JINGYAO ZHANG

💌 jzhan502@ucr.edu | 🎓 Google Scholar | 🏕 Homepage | 🖸 GitHub | 🖬 LinkedIn | 🗣 Riverside, USA

Interest: Enhancing the performance of privacy-preserving systems across both software and hardware domains.

EDUCATION

University of California, Riverside

Riverside, USA

Ph.D. Candidate in Computer Science, GPA: 3.7/4.0

Sep 2021 - Present

Advisor: Elaheh Sadredini

Xidian University

Xi'an, China

M.E. in Electronic and Telecommunications Engineering, GPA: 3.7/4.0; Outstanding Thesis Award

Sep 2018 **-** Jun 2021

B.E. in Telecommunications Engineering, GPA: 3.7/4.0; Pilot Class (Top 5% of 800+)

Sep 2014 **-** Jun 2018

WORK EXPERIENCE

Data Center Server Platform Security, Nvidia Corporation

Mentor: Lohith Rangappa

System Software Intern

Jun 2025 **-** Sep 2025 (exp.)

- Developed a Software Development Kit (SDK) to enable the integration of security firmware with third-party hardware.
- Designed a two-tier test suite to validate HAL (Hardware Abstraction Layer) implementations and ensure system integrity.

Data Center Server Platform Security, Nvidia Corporation

Mentor: Lohith Rangappa

System Software Intern

Jun 2024 - Sep 2024

- Developed BMC-assisted attestation to support SPDM-based remote attestation for non-PLDM devices.
- Enabled secure firmware update for non-PLDM devices by integrating Key Manifest into External Root of Trust.

Operating System Lab, Alibaba Cloud

Mentor: Yue Qian

External Developer

Aug 2023 - Nov 2024

- Developed a secure LLM inference platform with Trusted Network Gate supporting HTTP/WebSocket.
- Designed and developed a Combined Attestation framework for CoCo KBS to support GPU attestation. [repo] [demo]
- Conducted research on the nvTrust for Nvidia confidential computing, including verification and attestation.
- Investigated existing systems that support GPU confidential computing, such as Azure Confidential AI.

Open Source Promotion Plan, Chinese Academy of Sciences

Mentor: Ding Ma & Jiale Zhang

Project Developer

2023 & 2024

- Built Confidential-Al, a framework based on Attestation Agent, CDH, and Trusted Network Gate for secure Al workflows.
- Developed Tee-RefValue, a workflow that automatically generates reference measurements for user image, firmware, and kernel on the AMD SEV-SNP platform, compatible with *Confidential Containers*.
- Examined the attestation process on the AMD SEV-SNP platform, including the generation of reference measurement.
- Evaluated attestation tools across various cloud service providers, such as Google Cloud Platform and Azure.

PUBLICATIONS

- 1. **Jingyao Zhang**, and Elaheh Sadredini. "No One-Size-Fits-All: A Workload-Driven Characterization of Bit-Parallel vs. Bit-Serial Data Layouts for Processing-using-Memory." *In Submission*.
- 2. **Jingyao Zhang**, Jaewoo Park, Jongeun Lee and Elaheh Sadredini. "SAIL: SRAM-Accelerated LLM Inference System with Lookup-Table-based GEMV." *In Submission*.
- 3. Jingyao Zhang, and Elaheh Sadredini. "A Near-Cache Architectural Framework for Cryptographic Computing." In Submission.
- 4. **Jingyao Zhang**, and Elaheh Sadredini. "CryptoSRAM: Enabling High-Throughput Cryptography on MCUs via In-SRAM Computing." *In Proc. of the 1st IEEE Cross-disciplinary Conference on Memory-Centric Computing (CCMCC). October 2025.*
- 5. Sahar Ghoflsaz, **Jingyao Zhang**, and Elaheh Sadredini. "Enabling Low-Cost Secure Computing on Untrusted In-Memory Architectures." *In Proc. of the 34th USENIX Security Symposium. August 2025.*
- 6. **Jingyao Zhang**, and Elaheh Sadredini. "Unlocking Energy-Efficient and High-Throughput Secure Data Communication in IoT with Memory-Centric Computing." *Poster at Proc. of the 39th International Parallel and Distributed Processing Symposium (IPDPS). June 2025.*
- 7. **Jingyao Zhang**, Mohsen Imani, and Elaheh Sadredini. "BP-NTT: Fast and Compact in-SRAM Number Theoretic Transform with Bit-Parallel Modular Multiplication." *In Proc. of the 60th Design Automation Conference (DAC). July 2023*.

- 8. Jingyao Zhang, and Elaheh Sadredini. "Inhale: Enabling High-Performance and Energy-Efficient In-SRAM Cryptographic Hash for IoT." In Proc. of the 41th International Conference on Computer-Aided Design (ICCAD). November 2022.
- 9. Jingyao Zhang, Hoda Naghibijouybari, and Elaheh Sadredini. "Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption." In Proc. of the 22th International Symposium on Low Power Electronics and Design (ISLPED). August 2022.
- 10. Jingyao Zhang, Huaxi Gu, Li Zhang, Bing Li, and Ulf Schlichtmann. "Hardware-Software Codesign of Weight Reshaping and Systolic Array Multiplexing for Efficient CNNs." In Proc. of the 24th Design, Automation and Test in Europe (DATE). February 2021.

RESEARCH EXPERIENCE

AREA Lab, University of California, Riverside

Graduate Research Assistant

Sep 2021 - Present

Advisor: Elaheh Sadredini

- Currently designing a TEE framework tailored for Processing-In-Memory (PIM) architectures, inspired by secure NPU designs such as sNPU; integrated lightweight tile-based permission checking, SRAM-level bank isolation without virtual memory, and NoC-aware secure data routing, enabling secure execution with minimal TCB and support for cache-line aware memory mapping.
- Developed a general-purpose compiler for domain-specific accelerators using MLIR-based Polyhedral model and E-Graph-based searching, specifically targeting workloads that involve vector and scalar kernels as well as mixed-precision workloads.
- Designed an on-chip solution for accelerating quantized language models, including dynamic data precision adaptation and efficient runtime de-/quantization.
- Developed a framework to seamlessly integrate in-SRAM computing into existing computer systems for efficient and secure on-chip processing of pre- and post-quantum cryptography.
- Developed a bit-parallel modular multiplication algorithm with implicit shifting technology for efficient and secure in-SRAM computing of the NTT, optimizing performance on a low-overhead SRAM array.
- Designed a secure in-SRAM architecture for on-chip acceleration of the AES/SHA-3 algorithm using row/lane-wise data alignment, achieving high energy and area efficiency with high throughput.

Advanced Networking Technology Lab, Xidian University

Graduate Research Student

Advisor: Huaxi Gu Sep 2018 - Jun 2021

- Developed a hardware-software co-design framework for efficient CNNs, leveraging weight reshaping and systolic array multiplexing with genetic algorithms for optimal hardware performance.
- Built a distributed inference system for accelerating CNNs using systolic array on FPGAs, with HLS for low-level hardware description and Aurora/Ethernet protocols for inter-board communication.
- Designed a flexible and compact N × N plasmonic switch topology with a dedicated configuration algorithm that ensures re-arrangeable non-blocking, making it ideal for managing mixed traffic in data centers.
- Designed a low-loss compact plasmonic router for mesh networks in optical Network-on-Chip, exhibiting lower insertion loss and a smaller footprint compared to other structures.

TEACHING EXPERIENCE

CS 010C Introduction to Data Structures and Algorithms

Teaching Assistant

Instructor: Patrick Miller Spring 2024

Fall 2022

- Hosted three lab sessions per week to supplement lecture, assignments.
- Held weekly office hours to answer students' questions.

CS 161 Design and Architecture of Computer Systems

Teaching Assistant

Instructor: Elaheh Sadredini Fall 2023, Winter 2024

Instructor: Elaheh Sadredini

- Hosted three discussion sessions per week to supplement lecture, homework and lab.
- Held weekly office hours to answer students' questions.

CS 213 Multiprocessor Architecture and Programming

Teaching Assistant

• Led two discussion sessions of students' presentations.

- Held weekly office hours to answer students' questions.
- Graded homework and programming assignments.

gem5 Boot Camp Davis, USA

Participant Jul 2022

• Simulated and analyzed the performance of computer architectures, and studied the behavior of different workloads and benchmark suites on various computer architectures.

• Evaluated the impact of different design choices on system performance, such as varying cache sizes or using different interconnect topologies, and explored the effects of different microarchitectural features.

Xilinx Summer Camp Online

Participant & Team Leader

Jul 2020 - Aug 2020

• Developed an FPGA-based distributed platform for acceleration over Ethernet, with the mother board sending a file to a watched folder on the child board for immediate program execution. [repo]

Microsoft Innovation Center

Xi'an, China

Intern

Jul 2017 - Aug 2017

• Explored the advancements and challenges in the evolution of cellular networks across generations, starting from the early analog systems to the 5G technology.

TALKS

1. Jingyao Zhang. "In-SRAM Computing for Cryptography." In Xia Peisu Forum hosted by ICT. [slides] Dec 2023

2. Jingyao Zhang. "Combined Attestation." In Confidential Containers Community Meeting. [slides] [video] [demo] Nov 2023

3. Jingyao Zhang. "Safeguard Your Cloud Workloads: An In-depth Look at Confidential Computing." In Proc. of IEEE Inland Empire Data Science Workshop (IEDSW). [link] Nov 2023

4. Jingyao Zhang. "Safeguard Your Cloud Workloads and Then Accelerate: An In-depth Look at CPU and GPU Confidential Computing." Remotely at ByteDance in Mandarin. Live Attendance: ~300. [slides] [video] Oct 2023

5. Jingyao Zhang. "BP-NTT: Fast and Compact in-SRAM Number Theoretic Transform with Bit-Parallel Modular Multiplication." In Proc. of the 60th Design Automation Conference (DAC). San Francisco, CA. [slides] [video] Jul 2023

6. Jingyao Zhang. "Inhale: Enabling High-Performance and Energy-Efficient In-SRAM Cryptographic Hash for IoT." In Proc. of the 41th International Conference on Computer-Aided Design (ICCAD). San Diego, CA. [slides] [video] Nov 2022

7. Jingyao Zhang. "Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption." In Proc. of the 22th International Symposium on Low Power Electronics and Design (ISLPED). Online. [slides] [video] Aug 2022

8. Jingyao Zhang. "Hardware-Software Codesign of Weight Reshaping and Systolic Array Multiplexing for Efficient CNNs." In Proc. of the 24th Design, Automation and Test in Europe (DATE). Online. [slides] [video] Feb 2021

AWARDS

Laxmi N. Bhuyan Endowed Fellowship, University of California, Riverside	2025
DAC Young Fellowship, Design Automation Conference	2023
Dean's Distinguished Fellowship Award, University of California, Riverside	2021
Outstanding Thesis Award, Xidian University	2021
First-class Scholarship, Xidian University (Top 14% of 560+)	2018, 2019
Outstanding Student Award, Xidian University	2018, 2019

GRANTS

Conference Travel Grant, University of California, Riverside	2023
Student Travel Grant, gem5 Boot Camp	2022

SERVICES

Reviewed Papers: 16

Journal Paper Review: Elsevier Integration (1)

2023, 2024, 2025 IEEE Computer Architecture Letters (CAL) - (13) 2024

IEEE Transactions on Dependable and Secure Computing (TDSC) - (1)

2025

Conference Paper Review:

IEEE International Conference on Communication (ICC) - (1)

2024

Evaluated Artifacts: 17

Artifact Evaluation Board:

Artifact Evaluation Board:	
Journal of Systems Research (JSys) - (2)	2023
Artifact Evaluation Committee:	
IEEE International Symposium on High-Performance Computer Architecture (HPCA) - (1)	2024
USENIX Security Symposium - (2)	2024
ACM European Conference on Computer Systems (EuroSys) - (3)	2024
Annual Network and Distributed System Security Symposium (NDSS) - (2)	2024
ACM Symposium on Operating Systems Principles (SOSP) - (2)	2023
ACM Conference on Computer and Communications Security (CCS) - (1)	2023
ACM International Conference On Mobile Computing And Networking (MobiCom) - (1)	2023
USENIX Annual Technical Conference (ATC) - (1)	2023
USENIX Symposium on Operating Systems Design and Implementation (OSDI) - (2)	2023, 2024

SKILLS

Programming: C, C++, Python, Verilog, Rust, MLIR **Technologies:** Gem5, Sniper, HSpice, PyTorch, LLVM **Languages:** Chinese (Native), English (Professional)