Package 'pkmon'

August 28, 2023

Type Package

Title Least-Squares Estimator under k-Monotony Constraint for Discrete Functions
Version 1.1
Date 2023-08-28
Author Jade Giguelay
Maintainer Francois Deslandes <francois.deslandes@inra.fr></francois.deslandes@inra.fr>
Description We implement two least-squares estimators under k-monotony constraint using a method based on the Support Reduction Algorithm from Groene-boom et al (2008) <doi:10.1111 j.1467-9469.2007.00588.x="">. The first one is a projection estimator on the set of k-monotone discrete functions. The second one is a projection on the set of k monotone discrete probabilities. This package provides functions to generate samples from the spline basis from Lefevre and Loisel (2013) <doi:10.1239 1378401239="" jap="">, and from mixtures of splines.</doi:10.1239></doi:10.1111>
License CC BY 4.0
NeedsCompilation no
Repository CRAN
Date/Publication 2023-08-28 09:10:02 UTC
R topics documented: pkmon-package 2 BaseNorm 3 Delta 6 estMonotone 3 kKnot 3 pEmp 3 Spline 10
Index 12

2 pkmon-package

pkmon-package

Least-squares estimator under k-monotony constraint for discrete functions

Description

Description: This package implements two least-squares estimators under k-monotony constraint using a method based on the Support Reduction Algorithm from Groeneboom et al (2008). The first one is a projection estimator on the set of k-monotone discrete functions. The second one is a projection on the set of k-monotone discrete probabilities. This package provides functions to generate samples from the spline basis from Lefevre and Loisel (2013), and from mixtures of splines.

Author(s)

Jade Giguelay

References

Giguelay J. (2016) Estimation of a discrete distribution under k-monotony constraint, *in revision*, (arXiv:1608.06541)

Lefevre C., Loisel S. (2013) <DOI:10.1239/jap/1378401239> On multiply monotone distributions, continuous or discrete, with applications, *Journal of Applied Probability*, **50**, 827–847.

Groeneboom P., Jongbloed G. Wellner J. A. (2008) <DOI:10.1111/j.1467-9469.2007.00588.x> The Support Reduction Algorithm for Computing Non-Parametric Function Estimates in Mixture Models, *Scandinavian Journal of Statistics*, **35**, 385–399

See Also

pMonotone, fMonotone

pkmon-package 3

```
x.limits=c(0, max(supp+1, phat1$Spi+1, phat2$Spi+1));
y.limits=range(p, ptilde$freq, phat1$p, phat2$p);
plot(NULL, xlim=x.limits, ylim=y.limits, xlab="Counts", ylab="Frequencies");
points(0:supp, p, pch=16, col=1, lwd=2);
points(ptilde$supp, ptilde$freq, pch=4, col=2, lwd=2);
points(0:max(phat1$Spi), phat1$p, pch=8, col=3, lwd=2);
points(0:max(phat2$Spi), phat2$p, pch=2, col=4, lwd=2);
legend("topright", pch=c(16, 4, 8, 2), col=c(1, 2, 3, 4),
legend=c("p", expression(tilde("p")), expression(hat("p")*" - k = 2"),
expression(hat("p")*" - k = 3")));
######################
# Example 2
# mixture of 3 splines Q_j^3 and for k=4 and k=3
n=30;
k1=4;
k2=3;
1=3;
supp=c(5, 10, 20);
prob=c(0.5, 0.3, 0.2);
p=dmixSpline(supp, k=1, prob=prob);
X=rmixSpline(n=n, supp, k=1, prob=prob);
ptilde=pEmp(X);
phat1=pMonotone(ptilde$freq, k=k1);
phat2=pMonotone(ptilde$freq, k=k2);
x.limits=c(0, max(supp+1, phat1$Spi+1, phat2$Spi+1));
y.limits=range(p, ptilde$freq, phat1$p, phat2$p);
plot(NULL, xlim=x.limits, ylim=y.limits, xlab="Counts", ylab="Frequencies");
points(0:max(supp), p, pch=16, col=1, lwd=2);
points(ptilde$supp, ptilde$freq, pch=4, col=2, lwd=2);
points(0:max(phat1$Spi), phat1$p, pch=8, col=3, lwd=2);
points(0:max(phat2$Spi), phat2$p, pch=2, col=4, lwd=2);
legend("topright", pch=c(16, 4, 8, 2), col=c(1, 2, 3, 4),
legend=c("p", expression(tilde("p")), expression(hat(p)* " - k = 4"),
expression(hat(p)* " - k = 3")));
######################
# Example 3
# Poisson density
n=30;
k1=2;
k2=3;
supp=10;
p=dpois(0:supp, lambda=1);
X=rpois(n, lambda=1);
ptilde=pEmp(X);
phat1=pMonotone(ptilde$freq, k=k1);
phat2=pMonotone(ptilde$freq, k=k2);
x.limits=c(0, max(supp, phat1$Spi+1, phat2$Spi+1));
```

4 pkmon-package

```
y.limits=range(p, ptilde$freq, phat1$p, phat2$p);
plot(NULL, xlim=x.limits, ylim=y.limits, xlab="Counts", ylab="Frequencies");
points(0:max(supp), p, pch=16, col=1, lwd=2);
points(ptilde$supp, ptilde$freq, pch=4, col=2, lwd=2);
points(0:max(phat1$Spi), phat1$p, pch=8, col=3, lwd=2);
points(0:max(phat2$Spi), phat2$p, pch=2, col=4, lwd=2);
legend("topright", pch=c(16, 4, 8, 2), col=c(1, 2, 3, 4),
       legend=c("p", expression(tilde("p")), expression(hat(p)* " - k = 2"),
                expression(hat(p)* " - k = 3"));
## Not run:
#######################
# Simulation for comparing ptilde and pHat (p is 3-monotone, k=3)
#
#OUTPUT
#
# cvge : percentage of non-convergence of the algorithm
# r.emp : L2-risk for the empirical estimator
# r.Hat : L2-risk for the estimator under k-monotony constraint
nSim=500;
n=30;
k=3;
1=3;
supp=20;
p=dSpline(supp, k=1);
result <- matrix(nrow=nSim,ncol=3);</pre>
dimnames(result)[[2]] <- c("cvge","r.emp","r.Hat");</pre>
for (i in 1:nSim) {
  X=rSpline(n=n, supp, k=1);
  ptilde=pEmp(X);
  phat=pMonotone(ptilde$freq, k=k);
  m <- max(supp+1,length(ptilde$freq)+1,phat$Spi+1)</pre>
  pV=c(p,rep(0,m-length(p)))
  pHat=c(phat$p,rep(0,m-length(phat$p)))
  ptilde=c(ptilde$freq,rep(0,m-length(ptilde$freq)))
  result[i,] <- c(phat$cvge,sum((pV-ptilde)**2),</pre>
                  sum((pV-pHat)**2))
}
apply(result,2,mean)
#Example with set.seed(0)
           r.emp
                        r.Hat
#0.000000000 0.030682552 0.004984899
## End(Not run)
```

BaseNorm 5

BaseNorm

Normalized spline basis

Description

Computes the k-monotone discrete splines from Lefevre and Loisel (2013).

Usage

```
BaseNorm(k, J)
```

Arguments

k Degree of monotony

J maximum support of the splines

Value

matrix Q with J+1 rows and J+1 columns with $Q(i,j)=Q_j^k(i-1)=C_{j-i+k-1}^{k-1}$, where C represents the binomial coefficient.

Author(s)

Jade Giguelay

References

Giguelay, J., (2016), Estimation of a discrete distribution under k-monotony constraint, *in revision*, (arXiv:1608.06541)

Lefevre C., Loisel S. (2013) <DOI:10.1239/jap/1378401239> On multiply monotone distributions, continuous or discrete, with applications, *Journal of Applied Probability*, **50**, 827–847.

See Also

rSpline, dSpline, rmixSpline, dmixSpline

```
# Computing 3-monotone splines with maximum support 8
Q=BaseNorm(3, 8)
matplot(Q, type="1", main="3-monotone splines with maximum support 8");
```

6 Delta

Delta

Discrete laplacian

Description

Computes the laplacians of a discrete function

Usage

```
Delta(k, L, p)
```

Arguments

k Maximum order of the laplacian

L Support of the function

p Discrete function represented as a vector

Value

Returns a matrix with the laplacians $(-1)^j \Delta^j(p(l))$ of vector p for j in $1, \ldots, k$ and l in $0, \ldots, L$.

Author(s)

Jade Giguelay

References

Knopp K. (1925), <DOI:10.1007/BF01479598> Mehrfach monotone Zahlenfolgen, *Mathematische Zeitschrift*, **22**, 75–85

Giguelay, J., (2016), Estimation of a discrete distribution under k-monotony constraint, *in revision*, (arXiv:1608.06541)

See Also

kKnot

```
p=dSpline(k=3, supp=20)
M=Delta(3, 20, p)
```

estMonotone 7

estMonotone	Estimators of discrete probabilities under k-monotony constraint

Description

Estimators of discrete probabilities under k-monotony constraint. Estimation can be done on the set of k-monotone functions or on the set of k-monotone probabilities.

Usage

```
pMonotone(ptild, t.zero = 1e-10, t.P = 1e-08, max.sn = NULL, k, verbose = FALSE) fMonotone(ptild, t.zero = 1e-10, t.P = 1e-08, max.sn = NULL, k, verbose = FALSE)
```

Arguments

ptild	Empirical estimator
t.zero	Threshold for the precision of the directionnal derivatives. (see OUTPUT below)
t.P	Threshold for the precision on the stopping criterion. (see OUTPUT below)
max.sn	The maximum support for the evaluation of the estimator
k	Degree of monotony
verbose	if TRUE, print for each iteration on the maximum support : pi, Psi and sumP (see OUTPUT below)

Details

The thresholds t.P and t.zero are used for the precision in the algorithm: in Step one (See REF-ERENCES below) the algorithm computes the directionnal derivatives of the current estimator and stops if all the directionnal derivarives are null that is to say if they are smaller than t.zero. In Step two (See REFERENCES below) the algorithm computes a stopping criterion and stops if and only if the stopping criterion is verified that is to say if some quantities are non-negative that is to say bigger than -t.P.

Value

cvge	cvge = 0 if the criterion Psi decreases with the support of pi. $cvge = 1$ if Psi increases. $cvge = 2$ if maximum number of iterations reached
Spi	Support of the positive measure pi at the last iteration
pi	Values of the positive measure pi at the last iteration
р	Values of pHat
Psi	Scalar value of the criterion to be minimised
sumP	sum(pHat) at convergence
history	Data frame with components
L	The maximum of the support of pi
Psi	Value of the criterion for the value L
SumP	Value of sum(pHat)

8 kKnot

Author(s)

Jade Giguelay

References

Giguelay, J., (2016), Estimation of a discrete distribution under k-monotony constraint, *in revision*, (arXiv:1608.06541)

Groeneboom P., Jongbloed G. Wellner J. A. (2008) <DOI:10.1111/j.1467-9469.2007.00588.x> The Support Reduction Algorithm for Computing Non-Parametric Function Estimates in Mixture Models, *Scandinavian Journal of Statistics*, **35**, 385–399

See Also

```
pEmp, BaseNorm
```

Examples

```
x=rSpline(n=50, 20, k=4)
ptild=pEmp(x);
res=pMonotone(ptild$freq, k=4)
```

kKnot

k-Knot

Description

k-Knots of a discrete function.

Usage

```
kKnot(p, k)
```

Arguments

p Vector

k Degree of the knots

Details

An integer i is a k-knot of p if $\Delta^k p(i) > 0$, where Δ^k is the k-th Laplacian of the sequence p.

Value

Vector with the k-knots of p.

Author(s)

Jade Giguelay

pEmp 9

References

Knopp K. (1925), <DOI:10.1007/BF01479598> Mehrfach monotone Zahlenfolgen, *Mathematische Zeitschrift*, **22**, 75–85

Giguelay, J., (2016), Estimation of a discrete distribution under k-monotony constraint, *in revision*, (arXiv:1608.06541)

See Also

Delta

Examples

```
p=dmixSpline(c(5, 10, 20), k=3, c(0.5, 0.25, 0.25))
knots=kKnot(p, 3)
```

pEmp

Empirical estimator of a discrete function

Description

Empirical estimator of a discrete function

Usage

pEmp(X)

Arguments

Χ

A random sample from a discrete probability.

Details

The empirical estimator is defined as $p(j) = \sum_{i=1}^{n} \mathbf{1}_{x_j = j}$.

Value

support The points of the support of the estimator

count The counts of the sample freq The normalized counts

Author(s)

Jade Giguelay

```
x=rpois(100, lambda=0.3)
ptild=pEmp(x)
```

Spline Spline

C	1 4	
Sp	Τ1	ne

Random generation and distribution function of k-monotone densities

Description

Random generation and distribution function for the spline of the basis from Lefevre and Loisel (2013), and mixtures of splines.

Usage

```
rSpline(n=1, supp, k)
dSpline(supp, k)
rmixSpline(n=1, supp, k,prob)
dmixSpline(supp, k, prob)
```

Arguments

supp	Support of the spline, or vector of the supports of the splines for the mixture of splines
n	Number of random values to return
k	Degree of monotony
nnah	Vector of makakilities for the minture of collings

prob Vector of probabilities for the mixture of splines

Details

See BaseNorm for details on the spline basis.

Value

rSpline and rmixSpline generates random deviates from the splines and mixtures of splines. dSpline and dmixSpline gives the distribution function.

Author(s)

Jade Giguelay

References

Giguelay, J., (2016), Estimation of a discrete distribution under k-monotony constraint, *in revision*, (arXiv:1608.06541)

Lefevre C., Loisel S. (2013) <DOI:10.1239/jap/1378401239> On multiply monotone distributions, continuous or discrete, with applications, *Journal of Applied Probability*, **50**, 827–847.

See Also

pEmp

Spline 11

```
x=rSpline(n=100, 20, 3)
p=dSpline(20, 3)
xmix=rmixSpline(n=100, c(5, 20), 3, c(0.5, 0.5))
pmix=dmixSpline(c(5, 20), 3, c(0.5, 0.5))
par(mfrow=c(1, 2))
hist(x, freq=FALSE)
lines(p, col="red")
hist(xmix, freq=FALSE)
lines(pmix, col="red")
```

Index

```
* package
     pkmon-package, 2
\texttt{BaseNorm}, \, \textcolor{red}{\mathbf{5}}, \, \textcolor{red}{\mathbf{8}}, \, \textcolor{red}{\mathbf{10}}
Delta, 6, 9
{\tt dmixSpline}, {\color{red} 5}
dmixSpline (Spline), 10
dSpline, 5
dSpline (Spline), 10
estMonotone, 7
fMonotone, 2
fMonotone (estMonotone), 7
kKnot, 6, 8
pEmp, 8, 9, 10
pkmon (pkmon-package), 2
pkmon-package, 2
pMonotone, 2
pMonotone (estMonotone), 7
rmixSpline, 5
rmixSpline (Spline), 10
rSpline, 5
rSpline (Spline), 10
Spline, 10
```