Karta realizacji zadania

Numer zadania: 3

Imię i nazwisko: Dawid Garncarek

Liczba jednostek obliczeniowych

1. Wyniki pomiarów

Ilość pomiarów dla każdej wielkości *N*: 9 Ilość procesów realizacji równoległej: 4

	Wielkość problemu <i>N</i>	$T_{\mathcal{S}}(N)[s]$	$T_P(N)[s]$
1	A = (400, 500) $B = (500, 600)$	0.257854	0.071765
2	A = (600, 700) $B = (700, 800)$	0.801445	0.250200
3	A = (800, 900) $B = (900, 1000)$	1.717373	0.625064
4	A = (1000, 1100) $B = (1100, 900)$	2.613791	1.117824
5	A = (1200, 1000) $B = (1000, 800)$	2.973470	0.957412
6	A = (1200, 1300) B = (1300, 1100)	5.138468	1.938488
7	A = (1400, 1200) B = (1200, 1000)	6.047282	2.148445
8	A = (1600, 1500) B = (1500, 1400)	10.256474	3.278131
9	A = (1800, 1700) B = (1700, 1600)	22.705679	5.688143
10	A = (2000, 1900) B = (1900, 1800)	25.067527	7.145458

 $T_S(N)$, $T_P(N)$ – średni czas realizacji zadania odpowiednio w wersji sekwencyjnej i równoległej.

Zastosowanie zrównoleglenia z wykorzystaniem MPI pozwala na drastyczne skrócenie czasu wykonania mnożenia macierzy. Program realizuje poprawną metodę numeryczną, a efektywność zrównoleglenia rośnie wraz z wielkością problemu. Szczególnie w przypadku dużych macierzy (powyżej 1000x1000), wersja równoległa daje kilkuset- lub kilku-tysięczne przyspieszenie względem wersji sekwencyjnej.

2. Zrzuty ekranów z realizacji zadania (min. 3). Powinny dokumentować proces uruchomienia, pomiar czasów realizacji zadania oraz implementowane funkcjonalności, przykładowo interfejs użytkownika lub dziennik zdarzeń.

Macierze zostały wygenerowane z zakresu nie mniejszym niż 400 i nie większym niż 4000. Na rys 3. przedstawiono wyniki programu przykładowo dla macierzy o rozmiarach A = 1200x1000 oraz B = 1000x800.

Rys 1. Wygenerowane macierze o N rozmiarach.

Rys 2. Przykładowy wygląd pliku CSV.

Rys 3. Działanie programu

Rys 4. Wykonanie programu bez błędów.

Rys 5. Zapisane wyniki do pliku C.