Capítulo 15

Ácidos e Bases

- Ácidos e Bases de Brønsted
- Propriedades Ácido-Base da Água
- pH Uma Medida de Acidez
- Força de Ácidos e de Bases
- Ácidos Fracos e Constantes de Ionização Ácida
- Bases Fracas e Constantes de Ionização Básicas
- Relação entre Constantes de Ionização de Ácidos e as Suas Bases Conjugadas
- Ácidos Dipróticos e Polipróticos
- Estrutura Molecular e Força dos Ácidos
- Propriedades Ácido-Base de Óxidos e Hidróxidos
- Ácidos e Bases de Lewis

Cópia baseadas na apresentação fornecida pelo editor e não dispensa a consulta do livro "QUÍMICA GERAL", Chang, McGraw.Hi

Ácidos

Têm um sabor azedo (o sabor do vinagre deve-se ao ácido acético; os citrinos contêm ácido cítrico).

Reagem com certos metais produzindo hidrogénio gasoso.

Reagem com carbonatos e bicarbonatos para produzir ${
m CO}_2$ gasoso.

Bases

Têm um sabor amargo.

São escorregadias ao tacto (muitos sabões contêm bases).

4.3

Calcule a concentração de iões de OH $^-$ numa solução de HCl cuja concentração de iões de hidrogénio é de 1,3 M?

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

$$[H^+] = 1,3 M$$

$$[OH^{-}] = \frac{K_w}{[H^{+}]} = \frac{1 \times 10^{-14}}{1.3} = 7.7 \times 10^{-15} M$$

15.2

15.4

pH — Uma Medida de Acidez

$$pH = -log [H^+]$$

A solução é		A 25°C	
neutra	$[H^+] = [OH^-]$	$[H^+] = 1 \times 10^{-7}$	pH = 7
ácida	$[H^+] > [OH^-]$	$[H^+] > 1 \times 10^{-7}$	pH < 7
básica	[H+] < [OH-]	$[H^+] < 1 \times 10^{-7}$	pH > 7
	рН	[H+]	

15.3

O pH da água da chuva recolhida numa dada região do nordeste dos Estados Unidos num determinado dia era de 4,82. Calcule a concentração de iões H* da água da chuva?

$$pH = -log [H^+]$$

$$[H^+] = 10^{-pH} = 10^{-4.82} = 1,5 \times 10^{-5} M$$

A concentração de iões OH $^-$ de uma amostra de sangue é 2,5 × 10 $^{-7}$ *M*. Qual é o pH do sangue?

$$pH + pOH = 14,00$$

$$pOH = -log [OH^{-}] = -log (2.5 \times 10^{-7}) = 6.60$$

$$pH = 14,00 - pOH = 14,00 - 6,60 = 7,40$$

15.3

Electrólito forte — 100% dissociação

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na+ (aq) + Cl- (aq)

Electrólito fraco — dissociação incompleta

 $CH_3COOH \longrightarrow CH_3COO^-(aq) + H^+(aq)$

Ácidos fortes são electrólitos fortes

$$HCI(aq) + H_2O(n) \longrightarrow H_3O^+(aq) + CI^-(aq)$$

$$\mathsf{HNO}_3 (\mathit{aq}) + \mathsf{H}_2 \mathsf{O} (\mathit{l}) \longrightarrow \mathsf{H}_3 \mathsf{O}^+ (\mathit{aq}) + \mathsf{NO}_3^- (\mathit{aq})$$

$$\mathsf{HCIO_4} \; (\mathit{aq}) \; + \; \mathsf{H_2O} \; (\mathit{l}) \; \longrightarrow \; \mathsf{H_3O^+} \; (\mathit{aq}) \; + \; \mathsf{CIO_4^-} \; (\mathit{aq})$$

$$H_2SO_4 (aq) + H_2O (l) \longrightarrow H_3O^+ (aq) + HSO_4^- (aq)$$

Ácidos fracos são electrólitos fracos:

HF
$$(aq) + H_2O (h) \longrightarrow H_3O^+ (aq) + F^- (aq)$$

$$HNO_2 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_2^- (aq)$$

$$HSO_4^- (aq) + H_2O (l) \longrightarrow H_3O^+ (aq) + SO_4^{2-} (aq)$$

$$H_2O(h) + H_2O(h) \longrightarrow H_3O^+(aq) + OH^-(aq)$$

NaOH (s)
$$H_2O$$
 Na+ (aq) + OH- (aq)

KOH (s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 K+ (aq) + OH- (aq)

$$Ba(OH)_2 (s) \xrightarrow{H_2O} Ba^{2+} (aq) + 2OH^{-} (aq)$$

15.4

Qual é o pH de uma solução de HF 0,5 M (a 25°C)?

$$\label{eq:hf} HF \; (aq) \; \stackrel{}{ \longrightarrow} \; H^+ \; (aq) + F^- \; (aq) \qquad K_a = \; \frac{[H^+][F^-]}{[HF]} = 7.1 \times 10^{-4}$$

Início (*M*): 0,50 0,00 0,00

Variação (M): -x + x + x

Equilíbrio (M): 0,50-x x x

$$K_a = \frac{x^2}{0.50 - x} = 7.1 \times 10^{-4}$$
 $K_a \ll 1$ $0.50 - x \approx 0.50$

$$K_a \approx \frac{x^2}{0.50} = 7.1 \times 10^{-4}$$
 $x^2 = 3.55 \times 10^{-4}$ $x = 0.019 M$

 $[H^+] = [F^-] = 0,019 M$

$$pH = -log[H^+] = 1,72$$

15.5

Quando posso usar a aproximação?

$$K_a << 1$$
 0,50 - $x \approx 0,50$

Quando x for menor que 5% do valor do qual foi subtraído.

$$x = 0.019$$
 $\frac{0.019 \ M}{0.50 \ M} \times 100\% = 3.8\%$ Menos do que 5% Aproximação ok!

Qual é o pH de uma solução 0,05 M de HF (a 25°C)?

$$K_a \approx \frac{x^2}{0.05} = 7.1 \times 10^{-4}$$
 $x = 0.006 M$

$$\frac{0,006 \ M}{0,05 \ M} \times 100\% = 12\%$$
 Mais do que 5% Aproximação **não ok!**

Deve-se resolver em ordem a x utilizando a equação quadrática ou o método das aproximações sucessivas.

15.5

Resolução de problemas de ionização de ácidos fraços:

- 1. Identificar as espécies em maior quantidade que podem afectar o pH da solução.
 - Na maioria dos casos pode ignorar a ionização da água
 - Ignore [OH -] porque é determinado por [H+].
- Exprimir as concentrações de equilibrio destas espécies em termos da concentração inicial do ácido e de uma só incógnita x, que representa a variação de concentração.
- 3. Escrever a constante de ionização ácida (K_a) em termos das concentrações de equilibrio. Resolver primeiro em ordem a x pelo método aproximado. Se a aproximação não for válida, usar a equação quadrática ou o método das aproximações sucessivas para resolver em ordem a x.
- Tendo obtido x, podemos calcular as concentrações de equilíbrio de todas as espécies e/ou o pH da solução.

15.5

15.5

Qual é o pH de um ácido monoprótico 0,122 M cujo K_a é 5,7 × 10⁻⁴?

$$HA (aq) \longrightarrow H^+ (aq) + A^- (aq)$$

Inicial (M): 0,122 0,00 0,00

Variação (M): -x +x +x

$$K_a = \frac{x^2}{0,122 - x} = 5.7 \times 10^{-4}$$
 $K_a \ll 1$ $0.122 - x \approx 0.122$

$$K_{\rm g} \approx \frac{x^2}{0.122} = 5.7 \times 10^{-4}$$
 $x^2 = 6.95 \times 10^{-6}$ $x = 0.0083 M$

$$\frac{0,0083 \ M}{0,122 \ M} \times 100\% = 6,8\%$$
 Mais do que 5% Aproximação **não ok!**

15.5

$$K_a = \frac{x^2}{0,122 - x} = 5.7 \times 10^{-4}$$
 $x^2 + 0,00057x - 6,95 \times 10^{-6} = 0$

$$ax^2 + bx + c = 0$$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x = 0.0081$$
 $x = -0.0081$

HA
$$(aq) \longrightarrow$$
 H⁺ $(aq) + A^{-}(aq)$
0,122 0,00 0,00

Equilíbrio (
$$M$$
): $0,122 - x$ x

$$[H^+] = x = 0,0081 M$$
 $pH = -log[H^+] = 2,09$

4

Propriedades Ácido-Base de Sais

Soluções Neutras:

Sais que contêm um ião de um metal alcalino ou um ião de um metal alcalino-terroso (excepto o Be²+) **e** a base conjugada de um ácido **forte** (por exemplo Cl⁻, Br⁻ e NO₃⁻).

NaCl (s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na+ (aq) + Cl- (aq)

Soluções Básicas:

Sais derivados de uma base forte e de um ácido fraco.

$$NaCH_3COOH(s) \xrightarrow{H_2O} Na^+(aq) + CH_3COO^-(aq)$$

$$CH_3COO^-$$
 (aq) + H_2O (l) \rightleftharpoons CH_3COOH (aq) \rightleftharpoons OH (aq)

15.10

15.10

Propriedades Ácido-Base de Sais

Soluções Ácidas:

Sais derivados de um ácido forte e de uma base fraca.

$$NH_4CI(s) \xrightarrow{H_2O} NH_4^+(aq) + CI^-(aq)$$

$$NH_4^+$$
 (aq) \longrightarrow NH_3 (aq) $+$ H^+ (aq)

Sais com catiões metálicos pequenos e de cargas elevadas (ex.: Al³+, Cr³+ e Be²+) e a base conjugada de um ácido forte.

$$AI(H_2O)_6^{3+}(aq) \longrightarrow AI(OH)(H_2O)_5^{2+}(aq) + H^+(aq)$$

15.10

Propriedades Ácido-Base dos Sais

Soluções em que tanto o catião como o anião se hidrolisam:

- K_b para o anião > K_a para o catião, a solução será básica.
- K_b para o anião K_a para o catião, a solução será ácida.
- K_b para o anião ≈ K_a para o catião, a solução será neutra.

Definição de um Ácido

Um *ácido de Arrhenius* é uma substância que produz H+ (H₃O+) em água. Um *ácido de Brønsted* é um doador de protões.

Um *ácido de Lewis* é uma substância que pode aceitar um par de electrões. Uma *base de Lewis* é uma substância que pode doar um par de electrões.

Ácidos e Bases de Lewis

Não há doação nem aceitação de protões!

15.12