Exercise sheet

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part 1. Stochastic learning

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(w) = g(\langle w, x \rangle + y)$ or some $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. Show that: If g is convex function then f is convex function.

Solution. Let $u, v \in \mathbb{R}^d$ and $a \in [0, 1]$. It is

$$\begin{split} f\left(\alpha u + (1 - \alpha)\,v\right) &= g\left(<\alpha u + (1 - \alpha)\,v, x > + y\right) \\ &= g\left(<\alpha u, x > + < (1 - \alpha)\,v, x > + y\right) \\ &= g\left(\alpha\left(< u, x > + y\right) + (1 - \alpha)\left(< v, x > + y\right)\right) \qquad y = \alpha y + (1 - \alpha)\,y \\ &\leq &\alpha g\left(< u, x > + y\right) + (1 - \alpha)\,g\left(< v, x > + y\right) \\ &= &\alpha f\left(u\right) + (1 - \alpha)\,f\left(v\right) \end{split} \tag{g is convex}$$

Exercise 2. (*)Let functions g_1 be ρ_1 -Lipschitz and g_2 be ρ_2 -Lipschitz. Then, show that, f with $f(x) = g_1(g_2(x))$ is $\rho_1\rho_2$ -Lipschitz.

Solution.

$$|f(w_1) - f(w_2)| = |g_1(g_2(w_1)) - g_1(g_2(w_2))|$$

$$\leq \rho_1 |g_2(w_1) - g_2(w_2)|$$

$$\leq \rho_1 \rho_2 |w_1 - w_2|$$

Exercise 3. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ with $f(w) = g(\langle w, x \rangle + y)$ $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function. Then show that f is a $(\beta ||x||^2)$ -smooth.

Hint: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq \|y\| \, \|x\|$

$$f(v) = g(\langle w, x \rangle + y)$$

$$\leq g(\langle w, x \rangle + y) + g'(\langle w, x \rangle + y) \langle v - w, x \rangle + \frac{\beta}{2} (\langle v - w, x \rangle)^{2} \qquad (g \text{ is smooth})$$

$$\leq g(\langle w, x \rangle + y) + g'(\langle w, x \rangle + y) \langle v - w, x \rangle + \frac{\beta}{2} (\|v - w\| \|x\|)^{2} \quad (Cauchy-Schwatz inequality)$$

$$= f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta \|x\|^{2}}{2} \|v - w\|^{2}$$

Exercise 4. (*)Show that $f: S \to \mathbb{R}$ is ρ -Lipschitz over an open convex set S if and only if for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Solution. \Longrightarrow Let $f: S \to \mathbb{R}$ be ρ -Lipschitz over convex set $S, w \in S$ and $v \in \partial f(w)$.

- Since S is open we get that there exist $\epsilon > 0$ such as $u := w + \epsilon \frac{v}{\|v\|}$ where $u \in S$. So $\langle u w, v \rangle = \epsilon \|v\|$ and $\|u w\| = \epsilon$.
- From the subgradient definition we get

$$f(u) - f(w) \ge \langle u - w, v \rangle = \epsilon ||v||$$

• From the Lipschitzness of $f(\cdot)$ we get

$$f(u) - f(w) \ge \rho ||u - w|| = \rho \epsilon$$

Therefore $||v|| \leq \rho$.

 \Leftarrow It is for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \leq \rho$.

• For any $u \in S$, it is

$$f\left(w\right)-f\left(u\right)\leq\left\langle v,w-u\right\rangle \qquad \qquad \text{(because }v\in\partial f\left(w\right)\text{)}$$
 (1)
$$\leq\left\|v\right\|\left\|w-u\right\| \qquad \text{by Cauchy-Schwarz inequality}$$

$$\leq\rho\left\|w-u\right\| \qquad \text{because }\left\|v\right\|\leq\rho$$

• Similarly it results $u, w \in S$

$$f(w) - f(u) \le \langle v, u - w \rangle ||v|| \le ||v|| ||u - w|| \le \rho ||u - w||$$

from (1) because w, u can be swaped in (1) as they both are any values in S.

Exercise 5. (*)Let $g_1(w), ..., g_r(w)$ be r convex functions, and let $f(\cdot) = \max_{\forall j} (g_j(\cdot))$. Show that for some w it is $\nabla g_k(w) \in \partial f(w)$ where $k = \arg \max_j (g_j(w))$ is the index of function $g_j(\cdot)$ presenting the greatest value at w.

Since g_k is convex, for all u

$$g_k(u) \ge g_k(w) + \langle u - w, \nabla g_k(w) \rangle$$

However $f(u) = \max_{\forall j} (g_j(u)) \ge g_k(u)$ for any j, and $f(w) = g_k(w)$ at w. Then

$$f(u) \ge g_k(u)$$

$$\ge g_k(w) + \langle u - w, \nabla g_k(w) \rangle$$

$$= f(w) + \langle u - w, \nabla g_k(w) \rangle$$

Then by the definition of the sub-gradient $\nabla g_k(w) \in \partial f(w)$

The following is given as a homework (Formative assessment 1)

Exercise 6. (*)Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction rule $h_w : \mathbb{R}^d \to \{-1, +1\}$ with

$$(2) h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$= \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

Let the hypothesis class of prediction rules be

$$\mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$ it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$.

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

(4)
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\top}x) + \lambda \|w\|_{2}^{2}$$

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n. Do the following tasks.

Hint-1:: We denote

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

Hint-2:: The notation ± 1 means either -1 or +1.

HInt-3:: We define $\mathbb{R}_+ := (0, +\infty)$

Hint-4:: We denote $||x||_2 := \sqrt{\sum_{\forall j} (x_j)^2}$ the Euclidean distance.

(1) Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (4) is convex.

Hint: You may use Example 13 from Handout 1.

(2) Show that the loss $\ell(w, z)$ for $\lambda = 0$ (4) is L-Lipschitz (with respect to w) when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$.

Hint: You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 - yw_2^\top x \le 1 - yw_1^\top x$, and then take cases $1 - yw_2^\top x > \text{or} < 0$ and $1 - yw_1^\top x > \text{or} < 0$ to deal with the max.

(3) Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1-x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in order to discover w^* such as

(5)
$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm have to be tailored to 4.

- (5) Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using appropriate values for m, η_t and T_{max} , code in R the algorithm you designed in part 4, and run it.
 - (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.
 - (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (5).
 - (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z \leftarrow matrix(z, nrow = n, ncol = 3)
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x <- z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_{obs} < 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
#z_obs2[z_obs[,3]==-1,3]=0
#w_true <- as.numeric(glm(z_obs2[,3]~ 1+ z_obs2[,2],family = "binomial"</pre>
)$coefficients)
```

Solution.

- (1) $f_1(x) = 0$ is convex, $f_2(x) = 1 x$ is convex, hence from the example in Handout 1, $f(x) = \max(f_1(x), f_2(x))$ is convex as well. Regarding the loss function, we just have $f_2(w) = 1 yx^{\top}w$ which is convex as a composition due to linearity.
- (2) Given a fixed example $(x, y) \in \{x \in \mathbb{R}^d : ||x'||_2 \le R\} \times \{-1, 1\}$. Assume $w_1, w_2 \in \mathbb{R}^d$. Let $\ell_i = \max\{0, 1 - yx^\top w_i\}$, for i = 1, 2. It suffices to show that $|\ell_1 - \ell_2|_2 \le R |w_1 - w_2|_2$. I take cases

Case-1: Assume $yx^{\top}w_1 \ge 1$ and $yx^{\top}w_2 \ge 1$ then $|\ell_1 - \ell_2|_2 = 0 \le R|w_1 - w_2|_2$

Case-2: Assume that at least one of $yx^{\top}w_1 < 1$ or $yx^{\top}w_2 < 1$ but not both is true. Assume without loss of generality that $1 - yx^{\top}w_1 < 1 - yx^{\top}w_2$. Then

$$\begin{aligned} \left| \ell_{1} - \ell_{2} \right|_{2} &= \ell_{1} - \ell_{2} \\ &= 1 - yx^{\top}w_{1} - \max\left(0, 1 - yx^{\top}w_{2}\right) \\ &\leq 1 - yx^{\top}w_{1} - \left(1 - yx^{\top}w_{2}\right) \\ &= yx^{\top}\left(w_{2} - w_{1}\right) \\ &\leq y \left\| x^{\top} \right\|_{2} \left\| w_{1} - w_{2} \right\|_{2} \quad \text{because} \quad a^{\top}b \leq \left\| a \right\| \left\| b \right\| \end{aligned}$$

(3) It is

$$f(x) = \max(0, 1 - x) = \begin{cases} 0 & x > 1 \\ 0 & x = 1 \\ 1 - x & x < 1 \end{cases}$$

- For x > 1, f is differentiable so $\partial f(x) = \{f'(x)\} = \{0\}$.
- For x < 1, f is differentiable so $\partial f(x) = \{f'(x)\} = \{-1\}$.
- For x = 1, f is not differentiable. By definition I have that v is subgradient of f(x) at $x = 0 \in S$ if

$$\forall u \in \mathbb{R}, \ f(u) \ge f(x) + \langle u - x, v \rangle$$

So, for $u \ge 1$, it is $0 \ge (u-1)v \implies v \le 0$, and for u < 1 it is $(1-u) \ge (u-1)v \implies v \ge -1$. Hence the common space is $v \in [0,1]$ So $\partial f(x) = [0,1]$. Hence,

$$\partial f(x) = \begin{cases} 0, & x > 1 \\ [0, 1], & x = 1 \\ -1, & x < 1 \end{cases}$$

Now regarding the loss $\partial_w \ell(w, z = (x, y))$

• for $yw^{\top}x > 1$ it is differentiable so $\nabla_w \ell(w, z = (x, y)) = \nabla_w \left(0 + \lambda \sum_{j=1}^d w_j^2\right) = 2\lambda w$; as

$$\frac{\mathrm{d}}{\mathrm{d}w_j} \sum_{j'=1}^d w_{j'}^2 = 2\lambda w_j$$

• for $yw^{\top}x > 1$ it is differentiable so $\nabla_w \ell(w, z = (x, y)) = \nabla_w \left(1 - yw^{\top}x + \lambda \sum_{j=1}^d w_j^2\right) = yx + 2\lambda w$ as

$$\frac{\mathrm{d}}{\mathrm{d}w_j} \left(1 - y w^\top x \right) = \frac{\mathrm{d}}{\mathrm{d}w_j} \left(1 - y \sum_{j'=1}^d w_{j'} x_{j'} \right) = -y x_j$$

• for $yw^{\top}x = 1$, v = 0 satisfies the definition of the sub-gradient

$$\forall u, \ f(u) \ge f(w) + \langle u - w, v \rangle$$
$$\max \left(0, 1 - yu^{\top} x \right) \ge 0 + (u - w)^{\top} 0$$

So

$$\partial \ell (w, z = (x, y)) = \partial \left(\max \left(0, 1 - yw^{\top} x \right) + \lambda \|w\|_{2}^{2} \right)$$

$$= \partial \left(\max \left(0, 1 - yw^{\top} x \right) \right) + \partial \left(\lambda \|w\|_{2}^{2} \right)$$

$$= \partial \left(\max \left(0, 1 - yw^{\top} x \right) \right) + \nabla \left(\lambda \|w\|_{2}^{2} \right)$$

$$0 + 2\lambda w$$

but $\partial \left(\lambda \|w\|_2^2\right) = \left\{\nabla \left(\lambda \|w\|_2^2\right)\right\}$ because $\lambda \|w\|_2^2$ is differentiable. Hence $\partial \ell \left(w, z = (x, y)\right) = 0 + 2\lambda w$

Hence

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

- (4)
- (a) The R code can be found in the link https://raw.githubusercontent.com/georgios-stats/Machine_Learning_and_Neural_Networks_III_Epiphany_2023/main/Exercises/supplementary/q6.R
- (b) The figures are presented below

FIGURE 1. trace plots

- (c) I found w = (-2.674615, 3.205785)
- (d) It belongs to -1

Exercise 7. (\star) Assume a Bayesian model

$$\begin{cases} z_i | w & \stackrel{\text{ind}}{\sim} f(z_i | w), \ i = 1, ..., n \\ w & \sim f(w) \end{cases}$$

and consider that our objective is the discovery of MAP estimate w^* i.e.

$$w^* = \arg\min_{\forall w \in \Theta} \left(-\log\left(L_n\left(w\right)\right) - f\left(w\right) \right) = \arg\min_{\forall w \in \Theta} \left(-\sum_{i=1}^n \log\left(f\left(\mathbf{z}_i|\mathbf{w}\right)\right) - \log\left(f\left(w\right)\right) \right)$$

by using SGD with update

$$w^{(t+1)} = w^{(t)} + \eta_t \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) + \nabla_w \log \left(f\left(w^{(t)}\right) \right) \right)$$

for some randomly selected set $\mathcal{J}^{(t)} \subseteq \{1,...,n\}^m$ of m integers from 1 to n via simple random sampling (SRS) with replacement. Show that

$$\mathbb{E}_{\mathcal{J}^{(t)} \sim \text{simple-random-sampling}} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) \right) = \sum_{i=1}^n \nabla_w \log \left(f\left(z_i | w^{(t)}\right) \right)$$

Solution. It is

$$E_{\mathcal{J}^{(t)} \sim SRS} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right) = \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} E_{\mathcal{J}^{(t)} \sim SRS} \left(\nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right)$$

$$= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} E_{\mathcal{J}^{(t)} \sim SRS} \left(\nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right)$$

$$= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \frac{1}{n} \sum_{i=1}^{n} \nabla_w \log \left(f \left(z_i | w^{(t)} \right) \right)$$

$$= \sum_{i=1}^{n} \nabla_w \log \left(f \left(z_i | w^{(t)} \right) \right)$$

It is $E_{\mathcal{J}^{(t)} \sim SRS}\left(\nabla_w \log\left(f\left(z_j|w^{(t)}\right)\right)\right) = \frac{1}{n}\sum_{i=1}^n \nabla_w \log\left(f\left(z_i|w^{(t)}\right)\right)$ because the expectation is under the probability I get randomly an integer and for the *j*th on the probability is 1/n due to the random scheme. Also $|\mathcal{J}^{(t)}| = m$.