Pontificia Universidad Católica del Perú Escuela de Posgrado Doctorado en Matemáticas

Variedades Complejas TAREA 1 2020-II

Indicaciones Generales:

- La TAREA 1 puede ser subida a la plataforma Paideia o enviada al correo electrónico jcuadros@pucp.edu.pe.
- 1. Sean a_0, a_1, \ldots, a_m enteros positivos con máximo común divisor igual a 1. Sea \mathbb{C}^{m+1} con coordenas complejas (z_0, \ldots, z_m) , y denotamos por \mathbb{C}^* a $\mathbb{C}\setminus\{0\}$. Definimos la siguiente relación de equivalencia

$$(z_0,\ldots,z_m) \sim (u^{a_0}z_0,\ldots,u^{a_m}z_m), \quad \text{for } u \in \mathbb{C}^*$$

Se define el **espacio proyectivo ponderado** (weighted projective space) $\mathbb{CP}^m(a_0, \ldots, a_m)$ como el cociente $(\mathbb{C}^{m+1}\setminus\{0\})$ / \sim .

- a) Muestre que $\mathbb{CP}^m(a_0,\ldots,a_m)$ es compacto y Hausdorff.
- b) Observe que $\mathbb{CP}^m(1,\ldots,1)$ es el espacio proyectivo complejo usual \mathbb{CP}^m . Por tanto, los espacios proyectivos ponderados $\mathbb{CP}^m(a_0,\ldots,a_m)$ determinan un famila de espacios que generalizan las variedades complejas \mathbb{CP}^m . Muestre que los espacios proyectivos ponderados $\mathbb{CP}^m(a_0,\ldots,a_m)$ no son variedades complejas (complex manifolds) genericamente. (Piense en vecindades alrededor de puntos como $[1,0,\ldots,0]$, estas vecindades serán homeomorfas a abiertos de \mathbb{C}^m ?) De hecho, estos espacios son ejemplos de orbifolds (o V-manifolds). Ver libro de Joyce.
- c) Si a_0 y a_2 no fuesen primos relativos, podría Ud. encontrar alguna vecindad alrededor puntos de la forma $[1,0,1\ldots,0]$ tal que dicha vecindad fuese homeomorfa a algún abierto de \mathbb{C}^m ?.
- d) Podría Ud. encontrar condiciones en los pesos a_i que determinen si ciertas vecindades son homeomorfas a abiertos de \mathbb{C}^m ?.