

<u>Homework 1: Estimation,</u>
Confidence Interval, Modes of

课程 > Unit 2 Foundation of Inference > Convergence

2. Biased and unbiased estimation

> for variance of Bernoulli variables

2. Biased and unbiased estimation for variance of Bernoulli variables

(a)

2/2 points (graded)

Let X_1,\ldots,X_n be i.i.d. Bernoulli random variables, with unknown parameter $p\in(0,1)$. The aim of this exercise is to estimate the common variance of the X_i .

First, recall what $\mathsf{Var}(X_i)$ is for Bernoulli random variables.

Let \overline{X}_n be the sample average of the $\,X_i$,

$$\overline{X}_n = rac{1}{n} \sum_{i=1}^n X_i.$$

We are interested in finding an estimator for $\mathsf{Var}(X_i)$, and propose to use

$$\hat{V} = \overline{X}_n \left(1 - \overline{X}_n \right).$$

Check the correct statement that applies to $\,\hat{m V}$:

- \hat{V} is not consistent because $\mathsf{Var}(X_i)$ is not linear in p
- ullet is consistent because of the Law of Large Numbers ullet
- $\hat{m{V}}$ is consistent because of the Central Limit Theorem

STANDARD NOTATION

Solution:

Let us compute the variance of a Bernoulli random variable:

$$egin{array}{lll} \mathsf{Var}\left(X_i
ight) &=& \mathbb{E}\left[X_i^2
ight] - \mathbb{E}[X_i]^2 \ &=& \mathbb{E}\left[X_i
ight] - \mathbb{E}\left[X_i^2
ight] \ &=& p\left(1-p
ight) \end{array} \qquad (X_i^2 = X_i) = \qquad p-p^2 \end{array}$$

Now, we know that by the Law of Large Numbers, X_n is a consistent estimator for p, hence so is $\overline{X}_n (1-\overline{X}_n)$ for $p(1-p)= \text{Var}(X_i)$. There are no assumptions about the specific form of the variance in the LLN, except that the variable needs to have a mean. The Central Limit Theorem on the other hand tells us something about a rescaled version, but all we need here is the Law of Large Numbers.

• Answers are displayed within the problem

(b)

1/2 points (graded)

Now, we are interested in the bias of \hat{V} . Compute:

$$\mathbb{E}\left[\hat{V}
ight] - \mathsf{Var}\left(X_i
ight) = egin{bmatrix} -1 * p*(1-p)/n \ -rac{1 \cdot p \cdot (1-p)}{n} \end{bmatrix}$$
 \rightarrow Answer: $-p*(1-p)/n$

Using this, find an unbiased estimator \hat{V}' for $p\left(1-p
ight)$ if $n\geq 2$.

Write barX_n for $\overline{oldsymbol{X}}_n$.

Solution:

To compute the bias of the estimator, compute

$$egin{aligned} \mathbb{E}\left[\overline{X}_n\left(1-\overline{X}_n
ight)
ight] &= \mathbb{E}\left[\overline{X}_n
ight] - \mathbb{E}\left[\overline{X}_n^2
ight], \ &= \left[\overline{X}_n
ight] = & \mathbb{E}\left[rac{1}{n}\sum_{i=1}^n X_i
ight] \ &= & rac{1}{n}\sum_{i=1}^n \mathbb{E}\left[X_i
ight] = & p \ &= & rac{1}{n^2}\sum_{i=1}^n \mathsf{Var}\left(X_i
ight) + p^2 \ &= & rac{1}{n^2}\sum_{i=1}^n p\left(1-p
ight) + p^2 \ &= & rac{1}{n^2}\sum_{i=1}^n p\left(1-p
ight) + p^2 \ &= & rac{1}{n}p\left(1-p
ight) + p^2 \ &= & p \ &= &$$

Combined, we get

$$egin{aligned} \mathbb{E}\left[\hat{V}
ight] &=& p-p^2-rac{1}{n}p\left(1-p
ight) \ &=& rac{n-1}{n}p\left(1-p
ight) \end{aligned}$$

and therefore the bias is

$$\mathbb{E}\left[\hat{V}
ight] - \mathsf{Var}\left(X_i
ight) = -rac{1}{n}p\left(1-p
ight)$$

From the previous calculation, we observe that we can obtain an unbiased estimator if we compensate the multiplicative bias in \hat{V} , so set

$$\hat{V}' = rac{n}{n-1} \overline{X}_n \left(1 - \overline{X}_n
ight).$$