PLANEJAMENTO DE EXPERIMENTOS NO PROCESSO PRODUTIVO UTILIZANDO O MÉTODO TAGUCHI

Edvaldo Amaro Santos CORREIA (1); Jorge Alexander Sosa CARDOZA (2)

(1) IFPB, Av. 1º de Maio,720-Jaguaribe, CEP: 58.015-430- João Pessoa,PB/Brasil

e-mail: edvaldo.amaro@gmail.com / edvaldo.amaro@ifpb.edu.br

(2) IFAM- Av. Governador Danilo Areosa, s/n-.Distrito Industrial, CEP: 69075-351 - Manaus, AM / Brasil

e-mail:jcardoza@ifam.edu.br

RESUMO

O presente trabalho tem como objetivo desenvolver experimentos na linha de produção, baseado nas ferramentas convencionais da qualidade e no método TAGUCHI. O estudo de caso foi realizado na linha de injeção plástica da empresa COMPAZ Componentes da Amazônia. S. A., instalada no distrito industrial de Manaus - Amazonas - Brasil. O problema se refere a uma mancha observada sobre a superfície dos gabinetes de plástico dos televisores. Os fatores investigados foram: matéria-prima, montagem e tinta. Experimentos foram planejados e executados, o arranjo ortogonal empregado foi o L8, proposto por Taguchi. As medições das áreas da mancha obtidas foram analisadas através da técnica de análise de variância, utilizamos as variáveis mais significativas para o problema, tais como: matéria-prima virgem e reciclada, montagem com uso de luva e sem luva e tinta diluída e concentrada. O estudo do problema foi caracterizado através da medição da área da mancha, as análises físico-químicas determinaram contaminação no substrato por traços de metais, confirmando que os fatores selecionados para estudo indicavam a causa do problema.

Palavras-chave: Transformação de Termoplásticos, Causas e Efeitos, Solução de problemas, Estatística na Produção, Planejamento de Experimento.

1 INTRODUÇÃO

1.1 O Pólo Industrial de Manaus - PIM.

Segundo a Superintendência da Zona Franca de Manaus – SUFRAMA, em Manaus estão instaladas as mais importantes indústrias nacionais e multinacionais. Empresas que ao longo dos últimos 36 anos estão se aprimorando, acompanhando as mudanças econômicas e que hoje fazem do Pólo Industrial de Manaus uma referência para a indústria brasileira e internacional.

As mais de 430 empresas instaladas em Manaus possuem elevados índices de inovação tecnológica, competitividade e produtividade. Apresenta um faturamento médio anual superior a US\$ 9 bilhões e gera 50 mil empregos diretos e 250 mil indiretos, somente na cidade de Manaus e outros 20 mil nos demais estados da região.

1.2 Aplicabilidade Industrial

Para assegurar a qualidade dos produtos produzidos pelo Pólo Industrial de Manaus torna-se necessário o conhecimento de diversas ferramentas e métodos no controle do processo produtivo. Um dos métodos em destaque é o de TAGUCHI, que pode ser utilizado nos diversos segmentos produtivos, tais como eletroeletrônico, automotivo, químico, petrolífero, aeronáutico, telecomunicações, Informática, mecatrônica e gestão empresarial. A seguir é feita uma síntese de alguns trabalhos de destaque nacional e internacional.

1.3 Estudo de Caso

Em julho de 2001, a empresa COMPAZ- Componentes da Amazônia, realizou estudo de desempenho em sua linha de produção, detectando não conformidades na superfície de peças injetadas com poliestireno de alto impacto. Para resolver o problema foi proposta uma metodologia com o objetivo de isolar e identificar as causas e propor soluções.

2 MATERIAL E MÉTODO

2.1 Objetivo Geral

Estudar o problema encontrado na linha de produção, identificar os fatores envolvidos, filtrando-os e estudando suas causas e efeitos, de forma a chegar às possíveis soluções, utilizando o Método Taguchi.

2.2 Proposta para utilização do método TAGUCHI.

Para elaboração do estudo de caso, foi proposta a metodologia do arranjo ortogonal de GENICHI TAGUCHI, (ROSS, 1995) a fim de alcançar os resultados satisfatórios, porém para melhor entendimento foi divido em etapas de desenvolvimento. As diversas etapas do método de Taguchi podem ser resumidas de acordo com a seguinte seqüência:

01- Definição do problema a ser solucionado; 02- Determinar o objetivo da experiência; 03- Identificar os fatores que supomos que exercem influencia sobre as características de desempenho; 04- Dividir os fatores em fatores de controle e de ruído; 05- Determine o número de níveis para todos os fatores; 06- Identificar os fatores de controle que possam interagir; 07- Trace o gráfico linear exigido para fatores de controle e interações; 08- Selecione as matrizes ortogonais; 09- Atribua fatores e interações às colunas; 10- Determinar os métodos de medição. O sistema de medição pode exigir uma experiência em separado para melhorar a precisão das medições; 11- Execute a experiência; 12- Análise os dados; 13- Interprete os resultados; 14- Selecione os níveis ótimos dos fatores de controle que mais influenciam e faça uma previsão dos resultados esperados; 15- Execute a experiência de confirmação; 16- Retorne à etapa 4 se o objetivo da experiência não foi alcançado e uma otimização adicional for possível com fatores confirmados.

2.3 O Método Taguchi

O principal objetivo do Método é o de melhorar as características do processo ou de um produto através da identificação e ajuste dos seus fatores controláveis, que irão minimizar a variação do produto final em relação ao seu objetivo. Ao ajustar os fatores no seu nível ótimo, os produtos podem ser fabricados de maneira a que se tornem mais robustos a toda e qualquer mudança que possa ocorrer e que seja incontrolável (condições ambientais, variação de temperatura, tempos de acondicionamento, etc...).

Figura 1 - Estratégia para o método proposto

2.4 Delineamento de Experimento

Identificamos os fatores principais através do *brainstorming* (ruído e fatores principais do ambiente e processo de fabricação), com o intuito de verificar a possível influência para cada um deles e interações. Trata-se de uma etapa muito importante, pois a não consideração de um determinado fator ou parâmetro pode distorcer ou impedir a obtenção da função perda, a qual ira guiar a obtenção de um projeto mais robusto.

Iniciamos a escolha da matriz ortogonal que melhor se aplica ao problema, este trabalho depende do número de fatores e da quantidade de experimentos que pretendemos realizar, conforme a disponibilidade de tempo e custo. Em seguida define-se os níveis de parâmetros. A seguir com o plano de trabalho, faz a coleta de dados, com os cuidados necessários para registro adequado.

EXPERIMENTO	A Matéria- prima	B tinta	C montagem	AB	AC	BC	ABC
1	1	1	1	1	1	1	1
2	1	1	2	2	2	2	2
3	1	2	1	1	2	2	2
4	1	2	2	2	1	1	1
5	2	1	2	1	1	1	1
6	2	1	2	2	2	2	1
7	2	2	1	1	2	2	2
8	2	2	1	2	1	1	2

Tabela 1-- Matriz de Taguchi

Na tabela 1 é apresentada a matriz ortogonal L8, construída a partir da proposta de TAGUCHI, onde foram utilizadas sete colunas para os fatores e interações e oito linhas para a sequência de experimentos a serem realizados, ortogonalidade, outro detalhe importante mantido pela ortogonalidade, é o fato do número de linhas ser uma unidade maior que o número de colunas.

Segundo estudos realizados os fatores escolhidos para condução de experimento indicado na tabela 2: MATÉRIA-PRIMA, TINTA e MONTAGEM, vistos como fatores de ruídos internos sobre os quais temos absoluto controle, os fatores de ruído externo, como: temperatura ambiente, umidade do ar, partículas em suspensão , etc serão reduzidos a custo aceitáveis através de providências junto a área de trabalho e equipamentos.

FATORES	NIVEL 1	NIVEL 2		
MATERIA-PRIMA(A)	VIRGEM	RECICLADA		
TINTA (B)	ALTA CONCENTRACAO	BAIXA CONCENTRACAO		
MONTAGEM (C)	COM LUVA	SEM LUVA		

Tabela 2-- Fatores e Níveis para Condução do Experimento

Foi estabelecido avaliar todas a possível interação binominal entre fatores de controle, desta forma estabelecida uma condição de trabalho para estudar a influência na qualidade da superfície após adequação da pintura e posteriores ações para minimizar a não conformidade, através do uso do AO (arranjo ortogonal) e operacionalização do software QUALITEK-4, trata-se de um programa computacional que utiliza as ferramentas estatísticas para obter resultados, gentilmente disponibilizado pela Nutek, Inc. (Bloomfield Hills, Michigan, USA) para fins de estudo.

2.5 Matriz de Planejamento

Matriz com 2 níveis, 3 fatores e quatro replicações.

 n° de combinações = 2^{3} = 8 (n° de linhas) $\rightarrow n^{\circ}$ de colunas = 8 - 1 = 7

Tabela 3 - Matriz de Planejamento

	A	В	С	AB	AC	вс	ABC	R1	R2	R3	R4	Y	S ²
1	1	1	1	1	1	1	1	1.0	1.1	1.2	1.3	1.2	0.09031
2	1	1	2	2	2	2	2	1.4	1.0	1.3	1.6	1.3	0.01531
3	1	2	1	1	1	2	2	1.4	1.6	1.2	1.5	1.4	0.00031
4	1	2	2	2	2	1	1	1.4	1.5	1.2	1.3	1.4	0.30032
5	2	1	2	1	2	1	2	1.7	1.8	1.4	1.2	1.5	0.01532
6	2	1	2	2	1	2	1	1.8	1.1	1.6	1.7	1.6	0.07032
7	2	2	1	1	2	2	2	1.4	1.2	1.3	1.5	1.4	0.00780
8	2	2	1	2	1	1	2	1.1	1.2	1.4	1.3	1.2	0.04135

3 RESULTADOS E DISCUSSÃO

3.1 Análise de Variância dos Resultados

Através da ANOVA realizado pelo programa computacional QUALITEK 4 podemos concluir através dos dados da tabela 4 que o efeito principal é a variação média na resposta produzida por uma modificação no nível do fator. Este efeito fica perceptível através da interpretação dos resultados, quando podemos verificar que a maior diferença entre níveis ocorre na interação matéria-prima x tinta, com valor igual a 0,194 em módulo.

Tabela 4 - Principais Efeitos Determinados Através do Programa Computacional QUALITEK 4

	FATORES/INTERAÇÕES	NIVEL 1	NIVEL 2	N2 - N1	N1 – N2
01	Matéri a-prima	1.312	1.418	0.105	-0.106
02	Tinta	1.387	1.343	- 0.045	0.044
03	Matéria-prima x Tinta	1.268	1.462	0.193	-0.194
04	Montagem	1.362	1.368	0.006	-0.007
05	Matéria-prima x Montagem	1.343	1.387	0.044	-0.045
06	Tinta x Montagem	1.318	1.412	0.093	-0.094

A tabela 5 foi construída com os resultados da ANOVA, relacionando os graus de liberdade utilizados para os fatores de controle e seus respectivos percentuais aplicados aos fatores de controle e seus respectivos percentuais aplicados aos fatores individuais e interações.

Tabela 5- Análise de Variância (ANOVA)

	FATORES	GL	sQ	F	PERCENTUAL
01	Matéria-prima (A)	1	0.09031	2.1839	18.356
02	Tinta (B)	1	0.01531	0.3703	3.111
03	Montagem(C)	1	0.00031	0.0076	0.062
04	(A x B)	1	0.30032	7.2621	61.040
0.5	(AxC)	1	0.01532	0.3704	3.111
06	(B x C)	1	0.07032	1.7004	14.291
	TOTAL		1.49218		100%

Determinando a variável de teste $F\alpha(k-1, k(n-1))$ ou fator crítico teórico, através da tabela de SNEDECOR.DRUMONT, FATIMA BRANT págs 282/283, onde (k-1) e k(n-1) representam os graus de liberdade entre tratamentos e residual respectivamente, isto é: k-1=3-1=2 e k(n-1)=9, encontraremos o valor de $F\alpha=4,26$, para k=3 fatores e n=4 réplicas, os resultados do teste F_0 calculado, estão representados na coluna F da tabela 05, para todos os fatores em estudo.

Podemos observar que o menor valor de F representa o fator montagem, na sequência, temos: tinta $\,$ matéria-prima $\,$ x montagem, tinta $\,$ x montagem, matéria-prima $\,$ e a principal interação $\,$ e matéria-prima $\,$ x tinta $\,$ com o $\,$ F $_0$ = 7,26. Desta forma constatamos que o fator matéria-prima versus tinta $\,$ e o mais significativo, provocando alterações na variável resposta. Os outros fatores não influenciam significativamente.

A função perda de Qualidade de Taguchi é:

$$L(y) = k(y)^2$$

3.2 Cálculos da Perda Monetária

Vamos tomar o valor ótimo para m = o (quanto menor melhor) e uma tolerância do consumidor de $Do = + 0.2Cm^2$, o custo de reparar ou substituir o gabinete de TV é, em média, de \$3, 00, Isto ocorre quando " \mathbf{y} " está fora da faixa citada e representa um custo médio por televisor vendido.

A função perda de qualidade calculada da seguinte forma:

Tolerância do consumidor $Do = 0.2Cm^2$

Logo, teremos:
$$L(y) = k(y)^2$$
 para $y = 0.2 \text{Cm}^2$ $y^2 = (0.2)^2 = 0.04 \text{ Cm}^4$

$$L(y) = \$3,00 \text{ quando } y = 0.2$$
 $\$3,00 = k (0.04)$ $k = \$75,00 / Cm^4$

Logo, utilizando a função $L(y) = k y^2$ para o estudo quando menor é melhor aplicada a média das características medidas na linha de produção variando de 01 até 08, conforme tabela 3.

Tabela 6 - Valores da Função Perda por Experimento

Experimento	Y(Cm ²)	$L(y) = k y^2(\$)$
01	1,2	108
02	1,3	127
03	1,4	147
04	1,4	147
05	1,5	169
06	1,6	192
07	1,4	147
08	1,2	108

Com o passar do tempo o efeito destas perdas, fica caracterizado pelas seguintes manifestações:

- Insatisfação dos clientes;
- Acréscimo de custo de garantia;
- Alto custo e longo tempo para reparar;

Tabela 7 -- Performance Ótima de Contribuição

	T		-	1
	FATORES	DESCRIÇÃO DE NIVEL	NIVEL	CONTRIBUIÇÃO
1	Matéria - prima	Virgem	1	-0,054
2	Tinta	Diluída	2	-0,022
3	Matéria - prima x tinta	Inter	1	-0,097
4	Montagem	Com luva	1	-0,004
5	Matéria – prima x montagem	Inter	1	-0,022
б	Tinta x montagem	Inter	1	-0,047

Contribuição para todos os fatores -0,246
Performance média de contribuição 1,365
Condição ótima 1,119

4 RESULTADOS DO TRABALHO

Alguns benefícios obtidos pela redução da variabilidade, com a utilização do Método Taguchi são citados a seguir:

- Redução do nível de refugo e retrabalhos, inspeção de testes e maior satisfação do cliente;
- Foi possível identificar o melhor arranjo das principais variáveis envolvidas na mancha, como sendo o arranjo L8 com utilização de dois níveis;
- Foram determinadas as seguintes variáveis significativas pela formação da mancha: tinta, matériaprima e montagem.

REFERÊNCIAS

AKAO, Y. Quality Function Deployment: integrating customers requirements into product design. Cambridge: Massachusetts, Productivity Press, 1988.

CARDOZA, G., VLADIMIR, E. Aplicação das técnicas de planejamento e análise de experimentos na melhoria da qualidade de um processo de fabricação de produtos plásticos. Dissertação de mestrado, Escola de Engenharia de São Carlos (EESC) — Universidade de São Paulo — USP, Brasil. 2002.

- FAXINA, A. L. Estudo da viabilidade técnica do uso do resíduo de óleo de xisto como óleo extensor em ligantes asfalto-borracha. Tese de Doutorado, Escola de Engenharia de São Carlos (EESC) Universidade de São Paulo —USP, Brasil. 2006.
- FIATES, G. S. A Utilização do QFD Como Suporte a Implantação do TQC em Empresas do Setor de Serviços. Dissertação submetida à Universidade Federal de Santa Catarina para obtenção do grau de mestre em Engenharia de Produção. Santa Catarina: UFSC, 1995.
- GRECO, J. A. S. Avaliação da influência de alguns fatores nas propriedades mecânicas de misturas asfálticas densas, à luz da técnica de planejamento e análise de experimentos fatoriais fracionários assimétricos. Tese de Doutorado, Escola de Engenharia de São Carlos (EESC) Universidade de são Paulo USP, Brasil. 2004.
- IKEZAWA, T. Quality Control in the Stage of Sales and After-Service. Tokyo: Japanese Standards Association, 1994.
- ITSMF. FOUNDATIONS OF IT SERVICE MANAGEMENT: Based on ITIL. Van Haren Publishing. 2006.
- JIJU, A., KAYE, M. A Methodology for Taguchi Design of Experiments for Continuous Quality Improvement. Quality Word TS, p. 98-102, September 1995.
- JURAN, J.M. A Qualidade desde o Projeto: novos passos para planejamento da qualidade em produtos e serviços. São Paulo: Ed. Pioneira, 1992.
- KAPLAN, R.S., NORTON, D.P. Organização Orientada para a estratégia: como as empresas que adotam o balance scorecard. elsevier brazil. 2001.
- KAPLAN, R.S. NORTON, D.P. Kaplan e Norton na prática. Elsevier Brazil. 2004.
- MALTEZ, J., UBIRAJARA, P. Exp. VVT: Uma ferramenta de apoio à condução de experimentos baseados em documentos de requisitos. Dissertação de mestrado, Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo USP, Brasil. 2006.
- MONTGOMERY, D. C. Design e analysis of experiments. New York: John Wiley & Sons, 1983.
- POLTRONIERE, S.S.C. Otimização do processo de corte integrado à produção de bobinas modelos e métodos de solução. Tese de Doutorado, Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo USP, Brasil. 2006.
- ROSS, P. J. Aplicações das Técnicas de Taguchi na Engenharia da Qualidade. McGraw-Hill Ltda. São Paulo.1991.
- ROSINI, A.M. Administração de sistemas de informação e a gestão do conhecimento. Thomson Learning Ibero.2003.
- SUPERINTENDÊNCIA DA ZONA FRANCA DE MANAUS **SUFRAMA**. Internet, Site: htt://www.suframa.gov.br, em30.06.2007 as 15PM.
- ULRICH, S.MAPA: Manual de planejamento e avaliação de projetos. Sete Mares. 2006.