← Introduction & Renewal processes

Quiz, 6 questions

1 point 1. Let η be a random variable with distribution function F_{η} . Define a stochastic process $X_t=\eta+t$. Compute the distribution function of a finite-dimensional distribution $(X_{t_1},...X_{t_n})$, where $t_1,...,t_n\in\mathbb{R}_+$:

one of above

 $\bigcirc \quad \mathbb{F}_{\eta}\{min(x_1-t_1,...,x_n-t_n)\}$

 $\bigcirc \quad \mathbb{F}_{\eta}\{min(x_1,...,x_n)\}$

 $\bigcirc \quad \mathbb{F}_{\eta}\{min(t_1,...,t_n)\}$

1 point 2. Let S_n be a renewal process such that $\xi_n=S_n-S_{n-1}$ takes the values 1 or 2 with equal probabilities p=1/2. Find the mathematical expectation of the counting process N_t at t=3:

_____1/8

7/8

O 15/8

none of above

1 point 3. Let $S_n=S_{n-1}+\xi_n$ be a renewal process and $p_\xi(x)=\lambda e^{-\lambda x}$. Find the mathematical expectation of the corresponding counting process N_t :

none of above

 λ^2

 \circ

1 point **4.** Let η be a random variable with distribution function F_{η} . Define a stochastic process $X_t = e^{\eta}t^2$. What is the distribution function of $(X_{t_1},...,X_{t_n})$ for positive $t_1,...,t_n$?

 $igcup_{\eta}\{\min(\ln\left(x_1/t_1^2
ight),...,\ln\left(x_n/t_n^2
ight)\}$

 $\bigcirc \quad \mathbb{F}_{\eta}\{\min(\ln\left(x_{1}/t_{1}\right),...,\ln\left(x_{n}/t_{n}\right)\}$

none of above

O 0

1 point $\textbf{5.} \quad \text{Let } N_t \text{ be a counting process of a renewal process } S_n = S_{n-1} + \xi_n \text{ such that the i.i.d.} \\ \text{random variables } \xi_1, \xi_2, \dots \text{ have a probability density function}$

$$p_{\xi}(x) = egin{cases} rac{1}{2}e^{-x}(x+1), & x \geq 0 \ 0, & x < 0. \end{cases}$$

Find the mean of N_t :

none of above

 $-\frac{1}{9} + \frac{2}{3}t + \frac{1}{9}e^{-(3/2)}$

 $-\frac{1}{9} + \frac{4}{3}t + \frac{1}{9}e^{-(3/2)}$

 $-\frac{1}{0} + \frac{2}{3} + \frac{1}{0} e^{3/2}$

1 point **6.** Let ξ and η be 2 random variables. It is known that the distribution of η is symmetric, that is, $\mathbb{P}\{\eta>x\}=\mathbb{P}\{\eta<-x\}$ for any x>0, and moreover $\mathbb{P}\{\eta=0\}=0$. Find the probability of the event that the trajectories of stochastic process $X_t=\xi^2+t(\eta+t)$, $t\geq 0$ increase:

 \supset

Quiz, 6 questions	O 0		
	\bigcirc $\frac{1}{4}$		
	none of above		
		Upgrade to submit	