

机器学习与人工智能 Machine Learning and Artificial Intelligence

ecture 5 SVM and Naïve Bayes

Yingjie Zhang (张颖婕)

Peking University

yingjiezhang@gsm.pku.edu.cn

2021 Fall

Missing Value in DT

- Data D and attribute a
- \widetilde{D} is the data that do not have missing values on a
- Value of $a: \{a^1, a^2, ..., a^V\}$
- \widetilde{D}^{v} , \widetilde{D}_{k} where k=1,2,...,|Y|

•
$$\rho = \frac{\sum_{x \in \widetilde{D}} w_x}{\sum_{x \in D} w_x}$$
; $\widetilde{p_k} = \frac{\sum_{x \in \widetilde{D}_k} w_x}{\sum_{x \in \widetilde{D}} w_x}$; $\widetilde{r_v} = \frac{\sum_{x \in \widetilde{D}^v} w_x}{\sum_{x \in \widetilde{D}} w_x}$

•
$$Gain(D, a) = \rho \times Gain(\widetilde{D}, a) = \rho \times (Ent(\widetilde{D}) - \sum_{v=1}^{V} \widetilde{r_{v}} Ent(\widetilde{D}^{v}))$$

 $Ent(\widetilde{D}) = -\sum_{k=1}^{|Y|} \widetilde{p_{k}} \log_{2} \widetilde{p_{k}}$

• Split info is calculated the same as before but with the missing values considered a separate state that an attribute can take.

Support Vector Machine

Linear SVM Classification

• Binary classification can be viewed as the task of separating classes in feature space:

Linear SVM Classification

 Binary classification can be viewed as the task of separating classes in feature space:

Linear SVM Classification

• Binary classification can be viewed as the task of separating classes in feature space:

Which one is the optimal?

Classification Margin

- Distance from example X_i to the separator is $r = \frac{|w^T X_i + b|}{\|w\|}$
- Examples closest to the hyperplane are *support vectors*.
- *Margin* ρ of the separator is the distance between support vectors.

Goal: maximize the margin

Hard-margin SVM (Primal)

$$\min_{w,b} \frac{1}{2} ||w||_{2}^{2}$$
s.t. $y^{(i)} (w^{T} x^{(i)} + b) \ge 1$,
 $\forall i = 1, ..., N$

Hard-margin SVM (Primal)

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||_{2}^{2}$$
s.t. $y^{(i)} (\mathbf{w}^{T} \mathbf{x}^{(i)} + b) \ge 1$,
$$\forall i = 1, ..., N$$

Hard-margin SVM (Lagrangian Dual)

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} \cdot x^{(j)}$$
s.t. $\alpha_{i} \geq 0, \forall i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_{i} y^{(i)} = 0$$

Definition: **support vectors** are those points $x^{(i)}$ for which $\alpha_i \neq 0$

Method of Lagrange Multipliers

- Goal: $\min f(x)$ s.t., $g(x) \le c$
- Step 1: construct Lagrangian

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda(g(\mathbf{x}) - c)$$

• Step 2: Solve $\min_{x} \max_{\lambda} L(x, \lambda)$

$$\nabla f(x) = \lambda \nabla g(x)$$
, s.t. $\lambda \ge 0$, $g(x) \le c$

Hard Margin Classification

• Hard margin classification: all instances be off the decision boundary

Hard Margin Classification

- Hard margin classification: all instances be off the decision boundary
- Potential issues:
 - Only works if the data is linearly separable
 - Sensitive to outliers

Soft Margin Classification

• <u>Key idea</u>: balance between keeping the decision boundary as large as possible and limiting the margin violations

Hard-margin SVM (Primal)

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||_{2}^{2}$$
s.t. $y^{(i)} (\mathbf{w}^{T} \mathbf{x}^{(i)} + b) \ge 1$,
$$\forall i = 1, ..., N$$

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} \cdot x^{(j)}$$
s.t. $\alpha_{i} \geq 0, \forall i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_{i} y^{(i)} = 0$$

Hard-margin SVM (Primal)

$$\min_{w,b} \frac{1}{2} ||w||_{2}^{2}$$
s.t. $y^{(i)} (w^{T} x^{(i)} + b) \ge 1$,
$$\forall i = 1, ..., N$$

Soft-margin SVM (Primal)

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C(\sum_{i=1}^{N} e_{i})$$
s.t. $y^{(i)}(\mathbf{w}^{T} \mathbf{x}^{(i)} + b) \ge 1 - e_{i}$,
$$e_{i} \ge 0$$

$$\forall i = 1, ..., N$$

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} \cdot x^{(j)}$$
s.t. $\alpha_{i} \geq 0, \forall i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_{i} y^{(i)} = 0$$

Hard-margin SVM (Primal)

$$\min_{w,b} \frac{1}{2} ||w||_2^2$$

s.t.
$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$
,
 $\forall i = 1, ..., N$

Soft-margin SVM (Primal)

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C(\sum_{i=1}^{N} e_{i})$$
s.t. $y^{(i)}(\mathbf{w}^{T} \mathbf{x}^{(i)} + b) \ge 1 - e_{i}$,
$$e_{i} \ge 0$$

$$\forall i = 1, ..., N$$

Hard-margin SVM (Lagrangian Dual)

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} \cdot x^{(j)}$$
s.t. $\alpha_{i} \geq 0, \forall i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_{i} y^{(i)} = 0$$

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} \cdot x^{(j)}$$
s.t. $0 \le \alpha_{i} \le C, \forall i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_{i} y^{(i)} = 0$$

Soft Margin Classification

- <u>Key idea</u>: balance between keeping the decision boundary as large as possible and limiting the margin violations
- C: Regularization parameter
 - Small C → large margin
 - Large C → narrow margin
 - $C = \infty \rightarrow$ hard margin

Non-linear SVMs

Datasets that are linearly separable with some noise work out great

Non-linear SVMs

Datasets that are linearly separable with some noise work out great

But what if the dataset is not that perfect?

Non-linear SVMs

Datasets that are linearly separable with some noise work out great

But what if the dataset is not that perfect?

<u>General idea</u>: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable

Kernel Method

- Motivation #1: Inefficient Features
 - Non-linearly separable data requires high dimensional representation
 - · Might be prohibitively expensive to compute or store
- Motivation #2: Memory-based Methods
 - KNN

- Key idea:
 - Rewrite the algorithm so that we only work with dot product x^Tz of feature vectors
 - Replace the dot products x^Tz with a kernel function k(x,z)

Hard-margin SVM (Primal)

$$\min_{w,b} \frac{1}{2} ||w||_{2}^{2}$$
s.t. $y^{(i)} (w^{T} x^{(i)} + b) \ge 1$,
 $\forall i = 1, ..., N$

$$\min_{w,b} \frac{1}{2} ||w||_{2}^{2}$$
s.t. $y^{(i)}(w^{T}\phi(x^{(i)}) + b) \ge 1$,
 $\forall i = 1, ..., N$

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} \cdot x^{(j)}$$
s.t. $\alpha_{i} \geq 0, \forall i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_{i} y^{(i)} = 0$$

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$$
s.t. $\alpha_{i} \geq 0, \forall i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_{i} y^{(i)} = 0$$

SVM Kernel Trick

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$
s.t. $\alpha_{i} \geq 0, \forall i = 1, ..., N$

The "Kernel Trick"

• If every data point is mapped into high-dimensional space via some transformation: $\Phi: x \to \psi(x)$, the inner product becomes:

$$K(\mathbf{x}, \mathbf{z}) = \psi(\mathbf{x})^T \psi(\mathbf{z})$$

- A kernel function implicitly maps data to a high-dimensional space (without the need to compute each $\psi(x)$ explicitly)
- Can be applied to many algorithms:
 - Classification: SVM, ...
 - Regression: ridge regression, ...
 - Clustering: K-means,...

Kernel Example

Name	Kernel Function (Implicit dot product)	Feature Space (Explicit dot product)
Linear	$K(\boldsymbol{x},\boldsymbol{z}) = \boldsymbol{x}^T \boldsymbol{z}$	Same as original input
Polynomial	$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^d$	All polynomials of degree d
Gaussian	$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\ \mathbf{x} - \mathbf{z}\ _2^2}{2\sigma^2}\right)$	Infinite dimensional space
Sigmoid Kernel	$K(\mathbf{x}, \mathbf{z}) = tanh(\alpha \mathbf{x}^T \mathbf{z} + c)$	With SVM, this is equivalent to a 2-layer neural network

RBF Kernel

Naïve Bayes

Generative vs. Discriminative

Probability Review

$$P(A) + P(\neg A) = 1$$

•
$$0 \le P(A) \le 1$$

•
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

•
$$P(A) = P(A \lor B) + (A \land \neg B)$$

$$P(A) = \sum_{i=1}^{k} P(A \land B = v_i)$$

•
$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

 $\Rightarrow P(A \land B) = P(A|B) \times P(B)$

• Independence:
$$P(A \land B) = P(A) \times P(B)$$

$$P(A|B) = P(A)$$

• Bayes' Rule:
$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Bayes Theorem

Naïve Bayes Assumption

Naïve Bayes classifiers assume that the effect of a variable value on a given class membership is independent of the values of other variables

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y) = P(X_1|Y)P(X_2|Y)$$

More generally,
$$P(X_1, ..., X_n | Y) = \prod_i P(X_i | Y)$$

Use Bayes' Rule:
$$P(Y_j|X_1,...,X_N) = \frac{P(Y_j) \cdot \prod_i P(X_i|Y_j)}{\sum_k P(Y_k) \cdot \prod_i P(X_i|Y_k)}$$

Fake News Detector

CNN News

Fake News

Fake News Detector

CNN News

Fake News

Bag of words

the dog is on the table

Model 1: Bernoulli Naïve Bayes

Flip a weighted coin (\$)

Model 1: Bernoulli Naïve Bayes

Flip a weighted coin

If HEADS, flip each red coin

 $y \qquad x_1 \quad x_2 \quad x_3 \quad \dots \quad x_M$

If TAILS, flip each blue coin

Flip a weighted coin

If HEADS, flip each red coin

0

	1	0	1		1
--	---	---	---	--	---

If TAILS, flip each blue coin

Flip a weighted coin

If HEADS, flip each red coin

0	1	0	1	 1

If TAILS, flip each blue coin

Flip a weighted coin

If HEADS, flip each red coin

- 0 | 1 | 0 | 1 | ... | 1
- 1 | 0 | 1 | 0 | ... | 1
- 1 | 1 | 1 | 1 | ... | 1
- 0 0 0 1 ... 1
- 0 1 0 1 ... 0
- 1 1 0 1 ... 0

If TAILS, flip each blue coin

What's wrong with the Naïve Bayes Assumption?

The features might not be independent!!

- Example 1:
 - If a document contains the word "Donald", it's extremely likely to contain the word "Trump" These are not independent!
- Example 2:
 - If the petal width is very high, the petal length is also likely to be very high

• Data: $x \in \{0,1\}^M$, $y \in \{0,1\}$

Generative Process:

 $y \sim Bernoulli(\phi)$

 $x_1 \sim Bernoulli(\theta_{y,1})$

 $x_2 \sim Bernoulli(\theta_{y,2})$

...

 $x_M \sim Bernoulli(\theta_{y,M})$

Model:

$$p_{\phi,\theta}(\mathbf{x},y) = p_{\phi,\theta}(x_1, x_2, \dots, x_M, y)$$

$$= p_{\phi}(y) \prod_{m=1}^{M} p_{\theta}(x_m|y)$$

$$= \left[(\phi)^{y} (1 - \phi)^{(1-y)} \prod_{m=1}^{M} (\theta_{y,m})^{x_m} (1 - \theta_{y,m})^{(1-x_m)} \right]$$

MLE

Training: Find the class-conditional MLE parameters

Count Variables

$$N_{y=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)$$

$$N_{y=0} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)$$

$$N_{y=0,x_{m}=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_{m}^{(i)} = 1)$$

Maximum Likelihood Estimators

$$\phi = \frac{N_{y=1}}{N}$$

$$\phi_{0,m} = \frac{N_{y=0,x_m=1}}{N_{y=0}}$$

$$\phi_{1,m} = \frac{N_{y=1,x_m=1}}{N_{y=1}}$$

$$\forall m \in \{1, \dots, M\}$$

An Illustrative Example

ID	Charges?	Size	Outcome
1	Υ	Small	Truthful
2	N	Small	Truthful
3	N	Large	Truthful
4	N	Large	Truthful
5	N	Small	Truthful
6	N	Small	Truthful
7	Υ	Small	Fraud
8	Υ	Large	Fraud
9	N	Large	Fraud
10	Υ	Large	Fraud

Goal: new record: small firm, charges = yes

An Illustrative Example

ID	Charges?	Size	Outcome
1	Υ	Small	Truthful
2	N	Small	Truthful
3	N	Large	Truthful
4	N	Large	Truthful
5	N	Small	Truthful
6	N	Small	Truthful
7	Υ	Small	Fraud
8	Υ	Large	Fraud
9	N	Large	Fraud
10	Υ	Large	Fraud

Goal: new record: small firm, charges = yes

$$P(size = small|Fraund) = 0.25$$

$$P(charge = Y|Fraud) = 0.75$$

$$P(size = small|Truthful) = 4/6$$

$$P(charge = Y|Truthful) = 1/6$$

$$P(Fraud) \times 0.25 \times 0.75 = 0.075$$

$$P(Truthful) \times \left(\frac{4}{6}\right) \times \left(\frac{1}{6}\right) = 0.067$$

$$P(Fraud|small, yes) = \frac{0.075}{0.075 + 0.067} = \mathbf{0.53}$$

Naïve Bayes Model

- Suppose: Depends on the choice of event model $P(X_k|Y)$
- Model: Product of prior and the model

$$P(X,Y) = P(Y) \prod_{k=1}^{K} P(X_k|Y)$$

- Training: Find the class-conditional MLE parameters
 - For P(Y), we find the MLE using all the data.
 - For each $P(X_k|Y)$, we condition on the data with the corresponding
- Classification: Find the class that maximizes the posterior

$$\hat{y} = argmax_y p(y|\mathbf{x})$$

$$= argmax_y p(\mathbf{x}|y)p(y)/p(x)$$

$$= argmax_y p(\mathbf{x}|y)p(y)$$

A shortcoming of MLE

 suppose we never observe the word "unicorn" in a real news article?

A shortcoming of MLE

 suppose we never observe the word "unicorn" in a real news article?

Add-1 Smoothing

$$D = \left\{ \left(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)} \right) \right\}_{i=1}^{N}, D' = D \cup \left\{ (\mathbf{0}, 0), (\mathbf{0}, 1), (\mathbf{1}, 0), (\mathbf{1}, 1) \right\}$$
$$\theta_{k,0} = \frac{1 + \sum_{i=1}^{N} \mathbb{I} \left(\boldsymbol{y}^{(i)} = 0 \land \boldsymbol{x}_{k}^{(i)} = 1 \right)}{2 + \sum_{i=1}^{N} \mathbb{I} (\boldsymbol{y}^{(i)} = 0)}$$

Other NB Models

- Bernoulli Naïve Bayes:
 - For binary features
- Multinomial Naïve Bayes:
 - For integer features
- Gaussian Naïve Bayes
 - For continuous features

Model 2: Multinomial Naïve Bayes

• Data: $x = [x_1, x_2, ..., x_M]$, where $x_m \in \{1, ..., K\}$

Generative Process:

for
$$i \in \{1, ..., N\}$$
:

 $y \sim Bernoulli(\phi)$

for $j \in \{1, ..., M_i\}$:

 $x_j^{(i)} \sim Multinomial\left(\boldsymbol{\theta}_{y^{(i)}}, 1\right)$

Model:

$$p_{\phi,\theta}(x,y)$$

$$= \left| (\phi)^{y} (1 - \phi)^{(1-y)} \prod_{j=1}^{M_i} \theta_{y,x_j} \right|$$

Model 3: Gaussian Naïve Bayes

• Data: $x \in \mathbb{R}^M$

Model:

$$p(\mathbf{x}, y) = p(x_1, x_2, ..., x_M, y)$$
$$= p(y) \prod_{k=1}^{M} p(x_k | y)$$

Gaussian Naïve Bayes assumes that $p(x_k|y)$ is given by a normal distribution.

