

Interação Humano-Computador

Avaliação Heurística

Classificação do Método

Método de base empírica

Métodos que foram propostos a partir de resultados e conhecimento obtido empiricamente, ou seja, coletados através de experimentos.

- Abordagem:
 - analítica método de inspeção
 - coleta da opinião de especialistas
- Tipo de dados: qualitativos
- Momento da coleta: (principalmente) somativo
- Qualidade de uso: usabilidade

Avaliação Heurística (Nielsen, 1994)

- Objetivo principal: gerar uma lista dos problemas de usabilidade da interface
- Método:
 - envolve a inspeção de aspectos da interface por um especialista em IHC
 - inspeção de padrões
 - inspeção de consistência
 - percorre a interface (por widgets ou por tarefas)

Avaliação Heurística (Nielsen, 1994)

- Método: 3 a 5 especialistas em IHC identificam problemas de usabilidade conforme um conjunto de heurísticas ou diretrizes
- Passos:
 - Preparação
 - Seção de avaliação
 - Consolidação
 - Seleção dos problemas a serem corrigidos

Método

1) Preparação:

 proposta de design, hipótese sobre usuários, cenários

2) Seção de avaliação:

- julga a conformidade da interface com um determinado conjunto de princípios ("heurísticas") de usabilidade
- anota os problemas encontrados e sua localização
- julga a gravidade destes problemas
- gera um relatório individual com o resultado de sua avaliação e comentários adicionais

Método - continuação

3) Consolidação:

- novo julgamento sobre o conjunto global dos problemas encontrados
- relatório unificado de problemas de usabilidade
- 4) Seleção dos problemas a serem corrigidos:
 - análise de custo/benefício das correções aos problemas encontrados
 - realizada junto ao cliente ou ao gerente de projeto

Heurísticas (Nielsen, 1994)

visibilidade do estado do sistema

 mantenha os usuários informados sobre o que está acontecendo, através de feedback adequado e no tempo certo.

• correspondência entre o sistema e o mundo real

utilize conceitos, vocabulário e processos familiares aos usuários.

controle e liberdade do usuário

forneça alternativas e "saídas de emergência"; possibilidades de undo e redo

consistência e padronização

 palavras, situações e ações semelhantes devem significar conceitos ou operações semelhantes; caso haja convenções para o ambiente ou plataforma escolhidos, estas devem ser obedecidas

prevenção de erro

 tente evitar que o erro aconteça, informando o usuário sobre as conseqüências de suas ações ou, se possível, impedindo ações que levariam a uma situação de erro

Heurísticas - Continuação (Nielsen, 1994)

• ajuda aos usuários para reconhecerem, diagnosticarem e se recuperarem de erros

 mensagens de erro em linguagem simples, sem códigos, indicando precisamente o problema e sugerindo de forma construtiva um caminho remediador

reconhecimento em vez de memorização

torne objetos, ações e opções visíveis e compreensíveis

flexibilidade e eficiência de uso

 ofereça aceleradores e caminhos alternativos para uma mesma tarefa; permita que os usuários customizem ações freqüentes

design estético e minimalista

 evite porções de informação irrelevantes. Cada unidade extra de informação em um diálogo compete com as unidades de informação relevantes e reduz sua visibilidade relativa

• ajuda e documentação

 devem ser fáceis de buscar, focadas no domínio e na tarefa do usuário, e devem listar passos concretos a serem efetuados para atingir seus objetivos

Visibilidade do estado do sistema

• mantenha os usuários informados sobre o que está acontecendo, através de *feedback* adequado e no tempo certo.

Visibilidade do estado do sistema

• mantenha os usuários informados sobre o que está acontecendo, através de *feedback* adequado e no tempo certo.

Correspondência entre o sistema e o mundo real

• utilize conceitos, vocabulário e processos familiares aos usuários.

Controle e liberdade do usuário

• forneça alternativas e "saídas de emergência"; possibilidades de *undo* e *redo*

Prevenção de Erros

 tente evitar que o erro aconteça, informando o usuário sobre as conseqüências de suas ações ou, se possível, impedindo ações que levariam a uma situação de erro

Consistência e padronização

• palavras, situações e ações semelhantes devem significar conceitos ou operações semelhantes; caso haja convenções para o ambiente ou plataforma escolhidos, estas devem ser obedecidas

Ajuda aos usuários para reconhecerem, diagnosticarem e se recuperarem de erros

 mensagens de erro em linguagem simples, sem códigos, indicando precisamente o problema e sugerindo de forma construtiva um caminho remediador

start a new account	
Choose a username (no spaces)	
bert	▲ bert is already taken. Please choose a different username.
Choose a password	
•••	Passwords must be at least 6 characters and can only contain letters and numbers.
Retype password	
Email address (must be real!)	
not an email	⚠ The email provided does not appear to be valid
Send me occasional Digg updates.	

Reconhecimento em vez de memorização

• torne objetos, ações e opções visíveis e compreensíveis

Flexibilidade e eficiência de uso

• ofereça aceleradores e caminhos alternativos para uma mesma tarefa; permita que os usuários customizem ações freqüentes

Design estético e minimalista

• evite porções de informação irrelevantes. Cada unidade extra de informação em um diálogo compete com as unidades de informação relevantes e reduz sua visibilidade relativa

Ajuda e documentação

• devem ser fáceis de buscar, focadas no domínio e na tarefa do usuário, e devem listar passos concretos a serem efetuados para atingir seus objetivos

Classificação de Problemas

• Gravidade – combinação de:

- Freqüência em que o problema ocorre: O problema é comum ou raro?
- Impacto do problema quando/se ele ocorre: Será fácil ou difícil para o usuário superá-lo
- Persistência do problema: O problema ocorre uma vez e poderá ser superado pelo usuário, ou vai incomodar o usuário repetidamente?
- Impacto no mercado: Qual o impacto na popularidade do produto?

Níveis de Gravidade:

- 4 Catastrófico: é imperativo consertar este problema antes do lançamento do produto
- 3 Problema grande: importante de ser consertado; deve receber alta prioridade
- 2 Problema pequeno: o conserto deste problema é desejável, mas deve receber baixa prioridade
- 1 Problema cosmético: não precisa ser consertado a menos que haja tempo extra no projeto
- 0 Não concordo que isto seja um problema (este valor pode resultar da avaliação de um especialista sobre um problema apontado por outro especialista)

Classificação de Problemas

Localização:

- em um único local na interface;
- em dois ou mais locais na interface, casualmente;
- na estrutura geral da interface, de forma sistemática;
- pode ser algo que "não está lá", ou seja, precisa ser incluído na interface

Geração do Relatório

- Para cada problema encontrado:
 - Descrição do problema
 - Heurística(s) violada(s)
 - Localização
 - Gravidade:
 - Classificação
 - Explicação
- Se for solicitado (não faz parte do método):
 - Proposta de solução
 - Análise de custo e benefício

Exemplo - Projeto Oré

Exemplo - Projeto Oré

Consistência e padronização e Prevenção de erros Gravidade: pequena

Exemplo - Projeto Oré

Visibilidade do estado do sistema Gravidade: catastrófica

Número de Avaliadores

 Avaliadores que acharam mais problemas, não necessariamente acharam os mais importantes

Número de Avaliadores

 Número de avaliadores é função de uma análise de custo x benefício

Referências

- Nielsen, J. (1994) "Heuristic Evaluation", in Mack, R. & Nielsen, J. (eds.) *Usability Inspection Methods*. New York, NY: John Wiley & Sons, 1994, 25-62.
- Prates, R. O., Barbosa, S. D. J. (2003)
 Avaliação de Interfaces de Usuário Conceitos e Métodos. Jornada de Atualização em Informática, SBC.

