Chapter 03 Digital Logic System

Boolean Algebra

Inventor : George Boole

Book : An Investigation of the Laws of Thought

Theory : Logic>>>> Mathematical Expression

Basic : $conjunction \wedge$,

disjunction V,

negation -

Constants/ Variable: 0 or 1

Logical Addition (OR, conjunction \land)

$$0 + 0 = 0$$

$$0 \quad + \quad 1 \quad = \quad 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

Logical Multiplication (AND, disjunction \vee)

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

Logical Conversion (NOT, $negation \neg$)

A NOT
$$A = \overline{A}$$

Commutative Law

- (a) A+B=B+A
- (b) AB = BA

Associate Law

- (a) (A + B) + C = A + (B + C)
- (b) (A B) C = A (B C)

Distributive Law

- (a) A(B+C) = AB + AC
- (b) A + (B C) = (A + B) (A + C)

Identity Law

- (a) A + A = A
- (b) AA = A
- (c) $AB + A\overline{B} = A$
- (d) $(A+B)(A+\overline{B}) = A$

Redundance Law

- (a) A + AB = A
- (b) A(A + B) = A
- (c) $A + \overline{A} B = A + B$
- (d) $A(\overline{A} + B) = AB$

$$A + A = A$$
 $A + 1 = 1$
 $A + 0 = A$
 $A + \bar{A} = 1$
 $\bar{A} + 1 = 1$
 $\bar{A} + 0 = 0$

$$A * A = A$$
 $A * 1 = 1$
 $A * 0 = A$
 $A * \bar{A} = 1$
 $\bar{A} * 1 = 1$
 $\bar{A} * 0 = 0$

$$\overline{\overline{A}} = A$$

De Morgan's Law

Two Variables

i)
$$\overline{A+B}$$
 = $\overline{A}*\overline{B}$

ii)
$$\overline{A*B}$$
 = $\overline{A}+\overline{B}$

Three Variables

i)
$$\overline{A+B+C} = \overline{A}*\overline{B}*\overline{C}$$

ii)
$$\overline{A*B*C} = \overline{A} + \overline{B} + \overline{C}$$

Proof of
$$\overline{A+B}$$
 = $\overline{A}*\overline{B}$

$$L.H.S = \overline{A+B} =$$

A	В	A+B	$\overline{A+B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

$$R.H.S = \overline{A} * \overline{B} =$$

A	В	\overline{A}	\overline{B}	$\overline{A}*\overline{B}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

Proof of $\overline{A*B} = \overline{A} + \overline{B}$

 $L.H.S = \overline{A*B} =$

A	В	A*B	$\overline{A*B}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

 $R.H.S = \overline{A} + \overline{B} =$

A	В	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Proof of
$$\overline{A+B+C} = \overline{A}*\overline{B}*\overline{C}$$

L.H.S
$$= \overline{A + B + C} = \begin{bmatrix} A & B & C & A + B + C & \overline{A + B + C} \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

R.H.S
$$= \overline{A} * \overline{B} * \overline{C} =$$

	•					
A	В	C	\overline{A}	\overline{B}	\overline{C}	$\overline{\underline{A}} * \overline{B} *$
						\overline{C}
0	0	0	1	1	1	1
0	0	1	1	1	0	0
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

 $L.H.S = \overline{A*B*C} =$

A	В	С	A*B*C	$\overline{A*B*C}$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

 $R.H.S = \overline{A} + \overline{B} + \overline{C} =$

A	В	С	\overline{A}	\overline{B}	\overline{C}	$\overline{A} + \overline{B} + \overline{C}$
0	0	0	1	1	1	1
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	1	0	0	1
1	0	0	0	1	1	1
1	0	1	0	1	0	1
1	1	0	0	0	1	1
1	1	1	0	0	0	0

Logic Gate

- 1. Electronic Circuit
- 2. Implement Boolean functions practically

3.

Value	Voltage Range
0	+0V to +0.8 V
1	+2V to +5V
Not Assigned	0.8V to +2V

Types of Logic gates

Logic Gates are classified in two categories. These are

1. Basic Logic Gates

a)	NOT	Logic Gate	(Logical Conversion)
b)	AND	Logic Gate	(Logical Multiplication)
c)	OR	Logic Gate	(Logical addition)

2. Combined Logic Gates

a)	NAND	Logic Gate	(AND + NOT)
b)	NOR	Logic Gate	(OR + NOT)
c)	XOR	Logic Gate	(AND +OR+ NOT)
d)	XNOR	Logic Gate	(AND +OR+ NOT)

Basic Logic Gates

NOT gate

ইহা একটি Basic Logic গেইট।এর একটিমাত্র Input এবং একটিমাত্র Output আছে। ইহার দ্বারা Logical Conversion করা হয়।

যদি A Input হয়, তবে Output হবে X=NOT $A=\overline{A}$ ।

Truth Table

INPUT	OUTPUT
A	$X = \overline{A}$
0	1
1	0

Symbol

Result discussion:

Input 1 হলে Output 0 হবে। অন্যথায় Input 0 হলে Output 1 হবে।

AND gate

ইহা একটি Basic Logic গেইট।এর দু ইবা ততোধিক Input এবং একটিমাত্র Output আছে। ইহার দ্বারা Logical Multiplication করা হয়।

যদি A, B Input হয়, তবে Output হবে X=A AND B=A.B।

Truth Table

INF	PUT	OUTPUT
A	В	X=A.B
0	0	0
0	1	0
1	0	0
1	1	1

Symbol

Result discussion:

সকল Input 1 হলে Output 1 হবে। অন্যথায় Output 0 হবে।

OR gate

ইহা একটি Basic Logic গেইট।এর দু ইবা ততোধিক Input এবং একটিমাত্র Output আছে। ইহার দ্বারা Logical Addition করা হয়।

যদি A, B Input হয়, তবে Output হবে X=A OR B=A+B \mid

Truth Table

INF	PUT	OUTPUT
A	В	X=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Symbol

Result discussion:

এক বা একাধিক Input $\,1\,$ হলে Output $\,1\,$ হবে । অন্যথায় Output $\,0\,$ হবে ।

Combined Logic Gates

NAND gate

ইহা একটি Combined Logic গেইট।এর দু ইবা ততোধিক Input এবং একটিমাত্র Output আছে। ইহা AND ও NOT Logic গেইট দ্বারা গঠিত।

যদি A, B Input হয়, তবে Output হবে X=NOT (A AND B) = \overline{AB} ।

Truth Table

INF	PUT	OUTPUT
A	В	$X = \overline{AB}$
0	0	1
0	1	1
1	0	1
1	1	0

Symbol

Result discussion:

এক বা একাধিক Input 0 হলে Output 1 হবে। অন্যথায় Output 0 হবে।

NOR gate

ইহা একটি Combined Logic গেইট।এর দু ইবা ততোধিক Input এবং একটিমাত্র Output আছে। ইহা OR ও NOT Logic গেইট দ্বারা গঠিত।

যদি A, B Input হয়, তবে Output হবে X=NOT (A OR B) = $\overline{A+B}$ |

Truth Table

INF	PUT	OUTPUT
A	В	$X = \overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

Symbol

Result discussion:

সকল Input 0 হলে Output 1 হবে। অন্যথায় Output 0 হবে।

X-OR gate

ইহা একটি Combined Logic গেইট।এর দু ইবা ততোধিক Input এবং একটিমাত্র Output আছে। ইহা AND, OR ও NOT Logic গেইট দ্বারা গঠিত। একে Excusive OR বলা হয়।

যদি A, B Input হয়, তবে Output হবে $X=A XOR B = A \oplus B = \overline{A}B + A\overline{B} + A\overline{B}$

Truth Table

INF	PUT	OUTPUT
A	В	$X = A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Symbol

Result discussion:

Input একই না (আলাদা) হলে Output 1 হবে। অন্যথায় Output 0 হবে।

X-NOR gate

ইহা একটি Combined Logic গেইট।এর দু ইবা ততোধিক Input এবং একটিমাত্র Output আছে। ইহা AND, OR ও NOT Logic গেইট দ্বারা গঠিত। একে Excusive NOR বলা হয়।

যদি A, B Input হয়, তবে Output হবে X=NOT (A XOR B) = $\overline{A \oplus B} = AB + \overline{AB}$

Truth Table

INF	PUT	OUTPUT
A	В	$X = A \oplus B$
0	0	1
0	1	0
1	0	0
1	1	1

Symbol

Result discussion:

সকল Input একই হলে Output 1 হবে। অন্যথায় Output 0 হবে।

Logic Gate Summary

SL#	Logic Gate	Input	Symbol	Output	Remark
1	NOT	A	A NOT	$X = \overline{A}$	Only 01 Input
2	AND	A,B	A B AND AB	X= A+B	2 or more Input
3	OR	A,B	A B OR	X= A.B	
4	NAND	A,B	A B NAND	$X = \overline{AB}$	
5	NOR	A,B	A B NOR	$X = \overline{A + B}$	
6	XOR	A,B	A B B EOR	$X = A \oplus B = \overline{AB + AB}$	
7	XNOR	A,B	A B A⊕B	$X = \overline{A \oplus B} = AB + \overline{AB} $	

Universality NAND Logic

NAND gates are so-called "universal gates" that can be combined to form any other kind of logic gate.

NAND gate দারা NOT gate বাস্তবায়ন

$$\mathbf{Q} = \overline{A * A} = \overline{A}$$

NAND gate দারা AND gate বাস্তবায়ন

$$Q = \overline{(A * B) * \overline{(A * B)}} = \overline{A * B}$$

NAND gate দারা OR gate বাস্তবায়ন

$$\mathbf{Q} = \overline{\overline{A} * \overline{B}} = \overline{\overline{A}} + \overline{\overline{B}} = A + B$$

Universality Of NOR logic

NOR gates are so-called "universal gates" that can be combined to form any other kind of logic gate.

NOR gate ছারা NOT gate বাস্তবায়ন

NOR gate দারা OR gate বাস্তবায়ন

NOR gate দারা AND gate বাস্তবায়ন

Half Adder

ইহা Binary যোগের বর্তনী।এর দুইটি Input এবং দুইটি Output আছে। ইহা AND, OR ও NOT Logic গেইট দ্বারা গঠিত।

যদি A, B Input হয়, তবে Output হবে Sum(S) ও Carry(C) ।

Truth Table

INP	UTS	OUTPUTS				
A	В	SUM	CARRY			
0	0	0	0			
0	1	1	0			
1	0	1	0			
1	1	0	1			

SUM =
$$\overline{AB} + A\overline{B} = A \oplus B$$

$$CARRY = AB$$

Full Adder

ইহা Binary যোগের বর্তনী।এর তিনটি Input এবং দুইটি Output আছে। ইহা AND, OR ও NOT Logic গেইট দ্বারা গঠিত।

যদি A, B,C Input হয়, তবে Output হবে Sum(S) ও Carry(Cout) ।

Truth Table

	Input		Output		
A	В	С	SUM	CARRY (C _{OUT})	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

SUM =
$$\overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

= $\overline{A}(\overline{BC} + B\overline{C}) + A(\overline{BC} + BC)$
= $\overline{A}(B \oplus C) + A(\overline{B \oplus C})$
= $A \oplus (B \oplus C)$
= $A \oplus B \oplus C$
CARRY (C_{OUT}) = $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
= $C(\overline{AB} + \overline{AB}) + \overline{AB(C} + C)$
= $C(A \oplus B) + \overline{AB}$

Decoder

```
# Decode (কোডমুক্ত) করে
```

- # Binary (B_2) to Decimal (B_{10})
- # Used in Output Device
- # Equation $n \times 2^n$ [Input n, Output 2^n]
- # Example: 2×4 , 3×8 , 4×16 ,

3×8 Line Decoder

	Cod	ile			D	ecode	Outp	out		
Α	В	С	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	D_4	\mathbf{D}_5	D ₆	\mathbf{D}_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1
	3 to 8 line Decoder Truth table									

3 to 8 line Decoder Truth table

 $D_0 = \overline{ABC}$

 $D_1 = \overline{ABC}$

 $D_2 = \overline{A}B\overline{C}$

 $D_3 = \overline{A}BC$

 $D_4 = A\overline{B}\overline{C}$

 $D_5 = A\overline{B}C$

 $D_6 = AB\overline{C}$

 $D_7 = ABC$

Encoder

- # Encode/ Code (কোডযুক্ত) করে
- # Decimal (B_{10}) to Binary (B_2)
- # Used in Input Device
- # Equation $2^n \times n$ [Input 2^n , Output n]
- # Example: 4×2 , 8×3 , 16×4 ,

ইনপুট সংকেত আউটপুট সংকেত								5		
I ₀	I_1	I_2	I_3	I_4	I_5	I ₆	I ₇	I_{θ}	I ₁	I_2
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

বুলিয়ান সমীকরণ:

$$O_0 = I_4 + I_5 + I_6 + I_7$$

$$O_1 = I_2 + I_3 + I_6 + I_7$$

$$O_2 = I_1 + I_3 + I_5 + I_7$$

q

Flip-Flop

- # Basic Memory Element
- # Unit of memory
- # It can store 1 or 0 (1 bit)
- # Implemented by NAND or NOR Gate
- # Output Q, \overline{Q}
- # Ex : S-R, J-K, T, D
- # Crossed Coupled, feedback

S-R (SET- RESET)

Truth Table

Inj	put	Output
S	R	$Qor\overline{Q}$
0	0	$Q = \overline{Q} = 1$, Toggle
0	1	$Q=1, \overline{Q}=0$
1	0	$Q=0,\overline{Q}=1$
1	1	Unchanged