ECE 417/598 Midterm 2 2024

Instructor: Vikas Dhiman

Nov 15th, 2024

Student email:

(1) Student name:

About the exam

- 1. There are total 5 problems. You must attempt all 5.
- 2. Maximum marks: 50.
- 3. Maximum time allotted: 50 min
- 4. Calculators are allowed.
- 5. One 8x11 in cheat sheet (both-sides) is allowed.

Problem 1 Find the 4x4 transformation matrix ${}^{0}T_{2}$ that transforms coordinates from coordinate frame 2 to coordinate frame 0 (5 marks).

Solution: I am going to write transform from frame 1 to frame 0. ${}^{0}T_{2}$

$${}^{0}T_{2} = \begin{bmatrix} 0 & 1 & 0 & -b \\ -1 & 0 & 0 & c+e \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (1)

The rotation matrix is obtained by writing the basis vectors of the destination coordinate system in the source coordinate system.

.

Problem 2 In your own words, prove using trignometry that the 2D rotation matrix is given by (10 marks)

$$R = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}. \tag{2}$$

Solution:

We can express original coordinates (x, y) in polar coordinates,

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r\cos(\alpha) \\ r\sin(\alpha) \end{bmatrix}, \tag{3}$$

where $r=\sqrt{x^2+y^2}$ is the length of the vector and $\alpha=\arctan 2(y,x)$ is the angle between the vector and X-axis.

The rotated points (x', y') have the same length r but a different angle

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} r\cos(\alpha + \alpha) \\ r\sin(\alpha + \alpha) \end{bmatrix}. \tag{4}$$

Using the trignometric identities we can write,

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} r\cos(\alpha)\cos(\alpha) - r\sin(\alpha)\sin(\alpha) \\ r\sin(\alpha)\cos(\alpha) + r\cos(\alpha)\sin(\alpha) \end{bmatrix}.$$
 (5)

Substituting $r\cos(\alpha)=x$ and $r\sin(\alpha)=y,$ we get

Figure 1: Rotation of points [x, y] to [x', y'] by an angle α

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x\cos(\alpha) - y\sin(\alpha) \\ x\sin(\alpha) + y\cos(\alpha) \end{bmatrix}. \tag{6}$$

Writing the right hand side (RHS) as a matrix vector product,

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & +\cos(\alpha) \end{bmatrix}}_{R} \begin{bmatrix} x \\ y \end{bmatrix}. \tag{7}$$

The matrix being multiplied here is the 2D rotation matrix.

Problem 3 (Rodrigues formula) In the figure below, we rotate a point \mathbf{v} around axis unit-vector $\hat{\mathbf{k}}$ by an angle θ . A unit vector $\hat{\mathbf{w}}$ is perpendicular to the both \mathbf{v} and $\hat{\mathbf{k}}$. Another vector \mathbf{v}_{\perp} is the projection of \mathbf{v} onto a plane that is perpendicular to $\hat{\mathbf{k}}$. Note that \mathbf{v}_{\perp} is perpendicular to both $\hat{\mathbf{w}}$ and $\hat{\mathbf{k}}$ (10 marks).

a. write the unit-vector $\hat{\mathbf{w}}$ in terms of \mathbf{v} and $\hat{\mathbf{k}}$.

b. Then write the vector (including the correct magnitude) \mathbf{v}_{\perp} in terms of \mathbf{v} and $\hat{\mathbf{k}}$ (5 marks).

Solution:

$$\hat{\mathbf{w}} = \frac{\hat{\mathbf{k}} \times \mathbf{v}}{\|\hat{\mathbf{k}} \times \mathbf{v}\|} \tag{8}$$

Note that $\hat{\mathbf{k}} \times \mathbf{v}$ has the magnitude $\|\hat{\mathbf{k}} \times \mathbf{v}\| = |\hat{\mathbf{k}}| |\mathbf{v}| \sin(\alpha) = |\mathbf{v}| \sin(\alpha)$ where α is the angle between \mathbf{v} and $\hat{\mathbf{k}}$.

$$\mathbf{v}_{\perp} = -\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{v}) \tag{9}$$

The magnitude of \mathbf{v}_{\perp} is same as RHS because both $|\mathbf{v}_{\perp}| = |\mathbf{v}|\sin(\alpha)$ and $|-\hat{\mathbf{k}}\times(\hat{\mathbf{k}}\times\mathbf{v})| = |\mathbf{v}||\hat{\mathbf{k}}|^2\sin(\alpha)\sin(90^\circ) = |\mathbf{v}|\sin(\alpha)$ where α is the angle between \mathbf{v} and $\hat{\mathbf{k}}$.

Problem 4 Consider a unit-vector $\hat{\mathbf{k}} = (k_x, k_y, k_z)^{\top}$ and the corresponding cross-product matrix,

$$K = [\hat{\mathbf{k}}]_{\times} = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}.$$
 (10)

Using the geometry of the cross-product to prove that $K^3 = -K$. Hint on next page. (5 marks)

Solution: Geometric method:

Choose any vector $\mathbf{x} \neq \gamma \hat{\mathbf{k}}$. Draw the following three vectors: (1) $\mathbf{a} = \hat{\mathbf{k}} \times \mathbf{x}$, (2) $\mathbf{b} = \hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{x})$, (3) $\mathbf{c} = \hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{x}))$. Compare vectors **c** and **a**. Note that the direction of **c** is opposite to **a**. In other words, $\mathbf{c} = -|\beta|\mathbf{a}$ where $|\beta|$ is some scalar.

What is magnitude of \mathbf{c} and \mathbf{a} ?

$$|\mathbf{c}| = |\hat{\mathbf{k}}|^3 |\mathbf{x}| \sin(\alpha) \sin(90) \sin(90) = |\mathbf{x}| \sin(\alpha)$$
 (11)

$$|\mathbf{a}| = |\hat{\mathbf{k}}||\mathbf{x}|\sin(\alpha) = |\mathbf{x}|\sin(\alpha), \tag{12}$$

where α is the angle between $\hat{\mathbf{k}}$ and \mathbf{x} . Thus $|\mathbf{c}| = |\mathbf{a}|$.

Because $|\mathbf{c}| = |\mathbf{a}|$ and $\mathbf{c} = -|\beta|\mathbf{a}$, therefore $\mathbf{c} = -\mathbf{a}$, or

$$\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{x})) = -\hat{\mathbf{k}} \times \mathbf{x}$$
(13)

$$\implies K^3 \mathbf{x} = -K \mathbf{x}.\tag{14}$$

Since $K^3 \mathbf{x} = -K \mathbf{x}$ for any $\mathbf{x} \neq \gamma \hat{\mathbf{k}}$, hence $K^3 = K$. (When $\mathbf{x} = \gamma \hat{\mathbf{k}}$, then $K \mathbf{x} = \mathbf{0} = K^3 \mathbf{x}$).

Proof by algebra

This was not allowed because I asked to use geometry of the cross-product. But it is possible to prove this using algebra as well.

$$K^{2} = \begin{bmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{bmatrix} \begin{bmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{bmatrix} = \begin{bmatrix} -(k_{z}^{2} + k_{y}^{2}) & k_{y}k_{x} & k_{z}k_{x} \\ k_{x}k_{y} & -(k_{x}^{2} + k_{z})^{2} & k_{z}k_{y} \\ k_{x}k_{z} & k_{y}k_{z} & -(k_{y}^{2} + k_{x}^{2}) \end{bmatrix}$$
(15)

$$K^{2} = \begin{bmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{bmatrix} \begin{bmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{bmatrix} = \begin{bmatrix} -(k_{z}^{2} + k_{y}^{2}) & k_{y}k_{x} & k_{z}k_{y} \\ k_{x}k_{y} & -(k_{x}^{2} + k_{z})^{2} & k_{z}k_{y} \\ k_{x}k_{z} & k_{y}k_{z} & -(k_{y}^{2} + k_{x}^{2}) \end{bmatrix}$$
(15)
$$\Longrightarrow K^{3} = \begin{bmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{bmatrix} \begin{bmatrix} -(k_{z}^{2} + k_{y}^{2}) & k_{y}k_{x} & k_{z}k_{x} \\ k_{x}k_{y} & -(k_{x}^{2} + k_{z}^{2})^{2} & k_{z}k_{y} \\ k_{x}k_{z} & k_{y}k_{z} & -(k_{y}^{2} + k_{x}^{2}) \end{bmatrix}$$
(16)
$$= \begin{bmatrix} -k_{z}k_{y}k_{x} + k_{y}k_{x}k_{z}, & k_{z}(k_{x}^{2} + k_{z}^{2}) + k_{y}^{2}k_{z}, & -k_{z}^{2}k_{y} - k_{y}(k_{y}^{2} + k_{x}^{2}) \\ -k_{z}(k_{z}^{2} + k_{y}^{2}) - k_{x}^{2}k_{z}, & -k_{z}k_{y}k_{x} + k_{y}k_{x}k_{z}, & k_{z}^{2}k_{x} + k_{x}(k_{y}^{2} + k_{x}^{2}) \\ k_{y}(k_{z}^{2} + k_{y}^{2}) + k_{x}^{2}k_{y} & -k_{y}^{2}k_{x} - k_{x}(k_{x}^{2} + k_{z}^{2}) & -k_{z}k_{y}k_{x} + k_{y}k_{x}k_{z} \end{bmatrix}$$
(17)

$$= \begin{bmatrix} -k_z k_y k_x + k_y k_x k_z, & k_z (k_x^2 + k_z^2) + k_y^2 k_z, & -k_z^2 k_y - k_y (k_y^2 + k_x^2) \\ -k_z (k_z^2 + k_y^2) - k_x^2 k_z, & -k_z k_y k_x + k_y k_x k_z, & k_z^2 k_x + k_x (k_y^2 + k_x^2) \\ k_y (k_z^2 + k_y^2) + k_x^2 k_y & -k_y^2 k_x - k_x (k_x^2 + k_z^2) & -k_z k_y k_x + k_y k_x k_z \end{bmatrix}$$

$$(17)$$

$$\begin{bmatrix} k_y(k_z^2 + k_y^2) + k_x^2 k_y & -k_y^2 k_x - k_x (k_x^2 + k_z^2) & -k_z k_y k_x + k_y k_x k_z \end{bmatrix}$$

$$= \begin{bmatrix} 0, & k_z (k_x^2 + k_z^2 + k_y^2), & -k_y (k_z^2 + k_y^2 + k_x^2) \\ -k_z (k_z^2 + k_y^2 + k_x^2), & 0, & k_x (k_z^2 + k_y^2 + k_x^2) \\ k_y (k_z^2 + k_y^2 + k_x^2), & -k_x (k_y^2 + k_x^2 + k_z^2), & 0 \end{bmatrix}.$$
(18)

Use the fact, $k_x^2 + k_y^2 + k_z^2 = ||\hat{\mathbf{k}}||^2 = 1$.

$$K^{3} = \begin{bmatrix} 0 & k_{z} & -k_{y} \\ -k_{z} & 0 & k_{x} \\ k_{y} & -k_{x} & 0 \end{bmatrix} = - \begin{bmatrix} 0 & -k_{z} & k_{y} \\ k_{z} & 0 & -k_{x} \\ -k_{y} & k_{x} & 0 \end{bmatrix} = -K$$

$$(19)$$

(Hint for Problem 4: Choose any vector $\mathbf{x} \neq \gamma \hat{\mathbf{k}}$. Draw the following three vectors: (1) $\mathbf{a} = \hat{\mathbf{k}} \times \mathbf{x}$, (2) $\mathbf{b} = \hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{x})$, (3) $\mathbf{c} = \hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{x})$. Compare vectors \mathbf{c} and \mathbf{a} . What do you observe?)

Problem 5 Derive the rotation matrix corresponding to the Euler angles (α, β, γ) representation $R = R_x(\alpha)R_y(\beta)R_z(\gamma)$. Also derive an expression to convert the rotation matrix back to Euler angles. (20 marks).

Solution:

$$R = R_x(\alpha)R_y(\beta)R_z(\gamma) \tag{20}$$

$$\implies \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\alpha} & -s_{\alpha} \\ 0 & s_{\alpha} & c_{\alpha} \end{bmatrix} \begin{bmatrix} c_{\beta} & 0 & s_{\beta} \\ 0 & 1 & 0 \\ -s_{\beta} & 0 & c_{\beta} \end{bmatrix} \begin{bmatrix} c_{\gamma} & -s_{\gamma} & 0 \\ s_{\gamma} & c_{\gamma} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(21)

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\alpha} & -s_{\alpha} \\ 0 & s_{\alpha} & c_{\alpha} \end{bmatrix} \begin{bmatrix} c_{\beta}c_{\gamma} & -c_{\beta}s_{\gamma} & s_{\beta} \\ s_{\gamma} & c_{\gamma} & 0 \\ -s_{\beta}c_{\gamma} & s_{\beta}s_{\gamma} & c_{\beta} \end{bmatrix}$$
(22)

$$\implies \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\beta}c_{\gamma} & -c_{\beta}s_{\gamma} & s_{\beta} \\ c_{\alpha}s_{\gamma} + s_{\alpha}s_{\beta}c_{\gamma} & c_{\alpha}c_{\gamma} - s_{\alpha}s_{\beta}s_{\gamma} & -s_{\alpha}c_{\beta} \\ s_{\alpha}s_{\gamma} - c_{\alpha}s_{\beta}c_{\gamma} & s_{\alpha}c_{\gamma} + c_{\alpha}s_{\beta}s_{\gamma} & c_{\alpha}c_{\beta} \end{bmatrix}$$
(23)

$$\beta = \sin^{-1}(-r_{13}) \in [-\pi/2, \pi/2] \tag{24}$$

$$\gamma = \arctan 2(-r_{12}, r_{11}) \tag{25}$$

$$\alpha = \arctan 2(-r_{23}, r_{33}) \tag{26}$$