Departamento de Matemática – Universidade de Coimbra Exercícios de Topologia e Análise Linear

A Considere uma família $(A_i)_{i\in I}$ de subconjuntos de um conjunto X e $B\subseteq X$.

1. Verifique que
$$B \cap \bigcup_{i \in I} A_i = \bigcup_{i \in I} (B \cap A_i)$$
 e que $B \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \cup A_i)$.

2. Mostre que se
$$I = \emptyset$$
, então $\bigcup_{i \in I} A_i = \emptyset$ e $\bigcap_{i \in I} A_i = X$.

B Sejam A, B subconjuntos de X e C, D subconjuntos de Y.

- 1. Verifique que $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ e que $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.
- 2. Mostre que $(A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D)$.
- 3. Será que $(A \times C) \cup (B \times D) = (A \cup B) \times (C \cup D)$?
- 4. A partir das alíneas (a) e (b), escreva $(X \times Y) \setminus (A \times C)$ como uma reunião de conjuntos.
- 1. Sejam $(a_i)_{i\in I}$ e $(b_i)_{i\in I}$ duas famílias de números reais. Mostre que \mathbf{C}

$$\sup\{a_i \,|\, i \in I\} + \sup\{b_i \,|\, i \in I\} \ge \sup\{a_i + b_i \,|\, i \in I\}.$$

- 2. Exiba um contra-exemplo que mostre que a desigualdade contrária não se verifica.
- 3. Sejam agora $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ duas sucessões crescentes de números reais. Verifique que neste caso

$$\sup\{a_n \mid n \in \mathbb{N}\} + \sup\{b_n \mid n \in \mathbb{N}\} = \sup\{a_n + b_n \mid n \in \mathbb{N}\}.$$

D A partir da desigualdade de Hölder:

$$\left| \sum_{i=1}^{n} a_{i}.b_{i} \right| \leq \left(\sum_{i=1}^{n} |a_{i}|^{p} \right)^{1/p}.\left(\sum_{i=1}^{n} |a_{i}|^{q} \right)^{1/q}; \ a_{i}, b_{i} \in \mathbb{R}; p, q > 1 \ \text{e} \ \frac{1}{p} + \frac{1}{q} = 1;$$

mostre a desigualdade de Minkowski:

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p}; \ a_i, b_i \in \mathbb{R}; p \ge 1.$$

- E Mostre que, se X e Y são conjuntos e $f: X \to Y$ é uma aplicação, então, se A, A' e A_i $(j \in J)$ são subconjuntos de X e B, B' e $B_i (i \in I)$ são subconjuntos de Y,
 - 1. $A \subseteq A' \Rightarrow f(A) \subseteq f(A');$ 2. $B \subseteq B' \Rightarrow f^{-1}(B) \subseteq f^{-1}(B');$
 - 4. $f(f^{-1}(B)) \subseteq B;$ 5. $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B);$
 - 3. $A \subseteq f^{-1}(f(A));$ 4. $f(f^{-1}(B)) \subseteq B;$ 5. $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$ 6. $f(X) \setminus f(A) \subseteq f(X \setminus A);$ 7. $f(\bigcup_{j \in J} A_j) = \bigcup_{j \in J} f(A_j);$ 8. $f(\bigcap_{j \in J} A_j) \subseteq \bigcap_{j \in J} f(A_j);$ 9. $f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i);$ 10. $f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i).$

 - 11. Apresente exemplos que mostrem que as inclusões das alíneas 3, 4, 6 e 8 podem ser estritas;
 - 12. Indique uma condição que permita substituir o sinal de inclusão em 3, 4, 6 e 8 pelo de igualdade;
 - 13. Mostre que na alínea 8 não se pode substituir f(X) por Y.

1. (a) Verifique se $d: \mathbb{R}^2 \longrightarrow \mathbb{R}$ é uma métrica em \mathbb{R} :

i.
$$d(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 + |x - y| & \text{se } x \neq y \end{cases}$$
 ii.
$$d(x,y) = \begin{cases} |x| + |y| & \text{se } x \neq y \\ 0 & \text{se } x = y \end{cases}$$
 iii.
$$d(x,y) = |x^2 - y^2|$$
 iv.
$$d(x,y) = |x^3 - y^3|.$$

- (b) Descreva as bolas abertas para cada uma das métricas da alínea anterior.
- 2. (a) Mostre que (\mathbb{R}^n, d_j) é um espaço métrico para $n, j \in \mathbb{N}$ e $dj : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ definida por

$$d_j(x,y) = (\sum_{i=1}^n |x_i - y_i|^j)^{\frac{1}{j}},$$

com
$$x = (x_i)_{1 \le i \le n}$$
 e $y = (y_i)_{1 \le i \le n}$.

- (b) Averigue se d_{∞} , definida por $d_{\infty}(x,y) = \lim d_i(x,y)$, é uma métrica em \mathbb{R}^n .
- 3. Represente geometricamente em \mathbb{R}^2 a bola aberta $B_1(0,0)$ para as métricas d_1, d_2 e d_{∞} do exercício anterior.
- 4. Prove que (X,d) é um espaço métrico para todo o conjunto X e

$$d: X \times X \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y. \end{cases}$$

- 5. Sejam X um conjunto e d' uma métrica em X. Verifique quais das funções $d: X \times X \to \mathbb{R}$ definidas em seguida são métricas em X:
 - (a) d(x,y) = k d'(x,y) para algum número real não negativo k;
 - (b) $d(x,y) = \min\{1, d'(x,y)\};$
 - (c) $d(x,y) = \frac{d'(x,y)}{1+d'(x,y)};$
 - (d) $d(x,y) = (d'(x,y))^2$
- 6. Seja X um espaço vectorial real. X diz-se um espaço vectorial normado se em X estiver definida uma aplicação $\|.\|: X \to \mathbb{R}^+$, designada por norma, que verifique as seguintes condições para todos os $x, y \in X$ e $\alpha \in \mathbb{R}$:
 - N1) ||x|| = 0 se e só se x = 0;
 - N2) $\|\alpha x\| = |\alpha| \|x\|;$
 - N3) $||x + y|| \le ||x|| + ||y||$.
 - (a) Prove que todo o espaço vectorial normado é um espaço métrico com a métrica definida por d(x,y) = ||x-y||.
 - (b) Mostre que o recíproco do resultado da alínea anterior não se verifica em geral, exibindo um espaço métrico cuja métrica não seja induzida por nenhuma norma.

7. Seja d um métrica em X, para todo $x,y\in X,$ $d(x,y)\leq 1$. Consideremos a função $s:X^{\mathbb{N}}\times X^{\mathbb{N}}\to\mathbb{R}$, com

$$s((x_n)_n, (y_n)_n) = \sum_{n=1}^{\infty} \frac{1}{2^n} d(x_n, y_n).$$

Mostre que $(X^{\mathbb{N}}, s)$ é um espaço métrico.

8. No conjunto das funções reais contínuas definidas em [0,1] considere as métricas ρ do supremo e σ do integral:

$$\rho(f,g) := \sup\{|f(x) - g(x)|; x \in [0,1]\},\$$

$$\sigma(f,g) := \int_0^1 |f(x) - g(x)| dx.$$

- (a) Calcule, para cada uma dessas métricas, $d(\sin x, \cos x)$, $d(x^2, x)$ e $d(1 x, x^2)$.
- (b) Sejam $f:[0,1] \to \mathbb{R}$ e $g:[0,1] \to \mathbb{R}$ definidas por f(x)=0 e g(x)=x. Dê uma ideia geométrica da região de \mathbb{R}^2 onde se situam os gráficos das funções que pertencem a $B_1(f)$ e a $B_1(g)$ para a métrica ρ .
- (c) Poderá dar uma ideia geométrica da região de \mathbb{R}^2 onde se situam os gráficos das funções de $B_1(f)$ (ou de $B_1(g)$) para a métrica σ ?
- 9. Sejam (X, d) um espaço métrico e x e y elementos de X.
 - (a) Prove que, se x e y forem distintos, existem bolas abertas disjuntas B e B' tais que $x \in B$ e $y \in B'$.
 - (b) Sejam r e s números reais positivos tais que $B_r(x) = B_s(y)$. Podemos então concluir que x = y ou que r = s? Justifique.
- 10. Sejam (X, d) um espaço métrico e a um ponto de X. Mostre que:

(a)
$$\{a\} = \bigcap_{r>0} B_r(a) = \bigcap_{n=1}^{\infty} B_{\frac{1}{n}}(a);$$

(b)
$$B_r[a] = \bigcap_{s>r} B_s(a) = \bigcap_{n=1}^{\infty} B_{r+\frac{1}{n}}(a).$$

- 11. Seja (X, d) um espaço métrico.
 - (a) Mostre que uma bola fechada é sempre um conjunto fechado em X.
 - (b) Dê um exemplo que mostre que uma bola aberta pode ser um conjunto fechado.
- 12. Verifique quais dos seguintes subconjuntos de \mathbb{R} são abertos ou fechados:
 - (a) \mathbb{N} ; (b) $[1, 2[\cup]2, 3[$; (c) $\{0\} \cup \{x; x^2 > 2\}$;
 - (d) \mathbb{Q} ; (e) $[5,7] \cup \{8\}$; (f) $\{\frac{1}{n}; n \in \mathbb{N}\}$.
- 13. Verifique se os seguintes conjuntos são abertos em \mathbb{R}^2 :
 - (a) $]0,1[\times]0,1[;$ (b) $[0,1[\times]0,1[;$ (c) $\{(x,y)\in\mathbb{R}^2\,|\,x\neq y\};$ (d) $\mathbb{R}^2\setminus\mathbb{N}^2.$

14. Sejam $X \subseteq \mathbb{R}$ e $\mathcal{C}(X,\mathbb{R})$ o espaço métrico das funções contínuas e limitadas, de X em \mathbb{R} , munido da métrica do supremo. Considere o subconjunto

$$A = \{ f : X \to \mathbb{R} \mid \forall x \in X \ f(x) > 0 \}$$

de $\mathcal{C}(X,\mathbb{R})$. Mostre que:

- (a) se X = [0, 1], então A é aberto.
- (b) se X =]0, 1], então A não é aberto.
- 15. Considere o conjunto X = [0, 1] e a métrica s do Exercício 7 no conjunto das sucessões em X. Verifique se o conjunto $A = \{(x_n)_n \mid \forall n \ x_n > 0\}$ é um conjunto aberto.
- 16. No conjunto das sucessões limitadas em \mathbb{R} , $L_{\infty}(\mathbb{R})$, consideremos a norma dada por $\|(x_n)_n\| := \sup\{x_n \mid n \in \mathbb{N}\}.$
 - (a) Mostre que $(L_{\infty}(\mathbb{R}), \|.\|)$ é um espaço normado.
 - (b) Verifique se $B = \{(x_n)_n \mid \exists k, i \ x_k > 1, \ x_i < 0\}$ é um conjunto aberto.
- 17. Considere a função

$$f: \mathbb{R} \longrightarrow \mathbb{R}.$$

$$x \longmapsto \begin{cases} 0 & \text{se } x = 0 \\ 1 + |x| & \text{se } x \neq 0 \end{cases}$$

Note que esta função é descontínua para a métrica usual em \mathbb{R} . Verifique porém que, se d é a métrica definida no Exercício 1(a)i, então a função $f:(\mathbb{R},d)\longrightarrow\mathbb{R}$ é contínua.

18. Considere em \mathbb{R} a métrica usual d_1 e a métrica d definida em 1(a)ii. Verifique se alguma das funções $f, g : (\mathbb{R}, d) \to (\mathbb{R}, d_1)$ é contínua, sendo

$$f(x) = \begin{cases} 0 & \text{se } x \le 0 \\ 1 & \text{se } x > 0 \end{cases} \quad \text{e} \quad g(x) = \begin{cases} 0 & \text{se } x \le 1 \\ 1 & \text{se } x > 1. \end{cases}$$

- 19. (a) Mostre que as métricas d_1 , d_2 e d_∞ (Exercício 2) definem a mesma topologia em \mathbb{R}^2 .
 - (b) Verifique quais das métricas d definidas no Exercício 5 são topologicamente equivalentes a d'.
 - (c) Compare as topologias definidas em \mathbb{R} pelas métricas do Exercício 1.
- 20. Considere, no conjunto $\mathcal{C}([0,1],\mathbb{R})$ das funções contínuas de [0,1] em \mathbb{R} , as métricas ρ do supremo e σ do integral.
 - (a) Sendo $0 < r \le 2$, considere

$$g: [0,1] \longrightarrow \mathbb{R}.$$

$$x \longmapsto g(x) = \begin{cases} \frac{-4x}{r} + 4 & \text{se } 0 \le x < \frac{r}{2} \\ 2 & \text{se } \frac{r}{2} \le x \le 1 \end{cases}$$

Mostre que $g \in B_r^{\sigma}(f) \setminus B_1^{\rho}(f)$, onde $f:[0,1] \to \mathbb{R}$ é a função definida por f(x)=2.

- (b) Conclua que ρ e σ não são topologicamente equivalentes.
- (c) Mostre que $\mathfrak{I}^{\sigma} \subset \mathfrak{I}^{\rho}$.

- 21. Verifique quais das seguintes famílias de subconjuntos são topologias em $X = \{a, b, c, d, e\}$:
 - (a) $\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\},\$
 - (b) $\mathfrak{T}_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\},\$
 - (c) $\mathcal{T}_3 = \{\emptyset, X, \{a\}, \{a,b\}, \{a,c,d\}, \{a,b,c,d\}\},\$
 - (d) $\mathcal{T}_4 = \{\emptyset, X, \{a\}, \{a, b, c\}, \{a, b, c, d\}\}.$
- 22. Mostre que $\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{|q, +\infty[|q \in \mathbb{Q}\} \text{ não \'e uma topologia em } \mathbb{R}.$
- 23. Considere o conjunto $\mathcal{T} := \{ A \subseteq \mathbb{R} ; \mathbb{R} \setminus A \text{ \'e um conjunto finito} \} \cup \{\emptyset\}$. Mostre que $\mathcal{T} \text{ \'e uma topologia.}$

[A esta topologia chama-se topologia cofinita]

- 24. Prove que a intersecção de duas topologias num conjunto X ainda é uma topologia em X, mas que a sua união nem sempre é uma topologia em X. O que poderemos dizer àcerca da intersecção de uma família qualquer de topologias em X?
- 25. Dê exemplo de duas topologias \mathcal{T}_1 e \mathcal{T}_2 num conjunto X tais que $\mathcal{T}_1 \not\subseteq \mathcal{T}_2$ e $\mathcal{T}_2 \not\subseteq \mathcal{T}_1$.
- 26. Prove que, se $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ é contínua, também o é $f:(X,\mathcal{T}_1)\to (Y,\mathcal{T}'_1)$ sempre que $\mathcal{T}\subseteq\mathcal{T}_1$ e $\mathcal{T}'_1\subseteq\mathcal{T}'$.
- 27. Considere a topologia $\mathcal{U} = \{\emptyset\} \cup \{]a, +\infty[\mid a \in \mathbb{R}\} \cup \{\mathbb{R}\}$. Verifique se as funções $f, g: (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T})$ definidas por $f(x) = x^3$ e $g(x) = x^2$ são contínuas.
- 28. Considere $\mathbb R$ munido da topologia usual. Mostre que, se toda a função $f:(X,\mathcal T)\to\mathbb R$ é contínua, então $\mathcal T$ é a topologia discreta em X.
- 29. Considere a topologia usual em \mathbb{R} e a topologia cofinita (Exercício 23). Prove que todo o subconjunto finito de \mathbb{R} é fechado.
- 30. Determine os subconjuntos fechados do espaço topológico (\mathbb{R}, \mathcal{T}), onde

$$\mathfrak{T} = \{\emptyset\} \cup \{] - \infty, a[; a \in \mathbb{R}\} \cup \{\mathbb{R}\}.$$

31. Sejam X um espaço topológico e A um subconjunto de X. Considere a função característica, $\chi: X \longrightarrow \mathbb{R}$ definida por

$$\chi(x) = \begin{cases} 1 & \text{se } x \in A \\ 0 & \text{se } x \notin A. \end{cases}$$

- (a) Prove que, se χ é contínua, então A é simultaneamente aberto e fechado;
- (b) Prove que, se A é aberto e fechado, então χ é contínua.
- 32. Mostre que:
 - (a) o intervalo [a, b] $(a, b \in \mathbb{R}, a < b)$ é homeomorfo ao intervalo [0, 1];
 - (b) qualquer intervalo aberto de \mathbb{R} é homeomorfo a \mathbb{R} .
 - (c) o intervalo [0, 1] não é homeomorfo ao intervalo [0, 1].
- 33. Considere as letras do alfabeto. Diga quais delas definem subespaços de \mathbb{R}^2 homeomorfos. Por exemplo O e D definem espaços homeomorfos.

- 34. Mostre que todo o subespaço de um espaço discreto é discreto.
- 35. Seja \mathcal{T} a topologia usual em \mathbb{R} .
 - (a) Determine a topologia relativa $\mathcal{T}_{\mathbb{N}}$ no conjunto \mathbb{N} .
 - (b) Verifique se cada um dos seguintes subconjuntos de [0,1] é aberto em [0,1]:
 - i.]1/2, 1];
 - ii.]1/2, 2/3];
 - iii. [0, 1/2].
- 36. Considere a topologia \mathcal{U} do Exercício 27. $\mathcal{T} = \{\emptyset\} \cup \{]a, +\infty[| a \in \mathbb{R}\} \cup \{\mathbb{R}\}$. Determine a topologia relativa de [0, 1] induzida por $(\mathbb{R}, \mathcal{T})$.
- 37. Considere o conjunto $\mathfrak{T}_0 = \{A \mid A \subseteq]-\infty, 0]\} \cup \{\mathbb{R}\}.$
 - (a) Mostre que \mathcal{T}_0 é uma topologia em \mathbb{R} .
 - (b) Determine a topologia relativa de $]-\infty,0]$ e de $]0,+\infty[$ induzida por \mathfrak{T}_0 .
 - (c) Verifique se as funções $f, g: (\mathbb{R}, \mathcal{T}_0) \to (\mathbb{R}, \mathcal{T}_0)$, com f(x) = |x| e g(x) = -|x| são contínuas
- 38. Sejam $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ uma função contínua, A um subconjunto de X e f_A a restrição de f a A.
 - (a) Mostre que, se \mathcal{T}_A é a topologia relativa definida em A por \mathcal{T} , então $f_A:(A,\mathcal{T}_A)\to (Y,\mathcal{T}')$ é contínua.
 - (b) Encontre um exemplo que mostre que o resultado recíproco é falso.
- 39. Mostre que $\mathcal{B} = \{ [r, s]; r, s \in \mathbb{Q}, r < s \}$ é uma base da topologia euclidiana em \mathbb{R} .
- 40. Verifique se $S = \{\{\alpha\}, \{\beta\}, \{\alpha, \beta, \gamma\}, \{\alpha, \beta, \delta\}\}$ é uma base para uma topologia em $W = \{\alpha, \beta, \gamma, \delta\}$ e, em caso afirmativo, determine essa topologia.
- 41. Seja $X = \{a, b, c, d, e\}$. Construa a topologia gerada por $\mathcal U$ quando:
 - (a) $\mathcal{U} = \{\emptyset, \{a\}, \{b, e\}\};$
 - (b) $\mathcal{U} = \{\{a\}, \{b, c\}, \{a, b, e\}\}.$
- 42. Determine a topologia em \mathbb{R} gerada por $S = \{[x, x+1]; x \in \mathbb{R}\}.$
- 43. Considere em \mathbb{R} a topologia usual \mathcal{T} e a topologia \mathcal{T}' que tem como base

$$\mathcal{B} = \{ [a, b]; a, b \in \mathbb{R}, a < b \}.$$

Mostre que $\mathfrak{T} \subseteq \mathfrak{T}'$.

- 44. Sejam (X, \mathfrak{I}) um espaço topológico e $f: X \to [0, 1]$ uma aplicação. Mostre que, se $f^{-1}(]a, 1]$) e $f^{-1}([0, b])$ são abertos de X para todo o $a, b \in]0, 1[$, então f é contínua.
- 45. Seja X um espaço topológico. Mostre que, para que uma função $f: X \to \mathbb{R}$ seja contínua é necessário que os conjuntos $\{x \in X: f(x) > 0\}$ e $\{x \in X: f(x) < 0\}$ sejam abertos. Será suficiente?

46. Considere a seguinte topologia em $X = \{a, b, c, d, e\}$:

$$\mathfrak{T} = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{a, b, c, d\}\}.$$

Indique as vizinhanças dos pontos $c \in d$.

- 47. Considere a topologia \mathcal{T}_0 do Exercício 37. Descreva as vizinhanças dos pontos -2 e 3 relativamente a essa topologia.
- 48. Sejam (X, \mathcal{T}) um espaço topológico e A e B dois subconjuntos de X. Mostre que:
 - (a) $\overline{A \cup B} = \overline{A} \cup \overline{B} \in \overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$;
 - (b) $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$ e $\operatorname{int}(A \cap B) = \operatorname{int}(A) \cap \operatorname{int}(B)$;
 - (c) as inclusões anteriores podem ser estritas.
- 49. Sejam (X, \mathcal{T}) um espaço topológico e $A \subseteq X$. Mostre que:
 - (a) $\overline{A} = X \setminus int(X \setminus A)$;
 - (b) $\overline{A} = A \cup \text{fr} A$;
 - (c) $\operatorname{fr} A = \emptyset \Leftrightarrow A \text{ aberto e fechado};$
 - (d) $X = int(A) \cup frA \cup int(X \setminus A)$.
- 50. Seja (X, \mathfrak{I}) um espaço topológico metrizável, sendo \mathfrak{I} definida pela métrica d. Prove que a bola fechada $B_{\delta}[x]$ é fechada em X, mas nem sempre é o fecho de $B_{\delta}(x)$.
- 51. Sejam (X, \mathcal{T}) um espaço topológico e A um subconjunto de X. Prove que as seguintes equivalências não se verificam, exibindo contra-exemplos:
 - (a) A é aberto se e só se $A = \operatorname{int}(\overline{A})$;
- (b) A é fechado se e só se A = int(A).
- 52. Sejam (X,\mathcal{T}) um espaço topológico e $A\subseteq X$. Compare $\mathrm{fr}(\mathrm{int}(A)),\,\mathrm{fr}(A)$ e $\mathrm{fr}(\overline{A})$.
- 53. Calcule o interior, o fecho, a fronteira e o conjunto derivado de cada um dos seguintes subconjuntos de \mathbb{R} :
 - (a) $A =]0,1] \cup \{2\};$
 - (b) $B = \mathbb{R}$;
 - (c) $C = \mathbb{Q}$;
 - (d) $D = \{\frac{1}{n} : n \in \mathbb{N}\};$
 - (e) $E = \{(-1)^n \frac{(-1)^n}{n} \mid n \in \mathbb{N}\};$
 - (f) $F = \mathbb{R} \setminus \mathbb{N}$.
- 54. (a) Mostre que o conjunto \mathcal{T} , constituído por \mathbb{N} , pelo vazio e pelos conjuntos da forma $K_n = \{1, 2, \dots, n\}$, é uma topologia no conjunto dos números naturais.
 - (b) Determine o interior, a fronteira, o fecho e o derivado dos conjuntos $A = \{1, 2, 3\}$ e $B = \{2n 1 \mid n \in \mathbb{N}\}.$

- 55. Determine o interior, o fecho, a fronteira, o conjunto derivado e o conjunto dos pontos isolados de $A = [7, +\infty[$, B = [3, 7[e $C = \mathbb{N}$ no espaço topológico $(\mathbb{R}, \mathfrak{I})$, quando:
 - (a) Té a topologia euclidiana;
 - (b) $\mathfrak{T} = {\emptyset, \mathbb{R}} \cup {]a, +\infty[; a \in \mathbb{R}};$
 - (c) $\mathfrak{T} = \{ A \mid A \subseteq]-\infty, 0 \} \cup \{ \mathbb{R} \}.$
- 56. Considere $\mathcal{C}([0,1],\mathbb{R})$, o conjuntos das funções reais contínuas definidas no intervalo [0,1] munido da métrica do supremo e o conjunto

$$A = \{ f \in \mathcal{C}([0,1], \mathbb{R}) : f(x) > 0 \} \cup \{ f \in \mathcal{C}([0,1], \mathbb{R}) : f(x) \le -x \}$$

.

Determine o interior, o fecho e os pontos isolados de A.

- 57. Considere a topologia $\mathfrak{T}=\{\emptyset,X,\{a\},\{b,c\}\}$ no conjunto $X=\{a,b,c\}$ e a topologia $\mathfrak{T}'=\{\emptyset,Y,\{u\}\}$ no conjunto $Y=\{u,v\}$. Determine uma base \mathfrak{B} da topologia produto em $X\times Y$.
- 58. Determine uma base para a topologia produto em $\mathbb{R} \times \mathbb{R}$ de $(\mathbb{R}, \mathcal{T})$ e $(\mathbb{R}, \mathcal{T})$ quando \mathcal{T} é a topologia da alínea (b) do Exercício 55.
- 59. Sejam X e Y espaços topológicos e $X \times Y$ o seu espaço produto. Dados $A \subseteq X$ e $B \subseteq Y$, mostre que:
 - (a) $int(A \times B) = int(A) \times int(B)$;
 - (b) $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 60. No espaço topológico $(\mathbb{R}, \mathcal{T})$ verifique se as sucessões $(\frac{1}{n})_{n \in \mathbb{N}}$, $((-1)^n)_{n \in \mathbb{N}}$ e $(n)_{n \in \mathbb{N}}$ são convergentes, e, em caso afirmativo, para que números reais convergem, quando:
 - (a) T é a topologia euclidiana;
 - (b) Té a topologia discreta;
 - (c) Té a topologia indiscreta;
 - (d) Té a topologia cofinita;
 - (e) $\mathfrak{T} = \{\emptyset, \mathbb{R}\} \cup \{]a, +\infty[; a \in \mathbb{R}\};$
 - (f) $\mathfrak{T} = \{A \mid A \subseteq]-\infty, 0\} \cup \{\mathbb{R}\};$
 - (g) \Im é a topologia gerada pela base $\{|a,b| | a,b \in \mathbb{R}, a < b\}$.
- 61. Seja (X, d) um espaço métrico. Mostre que uma sucessão $(x_n)_{n \in \mathbb{N}}$ converge para x em (X, d) se e só se a sucessão $(d(x_n, x))_{n \in \mathbb{N}}$ converge para 0 em \mathbb{R} .
- 62. Verifique se $(\mathbb{R}, \mathcal{T})$ é separado quando \mathcal{T} é definida como em cada alínea do Ex. 60.
- 63. Considere, em \mathbb{R}^2 , a topologia $\mathfrak{T}' = \{\emptyset, \mathbb{R}^2\} \cup \{U_r ; r > 0\}$, onde $U_r = \{(x,y) ; \sqrt{x^2 + y^2} < r\}$. Mostre que $(\mathbb{R}^2, \mathfrak{T}')$ não é separado.
- 64. Prove que, se X é finito, (X, \mathcal{T}) é um espaço separado se e só se \mathcal{T} é a topologia discreta.

- 65. (a) Mostre que, se $f: X \to Y$ é uma aplicação contínua e injectiva e Y é um espaço separado, então também X é separado.
 - (b) Conclua que todo o subespaço de um espaço separado é separado.
 - (c) Dê um exemplo de um espaço não separado com um subespaço não trivial separado.
- 66. Mostre que o produto de dois espaços separados é separado.
- 67. (a) Mostre que $A = \{(x, y) \in \mathbb{R}^2 : xy = 1\}$ é um subconjunto fechado de \mathbb{R}^2 .
 - (b) Conclua que as projecções de um espaço produto nos factores nem sempre são aplicações fechadas. (Sugestão: Considere o conjunto A da alínea anterior e mostre que $p_{\mathbb{R}}(A)$ não é fechado.)
- 68. Verifique se $(\mathbb{R}, \mathcal{T})$ é um espaço conexo, quando:
 - (a) $\mathfrak{T} = {\emptyset, \mathbb{R}} \cup {]a, +\infty[; a \in \mathbb{R}};$
 - (b) $\mathfrak{T} = \{A; A \subseteq]-\infty, 0]\} \cup \{\mathbb{R}\};$
 - (c) \mathcal{T} tem como base $\{ [a,b] ; a,b \in \mathbb{R}, a < b \}$.
- 69. Quais dos seguintes subespaços de \mathbb{R}^2 são conexos?
 - (a) $B_1(1,0) \cup B_1(-1,0)$;
 - (b) $\overline{B_1(1,0)} \cup B_1(-1,0)$;
 - (c) $\{(q, y) \in \mathbb{R}^2 \mid q \in \mathbb{Q} \text{ e } y \in [0, 1]\} \cup (\mathbb{R} \times \{1\});$
 - (d) o conjunto de todos os pontos que têm pelo menos uma coordenada em Q;
 - (e) $\{(x,y) \in \mathbb{R}^2 : x = 0 \text{ ou } y = 0 \text{ ou } y = \frac{1}{x} \}.$
- 70. Dê exemplos de:
 - (a) conexos de \mathbb{R}^2 cuja intersecção seja desconexa;
 - (b) uma sucessão decrescente de conexos de \mathbb{R}^2 cuja intersecção seja desconexa.
- 71. (a) Dê um exemplo de um conexo de \mathbb{R}^2 (diferente de \emptyset e de \mathbb{R}^2):
 - i. X_1 tal que o complementar de X_1 seja conexo;
 - ii. X_2 tal que o complementar de X_2 tenha duas componentes conexas;
 - iii. X_4 tal que o complementar de X_4 tenha quatro componentes conexas;
 - iv. X tal que o complementar de X tenha uma infinidade de componentes conexas.
 - (b) Se os problemas de (a) fossem postos relativamente a \mathbb{R} (em vez de \mathbb{R}^2), que respostas daria? Porquê?
- 72. Mostre que se o espaço X, não singular, é conexo e separado, então não tem pontos isolados.
- 73. Considere (N, T) o espaço topológico definido no Exercício 54.
 - (a) Verifique que (N, T) não é conexo.
 - (b) A partir da alínea anterior, mostre que toda a função contínua $f:(\mathbb{N},\mathcal{T})\to\mathbb{R}$ é constante.
- 74. Verifique que $A = \{(x, \sin \frac{1}{x}) \mid x > 0\} \cup \{(0, 0)\}$ é conexo mas não é conexo por arcos.

- 75. (a) Mostre que o gráfico de uma função contínua $f: \mathbb{R} \to \mathbb{R}$ é um subespaço conexo de \mathbb{R}^2 .
 - (b) Será necessariamente contínua uma função $f: \mathbb{R} \to \mathbb{R}$ cujo gráfico seja conexo?
- 76. Mostre que os seguintes conjuntos são conexos por arcos:
 - (a) $\mathbb{R}^n \setminus \{0\}$, para n > 1;
 - (b) $\{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 2\};$
 - (c) $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}.$
- 77. Usando, resultados sobre conexidade, mostre que \mathbb{R} e \mathbb{R}^2 não são homeomorfos.
- 78. Sejam \mathcal{T}_1 e \mathcal{T}_2 duas topologias definidas num conjunto A tais que $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Mostre que, se (A, \mathcal{T}_2) é compacto, então (A, \mathcal{T}_1) também é compacto.
- 79. Quais dos seguintes subconjuntos de \mathbb{R} ou \mathbb{R}^2 são compactos?
 - (a) $[0, +\infty)$;

(b) $\mathbb{Q} \cap [0,1]$;

(c) $\{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 = 1\};$

(d) $\{(x,y) \in \mathbb{R}^2 ; x^2 + y^2 < 1\};$

- (e) $\{(x,y) \in \mathbb{R}^2 ; x \ge 1, 0 \le y \le \frac{1}{x} \}.$
- 80. Verifique se os subconjuntos \mathbb{N} , \mathbb{Z} , $\{-2\}\cup]-1$, 0[e]0,1[de $(\mathbb{R},\mathfrak{T})$ são compactos, quando:
 - (a) $\mathfrak{T} = {\emptyset, \mathbb{R}} \cup {]a, +\infty[; a \in \mathbb{R}};$
 - (b) $\mathfrak{T} = \{ A ; A \subseteq]-\infty, 0 \} \cup \{ \mathbb{R} \}.$
- 81. Considere em \mathbb{R} a topologia \mathfrak{T}' que tem como base $\mathfrak{B} = \{]a,b]; a,b \in \mathbb{R}, a < b\}$. Mostre que o intervalo [0,1] (com a topologia de subespaço de $(\mathbb{R},\mathfrak{T}')$) não é compacto.
- 82. Seja X um espaço topológico. Mostre que:
 - (a) a reunião finita de subespaços compactos de X é um compacto;
 - (b) se X é um espaço de Hausdorff, então a intersecção de qualquer família de subespaços compactos de X é ainda um compacto;
 - (c) no resultado da alínea anterior é fundamental a hipótese de que o espaço topológico X seja de Hausdorff;
 - (d) um subespaço compacto nem sempre é fechado.
- 83. Seja A um subconjunto de \mathbb{R} . Mostre que, se A não é compacto, então:
 - (a) existe uma aplicação contínua $f: A \to \mathbb{R}$ que não é limitada;
 - (b) existe uma aplicação contínua $f:A\to\mathbb{R}$ que, embora limitada, não tem máximo.
- 84. Considere em $\mathbb{R} \setminus \{0\}$ a métrica usual. Mostre que existem subespaços fechados e limitados de $\mathbb{R} \setminus \{0\}$ que não são compactos.
- 85. Considere em \mathbb{R} a métrica d definida por d(x,y) = |x| + |y| se $x \neq y$ (Exercício 1(a)ii). Mostre que o conjunto]-1,1[:
 - (a) é fechado e limitado;
 - (b) não é compacto.

- 86. Diga se o espaço métrico X é completo, quando:
 - (a) $X = \{1/n; n \in \mathbb{N}\} \cup \{0\};$
 - (b) $X = \mathbb{Q} \cap [0, 1];$
 - (c) $X = [0, 1] \cup [2, 3];$
 - (d) $X = \{(x, y) \in \mathbb{R}^2; x > 0 \text{ e } y \ge 1/x\};$
 - (e) X é discreto.
- 87. Mostre que os espaços métricos definidos nos exercícios 1(a)i e 1(a)ii são completos. Verifique se são totalmente limitados.
- 88. Considere em \mathbb{R} a métrica d definida por $d(x,y) = \sqrt{|x-y|}$. Mostre que (\mathbb{R},d) é um espaço métrico completo.
- 89. Mostre que, num espaço métrico:
 - (a) a união finita de subespaços completos é um subespaço completo;
 - (b) a união infinita de subespaços completos nem sempre é um subespaço completo;
 - (c) a intersecção de qualquer família de subespaços completos é ainda um subespaço completo.
- 90. Considere, no conjunto das funções contínuas de [0,1] em \mathbb{R} munido da métrica do integral, a sucessão $(f_n:[0,1]\to\mathbb{R})_{n\in\mathbb{N}}$ definida por

$$f_n(x) = \begin{cases} 0 & \text{se } x \in [0, \frac{1}{2} - \frac{1}{n}] \\ 1 & \text{se } x \in [\frac{1}{2}, 1] \\ n(x + \frac{1}{n} - \frac{1}{2}) & \text{se } x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}] \end{cases}$$

para cada $n \in \mathbb{N}$.

- (a) Mostre que a sucessão $(f_n)_{n\in\mathbb{N}}$ é de Cauchy.
- (b) Mostre que este espaço não é completo.

(Sugestão: Mostre que a sucessão da alínea (a) não é convergente.)

- 91. Considere o espaço l_{∞} , as sucessões reais limitadas com a métrica (norma) do supremo.
 - (a) Verifique se l_{∞} é completo.
 - (b) Mostre que não é totalmente limitado.
 - (c) Que pode dizer sobre a compacidade deste espaço?
 - (d) Mostre que o subespaço de l_{∞} das sucessões finitas, i.e. as sucessões que são nulas a partir de certa ordem, não é completo. Qual é o seu completamento.
- 92. (a) A imagem de uma sucessão de Cauchy em X por uma função contínua $f:(X,d)\to (Y,d')$ pode não ser uma sucessão de Cauchy em Y. Dê um exemplo.
 - (b) O que acontece se X for completo?
- 93. Dê exemplos de dois espaços métricos homeomorfos, sendo um deles completo e o outro não.
- 94. Diga se é ou não verdade que toda a função (entre espaços métricos) cujo domínio está munido da métrica discreta é uniformemente contínua.

- 95. Mostre que a aplicação $f: \mathbb{R} \to \mathbb{R}$, com $f(x) = x^2$, é contínua mas não é uniformemente contínua.
- 96. (a) Mostre que, se $f:]a, b[\to \mathbb{R}$ é uniformemente contínua, então é limitada.
 - (b) Indique uma tal função f e uma sucessão de Cauchy em]a,b[cuja imagem por f não seja uma sucessão de Cauchy em \mathbb{R} .
 - (c) Mostre que se $f: X \to Y$ é uniformemente contínua e X é totalmente limitado, então Y é totalmente limitado.
- 97. (a) Mostre que, se $f:(X,d)\to (Y,d')$ é uniformemente contínua e (x_n) é uma sucessão de Cauchy, então $(f(x_n))$ é uma sucessão de Cauchy.
 - (b) Mostre que a função $g:[1,+\infty[\to]0,1]$, com $g(x)=\frac{1}{x}$, é uniformemente contínua.
 - (c) Conclua que a imagem por uma função uniformemente contínua de um espaço completo pode não ser um espaço completo. (Note que g é uma bijecção uniformemente contínua com inversa contínua.)
 - (d) Mostre, no entanto, que, se $f:(X,d)\to (Y,d')$ é uma aplicação bijectiva, uniformemente contínua, com inversa uniformemente contínua, então (X,d) é completo se e só se (Y,d') for completo.
- 98. Mostre que se (X_1, d_1) e (X_2, d_2) são dois completamentos do mesmo espaço métrico, então são isométricos.

[Isto significa que o completamento é único, a menos de uma isometria.]

99. Considere o conjunto dos polinómios complexos

$$Y := \{ f : f = \sum_{k=0}^{n} c_k t^k, c_k \in \mathbb{C}, n \in \mathbb{N} \} \text{ e } \|f\| := \sum_{k=0}^{n} |c_k|.$$

Verifique se $(Y, \|.\|)$ é um espaço normado.

- 100. Considere o conjunto $\mathcal{M}_n(\mathbb{R})$ das matrizes reais quadradas de ordem n. Verifique se $\mathcal{M}_n(\mathbb{R}), \|.\|$) é um espaço normado para cada uma das seguintes normas:
 - (a) $||A|| := \sup\{a_{ij} : i = 1, \dots, n; j = 1, \dots, n\};$
 - (b) $||A|| := |\det A|;$
 - (c) $||A|| := \sum_{i=1}^{n} \sum_{j=1}^{n} (i+j) a_{ij}$.
- 101. Define-se uma função de \mathbb{R}^2 em \mathbb{R} de expressão analítica $\|(x,y)\| := \sqrt{x^2 + y^2 + 4|x||y|}$.
 - (a) Mostre que esta função não é uma norma.
 - (b) Será que induz uma métrica em \mathbb{R}^2 ?
- 102. Mostre que em todo o espaço vectorial normado não nulo o diâmetro de qualquer bola aberta é igual ao dobro do respectivo raio.
- 103. Seja X um espaço vectorial normado e d uma métrica em X. Prove que d é induzida por uma norma se e só se

$$(\forall x, y \in X) \ (\forall \alpha \in \mathbb{R}) \ d(x+a, y+a) = d(x, y) \ e \ d(\alpha x, \alpha y) = |\alpha| d(x, y).$$

- 104. (a) Seja d' a métrica Euclidiana em \mathbb{R} . Para cada uma das métricas do Exercício 5, averigúe se d é induzida por uma norma.
 - (b) Mostre que a métrica s do Exercício 7 não é induzida por uma norma.
- 105. Seja d uma métrica no espaço vectorial X induzida por uma norma. Mostre que o completamento de (X, d) é ainda induzida por uma norma (sendo portanto um espaço de Banach).
- 106. Seja X um espaço vectorial normado.
 - (a) i. Prove que, se X é um espaço normado, $a \in A$ e r > 0, então $B_r(a) = a + rD$, onde D é a bola unitária.
 - ii. Conclua que num espaço vectorial normado X duas bolas abertas (respectivamente fechadas) com o mesmo raio são isométricas, isto é, quaisquer que sejam $a, b \in X$, existe uma bijecção $B_r(a) \to B_r(b)$ que preserva a métrica.
 - iii. Mostre que para espaços métricos em geral este resultado é falso.
 - (b) i. Sejam X um espaço normado, $a \in X$ e r > 0. Mostre que:

A.
$$\overline{B_r(a)} = B_r[a];$$

B.
$$fr(B_r(a)) = \{x \in X ; d(x,a) = r\}$$
. [A fronteira da bola aberta é a esfera.]

- ii. Dê exemplos de espaço métricos onde as igualdades anteriores não se verifiquem.
- 107. Seja X um espaço normado. Mostre que para todo o $x, y \in X$ se tem $||x|| ||y||| \le ||x y||$.
- 108. Prove que, se X é um espaço normado, então:
 - (a) o operador linear $\begin{array}{ccc} X\times X & \to & X \\ (x,y) & \mapsto & x+y \end{array}$ é limitado;
 - (b) a aplicação $\begin{array}{cccc} \mathbb{R} \times X & \to & X \\ (\lambda,x) & \mapsto & \lambda x \end{array}$ é contínua;
 - (c) a norma $\|\cdot\|: X \to [0, +\infty[$ é uniformemente contínua.
- 109. Nos exemplos seguintes verifique se T é um operador linear limitado. Em caso afirmativo calcule a sua norma.
 - (a) Seja $n \in \mathbb{N}$ e $T: l_2^n \to \mathbb{R}$ definido por T(x) = A.x, para A uma matriz linha $1 \times n$.
 - (b) Sejam $m, n \in \mathbb{N}$ e $T: l_2^n \to l_2^m$ definido por $T(x) = (x_1, \dots, x_l, 0, \dots, 0)$, onde $x = (x_1, \dots, x_n)$ e $l = \min(m, n)$.
 - (c) No espaço C[0,1] das funções reais contínuas definidas em [0,1] munido da métrica do supremo escolhe-se $t_0 \in [0,1]$ e define-se $T: C[0,1] \to \mathbb{R}$ por $T(f) = f(t_0)$.
 - (d) No subespaço de $\mathcal{C}[0,1]$ das funções diferenciáveis com derivada contínua, define-se $T: X \to \mathcal{C}[0,1]$ por T(f) = f'.
 - (e) $T: \mathcal{C}[0,1] \to \mathbb{R} \text{ com } T(f) = \int_0^1 f(t) dt.$
- 110. Sejam Y e Z subespaços vectoriais de X tais que $Y \cap Z = 0$ e Y + Z = X. Mostre que:
 - (a) $X = Y \oplus Z$ se e só se X tem a topologia produto, quando identificado com $Y \times Z$.
 - (b) Se $X = Y \oplus Z$, então a projecção $X \to Y$ induz um isomorfismo $X/Z \to Y$.

111. Se X e Y são espaços normados, prove que

$$\|(x,y)\|_1 = \|(\|x\|,\|y\|)\|_1$$
 e $\|(x,y)\|_{\infty} = \|(\|x\|,\|y\|)\|_{\infty}$

são normas no espaço soma directa $X \oplus Y$. Mostre que estas normas são equivalentes.

- 112. Considere $\mathcal{C}[-1,1]$ munido da norma do integral, i.e. $||f|| = \int_{-1}^{1} |f(t)| dt$.
 - (a) Estude a convergência da série $\sum_{n=1}^{\infty}h_n, \text{ com } h_n(x) = \begin{cases} 0 & \text{se } x \in [-1,0] \\ x & \text{se } x \in [0,\frac{1}{n+1}] \\ -nx+1 & \text{se } x \in [\frac{1}{n+1},\frac{1}{n}] \\ 0 & \text{se } x \in [\frac{1}{n},1] \end{cases}.$
 - (b) Diga porque $\mathcal{C}[-1,1]$ não é completo.
 - (c) Averigue se a série $\sum_{n=1}^{\infty} \frac{t^n}{n}$ é absolutamente convergente.
- 113. Seja $(\|\cdot\|_{\gamma})_{\gamma\in\Gamma}$ é uma família de normas no espaço vectorial V. Prove que $\|\cdot\| = \sup_{\gamma\in\Gamma} \|\cdot\|_{\gamma}$ é uma norma em V, mas, em geral, $\inf_{\gamma\in\Gamma} \|\cdot\|_{\gamma}$ não é uma norma.
- 114. Seja Y um subespaço do espaço normado X. Prove que Y é um subespaço fechado se e só se a sua bola fechada unitária é fechada em X.
- 115. (a) Seja Z um subespaço fechado do espaço normado X. Verifique que a projecção $X \to X/Z$ no espaço normado quociente é um operador linear limitado. Calcule a sua norma.
 - (b) Sejam $T: X \to Y$ um operador linear limitado, $Z = \ker T \in T_0: X/Z \to Y$ o operador linear limitado definido por T. Prove que $||T_0|| = ||T||$.
- 116. Seja Y um subespaço fechado do espaço normado X. Prove que, se os espaços X e Y são completos, então X/Y é completo.
- 117. Sejam X um espaço vectorial complexo, $X_{\mathbb{R}}$ o mesmo espaço considerado como espaço vectorial real e $f \in X_{\mathbb{R}}^*$.
 - (a) Mostre que $(g: X \longrightarrow \mathbb{C}) \in X^*$, com g(x) = f(x) if(ix).
 - (b) Prove que $f_1, f_2 \in X_{\mathbb{R}}^*$, com $f_1 = Re(f)$ e $f_2 = Im(f)$.
 - (c) Verifique que $f(x) = f_1(x) if_1(ix) = f_2(ix) + if_2(x)$.
 - (d) Conclua que os espaços vectoriais X^* e $X_{\mathbb{R}}^*$ são isomorfos.
- 118. Determine em $(\mathbb{R}^2)^*$ as bases duais das bases $\{(1,0),(0,1)\}$ e $\{(1,1),(1,-1)\}$, respectivamente.
- 119. Considere o espaço vectorial complexo \mathbb{C}^n .
 - (a) Mostre que $\langle x, y \rangle = \sum_{i=1}^{n} x_i . \overline{y_i}$ define um produto interno em \mathbb{C}^n , com $x = (x_i)_{i=1}^n$ e $y = (y_i)_{i=1}^n$.
 - (b) Verifique que para $p \neq 2$, o espaço normado complexo (e real) l_2^n não é um espaço de Hilbert.
- 120. Consideremos $\mathcal{C}[0,2\pi]$ munido do produto interno do integral, $\langle f,g \rangle = \int_0^{2\pi} f(t)g(t)\,dt$. Sejam ainda e_n e f_n funções tais que $e_n(t) = \frac{\cos(nt)}{\sqrt{\pi}}, \quad f_n(t) = \frac{\sin(nt)}{\sqrt{\pi}}.$ Mostre que $(e_n)_{n\in\mathbb{N}}$ e $(f_n)_{n\in\mathbb{N}}$ são sucessões ortonormadas.