

Survol

Informatique classique

- Utilise des états binaires ou des bits (0 et 1)
- Calcul déterministe
- Ordinateurs portables, téléphones, grappes de calcul, etc.

Informatique quantique

- Utilise des bits quantiques ou qubits
- Superposition, intrication et interférence
- Calcul probabiliste
- MonarQ

Les qubits sont la réalisation physique d'un système quantique à deux niveaux, qui stocke et traite l'information quantique. \cap

Superposition

$$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$$
 avec $|\alpha|^2+|\beta|^2=1$

Mathématiquement, un qubit est un vecteur dans un espace vectoriel complexe

CQ

Qubit: l'objet mathématique

Les qubits sont la réalisation physique d'un système quantique à deux niveaux, qui stocke et traite

l'information quantique.

Interférence

$$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$$
 avec $|\alpha|^2+|\beta|^2=1$

$$P(|0\rangle) = |\alpha|^2$$

$$P(|1\rangle) = |\beta|^2$$

On peut manipuler les amplitudes et les probabilités avec l'interférence constructive et destructive.

Qubit: l'objet mathématique

Les qubits sont la réalisation physique d'un système quantique à deux niveaux, qui stocke et traite l'information quantique.

Intrication

Les qubits intriqués sont corrélées. La mesure de l'un modifie la mesure des autres.

Il n'y a pas d'analogue en mécanique classique.

Qubit: l'objet physique

Atomes		Électrons			Photons
lons piégés	Atomes froids	Recuit	Supraconducteur	Topologique	Photons
*		("Annealing")			
ONQ	IQUEPa>	D::Wave		Microsoft	(X) X∧N∧DU
	🤃 Pasqal		amazon		
QUANTINUUM			Google		Ψ Psi Quantum
			VUALU		
			IQM		QUANDELA
			N&rO Quantique		

Qubits

- Élément fondamental de l'informatique présentant les propriétés de la mécanique quantique.
- Les états booléens 0 et 1 sont représentés par une pair d'états quantiques normalisés et orthogonaux $|0\rangle$ et $|1\rangle$.
- En pratique, un qubit est un système microscopique que l'on peut manipuler de manière cohérente

Les qubits de MonarQ sont des **transmons** fabriqués à partir de matériaux supraconducteurs fonctionnant à des températures extrêmement basses et manipulés par des impulsions de micro-ondes.

Pause programmation

Notebook 1 : Développer un simulateur quantique

Notebook 1: Aide-mémoire

- 1. **État** d'un qubit
 - $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ avec $|\alpha|^2 + |\beta|^2 = 1$
 - Représenté par un vecteur dans un espace vectoriel complexe

- 2. Notation de **Dirac**
 - o Un **ket** $|\psi\rangle$ est un vecteur colonne et le **bra** $\langle\psi|$ associé est le vecteur ligne obtenu en prenant le conjugué complexe transposé du ket
- 3. Sphère de Bloch
 - **Représentation visuelle d'un qubit** comme un vecteur sur la sphère avec θ et ϕ comme coordonnées de l'état: $|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$
- 4. Les **portes** quantiques sont des **matrices unitaires** et agissent sur les qubits comme des **rotations** sur la sphère de Bloch
 - \circ Un **circuit quantique** est une séquence de transformations unitaires (portes) appliquées à un état initial $|\psi_{\mathrm{final}}\>
 angle = U_n \cdots U_2 U_1 \, |\psi_{\mathrm{initial}}\>
 angle$
- 5. La **mesure** donne des **résultats probabilistes** basés sur l'état final

$$P(|0\rangle) = |\alpha|^2 = \alpha^* \alpha \text{ et } P(|1\rangle) = |\beta|^2 = \beta^* \beta$$