Supplementary information

High-energy neutrino transients and the future of multi-messenger astronomy

In the format provided by the authors and unedited

High-energy neutrino transients and the future of multi-messenger astronomy

Claire Guépin¹, Kumiko Kotera^{2,3}, and Foteini Oikonomou^{4,*}

¹Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA

²Sorbonne Université et CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France

³Vrije Universiteit Brussel, Physics Department, Pleinlaan 2, 1050 Brussels, Belgium

⁴Institutt for fysikk, NTNU, Trondheim, Norway

^{*}e-mails: cguepin@umd.edu, kotera@iap.fr, foteini.oikonomou@ntnu.no

2021 2025 >2030	Minimum energy	Peak energy	Differential sensitivity limit [u.l.]	iFoV	dFoV	ang. res.	u alert types, examples
ANITA	0.1 EeV	100 EeV	$[2.4 \times 10^{-7} \text{GeV} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{in} 24 \text{d}]$	6% [7°×360°]	19% [26°×360°]	2.8°	-
PUEO	$0.1 \; \mathrm{EeV}$	20 EeV	$4.2 \times 10^{-8} \text{GeV} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{in } 30 \text{d}$	6 %	20 %	$<2.8^{\circ}$	-
ARA	10 PeV	1-3 EeV	$3.6 \times 10^{-9} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{by} 2030$	35 %	35 %	5°	-
RNO-G	50 PeV	1 EeV	$5 \times 10^{-9} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ in } 10 \text{ yr}$	30% [45°×360°]	>50%	2°×10°	planned
ARIANNA-200	30 PeV	1 EeV	$4 \times 10^{-9} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr}$	50 %	>50%	2.9-3.8°	GCN, AMON
BEACON	30 PeV	1 EeV	$6 \times 10^{-9} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr}$	6 %	19.5%	0.3°-1°	planned
Auger	50 PeV	0.3-1 EeV	$[1.5 \times 10^{-8} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 2019]$	30 %	92.8%	$<$ 1 $^{\circ}$	no alerts, AMON
POEMMA Cerenkov	10 PeV	$0.5 \; \mathrm{EeV}$	$3.5 \times 10^{-8} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr}$	0.6 %	18-36%	0.4°	planned
fluorescen <mark>ce</mark>	10 EeV	100 EeV	$1.5 \times 10^{-9} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr}$?	?	1°	planned
GRAND	50 PeV	$0.4 \; \mathrm{EeV}$	$2 \times 10^{-10} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr}$	45 %	100 %	0.1°	planned
IceCube-Gen2 Radio	10 PeV	$0.3 \; \mathrm{EeV}$	$2 \times 10^{-10} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr}$	43% [55°×360°]	43% [55°×360°]	2°×10°	planned
Ashra-N <mark>TA</mark>	1 PeV	$0.1 \; \mathrm{EeV}$	$10^{-10}\mathrm{GeV}\mathrm{cm}^{-2}\mathrm{s}^{-1}\mathrm{sr}^{-1}\mathrm{in}10\mathrm{yr}$	25% [30°×360°]	>80%	0.1°	planned
Trinity	0.1 PeV	$0.1 \; \mathrm{EeV}$	$5 \times 10^{-10} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr}$	6% [7°×360°]	62 %	$<$ 1 $^{\circ}$	planned
TAMBO	0.3 PeV	10 PeV	?	27 %	62~%	1°	planned
RET-N	10 PeV	$0.1 \; \mathrm{EeV}$	$1.5 \times 10^{-10} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr}$	50 %	>50%	?	planned
ANTARES up(cascade)	20 GeV (1 TeV)	50(100) TeV	$[2 \times 10^{-8} \text{GeV} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{in} 11 \text{yr}] (\text{up+casc.})$	50%(100%)	75%(100%)	$0.3\text{-}0.4^{\circ}(3^{\circ})$	ν_{μ} only: GCN, AMON
IceCube up(cascade)	300 GeV	100 TeV	$[1.5 \times 10^{-8} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 3 \mathrm{yr}] (\mathrm{up} + \mathrm{casc.})$	54%(100%)	54%(100%)	$0.4^{\circ}(10^{\circ})$	GCN, AMON, SNEWs
IceCube-Gen2 up(cascade)	5 TeV	300 TeV	$2 \times 10^{-8} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} < 90 \mathrm{d} (\mathrm{up+casc.})$	54%(100%)	54%(100%)	$0.3^{\circ}(10^{\circ})$	GCN, AMON, SNEWs
KM3Net ARCA up(cascade)	100 GeV(1 TeV)	100(100) TeV	$5.8 \times 10^{-9} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 1.5 (1 \mathrm{yr})$	50%(100%)	75%(100%)	$0.1^{\circ}(1.5^{\circ})$	GCN, AMON
Baikal-GVD up(cascade)	100 GeV (1 TeV)	100(100) TeV	$(5.4 \times 10^{-8} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 10 \mathrm{yr})$	50%(100%)	72%(100%)	<1° $(4.5°)$	private MoU, GCN
P-ONE up(cascade)	1 TeV	100 TeV	$1.4 \times 10^{-8} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{in} 2 \mathrm{yr}$	50%(100%)	73%(100%)	$0.1^{\circ}(1-3^{\circ})$	planned

Table 1. Indicative experimental characteristics of current and future neutrino detectors targeting energies above (light blue band) and below (dark blue band) 10 PeV. The left-hand side of the table indicates the timeline of each instrument (green: current, yellow: up-coming, gray: under construction). The following columns from left to right reference the minimum neutrino energy, the peak energy where the differential sensitivity is best, the differential sensitivity to diffuse neutrino flux [or measured flux or measured upper limits in brackets], the instantaneous (iFoV, FoV field of view) and daily averaged (dFoV) fields of view in sky percentage and in square degrees in brackets, and the angular resolution. The final column provides information on alert programs set up or planned to be set up (in italics) by the instrument. For instruments targeting < 10 PeV energies, the numbers in parenthesis are for 'cascade events' (see main text for definition), and the others for muon tracks, unless otherwise indicated. Question marks indicate the yet unknown values for up-coming experiments. References are given in the main text.

21 2025 >2030	Band Width	Differential sensitivity limit	FoV	ang. res.	slew [survey] speed	resp. delay	ν foll. rate [% alerts] examples
LHAASO	100 GeV-1 PeV	$5 \times 10^{-14} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 1 \mathrm{yr}$	2 sr	0.3°	[2/3 sky/day]	-	?
CTA	20 GeV-300 TeV	$6 \times 10^{-14} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 50 \mathrm{h}$	10-20°	$< 0.15^{\circ}$	180°/20 s	20 s	20 h/yr (2016)
HAWC	100 GeV-100 TeV	$6 \times 10^{-13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 1 \mathrm{yr}$	2 sr	0.1°	[2/3 sky/day]	-	[90% IC Gold alerts]
H.E.S.S.	30 GeV-100 TeV	$6 \times 10^{-13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 50 \mathrm{h}$	5°	0.1°	10°/min	60 s	60-70 h/yr
MAGIC	50 GeV-50 TeV	$9 \times 10^{-13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 50 \mathrm{h}$	3.5°	0.07°	$7^{\circ}/\mathrm{s}$	20 s	60 h/yr, 15% ToO
VERITAS	85 GeV – 30 TeV	$6 \times 10^{-13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 50 \mathrm{h}$	3.5°	0.1°	1°/s	90 s	45 h/yr
Fermi LAT	20 MeV-300 GeV	$5 \times 10^{-13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 10 \mathrm{yr}$	$2.4 \mathrm{\ sr}$	0.15°	[all-sky/3 h]	4-5 h	[100% IC alerts]
GBM	10 keV-25 MeV	$2 \text{ ph cm}^{-2} \text{ s}^{-1} \text{ in } 1 \text{ s}$	9 sr	10°	[all-sky/1 h]	5-6 h	[60% IC alerts]
INTEGRAL IBIS	15 keV-10 MeV	$1.2 \times 10^{-12} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 10^3 \mathrm{s}$	$64 \mathrm{deg^2}$	0.2°	0.2°/s	min	[all ANTARES
SPI-ACS	100 keV - 2 MeV	$10^{-3} \text{ ph cm}^{-2} \text{s}^{-1} \text{MeV}^{-1} \text{in } 10^6 \text{s}$	4π	-	-	min	and GCN IC alerts]
XMM-Newton	0.2-12 keV	$10^{-15}\mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}\mathrm{in}10^6\mathrm{s}$	0.5°	6"	90°/h	few h	PKS 1502+106, Kloppo
Athena- <mark>WFI</mark>	0.1-15 keV	$3 \times 10^{-16} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 10^5 \mathrm{s}$	$0.4~{ m deg^2}$	< 5"	1°/min	4 h	[5 ToO/month]
Swift BAT	15-150 keV	$6 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ in } 2000 \text{ s}$	$1.4 \mathrm{\ sr}$	0.4°			
XRT	0.2-10 keV	$5 \times 10^{-13} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 10^4 \mathrm{s}$	$0.1 \mathrm{deg^2}$	18"	1°/s	min-h	50% ToO
UVOT	$0.16 - 0.62 \ \mu m$	19 mag in 300 s	$0.1 \mathrm{deg^2}$	2.5"			
SVOM ECLAIRs	4-150 keV	$7.2 \times 10^{-10} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 10^3 \mathrm{s}$	2 sr	$< 0.2^{\circ}$			first 3 yrs:
MXT	0.2-10 keV	$2 \times 10^{-12} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{in} 3000 \mathrm{s}$	1 deg^2	13"	$45^{\circ}/5 \text{ min}$	min-h	15% ToO
VT	$0.4{-}1~\mu{\rm m}$	22.5 mag in 300 s	$0.2~{ m deg^2}$	< 1"			then: 40% ToO
ASAS-SN	380-555 nm	19.5 mag in 30 min	$72 \mathrm{deg^2}$	7.8"	[vis. sky/days]	min-day	[70-80% all IC GCN alerts]
ATLAS	420-975 nm	19.7 mag in 30 s	29 deg^2	2"	[4×vis. sky/day]	45 s	[no ν alert yet]
Pan-STARRS	400-900 nm	23.1 mag in 904 s	$14 \mathrm{deg^2}$	1.0-1.3"	[vis. sky/week]	h-day	[6 follow ups]
ZTF	400-650 nm	21.0 mag in 300 s	$47 \mathrm{deg^2}$	2"	[vis. sky/2 days]	h-day	[74% IC Gold alerts]
Vera Rubin Obs. (LSST)	$0.3-1~\mu{\rm m}$	24.5 mag in 30 s	$9.6 \mathrm{deg^2}$	0.7"	$[100 \ {\rm deg^2/5 \ min}]$	-	-
MASTER-II(VWF)	400-800 nm	19(12) mag in 1 min(5 s)	$8(400) \text{ deg}^2$	1.9" (22")	$30^{\circ}/\mathrm{s}(8^{\circ}/\mathrm{s})$	min-h	[99% GCN neutrino alerts]
TAROT	350-980 nm	18.5 mag in 180 s	4 deg^2	3.5"	$50^{\circ}/\mathrm{s}$	s-day	<3% obs. time [70% GCN aler
GEMINI (GMOS)	$0.36-1.03 \ \mu m, \text{ spec}$	25 mag in 2.5 days	30.23'2	$0.07"/\mathrm{pix}$	obj./2 min	20 min	$SN\ PTF12csy$
GTC (OSIRIS)	$0.365-1.05 \ \mu m, \text{ spec}$	27 mag in 1 h	$0.02~\mathrm{deg^2}$	$0.127"/\mathrm{pix}$	obj./min	min	$TXS \ 0506 + 056$
Keck (LRIS)	$0.32-1 \ \mu m, \text{ spec}$	23 mag in 20 s	46.8'2	$0.135"/\mathrm{pix}$	1.5°/s	h	SN PTF12csy
VLT (X-shooter)	$0.3-2.4 \mu \text{m}$, spec	23 mag in 60-120 s	2.2'2	0.173"/pix	obj./5 min	30 s	TXS 0506+056, IC190331A
VLA	1-50 GHz	186 μ Jy in 1 min	$0.16~\mathrm{deg^2}$	0.12"	$[20~{ m deg^2/h}]$	days	TXS 0506+056, ANTARES eve
MWA	80-300 MHz	4.6 mJy at 1 s	$610 \mathrm{deg^2}$	0.9'	obj./8 s	6-40 s	[30% IC Gold, >30% ANTARI
SKA1(2)-MID	350 MHz-15.3 GHz	$2(0.1) \mu Jy in 1 h$	$1(10) \text{ deg}^2$	$0.04^{\circ} - 0.7^{\circ}$?	1 s	?

Table 2. Indicative experimental characteristics of a non-exhaustive list of actual or potential neutrino follow-up electromagnetic instruments. The left-hand side of the table indicates the timeline of each instrument (green for current and yellow for upcoming). Unclear termination dates are indicated with a fading gradient. The following columns from left to right reference the band width (characterized by either energy, wavelength or frequency range, depending on conventions), the differential sensitivity limit (definition depends on the type of instrument, see the main text), the field of view (FoV), the angular resolution, the slew speed and survey speed in brakets, the response delay to a neutrino or ToO alert. The final column provides elements of the neutrino or target of opportunity (ToO) follow-up program of each facility, with a neutrino alert follow up rate ("v foll. rate", in hour/year) when available, percentage or number of neutrinos followed in brackets, and specific followed source or event names in italics. Question marks indicate the yet unknown values for upcoming experiments. References are given in the main text.