Introdução à Inteligência Artificial

- Abordagens de IA e tecnologias
- IA simbólica
- Aprendizado de Máquina
- Exemplos

Imagem: pixabay.com

 Ciência e Engenharia que estuda modelos para construir máquinas/programas que atuem/comportem-se de forma inteligente/racional na solução e acompanhamento de tarefas/problemas.

dibio @ unb.br

 Conjunto coletivo/cooperativo de sistemas capazes de receber entradas/sinais do ambiente, interpretar e aprender a partir desses sinais, e exibir como consequência comportamentos e ações flexíveis capazes de ajudar na solução de tarefas/problemas.

• Tarefas complexas e que exigem criatividade são mais difíceis e custosas de modelar (i.e. construir máquinas e programas que atuem racionalmente), mas...

dibio @ unb.br

• Tarefas complexas e que exigem criatividade são mais difíceis e custosas de modelar (i.e. construir máquinas e programas que atuem racionalmente), mas tarefas repetitivas, previsíveis, e com número de respostas limitado **são fáceis** de se modelar por IA.

dibio @ unb.br

• Em IA simbólica (busca, lógicas, representação de conhecimento) os modelos (determinísticos ou não determinísticos) são construídos para tomar decisões pré-estabelecidas.

Em IA simbólica (exemplo)

Controle difuso de ABS


```
1. RULE DRY1:
  IF DRY IS TRUE AND:
    GLPRED IS NOT VLARGE:
  THEN DGL IS LARGE:
    RULE_1;
RULE DRY2:
  IF GLISS IS LARGE AND:
    DRY IS TRUE AND:
    COUPLE IS LARGE:
  THEN DGL IS MEDIUM;
    RULE_2;
RULE DRY3:
  IF GLISS IS SMALL AND;
    DRY IS TRUE AND:
    COUPLE IS LARGE AND:
    GLPRED IS NOT VLARGE:
  THEN DGL IS LARGE:
    RULE_3;
4. RULE DRY4:
  IF GLISS IS MEDIUM AND:
    DRY IS TRUE AND:
    GLPRED IS NOT VLARGE AND:
    COUPLE IS LARGE:
  THEN DGL IS LARGE:
    RULE_4;
5. RULE ICE7:
  IF ICE IS TRUE AND:
```

```
A. Fuzzy Logic Rules
                                                GLISS IS ZS AND:
                                                COUPLE IS ZS:
                                              THEN DGL IS ZS:
                                                RULE.7:
                                            6. RULE ICE5:
                                              IF GLISS IS ZERO AND:
                                                ICE IS TRUE:
                                              THEN DGL IS SMALL:
                                                RULE_5:
                                            RULE ICE8:
                                              IF GLISS IS SMALL AND:
                                                ICE IS TRUE:
                                              THEN DGL IS ZERO:
                                                RULE_8:
                                            8. RULE BLOCKAGE:
                                              IF GLISS IS VLARGE AND;
                                                GLPRED IS VLARGE:
                                              THEN DGL IS ZERO:
                                                RULE_9:
                                            RULE WET10;
                                              IF WET IS TRUE AND:
                                                GLISS IS ZS AND;
                                                GLPRED IS NOT LARGE;
                                              THEN DGL IS SMALL:
                                                RULE_10;

    RULE WET11;

                                                IF WET IS TRUE AND:
                                                 GLISS IS SMALL;
                                               THEN DGL IS ZS;
                                                 RULE_11:
                                            11. RULE WET12:
                                                IF WET IS TRUE AND:
                                                 GLISS IS ZERO AND:
                                                 GLPRED IS NOT LARGE:
                                               THEN DGL IS SMALL:
                                                 RULE_12.
```

Mauer, A Fuzzy Logic Controller for an ABS Braking System, IEEE Transactions on Fuzzy Systems, 3(4), 1995.

• Em Aprendizado de Máquina são estudadas técnicas para aproximar modelos a partir de dados e/ou experiências.

Exemplo: prog. tradicional

• **Problema:** Escrever um programa que filtre e-mails "spam" no servidor.

Exemplo: prog. Aprend. Máquina

• **Problema:** Escrever um programa que filtre e-mails "spam" no servidor.

Exemplo: prog. Aprend. Máquina

 Em Aprendizagem de Máquinas a estratégia pode ser adaptada constantemente.

Aprendizagem de Máquinas

 Aprendizagem de Máquinas é programar computadores para uma tarefa (T), para otimizar um critério de desempenho (D), usando dados de exemplos ou experiência passada (E).

Programa que aprende a jogar damas (T)?

- Programa que aprende a jogar damas (T)?
 - Pode melhorar seu desempenho (D), avaliando o número de vitórias (capacidade), através de experiência obtida em jogos passados (E).

 Arthur Samuel (1959) escreveu um dos primeiros programas de Ap.Máquinas (IA) para jogar damas.

Samuel, A. "Some Studies in Machine Learning Using the Game of Checkers," IBM Journal 3, 211-229 (1959).

Escolhas de projeto:

T: Tarefa jogar damas;

P: Medida de desempenho = percentagem de jogos vencidos;

E: Experiência de treinamento = jogos contra o próprio programa;

Treinamento

Direto:

Indireto:

Escolhas de projeto:

T: Tarefa jogar damas;

P: Medida de desempenho = percentagem de jogos vencidos;

E: Experiência de treinamento = jogos contra o próprio programa;

Treinamento

Direto: exemplos de movimentos individuais positivos/negativos;

Indireto:

Escolhas de projeto:

T: Tarefa jogar damas;

P: Medida de desempenho = percentagem de jogos vencidos;

E: Experiência de treinamento = jogos contra o próprio programa;

Treinamento

Direto: exemplos de movimentos individuais positivos/negativos;

Indireto: sequências completas de movimentos (jogos) e resultado final;

Escolhas de projeto:

T: Tarefa jogar damas;

P: Medida de desempenho = percentagem de jogos vencidos;

E: Experiência de treinamento = jogos contra o próprio programa;

Treinamento

Direto: exemplos de movimentos individuais positivos/negativos;

Indireto: sequências completas de movimentos (jogos) e resultado final;

Cenários de treinamento devem ser mais próximos da realidade (validação);

Escolhas de projeto:

T: Tarefa jogar damas;

P: Medida de desempenho = percentagem de jogos vencidos;

E: Experiência de treinamento = jogos contra o próprio programa;

Treinamento

Direto: exemplos de movimentos individuais positivos/negativos; **Indireto:** sequências completas de movimentos (jogos) e resultado final;

Cenários de treinamento devem ser mais próximos da realidade (validação);

Programa deve decidir o melhor movimento(jogada) para cada situação que se apresentar;

Escolhas de projeto:

T: Tarefa jogar damas;

P: Medida de desempenho = percentagem de jogos vencidos;

E: Experiência de treinamento = jogos contra o próprio programa;

Treinamento

Direto: exemplos de movimentos individuais positivos/negativos; **Indireto:** sequências completas de movimentos (jogos) e resultado final;

Cenários de treinamento devem ser mais próximos da realidade (validação);

Programa deve decidir o melhor movimento(jogada) para cada situação que se apresentar; → Função de ganho

Şeja por exemplo a seguinte função de ganho:

$$\hat{V}(b) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6$$

w₀, w₁, ..., w₆ são coeficientes a serem determinados

Şeja por exemplo a seguinte função de ganho:

$$\hat{V}(b) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6$$

w₀, w₁, ..., w₆ são coeficientes a serem determinados

X₁: número de peças pretas

X₃: número de peças brancas

X₃: número de rainhas pretas

X₄: número de rainhas brancas

X₅: número de peças pretas ameaçadas (i.e. podem ser perdidas na próxima jogada)

X₆: número de peças brancas ameaçadas (i.e. podem ser perdidas na próxima jogada)

Seja por exemplo a seguinte função de ganho:

$$\hat{V}(b) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6$$

w₀, w₁, ..., w₆ são coeficientes a serem determinados

X₁: número de peças pretas

X₂: número de peças brancas

X₃: número de rainhas pretas

X₄: número de rainhas brancas

 X_5 : número de peças pretas ameaçadas (i.e. podem ser perdidas na próxima jogada)

X₆: número de peças brancas ameaçadas (i.e. podem ser perdidas na próxima jogada)

```
V(b) = 100 (vitória);
V(b) = -100 (derrota);
V(b) = 0 (empate);
```

 O treinamento será para ajustar/encontrar os melhores pesos w, dado um conjunto satisfatório de treinamento <b, V(b)>

- O treinamento será para ajustar/encontrar os melhores pesos w, dado um conjunto satisfatório de treinamento <b, V(b)>
- Por exemplo, um treinamento que minimize E

$$E \equiv \sum_{\langle b, V_{train}(b) \rangle \in training \ examples} (V_{train}(b) - \hat{V}(b))^2$$

Por exemplo, inicializar com pesos baixos e aleatórios (normalizados);

Para cada exemplo de treinamento $\langle b, V_{train}(b) \rangle$

Use os valores atuais e calcule

Para cada peso w_i

Atualizar para

$$w_i \leftarrow w_i + \eta \ (V_{train}(b) - \hat{V}(b)) \ x_i$$

Regra LMS (Least Mean Squares)

0.1 (constante pequena)

29

(Mitchell, 1997)

Generalização

 Um sistema/programa de aprendizado de máquina pode resolver tarefas importantes/interessantes generalizando a partir de exemplos/dados/experiência.

30

Generalização

- Um sistema/programa de aprendizado de máquina pode resolver tarefas importantes/interessantes generalizando a partir de exemplos/dados/experiência.
- A relação custo/benefício de se programar assim melhora na medida que mais dados ficam acessíveis/disponíveis.

Aprendizado de Máquina

Aprendizado de Máquina

Programação Tradicional

Dados Programa Máquina/Comp Saída

Tipos de Aprendizagem

34

• 1) Aprendizagem Supervisionada

Tipos de Aprendizagem

• 1) Aprendizagem Supervisionada

Aprendizagem Supervisionada Ex: Regressão

Aprendizagem Supervisionada Ex: Classificação

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 y is categorical == classification

Ocular Tumor (Malignant / Benign)

- Malignant
- Benign

2 classes

Image: https://eyecancer.com/uncategorized/choroidal-metastasis-test/

Aprendizagem Supervisionada Ex: Classificação

Tipos de Aprendizagem

39

• 1) Aprendizagem Não Supervisionada

Tipos de Aprendizagem

• 1) Aprendizagem Não Supervisionada

40

Aprend. Não supervisionada Exemplo

 Independent component analysis – separate a combined signal into its original sources

Image credit: statsoft.com Audio from http://www.ism.ac.jp/~shiro/research/blindsep.html

Tipos de Aprendizagem

• 1) Aprendizagem Semi-supervisionada

Tipos de Aprendizagem

• 1) Aprendizagem Semi-supervisionada

Aprend. Semi-supervisionada Exemplo

<u>Data</u> <u>Labels</u>

Documents Politics, Sports, Finance

Sentences Positive, Negative

Phrases Person, Location

Images Cat, Dog, Snake, Horse

Medical records Re-admit soon/Not

...

44

Tipos de Aprendizagem

• 1) Aprendizagem por Reforço/Recompensa

Dados não rotulados (não supervisionado) Reforço/recompensa possui atraso, e pode ser atribuída em sequências diferentes Aprendizagem por Reforço (estratégia)

Aprendizagem por Reforço Exemplo

https://www.youtube.com/watch?v=iaF43Ze1oel

 Aprendizagem de Máquinas é aproximação de funções.

10. passo: Construir/aprender/estimar a função de predição f()

Como?
$$Y=f(X)$$
 $X \rightarrow vetores de dados$

20. passo: Aplicar f() em novas situações e predizer resposta

- Aprendizagem de Máquinas é aproximação de funções.
- Embora existam centenas de algoritmos disponíveis, todos são combinações de 3 elementos essenciais:

dibio @ unb.br

- Aprendizagem de Máquinas é aproximação de funções.
- Embora existam centenas de algoritmos disponíveis, todos são combinações de 3 elementos essenciais:
 - 1) Representação
 - 2) Avaliação
 - 3) Otimização

Representação

Como os dados são especificados? Qual é a forma do modelo?

Otimização

Como o modelo é treinado com os dados?

Avaliação

Quais são as medidas/métricas de desempenho? Como avaliar se o modelo é satisfatório?

- Aprendizagem de Máquinas é aproximação de funções.
- Embora existam centenas de algoritmos disponíveis, todos são combinações de 3 elementos essenciais:
 - 1) Representação (linguagem formal, atributos)
 - 2) Avaliação
 - 3) Otimização

- Aprendizagem de Máquinas é aproximação de funções.
- Embora existam centenas de algoritmos disponíveis, todos são combinações de 3 elementos essenciais:
 - 1) Representação (linguagem formal, atributos)
 - 2) Avaliação (função de ganho/avaliar bons de resultados ruins)
 - 3) Otimização

- Aprendizagem de Máquinas é aproximação de funções.
- Embora existam centenas de algoritmos disponíveis, todos são combinações de 3 elementos essenciais:
 - 1) Representação (linguagem formal, atributos)
 - 2) Avaliação (função de ganho/avaliar bons de resultados ruins)
 - 3) Otimização (buscar entre os possíveis aqueles mais eficientes)

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
Hyperplanes	Likelihood	Branch-and-bound
Naive Bayes	Posterior probability	Continuous optimization
Logistic regression	Information gain	Unconstrained
Decision trees	K-L divergence	Gradient descent
Sets of rules	Cost/Utility	Conjugate gradient
Propositional rules	Margin	Quasi-Newton methods
Logic programs		Constrained
Neural networks		Linear programming
Graphical models		Quadratic programming
Bayesian networks		
Conditional random fields		

(Domingos, 2012)

Universidade de Brasília

Aprendizagem: fluxo

Understand domain, prior knowledge, and goals

Data selection, cleaning, integration, pre-processing

Train the model(s)

Refinement

Evaluate model and analyze results

Deploy model and discovered knowledge

Imagem: E. Eaton

Obtaining User Feedback

Universidade de Brasília

dibio @ unb.br

Getting Labeled Data

Append feature vectors

Label

clipage|source| bttps://blog.photofeeler.com/best-tinder-bios-profile-tips/

Image: https://blog.photofeeler.com/best-tinder-bios-profile-tips/

Forming the Training Data

data matrix X

labeled training data

Image: https://blog.photofeeler.com/best-tinder-bios-profile-tips/

labels y

Training the Model

Image: https://blog.photofeeler.com/best-tinder-bios-profile-tips/

Framing as a Recommendation Problem

Image: https://blog.photofeeler.com/best-tinder-bios-profile-tips/

Leitura

Ler artigo

Domingos, P. A few useful things about machine learning, *Communications of the ACM*, 55 (10), 78-87, 2012.

Referências

- Russel & Norvig, Artificial Intelligence: a modern approach (4th ed), Pearson, 2020. (Cap. 19)
- Mitchell, T. Machine Learning, McGraw-Hill, 1997.
- Géron, A. Hands-On Machine Learning with Scikit-Learn & TensorFlow, O'Reilly Inc., 2017.