Supervised Learning - I

M. Vazirgiannis

, LIX, École Polytechnique

September 2024

1 / 38 M. Vazirgiannis Supervised Learning - I

Outline

- Introduction to supervised learning
- K-nn
- Naïve Bayes
- Logistic Regression

Supervised Learning

Can we predict the price of a parcel based on its size (surface in $m\hat{2}$) ?

3 / 38 M. Vazirgiannis Supervised Learning - I

Supervised Learning

Can we predict the price of a parcel based on its size (surface in $m\hat{2}$) ?

4 / 38 M. Vazirgiannis Supervised Learning - I

Supervised learning

- $X = X_1, X_2, ..., X_p$: input variables (features)
- Y: "output" or target variable that we try to predict
- A pair (x_i, y_i) is called a training example, where:

$$x_i \in X = X_1 \times ... \times X_p$$
 and $y_i \in Y$

• The training set is a list of training examples:

$$\{(x_i, y_i) ; i = 1...m\}$$

- The supervised learning problem is formulated as:
 - o Given a training set,
 - Learn a function $h: X \to Y$ such that h(x) is "good" predictor for the corresponding value of y.

For historical reasons, the function h is called a *hypothesis*.

Supervised Learning – Performance evaluation

Goal: find a hypothesis $h: X \to Y$ minimizing

$$Error(h) = E_{X,Y}L(Y,h(X))$$

Classification (Y label values, i.e. Y=yes,no) - Error: 0-1 loss:

$$L(Y, h(X)) = 1(Y! = h(X))$$

Regression Y: number, i.e. $Y = stock_price - Error$: square loss:

$$L(Y, h(X)) = (Y - h(X))^2$$

Generative vs. Discriminative classifiers

- Generative algorithm
 - o Data generated by a distribution of feature
 - \circ Assume x features of an animal and y the animal genre (i.e cat, dog).
 - For unknown classification data x find the class maximizing the posterior p(y|x) based on Bayes rules

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Therefore

$$p(y|x) = argmax_y(p(x|y)p(y))$$

Generative vs. Discriminative classifiers

• Discriminative algorithm

- \circ Learn directly $p(y|x) \text{or learn mappings directly from the space of inputs X to the labels 0, 1$
- Do not care about how the data was generated simply categorizes a given vector
- o Generally discriminative classifiers are more effective better accuracy.

Some Classes of classifiers

- Class-conditional probabilistic based on $p(x \mid c_k)$
 - Naïve Bayes: simple, often effective in high dimensions
 - Parametric generative models, e.g., Gaussian (can be effective in low-dimensional problems: leads to quadratic boundaries in general)
- Regression-based $p(c_k \mid x)$ directly
 - Logistic regression: simple
 - Neural networks: non-linear extension of logistic regression

Some Classes of classifiers

- Discriminative models, focus on locating optimal decision boundaries
 - Linear discriminants: perceptron simple, sometimes effective.
 - Support vector machines: Generalization of linear discriminants, can be quite effective, computational complexity is an issue
 - Nearest neighbor: Simple, can scale poorly in high dimensions
 - Decision trees: Often effective in high dimensions

Classification: Results & Evaluation

Confusion matrix

Predicted class	Actual class	
Predicted Class	1	0
1	True Positive	False positive
0	False negative	True negative

- Precision $\frac{TP}{TP+FP}$
- Recall $\frac{TP}{TP+FN}$
- Accuracy $\frac{TP+TN}{TP+TN+FP+FN}$
- $F1 = \frac{2*precision*recall}{precision+recall}$

Classification: Results & Evaluation

Figure: ROC curve

Precision recall curve

12 / 38 M. Vazirgiannis Supervised Learning - I

ROC/AUC curve

True positive rate:

$$TPR = \frac{TP}{TP + FN}$$

50

Figure: overlapping of postive / negative classes

Classification: Results & Evaluation

- Log-loss: more refined evaluation of the classification
- Capitalizing on the classifier probability

$$\log - \log = -rac{1}{N}\sum_{i=1}^N y_i \log p_i + (1-y_i) \log p_i (1-p_i)$$

- Log loss cross entropy $H(p,q) = -\sum_{x} p(x) \log q(x)$ between the distribution of true labels and predictions
- Closely related to Kullback-Leibler divergence

$$KL(p|q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

• Minimizing cross entropy, maximize accuracy of the classifier.

Log Loss Analysis

Advantages of Log Loss

- Interprets Probabilities: directly evaluates how well the predicted probabilities match the true labels, making it ideal for probabilistic models.
- Penalizes Overconfidence: Models overconfident but wrong heavily penalized, encouraging models to be more conservative with their predictions.

Disadvantages of Log Loss

- Sensitive to Imbalanced Classes: for data highly imbalanced, log loss is misleading as it penalizes wrong predictions more than simply misclassifying the majority class.
- Difficult to Interpret: raw value log loss not as intuitive as accuracy or other simple metrics, though very useful for comparing models.

Outline

- Introduction to supervised learning
- K-nn
- Naïve Bayes
- Logistic Regression

k-NN Algorithm

- \bullet K-NN is an non parametric lazy learning algorithm.
 - o No assumptions for the data (i.e. distribution, linearly separable)
 - No training lack of generalization
- K-nn classification: by majority voting
- K-nn regression: average value of k nearest neighbors

K-NN classification example

Figure: Loan amount vs. age: decide class by majority of nns

17 / 38 M. Vazirgiannis Supervised Learning - I

K-NN classification example

Age	Loan	Default	Distance
25	30000	Ν	50000,0062
32	54000	Ν	26000,0062
42	60000	Ν	20000,0016
43	70000	N	10000,0024
55	120000	Υ	40000,0003
45	110000	Υ	30000,0004
38	97000	Υ	17000,0042
61	85000	Υ	5000,0121
50	80000	?	

Figure: Loan amount vs. age: decide class by majority of nns

$$D(x,y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

K-NN classification example

Age	Loan	Default	Distance
0	0	N	0,88932
0,1944	0,2667	N	0,57746
0,4722	0,3333	N	0,31427
0,5	0,4444	N	0,22395
0,8333	1	Υ	0,46564
0,5556	0,8889	Υ	0,36111
0,3611	0,7444	Υ	0,38313
1	0,6111	Υ	0,31056
0,6944	0,5556	•	

Figure: Loan amount vs. age: decide class by majority of nns

$$\frac{X_i - min(X)}{max(X) - min(X)}$$

K-NN regression

- k-NN algorithm to estimate continuous variables.
- weighted average of the k nearest neighbors, weighted by the inverse of their distance:
 - Compute distance of query example to the labeled examples.
 - Order labeled examples by increasing distance.
 - Find a heuristically optimal number k of nearest neighbors, based on RMSE
 with cross validation.
 - Calculate inverse distance weighted average with k-nearest multivariate neighbors.

K-NN issues

- K: larger values reduce noise effect but make classes boundaries blur
- Dimensionality affects the performance
- Feature selection/scaling (mutual information)
- Binary classification: k odd number
- popular way for empirically optimal k via bootstrap method
- Assume large number of points and c classes:

$$E_{k-nn} \le E_{Bayes} (2 - \frac{c}{c-1} E_{Bayes})$$

Outline

- Introduction to supervised learning
- K-nn
- Naïve Bayes
- Logistic Regression

Bayesian Classification: Why?

- Probabilistic learning
 - Calculate explicit probabilities for hypothesis,
 - practical approaches to certain types of learning problems
- Incremental
 - Each training example can incrementally increase/decrease the probability that a hypothesis is correct.
 - Prior knowledge combined with observed data.
- Probabilistic prediction
 - Predict multiple hypotheses, weighted by their probabilities

Bayesian Classification

- Problem formalized using a-posteriori probabilities:
- $p(C|X) = \text{prob. vector } X = \langle x_1, \dots, x_k \rangle \text{ is class } C.$
 - e.g. p(class = N|outlook = sunny, windy = true, ...)
- Assign to sample X class label C: p(C|X) is maximal
- Bayes theorem:

$$p(C|X) = \frac{p(X|C)p(C)}{p(X)}$$

- p(X): prior probability of vector X
- p(C) = prior probability of class C in training data
- p(X|C) = probability of X given C
- p(C|X) = probability of X given C

Learn probabilistic models with dependence

- Problem: computing P(X|C) not unfeasible! Why?
- p(C): assume p classes
- $p(X = \langle x_1, \dots, x_k \rangle)$: k binary features
- $p^{(2k-1)}$ parameters
- Likelihood: p(X|C)
 - Need a value for each possible $p(X = \langle x_1, \dots, x_k \rangle | C)$

Naive Bayesian Classification

• Naïve assumption: attribute independence

$$p(X|C) = \prod_{i} p(x_{i}|C)$$

- $p(x_i|C)$: relative frequency of x_i as i-th attribute in class C
- Computationally feasible
- Generative probabilistic model with conditional independence assumption
- Prediction:

$$p(C|X) = argmax_C(p(X|C)p(C)) = argmax_C(\prod_{i=1}^{k} p(x_i|C)p(C))$$

Naive Bayesian Classification

- Simple to train
- estimate conditional probabilities for each feature-class pair
- Often very good baseline
- Feature selection can be helpful, e.g., information gain
- However.... on most problems can usually be outperformed by a more complex model

Playtennis example: estimating P(xi|C)

Outlook	Temperature	Humidity	Windy	Clas
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$p(P) = 9/14$$

 $p(N) = 5/14$

outlook	
$p(\underline{\text{sunny}} P) = 2/9$	$p(\underline{\text{sunny}} \mathbf{N}) = 3/5$
p(overcast P) = 4/9	p(overcast N) = 0
$p(\underline{rain} P) = 3/9$	$p(\underline{rain} \mathbf{N}) = 2/5$
temperature	
$p(\underline{hot} P) = 2/9$	$p(\underline{hot} \underline{N}) = 2/5$
$p(\underline{\text{mild}} P) = 4/9$	$p(\underline{\text{mild}} \mathbf{N}) = 2/5$
$p(\underline{\text{cool} P}) = 3/9$	$p(\mathbf{cool} \mathbf{N}) = 1/5$
humidity	
$p(\underline{high} P) = 3/9$	$p(\underline{high} N) = 4/5$
$p(\underline{normal} P) = 6/9$	$p(\underline{\mathbf{normal} \mathbf{N}}) = 2/5$
windy	
$p(\underline{\text{true}} P) = 3/9$	$p(\underline{\text{true}} \mathbf{N}) = 3/5$
p(false P) = 6/9	p(false N) = 2/5

Naive Bayesian Classification

- unseen sample X = < rain, hot, high, false >
- p(X|P)p(P) = p(rain|P)p(hot|P)p(high|P)p(false|P)p(P) = 3/9 * 2/9 * 3/9 * 6/9 * 9/14 = 0.010582
- p(X|N)p(N) = P(rain|N)P(hot|N)P(high|N)P(false|N)P(N) = 2/5 * 2/5 * 4/5 * 2/5 * 5/14 =**0.018286**
- Sample X is classified in class N (don't play)

Outline

- Introduction to supervised learning
- K-nn
- Naïve Bayes
- Logistic Regression

Solving a supervised learning problem

Given data, a real-world classification problem, and constraints, you need to determine:

- classifier to use
- optimization method to employ
- loss function to minimize
- features to consider from the data
- evaluation metric to use

Logistic Regression

- Fits binary classification problems
- Output in [0,1]
- \bullet Need a function that takes data vector x and produces as output p(x) in [0,1]

32 / 38 M. Vazirgiannis Supervised Learning - I

Why linear regression does not do..

- Linear regression: output y is continuous need binary classification
- Need a p(X) in [0,1] linear regression does not guarantee it.
- homoscedasticity assumption: variance of Y constant across values of X.
- significance testing assumes prediction errors (y-f(x)) are normally distributed.
- But y takes values 0 and 1,

Logistic function – design

- Classification: $\mathbf{x} \in R^p, y \in \{0,1\}$
- Assumption (odds p(y=1)):

$$log(\frac{p(y=1|x)}{1-p(y=1|x)}) = \alpha x + \beta$$

therefore

$$p(y=1|\mathrm{x}) = rac{e^{lpha \mathrm{x} + eta}}{1 + e^{lpha \mathrm{x} + eta}} = rac{1}{1 + e^{-(lpha \mathrm{x} + eta)}}$$

Examples of logistic function - parameters

35 / 38 Supervised Learning - I

Click prediction example

- Web site publishing ads
- Predict user i click an ad.
- Assume class c_i (1: clicked, 0: otherwise)
- x_i data for user i (history of URLs visited)
- logit(P(juser i clicks on the adi) = linear function of the features x_i

Click Prediction: Logistic regression model

- linear model for c_i,
- take the log of the odds ratio:

$$log(p(c_i = 1|x_i)/(1 - p(c_i = 1|x_i)) = \alpha + \beta^T x_i$$

Or

$$p(c_i = 1|x_i) = \frac{e^{\alpha + \beta^T x_i}}{1 + e^{\alpha + \beta^T x_i}}$$

- ullet lpha: base rate, unconditional probability of $c_i=1$ (click)
- β : dependence on the user data
 - slope of the logit function
 - Determines the relevance of features (i.e. pages visited) to the likelihood of the ad being clicked

Click Prediction: α , β parameter estimation

- Parameters: $\theta = \{\alpha, \beta\}$,
- Likelihood: $L(\theta|X_1,...,X_n) = p(X|\theta) = p(X_1|\theta)...p(X_n|\theta)$,
- X_i users are independent:

$$heta_{MLE} = argmax_{ heta} \prod_{k=1}^{N} p(X_i| heta)$$

• Setting:

$$p_i = \frac{1}{1 + e^{-(\alpha + \beta^T x_i)}}$$

• Then:

$$heta_{MLE} = argmax_{ heta} \prod_{k=1}^{N} p_{i}^{c} (1 - p_{i})^{c}$$

c: number of clicks

 MLE with either i. Newton-Raphson method or ii. Stochastic gradient descent