Objective:

Design and implement a PLC-based automated parking management system to efficiently manage limited spaces, optimize traffic flow, and enhance user experience while promoting sustainability and security.

Interface:

The interface consists of:

Physical inputs

No	Symbol	Function	Lock	Parameters	Location of (L/C)	Comment
I1		Discrete inputs	-	No parameters	(1/1)	In_Before
12		Discrete inputs		No parameters	(8/1) (9/2) (11/4)	In_At
13		Discrete inputs		No parameters	(1/2) (9/3)	In_After
14		Discrete inputs		No parameters	(3/3) (4/3)	In_Teacher
15		Discrete inputs		No parameters	(3/4) (4/4)	In_Student
17		Discrete inputs	-	No parameters	(14/2)	Out_Before
18		Discrete inputs		No parameters	(19/1) (20/3) (22/4)	Out_At
19		Discrete inputs		No parameters	(14/1) (20/1)	Out_After
IA		Discrete inputs		No parameters	(14/3) (15/4)	Out_Teacher
IB	<u>I</u>	Discrete inputs	-	No parameters	(14/4) (15/3)	Out_Student
ID	I	Discrete inputs		No parameters	(2/3)	Override

Module keys

No	Symbol	Function	Location of (L/C)	Comment
Z1	Z	Zx keys	(37/1)	

Physical outputs

No	Symbol	Function	Latching	Location of (L/C)	Comment
Q1	□ °	Discrete outputs	No	(7/6) (8/6)	In_Gate
Q2	ٰ	Discrete outputs	No	(18/6) (19/6)	Exit_Gate
Q3	ٰ	Discrete outputs	No	(34/6)	Teacher_Max
Q4	ٰ	Discrete outputs	No	(35/6)	Student_Max

Text block

Х	1	1	10 10 E 10 10 2 (2 (0)		Tex	t bl	ock	s	Dis	pla	ySo	cree	en				
	-	C	1 2	-	C	/	3 4		T	e	a	c d	h e	e	r	S	
_									1 L20		-		I	0 3			

Configurable functions

No	Symbol	Function	Lock	Latching	Parameters	Location of (L/C)	Comment
C1	06 Ï	Counters	No	No	Value to attain: 3 Pulses Output ON when the preset value is reached	(3/5) (25/6) (26/6) (34/1) (37/6)	Counter_Teacher
C2	ÓĠĬ	Counters	No	No	Value to attain: 4 Pulses Output ON when the preset value is reached	(4/5) (29/6) (30/6) (35/1) (38/6)	Counter_Student
H1		Clocks	No	-	See details below	(1/3)	
N1	φM	Auxiliary relays		No	No parameters	(1/6) (3/2)	init
N2	₽M	Auxiliary relays	-	No	No parameters	(3/6) (5/1) (8/2) (9/4) (10/5) (11/6) (12/1)	inT
N3	Ů₩	Auxiliary relays		No	No parameters	(4/6) (6/1) (7/2) (9/5) (10/4) (11/1) (12/6)	inS
N4	Ď ^M	Auxitiary relays		No	No parameters	(9/6) (12/2) (25/2)	Tin
	The same	, ,				(26/2) (27/2) (28/6)	
N5	φM	Auxiliary relays	-	No	No parameters	(10/6) (13/2) (29/2) (30/2) (31/2) (32/6)	Sin
N6	₽W	Auxiliary relays	-	No	No parameters	(14/6) (16/1) (19/2) (20/4) (21/5) (22/6) (23/1)	outT
N7	₽W	Auxiliary relays	-	No	No parameters	(15/6) (17/1) (18/2) (20/5) (21/4) (22/1) (23/6)	outS
N8	Ů₩.	Auxiliary relays		No	No parameters	(20/6) (24/2) (25/1) (26/1) (27/1) (27/6)	Tout
N9	₽W	Auxiliary relays	_	No	No parameters	(21/6) (23/2) (29/1) (30/1) (31/1) (31/6)	Sout
T1	Ö	Timers	No	No	See details below	(5/6) (7/1) (11/2)	
T2	Ö	Timers	No	No	See details below	(16/6) (18/1) (22/2)	
X1	11(0)(1)	Text blocks		-	See details below	(33/6)	DisplayScreen

Clock

Timer

In the simulation, every input is depicted as a switch, and each output is symbolized by a light bulb. The push button is characterized as Zx Keys. Similarly, counter values and coil states are illustrated below.

No	Function	Label	Туре	Preset	Current	Lock	Comment
001	Timer	T1	B: On pulse one shot	T1 = 010.0 S	T1 = 000.0 S	No	
002	Timer	T2	B: On pulse one shot		T2 = 000.0 S	No	
003	Counters	C1	Output ON when the		C1 = 00000	No	Counter_Teache
004	Counters	C2	Output ON when the	C2 = 00004	C2 = 00000	No	Counter Student
005	Clock	(91				No	_
006	Text block	X1				Not Ap	DisplayScreen

The System:

Out After

Out At

Below is the system design that fulfills the objective and focuses on all the possible scenarios.

outS

Tout

The Design:

Feature	Inductive Loop	Infrared Sensors	Radar Sensors	Video Detection
Detection Method	Ground-based electromagnetic field	Passive/Active infrared light	Radio waves	Image analysis
Installation	Requires pavement cutting	Surface-mounted or overhead	Typically overhead or pole-mounted	Overhead or roadside mounted
Environmental Impact	Minimal after installation	May be affected by weather	Generally robust to weather	Can be affected by lighting
Accuracy	High detection accuracy	Moderate; can miss small vehicles	High accuracy	High accuracy with calibration
Cost	Moderate installation and maintenance cost	Lower initial cost, may require adjustments	Higher initial cost	Higher upfront and operational cost
Maintenance	Low, once installed	Moderate, may need recalibration	Moderate, can be complex	High, requires ongoing monitoring
Longevity	Long lifespan (10- 20 years)	Shorter lifespan	Long lifespan	Varies, dependent on technology
Traffic Flow Monitoring	Excellent for traffic counts	Limited capability	Good for monitoring	Excellent for detailed analytics
Sensitivity to Vehicle Types	Highly sensitive to all vehicle types	May struggle with small vehicles	Sensitive to all types	Can be adjusted but may miss smaller vehicles

Infrared Sensor Schematic

Feature	RFID	Barcode Scanning	NFC (Near Field Communication)	QR Codes
Detection Method	Radio waves to identify tags	Optical scanning of printed barcodes	Short-range radio communication	Optical scanning of printed QR codes
Range	Up to several meters (depending on type)	Typically within a few inches	Very short range (a few centimeters)	Typically within a few inches
Speed	Fast reading, can read multiple tags at once	Slower; one at a time	Fast, but limited to one tag at a time	Fast, but requires line of sight
Cost	Moderate to high (tags can be expensive)	Low for barcodes, moderate for scanners	Moderate for NFC tags and readers	Very low; generating QR codes is free
Installation	Requires a reader and setup	Requires scanners, minimal setup	Requires NFC readers, easy integration	Minimal setup; no special hardware needed
Durability	Tags can be durable and waterproof	Labels can wear out easily	Tags are generally durable	Paper-based codes can wear out
Data Capacity	High capacity (can store a lot of data)	Limited to the barcode format	Limited to NFC data standards	Limited to QR code capacity
Security	Can be encrypted, secure transmission	Vulnerable to copying	Secure; limited range reduces risks	Can be copied easily
Use Cases	Inventory management, access control	Retail checkout, inventory tracking	Mobile payments, access control	Marketing, product information

Barcode Schematic

The Design:

Gate Schematic

Key features include:

- 1. **Fast:** A single entrance and exit gate minimizes congestion and reduces the risk of traffic jams.
- 2. **Intelligent:** The system automatically updates parking availability and provides real-time information to users, ensuring a seamless and informed parking experience.
- 3. **Secure:** The system features RFID authentication and smart gate control to prevent unauthorized access, while also protecting users from potential gate-related accidents.
- 4. **Efficient and Reliable:** The design accommodates various scenarios, such as users backing off, simultaneous entry and exit, and paused vehicles under the gate.

Simulation Notes:

To access the Front Panel to view the Screen: Window > Front Panel

To update the number of slots in the parking for each category (Students or Teachers), Right Click on the respective counter > parameters window > change the value of the pulse to reflect the total of slots for this category.

To update the available hours for the parking, Right Click on the clock C1 > parameters window > update the respective hours to reflect the new ones.

Estimated Price Breakdown:

2 RFID Sensors (\$15-\$25 each), 6 Inductive Loop sensors (\$120-\$300 total), a PLC (\$100-\$300), and 2 LCD 16x2 displays (\$5-\$10 each), and installation fees (\$400-\$600), total roughly \$940-\$1,235.

Additional Suggestions:

- Implementing a redundant sensor in parallel with the existing Inductive Loop to ensure continuous functionality in the event of a single sensor failure.
- Implement a tracking system to synchronize the entry/exit gate counter with the parking space occupancy counter, ensuring a one-to-one correspondence between entries and allocated parking spots.

Conclusion:

The primary objective of this system is to facilitate a smooth and simultaneous entry and exit process for vehicles. To achieve this, two gates have been deemed ideal, allowing for efficient traffic flow in both directions. The combination of Inductive loops, and RFID technology ensures a reliable and user-friendly parking management system.