

>>> 自信息量的性质和相互关系

$$I(x_k) = -\log P(x_k)$$

$$I(x_k, y_j) = -\log P(x_k, y_j)$$

$$I(x_k|y_j) = -\log P(x_k|y_j) \quad , I(y_j|x_k) = -\log P(y_j|x_k)$$

(1)概率为0时,相应的自信息量无意义。

(2)非负性。三种自信息量均非负。

>>> 自信息量的性质和相互关系

公式

$$I(x_k) = -\log P(x_k)$$
 , $I(x_k, y_j) = -\log P(x_k, y_j)$
 $I(x_k|y_j) = -\log P(x_k|y_j)$, $I(y_j|x_k) = -\log P(y_j|x_k)$

联合概率、条件概率和边缘概率之间的乘法关系:

$$P(x_k, y_j) = P(x_k)P(y_j|x_k) = P(y_j)P(x_k|y_j)$$

自信息量的可加性:
$$I(x_k, y_j) = I(x_k) + I(y_j|x_k)$$

= $I(y_j) + I(x_k|y_j)$

>>> 可加性的物理解释

自信息量的可加性: $I(x_k, y_j) = I(x_k) + I(y_j|x_k)$ = $I(y_i) + I(x_k|y_i)$

若 (x_k, y_j) 为信源发出的符号串,则 (x_k, y_j) 的不确定性

 (x_k, y_j) 的联合不确定性 $I(x_k, y_j)$

=符号 x_k 的不确定性 $I(x_k)$ +符号 y_j 在 x_k 出现的条件下的不确定性 $I(y_j|x_k)$

=符号 y_j 的不确定性 $I(y_j)$ +符号 x_k 在 y_j 出现的条件下的不确定性 $I(x_k|y_j)$

>>> 可加性的物理解释

自信息量的可加性: $I(x_k, y_j) = I(x_k) + I(y_j|x_k)$ = $I(y_i) + I(x_k|y_i)$

若针对非理想观察模型, x_k 是观察输入符号, y_j 是观察输出符号。观察系统的不确定性来自于:输入和随机干扰。

 (x_k, y_j) 的联合不确定性 $I(x_k, y_j)$

- =输入的不确定性 $I(x_k)$ +干扰引入的不确定性 $I(y_i|x_k)$
- =输出的不确定性 $I(y_j)$ +观察到 y_j 后还剩余的不确定性 $I(x_k|y_j)$

>>> 自信息量相互关系推广

自信息量的可加性:

$$I(x_k, y_j) = I(x_k) + I(y_j|x_k)$$
$$= I(y_j) + I(x_k|y_j)$$

推广到多维空间

自信息量可加性的链公式:

$$I(u_1, u_2, \dots, u_N) = I(u_1) + I(u_2|u_1) + I(u_3|u_1u_2) + \dots + I(u_N|u_1u_2 \dots u_{N-1})$$

>>> 特殊情况下自信息量相互关系

公式

$$I(x_k) = -\log P(x_k)$$
 , $I(x_k, y_j) = -\log P(x_k, y_j)$
 $I(x_k|y_j) = -\log P(x_k|y_j)$, $I(y_j|x_k) = -\log P(y_j|x_k)$

当 x_k 和 y_j 统计独立时,概率之间的乘法关系: $P(x_k, y_j) = P(x_k)P(y_j)$

自信息量的可加性: $I(x_k, y_j) = I(x_k) + I(y_j)$

可加性的链公式: $I(u_1, u_2, \dots, u_N) = I(u_1) + I(u_2) + \dots + I(u_N)$

DMS符号串不确定性等于各个独立符号的不确定性之和。

>>> 特殊情况下自信息量相互关系

例题: 设离散无记忆信源
$$\begin{bmatrix} a_1 = 0 & a_2 = 1 & a_3 = 2 & a_4 = 3 \\ 3/8 & 1/4 & 1/4 & 1/8 \end{bmatrix}$$

其发出的消息为202 120 130 213 001 203 210 110 321 010 021 032 011 223 210, 求该消息的自信息量以及消息中平均每个符号的自信息量。

解
$$I(\bar{u}) = 14I(a_1) + 13I(a_2) + 12I(a_3) + 6I(a_4)$$

= $14 \times \log \frac{8}{3} + 13 \times \log 4 + 12 \times \log 4 + 6 \times \log 8$
= 87.81 bit/消息

$$\frac{I(\bar{u})}{45}$$
 =87.81/45=1.95bit/符号

如果消息长度为无穷大,则该平均自信息量该如何计算?

Information theory

and

⑤ 武侯理卫大学