Uvod v meta učenje

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za upravo Institut Jožef Stefan, Odsek za tehnologije znanja (E8)

Februar 2021

Zakaj meta učenje?

Ker se učimo kako se učiti

Učimo se iz izkušenj strojnega učenja iz prejšnjih podatkovnih množic.

Kaj je rezultat meta učenja?

Izkušnje posplošimo v model za

- napovedovanje: Kateri algoritem naj uporabim na podani množici?
- napovedovanje: Katere nastavitve algoritma naj uporabim?
- pojasnjevanje: Kateri algoritem deluje kje oz. kdaj?

Pojasnjevanje

Vprašanje 4W: What Works Where and When (under what circumstances)?

Je vprašanje 4W smiselno?

Ni, če bi obstajal univerzalno superioren algoritem

- A univerzalno superiornega algoritma za strojno učenje ni!
- Izrek o neobstoju brezplačnega kosila (no free lunch theorem)

Pregled vsebine

Izrek o neobstoju brezplačnega kosila

- Pričakovana testna napaka algoritma
- Dokaz in posledice za strojno in meta učenje
- Zakon o ohranjanju posplošitvene zmogljivosti

Splošni okvir za meta učenje

- Meta podatki: meta primeri in meta spremenljivke
- Naloge meta učenja: meta ciljne spremenljivke
- Meta atributi: vektorsko vpetje podatkovnih množic

Notacija

- $L: D_Y \times D_Y \rightarrow \{0,1\}$ je funkcija izgube 0-1
- S: učna množica primerov e = (x, y = f(x)), f je ciljna funkcija
- ullet \mathcal{M}_A : množica vseh možnih modelov (hipotez) m učnega algoritma A
- $P_A(m|S)$: posteriorna porazdelitev modelov $m \in \mathcal{M}_A$, rezultat učnega algoritma A na podatkovni množici S
- \mathcal{F} : množica vseh možnih ciljnih funkcij $f:D_1\times D_2\times\ldots\times D_p\to D_Y$
- P(f|S): posteriorna porazdelitev ciljnih funkcij $f \in \mathcal{F}$

kar me tomma? Algoritem je tok unspěren kakr mu urje tmanijat napaluo?

Napaka: ... na letotyeu ptju

4□ > 4₫ > 4불 > 4불 > ½ 990

6 / 47

Superioren algoritem A* strojnega učenja

Za poljuben algoritem A velja

$$\|P_{\widehat{A}}(m|S) - P(f|S)\| \leq \|P_{\widehat{A}}(m|S) - P(f|S)\|$$
)
Algoriteu. A^{k} katerikali drugi algoriteu.

Res je: razlika v zgornji formuli ni dobro definirana - MEREALITIONO HA PADINAT

- Koliko dobro se izbrani model m približa ciljni funkciji f?
- Poskusimo bolje → lozpe bo s funkcijò regube

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Zmogljivost algoritma A: pričakovana testna napaka

Ocena napale algoritma

$$\mathbb{E}_{A}[L|S] = \sum_{m \in \mathcal{M}_{A}} \sum_{f \in \mathcal{F}} \sum_{(\mathbf{x}, \mathbf{y}) \notin S} P(\mathbf{x}) \, \mathbb{E}(f(\mathbf{x})) \, \mathbb{E}(f(\mathbf{x})) \, P_{A}(m|S) \, P(f|S)$$
| Trava viridual-

- Vsota čez vse možne pare (model/hip ϕ teza m, ciljna funkcija f)
- In čez vse možne testne primere $(x, y) \notin S$
- K vsoti prispevajo le napačno razvrščeni primeri $f(x) \neq m(x)$
- Ker $\mathbb{I}(\cdot) = 0$ za pravilno razvrščene primere f(x) = m(x)
- P(x): apriorna porazdelitev vhodnega prostora $x \in D_X$
- Pozor: poznati moramo posteriorno porazdelitev ciljnih funkcij!

4 □ ▷ ◀ □ ▷ ◀ 를 ▷ ◀ 를 ▷ 록 □ *) 억(*

8 / 47

Predpostavka: deterministični učni algoritem A

$$\mathbb{E}_{A}[L|S] = \sum_{f \in \mathcal{F}} \sum_{(\mathbf{x}, \mathbf{y}) \notin S} P(\mathbf{x}) \, \mathbb{1}_{S}(f(\mathbf{x}) \underset{S}{\not \! m}(\mathbf{x})) \, P(m(\mathbf{x})|S) \, P(f|S)$$

benostantre (16 min)

Algoritem A vrne le en model m^*

- Velja $P(m^*|S) = 1$ in $\forall m, m \neq m^* : P(m|S) = 0$
- ullet Zato poenostavitev formule, kjer namesto m^* uporabljamo m
- P(m(x)|S) je posteriorna porazdelitev vrednosti ciljne spremenljivke

4D > 4A > 4B > 4B > B 990

Todorovski, UL-FU, IJS-E8

Predpostavka: znana ciljna funkcija f

$$\mathbb{E}_{A}[L|f,S] = \sum_{(\mathbf{x},y)\notin S} P(\mathbf{x}) \, \mathbf{L}(f(\mathbf{x}) \, \mathbf{m}(\mathbf{x})) \, P(m(\mathbf{x})|S)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

Več možnih formulacij izreka NBK

Osnovna: Za poljuben par algoritmov A_1 in A_2

$$\sum_{\substack{f \in \mathcal{F} \\ \text{funkcija.}}} (\mathbb{E}_{A_1}[L|f,S] - \mathbb{E}_{A_2}[L|f,S]) = 0$$

Alternative

- Pogosto: vsoto zamenjamo s povprečjem
- Ali pa s povprečjem čez vse apriorne porazdelitve P(f)

razlione literature na razlione naone to interpretivajo

Omejitev splošnosti izreka

Predpostavka: Boolove ciljne funkcije, $B = \{0, 1\}$

$$f: \underbrace{B \times B \times \ldots \times B}_{p \text{ krat}} \to B$$

- $\forall i: D_i = B, |D_1 \times D_2 \times \ldots \times D_p| = 2^p$
- Vseh možnih ciljnih funkcij je $|\mathcal{F}| = 2^{2^p}$

Izbor algoritmov A_1 in A_2 (brez škode za splošnost)

- ullet A_1 vedno napoveduje 1, razen če se nauči drugače
- A₂ vedno napoveduje 0, razen če se nauči drugače

Poglejmo si primer Boolove ciljne funkcije f

	X_1	X_2	X_3	f	m_1	m_2
učni primeri $(x,y) \in S$	0	0	0	1	1	1
	0	0	1	0	0	0
	0	1	0	1	1	1
testni primeri $(x, y) \notin S$	0	1	1	0	1	0
	1	0	0	1	1	0
	1	0	1	0	1	0
	1	1	0	1	1	0
	1	1	1	1	1	0

•
$$Err(m_1|f) = 2/5 = 0.4$$

•
$$Err(m_2|f) = 3/5 = 0.6$$

•
$$Err(m_1|f) - Err(m_2|f) = -0.2$$

- 4 ロ b 4 個 b 4 き b 4 き り 9 0 0

In poglejmo še komplementarno funkcijo $\overline{f} = \neg f$

	X_1	X_2	X_3	\overline{f}	m_1	m_2
učni primeri $(x,y) \in S$	0	0	0	0	0	0
	0	0	1	1	1	1
	0	1	0	0	0	0
testni primeri $(x, y) \notin S$	0	1	1	1	1	0
	1	0	0	0	1	0
	1	0	1	1	1	0
	1	1	0	0	1	0
	1	1	1	0	1	0

- $Err(m_1|\overline{f}) = 3/5 = 0.6 = 1 Err(m_1|f)$
- $Err(m_2|\overline{f}) = 2/5 = 0.4 = 1 Err(m_2|f)$
- $Err(m_1|\overline{f}) Err(m_2|\overline{f}) = 0.2 = -(Err(m_1|f) Err(m_2|f))$

Za poljubni model *m* torej velja

$$Err(m|f) + Err(m|\overline{f}) = 1$$

Zato tudi

$$\left[\operatorname{\textit{Err}}(m_1|f) - \operatorname{\textit{Err}}(m_2|f)\right] + \left[\operatorname{\textit{Err}}(m_1|\overline{f}) - \operatorname{\textit{Err}}(m_2|\overline{f})\right] = 0$$

- ullet Za poljubno (Boolovo) ciljno funkcijo f in njen komplement $\overline{f} = \neg f$
- Za poljubna modela m_1 in m_2 oziroma algoritma A_1 in A_2

Če seštejemo za vse možne $f \in \mathcal{F}$

$$0 = \sum_{f \in \mathcal{F}} \left[Err(m_1|f) - Err(m_2|f) \right] + \left[Err(m_1|\overline{f}) - Err(m_2|\overline{f}) \right]$$
$$= 2 \sum_{f \in \mathcal{F}} Err(m_1|f) - Err(m_2|f)$$

V prvi vsoti smo vsako ciljno funkcijo f upoštevali dva krat.

Ker je izbor A_1 in A_2 poljuben, smo dokazali NBK

$$\sum_{f \in \mathcal{F}} (\mathbb{E}_{A_1}[L|f,S] - \mathbb{E}_{A_2}[L|f,S]) = 0$$

→ロト→部ト→ミト→ミトーミーのQで

Zakon o ohranitvi posploševalne zmogljivosti algoritma

20 min

Za vsak algoritem strojnega učenja je vsota njegovih zmogljivosti čez vse možne ciljne funkcije $f \in \mathcal{F}$ nespremenljiva.

Za primerjavo algoritmov

Izjave oblike A_1 je bolj zmogljiv od A_2

- ullet Oziroma A_1 ima manjšo pričakovano napako od A_2
- ullet Morajo vedno sloneti na predpostavki o ciljni funkciji $f \in \mathcal{F}$
- Ali predpostavki o apriorni in posteriorni porazdelitvi p(f) in p(f|S)

Todorovski, UL-FU, IJS-E8

Za teorijo (razvoj algoritmov) strojnega učenja

- Ne obstaja superiorni algoritem strojnega učenja
- Večina teoretičnih rezultatov o možnosti učenja je negativnih

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Za prakso strojnega učenja

- Ne glede na popularnost ali teoretično podprtost algoritma za strojno učenje, lahko najdemo ciljno funkcijo, za katero bo njegova napaka velika (in zmogljivost majhna)
- Ekspertiza omejena na en razred algoritmov, čeprav zelo močnih, ne zadostuje za uspešno napovedno modeliranje
- Izkušnje z uporabo širokega nabora algoritmov so zelo pomembne pri reševanju novega problema

Todorovski, UL-FU, IJS-E8

Šibka in močna predpostavka strojnega učenja

Proces nastajanja problemov strojnega učenja ustvarja neenakomerno porazdelitev ciljnih funkcij P(f) čez \mathcal{F} .

Porazdelitev P(f) čez $f \in \mathcal{F}$ je znana vsaj v obliki uporabnega približka.

BIBKA PREDIOSTAULA:

precipostavt da to vse funkcije enalio venjetne ni ole. Ena funkcije so loble boly venjetne (se bolj pogosto pojavljajo)

Modur pretonostavka: lahko marunamo halinna je povazdelihu čer ciljne funkcije

21 / 47

Predpostavka meta učenja: prostor ciljnih funkcij ${\mathcal F}$

Algoritmi imajo svoja "področja ekspertize" v prostoru ciljnih funkcij $\mathcal{F}.$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Predpostavka meta učenja: prostor podatkov ${\mathcal S}$

Algoritmi imajo svoja "področja ekspertize" v prostoru množic podatkov $\mathcal{S}.$

Todorovski, UL-FU, IJS-E8 Meta učenje

Meta podatki

Meta primeri

- ullet Podatkovne množice $S \in \mathcal{S}$
- S je (neskončni) prostor vseh možnih podatkovnih množic

Meta spremenljivke

- Meta ciljne spremenljivke: različne naloge meta učenja
- Meta atributi: vektorski opis podatkovne množice

Napovedovanje zmogljivosti algoritmov iz ${\mathcal A}$

Ciljne spremenljivke $\mathbf{Y} = p(A, S)|_{A \in \mathcal{A}}$

- ullet Algoritem A, običajno z znanimi nastavitvami parametrov heta
- p je način vrednotenja zmogljivosti, npr. 10-kratno prečno preverjanje
- $D_Y \subseteq R$, regresijska naloga nadzorovanega učenja

Meta model je več-ciljni regresijski, $m:\mathcal{S}
ightarrow \mathbb{R}^{|\mathcal{A}|}$

Lahko bi uporabili več navadnih modelov, po enega za vsak $A \in \mathcal{A}$.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Izbira najbolj zmogljivega algoritma

Ciljna spremenljivka $Y = \arg \max_{A \in \mathcal{A}} p(A, S)$

- Najbolj zmogljiv algoritem A^* za S, $A^* = \arg\max_{A \in \mathcal{A}} p(A, S)$
- ullet Algoritem A, običajno z znanimi nastavitvami parametrov heta
- p je način vrednotenja zmogljivosti, npr. 10-kratno prečno preverjanje
- $D_Y = \mathcal{A}$, klasifikacijska naloga nadzorovanega učenja

Meta model je klasifikacijski, $m:\mathcal{S} \to \mathcal{A}$

Lahko bi uporabili tudi meta model za napovedovanje zmogljivosti.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Priporočanje/rangiranje algoritmov

Ciljne spremenljivke $\mathbf{Y} = rangiranje(A)$

Rangiranje algoritmov iz A glede na zmogljivost na S:

$$A_{j_1} > A_{j_2} > \ldots > A_{j_{|\mathcal{A}|}}$$
, kjer velja $p(A_{j_1}, S) \ge p(A_{j_2}, S) \ge \ldots p(A_{j_{|\mathcal{A}|}}, S)$

- ullet $j_1, j_2, \ldots j_{|\mathcal{A}|}$ permutacija naravnih števil $1 \ldots |\mathcal{A}|$
- p je način vrednotenja zmogljivosti, npr. 10-kratno prečno preverjanje

Meta model je več-ciljni regresijski $m:\mathcal{S} o \mathbb{R}^{|\mathcal{A}|}$

Lahko bi uporabili tudi meta model za napovedovanje zmogljivosti.

→□▶→□▶→□▶→□▶
□◆□▶→□▶→□
□◆□▶

Učenje iz prejšnjih modelov naučenih z algoritmom A

Učenje prenosa, Transfer Learning

- Prejšnje modele $\{A(S): S \in \mathcal{S}_{train}\}$ uporabimo kot osnovo za učenje modela $A(S_{new})$ na novi (podobni) množici $S_{new} \notin \mathcal{S}_{train}$
- A lahko nastavimo tako, da bo nov model podoben prejšnjim
- Umetne nevronske mreže: strukturo in uteži mreže prej naučene na podobni množici S uporabimo za učenje iz S_{new}

Večopravilno učenje, Multi-Task Learning

Učenje iz množice podobnih podatkovnih množic, kjer prej naučene modele uporabimo kot pristranskost/predsodek pri učenju novih modelov.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Optimalne nastavitve algoritma A

Ciljne spremenljivke $\mathbf{Y} = \arg \max_{\theta \in \Theta_A} p(A, \theta, S)$

- Optimalna nastavitev parametrov θ^* za algoritem A na S
- $\theta^* = \arg\max_{\theta \in \Theta_A} p(A, \theta, S)$
- p je način vrednotenja zmogljivosti, npr. 10-kratno prečno preverjanje
- $D_Y = \Theta_A$

Meta model je več-ciljni regresijski $m:\mathcal{S} ightarrow \Theta_{\mathcal{A}}$

Na naslednjih predavanjih bomo to nalogo formulirali kot optimizacijski problem, AutoML.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

Definicija meta atributa X_{meta}

Računa neko lastnost podatkovne množice S

$$X_{meta}: \mathcal{S}
ightarrow \mathbb{R}$$

- Ročno načrtovan/izbran: statistična lastnost podatkovne množice
- Avtomatsko izračunan: dimenzija prostora vpetja podatkovnih množic

Omejitev

Nizka računska kompleksnost izračuna.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

Kategorije ročno načrtovanih meta atributov

- Osnovne: število primerov, spremenljivk in podobno
- Statistične: statistike izmerjene na numeričnih spremenljivkah
- Informacijske: količina informacije v diskretnih spremenljivkah
- Mere kompleksnosti: izmerjene na podatkovni množici
- Modelske: opis modela naučenega na podatkovni množici
- Algoritmične: zmogljivost preprostih algoritmov

Osnovni za primere in atribute

Primeri podatkovne množice S

|S|: število primerov v podatkovni množici

Atributi podatkovne množice S

- p: število atributov
- $p_n = |\{D_i : D_i = \mathbb{R}\}|$: število numeričnih atributov
- $p_d = p p_n$: število diskretnih atributov
- $p_b = |\{D_i : |D_i| = 2\}|$: število binarnih atributov
- |S|/p: število primerov na atribut
- p/|S|: število atributov na primer

Osnovni za ciljno spremenljivko

Za regresijske probleme

- \bullet Značilke porazdelitve vrednosti D_Y
- Primeri: povprečje, mediana, standardna deviacija
- Glej naslednjo prosojnico

Za klasifikacijske probleme

- Značilke porazdelitve vrednosti D_Y
- $|D_Y|$: število razredov
- $\max_{v \in D_Y} |\{(\mathbf{x}, y) \in S : y = v\}|$: delež primerov v največjem razredu

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Posamezni (numerični) atributi

- median, mean: lokacijski parametri porazdelitev
- min, max, Q₁, Q₃: parametri razpona
- $max min, Q_3 Q_1, \sigma$: statistike razpona
- kurtosis, skewness: statistike oblike porazdelitve
- $na = |\{e \in S : X_i(e) = NA\}|, na/|S|$: število, delež neznanih vrednosti

Agregati: min, max, mean, σ , histogrami

Dva ali več (numeričnih) atributov

- $corr(X_i, X_i), cov(X_i, X_i)$: korelacija in kovarianca
- $ncorr = \sum_{i=1}^{p} \sum_{j=i+1}^{p} \mathbb{I}(|corr(X_i, X_j)| > 0.5), \ ncorr/(p(p-1)/2)$: število, delež paroma koreliranih atributov
- $nn = \sum_{i=1}^{p} \mathbb{I}(isN(X_i)), nn/p$: število/delež normalno porazdeljenih atributov, eno vzorčni test Kolmogorov-Smirnov
- PCA- λ : lastne vrednosti kovariančne matrike za numerične atribute
- PCA-95%: število glavnih komponent, ki pojasni vsaj 95% variance

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (C)

Numerični atributi in ciljna spremenljivka: klasifikacija

Centri gravitacije x_v za razrede $v \in D_Y$

$$\mathbf{x}_{v} = \frac{1}{|S_{v}|} \sum_{(\mathbf{x}, y) \in S: y = v} \mathbf{x}$$

- Centroid x_v primerov iz razreda v
- Opazujemo lahko Evklidske razdalje med centri x_v in x_u za $u, v \in D_Y : u \neq v$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Numerični atributi in ciljna spremenljivka: regresija

- Primerjaj s prosojnico za dva ali več (numeričnih) atributov.
- $corr(X_i, Y), cov(X_i, Y)$: korelacija/kovarianca s ciljno spremenljivko
- učinkovitost atributa X_i : število/delež primerov, ki jih moram izbrisati, da bi $corr(X_i, Y) > 0.9$
- kolektivna učinkovitost atributov: število preostalih primerov po iterativnem brisanje primerov, ki imajo ostanke večje od 0.1

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Posamezni (diskretni) atributi

- $H(X_i) = -\sum_{v \in D_i} P(v) \log_2 P(v)$: entropija (nečistost)
- $H(X_i)/\log_2 |S|$: količina informacije

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

Diskretni atributi in cilina spremenljivka: klasifikacija

H(Y): entropija ciljne spremenljivke

$$MI(X, Y) = H(X) + H(Y) - H(X, Y)$$

$$H(X, Y) = -\sum_{(v_x, v_y) \in (D_X, D_Y)} p(v_x, v_y) \log_2 p(v_x, v_y)$$

- $MI(X_i, Y), MI(X_i, Y)/H(Y)$: vzajemna informacija
- $H(X_i, Y), H(X_i, Y)/H(Y)$: skupna entropija
- $H(Y)/(\sum_{i=1}^{p} MI(X_i, Y)/p)$: lastna dimenzionalnost

39 / 47

Dimenzija podatkovne množice

- PCA-95%: število glavnih komponent, ki pojasni vsaj 95% variance
- Fraktalna dimenzija podatkovne množice
- Notranja dimenzija podatkovne množice

Pozor: računska kompleksnost!

Osnovna ideja

Opazujemo lastnosti napovednega modela m = A(S)

- In ne lastnosti množice S
- Za poljubno izbrani algoritem A

Pogosto uporabljeni algoritmi

- Odločitvena drevesa
- Linearni modeli

Odločitvena drevesa

Zgradimo odločitveno drevo brez predhodnega ali naknadnega rezanja.

Opazovane lastnosti

- število vseh, notranjih ali končnih vozlišč v drevesu
- globina drevesa
- povprečna globina končnih vozlišč
- zmanjševanje nečistosti v korenskem vozlišč
- število učnih primerov v končnih vozliščih
- število končnih vozlišč za posamezno vrednost iz D_Y (klasifikacija)
- število vozlišč v posameznem nivoju drevesa

Drugi modeli

Metoda podpornih vektorjev

- Izbrano jedro običajno polinomsko
- Število podpornih vektorjev

Linearni modeli

Število koeficientov značilno različnih od 0

Osnovna ideja: orientirji (landmarks)

Meta spremenljivke p(A, S)

- Izbor A: hitri, preprosti algoritmi (orientirji)
- Izbor p: zmogljivost ocenjena na učni množici (hitrost!)

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Enostavni algoritmi

Najbližji sosed

k=1: metoda najbližjega soseda

Linearni model

Linearna oziroma logistična regresija

Odločitvena drevesa

- Štor: odločitveno drevo z enim notranjim vozliščem
- Naključni štor: Odločitveno drevo z naključno izbranim enim notranjim vozliščem.

→□▶ →□▶ → □▶ → □ ♥ ♀○

Relativni in vzorčni orientirji

Relativni orientir $p(A_1, S) - p(A_2, S)$

Za dva izbrana orientirja A_1 in A_2 .

Vzorčni orientirji

- Izbor algoritmov A lahko širši (ne le preprosti)
- ullet Hitrost zagotovimo tako, da jemljemo majhne vzorce V : $|V| \ll |S|$
- ullet Zaporedje vzorcev naraščajoče velikosti |V|

◆□▶◆□▶◆■▶◆■▶ ● 900

Literatura in praktični napotki

Priporočena literatura

- (Wolpert 1996): izrek o neobstoju zastonjskega kosila
- (Vanschoren 2018): Splošni okvir za meta učenje
- (Rivolli in ost. 2018, Lorena in ost. 2018): meta atributi

Programska oprema in viri za meta učenje

- CRAN paket mfe za izračun meta atributov in pripadajoča vadnica cran.r-project.org/web/packages/mfe/vignettes/mfe-vignette.html
- Spletni repozitorij openml.org in CRAN paket OpenML