

# 高速电路信号完整性分析与设计—PCB设计-1

## 叠层

多层印制板分层及堆叠中应遵徇的基本原则;

- ■电源平面应尽量靠近接地平面。
- ■布线层应安排与映象平面层相邻。
- ■重要信号线应紧临地层。

## 叠层:二层板

二层板,此板仅能用于低速设计,EMC比较差。

#### 四层板

|   | 第一层  | 第二层      | 第三层      | 第四层   |
|---|------|----------|----------|-------|
| A | GND  | S1+POWER | S2+POWER | GND   |
| В | SIG1 | GND      | POWER    | SIG2  |
| С | GND  | S1       | S2       | POWER |

#### 情况A:

应当是四层板中最好的一种情况。因为外层是地层,对 EMI有屏蔽作用,同时电源层同地层也可靠得很近,使得电源 内阻较小,取得最佳郊果。但第一种情况不能用于当本板密度 比较大的情况,不能保证第一层地的完整性,这样第二层信号会 变得更差。

另外,此种结构也不能用于全板功耗比较大的情况。

表中的第二种情况,是平时最常用的一种方式。从板的结构上,也不适用于高速数字电路设计。因为在这种结构中,不易保持低电源阻抗。以一个板2毫米为例:要求特征阻抗Z0=50ohm.以线宽为8mil.铜箔厚为35 m。这样信号一层与地层中间是0.14mm。而地层与电源层为1.58mm。这样就大大的增加了电源的阻抗。在此种结构中,由于辐射是向空间的,需加屏蔽板,才能减少EMC。

表中第三种情况,S1层上信号线质量最好,S2次之。对EMI有屏蔽作用,但电源阻抗较大。实际布线中应注意S1同S2布线应正交。

# 叠层:六层板

|   |      |       | -     |        |       |     |  |
|---|------|-------|-------|--------|-------|-----|--|
|   | 第一层  | 第二层   | 第三层   | 第四层    | 第五层   | 第六层 |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
| A | S1   | GND   | S2    | S3     | POWER | S4  |  |
|   |      | 01.12 | ~-    |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
| В | S1   | S2    | GND   | POWER  | S3    | S4  |  |
|   |      | 52    | 0112  | TO WER |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
| С | S1   | GND   | S2    | POWER  | GND   | S3  |  |
|   | l Si | GND   | 52    | TOWER  | GIVE  | 53  |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
| D | GND  | S1    | POWER | GND    | S2    | GND |  |
|   | UND  | 31    | TOWER | GND    | 32    | עאט |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
|   |      |       |       |        |       |     |  |
| i |      |       |       |        |       | i   |  |

#### 叠层:六层板

A种情况,是常见的方式之一,S1是比较好的布线层。S2次之。但电源平面阻抗较差。布线时应注意S2对S3层的影响。

B种情况,S2层为好的布线层,S3层次之。电源平面阻抗较好。C种情况,这种情况是六层板中最好的情况,S1,S2,S3都是好的布线层。电源平面阻抗较好。美中不足的是布线层同前两种情况少了一层。

D种情况,在六层板中,性能虽优于前三种,但布线层少于前两种。此种情况多在背板中使用。

# 叠层:八层板

|   | 第一层 | 第二层 | 第三层 | 第四层 | 第五层   | 第六层   | 第七层   | 第八层 |
|---|-----|-----|-----|-----|-------|-------|-------|-----|
| A | S1  | S2  | GND | S3  | S4    | POWER | S5    | S6  |
| В | S1  | S2  | S3  | GND | POWER | S4    | S5    | S6  |
| С | S1  | GND | S2  | S3  | S4    | S5    | POWER | S6  |
| D | S1  | GND | S2  | S3  | GND   | POWER | S4    | S5  |
| Е | S1  | GND | S2  | GND | S3    | POWER | S4    | S5  |
| F | S1  | GND | S2  | GND | POWER | S3    | GND   | S4  |

#### 叠层:八层板

八层板,如果要有6个信号层,以A种情况为最好。但此种排列不宜用于高速数字电路设计。如果是5个信号层,以E种情况为最好。在这种情况中,S1,S2,S3都是比较好的布线层。同时电源平面阻抗也比较低。如果是4个信号层,以表三中F种情况为最好。每个信号层都是良好布线层。在这几种情况中,相邻信号层应布线。

# 叠层: 十层板

|   | 第一层        | 第二层          | 第三层                      | 第四层   | 第五层    | 第六层   | 第七层               | 第八层   | 第九层   | 第十层                     |
|---|------------|--------------|--------------------------|-------|--------|-------|-------------------|-------|-------|-------------------------|
|   | <i>7</i> 3 | <i>ಸ</i> —Iವ | <i>ಸ</i> —/ <del> </del> | , 카디도 | , 코스IG | お八伝   | # C/ <del>Z</del> | お八伝   | 77015 | <i>7</i> 71   <u>75</u> |
|   |            |              |                          |       |        |       |                   |       |       |                         |
|   |            |              |                          |       |        |       |                   |       |       |                         |
| A | S1         | GND          | S2                       | S3    | GND    | POWER | S4                | S5    | GND   | S6                      |
|   |            |              |                          |       |        |       |                   |       |       |                         |
|   |            |              |                          |       |        |       |                   |       |       |                         |
| В | S1         | GND          | S2                       | GND   | S3     | POWER | S4                | S5    | GND   | S6                      |
|   |            |              |                          |       |        |       |                   |       |       |                         |
|   |            |              |                          |       |        |       |                   |       |       |                         |
| С | S1         | GND          | POWER                    | S2    | S3     | GND   | S4                | S5    | GND   | S6                      |
|   |            |              |                          |       |        |       |                   |       |       |                         |
|   |            |              |                          |       |        |       |                   |       |       |                         |
| D | S1         | GND          | S2                       | GND   | S3     | GND   | POWER             | S4    | GND   | S5                      |
|   | 51         | GIVE         |                          | GIVE  |        | GND   | TOWER             |       | GND   | 55                      |
|   |            |              |                          |       |        |       |                   |       |       |                         |
| F | G1         | CND          | 62                       | ga    | CND    | DOWED | 64                | CND   | O.F.  | CND                     |
| E | S1         | GND          | S2                       | S3    | GND    | POWER | S4                | GND   | S5    | GND                     |
|   |            |              |                          |       |        |       |                   |       |       |                         |
|   |            |              |                          |       |        |       |                   |       |       |                         |
| F | GND        | S1           | S2                       | GND   | S3     | S4    | GND               | POWER | S5    | GND                     |
|   |            |              |                          |       |        |       |                   |       |       |                         |
|   |            |              |                          |       |        |       |                   |       |       |                         |

#### 叠层:十层板

十层板如果有6个信号层,有A,B,C三种叠层顺序。A种情况 为最好,C种次之,B种情况最差。其它没有列出的情况,比这 几种情况更差。在A种情况中,S1,S6是比较好的布线层。S2 ,S3,S5次之。这中间要特别指出的是,A同C,A种情况之所 以好于C种情况,主要原因是因为在C种情况中,GND层同 POWER层的距离是由S5同GND层距离决定的。这样就不一定 能保证GND层同POWER层的电源平面阻抗最小。D种情况应 当说是十层板中综合性能最好的叠层顺序。每个信号层都是优 良的布线层。E、F多用于背板。其中F种情况对EMC的屏蔽作 用要好于E。不足之处是在于两信号层相接,在布线上要注意。

#### 供电系统设计

在高速电路板设计中最重要的考虑就是电源的分配系统的设计。 电源分配系统必须为低噪声的电路板上各部分的电路提供一个 低噪声的电源,包括电源和地。 需要注意的是,对于交流信号,电源就是地。 电源分配系统还必须为电路板上的信号提供一个信号回路。

#### 供电系统设计

理想的电源的阻抗是0,这样可以证电源端的电压和负载端的电压一致。

但实际的电源,它具有一定的阻抗,分别以电阻、电感、电容的形式表示,因此噪声将叠加在电源上。

设计的目标就是尽可能减 小电源分配网络的阻抗,同 时尽量滤除噪声。





#### 供电系统设计:低阻抗通路

- ■(尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线
- ■尽量采用多层板,电源,地线各占用一层。
- ■在电(地)层上进行布线,首先应考虑用电源层,其次才是地层,最好是保留地层的完整性。

#### 供电系统设计:去耦电容

滤除噪声的有效方法是使用滤波电容。 去耦电容有两个作用:一方面是本集成电路的蓄能电容, 提供和吸收该集成电路开门关门瞬间的充放电能;另一方 面旁路掉该器件的高频噪声。

#### 电路噪声的滤波:去耦电容

需要注意的是,理想电容和实际 电容的区别,实际电容在除电容 因素外还包括了等效串连电感和 等效串连电阻

实际电容低于FR的频率呈现容性,而在高于FR的频率上则呈现感性,所以电容更像是一个带阻滤波器,而不是一个低通(阻高频)滤波器





#### 电路噪声的滤波:去耦电容

数字电路中典型的去耦电 容为0.1uf的去耦电容有 5nH分布电感,它的并行 共振频率大约在7MHz左 右,也就是说对于10MHz 以下的噪声有较好的去耦 作用,对40MHz以上的噪 声几乎不起作用。1uf, 10uf电容,并行共振频率 在20MHz以上,去除高频 率噪声的效果要好一些。



Frequency

#### 去耦电容的选取

好的高频去耦电容可以去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。

去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uf,对微控制器构成的系统,取0.1~0.01uf之间都可以。

| Туре                       | Range of Interest | Application                                                                                                                                          |
|----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrolytic               | 1 μF to > 20 μF   | Commonly used at power-supply connection on board.                                                                                                   |
| Glass-Encapsulated Ceramic | 0.01 μF to 0.1 μF | Used as bypass capacitor at the chip. Also often placed in parallel with electrolytic to widen the filter bandwidth and increase the rejection band. |
| Ceramic-Chip               | 0.01 μF to 0.1 μF | Primarily used at the chip. Also useful where low profile is important.                                                                              |
| COG                        | < 0.1 μF          | Bypass for noise-sensitive<br>devices. Often used in parallel<br>with another ceramic chip to<br>increase rejection band.                            |

#### 去耦电容的配置

- ■电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。
- ■为每个集成电路芯片配置一个0.01uF的陶瓷电容器。
- ■每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uf,一般为钽电解电容器。

#### 去耦电容的配置

去耦电容的引线不能过长,特别是高频旁路电容不能带引线。



Figure 8. a) Typical Placement of Bypass Capacitors; b) Preferred Placement of Bypass Capacitors

传输线的返回路径不再使用 "地"这个词:通常我们会将 传输线的返路径当作地线, 在信号完整性设计过程中, 我们应当习惯寻找信号的返 回路径而不是去寻找信号的 地。



在低频时,返回路径是电阻最小的路径;高频电流总是选择阻抗最小(电感最低),直接位于信号下方的路径,因此返回电流会流过邻近的电路层,而无论这个临近层是电源层还是地线层。





环路最小原则,即信号线与其回路构成的环路面积要尽可能小,环面积越小,对外的辐射越小,接收外界的干扰也越小。





不要跨分割走线: 跨分割走线使得环路面积增大, 容易受到干扰和干扰其它器件



应用过孔排时,需要注意是否造成镜像平面的断裂;



接插件信号布置时考虑安排参考地:每个信号安排一个回流地





数字电路的频率高,模拟电路的敏感度强,所以需要考虑将混合信号电路板上的数字地和模拟地分割开,采用跳线或0欧姆电阻将分割地连接在一起。

注意分区和布线,确保在所有的层上没有数字信号线位于模拟部分之上,也没有任何模拟信号线位于数字部分之上。

对于分割之间的隙布线,可以先在被分割的地之间地之间地之间的地方,形成后进行。 下角连接桥线。 下角线的连接桥线。 下角线的传传传统 一个直接的一个直接的一个直接的一个点路面积很小。



采用光隔离器件或变压器也能实现信号跨越分割间隙。对于前者,跨越分割间隙的是光信号;在采用变压器的情况下,跨越分割间隙的是磁场。还有一种可行的办法是采用差分信号:信号从一条线流入从另外一条信号线返回,这种情况下,不需要地作为回流路径。