Parameter	Solid	Fluid
Stiffness tensor D	$= \mathbf{D}(K, \nu)$	
Bulk modulus K	$2.2 \times 10^{10} \mathrm{Pa}$	
Poisson ratio ν	0.2	
Biot coefficient α	1	
Thermal expansion β	$8 \times 10^{-6} \mathrm{m^3 m^{-3} K^{-1}}$	$2.1 \times 10^{-4} \mathrm{m^3 m^{-3} K^{-1}}$
Porosity ϕ	Ω_h : 0.01	
	Ω_l, Ω_x : 1	
Compressibility c		$1 \times 10^{-10} \mathrm{Pa^{-1}}$
Permeability \mathcal{K}	$\Omega_h: 1 \times 10^{-11} \mathrm{m}^2$	
	$\Omega_l, \Omega_x : a^2/12$	
Viscosity μ		$1 \times 10^{-3} \mathrm{Pa}\mathrm{s}^{-1}$
Density ρ	$2700 \mathrm{kg} \mathrm{m}^{-3}$	$1000 {\rm kg m^{-3}}$
Heat capacity C	$790{ m JK^{-1}}$	$4208{ m JK^{-1}}$
Thermal conductivity κ	$3.1\mathrm{Wm^{-1}K^{-1}}$	$0.6\mathrm{Wm^{-1}K^{-1}}$
Friction coefficient F	0.9	
Initial temperature T_0	$0^{\circ}\mathrm{C} = 273\mathrm{K}$	
Initial aperture a_0	$1 \times 10^{-4} \mathrm{m}$	
Numerical parameter c^*	$1 \times 10^4 \mathrm{Pa} \mathrm{m}^{-1}$	

The effective parameters of Eqs. (1) and (2) of the paper are

$$\rho_e C_e = \phi C_f \rho_f + (1 - \phi) C_s \rho_s,$$

$$\kappa_e = \phi \kappa_f + (1 - \phi) \kappa_s.$$

These reduce to the fluid values in the fractures, where $\phi = 1$. The normal parameters \mathcal{K}_j and κ_j are inherited from the fracture, and divided by a.