

The X-Copter Project: Table of Contents

Table of Contents

- Overview
- Project Management
- System Architecture
- Hardware
- Linux
- Flight Controller
- Challenges
- Lessons Learned

Hochschule Ulm

The X-Copter Project: Table of Contents

٥

1

Hochschule Ulm

- Overview
- Project Management
- System Architecture
- Hardware
- Linux
- Flight Controller
- Challenges
- Lessons Learned

The X-Copter Project: Overview

Introduction

The X-Copter is planned as an autonomous modular multicopter

Fields of application

- 3D Mapping
- Rescue Missions
- Surveillance
- Parcel delivery
- Movie Production

Hochschule Ulm

Customer Needs

Basic Requirements

- Modularity (4/6 rotors)
- Stable power supply
- Sturdy construction
- Remote control
- Test flight

Flight Controller

- Test with commercial Flight Controller
- Own Flight Controller

Logging and Sensors

- Evaluating sensor data
- Logging of all sensor data
- Visualisation on Ground Station

Future Development

- 3D Environment Mapping
- Autonomous flight
- Collision control

Initial state of the Project

- Finished Physical model
- Custom power supply circuit
- Interfaces (I2C, PIOs, PWM)
- Interface circuit for sensors and actors
 - Sensors (gyroscope, accelerometer, compass)
- SoPC for the FPGA-part of DE1-SoC
- Interprocessor communication with FIFOs
- Drivers (partially tested)
- (Some sort of USB interface)

٥

1

Hochschule Ulm

- Overview
 - Project Management
- System Architecture
- Hardware
- Linux
- Flight Controller
- Challenges
- Lessons Learned

Hochschule Ulm

Applied Sciences

0

POTENTIALLY SHIPPABLE PRODUCT INCREMENT

Project Management

Scrum:

Changes in Project Management

Scrum:

Positive	Negative
Daily Scrum	Sprint Planning
Taskboard	Sprint Review
	Sprint Retrospektive

Conclusion: Scrum only works if the team meets every day

Flight test of the model:

Flight test of the model:

ŵ

1

- Overview
- Project Management
 - System Architecture
- Hardware
- Linux
- Flight Controller
- Challenges
- Lessons Learned

Old System Architecture

Hochschule Ulm

٥

1

Hochschule Ulm

- Overview
- Project Management
- System Architecture
 - Hardware
- Linux
- Flight Controller
- Challenges
- Lessons Learned

University of Applied Sciences

٥

1

Hochschule Ulm

Additional hardware

Commercial power supply

- 5-30 Vin
- 5-12Vout
- max 6A output

Graupner MX-16 RC transmitter

Gr-16 2.4 GHz RC receiver

University of Applied Sciences

RC Receiver

Graupner MX-16 HoTT Transmitter GR-16 2.4 GHz Receiver supporting

- Sum signal (PPM)
- Serial sum signal (SUMD)

Support for telemetry data

ŵ

Graupner SUMD protocol

- Signal can be read by UART
- Updating every 10 ms
- 16 bit output resolution
- Fairly easy to parse
- In contrast to PPM no real-time encoding required.

ŵ

Hochschule Ulm

- Overview
- Project Management
- System Architecture
- Hardware
 - Linux
- Flight Controller
- Challenges
- Lessons Learned

Buildroot

Wi-Fi

- Automatically connects at start up
- Stable link to access point
- Encrypted communication with WPA2

MCAPI

Interprocessor communication

6

FIFO based

6

MAVLink

Micro Air Vehicle Communication Protocol

- Communication protocol between UAV and ground station
- C library for header based messaging
- QGroundControl

٥

1

Hochschule Ulm

- Overview
- Project Management
- System Architecture
- Hardware
- Linux
 - Flight Controller
- Challenges
- Lessons Learned

System Architecture

Hochschule Ulm

System Program Flow

- 1. Init state
 - Driver, Mutex, Timer& Task initialization
- 2. Split into three tasks
 - Sensor DataManager Task
 - RC Receiver Task
 - Main Task

The X-Copter Project: Flight Controller

Dataflow

University of Applied Sciences

Hochschule Ulm

Dataflow conclusion

Four Tasks in the System

- RC controller Task
- Sensor Data Manager Task
- Main Controlling Task
- Logger Task

Hochschule Ulm

The X-Copter Project: Flight Controller

PIDToMotorMapper

First step:

```
//Mapping table for a QUADX configuration
motorQuadx[0] = PIDMIX(-1,+1,-1, throttle,roll, pitch, yaw); //REAR_R
motorQuadx[1] = PIDMIX(-1,-1,+1, throttle,roll, pitch, yaw); //FRONT_R
motorQuadx[2] = PIDMIX(+1,+1,+1, throttle,roll, pitch, yaw); //REAR_L
motorQuadx[3] = PIDMIX(+1,-1,-1, throttle,roll, pitch, yaw); //FRONT_L
```

Second step:

$$C_{th} * throttle + C_{mix} * PID_{mix} = 100\%$$

ŵ

1

- Overview
- Project Management
- System Architecture
- Hardware
- Linux
- Flight Controller
 - Challenges
- Lessons Learned

ŵ

Flight controller

At this point in time the output values of the motor mapper module aren't correct!

Possible errors:

- Wrong input ranges because of a wrong conversion
- Logical error in the module itself

University of

Applied Sciences

Hochschule Ulm

Linux

- Underestimated the complexity
- Implementation of WIFI
- USB Controller
- MAVLINK & MCAPI

0

ŵ

General Challenges & Problems

- Organizing the team
- Time Management
- File Management
- NIOS Eclipse doesn't work with Git
- SCRUM

٥

Improvements

Initial state	Actual state
Wrong USB Hardware	No USB Controller
Power supply doesn't work	Power supply works
No test flight	Successful flight test
_	In principle connection to ground station established
_	Working concept with our own flight controller

٥

1

- Overview
- Project Management
- System Architecture
- Hardware
- Linux
- Flight Controller
- Challenges
 - Lessons Learned

ŵ

Lesson Learned

- Do not postpone things with unknown risks
- Teamwork
- Regularly team meeting
- Generous time calculations
- Scrum only in fulltime job
- Previous documentation important

٥

Thank you for listening

