2024-MA-14-26

EE24BTECH11010 - BALAJI B

1) Consider the following limit

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^\infty e^{-x/\epsilon} \left(\cos(3x) + x^2 \sqrt{x+4} \right) dx$$

Which one of the following is correct?

[2024 MA]

1

- a) The limit does not exist
- b) The limit exists and is equal to 0
- c) The limit exists and is equal to 3
- d) The limit exists and is equal to π
- 2) Let $\mathbb{R}[X^2, X^3]$ be a substring of $\mathbb{R}[X]$ generated by X^2 and X^3 . Consider the following statements.
 - I. The ring $\mathbb{R}\left[X^2,X^3\right]$ is a unique factorization domain.
 - II. The ring $\mathbb{R}[X^2, X^3]$ is a principle ideal domain.

Which one of the following is correct?

[2024 MA]

- a) Both I and II are TRUE
- b) I is TRUE and II is FALSE
- c) I is FALSE and II is TRUE
- d) Both I and II are FALSE
- 3) Given a prime number p, let $n_p(G)$ denote the number of p-Sylow subgroups of a finite group G. Which one of the following is TRUE for every group G of order 2024? [2024 MA]
 - a) $n_{11}(G) = 1$ and $n_{23}(G) = 11$
 - b) $n_{11}(G) \in \{1, 23\}$ and $n_{23}(G) = 1$
 - c) $n_{11}(G) = 23$ and $n_{23} \in \{1, 88\}$
 - d) $n_{11}(G) = 23$ and $n_{23}(G) = 11$
- 4) Consider the following statements.
 - I. Every compact Hausdroff space is normal.
 - II. Every metric space is normal. Which one of the following is correct?

[2024 MA]

- a) Both I and II are TRUE
- b) I is TRUE and II is FALSE
- c) I is FALSE and II is TRUE
- d) Both I and II are FALSE
- 5) Consider the topology on \mathbb{Z} with basis $\{S(a,b): a,b\in\mathbb{Z} \text{ and } a\neq 0\}$, where

$$S\left(a,b\right)=\left\{an+b:n\in\mathbb{Z}\right\}$$

Consider the following statements.

- I. S(a,b) is both open and closed for each $a,b \in \mathbb{Z}$ with $a \neq 0$
- II. The only connected set containing $x \in \mathbb{Z}$ is $\{x\}$

Which one of the following is correct?

[2024 MA]

- a) Both I and II are TRUE
- b) I is TRUE and II is FALSE
- c) I is FALSE and I is TRUE
- d) Both I and II are FALSE
- 6) Let $A \in M_2(\mathbb{C})$ be a normal matrix. Consider the following statements.
 - I. If all the eigenvalues of A are real, then A is Hermitian.
 - II. If all the eigenvalues of A have absolute value 1, then A is unitary.

Which one of the following is correct?

[2024 MA]

- a) Both I and II are TRUE
- b) I is TRUE and II is FALSE
- c) I is FALSE and II is TRUE
- d) Both I and II are FALSE
- 7) Let $A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$ and $T : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ be a linear transformation given by T(B) = AB. The characteristic polynomial of T is [2024 MA]
 - a) $X^2 8X + 16$

c) $X^2 - 2$

b) $X^2 - 4$

d) $X^2 - 16$

8) Let

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$$

and **b** be a 3×1 real column vector. Consider the statements.

- I. The Jacobi iteration method for the system $(A + \epsilon I_3) \mathbf{x} = \mathbf{b}$ onverges for any initial approximation and $\epsilon > 0$
- II. The Gauss-Seidel iteration method for the system $(A + \epsilon I_3) \mathbf{x} = \mathbf{b}$ converges for any initial approximation and $\epsilon > 0$

Which of the following is correct?

[2024 MA]

- a) Both I and I are TRUE
- b) I is TRUE and II is FALSE
- c) I is FALSE and II is TRUE
- d) Both I and I are FALSE
- 9) For the initial value problem

$$y'=f\left(x,y\right),\,y\left(x_{0}\right)=y_{0}$$

generate approximations y_n to $y(x_n)$, $x_n = x_0 + nh$, for a fixed h > 0 and n = 1, 2, 3, ... using the recursion formula

$$y_n = y_{n-1} + ak_1 + bk_2$$
, where $k_1 = hf(x_{n-1}, y_{n-1})$ and $k_2 = hf(x_{n-1} + \alpha h, y_{n-1} + \beta k_1)$

Which one of the following choices of a, b, α, β for the above recursion formula gives the Runge-Kuta method of order 2? [2024 MA]

- a) $a = 1, b = 1, \alpha = 0.5, \beta = 0.5$
- b) $a = 0.5, b = 0.5, \alpha = 2, \beta = 2$
- c) $a = 0.25, b = 0.75, \alpha = \frac{2}{3}, \beta = \frac{2}{3}$

d)
$$a = 0.5, b = 0.5, \alpha = 1, \beta = 2$$

10) Let u = u(x, t) be the solution of

$$\frac{\partial u}{\partial t} - 4 \frac{\partial^2 u}{\partial x^2} = 0 , 0 < x < 1 , t > 0, u(0, t) = u(1, t) = 0 , t \ge 0, u(x, 0) = \sin(\pi x) , 0 \le x \le 1$$

Define $g(t) = \int_{a}^{b} \left(u(x,t)^2\right) dx$, for t > 0. Which one of the following is correct?

[2024 MA]

- a) g is decreasing on $(0, \infty)$ and $\lim_{t \to \infty} g(t) = 0$
- b) g is decreasing on $(0, \infty)$ and $\lim_{t \to \infty} g(t) = \frac{1}{4}$ c) g is increasing on $(0, \infty)$ and $\lim_{t \to \infty} g(t)$ does not exist
- d) g is increasing on $(0, \infty)$ and $\lim_{t \to \infty} g(t) = 3$
- 11) y_1 and y_2 are two different solution of the ordinary differential equation

$$y' + \sin(e^x) y = \cos(e^{x+1}), 0 \le x \le 1,$$

then which of the following is the general solution on [0, 1]?

[2024 MA]

a)
$$c_1y_1 + c_2 + y_2$$
, $c_1, c_2 \in \mathbb{R}$

c)
$$cy_1 + (y_1 - y_2)$$
, $c \in \mathbb{R}$

b)
$$y_1 = c_1 (y_1 - y_2), c \in \mathbb{R}$$

d)
$$c_1(y_1 + y_2) + c_2(y_1 - y_2)$$
, $c_1, c_2 \in \mathbb{R}$

12) Consider the following Linear Programming Problem P

minimize
$$5x_1 + 2x_2$$

subject to $2x_1 + x_2 \le 2$,
 $x_1 + x_2 \ge 1$
 $x_1, x_2 \ge 0$.

The optimal value of the problem \mathbf{P} is equal to

[2024 MA]

13) Let $p = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}) \in \mathbb{R}^4$ and $f : \mathbb{R}^4 \to \mathbb{R}$ br a differential function such that f(p) = 6 and $f(\lambda x) = \lambda^3 f(x)$, for every $\lambda \in (0, \infty)$ and $x \in \mathbb{R}^4$. The value of

$$12\frac{\partial f}{\partial x_1}(p) + 6\frac{\partial f}{\partial x_2}(p) + 4\frac{\partial f}{\partial x_3}(p) + 3\frac{\partial f}{\partial x_4}(p)$$

_____ (answer in integer)

[2024 MA]