Matrix Computations Chapter 4: Eigenvalues, Eigenvectors, and Eigendecomposition

Section 4.5 Power method for PageRank

Jie Lu ShanghaiTech University

Case Study: PageRank

An algorithm used by Google to rank the pages of a search result ¹

More important webpages are likely to receive more links from other websites

Determine the importance of each webpage based on the quality and quantity of links pointing to it

Figure: PageRank. Source: Wikipedia

¹K. Bryan and L. Tanya, "The 25,000,000,000 eigenvector: The linear algebra behind Google," *SIAM Review*, vol. 48, no. 3, pp. 569–581, 2006.

PageRank Model

Let v_i be the importance score of page $i=1,\ldots,n,$ \mathcal{L}_i be the set of pages containing a link to page i, and c_j be the number of outgoing links from page j

$$\sum_{j\in\mathcal{L}_i}\frac{v_j}{c_j}=v_i,\quad\forall i=1,\ldots,n$$

Example:

$$\mathcal{L}_1 = \{4\}$$
 $c_1 = 2$ $\mathcal{L}_2 = \{1, 3, 4\}$ $c_2 = 0$ $\mathcal{L}_3 = \{1, 4\}$ $c_3 = 1$ $\mathcal{L}_4 = \emptyset$ $c_4 = 3$

$$\begin{bmatrix} 0 & 0 & 0 & \frac{1}{3} \\ \frac{1}{2} & 0 & 1 & \frac{1}{3} \\ \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$

Notation and Definitions

Notation: For any $x, y \in \mathbb{R}^n$,

- $\mathbf{x} \geq \mathbf{y}$ means that $x_i \geq y_i$ for all i
- $\mathbf{x} > \mathbf{y}$ means that $x_i > y_i$ for all i
- $x \not\ge y$ means that $x \ge y$ does not hold
- The same notation applies to matrices

Definitions:

- x is said to be non-negative if $x \ge 0$, and non-positive if $-x \ge 0$
- x is said to be positive if x > 0, and negative if -x > 0
- The same definitions apply to matrices
- A square matrix ${\bf A}$ is said to be column-stochastic if ${\bf A} \geq {\bf 0}$ and ${\bf A}^{\mathcal T}{\bf 1} = {\bf 1}$
 - Each column \mathbf{a}_i of column-stochastic \mathbf{A} satisfies $\mathbf{a}_i^T \mathbf{1} = \sum_{i=1}^n a_{ii} = 1$

PageRank Problem

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a matrix s.t. $a_{ij} = 1/c_j$ if $j \in \mathcal{L}_i$ and $a_{ij} = 0$ if $j \notin \mathcal{L}_i$ **Problem**: Find a non-negative \mathbf{v} s.t. $\mathbf{A}\mathbf{v} = \mathbf{v}$

• A is extremely large and sparse, so we choose the power method

Questions:

- Does a solution to $\mathbf{A}\mathbf{v} = \mathbf{v}$ always exist? Or, is $\lambda = 1$ always an eigenvalue of \mathbf{A} ?
- Does Av = v have a non-negative solution? Or, is there a non-negative eigenvector associated with λ = 1?
- Is the solution to $\mathbf{A}\mathbf{v} = \mathbf{v}$ unique? Or, would there exist more than one eigenvector associated with $\lambda = 1$?
 - A unique solution is desired for PageRank
- Is $\lambda = 1$ the only eigenvalue that is the largest in modulus?
 - Required by the power method

PageRank Matrix Properties

Observation: In PageRank, **A** is column-stochastic if all pages have outgoing links

Properties: Let **A** be column-stochastic. Then,

- $\lambda = 1$ is an eigenvalue of **A**
- $|\lambda| \le 1$ for any eigenvalue λ of **A**

Implications: There exists a solution to $\mathbf{A}\mathbf{v} = \mathbf{v}$ and $\lambda = 1$ is an eigenvalue with the largest modulus

Remaining questions: We still don't know

- whether $\mathbf{v} \geq \mathbf{0}$ or not
- whether $\lambda = 1$ is the *only* eigenvalue that has the largest modulus (i.e., whether its algebraic multiplicity is 1 and no other distinct eigenvalues have modulus 1)

We resort to non-negative matrix theory to find the answers

Non-Negative Matrix Theory

Theorem (Perron-Frobenius)

Let **A** be a positive square matrix. There exists an eigenvalue ρ of **A** s.t.

- ρ is real and $\rho > 0$
- $|\lambda| < \rho$ for any eigenvalue λ of **A** with $\lambda \neq \rho$
- There exists a positive eigenvector associated with ρ
- The algebraic multiplicity of ρ is 1 (so the geometric multiplicity of ρ is also 1)

Theorem (more general matrix, weaker result)

Let **A** be a non-negative square matrix. There exists an eigenvalue ρ of **A** s.t.

- ρ is real and $\rho \geq 0$
- $|\lambda| \le \rho$ for any eigenvalue λ of **A**
- There exists a non-negative eigenvector associated with ρ

Modified PageRank Model

From the theorem for non-negative matrices, there exists a non-negative solution to Av = v, but we don't know whether there exists another solution v' and whether $v' \not \geq 0$

For PageRank, we actually consider a modified version of A

$$\tilde{\mathbf{A}} = (1 - \beta)\mathbf{A} + \beta \begin{bmatrix} 1/n & \dots & 1/n \\ \vdots & & \vdots \\ 1/n & \dots & 1/n \end{bmatrix}$$

where $0 < \beta < 1$ (typical value is $\beta = 0.15$), so that $\tilde{\bf A}$ is positive From the Perron-Frobenius Theorem,

- $\lambda = 1$ is the only eigenvalue that has the largest modulus
- There exists only one eigenvector associated with $\lambda = 1$, either positive or negative
- Therefore, the power method can work