Assignment 4

- 1. Support Vector Machines with Synthetic Data
- a. The effect of the regularization parameter C

Plot:

Discussion:

Training Error: Training Error monotonically decreases while C increases. It decreases quickly at first and slowly in the end.

Validation Error: Validation Error decreases when C <= 1 and generally increases afterwards (overfitting).

C is a trade-off between training error and flatness. Some people called C as Cross-validation parameter. While C increases, the model is softer, which means more slack are allowed and whole model is more precise and less misclassifying. Vice versa.

Final Model Selection:

To have the least Validation Error, $C_{best} = 1$.

Console:

Part 1.a

Among all C values:

Best C: 1, Test Accuracy: 0.8333.

b. The effect of RBF kernel parameter γ

Plot:

Discussion:

Training Error: Training Error monotonically decreases while γ increases. It decreases quickly at first and slowly in the end.

Validation Error: Validation Error decreases when γ <= 1 and generally increases afterwards (overfitting).

 γ defines how far the influence of a single training example reaches. For a big γ , it will generate a sharp heap which will locate most of its contribution near the center. Hence, less constrain will cause the model loss the sense of the overall shape of data. When γ is large enough, the model's accuracy is close to 1 but useless for classification.

Final Model Selection:

To have the least Validation Error, $\gamma_{\text{best}} = 1$.

Part 1.b

Among all gamma values:

Best gamma: 1, Test Accuracy: 0.8333.

2. Breast Cancer Diagnosis with Support Vector Machines

Print Errors:

Training Errors:				
gamma = · · · · · · · · 1E-3 · · · · · · · · · 1E-2 · · ·	1E-1	1E0 · · · · · · · ·	· · · · · · · · 1E1 · · · · · · · · · ·	1E2 1
C = 1E-2 · · · · · · · · · · · 0.371681 · · · · · · · · · · 0.371682	0.371681	0.371681	0.371681	0.371681
C = 1E-1 · · · · · · · · · · · 0.306785 · · · · · · · · · 0.050147	0.035398	0.371681	0.371681	0.371681
C = 1E0 0.047198 0.029499	0.011799	0.00000	0.000000	0.00000
C = 1E1 0.026549 0.011799	0.00000	0.00000	0.00000	0.00000
C = 1E2 0.002950	0.00000	0.00000	0.00000	0.00000
C = 1E3 0.005900 0.005900	0.00000	0.00000	0.000000	0.00000
C = 1E4	0.00000	0.00000	0.00000	0.00000
Validation Errors:				
gamma = 1E-3 1E-2	· · · · · · · · · · · · · 1E-1 · · · · · ·	1E0 · · · · · · · ·	· · · · · · · · 1E1 · · · · · · · · · ·	1E2 1
C = 1E-2 · · · · · · · · · · · 0.373913 · · · · · · · · · · 0.373913	0.373913	0.373913	0.373913	0.373913
C = 1E-1 · · · · · · · · · · · 0.304348 · · · · · · · · · · 0.069565	0.078261	0.373913	0.373913	0.373913
C = 1E0 0.060870 0.060870	0.043478	0.373913	0.373913	0.373913
C = 1E1 · · · · · · · · · · · · 0.034783 · · · · · · · · · · 0.043478	0.034783	0.373913	0.373913	0.373913
C = 1E2 0.02608	0.034783	0.373913	0.373913	0.373913
C = 1E3 (0.02608	37)<-best 0.034783	0.373913	0.373913	0.373913
C = 1E4 · · · · · · · · 0.026087 · · · · · · · · 0.026087	0.034783	0.373913	0.373913	0.373913

I use median to blur the matrix and find the final "best" (C, γ) pair.

```
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 0]
Blur to:
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
Blur to:
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0]
(5, 1)
```

Final Model Selection:

To have the least Validation Error, $C_{best} = 1000$ and $\gamma_{best} = 0.01$.

Among all C and gamma value combinations:

Best C: 1000, Best gamma: 0.01, Test Accuracy: 0.9478.

3. Breast Cancer Diagnosis with k-Nearest Neighbors

Plot:

Final Model Selection:

To have the least Validation Error, $k_{best} = 5$.

Part 3

Among all k values:

Best k: 5, Test Accuracy: 0.9565.

Process finished with exit code 0

Discussion:

Depending on the result which I got, I will prefer to use kNN. For the test accuracy of kNN in k_{best} is larger than that of SVM in $(C_{best}, \gamma_{best})$. But all these two is good for Breast Cancer Diagnosis: Test Accuracy(SVMs $(C_{best}=1000, \gamma_{best}=0.01)$) = 0.9478 < 0.9565 = Test Accuracy(kNN $(k_{best}=5)$)