LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Tredimensionell vektoranalys 2013-01-07, klockan 8-10

INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.

- **1.** a) Låt $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ vara ett C^2 -fält. Visa att $\nabla \times \mathbf{f}$ är ett divergensfritt fält. (0.5)
 - **b)** Låt $g: \mathbb{R}^3 \to \mathbb{R}$ vara C^2 . Visa att $\nabla \times (g\nabla g) = \mathbf{0}$. Har fältet $g\nabla g$ en potential? Ange i så fall potentialen. (0.5)
- 2. a) Beräkna

$$\int_{\mathbf{v}} \mathbf{f} \cdot d\mathbf{r},$$

där γ är en cirkel i planet x+2y-2z=5 och $\boldsymbol{f}=(z-x^2\,,\,y^3+x\,,\,z^3-x)$. Välj själv orientering på γ , och ange vilken orientering du använder. (0.5)

b) Låt Y vara ytan som definieras av $z=6-x^2-y^2$ och $x^2+y^2\leq 4$ och låt Y ha den orientering som ger normalen positiv z-koordinat. Beräkna

$$\iint_{Y} \boldsymbol{g} \cdot d\boldsymbol{S},$$
där $\boldsymbol{g} = (x - \sin y, y - \cos x, 2z).$ (0.5)

LYCKA TILL!