Rigid Grouping

27th September 2004

Suppose we have a system of particles with masses, positions, and velocities $m_i, \mathbf{x}_i, \mathbf{v}_i$. This system has center of mass $\mathbf{x} = \frac{\sum m_i \mathbf{x}_i}{\sum m_i}$, and linear and angular momenta:

- Linear momentum: $\mathbf{p} = \sum m_i \mathbf{v}_i$
- Angular momentum about **x**: $\mathbf{L} = \sum \mathbf{r}_i \times m_i \mathbf{v}_i$

Let $\mathbf{r}_i = \mathbf{x}_i - \mathbf{x}$. Note that $\sum m_i \mathbf{r}_i = 0$ (easy to show using definition of \mathbf{x}). If these particles were moving as a rigid group with linear velocity \mathbf{v} and angular velocity $\boldsymbol{\omega}$ then $\mathbf{v}_i = \mathbf{v} + \boldsymbol{\omega} \times \mathbf{r}_i$ and we would have

• Linear momentum:
$$\mathbf{p}' = \sum m_i (\mathbf{v} + \mathbf{\omega} \times \mathbf{r}_i) = \sum m_i \mathbf{v} + \underbrace{\mathbf{\omega} \times \sum m_i \mathbf{r}_i}_{=0 \text{ since } \sum m_i \mathbf{r}_i = 0} = \sum m_i \mathbf{v}$$

• Angular momentum:
$$\mathbf{L}' = \sum \mathbf{r}_i \times m_i (\mathbf{v} + \mathbf{\omega} \times \mathbf{r}_i) = \underbrace{\sum m_i \mathbf{r}_i \times \mathbf{v}}_{=0 \text{ since } \sum m_i \mathbf{r}_i = 0} + \sum m_i \mathbf{r}_i \times (\mathbf{\omega} \times \mathbf{r}_i)$$

- Note
$$\mathbf{r}_i \times (\boldsymbol{\omega} \times \mathbf{r}_i) = (\mathbf{r}_i \cdot \mathbf{r}_i) \boldsymbol{\omega} - (\mathbf{r}_i \cdot \boldsymbol{\omega}) \mathbf{r}_i = (\mathbf{r}_i^T \mathbf{r}_i - \mathbf{r}_i \mathbf{r}_i^T) \boldsymbol{\omega}$$

- Letting $I = \sum m_i (\mathbf{r}_i^T \mathbf{r}_i - \mathbf{r}_i \mathbf{r}_i^T)$, we get $\mathbf{L}' = I \boldsymbol{\omega}$

We want the rigid group to conserve momentum, hence we can solve for ${\boldsymbol v}$ and ${\boldsymbol \omega}$:

$$\mathbf{p} = \mathbf{p}' \Rightarrow \sum m_i \mathbf{v}_i = \sum m_i \mathbf{v} \Rightarrow \mathbf{v} = \frac{\sum m_i \mathbf{v}_i}{\sum m_i}$$

$$\mathbf{L} = \mathbf{L}' \Rightarrow \sum \mathbf{r}_i \times m_i \mathbf{v}_i = I \omega \Rightarrow \omega = I^{-1} (\sum \mathbf{r}_i \times m_i \mathbf{v}_i)$$