## Tarea 1 Elección Discreta

Julio C. Marentes

2025-03-03

## Pregunta 1

Considere el modelo el modelo logit condicional usando los datos en yogurt.csv. La utilidad representativa es

$$v_{nj} = \alpha_j + \beta x_{nj}$$

donde  $x_{nj} = (price_j, feat_j)$ 

1. Normalize  $\alpha_4 = 0$ . Argumente porque con esta normalización el modelo está identificado.

Al importar solamente la diferencia entre las utilidades  $(v_{jn} - v_{in})$ , la diferencia entre 2  $\alpha$ 's al ser una constante, existe una cantidad infinita de parejas de números reales que su diferencia es la misma constante. Es por eso que tomamos una "condición inicial" normalizando una constante a cero. En este caso, al hacer  $\alpha_4 = 0$ , logramos una única triada de valores del resto de las  $\alpha$ 's que cumplen estas diferencias mencionadas.

## Estimación de los parámetros por máxima verosimilitud

A continuación se muestra:

- 1. Medias muestrales del proceso Bootsrap (3211 iteraciones)
- 2. Matriz de varianzas y covarianzas muestral, la diagonal representa la varianza estimada bajo el supuesto que cada parámetro distribuye asintóticamente normal ("Asintotia")
- 3. Correlograma para observar relación entre los parámetros, si fuese necesario ese análisis.
- 4. Distribución de los valores estimados de cada parámetro. Recuerdese que  $\alpha_4$  es idénticamente 0.

| serie      | mean        |
|------------|-------------|
| alpha_1    | 1.3272956   |
| alpha_2    | 0.4338705   |
| alpha_3    | -3.4655162  |
| beta_feat  | 0.6359455   |
| beta_price | -43.6612474 |

|         | alpha_1   | alpha_2   | alpha_3    | beta_feat  | beta_price |
|---------|-----------|-----------|------------|------------|------------|
| alpha_1 | 0.0135621 | 0.0040012 | -0.0059891 | -0.0007697 | -0.3108392 |
| alpha 2 | 0.0040012 | 0.0049621 | 0.0018481  | 0.0000954  | -0.0378465 |

|               | alpha_1    | alpha_2    | alpha_3   | beta_feat | beta_price |
|---------------|------------|------------|-----------|-----------|------------|
| alpha_3       | -0.0059891 | 0.0018481  | 0.0271052 | 0.0018818 | 0.3039621  |
| beta_feat     | -0.0007697 | 0.0000954  | 0.0018818 | 0.0249585 | 0.0115712  |
| $beta\_price$ | -0.3108392 | -0.0378465 | 0.3039621 | 0.0115712 | 11.0654597 |











