

09: TensorFlow

https://github.com/matthiaskoenig/itbtechtalks
Dr Matthias König
Humboldt University Berlin,
Institute for Theoretical Biology

Supervised machine learning

- features are input variables describing your data $\{x_1, ..., x_N\}$
- label is the true thing we are predicting (y)
- example is a particular instance of data $\{x_1, ..., x_N\}$
 - labeled example has $(\{x_1, ..., x_N\}, y)$
 - used to train the model
 - unlabeled example has $(\{x_1, ..., x_N\}, ?)$
 - used for making predictions
- model maps examples to predicted labels y'
 - defined by internal parameters which are learned
 - regression model predicts continuous values
 - classification model predicts discrete values

- computational framework for building machine learning models
- variety of toolkits allow to construct models at preferred level of abstraction
- Main components:
 - a graph protocol buffer
 - a runtime that executes the (distributed) graph
- TensorFlow can run the graph on multiple hardware platforms, including CPU, GPU, and TPU.

Iris classification problem

- classify Iris flowers based on the length and width measurements of their sepals and petals
- Iris genus entails about 300 species, but we will classify only: Iris setosa, Iris versicolor, Iris virgcinica

Figure 1. Iris setosa (by Radomil, CC BY-SA 3.0), Iris versicolor, (by Dlanglois, CC BY-SA 3.0), and Iris virginica (by Frank Mayfield, CC BY-SA 2.0).

Neuronal network

Figure 2. A neural network with features, hidden layers, and predictions.

- set of nodes, analogous to neurons, organized in layers $\sigma(\mathbf{w} \mathbf{x} + \mathbf{b})$
- set of weights (w) representing the connections between nodes
- set of biases (b), one for each node
- (nonlinear) activation function (σ) that transforms output of each node

https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/playground-exercises https://www.tensorflow.org/get_started/get_started_for_beginners