LECTURE 18: Inequalities, convergence, and the Weak Law of Large Numbers

- Inequalities
- bound $P(X \ge a)$ based on limited information about a distribution
- Markov inequality (based on the mean)
- Chebyshev inequality (based on the mean and variance)
- WLLN: X, X_1, \ldots, X_n i.i.d.

$$\frac{X_1 + \dots + X_n}{n} \longrightarrow \mathbf{E}[X]$$

- application to polling
- Precise defn. of convergence
 - convergence "in probability"

The Markov inequality

- Use a bit of information about a distribution to learn something about probabilities of "extreme events"
- "If $X \ge 0$ and $\mathbf{E}[X]$ is small, then X is unlikely to be very large"

Markov inequality: If
$$X \ge 0$$
 and $a > 0$, then $\mathbf{P}(X \ge a) \le \frac{\mathbf{E}[X]}{a}$

$$Y = 0$$
, if $X < \alpha$
 a , if $x \ge \alpha$ $a P(x \ge \alpha) = E[Y] \le E[X]$

The Markov inequality

Markov inequality: If $X \ge 0$ and a > 0, then $\mathbf{P}(X \ge a) \le \frac{\mathbf{E}[X]}{a}$

• Example: X is Exponential($\lambda = 1$): $P(X \ge a) \le \frac{1}{a}$

• Example: X is Uniform[-4,4]: $P(X \ge 3) \le \int (|X| > 3) \le \frac{E[|X|]}{3} = \frac{2}{3}$

The Chebyshev inequality

- Random variable X, with finite mean μ and variance σ^2
- "If the variance is small, then X is unlikely to be too far from the mean"

Chebyshev inequality:
$$P(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$$

Markov inequality: If $X \ge 0$ and a > 0, then $P(X \ge a) \le \frac{E[X]}{a}$

$$P(|x-\mu| \ge c) = P((x-\mu)^2 \ge c^2) \le E[(x-\mu)^2] = \frac{\sigma^2}{c^2}$$

The Chebyshev inequality

Chebyshev inequality: $P(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$

$$P(|X-\mu| \ge k\sigma) \le \frac{\sigma^2}{k^2\sigma^2} = \frac{1}{k^2} \qquad k=3 \qquad \le \frac{1}{9}$$

• Example: X is Exponential $(\lambda = 1)$: $P(X \ge a) \le \frac{1}{a}$ (Markov)

$$P(x>a) = P(x-1>a-1) \leq P(1x-1)>a-1) \leq \frac{1}{(a-1)^2} \sim \frac{1}{a^2}$$

The Weak Law of Large Numbers (WLLN)

• X_1, X_2, \ldots i.i.d.; finite mean μ and variance σ^2

Sample mean:
$$M_n = \frac{X_1 + \dots + X_n}{n}$$
 $p = E[X_n]$

•
$$\mathbf{E}[M_n] = \frac{\mathcal{E}[X_1 + \dots + X_n]}{n} = \frac{n \mu}{n} = \mu$$

•
$$Var(M_n) = \frac{Var(X_1 + \cdots + X_n)}{n^2} = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

$$P(|M_n - \mu| \ge \epsilon) \le \frac{\text{var}(M_n)}{\epsilon^2} = \frac{\sigma^2}{n \epsilon^2} \longrightarrow 0 \quad (fleed \epsilon > 0)$$

WLLN: For
$$\epsilon > 0$$
, $\mathbf{P}(|M_n - \mu| \ge \epsilon) = \mathbf{P}(\left|\frac{X_1 + \dots + X_n}{n} - \mu\right| \ge \epsilon) \to 0$, as $n \to \infty$

Interpreting the WLLN

$$M_n = (X_1 + \dots + X_n)/n$$

WLLN: For
$$\epsilon > 0$$
, $\mathbf{P}\Big(|M_n - \mu| \ge \epsilon\Big) = \mathbf{P}\Big(\Big|\frac{X_1 + \dots + X_n}{n} - \mu\Big| \ge \epsilon\Big) \to 0$, as $n \to \infty$

- One experiment
- many measurements $X_i = \mu + W_i$
- W_i : measurement noise; $\mathbf{E}[W_i] = 0$; independent W_i
- sample mean M_n is unlikely to be far off from true mean μ
- Many independent repetitions of the same experiment
 - event A, with p = P(A)
 - X_i : indicator of event A

the sample mean M_n is the **empirical frequency** of event A

The pollster's problem

- p: fraction of population that will vote "yes" in a referendum
- ullet ith (randomly selected) person polled: uniformly, independently

$$X_i = \begin{cases} 1, & \text{if yes,} \\ 0, & \text{if no.} \end{cases} \quad \text{E[x,] = p}$$

- $M_n = (X_1 + \cdots + X_n)/n$: fraction of "yes" in our sample
- Would like "small error," e.g.: $|M_n p| < 0.01$ Try n = 10,000

•
$$P(|M_{10,000} - p| \ge 0.01) \le \frac{\sigma^2}{n \, \epsilon^2} = \frac{p(1-p)}{10^4 \cdot 10^{-4}} \le \frac{1}{4} \iff \text{want } \le \frac{1}{6}$$

$$\frac{1/4}{n \cdot 10^{-4}} \le \frac{5}{10^2} \iff n \ge \frac{10^6}{20} = 50,000 \iff \text{will suffice}$$

Convergence "in probability"

WLLN: For any
$$\epsilon > 0$$
, $\mathbf{P} \Big(|M_n - \mu| \ge \epsilon \Big) \to 0$, as $n \to \infty$

ullet Would like to say that " M_n converges to μ "

- Need to define the word "converges"
- Sequence of random variables Y_n ; not necessarily independent

Definition: A sequence Y_n converges in probability to a number \underline{a} if:

for any
$$\epsilon > 0$$
, $\lim_{n \to \infty} \mathbf{P}(|Y_n - a| \ge \epsilon) = 0$

Understanding convergence "in probability"

- Ordinary convergence
 - Sequence a_n ; number a $a_n \to a$

" a_n eventually gets and stays (arbitrarily) close to a"

• For every $\epsilon > 0$, there exists n_0 , such that for every $n \geq n_0$, we have $|a_n - a| \leq \epsilon$

- Convergence in probability
 - Sequence Y_n ; number a $Y_n \to a$
- for any $\epsilon > 0$, $\mathbf{P}(|Y_n a| \ge \epsilon) \to 0$

"(almost all) of the PMF/PDF of Y_n eventually gets concentrated (arbitrarily) close to a_{\bullet} "

Some properties

ullet Suppose that $X_n o a$, $Y_n o b$, in probability

• If
$$g$$
 is continuous, then $g(X_n) \to g(a)$

$$\chi_{m}^{2} \rightarrow \alpha^{2}$$

•
$$X_n + Y_n \rightarrow a + b$$

• But: $\mathbf{E}[X_n]$ need not converge to a

Convergence in probability examples

convergence in probability does not imply convergence of expectations

Convergence in probability examples

- X_i : i.i.d., uniform on [0,1]
- $\bullet \quad Y_n = \min\{X_1, \dots, X_n\}$

Related topics

- Better bounds/approximations on tail probabilities
 - Markov and Chebyshev inequalities

- Chernoff bound
$$\int \left(|M_n - \mu| \ge a \right) \le e^{-n h(a)}$$

- Central limit theorem $M_n \sim N(\mu, \sigma^2/n)''$
- Different types of convergence
 - Convergence in probability
 - Convergence "with probability 1" $\int \left(\left\{ w : Y_n(w) \longrightarrow Y(w) \right\} \right) = 1$
 - Strong law of large numbers M_{π}
 - Convergence of a sequence of distributions (CDFs) to a limiting CDF