## MB590-012 Microbiome Analysis **Regression Analysis**

Dr. Christine Hawkes

### NC STATE UNIVERSITY

### Regression analysis

 Used for prediction of dependent variables based on a set of independent variables

| Regression type       | Dependent Vars | Independent Vars |
|-----------------------|----------------|------------------|
| Simple                | 1              | 1                |
| Multiple              | 1              | >1               |
| Multivariate multiple | >1             | >1               |

# Ordinary least squares (OLS) linear regression

- Estimates parameters in regression model by minimizing the sums of the squared residuals
  - i.e., draws a line through the data to minimize sum of squared differences between observed and fitted values



# Defining linear models for regression

- General linear model format:
  - Y = B0 + B1\*X1 + B2\*X2+...+Bn\*Xn + error
- Specification in R is

| Main effects model             | Y ~ factor1 + factor2 + + factorN |
|--------------------------------|-----------------------------------|
| Main effects plus interactions | Y ~ factor1*factor2               |
| Interaction only               | Y ~ factor1:factor2               |

 Can fit a specific model or use variable selection methods

### OLS linear regression

- Best subsets = identifies best models from all possible combinations of predictors
  - Uses multiple criteria: P, R2, AIC, BIC, etc.
- Stepwise = "locally optimal" version of best subsets
  - updates included variables by one variable at each step, instead of re-optimizing over all possible subsets
  - Uses P or AIC criteria for entry and removal

### OLS linear regression assumptions

| Assumption                                                                    | How to test?                                                   | What to do if violated?                                                           |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Linearity                                                                     | Graph data or residuals                                        | Transform or use non-linear regression                                            |
| Normality (symmetric around the mean)                                         | Plot residuals<br>Shapiro-Wilk test<br>Anderson-Darling test   | Transform or use non-linear regression R: gnm, nlme                               |
| Homoscedasticity (equal variances)                                            | Breusch-Pagan χ² test                                          | Transform or use generalized least squares (GLS), which also minimize residual SS |
|                                                                               |                                                                | R: MASS::lm.gls, nlme::gls                                                        |
| No<br>multicollinearity<br>(independent vars<br>are not highly<br>correlated) | Variance inflation factors $vif = 1/(1-R^2)$                   | Drop, combine two vars, or use Ridge or Lasso regression to                       |
|                                                                               | vif = 1 not correlated (ideal)<br>vif = 1 to 2.5-4, moderately | penalize/shrink coefficients and limit included variables                         |
|                                                                               | correlated (not ideal) vif > 4 high to very high (violated!)   | R: glmnet                                                                         |

## Alternatives for complex multivariate data with more variables than samples

Ridge or Lasso regression

## Alternatives for complex multivariate data with more variables than samples

- Ridge or Lasso regression
  - Shrink regression coefficients for variables with minor contributions to outcome
  - Penalize adding terms to the model
    - Ridge uses L2-norm, which is the sum of squared coefficients, can be tuned by  $\lambda$  term
    - Lasso uses L1-norm, which is the sum of absolute coefficients, also tuned by  $\lambda$  term
    - When  $\lambda$ =0, ridge and lambda are same as OLS
    - As  $\lambda$  increases, ridge coefficients approach zero and lasso coefficients are zero (and zero variables are discarded)
  - Ridge preferred when outcome is function of many predictors that all have similar coefficient values
  - Lasso performs better when some predictors have large and others small coefficients

## Lasso regression handles large, sparse data

- But computationally slow
- Can first reduce dataset by differential abundance of taxa between groups
  - Treatment and control
  - Two treatments
- DeSeq2



#### Lasso regression - glmnet

- Use "training" data (~75-80% of data) to identify
  - lambda that minimizes error (tune L1Norm penalty)
    - K-fold cross validation splits data into K "folds", considers training on all but kth part, then iterates
    - Provides variance estimate for MSE at each lambda
  - predictive features (taxa) given penalty associated with min lambda
- Check model fit and MSE with "test" data

```
## $mse

## s0

## 0.247926

## attr(,"measure")

## 1 21 28.63 0.03604

## [1] "Mean-Squared Error"
```



## Common regressions with microbiome data

- Alpha diversity as dependent variable
- Ordination axis summarizing betadiversity as dependent variable

OLS or non-linear regression

- ASV matrix as independent variable
  - Often used to identify taxa that predict plant or ecosystem traits, metabolites, etc

LASSO or Ridge regression

#### The data

#### MOLECULAR ECOLOGY

SPECIAL ISSUE: THE HOST - ASSOCIATED MICROBIOME: PATTERN, PROCESS AND FUNCTION



Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure

Sonya Erlandson 🔀, Xiaojing Wei, Jessica Savage, Jeannine Cavender-Bares, Kabir Peay

First published: 30 March 2018 | https://doi.org/10.1111/mec.14576 | Citations: 27

Dryad data archive:

https://datadryad.org/stash/dataset/doi:10.5061/dryad.5f 24ks4

#### The data

- Reduced to only bacteria this week
- Environmental variables
  - Soil properties (water table depth, Nmin, NO3, NH4, pH)
  - Plant properties (height plus many traits)
- Spatial variables (lat, lon)

- Factors
  - Treatment → common garden sites
    - D = upland, W=wetland
  - Ecology → habitat specialization of willow species
    - u = upland specialist, w= wetland specialist, i = generalist
  - Plant species (willows) and genotypes