Test 2 Review June 24, 2015

- 1. Determine whether $\int_1^\infty \frac{1}{x^2 + x} dx$ is convergent or divergent.
- 2. Set up an integral for the length of the curve $y = \frac{1}{2}x^2 \frac{1}{2}\ln x$ for $1 \le x \le 2$.
- 3. Set up an integral for the area of the surface obtained by rotating the curve $x=1+2y^2$ for $1\leq y\leq 2$ about the x-axis.
- 4. Find the center of mass (centroid) of the region bounded by the curves $y = e^x$ and y = 0 for $0 \le x \le 1$.
- 5. Verify that $f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}$ is a probability density function with probability space $(-\infty, \infty)$ and find the mean.
- 6. Verify that $y = \frac{1}{2}x \cos x$ is a solution to $y'' + y = -\sin x$.
- 7. Find the solution of the differential equation $y' = \frac{\ln x}{xy}$ that satisfies the initial conditions y(1) = 2. Could you approximate this solution using Euler's Method?