Homework_Data_Viz

oOFourthOo

2024-07-21

Load library for data visualization

```
library(tidyverse)
## -- Attaching core tidyverse packages ------ tidyverse 2.0.0 --
              1.1.4
## v dplyr
                        v readr
                                    2.1.5
             1.0.0
## v forcats
                        v stringr
                                    1.5.1
## v ggplot2 3.5.1
                        v tibble
                                    3.2.1
## v lubridate 1.9.3
                        v tidyr
                                    1.3.1
## v purrr
              1.0.2
## -- Conflicts -----
                                        ------tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(tinytex)
```

Prepare Data

```
small_df <- diamonds %>%
  sample_n(2000)
head(small_df)
```

```
## # A tibble: 6 x 10
    carat cut
                   color clarity depth table price
                                                      Х
    <dbl> <ord>
                   <ord> <ord>
                                 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 0.32 Ideal
                   D
                         SI1
                                  62.1
                                          54
                                              715 4.4
                                                         4.45 2.75
## 2 1.18 Ideal
                   Η
                         SI1
                                  61.4
                                          55 6013
                                                   6.84 6.78 4.18
                   F
                         SI2
                                  63.9
                                          57 2189 5.86 5.84 3.74
## 3 0.8 Good
## 4 2.01 Very Good I
                         SI2
                                  61.8
                                          58 13323 8.01 8.05 4.96
## 5 0.38 Ideal
                         VS2
                                  61.2
                                          57
                                               889 4.67 4.64 2.85
## 6 0.32 Ideal
                         VS2
                                  61.1
                                               972 4.41 4.39 2.69
```

1.Barchart Diamonds Clarity

• From the bar chart, clarity levels SI1 and VS2 have the highest number of diamonds. This is probably the most easily found or most sought after level on the market.

2. Histogram Diamonds Price

• From the Histogram chart, it can be seen that the price of most diamonds is less than \$2000.

3. Scatter Plot Carat and Price

'geom_smooth()' using formula = 'y ~ x'

• From the scatter chart, when the carat weight increases, the price of diamonds increases and Data becomes more distributed as carat increases.

4. Count Plot Cut and Color

• From the count chart, it can be seen that a high quality cut has an effect on having more diamonds, and G and H colored diamonds are found in large numbers in every cut, while J color diamonds tend to have a low number of diamonds in every cut.

5. Multiple Stacked Bar Plot Color by Cut and Clarity

```
ggplot(small_df, aes(cut, fill = color)) +
  geom_bar(position = "fill") +
  facet_wrap(~ clarity, ncol = 2) +
  coord_flip() +
  theme_minimal() +
  labs(title = "Distribution of Diamonds Color by Cut and Clarity",
        x = "Quality of cut",
        y = "Grade Color (%)") +
  theme(plot.title = element_text(hjust = 0.5))
```

Distribution of Diamonds Color by Cut and Clarity

• From the scatter plot, G and H colored diamonds are most commonly found in all cuts and clarity, while D colored diamonds are found in a smaller proportion compared to other colors in all cuts and clarity.