# Investigation of possible improvements to increase the efficiency of the AlphaZero algorithm.

Colin Clausen

X.X.2020

#### Inhalt

- 1. Einleitung
- 2. Grundlagen
- 3. Untersuchte neue Ideen
- 4. Ende

#### Inhalt

- 1. Einleitung
- 2. Grundlager
- 3. Untersuchte neue Ideer
- 4 Ende

Einleitung

Spiele als Lernumgebung für AI

- Spiele als Lernumgebung für Al
  - ▶ 1951: Nimrod

- Spiele als Lernumgebung für AI
  - ▶ 1951: Nimrod
  - ▶ 1995: Vier gewinnt

- Spiele als Lernumgebung für AI
  - ▶ 1951: Nimrod
  - ▶ 1995: Vier gewinnt
  - ▶ 1997: Schach

- Spiele als Lernumgebung für AI
  - ▶ 1951: Nimrod
  - ▶ 1995: Vier gewinnt
  - ▶ 1997: Schach
  - ▶ 2016: Go

- Spiele als Lernumgebung für AI
  - ▶ 1951: Nimrod
  - ▶ 1995: Vier gewinnt
  - ▶ 1997: Schach
  - ▶ 2016: Go
- AlphaGo

- Spiele als Lernumgebung für AI
  - ▶ 1951: Nimrod
  - ▶ 1995: Vier gewinnt
  - ▶ 1997: Schach
  - ▶ 2016: Go
- AlphaGo
- ▶ AlphaZero

- Spiele als Lernumgebung für AI
  - ▶ 1951: Nimrod
  - ▶ 1995: Vier gewinnt
  - ▶ 1997: Schach
  - ▶ 2016: Go
- AlphaGo
- AlphaZero
- Großer Rechenaufwand nötig: 5000+ TPUs

Einleitung

Untersuche mögliche Effizienzsteigerungen

- Untersuche mögliche Effizienzsteigerungen
- Solide Baseline

- Untersuche mögliche Effizienzsteigerungen
- Solide Baseline
- Experimentiere mit Vier gewinnt

- Untersuche mögliche Effizienzsteigerungen
- Solide Baseline
- Experimentiere mit Vier gewinnt
- Evaluiere verschiende neue Ideen

- Untersuche mögliche Effizienzsteigerungen
- Solide Baseline
- Experimentiere mit Vier gewinnt
- Evaluiere verschiende neue Ideen
  - Evolution von Hyperparametern

- Untersuche mögliche Effizienzsteigerungen
- Solide Baseline
- Experimentiere mit Vier gewinnt
- Evaluiere verschiende neue Ideen
  - Evolution von Hyperparametern
  - Self-play im Baumformat

- Untersuche mögliche Effizienzsteigerungen
- Solide Baseline
- Experimentiere mit Vier gewinnt
- Evaluiere verschiende neue Ideen
  - Evolution von Hyperparametern
  - Self-play im Baumformat
  - Auxiliary Features

#### Inhalt

Grundlagen

- Einleitung
- 2. Grundlagen Algorithmus Baselines
- 3. Untersuchte neue Ideer
- 4 Ende

Grundlagen ⊳ Algorithmus

Seit 2006 sehr verbreitet in Computer Go.

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab
  - Wäge ab zwischen bekannten guten Zügen und wenig untersuchten neuen Zügen

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab
  - Wäge ab zwischen bekannten guten Zügen und wenig untersuchten neuen Zügen
  - Schließlich propagiere Spielergebnis zurück durch den Baum

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab
  - Wäge ab zwischen bekannten guten Zügen und wenig untersuchten neuen Zügen
  - Schließlich propagiere Spielergebnis zurück durch den Baum
- Benötigt:

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab
  - Wäge ab zwischen bekannten guten Zügen und wenig untersuchten neuen Zügen
  - Schließlich propagiere Spielergebnis zurück durch den Baum
- Benötigt:
  - Eine Policy die Züge einschätzen kann

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab
  - Wäge ab zwischen bekannten guten Zügen und wenig untersuchten neuen Zügen
  - Schließlich propagiere Spielergebnis zurück durch den Baum
- Benötigt:
  - Eine Policy die Züge einschätzen kann
  - Eine sehr schnelle Rolloutpolicy

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab
  - Wäge ab zwischen bekannten guten Zügen und wenig untersuchten neuen Zügen
  - Schließlich propagiere Spielergebnis zurück durch den Baum
- Benötigt:
  - ► Eine Policy die Züge einschätzen kann
  - Eine sehr schnelle Rolloutpolicy
    - Alternativ: Policy zur Positionseinschätzung

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab
  - Wäge ab zwischen bekannten guten Zügen und wenig untersuchten neuen Zügen
  - Schließlich propagiere Spielergebnis zurück durch den Baum
- Benötigt:
  - ► Eine Policy die Züge einschätzen kann
  - Eine sehr schnelle Rolloutpolicy
    - Alternativ: Policy zur Positionseinschätzung
- Output: Eine bessere Policy über die Züge in der analysierten Position

- Seit 2006 sehr verbreitet in Computer Go.
- Iterativer Baumsuchalgorithmus verwendet in AlphaGo/AlphaGoZero/AlphaZero
  - Wandere den Baum von der Wurzel hinab
  - Wäge ab zwischen bekannten guten Zügen und wenig untersuchten neuen Zügen
  - Schließlich propagiere Spielergebnis zurück durch den Baum
- Benötigt:
  - ► Eine Policy die Züge einschätzen kann
  - Eine sehr schnelle Rolloutpolicy
    - Alternativ: Policy zur Positionseinschätzung
- Output: Eine bessere Policy über die Züge in der analysierten Position
- MCTS ist praktisch ein Verbesserungsoperator

# AlphaGo

#### AlphaGo

Grundlagen ⊳ Algorithmus

► Kernidee: Kombinere MCTS mit Deep Learning

#### AlphaGo<sup>1</sup>

- Kernidee: Kombinere MCTS mit Deep Learning
- Trainingsprozess involviert aber kein MCTS

- Kernidee: Kombinere MCTS mit Deep Learning
- Trainingsprozess involviert aber kein MCTS
- ▶ Trainere mehrere Netzwerke

- Kernidee: Kombinere MCTS mit Deep Learning
- Trainingsprozess involviert aber kein MCTS
- Trainere mehrere Netzwerke
  - Supervised auf Datensatz von besten Menschen: Schnell und Langsam

- Kernidee: Kombinere MCTS mit Deep Learning
- Trainingsprozess involviert aber kein MCTS
- Trainere mehrere Netzwerke
  - Supervised auf Datensatz von besten Menschen: Schnell und Langsam
  - Verbessere das langsame Netz durch RL

- Kernidee: Kombinere MCTS mit Deep Learning
- Trainingsprozess involviert aber kein MCTS
- Trainere mehrere Netzwerke
  - Supervised auf Datensatz von besten Menschen: Schnell und Langsam
  - Verbessere das langsame Netz durch RL
  - Erzeuge Datensatz für Netzwerk zur Positionsevaluierung

- Kernidee: Kombinere MCTS mit Deep Learning
- Trainingsprozess involviert aber kein MCTS
- Trainere mehrere Netzwerke
  - Supervised auf Datensatz von besten Menschen: Schnell und Langsam
  - Verbessere das langsame Netz durch RL
  - Erzeuge Datensatz für Netzwerk zur Positionsevaluierung
  - Verwende erzeugte Netzwerke um mit MCTS zu spielen

- Kernidee: Kombinere MCTS mit Deep Learning
- Trainingsprozess involviert aber kein MCTS
- Trainere mehrere Netzwerke
  - Supervised auf Datensatz von besten Menschen: Schnell und Langsam
  - Verbessere das langsame Netz durch RL
  - Erzeuge Datensatz für Netzwerk zur Positionsevaluierung
  - Verwende erzeugte Netzwerke um mit MCTS zu spielen
    - Das langsame RL-Netzwerk macht die Ersteinschätzung der Züge

- Kernidee: Kombinere MCTS mit Deep Learning
- Trainingsprozess involviert aber kein MCTS
- Trainere mehrere Netzwerke
  - Supervised auf Datensatz von besten Menschen: Schnell und Langsam
  - Verbessere das langsame Netz durch RL
  - Erzeuge Datensatz für Netzwerk zur Positionsevaluierung
  - Verwende erzeugte Netzwerke um mit MCTS zu spielen
    - Das langsame RL-Netzwerk macht die Ersteinschätzung der Züge
    - Einschätzung der Spielposition: Netzwerk + Rollouts

Grundlagen > Algorithmus

Drastische Vereinfachung von AlphaGo

- ▶ Drastische Vereinfachung von AlphaGo
- Kernidee: Verwende MCTS bereits zur Trainingsphase

- ▶ Drastische Vereinfachung von AlphaGo
- Kernidee: Verwende MCTS bereits zur Trainingsphase
- Verwendet nur ein Netzwerk: Positionsbewertung und Zugpolicy

- ▶ Drastische Vereinfachung von AlphaGo
- Kernidee: Verwende MCTS bereits zur Trainingsphase
- Verwendet nur ein Netzwerk: Positionsbewertung und Zugpolicy
- Kein Bedarf für Datensatz von besten Menschen









# Aufbau der Experimente

# Aufbau der Experimente



# Aufbau der Experimente

### Grundlagen ⊳ Baselines



Laufzeit auf Referenzmaschine

Grundlagen ⊳ Baselines

Optimiere wichtige Hyperparameter f
ür Vier gewinnt

- Optimiere wichtige Hyperparameter f
  ür Vier gewinnt
- Bayesian Optimization Package verwendet

- Optimiere wichtige Hyperparameter f
  ür Vier gewinnt
- Bayesian Optimization Package verwendet
- ► Fitnessfunktion: Trainiere über 2 Stunden, messe Accuracy

- Optimiere wichtige Hyperparameter f
  ür Vier gewinnt
- Bayesian Optimization Package verwendet
- Fitnessfunktion: Trainiere über 2 Stunden, messe Accuracy
- ▶ 65 Steps, Laufzeit ca. eine Woche

- Optimiere wichtige Hyperparameter f
  ür Vier gewinnt
- Bayesian Optimization Package verwendet
- Fitnessfunktion: Trainiere über 2 Stunden, messe Accuracy
- ▶ 65 Steps, Laufzeit ca. eine Woche



Grundlagen ⊳ Baselines

► Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten

- Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten
  - Deduplikation

- Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten
  - Deduplikation
  - Cyclic learning rate

- Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten
  - Deduplikation
  - Cyclic learning rate
  - Verbessertes Trainingswindow

- Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten
  - Deduplikation
  - Cyclic learning rate
  - Verbessertes Trainingswindow
  - Playout Caps

- Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten
  - Deduplikation
  - Cyclic learning rate
  - Verbessertes Trainingswindow
  - Playout Caps
  - Vorhersage des n\u00e4chsten Zuges des Gegners

- Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten
  - Deduplikation
  - Cyclic learning rate
  - Verbessertes Trainingswindow
  - Playout Caps
  - Vorhersage des n\u00e4chsten Zuges des Gegners
  - Verbesserung des Netzwerks

- Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten
  - Deduplikation
  - Cyclic learning rate
  - Verbessertes Trainingswindow
  - Playout Caps
  - Vorhersage des n\u00e4chsten Zuges des Gegners
  - Verbesserung des Netzwerks
- Alle außer Playout Caps zeigten eine tendenzielle Verbesserung

- Erweitere die Baselineimplementierung mit Verbesserungen anderer Arbeiten
  - Deduplikation
  - Cyclic learning rate
  - Verbessertes Trainingswindow
  - Playout Caps
  - Vorhersage des n\u00e4chsten Zuges des Gegners
  - Verbesserung des Netzwerks
- Alle außer Playout Caps zeigten eine tendenzielle Verbesserung
- Kombiniert ist die Verbesserung sehr erheblich.

# Extended baseline Ergebnisse



#### Inhalt

#### Untersuchte neue Ideen

- 1. Einleitung
- 2. Grundlagen
- 3. Untersuchte neue Ideen
  Evolutionary Self-play
  Games as trees
  Auxiliary features
  Fazit
- 4 Ende

Untersuchte neue Ideen ▷ Evolutionary Self-play

Verwende die Self-play-phase zur Evolution von Hyperparametern

- ► Verwende die Self-play-phase zur Evolution von Hyperparametern
- ▶ Beschränkt auf Hyperparameter, welche sich leicht ändern lassen

- Verwende die Self-play-phase zur Evolution von Hyperparametern
- ▶ Beschränkt auf Hyperparameter, welche sich leicht ändern lassen
- Implementiert als eine Liga als Spielern.

- Verwende die Self-play-phase zur Evolution von Hyperparametern
- ▶ Beschränkt auf Hyperparameter, welche sich leicht ändern lassen
- Implementiert als eine Liga als Spielern.
- Ein Spieler ist ein Hyperparameterset

- Verwende die Self-play-phase zur Evolution von Hyperparametern
- ▶ Beschränkt auf Hyperparameter, welche sich leicht ändern lassen
- Implementiert als eine Liga als Spielern.
- Ein Spieler ist ein Hyperparameterset
- Bewerte Spieler mit Elo

- Verwende die Self-play-phase zur Evolution von Hyperparametern
- ▶ Beschränkt auf Hyperparameter, welche sich leicht ändern lassen
- Implementiert als eine Liga als Spielern.
- Ein Spieler ist ein Hyperparameterset
- Bewerte Spieler mit Elo
- Verwende Gaussian Mutation um die besten Spieler zu mutieren

- Verwende die Self-play-phase zur Evolution von Hyperparametern
- Beschränkt auf Hyperparameter, welche sich leicht ändern lassen
- Implementiert als eine Liga als Spielern.
- Ein Spieler ist ein Hyperparameterset
- Bewerte Spieler mit Elo
- Verwende Gaussian Mutation um die besten Spieler zu mutieren
- Zwei Arten von Hyperparametern untersucht

- Verwende die Self-play-phase zur Evolution von Hyperparametern
- Beschränkt auf Hyperparameter, welche sich leicht ändern lassen
- Implementiert als eine Liga als Spielern.
- Ein Spieler ist ein Hyperparameterset
- Bewerte Spieler mit Elo
- Verwende Gaussian Mutation um die besten Spieler zu mutieren
- Zwei Arten von Hyperparametern untersucht
  - Verwendung von Kullback-Leibler divergence um "Denkzeit" zu wählen.

- Verwende die Self-play-phase zur Evolution von Hyperparametern
- Beschränkt auf Hyperparameter, welche sich leicht ändern lassen
- Implementiert als eine Liga als Spielern.
- Ein Spieler ist ein Hyperparameterset
- ► Bewerte Spieler mit Elo
- Verwende Gaussian Mutation um die besten Spieler zu mutieren
- Zwei Arten von Hyperparametern untersucht
  - Verwendung von Kullback-Leibler divergence um "Denkzeit" zu wählen.
  - MCTS Parameter: cpuct, fpu, drawValue

# Erste Ergebnisse



Untersuchte neue Ideen ▷ Evolutionary Self-play

Bedingungen für erfolgreiche Evolution:

- Bedingungen für erfolgreiche Evolution:
  - Die Liga muss gute Parameter erkennen

- Bedingungen für erfolgreiche Evolution:
  - ▶ Die Liga muss gute Parameter erkennen
  - Viele Siege müssen sich übertragen auf schnelleren Lernfortschritt

Untersuchte neue Ideen ▷ Evolutionary Self-play

▶ "Gut" im Sinne der Evolution: Gewinne viele Spiele

- ▶ "Gut" im Sinne der Evolution: Gewinne viele Spiele
- ▶ Erfinde einen neuen Parameter für den der optimale Wert klar ist

- "Gut" im Sinne der Evolution: Gewinne viele Spiele
- ▶ Erfinde einen neuen Parameter für den der optimale Wert klar ist
- Stelle die Bewertung der Spielzüge auf den Kopf.

- "Gut" im Sinne der Evolution: Gewinne viele Spiele
- ▶ Erfinde einen neuen Parameter für den der optimale Wert klar ist
- Stelle die Bewertung der Spielzüge auf den Kopf.
- Wertebereich von 0 bis 1.

- "Gut" im Sinne der Evolution: Gewinne viele Spiele
- Erfinde einen neuen Parameter für den der optimale Wert klar ist
- Stelle die Bewertung der Spielzüge auf den Kopf.
- Wertebereich von 0 bis 1.
  - Bei 0 hat der Parameter keinen Effekt

- "Gut" im Sinne der Evolution: Gewinne viele Spiele
- Erfinde einen neuen Parameter für den der optimale Wert klar ist
- Stelle die Bewertung der Spielzüge auf den Kopf.
- Wertebereich von 0 bis 1.
  - Bei 0 hat der Parameter keinen Effekt
  - ▶ Bei 1 werden gute Züge selten gespielt, schlechte am häufigsten.

- "Gut" im Sinne der Evolution: Gewinne viele Spiele
- Erfinde einen neuen Parameter für den der optimale Wert klar ist
- Stelle die Bewertung der Spielzüge auf den Kopf.
- Wertebereich von 0 bis 1.
  - Bei 0 hat der Parameter keinen Effekt
  - ▶ Bei 1 werden gute Züge selten gespielt, schlechte am häufigsten.
- Der Parameter wird innerhalb von 10 Generationen deutlich reduziert.

- "Gut" im Sinne der Evolution: Gewinne viele Spiele
- Erfinde einen neuen Parameter für den der optimale Wert klar ist
- Stelle die Bewertung der Spielzüge auf den Kopf.
- Wertebereich von 0 bis 1.
  - Bei 0 hat der Parameter keinen Effekt
  - ▶ Bei 1 werden gute Züge selten gespielt, schlechte am häufigsten.
- Der Parameter wird innerhalb von 10 Generationen deutlich reduziert.
- ► Ein voller Trainingslauf hat eher 30 bis 50 Generationen

- "Gut" im Sinne der Evolution: Gewinne viele Spiele
- Erfinde einen neuen Parameter für den der optimale Wert klar ist
- Stelle die Bewertung der Spielzüge auf den Kopf.
- Wertebereich von 0 bis 1.
  - Bei 0 hat der Parameter keinen Effekt
  - ▶ Bei 1 werden gute Züge selten gespielt, schlechte am häufigsten.
- Der Parameter wird innerhalb von 10 Generationen deutlich reduziert.
- ► Ein voller Trainingslauf hat eher 30 bis 50 Generationen
- Die Liga mit Evolution funktioniert ganz klar

Untersuchte neue Ideen ▷ Evolutionary Self-play

Lernfortschritt bedeutet höhere Übereinstimmung mit dem Solver

- ▶ Lernfortschritt bedeutet höhere Übereinstimmung mit dem Solver
- Vergleiche 3 Hyperparametersets

- ▶ Lernfortschritt bedeutet höhere Übereinstimmung mit dem Solver
- Vergleiche 3 Hyperparametersets
  - Bester Spieler aus der Evolution

- ▶ Lernfortschritt bedeutet höhere Übereinstimmung mit dem Solver
- Vergleiche 3 Hyperparametersets
  - Bester Spieler aus der Evolution
  - Baseline Parameter

- ▶ Lernfortschritt bedeutet höhere Übereinstimmung mit dem Solver
- Vergleiche 3 Hyperparametersets
  - Bester Spieler aus der Evolution
  - Baseline Parameter
  - Bayesian Optimization

- Lernfortschritt bedeutet h\u00f6here \u00dcbereinstimmung mit dem Solver
- Vergleiche 3 Hyperparametersets
  - Bester Spieler aus der Evolution
  - Baseline Parameter
  - Bayesian Optimization
- Direkt optimierte Parameter sind am besten

- ▶ Lernfortschritt bedeutet höhere Übereinstimmung mit dem Solver
- Vergleiche 3 Hyperparametersets
  - Bester Spieler aus der Evolution
  - Baseline Parameter
  - Bayesian Optimization
- Direkt optimierte Parameter sind am besten
- Die Evolution findet Parameter von ähnlicher Qualität wie die baseline

- ▶ Lernfortschritt bedeutet höhere Übereinstimmung mit dem Solver
- Vergleiche 3 Hyperparametersets
  - Bester Spieler aus der Evolution
  - Baseline Parameter
  - Bayesian Optimization
- Direkt optimierte Parameter sind am besten
- Die Evolution findet Parameter von ähnlicher Qualität wie die baseline
- Aber erst am Ende des Trainings

- ▶ Lernfortschritt bedeutet höhere Übereinstimmung mit dem Solver
- Vergleiche 3 Hyperparametersets
  - Bester Spieler aus der Evolution
  - ▶ Baseline Parameter
  - Bayesian Optimization
- Direkt optimierte Parameter sind am besten
- Die Evolution findet Parameter von ähnlicher Qualität wie die baseline
- Aber erst am Ende des Trainings
  - Potentielles Problem: Das Training startet langsamer

Untersuchte neue Ideen ▷ Evolutionary Self-play

Vergleiche die 3 Optionen in 1000 Spiele Matches

- Vergleiche die 3 Optionen in 1000 Spiele Matches
- Klarer Sieger: Die Evolution

- Vergleiche die 3 Optionen in 1000 Spiele Matches
- Klarer Sieger: Die Evolution
- Viele gewonne Spiele bedeuten also nicht hoher Lernfortschritt

- Vergleiche die 3 Optionen in 1000 Spiele Matches
- ▶ Klarer Sieger: Die Evolution
- Viele gewonne Spiele bedeuten also nicht hoher Lernfortschritt
- Nach hoher Siegesrate zu optimieren ist also nicht zielführend

- Vergleiche die 3 Optionen in 1000 Spiele Matches
- ► Klarer Sieger: Die Evolution
- Viele gewonne Spiele bedeuten also nicht hoher Lernfortschritt
- Nach hoher Siegesrate zu optimieren ist also nicht zielführend
- Eine weitere untersuchte Alternative: Novelty search

- Vergleiche die 3 Optionen in 1000 Spiele Matches
- ► Klarer Sieger: Die Evolution
- Viele gewonne Spiele bedeuten also nicht hoher Lernfortschritt
- Nach hoher Siegesrate zu optimieren ist also nicht zielführend
- Eine weitere untersuchte Alternative: Novelty search
  - Keine bedeutend h\u00f6here Diversit\u00e4t.

- Vergleiche die 3 Optionen in 1000 Spiele Matches
- Klarer Sieger: Die Evolution
- Viele gewonne Spiele bedeuten also nicht hoher Lernfortschritt
- Nach hoher Siegesrate zu optimieren ist also nicht zielführend
- ► Eine weitere untersuchte Alternative: Novelty search
  - Keine bedeutend h\u00f6here Diversit\u00e4t.
  - Die Hyperparametersuche hat darauf schon implizit geachtet

Untersuchte neue Ideen ⊳ Games as trees

Exploration durch Zurücksetzen an kritische Positionen

- Exploration durch Zurücksetzen an kritische Positionen
- Spiele als MCTS-Baum

- Exploration durch Zurücksetzen an kritische Positionen
- Spiele als MCTS-Baum
- Notwendigkeit für MCTS-Evaluation Service

- Exploration durch Zurücksetzen an kritische Positionen
- Spiele als MCTS-Baum
- Notwendigkeit für MCTS-Evaluation Service
- Nebeneffekt: Keine doppelte Auswertung von Positionen

- Exploration durch Zurücksetzen an kritische Positionen
- Spiele als MCTS-Baum
- Notwendigkeit für MCTS-Evaluation Service
- Nebeneffekt: Keine doppelte Auswertung von Positionen



Untersuchte neue Ideen ▷ Games as trees

Nach einer Niederlage darf der Verlierer einen Zug zurücknehmen

- Nach einer Niederlage darf der Verlierer einen Zug zurücknehmen
- Wähle Position anhand der Entwicklung der Positionsevaluation

- Nach einer Niederlage darf der Verlierer einen Zug zurücknehmen
- Wähle Position anhand der Entwicklung der Positionsevaluation
- Beginne neues Spiel in dieser Position

- Nach einer Niederlage darf der Verlierer einen Zug zurücknehmen
- Wähle Position anhand der Entwicklung der Positionsevaluation
- Beginne neues Spiel in dieser Position



Untersuchte neue Ideen ▷ Games as trees

- Nach einer Niederlage darf der Verlierer einen Zug zurücknehmen
- Wähle Position anhand der Entwicklung der Positionsevaluation
- Beginne neues Spiel in dieser Position



Die Spieldiversität nimmt deutlich ab

Untersuchte neue Ideen ▷ Games as trees

Exploration-Exploitation: MCTS macht das

- Exploration-Exploitation: MCTS macht das
- Baue einen einzigen MCTS Baum

- Exploration-Exploitation: MCTS macht das
- Baue einen einzigen MCTS Baum
  - ▶ 150k+ Knoten

- Exploration-Exploitation: MCTS macht das
- Baue einen einzigen MCTS Baum
  - ▶ 150k+ Knoten
- Reporte die Positionen in den Knoten als Trainingspositionen

- Exploration-Exploitation: MCTS macht das
- Baue einen einzigen MCTS Baum
  - 150k+ Knoten
- Reporte die Positionen in den Knoten als Trainingspositionen



Untersuchte neue Ideen ▷ Auxiliary features

▶ Trainiere ein kleines Netzwerk, ca. 70k Parameter

- Trainiere ein kleines Netzwerk, ca. 70k Parameter
- Verwende interne Features aus diesem Netzwerk zur Regularisierung des großen Netzwerkes

- Trainiere ein kleines Netzwerk, ca. 70k Parameter
- Verwende interne Features aus diesem Netzwerk zur Regularisierung des großen Netzwerkes
- Verschiedene Optionen wurden im Supervised Setting vorselektiert

Untersuchte neue Ideen ▷ Auxiliary features

 Kleine Gewinne im Supervised Setting, keine Gewinne im AlphaZero Setting

- Kleine Gewinne im Supervised Setting, keine Gewinne im AlphaZero Setting
- Positiver Effekt auf initialen Anstieg der Spielstärke

- Kleine Gewinne im Supervised Setting, keine Gewinne im AlphaZero Setting
- Positiver Effekt auf initialen Anstieg der Spielstärke
- Negativer Effekt auf finale Spielstärke

- Kleine Gewinne im Supervised Setting, keine Gewinne im AlphaZero Setting
- Positiver Effekt auf initialen Anstieg der Spielstärke
- Negativer Effekt auf finale Spielstärke
- Ein zufälliges Netzwerk zeigt diesen Effekt deutlich weniger

- Kleine Gewinne im Supervised Setting, keine Gewinne im AlphaZero Setting
- Positiver Effekt auf initialen Anstieg der Spielstärke
- Negativer Effekt auf finale Spielstärke
- Ein zufälliges Netzwerk zeigt diesen Effekt deutlich weniger
- Kosten des Trainings des kleinen Netzwerkes sind zu hoch.

## Untersuchung

- Kleine Gewinne im Supervised Setting, keine Gewinne im AlphaZero Setting
- Positiver Effekt auf initialen Anstieg der Spielstärke
- Negativer Effekt auf finale Spielstärke
- Ein zufälliges Netzwerk zeigt diesen Effekt deutlich weniger
- Kosten des Trainings des kleinen Netzwerkes sind zu hoch.
- Zwei Probleme mit dem Ansatz:

## Untersuchung

- Kleine Gewinne im Supervised Setting, keine Gewinne im AlphaZero Setting
- Positiver Effekt auf initialen Anstieg der Spielstärke
- Negativer Effekt auf finale Spielstärke
- Ein zufälliges Netzwerk zeigt diesen Effekt deutlich weniger
- Kosten des Trainings des kleinen Netzwerkes sind zu hoch.
- Zwei Probleme mit dem Ansatz:
  - Trainingskosten des kleinen Netzwerks

## Untersuchung

- Kleine Gewinne im Supervised Setting, keine Gewinne im AlphaZero Setting
- Positiver Effekt auf initialen Anstieg der Spielstärke
- Negativer Effekt auf finale Spielstärke
- Ein zufälliges Netzwerk zeigt diesen Effekt deutlich weniger
- Kosten des Trainings des kleinen Netzwerkes sind zu hoch.
- Zwei Probleme mit dem Ansatz:
  - Trainingskosten des kleinen Netzwerks
  - Finale Spielstärke wird gestört

Untersuchte neue Ideen ▷ Auxiliary features

Beginne den AlphaZero Trainingslauf mit kleinem Netzwerk

- Beginne den AlphaZero Trainingslauf mit kleinem Netzwerk
- ▶ Tausche des Netzwerk alle paar Iterationen gegen größeres aus

- Beginne den AlphaZero Trainingslauf mit kleinem Netzwerk
- Tausche des Netzwerk alle paar Iterationen gegen größeres aus
- Dieses Vorgehen ist generell effektiver

- Beginne den AlphaZero Trainingslauf mit kleinem Netzwerk
- Tausche des Netzwerk alle paar Iterationen gegen größeres aus
- Dieses Vorgehen ist generell effektiver
- Aber keine neue Idee

- Beginne den AlphaZero Trainingslauf mit kleinem Netzwerk
- Tausche des Netzwerk alle paar Iterationen gegen größeres aus
- Dieses Vorgehen ist generell effektiver
- Aber keine neue Idee
- Die Trainingskosten des kleinen Netzwerkes verschwinden

Untersuchte neue Ideen ▷ Auxiliary features

Auxiliary features dürfen nicht der finalen Spielstärke schaden

- Auxiliary features dürfen nicht der finalen Spielstärke schaden
- Es wurden verschiedene Optionen erprobt

- Auxiliary features dürfen nicht der finalen Spielstärke schaden
- Es wurden verschiedene Optionen erprobt
- Keine verbesserte die Situation

Untersuchte neue Ideen ⊳ Fazit

AlphaZero Experimentalframework entwickelt

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden
- Trotzdem einiges Interessante Erkenntnisse

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden
- Trotzdem einiges Interessante Erkenntnisse
  - Nicht alle Ideen vorheriger Arbeiten funktionieren mit Vier gewinnt

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden
- Trotzdem einiges Interessante Erkenntnisse
  - Nicht alle Ideen vorheriger Arbeiten funktionieren mit Vier gewinnt
  - Evolution für Hyperparameter funktioniert

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden
- Trotzdem einiges Interessante Erkenntnisse
  - Nicht alle Ideen vorheriger Arbeiten funktionieren mit Vier gewinnt
  - Evolution für Hyperparameter funktioniert
    - Nur eine gute Fitnessfunktion fehlt

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden
- Trotzdem einiges Interessante Erkenntnisse
  - Nicht alle Ideen vorheriger Arbeiten funktionieren mit Vier gewinnt
  - Evolution für Hyperparameter funktioniert
    - Nur eine gute Fitnessfunktion fehlt
    - Unterschied zwischen Lernfortschritt und Spielstärke

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden
- Trotzdem einiges Interessante Erkenntnisse
  - Nicht alle Ideen vorheriger Arbeiten funktionieren mit Vier gewinnt
  - Evolution für Hyperparameter funktioniert
    - Nur eine gute Fitnessfunktion fehlt
    - Unterschied zwischen Lernfortschritt und Spielstärke
  - Alternative Explorationsmethoden zeigen vor allem wie gut die einfache Standardversion funktioniert

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden
- Trotzdem einiges Interessante Erkenntnisse
  - Nicht alle Ideen vorheriger Arbeiten funktionieren mit Vier gewinnt
  - Evolution für Hyperparameter funktioniert
    - Nur eine gute Fitnessfunktion fehlt
    - Unterschied zwischen Lernfortschritt und Spielstärke
  - Alternative Explorationsmethoden zeigen vor allem wie gut die einfache Standardversion funktioniert
  - Auxiliary features aus dem inneren eines kleineren Netzwerks sind nur schwer nutzbar

- AlphaZero Experimentalframework entwickelt
- Keine großen Verbesserungen gefunden
- Trotzdem einiges Interessante Erkenntnisse
  - Nicht alle Ideen vorheriger Arbeiten funktionieren mit Vier gewinnt
  - Evolution für Hyperparameter funktioniert
    - Nur eine gute Fitnessfunktion fehlt
    - Unterschied zwischen Lernfortschritt und Spielstärke
  - Alternative Explorationsmethoden zeigen vor allem wie gut die einfache Standardversion funktioniert
  - Auxiliary features aus dem inneren eines kleineren Netzwerks sind nur schwer nutzbar
    - Aber das Konzept des Netzwerkwachstums sollte weiter erforscht werden

## Inhalt

Ende

- Einleitung
- 2. Grundlagen
- 3. Untersuchte neue Ideer
- 4. Ende

## Referenzen

Ende

### Danke für Ihre Aufmerksamkeit.

Maybe do some references here...