VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY HCM UNIVERSITY OF TECHNOLOGY FACULTY OF MECHANICAL ENGINEERING - MECHATRONICS DEPARTMENT

ME3011

Design Project Report

Submitted To:Submitted By:Nguyen Tan TienNguyen Quy KhoiAsst. Professor1852158Faculty of MechanicalCC02EngineeringHK192

Acknowledgements

I would like to give a special thank to Prof. Nguyen Tan Tien, my supervisor to instruct me and fix my report to meet industrial standard.

Abstract

In machine design, every machine element must be calculated in a systematic matter. In this course, students are provided with essential skills to formulate almost every dimension manually, thus further improving their engineering skills before engaging the high-energy, fast-paced workforce.

When a machine element is being developed, it must satisfy some key engineering specifications such as being able to operate under designated lifespan, low cost and high efficiency. Other aspects are less important but also determined the overall design of the element include compactness, noise emission, appearance, etc.

To optimize the process of machine design, the general principles are considered as follows:

- 1. Identify the working principle and workload of the machine.
- 2. Formulate the overall working principle to satisfy the problem. Proposing feasible solutions and evaluating them to find the optimal design specifications.
- Find force and moment diagram exerting on machine parts and characteristics of the workload.
- 4. Choose appropriate materials to make use of their properties and improve efficiency as well as reliability of individual elements.
- 5. Calculate dynamics, strength, safety factor, etc. to specify dimensions.
- 6. Design machine structure, parts to satisfy working condition and assembly.
- 7. Create presentation, instruction manual and maintenance.

In this report, I will design a fairly simple system to provide a concrete example of finishing all the tasks above.

Contents

1	Desi	gn Problem	7							
	1.1	Problem	7							
	1.2	Mixing machine parameters	8							
	1.3	Requirements	8							
	1.4	Design problem	8							
2	Cho	ose Motor	9							
	2.1	Choose motor for the mixing tank	9							
	2.2	Calculate power, rotational speed and torque	11							
3	Cha	in Drive Design	12							
	3.1	Nomenclature	12							
	3.2	Find the chain drive pitch								
	3.3	Determine basic parameters of the chain drive	14							
		3.3.1 Find number of links, center distance and impact frequency	14							
		3.3.2 Other parameters	14							
	3.4	Strength of chain drive	15							
		3.4.1 Safety factor analysis	15							
		3.4.2 Contact stress analysis	15							
	3.5	Force on shaft	16							
	3.6	Other parameters	16							
Re	eferen	ces	18							

List of Figures

1.1	Working principle diagram and workload of the mixing machine: 1) electric	
	motor, 2) elastic coupling, 3) two-stage coaxial helical speed reducer, 4) roller	
	chain drive, 5) mixing tank (one-directional, light duty, operate 1 shift, 8 hours	
	each)	,

List of Tables

2.1	Output specifications	11
3.1	Chain drive specifications	17

Chapter 1

Design Problem

Nomenclature

C_a	number of shift daily, shifts	P	design power of the mixing tank, kW
K_{ng}	working days/year, days	T_1	working torque 1, $N \cdot m$
L	service life, years	T_2	working torque 2, $N \cdot m$
n	rotational velocity of the mixing tank,	t_1	working time 1, s
	rpm	t_2	working time 2, s

1.1 Problem

Figure 1.1: Working principle diagram and workload of the mixing machine: 1) electric motor, 2) elastic coupling, 3) two-stage coaxial helical speed reducer, 4) roller chain drive, 5) mixing tank (one-directional, light duty, operate 1 shift, 8 hours each)

8 1 Design Problem

1.2 Mixing machine parameters

From the parameters given in the document, we have:

P = 7 (kW) $t_1 = 15 \text{ (s)}$ n = 65 (rpm) $t_2 = 11 \text{ (s)}$ L = 8 (years) $T_1 = T \text{ (N} \cdot \text{m)}$ $K_{ng} = 260 \text{ (days)}$ $T_2 = 0.7T \text{ (N} \cdot \text{m)}$ Ca = 1 (shifts)

1.3 Requirements

- 01 report.
- 01 assembly drawing.
- 01 detailed drawing.

1.4 Design problem

- 1. Decide the working power of the electric motor and transmission ratio of the system.
- 2. Calculate and design machine elements:
 - (a) Calculate system drives (belt, chain or gear).
 - (b) Calculate the elements in speed reducers (gears, lead screws).
 - (c) Draw and calculate force diagram exerting on the transmission elements.
 - (d) Calculate, design shafts and keys.
 - (e) Choose bearings and couplings.
 - (f) Choose machine bodies, fasteners and other elements.
- 3. Choose assembly tolerance.
- 4. Bibliography

Chapter 2

Choose Motor

Nomenclature

n_{sh}	rotational speed of shaft, rpm	u_{sys}	transmission ratio of the system
P_{mo}	calculated motor power to drive the	T_{mo}	motor torque, $N \cdot mm$
	system, kW	T_{sh}	shaft torque, $N \cdot mm$
P_{sh}	operating power of shaft, kW	η_b	bearing efficiency
P_w	operating power of the belt conveyor	η_c	coupling efficiency
	given a workload, kW	η_{ch}	chain drive efficiency
u_1	transmission ratio of quick stage	η_{hg}	helical gear efficiency
u_2	transmission ratio of slow stage	η_{sys}	efficiency of the system
u_{ch}	transmission ratio of chain drive	1	subscript for shaft 1
u_h	transmission ratio of speed reducer	2	subscript for shaft 2
		3	subscript for shaft 3

Known parameters From Chapter 1, we know that:

```
P = 7 \text{ kW}, n = 65 \text{ rpm}

T_1 = T, T_2 = 0.7T

t_1 = 15 \text{ s}, t_2 = 11 \text{ s}
```

2.1 Choose motor for the mixing tank

The choice of motor will affect the entire system, so it is necessary to pick the right one.

Calculate system overall efficiency From Table 2.3 [1]:

- 1 elastic coupling which connects the motor and the speed reducer. $\eta_c=1$
- 4 sealed rolling bearings. 3 of which belong to the speed reducer and the last one is used for the shaft of the mixing tank. $\eta_b = 0.99$

10 2 Choose Motor

• 2 sealed pairs of helical gear drive which connect the shafts inside the speed reducer. $\eta_{hg} = 0.97$

• 1 sealed roller chain drive connecting the speed reduce and the mixing tank. $\eta_{ch} = 0.96$

Aggregate all efficiencies yields:

$$\eta_{sys} = \eta_c \eta_b^4 \eta_{hg}^2 \eta_{ch} = 1 \times 0.99^4 \times 0.97^2 \times 0.96 = 0.87$$

Calculate required power for operation The power *P* from Chapter 1 applies for systems with single loading input. In case of varying load each cycle, the equivalent power is calculated using Equation 2.13 [1]:

$$P_{w} = P\sqrt{\frac{\left(\frac{T_{1}}{T}\right)^{2} t_{1} + \left(\frac{T_{2}}{T}\right)^{2} t_{2}}{t_{1} + t_{2}}} = 7 \times \sqrt{\frac{\left(\frac{T}{T}\right)^{2} \times 15 + \left(\frac{0.7T}{T}\right)^{2} \times 11}{15 + 11}} = 6.2 \text{ (kW)}$$

$$P_{mo} = \frac{P_{w}}{\eta_{sys}} = \frac{6.2}{0.87} = 7.14 \text{ (kW)}$$

Calculate n_{mo} The purpose is to Using Table 2.4 [1]:

- 2-level transmission speed reducer, spur gear type. $u_h = 11$
- 1 chain drive, roller type. $u_{ch} = 2$

Multiplying all transmission ratio yields:

$$u_{sys} = u_h u_{ch} = 11 \times 2 = 22$$

 $n_{mo} = u_{sys} n = 22 \times 65 = 1430 \text{ (rpm)}$

Choose motor To work normally, the maximum operating power of the chosen motor must be no smaller than P_{mo} . In similar fashion, its rotational speed must also be no smaller than n_{mo} . Thus, from Table P1.3 [1], we choose motor 4A132S4Y3 which operates at 7.5 kW maximum and 1455 rpm, which makes $n_{mo} = 1455$ rpm.

Recalculating u_{sys} with the new P_{mo} and n_{mo} derived from the chosen motor, we obtain:

$$u_{sys} = \frac{n_{mo}}{n} = \frac{1455}{65} = 22.38$$

Retaining the transmission ratio of the speed reducer (i.e. let $u_h = const = 11$), the new transmission ratio of the chain drive is then:

$$u_{ch} = \frac{u_{sys}}{u_h} = \frac{22.38}{11} = 2.03$$

2.2 Calculate power, rotational speed and torque

Let P_{sh1} , n_{sh1} and T_{sh1} be the transmitted power, rotational speed and torque onto shaft 1, respectively. Similarly, P_{sh2} , n_{sh2} and T_{sh2} are the transmitted parameters onto shaft 2 and P_{sh3} , n_{sh3} and T_{sh3} are used for shaft 3. Unless otherwise stated, these notations will be used throughout the next chapters.

Power The entire system is described followed by calculation as follows:

Chain drive power is affected by the bearings on the shaft of the mixing tank.

$$P_{ch} = \frac{P_w}{\eta_b} = \frac{6.2}{0.99} = 6.26 \text{ (kW)}$$

Shaft 3 power is affected by the chain drive.

Shaft 2 power is affected by the bearings and gear drives on shaft 3.

$$P_{sh2} = \frac{P_{sh3}}{\eta_b \eta_{hg}} = \frac{6.52}{0.99 \times 0.97} = 6.79 \text{ (kW)}$$

$$P_{sh1} = \frac{P_{sh2}}{\eta_b \eta_{hg}} = \frac{6.79}{0.99 \times 0.97} = 7.07 \text{ (kW)}$$

Shaft 1 power is affected by the bearings and gear drives on shaft 2. $P_{sh1} = \frac{P_{sh2}}{\eta_b \eta_{hg}} = \frac{6.79}{0.99 \times 0.97} = 7.07 \text{ (kW)}$ **Rotational speed** The design goal of the speed reducer is to lubricate both driven gears equally, which has a size disadvantage. Therefore, the transmission ratio of each pair of gears is calculated using Equation 3.12 [1]:

$$u_1 = u_2 = \sqrt{u_h} = \sqrt{11} = 3.32$$

Then,

from motor to shaft 1: $n_{sh1} = n_{mo} = 1455$ (rpm)

from shaft 1 to shaft 2:
$$n_{sh2} = n_{sh1}/u_1 = 1455/3.32 = 438.70$$
 (rpm)

from shaft 2 to shaft 3:
$$n_{sh3} = n_{sh2}/u_2 = 438.70/3.32 = 132.27$$
 (rpm)

Torque Subsequently, the torque is calculated as follows:

$$T_{mo} = 9.55 \times 10^6 \times P_{mo}/n_{mo} = 9.55 \times 10^6 \times 7.14/1455 = 46892.66 \text{ (N} \cdot \text{mm)}$$

$$T_{sh1} = 9.55 \times 10^6 \times P_{sh1}/n_{sh1} = 9.55 \times 10^6 \times 7.07/1455 = 46423.73 \text{ (N} \cdot \text{mm)}$$

$$T_{sh2} = 9.55 \times 10^6 \times P_{sh2}/n_{sh2} = 9.55 \times 10^6 \times 6.79/438.70 = 147857.49 \text{ (N} \cdot \text{mm)}$$

$$T_{sh3} = 9.55 \times 10^6 \times P_{sh3}/n_{sh3} = 9.55 \times 10^6 \times 6.52/132.27 = 470919.44 \text{ (N} \cdot \text{mm)}$$

In summary, we obtain the following table:

	Motor	Shaft 1	Shaft 2	Shaft 3
P(kW)	7.14	7.07	6.79	6.52
и	-	1	3.32	3.32
n (rpm)	1455	1455	438.70	132.27
$T(N \cdot mm)$	46892.66	46423.73	147857.49	470919.44

Table 2.1: Output specifications

Chapter 3

Chain Drive Design

3.1 Nomenclature

[i]	permissible impact times per second	F_1	tight side tension force, N
[s]	permissible safety factor	F_2	slack side tension force, N
[P]	permissible power, kW	F_r	force on the shaft, N
$[\sigma_H]$	permissible contact stress, MPa	F_t	effective peripheral force, N
\boldsymbol{A}	cross sectional area of chain	F_{v}	centrifugal force, N
	hinge, mm ²	F_{vd}	contact force, N
a	real center distance, mm	i	impact times per second
a_i	estimated center distance, mm	K_d	weight distribution factor
a_{max}	maximum center distance, mm	k	overall factor
a_{min}	minimum center distance, mm	k_a	center distance and chain's length fac-
B	width between inner link plate, mm		tor
B d	chordal diameter, mm	k_{bt}	tor lubrication factor
	-	k_{bt} k_c	
d	chordal diameter, mm		lubrication factor
d d_a	chordal diameter, mm addendum diameter, mm	k_c	lubrication factor rating factor
$egin{array}{c} d \ d_a \ d_f \end{array}$	chordal diameter, mm addendum diameter, mm dedendum diameter, mm	k_c k_d	lubrication factor rating factor dynamic load factor
$egin{array}{c} d & & & \ d_a & & \ d_f & & \ d_l & & \end{array}$	chordal diameter, mm addendum diameter, mm dedendum diameter, mm roller diameter, mm	k_c k_d k_{dc}	lubrication factor rating factor dynamic load factor chain tension factor
$egin{array}{c} d & & & & & & & & & & & & & & & & & & $	chordal diameter, mm addendum diameter, mm dedendum diameter, mm roller diameter, mm pin diameter, mm	k_c k_d k_{dc} k_f	lubrication factor rating factor dynamic load factor chain tension factor loosing factor
$egin{array}{l} d & & & & & & & & & & & & & & & & & & $	chordal diameter, mm addendum diameter, mm dedendum diameter, mm roller diameter, mm pin diameter, mm modulus of elasticity, MPa	k_c k_d k_{dc} k_f k_n	lubrication factor rating factor dynamic load factor chain tension factor loosing factor coefficient of rotational speed
$egin{array}{l} d & & & & & & & & & & & & & & & & & & $	chordal diameter, mm addendum diameter, mm dedendum diameter, mm roller diameter, mm pin diameter, mm modulus of elasticity, MPa	k_c k_d k_{dc} k_f k_n	lubrication factor rating factor dynamic load factor chain tension factor loosing factor coefficient of rotational speed number of tooth factor

k_0	arrangement of drive factor	v	instantaneous velocity along the
n	angular rotational speed, rpm		chain, m/s
n_{01}	experimental angular rotational	x	chain length in pitches, the number of
	speed, rpm		links
P_t	calculated power, kW	x_c	an even number of links
p	pitch, mm	z	number of teeth of a sprocket
p_{max}	permissible sprocket pitch, mm	z_{max}	maximum number of teeth of the
Q	permissible load, N		driven sprocket
q	mass per unit length, kg/m	σ_H	contact stress, MPa
S	safety factor	1	subscript for driving sprocket
		2	subscript for driven sprocket

Known parameters From Chapter 1, we know that:

The chain type is roller.

$$n_{sh3} = 132.27 \text{ rpm}$$

 $P_{ch} = 6.26 \text{ kW}, u_{ch} = 4.5$

3.2 Find the chain drive pitch

The driving sprocket is connected to shaft 3, $n_1 = n_{sh3} = 132.27$ rpm.

Calculate *z* The number of teeth determines the how stable is the rotational speed, which relates to the impact intensity and service life:

```
z_1 = 29 - 2u_{ch} = 29 - 2 \times 2.03 = 25 \ge 19 (rounded to the nearest odd number)
z_2 = u_{ch}z_1 = 2.03 \times 25 = 51 \le 120 (Equation 5.1 [1])
```

Calculate [P] An experiment is conducted to find the optimal pitch given the permissible power and angular rotational speed. A roller chain drive having 25 teeth on the driving sprocket is tested in 8 different cases of n_{01} in somewhat similar condition with our design purpose, p.80 [1]. In this problem, $z_1 = 25$; $n_1 = 132.27$ rpm, which is close to $n_{01} = 200$ rpm, which yields $k_z = 25/z_1 = 25/25 = 1$ and $k_n = n_{01}/n_1 = 200/132.27 = 1.51$.

Another step is to specify the working condition of the chain, Table 5.6:

- The centerline between 2 sprockets is parallel with the ground. $k_0 = 1$
- Center distance $a = (30 \div 50)p$, which is similar to the experiment. $k_a = 1$
- Center distance is modifiable through displacing the sprockets. $k_{dc} = 1$
- Moderate impact load. $k_d = 1.5$
- 1 shift. $k_c = 1$
- Dusty condition with moderate lubrication quality. $k_{bt} = 1.3$

Then, we can obtain the value [P], Equation 5.3 [1]:

$$P_{t} = P_{ch}k_{0}k_{a}k_{dc}k_{d}k_{c}k_{bt}k_{z}k_{n}$$

$$= 6.26 \times 1 \times 1 \times 1 \times 1.5 \times 1 \times 1.3 \times 1 \times 1.51 = 18.46 \text{ (kW)} \le [P]$$

Inspecting Table 5.5 [1] at column $n_{01} = 200 \,\text{rpm}$, the closet value is $[P] = 19.3 \,\text{kW}$. Knowing [P], we have $p = 31.75 \,\text{mm}$, Table 5.5 [1]. Consequently, $d_c = 9.55 \,\text{mm}$, $B = 27.46 \,\text{mm}$. Consulting Table 5.8 [1], the pitch is indeed suitable.

3.3 Determine basic parameters of the chain drive

3.3.1 Find number of links and center distance

The parameters are found:

Find x_c The $a_{min} = 30p = 30 \times 31.75 = 952.50$ (mm), $a_{max} = 50p = 50 \times 31.75 = 1587.50$ (mm). Limiting the range of choice for a in $[a_{min}, a_{max}]$, we can approximate a = 1300 mm and find x_c :

$$x = \frac{2a}{p} + \frac{z_1 + z_2}{2} + \frac{(z_2 - z_1)^2 p}{4\pi^2 a} = \frac{2 \times 1300}{31.75} + \frac{25 + 51}{2} + \frac{(51 - 25)^2 \times 31.75}{4\pi^2 \times 1300} = 120.31$$

Then, round x up to the nearest even number gives $x_c = 122$.

Find *a* Using x_c to find the correct center distance, Equation 5.13 [1]. In addition, it is recommended to loose the chain an amount of $0.002 \div 0.004a$ to reduce tension. Choosing the amount of 0.003a, the coefficient 0.997 is multiplied in the formula below:

$$a = \frac{0.997p}{4} \left[x_c - \frac{z_2 + z_1}{2} + \sqrt{\left(x_c - \frac{z_2 + z_1}{2}\right)^2 - 2\left(\frac{z_2 - z_1}{\pi}\right)^2} \right]$$

$$= \frac{0.997 \times 31.75}{4} \left[122 - \frac{51 + 25}{2} + \sqrt{\left(122 - \frac{51 + 25}{2}\right)^2 - 2\left(\frac{51 - 25}{\pi}\right)^2} \right] = 1019.99 \text{ (mm)}$$

Other parameters The values below are necessary for modeling the chain drive:

$$d_1 = p/\sin\left(\frac{\pi}{z_1}\right) = 31.75/\sin\left(\frac{180}{25}\right) = 253.32 \text{ (mm)}$$

$$d_2 = p/\sin\left(\frac{\pi}{z_2}\right) = 31.75/\sin\left(\frac{180}{51}\right) = 515.75 \text{ (mm)}$$

$$d_{a1} = p\left(0.5 + \cot\frac{180}{z_1}\right) = 31.75\left(0.5 + \cot\frac{180}{25}\right) = 267.20 \text{ (mm)}$$

$$d_{a2} = p\left(0.5 + \cot\frac{180}{z_2}\right) = 31.75\left(0.5 + \cot\frac{180}{51}\right) = 530.65 \text{ (mm)}$$
Look up to find $d_l = 19.05 \text{ (mm)}$, see Table 5.2 [1]:

$$d_{f1} = d_1 - 2(0.502d_l + 0.05) = 253.32 - 2(0.502 \times 19.05 + 0.05) = 234.08 \text{ (mm)}$$

 $d_{f2} = d_2 - 2(0.502d_l + 0.05) = 515.75 - 2(0.502 \times 19.05 + 0.05) = 496.50 \text{ (mm)}$

3.4 Strength of chain drive

3.4.1 Impact frequency analysis

After determine the center distance, it is necessary to validate the impact frequency. From Table 5.9 [1], it is [i] = 25. Calculating i gives:

$$i = \frac{z_1 n_1}{15x} = \frac{25 \times 132.27}{15 \times 120.31} = 1.83 < [i]$$

3.4.2 Safety factor analysis

In order to operate safely, the chain drive's safety factor must satisfy the following condition:

$$s = \frac{Q}{k_d F_t + F_0 + F_v} \ge [s]$$

Rotational speed of the smaller sprocket is determined using the formula below:

$$v_1 = \frac{n_1 p z_1}{60000} = 2.6 \,(\text{m/s})$$

Find k_d : Assuming moderate workload, choose $k_d = 1.2$.

Find F_t , F_v and F_0 : Knowing p, it is easy to look up the values $Q = 56700 \,\text{N}$ and $q = 2.6 \,\text{kg/m}$ from Table 5.2 [1]:

$$F_t = 10^3 P_{ch} / v_1 = 2410.48 \text{ (N)}$$

$$F_v = qv_1^2 = 17.54 \,(\text{N})$$

$$F_0 = 9.81 \times 10^{-3} k_f qa = 156.11 \text{ (N)}$$

Find k_f : Let the chain drive be parallel to the ground, we get $k_f = 6$.

Find [s]: The limit [s] = 8.71 is found using interpolation, Table 5.10 [1].

Replacing all the variables gives:

$$s = 18.49 \ge 8.71$$

which satisfies the condition.

3.4.3 Contact stress analysis

The following condition must be met, Equation 5.18 [1]:

$$\sigma_H = 0.47 \sqrt{\frac{k_r (F_t k_d + F_{vd}) E}{A K_d}} \le [\sigma_H]$$

Since the chain drive only has one strand, $K_d = 1$.

Find $[\sigma_H]$ Quenched 45 steel is the material of use for the chain drive, which has HB210, $[\sigma_H] = 600$ (MPa) and $E = 2.1 \times 10^5$ (MPa), see Table 5.11 [1].

Find F_{vd} For 1-strand chain, $F_{vd} = 13 \times 10^{-7} n_1 p^3 = 6.22$ (N)

Find k_r Since z_1 is used to estimate k_r , $k_r = 0.47$.

Find E Assuming the sprockets and chain are made up from the same material (steel), $E = 2.1 \times 10^5 \,\mathrm{MPa}$

Find A From the given parameters and value p, the area $A = 180 \,\mathrm{mm}^2$, Table 5.12 [1]. Knowing k_d and F_t , we get the result:

$$\sigma_H = 591.29 \, (\text{MPa}) \le 600 \, \text{MPa}$$

which is satisfactory.

3.5 Force on shaft

Applying the following equations, see p.87 [1]:

$$F_2 = F_0 + F_v = 173.65 (N)$$

$$F_1 = F_t + F_2 = 2584.13$$
 (N)

Choose $k_x = 1.15$ to obtain F_r , Equation 5.20 [1]:

$$F_r = k_x F_t = 2772.05 (N)$$

3.6 Other parameters

In summary, we have the following table:

	driving	driven	
[<i>P</i>] (kW)	11		
a (mm)	1019.99		
B (mm)	22.61		
d (mm)	170.92	768.22	
d_a (mm)	181.22	780.50	
d_f (mm)	154.36	752.16	
d_l (mm)	15.88		
d_O (mm)	7.95		
i	2.92		
p (mm)	25.4		
Q(N)	56700		
u_{ch}	4.5		
v (m/s)	2.6		
Z.	21	95	

Table 3.1: Chain drive specifications

References

[1] Chat Trinh and Uyen Van Le. *Thiet Ke He Dan Dong Co Khi*. 6th ed. Vol. 1. Vietnam Education Publishing House Limited, 2006.