UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Homework 06

Fall 2023

1. Breaking a Stick

I break a stick n times, $n \ge 1$, in the following manner: the ith time I break the stick, I keep a fraction $X_i \sim \text{Uniform}((0,1])$ of the remaining stick. Suppose that X_1, X_2, \ldots, X_n are i.i.d. Let $P_n = \prod_{i=1}^n X_i$ be the fraction of the original stick that I end up with at time n.

- a. Show that $P_n^{1/n}$ converges almost surely, and find its limit.
- b. Compute $\mathbb{E}(P_n)^{1/n}$.
- c. Now compute $\mathbb{E}(P_n^{1/n})$. Do you find the same answer as in part b? Is the limit of $\mathbb{E}(P_n^{1/n})$ equal to the limit you found in part a?

Solution:

a. By the Strong Law of Large Numbers,

$$\lim_{n \to \infty} \ln P_n^{1/n} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \ln X_i = \mathbb{E}(\ln X_1)$$
 a.s.

We also find that $\mathbb{E}(\ln X_1) = \int_0^1 \ln x \, dx = -1$. Thus, we have that

$$\mathbb{P}(\ln P_n^{1/n} \to -1) = \mathbb{P}(P_n^{1/n} \to e^{-1}) = 1,$$

so the almost-sure limit is e^{-1} .

b. By independence,

$$\mathbb{E}(P_n)^{1/n} = \mathbb{E}\left(\prod_{i=1}^n X_i\right)^{1/n} = (\mathbb{E}(X_1)^n)^{1/n} = \mathbb{E}(X_1) = \frac{1}{2}.$$

c. We now find that

$$\mathbb{E}(P_n^{1/n}) = \mathbb{E}(X_1^{1/n}) \cdots \mathbb{E}(X_n^{1/n}) = \mathbb{E}(X_1^{1/n})^n = \left(\int_0^1 x^{1/n} \, \mathrm{d}x\right)^n = \left(\frac{n}{n+1}\right)^n.$$

This differs from part b because the expectation of a nonlinear transformation is not necessarily equal to the nonlinear transformation of the expectation. However,

$$\lim_{n \to \infty} \mathbb{E}(P_n^{1/n}) = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^n = e^{-1},$$

which is indeed the almost-sure limit of $P_n^{1/n}$ we found in part a.

1

2. The CLT Implies the WLLN

- a. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables. Show that if X_n converges in distribution to a constant c, then X_n converges in probability to c.
- b. Now let $(X_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables with mean μ and finite variance σ^2 . Show that the CLT implies the WLLN: that is,

$$\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^{n}(X_{i}-\mu)\stackrel{\mathsf{d}}{\to}Z\sim\mathcal{N}(0,1)\implies\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{\mathbb{P}}{\to}\mu,$$

where $\stackrel{d}{\to}$ is short for "converges in distribution" and $\stackrel{\mathbb{P}}{\to}$ for "converges in probability."

Solution:

a. Since X_n converges in distribution to c, we know that for all $\varepsilon > 0$,

$$\lim_{n \to \infty} F_{X_n}(c - \varepsilon) = F_c(c - \varepsilon) = 0$$
$$\lim_{n \to \infty} F_{X_n}(c + \frac{\varepsilon}{2}) = F_c(c + \frac{\varepsilon}{2}) = 1.$$

Using these limits, we have convergence in probability:

$$\lim_{n \to \infty} \mathbb{P}(|X_n - c| \ge \varepsilon) = \lim_{n \to \infty} \mathbb{P}(X_n \le c - \varepsilon) + \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \varepsilon)$$

$$\le \lim_{n \to \infty} \mathbb{P}(X_n \le c - \varepsilon) + \lim_{n \to \infty} \mathbb{P}(X_n > c + \frac{\varepsilon}{2})$$

$$= \lim_{n \to \infty} F_{X_n}(c - \varepsilon) + \lim_{n \to \infty} 1 - F_{X_n}(c + \frac{\varepsilon}{2})$$

$$= 0 + 1 - 1 = 0.$$

(The reason we take $c + \frac{\varepsilon}{2}$ instead of $c + \varepsilon$ is because $1 - F_{X_n}(x) = \mathbb{P}(X_n > x)$, but we have $\mathbb{P}(X_n \ge c + \varepsilon)$, which is not a strict inequality.)

b. From the CLT, we know that

$$Z_n := \frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^n X_i - \mu \right)$$
 converges to $Z \sim \mathcal{N}(0,1)$ in distribution.

Additionally, $a_n := \frac{\sigma}{\sqrt{n}} \to 0$. Then $Y_n := a_n Z_n = \frac{1}{n} \sum_{i=1}^n X_i - \mu \to 0$ in distribution. By part a, since c = 0 is a constant, Y_n also converges to 0 in probability. In other words,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\to\mu$$
 in probability,

which is precisely the Weak Law of Large Numbers.

Note. The claim that "if $Z_n \to Z$ in distribution and $a_n \to 0$ as constants, then $a_n Z_n \to 0$ in distribution" requires proof, which we present below.

For x < 0 and any $N \ge 1$, we know that $\frac{x}{a_n} \le -N$ eventually, so

$$\lim_{n \to \infty} \mathbb{P}(a_n Z_n \le x) = \lim_{n \to \infty} \mathbb{P}(Z_n \le \frac{x}{a_n}) \le \lim_{n \to \infty} \mathbb{P}(Z_n \le -N) = \mathbb{P}(Z \le -N).$$

The left-hand side does not depend on N, so taking the limit as $N \to \infty$ of both sides, by continuity from above, we find that

$$\lim_{n \to \infty} \mathbb{P}(a_n Z_n \le x) \le \mathbb{P}(Z = -\infty) = 0.$$

Similarly, for x > 0, we know that $\frac{x}{a_n} \ge N$ eventually for any N, so

$$\lim_{n \to \infty} \mathbb{P}(a_n Z_n > x) \le \lim_{n \to \infty} \mathbb{P}(Z_n > N) = \mathbb{P}(Z > N),$$

and taking the limit as $N \to \infty$, we find that $\lim_{n\to\infty} \mathbb{P}(a_n Z_n > x) \le 0$, or $\lim_{n\to\infty} \mathbb{P}(a_n Z_n \le x) = 1$. In other words, we have shown that

$$\lim_{n \to \infty} \mathbb{P}(a_n Z_n \le x) = \mathbb{1}\{0 \le x\},\,$$

i.e. $a_n Z_n$ converges to 0 in distribution. This is a specific case of a more general result called *Slutsky's theorem*.

3. Borel-Cantelli and the Strong Law

In this problem, we walk through a proof of the strong law (assuming finite 4th moments) that relies only on basic probability. In class we covered the *Borel-Cantelli lemma*, which states that for events $(A_n)_{n=1}^{\infty}$, if $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, then

$$\mathbb{P}(A_n \text{ i.o.}) = 0,$$

where we define the event $\{A_n \text{ i.o.}\} = \bigcap_{n \geq 1} \bigcup_{m \geq n} A_n$ as the event where infinitely many A_n occur.

- a. Let X_1, X_2, \ldots be i.i.d. with $\mathbb{E} X_i = 0$ and $\mathbb{E} X_i^4 < \infty$ (and so we also have finite second and third moments). Let $S_n = X_1 + \cdots + X_n$, and compute $\mathbb{E}[S_n^4]$. Write your answer in terms of the moments $\mathbb{E}[X_i^2], \mathbb{E}[X_i^3], \mathbb{E}[X_i^4]$.
- b. Fix an $\varepsilon > 0$, and use Markov's inequality to show that, for any n,

$$\mathbb{P}(|S_n/n| > \varepsilon) \le O(n^{-2}).$$

c. Finally, use Borel-Cantelli to conclude that $\mathbb{P}(\lim_{n\to\infty} S_n/n = 0) = 1$. This a weaker (the full theorem assumes only finite first moments) form of the *strong law of large numbers*.

Solution:

a. We expand:

$$\mathbb{E} S_n^4 = \mathbb{E} \left(\sum_{i=1}^n X_i \right)^4 = \mathbb{E} \sum_{1 \le i, j, k, l \le n} X_i X_j X_k X_l.$$

Terms of the form $\mathbb{E}[X_i^3 X_j]$, $\mathbb{E}[X_i^2 X_j X_k]$, and $\mathbb{E}[X_i X_j X_k X_l]$ are just 0 by independence. We are left with

$$\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{4}\right) + \mathbb{E}\left[\sum_{i \neq j} X_{i}^{2} X_{j}^{2}\right] = n \,\mathbb{E}[X_{1}^{4}] + 3n(n-1) \,\mathbb{E}[X_{1}^{2}] \,\mathbb{E}[X_{2}^{2}].$$

b. By Markov's inequality and the previous part, we have

$$\mathbb{P}(|S_n/n| > \varepsilon) < \varepsilon^{-4} \, \mathbb{E}(S_n/n)^4 = O(\varepsilon^{-4} n^{-2}).$$

c. Letting $A_n = \{|S_n/n| > \varepsilon\}$, we get from the Borel-Cantelli lemma that $\mathbb{P}(|S_n/n| > \varepsilon \text{ i.o.}) = 0$. Since ε is arbitrary, this implies almost sure convergence.

4. Jensen's Inequality and Information Measures

Note: This problem set is designed to be worked on in the order that the questions appear. You may cite results from previous problems in your solutions.

- a. Prove **Jensen's inequality**: if φ is a convex function from \mathbb{R} to \mathbb{R} and Z is a random variable, then $\varphi(\mathbb{E}(Z)) \leq \mathbb{E}(\varphi(Z))$.
 - *Hint*: A convex function $\varphi \colon \mathbb{R} \to \mathbb{R}$ is lower bounded by all tangent lines ℓ that intersect φ at some point(s) and lie below φ everywhere else.
- b. Show that $H(X) \leq \log |\mathcal{X}|$ for any distribution p_X . Conclude that for random variables taking values in $[n] := \{1, \ldots, n\}$, the distribution which maximizes H(X) is Uniform([n]). Hint: log is a concave function, for which $\log \mathbb{E}(Z) \geq \mathbb{E}(\log Z)$.
- c. For two random variables X, Y, we define their mutual information to be

$$I(X;Y) = \sum_{x} \sum_{y} p_{X,Y}(x,y) \log \frac{p_{X,Y}(x,y)}{p_{X}(x) p_{Y}(y)},$$

where the sums are taken over all outcomes of X and Y. Show that $I(X;Y) \geq 0$.

d. The *conditional entropy* of X given Y is defined to be

$$H(X \mid Y) = \sum_{y} p_{Y}(y) \cdot H(X \mid Y = y)$$

$$= \sum_{y} p_{Y}(y) \sum_{x} p_{X|Y}(x \mid y) \log \frac{1}{p_{X|Y}(x \mid y)}.$$

Show that $H(X) \ge H(X \mid Y)$. Intuitively, conditioning will only ever reduce or maintain our uncertainty, never increase it. *Hint*: Use part c.

Solution:

a. Per the hint, for every $x \in \mathbb{R}$, $\varphi(x) = \sup\{\ell(x) : \ell \text{ an affine function such that } \ell \leq \varphi\}$. Consider any particular $\ell(x) = ax + b$ such that $\ell \leq \varphi$. We have that

$$\mathbb{E}(\varphi(Z)) \geq \mathbb{E}(\ell(Z)) = a\,\mathbb{E}(Z) + b = \ell(\mathbb{E}(Z)).$$

As this is true for all affine functions $\ell \leq \varphi$, we can take the supremum to find that

$$\mathbb{E}(\varphi(Z)) \geq \sup_{\ell \leq \varphi} \ell(\mathbb{E}(Z)) = \varphi(\mathbb{E}(Z)).$$

b. $Z = 1/p_X(X)$ is a function of X and thus a random variable, taking values in $[1, \infty)$. Since log is a concave function, or $-\log$ is a convex function, by Jensen's inequality,

$$H(X) = \mathbb{E}\left(\log \frac{1}{p_X(X)}\right) \le \log \mathbb{E}\left(\frac{1}{p_X(X)}\right)$$
$$= \log \sum_{x \in \mathcal{X}} p_X(x) \frac{1}{p_X(x)}$$
$$= \log \sum_{x \in \mathcal{X}} 1 = \log |\mathcal{X}|.$$

Then, note that for $X \sim \text{Uniform}([n])$, we have

$$H(X) = \sum_{k=1}^{n} \frac{1}{n} \log \frac{1}{1/n} = \log n = \log |\{1, \dots, n\}|.$$

Hence the uniform distribution maximizes entropy for the finite set [n].

c. Observe that Z = p(X) p(Y)/p(X,Y) is a function of X,Y and thus a random variable. Moreover, by the Law of the Unconscious Statistician, we see that

$$I(X;Y) = \mathbb{E}(\log \frac{1}{Z}) = \mathbb{E}(-\log Z).$$

Applying Jensen's inequality, we have

$$I(X;Y) \ge -\log\left(\sum_{x}\sum_{y}p(x,y)\frac{p(x)\,p(y)}{p(x,y)}\right)$$

$$= -\log\left(\sum_{x}\sum_{y}p(x)\,p(y)\right)$$

$$= -\log\left(\sum_{x}p(x)\sum_{y}p(y)\right)$$

$$= -\log(1) = 0.$$

d. We now observe that $H(X) = \mathbb{E}(-\log p(X))$, and

$$H(X\mid Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{1}{p(x\mid y)} = \mathbb{E}(-\log p(X\mid Y)).$$

By part c and the linearity of expectation, we find that

$$I(X;Y) = \mathbb{E}[-\log(p(X)/p(X\mid Y))]$$

$$= \mathbb{E}(-\log p(X)) - \mathbb{E}(-\log p(X\mid Y))$$

$$= H(X) - H(X\mid Y) \ge 0.$$

5. Compression of a Random Source

Suppose I'm trying to send a text message to a friend. In general, I need $\log_2(26)$ bits for every letter I want to send, as there are 26 letters in the English alphabet, but if I have some information on the distribution of the letters, I can do better. For example, I might give the most common letter 'e' a shorter bit representation. It turns out the number of bits needed on average is precisely the entropy of the distribution: let us see why that is.

Let $(X_i)_{i=1}^{\infty} \sim_{\text{i.i.d.}} p(\cdot)$, where p is a discrete PMF on a finite set \mathcal{X} . Recall that the entropy of a random variable X is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x).$$

a. Here, we extend the notation $p(\cdot)$ to denote the joint PMF of (X_1, \ldots, X_n) , so that $p(x_1, \ldots, x_n) = p(x_1) \cdots p(x_n)$. Show that

$$-\frac{1}{n}\log_2 p(X_1,\ldots,X_n) \xrightarrow{n\to\infty} H(X_1)$$
 almost surely.

b. Fix $\varepsilon > 0$ and define $A_{\varepsilon}^{(n)}$ to be the set of all sequences $(x_1, \ldots, x_n) \in \mathcal{X}^n$ such that

$$2^{-n(H(X_1)+\varepsilon)} < p(x_1,\ldots,x_n) < 2^{-n(H(X_1)-\varepsilon)}$$
.

Show that for all n sufficiently large,

$$\mathbb{P}((X_1,\ldots,X_n)\in A_{\varepsilon}^{(n)})>1-\varepsilon.$$

Consequently, $A_{\varepsilon}^{(n)}$ is called the **typical set**, because the observed sequences lie within $A_{\varepsilon}^{(n)}$ with high probability.

c. Show that for all n sufficiently large,

$$(1-\varepsilon)2^{n(H(X_1)-\varepsilon)} \le \left|A_{\varepsilon}^{(n)}\right| \le 2^{n(H(X_1)+\varepsilon)}.$$

Hint: Use the union bound.

Parts (b) and (c) are called the **asymptotic equipartition property** (AEP), because they state there are $\approx 2^{nH(X_1)}$ possible observed sequences, each with probability $\approx 2^{-nH(X_1)}$. Thus, by discarding the sequences outside of $A_{\varepsilon}^{(n)}$, we need only keep track of $2^{nH(X_1)}$ sequences, which means that a sequence of length n can be compressed into $\approx nH(X_1)$ bits, requiring $H(X_1)$ bits per symbol.

d. Now show that for any $\delta > 0$, and sets $B_n \subseteq \mathcal{X}^n$ with $|B_n| \leq 2^{n(H(X_1) - \delta)}$, $n \geq 1$, we have

$$\mathbb{P}((X_1,\ldots,X_n)\in B_n)\to 0 \text{ as } n\to\infty.$$

In other words, we cannot compress the possible observed sequences of length n into any set smaller than size $2^{nH(X_1)}$; the typical set is in this sense *minimal*.

Hint: Consider the intersection of B_n and $A_{\varepsilon}^{(n)}$.

e. Finally, we turn towards using the AEP for compression. Recall that encoding a set of size n in binary requires $\lceil \log_2(n) \rceil$ bits, so a naïve encoding of the message sequence requires $\lceil \log_2|\mathcal{X}| \rceil$ bits per symbol.

From the previous parts, if we use $\log_2 |A_{\varepsilon}^{(n)}| \approx nH(X_1)$ bits to encode the sequences in the typical set, ignoring all other sequences, then the probability of error with this

encoding will tend to 0 as $n \to \infty$, and thus an asymptotically error-free encoding can be achieved using $H(X_1)$ bits per symbol.

Alternatively, we can create an error-free code using $1 + \lceil \log_2 |A_{\varepsilon}^{(n)}| \rceil$ bits to encode the sequences in the typical set and $1 + n\lceil \log_2 |\mathcal{X}| \rceil$ bits for other sequences, where the first bit is used to indicate whether the sequence belongs in $A_{\varepsilon}^{(n)}$ or not. Let L_n be the length of the encoding of (X_1, \ldots, X_n) using this error-free code. Show that

$$\lim_{n \to \infty} \frac{\mathbb{E}(L_n)}{n} \le H(X_1) + \varepsilon.$$

In other words, asymptotically, we can compress the message sequence so that the number of bits per symbol is arbitrary close to the entropy.

Solution:

a. As $(X_i)_{i=1}^{\infty}$ is a sequence of i.i.d. random variables, so is $(\log_2 p(X_i))_{i=1}^{\infty}$. Thus, by the Strong Law of Large Numbers,

$$-\frac{1}{n}\log_2 p(X_1, \dots, X_n) = -\frac{1}{n}\sum_{i=1}^n \log_2 p(X_i) \xrightarrow{n \to \infty} -\mathbb{E}(\log_2 p(X_1)) = H(X_1).$$

b. As a consequence of part (a), $-\frac{1}{n}\log_2 p(X_1,\ldots,X_n)\to H(X_1)$ in probability, so

$$\mathbb{P}\left(\left|-\frac{1}{n}\log_2 p(X_1,\ldots,X_n) - H(X_1)\right| < \varepsilon\right) \to 1 \quad \text{as } n \to \infty.$$

In other words, for all n sufficiently large, the left hand side is $> 1 - \varepsilon$.

c. Taking the hint, we have

$$1 = \sum_{x \in \mathcal{X}^n} p(x) \ge \sum_{x \in A_{\varepsilon}^{(n)}} p(x) \ge \sum_{x \in A_{\varepsilon}^{(n)}} 2^{-n(H(X_1) + \varepsilon)} = |A_{\varepsilon}^{(n)}| \cdot 2^{-n(H(X_1) + \varepsilon)}.$$

This shows that $|A_{\varepsilon}^{(n)}| \leq 2^{n(H(X_1)+\varepsilon)}$. Now, for all n sufficiently large,

$$1 - \varepsilon < \mathbb{P}\left((X_1, \dots, X_n) \in A_{\varepsilon}^{(n)}\right) \le \sum_{x \in A_{\varepsilon}^{(n)}} 2^{-n(H(X_1) - \varepsilon)} = |A_{\varepsilon}^{(n)}| \cdot 2^{-n(H(X_1) - \varepsilon)},$$

which gives $|A_{\varepsilon}^{(n)}| \geq (1-\varepsilon)2^{n(H(X_1)-\varepsilon)}$.

d. For any $\delta > 0$, we can choose $0 < \varepsilon < \delta$, so that

$$\mathbb{P}((X_1, \dots, X_n) \in B_n) \leq \mathbb{P}((X_1, \dots, X_n) \in A_{\varepsilon}^{(n)} \cap B_n) + \mathbb{P}((X_1, \dots, X_n) \notin A_{\varepsilon}^{(n)})$$

$$\leq |B_n| \cdot 2^{-n(H(X_1) - \varepsilon)} + \mathbb{P}((X_1, \dots, X_n) \notin A_{\varepsilon}^{(n)})$$

$$\leq 2^{-n(\delta - \varepsilon)} + \mathbb{P}((X_1, \dots, X_n) \notin A_{\varepsilon}^{(n)}) \to 0$$

by part (b), as this inequality holds for all $0 < \varepsilon < \delta$.

e. Separating the sequences in the typical set from other sequences,

$$\frac{\mathbb{E}(L_n)}{n} = \frac{1 + \lceil \log_2 |A_{\varepsilon}^{(n)}| \rceil}{n} \mathbb{P}((X_1, \dots, X_n) \in A_{\varepsilon}^{(n)}) + \frac{1 + n\lceil \log_2 |\mathcal{X}| \rceil}{n} \mathbb{P}((X_1, \dots, X_n) \notin A_{\varepsilon}^{(n)})$$

$$\leq \frac{1+\lceil n(H(X_1)+\varepsilon)\rceil}{n} + (1+\lceil \log_2|\mathcal{X}|\rceil) \mathbb{P}((X_1,\ldots,X_n) \notin A_{\varepsilon}^{(n)})$$

 $\to H(X_1) + \varepsilon.$

Note that the probability of being outside of the typical set tends to 0 asymptotically, so only the first term matters as $n \to \infty$.

6. Crafty Bounds

We have an alphabet \mathcal{X} containing n letters $\{x_1, \ldots, x_n\}$, where each letter x_i occurs with probability p_i . We wish to *encode* the alphabet by assigning to each letter x_i a binary string of length ℓ_i . Let $L = \sum_{i=1}^n p_i \ell_i$ be the expected codeword length, and let H(p) be the entropy of the distribution on \mathcal{X} .

- a. Prove the lower bound $H(p) \leq L$. You may cite well-known results.
- b. A code is *prefix-free* if no codeword is a prefix of another codeword. For example, 011 is a prefix of 01101. Show that if we have a prefix-free code where each x_i is mapped to a codeword of length ℓ_i , then

$$\sum_{i=1}^{n} 2^{-\ell_i} \le 1.$$

Hint: Consider the codewords as sequences of coin flips that we can feed into a decoder to recover the original letters, and revisit midterm 1 question 2b.

c. Prove the converse of part b: If $\ell_1, \ell_2, \dots, \ell_n$ satisfy $\sum_{i=1}^n 2^{-\ell_i} \leq 1$, then there exists a prefix-free code where each x_i is mapped to a codeword of length ℓ_i .

Hint: Consider induction. Can you assume without loss of generality that $\sum_{i=1}^{n} 2^{-\ell_i} = 1$?

- d. Show that there exists a prefix-free code with $\ell_i = \lceil -\log_2 p_i \rceil$ for $i = 1, \ldots, n$.
- e. Conclude that there exists a prefix-free code such that $L \leq H(p) + 1$.

Solution:

- a. This bound follows from Shannon's source coding theorem, namely that the entropy gives a lower bound on the average number of bits required to encode each letter.
- b. Consider a sequence of i.i.d. Bernoulli($\frac{1}{2}$) random bits, and let A_i be the event that the first ℓ_i bits in the sequence decode to the letter x_i . Then A_1, \ldots, A_n are disjoint because the code is prefix-free, and we have that

$$\sum_{i=1}^{n} 2^{-\ell_i} = \sum_{i=1}^{n} \mathbb{P}(A_i) = \mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \le 1.$$

- c. Assume without loss of generality that $\sum_{i=1}^{n} 2^{-\ell_i} = 1$, which we can always achieve by reducing the lengths ℓ_i . If a prefix-free code exists for the reduced ℓ_i , then we can simply extend those codewords until we have the desired lengths.
 - The base case can be taken to be n=1 (degenerate) or n=2, where $\ell_1=\ell_2=1$ and a prefix-free code is given by 0 and 1.
 - Now, suppose that the proposition holds for n=k. Given ℓ_1,\ldots,ℓ_{k+1} such that $\sum_{i=1}^{k+1} 2^{-\ell_i} = 1$, consider the two longest lengths, without loss of generality ℓ_k and ℓ_{k+1} . Because equality is achieved, we must actually have $\ell_k = \ell_{k+1}$. By the inductive hypothesis, there exists a prefix-free code whose codeword lengths are $\ell_1,\ldots,\ell_{k-1},(\ell_k-1)$. We can replace the codeword s of length ℓ_k-1 with two codewords s0 and s1, which have lengths $\ell_k=\ell_{k+1}$, and this is the desired code for n=k+1. This finishes the inductive step and the proof.

Remark. Parts b and c are known as the Kraft-McMillan inequality.

Alternate solution. Suppose without loss of generality that $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_n$, and let us assign codewords one-by-one. In step k, given that we have prefix-free codewords of lengths $\ell_1, \ldots, \ell_{k-1}$, there exists a valid codeword of length ℓ_k iff

$$2^{\ell_k} \ge 1 + \sum_{i=1}^{k-1} 2^{\ell_k - \ell_i}.$$

The right-hand sum counts the number of bitstrings of length ℓ_k that do share a prefix with any of the previous k-1 codewords. Now, dividing on both sides, this says

$$1 \ge 2^{-\ell_k} + \sum_{i=1}^{k-1} 2^{-\ell_i} = \sum_{i=1}^k 2^{-\ell_i}.$$

There exists a prefix-free code with codeword lengths ℓ_1, \ldots, ℓ_n if and only if the inequality above holds at every step $k = 1, \ldots, n$. But this is precisely equivalent to $\sum_{i=1}^{n} 2^{-\ell_i} \leq 1$.

d. For $\ell_i = \lceil -\log_2 p_i \rceil$, we observe that

$$\sum_{i=1}^{n} 2^{-\lceil -\log_2 p_i \rceil} \le \sum_{i=1}^{n} 2^{-(-\log_2 p_i)} = \sum_{i=1}^{n} p_i = 1.$$

By part c, the desired prefix-free code indeed exists.

e. Considering the code identified in part d, we have that

$$L = \sum_{i=1}^{n} p_i \lceil -\log_2 p_i \rceil \le \sum_{i=1}^{n} p_i (-\log_2 p_i + 1) = H(p) + 1.$$

Remark. The Huffman code is optimal among all prefix-free codes that assign codewords letter-by-letter, so its expected codeword length satisfies the bounds $H(p) \le L \le H(p) + 1$.