数学2D演習 第3回

担当: 加藤 康之 2020年5月7日

[1] (Cauchy-Riemann の関係式 II)

複素関数 f(z) の実部、虚部をそれぞれ u(x,y), v(x,y) とおく (z=x+iy). f(z) が複素微分可 能であるための必要十分条件は次の Cauchy-Riemann の関係式が成り立つことである.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

この事をふまえて,以下の問に答えよ.

(1) Cauchy-Riemann の関係式を用いて次の各関数が微分可能かどうか判定せよ.

$$\bar{z}$$
, $\exp(\frac{1}{z})$, $\cos(z)$, $z^{\frac{1}{2}}$

- (2) 複素平面上のある連結領域 Ω で複素関数 f(z) が微分可能かつ f(z) の実部 Re(f(z)) が定数 だとする. この時, Ω 上で f(z) が定数であることを示せ.
- (3) 複素平面上のある連結領域 Ω で複素関数f(z)が微分可能かつf(z)の偏角 $\arg(f(z))$ が定数 だとする. この時, Ω 上で f(z) が定数であることを示せ.

[2] (複素積分の warming up II)

(1) 次の積分を計算せよ。

(a)

$$\int_{\gamma} dz \ x$$

 γ は 0 と 1 + *i* を結ぶ線分

(b) (c) (d)
$$\int\limits_{|z|=r} dz \ x \int\limits_{|z|=r} d\bar{z} \ z \int\limits_{|z|=r} d\bar{z} \ \frac{1}{z}$$
 ただし,(b),(c),(d) の積分路は,複素平面上の中心 0 半径 r の円を反時計回りに回るものと

する.

[3] (Cauchy の積分定理)

次の積分の値を求めよ.

[4](複素平面間の写像)

(1) $w=z^2$ によって z 平面の上半平面上の直線群 $(x=a, \, \forall \, y=b)$ は w 平面上のどのような曲線群に写像されるか.

(2-1) 一次分数変換によって複素平面上の円は複素平面上の円(直線は半径が無限の円)に変換されることを示せ.(円々対応)

(2-2) 右図のように 2 つの円 C_1 と C_2 が 点 α で接している場合を考える. C_1 と C_2 の隙間を小円で図のように埋めていく. 小円どおしの接点がある円周上にあることを示せ. ここでは,一次分数変換 $w=\frac{1}{z-\alpha}$ を考えると C_1 と C_2 は w 平面の平行直線になることを用いよ. ここでは簡単のため, C_1 (C_2) の中心を $-a_1$ ($-a_2$) とし, $\alpha=0$ とせよ. a_1 , a_2 は正の定数とし,それぞれ C_1 と C_2 の半径を表している. 小円の接点に対応する円の半径を求めよ. (ヒント: 円々対応と等角写像)

[5](複素平面間の写像 II)

複素級数の収束領域を変数変換によって拡大することを考える.次の問に答えよ.ただし,z は 複素変数, \log は対数関数の主値を表すものとする.

- (1) $\log(1+z)$ を z=0 を中心としてテイラー級数展開せよ.この級数は z 平面のどのような領域で収束するか.図示せよ.
- (2) 変数 $z=\frac{2w}{1-w}$ によって w 平面の単位円の内部 |w|<1 は z 平面のどのような領域に写像されるか、図示せよ、
- (3) $z=\frac{2w}{1-w}$ を $\log(1+z)$ に代入し,それを w=0 を中心としてテイラー級数展開せよ.この級数は w 平面のどのような領域で収束するか.
- (4) z の値を与えた時 $z=\frac{2w}{1-w}$ の関係を通じて一つの w の値が決まる.この w を (3) の級数に代入すると,(1) とは異なる級数による $\log(1+z)$ の表示が得られる.この表示を z の関数として書き下せ.この級数は z 平面のどのような領域で収束するか.