

临床意义 - 诊断 Lasso 变量轨迹

网址: https://www.xiantao.love

更新时间: 2023.05.29

目录

基本概念	3
应用场景	3
分析流程	4
结果解读	6
数据格式	7
参数说明	8
类型	8
线	9
标注信息	. 10
标题文本	. 12
风格	. 13
图片	. 13
结果说 <mark>明</mark>	. 14
主 <mark>要结果</mark>	. 14
主要结果 方法学	. 15
如何引用	. 16
常见问题	. 17

基本概念

- ▶ Lasso 回归: 在线性回归的基础上,通过增加惩罚项(lambda × 斜率的绝对值),减少模型的过拟合,提高模型的泛化能力。另外一种也是通过增加惩罚项来减少模型的过拟合的方法是岭回归,对应的惩罚项是(lambda × 斜率的平方)。惩罚项在机器学习领域也叫做正则化,其中,Lasso回归的惩罚项是 L1 正则化(曼哈顿距离(参数绝对值求和)),而岭回归的惩罚项是 L2 正则化(欧氏距离(参数平方值求和))
- ➤ Lasso 可用于 logistics、Cox 其中,此模块就是 Lasso 在诊断中的应用。诊断 Lasso 常常出现在构建诊断模型或者筛选变量上,最常出现两种图,一种是 系数(lambda)筛选的图,另外一种是变量轨迹图。Lasso 的 lambda 筛选一般会采用交叉验证的手段进行筛选,常见的会有五折和十折交叉验证。

应用场景

将诊断 Lasso 系数筛选过程中各个 lambda 值(惩罚项)与各变量的系数值进行可视化,以构建诊断模型或者筛选变量。当样本较少或者变量较多(少于样本数一半的变量)时,可以用 Lasso 直接构建诊断模型或者筛选变量。

分析流程

上传数据 数据处理(清洗) lasso 诊断分析 lasso 变量轨迹可视化

- ▶ 数据格式: xlsx / csv / txt 文件格式:
 - 第1列数据作为结局变量(事件发生情况),可以是数值类型也可以是分类类型数据,需要是二分类类型,用(0和1,0表示未发生事件,1表示发生了事件),默认会把先出现的组作为参考组。注: 第1列不能都是删失

-4	Α	В	С	D	E	F	G	Н	1
1	event	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7	Gene 8
2	1	-0.022280617	-2.770435561	-0.467054253	0.659710026	-0.515117091	0.026623033	0.964868218	-1.064910322
3	1	-1.183217086	-0.316118003	0.60603766	-0.303598493	0.148727871	-1.21013808	1.213376601	-0.195115978
4	0	-0.622974392	1.845886201	1.517668885	-0.839217309	-0.273699539	-1.914794488	0.986931949	-0.185920375
5	1	-0.961432206	-0.136129034	0.707027039	-2.240777738	-0.115896498	-1.678393183	0.581343256	1.248839562
6	1	-2.009057914	0.754472479	-1.360111214	0.743456609	1.242012981	0.373015672	0.65579689	-0.654581201
7	0	0.79356585	-0.236620914	-0.501233774	0.938055954	-1.219659013	-1.625081979	0.328081467	1.04612915
8	1	-0.291946728	-0.194660575	0.208889948	-0.744460884	-1.593752647	-0.118096617	-1.29451323	1.312739415
9	1	0.709801941	-0.255890999	1.345437412	-1.040223718	-0.040457512	0.702152223	-0.592764399	2.245095696
10	1	0.257086806	0.372722112	-0.013511554	-1.046213702	0.86385945	0.767475738	0.847607122	-1.561368255
11	1	2.504925108	1.371715847	-0.114156296	-1.722567123	-0.052316113	-1.274151487	1.361514751	-0.678908796
12	1	0.44265243	-0.456238875	-0.015031461	1.584885619	0.05882662	-1.299684282	-1.501592696	-1.009258186

- 第2列开始直至后面每一列都代表一个样本/变量/分子,必须是数值类型数据
- ▶ 数据处理:分别对第1列(事件)、第2列开始后的所有变量进行清洗(去除掉数据中的非数值或者不符合条件的数据)
- ➤ Lasso 诊断分析:
 - 构建 lasso 诊断模型
 - 计算模型的 lambda 值
 - 通过 lambda 值计算变量的系数值

■ 筛选掉 lambda 值对应系数为 0 的变量(系数为 0 表示变量之间不存在相 关关系,在诊断模型中没有实质上的意义)

▶ Lasso 变量轨迹可视化

- 通过不同统计量(lambda 值取对数,或者 L1 Norm (L1 正则化)),分别 计算出 x 轴具体的值
- Lasso 诊断分析得到的变量系数值作为纵坐标
- 进行可视化,结果如下:

结果解读

- ► 左图横坐标表示 lambda 对数值(log(λ))右图横坐标表示向量中各非零元素 的绝对值之和(L1 正则化)
- ▶ 纵坐标表示变量的系数值
- ▶ 上方的横坐标的数字代表每个 lambda 下对应的系数非 0 的变量个数
 - 这些数字对应的值是说:不同 lambda 值计算得到模型中所有变量系数不为 0 的变量的个数,而不是所有的变量(要是数值与变量个数对应不上,则是因为缺少的那些变量间不存在相关关系(系数为 0)被筛选掉了)
 - 由于可视化结果是 ggplot2 格式,故不能展示全部的数值
- ➤ 图中每条线对应一个变量随 Lasso 惩罚项的 lambda 系数(log 后)的系数变化情况。如左图,可以看到最下边线条对应的变量("Gene 2")系数最先发生改变,随着 lambda 的减小,非 0 变量的数目逐渐增多

▶ 图中特定的线还标注了变量名,这个可以在参数部分的选项卡中输入相关变量名进行可视化

数据格式

	Α	В	C	D	E	F	G	Н	1
1	event	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7	Gene 8
2	1	-0.022280617	-2.770435561	-0.467054253	0.659710026	-0.515117091	0.026623033	0.964868218	-1.064910322
3	1	-1.183217086	-0.316118003	0.60603766	-0.303598493	0.148727871	-1.21013808	1.213376601	-0.195115978
4	0	-0.622974392	1.845886201	1.517668885	-0.839217309	-0.273699539	-1.914794488	0.986931949	-0.185920375
5	1	-0.961432206	-0.136129034	0.707027039	-2.240777738	-0.115896498	-1.678393183	0.581343256	1.248839562
6	1	-2.009057914	0.754472479	-1.360111214	0.743456609	1.242012981	0.373015672	0.65579689	-0.654581201
7	0	0.79356585	-0.236620914	-0.501233774	0.938055954	-1.219659013	-1.625081979	0.328081467	1.04612915
8	1	-0.291946728	-0.194660575	0.208889948	-0.744460884	-1.593752647	-0.118096617	-1.29451323	1.312739415
9	1	0.709801941	-0.255890999	1.345437412	-1.040223718	-0.040457512	0.702152223	-0.592764399	2.245095696
10	1	0.257086806	0.372722112	-0.013511554	-1.046213702	0.86385945	0.767475738	0.847607122	-1.561368255
11	1	2.504925108	1.371715847	-0.114156296	-1.722567123	-0.052316113	-1.274151487	1.361514751	-0.678908796
12	1	0.44265243	-0.456238875	-0.015031461	1.584885619	0.05882662	-1.299684282	-1.501592696	-1.009258186

数据要求:

- 》 列数: 至少需要 3 列以上的数据,最多 300 列(299 个变量)的数据,行数:至少需要 20 个以上的样本(20 行),暂时支持最多 3000 个以上的样本
 - 第1列表示事件发生的情况(或结局), <mark>二分类类型</mark>
 - ◆ 可以是数值类型也可以是分类类型数据
 - ◆ 不能含有无法识别的特殊字符或者非法字符
 - 第2列及以后每一列数据都需要是数值类型
 - ◆ 不能含有非数值类型数据,或者混合数值与非数值类型数据
- ▶ 列名(样本名)不能重复

参数说明

(说明: 标注了颜色的为常用参数。)

类型

x 轴统计量:可以选择 lasso 变量轨迹的方法:可选择 log(lambda)或者 L1
Norm,如下:左侧为 log(lambda),右侧为 L1 Norm

线

- 线条类型:可选择变量轨迹对应线条的类型,可以是实线(默认)也可以是虚线
- ▶ 线条粗细:对应图中各个变量系数轨迹的线条的粗细,默认为 0.75
- ▶ 不透明度: 可以修改线条的不透明度, 0表示完全透明, 1表示完全不透明

标注信息

- 类型选择:可以选择是否在图中进行变量标注,默认为不进行标注,还可以 选择全部标注,或者标注特定变量,如下:
 - 标注全部变量

■ 标注特定变量

- ▶ 特定变量:变量名(分子),可以输入想要标注的变量名才会进行标注,一行为一个变量,用回车键换行。需要和所选择的云端记录对应 Lasso 系数筛选中上传的数据的变量要一致。如果某个变量在 Lasso 模型内不管 lambda 如何改变,始终系数都是 0,则无法在图中进行标注。结果如上:
- ▶ 标注大小: 当进行分子标注的时候,可以修改标注的字体大小,默认为 5pt

标题文本

▶ 大标题:大标题文本

> x 轴标题: x 轴标题文本

> y轴标题: y轴标题文本

补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括号括住,比如 [[2]]

风格

¥*

▶ 外框:是否添加外框,默认添加

▶ 网格:是否添加网格

》 文字大小: 控制整体文字大小, 默认为 7pt

图片

图片		
宽度 (cm)	6	
高度 (cm)	5	
字体	Arial	~

▶ 宽度:图片横向长度,单位为 cm

》 高度: 图片纵向长度, 单位为 cm

▶ 字体: 可以选择图片中文字的字体

结果说明

主要结果

方法学

统计分析和可视化均在R 4.2.1 版本中进行

涉及的 R 包: glmnet (用于分析及可视化)

处理过程:

(1) 使用 glmnet 包对清洗过后的数据进行分析得到变量系数值、lambda 对数值、

L1 正则化值等

(2) 对数据进行可视化

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 右侧的参数中输入了变量名,但是没有在图中进行标注?

答:变量名必须与上传数据中的变量名(除了第1列)一致,并且输入变量名的时候应该一个变量名一行,然后换行输入下一个变量名

2. 图中标注的部分超过了外框?图中标注的内容有重叠,如何解决?

答:由于图的文字是不会被压缩的,所以只能通过增加图片的宽度或者高度来解决,或者减少需要标注的分子数量或缩短标注分子的名字。

3. 为什么上传的数据的变量数目和图中对应的最大的变量数不一致?

答:图中最上方的横坐标对应的最多变量的个数对应的是非 0 系数的变量个数。如果某些变量在Lasso的不同 lambda 的系数自始至终都是 0,则不会在图中出现。

4. 如何修改某条线/某个变量对应的颜色?

答: 当数据记录在「Lasso 变量轨迹」模块被保存时,也会一同保存一份随机生成的颜色。这个颜色跟对应的数据记录是绑定的,也就是一份数据记录对应一份颜色,无法进行修改。如果想要更换某些变量对应的颜色,可以在「Lasso 变量轨迹」模块中重新保存一份数据,对应 Lasso 变量轨迹的整个颜色都会改变。

5. 为什么图上方非 0 系数变量的个数与数据中的变量个数对应不上? 为什么看不到所有的数字,只是一小部分?

答:

①图上方的这些数字对应的值是说:不同 lambda 值计算得到模型中所有变量系数不为 0 的变量的个数,而不是所有的变量(要是数值与变量个数对应不上,则是因为缺少的那些变量间不存在相关关系(系数为 0)被筛选掉了,或者变量在数据处理过程中就被筛选掉了)

②由于可视化结果是 ggplot2 格式,故不能展示全部的数值

