

Universidade Federal de Santa Catarina

Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 1-T

Apresentação da Disciplina.

0. Sistemas Digitais e Nível RT. Níveis de abstração e componentes do nível RT. Classificação dos Sistemas Digitais. Componentes do nível RT: somadores, subtratores, muxes e registradores.

Professores:

Cristina Meinhardt, José Luís Güntzel e Rafael Luiz Cancian {cristina.meinhardt, j.guntzel@ufsc.br, rafael.cancian }@ufsc.br

Dados da Disciplina e Professores

Código: INE 5406

Nome: Sistemas Digitais

Horas-Aula:

• Téorica (54 horas)

• Prática (36 horas)

Pré-requisito: EEL 5105 (Circuitos e Técnicas Digitais)

Dados da Disciplina e Professores

Dias e Locais das Aulas

Teóricas:

Turma 05235A: segundas-feiras das 7:30 às 10:00, sala CTC205

Turma 02208A: terças-feiras das 15:10 às 17:40, sala CTC205

Turma 02208B: terças-feiras das 15:10 às 17:40, sala CTC303

Práticas:

- Turma 05235A: quintas-feiras das 8:20 às 10:00 no LIICT3
- Turma 02208A: segundas-feiras das 15:10 às 16:50 no INE313
- Turma 02208B: quartas-feiras das 15:10 às 16:50 no INE313

Instrumentos de Avaliação

- P1 e P2: provas semestrais
- Turma 05235A: R1, R2, R3: relatórios práticos
- Turmas 02208AB: R: projeto prático de um sistema digital*
- REC: prova de recuperação
- FS (Frequência Suficiente): >= 75% de presenças
- FI (Frequência Insuficiente): < 75% de presenças

^{*} realizado parcialmente durante as aulas de laboratório e principalmente como atividade extraclasse.

Critérios para a Aprovação/Reprovação

- a) O aluno que não comparecer a no mínimo 75% das aulas será considerado reprovado por **frequência insuficiente** (**FI**), de acordo com o artigo 73, do Capítulo I, Seção IX do Regimento Geral da UFSC. Neste caso, **NF** = **0**,**0**.
- b) O critério para aprovação ou reprovação dos alunos com freqüência suficiente (FS) baseia-se na média final (MF) assim calculada:

$$MF = 0.3*P1 + 0.3*P2 + 0.3*A + 0.1*E$$

A = média das notas das atividades práticas (até uma por aula prática).

E = média aritmética ponderada das notas dos exercícios (entre 3 e 10) realizados em sala de aula ou em horário extraclasse

Critérios para a Aprovação/Reprovação

- c) Será considerado aprovado o aluno com FS e MF >= 6,0. Neste caso, NF = MF.
- d) Será considerado reprovado o aluno com FS e MF < 3,0. Neste caso, NF = MF.
- e) O aluno que tiver frequência suficiente (FS) e média final MF < 6,0 e MF >= 3,0 terá direito de realizar uma prova de recuperação REC. Caso opte por realizar a REC, a uma nova nota final será calculada da seguinte forma: NF = (MF+REC)/2.
- d) Após a REC, será considerado aprovado o aluno que obtiver $NF \ge 6.0$. sendo NF a nota final.

Datas Importantes

Provas	Turma 05235A	Turmas 02208A e 02208B
P1	16/09/2019	24/09/2019
P2	18/11/2019	19/11/2019
2ª chamada	25/11/2019	26/11/2019
REC	02/12/2019	03/12/2019

Datas dos relatórios (turma 05235A) e entregas parciais do projeto prático (turmas 02208A e B):

Ver cronograma específico de cada turma.

Muito Importante:

Frequência Suficiente (FS) x Frequência Insuficiente (FI)

- Frequência Suficiente (FS) = mínimo de 75% de presenças
- Logo, máximo de faltas = 25% das atividades da disciplina (=aulas dadas)

Neste semestre (2019.2) haverá:

- 15 encontros de 3 horas-aula teóricas (já excluída a REC, pois ela não é obrigatória) e
- 16 encontros de 2 horas-aula práticas
- Aulas dadas = $15 \times 3 + 16 \times 2 = 77$ horas-aula
- Logo, o máximo de faltas admissíveis será 0,25 x 77 = 19

Bibliografia Básica

Sistemas Digitais em Geral

VAHID, Frank. Digital Design with RTL Design, VHDL and Verilog. 2nd Edition. Wiley, 2010.

ou

VAHID, Frank. Sistemas Digitais: projeto, otimização e HDLs. Porto Alegre: Bookman, 2008. (ISBN 978-85-7780-190-9)

Bibliografia Básica

Processadores MIPS

PATTERSON, David A.; HENNESSY, John L. "Computer Organization and Design: the hardware/software Interface", 3rd edition, Morgan Kaufmann Publishers, San Francisco, California, USA, 2007.

Edições mais antigas (ou em português) também servem!

HARRIS, David M.; HARRIS, Sarah L. "Digital Design and Computer Architecture", 2nd edition, Morgan Kaufmann Publishers, Waltham, MA, USA, 2013.

Material de Apoio Disponível via Moodle

- Plano de ensino
 - Aprovado no Departamento
- Cronograma detalhado da disciplina
- Foruns de discussão (com os professores e entre os alunos)
- Slides das aulas práticas e das aulas teóricas
- Listas de exercícios:
 - Sua solução não vale nota e não será cobrada
 - Essencial que os alunos resolvam por contra própria, como preparação às provas
- Bibliotecas de componentes e exemplos de códigos VHDL

Atendimento aos alunos

Prof. Güntzel:

Verificar no Moodle

Prof. Cancian:

Verificar no Moodle

Profa. Cristina:

Verificar no Moodle

Monitor:

Nome: A definir

Email: A definir

- Tipo de atendimento: dúvidas na matéria teórica, solução das listas de exercícios e dúvidas básicas sobre VHDL
- Horários: será divulgado no Moodle
- Local do atendimento: sala 202 do prédio do INE (segundo andar)
- Agendar atendimento por email com 24 horas de antecedência (no mínimo).

Atendimento aos alunos

Estagiários de Docência:

- Tiago Augusto Fontana (tiagoaugustofontana@gmail.com)
- Vanio Rodrigues Filho (rodrigues.vanio@gmail.com)
- **Tipo de atendimento**: esclarecer dúvidas sobre a realização de experimentos (incluindo linguagem VHDL).
- Local do atendimento: laboratório INE423 do prédio do INE (quarto andar)
- Horários de atendimento: (agendar antecipadamente por email) Terça 14:00 - 15:00 Quarta 14:00 - 15:00
- Outros Atendimentos: consulta às provas corrigidas etc (agendamento por email, conforme a necessidade, com 24 horas de antecedência).

Onde Estão os Sistemas Digitais?

1. Consumer Electronics

Propósito Geral

Otimizados para Propósito Específico

iPad3: um Produto de Eletrônica de Consumo

Main PCB

iPad3: um Produto de Eletrônica de Consumo

CPU A5X: Apple System on a Chip (SoC)

ARM Cortex™ A9

Classificação dos Sistemas Digitais Quanto à Aplicação

1. Processadores de Propósito Geral (CPUs* ou GPPs**):

- Podem ser programados para executar (virtualmente) qualquer algoritmo
- Para tanto, são projetados para executar um conjunto de instruções
- Otimizados para realizar o conjunto de instruções para o qual são projetados (e não um algoritmo ou uma classe de algoritmo)

^{*} Central Processing Units

^{**} General-Purpose Processors

Classificação dos Sistemas Digitais Quanto à Aplicação

- 2. Processadores Dedicados a uma Classe de Aplicações (Ex.: DSPs*, GPUs**):
- Podem ser programados para executar uma função ou um algoritmo pertencente a uma determinada classe.
- Projetados e otimizados para realizar um conjunto de instruções apropriado à classe de problema à qual se destinam

^{*} Digital Signal Processors

^{**} Graphics Processing Units

Classificação dos Sistemas Digitais Quanto à Aplicação

3. Processadores Dedicados ou Blocos Aceleradores ou Blocos IPs*:

Projetados para uma aplicação ou algoritmo específico.

- Exemplos: controladores de I/O, controladores de memória, codecs** de imagens (jpeg, MPEG, H.264/AVC, VP9, HEVC), codecs** de áudio, cifradores/ decifradores*** etc
- Geralmente, usados onde há necessidade de altíssimo desempenho e/ou alta eficiência energética (por exemplo, dispositivos pessoais, alimentados por bateria).

^{*} Intellectual Property Blocks

^{**} codificadores/decodificadores

^{***} podem usar mais de um algoritmo de criptografia

Níveis de Abstração: o nível lógico

Característica: 1 fio por sinal

Elementos: portas lógicas, latches e flip-flops (mostrados

explicitamente ou não)

Níveis de Abstração: o nível lógico

Característica: 1 fio por sinal

Elementos: portas lógicas, latches e flip-flops (mostrados

explicitamente ou não)

Atenção: pode haver diversos "mapeamentos" para um dado circuito lógico! Por exemplo, a forma atual de se implementar um circuito usa **portas CMOS**.

Níveis de Abstração: o nível lógico

e o nível elétrico (considerando transistores MOS...)

INE/CTC/UFSC
Sistemas Digitais - semestre 2019/2

Slide1T.23

Profs. Güntzel & Meinhardt

Níveis de Abstração: o nível lógico

Característica: 1 fio por sinal

Elementos: portas lógicas, latches e flip-flops (mostrados

explicitamente ou não)

Níveis de Abstração: o nível RT (Register-Transfer)

Sistemas Digitais e Níveis de Abstração

Sistemas Digitais e Níveis de Abstração

Matéria	Nível de abstração	Componentes
Circuitos Digitais	Lógico	Portas lógicasLatchesFlip-flops
Sistemas Digitais	RT (register-transfer)	 Somadores Subtratores ULAs (= unidades funcionais compostas) Registradores Memórias Multiplexadores Decodificadores Bloco de controle

O Somador Paralelo Carry-Ripple (de 4 Bits) Diagrama de Blocos (Nível Lógico)

- O somador é o elemento básico para qualquer ULA, uma vez que a adição é a operação aritmética fundamental
- O somador Carry-Ripple (CRA) é o somador mais simples e intuitivo.
 Porém, ele é lento. Exemplos de somadores rápidos estão nos slides SD_somadores-rapidos.pdf

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico)

Nesta disciplina assumiremos que todos os somadores paralelos são construídos exclusivamente com somadores completos (*full adders*)

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico)

Símbolo no Nível RT

INE/CTC/UFSC
Sistemas Digitais - semestre 2019/2

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico)

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico)

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico)

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico)

Este somador opera com números sem sinal (não sinalizados):

- Para n bits, o intervalo de representação é [0 , 2ⁿ 1]
- Para 4 bits, o intervalo de representação é [0 , 15]
- → Logo, c4 = 1 (=overflow) se A + B > 15

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico)

Símbolo no Nível RT

Convenções do Nível RT

Algumas Convenções do nível RT

Somador para operandos com *n* bits cada

Concatenando números

Convenções do Nível RT

Indicando como um número de *n*+1 bits é composto (outro exemplo)

"0" n n x n+1

"Decompondo" um número de *n*+1 bits

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

- Números binários em complemento de 2 podem ser adicionados como se fossem números binários sem sinal!
- Neste caso, a detecção de overflow se dá comparando-se os dois últimos sinais de carry

Estudar os slides SD_revisao_aritmetica_binaria.pdf

O Somador Paralelo *Carry-Ripple* (de 4 Bits) Modificado para Operar Sobre Números com Sinal

(Assumindo negativos em complemento de 2)

Diagrama de Blocos (Nível Lógico)

O Somador Paralelo Carry-Ripple (de 4 Bits) Modificado para Operar Sobre Números com Sinal

(Assumindo negativos em complemento de 2)

Diagrama de Blocos (Nível Lógico)

Adição de Inteiros com Sinal e o Somador Ripple Carry (de 4 bits)

(Assumindo Negativos em Complemento de 2)

Este somador opera com números com sinal (sinalizados):

- Para n bits, o intervalo de representação é $[-2^{n-1}, +(2^{n-1}-1)]$
- Para 4 bits, o intervalo de representação é [-8 , +7]
- → Logo, overflow=1 se A + B > +7 OU se A + B < -8</p>

Representação de Inteiros com Sinal

Considerando 4 bits

 Para 4 bits, o intervalo de representação é [-8, +7]

	decimal	binário
	0	0000
	+1	0001
	+2	0010
	+3	0011
> 7 positivos	+4	0100
	+5	0101
	+6	0110
	+7	0111
	-8	1000
	-7	1001
	-6	1010
> 8 negativos	-5	1011
o negativos	-4	1100
	-3	1101
	-2	1110
)	-1	1111

O Somador Paralelo Carry-Ripple (de 4 Bits)

Símbolos no Nível RT

Circuitos Aritméticos

Exemplo 1: Usando o somador *carry-ripple*, projetar um circuito combinacional que troca o sinal de um número inteiro de 4 bit.

Interfaces:

Circuitos Aritméticos

Exemplo 1: Solução

Trocar o sinal significa aplicar as regras do complemento de dois ao número, ou seja:

- 1. Negar ("NOT") bit a bit o número
- 2. Somar uma unidade ao resultado do passo anterior

Circuitos Aritméticos

Ilustração com números de 4 bits

1. Trocar o sinal do número +2

Nro original	0010	= +2
Nega bit a bit	1101	
Soma "1"(= +0001)	1110	
	1110	= -2

2. Trocar o sinal do número -2

Nro original	1110	= -2
Nega bit a bit	0001	
Soma "1"(= +0001)	0010	
	0010	= +2

- Funciona nos dois sentidos !!
- Mas funciona se desejarmos trocar o sinal de −8? (Explique...)

Circuitos Aritméticos

Exercício 1: Solução

Subtração de Números Inteiros em Binário Princípio

$$A - B = A + (-B)$$

Onde -B é o número B de sinal trocado!

Ora, que coincidência!! (Ou não?)

Subtrator Paralelo (de 4 bits)

$$A - B = A + (-B)$$

Subtrator Paralelo (de 4 bits)

Diagrama de Blocos (Nível Lógico)

Símbolos no Nível RT

Profs. Güntzel & Meinhardt

INE/CTC/UFSC
Sistemas Digitais - semestre 2019/2

Somador/Subtrator Paralelo (de 4 bits)

INE/CTC/UFSC
Sistemas Digitais - semestre 2019/2

Slide1T.51

Profs. Güntzel & Meinhardt

Somador/Subtrator Paralelo (de 4 bits)

Como uni-los em um único circuito, configurável?

Somador/Subtrator Paralelo (de 4 bits)

Resposta!!!

Somador/Subtrator Paralelo (de 4 bits)

Símbolo no Nível RT

Tabela de Operação

controle	operação
0	S=A+B
1	S=A-B

Multiplexador 2:1: nível lógico

sel	Α	В	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

sel	Υ
0	Α
1	В

$$Y = \overline{sel} \cdot A + sel \cdot B$$

6 ou 4 transistores

(mais usado)

Profs. Güntzel & Meinhardt

Multiplexador 2:1: nível RT

 $32 \times 4 = 128 \text{ transistores}$

Multiplexadores 3:1 e 4:1: nível lógico

 $2 \times 4 = 8$ transistores

 $3 \times 4 = 12$ transistores

Flip-flop D Disparado Pela Borda Ascendente

Exemplo de funcionamento

tabela de transição de estados

С	D	Q_{t+1}
≠ ↑	X	Q_{t}
1	0	0
1	1	1

Obs: Nesta disciplina assumiremos que o atraso da saída Q' é idêntico ao atraso da saída Q. Assim, a saída Q' será o "espelho" da saída Q.

Flip-flop D Disparado Pela Borda Ascendente

Exemplo de funcionamento

tabela de transição de estados

C	D	Q_{t+1}
≠ ↑	X	Q_{t}
1	0	0
1	1	1

Obs: Nesta disciplina assumiremos que o atraso da saída Q' é idêntico ao atraso da saída Q. Assim, a saída Q' será o "espelho" da saída Q.

Slide1T.60

Flip-flop D Disparado Pela Borda Ascendente,

com Reset Assíncrono

dado clear limpa Exemplo de funcionamento

tabela de transição de estados

clear	C	D	Q_{t+1}
0	≠ ↑	X	Q _t
0	1	0	0
0	1	1	1
1	X	X	0

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

tsu = Tempo de Preparação (setup time)

"Tempo antes da borda ativa de ck (subida, neste caso) durante o qual a entrada D já deve estar em seu valor estável."

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

th = Tempo de Manutenção (hold time)

"Tempo, a partir da borda ativa de ck (subida, neste caso), durante o qual a entrada D deve permanecer estável."

Slide1T.63

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

tco (ou td) = *Time from clock to output* (ou Tempo ou Atraso de Carga) "Atraso, em relação à borda ativa de ck (subida, neste caso), para o valor amostrado a partir da entrada D aparecer nas saídas Q e Q."

Registrador com Carga Paralela

- Existe um FF para cada bit a ser armazenado
- Todos os FFs "obedecem" a um mesmo sinal de controle
- O termo "carga paralela" refere-se ao fato de existir uma entrada para cada bit, de modo que é possível carregar simultaneamente todos os bits do dado

Símbolo no nível RT

Profs. Güntzel & Meinhardt

Registrador com Carga Paralela

Obs: Como os flip-flops estão em paralelo, o tco de um registrador será o pior dentre os tcos de seus flip-flops.

Exemplo de funcionamento (assumindo que tsu e th são satisfeitos)

A cada borda de subida de "controle" um novo dado é amostrado e fica armazenado no registrador (até a próxima borda de subida de "controle")

Registrador com Carga Paralela

- Peculiaridade: a cada borda de subida de "controle" um novo dado é amostrado, mesmo que não se queira amostrar um dado novo...
- Porém, às vezes pode ser necessário que o registrador obedeça a um sinal de controle sincronizado com o sinal de relógio. (Solução na próxima transparência...)

Registrador com Habilitação de Carga Paralela

Símbolo no nível RT

- Existe um sinal de "carga" e um sinal de relógio (ck)
- A cada borda ativa de "ck" cada FF amostra um valor de sua respectiva entrada "D":
 - Se carga=0, cada FF amostra seu respectivo "Q"
 - Se carga=1, cada FF amostra um valor externo "Di"

Registrador com Habilitação de Carga Paralela

Exemplo de funcionamento (assumindo que tsu e th são satisfeitos)

