Comparison Operators

INTERMEDIATE PYTHON

Hugo Bowne-Anderson
Data Scientist at DataCamp

Numpy recap

```
# Code from Intro to Python for Data Science, Chapter 4
import numpy as np
np_height = np.array([1.73, 1.68, 1.71, 1.89, 1.79])
np\_weight = np.array([65.4, 59.2, 63.6, 88.4, 68.7])
bmi = np_weight / np_height ** 2
bmi
array([ 21.852, 20.975, 21.75 , 24.747, 21.441])
bmi > 23
array([False, False, False, True, False], dtype=bool)
bmi[bmi > 23]
array([ 24.747])
```

Comparison operators: how Python values relate

Numeric comparisons

2 < 3

3 <= 3

True

True

2 == 3

x = 2

y = 3

x < y

False

2 - 9

True

True

Other comparisons

```
"carl" < "chris"
True
3 < "chris"</pre>
TypeError: unorderable types: int() < str()</pre>
3 < 4.1
True
```

Other comparisons

```
bmi
```

```
array([21.852, 20.975, 21.75, 24.747, 21.441])
```

bmi > 23

array([False, False, False, True, False], dtype=bool)

Comparators

<	strictly less than
<=	less than or equal
>	strictly greater than
>=	greater than or equal
==	equal
!=	not equal

Let's practice!

INTERMEDIATE PYTHON

Boolean Operators

INTERMEDIATE PYTHON

Hugo Bowne-Anderson
Data Scientist at DataCamp

Boolean Operators

- and
- or
- not

and

True and True False and True False True True and False x = 12x > 5 and x < 15# True True False True False and False False

or

True or True

False or False

True

False

False or True

True or False

y = 5

y < 7**or** y > 13

True

True

True

not

not True

False

not False

True

NumPy

```
# calculation of bmi left out
array([21.852, 20.975, 21.75 , 24.747, 21.441])
bmi > 21
array([True, False, True, True, True], dtype=bool)
bmi < 22
array([True, True, True, False, True], dtype=bool)
bmi > 21 and bmi < 22
ValueError: The truth value of an array with more than one element is
ambiguous. Use a.any() or a.all()
```


NumPy

- logical_and()logical_or()logical_not()
- np.logical_and(bmi > 21, bmi < 22)</pre>

```
array([True, False, True, False, True], dtype=bool)
```

```
bmi[np.logical_and(bmi > 21, bmi < 22)]</pre>
```

array([21.852, 21.75, 21.441])

Let's practice!

INTERMEDIATE PYTHON

if, elif, else

INTERMEDIATE PYTHON

Hugo Bowne-Anderson
Data Scientist at DataCamp

Overview

Comparison Operators

```
o < , > , <= , == , !=
```

Boolean Operators

```
o and, or, not
```

Conditional Statements

```
o if , else , elif
```

```
if condition :
   expression
```

control.py

```
z = 4
if z % 2 == 0 :  # True
    print("z is even")
```

z is even

```
if condition :
    expression
```

expression not part of if

control.py

```
z = 4
if z % 2 == 0 :  # True
    print("z is even")
```

z is even

```
if condition :
   expression
```

control.py

```
z = 4
if z % 2 == 0 :
    print("checking " + str(z))
    print("z is even")
```

```
checking 4
z is even
```

```
if condition :
    expression

control.py

z = 5
if z % 2 == 0 : # False
    print("checking " + str(z))
```

print("z is even")

else

```
if condition :
    expression
else :
    expression
```

control.py

```
z = 5
if z % 2 == 0 :  # False
    print("z is even")
else :
    print("z is odd")
```

z is odd

elif

```
if condition :
    expression
elif condition :
    expression
else :
    expression
```

control.py

```
z = 3
if z % 2 == 0 :
    print("z is divisible by 2")  # False
elif z % 3 == 0 :
    print("z is divisible by 3")  # True
else :
    print("z is neither divisible by 2 nor by 3")
```

```
z is divisible by 3
```

elif

```
if condition :
    expression
elif condition :
    expression
else :
    expression
```

control.py

```
z = 6
if z % 2 == 0 :
    print("z is divisible by 2")  # True
elif z % 3 == 0 :
    print("z is divisible by 3")  # Never reached
else :
    print("z is neither divisible by 2 nor by 3")
```

```
z is divisible by 2
```

Let's practice!

INTERMEDIATE PYTHON

Filtering pandas DataFrames

INTERMEDIATE PYTHON

Hugo Bowne-Anderson
Data Scientist at DataCamp

brics

```
import pandas as pd
brics = pd.read_csv("path/to/brics.csv", index_col = 0)
brics
```

	country	capital	area	population
BR	Brazil	Brasilia	8.516	200.40
RU	Russia	Moscow	17.100	143.50
IN	India	New Delhi	3.286	1252.00
СН	China	Beijing	9.597	1357.00
SA	South Africa	Pretoria	1.221	52.98

Goal

	country	capital	area	population
BR	Brazil	Brasilia	8.516	200.40
RU	Russia	Moscow	17.100	143.50
IN	India	New Delhi	3.286	1252.00
СН	China	Beijing	9.597	1357.00
SA	South Africa	Pretoria	1.221	52.98

- Select countries with area over 8 million km2
- 3 steps
 - Select the area column
 - Do comparison on area column
 - Use result to select countries

Step 1: Get column

```
capital
                          area population
     country
      Brazil
              Brasilia
                         8.516
                                    200.40
                Moscow 17.100
                                  143.50
      Russia
      India
             New Delhi
                         3.286
                                  1252.00
       China
               Beijing
                         9.597
                                  1357.00
South Africa
            Pretoria
                                    52.98
                        1.221
```

```
brics["area"]
```

```
BR 8.516
RU 17.100
IN 3.286
CH 9.597
SA 1.221
Name: area, dtype: float64 # - Need Pandas Series
```

Alternatives:

```
brics.loc[:,"area"]
brics.iloc[:,2]
```


Step 2: Compare

```
brics["area"]
       8.516
      17.100
       3.286
ΙN
       9.597
       1.221
Name: area, dtype: float64
brics["area"] > 8
       True
       True
      False
       True
      False
Name: area, dtype: bool
is_huge = brics["area"] > 8
```


Step 3: Subset DF

```
is_huge
```

```
BR True
RU True
IN False
CH True
SA False
Name: area, dtype: bool
```

```
brics[is_huge]
```

```
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
```


Summary

```
capital
                            area population
        country
         Brazil
                 Brasilia
                          8.516
                                     200.40
                                    143.50
         Russia
                   Moscow 17.100
        India New Delhi 3.286
                                    1252.00
          China
                  Beijing
                          9.597
                                    1357.00
SA South Africa Pretoria 1.221
                                      52.988
```

```
is_huge = brics["area"] > 8
brics[is_huge]
```

```
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
```

```
brics[brics["area"] > 8]
```

```
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
```

Boolean operators

```
area population
          capital
country
         Brazil Brasilia 8.516
                                     200.40
         Russia
                                     143.50
                   Moscow 17.100
         India New Delhi 3.286
                                    1252.00
          China
                  Beijing
                          9.597
                                    1357.00
SA South Africa Pretoria 1.221
                                      52.98
```

```
import numpy as np
np.logical_and(brics["area"] > 8, brics["area"] < 10)</pre>
```

```
BR True
RU False
IN False
CH True
SA False
Name: area, dtype: bool
```

```
brics[np.logical_and(brics["area"] > 8, brics["area"] < 10)]
```

```
country capital area population
BR Brazil Brasilia 8.516 200.4
CH China Beijing 9.597 1357.0
```


Let's practice!

INTERMEDIATE PYTHON

