1 Raisonnement par la programation dynamique

1.1 Première étape

Q1

Si on a calculé tous les T(i,j), la case T(m-1,k) nous indique si on peut colorier les m premières cases de la ligne l_i (donc la ligne entière) avec k premiers blocs (i.e. la séquence entière).

$\mathbf{Q2}$

- 1. Si l=0 et $j\in\{0,\ldots,m-1\}$, alors T(j,l)=0. En effet, on peut "colorier" n'importe quel nombre de cases avec aucun bloc.
- 2. On suppose maintenant l > 1.
 - (a) $j < s_l 1 \Rightarrow T(j,l) = FALSE$. En effet, cette inégalité signifie que le nombre de cases à colorier (j+1) est strictement plus petit que la longueur du dernier bloc. On peut pas donc colorier les j+1 premières cases avec le bloc s_l , et alors non plus avec la sous-séquence des blocs (s_1, \ldots, s_l) .
 - (b) $j = s_l 1 \Leftrightarrow j + 1 = s_l$, ce qui signifie que la longueur du dernier bloc est exactement égale au nombre de cases à colorier. On en déduit que T(j,1) = TRUE et T(j,l) = FALSE pour l > 1.

$\mathbf{Q3}$

On considère dans cette question le dernier cas non traité, c'est à dire le cas où $l \ge 1, j > s_l - 1$. Il y a deux possibilités :

- Soit la case (i, j) restera blanche après la coloration, dans quel cas T(j, l) = T(j-1, l).
- Soit la case (i,j) sera noire après la coloration, ce qui signifie que le bloc s_l se termine à la case (i,j). On en déduit qu'il commence à la case $(i,j-(s_l-1))$. Les blocs étant séparés par au moins une case blanche, la case $(i,j-s_l)$ sera blanche. Si $j-s_l>0$, alors $T(j,l)=T(j-s_l-1,l-1)$. Si $j-s_l=0$, alors T(j,l)=TRUE si et seulement si l=1.

1.2 Généralisation

$\mathbf{Q5}$

- 1. Si l=0 et $j\in\{0,\ldots,m-1\}$: On peut colorier j+1 premières cases avec 0 blocs si aucune de cases $0,\ldots,j$ n'est pas déjà coloriée à noir (ce qui imposerait une présence d'un bloc, ou au moins de sa partie).
- 2. On suppose maintenant $l \geq 1$.
 - (a) $j < s_l 1 \Rightarrow T(j, l) = FALSE$ pour le même raison que précédamment.
 - (b) $j = s_l$ A FINIR PLUS TARD!!! (J'ai la flemme...)

$\mathbf{Q8}$

Voici le tableau des temps de résolution pour les instances 1-10 :

numéro d'instance	temps de résolution [s]
1	0.013
2	5.8
3	4.2
4	10.7
5	7.7
6	22.7
7	10.7
8	18.5
9	342.7
10	349.2

2 La PLNE

2.1 Modélisation

Q10

Soit l_i la i-ième ligne avec une séquence associée (s_1,\ldots,s_k) . Si le bloc t de longueur s_t commence par la case (i,j), alors les cases (i,j) à $(i,j+s_t-1)$ doivent être noires, ce qui s'exprime comme :

$$y_{ij}^t \le \frac{\sum_{l=j}^{j+s_t-1} x_{il}}{s_t}$$

De manière analogue, on a pour la j-ième colonne c_j possédant la séquence $(s'_1,\ldots,s'_{k'})$:

$$z_{ij}^t \le \frac{\sum_{l=i}^{i+s_t'-1} x_{lj}}{s_t}$$

Q11

Avec les notations de la question précédente, on souhaite d'exprimer le fait que si le bloc t de la i-ième ligne commence à la case (i,j), alors le (t+1)-ième bloc ne peut pas commencer avant la case $(i,j+s_t+1)$. Ce qui se formule par :

$$y_{ij}^t \le \sum_{l=j+s_t+1}^N y_{il}^{t+1}, t \in \{1, \dots, k-1\}$$

De manière analogue, on obtient pour les colonnes :

$$z_{ij}^t \le \sum_{l=j+s_t+1}^M y_{lj}^{t+1}, t \in \{1, \dots, k'-1\}$$

 $\mathbf{Q12}$

2.2 Implantations et tests

Q13