Exercice 12 p 123

Le mouvement est rectiligne car sa trajectoire est une droite. Le mouvement n'est pas uniforme car sa vitesse n'est pas constante (de 0 à 270 km/h)

Exercice 13 p 123

- 1. Le mouvement est rectiligne car sa trajectoire est une droite. Le mouvement est uniforme car sa vitesse est constante (18 km/h)
- 2. Calculons la distance parcourue : $d = v \times t$ avec v = 18 km/h et t = 10 min = 0,17h $d = 18 \times 0,17 = 3,06$ km

Exercice 24 p 124:

1. et 2.

Distance (m)	Durée (s)	Ecart (m)	Vitesse (m/s)
0,56	0,7	×	×
0,69	0,8	0,69 - 0,56 = 0,13	1,3
0,84	0,9	0,84-0,69 = 0,15	1,5
1,01	1	1,01-0,84 =0,17	1,7
1,20	1,1	1,20-1,01 = 0,19	1,9

- 2. Le mouvement est rectiligne car l'objet n'est soumis qu'à son poids en chute libre et possède donc une trajectoire droite.
- 3. Le mouvement n'est pas uniforme car la vitesse augmente, le mouvement est accéléré.

Exercice 28 p 124:

- 1. Le mouvement d'un satellite géostationnaire tourne autour d'une planète donc son mouvement n'est pas rectiligne mais circulaire.
- 2. Le mouvement d'un satellite géostationnaire est uniforme car sa vitesse est constante lorsqu'il suit un point précis de la Terre.
- 3. Calcul de la circonférence de sa trajectoire : $d = 2 \times \pi \times r = 2 \times 3,14 \times 39\,000 = 245\,044$ km
- 4. Calcul de la vitesse du satellite : $v = \frac{d}{t} = \frac{254044}{24} = 10210 \text{ km/h}$

Exercice 28 p 143:

- 1. L'interaction air-voile n'est pas négligeable car l'air exerce une force de poussée sur le cerf-volant.
- 2. L'action entre la ficelle et la voile est localisée et de contact : direction celle du fil, sens vers la gauche, point d'application : le point de contact fil/cerf volant.
- 3.

