Sistemas Lineares 3-SCDT EntradaNula

November 7, 2024

1 Análise de Sistemas em Tempo Contínuo no Domínio do Tempo

1.1 Introdução

Como no exemplo do circuito RC visto no último notebook, sistemas lineares são descritos por equações diferenciais lineares. como exemplo, vamos analisar o circuito RLC série descrito no script abaixo:

```
[1]: from lcapy import Circuit
```

```
[2]: cct = Circuit("""
    Vi 1 0_1 step; down
    L 1 2; right
    R 2 3; right
    C 3 0; down
    W 0_1 0; right
    ;draw_nodes=none, label_nodes=none""")
```



```
[3]: l=cct.mesh_analysis()
l.mesh_equations()
```

[3]:

$$\left\{ i_{1}(t):L\frac{d}{dt}\left(-i_{1}(t)\right)-Ri_{1}(t)+V_{i}u\left(t\right)+\frac{\int\limits_{-\infty}^{t}\left(-i_{1}(\tau)\right)\,d\tau}{C}=0\right\}$$

Fazendo uso do operador diferencial D duas vezes, isto $\acute{\rm e}$:

$$\begin{split} LDi_1(t) + Ri_1(t) + \frac{i_1(t)}{DC} &= v_i u(t) \\ LD^2i_1(t) + RDi_1(t) + \frac{i_1(t)}{C} &= DV_i u(t) \end{split}$$

Inserindo os valores L=1, R=3 e C=1/2,

$$(D^2 + 3D + 2)i_1(t) = DV_i u(t)$$
(1)

a qual é uma equação diferencial linear de segunda ordem. Em um sistema arbitrário, poderíamos ter N derivadas temporais sobre a saída y(t) e M derivadas sobre a entrada x(t), de forma que o sistema seria representado pela equação seguinte:

$$(D^N + a_1 D^{N-1} + a_2 D^{N-2} + \ldots + a_N) y(t) = (b_0 D^M + b_1 D^{M-1} + \ldots + b_M) x(t)$$

Esta última equação pode ser escrita de forma mais geral como:

$$Q(D)y(t) = P(D)x(t)$$

onde

$$Q(D) = D^N + a_1 D^{N-1} + a_2 D^{N-2} + \ldots + a_N \ \epsilon$$

$$P(D) = b_0 D^M + b_1 D^{M-1} + \ldots + b_M.$$

N e M podem assumir quaisquer valores em princípio, mas na prática teremos quase sempre N > M. Para entender o motivo, considere novamente a equação do circuito RLC, onde N=2 e M=1. Integrando duas vezes, veremos que a saída será função da integral da entrada, isto é, o sistema funciona como um integrador. Caso N=M, a saída será função da entrada. Mas se N < M, então a saída será função da derivada temporal da entrada, o que, como será visto, configura um sistema instável além de amplificar consideravelmente componentes de alta frequência de ruídos. Portanto, neste texto será normalmente considerado que $N \ge M$.

Além da entrada, a saida y(t) pode ser determinada a partir das condições iniciais do problema. Como é um sistema linear, a saída pode ser decomposta em duas partes, sendo a primeira considerando x(t)=0 e resolvendo apenas para suas condições iniciais (resposta de entrada nula), isto é,

$$Q(D)y_0(t) = 0$$

e contrariamente, desconsiderando as condições iniciais (resposta de estado nulo) e resolvendo para a entrada

$$Q(D)u(t) = P(D)x(t).$$

Pela aditividade teremos $y_t(t) = y_0(t) + y(t)$.

1.2 Resposta à Entrada Nula

Neste caso, a resposta deve-se unicamente as condições iniciais do problema, ou seja, precisamos resolver

$$(D^N + a_1 D^{N-1} + a_2 D^{N-2} + \dots + a_N) y_0(t) = 0$$
(2)

sujeito às condições iniciais. Para que esta equação seja satisfeita para todo $t,\,y_0(t)$ e suas derivadas precisam ter a mesma forma, e a única função que possui esta propriedade é a função exponencial. Portanto,

$$y_0(t) = ce^{\lambda t},$$

de forma que

$$Dy_0(t) = c\lambda e^{\lambda t}$$
$$D^N y_0(t) = c\lambda^N e^{\lambda t}$$

e da
í $(D^N-\lambda^N)ce^{\lambda t}=0$ é um problema de **autovalores**. A equação (2) pode agora ser escrita como

$$(\lambda^{N} + a_1 \lambda^{N-1} + a_2 \lambda^{N-2} + \dots a_N) ce^{\lambda t} = 0$$

onde $Q(\lambda) = \lambda^N + a_1 \lambda^{N-1} + a_2 \lambda^{N-2} + a_N$ é o polinômio característico do sistema e

$$Q(\lambda) = 0$$

é a equação característica. O polinômio característico pode ser fatorado e ecrito como

$$Q(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_N)$$

e os vários λ_i são as raízes (autovalores) do sistema.

Exemplo Considere o circuito descrito acima com a equação diferencial (1). Para determinar a resposta de entrada nula escrevemos

$$(D^2 + 3D + 2)u_0(t) = 0$$

onde $y_0(t)$ foi escrito como reposta no lugar da corrente. $Q(\lambda)=\lambda^2+3\lambda+2$ e a equação característica é

$$\lambda^2 + 3\lambda + 2 = 0$$

de onde obtemos $\lambda_1=-1$ e $\lambda_2=-2,$ os autovalores do sistema.

Com as raízes ou autovalores podemos encontrar a resposta de entrada nula. Para cada raíz teremos um termo exponencial $e^{\lambda_i t}$, denominados de modos característicos do sistema, por determinarem a forma como a resposta evolui naturalmente com o tempo. A somatória dos modos característicos resultará na resposta de entrada nula. Além disso, a forma final dos modos característicos dependerá dos autovalores da equação característica.

1.2.1 Raízes (autovalores) Distintas

 $\lambda_i \neq \lambda_j \ \forall i,j$. Então os modos característicos do sistema serão $c_1 e^{\lambda_1 t}, \ c_2 e^{\lambda_2 t}, ..., \ c_N e^{\lambda_N t}$. A resposta à entrada nula será dada por

$$y_0(t) = \sum_{i=1}^{N} c_i e^{\lambda_i t}.$$

Os coeficientes c_i são encontrados através das condições iniciais do problema.

Exemplo Vamos usar um script Python para descrever e analisar a resposta de entrada nula do circuito RLC série mostrado no início deste notebook. As condições iniciais sobre o circuito são I(0) = 0 e Vc(0) = 5V. Estas condições iniciais são adicionadas na netlist descritora do circuito. Além disso, a corrente de entrada nula é a corrente resultante quando os terminais da fornte estão curto-circuitados, como mostrado na netlist e figura a seguir.

```
[4]: from lcapy import *
    cct=Circuit("""
    W 0_1 0;down
    L 0_1 0_2 1 0;right,size=1.5,i=i_0
    C 0_2 1 0.5 5;right, v=
    R 1 0_4 3;down,size=1.5
    W 0_4,0;left
    ;draw_nodes=none,label_nodes=none""")
```

Na netlist acima, a linha "C 0_2 1 0.5 5;right, v=v_0" descreve o capacitor com capacitância $C=0.5\,F$ e tensão inicial de 5 V, e a linha "L 0_1 0_2 1 0;right,size=1.5,,i=i_0" descreve o indutor com indutância $L=1\,H$ e corrente inicial nula. Agora o circuito pode ser mostrado com o comando

[5]: cct.draw()

A seguir obtemos a corrente transitória de entrada nula:

[6]:

$$-5e^{-t} + 5e^{-2t}$$
 for $t > 0$

usamos linspace para escrever um vetor de 1000 amostras de tempo, e matplotib para fazer o gráfico da corrente de entrada nula.

```
[7]: from numpy import linspace
t = linspace(0, 10, 1000)
ien=cct.R.i.evaluate(t)
```

```
[8]: from matplotlib.pyplot import figure

fig = figure()
ax = fig.add_subplot(111, title='Corrente de Entrada Nula')

ax.plot(t, ien, linewidth=2)

ax.set_xlabel('Time (s)')
ax.set_ylabel('Mesh Current (A)')
ax.grid();
```


Para resolver o mesmo problema analiticamente, lembramos que resposta de entrada nula é y(t) = I(t), e da condição inicial imposta sobre a corrente temos y(0) = 0. Por outro lado, podemos reescrever a equação (com a fonte curto-circuitada) do sistema como

$$y_0(t)' + 3y_0(t) + v_c(t) = 0$$

Dessa equação decorre que em t=0 $y(0)'=-V_c(0)=-5$. Portanto, as condições iniciais são $y_0(0)=0$ e $y_0(0)'=-5$. Também vimos anteriormente que os autovalores para esta sistema são $\lambda_1=-1$ e $\lambda_2=-2$. Portanto, a resposta de entrada nula é dada por

$$y_0(t) = c_1 e^{-t} + c_2 e^{-2t}.$$

substituindo as condições iniciais, $y_0(0)=0=c_1+c_2\to c_1=-c_2$, e $y_0'(0)=-5=-c_1-2c_2$ e portanto $c_1=-5$ e $c_2=5$, e a resposta de entrada nula é

$$y_0(t)=5(-e^{-t}+e^{-2t})\quad\forall t\geq 0.$$

1.2.2 Raízes Repetidas

Inicialmente vamos analisar a resposta de entrada nula descrita na equação (2) com N=2, ou $(D^2 + a_1D + a_2)y_0(t) = 0$. Vamos supor que as duas raízes são idênticas. Isso significa que

$$\sqrt{a_1^2 - 4a_2} = 0$$
, $a_2 = \frac{a_1^2}{4} = \lambda^2$

e assim $a_1 = -2\lambda$. Portanto, a equação diferencial pode ser reescrita como:

$$(D^2-2\lambda D+\lambda^2)y_0(t)=0$$

ou ainda,

$$(D-\lambda)^2 y_0(t) = 0 \tag{3}$$

com soluções $ce^{\lambda t}$ e $cte^{\lambda t}$, o que pode ser facilmente comprovado por simples substituição em (3).

Exemplo $Q(\lambda)=\lambda^2+6\lambda+9$, e as condições iniciais são $y_0(0)=3$ e $y_0'(0)=-7$. Os autovalores da equação característica são $\lambda_1=\lambda_2=-3$ e portanto,

$$y_0(t) = c_1 e^{-3t} + c_2 t e^{-3t}$$

Sumstituindo as condições de iniciais,

$$y_0(0) = 3 = c_1 + c_2 \times 0 \rightarrow c_1 = 3,$$

$$y_0'(0) = -7 = -3c_1 + c_2 \rightarrow c_2 = 2$$

e portanto

$$y_0(t) = (3e^{-3t} + 2te^{-3t})u(t).$$

1.2.3 Raízes Complexas

Se os coeficientes do polinômio característico são reais, algumas raízes podem ser complexas, e aparecerão em pares conjugados. Para um polinômio de segunda ordem, as raízes podem ser um par conjugado $\alpha \pm j\beta$, um polinômio de terceira ordem pode resultar em uma raíz real e um par conjugado, e assim por diante. O número de raízes é igual à ordem N do polinômio.

Considere que as raízes λ_1 e λ_2 formam um par complexo conjugado, ou seja:

$$\lambda_1 = \alpha + j\beta, \quad , \lambda_2 = \lambda_1^* = \alpha - j\beta.$$

e portanto,

$$y_0(t) = c_1 e^{(\alpha + j\beta)t} + c_2 e^{(\alpha - j\beta)t} \tag{4}$$

A resposta de entrada nula $y_0(t)$ deve ser real e portanto c_1 e c_2 devem formar um par conjugado, $c_1=c_2^*$. Vamos assumir

$$c_1 = \frac{c_0}{2}e^{j\varphi} \quad \mathrm{e} \quad c_2 = \frac{c_0}{2}e^{-j\varphi}.$$

Substituindo essas constantes complexas em (4) resulta em

$$y_0(t) = \frac{c_0}{2} e^{j\varphi} e^{\alpha t} e^{j\beta t} + \frac{c_0}{2} e^{-j\varphi} e^{\alpha t} e^{-j\beta t}$$

ou

$$y_0(t) = \frac{c_0}{2} e^{\alpha t} \left[e^{j(\beta t + \varphi)} + e^{-j(\beta t + \varphi)} \right]$$

O termo entre colchetes é $2\cos(\beta t + \varphi)$ (fórmula de Euler), e finalmente

$$y_0(t) = c_0 e^{\alpha t} \cos(\beta t + \varphi). \tag{5}$$

Exemplo Seja o sistema linear representado pela equação diferencial

$$y''(t) + 4y'(t) + 40y(t) = x'(t) + 2x(t)$$

e condições inciais $y_0(0) = 2$ e $y'_0(0) = 16,78$.

Usando o operador D, a equação para determinação da resposta de entrada nula é

$$(D^2 + 4D + 40)y_0(t) = 0.$$

O polinômio característico é $\lambda^2 + 4\lambda + 40$ e as raízes formam um par complexo conjugado

$$\lambda_1 = -2 + j6 \quad \text{e} \quad \lambda_2 = -2 - j6$$

que, inseridos em (5) resulta em:

$$y_0(t) = c_0 e^{-2t} \cos(6t + \varphi).$$

Esta equação tem como antes duas constantes c_0 e φ que serão determinadas com o auxílio das condições iniciais.

$$y_0(0) = 2 = c_0 \cos(\varphi) \quad \text{e} \quad y_0'(0) = 16, 78 = -2c_0 \cos(\varphi) - 6c_0 \sin(\varphi).$$

destas duas equações determinamos que $c_0\cos(\varphi)=2$ e $c_0\sin(\varphi)=-3,46$. Elevando cada termo ao quadrado e somando encontramos $c_0\approx 4$, e ainda, dividindo o segundo pelo primeiro resulta em $\tan(\varphi)=\frac{-3,46}{2}\to\varphi=-\frac{\pi}{3}$. Daí, a resposta de entrada nula é

$$y_0(t) = 4e^{-2t}\cos(6t - \frac{\pi}{3})$$

cujo gráfico é obtido com o *script* Python mostrado abaixo. A curva laranja é a resposta de entrada nula, enquanto a curva azul é a sua envoltória exponencial.

```
[9]: import numpy as np import matplotlib.pyplot as plt
```

```
[10]: t=np.linspace(0,2,50)
    ye=4.*np.exp(-2*t)
    y=4.*np.exp (-2.*t)*np.cos(6.*t-np.pi/3)
    plt.plot(t,ye,t,y);
    plt.grid()
```


Adequando as condições iniciais à tensão inicial no capacitor e corrente inicial no indutor, podemos refazer o problema com o script abaixo:

[12]: b.draw()

[13]:

$$\left(\frac{1039\sin\left(6t\right)}{300}+2\cos\left(6t\right)\right)e^{-2t}\ \text{ for }t\geq0$$

b.Isc.transient_response().plot(vt);

A mesma curva é obtida. Para confirmar que a solução é a mesma, basta verificar que $4\cos(6t-\frac{\pi}{3})=4\cos(\frac{\pi}{3})\cos(6t)+4\sin(\frac{\pi}{3})\sin(6t)\approx 3.46\sin(6t)+2\cos(6t)$, que é a resposta dada pelo pacote L
capy.