

ხე

განვიხილოთ N რაოდენობის **წვეროსაგან** შემდგარი **ხე**, რომლის წვეროებიც გადანომრილია 0-დან (N-1)-მდე. წვერო 0 არის ხის **ფესვი**. ფესვის გარდა ხის თითოეულ წვეროს ჰყავს ზუსტად ერთი **მშობელი**. თითოეული ისეთი i-სთვის, რომლისთვისაც $1 \le i < N$, i წვეროს მშობელი არის წვერო P[i], სადაც P[i] < i. ჩავთვალოთ, რომ P[0] = -1.

თითოეული i წვეროსთვის ($0 \leq i < N$), i-ს **ქვეხეში** შედიან შემდეგი წვეროები:

- 1
- ნებისმიერი წვერო, რომლის მშობელია i;
- ნებისმიერი წვერო, რომლის მშობლის მშობელია i;
- ნებისმიერი წვერო, რომლის მშობლის მშობლის მშობელია i;
- და ასე შემდეგ.

ქვემოთ მოცემული სურათი გამოხატავს N=6 წვეროსგან შემდგარ ხეს. თითოეული ისარი აკავშირებს წვეროს მის მშობელთან, გარდა ფესვისა, რომელსაც არ ჰყავს მშობელი. წვერო 2-ის ქვეხე შეიცავს წვეროებს 2,3,4 და 5. წვერო 0-ის ქვეხე შეიცავს ხის 6-ვე წვეროს, ხოლო წვერო 4-ის ქვეხე შეიცავს მხოლოდ წვერო 4-ს.

თითოეულ წვეროს აქვს საკუთარი არაუარყოფითი მთელი **წონა**. აღვნიშნოთ წვერო i-ს წონა ($0 \le i < N$) W[i]-ით.

თქვენი ამოცანაა პასუხი გასცეთ Q ცალ შეკითხვას, რომელთაგან თითოეული მოცემულია დადებით მთელ რიცხვთა (L,R) წყვილის სახით. შეკითხვაზე პასუხი გამოთვლილი უნდა იქნას შემდეგნაირად:

განვიხილოთ ხის თითოეული წვეროსათვის **კოეფიციენტების** შესაბამება. ასეთი შესაბამება აღიწერება მიმდევრობით $C[0],\ldots,C[N-1]$, სადაც C[i] ($0\leq i < N$) არის კოეფიციენტი, რომელიც შეესაბამება წვერო i-ს. ამ მიმდევრობას დავარქვათ **კოეფიციენტთა მიმდევრობა**.

შევნიშნოთ, რომ კოეფიციენტთა მიმდევრობის წევრები შეიძლება იყვნენ დადებითი, უარყოფითი, ან 0-ის ტოლი.

(L,R) შეკითხვისთვის, კოეფიციენტთა მიმდევრობა არის **ვალიდური**, თუ თითოეული i წვეროსთვის ($0 \le i < N$) მართებულია შემდეგი წინადადება: i წვეროს ქვეხეში შემავალი წვეროების კოეფიციენტების $\mathfrak z$ ამი არ არის ნაკლები L-ზე და არ აღემატება R-ს.

კოეფიციენტთა მოცემული $C[0],\ldots,C[N-1]$ მიმდევრობისთვის, წვეროს i-ს **ფასი** არის $|C[i]|\cdot W[i]$, სადაც |C[i]| აღნიშნავს C[i]-ის აბსოლუტურ მნიშვნელობას. **ჯამური ფასი** ეწოდება ყველა წვეროს ფასების ჯამს. თქვენი ამოცანაა თითოეული შეკითხვისათვის გამოთვალოთ **მინიმალური ჯამური ფასი**, რომელიც შეიძლება მიღწეული იქნას რომელიმე ვალიდურ კოეფიციენტთა მიმდევრობით.

შესაძლებელია ჩვენება იმისა, რომ ნებისმიერი შეკითხვისათვის არსებობს ერთი მაინც ვალიდური კოეფიციენტთა მიმდევრობა.

იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი ორი პროცედურის იმპლემენტაცია:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: N ცალი მთელი რიცხვისაგან შემდგარი მასივები, რომლებიც აღწერენ წვეროების მშობლებსა და წონებს;
- პროცედურა გამოძახებული იქნება თითოეული ტესტისთვის ზუსტად ერთხელ გრადერსა და თქვენს პროგრამას შორის ინტერაქციის დაწყებისას.

```
long long query(int L, int R)
```

- L, R: მთელი რიცხვები, რომლებიც აღწერენ შეკითხვას.
- პროცედურა თითოეული ტესტისთვის გამოძახებული იქნება Q-ჯერ init პროცედურის გამოძახების შემდეგ.
- პროცედურამ უნდა დააბრუნოს პასუხი მოცემული შეკითხვისათვის.

შეზღუდვები

- $1 \le N \le 200\,000$
- $1 \le Q \le 100\,000$
- P[0] = -1
- ullet $0 \leq P[i] < i$ თითოეული ისეთი i-სათვის, რომ $1 \leq i < N$
- ullet $0 \leq W[i] \leq 1\,000\,000$ თითოეული ისეთი i-სათვის, რომ $0 \leq i < N$
- $\bullet \ \ 1 \leq L \leq R \leq 1\,000\,000$ თითოეული შეკითხვისათვის

ქვეამოცანები

ქვეამოცანა	ქულა	დამატებითი შეზღუდვები	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ თითოეული ისეთი i -სათვის, რომ $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ თითოეული ისეთი i -სათვის, რომ $0 \leq i < N$	
5	11	$W[i] \leq 1$ თითოეული ისეთი i -სათვის, რომ $0 \leq i < N$	
6	22	L=1	
7	19	დამატებითი შეზღუდვების გარეშე.	

მაგალითი

განვიხილოთ შემდეგი გამოძახებები:

ხე შედგება 3 წვეროსაგან, ფესვისა და მისი 2 შვილისაგან. თითოეული წვეროს წონა არის 1.

ამ შეკითხვაში L=R=1, რაც ნიშნავს, რომ თითოეულ ქვეხეში კოეფიციენტთა ${}_3$ ამი უნდა იყოს 1 -ის ტოლი. განვიხილოთ კოეფიციენტთა მიმდევრობა [-1,1,1]. ხე და შესაბამისი კოეფიციენტები (შეფერილ მართკუთხედებში) გამოსახულია ქვემოთ.

თითოეული წვერო i-სთვის ($0 \le i < 3$) მის ქვეხეში მდებარე ყველა წვეროს კოეფიციენტთა ჯამი 1-ის ტოლია. შესაბამისად, კოეფიციენტთა მიმდევრობა არის ვალიდური. ჯამური ფასი გამოითვლება შემდეგნაირად:

წვერო	წონა	კოეფიციენტი	ფასი
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$\mid 1 \mid \cdot 1 = 1$

ცხრილი გვიჩვენებს, რომ ჯამური ფასი არის 3. ეს არის ერთადერთი ვალიდური კოეფიციენტთა მიმდევრობა, შესაბამისად პროცედურამ უნდა დააბრუნოს 3.

```
query(1, 2)
```

მინიმალური შესაძლო 3ამური ფასი ამ შეკითხვისთვის არის 2 და ის მიიღწევა კოეფიციენტთა მიმდევრობით [0,1,1].

სანიმუშო გრადერი

შეტანის ფორმატი:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

სადაც L[j] და R[j] ($0 \le j < Q$) აღნიშნავენ შეტანის არგუმენტებს query-ს j-ურ გამოძახებაში. შევნიშნოთ, რომ შეტანის მეორე ხაზი შეიცავს **მხოლოდ** N-1 **ცალ მთელ რიცხვს**, რადგან სანიმუშო გრადერს არ სჭირდება P[0]-ის მნიშვნელობის წაკითხვა.

გამოტანის ფორმატი:

```
A[0]
A[1]
...
A[Q-1]
```

სადაც A[j] ($0 \leq j < Q$) არის query-ს j-ური გამოძახების მიერ დაბრუნებული პასუხი.