Comp-3150: Database Management Systems

• Ramez Elmasri, Shamkant B. Navathe(2016) Fundamentals of Database Systems (7th Edition), Pearson, isbn 10: 0-13-397077-9; isbn-13:978-0-13-397077-7.

 Chapter 5:
 The Relational Data Model and Relational Database Constraints

Chapter 5: The Relational Data Model and Relational Database Constraints: Outline

- 1. Relational Model Concepts
- 2. Relational Model Constraints and Relational Database Schemas
- 3. Update Operations and Dealing with Constraint Violations

- The relational data model was first introduced by Ted Codd of IBM research in 1970 and it gained acceptance due to its simplicity and mathematical foundation.
- The first commercial implementation of the relational model arose in the early 1980s on IBM operating system and Oracle DBMS.
- Current popular commercial relational DBMS include DB2 (from IBM), Oracle (from Oracle), SQL Server and Microsoft Access(from Microsoft).
- Open source systems such as Mysql and PostgreSQL are also popular.

The relational model represents the database as a set of relations.

 A relational is a table of values with each row in the table representing a collection of related data values (attributes) of a reallife entity (e.g. STUDENT) or relationship (e.g. enrolled).

An example relation for entity STUDENT is shown next in Fig. 5.1

 Each row of STUDENT represents facts about a particular student entity.

Example of a Relation

Figure 5.1

The attributes and tuples of a relation STUDENT.

- The column names (Name, SSn, Home_phone, Address, Office_phone, age, Gpa) specify individual properties of each entity.
- All values in a column are of the same type.
- In the relational model, a row is called a tuple, a column header is called an attribute and the table is called a relation.
- The data type of each attribute has a domain of possible values. Eg. domain of name is the set of character strings, domain of ages is integer value.

Informal Definitions

- Key of a Relation:
 - Each row has a value of a data item (or set of items) that uniquely identifies that row in the table
 - Called the key
 - In the STUDENT table, SSN is the key
 - Sometimes, row-ids or sequential numbers are assigned as keys to identify the rows in a table
 - Called artificial key or surrogate key

Formal Definitions – Schema

- The **Schema** (or description) of a Relation:
 - Denoted by R(A1, A2,An)
 - R is the name of the relation
 - The attributes of the relation are A1, A2, ..., An
- Example:
 - CUSTOMER (Cust-id, Cust-name, Address, Phone#)
 - CUSTOMER is the relation name
 - Defined over the four attributes: Cust-id, Cust-name, Address, Phone#
- Each attribute has a domain or a set of valid values.
 - For example, the domain of Cust-id is 6 digit numbers.

Formal Definitions – Tuple

- A **tuple** is an ordered set of values (enclosed in angled brackets '< ... >')
- Each value is derived from an appropriate domain.
- A row in the CUSTOMER relation is a 4-tuple and would consist of four values, for example:
 - <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
 - This is called a 4-tuple as it has 4 values
 - A tuple (row) in the CUSTOMER relation.
- A relation is a set of such tuples (rows)

Formal Definitions – Domain

- A domain has a logical definition:
 - Example: "USA_phone_numbers" are the set of 10 digit phone numbers valid in the U.S.
- A domain also has a data-type or a format defined for it.
 - The NorthAmerican_phone_numbers may have a format: (ddd)ddd-dddd where each d is a decimal digit.
 - Dates have various formats such as year, month, date formatted as yyyy-mm-dd, or as dd mm,yyyy etc.
- The attribute name designates the role played by a domain in a relation:
 - Used to interpret the meaning of the data elements corresponding to that attribute
 - Example: The domain Date may be used to define two attributes named "Invoice-date" and "Payment-date" with different meanings

Formal Definitions – Summary

- Formally,
 - Given R(A1, A2,, An)
 - $r(R) \subset dom(A1) \times dom(A2) \times \times dom(An)$
- R(A1, A2, ..., An) is the **schema** of the relation with n attributes
- R is the name of the relation
- A1, A2, ..., An are the **attributes** of the relation
- r(R): a specific state (or "value" or "population") of relation R this is a set of tuples (rows)
 - r(R) = {t1, t2, ..., tm} with m tuples/records, where each ti is an n-tuple
 - ti = <v1, v2, ..., vn> where each vj element-of dom(Aj)

Definition Summary

Informal Terms	Formal Terms
Table	Relation
Column Header	Attribute
All possible Column Values	Domain
Row	Tuple
Table Definition	Schema of a Relation
Populated Table	State of the Relation

Characteristics Of Relations

- Ordering of tuples in a relation r(R):
 - The tuples are not considered to be ordered, even though they appear to be in the tabular form.
- Ordering of attributes in a relation schema R (and of values within each tuple):
 - We will consider the attributes in R(A1, A2, ..., An) and the values in t=<v1, v2, ..., vn> to be ordered.
 - (However, a more general alternative definition of relation does not require this ordering. It includes both the name and the value for each of the attributes).
 - Example: t= { <name, "John" >, <SSN, 123456789> }

Characteristics Of Relations

- Values in a tuple:
 - All values are considered atomic (indivisible).
 - Each value in a tuple must be from the domain of the attribute for that column
 - If tuple t = <v1, v2, ..., vn> is a tuple (row) in the relation state r of R(A1, A2, ..., An)
 - Then each *vi* must be a value from *dom(Ai)*
 - A special **null** value is used to represent values that are unknown or not available or inapplicable in certain tuples.

- Characteristics Of Relations
- Notation:
 - We refer to component values of a tuple t by:
 - t[Ai] or t.Ai
 - This is the value vi of attribute Ai for tuple t
 - Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing the values of attributes Au, Av, ..., Aw, respectively in t

Integrity Constraints determine which values are permissible and which are not in the database.

They are of three main types:

- 1. Inherent or Implicit Constraints: These are based on the data model itself. (E.g., relational model does not allow a list as a value for any attribute)
- 2. **Schema-based or Explicit Constraints**: They are expressed in the schema by using the facilities provided by the model. (E.g., max. cardinality ratio constraint in the ER model)
- 3. **Application based or semantic constraints**: These are beyond the expressive power of the model and must be specified and enforced by the application programs.

Relational Integrity Constraints

- Constraints are conditions that must hold on all valid relation states.
- There are three *main types* of (explicit schema-based) constraints that can be expressed in the relational model:
 - Key constraints
 - Entity integrity constraints
 - Referential integrity constraints
- Another schema-based constraint is the domain constraint
 - Every value in a tuple must be from the domain of its attribute (or it could be null, if allowed for that attribute)

- Key Constraints
- Superkey of R:
 - Is a set of attributes SK of R with the following condition:
 - No two tuples in any valid relation state r(R) will have the same value for SK
 - That is, for any distinct tuples t1 and t2 in r(R), t1[SK] ≠ t2[SK]
 - This condition must hold in *any valid state* r(R)
- **Key** of R:
 - A "minimal" superkey
 - That is, a key is a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey (does not possess the superkey uniqueness property)
- A Key is a Superkey but not vice versa

Key Constraints (continued)

- Example: Consider the CAR relation schema:
 - CAR(State, Reg#, SerialNo, Make, Model, Year)
 - CAR has two keys:
 - Key1 = {State, Reg#}
 - Key2 = {SerialNo}
 - Both are also superkeys of CAR
 - {SerialNo, Make} is a superkey but not a key.
- In general:
 - Any key is a superkey (but not vice versa)
 - Any set of attributes that includes a key is a superkey
 - A minimal superkey is also a key

- Key Constraints (continued)
- If a relation has several candidate keys, one is chosen arbitrarily to be the primary key.
 - The primary key attributes are <u>underlined</u>.
- Example: Consider the CAR relation schema:
 - CAR(State, Reg#, <u>SerialNo</u>, Make, Model, Year)
 - We chose SerialNo as the primary key
- The primary key value is used to uniquely identify each tuple in a relation
 - Provides the tuple identity
- Also used to reference the tuple from another tuple
 - General rule: Choose as primary key the smallest of the candidate keys (in terms of size)
 - Not always applicable choice is sometimes subjective

- Relational Database Schema
- Relational Database Schema:
 - A set S of relation schemas that belong to the same database.
 - S is the name of the whole database schema
 - S = {R1, R2, ..., Rn} and a set IC of integrity constraints.
 - R1, R2, ..., Rn are the names of the individual relation schemas within the database S
- Following slide shows a COMPANY database schema with 6 relation schemas

COMPANY Database Schema

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salarv	Super_ssn	Dno	Ī
					, , , , , , , , , , , , , , , , , , , ,	1 000	_ a.a. j	0 4 9 0 1 _ 0 0 1 1		

DEPARTMENT

Dname	<u>Dnumber</u>	Mgr_ssn	Mgr_start_date
-------	----------------	---------	----------------

DEPT_LOCATIONS

Dnumber	Dlocation
---------	-----------

PROJECT

Pname Pnumber Plocation Dnum

WORKS_ON

Essn	<u>Pno</u>	Hours
------	------------	-------

DEPENDENT

Essn Dependent_name	Sex	Bdate	Relationship
---------------------	-----	-------	--------------

Comp-3150 Dr. C. I. Ezeife (2021) with Figures and some materials from Elmasri & Navathe, 7th Ed

Figure 5.5

Schema diagram for the COMPANY relational database schema.

- Relational Database State
- A **relational database state** DB of S is a set of relation states DB = $\{r_1, r_2, ..., r_m\}$ such that each r_i is a state of R_i and such that the r_i relation states satisfy the integrity constraints specified in IC.
- A relational database state is sometimes called a relational database snapshot or instance.
- We will not use the term instance since it also applies to single tuples.
- A database state that does not meet the constraints is an invalid state

- Populated database state
- Each relation will have many tuples in its current relation state
- The relational database state is a union of all the individual relation states
- Whenever the database is changed, a new state arises
- Basic operations for changing the database:
 - INSERT a new tuple in a relation
 - DELETE an existing tuple from a relation
 - MODIFY an attribute of an existing tuple
- Next slide (Fig. 5.6) shows an example state for the COMPANY database schema shown in Fig. 5.5.

Populated database state for COMPANY

Figure 5.6

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	965-01-09 731 Fondren, Houston, TX		30000	333445555	5
Franklin	Т	Wong	Wong 333445555 1955-12-08 638 Voss, Houston, TX		М	40000	888665555	5	
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	s	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	м	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20 10.	
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pnumber	Plocation	Dnum
1	Bellaire	5
2	Sugarland	5
3	Houston	5
10	Stafford	4
20	Houston	1
30	Stafford	4
	1 2 3 10 20	1 Bellaire 2 Sugarland 3 Houston 10 Stafford 20 Houston

DEPENDENT

		1		
Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Entity Integrity

Entity Integrity:

- The *primary key attributes* PK of each relation schema R in S cannot have null values in any tuple of r(R).
 - This is because primary key values are used to identify the individual tuples.
 - t[PK] ≠ null for any tuple t in r(R)
 - If PK has several attributes, null is not allowed in any of these attributes
- Note: Other attributes of R may be constrained to disallow null values, even though they are not members of the primary key.

Referential Integrity

- A constraint involving two relations
 - The previous constraints involve a single relation.
- Used to specify a relationship among tuples in two relations:
 - The referencing relation and the referenced relation.

Referential Integrity

- Tuples in the referencing relation R1 have attributes FK (called foreign key attributes) that reference the primary key attributes PK of the referenced relation R2.
 - A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK].
- A referential integrity constraint can be displayed in a relational database schema as a directed arc from R1.FK to R2.

Referential Integrity (or foreign key) Constraint

- Statement of the constraint
 - The value in the foreign key column (or columns) FK of the referencing relation R1 can be either:
 - (1) a value of an existing primary key value of a corresponding primary key PK in the referenced relation R2, or
 - (2) a null.
- In case (2), the FK in R1 should not be a part of its own primary key.

Displaying a relational database schema and its constraints

- Each relation schema can be displayed as a row of attribute names
- The name of the relation is written above the attribute names
- The primary key attribute (or attributes) will be underlined
- A foreign key (referential integrity) constraint is displayed as a directed arc (arrow) from the foreign key attributes to the referenced table
 - Can also point to the primary key of the referenced relation for clarity
- Next slide shows the COMPANY relational schema diagram with referential integrity constraints

Referential Integrity Constraints for COMPANY database

Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.

Other Types of Constraints

- Semantic Integrity Constraints:
 - based on application semantics and cannot be expressed by the model per se
 - Example: "the max. no. of hours per employee for all projects he or she works on is 56 hrs per week"
- A constraint specification language may have to be used to express these
- SQL-99 allows CREATE TRIGGER and CREATE ASSERTION to express some of these semantic constraints
- Keys, Permissibility of Null values, Candidate Keys (Unique in SQL),
 Foreign Keys, Referential Integrity etc. are expressed by the CREATE
 TABLE statement in SQL.

3. Update Operations on Relations

- INSERT a tuple.
- DELETE a tuple.
- MODIFY a tuple.
- Integrity constraints should not be violated by the update operations.
- Several update operations may have to be grouped together.
- Updates may propagate to cause other updates automatically. This may be necessary to maintain integrity constraints.

3. Update Operations on Relations

- In case of integrity violation, several actions can be taken:
 - Cancel the operation that causes the violation (RESTRICT or REJECT option)
 - Perform the operation but inform the user of the violation
 - Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option)
 - Execute a user-specified error-correction routine

Possible violations for each operation

- INSERT may violate any of the constraints:
 - Domain constraint:
 - if one of the attribute values provided for the new tuple is not of the specified attribute domain
 - Key constraint:
 - if the value of a key attribute in the new tuple already exists in another tuple in the relation
 - Referential integrity:
 - if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation
 - Entity integrity:
 - if the primary key value is null in the new tuple

Possible violations for each operation

- DELETE may violate only referential integrity:
 - If the primary key value of the tuple being deleted is referenced from other tuples in the database
 - Can be remedied by several actions: RESTRICT, CASCADE, SET NULL (see Chapter 6 for more details)
 - RESTRICT option: reject the deletion
 - CASCADE option: propagate the new primary key value into the foreign keys of the referencing tuples
 - SET NULL option: set the foreign keys of the referencing tuples to NULL
 - One of the above options must be specified during database design for each foreign key constraint

Possible violations for each operation

- UPDATE may violate domain constraint and NOT NULL constraint on an attribute being modified
- Any of the other constraints may also be violated, depending on the attribute being updated:
 - Updating the primary key (PK):
 - Similar to a DELETE followed by an INSERT
 - Need to specify similar options to DELETE
 - Updating a foreign key (FK):
 - May violate referential integrity
 - Updating an ordinary attribute (neither PK nor FK):
 - Can only violate domain constraints