

Explore Alternative Algorithms for Employee Rostering

Client: Ceridian Canada Supervisor: Prof. Merve Bodur Team: Jiahua Chen, Jiaru Li Sijia Li, Mingkun Wang

Project Background

Ceridian is a global human capital management software company that provides work intelligence solutions for organizations of all sizes and from multiple industries. The rostering algorithm currently employed by the client is a modification of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP), but it can be slow and has no guarantee of solution quality.

The client is looking for alternatives that can

- Generate <u>better quality</u> rosters
- Meet fundamental rostering constraints
- Minimize demand coverage penalty
 Solvable in reasonable amount of time

Mathematical Optimization can achieve ALL!

Performance Comparison Between GRASP and IP Model

Solution Quality (Objective Function Value) and Time Comparison

Time Interval	15-Min	30-Min	60-Min Penalty / Time 227 / 9 s	
Model	Penalty / Time	Penalty / Time		
GRASP (Local Diner)	230.3 / 63 s	154 / 18 s		
IP Model (Local Diner)	0 / 6624 s	0 / 395 s	0 / 72 s	
GRASP (Cosmetics Store)	967.8 / 92 s	957.5 / 23 s	939 / 6 s	
IP Model (Cosmetics Store)	19 / 21539 s	11 / 695 s	6 / 216 s	

Problem Size Comparison (Number of Variables)

Time Interval Example	15-Min Integer (Binary)	30-Min Integer (Binary)	60-Min Integer (Binary)	
Local Diner	185,682 (181,650)	92,946 (90,930)	46,578 (45,570)	
Cosmetics Store	269,262 (266,574)	134,862 (133,518)	67,662 (66,990)	

Methodology and Problem Instances

Optimization Model Formulation

Objective Function

$$\min \sum_{j \in J} \sum_{k \in K} \sum_{l \in L} (p^o_{jkl} s^o_{jkl} + p^u_{jkl} s^u_{jkl})$$

Decision Variables (in Objective)

 s_{jkl}^{o} : Number of overstaffing on day j, slot k, task l s_{jkl}^{u} : Number of understaffing on day j, slot k, task l

Parameters (in Objective)

 p_{jkl}^{o} : Penalty for overstaffing on day j, slot k, task l p_{jkl}^u : Penalty for understaffing on day j, slot k, task l

Sets (in Objective)

 $j \in J$: Set of all days $l \in L$: Set of all tasks

 $k \in K$: Set of all time slots

Constraints

Illustration of Methodology

Inputs:

- Data: Demand, Employee **Availabilities, Employee Skills**
- 2. Constraints Specifications

Solving IP model using Gurobi

Local Diner

24/7 Working Hours

	Day1	Day2	 Day6	Day7
Employee0	0.0	0.0	 0 - 7 as cook	0 - 5 as cook
Employee1	0 - 5 as server	11 - 15 as cook	 11 - 15 as cook	5 - 10 as cook
Employee2	0 - 4 as cook	0 - 7 as server	 0 - 4 as server	0 - 7 as server
Employee3	5 - 12 as server	10 - 14 as cashier	 8 - 14 as server	2 - 8 as cashier
Employee4	11 - 16 as cashier	14 - 20 as cashier	 0.0	0.0
Employee5	0.0	0.0	 10 - 14 as cashier	8 - 14 as cashier
Employee24	0.0	8 - 13 as server	 0 - 5 as server	8 - 15 as server
Employee25	0 - 5 as server	0 - 4 as server	 0.0	0 - 4 as server
Employee26	0.0	7 - 12 as server	 9 - 15 as server	11 - 15 as serve
Employee27	0.0	0.0	 18 - tomorrow 0 as server	18 - 24 as serve
Employee28	8 - 14 as cook	0 - 7 as cook	 0.0	0.0
Employee29	5 - 11 as server	7 - 14 as cook	 18 - 22 as server	0.0

An Example Local Diner Roster (First and last 2 days, first and last 6 employees)

Cosmetics Store

19/7 Working Hours (L)

	Day1	Day2	 Day6	Day7
Employee0	11 - 18 as zone3	14 - 20 as zone3	 0.0	0.0
Employee1	0.0	15 - 19 as zone1	 11 - 19 as zone1	0.0
Employee2	0.0	0.0	 0.0	0.0
Employee3	0.0	13 - 19 as zone3	 14 - 20 as zone3	0.0
Employee4	10 - 18 as zone1	9 - 15 as zone1	 10 - 18 as zone1	0.0
Employee5	0.0	0.0	 0.0	10 - 18 as zone3
Employee60	16 - 20 as zone3	0.0	 8 - 15 as zone3	9 - 16 as zone3
Employee61	0.0	0.0	 13 - 20 as zone3	12 - 19 as zone3
Employee62	10 - 18 as zone3	12 - 19 as zone3	 0.0	0.0
Employee63	9 - 14 as zone3	15 - 19 as zone3	 0.0	13 - 19 as zone3
Employee64	0.0	0.0	 9 - 17 as zone3	12 - 19 as zone3
Employee65	16 - 20 as zono2	1E 20 as zono2	0.0	10 10 ac zono2

An Example Cosmetics Store Roster (First and last 2 days, first and last 6 employees)

Project Impact

 Develops the <u>first generalized optimization approach</u> to tackle rostering problems as a variation of the classical nurse scheduling problem

Saves money for the client's customers (avoid paying for overstaffing / losing sales from understaffing)

• Saves time by decreasing the effort required later on to adjust the produced schedules manually

Establishes a **flexible starting framework** that can be extended in the future to accommodate various user inputs

Future Work

The mathematical optimization may take longer for larger/difficult problem instance.

- Develop a hybrid model (optimization on relaxed settings + a heuristic algorithm to improve)
- Incorporate employee preferences to improve their satisfaction
- Explore inverse optimization methods

