Geometry Problem booklet

Assoc. Prof. Cornel Pintea

E-mail: cpintea math.ubbcluj.ro

Contents

1	Week 2: Straight lines and planes			1
	1.1	Brief theoretical background		1
		1.1.1	Linear dependence and linear independence of vectors	1
		1.1.2	The vector ecuation of the straight lines and planes	2
1.2		Problems		2

Module leader: Assoc. Prof. Cornel Pintea

Department of Mathematics, "Babeş-Bolyai" University 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania

1 Week 2: Straight lines and planes

1.1 Brief theoretical background

1.1.1 Linear dependence and linear independence of vectors

- **Definition 1.1.** 1. The vectors \overrightarrow{OA} , \overrightarrow{OB} are said to be *collinear* if the points O, A, B are collinear. Otherwise the vectors \overrightarrow{OA} , \overrightarrow{OB} are said to be *noncollinear*.
 - 2. The vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} are said to be *coplanar* if the points O, A, B, C are coplanar. Otherwise the vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} are *noncoplanar*.
- **Remark 1.2.** 1. The vectors \overrightarrow{OA} , \overrightarrow{OB} are linearly (in)dependent if and only if they are (non)collinear.
 - 2. The vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} are linearly (in)dependent if and only if they are (non)coplanar.

Proposition 1.3. The vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} form a basis of V if and only if they are noncoplanar.

Corollary 1.4. The dimension of the vector space of free vectors V is three.

Proposition 1.5. *Let* Δ *be a straight line and let* $A \in \Delta$ *be a given point. The set*

$$\stackrel{\rightarrow}{\Delta} = \{ \stackrel{\longrightarrow}{AM} \mid M \in \Delta \}$$

is an one dimensional subspace of V. It is independent on the choice of $A \in \Delta$ and is called the director subspace of Δ or the direction of Δ .

Remark 1.6. The straight lines Δ , Δ' are parallel if and only if $\stackrel{\rightarrow}{\Delta} = \stackrel{\rightarrow}{\Delta}'$

Definition 1.7. We call *director vector* of the straigh line Δ every nonzero vector $stackrel \rightarrow d \in \stackrel{\rightarrow}{\Delta}$.

If $\overrightarrow{d} \in \mathcal{V}$ is a nonzero vector and $A \in \mathcal{P}$ is a given point, then there exits a unique straight line which passes through A and has the direction $\langle \overrightarrow{d} \rangle$. This stright line is

$$\Delta = \{ M \in \mathcal{P} \mid \overrightarrow{AM} \in \langle \overrightarrow{d} \rangle \}.$$

 Δ is called the straight line which passes through O and is parallel to the vector \overrightarrow{d} .

Proposition 1.8. Let π be a plane and let $A \in \pi$ be a given point. The set $\overrightarrow{\pi} = \{\overrightarrow{AM} \in \mathcal{V} \mid M \in \pi\}$ is a two dimensional subspace of \mathcal{V} . It is independent on the position of A inside π and is called the director subspace, the director plane or the direction of the plane π .

Remark 1.9. • The planes π , π' are parallel if and only if $\overrightarrow{\pi} = \overrightarrow{\pi}'$.

- The line Δ is parallel to the plane π if and only if $\overrightarrow{\Delta} \subseteq \overrightarrow{\pi}$.
- If \overrightarrow{d}_1 , \overrightarrow{d}_2 are two linearly independent vectors and $A \in \mathcal{P}$ is a fixed point, then there exists a unique plane through A whose direction is $\langle \overrightarrow{d}_1, \overrightarrow{d}_2 \rangle$. This plane is

$$\pi = \{ M \in \mathcal{P} \mid \overrightarrow{AM} \in \langle \overrightarrow{d}_1, \overrightarrow{d}_2 \rangle \}.$$

We call π is the plane through the point A which is parallel to the vectors \overrightarrow{d}_1 and \overrightarrow{d}_2 .

1.1.2 The vector ecuation of the straight lines and planes

Let Δ be a straight line, let $A \in \Delta$ be a given point and let \vec{d} be a director vector of Δ .

$$\overrightarrow{r}_{M} = \overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \overrightarrow{r}_{A} + \overrightarrow{AM}$$
.

Thus

In other words, the position vectors of all points on the straight line Δ are

$$\overrightarrow{r}_{M} = \overrightarrow{r}_{A} + t \overrightarrow{d} : t \in \mathbb{R}. \tag{1.1}$$

This is the reason to call (1.1) the *vector equation* of the line Δ .

Proposition 1.10. *If* A, B *are different points of a straight line* Δ , *then its vector equation can be put in the form*

$$\overrightarrow{r}_{M} = (1 - \lambda) \overrightarrow{r}_{A} + \lambda \overrightarrow{r}_{B}, \ \lambda \in \mathbb{R}. \tag{1.2}$$

Similarly, for a plane π a given point $B \in \pi$ and a basis $[\stackrel{\rightarrow}{d}_1, \stackrel{\rightarrow}{d}_2]$ of $\stackrel{\rightarrow}{\pi}$ we get

$$\{\overrightarrow{r}_{N} \mid N \in \pi\} = \overrightarrow{r}_{R} + \overrightarrow{\pi} = \overrightarrow{r}_{R} + \langle \overrightarrow{d}_{1}, \overrightarrow{d}_{2} \rangle = \{\overrightarrow{r}_{R} + t_{1} \xrightarrow{d}_{1} + t_{2} \xrightarrow{d}_{2} : t_{1}, t_{2} \in \mathbb{R}\}.$$

In other words, the position vectors of all points on the plane π are

$$\overrightarrow{r}_{N} = \overrightarrow{r}_{R} + t_{1} \overrightarrow{d}_{1} + t_{2} \overrightarrow{d}_{2} : t_{1}, t_{2} \in \mathbb{R}. \tag{1.3}$$

This is the reason to call (1.3) the *vector equation* of the plane π .

Proposition 1.11. *If* A, B, C *are three noncolinear points within the plane* π , *then the vector equation of the plane* π *can be put in the form*

$$\overrightarrow{r}_{M} = (1 - \lambda_{1} - \lambda_{2}) \overrightarrow{r}_{A} + \lambda_{1} \overrightarrow{r}_{R} + \lambda_{2} \overrightarrow{r}_{C}, \lambda_{1}, \lambda_{2} \in \mathbb{R}. \tag{1.4}$$

1.2 Problems

1. ([4, Problema 16, p. 5]) Consider the points C' and B' on the sides AB and AC of the triangle ABC such that $\overrightarrow{AC'} = \lambda \ \overrightarrow{BC'}$, $\overrightarrow{AB'} = \mu \ \overrightarrow{CB'}$. The lines BB' and CC' meet at M. If $P \in \mathcal{P}$ is a given point and $\overrightarrow{r}_A = \overrightarrow{PA}$, $\overrightarrow{r}_B = \overrightarrow{PB}$, $\overrightarrow{r}_C = \overrightarrow{PC}$ are the position vectors, with respect to P, of the vertices A, B, C respectively, show that

$$\overrightarrow{r}_{M} = \frac{\overrightarrow{r}_{A} - \lambda \overrightarrow{r}_{B} - \mu \overrightarrow{r}_{C}}{1 - \lambda - \mu}.$$
(1.5)

2. ([4, Problema 17, p. 5]) Consider the triangle ABC, its centroid G, its orthocenter H, its incenter I and its circumcenter O. If $P \in \mathcal{P}$ is a given point and $\overrightarrow{r}_A = \overrightarrow{PA}$, $\overrightarrow{r}_B = \overrightarrow{PB}$, $\overrightarrow{r}_C = \overrightarrow{PC}$ are the position vectors with respect to P of the vertices A, B, C respectively, show that:

(a)
$$\vec{r}_{\scriptscriptstyle G} := \overrightarrow{PG} = \frac{\vec{r}_{\scriptscriptstyle A} + \vec{r}_{\scriptscriptstyle B} + \vec{r}_{\scriptscriptstyle C}}{3}$$
.

(b)
$$\vec{r}_{I} := \overrightarrow{PI} = \frac{a \vec{r}_{A} + b \vec{r}_{B} + c \vec{r}_{C}}{a + b + c}$$
.

(c)
$$\vec{r}_{H} := \overrightarrow{PH} = \frac{(\tan A) \vec{r}_{A} + (\tan B) \vec{r}_{B} + (\tan C) \vec{r}_{C}}{\tan A + \tan B + \tan C}$$

$$(d)$$
 \overrightarrow{r}_{o} := \overrightarrow{PO} = $\frac{(\sin 2A) \ \overrightarrow{r}_{\scriptscriptstyle A} + (\sin 2B) \ \overrightarrow{r}_{\scriptscriptstyle B} + (\sin 2C) \ \overrightarrow{r}_{\scriptscriptstyle C}}{\sin 2A + \sin 2B + \sin 2C}$.

3. Consider the angle BOB' and the points $A \in [OB]$, $A' \in [OB']$. Show that

$$\overrightarrow{r}_{M} = m \frac{1-n}{1-mn} \overrightarrow{u} + n \frac{1-m}{1-mn} \overrightarrow{v}$$
 (1.6)

and

$$\overrightarrow{r}_{N} = m \frac{n-1}{n-m} \overrightarrow{u} + n \frac{m-1}{m-n} \overrightarrow{v}, \qquad (1.7)$$

where $\{M\} = AB' \cap A'B$, $\{N\} = AA' \cap BB'$, $\overrightarrow{u} = \overrightarrow{OA}$, $\overrightarrow{v} = \overrightarrow{OA'}$, $\overrightarrow{OB} = m$ \overrightarrow{OA} and $\overrightarrow{OB'} = \overrightarrow{OA'}$

 $n \overrightarrow{OA'}$. In other words

$$\overrightarrow{OM} = m \frac{1-n}{1-mn} \overrightarrow{OA} + n \frac{1-m}{1-mn} \overrightarrow{OA}'$$

$$\overrightarrow{ON} = m \frac{n-1}{n-m} \overrightarrow{OA} + n \frac{m-1}{m-n} \overrightarrow{OA}'.$$

4. Show that the midpoints of the diagonals of a complet quadrilateral are collinear (Newton's theorem).

References

- [1] Andrica, D., Topan, L., Analytic geometry, Cluj University Press, 2004.
- [2] Galbură Gh., Radó, F., Geometrie, Editura didactică și pedagogică-București, 1979.
- [3] Pintea, C. Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferențială a curbelor și suprafețelor, Presa Universitară Clujeană, 2001.
- [4] Radó, F., Orban, B., Groze, V., Vasiu, A., Culegere de Probleme de Geometrie, Lit. Univ. "Babeş-Bolyai", Cluj-Napoca, 1979.