热量 比热容(二)

日期:	时间:	姓名:
Date:	Time:	Name:

初露锋芒

中	午	
海水	很凉	
沙子	很烫	

傍晚沙子变凉了海水很暖和

学习目标

1. 掌握物体吸收(放出)热量的计算公式,并会进行简单的热量计算

2. 掌握热平衡的概念和有关计算

& **重难点**

1. 掌握热量的简单计算(考试要求 B; 出题频率高)

2. 掌握热平衡状态和热平衡有关计算(考试要求 B; 出题频率高)

根深蒂固

— 、	热量、	比热容	
— 、	热量、	比热	容

1、物体温度改变的多少常常表示为	,即	或	,物体温度改	文 变时吸收或放
出的热量由物质的、、	和		_这三个因素的乘积	决定, 与物体
、的高低无关。				
2、物体吸收(放出)热量的计算公式: Q	_w =	=,		
物体吸放出热量的计算公式: Q 麻=	=_	_, 其中 Q _吸	表示	, Q _放 表示
,单位是,t	表示	,t ₀ 表示	,单位	。c 表示
,单位是,	m 表示		_,单位是	, Δt 表示
,单位是。				
公式只适用于物体时(升温或	戊降温)物体 肾	及收或放出热	量的计算,对有物	态变化的过程
(选填"适"或"不适")用。				
【答案】1、Δt; Δt=t—t ₀ ; Δt=t ₀ —t; 比热	容;质量;温质	度的变化;初溢	温; 末温	
2, cm $(t-t_0)$; cm Δt ; cm (t_0-t) ; cm Δt ;	物体吸收的热	量;物体放出的	灼热量;焦;物体初	温;物体末温;
摄氏度;物体比热容;焦/(千克・℃);物	体质量; 千克	物体升高()	锋低)的温度;摄氏	度;温度改变;
不适				
热平衡				
1、热平衡:指在	高温物体放出	的热量	低温物体吸收的剂	热量。
2、由热平衡定义可知:在热平衡状态下,	两个物体的最	后温度,	不再进行	_,因此热平衡
的唯一标志是; 在热传递过	过程中,低温物	7体吸收的热量	量为,高温 物	体放出热量为
,如果没有热量损失则:	0			
2、相同, 热传说, 温度相同, 〇二, 〇二,	0 ==0 +			

枝繁叶茂

一、热量、比热容

知识点一: 热量、比热容计算

【例 1】已知 $C_{\mathfrak{q}} > C_{\mathfrak{q}}$,温度相同,质量相等的铜块和铅块,它们吸收相同热量后,将它们互相接触,则

A. 热量由铜块传给铅块

- B. 热量由铅块传给铜块
- C. 铅块和铜块之间不发生热传递
- D. 缺少条件, 无法确定

【难度】★★【答案】B

【解析】因铜块和铅块的质量、初温度均相同,铜的比热容大于铅的比热容,所以当它们吸收相同的热量后,铅块升高的温度值比铜块升高的多,所以铅块的温度比铜块的温度高,当它们接触后,温度高的铅块会向温度低的铜块传递热量,故选 B

【例 2】质量一定的水,温度从 20℃升高到 50℃时,吸收的热量为 Q; 这些水温度从 80℃降低到 50℃时,放出的热量为

【难度】★★【答案】Q

$$\mathbf{CQ}_{\mathbf{W}} = \mathbf{cm}\Delta t$$
, ∴水的质量: $m = \frac{Q}{c\Delta t} = \frac{Q}{(50^{\circ}\mathbb{C} - 20^{\circ}\mathbb{C}) c}$, 水放出的热量: $\mathbf{Q}_{\mathbf{W}} = \mathbf{cm}\Delta t' = \mathbf{c} \times \frac{Q}{(50^{\circ}\mathbb{C} - 20^{\circ}\mathbb{C}) c} \times (80^{\circ}\mathbb{C} - 50^{\circ}\mathbb{C}) = \mathbf{Q}$

【例 3】质量是 0.5kg 的铝壶里装了 2kg 水,初温为 20℃,如果它们吸收了 265.2×10^3 J 的热量,温度升高到多少摄氏度? (铝的比热为 0.88×10^3 J/(kg. ℃))

【难度】★★【答案】50℃

【解析】由 Q $_{\text{w}}$ =cm(t-t $_{0}$),得 Q $_{\text{w}}$ =Q $_{\text{w}}$ H+Q $_{\text{w}}$ x=c $_{\text{H}}$ m $_{\text{H}}$ Δ t+c $_{\text{x}}$ m $_{\text{x}}$ Δ t

即 265.2×10³=880×0.5×△t+4200×2×△t

解得, △t=30℃

所以,它们升高了30℃,升高到50℃

【例 4】在标准大气压下,质量为 1kg,初温为 42℃的水吸收 2.52×10⁵J 的热量后,其温度升高多少℃? 末温是多少℃?

【难度】★★【答案】58℃; 100℃【解析】Δt=Q/cm=60℃

t=t₀+Δt=42℃+60℃=102℃>100℃, 所以水温度升高 58℃, 末温度为 100℃

4

方法与技巧

热量计算公式: Q=cmΔt, 比热容的定义式: c=Q/mΔt, 计算过程中需区分近似的表达方式: 升高了 (升高到), 降低了 (降低到)等。还需注意一些常识, 一个标准大气压下, 沸水的温度为 100℃之类的。

二、热平衡

知识点一: 热平衡计算

【例 1】使 20g 冰温度从-10℃升高到 0℃,但未熔成水,需要多少热量?如果这些热量是由度从 5℃降低到 0℃的水来供给的,需要多少克 5℃的水?(c $_{**}$ =2.l×10³J/(kg . $^{\circ}$ C)

【难度】★★【答案】420J; 20g

【解析】 $Q_{\text{w}}=c_{\text{w}}m_{\text{w}}(t-t_{0\text{w}})=2.1\times10^{3}\text{J/}(kg\cdot \text{C})\times0.02\text{kg}\times10^{\circ}\text{C}=420\text{J}$

根据题意有 $Q_{\text{w}}=Q_{\text{id}}$ 水放出热量 $Q_{\text{id}}=420J$

 $Q_{\pm} = c_{\pm} m_{\pm} (t_{0\pm} - t)$

 m_{\star} =Q $_{\star}$ /c $_{\star}$ ($t_{0\star}$ -t) =0.02kg=20g, 即冰吸收的热量为 420J 需要 20g 水

【例 2】把质量为 4kg 的冷水与 3kg、80℃的热水混合后的温度为 40℃,若不计热量损失,求冷水的温度是多少?(\mathbf{c}_{\star} =4.2×10³J/(kg . \mathbb{C}))

【难度】★★

【答案】10℃

【解析】热水放出的热量为: $Q_1=cm_1$ $(t_1-t)=4.2\times10^3 J/$ $(kg\cdot \mathbb{C})\times3kg\times(80\mathbb{C}-40\mathbb{C})=5.04\times10^5 J$ 冷水吸收的热量为 $Q_2=cm_2(t-t_2)$

整理得: t₂=t-Q₂/cm₂

 $Q_1=Q_2$ $t_2=40^{\circ}C-5.04\times10^5 J/(4.2\times10^3 J/(kg \cdot ^{\circ}C)\times4kg)=10^{\circ}C$

【例 3】为了测量某种液体的比热容,把质量为 100g 的铜块从沸腾的水中取出(标准大气压下),迅速投入质量为 100g,温度为 10℃的待测液体中,混合后的共同温度是 25℃。若不计热量损失,求这种液体的比热容为多少(铜的比热容 $c_{\text{g}}=0.4\times10^3 \text{J/}(\text{kg}. ℃))?$

【难度】★★

【答案】2×10³J/(kg. ℃)

【解析】 $Q_{\pm} = c_{\parallel} \times m_{\parallel} \times (t_0 - t) = 0.4 \times 10^3 \text{J/} (kg \cdot \text{C}) \times 0.1 \text{kg} \times (100 \text{C} - 25 \text{C}) = 3000 \text{J}$

 $C_{ik} = Q_{ik}/m_{ik} (t'-t'_0) = 3000J/0.1kg \times 15 ^{\circ}C = 2 \times 10^3 J/(kg.^{\circ}C)$

即待测液体的比热容是 2×10³J/(kg. ℃)

【例4】空气能热水器是通过吸收空气中的热量来制造热水的"热量搬运"装置。其工作原理是:空气能 热水器在工作时,吸收空气中的能量 Q,消耗的电能为 W,通过热交换使水吸收的热量为 Q,,,即 Q,,=Q+W, 所以它的热效率(即 Q_{w}/W 的值)可以达到 300%~500%。已知某型号空气能热水器的热效率为 400%, 电功率为 1400W,当用此热水器将 100kg 的水从 15℃加热到 55℃时(水的比热容为 4.2×10³J/(kg . ℃), 干木柴的热值为 1.2×10^7 J/kg)。

求:(1)水吸收的热量;

- (2) 水吸收的热量相当于完全燃烧多少千克的干木柴所释放的热量;
- (3) 空气能热水器完成上述加热过程所用的时间。

【难度】★★★【答案】(1) 1.68×10⁷J(2) 1.4kg(3) 3×10³s

【解析】(1) 水吸收的热量: Q_{∞} =cm (t-t₀) =4.2×10³J/(kg•℃)×100kg×(55℃-15℃)=1.68×10⁷J;

- (2) 由题知, $Q_{w}=Q_{h}$,需要的干木柴质量: $m=Q_{h}/q=1.4kg$;
- (3) 由题意: $\eta = Q_{m}/w = Q_{m}/pt = 400\%$ 得: $t = 3 \times 10^{3}$ s

【例 5】物体 A、B 质量相等,把它们加热到相同的温度,然后分别放入等量同温的水中,A 使水温升高 10°C,B 使水温升高 20°C,设 A、B 的比热分别为 c_A 和 c_B ,则 (

A. $c_B = c_A$

B. $c_B=2c_A$

C. $c_B > 2c_A$

D. $c_A < c_B < 2c_A$

【难度】★★【答案】C

【解析】放 A 物体的水吸收的热量: Q₁=c_{*}m_{*}Δt=c_{*}m_{*}×10℃

放 B 物体的水吸收的热量: $Q_2=c_x m_x \Delta t' = c_x m_x \times 20$ ℃

即: O₂=2O₁

物体 A、B 的质量相等,加热到相同的温度 to,放入等质量、同温度 to x 的水里,

不计热量损失,物体 A 放出的热量等于水吸收的热量: $Q_{A_{ii}} = c_{Am} (t_0 - t_A) = Q_1$

物体 B 放出的热量等于水吸收的热量: $Q_{B_{\dot{m}}}=c_{Bm}$ $(t_0-t_B)=Q_2$

即: Q_{B 放}=2Q_{A 放}

 $c_{B}m (t_{0}-t_{B}) = 2c_{A}m (t_{0}-t_{A})$ $c_{B} (t_{0}-t_{B}) = 2c_{A} (t_{0}-t_{A})$

又因为 $t_A = t_{0,k} + 10^{\circ}$ 0、 $t_B = t_{0,k} + 20^{\circ}$ 0、即 $t_A < t_B$ 、 $t_0 - t_B < t_0 - t_A$

可得: c_B>2c_A, 故选 C

热平衡方程: $Q_w = Q_{in}$,计算过程中需找出两个或多个相平衡的过程, 通过热量计算公式: $Q=cm\Delta t$, 分别求出 Q_{w} , Q_{h} , 求解相关物理量 (如 测定比热容)。

随堂检测

1、有大小相同的实心铅	吕球和空心铝球,吸收框	目同的热量后,温度升高	所得多的是 ()
A. 实心球	B. 空心球 C. チ	十高温度相同 D. 为	E法判断
【难度】★★			
【答案】B			
2 田 フ亜物体质量料	19年 担 19年 41日 - 14日 41日 41日 41日 41日 41日 41日 41日 41日 41日	·) 一	后水温降低 10℃,取出甲(不计热量和水
的损失),再把乙投入林			
A. 甲的比热容比2		B. 甲的比热容比Z	
C. 甲的比热容与2		D. 无法比较出	
【难度】★★	74177	D. 7614101XI	
【答案】B			
3、甲、乙两物体的质量	t相等,如果甲物体的温	度降低 15℃,乙物体的	ე温度降低 10℃,这时甲放出的热量是乙
放热的2倍,由此可知			
【难度】★★			
【答案】甲; 4:3			
4、人工湖具有"吸热"	功能,炎夏时节能大大	、 降低周边地区的热岛效	放应。若人工湖湖水的质量为 1.0×10 ⁷ kg,
水温升高2℃,则湖水。	吸收的热量为	焦(C_{π} =4.2×10 ³ J/(kg	.°C))
【难度】★			
【答案】8.4×10 ¹⁰			
5 可加水和附油的医与	ᆂᆉᄔᄩᇎᇪᅠᄔᇸᅘᄼ	ル目 3.1 → ν 約 対羽 目 16	8℃,煤油的初温是 20℃。若它们吸收相
等的热量,水的温度升			
寺的然重,水的価/支川 A. 120℃	同到 40 ℃ ,则殊而月同 B. 100℃	C. 75℃ I	
A. 120 C 【难度】★★	B. 100 C	C. 73C	J. 33 C
【答案】C			
6、A、B 两物体质量相	等,温度均为10℃,甲	、乙两杯水质量相等,	温度均为50℃,现将A放入甲杯,B放
入乙杯, 热平衡后, 甲	杯水温降低了4℃,乙村	不水温降低了8℃,则 A	A、B 两种物质的比热容之比为()
A. 2:3	B. 3:5	C. 4:9	D. 1:2
【难度】★★			
【答案】C			

7、有甲、乙两个物体,它们的质量之比是3:1,吸收的热量之比是2:1,升高的温度之比是5:3,则甲、乙两物 质的比热容之比是 ()

- A. 10:1
- B. 1:10
- C. 2:5
- D. 5:2

【难度】★★

【答案】C

8、把甲、乙两个质量、温度都相同的金属块,分别放入到质量、温度都相同的一杯水和一杯油中,热平衡后 得到油的温度降低了5℃,水的温度降低了10℃,只有甲金属块与水、乙金属块与油之间发生了热传递,而 c $_{*}>c_{*}$,则甲金属比热容与乙金属比热容的比值为()

- A. 等于 2

- B. 大于 2 C. 小于 2 D. 以上都有可能

【难度】★★

【答案】B

9、现需要 12kg、43℃的温水,但只有 17℃的冷水和 95℃的热水。现用质量为 m_1 的 17℃的冷水与质量为 m_2 的 95 ℃的热水混合成 12kg 的 43 ℃的温水,则 (

- A. $m_1=2kg$, $m_2=10kg$
- B. $m_1=4kg$, $m_2=8kg$

C. $m_1=6kg$, $m_2=6kg$

D. $m_1=8kg$, $m_2=4kg$

【难度】★★

【答案】D

10、一茶杯开水,从刚倒入到可以喝的这一段时间内,放出的热量大约是 (

- A. 500J
- B. 5000J
- C. $5 \times 10^4 J$ D. $5 \times 10^5 J$

【难度】★★

【答案】C

11、甲、乙两物体的质量之比为4:1,用两个相同的酒精灯分别给它们加热, (设酒精燃烧放出的热量全部被甲和乙吸收)如图所示为甲、乙两物体的温 度随时间的变化曲线,若 c_{\parallel} =4.2×10²J/(kg. \mathbb{C}),则乙的比热容是多少?

【难度】★★

【答案】 $Q_{\parallel}=m_{\parallel}c_{\parallel}(t_{\parallel}-t_{o\parallel})=4m_{Z}c_{\parallel}(60^{\circ}C-20^{\circ}C)=m_{Z}c_{\parallel}160^{\circ}C$

 $c_{z}=Q_{z}/m_{z}$ $(t_{z}-t_{oz})=Q_{\#}/m_{z}$ $(60^{\circ}C-40^{\circ}C)=m_{z}c_{\#}160^{\circ}C/m_{z}20^{\circ}C=8c_{\#}=3.36\times10^{3}J/(kg^{\bullet}C)$

12、小红在学习了"比热容"的有关知识后,知道单位质量的不同物质在升高相同温度时,所吸收的热量不同,为了描述物质的这种性质,引入了一个新的物理量——比热容,于是她又想到晶体在熔化时,温度虽然保持不变,但需要吸收热量,那么单位质量的不同晶体熔化时所吸收的热量是否相同呢?带着这个疑问,小红在实验室利用电热器加热,完成了冰的熔化实验,并描绘出冰的温度随加热时间变化的关系图线如图所示。

实验时,冰的质量为 0.5kg,相同时间冰和水吸收的热量相同。水的比热容为 4.2×10³J/(kg . ℃)

- (1) 根据图线, 你能得到的一条信息是:
- (2) CD 段水吸收的热量是多少?
- (3) 计算出冰的比热容;
- (4) 若规定"质量为 1kg 的某种晶体物质在完全熔化时所吸收的热量叫做该物质的熔化热",根据图中所给的信息,计算出冰的熔化热λ。

【难度】★★★【答案】(1) 冰在熔化时温度保持不变(答案不唯一)(2)4.2×10⁴J

- (3) $2.1 \times 10^3 \text{J/} \text{ (kg . }^{\circ}\text{C}\text{)} \text{ (4) } 3.36 \times 10^5 \text{J/kg}$
- 13、为了研究物质的某种特性,某小组同学先做如下实验:

在甲、乙两只完全相同的烧杯中分别放入 100g 和 200g 的温水,实验时让它们自然冷却,并利用温度计和计时器测量水温随时间变化的情况。记录数据分别如表一、表二所示。(设甲、乙两杯水每分钟放出的热量相等。)

表一 m₁=100g

时间/min	0	2	4	6	8	10	12	14	16
温度/℃	36	35	34	33	32	31	30	30	30
降低温度/℃	0	1	2	3	4	5	6	6	6

表二 m₂=200g

时间/min	0	4	8	12	16	20	24	28	32	36
温度/℃	36	35	34	33	32	31	30	29	28	28
降低温度/℃	0	1	2	3	4	5	6	7	8	8

- (1) 分析比较表一和表二中数据可知,实验时,两杯水所处环境的温度是_____(相同/不同)的。
- (2) 分析比较表一和表二中第一行和第三行的数据及相关条件,可得出的初步结
- (3)分析比较表一和表二中第三列、第四列、第五列等数据及相关条件,可得出的初步结论是_____
- (4) 进一步综合分析比较表一和表二中的数据及相关条件,还可得出的初步结论是

【难度】★★★

【答案】(1)不同

- (2) 一定质量的水放出热量与降低的温度成正比
- (3) 降低相同温度时,水质量越大放出热量越多
- (4) 水放出的热量与质量、水降低温度的比值是个定值

瓜熟蒂落

1,	在铝壶中放入 3kg 温度是 20℃的水,	将它加热至 100℃,	所需的热量(c _* =4.2×10³J/(kg . ℃))	(
)			

A. 等于 1.008×10⁶J

B. 大于 1.008×10⁶J

C. 小于 1.008×10⁶J

D. 条件不足无法确定

【难度】★

【答案】B

- 2、给一定质量的水加热,其温度与时间的关系如图中 a 图线所示。若其他条件不变,仅将水的质量增加,则温度与时间的关系图线正确的是 () ★温度(℃)
 - A. a
- B. b
- C. c
- D. d

【难度】★★

【答案】C

- 3、甲、乙两个物体质量相等,若它们的比热容之比为 2:1,升高的温度之比为 2:1,则甲、乙两个物体吸收的 热量之比为 ()
 - A. 1:1
- B. 1:2
- C. 1:4
- D. 4:1

【难度】★

【答案】D

- 4、质量相同的两个物质由于吸热而升温,若它们的比热之比为 1:2, 升高的温度之比为 3:2, 则它们吸收的热量之比为 ()
 - A. 3:4
- B. 4:3
- C. 1:3
- D. 3:1

【难度】★

【答案】A

5、一冰块先后经历了以下三个过程: ①-10℃的冰到 0℃的冰,吸收热量 Q_1 ; ②0℃的冰变为 10℃的水,吸收 热量 Q_2 ; ③10℃的水到 20℃的水,吸收热量 Q_3 。已知冰和水的比热容分别为 c_x 、 c_x ,且 c_x < c_x ,在整个过 程中总质量保持不变,则 () A. $Q_1 > Q_2 > Q_3$ B. $Q_1 < Q_2 < Q_3$ C. $Q_1 < Q_3 < Q_2$ D. $Q_1 < Q_2 = Q_3$ 【难度】★★ 【答案】C 6、用两个相同的电热器给质量同为 2kg 的物质甲和水加热,它们的温度随时间的变化关系如图所示,据此判 断甲物质 10min 吸收的热量为 ()(水的比热容 $c=4.2\times10^3$ J/(kg . ℃) 80 A. 5.04×10^{5} J B. $4.2 \times 10^5 \text{J}$ 60 水 D. 条件不足, 不能计算 C. $2.52 \times 10^{5} J$ 40 【难度】★★ 20 【答案】C 0 5 10 20 B寸间/min 7、将质量相同的甲、乙、丙三块金属加热到相同的温度后,放到上表面平整的冰块上。经过一定时间后,冰 块形状基本不再变化时的情形如图所示。则三块金属的比热容c₊、c_z、c_n大小相比 () A. c _#最大 B. c z 最大 C. c _丙最大 D. $c_{\parallel}=c_{Z}=c_{\Xi}$ 【难度】★★ 【答案】C 8、砂石的比热容为 0.92×10³J/(kg. ℃), 它表示质量为_____的砂石, 温度每升高 1℃所吸收的热量为 ,当质量为 30kg 的砂石放出 8.28×10⁴J 的热量后,其温度将降低。。 【难度】★ 【答案】1kg; 0.92×10³J; 3℃

9、小贝家里购买了经济安全、节能环保的太阳能热水器,若该热水器里面装有温度为 10℃的水 30kg,经过阳 光照射后,水温升高到 45℃,在这一过程中水吸收的热量是 J。

【难度】★

【答案】4.41×10⁶

10、分别向洗澡盆放水时,已知冷水为 20℃,热水为 80℃,想得到 40℃的温水 120kg,应该分别放冷水和热水各多少千克? (不计热损失)

【难度】 ★★★ 【答案】设热水的质量为 m_1 ,则冷水的质量为 $m_2=m-m_1=120kg-m_1$,已知热水的初温和末温,利用放热公式求热水放出的热量 $Q_{\underline{w}}=cm_1$ ($t-t_{01}$) =4.2×10³J/ ($kg^{\bullet}\mathbb{C}$) × m_1 × ($80\mathbb{C}$ -40 \mathbb{C});又知道冷水的初温和末温,利用吸热公式求冷水吸收的热量 $Q_{\underline{w}}=c$ ($m-m_1$) × ($t-t_{01}$) =4.2×10³J/ ($kg^{\bullet}\mathbb{C}$) × ($120kg-m_1$) × ($40\mathbb{C}$ -20 \mathbb{C}),不计热量损失,所以热水放出的热量等于冷水吸收的热量,即 $Q_{\underline{w}}=Q_{\underline{w}}$,4.2×10³J/ ($kg^{\bullet}\mathbb{C}$) × m_1 × ($80\mathbb{C}$ -40 \mathbb{C})=4.2×10³J/(kg. \mathbb{C})×($120kg-m_1$)×($40\mathbb{C}$ -20 \mathbb{C}),据此可求所用热水和冷水的质量, m_1 =40kg, m_2 =80kg。

11、一块质量为 400 克的铜块和一个铅块吸收相同的热量后,升高的温度之比为 4:3,求这铅块的质量。(C $_{\rm ff}$ =0.39×10³J/(kg · ℃),C $_{\rm ff}$ =0.13×10³J/(kg · ℃))

【难度】★★【答案】1600g

12、每到夏收季节,高淳农村大量农作物秸秆在田间被随意焚烧,这不仅造成资源浪费、环境污染,而且极易引发火灾等。为解决这一问题,现已研制出利用秸秆生产的节能环保型燃料——秆浆煤。若燃烧秆浆煤(热值为 2.4×10⁷J/kg),使 50kg、20℃的水温度升高到 80℃。

求: (1) 水需要吸收的热量。

(2) 如果秆浆煤燃烧释放的热量有30%被水吸收,需要完全燃烧多少千克秆浆煤。

【难度】★★★【答案】解(1)Q=cm Δ t=4.2×10³J/(kg · $^{\circ}$ C)×50kg×(80 $^{\circ}$ C-20 $^{\circ}$ C)=1.26×10 $^{\circ}$ J 即水需要吸收的热量为 1.26×10 $^{\circ}$ J (2)Q=mq m=1.75kg 即需要完全燃烧 1.75 千克秆浆煤

13、在野外施工中,需要使质量 m=4.20kg 的铝合金物体升温。除了保温瓶中尚存有温度 t=90.0℃的 1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度 t₀=10.0℃升温到 66.0℃以上(含 66.0℃),并通过计算验证你的方案。已知铝合金的比热容 c=0.880×10³J(kg \cdot ℃)⁻¹,水的比热容 c₀=4.20×10³J(kg \cdot ℃)⁻¹,不计向周围环境散失的热量。

【难度】★★★【答案】①操作方案:将保温瓶中 t=90℃的热水分若干次倒出来。

第一次先倒出一部分,与温度为 t_0 =10.0 ℃ 的构件充分接触,并达到热平衡,构件温度升高到 t_1 。

将这部分温度为 t_1 的水倒掉,再从保温瓶倒出一部分热水,再次与温度为 t_1 的构件接触,并达到热平衡,此时构件的温度升高到 t_2 。

再将这些温度为 t₂的热水倒掉,然后再从保温瓶倒出一部分热水来使温度为 t₂的构件升温, ……。直到最后一次将剩余的热水倒出来与构件接触,达到热平衡,只要每部分水的质量足够小,最终就可使构件的温度达到所要求的值。

②验证计算: 如将 1.200kg 热水分 5 次倒出,每次倒出 m_0 =0.240kg,在第一次使热水与构件达到热平衡的过程中:

 $Q_1 = c_0 m_0 \ (t-t_1)$ $Q_1' = cm \ (t_1-t_0)$ 所以 $Q_1 = Q_1'$

得 t₁=27.1℃ 同理: t₂=40.6℃,, t₅=66.0℃ (倒出次数不能少于 5 次)

14、在一个标准大气压下,质量为 1kg,初温为 80℃的水吸收 1.26×10⁵J 热量后,其温度升高到多少? 若这些热量被 5kg 的铜块吸收,则铜块升高的温度是多少℃? (c $_*$ =4.2×10³J/(kg•℃),c $_{\$}$ =0.39×10³J/(kg . $^{\circ}$ C),最后结果保留一位小数)

【难度】★★

【答案】解: (1) Q _∞=cm∆t,

水吸收热量后升高的温度: Δt =Q $_{\text{\overline{w}}}/c$ $_{\text{\tiny{$\hbar$}}}$ m $_{\text{\tiny{$\hbar$}}}$ =1.26×10⁵J/ (4.2×10³J/ (kg . ℃)×1kg)=30 ℃ ,

水的初温为 80°C,升高 30°C后,水的温度为 110°C,

在 1 标准大气压下, 水的沸点为 100℃, 并且沸腾时水的温度不变,

水吸热后,温度不会升高到110℃,水的末温为100℃;

(2) $Q_{m}=cm\Delta t$,

铜块吸收热量后升高的温度: $\Delta t=Q_{\text{w}}/c_{\text{qg}}m_{\text{qg}}=1.26\times10^{5}\text{J}/(0.39\times10^{3}\text{J}/(\text{kg}\cdot\text{C})\times5\text{kg})=64.6\text{C};$

能力提升

- 1、如图所示甲、乙两球完全相同,分别浸没在水和水银的同一深度内,甲、乙两球是用同一种特殊材料制作的:当温度稍微升高时,球的体积会变大,如果开始水和水银的温度相同,且两液体温度同时缓缓地升高同一值,则 (""" """ """"
 - A. 甲球吸收的热量较多
- B. 乙球吸收的热量较多
- C. 两球吸收的热量相等
- D. 无法确定

【难度】★★★

【答案】B

【解析】由题知,水和水银的初温相同(两球的初温相同),当两液体温度同时缓缓地升高同一值,二者的末温相同,吸收的热量除了使内能增加相同的量外还要克服液体的压力做功,所以乙球吸收的热量较多

2、有甲、乙、丙三种液体,比热容依次为 2×10^3 J/ $(kg \cdot ℃)$ 、 3.32×10^3 J/ $(kg \cdot ℂ)$ 和 2.436×10^3 J/ $(kg \cdot ℂ)$; 质量依次为 0.2 kg、0.3 kg 和 0.4 kg;初温依次为 80 ℂ、50 ℂ和 10 ℂ。求三种液体混合后的最终温度,不计热损失。

【难度】★★★

【答案】38.6℃

【解析】设三种液体的比热容、质量、初温依次是 c_1 、 m_1 、 t_1 ; c_2 、 m_2 、 t_2 ; c_3 、 m_3 、 t_3 。甲、乙两种液体混合后,平衡温度为 t' 然后再与丙液体混合,平衡温度为 t,则

$$\begin{array}{l} c_1m_1\ (t_1-t'\) \ = c_2m_2\ (t'\ -t_2) \\ \\ c_3m_3\ (t-t_3) \ = c_1m_1\ (t'\ -t)\ + c_2m_2\ (t'\ -t) \end{array}$$

将数值代入得 t=38.6℃

3、在一搅拌机的容器内装有质量 m 为 0.5 千克的水, 把水加热到 70℃后让其在室温下自动冷却。其温度随时 间变化的关系如图所示。现开动电动搅拌机对该冷却的水不停地搅拌,电动机的功率为900瓦,其做的功有 80%转化为水的内能。若不考虑容器的内能变化,已知水的比热容是求:

70

60

50 40

30

20

10

100

- (1) 不考虑室温下的自动冷却,搅拌机每秒钟能使水温上升多少℃?
- (2) 在考虑室温的自动冷却的情况下,水最终的温度是多少℃?

【难度】★★★

【答案】0.343℃; 30℃

【解析】(1) 1s 搅拌机做功: W=Pt=900W×1s=900J,

转化为水的内能: O=W η =900J×80%=720J,

(2)搅拌机每秒钟能使水温上升 0.343℃,在图中找出水冷却时温度随时间变化的快慢等于 0.343℃/秒的位置, 对应的点所表示的温度即为水的最终温度

4、将一杯热水倒入盛有冷水的容器中,冷水的温度升高了10℃,再向容器内倒入一杯相同质量和温度的热水, 容器中的水温又升高了6℃。如果继续向容器中倒入一杯同样的热水,则容器中的水温会升高 ()

A. 5℃

B. 4℃ C. 3℃

D. 2℃

【难度】★★★

【答案】B

【解析】设冷水的温度为 to, 热水的温度为 t

热水放出的热量等于冷水吸收的热量,即 O ==O **

可得: m 点 (t-t₀-10℃) =m ≥ 10℃

 $2m_{\pm} (t-t_0-16^{\circ}C) = m_{\uparrow} 16^{\circ}C$

即 m **: m **=1:3 t-t₀=40°C

加第三杯水的时候: $3m_{**}(t-t_0-16^{\circ}C-\Delta t)=m_{**}(16^{\circ}C+\Delta t)$ $\Delta t=4^{\circ}C$,故选 B