Scilab Textbook Companion for Programming In Ansi C by E. Balagurusamy¹

Created by
Devender Thakur
computer science
Computer Engineering
Shoolini University, Solan
College Teacher
Mr. Amit Nayyar
Cross-Checked by

October 7, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Programming In Ansi C

Author: E. Balagurusamy

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 4

Year: 2008

ISBN: 978-0-07-064822-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Overview of C	7
2	Constants Variables and Data Types	11
3	Operators and Expressions	16
4	Managing Input and Output Operations	22
5	Decision Making and Branching	31
6	Decision Making and Looping	40
7	Arrays	51
8	Character Arrays and Strings	65
9	User Defined Functions	76
10	Structures and Unions	87
12	File Management in C	95
13	Dynamic Memory Allocation and linked Lists	104

List of Scilab Codes

Exa 1.3	Printing a mesage	7
Exa 1.4	Adding two numbers	7
Exa 1.5	Interest Calculation	8
Exa 1.6	Use of subroutines	9
Exa 1.7	Use of math functions	9
Exa 2.1	Representation of integer constants on a 16 bit computer	11
Exa 2.1cs	Case study 1 avg of numbers	12
Exa 2.2	typical declarations assignments and values stored in	
	various types of variables	12
Exa 2.2cs	Case study temprature in Farenheit and Celsius	13
Exa 2.3	use of scanf function	14
Exa 2.4	Interest calculation using scanf	14
Exa 3.1	Use of integer arithmetic	16
Exa 3.1cs	case study 1 salesmans salary	16
Exa 3.2	Sequence of squares of numbers	17
Exa 3.2cs	case study 2 solution of the quadratic equation	18
Exa 3.3	Different kind of operators	18
Exa 3.4	Use of variables in expressions	19
Exa 3.5	Round off errors	20
Exa 3.6	Cast to evaluate the equation	21
Exa 4.1	Use of getchar function	22
Exa 4.1cs	Case study 1 Inventory report	23
Exa 4.2	Whether character is alphabet or digit or special char-	
	acter	24
Exa 4.2cs	Case study 2 Reliability graph	25
Exa 4.3	Print character in reverse case	25
Exa 4.4	Input formatting options	26
Exa 4.5	Reading of real numbers	27

Exa 4.6	Reading of strings
Exa 4.8	Testing for correctness
Exa 4.9	Output of integer numbers
Exa 4.10	Printing a real number
Exa 4.11	Printing of character and strings
Exa 5.1	Ratio
Exa 5.1cs	Case study 1 range of numbers
Exa 5.2	counts the number of boys
Exa 5.2cs	Case study 2 Pay Bill Calculations
Exa 5.3	Evaluate the power series
Exa 5.4	Largest of the three numbers
Exa 5.5	Reads the customer number and power consumed 37
Exa 5.6	Loan applications and to sanction loans
Exa 5.7	square root for five numbers
Exa 6.1	evaluate the equation
Exa 6.1cs	Case study 1 Table of Binomial Coefficients 40
Exa 6.2	Multiplication table
Exa 6.2cs	Case study 2 Histogram
Exa 6.3	Uses a for loop
Exa 6.3cs	Case study 3 Minimum Cost
Exa 6.4	Read the marks and print total marks 45
Exa 6.4cs	Case study 4 Plotting of two Functions 46
Exa 6.5	Use of the break statement
Exa 6.6	Evaluate the series
Exa 6.7	Use of continue statement
Exa 1.cs	Case study 1 Median of list of numbers 51
Exa 2.cs	Case study 2 Calculation of standard deviation 52
Exa 3.cs	Case study 3 Evaluating a Test
Exa 4.cs	Case study 4 Production and sales analysis 54
Exa 7.1	Sum of squares of 10 numbers
Exa 7.2	Count the number of students
Exa 7.3	Compute and print
Exa 7.4	Multiplication table
Exa 7.5	Popularity of various cars
Exa 1.cs	Case study 1 Counting words in a text 65
Exa 2.cs	Case study 2 Processing of a customer list
Exa 8.1	Read a series of words
Exa 8.2	Read a line of text

Exa 8.3	Copy one string into another
Exa 8.4	Display the string under various format specifications.
Exa 8.5	Program using for loop
Exa 8.6	Print the alphabet set a to z and A to Z
Exa 8.7	Concatinate the three parts into one string
Exa 8.8	Compare whether strings are equal
Exa 8.9	Sort a list of names in alphabetical order
Exa 1.cs	Case study 1 Calculation of Area under a Curve
Exa 9.1	Multiple functions
Exa 9.2	Include arguments in function calls
Exa 9.3	Return result
Exa 9.4	Computes x raised to the power y
Exa 9.5	Calculate standard deviation of an array values
Exa 9.6	Sort an array
Exa 9.7	Autometic variables
Exa 9.8	Global variables
Exa 9.16	Factorial of a number using recursion
Exa 1.cs	Case study 1 Book Shop Inventory
Exa 10.1	Define a structure type
Exa 10.2	Comparison of structure variables
Exa 10.3	Calculate the subject wise and student wise totals
Exa 10.4	Array member to represent the three subjects
Exa 10.5	structure as a parameter to a function
Exa 12.1	Read data from keyboard and write it to a file
Exa 12.2	Read and write odd and even numbers
Exa 12.3	Read and write data to and from the file INVENTORY
Exa 12.4	Error handling in file operations
Exa 12.5	use of function ftell or mtell and fseek or mseek 10
Exa 12.6	Append additional items to the file INVENTORY 10
Exa 1.cs	Case study 1 Insertion in a sorted list
Exa 2.cs	Case study 2 Building a Sorted List
Exa 13.3	Create a linear linked list
Exa 13.4	Insert the item before the specified key node
Exa. 13.5	Delete a specified node in the list

Chapter 1

Overview of C

Scilab code Exa 1.3 Printing a mesage

```
1 // Example 1.3
2 // SAMPLE PROGRAM 1: PRINTING A MESSAGE
3
4 // Printing Begins
5 printf("I see, I remember") // Printing using printf()
    function
6 // Printing ends
7
8
9 // We can also print a message using disp() function
    in scilab
10 disp("I see, I remember") // Printing using disp()
    function
```

Scilab code Exa 1.4 Adding two numbers

Scilab code Exa 1.5 Interest Calculation

```
Example 1.5
2 // SAMPLE PROGRAM 3: INTEREST CALCULATION
4 PRINCIPAL = 5000.00;
5 PERIOD=10;
6 //Assignment Statements
7 amount=PRINCIPAL;
8 inrate=0.11;
9 \text{ year=0};
10 //Computation using while loop
11 while (year <= PERIOD)</pre>
       printf ("%2d %8.2 f \setminus n", year, amount);
13
       value=amount+inrate*amount;
       year=year+1;
14
15
       amount=value;
16 end //End of while loop
```

Scilab code Exa 1.6 Use of subroutines

```
1 // Example 1.6
2 // SAMPLE PROGRAM 4: USE OF SUBROUTINES
3
4 //Program using function
5
6 function []=mul(a,b) // mul() function starts (i.e. definition starts)
7     y=a*b;
8     printf("Multiplication of %d and %d is %d",a,b,y);
9 endfunction // mul() function ends
10 a=5;b=10;
11 // Calling mul() function
12 mul(a,b)
```

Scilab code Exa 1.7 Use of math functions

```
1 // Example 1.7
2 // SAMPLE PROGRAM 5: USE OF MATH FUNCTIONS
3
4 //Program using cosine function
5 angle=0; MAX=180;
6 printf(" Angle Cos(angle)\n");
7 while(angle<=MAX)
8 x=(%pi/MAX)*angle;
9 y=cos(x); //Use of cosine function</pre>
```

Chapter 2

Constants Variables and Data Types

Scilab code Exa 2.1 Representation of integer constants on a 16 bit computer

```
Example 2.1
2 // Representation of integer constants on a 16-bit
     computer.
4 disp("Integer values");
5 //Integer values larger than 32767 are not stored
      properly on 16-bit machine
6 printf("%d %d %d \n", int16(32767), int16(32767+1),
     int16(32767+10));
8 disp("Long integer values");
9 //To store long integers properly, use int32 integer
      type
10 printf("%ld %ld %ld \n",int32(32767),int32(32767+1),
     int32(32767+10));
11 //The same result as from above statement can be
      achieved directly from below commented statement
12 / \text{printf} ("%ld %ld %ld\n", 32767, 32767+1, 32767+10);
```

Scilab code Exa 2.1cs Case study 1 avg of numbers

```
Case Study:-Chapter 2 Page No.-47
       1. Calculation of Average of numbers
3
4 N=10; sum1=0; count=0; //Initialization of
      variables
5 printf(" Enter ten numbers");
6 while (count < N)
        number = scanf ("%f"); // Reading number (using
           scanf() function)
        sum1=sum1+number;
        count = count +1;
9
10
    end
   average=sum1/N; //Avarage is calculated
12 printf(" N = \%d Sum1 = \%f", N, sum1);
13 printf(" Average = \%f", average);
```

Scilab code Exa 2.2 typical declarations assignments and values stored in various types of variables

```
1 // Example 2.2
2 // Program shows typical declarations, assignments
          and values stored in various types of variables.
3
4 // Declarations and Assignments
5 m=int16(54321);
```

```
6 n = int32(1234567890);
7 k=uint16(54321);
8 // Assignments
9 x=1.234567890000;
                               //Bydefault type is double
      in scilab
10 y=9.87654321;
11 p=1.0; q=1.0;
12 // Printing
13 printf(" m=\%d \ n",m)
14 printf(" n=\%ld \setminus n",n)
15 printf(" x=\%.12 f n",x)
16 printf(" x=\%f \setminus n",x)
17 printf(" y=\%.12 \, f \, n",y)
18 printf(" y=\%f \setminus n",y)
19 printf (" k=\%u p=\%f q=\%.12 f n", k,p,q)
```

Scilab code Exa 2.2cs Case study temprature in Farenheit and Celsius

```
Case Study:-Chapter 2 Page no.-48
2 // 2. Solution of temprature in Farenheit and
      Celsius
3 F_LOW=0;
4 F_MAX = 250;
5 STEP=25;
6 fahrenheit=F_LOW;
                          //Initialization
7 printf("Fahrenheit Celsius\n\n");
8 while(fahrenheit < = F_MAX)</pre>
                                            //conversion
       celsius=(fahrenheit-32.0)/1.8;
          from Farenheit to Celsius
10
       printf("%6.2 f
                               \%7.2 \text{ f} \n\text{",fahrenheit,}
          celsius);
11
       fahrenheit=fahrenheit+STEP;
```

Scilab code Exa 2.3 use of scanf function

```
1 // Example 2.3
2 // The program illustrate the use of scanf()
    function
3 disp("Enter an interger number:");
4 number=scanf("%d"); //Read from keyboard
5 if(number<100) then
6 disp("Your number is smaller than 100");
7 else
8 disp("Your number contain more than two digits")
    ;
9 end</pre>
```

Scilab code Exa 2.4 Interest calculation using scanf

```
1 // Example 2.4
2 // Sample program 3(exm1.5) discussed in chapter 1
      can be convered in to a more flexible intractive
      program using scanf() function
3 disp("Enter in single line separted by space");
4 disp("Input amount, interest rate, and period");
5 [amount, inrate, period] = scanf("%f %f %d"); // use
      of scanf()
6 year=1;
7 // Computation using while loop
8 while (year <= period)</pre>
```

```
value=amount+inrate*amount;
printf("%2d Rs %8.2 f\n", year, value)
year=year+1;
amount=value;
amount=value;
```

Chapter 3

Operators and Expressions

Scilab code Exa 3.1 Use of integer arithmetic

```
1 // Example 3.1
2 //The program shows the use of integer arithmetic to
        convert a given number—
3 //of days into months and days
4
5 days=input('Enter days:');
6 months=int16(days/30); //Compute for months
7 days =int16(pmodulo(days,30)); //compute for days
8 disp(days,"Days =",months,"Months =");
```

Scilab code Exa 3.1cs case study 1 salesmans salary

```
1 // Case Study:-Chapter 3,Page No:76
2 // 1.Salesman's Salary
3
4
5 BASE_SALARY=1500.00; //Minimum base salary
```

```
6 BONUS_RATE=200.00; //Bonus for every computer
      sold
7 COMMISSION=0.02; //Commission on total monthly
       sales
8 printf("Input number sold and price\n[Enter in
       single line separated by space ]");
9 [quantity, price] = scanf("%d %f"); //Input
      quantity and price
10 //Computation for bonus, commission and gross_salary
      of a salesman
11 bonus = BONUS_RATE*quantity;
12 commission = COMMISSION*quantity*price;
13 gross_salary =BASE_SALARY + bonus + commission;
14 printf("Bonus = \%6.2 \text{ f} \text{ n}", bonus);
15 printf("Commission = \%6.2 \text{ f} \text{ n}", commiss
                                 = \%6.2 \, \mathrm{f} \, \mathrm{n}, commission)
16 printf ("Gross salary = \%6.2 \text{ f} \cdot \text{n}",
      gross_salary);
```

Scilab code Exa 3.2 Sequence of squares of numbers

```
1 // Example 3.2
2 //Program to print a sequence of squares of numbers.
3
4 N=100; A=2;
5 a=A;
6 while(a<N)
7     disp(a);    //Prints square of number
8     a=a^2;    //compute square of number
9 end</pre>
```

Scilab code Exa 3.2cs case study 2 solution of the quadratic equation

```
//
               Case Study:-Chapter 3, Page No:77
2 //
            2. Solution of the Quadratic equation
3
4
5 printf("Input values of a, b, and c \setminus n");
6 a=input("a =");
7 b=input("b =");
8 c = input("c =");
9 discriminant = b^2-4*a*c;
10 if(discriminant < 0)</pre>
      printf("\n\nROOTS ARE IMAGINARY\n");
11
12 else
13
       //Computes root1 and root2
14
       root1 = (-b + sqrt(discriminant))/(2.0*a);
      root2 = (-b - sqrt(discriminant))/(2.0*a);
15
      16
         root1,root2 );
17 \text{ end}
```

Scilab code Exa 3.3 Different kind of operators

```
1 // Example 3.3
2 //The program employs diffrent kind of operators.
    The results of their evaluation are also shown for comparison
3
```

```
4 //Increment (i.e. ++)/Decrement (--) operators are
      unavailable in Scilab
5 = int16(15);
6 b = int 16 (10);
7 a=a+1; // Replacement for ++a
8 c=a-b;
9 printf("a = \%d b = \%d c = \%d\n",a,b,c);
10 b=b+1; // Replacement for b++
11 d=b+a;
12 printf("a = \%d b = \%d d = \%d\n",a,b,d);
13 printf("a/b = \%d \ n",a/b);
                                                     //
      Division operator
14 printf("pmodulo(a,b) = %d\n", pmodulo(a,b));
      Modulus operation
15 printf("a*b = \%d \setminus n", a*b);
      Multiplication
16 //In scilab ther is no conditional operator (?:),
      hence 'if' can be used in place of ?:
17 \text{ if (c>d) then}
18
       disp(1);
19 end
20 if (c<d) then
21
       disp(0);
22 end
```

Scilab code Exa 3.4 Use of variables in expressions

```
1 // Example 3.4
2 //The program illustrates the use of variables in
      expressions and their evaluation.
3
4 a=9;b=12;c=3;
5 //Expressions and their evaluations
```

```
6  x=a-b/3+c*2-1;
7  y=a-b/(3+c*(2-1));
8  z=a-(b/(3+c)*2)-1;
9
10  printf("x=%f\n",x)
11  printf("y=%f\n",y)
12  printf("z=%f\n",z)
13  // disp can be used..
14  //disp(x,"x=")
15  //disp(y,"y=")
16  //disp(z,"z=")
```

Scilab code Exa 3.5 Round off errors

```
Example 3.5
1 //
2 //Output of program shows round-off errors that can
      occur in computation of floating point numbers
3
4 //Sum of n terms of 1/n
5 \text{ count=1};
6 \text{ sum1=0};
7 n=input("Enter value of n:");
8 \text{ term}=1.0/n;
9 while(count <= n)</pre>
10
       sum1=sum1+term;
11
        count = count +1;
12 end
13 printf("Sum= \%f", sum1);
```

Scilab code Exa 3.6 Cast to evaluate the equation

Chapter 4

Managing Input and Output Operations

Scilab code Exa 4.1 Use of getchar function

```
1 //
                      Exaymple 4.1
2 // The program shows the use of getchar function in
     an intractive environment.
3 //In Scilab in place of getchar function scanf
     function can be used to get
4 //character as there is no getchar function in
     Scilab.
6 disp("Would you like to know my name?");
7 disp("Type Y for YES and N for NO:");
8 answer=scanf("\%c");
                                              //Reading
     character
  if (answer == 'Y') | (answer == 'y') then
                                             //Test for
     answer
10
       disp("My name is BUSY BEE");
11 else
       disp("You are good for nothing")
13 end
```

Scilab code Exa 4.1cs Case study 1 Inventory report

```
//
                     Case Study:-Chapter 4 , Page No:106
1
2 //
                     1. Inventory Report
4 ITEMS=4;
5 i = 1;
6 printf("[Enter in single line separated be spaces]\n
      ");
7 while(i <= 4)</pre>
       printf("Enter code, quantity, and rate:");
        [code(i),quantity(i),rate(i)]=scanf("%s %d %f")
        i=i+1;
10
11 end
12 printf("INVENTORY REPORT\n");
13 printf("
                                                       --\n"
      );
14 printf("Code
                       Quantity
                                                  Value\n")
                                       Rate
15 printf("
16 total_value=0;
17 i=1;
18 while(i<=ITEMS)</pre>
       value=quantity(i)*rate(i);
19
20
       printf("%6s %10d %10.2 f
                                    %e\n",code(i),
          quantity(i), rate(i), value);
       total_value = total_value + value;
21
22
       i=i+1;
```

Scilab code Exa 4.2 Whether character is alphabet or digit or special character

```
1 //
                     Example 4.2
2 // The program requests the user to enter a
     character and display a message on
3 // the screen telling the user whether the character
      is an alphabet or digit,
4 // or any other special character.
6 disp("Press any key");
7 character=scanf("\%c");
                                                 //
     Reading character
  if (isletter(character)) then
                                                 //Test
     for letter
9
       disp("The character is a letter");
       elseif (isdigit(character)) then
10
                                                 //Test
          for digit
               disp("The character is a digit");
11
12
           else
13
               disp("The character is not alphanumeric"
                  );
14
    end
```

Scilab code Exa 4.2cs Case study 2 Reliability graph

```
1 //
                Case study: chapter 4
2 //
               2. Reliability Graph
3
4 LAMBDA=0.001;
5 \text{ for } i=1:27
       printf("--");
7 end
8 printf("\n");
9 for t=0:150:3000
       r = exp(-LAMBDA*t);
10
11
       R = int32(50*r+0.5);
       printf("|");
12
13
       for i=1:R
              printf("*");
14
15
       printf("\#\n");
16
17 end
18 for i=1:2
       printf(" | \ n");
19
20 end
```

Scilab code Exa 4.3 Print character in reverse case

```
1 // Example 4.3
2 // A program that reads a character from the
   keyboard and then print in reverse
```

Scilab code Exa 4.4 Input formatting options

```
Example 4.4
2 // The program illustrates the various options for
     reading
3 //integers are experimented in this program
6 printf("Enter three integer numbers\n");
7 [n,a,b,c] = mscanf("%d %*d %d");
8 disp(c,b,a);
9 printf("Enter two 4-digit numbers\n");
10 [n,x,y] = mscanf("\%2d \%4d");
11 printf('%d %d\n',x,y);
12
13 printf("Enter two integers\n");
14 [n,a,x] = mscanf("%d %d");
15 printf('%d %d\n',a,x);
16
17 printf("Enter a nine digit number\n");
```

```
18 [n,p,q,r]=mscanf("%3d %4d %3d");
19 printf('%d %d %d\n',p,q,r);
20
21 printf("Enter two three digit numbers\n");
22 [n,x,y]=mscanf("%d %d");
23 printf('%d %d \n',x,y);
```

Scilab code Exa 4.5 Reading of real numbers

```
1 // Example 4.5
2 //Reading of real numbers(in both decimal point and exponential notation
3
4 printf("Values of x and y:");
5 [x,y]=scanf("%f %e"); //reading x [decimal point] and y[exponential] from standard input
6 printf("\n");
7 printf("x = %f\ny = %f\n",x,y);
8 printf("Values of p and q:");
9 [p,q]=scanf("%lg %lg");
10 printf("\np = %.12f\nq = %.12e\n",p,q);
```

Scilab code Exa 4.6 Reading of strings

```
1 // Example 4.6
2 // Reading of strings using %wc and %ws.
3
4 //scanf() can only read one character at a time and return it to name1, therefore
```

Scilab code Exa 4.8 Testing for correctness

Scilab code Exa 4.9 Output of integer numbers

Scilab code Exa 4.10 Printing a real number

```
1 // Example 4.10
2 // The program illustrates all the options of printing a real number.
3
4 y=98.7654; //real number
5 //Various options of printing a real number
6 printf('%7.4f\n',y);
7 printf('%f\n',y);
8 printf('%7.2f\n',y);
9 printf('%-7.2f\n',y);
10 printf('%07.2f\n',y);
```

```
11 printf('%7.2 f\n',y);
12 printf('\n');
13 printf('%10.2 e\n',y);
14 printf('%12.4 e\n',-y);
15 printf('%-10.2 e\n',y);
16 printf('%e\n',y);
```

Scilab code Exa 4.11 Printing of character and strings

```
Example 4.11
2 // The program illustrates the printing of character
      and strings.
4 x = A';
                               //x variable has character
                              //name variable has string
5 name='ANIL KUMAR GUPTA';
6 disp("OUTPUT OF CHARACTERS");
7 printf('%c \n\%3c \n\%5c \n',x,x,x);
8 printf('\%3c\n\%c\n',x,x);
9 printf('\n');
10 disp("OUTPUT OF STRINGS"); //disp can also be used
      for display
11 printf('%s\n', name);
12 printf('\%20s\n', name);
13 printf('\%20.10 s n', name);
14 printf (\%.5 s n, name);
15 printf('\%-20.10s\n',name);
16 printf('\%5s\n', name);
```

Chapter 5

Decision Making and Branching

Scilab code Exa 5.1 Ratio

```
Example 5.1
2 // The program reads four values a,b,c and d from
     the terminal and
3 //evaluates the ratio of (a+b) to (c+d) and prints
     the result, if c-d
4 //is not equal to zero
6 disp("Enter four integer values");
7 a=int8(input("a="));
8 b=int8(input("b="));
9 c=int8(input("c="));
10 d=int8(input("d="));
11
12 if (c-d ~= 0) then //Execute statement block
       ratio=double(a+b)/double(c-d);
       printf ("Ratio=\%f\n", ratio);
14
15 end
```

Scilab code Exa 5.1cs Case study 1 range of numbers

```
Case Study:-Chapter 5, Page No:139
  //
2 //
                         1. Range of numbers
4 \text{ sum } 1 = 0;
5 \text{ count} = 0;
6 f=0; value=1;
  printf("Enter numbers[press enter after each number
      ]:\n input a NEGATIVE number to end\n");
   while(value)
        [value] = scanf("\%f"); //Read data
10
       if (value < 0) then
11
            break;
12
       end
13
        count = count +1;
       //Calculating height and lowest value
14
       if (count == 1) then
15
            high=value;
16
17
            low=value;
18
         elseif (value > high) then
             high=value;
19
20
         elseif(value<low) then</pre>
21
             low=value;
22
         end
23
         //Calculate sum
24
         sum1=sum1+value;
25 end
26 average=sum1/count;
                              //Average cost
27 range1=high-low;
                              //Range of values
28 // Print the results
29 printf("Total values: %d\n", count);
```

```
30 printf("Highest-values: %f\nLowest-value: %f\n", high ,low);
31 printf("Range: %f\n Avarage: %f\n", range1, average);
```

Scilab code Exa 5.2 counts the number of boys

```
Example 5.2
1 //
2 // The program counts the number of boys whose
      weight is less than 50Kg
3 //and height is greater than 170cm.
5 \text{ count} = \text{int}(0);
6 disp("Enter weight and height for 10 boys");
7 \text{ for } i=1:10
       [weight, height] = scanf("\%f \%f");
                                              // Test for
       if (weight < 50&height > 170) then
           weight and height
10
            count = count + 1;
11
       end
12 end
13 disp("Number of boys with weight <50 kg and height
      >170 cm =");
14 disp(count)
```

Scilab code Exa 5.2cs Case study 2 Pay Bill Calculations

```
1 // Case Study:-Chapter 5
```

```
2. Pay-Bill Calculations
2 //
3 \text{ CA1} = 1000;
4 CA2 = 750;
5 CA3=500;
6 CA4 = 250;
7 \text{ EA1} = 500;
8 \text{ EA2} = 200;
9 EA3=100;
10 EA4=0:
11 level=1;
12 while (level)
13
       printf("Enter O[zero] for level to end");
14
        //Read data
       level=input("Enter level:");
15
       if (level==0)
16
17
            break;
18
       end
19
       printf("Enter job number, and basic pay\n");
20
       //Read data
        [jobnumber, basic] = scanf("%d %f");
21
       //Decide level number and calculate perks
22
23
       select level
24
       case 1 then perks=CA1+EA1;
       case 2 then perks=CA2+EA2;
25
       case 3 then perks=CA3+EA3;
26
27
        case 4 then perks=CA4+EA4;
28
        else
            printf("Error in level code");
29
            return;
30
31
        end
32
33
       house_rent=0.25*basic;
34
        //Calculate gross salary
       gross=basic+house_rent+perks;
35
       // Calculate income tax
36
       if (gross <= 2000) then
37
            incometax=0;
38
       elseif(gross <= 4000)</pre>
39
```

```
40
            incometax=0.03*gross;
       elseif(gross <= 5000)</pre>
41
42
            incometax=0.05*gross;
43
       else
44
            incometax=0.08*gross;
45
       end
       //Compute the net salary
46
       net=gross-incometax;
47
       //Print the results
48
       printf("%d %d %.2 f\n",level,jobnumber,net);
49
50 end
51 printf("END OF THE PROGRAM");
```

Scilab code Exa 5.3 Evaluate the power series

```
1 //
                            Example 5.3
2 // A program to evaluate the power series. It uses
      if ... else to test accuracy.
3 // e^x=1+x+x^2/2! + x^3/3! +
                                     +x^n/n!, 0 < x < 1
4
5 ACCURACY = 0.0001;
6 x=input("Enter value of x:");
7    n=1; term=1; sum1=1; count=int8(1);
8 while (n<=100)
9
       term=term* x/n;
10
       sum1=sum1+term;
11
       count = count +1;
12
       if (term < ACCURACY) then // Test for accuracy
13
            n = 999;
14
       else
15
            n=n+1;
16
        end
17 \text{ end}
18 // Print results
19 printf("Term=%d Sum=%f", count, sum1);
```

Scilab code Exa 5.4 Largest of the three numbers

```
Example 5.4
2 // The program selects and prints the largest of the
       three numbers
3 //using nested if ... else statement
5 disp("Enter three values");
6 A=input("A=");
7 B=input("B=");
8 C=input("C=");
9 disp("Largest value is:");
                              //Test for largest between A
10 \quad if(A>B),
      \&B
       if(A>C) ,
                             //Test for largest between A
11
          &\mathbb{C}
12
            disp(A);
13
         else
             disp(C);
14
15
         end
16 else
                            //Test for largest between C&
17
       if(C>B),
          \mathbf{B}
18
            disp(C);
19
       else
20
            disp(B);
21
         end
22 \text{ end}
```

Scilab code Exa 5.5 Reads the customer number and power consumed

```
Example 5.5
1 //
2 // The program reads the customer number and power
      consumed and prints
3 //the amount to be paid by the customer
5 disp("Enter CUSTOMER NO. and UNITS consumed");
6 //Read data
7 custnum=input("CUSTOMER NO.:");
8 units=input("UNITS:");
9 //Use of else ... if ladder
10 // Calculates charges
11 if(units <= 200) ,
12
       charges = 0.5*units;
13 elseif(units <= 400),
       charges = 100+0.65*(units - 200);
14
  elseif(uints <= 600) ,</pre>
15
       charges = 230+0.8*(units-400);
16
17 else
18
       charges = 390 + (units - 600);
19 end
20 // Print results
21 printf("Customer No:%d Charges=%.2f", custnum,
      charges);
```

Scilab code Exa 5.6 Loan applications and to sanction loans

```
Example 5.6
1 //
2 // A program to process loan applications and to
     sanction loans.
3
4 MAXLOAN=50000;
5 disp("Enter the values of previous two loans");
6 loan1=int32(input("Enter first loan:"));
7 loan2=int32(input("Enter second loan:"));
8 loan3=int32(input("Enter the values of new loan:"));
9 sum23=loan2+loan3;
10 // Calculate the sanction loan
11 if (loan1>0),
12
       sancloan=0;
    elseif(sum23>MAXLOAN),
13
14
        sancloan=MAXLOAN-loan2;
15
    else
16
        sancloan=loan3;
17 end
18 // Print the results
19 printf ("Previous loans pending: %d %d\n", loan1, loan2)
20 printf("Loan requested =%d\n",loan3);
21 printf("Loan sanctioned = %d n", sancloan);
```

Scilab code Exa 5.7 square root for five numbers

```
1 // Example 5.7
2 // The program evaluates the square root for five numbers.
3
4 count=1;
5 printf("Enter FIVE real values\n");
6 while(count <= 5)</pre>
```

```
x = scanf("\%f");
7
         if(x<0) then
8
              printf("Value - %d is negative \n", count);
10
         else
                                           //Calculate square
              y = sqrt(x);
11
                  root
              printf("%f \setminus t%f \setminus n",x,y); // Print result
12
13
         \quad \text{end} \quad
         count = count + 1;
14
15 \, \text{end}
16 printf("End of computation");
```

Chapter 6

Decision Making and Looping

Scilab code Exa 6.1 evaluate the equation

Scilab code Exa 6.1cs Case study 1 Table of Binomial Coefficients

```
Case Study:-Chapter 6, Page No
1 //
      :176
                     1. Table of Binomial Coefficients
3
4 MAX = 10;
5 printf("mx");
6 \text{ for } m = 0:10
        printf("%4d",m);
8 end
9 printf("\n
                                                             –\n
      ");
10 \text{ m=0};
11 //print the table of binomial coefficients for m=10
12 //Computation using while loop
13 while(m<=MAX)</pre>
14
        printf("%2d",m);
15
        x = 0;
16
        binom=1;
        while(x<=m)</pre>
17
             if(m==0|x==0)
18
                 printf("\%4d", binom);
                                              //Print the
19
                    result i.e. binom
20
             else
                 binom = binom * (m-x+1)/x;
                                              //compute the
21
                     binomial coefficient
                 printf("%4d", binom);
22
                                              //Print the
                    result i.e. binom
23
            end
24
            x=x+1;
25
        printf("\n");
26
27
        m=m+1;
28 \text{ end}
29 printf("
      ");
```

Scilab code Exa 6.2 Multiplication table

```
1 //
                   Example 6.2
2 //A program to print multiplication table from 1*1
      to 12*10.
3
4
5 disp("
                     MULTIPLICATION TABLE
                                                          ");
                                                         -");
6 disp("-
7 row=1;
                               //Outer loop begins
8 while(row<=12)</pre>
       column=1;
       while (column <=10)</pre>
                               //Inner loop begins
10
           y=row*column;
11
           printf("%4d",y);
12
            column = column + 1;
13
14
        end
        row=row+1;
15
        printf("\n");
16
17 end
```

Scilab code Exa 6.2cs Case study 2 Histogram

```
1 // Case Study:-Chapter 6
2 // 2. Histogram
3
4 N=5;
5 for n=1:N
```

```
printf("Enter employees in Group-%d:",n);
6
       value(n)=scanf("%d");
                                         //Read data in
          the array named value
       printf("%d\n", value(n));
                                         //Print number
8
          which is at position n
9 end
10 printf("\n");
11 printf("
                     | \ n");
12 //Computation using for loop and draw a histogram
13 for n=1:N
14
       for i=1:3
15
             if(i==2) then
16
                    printf("Group-%1d | ",n);
17
              else
                                     |");
                    printf("
18
19
              end
              for j=1:value(n)
20
21
                    printf("*");
22
              end
              if(i==2)
23
24
                    printf("(\%d)\n", value(n));
25
               else
                    printf("\n");
26
27
               end
28
        end
                    printf("
                                     | \ n");
29
30 \text{ end}
```

Scilab code Exa 6.3 Uses a for loop

```
3 //power 0 to 20, both positive and negative.
5 disp("-----
                                         2 to power -n \ n")
6 printf(" 2 to power n n
7 disp("-----
                         //Loop begins
8 \text{ for } n=0:20
9
       p=2^n;
       q=2^-n;
10
       printf("%7d
                        \%9d \%10.12 f n, p, n, q);
11
12 \text{ end}
                         //Loop ends
```

Scilab code Exa 6.3cs Case study 3 Minimum Cost

```
Case Study:-Chapter 6
1 //
2 //
                      3. Minimum Cost
3
4 for p=0:0.1:10
5
        cost = 48 - 8 * p + p^2;
6
        if(p==0),
7
            cost1=cost;
                               //Use of continue statement
            continue;
9
        end
10
       if(cost>=cost1) ,
11
                              //Use of break statement
12
            break;
13
       end
14
       cost1=cost;
15
        p1=p;
16 end
17 p = (p+p1)/2.0;
                             //Computes the cost
18 \quad cost = 40 - 8 * p + p^2;
19 //print the result
```

Scilab code Exa 6.4 Read the marks and print total marks

```
1 //
                             Example 6.4
2 //A class of n students take an annual examination
      in m subjects.
3 // A program to read the marks obtained by each
      student in various subjects
4 // and to compare and print the total marks obtained
      by each of them.
5
6 FIRST = 360; SECOND = 240;
7 disp("Enter number of students and subjects");
8 [n,m] = scanf("%d %d");
9 \quad for \quad i=1:n
       roll_number=input("Enter roll_number:");
10
11
       total=0;
12
       printf ("Enter marks of %d subjects for ROLL NO
          %d",m,roll_number);
13
       printf("[Enter each in newline]");
       for j=1:m
14
15
           marks = scanf("%d");
           total=total+marks;
                                   //Compute the total
16
17
       end
18
       //print the total marks
19
       printf("TOTAL MARKS = %d", total);
       //Test for division and display it
20
       if(total>=FIRST) ,
21
           disp("First Division");
22
23
       elseif(total>=SECOND)
24
           disp("Second Division");
25
       else
```

```
26 disp("***F A I L ***")
27 end
28 end
```

Scilab code Exa 6.4cs Case study 4 Plotting of two Functions

```
Case Study:-Chapter 6
1 //
        4. Plotting of two Functions i.e. y1=exp(-ax)
      and y2=\exp(-ax^2/2)
3
4 a=0.4;
5 printf("
                                n");
6 printf("0
     n");
  for x=0:0.25:4
       //Evaluation of functions
       y1=int32(50*exp(-a*x)+0.5);
9
       y2=int32(50*exp(-a*(x^2)/2)+0.5);
10
       // plotting when y1=y2
11
       if(y1==y2),
12
           if(x==2.5),
13
                printf("x |");
14
15
           else
                printf(" |");
16
17
           end
           for i=1:(y1-1)
18
                printf(" ");
19
20
           end
21
           printf("\#\n");
22
            continue;
23
       end
```

```
24
25
       //Plotting when y1>y2
       if(y1>y2) ,
26
            if(x==2.5),
27
                printf("x |");
28
29
            else
                 printf(" |");
30
31
            end
32
            for i=1:y2-1
                 printf(" ");
33
34
            end
35
            printf("*");
36
            for i=1:(y1-y2-1)
                printf("-");
37
38
            end
39
            printf("0\n");
40
            continue;
41
         end
42
         //Plotting when y2>y1
43
44
        if(y2>y1) ,
            if(x==2.5)
45
                 printf("x |");
46
47
            else
                 printf(" |");
48
49
            end
50
            for i=1:(y1-1)
                 printf(" ");
51
52
            end
53
            printf("0");
54
            for i=1:(y2-y1-1)
                 printf("-");
55
56
            end
            printf("*\n");
57
58
         end
59 end
        printf(" | \ n" );
60
```

Scilab code Exa 6.5 Use of the break statement

```
1 //
                     Example 6.5
2 //Program illustrate use of the break statement
4 disp("This program computes the avarage of set of
      numbers");
5 disp("Enter values and enter a NEGATIVE value at the
       end");
6 \quad sum1=0;
7 \text{ for } m=1:1000
       x=scanf("%f"); //Read data
       if (x<0) then
                         //EXIT FROM LOOP
10
           break;
11
       end
12
       sum1 = sum1 + x;
                         //Computes sum
13 end
14 average=sum1/(m-1);
                         //Computes Average
15 // Print the results
16 printf("Number of values =%d\n",m-1);
17 printf("sum1=%f\n", sum1);
18 printf ("Avarage = \%f\n", average);
```

Scilab code Exa 6.6 Evaluate the series

```
1 // Example 6.6
2 //Program to evaluate the series i.e.
3 // 1/1-x = 1+x+x^2+x^3+....+x^n
```

```
4
5 x=input("Input value of x:"); //Read value of x
6 LOOP=100; ACCURACY=0.0001;
                                    //Initialization
7 sum1=0; term=1; flag=0;
8 //Computation using for loop
9 for n=1:L00P
10
       sum1=sum1+term;
       if(term <= ACCURACY) then // Test for accuracy</pre>
11
12
           flag=1;
13
           break;
14
       end
15
       term=term*x;
16
17 end
18 // Print the results
19 if(flag==1) then
20
       printf("
                 EXIT FROM LOOP\n");
21
       printf("
                 Sum = \%f; No. of terms = \%d", sum1,n);
22 else
       disp("FINAL VALUE OF N IS NOT SUFFICIENT TO
23
          ACHIEVE DESIRED ACCURCY");
24 end
```

Scilab code Exa 6.7 Use of continue statement

```
1 // Example 6.7
2 //The program illustrate the use of continue statement
3
4 disp("Enter 9999 to STOP");
5 count=0;
6 negative=0;
7 while(count<=100)</pre>
```

```
number=input("Enter a number:");
8
9
       if(number == 9999) then
                            //EXIT FROM THE LOOP
10
            break;
11
       end
12
       if (number < 0),</pre>
            disp("Number is negative");
13
            negative =negative+1;
14
                          //SKIP REST OF LOOP
15
            continue;
16
        end
        sqrot=sqrt(number); //COMPUTE SQUARE ROOT
17
        printf("Number = \%f \ n", number);
18
        printf("Square root = %f", sqrot);
19
20
        count = count + 1;
21 end
22 //PRINT RESULTS
23 printf("Number of items done = \%d\n", count);
24 printf("Negative items = \%d\n", negative);
25 disp("END OF DATA");
```

Chapter 7

Arrays

Scilab code Exa 1.cs Case study 1 Median of list of numbers

```
Case Study: Chapter 7, Page No:210
2 //
                    1. Median of list of numbers
3
4 N = 10;
5 disp("Enter the number of items");
6 \text{ n=scanf}(\text{``\%d''});
7 //Reading items into array a
8 printf("Input %d values[One at a time]\n",n);
9 for i=1:n
       a(i) = scanf("\%f");
10
11 end
12 //Sorting begins
13 for i=1:n-1
14
      for j=1:n-i
         if(a(j) \le a(j+1))
15
             t=a(j);
16
17
             a(j)=a(j+1);
18
             a(j+1)=t;
19
        else
20
             continue;
21
         end
```

```
22
    end
23 end //sorting ends
24 // Calculation of median
25 if (n/2==0) then
26
       median1=(a(n/2)+a(n/2+1))/2.0;
27 else
28
       median1=a(n/2+1);
29 end
30 // Printing
31 for i=1:n
      printf("%f ",a(i));
32
33 end
34 printf("\nMedian is \%f\n", median1);
```

Scilab code Exa 2.cs Case study 2 Calculation of standard deviation

```
1 //
                    Case Study: Chapter-7
             2. Calculation of standard deviation
4 MAXSIZE=100;
5 \text{ sum1=0}; n=0; \text{sumsqr=0};
6 disp("Input values:input -1 to end");
7 for i=1:MAXSIZE
       value(i)=scanf("%f"); //Entering values in the
          array named value
9
       if (value(i) == -1)
10
            break;
11
       end
12
       sum1=sum1+value(i);
13
       n=n+1;
14 end
15 mean1=sum1/n;
                                //Computes mean
16 \text{ for } i=1:n
```

```
deviation=value(i)-mean1;
sumsqr=sumsqr+deviation^2;
end
variance1=sumsqr/n;
stddeviation=sqrt(variance1); //Computes
    standard deviation
//Printing items, Mean and Standard deviation
printf("Number of items: %d\n",n);
printf("Mean: %f\n",mean1);
printf("Standard deviation: %f\n",stddeviation);
```

Scilab code Exa 3.cs Case study 3 Evaluating a Test

```
Case Study: Chapter -7
1 //
2 //
                    3. Evaluating a Test
4 STUDENTS = 3;
5 ITEMS = 5;
6 //Reading of correct answers
7 printf("Input key to the items\n");
8 for i=1:ITEMS
       key(i) = read(\%io(1), 1, 1, '(a)'); //Read data using
           read function
       // key(i)=scanf("%c"); It can be used to read
10
          data
11 end
12 //Evaluation begins
13
14 for student=1:STUDENTS
       //Reading students responses and counting
15
          correct ones
16
       count = 0;
       printf ("\nInput responses of student-%d", student
17
```

```
);
18
       for i=1:ITEMS
19
            response (i) = scanf("\%c");
20
       end
21
       correct=zeros(1,ITEMS)
   //Commented code can be used to replace above line i
      .e. correct=zeros(1,ITEMS)
       // for i = 1:ITEMS
23
24
        //
               correct(i)=0;
25
        //end
       for i=1:ITEMS
26
27
            if(response(i) == key(i)) then
28
                 count = count + 1;
29
                 correct(i)=1;
30
            end
31
        end
32
        //Printing of results
33
       printf ("Student-%d\n", student);
34
       printf("Score is %d out of %d\n", count, ITEMS);
        printf ("Response to the items below are wrong\n"
35
           );
36
       n=0;
       for i=1:ITEMS
37
            if (correct(i) == 0)
38
                 printf(" %d",i);
39
40
                 n=n+1;
41
            end
42
        end
       if(n==0) then
43
            printf("NIL\n");
44
45
       end
46 \, \text{end}
```

Scilab code Exa 4.cs Case study 4 Production and sales analysis

```
Case Study: Chapter -7
2 //
                  4. Production and sales analysis
3
4 //Input Data
5 disp("Enter products manufactured week_wise");
6 disp("M11, M12, --, M21, M22, --etc");
7 \text{ for } i=1:2
        for j=1:5
8
            M(i,j) = scanf("%d");
10
11 end
12 disp("Enter products sold week_wise");
13 disp("S11,S12,--,S21,S22,--etc");
14 for i=1:2
15
        for j=1:5
            S(i,j) = scanf("%d");
16
17
        end
18 \, \text{end}
19 disp("Enter cost of each product");
20 \text{ for } j=1:5
        C(j) = scanf("\%d");
21
22 \text{ end}
23 // Values matrices of production and sales
24 \text{ for } i=1:2
25
        for j=1:5
26
            Mvalue(i,j)=M(i,j)*C(j);
            Svalue(i,j)=S(i,j)*C(j);
27
28
        end
29 end
30 //Total value of weekly production and sales
31 \text{ for } i=1:2
32
        Mweek(i)=0;
        Sweek(i)=0;
33
34
        for j=1:5
            Mweek(i)=Mweek(i)+Mvalue(i,j);
35
            Sweek(i) = Sweek(i) + Svalue(i, j);
36
```

```
37
       end
38 end
39 //Monthly value of product_wise production and sales
40 \text{ for } j=1:5
       Mproduct(j)=0;
41
       Sproduct(j)=0;
42
       for i=1:2
43
           Mproduct(j)=Mproduct(j)+Mvalue(i,j);
44
           Sproduct(j)=Sproduct(j)+Svalue(i,j);
45
46
       end
47 end
48 //Grand total of production and sales values
49 Mtotal = 0; Stotal = 0;
50 for i=1:2
       Mtotal=Mtotal+Mweek(i);
51
       Stotal=Stotal+Sweek(i);
52
53 end
54
55 //********************************
56 //Selection and printing of information required
57 //*****************************
58 disp ("Following is the list of things you request
     for");
  disp("Enter appropriate number and press return key"
     );
60
61 disp("1. Value matrices of production and sales");
  disp("2. Total value of weekly production and sales")
63 disp("3. Production_wise monthly value of production
     and sales");
64 disp("4.Grand total value of production and sales");
65 disp("5.Exit")
66
67 \text{ number=0};
68 while (1)
       //Begining of while loop
69
       number=input("ENTER YOUR CHOICE:");
70
```

```
71
        if (number == 5) then
72
             disp("Good Bye");
73
             break;
74
        end
75
        select number
 76
             //Value Matices
77
        case 1 then
             disp("VALUE MATRIX OF PRODUCTION");
78
79
             for i=1:2
                 printf ("Week (%d) \ t",i);
80
                 for j=1:5
81
82
                     printf("%7d", Mvalue(i, j));
83
                 end
                 printf("\n");
84
85
             end
            disp("VALUE MATRIX OF SALES");
86
             for i=1:2
87
                printf ("Week(%d)\t",i);
88
89
                 for j=1:5
                     printf("%7d",Svalue(i,j));
90
91
                 end
92
                 printf("\n");
93
             end
            //Weekly Analysis
94
        case 2 then
95
             disp("TOTAL WEEKLY PRODUCTION AND SALES");
96
                                                SALES");
             disp("
                               PRODUCTION
97
                                               ----");
             disp("
98
             for i=1:2
99
                 printf ("Week (%d) \ t",i);
100
                 printf("\%7d\t\%9d\n", Mweek(i), Sweek(i));
101
102
             end
103
           //Product wise Analysis
104
        case 3 then
             disp ("PRODUCTWISE TOTAL PRODUCTION AND SALES
105
                ");
             disp("
                                  PRODUCTION
                                                   SALES");
106
107
             disp("
                                                     -----;;
```

```
for i=1:5
108
109
                 printf ("Product (%d) \ t",i);
                 printf("\%7d\t\%7d\n",Mproduct(i),Sproduct
110
                    (i));
111
             end
112
         //Grand Totals
113
        case 4 then
           disp("GRAND TOTAL OF PRODUCTION AND SALES");
114
           printf(" Total production = %d\n", Mtotal);
115
           printf(" Total sales = %d\n", Stotal);
116
          //Default
117
118
119
           printf("Wrong choicce, select again\n");
     end //End of select
120
121 end //End of while
   disp("Exit from the program");
```

Scilab code Exa 7.1 Sum of squares of 10 numbers

```
1 // Example:7.1
2 //Write a program using single-subscripted variable to evaluate:
3 // sum of squares of 10 numbers. The values x1,x2,... are read from the terminal.
4
5 //Reading values into array
6 disp("ENTER 10 REAL NUMBERS[Each in newline]");
7 total=0;
8 for i=1:10
9    x(i)=input(" ");
10 total=total+x(i)^2; //Computation of total
11 end
12 //Printing of x(i) values and total
```

```
13 for i=1:10

14 printf("x(%2d) = %5.2 f\n",i,x(i));

15 end

16 printf("Total = %.2 f", total);
```

Scilab code Exa 7.2 Count the number of students

```
1 //
                           Example: 7.2
2 //Given below is the list of marks obtained by a
      class of 50 students in an
3 //annual examination. 43 65 51 27 79 11 56 61 82 09
      25 36 07 49 55 63 74 81 49
4 //37 \ 40 \ 49 \ 16 \ 75 \ 87 \ 91 \ 33 \ 24 \ 58 \ 78 \ 65 \ 56 \ 76 \ 67 \ 45 \ 54
       36 63 12 21 73 49 51 19 39
5 //49 68 93 85 59
  //Write a program to count the number of students
      belonging to each of
7 // following groups of marks
      : 0 - 9, 10 - 19, 20 - 29, \dots 100.
  //This program computes for 10 students. We could
      compute for 50 students by
10 //changing MAXVAL=50.
11
12 MAXVAL=10; COUNTER=11;
13 disp("Input Data[Marks of 10 students]");
14 group1=zeros(1,11);
15 //Reading and counting
16 for i=1:MAXVAL
       //Reading of values
17
       value(i)=input(" ");
18
19
       //Counting frequency of groups
20
       a=int16((value(i)/10));
```

```
21
       if(a==0) then
22
          group1(a+1)=group1(a+1)+1;
23
          group1(a+1)=group1(a+1)+1;
24
25
        end
26
27 end
  //Printing of frequency table
28
29 printf("Group
                          Range
                                     Frequency\n");
30 for i=0:COUNTER-1
       if(i==0) ,
31
32
            low=0;
33
       else
34
            low=i*10;
35
        end
       if (i == 10),
36
37
            high=100;
38
         else
39
              high=low+9;
40
        end
        printf ("\%2d \%8d to \%3d \%5d\n", i+1, low, high,
41
           group1(i+1));
42 end
```

Scilab code Exa 7.3 Compute and print

```
1 // Example:7.3
2 //Write a program using two dimensional array to
        compute print following
3 //information from the table of data discussed:
4 //(a)Total value of sales by each girl.
5 //(b)Total value of each item sold
6 //(c)Grand total of all sales of all items by all
```

```
girls.
8 MAXGIRLS=4; MAXITEMS=3;
9 frequency=zeros(1,5);
10 disp("Input data");
11 //Reading values and computing girl_total
12 disp("Enter values, one at a time");
13
14 for i=1:MAXGIRLS
       girl_total(i)=0;
       for j=1:MAXITEMS
16
       value(i,j)=scanf("\%d");
17
18
       girl_total(i)=girl_total(i)+value(i,j);
19
       end
20 end
21 //Computing item total
22 for j=1:MAXITEMS
       item_total(j)=0;
23
       for i=1:MAXGIRLS
24
       item_total(j)=item_total(j)+value(i,j);
26
       end
27 \text{ end}
28 //Computing grand total
29 grand_total=0;
30 for i=1:MAXGIRLS
31
       grand_total=grand_total+girl_total(i);
32 end
33 //Printing of result
34 disp("GIRLS TOTALS");
35 for i=1:MAXGIRLS
       printf("Salesgirl(%d)=%d\n",i,girl_total(i));
36
37 \text{ end}
38
39 disp("ITEM TOTALS");
40 for j=1:MAXITEMS
       printf ("Item (%d)=%d\n", j, item_total(j));
41
42 end
43 printf("Grand Total=%d\n", grand_total);
```

Scilab code Exa 7.4 Multiplication table

```
Example: 7.4
1 //
2 //Write a program to compute and print a
     multiplication table for numbers 1 to 5
3
4 ROWS = 5; COLUMNS = 5;
5 disp("MULTIPLICATION TABLE");
6 printf("*|")
7 for j=1:COLUMNS
      printf("%4d",j);
9 end
10 disp("....");
11 for i=1:ROWS
      printf("%1d|",i);
12
      for j=1:COLUMNS
13
         14
            product
      printf("%4d", product(i,j)); // Print the product
15
16
      printf("\n");
17
18 end
```

Scilab code Exa 7.5 Popularity of various cars

```
3 //Maruti) was conducted in four cities (Bombay,
      Calcutta, Delhi and Madras).
4 //Each person surveyed was asked to give his city
      and type of car he was using.
5 //Write a program to prouce a table showing the
      popularity of various cars in
6 //four cities.
8 frequency=zeros(5,5);
9 printf("For each person, enter the city code[B,C,D,M
      ] \setminus n");
10 printf ("followed by the car code [1,2,3,4].\n");
11 printf ("Enter the letter X 0(zero) to indicate end.\n
      ");
12
13 // Tabulation begins
14 for i=1:99
       [n,city,car]=mscanf("%c %d");
15
       if (city == 'X') then
16
17
           break:
18
       end
19
       select city
        case 'B' then frequency(1,car)=frequency(1,car)
20
        case 'C' then frequency(2,car)=frequency(2,car)
21
22
        case 'D' then frequency(3,car)=frequency(3,car)
        case 'M' then frequency(4,car)=frequency(4,car)
23
           +1;
24
       end
25
26 \, \text{end}
27
28 // Tabulation completed and Printing begins
29 disp("
                      POPULATORY TABLE");
30 printf("
```

```
);
31 printf("City Ambasseador fait Dolphin Maruti
   \n");
32 printf("
    _____\n"
33
34 \text{ for } i=1:4
35
     select i
     case 1 then printf(" Bombay ");
36
     case 2 then printf(" Calcutta");
37
     case 3 then printf(" Delhi ");
38
     case 4 then printf(" Madras ");
39
     end
40
    for j=1:4
41
     printf("%8d",frequency(i,j));
42
     end
43
44
     printf("\n");
45 end
46 printf("
    47 // Printing ends
```

Chapter 8

Character Arrays and Strings

Scilab code Exa 1.cs Case study 1 Counting words in a text

```
Csae study: Chapter -8, Page No
     :253
2 / /
                           1. Counting words in a text
4 characters=0; words=0; lines1=0;
5 printf(" KEY IN THE TEXT.\n");
6 printf("GIVE ONE SPACE AFTER EACH WORD.\n");
7 printf("WHEN COMPLETED, ENTER end\n");
8
9 1= '';
10 while(1~='end')
11
        l=read(\%io(1),1,1,'(a)'); //Reading a line of
12
        if (1== 'end') then
13
            break;
14
        end
                               //Array of ascii
        line=[ascii(1)];
15
           values of line l
        len=length(line);
                                 //compute length of
16
           line
        for i=1:len
17
```

```
//ascii value of ''(i.e.space) is 32
18
           if(line(i)==32) then
19
                                    //Count the number
20
               words=words+1;
                  of words
21
           end
22
        end
                                    //Count the number
        lines1=lines1+1;
23
           of lines
        characters=characters+len; //Count the number
24
           of characters
25 end
26 // Printing results
27 printf("Number of lines = %d\n", lines1);
28 //Number of lines are added to words because last
     word of each line remains-
29 //uncounted as words are incremented at the
      occurence of space.
30 printf("Number of words = \%d \ n", words+lines1);
31 printf("Number of characters = %d\n", characters);
```

Scilab code Exa 2.cs Case study 2 Processing of a customer list

```
10
       [first_name(i), second_name(i), surname(i),
          telephone(i)]=scanf("%s %s %s %s");
       //Converting full name to surname with initials
11
       11=length(surname(i));
                                           //Compute
12
          length of surname at i
       name(i)=strncpy(surname(i),11);
13
       name(i)=strcat([name(i),',']);
14
       dummy(1) = part(first_name(i,1),1);
15
       name(i)=strcat([name(i),dummy]);
16
       name(i)=strcat([name(i), '. ']);
17
       dummy(1) = part(second_name(i,1),1);
18
       name(i)=strcat([name(i),dummy]);
19
20 end
  //Alphabetical odering of surnames
22 for i=1:CUSTOMERS
                                        //Outer loop
      begins
                                        //Inner loop
       for j=2:CUSTOMERS-i+1
23
          begins
           k = strcmp(name(j-1), name(j));
24
           if(k>0) then
25
26
27
                //Swaping names
                11 = length (name(j-1));
28
                12=length(name(j));
29
                dummy=strncpy(name(j-1),l1);
30
31
                name(j-1)=strncpy(name(j),12);
                13=length (dummy);
32
                name(j)=strncpy(dummy,13);
33
34
                //Swapping telephone numbers
35
                13=length(telephone(j-1));
36
                14=length(telephone(j));
37
38
                dummy=strncpy(telephone(j-1),13);
                telephone(j-1) = strncpy(telephone(j), 14);
39
                telephone(j)=strncpy(dummy,13);
40
41
           end
42
       end //Inner loop ends
43 end //Outer loop ends
```

```
44 // Printing alphabetical list
45 disp("CUSTOMER LIST IN ALPHABETICAL ORDER");
46 for i=1:CUSTOMERS
47 printf("%-20s\t %-10s\n",name(i),telephone(i));
48 end
```

Scilab code Exa 8.1 Read a series of words

```
1 // Exampple 8.1
2 //Write a program to read a series of words from
        terminal using scanf function.
3
4 //Read data using scanf function
5 disp("Enter text:")
6 [word1,word2,word3,word4]=scanf("%s %s %s %s");
7 //Printing the results
8 printf("word1 = %s\nword2 = %s\n",word1,word2);
9 printf("word3 = %s\nword4 = %s\n",word3,word4);
```

Scilab code Exa 8.2 Read a line of text

```
1 // Example 8.2
2 //Write a program to read a line of text containing
    a series of—
3 //words from the terminal.
4
5 disp("Enter text. Press <Return> at end");
6 line=read(%io(1),1,1,'(a)'); //Read a line
7 disp(line); //Display line
```

Scilab code Exa 8.3 Copy one string into another

```
Example 8.3
2 //Write a program to copy one string into another
     and count the number
3 //of characters copied.
5 //Read data using scanf function
6 disp("Enter a string:")
7 [string2]=\operatorname{scanf}("\%s"); //Read string
8 l=length(string2);
                              //Compute the length
                              //string1 is empty
9 string1=' ';
10 for i=1:1
11
       string1=string1+ part(string2,i);
12 end
13 // Printing the results
14 printf(" %s\n", string1);
15 printf(" Number of characters = \%d\n",1);
```

Scilab code Exa 8.4 Display the string under various format specifications

```
1 // Exampple 8.4
2 //Write a program to store the string "United
        Kingdom" in the array country—
3 //and display the string under various format
        specifications.
4
```

```
5
6 country='United Kingdom';
7 printf("\n");
8 printf("*123456789012345*\n");
9 printf("----\n");
10 printf("%15s\n",country);
11 printf("%5s\n",country);
12 printf("%15.6s\n",country);
13 printf("%-15.6s\n",country);
14 printf("%15.0s\n",country);
15 printf("%.3s\n",country);
16 printf("%s\n",country);
17 printf("----\n");
```

Scilab code Exa 8.5 Program using for loop

```
1 //
                            Example 8.5
2 //Write a program using for loop to print the
      following output:
3 //
        \mathbf{C}
4 / /
        CP
5 //
         . . . .
6 //
         . . . .
7 //
        CProgramming
8 //
        CProgramming
9 //
         . . . .
10 //
         . . . .
11 //
        CPr
12 //
        CP
        C
13 //
14 string1='CProgramming';
15 printf(" ----\n");
16 f=' ';
```

```
17 for i=1:12
       f=f+part(string1,i);
18
19
       printf("|\%-13s|\n",f);
20
21 end
22 printf("|----|\n");
23 \text{ for } j=0:11
       s = , ,;
24
25
       for i=1:12-j
26
           s=s+part(string1,i);
27
        printf("|\%-13s|\n",s);
28
29 \quad end
30 printf(" ----");
31 / for c = 0:11
         d = c + 1;
         mprintf("|\%-12.*s| \setminus n", d, string1);
33 //
34 // end
35 // disp("-----
36 / for c = 11:c-1:0
37 //
         d = c + 1;
         printf ("|\%-12.*s|\n",d, string1);
38 //
39 //end
40 // disp("----");
```

Scilab code Exa 8.6 Print the alphabet set a to z and A to Z

```
1 // Example 8.6
2 //Write a program which would print the alphabet set
    a to z A to Z in decimal—
3 //character form.
4
5 for c=65:122
```

Scilab code Exa 8.7 Concatinate the three parts into one string

```
Example 8.7
2 //The name of employees of an organization are
     stored in three arrays namely-
3 //first_name, second_name and last_name.
4 //Write a program to concatinate the three parts
     into one string called name.
5
6
7 //Store the name in the three arrays
8 first_name=['VISWANATH'];
9 second_name=['PRATAP'];
10 last_name=['SINGH'];
11
12 //Concatinate three parts into one
13 name=[first_name second_name last_name];
14 // Print the result
15 for i=1:3
       printf("%s",name(i));
16
17 \text{ end}
18 //Statement below can also be used to print the
     result
```

```
19 // \operatorname{disp}(\mathrm{name});
```

Scilab code Exa 8.8 Compare whether strings are equal

```
1 //
                                 Example 8.8
2 //s1,s2 and s3 are three string variables. Write a
     program to read two string-
3 //constants in to s1 and s2 and compare whether they
       are equal or not, join-
4 //them together. Then copy contents of s1 to
      variable s3. At the end program-
  // should print all three variables and their
     lengths
6
7
8 //Read data
9 printf("Enter two string constants\n");
10 [s1 s2]=scanf("\%s \%s");
11
12 //Comparing two strings
13 x=strcmp(s1,s2);
14 if x^=0 then
       printf("String are not equal\n");
15
       //Concatinate two strings s1 and s2
16
17
       s1=strcat([s1,s2]);
18 else
        printf("String are equal\n");
19
20 end
21
22 l1=length(s1);
23 //Coping s1 to s3
24 s3=strncpy(s1,l1);
25 //finding length of strings
```

Scilab code Exa 8.9 Sort a list of names in alphabetical order

```
Example 8.9
2 //Write a program that would sort a list of names in
       alphabetical order.
3
4 ITEMS=5;
5 //Reading the list
6 printf("Enter names of %d items\n", ITEMS);
7 i = 1:
8 while(i<=ITEMS)</pre>
9
       string1(i) = scanf("%s");
10
       i=i+1;
11 end
12 //Sorting begins
13 for i=1:ITEMS
                                   //Outer loop begins
14
       for j=2:ITEMS-i+1
                                   //Inner loop begins
15
           k=strcmp(string1(j-1),string1(j))
           if(k>0) then
16
17
                //Compute length and Exchange of
                   contents
                11=length(string1(j-1));
18
                12=length(string1(j));
19
20
                dummy=strncpy(string1(j-1),l1);
21
                string1(j-1) = strncpy(string1(j),12);
                13=length (dummy);
22
```

Chapter 9

User Defined Functions

Scilab code Exa 1.cs Case study 1 Calculation of Area under a Curve

```
1 //
                 Case Study: Chapter -9[page no:310]
             1. Calculation of Area under a Curve
3 funcprot(0);
4 //global variables
   global start_point
    global end_point;
    global total_area;
    global numtraps;
9 function[] = input1()
10
       global start_point;
11
        global end_point;
12
        global total_area;
13
        global numtraps;
14
       total_area=0;
       start_point=input("Enter lower limit:");
15
       end_point=input("Enter upper limit:");
16
17
       numtraps=input("Enter number of trapezoids:");
18 endfunction
  function[total_area] = find_area(a,b,n)
20
       global total_area;
                                        //base is local
21
       base=(b-1)/n;
```

```
variable
                                        //lower is local
22
       lower=a;
          variable
23
       for lower=a:(lower+base):(b-base)
24
           h1=function_x(lower);
25
           h2=function_x(lower+base);
           total_area=total_area+trap_area(h1,h2,base);
26
               //total area is calculated
27
       end
28 endfunction
29 function[area]=trap_area(height_1,height_2,base)
       area =0.5*(height_1+height_2)*base; //area
          is local variable
31 endfunction
32 function[x] =function_x(x)
       x = (x^2) + 1;
33
34 endfunction
35
36 //calling functions
37 disp("AREA UNDER CURVE");
38 input1();
                                         //calling input1
      () function
39 total_area=find_area(start_point,end_point,numtraps)
      ;//calling find_area() function
40 printf("TOTAL AREA = %f", total_area);
```

Scilab code Exa 9.1 Multiple functions

```
1 // Example 9.1
2 //Write a program with multiple functions that do
    not communicate-
3 //data between them.
```

```
5 //Function1:printline()
6 funcprot(0);
7 function []=printline()
                                 //contains no argument
       for i=1:35
8
9
            printf("%c", '-');
10
       end
       printf("\n");
11
12 endfunction
13 //Function2: value()
14 function []=value()
                                 //contains no argument
       principal=input("Principal amount?");
15
       inrate=input("Interest rate?");
16
17
       period=input("Period?");
       sum1=principal;
18
19
       year=1;
       //Computation using while loop
20
       while (year <= period)</pre>
21
22
            sum1=sum1*(1+inrate); // calculates
               principal amount after certain years
23
            year=year+1;
24
        end
        printf ("\%8.2 \text{ f} \%5.2 \text{ f} \%5d \%12.2 \text{ f} \n", principal,
25
            inrate,period,sum1);
26 endfunction
27 // Calling functions
28 printline();
29 value();
30 printline();
```

Scilab code Exa 9.2 Include arguments in function calls

```
1 // Example 9.2
2 //Modify Example 9.1 to include arguments in
```

```
function calls.
3
4 funcprot(0);
5 function []=printline(ch)
                                           //function with
      argument ch
6
        for i=1:52
7
            printf("%c",ch);
8
        end
9
        printf("\n");
10 endfunction
                                          //function with
   function []=value(p,r,n)
      argument p,r,n
12
        sum1=p;
13
        year=1;
        while (year <= n)</pre>
14
            sum1=sum1*(1+r);
15
            year=year+1;
16
17
         printf("%f \setminus t\%f \setminus t\%d \setminus t\%f \setminus n",p,r,n,sum1);
18
19 endfunction
20 printf ("Enter principal amount, interest rate, and
      period \n[Enter in single line seperated by space
      ]");
21 [principal, inrate, period]=\operatorname{scanf}("\%f \%f \%d"); //read
       from standard input
22 // Calling functions
23 printline('z');
24 value(principal, inrate, period);
25 printline('c');
```

Scilab code Exa 9.3 Return result

```
1 // Example 9.3
```

```
2 // Modify Example 9.2's function value() to return
      result and extend versatility of the function
3 //printline by taking the lenth of line as an
      argument
4 function []=printline(ch,len)
       for i=1:len
            printf("%c",ch);
6
7
       printf("\n");
9 endfunction
10 function [amount] = value(p,r,n) //returns amount
       sum1=p;
11
12
       year=1;
       while (year <= n)
13
            sum1 = sum1 * (1+r);
14
            year=year+1;
15
16
        end
17
         amount = sum1;
18 endfunction
19 printf ("Enter principal amount, interest rate, and
      period\n[Enter in single line seperated by space]
20 [principal, inrate, period] = scanf(" %f %f %d");
21 // Calling functions
22 printline('*',52);
23 amount=value(principal, inrate, period);
24 printf("\%f \setminus t\%f \setminus t\%d \setminus t\%f \setminus n", principal, inrate, period,
      amount);
25 printline('=',52);
```

Scilab code Exa 9.4 Computes x raised to the power y

```
1 // Example 9.4
```

```
2 //Write a program with function power that computes
     x raised to the power y.
3 funcprot(0);
4 function p = power(x,y)
        p=1.0;
                              // x to power 0
6
       if((y>=0)) then
                             //computes positive powers
7
           while(y)
               p=p*x;
8
9
               y = y - 1;
10
           end
11
       else
12
                           //computes negative powers
           while(y)
13
               p=p/x;
14
               y=y+1;
15
           end
16
       end
17 endfunction
18 disp("Enter x,y:");
19 disp("[Enter in single line seperated by space]");
20 [x,y]=scanf("%d %d"); //input using scanf
      function
21
22 //calling power() function and printing its output
23 printf("%d to the power %d is %f",x,y,power(x,y));
```

Scilab code Exa 9.5 Calculate standard deviation of an array values

```
5 funcprot(0);
6 //passing array named 'value' to function std_dev at
7 function[std]=std_dev(a,n)
8
       sum1=0;
                                              //calling
9
       x=mean1(a,n);
          mean1() function
10
       for i=1:n
         sum1 = sum1 + (x-a(i))^2;
11
         std=sqrt(sum1/double(n));
                                             //computes
12
            standard deviation
13
       end
14 endfunction
15 function[x]=mean1(a,n)
16
       sum1=0;
       for i=1:n
17
         sum1=sum1+a(i);
18
         x = sum1/double(n);
                                               //x contain
            mean value
20
       end
21 endfunction
                                               //size of
22 SIZE=int8(5);
      array
23 printf("Enter %d float values", SIZE);
24 \quad for \quad i=1:SIZE
       value(i)=input(" ");
                                                //entering
25
          values in the array
26 \, \text{end}
27 printf("Std.deviation is %f", std_dev(value, SIZE));
      //calling std_dev() function
```

Scilab code Exa 9.6 Sort an array

```
Example 9.6
1 //
2 //Write a program that uses a function to sort an
      array of integers.
3 funcprot(0);
4 function[x]=sort(m,x)
                                    //Passing an array i.
      e. marks to function sort()
                                    // i repesents number
       for i = 1 : m
5
           of passes
           for j=2:m-i+1
                                    // j represents
6
              number of comperision in each pass
                if(x(j-1) \ge x(j)) then
7
                    t = x(j-1);
8
9
                    x(j-1)=x(j);
                    x(j)=t;
10
11
                end
12
           end
13
       end
14 endfunction
15 marks = int16([40,90,73,81,35]); // creating an array
     named marks of 5 integers
16 disp("Marks before sorting");
17 disp(marks);
                                     //calling sort()
18 x = sort(5, marks);
      function
19 disp("Marks after sorting");
20 disp(x);
```

Scilab code Exa 9.7 Autometic variables

```
1 // Example 9.7
2 //Write a multifunction how autometic variables work
    .
3 funcprot(0);
```

```
4 function [] = function1()
       m = int32(10);
                              //Local Variable
5
                              //First Output
       disp(m);
6
7 endfunction
8 function[]=function2()
9
       m= int32(100);
                              //Local Variable
                             // Calling function 1 ()
       function1();
10
                              //Second Output
       disp(m);
11
12 endfunction
13 function[] = funcmain()
14 m=int32(1000);
15 function2();
                     //calling function2()
16 disp(m);
                     //Third output
17 endfunction
                     //calling funcmain() function
18 funcmain()
```

Scilab code Exa 9.8 Global variables

```
Example 9.8
2 // Write a multifunction to illustrate the properties
       of global variables.
3 funcprot(0);
4 function[x]=fun1()
       global x;
                            //global x
6
       x = x + 10;
7 endfunction
8 function[x]=fun2()
                           //Local x
9
       x = 1
10 endfunction
11 function[x]=fun3()
12
       global x;
                            //global x
13
       x = x + 10;
14 endfunction
```

Scilab code Exa 9.16 Factorial of a number using recursion

```
1 //
                 Topic 9.16 RECURSION
2 / /
                 Page no. 288
3 //Write a program to calculate factorial of a number
       using recursion
  function[fact1] = factorial1(n)
       fact1=-1
       if(n<0) then
6
7
           disp("Please enter positive value [i.e. 0 or
              greater than 0 ");
                                       //Quits the
8
           return;
              current function
9
       if((n==0)|(n==1)) then
10
           fact1=1;
11
12
       else
           fact1=n*factorial1(n-1); //recursive call
13
              to factorial1()
14
       end
15 endfunction
16 n=input("Enter number:");
17 //calling factorial1() function inside printf()
18 printf("Factorial of %d = %d",n,factorial1(n));
```

Chapter 10

Structures and Unions

Scilab code Exa 1.cs Case study 1 Book Shop Inventory

```
Case study: Chapter -10, Page No
     :341
2 //
                              Book Shop Inventory
3
4 funcprot(0);
5 // Defining functions
6 function [string1] = get1()
       string1=read(%io(1),1,1,'(a)');
8 endfunction
9 function [i] =look_up(table,s1,s2,m)
       for i=1:m
10
           x=strcmp(s1,table(i).title);
11
           y=strcmp(s2, table(i).author);
12
13
           if x==0 & y==0 then
                return i; //Book found
14
15
           end
16
        end
17
         i = -1;
                //Book not found
18 endfunction
19
20 // Creates array of structures
```

```
21 book=[struct('author', 'Ritche', 'title', 'C Language',
      'price',45.00, 'month', 'May', 'year',1977,'
      publisher', 'PHI', 'quantity',10)
         struct('author', 'Kochan', 'title', 'Programming')
22
            in C', 'price', 75.50, 'month', 'July', 'year'
             ,1983, 'publisher', 'Hayden', 'quantity',5)
         struct('author', 'Balagurusamy', 'title', 'BASIC'
23
             , 'price', 30.00, 'month', 'January', 'year'
             ,1984, 'publisher', 'TMH', 'quantity',0)
         struct('author', 'Balagurusamy', 'title', 'COBOL'
24
             , 'price', 60.00, 'month', 'December', 'year'
             ,1988, 'publisher', 'Macmillan', 'quantity'
             ];
25
26 n=size(book);
27 no_of_records=n(1);
28 response=' ', a=1;
29 while ((response== 'Y' | response== 'y')|a==1)
       //Read data
30
       printf ("Enter title and author name as per the
31
          list: \n");
32
       printf("Title: \n");
       title1=get1();
33
       printf("Author:\n");
34
       author1=get1();
35
       //Calling index() function and
36
       //Passing structure book to function look_up()
37
       index=look_up(book,title1,author1,no_of_records)
38
       //If book found then print the book detail
39
          otherwise not in list
       if index~=-1 & index then
                                     //Book found
40
         printf("% s %s", book(index).author, book(
41
            index).title);
         printf(\% .2 f %s, book(index).price, book(
42
            index).month);
         printf("% d %s\n", book(index).year, book(
43
            index).publisher);
```

```
quantity=input("Enter number of copies:");
44
          if quantity < book (index). quantity then</pre>
45
           printf ("Cost of %d copies = \%.2 \text{ f} \times \text{n}", quantity,
46
              book(index).price*quantity);
47
          else
             printf("Required copies not in stock\n");
48
49
          end
50
        else
             printf("Book not in list\n");
51
52
        end
        printf("\nDo you want any other book?(YES/NO):")
53
54
       response=get1();a=2;
55 end
56 printf("
                                Good Bye");
              Thank you.
```

Scilab code Exa 10.1 Define a structure type

```
Example 10.1
2 // Define a structure type, struct personal that would
      contain person name,-
3 // date of joining and salary. Write a program to
     read this information from
4 // keyboard and print same on the screen.
5
6 funcprot(0);
7 function [ ]=struc(n,d,m,y,s)
       //Defining structure members
       personal=struct('name',n,'day',d,'month',m,'year
          ',y,'salary',s);
10
       person=personal;
11
      //Accessing structure members
12 printf (" \%s \%d \%s \%d \%. 2 f", person.name, person.day,
```

```
person.month,person.year,person.salary);
13 endfunction
14 disp("Input values[Name day month year and salary]")
;
15 //Reading data
16 [name,day,month,year,salary]=scanf("%s %d %s %d %f")
;
17 //Calling function struc()
18 struc(name,day,month,year,salary);
```

Scilab code Exa 10.2 Comparison of structure variables

```
Example 10.2
2 // Write a program to illustrate the comparison of
     structure variables.
  function []=class()
      //Defining structures
      student1=struct('number',111, 'name', 'Rao', 'marks
         ',72.50);
      student2=struct('number',222, 'name', 'Raddy','
7
         marks',67.00);
      student3=struct('number',[], 'name',[], 'marks'
8
         ,[]);
9
      student3=student2;
      if(student3==student2) , //Logical operation
10
         on structures
          disp("Student2 and student 3 are same");
11
          12
             name, student3.marks);
13
      else
14
          disp("Student2 and student 3 are not same");
15
      end
```

```
16 endfunction
17 // calling function class
18 class()
```

Scilab code Exa 10.3 Calculate the subject wise and student wise totals

```
Example 10.3
2 // Write a program to calculate the subject-wise and
       student-wise totals
3 //and store them as a part of the structue.
5 // Defining array of structures
6 student=[struct('sub1',45,'sub2',67,'sub3',81,'total
      ',0)
            struct('sub1',75, 'sub2',53, 'sub3',69, 'total
7
            struct('sub1',57, 'sub2',36, 'sub3',71, 'total
8
               ',0)
10 total=struct('sub1',0,'sub2',0,'sub3',0,'total',0);
11
12 // Calculate the student-wise and subject-wise totals
13 for i=1:3
14
       student(i).total=student(i).sub1+student(i).sub2
          +student(i).sub3;
       total.sub1=total.sub1+student(i).sub1;
15
16
       total.sub2=total.sub2+student(i).sub2;
       total.sub3=total.sub3+student(i).sub3;
17
       total.total=total.total+student(i).total;
18
19 end
20 // Printing student-wise totals
21 printf("STUDENT
                            TOTAL\n");
22 \text{ for } i=1:3
```

```
printf("student(%d)
                               %d\n",i,student(i).
23
          total);
24 end
25 // Printing subject-wise totals
26 printf ("SUBJECT
                           TOTAL\n");
27 printf(" %s
                      %d\n", "Subject 1", total.sub1);
                      %d\n", "Subject 2", total.sub2);
28 printf(" %s
29 printf(" %s
                      %d\n", "Subject 3", total.sub3);
30 //Printing grand total
31 printf("Grand Total = %d", total.total);
```

Scilab code Exa 10.4 Array member to represent the three subjects

```
1 //
                         Example 10.4
2 //Rewrite the program of Example 10.3 to using an
      array member to represent
3 //the three subjects.
5 // Defining array of structures and array with in
     structure
6 student(1)=[struct('sub',[45 67 81],'total',0)];
7 student(2)=[struct('sub',[75 53 69],'total',0)];
8 student(3)=[struct('sub',[57 36 71],'total',0)];
9 total=student;
10 for i=1:3
       total.sub(i)=0;
11
12 end
13 total.total=0;
14 // Calculate the student-wise and subject-wise totals
15 for i=1:3
       for j=1:3
16
17
           student(i).total=student(i).total+student(i)
              .sub(j);
```

```
total.sub(j)=total.sub(j)+student(i).sub(j);
18
19
       end
       total.total=total.total+student(i).total; //
20
          Grand total
21 end
22 // Printing student-wise totals
23 printf("STUDENT
                             TOTAL\n");
24 \text{ for } i=1:3
25
       printf ("student (%d) %d\n", i, student (i).
          total);
26 \text{ end}
27 // Printing subject-wise totals
28 printf("SUBJECT
                             TOTAL\n");
29 \text{ for } j=1:3
       printf("subject -(%d)
                                     %d\n", j, total. sub(j)
30
31 end
32 // Printing grand total
33 printf("Grand Total = \%d", total.total);
```

Scilab code Exa 10.5 structure as a parameter to a function

```
1 // Example 10.5
2 //Write a simple program to illustrate the method of sending an entire
3 //structure as a parameter to a function.
4
5 funcprot(0);
6 //Defining functions
7 function [item]=update(product,p,q)
8    product.price=product.price+p;
9    product.quantity=product.quantity+q;
10 item=product;
```

```
11 endfunction
12 function [value] =mul(stock)
        value=stock.price*stock.quantity;
13
14 endfunction
15
16 // Creates structure item
17 item=struct('name', 'XYZ', 'price', 25.75, 'quantity'
      ,12);
18 //Read data
19 printf("Input increment values:");
20 printf(" price increment and quantity increment\n")
21 [p_increment,q_increment] = scanf("%f %d");
22
23 // Calling update() and mul() functions
24 // Passing structure item to functions update() and
      mul()
26 item=update(item,p_increment,q_increment);
27 value=mul(item);
28 //-
29 // Printing Results
30 printf("Updated values of items\n");
31 printf ("Name
                        :%s\n",item.name);
32 printf("Price :%f\n",item.price);
33 printf("Quantity :%d\n",item.quantity);
34 printf("Value of item = \%f\n", value);
```

Chapter 12

File Management in C

Scilab code Exa 12.1 Read data from keyboard and write it to a file

```
Example 12.1
2 // Write a program to read data from keyboard, write
     it to a file called INPUT,
3 // again read the same data from the INPUT file and
     display it on the screen.
5 warning('off');
6 disp("Data Input");
8 //Open the file INPUT
9 fl=mopen('INPUT.txt', 'w');
10 // Get character from keyboard
11 c=read(%io(1),1,1,'(a)');
12 mfprintf(f1, '%s',c);
13
14 //close the file input
15 mclose(f1);
16
17
18 disp("Data Output");
19 //Reopen the file INPUT
```

```
20  f1=mopen('INPUT.txt','r');
21         txt=mgetl(f1);
22         printf("%s",text);
23  //close the file input
24  mclose(f1);
```

Scilab code Exa 12.2 Read and write odd and even numbers

```
Example 12.2
1 //
2 //A file named DATA contains a series of integer
      numbers. Code a program
3 //to read these numbers and then write all 'odd'
      numbers to a file to be
4 //called ODD and all 'even' numbers to a file to be
      called EVEN.
6 warning('off');
7 //Input numbers in the DATA.txt file
8 printf("Contents of DATA file \n");
9 f1=mopen('DATA.txt', 'wt');
10 \text{ for } i=1:30
       number(i)=\operatorname{scanf}("%d");
       if(number(i) == -1)
12
13
            break;
14
       end
        mfprintf(f1, \%d n, number(i));
15
16 end
17 mclose(f1);
18
19 f2=mopen('ODD.txt', 'wt');
20 f3=mopen('EVEN.txt','wt');
21 f1=mopen('DATA.txt', 'rt');
22 //Read numbers from DATA file
```

```
23 EOF=length(number);
24 i = 1;
25 \text{ even=0};
26 \text{ odd=0};
27 while (i<EOF)
28
        [n, number] = mfscanf(f1, "%d")
         if (pmodulo(number, 2) == 0)
29
            mfprintf(f3, \%d n, number);
30
            even=even+1;
31
32
        else
            mfprintf(f2, \%d n, number);
33
            odd = odd + 1;
34
35
        end
36
        i = i + 1;
37 end
38 mclose(f1);
39 mclose(f2);
40 mclose(f3);
41 //Write odd numbers in the ODD.txt file
42 f2=mopen('ODD.txt', 'rt');
43 printf("\nContents of ODD file\n");
44 i = 1;
45 while (i<=odd)
        [n,number] = mfscanf(f2,"%d")
46
        printf("\%4d",number);
47
48
        i = i + 1;
49 end
50 //Write even numbers in the EVEN.txt file
f3 = mopen('EVEN.txt', 'rt');
52 printf("\nContents of EVEN file\n");
53 i = 1;
54 while (i <= even)
        [n,number] = mfscanf(f3,"%d")
55
        printf("%4d", number);
56
        i=i+1;
57
58 end
59 //close the files
60 mclose(f2);
```

Scilab code Exa 12.3 Read and write data to and from the file INVENTORY

```
1 //
                           Example 12.3
2 //A program to open a file named INVENTORY and
      store in it the following
3 // data: Item name
                         Number
                                    Price
                                              Quantity
4 / /
             AAA-1
                         111
                                    17.50
                                              115
5 //
             BBB-2
                         125
                                   36.00
                                              75
6 / /
             C-3
                         247
                                   31.75
                                              104
  //Extend the program to read this data from the file
      INVENTORY and display
  //inventory table with the value of each item.
10 disp("Input file name");
11 filename=scanf("%s");
                             //Read file name that is '
     INVENTORY'
12 fp=mopen(filename, 'w'); //Open file in write mode,
      fp is file descriptor
13 disp("Input inventory data");
                                              Quantity");
14 disp("Item name
                        Number
                                   Price
15 for i=1:3
16
       //read data from terminal
     [n,item(i),number(i),price(i),quantity(i)]=mscanf(
17
        "%s %d %f %d");
     //write data to the file
18
      mfprintf(fp, '%s\t%d\t%.2f\t%d\n',item(i),number(i
19
         ), price(i), quantity(i));
20 end
21 mclose(fp);
                             //close the file
                             //open file in read mode
22 fp=mopen(filename, 'r');
```

```
23 disp("Item name Number Price
                                        Quantity Value"
      );
24 \text{ for } i=1:3
25
       //Read data from the file 'INVENTORY'
26
       [n,item,number,price,quantity]=mfscanf(fp,"%s %d
           %f %d");
27
        value=price*quantity; //Computes value
        //Printing of the data
28
        printf(' %s
                         \%7d \%8.2 f \%8d \%11.2 f n', item,
29
           number, price, quantity, value);
30 end
31 mclose(fp);
```

Scilab code Exa 12.4 Error handling in file operations

```
Example 12.4
    2 //Write a program to illustatre error handling in
                                     file operations.
    4 warning('off');
    5 fp1=mopen('TEST', 'w'); //Open file in write mode,
                                    fp1 is file descriptor
    6 for i=10:10:100
                                       //write data to the file
    8
                                      mfprintf(fp1, \displaylimits' \displaylimits
    9 end
10 mclose(fp1);
11 disp("Input file name");
12 filename='a';
13 while (filename ~= ' ')
                                             filename=scanf("%s");
14
15
                                             //Error handling
16
                                             try
```

```
17
            fp2=mopen(filename, 'r');
18
            if(fp2>0) ,
                break;
                                 //Terminates the loop if
19
                    file exist or opened
20
            end
21
22
       catch
            //Messages to be displayed when error
23
               occured
            printf("Can not open file.\n");
24
            printf("Type file name again.\n");
25
26
        end
27 \text{ end}
   //Code below runs while there is no error
29 \quad for \quad i=1:20
        number = mfscanf(fp2, "%d"); //Read data from
30
           file 'TEST'
       if meof(fp2) then
                                        //Test for end of
31
           file
           printf("Ran out of data");
32
33
           break;
34
         else
            printf("%d\n", number); // prints the data
35
36
          end
37 end
38 mclose(fp2);
```

Scilab code Exa 12.5 use of function ftell or mtell and fseek or mseek

```
1 // Example12.5
2 //Write a program that uses function ftell(mtell)
         and fseek(mseek).
```

```
4 warning('off');
5 //Open file 'RANDOM' in write mode, fp is file
      descriptor
6 fp=mopen('RANDOM', 'w');
7 c=read(%io(1),1,1,'(a)');
8 mfprintf(fp, '%s',c); //write data to the file
9 printf("Number of characters entered = %d\n", mtell(
      fp));
10 mclose(fp);
11
12 //Open file 'RANDOM' in read mode
13 fp=mopen('RANDOM', 'r');
14 n=0;
15 while(meof(fp)==0)
16 //n is the offset from origin in number of bytes.
17 //The new position is at the signed distance given
     by n bytes from the beginning
       mseek(n,fp,'set');
18
       //Print the chracter and its postion
19
       printf("Position of %c is %d\n",ascii(mget(1,'c'))
20
          ,fp)),mtell(fp));
21
       n=n+5;
22 \text{ end}
            //Initial offset
23 n = 0;
24 while(mtell(fp)>1)
25
    //New position is at the signed distance given by n
        bytes from the end
26
         mseek(n,fp,'end');
27
         //Print the characters from the end
         printf("%c",(ascii(mget(1, 'c',fp))));
28
29
         n=n-1;
30 \text{ end}
31 mclose(fp);
```

Scilab code Exa 12.6 Append additional items to the file INVENTORY

```
Example 12.6
2 //Write a program to append additional items to the
      file INVENTORY
3 //created in Example 12.3 and print the total
      contents of the file.
4 funcprot(0);
5 warning('off');
6 function[item] =append(product,fp)
       printf("Item name:\n");
7
       product.name=scanf("%s");
8
9
       printf("Item number:.\n");
       product.number=scanf("%d");
10
       printf("Item price\n");
11
       product.price=scanf("%f");
12
       printf("Quantity:\n");
13
       product.quantity=scanf("%d");
14
       //Write data in the file
15
        mfprintf(fp, \%s \%d \%.2 f \%d \ n, product.name,
16
           product.number, product.price, product.
           quantity);
17
        item=product;
18 endfunction
19 // Creating structure
20 item=struct('name', '0', 'number', '0', 'price', '0', '
      quantity','0');
21 //Read file name that is 'INVENTORY'
22 disp("Type file name");
23 filename=scanf("\%s");
24 //Open file in append mode, fp is file descriptor
25 fp=mopen(filename, 'a+');
26 b=0; response=-1;
27 //Read data
28 while (response == 1 \mid b == 0)
       item=append(item,fp); //calling append()
29
          function
       printf("Item %s appended.\n",item.name);
30
```

```
printf("Do you want to add another item\(1 for
31
          YES/0 for NO?");
       response=scanf("%d");
32
33
       b=1;
34 end
                     //position of last character
35 \text{ n=mtell(fp)};
36 mclose(fp);
37
38 //Opening file in the read mode
39 fp=mopen(filename, 'r');
40 while (mtell(fp) < n-2)
41
     //read data from terminal
     [g,item.name,item.number,item.price,item.quantity
42
        ]=mfscanf(fp,"%s %d %f %d");
     //Print Data to screen
43
      printf('\%s \%7d \%8.2 f \%8d\n', item.name, item.number
44
         ,item.price,item.quantity);
45 end
46 mclose(fp);
```

Chapter 13

Dynamic Memory Allocation and linked Lists

Scilab code Exa 1.cs Case study 1 Insertion in a sorted list

```
Case Study: Chapter:13 , Page No
     .:434
                            1. Insertion in a sorted list
3
4 funcprot(0);
5 //Create the list
6 function [List] = create(list1)
       global List;
       // Create the current node
8
       list1.number=input("Input a number(Type -999 to
          end); ");
       if list1.number == -999 then
10
           list1.next=NULL;
11
12
           list1.add=NULL;
13
        else
14
            list1.add=list1.add+1;
            list1.next=NULL;
15
            List(i)=list1;
16
17
            if(i==1) then
```

```
18
19
            else
               List(i-1).next=List(i).add
20
21
            end
22
            i=i+1;
23
            create(list1);// Create the next node
24
        end
25
        return;
26 endfunction
27 function []=print1(list1)
28
        if list1(i)(1).next~=NULL then
           29
              current item
30
           i=i+1;
           if list1(i)(1).next==NULL then
31
                printf("%d",list1(i)(1).number);
32
33
           end
           print1(list1); //Move to next item
34
35
        end
36
        return:
37 endfunction
38 function [List] = insert(list1)
39
       global List;
       x=input("Input number to be inserted: ");//Read
40
          the number
       //find the location so that number could be
41
          placed in sorted order
       while (list1(i)(1).next~=NULL)
42
           if(list1(i)(1).number>=x) then
43
44
                 break;
45
           end
46
           i=i+1;
47
       end
48
        key=i;
49
        //Insetion at end
       if(list1(i)(1).next==NULL & list1(i)(1).number <</pre>
50
           x) then
           list1(i+1)(1).number=x;
51
```

```
52
           list1(i+1)(1).add=i+1;
53
           list1(i+1)(1).next=NULL;
           list1(i)(1).next=list1(i+1)(1).add;
54
           List=list1;
55
           return;
56
57
       end
       i=1;
58
       while (list1(i)(1).next~=NULL)
59
           i=i+1;
60
61
       end
62
       j=i+1;
63
       //Key node found and insert new node or item
64
       while(list1(i)(1).add~=key)
           list1(i+1)(1).number=list1(i)(1).number;
65
66
           i=i-1;
67
       end
       list1(i+1)(1).number=list1(i)(1).number
68
69
       list1(i)(1).number=x;
       list1(j)(1).add=j;
70
       list1(j)(1).next=NULL;
71
72
       list1(j-1)(1).next=list1(j)(1).add;
73
       List=list1;
74 endfunction
75
76 global List;
77 NULL=0; i=1;
78 //Create the structure i.e. node
79 node=struct('number',0,'add',0,'next',0);
80 head=node;
81 // Calling the functions
82 printf("Input a sorted(ascending) list");
83 List=create(head);
84 printf("\nOriginal List: ");
85 print1(List);
86 List=insert(List);
87 printf("\nNew List: ");
88 print1(List);
```

Scilab code Exa 2.cs Case study 2 Building a Sorted List

```
1 //
                         Case Study: Chapter:13 , Page No
      .:438
                            2. Building a Sorted List
3
4 funcprot(0);
5 //Create the list
6 function [List] = create(list1)
7
       global List;
       // Create the current node
8
       list1.number=input ("Input a number (Type -999 to
          end); ");
       if list1.number == -999 then
10
11
           list1.next=NULL;
12
           list1.add=NULL;
13
        else
14
             list1.add=list1.add+1;
15
             list1.next=NULL;
             List(i)=list1;
16
17
             if(i==1) then
18
19
             else
20
                List(i-1).next=List(i).add
21
             end
22
             i=i+1;
             create(list1);// Create the next node
23
24
        end
25
        return;
26 endfunction
27 function []=print1(list1)
        if list1(i)(1).next~=NULL then
28
```

```
printf("%d--->", list1(i)(1).number); // Print
29
               current item
30
           i=i+1;
           if list1(i)(1).next==NULL then
31
32
                 printf("%d",list1(i)(1).number);
33
           print1(list1); //Move to next item
34
35
        end
36
        return;
37 endfunction
38 //Sorting of the numbers in the list
39 function [List]=insert_sort(list1)
40
       global List;
41
       j=1;
42
       while (list1(j)(1).next~=NULL)
43
           while (list1(i)(1).next~=NULL)
44
               if(list1(i)(1).number >list1(i+1)(1).
45
                  number) then
46
                  temp=list1(i)(1).number;
                  list1(i)(1).number=list1(i+1)(1).
47
                     number;
48
                  list1(i+1)(1).number=temp;
49
               end
50
               i=i+1;
51
           end
52
           j=j+1;
53
       end
       List=list1;
54
55 endfunction
56
57 global List;
58 NULL=0; i=1;
59 //Create the structure i.e. node
60 node=struct('number',0,'add',0,'next',0);
61 head=node;
62 // Calling the functions
63 List=create(head);
```

```
64 printf("\nOriginal List: ");
65 print1(List);
66 List=insert_sort(List); //Sort the list
67 printf("\nAfter sorting: ");
68 print1(List);
```

Scilab code Exa 13.3 Create a linear linked list

```
Example 13.3
2 //Write a program to create a linear linked list
      interactively
3 //and print the list and total number of items in
      the list.
5 funcprot(0);
6 NULL=0; i=1;
7 //Create the list
8 function [List] = create(list1)
9
       global List;
      //Create the current node in the list
10
       list1.number=input ("Input a number (Type -999 to
11
          end); ")
12
       if list1.number == -999 then
13
           list1.next=NULL;
14
           list1.add=NULL;
15
        else
16
            //Create the next node in the list
17
            list1.add=list1.add+1;
            list1.next=NULL;
18
            List(i)=list1;
19
20
            if(i==1) then
21
22
            else
```

```
23
                 List(i-1).next=List(i).add
24
            end
25
            i=i+1;
          create(list1); // Call create() function
26
27
28
        return;
29 endfunction
30 //Function to print the numbers of list
31 function []=print1(list1)
        if list1(i)(1).next~=NULL then
           printf("%d--->", list1(i)(1).number); // Print
33
              current item
34
           i=i+1;
           if list1(i)(1).next==NULL then
35
                 printf("%d",list1(i)(1).number);
36
37
           print1(list1);//Move to next item
38
39
        end
40
        return;
41 endfunction
42 //Function to count the number of items in the list
43 function [] = count(list1)
44
       global c;
        if list1(i)(1).next==NULL then
45
46
            return;
47
        else
48
           i=i+1;
49
           c=i;
50
           count(list1);
51
        end
52
        return:
53 endfunction
54 // Create the structure i.e. node
55 node=struct('number',0,'add',0,'next',0);
56 head=node;
57 global List;
58 // Calling the functions
59 List=create(head);
```

```
60 print1(List);
61 global c;
62 c=1;
63 count(List);
64 //Print the total number of items
65 printf("\nNumber of items = %d",c);
```

Scilab code Exa 13.4 Insert the item before the specified key node

```
Example 13.4
2 //Write a function to insert a given item before a
      specified node known as
3 //key node.
5 funcprot(0);
6 //Create the list
  function [List] = create(list1)
8
       global List;
9
      // Create the current node
       list1.number=input ("Input a number (Type -999 to
10
          end); ");
       if list1.number == -999 then
11
12
           list1.next=NULL;
13
           list1.add=NULL;
14
        else
15
            list1.add=list1.add+1;
16
            list1.next=NULL;
17
            List(i)=list1;
18
            if(i==1) then
19
20
            else
21
                  List(i-1).next=List(i).add
22
            end
```

```
23
            i=i+1;
24
          create(list1);// Creates the next node
25
        end
26
        return:
27 endfunction
  //Function to insert the item before the specified
28
      key node
29 function [List] = insert(list1)
       x=input("Value of new item?");
30
       printf ("Value of key item? (Before which you want
31
           to insert?)");
       key=scanf("%d");
32
33
       while list1(i)(1).next~=NULL
34
                i=i+1;
35
        end
36
        j=i+1;
        //Find the key node and insert the new node
37
        while(list1(i)(1).number~=key)
38
            list1(i+1)(1).number=list1(i)(1).number;
39
40
            i=i-1;
            if(i==0) then
41
                 printf("Item not Found");
42
43
                 return:
44
            end
45
46
         list1(i+1)(1).number=list1(i)(1).number
47
         list1(i)(1).number=x; //Inset the new node
            before the key node
         list1(j)(1).add=j;
48
         list1(j)(1).next=NULL;
49
         list1(j-1)(1).next=list1(j)(1).add;
50
51
         List=list1;
52 endfunction
53 //Function to print the numbers of list
54 function []=print1(list1)
        if list1(i)(1).next~=NULL then
55
           printf("%d--->", list1(i)(1).number); // Print
56
              current item
```

```
57
           i=i+1;
           if list1(i)(1).next==NULL then
58
                 printf("%d",list1(i)(1).number);
59
60
           end
           print1(list1); //Move to next item
61
62
        end
63
        return;
64 endfunction
65 global List;
66 NULL=0; i=1;
67 // Create the structure i.e. node
68 node=struct('number',0,'add',0,'next',0);
69 head=node;
70 // Calling the functions
71 List=create(head);
72 printf("\nOriginal List: ");
73 print1(List);
74 List=insert(List);
75 printf("\nNew List: ");
76 print1(List);
```

Scilab code Exa 13.5 Delete a specified node in the list

```
1 // Example 13.5
2 //Write a program/function to delete a specified node.
3
4 funcprot(0);
5 //Create the list
6 function [List]=create(list1)
7 global List;
8 // Create the current node
9 list1.number=input("Input a number(Type -999 to
```

```
end); ")//scanf("%d");
       if list1.number == -999 then
10
           list1.next=NULL;
11
12
           list1.add=NULL;
13
        else
14
            list1.add=list1.add+1;
            list1.next=NULL;
15
            List(i)=list1;
16
17
            if(i==1) then
18
19
            else
                 List(i-1).next=List(i).add
20
21
            end
22
            i=i+1;
            create(list1);// Create the next node
23
24
        end
25
        return;
26 endfunction
27 //Function to print the numbers of list
28 function []=print1(list1)
29
        if list1(i)(1).next~=NULL then
           printf("%d--->", list1(i)(1).number); // Print
30
              current item
31
           i=i+1;
           if list1(i)(1).next==NULL then
32
                 printf("%d",list1(i)(1).number);
33
34
           print1(list1);//Move to next item
35
36
        end
37
        return;
38 endfunction
39 //Function to delete the specified node
40 function [List] = delet(list1)
       key=input("Value of item number to be deleted?")
41
          ;//Read value of key
       //Find and delete the key node
42
       while(list1(i)(1).number~=key) then
43
           if list1(i)(1).next==NULL then
44
```

```
printf("Item not found in the list");
45
46
                return;
47
           end
           i=i+1;
48
49
        end
        while(list1(i).next~=NULL)
50
            list1(i)(1).number=list1(i+1)(1).number;
51
52
            i=i+1;
53
        end
54
        list1(i-1)(1).next=NULL;
55
        List=list1;
56 endfunction
57 global List;
58 NULL=0; i=1;
59 //Create the structure i.e. node
60 node=struct('number',0,'add',0,'next',0);
61 head=node;
62 // Calling the functions
63 List=create(head);
64 printf("\nOriginal List: ");
65 print1(List);
66 List=delet(List);
67 printf("\nAfter deletion List is: ");
68 print1(List)
```