Graphes

3. Chemins/circuits, chaînes/cycles et sommets ascendants/descendants

Solen Quiniou

solen.quiniou@univ-nantes.fr

IUT de Nantes

Année 2023-2024 – BUT 1 (Semestre 2)

[Mise à jour du 18 janvier 2024]

Plan du cours

Graphes orientés : chemins et circuits

Graphes non orientés : chaînes et cycles

Sommets ascendants et sommets descendants

Graphes orientés : chemins et circuits

Soit G = (S, A) un graphe orienté

Définitions : chemin

• Chemin C: suite $[x_1, x_2, ..., x_k]$ de sommets de G tel que deux sommets consécutifs quelconques x_i et x_{i+1} sont reliés par un arc de G:

$$\forall i, 1 \leq i \leq k-1, (x_i, x_{i+1}) \in A$$

- Longueur d'un chemin : nombre de sommets moins un
- Chemin simple : chemin qui ne passe pas deux fois par le même arc
- Chemin élémentaire : chemin qui ne passe pas deux fois par le même sommet

Définitions : circuit

- Circuit : chemin $[x_1, x_2, \dots, x_k]$, de longueur supérieure ou égale à 1, dont l'origine et l'extrémité sont identiques : $x_1 = x_k$
- Circuit élémentaire : circuit qui ne possède qu'une seule répétition, le sommet origine et le sommet extrémité

Exemple

- [3, 1, 5] est un chemin de longueur 2, simple et élémentaire
- [1,3,4] n'est pas un chemin
- [4, 4] est un chemin et un circuit
- [1, 5, 2, 1, 3] est un chemin simple
- [1,5,2,1] est un circuit simple et élémentaire

Plan du cours

Graphes orientés : chemins et circuits

Graphes non orientés : chaînes et cycles

Sommets ascendants et sommets descendants

Graphes non orientés : chaînes et cycles

Soit G = (S, A) un graphe non orienté

Définitions : chaîne

• Chaîne C: suite $[x_1, x_2, \dots, x_k]$ de sommets de G tel que deux sommets consécutifs quelconques x_i et x_{i+1} sont reliés par une arête de G:

$$\forall i, 1 \leq i \leq k-1, \{x_i, x_{i+1}\} \in A$$

- Longueur d'une chaîne : nombre de sommets moins un
- Chaîne simple : chaîne qui ne passe pas deux fois par la même arête
- Chaîne élémentaire : chaîne qui ne passe pas deux fois par le même sommet

Définitions : cycle

- Cycle : chaîne $[x_1, x_2, ..., x_k]$, de longueur supérieure ou égale à 1, et dont l'origine et l'extrémité sont identiques : $x_1 = x_k$
- Cycle élémentaire : cycle qui ne possède qu'une seule répétition, le sommet origine et le sommet extrémité

Exemple

- [3, 1, 5] : chaîne de longueur 2, simple et élémentaire
- [4, 4] : chaîne et un cycle
- [1,5,2,1,3] : chaîne simple
- [1,5,2,1] : cycle simple et élémentaire

Plan du cours

Graphes orientés : chemins et circuits

Graphes non orientés : chaînes et cycles

Sommets ascendants et sommets descendants

Sommets ascendants et sommets descendants

Définitions : descendants et ascendants

Soit G = (S, A) un graphe orienté

- Sommet x_k descendant du sommet x_i ssi il existe un chemin d'origine x_i et d'extrémité x_k
- → L'ensemble des descendants de x_i est noté : $desc_G(x_i) = \{x_k \in S \mid \exists [x_i, x_k] \in G\}$
- Sommet x_k ascendant du sommet x_i ssi il existe un chemin d'origine x_k et d'extrémité x_i
- → L'ensemble des ascendants de x_i est noté : $asc_G(x_i) = \{x_k \in S \mid \exists [x_k, x_i] \in G\}$

Exemple

- $desc_G(5) = \{1, 2, 3, 4\}$
- $asc_G(5) = \emptyset$
- $desc_G(1) = \emptyset$
- $asc_G(1) = \{2, 3, 4, 5\}$