EEOR 4650: Homework 3

Ruofan Meng, Columbia UID: rm3726

October 15, 2020

Estimated time spent on homework: 260

Question 4.3

First, the optimization problem is a covnex optimization problem. The objective function is $f_0(x) = \frac{1}{2}x^T P x + q^T x + r$, and its Hessian matrix is $\mathbf{H} f_0 = P$. With

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 13x^2 + 17y^2 + 12c^2 + 24xy + 12yz - 4xz$$
$$= 2(\frac{12}{5}x + \frac{5}{2}y)^2 + 2(\frac{3}{2}y + 2z)^2 + (x - 2z)^2 + \frac{12}{25}x^2$$
$$> 0$$

P is a positive definite, so f_0 is a convex function. It is easy to see that the interval constraints also form a convex set.

Note that $\nabla f_0(x^*) = Px^* + q^T = \begin{bmatrix} -1 & 0 & 2 \end{bmatrix}^T$, so we have $\nabla f_0(x^*)(y - x^*) = 2y_3 - y_1 + 3 \ge 0$ for any feasible y. x^* is feasible, so it is the optimal solution.

Question 4.11

Denote $A = \begin{bmatrix} a_1 & \cdots & a_m \end{bmatrix}^T$, where $a_1, \dots a_m \in \mathbf{R}^n$. (a)

 $||Ax - b||_{\infty} = \max(|a_1^Tx - b_1|, \dots, |a_m^Tx - b_m|), \text{ let } -t_i \leq a_i^Tx - b_i \leq t_i \text{ for } i = 1, \dots, m, \text{ we have the LP form}$

$$\min_{\substack{x, t, z \\ \text{s.t.}}} z$$

$$-t_i \le a_i^T x - b_i \le t_i,$$

$$t_i \le z$$

The optimal solution e^* of the equivalent LP must equal to the solution of the original programming, because for any given x_0 , $e^* = ||Ax_0 - b||_{\infty}$, otherwise it would not be optimal,

because $-t_i \leq a_i^T x - b_i \leq t_i$ and $t_i \leq z$ guarantee that $z \geq |a_i^T x - b_i|$ and $z \geq ||Ax_0 - b||_{\infty}$ and if $e^* > ||Ax_0 - b||_{\infty}$, it definitely could be smaller without violating any constraint. So if optimizing over all x, t and z, e^* would equal to the solution of the original problem. The x part optima of both programming will be the same.

 $||Ax - b||_1 = \sum_{i=1}^m |a_i^T x - b_i|$, let $-t_i \leq a_i^T x - b_i \leq t_i$ for $i = 1, \ldots, m$, we have the LP form

$$\min_{x, t} \sum_{i=1}^{m} t_i$$
s.t.
$$-t_i \le a_i^T x - b_i \le t_i$$

For any given x_0 , the optimal solution of the equivalent LP satisfies that $t_i = |a_i^T x_0 - b_i|$, otherwise it would not be optimal, because $-t_i \le a_i^T x - b_i \le t_i$ make sure that $t_i \ge |a_i^T x - b_i|$ and $\sum_{i=1}^m t_i \ge ||Ax - b||_1$. The objective is just $||Ax_0 - b||_1$. So when optimizing over x and t, optima of the equivalent LP will be the optima of the original problem.

 $||Ax - b||_1 = \sum_{i=1}^m |a_i^T x - b_i|$, let $-t_i \leq a_i^T x - b_i \leq t_i$ for $i = 1, \dots, m$, and $-z_i \leq x_i \leq z_i$ with $z_i \leq 1$ for $i = 1, \dots, n$ we have the LP form

$$\min_{x, t, z} \sum_{i=1}^{m} t_i$$
s.t.
$$-t_i \leq a_i^T x - b_i \leq t_i,$$

$$-z_i \leq x_i \leq z_i,$$

$$z_i \leq 1$$

For the equivalent LP, with $-z_i \leq x_i \leq z_i$ and $z_i \leq 1$, all the feasible x will satisfy that $||x||_{\infty} \leq 1$. And all the x with $||x||_{\infty} \leq 1$ also satisfies these constriants, so they are equivalent. From (b), we see that constriants $-t_i \leq a_i^T x - b_i \leq t_i$ can make the objective to be $||Ax - b||_1$. Therefore, the optima x for the equivalent LP will also be the optima of the original problem.

(d) $||x||_1 = \sum_{i=1}^m |x_i|$, let $-z_i \le x_i \le z_i$ for $i = 1, \ldots, n$ and $-t_i \le a_i^T x - b_i \le t_i$ with $t_i \le 1$ for $i = 1, \ldots, m$, we have the LP form

$$\min_{x, t, z} \sum_{i=1}^{n} z_{i}$$
s.t.
$$-t_{i} \leq a_{i}^{T} x - b_{i} \leq t_{i},$$

$$-z_{i} \leq x_{i} \leq z_{i},$$

$$t_{i} \leq 1$$

Similar to (c), $t_i \leq 1$ and $-t_i \leq a_i^T x - b_i \leq t_i$ make the feasible x equivalent to be $||Ax - b||_{\infty} \leq 1$; $-z_i \leq x_i \leq z_i$ and the objective is to guarantee the optimal value of the equivalent LP

equal the optimal value of the original programming. And two problems have the same x optima.

(e)

Let $-z_i \leq x_i \leq z_i$ for i = 1, ..., n and $-t_i \leq a_i^T x - b_i \leq t_i$ with $t_i \leq t_0$ for i = 1, ..., m, we have the LP form

$$\min_{x, t, z} \sum_{i=1}^{n} t_i + z_0$$
s.t.
$$-t_i \le a_i^T x - b_i \le t_i,$$

$$-z_i \le x_i \le z_i,$$

$$z_i \le z_0$$

For given x_0 , the optimal solution of the equivalent LP will satisfy that $\sum_{i=1}^{n} t_i = ||Ax - b||_1$ and $z_0 = ||x||_{\infty}$, otherwise, they could be smaller and would not be optimal. So two problems have the same x optima and optimal value.

Question 3

First, $p^* = v^T b$ if and only if there exists $v \in \mathbf{R}^m$ such that $c = A^T v$ ($c \in \text{Row}(A)$) and $b \in \text{Col}(A)$. When there exists v such that $c = A^T v$, $x^T c = x^T A^T v = (Ax)^T v = b^T v$. It satisfies the optimal condition, so $p^* = v^T b$.

Second, $p^* = +\infty$ is equivalent to that there is no feasible point for the programming, which could happen if and only if Ax = b has no solution. This would happen if and only if $b \notin \operatorname{Col}(A)$.

Third, $p^* = -\infty$ if and only if $c \notin \text{Row}(A)$ and $b \in \text{Col}(A)$. $p^* = -\infty$ means that any x is not optimal point of the programming. And thus for any x, the optimal condition that there exists v such that $c = A^T v$ is not satisfied. When $c \notin \text{Row}(A)$, we can infer that $c \neq 0$ and $\mathbf{Rank} A < n$. If $\mathbf{Rank} A = n$, it must be that $c \in \text{Row}(A)$. Therefore Ax = b has infinite solutions and these solutions can be expressed as $x = z + x_0$, where $Ax_0 = b$ and $z \in \text{Nul}A$. Also note that c can be expressed uniquely as m + n where $m \in \text{Row}(A)$ and $n \in \text{Row}(A)^{\perp} = \text{Nul}(A)$. Also, $n \neq 0$ and otherwise $c \in \text{Row}(A)$. Then we have $c^T x = c^T (z + x_0) = c^T x_0 + c^T z = c^T x_0 + (m + n)^T z = c^T x_0 + n^T z$, we can take z = tn for any $t \in \mathbf{R}$, so that $c^T x = c^T x_0 + tn^T n$ can be arbitrarily small, namely, $p^* = -\infty$.

Any condition can be divided into exactly one of these three cases.

Question 4.28

(a)

It can be expressed as

$$\min_{x, t} t$$
s.t.
$$\frac{1}{2}x^{T}P_{i}x + q^{T}x + r \leq t,$$

$$Ax \leq b$$

For any x_0 , $\frac{1}{2}x^TP_ix + q^Tx + r \le t$ makes sure that $t \ge \sup_{P \in \mathcal{E}} \frac{1}{2}x^TPx + q^Tx + r$, minimizing over x and t is equivalent to the original problem. The new form is QCQP. (b)

When $\mathcal{E} = \{P \in \mathbf{S}^n \mid -\gamma I \leq P - P_0 \leq \gamma I\}$, $\sup_{P \in \mathcal{E}} \frac{1}{2} x^T P x + q^T x + r = \frac{1}{2} x^T (P_0 + \gamma I) x + q^T x + r$. This is because for any $P \in \mathcal{E}$, $P - P_0 \leq \gamma I$ so $P_0 + \gamma I - P$ is positive semidefinite, and thus $x^T (P_0 + \gamma I - P) x \geq 0$, namely, $x^T (P_0 + \gamma I) x \geq x^T P x$. It becomes equality when $P = P_0 + \gamma I$.

The programming can be expressed as

$$\min_{x} \quad \frac{1}{2}x^{T}(P_0 + \gamma I)x + q^{T}x + r$$
s.t. $Ax \prec b$

which is a QP.

(c)

When $\mathcal{E} = \{P = P_0 + \sum_{i=1}^K P_i u_i \mid ||u||_2 \le 1\}$, $\sup_{P \in \mathcal{E}} \frac{1}{2} x^T P x + q^T x + r = \frac{1}{2} x^T P_0 x + q^T x + r + \frac{1}{2} \max(|x^T P_1 x|, \dots, |x^T P_K x|)$. Because $\sum_{i=1}^K x^T P_i x u_i \le \sum_{i=1}^K |x^T P_i x| ||u_i|| \le \max_i |x^T P_i x|$. We can make $-t \le x^T P_i x \le t$ for $i = 1, \dots, K$ and get

$$\min_{x, t} \quad \frac{1}{2}x^{T}P_{0}x + q^{T}x + r + \frac{1}{2}t$$
s.t.
$$Ax \leq b,$$

$$-t \leq x^{T}P_{i}x \leq t$$

which is a QCQP.

Question 5.1

 $f(x) = ||Ax-b|| - 2^2 = (Ax-b)^T (Ax-b) = x^T A^T Ax - 2b^T Ax + b^T b$, $\mathbf{H} f(x) = A^T A$ is a positive semidefinite, so f(x) is convex function. Obviously $f(x) \ge 0$, it is bounded below so it must have an infimum. The optimal solution must satisfy that $\nabla f(x) = 2A^T Ax - 2A^T b = 0$. And this gives only one point $x = (A^T A)^{-1} A^T b$ when $A^T A$ is full rank. Because f(x) is convex, This point must be the minimum solution, otherwise f(x) will have no minimum.

Question 5.2

(a)

Let $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$, $A \in \mathbf{R}^{N \times 3}$ and $b \in \mathbf{R}^N$.

With $b_i = u_i^2 + v_i^2$ and row i, of A being $a_i = \begin{bmatrix} 2u_i & 2v_i & -1 \end{bmatrix}$, we have

$$||Ax - b||_2^2 = \sum_{i=1}^N (a_i x - b_i)^2$$

$$= \sum_{i=1}^N (2u_i x_1 + 2v_i x_2 - x_3 - u_i^2 + v_i^2)^2$$

$$= \sum_{i=1}^N (2u_i u_c + 2v_i v_c + R^2 - u_c^2 - v_c^2 - u_i^2 - v_i^2)^2$$

$$= \sum_{i=1}^N ((u_i - u_c)^2 + (v_i - v_c)^2 - R^2)^2$$

(b) If $x_1^2+x_2^2-x_3<0$, $R^2=x_3-x_1^2-x_2^2<0$, which means the change of variables is invalid. (c)

 $p^{\star} = 43.1149257697742, \ x = \begin{bmatrix} -3.10 & 2.69 & -1.70 \end{bmatrix}^T, \ u_c = -3.099108821789537, \ v_c = 2.694099245160927, \ R = 4.3090792363282.$

