Overbuilding and Underinvestment over Housing Boom-Bust Cycles

Xiang SHI

Department of Economics, Hong Kong University of Science and Technology

November 24, 2023

Non-residential Investment crowds out Residential Investment

1990-1999: $\operatorname{corr}(\frac{l_t^H}{Y_t}, \frac{l_t}{Y_t}) = 0.76$; 2000-2007: $\operatorname{corr}(\frac{l_t^H}{Y_t}, \frac{l_t}{Y_t}) = -0.65$; 1947-2019:

Housing Market Boom and Crowded-out Capital

- Demand driven housing market boom
 - Residential investment and housing price jump up $I_t^H \uparrow$
 - Expansion in nondurable consumption $C_t \uparrow$
 - Wealth Effect: more asset works as collateral and equity extraction

Introduction

- Demand driven housing market boom
 - Residential investment and housing price jump up $I_t^H \uparrow$
 - Expansion in nondurable consumption $C_t \uparrow$
 - Wealth Effect: more asset works as collateral and equity extraction
- Physical Investment is crowded out
 - Macro: general equilibrium.

$$Y_t = C_t \uparrow + I_t + I_t^H \uparrow$$

 Micro: investment portfolio reallocation → decrease holding of capital(equity); increase holding of residential asset

What if the boom is inefficient?

- Housing market boom without fundamental support
 - Increased new construction in housing market: Overbuilding

What if the boom is inefficient?

- Housing market boom without fundamental support
 - Increased new construction in housing market: Overbuilding
- Crowded-out physical investment: Underinvestment
 - Macro: Capital misallocation. Too much residential asset yet too little physical capital
 - Micro: A large capital distortion and higher real interest rate(relative to LR real interest rate)

What if the boom is inefficient?

- Housing market boom without fundamental support
 - Increased new construction in housing market: Overbuilding
- Crowded-out physical investment: Underinvestment
 - Macro: Capital misallocation. Too much residential asset yet too little physical capital
 - Micro: A large capital distortion and higher real interest rate(relative to LR real interest rate)
- Amplified economic loss during bust period Market Share

Imperfect Information and (Fake) News Shock

- Throughout this paper I use news and fake news shock to analyze the crowding-out effect
- Intuitive introduction to the (fake) news shock
 - what the shock is
 - why I use this shock
- Takeaway: the crowding-out effect is not limited to the (fake) news shock

Imperfect Information and (Fake) News Shock

Intuitive example

$$p_t^h = \rho p_{t-1}^h + \beta x_t + w_{t-3} + u_t + \alpha w_t$$

where w_t is the news shock; p_t^h is the housing price; x_t other macro variables

- Imperfect information and inefficiency: w_t cannot be perfectly observed
 - instead $\widetilde{w}_t = w_t + \nu_t$ where ν_t is the noisy to the news w_t
 - non-fundamental supported boom: ν_t instead of w_t
- News shock w_t ; Fake news shock v_t

Why (Fake) News Shock?

- Long-lasting housing market boom (in data)→significant amount of crowded-out physical capital Other Types of Shock
 - consecutive lower physical investment I_t
 - significant change in state variable: capital (we expect a scarcity in capital caused by crowd-out effect)
- Require assumption on the persistent of a standard shock such as credit shock or sentiment shock
- Imperfect information, news and fake (inefficiency) news shock
 - merit 1: one single shock can generate persistent housing market boom
 - merit 2: indeed explains a moderate share of variation of housing price in reality

Novelty in This Paper

ullet News and fake news shock $\widetilde{w}_t = w_t +
u_t$

$$p_t^h = \rho p_{t-1}^h + \beta x_t + w_{t-3} + u_t + \alpha \widetilde{w}_t$$

- An improvement on Barsky and Sims (2012)
 - VAR identification to observation shock \widetilde{w}_t (with contemporaneous endogeneity α)
- ullet A new algorithm to identify fake news shock ν_t
- Empirically crowding-out effect is significant

Novelty in This Paper

- (Fake) News shock on preference
 - Utility function follows $U_t = \frac{\left(c_t^{\phi_t} h_t^{\mathbf{1} \phi_t}\right)^{\mathbf{1} \sigma}}{1 \sigma}$
- Stochastic preference $\log(\phi_t) = \log(\overline{\phi}) + \rho_\phi \log(\phi_{t-1}) + w_{t-3} + u_t$
- Theoretically crowding-out effect is affected by three factors in demand side:
 - Relative intratemporal elasticity of substitution $\frac{U_H}{U_C} = f\left(p_t^H, p_{t+1}^H\right)$ (to intertemporal elasticity $U_C = \beta R U_{C'}$)
 - Financial friction
 - Idiosyncratic income shock and wealth distribution
- Quantitatively crowd-out effect can explain 13% welfare loss.
- After introducing a macroprudential policy which curbs the LTV ratio, the welfare loss is reduced significantly

Literature Review

Introduction

• VAR Identification on news shock with contemporaneous endogeneity

- Lorenzoni (2009), Barsky and Sims (2012)
- VAR Identification on fake news shock
 - Chahrour and Jurado (2018), Wolf and McKay (2022)
- Crowding-out effect works through general equilibrium and pay more attention on the pass-through between residential investment and consumption
 - Capital Misallocation: Rognlie et al. (2018), Chodorow-Reich et al. (2021), and Feng et al. (2022)
- Crowding-out effect amplifies on the supply side: scarcity of physical capital
 - Mian et al. (2013), Favilukis et al. (2017), and McQuinn et al. (2021)
- Solving heterogeneous agent model with imperfect information (noisy shock) and quantitative result
 - Etheridge (2019), Kaplan et al. (2020) and Auclert et al. (2021)

Empirical Evidence Model Implication Quantitative Result Conclusion

Outline

- Introduction
- 2 Empirical Evidence
- Model Implication
- Quantitative Result
- Conclusion

Empirical Evidence

- Introduction to VAR model and identification to news shock
- Algorithm to identify the fake news shock
- Empirical evidence
- Historical decomposition: significance in reality

VAR identification

VAR

$$y_t = \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \dots + \Phi_4 y_{t-4} + R\varepsilon_t$$
 (1)

- y_t vector of macro variables
 - output, consumption, physical investment, housing price, housing supply and capital (equity) price
 - 1985-2007, Quarterly
- ε_t vector of shocks
 - monetary policy shock, productivity shock $\varepsilon_{i,t}$
 - land supply shock $\varepsilon_{s,t}$
 - housing market demand shock $\varepsilon_{u,t}$
 - housing market demand news shock $\varepsilon_{w,t}$
- Objective: identify the structure shocks' effect (column) R_w

- Objective: IRF of macro variables responding to fake news (noisy) shock ν_t
 - News and fake news shock $\widetilde{w}_t = w_t + \nu_t$

- Objective: IRF of macro variables responding to fake news (noisy) shock ν_t
- News and fake news shock $\widetilde{w}_t = w_t + \nu_t$
- Variation of housing price is driven by $\operatorname{var}(p_t^h) = \alpha_i \operatorname{var}(\varepsilon_{i,t}) + \alpha_s \operatorname{var}(\varepsilon_{s,t}) + \alpha_u \operatorname{var}(u_t) + \alpha_w \operatorname{var}(\widetilde{w}_t) + \dots$

- Objective: IRF of macro variables responding to fake news (noisy) shock ν_t
 - News and fake news shock $\widetilde{w}_t = w_t + \nu_t$
- Variation of housing price is driven by $\operatorname{var}(p_t^h) = \alpha_i \operatorname{var}(\varepsilon_{i,t}) + \frac{\alpha_s \operatorname{var}(\varepsilon_{s,t})}{\varepsilon_{s,t}} + \alpha_u \operatorname{var}(u_t) + \alpha_w \operatorname{var}(\widetilde{w}_t) + \dots$
- Sign restriction to rule out any shock on supply side

- Objective: IRF of macro variables responding to fake news (noisy) shock ν_t
 - News and fake news shock $\widetilde{w}_t = w_t + \nu_t$
- Variation of housing price is driven by $\operatorname{var}(p_t^h) = \alpha_i \operatorname{var}(\varepsilon_{i,t}) + \frac{\alpha_s \operatorname{var}(\varepsilon_{s,t}) + \alpha_u \operatorname{var}(u_t)}{\alpha_s \operatorname{var}(u_t)} + \alpha_w \operatorname{var}(\widetilde{w}_t) + \dots$
- Sign restriction to rule out any shock on supply side
- Orthogonal restriction to rule out any contemporaneous housing market demand shock u_t Purification

- Objective: IRF of macro variables responding to fake news (noisy) shock ν_t
 - News and fake news shock $\widetilde{w}_t = w_t + \nu_t$
- Variation of housing price is driven by $\operatorname{var}(p_t^h) = \alpha_t \operatorname{var}(\varepsilon_{t,t}) + \alpha_s \operatorname{var}(\varepsilon_{s,t}) + \alpha_u \operatorname{var}(u_t) + \alpha_w \operatorname{var}(\widetilde{w}_t) + \dots$
- Sign restriction to rule out any shock on supply side
- Orthogonal restriction to rule out any contemporaneous housing market demand shock u_t Purification
- Assumption: Housing market demand news shock explains the housing price most

- Chahrour and Jurado (2018): Theoretically fake news shock ν_t is observational equivalent with two incorporated shocks
 - \widetilde{W}_{t} realizes first at t
 - τ period later, when w_t works at $t + \tau$, a negative $-u_{t+\tau}$ offsets its effect

- Chahrour and Jurado (2018): Theoretically fake news shock ν_t is observational equivalent with two incorporated shocks
 - \widetilde{w}_t realizes first at t
 - τ period later, when w_t works at $t+\tau$, a negative $-u_{t+\tau}$ offsets its effect
- Identification to fake news as Microfoundation

$$\widehat{y}_{i}^{F} = \begin{cases} y_{i} & i \leq \tau \\ y_{i} - \frac{e'_{k} y_{k,\tau+1}}{e'_{k} y_{k,0}^{T}} y_{i-\tau-1}^{T} & i > \tau \end{cases}$$
 (2)

where $y_i \in U$ and y_i^{τ} is the response path to a contemporaneous shock on direct fundamental impact, variable k, in equation 10

ion **Empirical Evidence** Model Implication Quantitative Result Conclusion

Housing Market Boom-Bust Cycle

90% confidence band; percentage derivation from mean Housing market boom-bust cycles

Empirical Evidence

Housing Market Boom-Bust Cycle

90% confidence band; percentage derivation from mean Housing market boom-bust cycles

17 / 45

Empirical Evidence

Crowded-out Physical Investment

Inertia in physical investment Recession period. Less demand on physical capital and production. troduction Empirical Evidence Model Implication Quantitative Result Conclusion

Is fake news or news important in reality?

Historical variance decomposition

 $\log(Y_t) - \log(Y_t^T)$ where Y_t^T is the trend component that calculated by average growth rate

Priven by news shock during boom period; significant divergence during bust period;

troduction Empirical Evidence Model Implication Quantitative Result Conclusion

Is fake news or news important in reality?

Historical variance decomposition

 $\log(I_t) - \log(I_t^T)$ where I_t^T is the trend component that calculated by average growth rate

Driven by news shock during boom period; significant divergence during bust period;

Empirically Significant

- A new algorithm to identify fake news shock
- Empirically crowding-out effect is significant
- Historical decomposition: news shock and fake news shock can explain part of the boom-bust cycle in housing market

Empirical Evidence Model Implication Quantitative Result Conclu

Model Implication

- Model setting: Bewley-Huggett-Aiyagari model
 - heterogeneous household
 - representative producers
- Crowding-out effect is influenced by three factors on demand side

An Bewley-Huggett-Aiyagari model without aggregate shock

 Household maximize their utility by choosing housing services, non-durable consumption and liquid asset

$$\max_{c_t^i, h_t^i, a_t^i} \sum_{t=0}^{\infty} \beta^t U_t^i \left(c_t^i, h_t^i \right) \tag{3}$$

Inelastic labor supply and idiosyncratic income shock

$$c_{t}^{i} + a_{t}^{i} + p_{t}^{H} h_{t}^{i} = R_{t} a_{t-1}^{i} + w_{t} \varepsilon_{t}^{i} + \left(1 - \delta^{H}\right) p_{t}^{H} h_{t-1}^{i} + T_{t}$$
 (4)

Financial Friction: occasional bound collateral constraint

$$-a_t^i \le \gamma p_t^H h_t^i \tag{5}$$

23 / 45

An Bewley-Huggett-Aiyagari model without aggregate shock

- Two sector model (on supply side) with representative producers
- Construction Sector: $Y_{H,t} = A_{H,t} \mathcal{L}^{\theta} K_{H,t-1}^{\nu} L_{H,t}^{1-\nu-\theta}$
 - New construction is built through TFP on construction sector A_H , Land \mathscr{L} , physical capital (used by construction sector) K_H and labor L_H
 - ullet Land supply ${\mathscr L}$ is fixed
- Final Goods production: $Y_{N,t} = A_{N,t} K_{N,t-1}^{\alpha} L_{N,t}^{1-\alpha}$
- Complete market

An Bewley-Huggett-Aiyagari model without aggregate shock

- Capital and labor are provided by household $K_{N,t-1} + K_{H,t-1} = K_{t-1} = \int a_{t-1}^i di$ and $L_{N,t} + L_{H,t} = \int \varepsilon_t^i di$
- Housing market clearing condition: $Y_{H,t} = H_t (1 \delta^H)H_{t-1}$ where $H_{t-1} = \int h_t^i$ 1 di
- Final goods can either be consumed or be invested

$$Y_{N,t} = K_t - (1 - \delta)K_{t-1} + C_t$$

Heuristic Analysis

- Expectation of housing prices in the future $p_{t+T+1}^H \uparrow$
- Residential investment and consumption will response to it
- Physical investment is crowded out
- Perturbation around s.s; Partial on housing price (fix other prices)
- Derivation: \widetilde{h}_t , \widetilde{c}_t and \widetilde{l}_t

Crowding-out effect: increased in housing demand

Corollary 1

A positive expectation about the housing price change at time T+1 will induce a jump in demand for housing at time t. The response extends as follows:

$$\widetilde{h}_t \Big|_{h_{t+i}, \mu_{t+i}, \lambda_{t+i}, i \in [1, T]} = \zeta_t dp_{t+T+1}^H$$
(6)

where
$$\zeta_t = -\frac{1}{u_t''}\mathbb{E}_t\left[\beta\left(1-\delta^H\right)\right]^T\Pi_{s=1}^T\frac{\lambda_{t+s}}{\lambda_{t+s}-\mu_{t+s}}\lambda_{t+T+1}$$

Crowd-out effect of Overbuilding: Passthrough

Proposition 1

Household will adjust their consumption of non-durable goods based on overbuilding and precautionary saving. The extent of adjustment is decided by

$$\widetilde{c}_{t} = \underbrace{\Phi_{H}\widetilde{h}_{t}}_{\text{substitution effect}} - \underbrace{\Phi_{\mu}\widetilde{\mu}_{t}}_{\text{credit effect}} + \underbrace{\Phi_{p^{H}}\left[\frac{1}{1 - (1 - \delta^{H})\frac{1}{R}}F^{H}(\widetilde{H}_{t}) - \frac{(1 - \delta^{H})\frac{1}{R}}{1 - (1 - \delta^{H})\frac{1}{R}}F^{H}(\widetilde{H}_{t+1})\right]}_{\text{wealth effect}}$$

precautionary saving effect

where $F^{H}(\cdot)$ is the inverse supply function

Crowd-out effect of Overbuilding

Proposition 2

The aggregate investment is driven by overbuilding and precautionary saving following

$$\begin{split} I\widetilde{I_t} &= -\left\{ \left(\Phi_H + \frac{\nu}{\alpha} p^H H \right) \int \widetilde{h_t}^i di - \Phi_\mu \int \widetilde{\mu}_t^i di \right. \\ &+ \Phi_{p^H} \left[\frac{1}{1 - (1 - \delta^H) \frac{1}{R}} F^H (\widetilde{H}_t) - \frac{\left(1 - \delta^H \right) \frac{1}{R}}{1 - (1 - \delta^H) \frac{1}{R}} \mathbb{E}_t F^H (\widetilde{H}_{t+1}) \right] \\ &- \Phi_{cov}^i \int \widetilde{cov}_t^i di + \frac{\nu}{\alpha} Y_H p^H F^H (\widetilde{H}_t) \right\} \end{split}$$

The overbuilding, $\widetilde{H}_t = \int \widetilde{h_t}' di > 0$, will crowd out physical investment as long as the substitution effect Φ_H and wealth effect Φ_{p^H} are not negative enough.

- Smaller Relative Intratemporal elasticity of substitution Numerical
 - Intratemporal elasticity of substitution $\frac{U_H}{U_C} = f\left(p_t^H, p_{t+1}^H\right)$: consumption bundle arrangement within this period
 - Intertemporal elasticity of substitution $U_C = \beta R U_{C'}$: consumption bundle arrangement over different period
 - "Smaller Relative": Intratemporal↑ and Intertemporal↓
 - Consumption responses to increased holding of housing less (for unconstrained households)
 - Crowding-out effect ↑

- Smaller Relative Intratemporal elasticity of substitution Numerical
 - Intratemporal elasticity of substitution $\frac{U_H}{U_C} = f\left(p_t^H, p_{t+1}^H\right)$: consumption bundle arrangement within this period
 - Intertemporal elasticity of substitution $U_C = \beta R U_{C'}$: consumption bundle arrangement over different period
 - "Smaller Relative": Intratemporal↑ and Intertemporal↓
 - Consumption responses to increased holding of housing less (for unconstrained households)
 - Crowding-out effect ↑
- Larger financial friction Numerical
 - Marginal value of house increases
 - More constrained households
 - Crowding-out effect ↑

Proposition 3

When the housing supply is fixed; initial housing distribution over dynamic path is exogenous and $\left(\frac{1-\beta}{\frac{\beta}{\alpha A}}\right)^{\frac{1}{\alpha-1}} > \frac{K}{L} > \left(\frac{\delta}{\alpha A}\right)^{\frac{1}{\alpha-1}}$ holds, substitution effect Φ_H and wealth effect Φ_{p^H} will decrease as relative intratemporal elasticity of substitution (collateral constraint) is higher (slacker). Further, when the aggregate Khun-Tucker multiplier is not too large, credit effect Φ_{μ} will increase as relative intratemporal elasticity of substitution (collateral constraint) is higher (slacker).

Heterogeneous response along wealth distribution Numerical

- Inequality and wealth distribution
 - Wealth people hold a large share of assets
 - Unconstrained households have the capacity and willingness to invest in real estate market
 - Amplification in $\int \widetilde{h_t}^i di$
- Marginal propensity to consume is right-skewed \rightarrow Amplification in $\int \widetilde{\mu}_t^i di$

Theoretical Analysis

- An increased expectation on housing price in the future will trigger a housing market boom and crowd out physical investment
- Three factors on demand side influence the crowding-out effect
 - Relative Intratemporal elasticity of substitution
 - Financial friction
 - Wealth and MPC distribution

Empirical Evidence Model Implication Quantitative Result Cor

Quantitative Result

- Calibration and Bayesian estimation
- Welfare loss from crowding-out effect
- Distributional effect
- Macroprudential policy (countercyclical LTV ratio) reduces the welfare loss significantly

Full-fledged Model

Two types of assets: liquid and illiquid asset

$$c_{t} + Q_{t}b_{t} + p_{t}^{h} \left[h_{t} - (1 - \delta^{h})h_{t-1} \right] = R_{t}Q_{t-1}b_{t-1} +$$

$$(1 - \tau)w_{t}l_{t}\varepsilon_{t} - p_{t}^{h}C(h_{t}, h_{t-1}) + T_{t}$$

where

$$C(h_t, h_{t-1}) = \frac{\kappa_1}{\kappa_2} (h_{t-1} + \kappa_0) \left| \frac{h_t - h_{t-1}}{h_{t-1} + \kappa_0} \right|^{\kappa_2}$$

Full-fledged Model

Capital producer

$$\max E_{t} \sum_{\tau=t}^{\infty} \beta^{\tau-t} \Lambda_{t,t+\tau} \left\{ Q_{\tau} I_{\tau} \eta_{I,t} - f \left(I_{\tau}, I_{\tau-1} \right) I_{\tau} \eta_{I,t} - I_{\tau} \right\}$$
s.t. $f \left(I_{\tau}, I_{\tau-1} \right) = \frac{\psi_{I}}{2} \left(\frac{I_{\tau}}{I_{\tau-1}} - 1 \right)^{2}$

Capital price

$$\begin{aligned} Q_t \eta_{I,t} &= 1 + \frac{\psi_I}{2} \left(\frac{I_t}{I_{t-1}} - 1 \right)^2 \eta_{I,t} + \psi_I \left(\frac{I_t}{I_{t-1}} - 1 \right) \frac{I_t}{I_{t-1}} \eta_{I,t} - \\ & E_t \beta \Lambda_{t,t+1} \psi_I \left(\frac{I_{t+1}}{I_t} - 1 \right) \left(\frac{I_{t+1}}{I_t} \right)^2 \end{aligned}$$

where $\eta_{I,t}$ is the marginal efficiency of the investment shock, following Justiniano et al. (2011)

Fake news shock on preference to houses

Utility function

$$U_t\left(c_t, h_t, l_t
ight) = rac{\left(c_t^{\phi_t} h_t^{1-\phi_t}
ight)^{1-\sigma}}{1-\sigma} - \kappa rac{l_t^{1+\psi}}{1+\psi}$$

• Preference ϕ_t follows

$$\log(\phi_t) = \log(\overline{\phi}) + \rho_{\phi}\log(\phi_{t-1}) + w_{t-8} + u_t$$

From Model to Data (Steady State): Calibration

- Most parameters come from literature
- Use discount factor, disutility to labor supply, TFP of two production to match real interest rate, labor supply, physical investment over GDP ratio, and new construction over GDP ratio
- Distributional Moments are out of the scope of pre-matching

From Model to Data (Steady State): Calibration

- Most parameters come from literature
- Use discount factor, disutility to labor supply, TFP of two production to match real interest rate, labor supply, physical investment over GDP ratio, and new construction over GDP ratio
- Distributional Moments are out of the scope of pre-matching

Table: Distribution Moments

Description	Data	Model
Poor Hand-to-Mouth Household	0.121	0.1102
Wealthy Hand-to-Mouth Household	0.192	0.2059
Top 10 percent share of Liquid asset	0.8	0.5
Top 10 percent share of Iliquid asset	0.7	0.3

- Full Information Bayesian Estimation (do not match specific moments)
- 7 shock series with 7 variables
 - TFP shocks
 - Land supply shock
 - Preference (on residential asset) shock
 - Marginal efficiency of the investment shock
 - News shocks on land supply and preference

From Model to Data (Dynamic): Bayesian Estimation

- Full Information Bayesian Estimation (do not match specific moments)
- 7 shock series with 7 variables
 - TFP shocks
 - Land supply shock
 - Preference (on residential asset) shock
 - Marginal efficiency of the investment shock
 - News shocks on land supply and preference

Moments	Data	Model
$corr(p^H, I^H)$	0.42	0.23
$corr(I, I^H)$	-0.15	-0.28
$\overline{\operatorname{corr}(I,Y)}$	0.06	0.19
$\overline{\operatorname{corr}(I,Q)}$	0.40	0.32

Fake News and Inefficient reaction \rightarrow Welfare loss

Response to a fake news: welfare loss

 Φ_t Preference Shock to Residential Asset; I_t^H New Construction of Residential Asset; Welfare is calculated from summing up the utility across households with unit weight

Crowd-out effect and boom-bust cycle

- Fake news shock at t = 0 and contemporaneous noise shock at t = 8
- The only difference: crowding-out effet

Empirical Evidence Model Implication Quantitative Result Conclusion

Distributional Effect

Right-Skewed distribution of MPC

procyclical collateral constraint on capital-output ratio (countercyclical

 procyclical collateral constraint on capital-output ratio (countercyclical restriction on housing market boom)

$$\frac{\gamma_t}{\overline{\gamma}} = \left(\frac{\gamma_{t-1}}{\overline{\gamma}}\right)^{\rho_{\gamma}} \left(\frac{\upsilon_t}{\overline{\upsilon}}\right)^{\eta_{\gamma}(1-\rho_{\gamma})}$$

where γ_t is the collateral constraint in equation and v_t is the capital-output ratio. $\overline{\gamma}$ and \overline{v} are their corresponding value in steady state.

The welfare loss of crowd-out effect decrease from 13% to 7%

Empirical Evidence Model Implication Quantitative Result Conclusion

Conclusion

- Document a new mechanism through which the housing market boom magnifies the recession.
- Empirically identify the crowding-out effect of overbuilding.
- Crowding-out effect of overbuilding is affected by relative intratemporal elasticity of substitution, financial friction and wealth distribution
- A fake news that results in housing market boom can explain 13% welfare loss.

Kaplan, Greg, Giovanni L Violante, and Justin Weidner. 2014. "The wealthy hand-to-mouth." Technical report, National Bureau of Economic Research.

Smets, Frank, and Raf Wouters. 2003. "An estimated dynamic stochastic general equilibrium model of the euro area." *Journal of the European economic association* 1 (5): 1123–1175.

Smets, Frank, and Rafael Wouters. 2007. "Shocks and frictions in US business cycles: A Bayesian DSGE approach." *American economic review* 97 (3): 586–606.

Why Important?

What is the difference between this drawback and other capital misallocation? (Other Literature such as Firm Dynamic, Uncertainty, Asset Pricing?)

Why Important?

What is the difference between this drawback and other capital misallocation? (Other Literature such as Firm Dynamic, Uncertainty, Asset Pricing?)

- Real Estate is an important type of asset of household
 - "Housing equity forms the majority of illiquid wealth for households in every country with the exception of Germany" Kaplan et al. (2014)
 - Median Values of Household's Asset Holdings: 70% is real estate (Equity in own home, Rental property and other real estate)
 - Mean Values of Household's Asset Holdings: Nearly 50% is real estate (Excludes households in the top 1 percent of wealth)

Why Important?

What is the difference between this drawback and other capital misallocation? (Other Literature such as Firm Dynamic, Uncertainty, Asset Pricing?)

- Real Estate is an important type of asset of household
 - "Housing equity forms the majority of illiquid wealth for households in every country with the exception of Germany" Kaplan et al. (2014)
 - Median Values of Household's Asset Holdings: 70% is real estate (Equity in own home, Rental property and other real estate)
 - Mean Values of Household's Asset Holdings: Nearly 50% is real estate (Excludes households in the top 1 percent of wealth)
- General Equilibrium Effect: Powerful Back

VAR identification

VAR

$$y_t = \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \dots + \Phi_q y_{t-q} + R \varepsilon_t$$
 (7)

- R cannot be directly identified as what we get from data is the residual $u_t = R\varepsilon_t$
 - we can get $cov(u_t) = RR' = \Omega$ yet not R itself
 - Cholesky decomposition of $cov(u_t)$ will uniquely pin down Cholesky $P = chol(\Omega)$
 - R can be identified up to rotation (orthogonal matrix Q) i.e. R = PQ

- we do not need to identify all the shocks but the one that we focus
 - Identify one column of rotation Q instead of the whole matrix
- Notation:
 - column related to shock i of Q: Qe;
 - "identify the effect of news shock" \equiv "find the column Qe_w " \equiv "find the column $R^* = PQe_w$ " \equiv "the shock of news"
 - $y_{i,t}^j$: the variation (IRF) of variable i that triggered by shock j at time t

VAR Identification Strategy: News shock

• solve the problem that Purification

$$R^* = \operatorname{argmax} \frac{\operatorname{var}\left(y_{i,t}^w\right)}{\operatorname{var}\left(y_{i,t}\right)} = \operatorname{argmax} \sum_{h=0}^{H} \frac{e_n'\left(\sum_{s=0}^h \Phi^s PRR'P'\Phi'^s\right) e_n}{e_n'\left(\sum_{s=0}^h \Phi^s PP'\Phi'^s\right) e_n}$$
(8)

s.t

$$R'R = 1 (9)$$

$$e_k'PR = 0 (10)$$

• The identified shock R^* can explain most of the forecast error of variable n.

- Housing price news shock q^* : A shock that can explain the variation of expectation error of housing price most, yet subject to
- Orthogonality (a constraint on the scalar (norm) of shock): q'q = 1
- Non-contemporaneous effect on variable k:

```
e_{\rm L}^\prime Pq = 0 Orthogonal Requirement Purification
```


$$\begin{aligned} y_{p^H,t+3} - E_t y_{p^H,t+3} &= \underbrace{R_{w^d}}_{w^d_{t+3}} + \underbrace{\Phi R_{w^d}}_{w^d_{t+2}} + \underbrace{\Phi^2 R_{w^d}}_{w^d_{t+1}} \end{aligned} \right\} \text{ housing price news shock on demand} \\ &+ \underbrace{R_{w^s}}_{w^s_{t+3}} + \underbrace{\Phi R_{w^s}}_{w^s_{t+2}} + \underbrace{\Phi^2 R_{w^s}}_{w^s_{t+1}} \end{aligned} \right\} \text{ housing price news shock on supply}$$

$$\begin{aligned} y_{\rho^H,t+3} - E_t y_{\rho^H,t+3} &= \underbrace{R_{w^d}}_{w^d_{t+2}} + \underbrace{\Phi^2 R_{w^d}}_{w^d_{t+2}} + \underbrace{\Phi^2 R_{w^d}}_{w^d_{t+1}} \end{aligned} \text{ housing price news shock on demand} \\ &+ \underbrace{R_{w^s}}_{w^s_{t+3}} + \underbrace{\Phi R_{w^s}}_{w^s_{t+2}} + \underbrace{\Phi^2 R_{w^s}}_{w^s_{t+1}} \end{aligned} \text{ housing price news shock on supply} \\ &+ \underbrace{R_u}_{u_{t+3}} + \underbrace{\Phi R_u}_{u_{t+2}} + \underbrace{\Phi^2 R_u}_{u_{t+1}} \end{aligned} \text{ housing price contemporaneous shock} \\ &+ \underbrace{R_\varepsilon}_{\varepsilon_{t+3}} + \underbrace{\Phi R_\varepsilon}_{\varepsilon_{t+2}} + \underbrace{\Phi^2 R_\varepsilon}_{\varepsilon_{t+1}} \end{aligned} \text{ other macro shocks} \\ &+ \underbrace{R_\varepsilon}_{\xi_{t+3}} + \underbrace{\Phi R_\varepsilon}_{\xi_{t+2}} + \underbrace{\Phi^2 R_\varepsilon}_{\xi_{t+1}} \end{aligned} \text{ other macro news shocks}$$

Sign Restriction rules out supply shock

$$\begin{aligned} y_{\rho^H,t+3} - E_t y_{\rho^H,t+3} &= \underbrace{R_{w^d}}_{w^d_{t+3}} + \underbrace{\Phi R_{w^d}}_{w^d_{t+2}} + \underbrace{\Phi^2 R_{w^d}}_{w^d_{t+1}} \end{aligned} \text{ housing price news shock on demand} \\ &+ \underbrace{R_u}_{u_{t+3}} + \underbrace{\Phi R_u}_{u_{t+2}} + \underbrace{\Phi^2 R_u}_{u_{t+1}} \end{aligned} \text{ housing price contemporaneous shock} \\ &+ \underbrace{R_\varepsilon}_{\varepsilon_{t+3}} + \underbrace{\Phi R_\varepsilon}_{\varepsilon_{t+2}} + \underbrace{\Phi^2 R_\varepsilon}_{\varepsilon_{t+1}} \end{aligned} \text{ other macro shocks} \\ &+ \underbrace{R_\varepsilon}_{\xi_{t+3}} + \underbrace{\Phi R_\varepsilon}_{\xi_{t+2}} + \underbrace{\Phi^2 R_\varepsilon}_{\xi_{t+1}} \end{aligned} \text{ other macro news shocks}$$

Mild Assumption on the effects of macro shock (i.e. most of the variation of housing price cannot come from monetary policy, TFP variation or marginal cost shock

$$\begin{aligned} y_{p^H,t+3} - E_t y_{p^H,t+3} &= \underbrace{R_{w^d}}_{w^d_{t+3}} + \underbrace{\Phi R_{w^d}}_{w^d_{t+2}} + \underbrace{\Phi^2 R_{w^d}}_{w^d_{t+1}} \end{aligned} \text{ housing price news shock on demand} \\ &+ \underbrace{R_u}_{u_{t+3}} + \underbrace{\Phi R_u}_{u_{t+2}} + \underbrace{\Phi^2 R_u}_{u_{t+1}} \end{aligned} \text{ housing price contemporaneous shock}$$

VAR identification: news shock

Mild Assumption on the effects of macro shock (i.e. most of the variation of housing price cannot come from monetary policy, TFP variation or marginal cost shock

$$\begin{aligned} y_{p^H,t+3} - E_t y_{p^H,t+3} &= \underbrace{R_{w^d}}_{w^d_{t+3}} + \underbrace{\Phi R_{w^d}}_{w^d_{t+2}} + \underbrace{\Phi^2 R_{w^d}}_{w^d_{t+1}} \end{aligned} \text{ housing price news shock on demand} \\ &+ \underbrace{R_u}_{u_{t+3}} + \underbrace{\Phi R_u}_{u_{t+2}} + \underbrace{\Phi^2 R_u}_{u_{t+1}} \end{aligned} \text{ housing price contemporaneous shock}$$

Solve a shock R_w that can explain the variation of expectation error of housing price most

VAR identification: news shock

Zero Restriction: Find a variable k which satisfies $y_{p^{H},0}^{u}=0$ and $y_{p^{H},0}^{w}\neq0$

$$y_{p^H,t+3} - E_t y_{p^H,t+3} = \underbrace{R_{w^d}}_{w^d_{t+3}} + \underbrace{\Phi R_{w^d}}_{w^d_{t+2}} + \underbrace{\Phi^2 R_{w^d}}_{w^d_{t+1}} \right\} \text{ housing price news shock on demand}$$

VAR identification: news shock

Zero Restriction: Find a variable k which satisfies $y_{p^{H},0}^{u}=0$ and $y_{p^{H},0}^{w}\neq0$

$$y_{p^H,t+3} - E_t y_{p^H,t+3} = \underbrace{R_{w^d}}_{w^d_{t+3}} + \underbrace{\Phi R_{w^d}}_{w^d_{t+2}} + \underbrace{\Phi^2 R_{w^d}}_{w^d_{t+1}} \right\} \text{housing price news shock on demand}$$

subject the constraint $e'_k R_w = 0$

Purification

• Endogenous response to News

$$\Upsilon_t = \rho_g \Upsilon_{t-1} + \alpha_1 x_t + w_{t-3} + u_t + \alpha_2 w_t \tag{11}$$

where x_t denotes any macro variable such as interest rate, GDP, unemployment rate, etc. α_1 measures the cross-connection effect between macro economics and perception about fundamental. In other words a monetary policy shock may driven the interest rate and output first and then Υ_t comoves with the output and interest rate. w_{t-3} is just the news shock which announced 3 period ahead. u_t is the contemporaneous shock and α_2 measures the endogenous contemporaneous effect induced by news shock w_t .

Purification objective: Construct a time series

$$y_{k,t} = \widehat{\Upsilon}_t = \Upsilon_t - \alpha_2 w_t$$

Purification: Heuristic Explanation

Expectation: survey data

$$E_t \Upsilon_{t+6} = \rho^6 \Upsilon_t + \rho^5 w_{t-2} + \rho^4 w_{t-1} + \rho^3 w_t$$

• Regression of $E_t \Upsilon_{t+6}$ on Υ_t

$$\gamma_t^E = \rho^5 w_{t-2} + \rho^4 w_{t-1} + \rho^3 w_t$$

• Regression of Υ_t on γ_t^E

$$\gamma_t = \Upsilon_t - \beta \gamma_t^E$$

- Fundamental impact indicator k: an index to the fundamental element that drives the demand function of housing demand function
 - i.e. the preference ϕ_t in Cobb–Douglas utility function $U(c_t,h_t,l_t) = \frac{\left(c_t^{\phi_t}h_t^{\mathbf{1}-\phi_t}\right)^{\mathbf{1}-\sigma}}{1-\sigma} + \kappa \frac{l_t^{\mathbf{1}+\psi}}{1+\psi}$ which follows $\phi_t = (1-\rho_\phi)\overline{\phi} + \rho_\phi\phi_{t-1} + w_{t-\tau} + w_t^{\tau}$ and $w_{t-\tau}$ is the news shock to housing demand.
- NAHB/Wells Fargo Housing Market Index (HMI)
 - a monthly survey on NAHB members about their perception about the housing market right now \lim_t , and expectation over the next six month $E_t \mathrm{him}_{t+6}$
 - ullet pure contemporaneous impact u_t^{him} from him_t

$$him_t = \alpha_0 + \alpha_1 E_{t-6} him_t + \alpha_2 E_t him_{t+6} + u_t^{him}$$

Proposition 4

The identification to a news shock R* through equation 8 is unique to covariance of the residual $\Omega = PP'$ from VAR's DGP 1.

Since my interest is to explore the house market boom, I further do
the sign restriction on the vector IRF_t based on the rule

$$\mathsf{IRF}_t^{\mathit{sign}} = \begin{cases} \mathsf{IRF}_t & \mathsf{if}\ e_n' \mathsf{IRF}_t e_n \ge 0 \\ -\mathsf{IRF}_t & \mathsf{if}\ e_n' \mathsf{IRF}_t e_n < 0 \end{cases}$$

Household

$$c_t^{-\sigma} = \beta R_{t+1} c_{t+1}^{-\sigma}$$
$$h_t^{\varphi} = w c_t^{-\sigma}$$

Firm

$$R_t = \alpha \frac{y_t}{k_{t-1}} + \delta - 1$$

$$w_t = (1 - \alpha) \frac{y_t}{h_t}$$

$$y_t = A_t k_{t-1}^{\alpha} h_t^{1-\alpha}$$

Market Cleaning

$$y_{t} = c_{t} + I_{t} + \log(G_{t})$$

$$I_{t} = k_{t} - (1 - \delta)k_{t-1}$$

$$g_{t} = \rho_{g}g_{t-1} + w_{t-\tau} + w_{t}^{\tau}$$
(12)

• The household cannot know the value of G_t and w_t but a signal to then

$$\widetilde{g}_t = g_t + \nu_t^{\tau}$$

$$\widetilde{w}_{t-\tau} = w_{t-\tau} + \nu_{t-\tau}$$

- Household at time $t-\tau$ will have a perception of $w_{t-\tau}$ given the observation $\widetilde{w}_{t-\tau}$ and I denote it as $w_{t-\tau|t-\tau}=\theta\widetilde{w}_{t-\tau}$
- Denote \widetilde{w}_t^i as an observation to shock w_{t-i} . For example, a news shock w_t will have effect on G at $t+\tau$. At time t+1 household gets a new observation related to w_t , \widetilde{w}_{t+1}^1 , in addition to the old observation of w_t at time t \widetilde{w}_t . I further assume

$$\widetilde{w}_{t-\tau+1}^1 = \widetilde{w}_{t-\tau+2}^2 = \dots = \widetilde{w}_{t-1}^{\tau-1} = 0$$

holds. Therefore

$$w_{t-\tau|t-\tau} = w_{t-\tau|t-\tau+1} = w_{t-\tau|t-\tau+2} = \cdots = w_{t-\tau|t-1}$$

- Throughout exercise 1 to 3, imperfect information holds.
- Same perception: $g_{t|t}^{\nu} = g_{t|t}^{w} = g_{t|t}^{\nu+\nu^{\tau}}$
 - **1** Only noisy shock $\nu_{t-\tau}$;
 - ② Fake news shock. A noisy shock on $w_{t-\tau}$ at time $t-\tau$, $\nu_{t-\tau}$, as well as a negative noisy shock on g_t at time t, ν_t^{τ} ;
 - **3** A news shock $w_{t-\tau}$.

- Throughout exercise 1 to 2, imperfect information holds. In exercise 3, it is the type of perfect news.
- Same observation at time $t \tau$: $\widetilde{w}_{t-\tau}$
 - **1** Only noisy shock $\nu_{t-\tau}$;
 - ② Fake news shock. A noisy shock on $w_{t-\tau}$ at time $t-\tau$, $\nu_{t-\tau}$, as well as a negative noisy shock on g_t at time t, ν_t^{τ} ;
 - **3** A perfect news shock $w_{t-\tau}$.

- Notation: Throughout exercise 1 to 3, imperfect information holds.
- Same observation at time $t-\tau$: $\widetilde{w}_{t-\tau}$
 - **1** Only noisy shock $\nu_{t-\tau}$;
 - ② Fake news shock. A noisy shock on $w_{t-\tau}$ at time $t-\tau$, $\nu_{t-\tau}$, as well as a negative noisy shock on g_t at time t, ν_t^{τ} ;
 - **3** A news shock $w_{t-\tau}$.

• The fundamental impact g_t is observable.

Identification to news shock R^*

Identification to fake news shock R_F^*

• The fundamental impact g_t is unobservable.

Identification to news shock R^*

Identification to fake news shock R_F^*

- The fundamental impact g_t is observable
 - $g_t = \rho_g g_{t-1} + w_{t-\tau} + w_t^{\tau}$ and $\widetilde{w}_{t-\tau} = w_{t-\tau} + \nu_{t-\tau}$
 - whether the news $\widetilde{w}_{t-\tau}$ is true or fake is informed to household via g_t at time t without any delay
 - $y_{i-\tau-1}^{\tau}$ in equation 2 works as a contemporaneous shock w_t^{τ} offsets the true shock realized at t, $w_{t-\tau}$ and generates $g_t=0$
- The fundamental impact g_t is unobservable.
 - there is no other signal that household can use to infer whether $\widetilde{w}_{t-\tau}$ comes from $w_{t-\tau}$ or $\nu_{t-\tau}$ but learn through observation gradually
 - $g_{t|t}=\gamma_1g_{t-1|t-1}+\gamma_2w_{t-\tau|t-\tau}+\gamma_3g_{t-1}+\gamma_4w_{t-\tau}+\gamma_5\nu_t^{\tau}+\gamma_6w_t^{\tau}$ where $\gamma_1=\rho\left[1-\frac{z_{11}}{z_{11}+\sigma_{\nu\tau}^2}\right]$, $\gamma_2=1-\frac{z_{11}}{z_{11}+\sigma_{\nu\tau}^2}$, $\gamma_3=\gamma_7\rho$ and $\gamma_4=\gamma_5=\gamma_6=\gamma_7=\frac{z_{11}}{z_{11}+\sigma_{\nu\tau}^2}$. z_{11} can be solved from a positive root of quadratic equation
 - $y_{i-\tau-1}^{\tau}$ in equation 2 works as a contemporaneous shock w_t^{τ} which offsets the effect of true shock $w_{t-\tau}$ at time t.

Assumption 1

The response to a news shock, either a fake news or a true news, under imperfect information, will be the same before the shock realized. In other words $\overline{R}_1 = \overline{R}_2 = R^*$ and $y_i^F = y_i^T = y_i, \forall y^F \in U^F, y^T \in U^T, y \in U, i \in [0, \tau]$ will hold where U^F is the response to fake news and U^T is response to true news. Numerical Example

Assumption 1

The response to a news shock, either a fake news or a true news, under imperfect information, will be the same before the shock realized. In other words $\overline{R}_1 = \overline{R}_2 = R^*$ and $y_i^F = y_i^T = y_i, \forall y^F \in U^F, y^T \in U^T, y \in U, i \in [0, \tau]$ will hold where U^F is the response to fake news and U^T is response to true news. Numerical Example

Takeaway

We do not need to separately identify the response before τ , when the news realizes.

Assumption 2

The empirically identified news shock U lies on the medial of response to fake news U^F and response to true news U^T . In other words, $y_i \in \left[y_i^F, y_i^T\right], \forall y^F \in U^F, y^T \in U^T, y \in U, i \in [\tau+1, \infty]$ will hold. Furthermore, the news shock U is a linear combination of U^F and U^T and $y_i = \alpha y_i^F + \beta y_i^T$ holds. Numerical Example

Assumption 2

The empirically identified news shock U lies on the medial of response to fake news U^F and response to true news U^T . In other words, $y_i \in \left[y_i^F, y_i^T\right], \forall y^F \in U^F, y^T \in U^T, y \in U, i \in [\tau+1,\infty]$ will hold. Furthermore, the news shock U is a linear combination of U^F and U^T and $y_i = \alpha y_i^F + \beta y_i^T$ holds. Numerical Example

Takeaway

The mixed identification result can be refined to fake news by subtracting the realization βy_i^T

Crowd-out effect of Overbuilding

$$\begin{split} I\widetilde{I_t} &= -\left\{ \left(\Phi_H + \frac{\nu}{\alpha} p^H H \right) \int \widetilde{h_t}^i dG_i - \Phi_\mu \int \widetilde{\mu}_t^i dG_i \right. \\ &+ \Phi_{p^H} \left[\frac{1}{1 - (1 - \delta^H) \frac{1}{R}} F^H (\widetilde{H}_t) - \frac{(1 - \delta^H) \frac{1}{R}}{1 - (1 - \delta^H) \frac{1}{R}} \mathbb{E}_t F^H (\widetilde{H}_{t+1}) \right] \\ &- \Phi_{cov}^i \int \widetilde{cov}_t^i dG_i + \frac{\nu}{\alpha} Y_H p^H F^H (\widetilde{H}_t) \right\} \end{split}$$

Crowd-out effect of Overbuilding

Demand-Side Effect

$$\begin{split} I\widetilde{I_t} &= -\left\{ \left(\Phi_H + \frac{\nu}{\alpha} p^H H \right) \int \widetilde{h_t}^i dG_i - \Phi_\mu \int \widetilde{\mu}_t^i dG_i \right. \\ &+ \Phi_{p^H} \left[\frac{1}{1 - (1 - \delta^H) \frac{1}{R}} F^H (\widetilde{H}_t) - \frac{(1 - \delta^H) \frac{1}{R}}{1 - (1 - \delta^H) \frac{1}{R}} \mathbb{E}_t F^H (\widetilde{H}_{t+1}) \right] \\ &- \Phi_{cov}^i \int \widetilde{cov}_t^i dG_i + \frac{\nu}{\alpha} Y_H p^H F^H (\widetilde{H}_t) \right\} \end{split}$$

Crowd-out effect of Overbuilding

Supply-Side Effect

$$\begin{split} I\widetilde{I}_t &= -\left\{ \left(\Phi_H + \frac{\nu}{\alpha} p^H H \right) \int \widetilde{h_t}^i dG_i - \Phi_\mu \int \widetilde{\mu}_t^i dG_i \right. \\ &+ \Phi_{p^H} \left[\frac{1}{1 - (1 - \delta^H) \frac{1}{R}} F^H (\widetilde{H}_t) - \frac{\left(1 - \delta^H \right) \frac{1}{R}}{1 - (1 - \delta^H) \frac{1}{R}} \mathbb{E}_t F^H (\widetilde{H}_{t+1}) \right] \\ &- \Phi_{cov}^i \int \widetilde{cov}_t^i dG_i + \frac{\nu}{\alpha} Y_H p^H F^H (\widetilde{H}_t) \right\} \end{split}$$

Mechanism: Relative Intratemporal Elasticity

- ullet A smaller intratemporal elasticity of substitution o A larger complement effect contemporaneously
- Financial friction works → marginal value of housing servicing ↑
 - One unit extra wealth $\Delta c_t^1=$ 0.5, $\Delta h_t^1=$ 0.5 or $\Delta c_t^2=$ 0.5, $\Delta h_t^2=$ 0.2
 - $\Delta\mu_t^1<\Delta\mu_t^2<0$ as $\Delta h>0$, more housing servicing used to slack the collateral constraint
- Wealth effect: $\Delta p_t^H > 0$, the value, that one unit of housing service provides, now can be transferred to utilitarian value more with a smaller intratemporal elasticity of substitution.

$$\frac{U_{h,t}}{U_{c,t}} = f\left(p_t^+, p_{t+1}^-\right)$$

Mechanism: Financial Friction

- Marginal Value of housing is larger as now it plays a larger role in collateral constraint(through μ in ss)
- \bullet Financial friction works more silent \to marginal value of housing servicing \uparrow
 - One unit extra wealth $\Delta c_t^1=$ 0.5, $\Delta h_t^1=$ 0.5, $\gamma=$ 0.5 or $\Delta c_t^2=$ 0.5, $\Delta h_t^2=$ 0.5, $\gamma=$ 0.8
 - $\Delta\mu_t^1<\Delta\mu_t^2<0$ as $\Delta h>0$, more housing servicing used to slack the collateral constraint
- Wealth effect: $\Delta p_t^H > 0$, Same as item 1 as in this scenario p_t^H and h_t are isomorphic in collateral constraint.

Mechanism: Wealth Distribution

- Left-skewed residential asset response: The more wealthy you are, the more response you would have.
- Left-skewed distribution of residential asset: The more response you have, the larger proportion of your wealth in distribution
- Right-skewed marginal propensity to consumption: Amplified passthrough from residential asset and nondurable consumption

Relative Intratemporal Elasticity of Substitution

Relative Intratemporal Elasticity of Substitution $\sigma \uparrow$

Relative Intratemporal Elasticity of Substitution

Relative Intratemporal Elasticity of Substitution $\sigma \uparrow$

Relative Intratemporal Elasticity of Substitution

Relative Intratemporal Elasticity of Substitution $\sigma \uparrow$

Financial Friction

Looser Collateral Constraint $\gamma \uparrow$

Financial Friction

Looser Collateral Constraint $\gamma \uparrow$

Financial Friction

Looser Collateral Constraint $\gamma \uparrow$

Housing Expectation and Housing Market Boom

Corollary 2

Ceteris paribus, an positive expectation about the housing price change in time T+1 will induce a jump in demand of housing service in time t. The response extend follows

$$\widetilde{h}_t^i \Big|_{h_{t+i}, \mu_{t+i}, \lambda_{t+i}, i \in [1, T]} = \zeta_t^i dp_{t+T+1}^H$$
(13)

where
$$\zeta_t^i = -\frac{1}{u_{h^i}''}\mathbb{E}_t\left[\beta\left(1-\delta^H\right)\right]^T\Pi_{s=1}^T\frac{\lambda_{t+s}}{\lambda_{t+s}-\mu_{t+s}}\lambda_{t+T+1}$$

Wealth Distribution: Inequality

The Lorenz curve of residential asset h and real effective asset x

Solution Method

- Two endogenous asset: liquid and illiquid asset
- Steady-state policy function: endogenous grid method; Carroll (2006) and Auclert et al. (2021)
- Steady-state distribution: Young (2010)
- Dimensionality reduction: Image Compression; Bayer et al. (2018)
- Perturbation with imperfect information: A new contribution based on Baxter et al. (2011) and Uhlig (1999)

Solution Method

- s_t state variable; c_t control variable; Ξ_t exogenous shocks
- prefect information
 - policy function (matrix) P_1 , P_2 , Q_1 and Q_2
 - $s_t = P_1 s_{t-1} + Q_1 \Xi_t$ and $c_t = P_2 c_{t-1} + Q_2 \Xi_t$
- imperfect information
 - perception on subset of state variables $s_{2,t}$ and $s_{2,t|t}$
 - law of motion of perception process (bayesian updating) $s_{2,t|t} = A^s s_{2,t-1|t-1} + P^s \widetilde{s}_{2,t}$ where $\widetilde{s}_{2,t}$ is the observation of $s_{2,t}$
 - we can still use P_2 and Q_2 because of CEQ (certainty equivalent) $c_t = P_2 s_{t|t} + \widetilde{Q}_2 \Xi_t$ (\widetilde{Q}_2 is adjusted from Q_2 by observation and perception function)
- solve new policy \widetilde{P}_1 , new mapping \widetilde{P}_3 and \widetilde{Q}_1 satisfying $s_t = \widetilde{P}_1 s_{t-1} + \widetilde{P}_3 s_{t-1|t-1} + \widetilde{Q}_1 \Xi_t$

Solution Method: solve new policy P_1

- P_1 deviates from P_1 a lot (assuming $s_{t-1|t-1} = 0$)
 - $s_{t|t}$ deviates from $s_t \to c_t^{\mathrm{imperfect}}$ deviates from $c_t^{\mathrm{perfect}} \to \mathrm{investment}$ $I_t^{\text{imperfect}}$ deviates from I_t^{perfect} • $s_t^{\text{imperfect}}$ deviates from s_t^{perfect}
- literature: guess and verify

new method: solving directly via technique in linear algebra

Full-information Bayesian Estimation

- Following Smets and Wouters (2003, 2007), data is detrended to growth rate with long-run trend $d\log(Y_t) = \overline{y} + y_t$
- State Space Model: To be comparable, implement the same augmentation
 - State Equation

$$\left[\begin{array}{c} x_t \\ x_{t-1} \end{array}\right] = \left[\begin{array}{cc} P & 0 \\ I & 0 \end{array}\right] \left[\begin{array}{c} x_{t-1} \\ x_{t-2} \end{array}\right] + \left[\begin{array}{c} Q \\ 0 \end{array}\right] \varepsilon_t$$

Measurement Equation

$$y_t = \left[\begin{array}{cc} H & -H \\ 0 & 0 \end{array} \right] \left[\begin{array}{c} x_t \\ x_{t-1} \end{array} \right] + S\zeta_t$$

Full-information Bayesian Estimation

RWMH

