

SORBONNE UNIVERSITÉ

Optimisation de forme aérodynamique pour des configurations de références

MU5MEF39 - Optimisation Aérodynamique

25 février 2022

Alexandre RICHARD - Valentin DUVIVIER

Introduction

Objectifs de l'étude

- Réduire la traînée avec une contrainte sur l'épaisseur du profil
- Optimiser le rapport Portance/Traînée

Configuration étudiée

- Angle d'attaque : $\alpha = 0^{\circ}$
- Nombre de Mach : M=0.85

Le problème d'optimisation

$$C_D^* = \operatorname{argmin}_V J(C_D) \tag{1}$$

$$J'(C_D) + \sum_{i=1}^{M} \mu_i F_i'(C_D) = 0$$
 (2)

$$k = \{C_D \in V, y \ge y_{baseline}, 1 \le i \le M\}$$
(3)

Résultats optimisation

(a) Champs de pression

(b) Coefficient de pression

Figure 1 - Performances aérodynamiques du NACA0012 optimisé - Traînée

N_{dv}	$min(C_D)$
5	≈ 0.0365
15	≈ 0.0157
35	≈ 0.0081

Figure 2 – Comparaison du C_D en fonction du nombre de variables

Problème libre

Configuration étudiée

$$\left(\frac{C_D}{C_L}\right)^* = \operatorname{argmin}_V J\left(\frac{C_D}{C_L}\right) \tag{4}$$

Figure 3 – Comparaison de la surface originale et optimisée du profile NACA0012 - Traînée/Portance

Performances aérodynamiques

	NACA0012	NACA0012 Optimisé
Trainée	0,0457	0,1049
Portance	0,0045	0,5725
Ratio	0,0977	5,4586

(a) Coefficient de pression

(b) Ratio Portance/Trainée

Figure 4 – Performances aérodynamiques du NACA0012 optimisé - Traînée/Portance

Choc à l'intrados.

AoA

Figure 5 – Comportement du profile NACA0012 optimisé pour un angle d'attaque de 5°

Conclusion

Résultats et limitations

- Gain de performances aérodynamiques
- Optimisation qui s'adapte à la physique du sujet

Ouverture

- Utiliser une méthode FFD
- Optimiser sur un grand nombre d'angles d'attaque diffèrents

Annexes

Figure 6 – Comparaison de la surface originale et optimisée du profile NACA0012 optimisé - Trainée, en posant opt bound lower = 0