



**Neutrino decay: the role of new interactions** 

## Orlando L. G. Peres UNICAMP

**Brookhaven Neutrino Theory Virtual Seminar March/23** 

# The Nobel Prize in Physics 2015



Photo: A. Mahmoud Takaaki Kajita Prize share: 1/2



Photo: A. Mahmoud

Arthur B. McDonald

Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

#### Neutrino oscillations are the first signal of Beyond Standard Model (BSM)





### MINOS experiment 2010: UFG/USP/UNICAMP





#### 2013: UNICAMP/UFABC/CBPF







#### There are other signal of BSM?

Not yet, search for sterile neutrinos, NSI (Non-standard neutrino interactions), Non-unitary scenarios, open quantum systems....

#### Hints from LSND, MINI-BOONE, Reactor Anomalyl







#### **Neutrino decay**

Old idea: Neutrino Decay in Gauge Theories, G.T. Zatsepin, A.Yu. Smirnov, Yad. Fiz. 28 (1978) 1569-1579

The Processes mu --> e Gamma, mu --> e e anti-e, Neutrino' --> Neutrino gamma in the Weinberg-Salam Model with Neutrino Mixing, S.T. Petcov, Sov. J. Nucl. Phys. 25 (1977) 340

Renewed interest: A Combined treatment of neutrino decay and neutrino oscillations,

Manfred Lindner, Tommy Ohlsson, Walter Winter, Nucl. Phys. B607 (2001) 326-354,

DOI: 10.1016/S0550-3213(01)00237-1, e-Print: hep-ph/0103170 | PDF

#### First point: which states the neutrino can decay?

Common scenario: 
$$\nu' 
ightarrow \nu + \gamma$$

#### Scenario discussed here:

$$\nu' \to \nu + \phi$$

$$\phi$$
 Massless scalar

$$\mathcal{L} = -\sum_{i,j} g_{ij} \overline{\nu_i^C} \nu_j \phi$$

#### Neutrino decay, what are the possible ways?

#### In the literature it was studied two possibilities

- (I) Heavy neutrino("sterile") decaying into lighter neutrinos+scalar
- (II) Lighter neutrino("active") decaying into the lightest neutrinos+scalar

#### Also we can have two scenarios (Dirac/Majorana)

- (I) No Daughter neutrino("sterile" or "right-handed neutrino")
- (II) Daughter neutrino("active")

#### And depending our choice (Dirac/Majorana)





#### **Neutrino decay, recent activity?**

#### In the literature, it was studied

- (I) Long-Baseline experiments, T2K,MINOS, DUNE, T2K,
- (II) Atmospheric neutrinos SK,ICECUBE
- (III) Reactor Neutrinos KamLand, JUNO
- (IV) Short-baseline experiments, LSND, MINI-BOONE, SBND
- (V) Solar neutrino experiments,
- (VI) Cosmology
- (I) Gomes<sup>2</sup>, OLGP, de Salas and Tortola, Ascencio-Sosa and Gago and Jones-Peres, Ghosal and Meloni, Choubey and Pramanick, Choubey and Goswami, Coloma and OLGP, Gago and Gomes<sup>2</sup> and OLGP and Jones-Perez
- (II) Beacom and Bell, Meloni and Ohlsson, Dorame and Valle, Choubey, Denton and Tombora
- (III) Minakata and Nunokawa, Porto-Silva, Prakash and O.L.G.P.
- (IV) Palomares-Ruiz, Pascoli, Dentler and Esteban and Machado, Schwetz, Gouvea and Stenico and Prakash and OLGP
- (V) Joshipura and Mohanty, Beacom, Choubey and Goswami, Picoreti, Guzzo and OLGP
- (VI) Hannestad, Escudero

#### **Neutrino decay phenomenology**

#### Can neutrino decay to be the solution of short-baseline electron appearance?

#### **Main Idea**

$$\pi^{+} \to \mu^{+} + \nu_{\mu}$$
 $\mu^{+} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu}$ 

#### **Assumption:**

#### MeVish neutrino state

$$\nu_{\mu} = \dots + U_{\mu 4} \nu_{4}$$

$$\nu_{\mu} \rightarrow \nu_{1,2,3} + \phi$$

$$\nu_{\mu} \rightarrow \overline{\nu}_{1,2,3} + \phi$$

$$\nu_{e}/\overline{\nu}_{e}$$

#### **Oscillation scenario:**

electron neutrino appearance

$$\bar{
u}_{\mu} 
ightarrow \bar{
u}_{e}$$

André de Gouvêa, O.L.G. Peres, Suprabh Prakash, G.V. Stenico. : arXiv:1911.01447

#### **LSND** experiment



pion decay at rest: MeVish energies

#### **MINI-BOONE** experiment



pion decay in flight: GeVish energies

For the analysis of the data: Daughter neutrinos were included.

$$\Gamma_{4e} = \left[ \frac{(g_M m_4)^2}{16\pi E_4} - \frac{(g_D m_4)^2}{32\pi E_4} \right]$$



**Helicity conserving** 



Helicity conserving/flipping

#### Spectrum of Daughters neutrino: Helicity conserving/Helicity flipping

$$|\mathcal{M}_{rs}|^2 = |g_{\rm M}|^2 m_4^2 \times \begin{cases} E_e/E_4 & r = s \\ (1 - E_e/E_4) & r \neq s \end{cases}$$
.

#### LSND experiment



#### On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies

André de Gouvêa, O.L.G. Peres, Suprabh Prakash, G.V. Stenico. : arXiv:1911.01447



#### How to understand the allowed region plot?

#### Assume the initial flux it ia power-law



$$\Gamma_{4e} = \left[ \frac{(g_M m_4)^2}{16\pi E_4} - \frac{(g_D m_4)^2}{32\pi E_4} \right]$$

#### For smaller lifetimes

$$\frac{\phi_{\nu_e}(E_{\nu_e})}{\phi_{\nu_\mu}(E_{\nu_e})} = \Gamma_{4e}L\left(\frac{2|U_{\mu 4}|^2 B_e}{1+\alpha}\right)$$

#### For larger lifetimes

$$\frac{\phi_{\nu_e}(E_{\nu_e})}{\phi_{\nu_\mu}(E_{\nu_e})} = \left(\frac{|U_{\mu 4}|^2 2B_e}{1+\alpha}\right)$$

#### The devil it is in details

#### There is slight difference of L/Enu of LSND/MINI-BOONE



#### The devil it is in details





#### **SBND** experiment



SBND can test both cases: Dirac/Majorana

The SBND sensitivity was made using Gabriela Stenico's GLOBES input files.

#### **Conclusions**

Neutrino decay is now a topic of interest in neutrino phenomenology

Neutrino decay can be possibly another explanation for LSND/MINI-BOONE

Constrains from LSND/MINI-BOONE in neutrino/anti-neutrino mode were made.

Joint analysis show an allowed region for lifetime X mixing angle

Dirac/Majorana scenarios can be tested in SBND experiment