2020年度 医用工学概論 試験範囲について

下記の部分を中心に出題するので、授業資料、練習問題をよく確認しておいて下さい。 下記の内容に限らず、練習問題に出てくる物理量、単位や用語は意味も含めて理解しておい てください。数値が答えになり、単位が必要な場合は必ず単位をつけて回答してください。

第1回 オリエンテーション

出題しません

第	2	П

<u> </u>
□ 生体組織の特異的な性質について、代表的な5つの性質及びその内容
□ 生体の電気的、機械的な特性を表す 物性値 およびそれぞれの意味
□ 生体の組織ごとの上記の物性値の違いと傾向(表)
□ マクロショック、ミクロショックにおける心室細動に閾値
第3回
□ 周期、周波数など、波の性質を表す数値とその意味
□ 生体の組織ごとの音に対する物性値の違いと傾向(表)
□ 超音波の生体作用に関する用語
□ 生体内における熱の性質、熱の移動
□ 眼球、皮膚、血液の光学的性質と光の波長による影響の違い
第 4 回
□ 電気に関する用語と意味(電流、電圧、電位、電位差、電気抵抗、電圧降下など)
□ オームの法則の式とその意味
□ 電気抵抗と抵抗率の式
□ 以下の練習問題を解けるようにしておく
· 合成抵抗(計算問題)
・・・キルヒホッフの法則(計算問題)
・ ホイートストンブリッジ(計算問題)
・ 熱と電力 (計算問題)
第5回

- □ 電気回路の構成素子の種類と特性を表す単位
 - · R: 電気抵抗、単位: Ωなど
 - ・ 別称も含めて覚えておく
- □ 過渡現象
 - ・ 時定数の意味
 - ・ 練習問題を解けるようにしておく
- □ 微分回路、積分回路の違いと効果について

<u>第6回</u>
□ 交流電圧、電流の式
・ 式の形、振幅、位相、角周波数の意味
□ 実効値の意味と計算、振幅との関係
□ 以下の練習問題をとけるようにする。
· RLC 直列回路
・ 交流回路の電力
・ 共振
第7回
□ 能動素子と受動素子
□ ダイオードとは何か、ダイオードの種類とそれぞれの違い
□ トランジスタとは何か
□ トランジスタと FET の違い
第8回
□ 整流回路、平滑化回路
・ 平滑化の良さを表すリップル率の式
・ 整流回路、平滑化回路の大まかな形と構成素子
□ 増幅度、利得
・ 練習問題を解けるようにする
□ フィルタ回路の種類とそれぞれの機能
・ それぞれの回路の機能と名称、回路の形を見分けられるようにする。
□ オペアンプ とは何か、オペアンプ の特徴
□ オペアンプを用いた増幅、演算回路
・ それぞれの回路の機能と名称、回路の形を見分けられるようにする。
第9回
□ 論理回路素子の種類と真理値表
□ AD、DA 変換とは何か
□ サンプリング定理とは何か
□ 様々な変調方式
アナログ変調、パルス変調、デジタル変調について、それぞれ変調された波形を見
分け、名称が答えられるようにする。
第11回、第12回
□ 追加資料「トランスデューサまとめ」の内容
https://naoki-sh.github.io/documents/attached/transducer.pdf

第13回
□ 記録・表示装置の種類と名称、対応周波数の傾向、特徴(表を参照)
□ ソフトウェア、ハードウェアの違い
□ コンピュータの構成要素(5大要素)
□ OS とは何か
□ 記憶装置の種類と名称、それぞれの違いと特徴
□ インターフェイスの種類と名称
□ ファイルフォーマットの種類と名称
□ ネットワークの種類
セキュリティに関しては本授業の試験には出題しません。(国家試験には出題されることが
あるので覚えておくこと。)
第14回
□ ミクロショック、マクロショック、および、最小感知電流
□ 医療機器のクラス分類、
・ 保護接地の役割について
・ 保護接地用のコンセントについて
□ 医療機器の装着部の形別区分と適応範囲
・ それぞれの記号、名称および患者漏れ電流(定常状態)
□ EPR システムとは何か
□ 非常電源の種類と立ち上がり時間
□ 電磁的な安全について以下の用語を理解する
・ 電磁妨害を与える性質を表す EMI(Immunity イミュニティ)
・ 電磁妨害によって受ける影響を表す EMS(Emission エミッション)

・ EMI、EMS を共に小さくする「両立性」を意味する EMC