Modelo Relacional

Bibliografía: Fundamentos de bases de datos Korth , Silberschatz

Modelos de datos

Modelos basados en objetos

 Se usan para describir datos a nivel conceptual.

Modelo entidad-relación

Modelos basados en registros

Se utilizan para describir datos a nivel físico.
 Modelo relacional

Modelos de datos

Colección de herramientas conceptuales para describir

datos,
relaciones entre ellos,
semántica asociada a los datos y
restricciones de consistencia.

- MER es una técnica de diseño de BD
- Modelo Relacional es una formalización teórica de las BDR

Estructuras de las Bases de Datos Relacionales (BDR)

 Los ejemplos se basarán en una Empresa Bancaria, cuyo DER es:

Estructuras de las Bases de Datos Relacionales (BDR)

• Ej: Tabla Depósito

nombre-sucursal	número-cuenta	nombre-cliente	saldo
Downtown	101	Johnsohn	500
Mianus	215	Smith	700
Perryridge	102	Hayes	400
Round Hill	305	Turner	350
Perryridge	201	Williams	900
Redwood	202	Lindsay	700
Brighton	217	Green	750
Downtown	105	Green	850

Estructuras de las Bases de Datos Relacionales (BDR)

Una **BDR** es una **colección de tablas**, donde cada una de las cuales tiene un **nombre único**.

Relación

- Una fila de una tabla representa una relación entre un conjunto de valores.
- En el modelo relacional, cuando decimos relación nos referimos a una tabla.

nombre-sucursal	número-cuenta	nombre-cliente	saldo
Downtown	101	Johnsohn	500
Mianus	215	Smith	700
Perryridge	102	Hayes	400
Round Hill	305	Turner	350

Atributo

- La tabla depósito tiene 4 atributos:
 - nombre-sucursal,
 - número-cuenta,
 - nombre-cliente y
 - saldo.

nombre-sucursal	número-cuenta	nombre-cliente	saldo
Downtown	101	Johnsohn	500
Mianus	215	Smith	700
Perryridge	102	Hayes	400
Round Hill	305	Turner	350

Relación

Formalmente, sean:

D1 = {nombres de sucursales}

D2 = {números de cuenta}

D3 = {nombres de clientes}

 $D4 = \{saldos\}$

Cada fila de **depósito** debe constar de 4-tuplas

(v1, v2, v3, v4)

donde $v1 \in D1$, $v2 \in D2$, $v3 \in D3$, $v4 \in D4$.

 En general depósito contendrá únicamente un subconjunto del conjunto de todas las filas posibles.

depósito ⊂ D1 x D2 x D3 x D4

Dominio

 Para cada atributo hay un conjunto de valores permitidos, llamado dominio de ese atributo.

Ejemplo:

 para el atributo nombre-sucursal, el dominio es el conjunto de todos los nombres de sucursales.

nombre-sucursal	número-cuenta	nombre-cliente	saldo
Downtown	101	Johnsohn	500
Mianus	215	Smith	700
Perryridge	102	Hayes	400
Round Hill	305	Turner	350

Relación

Matemáticamente una relación es un subconjunto de un producto cartesiano de una lista de n dominios.

- Esto se corresponde con la definición de tabla.
- Por lo tanto usaremos los términos

tabla ↔ relación fila ↔ tupla

Relación

Notación:

Sea t una tupla variable de la relación Depósito

t[nombre-sucursal]

indica el valor de t en el atributo nombre-sucursal.

$$\mathbf{t} \in \mathbf{r} \ (\equiv \mathbf{r}(\mathbf{t}))$$

 indica que la tupla t está en (satisface) la relación r. (r minúscula → relación)

Esquemas de relaciones para el ejemplo bancario

sucursal (nombre-sucursal, activo, ciudad-sucursal)

cliente (nombre-cliente, calle, ciudad-cliente)

depósito (nombre-sucursal, número-cuenta, nombre-cliente, saldo)

préstamo (nombre-sucursal, número-préstamo, nombre-cliente, cantidad)

Esquemas e Instancias

Esquema de la BD es el diseño lógico de la BD.

• Es decir, la lista de atributos.

Instancia son los datos de la BD en un instante de tiempo dado.

Notación:

esquema-depósito=(nombre-sucursal,númerocuenta,nombre-cliente, saldo)

- indica el esquema de relación para la relación depósito.
- El uso de **atributos comunes** en **esquemas de relaciones** es una forma de relacionar tuplas de distintas relaciones.

Claves

- Superclave es un conjunto de uno o más atributos que, considerados conjuntamente, permiten identificar de forma única a una tupla.
 - Si K es una superclave, también lo será cualquier superconjunto de K.
- Las superclaves para las cuales ningún subconjunto propio es superclave, se llaman claves candidatas.
- Clave primaria es la clave candidata que elige el diseñador de la BD.

Claves

En el esquema-sucursal son

- superclaves
 - {nombre-sucursal}
 - {nombre-sucursal, ciudad sucursal}
- clave candidata
 - {nombre-sucursal}
- clave primaria
 - {nombre-sucursal}

Propiedades de las relaciones

- · No existen tuplas repetidas
 - Los conjuntos por definición no incluyen elementos repetidos.
- · Las tuplas no están ordenadas
 - Los conjuntos no son ordenados: no se puede hablar de la 5ª tupla.
- Los atributos no están ordenados
 - La cabecera de una relación se define como un conjunto de atributos.
 - Las columnas de una tabla tienen un orden evidente, de izquierda a derecha, pero los atributos de una relación carecen de tal orden.
- Todos los valores de los atributos son atómicos
 - Los dominios subyacentes son simples.
 - En cada posición de fila y columna dentro de una tabla, siempre existe un solo valor, nunca una lista de valores.
- Si una relación satisface estas condiciones, está normalizada.

Claves

Formalmente:

Sean R un esquema de relación r una relación sobre ese esquema R que se expresa **r(R)**.

Un subconjunto K de R es una superclave si

 \forall t1, t2 \in r / t1 \neq t2 \Rightarrow t1[K] \neq t2 [K]