Линейная алгебра

Аннотация

1 Линейное пространство

Линейное (векторное) пространство V — некоторое множество объектов произвольной природы с введенным на этом множестве, операциями сложения и умножения (на число вещественное $\mathbb R$ или комплексное $\mathbb C$) элементов этого множества

Рис. 1: Сумма векторов

Рис. 2: умножение вектора на скаляр

Операция сложения векторов должна удовлетворять следующим четырем аксиомам:

- 1. коммутативность сложения: $v + \omega = \omega + v$;
- 2. ассоциативность сложения: $(u + v) + \omega = u + (v + \omega)$;
- 3. существование нейтрального элемента $\mathbf{0} \in V$, такого, что $u + \mathbf{0} = \mathbf{0} + u = u$ для любого вектора u;

$$\exists 0; \quad u + 0 = 0 + u = u$$

4. существование для любого $u \in V$ обратного элемента u^{-1} , такого, что $u + u^{-1} = u^{-1} + u = 0$.

$$\forall u \in V \quad \exists u^- 1; u + u^- 1 = 0$$

Операция умножения вектора на скаляр (например, на вещественное число) должна подчиняться таким четырем аксиомам:

- 1. умножение любого вектора v на $1 \in \mathbb{R}$ должно давать тот же самый вектор v;
- 2. ассоциативность операции умножения: $\alpha(\beta \cdot v) = (\alpha \cdot \beta)v$;
- 3. дистрибутивность относительно сложения векторов: $\alpha(v+w) = \alpha v + \alpha w$;
- 4. дистрибутивность относительно сложения скаляров: $(\alpha + \beta)v = \alpha v + \beta v$.

1.1 фыва

 asdf