Practical - Classification and regression tree

Biodiversity modelling

F.G. Blanchet - August 19–23, 2019

Introduction

This practical document presents R code for the section of the course regarding classification and regression trees.

In the present document, we will focus on the distribution of Acanthis flammea.

Load R packages

```
library(raster)
## Loading required package: sp
```

Load the data

```
bird <- readRDS("birdAll.RDS")
climatePresent <- readRDS("climate_Present.RDS")
road <- readRDS("road_Distance.RDS")</pre>
```

Extract and organize the data

Let's organize the data based on what we learned from logistic regression.

```
# Species data
sp <- bird$Acanthis.flammea
spDat <- values(sp)

# Climate data
climateAll <- values(climatePresent)
climateDat <- scale(climateAll)
climateDat <- as.data.frame(climateDat)

# Pixels within 50 km of roads
roadDat <- values(road)
road50 <- which(roadDat < 50000)

# Build the raster for the subset region</pre>
```

```
roadSub <- raster(road)</pre>
values(roadSub)[road50] <- values(road)[road50]</pre>
# Make sure only land pixels are considered
roadSub <- mask(roadSub, climatePresent[[1]])</pre>
# Find pixels with values
locPixRoad <- which(!is.na(values(roadSub)))</pre>
# For the species
spSub <- spDat[locPixRoad]</pre>
# For the climate
climateSub <- climateDat[locPixRoad,]</pre>
colnames(climateSub) <- colnames(climateDat)</pre>
climateSub <- as.data.frame(climateSub)</pre>
# Extract coordinates
xyAll <- coordinates(sp)</pre>
xySub <- xyAll[locPixRoad,]</pre>
# Combine all the data in one data.frame
explanaAll <- as.data.frame(cbind(climateDat, xyAll))</pre>
explanaSub <- explanaAll[locPixRoad,]</pre>
```

Build the model

To estimate classification and regression tree models you need to load the R packages rpart and randomForest

```
library(rpart)
library(randomForest)
```

Classification and regression tree models can be very useful to account for the non-linearity in the response variable, but in a different ways than for generalized additive models.

When we build our tree model, we will include climate, distance to major roads and spatial coordinates in the data.

Using rpart

Again for our species Acanthis flammea, lets build a tree model

Results

```
spRpart
```

```
## n=13816 (489 observations deleted due to missingness)
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
    1) root 13816 3133 0 (0.77323393 0.22676607)
##
      2) bio10< 0.9172968 10818 1639 0 (0.84849325 0.15150675)
##
##
        4) bio1< -0.3923933 4262 211 0 (0.95049273 0.04950727) *
##
        5) bio1>=-0.3923933 6556 1428 0 (0.78218426 0.21781574)
##
         10) bio3>=-0.2978698 5094 895 0 (0.82430310 0.17569690) *
##
         11) bio3< -0.2978698 1462 533 0 (0.63543092 0.36456908)
                                  83 0 (0.80742459 0.19257541)
##
           22) x \ge -67.28071431
             44) bio2>=-3.08584 415
                                      67 0 (0.83855422 0.16144578) *
##
##
             45) bio2< -3.08584 16
                                      0 1 (0.00000000 1.00000000) *
##
           23) x< -67.28071 1031 450 0 (0.56353055 0.43646945)
             46) bio6< 0.1868088 701 242 0 (0.65477889 0.34522111) *
##
             47) bio6>=0.1868088 330
                                      122 1 (0.36969697 0.63030303) *
##
##
      3) bio10>=0.9172968 2998 1494 0 (0.50166778 0.49833222)
##
        6) bio10< 1.312863 1073 438 0 (0.59179870 0.40820130)
##
         12) bio18< -2.066597 63
                                    7 0 (0.88888889 0.11111111) *
##
         13) bio18>=-2.066597 1010 431 0 (0.57326733 0.42673267)
##
           26) bio14>=0.6938034 227
                                      70 0 (0.69162996 0.30837004) *
##
           27) bio14< 0.6938034 783
                                    361 0 (0.53895275 0.46104725)
             54) y>=44.61093 547 213 0 (0.61060329 0.38939671) *
##
##
             55) y< 44.61093 236
                                   88 1 (0.37288136 0.62711864) *
##
        7) bio10>=1.312863 1925 869 1 (0.45142857 0.54857143)
         14) bio18< -2.226872 420 149 0 (0.64523810 0.35476190)
##
           28) bio1>=1.792219 173
                                    23 0 (0.86705202 0.13294798) *
##
##
           29) bio1< 1.792219 247 121 1 (0.48987854 0.51012146)
                                      44 0 (0.62393162 0.37606838) *
##
             58) bio5< 1.400469 117
             59) bio5>=1.400469 130
                                      48 1 (0.36923077 0.63076923) *
##
         15) bio18>=-2.226872 1505 598 1 (0.39734219 0.60265781)
##
##
           30) bio15< -0.7623913 491 240 0 (0.51120163 0.48879837)
             60) bio12< -0.6327784 169
                                        55 0 (0.67455621 0.32544379) *
##
```

```
##
                 61) bio12>=-0.6327784 322 137 1 (0.42546584 0.57453416) *
##
              31) bio15>=-0.7623913 1014 347 1 (0.34220907 0.65779093) *
plot(spRpart, margin = 0.05)
text(spRpart, cex = 0.6)
                      bio10<,0.9173
bio1< - 0.3924
                                            blo10q 1.313
      bio3>=10.2979
       bio2>=<del>-3.086bio6<</del>0.1868
         0
                                                         bio18< -2.227
                             bio18< -2.067
                                 blo14>=0.6938
                                                 bio1> \( \frac{1}{2} \)
                                                                 bio15< -0.7624
                                                      bio5 < 1.4 bio12 < F0.6328
                                                       0
```

Project the estimation on a map

Using randomForest

Again for our species *Acanthis flammea*, lets build a randomForest model.

For the random forest to be carried out on class data, the response variable needs to be defined as a factor.

Results

0 9766 917 0.08583731

```
spRF
##
## Call:
    randomForest(formula = spFac ~ ., data = explanaSub, ntree = 50,
                                                                            importance = TRUE, na
##
##
                  Type of random forest: classification
                         Number of trees: 50
##
## No. of variables tried at each split: 4
##
##
           OOB estimate of error rate: 17.31%
## Confusion matrix:
##
        0
             1 class.error
```

Extract some useful values

importance

This is the importance of each explanatory variable with regards to the levels of the class as well as in the context of a information criterion

importance(spRF)

```
##
                          1 MeanDecreaseAccuracy MeanDecreaseGini
## bio1 10.670389 2.139118
                                        11.700282
                                                          315.2768
## bio2 15.586344 3.921784
                                        18.244636
                                                          221.2158
## bio3 16.754327 3.942050
                                        17.978401
                                                          258.3153
## bio4
          8.953240 2.218066
                                         9.623560
                                                          210.4148
## bio5 11.637268 5.151114
                                        13.274206
                                                          407.0826
## bio6
         8.525704 2.157426
                                         8.681344
                                                          209.6116
## bio7
          9.993753 4.090502
                                        11.298268
                                                          194.2992
## bio8 14.421621 3.737660
                                        15.379653
                                                          224.3772
          9.255493 1.583365
## bio9
                                         9.702283
                                                          232.9379
## bio10 14.863271 3.573442
                                        15.263553
                                                          402.2346
## bio11 8.588179 1.540778
                                         9.493868
                                                          206.2739
## bio12 8.972310 2.326418
                                        10.699409
                                                          172.9879
## bio13 14.781573 3.577625
                                        16.432217
                                                          186.2600
## bio14 13.193019 2.381943
                                        15.428812
                                                          203.3266
## bio15 13.932032 3.874415
                                        15.312562
                                                          216.3068
## bio16 13.523474 2.699972
                                        14.020872
                                                          183.6759
## bio17 10.503015 2.023702
                                        11.584168
                                                          190.9608
## bio18 12.743575 3.060072
                                        13.459958
                                                          219.0006
## bio19 11.131091 1.398199
                                        12.619758
                                                          188.5559
## x
         14.774508 5.232327
                                        16.354807
                                                          241.1186
## y
          8.731528 2.975578
                                         9.899900
                                                          153.0197
```

Project the estimation on a map

```
spRFRaster <- raster(climatePresent)

# Convert result into numeric for raster
spRFPredNum <- as.numeric(as.character(spRFPred))

# Find where to place the values in the raster
values(spRFRaster)[locPixLand] <- spRFPredNum

# Map
plot(spRFRaster, zlim = c(0,1))</pre>
```


A few things to try

- For the CART model tweak the parameters to get a more relevent model (the ones chosen were chosen partly for illustration purposes)
- Model the distribution for another bird species
- Model the distribution for all bird species
- Model the distribution for a proposed climatic scenario
- Compare the result of a random forest to a CART model, a GAM and/or a GLM for the same species

To keep in mind

- This is not only model fitting, have an ecological perspective
- The data has particularities, be aware of it
- Remember the assumptions that you make when building your model
- Remember that the reason why you are modelling a species may skew the way you build and interpret the model.