Machine Learning Übungsblatt 4

Ramon Leiser

Tobias Hahn

December 6, 2016

1 Begriffsdefinitionen

2 Markov Ketten

3 Hidden Markov Modell

3.1 Modelle

Spielstandsänderung(t)	Spielstandsänderung(t+1)	P(Spielstandsänderung(t+1)-Spielstandsänderung(t))
KÄ	KÄ	0.6
KÄ	TG	0.2
KÄ	m TW	0.2
TW	KÄ	0.4
TW	TG	0.3
TW	TW	0.3
TG	KÄ	0.4
TG	TG	0.4
TG	TW	0.2

Table 1: Transitionsmodell

Laut	Spielstandsänderung	P(Laut—Spielstandsänderung)
Ole	KÄ	0.8
Toor	KÄ	0.05
Ohhh	KÄ	0.15
Ole	TG	0.1
Toor	TG	0.2
Ohhh	TG	0.7
Ole	TW	0.1
Toor	TW	0.8
Ohhh	TW	0.1

Table 2: Sensormodell

Zustand	P(Zustand)
KÄ	0.33
TG	0.33
TW	0.33

Table 3: A priori Wahrscheinlichkeiten

3.2 FORWARD-Algorithmus

3.2.1 Berechnungen

```
\begin{array}{l} {\rm Calculations} \\ {\rm P(KAE|Ole)} = {\rm P(Ole|KAE)} \ * \ ({\rm P(KAE|KAE)} \ * \ {\rm P(KAE)} \ + \ {\rm P(KAE|TW)} \ * \ {\rm P(TW)} \ + \ {\rm P(KAE|TG)} \ * \ {\rm P(TG)}) = \\ {\rm 0.26664} \ \tilde{\ } = 0.824742268041 \\ {\rm P(TW|Ole)} = {\rm P(Ole|TW)} \ * \ ({\rm P(TW|KAE)} \ * \ {\rm P(KAE)} \ + \ {\rm P(TW|TW)} \ * \ {\rm P(TW)} \ + \ {\rm P(TW|TG)} \ * \ {\rm P(TG)}) = 0.03333 \\ \tilde{\ } = 0.103092783505 \\ {\rm P(TG|Ole)} = {\rm P(Ole|TG)} \ * \ ({\rm P(TG|KAE)} \ * \ {\rm P(KAE)} \ + \ {\rm P(TG|TW)} \ * \ {\rm P(TW)} \ + \ {\rm P(TG|TG)} \ * \ {\rm P(TG)}) = \\ 0.023331 \ \tilde{\ } = 0.0721649484536 \end{array}
```

Scores

+	
Score	Wahrscheinlichkeit
0:0	0.825
1:0	0.103
0:1	0.072

Calculations

 $P(KAE|Ole) = P(Ole|KAE) * (P(KAE|KAE) * P(KAE) + P(KAE|TW) * P(TW) + P(KAE|TG) * P(TG)) = 0.423917525773 \ \tilde{} = 0.864410342653$

Scores

Score	Wahrscheinlichkeit
0:0	0.713
1:0	0.153
0:1	0.110
2:0	0.008
1:1	0.012
0:2	0.004

Calculations

Scores

Score	Wahrscheinlichkeit
0:0	0.182
1:0	0.125
0:1	0.473
2:0	0.021
1:1	0.112
0:2	0.070
3:0	0.001
2:1	0.006
1:2	0.008
0:3	0.003

Calculations

Scores

Score	Wahrscheinlichkeit
0:0	0.148
1:0	0.122
0:1	0.399

2:0	0.030
1:1	0.153
0:2	0.093
3:0	0.003
2:1	0.019
1:2	0.022
0:3	0.007
4:0	0.000
3:1	0.001
2:2	0.001
1:3	0.001
0:4	0.000

Calculations

 $\begin{array}{l} \text{Cateurations} \\ \text{P(KAE | Toor !)} = \text{P(Toor ! | KAE)} * (\text{P(KAE | KAE)} * \text{P(KAE)} + \text{P(KAE | TW)} * \text{P(TW)} + \text{P(KAE | TG)} * \text{P(TG)}) \\ &= 0.0262858574288 \ \tilde{} = 0.0677968291844 \\ \text{P(TW | Toor !)} = \text{P(Toor ! | TW)} * (\text{P(TW | KAE)} * \text{P(KAE)} + \text{P(TW | TW)} * \text{P(TW)} + \text{P(TW | TG)} * \text{P(TG)}) = \\ &= 0.0262858574288 \ \tilde{} = 0.0677968291844 \\ \text{P(TW | Toor !)} = \text{P(Toor ! | TW)} * (\text{P(TW | KAE)} * \text{P(KAE)} + \text{P(TW | TW)} * \text{P(TW)} + \text{P(TW | TG)} * \text{P(TG)}) = \\ &= 0.0262858574288 \ \tilde{} = 0.0677968291844 \\ \text{P(TW | Toor !)} = \text{P(Toor ! | TW)} * (\text{P(TW | KAE)} * \text{P(KAE)} + \text{P(TW | TW)} * \text{P(TW)} + \text{P(TW | TG)} * \text{P(TG)}) = \\ &= 0.0262858574288 \ \tilde{} = 0.0677968291844 \\ \text{P(TW | Toor !)} = \text{P(Toor ! | TW)} * (\text{P(TW | KAE)} * \text{P(KAE)} + \text{P(TW | TW)} * \text{P(TW)} + \text{P(TW | TG)} * \text{P(TG)}) = \\ &= 0.0262858574288 \ \tilde{} = 0.0677968291844 \\ \text{P(TW | Toor !)} = \text{P(Toor ! | TW)} * (\text{P(TW | TW)} * \text{P(TW)} + \text{P(TW | TG)} * \text{P(TG)}) = \\ &= 0.0262858574288 \ \tilde{} = 0.0677968291844 \\ \text{P(TW | TOOR !)} = \text{P(TOOR ! | TW)} * (\text{P(TW | TOOR | TW)} + \text{P(TW | TW)} * \text{P(TW | TW)} * \text{P(TW | TW)} * \text{P(TW | TW)} + \text{P(TW | TW)} * \text{P(TW$

0.305143429715 $^{\sim}=0.78702994708$

Scores

Score	Wahrscheinlichkeit
0:0	0.010
1:0	0.125
0:1	0.049
2:0	0.098
1:1	0.342
0:2	0.064
3:0	0.024
2:1	0.126
1:2	0.097
0:3	0.014
4:0	0.002
3:1	0.016
2:2	0.021
1:3	0.009
0:4	0.001
5:0	0.000
4:1	0.001
3:2	0.001
2:3	0.001
1:4	0.000

3.2.2 A priori Verteilung

Die Wahl einer gleichverteilten a priori Verteilung erscheint mir sinnvoll, da man ja am Anfang nichts über das Spiel weiß und daher auch keine Annahmen darüber treffen sollte. Nun könnte man natürlich auch sagen dass man schon etwas allgemeines über das Spiel aussagen könnte, wie z.B. dass Werder Bremen eine eher schlechte Mannschaft ist, dass daher die a priori Wahrscheinlichkeit für TW niedriger, die a priori Wahrscheinlichkeit für TG eher höher angesetzt werden sollte. Andererseits könnte man behaupten dass es relativ sicher ist dass es ein Geräusch gibt wenn ein Tor fällt, dass also die Wahrscheinlichkeit für TW und TG vor dem ersten Geräusch ziemlich niedrig ist.