ECE2029 --- Introduction to Digital Circuit Design

Homework 3: Due by 12 pm Friday 22 Nov 2013 (place completed homework in the 2029 box outside MY office AK-011)

To ensure proper grading & return, attach the cover sheet to the FRONT of you homework

- Always complete the reading assignments *before* attempting the homework problems.
- Show *all* of your work. Underline, circle or box each result.
- *Always* write neatly. The grader can not be expected to GUESS what you meant to do!
- Points are as indicated.

Problem 1 (10 pts)

a) The circuit below uses a generic 3-to-8 decoder (see Vahid 2.9, class notes). What is the logic function *F* produced by this circuit? Complete a truth table and derive the logic expression of F (with S0, S1 and S2 as input and F as output). Notice that the decoder *is enabled*.

b) What is the logic expression implemented by the circuit below?

Problem 2 (10 pts)

- a. Design an 8-to-1 by 1 bit MUX using two 4-to-1 by 1 bit multiplexers with enables. (*Hint*: Use the enables, EN).
- b. Design a 4-to-1 by 4 bit MUX using four 4-to-1 by 1 bit multiplexers;

Problem 3 (10 pts) For logic expression $G = \overline{X} Y \overline{Z} + \overline{Y} Z + X \overline{Z}$

- a. What is the full sum of minterm expression for F?
- b. Use a 3-to-8 Decoder plus an OR gate to implement F.

Problem 4 (10 pts) = Vahid 2.76

Problem 5 (10 pts)

Fill in the truth table for this circuit

A2	A1	A0	Z

Problem 6 (10 pts)

- a) Implement the logic function given by the truth table in Problem 5 in complete Verilog module using Boolean assign statements.
- b) Implement the logic function given by the truth table in Problem 5 in complete Verilog module using conditional statements.

Problem 7 (10 pts)

- a) Determine the shortest and worst case propagation delays for the circuit in Figure 2.17b (pg 49) assuming that $t_{p_{and}} = 1.5$ ns $t_{p_{or}} = 1.5$ ns and $t_{p_{not}} = 1.25$ ns.
- b) Draw a timing diagram showing the effects of the inputs a = 0, b = 0, c = 1 transitioning to a = 1, b = 0, c = 1 then transitioning to a = 1, b = 0, c = 0.

Problem 8 (10 pts)

- a. What logic expression F comes most directly from this logic circuit?
- b. Use a Karnaugh Map to identify any potential Static Hazards in this circuit.
- *c*. Find a hazard free expression for F and draw that circuit.

Problem 9 (10 pts)

Complete the timing diagram below for the original circuit in Problem 8 using the propagation delays given. Assume that the inputs X=Y=X=1 and input W transitions as shown. Assume each horizontal division is 1.0 ns. Circle any static hazards encountered.

	AND	OR	NOT		
$t_{p_{HL}}$	2.0 ns	1.8 ns	2.2 ns		
$t_{p_{LH}}$	2.0 ns	1.8 ns	2.4 ns		

A							·									
В		•		•			•	•		•	•				•	•
С							•			•						-
D					_•	_•										•
$\overline{m{D}}$							•			·		٠		•		•
P1	•	•					•									
P2		•								•				•		
P3		•	•													•
F								-								

ECE2029 Homework #3

Submitted by:	
ECE Box #:	
Data	

Question	Grade
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total:	