CS3243 Tutorial 9

Eric Han

Nov 1, 2022

Annoucements

- 1. Assignment 7 scores are now on Luminus.
- 2. Highly recommended to send in your teaching feedback I appreciate it greatly!
- 3. This tutorial is the last 'content' tutorial; next week is a recap tutorial.

Student Feedback on Teaching (SFT)

Feedback is optional but highly encouraged, access here: https://es.nus.edu.sg/blue/

- [Tutorial Feedback] Your feedback is important to me, and will be used to improve my teaching.
 - If I have helped your learning in any way, your positive feedback will be an encouragement to me.
 - If you find your learning can be enhanced by some action on my part, that feedback will be used to improve my teaching.
- [Module Feedback] Your feedback will be used to improve the module.
- Feedback is confidential to the university and anonymous to us.
- Avoid mixing the feedback; ie. project feedback to tutorial feedback.

Past student feedback had been used to improve teaching; ie. Telegram access to provide faster feedback.

Previously from T08, Q1

Consider below, a Vertex Cover where it is a set of vertices that covers all edges.

- i. Write down the constraints as logical statements for a vertex cover of size 1.
- ii. Apply the resolution algorithm in order to prove that the vertex 1 must be part of the vertex cover.

Recap

- What is a Vertex Cover of size k?
- How to formulate a KB problem?

Figure 1: Graph for Vertex Cover CSP

Answer T8.Q1.i - Formulating KB

Variables:

- x_i represents i node on the graph that is in the vertex cover.
- $\neg x_i$ represents not in the vertex cover.

Constraints:

- Edge cover constraints:
 - $x_1 \lor x_2$;
 - $x_1 \lor x_3$;
 - *x*₁ ∨ *x*₄
- Size k = 1 constraints: (We ignore contrapositive)
 - x_1 set then... $x_1 \implies \neg x_2$; $x_1 \implies \neg x_3$; $x_1 \implies \neg x_4$
 - x_2 set then... $x_2 \implies \neg x_3$; $x_2 \implies \neg x_4$;
 - x_3 set then... $x_3 \implies \neg x_4$

Then convert to CNF!

Answer T8.Q1.ii

Show $KB \models \alpha = x_1$; we resolve $KB \land \neg x_1$

- 1. $\neg x_1 \oplus x_1 \lor x_2 \implies x_2$
- 2. $x_2 \oplus \neg x_2 \vee \neg x_3 \implies \neg x_3$
- 3. $\neg x_1 \oplus x_1 \lor x_3 \implies x_3$
- 4. $x_3 \oplus \neg x_3 \implies \Box$

Having both good grades (G) and good communication skills (C) will increase your chances of performing well in your interview (I).

Table 1: Probability of *I*; Pr[G = 1] = 0.7, Pr[C = 1] = 0.2

G	С	Pr[I=1 G,C]
1	1	0.9
1	0	0.5
0	1	0.5
0	0	0.1

Figure 2: Belief Network

Recap

- How to read a Bayes Network?
- What is Marginalisation?

Answer

What is the probability that

- a. Alice, who has poor grades and communication skills, performs well on her interview? Pr[I=1|G=0,C=0]=0.1
- b. Bob is a student with great communication skills, assuming we do not know anything about him? Pr[C=1]=0.2
- c. A student has good communication skills, given that he or she has performed well in an interview? $Pr[C=1|I=1] = \frac{Pr[C=1,I=1]}{Pr[I=1]} = \frac{\sum_g Pr[G=g,C=1,I=1]}{\sum_{g,c} Pr[G=g,C=c,I=1]} = 0.339$
 - a. Are good communication skills independent of good performance in an interview? Remember independence; $Pr[C=1|I=1] \neq Pr[C=1] = 0.2$.

Assume that 2% of the population in a country carry a particular virus (Y is a carrier). A test kit developed to detect the presence (X is positive test).

Y	Pr[X=1 Y]
1	0.998
0	1 - 0.996 = 0.004

Recap

- What is Conditional Probability?
- What is Conditional Independence?

Assume that 2% of the population in a country carry a particular virus (Y is a carrier). A test kit developed to detect the presence (X is positive test).

Y	Pr[X=1 Y]
1	0.998
0	1 - 0.996 = 0.004

Recap

- What is Conditional Probability?
- What is Conditional Independence?

Conditional independence is a situation when an observation is redundant, i.e. Pr[A|B,C] = Pr[A|C]. Careful with the conditional independence here. . .

Answer 2a

Given that a patient is tested to be positive using this kit, what is the posterior belief that he is not a carrier?

$$Pr[Y = 0 | X = 1] = \frac{Pr[Y = 0, X = 1]}{Pr[X = 1]} = \frac{Pr[Y = 0, X = 1]}{\sum_{y} Pr[Y = y, X = 1]} = \frac{Pr[X = 1 | Y = 0] \times Pr[Y = 0]}{\sum_{y} Pr[Y = y, X = 1]} = 0.164$$

Answer 2b

Patient tested positive again using the second kit (X_2 is the second test, X_1 is the first test). Assume conditional independence between results of different test kits given the patient's state of virus contraction.

$$Pr[Y = 0|X_1 = 1, X_2 = 1] = 0.0008$$

- $= \frac{Pr[Y=0,X_2=1,X_1=1]}{Pr[X_1=1,X_2=1]} = \frac{Pr[X_2=1,X_1=1|Y=0]Pr[Y=0]}{Pr[X_1=1,X_2=1]}$ (Conditional Probability)
- $= \frac{Pr[X_2=1|Y=0]Pr[X_1=1|Y=0]Pr[Y=0]}{Pr[X_1=1,X_2=1]}$ (Conditional Independence)
- $= \frac{Pr[X_2=1|Y=0]Pr[X_1=1|Y=0]Pr[Y=0]}{\sum_{y} Pr[X_1=1,X_2=1,Y=y]}$ (Marginalisation)
- $= \frac{\Pr[X_2 = 1 | Y = 0] \Pr[X_1 = 1 | Y = 0] \Pr[Y = 0]}{\sum_{v} \Pr[X_1 = 1 | Y = y] \Pr[X_2 = 1 | Y = y] \Pr[Y = y]} \text{ (Conditional Probability, Independence)}$

Very interesting, read more...

- Can you solve the false positive riddle?: https://youtu.be/1csFTDXXULY
- False-positive paradox: https://en.wikipedia.org/wiki/Base_rate_fallacy
- Prior, Posterior. . .

Posterior
$$P(B|B) = \frac{P(B|A) * P(A)}{P(B|B)}$$
Evidence

Figure 3: Prior vs Posterior

Construct a Bayesian network and determine the probability

$$Pr[WG = 1, RS = 1, R = 0, S = 0]$$

Recap

Any useless variables from the table?

Answer

Lemma 1. Given two random boolean variables A and B, if Pr[A|B] = 0 and $Pr[A|\neg B] = 1$ then Pr[A] = 1 - Pr[B]; in fact, $A \equiv \neg B$.

Not difficult to proof (Note the notation change.):

$$Pr[A|B] = 0 \land Pr[A|\neg B] = 1 \implies Pr[A] = 1 - Pr[B]$$

Pr[A]

- $= Pr[A \wedge B] + Pr[A \wedge \neg B]$ (Marginalisation)
- $= Pr[A|B] \times Pr[B] + Pr[A|\neg B] \times Pr[\neg B]$ (Conditional Probability)
- $= Pr[\neg B] = 1 Pr[B]$ (Subt given)

So,
$$Pr[A \land \neg B \land \cdots] = Pr[\cdots | A \land \neg B] \times Pr[A \land \neg B] = Pr[\cdots | A] \times Pr[A]$$
,

- Since, $Pr[A \land \neg B] = Pr[A|\neg B] \times Pr[\neg B] = Pr[A]$;
- And, $Pr[\cdots|A \land \neg B] = Pr[\cdots \land \neg B|A]/Pr[\neg B|A] = Pr[\cdots|A]$

Since $S \equiv \neg RS$, so:

Figure 4: RS, WG, R network.

$$Pr[RS = 1] = 0.7$$

RS	Pr[R=1 RS]
1	0.9
0	0.1

RS	R	Pr[WG = 1 RS, R]
1	1	0.8
1	0	0.1
0	1	0.95
0	0	0.9

$$Pr[WG = 1, RS = 1, R = 0, S = 0] = Pr[WG = 1, RS = 1, R = 0]$$

- $= Pr[WG = 1, R = 0 | RS = 1] \times Pr[RS = 1]$ (Conditional Probability)
- $= Pr[WG = 1|RS = 1, R = 0] \times Pr[R = 0|RS = 1] \times Pr[RS = 1]$ (Cond. Prob.)
- = 0.1 × (1 0.9) × 0.7 = 0.007