Quiz 03

Due Apr 22 at 11:59pm

Points 10

Questions 10

Available Apr 20 at 12pm - Apr 22 at 11:59pm 2 days

Time Limit 60 Minutes

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	7 minutes	10 out of 10

③ Correct answers will be available on Apr 23 at 12:01am.

Score for this quiz: 10 out of 10

Submitted Apr 20 at 5pm

This attempt took 7 minutes.

Question 1	1 / 1 pts
Why does "Moore's Law of Clock Speed" no longer hold?	
It would result in way too much power consumption and heat dissipation.	pation
Because connection lines on CPU chips can no longer be made the	at thin
Because CPU clocks can no longer be made to run that fast	
Because Moore's Law of Transistor Density no longer holds either	

Question 2 1 / 1 pts

The reason the red-black pattern is necessary for the **Bubble Sort** example is:

You don't want to simultaneously be reading and wr multiple threads	iting the same value from
It prevents False Sharing	
It isn't truly necessary, but it is good practice	
It speeds up the algorithm	
Question 3	1 / 1 pts

Question 3	1 / 1 pts
When using OpenMP Tasks to apply parallelism to traversing a binathe uniformity of the distribution of tasks among the threads:	ary tree,
Depends on the compiler	
Depends on the amount of physical memory you have	
Depends on how well you use the OpenMP task clauses	
O Depends on the type of CPU	

Question 4	1 / 1 pts
The difference between L1 and L2 cache is	
L2 has two banks of memory, L1 only has one	
L1 is larger and slower than L2	

Nothing they are two terms for the same thing	
L1 is smaller and faster than L2	

Question 5	1 / 1 pts
Why is there a photo of a carton of eggs in the Cache notes?	
Andy Warhol would have appreciated it this way	
Bringing home a dozen eggs when you only need 2 today is like the necache Cache	eed for
Because caches are easily broken	
No logical reason it looks cool	

Question 6	1 / 1 pts
Caches are at their very best when your code takes advantage of	
Singular and Temporal coherency	
Spatial and Temporary coherency	
Singular and Temporary coherency	
Spatial and Temporal coherency	

Question 7	1 / 1 pts
When adding up the elements of a 2D array in C or C++, it is faste the elements:	r to add
Vetically (i.e., down the columns) first	
It makes no speed difference either way	
Horizontally (i.e., across the rows) first	

Question 8	1 / 1 pts
In terms of 32-bit floating-point numbers, the size of a cache line is ty	pically:
64 floating-point numbers	
16 floating-point numbers	
32 floating-point numbers	
8 floating-point numbers	

Question 9	1 / 1 pts
MESI stands for	
Multicore-Exclusive-Shared-Invalid	
Modified-Exterior-Shared-Invalid	

Modified-Exclusive-Shared-Invalid	
Modified-Exclusive-Shared-Instructions	
Nothing, it is someone's name	
Modified-Exclusive-Single-Invalid	

Question 10	1 / 1 pts
False Sharing happens because	
More than two threads are trying to read from the same cache line	
Two threads are reading from the same cache line	
Two threads are not sharing the same cache line, but should be	
One thread is accessing the same cache line that another thread is write.	ting to

Quiz Score: 10 out of 10