KOMUNIKASI DATA TUGAS

OLEH:

Nama : Muhammad Athar Althariq Irawan

NIM : 09011282025043

Kelas : SK4A

Dosen Pengampu : Adi Hermansyah, S.Kom., M.T

PROGRAM STUDI SISTEM KOMPUTER FAKULTAS ILMU KOMPUTER 2022

Capture

Hardware: AMD Ryzen 5 5600U with Radeon Graphics (with SSE4.2)

OS: 64-bit Windows 10 (21H2), build 19044

Application: Dumpcap (Wireshark) 3.6.2 (v3.6.2-0-g626020d9b3c3)

Interfaces

<u>Interface</u>	Dropped packets	Capture filter	Link type	Packet size limit
				(snaplen)
Wi-Fi	0 (0.0%)	none	Ethernet	262144 bytes

Statistics

	<u>Measurement</u>	<u>Captured</u>	Displayed	<u>Marked</u>
	Packets	107180	107180 (100.0%)	_
	Time span, s	757.549	757.549	_
	Average pps	141.5	141.5	_
	Average packet size, B	937	937	_
	Bytes	100416659	100416659 (100.0%)	0
	Average bytes/s	132 k	132 k	_
	Average bits/s	1060 k	1060 k	_
ı				

1. Troughput

Throughput adalah kecepatan rata-rata data yang diterima oleh suatu node dalam selang waktu pengamatan tertentu. Throughput merupakan bandwidth aktual saat itu juga dimana kita sedang melakukan koneksi. Satuan yang dimilikinya sama dengan bandwidth yaitu bps.

Rumus troughput

$$Throughput = \frac{Total\ Bytes}{Time\ Span}$$

Dari hasil record, kita mendapatkan:

total bytes = 100416659

total time span = 757,549 detik

$$Throughput = \frac{Total\ Bytes}{Time\ Span} = \frac{100416659}{757,549} = 132.554,671\ B/s$$

Satuan troughput ialah bits, konversi ke bits dengan kali 8

 $132.554,671 * 8 = 1.060.437,37 \ b/s$

Atau 8,48349896 Mb/s

2. Delay

Delay ialah waktu yang dibutuhkan data untuk menempuh jarak dari asal hingga ke tujuan, dapat dipengaruhi oleh jarak, media fisik atau waktu yang lama.

Delay = Time 2 - Time 1

	AB	AC	AD				
1	Time 1	Time 2	delay				
2	0	0.197458	0.197458				
3	0.197458	0.197605	0.000147				
4	0.197605	0.199407	0.001802				
5	0.199407	0.214401	0.014994				
6	0.214401	0.214584	0.000183	\mathbf{A}	AB	AC	AD
7	0.214584	0.215142	0.000558)5	579	754.9554	756.1615	1.206146
8	0.215142	0.229495	0.014353)5	580	756.1615	756.365	0.203528
9	0.229495	0.305152	0.075657)5	581	756.365	756.365	0
10	0.305152	0.323969	0.018817)5	582	756.365	756.4218	0.056805
11	0.323969	0.324262	0.000293)5	583	756.4218	756.5241	0.102266
12	0.324262	0.324508	0.000246)5	584	756.5241	756.531	0.006848
13	0.324508	0.338273	0.013765)5	585	756.531	756.5312	0.00024
14	0.338273	0.338386	0.000113)5	586	756.5312	756.5312	3.40E-05
15	0.338386	0.33864	0.000254)5	587	756.5312	756.5419	0.010649
16	0.33864	0.339229	0.000589)5	588	756.5419	756.5827	0.040856
17	0.339229	0.33943	0.000201)5	589	756.5827	757.1584	0.575655
18	0.33943	0.33943	0)5	590	757.1584	757.4469	0.288507
19	0.33943	0.384308	0.044878)5	591	757.4469	757.447	0.000115
20	0.384308	0.40153	0.017222)5	592	757.447	757.549	0.102026
21	0.40153	0.415408	0.013878)5	593	757.549		
22	0.415408	0.415604	0.000196)5	594			
23	0.415604	0.415753	0.000149)5	595		total delay	757.549
24	0.415753	0.415753	0)5	596		rata-rata c	0.078985

Rata-rata delay ialah total delay / jumlah baris data Dari data sampel yang diambil didapatkan bahwa:

Total delay: 757,549 s

Rata rata delay= 0,078985 s

Ini berarti dapat disimpulkan bahwa delay pada jaringan saya bisa dibilang sangat baik, dibawah 1 detik.

3. Packet loss

Packet Loss adalah banyaknya paket yang hilang pada suatu jaringan paket yang disebabkan oleh tabrakan (collision), penuhnya kapasitas jaringan, dan penurunan paket yang disebabkan oleh habisnya TTL (Time To Live) paket.

Packet Loss

$$= \frac{Paket\ data\ dikirim - paket\ data\ diterima}{Paket\ data\ dikirim} x\ 100\%$$

Statistics			
Measurement	Captured	Displayed	Marked
Packets	107180	107180 (100.0%)	_
Time span, s	757.549	757.549	_
Average pps	141.5	141.5	_
Average packet size, B	937	937	_
Bytes	100416659	100416659 (100.0%)	0
Average bytes/s	132 k	132 k	_
Average bits/s	1060 k	1060 k	_

$$Packet \ Loss = \frac{107180 - 107180}{107180} x \ 100\%$$

Packet Loss = 0%

Tidak ada packet loss, yang mana ini sangat baik. Berarti tidak ada overload, error, ataupun kegagalan yang terjadi pada sisi penerima.

4. Jitter

Jitter didefinisikan sebagai variasi delay yang diakibatkan oleh panjang queue dalam suatu pengolahan data dan reassemble paketpaket data di akhir pengiriman akibat kegagalan sebelumnya.

	AD	AE	AF				
1	delay	delay 2	jitter				
2	0.197458	0.000147	0.197311				
3	0.000147	0.001802	-0.00166				
4	0.001802	0.014994	-0.01319				
5	0.014994	0.000183	0.014811				
6	0.000183	0.000558	-0.00038		AD	AE	AF
7	0.000558	0.014353	-0.0138	9579	1.206146	0.203528	1.002618
8	0.014353	0.075657	-0.0613	9580	0.203528	0	0.203528
9	0.075657	0.018817	0.05684	9581	0	0.056805	-0.05681
10	0.018817	0.000293	0.018524	9582	0.056805	0.102266	-0.04546
11	0.000293	0.000246	0.000047	9583	0.102266	0.006848	0.095418
12	0.000246	0.013765	-0.01352	9584	0.006848	0.00024	0.006608
13	0.013765	0.000113	0.013652	9585	0.00024	3.40E-05	0.000206
14	0.000113	0.000254	-0.00014	9586	3.40E-05	0.010649	-0.01062
15	0.000254	0.000589	-0.00034	9587	0.010649	0.040856	-0.03021
16	0.000589	0.000201	0.000388	9588	0.040856	0.575655	-0.5348
17	0.000201	0	0.000201	9589	0.575655	0.288507	0.287148
18	0	0.044878	-0.04488	9590	0.288507	0.000115	0.288392
19	0.044878	0.017222	0.027656	9591	0.000115	0.102026	-0.10191
20	0.017222	0.013878	0.003344	9592	0.102026		
21	0.013878	0.000196	0.013682	9593			
22	0.000196	0.000149	0.000047	9594			
23	0.000149	0	0.000149	9595	757.549	tot jitter	0.095432
24	0	6.60E-05	-6.6E-05	9596	0.078985	rata2 jittei	9.95E-06

$$Jitter = \frac{Total\ Variasi\ Delay}{Total\ Paket\ diterima - 1}$$
$$Jitter = \frac{0,95432}{9591-1} = 0.0000099512\ ms$$

Jitter dari pengukuran ini dapat dibilang sangat baik, sekitar 0.0000099512 yang mana itu berarti panjang queue dalam pengolahan data dan reassemble paket data akibat kegagalan sebelumnya itu sangat pendek, sehingga prosesnya queue dapat selesai dalam waktu yang sangat cepat.

KESIMPULAN

Berdasarkan 4 perhitungan untuk mencari troughput, delay, packet loss, jitter, dengan melihat kecepatannya dapat disimpulkan bahwa jaringan internet saya memiliki kualitas yang dapat dibilang cukup baik, dalam hal delay ayng terbilang lumayan cepat, dan jitter yang cukup cepat. Perhitungan ini dilakukan selama sekitar 12 menit.

DAFTAR PUSTAKA

Riansyah Rendi. 2020. "cara-mengukur-dan-menghitung-delay". www.rendiriansyah.com

https://www.rendiriansyah.com/2020/06/cara-mengukur-dan-menghitung-delay.html