### РТУ МИРЭА (ТУ)

Центр проектирования интегральных схем, устройств наноэлектроники и микросистем

### Методическое пособие по лабораторным работам

«Багет-ПЛК1-01»

(OC Linux, Debian 10)



Москва

2023

## Оглавление

| Bı | Введние                           |   |
|----|-----------------------------------|---|
|    |                                   |   |
| 1  | Установка ОС на целевую платформу | 9 |

### Введение

Методическое пособие описывает основные шаги по разработке программного обеспечения для встраиваемых систем. В качестве целевой платформы используется плата «Багет ПЛК1-01» с установленным микроконтроллером Комдив-МК К5500ВК018, производства ФГУ ФНЦ НИИСИ РАН. В состав К5500ВК018 входит микропроцессорное ядро с архитектурой МІРS64, включая сопроцессор вещественной арифметики (IEEE754), кэш-память первого уровня (16+16 кбайт), кэш-память второго уровня (128 кбайт), буфер трансляции виртуальных адресов на 64 адреса, контроллер динамической памяти DDR3L, восемь таймеров-счетчиков, сторожевой таймер, часы реального времени, два контроллера Ethernet 10/100, контроллеры последовательных интерфейсов RS-232C (4 шт.), I2C (2 шт.), SPI (3 шт.), QSPI, CAN 2.0 (2 шт.), USB 2.0. Серийный выпуск начат в 2021 году.

ПЛК1-01 выполнен в виде печатной платы без корпуса, на которой расположены соединители для подключения первичного электропитания и внешних устройств, органы управления (пользовательские кнопки SW1, SW2), светодиодные индикаторы (VD1 – VD5), перемычки для управления режимами работы ПЛК1-01 (SA4, SA5, SA6, SA7, SA9).

| Назначение            | Вывод процессора |
|-----------------------|------------------|
| Кнопка SW2            | GPIOD 6          |
| Зелёный светодиод VD2 | GPIOD 4          |
| Жёлтый светодиод VD5  | GPIOD 5          |



Рисунок 1. Расположение портов ввода-вывода

Для организации питания часов реального времени (RTC) микроконтроллера K5500BK018 при отсутствии основного питания предусмотрена установка автономного элемента питания – батарейки типа CR2032 +3 В. Расположение соединителей, органов управления и индикаторов ПЛК1-01 приведено на рисунке 1, назначение выводов на некоторых из разъёмов приведены на рисунке 2.

### Переходная плата

Для удобства подключения к интерфейсам целевой платы, была разработана переходная плата, с выведенными сигнальными линиями, сгруппированными по интерфейсам (рисунок 3).

UART2 можно использовать как для работы с интерфейсом UART2, так



Рисунок 2. Разводка выводов процессора по разъёмам ввода-вывода



Рисунок 3. Переходная плата

и для работы с интерфейсом CANO. Выводы GPIO банков Е и F дублируются на светодиоды для отладочных целей. При необходимости, можно подключать к выводам кнопки, или использовать их для формирования управляющих сигналов для модулей. Также обратите внимание, что одна из сигнальных линий I2C интерфейса используется кнопкой SW2 на плате, по этой причине не стоит использовать кнопку при активации этого нтерфейса.

### Как запускается Linux?

Для запуска OC Linux в общем случае должны пройти следующие этапы:

1. ROM BOOT — запуск встроенного загрузчика, определяющего источник дальнейшей загрузки. Этот код нельзя исправить его работа и фор-

мат образа (заголовки, значение бит и прочее) зависит от производителя.

- 2. First Stage Bootloader (FSBL) загрузчик первой ступени, задача этого загрузчика, начальная инициализация процессора, и загрузка пользовательского кода в DDR память. Данный загрузчик опциональный, и у некоторых производителей может отсутствовать. Работает из встроенной RAM памяти процессора.
- 3. Second Stage Bootloader (SSBL) это загрузчик второго уровня, задача которого заключается в подготовке системы к запуску ядра Linux, с пользовательскими параметрами (точка монтирования rootfs, скорость работы терминала для логов и прочее). Наиболее распространённый вариант загрузчика проекта Das U-Boot. В целевой плате используется другой загрузчик, набирающий популярность Bearbox.
- 4. Kernel на этом этапе за работу процессора отвечает ядро, происходит финальная конфигурация, активация дополнительный ядер (если они есть и активирована функция многоядерной поддержки), монтирование rootfs, запуск сервисов и прочее.

### Описание окружения

Для работы с платой используется виртуальная машина на базе Kubuntu 20.04. На виртуальной машине установлены пакеты для компиляции кода под Linux для MIPS64 архитектуры mips64el-linux-gnu-gcc (С компилятор) и mips64el-linux-gnu-g++ (С++ компилятор), компилятор дерева устройств device-tree-compiler, архив с заголовочными файлами ядра Linux установленного на плате, утилита debootstrap, IDE VSCode и прочие полезные инструменты.

Имя пользователя **student** пароль **usrstudent**. Пользователь поддерживает работу через sudo (получение прав суперпользователя он же администратор).

В конце некоторых работ есть задания для самостоятельного выполнения. При этом есть простые задачи, предполагающие незначительное изменение кода, а также есть помеченные \*. Последние выполняются по желанию, при этом нужно быть готовым, что придётся активно пользоваться поиском, и расходовать клетки серого вещества.

**ВНИМАНИЕ!** Запомните, что далее по тексту, если просят выполнить команду, в начале которой написано \$, значит команду нужно выполнить на целевой плате, а если с # - в консоли виртуальной машины. При этом \$ или # писать не нужно!

Если команда заканчивается символом \ и на следующей строчке есть запись, то это запись относиться к одной команде, Вы можете записать как видите, так как символ \ в консоли Linux означает многострочную команду или, опустив символ \, продолжить вводить текст приведённый на следующей строке методички.

### Примеры:

Авторы хотят, что бы Вы в консоли виртуальной машины (ВМ) записали echo Hello и нажали кнопку Enter:

#### # echo Hello

Авторы хотят, что бы Вы в консоли целевой платы записали echo FOOBAR и нажали кнопку Enter:

#### \$ echo FOOBAR

Авторы хотят, что бы Вы в консоли виртуальной машины (ВМ) написали очень длинную команду (да-да, вечер не обещает быть томным) и нажали кнопку Enter:

# echo \

FOOBAR

### Лабораторная работа № 1

# Установка ОС на целевую платформу

**Цель:** Установить дистрибутив Debian 10 на целевую платформу.

Описание: Нужно понимать, что ОС Linux делиться на две части. Ядро (Kernel) и файловую систему (rootfs). Ядро определяет какие возможности по взаимодействию с железом доступны пользователю и приложениям. Rootfs определяет какие инструменты есть в системе, порядок инициализации, запуска сервисов и прочие прикладные штуки. Дистрибутив это в большей степени наполнение rootfs. Не каждый дистрибутив имеет поддержку иной от х86 архитектур.

Для установки debian воспользуемся инструментом под названием debootstrap, который отвечает за создание rootfs. Подробнее про этот инструмент, и возможности по его управлению, Вы можете найти на wiki проекта Debian.

### 1.1 Подготовка rootfs

1.1.1 Запустите виртуальную машину. Логин и пароль для входа: student / usrstudent.

# 1.1.2 Запустите консоль нажав комбинацию клавиш на клавиатуре Ctrl+Alt+T

Внимание! В консоли есть возможность автоматического продолжения ввода. Для этого необходимо ввести первые символы команды, или пути, и нажать клавишу ТАВ. Ввод продолжиться до тех пор, пока не появиться неопределённостью (к примеру у Вас есть два файла foo\_bar1 и foo\_bar2, при нажатии ТАВ будет вставлен текст до цифры). Двойное нажатие ТАВ приведёт к выводу всех возможных вариантов продолжения, если таковые есть.

**1.1.3** Создайте и перейдти в рабочий каталог в котором будет создан образ rootfs.

```
# mkdir -p $BAGET/lab_01
# cd $BAGET/lab_01
```

1.1.4 Запустите утилиту debootstrap (при необходимсоти введите пароль usrstudent):

```
# sudo debootstrap --include=aptitude,nano,wget \
--foreign \
--arch=mips64el buster rootfs
```

- -include = A, B, C... добавить в сборку указанные пакеты
- --foreign только сгенерировать наполнение, применяется когда архитектура на которой запускается утилита отлична от архитектуры назначения.
- --arch = mips64el указываем целевую архитектуру

buster — версия сборки

rootfs — путь к папке назначения, где будут размещены файлы

1.1.5 Для продолжения установки, нам понадобиться утилита qemu позволяющая эмулировать различные архитектуры. Скопируем исполняемый файл qemu:

```
# sudo cp /usr/bin/qemu-mips64el-static ./rootfs/usr/bin
и перейдём в созданную rootfs (привет дедушка контейнеров, chroot)
# sudo chroot ./rootfs
```

### 1.2 Hастройка rootfs

### 1.2.1 Завершим работу debootstrap

```
# export LANG=en_US.UTF-8
# /debootstrap/debootstrap --second-stage
```

# 1.2.2 Добавим источники для установки $\Pi O$ , для этого выполним следующие команды

```
# echo deb http://ftp.debian.org/debian buster \
main contrib non-free >> /etc/apt/sources.list

# echo deb-src http://ftp.debian.org/debian buster \
main contrib non-free >> /etc/apt/sources.list

# echo deb http://ftp.debian.org/debian buster-updates \
main contrib non-free >> /etc/apt/sources.list

# echo deb-src http://ftp.debian.org/debian buster-updates \
main contrib non-free >> /etc/apt/sources.list
```

### 1.2.3 Обновим список, и установим ряд приложений

<sup>#</sup> apt-get update

# apt-get install -y dialog sudo less i2c-tools evtest mc \
openssh-server resolvconf hwinfo net-tools

### **1.2.4** Зададим пароль для root пользователя

#### # passwd root

После чего введите root (внимание, курсор двигаться не будет, это политика безопасности Linux, при вводе пароля курсор не перемещается, что бы нельзя было установить количество символов). И нажмите Enter

Затем Вас попросят повторить пароль, снова введите root и нажмите Enter