Instructions for Multi-Object Tracker for Mice (MOT-Mice)

The source code is available at https://github.com/ZhangChenLab/Multi-Object-Tracker-for-Mice-V1.2

MOT-Mice was developed and tested on MATLAB R2019b using an Nvidia GeForce GTX 1080 Ti GPU with 11 GB memory.

1 MOT-Mice toolbox

1.1 File description

Fig. 1 Folders or files in MOT-Mice toolbox

Table 1 Description for Folders or files in MOT-Mice toolbox

Folder or file	Description		
code	The function library of MOT-Mice		
CameraCalibration	Checkboard images and code used for camera		
	calibration.		
	Download from zenodo first:		
	https://zenodo.org/record/4265809#.X6oyBtN1SvY		
model	Trained trace prediction model, and mouse detection		
	models for mouse detection.		
	Download from zenodo first:		

	https://zenodo.org/record/4261622#.X6fiYtN1SvY		
	Multicamera videos of mouse group. Top-view		
Videos of mouse	camera: camera4. Side-view cameras: camera1,2,3.		
group	Download from zenodo first:		
	https://zenodo.org/record/4261722#.X6ftDdN1SvY		
	Install the MOT-Mice toolbox by adding folders		
MOT_Mice_install.m	(CameraCalibration, model, and code) to search		
	path.		
imgs	Description images used in github.		
README.md	Simple instruction file in github.		
Instructions for	Instructions about install and running the MOT-Mice		
MOT-Mice.pdf	toolbox.		

1.2 Install

Run the file "MOT_Mice_install.m" to install MOT-Mice toolbox.

2 Camera calibration

2.1 File description

Note: please download the files from zenodo first:

https://zenodo.org/record/4265809#.X6oyBtN1SvY

Fig. 2 Folders or files in the folder of 'CameraCalibration' in MOT-Mice toolbox

Table 2 Description for the folders or files in the folder of 'CameraCalibration'

Folder or file	Туре	Description
Camera1	Input	Checkboard images recorded by
		camera1.
Camera2	Input	Checkboard images recorded by
		camera2.
Camera3	Input	Checkboard images recorded by
		camera3.
Camera4	Input	Checkboard images recorded by
		camera4.
		Scale factor for the checkboard images
Scale.txt		in the folders of camear1, camera2,
		camera3, and camera4.
CameraCalibration_		Codes to achieve camera calibration.
v1.m		
Camera1.mat	Output	Result file for camera1 modeling.
Camera2.mat	Output	Result file for camera2 modeling.
Camera3.mat	Output	Result file for camera3 modeling.
Camera4.mat	Output	Result file for camera4 modeling.
MultiCameraPara.m	Output	Result file for multicamera calibration.
at	Output	

2.2 Running

Run the file "CameraCalibration_v1.m" to achieve multicamera calibration.

2.3 Results

Fig. 3 Results for multicamera calibration

3 Model

Note: please download the files from zenodo first:

https://zenodo.org/record/4261622#.X6fiYtN1SvY

Resnet18_SideView.mat
Resnet18_TopView.mat
TracePredNet_Pred1.mat

Fig. 4 Files in the folder of 'model' in MOT-Mice toolbox

Table 3 Description for the files in the folder of 'model'

Folder or file	Description	
Depart 10 Cide View met	Mouse detection model for side-view cameras	
Resnet18_SideView.mat	(camera1, camera2, and camera3).	
Doonat19 Tan\/iow.mat	Mouse detection model for top-view cameras	
Resnet18_TopView.mat	(camera4).	
TracePredNet_Pred1.mat	Trace prediction model.	

Note: please ensure that these three model files are in the folder of 'model' before further operations.

4 Unmarked mouse group tracking

Note: please download the files from zenodo first:

https://zenodo.org/record/4261722#.X6ftDdN1SvY

<u>There are six independent examples in total.</u> Here we use the example of mouse 6 2.

4.1 File description

- MainVideoStruct.mat
- MultiCameraPara.mat
- Step1_MOT_ObjectDetect_IdPairing.m
- Step2_MOT_SingleCameraFusion.m
- Step3 MOT MultiCameraFusion.m
- 慉 Tracelets video1 20201012 170201.mat
- 🛅 Tracelets_video1_20201012_170201_FusionSingleCam.mat
- 怕 Tracelets video2 20201012 172224.mat
- 🖺 Tracelets video2 20201012 172224 FusionSingleCam.mat
- Tracelets_video3_20201012_170046.mat
- fracelets_video3_20201012_170046_FusionSingleCam.mat
- 怕 Tracelets_video4_20201012_172204.mat
- Tracelets_video4_20201012_172204_FusionSingleCam.mat
- TrackingRes.mat
- wideo1.avi
- wideo2.avi
- 🚾 video3.avi
- 페 video4.avi
- video4_Tracking_000001.avi

Fig. 5 Files in the folder of 'mouse 6_2'

Table 4 Description for the files in the folder of 'mouse 6_2

Folder or file	Туре	Description
video1.avi	Input	Video recorded by camera1.
Video2.avi	Input	Video recorded by camera2.
video13avi	Input	Video recorded by camera3.
video1.4vi	Input	Video recorded by camera4.
MainVideoStruct.mat	Input	Information about the top-view
		camera.
14 1820 - 5	Input	Information about the multicamera
MultiCameraPara.mat		calibration.
Step1_MOT_ObjectDete		Code for mouse detection and identity
ct_ldPairing.m		pairing to generate tracklet.
Tracelets_video1_20201	044	Tracking result for camera1 after
012_170201.mat	Output	running the code of step1.
Tracelets_video2_20201	0	Tracking result for camera2 after
012_172224.mat	Output	running the code of step1.
Tracelets_video3_20201	044	Tracking result for camera3 after
012_170046.mat	Output	running the code of step1.
Tracelets_video4_20201	0 1 1	Tracking result for camera4 after
012_172204.mat	Output	running the code of step1.
Step2_MOT_SingleCam		Code for single-camera tracklet
eraFusion.m		assembly.
Tracelets_video1_20201		Tracking result for camera1 after
012_170201_FusionSin	Output	running the code of step2.
gleCam.mat		
Tracelets_video2_20201		Tracking result for camera2 after
012_172224_FusionSin	Output	running the code of step2.
gleCam.mat		
Tracelets_video3_20201		Tracking result for camera3 after
012_170046_FusionSin	Output	running the code of step2.
gleCam.mat		
Tracelets_video4_20201		Tracking result for camera4 after
012_172204_FusionSin	Output	running the code of step2.
gleCam.mat		
Step3_MOT_MultiCamer		Code for tracklet assembly by
aFusion.m		multicamera fusion.
TrackingRes.mat	Output	The final tracking results for unmarked

		mouse group after running the code of step3.
video4_Tracking_00000	Output	The exported tracking video after
1.avi		running the code of step3.

Note: the date information in the name of result files generated in step1 and step2 denotes the moment of saving files.

4.2 Running

- 1) Run the file "Step1_MOT_ObjectDetect_IdPairing.m" to generate tracklet by mouse detection and identity pairing.
- 2) Run the file "Step2_MOT_SingleCameraFusion.m" to achieve single-camera tracklet assembly.
- 3) Run the file "Step3_MOT_MultiCameraFusion.m" to achieve multicamera fusion, and get the final tracking results and the tracking video.

Note: Step 1 will take several hours to run. GPU will accelerate the running of the program. Use the command of "gpuDevice" in MATLAB to test whether MATLAB can recognize a GPU normally. In the quick test, you can directly run steps 2 and 3, and the program uses the presaved results of step 1 by default.

4.3 Results

Fig. 6 Gantt charts of the final tracking results

Fig. 7 2D trace plot of the final tracking results

Fig. 8 One sample frame of the tracking video.