заголовок (Лекция №3)

- 1. Функция потребления Кейнса и реальные данные.
- 2. Общий вид эконометрической модели с отражённым влиянием на эндогенные переменные не учтённых факторов
- 3. Временной ряд и структура его уровней.

На прошлой лекции обсудили отражение в моделе фактора времени и использование модели, как инструмента анализа изучаемого объекта. На сегодняшней лекции мы исследуем соответсвие математических моделей реальным данным и научимся отражать в моделе воздействие на искомые характреристики объекта (на текущие эндогенные переменные) неучтённых факторов. Наши исследования мы проведём на простейшей макромодели Кейнса

$$\begin{cases} Y = C + I; \\ C = a_0 + a_1 \cdot Y; & 0 < a_1 < 1 \end{cases}$$

Нам предстоит выяснить, согласуется ли эта функция с реальной статистикой, собранной из системы национальных счетов России в таблице 1.

Год	2003	2004	2005	2006	2007	2008
Y	6410	7288	8196	8915	10002	10767
C	4911	5554	6290	6739	7305	7773
I	1499	1734	1906	2175	2995	2994

Рис. 1: Диаграмма рассеивания

Наше исследование мы проведем по следующей схеме. На плоскости зададим декартову систему координат и по оси абсцисс отложим содержащиеся в таблице 1 уровни ВВП России, вдоль вертикальной оси отложим соответствующие им значения совокупного потребления в стране. Если модель Кейнса в полной мере соответствует реальным данным, то точки разместятся строго на восходящей

прямой. Картина оказывается следующей. Рассматривая этот график (он называется диаграммой рассеивания), можно сделать следующие выводы:

- 1. Точки реальных данных (вот эти ромбики) не расположены на восходящей прямой, и это значит, что модель Кейнса в полной мере не соответствует реальным данным (не соответствует изучаемому объекту). Причина несоответствия воздействие на совокупное потребление в стране неучтенных факторов. ДЗ сформулировать факторы, которые в "во всех веротностях оказывают воздействие на совокупное потребление в стране и которые отсутвуют в моделе Кейнса"
- 2. Это значит, что модель Кейнса правильно отражает тенденцию, согласно которой изменяется потребление в стране в ответ на изменение дохода. Модель Кейнса не улавливает всех изменений переменной C, вызванных неучтенными факторами, но правильно отражает воздействие на переменную C главного фактора потребления дохода. Это значит, что модель Кейнса правильно отражает тенденцию, согласно которой изменяется потребление в стране в ответ на изменение дохода. Модель Кейнса не улавливает всех изменений переменной C, вызванных неучтенными факторами, но правильно отражает воздействие на переменную C главного фактора потребления дохода.
- 3. Точки реальных данных хаотично разбросаны вдоль восходящей прямой.

На основании сделанных выводов мы можем предложить следующее аналитическое описание этой диаграммы.

$$= a_0 + a_1 \cdot Y + u$$

Символом u мы обозначаем переменную величину, которая хаотично принимает то положительные, то отрицательные значения, рассеиянные вокруг нуля. u в силу хаотичного характера появления ее значений экономисты называют случайным возмущением; в физике такие возмущение называют невязками или *ошибками модели*. Мы будет называть их *случайными возмущениями*.

Основные характеристики случайного возмущения (случайной переменной)

У случайной перемменной имеются две важные для практики числовые характеристи

- 1. Математическое ожидание (среднее значение случайной переменной) E(u). По предположению среднее значение предполагается равным нулю.
- 2. Дисперсия. Так называют константу, которая равна среднему квадрату разрбоса значений случайной переменной вокруг математического ожидания (σ_u^2)

Подводя итог мы можем составить спецификацию эконометрической модели Кейнса, в которой отражено влияение на уровень совокупного потребления неучтенных факторов. Эконометрическими или регрессионными моделями называются дескриптивно эконометрические модели со случайными возмущениями в поведенческих уравнениях. Приведем спецификацию эконометрчиеской модели Линтнера случайные возмущения