Transformation Using Binary Variables

Instructor: Kwei-Long Huang

Course No: 546 U6110

Agenda

- Transform logical expressions
- Transform non-simultaneous constraints
- Bundle pricing problem
- Transform non-linear functions

Basic Logical Operations on Variable

- To select a subset of *n* projects in a manner that maximizes the total present value while satisfying the budget limitation.
- Let $y_j = 1$ if project j is selected, and 0 otherwise.
 - Statement A: project A is selected $(y_A=1)$ or not selected $(y_A=0)$
 - Statement **B**: project A is selected $(y_B=1)$ or not selected $(y_B=0)$
- To obtain a correct MIP model,
 - Only linear equations/ inequalities are allowed.
 - If more than one constraint is required, these constraints have to be satisfied simultaneously.
 - Only the true value (=1) is of interest.

Conjunction (A and B, $A \cap B$)

• The conjunction of two statements, A and B, implies that both projects A and B are selected, or symbolically

$$y_A = 1$$
 and $y_B = 1$

An alternate formulation is

Disjunction (A or B, $A \cup B$)

- The disjunction relation of two statements, A or B, implies that either A or B or both are true.
- At least one of the projects A or B must be selected.

	$\mathbf{y}_{\mathbf{A}}$	$\mathbf{y}_{\mathbf{B}}$
Project A is selected but not B	1	0
Project B is selected but not A	0	1
Both are selected	1	1

Simple Implication (If A Then B, $A \rightarrow B$)

- If statement A is true, statement B must be true.
- If statement *A* is not true, statement *B* can be either true or false.

	$\mathbf{y}_{\mathbf{A}}$	y_{B}
Project A is selected and B is selected	1	1
Project A is not selected and project B is selected	0	1
Project A is not selected and project B is not selected	0	0

Double Implication (A If and only If B)

- Statement A implies B, and B also implies A.
- Project *A* is selected if and only if project *B* is selected.

	$\mathbf{y}_{\mathbf{A}}$	\mathbf{y}_{B}
Project A is selected and B is selected	1	1
Project A is not selected and project B is not selected	0	0

Linear Expressions for Boolean Relations

Logical Relation	Linear Inequality/Equation		
$y_C = y_A \cap y_B$	$y_C \leq y_A$		
	$y_C \leq y_B$		
	$y_C \ge y_A + y_B - 1$		
$y_C = y_A \cup y_B$	$y_C \ge y_A$		
	$y_C \ge y_B$		
	$y_C \leq y_A + y_B$		
$y_A \rightarrow y_C$	$y_A \leq y_C$		
$y_{\rm C} = \sim y_A$	$y_C = 1 - y_A$		

Source: Applied Integer Programming: Modeling and Solution, WILEY

Agenda

- Transform logical expressions
- Transform non-simultaneous constraints
 - Either/or
 - *P* out of *m* constraints
 - If/then
- Bundle pricing problem
- Transform non-linear functions

Either/Or Constraints

- A decision variable may be defined by two disjunctive regions.
- For instance, either $x \le 3$ or $x \ge 10$.
- Constraints transformation:

$$x-3 \le My$$

and
$$-x+10 \le M(1-y)$$

- When y=0, constraint $x \ge 10$ is always true.
- When y=1, constraint $x \le 3$ is always true.

One-Machine Scheduling Problem

- Let x_i and x_j respectively denote the start time of job i and job j to be scheduled.
- Let t_i and t_j respectively represent the known machine processing time of job i and job j.

Either
$$x_i + t_i \le x_j$$
 or $x_j + t_j \le x_i$

• Sequence constraint (if job *i* before job *j*, variable $y_{ij}=0$):

p Out of m Constraints Must Hold

- Consider the case where the model has a set of m constraints but in addition requires only some p out of m (assuming p < m) constraints to hold.
- Let $y_i = 1$ for constraint is relaxed, and 0 otherwise.

$$f_i(x) - b_i \le My_i$$
 for $i = 1, 2, ..., m$

and y_i is binary for all i.

If/Then Constraints

- If constraint *A* holds, constraint *B* must hold.
- If constraint *A* doesn't hold, constraint *B* can be either true or false (be relaxed).
- If A then B is equivalent to the logical statement $\sim A \cup B$.

y_{A}	$\mathbf{y}_{\mathbf{B}}$	$y_{A\rightarrow}y_{B}$	$\sim y_A \cup y_B$
1	1	1	1
0	1	1	1
0	0	1	1
1	0	0	0

If/Then Constraints (con't)

- We have two constraints: $f_1(x) b_1 < 0$ and $f_2(x) b_2 \le 0$.
- $\sim A \cup B$: either or $f_2(x) b_2 \le 0$.
- Constraint *A* is satisfied, only when *y* is 1. That is, constraint *B* must be satisfied.

- When y = 0, constraint A can't be satisfied.
- Thus, A=1 and B=0 never be happened.

Example - If/Then

- If $x_1 = 1$, then $x_2 = x_3 = x_4 = 0$
- Because all variables are binary, the following can be obtained

- $\sim A \cup B$: $x_1 \le 0$ and $x_2 + x_3 + x_4 \le 0$
- Then, $x_1 \le My$ $x_2 + x_3 + x_4 \le M(1 - y)$
- $x_1 = 1$ then y = 1, $x_1 \le 3$, $x_2 + x_3 + x_4 \le 0$
- $x_1 = 0, x_2, x_3, x_4$ are unrestricted. $x_1 \le 0, x_2 + x_3 + x_4 \le 3$

Agenda

- Transform logical expressions
- Transform non-simultaneous constraints
- Bundle pricing problem
- Transform non-linear functions

Bundle Pricing Problem

- Products or services are offered by comprising multiple components. All components may also be purchased individually.
 - A software package can compose of several selected modules depending on the requests of users.
 - A fast food restaurant provides combo meals, each of which may consist of a burger, fries, and a soft drink.
 - A travel agency offers products of airfare, rental car and hotel.

Economic Model

- The objective for a company is to set prices for all products and bundles so that the total profit is maximized.
- A reservation price is defined as the maximum price of a customer is willing to pay for a product.
- When the reservation price is higher than the price, the customer will purchase the product.
- A customer will choose the product that maximizes the difference between the reservation price and the price, called surplus.
- For example, a burger and fries are sold at \$50 and \$30 respectively. The combo meal of these two is priced at \$75.

Example (1/3)

- Assume that the size of each customer segment can be forecasted accurately as the average reservation price for each product option.
- Each customer only buy one product, either a computer, a monitor or the bundle.

		Maximum Price Customer is Willing to Pay			
Customer Segment	Expected Size (in 10,000)	Computer Only	LCD Monitor Only	Both	
Home	5	600	350	850	
Government and educational	15	700	350	1000	
Small firms	8	650	300	900	
Medium/large firms	12	700	300	900	

Source: Applied Integer Programming: Modeling and Solution, WILEY

Example (2/3)

- Input parameters: n_i = size of customer segment i, r_{ij} = reservation price of customer segment i for bundle j.
- Decision variable: $x_i = \text{price of bundle } j$.
- State variable: $y_{ij} = 1$ if customer segment i purchase bundle j. $s_i = \text{consumer surplus achieved by customer segment } i$.
- The objective is to maximize the total revenue:

Example (3/3)

• Each customer buy one bundle:

$$\sum_{j} y_{ij} = 1 \ \forall i$$

• Customer segment *i* will buy bundle *j* when the surplus of bundle *j* is maximum (for each *j*):

$$s_i \ge r_{ij} - x_j$$
 where $s_i =$

• Constraints on variables:

$$x_i \ge 0$$
, y_{ii} is binary.

Linearization

Max
$$\sum_{i} n_{i} \sum_{j} x_{j} y_{ij}$$
S.t.
$$\sum_{j} y_{ij} = 1 \ \forall i$$

$$\sum_{j} (r_{ij} y_{ij} - x_{j} y_{ij}) + x_{j} \ge r_{ij}$$

$$x_{j} \ge 0, y_{ij} \text{ is binary.}$$

- This is a nonlinear model.
- Replace $x_i y_{ij}$ by z_{ij} .
- y_{ij} is binary, so $z_{ij} \le x_j$.
- When $y_{ij} = 1$, $z_{ij} = x_j$

Linearization-MILP

Max
$$\sum_{i} n_{i} \sum_{j} z_{ij}$$
S.t.
$$\sum_{j} y_{ij} = 1 \ \forall i$$

$$\sum_{j} (r_{ij} y_{ij} - z_{ij}) + x_{j} \ge r_{ij}$$

$$z_{ij} \le x_{j}$$

$$z_{ij} \ge x_{j} - (1 - y_{ij}) M_{j}, (M_{j} \text{ is an upper bound on } x_{j})$$

$$z_{ij} \ge 0, x_{j} \ge 0, y_{ij} \text{ is binary.}$$

Agenda

- Transform logical expressions
- Transform non-simultaneous constraints
- Bundle pricing problem
- Transform non-linear functions
 - Non-binary to binary variables
 - 0-1 polynomial functions

Transform Non-Binary Variables

- If a variable with an upper bound, it can be represented by a set of binary variables.
- If a variable with lower and upper bounds, it can be converted in the similar way.

$$l \le x \le u$$

• If a variable may only take one value in a set with all discrete elements, the variable can be expressed as:

$$x = \{1, 3, 5, 7, 9\}$$

0-1 Polynomial Functions

• Consider a simple quadratic function in which the variables must be 0 or 1,

$$f(y_1, y_2, ..., y_n) = \sum_j y_j^2 + \sum_{j \neq k} y_j y_k$$

y_j	y^2_j
1	1
0	0

Simply replace y_j^2 with y_j .

y_j	y_k	$y_{jk} = y_j y_k$	$2y_{jk}$	$y_j + y_k$	$y_{jk}+1$
0	0	0	0	0	1
0	1	0	0	1	1
1	0	0	0	1	1
1	1	1	2	2	2

$$2y_{jk} \le y_j + y_k \le y_{jk} + 1$$
$$y_j, y_k, y_{jk} = 0 \text{ or } 1$$

A 0-1 Cubic Functions

• Similarly, for a function with product terms of 3 binary variables:

Combination							
y_i	y_j	y_k	y_{ijk}	$3y_{ijk}$	$y_i + y_j + y_k$	$y_{ijk}+2$	
0	0	0	0	0	0	2	
0	0	1	0	0	1	2	
0	1	0	0	0	1	2	
0	1	1	0	0	2	2	
1	0	0	0	0	1	2	
1	0	1	0	0	2	2	
1	1	0	0	0	2	2	
1	1	1	1	3	3	3	

$$3y_{ijk} \le y_i + y_j + y_k \le y_{ijk} + 2$$

 $y_i, y_j, y_k, y_{ijk} = 0 \text{ or } 1$

Example (1/2)

Maximize
$$2y_1y_2y_3^2 + y_1^2y_2$$

subject to $12y_1 + 7y_2^2y_3 - 3y_1y_3 \le 16$
 $y_1, y_2, y_3 = 0 \text{ or } 1$

- The conversion procedure is as follows:
 - 1. Drop all positive exponents from the problem. Since $y^n = y$ for any binary y and n > 0, we can drop all positive exponents.
 - 2. Replace each product term with a new binary variable.
- Let $y_{123} = y_1 y_2 y_3$, $y_{12} = y_1 y_2$, $y_{23} = y_2 y_3$, and $y_{13} = y_1 y_3$.

Example (2/2)

Maximize
$$2y_{123} + y_{12}$$

subject to $12y_1 + 7y_{23} - 3y_{13} \le 16$

$$\begin{cases} y_1 + y_2 + y_3 \ge 3y_{123} \\ y_1 + y_2 + y_3 \le y_{123} + 2 \end{cases}$$

All variables are binary.