Capítulo 2 Problemas

- **2.1** O módulo de elasticidade volúmico de um gás, à temperatura constante T_0 é dado por:
- a) P/ρ b) RT_0 c) ρP d) ρRT_0 d) nenhuma das respostas anteriores.
- **2.2** Um cilindro em aço, fechado, expande-se 1% em volume quando a pressão no seu interior é aumentada a 10 000 psia. À pressão normal (14,7 psia), o cilindro encontra-se cheio com 1000 lb_m de água, $\rho_{\text{água}}$ = 62,4 lb_m ft⁻³. Considerando que o módulo de elasticidade volúmico de água, β , é 300 000 psia, quantas libras de água são necessárias adicionar ao cilindro, para que este continue cheio, se a pressão for aumentada de 10 000 psia?
- **2.3** Considere o manómetro de tubo em U representado na figura P2.3. Deduza a expressão que dá a pressão no ponto A.

Figura P2.3

- **2.4** Deduza a equação da pressão para um gás perfeito, a temperatura constante, considerando como referência a P_{atm} à cota 0 e P à cota genérica y.
- **2.5** Determine a pressão em kg m⁻², a uma profundidade de 6 m abaixo da superfície livre de um volume de água.
- **2.6** Determine a pressão, em N ${\rm m}^{\text{-2}}$, a uma profundidade de 10 m num óleo de densidade 0,750.

- **2.7** Que profundidade de óleo, de densidade 0,750, produzirá uma pressão manométrica de 2,8 kg cm⁻²? Repita o problema considerando que o fluido é água (d = 1). Critique os resultados obtidos.
- **2.8** Na figura P2.8, as áreas do êmbolo A e do cilindro B são, respectivamente, de 3800 e 380 000 mm², sendo o peso do cilindro de 4000 kg. O recipiente e as ligações estão cheios com um óleo de densidade 0,750. Determine a força que será necessário exercer no êmbolo para que se estabeleça o equilíbrio, desprezando o peso de A.

Figura P2.8

- **2.9** Qual a altura manométrica do tetracloreto de carbono (densidade 1,59) equivalente a uma pressão de 200 kN m⁻²?
- **2.10** Qual a altura manométrica de ar (sendo a sua constante, $R \approx 287 \text{ J kg}^{-1}\text{K}^{-1}$) equivalente a uma pressão de 75 mm de água, quando o ar se encontra a uma pressão de 101,3 kN m⁻² e 15° C?
- **2.11** Supondo que a temperatura atmosférica diminui com o aumento de altitude a uma taxa uniforme de 0,0065 K m⁻¹, determine a pressão atmosférica à altitude de 7,5 km, se a pressão e temperatura ao nível do mar são respectivamente 101,5 kN m⁻² e 15 °C (R = 287J kg⁻¹K⁻¹).
- **2.12** No topo de uma montanha, a temperatura é de -5 $^{\circ}$ C e a leitura efectuada num barómetro indica um valor de 566 mm, enquanto que na base da montanha a leitura tinha sido de 749 mm. Supondo condições adiabáticas "secas", calcule a altura da montanha (R = 287 J kg⁻¹ K⁻¹).
- **2.13** Um manómetro de mercúrio de tubo em U é usado para medir a pressão acima da atmosférica, da água contida numa tubagem. Considere que o contacto da água com o mercúrio se dá no ramo esquerdo do manómetro.
- a) Faça um esquema que traduza a situação.

- b) Calcule a pressão manométrica na tubagem se os meniscos do mercúrio nos ramos esquerdo e direito do manómetro se encontram 30 cm e 20 cm, respectivamente abaixo e acima do nível médio da tubagem ($d_{Hg} = 13,6$).
- **2.14** Considere o problema anterior, se a pressão no interior da conduta for reduzida a 40 kN m⁻² qual será a nova leitura a efectuar no manómetro?
- 2.15 Considere a figura P2.15

Figura P2.15

- a) A água dentro da conduta encontra-se sob pressão?
- b) Se a densidade do mercúrio for igual a 13,6 e a pressão atmosférica de 101,3 kN m⁻², qual é a pressão absoluta na conduta, quando $h_1 = 15$ cm e $h_2 = 30$ cm?
- **2.16** O manómetro de tubo em U representado na figura mede a diferença de pressão entre duas tubagens contendo água.

Figura P2.16

Se a = 1.5 m, b = 0.75 m , h = 0.5 m e o fluido manométrico for mercúrio, calcule a diferença de pressão entre as tubagens.

2.17 Um óleo de densidade 0,750 escoa-se através de um bocal conforme o indicado na figura P2.17

Figura P2.17

Determine o valor de h se a pressão manométrica em A for de 1,5 kg cm⁻².

2.18 Para uma pressão manométrica em A de 1000 kg m⁻², calcule a densidade do fluido B, nas condições indicadas na figura P2.18.

Figura P2.18

- **2.19** Se a massa volúmica da água do mar é dada aproximadamente pela equação de estado $\rho = \rho_0$ exp ((p-p_{atm})/ β), onde β é o módulo de elasticidade, determine a pressão e a massa volúmica a 30 000 ft de profundidade; considere β = 300 000 psia.
- **2.20** Calcule a pressão barométrica em psia a uma altitude de 4 000 ft se a pressão ao nível do mar for de 14,7 psia. Considere condições isotérmicas a 70 °F.
- 2.21 Considere o manómetro de tubo em U da figura P2.21.

Se o manómetro indicado tem ar no topo, calcule a diferença de pressão entre A e B, se as condutas tiverem água, com $h_1 = 60$ cm, h = 45 cm e $h_2 = 180$ cm.

Figura P2.21

2.22 O manómetro invertido esquematizado na figura P2.22 contém óleo de densidade 0,98 e água de densidade 1,01. Calcule a diferença de pressão entre A e B se a diferença entre os níveis de água nos ramos do manómetro for de 75 mm.

Figura P2.22

2.23 Considere o manómetro da Figura P2.23. Se a área A é 50 vezes maior que a área a, calcule a diferença de pressão correspondente a um deslocamento de 25 mm da superfície de separação entre o óleo (densidade 0,95) e a água (densidade 1).

2.24 Um manómetro diferencial de dois fluidos manométricos é usado para medir a diferença de pressão entre dois pontos numa conduta onde se escoa metano à temperatura de 60 °F e pressão de uma atmosfera. Calcule a diferença de pressão se a leitura no manómetro for de 5,72 in.

Fluido manométrico nos reservatórios: querosene (densidade 0,815). Fluido manométrico no tubo em U: água (densidade 1).

- **2.25** Considere o problema anterior. Se o diâmetro do reservatório for de 2,0 in e o diâmetro do tubo em U for de 0,25 in, qual foi o erro cometido na resolução do problema anterior?
- **2.26** Um manómetro diferencial é usado para medir a variação de pressão causada pela restrição numa conduta, como mostra a figura P2.26. Determine a diferença de pressão entre os pontos A e B em lb in⁻². Qual a secção onde é maior a pressão?

Figura P2.26

2.27 Um cubo, com 1 ft de lado é submerso, ficando a face superior 10 ft abaixo da superfície livre da água. Determine a magnitude e a direcção da força necessária para manter o cubo nesta posição, se ele for feito de:

aço:
$$\rho = 490 \text{ lb}_{\text{m}} \text{ ft}^{-3}$$
; cortiça: $\rho = 10 \text{ lb}_{\text{m}} \text{ ft}^{-3}$.

- **2.28** Diz-se que Arquimedes descobriu as leis da força ascensional quando foi solicitado pelo Rei de Siracusa para determinar se a sua nova coroa era ou não de ouro (d = 19,3). Arquimedes obteve para a coroa um peso de 13,0 N no ar e 11,8 N na água. Qual foi a resposta dada ao monarca?
- **2.29** O tanque de água da figura P2.29 tem 10 cm de largura. Se for uniformemente acelerado para a direita a 5 m s⁻², qual será a profundidade da água no lado AB? E qual será a pressão no ponto A?

Figura P2.29

2.30 O tanque de água da figura P2.30 está acelerado para a direita, movendo-se o fluido como um corpo rígido. Calcular a_x em m s^{-2} . A solução será diferente se o fluido for mercúrio? Calcular a pressão no ponto A se o fluido for mercúrio (d = 13,56).

Figura P2.30