Preliminaries:

- Binary relation: A binary operation * on a non-empty set A is a mapping from $A \times A$ to A. That is, $a * b \in A$ whenever $a, b \in A$.
- Ex:- The operator + is binary opn on the set N

- 2. A binary operation * on A is said to be
- Commutative: If for all $a, b \in A$, a * b = b * a
- Associative : If for all $a, b, c \in A$, a * (b * c) = (a * b) * c
- axe=exa=a,f&allaeA
- 3. Identity element : An element $e \in A$ is said to be an identity element w.r.to the binary operation * if a*e=e*a for all $a\in A$.
- 4. Inverse of an element: For a given element $a \in A$, an element $b \in A$ is said to be the inverse of a if a * b = b * a = e
- $\frac{1}{a*b} = b*a = e'$ $\frac{2}{b} = a'$
- 5. **Semigroup:** Let (A,*) be an algebraic system. Then (A,*) is said to be a semigroup if the following properties are satisfied
 - i. Closure law -> 18 any a, b EA, a*b EA
 - ii. Associative law

- (3) (N,t) is semigh (3) (N, o) is semigh
- 6. Monoid: Let (A,*) be an algebraic system. Then (A,*) is said to be a

 - i. Closure law
 ii. Associative law
 iii. Identity Law -) existance of identity

 2 (N, o) is not monoid

 etc.
- 7. Group: Let (A,*) be an algebraic system. Then (A,*) is said to be a group if the following properties are satisfied
 - Closure law
 - ii. Associative law
 - iii. Identity Law -> existance of 'e'
 - iv. Inverse law Every et has inverse
- ① (N, ∘) is not agp → invense fails (invense of a is (2) (7,+) is ayp -> (Invense of a is -2)

3) (R. .) · is not g? 7 (R-207, ·) is gp

(5) (Q-407, °) is gp

commutative 97

8. Abelian group: Let (A,*) be an algebraic system. Then (A,*) is said

to be a group if the following properties are satisfied

- Closure law
- ii. Associative law
- iii. Identity Law
- iv. Inverse law
- v. Commutative law

ex!-(Z,+)

abelian monoid 9P semigp

Properties:

Theorem 1: In a group (G,*), the identity element is unique. \longrightarrow

Theorem 2: In a group (G,*), inverse of an element is unique.

Let a EG and a has 2 invenses b and C

$$a*b=b*a=e-0$$
 $a*c=c*a=e-0$

$$a*c=c*a=e-2$$

Consider b=b*RP

Theorem 3: In a group (G,*), $(a^{-1})^{-1} = a$ for all $a \in G$.

Proofi- let a== x (Denoling

By deprofiny; axx=xxa=e (: xis invenue of a)

Thus ais inverse of the entry of

$$\left(a^{-1}\right)^{-1}=a$$

Theorem 4: In a group (G,*), $(a*b)^{-1} = b^{-1} * a^{-1}$ for all $a \in G$.

Ploof!-

Let x= a*b and y=b-1* a-1

TP.T y is invense of x (p.T x=y)

ieTP.T XXY=YXX= C

consider $x * y = (a * b) * (b^{-1} * a^{-1})$

= a* (b*b-1) * a-1

= a*(e * a-1)

 $= \alpha * \alpha^{-1}$

we can show that

xy=y*x=e

°. ca*b)-1 = b-1*a-1

a, b, c & 6

(a*b*c)-1

 $= c^{-1} * b^{-1} * a^{-1}$

(a-1*b-1*a)-1

 $= a^{-1} \times b \times a$

2+(-2) = 0(a)+a=0, a * a = a + ka = p.

= b*(a*c) (" e=a*c)

(: asso cahére)

(; b*a=e

6, b=C

Theorem 5: In a group (G,*),

i. $a*b = a*c \Rightarrow b = c$. (Left cancellation law)

ii. $a*b = c*b \Rightarrow a = c$. (Right cancellation law)

u = c. (Right cance)

floop 3-

hiven axb = axc

operate on left side by a

 $a^{-1}*(a * b) = a^{-1}*(a* c)$

(a1*a)*b = (a1*a)*c

e*b = e*C

b = (

Hence the pool

11) Eriven axb = c*b

openation right by b-1

 $(a*b)*b^{-1} = (c*b)*b^{-1}$

 $a*(b*b^{-1}) = c*(b*b^{-1})$

a * e = C * e

 $\alpha = c$

a * b = a * c a * b = c * b $\Rightarrow a = c$

(: Associative

(Inverse (aw a + xa = e)

(Idenlity law)

 $a, b \in G$ have unique solution in G

P200/1,-

consider ax x = b

Existernce of solm =-

 $a \times x = b$

openate on left by a-1

 $a^{-1} * (a * x) = a^{-1} * b$

 $(a^{-1}*a)*x = a^{-1}*b$

e * x = a-1 * b

since ath, a-1eh (inverse law)

 $a^{-1} \in G_9$ be $6 \longrightarrow a^{-1} * b \in G_6$ cosul

a * x = b

This egn has aunique

aniqueness:

Let $x_1 + x_2$ be a solphob the a * x = b

 $a*x_1=b$ and $a*x_2=b$ b

 $0 = 2 \Rightarrow \alpha \times \chi_1 = \alpha \times \chi_2$

 $\chi_1 = \chi_2$ (left cancellath law)

Similarly we can prove to the egn yxa=b

① In agp
$$((n, *))$$
 if $(a*b)^2 = a*b^2 * a,b \in G$. Then P.T G is abelian gp for all solm

hiven that
$$(a*b)^2 = a^2 * b^2$$
 for all $a,b \in G$
 $(a*b) * (a*b) = a*a * b*b$
 $a*(b*a)*b = a*(a*b)*b$
 $(b*a)*b = (a*b)*b$
 $b*a = a*b$ for all $a,b \in G$
 $commutative$ law is satisfied
is G is abelian

Det G beageoup in which every element is invense of itself, Then S. T. Gis abelian

a = a + a = 6 (given

Consider $a * b = (a * b)^{-1}$ (if given $= b^{-1} * a^{-1}$ (if Thm 4) = b * a

a*b= b*a

i Abelian

3 of a group (n, *) has even no of elts, then Sot atleast one elt must be its own inverse (n, *)

 $a_{2n-h}^{-1} = a_{2n-1}$

\$\\ \text{Seob} \\ \text{G} = \left(e_1 \alpha_1, \alpha_2 \\ \delta_2 \\ \delta_{2n-3}^{-1} = \alpha_2 \\ \delta_{2n-3}^{-1} = \alpha_{2n-2} \\ \delta_{2n-3}^{-1} = \alpha_{2n-2} \\ \delta_{2n-3}^{-1} = \alpha_{2n-2} \\ \delta_{2n-2}^{-1} = \alpha_{2n-2} \\ \delta_{2n-2}^{-1} = \alpha_{2n-2} \\ \delta_{2n-2}^{-1} = \alpha_{2n-2}^{-1} \\ \delta_{2n-2}^{-1} = \alpha

Subgroup.

Let (h, *) be a gloup. H be a subset of h. H is said to be a subgroup of h if H itself toms a gloup under the same operation

$$\widehat{\mathbb{O}}(0,+)$$
 is gloup $(z,+)$ is a subgloup of $(0,+)$

(a) (Z,+) is group $A = \{ \text{set of all even integers} \} = \{ 0, 2, 4, 6, 8, \dots \}$ $A \subseteq Z$

* (A_1+) is a subgloup of (Z_1+)

* B=qset of odd integers?

(B, +) is not a subgroup of (z,+)