Fordítóprogramok

Készítette: Nagy Krisztián

Reguláris kifejezések (FLEX)

Alapelemek kiválasztása

x	az 'x' karakter						
	tetszőleges karakter (kivéve újsor)						
[xyz]	karakterhalmaz; vagy egy 'x', vagy egy 'y' vagy egy 'z'						
[abj-oZ]	karakterhalmaz intervallummal						
[^A-Z]	negált karakterhalmaz; bármilyen karakter kivéve nagy betűk						
$[^A-Z n]$	bármely karakter, kivéve nagybetűk és újsor						
\x	a speciális karakterek, pl. \n, \t; továbbá reguláris						
	kifejezésekben műveletjelek karakterként való használata, pl.						
	*, \+						
\0	a 0 kódú ASCII karakter						
\123	az oktális 123 kódú karakter						
\x2a	a hexadecimális 2a kódú karakter						

Műveletek kiválasztása

rs	r után egy s (konkatenáció)
r s	egy r vagy egy s (unió)
r^*	nulla vagy több r
(r)	r; a zárójelek a műveleti sorrend jelölésére használhatók
r+	egy vagy több r
r?	nulla vagy egy r (opcionális r)
r{2,5}	kettőtől ötig valahány r
r{2,}	kettő vagy több r
r{4}	pontosan négy r
^r	egy r a sor elején
r\$	egy r a sor végén

(A műveletekben r és s tetszőlegesen összetett reguláris kifejezések lehetnek.) {name} deklarációs részben megadott név kifejtése

Feladatok (Reguláris kifejezéssel)

- 1. egész szám (legalább egy számjegy 0-9-ig)
- 2. olyan egész szám, amely több számjegy esetén nem kezdődhet nullával.
- 3. előjeles egész szám (opcionálisan + vagy az elején)
- 4. törtszám (tizedespont előtt legalább egy számjegy)

Megoldás

- 1. $[0-9]^+$
- 2. $0|[1-9][0-9]^*$
- 3. [+-]?(0|[1-9][0-9]*)
- 4. $[0-9]^+ \setminus [0-9]^+$

Lexikális elemzés

1. feladat: Adottak az alábbi lexikai elemek egy-egy reguláris kifejezéssel. Elemezzük ez alapján az ABAB és az AABAA inputokat.

$$\begin{bmatrix}
a - zA - Z \\
ABA \\
ABA
\end{bmatrix} \rightarrow ABA$$

$$ABABAA$$

2. feladat: Adottak az alábbi lexikai elemek egy-egy reguláris kifejezéssel. Elemezzük ez alapján az ALMA123 BEGINEND BEGIN 12 inputot.

BEGIN → BEGIN
END → END

$$[a - zA - Z][a - zA - Z0 - 9]^*$$
 → VAR
 $[0 - 9]^+$ → NUM
 $[\t\n]$ → WS

A lexikális elemző betűnként elemez. Amennyiben egyértelmű a felismerés, akkor a leghosszabb illesztkedés alapján dönti el, hogy melyik lexikai elemre fordítsa az adott inputot a fordító. Abban az esetben, ha nem egyértelmű a felismerés, akkor a lexikai elemek felsorolásában a sorrend alapján dönti el, hogy melyiket válassza. Abban az esetben, ha a megadott inputot nem lehet tokenekre bontani, a fordítás kimenetele lexikális hiba lesz.

Szintaktikus elemzés

A szintaktikus szabályok leírása kettes típusú (környezetfüggetlen) nyelvtanokkal történik.

Felülről lefele haladó szintaktikus elemzők

LL(1) elemzés

Egyszerű <i>LL</i> (1)	ε -mentes $LL(1)$	Általános <i>LL</i> (1)
€-mentes	€-mentes	
szabályok jobboldala terminális szimbólummal kezdődik (A → aβ alakú)		$A ightarrow a_1$ és $A ightarrow a_2$ külön szabályok esetén
az azonos nemterminálisokhoz tartozó szabályok jobb oldalai különböző terminálissal kezdődnek $(A \rightarrow a_1 \beta \text{ és } A \rightarrow a_2 \beta,$ akkor $a_1 \neq a_2)$	$A o a_1$ és $A o a_2$ külön szabályok esetén $FIRST_1(\beta_1) \cap FIRST_1(\beta_2) = \emptyset$	$FIRST_1(\beta_1 FOLLOW_1(A))$ \cap $FIRST_1(\beta_2 FOLLOW_1(A))$ $=$ \emptyset

1. feladat: Adottak az alábbi grammatikák. Döntsük el róluk, hogy egyszerű *LL*(1)-ek –e! Amennyiben nem azok indokoljuk meg, hogy miért nem!

a)
$$S \to aSA|bA$$

 $A \to \varepsilon|bA$

b)
$$S \rightarrow aSA|A$$

$$A \rightarrow bA|b$$

c)
$$S \to aSA|bA$$

 $A \to a$

Megoldás:

- a) Nem egyszerű LL(1), mivel tartalmaz $A \to \varepsilon$ szabályt. (Nem ε -mentes)
- b) Nem egyszerű LL(1), mivel tartalmaz olyan szabályt, amelynek a jobb oldala nem terminálissal kezdődik. Lásd: $S \to A$
- c) Egyszerű *LL*(1), mivel teljesíti az összes feltételt.

2. feladat: Elemezzük a fentebbi feladatban megadott egyszerű **LL(1)** grammatika alapján, hogy az **aabaaa** input szintaktikusan helyes-e elemzővermek segítségével. Írjuk fel a fentebbi grammatika elemzőtáblázatát is.

Megoldás:

Az egyszerűség kedvéért jelöljük meg a szabályokat számokkal:

- (1) $S \rightarrow aSA$
- (2) $S \rightarrow bA$

 $(S#, \bar{a}abaaa#, \varepsilon)$

(\dSA#, \dabaaa#,1)

(*SA*#, *abaaa*#,1)

(\alpha SAA\#, \alpha baaa\#,11)

(SAA#, baaa#,11)

(bAAA#,baaa#,112)

(*AAA*#, *aaa*#,112)

(\(\alpha A A # , \(\alpha a a # , 1123 \)

(AA#, aa#, 1123)

 $(\alpha A \#, \alpha a \#, 11233)$

(A#, a#, 11233)

 $(\alpha \#, \alpha \#, 112333)$

(#, #, 112333)

Mivel a 2 verem egyszerre lett üres, így sikeres volt az elemzés. Az adott input megfelelő volt.

Elemző táblázat:

Az elemzőtáblázat első oszlopába kezdetben a grammatikában található nem terminálisok kerülnek felsorolásra, majd a terminálisok, végezetül pedig a #.

Az első sorban pedig a grammatikában található terminálisok szerepelnek és végezetül a #. A táblázat további celláiba az aktuális terminálishoz tartozó szabály kerül. Az üresen maradt cellák pedig hibát jelentenek.

	а	b	#
S	$S \rightarrow aSA$	$S \rightarrow bA$	
\boldsymbol{A}	$A \rightarrow a$		
а	POP		
b		POP	
#			OK

3. feladat: Adottak az alábbi grammatikák. Döntsük el róluk, hogy ε -mentes LL(1)-ek –e! Amennyiben nem azok indokoljuk meg, hogy miért nem!

a)
$$S \rightarrow aSA|A$$

 $A \rightarrow bA|a$
b) $S \rightarrow SA|Bc$
 $A \rightarrow aA|c$
 $B \rightarrow b|c$
c) $S \rightarrow dSdS|A|eB$
 $A \rightarrow a|BA$

 $B \rightarrow b|c$

Megoldás:

a) Nézzük meg az azonos bal oldalhoz tartozó jobb oldalak FIRST halmazát:

$$FIRST(aSA) = \{a\}$$

 $FIRST(A) = FIRST(bA) \cup FIRST(a) = \{b, a\}$

$$FIRST(aSA) \cap FIRST(A) = \{a\} \cap \{b,a\} = \{a\} \neq \emptyset$$

Ezért a megadott grammatika NEM ε -mentes $LL(1)$.

- b) Az $S \to SA$ szabály miatt bal rekurzív nyelvtanról beszélhetünk. Ezeket a nyelvtanokat pedig kizárjuk a vizsgálat alól. Ezért a megadott grammatika NEM ε -mentes LL(1).
- c) Nézzük meg az azonos bal oldalhoz tartozó jobb oldalak FIRST halmazát:

$$FIRST(dSdS) = \{d\}$$

 $FIRST(A) = FIRST(a) \cup FIRST(BA) = \{a, b, c\}$
 $FIRST(eB) = \{e\}$

$$FIRST(a) = \{a\}$$

 $FIRST(BA) = FIRST(bA) \cup FIRST(cA) = \{b, c\}$

$$FIRST(b) = \{b\}$$

 $FIRST(c) = \{c\}$

Nézzük a metszeteket:

$$FIRST(dSdS) \cap FIRST(A) \cap FIRST(eB) = \{d\} \cap \{a,b,c\} \cap \{e\} = \emptyset$$

 $FIRST(a) \cap FIRST(BA) = \{a\} \cap \{b,c\} = \emptyset$
 $FIRST(b) \cap FIRST(c) = \{b\} \cap \{c\} = \emptyset$

Mivel a nyelv ε -mentes és az azonos bal oldalhoz tartozó szabályok FIRST halmazainak a metszetei diszjunktak, ezért a megadott grammatika ε -mentes LL(1).

4. feladat: Elemezzük a fentebbi feladatban megadott ε-mentes **LL(1)** grammatika alapján, hogy a **dadc** input szintaktikusan helyes-e elemzővermek segítségével. Írjuk fel a fentebbi grammatika elemzőtáblázatát is.

Megoldás:

Elemző táblázat:

A táblázatot a FIRST halmazok alapján töltjük ki!

	а	b	С	d	е	#
S	$S \to A$	$S \to A$	$S \to A$	$S \rightarrow dSdS$	$S \rightarrow eB$	
A	$A \rightarrow a$	$A \rightarrow BA$	$A \rightarrow BA$			
\boldsymbol{B}		$B \rightarrow b$	$B \rightarrow c$			
а	POP					
b		POP				
C			POP			
d				POP		
e					POP	
#						OK

Elemzés vermekkel:

 $(S#, dadc#, \varepsilon)$

(dSdS#, dadc#,1)

(SdS#,adc#,1)

(AdS#, adc#, 12)

 $(\alpha dS\#, \alpha dc\#, 124)$

(dS#, dc#, 124)

(S#, c#, 124)

(A#, c#, 1242)

(BA#, c#, 12425)

(¢*A*#, ¢#,124257)

Szintaktikai hiba, mivel az elemzendő inputot tartalmazó verem kiűrült úgy, hogy a másik verem még nem.

5. feladat: Adott az alábbi grammatika. Döntsük el róla, hogy általános LL(1)-e!

$$S \to [A]$$

$$A \to \varepsilon | nB$$

$$B \to \varepsilon |, nB$$

$$FIRST(\varepsilon) = ?$$

 $A \rightarrow \alpha$ típusú szabályok esetén:

FOLLOW(A) - Mi az első olyan terminális elem, ami nem α -ból lett levezetve, de az első utána.

$$FIRST([A] FOLLOW(S)) = \{[\}$$

$$FIRST(\varepsilon FOLLOW(A)) = FOLLOW(A) = \{]\}$$

 $FOLLOW(A) = FIRST(]FOLLOW(S)) = \{]\}$
 $FIRST(nB FOLLOW(A)) = \{n\}$

 $FIRST(\varepsilon FOLLOW(B)) = FOLLOW(B) = \{]\}$ $FOLLOW(B) = FIRST(\varepsilon FOLLOW(A)) \cup FIRST(\varepsilon FOLLOW(B)) = \{]\} \cup FOLLOW(B)$

Megjegyzés: Folyamatosan ezt állítja elő FOLLOW (B), így az U -ba nem kerül új elem!

$$FIRST(, nB\ FOLLOW(B)) = \{,\}$$

Mivel $FIRST(\varepsilon FOLLOW(A)) \cap FIRST(nB FOLLOW(A)) = \emptyset$ és $FIRST(\varepsilon FOLLOW(B)) \cap FIRST(,nB FOLLOW(B)) = \emptyset$ ezért a fentebb megadott grammatika általános LL(1)

6. feladat: Írjuk fel az előző feladatban látott általános LL(1) grammatika elemző táblázatát.

Az elemzőtáblázatot a FIRST halmazok alapján írjuk fel.

	[]	,	n	#
S	$S \rightarrow [A]$				
A		$A \rightarrow \varepsilon$		$A \rightarrow nB$	
В		$B \to \varepsilon$	$B \rightarrow , nB$		
[POP				
]		POP			
,			POP		
n				POP	
#					OK

Alulról felfele haladó szintaktikus elemzők

LR(0) elemzés

Feladat: Adott az alábbi grammatika. Lássuk be LR(0) elemzés segítségével, hogy az **axbx** mondata- e a nyelvnek. Írjuk fel a kannonikus halmazokat, készítsünk automatát és ellenőrizzük veremmel a fentebbi kérdést!

$$S \rightarrow x | AS$$

$$A \rightarrow aSb$$

Megoldás:

Egészítsük ki a nyelvtant:

$$S' \to S$$

$$S \rightarrow x | AS$$

$$A \rightarrow aSb$$

Kannonikus halmazok

LR(0) elem: $[A \rightarrow \alpha]$, ahol a . jelzi, hogy hol tartunk adott input beolvasása után az addig elemzett inputtal.

$$I_0 = CLOSURE([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .x], [S \rightarrow .AS], [A \rightarrow .aSb]\}$$

Megjegyzés: Minden CLOSURE halmazt addíg bővítünk, ameddig képes bővülni. Az aktuális szabály is a halmaz része. Akkor fejeződött be a teljes feldolgozás, ha az összes pont a szabályok jobb oldalán a szabályok végére kerül.

```
\begin{split} I_0 &= CLOSURE([S' \to .S]) = \{[S' \to .S], [S \to .x], [S \to .AS], [A \to .aSb]\} \\ I_1 &= READ(I_0, S) = CLOSURE([S' \to S.]) = \{[S' \to S.]\} \\ I_2 &= READ(I_0, x) = CLOSURE([S \to x.]) = \{[S \to x.]\} \\ I_3 &= READ(I_0, A) = CLOSURE([S \to A.S]) = \{[S \to A.S], [S \to .x], [S \to .AS], [A \to .aSb]\} \\ I_4 &= READ(I_0, a) = CLOSURE([A \to a.Sb]) = \\ &= \{[A \to a.Sb], [S \to .x], [S \to .AS], [A \to .aSb]\} \\ I_5 &= READ(I_3, S) = CLOSURE([S \to AS.]) = \{[S \to AS.]\} \\ READ(I_3, x) = CLOSURE([S \to x.]) \equiv I_2 \\ READ(I_3, A) = CLOSURE([S \to x.]) \equiv I_3 \\ READ(I_3, a) = CLOSURE([A \to a.Sb]) \equiv I_4 \\ I_6 &= READ(I_4, S) = CLOSURE([A \to aS.b]) = \{[A \to aS.b]\} \\ READ(I_4, A) = CLOSURE([S \to x.]) \equiv I_2 \\ READ(I_4, A) = CLOSURE([S \to A.S]) \equiv I_3 \\ READ(I_4, A) = CLOSURE([S \to A.S]) \equiv I_4 \\ I_7 &= READ(I_6, b) = CLOSURE([A \to a.Sb]) = \{[A \to aSb.]\} \\ \end{split}
```

Automata:

Elemzés veremmel:

(axbx#, #0) - 2. paraméter : állapot (xbx#, #0a4) (bx#, #0a4x2) (bx#, #0a4S6) (x#, #0a4S6b7) (x#, #0A3) (#, #0A3x2)

(#, #0A3S5)

(#, #0S1)

(#, #0S')

Megjelent S' helyesen, így az adott axbx kifejezés mondat a nyelvben.

Elemző táblázat:

	action	S'	S	A	x	а	b	
0	shift		1	3	2	4		
1	reduction	$S' \to S$						
2	reduction		$S \rightarrow x$					
3	shift		5	3	2	4		
4	shift		6	3	2	4		
5	reduction	$S \rightarrow AS$						
6	shift						7	
7	reduction	$A \rightarrow aSb$						

Amire figyelni kell:

LR(0) egy nyelvtan, ha konfliktus mentes a kannonikus alakja.

Lehetséges konfliktusok:

Shift/Shift → egy állapotból 2 állapotba lehet eljutni ugyan azzal a szimbólummal Reduction/Reduction → "két szabály a táblázat valamelyik redukáló sorában" Shift/Reduction → redukáló állapot, de vezet ki belőle él.