

SRI CHAITANYA EDUCATIONAL INSTITUTIONS,INDIA.

A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARASHTRA,DELHI,RANCHI,CHANDIGARH **Sec: INCOMING JUNIORS**

Sec	Sec : BOTANY		EEKEND TEST - 5	Max.Marks : 720			
1.	Take a living tissue, grind it in trichloroacetic acid using pestle and mortar, and then strain						
	it, you would obtain two fi	it, you would obtain two fractions: acid-soluble and acid-insoluble fraction. Acid-insoluble					
	fraction does not contains						
	1) Polysaccharides		2) nucleic acids				
	3) Lipids		4) flavonoids and	alkaloids.			
2.	Which of the following ele	ements is fou	nd in negligible amo	ount in living organism?			
	1) Silicon 2) Ma	ignesium	3) Iron	4) Sodium			
3.	Acid soluble pool represer	nts roughly					
	1) Polynucleotides		2) Cytoplasmic co	omposition			
	3) Protiens		4) Polysaccharide	es			
4.	Cytidine is						
	1) Homopolymer		2) Nucleoside				
	3) Hetero polymer		4) Saturated fatty	acid			
5.	The component present in both nucleotides and nucleosides is						
	1) Sugar		2) phosphate				
	3) Nitrogenous base		4) both (1) and (3).			
6.	This biomolecule is correct	tly character	ized				
	1) Arachidonic acid – Contains 16 carbons including carboxylic carbon						
	2) Vinblastin – Primary metabolite with medicinal property						
	3) RUBISCO - Most abundant protein in the biosphere						
	4) Insulin – Polymer of fructose						
7.	Sucrose, a common table s	sugar, is com	posed of				
	1) glucose + fructose		2) glucose + galactose				
	3) fructose + galactose		4) none of these				
8.	A ribose (but not deoxyrib	ose) nucleoti	de is				
	1) cytosine – pentose suga	1) cytosine – pentose sugar – phosphate					
	2) guanine – pentose sugar	– phosphate	:				
	3) thymine – pentose suga	r – phosphate					
	4) uracil – pentose sugar – phosphate						

Date: 20-06-2021

9.	Which of the following statements is not correct regarding chitin?				
	1) It is a storage po	lysaccharide.			
	2) It is a polymer of N- acetyl glucosamine				
	3) It is a constituen	t of arthropod exoske	eleton and fungal cell	wall.	
	4) It is a complex c	arbohydrate			
10.	In which of the following groups, all the three are examples of polysaccharides				
	1) Starch, glycogen	, cellulose	2) Sucrose, maltose	e, glucose	
	3) Glucose, fructos	e, lactose	4) Galactose, starch	n, sucrose	
11.	The amino acid wit	h hydroxyl methyl as	s its R group is		
	1)Glycine	2) Alanine	3) Serine	4) Phenylalanine	
12.	All of the following	g are nucleosides exc	ept		
	1) Adenosine	2) Cytosine	3) Guano sine	4) Uridine	
13.	Which of the follow	ving is not a polymer	_		
	1) Nucleic acid		2) Proteins		
	3) Polysaccharides		4) Lipids		
14.	Which of the follow	ving is aromatic amin	no acid		
	1) Tyrosine	2) Tryptochan	3) Phenylalanine	4) All the above	
15.	Most abundant com	nponent of cell is			
	1) Protein	2) Water	3) Cellulose	4) Lipid	
16.	Which of the follow	ving is not a proteins			
	1) Trypsin	2) Collagen	3) Rubisco	4) N-acetyl glucosamine	
17.	Morphine and Code	eine are			
	1) Peptides	2) Tannins	3) Alkaloids	4) Resin	
18.	Which of the follow	ving pair is monosace	charide		
	1) Glucose and Fru	ctose	2) Glucose and Sucrose		
	3) Ribose and malte	ose	4) Ribose and sucro	ose	
19.	Adenine is				
	1) Purine	2) Pyrimidine	3) Nucleoside	4) Nucleotide	
20.	Statement 1: Amino	o acids are amphoteri	ic		
	Statement 2: All an	nino acids are necess	ary for our body		
	1) Statement 1 & 2	are correct			
	2) Statement 1 & 2	are wrong			
	3) Statement 1 is co	orrect & 2 is wrong			
4) Statement 1 is wrong & 2 is correct					

21.	Which is a homopolysaccharide				
	1) Pectin	2) Heparin			
	3) Hyaluronic acid	4) Inulin			
22.	Glycogen is				
	1) Branched polymer of amino acid				
	2) Unbranched polymer of glucose				
	3) Branched polymer of Fructose				
	4) Branched polymer of glucose				
23.	Trihydroxy propane is an example for				
	1) Derived lipid	2) Conjugated lipid	d		
	3) Simple lipid	4) All of the above			
24.	Which of the following amino acid is neutral in nature				
	1) Glutamic acid	2) Asparatic acid			
	3) Valine	4) Lysine			
25.	Which of the following is a protein horn	mone			
	1) Trypsin 2) Insulin	3) Collagen	4) Antibody		
26.	Successive glucose residues in a cellulo	se molecule are link	ed by		
	1) α 1 \rightarrow 4 glycosidic linkages	2) β 1→4 glycosid	ic linkages		
	3) $\alpha 1 \rightarrow 6$ glycosidic linkages	4) β 1→6 glycosid	ic linkages		
27.	Which of the following are the biologic	al functions of prote	ins		
	1) Help to protect the body				
	2) Transport substances across the cell membrane				
	3) Catalyse metabolic reactions				
	4) All				
28.	Thiamine is				
	1) Purine 2) Pyrimidine	3) Pentose sugar	4) None of the above		
29.	Ribose sugar differs from deoxy ribose				
	1) by the absence of OH group at 2C ato	om			
	2) by the presence of H atom at 2C atom	n			
	3) by the presence of OH group at 2C a	tom			
	4) None of these				
30.	Palmitic acid contains number of c	arbon atoms			
	1) 16 2) 18	3) 20	4) 24		
31.	Basic amino acid among the following	is			

	1) Lysine	2) Histidine	3) Glycine	4) Glutamine
32.	Statement 1: ATP is	s the energy currency	of the cell	
	Statement 2: ATP is	s a nucleoside		
	1) Statement 1 & 2	are correct		
	2) Statement 1 & 2	are wrong		
	3) Statement 1 is co	errect & 2 is wrong		
	4) Statement 1 is w	rong & 2 is correct		
33.	Which of the follow	ring is secondary me	tabolite	
	1)Trypsin	2) Ricin	3) Arachidonic acid	4) Glycine
34.	Sugar in Nucleotide	e is		
	1) Triose	2) Pentasaccharide	3) Hexose	4) Pentose
35.	Proteins are			
	1) Polysaccharides		2) Polypeptides	
	3) Polynucleotides		4) Polyglycol	
36.	Most abundant orga	nic compound on ea	rth is	
	1) Protein	2) Cellulose	3) Lipids	4) Steroids
37.	Fatty acids with one	e or more double bon	ds are	
	1) Essential	2) Non essential	3) Unsaturated	4) Saturated
38.	GLUT- 4 is a			
	1) Enzyme		2) Hormone	
	3) Enables glucose	transport into cell	4) Sensory receptio	n
39.	Chitin is componen	t of cell wall of		
	1) Fungi	2) Bacteria	3) Algae	4) Angiosperms
40.	Average % of carbo	ohydrates in a cell is		
	1) 10-15	2) 3	3) 2	4) 1
41.	Ricin and Abrin bel	ong to which categor	ry of secondary meta	bolites
	1) Lectins	2) Essential oils	3) Drugs	4) Toxins
42.	Which one of the fo	ollowing organic com	pound is the main co	onstituent of lecithin
	1) Arachidonic acid	1	2) Phospholipid	
	3) Cholesterol		4) Phosphoprotein	
43.	Which of the follow	ring is a wrong stater	nent	
	1) Cellulose is a pol	lysaccharide		
	2) Uracil is a pyrim	idine		
	3) Glycine is a sulp	hur containing amino	acid	

	4) Sucrose is a	diasaccharide				
44.	Which of the fo	ollowing is a non redu	cing carbohydrate			
	1) Maltose	2) Sucrose	3) Lactose	4) Ribose 5- Phosphate		
45.	Concanavalin A	A is an example of				
	1) Alkaloid	2) Terpenoide	3) Lectin	4) Drug		
46.	One of the primary characters of chordates is					
	1) Ganglionate	d nerve cord	2) Paired nerve	cord		
	3) Solid ventral	l nerve cord	4) Dorsal hollov	w nerve cord		
47.	Which one of the	he following is not a c	characteristic feature	of all the chordates?		
	1) Presence of	coelom				
	2) A diaphragm	n separating thorax fro	om abdomen			
	3) Dorsal nerve	cord				
	4) Pharyngeal g	gill slits in the early er	nbryonic stages			
48.	Vertebral column is derived from					
	1) Notochord		2) Dorsal nerve	cord		
	3) Ventral Nerv	ve cord	4) Outgrowth o	f cranium		
49.	Which one of the following structure is present in all adult vertebrates?					
	1) Notochord		2) Hepatic porta	al vein		
	3) Pharyngeal g	gill slits	4) Renal portal	system		
50.	Which of the following is a chordate feature, not shared by the non-chordates?					
	1)Triploblastic	body 2)True coelom				
	3) Bilateral syn	nmetry	4) Notochord			
51.	Which among them is a characteristic of chordate'?					
	1) Dorsal heart		2) Gut is dorsal	to nerve cord		
	3) Central nervo	ous system is solid	4) Post anal par	t (tail) is present		
52.	The correct cla	ssification of Ascida				
	1) Chordata \rightarrow	Protochordata \rightarrow V	ertebrata			
	2) Chordate → Protochordata → Cephalochordata					
	3) Chordate \rightarrow	Cephalochordatav –	→ Vertebrata			
	4) Chordate \rightarrow	Protochordata → ur	rochordata			
53.	Body of the uro	ochordate is enclosed	in a			
	1) Mantle	2) Test Or tunic	3) Shell	4) Shield		
54.	Which of the fo	ollowing subphylum is	s a typical chordates	?		

	1) Cephalochordat	es2) Urochordates				
	3) Tunicata		4) All			
55.	Excretion by proto	nephridia with solen	ocyte is a characteris	tic of		
	1) Branchiostoma	2) Amphioxus	3) Lancelet	4) ALL of these		
56.	Statement -1 : Cep	halochordata bears n	otochord all along th	e body throughout the life		
	Statement -2 : Uro	Statement -2: Urochordata bears vertebral column only in tail region throughout the life				
	Then which is corn	rect?				
	1) Both statement	1) Both statement -1 and statement -2 are correct				
	2) Statement -1 is	correct, statement -2	is wrong			
	3) Statement -1 is	wrong, statement-2 i	s correct			
	4) Both statement-	4) Both statement-1 and statement -2 are wrong				
57.	Cyclostomata belo	ngs to which division	n ?			
	1) Pisces	2) Agnatha	3) Acraniata	4) Tetrapoda		
58.	The correct classif	ication of Myxine is	S			
	1) Chordata→ Craniata→ Agnatha→ Cyclostomata					
	2) Chordata \rightarrow Ac	2) Chordata → Acraniata → Protochordata → Cephalochordata				
	3) Chordata \rightarrow Ce	3) Chordata → Cephalochordata → Vertebrata → Ostracodermi				
	4) Cephalochordat	$a \rightarrow Chordata \rightarrow V$	⁷ ertebrata → Ostraco	odermi		
59.	The lamprey (Petromyzon) is included in the same taxonomic class as the					
	1) Cephalaspis		2) Ambystoma			
	3) nepceratodus		4) Hag fish (Myxii	ne)		
60.	Which of the following statement is not true for Agnatha members?					
	1) They include hag fishes and lampreys					
	2) They have noto	2) They have notochord throughout their lives				
	3) They are known as cyclostomes					
	4) They have bony	skeletons				
61.	The larva of Petro	myzon is known as				
	1) Ammocoete	2) Tornaria	3) Axolotl	4) Bipinnaria		
62.	Lamprey is					
	1) Catadromous	2) Anadromous	3) Both (1) & (2)	4) None of these		
63.	Catadromous fish	migrates from				
	1) Sea to river		2) River to sea			
	3) River to lakes		4) Deep sea to surface water			

64.	Teeth in chondrichthyes are modified				
	1) Placoid scales		2) Cycloid scales		
	3) Ctenoid scales		4) Ganoid scales		
65.	Which fish has an	electric organ?			
	1) Torpedo	2) Pristis	3) Trygon	4) Carcharodon	
66.	Which type of scal	es are found on the s	kin of cartilaginous	fishes?	
	1) Ganoid	2) Placoid	3) Ctenoid	4) Cycloid	
67.	Bony fishes are				
	1) Marine		2) Fresh water dwe	elling	
	3) Estuary dweller		4) All		
68.	Which of the follow	wing belong to class	osteichthyes?		
	a. Sea urchin		b. Sea horse		
	c. Flying fish		d. saw fish		
	e. Dog fish				
	1) b & c	2) a,b & e	3) b & e	4) a,d & e	
69.	Air bladder is				
	1) Hydrostatic orga	an of bony fishes	2) Excretory organ	s of mammals	
	3) Respiratory orga	ans of birds	4) Respiratory orga	an of reptiles	
70.	All of them are characteristics of urochordates, except				
	1) These are only r	marine	2) Open type of cir	culatory system	
	3) Cranium is abse	nt4) Development is	direct		
71.	Branch of biology	dealing with study of	f fishes is		
	1) Piscology		2) Ornithology		
	3) Ichthyology		4) Torpedology		
72.	Read the following	statements and find	out the correct staten	nent.	
	a. Urinary bladder	is absent in fishes			
	•	fillslits covered by op			
	c. In cartilaginous	fishes air bladder abs	sent		
	d. Electric organs a	are modified muscles			
	1) b & d	2) a & c	3) b only	4) a,b,c & d	
73.	The fish which sho	ows parental care is			
	1) Hippocampus	2) Gambusia	3) Labeo	4) Scoliodon	
74.	Heart in amphibiar				
	1) Two – chambered with one auricle and one ventricle				

	2) Three –chamber	red with two auricles	and one ventricle	
	3) Three- chamber	ed with one auricle a	nd two ventricles	
	4) Four- chambere	d with two auricles a	nd two ventricles	
75.	Which of the featu	re is not present in ar	nphibian?	
	1) Scales are prese	ent		
	2) Most of them ha	ave two pairs of limbs	s for locomotion	
	3) Eyes have eyeli	ds		
	4) Organisms are o	cold-blooded		
76.	Which of the follow	wing is true for all ar	nphibians?	
	1) All have tail		2) Excretion by kid	lneys
	3) Alimentary can	al and urinary and r	eproductive tracts of	pen into different chambers to
	the exterior			
	4) Heart is three –	chambered with two	ventricles	
77.	Study of amphibia	n is ?		
	1)Batrachology	2) Ichthyology	3) Ornithology	4) Mammology
78.	Living fossile rept	ile is?		
	1) Snakes	2) Crocodile	3) Sphenodon	4) Turtle
79.	Which among the	following has four ch	nambered heart?	
	1) Vipera	2) Crocodilus	3) Testudo	4) hemidactylus
30.	Which among the	following is an excep	otion of possessing th	ree- chambered heart?
	1) Alligator	2) Testudo	3) Chelone	4) Bungarus
31.	Which among the	em has moderately	long and pointed s	snout is very aggressive and
	dangerous for man	?		
	1) Crocodile	2) Alligator	3) Gavialis	4) Salamandra
32.	Read the following	g statement and choos	se the correct character	eristic feature of Aves.
	1) Skin of birds ha	ve glands		
	2) Air sacs help in	excretion		
	3) Heart is having	three auricle and one	ventricle	
	4) Preen gland is p	present at the base of	tail	
33.	Choose the option	which comprises of o	oviparous animals.	
	1) Ostrich, eagle, v	whale	2) Bat, Pigeon, cro	W
	3) Parrot, vulture,	sparrow	4) Kite, platypus, k	angaroo
84.	Largest living fligh			
	1) Eagle	2) Kiwi	3) Humming bird	4) Ostrich

85.	All of the following Avian characters are correct, except				
	1) Bones do not hav	ve bone marrow			
	2) Scales are preser	nt only in the hindlim	bs region		
	3) In females, right ovary is atrophied				
	4) Beak possesses h	nomodont teeth			
86.	Tail vertebrae of bi	rds are fused to form			
	1) Pygostyle	2) Coccyx	3) Urostyle	4) Synsacrum	
87.	Aves are				
	1) Ammonotelic	2) Uricotelic	3) Ureotelic	4) Both (1) & (3)	
88.	A mammal which l	ays eggs instead of g	iving birth to offsprin	ng is	
	1) Rabbit		2) Macropus		
	3) Duck-billed platy	ypus	4) Whale		
89.	Point out the mamn	nalian characters			
	1) Diaphragm, four-chambered heart, lungs				
	2) Hairy skin, viviparity, feathers				
	3) Fins, gills, viviparity				
	4) Neural gland, gil	ls, four-chambered h	eart		
90.	The following state	ment regarding mam	mals are correct exce	ept	
	1) Cloaca is Present	t	2) External ear pini	na present	
	3) Non-nucleated R	BC	4) Excrete urea		
91.	A ball is thrown ve	rtically downward w	with a velocity of 20 1	m/s from the top of a tower. It	
	hits the ground aft	er some time with	a velocity of 80 m/s	s. The height of the tower is	
	$\left(g = 10m/s^2\right)$				
	1) 360 m	2) 340 m	3) 320 m	4) 300 m	
92.	A boy standing at t	he top of a tower of	20 m height drops a	stone. Assuming $g = 10m/s^2$,	
	the velocity with w	hich it hits the groun	d is		
	1) 10 m/s	2) 20 m/s	3) 40 m/s	4) 5 m/s	
93.	Two bodies 'A' (o	f mass 1 kg) and 'B	' (of mass 3kg) are	dropped from heights of 16m	
	and 25 m respective	ely. The ratio of the t	ime taken by them to	reach the ground is	
	1) 4/5	2) 5/4	3) 12/5	4) 5/12	
94.	A ball is thrown ver	rtically upward. It ha	s a speed of 10 m/s v	when it has reached one half of	
	its maximum heigh	t. How high does the	ball rise? $(g = 10m/s)$	s^2)	
	1) 10m	2) 5m	3) 15m	4) 20m	

- 95. A body dropped from a height 'h' with initial velocity zero, strikes the ground with a velocity 3 m/s. Another body of same mass dropped from the same height 'h' with an initial velocity of 4 m/s. The final velocity of second mass, with which it strikes the ground is
 - 1) 5 m/s
- 2) 12 m/s
- 3) 3 m/s
- 4) 4 m/s
- 96. A body dropped from top of a tower fall through 40m during the last two seconds of its fall. The height of tower is $(g = 10m/s^2)$
 - 1) 60m
- 2) 45m
- 3) 80m
- 4) 50m
- 97. A bus is moving with a speed of 10 m/s on a straight road. A scooterist wishes to overtake the bus in 100 sec. If the bus is at a distance of 1 km from the scooterist, with what speed should the scooterist chase the bus?
 - 1) 40 m/s
- 2) 25 m/s
- 3) 10 m/s
- 4) 20 m/s
- 98. A ball is thrown vertically upwards. Assuming the air resistance to be constant and considerable
 - 1) The time of ascent \geq the time of descent
 - 2) The time of ascent < the time of descent
 - 3) The time of ascent > the time of descent
 - 4) The time of ascent = the time of descent
- 99. Velocity time curve for a body projected vertically upwards is
 - 1) Parabola
- 2) Ellipse
- 3) Hyperbola
- 4) Straight line
- 100. If an iron ball and a wooden ball of the same radius are released from a height 'h' in vacuum, the time taken by both of them to reach ground will be
 - 1) Unequal
- 2) Exactly equal
- 3) Roughly equal
- 4) Zero
- 101. A body is projected vertically upward from the surface of the earth, then the velocity time graph is

- 102. A motorcycle is moving with a velocity 80 kmph ahead of a car moving with a velocity of 65 kmph in the same direction. What is the relative velocity of the motorcycle with respect to the car
 - 1) 15 kmph
- 2) 20 kmph
- 3) 25 kmph
- 4) 145 kmph
- 103. When a ball is thrown up vertically with velocity V_0 it reaches a maximum height of 'h'. If one wishes to triple the maximum height then the ball should be thrown with velocity
 - 1) $\sqrt{3}V_0$
- 2) $3V_0$
- 3) $9V_0$
- 4) $\frac{3}{2}V_0$
- 104. A stone is dropped from the top of a tower and travels 24.5m in the last second of its journey. The height of the tower is
 - 1) 44.1 m
- 2) 49 m
- 3) 78.4 m
- 4) 72 m
- 105. Two balls X and Y are thrown from top of tower one vertically upward and other vertically downward with same speed. If time taken by them to reach the ground is 6 sec and 2 sec respectively. Then the initial speed of each ball is $(g = 10m/s^2)$
 - 1) 15 m/s
- 2) 20 m/s
- 3) 25 m/s
- 4) 10 m/s
- 106. A body falls from 80m. Its time of descent is $(g = 10m/s^2)$
 - 1) 3 sec
- 2) 4 sec
- 3) 5 sec
- 4) 6 sec
- 107. At the maximum height of a body thrown vertically up
 - 1) velocity is not zero but acceleration is zero
 - 2) acceleration is not zero but velocity is zero
 - 3) both acceleration and velocity are zero
 - 4) both acceleration and velocity are not zero
- 108. A stone projected vertically up with velocity 'v' from the top of a tower reaches the ground with velocity '2v'. The height of the tower is
 - $1) \frac{\mathbf{v}^2}{2g}$
- $2) \frac{3v^2}{2g}$
- $3) \frac{3v^2}{g}$
- $4) \frac{v^2}{g}$

111.	. A body is projected up with a velocity 50 m/s. After one second, if acceleration due to				
	gravity disappears	s then body			
	1) floats in air				
	2) continue to mo	ve up with constant	velocity		
	3) continue to mo	ve up with constant	acceleration		
	4) goes up and fal	ls down			
112.	A body falls freely	y from a height 'h'.	Its average velocity	when it reaches ground is	
	1) \sqrt{gh}	$2) \sqrt{\frac{gh}{2}}$	3) $\sqrt{2gh}$	4) $g\sqrt{h}$	
113.	A body is project	ed vertically up wit	h a velocity 'v' and	after some time it returns to the	
	point from which	it was projected. Th	ne average velocity as	nd average speed of the body for	
	the total time of fl	ight are			
	1) $\frac{v}{2}$ and $\frac{v}{2}$	2) 0 and $\frac{v}{2}$	3) 0 and 0	4) $\frac{v}{2}$ and 0	
114.	A balloon rises fro	om rest with a const	ant acceleration g/8.	A stone is released from it when	
	it has risen to heig	ght 'h'. The time tak	en by the stone to rea	ach the ground is	
	1) $4\sqrt{\frac{h}{g}}$	$2) \ 2\sqrt{\frac{h}{g}}$	3) $\sqrt{\frac{2h}{g}}$	4) $\sqrt{\frac{g}{h}}$	
115.	A stone falls free	ly from the top of a	a tower. It covers 36	% of the total height in the last	
	second before stri	king the ground leve	el. The height of the	tower is $(g = 10m/s^2)$	
	1) 50 m	2) 75 m	3) 100 m	4) 125 m	
116.	A ball is thrown	upwards with a spe	ed 'u' from a height	'h' above the ground. The time	
	taken by the ball t	to hit the ground from	m point of zero veloc	eity is	
	1) $\sqrt{2h/g}$	$2) \sqrt{8h/g}$	$3) \frac{\sqrt{u^2 + 2gh}}{g}$	4) $\frac{u}{g} + \sqrt{\frac{2h}{g}}$	
117.	A body is thrown	up with a velocity	40 m/s. At the same	e time another body is dropped	
	from a height 40 n	n. Their relative acc	eleration after 1.3 se	conds is	
				Daga 17	
				Page 12	

A stone is thrown vertically up from a bridge with velocity 3 m/s. If it strikes the water

3) 7 m

A body is thrown up with a velocity 29.4 m/s. Distance travelled in the last second of

3) 9.8 m

4) 20 m

4) 4.9 m

under the bridge after 2 sec, the bridge is at a height of $(g = 10m/s^2)$

2) 14 m

2) 6 m

109.

1) 26 m

1) 2.3 m

upward motion is

-	1) 4g	2) g/2	3) 2g	4) zero
118.	A body is thrown u	ip with a velocity 'v	'. It reaches maximu	m height 'h'. If its velocity of
	projection is double	ed the maximum heig	ght it reaches is	
	1) 4h	2) h	3) 2h	4) 3h
119.	A body is thrown v	ertically up from the	e ground. It reaches t	the maximum height of 500 m
	in 10 sec. What tim	e it will take to reach	the ground from ma	ximum height?
	1) 5 sec	2) 10 sec	3) 15 sec	4) 20 sec
120.	A stone is dropped	l into a well of 20 1	m deep. Another sto	one is thrown downward with
	velocity 'v' one sec	ond later. If both sto	nes reach water surfa	ace in the well simultaneously,
	v is equal to $(g = 1)$	$0m/s^2$		
	1) 30 m/s	2) 15 m/s	3) 20 m/s	4) 10 m/s
121.	A body is dropped	d from a height 122	2.5m. If it is stoppe	ed after 3 seconds and again
	released, the further	r time of descent is		
	1) 2 sec	2) 3 sec	3) 4 sec	4) 5 sec
122.	A body is projected	l vertically up with v	relocity 'u'. It reache	es a point in its path at times t_1
	and t ₂ seconds from	the time of projection	on then $t_1 + t_2$ is	
	1) $\frac{2u}{g}$	2) $\frac{u}{g}$	3) $\sqrt{\frac{2u}{g}}$	4) $\sqrt{\frac{u}{g}}$
123.	A body is projected	ed vertically upward	d direction from the	e surface of earth. If upward
	direction is taken a	s positive then acce	leration of body dur	ing its upward and downward
	journey are respect	ively		
	1) positive, negativ	e	2) negative, negative	/e
	3) positive, positive		4) negative, positiv	e
124.	A body is projected	d vertically upward v	with speed 40 m/s. T	The distance travelled by body
	in the first second of	of downward journey	is $\left(g = 9.8m/s^2\right)$	
	1) 4.9 m	2) 9.8m	3) 12.4 m	4) 19.6 m
125.	A body is thrown	vertically upwards ar	nd takes 5 seconds to	o reach maximum height. The
	distance travelled b	y the body will be sa	me in	
	1) 1^{st} and 10^{th} second	nd	2) 2 nd and 8 th secon	d
	3) 4 th and 6 th second	d 4) Both (2) and (3)		
126.	A balloon starts ris	ing from ground from	n rest with an upwar	rd acceleration $2m/s^2$. After 1
	sec, a stone is dropp	ped from it. The time	taken by stone to str	rike the ground is nearly
	1) 0.3 sec	2) 0.7 sec	3) 1 sec	4) 1.4 sec

127. Which of the following displacement – time graph represents two moving objects P and Q with zero relative velocity

Two balls are projected upward simultaneously with speeds 40 m/s and 60 m/s. Relative 128. position of second ball with respect to first ball at time t = 5 sec is

- 1) 20 m
- 2) 80 m
- 3) 100 m
- 4) 120 m

A ball is dropped from a height 'h' above ground. Neglect air resistance, its velocity 'v' 129. varies with its height 'y' above the ground as

- 1) $\sqrt{2g(h-y)}$ 2) $\sqrt{2gh}$
- 3) $\sqrt{2gy}$
- 4) $\sqrt{2g(h+y)}$

A train of 150 m length is going towards north at a speed of 10 m/s. A bird is flying at 5 m/s parallel to the track toward south. The time taken by the bird to cross the train is

- 1) 10 sec
- 2) 15 sec
- 3) 30 sec
- 4) 12 sec

Two trains each of length 100 m moving parallel towards each other at speed 72 km/hr and 36 km/hr respectively. In how much time will they cross each other?

- 1) 4.5 sec
- 2) 6.67 sec
- 3) 3.5 sec
- 4) 7.25 sec

A ball is dropped by a boy in an elevator moving upward with acceleration 'a'. The acceleration of ball with respect to (Take upward direction +ve)

- 1) boy is -g
- 2) boy is -(g+a)
- 3) ground is –g
- 4) both (2) and (3)

A ball is thrown upward with speed 10 m/s from the top of the tower reaches the ground with a speed 20 m/s. The height of the tower is $(g = 10m/s^2)$

- 1) 10m
- 2) 15m
- 3) 20m
- 4) 25m

134. A ball dropped from the top of tower falls first half height of tower in 10 sec. The total time spent by ball in air is $(g = 10m/s^2)$

	1) 14.14 sec	2) 15.25 sec	3) 12.36 sec	4) 17.36 sec
135.	When a particle is	thrown vertically up	pwards, its velocity	at one third of its maximum
	height is $10\sqrt{2}m/s$. The maximum height attained is $(g = 10m/s^2)$			
	1) $20\sqrt{2}m$	2) 30m	3) 15m	4) 12.8m
136.	Which of the follo	owing relates to pho	otons both as wave	motion and as a stream of
	particles?			
	1) Interference	2) $E = mc^2$	3) Diffraction	4) $E = h \nu$
137.	Electromagnetic rad	diation (Photon) with	highest wavelength	result when an electron in the
	hydrogen atom falls	s from $n = 5$ to:		
	1) $n = 1$	2) $n = 2$	3) $n = 3$	4) $n = 4$
138.	For an electron if the	he uncertainty in velo	ocity is $\Delta \nu$, the unc	ertainty in its position (Δx) is
	given by			
	1) $\frac{hm}{4\pi\Delta v}$	$2) \frac{4\pi}{hm\Delta v}$	3) $\frac{h}{4\pi m\Delta v}$	4) $\frac{4\pi m}{h\Delta v}$
139.	The wave number of	of first line Balmer se	eries of hydrogen is 1	$5200 cm^{-1}$. The wave number
	of first Balmer line of Li^{2+} ion is			
		2) $60,800 cm^{-1}$	3) 76,000 cm ⁻¹	4) 136,800 cm ⁻¹
140.				l. Then uncertainty in velocity
	is given as			
	1) $\sqrt{\frac{h}{\Pi}}$	$2) \frac{h}{\Pi}$	$3) \; \frac{1}{2m} \sqrt{\frac{h}{\Pi}}$	4) $\sqrt{\frac{h}{2m\Pi}}$
141.	What transition in t	he hydrogen spectru	m would have the sa	me wavelength as the Balmer
	transition, $n = 4$ to 1	$n = 2$ in the He^+ spec	trum?	
	1) $n = 4$ to $n = 1$	2) $n = 3$ to $n = 2$	3) $n = 3$ to $n = 1$	4) $n = 2$ to $n = 1$
142.	The de Broglie wa	velength of a tennis	ball of mass 60 g	moving with a velocity of 10
	meters per second i	s approximately		
	1) 10^{-31} metres	2) 10 ⁻¹⁶ metres	3) 10^{-25} metres	4) 10 ⁻³³ metres
143.	An electron falls i	from the 8 th orbit in	a hydrogen atom.	The spectral line of longest
	wavelength in the E	Brackett series is from	1	
	1) 5 th orbit	2) 6 th orbit	3) 4 th orbit	4) 7 th orbit
144.	If uncertainty in the	e position of an electr	on is zero, the uncer	tainty in its momentum would
	be			
	1) zero	$2) < h(4/\pi)$	$3) > h(4\pi)$	4) infinite

145.	The uncertainty is	n the position of an e	$lectron (mass = 9.1 \times 1)$	$0^{-28}g$) moving with a			
	velocity of $3.0 \times 10^4 cm \text{ S}^{-1}$ accurate upto 0.011% will be						
	1) 1.92 cm	2) 7.68 cm	3) 0.175 cm	4) 3.84 cm			
146.	Number of waves	s made by a Bohr elec	ctron in one complete	e revolution in its fourth orbit is			
	1) 2	2) 3	3) 4	4) 0			
147.	Hamiltonian operator is the sum of two energy operators. These are						
	1) Mechanical an	d potential	2) Kinetic and me	echanical			
	3) Kinetic and po	otential					
148.	When the electro	on of 5 th orbit jump	os into the first orbi	it the number of spectral lines			
	produced in hydrogen spectrum is						
	1) 5	2) 10	3) 20	4) 1			
149.	What is the wa	velength of a car	with a mass of 1.	3×10^4 g moving at a speed of			
	$1.0 \times 10^3 cm/\text{sec}$? (<i>Planck's</i> constant $6.63 \times 10^{-27} erg \text{ sec.}$)						
	1) $5 \times 10^{-18} cm$	2) $5 \times 10^{-30} cm$	3) $5 \times 10^{-34} cm$	4) $5 \times 10^{-38} cm$			
150.	From Lyman seri	Lyman series to pfund series in H – atom, the frequency value					
	1) Increases	2) Decreases	3) Does not chang	ge 4) Doubled			
151.	If the shortest w	avelength of H ator	n in Lyman series i	s x, the longest wavelength in			
	Balmer series of He^+ is						
	1) 9x/5	2) 36x/5	3) x/4	4) 5x/9			
152.	A cricket ball of 0.5kg is moving with a velocity of 100m per sec. The wavelength						
	associated with its motion is						
	1) $\frac{1}{100}m$	2) $6.6 \times 10^{-14} m$	3) $1.32 \times 10^{-35} m$	4) $6.6 \times 10^{-28} m$			
153.	Which of the fo	ollowing is responsi	ble to rule out the	existence of definite paths or			
	trajectories of electrons?						
	1) Pauli's exclusion principle						
	2) Heisenberg's uncertainty principle						
	3) Hund's rule of	maximum multiplici	ty				
	4) Aufbau principle						
154.	The uncertainitie	es in the velocities	of two particles x a	nd y are 0.03 and 0.01 m/sec			
	respectively. The mass of x is twice that of y. The ratio of uncertainities in their position is						
	1) 1 : 3	2) 1 : 6	3) 3 : 1	4) 6 : 1			
155.	$\Psi^2 = 0$ represents	S					

	1) a node	2) an orbital	3) angular wave fur	nction	4) wave function		
156.	Calculate the wavelength (in nanometer) associated with a proton moving at $1.0 \times 10^3 ms^{-1}$						
	1) 0.032 nm	2) 0.40 nm	3) 2.5 nm	4) 14.	0 nm		
157.	What is wave length of a photon that is associated with 100 eV energy						
	1) 1.228 x 10 ⁻⁹ m	2) 1.228 x 10 ⁻¹⁰ m	3) 1.228 x 10 ⁻¹² m	4) 1.2	28 x 10 ⁻⁸ m		
158.	The wavelength of electron in the first orbit of H atom 'x'. Then the circumference of the						
	5 th orbit is	->					
4.50		2) 12.5 x	3) 25 x	4) x/5			
159.	Which is the $de - B$						
		$2) h = p\lambda^{-1}$					
160.	The radius of first Bohr's orbit of 'H' atom is x, then de Broglie wavelength of e ⁻ⁿ in 4 th						
	orbit is						
	1) $2\pi x$	2) $4\pi x$	3) $16\pi x$	4) 8π	X		
161.	An electron travels with a velocity of xms^{-1} . For a proton to have the same de – Broglie						
	wavelength, the velocity will be approximately:						
	1) $\frac{1840}{x}$	2) $\frac{x}{1840}$	3) 1840x	4) x			
162.	The deBroglie's wavelength of a particle inversely proportional to the square root of						
	1) Kinetic energy	2) momentum	3) energy	4) All			
163.	How many number orbit to 1 st orbit	of visible lines obse	rved, when electronic	c transi	tion observed from 6 th		
	1) 4	2) 5	3) 15	4) 6			
164.	A spectral line with $\lambda = 4938A^0$ belongs Hydrogen atom in the series of						
	1) visible	2) ultraviolet	3) near IR	4) Far	· IR		
165.	The uncertainties in	n the position and ve	elocity of particle are	e 10 ⁻¹⁰ r	m and $5.27 \times 10^{-24} \text{ m/s}$		
	respectively. The mass of particle is						
	1) 1 kg	2) 10 kg	3) 0.1 kg	4) 0.0	1 kg		
166.	If an electron is traveling at 200 m/s within 1 m/s uncertainty, what is the theoretical						
	uncertainty in its position in μm (micrometer)?						
	1) 14.5	2) 0.28	3) 0.58	4) 1.1	4		
167.	Statement 1: It is	impossible to determ	ine the exact positio	n and	exact momentum of an		
	electron simultaneously.						
	Statement 2: The path of an electron in atom is clearly defined.						

- 1) Statement 1 and Statement 2 are true
- 2) Statement 1 is false but Statement 2 is true
- 3) Statement 1 is true but Statement 2 is false
- 4) Statement 1 and Statement 2 are false
- If the wavelength of the electron is numerically equal to distance travelled by it in one 168. second then the correct relation is

1)
$$\lambda = \frac{h}{p}$$

$$2) \ \lambda = \frac{h}{m}$$

2)
$$\lambda = \frac{h}{m}$$
 3) $\lambda = \sqrt{\frac{h}{p}}$ 4) $\lambda = \sqrt{\frac{h}{m}}$

$$4) \ \lambda = \sqrt{\frac{h}{m}}$$

- If the kinetic energy of an electron is increased by 4 times, then resultant, the wave length 169. of de Broglie wave associated with it would become
 - 1) Four times
- 2) $\frac{1}{2}$ times
- 3) Two times
- 4) 1/4 times
- 170. When the electron in the 'H' atom jumps from the fifth orbit to the second orbit, the spectral line emitted is found in region.
 - 1) visible
- 2) ultraviolet
- 3) Near IR
- 4) Far IR
- The quantum number not obtained from the Schrodinger's wave equation is:
 - 1) n
- 2) *l*

- 3) m
- 4) s
- The correct Schrodinger's wave equation for electron with E as total energy and V as potential is

$$1) \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi m}{h^2} (E - V) \Psi = 0 \quad 2) \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2}{mh^2} (E - V) \Psi = 0$$

3)
$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V) \Psi = 0$$
 4)
$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi m^2}{h} (E - V) \Psi = 0$$

- 173. The transition of electron in H atom that will emit maximum energy is
 - 1) $n_3 \rightarrow n_2$
- 2) $n_4 \rightarrow n_2$
- 3) $n_{\varepsilon} \rightarrow n_{\varepsilon}$
- 4) $n_{\epsilon} \rightarrow n_{\epsilon}$
- For an electron whose positional un-certainty is $1.0 \times 10^{-10} m$, the uncertainty in the component of the velocity in $m s^{-1}$ will be
 - 1) 5.8×10^5
- $2) 10^9$
- $3) 10^2$
- 4) 10^{15}
- The de Broglie wavelength of an electron in an orbit represented by the diagram is

	1) 10 A ⁰	2) 3.33 A ⁰	$3) 20 A^0$	4) 13.33 A ⁰				
176.	Statement 1: Hydrogen has only one electron in its orbit but produces several spectral							
	lines							
	Statement 2: There are many excited energy levels available in a sample of Hydrogen gas							
	Then the correct answer is							
	1) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of							
	Statement 1							
	2) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct							
	explanation of Statement 1							
	3) Statement 1 is true but Statement 2 is false							
	4) Statement 1 is false but Statement 2 is true							
177.	De – Broglie's concept is applicable to							
	1) Proton	2) A stone	3) A car	4) Aero plane				
178.	The wave number of first emission line of hydrogen atomic spectrum in the Balmer series							
	•	Rydberg constant)						
	1) $\frac{5R}{36}cm^{-1}$	$2) \frac{3R}{4} cm^{-1}$	$3) \frac{7R}{144} cm^{-1}$	4) $\frac{9R}{400}cm^{-1}$				
179.	If λ_p and λ_e denote the de – Broglie wavelength of proton and electron after they are							
	accelerated from rest through the same potential difference, then							
	1) $\lambda_e = \lambda_p$	2) $\lambda_e < \lambda_p$	3) $\lambda_e > \lambda_p$	4) $\lambda_e = \lambda_p / 2$				
180.	To which electronic transition between Bohr orbits in hydrogen, the second line in the							
	Balmer series belongs?							