Inotal	Projeto #1	Turma: C213 L1/L2	Data: 02/04/24	
Inatel	C213 – Sistemas Embarcados			
Docente: Samuel Baraldi Mafra	PED: Igor Gonçalves de Souza			
Objetivo: Apresentar a proposta para o primeiro Projeto Prático da disciplina.				
Integrante 1:				
Integrante 2:				

Projeto Prático de Sistemas Embarcados - Controle PID

1 Resposta Típica de Sistemas de Primeira Ordem

A partir de um modelo matemático, é possível analisar o desempenho de um dado sistema. A resposta de um sistema a um determinado estímulo de entrada pode ser dividida em **resposta transitória** - estado inicial do sistema, na qual o sinal varia rapidamente no tempo e tende à um estado final chamado de **resposta estacionária** ou **permanente**, regime no qual o comportamento da saída não varia (ou varia muito pouco) com o tempo.

O modelo matemático em questão pode ser representado por meio de uma Função de Transferência através de uma equação diferencial linear invariante no tempo, que relaciona os sinais de saída e de entrada por meio da Transformada de Laplace. Esse modelo descreve características do sistema e prevê parâmetros como sua estabilidade, erro, entre outros.

Circuitos RC, sistemas térmicos ou semelhantes representam um Sistema de Primeira Ordem, em que a Função de Transferência na forma canônica é dada pela forma:

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{PV(s)}{SP(s)} = \frac{k}{\tau s + 1},$$

em que k é o Ganho Estático em malha aberta e τ , a Constante de Tempo.

No MATLAB, a classe tf modela Função de Transferência: >> sys = tf(k, $[\tau \ 1]$).

O gráfico da Figura 1 representa o comportamento típico de um Sistema de Primeira Ordem para uma entrada do tipo degrau.

Figura 1: Resposta Típica de Sistemas de Primeira Ordem.

Após uma constante de tempo, em $T=\tau$, a resposta do sistema, de forma exponencial, varia de 0 a 63,21% do valor final. Após duas constantes de tempo, em $T=2\tau$, atinge 86,47%. Para os instantes de tempo $T=3\tau$, 4τ , e 5τ as amplitudes são 95,02%, 98,17% e 99,33% do valor final, respectivamente.

Segundo o Critério dos 2%, um Sistema de Controle atinge o regime permanente com 98% do seu valor final. Esse tempo é chamado de **Tempo de Acomodação**, ou t_s , de Settling Time. Assim, para um Sistema de Primeira Ordem, $t_s = 4\tau$.

O valor em regime permanente - Valor Final, é calculado pelo Teorema do Valor Final:

$$VF = \lim_{s \to 0} s \cdot SP(s) \cdot H(s),$$

em que SP(s) representa o sinal de entrada e H(s), o modelo matemático do sistema.

2 Malhas de Controle

2.1 Malha Aberta

O esquema da Figura 2 opera com sistema em Malha Aberta, modelo no qual o sinal de saída não exerce ação de controle, ou seja, a amplitude da saída não é medida nem comparada com a entrada.

Figura 2: Sistema de Controle em Malha Aberta.

$$SP(s) \circ \longrightarrow H(s) = \frac{k}{\tau s + 1} \longrightarrow PV(s)$$

2.2 Malha Fechada

Um Sistema de Controle em Malha Fechada estabelece uma relação de comparação entre o valor medido na saída e o valor definido como referência na entrada, utilizando essa comparação como meio de controle. O esquema da Figura 3 opera com sistema em Malha Fechada, em que $H_1(s)$ é a Malha de Controle e $H_2(s)$, a de Realimentação.

Figura 3: Sistema de Controle em Malha Fechada.

3 Atraso de Transporte

O Atraso de Transporte, ou tempo morto, corresponde ao tempo em que o sistema demora para responder ao estímulo de entrada, sem atenuação nas altas frequências. Esse tipo de atraso normalmente existe em sistemas térmicos, hidráulicos ou pneumáticos.

Sendo θ o tempo de atraso, um Sistema de Primeira Ordem com Atraso de Transporte tem como modelo:

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{PV(s)}{SP(s)} = e^{-\theta s} \cdot \frac{k}{\tau s + 1},\tag{1}$$

em que a parcela $e^{-\theta s}$ representa o atraso.

A Figura 4 compara um sistema com atraso para T=10. O Atraso de Transporte desloca a curva de resposta ao longo do tempo, sem modificação na dinâmica de amplitudes, ou seja, o valor final é o mesmo para os dois sistemas. Para a dinâmica temporal $t_0=t+T$.

Figura 4: Sistema de Controle com Atraso de Transporte.

No MATLAB, a propriedade 'InputDelay' da classe tf define Sistemas com Atraso de Transporte: >> sys = tf(k, $[\tau \ 1]$, 'InputDelay', Theta).

4 Sintonia de Controladores PID

A sintonia de um PID é a etapa de cálculo dos valores dos parâmetros da Função de Transferência do Controlador. Os métodos de sintonia são definidos por um critério de desempenho desejado para a malha, como um menor *overshoot* ou menor tempo de subida.

A parametrização se dá pela resposta ao degrau de um Sistema de Primeira Ordem com Atraso de Transporte em Malha Aberta, com Função de Transferência modelada pela Equação 1, em que a razão θ/τ entre o Atraso de Transporte e a Constante de Tempo é conhecida como **Fator de Incontrolabilidade**. Quanto maior esse fator, mais difícil se torna controlar o processo.

A sintonia define os valores de K_p , T_i e T_d , com

$$PID(s) = K_p \left(1 + \frac{1}{T_i \cdot s} + T_d \cdot s \right) = \frac{K_p T_d \cdot s^2 + K_p \cdot s + \frac{K_p}{T_i}}{s},$$

em que K_p é Ganho Proporcional, T_i o Tempo de Integral e T_d , Tempo de Derivada.

O Controlador PID opera na Malha de Controle do Sistema em Malha Fechada, alterando a ação de controle gerada pelo erro atuante no sistema.

Figura 5: Sistema com Controle PID.

4.1 Método de Ziegler Nichols Malha Aberta - Curva de Reação

O Método Ziegler Nichols Malha Aberta é definido a partir das características da resposta transitória do processo em Malha Aberta para uma entrada do tipo degrau. O Sistema em Malha Fechada apresenta uma taxa de decaimento de pelo menos C/A = 1/4.

Para esse método, os parâmetros do PID são calculados segundo a Tabela 1.

Tabela 1: Parâmetros do PID para a Sintonia pela ZN Curva de Reação.

Controlador	K_p	T_i	T_d
PID	$\frac{1.2\tau}{k \cdot \theta}$	2θ	$\frac{\theta}{2}$

4.2 Método do Modelo Interno - IMC

Neste método, o Controlador possui um Modelo Interno do processo que utiliza a Função de Transferência da planta para determinar o ajuste dos parâmetros do PID, propondo a sintonia por um parâmetro ajustável λ , o qual determina a velocidade da resposta do sistema. Valores menores de λ deixam o sistema mais rápido e com melhor desempenho, porém mais sensível às perturbações, com $t_s = 4\lambda$.

As regras de sintonia do Modelo Interno são apresentadas na Tabela 2 [1].

Tabela 2: Parâmetros do PID para a Sintonia Método do Modelo Interno.

Controlador	K_p	T_i	T_d	Critério Desempenho
PID	$\frac{2\tau + \theta}{k \cdot (2\lambda + \theta)}$	$\tau + \frac{\theta}{2}$	$\frac{\tau \cdot \theta}{2\tau + \theta}$	$\frac{\lambda}{\theta} > 0.8$

4.3 Método CHR

O Método CHR estabelece dois critérios de desempenho para o sistema considerando o problema servo (mudança de valor do Setpoint): resposta mais rápida sem overshoot ou resposta mais rápida com 20% de overshoot.

As Tabelas 3 e 4 apresentam a sintonia para os critérios, respectivamente.

Tabela 3: Parâmetros do PID para a Sintonia sem sobrevalor.

Controle	K_p	T_i	T_d
PID	$\frac{0.6\tau}{k\cdot\theta}$	au	$\frac{\theta}{2}$

Tabela 4: Parâmetros do PID para a Sintonia com 20% de sobrevalor.

Controle	K_p	T_i	T_d
PID	$\frac{0.95\tau}{k\cdot\theta}$	1.357τ	0.473θ

4.4 Método Cohen e Coon

O Método de Cohen e Coon foi proposto para Sintonia de Sistemas com Atraso de Transporte mais elevados, quando a planta possui Fator de Incontrolabilidade maior que 0,3. Assim como o Método de Ziegler Nichols, o modelo é resultado do ensaio em Malha Aberta com um degrau aplicado na entrada.

Para esse método, os parâmetros do PID são calculados segundo a Tabela 5.

Tabela 5: Parâmetros do PID para a Sintonia Método de Cohen e Coon.

Controlador	K_p	T_i	T_d
PID	$\frac{\tau}{k \cdot \theta} \left(\frac{16\tau + 3\theta}{12\tau} \right)$	$\theta \cdot \frac{32 + {}^{6\theta/\tau}}{13 + {}^{8\theta/\tau}}$	$\frac{4\theta}{11 + \frac{2\theta}{\tau}}$

4.5 Método ITAE

O ITAE é um Índice de Desempenho baseado na minimização do erro, resultado da Integral da multiplicação do Erro Absoluto pelo tempo (ITAE – Integral of Time multiplied by Absolute Error). Um Sistema com Controle ITAE reduz grandes erros iniciais, assim como erros posteriores ocorridos na resposta transitória, tornando as oscilações bem amortecidas e reduzindo consideravelmente o overshoot [2].

As regras para Sintonia ITAE apresentadas na Tabela 6 são regidas por seis constantes, com $A=0.965,\,B=-0.85,\,C=0.796,\,D=-0.147,\,E=0.308$ e F=0.929.

Tabela 6: Parâmetros do PID para a Sintonia ITAE [2].

Controlador	K_p	T_i	T_d
PID	$\frac{A}{k} \cdot \left(\frac{\theta}{\tau}\right)^B$	$\frac{\tau}{C + D \cdot (\theta/\tau)}$	$\tau \cdot E \cdot \left(\frac{\theta}{\tau}\right)^F$

5 Aplicação Prática - Forno Miniconv Prática Klimaquip

Um processo industrial é caracterizado por uma série de operações com o objetivo de fabricar algum bem ou material, com segurança aplicada ao monitoramento e controle das variáveis do processo, ou seja, da medida das grandezas físicas envolvidas nas etapas.

Entre as variáveis de controle de um processo, a manutenção da temperatura é um fator primordial para o desenvolvimento das etapas de fabricação de diversos produtos. Na indústria alimentícia, destacam-se como elementos geradores de calor os fornos de convecção forçada, modelo que trabalha movimentando artificialmente um fluido, normalmente o ar, através de um ventilador a fim de aumentar a circulação na câmara de cocção [3].

O Forno Miniconv, da empresa Prática Klimaquip IND. E COM. S/A, apresentado na Figura 6, possui um motor constantemente ligado, responsável pela convecção, ação ilustrada na Figura 7. A circulação de ar é realizada por uma turbina e o sistema de aquecimento é controlado por uma resistência em espiral.

Figura 6: Forno Miniconv [3].

Figura 7: Convecção forçada [3].

Este trabalho visa apresentar uma proposta de Sistema com Controle PID que varia a forma como o Forno é aquecido, alterando parâmetros da curva de resposta. Para Métodos com resposta mais rápida, o forno será aquecido mais rapidamente com pico de temperatura; para sistemas mais lentos, o ganho de temperatura na câmara de cocção é mais suave.

Projeto

As etapas do trabalho visam projetar um Sistema de Controle PID para o Forno Miniconv. Siga as etapas:

- 1. Identifique o conjunto de dados para seu grupo, nomeado por 'Dataset_GrupoX'.
- 2. Escolha o Método de Identificação da Planta Smith ou Sundaresan, e determine os valores de k, θ e τ para levantar a Função de Transferência do modelo de acordo com a resposta típica. Justifique a escolha do método e do modelo.
- 3. Compare a resposta original em relação à estimada e verifique se a aproximação foi satisfatória. Se necessário, realize o ajuste fino dos parâmetros, expondo o reflexo das alterações na resposta do sistema.
- 4. Plote as respostas do Sistema em Malha Aberta e Fechada e comente sobre as diferenças nos valores do Erro em regime permanente e no Tempo de Acomodação;
- 5. Sintonize um Controlador PID de acordo com os métodos especificados e verifique o comportamento do sistema controlado. Para a Sintonia IMC, a escolha de λ é livre de acordo com o critério de desempenho.

	Métodos	Conclusão
Grupo 1	Técnicas 1 e 5	(a) Tempo de resposta
Grupo 2	Técnicas 2 e 3	(b) Overshoot
Grupo 3	Técnicas 2 e 6	(a) Tempo de resposta
Grupo 4	Técnicas 4 e 5	(b) Overshoot
Grupo 5	Técnicas 3 e 6	(a) Tempo de resposta

Utilize a Tabela 7 para anotar os valores obtidos na sintonia.

Tabela 7: Parâmetros do PID para os métodos de Sintonia especificados.

Técnica	Método	K_p	T_i	T_d
1	Ziegler Nichols Malha Aberta	4.213	17.6	12.587
2	IMC	-	-	-
3	CHR sem Sobrevalor	-	-	-
4	CHR com Sobrevalor	-	-	-
5	Cohen e Coon	4.988	18.995	3.008
6	ITAE	-	-	-

- **6.** De acordo com a conclusão especificada, explique, entre os sistemas controlados, qual apresenta: (a) tempo de resposta mais rápido ou (b) menores índices de *overshoot*.
- 7. Crie uma interface que permita ao usuário definir os parâmetros do PID e do Setpoint.

Considerações

- Os códigos podem ser feitos em Python ou no MATLAB;
- A entrega do trabalho deve ser feita via GitHub. O repositório deve conter um readme detalhando a proposta da aplicação;
- A organização do diretório do projeto é livre, importando o dataset de forma adequada;
- Trabalhe com help ou lookfor do MATLAB como auxílio em caso de dúvidas na utilização de funções e comandos;
- Todos os gráficos devem ser salvos em pdf para garantia da resolução.

Referências

- [1] RIVERA, Daniel E., MORARI, Manfred, SKOGESTAD, Sigurd. Internal Model Control: PID Controller Design. Industrial & Engineering Chemistry Process Design and Development, California Institute of Technology, California, 1985, 252-265p.
- [2] Metrópole Digital. **Sintonia de Controladores PID: Método da Integral do Erro**. URL: https://materialpublic.imd.ufrn.br/curso/disciplina/1/63/6/4>.
- [3] PRÁTICA Klimaquip Ind. e Com. S/A. Características Técnicas Forno Miniconv. Revisão 3, 2022, URL: https://www.praticabr.com.