

- CNN Basic Architecture (Conv / Pool / Flat) -

박성호 (neowizard2018@gmail.com)

Layer	TensorFlow 2.x Layer API			
Conv	Conv2D(input_shape=(28, 28, 1), kernel_size=3, filters=32, strides=(1, 1), activation='relu', use_bias=True, padding='SAME')			
	Conv2D(kernel_size=3, filters=32, strides=(1, 1), activation='relu', use_bias=True, padding='SAME')			
Pool	MaxPool2D(pool_size=(2, 2), padding='SAME')			
Flat	Flatten()			
Dropout	Dropout(rate=0.2)			
Dense	Dense(10, activation='softmax')			


```
import tensorflow as tf
from tensorflow.keras.layers import Flatten, Dense, Conv2D, MaxPool2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.datasets import mnist
import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
print(tf.__version__)
2.2.0
```

```
(x_train, t_train), (x_test, t_test) = mnist.load_data()

x_train = x_train / 255.0

x_test = x_test / 255.0

print('x_train.shape = ', x_train.shape, ', x_test.shape = ', x_test.shape)

print('t_train.shape = ', t_train.shape, ', t_test.shape = ', t_test.shape)

x_train.shape = (60000, 28, 28) , x_test.shape = (10000, 28, 28)

t_train.shape = (60000,) , t_test.shape = (10000,)
```


<pre>model.compile(optimizer=Adam(learning_rate=0.001),</pre>						
model.summary()						
Model: "sequential"						
Layer (type)	Output	Shape	Param #			
conv2d (Conv2D)	(None,	28, 28, 32)	320			
max_pooling2d (MaxPooling2D)	(None,	14, 14, 32)	0			
flatten (Flatten)	(None,	6272)	0			
dense (Dense)	(None,	10)	62730			
Total params: 63,050 Trainable params: 63,050 Non-trainable params: 0						

hist = model.fit(x_train.reshape(-1,28,28,1), t_train, batch_size=50, epochs=50, validation_split=0.2)