# **VL Algorithmische Geometrie**

Skript zur Vorlesung vom 6. Mai 2005

Tobias Opel Ingo Planz

### Berechnung des Voronoi-Diagrammes

#### Divide and Conquer

Wir wollen einen Divide-And-Conquer-Algorithmus zur Berechnung des Voronoi-Diagrammes VD(S) zu einer endlichen Punktmenge  $S \subseteq \mathbb{R}^2$  entwickeln. Entsprechend folgender Ansatz:

- 1. S lexikographisch sortieren (erst nach der x-, dann nach der y-Koordinate) um die Menge dann in eine linke Hälfte  $S_L$  und rechte Hälfte  $S_R$  zu zerlegen
- 2. rekursiv  $VD(S_L)$  und  $VD(S_R)$  berechnen
- 3. die Lösungen von 2. zusammenfügen Die Idee hierbei wird sein, eine "Trennlinie" P, dass heisst einen y-monotonen Kantenzug, zu konstruieren. Das Voronoi-Diagramm VD(S) wird dann aus dem Teil von  $VD(S_L)$ , der links von P liegt und dem Teil von  $VD(S_R)$ , der rechts von P liegt, sowie aus P selbst bestehen (siehe Bild). Im Folgenden wird diese Idee präzisiert werden.



### Eigenschaften der "Trennlinie"

**Definition:** Zu den Mengen  $S_L$  und  $S_R$  wie oben sei die "Trennlinie" P:

$$P := \left\{ x \in \mathbb{R}^2 ; d(x, S_L) = d(x, S_R) \right\}$$

wobei d(x, A) den kürzesten Abstand von x zur Menge A bezeichnet.

**Satz:** P hat folgende Eigenschaften:

- a) P ist genau die Menge aller Punkte von VD(S), die auf Kanten zwischen einer Zelle aus  $VD(S_L)$  und einer aus  $VD(S_R)$  liegen.
- b) P ist ein y-monotoner Kantenzug, der aus zwei Strahlen und weiteren Strecken besteht. Die

Strahlen sind Bisektoren zwischen Punkten, an denen Tangenten der konvexen Hüllen von  $S_L$  und  $S_R$  anliegen.

c) Für die Gebiete L links von P und R rechts von P gilt:

$$VD(S) = (VD(S_L) \cap L) \cup P \cup (VD(S_R) \cap R)$$

wobei hier mit VD(...) die Menge aller Punkte auf den Voronoi-Kanten gemeint ist. Beweis:

a) Sei zunächst  $x \in P$ . Betrachte dann  $p \in S_L$  und  $q \in S_R$  mit den kürzesten Abständen zu x. Nach der Definition von P liegen dann p und q auf einem Kreis um x, der keine weiteren Punkte von  $S_L$  oder  $S_R$  enthält. Dann ist  $\overline{pq}$  Kante in der Delaunay-Triangulierung, also sind p und q benachbart und damit liegt x auf der Kante der zugehörigen Voronoi-Zellen.

Sei umgekehrt x auf der Voronoi-Kante zwischen einem Punkt  $p \in S_L$  und einem Punkt  $q \in S_R$ . Dann ist d(x,p)=d(x,q) und der Kreis um x, auf dem p und q liegen, ist leer. Damit ist aber  $d(x,p)=d(x,S_L)=d(x,S_R)=d(x,q)$ .

b) an jedem Knoten von P stoßen höchstens zwei Kanten aneinander: Betrachte eine Kante von P. Nach a) ist sie Voronoi-Kante zu einem  $p \in S_L$  und einem  $q \in S_R$ . Der obere Endpunkt dieser Kante ist dann Voronoi-Knoten für p, q und ein  $r \in S$ . Liegt  $r \in S_R$  muss sich die Kante zu p und r anschließen, falls  $r \in S_L$  muss sich die Kante zwischen q und r anschließen; da sich diese Fälle aber gegenseitig ausschließen, in jedem Fall nur eine weitere Kante.

die Strahlen sind Bisektoren zu Punkten, an denen Tangenten der konvexen Hüllen anliegen: Betrachte z.B. die untere Tangente an die konvexen Hüllen (siehe Bild). Weit genug unten müssen p und q die nächsten Punkte aus  $S_L$  bzw.  $S_R$  sein, denn jede Mittelsenkrechte zu



z.B. q und  $q' \in S_R$  ist nicht parallel zur Mittelsenkrechten zu p und q, schneidet diese also, und jenseits dieses Schnittes ist q der nähere Punkt in  $S_R$ .

#### *P* ist y-monoton:

Angenommen, das wäre nicht der Fall. Dann existierte eine horizontale Gerade g, die P zweimal schneidet (in Punkten  $p \neq q$ ), so dass die Strecke  $\overline{pq}$  nicht komplett in P enthalten ist (siehe Bild). Zu q sei dann  $r \in S_L$  mit kleinstem Abstand, analog, zu p sei  $s \in S_R$  der nächste Punkt. Betrachte dann den Kreis  $K_p$  um p durch s sowie  $K_q$  um q durch r. Dann liegt s nicht nur in  $K_p$ , sondern auch ausserhalb des Inneren von  $K_q$  (da sonst näher an q als r) und rechts von r im Sinne der lexikographischen Ordnung. Damit bleibt für s nur die im Bild angedeutete Lage mit gleicher x-Koordinate wie r. Dann geht aber eine



ganze Voronoi-Kante durch p und q, insbesondere ist  $\overline{pq}$  in P im Widerspruch zur Annahme.

c) Allgemein gilt:  $L = \left[ x | d(x, S_L) \le d(x, S_R) \right]$  $R = \left[ x | d(x, S_L) \ge d(x, S_R) \right]$ 

dann:



 $\overline{xp}$  schneidet irgendwo P im Punkt s . s hat den kürzesten Abstand zu einem Punkt in  $S_R$  und q in  $S_L$  .

$$||x-q|| \le ||x-s|| + ||s-q||$$
  
  $\le ||x-s|| + ||s-p|| = ||x-p||$ 

 $\subset$ 

x auf Kante von VD(S). p, q zugehörige Punkte von S.

- a) falls  $p, q \in S_L$ , dann x auf Kante von  $VD(S_L)$  und  $x \in L \Rightarrow x \in VD(S_L) \cap L$
- b) falls  $p, q \in S_R$  analog zu a)
- c) falls  $p \in S_L$ ,  $q \in S_R$ , dann x auf P nach der Eigenschaft a)



⊃ :

Falls  $x \in VD(S_L) \cap L$ , zugehörige Punkte seien  $p, q \in S_L$ . Nach vorherigem gilt, es gibt kein  $r \in S_R$ , das näher liegt als p, q. Auch im Gesamtdiagramm sind p, q nächste Nachbarn  $\Rightarrow x \in VD(S)$ .

Falls  $x \in VD(S_R) \cap R$  - gilt analog. Falls  $x \in P \Rightarrow x \in VD(S)$  nach der Eigenschaft a)



## Schritt 3 des Algorithmus

a) Finde die untere Tangente t an  $CH(S_L)$ ,  $CH(S_R)$ . [Konvexe Hülle der Teile werden simultan zum VD bestimmt]

Laufzeit: geht in O(n) (sogar in  $O(\log(n))$ )

Konstruiere Mittelsenkrechte s zu beiden Punkten p, q an denen t anliegt.

b) Auf s von  $-\infty$  her kommend, bestimme ersten Schnittpunkt r mit  $VD(S_L)$  oder  $VD(S_R)$ . Löse p (bzw. q) durch einen Punkt p'(q') ab, der mit p(q) zusammen dies Kante definiert.

s :=Strahl von r aus entlang der Mittelsenkrechten von pq' (p'q) usw. bis der der obere Strahl gefunden wurde.







Noch zu klären:

Bei welcher Kante wird s V verlassen?



Einfach den Rand nach beiden Seiten durchlaufen und Kante finden. In dem Prozess wird jede Kante des Voronoi-Diagramm einmal durchlaufen: O(n)

Zeit insgesamt:  $T(n)=2T\binom{n}{2}+O(n)$ 

**Satz:** Ein Voronoi-Diagramm von Punkten in der Ebene kann in Zeit  $O(n \log(n))$  berechnet werden.

Korollar: Gleiches gilt für die Delaunay-Triangulierung.