

"main" — 2023/6/10 — 15:53 — page i — #1

"main" — 2023/6/10 — 15:53 — page ii — #2

"main" — 2023/6/10 — 15:53 — page iii — #3

"main" — 2023/6/10 — 15:53 — page iv — #4

In memory of Christian Freksa 26.06.1950–12.11.2020

"main" — 2023/6/10 — 15:53 — page vi
 — #6

Preface

Who should read this book

This book is intended for readers from any background interested in the issues that arise when computing technology meets spatial information—in other words, in GIS! You do not need to be a specialist computing scientist already; the text develops the necessary background in specialist areas, such as databases, system architecture, and AI, as it progresses. Nevertheless, some knowledge of, and interest in the basic components and functionality of computers is essential for understanding the importance of certain key issues in GIS. Where some aspect of general computing bears a direct relevance to our development, the background is given in the text.

This book can be used as a teaching text, taking readers through the main concepts by means of definitions, explications, and examples. However, the more advanced reader is not neglected, and the book attempts to highlight the threads and references that can be used to follow up on particular research topics.

Changes to the third edition

In a highly technology-led area, such as GIS, the pace of technological change sometimes feels like shifting sand under one's feet. Returning to write the third edition, it was again encouraging to see that the spine of the first edition—databases and spatial data, structures, algorithms, and indexes (Chapters 2, 3, 5, 6)—continues to stand the test of time.

While that core is still sound, the third edition has of course been extensively revised and updated, and complemented by significant new material, especially in those other areas where the field has moved more rapidly. Graph databases have now been added to the core as a major new topic. The material on time has been significantly reorganized and extended, reflecting a tighter integration of space and time in the field more generally. The fundamental material on models and modeling has also been significantly revised and reorganized to strengthen the clarity and messaging. Major new material reflecting important advances in the technology has been added in connection with architectures (Chapter 7, including cloud computing, stream computing, and sensor networks). The material on cartography and visualization (Chapter 8) has be extensively rewritten and redeveloped with largely new content. Finally, the introduction of an entirely new chapter on AI and GIS (Chapter 9, including ontologies, spatial reasoning, machine leaning and spatial analysis, and deep learning) is a reflection of the rapid advances in this area over the past decade.

viii

In addition to the changes in content, we have striven to make further improvements to the format to produce a more attractive and readable book. The format for the book has been completely revised in full color, in particular with all figures either new or completely regenerated. The text has likewise been completely rewritten with the continuing aim of making the book more accessible to an ever-wider audience. Every chapter begins with a new summary, outlining the major ideas and learning objectives in that chapter. At its close, every chapter ends with some more personal reflections and perspectives on the topic from the authors.

Before sitting down to write a third edition, it was essential for us to move the book towards open access. We are very grateful to the Taylor & Francis team for working with us to enable five chapters—half the book—to be made freely available online and open access. Another important change, which may not be immediately obvious, is the conscious effort to rebalance the list of references. The cited references in the second edition were overwhelmingly to male authors—of more than 300 references in the second edition, over 86% were authored exclusively by men. In writing the third edition, we have attempted to address this stubborn bias by actively seeking out the abundance of excellent research by women GI scientists. It has been a joy to read and reread these works of women researchers, who continue to be systematically under-cited and under-recognized as they have been for the entire history of the field.¹

Finally, following the pattern Mike Worboys began in 2004 by inviting Matt Duckham to become a co-author of the second edition, Matt and Mike welcome Qian (Chayn) Sun on to this third edition as a third author. With a background in geography and GIS, Chayn has brought her own fresh perspective and distinct expertise to the third edition, in particular, in web mapping, cloud computing, critical geography, and machine learning with GIS. We hope you will agree that this third edition has succeeded in maintaining the high standards set by GIS: A Computing Perspective back in 1994!

Formatting used in this book

Several formatting conventions, continued from the second edition, have been used in this book. Material that is relevant to the main themes in the text, but not essential to the reader, is clearly separated out in purple inset boxes, usually at the top of a page. Boxes typically contain interesting asides, more challenging material, or background to a topic, as well as references and links that readers may wish to pursue. With over 60 such boxes, a complete list is included in the front matter to the book for ease of reference. A list of insets is included in the book's front matter.

Throughout this book, we have used margin text to allow rapid reference to important terms. When an important term is first defined or introduced, that term will appear in the margin. A corresponding entry can be found in

ix

the index, with the page reference in bold typeface. This enables the reader to use the index as an extensive glossary of more than 1200 terms used in this book. Each index term has at most one bold typeface page reference, and a term can be rapidly located within a page by finding the corresponding margin entry. In addition to normal- and bold-typeface index entries, those index entries that appear in italics refer to terms that appear within an inset

Structure of this book

box.

Figure 1 indicates the overall structure of interdependencies between chapters. Readers may find it helpful to refer to Figure 1 to tailor their use of this book to their own particular interests and prior background.

Figure 1: Relationships between chapters

Chapter 1 motivation and introduction to GIS; preparatory material on general computing; and an overview of what makes "spatial special";

Chapters 2–3 relational and graph databases; conceptual data modeling; foundations and formalisms for spatial concepts;

X

Chapter 4 high-level modeling of space and time; object- and field-based models; time in GIS;

Chapters 5–6 exposition of the core material; spatial algorithms and data structures; spatial indexes and access methods;

Chapter 7 GIS system architecture and distributed systems; web mapping; stream computing and sensor networks;

Chapter 8 graphic design and cartography; GIS interface and interaction design; visualization of geospatial data;

Chapter 9 ontology engineering and spatial reasoning; machine learning and deep learning; "GeoAI"; and

Chapter 10 uncertainty and imperfection in spatial information; location privacy; critical GIS.

Online resources

The website that accompanies this book can be found at:

http://gisacp.duckham.org

The resources at this site are constantly under development, but they include resources such as sample exercises, lecture slides and notes, open-source computer code, sample material, useful links, errata, and contact information. We welcome suggestions from readers as to resources that we should include on the website, or indeed any feedback or comments on the book itself. Matt can be contacted on Mastodon on @mduckham@mastodon. au or Twitter at @geospatial_md; other up-to-date contact information can be found on the website.

ACKNOWLEDGMENTS

Matt and Chayn are very grateful for the support of RMIT University friends and colleagues in Melbourne, including members of the Geospatial Sciences team, the STEM College, and the Research and Innovation teams led by Swee Mak and Calum Drummond.

Special thanks are due to Sarah Rigbye and Prag Sapkota who assisted with the conversion of second edition chapters and the development of some of the figures. The original characters adapted for use in many figures are from a series by Nadia Snopek. The authors are grateful to Mark Newman for permission to use his cartogram on page 320. We would also like to thank the Taylor and Francis production and editorial team for their support, and in particular Irma Britton for her patience and persistence over more than a decade that this edition was in the making.

Finally, Matt will be forever grateful to his family in Melbourne—Laurie, Nola, Tess, Sophie, Eloise, James, Russell, Josh, Frankie, Nina, Allison, Andy, Aidan, and Anja—for their love, patience, and encouragement, and most especially to Ingrid for sharing her joyful laughter, wise counsel, and inexhaustible kindness.

Matt Duckham, Chayn Sun, and Mike Worboys, January 2023

"main" — 2023/6/10 — 15:53 — page xii — #12

Artwork

I am a part Indigenous Australian artist originally from Grafton, Northern NSW, identifying as Bundjalung for the land I was born and grew up on, as well as Anaiwan and Kamilaroi—the nations of my ancestors. I draw my artistic inspiration from nature and my everyday surroundings, highlighting the similarities in our life's journeys with that of the universe and everything living within it.

This artwork reflects the geographical lines and pathways of the lands we walk upon every day. What once were carved by the oceans currents and tides, are now the hills and valleys we travel through. Much like the paths we take with every decision we make, the winds and waters travel scientifically the same.

Lou Bloomer, June 2023

"main" — 2023/6/10 — 15:53 — page xiv — #14

Contents

1	Intr	oduction	1
	1.1	What is a GIS?	1
	1.2	GIS applications	7
	1.3	GIS models and data	16
	1.4	Computing technologies	24
	1.5	What makes spatial special?	31
2	Fun	damental Database Concepts	37
	2.1	Introduction to databases	37
	2.2	Database design	44
	2.3	Relational databases	52
	2.4	Graph databases	65
3	Fun	damental Spatial Concepts	77
	3.1	Euclidean space	78
	3.2	Set-based spaces	83
	3.3	Topology of space	91
	3.4	Further spaces	111
4	Mod	lels of Geospatial Information	125
	4.1	Object-based models	126
	4.2	Field-based models	138
	4.3	Time, events, and processes	151
5	Rep	resentation and Algorithms	165
	5.1	Computing with spatial data	165
	5.2	Representing spatial objects	175
	5.3	Representing fields	183
	5.4	Geometric algorithms	191
	5.5	Network representation and algorithms	206
6	Stru	ectures and Access Methods	217
	6.1	Physical storage and access	217
	6.2	From one to two dimensions	228
	6.3	Raster structures	232
	6.4	Point object structures	237
	6.5	Linear object structures	246
	6.6	Collections of objects	247
	6.7	Further indexes	254
7	Arc	hitectures	265
	7.1	Interoperability and modularity	266

xvi

	7.2	Distributed computing	270			
	7.3	Scaling and streaming				
	7.4	Location-aware computing	285			
	7.5	Decentralized computing	295			
8	Cart	ography and Geovisualization	307			
	8.1	Data graphics	308			
	8.2	Cartography	314			
	8.3	Interaction	328			
	8.4	Geovisualization	338			
9	Artif	ficial Intelligence and GIS	349			
	9.1	Ontology engineering	350			
	9.2	Qualitative spatial reasoning	363			
	9.3	Machine learning and spatial analysis	371			
	9.4	Deep learning	391			
10	Spati	ial Information in Context	401			
	10.1	Uncertainty	402			
	10.2	Logic and imperfection	409			
	10.3	Privacy	421			
	10.4	Doing GIS critically	428			
A	Appe	endix: Nutty Nuggets relational database	439			
В	3 Appendix: Discrete mathematics primer					
Re	References					
Inc	Index					

LIST OF INSET BOXES

Box 1.1	GIS terminology	4
Box 1.2	User-generated content	6
Box 1.3	System development life cycle	19
Box 1.4	Data mining	23
Box 1.5	CISC and RISC	27
Box 1.6	Combating wireless interference	32
Box 1.7	Spatial nonstationarity	34
Box 2.1	Databases in a nutshell	39
Box 2.2	Elements of a database management system	42
Box 2.3	Two-phase commit (2PC) protocols	45
Box 2.4	Second normal form (2NF)	58
Box 2.5	SQL and CRUD	62
Box 3.1	What is space?	78
Box 3.2	Russell's paradox	84
Box 3.3	Topological spaces	94
Box 3.4	Topological spaces (open and closed sets)	97
Box 3.5	Brouwer's fixed point theorem	102
Box 3.6	Königsberg bridge problem	112
Box 3.7	Latitude and longitude	117
Box 3.8	Jordan curve theorem	121
Box 4.1	Fiat and bona fide boundaries	127
Box 4.2	The Ship of Theseus	129
Box 4.3	Spatial reference systems	136
Box 4.4	Object versus field	141
Box 4.5	Digital elevation models	143
Box 4.6	Temporal metaphors	158
Box 4.7	Movement models	159
Box 5.1	Geometric algorithms and computation	168
Box 5.2	Alternative spatial object representations	184
Box 5.3	Regular tesselations	186
Box 5.4	Nested tessellations	190
Box 5.5	Faster triangulation algorithms	205
Box 5.6	NP-completeness	214
Box 6.1	Hashing	223
Box 6.2	Chain encoding	235
Box 6.3	Bit interleaving and geohashing	238
Box 6.4	Triangular point quadtree	255
Box 7.1	De facto and de jure standards	269
Box 7.2	XML and GML	273

xviii

Box 7.3	Service-oriented architectures
Box 7.4	The Two Generals Problem
Box 7.5	Storm petrels on Great Duck Island
Box 8.1	Data-ink ratio
Box 8.2	Weber's law
Box 8.3	The Peutinger table
Box 8.4	Small multiples
Box 8.5	MAUP: Modifiable Areal Unit Problem
Box 8.6	Scale
Box 8.7	Multimodal display
Box 8.8	Sound display
Box 8.9	WIMP interfaces
Box 8.10	Design methodologies
Box 8.11	The cartography cube
Box 8.12	Stereoscopic displays
Box 9.1	The Turing test
Box 9.2	GeoSPARQL
Box 9.3	Induction and abduction
Box 9.4	Agent-based models
Box 9.5	Information quantity and value
Box 10.1	Errors of omission and commission 404
Box 10.2	Statistical precision and accuracy 408
Box 10.3	AOL query logs
Box 10.4	Differential privacy
Box 10.5	Exercising Indigenous data sovereignty 432

LIST OF ALGORITHMS

Algorithm 5.1	Computing the sequence of arcs surrounding node n	182
Algorithm 5.2	Computing the sequence of arcs surrounding area \boldsymbol{X}	183
Algorithm 5.3	Greedy polygon triangulation algorithm	200
Algorithm 5.4	Triangulation of a monotone polygon	201
Algorithm 5.5	Divide-and-conquer Delaunay triangulation	203
Algorithm 5.6	Breadth-first network traversal	209
Algorithm 5.7	Depth-first network traversal	210
Algorithm 5.8	Dijkstra's shortest path algorithm	210
Algorithm 6.1	Binary search	221
Algorithm 6.2	Point query linear search	229
Algorithm 6.3	Range query linear search	230
Algorithm 6.4	$Quadtree\ complement\ algorithm\ (breadth-first)\ \ .\ \ .$	236
Algorithm 6.5	$Quadtree\ intersection\ algorithm\ (breadth-first) .\ .$	236
Algorithm 6.6	Quadtree insert algorithm	242
Algorithm 6.7	2D-tree insert algorithm	244
Algorithm 6.8	2D-tree range query algorithm	245
Algorithm 6.9	R-tree spatial join (depth-first search)	252
Algorithm 7.1	Online (incremental) Delaunay triangulation	285
Algorithm 7.2	Gossiping in a sensor network	301
Algorithm 7.3	Greedy georouting in a geosensor network	304
Algorithm 9.1	Computing the k -means of an input point set P	378
Algorithm 9.2	DBSCAN algorithm	380
Algorithm 9.3	ID3 decision tree learning algorithm	383
Algorithm 9.4	Simple perceptron training	393

"main" — 2023/6/10 — 15:53 — page xx — #20

APPENDIX: NUTTY NUGGETS RELATIONAL DATABASE

Nutty Nuggets relational database example

NUGGETS database schema

ADDRESS (<u>ADDRESS ID</u>, STREET_AD, ZIP, CITY, STATE)
CONTENT (<u>OID</u>, <u>SID</u>, WEIGHTG)
CUSTOMER (<u>TEL</u>, HID, TITLE, GNAME, FNAME)
ORDERS (<u>ORDER NO</u>, CUS_TEL, AID, MEAL, SIZE)
STOCK (<u>INGREDIENT</u>, QUANT, UNITS)

(See page 57.)

ADDRESS relation

ADDRESS_ID	STREET_AD	ZIP	CITY	STATE
10012-BS01	177a Bleecker St	10012	New York	NY
10560-GL01	1407 Graymalkin Lane	10560	North Salem	NY
11050-PA01	98 Pleasant Avenue	11050	Fort Washington	NY
11232-4201	738 42nd Street	11232	Brooklyn	NY
19104-CS01	85 Chestnut Street	19104	Philadelphia	PA
20002-VRD2	3501 Valley Road Drive	20002	Washington	DC
74012-RA01	554 Railroad Avenue	74012	Broxton	OK
94110-MS01	1128 Mission St	94110	San Francisco	CA

CUSTOMER relation

TEL	GNAME	FNAME	HID	TITLE
202-555-0125	Joanna	Cargill	20002-VRD2	Ms
213-555-0506	Roberto	Da Costa	94110-MS01	Mr
610-555-0195	Lorna	Dane	10560-GL01	Ms
757-555-0112	Bobby	Drake	11050-PA01	Mr
785-555-0189	Loki	Laufeyson	10012-BS01	Mx
939-555-0177	Jane	Foster	74012-RA01	Dr

440 GIS: A Computing Perspective

ORDERS relation

ORDER_NO	CUS_TEL	AID	MEAL	SIZE
M066-22-06	610-555-0195	19104-CS01	Regular	2
M066-22-07	610-555-0195	19104-CS01	Regular	1
M066-22-08	610-555-0195	19104-CS01	Regular	2
M113-22-09	939-555-0177	74012-RA01	Vegan	1
M315-22-06	213-555-0506	94110-MS01	Lo carb	4
M315-22-07	213-555-0506	94110-MS01	Lo carb	4

CONTENT relation

OID	SID	WEIGHTG
M066-22-06	Chickpea	400
M066-22-06	Chili	10
M066-22-06	Rice	400
M066-22-06	Tomato	400
M066-22-07	Cheese	150
M066-22-07	Garlic	20
M066-22-07	Mushroom	400
M066-22-08	Carrot	300
M066-22-08	Corn	200
M066-22-08	Potato	300
M066-22-08	Vegetable stock	500
M113-22-09	Chickpea	400
M113-22-09	Garlic	20
M113-22-09	Lemon	200
M113-22-09	Mushroom	600
M315-22-06	Chickpea	800
M315-22-06	Chili	20
M315-22-06	Corn	600
M315-22-06	Tomato	600
M315-22-07	Cheese	350
M315-22-07	Garlic	30
M315-22-07	Mushroom	900

sтоск relation

INGREDIENT	QUANT	UNITS
Carrot	61	kg
Cheese	17	kg
Chickpeas	18	cans
Chili	750	g
Corn	15	kg
Garlic	8	kg
Lemon	8	kg
Mushroom	30	kg
Oil	42	I
Onion	25	kg
Potato	70	kg
Rice	64	kg
Tomato	104	cans
Vegetable stock	48	I

APPENDIX: DISCRETE MATHEMATICS PRIMER

B

This appendix provides a brief primer on the discrete mathematics structures and syntax used in the book, developed from an earlier primer that first appeared in Duckham (2013).

Sets

Sets are used throughout the book but introduced in some depth in Section 3.2. In summary, a *set* is a collection of "things," each called a *member* or an *element* of a set.¹ Some common sets are also identified with their own symbol, including:

- Ø, the *empty set* containing no elements, also written {};
- B, the Boolean set of two values (e.g., with members true/false, 1/0, on/off);
- \mathbb{Z} , the set of positive and negative integer numbers, including zero;
- Q, the set of rationals—ratios of two integers; and
- \mathbb{R} , the set of reals—measurements on the number line.

The order of elements in a set is not significant.² A set that contains all the elements of another set, and perhaps some additional elements, is termed a *superset*. We write $X \subseteq Y$ to indicate Y is a superset of X, or equivalently that X is a *subset* of Y.³ The empty set is a subset of every set, e.g., $\emptyset \subseteq X$. A set X is said to be a *proper* subset of Y, written $X \subset Y$, if X is a subset of Y and $X \neq Y$.

A set can be specified explicitly by itemizing each of its members. Alternatively, it is often easier to specify sets by *intension*, essential for sets with a large or infinite number of elements such as \mathbb{Z} and \mathbb{R} . For example, another special set \mathbb{N} (the set of natural numbers—positive integers from 1 to infinity) can be defined as $\mathbb{N} = \{x \in \mathbb{Z} | x > 0\}$ (read "the set containing numbers x in \mathbb{Z} such that x is greater than 0").⁴

We often specify by intension subsets of the real numbers as intervals:

- [*a*, *b*] is the set of reals between *a* and *b* including *a* and *b*, termed a *closed* interval;
-]*a*, *b*[is the set of reals between *a* and *b* excluding *a* and *b*, termed an *open* interval; and

¹ For example, $A=\{a,b,c\}$ defines the set A with three members a,b, and c. If we wish to assert that a is an element of set A, we may write $a\in A$.

² So, set $A = \{a, b, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\} = \dots$

 3 If $A=\{a,b,c\}$ and $B=\{a,b,c,d\}$ then $A\subseteq B$. It is also true that $A\subseteq A$, but A is not a proper subset of itself.

⁴ The set $C = \{2, 3, 4, 5, 6\}$ can be specified as $C = \{x \in \mathbb{N} | 1 < x < 7\}$.

442 GIS: A COMPUTING PERSPECTIVE

• [a, b[is the set of reals between a and b including a but excluding b, termed a semi-open interval.

 5 With reference to the sets above, $A \cap \{a,b,d\} = \{a,b\}$, $A \cup \{b,d\} = B$, and $A \cap C = \emptyset$. 6 For example, $A \setminus B = \{b\}$. 7 For the sets in the margins above, |A| = 3, |B| = 4, |C| = 5.

⁸ For example, $\{a,c\} \in \mathcal{P}(A)$.

⁹ The set $\{\{a,c\},\{b\},\{d\}\}$ is a partition of B.

 10 Pairs are sometimes written without parentheses or commas, e.g., xy. 11 Thus, for example, $(b,d) \in A \times B$. 12 For example, $(b,c,3) \in A \times B \times C$). 13 For example, $L = \{(d,a),(b,a),(c,b),(a,b)\}$ is a relation from B to A.

14 Thus, for example,

 $(15.2, -1.9) \in \mathbb{R}^2$.

 15 For example, $N=\{(1,2),(2,1),(2,5),(5,2)\}$, a (binary) relation on \mathbb{Z} , is not transitive; is symmetric (and hence not antisymmetric); and is irreflexive (and hence not reflexive).

The *intersection* of two sets X and Y, written $X \cap Y$ is the set of elements in X and in Y. The *union* of X and Y, written $X \cup Y$ is the set of elements in X or in Y.⁵ The set *difference*, $X \setminus Y$, is the set of elements in X but not in Y.⁶
The cardinality of a set X is the number of elements in that set written

The *cardinality* of a set X is the number of elements in that set, written |X|. The *complement* of a set A is the set of elements *not* in that set, written A'. Set complement makes implicit reference to a *universal* set of all elements under consideration. The *power set* of a set X is the set of all subsets of that set (including the empty set), written $\mathcal{P}(X)$ or sometimes 2^X . Note that the power set of a set is still a set: the elements of a set may themselves be sets. A *partition* of a set is a set of subsets such that each and every member of the original set appears in exactly one subset in the partition. Therefore, a partition of a set is a subset of the powerset of that set.

Products and relations

The *product* of two sets X and Y, written $X \times Y$, is the set of all distinct pairs with the first element $x \in X$ and the second element $y \in Y$. A pair is usually written with enclosing parentheses, for example, (x, y). Unlike the elements of a set, a pair is ordered, so $(x, y) \neq (y, x)$. Note that the product of two sets is, again, a set—albeit a set containing pairs as its elements. The product of two sets can be extended to an n-ary product (product of n sets) in a straightforward way. n

A relation between two sets is simply a subset of the product of those sets.¹³ Many important relations are from a set to itself, termed a binary relation. The set $\mathbb{R} \times \mathbb{R}$, often written \mathbb{R}^2 , is the familiar points in the Cartesian plane (i.e., planar coordinates).¹⁴

A binary relation R on X is said to be *reflexive* if for every $x \in X$, $(x,x) \in R$. A relation R is *irreflexive* if for every $x \in X$, $(x,x) \notin R$. A relation R on X is said to be *symmetric* if whenever $(x,y) \in R$ it is also the case that $(y,x) \in R$. A relation is *antisymmetric* relation if whenever $(x,y) \in R$, then $(y,x) \notin R$. Finally, a relation R on X is said to be *transitive* if whenever (x,y) and $(y,z) \in R$, $(x,z) \in R$.

Functions

A *function* is a special case of a relation between two sets, X and Y, where every element in X is related to a unique element in Y. The first set, X, is the set of all permitted inputs to the function, termed the *domain*. The second set, Y, is the set of all possible outputs of the function, termed the *codomain*.

Although functions are a special case of relations, they have their own special formal syntax to highlight their particular constraints. A function f with domain X and codomain Y is specified as $f: X \to Y$ (read "f is a function from X to Y"). We can indicate that the function f relates a particular input f to a particular result f by writing f and f requivalently

APPENDIX: DISCRETE MATHEMATICS PRIMER

 $f(x) \mapsto y$ (read "f of x maps to y"). To highlight the correspondence with relations, if f were defined as a relation (rather than as a function) we might instead choose to write $(x,y) \in f$. Both are correct, the difference is a matter of style and convention.

A function where every element in the domain maps to a distinct (different) element in the codomain is termed an *injection*. A function where every element in the codomain has some element from the domain that maps to it is termed a *surjection*. A function that is both an injection and a surjection is termed a *bijection*.¹⁶

The *image* of a function f, denoted by f_* , is the set of elements that a function maps to.¹⁷ Thus, the image of a function is necessarily a subset of the codomain for that function. Any injection has the property that there exists another function that maps back to elements in the domain from elements in the image of that function, termed an *inverse function*. A bijection has an inverse that maps back to elements in the domain from elements in the codomain of that function (since the image of a bijection is its codomain).

16 For instance, function $g:A\to B$ where g(a)=a,g(b)=b, g(c)=c is an injection, but not a surjection (and so not a bijection).

 $f: X \to Y$, the image of the function $f: X \to Y$, the image of the function $f_* = \{y \in Y | y = f(x) \text{ for some } x \in X\}$.

Graphs

A graph is a pair G = (V, E), where:

- 1. V is some set of elements, called *vertices* or *nodes*; and
- 2. E is a binary relation on $V, E \subseteq V \times V$, each element of which is called an edge.

If E is symmetric, then the graph G is termed undirected or bidirected; otherwise, G is a directed graph. For an undirected graph G = (V, E), we may sometimes use the shorthand $\{x, y\} \in E$ instead of writing both $(x, y) \in E$ and $(y, x) \in E$ (since in an undirected graph E is symmetric, so if $(x, y) \in E$, then necessarily $(y, x) \in E$, and the ordering does not matter).

Graphs (and relations) have a natural graphical representation, with vertices depicted as dots and edges depicted as lines connecting two vertices. Directed graphs may be similarly depicted, with the addition of arrows to indicate the direction(s) of edges (as in Figure B.1).

Two nodes that are connected by an edge are said to be *adjacent*. An edge is said to be *incident on* the nodes it connects; likewise, a node is said to be *incident* with an edge that connects to it. The *degree* of a node is its number of incident edges. In a directed graph, we may distinguish between the number of incoming edges (a node's *in-degree*) and outgoing edges (a node's *out-degree*). The *order* of a graph is the number of nodes it contains.

A *path* is a sequence of adjacent nodes.¹⁸ Two nodes are said to be *connected* if there exists a path between them. A graph is said to be connected if every pair of nodes in the graph is connected.

A *tree* is a (connected) graph where there exists exactly one path between any pair of nodes. A *rooted* tree is a tree with one node designated as the *root*.

A *planar* graph is a graph that can be drawn in the plane with edges only intersecting at nodes (i.e., no edges crossing). A graph that *can* be drawn in

Figure B.1: Example directed graph, from Figure 2.14

 18 For example, bdc is a path in G Figure B.1; bcd is not.

444 GIS: A COMPUTING PERSPECTIVE

Figure B.2: Example non-planar graph, from Figure 3.42

 19 For example, the truth value of " $a \in A \land a \in C$ " is false; the truth value of " $5 < 10 \lor 1 = 2$ " is true.

Figure B.3: Truth tables for predicate logic connectives

the plane with no crossing edges is called planar; a graph that *is* drawn in the plane with no crossing edges is called *plane*. Thus all plane graphs are also planar; and all non-planar graphs (such as Figure B.2) can never be depicted as a plane graph.

Logic

Logical expressions in mathematics and computer science can be assigned a *truth value*. In the most basic (two-valued) logic, expressions have a truth value of either true or false, but not both. For example, the truth value of the expression "5 < 10" is true; the truth value of the expression "1 = 2" is false. We often use the formal symbols T (true) and \bot (false).

The conjunction of two logical expressions $p \land q$ is true if both p and q are true; it is false otherwise. The disjunction of two logical expressions $p \lor q$ is true if either p or q are true; it is false if both p and q are false. Other connectives include implication \implies , equivalence \iff (if and only if), and negation \neg . The logical structure of connectives can be captured in truth tables, such as those in Figure B.3.

		Τ	٧	Т	Τ		Т
Т	Т	Τ	Т	Т	Т	Т	Τ
1	1	\perp	\perp	Т	\perp	Τ	Т

\Rightarrow	Т	Τ	\Leftrightarrow	Т	Τ
Т	Т	Τ	Т	Т	Τ
Т	Т	Т	Τ	Τ	Т

BIBLIOGRAPHY

- Allen, J. F. (1983). Maintaining knowledge about temporal intervals. *Communications of ACM*, *26*, 832–843.
- Allen, J. F. (1984). Towards a general theory of action and time. *Artificial Intelligence*, 23, 123–154.
- Alt, H., Efrat, A., Rote, G., & Wenk, C. (2003). Matching planar maps. *Journal of Algorithms*, 49(2), 262–283.
- Amores, D., Tanin, E., & Vasardani, M. (2021). A proactive route planning approach to navigation errors. *International Journal of Geographical Information Science*, 35(6), 1094–1130.
- Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S. I., Jern, M., Kraak, M.-J., Schumann, H., & Tominski, C. (2010). Space, time, and visual analytics. *International Journal of Geographical Information Science*, 24(10), 1577–1600.
- Andrienko, N., & Andrienko, G. (2006). Exploratory analysis of spatial and temporal data: A systematic approach. Springer.
- Ardagna, C. A., Cremonini, M., Damiani, E., Capitani di Vimercati, S. D., & Samarati, P. (2007). Location privacy protection through obfuscation-based techniques. In Proc. IFIP Annual Conference on Data and Applications Security and Privacy (pp. 47–60). Springer.
- Ballas, D., Clarke, G., Franklin, R. S., & Newing, A. (2017). GIS and the social sciences: Theory and applications. Taylor & Francis.
- Baralis, E., Dalla Valle, A., Garza, P., Rossi, C., & Scullino, F. (2017). SQL versus NoSQL databases for geospatial applications. In *Proc. IEEE International Conference on Big Data* (pp. 3388–3397).
- Basiri, A., Lohan, E. S., de Silva, P. F., Peltola, P., Hill, C., & Moore, T. (2014). Overview of positioning technologies from fitness-to-purpose point of view. In Proc. International Conference on Localization and GNSS (ICL-GNSS) (pp. 1–7). IEEE.
- Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., & Werneck, R. F. (2016). Route planning in transportation networks. In *Algorithm Engineering* (pp. 19–80). Springer.
- Baumgart, B. (1975). A polyhedron representation for computer vision. In *Proc. AFIPS National Conference* 44 (pp. 589–596).
- Bearman, N., & Fisher, P. F. (2012). Using sound to represent spatial data in ArcGIS. Computers & Geosciences, 46, 157–163.
- Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R*-tree: An efficient and robust access method for points and rectangles. In *Proc. ACM SIGMOD International Conference on Management of Data* (pp. 322–331).

446 GIS: A COMPUTING PERSPECTIVE

- Belussi, A., Bertino, E., & Catania, B. (2002). Using spatial data access structures for filtering nearest neighbor queries. *Data & Knowledge Engineering*, 40(1), 1–31.
- Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proc. acm conference on fairness, accountability, and transparency (facct) (pp. 610–623). doi:10.1145/3442188.3445922
- Bertino, E., & Ooi, B. C. (1999). The indispensability of dispensable indexes. *IEEE Transactions on Knowledge and Data Engineering*, 11(1), 17–27.
- Bertino, E., Ooi, B. C., Sacks-Davis, R., Tan, K.-L., Zobel, J., Shidlovsky, B., & Catania, B. (1997). Temporal databases. In *Indexing Techniques for Advanced Database Systems* (pp. 113–149). Springer.
- Bertolotto, M., De Floriani, L., & Marzano, P. (1994). An efficient representation for pyramidal terrain models. In N. Pissinou & K. Makki (Eds.), Proc. Second ACM Workshop on Advances in Geographic Information Systems (pp. 129–136). National Institute for Standards and Technology.
- Bittner, T., Donnelly, M., & Smith, B. (2004). Endurants and perdurants in directly depicting ontologies. *AI Communications*, 17(4), 247–258.
- Bleisch, S., & Hollenstein, D. (2018). Exploratory geovisualizations for supporting the qualitative analysis and synthesis of place-related emotion data. *Cartographic Perspectives*, (91), 30–46.
- Brewer, C. A. (2016). Designing better maps: A guide for GIS users (2nd Edition). ESRI press.
- Briggs, C., Burfurd, I., Duckham, M., Guntarik, O., Kerr, D., McMillan, M., & San Martin Saldias, D. (2020). Bridging the geospatial gap: Data about space and indigenous knowledge of place. *Geography Compass*, 14(11), e12542.
- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
 Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Henighan, T., ...
 McCandlish, S. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.
- Buchin, K., Speckmann, B., & Verbeek, K. (2011). Flow map layout via spiral trees. *IEEE Transactions on Visualization and Computer Graphics*, 17(12), 2536–2544.
- Buchin, M., Driemel, A., Kreveld, M. v., & Sacristán Adinolfi, V. (2011).
 Segmenting trajectories: A framework and algorithms using spatiotem-poral criteria. *Journal of Spatial Information Science*, 3, 33–63.
- Burrough, P. A. (1981). Fractal dimension of landscapes and other environmental data. *Nature*, 294, 240–242.
- Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). *Principles of geo-graphical information systems* (3rd Edition). Oxford University Press.
- Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 74, 23–40.

BIBLIOGRAPHY 447

- Carroll, S. R., Garba, I., Figueroa-Rodríguez, O. L., Holbrook, J., Lovett, R., Materechera, S., Parsons, M., Raseroka, K., Rodriguez-Lonebear, D., Rowe, R., et al. (2020). The CARE principles for Indigenous data governance. *Data Science Journal*, 3(1), 1–9.
- Cedeno Jimenez, J. R., Zhao, P., Mansourian, A., & Brovelli, M. A. (2022). Geospatial blockchain: Review of decentralized geospatial data sharing systems. In E. Parseliunas, A. Mansourian, P. Partsinevelos, & J. Suziedelyte-Visockiene (Eds.), Proc. 25th AGILE Conference on Geographic Information Science.
- Chazelle, B. (1991). Triangulating a simple polygon in linear time. *Discrete Computational Geometry*, 6, 485–524.
- Chrisman, N. R. (1978). Concepts of space as a guide to cartographic data structures. In G. Dutton (Ed.), *Proc. First International Advanced Study Symposium on Topological Data Structures for Geographic Information Systems* (pp. 1–19). Harvard Laboratory for Computer Graphics and Spatial Analysis.
- Chrisman, N. R. (2006). Exploring geographic information systems (2nd Edition). John Wiley.
- Claramunt, C., Parent, C., & Thériault, M. (1998). Design patterns for spatiotemporal processes. In *Data Mining and Reverse Engineering* (pp. 455– 475). Springer.
- Codd, E. F. (1970). A relational model for large shared data banks. *Communications of the ACM*, 13(6), 377–387.
- Çöltekin, A., Bleisch, S., Andrienko, G., & Dykes, J. (2017). Persistent challenges in geovisualization—A community perspective. *International Journal of Cartography*, 3(sup1), 115–139.
- Comber, L., & Brunsdon, C. (Eds.). (2020). Geographical data science and spatial data analysis: An introduction in R. SAGE.
- Connolly, T., & Begg, C. (2014). *Database systems: A practical approach to design, implementation, and management* (6th Edition). Addison-Wesley.
- Couclelis, H. (1992). People manipulate objects (but cultivate fields: Beyond the raster-vector debate in GIS. In A. U. Frank, I. Campari, & U. Formentini (Eds.), *Theories of Spatio-Temporal Reasoning in Geographic Space* (Vol. 639, pp. 65–77). Springer.
- Couclelis, H. (2003). The certainty of uncertainty: GIS and the limits of geographic knowledge. *Transactions in GIS*, 7(2), 165–175.
- Couclelis, H. (2010). Ontologies of geographic information. *International Journal of Geographical Information Science*, 24(12), 1785–1809.
- Coxeter, H. S. M. (1961). Introduction to geometry. Wiley.
- Crooks, A., Malleson, N., Manley, E., & Heppenstall, A. (Eds.). (2021). Agent-based modeling and geographical information systems: A practical primer. SAGE.
- Damiani, M. L. (2014). Location privacy models in mobile applications: Conceptual view and research directions. *Geoinformatica*, 18(4), 819–842.

448 GIS: A COMPUTING PERSPECTIVE

- Date, C. J. (2015). SQL and relational theory: How to write accurate SQL code (3rd Edition). O'Reilly.
- Davis, M. (1997). Developing and using cases to teach practical ethics. *Teaching Philosophy*, 20(4), 353–385.
- De Floriani, L. (1989). A pyramidal data structure for triangle-based surface description. *IEEE Computer Graphics and Applications*, 9(2), 67–78.
- De Floriani, L., Magillo, P., & Puppo, E. (2000). Applications of computational geometry to geographic information systems. *Handbook of Computational Geometry*, 7, 333–388.
- De Floriani, L., Marzano, P., & Puppo, E. (1994a). Hierarchical terrain models: Survey and formalization. In *Proc. SAC'94* (pp. 323–327).
- De Floriani, L., Marzano, P., & Puppo, E. (1994b). Line-of-sight communication on terrain models. *International Journal of Geographical Information Systems*, 8(4), 329–342.
- De Floriani, L., & Puppo, E. (1992). A hierarchical triangle-based model for terrain description. In A. U. Frank, I. Campari, & U. Formentini (Eds.), *Theories of Spatio-Temporal Reasoning in Geographic Space* (Vol. 639, pp. 236–251). Springer.
- de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008). *Computational geometry: Algorithms and applications* (3rd Edition). Springer.
- Delling, D., & Wagner, D. (2007). Landmark-based routing in dynamic graphs. In International Workshop on Experimental and Efficient Algorithms (pp. 52–65). Springer.
- Di Biase, D., MacEachren, A. M., Krygier, J., & Reeves, C. (1992). Animation and the role of map design in scientific visualization. *Cartography and Geographic Information Systems*, 23(4), 345–370.
- Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, (1), 269–271.
- Dodge, M., & Kitchin, R. (2002). Atlas of cyberspace. Addison-Wesley.
- Dodge, S., Weibel, R., Ahearn, S. C., Buchin, M., & Miller, J. A. (2016). Analysis of movement data. *International Journal of Geographical Information Science*, 30(5), 825–834.
- Dodge, S., Weibel, R., & Lautenschütz, A.-K. (2008). Towards a taxonomy of movement patterns. *Information visualization*, 7(3–4), 240–252.
- Douglas, D. (1990). It makes me so CROSS. In D. J. Peuquet & D. F. Marble (Eds.), Introductory Readings in Geographic Information Systems. Taylor & Francis.
- Doyle, J., Bertolotto, M., & Wilson, D. (2008). A survey of multimodal interfaces for mobile mapping applications. In *Map-based Mobile Services* (pp. 146–167). Springer.
- Driemel, A. (2013). Realistic analysis for algorithmic problems on geographical data (Doctoral dissertation, Utrecht University).
- Du, J., Wang, S., Ye, X., Sinton, D. S., & Kemp, K. (2022). GIS-KG: Building a large-scale hierarchical knowledge graph for geographic information

BIBLIOGRAPHY 449

- science. International Journal of Geographical Information Science, 36(5), 873–897.
- Duckham, M. (2013). Decentralized spatial computing: Foundations of geosensor networks. Springer.
- Duckham, M. (2015). GI expertise. Transactions in GIS, 19(4), 499-515.
- Duckham, M., Drummond, J. E., & Forrest, D. (2000). Assessment of error in digital vector data using fractal geometry. *International Journal of Geographical Information Science*, 14(1), 67–84.
- Duckham, M., Gabela, J., Kealy, A., Khan, M., Legg, J., Moran, B., Rumi, S. K., Salim, F. D., Sharmeen, S., Tao, Y., Trentelman, K., & Vasardani, M. (2022). Explainable spatiotemporal reasoning for geospatial intelligence applications. *Transactions in GIS*, 26(6), 2455–2479.
- Duckham, M., & Kulik, L. (2003). "Simplest" paths: Automated route selection for navigation. In *International Conference on Spatial Information Theory* (pp. 169–185). Springer.
- Duckham, M., & Kulik, L. (2005). A formal model of obfuscation and negotiation for location privacy. In *Proc. International Conference on Pervasive Computing* (pp. 152–170). Springer.
- Duckham, M., & Sharp, J. (2005). Uncertainty and geographic information: Computational and critical convergence. In P. F. Fisher & D. Unwin (Eds.), *Representing GIS* (Chap. 8, pp. 113–124). Wiley.
- Duckham, M., Sun, Q., & Worboys, M. F. (2023). GIS: A computing perspective (3rd Edition). CRC Press.
- Dwork, C. (2006). Differential privacy. In M. Bugliesi, B. Preneel, V. Sassone, & I. Wegener (Eds.), *Automata, Languages and Programming* (pp. 1–12). Springer.
- Dwyer, R. A. (1987). A fast divide-and-conquer algorithm for constructing Delaunay triangulations. *Algorithmica*, 2, 137–151.
- Edmonds, J. R. (1960). A combinatorial representation for oriented polyhedral surfaces (Master's thesis, University of Maryland).
- Eisner, W. R., Jelacic, J., Cuomo, C. J., Kim, C., Hinkel, K. M., & Del Alba, D. (2012). Producing an indigenous knowledge Web GIS for Arctic Alaska communities: Challenges, successes, and lessons learned. *Transactions in GIS*, 16(1), 17–37.
- Elmasri, R. A., & Navathe, S. B. N. (2016). Fundamentals of database systems (7th Edition). Pearson.
- Elwood, S. (2010). Thinking outside the box: Engaging critical geographic information systems theory, practice and politics in human geography. *Geography Compass*, 4(1), 45–60.
- Epp, S. S. (2018). Discrete mathematics with applications (4th Edition). Brooks/-Cole Cengage.
- Fabrikant, S. I., & Buttenfield, B. P. (2001). Formalizing spaces for information access. *Annals of the Association of American Geographers*, 91, 263–280.

450 GIS: A COMPUTING PERSPECTIVE

- Fellows, M. R., Fomin, F. V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., & Thomassen, C. (2011). On the complexity of some colorful problems parameterized by treewidth. *Information and Computation*, 209(2), 143–153.
- Fish, C., Goldsberry, K. P., & Battersby, S. (2011). Change blindness in animated choropleth maps: An empirical study. *Cartography and Geographic Information Science*, 38(4), 350–362.
- Fox, J., Suryanata, K., Hershock, P., & Pramono, A. H. (2006). Mapping power: Ironic effects of spatial information technology. *Participatory learning and action*, 54(1), 98–105.
- Frank, A. U. (1992). Qualitative spatial reasoning about distances and directions in geographic space. *Journal of Visual Languages & Computing*, 3(4), 343–371.
- Freksa, C. (1992a). Temporal reasoning based on semi-intervals. *Artificial Intelligence*, 54(1–2), 199–227.
- Freksa, C. (1992b). Using orientation information for qualitative spatial reasoning. In *Proc. International Conference GIS* (Vol. 639, pp. 162–178).
- Freundschuh, S., & Egenhofer, M. J. (1997). Human conceptions of spaces: Implications for GIS. *Transactions in GIS*, 2(4), 361–375.
- Gahegan, M. N. (1989). An efficient use of quadtrees in a geographical information system. *International Journal of Geographical Information System*, 3(3), 201–214.
- Galton, A. (2012). States, processes and events, and the ontology of causal relations. In *Formal Ontology in Information Systems* (pp. 279–292). IOS Press.
- Ganesan, D., Cerpa, A., Ye, W., Yu, Y., Zhao, J., & Estrin, D. (2004). Networking issues in wireless sensor networks. *Journal of Parallel and Distributed Computing*, 64(7), 799–814.
- Garcia-Molina, H., Ullman, J., & Widom, J. (2013). *Database systems: The complete book* (New International Edition). Pearson.
- Gärdenfors, P., & Rott, H. (1995). Belief revision. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 4, pp. 35–132). Oxford University Press.
- Gardiner, G., McDonald, J., Byrne, A., & Thorpe, K. (2011). Respect, trust and engagement: Creating an Australian indigenous data archive. *Collection Building*, 30(4), 148–152.
- Garey, M. R., Johnson, D. S., Preparata, F. P., & Tarjan, R. E. (1978). Triangulating a simple polygon. *Information Processing Letters*, 7, 175–179.
- Gatrell, A. C. (1991). Concepts of space and geographical data. In D. J. Maguire, M. F. Goodchild, & D. W. Rhind (Eds.), Geographical Information Systems (Vol. 1, pp. 119–134). Longman.
- Gaver, W. W. (1986). Auditory icons: Using sound in computer interfaces. *Human-Computer Interaction*, 2, 167–177.
- Giblin, P. J. (1977). Graphs, surfaces, and homology: An introduction to algebraic topology. Chapman & Hall.

BIBLIOGRAPHY 451

- Golledge, R. G., Rice, M. T., & Jacobson, R. D. (2006). Multimodal interfaces for representing and accessing geospatial information. In *Frontiers of geographic information technology* (pp. 181–208). Springer.
- Goodchild, M. F. (1988). Lakes on fractal surfaces: A null hypothesis for lake rich landscapes. *Mathematical Geology*, 20(6), 615–629.
- Goodchild, M. F. (2004). The validity and usefulness of laws in geographic information science and geography. *Annals of the Association of American Geographers*, 94(2), 300–303.
- Goodwin, S., Dykes, J., Slingsby, A., & Turkay, C. (2015). Visualizing multiple variables across scale and geography. *IEEE Transactions on Visualization and Computer Graphics*, 22(1), 599–608.
- Goyal, R., & Egenhofer, M. J. (2001). Similarity of cardinal directions. In C. Jensen, M. Schneider, B. Seeger, & V. Tsotras (Eds.), Proc. International Symposium on Advances in Spatial and Temporal Databases (SSTD) (pp. 36– 58). Springer.
- Grenon, P., & Smith, B. (2004). SNAP and SPAN: Towards dynamic spatial ontology. *Spatial Cognition and Computation*, 4(1), 69–104.
- Griffin, A. L. (2017). Cartography, visual perception, and cognitive psychology. In *The Routledge Handbook of Mapping and Cartography* (pp. 44–54). Routledge.
- Guibas, L., & Stolfi, J. (1985). Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. *ACM Transactions on Graphics*, 4(2), 74–123.
- Hacking, I. (1999). The social construction of what? Harvard University Press.
- Hage, W. R. v., & Ceolin, D. (2013). The simple event model. In *Situation awareness with systems of systems* (pp. 149–169). Springer.
- Haque, S., Kulik, L., & Klippel, A. (2006). Algorithms for reliable navigation and wayfinding. In *International Conference on Spatial Cognition* (pp. 308–326). Springer.
- Harley, J. B. (1988). Maps, knowledge, and power. In D. Cosgrove & S. Daniels (Eds.), *The iconography of landscape* (pp. 277–312). Cambridge University Press.
- Harrower, M., & Brewer, C. A. (2003). ColorBrewer.org: An online tool for selecting color schemes for maps. *The Cartographic Journal*, 40(1), 27–37.
- Hartsfield, N., & Ringel, G. (2003). Pearls in graph theory: A comprehensive introduction. Dover.
- Harvey, F., Kwan, M.-P., & Pavlovskaya, M. (2005). Introduction: Critical GIS. *Cartographica*, 40(4), 1–4.
- Henle, M. (1979). A combinatorial introduction to topology. Freeman.
- Heppenstall, A. J., Crooks, A. T., See, L. M., & Batty, M. (Eds.). (2012). Agent-based models of geographical systems. Springer.
- Heywood, I., Cornelius, S., & Carver, S. (2011). An introduction to geographical information systems (4th Edition). Pearson.
- Hightower, J., & Boriello, G. (2001). Location systems for ubiquitous computing. *IEEE Computer*, 34(8), 57–66.

452 GIS: A COMPUTING PERSPECTIVE

- Holroyd, F., & Bell, S. B. (1992). Raster GIS: Models of raster encoding. Computers & Geosciences, 18(4), 419–426.
- Hornsby, K., & Egenhofer, M. J. (2000). Identity-based change: A foundation for spatio-temporal knowledge representation. *International Journal of Geographical Information Science*, 14(3), 207–224.
- Hornsby, K., & Egenhofer, M. J. (2002). Modeling moving objects over multiple granularities. *Annals of Mathematics and Artificial Intelligence*, 36(1), 177–194.
- Kendall, E., & McGuinness, D. (2019). Ontology engineering. Morgan & Claypool.
- Krygier, J. (1994). Sound and geographic visualization. In A. M. MacEachren & D. R. F. Taylor (Eds.), *Visualization in Modern Cartography* (pp. 1–12). Pergamon.
- Kuipers, B. (1978). Modeling spatial knowledge. Cognitive Science, 2, 129–153.
 Kwan, M.-P. (2001). Cyberspatial cognition and individual access to information: The behavioral foundation of cybergeography. Environment and Planning B: Planning and Design, 28(1), 21–37.
- Lam, N. S.-N., & De Cola, L. (1993). Fractals in geography. Prentice-Hall.
- Langran, G. (1992). Time in geographic information systems. Taylor & Francis.
- Latour, B. (1993). We have never been modern. Harvard University Press.
- Lee, D.-T., & Schachter, B. J. (1980). Two algorithms for constructing the Delaunay triangulation. *International Journal of Computer and Information Sciences*, 9(3), 219–242.
- Lennes, N. J. (1911). Theorems on the simple finite polygon and polyhedron. *American Journal of Mathematics*, 33, 37–62.
- Li, S., & Liu, W. (2010). Topological relations between convex regions. In Proc. 24th AAAI Conference on Artificial Intelligence.
- Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., Haworth, J., Stein, A., & Cheng, T. (2016). Geospatial big data handling theory and methods: A review and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 119–133.
- Li, W. (2020). GeoAI: Where machine learning and big data converge in GIScience. *Journal of Spatial Information Science*, (20), 71–77.
- Li, W., & Arundel, S. T. (2022). GeoAI and the future of spatial analytics. In B. Li, X. Shi, A.-X. Zhu, C. Wang, & H. Lin (Eds.), *New thinking in GIScience* (pp. 151–158). Springer.
- Li, Y., Ouyang, S., & Zhang, Y. (2022). Combining deep learning and ontology reasoning for remote sensing image semantic segmentation. *Knowledge-Based Systems*, 243, 108469.
- Li, Y., Zhao, Q., & Zhong, C. (2022). Gis and urban data science. *Annals of GIS*, 28(2), 89–92.
- Lipschutz, S., & Lipson, M. (2021). Schaum's outline of discrete mathematics (4th Edition). McGraw-Hill.
- Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (Eds.). (2005). Geographical information systems (2nd Edition). John Wiley & Sons.

BIBLIOGRAPHY 453

- Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). *Geographic information systems and science* (4th Edition). John Wiley & Sons.
- MacEachren, A. M. (1994a). Time as a cartographic variable. In H. M. Hearn-shaw & D. J. Unwin (Eds.), Visualization in Geographical Information Systems (Chap. 13, pp. 115–130). John Wiley.
- MacEachren, A. M. (1994b). Visualization in modern cartography: Setting the agenda. In A. M. MacEachren & D. Taylor (Eds.), *Visualization in Modern Cartography* (pp. 1–12). Pergamon.
- MacEachren, A. M. (1995). How maps work. Guilford Press.
- Maguire, D. J., Goodchild, M. F., & Rhind, D. W. (Eds.). (1991). *Geographical information systems* (1st Edition). Longman.
- Mai, G., Janowicz, K., Yan, B., & Scheider, S. (2019). Deeply integrating linked data with geographic information systems. *Transactions in GIS*, 23(3), 579–600.
- Mai, G., Janowicz, K., Zhu, R., Cai, L., & Lao, N. (2021). Geographic question answering: Challenges, uniqueness, classification, and future directions. In P. Partsinevelos, P. Kyriakidis, & M. Kavouras (Eds.), Proc. 24th AGILE Conference on Geographic Information Science.
- Mandelbrot, B. B. (1982). The fractal geometry of nature. Freeman.
- Mao, H., Hu, Y., Kar, B., Gao, S., & McKenzie, G. (2017). GeoAI 2017 Workshop Report: The 1st ACM SIGSPATIAL International Workshop on GeoAI. SIGSPATIAL Special, 9(3), 25.
- Mark, D. M., Smith, B., & Tversky, B. (1999). Ontology and geographic objects: An empirical study of cognitive categorization. In *International Conference on Spatial Information Theory (COSIT)* (pp. 283–298). Springer.
- Miller, C. L., & Laflamme, R. A. (1958). The digital terrain model—theory and application. *Photogrammetric Engineering*, 24(3), 433–442.
- Mitasova, H., Mitas, L., & Harmon, R. S. (2005). Simultaneous spline approximation and topographic analysis for LIDAR elevation data in open-source GIS. *IEEE Geoscience and Remote Sensing Letters*, 2(4), 375–379
- Monmonier, M. (1996). *How to lie with maps* (2nd Edition). University of Chicago Press.
- Montello, D. R. (1993). Scale and multiple psychologies of space. In A. U. Frank & I. Campari (Eds.), *Spatial Information Theory: A Theoretical Basis for GIS* (Vol. 716, pp. 312–321). Springer.
- Mourelatos, A. P. D. (1978). Events, processes, and states. *Linguistics and Philosophy*, 2, 415–434.
- Munzner, T. (2014). Visualization analysis and design. CRC Press.
- Nittel, S. (2009). A survey of geosensor networks: Advances in dynamic environmental monitoring. *Sensors*, 9(7), 5664–5678.
- Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M. J., Goldin, D., Howard, A., Labrinidis, A., Madden, S., Voisard, A., & Worboys, M. (2004). Report from the first workshop on geo sensor networks. SIGMOD Record, 33(1), 141–144.

454 GIS: A COMPUTING PERSPECTIVE

- Norman, D. A. (1988). The design of everyday things. Doubleday.
- Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology (tech. rep. No. KSL-01-05). Stanford Knowledge Systems Laboratory.
- Nuhn, E., & Timpf, S. (2022). Landmark weights—an alternative to spatial distances in shortest route algorithms. *Spatial Cognition & Computation*, 1–27
- Null, L., & Lobur, J. (2018). The essentials of computer organization and architecture (5th Edition). Jones & Bartlett Learning.
- Nyerges, T. L., Couclelis, H., & McMaster, R. (2011). *The SAGE handbook of GIS and society*. SAGE Publications.
- O'Rourke, J. (1997). Computational geometry in C (2nd Edition). Cambridge University Press.
- O'Sullivan, D., & Unwin, D. (2010). *Geographic information analysis* (2nd Edition). John Wiley & Sons.
- Ohori, K. A., Ledoux, H., & Stoter, J. (2015). An evaluation and classification of nD topological data structures for the representation of objects in a higher-dimensional GIS. *International Journal of Geographical Information Science*, 29(5), 825–849.
- Ohya, T., Iri, M., & Murota, K. (1984). A fast Voronoi-diagram algorithm with quaternary tree bucketing. *Information Processing Letters*, 18(4), 227–231.
- Orellana, D., & Renso, C. (2010). Developing an interactions ontology for characterising pedestrian movement behaviour. In M. Wachowicz (Ed.), Movement-aware applications for sustainable mobility: Technologies and approaches (pp. 62–86). IGI Global.
- Oviatt, S. (1999). Mutual disambiguation of recognition errors in a multimodel architecture. In *Proc. SIGCHI conference on Human Factors in Computing Systems* (pp. 576–583).
- Oviatt, S., Coulston, R., & Lunsford, R. (2004). When do we interact multi-modally? cognitive load and multimodal communication patterns. In *Proc. 6th international conference on Multimodal interfaces* (pp. 129–136).
- Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M. L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al. (2013). Semantic trajectories modeling and analysis. ACM Computing Surveys, 45(4), 1–32.
- Peterson, G. (2020). GIS cartography: A guide to effective map design. CRC Press. Peuquet, D. J. (1984). A conceptual framework and comparison of spatial data
- 'euquet, D. J. (1984). A conceptual framework and comparison of spatial data models. Cartographica, 21(4), 66–113.
- Peuquet, D. J. (1994). It's about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of American Geographers, 84(3), 441–461.
- Preece, J., Rogers, Y., & Sharp, H. (2015). *Interaction design: Beyond human-computer interaction* (4th Edition). John Wiley & Sons.

BIBLIOGRAPHY 455

- Preparata, F. P., & Shamos, M. I. (1985). Computational geometry: An introduction. Springer.
- Price, R., & Shanks, G. (2005). A semiotic information quality framework: Development and comparative analysis. *Journal of Information Technology*, 20(2), 88–102.
- Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
- Reid, G., & Sieber, R. E. (2020). Learning from critiques of GIS for assessing the geoweb and Indigenous knowledges. *GeoJournal*, 1–19.
- Reid, G., Sieber, R. E., & Blackned, S. (2020). Visions of time in geospatial ontologies from Indigenous peoples: A case study with the Eastern Cree in Northern Quebec. *International Journal of Geographical Information* Science, 34(12), 2335–2360.
- Renolen, A. (2000). Modelling the real world: Conceptual modelling in spatiotemporal information system design. *Transactions in GIS*, 4(1), 23–42
- Rey, S. J., & Franklin, R. S. (Eds.). (2022). Handbook of spatial analysis in the social sciences. Edward Elgar.
- Rigaux, P., Scholl, M. O., & Voisard, A. (2002). Spatial databases: With application to GIS. Morgan Kaufmann.
- Roberts, J. C., Headleand, C., & Ritsos, P. D. (2015). Sketching designs using the five design-sheet methodology. *IEEE Transactions on Visualization and Computer Graphics*, 22(1), 419–428.
- Romero, A., Gatta, C., & Camps-Valls, G. (2016). Unsupervised deep feature extraction for remote sensing image classification. *IEEE Transactions on Geoscience and Remote Sensing*, 54(3), 1349–1362. doi:10.1109/TGRS.2015. 2478379
- Samet, H. (1990). Applications of spatial data structures: Computer graphics, image processing, and GIS. Addison-Wesley.
- Samet, H. (2006). Foundations of multidimensional and metric data structures. Morgan Kaufmann.
- Saoub, K. R. (2021). Graph theory: An introduction to proofs, algorithms, and applications. CRC Press.
- Schlieder, C. (1995). Reasoning about ordering. In *Proc. International Conference on Spatial Information Theory (COSIT)* (Vol. 988, pp. 341–349).
- Schuurman, N. (1999). An interview with Michael Goodchild, January 6, 1998, Santa Barbara, California. *Environment and Planning D: Society and Space*, 17(1), 3–15.
- Schuurman, N. (2000). *Critical GIS: Theorizing an emerging science* (Doctoral dissertation, University of British Columbia).
- Schuurman, N. (2003). GIS: A short introduction. Blackwell.
- Schuurman, N. (2009). An interview with Michael Goodchild: GIScience and social reordering in the new millennium. *The Information Society*, 25(5), 360–363.
- Schuurman, N., & Pratt, G. (2002). Care of the subject: Feminism and critiques of GIS. *Gender, Place, and Culture, 9*(3), 291–299.

- Siabato, W., Claramunt, C., Ilarri, S., & Manso-Callejo, M. Á. (2018). A survey of modeling trends in temporal GIS. *ACM Computing Surveys*, 51(2), 1–41.
- Sieber, R. E., Robinson, P. J., Johnson, P. A., & Corbett, J. M. (2016). Doing public participation on the geospatial web. *Annals of the American Association of Geographers*, 106(5), 1030–1046.
- Skupin, A., & Fabrikant, S. I. (2003). Spatialization methods: A cartographic research agenda for non-geographic information visualization. *Cartography and Geographic Information Science*, 30(2), 99–119.
- Smith, B. (1995). On drawing lines on a map. In A. U. Frank & W. Kuhn (Eds.), *Spatial Information Theory: A Theoretical Basis for GIS* (Vol. 988), Springer.
- Smith, B., & Varzi, A. C. (2000). Fiat and bona fide boundaries. *Philosophy and Phenomenological Research*, 60(2), 401–420.
- Smith, T., Peuquet, D. J., Menon, S., & Agarwal, P. (1987). KBGIS-II: A knowledge-based geographical information system. *International Journal of Geographical Information Systems*, 1(2), 149–172.
- Smithson, M. (2012). *Ignorance and uncertainty: Emerging paradigms*. Springer New York.
- Snipp, C. M. (2016). What does data sovereignty imply: What does it look like? In T. Kukutai & J. Taylor (Eds.), *Indigenous data sovereignty: Toward* an agenda (pp. 39–56). ANU Press.
- Sobel, D. (1995). Longitude: The true story of a lone genius who solved the greatest scientific problem of his time. Bloomsbury.
- Sperber, D., & Wilson, D. (1995). *Relevance: Communication and cognition* (2nd Edition). Blackwell.
- Stevens, S. S. (1946). On the theory of scales and measurement. *Science*, *103*, 677–680.
- Sullivan, D. (2015). NoSQL for mere mortals. Addison-Wesley Professional.
- Sun, Q., Macleod, T., Both, A., Hurley, J., Butt, A., & Amati, M. (2021). A human-centred assessment framework to prioritise heat mitigation efforts for active travel at city scale. Science of The Total Environment, 763, 143033.
- Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., & Estrin, D. (2004). Habitat monitoring with sensor networks. *Communications of the ACM*, 47(6), 34–40.
- Tanenbaum, A. S. (2013). Structured computer organization (6th Edition). Pearson.
- Tarjan, R. E., & Wyk, C. J. V. (1988). An *O(n log log n)*-time algorithm for triangulating a simple polygon. *SIAM Journal of Computing*, *17*, 143–178.
- Tauli-Corpuz, V. (2016). Preface. In T. Kukutai & J. Taylor (Eds.), *Indigenous data sovereignty: Toward an agenda* (pp. xxi–xxiii). ANU Press.
- Timpf, S. (2002). Ontologies of wayfinding: A traveler's perspective. *Networks* and Spatial Economics, 2(1), 9–33.

BIBLIOGRAPHY 457

- Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. *Economic Geography*, 46(2), 234–240.
- Tobler, W. (1993). Non-isotropic geographic modeling (tech. rep. No. 93-1). National Center for Geographic Information and Analysis. In Three Presentations on Geographical Analysis and Modeling.
- Tomlin, C. D. (1983). A map algebra. In *Proc. Harvard Computer Graphics Conference*.
- Tripathi, N., & Bhattarya, S. (2004). Integrating indigenous knowledge and GIS for participatory natural resource management: State-of-the-practice. *The Electronic Journal of Information Systems in Developing Countries*, 17(1), 1–13.
- Tufte, E. R. (1990). Envisioning information. Graphics Press.
- Tufte, E. R. (2001). *The visual display of quantitative information* (2nd Edition). Graphics Press.
- Turing, A. M. (1950). Computing Machinery and Intelligence. *Mind*, 59(236), 433–460.
- Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? *International Journal of Human-Computer Studies*, 57(4), 247–262.
- Van de Weghe, N., Cohn, A., Tré, G., & De Maeyer, P. (2006). A qualitative trajectory calculus as a basis for representing moving objects in geographical information systems. Control and Cybernetics, 35, 97–119.
- Van Kreveld, M., & Speckmann, B. (2007). On rectangular cartograms. Computational Geometry, 37(3), 175–187.
- Veland, S., Lynch, A., Bischoff-Mattson, Z., Joachim, L., & Johnson, N. (2014).
 All strings attached: Negotiating relationships of geographic information science. *Geographical Research*, 52(3), 296–308.
- Vilain, M. B., & Kautz, H. A. (1986). Constraint propagation algorithms for temporal reasoning. In Proc. AAAI (pp. 377–382).
- Wang, J., Duckham, M., & Worboys, M. (2016). A framework for models of movement in geographic space. *International Journal of Geographical Information Science*, 30(5), 970–992.
- Want, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The Active Badge location system. *ACM Transactions on Information Systems*, 10(1), 91–102.
- Ward, M. O., Grinstein, G., & Keim, D. (2015). Interactive data visualization: Foundations, techniques, and applications (2nd Edition). John Wiley & Sons.
- Westin, A. F. (1967). Privacy and freedom. Atheneum.
- Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, social, and engineered complex systems with NetLogo. MIT Press.
- Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
 Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne,
 P. E., et al. (2016). The FAIR guiding principles for scientific data
 management and stewardship. Scientific Data, 3(1), 1–9.

- Wilson, M. (2016). *Critical GIS* (N. Clifford, M. Cope, T. Gillespie, & S. French, Eds.). SAGE.
- Wolter, D., & Lee, J. H. (2010). Qualitative reasoning with directional relations. *Artificial Intelligence*, 174(18), 1498–1507.
- Wood, J. D. (1996). The geomorphological characterisation of digital elevation models (Doctoral dissertation, University of Leicester).
- Wood, Z., & Galton, A. (2009). A taxonomy of collective phenomena. *Applied Ontology*, 4(3–4), 267–292.
- Worboys, M. F., & Clementini, E. (2001). Integration of imperfect spatial information. *Journal of Visual Languages & Computing*, 12(1), 61–80.
- Yuan, M. (1999). Use of a three-domain representation to enhance GIS support for complex spatiotemporal queries. *Transactions in GIS*, 3(2), 137–159.
- Zhang, T. Y., & Suen, C. Y. (1984). A fast parallel algorithm for thinning digital patterns. *Communications of the ACM*, 27(3), 236–239.
- Zhang, X., Song, W., & Liu, L. (2014). An implementation approach to store GIS spatial data on NoSQL database. In Proc. 22nd International Conference on Geoinformatics (pp. 1–5).
- Zhao, F., & Guibas, L. (2004). Wireless sensor networks: An information processing approach. Elsevier/Morgan-Kaufmann.
- Zimmermann, K., & Freksa, C. (1996). Qualitative spatial reasoning using orientation, distance, and path knowledge. *Applied Intelligence*, 6(1), 49–58
- Zlatanova, S., & Gruber, M. (1998). 3D urban GIS on the Web: Data structuring and visualization. In *ISPRS Archives* (Vol. 32, pp. 691–699).
- Zlatanova, S., Rahman, A. A., & Shi, W. (2004). Topological models and frameworks for 3D spatial objects. *Computers & Geosciences*, 30(4), 419–428
- Zubin, D. (1989). Natural language understanding and reference frames. In
 D. Mark, A. Frank, M. J. Egenhofer, S. Freundschuh, M. McGranaghan,
 & R. M. White (Eds.), Languages of Spatial Relations: Initiative 2 Specialist
 Meeting Report (pp. 13–16). National Center for Geographic Information and Analysis.

INDEX

2D orderings, 230–232 2PC, *see* two-phase commit protocol 3D, *4*, 15, 166, 343 4-intersection model, **106**, 104–106, *357* 9-intersection model, **106**

A* algorithm, 212 abduction, 361 absolute location, 291, 294, 299 absolute space, 138, 141 abstract class, 136 abstract graph, see graph accessor, 135 accomplishments, 156 accuracy, see inaccuracy achievements, 156 ACID, 43, 44 activation function, 391 Active Badge, 290 active location sensing, 290 activities, 156 acyclic graph, 66, 380 adjacency graph, 214 adjacency list, 208 adjacency matrix, 207, 207-208 adjacency relationship, 16, 175, 177 aesthetics in data graphics, 310 affine transformation, 82, 120 affordance, 334 agent, 372

agent, 372
agent-based model, 372
agile development, 19
Albers projection, 321
aleatory, 418
algorithm, 167
algorithmic complexity, 168, 168–170
allocentric, 369
α-cut, 416
alteration event, 154
ALU, 25
Amdahl's law, 278
amplitude, 29

angle, 79, 123

angulation, 290

duration, 341

animation, 339, 339-341

frequency, 341 order, 341 anisotropic, 147 ANN, see neural network annexation event, 154 annotation properties, 351 annulus, 101, 102 anonymization, 421, 423, 423 antisymmetric relation, 87, 113, 134, 442 API, 278 application domain model, 18 application layer, 265 arc, 21, 92, 101, 122, 130, 137, 174-175, 177, 181, 183 ARC/INFO, 266 architecture, see computer architecture, system architecture arrangement, 310 artificial intelligence, 349 artificial neural network, see neural network aspect, 10, 16, 143, 151 assignment operator, 182 association, 134 association rule learning, 23 asymptotic behavior, 169 at-least-once delivery, 282 at-most-once delivery, 282 atomicity, 43, 45 attribute, 52, 56 re-expression, 340, 345 type, 47, 351 value, 67 augmented reality, 344 authorization control, 42 autocorrelation, 388, see also spatial, autocorrelation autonomy, 295, 301 axis, 78, 170, see also medial axis

B-tree, **225**, 225–227, 252, 258–259 B+-tree, **227** back-propagation, **395** back-propagation through time, **398** balanced tree, 225, 227, 257 bandwidth, **29**

Azimuthal Equidistant projection, 320

cartography cube, 339 Basic Geo vocabulary, 351 Bayes, Thomas, 419 cause, 158, 159, 309 Bayesian probability, 419-420 census, 424, 424-426 BDI model, 372 census blocks, 424 beacon, 290 census tracts, 426 bearing, 80, 92, 123, 192 center of gravity, 194 behavior, 132, 132-138 centralized system, 296 belief, 372, 411, 419-421 centroid, 137, 194, 378 revision, 412, 412-414 chain coding, 191, 191, 235 bias, 407 change blindness, 341 choropleth map, 317, 317-318, 341 big data, 23, 372, 426 "big-oh" notation, 169 chromatic number, 213 bijection, **89**, 99 Chumash Traditional Owners, 129 BIM, 4 circumcircle, 187, 190, 204, 284-285 binary relation, 86, 370, 442 CISC, 27 binary search, 169, 220, 220-222, 225 Clarke's calculus of individuals, 367 binocular depth cue, 344 class, 132 bit, 218, 382 class diagram, 132 bit interleaving, 238 classification, 132-133, 315, 373 bitemporal model, 162, 162-163, 261-262 client. 271 client-server, 271, 271-277 blancmange function, 145 block, 218 client-side, 272, 274, 276 block pointer, 224 closed blockchain, 305 cell, 101 bona fide boundary, 126, 127 interval, 85 bootstrap sampling, 384 polyline, 81 boundary, 92, 96, 108, 127, see also polyset, 96 closed world assumption, 412 gon, boundary operator, 97 closure, 96, 97, 97-98, 122, 171 branching time, 152, 158 cloud computing, 266, 280, 372 breadth-first traversal, 208, 234, 243 cluster, 373 broker, 278, 297 cluster computing, 279 Brouwer's fixed point theorem, 102 clustering, 373, 378-380 brushing, 346 CNN, see convolutional neural network BSP-tree, 256, 256-258 co-dimension, 106 bucket, 237 Codd, Ted, 52 buffering, 12, 132 code of conduct, 430, 433 bus, 26 codomain, 88, 442 byte, 218 collinearity, 196 color, 310, 347, see also graph coloring combinatorial map, 109, 109-110, 177 CAD, 4 combinatorial topology, 92, 106-110 candidate key, 55 command entry, 331 Cantor-diagonal order, 231 complement, 85, 442 cardinal direction calculus, 368 completeness cardinality, 84, 142, 442 data quality, 407 cardinality conditions, 48, 134 complexity function, 168 CARE, 431 composable system, 278 carrier signal, 29 composite key, 57 Cartesian plane, 78, 85, 86, 170, 442 composition, 364 cartogram, 318 compound key, 57 cartographic abstraction, 315-316, 318 computable, 168

cartography, 307, 314-328

computational geometry, 167 , 205	hungry, 372
computer architecture, 24, 27, 36	independence, 39, 40, 41
computer storage, 2, 24, 26–28, 42, 42,	integrity, 39, 39, 54
217–223, 230, 237	layer, 265
conceptual data model, 18, 45 , 350	mining, 23
conceptual neighborhood, 370	model, 6, 40
conclusion, 358	protection, 422
concurrency, 39, 41, 42–43	quality, 407 , 407–408
conditional probability, 418	repatriation, 432
confusion matrix, 377	security, 39, 40, 273
congruences, 82	sharing, 5
connected, 99 , 103–104	sovereignty, 431
graph, 65 , 112, 208	stream, 283
consistency, 43, 162, 407, 409, 411	wrangling, 374
constraint network, 364	data correspondence, 309, 316
constraint satisfaction problem, 365	data definition language, 61
consumer, 282 , 297	data density, 308 , 316
context, 20 , 52, <i>384</i>	data graphics, 308
context-aware computing, 287 , 330	data integrity
continuant, 126 , 151	in data graphics, 309 , 316 data-ink ratio, <i>310</i>
continuous, 131, 144, 394, 395	database, 2 , 37–42, 75, 218
contour, 11, 342 control unit, 25	design, 44–52, 54–58
convergence, 344	performance, 39
converse, 364	scheme, 53 , 61
convex, 90	self-describing, 39, 40
hull, 90 , 187, 204	datum, <i>136</i> , 291
polygon, 81 , 195	DBMS, 39, 41, 44, 254
convolutional layer, 396	DBSCAN, 379 , 379–380
convolutional neural network, 396 ,	DCEL, 180 , 180–183, <i>184</i>
396–397	de facto standard, 269
CORBA, 278	de jure standard, 269
count noun, 156 , 350	De Morgan's laws, 235
CPU, 25 , 26, 278, 298	dead reckoning, 291
creation event, 153	decentralized algorithm, 299–304
credibility, 420	decentralized system, 296 , 295–298
Cree Nation, 429	decision problem, 214
crisp, 404	decision tree learning, 380 , 380–384
set, 404 , 415	deduction event, 153
critical GIS, 429	deductive validity, 358 , <i>361</i>
CRUD, 42 , 44, 62, 278	deep learning, 395 , 395–399
currency, 408	default reasoning, 413
cybergeography, 78	degree of belief, 419
cyclic time, 152 , <i>158</i>	degree theory, 415
Cypher, 72, 354	Delaunay triangulation, 186 , <i>190</i> , 202–206, 284–285
	constrained, 188
DAG, 113	DEM, 142 , <i>143</i> , 149, 347
data, 20 , 269	demographics, 424
capture, 3	Dempster-Shafer theory, 420–421
classification, 317–318, 385	denotational semantics, 358
cleaning, 374	dense index, 225
dictionary, 42	

elbow method, 379 dense set, 85 depth cue, 342, 342-344 element, 83, 441 depth-first traversal, 208, 251 elimination, 324 design thinking, 338, 338 embedding space, 129, 243 desktop metaphor, 335 empirical Bayesian Kriging, 387, 387-388 destruction event, 153 empty set, 84 detail, 120 encapsulation, 133 diagonal triangulation, 114 enhancement, 324 dialog, 328 ensemble learning, 385, 387 difference, 58, 84, 234 entity differentiable, 145, 395 instance, 46, 132-133 differential privacy, 426 type, 46, 50, 132-133 differentiated attack, 426 equal interval, 317, 385 digital twin, 14 equality, 84 digitizer, 5 equator, 117 digraph, see directed graph equivalence relation, 88, 406 Dijkstra's algorithm, 210 Erlangen program, 77 dipole relation algebra, 370 error, 403 directed acyclic graph, see DAG of commission, 377, 404 directed graph, 66, 111, 380, 391, 443 of omission, 377, 404 error propagation, 293 disappearance event, 153 discrete Euclidean plane, 79, 99-110, 135, 141, 170 Euclidean plane, 170 topology, 94, 97 space, 78, 78 discretization, 131, 171, 170-174 transformation, 82 displacement, 324 Euler characteristic, 107 display, 329, 331 Euler's formula, 106, 114 distance, 92, 115, 192-193 Eulerian trail, 112 evaluation function, 212 distributed database, 39 distributed system, 270, 270-272 event, 126, 155, 159 divide-and-conquer, 202, 205, 284 event-driven architecture, see also serviceoriented architecture, 283, 297 document store, 42 domain, 52, 61-62, 88, 351, 442 exactly-once delivery, 282 domain grid, 170 exchange format, 268 doubly linked list, 222 explicit input, 330 Douglas-Peucker algorithm, 174 explosive logic, 409 DTM, 143 expressive interface, 331 dual graph, 114, 184, 185 exteroceptor, 329 durability, 44, 45 extremes, 81 dynamic visual variable, 332, 340 F1 score, **377** E-R diagram, 47, 132, 177, 180 face, 108 E-R model, 18, 46, 46-52, 56, 132-134, **FAIR**, 430

E-R diagram, **47**, 132, 177, 180
E-R model, 18, **46**, 46–52, 56, 132–13
350, 351
E911, 287
earcons, 332
Earth observation, **4**, 130, 280
ecological fallacy, 321
EDA, see event-driven architecture edge, **65**, 111, 443
edge computing, **305**egocentric, **369**

F1 score, 377
face, 108
FAIR, 430
fair information practices, 422
fairness, accountability, transparency, ethics, see FATE
fan-out ratio, 225, 250
FATE, 432
fault tolerance, 297
feature cascade, 335
feed-forward network, 392, 395, 398

feedback, 336

fiat boundary, 126, 127, 157, 403	geodesy, 136
field, 16, 139 , 141	geographic information science, 4, 32
operations on, 147–151	geographic thinking, 339
properties of, 143–147	geographically weighted regression, 388,
field-based model, 139, 141, 138-143, 170,	388–391
183–184	geohash, 357
FIFO, 208	geohashing, 238
file, 218	geoinformatics, 4
field, 218	geomasking, see obfuscation
organization, 218, 218-223	geometric
transfer, 267	algorithms, 167 , <i>168</i> , 191–206
filter/refine, 249, 250, 254	domain, 170
findable, accessible, interoperable,	geometry, 77
reusable, see FAIR	GeoNames, 352
first order predicate logic, 359	georouting, 302
fitness-for-use, 409	geosensor network, 299, 300, 298-300,
five design-sheet methodology, 338	372
fix, 159	geoserver, 276 , 280
fixed grid, 237	GeoSPARQL, 357
fixed point, 102	geospatial, 2, 4
flash storage, 27	geostatistics, 34
floating-point number, 136	geovisual analytics, 344
fly-through, 340	geovisualization, 338
focal operation, 149	GIS, 2 , 1–7
fog computing, 305	GML, 273
foreign key, 55, 57	GNN, see graph, neural network
forgiveness, 337	GNSS, 290–293, 401, 401 , 427
fractal, 119 , 145, 232	goal-directed, 212
dimension, 121	gossiping, 300
generator, 119	GPS, 290, 401
geometry, 119 , 119–122	GQL, 72
initiator, 119	granularity, 405 , 407
frame of discernment, 406	graph, 65 , 65–67, 111–114, 206, 380, 397,
Freeman chain coding, 191 , 235	443
frequency, 29, 32	adjacency, 65 , 443
function, 82, 88 , 88–89, 139, 351, 442	coloring, 213
fuzzy	connected, see connected, graph
geometry, 416	cycle, 66 , 112, 176, 180, 182, <i>214</i>
membership function, 415	database, 19, 65–75, 208, 254
region, 416	directed, see directed graph
set, 415	labeled, see labeled graph
set theory, 415–416	neural network, 397
set theory, 113–110	order, 65 , 443
GAN, see generative adversarial network	planar, 443 plane, 444
Garey et al. algorithm, 200–202	prane, 444 property, 67 , 351
gazetteer, 116	
generalization, 133	weighted, see weighted graph
generative adversarial network, 398	graph database, 75, 223
generator, 232	GRASS GIS, 266, 401
GeoAI, 32, 399 , 432	great circle, 117
geodatabase, 4	greedy algorithm, 199
geodesic distance, 116	greedy triangulation, 188, 199

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Greene-Yao algorithm, 173	inaccuracy, 292, 403 , 404, 407, 408, 423
grid	incidence matrix, 207
data structures, 237–239	incident, 65 , 443
directory, 239	incompleteness, 168
file, 239	incremental algorithm, 205, <i>205</i> , 283
grid computing, 279	index, 176, 223 , 223–227
Gunditjmara Traditional Owners, 432	index field, 224
gustatory, 329	Indigenous data, 431
GWR, see geographically weighted regres-	Indigenous data sovereignty, 431 , <i>432</i>
sion	indiscernibility, 406 , 406
	indiscrete topology, 94, 97
half line, 80	induction, 361
Hamiltonian circuit, 214	information, 20, 269, 382, 384
	entropy, 382 , <i>384</i> , 382–384
haptic, 329	gain, 383
display, 331	glut, 420
hard copy, 28	privacy, 421 , 431
hardware, 24 , <i>27</i> , 289	scarcity, 420
hash	system, 1
field, 223	inheritance, 133, 350
file, 223	injection, 89 , 443
function, 223	input, 329
hash table, 303	inscribed octahedron, 255
HDD, 27	instruction cycle, 25, 26
heap file organization, 219	
heuristic, 212, 214	integrity, 54
hidden layer, 394	integrity constraint, 40, 43, 45
history graph model, 153	intent, 159
homeomorphism, 83, 91, 99 , 105, 107	interface, 271, 277
homonymy, 269	interior, 96
horizontal scaling, 277	interleaving, 43, 44
HTTP, 271, 275	Internet, 30
hue, 310, 347	Internet of things, 266, 287, 295
human-computer interaction, 158, 328,	interoperability, 267 , 350, 430
328–332	interposition, 343
hypergraph, 67	intersection, 84 , 234, 442
hyperparameters, 376	interval, 144 , 312, 363
hypsometric map, 342	real numbers, 85
	interval algebra, 365 , 365–367
Lag 280	intractable, 169 , 214
IaaS, 280 icon, 313, <i>333</i>	introspection, 412
	intuitive interface, 330
ID3, 382 , 382–384	invariance, 77
identifier, 47, 55	inverse function, 89, 443
identity, 129, 132	IO channel, 329 , <i>331</i> , 339
image	IoT, see Internet of things
of a function, 89 , 443	irreflexive relation, 87, 113, 442
image database, 4, 5, 42	irregular tessellation, 143, 184
impedance mismatch, 134	"is a" relationship, 134 , 136, 350, 362
imperfection, 403 , 405, 427	isochrone, 13, 146
implicit input, 330, 346	isolation, 44, see ACID
imprecision, 35, 292, 403 , 407, 408, 423,	isoline, 141
427	isomorphism, 66
in-car navigation, 293	•

isotropic, 145	simplification, 174, 323
	line-of-sight, 30
Jenk's natural breaks, 317	lineage, 407, 407
JEPD, see jointly exhaustive pairwise	linear
disjoint	perspective, 343
join operator, 60	search, 220
jointly exhaustive pairwise disjoint, 105,	linked list, 208
364 , 365	linked list file organization, 222
Jordan curve theorem, 121	linked open data, 68, 357 , 360, 361
just noticeable difference, 313	linked view, 346
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	list head, 222
Ir an anymistry 127	literal, 129
k-anonymity, 427	local operation, 148
k-means clustering, 378, 378–380	location masking, see obfuscation
Königsberg bridge problem, 112	location privacy, 295, 424
kD-tree, 243	location-aware, 286
kernel, 396	location-based services, 10, 294 , 294–295
kernel bandwidth, 389	330, 428
key field, 218 , 224	logical data model, 19 , 44, 219
kinesthesia, 329	longitude, 117
Kleene logic, 414	loop, 102 , <i>121</i>
Klein, Felix, 77	lost update, 43 , 44
knowledge, 411	lower approximation, 417
knowledge base, 359	ioner approximation, 127
knowledge graph, 354 , 357, 397	
knowledge representation and reasoning,	machine learning, 349 , 371–391
349 , 356, 371, 400	magnitude message, see value message
Koch snowflake, 119	magnitude of change, 341
KR ² , see knowledge representation and	mainframe, 272 , 295
reasoning	mandatory participation, 49, 51
Kriging, 386 , 386–388	Mandelbrot, Benoit, 119
	Manhattan distance, 116, 118
labeled graph, 66, 111	many-to-many relationship, 49
labeled property graph, 71	many-to-one relationship, 48 , 51, 55, 134,
lag, 386	177
LAN, 30	many-valued logic, 415
latency, 282, 297	map, 5, 100
lateration, 290 , 291	map algebra, 147
latitude, 117	map furniture, 347
layer, 141	map generalization, 120, 174, 316, 322 ,
leaf, 112	322–325
least-squares adjustment, 408	map labels, 325–328
legacy data, 5	map matching, 294
length, 92	map metaphor, 335 , 339
levels of measurement, 143–144	map projection, 89, 319 , 319–322
lexicographic distance, 116	conformal, 321
lifelines, 159	equal-area, 321
LIFO, 209	equidistant, 320 , 323
line, 80	mappings, 334
data structures, 246–247	market basket analysis, 23
of monotonicity, 200	marks, 308, 310
segment, 80	mask, 397
intersection, 197–198	mass noun, 156 , 350

massively parallel processing, 280	negative introspection, 412
MAUP, see modifiable areal unit problem	neighborhood, 92 , 148
maximum flow problem, 214	function, 147
mean-standard deviation, 317, 385	nested tessellation, 190 , <i>190</i>
medial axis, 188 , 191	network, 8, 16, 111–114, 206–214
transform, 189	analysis, 8 , 16
membership, 83 , 441	neural network, 391
MEMS, 4, 298	Nightingale, Florence, 361
menu, 333	node, 65 , 111, 443
Mercator projection, 89, 136, 321	degree, 65 , 443
mereology, 155	nominal, 143 , 363
merge event, 154	non-monotonic logic, 412, 414
meridian, 117	nonstationarity, see statistical stationar-
message broker, 282	ity, 388
metadata, 407, 430	norm, 79 , 416
catalog, 42	normal form, 53, 56
metaphor, 134, 158, 335 , 384	1NF, 53 , 56, 58, 74
metric, 95, 115	2NF, 58
space, 115 , 115–118	normalization, 56 , <i>58</i> , 228
minimum bounding box, 135, 197 , 247–	NoSQL, 71 , 75
252, 261, 378	nowhere differentiable, 121, 145
minimum spanning tree, 213	NP-complete, 214 , 214
MLP, see multilayer perceptron network	nugget, 386
mobile computing, 287	null, 61
modal operator, 412	
model, 16	obfuscation, 426, 427
model parameters, 376	_
modifiable areal unit problem, 321, 425	object, 127, 127–132, 141
modularity, 267 , 295	object orientation, 132 , 132–135, 278, 350
moment, 341	object-based model, 126 , 126–131, <i>141</i> , 170
monocular depth cue, 343	object-oriented model, 18
monotone	object-oriented programming languages,
chain, 81	134
polygon, 81 , 200	occurrent, 126 , 151, 155
morphism, 17	octahedral tessellation, 189, 255
Morton order, 231 , <i>235</i> , 236, <i>238</i> , 252	octree, 236
motion parallax, 343	offline algorithm, 283
motion tracking, 291, 293	OGC, 268
multi-tier client-server, 275	olfactory, 329
multigraph, 67, 67 , 111	one-to-one relationship, 49, 51
multihop communication, 299	online algorithm, 283 , 283–285, 300
*	ontology
multilayer perceptron network, 394	an, 350
multilevel index, 225	engineering, 350 , 350–363
multimodal, 330, 331	study of, 125 , <i>127</i> , 350
multiversion B-tree, 259	open
	ball, 118
n_simpley 109	
<i>n</i> -simplex, 109	cell, 101
NAA, 110, 177 , 176–180, <i>184</i>	disk, 93
natural join, 60	interval, 85
natural language processing, 399	0(
0.5	set, 96
near, 95 nearest neighbor query, 22	set, 96 open data, 68, 357, 361, 430 Open Street Map, <i>6</i>

optional participation, 49, 51	set, 80
orchestration, 278	topology, 92 , 92–93, 99–106
order, 168	vector, 78
ordered minimum angle vector, 187	point algebra, 363 , 363–365
ordering field, 220	point query, 22, 228
ordering key, 220	point-in-polygon, <i>121</i> , 123, 167, 194
ordinal, 143 , 312, 363	pointer, 222 , 333
orientation, 310	polygon, 81
origin, 78 , 170	area, 193
out-of-bag estimation, 384	boundary, 81
overfitting, 378, 384	triangulation, 81 , 188, 199–202
overflow, 223, 226	vertex, 81
overlapping B-tree, 258	polyline, 80 , 173
overlay, 12 , 16, 151, 198–199, 278	pooling layer, 396
OWL, 357	position, 310
	positioning, 291
PaaS, 280	positive introspection, 412
PAN, 30	positive predictive value, 377
panning, 345	possible worlds, 410, 411
parallel computing, 278	posterior belief, 420
"part of" relationship, 134 , 155	posting the foreign key, 55 , 56, 178
partial order, 88, 113	power set, 84
partition, 84 , 378, 442	PPV, see positive predictive value
partition, 61, 576, 112	preattentive features, 311
passive location sensing, 290	precision, see imprecision, see positive
path, 65 , 111, 443	predictive value
_	preference relation, 413
path consistency, 367	premise, 358
path loss, 30	presentation layer, 265
path-connected, 102	primary key, 55 , 56
pattern, 310, 341 Peano-Hilbert order, 231	primary storage, 26 , 218
	principle of minimal change, 413
peer-to-peer network, 299	prior belief, 420
perceptron, 392	privacy, 321, 421
perceptual space, 78	probability, 418–419
perimeter, 92	process, 126, 155 , <i>159</i>
persistence, 26, 42 , 217	producer, 281
personal data, 421	product, 58, 86 , 442
pervasive computing, 287	project operator, 59
Peutinger table, 314	projective transformation, 83, 320
physical data model, 19 , 219	proof of location, 305
pixels, 20	property, 351
planar	property graph model, 68 , 354
embedding, 109	proportional symbol map, 316
graph, 113	proprioceptors, 329
plane graph, 113	protocol, 271 , 277
Platonic solids, 189	prototyping, 338
plausibility, 420	provenance, 407
PM quadtree, 246	proximal polygon, 13, 186
point, 78 , 78–80, 136	proximity, 290
data structures, 237–245	pseudonym, 423
quadtree, 239 , 239–242, <i>255</i>	publication channel, 282
query, 247	

publish-and-subscribe model, 282, 281– 283, 297 q-edge, 247 quad-edge representation, 184 quadrree, 190, 232, 252 quadtree addressing, 252 qualitative, 363 spatial reasoning, 363 trajectory calculus, 370 quantiel, 317, 385 quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R+-tree, 251, 251–252 R*-tree, 251 RST-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 154 reappearance event, 157 reallocation event, 154 reappearance event, 157 reallocation event, 154 reappearance event, 157 reallocation event, 154 reappearance event, 157 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 reflection, 83 reflexive relation, 87, 442 region region connection calculus, 367 region connection calculus, 367 region connection calculus, 367 region connection calculus, 363 region connection calculus, 364 resultative, 240 polygon, 184, 186 tessellation, 143, 184 regularization, 103, 202 relation, 29, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relational algebra, 58, 58–61, 64, 181 darabase, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 103, 202 relation, 19, 103, 202 relation, 19, 31, 346 restellation, 19, 53, 56-62 relational algebra, 58, 58–61, 64, 181 darabase, 19, 53, 5	1.1:: 202	. 1 222 222 227 252 256
q-edge, 247 quad-edge representation, 184 quadtree, 190, 232, 252 qualtree addressing, 252 qualtrative, 363 spatial reasoning, 363 trajectory calculus, 370 quantile, 317, 385 quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 R*-tree, 251 R*-tree, 251 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 33 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 region query, 22 regression, 373 regular closed, 104 polygon, 184, 186 testellation, 193, 184 regularization, 103, 202 relation, 52, 33 cardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relationship, 48 occurrence, 48 type, 48 relationship, 48 occurrence, 48 repularization, 103, 202 relation, 52, 35 in set theory, 86–88, 442 scheme, 53, 56, 62 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 reliability, 408 Rel.U., see rectified linear unit function representative fraction, 323, 325 requistreesponse, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 revision	publication topic, 282	quadtree, 233 , 232–237, 252, 256
q-edge, 247 quad-edge representation, 184 quadtree, 190, 232, 252 qualitative, 363 spatial reasoning, 363 trajectory calculus, 370 quantile, 317, 385 quantitative, 363 approaches to uncertainty, 421 quaiternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251, 251–252 R*-tree, 251 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 recond pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 regression, 373 regular closed, 104 polygon, 184, 186 tessellation, 143, 184 regularzation, 193, 202 relation, 52, 53 cardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relations, 19, 202 relation, 52, 53 cardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relations, 19, 202 relation, 143, 184 regularzation, 103, 202 relation, 143, 184 regularzation, 103, 202 relation, 52, 53 cardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relations, 19, 202 relations, 19, 20	_	*
q-edge, 247 quad-edge representation, 184 quadtree, 190, 232, 252 qualitative, 363 spatial reasoning, 363 trajectory calculus, 370 quantile, 317, 385 quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R+*-tree, 251, 251–252 R*-tree, 251 R**-tree, 251, 251–252 R*-tree, 251 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 regularization, 103, 202 relation, 52, 53 cardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relation, 12, 184 regularization, 103, 202 relation, 52, 53 cardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relationsal algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relative location,	283, 297	
quad-tege representation, 184 quadtree, 190, 232, 252 qualtree addressing, 252 qualtrative, 363 spatial reasoning, 363 trajectory calculus, 370 quantile, 317, 385 quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442		
quadtree, 190, 232, 252 qualitrative, 363 spatial reasoning, 363 trajectory calculus, 370 quantile, 317, 385 quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251, 251–252 R*-tree, 251 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442	q-edge, 247	
qualtree addressing, 252 qualitative, 363 spatial reasoning, 363 trajectory calculus, 370 quantile, 317, 385 quantitarive, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251, 251–252 R*-tree, 251 RST-tree, 251 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 333 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442	quad-edge representation, 184	
qualitative, 363 spatial reasoning, 363 trajectory calculus, 370 quantile, 317, 385 quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251, 251–252 R*-tree, 251 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 ressellation, 143, 184 regularization, 103, 202 relation, 52, 53 cardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relation, 143, 184 regularization, 103, 202 relation, 52, 53 cardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 relative location, 291, 294, 299 relative, 256 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 relative location, 291, 294, 299 relative space, 138 relative location, 13, 384 resource inventor, 8 REST, 278 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rotative factive factory, 201 rotational algebra, 58,	quadtree, 190, 232 , 252	
spatial reasoning, 363 trajectory calculus, 370 quantile, 317, 385 quantitarive, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 R*-tree, 251 R*-tree, 251 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 real-time, 15 reallocation event, 154 reappearance event, 154 reappearance event, 157 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442	quadtree addressing, 252	T 11
relation, 52, 53 quantile, 317, 385 quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 R*-tree, 251 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflation, 32, 325 acardinality, 53 degree, 53, 54 in set theory, 86–88, 442 scheme, 53, 56, 62 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 relationship, 48 occurrence, 48 type, 48 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 40 occurrence, 48 type, 48 relationship, 40 operator, 54 relational	qualitative, 363	
quantile, 317, 385 quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250-251, 261 R*-tree, 251, 251-252 R*-tree, 251 random forest, 384, 384-385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229-230, 237, 247 raster, 20, 140, 183, 232-237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 cardinality, 53 degree, 53, 54 in set theory, 86-88, 442 scheme, 53, 56, 62 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 58 relative location, 294, 299 relative location, 291, 294, 299 relative location, 291, 294, 299 relative l	spatial reasoning, 363	
quantitative, 363 approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250-251, 261 R*-tree, 251, 251-252 R*-tree, 251 range query, 228, 229-230, 237, 247 raster, 20, 140, 183, 232-237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 degree, 53, 54 in set theory, 86-88, 442 scheme, 53, 56, 62 relational algebra, 58, 58-61, 64, 181 database, 19, 53, 52-64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relaibility, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412-414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417-418 row order, 231 run-length encoding, 235 Russell's paradox, 84 relative location, 80, 442	trajectory calculus, 370	
approaches to uncertainty, 421 quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251, 251–252 R*-tree, 251 RST-tree, 251 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 scheme, 53, 56, 62 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relationship, 48 occurrence, 48 type, 48 relationship, 48 occurrence, 48 relationship, 49 relationship, 49 occurrence, 48 relationship, 49 occurrence, 49 relative space, 138 reliability, 408 ReLU, se rectified linear unit function	quantile, 317, 385	
quasimetric, 117 quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R+tree, 251, 251–252 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 scheme, 53, 56, 62 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relative location, 291, 294, 299 relative space, 138 relative location, 291, 294, 299 re	quantitative, 363	
quaternary triangular mesh, 255, 255 region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 R*-tree, 251 R*-tree, 251 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relational algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationslip, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 roughts— relationsal algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventor, 59 retative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 324, 338 resource inventor, 59 rectind database, 19, 50, 50 relative space, 138 reliability, 408 ReLU	approaches to uncertainty, 421	_
region quadtree, 256 query, 21 compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 R*-tree, 251 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 58, 58–61, 64, 181 database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 relative location, 54 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relationship, 49 relative location, 291, 294, 299 relative space, 138 relationship, 48 occurrence, 48 type, 48 relationship, 49 rela	quasimetric, 117	
database, 19, 53, 52–64, 67, 75 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 restrict operator, 59 retative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rootation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 230 rough set, 417 theory, 417–418 row order, 231 row prime order, 230 rough set, 417 theory, 417–418 row order, 231 r	quaternary triangular mesh, 255 , <i>255</i>	
compiler, 42 language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R+tree, 251, 251–252 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 join, see also join operator, 54 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relaibility, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retative location, 291, 294, 299 relative space, 138 relaibility, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retative location, 291, 294, 299 relative space, 138 relaibility, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retative location, 291, 294, 299 relative space, 138 relaibility, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retaitive location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory restrict operator, 59 retinal disparity, 344 revision, 1	region quadtree, 256	
language, 42 optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 R*-tree, 251 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 operator, 58 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retiability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 requister space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 requister space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 requister space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 requister space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 requister space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 requister space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retrial disparity, 344 revision, 160, 412–414 revision,	query, 21	
optimization, 42, 61 queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R+-tree, 251, 251–252 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 record pointer, 224 record pointer, 224 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 42, 61 relationship, 48 occurrence, 48 type, 48 relative location, 291, 294, 299 relative space, 138 relative location, 291, 294, 299 relative space, 138 relative location, 291, 294, 299 relative space, 138 rela	compiler, 42	
queue, 208 quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 R*-tree, 251 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 row prime order, 231 row prime order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 relative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 revision, 160,	language, 42	=
quotient set, 406 R-tree, 250, 250–251, 261 R*-tree, 251 R*-tree, 251 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 respectative location, 291, 294, 299 relative space, 138 relative location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retrial disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84	optimization, 42, 61	_
relative location, 291, 294, 299 relative space, 138 reliability, 408 Reture, 251, 251–252 R*-tree, 251 RST-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive location, 291, 294, 299 relative space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 row prime order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 SaaS, 280 saturation, 310 scalability, 297	queue, 208	
relative space, 138 reliability, 408 R*-tree, 251, 251–252 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive space, 138 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 reliability, 408 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 run-length encoding, 235 Russell's paradox, 84	quotient set, 406	
R-tree, 250, 250–251, 261 R*-tree, 251, 251–252 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442		
R*-tree, 251, 251–252 R*-tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 ReLU, see rectified linear unit function representative fraction, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 reflection, 83 reflexive relation, 87, 442	R-tree. 250 , 250–251, 261	
R*-tree, 251 RST_tree, 261 random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 323, 325 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 reflection, 83 reflexive relation, 87, 442		
random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 request-response, 271 requirements analysis, 18, 338 resource inventory, 8 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 run-length encoding, 235 Russell's paradox, 84 SaaS, 280 saturation, 310 scalability, 297		
random forest, 384, 384–385 range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442		
range, see also semivariogram, range of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 redundancy, 54 reflection, 83 reflexive relation, 87, 442 reflection, 87, 442 restrict operator, 59 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84		_
of a function, 89, 351 range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 REST, 278 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 SaaS, 280 saturation, 310 scalability, 297		
range query, 228, 229–230, 237, 247 raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 restrict operator, 59 retinal disparity, 344 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 SaaS, 280 saturation, 310 scalability, 297		
raster, 20, 140, 183, 232–237, 396 rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 resision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 SaaS, 280 saturation, 310 scalability, 297		
rasterization, 190 ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 relexive relation, 87, 442 revision, 160, 412–414 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84		=
ratio, 144, 312, 363 ray, 195 RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 RISC, 27 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84	rasterization, 190	- ·
RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 RNN, see recurrent neural network rollback, 45, 161 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84	ratio, 144, 312, 363	
RCC, see region connection calculus RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 root mean square error, 408 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 reflection, 83 saturation, 310 scalability, 297	ray, 195	
RDBMS, 53 RDF, 353 real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 reoted tree, 112, 443 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 run-length encoding, 235 Russell's paradox, 84 saaS, 280 saturation, 310 scalability, 297	RCC, see region connection calculus	
real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 rectallocation, 83 rooted tree, 112, 443 rotation, 83 rough set, 417 theory, 417–418 row order, 231 run-length encoding, 235 Russell's paradox, 84 redundancy, 54 SaaS, 280 saturation, 310 scalability, 297	RDBMS, 53	
real-time, 15 reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 rough set, 417 theory, 417–418 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 SaaS, 280 saturation, 310 scalability, 297	RDF, 353	
reallocation event, 154 reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 rough set, 417 theory, 417–418 row order, 231 run-length encoding, 235 Russell's paradox, 84 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 ration, 310 saturation, 310 scalability, 297	real-time, 15	
reappearance event, 153 recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 recall, see true positive rate row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 radiancy, 54 saaS, 280 saturation, 310 scalability, 297	reallocation event, 154	
recall, see true positive rate record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 row order, 231 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 resolution, 395 recurrent neural network, 398 redundancy, 54 saaS, 280 saturation, 310 scalability, 297	reappearance event, 153	
record, 67, 218 record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 row prime order, 231 run-length encoding, 235 Russell's paradox, 84 run-length encoding, 235 Russell's paradox, 84 run-length encoding, 235 Russell's paradox, 84 results paradox, 84 saaS, 280 saturation, 310 scalability, 297	recall, see true positive rate	
record pointer, 224 rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 record pointer, 224 run-length encoding, 235 Russell's paradox, 84 Russell's paradox, 84 SaaS, 280 saturation, 310 scalability, 297	record, 67, 218	row prime order, 231
rectangle algebra, 366 rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54 reflection, 83 reflexive relation, 87, 442 Russell's paradox, 84 Russell's paradox, 84 readox, 84 reselves paradox, 84 readox,	_	-
rectified linear unit function, 395 recurrent neural network, 398 redundancy, 54	rectangle algebra, 366	
redundancy, 54 reflection, 83 reflexive relation, 87, 442 SaaS, 280 saturation, 310 scalability, 297		-
reflection, 83 saturation, 310 reflexive relation, 87 , 442 scalability, 297		
reflexive relation, 87 , 442 scalability, 297		SaaS, 280
region scalar, 16		
	region	scalar, 16

1	
scale, 325	arc, 101
scale dependence, 119	loop, 101
scan conversion, 190	polyline, 81
scene, 339	simple feature model, 135 , 135–138, 178,
scene analysis, 291	269, 274, 357
schematic map, 307, 314, 318, 318–319	simplex
scientific visualization, 338	0-simplex, 108
Seacole, Mary, 361	1-simplex, 108 , 166
secondary storage, 26 , 218	2-simplex, 108 , 166
seek time, 219	simplicial complex, 108 , 107–109, 130
segment tree, 259 , 259–261	dimension, 109
selective inattention, 341 self-affine, 120	simply connected, 101
self-similar, 119 , 145	single-hop communication, 299 single-layer feed-forward neural network,
semantic heterogeneity, 269	
Semantic Web, 68, 269, 352 , 357, 361	see perceptron single-level index, 224
semantics, 269, 358	singly linked list, 222
semi-convex, 90	situation, 156
semi-line algorithm, 195	skeleton, 189
semi-open	small multiples, 317, 318
interval, 86	smart city, 15
region, 368	snapshot, 14, 152
semiconnected, 66	SOA, see service-oriented architecture
semivariance, 386	SOAP, 278
semivariogram, 386 , 386–388	soft copy, 28
range, 386	software, 24 , 27
sensitivity, 377, see true positive rate	sonification, 332
sensor, 3, 289, 291, 293, 298	sorites paradox, 405
sensor mote, 298	sound symbol, 332
sensor network, 4, 266, 298-299	space, 78, 77–78
sentence, 359	space complexity, 168
sequence diagram, 271	space-filling, 121 , 232
sequential file organization, 220	spaghetti, 175 , 175–176
server, 271	spanning tree, 212
server-side, 272 , 274	SPARQL, 72, 354 , 354–356, 357
service-oriented architecture, 277, 278, see	sparse index, 225
also event-driven architecture	sparse matrix, 208
set, 83 , <i>84</i> , 441	spatial
theory, 83–89	acuity, 332
Shannon entropy, see information, en-	analysis, 15 , 373, 391, 426
tropy	autocorrelation, 33, 147, 147, 386, 396,
shape, 310, 313	425
Shapefile, 267, 269	data, 2 , 20–21
shear, 83	database, 4
shortest path, 210	field, 141
all-pairs, 212	framework, 139 , <i>143</i> , 139–143, 183
single-source, 212	heterogeneity, 34
sigmoid function, 395	information system, 4
sill, 386	join, 250
similarity relation, 406	reference system identifier, see SRID
similarity transformation, 82 , 100, 120	spatialization, 158, 344
simple	spatiotemporal system, 14

anagialization 122	tantiany storage 26 27
specialization, 133	tertiary storage, 26 , 27
speedup, 278	tessellation, 183 , <i>186</i> , 184–190
spherical data structures, 254–256	of the sphere, 189, 190
spiral order, 231	test data set, 376 , 377
split event, 153	tetrahedral tessellation, 189
spread spectrum, 32	texture, 310
SQL, 61 , 61–64, 75, 354	thematic map, 316
SRID, 135	thick
SSD, 27	client, 272
stack, 209	server, 272
standard deviation, 408	Thiessen polygon, 186 , 290, see also
star-shaped polygon, 81 , 90	Voronoi diagram
state, 132, 156	thin
statistical stationarity, 33, 34, 387	client, 272
Steiner point, 82 , 114, 199	server, 272
stereoblindness, 344	thinning, 191
stereopsis, 344	three-dimensional display, 342
stereoscopic, 343	three-valued logic, 414
stored data manager, 42	tile index, 231
stream processing, 266	tiling, 183, <i>186</i>
stride, 396	time, 14, 151
strongly connected, 66 , 104	complexity, 168 , 220, 221
subclass, 133 , 350	time to first fix, 292
subgraph, 212	timeline, <i>158</i> , 341
subset, 84 , 441	timeliness, 408
subset sum problem, 214	timestamp, 152
superclass, 133	TIN, 109, 184 , 183–184
supervenience, 363	Tobler's first law, 386, 425
supervised learning, 375	Tobler, Waldo, 147
support, 140	topographic map, 307, 315 , 316
surjection, 89, 443	topological
syllogism, 358	algorithm, 194–196
symmetric relation, 87 , 442	equivalence, 99
synchronization, 341	invariance, 101
synonymy, 269	property, 92
syntactic heterogeneity, 268	space, 92 , <i>94</i> , <i>97</i> , 95–99
syntax, 269, 358	topology, 4, 91 , 91–110, 118, 177
system	toponym, 325 , 352
analysis, 19 , 49	TPR, see true positive rate
architecture, 5, 265	training, 375
design, 19, 54	training data set, 375
development life cycle, 19, 338	transaction, 42, 43
implementation, 19	time, 161 , 258–259
maintenance, 19	transformation, 82
requirements, 18	transitive, 113
validation, 19	transitive relation, 87 , 442
	transparency
t zana 94 118	(in distributed systems), 280, 285
t-zone, 94, 118	transperceptual space, 78, 125
taxonomy, 134	travel time, 8, 13
temporal index, 258–262	distance, 116 , 118, 145
terminal, 272	topology, 94 , 118
ternary relationship, 49 , 51	

traveling salesperson algorithm, 9, 214 tree, 112, 213, 225, 240, 380, 443 triangle inequality, 115, 416 triangular facets, 189 triangular norm, 416 triangular point quadtree, 255, 256 triangulation algorithms, 199-206 trie, 240, 246, 256 triple, 352, 354 triple store, 68, 72, 354, 357 true positive rate, 377 truth table, 414, 444 tuning, 376 tuple, 52, 67 Turing machine, 350 Turing test, 350 Turing, Alan, 168, 350 Turtle, 352, 352-353 Two Generals Problem, 283 two-phase commit protocol, 45 two-tier client-server, 271 2D-tree, 243, 243-245 typification, 324

ubiquitous computing, 287 UML, 47, 132 UN-GGIM, 268 uncertainty, 402, 402-403 underflow, 226 undirected graph, 66, 111, 443 uniform resource identifier, see URI union, 58, 84, 234 unit disk, 95, 96 square, 86, 231 unsupervised learning, 375 update, 160 upper approximation, 417 upper level ontology, 362 urban canyon, 293 URI, 352 URL, 352 usability engineering, 337 user interface, 39, 328, 328-332 view, 39, 41 user context, 287 user-generated content, 4, 6, 42 usual topology, 93, 94, 94, 117, 135

UTM, 89, 136

vagueness, 404, 405, 407, 414 valid time, 161, 258-262 validation data set, 376 value, 310 value message, 312, 311-312, 316, 327, 347 vector, 21 quantity, 16 vectorization, 190, 191 verbal thinking, 338 versioning, 161 vertex, 108 figure, 184 vertical scaling, 277 vestibular, 329 VGI, see user-generated content viewshed, 10, 10-11 virtual reality, 344 visibility, 334 analysis, 10, 143 visual analytics, 344 visual thinking, 338, 435 visual variable, 310, 310-313 vocabulary, 350 volatile storage, 26 volatility, 42, 218 von Neumann model, 24, 278 Voronoi diagram, 186, 290 voxels, 21

WAN, 30, 303 waterfall model, 19 wavelength, 29 ways of knowing, 429, 433 WCS, 276 weakly connected, 66, 104 wearable computing, 287 web browser, 271, 277, 295 web mapping, 275, 275 web server, 271, 275-277, 295 Weber's law, 313 weeding, 324 weighted graph, 67, 111, 391 well-known text, 135, 269 WFS, **274**, 276 WGS84, 350 WIMP, 332, 333, 335 winding number algorithm, 195 window, 333 winged-edge representation, 184 wireless communication, 29, 298 wireless network, 32, 36 WMS, 273, 276

"main" — 2023/6/10 — 15:53 — page 472 — #492

472 GIS: A COMPUTING PERSPECTIVE

worst-case performance, 169

WWW, 2, 271

XML, 273, 353

Yorta Yorta Nation, 432

z-order, **231**

z-ordering tree, 252–254 Zhang-Suen algorithm, 191

zonal operation, 150, 278

zooming, 345

Zubin spaces, 78, 125

