CS529– Applied Artificial Intelligence Lab Assignment - 3

Name: Shah Jainam Mukeshbhai

Entry Number: 2017csb1107

Question 1:

Chose an action randomly and when the reward was **20**, then reseted the environment. The average number of timesteps for 1000 episodes were **2455.893**(Around 2500).

Question 2:

Discount Factor	Policy Iteration	Value Iteration
0.99	12 * 1100	725
0.95	12 * 226	146
0.9	12 * 110	74

0.8	12 * 53	38
0.4	12 * 14	14

- For discount factor 0.4, I didn't get the same policy
- Otherwise, Optimal policy is same for Value Iteration and Policy Iteration
- Compared to each other, value-iteration is computationally efficient even though it takes more number of iterations to converge, each iteration is less computationally expensive than policy-iteration.

Distribution of Number of steps taken for 1000 episodes is as follows:

Average number of steps is 13.

Question 3:

Alpha = 0.05, Convergence around greater than 1000 eps

Alpha = 0.1, Convergence around 600 eps

Alpha = 0.2, Convergence around 500 eps

- On Y-axis, I kept total reward of the episode.
- On convergence, the change is total reward becomes constant. It becomes parallel to x-axis.

Question 4:

The results were matching the graphs of book. Below are the plots of Mountain Car problem.

Episode 0 Episode 100

Episode 200 Episode 300

For Cart Pole, the plot of Total reward with num of episodes is :

References:

For Mountain Car:

https://github.com/SamKirkiles/mountain-car-SARSA-AC/blob/master/mountain_car.py

For Cart Pole: https://github.com/ceteke/RL/blob/master/Approximation/Linear%20Sarsa.ipynb