# I. Informatique et ses fondements :

1ère partie : le codage binaire



#### ICN: 1. Le codage binaire

- 1. Représentation de l'information sous forme de bits
- 2. Stocker les images ou les sons
- 3. Compression
- 4. Organisation des données
- 5. Bases de données

#### Pourquoi coder l'information?







- Informations diverses, hétérogènes, plus ou moins structurées
  - Perçues par nos sens humains ou par des instruments
- Comment les représenter ?

Numérisation et codage numérique

## Au niveau électronique

- Soit le courant électrique passe, soit il ne passe pas
- Codage binaire avec des 0 ou des 1
  - **Bit** = Binary Digit

- Ordinateurs actuels basés sur l'électronique
  - Bientôt la photonique ou le quantique ?

# **Opérations sur les bits**

- Transistor = Télérupteur miniature
  - Robinet pour commander le passage du courant



## **Opérations sur les bits**

- Avec les transistors, on construit des portes logiques
  - ET, OU, OU exclusif, NON, ...



Puis des additionneurs de bits, ...

#### Coder les nombres

- Bit limité à 2 valeurs
  - Assembler les bits pour coder des grands nombres
    - ✓ Un octet = 8 bits = 256 valeurs (de 0 à 255)
- Pour coder un âge, il suffit de 7 bits (de 0 à 127)
- Pour coder une température, il en faut plus
  - Et des nombres négatifs
  - Et des nombres à virgules

L'ordinateur sait manipuler les principaux types de nombres

#### Peu importe ce qu'il y a dedans

- L'ordinateur sait manipuler les nombres
- Mais il se fiche de leur signification
- C'est le programmeur ou l'utilisateur qui doit lui donner ces nombres en entrée de manière adaptée
  - Quelle unité de mesure ?
- Et correctement interpréter les résultats

#### Coder du texte

- De nombreuses façons de stocker une lettre
  - Un bit par case à afficher ?
  - Quelle largeur et quelle hauteur ?
  - Et si on ajoute de la couleur ?
- Code ASCII
  - Numéro 8bits = 256 caractères possibles
    - ✓ Étendu par Unicode pour gérer toutes les langues

Le dessin du caractère (la police) n'est nécessaire qu'à l'affichage



## Ce qu'il faut retenir

- Le courant électrique code un bit 0 ou 1
- On assemble ces bits pour représenter des nombres, voire des lettres, etc.
- Des circuits électroniques effectuent des calculs avec ces nombres
  - Sans savoir ce qu'ils signifient

#### Illustrations

- p. 2 : 20050501\_1315\_2558-Bimetall-Zeigerthermometer.jpg CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) , via Wikimedia Common
- p.2 : Little visuals : <a href="https://stocksnap.io/author/401">https://stocksnap.io/author/401</a>

#### ICN: 1. Le codage binaire

- 1. Représentation de l'information sous forme de bits
- 2. Stocker les images ou les sons
- 3. Compression
- 4. Organisation des données
- 5. Bases de données

## Les pixels

- Jeux vidéos, télévision numérique, réalité virtuelle, ...
  - Quelle technologie pour l'affichage ?





- Des Pixels (Picture Element)
  - Composés de 3 couleurs (Rouge Vert Bleu)
- Servent aussi pour la retouche, l'impression, etc.

#### Codage des pixels

- Suite de bits codant chaque pixel
  - 1 bit par pixel en noir et blanc
  - 8 bits pour 256 niveaux de gris
  - 24 bits pour les couleurs (8 bits par composante)
- Comment savoir si une suite de bits correspond
  à 24 pixels noir et blanc ou à 1 seul pixel en couleur ?
- Comment savoir si l'image est rectangulaire ou carrée ?

Il faut un en-tête précisant le codage des pixels et les dimensions de l'image

## Images bitmaps ou vectorielles?

- L'ordinateur n'a aucune idée du contenu d'une image
  - Pour savoir qu'il y a un disque, il faut un algorithme de reconnaissance de forme
- Comment mieux coder de telles images ?
  - Décrire le disque serait plus facile
    - ✓ Et beaucoup plus concis!

Une image vectorielle est un ensemble de formes mathématiques avec leurs couleurs

• Bien pour le dessin technique, pas pour les photos!



## Codage du son

- Signal composé d'une infinité de valeurs intermédiaires
  - On ne peut pas toutes les coder!

#### Échantillonnage



- Suffisamment proches pour que l'oreille humaine n'entende pas la différence
- Un paquet de bits pour chaque valeur
  - Avec un en-tête pour préciser la fréquence



#### Codage « vectoriel » du son

- Un morceau de musique, c'est aussi une partition
  - Facile à coder en bits
- Et des caractéristiques d'instruments
  - Type, timbre, ...

- On code la façon de générer la musique plutôt que le résultat
  - Similaire à l'idée des images vectorielles



## Ce qu'il faut retenir

- Images et sons peuvent être codés par des suites de nombres, de bits
- Un programme permet à l'ordinateur d'interpréter ce codage pour afficher ou imprimer une image, jouer un son, ...
- ... et de coder des données lors d'un scan d'image, d'un enregistrement de son, ...
- Entre les deux (stockage sur le disque, transfert sur Internet, retouche photo ou audio, ...), les données peuvent rester codées

#### Illustrations

• p.2 : Six Fingers © *Inria - J.C. Moschetti* 

#### ICN: 1. Le codage binaire

- 1. Représentation de l'information sous forme de bits
- 2. Stocker les images ou les sons
- 3. Compression
- 4. Organisation des données
- 5. Bases de données

#### Pourquoi de la compression?

- Imaginons un film Full HD de 2h (sans le son)
- 7200 secondes x 24 images par seconde = **172 800 images**
- 1920x1080 pixels = **2 073 600 pixels par image**
- 24 bits pour les couleurs de chaque pixel
- Il faut 8 599 633 920 000 bits pour stocker la vidéo
  - Soit 1 Téraoctet !
  - 100 heures de téléchargement sur ADSL
    - ✓ Pas idéal pour la vidéo à la demande...

Comment fait-on tenir un tel film sur un DVD de quelques gigaoctets?



## Compresser les images

- Certaines images ont des zones répétitives
  - Couleurs uniformes, parties identiques, ...
  - Inutile de stocker plusieurs fois la même information
    - ✓ Permet de réduire significativement la taille des images « simples »
    - ✓ Format d'image GIF, PNG, ...

 On peut appliquer le même principe à du texte, du son, etc.







#### Compresser les photos

- Les photos sont souvent non répétitives
  - Mais a-t-on besoin de tous les détails ?
  - L'œil humain voit-il la différence entre 2 pixels similaires ?



Compression avec perte par approximation des blocs de pixels

- Format d'image JPEG, ...
  - Résultat plus ou moins bon selon le taux de compression



## Compresser les vidéos



Les images successives d'un film sont souvent très similaires

Trouver les similitudes entre images et stocker uniquement les différences

- Stocker une image complète de temps en temps
  - Au début de chaque plan
- Et ne stocker que les différences entre elles
- Format MPEG, ...

#### Compresser le son

- L'oreille humaine n'entend que les fréquences entre 20 Hz et 20 kHz
  - Inutile de coder les autres fréquences sonores
- On peut aussi approximer les fréquences similaires
- Format MP3

• Une fois codé, le signal peut être réécouté ou traité pour appliquer des effets (*reverb*, ...)

#### Ce qu'il faut retenir

- Différentes façons de (dé)coder ou (dé)compresser les données multimédia
  - Plus ou moins adaptées selon les cas
- L'ordinateur ne sait pas ce qu'il manipule
  - Des suites de bits sans aucun sens
- Les données sont accompagnées d'un en-tête expliquant comment elles sont codées (taille, durée, couleurs, compression, ...)



#### ICN: 1. Le codage binaire

- 1. Représentation de l'information sous forme de bits
- 2. Stocker les images ou les sons
- 3. Compression
- 4. Organisation des données
- 5. Bases de données

#### Comprendre le codage

- Les données sont stockées en mémoire, sur un disque, ou transférées sur le réseau
  - Peu importe le contenu
- L'ordinateur qui les lit ou les génère doit savoir comment elles sont codées
  - En-tête qui indique leur taille, durée, couleurs, type de compression, ...

- L'en-tête spécifie le codage des données
  - L'ordinateur doit d'abord comprendre l'en-tête



#### Types de données de base

- Entiers plus ou moins grands (8, 16, 32, 64bits)
  - Éventuellement négatifs
- Nombres *flottants* 1,45628963\*10<sup>23</sup>
  - Plus ou moins grands
- Le programmeur choisit selon les valeurs possibles de ce qu'il doit stocker
  - Âge, mois, température, niveau de gris, ...

#### Données plus complexes

- Comment stocker une date (22/11/2016) ou une couleur (RVB) ?
  - Combinaison de plusieurs nombres
- Des **Tuples** (Structure, Enregistrement, ...)
  - Une date est composée de 3 entiers (jour, mois, année)
    - ✓ Une époque est composée de 2 dates (début, fin)
  - Une image est composée de pixels, composés de 3 couleurs

## Types de données avancées

- Parfois, on ne sait pas à l'avance combien de données on va manipuler
  - Quels invités à une fête ?
  - Quelles étapes pendant un voyage ?
- Tableau
  - Éléments de structure similaire, numérotés

| N° | Nom     | Naissance  | Taille (m) |
|----|---------|------------|------------|
| 1  | Joe     | 21/02/1869 | 1,6        |
| 2  | Jack    | 15/06/1868 | 1,7        |
| 3  | William | 02/03/1867 | 1,8        |
| 4  | Averell | 09/11/1866 | 1,9        |

## Types de données avancées

- Parfois, on ne sait pas à l'avance combien de données on va manipuler
  - Quels invités à une fête ?
  - Quelles étapes pendant un voyage ?

#### Liste

Éléments de structure similaire, pointant vers leur successeur dans la liste



## Représentation des données en mémoire

- Comment sont réparties les données concrètement ?
  - Quel ordre ? Quelle taille ?

L'organisation précise des différentes données doit être clairement spécifiée



- Décrite par le programmeur lors de l'écriture du programme
- Ou dans la spécification du format de fichier
  - Un fichier GIF commence par GIF89a puis la largeur et la hauteur de l'image sur 16bits chacun, etc.

#### Ce qu'il faut retenir

- Les données sont composées d'éléments de base
  - Entiers, nombres flottants, lettres, ...
- Qui peuvent être assemblés pour représenter des objets complexes
  - Tuples, tableaux, listes, ...
- Cet assemblage doit être bien spécifié pour pouvoir être utilisé

#### ICN: 1. Le codage binaire

- 1. Représentation de l'information sous forme de bits
- 2. Stocker les images ou les sons
- 3. Compression
- 4. Organisation des données
- 5. Bases de données

#### Gestion de données

- Gestion de stock, clients, ventes, bibliothèques, site web, ...
- Comment explorer et manipuler ces données de manière pratique pour un humain ?
  - Pas en lisant les structures de données en mémoire de l'ordinateur!

Système de gestion de base de données

- Médiateur entre l'humain et les données
- Exemples: MySQL, Oracle, ...

#### Le modèle relationnel – Les bases de données

Des tableaux : Les Relations

| Titre          | Réalisateur   | Acteur               |
|----------------|---------------|----------------------|
| Imitation game | Morten Tyldum | Benedict Cumberbatch |
| Snowden        | Oliver Stone  | Joseph Gordon-Levitt |

**Films** 

| Titre          | Cinéma          | Heure |
|----------------|-----------------|-------|
| Imitation game | CGR le Français | 19:45 |
| Snowden        | Les Tourelles   | 20:00 |
| Imitation game | Les Tourelles   | 22:00 |

Séances

#### Le modèle relationnel – Les requêtes

Où puis-je voir un film avec B. Cumberbatch?

En SQL
 select Cinéma
 from Films, Séances
 where Films.Titre = Séances.Titre
 and Acteur = "Benedict Cumberbatch"

- Langage standard compréhensible par un humain
- Traduit en langage machine pour être exécuté rapidement par l'ordinateur

#### Protéger les données

- Les données peuvent avoir une valeur inestimable
  - Les comptes d'une entreprise
  - Vos photos de vacances
- Les systèmes informatiques ne sont pas infaillibles
  - Pannes matérielles, bugs logiciels, attaques, ...
- Garantir que les données ne seront pas perdues
  - Exemple : Répliquer

#### Partager les données

- Les données sont souvent manipulées par plusieurs utilisateurs
- Par exemple, Alice et Bob partagent leur musique
  - Alice lit un morceau de Leonard Cohen
  - Bob le lit à son tour
  - Alice ajoute un like à ce morceau
  - Bob fait de même
    - ✓ Le like de Alice a disparu ?!

 Des *Transactions* permettent de partager les données sans conflits lors des accès concurrents

## Ce qu'il faut retenir

- Les structures de données manipulées par l'ordinateur ne sont pas adaptées aux humains
  - Assemblages complexes de bits, potentiellement compressés, etc.
- Les systèmes de gestion de base de données fournissent un moyen pratique et fiable de les manipuler