

Note:

Raw material specification: Stainless steel 304 annealed

Sheet gage 12

Vanair inc. St-Nicolas, Lévis (Québec) Canada, G7A 3S9 Tél.: (418) 561-4512 Fax: (418) 436-2291 www.helitowcart.com THIS DOCUMENT IS PROPERTY OF VANAIR INC. WRITTEN PERMISSION FROM VANAIR INC. SHALL BE OBTAINED PRIOR TO COPYING, USING OR MODIFYING.

R04	.800 was 0.750 - Gage 12 was 14	31-07-06	G.L.
R03	Issue for production	04-04-06	G.L.
Rev.	Description	Date	Ву

TOLERANCES	Titre / Title Bearpaw - U	Shaped clip		Matériel / Material:	e Note
1/X ± 1/32" X.XX ± 0.010"	Dessiné par / Drawing by: G. Lapointe	Date: (yyyy-mm-dd) 2006-04-24	Format :	Échelle / Scale: N/A	Page #: 1 de 1
X.XXX ± ANGLE ± 1°	Vérifié par / Checked by:	Date: (yyyy-mm-dd)	Numéro dessin / Drawing Number: VNR087		Rev.#. R04
PROJECTION: 🕀 🖂	Approuvé par / Approved by:	Date: (yyyy-mm-dd)	Numéro de pièce / F 314-0	Part Number: 006-15-B	Rev.#.

A: GUILLAUME LARDINTE/ FX 878.2536 4.562 .250 .400 .800 Ø .250 +0.015 .375 .853 Тур. R 1.328 2.022 Ref. R 1/16 in Тур. Note: gage 12 .594 Raw material specification: Stainless steel 304 annealed Sheet gage 12 THIS DOCUMENT IS PROPERTY OF VANAIR INC. WRITTEN Vanair inc. 860, Marie-Victorin St-Nicolas, Lévis (Québec) PERMISSION FROM Canada, G7A 3S9 VANAIR INC. SHALL BE Tél.: (418) 561-4512 Fax: (418) 836-2291 OBTAINED PRIOR TO COPYING, USING OR MODIFYING. Bearpaw - U Shaped clip **TOLERANCES** See Note Dessiné par / Drawing by: Date: (yyyy-mm-dd) Échelle / Scale: Page #: 1/X ± 1/32" 1 de 1 G. Lapointe 2006-04-24 A N/A X.XX ± 0.010" X.XXX ± Numéro dessin / Drawing Number: VNR087 .800 was 0.750 - Gage 12 was 14 31-07-06 Vérifié par / Checked by: Date: (yyyy-mm-dd) R04 G.L. Rev.#: ANGLE ± 1° **R04** 04-04-06 G.L. R03 Issue for production Numéro de pièce / Part Number: 314-0006-15-Approave par / Approved by: Date: (yyyy-mm-dd) FROJECTION: (1) Description Date By 2006,08.01 Rev. NATHACIE BARBERG 100.0B.03 Se

19 Soillet 2006, FX:878.2536

ATT: GUILLAUME LAPOINTE

DE: NATHALIE BARBEAU, VANAIR

Voici Modies Requises

TEL QUE MENTIONNÉ

DANS MESSAGE COURRIEL.

MB.

Date: Wed, 2 Aug 2006 15:40:56 -0400

Nathalie

From: Lucien Barbeau lbarbeau@sympatico.ca

To: Helitowcart <info@helitowcart.com>

Subject: Fw: Helitowcart- Demande de modification de version de dessin

---- Original Message ----From: Nathalie Barbeau To: 'Guillaume Lapointe' Cc: lbarbeau@sympatico.ca Sent: Wednesday, July 19, 2006 2:41 PM Subject: Helitowcart- Demande de modification de version de dessin Bonjour Guillaume, Transport Canada ont fait demande de modification de specs pour le support en U. Cela a déjà été approuvé par notre ingénieur aéronautique et processé. Donc on va devoir s'y adapter. Donc, il faut: élargir le clip de 0.750" à 0.8". 1) épaissir de 0.078" à 0.1" (donc si je comprends de 14 gauge à 12 gauge ?) Attention: faudra garder même dimension interne du U. Svp nous confirmer que le tout est faisable (je m'inquiète pour l'épaisseur.) Svp appelle Lucien pour lui confirmer que tout est beau. Il va ensuite alors en relancer une nouvelle batch en production....on a pas le choix! Je te faxe le dessin avec modifications annotées. Que dirais-tu de nous le fournir au plus tard pour le 2 août? Dès qu'il sera prêt, l'envoyer par courriel à Mirko Zgela: mirko.sgela@sympatico.ca Si questions, contacter Lucien: 563-0217 ou Mirko Zgela au 819-383-4411. (Je serai en vacances à l'extérieur du 21 juillet au 31 juillet.) Merci beaucoup Guillaume, J'espère que tu passes de belles vacances...!

TABLE OF CONTENTS:

INTRODUCTION Scope General Helicopter Effectivity Installer Responsibilities	p.2 p.2 p.2 p.2 p.2
INSTALLATION BearPaw Installation BearPaw Removal Weight & Balance Parts List	p.3 p.3 p.4 p.4 p.4
INSPECTION Life Limited Items Pre-Flight Periodic Inspection Schedule 100 Hour or Yearly Inspection Details Overhaul Requirements	p.5 p.5 p.5 p.5 p.5 p.5
REVISIONS & APPROVAL	p.6
Annex A (BearPaw Assembly drawing) Annex B (BearPaw Pad drawing)	p.6 p.6

INTRODUCTION

Scope

This installation instruction describes the step-by-step approach to install and to perform maintenance of the Helitowcart BearPaw for your Robinson R44.

General

The Helitowcart BearPaw is made of machined UHMW TIVAR® polymer sheet. This material combines high-impact performance, low friction and good resistance to chemical. Its high durability will provide superior performance to your Robinson helicopter. Any question regarding the Helitowcart BearPaw system shall be directed to:

Table 1 – Helitowcart Customer Support

Care of	Mailing Address	Phone, Fax & Email:
Customer Support Helitowcart BearPaw Helitowcart (Vanair inc)	860 Marie-Victorin St-Nicholas, Levis, Quebec, Canada, G7A 3S9	Tel:1 (418) 561-4512 Fax:1 (418) 836-2291 info@helitowcart.com

Helicopter Effectivity

This installation instruction applies to the following ROBINSON Helicopters:

Table 2 - Robinson beliconter application

Table 2 Replication				
A/C Model	Serial no.	Type Certificate Data Sheet		
R44	0271 thru 9999	H11NM		
R44 II	1140, 10001 and subsequent	H11NM		

Installer Responsibilities

The installer shall ensure that the installation of the Helitowcart BearPaw does not conflict with any other part of the helicopter configuration. Technicians performing this installation should be familiar with A/C work and should have been familiarized with the different Helitowcart BearPaw system components prior to performing a first time installation. All steps in this procedure must be followed. Deviations from the procedures may result in potential structural failure or equipment malfunction and will result in a non-compliant installation.

INSTALLATION

BearPaw Installation

Reference Documentation:

- Robinson R44 Maintenance Manual & Instruction for Continued Airworthiness. RTR460.
- [2] Annex A BearPaw Assembly Drawing (112-0001-00)

Step 1: Helicopter Preparation

- Ensure the helicopter is safe for maintenance;
- Lift the helicopter using the manufacturer recommended practice provided in Ref [1] to allow a clearance of the skid in the area of the aft cross tube of approximately 1 ½" (38mm);
- Remove aft skid wearshoe & Re-install screws.

Step 2: BearPaw Preparation

- Install the ice blades (Qty:2) under the BearPaw pad as per drawing (112-0001-00) Ref [2];
- Insert washer (Washer P/N 263-0001-17) through threaded part of the ice blade and secure with nut (P/N 262-0001-17);
- Position the BearPaw under skid at the aft intersection with the cross tube as per figure 1 with narrow edge pointing forward.

Step 3: BearPaw Set Up

- Insert washers (P/N 263-0001-17) through all four bolts (P/N261-0001-17);
- Insert bolt(P/N261-0001-17) and washer (Washer P/N 263-0001-17) through BearPaw pad as per drawing (112-0001-00) Ref [2]
- Insert both U-shaped clips (P/N 314-0006-15) through bolts(P/N261-0001-17);
- Insert slotted clip supports (P/N 314-0007-15) through all four bolts. Position slotted clip supports with rounded edge toward helicopter skid;
- Insert washer (P/N 263-0001-17) & screw nuts (P/N 262-0001-17). Max. torque on nuts 60 in.-lb:
- Remove helicopter from lift;
- Amend Weight & Balance records as required

Figure 1 - Installed BearPaw

314-0011-00-A BearPaw model BP44 Installation on Robinson R44

BearPaw Removal

Step 1: Helicopter Preparation

- Ensure the helicopter is safe for maintenance;
- Lift the helicopter using the manufacturer recommended practice provided in Ref [1] to allow a clearance of the skid in the area of the aft cross tube of approximately 1 ½" (38mm);

Step 2: BearPaw Removal

- Remove nuts (P/N 262-0001-17) on U-shaped clips (P/N 314-0006-15),
- Remove U-shaped clips (P/N 314-0006-15) and remove BearPaw pad (P/N 314-0001-01);
- Inspect skid tubes to confirm serviceability
- Re-install aft wearshoe with screws as per reference [1];
- · Complete installation by putting helicopter back to normal position by removing lift status;
- Amend Weight & Balance records as required.

Weight & Balance

The following information should be used to amend the helicopter weight and balance information following the installation or removal:

Table 3 - Weight & Balance

Itom	Weight Lateral		Longitudinal		
Item	Weight	Arm	Moment	Arm	Moment
Helitowcart BearPaw Model BP44	(222)	0.0in. (0.0mm)	0.0lb-kg (0.0mm-kg)	(???)	(222)

Parts Lists

The Helitowcart BearPaw detailed parts list is as follow:

Table 4 - Parts List

Description	Qty	Part No.	Drawing no./name			
Helitowcart BearPaw Model BP44	1	112-0001-00	112-0001-00 / BearPaw Assembly			
BearPaw pad	1	314-0001-01	314-0001-01 / BearPaw - Pad			
U Shaped Clips	2	314-0006-15	314-0006-15 / BearPaw - U Shaped Clips			
Slotted Clip Support	4	314-0007-15	314-0007-15 / BearPaw - Slotted Clip Support			
Bolts	4	261-0001-17	Bolt- AN4-14			
Nuts	8	262-0001-17	Nut- MS20-365-428			
Washers	12	263-0001-17	Washer - AN960-416			

INSPECTION

Life Limited Items

Three are no life limited items for the Helitowcart BearPaw.

Pre-Flight

Before each flight the following items should be inspected:

- · Check that attachment bolts are installed and secured,
- · Check that BearPaws are free from visible damage,
- If damage is found, verify allowable damage according to:
 Table 5 Tolerances for cracks & wear, &
 Annex B BearPaw Allowable Damage Drawing (314-0001-01 page 2 of 2)

Periodic Inspection Schedule

- The Helitowcart BearPaw shall be inspected every 100 flying hours.
- The Helitowcart BearPaw can be inspected concurrently with the R44 landing gear inspection.
- Recommended tolerance for performance of inspection is +/- 10% of the 100 hours period.

100 Hour or Yearly Inspection Details

- Remove Helitowcart BearPaw: See Section "BearPaw Removal",
- Inspect all parts for damage & wear. See table & figure below for allowable damage,
- Replace all damaged parts.
- Replace parts worn beyond the tolerances indicated below.
- See Tolerances for cracks & wear:

Table 5 – Tolerances for cracks & wear, &

Annex B - BearPaw Allowable Damage Drawing (314-0001-01 page 2 of 2)

Table 5 - Tolerances for cracks & wear

Table 5 – Tolerances for cracks & wear					
Zone	Nominal Dimension (Inches)	Allowable Damage/Wear (Inches)	Cracks		
Α	0,350	0,050			
В	1,000	0,250			
С	0,375	0,075	Stiffeners: NO cracks in stiffeners. Pockets: Cracks are acceptable in the Helitowcart BearPaw pocket areas to a maximum length of 0,5" provided they are 0,25" away from the stiffener radius change. Stop drill cracks with a 0,125" hole.		
D	0,350	0,050			
Е	N/A	N/A	No cracks allowed in zone E		

Overhaul Requirements

Not applicable for the designated application of this device.

REVISIONS & APPROVAL

Revisions

Date	Rev	Nature
June 1, 2006	Α	Initial issue

Approval

Internal Approval:		
Vanair Inc.	Lucien Barbeau, president	2006.05.23 Date:
External Approval:		
Transport Canada		
	Mirko Zgela, DAR #310	Date:

Annex A

See: BearPaw Assembly, drawing no. 112-0001-00.

Annex B

See: BearPaw Pad, drawing no. 314-0001-01. Page 2 of 2.

Ø 1/4 in Raw material

Note: Raw material specification: Stainless steel 304 annealed Rod

Vanair inc. 860, Marie-Victorin St-Nicolas, Lévis (Québec) Canada, G7A 359 Tél.: (418) 561-4512 Fax: (418) 836-2291 www.helitowcart.com

THIS DOCUMENT IS PROPERTY OF VANAIR INC. WRITTEN PERMISSION FROM VANAIR INC. SHALL BE OBTAINED PRIOR TO COPYING, USING OR MODIFYING.

R1	Initial issue	03-08-06	G.L.
Rev.	Description	Date	Ву

					NODIF TING.
TOLERANCES	Titre / Title Bearpaw - Iceblade			Matériel / Material:	Note
1/X ± 1/32" X.XX ± 0.010"	Dessiné par / Drawing by: G. Lapointe	Date: (yyyy-mm-dd) 2006-04-24	Format :	Échelle / Scale:	Page #: 1 de 1
X.XXX ± 0.005" ANGLE ± 1°	Vérifié par / Checked by:	Date: (yyyy-mm-dd)	Numéro dessin / Draw VNF	ving Number: 3084	Rev.#.
PROJECTION: 🕀 🗔	Approuvé par / Approved by:	Date: (yyyy-mm-dd)	Numéro de pièce / Pa	art Number:	Rev.#:

Note:
Raw material specification:
Stainless steel 304 annealed
Threaded rod 1/4-28 UNF

Vanair inc. 860, Marie-Victorin St-Nicolas, Lévis (Québec) Canada, G7A 3S9 Tél. : (418) 561-4512 Fax : (418) 836-2291 THIS DOCUMENT IS
PROPERTY OF VANAIR
INC. WRITTEN
PERMISSION FROM
VANAIR INC. SHALL BE
OBTAINED PRIOR TO
COPYING, USING OR
MODIFYING

1/X ± 1/32" X.XX ± 0.010" X.XXX ± 0.005" ANGLE ± 1°

PROJECTION:

		art.com	MOL	IFYING.			
	Titre / Title Bearpaw - Icek	ded rod	Matériel / Material: See Note				
l	Dessiné par / Drawing by: G. Lapointe	Date: (yyyy-mm-dd) 2006-04-24	Format :	Échelle / S	cale: Pa	Page #: 1 de 1	
١	Vérifié par / Checked by:		Numéro dessin / Drawing Number:		Rev.#.		
l				R085		R1	
١	Approuvé par / Approved by:	Date: (yyyy-mm-dd)	Numéro de pièce / Part Number: 314-0004-15-A		Rev.#:		

R1	Initial issue	03-08-06	G.L.
Rev.	Description	Date	Ву

Propriétés du UHMW TIVAR®

TIVAR flight wear shoes do not corrode, and outwear shoes made from metals, urothanos and other plastics.

TIVAR is used in many OEM applica-tions to solve abrasion and corrosion problems. The scrapers on this belt press are of TIVAR.

Conveyor rollers kned with TIVAR reduce belt wear. Wet sludge doesn't build up as on conventional rollers.

		PHYSICAL PROPERTIES			
PROPERTY		TEST METHOD	UNIT	TYPICAL VALUE	
Specific Gravity		ASTM D-792	g/cm ³	0.94	
Yield Strength	@73°F	ASTM D-63B	p.s.i.	3400	
Ultimate Tensile Strength	@73°F	ASTM D-638	p.s.i.	6800	
Break Elongation	@73°F	ASTM D-638	%	450	
Yield Strength	@250°F	Stress Strain Diagram	p.s.l.	700	
Ultimate Tensile Strength	@250°F	Stress Strain Diagram	p.s.l.	3300	
Break Elongation	@250°F	Stress Strain Diagram	%	900	
Hardness —Rockwell "R" S		ASTM D-785		64	
Shore "D" S		ASTM D-2240		67	
Flexural Modulus of elasticit	У	Bend Creep/1 min. value	p.s.i.	110,000	
Shear Strength		ASTM D-732	p.s.i.	3500	
izod impact + @23°c		ASTM D-256A	ft-lbs/in. notch	No Break	
- @140°c		ASTM D-256A	ft-lbs/in. notch	No Break	
Environmental Stress Crack	ing @F ₅₀	ASTM D-1693 Mod	hrs.	6000	
Water Absorption		ASTM D-670		NIL	

COEFFICIENT OF FRICTION

UHMW Polymer has a lower coefficient of friction than glass. Together with its self-lubricating characteristics it is an ideal material for bearings, bushings, valves, wear strips or any application where sliding contact is encountered.

and all all a sure of a su	pplication where stiding t	contact is encountered.	
MATERIALS	STATIC	KINETIC	TEST METHOD
Mild Steel vs. Mild Steel	0.30-0.40	0.25-0.35	LOI METHOD
Mild Steel vs. TIVAR-100	0.15-0.20	0.12-0.20	ASTM D-1894
TIVAR-100 vs. TIVAR-100	0.00.0.00	0.00.00	HO 1141 D-1034

	DEFORMATION UNDER COMPRESSION - %					PERMANENT DEFORMATION		
TEMP°F	PSI				AFTER REMOVAL OF LOAD			
1 EMBAL	COMPRESSION	10 MIN.	100 MIN.	1000 MIN.	1 DAY	56 DAYS	AFTER 1 MIN.	AFTER 24 HRS
68°	282 570 850 1140 1420	1.5 2.4 3.0 4.0 5.0	1.7 2.5 4.0 5.0 6.5	1.8 2.7 4.5 6.0 7.5	1.9 3.0 5.0 7.0 8.0	2.4 4.0 5.1 7.5 9.0	0,9 1.8 2.7 3.6 4.5	0.6 1.2 1.6 2.4 2.9

CHEMICAL RESISTANCE

Hydrochloric acid (conc.) - no appreciable reaction up to 80°C

Nitric acid (20%) - less than 20% decrease in yield stress and ultimate tensile strength up to 80°C.

ulphuric acid (50%) - no appreciable reaction up to 80°C. Less than 20% decrease in properties at 75% oncentration.

Sodium hydroxide (caustic soda) - no appreciable reaction up to 80°C.

Sodium hypochlorate and most aqueous solutions of inorganic salts - no appreciable reaction up to 80°C.

Hydrocarbons and halogenated hydrocarbons -limited resistance. Each application should be evaluated.

www.plastiquepolyfab.com

QUÉBEC: 1275, de la Jonquière, Québec, QC, Tél.: 418-682-0760 ou 1-866-682-0760

MONTRÉAL: 7600, Rte Transcanadienne, St-Laurent, QC, H4T 1A5 Tél.: 514-738-6817 ou 1-888-506-9600

Ultra High Molecular Weight Polyethylene

UHMWPE Typical Properties

Specific Gravity, 73°F	.944	
Tensile Strength @ Yield, 73°F	3250	psi
Tensile Modulus of Elasticity, 73°F	155,900	psi
Tensile Elongation (at break), 73°F	330	%
Flexural Modulus of Elasticity	107,900	psi
Compresive Strength at 2% deformation	400	psi
Compressive Strength 10% Deformation	1200	psi
Deformation Under Load	6-8	%
Compressive Modulus of Elasticity, 73°F	69,650	psi
Hardness, Durometer (Shore "D" scale)	69	
Izod Impact, Notched @ 73°F	30	ft.lbs./in. of notch
Coefficient of Friction (Dry vs Steel) Static	.17	
Coefficient of Friction (Dry vs Steel) Dynamic	.14	
Sand Wheel Wear/Abrasion Test	95	UHMW=100
Coefficient of Linear Thermal Expansion	11.0	in/in/°F x 10 ⁻⁵
Melting Point (Crystaline Peak)	279-289	°F
Volume Resistivity	>10 ¹⁵	ohm-cm
Surface Resistivity	>10 ¹⁵	ohm-cm
Water Absorption, Immersion 24 Hours	Nil	%
Water Absorption, Immersion Saturation	Nil	%
Machinability Rating	5	1 = easy. 10 = difficult
Sheet Thickness Availability (Off the Shelf)	.250 - 2.0	inches

314-0010-00-A BearPaw Bolts & Nuts Assy

