Unit 2

Extended Transition Function of DFA(Assignment-2)

Question

- Compute $\hat{\delta}(q_0, 1001)$
- Compute $\hat{\delta}(q_0, 100)$

Answer:

a. $\hat{\delta}(q_0, 1001)$

$$\hat{\delta}(q_0,\epsilon) = q_0 \ \hat{\delta}(q_0,1) = \delta(\hat{\delta}(q_0,\epsilon),1) = q_0 \ \hat{\delta}(q_0,10) = \delta(\hat{\delta}(q_0,1),0) = \delta(q_0,0) = q_2 \ \hat{\delta}(q_0,100) = \delta(\hat{\delta}(q_0,10),0) = \delta(q_2,0) = q_2 \ \hat{\delta}(q_0,1001) = \delta(\hat{\delta}(q_0,100),1) = \delta(q_1,1) = q_1$$

Since the final state is q_1 this is accepted.

b. $\hat{\delta}(q_0, 100)$

$$\hat{\delta}(q_0,\epsilon) = q_0 \ \hat{\delta}(q_0,1) = \delta(\hat{\delta}(q_0,\epsilon),1) = q_0 \ \hat{\delta}(q_0,10) = \delta(\hat{\delta}(q_0,1),0) = \delta(q_0,0) = q_2 \ \hat{\delta}(q_0,100) = \delta(\hat{\delta}(q_0,10),0) = \delta(q_2,0) = q_2$$

Since the final state is q_2 this is rejected.