习题 7.4

一个滤波器的抽头延迟线的输出为 $y(k) = a^T x(k)$,其中 $a = [a_0, a_1, ..., a_n]^T$, $x(k) = [x(k), x(k-1), ..., x(k-n)]^T$ 。令 $R_x = E\{xx^T\} = Q\Sigma Q^T$,其中 $\Sigma = \text{diag}(\lambda_0, \lambda_1, ..., \lambda_n)$ 。如果输出序列 $\{y(k)\}$ 的均方值 $J_a = \frac{1}{2}E\{y^2(k)\}$ 。证明以下结结果:

(1)在约束条件 $\mathbf{a}^T \mathbf{a} = 1$ 下,使 $J_{\mathbf{a}}$ 最小化等价于 $J_{\mathbf{w}} = \frac{1}{2} \sum_{i=0}^n w_i^2 \lambda_i$ 的最小化,其中 $\mathbf{w} = [w_0, w_1, ..., w_n]^T$, $\sum_{i=0}^n w_i^2 = 1$,并且 $\mathbf{w} = \mathbf{Q}^T \mathbf{a}$ 。

解答:

首先,根据定义,输出均方值 J_a 可以表示为:

$$J_{a} = \frac{1}{2}E\{y^{2}(k)\}$$

$$= \frac{1}{2}E\{a^{T}xx^{T}a\}$$

$$= \frac{1}{2}a^{T}E\{xx^{T}\}a$$

$$= \frac{1}{2}a^{T}R_{x}a$$

其中 $R_x = Q\Sigma Q^T$ 。将 R_x 代入此表达式,我们有:

$$J_{a} = \frac{1}{2} \boldsymbol{a}^{T} \boldsymbol{Q} \boldsymbol{\Sigma} \boldsymbol{Q}^{T} \boldsymbol{a}$$

由于 $\mathbf{w} = \mathbf{Q}^T \mathbf{a}$, 而 \mathbf{Q} 是正交矩阵 (即 $\mathbf{Q}^T = \mathbf{Q}^{-1}$), 则 $\mathbf{a} = \mathbf{Q} \mathbf{w}$ 代入后, $J_{\mathbf{a}}$ 转化为:

$$J_{a} = \frac{1}{2} \mathbf{w}^{T} \mathbf{Q}^{T} \mathbf{Q} \mathbf{\Sigma} \mathbf{Q}^{T} \mathbf{Q} \mathbf{w}$$
$$= \frac{1}{2} \mathbf{w}^{T} \mathbf{\Sigma} \mathbf{w}$$
$$= \frac{1}{2} \sum_{i=0}^{n} w_{i}^{2} \lambda_{i}$$
$$= J_{w}$$

对于约束
$$a^T a = 1$$
 , 将 $a = Q w$ 代入:
$$w^T Q^T Q w = 1$$

$$\mathbf{w}^T \mathbf{w} = 1$$

$$\sum_{i=0}^n w_i^2 = 1$$

(2)若取 $\mathbf{w} = [\pm 1,0,...,0]^T$,则使 J_a 最小化的最优向量为 $a = \pm a_0$,其中 a_0 是矩阵 R_x 相对于最小特征值 λ_0 的特征向量。

解答:

对于约束优化问题,

$$\min_{\mathbf{w}} \frac{1}{2} \sum_{i=0}^{n} w_i^2 \lambda_i$$
 Subject to $\sum_{i=0}^{n} w_i^2 = 1$

由于 λ_0 是最小特征值,显然取 $\mathbf{w} = [\pm 1,0,...,0]^T$, $J_{\mathbf{w}}$ 最小。

由(1)中证明的两个约束优化问题的等价性,当 $\mathbf{w} = [\pm 1,0,...,0]^T$ 时,对应的 \mathbf{a} 可使得 J_a 取到最小值。

不妨将 Q 写成:

$$Q = \begin{bmatrix} a_0 & a_1 & \cdots & a_n \end{bmatrix}$$

其中 a_0 , a_1 , …, a_n 分别是 R_x 相对于特征值 λ_0 , λ_1 , …, λ_n 的特征向量。

$$a = Qw = \begin{bmatrix} a_0 & a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} \pm 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \pm a_0$$