Problem Set 1 MATH 20410

1 Differentiation

From Rudin (1976).

Chapter 5

1. Let f be defined for all real x, and suppose that

$$|f(y) - f(x)| \le (y - x)^2$$

for all real x and y. Prove that f is constant.

Proof. To prove that f is constant, Theorem 5.11b tells us that it will suffice to show that f is differentiable on \mathbb{R} with derivative f'=0. Let $x\in\mathbb{R}$ be arbitrary. We want to show that for all $\epsilon>0$, there exists a δ such that if $y\in\mathbb{R}$ and $0<|y-x|<\delta$, then $|[f(y)-f(x)]/(y-x)-0|<\epsilon$. Let ϵ be arbitrary. Choose $\delta=\epsilon$. Then we have that

$$\left| \frac{f(y) - f(x)}{y - x} - 0 \right| = \frac{|f(y) - f(x)|}{|y - x|}$$

$$\leq \frac{(y - x)^2}{|y - x|}$$

$$\leq |y - x|$$

$$< \epsilon$$

as desired. \Box

2. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b) and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$

for a < x < b.

Proof. To prove that f is strictly increasing on (a,b), it will suffice to show that x < y implies f(x) < f(y) for all $x, y \in (a,b)$. Let $x, y \in (a,b)$ satisfy x < y. Since f is differentiable on (a,b), it is differentiable on $(x,y) \subset (a,b)$ and (by Theorem 5.2) continuous on $[x,y] \subset (a,b)$. Thus, by the MVT, there exists $c \in (x,y)$ such that

$$f(y) - f(x) = (y - x)f'(c)$$

But since x < y, y - x > 0. This combined with the fact that f'(c) > 0 by definition implies that (y - x)f'(c) > 0. Consequently,

$$f(x) < f(x) + (y - x)f'(c) = f(y)$$

as desired.

Since f is strictly increasing (and hence 1-1) on (a, b), we may construct a well-defined inverse function $g: f[(a, b)] \to (a, b)$ for it by

$$g(f(x)) = x$$

for all $f(x) \in f[(a,b)]$. It follows by the fact that f'(x) > 0 for all $x \in (a,b)$, the definitions of f'(x) and g'(f(x)), and Theorem 3.3d that

$$\frac{1}{f'(x)} = \frac{1}{\lim_{y \to x} \frac{f(y) - f(x)}{y - x}}$$

Problem Set 1 MATH 20410

$$= \lim_{y \to x} \frac{1}{\frac{f(y) - f(x)}{y - x}}$$

$$= \lim_{y \to x} \frac{y - x}{f(y) - f(x)}$$

$$= \lim_{y \to x} \frac{g(f(y)) - g(f(x))}{f(y) - f(x)}$$

$$= g'(f(x))$$

as desired.

3. Suppose g is a real function on \mathbb{R}^1 , with bounded derivative (say $|g'| \leq M$). Fix $\epsilon > 0$ and define $f(x) = x + \epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough. (A set of admissable values of ϵ can be determined which depends only on M.)

Proof. Neglecting the trivial case where M=0, take $\epsilon=1/2M$. It follows that

$$0 < 1 - \frac{1}{2}$$

$$= 1 + \frac{1}{2M} \cdot -M$$

$$\leq 1 + \epsilon g'(x)$$

$$= \frac{d}{dx}(x) + \frac{d}{dx}(\epsilon g)$$

$$= f'(x)$$

Therefore, by Problem 5.2, f is strictly increasing and, hence, one-to-one.

4. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$$

where C_0, \ldots, C_n are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Proof. Consider the polynomial

$$f(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_n}{n+1} x^{n+1}$$

We have that f(0) = 0 (by direct substitution) and f(1) = 0 (by the constraint on the coefficients). Thus, since f is continuous on [0,1] and differentiable on (0,1) (as a polynomial), we have by the MVT that there exists $x \in (0,1)$ such that

$$f(1) - f(0) = (1 - 0)f'(x)$$
$$f'(x) = 0$$
$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

as desired.

5. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Problem Set 1 MATH 20410

Proof. To prove that $\lim_{x\to\infty}g(x)=0$, it will suffice to show that for every $\epsilon>0$, there exists N>0 such that if x>N, then $|g(x)-0|<\epsilon$. Let $\epsilon>0$ be arbitrary. Since $\lim_{x\to\infty}f'(x)=0$ by hypothesis, we know that there exists N>0 such that if x>N, then $|f'(x)|<\epsilon$. Choose this N to be our N. Let x>N be arbitrary. Applying the MVT to f on the interval [x,x+1] proves the existence of a c within that closed interval such that

$$f(x+1) - f(x) = f'(c)(x+1-x) = f'(c)$$

Additionally, since c > x > N, we have that $|f'(c)| < \epsilon$. Therefore, we have that

$$|g(x)| = |f(x+1) - f(x)|$$
$$= |f'(c)|$$
$$< \epsilon$$

as desired. \Box