

### Misalignment studies with the official scenarios

Jim Pivarski, Alexei Safonov

Texas A&M University

30 November, 2007





## Status of Alignment

- ▶ Alignment procedure: after discovering an error, we corrected and re-tuned our procedure (last few weeks). I am now setting it up to re-do a full CSA07 exercise.
- Quality of realistic procedure: slightly better than official scenarios in  $r\phi$ , especially in wheel/disk placement.
- Alignment studies with official scenarios: made all the relevant plots, but discovered a mistake in my configuration. Plots can be recreated in a matter of hours.
- Comparison with toy alignment: Ivan and I will talk offline?





# Alignment studies with official scenarios

- ▶ Using official  $Z'_{SSM}$  and  $Z'_{th}$  datasets (1–3.5 TeV) in 1\_6\_7
- ► Full track reconstruction with each alignment configuration (misalignment can cause tracks to lose hits or not be found)
- 8 detector configurations:

| tracker                     | muon system                      |
|-----------------------------|----------------------------------|
| ideal                       | ideal                            |
| $100~{ m pb}^{-1}$ scenario | $100~{ m pb}^{-1}~{ m scenario}$ |
| $10~{ m pb}^{-1}$ scenario  | $10~{ m pb}^{-1}~{ m scenario}$  |
| $100~{ m pb}^{-1}$ scenario | ideal                            |
| $10~{ m pb}^{-1}$ scenario  | ideal                            |
| ideal                       | $100~{ m pb}^{-1}~{ m scenario}$ |
| ideal                       | $10~{ m pb}^{-1}~{ m scenario}$  |
| startup (laser alignment)   | startup (10 pb $^{-1}$ )         |



# The plots I'm about to show are place-holders

I tracked a strange feature in the plots to a misconfiguration. Detective story in reverse order:

▶ To conserve disk space, I'm saving re-reconstructed events in AlCaReco format (only saves tracks and hits) Default cut is track  $p_T < 999$  GeV

All samples cut off sharply at  $\frac{1}{p_T} = 0.001 \text{ GeV}^{-1}$ 



Causes a bias in track resolution near 1 TeV, a bias in dimuon masses above 2 TeV, and an inefficiency above 2 TeV





- ▶ 1 TeV Z' is minimally affected by track cut
- ▶ Muon misalignment gets more interesting at higher energies
- ▶ For resolution studies, we cut out Drell-Yan at generator level



#### Dimuon mass resolution

- ► Resolution is width of {reconstructed mass minus generated}
- ▶ Double-Gaussian fit for width (probably unnecessary w/o cut)
- Expectations: increase with mass, ideal tracker better at low masses, ideal muon better at high masses







#### Dimuon mass bias

- ▶ Bias is centroid of {reconstructed mass minus generated}
- ▶ May be entirely due to cut: wide distributions have most bias







## Individual tracks

- ► Resolution is width of  $\frac{p_T^{\text{reco}} p_T^{\text{gen}}}{p_T^{\text{gen}}} = \text{width of } \frac{\kappa^{\text{reco}} \kappa^{\text{gen}}}{\kappa^{\text{gen}}}$
- misaligned muon matters above 400 GeV

Misalignment studies

misaligned tracker is fairly constant





## Conclusions

- Plot-making apparatus is in place, reconstruction takes
   4 hours (plus resubmissions)
- ▶ Results independent of  $Z'_{SSM}$  versus  $Z'_{\psi}$  (good)
- ightharpoonup Some things I should look into:  $\eta$  distributions, effect on charge misassignment, relative importance of wheel/disk misalignments and chamber misalignments
- Comparison with toy misalignment?
  - reconstruction:
    - include "Configuration/StandardSequences/data/FakeConditions.cff"
      include "Configuration/StandardSequences/data/Reconstruction.cff"
      path p = {ckftracks, muontracking, muons, MyAnalyzer}
    - with tracker and muon geometry from Frontier database
  - ▶ MC-matching: closest in  $\phi$  for  $p_T > 20$  GeV globalMuons