Algebra

1	Groups		
	1.1	Groups	2
	1.2	Subgroups	3
	1.3	Cosets	4
	1.4	Homomorphisms	5

Chapter 1

Groups

1.1 Groups

Definition 1.1. Let G be a nonempty set. Let \star be a binary operation such that $a \star b \in G$ for all $a, b \in G$. We say that (G, \star) is a **semigroup** if

$$(a \star b) \star c = a \star (b \star c)$$

holds for any $a, b, c \in G$.

Definition 1.2. Let (G, \star) be a semigroup. We say that (G, \star) is a **monoid** if there exists an **identity element** $e \in G$ such that

$$a \star e = a = e \star a$$

for any $a \in G$.

Theorem 1.3. The identity element of a monoid is unique.

Proof. If e and e' are both identity elements of monoid (G, \star) , then

$$e = e \star e' = e'$$
.

Definition 1.4. Let (G, \star) be a monoid and let e be the identity element of G. We say that (G, \star) is a **group** if for any $a \in G$, there exists an **inverse** $b \in G$ such that

$$b \star a = e$$
.

Remark. In most cases, \star is either multiplication (denoted by ·) or addition (denoted by +).

- If \star is multiplication, then we denote the identity element by 1_G and denote the inverse of a by a^{-1} .
- If \star is addition, then we denote the identity element by 0_G and denote the inverse of a by -a.

In the default settings, \star is considered to be a multiplicative operation.

1.2 Subgroups

Definition 1.5. Let (G, \star) be a group. A **subgroup** of (G, \star) is a group (H, \star) with $H \subseteq G$.

Theorem 1.6. Let (G, \star) be a group and let $H \subseteq G$ be nonempty. Then H is a subgroup of G if and only if for any $a, b \in H$,

$$a \star b \in H$$
 and $a^{-1} \in H$.

Proof. (\Rightarrow) Straightforward. (\Leftarrow) It is obvious that (H, \star) is a semigroup, and we have

$$e = a^{-1} \star a \in H$$
.

where $a \in H$ is an arbitrary element. Thus, (H, \star) is a monoid. Since every element of H has an inverse, (H, \star) is a group.

Definition 1.7. Let (G, \star) be a group. The **cyclic subgroup** generated by $a \in G$, denoted by $\langle a \rangle$, is defined by

$$\langle a \rangle = \{ a^k : k \in \mathbb{Z} \}.$$

If $G = \langle a \rangle$ for some $a \in G$, then we say that (G, \star) is **cyclic**.

1.3 Cosets

Definition 1.8. Let (G, \star) be a group and let H be a subgroup of G. For any $a \in G$, we define

$$a \star H = \{a \star h : h \in H\}.$$

Theorem 1.9. Let (G, \star) be a group and let H be a subgroup of G. Let \sim be the relation such that for any $a, b \in G$,

$$a \sim b \quad \Leftrightarrow \quad a^{-1} \star b \in H.$$

Then \sim is an equivalence relation on G.

Proof. Assume $a,b,c\in G$. We have $a\sim a$ since $a^{-1}\star a=1_G\in H$. If $a\sim b$, then $b\sim a$ since

$$b^{-1} \star a = (a^{-1} \star b)^{-1} \in H.$$

Moreover, if $a \sim b$ and $b \sim c$, then $a \sim c$ since

$$a^{-1} \star c = (a^{-1} \star b) \star (b^{-1} \star c) \in H.$$

1.4 Homomorphisms

Definition 1.10. Let (G, \star_G) and (H, \star_H) be groups. A **homomorphism** from G to H is a function $\phi: G \to H$ such that

$$\phi(a \star_G b) = \phi(a) \star_H \phi(b)$$

holds for all $a, b \in G$.

Definition 1.11. Let (G, \star_G) and (H, \star_H) be groups and let $\phi : G \to H$ be a homomorphism.

- If ϕ is injective, then ϕ is called a **monomorphism**.
- If ϕ is surjective, then ϕ is called a **epimorphism**.
- If ϕ is bijective, then ϕ is called a **isomorphism**.

We say that G is **isomorphic** to H, denoted $G \cong H$, if there exists an isomorphism from G to H.