University of Manitoba Math 3820 – Winter 2008

Midterm

Tuesday, March 18, 2008

Instructions

This test is 1 hour and 20 minutes. It comprises 3 questions on 3 pages. Notes are allowed; calculators and computers are **not** allowed. In marking, attention will be paid to the overall legibility of solutions; so detail and structure your answers.

1. We have the following setup, illustrated in Figure 1: a tank contains initially, at time t=0,

Figure 1: Situation modelled in exercise 1.

100 litres of water. There is an inflow, at the rate of r_{in} litres per minute, and an outflow at the rate of r_{out} litres per minute. Before the experiment starts, the tank contains a concentration of salt of C_0 . At the start of the experiment, liquid starts flowing into the tank, and the contents of the tank start flowing out.

1.a. Write a differential equation for the variation of the volume V(t) of liquid in the tank at time t.

- **1.b.** Find the expression of V(t), the volume of liquid in the tank at time t.
- **1.c.** Assume that $r_{in} = 10$ litres per minute. What is the value of r_{out} , if after 1 hour, there remains exactly 50 litres of liquid in the tank.
- 1.d. Assume now that $r_{in} = r_{out}$, so that the amount of liquid remains constant in the tank. Denote r(t) this rate of in/out-flow, which we assume can vary with time. The inflow contains a concentration S_0 of salt. Assuming that the tank is well stirred, so that the concentration of salt is uniform in the tank, write a differential equation for the concentration C(t) of salt in the tank at time t.
- **1.e.** The general solution to the linear equation x' + p(t)x = q(t) is given by

$$x(t) = e^{-\int p(t)dt} \left(\int e^{\int p(t)dt} q(t)dt + K \right), \quad K \in \mathbb{R}.$$

Using this, solve the differential equation you found in 1.d, with the initial condition $C(0) = C_0$.

2. Consider the difference equation

$$x_{t+1} = \frac{ax_t}{b + x_t},\tag{1}$$

with a, b > 0 and $x_0 \ge 0$.

- **2.a.** Show that for $x_0 \ge 0$, $x_t \ge 0$ for all t.
- **2.b.** Find the fixed points of (1).
- **2.c.** Study the relevance (nonnegativity) and stability of these fixed points, as a function of the (relative) values of a and b.
- **2.d.** Summarize your findings of **2.c** in a diagram having a on the x-axis (assuming a fixed value of b), and the value of the fixed points on the y-axis, as shown in Figure 2. Indicate an attracting equilibrium by a thick line, a repelling one by a dashed line.

Figure 2: Setup of the bifurcation diagram for exercise 2.d.

2.e. Can (1) have period 2 points other than its fixed points?

3. Consider the following model for hares and fox, where H(t) and F(t) are the numbers of hares and fox at time t, respectively.

$$H' = (b_H - d_H)H - \pi HF$$

$$F' = \sigma \pi HF - d_F F.$$
 (2)

The parameters are b_H , birth rate of hares, d_H , death rate of hares, d_F , death rate of fox, π , the predation rate, and σ , the conversion coefficient. We assume that $b_H, d_H, d_F > 0$, while $\pi \geq 0$ and $0 \leq \sigma \leq 1$. System (2) is considered together with initial conditions $(H(0), F(0)) = (H_0, F_0)$, with $H_0, F_0 > 0$.

- **3.a.** Suppose that there is no predation, i.e., $\pi = 0$. Solve system (2), and discuss the behavior of its solutions as a function of the relative values of b_H and d_H .
- **3.b.** Suppose now that $\pi > 0$ and $\sigma > 0$. Draw the nullclines of (2); show the direction field in each region of \mathbb{R}^2_+ hence delimited; identify the equilibria.
- **3.c.** Discuss the relevance (nonnegativity) and local stability of the equilibria, as a function of the relative values of b_H , d_H and d_F , in the $\pi, \sigma > 0$ case.