3.3.20) Prove $p, p^2 + 8$ are primes $\implies p^3 + 4$ is prime.

Proof. We know any prime p > 3 can take the form p = 6k + 1 or p = 6k + 5. Take p = 6k + 1. We have

$$p^{2} + 8 = (6k + 1)^{2} + 8$$
$$= 36k^{2} + 12k + 1 + 8$$
$$= 36k^{2} + 12k + 9$$
$$= 6(6k^{2} + 2k + 1) + 3.$$

It is clear that $6(6k^2 + 2k + 1) + 3$ is not a prime. Take p = 6k + 5. We have

$$p^{2} + 8 = (6k + 5)^{2} + 8$$
$$= 36k^{2} + 60k + 25 + 8$$
$$= 36k^{2} + 60k + 33$$
$$= 6(6k^{2} + 10k + 5) + 3.$$

It is clear that $6(6k^2 + 10k + 5) + 3$ is not prime. Therefore, we can conclude $p \le 3$. This means we have at least $p \in \{2,3\}$. Take p = 2. We have

$$p^2 + 8 = 2^2 + 8$$

= $4 + 8$
= 12 .

It is clear that 12 is not prime. Therefore $p \neq 2$. Take p = 3. We have

$$p^{2} + 8 = 3^{2} + 8$$
$$= 9 + 8$$
$$= 17.$$

17 is prime, so the condition holds if and only if p=3. We have p=3. Take

$$p^{3} + 4 = 3^{3} + 4$$
$$= 27 + 4$$
$$= 31.$$

31 is prime. Therefore, we have that $p, p^2 + 8$ are primes $\implies p^3 + 4$ is prime. \square