Projecteurs et symétries d'un espace vectoriel

Soient E un espace vectoriel et F, G deux sous-espaces vectoriels de E.

<u>Rappel</u>: si F et G sont supplémentaires dans E (i.e. $E = F \oplus G$) alors, par définition, tout vecteur $x \in E$ s'écrit de manière unique $x = x_F + x_G$ avec $x_F \in F$ et $x_G \in G$.

Exemple. Soient F = Vect((1, 1, 1), (1, 0, 1)) et G = Vect((0, 1, -1)).

On vérifie par le calcul que $\mathcal{B} = ((1,1,1),(1,0,1),(0,1,-1))$ est une famille libre donc une base de \mathbb{R}^3 (trois vecteurs en dimension trois). Ainsi, d'après l'une des caractérisations vues en cours sur les sous-espaces supplémentaires, on a $\mathbb{R}^3 = F \oplus G$.

Soit $u = (a, b, c) \in \mathbb{R}^3$. Il se décompose donc de manière unique $u = u_F + u_G$ avec $u_F \in F$ et $u_G \in G$. Précisément, $(a, b, c) = \alpha(1, 1, 1) + \beta(1, 0, 1) + \lambda(0, 1, -1)$ où (α, β, λ) sont les coordonnées de u dans \mathcal{B} . En résolvant le système d'inconnues α, β, λ on trouve $u_F = (a, b - a + c, a)$ et $u_G = (0, a - c, c - a)$.

Étant donnés deux sous-espaces supplémentaires et la décomposition $x = x_F + x_G$ associée, on peut alors définir une application linéaire en donnant l'image de x_F et celle de x_G .

Définition 1. Soient F et G deux sous-espaces supplémentaires de E i.e. $E = F \oplus G$. Tout vecteur $x \in E$ se décompose alors de manière unique comme $x = x_F + x_G$ avec $x_F \in F$ et $x_G \in G$. On appelle projecteur sur F parallèlement à G l'application linéaire p définie par : $\forall x \in E, \ p(x) = x_F$.

Proposition 1. La projection sur F parallèlement à G est l'unique endomorphisme p tel que

$$p|_F = \mathrm{id}_F$$
 et $p|_G = 0_G$.

Démonstration. Soient $x, y \in E$ et $\lambda \in \mathbb{K}$. On décompose $x = x_F + x_G$ et $y = y_F + y_G$ de sorte que

$$x + \lambda y = \underbrace{x_F + \lambda y_F}_{\in F} + \underbrace{x_G + \lambda y_G}_{\in G}$$
 (décomposition unique de $x + \lambda y$ selon $F \oplus G$).

Ainsi, $p(x + \lambda y) = x_F + \lambda y_F = p(x) + \lambda p(y)$ et donc $p \in \mathcal{L}(E)$. De plus, si $x \in F$ alors x = x + 0 et p(x) = x. Si $x \in G$ alors x = 0 + x et p(x) = 0.

<u>Unicité</u>: si $f \in \mathcal{L}(E)$ vérifie $f(x_F) = x_F$ pour tout $x_F \in F$ et $f(x_G) = 0$ pour tout $x_G \in G$ alors

$$\forall x \in E, \quad f(x) = f(x_F + x_G) = f(x_F) + f(x_G) = x_F = p(x).$$

Proposition 2. Si p est la projection sur F, parallèlement à G alors

$$F = \operatorname{Im}(p)$$
 et $G = \operatorname{Ker}(p)$.

Démonstration. D'après la proposition précédente, on a $G \subset \operatorname{Ker}(p)$. Montrons l'autre inclusion. Soit $x \in \operatorname{Ker}(p)$ avec $x = x_F + x_G$. Alors, $x_F = p(x) = 0$ donc finalement $x = x_G \in G$. $F \subset \operatorname{Im}(p)$: soit $x_F \in F$. On a vu que $x_F = p(x_F) \in \operatorname{Im}(p)$.

 $\operatorname{Im}(p) \subset F : \operatorname{soit} y \in \operatorname{Im}(p)$. Il existe $x \in E$ tel que y = p(x) donc $y = x_F \in F$.

Remarque 1. Dans le cas d'un projecteur, on a toujours $E = \text{Ker}(p) \oplus \text{Im}(p)$. C'est faux en général et ce n'est pas une caractérisation des projecteurs.

C. Darreye 1 PTSI Lycée Dorian

Proposition 3 (caractérisation des projecteurs). Soit $p \in \mathcal{L}(E)$.

Alors p est un projecteur si et seulement si $p \circ p = p$.

Démonstration. Si p est un projecteur alors $p(x) = x_F$ et $p \circ p(x) = p(x_F) = x_F = p(x)$.

Réciproquement, si $p \circ p = p$ alors il faut trouver les sous espaces vectoriels F et G.

On pose F = Im(p) et G = Ker(p) et on vérifie qu'ils sont supplémentaires.

Soit $x \in E$, montrons par analyse-synthèse qu'il existe un unique couple $(x_F, x_G) \in F \times G$ tel que $x = x_F + x_G$.

Analyse: soit $(x_F, x_G) \in F \times G$ tel que $x = x_F + x_G$. Il existe $x' \in E$ tel que $x_F = p(x')$ donc

$$p(x_F) = p^2(x') = p(x') = x_F.$$

Ainsi, par linéarité, $p(x) = p(x_F) + p(x_G) = x_F$ car $x_G \in \text{Ker}(p)$. D'où, $x_F = p(x)$ et $x_G = x - p(x)$. Synthèse : posons $x_F = p(x)$ et $x_G = x - p(x)$. On a

- $x_F \in F$;
- $p(x_G) = p(x) p^2(x) = 0_E \text{ i.e. } x_G \in G;$
- $\bullet \ \ x = x_F + x_G.$

Finalement $p \in \mathcal{L}(E)$ vérifie $p(x) = x_F$ pour tout $x \in E$, ce qui est la définition de la projection sur F parallèlement à G.

Définition 2. Soient F et G deux sous-espaces supplémentaires de E. Pour $x \in E$, on note $x = x_F + x_G$ la décomposition associée. On appelle symétrie par rapport à F et parallèlement à G l'application linéaire s définie par : $\forall x \in E$, $s(x) = x_F - x_G$. C'est l'unique endomorphisme s tel que

$$s|_F = \mathrm{id}_F$$
 et $s|_G = -\mathrm{id}_G$.

Remarque 2. Cette dernière propriété se démontre de la même façon que la proposition 1

Proposition 4. Si s est la symétrie par rapport à F et parallèlement à G alors

$$F = \operatorname{Ker}(s - \operatorname{id}_E)$$
 et $G = \operatorname{Ker}(s + \operatorname{id}_E)$.

Démonstration.

 $\underline{F \subset \operatorname{Ker}(s - \operatorname{id}_E)} : \operatorname{soit} x \in F, \operatorname{alors} s(x) = s(x+0) = x \operatorname{donc} s(x) - x = 0 \text{ i.e. } x \in \operatorname{Ker}(s - \operatorname{id}_E).$ $\underline{\operatorname{Ker}(s - \operatorname{id}_E) \subset F} : \operatorname{soit} x \in \operatorname{Ker}(s - \operatorname{id}_E) \text{ i.e. } s(x) = x. \operatorname{Alors} x_F + x_G = x = s(x_F + x_G) = x_F - x_G.$ $\underline{\operatorname{Par unicit\'e de l'\'ecriture}}, \operatorname{on a} x_G = -x_G \text{ i.e. } x_G = 0 \operatorname{donc finalement} x = x_F \in F.$

 $\underline{G \subset \operatorname{Ker}(s+\operatorname{id}_E)} : \operatorname{soit} \ x \in G, \ \operatorname{alors} \ s(x) = s(0+x) = -x \ \operatorname{donc} \ s(x) + x = 0 \ i.e. \ x \in \operatorname{Ker}(s+\operatorname{id}_E).$ $\underline{\operatorname{Ker}(s+\operatorname{id}_E) \subset G} : \operatorname{soit} \ x \in \operatorname{Ker}(s+\operatorname{id}_E) \ i.e. \ s(x) = -x. \ \operatorname{Alors} \ -x_F - x_G = -x = s(x_F + x_G) = x_F - x_G.$ Par unicité de l'écriture, on a $-x_F = x_F$ i.e. $x_F = 0$ donc finalement $x = x_G \in G$.

Proposition 5 (lien entre projecteur et symétrie). Soit $p \in \mathcal{L}(E)$. On pose $s = 2p - \mathrm{id}_E$.

Alors p est le projecteur sur F parallèlement à G si et seulement si s est la symétrie par rapport à F parallèlement à G.

Démonstration. Si p est un projecteur alors $x=p(x)+x_G$ i.e. $x_G=x-p(x)$ donc $s(x)=2p(x)-x=p(x)-x_G$ et s est bien la symétrie associée à F et G. Si s est une symétrie alors $s(x_F+s_G)=x_F-x_G$ donc $p(x)=\frac{1}{2}(s(x)+x)=\frac{1}{2}(x_F-x_G+(x_F+x_G))=x_F$.

C. Darreye 2 PTSI Lycée Dorian

Proposition 6 (caractérisation des symétries). Soit $s \in \mathcal{L}(E)$.

Alors s est une symétrie si et seulement si $s \circ s = id_E$.

Démonstration. Si s est une symétrie alors $s(s(x)) = s(x_F - x_G) = x_F + x_G = x$.

Réciproquement, si $s \circ s = \mathrm{id}_E$ alors on pose $p = \frac{1}{2}(s + \mathrm{id}_E)$. Ainsi $p^2 = \frac{1}{4}(s^2 + 2s + \mathrm{id}_E) = p$ donc p est un projecteur et finalement s est une symétrie d'après la proposition 5.

Illustration des notions de projecteur et symétrie dans le cas où dim E=2 et où F et G sont deux droites supplémentaires.

Exercise 1. On seplace dans \mathbb{R}^3 . On note F = Vect((1,1,1)) et $G = \{(x,y,z) \in \mathbb{R}^3 \mid 2x + y - z = 0\}$.

- 1. Montrer que $F \oplus G = \mathbb{R}^3$.
- 2. Déterminer l'expression analytique de la projection sur F parallèlement à G, puis de la symétrie par rapport à G parallèlement à F.

Solution.

- 1. F est une droite et G un plan donc $\dim F + \dim G = 1 + 2 = \dim \mathbb{R}^3$. De plus si $u \in F \cap G$ alors u = (x, x, x) et 2x + x x = 0 donc x = 0 i.e. u = (0, 0, 0). D'où $\mathbb{R}^3 = F \oplus G$.
- 2. Il faut déterminer pour tout $u=(x,y,z)\in\mathbb{R}^3$ sa décomposition selon $F\oplus G$. On cherche donc $\lambda\in\mathbb{R}$ tel que $u-\lambda(1,1,1)\in G$ *i.e.*

$$2(x-\lambda) + (y-\lambda) - (z-\lambda) = 0 \iff \lambda = x + \frac{y}{2} - \frac{z}{2}.$$

On en déduit que

$$u = \left(x + \frac{y}{2} - \frac{z}{2}\right)(1, 1, 1) + \left(-\frac{y}{2} + \frac{z}{2}, -x + \frac{y}{2} + \frac{z}{2}, -x - \frac{y}{2} + \frac{3}{2}z\right).$$

C. Darreye 3 PTSI Lycée Dorian

D'où $p(x, y, z) = (x + \frac{y}{2} - \frac{z}{2}, x + \frac{y}{2} - \frac{z}{2}, x + \frac{y}{2} - \frac{z}{2})$ et s = 2p' – id avec p' la projection sur G donc s(x, y, z) = (-y + z, -2x + y + z, -2x - y + 3z) - (x, y, z) = (-x - y + z, -2x + z, -2x - y + 2z).