

INTRODUCTION TO ALGORITHMS EC351 ASSIGNMENT 1

FIBONACCI SERIES

Submitted by:

TEAM 7

Abdul Rahman	18BEC001
Ajmal A	18BEC003
Aryan Kumar	18BEC004
B.K Likhith Kumar	18BEC005
Safwan Mohammad	18BEC028

Submitted To:

DR. UMA S 04 Sept 2010

QUESTION: Consider the following Fibonacci series and solve the following conditions

$$\frac{\text{fib (n) = fib(0), fib (1), fib (2),.....fib(n)}}{\text{where fib(n) = fib(n-1) + fib(n-2)}}$$

• Flowchart

• Itrative Code

```
#include <stdio.h>
int count =0;
int main() {
  int i, n, t1 = 0, t2 = 1, nextTerm;
  printf("Enter the number of terms: ");
  scanf("%d", &n);
  printf("Fibonacci Series: ");
  for (i = 1; i \le n; ++i) {
    printf("%d, ", t1);
     nextTerm = t1 + t2;
     t1 = t2;
     t2 = nextTerm;
     count++;
  }
  printf("\nVariable used %d times\n",count);
  return 0;
}
```

Recursive Code

```
#include < stdio.h >
int count = 0;
int x,y,n;

int fib(int n) {
    count++;
        if(n==0||n==1)
        return n;
        else
        return fib(n-1) + fib(n-2);

}
int main() {
        printf("Enter the number ");
        scanf("%d",&n);
        printf("%d\n",fib(n));
        printf("Veriable used %d times\n",count);
}
```

- For the iterative approach, the amount of space required is the same for fib(5) and fib(500), i.e. as N changes the space/memory used remains the same. Hence it's space complexity is O(1) or constant.
- For the iterative approach, the amount of space required is the different for fib(5) and fib(500), the maximum depth is proportional to the N, hence the space complexity of Fibonacci recursive is O(N).
- The best case scenario is itrative approach as the space complexity is O(1).
- Worst Case scenario is recursive approch where space complexity is O(N)