| Y <sub>c</sub> | YA       | ly .                     | *                         |           |                   |
|----------------|----------|--------------------------|---------------------------|-----------|-------------------|
| -              | <u> </u> | <u> </u>                 | and the                   | " Red     | $\frac{a_b}{a_b}$ |
| 0              | 0        | - ( <u>1</u><br>- (250)5 | 0.67                      | F((+)+))+ | 0.33              |
| 0.05           | 0.002    | 0-948                    | 0.66                      | 0.017     | 0.323             |
| 0.20           | 0.005    | 0.795                    | 0000x = V0<br><b>0.64</b> | 0.0703    | 0.287             |
| 0.25           | 0.007    | 0.743                    | 0.625                     | 0.0944    | 0.286             |
| 0.30           | 0.01     | 0.69                     | 0.60                      | 0.121     | 0.279             |
| 0.35           | 0.013    | 0.637                    | 0.58                      | 0.1489    | 0.27              |
| 0.40           | 0.017    | 0.583                    | 0.55                      | 0.183     | 0.267             |
| 0.45           | 0.022    | 0.528                    | Ho 00.51                  | 0.2254    | 0.2647            |
| 0.50           | 0.029    | 0.471                    | 0.46                      | 0.278     | 0.262.            |

$$\frac{\chi_{c}}{\chi_{B}+\chi_{c}} = \frac{y_{c}}{y_{B}+y_{c}}$$

$$\frac{\chi_{c}}{1-\chi_{A}} = \frac{y_{c}}{y_{B}+y_{c}} \implies \chi_{c} = \frac{y_{c}(1-\chi_{A})}{y_{B}+y_{c}}.$$

Stage(1):-

$$M \Rightarrow (\chi_c)_{M_1} = \frac{(0.25)(1000)}{1000 + 1500} = \frac{250}{2500} = 0.1$$

From Graph:

$$(2c)_{L_1} = 0.04$$
 ,  $(9c)_{Y_1} = 0.15$ 

Material Balance:

$$L+V = F+50 = 8500 \longrightarrow 0$$

$$L(0.04) + V(0.15) = (1000)(0.25) \longrightarrow (2)$$

$$|V| = 15000 \Rightarrow V_1 = 1363.63 \text{ kg}$$

$$|V| = 1136.36 \text{ kg}$$

$$L_1 = F = 1136.36 \, \text{fg}, (\chi_c)_{L_1} = 0.04, 3 = 1500,$$

$$(\chi_c)_{M_2} = \frac{F(\chi_c)_{L_1} + 5(y_c)_{S}}{F(\chi_c)_{L_1} + 5(y_c)_{S}} = 100060004) + 100060004$$

F+5

$$(z_c)_{M_2} = 0.0172$$

From Graph:- $(2c)_{L_2} = 0.01$ ,  $(2c)_{V_2} = 0.02$ 

Material Balance:

$$L_{2} + V_{2} = L_{1} + 5 = 2636.36 \longrightarrow (D)$$

$$L_{2}(0.01) + V_{2}(0.02) = (1136.36)(0.04) \longrightarrow (D)$$

$$L_{2} + 2V_{2} = 4545.44$$

$$L_{2} + V_{2} = 2636.36$$

$$V_{2} = 1909.08 \text{ Kg}$$

$$L_{2} = 727.28 \text{ Kg}$$

\* Total Oil removal from stage(1,2):

$$= (V_1)(y_c)_{V_1} + (V_2)(y_c)_{V_2}$$

$$= (1363.63)(0.15) + (1909.08)(0.02)$$

1 Serol ( south

\* Fractional Decovery =  $\frac{242.7261}{250}$  = 0.97.

