Sollicitations	TRACTION	COMPRESSION	TORSION	FLEXION SIMPLE
schéma	N N	N N	M_t	
Eléments de réduction au centre de gravité G de la section droite du	$G\{T_{coh2/1}\}=\begin{cases} \overrightarrow{N} \\ \overrightarrow{0} \end{cases}$	$G\{T_{coh2/1}\}=\begin{cases} \overrightarrow{N} \\ \overrightarrow{0} \end{cases}$	${}_{G}\left\{T_{coh2/1}\right\} = \left\{\frac{\overrightarrow{0}}{M_{t}}\right\}$	$G\{T_{coh2/1}\} = \left\{ \frac{\overrightarrow{T}}{M_f} \right\}$
torseur des forces de cohésion de la partie droite (2) sur la partie gauche (1):	$ = \begin{cases} N & 0 \\ 0 & 0 \\ 0 & 0 \end{cases} $	$= \begin{cases} N & 0 \\ 0 & 0 \\ 0 & 0 \end{cases} avec N < 0$ Surface: S en mm ²	$= \begin{cases} 0 & M_t \\ 0 & 0 \\ 0 & 0 \end{cases}$	$= \begin{cases} 0 & 0 \\ -T_Y & 0 \\ 0 & M_{fZ} \end{cases}$
Caractéristiques de la section	Surface : S en mm²	Surface : S en mm²	Moment quadratique polaire : I ₀ en mm ⁴	Moment quadratique / (G, d):
Module d'élasticité	E (en Mpa)	E (en Mpa)	G (en Mpa)	I _{GZ} en mm⁴ E (en Mpa)
Déformation	ΔL : allongement (en mm)	ΔL : raccourcissement (en mm)	α : angle de torsion	f : flèche
Contrainte en fonction des déformations	$\sigma=E.{arepsilon}$ σ en Mpa et $oldsymbol{\epsilon}$ (Δ L/L) sans unité	$\left \sigma ight =E\left arepsilon ight $ σ en Mpa et $oldsymbol{\epsilon}$ (Δ L/L) sans unité	au=G. heta. ho auen Mpa , $ heta$ en mm et $ heta$ en rd	
Contrainte en fonction des efforts	$\sigma = \frac{N}{S}$ σ en Mpa et N en newton	$\sigma = \frac{ N }{S}$ Of en Mpa et N en newton	$ au = rac{M_{t}. ho}{I_{0}}$	$oldsymbol{\sigma} = (M_{fz}.y)/I_{GZ}$ $oldsymbol{\sigma}$ en Mpa et $oldsymbol{y}$ en mm.
Autres relations	$\Delta L = \frac{N.L}{E.S} \Delta L \ge 0$	$\Delta L = \frac{N.L}{E.S} \Delta L \leq 0$	$\Theta = \alpha / L$	$E.I.y''_{(x)} = Mf_{Z}(x)$
Condition de résistance	σ max $i \leq R_{pe}$ R_{pe} : résistance pratique à l'extension en Mpa. $R_{pe} = R_e / s$ avec R_e résistance élastique à l'extension et s le coefficient de sécurité	σ max $i \leq R_{pe}$ R_{pe} : résistance pratique à l'extension en Mpa. $R_{pe} = R_e / s$ avec R_e résistance élastique à l'extension et s le coefficient de sécurité	$ au_{\max i} \leq R_{pg}$ \mathbf{R}_{pg} : résistance pratique au glissement en Mpa. $\mathbf{R}_{pg} = \mathbf{R}_{eg}/\mathbf{s}$ avec \mathbf{R}_{eg} résistance élastique au glissement et s le coefficient de sécurité	σ max $i \leq R_{pe}$ R_{pe} : résistance pratique à l'extension en Mpa. $R_{pe} = R_e/s$ avec R_e résistance élastique à l'extension et s le coefficient de sécurité
Concentration de contrainte	$\sigma_{\max i} = K_t.\sigma_{nom}$ $1 \le K_t \le 3 et \sigma_{nom} = N/S$	Peu dangereuse pour cette sollicitation	\mathcal{T} max $i = K_t \cdot \tau$ max i = $K_t \cdot (M_{t \text{ maxi}} \cdot \rho_{\text{maxi}}) / I_0$	$\sigma_{\max i} = K_t.\sigma_{\max i}$ $= K_t.(M_{f\max i}.y_{\max i})/I_{Gz}$