# Machine Learning Reinforcement Learning

Alberto Maria Metelli and Francesco Trovò

# **Reinforcement Learning For Prediction**

# Possible Options for Prediction

When we want to perform prediction and we do not know the environment dynamics or modeling the environment is too complex:

• Monte Carlo (first and every visit)

$$V(s_t) \leftarrow V(s_t) + \alpha(v_t - V(s_t))$$

Temporal Difference

$$V(s_t) \leftarrow V(s_t) + \alpha(r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$$

•  $TD(\lambda)$  (eligibility traces)

$$V(s_t) \leftarrow V(s_t) + \alpha(v_t^{\lambda} - V(s_t))$$

with 
$$v_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} v_t^{(n)}$$

#### Exercise 9.5

Evaluate the value for the MDP with states  $S = \{A, B, C\}$  (C is terminal), actions  $A = \{h, r\}$  given the policy  $\pi$  and the following trajectories:

$$(A, h, 3) \rightarrow (B, r, 2) \rightarrow (B, h, 1) \rightarrow (C)$$
$$(A, h, 2) \rightarrow (A, h, 1) \rightarrow (C)$$
$$(B, r, 1) \rightarrow (A, h, 1) \rightarrow (C)$$

- Can you tell without computing anything if by resorting to MC with every-visit and first-visit approach you will have different results?
- 2 Compute the values with the two aforementioned methods
- **3** Assume to consider a discount factor  $\gamma = 1$  and compute the values by resorting to TD? Assume to start from zero values for each state and  $\alpha = 0.1$

## Exercise 9.6 (variant)

Evaluate the value for the MDP with states  $S = \{A, B, C\}$  (C is terminal), actions  $A = \{h, l\}$  given the policy  $\pi$  and the following trajectories:

$$(A, h, -1) \to (A, l, 4) \to (B, l, 1) \to (C)$$
  
 $(B, l, 4) \to (A, h, -3) \to (C)$   
 $(A, l, 1) \to (B, h, -2) \to (A, l, 1) \to (B, l, 1) \to (C)$ 

- Compute the state-action value function Q(A, r) by resorting to TD evaluation. Assume  $\alpha = 0.5, \gamma = 1$ , zero initial values.
- Ompute the state-action value function for every meaningful state-action pair by resorting to first-visit MC evaluation
- What does the greedy policy prescribe according to the MC first-visit evaluation?
- Assume to have performed the MC first-visit evaluation with an infinite number of trajectories from the same policy. What can we say about the optimal policy?

# Reinforcement Learning For Control

## Possible Options for Control

- Monte Carlo Control:
  - Policy evaluation: Monte Carlo Estimation
  - ullet Policy improvement: arepsilon-greedy
- SARSA:
  - Policy evaluation: Temporal Difference Estimation
  - Policy improvement:  $\varepsilon$ -greedy
- Q-learning: empirical version of Value Iteration

## Example: Advertising Problem



#### **RL** Basic Elements

The elements needed to apply RL algorithms are:

- Dataset of transitions  $(\{(s_n, a_n, r_n, s_{n+1})\}_{n=1}^N)$  or model generating transitions
- Policy improvement step
- Evaluation (update) step

#### Transition Model

Let us model the transition model of the advertising problem from which we will get episodes used in the RL algorithms:

$$r: S \times A \to \mathbb{R}$$
$$P: S \to S$$

Especially, we need to define the generative process:

```
class Environment(object):
    ...
    def transition_model(self, a):
        ...
    return s_prime, inst_rew
```

# Policy Improvement Step

```
The ε-greedy policy is:

def eps_greedy(s, Q, eps, allowed_actions):
  if np.random.rand() <= eps:
    a = % take a random action
  else:
    Q_s = Q[s, :].copy()
    Q_s[allowed_actions == 0] = - np.inf
    a = np.argmax(Q_s)
  return a
```

NB: we need to manage also the case in which the Q-values of more than one action have the same value in a state

#### **SARSA**

#### The SARSA algorithm iterates between:

- An environment step, using the transition model
- A policy improvement step, with the  $\epsilon$ -greedy policy
- An evaluation step, with the TD update of the Q function:

$$Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') - Q(s,a))$$

### SARSA - Results





## **Solutions Comparison**

Is it a good solution?

|         | SARSA  |        | Exact    |         |         |  |
|---------|--------|--------|----------|---------|---------|--|
| 40.2274 | 8.5816 | 0      | 36.3636  | 24.6818 | 0       |  |
| 67.3932 | 0      | 6.0867 | 54.5455  | 0       | 47.9545 |  |
| 79.7005 | 0      | 0      | 166.2338 | 0       | 0       |  |

Depending on the task we are interested in, we have a good or a poor one

# Q-learning

The Q-learning algorithm iterates over:

- An environment step, using the transition model
- A policy improvement step, with the  $\epsilon$ -greedy policy
- An update with the Bellman optimality equation:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{\widetilde{a} \in \mathcal{A}} Q(s', \widetilde{a}) - Q(s, a)\right)$$

## Q-learning - Results





# **Solutions Comparison**

| SARSA |      | Q-learning |        |       | Exact |        |       |       |
|-------|------|------------|--------|-------|-------|--------|-------|-------|
| 40.22 | 8.58 | 0          | 41.15  | 25.13 | 0     | 36.36  | 24.68 | 0     |
| 67.39 | 0    | 6.08       | 68.68  | 0     | 28.26 | 54.54  | 0     | 47.95 |
| 79.70 | 0    | O          | 127.83 | 0     | 0     | 166.23 | 0     | 0     |

## On-policy vs Off-policy

- With Q-learning I could have had a dataset to use for learning (off-policy learning)
- With SARSA I need to execute the  $\varepsilon$ -greedy policy at each time point (on-policy learning)
- How to use SARSA on a given transition dataset?
- Possible Solution: use importance sampling

#### **Final Considerations**

- What if I need to implement the previous two methods on a different environment?
- ullet Replace transition\_model(s, a) with the one corresponding to the new environment
- What other could I change in the learning process?
  - M time horizon / number of generated transitions
  - $\bullet$   $\alpha$  learning rate
  - $\varepsilon$  exploration incentive for  $\varepsilon$ -greedy