

Searches for vector-like quarks with the ATLAS detector

Antonella Succurro

on behalf of the ATLAS collaboration

EPS 2013, Stockholm, July 18th-24th

Outline

Introduction

General Strategy

$$T\bar{T} \rightarrow Ht + X$$

Same-sign dileptons

$$B\bar{B}(T\bar{T}) \to Zb(t) + X$$

$$T\bar{T} o Wb + X$$

Conclusions

Standard Model as an effective theory

The Standard Model does not provide answers to the following questions

- ▶ Where does the baryon asymmetry come from?
- ▶ What is Dark Matter?
- ► How to solve the hierarchy problem?

Supersymmetry is not the only possible solution...

Extra-dimensions [1], composite Higgs [2] models with new heavy quarks predicted [3]

- ▶ Not chiral^(a): chiral 4th generation would change the Higgs SM cross section and B.R.
- ▶ Vector-like: left and right components transform the same under $SU(2) \times U(1)$
- ► Weak-isospin singlets, doublets or triplets

naturally solve the hierarchy problem, like a stop squark in SUSY

Cina el a t	Decay	Doublets	Decay
Singlet	modes	Doublets	modes
T(+2/3)	W^+b , Ht , Zt	$\begin{pmatrix} T \\ B \end{pmatrix}$	W^+b , Ht , Zt W^-t , Hb , Zb
B(-1/3)	W [−] t, Hb, Zb	$\begin{pmatrix} T \\ X \end{pmatrix}$	Ht, Zt
X(+5/3)	w^+_t	(X)	W^+t
Y(-4/3)	$W^{-}b$	$\begin{pmatrix} B \\ Y \end{pmatrix}$	W^-b

⁽a) still, some models allow for a chiral fourth generation, see e.g. [4]

Heavy quark production

Heavy quark production

Outline

Introduction

General Strategy

$$T\bar{T} \rightarrow Ht + X$$

Same-sign dileptons

$$B\bar{B}(T\bar{T}) \to Zb(t) + X$$

$$T\bar{T} \rightarrow Wb + X$$

Conclusions

B.R.s are very model dependent

B.R.s are very model dependent

B.R.s are very model dependent

B.R.s are very model dependent

B.R.s are very model dependent

 Build a 2-dim plane to scan model mixing

 Build a 2-dim plane to scan model mixing

- Build a 2-dim plane to scan model mixing
- Sum of BRs is $1^{(a)}$

$$^{(a)}$$
BR($T/B \rightarrow Zt/b$) = 1 - BR($T/B \rightarrow Ht/b$)
- BR($T/B \rightarrow Wb/t$)

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

$$^{(a)}$$
BR($T/B \rightarrow Zt/b$) = 1 - BR($T/B \rightarrow Ht/b$)
- BR($T/B \rightarrow Wb/t$)

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

$$^{(a)}$$
BR($T/B \rightarrow Zt/b$) = 1 - BR($T/B \rightarrow Ht/b$)
- BR($T/B \rightarrow Wb/t$)

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

$$^{(a)}$$
BR($T/B \rightarrow Zt/b$) = 1 - BR($T/B \rightarrow Ht/b$)
- BR($T/B \rightarrow Wb/t$)

 $BR(T \to Wb)$

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas
- Set exclusion using *CL*_s technique [6, 7]
- Using 14.3 fb⁻¹ of 2012 data

 $^{(a)}$ BR($T/B \rightarrow Zt/b$) = 1 - BR($T/B \rightarrow Ht/b$) - BR($T/B \rightarrow Wb/t$)

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas
- Set exclusion using *CL*_s technique [6, 7]
- Using 14.3 fb⁻¹ of 2012 data
- Updating 7 TeV results

$$^{(a)}$$
BR($T/B \rightarrow Zt/b$) = 1 - BR($T/B \rightarrow Ht/b$)
- BR($T/B \rightarrow Wb/t$)

Outline

Introduction

General Strategy

$$T\bar{T} \to Ht + X$$

Same-sign dileptons

$$B\bar{B}(T\bar{T}) \to Zb(t) + X$$

$$T\bar{T} \rightarrow Wb + X$$

Conclusions

$$T\bar{T} \rightarrow Ht + X$$

ATLAS-CONF-2013-018 [9]

Channel with high jet and b-tagged jet multiplicity $(H \rightarrow bb, t \rightarrow Wb)$

Discriminant variable:

$$H_T = \sum_i p_T(j) + p_T(l) + E_T^{\text{miss}}$$

- At least 6 jets with pr > 25 GeV
- Exactly one well reconstructed, isolated lepton (e or μ)
- $E_T^{\text{miss}} > 20 \text{ GeV}$
- $E_T^{\text{miss}} + m_T(W) > 60 \text{ GeV}$

Three channels: = 2, = 3, > 4 b-tagged jets

N_{tag} = 2,3 help constrain background sustematics

T exclusion plane [10] I

Outline

Introduction

General Strategy

$$T\bar{T} \rightarrow Ht + X$$

Same-sign dileptons

$$B\bar{B}(T\bar{T}) \to Zb(t) + X$$

$$T\bar{T} o Wb + X$$

Conclusions

Same-sign dileptons

ATLAS-CONF-2013-051 [11] update of [12]

Channel with very small contamination from SM backgrounds: sensitive to many possible new physics signals like vector-like B and T, $t\bar{t}t\bar{t}$, \tilde{g}

- Exactly 2 leptons (*e* or *μ*) with same electric charge
- \triangleright Z veto in ee and $\mu\mu$ channels
- ≥ 2 jets with $p_T > 25$ GeV
- $E_T^{
 m miss} > 40~{
 m GeV}$
- $ightharpoonup \geq 1$ b-tagged jet
- $H_T^{(1)} > 650 \text{ GeV}$

Backgrounds	Channel		
Samples	ee	еµ	$\mu\mu$
Charge misidentification	$0.6 \pm 0.1 \pm 0.2$	$0.9 \pm 0.1 \pm 0.3$	_
Fakes	$0.8 \pm 0.4 \pm 0.3$	$0.2 \pm 0.4 \pm 0.1$	< 1.1
Diboson			
• WZ/ZZ+jets	$0.3 \pm 0.2 \pm 0.1$	$0.3 \pm 0.1^{+0.4}_{-0.2}$	$0.4 \pm 0.2 \pm 0.1$
• W [±] W [±] +2 jets	$0.17 \pm 0.09 \pm 0.05$	$0.3 \pm 0.2 \pm 0.1$	$0.2 \pm 0.1 \pm 0.1$
$t\bar{t} + W/Z$			
 ttW(+jet(s)) 	$0.6 \pm 0.2 \pm 0.3$	$1.9 \pm 0.2 \pm 0.6$	$1.3 \pm 0.2 \pm 0.4$
 ttZ(+jet(s)) 	$0.18 \pm 0.03 \pm 0.06$	$0.66 \pm 0.05 \pm 0.22$	$0.31 \pm 0.04 \pm 0.10$
• ttW+W−	$0.024 \pm 0.003^{+0.010}_{-0.007}$	$0.072 \pm 0.005^{+0.028}_{-0.020}$	$0.055 \pm 0.004^{+0.022}_{-0.016}$
Total expected background	$2.7 \pm 0.5 \pm 0.4$	$4.4 \pm 0.5^{+0.9}_{-0.7}$	$2.3 \pm 1.2 \pm 0.5$
Observed	3	10	2

(1)
$$H_T = \sum_{i} p_T(i) + p_T(l_1) + p_T(l_2)$$

T exclusion plane [10] II

B exclusion plane [10] I

Outline

Introduction

General Strategy

$$T\bar{T} \rightarrow Ht + X$$

Same-sign dileptons

$$B\bar{B}(T\bar{T}) \to Zb(t) + X$$

$$T\bar{T} o Wb + X$$

Conclusions

$Bar{B}(Tar{T}) o Zb(t)+X$ ATLAS-CONF-2013-056 [13] update of [14] Exploit ability to reconstruct Z bosons from OS dileptons (e and μ)

- Exactly two same flavor, opposite charge leptons
- Dilepton mass in a 15 GeV mass window around m(Z)
- At least two b-tagged jets

▶ $p_T(Z) > 150 \text{ GeV}$

$$H_T^{(1)} = \sum_{\text{jets}} p_T(j)$$

m(Zb) is the final test variable: invariant mass of the Z candidate paired with the highest p_T b-tagged jet

T exclusion plane [10] III

B exclusion plane [10] II

Outline

Introduction

General Strategy

$$T\bar{T} \rightarrow Ht + X$$

Same-sign dileptons

$$B\bar{B}(T\bar{T}) \to Zb(t) + X$$

$$T\bar{T} o Wb + X$$

Conclusions

$Tar{T} o Wb + X$ ATLAS-CONF-2013-060 [15] update of [8] Exploit T's boosted kinematics to reconstruct W bosons

- W_{had}^{typel} : single merged jet $(p_T > 250 \text{ GeV}, m_i \in [60, 110] \text{ GeV})$
- ▶ W_{had}^{typeII} : two close-by jets $(\Delta R(j,j) < 0.8, p_T > 150 \text{ GeV},$ $m_{ii} \in [60, 110] \text{ GeV})$

The reconstructed *W* boson is matched to the *b*-tagged jets that gives the lowest mass difference between the leptonical and hadronical leg

T exclusion plane [10] IV

Outline

Introduction

General Strategy

$$T\bar{T} \rightarrow Ht + X$$

Same-sign dileptons

$$B\bar{B}(T\bar{T}) \to Zb(t) + X$$

$$T\bar{T} \to Wb + X$$

Conclusions

Conclusions

Using 14 fb⁻¹ of $\sqrt{s}=8$ TeV 2012 LHC data, ATLAS performed four preliminary model independent and complementary searches for heavy quarks

• Updating $\sqrt{s} = 7 \text{ TeV}$ analyses

Considering a few benchmark points, at 95% CL we exclude:

- Singlet *T* with mass up to 670 GeV [9, 15]
- ► Singlet *B* with mass up to 645 GeV [13]
- ▶ Doublet *T* with mass up to 790 GeV [9]
- ▶ Doublet *B* with mass up to 725 GeV [13]

References I

[1] Csaba Csaki.

TASI lectures on extra dimensions and branes. pages 605–698, 2004.

[2] Maxim Perelstein.

Little Higgs models and their phenomenology. *Prog.Part.Nucl.Phys.*, 58:247–291, 2007.

[3] J.A. Aguilar-Saavedra. Identifying top partners at LHC. JHEP, 0911:030, 2009.

[4] S.A. Cetin, G.W.S. Hou, V.E. Ozcan, A.N. Rozanov, and S. Sultansoy. Status of the Fourth Generation: A Brief Summary of B3SM-III Workshop in Four Parts.

arXiv:1112.2907, 2011.

References II

- [5] J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Perez-Victoria. A handbook of vector-like quarks: mixing and single production. 2013.
- [6] Thomas Junk. Confidence level computation for combining searches with small statistics. Nucl.Instrum.Meth., A434:435–443, 1999.
- [7] Alexander L. Read. Presentation of search results: The CL(s) technique. J.Phys., G28:2693–2704, 2002.
- [8] ATLAS Collaboration. Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state at $\sqrt{s} = 7$ TeV with the ATLAS detector.

Phys.Lett., B718:1284-1302, 2012.

References III

[9] ATLAS collaboration.

Search for heavy top-like quarks decaying to a higgs boson and a top quark in the lepton plus jets final state in pp collisions at $\sqrt{s} = 8$ tev with the atlas detector. ATLAS-CONF-2013-018. Mar 2013.

[10] ATLAS Collaboration.

ExoticsVLQSummary (short url: http://goo.gl/QahRE).

[11] ATLAS collaboration.

Search for anomalous production of events with same-sign dileptons and b jets in 14.3 fb $^{-1}$ of pp collisions at $\sqrt{s} = 8$ tev with the atlas detector.

ATLAS-CONF-2013-051, May 2013.

[12] ATLAS collaboration.

Search for exotic same-sign dilepton signatures (b' quark, $T_{5/3}$ and four top quarks production) in 4.7/fb of pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector. ATLAS-CONF-2012-130, Sep 2012.

References IV

[13] ATLAS Collaboration.

Search for pair production of new heavy quarks that decay to a ${\bf Z}$ boson and a third generation quark in ${\bf pp}$ collisions at $\sqrt{{\bf s}}={\bf 8}$ TeV with the ATLAS detector.

ATLAS-CONF-2013-056, Jun 2013.

[14] ATLAS Collaboration.

Search for pair production of a new quark that decays to a ${\it Z}$ boson and a bottom quark with the ATLAS detector.

Phys.Rev.Lett., 109:071801, 2012.

[15] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector.

ATLAS-CONF-2013-060, Jun 2013.

BACKUP SLIDES

Event preselection

ATLAS working groups defined standard object definitions analyses use in general these definitions, as well as common selections

Object definitions

- ▶ Jets: Topological clusters reconstructed with the AntikT4 algorithm ($p_T > 25$ GeV, $|\eta| < 2.5$, JVF> $0.5^{(\alpha)}$)
- ▶ Electrons: Well isolated calo object matched to track $(E_T > 25 \text{ GeV}, |\eta| \text{ in } [0.2.47] \text{ removing } [1.37, 1.52], z_0 < 2 \text{ mm}^{(b)})$
- ▶ Muons: Segment in the tracker and muon detector, isolated track ($p_T > 25$ GeV, $|\eta| < 2.5$, $z_0 < 2$ mm^(b))

If jets within $\Delta R < 0.2$ of an electron, the closest jet is discarded; Leptons within $\Delta R < 0.4$ of a jet are removed

Event pre-selection

- ▶ ≥ 5 tracks from the Primary Vertex (Cosmics and Pileup rejection)
- ▶ If more vertices, choose the one with largest sum of p_T^2
- ▶ Single lepton triggers: isolated electron with $p_T > 24$ GeV OR electron with $p_T > 60$ GeV OR isolated muon with $p_T > 24$ GeV OR muon with $p_T > 36$ GeV

If the analysis requires one or more leptons, at least one of them must match the single lepton trigger

⁽a) the jet vertex fraction is defined as the fraction of summed p_T (> 0.5 GeV) of tracks associated to the jet that come from the primary vertex $\binom{b}{z_0}$ is the longitudinal impact parameter of the track wrt the primary vertex

Events / 100 GeV

Data / MC

$T\bar{T} \rightarrow Ht + X$ [9]

Three channels:

 $= 2, = 3, \ge 4$ b-tagged jets

Same-sign dileptons [11]

Same-sign dileptons [11]

 $BR(B \rightarrow Wt)$

Same-sign dileptons [11]

$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$ [13]

$T\bar{T} \rightarrow Wb + X$ [15]

- one lepton (*e* or *mu*), $E_T^{\text{miss}} > 20$ GeV, $E_T^{\text{miss}} + m_T(W) > 60$ GeV
- \geq 3 jets and one W_{bad}^{typel}

OR

- \geq 4 jets and one W_{had}^{typeII} and no W_{had}^{typeI}
- ► ≥ 1 btagged jet (consider also the 2nd highest b-tag weight jet)
- $H_{\tau}^{(a)} > 800 \text{ GeV}$
- ▶ $p_T(b_1) > 160 \text{ GeV}, p_T(b_2) > 80 \text{ GeV}$
- ▶ $\Delta R(l, \nu) < 1.2$
- $ightharpoonup min(\Delta R(l, b_{1,2})) > 1.4$
- $ightharpoonup min(\Delta R(W_{had}, b_{1,2})) > 1.4$

$$^{(a)}H_T = p_T(j_1) + p_T(j_2) + p_T(j_3) + p_T(j_4) + p_T(l) + E_T^{\text{miss}}$$

 $BR(T \rightarrow Wb)$

combining $T\bar{T} \to Ht + X$ [9] and $T\bar{T} \to Wb + X$ [15]

Results on chiral quarks: $b' \rightarrow Wt$ (100%) [11]

Results on chiral quarks: $t' \rightarrow Wb$ (100%) [15]

The ATLAS Detector

A general purpose experiment

- vertex detector and central tracker
- superconducting solenoid
- electromagnetic and hadronic calorimeters
- muon spectrometer
- superconducting toroids
- ▶ high hermeticity (full ϕ and $|\eta| < 5$)

The ATLAS Detector

A general purpose experiment

- vertex detector and central tracker
- ▶ superconducting solenoid
- electromagnetic and hadronic calorimeters
- muon spectrometer
- superconducting toroids
- ▶ high hermeticity (full ϕ and $|\eta| < 5$)

In 2012 21.7 fb⁻¹ collected at $\sqrt{s} = 8$ TeV!

See ATLAS public page

Will present results obtained with 14.3 fb^{-1} of 2012 data

imeters

-cap and