Задание

6.1.1. Найти области определения функций:

1)
$$f(x) = \frac{3x+1}{x^2-1}$$
;

2)
$$f(x) = \sqrt{5-3x}$$
;

3)
$$f(x) = \ln(x+2)$$
.

- **Q** 1) Дробь $\frac{3x+1}{x^2-1}$ определена, если ее знаменатель не равен нулю. Поэтому область определения данной функции находится из условия $x^2-1\neq 0$, т.е. $x\neq \pm 1$. Таким образом, $D(f)=(-\infty;-1)\cup (-1;1)\cup (1;+\infty)$.
- 2) Функция $f(x) = \sqrt{5-3x}$ определена, если подкоренное выражение неотрицательно, т. е. $5-3x\geqslant 0$. Отсюда $x\leqslant \frac{5}{3}$, и, значит, $D(f)=\left(-\infty;\frac{5}{3}\right]$.
- 3) Выражение, стоящее под знаком логарифма, должно быть положительным, поэтому функция $\ln(x+2)$ определена в том и только в том случае, когда x+2>0, т. е. x>-2. Значит, $D(f)=(-2;+\infty)$.

6.1.2. Найти области определения функций:

1)
$$f(x) = 2^{\frac{1}{x}} + \arcsin \frac{x+2}{3}$$
;

2)
$$f(x) = \frac{5}{\sqrt[3]{2x - x^2}} - 7\cos 2x$$
.

Q 1) Функция a^x , a > 0 определена при всех действительных значениях x, поэтому функция $2^{\frac{1}{x}}$ определена в точности при тех значениях x, при которых имеет смысл выражение $\frac{1}{x}$, т. е. при $x \neq 0$.

Далее, область определения второго слагаемого находим из двойного неравенства $-1\leqslant \frac{x+2}{3}\leqslant 1$. Отсюда $-3\leqslant x+2\leqslant 3$, т. е. $-5\leqslant x\leqslant 1$.

Область определения функции f(x) есть пересечение областей определения обоих слагаемых, откуда $D(f) = [-5; 0) \cup (0; 1]$.

2) Функция $7\cos 2x$ определена при всех действительных значениях x, а функция $\frac{5}{\sqrt[3]{2x-x^2}}$ — лишь при тех значениях x, при которых $2x-x^2\neq 0$, т. е. при $x\neq 0$, $x\neq 2$.

Таким образом,
$$D(f) = (-\infty; 0) \cup (0; 2) \cup (2; +\infty)$$
.

Найти области определения функций:

6.1.3.
$$f(x) = \frac{x^2+4}{x^3+1}$$
.

6.1.4.
$$f(x) = \sin \frac{1}{|x|-2}$$
.

6.1.5.
$$f(x) = \log_3(-x)$$
.

6.1.6.
$$f(x) = \sqrt[4]{x^2 - 7x + 10}$$
.

6.1.7.
$$f(x) = x^2 + \operatorname{tg} x$$
.

6.1.8.
$$f(x) = \sqrt{x-7} + \sqrt{10-x}$$
.

6.1.9.
$$f(x) = \frac{\ln x}{\sqrt{|x^2 - 2|}}.$$

6.1.10.
$$f(x) = \sqrt[4]{x+2} + \frac{1}{\sqrt[6]{1-x}}$$
.

6.1.11.
$$f(x) = e^{\sqrt{x}} \cdot \log_2(2 - 3x).$$

6.1.12.
$$f(x) = \arccos(x-2) - \ln(x-2)$$
.

6.1.13. Найти множества значений функций:

1)
$$f(x) = x^2 + 4x + 1$$
;

2)
$$f(x) = 2^{x^2}$$
;

3)
$$f(x) = 3 - 5\cos x$$
.

 \bigcirc 1) Так как $x^2+4x+1=(x+2)^2-3$, а $(x+2)^2\geqslant 0$ для всех значений x, то $f(x)\geqslant -3$ для всех x. Поскольку к тому же функция $(x+2)^2$ принимает все значения от 0 до ∞ , то $E(f)=[-3;+\infty)$.

2) $E(x^2)=[0;+\infty),$ поэтому множество значений функции 2^{x^2} совпадает с множеством значений функции 2^x при $x\geqslant 0.$ Отсюда $E(f)=[1;+\infty).$

3)
$$E(\cos x)=[-1;1]$$
, откуда $E(-5\cos x)=[-5;5]$. Так как $f(x)=-5\cos x+3$, то $E(f)=[-2;8]$.

Найти множество значений функций:

6.1.14.
$$f(x) = x^2 - 8x + 20$$
.

6.1.15.
$$f(x) = 3^{-x^2}$$
.

6.1.16.
$$f(x) = 2\sin x - 7$$
.

6.1.17.
$$f(x) = \frac{1}{x} + 4$$
.

6.1.18.
$$f(x) = \frac{1}{\pi} \operatorname{arctg} x$$
.

6.1.19.
$$f(x) = \sqrt{5-x} + 2$$
.

6.1.20. Для функции $f(x) = \frac{x+3}{x^2-1}$ найти:

1) f(0);

2) f(-2);

3) $f(\sqrt{2})$;

4) f(-x);

5) $f\left(\frac{1}{x}\right)$;

6) f(a+1);

7) f(a) + 1;

8) f(2x).

Q 1)-3). Подставляя значение x=0 в аналитическое выражение для данной функции, получим: $f(0)=\frac{0+3}{0^2-1}=-3$. Ана-

логично находим $f(-2) = \frac{-2+3}{(-2)^2-1} = \frac{1}{3}$, $f(\sqrt{2}) = \frac{\sqrt{2}+3}{(\sqrt{2})^2-1} = \sqrt{2}+3$.

4)-6). Для того, чтобы найти f(-x), надо формально заменить x в формуле для f(x) на -x. Тогда $f(-x)=\frac{-x+3}{(-x)^2-1}=$

 $=rac{3-x}{x^2-1}$. Точно так же найдем $f(rac{1}{x})=rac{rac{1}{x}+3}{\left(rac{1}{x}
ight)^2-1}=rac{3x^2+x}{1-x^2},$

 $f(a+1) = \frac{(a+1)+3}{(a+1)^2-1} = \frac{a+4}{a^2+2a}.$

7) $f(a) + 1 = \frac{a+3}{a^2-1} + 1 = \frac{a^2+a+2}{a^2-1}$.

8) $f(2x) = \frac{2x+3}{(2x)^2-1} = \frac{2x+3}{4x^2-1}$.

6.1.21. Для функции $f(x) = x^3 \cdot 2^x$ найти:

1) f(1);

2) f(-3);

3) $f(-\sqrt[3]{5})$;

4) f(-x);

5) f(3x);

6) $f\left(\frac{1}{x}\right)$;

7) $\frac{1}{f(x)}$;

8) f(b-2).

6.1.22. Для функции $\varphi(t) = \frac{\sqrt{t+5}}{t^2}$ найти:

1) $\varphi(-1)$;

2) $\varphi(-5)$;

3) $\varphi(\frac{5}{4})$;

4) $\varphi(z+3)$:

5) $\varphi(2t-1)$.

- 6.1.23. Какие из следующих функций четные, какие нечетные, а какие — общего вида:
 - 1) $f(x) = \frac{x^3}{x^2 + 1}$;
 - 2) $f(x) = x^4 5|x|$;
 - 3) $f(x) = e^x 2e^{-x}$;
 - 4) $f(x) = \ln \frac{1-x}{1+x}$.
 - **Q** 1) $D(f) = (-\infty; +\infty)$, и, стало быть, область определения функции симметрична относительно начала координат. Кроме того, $f(-x) = \frac{(-x)^3}{(-x)^2+1} = -\frac{x^3}{x^2+1} = -f(x)$, т. е. данная функция нечетная.
 - 2) $D(f)=(-\infty;+\infty)$ и $f(-x)=(-x)^4-5|-x|=x^4-5|x|=f(x)$. Следовательно, функция четная.
 - 3) $D(f) = (-\infty; +\infty)$ и $f(-x) = e^{-x} 2e^x \neq \pm f(x)$, т.е. данная функция общего вида.
 - 4) D(f)=(-1;1), т. é. область определения симметрична относительно нуля. К тому же $f(-x)=\ln\frac{1+x}{1-x}=\ln\left(\frac{1-x}{1+x}\right)^{-1}==-\ln\frac{1-x}{1+x}=-f(x)$, т. е. функция нечетная.
- 6.1.24. Какие из следующих функций четные, какие нечетные, а какие — общего вида:
 - 1) $f(x) = \frac{\sin x}{x}$;
 - 2) $f(x) = x^5 + 3x^3 x$;
 - **3)** $f(x) = \sqrt{x}$;
 - 4) $f(x) = \arcsin x$;
 - $5) \ f(x) = \sin x + \cos x;$
 - **6)** f(x) = |x| 2;
 - 7) $f(x) = \frac{3}{x^2 1}$;
 - 8) $f(x) = x \cdot e^x$.
- 6.1.25. Определить, является ли данная функция периодической, и найти ее наименьший положительный период, если он существует:
 - 1) $f(x) = \sin 4x$;
 - 2) $f(x) = \cos^2 5x$;
 - 3) $f(x) = \operatorname{tg} \frac{x}{3};$
 - 4) $f(x) = \sin 2x + \cos 3x$;
 - 5) $f(x) = x^2$.
 - О 1) Наименьшим положительным периодом функции $\sin x$ является число 2π . Покажем, что наименьший положительный период $\sin 4x$ число $\frac{2\pi}{4} = \frac{\pi}{2}$.

Действительно, $\sin 4\left(x+\frac{\pi}{2}\right)=\sin(4x+2\pi)=\sin 4x$, т.е. $T=\frac{\pi}{2}$ — период данной функции. С другой стороны, если $T_1>0$ — какой-либо другой период этой функции, то $\sin 4(x+T_1)=\sin 4x$ для всех x, т.е. $\sin(4x+4T_1)=\sin 4x$, $x\in\mathbb{R}$. Отсюда следует, что $4T_1$ — период функции $\sin t$, где t=4x, и, значит, $4T_1\geqslant 2\pi$, т.е. $T_1\geqslant \frac{\pi}{2}$.

Таким образом, $T = \frac{\pi}{2}$ — наименьший положительный период функции $\sin 4x$.

Аналогично можно показать (см. также задачу 6.1.123), что наименьший положительный период функций $\sin(kx+b)$ и $\cos(kx+b)$ ($k\neq 0$) — это число $\frac{2\pi}{k}$.

- 2) Поскольку $\cos^2 5x = \frac{1+\cos 10x}{2}$, то период данной функции совпадает с периодом функции $\cos 10x$. Рассуждая как и в пункте 1), легко показать, что наименьший положительный период функции $\cos 10x$ равен $\frac{2\pi}{10} = \frac{\pi}{5}$. Таким образом, наименьший положительный период функции f(x) равен $\frac{\pi}{5}$.
- 3) Наименьший положительный период $\operatorname{tg} x$ равен π , поэтому наименьший положительный период функции $\operatorname{tg} \frac{x}{3}$ будет равен (см. рассуждения в пункте 1)) $\frac{\pi}{(1/3)} = 3\pi$.
- 4) Наименьшие положительные периоды функций $\sin 2x$ и $\cos 3x$ соответственно равны (см. пункты 1) и 2)) $\frac{2\pi}{2}$, т.е. π , и $\frac{2\pi}{3}$. Нетрудно показать (см. также задачу 6.1.124), что наименьший положительный период суммы этих функций будет равен наименьшему общему кратному их периодов, т.е. числу 2π .
- 5) При x > 0 функция определена и возрастает, поэтому не может быть периодической. Значит, и на интервале $(-\infty; +\infty)$ функция не является периодической.
- 6.1.26. Какие из следующих функций периодические, а какие нет? Там, где это возможно, найти наименьший положительный период функции:
 - $1) \ f(x) = \cos \frac{x}{4};$
 - **2)** f(x) = |x|;
 - 3) f(x) = tg(2x-1);
 - 4) $f(x) = \sin \frac{x}{2} \operatorname{ctg} x;$
 - $5) \ f(x) = \sin 3x \cdot \cos 3x.$

Наибольшее целое число, не превосходящее x (т. е. ближайшее слева на числовой оси), называется *целой частью* x и обозначается [x] (или E(x)). Например, $[\pi] = 3$, [-4,5] = -5 и т. д.

Число x-[x] называется дробной частью x и обозначается $\{x\}$. Так $\{1,8\}=0,8,\;\{-2,7\}=0,3$ и т. д.

6.1.27. Построить график функции:

- 1) y = [x];
- **2)** $y = \{x\}.$
- \bigcirc 1) Функция [x] равна n на каждом полуинтервале [n; n+1), поэтому ее график имеет следующий «ступенчатый» вид (рис. 70).

Рис. 70 Рис. 71

2) На каждом полуинтервале [n; n+1) имеем: [x] = n, поэтому функция $\{x\}$ принимает одни и те же значения. Таким образом, достаточно построить ее график на [0;1) (здесь $\{x\} = x$), а затем параллельно перенести эту часть на все остальные промежутки. В итоге получим график, изображенный на рисунке 71.

6.1.28. Построить график функции:

- 1) $y = x^2 + 4x + 3$;
- 2) $y = -2\sin 3x$;
- **3)** $y = \left| \{x\} \frac{1}{2} \right|$.
- 1) Выделяя полный квадрат в данном квадратном трехчлене, преобразуем функцию к виду $y = (x+2)^2 1$. Теперь ясно, что для построения графика функции, достаточно сначала сместить параболу $y = x^2$ влево на 2 единицы (получается график функции $y = (x+2)^2$), а затем на 1 единицу вниз (рис. 72).
- 2) Сжав стандартную синусоиду $y = \sin x$ в три раза к оси Oy, получим график функции $y = \sin 3x$ (рис. 73). Растянув полученный график в два раза вдоль оси Oy, получим график

Рис. 72

функции $y = 2\sin 3x$ (рис. 74 а)). Осталось отразить последний график относительно оси Ox, результатом будет искомый график (рис. 74 б)).

Рис. 73

Рис. 74 $3) \ \mbox{Опустив на} \ \frac{1}{2} \ \mbox{вниз график дробной части } x \ (\mbox{рис. 71}),$ получим график функции $y=\{x\}-\frac{1}{2} \ (\mbox{рис. 75 a})). Теперь те$

Рис. 75

части этого графика, которые расположены ниже оси Ox, отражаем относительно этой оси — в итоге имеем искомый график (рис. 75 б)).

Построить графики функций:

6.1.29.
$$y = |x - 3|$$
.

6.1.30.
$$y = x^2 - 6x + 11$$
.

6.1.31.
$$y = 3\cos 2x$$
.

6.1.32.
$$y = -\frac{2}{x} + 1$$
.

6.1.33.
$$y = 2^{x-1} + 3$$
.

6.1.34.
$$y = \log_3(-x)$$
.

6.1.35.
$$y = \operatorname{tg} |x|$$
.

6.1.36.
$$y = \frac{x+4}{x+2}$$
.

6.1.37. Найти сложные функции $f \circ g$ и $g \circ f$, где

1)
$$f(x) = \sqrt{x}$$
, $g(x) = x^2$;

2)
$$f(x) = x^3$$
, $g(x) = 2x - 1$.

 \bigcirc 1) По определению композиции функций имеем $(f \circ g)(x) =$ $= f(g(x)) = \sqrt{x^2} = |x|, (g \circ f)(x) = g(f(x)) = (\sqrt{x})^2 = x, x \geqslant 0.$

2) Аналогично, $(f \circ g)(x) = (2x-1)^3$, $(g \circ f)(x) = 2x^3 - 1$.

6.1.38. Найти сложные функции $f \circ g$ и $g \circ f$, где

1)
$$f(x) = e^x$$
, $g(x) = \ln x$;

2)
$$f(x) = 3x + 1$$
, $g(x) = 2x - 5$;

3)
$$f(x) = |x|, g(x) = \cos x.$$

Найти обратную функцию для данной: 6.1.39.

1)
$$y = x - 1$$

1)
$$y = x - 1$$
;
2) $y = \frac{2}{x+3}$;

3)
$$y = \sqrt{x}$$
.

О 1) Функция y = x - 1 возрастает на промежутке $(-\infty; +\infty)$, а значит, для любых $x_1 \neq x_2$ имеем: $f(x_1) \neq f(x_2)$. Отсюда следует, что на $(-\infty; +\infty)$ эта функция имеет обратную. Для того, чтобы найти эту обратную функцию, разрешим уравнение y = x - 1 относительно x, откуда x = y + 1. Записывая полученную формулу в традиционном виде (т.е. меняя x и yместами), найдем окончательно: y = x + 1 — обратная функция к исходной.

2) Функция $y=\frac{2}{x+3}$ убывает на множестве $(-\infty;-3)\cup\cup(-3;+\infty)$, являющейся областью определения. Поэтому у нее есть обратная, которую найдем, разрешая уравнение $y=\frac{2}{x+3}$ относительно x.

Отсюда получим, что функция $y=\frac{2}{x}-3$ — обратная к исходной.

- 3) Функция $y = \sqrt{x}$ возрастает на промежутке $[0; +\infty)$ и, стало быть, имеет обратную. Рассуждая, как в пунктах 1) и 2), найдем обратную функцию $y = x^2$, $x \in [0; +\infty)$. Область определения этой функции совпадает с областью значений исходной функции $y = \sqrt{x}$, т. е. с промежутком $[0; +\infty)$.
- **6.1.40.** Доказать, что функция $y = x^2$ не имеет обратной на интервале $(-\infty; +\infty)$.

Для любого $y_0 > 0$ уравнение $y_0 = x^2$ имеет два решения $x_1 = \sqrt{y_0}$ и $x_2 = -\sqrt{y_0}$ (т.е. каждая горизонтальная прямая $y = y_0$ пересекает график функции $y = x^2$ в двух точках). Но функция имеет обратную только в том случае, если такое решение единственно. Значит, данная функция действительно не имеет обратной на интервале $(-\infty; +\infty)$.

Какие из следующих функций имеют обратные? Для таких функций найти обратные функции.

6.1.41.
$$y = 3x + 5$$
.

6.1.42.
$$y = x^3 - 2$$
.

6.1.43.
$$y = |x|$$
.

6.1.44.
$$y = \frac{x-2}{x}$$
.

Выяснить, какие из следующих функций являются монотонными, какие — строго монотонными, а какие — ограниченными:

6.1.45.
$$f(x) = c$$
.

6.1.46.
$$f(x) = \sin^2 x$$
.

6.1.47.
$$f(x) = \operatorname{arctg} x$$
.

6.1.48.
$$f(x) = -x^2 + 2x$$
.

6.1.49.
$$f(x) = \frac{x+2}{x+5}$$
.

6.1.51. Вычислить значения гиперболических функций: sh 0, ch 0, th 0, sh 1, ch(ln 2).

6.1.53. Функция у задана неявно. Выразить ее в явном виде.

- 1) xy = 7;
- 2) $x^2 + y^2 = 1$, $y \le 0$.

 \bigcirc 1) При $x \neq 0$ из данного уравнения получим $y = \frac{7}{x}$.

2) Выражая y из данного уравнения, имеем $y = -\sqrt{1-x^2}$.

6.1.54. Функция y задана неявно. Там, где это возможно, выразить ее в явном виде:

- 1) $\frac{x^2}{9} \frac{y^2}{4} = 1;$
- **2)** x + |y| = 1;
- 3) $e^y \sin y = x^2$.

6.1.55. Какие из следующих точек принадлежат графику уравнения $y + \cos y - x = 0$:

$$A(1;0), B(0;0), C(\frac{\pi}{2};\frac{\pi}{2}), D(\pi-1;\pi)$$
?

6.1.56. Кривая задана параметрически

$$\begin{cases} x = t - 1; \\ y = t^2 + 1. \end{cases}$$

- 1) Найти точки на графике при $t = 0, t = 1, t = -\sqrt{2}$.
- 2) Какие из следующих точек лежат на этой кривой:

$$A(1;5), B(\frac{1}{2};\frac{13}{4}), C(2;8), D(0;1)$$
?

Ответы

- **6.1.3.** $(-\infty; -1) \cup (-1; +\infty)$. **6.1.4.** $(-\infty; -2) \cup (-2; 2) \cup [2; +\infty)$. **6.1.5.** $(-\infty; 0)$.
- **6.1.6.** $(-\infty; 2] \cup [5; +\infty)$. **6.1.7.** $x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$. **6.1.8.** [7; 10].
- **6.1.9.** $(0; \sqrt{2}) \cup (\sqrt{2}; +\infty)$. **6.1.10.** [-2; 1). **6.1.11.** $[0; \frac{2}{3})$. **6.1.12.** (2; 3].
- **6.1.14.** $[4; +\infty)$. **6.1.15.** (0; 1]. **6.1.16.** [-9; -5]. **6.1.17.** $(-\infty; 4) \cup (4; +\infty)$.
- **6.1.18.** $\left(-\frac{1}{2};\frac{1}{2}\right)$. **6.1.19.** $[2;+\infty)$. **6.1.21.** 1) 2; 2) $-\frac{27}{8}$; 3) $-\frac{5}{2\sqrt[3]{5}}$; 4) $-\frac{x^3}{2^x}$;
- 5) $27 \cdot 8^x$; 6) $\frac{2^{\frac{1}{x}}}{x^3}$; 7) $\frac{1}{x^3 \cdot 2^x}$; 8) $(b-2)^3 \cdot 2^{b-2}$. 6.1.22. 1) 2; 2) 0; 3) 1,6;
- 4) $\frac{\sqrt{z+8}}{(z+3)^3}$; 5) $\frac{\sqrt{2t-4}}{(2t-1)^2}$. 6.1.24. 1) четная; 2) нечетная; 3) общего вида;
- 4) нечетная; 5) общего вида; 6) четная; 7) четная; 8) общего вида.
- **6.1.26. 1)** периодическая, $T=8\pi;$ **2)** непериодическая; **3)** периодическая,
- $T=\frac{\pi}{2};$ 4) периодическая, $T=4\pi;$ 5) периодическая, $T=\frac{\pi}{3}.$
- **6.1.38. 1)** $f \circ g(x) = x, x > 0; g \circ f(x) = x, x \in \mathbb{R};$ **2)** $f \circ g(x) = 6x 14,$
- $g\circ f(x)=6x-3;$ 3) $f\circ g(x)=|\cos x|,\ g\circ f(x)=\cos x.$ 6.1.41. Обратная функция $y=\frac{x-5}{3}.$ 6.1.42. Обратная функция $y=\sqrt[3]{x+2}.$ 6.1.43. У этой
- функции нет обратной. **6.1.44.** Обратная функция $y = \frac{2}{1-x}$.
- 6.1.45. Функция монотонная и ограниченная. 6.1.46. Ограниченная функция.
- 6.1.47. Строго монотонная и ограниченная функция. 6.1.48. Функция не является ни монотонной, ни строго монотонной, ни ограниченной.
- 6.1.49. Строго монотонная функция. 6.1.50. Монотонная функция. 6.1.51. 0;
- 1; 0; $\frac{e^2-1}{2c}$; $\frac{5}{4}$. **6.1.54.** 1) $y=\pm\frac{2}{3}\sqrt{x^2-9}$; 2) $y=\pm(1-x)$, $x\leqslant 1$.
- **6.1.55.** Точки A, C, D. **6.1.56. 1)** $(-1;1), (0;2), (-\sqrt{2}-1;3);$ **2)** Точки A и B.