REDUCING DRAG FORCES ON SUBMERGED BODIES BY VARYING SURFACE FINISH

TEAM #7

- Audrey Alianto
- Aisyah Mohamed Lupi John Matheson
- Ahijit Banerjee

- Anmol Bhatia
- Ray Cardinal

PURPOSE: To find out if there is a relatively simple way to canoe more effectively by observing the effect of varying surface finish on a streamline body and analysing the drag experienced by the body

RESULTS

Main Conclusion/Result: Smoother bodies experience lesser drag forces

RESULTS AND DISCUSSION:

Statistical Analysis:

Making the dataset continuous and minimizing random error

RESULTS

Main Conclusion/Result: Smoother bodies experience lesser drag forces

RESULTS AND DISCUSSION:

Statistical Analysis:

- F-test to check if there is a significant difference between surface finishes
- Found a significant difference at confidence level of 99%

Table 1: Values for the F-Test

F - Statistic	10.63
F - Critical	3.07

DISCUSSION

- Our data matches theoretical findings online – low surface roughness objects experience less drag
- Hydrophobic surfaces travelled through water the easiest
- Coating the canoe hull with hydrophobic material will make it easiest to row

DISCUSSION

Limitations:

- Depth of the pool was not sufficient to trigger turbulent flow
- Resolution of the encoder limited the number of data points

Ideal Experimental Setup:

- Few Parameters to Measure
- Major Parameters:
 - Wind Speed
 - Reactionary Horizontal Force
- DOE
 - Multi Factors one factor at a time
 - Wind: 0m/s 35m/s
 - Surface Finish: Aluminum, Plastic
 Wrap, Hydrophobic Coating, Spray
 Paint, Butter, Smooth