

Scott Morgan

Linear Stability of the Rotating Disk Boundary Layer

Scott Morgan

Supervisor: Dr. Chris Davies

PRIFYSGOL CAERDY

SIAM National Student Chapter Conference 2016

- Why study rotating disks?
- Why study oscillatory motion on the disk?

Introduction to the Rotating Disk - Setup

SIAM National Student Chapter Conference 2016

Figure 1: Rotating Disk Profile

Introduction to the Rotating Disk - History

SIAM National Student Chapter Conference 2016

- Why is it an interesting problem?
 - Canonical example of a three-dimensional boundary layer.
 - Approximation to swept-wing flow.
 - More amenable to experiments.

Scott Morgan

■ First studied in 1921 by Theodore von Kármán who derived an exact similarity solution to the Navier Stokes equations.

$$F(z) = \frac{U^*}{r^*\Omega^*}, \quad G(z) = \frac{V^*}{r^*\Omega^*}, \quad H(z) = \frac{W^*}{(\nu\Omega^*)^{\frac{1}{2}}}$$

where $\mathbf{U} = \mathbf{U}^*(z)$ is the velocity profile in cylindrical polars, Ω^* is the rotation rate of the disk and ν is the kinematic viscosity.

- This gives system of ODEs to solve for the base flow.
- Worth noting Reynolds number is equivalent to radial position on the disk.

Basic Stability Concepts

SIAM National Student Chapter Conference 2016

Scott Morgan

Perturb base flow by adding infinitesimal disturbance such that

$$\mathbf{u} = \mathbf{U}^B + \epsilon \mathbf{u}_p$$

- lacksquare Substitute into Navier-Stokes equations and equate terms of order ϵ .
- Assume disturbance is of travelling wave form and express as

$$\mathbf{u}_p = \hat{u}(z)e^{i(\alpha r + n\theta - \omega t)}$$

■ This gives eigenvalue problem

$$\mathcal{D}(\alpha, n, \omega; R) = 0$$

■ Disturbance decays temporally if $\Im(\omega) < 0$ and spatially if $\Im(\alpha) > 0$.

Convective & Absolute instability

SIAM National Student Chapter Conference 2016

Introduction to the Rotating Disk - Stability

SIAM National Student Chapter Conference 2016

- Disk is convectively unstable for R > 286. Instability mechanism is similar to swept wing flow.
- Disk is also absolutely unstable for R > 507.3. Discovered by Rebecca Lingwood in 1995, this is important because of its proximity to the experimentally observed critical Reynolds number for transition to turbulence.
- This absolute instability is not present in the swept-wing configuration due to the lack of periodicity.

Velocity-vorticity Formulation

Conference 2016 Scott Morgan

$$\frac{\partial \xi_r}{\partial t} + \frac{1}{r} \frac{\partial N_r}{\partial \theta} - \frac{\partial N_{\theta}}{\partial z} - \frac{2}{R} \left(\xi_{\theta} + \frac{\partial w}{\partial r} \right) = \frac{1}{R} \left[\left(\nabla^2 - \frac{1}{r^2} \right) \xi_r - \frac{2}{r^2} \frac{\partial \xi_{\theta}}{\partial \theta} \right]$$

$$\frac{\partial t}{\partial t} + \frac{\partial N_r}{\partial z}$$

$$\frac{\partial \xi_{\theta}}{\partial t} + \frac{\partial N_{r}}{\partial z} - \frac{\partial N_{z}}{\partial r} + \frac{2}{R} \left(\xi_{r} - \frac{1}{r} \frac{\partial w}{\partial \theta} \right) = \frac{1}{R} \left[\left(\nabla^{2} - \frac{1}{r^{2}} \right) \xi_{\theta} + \frac{2}{r^{2}} \frac{\partial \xi_{r}}{\partial \theta} \right]$$

$$\frac{\xi_{\theta}}{t} + \frac{\partial N_r}{\partial z} -$$

$$\frac{\mathbf{v}_{\mathbf{r}}}{z} - \frac{\partial \mathcal{H}}{\partial t}$$

$$-\frac{\partial \Omega_2}{\partial r} +$$

$$r^{-+}\overline{R}$$

$$\mathbf{u} = (u_r, u_\theta, w), \quad \boldsymbol{\xi} = (\xi_r, \xi_\theta, \xi_z)$$
$$\mathbf{N} = (N_r, N_\theta, N_z) = (\nabla \times \mathbf{U}_B) \times \mathbf{u} + \boldsymbol{\xi} \times \mathbf{U}_B$$

$$\nabla$$

$$\nabla$$

 $u_r = -\int_{-\infty}^{\infty} \left(\xi_{\theta} + \frac{\partial w}{\partial r}\right) dz, \quad u_{\theta} = \int_{-\infty}^{\infty} \left(\xi_r - \frac{1}{r} \frac{\partial w}{\partial \theta}\right) dz$

 $\xi_z = \frac{1}{r} \int_{-\infty}^{\infty} \left(\frac{\partial (r\xi_r)}{\partial r} + \frac{\partial \xi_{\theta}}{\partial \theta} \right) dz$

$$\nabla$$

$$\nabla$$

 $\nabla^2 w = \frac{1}{r} \left(\frac{\partial \xi_r}{\partial \theta} - \frac{\partial (r \xi_\theta)}{\partial r} \right)$

Local Eigenvalue Problem

SIAM National Student Chapter Conference 2016

Solving
$$\mathcal{D}(\alpha, n, \omega; R) = 0$$
.

(b) Neutral Curve for $n = \beta R$

Scott Morgan

- We can adapt the steady problem to include a time-dependent part by way of oscillations of the disk.
- Adding oscillations to channel flow can be stabilising.

$$u = \gamma_1 U_1^S + \gamma_2 U_2^P$$

where U_1^S and U_2^P are the steady base flow profiles for Poiseuille channel flow ($\gamma_1 = 0$) and purely oscillatory channel flow ($\gamma_2 = 0$).

Periodic Modulation - Setup

SIAM National Student Chapter Conference 2016 Scott Morgan

 We can alter the von Kármán similarity variables to include a time-dependent structure

$$F(z, \mathbf{t}) = \frac{U^*(z, \mathbf{t})}{r^*\Omega^*}, \quad G(z, \mathbf{t}) = \frac{V^*(z, \mathbf{t})}{r^*\Omega^*}, \quad H(z, \mathbf{t}) = \frac{W^*(z, \mathbf{t})}{(\nu\Omega^*)^{\frac{1}{2}}}$$

System of ODEs becomes time-dependent

$$\frac{\partial F}{\partial t} = F^2 - (G+1)^2 + F'H - F''$$

$$\frac{\partial G}{\partial t} = 2F(G+1) + G'H - G''$$

$$H' = -2F$$

with

$$U(0, t) = W(0, t) = 0,$$
 $V(0, t) = A\cos(\omega t)$
 $U \to 0$ $V \to -1$ as $z \to \infty$

ROTATING FRAME

Periodic Modulation - Setup

time-dependent structure

Student Chapter Conference 2016 Scott Morgan

CAERDYD SIAM National

■ We can alter the von Kármán similarity variables to include a

$$F(z, t) = \frac{U^*(z, t)}{r^*\Omega^*}, \quad G(z, t) = \frac{V^*(z, t)}{r^*\Omega^*}, \quad H(z, t) = \frac{W^*(z, t)}{(v\Omega^*)^{\frac{1}{2}}}$$

System of ODEs becomes time-dependent

$$\frac{\partial F}{\partial t} = F^2 - G^2 + F'H - F''$$
$$\frac{\partial G}{\partial t} = 2FG + G'H - G''$$
$$H' = -2F$$

with

$$U(0, t) = W(0, t) = 0, \quad V(0, t) = 1 + A\cos(\omega t)$$
 $U \to 0 \quad V \to 0 \quad \text{as} \quad z \to \infty$

NON-ROTATING (LAB) FRAME

Preliminary Results

SIAM National Student Chapter Conference 2016

Scott Morgan

Imagine an impulsive forcing to the disk surface at some radially localised location $r=r_{\rm e}$. Boundary conditions in the rotating frame are of the form $G(z=0)=\epsilon\cos(\omega t)$.

Figure 4: Wavepacket envelopes at r = 450 with azimuthal mode number n = 28 and an impulse excited at $r_e = 400$

Preliminary Results

SIAM National Student Chapter Conference 2016

Scott Morgan

Imagine an impulsive forcing to the disk surface at some radially localised location $r=r_e$. Boundary conditions in the rotating frame are of the form $G(z=0)=\epsilon\cos(\omega t)$.

Figure 5: Wavepacket envelopes at r = 540 with azimuthal mode number n = 67 and an impulse excited at $r_e = 510$

Scott Morgan

Comparison with Garrett et. al. (2016) - Roughness

- Garrett et. al. (2016) use boundary conditions on *G* to approximate anisotropic roughness.
- They show that roughness component can be stabilising.
- Roughness component, in some sense, is similar to oscillatory motion.

Future Work

SIAM National Student Chapter Conference 2016

- Incorporate Floquet theory to further understand oscillatory component.
- Quantify any apparent effects and provide a physical reasoning.
- Is an oscillatory component stabilising for the rotating disk?

Floquet Theory

SIAM National Student Chapter Conference 2016

Scott Morgan

Take normal mode approximation of the form

$$p(r, \theta, z, t) = \hat{p}(z, t)e^{\mu\tau}e^{i(\alpha r + \beta R\theta)}$$

where $\hat{p}(z,t)$ is periodic in t and all of the exponential growth in time of p is factored into $e^{\mu t}$. Also $\tau = \omega t$ non-dimensionalises the time scale.

Decompose time dependent base flow into

$$\mathbf{U}^{B}(z,t) = \mathbf{U}^{VK}(z) + \sum_{n=-\infty}^{\infty} u_{n}(z)e^{i\tau}$$

■ Decompose \hat{p} into harmonics such that

$$\hat{p} = \sum_{n=-\infty}^{\infty} \hat{p}_n(z) e^{in\tau}$$

and substitute into equations.

lacksquare Gives system of perturbation equations to solve for μ .