

Week 5 Linear Classifiers

Pattern Recognition (Technische Universiteit Delft)

Linear classifiers

- Linear discriminants, classifiers that do not do density estimation:
 - Perceptron
 - Fisher classifier
 - Logistic classifier
 - Least squares
 - (Next week: support vector classifier)
- Bias-variance dilemma

Linear discriminant

• Let us assume that the decision boundary can be described by:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$$

- Weight vector ${\bf w}$ and bias term (offset) w_0

classify
$$\mathbf{x}$$
 to
$$\begin{cases} \omega_1 & \text{if } \mathbf{w}^T \mathbf{x} + w_0 \ge 0 \\ \omega_2 & \text{if } \mathbf{w}^T \mathbf{x} + w_0 < 0 \end{cases}$$

• In the most general sense, this is called linear discriminant analysis

7 TUDelft

Linear function?

• What does $\mathbf{w}^T \mathbf{x}$ mean? Assume I have a 2-dimensional w

TUDelft

Linear function, the bias

• What does $\mathbf{w}^T \mathbf{x} + w_0$ mean? Assume I have

TUDelft

Linear discriminant

- Classifier is a linear function of the features
- The classification depends if the weighted sum of the features is above or below 0

TUDelft

Incorporate the bias term

• Quite often you see

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} > 0$$

instead of

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 > 0$$

• No problem, if you (re-)define the feature

vector as: $\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$

• Then:

$$g(\mathbf{x}) = [\mathbf{w}^T \ w_0] \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$

The nearest mean

nmc

- How to find \mathbf{w}, w_0 ?
- In week 3 we assume a Gaussian distribution per class. When we assume $\Sigma = \sigma^2 I$, we find:

$$\mathbf{w} = \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1$$

$$w_0 = \text{bla bla}$$

• Picture:

TUDelft

The perceptron algorithm

- Another way to find \mathbf{w}, w_0 ?
- First **assume** that the (two) classes are linearly separable. So there is an optimal \mathbf{w}^* :

$$\mathbf{w}^{*T}\mathbf{x} > 0 \quad \forall \mathbf{x} \in \omega_1 \quad (y = +1)$$

$$\mathbf{w}^{*T}\mathbf{x} < 0 \quad \forall \mathbf{x} \in \omega_2 \quad (y = -1)$$

• Define the perceptron error/loss:

$$J(\mathbf{w}) = \sum_{\text{misclassified } \mathbf{x}_i} -y_i \mathbf{w}^T \mathbf{x}_i$$

7 TUDelft

Cost function optimization

• Assume I have a cost function $J(\theta)$ how to minimize this function?

$$J(\mathbf{w}) = \sum_{\text{misclassified } \mathbf{x}_i} -y_i \mathbf{w}^T \mathbf{x}_i$$

TUDelft

Cost function optimization

- Assume I have a cost function $J(\theta)$ how to minimize this function?
 - (1) Set the derivative to 0, and solve:

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$$

(typically hard/impossible to do)

(2) Follow the gradient until you hit a (local) minimum:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \rho \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

(ρ is called the learning rate)

TUDelft

Gradient descent

• Find the weights that minimize the loss:

$$J(\mathbf{w}) = \sum_{\text{misclassified } \mathbf{x}_i} -y_i \mathbf{w}^T \mathbf{x}_i$$

• Update the weight by:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \rho_t \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} \bigg|_{\mathbf{w} = \mathbf{w}(t)}$$

$$ullet$$
 gives:
$$\mathbf{w}(t+1) = \mathbf{w}(t) +
ho_t \sum_{ ext{misclassified } \mathbf{x}_i} y_i \mathbf{x}_i$$

Perceptron optimization

- One erroneous object at (2.5, -2.8)
- Learning rate $\rho = 0.1$

The perceptron

perlc

- Just a 'simple' linear classifier
- √ Is trained incrementally, or in batches (applicable to very large datasets...)
- √ When the data is separable, it will find the solution (proof: see book!)
- When the data is not separable, it will update for ever, and ever, and ever...
- Perceptron is the basis for the neural networks
- Different variants available, inspired by the 'real' perceptron

TUDelft

General idea

Invent a general model/function for the classifier:

$$q(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

• Invent a loss function:

$$J(\mathbf{w}) = \sum_{\text{misclassified } \mathbf{x}_i} -y_i \mathbf{w}^T \mathbf{x}_i$$

• Optimise the parameters **w** to optimise J.

4

TUDelft

Fisher Linear Discriminant

• Again, two-class problem and a linear classifier

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$$

 Find the weights such that separability is maximised: Fisher's criterion:

$$J_F = \frac{\sigma_{\rm between}^2}{\sigma_{\rm within}^2} = \frac{|\mu_A - \mu_B|^2}{\sigma_A^2 + \sigma_B^2}$$

7 UDelft

Fisher Linear Discriminant

• Fisher criterion along the direction w:

$$J_F = \frac{|\mathbf{w}^T \boldsymbol{\mu}_A - \mathbf{w}^T \boldsymbol{\mu}_B|^2}{\mathbf{w}^T \boldsymbol{\Sigma}_A \mathbf{w} + \mathbf{w}^T \boldsymbol{\Sigma}_B \mathbf{w}}$$

Fisher Linear Discriminant

• Fisher criterion along the direction w:

$$J_F = \frac{|\mathbf{w}^T \mu_A - \mathbf{w}^T \mu_B|^2}{\mathbf{w}^T \Sigma_A \mathbf{w} + \mathbf{w}^T \Sigma_B \mathbf{w}}$$

Fisher Linear Discriminant

• Fisher criterion along the direction w:

$$J_F = \frac{|\mathbf{w}^T \mu_A - \mathbf{w}^T \mu_B|^2}{\mathbf{w}^T \Sigma_A \mathbf{w} + \mathbf{w}^T \Sigma_B \mathbf{w}}$$

Fisher Linear Discriminant

• Fisher criterion along the direction w:

$$J_F = \frac{|\mathbf{w}^T \mu_A - \mathbf{w}^T \mu_B|^2}{\mathbf{w}^T \Sigma_A \mathbf{w} + \mathbf{w}^T \Sigma_B \mathbf{w}}$$

Fisher Linear Discriminant

• Fisher criterion along the direction w:

$$J_F = \frac{|\mathbf{w}^T \mu_A - \mathbf{w}^T \mu_B|^2}{\mathbf{w}^T \Sigma_A \mathbf{w} + \mathbf{w}^T \Sigma_B \mathbf{w}}$$

· How to optimize?

7 TUDelft

Fisher Linear Discriminant

• Fisher criterion along the direction w:

Fisher Criterion along the direction
$$\mathbf{w}$$
.
$$J_F = \frac{|\mathbf{w}^T \mu_A - \mathbf{w}^T \mu_B|^2}{\mathbf{w}^T \Sigma_A \mathbf{w} + \mathbf{w}^T \Sigma_B \mathbf{w}} = \frac{\mathbf{w}^T (\mu_A - \mu_B)(\mu_A - \mu_B)^T \mathbf{w}}{\mathbf{w}^T (\Sigma_A + \Sigma_B) \mathbf{w}}$$
$$= \frac{\mathbf{w}^T \Sigma_{\text{between}} \mathbf{w}}{\mathbf{w}^T \Sigma_{\text{within}} \mathbf{w}}$$
• How to optimize?

TUDelft

Optimal weight?

fisherc

• To optimise
$$J_F = rac{\mathbf{w}^T \Sigma_{\mathrm{between}} \mathbf{w}}{\mathbf{w}^T \Sigma_{\mathrm{within}} \mathbf{w}}$$

- Take the derivative with respect to the weight,
- set derivative to zero
- solve!
- $\mathbf{w} = \Sigma_W^{-1}(\mu_A \mu_B)$ • The solution:
- · So, the classifier becomes

$$g(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + w_0 = \mathbf{x}^T \Sigma_W^{-1} (\mu_A - \mu_B) + w_0$$

TUDelft

Fisher and LDA

· Wait, this classifier: (Fisher classifier) $g(\mathbf{x}) = \mathbf{x}^T \Sigma_W^{-1} (\mu_A - \mu_B) + w_0$

looks a lot like: (Linear discriminant analysis) (cf. pg. 27 book) $f(\mathbf{x}) = (\mu_2 - \mu_1)^T \Sigma^{-1} \mathbf{x} + w_0$

- One optimises the Fisher criterion, the other assumes a Gaussian distribution per class, and equal covariance matrices
- But the solution is the same...

Comparison Fisher and Linear discriminant

- The normal-based linear classifier assumes a density
 - the Fisher classifier just tries to optimize the Fisher
- For the Fisher classifier the bias term is (in principle) still free to optimize.
- ullet Both classifiers rely on the inverse of $\, {f S}_W \,$, so it can therefore become undefined when insufficient data is available.

Least squares

• Define the cost function:

$$J(\mathbf{w}) = E[|y - \mathbf{w}^T \mathbf{x}|^2]$$

- The expectation E[.] is over the joint pdf of (\mathbf{x},y) $p(\mathbf{x}, y)$
- This means: how good does $\mathbf{w}^T\mathbf{x}$ predict the
- Use the definition of E[.] to derive:

$$\hat{\mathbf{w}} = R_x^{-1} E[\mathbf{x}y]$$

7 TUDelft

Auto- and cross-correlation

• The correlation R is the correlation matrix:

$$R_x = E[\mathbf{x}\mathbf{x}^T] = \begin{bmatrix} E[x_1x_1] & \dots & E[x_1x_d] \\ E[x_2x_1] & \dots & E[x_2x_d] \\ \vdots & \vdots & \vdots \\ E[x_dx_1] & \dots & E[x_dx_d] \end{bmatrix}$$

for an d-dimensional dataset..

• The cross-correlation is $E[\mathbf{x}y] = E$

TUDelft

In real life...

- For the correlation, and cross-correlation, we need the true distribution $p(\mathbf{x}, y)$.
- When we just have samples:

$$\left(\sum_{i=1}^{N}\mathbf{x}_{i}\mathbf{x}_{i}^{T}\right)\hat{\mathbf{w}} = \sum_{i=1}^{N}(\mathbf{x}_{i}y_{i})$$

• So we solve
$$\hat{\mathbf{w}} = \left(\sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^T\right)^{-1} \sum_{i=1}^{N} (\mathbf{x}_i y_i)$$

$$\hat{\mathbf{w}} = (X^T X)^{-1} X^T \mathbf{y}$$

where X is a $N \times d$ dataset matrix

TUDelft

Example
$$X = \begin{bmatrix} -1 & -1 \\ -1 & +1 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}^{\frac{5}{9}}_{\frac{9}{9}} \begin{bmatrix} 0 \\ 0 \\ -1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$

• 2D dataset, with 2 classes and 4 objects, find $\hat{\mathbf{w}}$

$$X^T X = \left(\sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T\right) = ?$$

TUDelft

Example
$$X = \begin{bmatrix} -1 & -1 \\ -1 & +1 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \\ -0.5 \\ -1 \\ +1 \\ -1.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$
Feature 1

• 2D dataset, with 2 classes and 4 objects, find $\hat{\mathbf{w}}$

$$X^T X = \left(\sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^T\right) = \begin{bmatrix} 15 & 0 \\ 0 & 2 \end{bmatrix}$$

Example

- We want: $\hat{\mathbf{w}} = (X^T X)^{-1} X^T \mathbf{y}$
- $(X^T X)^{-1} = \begin{bmatrix} 15 & 0 \\ 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1/15 & 0 \\ 0 & 1/2 \end{bmatrix}$
- $X^T \mathbf{y} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$
- so in total: $\hat{\mathbf{w}} = \left[\begin{array}{cc} 1/15 & 0 \\ 0 & 1/2 \end{array} \right] \left[\begin{array}{c} 7 \\ 0 \end{array} \right] = \left[\begin{array}{c} 7/15 \\ 0 \end{array} \right]$

- Note that I did **not** take care for the offset w_0
- Incorporate the offset by defining new feature vectors try it yourself!

TUDelft

Logistic classifier

• We can rewrite:

$$\ln(p(\omega_1|\mathbf{x})) - \ln(p(\omega_2|\mathbf{x})) = \ln\left(\frac{p(\omega_1|\mathbf{x})}{p(\omega_2|\mathbf{x})}\right)$$

• Assume we can approximate (our model):

$$\ln\left(\frac{p(\omega_1|\mathbf{x})}{p(\omega_2|\mathbf{x})}\right) = \beta_0 + \beta^T \mathbf{x}$$

• The classifier becomes (lab course):

$$p(\omega_2|\mathbf{x}) = \frac{1}{1 + \exp(\beta_0 + \beta^T \mathbf{x})}$$

Logistic function

• The function looks like (for scalar x):

TUDelft

Higher dimensions

• What does $\beta^T \mathbf{x}$ mean? Assume I have a 2-dimensional β

Logistic function • For a 2D logistic:

Optimizing the logistic

To optimize the parameters on a training set, maximize the likelihood

$$L = \prod_{i=1}^{n_1} p(\mathbf{x}_i^{(1)} | \omega_1) \prod_{i=1}^{n_2} p(\mathbf{x}_i^{(2)} | \omega_2)$$

where $\mathbf{x}_i^{(1)}$ is the i-th object from class ω_1 .

- Maximization using gradient descent/ascent
- It appears to be easier to maximize ln(L)
- The weights are iteratively updated as:

$$\beta_{new} = \beta_{old} + \eta \frac{\partial \ln(L)}{\partial \beta}$$

Optimizing the logistic

• Function to maximize (now using log):

$$\ln(L) = \sum_{i=1}^{n_1} \ln p(\mathbf{x}_i^{(1)}|\omega_1) + \sum_{i=1}^{n_2} \ln p(\mathbf{x}_i^{(2)}|\omega_2)$$

• Using Bayes theorem

$$\ln p(\mathbf{x}_i^{(1)}|\omega_1) = \ln p(\omega_1|\mathbf{x}_i^{(1)}) + \ln p(\mathbf{x}_i^{(1)}) - \ln p(\omega_1)$$
 fixed for the given data

• Therefore:

$$\ln(L) = \sum_{i=1}^{n_1} \ln p(\omega_1 | \mathbf{x}_i^{(1)}) + \sum_{i=1}^{n_2} \ln p(\omega_2 | \mathbf{x}_i^{(2)}) + K$$

7 TUDelft

Optimizing the logistic

• Now use that

$$p(\omega_2|\mathbf{x}) = \frac{1}{1 + \exp(\beta_0 + \beta^T \mathbf{x})}$$

and fill this in:

and fill this in:
$$\ln(L') = \sum_{r=1}^{n_1} (\beta_0 + \beta^T \mathbf{x}_r^{(1)}) \\ - \sum_{i=1}^{n_1+n_2} \ln(1 + \exp(\beta_0 + \beta^T \mathbf{x}_i))$$
 (also lab course)

Derivative of the In(L)

logic

• Take the derivative of ln(L) w.r.t. β_0, β

$$\frac{\partial \ln(L)}{\partial \beta_0} = n_1 - \sum_{i=1}^{n_1 + n_2} p(\omega_1 | \mathbf{x}_i)$$
$$\frac{\partial \ln(L)}{\partial \beta_j} = \sum_{i=1}^{n_1} (\mathbf{x}_i^{(1)})_j - \sum_{i=1}^{n_1 + n_2} p(\omega_1 | \mathbf{x}_i)(\mathbf{x}_i)_j$$

- Take initial values $\beta_0 = 0, \ \beta = 0$
- Keep iterating $\beta_{new} = \beta_{old} + \eta \frac{\partial \ln(L)}{\partial \beta}$ till convergence

TUDelft

Result Logistic Classifier

 Logistic classifier with equal-posteriorprobability lines.

TUDelft

Squared Error

When we have the error

$$J(\mathbf{w}) = E[|\mathbf{w}^T \mathbf{x} - y|^2]$$

we can actually derive something more general...

- In general?!
- Unfortunately, theory in Pattern Recognition is

how to deal with all possible datasets?

Bias-variance dilemma

- · When we are given some data, we may get lucky, or unlucky: sometimes we get very a-typical data:-(
- To say something general, we need to average over different (training-) sets

$$\mathcal{D} = \{(y_i, \mathbf{x}_i); i = 1, ..., N\}$$

The classifier is now also a function of the training set: $g(\mathbf{x}; \mathcal{D})$

Bias-variance dilemma

• Consider the squared error:

$$E_{\mathcal{D}}\left[\left(g(\mathbf{x};\mathcal{D}) - E[y|\mathbf{x}]\right)^2\right]$$

- $E[y|\mathbf{x}]$ is the optimal mean-squared regressor (not proven now; see book)
- Now we do a trick:

$$\begin{split} &= E_{\mathcal{D}} \big[\underline{(g(\mathbf{x}; \mathcal{D}) - E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})]} \\ &\quad + E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})] - E[y|\mathbf{x}])^2 \big] \end{split}$$

TUDelft

Bias-variance dilemma

• Now working out the square:

$$\begin{split} &= E_{\mathcal{D}} \big[(\underline{g}(\mathbf{x}; \mathcal{D}) - E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})])^2 \\ &\quad + 2 (\underline{g}(\mathbf{x}; \mathcal{D}) - E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})]) (\underline{E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})] - E[y|\mathbf{x}])} \\ &\quad + (E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})] - E[y|\mathbf{x}])^2 \big] \end{split}$$

$$=E_{\mathcal{D}}\left[(g(\mathbf{x}; \mathcal{D}) - E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})])^{2}\right]$$

$$+\left[E_{\mathcal{D}}\left[2(g(\mathbf{x}; \mathcal{D}) - E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})]\right](E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})] - E[y|\mathbf{x}])\right]$$

$$+E_{\mathcal{D}}\left[(E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})] - E[y|\mathbf{x}])^{2}\right]$$
(bias²)

TUDelft

Bias-variance dilemma

(variance)

$$\begin{split} MSE &= E_{\mathcal{D}} \left[(g(\mathbf{x}; \mathcal{D}) - E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})])^2 \right] \\ &+ E_{\mathcal{D}} \left[(E_{\mathcal{D}}[g(\mathbf{x}; \mathcal{D})] - E[y|\mathbf{x}])^2 \right] \end{aligned} \text{(bias}^2 \label{eq:mse}$$

- variance: how much does classifier g vary over different training sets
- · bias: how much does the average classifier g differ from the true output

TUDelft

Bias-variance dilemma

• Compare LDA with kNN:

Bias-variance tradeoff

- · Originally derived for neural networks
- It is a very general phenomenon: we encounter it more often in pattern recognition
- More simple classifier is more stable (and need less data to train)
- More complex classifier only works when you have sufficient number of training data

This document is available free of charge on Students available free of charge on

Conclusions

- We can make classifiers that do not depend on class densities
- There are alternative principles to find a good classifier:
 - minimising the classification error
 - minimising the mean squared error
 - maximising the likelihood
 - ... (see next week)
- There is a fundamental tradeoff between the bias and variance of a classifier (depending on how flexible/complex a classifier is)

T∪Delft

Things to think about...

- Are the least-squares (Fisher) classifier and the perceptron (in)dependent on the class densities?
- The least-squares classifier and the perceptron are both linear classifiers: do they have the same complexity?
- · How can we make a multi-class perceptron?
- · How can we make a multi-class Fisher classifier?

