§5. Направление выпуклости и точки перегиба графика функции

Пусть функция f(x) дифференцируема на интервале (a,b). Тогда в любой точке M(x, f(x)) графика f(x) функции существует невертикальная касательная.

Определение 5.1. График Γ функции f(x), дифференцируемой на интервале (a, b), называется *выпуклым вниз* (*вверх*) на этом промежутке, если он расположен выше (ниже) касательной, проведённой к Γ в любой его точке M(x, f(x)), где $x \in (a, b)$.

На рис. 5.1а изображён график Γ функции f(x), направленный на интервале (a, b) выпуклостью вниз, а на рис. 5.1б – выпуклостью вверх.

Рис. 5.1. К определению 5.1

Теорема 5.1. Если функция f(x) дважды дифференцируема на интервале (a,b) и f''(x) < 0 (f''(x) > 0) всюду на этом интервале, то график Γ этой функции на интервале (a,b) является выпуклым вверх (вниз).

▶Пусть x_0 — произвольная точка интервала (a,b) (рис. 5.2). Напишем уравнение касательной T, проведённой к графику Γ функции y = f(x) в точке $M_0(x_0, f(x_0))$, обозначая ординату текущей точки T через Y:

$$Y = f(x_0) + f'(x_0)(x - x_0). (5.1)$$

Рис. 5.2. К доказательству теоремы 5.1

Для функции y = f(x) напишем формулу Тейлора при n = 1, остаточный член возьмём в форме Лагранжа:

$$y = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(c)}{2!}(x - x_0)^2,$$
 (5.2)

где c – число, расположенное между x_0 и x. Вычтем почленно (5.1) из (5.2):

$$y - Y = \frac{f''(c)}{2!}(x - x_0)^2.$$
 (5.3)

В силу (5.3) знак разности y-Y при $x \neq x_0$ совпадает со знаком f''(c). Поэтому, если f''(x) < 0 на интервале (a,b), то для всех x из (a,b) выполняется неравенство y-Y < 0; если же f''(x) > 0 на интервале (a,b), то для всех x из (a,b) выполняется неравенство y-Y > 0. В первом случае график функции y = f(x) лежит

ниже касательной, проведённой к нему в точке $M_0(x_0, f(x_0))$ (рис. 5.2a), во втором — выше этой касательной (рис. 5.2б). Ввиду произвольного выбора точки x_0 на интервале (a, b) в первом случае в соответствии с определением 5.1 график этой функции является выпуклым вверх на интервале (a, b), во втором — выпуклым вниз. \blacktriangleleft

Пример 5.1. Найти интервалы выпуклости графика функции $f(x) = \frac{x^2}{x^2 + 3}$.

►
$$D(f) = \mathbf{R}$$
, $f'(x) = \frac{6x}{(x^2 + 3)^2}$, $f''(x) = \frac{18(1 - x^2)}{(x^2 + 3)^3}$. Так как $f''(x) < 0$ на

интервалах $(-\infty, -1)$, $(1, +\infty)$ и f''(x) > 0 на интервале (-1, 1) то в силу теоремы 5.1 заключаем, что на промежутках $(-\infty, -1)$, $(1, +\infty)$ график функции направлен выпуклостью вверх, а на промежутке (-1, 1) – выпуклостью вниз (рис. 5.3).

Рис. 5.3. График функции $f(x) = \frac{x^2}{x^2 + 3}$

Рис. 5.4. К определению 5.2

Определение 5.2. Пусть функция f(x) непрерывна на некоторой окрестности $U(x_0)$ точки x_0 и дифференцируема на $U(x_0)$ за исключением, быть может, самой точки x_0 . Если при переходе аргумента x через эту точку меняется направление выпуклости графика Γ этой функции, то точка $M_0(x_0,f(x_0))$ называется точкой перегиба графика Γ (рис. 5.3).

Так,
$$(\pm 1, 1/4)$$
 – точки перегиба графика функции $f(x) = \frac{x^2}{x^2 + 3}$ (рис. 5.3).

Замечание 5.1. Предположим, что в точке перегиба $M_0(x_0, f(x_0))$ график функции f(x) имеет касательную T. Из определения 5.2 следует, что при переходе x через точку x_0 график переходит с одной стороны касательной T на другую и "перегибается через неё" (рис. 5.4), отсюда и произошло название "точка перегиба".

Теорема 5.2 (необходимое условие существования точки перегиба графика функции). Если x_0 – абсцисса точки перегиба графика функции f(x), то либо $f''(x_0) = 0$, либо $f''(x_0) = \infty$, либо $f''(x_0)$ не существует.

▶ Возможны только два случая: $f''(x_0)$ существует либо не существует. Если $f''(x_0)$ существует, то также возможны только два случая: либо $f''(x_0)$ конечна, либо $f''(x_0) = \infty$. Если $f''(x_0)$ конечна, то докажем, что $f''(x_0) = 0$.

Для упрощения доказательства ограничимся случаем, когда f''(x) непрерывна в точке x_0 . Предположим противное, что $f''(x_0) \neq 0$. В силу непрерывности второй производной в точке x_0 и теоремы о сохранении знака функции, непрерывной в точке (теорема 3.3 глава 4 раздел 4) найдётся окрестность $U(x_0)$ точки x_0 , в которой f''(x) не меняет знака. Тогда график функции f(x) в пределах этой окрестности имеет одно и то же направление выпуклости. Так как это противоречит наличию перегиба в точке $M_0(x_0, f(x_0))$, остаётся принять то, что требовалось доказать. \blacktriangleleft

Определение 5.3. Точки из области определения функции f(x), в которых её вторая производная равна нулю, бесконечности, или не существует, называются *точками*, *подозрительными* на перегиб.

При исследовании функции f(x) на направление выпуклости её графика и существование точек перегиба из области определения этой функции с помощью определения 5.3 выделяют точки, где график может иметь перегиб.

Замечание 5.2. Не в любой точке, подозрительной на перегиб, график функции имеет перегиб. Так, для функций $y = x^3$ и $y = x^4$ точка x = 0 является подозрительной на перегиб: $(x^3)'' = 6x = 0$ и $(x^4)'' = 12x^2 = 0$ при x = 0, но для графика первой из них она является точкой перегиба, а для графика второй не является (рис. 3.2, 5.5).

Рис. 5.5. График функции $f(x) = x^4$

Теорема 5.3 (достаточное условие существования функции $f(x) = x^4$ точки перегиба графика функции). Пусть x_0 — точка, подозрительная на перегиб графика функции f(x) и данная функция имеет вторую производную на некоторой проколотой окрестности точки x_0 . Если при переходе аргумента x через эту точку производная f''(x) меняет знак, то x_0 является абсциссой точки перегиба $M_0(x_0, f(x_0))$ графика данной функции.

▶В самом деле, в точке M_0 в силу теоремы 5.1 меняется направление выпуклости графика, что и означает, что M_0 является точкой перегиба (определение 5.2). ◀

Рис. 5.6. График функции $f(x) = (2-x)e^x + 2$

Пример 5.2. Найти интервалы выпуклости и точки перегиба графика функции $f(x) = (2-x)e^x + 2$.

▶ D(f)=R, $f'(x)=(1-x)e^x$ (пример 4.1), $f''(x)=((1-x)e^x)'=-xe^x$, f''(x)=0 при x=0 — в точке (0,f(0)) график может иметь перегиб. Поскольку f''(x)>0 при x<0 и f''(x)<0 при x>0, то заключаем, что при x<0 в силу теоремы 5.1 график направлен выпуклостью вниз, а при x>0 — выпуклостью вверх, следовательно, по определению 5.2 (0,f(0)) — точка перегиба графика (рис. 5.6, f(0)=4). \blacktriangleleft