

Maratona de Programação da SBC 2017

Sub-Regional Brasil do ACM ICPC

9 de Setembro de 2017

Aquecimento

Informações Gerais

Este caderno contém 3 problemas; as páginas estão numeradas de 1 a 4, não contando esta página de rosto. Verifique se o caderno está completo.

A) Sobre os nomes dos programas

1) Sua solução deve ser chamada $codigo_de_problema.c$, $codigo_de_problema.c$ pp, $codigo_de_problema.p$ pp, onde $codigo_de_problema$ é a letra maiúscula que identifica o problema. Lembre que em Java o nome da classe principal deve ser igual ao nome do arquivo.

B) Sobre a entrada

- 1) A entrada de seu programa deve ser lida da entrada padrão.
- 2) A entrada é composta de um único caso de teste, descrito em um número de linhas que depende do problema.
- 3) Quando uma linha da entrada contém vários valores, estes são separados por um único espaço em branco; a entrada não contém nenhum outro espaço em branco.
- 4) Cada linha, incluindo a última, contém exatamente um caractere final-de-linha.
- 5) O final da entrada coincide com o final do arquivo.

C) Sobre a saída

- 1) A saída de seu programa deve ser escrita na saída padrão.
- 2) Quando uma linha da saída contém vários valores, estes devem ser separados por um único espaço em branco; a saída não deve conter nenhum outro espaço em branco.
- 3) Cada linha, incluindo a última, deve conter exatamente um caractere final-de-linha.

Promoção:

Problema A

Fatorial

O fatorial de um número inteiro positivo N, denotado por N!, é definido como o produto dos inteiros positivos menores do que ou iguais a N. Por exemplo $4! = 4 \times 3 \times 2 \times 1 = 24$.

Dado um inteiro positivo N, você deve escrever um programa para determinar o menor número k tal que $N = a_1! + a_2! + \ldots + a_k!$, onde cada a_i , para $1 \le i \le k$, é um número inteiro positivo.

Por exemplo, para N=10 a resposta é 3, pois é possível escrever N como a soma de três números fatoriais: 10=3!+2!+2!. Para N=25 a resposta é 2, pois é possível escrever N como a soma de dois números fatoriais: 25=4!+1!.

Entrada

A entrada consiste de uma única linha que contém um inteiro N $(1 \le N \le 10^5)$.

Saída

25

Seu programa deve produzir uma única linha com um inteiro representando a menor quantidade de números fatoriais cuja soma é igual ao valor de N.

Exemplo de entrada 1	Exemplo de saída 1	
10	3	
Exemplo de entrada 2	Exemplo de saída 2	

2

Problema B

Jogo de Estratégia

Um jogo de estratégia, com J jogadores, é jogado em volta de uma mesa. O primeiro a jogar é o jogador 1, o segundo a jogar é o jogador 2 e assim por diante. Uma vez completada uma rodada, novamente o jogador 1 faz sua jogada e a ordem dos jogadores se repete novamente. A cada jogada, um jogador garante uma certa quantidade de Pontos de Vitória. A pontuação de cada jogador consiste na soma dos Pontos de Vitória de cada uma das suas jogadas.

Dado o número de jogadores, o número de rodadas e uma lista representando os Pontos de Vitória na ordem em que foram obtidos, você deve determinar qual é o jogador vencedor. Caso mais de um jogador obtenha a pontuação máxima, o jogador com pontuação máxima que tiver jogado por último é o vencedor.

Entrada

A entrada consiste de duas linhas. A primeira linha contém dois inteiros J e R, o número de jogadores e de rodadas respectivamente ($1 \le J, R \le 500$). A segunda linha contém $J \times R$ inteiros, correspondentes aos Pontos de Vitória em cada uma das jogadas feitas, na ordem em que aconteceram. Os Pontos de Vitória obtidos em cada jogada serão sempre inteiros entre 0 e 100, inclusive.

Saída

Seu programa deve produzir uma única linha, contendo o inteiro correspondente ao jogador vencedor.

Exemplo de entrada 1	Exemplo de saída 1
3 3	3
1 1 1 1 2 2 2 3 3	

Exemplo de entrada 2	Exemplo de saída 2
2 3	1
0 0 1 0 2 0	

Problema C

Teleférico

A turma da faculdade vai fazer uma excursão na serra e todos os alunos e monitores vão tomar um teleférico para subir até o pico de uma montanha. A cabine do teleférico pode levar C pessoas no máximo, contando alunos e monitores, durante uma viagem até o pico. Por questão de segurança, deve haver pelo menos um monitor dentro da cabine junto com os alunos. Por exemplo, se cabem C=10 pessoas na cabine e a turma tem A=20 alunos, os alunos poderiam fazer três viagens: a primeira com 8 alunos e um monitor; a segunda com 6 alunos e um monitor; e a terceira com 6 alunos e um monitor.

Dados como entrada a capacidade C da cabine e o número total A de alunos, você deve escrever um programa para calcular o número mínimo de viagens do teleférico.

Se você estiver com muita preguiça hoje, não se preocupe: virando a página você encontra soluções para este problema.

Entrada

A primeira linha da entrada contém um inteiro C, representando a capacidade da cabine ($2 \le C \le 100$). A segunda linha da entrada contém um inteiro A, representando o número total de alunos na turma ($1 \le A \le 1000$).

Saída

Seu programa deve imprimir uma linha contendo um número inteiro representando o número mínimo de viagens do teleférico para levar todos os alunos até o pico da montanha.

Exemplo de entrada 1	Exemplo de saída 1	
10	3	
20		
Exemplo de entrada 2	Exemplo de saída 2	
12	5	
55		
Exemplo de entrada 3	Exemplo de saída 3	
100	1	
87		

Solução em C++

```
#include <iostream>
using namespace std;

int main(void){
  int C,A;

  cin >> C >> A; // le a entrada

  int quociente = A/(C-1);
  int resto = A%(C-1);
  int resposta = quociente;
  if ( resto > 0 ) resposta++;

  cout << resposta << endl; // escreve a resposta

  return 0;
}</pre>
```

Solução em Python

```
C = int(input()) # le a entrada
A = int(input())

quociente, resto = A/(C-1), A%(C-1)
resposta = quociente
if resto>0:
   resposta += 1

print(resposta) # escreve a resposta
```

Solução em Java

```
import java.util.Scanner;
public class C {
   public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int quociente, resto, resposta;
        int C,A;
        C=in.nextInt(); // le a entrada
        A=in.nextInt();
        quociente=A/(C-1);
        resto=A\%(C-1);
        resposta=quociente;
        if (resto>0)
            resposta=resposta+1;
        System.out.println(resposta); // imprime a resposta
   }
}
```