Prova sem consulta. Duração: 2h.

2ª Prova de Avaliação

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- *A desistência só é possível após 1 hora do início da prova;
- * Não é permitida a utilização de máquinas de calcular gráficas nem de microcomputadores.
- 1. [3,3] Calcule $\oint_C -y dx + z dy dz$, em que C é a curva de interseção das superfícies $x^2 + y^2 = 1$ e x + y + z = 1.
- 2. [3,4] Obtenha a área da superfície S dada por $z = \sqrt{x^2 + y^2}$, com $1 \le z \le 3$.
- 3. [4,0] Considere a curva C de interseção do paraboloide $z = 4 x^2 y^2$ com o plano z = 4 2x.
 - a) Parametrize a curva C.
 - b) Calcule o fluxo do rotacional da função de campo vetorial F(x, y, z) = (-y, x, 0), de dentro para fora da superfície do paraboloide limitada pela curva C.
- **4.** [3,3] Resolva, recorrendo ao método da variação das constantes, a equação diferencial $y'' 2y' + y = \frac{4e^x}{1+x}$, x > 0.
- 5. [4,0] Determine:
 - a) A função inversa da transformada de Laplace $F(s) = \frac{2}{s^2 + 9} + \frac{e^{-\pi s}}{s^2 + 2s + 5}$.
 - b) A solução da equação diferencial y'' + 4y = 4 4u(t-2), com y(0) = y'(0) = 0, usando transformadas de Laplace.
- **6.** [2,0] Enuncie devidamente o teorema de Green. Recorrendo a este teorema, mostre que a área da região D limitada por uma curva regular fechada C é dada por $A(D) = \frac{1}{2} \oint_C -y dx + x dy$.

(continua no verso)

Prova sem consulta. Duração: 2h.

2ª Prova de Avaliação

f(t)	F(s)
1	$\frac{1}{s}$
e ^{at}	$\frac{1}{s-a}$
t ⁿ	$\frac{n!}{s^{n+1}}$
sen at	$\frac{a}{s^2 + a^2}$
cos at	$\frac{s}{s^2 + a^2}$
$e^{at}f(t)$	F(s-a)
u(t-a)	$\frac{e^{-as}}{s}$
f(t-a)u(t-a)	$e^{-as}F(s)$
f*g	F(s)G(s)

Tabela 4.1 Transformadas de Laplace

in "Problemas de equações diferenciais ordinárias e transformadas de Laplace", Luísa Madureira, FEUPedições