

Sporty-UP: A Mobile Application for Real-Time Posture Assessment and Feedback in Indoor Sports

Growth of the Sports Industry and the Rise of Advanced Technologies

- The global Al in sports market is projected to grow from USD 1.2 billion in 2024 to USD 4.7 billion by 2034,
 with a CAGR of 14.7%.
- All is increasingly being used for performance analysis, injury prevention, strategy optimization, and enhancing fan engagement.

Global Market Insights - https://www.gminsights.com/industry-analysis/ai-in-sports-market

An Al-based statistical analysis program for combat sports, DeepStrike

Growing Demand for Indoor Sports

- The COVID-19 pandemic has led to a significant increase in interest in **indoor sports**.
- Expansion of Family-Oriented Entertainment Facilities

Indoor Sports Hub Tennis Courts

Richardson's Family Entertainment Centre

Sporty-up: A Mobile Application for Real-Time Posture Assessment and Feedback in Indoor Sports

Community-driven experience sharing

Personal data tracking and visualization

Real-time feedback system & High-quality feedback through mobile devices

Technical Challenges in Mobile-Based Real-Time Posture Feedback

- 1
- Limited computational resources and memory
 - Mobile devices have limited processing power and memory, making it difficult to run complex AI models effectively.

- 2
- Technical burden of real-time processing
 - Real-time feedback requires both high speed and accuracy, placing significant demands on system performance.

- 3
- Inability to handle complex analysis
 - On-device processing alone has limitations when it comes to performing advanced or high-level posture analysis.

System Design Strategy 1 – On-Device AI with Server Integration

- On-device AI utilization (Qualcomm AI Hub-based)
 - Automatic determination of real-time capture timing
 - Avoidance of unnecessary computation → performance optimization
- Server-based API integration
 - High-precision analysis performed on the server.
 - Ensuring high accuracy in a mobile environment
- Hybrid structure of on-device AI and server AI
 - Achieves a balance between fast responsiveness and high-precision analysis

System Design Strategy 1 - On-Device Al with Server Integration

System Design Strategy 2 - Optimization through Qualcomm Al Hub

- Quantization and Optimization (W8A8 + NPU Target)
 - Significantly reduced memory usage and computation compared to the original full-precision model.
 - W8A8 quantization reduces model size and computation while maintaining near-original accuracy.
- Model Quantization
 - Reduced model size → improved computation speed
 - Minimized power consumption and heat generation

Device Fit Optimization

Al Hub: aihub-2025.04.04.2

- Performance adjustment tailored to the target device
- Real-time execution on the device

System Design Strategy 3 - Active Utilization of Qualcomm Al Hub

- Pre-performance verification through profiling
 - Prediction of performance (speed, memory usage, etc.) on the target device

Stage	Time	Memory
Compilation ①	0.0 ms	0.0 MB
First App Load ①	697.6 ms	56 - 63 MB
Subsequent App Load ①	694.2 ms	8 - 51 MB
Inference ①	(min) 4.3 ms (median) 4.5 ms	0 - 31 MB

- Utilization of model visualization tools
 - Intuitive understanding of the model architecture
- Ensuring stability through pre-deployment testing
 - Final verification tailored to the device environment
 - Improved processing performance and predictability

Conclusion

• Performance Comparison: Before and After Optimization

Platform: Snapdragon 8 Gen 1 Elite QRD

Runtime: TensorFlow Lite (TFLite)

Quantization: W8A8 (Weight & Activation 8-bit)

Metric	Full Precision (Before)	Optimized (W8A8 + TFLite + NPU)	Improvement
Min Inference Time	4.3 ms	1.1 ms	74% faster
Median Inference Time	4.5 ms	1.1 ms	4x speed up
Peak Memory Usage	31 MB	26 MB	16% less memory
Compute Operations	359 ops	373 ops (optimized)	Better NPU utilization
First App Load Time	697.6 ms (56~63MB)	396.4 ms (27~35MB)	Faster & lighter
Subsequent Load Time	694.2 ms (8~51MB)	394.8 ms (0~36MB)	Optimized loading
Accuracy (PSNR)	N/A	Boxes: 37.02 dB / Scores: 37.7 dB	Accuracy preserv

Demo

Thank you!