On multi-task collaborative rating problem

Jimmy Ba,

University of Toronto

Dec. 1, 2012

Formal definition

Define: U users and V rating options in the system

Given: A tensor $\mathbf{R} \in \Re^{U \times U \times V}$, each of its face $R_v \in \Re^{U \times U}$ is the pairwise rating matrix for v^{th} rating option.

▶ There are matrices $P \in \Re^{Uxk}$ and $W_{V} \in \Re^{kxU}$. such that.

$$R_v = PW_v$$

▶ P stays fixed for $v \in \{1, 2, ..., V\}$

Objective Function

Define: mask matrix $M_v \in R^{U \times U}$, has ones for all the rating entry and zeros else where. **Goal:** Minimize the Frobenius norm of the matrix completion problem

$$\min_{P,W_v} \sum_{v=1}^V ||(PW_v - R_v) \cdot M_v||_F^2$$

Training model

Updates: Take the gradient of objective function with respect to the P and W_{ν}

$$\begin{aligned} \frac{\partial J}{\partial P} &= \sum_{v=1}^{V} [(PW_v - R_v) \cdot M_v] W_v^T \\ \frac{\partial J}{\partial W_v} &= P^T [(PW_v - R_v) \cdot M_v] \end{aligned}$$

Use any non-convex optimization optimizer to estimate P and W_{ν}

Ranking

Given: W_{ν} for each task

Score vector:

$$S = Diag[W_v^T Q W_v]$$

where, Q is a weighting matrix

Experimental results - toy data

▶ We start with a 5-by-5 distance matrix that describe the similarity among users:

$$\left(\begin{array}{cccccc}
0 & 2 & 6 & 8 & 9 \\
2 & 0 & 4 & 6 & 7 \\
6 & 4 & 0 & 2 & 3 \\
8 & 6 & 2 & 0 & 1 \\
9 & 7 & 3 & 1 & 0
\end{array}\right)$$

We also create a absolute skill level matrix for 3 tasks

$$\begin{pmatrix}
1. & 0.5 & 0.7 \\
0.5 & 0.3 & 0.8 \\
0.7 & 0.2 & 2 \\
2. & 1. & 0.5 \\
1. & 2. & 0.1
\end{pmatrix}$$

Experimental results - toy data

- We generate a rating tensor from the ground truth.
- We can recover the relative distance matrix.
 - ightharpoonup k = 2, and L_2 weight decay is applied to both P and W
 - ▶ The Pearson correlation of the ground truth and estimated distance matrix is 0.5, meaning the two are strongly correlated.

Experimental results - simulated large data

- ▶ We simulated a generative process for rating tensor for 159 users and 18 tasks. The final rating tensor is 95% sparse
- ► The algorithm can still recover the relative distance matrix with 0.5 Pearson correlation.
 - ightharpoonup k = 50, and L_2 weight decay is applied to both P and W