Digital System Design with HDL (I) Lecture 3

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

1

In This Session

Verilog Operators

Arithmetic Operators

+ m + n Add n to m

- m - n Subtract n from m

- m Negate m (2's complement)

m * n Multiply m by nm / n Divide m by n

% m % n Modulus of m / n. The result takes the sign of the first operand, e.g.

5 % 2 = 1 5 % -2 = 1 -5 % 2 = -1 -5 % -2 = -1

,

Operators

Bitwise Operators

~m Invert each bit of m (1's complement)
 M & n AND each bit of m with each bit of n

m | n OR each bit of m with each bit of n

' m 'n Exclusive OR each bit of m with n

 $m \sim n$ Exclusive NOR each bit of m with n

Operators

~	
0	1
1	0
Х	Х
z	Χ

&	0	1	х	z
0	0	0	0	0
1	0	1	х	х
х	0	х	х	х
z	0	Х	х	х

	0	1	х	z
0	0	1	х	х
1	1	1	1	1
х	х	1	х	х
z	х	1	х	х

Operators

Logical Operators (1-bit T/F result)

```
! !m Is m false?
```

&& m && n Are both m and n true?

| m || n Is either m or n true?

Operators

Reduction Operators (1-bit T/F result): calculated by recursively applying bit-wise operation on all bits of the operand

&	&m	AND all bits in m together
~&	~&m	NAND all bits in m together
	m	OR all bits in m together
~	~ m	NOR all bits in m together
٨	^m	Exclusive OR all bits in m
~^	~^m	Exclusive NOR all bits in m

^~ ^~m

5

Operators

Reduction Operators

value	&	~&		~	۸	~^
4'b0000	0	1	0	1	0	1
4'b0001	0	1	1	0	1	0
4'b0011	0	1	1	0	0	1
4'b0111	0	1	1	0	1	0
4'b1111	1	0	1	0	0	1
4'b01xx	0	1	1	0	Х	Х
4'b01z0	0	1	1	0	Х	Х

Operators

Relational Operators (1-bit T/F result)

< m < n ls m less than n?

> m > n Is m greater than n?

m <= n Is m less than or equal to n?</p>

>= m >= n Is m greater than or equal to n?

== m == n Is m equal to n?

!= m!= n ls m not equal to n?

=== n Is m identical to n?

!== m !== n Is m not identical to n?

6

Operators

Equality Operators vs. Identity Operators

- Equality operators (== and !=) compare logic values of 0 and 1.
- They produce an x, If either operand contains an x or z.
- Identity operators (=== and !==) compare logic values of 0, 1, X and Z. Bits with x and z must match for the result to be true.
- They produce either 0 or 1.

ç

Operators

Logical Shift Operators

<< m << n Shift m left n-times
>> m >> n Shift m right n-times

The vacant bits are filled with 0.

Arithmetic Shift Operators

Shift m left n-times, the vacant bits are filled with 0.

Shift m right n-times, the vacant bits

>>> m >>> n are filled with the leftmost bit (the sign bit for a signed integer).

Operators

Equality Operators vs. Identity Operators

Examples:

```
reg [3:0] a, b;

a = 4'b1100; b = 4'b101x;

a == 4'b1z10 // false - 0

a != 4'b100x // true - 1

b == 4'b101x // unknown - x

b != 4'b101x // true - 1

b !== 4'b101x // false - 0
```

10

Operators

Shift Operators

Example:

```
// X=4'b1100;

Y = X >> 1;  // Y is 4'b0110

Y = X << 2;  // Y is 4'b0000

X << 1'bz = 4'bxxxx

X >> 1'bx = 4'bxxxx

integer a, b, c;  // signed data types

a = -8;  // a = 11...11000

b = a >>> 3;  // b = 11...11111, b = -1 decimal

c = a <<< 2;  // b = 11...1100000, b = -32 decimal
```

Operators

Conditional Operator

?: sel?m:n If sel is true, select m; else select n

// model functionality of a 2-to-1 mux assign out = Y ? b : a;

2-to-1

out

13

// model functionality of a tri-state buffer assign out = enable ? in : 16'bz;

// nested conditional operators. 4-to-1 mux assign out = X ? (Y ? d : c) : (Y ? b : a);

, , , ,

Operators

Concatenation Operator

Concatenate m to n, creating larger vector

The operands must be sized.

// A= 1'b1, B = 2'b00 , C = 2'b10, D = 3'b110

 $Y = \{ B, C \};$ // Y is 4b'0010

 $Y = \{ A, B, C, D \};$ // Y is 8b'10010110

 $Y = \{ B[0], D[2], 2'b11 \};$ // Y is 4b'0111

14

Operators

Replication Operator

{{}} {n{m}} Replicate m n-times

A = 1'b1; B = 2'b00; C = 2'b10; D = 3'b110;

 $Y = \{4A\}$; // Results in Y = 4'b1111

 $Y = \{ 4A, 2B \};$ // Results in Y = 8b11110000

 $Y = \{ 4A, 2B, C \};$ // Results in Y = 10'b1111000010

Operators

Precedence of Verilog operators

Operator type	Operator symbols	Precedence
Complement	~ -	Highest precedence
Arithmetic	* /	
Shift	<	
Relational	< <= > >=	
Equality		
Reduction	& ~ & ~ ~ ~ - ~ ~	
Logical	&z&z 	
Conditional	?:	Lowest precedence

16