Title: Driver Behavior Classification using Traditional ML and Deep Learning Models

This repository contains the source code for the study titled:

"Temporal and modal contributions to smartphone-based multimodal driving behavior classification: A comparative study of classical, deep learning, and patch-based time series transformer models"

The goal of this research is to classify driver behavior into three categories (AGGRESSIVE, NORMAL, and CALM) based on OBD-II, motion sensor, and audio signal data. The experiments explore the effects of different feature subsets and time window lengths using both classical machine learning algorithms and deep learning architectures.

Repository Structure:

- 1-run_standard_ml.py: Runs ML models: Logistic Regression, SVM, Naive Bayes, ANN
- 3-run_all_patchtst.py: Runs PatchTST transformer-based model
- 4-statistics.py: Performs statistical testing (ANOVA, Mann-Whitney U)
- 5-statistics.py: Post-hoc tests (Tukey HSD, visualization)
- DL codes/
 - o main.py: Main script for training deep learning models
 - models.py: Model definitions: CNN, LSTM, GRU, InceptionTime, TCN, RCNN, TabNet
 - o trainer.py: Training loop with early stopping and fold-wise metric saving
 - o utils.py: Data loading, metric plotting, saving results

Dataset Description:

This study utilizes a curated dataset compiled from OBD-II signals, smartphone sensor readings (accelerometer, gyroscope, magnetometer, GPS), Overpass road metadata, and ambient audio recordings.

- The dataset is organized into 3 classes: AGGRESSIVE, NORMAL, and CALM.
- Each data file is a CSV of size 150x37, corresponding to a 3-second time window at 50Hz.
- The 37 features include:
 - Motion features (gravity, acceleration, rotation)
 - o Engine data (RPM, load, speed, MAF, MAP)
 - o Road metadata (surface, oneway, highway type, max speed)

Audio features (RMS, ZCR, Spectral Centroid, Bandwidth, Rolloff, Entropy, etc.)

Note: Some columns are categorical and are handled via encoding in the preprocessing pipeline.

Preprocessing & Setup:

- Categorical columns are label-encoded (e.g., road type, surface).
- All features are normalized using StandardScaler.
- Sliding windows with overlap are used to generate more training data.
- Cross-validation is stratified 10-fold.
- Experiments are deterministic via fixed seed settings.

Models and Training:

Classical ML:

- Logistic Regression
- Support Vector Machine
- Naive Bayes
- Artificial Neural Network (MLP)

Deep Learning (DL):

- CNN
- LSTM
- GRU
- CNN + LSTM
- LSTM + GRU
- InceptionTime
- TCN
- RCNN
- TabNet
- PatchTST (Transformer-based)

DL models are trained using PyTorch, with early stopping and performance logging.

Evaluation:

- Accuracy, Precision, Recall, and F1-score metrics are computed.
- Additional visualizations include confusion matrices, ROC curves, and training-validation plots.
- Results are averaged across folds with standard deviations.

Statistical Analysis:

- ANOVA
- Mann-Whitney U
- Tukey HSD

Analysis covers:

- Model comparisons
- Feature set impacts
- Effect of time window length

Reproducibility:

- All experiments run with:
 - o Python 3.10
 - o PyTorch 2.1
 - o scikit-learn, NumPy, Pandas, Matplotlib
- Random seed = 42 ensures consistent results.

Citation:

If you use this codebase or replicate this study, please cite:

Sağbaş, E. A., et al. (2025). *Temporal and modal contributions to smartphone-based multimodal driving behavior classification: A comparative study of classical, deep learning, and patch-based time series transformer models.* PeerJ Computer Science, Under Review.

Contact:

Ensar Arif Sağbaş

Muğla Sıtkı Koçman University - Information Systems Engineering Department

Email: arifsagbas[at]mu.edu.tr