PSALTer results panel $S = \iiint \left(-\frac{1}{2} \left(\alpha_{0} - 4 \beta_{1}\right) \mathcal{A}^{\alpha \beta}_{\quad \alpha} \mathcal{A}^{\times}_{\beta \ X} + \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} + f^{\alpha \beta} \tau \left(\Delta + \mathcal{K}\right)_{\alpha \beta} - \alpha_{0} f^{\alpha \beta} \partial_{\beta} \mathcal{A}^{\times}_{\alpha \chi} + \alpha_{0} \partial_{\beta} \mathcal{A}^{\alpha \beta}_{\quad \alpha} - 4 \beta_{1} \mathcal{A}^{\times}_{\alpha \chi} \partial_{\beta} f^{\alpha \beta} + 4 \beta_{1} \mathcal{A}^{\times}_{\beta \chi} \partial^{\beta} f^{\alpha}_{\quad \alpha} - 2 \beta_{1} \partial_{\beta} f^{\chi}_{\quad \alpha} \partial^{\beta} f^{\alpha}_{\quad \alpha} - 4 \beta_{1} \partial_{\alpha} f^{\chi}_{\quad \alpha} \partial_{\beta} f^{\alpha \beta} + 4 \beta_{1} \partial_{\alpha} f^{\chi}_{\quad \beta} \partial^{\beta} f^{\alpha}_{\quad \alpha} - 2 \beta_{1} \partial_{\beta} f^{\alpha}_{\quad \alpha} \partial_{\chi} \mathcal{A}^{\beta \chi}_{\quad \beta} - 2 \beta_{1} \partial_{\beta} f^{\alpha \beta} \partial_{\chi} f^{\chi}_{\quad \alpha} + 4 \beta_{1} \partial^{\beta} f^{\alpha}_{\quad \alpha} \partial_{\chi} f^{\chi}_{\quad \beta} - 2 \beta_{1} \partial_{\alpha} f_{\beta \chi} \partial^{\chi} f^{\alpha \beta} - \beta_{1} \partial_{\alpha} f_{\beta \chi} \partial^{\chi} f^{\alpha \beta} + \beta_{1} \partial_{\chi} f^{\alpha \beta} \partial^{\chi} f^{\alpha \beta} - \frac{1}{2} \mathcal{A}_{\alpha \chi \beta} \left(\left(\alpha_{0} - 4 \beta_{1}\right) \mathcal{A}^{\alpha \beta \chi} - 8 \beta_{1} \partial^{\chi} f^{\alpha \beta} \right) + \frac{2}{3} \alpha_{0} \partial_{\beta} \mathcal{A}^{\alpha \delta}_{\quad \chi} \partial_{\beta} f^{\alpha \beta}_{\quad \chi} \partial_{\gamma} f^{\alpha \beta} \partial_{\gamma} f^{\alpha \beta}$

Wave operator

${}^{0^+}\mathcal{H}^{\parallel}$ †	$\frac{\alpha_{.0}}{2} - 2\beta_{.1} + \alpha_{.6}k^{2}$	$-\frac{i(\alpha4\beta_1)k}{\sqrt{2}}$	0	0										
⁰⁺ f [∥] †	$\frac{i(\alpha4\beta.)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0										
$0.^+f^{\perp}$ †	0	0	0	0										
^{0.} ℋ †	0	0	0	$\frac{1}{2} (\alpha_{0} - 4 \beta_{1})$	$\overset{1^{+}}{\cdot}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$^{1.^{+}}\mathcal{F}\!\!\!/^{\perp}{}_{lphaeta}$	$1^+_{\cdot}f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{\alpha}$	$^{1}\mathcal{F}_{lpha}^{\perp}$	$ f _{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
					$\frac{1}{4} (\alpha_{0} - 4 \beta_{1})$		$\frac{i(\alpha4\beta.)k}{2\sqrt{2}}$	0	0	0	0			
					$\frac{\overset{\alpha4 \beta.}{\overset{0}{0} \frac{1}{1}}}{2 \sqrt{2}}$		0	0	0	0	0			
				$\overset{1}{\cdot}f^{\parallel}\uparrow^{lphaeta}$	$-\frac{i(\alpha4\beta.)k}{2\sqrt{2}}$	0	0	0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}$ † lpha	0	0	0	$\frac{1}{4} (\alpha_{0} - 4 \beta_{1})$	$-\frac{\alpha4\beta.}{2\sqrt{2}}$	0	$-\frac{1}{2}i(\alpha_{\cdot}-4\beta_{\cdot})k$			
				$^{1}\mathcal{A}^{\scriptscriptstyle \perp}\dagger^{\scriptscriptstyle lpha}$	0	0	0	$-\frac{\alpha4 \beta.}{2 \sqrt{2}}$	0	0	0			
				$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{1}{2}i(\alpha_{0}-4\beta_{1})k$	0	0	0	$^{2\overset{+}{.}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$2^+_{\cdot}f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{F}^{\parallel}_{\alpha\beta\chi}$
											$\overset{2^{+}}{\mathcal{A}}\mathcal{A}^{\parallel} \stackrel{lphaeta}{\dagger}$	1		0
											$\overset{2^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i(\alpha4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
											$2^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_{\cdot}}{4} + \beta_{\dot{1}}$

Saturated propagator

	0,+ σ∥	0. ⁺ T	$0.^+ \tau^{\perp}$	0.0										
^{0,+} σ [∥] †	$\frac{8 \beta.}{\alpha.^{2}-4 \alpha. \beta. +8 \alpha. \beta. k^{2}}$	$-\frac{i\sqrt{2}(\alpha4\beta.)}{\alpha.(\alpha4\beta.)k+8\alpha.\beta.k^{3}\atop0}$	0	0										
o.+ τ †	$\frac{i \sqrt{2} (\alpha4 \beta.)}{\alpha. (\alpha4 \beta.) k+8 \alpha. \beta. k^{3}}$	$-\frac{\alpha \cdot -4 \beta \cdot +2 \alpha \cdot k^2}{0 \cdot (\alpha \cdot \cdot^2 -4 \alpha \cdot \beta \cdot +8 \alpha \cdot \beta \cdot k^2)}$	0	0										
$0.^{+}\tau^{\perp}$ †	0	0	0	0										
⁰⁻ σ †	0	0	0	$\frac{2}{\alpha4\beta.}$	$\overset{1,^{+}}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1}{\cdot} \overset{+}{\sigma}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$	$\overset{1,^{+}}{\cdot}\tau^{\parallel}{}_{\alpha\beta}$	$^{1}\left.\sigma^{\parallel}_{\;\;lpha}\right.$	$^{1}\sigma^{\perp}_{lpha}$	$1^{-}\tau^{\parallel}{}_{\alpha}$	$1 \tau_{\alpha}$			
				$\overset{1^+}{\cdot}\sigma^{\parallel} \stackrel{\alpha\beta}{\dagger}$	0	$\frac{2 \sqrt{2}}{(\alpha4 \beta_1) (1+k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha4 \beta_1) (1+k^2)}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$\frac{2 \sqrt{2}}{(\alpha4 \beta.) (1+k^2)}$	$-\frac{2}{(\alpha4\beta.)(1+k^2)^2}$	$-\frac{2 i k}{(\alpha4 \beta.) (1+k^2)^2}$	0	0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+k^2)}$	$\frac{2 i k}{(\alpha4 \beta.) (1+k^2)^2}$	$-\frac{2 k^2}{(\alpha4 \beta_1) (1+k^2)^2}$	0	0	0	0			
				$^{1}\sigma^{\parallel}$ † $^{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha4\beta.)(1+2k^2)}$	0	$-\frac{4 i k}{(\alpha4 \beta.) (1+2 k^2)}$			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_{.}-4\beta_{.})(1+2k^{2})}$	$-\frac{2}{(\alpha4\beta_1)(1+2k^2)^2}$	0	$-\frac{2i\sqrt{2}k}{(\alpha4\beta.)(1+2k^2)^2}$			
				$1^{-}\tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0			
				$1^{-}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{4ik}{(\alpha4\beta.)(1+2k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+2 k^2)^2}$	0	$-\frac{4 k^2}{(\alpha4 \beta_1) (1+2 k^2)^2}$	$^{2.^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\sigma^{\parallel}$ † lphaeta	16 β.	$\frac{2i\sqrt{2}}{a.k\atop 0}$	0
											$2^+_{\cdot} \tau^{\parallel} + \alpha^{\beta}$	$-\frac{1}{\alpha_0^2 - 4\alpha_0\beta_1}$ $-\frac{2i\sqrt{2}}{\alpha_0k}$	$\frac{2}{\alpha_0 k^2}$	0
														1

Source constraints

Spin-parity form	Covariant form	Multiplicities			
0^+ $\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1			
$\frac{1}{2 i k \cdot 1 \cdot \sigma^{\perp}^{\alpha} + 1 \cdot \tau^{\perp}^{\alpha} == 0}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
$1 \cdot \tau^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3			
$i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3			
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$				
Total expected gauge generators:					

Massive spectrum

Massive particle

Pole residue:	$\left \frac{1}{\frac{\alpha}{6}} + \frac{1}{\frac{\alpha}{6}} - \frac{1}{\frac{4\beta}{1}} > 0 \right $					
Square mass:	$-\frac{\frac{\alpha.(\alpha4\beta.)}{0}}{\frac{8\alpha.\beta.}{6}} > 0$					
Spin:	0					
Parity:	Even					

Massless spectrum

Massless particle

Pole residue:	$\frac{p^2}{\alpha_0} > 0$
Polarisations:	2

Unitarity conditions

 $\alpha_0 > 0 \&\& \alpha_0 > 0 \&\& (\beta_1 < 0 || \beta_1 > \frac{\alpha_0}{4})$