Law of Sines Proof

By: Noah Chappell

Theorem:

Given any triangle with side lengths A, B, and C, with angles α between sides B and C, β between sides A and C, and γ between sides A and B, the relationship $\frac{sin(\alpha)}{A} = \frac{sin(\beta)}{B} = \frac{sin(\gamma)}{C}$ always holds.

Proof:

Imagine we draw a line from the β corner down to the B side length to make a right triangle and label the new line X.

Since we have created two right triangles that share a length X we can sove for X with two different equations:

$$\begin{array}{l} sin(\alpha) = \frac{X}{C} \text{ and } sin(\gamma) = \frac{X}{A} \\ C*sin(\alpha) = X \text{ and } A*sin(\gamma) = X \\ C*sin(\alpha) = X \text{ and } A*sin(\gamma) = X \end{array}$$

If we set the equations equal to each other we can gain most of the relationship:

$$\begin{array}{l} C*sin(\alpha) = A*sin(\gamma) \\ C*\frac{sin(\alpha)}{A} = sin(\gamma) \\ \frac{sin(\alpha)}{A} = \frac{sin(\gamma)}{C} \end{array}$$

In these steps we have draw a vertical line stemming from one corner of the triangle to make two right triangles incorporating the other two corners. Doing this we have shown that the *sine* of the angle each corner produces over the side length opposite to each corner is equal.

With this proven we can assert that not only does $\frac{\sin(\alpha)}{A} = \frac{\sin(\gamma)}{C}$, but $\frac{\sin(\alpha)}{A} = \frac{\sin(\beta)}{B}$ which we could prove with a line stemming from the γ corner to side length C.

Therefore, by transitive property, if $\frac{\sin(\alpha)}{A} = \frac{\sin(\gamma)}{C}$ and $\frac{\sin(\alpha)}{A} = \frac{\sin(\beta)}{B}$, then $\frac{\sin(\alpha)}{A} = \frac{\sin(\beta)}{B} = \frac{\sin(\gamma)}{C}$.