Lecture 10: May 27

Corollary.

1. If $f_n \geq 0$ are measurable and $f_n \rightarrow F$, then

$$\int f = \int \liminf f_n \le \liminf \int f_n.$$

2. If f_n are measurable and $f_n \to f$ with $\int |f_n| \le 1 \ \forall n$. Then $|f_n| \to |f|$ and

$$\int |f| \le \liminf \int |f_n| \le 1,$$

so f is integrable.

Theorem (Dominated Convergence Theorem). Suppose f_n are measurable and $f_n \to f$ pointwise and there exists an integrable function g such that $|f_n(x)| \le g(x) \ \forall n, x$. Then $\int f_n \to \int f$. In fact, $\int |f_n - f| \to 0$.

Proof. Look at $2g - |f_n - f|$, which is measurable. Also $g \ge |f_n| \to |f|$, so $|f_n - f| \le |f_n| + |f| \le 2g$. Thus $2g - |f_n - f| \ge 0$, so we can apply Fatou's lemma:

$$\int \liminf (2g - |f_n - f|) \le \liminf \int (2g - |f_n - f|)$$

Notice that $\liminf (2g - |f_n - f|) = 2g$ since $f_n \to f$. Thus

$$\int 2g \le \liminf \int (2g - |f_n - f|) = \liminf \left(\int 2g - \int |f_n - f| \right) = \int 2g - \limsup \int |f_n - f|$$

Since g is integrable, $\int 2g < \infty$, so we can subtract it off both sides to get $\limsup \int |f_n - f| \le 0$. Then

$$0 \le \liminf \int |f_n - f| \le \limsup \int |f_n - f| \le 0$$

Thus $\lim \int |f_n - f| = 0$. To see that $\int f_n \to \int f$, first note that f_n and f are indeed integrable, so we can consider

$$\left| \int (f_n - f) \right| \le \int |f_n - f| \to 0$$

so $\int (f_n - f) \to 0$ and thus $\int f_n \to \int f$.

Example.

1. Let $f_n(x)$ be n for $x \in (0, \frac{1}{n})$ and 0 otherwise. That is $f_n = n\chi_{(0,\frac{1}{n})}$. Note that $f_n \to 0$ pointwise, but $\int_{[0,1]} f_n = 1$ for all n. Any $g \ge f_n$ for all n will have to be n on $(0,\frac{1}{n})$, i.e. $g \ge n$ on $\left[\frac{1}{n+1},\frac{1}{n}\right)$ for all n. Then $g \ge G = \sum_{n=1}^{\infty} n\chi_{\left[\frac{1}{n+1},\frac{1}{n}\right)}$. Let S_k be the kth partial sum. Each S_k is simple and positive, and $S_k \nearrow G$ pointwise. By MCT,

$$\int G = \lim \int S_k = \lim \int \sum_{n=1}^k n \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right)} = \lim \sum_{n=1}^k \int n \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right)} = \lim \sum_{n=1}^k n \left(\frac{1}{n} - \frac{1}{n+1}\right) = \lim \sum_{n=1}^k \frac{1}{n+1} = \infty$$

So G is not integrable, and hence neither is g.

2. Let $f_n = 1$ on [n, n+1] and 0 otherwise. Then $f_n \to 0$, but $\int_{\mathbb{R}} f_n = 1$ for all n. This fails the DCT because the smallest function that dominates f_n will be 1 on $[1, \infty]$, and thus not integrable.

Note. If $f_n \geq 0$ and measurable and $g = \sum_{n=1}^{\infty} f_n$, then by MCT, since $\sum_{n=1}^{k} f_n \nearrow g$,

$$\int g = \lim_{k \to \infty} \int \sum_{n=1}^{k} f_n = \lim_{k \to \infty} \sum_{n=1}^{k} \int f_n = \sum_{n=1}^{\infty} \int f_n.$$

Thus the integral is countably additive for nonnegative functions.

Cantor Set.

- Defined recursively by starting with $C_0 = [0, 1]$ and removing the middle third of each closed interval in C_n to get C_{n+1} .
- C_n consists of 2^n closed intervals of length 3^{-n} .
- The Cantor set C is defined as $C = \bigcap_{n=0}^{\infty} C_n$.
- C is closed and bounded, and therefore compact.
- Each endpoint of a Cantor interval is in C.
- Consider the ternary expansion $x \in [0,1]$: $x = \sum_{i=1}^{\infty} a_i 3^{-i}$ where $a_i \in \{0,1,2\}$. The Cantor set consists of all numbers whose ternary expansion consists of only 0s and 2s. (Step *n* removes all numbers with a 1 in the *n*th place after the decimal). This shows that the cantor set it uncountable.
- Every point in the Cantor set is an accumulation point, and the Cantor set is closed, so the Cantor set is perfect.
 - Proof: Let $x \in C$. Then $x \in C_n \ \forall n$. Take an endpoint $y \neq x$ such that $|y x| < 3^{-n}$ and note that $y \in C$. This can be done for any n so each $x \in C$ is an accumulation point.
- The Cantor set has empty interior (totally disconnected): If $I \subseteq C$ was an interval of length δ , then pick n such that $3^{-n} < \delta$, so $I \not\subset C_n$.
- m(C) = 0, since $C \subseteq C_n$ and $m(C_n) = 2^n 3^{-n} \to 0$. Alternatively, $C_n \searrow C$ so by downward continuity of measure, $m(C) = \lim_{n \to \infty} m(C_n) = 0$.
- All subsets of C are measurable, having outer measure 0, so the cardinality of Lebesgue measurable sets will be at least $|\mathcal{P}(C)| = |\mathcal{P}(\mathbb{R})|$, which is clearly also an upper bound.
- If instead of keeping outer thirds, we keep outer intervals of length $r \times$ parent interval length, where $r < \frac{1}{2}$, we get a homeomorphic set of measure 0.
- If you vary the lengths in each step, you can get a Cantor-like set with any measure $\alpha \in (0,1)$.