Recurrent Neural Networks for Text Data

July 18, 2019

Block 4, Lecture 1 Applied Data Science MMCi Term 4, 2019

Matthew Engelhard

Recall: Word embeddings allow us to quantify word meaning

If we zoom in on a small region of our word map, it's all related words.

Note the similarity of all the words as a whole, but also of the individual neighbors.

"Lawyer" and "attorney" are nearly identical in space!

police

Applying Word Embeddings to a Sentence

- Look up words individually to obtain their vectors
- Construct a sequence of vectors

Using Word Embeddings

- Our representation depends on the number of words
 - Not a constant number of features!

VSWEM allows us to convert a variable-length sentence to a fixed-length feature vector

We'd like a more flexible model...

 Interpret words in context (i.e. allow word meaning to be modified by earlier words)

 Make predictions for each word rather than the sentence as a whole (e.g. part of speech tagging, PHI identification)

Generate text

RECURRENT NEURAL NETWORKS

Vector for w_{n-1}

 h_{n-1}

$$h_n = \tanh(W \cdot x_{n-1} + b)$$

$$p(w_n|w_{n-1},h_{n-1}) = \operatorname{softmax}(U \cdot h_n + \beta)$$

Intuition on Model for Predicting *n*th Word

 h_{n-1} : Tells us which words were likely prior to selection of previous word (context)

 w_{n-1} : Tells us which word was used/selected at point n-1 in text, as we predict the nth word

Generating Text

Predicting a Single Output

Deidentification of Patient Notes

Table 5. Examples of correctly detected PHI instances (in bold) by the ANN

PHI category	ANN				
AGE	Father had a stroke at <u>80</u> and died of?another stroke at age Personal data and overall health: Now <u>63</u> , despite his FH: Father: Died @ <u>52</u> from EtOH abuse (unclear exact etiology) Tobacco: smoked from age 7 to <u>15</u> , has not smoked since 15.				
CONTACT	History of Present Illness <u>86F</u> reports worsening b/l leg pain. by phone, Dr. Ivan Guy. Call w/ questions <u>86383</u> . Keith Gilbert, H/O paroxysmal afib VNA <u>171-311-7974</u> ======= Medications				
DATE	During his <u>May</u> hospitalization he had dysphagia Social history: divorced, quit smoking in <u>08</u> , sober x 10 yrs, She is to see him on the <u>29th</u> of this month at 1:00 p.m. He did have a renal biopsy in teh late <u>60s</u> adn thus will look for results, Results <u>02/20/2087</u> NA 135, K 3.2 (L), CL 96 (L), CO2 30.6, BUN 1 Jose Church, M.D. /ray DD: 01/18/20 DT: <u>01/19/:0</u> DV: 01/18/20				

De-identification of patient notes with recurrent neural networks

Dernoncourt F, Lee JY, Uzuner O, Szolovits P JAMIA 24(3), 2017, 596–606

- A bidirectional RNN is used to identify PHI (18 HIPAA fields)
- i2b2: 889 discharge summaries,
 >28k PHI tokens
- MIMIC: 1635 discharge summaries, >60k PHI tokens
- State of the art sensitivity and F1 metric on both datasets

Deidentification via Recurrent Neural Network...

...Specifically, an LSTM

Modifications to RNN for Deidentification

- 1. LSTM provides a more flexible representation of previous context
 - output and cell state are both passed to the next block

- 2. Bidirectional LSTM provides context from subsequent words as well as previous words
- 3. Character-level RNN allows a non-trivial representation of out-of-dictionary tokens

From: De-identification of patient notes with recurrent neural networks

J Am Med Inform Assoc. 2016;24(3):596-606. doi:10.1093/jamia/ocw156

J Am Med Inform Assoc | © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Character embedding dimension: **25**

Character-based token-embedding LSTM dimension: **25**

Token embedding dimension: **100**

Label prediction LSTM dimension: **100**

Deidentification of Patient Notes

RESULTS

Train, Validation, Test

MIMIC: i2b2:

80% train/validation 60% train/validation

20% test 40% test

"All results were computed using the official evaluation script from the i2b2 2014 de-identification challenge."

Table 3. Overview of the i2b2 and MIMIC datasets

Statistics	i2b2	MIMIC	
Vocabulary size	46 803	69 525	
Number of notes	1304	1635	
Number of tokens	984 723	2 945 228	
Number of PHI instances	28 867	60 725	
Number of PHI tokens	41 355	78 633	

Examples of PHI Identified by the RNN

AGE	Father had a stroke at <u>80</u> and died of?another stroke at age Personal data and overall health: Now <u>63</u> , despite his FH: Father: Died @ <u>52</u> from EtOH abuse (unclear exact etiology) Tobacco: smoked from age 7 to <u>15</u> , has not smoked since 15.
CONTACT	History of Present Illness <u>86F</u> reports worsening b/l leg pain. by phone, Dr. Ivan Guy. Call w/ questions <u>86383</u> . Keith Gilbert, H/O paroxysmal afib VNA <u>171-311-7974</u> ====== Medications
DATE	During his <u>May</u> hospitalization he had dysphagia Social history: divorced, quit smoking in <u>08</u> , sober x 10 yrs, She is to see him on the <u>29th</u> of this month at 1:00 p.m. He did have a renal biopsy in teh late <u>60s</u> adn thus will look for results, Results <u>02/20/2087</u> NA 135, K 3.2 (L), CL 96 (L), CO2 30.6, BUN 1 Jose Church, M.D. /ray DD: 01/18/20 DT: <u>01/19/:0</u> DV: 01/18/20

Evaluation Metrics

Precision, or positive predictive value:

true positives			
all positive predictions			

Recall, or sensitivity:

 $\frac{\text{true positives}}{\text{all condition positives}}$

F1-score:

 $\frac{2 * precision * recall}{precision + recall}$

	Condition Positive	Condition Negative		
Prediction Positive	True Positive	False Positive		
Prediction Negative	False Negative	True Negative		

RNN Model Outperforms Previous Benchmarks

Table 4. Performance (%) on the PHI as defined in HIPAA

	i2b2			MIMIC		
Model	Precision	Recall	F1	Precision	Recall	F1
Nottingham	99.000	96.400	97.680	_	_	_
MIST	91.445	92.745	92.090	95.867	98.346	97.091
CRF	98.560	96.528	97.533	99.060	98.987	99.023
ANN	98.320	97.380	97.848	99.208	99.251	99.229
CRF + ANN	97.920	<u>97.835</u>	<u>97.877</u>	98.820	99.398	99.108