THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH2241 Introduction to Mathematical Analysis

Tutorial 11

Compulsory problems:

1. Let $f:[0,1]\to\mathbb{R}$ be defined by $f(x)=\frac{1}{x^2+1}$. Prove that f is integrable on [0,1].

2. Let $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1, & \text{if } x \in (0, 1], \\ -1, & \text{if } x = 0. \end{cases}$$

Prove that f is integrable on [0,1].

(*Hint*: For any $\epsilon > 0$, consider $P = \{0, \epsilon/3, 1\}$)

3. Let $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} \sin(1/x), & \text{if } x \in (0, 1], \\ 1, & \text{if } x = 0. \end{cases}$$

Prove that f is integrable on [0,1].

(*Hint*: For any $\epsilon > 0$, consider $P = \{0, \epsilon/4, 1\}$)

- 4. If f>0 on [0,1] and $\int_0^1 f$ exists, is it true that $\int_0^1 f>0$?
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Is f integrable on some closed interval [a, b] with a < b? Prove your answer.

For self-studying:

6. Let $f:[1,3] \to \mathbb{R}$ with $f(x) = 2x^2 - 1$. Define $P_n = \{1 + \frac{2i}{n} \mid 0 \le i \le n\}$.

(a) Show that

$$U(f, P_n) = \frac{2}{3n^2}(23n^2 + 24n + 4).$$

1

- (b) Find a similar expression for $L(f, P_n)$.
- (c) Using these, deduce that f is integrable, then find $\int_1^3 f$.