

Tópicos Avançados de Sistemas Digitais/Circuitos Aritméticos EEL/PGEEL

2020.2

A entregar 24 de Fevereiro de 2021, Capítulo 4

Questão 1 a ser resolvida do capitulo 4

A questão consiste em projetar um multiplicador de 36 bits em RNS que seja mais eficiente que em binário.

- a) Determine se os seguintes conjuntos de módulos são co-primos:
- 1. $M1=\{m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11\}=\{2,3,5,7,11,13,17,19,23,29,31\};$
- 2. $M2=\{m1,m2,m3,m4,m5\}=\{512,511,255,127,31\};$
- 3. $M3 = \{m1, m2, m3, m4, m5, m6, m7\} = \{128, 127, 129, 65, 31, 17, 7\};$
- 4. $M4=\{m1,m2,m3\}=\{2^{12},2^{12}-1,2^{12}+1\};$
- 5. $M5 = \{m1, m2, m3, m4, m5, m6, m7\} = \{512, 127, 113, 43, 29, 5, 3\};$
- 6. $M6=\{m1,m2,m3,m4,m5\}=\{128,127,129,63,65\}.$

Elimine os que não são co-primos para o seguinte apartado.

- b) Indique a faixa dinâmica da estrutura RNS e compare com a eficiência da representação com 36-bits em binário. Elimine para o seguinte apartado os que não atingem os 36 bits de representação na saída. Justifique.
- c) As tabelas seguintes mostram os resultados de síntese em ASIC para uma tecnologia de UMC do atraso de multiplicadores RNS e de unidades binário-RNS e RNS-binário para os módulos apresentados no apartado a). Tendo em consideração que uma multiplicação em binário de 36 bits é 4.4ns, escolha o conjunto de módulos (apenas existe um conjunto possível) que permite uma operação de multiplicação (e conversões Bin-RNS e RNS-Bin) de forma mais veloz que em binário. Justifique.

Atraso unidades conversão RNS

Conjunto	Bin-RNS	RNS-Bin		
M1	1ns	2.5ns		
M2	1.4ns	2.4ns		
M3	1.4ns	2.6ns		
M4	2ns	1.5ns		
M5	1.5ns	1.3ns		
M6	1.4	2ns		

Atraso unidades multiplicação RNS

Modulo	Multiplier	Modulo	Multiplier	Modulo	Multiplier	Modulo	Multiplier
2	0.5ns	17	1.1ns	63	1.1ns	255	1.3ns
3	0.6ns	19	1.3ns	65	1.3ns	511	1.4ns
5	0.8ns	23	1.4ns	113	1.5ns	512	1ns
7	0.6ns	29	1.4ns	127	1.2ns	2 ¹² -1	1.7ns
11	1ns	31	1ns	128	0.8ns	2 ¹²	1.2ns
13	1ns	43	1.5ns	129	1.4ns	2 ¹² +1	2ns

d) Aplicando o algoritmo novo CRT-I para o conjunto obtido, a operação modular, M/m1, (onde M é o produtorio de todos os módulos) fica simples ou complexa? (não é preciso resolver a equação apenas obter qual seria a operação modular). Justifique.