Coded Computation: Straggler Mitigation in Distributed Matrix Multiplication¹

Ankit Kumar Misra Dhruva Dhingra

EE 605: Error Correcting Codes, Autumn 2022, IIT Bombay

December 5, 2022

¹Yu et al., IEEE Transactions on Information Theory, 2020 → ← ≥ → ← ≥ → ∞ ∞ ∞

Distributed Matrix Multiplication

Matrix multiplication is a fundamental operation in data analytics and machine learning applications.

Distributed Matrix Multiplication

- Matrix multiplication is a fundamental operation in data analytics and machine learning applications.
- Often requires a lot more storage and computational power than a single machine can offer.

Distributed Matrix Multiplication

- Matrix multiplication is a fundamental operation in data analytics and machine learning applications.
- Often requires a lot more storage and computational power than a single machine can offer.
- This problem is solved by deploying the multiplication task over a large-scale distributed system, having several nodes.

But what if some nodes are slower than others?

- But what if some nodes are slower than others?
- The slowest nodes, a.k.a. *stragglers*, impose a latency bottleneck.

- But what if some nodes are slower than others?
- The slowest nodes, a.k.a. *stragglers*, impose a latency bottleneck.
- Commonly tackled by adding redundant computations.

- But what if some nodes are slower than others?
- The slowest nodes, a.k.a. *stragglers*, impose a latency bottleneck.
- Commonly tackled by adding redundant computations.
- Naturally, error correcting codes can be applied to introduce 'efficient redundancy' in computation.

■ Input matrices $A \in \mathbb{F}^{s \times r}$ and $B \in \mathbb{F}^{s \times t}$.

- Input matrices $A \in \mathbb{F}^{s \times r}$ and $B \in \mathbb{F}^{s \times t}$.
- One master node and N worker nodes, each of which can store 1/pm fraction of A and 1/pn fraction of B.

- Input matrices $A \in \mathbb{F}^{s \times r}$ and $B \in \mathbb{F}^{s \times t}$.
- One master node and N worker nodes, each of which can store 1/pm fraction of A and 1/pn fraction of B.
- Encoding functions $\mathbf{f} = (f_0, \dots, f_{N-1})$ and $\mathbf{g} = (g_0, \dots, g_{N-1})$, and class of decoding functions $\mathbf{d} = \{d_{\mathcal{K}}\}_{\mathcal{K} \subseteq \{0,1,\dots,N-1\}}$.

- Input matrices $A \in \mathbb{F}^{s \times r}$ and $B \in \mathbb{F}^{s \times t}$.
- One master node and N worker nodes, each of which can store 1/pm fraction of A and 1/pn fraction of B.
- Encoding functions $\mathbf{f} = (f_0, \dots, f_{N-1})$ and $\mathbf{g} = (g_0, \dots, g_{N-1})$, and class of decoding functions $\mathbf{d} = \{d_{\mathcal{K}}\}_{\mathcal{K} \subset \{0,1,\dots,N-1\}}$.
- Master sends $\tilde{A}_i = f_i(A)$ and $\tilde{B}_i = g_i(B)$ to worker i.

- Input matrices $A \in \mathbb{F}^{s \times r}$ and $B \in \mathbb{F}^{s \times t}$.
- One master node and N worker nodes, each of which can store 1/pm fraction of A and 1/pn fraction of B.
- Encoding functions $\mathbf{f} = (f_0, \dots, f_{N-1})$ and $\mathbf{g} = (g_0, \dots, g_{N-1})$, and class of decoding functions $\mathbf{d} = \{d_{\mathcal{K}}\}_{\mathcal{K} \subseteq \{0,1,\dots,N-1\}}$.
- Master sends $\tilde{A}_i = f_i(A)$ and $\tilde{B}_i = g_i(B)$ to worker i.
- Worker *i* sends $\tilde{C}_i = \tilde{A}_i^T \tilde{B}_i$ to master.

- Input matrices $A \in \mathbb{F}^{s \times r}$ and $B \in \mathbb{F}^{s \times t}$.
- One master node and N worker nodes, each of which can store 1/pm fraction of A and 1/pn fraction of B.
- Encoding functions $\mathbf{f} = (f_0, \dots, f_{N-1})$ and $\mathbf{g} = (g_0, \dots, g_{N-1})$, and class of decoding functions $\mathbf{d} = \{d_{\mathcal{K}}\}_{\mathcal{K} \subset \{0,1,\dots,N-1\}}$.
- Master sends $\tilde{A}_i = f_i(A)$ and $\tilde{B}_i = g_i(B)$ to worker i.
- Worker *i* sends $\tilde{C}_i = \tilde{A}_i^T \tilde{B}_i$ to master.
- Master estimates C using $\hat{C} = d_{\mathcal{K}}(\{\tilde{C}_i\}_{i \in \mathcal{K}})$ using \tilde{C}_i values received from a subset \mathcal{K} of workers.

- Input matrices $A \in \mathbb{F}^{s \times r}$ and $B \in \mathbb{F}^{s \times t}$.
- One master node and N worker nodes, each of which can store 1/pm fraction of A and 1/pn fraction of B.
- Encoding functions $\mathbf{f} = (f_0, \dots, f_{N-1})$ and $\mathbf{g} = (g_0, \dots, g_{N-1})$, and class of decoding functions $\mathbf{d} = \{d_{\mathcal{K}}\}_{\mathcal{K} \subset \{0,1,\dots,N-1\}}$.
- Master sends $\tilde{A}_i = f_i(A)$ and $\tilde{B}_i = g_i(B)$ to worker i.
- Worker *i* sends $\tilde{C}_i = \tilde{A}_i^T \tilde{B}_i$ to master.
- Master estimates C using $\hat{C} = d_{\mathcal{K}}(\{\tilde{C}_i\}_{i \in \mathcal{K}})$ using \tilde{C}_i values received from a subset \mathcal{K} of workers.
- k-recoverable if $\hat{C} = C$ for all \mathcal{K} s.t. $|\mathcal{K}| = k$.

- Input matrices $A \in \mathbb{F}^{s \times r}$ and $B \in \mathbb{F}^{s \times t}$.
- One master node and N worker nodes, each of which can store 1/pm fraction of A and 1/pn fraction of B.
- Encoding functions $\mathbf{f} = (f_0, \dots, f_{N-1})$ and $\mathbf{g} = (g_0, \dots, g_{N-1})$, and class of decoding functions $\mathbf{d} = \{d_{\mathcal{K}}\}_{\mathcal{K} \subset \{0,1,\dots,N-1\}}$.
- Master sends $\tilde{A}_i = f_i(A)$ and $\tilde{B}_i = g_i(B)$ to worker i.
- Worker *i* sends $\tilde{C}_i = \tilde{A}_i^T \tilde{B}_i$ to master.
- Master estimates C using $\hat{C} = d_{\mathcal{K}}(\{\tilde{C}_i\}_{i \in \mathcal{K}})$ using \tilde{C}_i values received from a subset \mathcal{K} of workers.
- k-recoverable if $\hat{C} = C$ for all \mathcal{K} s.t. $|\mathcal{K}| = k$.
- Recovery threshold $K(\mathbf{f}, \mathbf{g}, \mathbf{d})$ is smallest k s.t. k-recoverable.

■ Divide $A \in \mathbb{F}^{s \times r}$ into r_1 matrices of size $\mathbb{F}^{s \times r/r_1}$. Divide $B \in \mathbb{F}^{s \times t}$ into r_2 matrices of size $\mathbb{F}^{s \times t/r_2}$.

- Divide $A \in \mathbb{F}^{s \times r}$ into r_1 matrices of size $\mathbb{F}^{s \times r/r_1}$. Divide $B \in \mathbb{F}^{s \times t}$ into r_2 matrices of size $\mathbb{F}^{s \times t/r_2}$.
- Give each worker the task of computing the product of one submatrix of *A* with another submatrix of *B*.

- Divide $A \in \mathbb{F}^{s \times r}$ into r_1 matrices of size $\mathbb{F}^{s \times r/r_1}$. Divide $B \in \mathbb{F}^{s \times t}$ into r_2 matrices of size $\mathbb{F}^{s \times t/r_2}$.
- Give each worker the task of computing the product of one submatrix of *A* with another submatrix of *B*.
- There are N workers and $r_1 \times r_2$ unique computations. As soon as we have $r_1 \times r_2$ unique results of the form $A_i^T B_j$, we can interpolate the complete matrix.

- Divide $A \in \mathbb{F}^{s \times r}$ into r_1 matrices of size $\mathbb{F}^{s \times r/r_1}$. Divide $B \in \mathbb{F}^{s \times t}$ into r_2 matrices of size $\mathbb{F}^{s \times t/r_2}$.
- Give each worker the task of computing the product of one submatrix of A with another submatrix of B.
- There are N workers and $r_1 \times r_2$ unique computations. As soon as we have $r_1 \times r_2$ unique results of the form $A_i^T B_j$, we can interpolate the complete matrix.
- Thus, the redundancy is $\frac{N}{r_1 r_2}$

Linear Codes

$$A = \begin{bmatrix} A_{0,0} & \dots & A_{0,m-1} \\ \vdots & \ddots & \vdots \\ A_{p-1,0} & \dots & A_{p-1,m-1} \end{bmatrix}, \quad B = \begin{bmatrix} B_{0,0} & \dots & B_{0,n-1} \\ \vdots & \ddots & \vdots \\ B_{p-1,0} & \dots & B_{p-1,n-1} \end{bmatrix}$$

Linear Codes

$$A = \begin{bmatrix} A_{0,0} & \dots & A_{0,m-1} \\ \vdots & \ddots & \vdots \\ A_{p-1,0} & \dots & A_{p-1,m-1} \end{bmatrix}, \quad B = \begin{bmatrix} B_{0,0} & \dots & B_{0,n-1} \\ \vdots & \ddots & \vdots \\ B_{p-1,0} & \dots & B_{p-1,n-1} \end{bmatrix}$$

$$ilde{A}_i = \sum_{j,k} A_{j,k} a_{ijk}$$
 $ilde{B}_i = \sum_{j,k} B_{j,k} b_{ijk}$

Linear Codes

$$A = \begin{bmatrix} A_{0,0} & \dots & A_{0,m-1} \\ \vdots & \ddots & \vdots \\ A_{p-1,0} & \dots & A_{p-1,m-1} \end{bmatrix}, \quad B = \begin{bmatrix} B_{0,0} & \dots & B_{0,n-1} \\ \vdots & \ddots & \vdots \\ B_{p-1,0} & \dots & B_{p-1,n-1} \end{bmatrix}$$

$$\tilde{A}_i = \sum_{j,k} A_{j,k} a_{ijk}$$

$$\tilde{B}_i = \sum_{j,k} B_{j,k} b_{ijk}$$

$$\hat{C}_{j,k} = \sum_{i \in \mathcal{K}} \tilde{C}_i c_{ijk}$$

■ Assign a distinct $x_i \in \mathbb{F}$ to each worker i.

- Assign a distinct $x_i \in \mathbb{F}$ to each worker i.
- Worker *i* is given the following:

$$\tilde{A}_{i} = \sum_{j=0}^{p-1} \sum_{k=0}^{m-1} A_{j,k} x_{i}^{j+kp} \qquad \tilde{B}_{i} = \sum_{j=0}^{p-1} \sum_{k=0}^{n-1} B_{j,k} x_{i}^{p-1-j+kpm}$$

- Assign a distinct $x_i \in \mathbb{F}$ to each worker i.
- Worker *i* is given the following:

$$\tilde{A}_{i} = \sum_{j=0}^{p-1} \sum_{k=0}^{m-1} A_{j,k} x_{i}^{j+kp} \qquad \tilde{B}_{i} = \sum_{j=0}^{p-1} \sum_{k=0}^{n-1} B_{j,k} x_{i}^{p-1-j+kpm}$$

Worker i returns

$$\tilde{C}_{i} = \tilde{A}_{i}^{T} \tilde{B}_{i}
= \sum_{i=0}^{p-1} \sum_{k=0}^{m-1} \sum_{i'=0}^{p-1} \sum_{k='0}^{n-1} A_{j,k}^{T} B_{j',k'} x_{i}^{(p-1+j-j')+kp+k'pm}$$

• \tilde{C}_i is interpolation of polynomial h(x) at $x=x_i$ where

$$h(x) = \sum_{j=0}^{p-1} \sum_{k=0}^{m-1} \sum_{j'=0}^{p-1} \sum_{k=0}^{n-1} A_{j,k}^T B_{j',k'} x^{(p-1+j-j')+kp+k'pm}$$

• \tilde{C}_i is interpolation of polynomial h(x) at $x=x_i$ where

$$h(x) = \sum_{j=0}^{p-1} \sum_{k=0}^{m-1} \sum_{j'=0}^{p-1} \sum_{k='0}^{n-1} A_{j,k}^T B_{j',k'} x^{(p-1+j-j')+kp+k'pm}$$

• $C_{k,k'}$ is the coefficient of (p-1+kp+k'pm)-th degree term.

• \tilde{C}_i is interpolation of polynomial h(x) at $x=x_i$ where

$$h(x) = \sum_{j=0}^{p-1} \sum_{k=0}^{m-1} \sum_{j'=0}^{p-1} \sum_{k='0}^{n-1} A_{j,k}^T B_{j',k'} x^{(p-1+j-j')+kp+k'pm}$$

- $C_{k,k'}$ is the coefficient of (p-1+kp+k'pm)-th degree term.
- Degree of h(x) is pmn + p 2. So, given evaluation of h(x) at any distinct pmn + p 1 points, we can find the coefficients of h(x) which are the required submatrices of the result.

• \tilde{C}_i is interpolation of polynomial h(x) at $x=x_i$ where

$$h(x) = \sum_{j=0}^{p-1} \sum_{k=0}^{m-1} \sum_{j'=0}^{p-1} \sum_{k='0}^{n-1} A_{j,k}^T B_{j',k'} x^{(p-1+j-j')+kp+k'pm}$$

- $C_{k,k'}$ is the coefficient of (p-1+kp+k'pm)-th degree term.
- Degree of h(x) is pmn + p 2. So, given evaluation of h(x) at any distinct pmn + p 1 points, we can find the coefficients of h(x) which are the required submatrices of the result.

$\mathsf{Theorem}$

 $K_{entangled-poly} = pmn + p - 1.$

Why are Entangled Polynomial Codes Important?

Theorem

$$K_{linear}^* = K_{entangled-poly}$$
.

Why are Entangled Polynomial Codes Important?

Theorem

 $K_{linear}^* = K_{entangled-poly}$.

Theorem

If $\mathbb F$ is a finite field, then $\frac{1}{2}K_{entangled-poly} < K^* \le K_{entangled-poly}$.

We implemented entangled polynomial codes and redundant codes in Python.

- We implemented entangled polynomial codes and redundant codes in Python.
- Code at https://github.com/ankitkmisra/ Straggler-Mitigation-MatMul.

- We implemented entangled polynomial codes and redundant codes in Python.
- Code at https://github.com/ankitkmisra/ Straggler-Mitigation-MatMul.
- We simulated communication delays with two exponential distributions; a low-mean one for fast workers and a high-mean one for slow workers. $(p(x; \lambda) = \lambda e^{-\lambda x})$

- We implemented entangled polynomial codes and redundant codes in Python.
- Code at https://github.com/ankitkmisra/ Straggler-Mitigation-MatMul.
- We simulated communication delays with two exponential distributions; a low-mean one for fast workers and a high-mean one for slow workers. $(p(x; \lambda) = \lambda e^{-\lambda x})$
- A fraction f < 1 of workers were set to be slow.

What we did

- We implemented entangled polynomial codes and redundant codes in Python.
- Code at https://github.com/ankitkmisra/ Straggler-Mitigation-MatMul.
- We simulated communication delays with two exponential distributions; a low-mean one for fast workers and a high-mean one for slow workers. $(p(x; \lambda) = \lambda e^{-\lambda x})$
- A fraction f < 1 of workers were set to be slow.
- We observed computation times and errors in the final result, for both types of codes, by varying matrix sizes, number of partitions, number of workers, etc.

10 / 17

Practical Issues with Entangled Polynomial Code - Numerical Instability

 Interpolation Error - Lagrange Interpolation is numerically very unstable. As soon as interpolation degree crosses 20, error starts rising very quickly (Runge's phenomenon²).

11 / 17

²https://en.wikipedia.org/wiki/Runge's_phenomenon

³https://en.wikipedia.org/wiki/Chebyshev_nodes

Practical Issues with Entangled Polynomial Code - Numerical Instability

- Interpolation Error Lagrange Interpolation is numerically very unstable. As soon as interpolation degree crosses 20, error starts rising very quickly (Runge's phenomenon²).
- **Solution** Use Chebyshev Nodes³ for evaluation points.

$$x_k = \cos\left(\frac{2k-1}{2n}\pi\right)$$

²https://en.wikipedia.org/wiki/Runge's_phenomenon

³https://en.wikipedia.org/wiki/Chebyshev_nodes ⊘ → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨

Practical Issues with Entangled Polynomial Code - Numerical Instability

Encoding and Decoding for Entangled Polynomial Code is very expensive.

- Encoding and Decoding for Entangled Polynomial Code is very expensive.
- While multiplying a matrix with a scalar and summing over the block matrices is not expensive, calculating $x_i^{\mathbf{J}+\mathbf{K}\rho}$ for \tilde{A}_i and $x_i^{p-1-\mathbf{J}+\mathbf{K}\rho m}$ for \tilde{B}_i is a very expensive operation.

- Encoding and Decoding for Entangled Polynomial Code is very expensive.
- While multiplying a matrix with a scalar and summing over the block matrices is not expensive, calculating $x_i^{\mathbf{J}+\mathbf{K}p}$ for \tilde{A}_i and $x_i^{p-1-\mathbf{J}+\mathbf{K}pm}$ for \tilde{B}_i is a very expensive operation.
- In fact, this preprocessing time (even for a single worker) soon begins to eclipse the time taken for matrix multiplication at a single worker.

- Encoding and Decoding for Entangled Polynomial Code is very expensive.
- While multiplying a matrix with a scalar and summing over the block matrices is not expensive, calculating $x_i^{\mathbf{J}+\mathbf{K}p}$ for \tilde{A}_i and $x_i^{p-1-\mathbf{J}+\mathbf{K}pm}$ for \tilde{B}_i is a very expensive operation.
- In fact, this preprocessing time (even for a single worker) soon begins to eclipse the time taken for matrix multiplication at a single worker.
- Empirical analysis validates this result.

Execution times: Polynomial code vs. Redundant code

Figure: Caption

 Entangled polynomial codes are extremely effective for reconstruction from a minimal number of responsive workers.

- Entangled polynomial codes are extremely effective for reconstruction from a minimal number of responsive workers.
- But there are two problems:

16 / 17

- Entangled polynomial codes are extremely effective for reconstruction from a minimal number of responsive workers.
- But there are two problems:
 - Interpolation introduces errors, which increase exponentially with the number of evaluation points used.

- Entangled polynomial codes are extremely effective for reconstruction from a minimal number of responsive workers.
- But there are two problems:
 - Interpolation introduces errors, which increase exponentially with the number of evaluation points used.
 - Cost of preprocessing increases rapidly with matrix size, due to a large number of exponentiations, and causes a sharp increase in total computation time using entangled polynomial codes.

- Entangled polynomial codes are extremely effective for reconstruction from a minimal number of responsive workers.
- But there are two problems:
 - Interpolation introduces errors, which increase exponentially with the number of evaluation points used.
 - Cost of preprocessing increases rapidly with matrix size, due to a large number of exponentiations, and causes a sharp increase in total computation time using entangled polynomial codes.
- This renders entangled polynomial codes unfit for practical use, unless these issues are fixed.

Thanks!

Any questions?