Ordens parciais

Ordens parciais.

Referência: Discrete Mathematics with Graph Theory

Edgar Goodaire e Michael Parmenter, 3rd ed 2006

Capítulo: 2

ORDENS PARCIAIS

Ordem parcial

- Uma ordem parcial num conjunto A é uma relação reflexiva, antissimétrica e transitiva em A. Um conjunto parcialmente ordenado (cpo) é um par (A, ≼) onde ≼ é uma ordem parcial no conjunto A
- **□ Exemplo**: a relação binária \leq nos números reais é uma ordem parcial porque a \leq a para todo o a \in \mathbb{R} (reflexividade), a \leq b e b \leq a implica a=b (antissimetria) e a \leq b e b \leq c implica a \leq c (transitividade)
- □ **Exemplo**: mostre que, para qualquer conjunto S, a relação binária \subseteq no conjunto das partes de S, $\wp(S)$, é uma ordem parcial

Ordem total

- Se (A, ≤) for um cpo, os elementos a e b de A dizem-se
 comparáveis se e só se a ≤ b ou b ≤ a
 - A ordem designa-se parcial precisamente por poder não se aplicar a todos os pares. Exemplo: se X={a} e Y={b,c} forem subconjuntos de S, nem X ⊆ Y nem Y ⊆ X, pelo que X e Y não são comparáveis
- □ Se \leq for uma ordem parcial num conjunto A e a \leq b ou b \leq a para todos os a,b \in A, então \leq é uma **ordem total** e o par (A, \leq) é um conjunto totalmente ordenado
 - O par (\mathbb{R} , ≤) é um conjunto totalmente ordenado
- □ Se a \leq b diz-se que a é menor ou igual a b (analogia com \leq)
- Usa-se a notação a ≺ b (a menor do que b) se a ≼ b e a≠b

Exemplo: ordem lexicográfica

- Exemplo: Seja o conjunto das palavras formadas por cadeias de símbolos do alfabeto português. Para as palavras $a=a_1a_2...a_n$ e $b=b_1b_2...b_m$ define-se $a \le b$ se:
 - a e b são idênticas, ou
 - a_i ≤ b_i no alfabeto na primeira posição i em que as palavras diferem, ou
 - $a_i = b_i$ para i = 1,...,n mas n < m
- ☐ Esta relação é uma ordem parcial? E total?

Diagramas de Hasse

- □ No diagrama de Hasse de um cpo A
 - Existe um ponto (ou vértice) associado com cada elemento de A
 - Se a ≤ b então o ponto do b está posicionado acima do ponto do a
 - Se a < b e não existir um c intermediário tal que a < c < b, então desenha-se uma linha de a para b (e diz-se que b cobre a).
 - Não existem linhas redundantes no diagrama de Hasse

$$(\wp(\{a,b,c\}),\subseteq)$$

Máximos e mínimos

- Um elemento a de um cpo (A, ≤) é máximo se e só se b ≤ a para todo o b ∈ A e mínimo se e só se a ≤ b para todo o b ∈ A
- □ Um elemento a de um cpo (A, \leq) é **maximal** se e só se b ∈ A e a \leq b \rightarrow a=b e é **minimal** se e só se b \in A e b \leq a \rightarrow a=b
- Exemplo
 - Mínimo a
 - Máximo Não há
 - Maximal e,g,h
 - Minimal a

Supremo e ínfimo

- Seja (A, \leq) um cpo. Um elemento lb é um **minorante** dos elementos a e b \in A se e só se lb \leq a, lb \leq b
- Um elemento g designa-se por **infimo** e representa-se por inf{a,b} se e só se
 - 1. $g \le a, g \le b, e$
 - 2. Se $c \le a$ e $c \le b$, para um $c \in A$, então $c \le g$.
 - g é maior dos minorantes de a e b (inglês: glb greatest lower bound)
 - Também se representa por $\mathbf{a} \wedge \mathbf{b}$ (a meet b), quando existe, e é único
- Seja (A, \leq) um cpo. Um elemento ub é um **majorante** dos elementos a e b \in A se e só se a \leq ub, b \leq ub
- Um elemento l designa-se por **supremo** e representa-se por sup{a,b} se e só se
 - 1. $a \leq l, b \leq l, e$
 - 2. Se $a \le c$ e $b \le c$, para um $c \in A$, então $1 \le c$.
 - l é o menor dos majorantes de a e b (inglês: lub least upper bound)
 - Também se representa por $\mathbf{a} \vee \mathbf{b}$ (a join b), quando existe, e é único

Exemplo

- \square Minorantes de $e \in g$ a,c
- \Box inf {e,g}
- \square Majorantes de b e d f,h
- \square sup $\{b,d\}$
- \Box e \wedge d
- \Box b \vee d
- □ e ∨ d Não há
- \Box a \wedge h
- \Box a \vee h
- $\square \{x \mid x \leq f\} \qquad a,b,d,f$

Reticulado

Um cpo (A, ≼) em que todos os pares de elementos têm um ínfimo e um supremo em A designa-se reticulado

 \square CPO: $(\wp(\{a,b,c\}),\subseteq)$

