Предварительный просмотр загружен с www.sis.se. Купите весь стандарт на https://www.sis.se/std-914200

МЕЖДУНАРОДНЫЙ СТАНДАРТ

ISO 8855

Второе издание 2011-12-15

Дорожные транспортные средства. Динамика транспортных средств и курсовая устойчивость. Словарь.

Véhicules routiers - Dynamique des véhicules et tenue de route -Словарь

ДОКУМЕНТ, ЗАЩИЩЕННЫЙ АВТОРСКИМ ПРАВОМ

© ISO 2011 г.

Воспроизведение терминов и определений, содержащихся в этом международном стандарте, разрешено в учебных пособиях, инструкциях, технических публикациях и журналах исключительно в образовательных целях или в целях реализации. Условиями такого воспроизведения являются: отсутствие изменений в терминах и определениях; что такое воспроизведение не разрешается для словарей или аналогичных публикаций, предлагаемых для продажи; и что этот международный стандарт упоминается как исходный документ.

За исключениями, указанными выше, никакая другая часть данной публикации не может быть воспроизведена или использована в любой форме и любыми средствами, электронными или механическими, включая фотокопирование и микрофильм, без письменного разрешения ISO по указанному ниже адресу или Орган-член ISO в стране отправителя запроса.

Бюро авторских прав ISO
ПОЧТОВЫЙ ЯЩИК 56 • CH-1211 Geneva 20
Тел. + 41 22 749 01 11
Факс + 41 22 749 09 47 Электронная
почта copyright@iso.org Интернет
www.iso.org

Опубликовано в Швейцарии

СОДЕРЖАНИЕ Страница Предисловиеiv Введениеv 1 3 Arperat5 4 Геометрия и масса автомобиля 6 5.1 Переменные линейного движения 8 5.2 5,3 6.1 6.2 Подвеска и геометрия рулевого управления 16 7.1 Углы поворота и развала 16 7.2 8 8.1 8,2 12.4 Меры против недостаточной и избыточной поворачиваемости 33

Предисловие

ISO (Международная организация по стандартизации) - это всемирная федерация национальных органов по стандартизации (организаций-членов ISO). Работа по подготовке международных стандартов обычно выполняется техническими комитетами ISO. Каждый членский комитет, заинтересованный в предмете, по которому был создан технический комитет, имеет право быть представленным в этом комитете. Международные организации, правительственные и неправительственные, связанные с ISO, также принимают участие в работе. ИСО тесно сотрудничает с Международной электротехнической комиссией (МЭК) по всем вопросам стандартизации в области электротехники.

Международные стандарты разрабатываются в соответствии с правилами, приведенными в Директивах ISO / IEC, Часть 2.

Основная задача технических комитетов - подготовка международных стандартов. Проекты международных стандартов, принятые техническими комитетами, рассылаются комитетам-членам для голосования. Публикация в качестве международного стандарта требует одобрения не менее 75% комитетов-членов, принимающих участие в голосовании.

Обращается внимание на возможность того, что некоторые элементы этого документа могут быть предметом патентных прав. ISO не несет ответственности за идентификацию каких-либо или всех таких патентных прав.

ISO 8855 был подготовлен Техническим комитетом ISO / TC 22, Дорожная техника, Подкомитет SC 9, Динамика автомобиля и курсовая устойчивость.

Это второе издание отменяет и заменяет первое издание (ISO 8855: 1991), которое было технически пересмотрено. Он также включает Приложение ISO 8855: 1991 / Add.1: 1992.

Вступление

Этот международный стандарт определяет термины, относящиеся к динамике дорожных транспортных средств, в основном для использования инженерами-проектировщиками, специалистами по моделированию и разработкам в автомобильной промышленности. Это второе издание было подготовлено в ответ на требование обновить первое и согласовать его содержание с аналогичным стандартом, опубликованным SAE International (SAE J670: JAN2008). Этот пересмотр расширяет сферу действия, чтобы включить положения для отдельных систем осей шин и колес, наклонных и неоднородных дорожных покрытий, сил и моментов в шинах, многоцелевых коммерческих транспортных средств и двухосных транспортных средств, обладающих четырехколесной управляемой геометрией.

Словарь, содержащийся в этом международном стандарте, был разработан на основе предыдущего издания и SAE J670, чтобы облегчить точное и недвусмысленное сообщение терминов и определений, используемых при тестировании, анализе и общем описании поперечного, продольного, вертикального и вращательного динамика дорожных транспортных средств.

Предварительный просмотр загружен с www.sis.se. Купите весь стандарт на https://www.sis.se/std-914200

МЕЖДУНАРОДНЫЙ СТАНДАРТ

ISO 8855: 2011 (E)

Дорожные транспортные средства. Динамика транспортных средств и курсовая устойчивость. Словарь.

1 Область применения

Этот международный стандарт определяет основные термины, используемые для определения динамики дорожного транспортного средства. Условия распространяются на легковые автомобили, автобусы и грузовые автомобили с одной или несколькими управляемыми осями, а также на составы транспортных средств, состоящих из нескольких единиц.

2-х осевая система

2.1

система отсчета

геометрическая среда, в которой все точки всегда остаются неподвижными относительно друг друга

2.2

инерциальная система отсчета

Ньютоновская система отсчета

система отсчета (2.1), который, как предполагается, имеет нулевое линейное и угловое ускорение и нулевую угловую скорость.

ПРИМЕЧАНИЕ. В ньютоновской физике Земля считается инерциальной системой отсчета.

2.3

система осей

набор трех ортогональных направлений, связанных с Икс, Yа также Zтопоры

П р и м е ч а н и е - В настоящем стандарте предполагается правосторонняя осевая система, где: Z знак равно $\mathit{Икc} \times Y$.

2,4

система координат

соглашение о нумерации, используемое для присвоения уникального упорядоченного трио (*Икс, у, z*) значений в каждую точку в **система отсчета** (2.1), который состоит из **система осей** (2.3) плюс исходная точка

2,5

плоскость земли

горизонтальная плоскость в инерциальная система отсчета (2.2), перпендикулярно гравитационному вектору

2,6

дорожное покрытие

поверхность, поддерживающая шину и обеспечивающая трение, необходимое для создания поперечных сил в **дорожный самолет** (2.7)

Примечание-Поверхность может быть плоской, изогнутой, волнистой или другой формы.

2,7

дорожный самолет

самолет, представляющий дорожное покрытие (2.6) в пятне контакта шины

примечание 1 Для неровной дороги на каждом пятне контакта шины может быть своя плоскость дороги.

ЗАМЕТКА 2 Для плоского дорожного покрытия плоскость дороги совпадает с дорожным покрытием. Для дорожных покрытий с покрытием контуры, имеющие длину волны, подобную размеру пятна контакта шины или меньшую ее, как в случае многих гонок,

предполагается определение эквивалентной дорожной плоскости. Определение эквивалентной плоскости дороги зависит от требований выполняемого анализа. Эквивалентная плоскость дороги может не совпадать с реальной поверхностью дороги на **контактный центр** (4.1.4).

2.7.1

угол возвышения плоскости дороги

<u>ر</u>

угол от нормальной проекции $U\kappa c$ т ось на **плоскость земли** (2.5) в $U\kappa c$ т ось

2.7.2

угол развала дорожной плоскости

n

угол от нормальной проекции Ут ось на плоскость земли (2.5) в Ут ось

2,8

система наземных осей

(UKCE, YE, ZE)

система осей (2.3) исправлено в **инерциальная система отсчета** (2.2), в котором \mathcal{U} кс а также \mathcal{V} оси параллельны **плоскость земли** (2.5), а \mathcal{Z} сось направлена вверх и совмещена с вектором гравитации

ПРИМЕЧАНИЕ. Ориентация *Икс*е а также *Y*е оси произвольны и предназначены для основанных на потребностях анализа или тестирования.

2.9

система координат, привязанная к земле

(NKCE, YE, ZE)

система координат (2.4) на основе **система наземных осей** (2.8) с началом координат, зафиксированным в **плоскость земли** (2.5)

Примечание - Месторасположение исходной точки обычно является произвольной точкой, определяемой пользователем.

2,10

система оси транспортного средства

(UKCV, YV, ZV)

система осей (2.3) исправлено в **система отсчета** (2.1) автомобиля **подрессоренная масса** (4.12), так что *Икс*у ось по существу горизонтальна и направлена вперед (при неподвижном автомобиле) и параллельна продольной плоскости автомобиля. симметрии, и *W* ось перпендикулярна продольной плоскости симметрии автомобиля и направлена влево вместе с *Z*V ось направлена вверх

См. Рисунок 1.

примечание 1 Для комбинаций из нескольких единиц может быть определена отдельная система осей транспортного средства для каждого единица автомобиля (3.1) (см. рисунок 2).

ЗАМЕТКА 2 Символическое обозначение ($U\kappa cv$, 1, V, 1), ($U\kappa cv$, 2, V, 2), Zv, 2),..., ($U\kappa cv$, π , V, π , Zv, π) может быть назначен автомобилю системы осей многоблочной комбинации с π единицы техники (3.1).

2.11

система координат транспортного средства

(UKCV. W. ZV)

система координат (2.4) на основе система оси транспортного средства (2.10) с началом координат в транспортное средство ориентир (2.12)

2,12

контрольная точка транспортного средства

точка закреплена в транспортном средстве подрессоренная масса (4.12)

Примечание - Контрольная точка транспортного средства может быть определена в различных местах в зависимости от потребностей анализа или испытания. Обычно используемые местоположения включают полный центр тяжести транспортного средства, центр тяжести подрессоренной массы, средний колесная база (4.2) указывают на высоту центра тяжести и центр передней оси. Для комбинаций из нескольких единиц контрольная точка транспортного средства может быть определена для каждого единица автомобиля (3.1).

2,13

система промежуточных осей

(Икс, Y, Z)

система осей (2.3) чьи \mathcal{U} кс а также Y оси параллельны **плоскость земли** (2.5), с \mathcal{U} кс ось выровнена с вертикальная проекция \mathcal{U} кс ось на **плоскость земли** (2.5) См.

Рисунок 1.

примечание 1 Для комбинаций из нескольких единиц может быть определена отдельная система промежуточных осей для каждого единица автомобиля (3.1).

заметка 2 Система промежуточных осей используется для облегчения определения терминов угловой ориентации и компоненты силы, момента и векторов движения. Промежуточная система координат здесь не определяется.

Ключ

- Плоскость заземления контрольной точки
- 2 транспортного средства

Рисунок 1 - Транспортное средство и системы промежуточных осей

Рисунок 2 - Многоэлементные осевые системы

2,14

система оси шин

 $(\mathcal{U}KCT, YT, ZT)$

система осей (2.3) чьи *Икс*т а также *Y*г оси параллельны местным **дорожный самолет** (2.7), с *Z*г ось перпендикулярна плоскости местной дороги, где ориентация *Икс*т ось определяется пересечением **колесо самолета** (4.1) и плоскости дороги, а положительная *Z*г ось направлена вверх

Примечание - Местная осевая система шины может быть определена на каждом колесе (см. Рисунок 3).

2,15

система координат шины

(*Иκс*τ, *y*τ, *z*τ)

система координат (2.4) на основе **система оси шин** (2.14) с началом отсчета **контактный центр** (4.1.4)

2.16

система оси колеса

(UKCW, YW, ZW)

система осей (2.3) чьи *Икс*w а также *Z*w оси параллельны **колесо самолета** (4.1), чья *Y*w ось параллельна **ось вращения колеса** (4.1.1), и чьи *Икс*w ось параллельна локальному **дорожный самолет** (2.7), и где положительный *Z*w ось направлена вверх

Примечание- Местная система оси колеса может быть определена для каждого колеса (см. Рисунок 3).

Ключ

- 1 колесо самолета
- 2 дорожный самолет
- 3 ось вращения колеса

Рисунок 3 - Система оси шины и колеса

2,17

система координат колеса

(UKCW, yW, ZW)

система координат (2.4) на основе система оси колеса (2.16) с началом отсчета центр колеса (4.1.2)

2,18

система оси кабины

(*Ͷκϲ*ϲ, *Υ*ϲ, *Ζ*ϲ)

система осей (2.3) исправлено в **система отсчета** (2.1) подрессоренной массы кабины, так что $U\!\kappa c$ с ось по существу горизонтальна и направлена вперед (при неподвижном автомобиле) и параллельна продольной плоскости автомобиля. симметрии, и где $V\!c$ ось перпендикулярна продольной плоскости симметрии кабины и направлена влево вместе с $Z\!c$ ось направлена вверх

ПРИМЕЧАНИЕ. Система оси кабины применима только к автомобилям с подвесной кабиной.

2.19

система координат кабины

 $(\mathcal{U}\kappa cc, \nu c, zc)$

система координат (2.4) на основе **система оси кабины** (2.18) с началом координат в произвольной точке определяется пользователем

3 Автомобильный блок

3.1

единица автомобиля

жесткий (т.е. не шарнирный) элемент транспортного средства, работающий отдельно или в комбинации с одним или несколькими другими жесткими элементами, соединенными в шарнирно-поворотных соединениях.

ПРИМЕЧАНИЕ Трактор, **полуприцеп** (3.2.2) и **Долли** (3.2.4) являются примерами единиц автомобиля. Дышло**трейлер** (3.2) может состоять более чем из одной единицы транспортного средства.

3.2

трейлер

единица автомобиля (3.1) или сочетание нескольких единиц транспортного средства, которое буксируется другим транспортным средством и может быть отсоединено от его единицы буксирующего транспортного средства.

ПРИМЕЧАНИЕ. Прицеп может иметь одну или несколько осей, расположенных по его длине.

3.2.1

полный трейлер

трейлер (3.2), который имеет как переднюю, так и заднюю ходовую часть и, следовательно, обеспечивает полностью собственную вертикальную опору.

3.2.2

полуприцеп

трейлер (3.2), который имеет только заднюю ходовую часть и, следовательно, зависит от его буксировки. **единица автомобиля** (3.1) для значительной части его вертикальной опоры

ПРИМЕЧАНИЕ. Полуприцеп обычно соединяется с тягачом с помощью седельно-сцепное устройство (3.2.6).

3.2.3

прицеп с центральным мостом

трейлер (3.2) только с задней ходовой частью, расположенной лишь немного позади номинального положения центра тяжести агрегата.

ПРИМЕЧАНИЕ. Прицеп с центральной осью обычно соединяется с буксирным устройством с помощью сцепное устройство (3.2.7).

3.2.4

Лолли

часть полный трейлер (3.2.1), включающий управляемую переднюю ходовую часть и буксирную балку.

3.2.5

конвертер тележка

Долли (3.2.4) блок, который соединяется с **полуприцеп** (3.2.2) с **седельно-сцепное устройство** (3.2.6) и тем самым «преобразует» полуприцеп в **полный трейлер** (3.2.1)