

Motivation

Problem Statement:

- . Predicting corporate bankruptcy is a critical challenge in financial industry
- . Traditional methods often fail to capture complex patterns and relationships in financial data
- . Machine learning techniques can potentially improve bankruptcy prediction accuracy

Importance of Accurate Bankruptcy Prediction:

- . Early identification of bankruptcy risk enables proactive measures to minimize financial losses
- . Accurate predictions support informed decision-making for investors, creditors, and regulators
- . Helps in maintaining stability and trust in the financial market

Dataset Overview:

- . Comprehensive dataset with 95 financial ratios and indicators
- . Contains data from 6819 companies over a period of 10 years
- . Includes a diverse range of industries and company sizes
- . Binary target variable: "Bankrupt?" (1 for bankrupt, 0 for non-bankrupt)

Benchmark Model

Followed procedure described in the paper by Musa et Al.

Only three variables included:

- Liability to Assets: Total Debt/Total Assets
- Current Ratio: Current Assets/Current Liabilities
- ROA before interest and depreciation after tax: Net income/Total Assets
- -Model used Extreme Gradient Boosting (XGBoost)
- Coded using XGBoost library in Python.

Benchmark Model Results

-Accuracy: 0.828

-Precision: 0.286

-Recall: 0.078

-F1 Score: 0.123

-Accuracy of 83% is our benchmark

Exploratory Data Analysis

- Checking missing values, repeated columns or no information characteristic
- Deleted: In our case only two column with no information. ('Net Income Flag', 'Liability-Assets Flag')
- 94 features remain.

Data Imbalance

Bankrupt?			
0 (No)	6599		
1 (Yes)	220		

Data Augmentation (SMOTE)

Synthetic Minority Oversampling Technique:

- Creating artificial data for bankruptcy by Increasing number of no. bankruptcy records.
- Statistical technique to increase number of cases in dataset
- Generate new instances from existing minority class, New instances not copies of existing minority cases

Data Normalization

Feature Normalization:

- Applied Z standardization to standardize features
- Removing the effect of the scale in the dataset.

$$Z=rac{x-\mu}{\sigma}$$

Explanation Power

Collinearity: a quick overview

More quantitative approach: VIF

- Collinearity present with VIF values over 100.

 Some features VIF values over 600000000, strong present of collinearity.

Solve Collinearity: PCA

General Pipeline of the Data and Process

Split Data randomly in 20/80 train test.

Train: Argumentation of the data -> Normalization of the train Data -> PCA transformation and selection of the data -> train the model

With the Characteristics learning on the pipeline

Test: Normalization of the Data with the train values -> PCA with the matrix get it in the train -> prediction with the model

Model Development Logistic Regression

Logistic Regression with PCA:

- . Cross-validation:
 - Performed 5-fold cross-validation
 - Average accuracy: 96.72%
 - Consistent high accuracy across all folds
- . Potential Overfitting Concerns:
 - High accuracy might be influenced by multicollinearity in the dataset
 - Regularization techniques like L1 or L2 can be applied
- Outliders:
 - PCA problems to manage outliers
- . Inbalance:
 - No consistent predictions to
- . Interpretability
 - It can be interpretable undoing the PCA transformation

Model Development XGBoost without PCA:

Logistic Regression with PCA:

- . Cross-validation:
 - Performed 5-fold cross-validation
 - Average accuracy: 98.18%
 - Consistent high accuracy across all folds
- . Potential Overfitting Concerns:
 - Difficult to select the number of hyperparameters
- Outliers:
 - XGBoost can manage that
- . Inbalance:
 - Similar behavior classifying 0 and 1. More consistent.
- . Interpretability:
 - XGBoost can not be interpretable BlackBox model.

Recursive Feature Elimination (RFE)

- Algorithms RFE was applied to:
 - Logistic regression
 - Decision tree classifier
 - Random forest classifier
 - Gradient boosting classifier
 - AdaBoost classifier
 - XGBoost classifier
- Total 55 features left

Features	LogisticRegression_Ranking	DecisionTree_Ranking	RandomForest_Ranking	GradientBoosting_Ranking	AdaBoost_Ranking	XGBoost_Ranking
ROA(C) before interest and depreciation befor	8	1	1	1	1	1
Operating Gross Margin	9	1	14	14	16	1
Operating Profit Rate	1	5	1	1	9	2
Non-industry income and expenditure/revenue	15	1	1	1	8	1
Operating Expense Rate	1	1	21	22	7	18
Research and development expense rate	1	1	4	1	1	1
Cash flow rate	11	25	1	1	1	1
Interest-bearing debt interest rate	1	1	1	1	1	1

RFE Ranking for different features and models

Model Evaluation and Comparison

- Best model performance:
 - Random forest classifier
 - XGBoost classifier
 - Gradient boosting classifier

Model Evaluation and Comparison

Future Enhancements

Address Multicollinearity:

- . Feature Selection: Lasso Regularization, Domain Knowledge
- . Regularization: L1, L2, Elastic Net

Explore Other Algorithms:

- . SVM: High-dimensional, Kernel Trick, Imbalanced Data
- . Neural Networks: Deep Learning, Complex Patterns

Feature Engineering:

- . Domain Knowledge: Financial Ratios & Indicators
- . Interaction Terms & Polynomial Features
- . Temporal Features: Trends, Seasonality, Cycles

Handle Class Imbalance:

- . Oversampling: Random
- . Undersampling: Random, Cluster Centroids
- . Cost-Sensitive Learning

Conclusion

Key Findings:

- Strong Correlations & Multicollinearity
- Important Predictors: Debt, Profitability, Liquidity Ratios
- XGBoost and random classifier performing best on features selected after RFE

Model Interpretability & Explainability:

- Understanding Driving Factors
- Feature Importance Analysis
- Transparent & Explainable Models

Applications:

- Credit Risk Assessment & Loan Approval
- Investment Screening & Portfolio Management
- Risk Management & Financial Stability Monitoring
- Early Warning System for Financial Distress

Interpretability vs Accuracy

- Linear models are not able to capture all the information but are interpretable

- Non-linear models and tree family models get better results

- Depends of the context it should be select one type of model or other.

References and Acknowledgments

- [1] Dataset: Taiwanese Bankruptcy Prediction. (2020). UCI Machine Learning Repository. https://doi.org/10.24432/C5004D.
- [2] Research Study https://www.mdpi.com/1911-8074/15/1/35
- [3] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer, "SMOTE: synthetic minority over-sampling technique", J. Artif. Int. Res.,vol. 16, Jan. 2002, pp. 321–357, doi: 10.1613/jair.953.
- [4] PCA: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
- [5] RFE: https://scikit-learn.org/stable/modules/generated/sklearn.feature-selection.RFE.html

Thank You!

- Thank you for your attention!
- Questions and discussion