1 variantas

Išspręskite lygtį (po 1 tašką):

- a) $\frac{x-\sqrt{2}}{x^2-2} \le 0$;
- c) $(\frac{1}{2})^{-3x} \geqslant (\frac{1}{2})^9$;
- e) $3^{\frac{-5x}{x-1}} 9^{\frac{x-12}{2}} \le 0$;
- g) $\log_4 x \log_4 27 \leqslant \log_4 \frac{1}{9}$;
- i) $\sqrt{(x+\sqrt{2})^2} \geqslant \sqrt{50}$;

1 variantas

Išspręskite lygtį (po 1 tašką):

- a) $\frac{x-\sqrt{2}}{x^2-2} \le 0$;
- c) $(\frac{1}{2})^{-3x} \geqslant (\frac{1}{2})^9$;
- e) $3^{\frac{-5x}{x-1}} 9^{\frac{x-12}{2}} \le 0$;
- g) $\log_4 x \log_4 27 \le \log_4 \frac{1}{9}$;
- i) $\sqrt{(x+\sqrt{2})^2} \geqslant \sqrt{50}$;

1 variantas

Išspręskite lygtį (po 1 tašką):

- a) $\frac{x-\sqrt{2}}{x^2-2} \le 0$;
- c) $(\frac{1}{2})^{-3x} \geqslant (\frac{1}{2})^9$;
- e) $3^{\frac{-5x}{x-1}} 9^{\frac{x-12}{2}} \le 0$;
- g) $\log_4 x \log_4 27 \leqslant \log_4 \frac{1}{9}$;
- i) $\sqrt{(x+\sqrt{2})^2} \geqslant \sqrt{50}$;

1 variantas

Išspręskite lygtį (po 1 tašką):

- a) $\frac{x-\sqrt{2}}{x^2-2} \le 0$;
- c) $(\frac{1}{2})^{-3x} \geqslant (\frac{1}{2})^9$;
- e) $3^{\frac{-5x}{x-1}} 9^{\frac{x-12}{2}} \le 0$;
- g) $\log_4 x \log_4 27 \leqslant \log_4 \frac{1}{9};$
- i) $\sqrt{(x+\sqrt{2})^2} \geqslant \sqrt{50}$;

1 variantas

Išspręskite lygtį (po 1 tašką):

- a) $\frac{x-\sqrt{2}}{x^2-2} \le 0$;
- c) $(\frac{1}{2})^{-3x} \geqslant (\frac{1}{2})^9$;
- e) $3^{\frac{-5x}{x-1}} 9^{\frac{x-12}{2}} \le 0$;
- g) $\log_4 x \log_4 27 \leqslant \log_4 \frac{1}{9};$
- i) $\sqrt{(x+\sqrt{2})^2} \geqslant \sqrt{50}$;

- b) $\frac{x-1}{x} \frac{x+1}{x-1} \leqslant 2$;
- d) $4^{5-x} \geqslant \frac{1}{64}$;
- f) $\log_{\frac{1}{2}}(4x-1) \ge -2;$
- h) $\log_6(-x^2 + 9x 14) \ge 1$;
- j) Su kuriomis y=f(x)=3|x+2|-1 reikšmės yra mažesnės už 8;
- b) $\frac{x-1}{x} \frac{x+1}{x-1} \leqslant 2$;
- d) $4^{5-x} \geqslant \frac{1}{64}$;
- f) $\log_{\frac{1}{2}}(4x-1) \ge -2;$
- h) $\log_6(-x^2 + 9x 14) \ge 1$;
- j) Su kuriomis y=f(x)=3|x+2|-1 reikšmės yra mažesnės už 8;
- b) $\frac{x-1}{x} \frac{x+1}{x-1} \leqslant 2$;
- d) $4^{5-x} \geqslant \frac{1}{64}$;
- f) $\log_{\frac{1}{2}}(4x-1) \ge -2;$
- h) $\log_6(-x^2 + 9x 14) \ge 1$;
- j) Su kuriomis y=f(x)=3|x+2|-1 reikšmės yra mažesnės už 8;
- b) $\frac{x-1}{x} \frac{x+1}{x-1} \leqslant 2$;
- d) $4^{5-x} \geqslant \frac{1}{64}$;
- f) $\log_{\frac{1}{2}}(4x-1) \ge -2;$
- h) $\log_6(-x^2 + 9x 14) \ge 1$;
- j) Su kuriomis y=f(x)=3|x+2|-1 reikšmės yra mažesnės už 8:
- b) $\frac{x-1}{x} \frac{x+1}{x-1} \leqslant 2$;
- d) $4^{5-x} \geqslant \frac{1}{64}$;
- f) $\log_{\frac{1}{2}}(4x-1) \ge -2;$
- h) $\log_6(-x^2 + 9x 14) \ge 1$;
- j) Su kuriomis y=f(x)=3|x+2|-1 reikšmės yra mažesnės už 8;