Informatique-Electronique - AGIL Elec B

Electronique numérique : Bases de l'Algèbre de Boole

Renato Martins, ICB UMR CNRS - Univ. Bourgogne UFR Sciences & Techniques - IEM, 2024

Remerciements

 Les slides du cours sont basés pour la plupart sur le support gentillement mis à disposition par Amira Bousselmi et par de nombreuses autres personnes.

 Je n'ai pas crédité ces personnes dans la plupart des slides (ce qui n'est pas bien...mes excuses.)

Table des Matières

- Chapitre 1 : Numérisation et arithmétique binaire
- Chapitre 2 : Bases de l'algèbre de Boole
- Chapitre 3 : Simplification des fonctions logiques
- Chapitre 4 : Portes et logigrammes
- Chapitre 5 : Circuits combinatoires de base

Chapitre 2 : Bases de l'algèbre de Boole

Introduction

- Les machines numériques sont constituées d'un ensemble de circuits électroniques.
- Chaque circuit fournit une fonction logique bien déterminée (addition, soustraction, comparaison,....).
- Les circuits qui réalisent les opérations logiques sont constitués portes logiques.

Introduction

- Une fonction logique de base est réalisée à l'aide des portes logiques qui permettent d'effectuer des opérations élémentaires.
- Ces portes logiques sont aujourd'hui réalisées à l'aide de transistors.
- Pour concevoir et réaliser ce circuit on doit avoir un modèle mathématique de la fonction réalisée par ce circuit.
- Ce modèle doit prendre en considération le système binaire.

Introduction

- Une fonction logique de base est réalisée à l'aide des portes logiques qui permettent d'effectuer des opérations élémentaires.
- Ces portes logiques sont aujourd'hui réalisées à l'aide de transistors.
- Pour concevoir et réaliser ce circuit on doit avoir un modèle mathématique de la fonction réalisée par ce circuit.
- Ce modèle doit prendre en considération le système binaire.
- Le modèle mathématique utilisé est celui de Boole.
- Une variable logique (booléenne) est une variable qui peut prendre soit la valeur 0 ou 1.
- Généralement elle est exprimée par un seul caractère alphabétique en majuscule (A, B, S, ...)

Algèbre de Boole

- George Boole mathématicien anglais (1815-1864):
 - Algèbre binaire
 - De variables booléennes: que ne prennent que deux valeurs
 VRAI ou FAUX.
 - D'opérateurs décrits par une table de vérité
 - Et d'opérateurs réalisés par des portes logiques

Porte logique : OUI

 OUI : Opération suiveuse : opérateur unaire (une seule variable) qui associe au résultat la même valeur que celle de l'opérande.

Fonction	Table	Symbole
	de vérité	
C _ [/A] _ A	AS	A . S
S = F(A) = A	0 0	— >
	1 1	

Porte logique : NON

 NON : Opération inverseuse : est un opérateur unaire qui à pour rôle d'inverser la valeur d'une variable .

_		
$\vdash \cap$	ncti	Λn .
ı	リししい	OH

Table

de vérité

$$S = F(A) = Non A = \overline{A}$$

Α	S
0	1
1	0

Porte logique : OU

- Le OU est un opérateur binaire (deux variables), a pour rôle de réaliser la somme logique entre deux variables logiques.
- Le OU fait la disjonction entre deux variables.

Fonction

$$S = F(A,B) = A + B$$

Table

de vérité

Porte logique : NOR

• NOR: NON-OU: S est vrai si ni a, ni b ne sont vrais.

Fonction

Table

de vérité

$$S = F(A,B) = \overline{A + B}$$

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Porte logique : ET

- Le ET est un opérateur binaire (deux variables), a pour rôle de réaliser le Produit logique entre deux variables booléennes.
- Le ET fait la Conjonction entre deux variables.

Fonction

$$S = F(A,B) = A . B$$

Table

de vérité

$$^{\mathsf{A}}_{\mathsf{B}}$$

Porte logique : NAND

NAND: NON-ET: S est vrai si A OU B est faux.

Fonction

Table

de vérité

$$S = F(A,B) = \overline{A \cdot B}$$

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Porte logique : XOR

- XOR: OU exclusif: S est vrai si A est vrai ou B est vrai mais pas les deux.
- XOR vaut 1 si a est différent de b

Fonction

$$S = F(A,B) = A \oplus B$$

= $A \cdot \overline{B} + \overline{A} \cdot B$

Table

de vérité

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Porte logique : XNOR

XNOR: NON OU exclusif: S vaut 1 si A = B.

Fonction

Table

de vérité

$$S = F(A,B) = \overline{A \oplus B}$$

A	В	S
0	0	1
0	1	0
1	0	0
1	1	1

$$A \longrightarrow B$$

Recap des notations et portes

Notation Américaine

Désignation	Symbole	Désignation	Symbole
Identité	AS	NOT (NON)	A
AND (ET)	A S	NAND (NON ET)	A B S
OR (OU inclusif)	A B	NOR (NON OU)	A B S
XOR (OU exclusif)	<u>A</u> <u>B</u> <u>S</u>	XNOR (NON OU exclusif)	A B S

Comparateur

Le comparateur est un circuit qui compare deux mots de n bits. En sortie, un bit indique le résultat de la comparaison : 1 s'il y a égalité entre les deux codes présents à l'entrée, 0 si ces codes sont différents.

$$S = 1 \text{ si}$$

$$e_1 = i_1$$

$$et e_2 = i_2$$

$$et e_3 = i_3$$

Désignation	Symbole	Désignation	Symbole
Identité	A	NOT (NON)	A
AND (ET)	A B	NAND (NON ET)	A B
OR (OU inclusif)	A B S	NOR (NON OU)	A B B
XOR (OU exclusif)	A B S	XNOR (NON OU exclusif)	A B B

Exercices

Proposer un circuit avec portes logiques pour le démi additionneur avec table de vérité suivant :

	somme	retenue
0+0	0	0
0+1	1	0
1+1	0	1

	Désignation	Symbole	Désignation	Symbole
	Identité	AS	NOT (NON)	A
	AND (ET)	A B	NAND (NON ET)	A B
	OR (OU inclusif)	A B S	NOR (NON OU)	A S
	XOR (OU exclusif)	A B S	XNOR (NON OU exclusif)	A B S

- C'est une fonction qui relie N variables logiques avec un ensemble d'opérateurs logiques de base.
- La valeur d'une fonction logique est égale à 1 ou 0 selon les valeurs des variables logiques.
- Si une fonction logique possède N variables logiques 2ⁿ combinaisons la fonction possède 2ⁿ valeurs.
- Les 2ⁿ combinaisons sont représentées dans une table qui s'appelle table de vérité (TV).

Exemple fonction logique

• La fonction possède 3 variables --> 2³ combinaisons

$$F(A,B,C) = \overline{A}.\overline{B}.C + \overline{A}.B.C + A.\overline{B}.C + A.B.C$$

$F(0,0,0) = \overline{0.0.0} + \overline{0.0.0} + \overline{0.0.0} + 0.0.0 = 0$
$F(0,0,1) = \overline{0.0.1} + \overline{0.0.1} + \overline{0.0.1} + 0.0.1 = 1$
$F(0,1,0) = \overline{0.1.0} + \overline{0.1.0} + 0.1.0 + 0.1.0 = 0$
$F(0,1,1) = \overline{0.1.1} + \overline{0.1.1} + 0.1.1 = 1$
$F(1,0,0) = \bar{1}.\bar{0}.0 + \bar{1}.0.0 + 1.\bar{0}.0 + 1.0.0 = 0$
$F(1,0,1) = \overline{1.0.1} + \overline{1.0.1} + \overline{1.0.1} + 1.\overline{0.1} + 1.0.1 = 1$
$F(1,1,0) = \bar{1}.\bar{1}.0 + \bar{1}.1.0 + 1.\bar{1}.0 + 1.1.0 = 0$
$F(1,1,1) = \overline{1.1.1} + \overline{1.1.1} + 1.\overline{1.1} + 1.\overline{1.1} = 1$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Une table de vérité

Axiomes

$(A_1): A = 0 \text{ si } A \neq 1$			(A_1) : $A = 1$ si $A \neq 0$		
(A ₂):	si $A = 0$ alors $\overline{A} = 1$		(A_{2}) : si $A = 1$ alors $\overline{A} = 0$		
(A_3) :	$0 \cdot 0 = 0$	et	1 + 1 = 1		
	1.1 = 1	et	0 + 0 = 0		
	1.0 = 0.1 = 0	et	1+0=0+1=1		

Théorèmes

• Fonctions à une variable

Théorèmes

Fonctions à deux variables.

```
(T_6): A + B = B + A  (T_{6'}): A \cdot B = B \cdot A  (Commutativité)

(T_7): A + AB = A  (T_{7'}): A \cdot (A + B) = A  (Absorption)

(T_8): A + \overline{A}B = A + B  (T_{8'}): A \cdot (\overline{A} + B) = A \cdot B  (Absorption)

(T_9): AB + A\overline{B} = A  (T_{9'}): (A + B)(A + \overline{B}) = A  (Absorption)
```

Théorèmes

Fonctions 3 variables

$$(T_{10}): A+(B+C) = (A+B)+C$$
 $(T_{10}): A.(B.C) = (A.B).C$ (Associativité)
 $(T_{11}): A+(B.C) = (A+B).(A+C)$ $(T_{11}): A.(B+C) = (A.B)+(A.C)$ (Distributivité)
 $(T_{12}): AB+AC+BC = AB+AC$ $(T_{12}): (A+B).(A+C).(B+C) = (A+B)(A+C)$

Théorème de Morgan

$$\overline{\overline{A+B}} = \overline{A}.\overline{B}$$
 et
$$\overline{A.B} = \overline{A} + \overline{B}$$
 (2 variables)
$$\overline{A+B+C} = \overline{A}.\overline{B.C}$$
 et
$$\overline{A.B.C} = \overline{A} + \overline{B} + \overline{C}$$
 (3 variables)
$$\overline{A+B+C+...} = \overline{A.B.C}...$$
 et
$$\overline{A.B.C....} = \overline{A} + \overline{B} + \overline{C} + ...$$

AUTRES OPERATEURS LOGIQUES

AUTRES OPERATEURS LOGIQUES

Exercise

Simplifiez les fonctions suivantes :

1.
$$AB+A(B+C)+B(B+C)$$

2.
$$[A\overline{B}(C+BD)+\overline{AB}]C$$

3.
$$\overline{AB + AC} + \overline{AB}C$$

4.
$$ABC+AB\overline{C}+A\overline{B}C$$

5.
$$\overline{ab}(a+\overline{b})(a+b)$$

6.
$$X+\overline{Y}(Z+\overline{X})$$

$$(T_1)$$
: $A + 0 = A$ $(T_{1'})$: $A \cdot 1 = A$ (Eléments neutres)

$$(T_2)$$
: $A+1=1$ $(T_{2'})$: $A\cdot 0=0$ (Eléments absorbants)

$$(T_3)$$
: $A + A = A$ (T_3) : $A \cdot A = A$ (Idempotence)

$$(T_4)$$
: $A = A$ (Involution)

$$(T_5): A + \overline{A} = 1 \qquad (T_{5'}): A . \overline{A} = 0$$

$$F_1 = a.(a+b)$$

$$F_2 = (a+b).(\overline{a}+b)$$

$$F_3 = a.b + \overline{c} + \overline{c}.(\overline{a} + \overline{b})$$

$$F_4 = (a.\overline{b} + c).(a + \overline{b}).c$$

$$F_5 = (a+b).c + a.(b+c) + b$$

$$F_6 = (a+b+c).(a+b+c)+a.b+b.c$$

$$F_7 = a + a.b.c + a.b.c + a.b + a.d + a.d$$

$$F_8 = a + \bar{a}.b + \bar{a}.\bar{b}.c + \bar{a}.\bar{b}.\bar{c}.d + \bar{a}.\bar{b}.\bar{c}.\bar{d}.e$$

$$F_9 = (a+b).(a+b.c) + a.b + a.c$$

