Ehrhart Polynomials

VIII Encuentro Colombiano De Combinatoria

Day I: Appetizers

- (1) Pick five points in \mathbb{Z}^3 and let \mathcal{P} be their convex hull (in \mathbb{R}^3). Compute the Ehrhart polynomial of \mathcal{P} .
- (2) [sage] Plot the roots of the Ehrhart polynomials of cross polytopes in different dimensions. What's going on here?
- (3) Show that a sequence f(n) is given by a polynomial of degree $\leq d$ if and only if

$$\sum_{n\geq 0} f(n) z^n = \frac{h(z)}{(1-z)^{d+1}}$$

for some polynomial h(z) of degree $\leq d$. Furthermore, f(n) has degree d if and only if $h(1) \neq 0$.

(4) Verify (parts of) the classification picture of degree-2 Ehrhart polynomials $c_2t^2 + c_1t + 1$: every half-integral point in the figure below corresponds to an Ehrhart polynomial.

(5) [research problem] Give the corresponding classification picture of degree-3 Ehrhart polynomials.