

Informe Laboratorio de Máquinas: Ensayo de un ventilador radial

Laura Constanza Salinas Pizarro Escuela de Ingeniería Mecánica Pontificia Universidad Católica de Valparaíso laura.salinas.p@gmail.com

11 de diciembre de $2020\,$

${\rm \acute{I}ndice}$

1.	Objetivo.	
2.	Trabajo de laboratorio.	
	Informe.	
	3.1. Tabla de valores medidos	
	3.2. Fórmulas	
	3.3. Tabla de valores calculados	
	3.4. Gráficos	

1. Objetivo.

Determinar el comportamiento de un ventilador radial.

2. Trabajo de laboratorio.

Hacer un reconocimiento del dispositivo de ensayo.

Poner en marcha la instalación, con la descarga totalmente abierta.

Luego de inspeccionar los instrumentos y su operación y esperar que se estabilice su funcionamiento, tome las siguientes mediciones:

Finalizadas estas, estrangular la descarga colocando un disco con una abertura menor.

El procedimiento se repite hasta colocar el disco menor y luego tapar totalmente la descarga.

La presión atmosférica, $[mm_{Hg}]$, se mide al inicio del ensayo.

3. Informe.

3.1. Tabla de valores medidos.

VALORES MEDIDOS									
	nx	P _{e4}	ta	td	W_1	W_2	P_{atm}		
	[rpm]	[mmca]	[°C]	[°C]	[kW]	[kW]	[mm _{Hg}]		
1	1831	5	21	23	0,44	0,82	758,8		
2	1845	30	22	23	0,34	0,7	758,8		
3	1867	45	22	23	0,19	0,56	758,8		
4	1867	48,5	21	23	0,14	0,52	758,8		
5	1871	57	21,5	23	0,11	0,49	758,8		

^{*} P_{e4} presión diferencial $[mm_{H2O}]$.

^{*} nx velocidad del ventilador [rpm].

^{*} t_a temperatura ambiente [C].

 $[*]t_d$ temperatura de descarga [C].

^{*}W1, W2 potencia eléctrica, método 2 wat. [kW].

3.2. Fórmulas.

Caudal:

$$q_{vm} = \alpha * s_5 * \left(\frac{2 * P_{e4}}{\rho_{05}}\right)^{1/2} [m^3/s]$$
 (1)

DATOS						
D_5	D ₅ /D ₄	α				
[mm]	[-]	[-]				
00	00	0.600				
90	0.15	0.6025				
120	0.2	0.604				
180	0.3	0.611				
300	0.5	0.641				

 P_{e4} en [Pa] en todas las fórmulas.

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{V_1^2}{2} * \rho_{medio} [Pa]$$
 (2)

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[m/s \right] \tag{3}$$

con: $S_1 = 0,070686$ $[m^2]$

Potencia eléctrica:

$$N_e lec = W1 + W2 [kW] \tag{4}$$

Potencia hidráulica:

$$N_h = q_{vm} * \Delta P [kW] \tag{5}$$

Rendimiento global:

$$N_g l = \frac{N_h * 100}{N_{elec}} \ [\%]$$
 (6)

Corregir los valores respecto a la velocidad.

3.3. Tabla de valores calculados.

			41 6111 4 54						
VALORES CALCULADOS									
gvm	ΔΡ	V1	pmed	Ne	Nh	ηgl			
[m3/s]	[Pa]	[m/s]	[kg/m3]	[kW]	[kW]	[%]			
0.41104	52 2379	5 8150	1 1956	1 26	0.0215	1,7041			
0,34480	298,2839	4,8780	1,1950	1,04	0,1028	9,8893			
0,18588	442,5947	2,6297	1,1959	0,75	0,0823	10,969			
0,10825	475,8685	1,5314	1,1981	0,66	0,0515	7,8048			
0	558,6000	0	1,1976	0,6	0	0			
	0,41104 0,34480 0,18588 0,10825	qvm ΔP [m3/s] [Pa] 0,41104 52,2379 0,34480 298,2839 0,18588 442,5947 0,10825 475,8685	qvm ΔP V1 [m3/s] [Pa] [m/s] 0,41104 52,2379 5,8150 0,34480 298,2839 4,8780 0,18588 442,5947 2,6297 0,10825 475,8685 1,5314	qvm ΔP V1 ρmed [m3/s] [Pa] [m/s] [kg/m3] 0,41104 52,2379 5,8150 1,1956 0,34480 298,2839 4,8780 1,1950 0,18588 442,5947 2,6297 1,1959 0,10825 475,8685 1,5314 1,1981	[m3/s] [Pa] [m/s] [kg/m3] [kW] 0,41104 52,2379 5,8150 1,1956 1,26 0,34480 298,2839 4,8780 1,1950 1,04 0,18588 442,5947 2,6297 1,1959 0,75 0,10825 475,8685 1,5314 1,1981 0,66	qvm ΔP V1 ρmed Ne Nh [m3/s] [Pa] [m/s] [kg/m3] [kW] [kW] 0,41104 52,2379 5,8150 1,1956 1,26 0,0215 0,34480 298,2839 4,8780 1,1950 1,04 0,1028 0,18588 442,5947 2,6297 1,1959 0,75 0,0823 0,10825 475,8685 1,5314 1,1981 0,66 0,0515			

3.4. Gráficos.

Trace los siguientes gráficos:

3.4.1 Curva $\Delta \mathrm{P}$ - q_{vm}

3.4.1.1.¿Qué tipo de ventilador es? Descríbalo con detalle.

Es un ventilador radial, que tiene los álabes curvados hacia adelante, el cual está conectado a un motor a través de una transmisión.

Este ventilador tiene un fuelle el cual es el encargado de amortiguar las vibraciones, y a continuación de este fuelle se pasa de una sección rectangular a una sección circular. Dentro de esta sección circular se encuentran unas placas cruzadas las cuales dismininuyen las turbulencias del aire.

Finalmente se tiene una sección divergente, en un ángulo de 7°, que termina en una parte cilíndrica.

3.4.1.2.; Las curvas tiene la forma esperada para ese tipo de ventilador?

Las curvas si tienen la forma esperada en este tipo de ventilador, ya que a medida que va disminuyendo el caudal en la salida del ventilador, mayor va siendo el valor de la presión que se genera en esa sección.

3.4.2. Curva de potencia eléctrica vs caudal

3.4.2.1.; Cuál es la potencia máxima consumida?

El valor de la potencia máxima consumida es de 1,26 [kW].

3.4.2.2.¿Cuál es su posible potencia en el eje?

La posible potencia en el eje va a corresponder a la multiplicación entre el momento en el eje y la velocidad de giro del eje.

3.4.3. Curva de rendimiento vs caudal.

3.4.3.1. ¿Cuál es el punto de óptimo rendimiento?

El punto de rendimiento óptimo corresponde al mayor valor alcanzado en la curva, por lo que en este caso correspondería a un $10.96\,\%$.