Unbiased Pairwise Learning From Implicit Feedback (at NeurIPS'19 CausalML Workshop)

Yuta Saito

2019/12/14 (Fri)

Tokyo Institute of Technology

What is Implicit Feedback?

Implicit Feedback

- a prevalent type of feedback and widely used in real-world recommender systems.
- natural user behaviours such as clicks or views.

There are two difficulties concerning Implicit Feedback

- only positive-side feedback is observable and negative feedback is unobserved (positive-unlabeled problem).
- the probability of observing positive labels are not uniform among user-item pairs (missing-not-at-random problem).

Addressing both positive-unlabeled and missing-not-at-random problems is critical.

Overview of Related Work

The previous approaches to the challenges are

	Biased or Unbiased?	approach	technique
WMF [1]	Biased	Pointwise	Naive
ExpoMF [2]			EM Algorithm
Rel-MF [4]	Unbiased	Pointwise	Propensity Weighting
BPR [3]	Biased	Pairwise	Naive

The limitations of existing researches are

- · the bias for the ideal loss functions
- depend on a simple pointwise approach (, which is not appropriate for the ranking task)

There is no Unbiased Pairwise Approach

Overview of the Proposed Method

I proposed the first unbiased pairwise learning algorithm called *Unbiased Bayesian Personalized Ranking (UBPR)*.

	Biased or Unbiased?	approach	technique
WMF [1]	Biased	Pointwise	Naive
ExpoMF [2]	Biased	Pointwise	EM Algorithm
Rel-MF [4]	Unbiased	Pointwise	Propensity Weighting
BPR [3]	Biased	Pairwise	Naive
UBPR (ours)	Unbiased	Pairwise	Propensity Weighting

The proposed method is the first pairwise method to solve the positive-unlabeled and missing-not-at-random problems simultaneously.

Experimental Results

Experimental Results with the Yahoo! R3 data demonstrates the practical strength of our proposed method over the previous naive pairwise estimator and the pointwise approach.

Thank You For Listening!

Please come to the poster for the detail. (e.g., formulation, related work, proposed estimator, theory)

References i

References

- [1] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages 263–272. leee, 2008.
- [2] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. Modeling user exposure in recommendation. In Proceedings of the 25th International Conference on World Wide Web, pages 951–961. International World Wide Web Conferences Steering Committee, 2016.
- [3] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In *Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence*, pages 452–461. AUAI Press, 2009.

References ii

[4] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata. Unbiased recommender learning from missing-not-at-random implicit feedback. In Proceedings of the Thirteenth ACM International Conference on Web Search and Data Mining. ACM, 2020.