MATH 2023 – Multivariable Calculus

Lecture #13 Worksheet $\quad \, \flat \quad \, \, \text{March 26, 2019}$

Problem 1. Identify vector fields $\mathbf{F}(x,y)$:

$\langle \cos(x+y), x \rangle$	$\langle y, y+2 \rangle$	$\langle x, -y \rangle$	$\langle y, x \rangle$	$\langle y, x - y \rangle$	$\langle y^2 - 2xy, 3xy - 6x^2 \rangle$
		4	F	B	
					<u> </u>

Problem 2. (a) Evaluate the line integral

where C is the upper half unit circle going counterclockwise.

$$\int_{0}^{\pi} (2 + \cos^{2}\theta \sin \theta) d\theta$$

(b) Evaluate the line integral

$$\int_C y^2 dx + x dy$$

where C is a curve from (-5, -3) to (0, 2)

- Along a straight line
- Along the x and y direction passing through (0, -3)
- Along the curve $x = 4 y^2$

(1)
$$V_{1}(t) = \langle -5+5t, -3+5t \rangle$$

$$0 \neq t \leq 1$$

$$1 + (5dt) + (5dt)$$

$$\int_{0}^{1} (-3+5t)^{2} (5dt) + 5(-5+5t) dt$$

2.

$$Y_{2}(t) = \langle -5+5t, -3 \rangle$$
when $0 \le t \le 1$,

 $y^{2}dx + xdy$. (3 + 5(t-1)) = (0, -3+5(t-1)) when (3 + 6) = -3+5(t-1)

$$\int_{0}^{1} w^{2}(5)dt + x(0)dt +$$

$$\int_{1}^{2} 0 dt + \chi(5) dt$$

§ ,

$$\frac{1}{13}(t) = \langle 4-t^2, t \rangle$$

$$4-t^2, t \rangle$$

$$-3 \leq t \leq 2$$

$$\int_{-3}^{2} 4^{2}(-2t) dt + \int_{-3}^{2} \times dt$$

$$= \int_{-2}^{2} -2t^{3} dt + \int_{-3}^{2} 4-t^{2} dt.$$