Universal Portfolios

Jamal Bajwa

05/08/2020

Modern Portfolio Theory

The Kelly Criterion

Shannon's Demon

Cover's Universal Portfolio

Speculations

Modern Portfolio Theory

Mean-Variance Portfolio Optimization

- ► Sharpe and Markowitz (1960s)
- Maximize Expected Arithmetic Returns subject to a variance constraint
- Modern portfolio theory tries to estimate expected return mean and variance of various stocks – Implicit in this assumption is that the return distribution is *Gaussian*, and can be estimated from empirical history of a stock
- ► These estimates are inputs into an optimization model that allocates portfolio fractions subject to overall portfolio risk – Variance of the returns is thought of as "risk"

Mathematical Formulation

Let
$$b_i$$
 = the portfolio fraction invested in the i^{th} stock, $\sum_{i=1}^{N} b_i = 1$

Assume each stock is Gaussian and Independent : $N(\mu_i, \sigma_i)$

 $\mu_i = mean \ expected \ return \ from \ i^{th} \ stock$

 $\sigma_i = variance of i^{th} stock$

maximize
$$\sum_{i=1}^{N} b_i \mu_i$$

s.t. $\sigma_{portfolio} < \sigma_{max}$

Efficient Frontier

► As you tweek desired portfolio variance, the expected return of the new portfolio will go up (high risk, high return)

Figure 1: Sample Efficient Frontier

Shortcomings

The Kelly Criterion

Derivation

Why was this so different?

Samuelson's Criticisms

Shannon's Demon

Cover's Universal Portfolio

Some primitives from Information Theory and Data Compression

Basic Idea of Universal Portfolio

Why does this work?

Some examples

Speculations