Elipse

Caracterização Geométrica. Fixados pontos P_1, P_2 , focos da elipse e k um real positivo tal que $k > d(P_1, P_2)$, a *elipse* é o lugar geométrico de todos os pontos do plano cuja soma das distâncias a P_1 e P_2 é k.

Se $a \ge b > 0$, uma equação reduzida da elipse é $\left| \frac{x^2}{a^2} + \frac{y^2}{b^2} \right| = 1$

onde
$$\begin{cases} \text{focos: } (-c,0), (c,0), c = \sqrt{a^2 - b^2} \\ \text{v\'ertices: } (-a,0), (a,0), (0,-b), (0,b), \\ \text{eixos de simetria: eixos } OY, OX \\ \text{centro: } (0,0) \end{cases}$$

ou
$$b^2 + a^2 = 1$$
 focos: $(0, -c), (0, c), c = \sqrt{a^2 - b^2}$ vértices: $(0, -a), (0, a), (b, 0), (-b, 0)$ eixos de simetria: eixos OY, OX centro: $(0, 0)$

Hipérbole

Caracterização Geométrica. Fixados pontos distintos P_1, P_2 , focos da hipérbole, e k um real positivo, $k < d(P_1, P_2)$, a hipérbole é o lugar geométrico de todos os pontos P do plano tais que $|d(P, P_2) - d(P, P_1)| = k$.

Uma equação reduzida da hipérbole é $\left[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\right]$

onde
$$\begin{cases} \text{focos: } (-c,0), (c,0), c = \sqrt{a^2 + b^2} \\ \text{v\'ertices: } (-a,0), (a,0) \\ \text{ass\'intotas: } y = \pm \frac{b}{a} x \\ \text{eixos de simetria: eixos } OY, OX \\ \text{centro: } (0,0) \end{cases}$$

Estes são alguns exemplos de conjuntos de pontos do plano \mathbb{R}^2 definidos por uma equação quadrática, com coeficientes reais, em duas variáveis

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + b_1x + b_2y + d = 0$$

que pode ser representada por uma equação matricial

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + c = 0$$

Note-se que $\begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$ é uma matriz simétrica, i.e., $A^T = A$.

Parábola

$$-x^{2} + 4cy = 0$$

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 & 4c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$-y^{2} + 4cx = 0$$

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 4c & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

Elipse

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - 1 = 0, \ a \ge b > 0$$

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1/a^{2} & 0 \\ 0 & 1/b^{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - 1 = 0$$

$$\frac{x^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} - 1 = 0, \ a \ge b > 0$$

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1/b^{2} & 0 \\ 0 & 1/a^{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - 1 = 0$$

Hipérbole

$$\begin{aligned} \frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 &= 0 \\ \left[x \quad y \right] \begin{bmatrix} 1/a^2 & 0 \\ 0 & -1/b^2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - 1 &= 0 \\ -\frac{x^2}{b^2} + \frac{y^2}{a^2} - 1 &= 0 \\ \left[x \quad y \right] \begin{bmatrix} -1/b^2 & 0 \\ 0 & 1/a^2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - 1 &= 0 \end{aligned}$$

Definição

Designa-se por (secção) cónica o lugar geométrico dos pontos do plano definidos por uma equação do 2º. grau (ou

quadrática) em duas variáveis
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
 da forma

$$X^TAX + B^TX + d = 0$$

sendo $0 \neq A \in M_{2\times 2}(\mathbb{R})$ matriz simétrica, $B \in M_{2\times 1}(\mathbb{R})$, $d \in \mathbb{R}$.

 A equação geral de uma cónica pode ainda ser escrita na forma

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + b_1x + b_2y + d = 0$$

Fazendo mudanças de referencial ortonormado do plano é possível simplificar uma equação geral de uma cónica, obtendo uma das formas reduzidas que considerámos.

Para tal, necessitamos de alguns resultados sobre matrizes simétricas (ver exercício 164 de ALGA I)

Teorema

Se $A \in M_n(\mathbb{R})$ for simétrica, então A admite n valores próprios reais, não necessariamente distintos.

Lema

Se u, v são vetores próprios de uma matriz quadrada real e simétrica associados a valores próprios distintos λ, μ então $u \perp v$.

Teorema

Seja $A \in M_n(\mathbb{R})$ uma matriz simétrica. Então existe uma base o.n. de \mathbb{R}^n constituída por vetores próprios de A.

Algoritmo

Tem-se o seguinte algoritmo para a diagonalização de uma matriz real e simétrica tendo por matriz diagonalizadora uma matriz ortogonal:

Sendo $A \in M_n(\mathbb{R})$ matriz simétrica, $t \le n$ e $\lambda_1, \lambda_2, \dots, \lambda_t \in \mathbb{R}$ os valores próprios distintos de A,

Passo 1. Determinar uma base para cada subespaço próprio E_{λ_i} , $i \le t$, de A;

Passo 2. Ortogonalizar as bases de E_{λ_i} , $i \le t$ (usando, por exemplo, o processo de Gram-Schmidt); e normalizar cada um dos seus vetores, obtendo bases o.n. de E_{λ_i} , $i \le t$; Passo 3. Construir a matriz P, cujas colunas são os vetores das bases o.n. de E_{λ_i} , $i \le t$. A matriz P é ortogonal, i.e. $P^{-1} = P^T$.

P é uma matriz diagonalizadora de A e

$$P^{-1}AP = P^{T}AP = D$$

é uma matriz diagonal.

As entradas principais de D são os valores próprios de A associados aos vetores próprios, pela ordem em que estes ocorrem na base de \mathbb{R}^n constituída pelas colunas de P.