

(Empowered Autonomous Institute Affiliated to Mumbai University)

UID 2023301005 Subject Design and Analysis of Algorithms. 1.A No. Aim To implement the various functions e.g. linear, non-linear, quadratic, exponential etc. Code #include <stdio.h> #include <math.h> // Function prototypes double linear(int n); // Returns n double powerOfTwo(int n); // Returns n^3 double nLogN(int n); // Returns n * log2(n) double logFactorial(int n); // Returns (lg n)! (Factorial of logarithm) double lnLnN(int n); // Returns ln(ln(n)) double nTimesTwoToN(int n); // Returns 2^lg(n) double lnN(int n); // Returns 2^lg(n) double lnN(int n); // Returns 2^lg(n) double lnN(int n); // Returns 2^(2^n+1) double factorial(int n); // Returns n! // Function implementation of n double linear(int n) { return n; }</math.h></stdio.h>	Name	Manish Shashikant Jadhav	
Experiment No. Aim To implement the various functions e.g. linear, non-linear, quadratic, exponential etc. Code #include <stdio.h> #include <math.h> // Function prototypes double linear(int n); // Returns n double powerOfTwo(int n); // Returns n^3 double cubic(int n); // Returns n^3 double nLogN(int n); // Returns n * log2(n) double logFactorial(int n); // Returns (lg n)! (Factorial of logarithm) double lnLnN(int n); // Returns n * 2^n double powerOfTwoLog(int n); // Returns 1n(ln(n)) double lnN(int n); // Returns 2^lg(n) double exponentialTwoTwoNPlusOne(int n); // Returns 2^(2^n+1) double factorial(int n); // Returns n! // Function implementation of n double linear(int n) {</math.h></stdio.h>	UID	2023301005	
Aim To implement the various functions e.g. linear, non-linear, quadratic, exponential etc. Code #include <stdio.h> #include <math.h> // Function prototypes double linear(int n); // Returns n double powerOfTwo(int n); // Returns n^3 double nLogN(int n); // Returns n* log2(n) double logFactorial(int n); // Returns (lg n)! (Factorial of logarithm) double lnLnN(int n); // Returns n* 2^n double nTimesTwoToN(int n); // Returns n* 2^n double lnN(int n); // Returns 2^lg(n) double lnN(int n); // Returns 1n(n) double exponentialTwoTwoNPlusOne(int n); // Returns 2^(2^n+1) double linear(int n); // Returns n!</math.h></stdio.h>	Subject	Design and Analysis of Algorithms.	
#include <stdio.h> #include <math.h> // Function prototypes double linear(int n); // Returns n double powerOfTwo(int n); // Returns n^3 double cubic(int n); // Returns n^3 double nLogN(int n); // Returns n * log2(n) double logFactorial(int n); // Returns (lg n)! (Factorial of logarithm) double lnLnN(int n); // Returns ln(ln(n)) double nTimesTwoToN(int n); // Returns 2^lg(n) double powerOfTwoLog(int n); // Returns ln(n) double exponentialTwoTwoNPlusOne(int n); // Returns 2^(2^n+1) double factorial(int n); // Returns n! // Function implementation of n double linear(int n) {</math.h></stdio.h>	_	1.A	
<pre>#include <math.h> // Function prototypes double linear(int n);</math.h></pre>	Aim	To implement the various functions e.g. linear, i	non-linear, quadratic, exponential etc.
<pre>// Function implementation of 2^n double powerOfTwo(int n) { return pow(2, n);</pre>	Code	<pre>#include <math.h> // Function prototypes double linear(int n); double powerOfTwo(int n); double cubic(int n); double nLogN(int n); double logFactorial(int n); (Factorial of logarithm) double lnLnN(int n); double nTimesTwoToN(int n); double powerOfTwoLog(int n); double lnN(int n); double exponentialTwoTwoNPlusOne(int double factorial(int n); // Function implementation of n double linear(int n) { return n; } // Function implementation of 2^n double powerOfTwo(int n) {</math.h></pre>	<pre>// Returns 2^n // Returns n^3 // Returns n * log2(n) // Returns (lg n)! // Returns ln(ln(n)) // Returns n * 2^n // Returns 2^lg(n) // Returns ln(n) t n); // Returns 2^(2^n+1)</pre>

(Empowered Autonomous Institute Affiliated to Mumbai University)

```
// Function implementation of n^3
double cubic(int n)
  return pow(n, 3);
// Function implementation of n * log2(n)
double nLogN(int n)
 return n * log2(n);
// Function implementation of (lg n)! (Factorial of logarithm)
double logFactorial(int n)
 return tgamma(log2(n) + 1); // Using tgamma for gamma function
(factorial )
// Function implementation of ln(ln(n))
double lnLnN(int n)
 return log(log(n));
// Function implementation of n * 2^n
double nTimesTwoToN(int n)
 return n * pow(2, n);
// Function implementation of 2^lg(n)
double powerOfTwoLog(int n)
  return pow(2, log2(n));
```


(Empowered Autonomous Institute Affiliated to Mumbai University)

```
// Function implementation of ln(n)
double lnN(int n)
 return log(n);
// Function implementation of 2^(2^n+1)
double exponentialTwoTwoNPlusOne(int n)
 return pow(2, pow(2, n) + 1);
// Function implementation of n!
double factorial(int n)
 if (n == 0 || n == 1)
    return 1;
  else
    return n * factorial(n - 1);
int main()
 int n;
 // Calculate and display values for n from 0 to 100 with an
increment of 1
 for (n = 0; n <= 100; n++)
    printf("n = %d:\n", n);
    printf("1. n: %d\n", (int)linear(n));
    printf("2. 2^n: %f\n", powerOfTwo(n));
    printf("3. n^3: %f\n", cubic(n));
    printf("4. n lg n: %f\n", nLogN(n));
    printf("5. (lg n)! (Factorial of logarithm): %f\n",
logFactorial(n));
```


(Empowered Autonomous Institute Affiliated to Mumbai University)

Department Of Computer Engineering

```
printf("6. ln ln n: %f\n", lnLnN(n));
printf("7. n*2^n: %f\n", nTimesTwoToN(n));
printf("8. 2^lg n: %f\n", powerOfTwoLog(n));
printf("9. ln n: %f\n", lnN(n));
printf("10. 2^(2^n+1): %f\n", exponentialTwoTwoNPlusOne(n));
printf("\n");
}

// Calculate and display values for n from 0 to 20 with an increment of 1 for the factorial function
printf("Factorial Function (n!):\n");
for (n = 0; n <= 20; n++)
{
   printf("n = %d: %.0f\n", n, factorial(n));
}

return 0;
}</pre>
```

Graph

(Empowered Autonomous Institute Affiliated to Mumbai University)

(Empowered Autonomous Institute Affiliated to Mumbai University)

Solved	t No. O.
Problem:	Experiment No. O.
	1) $n = 5$, then $n = 5$. 2) $2n$, $n = 3$, then $2n = 2 \times 3 = 6$. 2) $2n$, $n = 4$ then $n^3 = 4^3 = 64$. 3) $n^3 \times n = 4$ then $n^3 = 4^3 = 64$. 4) $n \log n \times n = 6$, then $n \log n = 6 \times \log(6) \approx 6 \times 1.79$ ≈ 10.74 .
	5) $(\log n)! \cdot n = 610.$ then $(\log 10)! = (\log 10)! = 2! = 2.$
	6) $\ln(\ln(n)) \cdot n = 9$ then $\ln(\ln(g)) \approx \ln(2 \cdot 20) \approx 0.79$.
	$7) \times 2^{9}$, $N = 3$. then $3 \times 2^{3} = 3 \times 8 = 24$.
	8) $n^{\log n} \cdot n = 2$. then $2^{\log n} = 2^1 = 2$.
	9) In(n). n=7, then In(7) % 1.95.
	10) $2^{2^{n+1}}$. $n=1$ then $2^{2^{n+1}} = 2^{3^{n}} = 8$.
Conclusion	Hence, by completing this experiment I came to know about to implement the various functions e.g. linear, non-linear, quadratic, exponential etc.

(Empowered Autonomous Institute Affiliated to Mumbai University)

Experiment	1.B
No.	
Aim	Experiment on finding the running time of an algorithm(Insertion Sort and Selection Sort).
Code	<pre>#include <stdio.h> #include <stdib.h> #include <time.h> void insertSort(int *arr, int n) { for (int j = 1; j < n; j++) { int key = arr[j]; int i = j - 1; while (i > -1 && key < arr[i]) { arr[i + 1] = arr[i]; i = i - 1; } arr[i + 1] = key; } } void selectSort(int *a, int n) { int temp; for (int i = 0; i < n - 1; i++) { int p = i; for (int j = i + 1; j < n; j++) { if (a[p] > a[j]) { p = j; } } if (p != i) { </time.h></stdib.h></stdio.h></pre>

(Empowered Autonomous Institute Affiliated to Mumbai University)

```
temp = a[i];
     a[i] = a[p];
     a[p] = temp;
void main()
 srand(time(NULL));
 FILE *fileptr;
 FILE *fileptr1;
 int n = 100000;
 fileptr = fopen("inp.txt", "w");
 int arr[n];
 for (int j = 0; j < n; j++)
   arr[j] = rand() \% 100000 + 1;
   fprintf(fileptr, "%d\n", arr[j]);
 fclose(fileptr);
 fileptr1 = fopen("time.csv", "w");
 printf("Block Size\tInsertion Sort\tSelection sort\n");
 fileptr = fopen("inp.txt", "r");
 for (int p = 99; p < n; p = p + 100)
   int array[p + 1];
   int array1[p + 1];
   for (int j = 0; j < p; j++)
     array[j] = arr[j];
     fscanf(fileptr, "%1d", &array1[j]);
   clock_t begin = clock();
   insertSort(array, p + 1);
   clock_t mid = clock();
```


(Empowered Autonomous Institute Affiliated to Mumbai University)

Department Of Computer Engineering

```
selectSort(array1, p + 1);
  clock_t end = clock();
  double time_spent = (double)(mid - begin);
  double time_spent1 = (double)(end - mid);
  printf("%d\t%lf\t%lf\n", p + 1, time_spent, time_spent1);
  fprintf(fileptr1, "%d,%lf,%lf\n", p + 1, time_spent,
time_spent1);
  }
  printf("\n");
}
```

Graph:

(Empowered Autonomous Institute Affiliated to Mumbai University)

(Empowered Autonomous Institute Affiliated to Mumbai University)

Department Of Computer Engineering

Insertion Sort Pseudocode and example:

8 8	CIACCAUTA
	No. 1
	Expersiment No.1.
*	Insertion Sort:
	Pseudocode:
	11 (1 (0%%)
	procedure insertionSort (000)
	n= length (arr)
	for 1 from 1 to n-1
	key = arr [i]
7	j=1-1
	while j = 0 and arrt j] > Key
	arr [j+i] = arr [j]
	j=j-1
TALL	endiahile
	arr = [j+] = Key
	end for
	end procedure.
-	Ex. 28,9,13,2,4,6.
	0) Step 2: 28 9 13 2 46 (Swap 28 and 9)
2 10 10	b) Step 2: 9 28 13 2 4 6 (Swap 213 and 28)
	c) Step3: 0, 9, 13, 28 34, 6 (Swap 28 and 2 and
25.7	insert 2 at correct pos)
	d> Step 4: 2, 9, 13, 28, 4, 6 (Swaf 28 and 4 and insert
	e) step 5: 2,4, 3,13, 28, 6. (swap 28 and 6 and insect
	& cut cooper position).
	f) Final sorted Array: 2700 0,4,6,9,13,28.
	10 2,4,6,9,13,28.

(Empowered Autonomous Institute Affiliated to Mumbai University)

Department Of Computer Engineering

Selection Sort Pseudocode and example:

	Date_Page
×	selection sost :-
	PseudoCode:-
	procedure selectionSort (0xx)
	n=length (orer)
	for i from 0 to n-2
	minIndex = i
	for j from i+2 to n-1
	if orar[j] < arar[minIndex]
	minIndex Cj]
	end if
	end for
	swap arr[i] and arr[minIndex]
	end for
	end procedure.
	7 2 2 12 2 4 6
•	Ex. 28,9,13,2,4,6. a) Step 1: Min. is 2 (at index 3). Swap to at 0.
	2,28,9,13,4,6
	b) Step 2: Min. is 4. (at index 4) swap to index 1.
	2,4, 28,9,13,6.
	Astera mania is continuent of a section of the sect
	c) step 3: por min is. 6 (at index 5) swap to index 82.
	1. 2, 4, 6, 28, 9, 13
	Marata and in a car index (A)
	d> step 4: Min. is 9 (but index 4) swap to index 3.
	2,4,6,9,28,13.
	e) steps: Min. is @ 13 (at index 5) swap to index 4
	. Final sorged array = 2,4,6,9,28, 13.

(Empowered Autonomous Institute Affiliated to Mumbai University)

Conclusion	Hence, by completing this experiment I came to know about finding the running time of an algorithm(Insertion Sort and Selection Sort).