

Distributed Algorithms

Clocks

Univ.-Prof. Dr.-Ing. habil. Gero Mühl

Architecture of Application Systems
Faculty for Computer Science and Electrical Engineering
University of Rostock

Overview

- > Time and Clocks
- > Synchronization of physical clocks
- > Order of events
- > Logical clocks
 - > Lamport clocks
 - > Vector clocks
 - > Application of vector clocks (causal multicast)

Time in Distributed Systems

The Importance of Time

- Determination of time and the measurement of time durations is indispensable for the coordination of human activities
- > We have internalized the existence of a global time
- Therefore, our clocks have to be synchronized
 - Synchronization of clocks by means of church clock, telegraphy, radio, GPS
 - Clock synchronization made longitude determination in seafaring feasible

Clocks

Model: a clock maps the real time t to a time stamp C(t)

> Resolution

> Smallest period of time by that two values of the clock can differ (e.g., 10 ms) → Tick duration

> Drift

> Deviation of the speed of the clock from real time (ca. ±10⁻⁶ with quartz clocks, ca. ±2sec per month)

> Offset

- > Deviation of the clock from real time at a point in time, i.e., t C(t)
- > A perfect clock has a drift and an offset of 0: C(t) = t

Correct Clocks

> A correct clock has a limited maximal drift ρ

$$(1+\rho)^{-1} \le \frac{dC}{dt} \le 1+\rho$$

"Speed" of clock

Applications of Time Stamps

- > Evaluate actuality of data
- > Performance measurements
- Determine validity of access authorization
- Derive total order of events
 (e.g., for synchronization, debugging and audit)
- Evaluate sensor data and control actuators (real-time systems)
- > ...

Synchronization of Physical Clocks

Time in Distributed Systems

- Each computer has its own inaccurate digital clock
- > The drifts of the clocks are different from each other
- > Without synchronization, the values of the clocks can differ arbitrarily from each other → clock synchronization
- Clock synchronization in distributed systems is only possible through message exchange
- > Hereby, the message delay plays an important role

Synchronization of Correct Clocks

- Two correct clocks with drift ρ should not deviate
 by more than time d
- > How long is the maximum possible interval for synchronization?
- > Assumptions
 - > At t = 0, the clocks are synchronized: $C_1(0) = C_2(0)$
 - Worst case: One clock is as fast as drift allows, the other as slow as drift allows
 - > Without loss of generality:

$$> C_1(t) / t = 1 + \rho$$

$$> C_2(t) / t = 1 / (1 + \rho)$$

Synchronization of Correct Clocks

> Therefore

$$(1+\rho) t - \frac{t}{1+\rho} \le d$$

$$\frac{(1+\rho)^2 t - t}{1+\rho} \le d$$

$$t \frac{2\rho + \rho^2}{1+\rho} \le d$$

$$t \le d \frac{1+\rho}{2\rho + \rho^2}$$

- > Clocks must be synchronized again before $d \frac{1+\rho}{2\rho+\rho^2}$
- > For very small ρ : synchronization before $\rho^{-1} d / 2$

Synchronization Against a Perfect Clock

- Assumption: Clocks are synchronized at t = 0
- > Two cases:

Clock as fast as possible

$$(1+\rho) \ t - t \le d$$

$$\rho t \le d$$

$$t \le \frac{d}{\rho}$$

Clock as slow as possible

$$t - \frac{t}{1+\rho} \le d$$

$$\frac{(1+\rho)t - t}{1+\rho} \le d$$

$$\frac{\rho t}{1+\rho} \le d$$

$$t \le d \frac{1+\rho}{\rho}$$

> Since $\frac{d}{\rho} \le d \frac{1+\rho}{\rho}$, the clock must be synchronized again before ρ^{-1} d

External Clock Synchronization [5]

- Scenario: Process P₂ wants to adjust its clock on P₁
- > Assumptions
 - > P₁ has a clock with an assumed drift of 0
 - > Message delay *x* is known
- > P_2 adjusts its clock by $t_2 + x t_3$
- > Error of adjustment $e_{max} = 0$
- > If the maximal deviation shall stay smaller than d, a new synchronization is at the latest necessary after ρ^{-1} d

→ P₂ sets its clock backwards by 1

Unforeseeable Message Delay

- In reality, message delays are (in nearly all cases) load-dependent and unbounded
 - delay is higher with a high load than with a low load
 - delay can be arbitrarily long
- Then, the preceding procedure leads only to an approximate adjustment

Synchronization with Unforeseeable Delays

- > Round Trip Time (RTT) $D := (t_3 t_1)$
- > Let t be the local time of P_1 , when P_2 has the local time t_3
- > t lies in the interval [t_2 + min, t_2 + D min]
- > Without further knowledge, the best prediction possible for t is the middle of the interval, i.e., $t_2 + D/2$
- > Thus, P_2 corrects its clock by $t_2 + D/2 t_3$
- > The maximal adjustment error is $e_{max} = D / 2 min$

Probabilistic Limitation of the max. Error

- Idea: 1. Only accept the value of the reference clock if D ≤ U for a given bound U > 2 · min
 - 2. If that fails, repeat the attempt at most *k*-times, always after a waiting time *W*
- > Let *p* be the probability that *D* ≥ *U* for one attempt
- > Probability for k failures after another is then $q = p^k$
- > Expected number of attempts until success is E = 1 / (1 p)

Determination of the Synchronization Interval

- > The synchronization interval depends on the error of the last *successful* attempt
- > To keep the deviation below d, the next success after a successful synchronization with error e must be after at most $\Delta = \rho^{-1} (d e)$ time
 - > Minimal synchronization interval $\Delta_{min} = \rho^{-1} (d e_{max})$
 - > Maximal synchronization interval $\Delta_{max} = \rho^{-1} d$
- > First, the local clock is adjusted; then, the next attempt is started after $\Delta k W$ at the latest
- > Minimal maximal deviation with immediate start ($\Delta = k W$) is $d_{min} = k W \rho + e_{max}$

Adjustment of the Local Clock Time

- > Requirements
 - Series > Great leaps of clock time must be avoided
 - > Clock time must not decrease
- > Solution
 - > Local clock is run slower or faster, until the offset is fully compensated

Order of Events

Order of Events in Distributed Systems

- Send and receive of a message are events
 - → send event, receive event
- > Additionally, there are local events

In distributed systems, the absolute time of events are often not important; it often suffices to order the events

Order Relations

> An order relation < is a

> irreflexive for no event a applies a < a

> asymmetrical $a < b \Rightarrow \neg (b < a)$

> transitive $a < b \land b < c \Rightarrow a < c$

binary relation on the set of all events E

> Partial order:

The order relation is not defined for all pairs of events

> Total order:

The order relation is defined for all pairs of events, i.e.,

$$e_1 \neq e_2 \Rightarrow e_1 \leq e_2 \vee e_2 \leq e_1$$

Possible Order Requirements

- > FIFO (first in first out) order
- > Causal order
- > Total delivery order
- > FIFO-total order
- > Causal-total order

FIFO Order

- If a process sends message m₁ before message m₂, m₁ is delivered before m₂ to the receiver(s)
- > Since messages can overtake each other, we distinguish between "receive" and "deliver"
- Messages are, then, delayed if necessary to enforce an order

Causal Order

- > If the sending of message m_2 causally depends on the sending of the message m_1 , then m_1 is delivered before m_2 to any receiver (getting both messages)
- Causal order is stronger than FIFO
 - > Every causal order is also FIFO ordered
 - > The inverse does not apply
- Causality is hypothetical
 - > Every possible causality is preserved
 - It is, thus, possible that causally ordered events do not depend on each other in reality

Example: Causally Ordered Multicast

Total Delivery Order

- > Only useful, if a message is delivered to more than one process → multicast communication
- > If two processes P and Q both deliver the messages m_1 and m_2 , then P delivers m_1 before m_2 if and only if Q also does.
- > This means that all processes receiving m_1 and m_2 , deliver the messages in the same order
- Caution: The order itself is not specified, especially, causality can be violated
- A multicast with total delivery order is also called atomic multicast
- Caution: A total delivery order is not always total in the sense of a total order relation (slide 29)

Example for Total Delivery Order

FIFO-Total and Causal-Total Order

- > FIFO-Total order
 - > An order that is both FIFO and total with respect to delivery
- > Causal-Total order
 - An order that is both causal and total with respect to delivery
- As causal order implies FIFO order,
 a causal-total order is also a FIFO-total order

Example for FIFO-Total Order

t

Logical Clocks

A Simple Logical Time

- A logical clock assigns a time stamp C(e) to each event e
- Each process P_i manages a counter C_i that is increased by 1 when an event e occurs
- > The event e gets the new value of the counter as logical time stamp
- The logical time stamps C(e) define a partial order on the set of events e₁ < e₂ ⇔ C(e₁) < C(e₂)</p>
- > It is partial as some events might get the same timestamp

A Simple Logical Time

- It is possible to supplement the simple logical time to a total order through the usage of unique process IDs as tiebreaker
- > The time stamp $C'(e_i)$ of an event e_i is a pair (C_i, P_i)

$$e_1 < e_2 \Leftrightarrow C'(e_1) < C'(e_2)$$

 $\Leftrightarrow C_1 < C_2 \lor C_1 = C_2 \land P_1 < P_2$

Since process identities are unique, for two arbitrary events

$$e_1 \neq e_2 \Rightarrow e_1 \leq e_2 \vee e_2 \leq e_1$$

A Simple Logical Time – Problem

- > Problem: The simple logical time does not take the causal relation between events into account
- > Example: Replicated article data base
 - > Editor adds a new article
 - > Chief editor redacts the article afterwards
 - If the second action gets a smaller time stamp than the first one, the actions are applied in the wrong order and the data base contains the article which was not redacted

Happened-Before Relation (Lamport, 1978)

- > The relation → ("happened before") on the set of events is the smallest order relation that fulfills the following 3 conditions
 - 1. If a and b are two events in a process and a occurs before b, then $a \rightarrow b$
 - 2. If a is the sending of a message in a process and b the receipt of the same message in another process, then a → b
 - 3. If $a \rightarrow b$ and $b \rightarrow c$, then $a \rightarrow c$
- > An event $b \neq a$ causally depends on a, if $a \rightarrow b$
- > Two events a ≠ b are causally independent, written a || b, if neither a → b nor b → a

"Smallest" here means that the relation contains exactly those pairs satisfying the conditions.

Condition 3 is implicitly implied by requiring that the relation is an order.

Happened-Before Relation – Interpretation

- > $a \rightarrow b \Rightarrow$ "b causally depends on a"
- > a || b \Rightarrow "a and b have not influenced each other causally"
- > a → b ⇔ "One can get from a to b in the space-time diagram by following the process lines and message lines from a in the direction of ascending time"
- > For the example below applies, e.g., $e_{1,1} \rightarrow e_{3,4}$ and $e_{1,6} \parallel e_{2,6}$

Clock Condition (Lamport, 1978)

- > Requirement for a logical clock (clock condition)
 - > For all events $a, b: a \rightarrow b \Rightarrow C(a) < C(b)$
 - > Thus, the clock *preserves* the causal order of the events
- > Attention: implication only holds in one direction!
 - > It only applies $C(a) < C(b) \Rightarrow a \rightarrow b \lor a \parallel b$
- > From the clock condition follows: $C(a) = C(b) \Rightarrow a \parallel b$
- > How can a logical clock be realized that fulfills the clock condition?

Lamport's Clocks – Realization

- > Each process P_i has a local logical clock L_i , whose value is adapted when an event occurs
- > A local event occurs at process P_i
 - > Value of the local clock *L_i* is increased by one
 - > Event gets the new value as time stamp
- > P_i sends a message
 - Value of local clock L_i is increased by one
 - Send event gets new value as time stamp
 - > Message sent carries time stamp of its send event t_m

Lamport's Clocks – Realization

- $> P_i$ receives a message m with time stamp t_m
 - > Value of the local clock is adapted to

$$L_i := \max(L_i, t_m) + 1$$

- > Receive event gets the new value as time stamp
- Incrementing after maximum calculation ensures that the receive event gets a higher time stamp than both the send event and the preceding local event at the receiver

Lamport's Clocks – Example

Lamport's Clocks – Characteristics

- Lamport's clocks fulfill the clock condition!
- The logical time stamps L(e), thus, define a partial order on the set of events maintaining the causal relation
- > Complementing it to a *total* order is possible again
- > Problem
 - > By means of a time stamp one can not tell for sure, whether two events are causally related
 - For that purpose also the converse of the clock condition would have to apply

Vector Clocks – Motivation

Assume we had a clock that turns the implication of the clock condition into an equivalence

$$> a \rightarrow b \Leftrightarrow C(a) < C(b)$$

With such a clock, we could determine how events are related by means of the time stamps of the events

$$> C(a) < C(b) \Rightarrow a \rightarrow b$$

$$> C(b) < C(a) \Rightarrow b \rightarrow a$$

$$> \Gamma(C(a) < C(b) \lor C(b) < C(a)) \Rightarrow a \parallel b$$

- > For all three equations also the converse applies
- > For $\neg(C(a) < C(b) \lor C(b) < C(a))$, we write C(a) || C(b)
- How can a clock with such characteristics be realized?

Vector Clocks – (Mattern, Fidge, 1988)

Each process P_i holds a vector time stamp V_i consisting of n counters that are initially all zero

> Local event

- If an event occurs in a process P_i, it increments the i-th component of its vector
- > Sending a message
 - > If P_i sends a message, the new version of V_i is sent along with the message
- > Receiving a message
 - If P_i receives a message with vector time stamp T, it assigns to V_i the component-wise maximum of the T and the new version of V_i
- The vector time can (also) be extended to a total order by using process identities as tiebreakers

Vector Clocks

> Component-wise maximum of two vectors

$$max(V_i, V_j) := (max(V_i[1], V_j[1]), ..., max(V_i[n], V_j[n]))$$

> Component-by-component comparison of two vectors

$$V_i < V_j \Leftrightarrow V_i \neq V_j \land \forall \ 1 \leq k \leq n : V_i[k] \leq V_i[k]$$

Vector clocks only define a partial order!

Vector Clocks – Example

Relation Between the Time Stamps

- > R(e) exact real time of the event e
- > L(e) Lamport-time of e
- > V(e) Vector-time of e

$$R(a) < R(b) \iff V(a) < V(b)$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a \to b \implies L(a) < L(b)$$

Exemplary Applications of Logical Clocks

Application of Vector Clocks: Causal Multicast

- Each message is delivered to all processes
- Messages must be delivered in an order satisfying causality
- > Update policy of the vector clocks is changed such that P_i only increments $V_i[i]$ if it sends a message
- > Delivery condition
 - > A message with time stamp *T* sent by *P_i* is not delivered to *P_j* before *T* fulfills the following conditions:

$$T[i] = V_j[i] + 1$$
 $\land \forall k \neq i: T[k] \leq V_j[k]$

Next message awaited from P_i No message from arbitrary P_k is missing

- > 1st condition violated → a message from P_i is missing
- > 2^{nd} condition violated \rightarrow a message from P_k is missing that P_i had already received at the time it sent the message received yet

Application of Vector Clocks: Causal Multicast

- > The maximum of V_j und T is derived after the delivery of the message
- > Due to the second delivery condition:

$$V_i[k] \ge T[k]$$
 for all $k \ne i$

- > This means that except for the component $V_j[i]$, V_j only contains components that are larger or equal to those in T
- > Due to the first delivery condition, for $V_i[i]$ holds:

$$V_i[i] = T[i] - 1$$

- > Therefore, calculating the maximum is not necessary
- > Instead, it is sufficient to increase $V_i[i]$ by one at delivery

Causal Multicast – Example

Exemplary Exam Questions

- Explain the external clock synchronization algorithm!
- 2. What is Lamport's clock condition?
- 3. How the Happened-Before-Relation is defined?
- Describe the functioning of Lamport clocks!
- 5. Can events be arranged by Lamport clocks in such a way that causally related events are properly ordered?
- Explain the functionality of vector clocks!
- 7. What additional opportunities vector clocks can provide compared to Lamport clocks?
- Describe how a causal multicast can be realized using vector clocks!

Literature

- 1. A. S. Tanenbaum and M. van Steen. *Distributed Systems:*Principles and Paradigms. Prentice Hall, 2002. Chapter 5.1 + 5.2
- G. Coulouris, J. Dollimore, and T. Kindberg. *Distributed Systems:* Concepts and Design. Addison-Wesley, 4th edition, 2005.
 Chapter 11.1 11.4
- 3. N. Lynch. *Distributed Algorithms*. Morgan Kaufmann, 1996. Chapter 18
- 4. F. Mattern. *Verteilte Basisalgorithmen*. Springer-Verlag, 1989. Kapitel 5: Virtuelle Zeit in verteilten Systemen
- 5. F. Cristian. *Probabilistic clock synchronization*. Distributed Computing, 3(3):146--158, September 1989.

Literature

- 6. D. L. Mills. *Network Time Protocol (Version 3)*. Internet Request for Comments RFC 1305, March 1992.
- 7. L. Lamport. *Time, Clocks, and the Ordering of Events in a Distributed Environment*. Communications of the ACM, 21:558--564, July 1978.
- 8. F. Mattern. *Virtual Time and Global States of Distributed Systems*. In C. M. et al., editor, Proc. Workshop on Parallel and Distributed Algorithms, pages 215--226, North-Holland / Elsevier, 1989. (Reprinted in: Z. Yang, T. A. Marsland (Eds.), "Global States and Time in Distributed Systems", IEEE, 1994, pp. 123-133.).
- Michel Raynal. About logical clocks for distributed systems.
 SIGOPS Oper. Syst. Rev. 26, pp. 41-48, 1992.

Thank you for your kind attention!

Univ.-Prof. Dr.-Ing. habil. Gero Mühl

gero.muehl@uni-rostock.de
http://wwwava.informatik.uni-rostock.de

