高等工程數學(12)

方阵特征值与特征向量的 数值估算 矩阵论(11)

3 方阵特征值与特征向量的数值估算

机械、结构或电磁振荡问题,系统稳定性问题,以及其他一些工程技术问题,都需要数值求解方阵的特征值,即要求用数值方法求得方阵的全部或部分特征值及对应的特征向量.由于在相似变换下,方阵的特征值是不变的,所以解方阵特征值问题的一般方法是,对给定的方阵进行相似变换,化为可简单地求出其特征值的特殊的方阵,例如上三角矩阵或块上三角矩阵.常用的方法都具有迭代的特点,即按某种确定的规则产生收敛于特征值的序列,或构造收敛于特征向量的向量序列,从而得到近似的特征值及对应的特征向量.

3.1 特征值的估计

在许多应用中,常常并不一定要求算出方阵的特征值的数值大小,而只需要估计特征值所在的范围就够了.另外,用迭代法求特征值也需要对特征值所在范围有个估计,以便选取初始值.因此,由方阵的元素用较简便的方法给出特征值的估计有重要意义.

在矩阵论中已经指出, $\rho(A) \leq ||A||$,即 A 的谱半径不大于 A 的任何一种范数. 因而 A 的特征值 λ 的一个粗略上界是 A 的任何一种范数. 从几何上说,方阵 A 的特征值必位于复平面上以原点为中心,半径为 ||A|| 的圆上.

下面介绍特征值估计的一些基本方法.

定义 3.1-1 对于 n 阶方阵 $A = [a_{ij}]$,由不等式

$$|z-a_{ii}| \leqslant \sum_{\substack{j=1\\i\neq i}}^{n} |a_{ij}| \quad (i=1,2,\cdots,n)$$
 (3.1-1)

所确定的复平面 z 上的圆域称为 A 的第 i 个 Gerschgorin 圆,简称盖氏圆,并记为 G_i .

定理 3.1-1 方阵 A 的任何特征值 λ 都在它的 n 个盖氏圆的并集 $\bigcup G_i$ 上.

证 设 λ 为A的任一个特征值, $x\neq 0$ 是对应于 λ 的特征向量.不失一般性,令 k是满足

$$\mid x_k \mid = \max_{1 \leq i \leq n} \mid x_i \mid = \parallel x \parallel_{\infty}$$

的最小下标,则由 $Ax=\lambda x$ 的第 k 个等式给出

$$\sum_{i=1}^n a_{ki} x_j = \lambda x_k \,,$$

3.1 特征值的估计

从而有

$$(\lambda - a_{kk})x_k = \sum_{\substack{j=1\\ i \neq k}}^n a_{kj}x_j.$$

由于 $x_k \neq 0$,故有

$$|\lambda - a_{kk}| = \left| \sum_{\substack{j=1 \ j \neq k}}^n a_{kj} \frac{x_i}{x_k} \right| \leqslant \sum_{\substack{j=1 \ j \neq k}}^n |a_{kj}| \frac{|x_j|}{|x_k|} \leqslant \sum_{\substack{j=1 \ j \neq k}}^n |a_{kj}|,$$

也就是说, $\lambda \in G_k \subseteq \bigcup_{i=1}^n G_i$.

例1 估计方阵

$$\mathbf{A} = \begin{bmatrix} 1 & 0.1 & 0.2 & 0.3 \\ 0.5 & 3 & 0.1 & 0.2 \\ 1 & 0.3 & -1 & 0.5 \\ 0.2 & -0.3 & -0.1 & -4 \end{bmatrix}$$

的特征值范围.

解 $G_1 = \{z \mid |z-1| \le 0.6\}, G_2 = \{z \mid |z-3| \le 0.8\}, G_3 = \{z \mid |z+1| \le 1.8\}, G_4 = \{z \mid |z+4| \le 0.6\}.$ 根据上述定理,A 的所有特征值都在这四个盖氏圆的并集中,如图 3.1-1所示.

3.1 特征值的估计

图 3.1-1

从图 3. 1-1 看出, G₁ 与 G₃ 是相交的,它们的并集是一个连通域. 相交的盖氏圆所构成的最大连通域,称为一个连通部分. 孤立的一个盖氏圆也作为一个连通部分. 因而,图 3. 1-1 有三个连通部分.

定理 3.1-2 在方阵 A 的盖氏圆构成的所有连通部分中任取一个,如果这个连通部分由 k 个盖氏圆构成,则它含且仅含 A 的 k 个特征值.

证 令 $D = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{mn})$,M = A - D. 记 $A(\varepsilon) = D + \varepsilon M$,其中 $0 \le \varepsilon \le 1$,并用 $\lambda_1(\varepsilon)$, $\lambda_2(\varepsilon)$, \dots , $\lambda_n(\varepsilon)$ 表示方阵 $A(\varepsilon)$ 的 n 个特征值. 显然,A(1) = A,A(0) = D,并且 D 的 n 个特征值为 a_{11} , a_{22} , \dots , a_{mn} ,亦即位于 A 的盖氏圆的圆心. 由于 $\lambda_1(\varepsilon)$, $\lambda_2(\varepsilon)$, \dots , $\lambda_n(\varepsilon)$ 是 ε 的连续函数,而 $A(\varepsilon)$ 的盖氏圆是

$$G_i(\varepsilon) = \{z \mid |z-a_{ii}| \leq \sum_{\substack{j=1 \ j \neq i}}^n |\varepsilon a_{ij}| = \varepsilon \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|\}, \quad i = 1, 2, \cdots, n.$$

因为 $0 \le \epsilon \le 1$,所以 $G_i(\epsilon) \subseteq G_i$. 故当 ϵ 由 $\epsilon = 0$ 增大到 $\epsilon = 1$ 时, $\lambda_i(\epsilon)$ 画出一条以 $\lambda_i(0) = a_{ii}$ 为始点, $\lambda_i(1) = \lambda_i(\lambda_i, \mathbb{E} A$ 的特征值)为终点的连续曲线,且始终不会越出 G_i .

因此,若连通部分 S 是由 k 个盖氏圆构成的,则在 $\epsilon=0$ 时,S 含且仅含 k 个特征值,从而当 ϵ 由 $\epsilon=0$ 变到 $\epsilon=1$ 时,S 中也含且仅含 k 的 k 个特征值.

特征值的估计

由这个定理知,例1的 $G_2 \setminus G_4$ 是仅由一盖氏圆构成的连通部分,故它们各有一个特 征值,而由 G_1 与 G_3 构成的连通部分应有两个特征值.

因为数值计算方法这部分只涉及实方阵 A, 所以若复数 λ 是 A 的特征值, 则 λ 的共轭 $\bar{\lambda}$ 也是 A 的特征值,据此可知,例 1 的 $G_2 \setminus G_4$ 各有一个实特征值.

从盖氏圆的定义知,盖氏圆的半径越小,特征值的估计越好,因此可用相似变换使盖 氏圆的半径变小,为明确简单起见,相似变换矩阵一般取为对角矩阵,例如,取

$$\mathbf{P}=\operatorname{diag}(b_1,b_2,\cdots,b_n),$$

其中 $b_i > 0(i=1,2,\cdots,n)$, 则

$$\mathbf{B} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \operatorname{diag} \left(\frac{1}{b_1}, \frac{1}{b_2}, \cdots, \frac{1}{b_n} \right) \mathbf{A} \operatorname{diag}(b_1, b_2, \cdots, b_n)$$
(3. 1-2)

与 A 有相同的特征值, 而 B 的第 i 个盖氏圆为

$$|z-a_{ii}| \leqslant \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \frac{b_{j}}{b_{i}}.$$
 (3.1-3)

因此适当选取 b_1,b_2,\cdots,b_n ,就有可能使 B 的某些盖氏圆的半径比 A 的相应盖氏圆的半径 小.

$$\mathbf{A} = \begin{bmatrix} 0.9 & 0.01 & 0.12 \\ 0.01 & 0.8 & 0.13 \\ 0.01 & 0.02 & 0.4 \end{bmatrix}$$

的特征值范围。

特征值的估计

\mathbf{H} \mathbf{A} 的三个盖氏圆分别为

$$G_1 = \{z \mid | z - 0.9 | \leq 0.13 \},$$

$$G_2 = \{z \mid | z - 0.8 | \leq 0.14 \},$$

$$G_3 = \{z \mid | z - 0.4 | \leq 0.03\},$$

如图 3.1-2 所示.

由于G。是一个连通部分,所以恰有一个 实特征值,且 G_2 的半径比 $G_1 \setminus G_2$ 的半径小

图 3.1-2

 $4\sim 5$ 倍,为了更好地估计另外两个特征值,从数据上看,应缩小 A 的第三列前两个数,据 此取 $b_1 = b_2 = 1, b_3 = 0, 1, 从而由(3, 1-2) 式得$

$$\mathbf{B} = \begin{bmatrix} 0.9 & 0.01 & 0.012 \\ 0.01 & 0.8 & 0.013 \\ 0.1 & 0.2 & 0.4 \end{bmatrix}.$$

B的三个盖氏圆分别是 $G_1' = \{z \mid |z-0.9| \le 0.022\}, G_2' = \{z \mid |z-0.8| \le 0.023\},$ $G_3' = \{z \mid |z = 0.4| \le 0.3\}$. 由于这三个盖氏圆都是孤立的,所以各个圆中恰有一个实特征 值, 又因 $G_3 \subset G_3'$, 故 A 的三个实特征值分别位于 $G_1' \setminus G_2'$ 及 G_3 中,即

$$|\lambda_1 - 0.9| \leq 0.022, |\lambda_2 - 0.8| \leq 0.023, |\lambda_3 - 0.4| \leq 0.03.$$

幂法和反幂法

幂法 3. 2. 1

幂法是求方阵的模最大的特征值及对应特征向量的一种向量迭代法.

设 n 阶方阵 A 有 n 个线性无关的特征向量 v_1, v_2, \dots, v_n , 对应的特征值依次为 λ_1 , λ₂,…,λ",且满足不等式

$$|\lambda_1| > |\lambda_2| \geqslant \cdots \geqslant |\lambda_n|. \tag{3.2-1}$$

由于 $\{v_1, v_2, \dots, v_n\}$ 构成 \mathbb{C}^n 的一个基,故对于任给的非零向量 $\mathbf{x}^{(0)}$,可以把 $\mathbf{x}^{(0)}$ 表示为

$$x^{(0)} = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n.$$

从而

$$\mathbf{A}^{k}\mathbf{x}^{(0)} = \mathbf{A}^{k}\left(\sum_{i=1}^{n}a_{i}\mathbf{v}_{i}\right) = \sum_{i=1}^{n}a_{i}\mathbf{A}^{k}\mathbf{v}_{i} = \sum_{i=1}^{n}a_{i}\lambda_{i}^{k}\mathbf{v}_{i} = \lambda_{1}^{k}\left[a_{1}\mathbf{v}_{1} + \sum_{i=2}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}a_{i}\mathbf{v}_{i}\right]. \quad (3.2-2)$$

若 $a_1 \neq 0$,则由(3.2-1)式知 $\left| \frac{\lambda_i}{\lambda_1} \right| < 1 (i=2,3,\cdots,n)$,故当 k 充分大时,

$$A^k x^{(0)} \approx \lambda_1^k a_1 v_1.$$

这就是说,当 k 充分大时, $A^kx^{(0)}$ 可以近似地作为 A 的属于 λ_1 的特征向量.为了求得 λ_1 的近似值,记 $\max(x)$ 为 x 的按模最大的分量,则当 k 充分大时,有

$$\frac{\max(\boldsymbol{A}^{k}\boldsymbol{x}^{(0)})}{\max(\boldsymbol{A}^{k-1}\boldsymbol{x}^{(0)})} \approx \frac{\max(\lambda_{1}^{k}a_{1}\boldsymbol{v}_{1})}{\max(\lambda_{1}^{k-1}a_{1}\boldsymbol{v}_{1})} = \lambda_{1}.$$

这就是幂法的基本思想,并且由此可得出如下迭代公式,

$$\mathbf{x}^{(k+1)} = \mathbf{A}\mathbf{x}^{(k)}, \quad k = 0, 1, \cdots.$$
 (3.2-3)

取定一个非零向量 $x^{(0)}$,(3.2-3)式产生一个向量序列{ $x^{(k)} = A^k x^{(0)}$ }. 当 k 充分大时, $x^{(k)}$ 可作为 A 的属于特征值 λ_1 的特征向量的近似向量,而 $\frac{\max(x^{(k)})}{\max(x^{(k-1)})}$ 是 λ_1 的近似值.

如果选取的 $x^{(0)}$ 使 $a_1=0$,那么由于计算过程中舍入误差的影响,必然在迭代的某一 步产生这样一个向量,它在 v_1 方向上的分量不为零,从而迭代进行下去仍可求得 λ_1 及对 应于 λ 的特征向量 v (带有常数因子)的近似值.

在实际计算中,常数因子 $a_1\lambda'$ 会随着 $k \to +\infty$ 而无限增大或无限减小,事实上,若 |λ_ι|>1,则|λ^t| 随 k→+∞而无限增大以至产生溢出停机;而若|λ_ι|<1,则|λ^t| 随 k→ $+\infty$ 而无限减小,又有可能出现机器零而停机,因此在迭代法的每一步都要采用规范化的 运算,即用 $\max(x^{(k)})$ 去除 $x^{(k)}$ 的各个分量,从而得到规范化的向量 $y^{(k)} = \frac{x^{(k)}}{\max(x^{(k)})}$,然后 用 A 左乘 $y^{(k)}$ 得到 $x^{(k+1)}$. 这样幂法的迭代公式为

$$\begin{cases} \mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\max(\mathbf{x}^{(k)})}, & k = 0, 1, \dots \\ \mathbf{x}^{(k+1)} = \mathbf{A}\mathbf{y}^{(k)}, & \end{cases}$$
(3.2-4)

定理 3. 2-1 从任一非零向量 $x^{(0)}(a_1 \neq 0)$ 出发,按公式(3. 2-4)产生向量序列 $\{y^{(k)}\}$ 和数列{max(x^(k))},则有

$$\begin{cases} \lim_{k \to +\infty} \mathbf{y}^{(k)} = \frac{\mathbf{v}_1}{\max(\mathbf{v}_1)}, \\ \lim_{k \to +\infty} \max(\mathbf{x}^{(k)}) = \lambda_1. \end{cases}$$
(3.2-5)

$$\widetilde{\mathbf{IE}} \quad \mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\max(\mathbf{x}^{(k)})} = \frac{\mathbf{A}\mathbf{y}^{(k-1)}}{\max(\mathbf{A}\mathbf{y}^{(k-1)})} = \frac{\mathbf{A}\mathbf{x}^{(k-1)}}{\max(\mathbf{x}^{(k-1)})} / \max\left(\frac{\mathbf{A}\mathbf{x}^{(k-1)}}{\max(\mathbf{x}^{(k-1)})}\right) \\
= \frac{\mathbf{A}\mathbf{x}^{(k-1)}}{\max(\mathbf{x}^{(k-1)})} / \frac{\max(\mathbf{A}\mathbf{x}^{(k-1)})}{\max(\mathbf{x}^{(k-1)})} = \frac{\mathbf{A}\mathbf{x}^{(k-1)}}{\max(\mathbf{A}\mathbf{x}^{(k-1)})} = \cdots = \frac{\mathbf{A}^{k}\mathbf{x}^{(0)}}{\max(\mathbf{A}^{k}\mathbf{x}^{(0)})} \\
= \frac{\lambda_{1}^{k} \left[a_{1}\mathbf{v}_{1} + \sum_{i=2}^{n} a_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{v}_{i} \right]}{\max\left[\lambda_{1}^{k} \left(a_{1}\mathbf{v}_{1} + \sum_{i=2}^{n} a_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{v}_{i} \right) \right]} = \frac{a_{1}\mathbf{v}_{1} + \sum_{i=2}^{n} a_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{v}_{i}}{\max\left[a_{1}\mathbf{v}_{1} + \sum_{i=2}^{n} a_{2} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{v}_{i} \right]} \\
\to \frac{\mathbf{v}_{1}}{\max(\mathbf{v}_{1})} \quad (k \to +\infty), \\
\max(\mathbf{x}^{(k)}) = \max(\mathbf{A}\mathbf{y}^{(k-1)}) \to \max\left(\frac{\mathbf{A}\mathbf{v}_{1}}{\max(\mathbf{v}_{1})}\right) = \frac{\max(\lambda_{1}\mathbf{v}_{1})}{\max(\mathbf{v}_{1})} = \lambda_{1} \quad (k \to +\infty).$$

例 1 用幂法求方阵 A 的模最大的特征值及对应于其的特征向量,其中

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 6 \\ 3 & 9 & 15 \\ 4 & 16 & 36 \end{bmatrix}.$$

解 取 $\mathbf{x}^{(0)} = [1,1,1]^T$,按(3.2-4)式计算,迭代五次的结果见表 3.2-1.

•	k		$x^{(k)}$	y ^(k)						
•	0	1	I	1	1	1	1			
	1	12.00	27, 00	56,00	0,2143	0.4821	1			
	2	8, 357	19, 98	44.57	0, 1875	0.4483	1			
	3	8, 168	19, 60	43.92	0.1860	0,4463	1			
	4	8, 157	19, 57	43, 88	0.1859	0,4460	1			
	5	8. 156	19.57	43.88	0. 1859	0.4460	1			

表 3.2-1

模最大的特征值 $\lambda_1 \approx 43.88$,相应的特征向量为

$$v_1 = [0.1859.0.4460.1]^T$$
.

[注] 如果 A 的特征值不满足条件(3.2-1),幂法收敛性的分析比较复杂,读者可参阅参考书[9],这里不详细讨论.但若 $\lambda_1 = \lambda_2 = \cdots = \lambda_r$,且 $|\lambda_1| > |\lambda_{r+1}| \ge \cdots \ge |\lambda_n|$,则定理 3.2-1 的结论仍然成立,不过对于不同的初始向量,迭代得出的向量序列一般趋向于属于 λ_1 的不同的特征向量.

从(3.2-2)式可知,幂法的收敛速度与比值 $\left|\frac{\lambda_2}{\lambda_1}\right|$ 有关,这个比值越小,收敛越快.

3.2.2 加速方法

如上所述,幂法的收敛速度取决于比值 $\left|\frac{\lambda_2}{\lambda_1}\right|$,当它接近于 1 时,收敛很慢. 因此要考虑加速收敛的问题.

1. 特征值的 Aitken 加速法

从定理 3.2-1 的证明过程可知

$$\max(\mathbf{x}^{(k)}) = \max(\mathbf{A}\mathbf{y}^{(k-1)})$$

$$=\frac{\max\left[A\left(a_1v_1+\sum_{i=2}^n a_i\left(\frac{\lambda_i}{\lambda_1}\right)^{k-1}v_i\right)\right]}{\max\left(av_1+\sum_{i=2}^n a_i\left(\frac{\lambda_i}{\lambda_1}\right)^{k-1}v_i\right)}=\lambda_1\frac{\max\left(a_1v_1+\sum_{i=2}^n a_i\left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right)}{\max\left(a_1v_1+\sum_{i=2}^n a_i\left(\frac{\lambda_i}{\lambda_1}\right)^{k-1}v_i\right)}.$$

当 k 充分大时,

$$\max(\mathbf{x}^{(k)}) - \lambda_1 \approx \lambda_1 M\left(\frac{\lambda_2}{\lambda_1}\right)^{k-1}. \tag{3.2-6}$$

其中 M 是某个与 k 无关的数. 因此,由(3,2-6)式得到

$$\frac{\max(\boldsymbol{x}^{(k+2)}) - \lambda_1}{\max(\boldsymbol{x}^{(k+1)}) - \lambda_1} \approx \frac{\max(\boldsymbol{x}^{(k+1)}) - \lambda_1}{\max(\boldsymbol{x}^{(k)}) - \lambda_1}.$$

幂法和反幂法

于是有
$$\lambda_1 \approx \lambda_1^{(k+2)} \triangleq \frac{\max(\mathbf{x}^{(k+2)}) \cdot \max(\mathbf{x}^{(k)}) - \left[\max(\mathbf{x}^{(k+1)})\right]^2}{\max(\mathbf{x}^{(k+2)}) - 2\max(\mathbf{x}^{(k+1)}) + \max(\mathbf{x}^{(k)})}$$

$$= \max(\mathbf{x}^{(k+2)}) - \frac{\left[\max(\mathbf{x}^{(k+2)}) - \max(\mathbf{x}^{(k+1)})\right]^2}{\max(\mathbf{x}^{(k+2)}) - 2\max(\mathbf{x}^{(k+1)}) + \max(\mathbf{x}^{(k)})}. \tag{3.2-7}$$

(3.2-7) 式表明,在计算出 $\max(x^{(k)}), \max(x^{(k+1)})$ 和 $\max(x^{(k+2)})$ 之后,可按此式计算 $\lambda^{(k+2)}$ 作为 λ_1 的一个更好的近似值,这种利用前后相邻的三个近似值经过简单的代数运 算得到更好近似值的方法称为 Aitken 加速法。

例 2 用幂法求方阵 A 的模最大的特征值,并用 A itken 法加速,其中

$$\mathbf{A} = \begin{bmatrix} -4 & 14 & 0 \\ -5 & 13 & 0 \\ -1 & 0 & 2 \end{bmatrix}.$$

解 取 $\mathbf{x}^{(0)} = [1,1,1]^T$,按幂法和 Aitken 加速法计算的前 4 次结果见表 3. 2-2.

表 3, 2-2

k	ж ^(k)				y ^{(t})	max(x(6))	λ 1
0	1	1	1	1	ı	i	1	
1	10	8	1	i	0.8	0.1	10	
2	7, 2	5,4	-0.8	1	0,75	-0.1111	7, 2	7, 8644
3	6, 5	4.75	-1.2222	I	0.7308	-0.1880	6. 5	6, 2667
4	6, 2312	4,5004	-1,3760	ı	0.7222	-0, 2208	6, 2312	6,0636

本题 A 的特征值是 6.3.2.

2. 原点平移法

从矩阵论知,当方阵 A 的特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 时,方阵 A-aI 的特征值对应为 λ_1-a $a,\lambda_2-a,\cdots,\lambda_n-a$,且特征向量不变。如果适当地选取数 a,使 λ_1-a 是 A-aI 的模最大的特征值,且 A-aI 的模次大的特征值(不妨设为 λ_k-a)与 λ_1-a 的比值 $\left|\frac{\lambda_k-a}{\lambda_1-a}\right|<\left|\frac{\lambda_2}{\lambda_1}\right|$,那么对 A-aI 使用幂法计算 λ_1-a 及对应于其的特征向量要比对 A 使用幂法计算相应量

根据定理 3.2-1 知,按迭代公式

收敛得快. 这种加速收敛的方法称为原点平移法.

$$\begin{cases} \mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\max(\mathbf{x}^{(k)})}, & k = 0, 1, \dots \\ \mathbf{x}^{(k+1)} = (\mathbf{A} - a\mathbf{I})\mathbf{y}^{(k)}, & \end{cases}$$
(3.2-8)

计算,则当 $k \rightarrow \infty$ 时,有

$$y^{(k)} \to \frac{v_1}{\max(v_1)}, \max(x^{(k)}) \to \lambda_1 - a.$$
 (3.2-9)

因此,当 k 充分大时, $a+\max(x^{(k)})$ 可作为 λ_1 的近似值.

原点平移法的缺点是没有自动选择 a 的程序. a 的选取要依赖于对 A 的特征值的分布有一定的了解. 例如 A 是对称正定矩阵,则 A 的特征值全为正实数,不妨设 $\lambda_1 > \lambda_2 \ge \cdots$ $\ge \lambda_n > 0$,则不难看出,求 λ_1 时应选取 $a = \frac{\lambda_2 + \lambda_n}{2}$,而求 λ_n 时应选取 $a = \frac{\lambda_1 + \lambda_{n-1}}{2}$.

例3 设
$$\mathbf{A} = \begin{bmatrix} -3 & 1 & 0 \\ 1 & -3 & -3 \\ 0 & -3 & 4 \end{bmatrix}$$
, $\mathbf{x}^{(0)} = [0.0.1]^{T}$.如果对 \mathbf{A} 使用幂法求它的一个特征

值及对应于其的特征向量,则前 6 次的迭代结果如表 3.2-3 所示. $\max(x^{(k)})$ 有波动,是否收敛难以断定.

k 1 2 3 4 5 6 0 -0.7980.2286 -0.7257-0.750.240 $\mathbf{r}^{(k)}$ -0.75-2.76-1.046-2.6034-1.22616.25 5,899 4,5319 5,7235 4.36 0 -0.120.055-0.13530.0504-0.1286v(%) 0.633 -0.1773-0.5745-0.2142-0.75-0.12Ι ì l i 1 $\max(x^{(k)})$ 5.899 5.7235 6.254.36 4,5319 ŀ 4

表 3.2-3

现取 a=-4,考虑对 A+4I 使用幂法,则从表 3. 2-4 看出,只迭代了 6 次, $\max(x^{(6)})$ 与 $\max(x^{(5)})$ 相差就不大了. 由于 $\max(x^{(6)})=9$. 1247,所以 A 的一个特征值约是 9. 1247 -4=5. 1247,对应的特征向量近似值为 $[-0.0461,-0.3749,1]^T$.

表 3.2-4

k	0	1	2	3	4	5	6
	0	0	- 0, 375	-0,411	-0.4195	-0,4208	-0.4210
x (6)	0	-3	-3.375	-3.41I	-3.4195	— 3.4208	-3.4210
	1	8	9. 125	9, 1097	9. 1232	9, 1244	9,1247
	0	0	-0.0411	-0.0451	-0.0460	-0.0461	-0.046I
y ^(k)	0	-0.375	-0.3699	−0.3744	−0.3748	-0.3749	-0.3749
	1	1	1	1	I	I	1
$\max(x^{(k)})$	l	8	9, 125	9, 1097	9, 1232	9, 1244	9,1247

3. 对称矩阵的 Rayleigh 商加速法

设A 是对称矩阵,x 是非零向量,则

$$R(x) = \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x}$$

称为x关于A的 Rayleigh 商.

由于n阶对称矩阵A的特征值均为实数,且有n个相互正交的单位特征向量 v_1 ,

$$v_2, \dots, v_n$$
, 所以如果 $x^{(0)} = \sum_{i=1}^n a_i v_i (a_1 \neq 0)$, 则有

$$\mathbf{x}^{(k)} = \sum_{i=1}^n \lambda_i^k a_i \mathbf{v}_i,$$

$$R(\mathbf{x}^{(k)}) = \frac{(\mathbf{x}^{(k)})^{\mathrm{T}} \mathbf{A}(\mathbf{x}^{(k)})}{(\mathbf{x}^{(k)})^{\mathrm{T}}(\mathbf{x}^{(k)})} = \frac{\left(\sum_{i=1}^{n} \lambda_{i}^{k} a_{i} \mathbf{v}_{i}\right)^{\mathrm{T}} \left(\sum_{j=1}^{n} \lambda_{j}^{k+1} a_{j} \mathbf{v}_{j}\right)}{\left(\sum_{i=1}^{n} \lambda_{i}^{k} a_{i} \mathbf{v}_{i}\right)^{\mathrm{T}} \left(\sum_{j=1}^{n} \lambda_{j}^{k} a_{j} \mathbf{v}_{j}\right)}$$

$$= \frac{\sum_{i=1}^{n} \lambda_{i}^{2k+1} a_{i}^{2}}{\sum_{i=1}^{n} \lambda_{i}^{2k} a_{i}^{2}} = \lambda_{1} \frac{1 + \sum_{i=2}^{n} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{2k+1} \left(\frac{a_{i}}{a_{1}}\right)^{2}}{1 + \sum_{i=2}^{n} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{2k} \left(\frac{a_{i}}{a_{1}}\right)^{2}}.$$

$$R(\mathbf{x}^{(k)}) - \lambda_{1} \approx \lambda_{1} M' \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2k}, \qquad (3.2-10)$$

当 k 充分大时,

其中 M'是某个与 k 无关的数. 将(3.2-10)式与(3.2-6)式比较,可见 $\frac{\lambda_2}{\lambda_1}$ 的幂次增大了一倍

多,从而收敛速度加快了.

Rayleigh 商加速法的迭代公式是

$$\begin{cases} \mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\max(\mathbf{x}^{(k)})}, \\ \mathbf{x}^{(k+1)} = \mathbf{A}\mathbf{y}^{(k)}, \\ R(\mathbf{y}^{(k)}) = \frac{(\mathbf{y}^{(k)})^{\mathrm{T}}\mathbf{A}(\mathbf{y}^{(k)})}{(\mathbf{y}^{(k)})^{\mathrm{T}}(\mathbf{y}^{(k)})} = \frac{(\mathbf{y}^{(k)})^{\mathrm{T}}\mathbf{x}^{(k+1)}}{(\mathbf{y}^{(k)})^{\mathrm{T}}\mathbf{y}^{(k)}}. \end{cases}$$
(3. 2-11)

值得注意的是,由(3.2-10)式看出,有了 $R(x^{(k)})$ 、 $R(x^{(k+1)})$ 、 $R(x^{(k+2)})$ 的值,也可用 Aitken 加速法得到 λ ,的一个更好的近似值.

例 4 设
$$A = \begin{bmatrix} 6 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
,用 Rayleigh 商加速法求 A 的模最大的特征值及对应于它

的特征向量,并与幂法比较. 取 $x^{(0)} = [1,1,1]^{T}$.

解 由
$$\mathbf{x}^{(0)} = [1,1,1]^T$$
 得 $\mathbf{y}^{(0)} = [1,1,1]^T$. 从而由(3.2-11)式得

$$\mathbf{x}^{(1)} = [9.6.3]^{\mathrm{T}}, \quad R(\mathbf{y}^{(0)}) = \frac{(\mathbf{y}^{(0)})^{\mathrm{T}} \mathbf{x}^{(1)}}{(\mathbf{y}^{(0)})^{\mathrm{T}} (\mathbf{y}^{(0)})} = 6.$$

其余的 $R(y^{(k)})$ 类似计算,表 3. 2-5 给出了前 4 次迭代结果. 为了与幂法比较,表中列出对应的 $\max(x^{(k)})$.

表 3.2-5

k	x ^(h)			y ^(k)			max(x(k))	$R(\mathbf{y}^{(k-1)})$
0	1	1	1	1	1	l	1	,
1	9	6	3	1	0.66667	0.33333	9	6
2	7, 66664	4, 33334	2	1	0, 56522	0.26082	7,66664	7, 21427
3	7, 39131	3, 95648	1, 82604	1	0, 53529	0.24705	7, 39131	7, 28206
4	7, 31763	3, 85292	1.78234	1	0, 52653	0,24357	7, 31763	7, 28748

3.2.3 反幂法

反幂法是用来求方阵 A 的模最小的特征值及对应于它的特征向量的向量迭代法.

若 A 可逆,则 A^{-1} 存在,用 A^{-1} 替代 A 作上述的幂法就是所谓的反幂法.由于 A^{-1} 的特征值是 A 的特征值的倒数,且相应的特征向量相同,故由(3.2-1)式知, $\frac{1}{\lambda_n}$ 是 A^{-1} 的模最大的特征值.

任取一初始向量 $x^{(0)}$,则迭代公式

$$\mathbf{x}^{(k+1)} = \mathbf{A}^{-1}\mathbf{x}^{(k)}, \quad k = 0, 1, \cdots$$

产生向量序列 $\{x^{(k)}\}$. 但因 A^{-1} 不易计算,所以通常由解线性方程组 $Ax^{(k+1)} = x^{(k)}$ 来得到 $x^{(k+1)}$.

因此,实际使用的反幂法的计算公式是

$$\begin{cases} \mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\max(\mathbf{x}^{(k)})}, & k = 0, 1, \dots, \\ \mathbf{A}\mathbf{x}^{(k+1)} = \mathbf{y}^{(k)}, & \end{cases}$$
(3. 2-12)

并且当 $k \rightarrow + \infty$ 时,有

$$\begin{cases} \mathbf{y}^{(k)} \to \frac{\mathbf{v}_n}{\max(\mathbf{v}_n)}, \\ \max(\mathbf{x}^{(k)}) \to \frac{1}{\lambda_n} \stackrel{\mathbb{R}}{=} \frac{1}{\max(\mathbf{x}^{(k)})} \to \lambda_n. \end{cases}$$
(3.2-13)

反幂法与上述原点平移法结合起来,便可求任一特征值 λ_i 及对应于 λ_i 的特征向量 v_i (实际是 $\frac{v_i}{\max(v_i)}$),只要已知 λ_i 的较好近似值 $\hat{\lambda_i}$. 事实上,由于 $(\mathbf{A} - \hat{\lambda_i}\mathbf{I})^{-1}$ 的特征值是 $\frac{1}{\lambda_1 - \hat{\lambda_i}}$, …, $\frac{1}{\lambda_i - \hat{\lambda_i}}$, …, $\frac{1}{\lambda_i - \hat{\lambda_i}}$, 而 $\lambda_i - \hat{\lambda_i}$ 很小,故 $\frac{1}{\lambda_i - \hat{\lambda_i}}$ 非常大,而其余的 $\frac{1}{\lambda_i - \hat{\lambda_i}}$ ($i \neq j$) 不

会很大,所以比值 $\left|\frac{\lambda_{i}-\widehat{\lambda}_{i}}{\lambda_{i}-\widehat{\lambda}_{i}}\right|$ $(i\neq j)$ 很小. 因此,对 $\mathbf{A}-\widehat{\lambda}_{i}\mathbf{I}$ 使用反幂法,则收敛非常快. 其计

算公式是

$$\begin{cases} \mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\max(\mathbf{x}^{(k)})}, & k = 0, 1, \dots, \\ (\mathbf{A} - \widehat{\lambda}_{j} \mathbf{I}) \mathbf{x}^{(k+1)} = \mathbf{y}^{(k)}, & \end{cases}$$
(3. 2-14)

并且当 $k \rightarrow + \infty$ 时,

$$\mathbf{y}^{(k)} \rightarrow \frac{\mathbf{v}_j}{\max(\mathbf{v}_i)},$$

$$\max(\mathbf{x}^{(k)}) \to \frac{1}{\lambda_i - \widehat{\lambda}_i} \quad \vec{\mathfrak{D}} \quad \widehat{\lambda}_j + \frac{1}{\max(\mathbf{x}^{(k)})} \to \lambda_j. \tag{3.2-15}$$

为了节省工作量和数值稳定性好,应用选主元的 LR 分解求解(3.2-14)式中的线性方程组,即对方阵 $A-\hat{\lambda}$, I 作带行交换的 LR 分解:

$$P(A-\widehat{\lambda}_i I) = LR$$
,

其中 P 是置换矩阵, L 为单位下三角矩阵, R 为上三角矩阵, 于是, (3, 2-14)式改写为

$$\begin{cases} \mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\max(\mathbf{x}^{(k)})}, \\ \mathbf{L}\mathbf{z}^{(k+1)} = \mathbf{P}\mathbf{y}^{(k)}, \\ \mathbf{R}\mathbf{x}^{(k+1)} = \mathbf{z}^{(k+1)}, \end{cases} k = 0, 1, \dots.$$
(3. 2-16)

经验表明,计算开始时,可以不给出 $x^{(0)}$,而直接取 $z^{(1)} = [1,1,\dots,1]^T$. 这种选取初始向量的方法称为**半次迭代法**.

例 5 已知方阵
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 \\ 2 & -4 & 1 \\ 1 & 1 & -6 \end{bmatrix}$$

的一个特征值 λ 的近似值 $\hat{\lambda}$ = -6.42,用带原点平移的反幂法求 λ 及对应于 λ 的特征向 量.

解 在方阵 A+6.42I 的 LR 分解式中

$$\boldsymbol{L} = \begin{bmatrix} 1 \\ 0.369004 & 1 \\ 0.184502 & 0.375148 & 1 \end{bmatrix}, \quad \boldsymbol{R} = \begin{bmatrix} 5.42 & 2 & 1 \\ & 1.681993 & 0.630996 \\ & & -1.218848 \times 10^{-3} \end{bmatrix}.$$

用半次迭代法,取 $z^{(1)} = [1,1,1]^T$.由(3.2-16)式得

$$\mathbf{x}^{(1)} = [37.764395, 308.381912, -820.446848]^{\mathrm{T}},$$

从而 $\mathbf{y}^{(1)} = [-0.0460291, -0.375871, 1]^{\mathrm{T}}$.

第二次迭代时, 先解 $Lz^{(2)} = y^{(1)}$, 得

$$\mathbf{z}^{(2)} = [-0.0460291, -0.358886, 1.143128]^{T},$$

再解 $\mathbf{R} \mathbf{x}^{(2)} = \mathbf{z}^{(2)}$,得 $\mathbf{x}^{(2)} = [43.279655,351.627002,-937.875765]^{\mathrm{T}}$.

于是,
$$\mathbf{y}^{(2)} = [-0.0461465, -0.374919, 1]^{\mathsf{T}}$$
.

因此,
$$\lambda \approx -6.42 - \frac{1}{937.875765} = -6.421066$$
,

对应特征向量为
$$\mathbf{y}^{(2)} = [-0.0461465, -0.374919, 1]^{\mathsf{T}}.$$

3.3 QR方法

QR 方法是目前求一般方阵全部特征值的最有效并广泛应用的方法之一. 这里着重介绍它的基本思想和方法. 在实际应用中,经常先把一般方阵经过正交相似变换化成上Hessenberg 矩阵,再用 QR 方法求其特征值及对应的特征向量.

3.3.1 QR 方法的计算公式

QR 方法是一种矩阵迭代法,从 $A_1 = A$ 出发,通过一系列正交相似变换得出方阵序列 $\{A_k\}$. 在一定条件下可以证明,当 $k \to +\infty$ 时, A_k 本质收敛于一个块对角矩阵,其对角子块是 1 阶或 2 阶方阵,因而容易求出它们的特征值. 具体做法如下.

对 A_1 进行 QR 分解: $A_1 = Q_1 R_1$.然后将 $Q_1 \setminus R_1$ 反序相乘得 $A_2 = R_1 Q_1$;再以 A_2 替代 A_1 重复上述步骤得 A_3 ;如此继续下去得到方阵序列 $\{A_k\}$. 因此,QR 方法的计算公式是

$$\begin{cases}
\mathbf{A}_k = \mathbf{Q}_k \mathbf{R}_k, \\
\mathbf{A}_{k+1} = \mathbf{R}_k \mathbf{Q}_k, & k = 1, 2, \dots
\end{cases}$$
(3.3-1)

这样产生的方阵序列 $\{A_k\}$ 有两个基本性质:

1) 每个 A_k 都与A 相似. 事实上,

$$\mathbf{A}_{k+1} = \mathbf{R}_k \mathbf{Q}_k = \mathbf{Q}_k^{-1} \mathbf{A}_k \mathbf{Q}_k = \cdots = (\mathbf{Q}_1 \cdots \mathbf{Q}_k)^{-1} \mathbf{A}_1 (\mathbf{Q}_1 \cdots \mathbf{Q}_k), \qquad (3.3-2)$$

其中 $Q_1 \cdots Q_k = G_k$ 是正交矩阵,所以 A_{k+1} 与 $A_1 = A$ 相似,从而有相同的特征值.

3.3 QR方法

2) 若令 $H_k = R_k \cdots R_1$,则有

$$G_{k}H_{k} = (Q_{1}\cdots Q_{k})(R_{k}\cdots R_{1}) = G_{k-1}Q_{k}R_{k}H_{k-1}$$

$$= G_{k-1}A_{k}H_{k-1} = A_{1}G_{k-1}H_{k-1} = \cdots = A_{1}^{k} = A^{k}.$$
(3. 3-3)

事实上,由(3.3-2)式得

$$A_{k+1} = G_k^{-1} A_1 G_k$$
, $\mathbb{I} G_k A_{k+1} = A_1 G_k$,

从而 $G_{k-1}A_k = A_1G_{k-1}$,于是(3.3-3)式成立.(3.3-3)式表明, A^k 的一个 QR 分解是 $A^k = G_kH_k$.

显然,为了求得 A 的特征值,只需序列 $\{A_k\}$ 能够趋向子块上三角矩阵,且 A_k 的对角子块在 $k \to +\infty$ 时收敛到 1 阶或 2 阶的方阵即可,与非对角子块的元素是否收敛无关. 矩阵的这种收敛性称为**本质收敛**.

我们不加证明地给出 QR 方法的一个收敛定理.

定理 3.3-1^① 设 n 阶方阵 A 的 n 个特征值 $\lambda_1,\lambda_2,\dots,\lambda_n$ 满足条件:

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| > 0$$
,

记 X 为对应于这些特征值的特征向量组成的方阵,且 X^{-1} 可直接三角分解为 $X^{-1} = LR$,则由 QR 方法(3.3-1)产生的方阵序列 $\{A_k\}$ 本质收敛于上三角矩阵,其主对角线元素均为 A 的特征值.

如果 A 不满足定理 3.3-1 的假设,则方阵序列 $\{A_k\}$ 不一定本质收敛于上三角矩阵.

3.3 **OR方法**

M1 用 QR 方法求矩阵 A 的特征值,其中

$$\mathbf{A} = \begin{bmatrix} 5 & -2 & -5 & -1 \\ 1 & 0 & -3 & 2 \\ 0 & 2 & 2 & -3 \\ 0 & 0 & 1 & -2 \end{bmatrix}.$$

解 A 的特征值是 $-1.4.1\pm 2i$.

现用 Schmidt 正交化方法进行 QR 分解,得

$$\mathbf{A}_{1} = \mathbf{A} = \mathbf{Q}_{1}\mathbf{R}_{1} = \begin{bmatrix} 0.9806 & -0.0377 & 0.6923 & -0.1038 \\ 0.1961 & 0.1887 & -0.8804 & -0.4192 \\ 0 & 0.9813 & 0.1761 & 0.0740 \\ 0 & 0 & 0.3962 & -0.8989 \end{bmatrix}$$
$$= \mathbf{Q}_{k}^{-1}\mathbf{H}_{k}\mathbf{Q}_{k} = \mathbf{w} = (\mathbf{Q}_{1}\mathbf{w}\mathbf{Q}_{k})^{-1}\mathbf{H}_{1}(\mathbf{Q}_{1}\mathbf{w}\mathbf{Q}_{k}),$$

即任一 H_k 都与 H_1 正交相似.

由于当 H_k 的元素 $h_{n,n-1}^{(k)} \approx 0$ 时, $h_m^{(k)} \approx \lambda_n$,所以可以选取 $s_k = h_m^{(k)}$. 平移量 s_k 的另一种

选法是,在
$$\begin{bmatrix} h_{n-1,n-1}^{(k)} & h_{n,n}^{(k)} \\ h_{n,n-1}^{(k)} & h_{n,n}^{(k)} \end{bmatrix}$$
的两个特征值中选最接近于 $h_m^{(k)}$ 的一个.

当 \mathbf{A} 有复特征值时,(3,3-4) 式作实数运算是不能收敛于特征值的. Francis 提出一种 二重 QR 方法,以便能用实数运算求得实矩阵的复特征值,有兴趣的读者请参考有关文 献①.

作业

习题 3

1. 利用 Gerschgorin 定理确定方阵

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 5 & 1 \\ -2 & -1 & 9 \end{bmatrix}$$

的特征值的范围. 判断 A 的特征值是否都是实数?

计算函数零点和极值点的选代法

矩阵论(11)

4 计算函数零点和极值点的迭代法

求函数 f(x)的零点,即方程 f(x)=0 的根是一个经典的问题,特别是确定多项式 $p(x) = a_0 x'' + a_1 x''^{-1} + \cdots + a_{r-1} x + a_r \quad (a_0 \neq 0)$

的零点,长期以来是数学工作者关心的问题之一. 在高等数学课程中,已经讲过一些用导数求函数零点的方法. 这里主要讨论 $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ 的零点问题,即解非线性方程组

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0, \\ f_2(x_1, x_2, \dots, x_n) = 0, \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

的问题.

求解上述非线性方程组的问题是与函数的极值问题

$$\min_{x\in\mathbf{R}''}F\left(\dot{x}\right)$$

密切相关的, 事实上, 如果 F 可微, 记

$$f(x) = \left[\frac{\partial F(x)}{\partial x_1}, \frac{\partial F(x)}{\partial x_2}, \cdots, \frac{\partial F(x)}{\partial x_n}\right]^{\mathrm{T}},$$

即 f(x)表示函数 F(x)的梯度,那么 F(x)的极值点是 f(x)的零点. 反过来,f(x)的零点也是某个函数的最小值点,例如取 $F(x)=[f(x)]^{T}f(x)$.

4 计算函数零点和极值点的迭代法

这种极值问题称为无约束优化问题. 更一般也是更重要的是约束最优化问题, 在约束

$$\begin{cases} h_i(\mathbf{x}) \leqslant 0, & i = 1, 2, \dots, m, \\ s_i(\mathbf{x}) = 0, & j = 1, 2, \dots, k \ (k < n) \end{cases}$$

下求函数 F(x)的最小值点或最大值点.

解这类约束最优化问题有重要的理论和实际意义,目前已发展为应用数学重点研究的领域之一,称为最优化理论与方法.

本章着重讨论解非线性方程组和函数极值问题的迭代法. 至于约束最优化问题的数值解法留待最优化方法课程解决.

迭代法是数值计算中一类典型的方法,前面讨论过求解线性方程组和方阵特征值问题的迭代法.但实际问题中更多的是非线性问题,它们又常常归结为非线性方程或非线性方程组的求解问题.

与求解线性方程组的迭代法一样,对于非线性方程组

$$f(x) = 0, (4.1-1)$$

若用迭代法求解,也需要先将方程组(4.1-1)化为便于迭代的等价方程组

$$\mathbf{x} = \mathbf{\Phi}(\mathbf{x}). \tag{4.1-2}$$

例如取 $\mathbf{\Phi}(x) = x + \omega f(x)$, 其中 $\omega \neq 0$ 是参数. 于是,选择一个初始向量 $x^{(0)}$, 按迭代公式 $x^{(k+1)} = \mathbf{\Phi}(x^{(k)}), \quad k = 0,1,\dots$ (4.1-3)

产生一个向量序列 $\{x^{(k)}\}$,如果 $\Phi(\cdot)$ 是连续函数,且 $\{x^{(k)}\}$ 收敛于 x^* ,则在 $\{4,1-3\}$ 式两边取极限,便得 $x^* = \Phi(x^*)$,即 x^* 满足方程组 $\{4,1-2\}$,从而 x^* 也满足方程组 $\{4,1-1\}$,即 x^* 是f(x)的零点,这样的 x^* 称为 $\Phi(\cdot)$ 的不动点,于是求f(x)的零点问题等价于求 $\Phi(x)$ 的不动点问题。

(4.1-2)式右边的 Φ (•)称为迭代函数,(4.1-3)式产生的向量序列{ $x^{(k)}$ }称为迭代序列.用不同的方法构造迭代函数,便得到不同的迭代法.

迭代法的基本问题是:

- 1) 如何构造适当的迭代函数 $\mathbf{\Phi}(\cdot)$, 使得按(4.1-3)式产生的向量序列{ $\mathbf{x}^{(k)}$ }是收敛的;
 - 2) 收敛速度和误差估计;
 - 3) 当收敛速度不够快时,如何加速收敛?

为了叙述清楚和便于理解,首先讨论一元非线性方程的求解问题.

4.1.1 解一元方程的迭代法

对于一元非线性方程 f(x)=0,其中 f(x)是连续函数,它的实根可能有多个,因而要把方程的根隔离开,使 f(x)在区间 [a,b] 内有且仅有一个零点。例如, $f(x)\in C[a,b]$, f(a) f(b) < 0,且 f(x) 在 [a,b] 上是单调增加或单调减小的,则由高等数学知识,f(x) 在 [a,b] 内有且仅有一个根。为了求出这个根,按不动点迭代法的要求,需将 f(x)=0 等价地化为 $x=\varphi(x)$,但这有多种办法。例如,对方程 $f(x)=x^3-x-1=0$,就有下列几种等价方程

$$x = \sqrt[3]{1+x}$$
, $x = x^3 - 1$, $x = \frac{x^3 + x - 1}{2}$, $x = \sqrt{1 + \frac{1}{x}}$.

我们还可写出其他的等价形式.

由于把 f(x)=0 改写成 $x=\varphi(x)$ 的形式不唯一,从而迭代的情况就不同,按 $x^{(k+1)}=\varphi(x^{(k)})$ 产生的序列 $\{x^{(k)}\}$,有的收敛较快,有的收敛较慢,有的可能不收敛.

例 1 用迭代法求方程 $f(x)=x^3-x-1=0$ 在 1.5 附近的根,初始值取为 $x^{(0)}=1.5$.

解 取 $\varphi(x) = \sqrt[3]{1+x}$,由迭代公式

$$x^{(k+1)} = \sqrt[3]{1+x^{(k)}}$$

得 $x^{(1)} = 1.35721$, $x^{(2)} = 1.33086$, ..., $x^{(9)} = x^{(8)} = 1.32472$.

因此迭代序列 $\{x^{(k)}\}$ 收敛,且根的近似值为 1.32472.

但若取 $\varphi(x) = x^3 - 1$,则由迭代公式

$$x^{(k+1)} = [x^{(k)}]^3 - 1$$

得 $x^{(1)} = 2.375$, $x^{(2)} = 12.3965$, $x^{(3)} = 1904.01$,…

显然,迭代序列 $\{x^{(k)}\}$ 不收敛.

那么迭代函数 $\varphi(x)$ 满足什么样的条件,才能保证迭代公式 $x^{(k+1)} = \varphi(x^{(k)})$ 产生的序列 $\{x^{(k)}\}$ 收敛呢?下述定理回答了这个问题.

定理 4. 1-1 设 $\varphi(x) \in C[a,b]$,且对任意 $x \in [a,b]$ 均有 $a \leq \varphi(x) \leq b$,则 $\varphi(\cdot)$ 在[a,b]上必有不动点. 进一步设 $\varphi(x) \in C^1[a,b]$,且存在正常数 L < 1,使

$$\mid \varphi'(x) \mid \leq L < 1, \quad \forall x \in [a,b],$$
 (4.1-4)

则迭代法 $x^{(t+1)} = \varphi(x^{(t)})$ 对任意 $x^{(t)} \in [a,b]$ 均收敛于唯一的不动点 x^* ,并有估计式

$$\begin{cases} \mid x^{(k)} - x^* \mid \leqslant \frac{L}{1 - L} \mid x^{(k)} - x^{(k-1)} \mid, \\ \mid x^{(k)} - x^* \mid \leqslant \frac{L^k}{1 - L} \mid x^{(1)} - x^{(0)} \mid. \end{cases}$$

$$(4.1-5)$$

E E E

证 若 $\varphi(a)=a$ 或 $\varphi(b)=b$,则显然 $\varphi(\cdot)$ 在[a,b]上存在不动点. 现设 $\varphi(a)>a$ 及 $\varphi(b)< b$,定义

$$\psi(x) = \varphi(x) - x,$$

則 $\psi(\cdot) \in C[a,b]$,且 $\psi(a) = \varphi(a) - a > 0$, $\psi(b) = \varphi(b) - b < 0$. 故由连续函数性质知,一定存在 $x^* \in (a,b)$ 使 $\psi(x^*) = \varphi(x^*) - x^* = 0$,即 $x^* = \varphi(x^*)$.

进一步设 $\varphi(\cdot) \in C^1[a,b]$ 且满足条件(4.1-4),若 $\varphi(\cdot)$ 有两个不动点 $x_i^*, x_i^* \in [a,b]$,则由微分中值定理,得

$$|x_1^* - x_2^*| = |\varphi(x_1^*) - \varphi(x_2^*)| = |\varphi'(\xi)| |x_1^* - x_2^*|$$

$$\leq L |x_1^* - x_2^*| < |x_1^* - x_2^*|.$$

但这是不可能的,因此 φ (•)只有唯一不动点 x^* .

曲
$$|x^{(k)}-x^*| = |\varphi(x^{(k-1)})-\varphi(x^*)| \le L|x^{(k-1)}-x^*| \le \cdots \le L^k|x^{(0)}-x^*|$$
 及 $0 < L < 1$ 知,
$$\lim_{k \to \infty} |x^{(k)}-x^*| = 0$$
,

即 $\{x^{(k)}\}$ 收敛于 x^* .

并且由
$$|x^{(k)}-x^*| \leqslant L|x^{(k-1)}-x^*|$$
得
$$|x^{(k)}-x^*| \leqslant L|x^{(k-1)}-x^{(k)}+x^{(k)}-x^*|$$
$$\leqslant L|x^{(k)}-x^{(k-1)}|+L|x^{(k)}-x^*|,$$

从而有估计式(4.1-5)中的第一个不等式.

不动点迭代法及其收敛性

又因

$$|x^{(k)} - x^{(k-1)}| = |\varphi(x^{(k-1)}) - \varphi(x^{(k-2)})| \leq L|x^{(k-1)} - x^{(k-2)}|$$

$$\leq \cdots \leq L^{k-1}|x^{(1)} - x^{(0)}|,$$

将此代入(4.1-5)式的第一个不等式的右边,即得其中的第二个不等式.

从(4, 1-5)式看到,若 $L \approx 1$,则收敛是很慢的,这时需要考虑加速收敛的问题,再则, 对于给定的 $x^{(0)}$ 和绝对误差限 ϵ ,(4.1-5)式中的第一个估计式给出迭代停止的准则,它是 后验估计,而(4,1-5)式中的第二个估计式给出达到精度所需的迭代次数,它是先验估计. 当然,这样的估计与所确定的 L 有关.

一般来说,要构造一个在较大区间上满足定理 4.1-1 条件的迭代函数 $\varphi(\bullet)$ 是相当 困难的,这种形式的收敛性定理是在[a,b]上任取一点 $x^{(0)}$ 作为初值,迭代都收敛,故称它 为**全局收敛** 若能设法使初值 $x^{(0)}$ 充分接近 x^* ,只要迭代函数在 x^* 的一个邻域内满足定 理 4.1-1 的条件就够了,这就是下述的局部收敛性定理。

定理 4.1-2 设 x^* 为 $\varphi(\bullet)$ 的不动点, $\varphi'(\bullet)$ 在 x^* 的某个邻域内连续,且 $|\varphi'(x^*)|$ <1,则存在 $\delta>0$,只要 $x^{(0)} \in [x^* - \delta, x^* + \delta]$,迭代法 $x^{(k+1)} = \varphi(x^{(k)})$ 收敛.

证 由于 $|\varphi'(x^*)| < 1$ 及 $\varphi'(x)$ 在 x^* 的某个邻域内连续,所以存在 $\delta > 0$ 使 $[x^*-\delta,x^*+\delta]$ 被包含在该邻域内,且对任意 $x \in [x^*-\delta,x^*+\delta]$ 均有 $|\varphi'(x)| \leq q < 1$. 因此,对任意 $x \in [x^* - \delta, x^* + \delta]$,

 $\mid \varphi(x) - x^* \mid = \mid \varphi(x) - \varphi(x^*) \mid = \mid \varphi'(\xi) \mid \mid x - x^* \mid \leqslant q \mid x - x^* \mid < \delta,$ 即对任意 $x \in [x^* - \delta, x^* + \delta]$,有 $x^* - \delta \leq \varphi(x) \leq x^* + \delta$. 于是,根据定理 4.1-1 知,迭代 法 $x^{(k+1)} = \varphi(x^{(k)})$ 对任意 $x^{(0)} \in [x^* - \delta, x^* + \delta]$ 收敛.

不动点迭代法及其收敛性

定理 4. 1-2 表明,只要 $x^{(0)}$ 充分接近 x^* ,且 $|\varphi'(x^{(0)})|$ 明显地小于 1,则迭代法产生 的序列 $\{x^{(k)}\}$ 就收敛于 x^* .

例 2 求方程 $x=e^{-x}$ 在 0.5 附近的根.

$$\varphi(x) = e^{-x}, |\varphi'(0.5)| = e^{-0.5} \approx 0.61$$
 明显地小于 1,所以迭代算式
$$x^{(k+1)} = e^{-x^{(k)}} \quad (k = 0.1, \cdots)$$

应该是收敛的,事实上计算结果如表 4.1-1 所示.

k	0	1	2	3	4	**1
x (k)	0, 5	0.60653	0.54524	0,57970	0.56007	441
k	0	12	13	14	15	
$x^{(k)}$	0, 5	0.56707	0,56718	0.56712	0.56712	

表 4.1-1

为了刻划迭代序列 $\{x^{(k)}\}$ 收敛速度,引进收敛阶的概念,它是衡量迭代法优劣的重要 标志之一.

定义 4.1-1 设迭代序列 $\{x^{(k)}\}$ 收敛于 x^* ,记 $e_k = x^{(k)} - x^*$,如果存在数 $p \ge 1$ 和非 零正数c,使

$$\lim_{k\to+\infty}\frac{|e_{k+1}|}{|e_k|^p}=c,$$

则称序列{x^(k)}是 **ρ 阶收敛的**(或收敛阶是 ρ).

当 $\rho=1,0 < c < 1$ 时,称为线性收敛;当 $\rho>1$ 时称为超线性收敛,而 $\rho=2$ 时又叫做 平方收敛.

由于 $|x^{(k+1)}-x^*|=|\varphi(x^{(k)})-\varphi(x^*)|=|\varphi'(\xi)|\cdot|x^{(k)}-x^*|$,其中 ξ 在 $x^{(k)}$ 与 x^* 之间,因此 $\lim_{k\to +\infty}\frac{|e_{k+1}|}{|e_k|}=|\varphi'(x^*)|.$

所以如果 $\varphi'(x^*) \neq 0$,则迭代法 $x^{(k+1)} = \varphi(x^{(k)})$ 只可能是线性收敛的. 要想得到更高的收敛阶, $\varphi(\bullet)$ 必须满足 $\varphi'(x^*) = 0$. 这就启发我们可以利用 $\varphi(\bullet)$ 在点 x^* 处的 Taylor 展开式来判断不动点迭代法局部收敛的阶.

定理 4.1-3 设 x^* 是 $\varphi(\cdot)$ 的不动点,p 是 \geqslant 2 的正整数. 如果 $\varphi^{(p)}(x)$ 在 x^* 的某个 邻域上连续,且满足

$$\begin{cases} \varphi^{(k)}(x^*) = 0, & k = 1, 2, \dots, p-1, \\ \varphi^{(p)}(x^*) \neq 0, \end{cases}$$
 (4.1-6)

则迭代序列 $\{x^{(k)}\}$ 是 p 阶局部收敛的.

证 由于 $\varphi'(x^*)=0$,所以迭代序列 $\{x^{(k)}\}$ 局部收敛. 现取充分接近 x^* 的初始值 $x^{(0)} \neq x^*$,则有 $x^{(1)}=\varphi(x^{(0)})\neq x^*$. 类似地可知 $x^{(k)}\neq x^*$, $k=2,3,\cdots$.

由 Taylor 展开式得

$$\varphi(x^{(k)}) = \varphi(x^*) + \varphi'(x^*)(x^{(k)} - x^*) + \cdots + \frac{\varphi^{(p-1)}(x^*)}{(p-1)!}(x^{(k)} - x^*)^{p-1} + \frac{\varphi^{(p)}(\xi)}{p!}(x^{(k)} - x^*)^{p},$$

其中 & 在 x^(k)与 x* 之间, 从而由(4, 1-6)式得

$$x^{(k+1)} - x^* = \varphi(x^{(k)}) - \varphi(x^*) = \frac{\varphi^{(p)}(\xi)}{p!} (x^{(k)} - x^*)^p.$$

由 $\varphi^{(p)}(x)$ 的连续性知, 当 $k \to +\infty$ 时, $\varphi^{(p)}(\xi) \to \varphi^{p}(x^{*}) \neq 0$, 所以 $\{x^{(k)}\}$ 是 p 阶局部收敛的.

例 3 用迭代法 $x^{(t+1)} = \varphi(x^{(t)})$ 求函数 f(x)的单重零点,其中 $\varphi(x) = x - r_1(x) f(x)$ $-r_2(x) f^2(x)$, f(x) 具有连续二阶导数. 确定未知函数 $r_1(x)$, $r_2(x)$, 使该迭代法至少是三阶局部收敛的.

解 设 x^* 是 f(x) 的单重零点,为使该迭代法至少是三阶局部收敛的,根据定理 4.1-3,应有 $\varphi'(x^*) = \varphi''(x^*) = 0$.

$$\varphi'(x) = 1 - r'_1(x)f(x) - r_1(x)f'(x) - r'_2(x)f^2(x) - 2r_2(x)f(x)f'(x),$$

$$\text{F} \text{ } \exists \theta \varphi'(x^*) = 0 \text{ } \exists \theta f(x^*) = 0, f'(x^*) \neq 0, \forall \theta \in \mathbb{R}$$

$$1 - r_1(x^*)f'(x^*) = 0.$$

因此,若取 $r_1(x) = \frac{1}{f'(x)}$,则有 $\varphi'(x^*) = 0$.

这时,

$$\varphi'(x) = -r'_{1}(x)f(x) - r'_{2}(x)f^{2}(x) - 2r_{2}(x)f(x)f'(x),$$

$$\varphi''(x) = -r''_{1}(x)f(x) - r'_{1}(x)f'(x) - r''_{2}(x)f^{2}(x) - 4r'_{2}(x)f(x)f'(x)$$

$$-2r_{2}(x)[f'(x)]^{2} - 2r_{2}(x)f(x)f''(x),$$

不动点迭代法及其收敛性

其中 $r'_{\perp}(x) = -\frac{f'(x)}{\lceil f'(x) \rceil^2}$.

于是,由 $\varphi''(x^*)=0$ 和 $f(x^*)=0,f'(x^*)\neq 0$,得

$$\frac{f''(x^*)}{f'(x^*)} - 2r_2(x^*)[f'(x^*)]^2 = 0,$$

因此若取 $r_2(x) = \frac{f''(x)}{2\Gamma f'(x)\rceil^3}$,则有 $\varphi''(x^*) = 0$.

因此,取

$$r_1(x) = \frac{1}{f'(x)}$$
 π $r_2(x) = \frac{f''(x)}{2[f'(x)]^3}$

能使迭代法 $x^{(k+1)} = \varphi(x^{(k)})$ 至少三阶局部收敛.

一般说来,线性收敛的速度是不够满意的,因此要讨论加速收敛的方法.

设 x^* 是 $\varphi(\cdot)$ 的不动点,迭代法 $x^{(k+1)} = \varphi(x^{(k)})$ 产生的序列 $\{x^{(k)}\}$ 收敛于 x^* ,则由中 值定理得

$$x^{(k+1)} - x^* = \varphi(x^{(k)}) - \varphi(x^*) = \varphi'(\xi_1)(x^{(k)} - x^*),$$

$$x^{(k+2)} - x^* = \varphi(x^{(k+1)}) - \varphi(x^*) = \varphi'(\xi_2)(x^{(k+1)} - x^*),$$

其中 ε_1 在 $x^{(k)}$ 与 x^* 之间, ε_2 在 $x^{(k+1)}$ 与 x^* 之间. 由于 $\{x^{(k)}\}$ 收敛于 x^* , 所以当充分大时, $\varphi'(\xi_1) \approx \varphi'(\xi_2)$,故有

$$\frac{x^{(k+2)} - x^*}{x^{(k+1)} - x^*} \approx \frac{x^{(k+1)} - x^*}{x^{(k)} - x^*}.$$

由这个近似等式可解得

$$x^* \approx x^{(k+2)} - \frac{(x^{(k+2)} - x^{(k+1)})^2}{x^{(k+2)} - 2x^{(k+1)} + x^{(k)}}.$$
 (4.1-7)

于是,在计算了 $x^{(k)}$ 、 $x^{(k+1)}$ 、 $x^{(k+2)}$ 后,可用(4.1-7) 式右边作为 x^* 的一个新的近似值,它是 $x^{(k+2)}$ 的一个修正值,记为 $\hat{x}^{(k+2)}$.下面证明序列 $\{\hat{x}^{(k)}\}$ 比 $\{x^{(k)}\}$ 收敛快.

定理 4.1-4 设 $\{x^{(k)}\}$ 是线性收敛于 x^* 的序列且对任何 $k \ge 0$,均有 $e_k = x^{(k)} - x^* \ne 0$,并且 $\lim_{k \to +\infty} \frac{e_{k+1}}{e_k} = \lambda$, $|\lambda| < 1$,则有

$$\lim_{k \to +\infty} \frac{\hat{x}^{(k+2)} - x^*}{x^{(k)} - x^*} = 0.$$

证 由 $\lim_{k \to +\infty} \frac{e_{k+1}}{e_k} = \lambda$ 得 $e_{k+1} = (\lambda + \varepsilon_k) e_k$,其中 ε_k 满足 $\lim_{k \to +\infty} \varepsilon_k = 0$. 又因为 $x^{(k+1)} - x^{(k)} = e_{k+1} - e_k = \left[(\lambda - 1) + \varepsilon_k \right] e_k,$ $x^{(k+2)} - 2x^{(k+1)} + x^{(k)} = (x^{(k+2)} - x^{(k+1)}) - (x^{(k+1)} - x^{(k)})$ $= \left[(\lambda - 1) + \varepsilon_{k+1} \right] e_{k+1} - \left[(\lambda - 1) + \varepsilon_k \right] e_k$ $= \left\{ \left[(\lambda - 1) + \varepsilon_{k+1} \right] (\lambda + \varepsilon_k) - (\lambda + \varepsilon_k) + 1 \right\} e_k$ $= \left[(\lambda - 1)^2 + \mu_k \right] e_k,$

其中 $\mu_k = \lambda \varepsilon_{k+1} + (\lambda - 2)\varepsilon_k + \varepsilon_{k+1}\varepsilon_k$. 显然 $\lim_{k \to +\infty} \mu_k = 0$.

4.1

不动点迭代法及其收敛性

由于

$$x^{(k+2)} - \frac{(x^{(k+2)} - x^{(k+1)})^2}{x^{(k+2)} - 2x^{(k+1)} + x^{(k)}} = \frac{\left[x^{(k+2)} x^{(k)} - (x^{(k+1)})^2\right]}{x^{(k+2)} - 2x^{(k+1)} + x^{(k)}}$$
$$= x^{(k)} - \frac{(x^{(k+1)} - x^{(k)})^2}{x^{(k+2)} - 2x^{(k+1)} + x^{(k)}},$$

所以有

$$\widehat{x}^{(k+2)} - x^* = x^{(k)} - x^* - \frac{(x^{(k+1)} - x^{(k)})^2}{x^{(k+2)} - 2x^{(k+1)} + x^{(k)}} = e_k - e_k \frac{[(\lambda - 1) + \varepsilon_k]^2}{[(\lambda - 1)^2 + \mu_k]}.$$

因此

$$\lim_{k\to+\infty}\frac{\widehat{x}^{(k+2)}-x^*}{x^{(k)}-x^*}=\lim_{k\to+\infty}\left\{1-\frac{\left[(\lambda-1)+\varepsilon_k\right]^2}{\left[(\lambda-1)^2+\mu_k\right]}\right\}=0.$$

值得指出的是,(4.1-7)式与 3.2 节中的(3.2-7)式完全类似,故它是 Aitken 加速法.

如果记 $\tilde{x}^{(k+1)} = \varphi(x^{(k)})$, $\tilde{x}^{(k+1)} = \varphi(\tilde{x}^{(k+1)})$,而把 $x^{(k)}$, $\tilde{x}^{(k+1)}$, $\tilde{x}^{(k+1)}$ 用 Aitken 加速公式 (4.1-7)右边算得的值作为 $x^{(k+1)}$,那么从 $x^{(k)}$ 到 $x^{(k+1)}$ 算完成一次迭代,则其计算公式为

$$\begin{cases} \tilde{x}^{(k+1)} = \varphi(x^{(k)}), \\ \bar{x}^{(k+1)} = \varphi(\tilde{x}^{(k+1)}), \\ x^{(k+1)} = \bar{x}^{(k+1)} - \frac{(\bar{x}^{(k+1)} - \tilde{x}^{(k+1)})^{2}}{\bar{x}^{(k+1)} - 2\tilde{x}^{(k+1)} + x^{(k)}}, \end{cases}$$
 (4.1-8)

这种把 Aitken 加速法与不动点迭代法相结合的方法,称为 Steffensen 迭代法.

例 4 用迭代法和 Steffensen 迭代法求函数 $f(x)=x-\ln x-2$ 在区间 $(2,+\infty)$ 内的零点,取 $x^{(0)}=3$.

解 将 f(x)=0 化为等价的方程

$$x=2+\ln x$$
.

由于 $\varphi(x) = 2 + \ln x$ 的导数 $\varphi'(x) = \frac{1}{x}$ 在 $[2, +\infty)$ 上满足 $|\varphi'(x)| \le \frac{1}{2} < 1$,且 $2 < \varphi(x) < +\infty$,所以迭代法 $x^{(k+1)} = 2 + \ln x^{(k)}$ 收敛.

Steffensen 迭代法的计算公式是

$$\begin{cases} \tilde{x}^{(k+1)} = 2 + \ln(x^{(k)}), \\ \bar{x}^{(k+1)} = 2 + \ln(\tilde{x}^{(k+1)}), \\ \end{cases}$$
$$x^{(k+1)} = \bar{x}^{(k+1)} - \frac{(\bar{x}^{(k+1)} - \tilde{x}^{(k+1)})^{2}}{\bar{x}^{(k+1)} - 2\tilde{x}^{(k+1)} + x^{(k)}}.$$

从 $x^{(0)} = 3$ 出发,它们的结果如表 4.1-2 所示. 比较所得结果可以看出,Steffensen 迭代法比简单迭代法收敛得快.

表 4.1-2

	简单迭代法	Stellensen 迭代法				
k	$x^{(k)}$	$x^{(k)}$	x (k+1)	<u>_</u> (k+1)		
0	3	3	3, 098612289	3, 130954363		
1	3. 098612289	3. 146738373	3. 146366479	3. 146248288		
2	3, 130954363	3, 146193227	3, 146193223	3, 146293221		
3	3, 141337866	3, 146193227				
4	3. 144648781					
5	3, 145702209					
6	3. 146037143					

4.1.2 解非线性方程组的迭代法

关于非线性方程组(4.1-2)的解的存在和唯一性问题,以及由迭代公式(4.1-3)产生的向量序列 $\{x^{(k)}\}$ 的收敛性,有下述著名的压缩映射原理.

定理 4.1-5 设 $\mathbf{\Phi}(x)$ 在闭域 $\ddot{G} \subset \mathbf{R}^n$ 上满足条件:

1) 存在常数 q.0 < q < 1, 使得对一切 $x.y \in \bar{G}$ 均有

$$\| \boldsymbol{\Phi}(\boldsymbol{x}) - \boldsymbol{\Phi}(\boldsymbol{y}) \| \leqslant q \| \boldsymbol{x} - \boldsymbol{y} \|, \qquad (4.1-9)$$

2) 对一切 $x \in G$,均有 $\phi(x) \in G$ (即 $\phi(G) \subseteq G$),

则 $\boldsymbol{\phi}(\cdot)$ 存在唯一的不动点 $\boldsymbol{x}^* \in \ddot{G}$,并且对任意 $\boldsymbol{x}^{(v)} \in \ddot{G}$,由(4.1-3)式产生的向量序列 $\{\boldsymbol{x}^{(k)}\}$ 收敛于 \boldsymbol{x}^* ,且有估计式

$$\| \mathbf{x}^{(k)} - \mathbf{x}^* \| \leqslant \frac{q}{1-q} \| \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)} \|,$$
 (4.1-10)

$$\| \mathbf{x}^{(k)} - \mathbf{x}^* \| \leqslant \frac{q^k}{1 - q} \| \mathbf{x}^{(1)} - \mathbf{x}^{(0)} \|.$$
 (4.1-11)

证 因 $x^{(i)} \in \overline{G}$ 和 $\Phi(\overline{G}) \subseteq \overline{G}$ 知 $x^{(i)} = \Phi(x^{(i)}) \in \overline{G}$. 同理可证,对一切正整数 $k, x^{(k)} \in \overline{G}$.

又由(4.1-9)式,得

$$\|x^{(k+1)}-x^{(k)}\| = \|\boldsymbol{\Phi}(x^{(k)})-\boldsymbol{\Phi}(x^{(k-1)})\| \leqslant q \|x^{(k)}-x^{(k-1)}\|,$$

从而对任意正整数 1,有

不动点迭代法及其收敛性

$$\| \mathbf{x}^{(k+l)} - \mathbf{x}^{(k)} \| \leqslant \sum_{i=1}^{l} \| \mathbf{x}^{(k+i)} - \mathbf{x}^{(k+i-1)} \| \leqslant (q^{l-1} + \dots + q + 1) \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|$$

$$\leqslant \frac{1}{1-q} \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \| \leqslant \frac{q^{k}}{1-q} \| \mathbf{x}^{(1)} - \mathbf{x}^{(0)} \| .$$

$$(4.1-12)$$

因为 0 < q < 1,所以当 k 充分大时, $\|x^{(k+l)} - x^{(k)}\|$ 可任意小,从而 $\{x^{(k)}\}$ 是 Cauchy 序列. 又因 G 是闭域,故由 Cauchy 收敛原理 \mathbb{Q} 知, $\{x^{(t)}\}$ 收敛, $\lim x^{(t)} = x^*$,且 $x^* \in G$.

又由(4.1-9),得

$$\| \boldsymbol{\Phi}(x^*) - x^* \| \leqslant \| \boldsymbol{\Phi}(x^*) - \boldsymbol{\Phi}(x^{(k)}) \| + \| \boldsymbol{\Phi}(x^{(k)}) - x^* \|$$

$$\leqslant q \| x^{(k)} - x^* \| + \| x^{(k+1)} - x^* \| ,$$

令 k→+∞,则由 $\| x^{(k)} - x^* \|$ →0 知 $\| \Phi(x^*) - x^* \|$ =0,即 $x^* = \Phi(x^*)$,也就是说 x^* 是 $\boldsymbol{\sigma}(\cdot)$ 的不动点

至于 x^* 的唯一性以及估计式(4. 1-10)和(4. 1-11)的证明,与定理 4. 1-1 的证明类 同,这里不做详细证明.

定理 4. 1-5 除了要求迭代函数 $\phi(\cdot)$ 满足压缩条件(4. 1-9)式外,还要求条件 $\phi(\bar{G})$ $\subseteq \ddot{G}$, 这后一条件是为了保证由(4, 1-3)式产生的一切 $x^{(k)}(k=1,2,\cdots)$ 均属于 \ddot{G} , 事实上, 只要选择初始向量 $x^{(0)}$,确定这样的 $\delta > 0$,使 $\| \boldsymbol{\varphi}(x^{(0)}) - x^{(0)} \| \leq \delta(1-q)$,那么就有

$$\| \mathbf{x}^{(k)} - \mathbf{x}^{(0)} \| \le \sum_{i=1}^{k} \| \mathbf{x}^{(i)} - \mathbf{x}^{(i-1)} \| \le (q^{k-1} + \dots + q + 1) \| \mathbf{x}^{(1)} - \mathbf{x}^{(0)} \|$$

$$\le (1 + q + \dots + q^{k-1}) (1 - q) \delta = (1 - q^k) \delta < \delta.$$

因此,令 $\bar{G} = \{x \mid ||x-x^{(0)}|| \leq \delta\}$,它是一个闭域,则对一切 $x^{(k)}(k=1,2,\cdots)$,均有 $x^{(k)} \in \bar{G}$,从而 $\Phi(\bar{G}) \subseteq \bar{G}$.

另外,如果 $\Phi(x) = [\varphi_1(x), \dots, \varphi_n(x)]^T$ 的每个分量 $\varphi_i(x)$ 都在 G 上可微,将 $\Phi(x)$ 的 Jacobi 矩阵记为

$$D\boldsymbol{\Phi}(\boldsymbol{x}) = egin{bmatrix} rac{\partial arphi_1}{\partial x_1} & \cdots & rac{\partial arphi_1}{\partial x_n} \ draverset & draverset \ rac{\partial arphi_n}{\partial x_1} & \cdots & rac{\partial arphi_n}{\partial x_n} \end{bmatrix},$$

则压缩条件(4.1-9)式同样可以用下条件替代:

对一切 $x \in \overline{G} = \{x \mid ||x - x^{(0)}|| \leq \delta\},$ 均有 $||D\Phi(x)|| \leq q < 1.$

从上述讨论可知,不动点迭代法是线性收敛的,收敛速度不够理想.特别当 q 小于 1 但很接近 1 时,收敛很慢.加速方法可参阅王德人编《非线性方程组解法与最优化方法》.

例 5 用不动点迭代法求非线性方程

$$\begin{cases} f_1(x_1,x_2) = e^{x_1} + x_2 - 1 = 0, \\ f_2(x_1,x_2) = x_1^2 + x_2^2 - 4 = 0 \end{cases}$$

在闭域 \bar{G} : $|x_1-1| \leq \frac{1}{4}$, $|x_2+\frac{3}{2}| \leq \frac{1}{2}$ 内的根.

不动点迭代法及其收敛性

解 闭域 \overline{G} 可改写成 $\frac{3}{4} \leqslant x_1 \leqslant \frac{5}{4}, -2 \leqslant x_2 \leqslant -1.$

将原方程组化为等价的方程组

$$\begin{cases} x_1 = \ln(1 - x_2), \\ x_2 = -\sqrt{4 - x_1^2}. \end{cases}$$
 (4.1-13)

取 $x_1^{(0)} = 1, x_2^{(0)} = -1, 5,$ 按迭代公式

$$\begin{cases} x_1^{(k+1)} = \ln(1-x_2^{(k)}), \\ x_2^{(k+1)} = -\sqrt{4-(x_1^{(k)})^2}, \end{cases} k = 0,1,2,\dots$$

产生的序列 $\{x^{(k)}\}$ 收敛,因为其迭代函数为

$$\boldsymbol{\Phi}(\boldsymbol{x}) = \begin{bmatrix} \varphi_1(x_1, x_2) \\ \varphi_2(x_1, x_2) \end{bmatrix} = \begin{bmatrix} \ln(1-x_2) \\ -\sqrt{1-x_1^2} \end{bmatrix},$$

它的 Jacobi 矩阵是
$$D\Phi(x) = \begin{bmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial x_2} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{1-x_2} \\ \frac{x_1}{\sqrt{4-x_1^2}} & 0 \end{bmatrix}.$$

由于在闭域 G上,有

$$0 + \left| -\frac{1}{1-x_2} \right| \leqslant \frac{1}{2}, \quad \left| \frac{x_1}{\sqrt{4-x_1^2}} \right| + 0 \leqslant \frac{5}{\sqrt{39}} < 1,$$

不动点迭代法及其收敛性

所以在闭域 \ddot{G} 上 $\|D\Phi(x)\|_{\infty} \leq \max\left\{\frac{1}{2}, \frac{5}{\sqrt{39}}\right\} = \frac{5}{\sqrt{39}} < 1$,

故 $\{x^{(k)}\}$ 收敛, 计算结果如表 4.1-3 所示,

表 4.1-3

k	0	1	2	3	4	***
$x_1^{(k)}$	1	0,916290731	1,005052539	1,021642891	1.003980635	
$x_2^{(k)}$	-1.5	-1.732050808	-I.777754565	-1,729123881	-1.719373666	***

若将原方程组化为等价方程组

$$\begin{cases} x_1 = \sqrt{4 - x_2^2}, \\ x_2 = 1 - e^{x_1}, \end{cases}$$

则由于迭代函数的 Jacobi 矩阵是

$$\begin{bmatrix} 0 & \frac{-x_2}{\sqrt{4-x_2^2}} \\ -e^{x_1} & 0 \end{bmatrix},$$

它在 \ddot{G} 上任一点 $[x_1,x_2]^T$ 的谱半径大于1(为什么?),所以按不动点迭代法产生的序列 $\{x^{(k)}\}$ 未必收敛.

也可以对等价方程组(4.1-13)采用 Seidel 迭代法,其迭代算式为

$$\begin{cases} x_1^{(k+1)} = \ln(1 - x_2^{(k)}), \\ x_2^{(k+1)} = -\sqrt{4 - (x_1^{(k+1)})^2}, \end{cases} k = 0, 1, 2, \dots.$$

计算结果如表 4.1-4 所示.

表 4.1-4

k	0	1	2	3	4	5
$x_1^{(k)}$	I	0, 916290731	1,021642891	1.000401584	1.004967648	1.003998714
$x_2^{(k)}$	—1.5	-1.777754565	-1,719373666	— 1, 731818891	-1,729173221	-1,729735986

对于非线性方程组(4,1-1),比较常用的构造迭代函数 $\mathbf{\Phi}(\mathbf{x})$ 的方法是线性化方法, 即若 $f(x) = [f_1(x), f_2(x), \dots, f_n(x)]^T$ 在点 $x^{(i)}$ 处可微,把各个 $f_i(x)(i=1,2,\dots,n)$ 在

点 $\mathbf{x}^{(k)}$ 处展开,用线性函数 $f_i(\mathbf{x}^{(k)}) + \sum_{i=1}^n \frac{\partial f_i(\mathbf{x}^{(k)})}{\partial x_i} (x_i - x_j^{(k)})$ 近似替代 $f_i(\mathbf{x})$,得到线性

 $f_i(\mathbf{x}^{(k)}) + \sum_{i=1}^n \frac{\partial f_i(\mathbf{x}^{(k)})}{\partial x_i} (x_i - x_j^{(k)}) = 0 \quad (i = 1, 2, \dots, n).$

其矩阵形式是

$$f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)}) = 0,$$
 (4. 2-1)

其中 $Df(x^{(k)})$ 是 f(x)在点 $x^{(k)}$ 处的 Jacobi 矩阵.

当 $Df(x^{(k)})$ 可逆时,用(4.2-1)式的解作为非线性方程组(4.1-1)的第 k+1 次近似 $\mathbf{R} \mathbf{x}^{(k+1)}$,即 $x^{(k+1)} = x^{(k)} - [Df(x^{(k)})]^{-1}f(x^{(k)}).$ (4.2-2)

(4.2-2)式是一个迭代算式,称为解方程组(4.1-1)的 Newton 迭代公式. 因此, Newton 法是逐步线性化方法的典型代表。

从(4, 2-2)式不难看出, Newton 法的迭代函数是 $\Phi(x) = x - [Df(x)]^{-1}f(x)$.

但是,由于求逆矩阵比较麻烦,所以对于多元非线性方程组,一般直接解线性方程组 $Df(x^{(k)})\Delta x^{(k)} = -f(x^{(k)})$ 求得 $\Delta x^{(k)} = x^{(k+1)} - x^{(k)}$. 从而实用的 Newton 迭代公式为

$$\begin{cases} Df(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} = -f(\mathbf{x}^{(k)}), \\ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}, \end{cases} k = 0, 1, \dots.$$
 (4. 2-3)

特别地,对于一元非线性方程 f(x)=0 来说,(4.2-1)式简化为

$$f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) = 0,$$

因而(4.2-2)式相应地简化为

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}, \qquad (4.2-4)$$

其迭代函数为

$$\varphi(x) = x - \frac{f(x)}{f'(x)}.$$
 (4.2-5)

若 x^* 是 f(x) 的 单 重 零 点, 即 $f(x^*) = 0$, $f'(x^*) \neq 0$, 那 么, 由 于 $\varphi'(x^*) =$

$$\frac{f(x^*)f''(x^*)}{[f'(x^*)]^2} = 0, \varphi''(x^*) = \frac{f''(x^*)}{f'(x^*)}$$
一般不为零,所以 Newton 法是局部二阶收敛的.

例1 用 Newton 法求非线性方程 $f(x)=xe^x-1=0$ 在(0,1)内的根,取 $x^{(0)}=0.5$.

解 因 $f'(x) = (1+x)e^{x}$,故由(4.2-4)式得

$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)} \cdot e^{x^{(k)}} - 1}{(1 + x^{(k)})e^{x^{(k)}}}, \quad k = 0, 1, \cdots.$$

从 $x^{(0)} = 0.5$ 出发,计算结果如表 4.2-1 所示.

表 4.2-1

k	0	1	2	3	4
x (k)	0, 5	0,571020439	0.567155568	0.56714329	0, 56714329

尽管 $x^{(0)}$ 是很粗略的,但 $x^{(3)}$ 已有八位有效数字. 可见 Newton 法收敛是相当快的.

当 x^* 是 f(x) = 0 的重根时,不妨设为 m 重根,这时 $f(x) = (x - x^*)^m g(x)$,且 $g(x^*) \neq 0$,其中 $m \geq 2$.

由于 $f'(x) = m(x-x^*)^{m-1}g(x) + (x-x^*)^m g'(x)$, 所以若令 $x = x^* + h$,则由 (4.2-5)式及 $x^* = \varphi(x^*)$ 得

$$\varphi(x^* + h) = x^* + h - \frac{h'''g(x^* + h)}{mh'''^{-1}g(x^* + h) + h'''g'(x^* + h)}$$

$$= \varphi(x^*) + h - \frac{h'''g(x^* + h)}{mh'''^{-1}g(x^* + h) + h'''g'(x^* + h)}.$$

因此

$$\varphi'(x^*) = \lim_{h \to 0} \frac{\varphi(x^* + h) - \varphi(x^*)}{h} = \lim_{h \to 0} \left(1 - \frac{h^{m-1}g(x^* + h)}{mh^{m-1}g(x^* + h) + h^mg'(x^* + h)} \right)$$
$$= 1 - \frac{1}{m}.$$

当 $m \ge 2$ 时, $\varphi'(x^*) \ne 0$ 但 $|\varphi'(x^*)| < 1$,故 Newton 法是一阶收敛的. 容易看出,这时,若取 $\varphi(x) = x - m \frac{f(x)}{f'(x)}$,则从上述分析可知 $\varphi'(x^*) = 0$. 因此,若预先知道 x^* 的重数

m,则可将(4.2-4)式修改为

$$x^{(k+1)} = x^{(k)} - m \frac{f(x^{(k)})}{f'(x^{(k)})}. \tag{4.2-6}$$

则由此产生的序列{x(k)}是二阶收敛的.

另外一个修改方法是,令 $\mu(x) = \frac{f(x)}{f'(x)}$,那么,若 x^* 是 f(x) 的 m 重零点,则因 x^* 是 $\mu(x)$ 的单重零点,故将 Newton 法应用于 $\mu(x)$,得

$$x^{(k+1)} = x^{(k)} - \frac{\mu(x^{(k)})}{\mu'(x^{(k)})} = x^{(k)} - \frac{f(x^{(k)})f'(x^{(k)})}{[f'(x^{(k)})]^2 - f(x^{(k)})f''(x^{(k)})}. \tag{4.2-7}$$

它所产生的序列是二阶收敛的.

例 2 $\sqrt{2}$ 是方程 $f(x) = x^4 - 4x^2 + 4 = 0$ 的二重根,用下列三种方法求解.

(1) 用 Newton 法求解
$$x^{(k+1)} = x^{(k)} - \frac{(x^{(k)})^2 - 2}{4x^{(k)}};$$

(2) 用
$$m=2$$
 时(4.2-6)式给出的方法求解 $x^{(k+1)}=x^{(k)}-\frac{(x^{(k)})^2-2}{2x^{(k)}}$;

(3) 用(4.2-7)式所确定的方法求解
$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)}[(x^{(k)})^2 - 2]}{(x^{(k)})^2 + 2}$$
.

三种方法均取 $x_0 = 1.5$, 计算结果如表 4.2-2 所示.

表 4.2-2

方法 k	0	1	2	3
方法 1	1, 5	1, 45833333	1.436607143	1.425497619
方法 2	1.5	1,41666667	1, 414215686	1,414213562
方法 3	1, 5	1,411764706	1,414211438	1,414213562

经过三次迭代,用方法 2 和方法 3 都达到了 10⁻⁹ 的精度. 但由于方法 1 是一阶收敛的,所以要进行约 30 次迭代才能得到与方法 2、方法 3 相同的结果. ■

下面讨论 Newton 法迭代公式(4.2-2)产生的序列 $\{x^{(k)}\}$ 的局部收敛性及其收敛速度.

定理 4. 2-1 设 $x^{(*)}$ 是 f(x) 的零点,f(x) 在 x^* 的某个邻域 N 内二次连续可微,且 $Df(x^*)$ 可逆,则存在闭球 $S=\{x\mid \|x-x^*\| \le \delta, \delta>0\}$ $\subset N$,由 S 内任一点 $x^{(0)}$ 出发,按 公式 (4. 2-2) 产生的序列 $\{x^{(k)}\}$ 被包含在 S 内,且有 $\|x^{(k+1)}-x^*\| \le C\|x^{(k)}-x^*\|^2$,其 中 C 是与 k 无关的正常数.

证 由于 Df(x)在 x^* 处连续,且 $Df(x^*)$ 可逆,故存在 $\delta > 0$,使 Df(x)在 $S = \{x \mid ||x-x^*|| \leq \delta\} \subset N$ 上可逆,并且 f(x)在 S 上二次连续可微.

由于 $f(x^*)=0$, 故若 $x^{(k)} \in S$, 则有

$$\begin{aligned} x^{(k+1)} - x^* &= x^{(k)} - x^* - [Df(x^{(k)})]^{-1} [f(x^{(k)}) - f(x^*)] \\ &= [Df(x^{(k)})]^{-1} [f(x^*) - f(x^{(k)}) + Df(x^{(k)}) (x^{(k)} - x^*)], \end{aligned}$$

从而

$$\| \mathbf{x}^{(k+1)} - \mathbf{x}^* \| \leq \| [Df(\mathbf{x}^{(k)})]^{-1} \| \| f(\mathbf{x}^*) - f(\mathbf{x}^{(k)}) + Df(\mathbf{x}^{(k)}) (\mathbf{x}^{(k)} - \mathbf{x}^*) \|$$

$$\leq \max_{0 \leq t \leq 1} \| D^2 f(\mathbf{x}^* + t(\mathbf{x}^{(k)} - \mathbf{x}^*)) \| \cdot \| [Df(\mathbf{x}^{(k)})]^{-1} \| \| \mathbf{x}^{(k)} - \mathbf{x}^* \|^2.$$

(4.2-8)

由于 f(x)在 S 上二次连续可微, $[Df(x)]^{-1}$ 在 S 上连续,所以存在常数 M 和 C,使 $\max_{0 \le t \le 1} \|D^2 f(x^* + t(x^{(k)} - x^*))\| \le M$, $\|[Df(x^{(k)})]^{-1}\| \le \frac{C}{M}$,

其中 M 和 C 与 k 无关, 从而由(4, 2-8)式得

$$\parallel \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^* \parallel \leqslant C \parallel \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \parallel^2.$$

只要 δ 充分小,使 $C\delta \leq 1$,则由上式知 $\| x^{(1)} - x^* \| \leq C \| x^{(0)} - x^* \|^2 \leq C\delta^2 \leq \delta$,故 $x^{(1)} \in S$,于是由归纳法可知,对一切正整数 k,均有 $x^{(k)} \in S$.

因此,Newton 法是局部二阶收敛的.

例 3 用 Newton 法求非线性方程组

$$\begin{cases} x_1 + 2x_2 - 3 = 0, \\ 2x_1^2 + x_2^2 - 5 = 0 \end{cases}$$

在点(1.5,1)附近的根.

解
$$f(x) = \begin{bmatrix} x_1 + 2x_2 - 3 \\ 2x_1^2 + x_2^2 - 5 \end{bmatrix}$$
, $Df(x) = \begin{bmatrix} 1 & 2 \\ 4x_1 & 2x_2 \end{bmatrix}$.

接(4.2-3)式有
$$\left\{ \begin{bmatrix} 1 & 2 \\ 4x_1^{(k)} & 2x^{(k)} \end{bmatrix} \Delta x^{(k)} = -\begin{bmatrix} x_1^{(k)} + 2x_2^{(k)} - 3 \\ 2(x_1^{(k)})^2 + (x_2^{(k)})^2 - 5 \end{bmatrix}, \right.$$

$$\left\{ x^{(k+1)} = x^{(k)} + \Delta x^{(k)}. \right.$$

从 $x^{(0)} = [1.5,1]^T$ 出发,计算结果如表 4.2-3 所示.

表 4.2-3

k	0	I	2	3	4
x ^(k)	$\begin{bmatrix} 1, 5 \\ 1 \end{bmatrix}$	[1,5000 0,75000]	[1, 4881] [0, 75595]	[1, 4880 0, 75598]	[1.4880 0.75598]

从例 3 看出,Newton 法收敛很快,因为它具有二阶收敛速度,但要求 $x^{(i)}$ 充分靠近 x^* 才能保证它的收敛性. 如果初始向量 $x^{(i)}$ 选择不当,则可能不收敛. 再则,Newton 法每一步都要计算 Jacobi 矩阵 $Df(x^{(k)})$ 和解线性方程组 $Df(x^{(k)})$ $\Delta x^{(k)} = -f(x^{(k)})$,并且当 $Df(x^{(k)})$ 不可逆时,Newton 法无法继续迭代. 针对它的这些缺点,人们提出各种改进办法. 我们将在 4.3 节讨论的变尺度法就是为了解决上述后两个缺点的. 这里讲一下带松弛 因子的 Newton 法,即所谓 Newton 下山法.

为了改善对初始值的要求,在迭代公式(4.2-2)或(4.2-3)中引入松弛因子 ω_k ,这时迭代公式为

$$x^{(k+1)} = x^{(k)} - \omega_k [Df(x^{(k)})]^{-1} f(x^{(k)})$$

 $Df(\mathbf{x}^{(k)})\Delta\mathbf{x}^{(k)} = -\omega_k f(\mathbf{x}^{(k)}). \tag{4.2-9}$

松弛因子 ω 的选取应满足

或

$$|| f(x^{(k+1)}) || < || f(x^{(k)}) ||,$$
 (4.2-10)

即 || f(x) || (例如 $f^{T}(x)f(x)$)是严格单调减小的,且 $\{x^{(k)}\}$ 收敛于 f(x)的零点.

通常选取 ω_k 的办法是,依次令 $\omega_k = 1, \frac{1}{2}, \frac{1}{2^2}, \cdots$ 进行试探,直至(4.2-10)式满足,再进行下一次迭代,如果这样选不到满足(4.2-10)式的 ω_k ,则 Newton 下山法失败.

另一种选取 ω κ 的办法是进行一维搜索,即求

$$\min_{\boldsymbol{\omega}>0} \| f[\boldsymbol{x}^{(k)} - \boldsymbol{\omega}(Df(\boldsymbol{x}^{(k)}))^{-1} f(\boldsymbol{x}^{(k)})] \|$$

的最小值点 ω^* . 这样迫使序列{ $\|f(x^{(k)})\|$ }严格单调下降,从而从某个 $x^{(k)}$ 开始进入 x^* 的附近.

例 4 对于非线性方程组

$$\begin{cases} f_1(x_1,x_2) = x_1^3 - x_2^2 - 1 = 0, \\ f_2(x_1,x_2) = x_1 x_2^3 - x_2 - 4 = 0, \end{cases}$$

取 $\mathbf{x}^{(0)} = [0.5,1]^{\mathrm{T}}$,若用 Newton 法,得

$$\begin{bmatrix} x_{1}^{(1)} \\ x_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} x_{1}^{(0)} \\ x_{2}^{(0)} \end{bmatrix} - \begin{bmatrix} Df(\mathbf{x}^{(0)}) \end{bmatrix}^{-1} \begin{bmatrix} f_{1}(x_{1}^{(0)}, x_{2}^{(0)}) \\ f_{2}(x_{1}^{(0)}, x_{2}^{(0)}) \end{bmatrix} \\
= \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} - \begin{bmatrix} 0.210526315 & 0.842105263 \\ -0.421052631 & 0.315789473 \end{bmatrix} \begin{bmatrix} -1.875 \\ -4.5 \end{bmatrix} = \begin{bmatrix} 4.684210524 \\ 1.631578945 \end{bmatrix}, \\
f_{1}(x_{1}^{(1)}, x_{2}^{(1)}) = 99.11809287, \quad f_{2}(x_{1}^{(1)}, x_{2}^{(1)}) = -1.288234453, \\
\parallel f(\mathbf{x}^{(1)}) \parallel_{\infty} > \parallel f(\mathbf{x}^{(0)}) \parallel_{\infty},$$

可见迭代下去不会收敛,

Newton迭代法及其变形

现用 Newton 下山法,取 $\omega_0 = 0.25$,则由迭代公式(4.2-9)得,

Newton 法的算法

用 $|| f(x^{(k)})|| < \epsilon$ 或 $|| \Delta x^{(k)}|| / || x^{(k)}|| < \epsilon$ 作为终止迭代的准则,最大迭代次数为 $N_{
m max}$.

- 1) 对于 $k=0.1,2,\cdots,N_{max}$,做①~⑥:
- ① 计算 $f(x^{(0)}) \Rightarrow f_0$.
- ② 若 $||f_0|| <_{\varepsilon}$,则 $x^{(0)} \Rightarrow x$,输出信息"||f|| 已很小",停机.
- ③ 计算 $Df(x^{(0)}) \Rightarrow Df_0$.
- ④ 解线性方程组

$$Df_0 \Delta x^{(0)} = -f_0.$$

- ⑤ 若 $\| \Delta x^{(0)} \| < \epsilon \| x^{(0)} \|$,则 $x^{(0)} + \Delta x^{(0)} \Rightarrow x$,输出信息" $\| \Delta x^{(0)} \|$ 已足够小",停机.
- 2) 输出信息"N_{max}次迭代后仍不收敛".

 $x \in \mathbb{R}^n$

4.3 无约束优化问题的下降迭代法

现在讨论求函数 F(x)的最小值问题,即确定 $x^* \in \mathbb{R}^n$,使 $F(x^*) = \min_{x \in \mathbb{R}^n} F(x)$,记 $x^* = \min_{x \in \mathbb{R}^n} F(x)$.

设 $F(\cdot)$ 具有二阶连续偏导数,用 g(x) 记 F(x) 的梯度, H(x) 记 F(x) 的二阶偏导数所组成 $n \times n$ 矩阵,即 H(x) 是 F(x) 的 Hesse 矩阵:

$$egin{align*} egin{align*} egin{align*}$$

所谓下降迭代法是指,给出初始点 $x^{(0)}$,构造使 F(x)逐步严格下降的迭代算式,即要求

$$F(x^{(k+1)}) < F(x^{(k)}), k = 0,1,\dots$$

具体地说,设已经迭代到点 $x^{(k)}$,那么下一次迭代将有两种情况之一发生,要么从 $x^{(k)}$ 出发沿任何方向移动,F(x)都不再严格减小,这时按极小值点的定义, $x^{(k)}$ 是局部最小值点,迭代终止;要么至少有一个方向使 F(x) 严格减小.这时,从这些方向中选择一个下降方向 p_k ,沿这个方向适当地移动一步,即在射线 $x=x^{(k)}+tp_k(t>0)$ 上适当地确定一个点

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t_k \mathbf{p}_k \tag{4.3-1}$$

使 $F(\mathbf{x}^{(k+1)}) = F(\mathbf{x}^{(k)} + t_k \mathbf{p}_k) < F(\mathbf{x}^{(k)}).$ (4.3-2)

这样就完成了第 k+1 次迭代,其中 t_k 称为步长因子.

4.3 无约束优化问题的下降迭代法

如果这种下降迭代法所产生的序列 $\{x^{(k)}\}$ 收敛于 x^* ,则这个方法是有效的,否则是无效的.

在迭代过程中,有两个规则需要确定,一是下降方向 p_k 的选取,一是步长因子 t_k 的选取.不同的规则对应不同的方法.

由于当 t 充分小时, $F(\mathbf{x}^{(k)}+t\mathbf{p}_k)=F(\mathbf{x}^{(k)})+t[\nabla F(\mathbf{x}^{(k)})]^{\mathsf{T}}\mathbf{p}_k+o(t)$,其中 o(t)表示与 t 相比是高阶小量,所以由(4.3-2)知

$$\boldsymbol{g}_k^{\mathrm{T}} \boldsymbol{p}_k < 0 \,, \tag{4.3-3}$$

这里记 $g_k = \nabla F(x^{(k)})$. (4.3-3)式为下降方向应满足的条件.

步长因子 t_k 可以沿射线 $\mathbf{x} = \mathbf{x}^{(k)} + t\mathbf{p}_k(t > 0)$ 进行一维搜索来确定. 例如选取这样的 t_k , 使

$$t_k = \arg\min_{t>0} F(\mathbf{x}^{(k)} + t\mathbf{p}_k). \tag{4.3-4}$$

又如"成功-失败"试探法,一开始取定一个步长因子 λ ,比较 $x^{(k)}+\lambda p_k$ 与 $x^{(k)}$ 处的函数值,若 $F(x^{(k)}+\lambda p_k)$ < $F(x^{(k)})$,则"成功", $x^{(k+1)}=x^{(k)}+\lambda p_k$;否则"失败",将步长因子 λ 减半,再比较 $x^{(k)}+\frac{\lambda}{2}p_k$ 与 $x^{(k)}$ 处的函数值,若 $F(x^{(k)}+\frac{\lambda}{2}p_k)$ < $F(x^{(k)})$,则"成功", $x^{(k+1)}=x^{(k)}+\frac{\lambda}{2}p_k$,否则将步长因子减半为 $x^{(k)}+\frac{\lambda}{2}p_k$,否则将步长因子减少。

(4.3-4)式中的步长因子称为最佳步长因子,

无约束优化问题的下降迭代法

4.3.1 最速下降法

这时,取 $p_k = -g_k$,即下降方向取为负梯度方向,由于F(x)在 $x^{(k)}$ 的小邻域内沿负梯 度方向下降最快,所以称为最速下降法。

最速下降法的迭代公式(以选用最佳步长因子为例)是

$$\begin{cases}
 t_k = \arg \min_{t>0} F(\mathbf{x}^{(k)} - t\mathbf{g}_k), \\
 \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - t_k \mathbf{g}_k,
\end{cases}$$

$$(4.3-5)$$

特别地,将最速下降法应用于二次函数 $F(x) = \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$,

其中A 是 n 阶对称正定矩阵,b 是 n 维常数向量,c 为常数,那么可以得到 t_{t} 的显式表达 式.

事实上,由于
$$g(x) = \nabla F(x) = Ax + b$$
,故有 $g_k = Ax^{(k)} + b$, $g_{k+1} = Ax^{(k+1)} + b = A(x^{(k)} - t_k g_k) + b = g_k - t_k A g_k$,

其中 tk 是最佳步长因子. 另一方面,最佳步长因子 tk 又应满足

$$\frac{\mathrm{d}}{\mathrm{d}t}F(\boldsymbol{x}^{(k)}-t_k\boldsymbol{g}_k)=-\left[\nabla F(\boldsymbol{x}^{(k)}-t_k\boldsymbol{g}_k)\right]^{\mathrm{T}}\boldsymbol{g}_k=-\boldsymbol{g}_{k+1}^{\mathrm{T}}\boldsymbol{g}_k=0. \tag{4.3-7}$$

 $(\mathbf{g}_k - t_k \mathbf{A} \mathbf{g}_k)^{\mathrm{T}} \mathbf{g}_k = \mathbf{g}_k^{\mathrm{T}} \mathbf{g}_k - t_k \mathbf{g}_k^{\mathrm{T}} \mathbf{A} \mathbf{g}_k = \mathbf{g}_k^{\mathrm{T}} \mathbf{g}_k - t_k \mathbf{g}_k^{\mathrm{T}} \mathbf{A} \mathbf{g}_k = 0$, 因而

由此即得
$$t_k = \frac{\mathbf{g}_k^{\mathsf{T}} \mathbf{g}_k}{\mathbf{g}_k^{\mathsf{T}} \mathbf{A} \mathbf{g}_k}. \tag{4.3-8}$$

于是,对于二次函数(4.3-6),最速下降法的迭代公式为

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \frac{\mathbf{g}_k^{\mathrm{T}} \mathbf{g}_k}{\mathbf{g}_k^{\mathrm{T}} \mathbf{A} \mathbf{g}_k} \mathbf{g}_k, \quad k = 0.1.\dots. \tag{4.3-9}$$

大學 信息学院 養 棒 NIVERSITY School of Informatics D. Weet Lawy

4.3 无约束优化问题的下降迭代法

最速下降法算法

 ε 是预先给定的终止限,以 $\|g(x^{(k)})\| < \varepsilon$ 为终止准则.

- 1) $x^{(0)} \Rightarrow x$.
- 2) 计算 F(x)和 g(x).
- 3) 若 $\| g(x) \| < \varepsilon$, 则输出 x 和 F(x), 停机; 否则做 4).
- 4) 求最佳步长因子 t*,使

$$F(\mathbf{x}-t^*\mathbf{g}(\mathbf{x}))=\min_{t>0}F(\mathbf{x}-t\mathbf{g}(\mathbf{x})).$$

5) $x-t^*g(x) \Rightarrow x, 转 2$).

由于最优步长因子 t,应满足(4.3-7)式,亦即

$$\boldsymbol{g}_{k+1}^{\mathrm{T}}\boldsymbol{g}_{k}=0$$
,

所以后一次下降方向 p_{k+1} 与前一次下降方向 p_k 总是互相垂直的,称之为锯齿状下降,如图 4.3-1 所示.

从图 4.3-1 可以看出,在远离极小点的地方,每次迭代可能使函数值有较多的下降,可是在接近极小点的地方,由于锯齿状下降使每次迭代移动的距离缩短,从而收敛速度变慢,越接近极小点,收敛速度就越慢.这是最速下降法的一个严重的弱点.

图 4.3-1

原用大学 XIAMEN UNIVERSITY

无约束优化问题的下降迭代法

用最速下降法求解极值问题

$$\min_{x_1,x_2} F(x_1,x_2) = 2x_1^2 + 2x_1x_2 + 5x_2^2,$$

取 $\mathbf{x}^{(0)} = [1, -1]^{\mathsf{T}}$ (准确解 $\mathbf{x}^* = [0, 0]^{\mathsf{T}}, F(\mathbf{x}^*) = 0$).

 $\mathbf{F}(\mathbf{x})$ 是二次函数,且

$$g(x) = \begin{bmatrix} 4x_1 + 2x_2 \\ 2x_1 + 10x_2 \end{bmatrix}, \quad A = \begin{bmatrix} 4 & 2 \\ 2 & 10 \end{bmatrix}.$$

从 $\mathbf{x}^{(0)} = [1, -1]^{T}$ 出发,前四次迭代的结果如表 4.3-1 所示.

表 4.3-1

k	0	1	2	3	4
x (k)	[1-,1]	$[0,7702,-0,0810]^{T}$	$[0.21890.2189]^{T}$	[0,16860,0177] ^T	[0,048,-0,0479] ^T
g k	[2,-8]	[2,9189,0,7297] ^T	$[0,4378,-1,7513]^{T}$	[0.639,0,1602] ^T	
Ag_k	[-8,-76]	$[13, 1351, 13, 1352]^{T}$	$[-1,7513,-16,637]^{T}$	[0.8764,2.88] ^T	
l_k	0,11486	0,18888	0, 11486	0. 1887	
$F(x^{(k)})$	5	1, 0945	0, 2396	0.05246	0.01148

4.3 无约束优化问题的下降迭代法

4.3.2 变尺度法

上面已经说过,在接近极小值点的地方,最速下降方向并不是理想的下降方向.为了改善收敛速度,考虑在极小值点 x^* 处将F(x)按 Taylor公式展开,取到二阶项,即

$$F(x) \approx F(x^*) + [g(x^*)]^T (x - x^*) + \frac{1}{2} (x - x^*)^T H(x^*) (x - x^*),$$

那么,由于 $g(x^*)=0$,所以有

$$F(x) \approx F(x^*) + \frac{1}{2}(x - x^*)^{\mathrm{T}} H(x^*)(x - x^*),$$

$$\nabla F(x) = g(x) \approx H(x^*)(x-x^*).$$

如果 Hesse 矩阵 $H(x^*)$ 正定,则令 $H(x^*)(x-x^*)=g(x)$,由此解得

$$x^* = x - [H(x^*)]^{-1}g(x).$$
 (4.3-10)

记 $B = [H(x^*)]^{-1}$, (4.3-10) 式表明方阵 B 作用于-g(x) 使最速下降方向-g(x)变为直指极小值点 x^* . 这就启发我们寻找这样的下降迭代算法,它使用-Bg(x)形式的搜索方向. 为保证-Bg(x)是下降方向,只需 $[g(x)]^T[-Bg(x)] = -[g(x)]^TBg(x) < 0$,即 $[g(x)]^TBg(x) > 0$. 因此,若 B 是对称正定矩阵,则-Bg(x)必为下降方向. 于是,一般的迭代公式是

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - t_k \mathbf{B}_k \mathbf{g}_k, \quad k = 0, 1, \cdots,$$
 (4.3-11)

其中步长因子 t_k 可以通过一维搜索来确定. 容易看出, 当 $B_k = I$ 时, (4.3-11) 式就是最速下降法的迭代公式.

4.3 无约束优化问题的下降迭代法

一种选择 B_k 的方法是,取 B_k 为F(x)在点 $x^{(k)}$ 的 Hesse 矩阵 $H(x^{(k)})$ 的逆矩阵,即 B_k = $[H(x^{(k)})]^{-1}$,从而得到迭代公式

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - t_k [\mathbf{H}(\mathbf{x}^{(k)})]^{-1} \mathbf{g}_k, \quad k = 0, 1, \cdots.$$
 (4. 3-12)

这就是 4.2 节所讲的 Newton 下山法.

在 4. 2 节曾指出,F(x)的 Hessen 矩阵 H(x)(即 g(x))的 Jacobi 矩阵 Dg(x))的逆矩阵可能在某些点处不存在,即使存在,计算工作量也很大. 解决这个问题的一个实际可行的办法是,从一个近似于 $[H(x^{(k)})]^{-1}$ 的方阵出发,每次迭代时对它进行修正.

由于 $[g(x)]^T p(x) = [g(x)]^T A(A^{-1} p(x))$,这里 A 为对称正定矩阵,所以如果用 $\|x\|_A = \sqrt{x^T A x}$ 作为x 的范数(尺度)时,则F(x) 按 $\|\cdot\|_A$ 意义下的最速下降方向为 $-A^{-1} g(x)$,因为 p(x) = -g(x) 是最速下降方向. 因此,当 F(x) 在点 $x^{(k)}$ 处的 Hessen 矩阵 $H(x^{(k)})$ 正定时, $\|\cdot\|_{H_k}$ 意义下的最速下降方向是 $-H_k^{-1} g_k$,这里 $H_k = H(x^{(k)})$. 于是,当用对称正定矩阵 B_k 近似 H_k^{-1} 时,相当于用 B_k^{-1} 近似 H_k ,从而 F(x) 在点 $x^{(k)}$ 处按范数 $\|\cdot\|_{B_k^{-1}}$ 意义下的最速下降方向是 $-B_k g_k$. 如果每次迭代都以这种最速下降方向作为搜索方向,并且逐次改变尺度矩阵,那么就可以构造出如下变尺度法. "变尺度"一词也源于此.

讨论对 B_k 附加的条件.

- 1) 为使搜索方向 $p_k = -B_k g_k$ 是下降方向,如上所述, B_k 应为对称正定矩阵.
- 2) 从 B_k 到 B_{k+1} 应该具有简单形式, 一般采用对 B_k 进行修正来得到 B_{k+1} . 令 ΔB_k 为修正方阵,则有 $B_{k+1} = B_k + \Delta B_k$. (4.3-13)

无约束优化问题的下降迭代法

3) B_{t+1} 满足拟 Newton 条件. 所谓拟 Newton 条件是通过下述考虑得出的:

如果 $F(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$,那么由 $g_{k} = Ax^{(k)} + b$ 和 $g_{k+1} = Ax^{(k+1)} + b$ 得 $g_{k+1} - g_{k}$

$$=A(x^{(k+1)}-x^{(k)})$$
,从而

$$x^{(k+1)} - x^{(k)} = A^{-1}(g_{k+1} - g_k).$$

因此,要使 B_{k+1} 很好地近似 A^{-1} ,则 B_{k+1} 应满足

$$\boldsymbol{B}_{k+1}(\boldsymbol{g}_{k+1}-\boldsymbol{g}_k) = \boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}. \tag{4.3-14}$$

为了推导变尺度法的迭代公式时方便,记

$$\mathbf{y}_k = \mathbf{g}_{k+1} - \mathbf{g}_k, \quad \mathbf{s}_k = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)},$$
 (4.3-15)

则(4.3-14)式可改写成

$$\mathbf{B}_{k+1}\mathbf{y}_{k} = \mathbf{s}_{k}. \tag{4.3-14'}$$

将(4.3-13)式代入(4.3-14')式,得到修正矩阵 ΔB_k 必须满足的方程

$$(\Delta \boldsymbol{B}_k) \, \boldsymbol{y}_k = \boldsymbol{s}_k - \boldsymbol{B}_k \boldsymbol{y}_k. \tag{4.3-16}$$

根据(4.3-16)式的形式,令

$$\Delta \boldsymbol{B}_k = \boldsymbol{s}_k \boldsymbol{v}_k^{\mathrm{T}} - \boldsymbol{B}_k \boldsymbol{y}_k \boldsymbol{w}_k^{\mathrm{T}}, \qquad (4.3-17)$$

其中 v₄、w₄ 是待定向量,它们的不同选取便可得到不同的算法,但都是秩 1 的算法,因为 ΔB_i 的秩为 1.

将(4.3-17)式代入(4.3-16)式,得

$$(\mathbf{v}_k^{\mathrm{T}}\mathbf{y}_k)\mathbf{s}_k - (\mathbf{w}_k^{\mathrm{T}}\mathbf{y}_k)\mathbf{B}_k\mathbf{y}_k = \mathbf{s}_k - \mathbf{B}_k\mathbf{y}_k. \tag{4.3-18}$$

4.3 无约束优化问题的下降迭代法

考虑到 ΔB_k 应是对称矩阵的要求,取

$$\begin{cases} v_k^{\mathrm{T}} = \frac{(1 + \beta \mathbf{y}_k^{\mathrm{T}} \mathbf{B}_k \mathbf{y}_k) \mathbf{s}_k^{\mathrm{T}}}{\mathbf{s}_k^{\mathrm{T}} \mathbf{y}_k} - \beta \mathbf{y}_k^{\mathrm{T}} \mathbf{B}_k, \\ w_k^{\mathrm{T}} = \frac{(1 - \beta \mathbf{s}_k^{\mathrm{T}} \mathbf{y}_k) \mathbf{y}_k^{\mathrm{T}} \mathbf{B}_k}{\mathbf{y}_k^{\mathrm{T}} \mathbf{B}_k \mathbf{y}_k} + \beta \mathbf{s}_k^{\mathrm{T}}. \end{cases}$$

$$(4.3-19)$$

其中 β 是参数. 将(4.3-19)式代入(4.3-18)式的左边, 得

$$(\mathbf{v}_{k}^{\mathrm{T}}\mathbf{y}_{k})\mathbf{s}_{k} - (\mathbf{w}_{k}^{\mathrm{T}}\mathbf{y}_{k})\mathbf{B}_{k}\mathbf{y}_{k} = [(1 + \beta\mathbf{y}_{k}^{\mathrm{T}}\mathbf{B}_{k}\mathbf{y}_{k}) - \beta\mathbf{y}_{k}^{\mathrm{T}}\mathbf{B}_{k}\mathbf{y}_{k}]\mathbf{s}_{k} - [(1 - \beta\mathbf{s}_{k}^{\mathrm{T}}\mathbf{y}_{k}) + \beta\mathbf{s}_{k}^{\mathrm{T}}\mathbf{y}_{k}]\mathbf{B}_{k}\mathbf{y}_{k} = \mathbf{s}_{k} - \mathbf{B}_{k}\mathbf{y}_{k},$$

故(4.3-18)式成立.而将(4.3-19)式代入(4.3-17)右边,得

$$\Delta \boldsymbol{B}_{k} = \frac{\boldsymbol{s}_{k} (1 + \beta \boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{B}_{k} \boldsymbol{y}_{k}) \boldsymbol{s}_{k}^{\mathsf{T}}}{\boldsymbol{s}_{k}^{\mathsf{T}} \boldsymbol{y}_{k}} - \beta \boldsymbol{s}_{k} \boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{B}_{k} - \frac{\boldsymbol{B}_{k} \boldsymbol{y}_{k} (1 - \beta \boldsymbol{s}_{k}^{\mathsf{T}} \boldsymbol{y}_{k}) \boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{B}_{k}}{\boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{B}_{k} \boldsymbol{y}_{k}} - \beta \boldsymbol{B}_{k} \boldsymbol{y}_{k} \boldsymbol{s}_{k}^{\mathsf{T}}$$

$$= (1 + \beta \boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{B} \boldsymbol{y}_{k}) \frac{\boldsymbol{s}_{k} \boldsymbol{s}_{k}^{\mathsf{T}}}{\boldsymbol{s}_{k}^{\mathsf{T}} \boldsymbol{y}_{k}} - (1 - \beta \boldsymbol{s}_{k}^{\mathsf{T}} \boldsymbol{y}_{k}) \frac{(\boldsymbol{B}_{k} \boldsymbol{y}_{k}) (\boldsymbol{B}_{k} \boldsymbol{y}_{k})^{\mathsf{T}}}{\boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{B}_{k} \boldsymbol{y}_{k}} - \beta (\boldsymbol{s}_{k} \boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{B}_{k} + (\boldsymbol{s}_{k} \boldsymbol{y}_{k}^{\mathsf{T}} \boldsymbol{B}_{k})^{\mathsf{T}}),$$

因此 ΔB_k 是对称矩阵,从而 $B_{k+1} = B_k + \Delta B_k$ 也是对称矩阵.

特别地,若取 β =0,则由(4.3-19)式得

$$\mathbf{v}_k^{\mathrm{T}} = \frac{1}{\mathbf{s}_k^{\mathrm{T}} \mathbf{y}_k} \mathbf{s}_k^{\mathrm{T}}, \quad \mathbf{w}_k^{\mathrm{T}} = \frac{1}{\mathbf{y}_k^{\mathrm{T}} \mathbf{B}_k \mathbf{y}_k} \mathbf{y}_k^{\mathrm{T}} \mathbf{B}_k,$$

因而由(4.3-17)式和(4.3-13)式得

$$\boldsymbol{B}_{k+1} = \boldsymbol{B}_k + \frac{\boldsymbol{s}_k \boldsymbol{s}_k^{\mathrm{T}}}{\boldsymbol{s}_k^{\mathrm{T}} \boldsymbol{v}_k} - \frac{\boldsymbol{B}_k \boldsymbol{y}_k \boldsymbol{y}_k^{\mathrm{T}} \boldsymbol{B}_k}{\boldsymbol{v}_k^{\mathrm{T}} \boldsymbol{B}_k \boldsymbol{v}_k}. \tag{4.3-20}$$

无约束优化问题的下降迭代法

可以证明 $^{\circ}$, B_{k+1} 是正定矩阵.

(4, 3-20)式称为 **DFP**(Davidon Fletcher Powell)方法. 一般选取 **B**。= **J.** DFP 方法是. 很有效的无约束优化方法之一,但由于计算中舍入误差的影响,特别是一维搜索不精确, 可能破坏 B_k 的正定性,从而导致算法失效.为保证 B_k 的正定性,采取重置措施,即当一维 搜索后函数值不下降时,重置 B_k 为单位矩阵,然后继续迭代,并且迭代 n+1 次后,重置初 始点和迭代矩阵,令 $x^{(0)} = x^{(n+1)}, B_0 = I$ 后重新迭代.

DFP 方法的算法

- 1) $\mathbf{x}^{(0)} \Rightarrow \mathbf{x}_1$, 计算 $F(\mathbf{x}_1) \Rightarrow F_1$, $\mathbf{g}(\mathbf{x}_1) \Rightarrow \mathbf{g}_1$.
- 2) $I \Rightarrow B, \neg g_1 \Rightarrow p, 0 \Rightarrow k$.
- 3) 一维搜索确定步长因子 t^* ,例如最优步长因子 $t^* = \arg \min F(\mathbf{x}_1 + t\mathbf{p})$.
- 4) $x_1 + t^* p \Rightarrow x_2$, 计算 $F(x_2) \Rightarrow F_2$, $g(x_2) \Rightarrow g_2$.
- 5) 若 $\| \mathbf{g}_2 \| < \epsilon$,则输出 $\mathbf{x}_2 \setminus F$,停机;否则做步 6).
- 6) 若 $||F_2|| \geqslant ||F_1||$,则 $x_2 \Rightarrow x_1, F_2 \Rightarrow F_1, g_2 \Rightarrow g_1$,转步 3);否则做步 7).
- 7) 若 k=n.则 $x_2 \Rightarrow x_1, F_2 \Rightarrow F_1.g_2 \Rightarrow g_1$, 转步 2); 否则做步 8).
- 8) 计算 $g_2-g_1 \Rightarrow y, x_2-x_1 \Rightarrow s$.
- 9) 计算 $B + \frac{ss^{T}}{s^{T}v} \frac{Byy^{T}B}{v^{T}Bv} \Rightarrow B, -Bg_{2} \Rightarrow p.$
- 10) $x_2 \Rightarrow x_1, k+1 \Rightarrow k,$ 转步 3).

4.3 无约束优化问题的下降迭代法

例2 用 DFP 方法求解

$$\min_{x_1,x_2} F(x_1,x_2) = \frac{3}{2}x_1^2 + \frac{1}{2}x_2^2 - x_1x_2 - 2x_1,$$

取 $x^{(0)} = [-2,4]^T$ (准确解是 $x_1^* = x_2^* = 1$).

解 取 $B_0 = I$,则 DFP 方法与最速下降法有相同的第 1 个迭代点 $x^{(1)}$.

$$\mathbf{g}(\mathbf{x}) = \begin{bmatrix} 3x_1 - x_2 - 2 \\ -x_1 + x_2 \end{bmatrix}, \quad \mathbf{H}(\mathbf{x}) = \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} (= \mathbf{A}),
\mathbf{x}^{(0)} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}, \quad \mathbf{g}_0 = \begin{bmatrix} -12 \\ 6 \end{bmatrix}, \quad t_0 = \frac{\mathbf{g}_0^{\mathrm{T}} \mathbf{g}_0}{\mathbf{g}_0^{\mathrm{T}} A \mathbf{g}_0} = 0.29412;
\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - t_0 \mathbf{g}_0 = \begin{bmatrix} 1.52944 \\ 2.23528 \end{bmatrix}, \quad \mathbf{g}_1 = \begin{bmatrix} 0.35304 \\ 0.70584 \end{bmatrix}.$$

以下用 DFP 法进行第二次迭代.

$$\mathbf{s}_{0} = \mathbf{x}^{(1)} - \mathbf{x}^{(0)} = \begin{bmatrix} 3.52944 \\ -1.76472 \end{bmatrix}, \quad \mathbf{y}_{0} = \mathbf{g}_{1} - \mathbf{g}_{0} = \begin{bmatrix} 12.35304 \\ -5.29416 \end{bmatrix}.$$

$$\mathbf{s}_{0}^{\mathsf{T}} \mathbf{y}_{0} = 52.94202, \quad \mathbf{y}_{0}^{\mathsf{T}} \mathbf{B}_{0} \mathbf{y}_{0} = \mathbf{y}_{0}^{\mathsf{T}} \mathbf{y}_{0} = 180.62573,$$

$$\mathbf{s}_{0} \mathbf{s}_{0}^{\mathsf{T}} = \begin{bmatrix} 12.45695 & -6.22847 \\ -6.22847 & 3.11424 \end{bmatrix},$$

$$\mathbf{B}_{0} \mathbf{y}_{0} \mathbf{y}_{0}^{\mathsf{T}} \mathbf{B}_{0} = \mathbf{y}_{0} \mathbf{y}_{0}^{\mathsf{T}} = \begin{bmatrix} 152.5976 & -65.39897 \\ -65.39897 & 28.02813 \end{bmatrix},$$

厦門大學(G) 信息学院 奏 棒 IAMEN UNIVERSITY School of Informatics D. Weekhamp

4.3 无约束优化问题的下降迭代法

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0.23529 & -0.11765 \\ -0.11765 & 0.05882 \end{bmatrix} - \begin{bmatrix} 0.84483 & -0.36207 \\ -0.36207 & 0.15517 \end{bmatrix} \\
= \begin{bmatrix} 0.39046 & 0.24442 \\ 0.24442 & 0.90365 \end{bmatrix}.$$

搜索方向为 $p_1 = -B_1 g_1 = [-0.31037, -0.72412]^T$,从而

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} - \frac{\mathbf{p}_{1}^{\mathrm{T}} \mathbf{g}_{1}}{\mathbf{p}_{1}^{\mathrm{T}} A \mathbf{p}_{1}} \mathbf{p}_{1} = \mathbf{x}^{(1)} + 1.70589 \mathbf{p}_{1} = \begin{bmatrix} 0.99998 \\ 1.00001 \end{bmatrix}.$$

比 DFP 更好的方法是 BFGS 方法,它是目前公认的很有效的变尺度法,由 Broyden, Fletcher, Goldfarb 和 Shanno 等人给出. 在(4.3-19)式中令 $\beta = \frac{1}{s_k^T y_k}$,则可得到 v_k^T 和 w_k^T 的具体表达式,并将其代入(4.3-17)式得到 ΔB_k 的表达式,再由(4.3-14)式得

$$\boldsymbol{B}_{k+1} = \boldsymbol{B}_{k} + \frac{1}{\boldsymbol{s}_{k}^{\mathrm{T}} \boldsymbol{y}_{k}} \left[\left(1 + \frac{\boldsymbol{y}_{k}^{\mathrm{T}} \boldsymbol{B}_{k} \boldsymbol{y}_{k}}{\boldsymbol{s}_{k}^{\mathrm{T}} \boldsymbol{y}_{k}} \right) \boldsymbol{s}_{k} \boldsymbol{s}_{k}^{\mathrm{T}} - \boldsymbol{B}_{k} \boldsymbol{y}_{k} \boldsymbol{s}_{k}^{\mathrm{T}} - \boldsymbol{s}_{k} \boldsymbol{y}_{k}^{\mathrm{T}} \boldsymbol{B}_{k} \right]. \tag{4.3-21}$$

由于 B_k 不易变为不可逆,所以 BFGS 方法具有较好的数值稳定性,并且对一维搜索的精确度要求不高.

大學(有)信息学院 秦 梅 VERSITY School of Informatics D. Weithung

4.3 无约束优化问题的下降迭代法

BFGS 方法的算法

- 1) $\mathbf{x}^{(0)} \Rightarrow \mathbf{x}_1$, 计算 $F(\mathbf{x}_1) \Rightarrow F_1$, $\mathbf{g}(\mathbf{x}_1) \Rightarrow \mathbf{g}_1$.
- 2) $I \Rightarrow B, -g_1 \Rightarrow p, 0 \Rightarrow k$.
- 3) 一维搜索确定步长因子 t^* ,例如最优步长因子 $t^* = \arg\min_{t > 0} F(\mathbf{x}_1 + t\mathbf{p})$.
- 4) $t^* p \Rightarrow s, x_1 + s \Rightarrow x_2$.
- 5) 计算 $F(x_2) \Rightarrow F_2, g(x_2) \Rightarrow g_2$.
- 6) 若 $\| \mathbf{g}_2 \| < \varepsilon$,则输出 $\mathbf{x}_2 \setminus F_2$,停机:否则做步 7).
- 7) 若 $||F_2|| \ge ||F_1||$,则 $x_2 \Rightarrow x_1, F_2 \Rightarrow F_1, g_2 \Rightarrow g_1$,转步 3);否则做步 8).
- 8) 若 k=n,则 $x_2 \Rightarrow x_1 \cdot F_2 \Rightarrow F_1 \cdot g_2 \Rightarrow g_1$,转步 2);否则做步 9).
- 9) 计算 $\mathbf{g}_2 \mathbf{g}_1 \Rightarrow \mathbf{y}$.
- 10) \(\dip \mathbb{B} + \frac{1}{s^T y} \Bigg[\Big(1 + \frac{y^T B y}{s^T y} \Big) s s^T B y s^T s y^T B \Big] \Rightarrow B \cdot B g_1 \Rightarrow p.
- 11) $x_2 \Rightarrow x_1, k+1 \Rightarrow k,$ 转步 3).

例 3 用 BFGS 方法求解

$$\min_{x_1,x_2} F(x_1,x_2) = x_1^2 + 4x_2^2,$$

取 $x^{(0)} = [1,1]^T$ (准确解 $x_1^* = x_2^* = 0$).

4.3 无约束优化问题的下降迭代法

解 取 $B_0 = I$,则 BFGS 方法与最速下降法有相同的第 1 个迭代点 $x^{(1)}$.

$$\mathbf{g}(\mathbf{x}) = \begin{bmatrix} 2x_1 \\ 8x_2 \end{bmatrix}, \quad \mathbf{H}(\mathbf{x}) = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix} (= \mathbf{A}).$$

$$\mathbf{x}^{(0)} = [1.1]^{\mathrm{T}}, \quad \mathbf{g}_{0} = [2.8]^{\mathrm{T}}, \quad t_{0} = \frac{\mathbf{g}_{0}^{\mathrm{T}} \mathbf{g}_{0}}{\mathbf{g}_{0}^{\mathrm{T}} \mathbf{A} \mathbf{g}_{0}} = 0.13077;$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - t_0 \mathbf{g}_0 = [0.73846, -0.04616]^{\mathrm{T}}, \quad \mathbf{g}_1 = [1.47692, -0.36928]^{\mathrm{T}}.$$

以下用 BFGS 法作第二次迭代.

$$\mathbf{s}_{0} = \mathbf{x}^{(1)} - \mathbf{x}^{(0)} = [-0.26154, -1.04616]^{T},$$

$$\mathbf{y}_{0} = \mathbf{g}_{1} - \mathbf{g}_{0} = [-0.52308, -8.36928]^{T}$$

$$\mathbf{s}_{0}^{T} \mathbf{y}_{0} = 8.89241, \quad \mathbf{y}_{0}^{T} \mathbf{B}_{0} \mathbf{y}_{0} = \mathbf{y}_{0}^{T} \mathbf{y}_{0} = 70.31846,$$

$$\mathbf{s}_{0}\mathbf{s}_{0}^{T} = \begin{bmatrix} 0.06840 & 0.27361 \\ 0.27361 & 1.09445 \end{bmatrix}, \quad \mathbf{B}_{0}\mathbf{y}_{0}\mathbf{s}_{0}^{T} = \begin{bmatrix} 0.13681 & 0.54723 \\ 2.18890 & 8.75561 \end{bmatrix},$$

$$\mathbf{s}_{0}\mathbf{y}_{0}^{T} \mathbf{B}_{0} = \begin{bmatrix} 0.13681 & 2.18890 \\ 0.54723 & 8.75561 \end{bmatrix};$$

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{8.89241} \left\{ 8.90769 \begin{bmatrix} 0.06840 & 0.27361 \\ 0.27361 & 1.09445 \end{bmatrix} - \begin{bmatrix} 0.27362 & 2.73613 \\ 2.73613 & 17.51122 \end{bmatrix} \right\} \\
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{1}{8.89241} \begin{bmatrix} 0.33567 & -0.29890 \\ -0.29890 & -7.76220 \end{bmatrix} = \begin{bmatrix} 1.03775 & -0.03361 \\ -0.03361 & 0.12710 \end{bmatrix}.$$

搜索方向
$$p_1 = -B_1 g_1 = \begin{bmatrix} -1.54509 \\ 0.09657 \end{bmatrix}$$
,从而

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} - \frac{\mathbf{p}_{1}^{T} \mathbf{g}_{1}}{\mathbf{p}_{1}^{T} A \mathbf{p}_{1}} \mathbf{p}_{1} = \mathbf{x}^{(1)} + 0.47794 \mathbf{p}_{1} = \begin{bmatrix} 0.00000 \\ -0.00001 \end{bmatrix}.$$

作业

习题 4

1. 已知方程 $x^3 - x^2 - 1 = 0$ 在 $x^{(0)} = 1.5$ 附近有根,将方程改写成:

(1)
$$x=1+\frac{1}{x^2}$$
,对应的迭代算式为 $x^{(k+1)}=1+\frac{1}{[x^{(k)}]^2}$;

(2)
$$x = \sqrt[3]{1+x^2}$$
,对应的迭代算式为 $x^{(k+1)} = \sqrt[3]{1+\frac{1}{[x^{(k)}]^2}}$;

(3)
$$x = \frac{1}{\sqrt{x-1}}$$
,对应的迭代算式为 $x^{(k+1)} = \frac{1}{\sqrt{x^{(k)}-1}}$.

判断上述各种迭代算式在1.5 附近的收敛性.

謝謝觀看!

