Matrix algebra

Zhixiang ZHANG

University of Macau

zhixzhang@um.edu.mo

January 9, 2025

Contents

1 checklist

Contents

1 checklist

2 Some basics of Vectors

Contents

1 checklist

2 Some basics of Vectors

3 Some basics of Matrices

Table of Contents

1 checklist

2 Some basics of Vectors

3 Some basics of Matrices

checklist

- vectors: column vector, row vector, vector addition and subtraction, scalar multiplication, dot product, length (norm), unit vector, angle, linear independence
- matrix: matrix addition and subtraction, scalar multiplication, matrix multiplication (product), matrix transpose, determinant, matrix rank, invertible (non-singular) matrix, symmetric matrix, orthogonal matrix, eigendecomposition, SVD, positive-(semi) definite matrix, quadratic forms, trace
- row space, column space, basis, kernel of a linear transformation

Table of Contents

1 checklist

2 Some basics of Vectors

3 Some basics of Matrices

Vector

An array \mathbf{x} of n real numbers $x_1, \dots x_n$ is called a vector, and it can be written as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{or} \quad \mathbf{x}^\top = [x_1, x_2, \dots, x_n]$$
, for $n = 3$:

Geometrically, for n = 3:

Length, inner product and angle

• The *length* of a vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^\top$, with n components, is defined by

$$\|\mathbf{x}\|_2 := \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

This is the Euclidean norm.

• For an arbitrary number of dimensions n, we define the inner product of \mathbf{x} and \mathbf{y} as

$$\mathbf{x}^{\top}\mathbf{y} = x_1y_1 + x_2y_2 + \cdots + x_ny_n$$

The inner product is denoted by either $\mathbf{x}^{\top}\mathbf{y}$ or $\mathbf{y}^{\top}\mathbf{x}$.

 \bullet The angle of two vectors \mathbf{x} and \mathbf{y} satisfies

$$\cos(\theta) = \frac{\mathbf{x}^{\mathsf{T}} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2} = \frac{\mathbf{x}^{\mathsf{T}} \mathbf{y}}{\sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{x}} \sqrt{\mathbf{y}^{\mathsf{T}} \mathbf{y}}}.$$

We say \mathbf{x} and \mathbf{y} are orthogonal (or perpendicular) if $\mathbf{x}^{\top}\mathbf{y}$ is zero.

Example

Given the vectors $\mathbf{x}^{\top} = [1, 3, 2]$ and $\mathbf{y}^{\top} = [-2, 1, -1]$, find $3\mathbf{x}$ and $\mathbf{x} + \mathbf{y}$. Next, determine the length of \mathbf{x} , the length of \mathbf{y} , and the angle between \mathbf{x} and \mathbf{y} .

First,

$$3\mathbf{x} = 3 \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}$$

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1-2 \\ 3+1 \\ 2-1 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}$$

Next,
$$\mathbf{x}^{\top}\mathbf{x} = 1^2 + 3^2 + 2^2 = 14$$
, $\mathbf{y}^{\top}\mathbf{y} = (-2)^2 + 1^2 + (-1)^2 = 6$, and $\mathbf{x}^{\top}\mathbf{y} = 1(-2) + 3(1) + 2(-1) = -1$. Therefore,

$$\|\mathbf{x}\|_{2} = \sqrt{\mathbf{x}^{\top}\mathbf{x}} = \sqrt{14} = 3.742 \quad \|\mathbf{y}\|_{2} = \sqrt{\mathbf{y}^{\top}\mathbf{y}} = \sqrt{6} = 2.449$$

and

$$\cos(\theta) = \frac{\mathbf{x}^{\top} \mathbf{y}}{\|\mathbf{x}\|_{2} \|\mathbf{y}\|_{2}} = \frac{-1}{3.742 \times 2.449} = -.109$$

so $\theta = 96.3^{\circ}$.

Linear independence

Linear independence

A set of vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ is said to be *linearly dependent* if there exist constants c_1, c_2, \dots, c_k , not all zero, such that

$$c_1\mathbf{x}_1+c_2\mathbf{x}_2+\cdots+c_k\mathbf{x}_k=\mathbf{0}$$

Linear dependence implies that at least one vector in the set can be written as a linear combination of the other vectors. Vectors of the same dimension that are not linearly dependent are said to be *linearly independent*.

Example

Consider the set of vectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Setting

$$c_1\mathbf{x}_1+c_2\mathbf{x}_2+c_3\mathbf{x}_3=\mathbf{0}$$

implies that

$$c_1 + c_2 + c_3 = 0$$

 $2c_1 - 2c_3 = 0$
 $c_1 - c_2 + c_3 = 0$

with the unique solution $c_1 = c_2 = c_3 = 0$. As we cannot find three constants c_1 , c_2 , and c_3 , not all zero, such that $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3 = \mathbf{0}$, the vectors \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 are linearly independent.

Projection of a vector on another vector

The *projection* of a vector \mathbf{x} on a vector \mathbf{y} is

Projection of
$$\mathbf{x}$$
 on $\mathbf{y} = \frac{(\mathbf{x}^{\top}\mathbf{y})}{\mathbf{y}^{\top}\mathbf{y}}\mathbf{y} = \frac{(\mathbf{x}^{\top}\mathbf{y})}{\|\mathbf{y}\|_2} \frac{1}{\|\mathbf{y}\|_2} \mathbf{y}$

where the vector $\|\mathbf{y}\|_2^{-1}\mathbf{y}$ has unit length. The length of the projection is

Length of projection
$$=\frac{|\mathbf{x}^{\top}\mathbf{y}|}{\|\mathbf{y}\|_2} = \|\mathbf{x}\|_2 \left| \frac{\mathbf{x}^{\top}\mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2} \right| = \|\mathbf{x}\|_2 |\cos(\theta)|$$

where θ is the angle between **x** and **y**.

Table of Contents

1 checklist

2 Some basics of Vectors

3 Some basics of Matrices

Matrix multiplication (product)

Matrix multiplication

The matrix multiplication \mathbf{AB} of an $m \times n$ matrix $\mathbf{A} = \{a_{ij}\}$ and an $n \times k$ matrix $\mathbf{B} = \{b_{ij}\}$ is the $m \times k$ matrix \mathbf{C} whose elements are

$$c_{ij} = \sum_{\ell=1}^n a_{i\ell} b_{\ell j}$$
 $i = 1, 2, \dots, m$ $j = 1, 2, \dots, k$

Note that for the product **AB** to be defined, the column dimension of **A** must equal the row dimension of **B**.

Let **I** denote the square matrix with ones on the diagonal and zeros elsewhere, then $\mathbf{AI} = \mathbf{IA} = \mathbf{A}$ The matrix **I** acts like 1 in ordinary multiplication $(1 \cdot \mathbf{a} = \mathbf{a} \cdot 1 = \mathbf{a})$, so it is called the *identity matrix*.

Matrix transpose

- The *transpose* operation \mathbf{A}^{\top} of a matrix changes the columns into rows, so that the first column of \mathbf{A} becomes the first row of \mathbf{A}^{\top} , the second column becomes the second row, and so forth. In other words, $(\mathbf{A}^{\top})_{jj} = (\mathbf{A})_{ij}$.
- Example: If

then

$$\mathbf{A}_{(2\times3)} = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 5 & 4 \end{bmatrix} \quad (\mathbf{A}^{\mathsf{T}})\mathbf{j}\mathbf{i} = \mathbf{A}\mathbf{i}\mathbf{j}$$

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ -1 & 5 \\ 2 & 4 \end{bmatrix} \quad \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 3 & 1 \\ -1 & 5 \\ 2 & 4 \end{bmatrix} \quad \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 3 & 1 \\ -1 & 5 \\ 2 & 4 \end{bmatrix}$$

For all matrices A, B. and C (of dimensions such that the indicated products are defined) and a scalar c, voity: (AB) = BTAT: prove (AB) = BTAT. if enery is the same for vanitication.

$$c(\mathbf{AB}) = (c\mathbf{A})\mathbf{B}$$

$$\bullet \ \mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$$

$$\bullet \mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

$$\bullet (\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$$

$$\bullet (\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$

$$\mathcal{D}(AB)^{T}ij$$

$$\mathcal{D}(B^{T}A^{T})ij$$

$$\mathcal{D}(B^{T}A^{T})ij = \sum_{h=1}^{n} (B^{T})i_{h}(A^{T})hij = \sum_{h=1}^{n} AjhBhi = (AB)ji$$

$$\mathcal{D}(AB)^{T}ij = (AB)^{T}ij$$

There are several important differences between the algebra of matrices and the algebra of real numbers. Two of these differences are as follows:

C = AB (2j-entry) $Cij = \sum_{k=1,2,...,n} Aik Bkj , k=1,2,...,n.$

1. Matrix multiplication is, in general, not commutative. That is, in general, $\mathbf{AB} \neq \mathbf{BA}$. For example

$$\left[\begin{array}{cc} 3 & -1 \\ 4 & 7 \end{array}\right] \left[\begin{array}{c} 0 \\ 2 \end{array}\right] = \left[\begin{array}{c} -2 \\ 14 \end{array}\right]$$

but

$$\begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 4 & 7 \end{bmatrix}$$

$$\alpha:I=J\cdot\alpha=\alpha$$
 $\alpha:S=n$
 $\alpha:S=n$
 $AI=JA=A$

is not defined.

Matrix multiplication

2. Let **0** denote the zero matrix, that is, the matrix with zero for every element. In the algebra of real numbers, if the product of two numbers, ab, is zero, then a = 0 or b = 0. In matrix algebra, however, the product of two nonzero matrices may be the zero matrix. Hence,

$$\mathbf{AB}_{(m\times n)(n\times k)} = \mathbf{0}_{(m\times k)}$$

does not imply that
$$\mathbf{A} = \mathbf{0}$$
 or $\mathbf{B} = \mathbf{0}$. For example,
$$\begin{bmatrix} 3 & 1 & 3 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

It is true, however, that if either $\mathbf{A} = \mathbf{0} \text{ or } \mathbf{B} = \mathbf{0} \text{ (n × k)}$, then

$$\mathbf{AB}_{(m\times n)(n\times k)} = \mathbf{0}_{(m\times k)}.$$

Determinant in matrix inverse

Determinant recursively

The determinant of the square $k \times k$ matrix $\mathbf{A} = \{a_{ij}\}$, denoted by $|\mathbf{A}|$, is the scalar

$$|\mathbf{A}| = a_{11}$$
 if $k = 1$
 $|\mathbf{A}| = \sum_{j=1}^{k} a_{1j} |\mathbf{A}_{1j}| (-1)^{1+j}$ if $k > 1$

where $\underline{\mathbf{A}_{1j}}$ is the $(k-1)\times(k-1)$ matrix obtained by deleting the first row and j th column of **A**. Also, $|\mathbf{A}| = \sum_{i=1}^{k} a_{ij} |\mathbf{A}_{ij}| (-1)^{i+j}$, with the i th row in place of the first row.

Example

• If **I** is the $k \times k$ identity matrix, $|\mathbf{I}| = 1$.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22}(-1)^2 + a_{12}a_{21}(-1)^3 = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} (-1)^2 + a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} (-1)^3 + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} (-1)^4$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{21} a_{32} a_{13} - a_{31} a_{22} a_{13} - a_{21} a_{12} a_{33} - a_{32} a_{23} a_{11}$$

Rank important, close to PCA Interception, Factor Analysis

- The <u>row rank</u> of a matrix is the <u>maximum number of linearly</u> independent rows, considered as vectors (that is, row vectors). The <u>column rank</u> of a matrix is the <u>rank</u> of its <u>set of columns</u>, considered as <u>vectors</u>.
- The row rank and the column rank of a matrix are equal. Thus, the rank of a matrix is either the row rank or the column rank.
- For example, for the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & -1 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 1 & 1 \\ \sqrt{50|ve} & \sqrt{50|ve} & \sqrt{50|ve} \\ \sqrt{50|ve} & \sqrt{50|$$

the rank is two.

$$\Rightarrow$$
 now rank = 2

Matrix inverse

Matrix inverse

If there exists a matrix **B** such that

$$\mathbf{B}_{(k\times k)(k\times k)} = \mathbf{A}_{(k\times k)(k\times k)} = \mathbf{I}_{(k\times k)},$$

then $\underline{\mathbf{B}}$ is called the <u>inverse</u> of $\underline{\mathbf{A}}$ and is denoted by $(\underline{\mathbf{A}}^{-1})$.

There a large triangle $\underline{\mathbf{A}}$ inverse pseudo inverse root discussed. No spuce $\underline{\mathbf{A}}$

For a $k \times k$ matrix **A**:

the existence of A^{-1} rank(A) = K = rank_ron(A) = rank_cohumn (A) $\stackrel{\circ}{\iff}$ **A** has full column (row) rank

Matrix inverse

Calculated

- In general, \mathbf{A}^{-1} has (i,j)-th entry $[(-1)^{j+i} |\mathbf{A}_{ji}|/|\mathbf{A}|]$, where \mathbf{A}_{ji} is the matrix obtained from \mathbf{A} by deleting the j th row and i th column.
- Specifically, the inverse of any 2×2 matrix

$$\mathbf{A} = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

is given by

$$\mathbf{A}^{-1} = rac{1}{|\mathbf{A}|} \left[egin{array}{ccc} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{array}
ight].$$

Some properties of matrix inverse and determinant

Let **A** and **B** be square matrices of the same dimension, and let the indicated inverses exist. Then the following hold:

$$\bullet \ \left(\mathbf{A}^{-1}\right)^{\top} = \left(\mathbf{A}^{\top}\right)^{-1}$$

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

Let **A** an **B** be $k \times k$ square matrices.

- ullet $|\mathbf{A}| = |\mathbf{A}^{ op}|$
- If each element of a row (column) of **A** is zero, then $|\mathbf{A}| = 0$
- If any two rows (columns) of **A** are identical, then $|\mathbf{A}| = 0$
- If **A** is nonsingular, then $|\mathbf{A}| = 1/|\mathbf{A}^{-1}|$; that is, $|\mathbf{A}||\mathbf{A}^{-1}| = 1$.
- |AB| = |A||B|

$$CA = \begin{bmatrix} CA_{11} & cA_{12} & \cdots & cA_{1k} \\ CA_{21} & cA_{22} & \cdots \\ \vdots & \ddots & \ddots \\ CA_{2k} & \cdots & \cdots \\ CA_{2$$

Diagonal matrix

- The calculations of matrix inverse are usually proceeded by a computer, especially when the dimension is greater than three.
- Diagonal matrices have inverses that are easy to compute. For example,

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 0 \\ 0 & 0 & a_{33} & 0 & 0 \\ 0 & 0 & 0 & a_{44} & 0 \\ 0 & 0 & 0 & 0 & a_{55} \end{bmatrix} \text{ has inverse } \begin{bmatrix} \frac{1}{a_{11}} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{a_{22}} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{a_{33}} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{a_{44}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{a_{55}} \end{bmatrix}$$

if all the $a_{ii} \neq 0$.

Symmetric matrix and Orthogonal matrix (A+B+c) = AT+BT+cT

- - $\mathbf{A} = \mathbf{A}^{\top}$ or $a_{ii} = a_{ji}$ for all i and j.
- Another special class of square matrices are the orthogonal matrices, characterized by eigenvectors $\mathbf{Q} \mathbf{Q}^{\mathsf{T}} = \mathbf{Q}^{\mathsf{T}} \mathbf{Q} \mathbf{Q}^{\mathsf{T}} = \mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{I} \text{ or } \mathbf{Q}^{\mathsf{T}} = \mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{Q$

$$\mathbf{Q}\mathbf{Q}^{\top} = \mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I} \text{ or } \mathbf{Q}^{\top} = \mathbf{Q}^{-1} \stackrel{\text{let } (\mathbf{U} \otimes \mathbf{T}) = \text{ det } (\mathbf{U}) = \mathbf{V}} = \underbrace{\mathbf{Q}^{-1}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} = \underbrace{\mathbf{Q}^{-1}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} = \underbrace{\mathbf{Q}^{-1}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} = \underbrace{\mathbf{Q}^{-1}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} = \underbrace{\mathbf{Q}^{-1}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} = \underbrace{\mathbf{Q}^{-1}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} = \underbrace{\mathbf{Q}^{-1}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U}) = \mathbf{V}}_{= \text{ det } (\mathbf{U})} \stackrel{\text{let } (\mathbf{U})}_{=$$

The name derives from the property that if (\mathbf{Q}) has i th row \mathbf{q} , then $\mathbf{Q}\mathbf{Q}^{\top} = \mathbf{I}$ implies that $(\mathbf{q}_i^{\top}\mathbf{q}_i = 1)$ and $(\mathbf{q}_i^{\top}\mathbf{q}_i = 0)$ for $i \neq j$, so the rows

have unit length and are mutually perpendicular (orthogonal).

According to the condition $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$, the columns have the same

If
$$u = \begin{cases} k_1 T \\ k_2 T \end{cases}$$
 $u = \begin{cases} k_1 T \\ k_2 T \end{cases}$ $(k_1 k_2 \cdots k_K)$

Eigenvalues and eigenvectors

A square matrix **A** is said to have an $eigenvalue'\lambda$, with corresponding

 $eigenvector \mathbf{x} \neq \mathbf{0}$, if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$$

$$A(2x) = \lambda(2x)$$

$$A(2x) = \lambda(2x)$$

$$A(2x) = \lambda(2x)$$

• Let \mathbf{A} be a $k \times k$ square matrix and \mathbf{I} be the $k \times k$ identity matrix. Then the scalars $\lambda_1, \lambda_2, \ldots, \lambda_k$ satisfying the polynomial equation $|\mathbf{A} - \lambda \mathbf{I}| \stackrel{\text{def}}{=} 0$ are the eigenvalues (or characteristic roots) of a matrix \mathbf{A} . The equation $|\mathbf{A} - \lambda \mathbf{I}| = 0$ (as a function of λ) is called the characteristic equation. Ax $= \lambda \lambda$

that it has length unity.

Ax= λx (x=0)

why eigenvalues solve $\det(A-\lambda I) = 0$.

Ax= $\lambda x = (A-\lambda I) x = 0$ this means $\lambda : I_{col} = A - \lambda I + \lambda I + \lambda I_{col} = A - \lambda I_{col} + \lambda I_{col} = A - \lambda I_{$

Eigenvalue decomposition

Eigenvalue decomposition $\begin{aligned}
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}, \dots, \lambda_{k} u_{k}) \\
& = (\lambda_{1} u_{1}, \lambda_{2} u_{2}$

Let **A** be a $k \times k$ square symmetric matrix. Then **A** can be expressed in terms of its k eigenvalue-eigenvector pairs $(\lambda_i, \mathbf{u}_i)$ as

If
$$\lambda_i \neq \lambda_i$$
, then $u_i^T u_j = 0$.

$$\begin{cases} Au_i = \lambda_i u_i \rightarrow u_i^T Au_i = u_i^T \lambda_i u_i \\ Au_j = \lambda_j u_j \rightarrow u_i^T Au_j = u_i^T \lambda_i u_j \end{cases}$$

$$\mathbf{A} = \sum_{i=1}^k \lambda_i \mathbf{u}_i \mathbf{u}_i^T.$$

In a matrix form, we can write $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$ where \mathbf{U} is an $k \times k$ orthogonal matrix whose ith column is the eigenvector \mathbf{u}_i of \mathbf{A} , and $\mathbf{\Lambda}$ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, and usually sorted in descending order.

(For each distinct eigenvalue find associated eigenseever)

For multiple eigenvalue, Gräm-Schmide to pet orthogonal busis (Au., Au., ..., Aux) = (Au., Au., ..., Aux) = (Au., Aux, ..., Aux) = (Aux, Aux, ..., Aux, ..., Aux, ..., Aux) = (Aux, Aux, ..., Aux, ..

Example

For example, let

eve
$$f = \begin{bmatrix} -\cos\theta & \sin\theta \end{bmatrix}$$
 $\mathbf{A} = \begin{bmatrix} 2.2 & .4 \\ .4 & 2.8 \end{bmatrix}$

Some basics of Matrices $= (u_1, u_2, u_1) \int_{\mathbb{R}^{N}} dx = U$ = U

Then

$$|\mathbf{A} - \lambda \mathbf{I}| = \lambda^2 - 5\lambda + 6.16 - .16 = (\lambda - 3)(\lambda - 2)$$

so A has eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$. The corresponding eigenvectors are $\mathbf{u}_1^{\top} = [1/\sqrt{5}, 2/\sqrt{5}]$ and $\mathbf{u}_2^{\top} = [2/\sqrt{5}, -1/\sqrt{5}]$, respectively. Consequently, check that $u_1^{\top}u_2 = 0$ ($u_2^{\top}u_1 = 0$)

$$\mathbf{A} = \begin{bmatrix} 2.2 & .4 \\ .4 & 2.8 \end{bmatrix} = 3 \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} + 2 \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix}.$$

Why eigenvalue decomposition important

- The spectral decomposition is an important analytical tool. With the eigen-decomposition of sample covariance matrices, we are very easily able to demonstrate certain statistical results (later in this course).
- Another advantage is certain matrix operation becomes easier, e.g., calculating A^{-1} or A^{100} . We can also find the square root of a positive-definite matrix using eigenvalue decomposition. $A^{-1} = (U \wedge V^{T})^{-1} = (U^{T})^{-1} \wedge V^{-1} = (U \wedge V^{-1} \cup V^{T})^{-1} = (U \wedge V^{T})^{-1} \wedge V^{T} = (U \wedge V^{$

$$A^{-1} = (U \wedge V^{T})^{-1} = (U^{T})^{-1} \wedge U^{-1} = U^{T}$$

$$A^{Loo} = U \wedge U^{T} U \wedge U^{T} - \dots \wedge U^{T}$$

$$= (U \wedge V^{T})^{-1} \wedge U^{T} = U^{T} \wedge U^{T} = U^{T} \wedge U^{T} \wedge U^{T} = U^{T} \wedge U^$$

Singular Value Decomposition

A Singular Value Decomposition (SVD) of an $n \times d$ matrix A expresses the matrix as the product of three "simple" matrices:

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{ op}$$

where:

- U is an $n \times n$ orthogonal matrix
- **V** is an $d \times d$ orthogonal matrix;
- **S** is an $n \times d$ matrix with non-zero entries on main-diagonal, sorted in descending order.

Figure: The singular value decomposition (SVD). Each singular value in $\bf S$ has an associated left singular vector in $\bf U$, and right singular vector in $\bf V$.

- The columns of **U** and **V** are called the *left singular vectors* and *right singular vectors* of **A**, respectively. The entries on the main-diagonal position are *singular values* of **A**.
- Another way to write the SVD is $\mathbf{A} = \sum_{i=1}^{\min\{n,d\}} s_i \mathbf{u}_i \mathbf{v}_i^{\top}$, where \mathbf{u}_i , \mathbf{v}_i are the *i*-th column of \mathbf{U} , \mathbf{V} , respectively.
- How to obtain SVD of **A**? The columns of **V** are the eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$, the singular values are the square roots of the eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$, and the columns of **U** are the eigenvectors of $\mathbf{A}\mathbf{A}^{\top}$. Remark: When n > d, computing those eigenvectors associated with non-zero eigenvalues of $\mathbf{A}\mathbf{A}^{\top}$ is sufficient to obtain the SVD.

Positive definite matrix and quadratic form

Positive-definite matrix& quadratic form

When a $k \times k$ symmetric matrix **A** satisfies

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \ge 0$$

for all $\mathbf{x}^{\top} = [x_1, x_2, \dots, x_k] \in \mathbb{R}^k$, the matrix \mathbf{A} is said to be *positive* semi-definite (or nonnegative definite), denoted by $\mathbf{A} \succeq 0$. If equality holds only for the vector $\mathbf{x}^{\top} = [0, 0, \dots, 0]$, then \mathbf{A} is said to be *positive* definite, denoted by $\mathbf{A} \succeq 0$.

Because $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ has only squared terms x_i^2 and product terms $x_i x_k$, it is called a *quadratic form*. If \mathbf{A} is positive definite, $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ is called a positive definite quadratic form.

A $k \times k$ symmetric matrix **A** is a positive definite matrix if and only if every eigenvalue of **A** is positive!

Quadratic form and Distance

For any matix A. Cpn+n

If we use the distance formula introduced in Chapter 1, the distance from the origin satisfies the general formula

(distance)² =
$$a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{pp}x_p^2$$
 for any $\chi \in \mathbb{R}^n$
+ $2(a_{12}x_1x_2 + a_{13}x_1x_3 + \dots + a_{p-1,p}x_{p-1}x_p)$

provided that (distance) $)^2 > 0$ for all $[x_1, x_2, \dots, x_p] \neq [0, 0, \dots, 0]$.

$$\mathbb{E}\left(\chi_{i} - \mathbb{E}(\chi_{i})(\chi_{i} - \mathbb{E}(\chi_{i})^{\mathsf{T}}\right)$$

$$0 < (\text{distance })^{2} = [x_{1}, x_{2}, \dots, x_{p}]$$

Setting
$$a_{ij} = a_{ji}$$
, $i \neq j$, $i = 1, 2, \dots, p$, $j = 1, 2, \dots, p$, we have
$$\begin{bmatrix}
x_1 - \xi(x_1) \\ x_2 - \xi(x_1) \end{bmatrix}$$

$$0 < (\text{distance })^2 = [x_1, x_2, \dots, x_p]$$

$$\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pp}
\end{bmatrix}$$

$$\begin{bmatrix}
x_1 \\ x_2 \\ \vdots \\ x_p
\end{bmatrix}$$

or

$$0 < (\text{distance})^2 = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \quad \text{for } \mathbf{x} \neq \mathbf{0}.$$

Geometrical understanding

- Expressing distance as the square root of a positive definite quadratic form allows us to give a geometrical interpretation based on the eigenvalues and eigenvectors of the matrix \mathbf{A} .
- For example, suppose p = 2. Then the points $\mathbf{x}^{\top} = [x_1, x_2]$ of constant distance c from the origin satisfy

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = a_{11} x_1^2 + a_{22} x_2^2 + 2 a_{12} x_1 x_2 = c^2$$

By the spectral decomposition,

$$\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1^\top + \lambda_2 \mathbf{e}_2 \mathbf{e}_2^\top \text{ so } \mathbf{x}^\top \mathbf{A} \mathbf{x} = \lambda_1 \left(\mathbf{x}^\top \mathbf{e}_1 \right)^2 + \lambda_2 \left(\mathbf{x}^\top \mathbf{e}_2 \right)^2$$

Now, $c^2 = \lambda_1 y_1^2 + \lambda_2 y_2^2$ is an ellipse in $y_1 = \mathbf{x}^{\top} \mathbf{e}_1$ and $y_2 = \mathbf{x}^{\top} \mathbf{e}_2$ because $\lambda_1, \lambda_2 > 0$ when **A** is positive definite.

Geometrical understanding

• We easily verify that $\mathbf{x} = c\lambda_1^{-1/2}\mathbf{e}_1$ satisfies $\mathbf{x}^{\top}\mathbf{A}\mathbf{x} = \lambda_1 \left(c\lambda_1^{-1/2}\mathbf{e}_1^{\top}\mathbf{e}_1\right)^2 = c^2$. Similarly, $\mathbf{x} = c\lambda_2^{-1/2}\mathbf{e}_2$ gives the appropriate distance in the \mathbf{e}_2 direction.

A ≥ 0 : given $0 \geq 0$, $b^2 = a$, in matrix case: $B^2 = A$, such B is the squere next of $A \geq 0$. Problem: B? Solution: $A = UAU^T$. Let B = Square-root matrix: $UA^{\frac{1}{2}}U^T$, thus $B^2 = UA^{\frac{1}{2}}U^T = UAU^T$ since $u^Tu = In$. Problem is this B unique? By $a = [U_1, \dots, U_n] = [U_1, \dots, U_$

$$\mathbf{A}^{1/2} = \sum_{i=1}^{k} \sqrt{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\top} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top}$$

has the following properties:

- $(\mathbf{A}^{1/2})^{\top} = \mathbf{A}^{1/2}$ (that is, $\mathbf{A}^{1/2}$ is symmetric).
- $\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$. $(\mathbf{A}^{1/2})^{-1} = \sum_{i=1}^{k} \frac{1}{\sqrt{\lambda_i}} \mathbf{u}_i \mathbf{u}_i^{\top} = \mathbf{U} \mathbf{\Lambda}^{-1/2} \mathbf{U}^{\top}$, where $\mathbf{\Lambda}^{-1/2}$ is a diagonal matrix with $1/\sqrt{\lambda_i}$ as the *i* th diagonal element.
- $\mathbf{A}^{1/2}\mathbf{A}^{-1/2} = \mathbf{A}^{-1/2}\mathbf{A}^{1/2} = \mathbf{I}$, and $\mathbf{A}^{-1/2}\mathbf{A}^{-1/2} = \mathbf{A}^{-1}$, where $\mathbf{A}^{-1/2} = (\mathbf{A}^{1/2})^{-1}$.

Trace

Let $\mathbf{A} = \{a_{ij}\}$ be a $k \times k$ square matrix. The *trace* of the matrix \mathbf{A} ,

- $\operatorname{tr}(c\mathbf{A}) = c\operatorname{tr}(\mathbf{A})$
- $\operatorname{tr}(\mathbf{A} \pm \mathbf{B}) = \operatorname{tr}(\mathbf{A}) \pm \operatorname{tr}(\mathbf{B})$
- $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA}) \Rightarrow \operatorname{tr}(A_1 A_2 A_3 \cdots A_{k-1} A_k) = \operatorname{tr}(A_k A_1 A_2 \cdots A_{k-1}) = \operatorname{tr}(A_{k-1} A_k \cdots A_{k-2})$
- $\operatorname{tr}(\mathbf{B}^{-1}\mathbf{A}\mathbf{B}) = \operatorname{tr}(\mathbf{A})$
- $\operatorname{tr}(\mathbf{A}\mathbf{A}^{\top}) = \sum_{i=1}^{k} \sum_{i=1}^{k} a_{ii}^{2}$
- If **A** is symmetric, $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{k} \lambda_i$

tr(BBC) = tr(CBA) because tr(BBC) = tr(BCA)