Permutações

Universidade de Aveiro 2018/2019

http://moodle.ua.pt

Permutações 000000000000 Referências bibliográficas

- Permutações
 - Composição de permutações e permutações inversas
 - Partição cíclica de uma permutação
 - Tipos de permutações
 - Transposições, inversões e sinal de uma permutação
- Referências bibliográficas

Permutações

• Uma permutação π dos elementos do conjunto [n] pode ser interpretada como uma bijecção

$$\pi: [n] \rightarrow [n].$$

Neste caso, usualmente, escreve-se π_i em vez de $\pi(i)$.

• É muito comum denotar uma permutação π por

$$\pi = \begin{pmatrix} a & b & \cdots & z \\ \pi_a & \pi_b & \cdots & \pi_z \end{pmatrix}, \tag{1}$$

onde na primeira linha aparecem os elementos de [n], segundo uma ordem arbitrária, e na segunda aparecem as correspondentes imagens por π .

• Note-se que $\pi(a) = \pi_a$, $\pi(b) = \pi_b$, ..., $\pi(z) = \pi_z$.

Permutações o•oooooooo Referências bibliográficas

Permutações (cont.)

• No caso particular em que os elementos de [n] aparecem na primeira linha de (1) segundo a ordem natural, ou seja,

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi_1 & \pi_2 & \cdots & \pi_n \end{pmatrix}, \tag{2}$$

esta permutação pode escrever-se na forma mais compacta

$$\pi = (\pi_1 \ \pi_2 \ \dots \ \pi_n)$$

ou, simplesmente $(\pi_1 \ \pi_2 \ \dots \ \pi_n)$.

• Vamos denotar por S_n o conjunto de permutações de elementos do conjunto $[n] = \{1, 2, ..., n\}$.

Permutação identidade

Definição (de permutação identidade)

Para cada inteiro $n \ge 1$, a permutação $\pi \in S_n$ tal que $\forall i \in [n] \pi(i) = i$ designa-se por permutação identidade e denota-se por π_{id} .

 Tendo em conta as observações anteriores, podemos ainda representar a permutação identidade por

$$\pi_{id}=\left(\begin{array}{cccc}1&2&\cdots&n\\1&2&\cdots&n\end{array}\right)$$
 ou $\pi_{id}=(1\ 2\ \dots\ n).$

Permutações

Referências bibliográficas o

Composição de permutações e permutações inversas

Composição de permutações

- Uma vez que as permutações são bijecções, a composição de permutações define-se em coerência com a composição de bijecções.
- Como consequência, se $\pi, \rho \in S_n$, então $\pi \circ \rho \in S_n$ e $\rho \circ \pi \in S_n$.

Exemplo

Vamos determinar as composições $\pi \circ \rho$ e $\rho \circ \pi$ das permutações $\pi = (3 \ 4 \ 1 \ 5 \ 2)$ e $\rho = (4 \ 3 \ 2 \ 5 \ 1)$ (do conjunto $\{1,2,3,4,5\}$).

Solução. Uma vez que

$$\pi \circ \rho(1) = \pi(\rho(1)) = \pi(4) = 5, \pi \circ \rho(2) = \pi(\rho(2)) = \pi(3) = 1,$$

..., vem $\pi \circ \rho = (5\ 1\ 4\ 2\ 3)$. Analogamente $\rho \circ \pi(1) = \rho(\pi(1)) = \rho(3) = 2, \ \rho \circ \pi(2) = \rho(\pi(2)) = \rho(4) = 5,$
..., logo $\rho \circ \pi = (2\ 5\ 4\ 1\ 3)$.

Composição de permutações e permutações inversas

Permutações inversas

• Dada uma permutação $\pi = (\pi_1 \ \pi_2 \ \dots \ \pi_n)$, existe a respectiva permutação inversa π^{-1} , a qual podemos determinar trocando as linhas da notação (1), isto é,

$$\pi^{-1} = \left(\begin{array}{cccc} \pi_1 & \pi_2 & \cdots & \pi_n \\ 1 & 2 & \cdots & n \end{array}\right).$$

• Observe-se que $\forall i \in \{1, \dots, n\}$

$$\pi^{-1} \circ \pi(i) = \pi^{-1}(\pi(i)) = \pi^{-1}(\pi_i) = i.$$

Permutações

Referências bibliográficas

Partição cíclica de uma permutação

Partição cíclica de uma permutação

• Para cada permutação $\pi \in S_n$ existe uma única partição do conjunto [n] em subconjuntos não vazios X_1, \ldots, X_k tal que

$$\forall j \in \{1,\ldots,k\} \ \forall x \in \{1,\ldots,n\} \qquad x \in X_j \Rightarrow \pi(x) \in X_j$$

e nenhum X_j se pode partir em dois subconjuntos não vazios com a mesma propriedade. Uma tal partição é única para cada permutação π e designa-se por partição cíclica de π .

Exercício

Determine a partição cíclica da permutação

$$\pi = (281396547).$$

Partição cíclica de uma permutação

Ciclo de uma permutação

• Dado um subconjunto $\{x_1, \ldots, x_s\}$ da partição cíclica de uma permutação π , podemos ordenar os respectivos elementos, apresentando-os de acordo com a ordenação definida simbolicamente por $[x_{i_1}, \ldots, x_{i_s}]$, de tal forma que

$$\pi(x_{i_1}) = x_{i_2},$$
 $\pi(x_{i_2}) = x_{i_3},$
 \vdots
 $\pi(x_{i_{s-1}}) = x_{i_s},$
 $\pi(x_{i_s}) = x_{i_1}$

• A representação desta ordenação não é única. Por exemplo, a ordenação [1, 2, 8, 4, 3] é idêntica a qualquer das ordenações [2, 8, 4, 3, 1], [8, 4, 3, 1, 2], [4, 3, 1, 2, 8] e [3, 1, 2, 8, 4].

Permutações ○○○○○○ Referências bibliográficas

Partição cíclica de uma permutação

Ciclo de uma permutação (cont.)

Definição (de ciclo de uma permutação e comprimento de um ciclo)

Designa-se por *ciclo de uma permutação* cada uma das ordenações associadas a um subconjunto da partição cíclica de uma permutação π , $X = [x_{i_1}, \dots, x_{i_s}]$, a qual se interpreta como sendo uma permutação π_X tal que

$$\pi_X(x) = \begin{cases} x, & \text{se } x \notin X, \\ x_{i_{k+1}}, & \text{se } x = x_{i_k}, \text{com } k \in \{1, \dots, s-1\}, \\ x_{i_1}, & \text{se } x = x_{i_s}. \end{cases}$$

Por sua vez, o número de elementos do ciclo *X* designa-se por *comprimento do ciclo*.

• Observe-se que se o comprimento de um ciclo X é igual 1, então a permutação π_X é a permutação identidade.

Partição cíclica de uma permutação

Decomposição num produto de ciclos

• Como consequência da definição, sendo $\pi \in S_n$ e X_1, \ldots, X_k os subconjuntos de [n] da correspondente partição cíclica, verifica-se que

$$\pi = \pi_{X_1} \circ \pi_{X_2} \circ \cdots \circ \pi_{X_k}. \tag{3}$$

• Com efeito, se $x \in \{1, ..., n\}$, então existe um único j tal que $x \in X_j$ (e também $\pi_x \in X_j$). Por definição,

$$\forall i \in [k] \setminus \{j\}$$
 $\pi_{X_i}(x) = x \land \pi_{X_i}(x) = \pi_x$

o que implica $\pi_{X_1} \circ \pi_{X_2} \circ \cdots \circ \pi_{X_k}(x) = \pi_{X_i}(x) = \pi(x)$.

• Dada uma permutação $\pi \in S_n$, a factorização (3), designa-se por decomposição de π num produto de ciclos.

Permutações ○○○○○○○ Referências bibliográficas

Tipos de permutações

Tipos de permutações

Definição (de tipo de uma permutação)

Se a decomposição de uma permutação $\pi \in S_n$ num produto de ciclos contém λ_i ciclos de comprimento i, para $i=1,\ldots,n$, então diz-se que a permutação π é do tipo

$$1^{\lambda_1}2^{\lambda_2}\cdots n^{\lambda_n}$$
.

- Como consequência da definição, $\sum_{i=1}^{n} i\lambda_i = n$.
- Com esta notação, em geral, omitem-se todos os símbolos da forma i^{λ_i} , com $\lambda_i = 0$.

Exemplo: A permutação $\pi = [1, 2, 8, 4, 3] \circ [5, 9, 7] \circ [6]$ é do tipo $1^{1}3^{1}5^{1}$.

Transposições, inversões e sinal de uma permutação

Transposições e inversões

Definição (de transposição)

Uma permutação $\tau \in S_n$ diz-se uma transposição se é um ciclo de comprimento dois.

• Cada transposição τ é igual à sua inversa, isto é, $\tau^{-1} = \tau$ ou de modo equivalente $\tau \circ \tau = \pi_{id}$. Por outro lado, se $\pi = (\pi_1 \ldots \pi_n) \in S_n$ e $\tau = [i, i+1] \in S_n$, então $\pi \circ \tau = (\pi_1 \pi_2 \ldots \pi_{i-1} \pi_{i+1} \pi_i \pi_{i+2} \pi_{i+3} \ldots \pi_n)$.

Definição (de inversão)

Dada a permutação $\pi = (x_1, x_2, ..., x_n) \in S_n$. O par (x_i, x_j) , com i < j, designa-se por inversão de π se $x_i > x_j$.

• O número de todas as inversões da permutação π denota-se por $I(\pi)$. Cada permutação $\pi \in S_n$ pode representar-se como produto (composição) de $I(\pi)$ transposições.

Permutações ○○○○○○○○ Referências bibliográficas

Transposições, inversões e sinal de uma permutação

Sinal de uma permutação

Definição (de sinal de uma permutação)

Dada uma permutação $\pi \in S_n$, o número $(-1)^{l(\pi)}$ designa-se por sinal da permutação π e denota-se por $sgn(\pi)$.

Algumas propriedades:

- Uma vez que $I(\pi_{id}) = 0$, $sgn(\pi_{id}) = 1$.
- Se τ é uma transposição, então $sgn(\tau) = -1$.
- Se $\pi, \rho \in S_n$, então $sgn(\pi \circ \rho) = sgn(\pi)sgn(\rho)$.
- Se uma permutação π é um ciclo de comprimento k, então $sgn(\pi) = (-1)^{k-1}$.
- Se uma permutação π é do tipo $1^{\lambda_1}2^{\lambda_2}\cdots n^{\lambda_n}$, então

$$sgn(\pi) = (-1)^{\lambda_2 + \lambda_4 + \lambda_6 + \cdots}.$$
 (4)

Transposições, inversões e sinal de uma permutação

Paridade de uma permutação

Definição (de paridade de uma permutação)

A permutação $\pi \in S_n$ diz-se par se $sgn(\pi) = 1$ e diz-se impar no caso contrario.

• Denotando o conjunto das permutações pares do conjunto [n] por P_n , ou seja, $P_n = \{\pi \in S_n : sgn(\pi) = 1\}$, pode concluir-se que se $\pi, \rho \in P_n$ então $\pi \circ \rho \in P_n$ e $\pi^{-1} \in P_n$.

Exemplo

Vamos demonstrar que $|P_n| = \frac{1}{2}n!$.

Solução. Se $\pi \in P_n$, então $\pi \circ [1,2]$ é impar e se $\rho \in S_n \setminus P_n$, então $\rho \circ [1,2]$ é par. Por outro lado, se $\pi, \rho \in S_n$ e $\pi \neq \rho$ então $\pi \circ [1,2] \neq \rho \circ [1,2]$. Como consequência, $\Phi : P_n \to S_n \setminus P_n$ tal que $\Phi(\pi) = \pi \circ [1,2]$ é uma bijecção. Logo, pela princípio da bijecção, $|P_n| = |S_n \setminus P_n| = \frac{1}{2}n!$.

Permutações

Referências bibliográficas

Referências e bibliografia I

D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2008.