ACÁMICA

¡Bienvenidos/as a Data Science!

Agenda

¿Cómo anduvieron?

Repaso: Machine Learning

Explicación: Regresión y Métricas de Evaluación para Regresión

Hands-On

Break

Lanzamiento Entrega 3 + Dudas comunitarias

Cierre

¿Dónde estamos?

¿Cómo anduvieron?

Proyecto 2: Modelado

Repaso: Machine Learning

Mapa

Mapa

¡Vamos a ver que es todo muy parecido!

Aprendizaje Supervisado

Clasificación

- Árbol de Decisión
- Support Vector Machines
- k-nearest neighbors
- Random Forest
- Perceptrón
- etc...

Aprendizaje Supervisado

Clasificación

- Árbol de Decisión
- Support Vector Machines
- k-nearest neighbors
- Random Forest
- Perceptrón
- etc...

Aprendizaje Supervisado

Regresión

- Árbol de Decisión
- Support Vector Machines
- k-nearest neighbors
- Random Forest
- Perceptrón
- etc...

Flujo de trabajo Scikit Learn

14

Flujo de trabajo Scikit Learn

15

Flujo de trabajo Scikit Learn

16

Regresión

Aprendizaje Supervisado

Regresión

- Regresión Lineal
- Árbol de Decisión
- k-nearest neighbors
- Support Vector Machines
- Random Forest
- Perceptrón
- etc...

La variable dependiente Y es numérica.

Ejemplos:

- Precio de una propiedad.
- Precios en general
- Edad de una persona dado los consumos en su tarjeta de crédito
- Nota en un examen

Nota en un examen

Precio de una propiedad

Consiste en predecir una respuesta numérica Y en base a atributos X_1 , X_2 , ..., X_n .

$$Y \approx f(X_1, X_2, ..., X_p)$$

Consiste en predecir una respuesta numérica Y en base a atributos X_1 , X_2 , ..., X_p .

$$Y \approx f(X_1, X_2, ..., X_p)$$

El caso más sencillo es una regresión lineal.

Consiste en predecir una respuesta numérica Y en base a atributos X_1 , X_2 , ..., X_p .

$$Y \approx f(X_1, X_2, ..., X_p)$$

El caso más sencillo es una regresión lineal.

Buscamos Y = mX + b que mejor ajuste a los datos:

- m: pendiente
- b: ordenada al origen

Regresión lineal

Un atributo: x₁

$$Y = m_1 x_1 + b$$

Dos atributos: x₁, x₂

$$Y = m_1 x_1 + m_2 x_2 + b$$

Tres atributos: x_1, x_2, x_3

$$Y = m_1 x_1 + m_2 x_2 + m_3 x_3 + b$$

p atributos: $x_1, x_2, x_3, ..., x_p$

$$Y = m_1 x_1 + m_2 x_2 + m_3 x_3 + ... + m_p x_p + b$$

Regresión con KNN

Dada una nueva instancia, devolver el promedio (ponderado) de los valores de sus vecinos.

Regresión con KNN

Dada una nueva instancia, devolver el promedio (ponderado) de los valores de sus vecinos.

Regresión con Árboles

Construcción

En cada nodo, usar reducción de desvío estándar de Y en lugar de gini/info gain.

Consulta

Al llegar a una hoja, devolver el promedio de Y sobre las instancias de la hoja.

Regresión con Árboles

Métricas de Evaluación para Regresión

¿Pueden detectar los errores en la siguiente regresión?

¿Pueden detectar los errores en la siguiente regresión?

Los errores tienen distinto signo. Si sumamos sin considerar eso, podría suceder que se cancelen.

Los errores tienen distinto signo.

Si sumamos sin considerar eso,

podría suceder que se cancelen.

Solución: podemos sumar sus valores **absolutos**:

$$\sum_{i=0}^{n_{ ext{samples}}-1} |y_i - \hat{y}_i|$$

Solución: podemos sumar sus valores absolutos:

$$\sum_{i=0}^{n_{ ext{samples}}-1} |y_i - {\hat y}_i|$$

n es el número de muestras

Solución: podemos sumar sus valores absolutos:

$$\sum_{i=0}^{n_{ ext{samples}}-1} |y_i - \hat{y}_i|$$

n es el número de muestras

¡Pero ahora el error va a ser mayor si hay más muestras!

$$ext{MAE}(y, \hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} |y_i - \hat{y}_i|$$
 MAE: Mean Absolute Error

¿Y si usamos otros valores en lugar de los absolutos?

Solución: podemos sumar sus valores cuadrados:

Solución: podemos sumar sus valores cuadrados:

$$\sum_{i=0}^{n_{\mathrm{samples}}-1} (y_i - {\hat{y}}_i)^2$$

n es el número de muestras

Solución: podemos sumar sus valores cuadrados:

$$\sum_{i=0}^{n_{\mathrm{samples}}-1} (y_i - {\hat{y}}_i)^2$$

n es el número de muestras

¡Pero ahora el error va a ser mayor si hay más muestras!

$$ext{MSE}(y, \hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} (y_i - \hat{y}_i)^2$$
 MSE: Mean Squared Error

En Scikit-Learn

https://scikit-learn.org/stable/modules/classes.htm | l#sklearn-metrics-metrics

Para pensar o investigar: FUNCIONES DE COSTO

Operativamente, ¿qué cambia y qué no?

Cambia

Métrica de evaluación

NO cambia

- Hipótesis de aprendizaje inductivo
- "Entrenar un modelo" consiste en ajustar sus parámetros para un dado dado un conjunto de datos.
- Overfitting/underfitting
 - Recursos para trabajar con el overfitting:
 - Datos de train/test
 - Curva de complejidad
- Queremos elegir el modelo más simple, que sea razonablemente bueno.

Hands-on training

Hands-on training

DS_Clase_19_Regresión.ipynb

Proyecto 2: Lanzamiento Entrega 3

Proyecto 2: Modelado

Actividad: Dudas comunitarias

Para la próxima

- 1. Ver los videos de la plataforma "Validación y testeo de Modelos".
- 2. Trabajar en la Entrega 03.
- 3. Completar Notebooks atrasados.

ACAMICA