

Primeros de Bachillerato APLICACIONES INFORMÁTICAS

Fecha : 29 de mayo de 2016.

U.T. 5 : Estructuras de control y ampliación del lenguaje java.

Conceptos: Visibilidad y la clase Math.

RECORDANDO

Acumuladores

Centinelas

Bucles controlados por centinelas

Encapsulamiento y Visibilidad

Una de las actividades comunes en la programación orientada a objetos es el denominado encapsulamiento de las clases, esta actividad busca en forma general mostrar solo los aspectos necesarios, ocultando todos los que se consideran internos y que no deben ser mostrados.

- Para lograr el encapsulamiento se utiliza la Visibilidad.
- La Visibilidad establece que básicamente hay 3 modificadores de acceso a los atributos y métodos de nuestras clases, estas son: Publico, Protegido y Privado.

Visibilidad y los modificadores de acceso

Los modificadores de acceso preceden a la declaración de un elemento de la clase (ya sea atributo o método), de la siguiente forma: [modificador] tipo_variable nombre;

[modificador] tipo_devuelto nombre_metodo (lista_Argumentos);

- ✓ () private: El campo o método sólo es visible dentro de la clase donde se define.
- √ (+) public: El campo o método es visible en cualquier clase.
- √ (#) protected: El campo o método es visible en la clase en donde se define y en cualquiera de sus subclases.
- ✓ Ninguna de las anteriores: El campo o método es visible en cualquiera de las clases pertenecientes al paquete en donde se define. se suele conocerse como default o package-private.

Visibilidad y los modificadores de acceso

Los distintos modificadores de acceso quedan resumidos en la siguiente tabla:

	LA MISMA CLASE	OTRA CLASE DEL MISMO PAQUETE		OTRA CLASE DE OTRO PAQUETE
public	X	X	X	X

Los modificadores de acceso en el diagrama de clases

Juan Armijos:alumno

(+)nombres: Juan Diego

(+) apellidos: Armijos Goercke

(+) dirección: Hermano Miguel 1226

(+) **teléfono**: 0987654321

(+) Curso: Primero "E2"

(-)cambiarDireccion()

(+)cambiarTeléfono()

(#)cambiaCurso()

- ✓ Los atributos miembros de una clase pueden ser atributos de clase o atributos de instancia; se dice que son atributos de clase si se usa la palabra clave static.
- ✓ El modificador static sirve para crear miembros que pertenecen a la clase, y no a una instancia de la clase. Esto implica, entre otras cosas, que no es necesario instanciar la clase para poder acceder a estos atributos y métodos.

```
package Actividad12;
import java.util.Scanner;
public class Animal {
    private static String nombre;
    private static String color;
    private static int patas;
    public static void main(String[] args) {
        String r;
        Scanner leer; //ler paso. DECLARAR UNA VARIABLE TIPO SCANNER
        leer = new Scanner(System.in);
        System.out.println("BIENVENIDOS AL ZOOLOGICO");
        System.out.print("INGRESE NOMBRE DEL ANIMAL: ");
```


Si el método *main* es static, no podrá utilizar métodos que no sean static

La clase Math

ADA POR FAVOR AS EN EL LABORATORIO

La clase java.lang.Math es una clase utilitaria cuyos métodos nos permiten realizar algunos cálculos matemáticos comunes.

Math es *public* para que se pueda llamar desde cualquier sitio y static para que no haya que inicializarla.

CONSTANTES MATEMÁTICAS

Math tiene una referencia a las dos constantes más utilizadas en matemática con una precisión de 15 decimales: la constante Math.PI con valor 3.14159265358979323846 y Math.E, la base de los logaritmos naturales, con valor 2.7182818284590452354.

```
public class Aritmetica {
   public static void main(String[] args) {
        System.out.println("La constante Pi es --> " + Math.PI);
        System.out.println("La base logarítmica E es --> " + Math.E);
   }
   run:
   La constante Pi es --> 3.141592653589793
   La base logarítmica E es --> 2.718281828459045
   GENERACIÓN CORRECTA (total time: 1 second)
```


Métodos de la clase Math Para conversiones

✓ Método Math.toRadians

public static double toRadians(double angGr)

Convierte la medida angGr de un ángulo de grados a radianes. Por ejemplo:

```
double angGrados = 45; //grados
double angRadianes = Math.toRadians(angGrados);
System.out.println("Grados a Radianes: " + angGrados + "o = " + angRadianes + " rad");
```

De la misma manera el método **Math.toDegrees** convierte de radianes a grados

Métodos de la clase Math Funciones Trigonométricas

Las funciones trigonométricas aceptan y devuelven los ángulos en radianes por lo que siempre hay que convertir desde/hacia grados.

✓ Método Math.cos

public static double **cos**(double **a**)

Calcula el coseno de a. Por ejemplo para calcular el coseno de 30°:

```
double angRadianes = Math.toRadians(30);
double coseno = Math.cos(angRadianes);
System.out.println("El coseno de 30 grados es " + coseno);
```

De la misma manera los métodos *Math.sin*, *Math.tan*, *Math.acos*, *Math.asin*, *Math.atan* calculan el resto de funciones trigonométricas

Métodos de la clase Math Funciones Matemáticas

✓ Método Math.pow

public static double **pow**(double **a**, double **b**)

Devuelve el valor del primer argumento (a) elevado a la potencia el segundo argumento (b), es decir, ab. Por ejemplo para calcular la potencia de 5³:

```
double potencia = Math.pow(5,3);
System.out.println("La potencia de 5 elevado a la 2 es" + potencia);
```

✓ Método Math.sqrt

public static double sqrt(double a)

Devuelve el resultado de calcular la raíz cuadrada de a (Número positivo).

Actividad en clases

Desarrollar un método en el que se ingrese un número n par mayor a 4, el método devolverá el resultado de acuerdo a la siguiente serie:

$$r = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n-2}} + \frac{1}{\sqrt{n-4}} - \frac{1}{\sqrt{n-6}} + \frac{1}{\sqrt{n-8}} \dots \dots \frac{1}{\sqrt{2}}$$

Por ejemplo si n es igual a 10 el resultado sería:

$$r = \frac{1}{\sqrt{10}} - \frac{1}{\sqrt{8}} + \frac{1}{\sqrt{6}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{2}}$$

Gracias !!!

Usted es libre de

: Copiar, distribuir y comunicar públicamente éstas diapositivas de resumen

Bajo las condiciones siguientes:

Reconocimiento: Debe reconocer los créditos del documento al autor

No comercial: No puede utilizar éste documento para fines comerciales

Sin obras derivadas: <u>NO SE PUEDE ALTERAR, TRANSFORMAR O GENERAR UNA OBRA</u> DERIVADA A PARTIR DE ÉSTE DOCUMENTO

Comentarios o sugerencias a los correos: ing.wilsoncedillo@msn.com ó wilsoncp@uets.edu.ec