Képfeldolgozás – jól párhuzamosítható

B. Wilkinson, M. Allen: "Parallel Programming", Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján

Vázlat

 A képfeldolgozás olyan alkalmazási terület, amely számos lehetőséget biztosít párhuzamosításra

Témakörök:

- Alacsonyszintű műveletek: simítás, hisztogram, éldetektálás
- Hough transzformáció egyenes detektáláshoz

Mi a képfeldolgozás?

- A képfeldolgozás a jelfeldolgozás része, amely képekkel foglalkozik
- Célja: a kép minőségének javítása az ember, vagy további számítógépes feldolgozás számára
- Kép Képfeldolgozás "Jobb" kép

Képfeldolgozás nehézségei

Képek ábrázolása

5

Színes képek

A digitális képfeldolgozás szintjei

- A képek szg-es feldolgozását három szintre lehet osztani: alacsony, közép és magas szintű feladatok (low-level, middle-level, high-level)
- Low-level: mind az input mind az output kép
- Middle-level: az inputok általában képek, de az outputok a képekből nyert attribútumok (pl. egy objektum azonosítói a képen)
- High-level: a felismert objektumok együttesének érzékelése

Alacsonyszintű képfeldolgozás

A tárolt képen operál, hogy javítsa/módosítsa azt

A kép képelemek (pixel = picture element) kétdimenziós

 Számos alacsonyszintű képművelet az intenzitásokat (szürkeségi értékeket) manipulálja

Számítási igény

- Tételezzünk fel egy 1024 × 1024 pixelből álló képet, ahol az intenzitást 8-biten tároljuk.
- Tárolási igény 2²⁰ byte (1 Mbytes)
- Tegyük fel, hogy minden pixelen csak egy műveletet végzünk, ekkor 2²⁰ operációt kell végeznünk a képen. Ez kb. 10⁻⁸ mp/operáció, ami hozzávetőlegesen 10 ms.
- Valós idejű képfeldolgozás esetén tipikusan 25-30 képet kell másodpercenként feldolgozni (fps).
- Tipikusan nem csak egyetlen operációt kell végezni a pixeleken, hanem több és összetettebb funkciókat.

Pont alapú műveletek

Olyan műveletek, ahol az output csak egy képponttól függ. Küszöbölés:

Egy bizonyos határnál (threshold) nagyobb intenzitású képpont értékéhez az egyik szélső értéket, elllenkező esetben a másik szélsőértéket rendeljük hozzá.

Ha egy pixel intenzitása x_i , akkor minden pixelre:

if
$$(x_i < \text{threshold}) x_i = 0$$
; else $x_i = 1$;

Pont alapú műveletek

Kontraszt nyújtás:

Az intenzitás értékek tartományát széthúzzuk, hogy a részletek jobban érzékelhetőek legyenek. Adott egy pixel intenzitása x_i az x_l - x_h tartományból, a kontraszt nyújtás során az x_H - x_L tartományba transzformáljuk az intenzitást $x_l = \frac{\left(\chi_H - \chi_L\right)}{\left(\chi_L - \chi_L\right)} \chi_i + \chi_L$

Szürkeségi szint csökkentés:

A kevésbé szignifikáns biteket elhagyjuk.

Hisztogram

Az egyes intenzitásokból hány darab van a képen

Hisztogram soros kód

```
for(i = 0; i < height_max; x++)
for(j = 0; j < width_max; y++)
hist[p[i][j]] = hist[p[i][j]] + 1;</pre>
```

ahol a pixeleket a p[][] tömb tárolja és a hist[k] vektor megmondja, hogy a *k*-ik intenzitásból hány darab van a képen.

- Egyszerű összegző tömb.
- Könnyen párhuzamosítható dekompozícióval.

Maszk alapú műveletek

 g(x, y) = T[f(x, y)], T a szomszédos pixeleken operál (lokális művelet)

Maszk alapú műveletek

Simítás (zajszűrés):

 Az intenzitás nagy változásait simítjuk el, a magasfrekvenciás tartalom csökkentése

Élesítés:

A részletek kiemelése

Maszk használata

Maszk

Ablak alapú műveletekhez gyakran alkalmaznak n x n méretű maszkot (n = 3, 5, 7, ...)

x _o	X ₁	x_2
X ₃	X_4	X ₅
Х ₆	X ₇	X ₈

Átlagoló szűrő

Egyszerű simítási technika, ahol az ablakban lévő intenzitások átlaga az új intenzitás érték:

$$\chi_{4}^{\prime} = \frac{\chi_{0} + \chi_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} + \chi_{6} + \chi_{7} + \chi_{8}}{9}$$

Soros kód:

Kilenc (+1) lépés kell az átlag kiszámításához, *n* pixelre 9*n*. Komplexitás: O(*n*).

Párhuzamos átlagoló szűrő

- A műveletek száma redukálható négyre
 - □ Elv, ami pontosításra kerül mindjárt

Step 1
Each pixel
adds pixel
from left

Step 2
Each pixel
adds pixel from
right

Step 3 Each pixel adds pixel from above

Step 4
Each pixel adds
pixel from below

Párhuzamos átlagoló szűrő I.

(b) Step 2

Párhuzamos átlagoló szűrő II.

(d) Step 4

Medián szűrő

Soros megvalósítás:

- A medián meghatározása érdekében rendezni kell a pixelértékeket és a középsőt kell kiválasztani.
 - □ Például 3 x 3-as esetben y_0 , y_1 , y_2 , y_3 , y_4 , y_5 , y_6 , y_7 , és y_8 . A medián y_4 .
 - □ Az ötödik elemet kell kivenni a rendezés után.
 - □ Pl. buborékos rendezésnél a műveletek (összehasonlítás és ha kell csere) száma: 8 + 7 + 6 + 5 + 4 = 30 lépés, azaz n pixelre 30n művelet.

Közelítő medián szűrő

Párhuzamos megvalósítás:

■ Elsőként a soron belül hajtsunk végre három összehasonlítást és cserét: $p_{i,j-1} \leftrightarrow p_{i,j}$

$$p_{i,j} \leftrightarrow p_{i,j+1}$$
$$p_{i,j-1} \leftrightarrow p_{i,j}$$

ahol ↔ jelenti, hogy hasonlítsd össze és cseréld fel, ha a baloldali érték nagyobb, mint a jobboldali.

Ezután oszlopokra vonatkozóan három lépés:

Közelítő medián szűrő

Súlyozó maszkok

Gyakran nem egységnyi súlyúak a maszkelemek: w₀, w₁, w₂, w₃, w₄, w₅, w₆, w₇, és w₈.
 Az új intenzitás érték x₄':

$$\dot{\chi_{4}} = \frac{W_{0} \chi_{0} + W_{1} \chi_{1} + W_{2} \chi_{2} + W_{3} \chi_{3} + W_{4} \chi_{4} + W_{5} \chi_{5} + W_{6} \chi_{6} + W_{7} \chi_{7} + W_{8} \chi_{8}}{k}$$

ahol 1/k skálázási tényező az intenzitás értékét állítja be és k nagysága gyakran a súlyok összegével egyezik meg.

Kereszt-korreláció

3 x 3-as súlyozó maszk használatával

azaz a súlyozott összeg $(w_i x_i)$ két függvénynek (f és w) a (diszkrét) kereszt-korrelációja: $f \otimes w$

Maszkok

Átlagoló

k = 9

1	1	1
1	1	1
1	1	1

Zajszűrő

k =16

1	1	1
1	ω	1
1	1	1

■ Felüláteresztő élesítő

k = 9

-1	-1	-1
-1	8	-1
-1	-1	-1

Éldetektálás

- Ahol az intenzitásban jelentős változás van, ott található él.
- Kép deriváltja:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon} \right)$$

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon} \right) \qquad \frac{\partial f(x,y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x,y+\varepsilon) - f(x,y)}{\varepsilon} \right)$$

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x_{n+1},y_m) - f(x_n,y_m)}{\Delta x} \qquad \frac{\partial f(x,y)}{\partial y} \approx \frac{f(x_n,y_{m+1}) - f(x_n,y_m)}{\Delta x}$$

$$\frac{\partial f(x,y)}{\partial y} \approx \frac{f(x_n, y_{m+1}) - f(x_n, y_m)}{\Delta x}$$

■ Gradiens: $grad(f) = \begin{vmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{vmatrix}$

Éldetektálás differenciálással

Intenzitás

■ Első derivált

Második derivált

Gradiens nagyság és irány

■ Gradiens nagyság: $|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

Gradiens irány: $\varphi(x, y) = \arctan \left\{ \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} \right\}^{y}$

■ Gradiens nagyságra más mérték: $\left|\nabla f\right| = \left|\frac{\partial f}{\partial x}\right| + \left|\frac{\partial f}{\partial y}\right|$

Éldetektáló maszkok

A gradiens összetevőinek számolása:

$$\left|\frac{\partial f}{\partial x}\right| = (\chi_5 - \chi_3)$$
 $\left|\frac{\partial f}{\partial y}\right| = (\chi_7 - \chi_1)$

■ A gradiens nagyság: $|\nabla f| = \left| \frac{\partial f}{\partial x} \right| + \left| \frac{\partial f}{\partial y} \right| = \left| \chi_7 - \chi_1 \right| + \left| \chi_5 - \chi_3 \right|$

0	-1	0
0	0	0
0	1	0

0	0	0
-1	0	1
0	0	0

Prewitt operátor

A gradjenş összetevőinek számolása:

$$\left| \frac{\partial f}{\partial x} \right| = (\chi_2 - \chi_0) + (\chi_5 - \chi_3) + (\chi_8 - \chi_6)$$

$$\left| \frac{\partial f}{\partial y} \right| = (\chi_6 - \chi_0) + (\chi_7 - \chi_1) + (\chi_8 - \chi_2)$$

A Prewitt maszk:

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

Prewitt éldetektor

Sobel éldetektáló

Sobel éldetektáló

Sobel éldetektáló

Sobel éldetektáló

Vonaldetektálás

Vonaldetektálás Hough trafóval

- Cél: Az f(x, y) képen találjuk meg a vonalakat és határozzuk meg azok egyenletét
- O(NNMM) nagyságrendű számítást kell elvégezni

Vonaldetektálás Hough trafóval

Főbb pontok:

- Konverzió paraméter térbe
- Az m és n paraméterek megtalálása
- Visszakonvertálás derékszögű koordinátákba

Vonaldetektálás Hough trafóval

- Kulcs: Használjuk a paraméterteret, ahol a bonyolult probléma az egyszerűbb lokális maximumok megtalálását jelenti
- Input:
 - □ Bináris kép élpontokkal
 - ☐ Küszöb

Hough transzformáció

Vonalillesztés

- Vonal egyenlet y = mx + b m meredekség, b az y metszéspon t
- Az (m, b) teret osszuk fel egy ráccsal és minden cellához rendeljünk egy számlálót: c(m, b)

kezdetben 0 értékkel

- $\ \square$ Számoljuk ki b értékét minden lehetséges m mellett $b_i = y m_i x$
- □ Növeljük meg a c(m_i, b_i)-t eggyel
- Keressük meg a lokális maximumokat a paraméter térben!

Hough trafó: kvantálás

Vonal detektálás maximum/klaszter keresésével a

paraméter, térben

- Függőleges vonalak esetén probléma
 - \square *m* és *b* végtelen

Hough transzformáció

- Polár koordinátás reprezentáció
 - \square Egy egyenes minden pontjára θ és ρ állandó
 - □ Bármely irányban numerikusan stabil leírás

$$x\cos\theta + y\sin\theta = \rho$$

 Különböző θ konstans értékeke ρ fix értékeinél különböző vonalakat szolgáltatnak

Akkumulátor tömb

Algoritmus

- Készítsünk egy 2D (θ, ρ) számláló tömböt, a szög 0 és 180 fok között változik, a távolság maximum a kép átlója
 - □ Nullázuk ki
- A θ szög lehetséges értékeit vegyük fel
 - □ Például 10°-os növekmények
- Minden élpontra
 - Számoljuk ki ρ értékét az (A) egyenlettel
 - \square Minden kiszámolt (θ , ρ) párra növeljük meg a számlálótömb értékét
- Keressük meg a lokális maximumokat

Vonaldetektálás

Képfeldolgozás ho

Vonaldetektálás - példa

Nehézségek

- Hogyan osszuk fel a paraméter teret (θ, ρ) ?
 - nagy? Nem tudunk különbséget tenni vonalak között
 - □ kicsi? A zaj hibákat eredményez
- Hány vonalat találunk?
- Melyik élpont melyik vonalhoz tartozik?
- A zaj miatt nehéz kielégítő megoldást találni

Soros kód

Párhuzamosítás

- Mivel az akkumulátor tömb számítása független más összegzésektől, ezért párhuzamosítható:
 - □ Az egész képre olvasási jog szükséges.