Exercícios do Livro Magalhães - Capítulo 03 Seção 3.4

Aluno: Miqueias T

27 de Agosto de 2025

Introdução

Este documento apresenta a resolução de exercícios teóricos selecionados sobre a definição formal de variáveis aleatórias, independência de eventos e propriedades de funções de distribuição. Os problemas exploram conceitos fundamentais da teoria da medida e da probabilidade.

1 Exercício 1

Sendo X e Y variáveis aleatórias em (Ω, \mathcal{F}, P) , mostre que $\min(X, Y)$ e $\max(X, Y)$ também são variáveis aleatórias.

Resolução

Para mostrar que uma função $Z:\Omega\to\mathbb{R}$ é uma variável aleatória, precisamos provar que o conjunto $\{\omega\in\Omega:Z(\omega)\leq z\}$ pertence à σ -álgebra \mathcal{F} para todo $z\in\mathbb{R}$.

Prova para $Z = \max(X, Y)$: Vamos analisar o evento $\{Z \leq z\}$, ou seja, $\{\max(X, Y) \leq z\}$. O máximo de dois números é menor ou igual a z se, e somente se, ambos os números são menores ou iguais a z. Portanto, podemos reescrever o evento da seguinte forma:

$${\max(X, Y) \le z} = {X \le z \text{ e } Y \le z}$$

Este evento corresponde à interseção de dois outros eventos:

$$\{\omega\in\Omega:X(\omega)\leq z\}\cap\{\omega\in\Omega:Y(\omega)\leq z\}$$

Por definição, como X e Y são variáveis aleatórias, os conjuntos $\{X \leq z\}$ e $\{Y \leq z\}$ pertencem a \mathcal{F} para qualquer $z \in \mathbb{R}$. Uma das propriedades fundamentais de uma σ -álgebra é que ela é fechada sob interseções finitas. Como ambos os conjuntos estão em \mathcal{F} , a sua interseção também deve estar em \mathcal{F} . Logo, $\{\max(X,Y) \leq z\} \in \mathcal{F}$ para todo $z \in \mathbb{R}$, o que prova que $\max(X,Y)$ é uma variável aleatória.

Prova para $W=\min(X,Y)$: Agora, vamos analisar o evento $\{W\leq z\}$, ou seja, $\{\min(X,Y)\leq z\}$. O mínimo de dois números é menor ou igual a z se, e somente se, pelo menos um dos números é menor ou igual a z. Assim, podemos reescrever o evento como uma união:

$$\{\min(X, Y) \le z\} = \{X \le z \text{ ou } Y \le z\}$$

Este evento corresponde à união de dois outros eventos:

$$\{\omega \in \Omega : X(\omega) \le z\} \cup \{\omega \in \Omega : Y(\omega) \le z\}$$

Novamente, como X e Y são variáveis aleatórias, os conjuntos $\{X \leq z\}$ e $\{Y \leq z\}$ pertencem a \mathcal{F} . Uma σ -álgebra também é fechada sob uniões finitas. Portanto, a união dos dois conjuntos também pertence a \mathcal{F} . Logo, $\{\min(X,Y) \leq z\} \in \mathcal{F}$ para todo $z \in \mathbb{R}$, o que prova que $\min(X,Y)$ é uma variável aleatória.

2 Exercício 3

Mostre que A_1, A_2, \ldots, A_n são eventos independentes se e só se $I_{A_1}, I_{A_2}, \ldots, I_{A_n}$ forem variáveis aleatórias independentes.

Resolução

Seja I_{A_i} a variável aleatória indicadora do evento A_i , tal que $I_{A_i} = 1$ se A_i ocorre, e $I_{A_i} = 0$ caso contrário. Note que $P(I_{A_i} = 1) = P(A_i)$ e $P(I_{A_i} = 0) = 1 - P(A_i) = P(A_i^c)$.

(\Rightarrow) Se os eventos são independentes, as v.a. indicadoras são independentes. Assumimos que A_1, \ldots, A_n são eventos independentes. Para mostrar que as variáveis aleatórias I_{A_1}, \ldots, I_{A_n} são independentes, devemos mostrar que para qualquer escolha de $x_1, \ldots, x_n \in \{0, 1\}$:

$$P(I_{A_1} = x_1, \dots, I_{A_n} = x_n) = \prod_{i=1}^n P(I_{A_i} = x_i)$$

O evento $\{I_{A_1} = x_1, \dots, I_{A_n} = x_n\}$ corresponde à interseção de n eventos, onde o i-ésimo evento é A_i se $x_i = 1$, ou A_i^c se $x_i = 0$. Vamos chamar esses eventos de B_i .

$${I_{A_1} = x_1, \dots, I_{A_n} = x_n} = \bigcap_{i=1}^n B_i, \text{ onde } B_i = \begin{cases} A_i & \text{se } x_i = 1\\ A_i^c & \text{se } x_i = 0 \end{cases}$$

Como os eventos A_1, \ldots, A_n são independentes, qualquer coleção formada por A_i ou seus complementos A_i^c também será de eventos independentes. Portanto, os eventos B_1, \ldots, B_n são independentes. Assim,

$$P(I_{A_1} = x_1, \dots, I_{A_n} = x_n) = P\left(\bigcap_{i=1}^n B_i\right)$$

$$= \prod_{i=1}^n P(B_i) \quad \text{(pela independência dos } B_i\text{)}$$

$$= \prod_{i=1}^n P(I_{A_i} = x_i)$$

Isso prova que as variáveis aleatórias indicadoras são independentes.

(\Leftarrow) Se as v.a. indicadoras são independentes, os eventos são independentes. Assumimos que I_{A_1}, \ldots, I_{A_n} são variáveis aleatórias independentes. Para mostrar que os eventos A_1, \ldots, A_n são independentes, devemos mostrar que para qualquer subconjunto de índices $J \subseteq \{1, \ldots, n\}$:

$$P\left(\bigcap_{j\in J} A_j\right) = \prod_{j\in J} P(A_j)$$

O evento $\bigcap_{j\in J} A_j$ é precisamente o evento em que $I_{A_j}=1$ para todo $j\in J.$

$$P\left(\bigcap_{j\in J}A_j\right)=P(I_{A_j}=1 \text{ para todo } j\in J)$$

3

Como as variáveis indicadoras são independentes, a probabilidade da ocorrência conjunta é o produto das probabilidades marginais:

$$P(I_{A_j}=1$$
 para todo $j\in J) = \prod_{j\in J} P(I_{A_j}=1)$
$$= \prod_{j\in J} P(A_j)$$

Isso prova que os eventos são independentes.

3 Exercício 5

Seja X uma variável aleatória com função de distribuição F_X . Seja Y = h(X) com função de distribuição F_Y . Mostre que:

- a. $F_{X,Y}(x,y) = \min\{F_X(x), F_Y(y)\}\$, se h é monótona crescente.
- b. $F_{X,Y}(x,y) = \max\{F_X(x) + F_Y(y) 1, 0\}$, se h é monótona decrescente.

Resolução

A função de distribuição conjunta é $F_{X,Y}(x,y) = P(X \le x, Y \le y)$. Substituindo Y = h(X), temos $F_{X,Y}(x,y) = P(X \le x, h(X) \le y)$.

a. h é monótona crescente

Se h é monótona crescente, ela possui uma inversa h^{-1} que também é monótona crescente. A desigualdade $h(X) \leq y$ é equivalente a $X \leq h^{-1}(y)$.

$$F_{X,Y}(x,y) = P(X \le x \text{ e } X \le h^{-1}(y))$$

= $P(X \le \min\{x, h^{-1}(y)\})$
= $F_X(\min\{x, h^{-1}(y)\})$

Como a função F_X é não-decrescente, $F_X(\min\{a,b\}) = \min\{F_X(a), F_X(b)\}$. Assim:

$$F_{X,Y}(x,y) = \min\{F_X(x), F_X(h^{-1}(y))\}\$$

Agora, vamos analisar o termo $F_Y(y)$.

$$F_Y(y) = P(Y \le y) = P(h(X) \le y) = P(X \le h^{-1}(y)) = F_X(h^{-1}(y))$$

Substituindo isso na expressão anterior, obtemos o resultado desejado:

$$F_{X,Y}(x,y) = \min\{F_X(x), F_Y(y)\}.$$

b. h é monótona decrescente

Se h é monótona decrescente, sua inversa h^{-1} também é. A desigualdade $h(X) \leq y$ é equivalente a $X \geq h^{-1}(y)$ (a ordem da desigualdade inverte).

$$F_{X,Y}(x,y) = P(X \le x \text{ e } X \ge h^{-1}(y))$$

= $P(h^{-1}(y) \le X \le x)$

Se $x < h^{-1}(y)$, o intervalo é vazio e a probabilidade é 0. Caso contrário, para uma v.a. contínua, a probabilidade é $F_X(x) - F_X(h^{-1}(y))$. Vamos analisar a expressão dada: $\max\{F_X(x) + F_Y(y) - 1, 0\}$. Primeiro, calculamos $F_Y(y)$:

$$F_Y(y) = P(Y \le y) = P(h(X) \le y) = P(X \ge h^{-1}(y)) = 1 - P(X < h^{-1}(y))$$

Assumindo que X é contínua, $P(X < h^{-1}(y)) = F_X(h^{-1}(y))$. Portanto, $F_Y(y) = 1 - F_X(h^{-1}(y))$. Agora, substituímos na expressão:

$$F_X(x) + F_Y(y) - 1 = F_X(x) + (1 - F_X(h^{-1}(y))) - 1$$

= $F_X(x) - F_X(h^{-1}(y))$

Isso corresponde a $P(h^{-1}(y) \le X \le x)$. O termo $\max\{\dots,0\}$ garante que a probabilidade seja não-negativa, cobrindo o caso em que o intervalo é vazio. Portanto, a identidade está correta.

4 Exercício 7

Mostre que, para variáveis contínuas X e Y, temos

$$F_X(x) + F_Y(y) - 1 \le F_{X,Y}(x,y) \le \sqrt{F_X(x)F_Y(y)}; \forall x, y \in \mathbb{R}.$$

Resolução

Vamos provar as duas desigualdades separadamente. Sejam os eventos $A = \{X \leq x\}$ e $B = \{Y \leq y\}$. Pelas definições das funções de distribuição, temos:

- $P(A) = F_X(x)$
- $P(B) = F_Y(y)$
- $P(A \cap B) = F_{X,Y}(x,y)$

Prova da Desigualdade à Esquerda: $F_X(x) + F_Y(y) - 1 \le F_{X,Y}(x,y)$ Esta desigualdade é uma consequência direta da fórmula de união de probabilidades (ou desigualdade de Bonferroni). A probabilidade da união de dois eventos é:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Sabemos que qualquer probabilidade deve ser menor ou igual a 1, então $P(A \cup B) \leq 1$.

$$P(A) + P(B) - P(A \cap B) \le 1$$

Reorganizando os termos para isolar $P(A \cap B)$:

$$P(A) + P(B) - 1 \le P(A \cap B)$$

Substituindo pelas funções de distribuição, obtemos a desigualdade desejada:

$$F_X(x) + F_Y(y) - 1 \le F_{X,Y}(x,y).$$

Prova da Desigualdade à Direita: $F_{X,Y}(x,y) \leq \sqrt{F_X(x)F_Y(y)}$ Esta desigualdade pode ser provada usando a desigualdade de Cauchy-Schwarz para variáveis aleatórias. Sejam I_A e I_B as variáveis aleatórias indicadoras dos eventos A e B. A desigualdade de Cauchy-Schwarz para esperanças afirma que $(E[UV])^2 \leq E[U^2]E[V^2]$. Aplicando para $U = I_A$ e $V = I_B$:

$$(E[I_A I_B])^2 \le E[I_A^2] E[I_B^2]$$

Uma propriedade das variáveis indicadoras é que $I_A^2 = I_A$ (pois $0^2 = 0$ e $1^2 = 1$). Da mesma forma, $I_B^2 = I_B$. Além disso, o produto $I_A I_B$ é a indicadora da interseção, $I_{A \cap B}$. A esperança de uma variável indicadora é a probabilidade do evento correspondente.

- $E[I_AI_B] = E[I_{A\cap B}] = P(A\cap B)$
- $\bullet \ E[I_A^2] = E[I_A] = P(A)$
- $\bullet \ E[I_B^2] = E[I_B] = P(B)$

Substituindo na desigualdade de Cauchy-Schwarz:

$$(P(A \cap B))^2 \le P(A)P(B)$$

Tirando a raiz quadrada de ambos os lados (como probabilidades são não-negativas, a desigualdade se mantém):

$$P(A \cap B) \le \sqrt{P(A)P(B)}$$

Substituindo de volta pelas funções de distribuição:

$$F_{X,Y}(x,y) \le \sqrt{F_X(x)F_Y(y)}$$
.

Isso completa a demonstração das duas desigualdades.