VII - Réduction des matrices carrées

I - Matrices diagonalisables

I.1 - Diagonalisabilité

Définition 1 - Matrices diagonalisables

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée. La matrice A est diagonalisable s'il existe une matrice $P \in \mathcal{M}_n(\mathbb{R})$ inversible et une matrice $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que $A = PDP^{-1}$.

Exemple 1 - Matrice diagonalisable

Soit
$$A = \begin{pmatrix} 7 & -4 & -4 \\ 3 & -1 & -3 \\ 5 & -4 & -2 \end{pmatrix}$$
, $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

• D'une part,

$$AP = \begin{pmatrix} -1 & 0 & 3 \\ -1 & 2 & 0 \\ -1 & -2 & 3 \end{pmatrix}.$$

• D'autre part,

$$PD = \begin{pmatrix} -1 & 0 & 3 \\ -1 & 2 & 0 \\ -1 & -2 & 3 \end{pmatrix}.$$

• De plus, en utilisant la méthode de Gauss-Jordan,

Ainsi, P est inversible.

D'où,

$$AP = PD$$

$$APP^{-1} = PDP^{-1}$$

$$AI = PDP^{-1}$$

$$A = PDP^{-1}$$

I.2 - Valeurs propres, Vecteurs propres

Définition 2 - Valeurs propres, Vecteurs propres

Soit $A \in \mathscr{M}_n(\mathbb{R})$ une matrice carrée. Le réel λ est une valeur propre de la matrice A s'il existe un vecteur colonne $X \in \mathscr{M}_{n,1}(\mathbb{R})$ tel que

- X soit non nul,
- $AX = \lambda X$.

Le vecteur colonne X est un vecteur propre associé à la valeur propre λ .

Exemple 2 - Valeurs / Vecteurs propres

Soit
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
 et $X = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$. Alors,

$$AX = \begin{pmatrix} -1 - 1 \\ 1 + 1 \\ 1 - 1 \end{pmatrix}$$
$$= 2X.$$

Ainsi, X est un vecteur propre de A associé à la valeur propre 2.

Proposition 1 - Vecteurs propres / Diagonalisation

Soit $A \in \mathcal{M}_3(\mathbb{R})$. On suppose que A possède 3 valeurs propres distinctes λ_1 , λ_2 , λ_3 associées aux vecteurs propres X_1 , X_2 , X_3 . En notant P la matrice dont les colonnes sont X_1 , X_2 , X_3 et D la matrice diagonale dont les coefficients diagonaux sont λ_1 , λ_2 , λ_3 , alors

$$A = PDP^{-1}.$$

Exemple 3

Soit
$$A = \begin{pmatrix} 7 & -4 & -4 \\ 3 & -1 & -3 \\ 5 & -4 & -2 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ et $X_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

• D'après la définition du produit matriciel,

$$AX_{1} = \begin{pmatrix} 7 & -4 & -4 \\ 3 & -1 & -3 \\ 5 & -4 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 - 4 - 4 \\ 3 - 1 - 3 \\ 5 - 4 - 2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = -\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = -X_{1}.$$

Ainsi, X_1 est un vecteur propre de A associé à la valeur propre -1.

• D'après la définition du produit matriciel,

$$AX_{2} = \begin{pmatrix} 7 & -4 & -4 \\ 3 & -1 & -3 \\ 5 & -4 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4+4 \\ -1+3 \\ -4+2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 2X_{2}.$$

Ainsi, X_2 est un vecteur propre de A associé à la valeur propre 2.

• D'après la définition du produit matriciel,

$$AX_{3} = \begin{pmatrix} 7 & -4 & -4 \\ 3 & -1 & -3 \\ 5 & -4 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 - 4 \\ 3 - 3 \\ 5 - 2 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 3X_{3}.$$

Ainsi, X_3 est un vecteur propre de A associé à la valeur propre 3.

Proposition 2 - Diagonalisabilité et Valeurs propres (H.P.)

Soit $A \in \mathcal{M}_3(\mathbb{R})$, P une matrice inversible dont les colonnes sont notées X_1, X_2, X_3 et $D = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$. Si $A = PDP^{-1}$, alors $AX_1 = d_1X_1$, $AX_2 = d_2X_2$ et $AX_3 = d_3X_3$.

II - Polynômes annulateurs

II.1 - Définition

Définition 3 - Polynôme annulateur

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée et $Q(X) = a_0 + a_1 X + \cdots + a_p X^p$ un polynôme non nul. Le polynôme Q est un polynôme annulateur de A si

$$Q(A) = a_0 I + a_1 A + \dots + a_p A^p = 0.$$

Exemple 4 - Polynôme annulateur

Soit
$$A = \begin{pmatrix} 7 & -4 & -4 \ 3 & -1 & -3 \ 5 & -4 & -2 \end{pmatrix}$$
 et $Q(X) = X^3 - 4X^2 + X + 6$. Alors,

$$Q(A) = A^3 - 4A^2 + A + 6I$$

$$= \begin{pmatrix} 7 & -4 & -4 \ 3 & -1 & -3 \ 5 & -4 & -2 \end{pmatrix}^3 - 4 \begin{pmatrix} 7 & -4 & -4 \ 3 & -1 & -3 \ 5 & -4 & -2 \end{pmatrix}^2 + \cdots$$

$$\cdots + \begin{pmatrix} 7 & -4 & -4 \ 3 & -1 & -3 \ 5 & -4 & -2 \end{pmatrix} + 6 \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 55 & -28 & -28 \ 9 & -1 & -9 \ 47 & -28 & -20 \end{pmatrix} - 4 \begin{pmatrix} 17 & -8 & -8 \ 3 & 1 & -3 \ 13 & -8 & -4 \end{pmatrix} + \cdots$$

$$\cdots + \begin{pmatrix} 7 & -4 & -4 \ 3 & -1 & -3 \ 5 & -4 & -2 \end{pmatrix} + \begin{pmatrix} 6 & 0 & 0 \ 0 & 6 & 0 \ 0 & 0 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}.$$

$$= \begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi, Q est un polynôme annulateur de A.

En particulier, on obtient alors

$$A^{3} - 4A^{2} + A + 6I = 0$$
$$A(A^{2} - 4A + I) = -6I$$

Donc A est inversible et $A^{-1} = -\frac{1}{6}(A^2 - 4A + I)$.

Proposition 3 - Taille 2

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $Q(X) = X^2 - (a+d)X + (ad-cb)$. Alors, $Q(A) = 0$.

Exemple 5 - Matrice de taille 2

Soit
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 5 \end{pmatrix}$$
. On pose

$$Q(X) = X^{2} - (1+5)X + (1 \times 5 - (-1) \times 2)$$
$$= X^{2} - 6X + 7.$$

Alors,

$$Q(A) = A^{2} - 6A + 7I$$

$$= \begin{pmatrix} -1 & 12 \\ -6 & 23 \end{pmatrix} - \begin{pmatrix} 6 & 12 \\ -6 & 30 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Ainsi, Q est un polynôme annulateur de A.

En particulier,

$$A^2 - 6A + 7I = 0$$
$$A(A - 6I) = -7I.$$

Donc A est inversible et $A^{-1} = -\frac{1}{7}(A - 6I)$.

II.2 - Polynômes annulateurs et Valeurs propres

Proposition 4 - Valeurs propres & Racines de polynômes annulateurs

Soit A une matrice et Q un polynôme annulateur de A. Si λ est une valeur propre de A, alors λ est une racine de Q (c'est-à-dire $Q(\lambda) = 0$).

Exemple 6

Soit R(X) = (X - 4)(X + 1)(X - 2)(X - 3). En développant,

$$R(X) = (X - 4)(X + 1)(X^{2} - 5X + 6)$$

$$= (X - 4)(X^{3} - 5X^{2} + 6X + X^{2} - 5X + 6)$$

$$= (X - 4)(X^{3} - 4X^{2} + X + 6).$$

En posant
$$A = \begin{pmatrix} 7 & -4 & -4 \\ 3 & -1 & -3 \\ 5 & -4 & -2 \end{pmatrix}$$
 et $Q(X) = X^3 - 4X^2 + X + 6$, alors $R = (X - 4)Q$. Ainsi,

$$R(A) = (A - 4I)(A^3 - 4A^2 + A + 6I)$$

= (A - 4I)Q(A)
= 0

Les valeurs propres de A sont donc incluses dans l'ensemble des racines de R. Ainsi, les valeurs propres de A sont incluses dans l'ensemble $\{4,-1,2,3\}$. Nous avons prouvé que les valeurs propres de A étaient -1, 2, 3. On constate donc que cette inclusion peut être stricte!

II.3 - Recherche de valeurs / vecteurs propres

Proposition 5 - Recherche de vecteurs propres

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Pour montrer que λ est une valeur propre de A il faut déterminer les vecteurs X solutions du système linéaire $AX = \lambda X$ et montrer qu'il existe une solution non nulle.

Exemple 7 - Recherche de valeurs / vecteurs propres

Soit
$$A = \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$$
 et $Q(X) = (X - 5)(X + 1)(X + 2)$.

• Un polynôme annulateur. En utilisant la définition du produit matriciel,

$$\begin{split} Q(A) &= (A - 5I)(A + I)(A + 2I) \\ &= \begin{pmatrix} -2 & 4 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} 4 & 4 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 5 & 4 \\ 2 & 3 \end{pmatrix} \\ &= \begin{pmatrix} -2 & 4 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} 28 & 28 \\ 14 & 14 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \end{split}$$

Ainsi, Q est un polynôme annulateur de A.

- Recherche des valeurs propres éventuelles. Comme les racines de Q sont 5, -1-2, les valeurs propres possible sont 5, -1, -2.
- Recherche des vecteurs propres.
 - \star Résolvons le système AX = 5X.

$$\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{cases} 3x + 4y &= 5x \\ 2x + y &= 5y \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 4y &= 0 \\ 2x - 4y &= 0 \end{cases} \Leftrightarrow \begin{cases} -2x + 4y &= 0 \\ 0 &= 0 \end{cases}$$
Ainsi, $X_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ satisfait $AX_1 = 5X_1$. Donc 5 est

valeur propre de A et X_1 est un vecteur propre associé.

 \star Résolvons le système AX = -X.

$$\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = - \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{cases} 3x + 4y &= -x \\ 2x + y &= -y \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x + 4y &= 0 \\ 2x + 2y &= 0 \end{cases} \Leftrightarrow \begin{cases} 4x + 4y &= 0 \\ 0 &= 0 \end{cases}$$

Ainsi, $X_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ satisfait $AX_2 = -X_2$. Donc -1 est valeur propre de A et X_2 est un vecteur propre associé.

 \star Résolvons le système AX = -2X.

$$\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -2 \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{cases} 3x + 4y & = -2x \\ 2x + y & = -2y \end{cases}$$

$$\Leftrightarrow \begin{cases} 5x + 4y & = 0 \\ 2x + 3y & = 0 \end{cases} \Leftrightarrow \begin{cases} 5x + 4y & = 0 \\ 7y & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x & = 0 \\ y & = 0 \end{cases}$$

Ainsi, l'unique solution du système AX=-2X est le vecteur nul. Le réel -2 n'est donc pas une valeur propre de A.

Finalement, les valeurs propres de A sont -1 et 5.

• **Diagonalisation.** On pose $P = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$. Comme $2 \times (-1) - 1 \times 1 = -3 \neq 0$, alors P est inversible et $P^{-1} = -\frac{1}{3} \begin{pmatrix} -1 & -1 \\ -1 & 2 \end{pmatrix}$. Ainsi,

$$P^{-1}AP = -\frac{1}{3} \begin{pmatrix} -1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$$
$$= -\frac{1}{3} \begin{pmatrix} -5 & -5 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} -15 & 0 \\ 0 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}.$$

En posant
$$D = \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}$$
, alors
$$P^{-1}AP = D$$

$$PP^{-1}AP = PD$$

$$IAPP^{-1} = PDP^{-1}$$

$$A = PDP^{-1}$$

• Application. Une récurrence classique permet alors de montrer que pour tout n entier naturel,

$$A^{n} = PD^{n}P^{-1} = -\frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 5^{n} & 0 \\ 0 & (-1)^{n} \end{pmatrix} \begin{pmatrix} -1 & -1 \\ -1 & 2 \end{pmatrix}.$$

Ainsi, si (u_n) et (v_n) sont les suites définies par $u_0 = 1$, $v_0 = 1$ et

$$\forall n \geqslant 0, \begin{cases} u_{n+1} = 3u_n + 4v_n \\ v_{n+1} = 2u_n + v_n \end{cases}$$

On peut définir le vecteur $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$, puis

- (i). Montrer que $X_{n+1} = AX_n$.
- (ii). À l'aide d'une récurrence, montrer que pour tout n entier naturel, $X_n = A^n X_0$.
- (iii). En déduire une expression de u_n et de v_n en fonction de n.