Boltzmann Equation and BGK Model

K. R. Arun

School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram

Mathematical Aspects of Some Important Equations of Physics Orange County, Coorg 22-24 February 2018

Density function

- We wish to describe the motion of a rarefied gas, consisting of a very large number of identical particles, moving in a three-dimensional space.
- The statistical description of the dynamics is given in terms of the one particle distribution function, denoted by f, which is a function of time t, position x and velocity \(\xi\), i.e.

$$f = f(t, x, \xi), \ t > 0, \ x \in \mathbb{R}^3, \ \xi \in \mathbb{R}^3.$$

• By definition, $f(t, x, \xi)$ is the probability density to find a particle at time t, in the position x, with velocity ξ . Thus, the integral

$$\int_{V}\int_{\Omega}f(t,x,\xi)d\xi dx$$

is the probability of finding a particle in the region $V \subset \mathbb{R}^3$ at time t with velocities $\xi \in \Omega \subset \mathbb{R}^3$.

Density function

- When the particles do not collide with each other, the speed ξ of each particle will remain constant in time.
- A particle with speed ξ and located at the point x at the initial time
 t = 0 will move to x + τξ at a later time τ.
- Therefore, $f(\tau, x, \xi) = f(0, x \tau \xi, \xi)$. In this case, f provides a solution to the linear transport equation:

$$\partial_t f + \xi \cdot \nabla_x f = 0.$$

• When there are collisions between the particles, *f* satisfies the Boltzmann equation:

$$\partial_t f + \xi \cdot \nabla_{\mathsf{x}} f = Q(f, f),$$

where Q(f, f) is called the collision operator.

Collision operator

- We will assume binary elastic collisions, i.e. only collisions between pair of particles (binary).
- Moreover the collisions are assumed to be elastic, i.e. total momentum and, also the total kinetic energy is conserved during the collision.
- Let ξ, ξ_* denote the velocities of two particles before collision and let ξ', ξ'_* , their velocities after the collision. Conservation requires

$$\xi + \xi_* = \xi' + \xi_*',$$

$$||\xi||^2 + ||\xi_*||^2 = ||\xi'||^2 + ||\xi_*'||^2.$$

Lemma

A quadruple $(\xi, \xi_*, \xi', \xi'_*)$ solves the above equations if, and only if,

$$\xi' = \xi - \{(\xi - \xi_*) \cdot \nu\}\nu$$

$$\xi'_* = \xi_* + \{(\xi - \xi_*) \cdot \nu\}\nu, \text{ for some } \nu \in \mathbb{S}^2.$$

Collision operator

• The collision operator Q(f, f) is defined by the relation:

$$Q(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(\nu,\xi,\xi_*) \left\{ f(t,x,\xi') f(t,x,\xi_*') - f(t,x,\xi) f(t,x,\xi_*) \right\} d\nu d\xi_*.$$

- Here, $B=B(\nu,\xi,\xi_*)$ is called the collision kernel which tells us how strong is the collision of two particles with velocities ξ,ξ_* and scattering angle ν .
- Under the hard sphere assumption, *B* takes the form:

$$B(\nu, \xi, \xi_*) = |(\xi - \xi_*) \cdot \nu|.$$

Collisional invariants

Definition

A function $\phi \colon \mathbb{R}^3 \to \mathbb{R}$ is called collisional invariant, if

$$\int_{\mathbb{R}^3} \phi(\xi) Q(f,f) d\xi = 0$$

for all solutions f of the Boltzmann equation.

Proposition

If ϕ is a collisional invariant, the the functional Φ defined by

$$\Phi(f) := \int_{\mathbb{R}^3} \phi(\xi) f(\xi) d\xi$$

is a quantity conserved by all solutions of the Boltzmann equation.

Collisional invariants

Proposition

A function $\phi = \phi(\xi)$ is a collisional invariant if, and only if,

$$\phi(\xi) + \phi(\xi_*) = \phi(\xi') + \phi(\xi'_*)$$

and the functions satisfying this condition are characterised by

$$\phi(\xi) = a\xi + b \cdot \xi + c||\xi||^2,$$

where $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^3$.

Conserved quantities

• Taking $\phi(\xi)=1$, we obtain the conserved quantity mass

$$\rho(t,x):=\int_{\mathbb{R}^3}f(t,x,\xi)d\xi.$$

② Taking $\phi(\xi) = e_k \cdot \xi$, we obtain the conserved quantity momentum

$$\rho u(t,x) := \int_{\mathbb{R}^3} \xi f(t,x,\xi) d\xi.$$

3 Taking $\phi(\xi) = ||\xi||^2/2$, we obtain the conserved quantity energy

$$\rho e(t,x) := \int_{\mathbb{R}^3} \frac{||\xi||^2}{2} f(t,x,\xi) d\xi.$$

Boltzmann inequality

Proposition

For every solution $f \ge 0$ of the Boltzmann equation, the following inequality

$$\int_{\mathbb{R}^3} \log f \ Q(f, f) d\xi \le 0$$

holds and equality happens if, and only if, log f is an invariant.

As a consequence of the Boltzmann inequality, we can prove

Theorem

The thermodynamic equilibrium states characterised by Q(f, f) = 0 are obtained by the Maxwellian distribution:

$$f(\xi) = Ae^{-\beta||(\xi-\nu)||^2},$$

where $A, \beta > 0$ and $v \in \mathbb{R}^3$ are arbitrary.

Boltzmann H-theorem

Define the entropy and entropy flux pair

$$H(f) := \int_{\mathbb{R}^3} f \log f d\xi, \ \Psi(f) := \int_{\mathbb{R}^3} \xi f \log f d\xi.$$

Then, we get the kinetic entropy inequality

$$\partial_t H(f) + \nabla_x \cdot \Psi(f) \leq 0.$$

Integrating with respect to x and assuming suitable decay as $||x|| \to \infty$, we get

Theorem (*H*-theorem)

The quantity $\mathcal{H}(t)$, where

$$\mathcal{H}(t) = \int_{\mathbb{R}^3} H(t, x) dx$$

decreases in time, i.e. $d\mathcal{H}/dt \leq 0$.

Conservation laws

Define the macroscopic conserved variables

$$egin{pmatrix}
ho \
ho u \
ho e \end{pmatrix} (t,x) := \int_{\mathbb{R}^3} egin{pmatrix} 1 \ \xi \ rac{||\xi||^2}{2} \end{pmatrix} f(t,x,\xi) d\xi,$$

where ρ is the mass, u is the velocity and e is the specific energy.

The specific energy can be decomposed as

$$\rho e = \int_{\mathbb{R}^3} \frac{||\xi||^2}{2} f(t, x, \xi) d\xi = \int_{\mathbb{R}^3} \frac{||\xi - u||^2}{2} f(t, x, \xi) d\xi + \frac{1}{2} \rho u^2.$$

Let $C = \xi - u$, the peculiar velocity, the term

$$\rho \varepsilon := \int_{\mathbb{R}^3} \frac{||C||^2}{2} f(t, x, \xi) d\xi$$

is called the internal energy.

Conservation laws

The stress tensor is defined as

$$\pi = \int_{\mathbb{R}^3} C \otimes C \ \mathit{fd}\xi.$$

- The internal energy is then $2\rho\varepsilon = \operatorname{tr}(\pi)$.
- The thermodynamic pressure p is defined by

$$p:=\frac{2\rho\varepsilon}{3}.$$

• The heat flux vector Q is defined by

$$Q=\int_{\mathbb{R}^3}||C||^2C\ fd\xi.$$

Conservation laws

Theorem (Conservation laws)

Let $f \ge 0$ be a solution of the Boltzmann equation. Then, the macroscopic conserved variables, defined as before, satisfies the system of conservation laws

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho u) &= 0, \\ \partial_t (\rho u) + \nabla \cdot (\rho u \otimes u + \pi) &= 0, \\ \partial_t (\rho e) + \nabla \cdot (\rho e u + \pi u + Q) &= 0. \end{split}$$

- This is the most general form of conservation laws of mass, momentum and energy.
- ullet The form of the stress tensor π and heat flux vector Q are unknown.
- A highly underdetermined system of 5 conservation laws in 14 unknown quantities.

Euler equations

- Suppose $f(\xi) = Ae^{-\beta||(\xi-\nu)||^2}$, the Maxwellian distribution.
- The unknowns A, β and ν can be obtained using the conserved quantities.
- This yields the form:

$$M(t, x, \xi) = \frac{\rho}{(2\pi RT)^{3/2}} e^{-\frac{||\xi - u||^2}{2RT}},$$

where $T = 2\varepsilon/3R$ is the temperature and R is a constant.

• Moreover, $\pi = p \operatorname{Id}$ and Q = 0.

Corollary (Euler equations)

Assume f is the Maxwellian. The conserved variables satisfy the Euler equations

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho u) &= 0, \\ \partial_t (\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla \rho &= 0, \\ \partial_t (\rho e) + \nabla \cdot ((\rho e + \rho)u) &= 0, \end{split}$$

where $p = 2\rho \varepsilon/3$ is the equation of state.

Entropy inequality

• Defining the functional $H(f) = \int_{\mathbb{R}^3} f \log f d\xi$ for the Maxwellian f = M gives the macroscopic entropy

$$H = \int_{\mathbb{R}^3} M(t, x, \xi) \log M(t, x, \xi) d\xi = C_v \log \left(\frac{\varepsilon}{\rho^{\gamma - 1}}\right).$$

• The function H is strictly convex function of the conserved variables $U = (\rho, \rho u, \rho \varepsilon)$.

A characterisation of H is given by

Proposition (Brenier, 1992)

H satisfies

$$H=\min\int_{\mathbb{R}^3}H(f)d\xi,$$

where the minimum is taken over all $f \ge 0$ satisfying

$$\int_{\mathbb{R}^3} \begin{pmatrix} 1 \\ \xi \\ \frac{||\xi||^2}{2} \end{pmatrix} f(t, x\xi) d\xi = \begin{pmatrix} \rho \\ \rho u \\ \rho \varepsilon \end{pmatrix} (t, x).$$

BGK Model

The BGK (Bhatnagar, Gross and Crook) model is given by

$$\partial_t f + \xi \cdot \nabla_{\mathsf{x}} f = \frac{M(\xi) - f}{\tau},$$

where $M(\xi)$ is the Maxwellian distribution and $0 < \tau \ll 1$ is usually known as a relaxation parameter.

• The BGK collision operator $J(f) = (M - f)/\tau$ satisfies

1

$$\int_{\mathbb{R}^3} \begin{pmatrix} 1 \\ \xi \\ \frac{||\xi||^2}{2} \end{pmatrix} J(f) d\xi = 0$$

2

$$\int_{\mathbb{R}^3} \log f \ J(f) d\xi \leq 0.$$

BGK model

ullet The Maxwellian M is a solution of the minimisation problem

$$\min\left\{H(f)\colon \text{All solutions } f\geq 0 \text{ and } \int_{\mathbb{R}^3} \begin{pmatrix} 1\\\xi\\\frac{||\xi||^2}{2} \end{pmatrix} f d\xi = \begin{pmatrix} \rho\\\rho u\\\rho e \end{pmatrix}\right\}$$

- From numerical applications, it is interesting to consider other equilibra than the Maxwellian.
- Given a convex functional h, satisfying some reasonable assumptions, we consider the minimisation problem min h(f) where the minimum is taken over

Theorem

The minimisation problem admits a unique solution N and using N we can construct a BGK model with

$$J_N(f)=\frac{N-f}{\tau}.$$

As au o 0, the corresponding moments of N satisfy the Euler equations.

Thank You for Your Kind Attention!

K. R. Arun
arun@iisertvm.ac.in