07-22-2021- shift-1

1

(2021 - 4 Marks)

(2021 - 4 Marks)

d) 134

EE24BTECH11006 - Arnav Mahishi

1) Let L be the line of intersection of planes $r \cdot (i - j + 2k) = 2$ and $r \cdot (2i + j - k) = 2$. If $P(\alpha, \beta, \gamma)$ is the foot of perpendicular on L from the point (1, 2, 0), then the value

2) Let S_n denote the sum of the first n terms of an arithmetic progression. If $S_{10} = 530$,

c) 143

of $35(\alpha + \beta + \gamma)$ is equal to

 $S_5 = 140$, then $S_{20} - S_6$ is equal to:

b) 119

a) 101

a) 1862	b) 1842	c) 1852	d) 1872	
3) Let $f: \mathbb{R} \to \mathbb{R}$	be defined as			
	$f(x) = \begin{cases} -3 & \text{if } x > 0 \\ 3 & \text{if } x > 0 \end{cases}$	$\frac{4}{3}x^3 + 2x^2 + 3 \text{if } x > xe^x \qquad \qquad \text{if } x \le xe^x $	0 0	
Then f is an increasing function in the interval.			(2021 - 4 M	Iarks)
a) $\left(-\frac{1}{2}, 2\right)$	b) (0,2)	c) $\left(-1,\frac{3}{2}\right)$	d) $(-3, -1)$	
	$\sec^2 x dx$, with $y(\pi/4)$	of the differential equ = 0. Then, the value of		
a) $e^{\frac{1}{2}}$	b) $e^{-\frac{1}{2}}$	c) e^{-1}	d) <i>e</i>	
recorded in 2×2		sly and the numbers ability that such formed		ferent
a) $\frac{45}{162}$	b) $\frac{23}{81}$	c) $\frac{22}{81}$	d) $\frac{43}{162}$	
6) Let a vector \overrightarrow{a} is perpendic $\left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right] + \left[\overrightarrow{a}\right]$	the coplanar with cular to $\overrightarrow{d} = 3\hat{i} + 2$ the $\overrightarrow{b} \overrightarrow{d} + \left[a \overrightarrow{c} \overrightarrow{d} \right]$ is	vectors $\overrightarrow{b} = 2\hat{i} + \hat{j} + \hat{j} + 6\hat{k}$, and $ \mathbf{a} = 10$. is equal to:	\hat{k} and $\overrightarrow{c} = \hat{i} - \hat{j} + \hat{j}$ Then a possible val (2021 - 4 M	k. If ue of larks)

d) -38 a) -42 b) -40 c) -29 7) If $\int_{1}^{100\pi} \frac{\sin^2 x}{\frac{x}{4} - \left[\frac{x}{4}\right]} dx = \frac{\alpha \pi^3}{1 + 4\pi^2}$

where [x] is the greatest integer less than or equal to x, then the value of α is: (2021 - 4 Marks)

- a) $200(1-e^{-1})$ b) 100(1-e) c) 50(e-1) d) $150(e^{-1}-1)$
- 8) Let three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ and $|\overrightarrow{a}| = 2$. Then which one of the following is not true?
 - a) $\overrightarrow{a} \times ((\overrightarrow{b} + \overrightarrow{c}) \times (\overrightarrow{b} \overrightarrow{c})) = 0$ c) $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] + [\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}] = 8$
 - b) Projection of \overrightarrow{a} on $(\overrightarrow{b} \times \overrightarrow{c})$ is 2 d) $|3\overrightarrow{a} + \overrightarrow{b} 2\overrightarrow{c}|^2 = 51$
- 9) The values of λ and μ such that the system of equations

$$x + y + z = 6,$$

$$3x + 5y + 5z = 26,$$

$$x + 2y + \lambda z = \mu$$

has no solution, are:

(2021 - 4 Marks)

- a) $\lambda = 3, \mu = 5$

- b) $\lambda = 3, \mu \neq 10$ c) $\lambda \neq 2, \mu = 10$ d) $\lambda = 2, \mu \neq 10$
- 10) If the shortest distance between the straight lines 3(x-1) = 6(y-2) = 2(z-1) and $4(x-2) = 2(y-\lambda) = (z-3), \ \lambda \in \mathbb{R}$ is $\frac{1}{\sqrt{38}}$ then the integral value of λ is equal to: (2021 - 4 Marks)
 - a) 3

b) 2

c) 5

- d) -1
- 11) Which of the following Boolean expressions is not a tautology? (2021 4 Marks)
 - a) $(p \Rightarrow q) \lor (\neg q \Rightarrow p)$

c) $(p \Rightarrow \neg q) \lor (\neg q \Rightarrow p)$

b) $(a \Rightarrow p) \lor (\neg a \Rightarrow p)$

- d) $(\neg p \Rightarrow q) \lor (\neg q \Rightarrow p)$
- 12) Let $A = [a_{ij}]$ be a real matrix of order 3×3, such that $a_{i1} + a_{i2} + a_{i3} = 1$, for i = 1, 2, 3. Then, the sum of all the entries of the matrix A^3 is equal to: (2021 - 4 Marks)
 - a) 2

b) 1

c) 3

- d) 9
- 13) Let [x] denote the greatest integer less than or equal to x. Then, the values of $x \in \mathbb{R}$ satisfying the equation $[e^x] + 2 + [e^x + 1] - 3 = 0$ lie in the interval: (2021 - 4 Marks)

- a) $[0, \frac{1}{a})$
- b) $[\log_e 2, \log_e 3)$ c) [1, e)
- d) $[0, \log_e 2]$
- 14) Let the circle $S: 36x^2 + 36y^2 108x + 120y + C = 0$ be such that it neither intersects nor touches the co-ordinate axes. If the point of intersection of the lines, x - 2y = 4and 2x - y = 5 lies inside the circle S, then: (2021 - 4 Marks)
 - a) $\frac{25}{9} < C < \frac{13}{3}$
- b) 100 < C < 165 c) 81 < C < 156
- d) 100 < C < 156
- 15) Let *n* denote the number of solutions of the equation $z^2 + 3z = 0$, where z is a complex number. Then the value of $\sum_{k=0}^{\infty} \frac{1}{n^k}$ is equal to: (2021 - 4 Marks)
 - a) 1

b) $\frac{4}{3}$

c) $\frac{3}{2}$

d) 2