# Identify Data-level Issues in Machine Learning Models



Ravikiran Srinivasulu SOFTWARE CONSULTANT ravikirans.com | ravikirans.com/YouTube



#### Agenda



Imbalanced data in Classification problems

Data scale issues in distance-based problems

Multicollinearity issues in Regression

**Outliers in Regression** 



#### Imbalanced Dataset for Classification Problems



#### Imbalanced Dataset for Classification Problems





#### Imbalanced Dataset for Classification Problems





Normal condition 

Patient with a rare disease



### Undersampling









### Random Oversampling











### Synthetic Minority Oversampling Technique





Observation of interest

Nearest neighbor

Synthetic data points



#### Synthetic Minority Oversampling Technique





Normal condition
 Patient with a rare disease



#### Demo



Use SMOTE to increase minority samples in Census dataset







Greyhound



**German Shepherd** 



Doberman

















## Multicollinearity

When one predictor variable in multiple regression can be linearly predicted from the others with a substantial degree of accuracy























Price = .12(Hours) + 100(days) + C







Price = .12(Hours) + 100(days) + C





















































Data density:

$$10/10 = 1$$





Data density:

$$10/100 = 0.1$$



Data density:

10/1000 = 0.01





- Increase the number of observations
- Remove unnecessary features
- Use PCA



#### Summary



Data-level issues indicate the importance of data transformation

Play with SMOTE to improve model performance

PCA can help solve a variety of issues

