Quantum Algorithms for Approximating Partition Functions

Yassine Hamoudi

(w/ Arjan Cornelissen)

Estimating partition functions

Given a classical Hamiltonian $H: \Omega \rightarrow \{0,1,...,n\}$

$$H:\Omega\to\{0,1,\ldots,n\}$$

and an inverse temperature

approximate the partition function $Z(\beta) = Tr(e^{-\beta H})$

$$Z(\beta) = Tr(e^{-\beta H})$$

Gibbs state:
$$|\pi_{\beta}\rangle \propto \sum_{i} e^{-\beta H(i)} |i\rangle$$

Energy basis = standard basis

Estimating partition functions

Given a classical Hamiltonian $H: \Omega \rightarrow \{0,1,...,n\}$

and an inverse temperature β

approximate the partition function $Z(\beta) = \sum_{i} e^{-\beta H(i)}$

Gibbs state:
$$|\pi_{\beta}\rangle = \frac{1}{\sqrt{Z(\beta)}} \sum_{i} e^{-\beta H(i)} |i\rangle$$

Quantum algorithms hold the promise of faster statistical estimation

- Heisenberg vs shot-noise limits, quantum metrology
- Quantum phase estimation
- Quantum counting, quantum mean estimation
- □ ...

How far can we push this advantage?

- Generic methods to turn classical stat. algos into (faster) quantum algos?
- Quadratic speedups?
- Highly structured estimation tasks?

Estimating partition functions

- Partition functions are ubiquitous
 - statistical physics
 - combinatorics (counting matchings, independent sets...)
 - linear algebra (permanents)
 - convex geometry (volume of a body)
 - machine learning (graphical models)

- ...

Estimating partition functions

Partition functions are ubiquitous

Related to counting (generating functions) and phase transitions

Exact computation is often #P-hard

• ... but there exists efficient approximation methods (MCMC, Taylor's approximation, correlation decay, ...)

Main Result

The classical Markov Chain Monte Carlo (MCMC) algorithms \star for estimating $Z(\beta)$ can be speed-up by quantum algorithms running in time

$$\approx \log^{1/4} |\Omega| \times \sqrt{\text{time of classical MCMC algo}}$$
.

This class of methods includes the best known algorithms for:

- number of independent sets, colorings, matchings
- Ising, Potts, monomer-dimer,... models
- volume of convex bodies
- permanent of nonnegative matrices

 $\geq \log |\Omega|$

 $(\Omega = configuration space)$

Main Result

$$\approx \log^{1/4} |\Omega| \times \sqrt{\text{time of classical MCMC algo}}$$
.

Aharonov,	Wocjan,			Arunacnaiam, Havlicek, Nannicini,		
Ta-Shma 2003	Szegedy 2004	Abeyesinghe 2008	Montanaro 2015	Harrow, Wei 2020	Temme, Wocjan 2022	H., Cornelissen 2023
1	2	1	3	4,5	5	3,4,6

- 1. Quantum simulated annealing
- 2. Szegedy's quantum walk
- 3. Variance reduction

- 4. Non-destructive estimation
- 5. Cooling schedule computation
- 6. Unbiased estimation

The independent set partition function

Independent set

= subset of non-adjacent vertices

= occupied

Hard-core gas model in statistical physics

independent sets = 7

Input: graph G

Output: # independent sets of G

#P-hard in many regimes

Bipartite graphs

[Provan,Ball'83]

3-regular graphs

[Dyer, Greenhill'00]

Exact counting ——— Approximate counting?

Input: graph G and $\epsilon \in (0,1)$

Output: S s.t. $(1 - \epsilon)$ #ind $\leq S \leq (1 + \epsilon)$ #ind

• Graphs with maximum vertex-degree ≤ 5 : (n = # vertices)

Classical algorithms

$$\tilde{O}(n^2/\epsilon^2)$$

[Štefankovič, Vempala, Vigoda'09] [Chen, Liu, Vigoda'21] Quantum algorithms

$$\tilde{O}(n^{5/4}/\epsilon)$$

[H. Cornelissen'23]

Graphs with maximum vertex-degree > 5:

No FPRAS unless NP = RP [Sly'10]

Classical MCMC method for independent sets

Weighted independent sets

Partition function:
$$Z(\lambda) = \sum_{I \text{ ind. set}} \lambda^{|I|}$$

Sampling

Estimating

Independent set I

with probability
$$\pi_{\lambda}(I) = \frac{\lambda^{|I|}}{Z(\lambda)}$$

Ratio estimation

$$\frac{Z(\lambda')}{Z(\lambda)} = E_{I \sim \pi_{\lambda}} \left(\frac{\lambda'}{\lambda}\right)^{|I|}$$

Gibbs sampling

Unbiased estimator

Gibbs sampling

Run a Markov Chain with stationary distribution π_{λ} :

- 1. Choose a vertex uniformly at random
- 2. Make it occupied with proba $\lambda/(\lambda + 1)$ if the set remains independent

Mixing time = $O(n \log n)$

[Chen,Liu,Vigoda'21]

Glauber dynamics

Partition function estimation

Balance length of the sequence and variance of each estimator

Slowly move from an estimate of Z(0) to an estimate of Z(1)

$$(1) = \frac{Z(\lambda_1)}{Z(\lambda_0)} \cdot \frac{Z(\lambda_2)}{Z(\lambda_1)} \cdot \cdots \frac{Z(\lambda_k)}{Z(\lambda_{k-1})}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$E_{\pi_{\lambda_0}} \left(\frac{\lambda_1}{\lambda_0}\right)^{|I|} E_{\pi_{\lambda_1}} \left(\frac{\lambda_2}{\lambda_1}\right)^{|I|} E_{\pi_{\lambda_{k-1}}} \left(\frac{\lambda_k}{\lambda_{k-1}}\right)^{|I|}$$

Quantum MCMC method for independent sets

Two interlaced branches of work:

1

2

Converting classical reversible Markov chains into quantum walks

Estimating expectation values on the 1-eigenvector of a quantum walk

Glauber dynamics

Sample ind. set $I \sim \pi_{\lambda}$ in time $O(n \log n)$

No speedup for sampling? Diameter(Markov Chain) = n

We can simulate in time $\tilde{O}(\sqrt{n})$ the reflection through the state:

$$|\pi_{\lambda}\rangle = \sum_{I} \sqrt{\pi_{\lambda}(I)} |I\rangle$$

(quantum Gibbs sample)

Classical sampling resource

 $I \sim \pi_{\lambda}$

Time $\tilde{O}(n)$

Quantum sampling resource

$$2 |\pi_{\lambda}\rangle\langle\pi_{\lambda}| - I$$

Time
$$\tilde{O}(\sqrt{n})$$

Szegedy Quantum Walk

Markov chain (ergodic reversible) with stationary distribution π_{λ}

Quantum walk with 1-eigenvector $|\pi_{\lambda}\rangle$

Transition matrix *P*

Spec(
$$P$$
) = {1, τ_1 , τ_2 , ...}

Unitary
$$W(P)$$

Spec(W(P)) = {1,
$$e^{\pm 2i\theta_1}$$
, $e^{\pm 2i\theta_2}$, ...}

Run $\tilde{O}(\sqrt{n})$ steps of quantum phase estimation on the quantum walk operator W(P) to simulate the reflection

$$2 |\pi_{\lambda}\rangle\langle\pi_{\lambda}| - I$$

How to use this reflection to estimate expectation values on $|\pi_{\lambda}\rangle$?

Example:
$$\frac{Z(\lambda')}{Z(\lambda)} = \langle \pi_{\lambda} | e^{-(\lambda' - \lambda)H} | \pi_{\lambda} \rangle$$

Quantum partition estimation framework

Quantum partition estimation framework

Quantum partition estimation framework

Base case: projection observables

Input:

- description of projector Π
- 1 copy of $|\pi\rangle$
- t access to $2|\pi\rangle\langle\pi|-I$ (morally, t = sample complexity)

Output: - 1 new copy of $|\pi\rangle$

- estimate of $\langle \pi | \Pi | \pi \rangle$ (unbiased + low variance)

Base case: projection observables

Grover operator

$$U = (2 \mid \pi) \langle \pi \mid -I)(2\Pi - I)$$

 $|\pi\rangle$ is a superposition over the $(\pm 2\sin^{-1}\sqrt{\langle\pi|\Pi|\pi\rangle})\text{-eigenvectors of }U$

Quantum Phase estimation

New phase estimation primitive

New phase estimation primitive

Outcome distributions after t steps of:

- Empirical mean (classical)
- Standard phase estimation
- Enhanced phase estimation

Open questions

Classical partition functions

The partition function $Z(\beta)$ of classical Hamiltonians can be estimated in

$$\approx \log^{1/4} |\Omega| \times \sqrt{\text{time of classical MCMC algo}}$$
.

- Can we remove the $log^{1/4} | \Omega |$ factor to get a full-quadratic speedup?
 - \Rightarrow counting independent sets in time $\tilde{O}(n/\epsilon)$?
 - \Rightarrow quantum sampling π_{β} and estimating $Z(\beta)$ would have \approx complexity!
- _ ... or show a polynomial separation $T_{\rm estim.} \geq T_{\rm sampl.}^c$ for some Hamiltonian

Quantum partition functions

Estimate
$$Z(\beta) = {\rm Tr} \left(e^{-\beta H} \right)$$
 when H is a quantum Hamiltonian

Efficient reduction from quantum partition function estimation to quantum Gibbs sampling?

$$\frac{Z(\lambda')}{Z(\lambda)} = \text{Tr}(e^{-(\lambda'-\lambda)H}\pi_{\lambda})$$

Ratio estimation?

Cooling schedule?