A New Nearest Neighbor Classifier via Fusing Neighborhood Information

저널: Neurocomputing, Volume 143, 2 November 2014, Pages 164-169

저자: YaojinLin, JinjinLi, MengleiLin, JinkunChen

발표자 18510049 오순묵 18512084 이도현 18512112 한동기

목차

- 1. 기존 방법론 (k-NN)
- 2. 관련 연구
- 3. 기존 방법론의 장점과 단점
- 4. 개선 아이디어
- 5. 실험 디자인
- 6. 결론
- 7. 구현

1. 기존 방법론 (k-NN)

- k-NN(k-Nearest Neighbors)
- k개의 최근접 이웃 데이터를 찾고 다수결 방식으로 분류하는 알고리즘
- 거리함수- Test Sample의 k개의 이웃을 판별하기 위해 Test Sample과 Train Sample들의 유사도 측정 함수(Similarity function)
- Single Metric for Distance Measure

• Global & Local Distance Metric

Global Distance Metric	Local Distance Metric
 모든 데이터 쌍에 대해 일괄적으로	 지엽적인 데이터 쌍 마다 서로 다른 규칙을
동일한 규칙을 적용하는 distance metric 대표적인 예로 Euclidean Distance HEOM, VDM, HVDM, IVDM 등	적용하는 distance metric ADEMENN, WA kNN, I kNN 등

Global Distance Metrics

HEOM

$$HEOM(x,y) = \sqrt{\sum_{a=1}^{m} d_a(x_a, y_a)^2}$$

$$d_a(x,y) = \begin{cases} 1 & \text{if } x \text{ or } y \text{ is unknown} \\ overlap(x,y) & \text{if } a \text{ is nominal} \\ diff_a(x,y) & \text{if } a \text{ is interval} \end{cases}$$

- Interval, Nominal feature를 모두 가지는 데이터에 대한 distance metric
- Interval feature의 경우 정규화 과정을 포함하는 Euclidean distance metric
- Nominal feature의 경우 같은 값이면 1, 다른 값이면 0

VDM

$$VDM_{a}(x,y) = \sum_{c=1}^{C} \left| \frac{N_{a,x,c}}{N_{a,x}} - \frac{N_{a,y,c}}{N_{a,y}} \right|^{q}$$
$$= \sum_{c=1}^{C} \left| P_{a,x,c} - P_{a,y,c} \right|^{q}$$

- Nominal feature에 대한 distance metric
- Feature의 class 분포가 비슷할수록 VDM의 값이 작다

Global Distance Metrics

HVDM

$$HVDM(x,y) = \sqrt{\sum_{a=1}^{m} d_a(x_a, y_a)^2}$$

$$d_a(x,y) = \begin{cases} 1 & \text{if } x \text{ or } y \text{ is unknown} \\ vdm_a(x,y) & \text{if } a \text{ is nominal} \\ diff_a(x,y) & \text{if } a \text{ is interval} \end{cases}$$

- HEOM과 VDM을 결합
- Interval feature의 경우 정규화 과정을 포함하는 Euclidean distance metric
- Nominal feature의 경우 정규화 과정을 포함하는 VDM

IVDM

$$IVDM(x,y) = \sum_{a=1}^{m} d_a(x_a, y_a)^2$$

$$d_a(x,y) = \begin{cases} vdm_a(x,y) & \text{if } a \text{ is nominal} \\ \sum_{c=1}^{C} |p_{a,c}(x) - p_{a,c}(y)|^2 & \text{if } a \text{ is interval} \end{cases} \bullet$$

- VDM의 개념을 Interval feature까지 확장
- Nominal feature의 경우 기존 VDM
- Interval feature의 경우 보간법을 통해 class 분포를 추정하여 적용

Local Distance Metric

ADAMENN	WA <i>k</i> NN	I <i>k</i> NN
	$\frac{\sum_{t \in T} (X_t W_t) (Y_t W_t)}{\sqrt{\sum_{t \in T} (X_t W_t)^2} \sqrt{\sum_{t \in T} (Y_t W_t)^2}}$	query point home in the point
・ Training Sample x_i 에 대해 반지름 r 을 기준으로 원을 그리고, 그 안에 있는 다른 라벨은 제거	 각각의 Feature에 대해 Weight를 주고, 이것을 Small Step으로 바꿔 가면 서 최적의 Objective Function을 찾는 방법 	• Different Label과 얼마나 멀리 있는지, Same Label과 얼마나 가까이 있는지를 고 려

3. 기존 방법론 장 . 단점

• 장점

- 1. 심플하고 효과적인 알고리즘 (원리가 쉽다)
- 2. 트레이닝 데이터의 수가 늘어나면 정확도 향상
- 3. 분류 문제와 함수 근사에 탁월

• 단점

- 1. 거리 함수 의존도가 높다
- 2. 서로 다른 클래스를 가진 데이터가 뒤섞여 있을 때 분류가 어렵다
- 3. 하나의 Test Sample을 분류하기 위해 전체 Training 데이터 모두 연산
- 4. From Single Metric
 - 1) 기본적으로 Single Metric은 모든 데이터의 특성을 반영하는데 한계 존재
 - 2) Single Local Metric은 Noisy Sample에 대해 민감
 - 3) Single Global Metric은 Multimodal Distribution을 반영하지 못함

(1) Neighborhood Information and It's Influence

Euclidean Distance

$$d(x_1, x_2) = d(x_1, x_3)$$

Distance
Using Neighborhood Information

$$d(x_1, x_2) \ge d(x_1, x_3)$$

데이터의 neighborhood Information을 활용 k-NN 설정시 NN 의 분포가 $d(x_1, x_3)$ 방향으로 쏠릴 가능성 높음

(1) Neighborhood Information and It's Influence

Samples with Different Neighborhood

Samples with Similar Neighborhood

$$n_B^{\delta}(x_i) = \{x_j \mid x_j \in U, \Delta_B(x_i, x_j) \le \delta\}, \quad \delta \in [0, 1]$$

- 서로 공유하는 Neighborhood가 넓어질수록 Distance Discriminability가 줄어든다
- 적절한 δ 선택 및 multiple metric의 필요성

(2) Rank Aggregation

Using Multiple Metrics

$$L1 = \text{List of Euclidian Distance} \qquad \qquad L2 = \text{List of Distance} \\ using Neighborhood Information} \\ p = 2 \\ \Delta_p(x,y) = \left(\sum_{i=1}^N |f(x,a_i) - f(y,a_i)|^p\right)^{\frac{1}{p}} \qquad d(x_i,x_j) = \sum_{l=1}^N \left(\frac{\left|n_{a_l}^\delta(x_i)\right|}{|U|} - \frac{\left|n_{a_l}^\delta(x_j)\right|}{|U|}\right)^2 \\ L_1 = \begin{bmatrix}L_1(1) \\ L_1(2) \\ \vdots \\ L_1(N)\end{bmatrix} \\ L_2 = \begin{bmatrix}L_2(1) \\ L_2(2) \\ \vdots \\ L_2(N)\end{bmatrix}$$

 $L_j(i)$ 는 j번째 distance metric을 사용했을 때, i번째로 가까운 데이터의 인덱스를 의미

(2) Rank Aggregation

 L_1 과 L_1 모두를 적절하게 반영하는 Super List를 이용

Objective Function

$$R^* = \arg\min \sum_{j=1}^{2} w_j d(R, L_j)$$

 w_i 는 j번째 distance metric의 가중치

Spearman Footrule Distance

$$d(R,L_j) = \sum_{t \in L_j \cup R} \left| r^R(t) - r^{L_j}(t) \right|$$
 $r^L(t)$ 는 orderd list L 의 t 번째 요소 값

(2) Rank Aggregation

cross-entropy Monte Carlo algorithm

- 1. 임의의 확률 분포에서 변수 샘플링
- 2. 샘플링 된 변수에 대해 비용 함수 계산
- 3. 비용 함수 값이 작은 변수들을 가지고 확률 분포 업데이트
- 4. 1~3 과정을 수렴 할 때까지 반복

(3) Algorithm : FN k-NN (Fusing Neighborhood k-Nearest Neighbors)

- 1. 테스트 샘플 x와 학습 데이터 셋 D의 individual distance를 계산하여 L_1 생성
- 2. 테스트 샘플 x와 학습 데이터 셋 D의 neighborhood distance를 계산하여 L_2 생성
- 3. cross-entropy Monte Carlo algorithm을 사용하여 R* 생성
- 4. 학습 데이터 셋 D에서 R^* 를 기반으로 k개의 nearest neighbors를 구함
- 5. 기존 k-NN algorithm을 적용하여 테스트 샘플 x의 라벨 결정

(1) Data Set

Dataset Samples Features Classes Dermatology 366 34 6 Glass 214 9 7 Heart 270 13 2 Hepatitis 155 19 2 ICU 200 20 3 Spam 4601 57 2 Srbct 63 2308 4				
Glass 214 9 7 Heart 270 13 2 Hepatitis 155 19 2 ICU 200 20 3 Spam 4601 57 2	Dataset	Samples	Features	Classes
Heart 270 13 2 Hepatitis 155 19 2 ICU 200 20 3 Spam 4601 57 2	Dermatology	366	34	6
Hepatitis 155 19 2 ICU 200 20 3 Spam 4601 57 2	Glass	214	9	7
ICU 200 20 3 Spam 4601 57 2	Heart	270	13	2
Spam 4601 57 2	Hepatitis	155	19	2
	ICU	200	20	3
	Spam	4601	57	2
		63	2308	4

- **❖** From UCI datasets
- Glass, Spam을 제외하고 대부분 질병진단과 관련된 데이터
- 다양한 수의 Sample, Feature, Class
- interval, nominal value 모두 존재
- 기존 연구에서 알고리즘을 평가하는 용도로 자주 사용

(2) Evaluation Method

- 10-fold cross validation 방식으로 평가
- $\delta = 0.1$ (FNk NN, NEC), linear loss function(LMNN)
- 기존 k-NN과의 비교(k = 1, 5, 9)
- 다양한 classifier와의 비교 (k=10)

(3) 기존 k-NN과의 비교

Dataset	k=1		k=5		k=9		
	k NN	FNk NN	k NN	FNk NN	k NN	FNk NN	
Dermatology	96.11	96.59	97.14	97.76	96.03	97.94	
Glass	66.33	64.27	65.95	67.24	59.36	64.38	
Heart	76.67	75.93	81.85	82.22	82.96	83.33	
Hepatitis	82.50	83.50	87.17	86.33	85.33	87.33	
ICU	86.82	86.89	93.13	93.08	92.61	92.62	
Spam	88.57	86.77	88.16	88.62	88.00	88.12	
Srbct	89.00	93.33	84.67	96.67	85.33	94.00	

- 대체적으로 기존 k-NN보다 좋은 성능
- $oldsymbol{k} = 9$ 일 경우 모든 데이터 셋에 대해 성능 향상

(4) 다양한 classifier와의 비교

Neig	hbor	Vector	Probability	Decisio	on Tree
NEC	LMNN	LSVM	NBC	C4.5	CART
$d(x_{i}, x_{j}) = \sum_{l=1}^{N} \left(\frac{ n_{a_{l}}^{\delta}(x_{i}) }{ U } - \frac{ n_{a_{l}}^{\delta}(x_{j}) }{ U } \right)^{2}$	near nit near miss of a second of the secon	Negative instances (y=-1) Positive instances (y=+1) $\mathcal{L}(\omega,b,\alpha) = \frac{1}{2} \ \vec{\omega}\ ^2 - \sum_{i=1}^N \alpha_i [y_i(\vec{\omega} \cdot \vec{x}_i + b) - 1]$	$\hat{y} = \underset{y}{\operatorname{argmax}} P(y) \prod_{i=1}^{n} P(x_i y)$	$H(X) = \sum_i P(x_i) I(x_i) = -\sum_i P(x_i) \log_b P(x_i)$	$ \frac{\log(1)}{\log(1)} \sup_{x \in X} \sup_{x \in X}$
거리가 δ보다 작은 집 합의 개수를 전체 집 합의 개수로 나눈 각 Probability parameter들의 차이 의 제곱들의 합을 이 용하여 거리 함수 도 출	Sample의 Nearest Miss와 Nearest Hit을 고려한 Hypothesis margin과 가중치를 이용한 loss 최소화를 통한 Distance metric	경계조건에 속하는 Support Vector들의 거리인 마진의 최대 화와 제한 조건에 대 한 라그랑주 승수법 을 통해 최대 거리를 가지는 Decision boundary 결정	베이즈의 정리와 각 feature들의 조건부 독립이라는 Naïve bayes assumption에 의거 분류하고자 하 는 대상의 각 class별 확률을 측정하여 확 률이 큰 쪽으로 분류	분류기준이 엔트로피 로서 Information Gain의 최대화를 위 한 최적화를 통해 분 류	분류기준이 Gini Impurity로서 Information Gain의 최대화를 위한 최적 화를 통해 분류

(4) 다양한 classifier와의 비교

Dataset	FNk NN	NEC	CART	LSVM	NBC	C4.5	LMNN
Dermatology	97.38	96.07	92.26	96.55	97.54	95.90	97.94
Glass	64.72	57.61	43.62	57.11	49.64	68.80	68.17
Heart	85.19	80.00	74.07	83.33	84.07	76.30	81.48
Hepatitis	86.83	85.00	91.00	86.17	88.39	89.68	85.33
ICU	92.61	86.29	79.40	92.56	90.50	91.50	93.13
Spam	87.85	81.00	90.55	89.79	79.29	92.91	89.57
Srbct	95.00	87.00	80.33	98.33	95.20	74.00	84.67
Average	87.08	81.85	78.75	86.26	83.51	84.16	85.76

- 평균 분류 정확도가 가장 높음
- 다른 classifier에 비해 모든 데이터에 대해 고른 성능

270

200

155

366

Dataset

Heart

ICU

Hepatitis

Dermatology

FNk NN

Dermatol Glass Heart Hepatitis ICU Spam Srbct	64 85 8 86 <u>92</u> 87	7.38 1.72 5.19 6.83 2.61 7.85	96.07 57.61 80.00 85.00 86.29 81.00 87.00	92.2 43.6 74.0 91.0 79.4 <u>90.5</u> 80.3	52 57.1 57 83.3 50 86.1 40 92.5 55 89.7	11 33 17 56 79	97.54 49.64 84.07 88.39 90.50 79.29 95.20	68.86 7 76.30 89.63 9 91.50 9 92.91	0 68.17 0 81.48 8 85.33 0 93.13 1 89.57
Average	87	7.08	81.85	78.7	75 86.2	?6	83.51	84.16	85.76
Order	FNk NN	NEC		CART	LSVM	N	ВС	C4.5	LMNN
1	Dermatology	Dermatology	,	Dermatology	Srbct	Derm	atology	Dermatology	Dermatology
2	Srbct	Srbct		Hepatitis	Dermatology	Sr	rbct	Spam	ICU
3	ICU	ICU		Spam	ICU	10	CU	ICU	Spam
4	Spam	Hepatitis		Srbct	Spam	Нер	atitis	Hepatitis	Hepatitis
5	Hepatitis	Spam		ICU	Hepatitis	He	eart	Heart	Srbct
6	Heart	Heart		Heart	Heart	Sp	oam	Srbct	Heart
7	Glass	Glass		Glass	Glass	GI	ass	Glass	Glass
Datase	et Samples	Features	Description Analysis						
Spam	n 4601	57	Continuous value57 Feature0∥ t			ature에 비해 굉장히	많은 Sample		
Srbct		2308	Continuous value2308			Sa	imple에 비해 굉장히	많은 Feature	
Glass	s 214	9	Continuous value9			Feature가 적다			

Discrete6, Binary3, Nominal3, Ordered1

Discrete3, Binary15, Nominal2

Discrete4, Binary13, Continuous value2

Linear value(Nominal33 & Discrete1)

CART

LSVM

NBC

C4.5

LMNN

공통점

NEC

Dermatology dataset(Linear value만으로 구성된 Features)에 대해서는 모든 분류기에서 정확도가 1위 혹은 2위(only LSVM)

13

20

19

34

• Feature의 개수가 가장 적은 Glass dataset의 경우 모든 분류기에서 가장 낮은 순위(7위), 그 다음으로 적은 Heart dataset에 대해서도 6위 혹은 5위(NBC & C4.5) _____ 차이점

 CART dataset의 경우 Linear value 다음으로 Continuous value를 가지는 데이터셋 우위

Feature가 적다

두 Dataset이 굉장히 유사, Continuous value의

대부분의 분류기들이 쉽게 분류 가능한 선형값

6. 결론

- k-NN의 정의 및 Distance Function 관련해 진행된 연구 소개
- k-NN의 단점 중 Single Metric를 사용하면서 생기는 단점 지적
- 해결 위해 Neighborhood Information을 반영한 Distance function fusing 알고리즘 제안
- 다양한 데이터 셋에 대한 실험 통해 기존 k-NN , 다양한 classifier과의 비교, 성능 향상 입증

● 구현 과정

- individual distance 기반의 L_1 은 Euclidean distance 사용
- neighborhood distance 기반의 L_2 는 논문 수식에 따라 구현
- 두 리스트 L_1 , L_2 를 결합하는 Spearman distance 기반의 목적 함수 또한 논문 수식에 따라 구현
- 목적 함수를 최적화하는 Monte Carlo Cross Entropy 알고리즘은 동일 저자의 다른 논문을 참조하여 구현

• 구현 결과

	k =	1	k =	= 5	k =	k = 9		k = 10	
	paper	ours	paper	ours	paper	ours	paper	ours	
Dermatology	96.56	95.62	97.76	97.55	97.94	97.53	97.38	97.00	
Glass	64.27	66.60	67.24	67.25	64.38	65.32	64.72	64.85	
Heart	75.93	75.93	82.22	82.59	83.33	82.59	85.19	82.22	
Hepatitis	83.50	81.42	86.33	85.08	87.33	85.75	86.83	85.54	
Srbct	93.33	87.92	96.67	84.17	94.00	84.31	95.00	83.06	

• 파라미터 변화

	la a a a llina a	k	и	7	Λ	I
	baseline	12	0.1 / 0.9	0.9 / 0.1	100	1500
Dermatology	97.53	97.00	95.89	96.17	96.99	96.73
Glass	65.32	62.47	67.68	61.58	67.25	63.53
Heart	82.59	81.85	80.00	79.63	83.33	82.96
Hepatitis	85.75	84.46	81.83	83.25	83.17	81.88
Srbct	84.31	84.17	84.31	82.08	82.92	84.44

• 최적 파라메터 일반화

		k						
	1	5	9	10	12			
Dermatology	95.62	97.55	97.53	97	97			
Glass	66.6	67.25	65.32	64.85	62.47			
Heart	75.93	82.59	82.59	82.22	81.85			
Hepatitis	81.42	85.08	85.75	85.54	84.46			
Srbct	87.92	84.17	84.31	83.06	84.17			
Average	81.498	83.328	83.1	82.534	81.99			

	/ 🗥 \					
	wei	ght1 / weig	ght2			
	0.5 / 0.5	0.1 / 0.9	0.9 / 0.1			
Dermatology	97.53	95.89	96.17			
Glass	65.32	67.68	61.58			
Heart	82.59	80	79.63			
Hepatitis	85.75	81.83	83.25			
Srbct	84.31	84.31	82.08			
Average	83.1	81.942	80.542			

	N					
	1000	100	1500			
Dermatology	97.53	95.89	96.17			
Glass	65.32	67.68	61.58			
Heart	82.59	80	79.63			
Hepatitis	85.75	81.83	83.25			
Srbct	84.31	84.31	82.08			
Average	83.1	81.942	80.542			

실험 데이터 셋에 대한 평균 정확도를 고려하였을 때 FN kNN의 일반화된 설계 파라메터

- k = 5
- L_1 과 L_2 의 비율은 동일하게 $w_1=0.5, w_2=0.5$
- N = 1000

● 결론 및 고찰

- L_2 계산 및 목적 함수를 최적화하는 과정에서 대부분의 시간 소모
- MC CE라는 확률적 최적화 방식을 사용하기 때문에 결과의 편차 존재
- 파라미터에 따라 민감한 성능 변화

