	上海交通大	学 2014-20	15 第一学	期《矩阵理	星论》试卷(A)卷						
班组	及号	学号		名	成绩						
一. 单项选择题: (共 15 分,每题 3 分)											
1. n(≥ 2)阶实奇异矩阵A的特征多项式与最小多项式相等,则A的伴随矩阵											
列生	空间的维数为()									
A.	0	B. 1	C.	<i>n</i> -1	D. n						
2.	设 σ 是 n 维线性	生空间Ⅴ到自身	争的线性变	换,下列条件	牛中与其它三个条件	卡不					
同	的一个条件是	()									
Α.	σ是单映射		В.	$\dim(\operatorname{Im}(\sigma)$)=n						
		_			,						
C.	σ是一一对应	<u>7</u>	D.	σ适合条件	$\mathbf{\sigma}^n = 0$						
3.	设A是实的反对	寸称矩阵,则-	下列命题正	确的是()						
A.	e ^A 是实的反对	付称矩阵	В. е	A 是正交矩阵	<u>-</u>						
C.	cos A是实的	反对称矩阵	D. s	in A是实的对	讨称矩阵						
4. 设方阵A幂收敛到方阵B, 则下列说法											
1	$ \mathbf{B} = 0$		② B 是幂	等矩阵							
3	AB = BA = B		4 r(A)	$\geq r(\mathbf{B})$							
正在	确的有()个									
A.	1	B. 2	(C. 3	D. 4						
5.	设 <i>n</i> 维向量 x =	$=\frac{1}{\sqrt{n}}(1 1 \cdots$	$(1)^{\mathrm{T}}, n \geq$	2 , $\mathbf{B} = \mathbf{I} - \mathbf{I}$	xx ^T ,其中Ⅰ为单位矩	亘阵,					
	下列选项正确	V 1.2									

 $A. \quad \|\mathbf{B}\|_1 = 1 \qquad B. \quad \|\mathbf{B}\|_{\infty} = 1 \qquad C. \quad \|\mathbf{B}\|_2 = 1 \qquad D. \quad \|\mathbf{B}\|_F = 1$

题号	_	11	111	四	五	六	七
得分							
批阅人							

二. 填空题: (共15分,每题3分)

1. 设
$$\mathbf{e}^{\mathbf{A}} = \begin{pmatrix} \mathbf{e} & \mathbf{e}^2 - \mathbf{e} \\ \mathbf{0} & \mathbf{e}^2 \end{pmatrix}$$
,则 $\mathbf{A} = ($

- 2. 设n阶方阵 \mathbf{A} 的最小多项式为 $\lambda^k(\lambda-\lambda_1)\cdots(\lambda-\lambda_{n-k})$, 其中 $n\geq k\geq 2$, $\lambda_1,\lambda_2,\ldots,\lambda_{n-k}$ 全不为0, 则 dim $\mathbf{R}(\mathbf{A}^{k-1})=$ ().
- 3. 设 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$,矩阵 $\mathbf{sin}\mathbf{A}$ 的 \mathbf{Jordan} 标准形 $\mathbf{J_{sin}A} = ($
- 4. 矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$, A的 Cholesky 分解 $\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$, 则下三角矩阵 $\mathbf{L} = \mathbf{L}$
- 5. 设给定矩阵 $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$, 矩阵空间 $\mathbf{R}^{2\times2}$ 上线性变换 \mathbf{T} 为: $\mathbf{T}(\mathbf{X}) = k\mathbf{X} + \mathbf{A}\mathbf{X}\mathbf{B}$, $\forall \mathbf{X} \in \mathbf{R}^{2\times2}$. \mathbf{T} 是可逆变换当且仅当参数 \mathbf{k} 满足条件 ().

三. (本题 15分)

(1) 设V是有限维欧氏空间, $u \in V$ 是一个单位向量, V上线性变换 σ 定义为:

对任意
$$y \in V$$
, $\sigma(y) = y - a(y, u)u$,

这里(y,u)表示向量y和u之间的内积. 试求非0实数a, 使得 σ 是V上正交变换.

(2) 多项式空间 $\mathbf{R}[x]_3$ 中的内积定义如下:对任意 $f(x),g(x)\in\mathbf{R}[x]_3$,

 $(f(x),g(x))=\int_0^1 f(x)g(x)dx$. 试求 $\mathbf{R}[\mathbf{x}]_3$ 中向量 $\alpha=1$ 和 $\beta=x$ 的长度; 并求正实数k和单位向量 $\mathbf{u}\in\mathbf{R}[x]_3$,使得上述正交变换 σ 将向量 α 变成k β .

四.(本题 15分)

设
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 1 & 1 \\ -1 & 1 & 1 & -1 & -2 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix}$$

- (1) 求矩阵A的一个满秩分解LR, 使得L的第一列为矩阵A的最后一列, 并给出A的列空间R(A)的一组基;
- (2) 求A的左零化空间 $N(A^T)$ 的一组基;
- (3) 设**b** = $(1 \ 1 \ 1)^T$, 求向量**b** 在线性空间**R**(**A**)上的最佳近似.
- (4) 设 σ 是线性空间 R^4 上的正交投影变换,且满足 σ 的像空间 $Im(\sigma) = R(A)$,试求 σ 在标准基 e_1 , e_2 , e_3 , e_4 下的矩阵.

五.(本题 15分)

矩阵
$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 5 \\ 1 & -1 & -4 \\ -1 & -1 & 2 \end{pmatrix}$$
.

- (1) 求矩阵A的 Jordan 标准形J;
- (2) 试求可对角化矩阵D和幂零矩阵N,满足A = D + N,且DN = ND.
- (3) 计算**e**^{At};
- (4) 设 $\mathbf{x}(0) = (1 \ 2 \ 3)^{\mathrm{T}}$. 求定解问题 $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$ 的解.

六.(本题 15 分)

设 σ 是由线性空间 \mathbb{R}^m 到线性空间 \mathbb{R}^n 上的线性变换, 其中 $m \leq n$.

- (1) 试证: 存在 \mathbf{R}^m 到 \mathbf{R}^m 上的幂等变换 $\boldsymbol{\tau}$,及 \mathbf{R}^m 到 \mathbf{R}^n 上的单变换 $\boldsymbol{\phi}$,使得 $\boldsymbol{\sigma} = \boldsymbol{\phi} \cdot \boldsymbol{\tau}$.
- (2) 令m = 2, n = 4,线性变换 σ 为: $\sigma(x,y)^T = (x,y,2x,-y)^T$. 试求 \mathbf{R}^2 上一组标准正交基,及 \mathbf{R}^4 上一组标准正交基,使得线性变换 σ 在这两组基下的矩阵为对角线元素均非负的 4×2 对角矩阵.

七.(本题 10 分)

n阶方阵X的迹tr(X)是X的对角线上元素之和.

证明变换 $tr: X \to tr(X)$ 是线性空间 $M_n(R)$ 到R的满足性质: $\sigma(XY) = \sigma(YX)$ 及 $\sigma(I) = n$ 的唯一的线性变换.