Ph.D. Qualifying Exam, Real Analysis

Fall 2017, part l

Do all five problems. Write your solution for each problem in a separate blue book.

- Let X be a Banach space, and let S denote the unit sphere $S = \{x \in X : ||x|| = 1\}$.
 - **a.** Suppose $y_n \in S$ for all n, and $y_n \to y \in X$ weakly. Show that $||y|| \le 1$.
 - **b.** Suppose that X is a separable infinite dimensional Hilbert space, $y \in X$ and $||y|| \le 1$. Show that there exists a sequence $\{y_n\}_{n=1}^{\infty}$ with $y_n \in S$ for all n such that $y_n \to y$ weakly.
- Let $1 . Suppose that <math>f_n \in L^p([0,1])$ and $||f_n||_p \le 1$ for all n. Assuming that $f_n(x) \to 0$ a.e., prove that $f_n \to 0$ weakly in L^p .
- 3 Let $e_{\xi}(x) = e^{ix\cdot\xi}$, $x, \xi \in \mathbb{R}^n$. The Fourier transform on tempered distributions $\mathcal{S}' = \mathcal{S}'(\mathbb{R}^n)$ is defined by duality with Schwartz functions $\mathcal{S} = \mathcal{S}(\mathbb{R}^n)$: $(\mathcal{F}u)(\phi) = u(\mathcal{F}\phi)$ for $u \in \mathcal{S}'$, $\phi \in \mathcal{S}$, where $\mathcal{F}\phi(\xi) = \int e_{-\xi}(x) \phi(x) dx$, $\phi \in \mathcal{S}$.

For compactly supported distributions, i.e. distributions u for which $u = \chi u$ for some $\chi \in C_c^{\infty}(\mathbb{R}^n)$, $u(e_{-\xi}) = u(\chi e_{-\xi})$ is directly defined.

Show that for such distributions, $\mathcal{F}u$ is the tempered distribution given by the polynomially bounded function $\xi \mapsto u(\chi e_{-\xi})$ (include a proof of this polynomially bounded statement: there exist C > 0, $N \in \mathbb{N}$ such that $|u(\chi e_{-\xi})| \leq C(1+|\xi|)^N$).

- Suppose that X, Y, Z are Banach spaces $P: X \to Y, X \subset Z$ with the inclusion map compact. Suppose also that there is a constant C > 0 such that for all $x \in X$, $||x||_X \le C(||Px||_Y + ||x||_Z)$.
 - **a.** If P is injective, show that there is another constant C'>0 such that for all $x\in X$, $\|x\|_X\leq C'\|Px\|_Y$.
 - **b.** Without assuming that P is injective show that there is a complementary subspace W of $\operatorname{Ker} P$, i.e. a closed subspace W of X with $W \oplus \operatorname{Ker} P = X$, such that there is another constant C' > 0 such that for all $x \in W$, $\|x\|_X \le C' \|Px\|_Y$.
- Let Q be the unit cube in \mathbb{R}^n , and let $H_0^2(Q)$, be the closure of C^∞ functions supported in Q with respect to the norm whose square is $\|f\|_{H_0^2(Q)}^2 = \int_Q |f|^2 + |\nabla f|^2 + |\nabla^2 f|^2$.
 - **a.** Prove that for every $\epsilon > 0$, there exists a constant C_{ϵ} so that for all $f \in H_0^2(Q)$,

$$\int_{Q} |\nabla f|^{2} \leq \epsilon \int_{Q} |\nabla^{2} f|^{2} + C_{\epsilon} \int_{Q} |f|^{2}.$$

b. Suppose that u is in the Hölder space $C^{1,\alpha}(I)$, $\alpha \in (0,1)$, I=[a,b]. Prove that for every $\epsilon>0$ there exists C_{ϵ} such that

$$\sup_{I} |u'(x)| \le \epsilon[u]_{I;1,\alpha} + C_{\epsilon} \sup_{I} |u|, \quad \text{where } [u]_{I;1,\alpha} = \sup_{x \ne y, x, y \in I} \frac{|u'(x) - u'(y)|}{|x - y|^{\alpha}}.$$

c. Let $L=L_0+\sum_{i=1}^n b_i(x)\frac{\partial}{\partial x_i}+c(x), L_0=\sum_{i,j=1}^n a_{ij}(x)\frac{\partial^2}{\partial x_i\partial x_j}$, with C^2 coefficients. Suppose that for every $u\in H^2_0(Q), \ \|u\|^2_{H^2_0(Q)}\leq C(\|L_0u\|^2_{L^2(Q)}+\|u\|^2_{L^2(Q)})$. Prove, using a) that a similar estimate holds if L_0 is replaced by L.

Ph.D. Qualifying Exam, Real Analysis

Fall 2017, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two quick problems.
 - **a.** Show that a subspace of a Banach space is closed in the norm topology if and only if it is closed in the weak topology.
 - **b.** Suppose that H is a Hilbert space and $A \in \mathcal{L}(H)$ (bounded linear operator on H) is self-adjoint. Show that $||A|| = \sup\{|\lambda| : \lambda \in \sigma(A)\}$ (with $\sigma(A)$ denoting the spectrum).
- **a.** Is it possible to find uncountably many disjoint measurable subsets of \mathbb{R} with strictly positive Lebesgue measure? Give an example or show that this is impossible.
 - **b.** Suppose $f \in L^1(\mathbb{R})$. Show that for any $\lambda > 0$, $\lim_{n \to \infty} n^{-\lambda} f(nx) = 0$ for almost all $x \in \mathbb{R}$, where $n \in \mathbb{N}^+$ is understood in the limit.
- 3 Let $K \subset \mathbb{R}^n$ be a compact set, and $f: K \to \mathbb{R}$ be continuous. Show that there exists a continuous function $\bar{f}: \mathbb{R}^n \to \mathbb{R}$ such that $\bar{f}(x) = f(x)$ for all $x \in K$.
- 4 Let $\hat{f}(\xi) = \int e^{-ix\xi} f(x) \, dx$ be the Fourier transform on Schwartz functions $f \in \mathcal{S}(\mathbb{R})$. Suppose $f \in \mathcal{S}(\mathbb{R})$ satisfies $f(2\pi n) = 0$ and $\hat{f}(n) = 0$ for all integers n. Prove or disprove that f must be the zero function.
- $\begin{array}{ll} \textbf{5} & \text{For } u \in \mathcal{S}'(\mathbb{R}) \text{ let } Du \text{ denote the distributional derivative of } u, \text{ and let } Mu \text{ be the distribution } xu \text{ (i.e. } \\ & (Mu)(\phi) = u(x\phi), \, \phi \in \mathcal{S}(\mathbb{R})). \text{ Let } H_1 = \{u \in L^2(\mathbb{R}): \, Du \in L^2, \, Mu \in L^2\}, \, \text{equipped with the norm } \|u\|_{H_1}^2 = \|u\|_{L^2}^2 + \|Du\|_{L^2}^2 + \|Mu\|_{L^2}^2, \, \text{and let } H_2 = \{u \in \mathcal{S}'(\mathbb{R}): \, \exists u_0, u_1, u_2 \in L^2(\mathbb{R}): \, u = u_0 + Du_1 + Mu_2\} \text{ with norm } \|u\|_{H_2} = \inf\{(\|u_0\|_{L^2}^2 + \|u_1\|_{L^2}^2 + \|u_2\|_{L^2}^2)^{1/2}: \, u = u_0 + Du_1 + Mu_2\}. \end{array}$
 - **a.** Show that H_1 and H_2 are Banach spaces.
 - **b.** Show that the map $j: H_2 \to H_1^*$, $j(v)(u) = \langle u, v \rangle = \langle u, v_0 \rangle + \langle Du, v_1 \rangle + \langle Mu, v_2 \rangle$, $v = v_0 + Dv_1 + Mv_2$, $v_j \in L^2(\mathbb{R})$, is well defined, and is an invertible (conjugate) linear map between Banach spaces. *Note: You may use without proof that* $\mathcal{S}(\mathbb{R})$ *is dense in* H_1 .