1. Find a formula for each derivative:

(a)
$$U(x) = \ln(x + \sqrt{x^2 - 1})$$

(b)
$$N(x) = \exp(-x)\cos(5\pi x)$$

(c)
$$K(x) = \sec^{-1}(1/x)$$

(d)
$$U(x) = (\tan^{-1}(x))^2$$

(e)
$$N(x) = (\tan^{-1}(x))^{-1}$$

(f)
$$K(x) = (\cos^{-1}(x))^{-1}$$

(g)
$$U(x) = (\cot^{-1}(1/x))^2$$

(h)
$$N(x) = (\cot^{-1}(1/x))^{-1}$$

(i)
$$K(x) = (\sec^{-1}(1/x))^{-1}$$

(j)
$$U(x) = \cos(x)\sin(x)$$

(k)
$$N(x) = \tan(x)\cot(x)$$

(l)
$$K(x) = \tan^{-1}(x)\tan(x)$$

(m)
$$U(x) = 2\cos(x)\sin(x) - \sin(2x)$$

(n)
$$N(x) = \cos(|x^2 - 1|)^2 + \sin(|x^2 - 1|)^2$$

(o)
$$K(x) = \tan^{-1}(x)\tan(x)$$

2. Find all *horizontal tangents* to the Devil's curve $y^4 - x^4 + 8x^2 - 4y^2 = 0$.

3. Find a formula for $\frac{dy}{dx}$ given that $y^4 - x^4 + 8x^2 - 4y^2 = 0$.

4. Define a function $Q(x) = (2x-1)\lfloor x\rfloor - \lfloor x\rfloor^2$. It's a fun fact to know and to tell that Q is differentiable everywhere and that $Q'(x) = 2\lfloor x\rfloor$. Find a formula for the derivative of

$$W(x) = (2x^2 - 1)\lfloor x^2 \rfloor - \lfloor x^2 \rfloor^2.$$