Online Cryptography Course

Using block ciphers

Security for many-time key

Example applications:

- 1. File systems: Same AES key used to encrypt many files.
- 2. IPsec: Same AES key used to encrypt many packets.

Semantic Security for many-time key

Key used more than once ⇒ adv. sees many CTs with same key

Adversary's power: chosen-plaintext attack (CPA)

 Can obtain the encryption of arbitrary messages of his choice (conservative modeling of real life)

Adversary's goal: Break sematic security

Semantic Security for many-time key

E = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

Semantic Security for many-time key

E = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

Semantic Security for many-time key (CPA security)

E = (E,D) a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

if adv. wants c = E(k, m) it queries with $m_{j,0} = m_{j,1} = m$

Def: E is sem. sec. under CPA if for all "efficient" A:

$$Adv_{CPA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible."

Dan Boneh

Ciphers insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m. Then:

So what? an attacker can learn that two encrypted files are the same, two encrypted packets are the same, etc.

Leads to significant attacks when message space M is small

Ciphers insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m. Then:

If secret key is to be used multiple times ⇒
given the same plaintext message twice,
encryption must produce different outputs.

Dan Boneh

Solution 1: randomized encryption

• E(k,m) is a randomized algorithm:

- ⇒ encrypting same msg twice gives different ciphertexts (w.h.p)
- ⇒ ciphertext must be longer than plaintext

Roughly speaking: CT-size = PT-size + "# random bits"

Let $F: K \times R \longrightarrow M$ be a secure PRF.

For $m \in M$ define $E(k,m) = [r \leftarrow R, \text{ output } (r, F(k,r) \oplus m)]$

Is E semantically secure under CPA?

- Yes, whenever F is a secure PRF
- No, there is always a CPA attack on this system
- Yes, but only if R is large enough so r never repeats (w.h.p)
 - O It depends on what F is used

Solution 2: nonce-based Encryption

- nonce n: a value that changes from msg to msg.
 (k,n) pair <u>never</u> used more than once
- method 1: nonce is a counter (e.g. packet counter)
 - used when encryptor keeps state from msg to msg
 - if decryptor has same state, need not send nonce with CT
- method 2: encryptor chooses a random nonce, $n \leftarrow N$

CPA security for nonce-based encryption

System should be secure when nonces are chosen adversarially.

All nonces $\{n_1, ..., n_q\}$ must be distinct.

Def: nonce-based E is sem. sec. under CPA if for all "efficient" A:

$$Adv_{nCPA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible."

Dan Boneh

Let $F: K \times R \longrightarrow M$ be a secure PRF. Let r = 0 initially.

For
$$m \in M$$
 define $E(k,m) = [r++, output $(r, F(k,r) \oplus m)]$$

Is E CPA secure nonce-based encryption?

~ (r, f(r)@m)

- Yes, whenever F is a secure PRF
- No, there is always a nonce-based CPA attack on this system
- Yes, but only if R is large enough so r never repeats
- It depends on what F is used

End of Segment