FACTEURS γ DU CARRÉ EXTÉRIEUR

1. Préliminaires

Proposition 1. Equation fonctionnelle locale

Proposition 2. Equation fonctionnelle globale

Proposition 3. Globalisation

2. Facteurs γ

On se propose de démontrer l'égalité entre les facteurs $\gamma^{JS}(.,\pi,\Lambda^2,\psi)$ et $\gamma^{Sh}(.,\pi,\Lambda^2,\psi)$ à une constante (dépendant de π) de module 1 près.

On commence à montrer cette égalité pour les facteurs γ archimédiens. Pour le moment, les résultats connus ne nous donnent même pas l'existence du facteur γ^{JS} dans le cas archimédien, ce sera une conséquence de la méthode de globalisation.

Proposition 4. Soit $F = \mathbb{R}$ ou \mathbb{C} . Soit π une représentation tempérée irréductible de $GL_{2n}(F)$.

Il existe une fonction méromorphe $\gamma^{JS}(s, \pi, \Lambda^2, \psi)$ telle que pour tous $s, W \in W(\pi, \psi)$ et $\phi \in S(F)$, on ait

$$\gamma^{JS}(s,\pi,\Lambda^2,\varphi)J(s,W,\varphi) = J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi)).$$

De plus, il existe une constante $c(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$,

(2)
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = c(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,\psi).$$

Démonstration. Soit k un corps de nombres, on suppose que k a une seule place archimédienne, elle est réelle (respectivement complexe) lorsque $F = \mathbb{R}$ (respectivement $F = \mathbb{C}$); par exemple, $k = \mathbb{Q}$ si $F = \mathbb{R}$ et $k = \mathbb{Q}(i)$ si $F = \mathbb{C}$. Soit $\nu \neq \nu'$ deux places non archimédiennes distinctes, soit $U \subset Temp(GL_{2n}(F))$ un ouvert contenant π .

D'après la proposition 3, il existe une représentation automorphe cuspidale Π telle que $\Pi_{\infty} \in U$ et Π_{w} soit non ramifiée pour toute place non archimédienne $w \neq v$.

D'après la proposition 2, on a

$$\begin{split} &(3) \\ &J(s,W_{\infty},\varphi_{\infty})J(s,W_{\nu},\varphi_{\nu})L^{S}(s,\Pi,\Lambda^{2}) \\ &=J(1-s,\rho(w_{n,n})\tilde{W}_{\infty},\mathcal{F}_{\psi}(\varphi_{\infty}))J(1-s,\rho(w_{n,n})\tilde{W}_{\nu},\mathcal{F}_{\psi}(\varphi_{\nu}))L^{S}(1-s,\tilde{\Pi},\Lambda^{2}) \end{split}$$

et

$$(4) \qquad L^{S}(s,\Pi,\Lambda^{2})=\gamma^{Sh}(s,\Pi_{\infty},\Lambda^{2},\psi_{\infty})\gamma^{Sh}(s,\Pi_{\nu},\Lambda^{2},\psi_{\nu})L^{S}(1-s,\tilde{\Pi},\Lambda^{2}).$$

Date: 17 octobre 2018.

Le quotient de ces deux équations nous donne, en utilisant la proposition 1 sur Π_{ν} , la relation

$$(5) \qquad \qquad \frac{J(1-s,\rho(w_{n,n})\tilde{W}_{\infty},\mathfrak{F}_{\psi}(\varphi_{\infty}))}{J(s,W_{\infty},\varphi_{\infty})\gamma^{Sh}(s,\Pi_{\infty},\Lambda^{2},\psi_{\infty})} \frac{\gamma^{JS}(s,\Pi_{\nu},\Lambda^{2},\psi_{\nu})}{\gamma^{Sh}(s,\Pi_{\nu},\Lambda^{2},\psi_{\nu})} = 1.$$

Ce qui prouve la première partie de la proposition pour Π_{∞} , l'existence du facteur $\gamma^{JS}(s,\Pi_{\infty},\Lambda^2,\psi_{\infty})$.

On choisit maintenant pour U une base de voisinage contenant π , en utilisant la continuité des facteurs γ et des facteurs J, on en déduit que $\frac{J(1-s,\rho(w_{n,n})\bar{W},\mathcal{F}_{\psi}(\varphi))}{J(s,W,\varphi)}$ est une fonction méromorphe indépendante de W et de φ , que l'on note $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$, qui est le produit de $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$ et d'une fonction, que l'on note R(s), qui est limite de fractions rationnelles en q_{ν}^{s} ; donc R est une fonction périodique de période $\frac{2i\pi}{\log q_{\nu}}$.

On réutilisant notre raisonnement en la place ν' , on voit que R est aussi périodique de période $\frac{2i\pi}{\log q_{\nu'}}$; donc est constante. Ce qui nous permet de voir qu'il existe une constante $c(\pi) = R$ telle que

(6)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi).$$

Il ne nous reste plus qu'à montrer que la constante $c(\pi)$ est de module 1. Reprenons l'équation fonctionnelle locale archimédienne,

(7)
$$\gamma^{JS}(s, \pi, \Lambda^2, \phi)J(s, W, \phi) = J(1 - s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{\psi}(\phi)).$$

On utilise maintenant l'équation fonctionnelle sur la représentation $\tilde{\pi}$ pour transformer le facteur $J(1-s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{\psi}(\phi))$, ce qui nous donne

(8)
$$\gamma^{JS}(s,\pi,\Lambda^2,\varphi)J(s,W,\varphi) = \frac{J(s,W,\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\varphi)))}{\gamma^{JS}(1-s,\tilde{\pi},\Lambda^2,\bar{\varphi})}.$$

Puisque $\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\phi)) = \phi$, on obtient donc la relation

$$\gamma^{JS}(s,\pi,\Lambda^2,\varphi)\gamma^{JS}(1-s,\tilde{\pi},\Lambda^2,\bar{\varphi})=1.$$

D'autre part, en conjuguant l'équation 7, on obtient

(10)
$$\overline{\gamma^{JS}(s,\pi,\Lambda^2,\phi)} = \gamma^{JS}(\bar{s},\bar{\pi},\Lambda^2,\bar{\phi}).$$

Comme π est tempérée, π est unitaire, donc $\tilde{\pi} \simeq \bar{\pi}$. On en déduit, pour $s = \frac{1}{2}$,

(11)
$$|\gamma^{JS}(\frac{1}{2}, \pi, \Lambda^2, \varphi)|^2 = 1.$$

D'autre part, le facteur γ de Shahidi vérifie aussi $|\gamma^{JS}(\frac{1}{2},\pi,\Lambda^2,\varphi)|^2=1$; on en déduit donc que $c(\pi)$ est de module 1.