A Fiscal Decomposition of Unexpected Inflation: Cross-Country Estimates and Theory

Livio C. Maya

November 2022

Introduction: The Fiscal Sources of Unexpected Inflation

The Valuation Equation of Public Debt

$$\frac{\text{Market Value of Debt (Bond Prices)}}{\text{Price Level}} = \text{Intrinsic Value (Discounting, Surpluses)}.$$

- Unexpected inflation $\Delta E_t \Pi_t$ must accompany news about:
 - Bond prices Qt
 - Real surpluses $\{s_{t+k}\}$
 - Real discounting $\{R_{t+k}\}$

$$\Delta E_t \Pi_t = \Delta E_t \left[Q_t - \{ s_{t+k} \} + \{ R_{t+k} \} \right]$$

- If unexpected inflation exists, it must nowcast/forecast some of these variables
- What are these forecasts? How do they change across countries? How can theory explain them?

Introduction: Exercises, Motivation, Results

This paper.

- 1. Estimate a Bayesian-VAR to measure the decomposition for 25 countries
 - Variance decomposition: var $[\Delta E \Pi] = \text{cov} [\Delta E \Pi, Q + \{-s\} + \{R\}]$
 - "Aggregate demand" shock: recession + low inflation
- Estimate a New-Keynesian model to reproduce B-VAR decompositions
- Motivation. How do you read Debt/Price = Discounted Surpluses?
 - Active fiscal: "How does inflation react to changes in discounted surpluses?"
 - Surpluses x Inflation in a given economy
 - Surpluses x Inflation across countries
 - Role of monetary policy?
 - Theory: which shocks cause inflation surprises?
 - Active monetary: "How should discounted surpluses adjust to unexpected inflation?"

Introduction: Exercises, Motivation, Results

This paper.

- 1. Estimate a Bayesian-VAR to measure the decomposition for 25 countries
 - Variance decomposition: var $[\Delta E \Pi] = \text{cov} [\Delta E \Pi, Q + \{-s\} + \{R\}]$
 - "Aggregate demand" shock: recession + low inflation
- Estimate a New-Keynesian model to reproduce B-VAR decompositions
- Motivation. How do you read Debt/Price = Discounted Surpluses?
 - Active fiscal: "How does inflation react to changes in discounted surpluses?"
 - Surpluses x Inflation in a given economy
 - Surpluses x Inflation across countries
 - Role of monetary policy?
 - Theory: which shocks cause inflation surprises?
 - Active monetary: "How should discounted surpluses adjust to unexpected inflation?"

Introduction: Preview of Key Results

The variance of unexpected inflation is accounted for by discounted surpluses (all coutries)

$$\begin{array}{lcl} \operatorname{var} \left[\Delta E \pi \right] & = & \operatorname{cov} \left[\Delta E \pi, & \mathbf{Q} \right] & + & \operatorname{cov} \left[\Delta E \pi, & \left\{ -\mathbf{S} \right\} + \left\{ \mathbf{R} \right\} \right] \\ & > 0 \end{array}$$

- Most relevant terms (Surplus-to-GDP, GDP growth and Real discounting) vary
- Monetary policy trades current for future unexpected inflation
- Lower inflation in recessions: low discounting + higher subsequent surpluses
- Productivity shocks reproduce findings in NK model
 - Policy shocks do not
- Different policy rules explain differences in variance decomposition across countries

Introduction: Related Literature

- Fiscal Theory of the Price Level. Cochrane (2022a) and Cochrane (2022b).
 - Analysis of multiple countries + more general debt instruments
 - NK model estimated to reproduce decompositions + Productivity shocks

Leeper (1991), Sims (1994), Cochrane (1998), Cochrane (2005), Sims (2011), Leeper and Leith (2016), Bassetto and Cui (2018), Cochrane (2022c), Brunnermeier et al. (2022).

- Monetary-Fiscal Interaction.
 - Cagan (1956), Sargent and Wallace (1981), Hall and Sargent (1997), Hall and Sargent (2011), Jiang et al. (2019), Corsetti et al. (2019), Sunder-Plassmann (2020), Du et al. (2020), Akhmadieva (2022)
- Empirical Finance (Decomposition of Returns)
 Campbell and Shiller (1988), Cochrane (1992), Campbell and Ammer (1993), Chen and Zhao (2009).

Introduction: A Map of the Road

1. Fiscal Decomposition Derivation

Simple environment + General decomposition

2. Bayesian-VAR

• Empirical model + Variance decomposition + "Aggregate demand" recession

3. Theory

Closed economy + Productivity shocks + Policy rules + Open economy

Fiscal Decomposition: The Valuation Equation

- **Environment with discrete time + single good (price** P_t) + households and government
- One-period nominal public bonds (price Q_t)
- **In the morning**, the government:
 - redeems bonds B_{t-1} for currency
 - announces real taxes s_t (payable in currency)
 - \circ announces sale of B_t new bonds (payable in currency)
- In the afternoon, households trade goods, purchase bonds, pay taxes
- Market clearing + No Money Holding M = 0:

$$B_{t-1} = P_t s_t + Q_t B_t$$

Fiscal Decomposition: The Valuation Equation

$$B_{t-1} = P_t s_t + Q_t B_t$$

- **Ex-post real discounting** $\beta_t = Q_t(P_{t+1}/P_t)$ $\beta_{t,t+k} = \prod_{\tau=t}^{t+k} \beta_{\tau}$
- Iterate law of motion forward:

$$\frac{B_{t-1}}{P_t} = \sum_{k=0}^{p} \beta_{t,t+k-1} s_{t+k} + \beta_{t,t+p} \frac{B_{t+p}}{P_{t+p+1}}$$

- **EXECUTE:** $\lim_{\tau \to \infty} \beta_{t,\tau} \frac{B_{\tau}}{P_{\tau+1}} = 0$ almost surely (No bubbles)
 - In Macro models: transversality conditions + no Ponzi
- The valuation equation of public debt

$$\frac{B_{t-1}}{P_t} = \sum_{k=0}^{\infty} E_t \left[\beta_{t,t+k-1} s_{t+k} \right]$$

Fiscal Decomposition: In the Simplest Environment

- Nominal rate $1 + i_t = 1/Q_t$ and real interest $r_t = i_t E_t \pi_{t+1}$
- End-of-period real debt vt

$$\underbrace{\frac{1}{\beta} v_{t-1} + \frac{v}{\beta} (i_{t-1} - \pi_t)}_{B_{t-1}/P_t} = s_t + v_t = \sum_{k=0}^{\infty} \beta^k E_t s_{t+k} - \frac{v}{\beta} \sum_{k=1} \beta^k E_t r_{t+k}$$

Linearized valuation equation (all variable in deviations from their mean)

■ Innovations $\Delta E_t = E_t - E_{t-1}$ decomposition:

$$\Delta E_t \pi_t = -\frac{\beta}{V} \sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} + \sum_{k=0}^{\infty} \beta^k \Delta E_t r_{t+k}$$

Variance decomposition

$$\mathsf{var}\left[\Delta \mathsf{E}_t \pi_t
ight] \ = \ -\mathsf{cov}_{\pi}\left[rac{eta}{\mathsf{v}} \sum_{k=0}^{\infty} eta^k \Delta \mathsf{E}_t \mathsf{s}_{t+k}
ight] \ + \mathsf{cov}_{\pi}\left[\sum_{k=0}^{\infty} eta^k \Delta \mathsf{E}_t r_{t+k}
ight]$$

Fiscal Decomposition: In the Simplest Environment

- Nominal rate $1 + i_t = 1/Q_t$ and real interest $r_t = i_t E_t \pi_{t+1}$
- End-of-period real debt vt

$$\underbrace{\frac{1}{\beta} v_{t-1} + \frac{v}{\beta} (i_{t-1} - \pi_t)}_{B_{t-1}/P_t} = s_t + v_t = \sum_{k=0}^{\infty} \beta^k E_t s_{t+k} - \frac{v}{\beta} \sum_{k=1} \beta^k E_t r_{t+k}$$

Linearized valuation equation (all variable in deviations from their mean)

■ Innovations $\Delta E_t = E_t - E_{t-1}$ decomposition:

$$\Delta E_t \pi_t = -\frac{\beta}{v} \sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} + \sum_{k=0}^{\infty} \beta^k \Delta E_t r_{t+k}$$

Variance decomposition

$$\mathsf{var}\left[\Delta E_t \pi_t
ight] \ = \ -\mathsf{cov}_{\pi}\left[rac{eta}{\mathsf{v}} \sum_{k=0}^{\infty} eta^k \Delta E_t \mathsf{s}_{t+k}
ight] \ + \mathsf{cov}_{\pi}\left[\sum_{k=0}^{\infty} eta^k \Delta E_t r_{t+k}
ight]$$

Fiscal Decomposition: In the Simplest Environment

- Nominal rate $1 + i_t = 1/Q_t$ and real interest $r_t = i_t E_t \pi_{t+1}$
- End-of-period real debt vt

$$\underbrace{\frac{1}{\beta} \mathbf{v}_{t-1} + \frac{\mathbf{v}}{\beta} \left(\mathbf{i}_{t-1} - \pi_t \right)}_{B_{t-1}/P_t} = \mathbf{s}_t + \mathbf{v}_t = \sum_{k=0}^{\infty} \beta^k \mathbf{E}_t \mathbf{s}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1} \beta^k \mathbf{E}_t \mathbf{r}_{t+k}$$

Linearized valuation equation (all variable in deviations from their mean)

■ Innovations $\Delta E_t = E_t - E_{t-1}$ decomposition:

$$\Delta E_t \pi_t = -\frac{\beta}{v} \sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} + \sum_{k=0}^{\infty} \beta^k \Delta E_t r_{t+k}$$

Variance decomposition:

$$\operatorname{\mathsf{var}}\left[\Delta E_t \pi_t\right] \ = \ -\operatorname{\mathsf{cov}}_{\pi}\left[\frac{\beta}{\mathsf{v}} \sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k}\right] \ + \operatorname{\mathsf{cov}}_{\pi}\left[\sum_{k=0}^{\infty} \beta^k \Delta E_t r_{t+k}\right]$$

Fiscal Decomposition: Currency and Term Structures + Growth

- **Real market value** debt-to-GDP v_t , surplus-to-GDP s_t and GDP growth q_t (stationarity!)
- Bonds (j, n) promisses one unit of currency j after n periods Currencies
 - Nominal bonds
 - Real bonds (currency denomination = final goods)
 - US Dollar bonds

Constant structure $\{\delta_j\}$, $\{\omega_j^n\}$

- Bond price $Q_{j,t}^n$, excess return $rx_{j,t}$ 1+ return_{j,t} = 1 + $rx_{j,t}$ + $i_{j,t-1} = \frac{\sum_n Q_{j,t-1}^n B_{j,t-1}^n}{\sum_n Q_{j,t-1}^n B_{j,t-1}^n}$ (one-period bonds $\implies rx = 0$)
- Debt law of motion:

$$\frac{\mathbf{v}_{t-1}}{\beta} + \frac{\mathbf{v}}{\beta} \left[-\mathbf{g}_t + \sum_j \delta_j \left(\mathbf{r} \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta \mathbf{h}_{j,t} - \pi_{j,t} \right) \right] = \mathbf{v}_t + \mathbf{s}_t$$

Fiscal Decomposition of Unexpected Inflation

Ex-post real return $r_{j,t} = rx_{j,t} + i_{j,t-1} + \Delta h_{j,t} - \pi_{j,t}$

$$\Delta E_t \pi_t = \underbrace{\left[\Delta E_t r x_t + \sum_{j \neq N} \frac{\delta_j}{\delta} \Delta E_t r_{j,t}\right]}_{} - \frac{\beta}{\delta v} \underbrace{\left[\sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} + \frac{v}{\beta} \sum_{k=0}^{\infty} \beta^k \Delta E_t g_{t+k} - \frac{v}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_j \beta^k \Delta E_t r_{j,t+k}\right]}_{}$$

Innovation to Bond Prices

Innovation to the Intrinsic Value of Debt

$$\equiv d_1(rx) + d_1(r_0) - d_1(s) - d_1(g) + d_1(r)$$

Variance decomposition.

$$\mathsf{var}\left[\Delta E_t \pi_t\right] = \mathsf{cov}_{\pi}\left[d_1(\mathit{rx})\right] + \mathsf{cov}_{\pi}\left[d_1(\mathit{r_0})\right] - \mathsf{cov}_{\pi}\left[d_1(s)\right] - \mathsf{cov}_{\pi}\left[d_1(g)\right] + \mathsf{cov}_{\pi}\left[d_1(r)\right]$$

Bayesian-VAR: Data and Model

■ Annual data on observables \tilde{x}_t

$$egin{aligned} x_t^{\mathit{OBS}} = egin{bmatrix} i_t & (\mathsf{Nominal Interest}) \\ \pi_t & (\mathsf{CPI Inflation}) \\ v_t^b & (\mathsf{Par-Value Debt-to-GDP}) \\ g_t & (\mathsf{GDP growth}) \\ \Delta h_t & (\mathsf{Chg. Real Exchange Rate}) \end{bmatrix} \end{aligned}$$

- 25 countries (samples starting at 1945, 1960, 1975, 1998)
- General VAR

$$X_t = AX_{t-1} + Ke_t$$

■ Decompose $X'_t = [x_t^{OBS'} x_t^{NOT'}]$

$$X_t = \left[\begin{array}{c} x_t^{OBS} \\ x_t^{NOT} \end{array} \right] = \left[\begin{array}{cc} a & 0 \\ b & c \end{array} \right] \left[\begin{array}{c} x_{t-1}^{OBS} \\ x_{t-1}^{NOT} \end{array} \right] + \left[\begin{array}{c} I \\ k \end{array} \right] e_t$$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$\begin{split} \tilde{X}_t &= \tilde{a} \, \tilde{X}_{t-1} + \tilde{b} \, \tilde{u}_{t-1} + \varepsilon_t \\ \tilde{u}_t &= \tilde{a}_u \, \tilde{u}_{t-1} + \varepsilon_{u,t} \end{split}$$

- Estimate US model (ã_u) by OLS (stable!)
- Estimate (\tilde{a}, \tilde{b}) with a Bayesian-Regression

$$\tilde{\mathbf{a}}^{\mathrm{BAY}} = (\mathbf{X}'\mathbf{X} + \lambda^{-1})^{-1}(\mathbf{X}'\mathbf{X}\ \tilde{\mathbf{a}}^{\mathrm{OLS}} + \lambda^{-1}\ \tilde{\mathbf{a}}^{\mathrm{PRIOR}})$$

 λ maximizes the marginal distribution p(data) and ensures stability

- 2. Public finance data do not respect law of motion of public debt
 - \circ Define surplus from the law of motion: $\mathbf{s_t} = \frac{\mathbf{v_{t-1}}}{\beta} \mathbf{v_t} + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b)
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + \frac{v}{\beta} \sum_j \delta_j \left(rx_{j,t} + i_{j,t-1} i_{j,t-1}^b \right)$
- 4. No data on bond returns Geometric Term Structure
 - Geometric maturity structure:

$$rx_{i,t} + i_{i,t-1} = (\omega_i \beta)q_{i,t} - q_{i,t-1}$$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$\begin{split} \tilde{\textbf{X}}_t &= \tilde{\textbf{a}} \, \tilde{\textbf{X}}_{t-1} + \tilde{\textbf{b}} \, \tilde{\textbf{u}}_{t-1} + \varepsilon_t \\ \tilde{\textbf{u}}_t &= \tilde{\textbf{a}}_{\textbf{u}} \, \tilde{\textbf{u}}_{t-1} + \varepsilon_{\textbf{u},t} \end{split}$$

- Estimate US model (\tilde{a}_u) by OLS (stable!)
- Estimate (\tilde{a}, \tilde{b}) with a Bayesian-Regression

$$\tilde{\mathbf{a}}^{\mathrm{BAY}} = (\mathbf{X}'\mathbf{X} + \lambda^{-1})^{-1}(\mathbf{X}'\mathbf{X}\ \tilde{\mathbf{a}}^{\mathrm{OLS}} + \lambda^{-1}\ \tilde{\mathbf{a}}^{\mathrm{PRIOR}})$$

 λ maximizes the marginal distribution p(data) and ensures stability

- 2. Public finance data do not respect law of motion of public debt
 - $\quad \text{ Define surplus from the law of motion: } \qquad \mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta \mathbf{h}_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b)
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + \frac{v}{\beta} \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} i_{j,t-1}^b \right)$
- 4. No data on bond returns Geometric Term Structure
 - Geometric maturity structure:

$$rx_{i,t} + i_{i,t-1} = (\omega_i \beta) q_{i,t} - q_{i,t-1}$$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$\begin{split} \tilde{X}_t &= \tilde{a} \, \tilde{X}_{t-1} + \tilde{b} \, \tilde{u}_{t-1} + \varepsilon_t \\ \tilde{u}_t &= \tilde{a}_u \, \tilde{u}_{t-1} + \varepsilon_{u,t} \end{split}$$

- Estimate US model (\tilde{a}_u) by OLS (stable!)
- Estimate (\tilde{a}, \tilde{b}) with a Bayesian-Regression

$$\tilde{\mathbf{a}}^{\text{BAY}} = (\mathbf{X}'\mathbf{X} + \lambda^{-1})^{-1}(\mathbf{X}'\mathbf{X} \, \tilde{\mathbf{a}}^{\text{OLS}} + \lambda^{-1} \, \tilde{\mathbf{a}}^{\text{PRIOR}})$$

 λ maximizes the marginal distribution p(data) and ensures stability

- 2. Public finance data do not respect law of motion of public debt
 - Define surplus from the law of motion: $\mathbf{s}_t = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b)
 - Model for market vs par value (Cox (1985)): $\mathbf{v}_t = \mathbf{v}_t^b + rac{\mathbf{v}}{\beta} \sum_j \delta_j \left(r \mathbf{x}_{j,t} + i_{j,t-1} i_{j,t-1}^b \right)$
- 4. No data on bond returns Geometric Term Structure
 - Geometric maturity structure:

$$\mathbf{q}_{\mathbf{j},\mathbf{t}} + \mathbf{i}_{\mathbf{j},\mathbf{t}-1} = (\omega_{\mathbf{j}}\beta)\mathbf{q}_{\mathbf{j},\mathbf{t}} - \mathbf{q}_{\mathbf{j},\mathbf{t}-1}$$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$\begin{split} \tilde{\textbf{X}}_t &= \tilde{\textbf{a}} \, \tilde{\textbf{X}}_{t-1} + \tilde{\textbf{b}} \, \tilde{\textbf{u}}_{t-1} + \varepsilon_t \\ \tilde{\textbf{u}}_t &= \tilde{\textbf{a}}_{\textbf{u}} \, \tilde{\textbf{u}}_{t-1} + \varepsilon_{\textbf{u},t} \end{split}$$

- Estimate US model (\tilde{a}_u) by OLS (stable!)
- Estimate (\tilde{a}, \tilde{b}) with a Bayesian-Regression

$$\tilde{a}^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X \, \tilde{a}^{OLS} + \lambda^{-1} \, \tilde{a}^{PRIOR})$$

 λ maximizes the marginal distribution p(data) and ensures stability

- 2. Public finance data do not respect law of motion of public debt
 - Define surplus from the law of motion: $\mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta \mathbf{h}_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b)
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + \frac{v}{\beta} \sum_j \delta_j \left(rx_{j,t} + i_{j,t-1} i_{j,t-1}^b \right)$
- 4. No data on bond returns Geometric Term Structure
 - Geometric maturity structure:

$$\mathbf{r} \mathbf{x}_{i,t} + \mathbf{i}_{i,t-1} = (\omega_i \beta) \mathbf{q}_{i,t} - \mathbf{q}_{i,t-1}$$

Bayesian-VAR: Variance Decomposition

Proposition. The variance decomposition

$$1 = \frac{\mathsf{cov}_{\pi}\bigg[d_1(rx)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]} + \frac{\mathsf{cov}_{\pi}\bigg[d_1(r_0)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]} - \frac{\mathsf{cov}_{\pi}\bigg[d_1(s)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]} - \frac{\mathsf{cov}_{\pi}\bigg[d_1(g)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]} + \frac{\mathsf{cov}_{\pi}\bigg[d_1(r)\bigg]}{\mathsf{var}\left[\Delta E_t \pi_t\right]}$$

is equivalent to the innovations decomposition applied to VAR shock $Proj(e \mid \Delta E_t \pi_t = 1)$

$$1 = \Delta E_t \pi_t \equiv d_1(rx) + d_1(r_0) - d_1(s) - d_1(g) + d_1(r)$$

"Given 1% unexpected inflation, how do we change our nowcast/forecast of the surplus, discounting and bond prices?"

Bayesian-VAR: Variance Decomposition

Country	$\Delta E_t \pi_t =$	ΔE_t (Bond Prices)				$-\Delta E_t$ (Intrinsic Value of Debt)			
		Ī	$d_1(r_0)$	$d_1(rx)$	I	$-d_1(s)$	$-d_1(g)$	$d_1(r)$	
United States	1	ı	*0.03	*-0.78	ı	0.57	0.23	0.96	
Advanced - 1960 Sample									
Canada	1		*-0.11	*-1.59		0.62	*1.22	0.86	
Denmark	1		*-0.29	-0.30		0.42	-0.04	1.21	
Japan	1		0	*-0.52		*1.60	-0.38	0.30	
Norway	1		*-0.01	*-0.36		0.60	0.47	0.30	
Sweden	1		-0.15	*-0.93		-0.34	*0.98	*1.42	
United Kingdom	1		*0.52	*-0.73		*2.89	*0.97	*-2.65	
Advanced - 1973 Sample									
Australia	1		*0.07	*-0.76		*2.09	0.66	-1.06	
New Zealand	1		-0.10	*-0.86		0.40	*0.87	0.68	
South Korea	1		-0.01	*-0.45		*1.91	0.17	-0.62	
Switzerland	1	1	0	*-0.69		0.90	*0.91	-0.12	

(a) Advanced Economies

Country	$\Delta E_t \pi_t =$	$\Delta E_t(Bor$	nd Prices)	$-\Delta E_t$ (Intrinsic Value of Debt)			
		$d_1(r_0)$	$d_1(rx)$	-d ₁ (s)	$-d_1(g)$	$d_1(r)$	
Emerging - 1998 Sample							
Brazil	1	-0.26	*-0.22	-1.46	1.05	1.89	
Chile	1	-3.80	-1.33	8.95	-5.71	2.88	
Colombia	1	1.51	*-0.96	1.39	-1.09	0.15	
Czech Republic	1	*-0.16	*-0.37	-2.31	2.42	1.42	
Hungary	1	*-0.57	*-0.93	-0.98	1.60	1.88	
India	1	*0.17	*-0.46	1.54	0.05	-0.30	
Indonesia	1	*-2.59	*-1.07	1.69	*2.61	0.35	
Israel	1	-0.06	*-0.78	-0.55	*1.51	0.88	
Mexico	1	-0.02	*-0.74	1.41	0.03	0.32	
Poland	1	*-0.45	*-1.15	0.87	-0.39	*2.11	
Romania	1	-0.40	*-0.96	2.24	0.42	-0.31	
South Africa	1	0.36	*-0.51	1.58	0.25	-0.68	
Turkey	1	0.37	*-0.37	-1.18	-0.15	*2.33	
Ukraine	1	0	*-0.77	0.65	0.41	*0.70	

(b) Emerging Economies

Bayesian-VAR: Variance Decomposition - Takeaways

Figure: IRF - Brazil

- Unexpected inflation accounted for by variation in the intrinsic value of debt
- Surplus-to-GDP, GDP growth and real discounting...
 - ...account for unexpected inflation alone in 0/25
 - ...have a positive contribution in 18+/25
- Fiscal roots of inflation do not imply connection between fiscal policy and unexpected inflation
- Nominal bond price dynamics reduce unexpected inflation variance 25/25
 - Effects of monetary policy!

Bayesian-VAR: "Aggregate Demand" Recession

- "Aggregate demand" recessions (Great Recession in 2008) feature:
 - Low inflation
 - Low growth
 - Fiscal deficits (often)
- Does that deny the fiscal sources of inflation?
- Where does unexpected (dis)inflation come from?
- Scenario:

$$\Delta E_t g_t = -1$$
 $\Delta E_t \pi_t = -0.5$

VAR Shock: Proj($e \mid \Delta E_t g_t = -1, \ \Delta E_t \pi_t = -0.5$)

Bayesian-VAR: "Aggregate Demand" Recession

Country	$\Delta E_t \pi_t =$	ΔE_t (Bond Prices)				$-\Delta E_t$ (Intrinsic Value of Debt)			
			$d_1(r_0)$	$d_1(rx)$	Ι	$-d_1(s)$	$-d_1(g)$	$d_1(r$	
United States	-0.50	ı	*0.03	*1.00	1	-0.65	*1.32	*-2.21	
Advanced - 1960 Sample									
Canada	-0.50		*0.14	*2.21		-0.45	0.30	*-2.70	
Denmark	-0.50		*0.20	*0.86		-2.64	*2.75	-1.6	
Japan	-0.50		0	*0.83		*-1.51	*1.64	*-1.4	
Norway	-0.50		0	*0.63		-1.36	*1.72	-1.4	
Sweden	-0.50		*0.41	*1.22		-0.65	0.87	*-2.3	
United Kingdom	-0.50		0.11	*2.54		-2.20	0.73	-1.6	
Advanced - 1973 Sample									
Australia	-0.50		0.06	*1.54		-1.46	0.66	-1.3	
New Zealand	-0.50		*0.26	*0.87		-0.84	0.63	-1.4	
South Korea	-0.50		*0.10	*0.70		*-3.17	*1.74	0.1	
Switzerland	-0.50		0	*1.18		*-0.93	-0.07	-0.63	

(a) Advanced Economies

Country	$\Delta E_t \pi_t =$	$\Delta E_l(Bon d_1(r_0))$	d Prices)	$-\Delta E_t(\text{Intrinsic Value of Debt})$ $-d_1(s) -d_1(g) d_1(r)$		
Emerging - 1998 Sample						
Brazil	-0.50	*0.37	0.06	1.87	0.13	-2.39
Chile	-0.50	*15.78	*2.94	-30.50	30.54	-19.26
Colombia	-0.50	1.86	*0.67	-10.90	*7.57	0.31
Czech Republic	-0.50	*0.37	*0.61	-0.07	0.25	-1.65
Hungary	-0.50	*0.99	*0.60	10.82	-5.29	-7.63
India	-0.50	-0.03	0.13	-1.16	0.71	-0.15
Indonesia	-0.50	*8.23	-0.55	*-11.24	1.42	1.64
Israel	-0.50	*1.79	0.37	-3.18	1.17	-0.65
Mexico	-0.50	*1.69	*0.81	*-4.56	*1.94	-0.38
Poland	-0.50	*0.87	*1.00	-0.14	1.30	*-3.53
Romania	-0.50	*2.08	0.21	*-8.16	2.05	3.31
South Africa	-0.50	-0.10	0.35	*-30.02	*11.15	*18.13
Turkey	-0.50	*0.99	*0.23	0.64	0.52	*-2.88
Ukraine	-0.50	0	-0.68	-3.22	*1.92	1.48

(b) Emerging Economies

Bayesian-VAR: "Aggregate Demand" Recession - Takeaways

Figure: IRF - United States

- Lower inflation follows from...
 - lower discounting (monetary policy) in 19/25
 - larger surplus-GDP ratios, current or in the future in 22/25
- COVID: what if governments reacted to a recession by credibly reducing {s} permanently?
- Direction of causality?

The New-Keynesian Model: Setup

- B-VAR decompositions not structural: all shocks are reduced-form
- Theory: How far do we need to go? Not much!
- Two-country NK mode
 - Home economy with $n \to 0$ households and firms (small and open)
 - \circ Foreign economy with $1-n \to 1$ households and firms (large and "closed")
- The Standard. Intertemporal substitution + Calvo rigidity
- **The New.** Production function $A_t N = \mathcal{T}_t A_t N$ (Home), $A_t^* N = \mathcal{T}_t A_t^* N$ (Foreign)

(Trend component)
$$\log \mathcal{T}_t = \log \mathcal{T}_{t-1} + u_{g,t}$$

(AR(1) component) $a_t = \rho_a a_{t-1} + \varepsilon_{a,t}$
 $a_t^* = \rho_a a_{t-1}^* + \varepsilon_{a,t}^*$

The New-Keynesian Model: Setup

- B-VAR decompositions not structural: all shocks are reduced-form
- Theory: How far do we need to go? Not much!
- Two-country NK model:
 - Home economy with $n \to 0$ households and firms (small and open)
 - ∘ Foreign economy with $1 n \rightarrow 1$ households and firms (large and "closed")
- The Standard. Intertemporal substitution + Calvo rigidity
- **The New.** Production function $A_t N = \mathcal{T}_t A_t N$ (Home), $A_t^* N = \mathcal{T}_t A_t^* N$ (Foreign)

Trend component)
$$\log \mathcal{T}_t = \log \mathcal{T}_{t-1} + u_{g,t}$$

(AR(1) component) $a_t = \rho_a a_{t-1} + \varepsilon_{a,t}$
 $a_t^* = \rho_a a_{t-1}^* + \varepsilon_{a,t}^*$

The New-Keynesian Model: Setup

- B-VAR decompositions not structural: all shocks are reduced-form
- Theory: How far do we need to go? Not much!
- Two-country NK model:
 - Home economy with $n \to 0$ households and firms (small and open)
 - Foreign economy with $1 n \rightarrow 1$ households and firms (large and "closed")
- The Standard. Intertemporal substitution + Calvo rigidity
- **The New.** Production function $A_t N = \mathcal{T}_t A_t N$ (Home), $A_t^* N = \mathcal{T}_t A_t^* N$ (Foreign)

(Trend component)
$$\log \mathcal{T}_t = \log \mathcal{T}_{t-1} + u_{g,t}$$

(AR(1) component) $a_t = \rho_a a_{t-1} + \varepsilon_{a,t}$
 $a_t^* = \rho_a a_{t-1}^* + \varepsilon_{a,t}^*$

The New-Keynesian Model: The Foreign, Closed Economy

Private Sector

$$y_{t}^{*} = E_{t}y_{t+1}^{*} - \gamma [i_{t}^{*} - E_{t}\pi_{t+1}^{*}] + E_{t}u_{g,t+1}$$

$$\pi_{t}^{*} = \beta E_{t}\pi_{t+1}^{*} + \kappa y_{t}^{*} - \kappa_{a} a_{t}^{*}$$

$$g_{t}^{*} = y_{t}^{*} - y_{t-1}^{*} + u_{g,t}$$

Why Trend? Growth

- Unexpected inflation indeterminacy? FTPL.
- Monetary and Fiscal Policy

$$\begin{split} & i_{t}^{*} = \phi_{\pi} \; \pi_{t}^{*} + \phi_{g} \; g_{t}^{*} + \varepsilon_{i,t}^{*} \\ & s_{t}^{*} = \rho_{s} \; s_{t-1}^{*} + \tau_{\pi} \; \pi_{t}^{*} + \tau_{g} \; g_{t}^{*} + \varepsilon_{s,t}^{*} \end{split}$$

GMM for US moments

$$\mathsf{Min}_{\Psi} \quad {}_{\alpha_{1}} \| \mathcal{D}_{\mathsf{VAR}} - \mathcal{D}_{\mathsf{NK}}(\Psi) \| + {}_{\alpha_{2}} \| \mathcal{M} - \mathcal{M}_{\mathsf{NK}}(\Psi) \| \qquad \text{s.t. } \Psi \in \Theta$$

Parameters

The New-Keynesian Model: Reproducing the Variance Decomposition

Result. AR(1) productivity shocks $\varepsilon_{a,t}$ alone reproduce the variance decomposition with positive contributions from surplus-to-output, growth and real interest terms

Target: United States

Moments

The New-Keynesian Model: Reproducing the Variance Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

- Key Ingredients
 - Persistent shock: $\rho_a = 0.98$
 - Strong Taylor: $\phi = 0.8$
 - Countercyclical deficits: $\tau_q = 0.7$
- What is the story?
 - Low productivity leads to a recession

Government raises deficit to fight recession

Monetary policy raises nominal interest

Marginal Costs

vs B-VAR IRF

Figure: IRF to
$$\Delta E_t \pi_t = 1$$
 ($\varepsilon_{a,t} = -1.15$)

The New-Keynesian Model: Reproducing the Variance Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

- Key Ingredients
 - Persistent shock: $\rho_a = 0.98$
 - Strong Taylor: $\phi = 0.8$
 - Countercyclical deficits: $\tau_q = 0.7$
- What is the story?
 - Low productivity leads to a recession

Government raises deficit to fight recession

Monetary policy raises nominal interest

Marginal Costs

vs B-VAR IRF

Figure: IRF to $\Delta E_t \pi_t = 1$ ($\varepsilon_{a,t} = -1.15$)

Frame title

References

Akhmadieva, V. (2022). Fiscal adjustment in a panel of countries 1870–2016. *Journal of Comparative Economics*, 50(2):555–568.

Bassetto, M. and Cui, W. (2018). The fiscal theory of the price level in a world of low interest rates. *Journal of Economic Dynamics and Control*, 89:5–22.

Brunnermeier, M. K., Merkel, S., and Sannikov, Y. (2022). The Fiscal Theory of the Price Level With a Bubble. Cagan, P. (1956). The Monetary Dynamics of Hyperinflation. In *Studies in the Quantity Theory of Money*, pages 25–117. University of Chicago Press, milton friedman edition.

Campbell, J. Y. and Ammer, J. (1993). What Moves the Stock and Bond Markets? A Variance Decomposition for

Long-Term Asset Returns. *The Journal of Finance*, 48(1):3–37.

Campbell, J. Y. and Shiller, R. J. (1988). The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors. *The Review of Financial Studies*, 1(3):195–228.

Cochrane, J. H. (1992). Explaining the Variance of Price–Dividend Ratios. *The Review of Financial Studies*, 5(2):243–280.

Cochrane, J. H. (1998). A Frictionless View of U.S. Inflation. *NBER Macroeconomics Annual*, 13:323–384.

Chen, L. and Zhao, X. (2009). Return Decomposition. Review of Financial Studies, 22(12):5213-5249.

Cochrane, J. H. (2005). Money as stock. *Journal of Monetary Economics*, 52(3):501–528.

Cochrane, J. H. (2022a). The fiscal roots of inflation. *Review of Economic Dynamics*, 45:22–40.

Cochrane, J. H. (2022b). A fiscal theory of monetary policy with partially-repaid long-term debt. *Review of Economic Dynamics*, 45:1–21.

Cochrane, J. H. (2022c). The Fiscal Theory of the Price Level.

Appendix: Public Debt Currency Denomination

Return

Symbol	Description	Nominal Debt	Real Debt	Dollar Debt
j	Index Symbol	N	R	D
	Notation	δ , ω	$\delta_{\it R}$, $\omega_{\it R}$	$\delta_{ extsf{D}}$, $\omega_{ extsf{D}}$
P_j	Price per Good	Р	1	P_t^{US}
\mathcal{E}_{i}	Nominal Exchange Rate	1	Ρ	Dollar NER
H_j	Real Exchange Rate	1	1	Dollar RER
π_{i}	Log Variation in Price	π	0	$\pi_t^{ extsf{US}}$
Δh_j	Log Real Depreciation	0	0	Δh_t

Table: Public Debt Denomination

Appendix: Geometric Term Structure

Return

■ To each currency portfolio *j*, fixed geometric maturity structure:

$$B_{j,t}^n = \omega_j B_{j,t}^{n-1}$$

■ Total return on currency-*i* portfolio:

$$1 + rx_{j,t} + i_{j,t-1} = \frac{1 + \omega_j Q_{j,t}}{Q_{i,t-1}} \implies \frac{rx_{j,t} + i_{j,t-1} = (\omega_j \beta) q_{j,t} - q_{j,t-1}}{rx_{j,t} + i_{j,t-1} = (\omega_j \beta) q_{j,t}}$$

Assume constant risk premia $E_t r x_{i,t+1} = 0$

$$\boxed{\mathbf{q}_{j,t} = (\omega_j \beta) E_t q_{j,t+1} - i_{j,t}} = -\sum_{k=0}^{\infty} (\omega_j \beta)^k E_t i_{j,t+k}$$

Appendix: NK Model Parameters

Return

Appendix: Why Trend Shocks? The Growth Component

Return

Appendix: Estimated Moments

Appendix: Simple Model - US Data vs Model

Appendix: Marginal Costs

NK Simple

- AR(1) Productivity Shock
 - High marginal costs + strong Taylor rule ($\phi_{\pi} \approx$ 1):

$$i_t \approx \underbrace{\pi_t > E_t \pi_{t+1}}_{m_{t+2}} \implies r_t = i_t - E_t \pi_{t+1} > 0$$

(b) $-a_t$ or Mg. Cost at fixed wages