Nome: Tális Breda - 22102202

Exercício 1

Implemente o algoritmo abaixo no MARS que realiza a soma de uma matriz com outra transposta. O tamanho das matrizes (MAX) deve ser parametrizável.

Observação: para a construção da matriz, foi utilizado o primeiro algoritmo do laboratório 3 da disciplina. Para os exemplos desse relatório, será utilizado o tamanho padrão 8x8 para a matriz

Resultado esperado:

Matriz A:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

Matriz B:

64	65	66	67	68	69	70	71
72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87
88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103
104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119
120	121	122	123	124	125	126	127

Matriz resultado:

64	73	82	91	100	109	118	127
73	82	91	100	109	118	127	136
82	91	100	109	118	127	136	145
91	100	109	118	127	136	145	154
100	109	118	127	136	145	154	163
109	118	127	136	145	154	163	172
118	127	136	145	154	163	172	181
127	136	145	154	163	172	181	190

Resultado obtido:

Matriz A (imagem pré soma):

Address	Value (+0)	Value (+4)	Value (+8)	Value (+12)	Value (+16)	Value (+20)	Value (+24)	Value (+28)
268500992	0	1	2	3	4	5	6	7
268501024	8	9	10	11	12	13	14	15
268501056	16	17	18	19	20	21	22	23
268501088	24	25	26	27	28	29	30	31
268501120	32	33	34	35	36	37	38	39
268501152	40	41	42	43	44	45	46	47
268501184	48	49	50	51	52	53	54	55
268501216	56	57	58	59	60	61	62	63

Matriz B:

268501248	64	65	66	67	68	69	70	71
268501280	72	73	74	75	76	77	78	79
268501312	80	81	82	83	84	85	86	87
268501344	88	89	90	91	92	93	94	95
268501376	96	97	98	99	100	101	102	103
268501408	104	105	106	107	108	109	110	111
268501440	112	113	114	115	116	117	118	119
268501472	120	121	122	123	124	125	126	127

Matriz resultado (imagem pós soma):

Address	Value (+0)	Value (+4)	Value (+8)	Value (+12)	Value (+16)	Value (+20)	Value (+24)	Value (+28)
268500992	64	73	82	91	100	109	118	127
268501024	73	82	91	100	109	118	127	136
268501056	82	91	100	109	118	127	136	145
268501088	91	100	109	118	127	136	145	154
268501120	100	109	118	127	136	145	154	163
268501152	109	118	127	136	145	154	163	172
268501184	118	127	136	145	154	163	172	181
268501216	127	136	145	154	163	172	181	190

Exercício 2

Implemente o algoritmo abaixo no MARS que realiza a soma de uma matriz com outra transposta, porém utilizando a técnica de cache blocking. O tamanho das matrizes (MAX) e dos blocos (block size) devem ser parametrizáveis:

Nessa questão, apesar de o algoritmo utilizado ser diferente, o resultado esperado é o mesmo, e o obtido está a seguir:

Resultado obtido:

Matriz A (imagem pré soma):

Address	Value (+0)	Value (+4)	Value (+8)	Value (+12)	Value (+16)	Value (+20)	Value (+24)	Value (+28)
268500992	0	1	2	3	4	5	6	7
268501024	8	9	10	11	12	13	14	15
268501056	16	17	18	19	20	21	22	23
268501088	24	25	26	27	28	29	30	31
268501120	32	33	34	35	36	37	38	39
268501152	40	41	42	43	44	45	46	47
268501184	48	49	50	51	52	53	54	55
268501216	56	57	58	59	60	61	62	63

Matriz B:

268501248	64	65	66	67	68	69	70	71
268501280	72	73	74	75	76	77	78	79
268501312	80	81	82	83	84	85	86	87
268501344	88	89	90	91	92	93	94	95
268501376	96	97	98	99	100	101	102	103
268501408	104	105	106	107	108	109	110	111
268501440	112	113	114	115	116	117	118	119
268501472	120	121	122	123	124	125	126	127

Matriz resultado (imagem pós soma):

Address	Value (+0)	Value (+4)	Value (+8)	Value (+12)	Value (+16)	Value (+20)	Value (+24)	Value (+28)
268500992	64	73	82	91	100	109	118	127
268501024	73	82	91	100	109	118	127	136
268501056	82	91	100	109	118	127	136	145
268501088	91	100	109	118	127	136	145	154
268501120	100	109	118	127	136	145	154	163
268501152	109	118	127	136	145	154	163	172
268501184	118	127	136	145	154	163	172	181
268501216	127	136	145	154	163	172	181	190

Exercício 3

Execute os dois programas anteriores utilizando a ferramenta Data Cache Simulator, fazendo combinações de tamanhos de matrizes e tamanhos de blocos de cache blocking. Apresente e explique os resultados obtidos.

Algoritmo 1: Matriz 8x8, 8 blocos de 4 words

Matriz 16x16, 8 blocos de 4 words

Matriz 8x8, 8 blocos de 8 words

Matriz 16x16, 8 blocos de 8 words

Matriz 32x32, 8 blocos de 8 words

Matriz 8x8, 16 blocos de 8 words

Matriz 8x8, 8 blocos de 16 words

Simulate		data cache perfo	rmance
	Cache ()rganization	
Placement Policy Direct	Mapping -	Number of blocks	8 🔻
Block Replacement Policy	LRU ▼	Cache block size (words	s) 16 ▼
Set size (blocks)	1 🔻	Cache size (bytes)	512
	Cache F	erformance	
Memory Access Count	320	Cache Block Table	
Cache Hit Count	312	(block 0 at top)	
Cuciic file Count	311	= empty	
Cache Miss Count		= hit	
Cache Hit Rate	98%	= miss	
	Run	ime Log	
☐ Enabled			
	Too	Control	
Disconnect from MIPS		Reset	Close

Matriz 4x4, 8 blocos de 4 words

	Cac	he Or	ganization			
Placement Policy	Direct Mapping	-	Number of blocks		8	-
Block Replacement Po	licy	-	Cache block size (words))	4	-
Set size (blocks)	•	1 🔻	Cache size (bytes)			128
	Cacl	he Pe	rformance			
Memory Access Coun	t	80	Cache Block Table			
Cache Hit Count		72	(block 0 at top)			
Cache Miss Count		0	= empty			
Cache Miss Count		8	= hit			
Cache Hit Rate	90%		= miss			

Nota-se, com essas e algumas outras combinações, que a taxa de hit do cache fica mais alta quando o tamanho da matriz é um pouco menor ou igual à quantidade de words, desde que o número de blocos seja semelhantemente alto. Se o tamanho da matriz aumenta muito e o tamanho da cache permanece o mesmo, a taxa de hit tende a se manter igual. E, é claro, se o tamanho da cache aumenta e a matriz fica suficientemente menor, a taxa de hit fica altíssima.

Algoritmo 2: Matriz 8x8, block_size 4, 8 blocos de 4 words

Matriz 8x8, block_size 2, 8 blocos de 4 words

Matriz 16x16, block_size 4, 8 blocos de 4 words

Matriz 16x16, block_size 8, 8 blocos de 4 words

	Cache	Or	ganization	
Placement Policy	Direct Mapping	•	Number of blocks	8
Block Replacement Poli	icy LRU	•	Cache block size (words)	4
Set size (blocks)	1	•	Cache size (bytes)	128
	Cache	Pe	rformance	
Memory Access Count	128	0	Cache Block Table	
Cache Hit Count	80	0	(block 0 at top)	
			= empty	
Cache Miss Count	48	0	= hit	
Cache Hit Rate	63%		= miss	

Matriz 16x16, block_size 2, 8 blocos de 4 words

Matriz 8x8, block size 4, 8 blocos de 8 words

Matriz 8x8, block_size 2, 8 blocos de 8 words

Cache Organization						
Placement Policy	Direct Mapping	•	Number of blocks		8	
Block Replacement Po	licy LRU	•	Cache block size (words)		8	
Set size (blocks)	1	•	Cache size (bytes)		2 56	
Cache Performance						
Memory Access Count	. 3	320	Cache Block Table			
Cache Hit Count	2	261	(block 0 at top)			
Cache Miss Count		59	= empty			
Cuciic miss Count		33	= hit			
Cache Hit Rate	82%		= miss			

Matriz 16x16, block_size 8, 8 blocos de 8 words

Matriz 16x16, block size 4, 8 blocos de 8 words

Matriz 16x16, block_size 2, 8 blocos de 8 words

Cache Organization						
Placement Policy	Direct Mapping	-	Number of blocks		8	-
Block Replacement Po	Dlicy LRU	-	Cache block size (words)		8	•
Set size (blocks)	1	-	Cache size (bytes)			256
Cache Performance						
Memory Access Coun	t 1	280	Cache Block Table			
Cache Hit Count		968	(block 0 at top)			
			= empty			
Cache Miss Count		312	= hit			
Cache Hit Rate	76%		= miss			

Matriz 32x32, block_size 16, 8 blocos de 8 words

Matriz 32x32, block size 8, 8 blocos de 8 words

Matriz 32x32, block_size 4, 8 blocos de 8 words

Cache Organization						
Placement Policy	Direct Mapping	-	Number of blocks		8	-
Block Replacement Po	LRU	-	Cache block size (words))	8	-
Set size (blocks)	1	-	Cache size (bytes)			256
Cache Performance						
Memory Access Count	t 5	120	Cache Block Table			
Cache Hit Count	3	456	(block 0 at top)			
Cache Miss Count	4	CC A	= empty			
Cache wiss Count	1	664	= hit			
Cache Hit Rate	68%		= miss			

Matriz 8x8, block_size 4, 16 blocos de 8 words

Matriz 8x8, block_size 4, 8 blocos de 16 words

Matriz 4x4, block_size 2, 8 blocos de 4 words

Cache Organization							
Placement Policy Direct	t Mapping -	Number of blocks	8				
Block Replacement Policy	LRU ▼	Cache block size (words)	4				
Set size (blocks)	1 ▼	Cache size (bytes)	128				
Cache Performance							
Memory Access Count	80	Cache Block Table					
Cache Hit Count	72	(block 0 at top)					
Cache Miss Count	8	= empty					
Cacile Miss Coulit	0	= hit					
Cache Hit Rate	90%	= miss					

Apesar de que em diversos casos o desempenho do cache é o mesmo ou parecido, ele aparenta ser melhor quando o block_size tem a metade do tamanho da matriz, por exemplo tamanho 4 em uma matriz 8x8. Nos casos onde a matriz é suficientemente maior que a cache, o desempenho permanece inalterado.