- 1 Prove the following theorems algebraically:
 - (a) X(X' + Y) = XY (b) X + XY = X

 - (c) XY + XY' = X (d) (A + B)(A + B') = A
- 2 Simplify each of the following expressions by applying one of the theorems. State the theorem used

 - (a) X'Y'Z + (X'Y'Z)' (b) (AB' + CD)(B'E + CD)

 - (c) ACF + AC'F (d) A(C + D'B) + A'

 - (e) (A'B + C + D)(A'B + D) (f) (A + BC) + (DE + F)(A + BC)'
 - For each of the following circuits, find the output and design a simpler circuit hav-3 ing the same output. (Hint: Find the circuit output by first finding the output of each gate, going from left to right, and simplifying as you go.)

Multiply out and simplify to obtain a sum of products:

(a)
$$(A + B)(C + B)(D' + B)(ACD' + E)$$

(b)
$$(A' + B + C')(A' + C' + D)(B' + D')$$

Factor each of the following expressions to obtain a product of sums:

(a)
$$AB + C'D'$$

4

5

(b)
$$WX + WY'X + ZYX$$

(c)
$$A'BC + EF + DEF'$$
 (d) $XYZ + W'Z + XQ'Z$

(d)
$$XYZ + W'Z + XQ'Z$$

(e)
$$ACD' + C'D' + A'C$$
 (f) $A + BC + DE$

(f)
$$A + BC + DE$$

(The answer to (f) should be the product of four terms, each a sum of three variables.)

Draw a circuit that uses only one AND gate and one OR gate to realize each of the 6 following functions:

(a)
$$(A + B + C + D)(A + B + C + E)(A + B + C + F)$$

(b)
$$WXYZ + VXYZ + UXYZ$$

Simplify the following expressions to a minimum sum of products.

(a)
$$[(AB)' + C'D]'$$

(b)
$$[A + B(C' + D)]'$$

(a)
$$[(AB)' + C'D]'$$
 (b) $[A + B(C' + D)]'$ (c) $((A + B')C)'(A + B)(C + A)'$

Find F and G and simplify: 8

CS1026