Principle Foundations of Ethereum

Alireza Rafiei

Coinbase, Inc.

October 15, 2020

This Lecture

First Part:

History and significance of blockchains

Second Part:

Ethereum!

Possible Historical Roots

- ► Applications (Digital Cash, Smart Contracts)
- ► Incentive compatible protocol design
- Consensus

▶ State Machine := Set of States & Set of Inputs & A State transition function: (State, Input) \rightarrow (State)

- State Machine := Set of States & Set of Inputs & A State transition function: (State, Input) →(State)
- Replicated State Machines: State Machines that you can swap with eachother at any time

- State Machine := Set of States & Set of Inputs & A State transition function: (State, Input) →(State)
- Replicated State Machines: State Machines that you can swap with eachother at any time
- ► Consensus == Building a replicated state machine

- State Machine := Set of States & Set of Inputs & A State transition function: (State, Input) →(State)
- Replicated State Machines: State Machines that you can swap with eachother at any time
- ► Consensus == Building a replicated state machine
- Authenticated channels := Honest nodes will know which nodes sent a message

- State Machine := Set of States & Set of Inputs & A State transition function: (State, Input) →(State)
- Replicated State Machines: State Machines that you can swap with eachother at any time
- ► Consensus == Building a replicated state machine
- Authenticated channels := Honest nodes will know which nodes sent a message
- Maximum Delay Δ

Permissioned

- ► Number of nodes is common knowledge
- ► Nodes are always alive
- Authenticated, and the id of every node is common knowledge

Permissionless

- ▶ Number of nodes is unknown.
- ► Churn is allowed.
- Unauthenticated.

Results

▶ With classical permissioned consensus algorithms, consensus is possible in *sync* and *partial sync*.

Results

- ▶ With classical permissioned consensus algorithms, consensus is possible in *sync* and *partial sync*.
- Consensus becomes impossible without authentication.

Results

- With classical permissioned consensus algorithms, consensus is possible in sync and partial sync.
- ► Consensus becomes impossible without authentication.
- Nakamoto Consensus is possible, and is permissionless.

Nakamoto Blockchain

A Nakmoto Blockchain is a Blockchain that has Proof of Work + Longest chain.

Proof of Work is the main mechanism that provides Sybil resistance.

Ethereum is a replicated state machine such that:

▶ Its set of states is composed of elements called World State.

- ▶ Its set of states is composed of elements called World State.
- ▶ Its set of inputs is composed of elements called Transactions.

- ▶ Its set of states is composed of elements called World State.
- ▶ Its set of inputs is composed of elements called Transactions.
- Its transition function is implemented as EVM.

- ▶ Its set of states is composed of elements called World State.
- ▶ Its set of inputs is composed of elements called Transactions.
- Its transition function is implemented as EVM.
- Implements a Nakmoto Blockchain, but also includes uncle blocks.

- ▶ Its set of states is composed of elements called World State.
- ▶ Its set of inputs is composed of elements called Transactions.
- Its transition function is implemented as EVM.
- Implements a Nakmoto Blockchain, but also includes uncle blocks.
- ► Each node agrees on the value that's returned from executing an arbitrary 'program'.

Value

Ethereum has an intrinsic currency called Ether.

Fee schedule is denominated in Gas.

RLP

The inputs and outputs of almost every mapping in Ethereum is serialized with RLP protocol: https://eth.wiki/fundamentals/rlp

- ► The string "dog" = [0x83, 'd', 'o', 'g']
- The list ["cat", "dog"] = [0xc8, 0x83, 'c', 'a', 't', 0x83, 'd', 'o', 'g']
- ► [[], [[]], [[], [[]]]] = [0xc7, 0xc0, 0xc1, 0xc0, 0xc3, 0xc0, 0xc1, 0xc0]

Overview

https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-2/

World State

A mapping between addresses and account states, implemented in the form of a Merkle-Patricia Trie.

Accounts

Account Types:

- Externally Owned: Can use private key.
- Contract accounts

Account State contains:

- Nonce : Number of (transactions sent | contracts created) by this account.
- Balance
- Storage Root
- codeHash

Transactions

- Nonce: Number of transactions sent
- **gasPrice**: Eth value of every unit of Gas.
- gasLimit
- **to**: (if for contract creation, nil)
- value
- \triangleright v, r, s
- Init (if contract creation)
- data

Block

Block = Headers + A list of Ommer block headers + a List of transactions

The canonical difficulty of a block of header H is defined as D(H): (41) $D(H) \equiv \begin{cases} D_0 & \text{if } H_i = 0 \\ \max(D_0, P(H)_{H,i} + x \times \varsigma_2 + \epsilon) & \text{otherwise} \end{cases}$ where: (42) $D_0 \equiv 131072$ $x \equiv \left| \frac{P(H)_{H_d}}{2048} \right|$ (43) $(44) \qquad \varsigma_2 \equiv \max \left(y - \left| \frac{H_s - P(H)_{H_s}}{g} \right|, -99 \right)$ $y \equiv \begin{cases} 1 & \text{if } ||P(H)_{U}|| = 0 \\ 2 & \text{otherwise} \end{cases}$ $\epsilon \equiv \left| 2^{\left\lfloor H_{i}' \div 100000 \right\rfloor - 2} \right|$ (45) $H'_{i} \equiv \max(H_{i} - 5000000, 0)$ (46)

Transaction flow

- 1. Increment Nonce.
- 2. Deduct max Gas put aside the intrinsic gas..
- 3. Execute
- 4. Refund the (remaining Gas) + (the Gas from freeing up storage / 2).
- 5. Pay the miner gas used plus intrinsic gas.