Advanced Topics in Statistics 2020/2021 Homework set 3

- 1. Let X_1, \ldots, X_n be an iid random sample extracted from a $U(0, \theta)$ population, where $\theta > 0$. Show that, as $n \to +\infty$,
 - (a) $X_{(n)} \xrightarrow{P} \theta$
 - (b) $n(1 X_{(n)}/\theta) \xrightarrow{d} \operatorname{Ex}(1)$
 - (c) $\sqrt{3n} (2\bar{X}/\theta 1) \xrightarrow{d} N(0, 1)$
- 2. Denote by X_1, \ldots, X_n an iid random sample of size n > 2 extracted from a continuous population with cdf F and pdf f.
 - (a) Justify the following identity

$$P(X_{(n)} \le y) = P(X_{(n)} \le y, X_{(1)} \le x) + P(X_{(n)} \le y, X_{(1)} > x)$$

and use it to show that the joint pdf of $(X_{(1)}, X_{(n)})$ is such that

$$G_{1,n}(x,y) = [F(y)]^n - [F(y) - F(x)]^n, \quad x < y.$$

(b) Conclude that the joint pdf of the pair $(X_{(1)}, X_{(n)})$ is given by

$$g_{1,n}(x,y) = n(n-1)f(x)f(y)[F(y) - F(x)]^{n-2}, \quad x < y.$$

- 3. Let X_1, \ldots, X_n be an iid random sample extracted from a population X with mean μ and variance σ^2 . Let $S^2_{\star} = \sum_{i=1}^n (X_i \mu)^2 / n$, $S^2 = \sum_{i=1}^n (X_i \bar{X})^2 / n$, and assume that $\mu_4 = E[(X \mu)^4]$ is finite.
 - (a) Show that $S^2_{\star} \xrightarrow{P} \sigma^2$.
 - (b) Show that $\sqrt{n}(S_{\star}^2 \sigma^2) \xrightarrow{d} N(0, \mu_4 \sigma^4)$.
 - (c) Prove that $S^2 = S_{\star}^2 (\bar{X} \mu)^2$.
 - (d) Show that $S^2 \xrightarrow{P} \sigma^2$.
 - (e) Justify the following statement: $\sqrt{n}(\bar{X} \mu)/S \stackrel{d}{\longrightarrow} N(0, 1)$.
 - (f) Show that $\sqrt{n}(S^2 \sigma^2) \xrightarrow{d} N(0, \mu_4 \sigma^4)$, i.e., that S^2 and S^2_{\star} have the same asymptotic distribution.
- 4. Let $\{X_m\}_{m=1}^{+\infty}$ and $\{Y_n\}_{n=1}^{+\infty}$ be two sequences of independent random variables possessing moment generating functions and

$$X_m^{\star} = \sqrt{m}(X_m - \mu)$$

$$Y_n^{\star} = \sqrt{n}(Y_n - \theta) ,$$

where $\sigma > 0$ and $\delta > 0$. Suppose $M_{X_m^{\star}}(s) \to \exp(\sigma^2 s^2/2)$ and $M_{Y_n^{\star}}(s) \to \exp(\delta^2 s^2/2)$ and $n, m \to +\infty$ in such a way that $\frac{\sigma^2/m}{\sigma^2/m + \delta^2/n} \to c$, where 0 < c < 1. Show that, in these circumstances,

$$Z_{m,n} = \frac{(X_m - Y_n) - (\mu - \theta)}{\sqrt{\sigma^2/m + \delta^2/n}} \stackrel{d}{\longrightarrow} N(0,1) .$$