Análise matemática

Pedro Henrique de Almeida Konzen

20 de março de 2018

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/ ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Sumário

C	apa							i
Li	icenç	a						ii
P	refác	io						iii
Sı	ımár	io						iv
Ι	Aı	ıálise	e de funções de uma variável real					1
1	Inti	oduçã	ίο					3
2 Fundamentos da análise								4
	2.1	Funçõ	ŏes					4
			Definição de função					4
			Classificações elementares					5
		2.1.3						7
3	Lim	ites						9
	3.1	Noçõe	es de topologia					9
			Exercícios					
	3.2		es					
		3.2.1	Propriedades do limite			•		12
R	eferê	ncias I	Bibliográficas					15
Íп	dico	Romis	ecivo					16

Parte I Análise de funções de uma variável real

Capítulo 1

Introdução

Em construção ...

Capítulo 2

Fundamentos da análise

2.1 Funções

2.1.1 Definição de função

Definição 2.1.1. (Função) Uma **função** $f:D\to Y$ é uma relação que associa cada elemento de um dado conjunto D com um único elemento de um dado conjunto Y. O conjunto D é chamado de **domínio** da função e o conjunto Y é chamado de **contradomínio** da função.

Comumente, uma dada função $f:D\to Y$ é acompanhada de sua **lei de correspondência**, a qual muitas vezes é denotada por y=f(x). Neste caso, temos que a função f associa $x\in D$ ao elemento $y\in Y$. Neste contexto, x é chamada de **variável independente** e y de **variável dependente**. Ainda, muitas vezes uma função é descrita apenas por sua lei de correspondência e, neste caso, os conjuntos domínio e imagem são inferidos no contexto em questão.

Observação 2.1.1. Neste livro, quando não especificado ao contrário, assumiremos que o domínio e o contradomínio das funções consideradas são subconjuntos dos números reais,

Exemplo 2.1.1. Vejamos os seguintes casos:

- a) A relação $f:\{1,2,3\}\to\mathbb{R},\,y=f(x):=x^2+1,$ define uma função.
- b) A relação $g:D=\{0,1,2,3,4\}\to \mathbb{Z},\ x^2+y^2=9\ \mathrm{com}\ x\in D\ \mathrm{e}\ y\in Y,$ não é uma função. Com efeito, $0\in D$ e relaciona-se com $3\in Y$ e $-3\in Y$ no seu contradomímio.
- c) Da equação $y=\sqrt{x}$ pode-se inferir a função $h:x\in D\to y\in\mathbb{R},$ onde o domínio D é conjunto dos reais não negativos.

Definição 2.1.2. (Imagem de uma função) A **imagem** I_f de uma dada função $f: D \to Y$ é o conjunto de todos os elementos de Y que se relacionam com algum elemento de D, i.e.:

$$I_f := \{ y \in Y; \ \exists x \in D \text{ tal que } y = f(x) \}. \tag{2.1}$$

Exemplo 2.1.2. Vejamos os seguintes casos:

- a) A função $f: \{1,2,3\} \to \mathbb{R}, y = f(x) := x^2 + 1$, tem imagem $I_f = \{1,4,9\}$.
- b) A imagem da função $f:\{0\} \cup \mathbb{N} \to \mathbb{R}, y=2x+1$, é conjunto dos números ímpares.
- c) A imagem da função sen : $\mathbb{R} \to \mathbb{R}$, y = sen x, é $I_{\text{sen}} = [-1, 1]$.

Observação 2.1.2. Dada uma função $f: D \to Y$ e um conjunto $A \subset D$, definimos a imagem de A pela função f por

$$f(A) := \{ y \in Y; \exists x \in A \text{ tal que } y = f(x) \}. \tag{2.2}$$

Por exemplo, dada a função $f: \mathbb{R} \to \mathbb{R}, y = \sqrt{x}$, temos

$$f({0,1,4,9}) = {0,1,2,3}. (2.3)$$

Definição 2.1.3. (Gráfico) O **gráfico** de uma função $f: D \to Y$, y = f(x), é o conjunto de todos os pares ordenados (x,y) tal que $x \in D$ e y = f(x), i.e.

$$G_f := \{(x, y) \in D \times Y; \ y = f(x)\}.$$
 (2.4)

Exemplo 2.1.3. O gráfico da função $f:\{1,2,3\} \to \mathbb{R}, \, y=f(x):=x^2+1,$ é

$$G_f = \{(1,2), (2,5), (3,10)\}.$$
 (2.5)

2.1.2 Classificações elementares

Definição 2.1.4. (Função limitada) Seja dada uma função $f:D\to\mathbb{R},\,y=f(x)$. Dizemos que f é uma função limitada inferiormente (ou limitada à esquerda) quando existe $m\in\mathbb{R}$ tal que $m\leq f(x)$ para todo $x\in D$. Analogamente, dizemos que f é uma função limitada superiormente (ou limitada à direta) quando existe $M\in\mathbb{R}$ tal que $f(x)\geq M$ para todo $x\in D$. Ainda, f é dita ser limitada quando é limitada inferiormente e superiormente.

Exemplo 2.1.4. Vejamos os seguintes casos:

a) A função $f: \mathbb{R} \to \mathbb{R}, \ y = x^2 + 1$, é limitada inferiormente. De fato, para cada $x \in \mathbb{R}$ temos $x^2 \ge 0$ e, portanto, $y = x^2 + 1 \ge 1$.

b) A função seno é uma função limitada. Isto segue imediatamente da definição da função seno no círculo unitário (círculo trigonométrico).

Definição 2.1.5. Restrição/extensão de uma função Uma função $g:A\to Y$, y=g(x), é dita ser uma **restrição** da dada função $f:D\to Y$ quando $A\subset D$ e g(x)=f(x) para todo $x\in A$. Analogamente, f é uma **extensão** da função g.

Exemplo 2.1.5. A função $f: \mathbb{R} \to \mathbb{R}, \ y = x+1$, é uma extensão da função $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ y = \frac{x^2-1}{x-1}$.

Definição 2.1.6. (Função injetiva) Uma função $f: D \to Y$, y = f(x), é dita ser **injetiva** (**injetora** ou **inversível**) quando para todo $x_1, x_2 \in D$ com $x_1 \neq x_2$ temos $f(x_1) \neq f(x_2)$.

Observação 2.1.3. Uma função $f: D \to \mathbb{R}$, y = f(x), é injetiva se, e somente se, para todo $x_1, x_2 \in D$ tal que $f(x_1) = f(x_2)$ temos $x_1 = x_2$.

Exemplo 2.1.6. Vejamos os seguintes casos:

- a) A função $f(x) = x^2$ não é injetiva, pois tomando $x_1 = -1$ e $x_2 = 1$ temos $x_1 \neq x_2$, mas $f(x_1) = f(x_2)$.
- b) A função $f(x) = \sqrt{x+1}$ é injetiva. De fato, dados $x_1, x_2 \in \mathbb{D}$ tal que $f(x_1) = f(x_2)$, então $\sqrt{x_1} = \sqrt{x_2}$. Agora, tomando o quadrado dos dois lados, temos $x_1 = x_2$.

Definição 2.1.7. (Função sobrejetiva) Uma função $f: D \to Y$, y = f(x), é sobrejetiva quando f(D) = Y (ou, equivalentemente, $I_f = Y$).

Exemplo 2.1.7. A função $f:(0,\infty)\to\mathbb{R},\ f(x)=\ln(x),$ é sobrejetiva. De fato, dado qualquer $y\in\mathbb{R}$ basta escolhermos $x=e^y$ para termos f(x)=y.

Observação 2.1.4. Uma função injetiva e sobrejetiva é dita ser bijetiva.

Definição 2.1.8. (Função inversa) Dada uma função invertível (i.e. injetora) $f: D \to Y, y = f(x)$, definimos sua **inversa** por $f^{-1}: f(D) \to D$ que associa cada elemento $y \in f(D)$ com $x \in D$ tal que f(x) = y.

Exemplo 2.1.8. Vejamos os seguintes casos:

- a) A inversa da função $f:(0,\infty)\to\mathbb{R},\ y=\ln(x),$ é a função $f^{-1}:\mathbb{R}\to(0,\infty),$ $y=e^x.$
- b) A inversa da função $f: [-1,\infty] \to [0,\infty), \ y = \sqrt{x+1}$, é a função $f^{-1}: [0,\infty) \to [-1,\infty], \ y = x^2 1$. De fato, f é sobrejetiva e dado $x \in [-1,\infty]$ temos $f(x) = y = \sqrt{x+1}$ e, então $y^2 = x+1$, logo $x = y^2 1$.

Definição 2.1.9. (Função monótona) Seja dada uma função $f: D \to Y$. Dizemos que f é **crescente** quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$, temos $f(x_1) < f(x_2)$. Agora, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) \le f(x_2)$, dizemos que f é uma **função não-decrescente**. Analogamente, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) > f(x_2)$ dizemos que f é uma função **decrescente**. Por fim, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) \ge f(x_2)$ dizemos que f é uma função **não-crescente**.

Exemplo 2.1.9. Vejamos os seguintes casos:

- a) $f: \mathbb{R} \to \mathbb{R}, y = x^3$, é uma função crescente.
- b) $f: \mathbb{R} \to \mathbb{R}, y = e^{-x}$ é uma função decrescente.

Definição 2.1.10. (Paridade de uma função) Uma função $f: D \to Y$, y = f(x), é dita ser **par** quando para todo $x \in D$, temos f(x) = f(-x). Agora, quando para todo $x \in D$, temos f(x) = -f(-x), então dizemos se tratar de uma função **impar**.

Exemplo 2.1.10. Vejamos os seguintes casos:

- a) A função $f: \mathbb{R} \to \mathbb{R}, y = |x|$, é uma função par.
- b) A função $f: \mathbb{R} \to \mathbb{R}, y = x^3$, é uma função ímpar.

2.1.3 Operações elementares

Operações elementares envolvendo funções são comumente definidas tomando o cuidado de restringir o domínio das funções operadas para um conjunto apropriado. Por exemplo, dadas as funções $f:A\to\mathbb{R},\ y=f(x),\ e\ g:B\to\mathbb{R},\ y=g(x),$ definimos a função soma de f com g por $(f+g):A\cap B\to\mathbb{R},\ (f+g)(x):=f(x)+g(x)$. Agora, para estas mesmas função, definimos a função quociente de f com g por $(f/g):A\cap B\setminus\{0\}\to\mathbb{R},\ (f/g)(x):=f(x)/g(x)$.

Exemplo 2.1.11. A função $f:[0,\infty]\to\mathbb{R},\ y=\sqrt{x}-|x|,$ é a subtração da função $f_1:[0,\infty]\to\mathbb{R},\ y=\sqrt{x},$ com a função $f_2:\mathbb{R}\to\mathbb{R},\ y=|x|,$ i.e. $f(x)=(f_1-f_2)(x):=f_1(x)-f_2(x).$

Definição 2.1.11. (Composição de funções) Sejam dadas as funções $f: D_f \to Y_f$, y = f(x), e $g: D_g \to Y_g$, y = g(x), com $I_g \subset D_f$. Definição a **função composta** de f com g por $(f \circ g): D_g \to Y_f$ com $(f \circ g)(x) = f(g(x))$.

Exemplo 2.1.12. A função $f:[0,\infty]\to\mathbb{R},\ y=\sqrt{x^2+1},\ \text{\'e}$ a composição da função $f_1:[0,\infty]\to\mathbb{R},\ y=\sqrt{x},\ \text{com a função}\ f_2:\mathbb{R}\to\mathbb{R},\ y=x^2+1.$

Exercícios

- **E 2.1.1.** Sejam $f:D\to Y,\ y=f(x),\ \mathrm{e}\ A,B\subset D.$ Mostre que $f(A\cup B)=f(A)\cup f(B).$
- **E 2.1.2.** Construa uma função crescente, limitada superiormente e com domínio igual ao conjunto dos números reais.
- **E 2.1.3.** Mostre que $f:[1,\infty)\to \mathbb{R},\ y=\sqrt{x^3-1},$ é injetora e construa sua inversa.
- **E 2.1.4.** Mostre que se $f: D \to Y$ é injetora, então f não é par.
- **E 2.1.5.** Mostre que uma dada função $f: \mathbb{R} \to \mathbb{R}, \ y = f(x)$, é limitada quando existe $c \in \mathbb{R}$ tal que $|f(x)| < c, \ \forall x \in \mathbb{R}$.

Capítulo 3

Limites

3.1 Noções de topologia

Definição 3.1.1. (Ponto interior) Diz-se que x é um **ponto interior** de um dado conjunto C quando existe um intervalo (a,b) que contém x e está contido em C, i.e. $x \in (a,b) \subset C$. O conjunto de todos os pontos interiores de C é chamado de seu **interior**.

Exemplo 3.1.1. a) Todo elemento de um intervalo aberto (a, b) é ponto interior deste.

b) O interior de um dado intervalo fechado [a, b] é o intervalo aberto (a, b).

Definição 3.1.2. (Conjunto aberto) Diz se que C é **conjunto aberto** quando todos seus elementos são pontos interiores.

Exemplo 3.1.2. Vejamos os seguintes casos:

- a) O intervalo $(a,b) := \{x \in \mathbb{R}; \ a < x < b\}$ é um conjunto aberto. De fato, dado $x \in (a,b)$ podemos tomar $0 < \epsilon < \min\{x a,b x\}$ de forma que $x \in (x \epsilon, x + \epsilon) \subset (a,b)$.
- b) O intervalo (a, b] não é aberto, pois $b \in (a, b]$ não é ponto interior.
- c) O conjunto vazio \emptyset é um conjunto aberto. Com efeito, se o conjunto \emptyset não é aberto, então existe um elemento $x \in \emptyset$ que não é ponto interior de \emptyset , o que é um absurdo pois \emptyset não contém elementos por definição.
- d) O conjunto dos números racionais Q não é aberto.

Definição 3.1.3. (Vizinhança) Uma vizinhança de um dado ponto x é qualquer conjunto V que contenha x como ponto interior. Também, a vizinhança simétrica de um ponto $x \in \mathbb{R}$ é todo intervalo $V_{\epsilon}(x) := (x - \epsilon, x + \epsilon)$ com $\epsilon > 0$. Mais estrito, a vizinhança perfurada de $x \in \mathbb{R}$ é uma vizinhança de x que não contém x. Aproveitamos para fixar a notação:

$$V'_{\epsilon}(x) := V_{\epsilon}(x) \setminus \{x\} = \{y \in \mathbb{R}; \ 0 < |x - y| < \epsilon\}.$$

Exemplo 3.1.3. Podemos reescrever o Exemplo 3.1.2 da seguinte forma. Um intervalo (a,b) é um conjunto aberto, pois para cada $x \in (a,b)$ podemos escolher $0 < \epsilon < \min\{x - a, b - x\}$ tal que $V_{\epsilon}(x) \subset (a,b)$.

Definição 3.1.4. (Ponto de acumulação) Um ponto x é chamado de **ponto de acumulação** de um dado conjunto C quando toda vizinhança de x contém infinitos pontos de C.

Exemplo 3.1.4. Vejamos os seguintes casos:

- a) O número a é ponto de acumulação do intervalo (a, b] não degenerado. De fato, dado $\epsilon > 0$, temos $(a, a + \epsilon) \subset V_{\epsilon}(a)$ e $(a, a + \epsilon) \cap (a, b]$ é um conjunto infinito.
- b) Zero é o único ponto de acumulação do conjunto $\{1, 1/2, 1/3, \dots, 1/n, \dots\}$.

Definição 3.1.5. (Ponto isolado) Diz que x é **ponto isolado** de um dado conjunto C quando $x \in C$ não é ponto de acumulação de C. Diz-se que um conjunto é **discreto** quando todos seus elementos são pontos discretos.

Exemplo 3.1.5. Vejamos os seguintes casos:

- a) O conjunto dos números naturais \mathbb{N} é discreto.
- b) O conjunto dos números racionais O não é discreto.
- c) O conjunto $\{1, 1/2, 1/3, ..., 1/n, ...\}$ é discreto.

Definição 3.1.6. (Ponto aderente) Dizemos que x é **ponto aderente** de um dado conjunto C quando toda vizinhança de x contém algum ponto de C. O conjunto de todos os pontos aderentes de C é chamado de **fecho** (ou, conjunto de aderência) de C, o qual denotamos por \overline{C} .

Observação 3.1.1. Observe que todo ponto de um conjunto é aderente ao mesmo, bem como, todos os seus pontos de acumulação.

Exemplo 3.1.6. Vejamos os seguintes casos:

a) O fecho de (a, b] é o intervalo fechado [a, b].

b) O conjunto dos números reais \mathbb{R} é o fecho do conjunto dos números racionais \mathbb{Q} , i.e. $\overline{Q} = \mathbb{R}$.

Definição 3.1.7. Conjunto fechado Dizemos que um conjunto C é **fechado** quando é igual ao seu fecho, i.e. $C = \overline{C}$.

Exemplo 3.1.7. Vejamos os seguintes casos:

- a) O intervalo [a, b] é um conjunto fechado.
- b) O conjunto vazio ∅ é fechado. Por quê?
- c) O conjunto dos números reais \mathbb{R} é fechado.
- d) O conjunto dos números racionais $\mathbb Q$ não é fechado.

Definição 3.1.8. (Conjunto denso) Dizemos que um conjunto A é **denso** no conjunto B, quando todo ponto aderente de $\overline{A} \subset B$.

Exemplo 3.1.8. O conjunto dos números racionais \mathbb{Q} é denso no conjunto dos números reais \mathbb{R} .

3.1.1 Exercícios

E 3.1.1. Seja dado um conjunto C. Mostre que x é ponto de acumulação de C se, e somente se, toda vizinhança de x contém pelo menos um elemento de C diferente de x.

Resposta. Basta considerar sucessivas vizinhanças $V_{1/n}(x)$ com $n \in \mathbb{R}$.

E 3.1.2. Seja dado um conjunto C. Mostre que x é ponto isolado de C se, e somente se, existe uma vizinhança de x tal que $(V(x) \setminus \{x\}) \cap C = \emptyset$.

Resposta. A implicação segue imediatamente por negação.

3.2 Limites

Definição 3.2.1. (Limite) Sejam uma função $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Diz-se que $L \in \mathbb{R}$ é o **limite** de f(x) com x tendendo a a se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.1)

Quando isso ocorre, escrevemos

$$\lim_{x \to a} f(x) = L,\tag{3.2}$$

11

ou ainda, simplesmente, $f(x) \to L$ quando $x \to a$.

Exemplo 3.2.1. Vejamos os seguintes casos:

a) Temos $\lim_{x\to 1} x - 1 = 0$. Isto segue imediatamente, pois, neste caso, f(x) = x - 1, a = 1, L = 0 e, então, dado $\varepsilon > 0$, tomamos $\delta = \varepsilon$ de forma que

$$x \in \mathbb{R}, 0 < |x - 1| < \delta \Rightarrow |x - 1 - 0| < \varepsilon. \tag{3.3}$$

b) A função não precisa estar definida no ponto em o limite é tomado. Por exemplo, $\lim_{x\to 1} \frac{x^2-1}{x+1} = 0$. Verifique!

Observação 3.2.1. Quando nos referirmos a expressão "x tende a a" (ou similares), estaremos sempre assumindo que a é um ponto de acumulação do domínio da função de interesse.

3.2.1 Propriedades do limite

Teorema 3.2.1. Se $f : \mathbb{D} \to \mathbb{R}$, y = f(x), $com \lim_{x \to a} f(x) = L$, $ent\tilde{a}o \lim_{x \to a} |f(x)| = |L|$.

Demonstração. Seja $\varepsilon > 0$. Por hipótese, existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f(x) - L| < \varepsilon$. Tomando, então, um tal δ e observando que ||f(x)| - |L|| < |f(x) - L|, temos que para todo $x \in D$, $0 < |x - a| < \delta$, ocorre $||f(x)| - |L|| < \varepsilon$.

Teorema 3.2.2. Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L$ e A < L < B, então existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica A < f(x) < B.

Demonstração. De fato, por hipótese, para cada $\varepsilon > 0$, existe $\delta > 0$ tal que $x \in D$, $0 < |x-a| < \delta$ implica $|f(x) - L| < \varepsilon$. Então, o resultado segue escolhendo um tal δ quando $\varepsilon = \min\{L - A, B - L\}$.

Corolário 3.2.1. (Permanência do sinal) Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L > 0$ (L < 0), então existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$, implica f(x) > 0 (f(x) < 0).

Demonstração. Quando L > 0 (L < 0) basta escolher A = 0 (B = 0) no teorema anterior.

Licença CC-BY-SA 4.0

12

Teorema 3.2.3. (Operações com limites) Sejam $f_1, f_2 : D \to \mathbb{R}, y = f_1(x), y = f_2(x)$, com $\lim_{x\to a} f_1(x) = L_1$ e $\lim_{x\to a} f_2(x) = L_2$, então (omitindo que $x\to a$)

- a) $\lim [f_1(x) + f_2(x)] = \lim f_1(x) + \lim f_2(x)$.
- b) para todo $k \in \mathbb{R}$, temos $\lim k f_1(x) = k \lim f_1(x)$.
- c) $\lim f_1(x)f_2(x) = \lim f_1(x) \cdot \lim f_2(x)$.
- d) $\lim \frac{f_1(x)}{f_2(x)} = \frac{\lim f_1(x)}{\lim f_2(x)}$, quando $L_2 \neq 0$.

Demonstração. Seja dado $\varepsilon > 0$.

a) Seja $\delta>0$ tal que $x\in D,\ 0<|x-a|<\delta$ implica $|f_1(x)-L_1|<\varepsilon/2$ e $|f_2(x)-L_2|<\varepsilon/2$. Logo, para tais δ e x temos

$$|(f_1(x) + f_2(x)) - (L_1 + L_2)| \le |f_1(x) - L_1| + |f_2(x) - L_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
 (3.4)

- b) O resultado é imediato para k=0. Sejam $k \neq 0$ e $\delta > 0$ tal que $x \in D$, $0 < |x-a| < \delta$ implica $|f_1(x) L_1| < \varepsilon/|k|$. Então, para tais δ e x temos $|kf_1(x) kL_1| = |k||f_1(x) L_1| < |k|\varepsilon/|k| = \varepsilon$.
- c) Sejam M>0 e $\delta>0$ tal que $x\in D,$ $0<|x-a|<\delta$ implica $|f_1(x)-L_1|<\varepsilon/(2|L_2|),$ $|f_1(x)|< M$ (veja Teorema 3.2.2) e $|f_2(x)-L_2|<\varepsilon/(2M)$. Então

$$|f_{1}(x)f_{2}(x) - L_{1}L_{2}| = |f_{1}(x)f_{2}(x) - f_{1}(x)L_{2} + f_{1}(x)L_{2} - L_{1}L_{2}|$$

$$= |f_{1}(x)(f_{2}(x) - L_{2}) + (f_{1}(x) - L_{1})L_{2}|$$

$$\leq |f_{1}(x)||f_{2}(x) - L_{2}| + |f_{1}(x) - L_{1}||L_{2}|$$

$$< M\frac{\varepsilon}{2M} + \frac{\varepsilon}{2|L_{2}|}|L_{2}| = \varepsilon.$$
(3.5)

d) De c), basta mostrar que $1/f_2(x) \to 1/L_2$ quando $x \to a$. Para tando, seja $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f_2(x) - L_2| < \frac{\varepsilon L_2^2}{2}$ e $|f_2(x)| > |L_2|/2$ (veja Teorema 3.2.2). Então, para tais δ e x temos

$$\left| \frac{1}{f_2(x)} - \frac{1}{L_2} \right| = \frac{|f_2(x) - L_2|}{|f_2(x)L_2|}$$

$$< \frac{\frac{\varepsilon L_2^2}{2}}{|L_2| \frac{|L_2|}{2}} = \varepsilon.$$
(3.6)

Exercícios

E 3.2.1. Mostre que se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L$, então existe $\delta > 0$ tal que f(x) é limitada em $V'_{\delta}(a) \cap D$.

Resposta. Veja o Teorema 3.2.2.

E 3.2.2. Mostre que se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x\to a} f(x) = L > 0$, então $\lim_{x\to a} \sqrt{f(x)} = \sqrt{L}$.

Resposta. Use o Teorema 3.2.2 observando que

$$|\sqrt{f(x)} - \sqrt{L}| = |(\sqrt{f(x)} - \sqrt{L})\frac{\sqrt{f(x)} + \sqrt{L}}{\sqrt{f(x)} + \sqrt{L}}| = \frac{|f(x) - L|}{|\sqrt{f(x)} + \sqrt{L}|}.$$
 (3.7)

Referências Bibliográficas

- [1] R.G. Bartle and D.R. Sherbert. *Introduction to real analysis*. John Wiley & Sons, 3. ed. edition, 2000.
- [2] C.I. Doering. *Introdução à análise matemática na reta*. SBM, 1. ed. edition, 2015.
- [3] E.L. Lima. Análise real. IMPA, 12. ed. edition, 2017.
- [4] G. Ávila. Análise matemática para licenciatura. Blucher, 3. ed. edition, 2006.

Índice Remissivo

conjunto	fundamentos da análise, 4
discreto, 10	40
fechado, 11	gráfico, 5
interior, 9	imagem de
conjunto aberto, 9	uma função, 5
conjunto de	ania rangao, o
aderência, 10	lei de correspondência, 4
contradomínio, 4	limite, 11
1.0.2	limite de
definição de	função, 11
função, 4	limites
denso, 11	de funções, 9
domínio, 4	
extensão	ponto
de uma função, 6	isolado, 10
de uma rumção, v	ponto aderente, 10
fecho, 10	ponto de acumulação, 10
função, 4	ponto interior, 9
ímpar, 7	restrição
bijetiva, 6	de uma função, 6
composta, 7	de dilla rangao, o
crescente, 7	variável
decrescente, 7	dependente, 4
injetiva, 6	independente, 4
inversa, 6	vizinhança, 10
não-decrescente, 7	perfurada, 10
função limitada, 5	$sim\'etrica, 10$
à direita, 5	
à esquerda, 5	
inferiormente, 5	
superiormente, 5	
função par, 7	
função sobrejetiva, 6	