1. ISPITNI ROK IZ ELEKTRONIKE 1 ZADACI

ZADATAK 1. Za mrežu na slici a) ulazni napon u_G zadan je slikom b). Zadano je $R_2 = 300 \Omega$, $R_3 = 140 \Omega$ i $C = 5 \mu F$. Vrijeme porasta t_r izlaznog signala u_{IZ} iznosi $t_r = 2,2$ ms. U trenutku t = 0 napon na kondenzatoru je $U_{C0} = 0$ V.

- a) Izračunati iznos otpornika R_1 (3 boda).
- b) Izračunati izlazni napon u_{IZ} na kondenzatoru C u trenucima t = 11 ms, t = 21 ms i t = 31 ms (6 bodova).
- c) Skicirati izlazni napon u_{IZ} (1 bod).

ZADATAK 2. Širine p i n strane pn diode iznose $w_p = 2$ μm i $w_n = 1$ μm. Koncentracije primjesa na p i n strani diode iznose $N_A = 5 \cdot 10^{16}$ cm⁻³ i $N_D = 5 \cdot 10^{15}$ cm⁻³. Pokretljivosti manjinskih nosilaca su 1250 cm²/Vs i 320 cm²/Vs. Difuzijske duljine nosilaca iznose $L_p = 30$ μm i $L_n = 60$ μm. Kapacitet osiromašenog područja na sobnoj temperaturi (T = 300 K) iznosi $C_B = 1$ nF. Napon na diodi iznosi $U_{AK} = 0.2$ V. Pretpostaviti m = 1.

- a) Izračunati širinu osiromašenog područja na p i n strani, d_{Bp} i d_{Bn} , i ukupnu širinu osiromašenog područja d_B (3 boda).
- b) Izračunati površinu pn spoja S (1 bod).
- c) Za koliko se promijeni kapacitet C_B ako temperatura naraste na T = 400 K (3 boda)?
- d) Izračunati struju zasićenja I_S (T = 300 K) (3 boda).

ZADATAK 3. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Faktor modulacije duljine kanala iznosi $\lambda = 0,002 \text{ V}^{-1}$.

- a) Uz obrazloženje, odrediti tip MOSFET-a
 (n ili p kanalni, obogaćeni ili osiromašeni)
 (1 bod).
- b) Odrediti u kojem se području rada nalaze točke A i B (1 bod).
- c) Odrediti strujni koeficijent K i struju u točki B, I_{DB} (4 boda).
- d) Odrediti dinamičke faktore g_m i r_d u točkama A i B **(4 boda)**.

ZEMRIS 8. 2. 2021.

ZADATAK 4. Za pojačalo na slici zadano je: $U_{DD} = 12 \text{ V}$, $R_g = 100 \text{ k}\Omega$, $R_1 = 2 \text{ M}\Omega$, $R_2 = 4 \text{ M}\Omega$, $R_T = 10 \text{ k}\Omega$. Napon uvoda tranzistora prema masi u statičkoj radnoj točki iznosi $U_{SQ} = 4 \text{ V}$. Parametri tranzistora su: $K = 1 \text{ mA/V}^2$, $U_{GS0} = 2 \text{ V}$ i $\lambda = 0.005 \text{ V}^{-1}$.

- a) Odrediti statičku radnu točku pojačala (I_{DQ} , U_{GSQ} , U_{DSQ}), te vrijednost otpornika R_S . Provjeriti radi li tranzistor u zasićenju. Pri proračunu statičke radne točke zanemariti porast struje odvoda u području zasićenja (3 boda).
- b) Izračunati dinamičke parametre u statičkoj radnoj točki, te nacrtati nadomjesnu shemu pojačala za dinamičku analizu (2 boda).
- c) Odrediti amplitudu izmjeničnog sinusnog napona u_{iz} , ako amplituda izmjeničnog sinusnog napona u_{ul} iznosi 2 V (2 boda).
- d) Odrediti amplitudu izmjeničnog sinusnog napona u_g i amplitude izmjeničnih sinusnih struja i_{ul} i i_{iz} , uz amplitudu napona u_{ul} jednaku 2 V (3 boda).

ZADATAK 5. Za pojačalo na slici zadani su sljedeći podaci : $R_1 = 10 \text{ k}\Omega$, $R_2 = 3.3 \text{ k}\Omega$, $R_E = 180 \Omega$, $R_C = 680 \Omega$, $R_T = 1 \text{ k}\Omega$, $R_g = 50 \Omega$, $U_{CC} = 12 \text{ V}$. Parametri npn tranzistora su $\beta \approx h_{fe} = 200$, $U_{\gamma} = 0.7 \text{ V}$. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$. Zanemarite porast struje kolektora s naponom u_{CE} u normalnom aktivnom području.

- a) Odredite struju I_{CQ} i napon U_{CEQ} tranzistora u statičkoj radnoj točki (**2 boda**).
- b) Nacrtajte nadomjesnu shemu pojačala sa slike za dinamičku analizu. Izračunajte dinamičke parametre tranzistora (r_{be} i g_m). U kakvom je spoju pojačalo na slici i kako nazivamo takvu primjenu R_E otpornika (3 boda)?
- c) Izvedite izraze i izračunajte naponsko pojačanje $A_V = u_{iz}/u_{ul}$, ulazni otpor R_{ul} i izlazni otpor R_{iz} pojačala (3 boda).
- d) Odredite signal na izlazu pojačala u_{iz} , ako je signal na generatoru: $u_g = 10 \cdot \sin(2\pi \cdot 10^4 \text{ t}) \text{ mV } (2 \text{ boda}).$

ELEKTRONIKA 1

Prvi ispitni rok - 8. 2. 2021.

Rješenja

ZADACI

1.

a) $R_1 = 75 \Omega$

b) $u_{IZ}(t=11\text{ms}) = 5,05 \text{ V}$ $u_{IZ}(t=21\text{ms}) = 0,41 \text{ V}$

 $u_{IZ}(t=31\text{ms}) = 3,59 \text{ V}$

c)

2.

- a) $d_B = 0.38 \,\mu\text{m}, d_{Bn} = 0.35 \,\mu\text{m}, d_{Bp} = 0.03 \,\mu\text{m}$
- b) $S = 3,67 \text{ mm}^2$
- c) $\Delta C_B = 23 \%$
- d) $I_S = 24.4 \text{ pA}$

3.

- a) *n*-kanalni osiromašeni MOSFET
- b) A područje zasićenja, B triodno područje
- c) $K = 2.4 \text{ mA/V}^2$, $I_{DB} = 1.2 \text{ mA}$
- d) $g_{mA} = 1.2 \text{ mA/V}, r_{dA} = 1.67 \text{ M}\Omega, g_{mB} = 2.16 \text{ mA/V}, r_{dB} = 4.2 \text{ k}\Omega$

a)
$$I_{DQ} = 2 \text{ mA}, U_{GSQ} = 4 \text{ V}, U_{DSQ} = 8 \text{ V}, R_S = 2 \text{ k}\Omega$$

b)
$$g_m = 2{,}08 \text{ mA/V}, r_d = 100 \text{ k}\Omega$$

c)
$$U_{iz} = 1,54 \text{ V}$$

d)
$$U_g = 2,15 \text{ V}, I_{ul} = 1,5 \text{ } \mu\text{A}, I_{iz} = 154 \text{ } \mu\text{A}$$

5.

a)
$$I_{CQ} = 11.8 \text{ mA}, U_{CEQ} = 1.85 \text{ V}$$

b)
$$g_m = 472 \text{ mA/V}, r_{be} = 424 \Omega$$

c)
$$A_{V} = -h_{fe} \frac{R_{C}||R_{T}}{r_{be} + (1 + h_{fe})R_{E}} = -2,21$$

$$R'_{ul} = \frac{u_{ul}}{i_{b}} = r_{be} + (1 + h_{fe})R_{E} = 36,6 \text{ } k\Omega$$

$$R_{ul} = R'_{ul}||R_{BB} = 2,32 \text{ } k\Omega$$

$$R_{iz} = R_{C} = 680 \text{ } \Omega$$

d)
$$u_{iz} = -21.6 \cdot \sin(2\pi \cdot 10^4 \text{ t}) \text{ mV}$$