 于是 $(\lambda e - a)y \Rightarrow \lambda e - a \notin G(\mathscr{A}) \Rightarrow \lambda \in \sigma(A)$ . 故 $\sigma(a)$  非空.

若 $\lambda I - f_a$ 非满射: 即 $\exists y \in \mathscr{A}$ . 使得对 $\forall x \in \mathscr{A}, (\lambda I - f_a)x = y$ . 于是 $\lambda e - a \notin G(\mathscr{A}) \Rightarrow \lambda \in \sigma(a)$ . 故 $\sigma(a)$ 非空.

习题 2.2.8 证明引理2.2.16证明中的 $\widetilde{\varphi}$  是 $\mathscr{A}/J \to \mathbb{C}$  上的等距同构映射.

$$\widetilde{\varphi}: \left\{ egin{aligned} \mathscr{A}/J &\to \mathbb{C} \\ [a] &\to \varphi(a). \end{aligned} \right.$$

证明: ① 证明 $\tilde{\varphi}$ 是同态.

$$\widetilde{\varphi}([a][b]) = \widetilde{\varphi}([ab]) = \varphi(ab) = \varphi(a)\varphi(b) = \widetilde{\varphi}([a])\widetilde{\varphi}([b]).$$

$$\widetilde{\varphi}([a] + [b]) = \varphi(a+b) = \varphi(a) + \varphi(b) = \widetilde{\varphi}([a]) + \widetilde{\varphi}([b]).$$

- ② 证明 $\tilde{\varphi}$ 是单射. 若 $\tilde{\varphi}([a]) = 0$ , 则 $\varphi(a) = 0$ , 于是 $a \in \ker \varphi = J$ .
- ③ 证明 $\tilde{\varphi}$ 是满射. 对 $\forall z \in \mathbb{C}$ .  $\tilde{\varphi}([ze]) = \varphi(ze) = z\varphi(e) = z$ .
- ④  $\widetilde{\varphi}$ 等距. 注意到对 $\forall a \in \mathscr{A}$ .  $\varphi(a \varphi(a)e) = 0$ . 故 $a \varphi(a)e \in J$ . 即 $[a] = \varphi(a)[e]$ . 由此及 $\|e\|_* = 1$ 知 $\|[a]\|_* = \|\varphi(a)[e]\|_* = |\varphi(a)|$ .

习题 2.2.9 设 $\mathscr{X}$ 为线性赋范空间,  $\overrightarrow{A}S$ 为 $\mathscr{X}^*$  的\*弱闭集且有界. 证明S是\*弱紧的.

证明: 设B为 $\mathscr{X}$ \*中的单位闭球. 由于S有界, 故存在 $M \in (0, \infty)$ . 使得 $S \subset MB$ . 由Alaogu定理知MB 是\*- 弱紧的. 由于 $S \subset MB$ , S是\*- 弱闭的. 所以S 是\*-弱紧的.  $\square$ 

习题 2.2.10 (补充题) 设 $\mathscr{A}$ 是Banach代数,则对 $\forall x\in\mathscr{A}$ . 极限  $\lim_{n\to\infty}\sqrt[n]{\|x^n\|}$  存在且等于  $\inf_{n\in\mathbb{N}}\sqrt[n]{\|x^n\|}$ .

证明: 记 $r := \inf_{n \to \infty} \sqrt[n]{\|x^n\|}$ , 显然  $\lim_{n \to \infty} \sqrt[n]{\|x^n\|} \ge r$ . 故只需证

$$\limsup_{n \to \infty} \sqrt[n]{\|x^n\|} \le r. \tag{2.2.1}$$

由下确界定义知, 对 $\forall \varepsilon \in (0, \infty)$ ,  $\exists m \in \mathbb{N}$ . 使得

$$\sqrt[m]{\|x^m\|} < r + \varepsilon. \tag{2.2.2}$$

注意到对 $\forall n \in \mathbb{N}, \exists k_n, \ell_n \in \mathbb{N}, 0 \leq \ell_n < m.$  使得 $n = k_n m + \ell_n$ . 由此及对 $\forall k \in \mathbb{N}, ||x^k|| \leq ||x||^k \mathfrak{A}(2.2.2)$  式知,

$$\sqrt[n]{\|x^n\|} \le \sqrt[n]{\|x^{k_n m}\| \cdot \|x^{\ell_n}\|} \le \|x\|^{\frac{\ell_n}{n}} \|x^m\|^{\frac{\ell_n}{n}} \le \|x\|^{\frac{\ell_n}{n}} (r+\varepsilon)^{\frac{mk_n}{n}}.$$

于是 $\limsup_{n\to\infty} \sqrt[n]{\|x^n\|} \le r + \varepsilon$ . 由 $\varepsilon$ 的任意性知(2.2.1) 式成立.

### 2.3 例子与应用

习题 2.3.1 设  $\mathscr{A}:=\left\{f:\mathbb{Z}\to\mathbb{C}:\|f\|:=\sum_{n\in\mathbb{Z}}|f(n)|2^{|n|}<\infty\right\}$ . 按函数的加法和数乘定义线性运算,并定义乘法:  $f*g(n):=\sum_{k\in\mathbb{Z}}f(n-k)g(k)$ . 证明:

- (1) 《是可交换的Banach代数;
- (2) 令 $K := \{z \in \mathbb{C} : 1/2 \le |z| \le 2\}$ . 则K与 $\mathfrak{M}$  ——对应,且 $\mathscr{A}$ 的 Gelfand表示是K 上绝 对收敛的 Laurent 级数.

证明: (1) 先证 4 为代数.

①  $\forall f, g \in \mathcal{A}, \forall \alpha, \beta \in \mathbb{C}, 有$ 

$$\begin{aligned} \|\alpha f + \beta g\| &= \sum_{n \in \mathbb{Z}} |\alpha f(n) + \beta g(n)| \cdot 2^{|n|} \\ &= |\alpha| \cdot \sum_{n \in \mathbb{Z}} |f(n)| \cdot 2^{|n|} + |\beta| \cdot \sum_{n \in \mathbb{Z}} |g(n)| \cdot 2^{|n|} < \infty. \end{aligned}$$

故必为一个线性空间.

②  $\forall f\in\mathscr{A}.\|f\|=\sum_{n\in\mathbb{Z}}|f(n)|\cdot 2^{|n|}<\infty.$  故  $\exists M_f>0,$  使得 $\forall n\in\mathbb{Z}.$  有 $|f(n)|\leq M_f.$  故

$$|f * g(n)| = |\sum_{n \in \mathbb{Z}} f(n-k)g(k)| \le M_g \cdot \sum_{k \in \mathbb{Z}} |f(n-k)| \cdot 2^{|n-k|} = M_g \cdot ||f|| < \infty.$$

故"\*"是良定义的.

 $\textcircled{3} \forall f, g, h, \rho, \varphi \in \mathscr{A}, \forall \alpha, \beta \in \mathbb{C}.$ 

$$(f * g) * h(n) = \sum_{k \in \mathbb{Z}} (f * g)(n - k)h(k)$$

$$= \sum_{k \in \mathbb{Z}} (\sum_{i \in \mathbb{Z}} f(n - k - i)g(k))h(k)$$
(2.3.1)

与 "\*" 的良定义证明类似, (2.3.1)式是绝对收敛的, 故(2.3.1)式

$$= \sum_{k \in \mathbb{Z}} (\sum_{i \in \mathbb{Z}} (f(n-i)g(i-k))h(k)) = \sum_{i \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} f(n-i)g(i-k)h(k)$$
$$= \sum_{i \in \mathbb{Z}} f(n-i)g * h(i) = f * (g * h)(n).$$

$$(f+g)*(\rho+\varphi)(n) = \sum_{k\in\mathbb{Z}} (f+g)(n-k)(\rho+\varphi)(k)$$
$$= \sum_{k\in\mathbb{Z}} [f(n-k)\rho(k) + f(n-k)\varphi(k) + g(n-k)\rho(k) + g(n-k)\varphi(k)].$$

由于各部分收敛. 故上式=  $f * \rho(n) + f * \varphi(n) + g * \rho(n) + g * \varphi(n)$ .

最后 $(\lambda \mu)(f * g) = (\lambda f) * (\mu g)$ 是显然的. 从而 《 是代数.

④  $f * g(n) = \sum_{k \in \mathbb{Z}} f(n-k)g(k) = \sum_{k' \in \mathbb{Z}} f(k')g(n-k') = g * f(n)$ . 故必 是可交换的.

然后说明৶的完备性:

综上, 《是可交换的Banach代数.

(2) 令

$$e^{(k)}(n) := \begin{cases} 1, n = k \\ 0, n \in \mathbb{Z} \setminus \{k\}. \end{cases}$$

则 $e^{(f)}*e^{(k)}=e^{(j+k)}, \forall j,k\in\mathbb{Z}.$  从而对 $\forall f\in\mathscr{A}.$ 

$$f = \sum_{n \in \mathbb{Z}} f(n)e^{(n)} = \sum_{n \in \mathbb{Z}} f(n)[e^{(1)}]^n.$$

注意到 $e^{(0)}$ 为 $\mathscr{A}$ 的单位元. 则 $\mathscr{A}$ 为有单位元的交换Banach代数.  $\forall f \in \mathscr{A}$ . 定义 $\Gamma_f(z) := \sum_{n \in \mathbb{Z}} f(n) z^n$ 为K上绝对收敛的Laurent级数. 考虑

$$\phi_z: \left\{ \begin{array}{l} \mathscr{A} \to \mathbb{C} \\ f \mapsto \Gamma_f(z). \end{array} \right.$$

 $\phi_z$ 为非零同态且 $\phi_z(f*g) = \phi_z(f)*\phi_z(g)$ . 由引理2.2.16知,  $\ker \phi_z$ 是极大理想.

定义

$$\psi: \begin{cases} K \to \mathfrak{M} \\ z \mapsto \ker \phi_z. \end{cases}$$

下证 $\psi$ 为双射.

① 先证 $\psi$ 单.  $\forall z_1, z_2 \in K.z_1 \neq z_2$ . 令

$$f(n) := \begin{cases} z_1, n = 1 \\ -1, n = 2 \\ 0, n \in \mathbb{Z} \setminus \{1, 2\} \end{cases}$$

則 $f \in \mathscr{A}$ . 且 $\Gamma_f(z_1) = z_1^2 - z_1^2 = 0$ . $\Gamma_f(z_2) = z_1 z_2 - z_2^2 \neq 0$ . 即 $f \in \psi(z_1)$ .但 $f \notin \psi(z_2)$ . 由 $\psi(z_1), \psi(z_2) \in \mathfrak{M}$  知,  $\psi(z_1) \neq \psi(z_2)$ , 故 $\psi$ 单.

② 再证 $\psi$ 满.  $J \in \mathfrak{M}$ . 由引理2.2.18,  $J \in \ker \varphi_J$ . 从而为证 $\psi$ 满, 只需证明 $\exists z_0 \in K$ , 使得 $\phi_{z_0} = \varphi_J$ , 即 $\phi_{z_0}(f) = \varphi_J(f)$ . 由 $\phi_{z_0}, \varphi_J$ 连续. 上式等价于证明:  $\phi_{z_0}(e^{(1)}) = \varphi_J(e^{(1)})$ , 对于某个 $z_0 \in K$ . 事实上,  $\phi_{z_0}(e^{(1)}) = \Gamma_{e^{(1)}}(z_0) = z_0$ . 而

$$\begin{aligned} |\varphi_J(e^{(1)})| &= \left| [\varphi_J(e^{(1)})] \right|^{1/n} = \left| [\varphi_J([e^{(1)}]^n)] \right|^{1/n} \\ &= \left| \varphi_J(e^{(n)}) \right|^{1/n} = \left\{ \begin{array}{l} \leq \|e^n\|^{1/n} = 2^{|n|/n} = 2, n \in \mathbb{N} \\ \geq \|e^n\| = 2^{|n|/n} = \frac{1}{2}, n \in \mathbb{Z} \backslash \mathbb{N}. \end{array} \right. \end{aligned}$$

即 $\frac{1}{2} \le |z_0| \le 2, z_0 \in K$ . 故 $\psi$ 满.

因此 $\psi$ 为K到 $\mathfrak{M}$ 的双射,  $f \mapsto \Gamma_f$ 为 $\mathscr{A}$ 上的Gelfand表示.

**习题 2.3.2** 设M是 $T_2$ 紧拓扑空间,证明M的全体闭子集与C(M)的全体理想间有一一对应.

下证 $J: X \to J_X$ 为M全体闭子集到C(M)全体闭理想的双射.

- ① 先证J单:  $\forall E, F$ 为M闭子集. 因M为紧 $T_2$ 空间. 由Urysohn引理,  $\exists f \in C(M)$ , 使 得 $f(x_0) = 1, f|_F = 0$ . 其中 $x_0 \in E \setminus F$ . 从而 $F \notin J_E, f \in J_F$ . 即 $J_E \neq J_F, J$ 为单射.
- ② 再证J满:  $\forall J$ 为C(M)的一个闭理想.  $\Diamond X = \bigcap_{f \in J} \{x \in M : f(x) = 0\}$ . 因 $f \in C(M)$ ,则X 闭. 且由定理2.3.3知 $X \neq \varnothing$ . 我们断言 $J = J_X$ . 事实上,只需证明 $J_X \subset J$ .

 $\forall f \in J_X, \forall \varepsilon > 0$ ,定义 $F_{\varepsilon} := \{x \in M : |f(x)| \geq \varepsilon\}$ ,则 $F_{\varepsilon} \cap X = \varnothing$ . 从而  $\forall \forall x \in F_{\varepsilon}, \exists f_x \in J$ ,使得 $f_x(x) \neq 0$ . 进一步知,存在邻域 $U_x$ ,使得 $f(x) \neq 0, \forall x \in U_x$ . 因 $F_{\varepsilon} \subset \cup_{x \in F_{\varepsilon}} U_x$ ,且 $F_{\varepsilon}$ 紧.则 $\exists \{x_1, x_2, \cdots, x_n\} \subset M$ ,使得 $F_{\varepsilon} \subset \cup_{i=1}^n U_{x_i}$ . 令 $h_{\varepsilon} := \sum_{i=1}^n f_{x_i}(x) \overline{f_{x_i}(x)} = \sum_{i=1}^n |f_{x_i}(x)|^2 \in J$ .则 $h(x) > 0, \forall x \in F_{\varepsilon}$ .又 $F_{\varepsilon}$ 紧,则 $h_{\varepsilon}$ 在 $F_{\varepsilon}$ 上存在最小值。记为 $f_{\varepsilon}$ 0。令 $f_{\varepsilon}$ 2。 $f_{\varepsilon}$ 3。是 $f_{\varepsilon}$ 4。是 $f_{\varepsilon}$ 5。以为 $f_{\varepsilon}$ 5。是 $f_{\varepsilon}$ 6。因为 $f_{\varepsilon}6$ 6。因为 $f_{\varepsilon}76$ 6。因为f

$$||f - fg_{\varepsilon}|| = \sup_{M \setminus F_{\varepsilon}} |(f - fg_{\varepsilon})(x)| \le 2 \sup_{M \setminus F_{\varepsilon}} |f(x)| < 2\varepsilon.$$

由此及J闭知 $f \in J_{\varepsilon}$ . 故 $J_X \subset J$ .

综上, M的全体闭子集与C(M)的全体理想间由一一对应.

习题 2.3.3 (补充题) 设业是半单的交换Banach代数. 证明:  $\mathscr{A}$ 的Gelfand表示的值域 $\Gamma(\mathscr{A})$ 是 $C(\mathfrak{M})$ 的闭集的充要条件是存在正常数 $k<\infty$ ,使得对 $\forall a\in\mathscr{A}$ ,有 $\|a\|^2\leq k\|a^2\|$ .

证明: 令

$$r:=\inf_{a\in\mathscr{A}\backslash\{0\}}\frac{\|a^2\|}{\|a\|^2}, s:=\inf_{a\in\mathscr{A}\backslash\{0\}}\frac{\|\Gamma(a)\|_{C(\mathfrak{M})}}{\|a\|}.$$

首先断言 $s^2 \le r \le s$ . 事实上,由s的定义, $\Gamma$ 为同态和定理2.2.23知,对 $\forall a \in \mathscr{A}$ , $\|a^2\| \ge \|\Gamma(a^2)\| = \|\Gamma(a)\|^2 \ge s^2\|a\|^2$ . 由此及a的任意性知 $s^2 \le r$ . 由r的定义知,对 $\forall a \in \mathscr{A}$ 有 $\|a^2\| \ge r\|a\|^2$ . 由此及归纳法知, $\|a^m\| \ge r^{m-1}\|a\|^m$ , $m = 2^n$ , $n \in \mathbb{N}$ . 对上式两边同时开n次方并令 $n \to \infty$ . 由引理2.2.28知 $\|\Gamma(a) \ge r\|a\|$ . 由a的任意性知 $r \ge s$ . 综上,断言成立.

下证题目中的充要条件:

- ① (充分性). 注意到题中满足条件的k存在, 当且仅当r>0. 又由断言知当且仅当s>0. 若s>0,则 $\Gamma$ 是一一映射且有连续逆. 即 $\Gamma$ 是 $\mathcal{A}\to\Gamma\mathcal{A}$  的同胚. 故 $\Gamma\mathcal{A}$  在 $C(\mathfrak{M})$ 中闭.

$$||a||^2 \le \widetilde{k}^2 ||\Gamma(a)|| = \widetilde{k}^2 ||\Gamma(a)|^2 || \le \widetilde{k}^2 ||a^2||.$$

取 $k := \tilde{k}^2$ 即得证.

### 2.4 $C^*$ 代数

习题 2.4.1 设所有记号如定理2.4.14的证明. 证明:

- (1)  $\widetilde{A}$ 为 $C(\mathcal{Y})$ 的实值子代数;
- (2) 对任意 $\widetilde{f} \in C(\mathcal{Y})_r$ ,  $\widetilde{f} \widetilde{f}(\partial) \in C_{\infty}(\mathcal{X})$ ;
- (3) (2.4.1)成立.

证明: (1) 容易验证 $\widetilde{A}$  为 $C(\mathscr{Y})$ 的子空间且对乘法运算封闭. 故 $\widetilde{A}$  为 $C(\mathscr{Y})$ 的实值子代数. (2) 因为 $\widetilde{f} \in C(\mathscr{Y})_r, \mathscr{Y} = \mathscr{X} \cup \{\partial\}$ . 所以 $\widetilde{f} - \widetilde{f}(\partial)$  为实值函数且在 $\mathscr{X}$ 上连续.

又 $\widetilde{f} - \widetilde{f}(\partial)$  也在 $\partial$ 处连续. 故

$$\lim_{x \to \partial} [\widetilde{f}(x) - \widetilde{f}(\partial)] = \widetilde{f}(\partial) - \widetilde{f}(\partial) = 0.$$

所以 $\forall \varepsilon \in (0, +\infty)$ 存在紧集 $D_{\varepsilon} \subset \mathscr{X}$ , 使得 $\forall x \in \mathscr{X} \setminus D_{\varepsilon}$ ,  $|\widetilde{f}(x) - \widetilde{f}(\partial)| < \varepsilon$ . 所以 $\widetilde{f} - \widetilde{f}(\partial) \in C_{\infty}(\mathscr{X})$ .

(3) 已证  $\widetilde{A} = C(\mathscr{Y})_r$ . 由于 $\mathscr{A} \subset C_\infty(\mathscr{X})$ . 所以 $\widetilde{\mathscr{A}} = \{f+r: f \in \mathscr{A}, r \in \mathbb{R}\} \subset \{f+r: f \in C_\infty(\mathscr{X}), r \in \mathbb{R}\}$ . 即 $C(\mathscr{Y})_r \subset \{f+r: f \in C_\infty(\mathscr{X}), r \in R\}$ . 又由定理2.4.14前面的证明知 $C_\infty(\mathscr{X}) \subset C(\mathscr{Y})_r$ . 故 $C_\infty(\mathscr{X}) + \mathbb{R} \subset C(\mathscr{Y})_r$ . 所以 $\{f+r: f \in C_\infty, r \in \mathbb{R}\} \subset C(\mathscr{Y})_r$ . 所以 $C(\mathscr{Y})_r = \{f+r: f \in C_\infty(\mathscr{X}), r \in \mathbb{R}\}$ .

习题 2.4.2 证明注记2.4.15. 即:  $f \in C_{\infty}(\mathcal{X}) \iff f \in C(\mathcal{Y})_r$  且 $f(\partial) = 0$ .

证明: (⇒)  $f \in C_{\infty}(\mathcal{X})$ . 设 $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ , 且当 $n \to \infty$ 时,  $x_n$ 在 $\mathcal{Y}$ 中收敛到 $\partial$ . 由于 $\forall \varepsilon > 0$ , 存在紧急 $D_{\varepsilon} \subset \mathcal{X}$ , 使得 $|f(x)| < \varepsilon, \forall x \in \mathcal{X} \setminus D_{\varepsilon}$ . 又由 $x_n$ 在 $\mathcal{Y}$ 中收敛到 $\partial$ 知, 对 $\partial$ 的邻域 $(\mathcal{X} \setminus D_{\varepsilon}) \cup \{\partial\}$ , 存在 $N_{\varepsilon} \in \mathbb{N}$ , 使得当 $n > N_{\varepsilon}$ 时,  $x_n \in (\mathcal{X} \setminus D_{\varepsilon}) \cup \{\partial\}$ . 故 $|f(x)| < \varepsilon$ .

所以 $\lim_{n\to\infty} f(x_n) = 0$ ,于是可定义 $f(\partial) = 0$ .此时 $\lim_{n\to\infty} f(x_n) = f(\partial)$ .即有 $x_n \to \partial$ ,  $f(x_n) \to f(\partial)$ ,  $n \to \infty$ .所以f在 $\partial$ 连续.故 $f \in C(\mathscr{Y})_r$ .

(
$$\Leftarrow$$
) 当 $f \in C(\mathscr{Y})_r$ 且 $f(\partial) = 0$ 时,由习题 $2.4.1(2)$ 知, $f - f(\partial) = f \in C_{\infty}(\mathscr{X})$ .

习题 2.4.3 证明交换半单有单位元的Banach代数上的任意对合运算均连续.

$$i: \left\{ \begin{array}{l} \mathfrak{M} \to \Delta \\ J \mapsto \varphi_J. \end{array} \right.$$

由定理2.2.19知, i为双射. 因 $\forall J \in \mathfrak{M}, \varphi_J \in \Delta$ , 知 $\overline{\varphi_J \circ *} \in \Delta$ . 从而由定理2.2.14(i)知

$$|\overline{\varphi_J(a_n^* - a^*)}| = |\overline{\varphi_J \circ *}(a_n - a)| \le ||a_n - a||_{\mathscr{A}} \to 0, n \to \infty.$$

由J的任意性及 $\varphi_J$ 的连续性知 $\lim_{n\to\infty}(a_n^*-a^*)\in\bigcap_{J\in\mathfrak{M}}\ker\varphi_J$ . 由引理2.2.18知 $\ker\varphi_J=J$ . 从而 $\lim_{n\to\infty}(a_n^*-a^*)\in\bigcap_{J\in\mathfrak{M}}J$ . 再由《半单知, $a_n^*\to a^*$  in 《, $n\to\infty$ .

习题 2.4.4 (补充题) 设  $\mathscr{A}$  是一个交换的 $C^*$  代数. 设其单位元为e. 若 $\forall x \in \mathscr{A}$ .x 为Hermite 元且 $\sigma(x) \subset [0,\infty)$ . 则称x 是正的,记作 $x \geq 0$ .证明:

- (1)  $x \ge 0 \iff \exists h \in \mathcal{A} \notin \mathcal{A}$  是 $\mathcal{H}ermite$ 元,使得 $x = h^2$ .
- (2)  $x > 0 \iff x$  为Hermite元且|||x||e x|| < ||x||.

证明: (1) ( $\Rightarrow$ ) 若 $x \ge 0$ , 由定理2.2.27知,  $\forall J \in \mathfrak{M}, \Gamma x(J) \ge 0$ . 从而由定理2.4.10知,  $\exists h \in \mathscr{A}$ , 使得  $\forall J \in \mathfrak{M}, \Gamma h(J) = \sqrt{\Gamma x(J)} \exists x = h^2, h = h^*$ .

(秦) 若 $x = h^2, h = h^*$ ,由引理2.4.11知 $\Gamma h$ 为**颁**上实值函数. 因此 $\forall J \in \mathfrak{M}, \Gamma x(J) = \Gamma h^2(J) = [\Gamma h(J)]^2 \geq 0$ . 再由定理2.2.27知 $\sigma(x) \in [0, \infty)$ . 即 $x \geq 0$ .

(2) 不妨设 $x \neq \theta$ .

$$\sigma(x) \in [0, \infty) \Leftrightarrow 0 \leq \frac{\Gamma x(J)}{\|x\|} \leq 2, \forall J \in \mathfrak{M}$$

$$\Leftrightarrow \left| 1 - \frac{\Gamma x(J)}{\|x\|} \right| \leq 1$$

$$(1 = \varphi_J(e)) \Leftrightarrow \left| \Gamma e(J) - \frac{\Gamma x(J)}{\|x\|} \right| \leq 1, \forall J \in \mathfrak{M}$$

$$\Leftrightarrow \left| \Gamma e - \frac{\Gamma x}{\|x\|} \right|_{C(\mathfrak{M})} \leq 1$$

$$(定理2.4.10) \Leftrightarrow \left\| e - \frac{x}{\|x\|} \right\| \leq 1$$

$$\Leftrightarrow \|\|x\|e - x\| \leq \|x\|.$$

#### 2.5 Hilbert空间上的正常算子

习题 2.5.1 见命题 2.5.7.

习题 2.5.2 证明:  $N \rightarrow Hilbert$ 空间H上的正常算子当且仅当 $\|Nx\|_H = \|N^*x\|_H, \forall x \in H$ .

证明: 注意到对 $\forall x \in H$ ,

$$||Nx||_H^2 = (Nx, Nx) = (N^*Nx, x)$$

$$||N^*x||_H^2 = (N^*x, N^*x) = (NN^*x, x)$$
(2.5.1)

(必要性) 若N为正常算子, 则由 $NN^* = N^*N$ 及(2.5.1)知, 对 $\forall x \in H, ||Nx||_H = ||N^*x||_H$ .

(充分性) 首先断言: 若 $T \in \mathcal{L}(H)$ 且对 $\forall x \in H, (Tx, x) = 0$ , 则 $T = \theta$ . 事实上, 对 $\forall x, y \in H$ . 由(T(x+y), (x+y)) = 0知

$$(Tx, y) + (Ty, x) = 0$$
 (2.5.2)

故 $-i(Tx,y)+i(Ty,x)=0 \Rightarrow (Tx,y)-(Ty,x)=0$ . 由此及(2.5.2)知, 对 $\forall x,y\in H, (Tx,y)=0$ . 令y:=Tx,则有 $Tx=\theta$ . 由此及x的任意性知 $T=\theta$ . 故断言成立.

由(2.5.1)和 $\|Nx\|_H = \|N^*x\|_H, \forall x \in H$ 知 $(N^*Nx, x) = (NN^*x, x) = 0$ . 即 $((N^*N - NN^*)x, x) = 0$ . 由此及断言知 $N^*N = NN^*,$  即N为正常算子.

习题 2.5.3 证明: 两个可交换的正算子的积仍为正算子.

证明: 设 $T_1, T_2$ 为正算子且 $T_1T_2 = T_2T_1$ . 由此及推论2.5.9知, 存在正算子Q, 使得 $T_1 = Q^2 \perp Q T_2 = T_2 Q$ . 故对 $\forall x \in H$ ,

$$(T_1 T_2 x, x) = (Q^2 T_2 x, x) = (Q T_2 x, Q x) = (T_2 Q x, Q x) \ge 0$$
(2.5.3)

又注意到 $(T_1T_2)^* = T_2^*T_1^* = T_2T_1 = T_1T_2$ . 即 $T_1T_2$ 为自伴算子. 由此及(2.5.3)知 $T_1T_2$ 为正算子.

习题 2.5.4 设N为Hilbert空间H上的正常算子. 则存在唯一正算子 $P \in \mathcal{L}(H)$ 及酉算子 $Q \in \mathcal{L}(H)$  使得N = PQ = QP.

证明: 令

$$P(\lambda) := |\lambda|, \ q(\lambda) := \begin{cases} \lambda/|\lambda|, \lambda \neq 0 \\ 1, \lambda = 0. \end{cases}$$

则 $p,q \in B(\sigma(N))$ . 令P := p(N), Q = q(N). 则由定理2.5.20知,  $PQ = p(N)q(N) = pq(N) = \lambda(N) = N$ . 且 $QP = q(N)p(N) = qp(N) = \lambda(N) = N$ . 即N = PQ = QP. 由命题2.5.6知 $Q^*Q = \overline{q}(N)q(N) = \overline{q}q(N) = 1(N) = I$ . 故Q为酉算子.

下证P为正算子. 事实上, 由 $P = p(N) = \widetilde{\Gamma}^{-1}p$ 和命题2.5.6知

$$P^* = (\widetilde{\Gamma}^{-1}p)^* = \widetilde{\Gamma}^{-1}\overline{p} = \widetilde{\Gamma}^{-1}p = P.$$

即P自伴. 令 $P^{1/2} := |\lambda|^{1/2}(N)$ , 则由命题2.5.6知

$$P^{1/2} = |\lambda|^{1/2}(N) = \overline{|\lambda|^{1/2}}(N) = (P^{1/2})^*.$$

由此及 $P = |\lambda|(N) = |\lambda|^{1/2} |\lambda|^{1/2}(N) = P^{1/2} P^{1/2}$ 知, 对 $\forall x \in H$ ,

$$(Px, x) = (P^{1/2}P^{1/2}x, x) = (P^{1/2}x, P^{1/2}x) = ||P^{1/2}x||_H^2 \ge 0.$$

故P为正算子.

下证唯一性. 若还存在正算子 $\widetilde{P}$ 与酉算子 $\widetilde{Q}$ , 使得 $N = \widetilde{Q}\widetilde{P}$ . 则

$$N^*N = \widetilde{P}^*\widetilde{Q}^*\widetilde{Q}\widetilde{P} = \widetilde{P}^*\widetilde{P} = \widetilde{P}^2.$$

同理有 $N^*N = P^2$ . 即 $\widetilde{P}^2 = P^2$ . 由此及平方根的唯一性知 $\widetilde{P} = P$ .

习题 2.5.5 设 N 为 正 常 算 子. 证 明:

- (1) N是酉算子当且仅当 $\sigma(N) \subset S^1$ ;
- (2) N是自伴算子当且仅当 $\sigma$ (N) ⊂  $\mathbb{R}$ ;
- (3) N是正算子当且仅当 $\sigma(N) \subset \mathbb{R}_+$ .

**证明**: (1) 由连续算符演算知, N为酉算子 $\Leftrightarrow NN^* = I \Leftrightarrow z(N)z(N) = 1(N) \Leftrightarrow |z|^2 = 1$ . (2),(3)见定理2.5.8.

习题 2.5.6 证明推论 2.5.28.

**证明**: 由命题2.5.27知, 为证结论, 只需证明以下命题: 设 $\mu_1, \mu_2$ 为 $\mathbb{C}$ 上的复测度, 且 $\forall \Omega \in \mathcal{B}, \mu_1(\Omega) = \mu_2(\Omega)$ . 则对任意的Borel可测函数f, 有

$$\int_{\mathbb{C}} f d\mu_1 = \int_{\mathbb{C}} f d\mu_2.$$

事实上, 由[1]定理6.12知, 对 $i \in \{1,2\}$ , 存在可测函数 $h_i$ , 使得

$$d\mu_i = h_i d|\mu_i|. \tag{2.5.4}$$

由此可知, 对 $\forall \Omega \in \mathcal{B}, i = 1, 2,$ 

$$\int_{\Omega} h_i(z)d|\mu_i|(z) = \int_{\mathbb{C}} \chi_{\Omega}(z)h_i(z)d|\mu_i|(z) = \int_{\Omega} \chi_{\Omega}(z)d\mu_i(z) = \mu_i(\Omega).$$
 (2.5.5)

由[4]定理2.10(b)知, 存在简单函数列 $\{f_n\}_{n\in\mathbb{N}}:=\left\{\sum_{k=1}^{N(n)}a_k^{(n)}\chi_{E_k}\right\}_{n\in\mathbb{N}}$ , 使得在点态意义下 $f_n\to f$ . 由此及(2.5.4)和(2.5.5)和控制收敛定理知, 对任意的Borel可积函数f,

$$\int_{\mathbb{C}} f(z) d\mu_{1}(z) = \int_{\mathbb{C}} f(z) h_{1}(z) d|\mu_{1}|(z)$$

$$= \lim_{n \to \infty} \int_{\mathbb{C}} f_{n}(z) h_{1}(z) d|\mu_{1}|(z)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{N(n)} a_{k}^{(n)} \int_{E_{k}} h_{1}(z) d|\mu_{1}|(z)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{N(n)} a_{k}^{(n)} \mu_{1}(E_{k}).$$

同理,

$$\int_{\mathbb{C}} f(z) d\mu_2(z) = \lim_{n \to \infty} \sum_{k=1}^{N(n)} a_k^{(n)} \mu_2(E_k).$$

由以上两式及对 $\forall \Omega \in \mathcal{B}, \mu_1(\Omega) = \mu_2(\Omega)$ 和 $\int_{\mathbb{C}} f(z) d\mu_1(z) = \int_{\mathbb{C}} f(z) d\mu_2(z)$ . 即得所证命题.

习题 2.5.7 (补充题1) 设H为Hilbert空间,  $U \in \mathcal{L}(H)$ . 证明以下三个论述等价:

- (1) U是酉算子;
- (2)  $R(U) = H \perp \forall x, y \in H, (Ux, Uy) = (x, y).$
- (3)  $R(U) = H \perp \forall x, y \in H, ||Ux||_H = ||x||_H.$

证明:  $(1)\Rightarrow(2)$ .  $U^{-1}=U^*\in\mathcal{L}(H)$ ,  $故 R(U)=D(U^{-1})=D(U^*)=H$ . 由于 $U^*U=I$ , 故对 $\forall x,y\in H, (Ux,Uy)=(U^*Ux,y)=(x,y)$ . 即得(2).

- $(2) \Rightarrow (3)$ . 显然.
- (3)⇒(1). 由于对 $\forall x \in H$ , 由(3)知,  $(U^*Ux, x) = (Ux, Ux) = (x, x)$ . 于是( $(U^*U I)x, x$ ) = 0,  $\forall x \in H$ . 又由习题2.5.2的断言知,  $U^*U = I$ . 即U为酉算子. 即得(1).

习题 2.5.8 (补充题2) 设H为Hilbert空间,  $T \in \mathcal{L}(H)$ . 证明:

- (1)  $T^*T$ 的平方根 $P \in \mathcal{L}(H)$ 是唯一满足 $\|Px\|_H = \|Tx\|_H$ ,  $\forall x \in H$  的正算子.
- (2) 若T可逆,则有唯一分解T = UP,其中U为酉算子,P为正算子.

证明: (1) 注意到 $(T^*Tx,x) = (Tx,Tx) = ||Tx||_H^2 \ge 0$ . 故 $T^*T$  为正算子. 由此及推论2.5.9 知,  $\exists P \in \mathcal{L}(H)$ . 使得 $P^2 = T^*T$ , 且 $P = P^*$ . 故对 $\forall x \in H$ ,

$$\|Px\|_H^2 = (Px, Px) = (P^2x, x) = (T^*Tx, x) = (Tx, Tx) = \|Tx\|_H^2.$$

下证唯一性:  $\overline{A}P \in \mathcal{L}(H)$ 且 $P = P^*$ . 则对 $\forall x \in H$ ,

$$||Px||_H^2 = ||Tx||_H \Leftrightarrow (Px, Px) = (Tx, Tx) \Leftrightarrow (P^2x, x) = (T^*Tx, x).$$

从而由断言知,  $P^2 = T^*T$ . 即P为 $T^*T$ 的正平方根.

(2) 若T可逆,则 $T^*$ ,  $T^*T$ 也可逆.类似(1)可证, $T^*T$ 为正算子.故由推论2.5.9 知.  $T^*T$ 存在可逆平方根P. 令 $U := TP^{-1}$ ,则U 可逆且

$$U^*U = (P^{-1})^*T^*TP^{-1} = P^{-1}P^2P^{-1} = I.$$

即U为酉算子.

下证唯一性. 若 $T = \widetilde{U}\widetilde{P}$ 为另一满足上述条件的分解. 则

$$T^*T=\widetilde{P}^*\widetilde{U}^*\widetilde{U}\widetilde{P}=\widetilde{P}^*\widetilde{P}=\widetilde{P}^2.$$

由正平方根的唯一性知 $P = \tilde{P}$ . 从而 $U = \tilde{U}$ , 唯一性得证.

## 参考文献

- [1] 袁文 杨大春. 泛函分析选讲. 北京师范大学出版社, 2016.
- [2] 张恭庆, 林源渠. 泛函分析讲义(上册). 北京大学出版社, 1987.
- [3] 熊金城. 点集拓扑讲义(第三版). 高等教育出版社, 2004.
- [4] Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley & Sons, 2013.