高等数学 B1 (A 卷答题卡)

				考 生 字 号										
姓名	班级													
红扣		[0]	[0]	[0]	[0]	[0]	[0]	[.0.]	003	[0]	[0]	[0]	[0]	[0]
		[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	E13	[1]
	1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
	考号信息点。	[3]	£33.	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]
e e	2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	[4]	[4]	[.4]	[4]	[4]	[4]	[4]	.[4]	[4]	[4]	[4]	[4]	[4]
注意事项	作解答题:字体工整、笔迹清楚。	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]
江心事次	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]
1,	写的答题无效; 在草稿纸、试题卷上答题无效。	[7]	[7]	.[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]
	4.保持卷面清洁,不要折叠、不要弄破。	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]
		[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]

$$-(8 分) 求极限: \lim_{n\to\infty} \left(1+\tan\frac{1}{n}\right)^{\cot\frac{1}{n}}.$$

二、(8分) 设
$$\begin{cases} x = t^3 + t \\ y = \frac{3}{4}t^4 + t^3 + \frac{1}{2}t^2 + t \end{cases}$$
, 且 $t = t_0$ 时 $dy = 2dx$, 试求 t_0 .

三、(10分) 设
$$y = 2^{3x} \cdot \ln(2x) - \sqrt{1 + x^2}$$
,求 y' .

四、
$$(8 分)$$
 求微分方程 $y^{(4)} + 5y'' - 36y = 0$ 的通解。

五、(10 分) 设
$$f(x) = \operatorname{sgn} x = \begin{cases} 1, & x > 0, \\ 0, & x = 0, \end{cases}$$
 成讨论复合函数 $f \circ g$ 的连续性。 $-1, x < 0,$

六、
$$(8 \, \%)$$
 求 $\int \frac{x+3}{x^2-5x+6} dx$.

七、	(8分)	验证极限	lim	$\frac{1+x+\sin x\cos x}{\cos x}$ 存在,但不能用洛比达法则得出。	,
		•	x-→+∞	$x - \sin x \cos x$	

十、(8 分) 设 $f(x) = [\varphi(x) - \varphi(0)] \ln(1+2x), g(x) = \int_0^x \frac{t}{1+t^3} dt, 其中 \varphi(x) 在 x = 0 处可导,且 <math>\varphi'(0) = 1$,证明: f(x) = g(x) 为 $x \to 0$ 时的同阶无穷小。

八、 $(8 \, f)$ 判断积分 $\int_a^b \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} (a < b)$ 是否收敛,若收敛求其值。

十一、 $(8\,

ota)$ 求微分方程 xdy+(x-2y)dx=0 的一个解 y=y(x),使得由曲线 y=y(x) 与直线 x=1, x=2 以及 x 轴所围成的平面图形绕 x 轴旋转一周的旋转体体积最小。

九、(8分) 判断函数 $y = \frac{x}{1+x}$ 的单调性,并证明 $\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$.

十二、(8 分)设 f(x) 在 $[0,\frac{\pi}{2}]$ 上连续,在 $(0,\frac{\pi}{2})$ 内可导,且 $f(\frac{\pi}{2})=0$,证明:存在一点 $\xi\in(0,\frac{\pi}{2})$,使 $f(\xi)+\tan\xi\cdot f'(\xi)=0$.

武汉大学 2014-2015 学年第一学期期末考试高等数学 B1 解答

$$-$$
、(8分) 求极限 $\lim_{n\to\infty} \left(1+\tan\frac{1}{n}\right)^{\cot\frac{1}{n}}$

解:
$$\lim_{n\to\infty} \left(1+\tan\frac{1}{n}\right)^{\cot\frac{1}{n}} = e^{\lim_{n\to\infty} \ln\left(1+\tan\frac{1}{n}\right)^{\cot\frac{1}{n}}} \circ \circ 4$$

二、(8分) 设
$$y = 2^{3x} \cdot \ln(2x) - \sqrt{1 + x^2}$$
, 求 y' .

解
$$y' = 3 \cdot 2^{3x} \cdot \ln 2 \cdot \ln(2x)$$
。。。4分 + $\frac{2^{3x}}{x} - \frac{x}{\sqrt{1+x^2}}$ 。。。4分

三、(10 分) 设
$$\begin{cases} x = t^3 + t \\ y = \frac{3}{4}t^4 + t^3 + \frac{1}{2}t^2 + t \end{cases}$$
 且 $t = t_0$ 时, $dy = 2dx$, 试求 t_0 .

解
$$\frac{dy}{dt} = 3t^3 + 3t^2 + t + 1 = (t+1)(3t^2 + 1), \quad \frac{dx}{dt} = 3t^2 + 1.$$
 。 。5分 $\frac{dy}{dt} = t + 1$ 从而 $t_0 + 1 = 2$ $t_0 = 1$ 。 。 5分

四、(8分) 求微分方程 $y^{(4)} + 5y'' - 36y = 0$ 的通解。

解: 方程的特征方程为 $\lambda^4 + 5\lambda^2 - 36 = 0 \Rightarrow (\lambda^2 + 9)(\lambda^2 - 4) = 0$,.......4 分

可得特征根为 $\lambda_1 = -2$, $\lambda_2 = 2$, $\lambda_3 = 3i$, $\lambda_4 = -3i$, 于是原方程的通解为

$$y = C_1 e^{2x} + C_2 e^{-2x} + C_3 \cos 3x + C_4 \sin 3x$$
 4 \(\frac{1}{2}\)

性。

$$\lim_{x \to -1^+} f(g(x)) = 1, \lim_{x \to -1^-} f(g(x)) = -1, \lim_{x \to 1^+} f(g(x)) = -1, \lim_{x \to 1^-} f(g(x)) = 1,$$

所以 $x = \pm 1$ 是 f(g(x)) 的第一类间断点,其余各处 f(g(x)) 处处连续。。。。。 5 分

六、(8分) 求
$$\int \frac{x+3}{x^2-5x+6} dx$$

七、(8分) 验证极限 $\lim_{x\to +\infty} \frac{1+x+\sin x\cos x}{x-\sin x\cos x}$ 存在,但不能用洛比达法则得出.

证明 因为
$$\lim_{x \to +\infty} \frac{1+x+\sin x \cos x}{x-\sin x \cos x} = \lim_{x \to +\infty} \frac{\frac{1}{x}+1+\frac{\sin x \cos x}{x}}{1-\frac{1}{x}\sin x \cos x} = 1 \dots 4$$
 分

但
$$\lim_{x \to +\infty} \frac{\left(1 + x + \sin x \cos x\right)'}{\left(x - \sin x \cos x\right)'} = \lim_{x \to +\infty} \frac{1 + \cos 2x}{1 - \cos 2x}$$
 不存在

故 $\lim_{x\to +\infty} \frac{1+x+\sin x\cos x}{x-\sin x\cos x}$ 存在,但极限不能用洛比达法则得出......4 分

八、(8分) 求
$$\int_a^b \frac{dx}{\sqrt{(x-a)(b-x)}} (a < b).$$

解: 因为
$$x = a, x = b$$
 是瑕点,并且 $\lim_{x \to a^+} (x - a)^{\frac{1}{2}} \frac{1}{\sqrt{(x - a)(b - x)}} = \frac{1}{\sqrt{b - a}}$

$$\lim_{x\to b^{-}} (b-x)^{\frac{1}{2}} \frac{1}{\sqrt{(x-a)(b-x)}} = \frac{1}{\sqrt{b-a}}$$
, 所以原积分收敛。。。。。。 4 分

原式 =
$$\int_a^b \frac{dx}{\sqrt{(\frac{b-a}{2})^2 - (x - \frac{a+b}{2})^2}}$$
, \diamondsuit $x - \frac{a+b}{2} = \frac{b-a}{2} \sin t$

原式 =
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\frac{b-a}{2}\cos t} \cdot \frac{b-a}{2} \cos t dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dt = \pi \cdot \cdot \cdot \cdot \cdot \cdot \cdot + \mathcal{H}$$

九、(8分) 判断函数
$$y = \frac{x}{1+x}$$
 的单调性,并证明 $\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$.

解 函数
$$y = \frac{x}{1+x}$$
的定义域 $(-\infty, -1)$ 及 $(-1, +\infty)$

$$y' = \frac{1}{(1+x)^2} > 0$$
 故在 $(-\infty, -1)$ 及 $(-1, +\infty)$ 内 $y = \frac{x}{1+x}$ 单调增4分

$$\Leftrightarrow x_1 = |a+b|, x_2 = |a| + |b|, \text{ Mul}_1 \le x_2$$

$$\therefore \frac{|a+b|}{1+|a+b|} \le \frac{|a|+|b|}{1+|a|+|b|} = \frac{|a|}{1+|a|+|b|} + \frac{|b|}{1+|a|+|b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|} \cdots 4$$

十、(8 分)设 $f(x) = [\varphi(x) - \varphi(0)] \ln(1 + 2x), g(x) = \int_0^x \frac{t}{1 + t^3} dt$, 其中 $\varphi(x)$ 在 x = 0 处可导,且 $\varphi'(0) = 1$,证明 f(x) 与 g(x) 为 $x \to 0$ 时的同阶无穷小。

证明
$$\lim_{x \to 0} \frac{g(x)}{x^2} = \lim_{x \to 0} \frac{\frac{x}{1+x^3}}{2x} = \frac{1}{2} \cdot \cdot \cdot \cdot \cdot \cdot 4$$

$$\therefore \lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f(x)}{x^2} \cdot \frac{x^2}{g(x)} = 2 \lim_{x \to 0} \frac{\phi(x) - \phi(0)}{x} \cdot \frac{\ln(2x+1)}{x} = 2 \cdot \phi'(0) \cdot 2 = 4$$

 $\therefore f(x)$ 与g(x)为同阶无穷小 $(x \to 0)$ 4 分

十一、 $(8 \, f)$ 求微分方程 xdy + (x-2y)dx = 0 的一个解 y = y(x),使得由曲线 y = y(x) 与直线 x = 1, x = 2 以及 x 轴所围成的平面图形绕 x 轴旋转一周的旋转体体积最小。

解: xdy + (x-2y)dx = 0 整理成 $\frac{dy}{dx} = 2\frac{y}{x} - 1$ 为一阶线性非齐次方程,可得通解为

$$y = Ce^{\int_{x}^{2} dx} + e^{\int_{x}^{2} dx} \int_{x}^{2} -e^{-\int_{x}^{2} dx} dx = x + Cx^{2} \cdot \cdot \cdot \cdot \cdot \cdot 4$$

旋转体体积为 $V(C) = \pi \int_{1}^{2} [x + Cx^{2}]^{2} dx = \pi \left[\frac{7}{3} + \frac{15}{2}C + \frac{31}{5}C^{2} \right]$,则

$$V'(C) = \pi(\frac{62}{5}C + \frac{15}{2}) = 0 \Rightarrow C = -\frac{75}{124}$$
 , $\exists V''(C) = \frac{62}{5}\pi > 0$, $\exists V(-\frac{75}{124})$ 为极

小值,且为唯一极小值,因此为最小值,所以所求曲线为 $y = x - \frac{75}{124} x^2$ 4 分

十二、(8 分) 设 f(x) 在 $[0,\frac{\pi}{2}]$ 上连续,在 $(0,\frac{\pi}{2})$ 内可导,且 $f(\frac{\pi}{2})=0$,证明 存在一点 $\xi \in (0,\frac{\pi}{2})$,使 $f(\xi)+\tan \xi \cdot f'(\xi)=0$.

证明 令 $F(x) = f(x)\sin x$,则 F(x) 在 $[0,\frac{\pi}{2}]$ 连续,在 $(0,\frac{\pi}{2})$ 内可导,又因 $f(\frac{\pi}{2}) = 0$,则 $F(0) = F(\frac{\pi}{2}) = 0$,即 F(x) 在 $[0,\frac{\pi}{2}]$ 上满足罗尔定理的条件,。。。。。。 4 分

则至少存在 $\xi \in (0, \frac{\pi}{2})$, 使 $F'(\xi) = 0$, 而 $F'(x) = f'(x)\sin x + f(x)\cos x$, 即