2.2 リテノスノ自身を行るようる

11 SUMMERINGERS

2 1 1 1 1 EEE NE MAY &

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-116119

(43) Date of publication of application: 09.05.1995

(51)Int.CI. 3/10 A61B

(71)Applicant: NIPPON TELEGR & TELEPH (21)Application number: 05-287552

CORP <NTT>

COMPUTER KONBINIENSU:KK

SUMITA TAKEO 21.10.1993 (72)Inventor: (22)Date of filing:

TAWARA TAKASHI NOFUJI YASUNORI

IS TOPPAULIERIS

TO PROME PARTIES

11 7 1979 And 8

ID TRESPENSE SETT

3.0 美国公报十五年4十五十十十 1 | MEPHERTAS

14 日本代で行けるノイズを除さ

(54) METHOD AND APPARATUS OF MEASURING CHAOS CONDITION AND METHOD AND APPARATUS OF DETERMINING HEALTH CONDITION

(57) Abstract:

PURPOSE: To provide a method and an apparatus of measuring a chaos condition for obtaining the information that is useful for determining the health of a subject more simply, accurately and objectively and to provide a method and an apparatus of determining the health condition of the subject using the results of the above measurement.

CONSTITUTION: After a digital signal is prepared from the data in time sequence obtained by measuring the lens refractivity and the pupil area of an eye at a predetermined sampling frequency. After the noise caused by blinking is eliminated from the digital signal, the TRANSPORTED TO TH data are smoothed and an attractor and Liapunov index that are effective in determining the health condition of the subject are obtained from the smoothed data. From the obtained attractor a topology of the attractor is prepared in three-dimensional or twodimensional phase space. The health condition of the subject is determined by comparing the obtained topology with the reference topology showing the health condition of the subject or by

comparing the obtained Liapunov index with the reference Liapunov index showing the health condition.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

Number of appeal against examiner's decision of rejection

Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-116119

(43)公開日 平成7年(1995)5月9日

(51) Int.Cl.4

識別記号 广内整理番号

FΙ

技術表示箇所

A 6 1 B 3/10

A 6 1 B 3/10

Z

審査請求 未請求 請求項の数8 FD (全 16 頁)

(21)出願番号

特顯平5-287552

(22)出顧日

平成5年(1993)10月21日

(71)出頭人 000004226

日本電信電話株式会社

東京都千代田区内幸町一丁目1番6号

(71)出願人 392021311

株式会社コンピュータコンピニエンス

福岡市博多区博多駅前3丁目6番1号

(72) 発明者 住田 竹男

東京都千代田区內幸町1丁目1番6号 日

本電信電話株式会社内

(72) 発明者 田原 孝

福岡県福岡市南区平和2丁目12-1-507

(74)代理人 弁理士 澤井 敬史

最終頁に続く

(54) [発明の名称] カオス状態の測定方法及び測定装置並びに健康状態の判定方法及び判定装置

(57)【要約】

【目的】 被験者の健康状態をより簡易に、精度よく、また客観的に判定するための有用な情報を得るためのカオス状態の測定方法や測定装置及びその測定結果を利用して被験者の健康状態を判定する方法や判定装置を提供する。

【構成】 目の水晶体の屈折力や瞳孔面積を所定のサンプリング周波数で計測することにより得られる時系列データからデジタル信号を作成した後、そのデジタル信号から瞬きに起因するノイズを除去し、ノイズ除去後のデータを平滑化し、平滑化したデータから被験者の健康状態を判定するのに有効なアトラクタやリアプノフ指数を作成する。また、得られたアトラクタから3次元又は2次元の相空間でアトラクタのトポロジを作成しこのトポロジを被験者の健康状態を示す参照トポロジと比較したり、得られたリアプノフ指数を健康状態を示す参照リアプノフ指数と比較したりすることにより、被験者の健康状態の良否を判定する。

2

【特許請求の範囲】

【請求項1】 被験者の水晶体の屈折力に関する情報及び瞳孔面積に関する情報の少なくとも一方の視調節系情報に基づきデジタル信号を作成した後、作成されたデジタル信号から瞬きに伴うノイズを除去するステップと、ノイズ除去後の信号を平滑化するステップと、平滑化した信号からN次元ベクトルを生成するステップを含み、このN次元ベクトルから被験者の健康状態を判定するために利用できるアトラクタ及びリアプノフ指数の何れか一方又は両方を作成することを特徴とするカオス状態の測定方法。

【請求項2】 前記視調節系情報に基づくデジタル信号の作成は、50Hz以上のサンプリング周波数で測定した2000点以上の情報をデジタル化することを特徴とする請求項1記載のカオス状態の測定方法。

【請求項3】 前記N次元ベクトルは4次元ベクトルであって、前記アトラクタの作成ステップ後、4次元相空間の前記アトラクタを3次元相空間に投影して3次元トポロジを作成するステップを含むことを特徴とする請求項1又は請求項2記載のカオス状態の測定方法。

【請求項4】 前記3次元のトポロジの作成ステップの後に、前記3次元のトポロジを2次元相空間に射影し2次元トポロジを作成するステップを含むことを特徴とする請求項3記載のカオス状態の測定方法。

【請求項 5 】 請求項 1 乃至請求項 4 に記載のカオス状態の測定方法に基づく測定結果と健康状態を示す参照情報とを比較し被験者の健康状態の良否を判定する比較ステップを含むことを特徴とする健康状態の判定方法。

【請求項6】 前記比較ステップは請求項1乃至請求項4に記載のカオス状態の測定方法で作成したアトラクタ或いはそのトポロジ及びリアプノフ指数の何れか又は全てと健康状態を示す参照アトラクタ或いはそのトポロジ及び健康状態を示す参照リアプノフ指数の何れか又は全てとを比較し被験者の健康状態の良否を判定することを特徴とする請求項5記載の健康状態の判定方法。

【請求項7】 被験者の視調節系のゆらぎに関する視調節系情報についての測定結果を時系列データとして入力しその時系列データでアトラクタ及びリアプノフ指数の何れか一方又は両方の作成に必要なデジタル信号を出力するカオス検出手段と、前記カオス検出手段の出力を受けアトラクタ又はリアプノフ指数の作成を行う演算部とを備えたことを特徴とするカオス状態の測定装置。

【請求項8】 請求項7記載の前記演算部に接続された記憶部を備え、前記記憶部には健康状態を示す参照アトラクタあるいはそのトポロジ及び健康状態を示す参照リアプノフ指数の何れか又は全てが参照情報として記憶されており、前記演算部が前記参照情報と前記視調節系情報から作成したアトラクタあるいはそのトポロジ及びリアプノフ指数の何れか又は全てとを比較し被験者の健康状態の良否を判定する機能を有していることを特徴とす

る健康状態の判定装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、被験者の視調節系のゆらぎに関する視調節系情報を利用して、被験者の健康状態を判定するのに有効な情報を作成するカオス状態の測定方法及び測定装置並びにその測定結果を基に被験者の健康状態を判定する判定方法及び判定装置に関するものである。

[0002]

【従来の技術】従来、被験者の健康状態を知るための測 定方法としては種々のものがある。例えば、医療分野に ついては、脳波の測定方法や心電図の測定方法等があ る。これらの測定方法は、被験者の体内に発生する微弱 な電気的信号を測定するものである。また最近では、被 験者の特定のゆらぎ情報に着目して計測を行い、その計 測データに内包されているかもしれない秩序を演算処理 により見いだし、その秩序から何らかの結論を導き出す ことを狙った診断方法も新たに提案され始めている。例 20 えば、特開平4-208136号にあるように、体表面 から採取した脈波や心拍データを用いた診断方法も提唱 されている。しかし、このような新しい診断方法の場合 には、どんな生体情報に着目しどのような処理をすれば 秩序ある情報が引き出せて有効な測定ができるのかは試 行錯誤によってしか知ることが出来ないのが現状であ る。このため、視調節系の異常を診断するにあたって は、水晶体の屈折力を測定する装置(例えば、医療機器 として認定されているものとしては、赤外線オプトメー タがある)や瞳孔面積を測定する装置(例えば、医療機 器として認定されているものとしては、イリスコーダが ある)が使用されているだけである。

[0003]

【発明が解決しようとする課題】しかし、これらの赤外線オプトメータやイリスコーダなどの測定装置を使用しての診断では、それぞれの測定装置により得られる被験者の時系列のデータが図15に示すような形で得られるだけである。このような測定方法では、得られたデータの形状(波形)を観察して、その医師の経験に基づいて診断を定性的に行っている。このため、医師により診断の内容が異なったり曖昧になるという問題があった。そこで、被験者の健康状態をより簡易に、精度よく、また客観的に判定するための有用な情報を得るための測定若果を利用して被験者の健康状態を判定する方法や判定装置の新たな出現が望まれていた。

[0004]

【課題を解決するための手段】本発明は、視調節系のゆらぎに関する特定の視調節系情報には決定論的カオスが内在しており、かつその視調節系情報から得られるアトラクタあるいはそのトポロジ(幾何図形)が被験者の健

康状態に応じた特有の形を示すこと及びリアプノフ指数 が被験者の健康状態に応じた特有の値をとることを発明 者が新規に見いだし、その知見に基づきなされたもので ある。

【0005】具体的には、本発明は、目の水晶体の屈折力や目の瞳孔面積を所定のサンプリング周波数で計測することにより得られる時系列データからデジタル信号を作成した後、そのデジタル信号から瞬きに起因するノイズ除去後のデータを平滑化し、平滑化したデータから被験者の健康状態を判定するのに有効なアトラクタやリアプノフ指数を作成することを特徴又はプラクタのトポロジを作成しこのトポロジを被験者の健康状態を示す参照トポロジと比較したり、得られたリアプノフ指数を健康状態を示す参照リアプノフ指数と比較したりすることを特徴とする。

[0006]

【作用】ここで、本発明の理解を助けるためにカオスについて簡単に説明しておく。本発明で述べるカオスとは系が決定論的で一切の確率的あいまいさなしに記述されるにもかかわらず、不規則でランダムな結果が現れ予測不能になる現象を指す。別の言葉でいえば、時間的変動が無秩序なランダム変動であるかのように見えるが、実際には決定論的な時間変化をする現象と言えるものである。このようなカオスを決定論的カオスといい、その現象は系のもつ非線形性によって生み出される。ある現象がカオスであるかどうかを判定する方法としては、その現象から抽出されるアトラクタが次の三つの条件を備えていることが必要である。

- (1) アトラクタの軌道が不安定であること。軌道の不安定性はリアプノフ指数でも知ることができ、N次元のリアプノフ指数のうちN-2個のリアプノフ指数が正であれば、カオスである。
- (2) 将来の状態を予測するのが不可能であること。予 測性の不可能さはKSエントロピーで知ることができ、 KSエントロピーが正であれば、カオスである。
- (3) アトラクタのトポロジがフラクタルであること。フラクタルか否かはアトラクタを細分化することにより知ることができ、アトラクタのトポロジ構造をどこまで細分しても同じ形が現れれば、カオスである。このフラクタル特性を知るためには、フラクタル次元が3次元、4次元等の整数次元ではなく、3.2次元、4.8次元、5.6次元等の非整数次元になればよい。

【0007】視調節系の水晶体の屈折力と瞳孔面積の時系列データは、それらから得られるアトラクタ及びリアプノフ指数が上記三条件を満足することから、それらがカオスであることが発明者らにより初めて確認されたのである。更に、この視調節系情報から得られるアトラクタ及びリアプノフ指数は、被験者の健康状態の良否によ

り特有のパターン及び数値を示すことが、種々の測定の 結果初めて判明した。

【0008】従って、本発明により視調節系のゆらぎに 関する視調節系情報からアトラクタやリアプノフ指数を 作成した場合には、その測定結果を観察することにより 被験者の健康状態を簡易に、精度よく、また客観的に判 定することができる。また、予め記憶させてある健康状態を示す参照用のアトラクタやそのトポロジ又はリアプ ノフ指数と、被験者の視調節系情報から作成されたアト ラクタやそのトポロジ又はリアプノフ指数とを比較しそ の結果を出力することにより、被験者の健康状態を容易 に、精度よくまた客観的に判定できる。

[0009]

40

50

【実施例】図1は、本発明の装置の実施例の概略を示す ものである。測定装置に関する本発明の実施例は、測定 装置1として示すとおりであり、基本的には被験者の視 調節系のゆらぎに関する情報を時系列データとして入力 しアトラクタ又はリアプノフ指数の作成に必要なデジタ ル信号を出力するカオス検出手段2と、カオス検出手段 2からのデジタル信号を受け所定の演算を行いアトラク タ又はリアプノフ指数の作成を行う演算部3とから成 る。 演算部 3 は、得られたアトラクタからその 3 次元の トポロジや2次元のトポロジを作成する機能を持ち、必 要に応じその演算結果を表示部4、印刷部5又は外部記 憶装置6に出力する。カオス検出手段2は、被験者の視 調節系のゆらぎ情報(アナログ信号)を12ビットのデ ジタル信号に変換するA/D変換器8とデジタル化され た信号を蓄積し演算部3に送出する際にそのやりとりを 制御する信号蓄積制御部9とから成る。この信号蓄積制 御部9は、演算部3からの出力要求信号が入力されると この要求信号をA/D変換器8に伝える。A/D変換器 8は測定手段7で計測された時系列データをA/D変換 した後、演算部3からの要求に基づくデジタル信号を信 号蓄積制御部9に伝える。そして、信号蓄積制御部9は A/D変換器8から得られるデジタル信号を蓄積する機 能を持ち、演算部3からの要求信号に基づき蓄積してい るデジタル信号を演算部3に出力する。

【0010】なお、A/D変換器8の前段には必要に応じて信号増幅器10を設けてもよい。また、場合によっては、演算部3を通じて信号蓄積制御部9に蓄積しているデジタル信号をFD等の記憶媒体に出力させ、このデジタル信号を演算部3と同様の機能を持つ大型高速コンピュータで処理するようにしてもよい。また、演算部3を通信回線を通じて別の場所にある演算部3と同様の機能を持つ大型高速コンピュータに送信して処理するようにしてもよい。上述の何れの装置においても、視調節系情報として赤外線オプトメータが接続され、視調節系情報として赤外線オプトメータが接続され、視調節系情報として

被験者の瞳孔面積の情報を利用する場合には、測定装置 1には視調節系情報の測定手段7としてイリスコーダが

【0011】判定装置に関する本発明の実施例は、上述 の測定装置1に記憶部31が接続され、演算部3が被験 者の視調節系情報から作成したアトラクタやそのトポロ ジ又はリアプノフ指数と記憶部31に記憶された健康状 態を示す参照アトラクタやそのトポロジ又は参照リアプ ノフ指数とを比較し被験者の健康状態を判定する機能を 持つ構成である。

【0012】図2は、方法に関する本発明の実施例を説 明するための図であり、図1の装置で行われる処理手順 を示したものである。以下の説明では、被験者の水晶体 の屈折力の情報を利用する場合を例にとり説明する。測 定方法に関する本発明の第1の実施例は、図2のステッ プ14から17までである。まず、前処理段階としてス テップ11で視調節系情報である水晶体の屈折力を計測 する。具体的には視調節系情報の測定手段7である赤外 線オプトメータを用いて被験者の水晶体の屈折力の変化 量を測定する。このときのサンプリング周波数は200 Hzで測定時間は100秒である。サンプリング周波数 *

 $P = \{p_1, p_2, p_3, \dots, p_n\}$ であるときに、図3の処理フローに従って以下のように 演算を行うことにより瞬きに起因するノイズを除去す る。先ずステップ101で、次式のpi'

 $p_{i} = |p_{i+2} - p_{i}|$ を求め、新たなデータ列 P'を作る。

[0015]

のステップでは、

 $, p_1', \cdots, p_{n-2'}$ $P' = \{p_1, p_2\}$

次にステップ102で、瞬き開始点を求める。このステ 30☆【0016】

ップでは、P'に対する閾値をpth'として、 【数4】 ☆

 $p_{i} > p_{th}$ (i = 1, 2, ···, n-2)

となる点を瞬き開始点 p start とする。次のステップ 1 03では、瞬き開始点以降での瞬き終了点を求める。こ

max は p end 検出のためのパラメータであり、瞬きの最 長時間(点数)を設定すればよい。次のステップ104 では、pstart+l からpend-l の間を瞬きとみなし、こ 40 107で、次式のpi' の区間のデータをデータ列Pから除去する。そしてステ ップ105で、データ列Pから瞬きを除去した後のデー*

 $p_{i}' = |p_{i+2} - p_{i}| (i = n, n-1, n-2, \cdots)$

を求め、新たなデータ列 P'を作る

Ж $P' = \{p_n', p_{n-1}', p_{n-1}', p_{n-1}', p_{n-1}', p_{n-1}'\}$

次にステップ108で、新たな瞬き開始点を求める。こ のステップでは、

P n -2 [0020]

*が50Hzより小さい値では滑らかな時系列波形が得ら れないので、後述するアトラクタを綺麗に作成できず、 健康状態の判定が困難になる。また、測定時間が200 砂より長すぎる場合には被験者の定常状態が変化してし まうために健康状態の判定に適したアトラクタやリアプ ノフ指数の作成が適切にできなくなる。そして、4次元 相空間でアトラクタを作成する場合には時系列データと しては最低でも2万点が必要である。時系列データの数 がこれより少ないと、リアプノフ指数の収敛が困難であ 10 り、健康状態の判定に有効なアトラクタやリアプノフ指 数の作成が不可能である。ステップ12では、ステップ 11で得られた視調節系に関するゆらぎ情報である時系 列データをカオス検出手段2に入力する。ステップ13 では、ステップ12で入力された時系列データを12ビ ットのデジタル信号に変換する。そしてステップ14で は、ステップ13で得られたデジタル信号の中の瞬きに 起因するノイズを除去する。即ち、ステップ14では演 算対象になるデータが、N点のデータ列の

6

[0013]

【数1】

(n=N)※【0014】

【数2】

 $(i = 1, 2, \cdots, n-2)$ ★【数3】

◆ [0017]

【数5】

 $|p_{atart+j} - p_{start}|$ (j=1, 2, 3, ·· j_{aax})

が最小となる点を瞬き終了点を p end とする。なお、 j *タ列を改めて P 、n - (p end - p start - 1) を改め てnとおき、ステップ106で所定回数をチェックし、 ステップ101~105を繰り返す。その後、ステップ

[0018]

【数 6】

※【数7】

【数8】

$$p_{i} > p_{ih}$$
 ('i = n, n-1, n-2, ..., 2)

となる点を新たな瞬き開始点 p start とする。次のステ ップ109では、瞬き開始点以前の新たな瞬き終了点を 求める。このステップでは、

* [0021] 【数9】

$$|p_{start-i} - p_{start}|$$
 (j=1, 2, 3, ··. -j_max)

が最小となる点を新たな瞬き終了点をpend とする。次 のステップ110では、pstart+l からpend-l の間を する。そしてステップ111で、データ列Pから瞬きを 除去した後のデータ列を改めてP、n-(pstart - p end -1) を改めてnとおき、ステップ112で所定回 数をチェックし、ステップ 107~112を繰り返す。※

※ステップ101~112の操作を必要回数(例えば4 回) 繰り返し、瞬きを除去した後ステップ114で新た 瞬きとみなし、この区間のデータをデータ列Pから除去 10 なデータ列Pを作る。次のステップ15では瞬きノイズ の除去をしたデータを平滑化する。データの平滑化は次 のようにする。瞬き除去を行った後のN点のデータ列P [0022]

からまず、第1の平滑化データ列P'を作る。即ち、

 $P = \{p_1, p_2, p_3, \dots, p_n\} \quad (n = N)$

[0023]

★【数11】

$$p_{i}' = \frac{1}{C_{av}} \int_{j=i}^{i+(C_{av}-1)} \sum_{j=i}^{x} p_{i} \quad (i=1, 2, \cdots, n-C_{av})$$

を行い、

[0024]

☆【数12】

【数10】

$$P' = \{p_1', p_2', p_1', \cdots, p_{a-C_{av'}}\}$$

を作る。Cavは平滑化を行う程度を決めるためのパラメ ◆最小値をpmin 'としたときに、 ータであり、Pの性質を失わない範囲で最大の値を設定 する。次に第1の平滑化データ列 P'から第2の平滑化 データ列 P''を作る。即ち P'の最大値を p mak'、 ◆

[0025] 【数13】

$$p_{i} = p_{i} - \frac{p_{\text{max}} - p_{\text{min}}}{2}$$

$$(i = 1, 2, \cdot \cdot \cdot, n - C_{\bullet \bullet})$$

を行い、

[0026]

$$P'' = \{p_1'', p_2'', p_3'', \dots, p_{n-c_{n-c'}}\}$$

を作る。そして、最後に第2の平滑化データ列P''か ※【0027】

$$(i = 1, 2, \cdot \cdot \cdot, n - 2C, \cdot)$$

を行い、

★【数16】

[0028]

 $P''' = \{p_1''', p_2''', p_2''', \dots, p_{n-2}C_{n}'''\}$ を作る。この平滑化のサブステップは必要に応じて複数 を用いて4次元ベクトルを作成する。4次元ベクトルの 回行ってもよい。ステップ16では、平滑化したデータ 50 作成は図4に示すように行う。即ち平滑化を行った後の ж

データ列 P'''を改めて N 点のデータ列 P / 【 O O 2 9 】

としたときに、このデータ列から次式を用いて

*

 $P = \{p_1, p_2, p_3, \cdots$

※【数18】

[0030]

 $\begin{cases} x_{i} = p_{i} \\ y_{i} = p_{i+1} \\ z_{i} = p_{i+2} \end{cases}$ $(i = 1, 2, \dots, n-3, t)$

4 次元ベクトル 【0031】

【数19】

 $p_{i} = (x_{i}, y_{i}, z_{i}, w_{i})$

を作成する。これが埋め込みと呼ばれる操作で、tは埋★

 $p = \{p_1, p_2, p_3, \dots, p_{n-3}\}$

を作る。このことは、図4において仮に t=5とすると 20 データ列のある時点 t1でのデータ値p11を4次元相空間のX軸の値x1 とし、それから5個目のデータ値p21を4次元相空間のY軸の値y1 とし、更に5個目(t1からでは10個目)のデータ値p31を4次元相空間のX軸の値x1とし、更に5個目(t1からでは15個目)のデータ値p41を4次元相空間のx4や元相空間のx5・本のデータ値x7・カー

[0033]

【数21】

 $p_1 = (X_1, y_1, Z_1, W_1)$ を作成し、次いで時点 t^2 でのデータ値 p^{12} を x^2 とし、それから t 間隔をおいて $y^2 = p^{22}$ 、 $z^2 = p^{32}$ 、 $w^2 = p^{42}$ としてベクトル

[0034]

【数22】

 $p_2 = (X_2, Y_2, Z_2, W_2)$ を作成することを意味している。この場合、埋め込み遅延時間 τ の採り方に工夫が必要であり、本実施例の場合には $\tau = 5$ ($25 \, \mathrm{msec}$) である。なお、ここでは4次元ベクトルを作成する例を説明したが、 τ の採り方によりN次元のベクトルを作成しうることはいうまでもない。N次元のベクトルを作成する場合には、4次元の場合に必要とした2000点のデータ数としては、10のN乗の2倍のデータ数を用いる。例えば3次元相空間に埋め込みを行う場合にはベクトル

[0035]

★め込み遅延時間と呼ばれる埋め込みを行うためのパラメータである。この操作をPのすべての要素に対して行い、

10

(n = N)

【0032】 【数20】

90 【数23】

 $p_i = (x_i, y_i, z_i)$

とすればよく、このときに必要な時系列データは200 0点程度でよい。さて、ステップ17では、ステップ1 6で作成した4次元ベクトル列の各ベクトルの終点を結 ぶ軌跡を描く事により図5で示すように4次元相空間で アトラクタを作成する。

【0036】以上説明した第1の実施例については、次のような変形例がある。即ち、上述の方法で求めたアトラクタは4次元相空間に表示されるものなので、更に判定し易いように、第2の実施例は、第1の実施例のステップ17に続いてステップ18を行う構成である。即ち、ステップ18において、ステップ17で作成されたアトラクタをW軸を視線ベクトルWを一致させるように3次元相空間に投影する方法である。4次元座標(x,y,z,w)から3次元座標(X,Y,Z)への変換は、視線方向の単位ベクトルn

[0037]

0 【数24】

 $n (n_1, n_2, n_3, n_4)$

をw軸に一致させることにより実現している。 4 次元から 3 次元への座標変換は次式を用いての変換をベクトル pの全要素に対して行う。

[0038]

【数25】

$$\begin{cases} X = \frac{n_2}{A} x - \frac{n_1}{A} y \\ Y = \frac{n_1 n_3}{AB} x + \frac{n_2 n_3}{AB} y - \frac{A}{B} z \\ Z = \frac{n_1 n_4}{A} x - \frac{n_2 n_4}{B} y + \frac{n_3 n_4}{B} z - Bw \end{cases}$$

$$(\exists \cup, A = (n_1^2 + n_2^2)^{1/2}$$

更に、第3の実施例は、第2の実施例のステップ18に 続いてステップ19を行う構成をとる。即ち、ステップ 19において、ステップ18で投影されてできた3次元 トポロジを2次元相空間に射影する方法である。3次元 座標を(x, y, z)、2次元座標を(X, Y)とし、 3次元座標のx軸、y軸が2次元座標のX軸、Y軸とな*

$$\begin{cases} X = y & \cos \beta - x & \cos \alpha \\ Y = z - (x & \sin \alpha + y & \cos \beta) \end{cases}$$

以上説明した第1から第3の実施例においては、被験者 の測定データに基づき作成されたアトラクタ又はアトラ クタのトポロジを図1の表示部4又は印刷部5に出力さ せれば、その出力の図形等の形を見ることにより被験者 の健康状態を判定することができる。この場合の出力内 容については後述する。

【0040】これまでの第1から第3の実施例はカオス 状態の測定に関し、アトラクタ又はそのトポロジを利用 する場合であるが、これらとは別のものとして、次の第 4の実施例がある。第4の実施例は、ステップ11から ステップ16までは第1の実施例と同じであるが、その 後ステップ22に移り、ステップ16で作成された4次 元ベクトルからリアプノフ指数を作成する方法である。

【0041】リアプノフ指数とは、カオスの特徴の一つ である初期値依存性の程度を定量化した数値である。こ ※

の各4次元ベクトルを意味しており、サンプル数Nとは 上記のn-3 tを意味している。ステップ202で、i をOとする。ステップ203で、軌道上の基準点Aを設 定する。基準点Aとしてはサンプルデータの初めの点を とる。このことは、4次元相空間でのベクトルpiの終 端を点Aとすることに対応している。ステップ204 で、軌道上の点Aの次の点Bとする。即ち、4次元相空 間でいえばベクトルp2の終端が点Bである。ステップ 205で、jを0とする。ここで、jはサンプル点数の Nケに対応しており0からN-1の整数である。ステッ プ206で、サンプルデータの初めの点を点Cとする。

次元への座標変換を行う。この座標変換をベクトルpの 全要素に対して行い、3次元空間のアトラクタを2次元 平面に射影している。 [0039] 【数26】

*す角をα、βとしたときに、次式を用いて3次元から2

 $B = (1 - n_4^2)^{2}$

※のリアプノフ指数は、多次元相空間に存在するアトラク タ中の非常に接近した2本の軌道が、或る単位時間にお いてどの程度離れるかを計算することにより求めること ができる。この計算は、ウォルフの方法を用いて行う。 図6-1ないし図6-3はステップ22の詳細な説明図 である。図6-1ないし図6-3のステップの理解を助 けるために、図7に示すようにアトラクタの軌道とその 30 近くにある軌道を考える。図7は図5のアトラクタの軌 道の一部を拡大したものと考えればよい。

【0042】ステップ201で、サンプルデータのサン プル数をN、単位時間をτとした場合のmをm=N/τ とする。ここで述べるサンブルデータとは、埋め込み操 作で4次元相空間で作成された

[0043] 【数27】

実質的には、この場合点Cとしては点Aと同じサンプル データを初期設定することになる。ステップ207で、 点Cが点A及び点Bと一致するか否かを判定する。一致 しない場合には次のステップ208に進む。一致する場 合にはステップ250に進む。ステップ208で、ベク トルACとベクトルABとが直交するか否かを判断す る。ここで両ベクトルのなす角が 9 0° の場合は勿論、 所定の角度±αの範囲内に入る場合も両ベクトルが直交 すると判断する。ここでは $\alpha=5^\circ$ としている。 α が1 5°以上の場合にはリアプノフ指数の計算精度が悪くな り望ましくない。また、aが1°以下の小さい角の場合 50

には、サンブルデータ群の中から計算対象となる点を検 索することが困難となり望ましくない。 ステップ208 で、直交条件を満足する場合には、ステップ209へ進 む。直交条件を満足しない場合には、ステップ250へ 進む。ステップ209で、ベクトルACの長さが所定範 囲dmin からdmax の間の値か否かを判断する。この場 合dmin としてはアトラクタの最大幅の3%、dmax と してはアトラクタの最大幅の5%を設定している。この dmax が10%より大きい場合には、後述するL(i) がカオスの性質上飽和・収縮してしまうため望ましくな い。また、dmin が1%より小さな値の場合はL(i) が十分発展しないため正確なリアプノフ指数を計算する ことができない。ステップ209で距離が、所定範囲に 入ればステップ210に進み、所定範囲外であればステ ップ250に進む。なお、ステップ208とステップ2 09はどちらを先におこなっても良い。ステップ250 でjがNより大きいか否かを判断する。jがNより小さ ければステップ251に進み、jがN以上であればステ ップ260に進む。ステップ251で、jをj+1にす る。ステップ252で、点Cの次の点を点Cとし、ステ ップ207に戻る。ここでステップ250、251、2 52のループは、基準点Aからみて所定の条件を満足す る他の点が見つかるまで、各サンプルデータとの演算を 行うことを意味している。

【0044】ステップ210で、点Aからで時間後のを 点Dとし、点Dの次の点を点Eとし、点Cから:時間後 の点を点Fとする。ステップ211で、サンプルデータ の初めの点を点Gとする。実質的には、この場合点Gと しては点Aと同じサンプルデータを初期設定することに なる。ステップ212で、jを0とする。ステップ21 3で、点Gが点A、B、C、D、E、Fの何れかと一致 するか否かを判定する。一致しない場合には次のステッ. プ214に進む。一致する場合にはステップ253に進 ・む。ステップ214で、ベクトルDEとベクトルDGと が直交するか否かを判断する。ここでの直交条件はステ ップ208の場合と同じである。ステップ214で、直 交条件を満足する場合には、ステップ215に進む。直 交条件を満足しない場合には、ステップ253へ進む。 ステップ215で、ベクトルDFとベクトルDGとの平 行性を判断する。ここで両ベクトルのなす角が0°の場 合は勿論、所定の角度±βの範囲内に入る場合も両ベク トルが平行と判断する。この実施例ではβ=15°とし ている。βが30°以上の場合にはリアプノフ指数の計 算精度が悪くなり望ましくない。また、βが5°以下の 小さい角の場合にはサンプルデータ群の中から計算対象 となる点を検索することが困難となり望ましくない。ス テップ215で、平行条件を満足する場合には、ステッ プ216へ進む。平行条件を満足しない場合には、ステ ップ253へ進む。ステップ216で、ベクトルDFの 長さが所定範囲 d min から d max の間の値か否かを判断 する。このステップは209と同様である。ステップ216で距離が、所定範囲に入ればステップ217に進み、所定範囲外であればステップ253に進む。なお、ステップ214、ステップ215、ステップ216の順序は、入れ換えても構わない。ステップ253でjがNより大きいか否かを判断する。jがNより小さければステップ254に進み、jがN以上であればステップ260に進む。ステップ254で、jをj+1にする。ステップ255で、点Gの次の点を点Gとし、ステップ213に戻る。ここでステップ253、254、255のループは、点Dからみて所定の条件を満足する他の点が見つかるまで、サンプルデータとの演算を行うことを意味している。ステップ216で、ベクトルDGが所定範囲内である場合には、次のステップ217でベクトルの距離の比であるL(0)=DF/ACを算出する。

【0045】ステップ218で、iを1とする。ステッ プ219で、点Dから:時間後の点を点Hとし、点Hの 次の点を点Iとし、点Gからで時間後の点を点Jとす る。ステップ220で、サンプルデータの初めの点を点 Kとする。実質的には、この場合点Kとしては点Aと同 じサンプルデータを初期設定することになる。ステップ 221で、jを0とする。ステップ222で、点Kが点 D、E、F、G、H、I、Jの何れかと一致するか否か を判定する。一致しない場合には次のステップ223に 進む。一致する場合にはステップ256に進む。ステッ プ223で、ベクトルHIとベクトルHKとが直交する か否かを判断する。ここでの直交条件はステップ208 の場合と同じである。ステップ223で、直交条件を満 足する場合には、ステップ224に進む。直交条件を満 30 足しない場合には、ステップ255へ進む。ステップ2 24で、ベクトルHJとベクトルHKとの平行性を判断 する。ここでの平行条件はステップ215と同様であ る。ステップ224で、平行条件を満足する場合には、 ステップ225へ進む。平行条件を満足しない場合に は、ステップ256へ進む。ステップ225で、ベクト ルHKの長さが所定範囲 d min から d max の間の値か否 かを判断する。このステップは209と同様である。ス テップ225で距離が、所定範囲に入ればステップ22 6に進み、所定範囲外であればステップ256に進む。 なお、ステップ223、ステップ224、ステップ22 5の順序は、入れ換えても構わない。ステップ256で j がNより大きいか否かを判断する。 j がNより小さけ ればステップ257に進み、jがN以上であればステッ プ270に進む。ステップ257で、 jを j + 1にす る。ステップ258で、点Kの次の点を点Kとし、ステ ップ222に戻る。ここでステップ256、257、2 58のループは、点Hからみて他の点が見つかるまで、 サンプルデータとの演算を行うことを意味している。

【0046】ステップ225で、ベクトルHKが所定範 50 囲内である場合には、次のステップ226でベクトルの 距離の比であるL(1)=HJ/DGを算出する。ステップ228で、iがm-1より大きいか否かを判断する。iがm-1以下であれば、ステップ280に進み、iがm-1より大きい(即ち、iがm以上である)場合にはステップ229に進む。ステップ280では、点Hを改めて点Dとし、点Iを改めて点Eとし、点Kを改めて点Gとして、ステップ219に戻る。このループはリ*

$$\lambda = \lim_{m \to \infty} \frac{1}{N t}$$

このようにして作成したリアプノフ指数を表示部4、印刷部5又は外部記憶装置6の何れかに出力する。このリアプノフ指数から被験者の健康状態を判定することができる。これまで説明した第1から第4までの実施例は、カオス状態の測定方法に関するものであるが、方法に関する本発明の実施例としては、健康状態の判定方法についての次に説明する第5及び第6の実施例がある。

【0048】第3の実施例は、第1から第3の実施例のステップに続けてステップ20及びステップ21の処理を行う構成である。ステップ20においては、ステップ17で作成されたアトラクタ又はステップ18あるいはステップ19で作成されたアトラクタのトポロジを健康状態を示す参照用のアトラクタ又はアトラクタのトポロジと比較することにより被験者の健康状態の良否を判定し、ステップ21でその結果を出力する方法である。

【0049】健康状態の判定方法に関する発明の他の実施例としては、作成したリアプノフ指数を利用して、被験者の健康状態を判定する次の第6の実施例がある。第6の実施例は、第4の実施例のステップ22に続いて、ステップ23において、ステップ22で作成されたリアプノフ指数を健康状態を示す参照用のリアプノフ指数を健康状態を示す参照用のリアプノフ指数を健康状態を示す参照用のリアプノフ指数をはよびき健康状態の良否を判定するようにし、ステップ24でその結果を出力するものである。この場合には、発明者らの種々の測定の結果に成するリアプノフ指数の場合も、その値が0.1以下の場合には、健康状態がよくないと判定するように参照リアプノフ指数を設定すればよい。

【0050】次に本発明の測定方法により、測定したカオス状態の例について説明する。図8は、健康な男性の屈折力に関する情報から得られたアトラクタの二次元トポロジである。図8は典型的なシルニコフ型のアトラクタである。図9は図8の被験者の交換神経を刺激した場合のアトラクタであり、図10は図8の被験者の副交感神経を刺激した場合のアトラクタである。これに対して、図11は健康な被験者に対して副交感神経遮断剤を投与したのちに、屈折力に関する情報から得られたアトラクタの二次元トポロジである。これをみると、図8のような綺麗なアトラクタではないので、一見して被験者

*アプノフ指数の計算に必要な距離比を各点について算出 するためのものである。ステップ228でiがm以上の

するためのものである。ステップ228でiがm以上の場合には、ステップ229で、次式によりリアプノフ指数を算出する。

16

【0047】 【数28】

$$\sum_{i=0}^{N} \log_{i} L(i)$$

の健康状態の判定が可能なことがわかる。また、図12 は甲状腺機能亢進症で眼瞼遅延症状を呈する患者の屈折 力に関する情報から得られたアトラクタの二次元トポロ ジである。これは、図8に比べ極めて収敛性の弱いアト ラクタである。これも一見して健康な状態を示すアトラ クタと区別が容易である。また図13は、健康な男性の 瞳孔面積に関する情報から得られたアトラクタの二次元 トポロジである。これに対して、図14は健康な被験者 に対して副交感神経遮断剤を投与したのちに、瞳孔面積 に関する情報から得られたアトラクタの二次元トポロジ である。これらを比較してみると、図13の健康状態の 場合には図14のようなくびれが存在しないので、一見 して被験者の健康状態の判定が可能なことがわかる。

【0051】上述の第1から第6の実施例においては、水晶体の屈折力を利用する場合について述べたが、他の実施例としては視調節系の情報として瞳孔面積を利用する例がある。この場合にも実施例としては、ステップ12では対象の視調節系情報として瞳孔面積の時系列データを使用しステップ13以下は第1~第6の実施例と同様のステップで例えばよい。この場合において、瞳孔面積のデータの採取は、イリスコーダを使用すればよい。その際の測定周波数は望ましくは200Hz前後の値がよい。測定時間は及び測定点は上記第1の実施例と同様である。

【0052】また、別の実施例としては、水晶体の屈折 力と瞳孔面積の両方の情報を利用する場合がある。この 場合には、ステップ12で対象の視調節系情報として水 晶体の屈折力及び瞳孔面積の両方の時系列データをそれ ぞれ使用し、ステップ13以下は第1~第6の実施例と 同様のステップをそれぞれ行えばよい。以上説明した実 施例においては、視調節系の異常が内臓的な疾患に基づ く場合ではなく、VDTの作業等に従事した結果視覚疲 労を起こした場合を中心に解析した例を述べたものであ る。しかし、視調節系は自律神経によりコントロールさ れていることから、甲状腺機能亢進症や糖尿病等の自律 神経系の症状の判定にも利用できる。その場合には、各 症状に応じたアトラクタやアトラクタのトポロジ及びリ アプノフ指数に関する参照情報を記憶部31に記憶して おき、判定の際に被験者の視調節系情報から得られた演 50 算結果と記憶部31に予め記憶されている参照情報とを

比較すればよい。

[0053]

【効果】本発明は、視調節系のゆらぎに関する視調節系情報からアトラクタやリアプノフ指数を作成することにより、被験者の健康状態を簡易に、精度よく、また客観的に判定することができる情報を得ることができる。また、本発明は、予め記憶させてある健康状態を示す参照用のアトラクタやそのトポロジ又はリアプノフ指数と、被験者の視調節系情報から作成されたアトラクタやそのトポロジ又はリアプノフ指数とを比較することにより、被験者の健康状態を容易に、精度よくまた客観的に判定できる。

【図面の簡単な説明】

【図1】図1は、装置に関する本発明の実施例を示す図である。

【図2】図2は、方法に関する本発明の実施例を示す図 である。

【図3】図3は、本方法の発明の一部である瞬きに起因するノイズを除去するフローを示す図である。

【図4】図4は、本方法の発明の一部である4次元ベクトルの作成を説明するための図である。

【図 5 】図 5 は、 4 次元相空間のアトラクタのイメージ を説明するための図である。

【図6-1】図6-1は、本方法の発明の一部であるリアプノフ指数を算出するフローの一部を示す図である。

【図6-2】図6-2は、図6-1に続くフローの一部

を示す図である。

【図6-3】図6-3は、図6-2に続くフローの一部 を示す図である。

18

【図7】図7は、図7のリアプノフ指数の算出を説明するための図である。

【図8】図8は、健康な男性の屈折力に関する情報から 得られたアトラクタの二次元トポロジを示す図である。

【図9】図9は、図8の被験者の交感神経を刺激した場合のアトラクタを示す図である。

10 【図10】図10は、図8の被験者の副交感神経を刺激した場合のアトラクタを示す図である。

【図11】図11は、健康な波験者に対して副交感神経 遮断剤を投与したのちに、屈折力に関する情報から得ら れたアトラクタの二次元トポロジを示す図である。

【図12】図12は、甲状腺機能亢進症で眼瞼遅延症状を呈する患者の屈折力に関する情報から得られたアトラクタの二次元トポロジを示す図である。

【図13】図13は、健康な男性の瞳孔面積に関する情報から得られたアトラクタの二次元トポロジを示す図で20 ある。

【図14】図14は、健康な被験者に対して副交感神経 遮断財を投与したのちに、瞳孔面積に関する情報から得 られたアトラクタの二次元トポロジを示す図である。

【図15】図15は、従来の測定装置により得られる被験者の時系列データを示す図である。

[図4]

[図1]

[図3]

[図6-1]

[図6-2]

