

Organização Estruturada de Sistemas Computacionais Modernos

Universidade Federal de Uberlândia Faculdade de Computação Prof. Dr. rer. nat. Daniel D. Abdala

Na Aula Anterior ...

- O modelo básico da Arquitetura von Neumann;
- Programa armazenado em memória;
- O Gargalo de von Neumann;
- Abstrações;
- Introdução a Organização de Barramentos.

Nesta Aula

- Anatomia de um Sistema Computacional;
- Placa Mãe;
- North Bridge e South Bridge;
- SIO;
- Barramentos:
 - PCI;
 - PCI-E;
- Inicialização do Sistema:
 - BIOS;
 - POST;
 - Carregamento do SO.

Anatomia de um Sistema Computacional (PC)

- Macrocomponentes
 - Alimentação
 - Disco Rígido
 - Drive de CD/DVD
 - Controladores de Disco
 - Slots de Expansão
 - Placa de Vídeo
 - Placa de Som
 - Placa de Rede
 - Memória
 - Clock
 - CMOS + Bateria

- BIOS
- μProcessador
- Arrefecimento de Ar
- Slots de Expansão
- Portas USB
- Porta de Mouse
- Porta de Teclado
- Connectores de Som
- Porta de Rede
- Outros Cls (*Chipsets)
- Resistores
- Capacitores
- Indutores

Placa Mãe (Legada – 2004)

Conectores Típicos

Anatomia de Um Sistema Computacional (PC)

North Bridge

- Graphics Memory Controller Hub GMCH;
- Cuida da transferência de dados entre CPU,
 Memória e Adaptador Gráfico;
- Localizado fisicamente próx. à memória e ao Processador.

South Bridge

- I/O Controller Hub ICH;
- Cuida de todo o resto do tráfico no sistema computacional:
 - Barramentos
 - PCI
 - PCI-Express
 - SATA
 - Audio (Build-in Audio)
 - Controlador de USB
 - Controlador de Interrupção
 - Controlador de Alimentação

SIO – Super Input and Output

- Legado de antigos PCs;
- Cuida do mouse, teclado e comunicação serial.

Barramentos

- Conjunto de "linhas" de comunicação que interligam os diversos módulos de um sistema computacional;
- Comunicação compartilhada;
- Normalmente barramentos são divididos em três tipos:
 - Dados
 - Endereços
 - Controle
- Alguns sistemas reutilizam linhas de barramento para múltiplas funções;

Barramentos

- Como o barramento conecta diversos dispositivos, deve haver um conjunto de regras que rejam a comunicação (protocolo);
- Um barramento requer um "controlador de barramento" que é um circuito digital que implementa o protocolo de comunicação no barramento;
- Para entendermos como um barramento funciona, primeiro precisamos entender que sinais devem ser considerados.

Barramentos – Sinais de Controle

- Escrita de Memória
- Leitura de Memória
- Escrita de E/S
- Leitura de E/S
- ACK de Transferência
- Solicitação de Barramento
- Concessão de Barramento
- Requisição de Interrupção
- ACK de Interrupção
- Clock
- Reset

Hierarquia de Barramentos

- Muitos dispositivos → barramento se torna o "gargalo" do sistema computacional;
 - Barramento longo → atraso de propagação
 - Muitos dispositivos → concorrência → atraso

Barramento Comum

Barramento de Alta Velocidade

Barramento PCI

 PCI-E – Peripheral Component Interconnect Express

Trabalho Extra: Busque na literatura sugerida e na Internet material sobre o funcionamento do PCI-E e como ele tem substituido todos os outros barramentos. A seguir, escreva um artigo sobre o assunto. Utilize fontes adicionais se julgar necessário. (1 ponto na média, entrega na prox. aula)

Bootstraping

- Sistemas Computacionais são compostos por basicamente quatro componentes:
 - 1. Hardware;
 - 2. Sistema Operacional;
 - 3. Softwares Aplicativos;
 - 4. Dados.
- O hardware por si só é de pouca valia, pois ele é incapaz de executar qualquer tarefa útil antes que um software "arbitrador" seja carregado;
- A este árbitro dá-se o nome de Sistema Operacional;

Sistema Operacional

- O Sistema Operacional é um software que tem como função:
 - Controlar a política de acesso aos recursos do sistema computacional;
 - Prover uma interface amigável para desenvolvedores de aplicações utilizarem os recursos do sistema;
- O SO é software!
- Reside em algum dispositivo secundário de armazenamento até que seja carregado na memória primária e possa começar o seu trabalho de arbitrar o sistema computacional;

Sistema Operacional

- O processo de inicializar um sistema computacional pode ser dividido nos seguintes passos:
 - Carrega e executa o programa de inicialização localizado em memória ROM (atualmente FLASH);
 - 2. Executa o POST Power-on Self-test;
 - 3. Busca Controladores de dispositivos para o SO;
 - Carrega o SO de algum dispositivo de armazenamento secundário para a memória principal (RAM).

POST – Power-on Self-test

- 1. Garantir que pelo menos um dispositivo padrão de Entrada e um de Saída estejam presentes;
 - Testa se a memória primária está presente, quanta memória está disponível e se ela está funcionando corretamente;
- 3. Executa pequenos programas que "verificam" se tais dispositivos estão presentes e se estão funcionando corretamente;
- 4. Testa o dispositivo secundário de armazenamento (HD);
- 5. Passa controle ao sistema de bootstraping para carregar o Sistema operacional;

Tais programas estão localizados na BIOS (Basic Input/Output System);

Extra

- Qual a diferença entre cold boot, warm boot and reboot. Explique cada um dos termos e contextualize o que muda no processo de boot em cada caso. Dedique especial atenção a como isso pode afetar o POST.
- (1 ponto na média final)
- Entrega na próxima aula.

Bibliografia

- WHITE, Ron. How Computers Work. 9th ed. 2008. QUE[®]. ISBN-13: 978-0-790-73613-0. ISBN-10: 0-789-73613-6.
- Ótima referência sobre o funcionamento geral de sistemas computacionais;
- Acessível;
- Bem ilustrada.