

- 1) Model Setup, ESG, and Investor's Problem
 - a) Model Setup and ESG
 - b) Investor's Problem
- 2) Solving Motivated Investor's Problem
- 3) The ESG-Efficient Frontier
 - a) Proposition 1 ESG-SR Trade-off
 - b) Proposition 2 ESG-SR Frontier
 - c) Proposition 3 Four-fund Separation
- 4) Extra Slides

Model Setup and ESG

Addresses the problem of one-period equilibrium by considering a one-period model with time points $t \in \{0, 1\}$, and:

- n stocks and 1 risk-free asset with risk-free rate r^f.
- Excess rates of return $r=(r^1,...,r^n)^\top$ random variables with mean vector $\mu\in\mathbb{R}^n$ and positive definite covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$.
- Portfolio weights denoted by $x = (x^1, ..., x^n)^\top \in \mathbb{R}^n$ so investor buys $x^i W$ of security i, where:
- Each investor has initial wealth W and future wealth $\hat{W} = W(1 + r^f + x^T r)$.
- Each stock has an ESG-score denoted by $s \in \mathbb{R}^n$. But what is it...?
 - E: Environmental Often measured by carbon emissions, i.e. low is good.
 - S: Social/societal Masured by "sin stocks" Rolf, e.g. alcohol, tobacco, and fire arms.
 - G: Governance How well do you run your business? Here measured by accruals where few accruals is associated with a high G-score (not yet recorded transaction in companies financial statement).

Investor's Problem

Three types of investors:

Type U: Maximize unconditional mean-variance utility, i.e. solves standard Markowitz problem:

$$\left[\hat{\mu} = \mathbb{E}[r], \ \hat{\Sigma} = \mathsf{Var}[r]\right].$$

Type A: Driven by mean-variance preferences, but use ESG-scores to update views on risk and expected
return → Maximize the conditional mean-variance utility and thus exploits the benefits of the
ESG-scores, i.e. solves standard Markowitz problem conditional on ESG information:

$$\left[\hat{\mu} = \mathbb{E}[r \mid s], \ \hat{\Sigma} = \mathsf{Var}[r \mid s]\right].$$

Type M: Seeks optimal trade-off between a high expected return, low risk, and high average ESG-score:

$$\left[\hat{\mu} = \mathbb{E}[r \mid \bar{\mathbf{s}}], \ \hat{\Sigma} = \mathsf{Var}[r \mid \bar{\mathbf{s}}] \ \mathsf{and} \ \mathsf{ESG} \ \mathsf{preferences}\right].$$

In short: We focus on type M as:

- Type U and A: Standard Markowitz problem.
- Type M: seeks trade-off between high expected return, low risk and high average ESG score.

Solving Motivated Investor's Problem (1/4)

Let $\bar{\gamma}$: Absolute risk-aversion and $\gamma = \bar{\gamma}W$: Relative risk-aversion (remember: W intitial wealth).

Let $f: \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ denote the ESG preference function, and where $\bar{s} = \frac{x^{\top}s}{x^{\top}i}$ is the average ESG-score.

For the set of feasible portfolios $X = \{x \in \mathbb{R}^n \mid x^\top \mathbb{1} > 0\}$ (all long-based portfolios), the utility maximization problem is:

$$\underbrace{\max_{\mathbf{x} \in X} \quad \left(\mathbf{x}^{\top} \boldsymbol{\mu} - \frac{\gamma}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x} + f\left(\frac{\mathbf{x}^{\top} \mathbf{s}}{\mathbf{x}^{\top} \mathbf{1}}\right)\right)}_{\text{standard Markowitz}} + \underbrace{f\left(\frac{\mathbf{x}^{\top} \mathbf{s}}{\mathbf{x}^{\top} \mathbf{1}}\right)}_{\text{ESG-pref. func.}}\right).$$

Observations for the above problem:

- Note: Risk-free asset is ESG-neutral, i.e. no utility from investing in riskfree asset.
- Enjoys expected rate of rerturn → (More utility).
- Dislike variance → (Less utility).
- Idea for solution: In standard mean-variance → Investor combines tangency portfolio (:maximizes Sharp ratio) + risk-free security. So generalize that: Set up constraints on σ and $\bar{s} \to \text{Relax}$ constraints by maximizing over $\sigma \to \text{over } \bar{s}$, i.e. first choose the best portfolio given a level of risk σ and an ESG-score \bar{s} and then maximizing over σ and then later over \bar{s} .

Solving Motivated Investor's Problem (2/4)

Rewrite utility maximization problem:

$$\max_{\bar{s}} \left\{ \begin{array}{l} \max_{\boldsymbol{x} \in X} \left\{ \left(\boldsymbol{x}^{\top} \boldsymbol{\mu} - \frac{\gamma}{2} \boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x} + \boldsymbol{f}\left(\bar{s}\right) \right) \right\} \\ \text{s.t.} \quad \bar{s} = \frac{x}{\boldsymbol{x}^{\top} \boldsymbol{1}}, \quad \sigma^2 = \boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x} \end{array} \right\} \right\}$$

Innermost problem: Choosing the portfolio w/ highest Sharpe-ratio for given s.

Rewrite constraints: \bar{s} and σ^2 , respectively:

$$0 = \mathbf{x}^{\top} (\mathbf{s} - \bar{\mathbf{s}} \mathbb{1}) = \mathbf{x}^{\top} \tilde{\mathbf{s}}, \quad \text{where } (\mathbf{s} - \bar{\mathbf{s}} \mathbb{1}) = \tilde{\mathbf{s}}, \quad 0 = (\sigma^2 - \mathbf{x}^{\top} \Sigma \mathbf{x}).$$

Lagrangian, FOC and thus optimal portfolio x:

$$\mathcal{L}(\mathbf{x}, \pi, \theta) = \mathbf{x}^{\top} \mu - \frac{\gamma}{2} \sigma^{2} + f(\bar{\mathbf{s}}) + \pi(\mathbf{x}^{\top} \tilde{\mathbf{s}}) + \frac{\theta}{2} (\sigma^{2} - \mathbf{x}^{\top} \Sigma \mathbf{x}),$$
$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}} = \mu + \pi \tilde{\mathbf{s}} - \theta \Sigma \mathbf{x} = 0 \qquad \Longleftrightarrow \qquad \mathbf{x} = \frac{1}{\theta} \underbrace{\Sigma^{-1} (\mu + \pi \tilde{\mathbf{s}})}_{(\dagger)},$$

where (\dagger) is some vector not dependent on level of risk, $\sigma!$

Solving Motivated Investor's Problem (3/4)

1st constraint: (i.e $0 = x^{\top} \tilde{s}$) gives first Lagrange multiplier:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \pi} &= \mathbf{x}^{\top} \tilde{\mathbf{s}} = \mathbf{0} &\iff \mathbf{0} = \mathbf{x}^{\top} \tilde{\mathbf{s}} = \underbrace{\frac{1}{\theta}}_{\text{some number}} (\mu + \pi \tilde{\mathbf{s}})^{\top} \Sigma^{-1} \tilde{\mathbf{s}} \\ &\iff \pi = -\frac{\mu^{\top} \Sigma^{-1} \tilde{\mathbf{s}}}{\tilde{\mathbf{s}}^{\top} \Sigma^{-1} \tilde{\mathbf{s}}}. \end{split}$$

2nd constraint: (i.e $0 = (\sigma^2 - x^T \Sigma x)$) gives second Lagrange multiplier (notation: $c_{xy} = x^T \Sigma^{-1} y$):

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \theta} &= \frac{1}{2} (\sigma^2 - \mathbf{x}^\top \sigma \mathbf{x}) = 0 &\iff \sigma^2 = \mathbf{x}^\top \Sigma \mathbf{x} = \frac{1}{\theta^2} (\mu + \pi \underbrace{\tilde{\mathbf{s}}})^\top \Sigma^{-1} (\mu + \pi \tilde{\mathbf{s}}) \\ &= \mathbf{x}^\top \tilde{\mathbf{s}} = 0 \text{ by 1st} \end{split} \\ &\iff \theta = \frac{1}{\sigma} \underbrace{\sqrt{\mu^\top \Sigma^{-1} (\mu + \pi \tilde{\mathbf{s}})}}_{(\star)} = \frac{1}{\sigma} \underbrace{\sqrt{c_{\mu\mu} - \frac{(c_{\mathbf{s}\mu} - c_{1\mu}\bar{\mathbf{s}})^2}{c_{\mathbf{s}\mathbf{s}} - 2c_{1\mathbf{s}}\bar{\mathbf{s}} + c_{11}\bar{\mathbf{s}}^2}}_{(\star)}, \end{split}$$

where (\star) is some number not dependent on the risk, $\sigma!$

 \Rightarrow Optimal porfolio x can be written as $x = \sigma v = \sigma(\dagger)(\star)$ where v depends only on the exogenous parameters and \bar{s} (NOT risk, σ) as we saw in (†) and (\star).

Solving Motivated Investor's Problem (4/4)

Sharpe Ratio:

$$SR(\bar{s}) = \frac{x^{\top} \mu}{\sigma} \iff SR(\bar{s}) \sigma = x^{\top} \mu.$$

Substitute into the problem:

$$\max_{\overline{s}} \left\{ \max_{\sigma} \left\{ \operatorname{SR}(\overline{s})\sigma - \frac{\gamma}{2}\sigma^2 + f(\overline{s}) \right\} \right\}.$$

Next (inner) problem and FOC:

$$\max_{\sigma} \ \left\{ \ \mathit{SR}(\bar{\mathbf{s}}) \sigma - \tfrac{\gamma}{2} \sigma^2 + \mathit{f}(\bar{\mathbf{s}}) \ \right\} \quad \Longleftrightarrow \quad \mathsf{SR}(\bar{\mathbf{s}}) - 2 \tfrac{\gamma}{2} \sigma = 0 \quad \Longleftrightarrow \quad \sigma = \frac{\mathsf{SR}(\mathbf{s})}{\gamma}.$$

Substitute σ , multiply by 2γ yields:

$$\max_{\bar{\mathbf{s}}} \ \left\{ \ \frac{(\mathsf{SR}(\bar{\mathbf{s}}))^2}{2\gamma} + f(\bar{\mathbf{s}}) \ \right\} \Rightarrow \max_{\bar{\mathbf{s}}} \ \left\{ \ \left(\mathsf{SR}(\bar{\mathbf{s}}) \right)^2 + 2\gamma f(\bar{\mathbf{s}}) \ \right\},$$

which is proposition 1 (Pedersen et al., 2020, p. 6) (next page).

Optimal ESG-SR Trade-off (Pedersen et al., 2020, p. 6)

Proposition 1 - ESG-SR trade-off (Pedersen et al., 2020)

The (type M) investor should choose her average ESG score \bar{s} to maximize the following function of the squared Sharpe ratio and the ESG preference function f:

$$\max_{\bar{s}} \left\{ \left(\mathsf{SR}(\bar{s}) \right)^2 + 2\gamma f(\bar{s}) \right\}.$$

Observations (and some extra):

- (Thank god) ESG affects the optimal portfolio choice.
- Tradeoff between Sharpe ratio (SR(\bar{s})) and ESG preferences ($2\gamma f(\bar{s})$).
- Similar to Markowitz: ESG-SR frontier can be computed independent of preferences (security characteristics only) → Investor decide where to place herself afterwards depending on risk (Example on next page).
- If $f \equiv 0$ (no preferences) but different γ (risk-aversion) for investors \Rightarrow Investors should invest in same portfolio (same avg. ESG and Sharpe ratio) (More risk tolerant \Rightarrow Larger fraction of wealth).
- If same γ but different $f \Rightarrow$ Further to the left or right on the ESG-efficient frontier.
- Changes within groups: Higher (relative) γ (same f) \Rightarrow More in risk-free asset and $\uparrow \gamma f(\bar{s}) \Rightarrow$ Pushed further right (more avg. ESG \rightarrow "indirectly" enjoys ESG).

Optimal ESG-SR Trade-off

- Type-M(otivated) investors choose portfolio on ESG-efficient frontier, i.e. preference for higher ESG: More preference ⇒ further to the right, and vice versa.
- Type-A(ware) investors choose top-point of ESG-efficient frontier, i.e. highest SR (tang. port. using ESG info). Small preference for ESG ⇒ Just to the right of tang. port using ESG info.
- Type-U(naware) investors choose tangency portfolio (or to the left) ignoring security information contained in ESG score, i.e. condition on less information.

ESG-SR Frontier (Pedersen et al., 2020, p. 7)

Proposition 2 - ESG-SR frontier (Pedersen & Fitzgibbons & Pomorski (2020))

The maximum Sharpe ratio, $SR(\bar{s})$, that can be achieved with an ESG-score of \bar{s} is

$$\mathsf{SR}(\bar{s}) = \sqrt{\mu^{\top} \Sigma^{-1} (\mu + \pi (s - 1\bar{s}))} = \sqrt{c_{\mu\mu} - \frac{\left(c_{s\mu} - \bar{s}c_{1\mu}\right)^2}{c_{ss} - 2c_{1s}\bar{s} + c_{11}\bar{s}^2}}.$$

The maximum Sharpe ratio across all portfolios is $SR(s^*) = \sqrt{c_{\mu\mu}}$, which is attained with an ESG score of $s^* = \frac{c_{s\mu}}{c_{s\mu}}$. Increasing the ESG score locally around s^* leads to nearly the same Sharpe ration, $SR(s^* + \Delta) = SR(s^*) + o(\Delta)$, because the first-order effect is zero, $\frac{dSR(s^*)}{ds} = 0$.

Four-fund Separation (Pedersen et al., 2020, p. 7)

Proposition 3 - Four-fund separation (Pedersen & Fitzgibbons & Pomorski (2020))

Given an average ESG score \bar{s} , the optimal portfolio is

$$x = \frac{1}{\gamma} \Sigma^{-1} (\mu + \pi (s - 1\overline{s}))$$

as long as $\mathbf{x}^{\top} 1 > 0$, where

$$\pi = \frac{c_{1\mu}s - c_{s\mu}}{c_{ss} - 2c_{1s}\bar{s} + c_{11}\bar{s}^2}.$$

The optimal portfolio is therefore a combination of the riskfree asset, the tangency portfolio, $\Sigma^{-1}\mu$, the minimum-variance portfolio $\Sigma^{-1}1$, and the ESG-tangency portfolio, $\Sigma^{-1}s$.

The construct is done as (next page):

Closing Remarks

Following (Pedersen et al., 2020, p. 7): Optimal portfolio equivalent to standard Markowitz solution, but with adjusted expected excess return μ . Optimal portfolio found by:

- i) Investor computes ESG-adjusted expected returns, $\mu + \pi(s-1\bar{s})$: each stock's expected excess return is increased if its ESG-score s_i is above the desired average score \bar{s} ; otherwise, it is lowered (scaling depends on π : if $\pi=0 \to \text{Traditional meanvariance optimization.})$
- ii) Investor computes the optimal portfolio via mutliplication by $\frac{1}{\gamma}\Sigma^{-1}$: $\frac{1}{\gamma}\Sigma^{-1}(\mu + \pi(s-1\bar{s}))$ (proposition 3).
- iii) All investors, regardless of their risk-aversion and ESG preferences, should choose a combination of four portfolios: The riskfree asset, the tangency portfolio, the minimum variance portfolio, and the ESG-tangency portfolio (proposition 3).

The optimal portfolio is therefore a combination of the riskfree asset, the tangency portfolio, $\Sigma^{-1}\mu$, the minimum-variance portfolio $\Sigma^{-1}1$, and the ESG-tangency portfolio, $\Sigma^{-1}s$.

References

Pedersen, L. H., Fitzgibbons, S., & Pomorski, L. (2020). Responsible investing: The esg-efficient frontier. Journal of financial economics, 142(2), 572-597.

Extra Slide 1: ESG-CAPM

ESG-adjusted CAPM predict expected returns:

Many type-U investors and High ESG predicts high expected returns

 \Rightarrow

High-ESG stocks profitable and not bid up by type-U investors.

• Many type-A investors \Rightarrow No connection between ESG and expected return (Aware investors).

=

Prices are bid up by type-A investors to reflect their expected profits, thus eliminating the connection between ESG and expected returns.

Many type-M investors ⇒ High ESG predicts low expected returns.

 \Rightarrow

high-ESG stocks actually deliver low expected returns, because ESG-motivated investors are willing to accept a lower return for a higher ESG portfolio.

Extra Slide 2: Utility of Type-M Investor

- Let $\bar{\gamma}$: Absolute risk-aversion and $\gamma = \bar{\gamma}W$: Relative risk-aversion.
- Let $f: \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ denote the ESG preference function.
- Type M investor seeks to maximize utility U over wealth, W, and average ESG-score, $\bar{s} = \frac{x^{\top}s}{X^{\top}1}$, given the extended mean-variance framework

$$\begin{split} U &= \mathbb{E} \Big[\hat{W} \mid \mathbf{s} \Big] - \frac{\gamma}{2} \text{var} \Big[\hat{W} \mid \mathbf{s} \Big] + W f(\bar{\mathbf{s}}) \\ &= W \Big(1 + r^f + \mathbf{x}^\top \mu \Big) - \frac{\bar{\gamma}}{2} W^2 \mathbf{x}^\top \Sigma \mathbf{x} + W f\left(\frac{\mathbf{x}^\top \mathbf{s}}{\mathbf{x}^\top 1} \right) \\ &= W \left(1 + r^f + \mathbf{x}^\top \mu - \frac{\gamma}{2} \mathbf{x}^\top \Sigma \mathbf{x} + f\left(\frac{\mathbf{x}^\top \mathbf{s}}{\mathbf{x}^\top 1} \right) \right). \end{split}$$

Extra Slide 3: Remarks for Proposition 1 (1/2)

- One term regarding securities and another regarding preferences

 ESG-SR frontier can be computed independent of preferences (security characteristics only) and then the investor can decide where on the frontier to put herself.
- ullet Analogy to standard Markowitz theory: Mean-variance frontier can be computed independent of preference parameters and then decisions about what portfolio to pick are based on risk aversion.
- First investor decides where to be on the ESG-SR frontier, and then the level/amount of risk → Works with average ESG, which does not change with risk level.

Extra Slide 4: Remarks for Proposition 1 (2/2)

- Risk-Aversion: For $f\equiv 0$ all investors should hold the same portfolio of risky assets (i.e. same SR and \bar{s}), but a higher risk aversion implies a larger fraction of wealth in this portfolio.
- ESG-Preference: For γ constant then investors with stronger ESG-preferences should buy a portfolio with lower SR but higher \bar{s} .
- Interaction effects: For investors equally motivated by ESG, then investors with higher risk aversion invests more in the riskfree asset AND tilts portfolio toward higher ESG and lower SR.
 - SR less important for higher risk-aversion, so ESG becomes more important relatively.
- More generally, observing an investor's portfolio of risky assets and its placement on the ESG-SR frontier is revelatory about $\gamma f(\bar{s})$; observing the investor's cash position (or leverage), about the risk aversion γ .

Extra Slide 5: Remarks for Proposition 1 (EXTRA)

- Tangency portfolio from standard mean-variance portfolio has higheste SR among all portfolios, so its ESG score and SR define the peak in the ESG-SR fontier.
- The ESG-SR frontier is hump-shaped because restricting portfolios to have any ESG score other than that of the standard tangency portfolio must yield a lower maximum SR.
 - 1. ⇒ ESG-tangency portfolio is juuuuust to the right of tangency portfolio.

20

Extra Slide 6: Proof of Proposition 2

The maximum Sharpe ratio for a given ESG score \bar{s} is the Sharpe ratio of the optimal portfolio given in the proof of Proposition 1:

$$\mathsf{SR}(\bar{\mathbf{s}}) = \frac{\mu^{\top} \mathbf{x}}{\sigma} = \frac{\mu^{\top} \Sigma^{-1} (\mu + \pi \tilde{\mathbf{s}})}{\sigma \theta} = \frac{\sigma^2 \theta^2}{\sigma \theta} = \sigma \theta,$$

which is true from the last two equation in the proof of Prop. 1, and so

$$= \sigma \frac{1}{\sigma} \sqrt{\mu^{\top} \Sigma^{-1} (\mu + \pi \tilde{s})} = \sqrt{\mu^{\top} \Sigma^{-1} (\mu + \pi (s - 1\bar{s}))} = \sqrt{c_{\mu\mu} - \frac{\left(c_{s\mu} - \bar{s}c_{1\mu}\right)^2}{c_{ss} - 2c_{1s}\bar{s} + c_{11}\bar{s}^2}}.$$

- Max Sharpe-ratio is attained by the tangency portfolio, which is proportional to $\Sigma^{-1}\mu$.
- This portfolio has the ESG-score and Sharpe ratio stated in the proposition.

Extra Slide 7: Proof of Proposition 3

From the proof of Prop. 1 we have $x = \frac{1}{\theta} \Sigma^{-1} (\mu + \pi \tilde{s})$.

From proofs of Prop. 1+2 we have $\theta=\frac{1}{\sigma} SR(\bar{s})$ and $\sigma=\frac{SR(\bar{s})}{\gamma}$, which implies

$$\theta = \frac{1}{\sigma} \mathsf{SR}(\bar{\mathsf{s}}) = \frac{1}{\frac{\mathsf{SR}(\bar{\mathsf{s}})}{\gamma}} \mathsf{SR}(\bar{\mathsf{s}}) = \gamma.$$

Combining yields

$$x = \frac{1}{\theta} \Sigma^{-1} (\mu + \pi \tilde{s}) = \frac{1}{\gamma} \Sigma^{-1} (\mu + \pi (s - 1\bar{s})),$$

where we recall that $\tilde{s}=s-1\bar{s}.$

Extra Slide 8: ESG-Adjusted CAPM

ESG-adjusted CAPM predict expected returns:

- Many type-U investors ⇒ High ESG predicts high expected returns.
 - High-ESG stocks profitable and not bid up by type-U investors.
- Many type-A investors ⇒ No connection between ESG and expected return.
 - Prices are bid up by type-A investors to reflect their expected profits.
- Many type-M investors ⇒ High ESG predicts low expected returns.
 - ESG-motivated investors are willing to accept a lower return for a higher ESG portfolio and thus bid up the price.

Extra Slide 9: ESG-Adjusted CAPM

Figure: ESG-adjusted capital asset pricing model (ESG-CAPM).

Extra Slide 10

10% 8% Mean-variance frontier 7% (portfolios with ESG score s) Tangency portfolio (all assets) - Tangency portfolio (portfolios with ESG score s)

Mean-variance frontier

(all assets)

Standard deviation

30%

40%

50%

20%

3%

2%

1%

0%

10%

- Type-M investors choose portfolio on ESG-efficient frontier.
- Type-A investors choose top-point of ESG-efficient frontier.
- Type-U investors choose tangency portfolio ignoring ESG information.