Comprehensive Summary Report for Mobile Games Sales Prediction Project

1 Overview

This report summarizes the machine learning pipeline implemented in the Project-1.ipynk Jupyter notebook to predict total sales (sales_total) for mobile games using a dataset (mobile games data.csv) with 16,598 entries. The dataset includes features like title_name, device_type, launch_year, game_genre, publisher_name, and regional sales (sales_usa, sales_europe, sales_asia, sales_misc). The pipeline encompasses data loading, exploration, preprocessing, feature engineering, model training, evaluation, and deployment, with visualization used to interpret results.

2 Data Loading and Initial Exploration

• Purpose: Load and understand the dataset's structure and characteristics.

• Actions:

- Loaded the dataset using pandas.read_csv from d:/gradious/mobile games data.csv.
- Inspected the first (df.head()) and last (df.tail()) five rows to preview data.
- Used df.info() to check data types and missing values: 16,598 entries, 10 columns, with 271 missing values in launch_year and 58 in publisher_name.
- Summarized numerical features with df.describe(): Revealed skewed sales data (e.g., sales_total mean: 0.5374, max: 82.74).
- Analyzed categorical features with df.describe(include='object'): Identified high cardinality in title_name (11,493 unique) and dominant categories (e.g., game_genre: Action, publisher_name: Electronic Arts).

· Key Insights:

Numerical: Sales columns are skewed, with outliers (e.g., sales_usa max: 41.49, 75th percentile: 0.24).

- Categorical: device_type (31 unique), game_genre (12 unique), and publisher_name (578 unique) suggest encoding needs.

• Visualization Need:

- Histograms: Plot distributions of numerical features (launch_year, sales columns) to visualize skewness and outliers.
- Bar Plots: Show frequency of top categories for device_type, game_genre, and publisher_name.

3 Data Preprocessing

• Purpose: Clean and prepare data for modeling.

• Actions:

- Imputation:
 - * Numerical: Missing launch_year values (271) imputed using SimpleImputer with a mean or median strategy.
 - * *Categorical*: Missing publisher_name values (58) imputed with the most frequent category.
- Scaling: Applied RobustScaler to numerical features to handle outliers.
- Encoding: Used OneHotEncoder to convert categorical features (device_type, game_genre, publisher_name) into binary columns.
- Feature Selection:
 - * VarianceThreshold: Removed low-variance features to eliminate noise.
 - * SelectKBest with f_regression: Selected top features correlated with sales_total.

· Key Insights:

- Robust handling of missing values and outliers ensures model stability.
- Encoding high-cardinality categoricals increases feature count, requiring careful selection.

Visualization Need:

- Box Plots: Display pre- and post-scaling distributions of numerical features.
- Correlation Heatmap: Visualize relationships between numerical features and sales_total.

4 Model Creation

- Purpose: Build and train regression models to predict sales_total.
- Actions:
 - *Pipeline*: Used Pipeline and ColumnTransformer to combine preprocessing (imputation, scaling, encoding) and modeling.
 - Models:
 - * RandomForestRegressor:
 - · n_estimators: 200
 - · max_depth: None
 - min_samples_split: 5
 - · max_features: 0.8
 - * GradientBoostingRegressor:
 - · n_estimators: 300
 - · learning_rate: 0.1
 - · max_depth: 5
 - · subsample: 1.0
 - * XGBRegressor:
 - · n_estimators: 200
 - · learning_rate: 0.1
 - · max_depth: 5
 - · subsample: 1.0
 - · colsample_bytree: 0.8
 - * LGBMRegressor:
 - · n_estimators: 300
 - · learning_rate: 0.05
 - · max_depth: 7
 - · num_leaves: 31
 - · subsample: 0.8
 - · colsample_bytree: 0.8
 - * *VotingRegressor*: Ensemble of LightGBM, GradientBoosting, and XGBoost with above parameters.
 - Tuning: Used RandomizedSearchCV to optimize hyperparameters.

- *Train-Test Split*: Split data via train_test_split (e.g., 80:20) for training and evaluation.

• Key Insights:

- Ensemble models handle non-linear relationships and mixed data types well.
- Tuning balances bias, variance, and computational efficiency.

Visualization Need:

 Learning Curves: Plot training and validation errors vs. training size to assess model fit.

5 Model Evaluation

- **Purpose**: Assess model performance and select the best model.
- Actions:
 - Metrics:
 - * mean_squared_error: Computed RMSE to measure prediction error.
 - * mean_absolute_error: Assessed average error magnitude.
 - * r2_score: Evaluated variance explained by the model.
 - *Cross-Validation*: Used cross_val_score for robust performance estimates.
 - Results:
 - * RandomForestRegressor:

· RMSE: 0.0599

· MAE: 0.0230

 $\cdot R^2: 0.9671$

* GradientBoostingRegressor:

· RMSE: 0.0555

· MAE: 0.0228

 $\cdot R^2$: 0.9717

* XGBRegressor:

6 Feature Importance Analysis

 Purpose: Identify key predictors of sales_total for interpretability.

· Actions:

- · Extracted feature importances from models supporting it (RandomForest, GradientBoosting, XGBoost, LightGBM).
- · Combined numerical features (launch_year, sales columns) and one-hot encoded categorical features.
- · Created a DataFrame of top 15 features by importance.
- Plotted bar charts for each model using seaborn.barplot in a 2×3 subplot grid (figsize: 15×12).
- · Saved visualization as feature_importances.png (DPI: 300).
- · Key Insights:
- · Likely key features: Regional sales (e.g., sales_usa), launch_year, and certain game_genre or device_type categories.
- · Helps understand drivers of sales for business insights.
- · Visualization Need:
- · Bar Plots: Already implemented—bar plots of top 15 features per model (saved as feature_importances.png).

7 Sample Predictions

The VotingRegressor's predictions on a test set sample (first 10 instances) are shown below, with actual values and percentage errors:

- · Sample 1: Predicted: 0.116024 | Actual: 0.122218 | Error: 5.1%
- · Sample 2: Predicted: 0.914119 | Actual: 0.924259 | Error: 1.1%
- · Sample 3: Predicted: 0.133093 | Actual: 0.122218 | Error: 8.9%
- · Sample 4: Predicted: 0.858542 | Actual: 0.854415 | Error: 0.5%
- · Sample 5: Predicted: 0.160110 | Actual: 0.157004 | Error: 2.0%
- · Sample 6: Predicted: 0.037774 | Actual: 0.019803 | Error: 90.8%

- · Sample 7: Predicted: 0.799278 | Actual: 0.756122 | Error: 5.7%
- · Sample 8: Predicted: 0.505743 | Actual: 0.500775 | Error: 1.0%
- · Sample 9: Predicted: 0.162748 | Actual: 0.157004 | Error: 3.7%
- · Sample 10: Predicted: 0.286073 | Actual: 0.285179 | Error: 0.3%

Prediction Statistics:

· Min: 0.037774

· Max: 0.914119

· Mean: 0.397350

· Std: 0.324810

Actual Values Statistics:

· Min: 0.019803

· Max: 0.924259

· Mean: 0.389900

· Std: 0.341151

8 Final Model Deployment

- · **Purpose**: Finalize and deploy the best model for use.
- · Actions:
- · Selected VotingRegressor as the final model (RMSE: 0.0538).
- · Stored in the results dictionary, accessed as results ['Ensemble']['mo
- · Printed confirmation: "Deployed Model: Ensemble with RMSE: 0.0538".
- · Likely saved the model using joblib for future predictions.
- · Key Insights:
- The VotingRegressor's robustness and low error make it suitable for deployment.
- The model can predict sales for new games based on input features.

9 Conclusion

· Summary:

- The pipeline effectively processed a dataset of 16,598 mobile games, handling missing values, outliers, and categorical features.
- Five models were trained, with the VotingRegressor (ensemble of LightGBM, GradientBoosting, and XGBoost) achieving the best performance (RMSE: 0.0538, MAE: 0.0211, R²: 0.9734).
- · Feature importance highlighted key predictors, aiding interpretability.

· Strengths:

- · Robust preprocessing and ensemble models handled skewed data and complex relationships.
- · Cross-validation and tuning ensured reliable performance.

· Limitations:

- High cardinality in title_name may complicate modeling if included.
- Potential overfitting in cases with high error (e.g., Sample 6: 90.8% error).

· Visualization Summary:

- · *Data Exploration*: Histograms (numerical distributions), bar plots (categorical frequencies).
- · *Preprocessing*: Box plots (pre/post-scaling distributions), correlation heatmap (feature-target relationships).
- · *Model Evaluation*: Bar chart (RMSE, MAE, R² comparison), scatter plot (prediction vs. actual).
- Feature Importance: Bar plots of top 15 features per model (saved as feature_importances.png).
- · Final Model: VotingRegressor.