Lecture 7 Text Entry on Mobile Devices

Xiaojun Bi
Stony Brook University
xiaojun@cs.stonybrook.edu

$$MT = a + b \log_2 \left(\frac{D}{W} + 1\right)$$

Movement Time Index of Difficulty (ID [bits])

Hick's Law

Uncertainty Principle. Decision time T increases with uncertainty about the judgment or decision to be made:

$$T = I_C H_i$$

where H is the information-theoretic entropy of the decision and I_C = 150 [0–157] ms/bit. For n equally probable alternatives (called Hick's Law),

$$H = \log_2{(n+1)}.$$

For n alternatives with different probabilities p_i of occurrence,

$$H = \sum_{i} p_{i} \log_{2} (1/p_{i} + 1).$$

Steering Law (Accot and Zhai, 1997)

"Beyond Fitts' Law: Models for trajectory based HCI tasks."

Proceedings of ACM CHI 1997 Conference

fixed width tunnel:

$$ID = \frac{D}{W}, MT = a + b\frac{D}{W}$$

narrowing tunnel:

$$ID = \int_0^D \frac{dx}{W(x)}$$

general Steering Law:

$$ID = \int_{c} \frac{ds}{W(s)}$$

Example: Modeling Menu Performance

Andy Cockburn, Carl Gutwin, and Saul Greenberg. 2007. A predictive model of menu performance. In *CHI '07*. ACM, New York, NY, USA, 627-636.

GOMS

A family of user interface modeling techniques

- Goals, Operators, Methods, and Selection rules
 - Input: detailed description of UI and task(s)
 - Output: various qualitative and quantitative measures

•Top Three Activities on Mobile Devices:

1) Emailing, 2) Social Networking, 3) Messaging

(www.time.com)

•18 to 24 Year Olds Average 110 Text Messages per Day

(www.time.com)

Challenges of Touchscreen Text Entry

Challenges of Touchscreen Text Entry

Determined by key boundaries, 50% of words are not correctly typed on phone.

Unsuccessful Auto-correction

Unsuccessful Auto-correction

Outline

Smart Touch Keyboard

Gesture Typing

Optimizing Keyboard Layouts

Outline

Smart Touch Keyboard

Gesture Typing

Optimizing Keyboard Layouts

Smart Touch Keyboard

n target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 touch point: s t_4 t_5 t_6

n target candidates: $T = \{t_1, t_2, ..., t_n\}$ t_1 t_2 t_3 ... touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

$$n$$
 target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

$$t^* = \mathop{argmax}_{t} P(t|s)$$
 From Bayes' rule,
$$P(t|s) = \frac{P(S|t)P(t)}{P(s)}$$

$$n$$
 target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 ... touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

From Bayes' rule, $P(t|s) = \frac{P(S|t)P(t)}{P(S)}$

$$P(s|t) = P(s|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} exp\{-\frac{1}{2\sigma^2}(s-\mu)^2\}$$

Dual Gaussian Distribution Model

$$\sigma^2 = \sigma_r^2 + \sigma_a^2 = \alpha W^2 + \sigma_a^2$$

[Bi, Yang, Zhai. FFitts Law. ACM CHI 2013]

[Bi, Zhai. Bayesian Touch. ACM UIST2013]

n target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

From Bayes' rule, $P(t|s) = \frac{P(S|t)P(t)}{P(S)}$

$$P(s|t) = P(s|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} exp\{-\frac{1}{2\sigma^2}(s-\mu)^2\}$$

$$n$$
 target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

From Bayes' rule, $P(t|s) = \frac{P(S|t)P(t)}{P(S)}$

$$P(s|t) = P(s|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} exp\{-\frac{1}{2\sigma^2}(s-\mu)^2\}$$

P(t): prior probability

Text Entry Decoding Algorithm

Outline

Smart Touch Keyboard

Gesture Typing

Optimizing Keyboard Layouts

Gesture Keyboard

Entering *nice*

SHARK² Algorithm

Location Recognition Channel

$$x_{x} = \frac{1}{N} \sum_{i=1}^{N} ||u_{i} - t_{i}||_{2}$$

Shape Matching Channel

Gesture Keyboard

ShapeWriter

Swype

TouchPal

Bimanual Gesture Typing

Entering *nice*

Bimanual Gesture Typing

Entering interaction

