In the Name of GOD

Guidance and Navigation I: **Ballistic/Strategic Guidance Laws**

Hadi Nobahari **Sharif University of Technology Department of Aerospace Engineering**

Ballistic Guidance Laws

- · Ballistic Trajectory
- Required Velocity and Flight time
- Lambert Problem
- · Velocity to be Gained
- Lambert Guidance
- Cut-off Insensitive Guidance Laws
- Explicit Versus Implicit Guidance
- Q and Q* Guidance
- Preset Guidance

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws

Ballistic Considerations

R>100 nm, h>100 kf, V>5000 ft/sec ⇒

- Elliptic or at least Spherical Earth (Flat Earth)
- Height dependent gravity (Constant gravity)

· Rotating Earth (non-rotating earth)

Newton's 2nd law of motion

$$\ddot{r} = \frac{-gm \, r}{r^3}$$

$$\sigma m = 1.4077 * 10^{16} ft^3 / s^2$$

 $gm = 1.4077 * 10^{16} ft^3/s^2$

May 7, 2023

Ballistic Trajectories

• Equations of motion in polar coordinate system:

$$\frac{-gm}{r^2} = \ddot{r} - r\dot{\theta}^2$$
$$0 = r\ddot{\theta} + 2\dot{r}\dot{\theta}$$

• It can be shown that:

$$\ddot{r} - r\dot{\theta}^2 + \frac{gm}{r^2} = 0$$

$$r(0) = a + alt_0$$

$$r(0) = a + alt_0$$

$$r^{2} \qquad r(0) = a + alt_{0}$$

$$r^{2}\dot{\theta} = (a + alt_{0})V_{0}\cos\gamma_{0} \qquad \theta(0) = 0$$

$$\dot{r}(0) = V_{0}\sin\gamma_{0}$$

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws May 7, 2023

Ballistic Trajectories

• The solution:

$$\frac{r_0}{r} = \frac{1 - \cos \theta}{\lambda_0 \cos^2 \gamma_0} + \frac{\cos(\theta + \gamma_0)}{\cos \gamma_0}$$

· where:

$$\lambda_0 = \frac{r_0 V_0^2}{gm}$$

or

$$r = \frac{r_0 \lambda_0 \cos^2 \gamma_0}{1 - \cos \theta + \lambda_0 \cos \gamma_0 \cos(\theta + \gamma_0)}$$

- r is a function of θ (for a given r_0 , γ_0 and λ_0)
- for $\gamma_0=0$, the solution may intersect the earth, regarding the corresponding value of λ_0 .

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws

Ballistic Trajectories

May 7, 2023

Required Velocity

- Definition: The instantaneous velocity, required to reach a given position, in a ballistic trajectory.
- $V_R = f[r_0(t), r_T(t)]$

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws

Required Velocity

• If we desire for the missile to travel a distance dist,

$$= dist/a$$

$$\frac{\phi = dist/a}{r = a \text{ and } \theta = \phi} \qquad \frac{r_0}{a} = \frac{1 - \cos \phi}{\lambda_0 \cos^2 \gamma_0} + \frac{\cos(\phi + \gamma_0)}{\cos \gamma_0}$$

$$\lambda_0 = \frac{r_0 V_0^2}{gm}$$

$$\lambda_0 = \frac{r_0 V_0^2}{gm} \quad \Longrightarrow \quad V_0 = \sqrt{\frac{gm(1 - \cos \phi)}{r_0 \cos \gamma_0 [(r_0 \cos \gamma_0 / a) - \cos(\phi + \gamma_0)]}}$$

• Note: We want to launch with a certain flight-path angle, γ_{0}

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 10

Required Velocity 30 Velocity (Kft/S) 10000 N.mi. 2500 N.m 5000 N.mi. 10 5 · 0 . 20 40 60 80 -40 -20 Flight Path Angle (Deg) May 7, 2023 © Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws

The feasible bounds of flight path angle

· Consider the required velocity formula and the cases that lead to escape velocity:

 $\lambda_0 = 2 = \frac{V_0^2 r_0}{gm}$

• Therefore:

$$2 = \frac{(1 - \cos \phi)}{\cos \gamma_0 [(r_0 \cos \gamma_0 / r_F) - \cos(\phi + \gamma_0)]}$$

• Solving for Y, we get two solutions:

$$\gamma_{\min} = \tan^{-1} \left\{ \left[\sin \phi - \sqrt{\frac{2r_0}{r_F} (1 - \cos \phi)} \right] \middle/ (1 - \cos \phi) \right\}$$

$$\gamma_{ ext{max}} = an^{-1} igg\{ \left[\sin \phi + \sqrt{rac{2r_0}{r_F} (1 - \cos \phi)}
ight] igg/ (1 - \cos \phi) igg\}$$

Lambert's Problem

- Consider a body in the gravity field.
- initial location:

$$x(0) = x_0$$

$$y(0) = y_0$$

• Desired location after time t_F:

$$x(t_F) = x_F$$

$$y(t_F) = y_F$$

 The problem is to find the initial flight path angle, Υ₀ so that the initial and final conditions are satisfied.

$$\ddot{x} = \frac{-gm \ x}{(x^2 + y^2)^{1.5}}$$

$$\ddot{y} = \frac{-gm \ y}{(x^2 + y^2)^{1.5}}$$

May 7, 2023 © Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 17

Solution to Lambert's Problem

 Angular distance to be traveled:

$$\phi = \cos^{-1} \frac{\boldsymbol{r}_0 \cdot \boldsymbol{r}_F}{|\boldsymbol{r}_0||\boldsymbol{r}_F|}$$

 Required velocity for a given γ:

$$V = \sqrt{\frac{gm(1-\cos\phi)}{r_0\cos\gamma[(r_0\cos\gamma/r_F)-\cos(\phi+\gamma)]}}$$

May 7, 2023 © Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 18

Solution to Lambert's Problem

• Flight time can be calculated as follows:

$$t_F = \frac{r_0}{V\cos\gamma} \left\{ \frac{\tan\gamma(1-\cos\phi) + (1-\lambda)\sin\phi}{(2-\lambda)\left[\frac{1-\cos\phi}{\lambda\cos^2\gamma} + \frac{\cos(\gamma+\phi)}{\cos\gamma}\right]} \right\}$$

$$+\frac{2\cos\gamma}{\lambda(\frac{2}{\lambda}-1)^{1.5}}\tan^{-1}\left(\frac{\sqrt{\frac{2}{\lambda}-1}}{\cos\gamma\cot\frac{\phi}{2}-\sin\gamma}\right)\right\}$$

We are going to find Υ such that t_F meets the desired value.

Solution to Lambert's Problem

- Start with an initial guess for Υ (small enough)
- Calculate φ, V and t_F:

$$\phi = f(\mathbf{r}_0, \mathbf{r}_F)$$

$$V = f(\mathbf{r}_0, \mathbf{r}_F, \phi, \gamma)$$

$$t_F = f(V, \boldsymbol{\phi}, \boldsymbol{\gamma})$$

 If t_F is less than the desired t_F, increase Υ and iterate, else decrease Υ.

May 7, 2023

secant method to solve Lambert problem

 The flight path angle can be obtained using the following iterative formula:

$$\gamma_{n+1} = \gamma_n + rac{(\gamma_n - \gamma_{n-1})(t_{ ext{FDES}} - t_{F_n})}{t_{F_n} - t_{F_{n-1}}}$$

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 21

secant method to solve Lambert problem

 Very accurate Lambert solutions are obtained after a few iterations:

Iteration	Flight-path angle, deg	V_{RX} , ft/s	V_{RY} , ft/s	Flight time, s
1	33.7524947	-3764.57976	18926.02426	1239.37545
2	11.2508376	- 12075.71473	18072.66484	813.53185
3	21.1038504	-8103.20444	18287.99279	979.68031
4	22.3088581	-7665.88409	18332.46792	1001.50708
5	22.2256555	-7695.84063	18329.28399	999.98566
6	22.2264396	-7695.55815	18329.31392	999.99999
7	22.2264402	-7695.55795	18329.31394	1000.00000

 The search is terminated when the computed flight time t_F is sufficiently close to the desired flight time t_{FDFS}.

May 7, 2023 © Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 22

Velocity to be gained

• The difference between **V**_R and the instantaneous velocity.

$$\mathbf{v}_{\mathrm{g}} = \mathbf{v}_{\mathrm{R}} - \mathbf{v}$$

• **V**_g is a vector

May 7, 2023

If thrust is aligned with V_g, then V_g
will tend to zero in a closed-loop
manner and the required velocity
will be obtained.

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws

Lambert Guidance (Steering)

 To achieve V_g, it is desired to guide the total non-gravitational accelerations (a_T), toward V_g. For this purpose, an angular velocity command is applied as follows:

$$\mathbf{\omega}_{\mathrm{C}} = \mathbf{K} \frac{\mathbf{a}_{\mathrm{T}} \times \mathbf{v}_{\mathrm{g}}}{\left| \mathbf{a}_{\mathrm{T}} \right| \left| \mathbf{v}_{\mathrm{g}} \right|}$$

Cross Product Steering

- K: a proportional constant (small enough)
- a_T is measured using the accelerometers.
- Here, commands are body rates instead of the body accelerations.

May 7, 2023

Gravity Turn

Definition 1

• In ballistic flight simulation, if the thrust vector is aligned with the velocity vector, a gravity turn will be obtained.

$$\mathbf{\omega}_{\mathrm{C}} = \mathbf{K} \frac{\mathbf{a}_{\mathrm{T}} \times \mathbf{v}}{\left|\mathbf{a}_{\mathrm{T}}\right| \left|\mathbf{v}\right|}$$

• This strategy may be used to limit the angle of attack.

Definition 2

· Make an intentional pitch rate before engine cut-off!

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 26

General Energy Management (GEM) Steering

- In the absence of a thrust termination system, all fuel must be consumed and the velocity should meet the required value at burn out time.
- A wasting technique must be employed to waste some of the excess energy (Energy Management).

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws

General Energy Management (GEM) Steering

$$\frac{V_{\rm g}}{V_{\rm cap}} = \frac{2r\sin\theta}{2r\theta} = \frac{\sin\theta}{\theta} \implies \frac{V_{\rm g}}{V_{\rm cap}} = \left(\theta - \frac{\theta^3}{6}\right) / \theta = 1 - \frac{\theta^2}{6}$$

$$\Rightarrow \theta = \sqrt{6\left(1 - \frac{V_{\rm g}}{V_{\rm cap}}\right)}$$

• If the thrust vector is kept at an angle of θ over the velocity to be gained, then we can achieve the Lambert solution at the end of burn and hit the target.

May 7, 2023

Explicit Versus Implicit Guidance

 \mathbf{v}_{g} can be calculated explicitly or implicitly.

Explicit Guidance: **V**g is calculated, as in Lambert guidance.

Implicit Guidance: **V**g is obtained by numerically solving a diff. Equation.

• It can be shown that: [An Introduction to the mathematics and methods of astrodynamics]

$$\dot{\mathbf{v}}_{\mathrm{g}} = -\mathbf{Q}\,\mathbf{v}_{\mathrm{g}} - \mathbf{a}_{\mathrm{T}}$$

• Where Q is a symmetric 3x3 matrix, defined as

$$\mathbf{Q} = \partial \mathbf{v}_{\text{req}} / \partial \mathbf{r}$$

- a_T: Total non-gravitational accelerations
- Q depends to trajectory, mass, inertia, aerodynamic and propulsion.

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 31

Q matrix

$$\mathbf{Q} = \frac{\partial \mathbf{v}_{R}}{\partial \mathbf{r}} = \begin{bmatrix} \frac{\partial v_{R_{x}}}{\partial x} & \frac{\partial v_{R_{x}}}{\partial y} & \frac{\partial v_{R_{x}}}{\partial z} \\ \frac{\partial v_{R_{y}}}{\partial x} & \frac{\partial v_{R_{y}}}{\partial y} & \frac{\partial v_{R_{y}}}{\partial z} \\ \frac{\partial v_{R_{z}}}{\partial x} & \frac{\partial v_{R_{z}}}{\partial y} & \frac{\partial v_{R_{z}}}{\partial z} \end{bmatrix} = \begin{bmatrix} q_{11}(t) & q_{12}(t) & q_{13}(t) \\ q_{21}(t) & q_{22}(t) & q_{23}(t) \\ q_{31}(t) & q_{32}(t) & q_{33}(t) \end{bmatrix} = \mathbf{Q}(t)$$

- $q_{ij}(t)$ have small variations with time.
- It can be shown that assuming flat earth and constant gravity:

$$\mathbf{Q} = \frac{-1}{t_{E}} \mathbf{I}$$

May 7, 2023

Q Guidance Algorithm

- A nominal Trajectory is found using a simulation based trajectory optimization.
- Q(t) and $v_p(0)$ is calculated for the nominal trajectory OFF-Line
- The following differential equation is numerically solved:

$$\left[\dot{\mathbf{v}}_{g}\right]^{\mathrm{I}} = -\mathbf{Q}\left[\mathbf{v}_{g}\right]^{\mathrm{I}} - \left[\mathbf{a}_{\mathrm{T}}\right]^{\mathrm{I}} \qquad \mathbf{v}_{g}(0) = \mathbf{v}_{\mathrm{R}}(0)$$

$$\mathbf{v}_{\sigma}(0) = \mathbf{v}_{R}(0)$$

 Guidance commands are calculated using the Cross Product steering law:

 $\mathbf{\omega}_{\mathrm{C}} = K \frac{\mathbf{a}_{\mathrm{T}} \times \mathbf{v}_{\mathrm{g}}}{|\mathbf{a}_{\mathrm{T}}||\mathbf{v}_{\mathrm{g}}|}$

• ω_C turns \mathbf{a}_T such that \mathbf{v}_g approaches to zero.

ON-Line

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 33

Q* Guidance

• The differential equation of Q guidance can be reformulated to use the body accelerations instead of the inertial ones.

$$\left[\dot{\mathbf{v}}_{\mathrm{g}}\right]^{\mathrm{I}} = -\mathbf{Q}\left[\mathbf{v}_{\mathrm{g}}\right]^{\mathrm{I}} - \left[\mathbf{a}_{\mathrm{T}}\right]^{\mathrm{I}}$$

$$\left[\mathbf{v}_{g}\right]^{\mathrm{I}} = \left[\mathbf{T}\right]^{\mathrm{IB}} \left[\mathbf{v}_{g}\right]^{\mathrm{B}}$$

$$\left[\dot{\mathbf{v}}_{g} \right]^{\mathrm{I}} = \left[\dot{\mathbf{T}} \right]^{\mathrm{IB}} \left[\mathbf{v}_{g} \right]^{\mathrm{B}} + \left[\mathbf{T} \right]^{\mathrm{IB}} \left[\dot{\mathbf{v}}_{g} \right]^{\mathrm{B}}$$

$$\left[\dot{\mathbf{T}}\right]^{\mathrm{IB}} = \left[\mathbf{T}\right]^{\mathrm{IB}} \left[\Omega^{\mathrm{BI}}\right]^{\mathrm{B}}$$

$$\left[\dot{\mathbf{v}}_{\mathrm{g}}\right]^{\mathrm{I}} = \left[\mathbf{T}\right]^{\mathrm{IB}} \left[\Omega^{\mathrm{BI}}\right]^{\mathrm{B}} \left[\mathbf{v}_{\mathrm{g}}\right]^{\mathrm{B}} + \left[\mathbf{T}\right]^{\mathrm{IB}} \left[\dot{\mathbf{v}}_{\mathrm{g}}\right]^{\mathrm{B}}$$

May 7, 2023

© Hadi Nobahari, Guidance and Navigation: Ballistic/Strategic Guidance Laws 34

Q* Guidance

$$[\mathbf{T}]^{\mathrm{IB}} [\Omega^{\mathrm{BI}}]^{\mathrm{B}} [\mathbf{v}_{\sigma}]^{\mathrm{B}} + [\mathbf{T}]^{\mathrm{IB}} [\dot{\mathbf{v}}_{\sigma}]^{\mathrm{B}} = -\mathbf{Q} [\mathbf{v}_{\sigma}]^{\mathrm{I}} - [\mathbf{a}_{\mathrm{T}}]^{\mathrm{I}}$$

Multiplying the two sides in [T]^{BI}:

$$\left[\Omega^{\mathrm{BI}}\right]^{\!\!B}\!\!\left[\mathbf{v}_{\mathrm{g}}\right]^{\!\!B} + \!\left[\dot{\mathbf{v}}_{\mathrm{g}}\right]^{\!\!B} = -\!\!\left[\mathbf{T}\right]^{\!\!\mathrm{BI}}\mathbf{Q}\!\left[\mathbf{T}\right]^{\!\!\mathrm{IB}}\!\!\left[\mathbf{v}_{\mathrm{g}}\right]^{\!\!B} - \!\left[\mathbf{a}_{\mathrm{T}}\right]^{\!\!B}$$

• The above DE can be rewritten as:

$$\left[\dot{\mathbf{v}}_{_{\sigma}}\right]^{\mathrm{B}} = -\mathbf{Q}^{*} \left[\mathbf{v}_{_{\sigma}}\right]^{\mathrm{B}} - \left[\mathbf{a}_{_{\mathrm{T}}}\right]^{\mathrm{B}}$$

Where:

$$\mathbf{Q}^* = \left[\mathbf{T}\right]^{\!\!\mathrm{BI}} \mathbf{Q} \left[\mathbf{T}\right]^{\!\!\mathrm{IB}} + \left[\Omega^{\!\!\mathrm{BI}}\right]^{\!\!\mathrm{B}} \qquad \bullet \text{ Flat Earth: } \mathbf{Q}^* = -\frac{1}{t_{\scriptscriptstyle \mathrm{E}}} \mathbf{I} + \left[\Omega^{\!\!\mathrm{BE}}\right]^{\!\!\mathrm{B}}$$

May 7, 2023

© Hadi Nobahari, Guidance and Navigation; Ballistic/Strategic Guidance Laws

Preset Guidance

Guidanc

Vertical

Launch

- · A ballistic Missile or launch vehicle has a little stability immediately after launch.
- A little AOA is permitted within the atmosphere.

• Closed loop guidance laws can not be implemented immediately after launch.

- At first, the vehicle must be guided vertically using an attitude control system.
- Within the dense atmosphere and before Q/Q*, open-loop Pitch and Yaw Program can be executed using SAS.

May 7, 2023