VirPhyKit: An integrated toolkit for viral phylogeographic analysis

A quick guide to VirPhyKit

Sept, 2025

Yiqi Yin & Fangluan Gao

1. Installation

System requirement:

- Python 3.6 or later
- R 3.5 or later
- Perl

Prior to using VirPhyKit, users must specify the **installation paths for R, Python, and Perl** in the 'Options > Environment Settings ' menu and click [Check]. The toolkit will then automatically:

- Verify required Python and R package dependencies
- Identify any missing packages
- Prompt users with options to automatically install missing dependencies (on Linux, missing packages must be installed manually).

2. Modules in VirPhyKit

Menu	Module	Brief description	
Sample	SeqHarvester	Retrieves viral isolates from GenBank, displays comprehensive metadata for filtering and download	
	SeqIDRenamer	Provides a simple workflow for batch processing of sequence IDs using custom naming rules	
	SeqGrouper	Groups viral sequences into customizable categories (e.g., geographic region, host, or user-defined criteria), with automated distribution reports for research and surveillance	
	VirSpaceTime	Visualizes spatial and/or temporal distributions of viral isolates	
Analysis	GeoSubsampler	Generates balanced sequence subsets by either geographic region or sample size, with integrated support for bootstrap analysis	
	RRT	Detects sampling bias in phylogeographic analyses using a statistical approach	
	TempMig	Reconstructs and visualizes spatial diffusion of viral pathogens through time	
Plot	RSPP-Viz	Visualizes root state posterior probabilities inferred from trait-annotated MCC trees or MultiTypeTree	
	BSP-Viz	Visualizes the export results of Bayesian skyline plots	
Dating	TreeTime-RTT	Assesses clock-like evolutionary patterns through linear regression of root-to-tip distances against sampling dates in TreeTime	
	TreeDater-LTT	Conducts a lineage-through-time (LTT) analysis using Treedater	
Misc	MJRM Generator	Automatically constructs Markov jump and reward matrices from user-defined discrete traits (e.g., geographic location or host species) for phylogeographic analysis	

3. Usage

SeqHarvester

Step 1: Enter the full name of the virus for retrieval or upload a text file containing the accession number.

Step 2: When retrieving by virus name, the results will display **the complete metadata** for all available isolates from GenBank in the **'Results' panel**.

Step 3: From the 'Genome Segments' dropdown menu, select the required segment.

Step 4: Select the **output directory**, then click **[Download]** to initiate sequence retrieval.

SeqIDRenamer

Step 1: Select a sequence file to rename.

Step 2: Upload a tab-delimited mapping text file ('OrigName\tNewName').

Step 3: Select the output directory to save the renamed file.

Step 4: Click the **[Run]** button to start the renaming process.

SeqGrouper

Step 1: Upload accession numbers in a text file (.txt) or upload a GenBank file (.gb).

Step 2: After **checking 'Enable'**, you can choose to use **default** grouping rules (by region) or upload a **custom** grouping table.

Step 3: Click [Show Table] to <u>display viral isolate</u> <u>information</u> (You can double-click any information to modify it).

Step 4: Select the columns that need to be grouped and click **[View]** to view the **group distribution**. Note that the grouped columns will be added to the table.

VirSpaceTime

Step 1: Ensure R is properly configured (in 'Option-Environment').

Step 2: Select **spatial or temporal** visualization mode.

Step 3: Upload a tab-delimited text file, containing geographic coordinates for spatial analysis or population

sample sizes over time for temporal analysis.

Step 4: Select the **output directory** and **filename**.

Step 5: Click [Generate] to create visualization.

Step 1: Upload the **original MCC tree** and the **region-randomized MCC tree**.

Step 2: Select an **output directory** for the posterior probability csv table.

Step 3: Click **[Run]** to conduct region-randomization tests. The test **results** will be displayed in the **Status panel**.

Step 4: Specify the **output directory** for saving

results.

TempMig

Step 1: Ensure **Python, Perl and R** installation directories are configured in the **'Option-Environment'** menu.

Step 2: Upload an **MCC tree** annotated with traits or a **MultiTypeTree**.

Step 3: Specify the output **directory** for the migration matrix.

Step 4: Click **[Run]** to process the MCC tree/MultiTypeTree and **generate migration matrix**.

Step 5: Click [Go to plot] to move to the 'TempMig Plotter' tool and visualize the results using the migration matrix.

TempMig Plotter

Step 1: Upload a migration matrix file (output from 'TempMig').

Step 2: Select the migration directions for visualization.

Step 3: Specify the output **directory**.

Step 4: Select a **visualization style** (Normal or Smooth).

Step 5: Click [Run] to generate temporal migration patterns

GeoSubsampler

Step 1: Upload a **FASTA sequence file** to be subsampled. Ensure each sequence name **includes its geographic region** (<u>marked with '_region'</u>).

Step 2: (Optional) Enable the 'Bootstrap subsampling mode' option and set the number of replicates.

Step 3: Specify the desired **sample size** and/or **specific region** for the subset.

Step 4: Select an **output directory** to save the resulting sequences.

BSP-Viz

Step 1: After ensuring that the R environment is configured correctly, select the table file (you can click the [Batch]

button to draw in batches later).

Step 2: Select the **time axis direction** and whether to add a **secondary axis**.

Step 3: Specify the **output directory** and click **[Hue Harmony]** to adjust color schemes.

Step 4: Click [Plot] to draw.

RSPP-Viz

Step 1: Select the **plot style** you want to generate (pie or histogram).

Step 2: Select the MCC tree (annotated with traits) or MultiTypeTree for analysis (batch processing is available

in Batch mode).

Step 3: Specify the **output directory**.

Step 4: Specify the **plot size**.

Step 4: Use [Hue Harmony] to adjust color schemes, and click [Plot] to create the plot.

♥ VirPhyKit - □ X				
Sample Analysis Plot Dating Misc Option Help	Search			
Welcome RSPP-Viz				
DSDD Viz (Poot State Pooterier Brobability Vigualizer)				
RSPP-Viz (Root State Posterior Probability Visualizer) 🔞				
RSPP-Viz is a specialized tool for visualizing root state posterior probabilities inferred from MCC trees (annotated with traits) or MultiTypeTree.				
Settings Plot Style: 1				
○ Pie charts				
MCC Tree File:				
	Batch			
Output Directory:				
	View			
Plot Size (pixels)				
Width: 800	Height 600			
Status				
Hue Harmony Plot 5				

TreeTime-RTT

Step 1: Upload a FASTA sequence file, a Newick tree file, and a metadata file (.csv).

Step 2: If the third column of the metadata file is a "region" (or other trait) column and a trait mapping file

is uploaded, isolates sharing the same trait will be **color-coded** in the plot. Otherwise, only the **standard RTT regression** plot will be generated.

Step 3: Select the output directory.

Step 4: Click **[Run]** to perform the RTT analysis.

standard color-coded Root-to-Tip Regression Root-to-Tip Regression Root date: 2000.13 Root date: 1968.00 Rate: 2.723e-03 0.16 0.05 R2-0.987 P-value: <1e-10 0.14 P-value: <1e-10 0.04 ₽ _{0.10} , 9 0.08 ä _{0.06} FastandCentralAsia 0.04 0.01 CentralAmericaandCaribbe 0.02 -WesternEurope

TreeDater-LTT

Step 1: Select a **Newick tree** file (.nwk).

Step 2: Upload the metadata file (.csv) with sampling dates.

Step 3: Enter sequence **length** and enable the **'LTT' option** to generate a **lineage-through-time plot**.

Step 4: Specify the **output directory** for saving results.

Step 5: Click **[Run]** to perform the LTT analysis using TreeDater, and view the results in the **Status** panel and output images.

Try it yourself!