information about paper		synthesis of q-CN
12_Y.X. Zhang_Applied Material and Interfaces_2019_yNiL-NiO/g-CN_H2 generation	Ternary hybrid catalyst composed of CN, NuO, and Ni complex were developed	by annealing 5 g of urea in a porcelain boat at 550°C for 4 hours under an argon atmosphere. After cooling to room temp, the resulting material was designated as CN
13_Xin Zhao_ACS Catalysis_2020_Ni(imidazole)/gCN_cross coupling of ArX with ROH		10 g of urea in a covered crucible heation at 500 0C at a rate of 2 0C/min for 2h.
14. R. Srivastava, Applied Nano Material_2021_Zr-Thia(x)/g-CN_CO2 insertion to epoxide		Zr-thiamine + urea:- pyrolised at 773K

information about paper	synthesis of c-CN
15_S. Roy_Angewandte Chemie International Edition_mpgCNx CoPPc_CO2 red.	mpg-CNx) was synthesized by heating cyanamide in air using colloidal silica as a hard template, followed by etching the template with aq ammonium bifluoride. This process creates a mesoporous structure ideal for photocatalytic applications.
16_Maeda_JACS_2018_IFe(qpy)(H2O)2 2+/mpg-CN_ CO2-to-CO Conversion	To synthesize g-C _s N ₄ , cyanamide was mixed with colloidal SiO ₅ (1:1 w/w) and stirred at 333 K overnight. The mixture was heated to 823 K (2.3 K/min) and held for 4 hours. Silica was removed using NH ₂ HF ₂ , followed by filtration, washing, and drying at 343 K :- mpg-C _N and drying at 343 K :- mpg-C _N was heated with a heating rate of 2.3 K min-1 up to 823K, for 4 h.:- g-CN was obtained (mpg-C _N enhances electron-hole separation efficiency, improving photocatelytic performance. Compared to non-porous g-C _N N, mpg-C ₂ N _e shows a 20% higher photocatelytic ability for CO formation, highlighting the benefits of its mesoporous structure.)
17_X. Zhang_Applied Catalysis B: Environmental_2017_g-C3N4/FeTCPP_Red of CO2	 bulk g-CN:- by typical thermal polymerization of dicyandiamide, simply heated 5 g dicyandiamide to 550 oC in muffle furnance with a ramp rate of 2.3 oC min-1, and kept at this temperature for 4 h in ambient atmosphere. g-C3N4 nanosheets were prepared by direct thermal oxidation etching of bulk g-C3N4 at 500 oC for 2 h as reported previously
18_Y.Zhu_Applied Catalysis B: Environmental_2014_CuTCPP/g-C3N4_degradation of phenol	15 g of dicyandiamide was put in a Muffle Furnace and heated to 550-C for 4 h to complete the reaction. Finally, the yellow products were collected and ground into powder in an agate mortar

information about paper	luxs	synthesis of g-CN
20, XWang_ACSSustainableChemistry&Engineering_2014_Co(bpy)3Cl2/g-CN_ red. of CO2	Mel -10 -10 rem ram solution s	Melamine is directly heated to 550°C for 2 hours in an air atmosphere, resulting in the formation of bulk g-C.M10 g of melamine is dissolved in 10 mL of water, followed by adding 5 g of silica (Sito.) The mixture is dried at 100°C to remove water, then sintered at 550°C for 2 hours in a muffle furnace. The resulting product is treated with a 4 M NH₄HF₂ solution to remove the silica template.then washed thoroughly with distilled water and ethanol and then dried at 60°C in air overnight.
21_B. Pieber_Angewandte Chemie International Edition_2019_NICI2.glyme/ CN-OA-m_Esterfication of Carboxylic Acids with Ar-X	A carbon nitride derivative CN-OA-m showed the (A chighest activity in the photocatalyst screening, salt presumably due to its enhanced optical absorption - an in the visible region compared to most other known as CN materials	A carbon nitride derivative CN-OA-m showed the (A carbon nitride derivative prepared via co-condensation of urea and oxamide followed by post-calcination in a molten highest activity in the photocatalyst screening. salt (CN-OA-m)[14] showed the highest activity in the photocatalyst screening presumably due to its enhanced optical absorption - a movel approach was employed to synthesize act, using a metal-organic framework (MOF), specifically HKUST-1, in the visible region compared to most other known as both a template and a catalyst. This method involves the catalytic dimerization of cyanamide within the MOF's cavities CN materials
22_An-Wu Xu_Catalysis Science & Technology_2018_g-C3N4/FcDA_H2 evolution	eun .	urea calcined at 550 0C
23_Maeda_ChemSusChem_2016_RuRe/C3N4 (SiO2 modified)_CO evolution	Mee	Mesoporous graphitic carbon nitride (mpg-C.N.) is synthesized by heating a cyanamide and silica mixture, followed by silica removal with ammonium fluoride, yielding a porous, catalytically active material.

information about paper	synthesis of q-CN
24 K. Domen_Phys. Chem. Chem. Phys_2010_MgPc/Pt/mpg-C3N4_H2 evolution	syndesis or grown with the state of the synthesized by heating cyanamide with a silica template, followed by template removal using ammonium hydrogen fluoride and subsequent drying, resulting in a porous material with high surface area for photocatalytic applications.
25_P. Zeng_Journal of Colloid and Interface Science _2021_NIL2(CI)2/TPCN_H2 evolution	Urea is thermally polymerized by heating it to 550°C over four hours in an alumina crucible with a controlled ramping rate of 5°C per minute. After cooling to room temperature, the resulting material is washed and dried overnight at 60°C. Synthesis of Thiophene-Embedded Polymeric Carbon Nirtide (TPCN): A mix of 20 g of urea and 20 mg of ATCN in 50 mL of delonized water is stirred at 80°C to remove the water. The resulting solid is placed in an aluminar actucible warpped in and and calcined at 550°C for 4h with a heating rate of 5°C per minute. After cooling, the product is washed and dried overnight at 60°C. —The thiophene ring, a ri-electron-rich structure, is embedded into the carbon nitride framework, enhancing light absorption and charge separation efficiency.
26_K. Mori_Phys. Chem. Chem. Phys2015_TO-Ni(NiL2)2Cl2/g-C3N4_H2 production	pyrolysis of dicyandiamide . The process involves heating the dicyandiamide at 550°C in a covered crucible under air for 4 hours. This method produces g-C ₂ N4, which serves as a support for further photocatalytic applications.
27_W.D. Zhang_Journal of Colloid and Interface Science_2019_NiLx-CN_H2 evolution	heating urea at 550°C with a ramp rate of 10°C/min under an argon flow. The material is stabilized at this temperature for 4 hours and then allowed to cool to room temperature.
28_Suman L. Jain_Chemistry Select_2017_Co@npg-C3N4_Esterffication	the synthesis of nanoporous graphitic carbon nitride (npg-C.N.) involves heating a mixture of dicyandiamide and thiourea at controlled temperatures. The obtained material is then oxidized using hydrogen peroxide to introduce hydroxyl (-OH) groups on its surface. These groups are further converted to chloro groups using thionyl chloride, which are subsequently reacted with propargyl alcohol to produce propargylated npg-C.N. (PA@npg-C.N.).
29_Suman L. Jain_Green Chemistry_Fe(bpy)3/npgC3N4_oxidative coupling of benzylamines	same as above

information about paper	synthesis of a-CN
30_Suman L. Jain_ Journal of Colloid and Interface Science_2019_g-C3N4/CoPcCOOH_	g-C _s N4,) is synthesized by mixing dicyandiamide and thiourea in a 1:4 ratio. This mixture is heated in a semi-closed aluminum crucible with a controlled ramp rate: 8°C/min to 300°C, 2°C/min from 300°C, to 500°C, and 1°C/min to 550°C. The final calcination at 550°C is maintained for 4 hours.
31_Suman L. Jain_Carbon_2017_npg C3N4/Ir-T_Reduction of CO2 to CH3OH	npg-C,N,) according to the provided paper involves mixing dicyandiamide and thiourea in a 1:4 ratio. This mixture is subjected to controlled heating in a muffle furnace with ramp rates of 8°C/min to 300°C, 2°C/min to 500°C, and 1°C/min to 550°C followed by calcination at 550°C for 4 hours.
32_K. Maeda_JACS_2020_Coqpy@mpg-C3N4_CO2 red to CO	(mpg-C.N.) is synthesized by polymerizing cyanamide in the presence of silica nanoparticles as a template. The mixture is hea at 550°C to form a porous carbon nitride framework. The silica template is removed using an ammonium fluoride solution, resulting in mpg-C.N. with a high surface area
33_N. R. Peela_Energy & Fuels_2021_VO(acac)2/NS-GC_H2 evolution	grphitic carbon nitride (GC) and sodium- sulphur dual doped graphitic CN (NS-GC) GC- heating melamine in a semiclosed crucible at 550°C for 4 h NS-GC- a calculated amount of sodium sulfide and melamine were mixed in 100 mL of water and stirred for 30 min to obtain a uniform mixture. This mixture was then dried overnight at 100 °C to remove the water content. The mixture was then calcined at 550°C for 4 h in a semiclosed silica crucible

information about namer	NO-Lu du siseului vi
34. K. Maeda_The Chemical Society of Japan_2015_Ru(II) complex/CN_HCOOH production	mesoporous CN
35_K. Ikeue_Materials Letters_Materials Letters_2017_Ni-ME/g-CN_H2 evolution	urea heated at 550 0C in crucible
36_M.Kombo_Catalysis science and technology_2013_C3N4/CoTPP_H2 evolution	urea was added into covered alumina crucible and calcined at 550 °C for 4 h in a muffle furnace in air atmosphere
37_K. Maeda_ Angew. Chem. Int_2015_Ru (II) complex/C3N4_HCOOH production	
38_D. H. Wang_Journal of materials chemistry_2013_g-C3N4 / (FeTPP)2O_H2 evolution	urea in alumina crucible covered with Al foil heated at 660 0C

information about paper	synthesis of 9-CN
39_D. Wang_ChemComm_2013_Ni-Tu-TETN/g-CN_H2 evolution by heterolytic cleavage	thermal treatment of Urea
40 E. Reisner, JACS, 2018, oxidation of alc to produce aidehyde and red of aq. proton to H2	heating melamine to 550 °C for 12 h under Ar following
41_E. Reisner_Angew. Chem. Int. Ed2014_H2 evolution by enzyme/CN or NiP/CN	

	2	-	
	7 7	5	
	74	f	
	7/14/14	5	
Ċ	`	j	
7		-	

information about paper	synthesis of q-CN	
42_W. D. Zhang_ChemCatChem_CoL2(SCN)2-CN_H2 evolution	50 g urea in a 100 mL ceramic crucible was calcined in a muffle furnace at 550 ⊡C for 4 h at a heating rate of 10 ⊡C/min after cooling, re-calcined at 550 □C for 2 h) ⊐C for 4 h at a heating rate of 10 □C/min
43. K. Maeda_J. Phys. Chem. C_2009_H2 ans O2 evolution	by heating cyanamide in air at 823 K for 4 h	
44_X.Wang_Journal of Molecular Structure_2024_Cu(tmipa)/wt%g-C3N4_degredation of dyes	thermal condensation of urea	
45, Ya-Ru Pan_Inorganica Chimica Acta_2023_[Ni2(Medpq)2(BPDA)·2H20] - 9-C3N4_ H2 evolution	(g-C,Nu) is synthesized by heating urea in a crucible at 450°C for 2 hours with a controlled ramp rate of 5°C/min in a muffle furnace.	a controlled ramp rate of 5°C/min in a muffle furnace.
46_S. L. Jain_Journal of CO2 Utilization_2022_NiPc/g-C3N4_hydrocarboxy/ation of olefins with CO2		

information about paper	svorthesis of n-CN
47_Siddhartha Sankar Dhar_Chemosphere_2023_2-Mn/GCN_in deg of organic pollutant	calcining 5 g of melamine in a crucible with a half-closed lid at 550 C for 4 h at 5 environment in a muffle furnace.
48_S. Vadivel_European Journal of Inorganic Chemistry_[Fe(acac)3]/g-C3N4_oxidation of alcohol	thermal decomposition of melamine at $550^\circ C$
49 P. A. Maggard_ACS Appl. Energy Mater_2023_CoCl2 (qpy-Ph-COOH)/PTI-LiCl_ Reduction of CO2	melamine powder (1,000g) was ground in a mortar and pestle with a LICI (0,933g) and KCI (1,327g) eutectic salt flux mixture (1:5 mol ratio of melamine to LICI/RCI flux) until homogeneous.
35.	