

CLEAN VERSION OF THE ENTIRE SET OF CLAIMS

1 1. A method comprising:
2 determining a processor state of a processor upon expiration of a system
3 management interrupt (SMI) timer, the processor state being one of an operational state
4 and a low power state;
5 loading the SMI timer with a timer value based on the processor state, the timer
6 value being one of a first value and a second value; and
7 transitioning the processor to one of the operational state and the low power state
8 according to the processor state.

1 2. The method of claim 1 wherein loading the SMI timer comprises:
2 loading the SMI timer with the first value if the processor state is the operational
3 state; and
4 loading the SMI timer with the second value if the processor state is the low power
5 state.

1 3. The method of claim 2 wherein transitioning comprises:
2 transitioning the processor to the operational state if the processor state is the low
3 power state; and
4 transitioning the processor to the reduced power state if the processor state is the
5 operational state.

1 4. The method of claim 1 further comprising:
2 disabling the SMI timer if throttling is disabled; and
3 enabling the SMI timer if throttling is enabled.

1 5. The method of claim 1 further comprising:
2 generating a SMI access to a throttling state in response to an input/output (I/O)
3 trap;
4 updating the throttling state if the access is a write; and

5 returning the throttling state if the access is a read.

1 6. The method of claim 5 wherein generating the SMI access comprises:
2 reporting the throttling state at a dummy address; and
3 generating the I/O trap by an SMI handler using the dummy address, the I/O trap
4 generating the SMI access.

1 7. The method of claim 6 wherein generating the I/O trap comprises:
2 invoking the SMI handler to trap on the dummy address;
3 booting a power management OS;
4 loading the dummy address by the power management OS;
5 accessing the throttling state at the dummy address by the power management OS;
6 and
7 generating the I/O trap by a chipset in response to accessing the throttling state by
8 the power management OS.

1 8. The method of claim 4 wherein booting the power management OS
2 comprises:
3 booting an Advanced Configuration and Power Interface (ACPI) OS.

1 9. The method of claim 3 wherein transitioning the processor to the low power
2 state comprises:
3 transitioning the processor to one of a first power state, a second power state, a
4 third power state, and a sleep state.

1 10. The method of claim 1 wherein loading the SMI timer comprises:
2 loading the SMI timer in a chipset.

1 11. A computer program product comprises:
2 a machine useable medium having computer program code embedded therein, the
3 computer program product having:

4 computer readable program code to determine a processor state of a
5 processor upon expiration of a system management interrupt (SMI) timer, the
6 processor state being one of an operational state and a low power state;
7 computer readable program code to load the SMI timer with a timer value
8 based on the processor state, the timer value being one of a first value and a second
9 value; and
10 computer readable program code to transition the processor to one of the
11 operational state and the low power state according to the processor state.

1 12. The computer program product of claim 11 wherein the computer readable
2 program code to load the SMI timer comprises:

3 computer readable program code to load the SMI timer with the first value if the
4 processor state is the operational state; and

5 computer readable program code to load the SMI timer with the second value if the
6 processor state is the low power state.

1 13. The computer program product of claim 12 wherein the computer readable
2 program code to transition comprises:

3 computer readable program code to transition the processor to the operational state
4 if the processor state is the low power state; and

5 computer readable program code to transition the processor to the reduced power
6 state if the processor state is the operational state.

1 14. The computer program product of claim 11 further comprising:

2 computer readable program code to disable the SMI timer if throttling is disabled;
3 and

4 computer readable program code to enable the SMI timer if throttling is enabled.

1 15. The computer program product of claim 11 further comprising:

2 computer readable program code to generate a SMI access to a throttling state in
3 response to an input/output (I/O) trap;

4 computer readable program code to update the throttling state if the access is a
5 write; and
6 computer readable program code to return the throttling state if the access is a read.

1 16. The computer program product of claim 15 wherein the computer readable
2 program code to generate the SMI access comprises:

3 computer readable program code to report the throttling state at a dummy address;
4 and
5 computer readable program code to generate the I/O trap by an SMI handler using
6 the dummy address, the I/O trap generating the SMI access.

1 17. The computer program product of claim 16 wherein the computer readable
2 program code to generate the I/O trap comprises:
3 computer readable program code to invoke the SMI handler to trap on the dummy
4 address;

5 computer readable program code to boot a power management OS;
6 computer readable program code to load the dummy address by the power
7 management OS;
8 computer readable program code to access the throttling state at the dummy address
9 by the power management OS; and
10 computer readable program code to generate the I/O trap by a chipset in response
11 to accessing the throttling state by the power management OS.

1 18. The computer program product of claim 14 wherein the computer readable
2 program code to boot the power management OS comprises:
3 computer readable program code to boot an Advanced Configuration and Power
4 Interface (ACPI) OS.

1 19. The computer program product of claim 13 wherein the computer readable
2 program code to transition the processor to the low power state comprises:
3 computer readable program code to transition the processor to one of a first power
4 state, a second power state, a third power state, and a sleep state.

1 20. The computer program product of claim 11 wherein the computer readable
2 program code to load the SMI timer comprises:
3 computer readable program code to load the SMI timer in a chipset.

1 21. A system comprising:
2 a processor;
3 a memory coupled to the processor to store a throttling emulator, the throttling
4 emulator, when executed, causing the processor to:
5 determine a processor state of the processor upon expiration of a
6 system management interrupt (SMI) timer, the processor state being one of an
7 operational state and a low power state;
8 load the SMI timer with a timer value based on the processor state,
9 the timer value being one of a first value and a second value; and
10 transition the processor to one of the operational state and the low
11 power state according to the processor state.

1 22. The system of claim 21 wherein the throttling emulator causing the
2 processor to load causes the processor to:
3 load the SMI timer with the first value if the processor state is the operational state;
4 and
5 load the SMI timer with the second value if the processor state is the low power
6 state.

1 23. The system of claim 22 wherein the throttling emulator causing the
2 processor to transition causes the processor to:
3 transition the processor to the operational state if the processor state is the low
4 power state; and
5 transition the processor to the reduced power state if the processor state is the
6 operational state.

1 24. The system of claim 21 wherein the throttling emulator, when executed,
2 further causes the processor to:

3 disable the SMI timer if throttling is disabled; and
4 enable the SMI timer if throttling is enabled.

1 25. The system of claim 21 wherein the throttling emulator further causes the
2 processor to:

3 generate a SMI access to a throttling state in response to an input/output (I/O) trap;
4 update the throttling state if the access is a write; and
5 return the throttling state if the access is a read.

1 26. The system of claim 25 wherein the throttling emulator causing the
2 processor to generate the SMI access causes the processor to:

3 report the throttling state at a dummy address; and
4 generate the I/O trap by an SMI handler using the dummy address, the I/O trap
5 generating the SMI access.

1 27. The system of claim 26 wherein the throttling emulator causing the
2 processor to generate the I/O trap causes the processor to:

3 invoke the SMI handler to trap on the dummy address;
4 boot a power management OS;
5 load the dummy address by the power management OS;
6 access the throttling state at the dummy address by the power management OS; and
7 generate the I/O trap by a chipset in response to accessing the throttling state by the
8 power management OS.

1 28. The system of claim 24 wherein the throttling emulator causing the
2 processor to boot the power management OS causes the processor to:

3 boot an Advanced Configuration and Power Interface (ACPI) OS.

a

1 29. The system of claim 23 wherein the throttling emulator causing the
2 processor to transition the processor to the low power state causes the processor to:
3 transition the processor to one of a first power state, a second power state, a third
4 power state, and a sleep state.

1 30. The system of claim 21 wherein the throttling emulator causing the
2 processor to load the SMI timer causes the processor to:
3 load the SMI timer in a chipset.
