Deformations of Chaotic Billiards and a New 'Wall Formula' for Heating Rate

Alex Barnett

October 2000

Collaborators:

Doron Cohen Rick Heller

Lyman Laboratory of Physics, Harvard University

Funding: National Science Foundation, ITAMP

Outline of today's talk

- Deforming billiards + motivation
- Key statements: 1. Special class of deformations
 - 2. Vergini-Saraceno numerical method
 - 3. Improve 'wall formula'
- Theory of heating + 'wall formula' (classical)
- Explain 'special' deformations
- Quasi-orthogonality on the boundary (quantum)
- Improved 'wall formula' in action

SEE PAPERS: Alex Barnett, Doron Cohen and Eric J. Heller nlin.CD/0003018 nlin.CD/0006041

Deforming billiard (cavity) systems

 $D(\mathbf{s}) = \text{deformation shape function}$ $x(t) = A \sin \omega t$ periodic 'driving'

Question: At what rate is the 'gas' particle heated up?

Motivations

- Dissipation rate of vibrations of nuclei (3D)
 - never considered ω -dependence
- Driven mesoscopic 2D quantum dots (e.g. x = gate voltage)
 - find heating rate of electrons

1) Special class of deformations

How does heating rate depend on deformation $D(\mathbf{s})$?

heating
$$\frac{d}{dt}\langle \mathcal{H} \rangle = \mu(\omega) \cdot \frac{1}{2} (A\omega)^2$$

 $\mu(\omega) = \text{friction coefficient}$

For low frequency $\omega \ll$ collision rate:

Does **not** depend on billiard shape or chaoticity

Special class surprise: **friction vanishes at dc** $\mu(\omega \to 0) = 0$

2) Vergini-Saraceno numerical method

eigenstate ψ_n

boundary function $\varphi_n \equiv \mathbf{n} \cdot \nabla \psi_n$

Quasi-orthogonality on boundary:

$$\oint (\mathbf{r} \cdot \mathbf{n}) d\mathbf{s} \, \varphi_n(\mathbf{s}) \varphi_m(\mathbf{s}) \propto \delta_{nm} + "error" \left(\frac{E_n - E_m}{\hbar} \right)$$

V-S numerical method for finding eigenstates ψ_n

- 10³ times more efficient than any other known method!
- finds clusters of eigenstates simultaneously
- needs "error" small close to diagonal

BUT No-one has known size of "error"!

I have shown: mean square "error" (ω) = $a \omega^4$

Due to $\mu(\omega) \sim \omega^4$ for **dilation** deformation

3) Improved 'wall formula' estimate for $\mu(0)$

Nuclear physics interest (last 25 years):

- seek analytic estimate of friction $\mu(0)$ given $D(\mathbf{s})$
- assumed uncorrelated collisions (strong chaos)
 → 'wall formula'
- they knew $\mu(0) = 0$ for translations and rotations $\rightarrow ad\ hoc$ corrections

But now know special class of
$$D(\mathbf{s})$$
 for which $\mu(0) = 0$ (even for strong chaos)

We show: there is consistent way to subtract all special components of a general $D(\mathbf{s})$

...**now** applying wall formula gives *improved* estimate of $\mu(0)$.

This replaces all ad hoc corrections

Theory of heating rate: energy spreading

Particle energy gets random 'kicks': $\dot{\mathcal{H}} = -\dot{x}(t)\mathcal{F}(t)$

where generalized 'force' on parameter $\mathcal{F}(t) \equiv -\frac{\partial \mathcal{H}}{\partial x}(t)$

Energy diffusion rate $D_{\rm E} \propto \tilde{C}_{\rm E}(\omega) \equiv {\bf power \; spectrum} \; {\rm of} \; {\cal F}(t)$

Causes irreversible energy growth (Jarzynski, Cohen)

Why? $D_{\rm E}$ increases with E

Friction coefficient $\mu(\omega) \propto \tilde{C}_{\rm E}(\omega)$... relation depends on $\rho(E)$

The 'wall formula': white noise approximation (WNA)

Assume $\mathcal{F}(t) \approx \text{white noise} \rightarrow \tilde{C}_{\mathrm{E}}(\omega) = \text{const (flat spectrum)}$

$$\tilde{C}_{\mathrm{E}}(0) \stackrel{\mathrm{ergodicity}}{\longrightarrow} b_{\mathrm{E}} \cdot \oint [D(\mathbf{s})]^2 d\mathbf{s},$$
 'wall formula' (Swiatecki)

Some $D(\mathbf{s})$ obey WNA well, others badly...

Explanation of 'special' deformations

Some $D(\mathbf{s})$, WNA **fails**: $\tilde{C}_{\mathrm{E}}(0) = 0$ (even in strong chaos)

Could always write
$$\mathcal{F}(t) = \left(\frac{d}{dt}\right)^n \mathcal{G}(t)$$

$$\Rightarrow$$
 power spectra $\tilde{C}_{\rm E}(\omega) = \omega^{2n} \tilde{C}_{\mathcal{G}}(\omega)$ $(d/dt \xrightarrow{\rm FT} i\omega)$

Special deformations: $\mathcal{G}(t) = \text{some function of } (\mathbf{r}(t), \mathbf{p}(t))$

$$\Rightarrow$$
 $\tilde{C}_{\mathcal{G}}(0)$ finite \Rightarrow $\tilde{C}_{\mathrm{E}}(0)$ vanishes

Generic $\tilde{C}_{\mathcal{G}}(\omega) \sim \omega^0 \rightarrow \text{power laws } \tilde{C}_{\mathcal{E}}(\omega) \sim \omega^{\gamma}, \quad \gamma = 2n$

Improved estimate for $\tilde{C}_{\rm E}(0)$ in action

• COMPONENTS OF GENERAL DEFORMATION:

Linear subspaces of $D(\mathbf{s})$: 'special' \perp WNA-good

Orthogonality:
$$1 \perp 2 \Leftrightarrow \oint d\mathbf{s} D_1(\mathbf{s}) D_2(\mathbf{s}) = 0$$

• SUBTRACT SPECIAL COMPONENT:

Make orthonormal set $\{D_i(\mathbf{s})\}\$ of special defs, $i = 1 \cdots 1 + \frac{1}{2}d(d+1)$

$$D_{\perp}(\mathbf{s}) = D(\mathbf{s}) - \sum_{i} \alpha_{i} D_{i}(\mathbf{s}), \text{ components } \alpha_{i} = \oint d\mathbf{s} D_{i}(\mathbf{s}) D(\mathbf{s})$$

• NOW APPLY WNA TO $D_{\perp}(\mathbf{s})$:

Conclusions

- 1. Classical & quantum dissipation rates computed in 2D billiards
 - first study of frequency-dependence in billiards
 - semiclassical correspondence found
 - applications: driven quantum dots, nuclei...
- 2. Class of 'special' deformations
 - friction coeff μ vanishes at dc
 - predicts new power laws $\mu(\omega) \sim \omega^{\gamma}$
 - dilation $(new) \rightarrow$ eigenstates quasi-orthogonal on boundary (semiclassical reason for Vergini-Saraceno method success)
- 3. Systematic subtraction of 'special' components of general $D(\mathbf{s})$
 - improved upon 25-year-old 'wall formula'