Inteligencia Artificial

Instituto Nacional de Astrofísica, Óptica y Electrónica

Presents:

MSc. Mireya Lucia Hernández Jaimes

Content

- 1 Quizz
- 2 Conceptos fundamentales
- 3 Análisis de los conjuntos de datos
- 4 Pre-procesamiento de los datos
- 6 Aprendizaje de máquina

Quizz

- Menciona 3 aplicaciones de IA
- Define IA
- Define ML
- Define DL
- ¿Cuál es la relacion entre IA-ML-DL?
- ¿Cuáles son las similitudes y diferencias entre IA-ML-DL?
- ¿Cuáles son las diferencias entre IA-ML-DL?
- ¿Cómo representamos las propiedades/características/atributos de los objetos/instancias?

En la presentación anterior se discutieron los siguientes conceptos:

- Instancia/muestra/ejemplo
- Vectores de características "Feature Vectors"

Tipos de datos/variables

Clasifica los siguientes tipos de datos/variables

- Nivel de ansiedad
- Edad
- Grupo sanguineo
- Número de pacientes al día
- Cantidad de glucosa en la sangre
- Sexo: F/M
- Evaluación de un servicio (Malo, Regular, Bueno, Muy Bueno, Excelente)
- Nivel de estudio
- País de origen
- Tamaño de ropa (XS, S, M, L, XL)

Conjunto de datos "Datasets" Es una colección de datos, atributos, características y especificaciones.

No.	Number of times pregnant	Plasma glucose concentration	Diastolic blood pressure	Triceps skin fold thickness	2-Hour serum insulin	Body mass index	Diabetes pedigree function	Age	Diabetes
1	6	148	72	35	0	33.6	0.627	50	tested_positive
2	1	85	66	29	0	26.6	0.351	31	tested_negative
3	8	183	64	0	0	23.3	0.672	32	tested_positive
4	1	89	66	23	94	28.1	0.167	21	tested_negative
5	0	137	40	35	168	43.1	2.288	33	tested_positive
6	5	116	74	0	0	25.6	0.201	30	tested_negative
7	3	78	50	32	88	31.0	0.248	26	tested_positive
8	10	115	0	0	0	35.3	0.134	29	tested_negative
9	2	197	70	45	543	30.5	0.158	53	tested_positive
10	8	125	96	0	0	0.0	0.232	54	tested_positive
11	4	110	92	0	0	37.6	0.191	30	tested_negative
12	10	168	74	0	0	38.0	0.537	34	tested_positive
13	10	139	80	0	0	27.1	1.441	57	tested_negative
14	1	189	60	23	846	30.1	0.398	59	tested positive

	outlook	temp	humidity	windy	play
0	sunny	hot	high	False	no
1	sunny	hot	high	True	no
2	overcast	hot	high	False	yes
3	rainy	mild	high	False	yes
4	rainy	cool	normal	False	yes
5	rainy	cool	normal	True	no

Análisis de los conjuntos de datos

- Tamaño del dataset: Número de instancias, Número de atributos
- Identificar tipos de datos (numéricos, categóricos)
- Identificar las etiquetas (clases)
- Analizar las distribuciones de las clases

Pre-procesamiento: se refiere a las técnicas de preparación (limpieza y organización) de los datos sin procesar ("Raw Data") para que sean adecuados para los modelos de ML.

- Identificar los valores faltantes.
- Identificar los valores duplicados.
- Codificar variables categóricas.
- Normalizar los datos numéricos.
- Estandarizar los datos numéricos.
- Ingeniería de Características (Feature engineering: Selección y extracción de características).
- Balancear el conjunto de datos.

Codificar Variables categóricas: Transformar las variables categóricas a variables numéricas.

- Label encoding
- One-Hot encoding

Label encoding: Es un proceso adecuado para datos categóricos ordinales. Es decir, tienen un orden claro.

Height	Height
Tall	0
Medium	1
Short	2

One-Hot encoding: s un proceso adecuado para datos categóricos nominales. Asigna a qué clase pertenece la instancia con un 1.

ID	Gender
1	Male
2	Female
3	Not Specified
4	Not Specified
5	Female

4			
ID	Male	Female	Not Specified
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	1
5	0	1	0

Normalización de los datos: reescala las características individuales para que se ajusten a un rango específico, normalmente [0, 1].

- •
- Min-max

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Min-Max

#	Emp	Age	Salary		Age	Normalized Age	Salary	Normalized Salary
1	Emp1	44	73000		44	0.80952381	73000	0.838709677
2	Emp2	27	47000	Normalization	27		47000	0
3	Emp3	30	53000	-	30	0.142857143	53000	0.193548387
4	Emp4	38	62000		38	0.523809524	62000	0.483870968
5	Emp5	40	57000		40	0.619047619	57000	0.322580645
6	Emp6	35	53000		35	0.380952381	53000	0.193548387
7	Emp7	48	78000		48	1	78000	1
						Range 0-1		Range 0-1

Min-Max

#	Emp	Age	Salary		Age	Normalized Age	Salary	Normalized Salary
1	Emp1	44	73000		44	0.80952381	73000	0.838709677
2	Emp2	27	47000	Normalization	27	0	47000	0
3	Emp3	30	53000		30	0.142857143	53000	0.193548387
4	Emp4	38	62000		38	0.523809524	62000	0.483870968
5	Emp5	40	57000		40	0.619047619	57000	0.322580645
6	Emp6	35	53000		35	0.380952381	53000	0.193548387
7	Emp7	48	78000		48	1	78000	1
						Range 0-1		Range 0-1

Min-Max

Estandarización de los datos: transforma los datos para que tengan una media de 0 y una desviación estándar de 1.

Z-score

New value =
$$(x - \mu) / \sigma$$

Z-score

Data	
3	
5	
5	
8	
9	
12	
12	
13	
15	
16	
17	
19	
22	
24	
25	
134	

De estos datos se tiene una media de 21.2 y una desviación estandar de 29.8

Z-score

Data	Z-Score Normalized Value
3	-0.61
5	-0.54
5	-0.54
8	-0.44
9	
12	-0.31
12	-0.31
13	-0.28

Z-score

Data	Z-Score Normalized Value
3	-0.61
5	-0.54
5	-0.54
8	-0.44
9	-0.41
12	-0.31
12	-0.31
13	-0.28

Z-score

	Z-Score
Data	Normalized Value
3	-0.61
5	-0.54
5	-0.54
8	-0.44
9	-0.41
12	-0.31
12	-0.31
13	-0.28

Z-score ¿Qué me representa el z-score? $\mu = 3\sigma$ $\mu - 2\sigma$ $\mu + 2\sigma$ $\mu + 3\sigma$

Feature engineering:

- Extracción de características: Extraer información significativa de los datos para crear nuevas características de las existentes.
- Selección de características:
 - Reducir la dimensionalidad de los datos.
 - Selección de caracerísticas relevantes, eliminar el ruido y la redundancia.

Balancear el conjunto de datos:

Example of balanced and imblanced data

Balanced

Imbalanced

Balancear el conjunto de datos:

Tambien está la técnica de class weight, la cual asocia valores o pesos más altos a las muestras de la clase minoritaria y pesos más bajos a la clase mayoritaria durante el proceso de entrenamiento.

Balancear el conjunto de datos: Oversampling

- Random Oversampling
- SMOTE

Random oversampling:

SMOTE: Synthetic Minority Oversampling Technique Las instancias nuevas no son meras copias de los casos minoritarios existentes. En su lugar, el algoritmo toma muestras del espacio de características de cada clase de destino y de sus vecinos más próximos. Luego, el algoritmo genera nuevos ejemplos que combinan las características del caso que nos ocupa con características de sus vecinos.

¿Cuáles son las 2 tareas principales que puede realizar los algoritmos de Machine Learning?

 Clasificación: Es el proceso de identificar un nuevo objeto/muestra de entrada no etiquetada como una clase.

 Predicción: Es el proceso de estimar un valor num erico o una salida continua en funcion del nuevo objeto/muestra de entrada no etiquetada.

¿Cómo se le denominan a los algoritmos de ML que realizan tareas de clasificación? Clasificadores

¿Cómo se le denominan a los algoritmos de ML que realizan tareas de predicción? **Algortimos de regresión**

Regression

What will be the temperature tomorrow?

Fahrenheit

Classification

Will it be hot or cold tomorrow?

Fahrenheit

Técnicas de aprendizaje de ML:supervisado Y NO supervisad

Técnicas de aprendizaje de ML:supervisado Y NO supervisad

Evaluación de ML

¿Para qué nos sirven los métodos de evaluación?

- La evaluación nos da evidencia para anticipar el correcto funcionamiento de los modelos de ML.
- Una evaluación sistemática es imprescindible para publicar resultados y avanzar en el estado del arte.

Técnicas para entrenar y evaluar un modelo de ML

Dividir el dataset de forma aleatoria en dos subconjuntos o incluso tres subconjuntos.

Técnicas para entrenar y evaluar un modelo de ML

K-fold cross validation.

Verdaderos positivos (TP-True positives): Mide la cantidad de datos identificados correctamente como la clase positiva.

Falsos positivos (FP-False positives): Mide la cantidad de datos identificados erróneamente como la clase positiva.

Falsos negativos (FN-False negatives): Mide la cantidad de datos identificados errónemante como la clase negativa.

Verdaderos negativos (TN-True negatives): Mide la cantidad de datos identificados correctamente como la clase negativa.

Matriz de confusión

Confusion Matrix		Predicted		
		Positive	Negative	
Actual	Positive	TP	FN	
	Negative	FP	TN	

¿Qué pasa cuando tenemos más de dos clases?

Matriz de confusión

		PREDICTED classification				
	Classes	a	b	С	d	
ACTUAL dassification	а	TN	FP	TN	TN	
	b	FN	TP	FN	FN	
	с	TN	FP	TN	TN	
	d	TN	FP	TN	TN	

Accuracy/exactitud: describe la proporción de muestras identificadas correctamente de todas las instancias.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precisión: Identifica la relación entre el número de muestras verdaderas y todas las observaciones pronosticadas como positivas.

$$Precisión = \frac{TP}{TP + FP} \tag{2}$$

Recall/Recuperación: calcula la relación entre el número total de verdaderos positivos y todos los verdaderos positivos.

$$Recall = \frac{TP}{TP + FN} \tag{3}$$

F1-Score: Es un promedio armónico de métricas de Recall y precisión tomando su promedio ponderado.

$$F1 - score = 2x \frac{Precision \times Recall}{Precision + Recall}$$

Razón de detección - Razon de verdaderos positivos (True Positive Rate- TPR): Corrresponde al número de muestras positivas reales identificadas correctamente en relación con el número total de muestras positivas.

$$TPR: \frac{TP}{TP + FN}$$
 (5)

Razon de falsos positivos/falsas alarmas (False Positive Rate- FPR):

Corrresponde al número de muestras negativas identificadas incorrectamente como positivas con relación con el total de instancias negativas.

$$FPR: \frac{FP}{FP + TN} \tag{6}$$

Curva ROC ((receiver operating characteristic curve)) y Área bajo la curva (AUC)

Error Absoluto Medio (MAE)

Error Cuadrático Medio (MSE)

Overfitting / Sobrajuste y Underfitting/Subajuste

Tarea 1

- Descargar un dataset
- Familiarizarse con la libreria scikit-learn de python
- Identificar tarea a resolver
- Analizar el dataset de acuerdo a los puntos discutidos previamente.
- Elegir los pasos de pre-procesamiento más adecuados y justificarlos.
- Balancear el dataset (en caso de ser necesario)
- Guardar los cambios en cada modificación que se realice en el datset.
- Escribir un reporte en formato pdf redactando las actividades realizadas.
- Subir en classroom código y reporte.