193/2018	
	Exam average: 78%
	Using molarity in calculations
	Use molarity as a conversion factor
	mol => L solute sol
	Mans
	ex: 0.125M Nacicag) Means 0.125mol = 1 L sol2
	Nacı
	0.125mol Naci
	4-11 sol- 0.125mol Nacl.
	(X) KEY (X)
	ex: What vol of this 0.125M Nacing solutions
	0.255mol Nacl?
	0.25 Smol Nacly _ IL = 2.04 L Nacl soly
	0.125 mol Naca
	ex: How many mol Nacl are in 375mL of this same soly?
	375 m / x 1 L v 0.125 mol Naca = 0.0469 mol Naca
	1000 mL 1L
	1×10 ⁻³ L

IML

ex: 0.250 M KC1(as). 0.250mol KC1 = 1L
Q1. How many moles of KC1 are in 0.1824 of sol=?
Q2. How many milliliters of this sol = contain [0.100 mol Ka
11 0 1001 (0.200 m) KC
Al- 0.182/x 0.250 mol KC1 = 0.0 455 mol KC1
A2. 0.100mol Kax IL , 1000ml = 600000
0.250 mot KC1 1 L = 400 mL
= 4.0k10 ² mL
= 4.00×102 mL
Solution dilution
Often purchase concentrated (stock) sol=s + add H2O
to dilute.
In order to ralculate diluted conc/volume we use the
"DILUTION EQUATION"
initial vol Inal conc.
initial >M, V, = M2 V2 = find vol
#mol solute #mol solute
before after
add from
H ₂ O

Solution stoichiometry

