

국토교통 **대형실험시설**

Large-scale Test Facilities in Korea for Land Infrastructure and Transport

국토교통 대형실험시설 연혁

Large-scale test facilities history

구축목적

세계 최고 수준의 대형실험시설(1~2단계, 12개)을 전국 거점에 분산 구축하고 연구자가 공동활용함으로써 국토교통 분야의 연구인프라 확충 및 연구역량 강화

- 국토교통 국가 R&D 및 민간의 개발 기술을 실제 규모로 성능을 검증하여 실용화·사업화 촉진
- 국토교통분야의 다양한 시험평가 기술을 확립하고 국제표준화 등을 통해 국제적 기술 선도

- ·하이브리드구조실험센터 (명지대, 용인, 2004.06~2009.06)
- ·지오센트리퓨지실험센터 (KAIST, 대전, 2004.06~2009.06)
- · 첨단건설재료실험센터 (계명대, 대구, 2004.06~2009.06)
- ·지진방재연구센터 (부산대, 양산, 2004.06~2009.06)
- ·대형풍동실험센터 (전북대, 전주, 2004.06~2009.06)
- ·해안항만실험센터 (전남대, 여수, 2004.06~2012.12)

- · 극한성능실험센터 (서울대학교, 서울, 2013.12~2018.10)
- ·기후환경실증센터 (한국건설생활환경시험연구원, 진천, 2013.12~2017.12)
- ·주택성능연구개발센터 (한국토지주택공사, 세종, 2014.11~2019.03)
- ·기상재현도로실증센터 (한국건설기술연구원, 연천, 2014.12~2018.09)
- ·도로주행시뮬레이터실험센터 (한국도로공사, 화성, 2015.06~2018.12)
- ·국제융합수리실험센터 (한국농어촌공사, 안산, 2014.12~2019.03)

 $oldsymbol{01}$ 니국토교통 대형실험시설

국토교통 대형실험시설 위치

Location of the use of large-scale test facilities

■ 1단계 실험시설

하이브리드구조실험센터 명지대학교, 용인

지오센트리퓨지실험센터 KAIST, 대전

첨단건설재료실험센터 계명대학교, 대구

지진방재연구센터 부산대학교, 양산

대형풍동실험센터 전북대학교, 전주

해안항만실험센터 전남대학교,여수

■ 2단계 실험시설

극한성능실험센터 서울대학교, 서울

기후환경실증센터 한국건설생활환경시험연구원, 진천

주택성능연구개발센터 한국토지주택공사, 세종

기상재현도로실증센터 한국건설기술연구원, 연천

도로주행시뮬레이터실험센터 한국도로공사, 화성

국제융합수리시험센터 한국농어촌공사, 안산

Phase 1 of Large-scale test facilities

하이브리드구조실험센터 Hybrid Structural Testing Center

국제적 규모의 실험시설과 실험 장비를 갖춘 전문구조실험센터로써 산·학·연에서 개발된 기술/제품에 대한 검증실험 지원, 신기술 개발을 위한 R&D수행 및 개발을 선도하는 실험센터

01 I 실험센터와 연구소개

건설, 철도, 항공, 기계, 설비, 조선 및 원자력 분야의 구조역학(휨, 인장/압축, 전단, 피로, 동특성 및 내진성능평가) 기반의 재료실험 및 실대형 검증실험과 주요 구조물의 성능평가 및 신제품 개발을 위한 연구개발이 가능한 실험센터

02 I 실험영역

- 최대 길이 80m 장경간 거더/보 구조실험
- 최대 3층 규모의 건축물 / 보-기둥 접합부 구조실험 최대 20MN 규모의 압축/인장 성능 구조실험
- 케이블 압축/인장성능 구조실험
- 최대 높이 12m 교각/기둥 구조실험
- 실시간 하이브리드 구조실험

03 | 주요장비

정,동적 유압 압력기

구분	수량	용량	변위	속도
250kN Dynamic Act.	2	±250kN	750mm	1,000mm/s
500kN Dynamic Act.	2	±500kN	250mm	160mm/s
1,000kN Dynamic Act.	2	±1,000kN	800mm	400mm/s
2,000kN Dynamic Act.	2	±2,000kN	1,000mm	150mm/s
3,000kN Dynamic Act.	1	±3,000kN	700mm	300mm/s
5,000kN Dynamic Act.	2	+5,000kN/-3,500kN	2,000mm	4mm/s

만능재료시험기 UTM : Universal Testing Machine

구분	수량	용량	변위	속도
100kN Static UTM	1	±100kN	600mm	5mm/s
5,000kN Static UTM	1	±5,000kN	500mm	4mm/s
5,000kN Dynamic UTM	1	±5,000kN	500mm	40mm/s
20,000kN Dynamic UTM	1	+20,000kN/-13,500kN	750mm	80mm/s

01. 도로교/철도교용 65m용 거더/보 구조실험 U2. 10m용 교각 /기둥 구조실험 03. 3층 구조물 보-기둥 구조실험 04. 철도 대차 구조실험 | 05. 엘리베이터 권상기 구조실험 (5MN UTM) | 06.파형강판 압축성능실험 (20MN UTM) | 07. 굴삭기 구조실험

05 | 국토교통 대형실험시설 06 | 국토교통 대형실험시설

Phase 1 of Large-scale test facilities

지오센트리퓨지실험센터 Geotechnical Centrifuge Testing Center

축소된 지반과 구조물 모형을 고속으로 회전시켜 실제 현장의 응력상태 재현

01 | 실험센터와 연구소개

실제 구조물의 축소모형을 고속으로 회전시켜 인위적인 원심력을 적용함으로써 현장 응력상태를 모사하여 실제 구조물의 거동 모사 및 평가 실험이 가능한 실험시설

02 I 실험영역

- 지반 물성 평가 실험 - 기초, 중력식 안벽 등 구조물에 대한 동적실험 - 액상화 실험 - 지반구조물 및 해양기초구조물에 대한 정적실험

03 | 주요장비

- 원심모형시험기 - 진동대 - 제어 및 신호획득장치 - 4자유도 In-flight 로봇

- 압밀하중재하기 - 자동 낙사 장치 - 1,2축 하중 재하 장치

원심모형시험기

Geotechnical Centrifuge

댐, 사면과 같은 대형 지반 구조물을 축소모형으로 제작하고, 실험 모형을 고속으로 회전시켜 발생하는 원심력을 이용하여 실제 지반 구조물에 작용하는 응력과 동일한 응력을 모사하는 장비

구분	내용	
제작사	ACTIDYN SYSTEMS SA (프랑스)	
회전반경	5.0m	
최대용량	240g-tons	
최대하중	2,400kg up to 100g	
모델적재공간규모	1.2m x 1.2m x 1.2m (L x W x H)	
최대가속도	130g @ 1,300kg payload	

07 | 국토교통 대형실험시설

Phase 1 of Large-scale test facilities

첨단건설재료실험센터 Advanced Construction Materials Testing Center

구조물 설계의 부실화 방지 및 건전성을 확보하고 재료개발 및 적용의 표준화 선도 신재료 및 고성능 재료의 신속한 개발 및 적용을 통해 수입되는 건설 신재료의 국산 개발 대체를 지원

01 | 실험센터와 연구소개

콘크리트, 강재 및 신소재 등의 구조실험, 콘크리트의 내구성능 실험, 화학성분 및 미세구조 분석 실험 등의 다양한 건설 신재료 및 고성능 재료의 실험이 가능한 실험시설

02 I 실험영역

- 실물크기의 구조재료시험, 구조부재의 성능평가 콘크리트, 암석, 포장재료의 성능평가 첨단 건설재료의 미세구조 분석
- 강재와 복합재료의 구조성능평가
- 건설재료의 온도 및 환경적 영향평가 광섬유센서와 건설재료의 비파괴시험

03 | 주요장비

첨단건설재료실험센터의 각 실험실별 제시된 기자재는 약 50종으로 구성되어 있습니다

5MN 대형구조 재료시험기 5MN Testing System

5MN용량의 자체 반력구조형 구조/재료 보/기둥, 암거 등의 제품을 실험하는 시스템

5MN 압축 시험기 Compression Testing Machine

5MN 용량의 콘크리트 및 아스팔트 등의 재료특성 실험 기구

500kN 피로시험기 500kN Rolling Fatigue Machine

500kN 용량의 철근, 강재 등의 인장, 휨, 피로 특성/성능실험

동결융해시험기 Compression Testing Machine 급속동결 융해에 대한 콘크리트의 상대동탄성 계수 측정

09 | 국토교통 대형실험시설 10 | 국토교통 대형실험시설

Phase 1 of Large-scale test facilities

지진방재연구센터 Seismic Research and Test Center

세계최고 수준의 지진연구 및 시험기관

01 I 실험센터와 연구소개

지진방재 기술개발 활성화, 내진설계·성능검증, 정책제안 등 관련 연구활동 지원 및 기술적 지원체계 구축을 위하여 건설 분야뿐만 아니라 원자력 등 사회 전 분야의 지진·진동 관련 실험 및 연구를 수행하는 기관으로서 국내 최대 규모, 최고 성능의 진동대(Shaking Table) 장비를 통해 실대형 규모의 실증 실험 및 관련 연구, 개발이 가능한 실험·연구기관

02 I 실험영역

- 건설/기계/조선/전기/전자/원자력/철도/조선 등 구조물 및 기기의 내진시험, 진동내구성실험
- 천장재, 소방배관, 물탱크, 칸막이벽체, 외벽패널 등 비구조요소의 내진성능평가
- 보, 기둥, 슬래브, 벽체 등 구조부재 및 접합부 정동적 구조실험
- 건설, 기계 등 산업분야 인장, 압축, 휨 실험 및 재료실험, 피로성능실험
- 적재하중 100톤 설치면적 140㎡ 수준의 대형구조물, 기계설비 등 실대형 규모 실험체의 동적 지진모사실험
- KOLAS 공인시험기관(진동분야)으로 관련 규격시험 및 검증
- 원자력기기 성능검증기관 지정(한국원자력안전재단 인증)으로 관련 내진시험 분야 검증

03 | 주요장비

- 고성능 10g급 6자유도 진동대 시스템 [Table S]
- 다지점 가진 대용량 지진모사 시험기 [Table A / Table B/ Table C]
- 적재하중 100톤과 적재면적 140㎡의 대용량·대형 진동대 시스템
- 동적재료시험기 및 정적가력시스템 (Actuator & UTM)

다지점 가진 대용량 지진모사 시험기 [Table A / Table B / Table C]

4기의 accumulator Bank를 적용한 Blowdown 시스템으로 최대 1.2g의 지진을 3개의 진동대에서 동시에 모사하는 것이 가능

고성능 10g급 6자유도 진동대 시스템 [Table S]

가속도 기반 최고수준의 성능실험이 가능한 장비로서 원자력분야 등 고성능을 요구하는 지진 및 진동실험에 활용할 수 있으며, 건축물 내외장 설비(천장과 벽체, 전기 및 전력설비, 가스 및 상하수도 배관구조 등), 건설기계 및 철도 등의 기간산업분야 비구조 요소에 대한 내진성능 검증 및 진동내구성 실험 가능

적재하중 100톤과 적재면적 140㎡의 대용량·대형 진동대 시스템

기존 진동대 장비의 용량, 성능 향상으로 건축물, 교량, 플랜트, 원전 등 대형 구조물 및 기계 설비의 내진성능 검증 및 평가 가능

동적재료시험기 및 정적가력시스템 (Actuator & UTM)

가속도 기반 최고수준의 성능실험이 가능한 장비로서 원자력분야 등 변위, 하중 기반으로 제어가 가능하며, Static 및 Dynamic Test로 최대 3기의 Actuator를 동시에 가력 가능하여 다축 가력 실험 등 다양한 형태의 구조실험이 가능함. 또한, 건설, 기계 등 전반적인 산업분야에 적용되는 재료의 인장, 압축, 휨 실험 등의 재료실험 가능

11 | 국토교통 대형실험시설

Phase 1 of Large-scale test facilities

대형풍동실험센터 Wind Tunnel Center

교량 내풍 안정성 평가 및 지하시설물(터널) 환배기 평가와 빌딩 내풍 안정성 평가, 산업설비 내풍 안정성 평가를 실험하며 오염 물지 확산 전파 예측 실험을 진행합니다.

01 I 실험센터와 연구소개

세계적 규모의 최첨단 실험시설을 갖춘 전문 풍동실험센터로서 초고층건물, 초장대교량에 대한 내풍안정성 실험과 기계, 해양, 선박, 환경, 에너지 등 다양한 풍동실험이 가능한 실험시설

02 I 실험영역

토목 영역

- 교량 내풍안정성 평가
- 송전탑 내풍안정성 평가 - 공장 굴뚝 설계
- 대지형 모형 실험
- 케이블 진동 실험

건축 영역

- 빌딩 내풍안정성 평가
- 빌딩 사용성(풍환경) 평가
- 외장재 풍압 산정 - 도시계획/단지배치
- 도심 열섬 효과 및 바람길
- 빌딩풍, 비산물 실험

기계/산업/환경/에너지 영역

- 산업설비 내풍안정성 평가
- 풍력에너지 평가
- 태양광 패널 풍하중 평가 - 선박/해양구조물 성능 평가
- 도로/도시시설 파괴 실험 (신호등, 표지판, 옥외 간판 등)
- 방음벽/방풍벽 평가
- 오염물질 확산/전파 예측
- 대형시설물 환배기 평가

기타

- 자동차/기차/자전거
- 무인항공기
 - 스포츠 분야
 - 우산/파라솔/텐트

 - 차량용 삼각표지판 안정성 평가
 - 소방/방재
 - 의류(아웃도어)/헬멧

03 | 주요장비

대형풍동

- 팬&모터

- 3축 트래버스

- 능동난류발생장치

- 압력측정장비

- 턴테이블 - 열선풍속계

- 자동경계층생성장치 - 공기력측정장비

소형풍동

- 능동난류발생장치 - 영각조절장치 - 플러터계수 추출장치

태풍 3등급

자연바람발생장치

- 가변형 토출부 - 크레인(10ton, 20ton) - 강우장치 - 상향풍 모사장비 - 반력바닥

대형풍동 (Large Wind Tunnel)

이중시험부 (저속시험부, 고속시험부)로 구성

구분	저속시험부	고속시험부
순환형식	수직순환 폐회로 방식	
시험부 크기	12m(W) x 2.5(H) x 40m(l)	5m(W) x 2.5(H) x 20m(l)
풍속 범위	0.3m/s~13m/s	0.5m/s~31m/s
턴테이블	Ф11m Ф4.5m	

소형풍동 (Small Wind Tunnel)

소규모 모형실험 및 연구용 장비

5m(길이) x 1m (폭) x 1.5m (높이) 시험부크기 풍속범위 0.3~22m/s

태풍 3등급 자연바람 발생장치 (Out Door Wind Generator)

실물 성능 인증 및 파괴 시험이 가능한 장비

시험부크기	4m x 4m, 6m x 6m (폭 x 높이)	
풍속범위	3~53m/s	

13 | 국토교통 대형실험시설 14 | 국토교통 대형실험시설

Phase 1 of Large-scale test facilities

해안항만실험센터 Experimental Center for Coastal & Harbor Engineering

신재생 해양에너지 (조류, 파력 등) 개발을 위한 신기술 개발과 연안/해안/해양 과학기술 교육에 기여하고 기후 변화 적응기술 연구 (기후재해 방재분야)와 단계적 적응을 위한 영향 평가 및 기술 개발을 선도합니다.

01 I 실험센터와 연구소개

방파제 또는 부두 등 모형을 활용하여 구조물 건설에 따른 해안 파동현상 실험 신재생 해양에너지(조류,파력 등) 개발을 위한 신기술 개발과 연안/해안/해양 과학기술 교육에 기여하고 기후변화 적응기술 연구(기후재해 방재분야)와 단계적 적응을 위한 영향평가 및 기술개발을 선도합니다.

02 | 실험영역

- 연안/항만/해양 구조물의 안정성 실험 표사실험: 해빈변형, 침식대책 등 확산실험(오염물질 등) 쓰나미 실험
- 해양 재생에너지 개발: 조류발전시스템, 조파발전시스템 등

03 I 주요장비

- 3차원 조파수조 ㅣ - 3차원 조파수조 ॥ - 2차원 조파수로 ㅣ - 2차원 조파수로 II - 2차원 조파수로 III

조파 수조 · 수로 (Wave Basin · Wave Flume)

01.3차원 조파수조 I 02. 3차원 조파수조 II 03. 2차원 조파수로 1 04. 2차원 조파수로 II 05. 2차원 조파수로 III

수조・수로	수조사양	조파기	최대파고	주기
3차원 조파수조 [50m x 50m x 1.5m	12대 (폭3m / 대)	0.6m (규칙파)	0.5 ~ 4.0 sec
3차원 조파수조 Ⅱ	40m x 30m x 1.4m	7대 (폭3m/대)	0.6m (규칙파)	0.5 ~ 4.0 sec
2차원 조파수로 Ⅰ	100m x 2.0m x 3.0m		1.2m (규칙파)	0.5 ~ 8.0 sec
2차원 조파수로 II	50m x 1.0m x 1.3m		0.6m (규칙파)	0.5 ~ 8.0 sec
2차원 조파수로 Ⅲ	40m x 1.4m x 1.5m		0.6m (규칙파)	0.5 ~ 5.0 sec

15 | 국토교통 대형실험시설 16 | 국토교통 대형실험시설

극한성능실험센터 Extreme Performance Testing Center

인적/자연적 요인에 의해 발생할 수 있는 충돌, 충격, 극저온 등 다양한 극한상태를 모사하여 다양한 재료 및 구조물의 거동 및 성능을 평가하는 국내 유일, 세계 최고 수준의 대형 실험시설

01 I 실험센터와 연구소개

- 극한하중(충돌/충격) 및 극한환경(극한온도)을 모사하여 토목/건축, 기계, 항공, 조선 등 모든 산업분야에서 다루는 재료 및 구조물의 성능과 거동을 평가하는 대형 실험센터
- 극한성능 분야 표준실험절차 개발 및 사고/재난/재해 등 극한상태에 처한 구조물의 안전성 평가 연구 수행

02 | 실험영역

- 고변형률 속도에서 다양한 재료의 동적 물성치 추출
- 원전벽체 항공기/미사일 충돌 모사실험
- 탄환 발사시험 및 방탄장비 성능검증실험
- 다양한 재료/소재의 압축강도, 인장강도, 휨강도 실험
- 다양한 재료/부재/구조물의 내충격 성능평가
- 항공기 조류충돌 모사실험
- 고/저온 환경에서 다양한 부재의 재료 및 부재의 성능검증
- 부재/구조물 단위 인장/압축/휨/피로 실험

03 | 주요장비

- 중속가스건
- 고속가스건 - 극한온도실험시설 - 팬들럼충격시험기 - 5,000kN UTM
- 초고속가스건
- 자유낙하시험기
- 홉킨슨바
- 급속재하시험기 - 반력상
- Actuator(500~5.000kN)
- 반력벽

(Middle Velocity Propulsion Impact Machine)

고속가스건 (High Velocity Propulsion Impact Machine)

초고속가스건 (HyperVelocity Propulsion Impact Machine)

극한온도실험시설 (Extreme Temperature Chamber)

자유낙하시험기 (Drop Weight Impact Tester)

급속재하시험기 (High-speed Hydraulic Loading Machine)

정동적구조실험시설 (Structure Test Facilities)

기후환경실증센터 Center for Climatic Environment Real Scale Testing

대/중/소 기후환경실험실을 활용, 기후환경 조건 (온도, 습도, 강우, 강설, 일사, 풍속 등)을 모사하여 실물 규모 시설의 종합 성능평가, Mock-up 단위 성능평가, 자재/부재/기기의 환경성능 평가가 가능한 실험시설

01 | 실험센터와 연구소개

다양한 기후환경(온도 습도, 일사, 강우, 강설 등)조건을 구현하여 자재, 부재단위의 성능평가 뿐만 아니라 실규모 건축물의 성능을 종합적으로 평가할 수 있는 실험시설

02 | 실험영역

온도영역

- 태양열 축열조 환경 성능시험
- ESS 고온환경 성능시험 등

- 폭염환경 조건에서 도로 포장재의 표면온도 실증시험 등

습도 영역

- 방산제품의 고온/고습 환경시험
- 도로포장재의 블랙아이스 발생시험 등

- 태양광 구조물의 제설장비 성능시험 등

- 발열도료 포장재의 제설 성능시험

강우/내풍 영역

- 무인항공기 운항 시험
- 접이식 태양광 내풍성 시험등

대형 기후환경실험실

×20)m	
65)°C	
(10~95) %RH	
00)W/m²	
3)m	
mm/h	
3)m	
mm/h	

중형 기후환경실험실 (Middle-Scale Climate Environment Chamber)

규모 (W × D × H)		(10×10×4.5)m	
	범위	(-33 ~ 80)°C	
	범위	(10~95) %RH	
	강우량	MAX 150 mm/h	
	면적	(2×2)m	
	강설량	MAX 50 mm/h	

소형 기후환경실험실 (Small-Scale Climate Environment Chamber)

규모 (W × D × H)		(5×5×3.5)m
	범위	(-40 ~ 80)°C
	범위	(10~95) %RH
	측정강도	(800~1,200)W/m²
	면적	(1.5×1.5)m

03 | 주요장비

- 대/중/소 기후환경실험실 - 고층타워 실험동(60m) - 특정환경 성능평가실

19 | 국토교통 대형실험시설 20 | 국토교통 대형실험시설

주택성능연구개발센터 Housing Environment Research and Innovation Center

주거환경과 밀접한 소음·진동, 실내공기, 환기·기밀, 결로, 누수·방수, 외단열 등에 대한 연구개발 및 시험인증을 수행하는 국제적 수준의 종합 실험센터

01 | 실험센터와 연구소개

국민의 삶의 질 향상과 안전한 건축환경 구현을 위해 소음·진동, 실내공기, 환기·기밀, 결로, 누수·방수, 외단열 등에 대한 연구개발 및 시험인증을 수행하는 국제적 수준의 종합 연구 시험시설

02 | 실험영역

- (소음·진동) 생활소음의 객관적 성능평가를 위한 종합성능 평가 (실내공기) 쾌적한 공기환경 구현을 위한 실내공기질 실험시설
- (환기·기밀) 주택의 환기·기밀분야 연구개발 및 시험인증
- (누수·방수) 방수재 성능개선을 위한 복합실험시설
- (맞통풍) 세계 최대의 맞통풍 및 환기성능 종합평가 시스템
- (결로) 공동주택 결로저감을 위한 최적의 실험시설
- (외단열) 국내 최초 국제적 수준의 외단열 시스템 성능 평가

03 | 주요장비

- 차음성능 실험시설 실내 오염물질 측정 대형장비 공기필터 성능평가장치 결로성능 Mock-up 실험시설
- 고신장인장시험기 콘칼로리미터 CV(Cross Ventilation) 시뮬레이터

01. 차음성능 실험시설 | 02. 실내오염물질 측정 대형챔버 | 03. 공기필터 성능평가장치 | 04. 결로성능 Mock-up 실험시설 | 05. 고신장인장시험기 06. 콘칼로리미터 | 07. CV(Cross Ventilation) 시뮬레이터

21 | 국토교통 대형실험시설 22 | 국토교통 대형실험시설

Phase 2 of Large-scale test facilities

기상재현도로실증센터 Center for Road Weather Proving Ground

악천후 재현(강우, 강설, 안개, 도로소음 등)을 통한 도로성능 및 교통시설물 안전에 대한 실규모 실증실험이 가능한 실험시설

01 | 실험센터와 연구소개

강우, 강설, 안개 등 기상이 악화 된 상태를 재현하여 도로성능 및 교통 시설물에 대한 안전 실험진행 실 규모 실증 실험이 가능한 시설

02 I 실험영역

- 교통정보 안내시설 판독성 실험 노면표시, 시선유도시설 등 시인성 성능실험 도로 조명 및 야간 시인성 실험
- 악천후 상황별 검지기 성능실험 포장 공법별 성능실험 및 도로소음 실험 도로공간 적용 에너지 하베스팅 기술 실험
- 융설제 성능평가 실험

03 | 주요장비

- 강우재현 실험시설 - 안개재현 실험시설
- 도로조명 실험시설
- 강설재현 실험시설
- 터널형 쉴드(200m) 이동식 겐트리
- 융설제 성능평가 실험시설
- 에너지 하베스팅 실험시설
- 도로교통 소음 실험시설
- 기능성 포장 실험시설

01. 강우재현 실험시설 | 02. 안개재현 실험시설 | 03. 도로조명 실험시설 | 04. 터널형 쉴드 | 05. 강설재현 실험시설

도로주행시뮬레이터실험센터 Driving Simulator Expriment Center

가상현실(Virtual Reality)기법을 통해 실제 운전상황을 모의함으로써 다양한 도로·교통 환경을 재현하여 운전자차량-도로의 상호관계 분석이 가능한 가상주행 실험시설

01 | 실험센터와 연구소개

가상현실(Virtual Reality) 기법을 활용하여 운전자의 실제 운전상황을 현실감 있게 모의함으로써 도로기술 개발을 효과적으로 지원하는 실험시설

02 | 실험영역

- (도로·교통안전시설) 안전표지, 사전안내표지,노면표시 등의 설치효과, 적정 설치위치 및 간격 제시
- (도로 설계요소) 횡단(곡선반경) 및 종단선형(상하향 구배) 등 설계요소의 적정성 검토
- (인적요소) 운전자의 신체적·심리적 변화 분석을 통한 시설 순응도, 위험구간 산정
- (자율주행·첨단 안전기술) 비자율차량과의 상호 영향분석 등 기술 개발의 평가 및 검증도구로 활용

03 | 주요장비

- 대형 시뮬레이터 - 버스 시뮬레이터

- 트럭 시뮬레이터

- 운전자 생체정보 수집장비

01. 대형 시뮬레이터 | 02. 돔 내부 모습 | 03. 차량 내부 모습 | 04. 버스/트럭 시뮬레이터 | 05. 운전자 생체정보 수집장치

25 | 국토교통 대형실험시설 26 | 국토교통 대형실험시설

국제융합수리시험센터 International Hybrid Grand Hydraulic Center

새만금 수리시험장의 확장을 통해 하천,하구 및 연안을 하나의 모형으로 동시에 실험할 수 있는 세계 최초의 수리모형 실험시설

01 I 실험센터와 연구소개

국제융합수리시험센터는 댐, 배수갑문, 항만, 방조제, 방파제 등 수공구조물과 해안 및 하천에서 발생하는 다양한 수리학적 현상을 수리(모형)실험과 수치(모형)실험을 통하여 예측 및 분석하는 국내 최대 규모의 실내 실험장임

02 | 실험영역

- (방조제 설계지원) 새만금, 삽교, 지석, 교산 등
- (어촌뉴딜사업지원) 권관항, 수렴항, 명사항, 의성항, 나정항 등 (배수개선 사업 기술지원) 가체지구 등

- (기타 수공구조물 설계지원) 낙동강, 한강, 임진강 등
- (수력발전 사업 기술지원) 솔로몬제도 TINA 강, 파트린드 등
- (항만 및 어항 기술지원) 울산 신 항, 부산 신 항, 다대포 항 등 (수리시설 개선사업 지원) 불갑저수지, 이동저수지, 대가저수지 등
- (화력발전 사업 기술지원) 바레인 알뒤르, 쿠웨이트 사비아 등 (댐 설계지원) 용담댐, 보현산댐, 성주댐 등

03 | 주요장비

- (7종 실험수로) 고정식개수로, PIV실험수로, 고정식급경사수로, 대형유사순환수로, 소형유사순환수로, 가변식하도실험수로, 가변경사수로
- (첨단계측장비) 3D-PIV시스템, 3D-LDV 시스템, LS-PIV시스템, 3-D 지형스캐너, 초대형 3축 트래버스시스템
- (물리측정장비) 파고계, 파압계, 장력계, 유속계, 수위계 등
- (건설장비) 3ton미만 굴삭기, 스키드스티어로더등

01. 가변식하도실험수로 | 02. PIV 및 고정식개수로 | 03. 가변경사수로 | 04. 고정식급경사수로 | 05. 소형유사순환수로 | 06. 대형유사순환수로

27 | 국토교통 대형실험시설 28 | 국토교통 대형실험시설

국토교통 대형실험시설 이용안내

Information on the use of large-scale test facilities

실험서비스 이용방법

실험서비스 이용방법

■ 1단계 실험시설 이용문의

실험센터	유치기관	연락처
하이브리드구조실험센터	명지대학교 (용인)	031-324-1068
지오센트리퓨지실험센터	KAIST (대전)	042-350-7202
첨단건설재료실험센터	계명대학교 (대구)	053-580-6700
지진방재연구센터	부산대학교 (양산)	051-510-8180
대형풍동실험센터	전북대학교 (전주)	063-270-4813
해안항만실험센터	전남대학교 (여수)	061-659-6957

■ 2단계 실험시설 이용문의

실험센터	유치기관	연락처
극한성능실험센터	서울대학교 (서울)	02-880-4292 02-880-4187
기후환경실증센터	한국건설생활환경시험연구원 (^{진천})	043-753-3128
주택성능연구개발센터	한국토지주택공사 (세종)	044-902-9139
기상재현도로실증센터	한국건설기술연구원 (^{연천})	031-995-0832
도로주행시뮬레이터실험센터	한국도로공사 (화성)	031-8098-6347
국제융합수리시험센터	한국농어촌공사 (안산)	031-400-1875

29 L국토교통 대형실험시설