$12n_{0074} (K12n_{0074})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.18522 \times 10^{30} u^{33} + 1.61395 \times 10^{30} u^{32} + \dots + 1.16116 \times 10^{30} b + 7.98061 \times 10^{30},$$

$$-5.04287 \times 10^{30} u^{33} + 7.56763 \times 10^{30} u^{32} + \dots + 2.32232 \times 10^{30} a + 4.15748 \times 10^{31}, \ u^{34} - 2u^{33} + \dots - 4u - I_2^u = \langle b + 1, \ 2u^7 - u^6 - 3u^5 + 3u^4 + 4u^3 - 3u^2 + a - 2u + 4, \ u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle$$

$$I_1^v = \langle a, \ b - v - 2, \ v^2 + 3v + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -1.19 \times 10^{30} u^{33} + 1.61 \times 10^{30} u^{32} + \dots + 1.16 \times 10^{30} b + 7.98 \times 10^{30}, \ -5.04 \times 10^{30} u^{33} + 7.57 \times 10^{30} u^{32} + \dots + 2.32 \times 10^{30} a + 4.16 \times 10^{31}, \ u^{34} - 2u^{33} + \dots - 4u + 4 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2.17148u^{33} - 3.25864u^{32} + \dots - 25.8226u - 17.9022 \\ 1.02072u^{33} - 1.38995u^{32} + \dots - 3.99583u - 6.87295 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.786569u^{33} - 1.29705u^{32} + \dots - 10.0199u - 7.25363 \\ 1.01950u^{33} - 1.41535u^{32} + \dots - 4.86444u - 6.48780 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.232929u^{33} + 0.118296u^{32} + \dots - 5.15543u - 0.765831 \\ 1.01950u^{33} - 1.41535u^{32} + \dots - 4.86444u - 6.48780 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3.19220u^{33} - 4.64859u^{32} + \dots - 29.8184u - 24.7752 \\ 1.02072u^{33} - 1.38995u^{32} + \dots - 3.99583u - 6.87295 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.786569u^{33} - 1.29705u^{32} + \dots - 10.0199u - 7.25363 \\ -0.993896u^{33} + 1.24550u^{32} + \dots + 2.82252u + 5.38345 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.786569u^{33} - 2.58881u^{32} + \dots - 20.2529u - 13.7149 \\ -0.223584u^{33} + 0.407500u^{32} + \dots + 1.27178u + 1.68791 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.727454u^{33} - 1.16382u^{32} + \dots - 9.34126u - 6.62619 \\ -1.18647u^{33} + 1.58097u^{32} + \dots + 4.53188u + 7.13652 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $3.10285u^{33} 5.09978u^{32} + \cdots 82.2128u 54.4223$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{34} + 50u^{33} + \dots + 87u + 1$
c_2, c_4	$u^{34} - 10u^{33} + \dots - 5u + 1$
c_3, c_6	$u^{34} + 2u^{33} + \dots + 384u + 256$
c_5,c_{10}	$u^{34} - 2u^{33} + \dots - 4u + 4$
	$u^{34} - 3u^{33} + \dots - u + 1$
c_8, c_{11}, c_{12}	$u^{34} - 4u^{33} + \dots + 6u + 1$
<i>c</i> ₉	$u^{34} + 18u^{33} + \dots + 296u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{34} - 122y^{33} + \dots - 1571y + 1$
c_2, c_4	$y^{34} - 50y^{33} + \dots - 87y + 1$
c_3, c_6	$y^{34} - 54y^{33} + \dots - 180224y + 65536$
c_5,c_{10}	$y^{34} - 18y^{33} + \dots - 296y + 16$
	$y^{34} - 73y^{33} + \dots - 31y + 1$
c_8, c_{11}, c_{12}	$y^{34} - 32y^{33} + \dots + 14y + 1$
<i>c</i> ₉	$y^{34} - 6y^{33} + \dots - 10016y + 256$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.139041 + 0.996326I		
a = 0.360961 - 1.003900I	-4.82572 + 1.38301I	-18.1207 - 1.1111I
b = -1.074190 + 0.513433I		
u = 0.139041 - 0.996326I		
a = 0.360961 + 1.003900I	-4.82572 - 1.38301I	-18.1207 + 1.1111I
b = -1.074190 - 0.513433I		
u = 0.846811 + 0.603750I		
a = 0.520143 - 0.229520I	1.61097 - 2.38936I	-5.75420 + 3.71568I
b = 0.349636 - 0.120804I		
u = 0.846811 - 0.603750I		
a = 0.520143 + 0.229520I	1.61097 + 2.38936I	-5.75420 - 3.71568I
b = 0.349636 + 0.120804I		
u = -0.313184 + 0.904707I		
a = 0.189711 - 0.001623I	-9.54918 - 1.79841I	-12.64013 + 1.31530I
b = 1.74055 + 0.09238I		
u = -0.313184 - 0.904707I		
a = 0.189711 + 0.001623I	-9.54918 + 1.79841I	-12.64013 - 1.31530I
b = 1.74055 - 0.09238I		
u = -1.012230 + 0.360027I		
a = -1.57931 - 1.00055I	-2.47504 + 3.42527I	-16.2179 - 5.3814I
b = -0.967802 + 0.636002I		
u = -1.012230 - 0.360027I		
a = -1.57931 + 1.00055I	-2.47504 - 3.42527I	-16.2179 + 5.3814I
b = -0.967802 - 0.636002I		
u = 0.907518 + 0.139774I		
a = -2.26049 + 0.21695I	-3.12471 - 0.68486I	-18.0072 + 4.2019I
b = -1.177150 + 0.335656I		
u = 0.907518 - 0.139774I		
a = -2.26049 - 0.21695I	-3.12471 + 0.68486I	-18.0072 - 4.2019I
b = -1.177150 - 0.335656I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.458841 + 0.698407I		
a = 0.693491 + 0.460745I	-1.37113 - 0.97857I	-8.59119 + 0.62851I
b = 0.206160 - 0.108226I		
u = -0.458841 - 0.698407I		
a = 0.693491 - 0.460745I	-1.37113 + 0.97857I	-8.59119 - 0.62851I
b = 0.206160 + 0.108226I		
u = 1.146220 + 0.258629I		
a = 0.503836 - 0.193451I	-5.80767 - 1.31553I	-17.1266 + 0.5643I
b = -0.083519 + 0.738317I		
u = 1.146220 - 0.258629I		
a = 0.503836 + 0.193451I	-5.80767 + 1.31553I	-17.1266 - 0.5643I
b = -0.083519 - 0.738317I		
u = -1.070790 + 0.618271I		
a = 0.424627 + 0.163086I	-3.12059 + 6.06465I	-11.22553 - 4.07804I
b = 0.475020 + 0.232702I		
u = -1.070790 - 0.618271I		
a = 0.424627 - 0.163086I	-3.12059 - 6.06465I	-11.22553 + 4.07804I
b = 0.475020 - 0.232702I		
u = 1.227580 + 0.349898I		
a = 2.20138 - 1.06162I	-14.2607 - 1.8383I	-18.3062 + 0.2212I
b = 1.84876 + 0.13216I		
u = 1.227580 - 0.349898I		
a = 2.20138 + 1.06162I	-14.2607 + 1.8383I	-18.3062 - 0.2212I
b = 1.84876 - 0.13216I		
u = 0.483199 + 1.264780I		
a = 0.187861 + 0.004451I	-15.4223 + 4.8894I	-17.8975 - 2.1066I
b = 1.85129 - 0.18823I		
u = 0.483199 - 1.264780I		
a = 0.187861 - 0.004451I	-15.4223 - 4.8894I	-17.8975 + 2.1066I
b = 1.85129 + 0.18823I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.223680 + 0.599287I		
a = 1.58779 + 1.40253I	-12.3596 + 7.3883I	-15.8290 - 4.5743I
b = 1.82074 - 0.23062I		
u = -1.223680 - 0.599287I		
a = 1.58779 - 1.40253I	-12.3596 - 7.3883I	-15.8290 + 4.5743I
b = 1.82074 + 0.23062I		
u = 0.630505		
a = 0.191177	-11.0078	-27.9960
b = 1.54963		
u = -1.309280 + 0.403177I		
a = -1.301460 - 0.293466I	-9.47153 + 3.34355I	-19.5923 - 2.7256I
b = -1.48699 - 0.40924I		
u = -1.309280 - 0.403177I		
a = -1.301460 + 0.293466I	-9.47153 - 3.34355I	-19.5923 + 2.7256I
b = -1.48699 + 0.40924I		
u = 1.289360 + 0.542054I		
a = -1.100180 + 0.775050I	-8.44002 - 6.93222I	-18.8371 + 4.8980I
b = -1.028070 - 0.871053I		
u = 1.289360 - 0.542054I		
a = -1.100180 - 0.775050I	-8.44002 + 6.93222I	-18.8371 - 4.8980I
b = -1.028070 + 0.871053I		
u = -0.409062 + 0.343592I		
a = 0.980395 + 0.383479I	-0.776347 - 0.147146I	-11.28597 - 0.15308I
b = -0.564127 - 0.280914I		
u = -0.409062 - 0.343592I		
a = 0.980395 - 0.383479I	-0.776347 + 0.147146I	-11.28597 + 0.15308I
b = -0.564127 + 0.280914I		
u = -0.525591		
a = 0.845977	-0.701231	-14.2280
b = -0.153754		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.30395 + 0.77485I		
a = 1.19284 - 1.27254I	-18.1002 - 12.1264I	-18.5384 + 5.5936I
b = 1.82957 + 0.31820I		
u = 1.30395 - 0.77485I		
a = 1.19284 + 1.27254I	-18.1002 + 12.1264I	-18.5384 - 5.5936I
b = 1.82957 - 0.31820I		
u = -1.59217		
a = 1.77050	15.7961	-20.7060
b = 2.01193		
u = 0.394058		
a = -8.51085	-2.94114	-50.1300
b = -0.887561		

$$\text{II. } I_2^u = \langle b+1, \ 2u^7 - u^6 - 3u^5 + 3u^4 + 4u^3 - 3u^2 + a - 2u + 4, \ u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{7} + u^{6} + 3u^{5} - 3u^{4} - 4u^{3} + 3u^{2} + 2u - 4 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\-u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{7} + u^{6} + 3u^{5} - 3u^{4} - 4u^{3} + 3u^{2} + 2u - 5 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{7} + u^{6} + 3u^{5} - 3u^{4} - 4u^{3} + 3u^{2} + 2u - 4 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3}\\u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} - 2u\\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^7 2u^6 + 4u^4 + 3u^3 u^2 13$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_{3}, c_{6}	u^8
<i>C</i> ₄	$(u+1)^8$
<i>C</i> ₅	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
c ₈	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
<i>c</i> ₉	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
c_{10}	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_{11}, c_{12}	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_{3}, c_{6}	y^8
c_5,c_{10}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_{7}, c_{9}	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_8, c_{11}, c_{12}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.570868 + 0.730671I		
a = 0.281371 + 1.128550I	-2.68559 + 1.13123I	-17.2624 - 0.2227I
b = -1.00000		
u = 0.570868 - 0.730671I		
a = 0.281371 - 1.128550I	-2.68559 - 1.13123I	-17.2624 + 0.2227I
b = -1.00000		
u = -0.855237 + 0.665892I		
a = -0.208670 - 0.825203I	0.51448 + 2.57849I	-14.1288 - 3.8797I
b = -1.00000		
u = -0.855237 - 0.665892I		
a = -0.208670 + 0.825203I	0.51448 - 2.57849I	-14.1288 + 3.8797I
b = -1.00000		
u = -1.09818		
a = -0.829189	-8.14766	-19.7220
b = -1.00000		
u = 1.031810 + 0.655470I		
a = -0.284386 + 0.605794I	-4.02461 - 6.44354I	-19.1410 + 6.6674I
b = -1.00000		
u = 1.031810 - 0.655470I		
a = -0.284386 - 0.605794I	-4.02461 + 6.44354I	-19.1410 - 6.6674I
b = -1.00000		
u = 0.603304		
a = -2.74744	-2.48997	-12.2140
b = -1.00000		

III.
$$I_1^v = \langle a, \ b-v-2, \ v^2+3v+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ v+2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ v+3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -v-2 \\ v+3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} v+2 \\ v+2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} v+2 \\ v-3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -v-2 \\ -v-3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2v+2 \\ -v-3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -11

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^2 - 3u + 1$
c_2, c_3	$u^2 + u - 1$
c_4, c_6	$u^2 - u - 1$
c_5, c_9, c_{10}	u^2
c_7	$u^2 + 3u + 1$
c_8	$(u-1)^2$
c_{11}, c_{12}	$(u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{7}	$y^2 - 7y + 1$
c_2, c_3, c_4 c_6	$y^2 - 3y + 1$
c_5, c_9, c_{10}	y^2
c_8, c_{11}, c_{12}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.381966		
a = 0	-10.5276	-11.0000
b = 1.61803		
v = -2.61803		
a = 0	-2.63189	-11.0000
b = -0.618034		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^2-3u+1)(u^{34}+50u^{33}+\cdots+87u+1)$
c_2	$((u-1)^8)(u^2+u-1)(u^{34}-10u^{33}+\cdots-5u+1)$
c_3	$u^{8}(u^{2}+u-1)(u^{34}+2u^{33}+\cdots+384u+256)$
C4	$((u+1)^8)(u^2-u-1)(u^{34}-10u^{33}+\cdots-5u+1)$
<i>C</i> ₅	$u^{2}(u^{8} - u^{7} + \dots + 2u - 1)(u^{34} - 2u^{33} + \dots - 4u + 4)$
c_6	$u^{8}(u^{2}-u-1)(u^{34}+2u^{33}+\cdots+384u+256)$
c_7	$(u^{2} + 3u + 1)(u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1)$ $\cdot (u^{34} - 3u^{33} + \dots - u + 1)$
c_8	$((u-1)^2)(u^8+u^7+\cdots+2u-1)(u^{34}-4u^{33}+\cdots+6u+1)$
<i>c</i> ₉	$u^{2}(u^{8} - 3u^{7} + 7u^{6} - 10u^{5} + 11u^{4} - 10u^{3} + 6u^{2} - 4u + 1)$ $\cdot (u^{34} + 18u^{33} + \dots + 296u + 16)$
c_{10}	$u^{2}(u^{8} + u^{7} + \dots - 2u - 1)(u^{34} - 2u^{33} + \dots - 4u + 4)$
c_{11}, c_{12}	$((u+1)^2)(u^8 - u^7 + \dots - 2u - 1)(u^{34} - 4u^{33} + \dots + 6u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^2-7y+1)(y^{34}-122y^{33}+\cdots-1571y+1)$
c_2, c_4	$((y-1)^8)(y^2-3y+1)(y^{34}-50y^{33}+\cdots-87y+1)$
c_3, c_6	$y^{8}(y^{2} - 3y + 1)(y^{34} - 54y^{33} + \dots - 180224y + 65536)$
c_5,c_{10}	$y^{2}(y^{8} - 3y^{7} + 7y^{6} - 10y^{5} + 11y^{4} - 10y^{3} + 6y^{2} - 4y + 1)$ $\cdot (y^{34} - 18y^{33} + \dots - 296y + 16)$
<i>c</i> ₇	$(y^{2} - 7y + 1)(y^{8} + 5y^{7} + \dots - 4y + 1)$ $\cdot (y^{34} - 73y^{33} + \dots - 31y + 1)$
c_8, c_{11}, c_{12}	$(y-1)^{2}(y^{8}-7y^{7}+19y^{6}-22y^{5}+3y^{4}+14y^{3}-6y^{2}-4y+1)$ $\cdot (y^{34}-32y^{33}+\cdots+14y+1)$
<i>C</i> 9	$y^{2}(y^{8} + 5y^{7} + 11y^{6} + 6y^{5} - 17y^{4} - 34y^{3} - 22y^{2} - 4y + 1)$ $\cdot (y^{34} - 6y^{33} + \dots - 10016y + 256)$