伊予三島 - オキシダント予測の分析

Model Parameters: Prefecture code: 38 Station code: 38209050 Station name: 伊予三島 Target item: Ox(ppm) Number of data points in the train set: 13687 Number of data points in the test set: 5867 Forecast horizon (hours): 24 Model: XGBoost Objective: reg:squarederror Booster: None Number of estimators: 400 Learning rate: 0.04 Elapsed time: 1 min 12 sec Number of used features: 141 Features: Ox(ppm), NO(ppm), NO2(ppm), U, V Ox(ppm) lag1, Ox(ppm) lag2, Ox(ppm) lag3, Ox(ppm) lag4, Ox(ppm) lag5 Ox(ppm)_lag6, Ox(ppm)_lag7, Ox(ppm)_lag8, Ox(ppm)_lag9, Ox(ppm)_lag10 Ox(ppm) lag11, Ox(ppm) lag12, Ox(ppm) lag13, Ox(ppm) lag14, Ox(ppm) lag15 Ox(ppm)_lag16, Ox(ppm)_lag17, Ox(ppm)_lag18, Ox(ppm)_lag19, Ox(ppm)_lag20 Ox(ppm)_lag21, Ox(ppm)_lag22, Ox(ppm)_lag23, NO(ppm)_lag1, NO(ppm)_lag2 NO(ppm)_lag3, NO(ppm)_lag4, NO(ppm)_lag5, NO(ppm)_lag6, NO(ppm)_lag7 NO(ppm)_lag8, NO(ppm)_lag9, NO(ppm)_lag10, NO(ppm)_lag11, NO(ppm)_lag12 NO(ppm)_lag13, NO(ppm)_lag14, NO(ppm)_lag15, NO(ppm)_lag16, NO(ppm)_lag17 NO(ppm)_lag18, NO(ppm)_lag19, NO(ppm)_lag20, NO(ppm)_lag21, NO(ppm)_lag22 NO(ppm)_lag23, NO2(ppm)_lag1, NO2(ppm)_lag2, NO2(ppm)_lag3, NO2(ppm)_lag4 NO2(ppm) lag5, NO2(ppm) lag6, NO2(ppm) lag7, NO2(ppm) lag8, NO2(ppm) lag9 NO2(ppm)_lag10, NO2(ppm)_lag11, NO2(ppm)_lag12, NO2(ppm)_lag13, NO2(ppm)_lag14 NO2(ppm)_lag15, NO2(ppm)_lag16, NO2(ppm)_lag17, NO2(ppm)_lag18, NO2(ppm)_lag19 NO2(ppm)_lag20, NO2(ppm)_lag21, NO2(ppm)_lag22, NO2(ppm)_lag23, U_lag1 U_lag2, U_lag3, U_lag4, U_lag5, U_lag6 U_lag7, U_lag8, U_lag9, U_lag10, U_lag11 U_lag1, U_lag8, U_lag9, U_lag10, U_lag11
U_lag12, U_lag13, U_lag14, U_lag15, U_lag16
U_lag17, U_lag18, U_lag19, U_lag20, U_lag21
U_lag22, U_lag23, V_lag1, V_lag2, V_lag3
V_lag4, V_lag5, V_lag6, V_lag7, V_lag8
V_lag9, V_lag10, V_lag11, V_lag12, V_lag13
V_lag14, V_lag15, V_lag16, V_lag17, V_lag18
V_lag19, V_lag20, V_lag21, V_lag22, V_lag23 $Ox(ppm)_roll_mean_3,\ Ox(ppm)_roll_std_6,\ NO(ppm)_roll_mean_3,\ NO(ppm)_roll_std_6,\ NO2(ppm)_roll_mean_3,\ Ox(ppm)_roll_mean_3,\ Ox(ppm)_roll_mean_4,\ Ox(ppm)_roll_mean_4,\ Ox(ppm)_roll_mean_4,\ Ox(ppm)_roll_mean_4,\ Ox(ppm)_roll_mean_4,\$ NO2(ppm)_roll_std_6, U_roll_mean_3, U_roll_std_6, V_roll_mean_3, V_roll_std_6 Ox(ppm) diff 1, Ox(ppm) diff 2, Ox(ppm) diff 3, NO(ppm) diff 3, NO2(ppm) diff 3 U_diff_3, V_diff_3, hour_sin, hour_cos, dayofweek is weekend Metrics per Forecast Step: Ox(ppm)_t+01 - R²: 0.9181, MAE: 0.0030, RMSE: 0.0042 Ox(ppm)_t+02 - R²: 0.8296, MAE: 0.0045, RMSE: 0.0061 Ox(ppm)_t+03 - R²: 0.7630, MAE: 0.0054, RMSE: 0.0072 Ox(ppm) t+04 - R²: 0.6992, MAE: 0.0061, RMSE: 0.0081 Ox(ppm)_t+05 - R²: 0.6522, MAE: 0.0066, RMSE: 0.0087 Ox(ppm)_t+06 - R²: 0.6094, MAE: 0.0071, RMSE: 0.0093 Ox(ppm)_t+07 - R²: 0.5801, MAE: 0.0074, RMSE: 0.0096 Ox(ppm)_t+08 - R²: 0.5544, MAE: 0.0076, RMSE: 0.0099 Ox(ppm)_t+09 - R²: 0.5380, MAE: 0.0078, RMSE: 0.0101 Ox(ppm)_t+10 - R²: 0.5101, MAE: 0.0081, RMSE: 0.0104 Ox(ppm) t+11 - R²: 0.4880, MAE: 0.0083, RMSE: 0.0106 Ox(ppm)_t+12 - R²: 0.4763, MAE: 0.0083, RMSE: 0.0107 Ox(ppm) t+13 - R²: 0.4650, MAE: 0.0084, RMSE: 0.0109 Ox(ppm)_t+14 - R²: 0.4622, MAE: 0.0085, RMSE: 0.0109 Ox(ppm)_t+15 - R²: 0.4506, MAE: 0.0086, RMSE: 0.0110 Ox(ppm) t+16 - R²: 0.4463, MAE: 0.0086, RMSE: 0.0111 Ox(ppm)_t+17 - R²: 0.4354, MAE: 0.0087, RMSE: 0.0112 Ox(ppm)_t+18 - R²: 0.4238, MAE: 0.0088, RMSE: 0.0113 Ox(ppm)_t+19 - R²: 0.4080, MAE: 0.0090, RMSE: 0.0114 Ox(ppm)_t+20 - R²: 0.4107, MAE: 0.0090, RMSE: 0.0114 Ox(ppm) t+21 - R²: 0.4053, MAE: 0.0090, RMSE: 0.0115 Ox(ppm)_t+22 - R²: 0.3967, MAE: 0.0091, RMSE: 0.0116

Ox(ppm)_t+23 - R²: 0.3925, MAE: 0.0091, RMSE: 0.0116 Ox(ppm)_t+24 - R²: 0.3864, MAE: 0.0092, RMSE: 0.0117

