Scilab Textbook Companion for Semiconductor Devices Physics and Technology by S. M. Sze and M. K. Lee¹

Created by
Reshma Sunil Konjari
Mtech
Electrical Engineering
VIT vellore
College Teacher
None
Cross-Checked by
Bhayani Jalkrish

April 23, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Semiconductor Devices Physics and Technology

Author: S. M. Sze and M. K. Lee

Publisher: John Wiley

Edition: 3

Year: 2012

ISBN: 978-0470-53794-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes			
1	Energy bands and carrier concetration in thermal equlibrium	8	
2	Carrier Transport Phenomena	10	
3	pn Junction	16	
4	Bipolar Transistor an related Devices	22	
5	MOS capacitor and MOSFET	26	
6	Advanced MOSFET and related devices	32	
7	MESFET and related devices	33	
8	Microwave diodes Quantum effect and hot electron devices	38	
9	Light Emitting diodes and lasers	40	
10	Photodetectors and solar cells	43	
11	Crystal growth and epitaxy	46	
12	Film formation	49	
13	Lithography and etching	52	
14	Impurity Doping	54	

List of Scilab Codes

Exa 1.2	calculate no of silicon atoms per cubic centimeter	8
Exa 1.4	carrier concentration	8
Exa 2.1	mean free time	10
Exa 2.2	room temperature	10
Exa 2.3	hall voltage	11
Exa 2.4	diffusion current density	11
Exa 2.5	drift velocity	12
Exa 2.6	minority carrier concentration	12
Exa 2.7	quasi fermi level	13
Exa 2.8	minority carrier lifetime	14
Exa 2.9	thermionically emitted electron density	14
Exa 3.1	calculate the built in potential	16
Exa 3.2	depletion layer width	16
Exa 3.3	depletion layer width	17
Exa 3.4	calculate the junction capacitance	17
Exa 3.5	ideal reverse saturation current	18
Exa 3.6	generation current density	19
Exa 3.7	stored minority carriers	19
Exa 3.8	breakdown voltage	20
Exa 3.9		20
Exa 3.10		21
Exa 4.1	emitter efficiency	22
Exa 4.2	common base current gain	23
Exa 4.3	value of Iceo	24
Exa 4.4	base doping	24
Exa 4.5		25
Exa 5.1	maxi width	26
Eva 5.2	mini capacitance of CV	26

Exa 5.3	calculate the flat band voltage
Exa 5.4	change in flat band
Exa 5.5	calculate Vdsat
Exa 5.6	VT for gate oxide
Exa 5.7	VT for gate oxide
Exa 5.8	calculate the change in the threshold voltage 30
Exa 6.1	calculate the threshold voltage
Exa 7.1	donor concentration
Exa 7.2	barrier height and depletion layer
Exa 7.3	voltage drop
Exa 7.4	pinch off volt
Exa 7.5	two dimensional electron
Exa 8.1	dc breakdown volt
Exa 8.2	mini electron density
Exa 9.1	total energy absorbed
Exa 9.2	modulation bandwidth
Exa 9.3	calculate R
Exa 9.4	mode spacing
Exa 9.5	calculate the threshold current
Exa 9.6	Determine temp
Exa 10.1	photocurrent
Exa 10.2	depth
Exa 10.3	responsivity
Exa 10.4	air mass
Exa 10.5	open circuit voltage
Exa 11.1	concentration in boron
Exa 11.3	time required
Exa 11.4	growth rate
Exa 12.1	thickness
Exa 12.3	intrinsic value
Exa 12.4	equivalent cell area
Exa 12.5	find depth
Exa 12.6	percentage od reduction
Exa 12.7	oxide removal rate
Exa 13.1	how many dust particles
Exa 13.2	parameter gamma
Exa 13.3	Al average etch rate
Exa 14.1	Ot and gradient

Exa 14.2	junction depth	54
Exa 14.3	ion beam current	55
Exa 14.4	thickness	55
Exa 15.1	value of resistor	57
Exa 15.2	stored charge	57
Exa 15.3	radius	58
Exa 15.4	gate to source voltage	58
Exa. 15.5	oxide thickness	58

Energy bands and carrier concetration in thermal equlibrium

Scilab code Exa 1.2 calculate no of silicon atoms per cubic centimeter

```
1 clc
2
3 T=300//K
4 a=5.43*10**-8//meter
5 w=28.09//g/mol..atomic weight
6 A=6.02*10^23 //atoms/mol...Avogadro's no.
7 s=8/a^3
8 disp(s,"atoms per unit cell in atoms/cm^3 is")
9 d=s*w/A
10 disp(d,"density in g/cm^3 is")
```

Scilab code Exa 1.4 carrier concentration

```
1 clc
```

```
3 T = 300 / K
4 Nd=10**16//atoms/cm^3
5 Nc=2.86*10**19//\text{cm}^-3
6 ni=9.65*10**9//cm^-3
7 k=8.617*10^{-5} //eV/K
8 e=1.6*10**-19 //C
9 n = Nd
10 \operatorname{disp}(n,"in cm^-3 is")
11 p=ni^2/Nd
12 \text{ disp(p,"in cm}^-3 \text{ is")}
13 / Ec-Ef=z
14 z=k*T*log(Nc/Nd)
15 disp(z," fermi level measured from bottom of
      conduction band in eV is")
16 //Ef-Ei=y
17 y=k*T*log(Nd/ni)
18 disp(y, "Fermi level measured from the intrinsic
      fermi level in eV is")
```

Carrier Transport Phenomena

Scilab code Exa 2.1 mean free time

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 m0=0.91*10^-30//kg
7 un=1000*10^-4//m^2/Vs
8 vth=2.28*10**7//cm/sec
9 mn=0.26*m0
10 disp(mn)
11 tauc=(mn*un)/q
12 disp(tauc,"mean free time in sec is")
13 l=vth*tauc
14 disp(1,"mean free path in cm is")
```

Scilab code Exa 2.2 room temperature

```
1 clc
```

```
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 m0=0.91*10^-30//kg
7 un=1300//m^2/Vs
8 Nd=10^16//cm^3
9 n=Nd
10 disp(n, "donors are ionized in cm^3 is")
11 row=1/(q*n*un)
12 disp(row, "resistivity in ohm cm is")
```

Scilab code Exa 2.3 hall voltage

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 \text{ m0=0.91*10^--30//kg}
7 n=10^16/cm^3
8 \text{ W} = 500 * 10 * * -4 //\text{cm}
9 A=2.5*10**-3/cm62
10 I = 10 * * -3 / /A
11 Bz=10^-4/Wb/cm^2
12
13 RH=1/(q*n)
14 disp(RH," Hall coefficient in cm<sup>3</sup>/C is")
15 \quad VH = W * RH * I * Bz / A
16 disp(VH, "Hall voltage in V is")
```

Scilab code Exa 2.4 diffusion current density

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 m0=0.91*10^-30//kg
7 Dn=22.5//cm^2/sec
8 deltan=1*10^18-7*10^17//cm^-3
9 deltax=0.1//cm
10 Jn=q*Dn*(deltan/deltax)
11 disp(Jn," diffusion current density in A/cm^2 is ")
```

Scilab code Exa 2.5 drift velocity

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} / eV/K
5 q=1.6*10**-19 //C
6 \text{ m0=0.91*10}^{-30} / \text{kg}
7 x=1/cm
8 t=100*10^-6//sec
9 epsilon=50/V/cm
10 \text{ vp=x/t}
11 disp(vp, "drift velocity in cm/s is")
12 up=vp/epsilon
13 disp(up, "mobility in cm<sup>2</sup>/Vs is")
14 Dp = (k*T*up)
15 disp(Dp, "diffusivity of minority carriers in cm<sup>2</sup>/
      sec is")
```

Scilab code Exa 2.6 minority carrier concentration

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 \text{ m0=0.91*10}^{-30} / \text{kg}
7 ni=9.65*10^9/cm^-3
8 nno=10^14/\text{cm}^-3
9 taun=2*10^-6//\sec c
10 taup=2*10^-6//\sec c
11
12 pno=ni^2/nno
13 disp(pno," before illumination pno in cm^-3 is")
14 GL = (10^13) / (1*10^-6)
15 pn=pno+taup*GL
16 disp(pn, "after illumination deltapn in cm^-3 is")
```

Scilab code Exa 2.7 quasi fermi level

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 m0=0.91*10^-30//kg
7 ni=2.25*10^6//cm^-3
8 nn0=10^16//cm^-3
9 taun=2*10^-9//sec
10 taup=2*10^-9//sec
11
12 pn0=ni^2/nn0
13 disp(pn0," before illumination pn0 in cm^-3 is")
14 GL=(10^13)/(1*10^-6)
15 nn=nn0+taun*GL
16 disp(nn," after illumination nn in cm^-3 is")
```

```
//textbook ans is wrong
17 pn=pn0+taup*GL
18 disp(pn, "after illumination pn in cm^-3 is")
```

Scilab code Exa 2.8 minority carrier lifetime

```
1 clc
2
3 t1=100*10^-6//sec
4 t2=200*10^-6//sec
5 N=5
6 //deltap=(N/sqrt(4*%pi*Dp*t))*exp(t/taup)
7 taup=(t2-t1)/log(N/sqrt(2))
8 disp(taup, "minority carrier lifetime taup in sec is=")
```

Scilab code Exa 2.9 thermionically emitted electron density

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 qx=4.05 //eV
7 qVn=0.2 //eV
8 Nc=2.86*10^19
9 a=(qx+qVn)/(k*T)
10 nth=exp(a)*Nc
11 disp(nth,"the thermionically emitted electron density for nth at 4.05 in cm^3=") //textbook ans is wrong
12
13 qx=0.6 //eV
```

```
14 nth=exp(qx/(k*T))*Nc
15 disp(nth,"the thermionically emitted electron
          density for nth at 0.6 in cm<sup>3</sup>=") //textbook
          ans is wrong
```

pn Junction

Scilab code Exa 3.1 calculate the built in potential

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 NA=10^18 //cm^-3
7 ND=10^15//cm^-3
8 ni=9.65*10^9
9 Vbi=(k*T)*log(NA*ND/ni^2)
10 disp(Vbi, "the built in potential in V=")
```

Scilab code Exa 3.2 depletion layer width

```
1 clc

2

3 T=300 //K

4 k=8.617*10^-5 //eV/K

5 q=1.6*10**-19 //C
```

Scilab code Exa 3.3 depletion layer width

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 a=10^20// cm^-4
7 W=0.809*10^-4
8 epsilonx=8.85*10^-14
9 epsilonm=((q*a*W^2)/(8*epsilonx*11.9))
10 disp(epsilonm, "epsilonm in V/cm =")
```

Scilab code Exa 3.4 calculate the junction capacitance

```
1 clc

2

3 T=300 //K

4 k=8.617*10^-5 //eV/K

5 q=1.6*10**-19 //C
```

```
6 NA=2*10^19 //\text{cm}^-3
7 \text{ ND} = 8 * 10^15 / \text{cm} - 3
8 V = 4 / V
9 \text{ ni} = 9.65 * 10^9
10 epsilonx=8.854*10^-14 //F/cm
11 Vbi = (k*T)*log(NA*ND/ni^2)
12 disp(Vbi," the built in potential in V=")
13 W=sqrt((2*Vbi*11.9*epsilonx)/(q*ND))
14 disp(W, "W in cm =")
                                     // ans in textbook is
      wrong
15 Cj=sqrt((q*epsilonx*11.9*ND)/(2*Vbi))
16 \operatorname{disp}(Cj, "Cj in F/cm^2 =")
17 W1 = sqrt((2*(Vbi+V)*11.9*epsilonx)/(q*ND))
18 disp(W1, "W1 in cm=")
19 Cj1=sqrt((q*epsilonx*11.9*ND)/(2*(Vbi+V)))
20 disp(Cj1, "Cj1 in F/cm^2")
```

Scilab code Exa 3.5 ideal reverse saturation current

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 NA=5*10^16 / cm^3
7 ND=10^16 //\text{cm}^-3
8 A = 2 * 10^{-4} / cm^{2}
9 V = 4 / V
10 ni=9.65*10^9/cm^-3
11 epsilonx=8.854*10^-14 //F/cm
12 Dn = 21 / cm^2 / sec
13 Dp = 10 / cm^2 / sec
14 taup=5*10^-7/sec
15 taun=5*10^-7/sec
16 Lp=sqrt(Dp*taup)
```

Scilab code Exa 3.6 generation current density

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 NA=5*10^16 //\text{cm}^-3
7 \text{ ND} = 10^{16} / \text{cm} - 3
8 A = 2 * 10^{-4} / cm^{2}
9 V = 4 / V
10 taug=5*10^-7
11 ni=9.65*10^9/cm^-3
12 epsilonx=8.854*10^-14 //F/cm
13 W=sqrt((2*epsilonx*11.9/q)*[(NA+ND)/(NA*ND)]*[(k*T/q)
      )*log(NA*ND/ni^2)+V])
                                          //value of V is
      not substituted in textbook
14 disp(W, "W in cm=")
15 Jgen=(q*ni*W/taug)
16 disp(Jgen, "Jgen in A/cm<sup>2</sup>")
                                             //value of V is
       not substituted in textbook
```

Scilab code Exa 3.7 stored minority carriers

```
1 clc
2
3 T=300 //K
```

```
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 Lp=5*10^-4
7 V=1//V
8 ND=8*10^15 //cm^-3
9 ni=9.65*10^9//cm^-3
10 epsilonx=8.854*10^-14 //F/cm
11 Qp=q*Lp*(ni^2/ND)*(exp(V/(k*T))-1)
12 disp(Qp,"Qp in C/cm^2") //textbook ans is wrong
```

Scilab code Exa 3.8 breakdown voltage

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 ND=5*10^16//cm^-3
7 epsilonx=8.854*10^-14 //F/cm
8 epsilonc=5.7*10^5//F/cm
9 Vb=(epsilonx*11.9*epsilonc^2)/(ND*2*q)
10 disp(Vb,"Vb breakdown in V=")
```

Scilab code Exa 3.9 breakdown voltage

```
1 clc

2

3 T=300 //K

4 k=8.617*10^-5 //eV/K

5 q=1.6*10**-19 //C

6 ND=8*10^14//cm^-3

7 Vb=500 //V

8 W=20*10^-6//m
```

```
9 epsilonx=8.854*10^-14 //F/cm
10 Wm=sqrt((2*epsilonx*12.4*Vb)/(q*ND))
11 Wm1=Wm*10^-2 //to convert into micrometer
12 disp(Wm1,"W in meter=")
13 Vb1=Vb*(W/Wm1)*(2-W/Wm1)
14 disp(Vb1,"Vb1 in V=")
```

Scilab code Exa 3.10 electrostatic potential

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 N1=1*10^16/cm^-3
7 \text{ N2} = 3 * 10^19 / \text{cm} - 3
8 Vbi = 1.6 / V
9 \text{ epsilon1=12}
10 \text{ epsilon2=13}
11 epsilonx=8.854*10^-14 //F/cm
12 Vb1=(epsilon2*N2*Vbi)/(epsilon1*N1+epsilon2*N2)
13 disp(Vb1, "Vb1 in V=")
14 Vb2=(epsilon1*N1*Vbi)/(epsilon1*N1+epsilon2*N2)
15 \operatorname{disp}(Vb2, "Vb2 in V=")
16 x1=sqrt((2*epsilon1*epsilon2*N2*Vbi)/(q*N1*(epsilon1
                                          //textbook ans is
      *N1+epsilon2*N2)))
       wrong
17 disp(x1, "x1 in cm=")
18 x2=sqrt([2*epsilon1*epsilon2*N1*Vbi]/[q*N2*(epsilon1
      *N1+epsilon2*N2)])
19 disp(x2,"x2 in cm=") //texbook ans is wrong
```

Bipolar Transistor an related Devices

Scilab code Exa 4.1 emitter efficiency

```
1 clc
3 \text{ Iep=3//mA}
4 Ieh=0.01/mA
5 \text{ Ich} = 0.001 / \text{mA}
6 Icp=2.99/mA
7 gamma=Iep/(Iep+Ieh)
8 disp(gamma, "gamma =")
9 alphaT=Icp/Iep
10 disp(alphaT, "alphaT =")
11 alpha0=gamma*alphaT
12 disp(alpha0,"alpha0 =")
13 IE=Iep+Ieh
14 disp(IE, "IE in mA=")
15 IC=Icp+Ich
16 disp(IC,"IC in mA=")
17 ICBO=IC-alpha0*IE
18 disp(ICBO, "ICBO in mA")
```

Scilab code Exa 4.2 common base current gain

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 \quad A = 5 * 10^{-4} / m^{2}
7 V = 0.6 / V
8 Dp = 10 / cm^2 / sec
9 De=1//\text{cm}^2/\text{sec}
10 Dc = 2//cm^2/sec
11 taup=10^{-7} / \sec c
12 taue=10^-8//sec
13 ND=10<sup>1</sup>7
14 NE=10<sup>1</sup>9
15 W = 0.5 * 10^{-4} / cm
16 ni=9.65*10<sup>9</sup>
17 Lp=sqrt(Dp*taup)
18 disp(Lp,"Lp in cm=")
19 pn0=ni^2/ND
20 disp(pn0,"pn0 in cm^-3=")
21 Le=sqrt(De*taue)
22 disp(Le, "Le in cm=")
23 nEO=ni^2/NE
24 disp(nE0,"nE0 in cm^-3=")
25 \quad IEp = \exp(V/(k*T)) * (q*pn0*Dp*A/W)
26 disp(IEp,"IEp in A")
27 Icp=IEp
28 disp(Icp,"Icp in A =")
29 IEn=(q*nE0*De*A/10^-4)*(exp(V/(k*T))-1)
30 disp(IEn, "IEn in A =")
31 alpha0=Icp/(IEp+IEn)
32 \text{ disp(alpha0,"} alpha0 is=")
```

Scilab code Exa 4.3 value of Iceo

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 alpha0=0.9933
7 Icbo=1*10^-6//A
8 beta0=alpha0/(1-alpha0)
9 disp(beta0,"beta0 =")
10 Iceo=(beta0+1)*Icbo
11 disp(Iceo,"Iceo in A =")
```

Scilab code Exa 4.4 base doping

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 \text{ Ege} = 1.62
7 \text{ Egb} = 1.42
8 \text{ Nb} = 10^{15}
9 //beta0HBT/beta0BJT=a
10 a = \exp((Ege - Egb)/(k*T))
11 disp(a,"beta0HBT/beta0BJT =") //since the k*T
      value has taken as 0.025851 so the ans changes in
       last two digits
12 \text{ Nb1=Nb*a}
13 disp(Nb1,"Nb1 in cm^-3=") //since the ans
      differs in "a" so Nb1 changes
```

Scilab code Exa 4.5 find current

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 I1=0.4*10^-3//A
7 I2=0.6*10^-3//A
8 alpha1=0.01
9 alpha2=0.9999
10 I=(I1+I2)/(1-alpha1)
11 disp(I,"I in mA")
12 I=(I1+I2)/(1-alpha2)
13 disp(I,"I in A")
```

MOS capacitor and MOSFET

Scilab code Exa 5.1 maxi width

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 NA=10^17//cm^-3
7 epsilonx=8.854*10^-14 //F/cm
8 ni=9.65*10^9//cm^-3
9 W=2*sqrt(11.9*epsilonx*k*T*log(NA/ni)/(q*NA))
10 disp(W,"W in meter =") //textbook ans is wrong
```

Scilab code Exa 5.2 mini capacitance of CV

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
```

```
5 q=1.6*10**-19 //C
6 \text{ NA} = 10^{17} / \text{cm} - 3
7 Vm = 1 * 10^{-5}
8 d=5*10^-7/cm
9 epsilonx=8.854*10^-14 //F/cm
10 \text{ epsilonox} = 3.9
11 ni=9.65*10^9/cm^-3
12 Co=epsilonox*epsilonx/d
13 \operatorname{disp}(\operatorname{Co}, \operatorname{Co} \operatorname{in} F/\operatorname{cm}^2 = ")
14 Qsc=q*NA*Wm
15 disp(Qsc,"Qsc")
                             //textbook ans is wrong
16 psis=2*k*T*log(NA/ni)
17 disp(psis, "psis in V =")
18 Cmin=epsilonox*epsilonx/(d+(epsilonox/11.9)*Wm)
19 disp(Cmin, "Cmin in F/cm^2 =")
```

Scilab code Exa 5.3 calculate the flat band voltage

```
1 clc

2

3 T=300 //K

4 k=8.617*10^-5 //eV/K

5 q=1.6*10**-19 //C

6 NA=10^17//cm^-3

7 d=5*10^-7//cm

8 Co=6.9*10^-7

9 Qf=5*10^11//cm^-2

10 Qm=0

11 Qot=0

12 epsilonx=8.854*10^-14 //F/cm

13 phims=-0.98 //V

14 Vfb=phims-(Qf*q+Qm+Qot)/Co

15 disp(Vfb,"Vfb in V is=")
```

Scilab code Exa 5.4 change in flat band

```
1 clc
 2
 3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
 5 q=1.6*10**-19 //C
 6 \text{ NA} = 10^{17} / \text{cm} - 3
7 d=5*10^-7/cm
8 Co=6.9*10^-7
9 Qf = 5*10^1 / cm^-2
10 \quad Qm = 0
11 \quad Qot=0
12 epsilonox=3.9//F/cm
13 epsilonx=8.854*10^-14 //F/cm
14 deltaVfb=(q/(epsilonox*epsilonx))
       *[(0.5*10<sup>18</sup>*(2*10<sup>-6</sup>)<sup>2</sup>)
       -(0.333*5*10^23*(2*10^-6)^3)
15 disp(deltaVfb, "deltaVfb in V is=")
```

Scilab code Exa 5.5 calculate Vdsat

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^-14 //F/cm
7 ni=9.65*10^9//cm^-3
8 NA=10^17 //cm^-3
9 d=8*10^-7//cm
10 VG=3//V
```

```
11  //2*phis=p
12  p=0.84//V
13  Co=epsilonx*3.9/d
14  disp(Co,"Co in F/cm^2 is=")
15  K=sqrt((epsilonx*11.9*NA*q))/Co
16  disp(K,"K is=")
17  Vdsat=VG-p+K^2*(1-sqrt(1+(2*VG/K^2)))
18  disp(Vdsat,"Vdsat in V is=")
```

Scilab code Exa 5.6 VT for gate oxide

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^--14 //F/cm
7 ni=9.65*10^9/cm^-3
8 \text{ NA} = 10^{17} / \text{cm}^{3}
9 d=8*10^{-7}/cm
10 VFB = -1.1/V
11 Co = 6.9 * 10^{-7} / F/cm^{2}
12 //2*phis=p
13 //Qf/q = m
14 p=0.84/V
15 \text{ m} = 5 * 10^{11} / \text{cm}^{2}
16 VT=VFB+p+(sqrt(2*epsilonx*11.9*q*NA*p)/Co)
17 disp(VT,"VT in V is=")
18 FB = (0.62 * Co)/q
19 \operatorname{disp}(FB, "FB in cm^-2 is=")
```

Scilab code Exa 5.7 VT for gate oxide

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^--14 //F/cm
7 ni=9.65*10^9/cm^-3
8 NA=10^17 //\text{cm}^-3
9 d=8*10^{-7}/cm
10 \cos = 6.9 * 10^{-9} / F/cm^{2}
11 phims = -0.98
12 //2*phis=p
13 p=0.84/V
14 Qf = 5*10^1 / cm^2
15 VFB=phims-(q*Qf/Co)
                                 //texbook ans is wrong
16 disp(VFB, "VFB in V is=")
17 VT=VFB+p+(sqrt(2*epsilonx*11.9*q*NA*p)/Co)
18 disp(VT, "VT in V is=")
                                     //texbook ans is
      wrong
```

Scilab code Exa 5.8 calculate the change in the threshold voltage

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^-14 //F/cm
7 ni=9.65*10^9//cm^-3
8 NA=10^17 //cm^-3
9 d=8*10^-7//cm
10 Co=6.9*10^-7//F/cm^2
11 VBS=2//V
12 phims=-0.98
13 //2*phis=p
```

Advanced MOSFET and related devices

Scilab code Exa 6.1 calculate the threshold voltage

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^-14 //F/cm
7 ni=9.65*10^9/cm^-3
8 \text{ NA} = 10^{17} / \text{cm}^{3}
9 d=8*10^{-7}/cm
10 Co = 6.9 * 10^{-7} / F/cm^{2}
11 VFB=-1.1/V
12 //2*phis=p
13 p=0.84/V
14 dsi=5*10^-6/cm^2
15 VT = VFB + p + (q*NA*dsi/Co)
16 disp(VT, "VT in V is=")
```

MESFET and related devices

Scilab code Exa 7.1 donor concentration

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^--14 //F/cm
7 ni=9.65*10^9/cm^-3
8 \text{ NA} = 10^{17} / \text{cm}^{3}
9 d=8*10^{-7}/cm
10 Nc=2.86*10^19
11 Co = 6.9 * 10^{-7} / F/cm^{2}
12 C1=1.8*10^15/(cm^2/F)^2
13 C2=6.2*10^15/(cm^2/F)^2
14 V1 = 0 / /V
15 V2 = -1 / /V
16 \text{ Vbi} = 0.42
17 //d(1/C^2)/dv=a
18 a = (C2 - C1) / (V2 - V1)
19 disp(a, "a in (cm^2/F)^2")
20 ND = (2/(q*epsilonx*11.9))*(-1/(a))
21 disp(ND, "ND in ")
```

```
22 Vn=k*T*log(Nc/ND)
23 disp(Vn,"Vn in V is=")
24 phibn=Vbi+Vn
25 disp(phibn,"phibn in V is= ")
```

Scilab code Exa 7.2 barrier height and depletion layer

```
1 clc
 2
 3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
 5 q=1.6*10**-19 //C
 6 epsilonx=8.854*10^--14 //F/cm
 7 ni=9.65*10^9/cm^-3
 8 ND=10^16 //\text{cm}^-3
9 \text{ Nc} = 2.86 * 10^{19}
10 Dp=10/cm^2/s
11 Lp=3.1*10^-3
12 d=8*10^{-7}/cm
13 Js=6.5*10^-5/A/cm^2
14 V = 0.67 / V
15 phibn=k*T*log((110*300^2)/Js)
16 disp(Js, "Js in V is=")
                                                //textbook ans is
        wrong
17 Vn=k*T*log(Nc/ND)
18 disp(Vn, "Vn in V is=")
                                                //textbook ans is
        wrong
19 Vbi=phibn-Vn
20 disp(Vbi, "Vbi in V is=")
                                                   //textbook ans is
        wrong
21 \text{ W=} \frac{\text{sqrt}}{(2 \cdot \text{epsilonx} \cdot 11.9 \cdot \text{Vbi})/(q \cdot \text{ND})}
22 \operatorname{disp}(W, "W \text{ in cm is } =")
                                                //textbook ans is
        wrong
23 Jpo=(q*Dp*ni^2)/(Lp*ND)
24 \operatorname{disp}(\operatorname{Jpo}, \operatorname{"Jpo} \operatorname{in} \operatorname{A/cm}^2 \operatorname{is}=\operatorname{"})
```

```
25 z=Js/Jpo
26 disp(z, "Js/Jpo ratio of current densities is=")
```

Scilab code Exa 7.3 voltage drop

```
1 clc
   2
   3 T = 300 / K
  4 k=8.617*10^{-5} //eV/K
  5 q=1.6*10**-19 //C
   6 epsilons=8.854*10^-31 //F/cm
  7 ni=9.65*10^9/cm^-3
  8 ND=5*10^19/cm^-3
  9 phibn=0.8/V
10 I = 1 / / A
11 \, mn = 0.26
12 Rc=10^--6//ohm cm^2
13 A = 10^{-5} / cm^{2}
14 h=1.05*10^-34
15 \quad a=Rc/A
16 disp(a, "Rc/A in ohm is=")
17 C2=(4*sqrt(mn*epsilons*(1.05*10^-10)))/h
18 disp(C2, "C2 in m^{(3/2)}/V is=")
                                                                                                                                                                                                                                                       //
                           texbook ans is wrong
19 I0=(A/Rc)*(sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/C2)*exp((C2*phibn)/sqrt(ND*10^6)/c2)*exp((C2*phibn)/sqrt(ND*10^6)/c2)*exp((C2*phibn)/sqrt(ND*10^6)/c2)*exp((C2*phibn)/sqrt(ND*10^6)/c2)*exp((C2*phibn)/sqrt(ND*10^6)/c2)*exp((C2*phibn)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt(ND*10^6)/sqrt
                           *10^6))
20 disp(IO, "IO in A is=") //textbook ans is
                           wrong
21 V=phibn-(sqrt(ND)/C2)*log(IO/I)
22 \text{ disp}(V,"V \text{ in } V \text{ is}=")
```

Scilab code Exa 7.4 pinch off volt

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^--14 //F/cm
7 ni=9.65*10^9/cm^-3
8 ND=2*10^15/cm^-3
9 Nc=4.7*10^17//cm^-3
10 a=0.6*10^-4
11 fbn=0.89//V
12 Vp=(q*ND*a^2)/(2*epsilonx*12.4)
13 disp(Vp,"Vp in V is=")
14 Vn = (k*T)*log(Nc/ND)
15 disp(Vn, "Vn in V is=")
16 Vbi=fbn-Vn
17 disp(Vbi, "Vbi in V is=")
```

Scilab code Exa 7.5 two dimensional electron

```
1 clc

2

3 T=300 //K

4 k=8.617*10^-5 //eV/K

5 q=1.6*10**-19 //C

6 epsilonx=8.854*10^-14 //F/cm

7 ni=9.65*10^9//cm^-3

8 ND=2*10^18//cm^-3

9 d1=40*10^-7//cm

10 d2=8*10^-7//cm

11 u=3*10^-7//cm

12 Va=0//V

13 //deltaEc/q=a

14 a=0.23//V

15 phibn=0.85//V
```

```
16  Vp=(q*ND*d1^2)/(2*epsilonx*12.3)
17  disp(Vp,"Vp in V is=")
18  VT=phibn-a-Vp
19  disp(VT,"VT in V is= ")
20  ns=((12.3*epsilonx)/(q*(d1+u+d2)))*(Va-VT)
21  disp(ns,"ns in cm^-2 is= ")
```

Microwave diodes Quantum effect and hot electron devices

Scilab code Exa 8.1 dc breakdown volt

```
1 clc
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.85*10^-14 //F/cm
7 epsilonm=3.3*10^5 //V/cm
8 ni=9.65*10^9/cm^-3
9 ND=2*10^18//cm^-3
10 b=1*10^-4/cm
11 W = 6 * 10^{-4} / cm
12 Q=2*10^12/charges/cm^2
13 \text{ xA} = 1 * 10^{-4} / \text{cm}
14 \text{ vx} = 10^7 / \text{Hz}
15 Vb=(epsilonm*b)+[epsilonm-((q*Q)/(epsilonx*11.9))]*(
16 \operatorname{disp}(Vb, "Vb in V is=")
17 d=([epsilonm-((q*Q)/(epsilonx*11.9))]*(W-b))/(W-b)
18 disp(d, "drift region in V/cm is=")
```

```
19 f=vx/[2*(W-xA)]
20 disp(f, "f in Hz is=")
```

Scilab code Exa 8.2 mini electron density

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^-14 //F/cm
7 L=10*10^-4//cm^-2
8 v=10^7//sec
9 n0=10^12/L
10 disp(n0,"n0 in cm^-3 is=")
11 t=L/v
12 disp(t,"t in sec is=")
```

Light Emitting diodes and lasers

Scilab code Exa 9.1 total energy absorbed

```
1 clc
2
3 T = 300 / K
4 k=8.617*10^{-5} //eV/K
5 q=1.6*10**-19 //C
6 epsilonx=8.854*10^-14 //F/cm
7 hv=3/eV
8 phi=10^-2
9 ra=2.4*10^{-3}/W
10 Eg=1.12//eV
11 alpha = -4*10^4 / cm
12 W=0.25*10^-4/cm
13 a=phi*(1-exp(alpha*W))
14 disp(a, "a in J/sec is=")
15 z = (hv - Eg)/hv
16 \operatorname{disp}(z, z in \% is=)
17 \ 1=a*z
18 disp(1," l in Watt is=")
19 \text{ r=ra/(q*Eg)}
```

```
20 disp(r, "r in photons/sec is=")
```

Scilab code Exa 9.2 modulation bandwidth

Scilab code Exa 9.3 calculate R

```
1 clc
2
3 n=3.6
4 R=[(n-1)/(n+1)]^2
5 disp(R,"R is=")
```

Scilab code Exa 9.4 mode spacing

```
1 clc
2
3 lambda=0.94*10^-6//m
4 n=3.6
5 L=300*10^-6//m
6 deltalambda=(lambda^2)/(2*n*L)
7 disp(deltalambda,"deltalambda in meter is= ")
```

Scilab code Exa 9.5 calculate the threshold current

```
1 clc
2
3 alpha=100//per cm
4 betaa=0.1//per cm A
5 Tau=0.9
6 g0=100//per cm
7 L=300*10^-4//cm
8 w=5*10^-4//cm
9 R1=0.44
10 R2=0.99
11 Jth=((g0*Tau)/betaa)+(1/betaa)*(alpha+(1/(2*L))*log (1/R1*R2))
12 disp(Jth,"Jth in A/cm^2 is=")
13 Ith=Jth*L*w
14 disp(Ith,"Ith in A is=")
```

Scilab code Exa 9.6 Determine temp

```
1 clc
2
3 T0=110//degree C
4 T=27+T0*log(2)
5 disp(T,"T in degree C is= ")
```

Photodetectors and solar cells

Scilab code Exa 10.1 photocurrent

```
1 clc
2
3 Popt=5*10^12//phtons/sec
4 n=0.8
5 un=2500//cm^2/Vs
6 epsilon=5000//V/cm
7 L=10*10^-4//cm
8 q=1.6*10**-19 //C
9 tau=5*10^-10//sec
10 Ip=q*n*Popt*(un*tau*epsilon)/L
11 disp(Ip,"Ip in A is=")
12 gain=(un*tau*epsilon)/L
13 disp(gain,"gain is=")
```

Scilab code Exa 10.2 depth

```
1 clc
```

```
3 alpha=10^4//cm^-1
4 R=0.1
5 Px=1
6 P0=2
7 x=(-1/alpha)*log(Px/(P0*(1-R)))
8 disp(x,"x in meter is =")
```

Scilab code Exa 10.3 responsivity

```
1 clc
2
3 Ip=3*10^-4//mA
4 I0=0.2//*
5 h=6.62*10^-34//Jsec
6 q=1.6*10^-19//C
7 c=3*10^8//m/sec
8 lambda=80*10^-9//m
9 Popt=%pi*(0.03)^2*I0
10 disp(Popt, "Popt in Watt is= ")
11 R=Ip/Popt
12 disp(R, "R in A/W is= ")
13 n=R*(h*c/(q*lambda))
14 disp(n, "n in % is= ") //textbook ans is wrong
```

Scilab code Exa 10.4 air mass

```
1 clc
2
3 s=1.118//m
4 h=1.00//m
5 a=sqrt(1+(s/h)^2)
6 disp(a,"a is=")
```

Scilab code Exa 10.5 open circuit voltage

```
1 clc
2
3 T=300 //K
4 k=8.617*10^-5 //eV/K
5 q=1.6*10**-19 //C
6 I=10^9//A
7 Is=1*10^-9//A
8 V=0.35//V
9 IL=100*10^-3//A
10 Voc=k*T*log(IL/Is)
11 disp(Voc,"Voc in V is= ")
12 P=I*V*exp((V/(k*T))-1)*IL*V
13 disp(P,"P in watt is= ") //textbook ans is not printed proper
```

Crystal growth and epitaxy

Scilab code Exa 11.1 concentration in boron

```
1 clc
2
3 Cs=10^16//boron atoms/cm^3
4 k0=0.8
5 d=2.53//g/cm^3
6 aw=10.8//g/mol
7 s=60*10^3//kg
8 Ct=Cs/k0
9 disp(Ct, "Ct in boron atoms/cm^3 is= ")
10 v=s/d
11 disp(v, "v in cm^3 is= ")
12 tb=Ct*v
13 disp(tb, "tb in boron atoms is= ")
14 tb1=(tb*aw)/(6.02*10^23)
15 disp(tb1, "tb1 in g of boron is= ")
```

Scilab code Exa 11.3 time required

```
1 clc
2
3 T = 300 / K
4 M=3.64//Armstrong
5 Nx = (7.54*10^14) / \text{cm}^-2
6 \text{ P1=1}//\text{Pa}
7 t1=(Nx*sqrt(M*T))/(2.64*10^20*P1)
8 disp(t1,"t1 at 1Pa in ms is=") //textbook ans is
       wrong
9 P2=10^-4/Pa
10 t2=(Nx*sqrt(M*T))/(2.64*10^20*P2)
11 disp(t2,"t2 at 10^-4Pa in s is=")
                                           //textbook ans
       is wrong
12 P3=10^-8/Pa
13 t3=(Nx*sqrt(M*T))/(2.64*10^20*P3)
14 disp(t3,"t3 at 10^-8Pa in hr is=") //textbook
      ans is wrong
```

Scilab code Exa 11.4 growth rate

```
1 clc
2
3 \text{ A=5}/\text{cm}^2
4 L = 10 / cm
5 T = 1173 / K
6 d=6*10^14/cm^-2
7 P=5.5*10^-2/Pa
8 M = 69.72
                   //for Ga
9 Ar=(2.64*10^20*P*A)/(sqrt(M*T)*%pi*L^2)
10 disp(Ar, "Ar in molecules /\text{cm}^2 is=")
11 \quad M1 = 74.92 * 2
                       //for As2
12 Ar1=(2.64*10^20*P*A)/(sqrt(M1*T)*%pi*L^2)
13 disp(Ar1, "Ar1 in molecules /cm<sup>2</sup> is=")
      textbook ans is wrong
14 Gr = (Ar * 2.8) / d
```

15 disp(Gr, "Gr in sec/min is=") //for Ga textbook ans is wrong

Film formation

Scilab code Exa 12.1 thickness

```
1 clc
2
3 Msi=28.9//g/mole
4 Dsi=2.33//g/cm^3
5 Msidi=60.08//g/mole
6 Dsidi=2.21//g/cm^3
7
8 vsi=Msi/Dsi
9 disp(vsi,"vsi in cm^3/mole is=")
10 vsidi=Msidi/Dsidi
11 disp(vsidi,"vsidi in cm^3/mole is=")
12 T=vsi/vsidi
13 disp(T,"T is ratio of Thickness of Si to SiO2 is=")
```

Scilab code Exa 12.3 intrinsic value

```
1 clc
```

```
3 row=2.7*10^-6//ohm cm
4 l=10^-1//cm
5 tm=0.5*10^-4//cm
6 sw=0.5*10^-4//cm
7 epsiloni=8.85*10^-14
8 RC=(row*1/tm^2)*epsiloni*2.7*(tm*1/sw)
9 disp(RC,"RC in sec is=")
```

Scilab code Exa 12.4 equivalent cell area

```
1 clc
2
3 k=3.9
4 k1=25
5 A=1.28//um^2
6 E=(k*A)/k1
7 disp(E," equivalent cell size in um^2 is=")
```

Scilab code Exa 12.5 find depth

```
1 clc
2 T=500//dC
3 t=30//min
4 ZL=16//um^2
5 Z=5//um
6 H=1//um
7 S=0.8//%
8 A=16
9 a=60//um
10 rowAl=2.7
11 rowSi=2.33
12 b=(2*a*H*Z*S*rowAl)/(A*rowSi*100)
13 disp(b,"b in um is=")
```

Scilab code Exa 12.6 percentage od reduction

```
1 clc
2
3 kA1=2.6
4 kCu=3.9
5 rA1=2.7//u ohm cm
6 rCu=1.7//u ohm cm
7 reduction=(rCu*kA1*100)/(rA1*kCu)
8 disp(reduction, "reduction in% is=")
```

Scilab code Exa 12.7 oxide removal rate

```
1 clc

2

3 //(1/r) + (0.01/0.1r) = 5.5

4 r=1.1/5.5

5 disp(r,"r in um/min is = ")
```

Lithography and etching

Scilab code Exa 13.1 how many dust particles

```
1 clc
2
3 c=30//m/min
4 t=1//minute
5 w=300*10^-3//m
6 V=c*%pi*(w/2)^2*t
7 disp(V,"V in m^3 is=")
```

Scilab code Exa 13.2 parameter gamma

```
1 clc
2
2
3 ET=90//mJ/cm^2
4 EI=45//mJ/cm^2
5 gammma=1/[log(ET/EI)]
6 disp(gammma, "gamma is= ")
7 ET=7//mJ/cm^2
8 EI=12//mJ/cm^2
```

```
9 gammma=1/[log(EI/ET)]
10 disp(gammma, "gamma is= ")
```

Scilab code Exa 13.3 Al average etch rate

```
1 clc
2
3 c=750//nm/min
4 l=812//nm/min
5 r=765//nm/min
6 t=743//nm/min
7 b=798//nm/min
8 Al=(c+l+r+t+b)/5
9 disp(Al, "Al average etch rate in nm/min is= ")
10 Er=[(1-t)/(1+t)]*100
11 disp(Er, "Etch rate uniformly in % is= ")
```

Impurity Doping

Scilab code Exa 14.1 Qt and gradient

```
1 clc
 2
 3 D=2*10^-14/cm^2/sec
 4 t = 3600 / K
 5 \text{ Cx} = 10^{19}
 6 A = sqrt(D*t)
 7 disp(A, "A in cm is=")
 8 Qt = 1.13 * Cx * A
 9 \operatorname{disp}(Qt, "Q(t)) in \operatorname{atoms/cm}^3")
10 //dC/dx=b
11 b=-(Cx/sqrt(%pi*D*t))
12 \operatorname{disp}(b, \operatorname{dC}/\operatorname{dx} \text{ in } \operatorname{cm}^-4 \text{ is} = \operatorname{disp}(b, \operatorname{de}/\operatorname{dx})
13 \text{ xj} = 2* \text{sqrt}(D*t)*2.75
14 disp(xj, "xj in meter is=")
15 b=-(Cx/sqrt(\%pi*D*t))*exp(-xj^2/(4*D*t))
16 disp(b, "dC/dx in cm-4 is=")
```

Scilab code Exa 14.2 junction depth

Scilab code Exa 14.3 ion beam current

```
1 clc
2
3 w=20//m
4 q=1.6*10^-19
5 t=60//sec
6 nx=2.85*10^19
7 disp(nx,"nx in ions/cm^3") //havent solved in textbook
8 d=5*10^14//ions/cm^2
9 Q=d*%pi*(20/2)^2
10 disp(Q,"Q in ions is=")
11 I=(q*Q)/t
12 disp(I,"I in A is=")
```

Scilab code Exa 14.4 thickness

```
1 clc
2
3 Rp=0.53//um
4 sigmap=0.093//um
```

```
5 d=Rp+3.96*sigmap
6 disp(d,"d in um is= ")
```

Integrated devices

Scilab code Exa 15.1 value of resistor

```
1 clc
2
3 l=9
4 r=1.3//kohm
5 res=l+r
6 disp(res,"res in k ohm")
```

Scilab code Exa 15.2 stored charge

```
1 clc
2
3 q=1.6*10**-19 //C
4 epsilonox=8.85*10^-14//F/cm
5 V=5//V
6 d=1*10^-6//cm
7 A=4*10^-8//cm^2
8 Q=3.9*epsilonox*A*(V/d)
9 disp(Q,"Q in C is=")
```

```
10 Qx=Q/q
11 disp(Qx,"Qx in electrons")
```

Scilab code Exa 15.3 radius

```
1 clc
2
3 L=10*10^-9//H
4 u0=1.2*10^-6
5 n=20
6 r=L/(u0*n^2)
7 disp(r,"r in m is=")
```

Scilab code Exa 15.4 gate to source voltage

```
1 clc
2
3 epsilon=8*10^6//V/cm
4 d=5*10^-7//cm
5 V=epsilon*d
6 disp(V,"V in V is=")
```

Scilab code Exa 15.5 oxide thickness

```
1 clc
2
3 epsilonox=3.9
4 epsilonnitride=7
5 dnitride=1.5*(epsilonnitride/epsilonox)
6 disp(dnitride, "dnitride in nm is= ")
```