

Machine Learning

Prof. Adil Khan

Objectives

- 1. A quick recap of last week
- 2. What is Naïve Bayes? How does it work? Why is it called "Naïve"?
- 3. Nearest Neighbor Methods
 - What is KNN? What is its objective function? How does it work?
 - Pitfalls of KNN
- 4. Hyperparameter tuning and cross-validation
- 5. What is regularization? Why is it important? How does it work?

Recap (1)

Gradient Descent

Repeat {

$$w_j = w_j - \alpha \frac{1}{n} \sum_{i=1}^n (\widehat{y}_i - y_i) x_i^j$$

Classification

- Eye color $\in \{brown, blue, green\}$
- Email $\in \{Spam, Ham\}$
- Expression $\in \{Happy, Sad, Angry\}$
- Action $\in \{Walking, Running, Cycling\}$

Logistic Regression

$$p(x) = \frac{1}{1 + e^{-x}}$$

$$z = w_0 + w_1 x_1 + \dots + w_p x_p$$

Recap (2)

MSE Loss Function for Logistic Regression

$$y = \frac{1}{1 + e^{-w^T x^i}}$$

$$\mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} (y^i - w^T x^i)^2$$

 Due to non-linearity of the sigmoid function in <u>hypothesis of Logistic</u> <u>Regression</u>, *MSE* is **NOT CONVEX** anymore

Loss Function of Logistic Regression

We solve it using **Gradient Descent**

$$w_j = w_j - \frac{1}{\alpha} \sum_{i=1}^n (p(x^i) - y^i) x_j^i$$

Recap (3)

$$Acc = 1 - \frac{\text{# of missclassified examples}}{\text{# of samples}}$$

$$Precision = \frac{True\ Positives}{True\ Positives + False\ Positives}$$

$$\frac{Recall}{True\ Positives + False\ Negatives}$$

$$F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Class-imbalance

Data For Cat / Dog Classifier

Data For Normal / Fraud Classifier

Confusion Matrix

Predicted Class Label

		Negative	Positive
Actual Class Label	Negative	True Negatives	False Positives
	Positive	False Negatives	True Positives

Naïve Bayes Classifier

Naïve Bayes Classifier

• Takes its name from the equation it is based on

• Goal: given a set of training data points from *C* classes, compute the predictive probabilities for each of the *C* potential classes

$$p(y_{new} = c | \mathbf{x}_{new}, \mathbf{X}, \mathbf{y})$$

$$0 \le p(y_{new} = c | \boldsymbol{x}_{new}, \boldsymbol{X}, \boldsymbol{y}) \le 1$$
$$\sum_{c=1}^{C} p(y_{new} = c | \boldsymbol{x}_{new}, \boldsymbol{X}, \boldsymbol{y}) = 1$$

Bayes Rules (1)

• Bayes classifier is based on Bayes equation

$$p(y_{new} = c | \boldsymbol{x}_{new}, \boldsymbol{X}, \boldsymbol{y}) = \frac{p(\boldsymbol{x}_{new} | y_{new} = c, \boldsymbol{X}, \boldsymbol{y}) p(y_{new} = c | \boldsymbol{X}, \boldsymbol{y})}{p(\boldsymbol{x}_{new} | \boldsymbol{X}, \boldsymbol{y})}$$

Bayes Rules (2)

Simplified

$$p(y_{new} = c | \boldsymbol{x}_{new}) = \frac{p(\boldsymbol{x}_{new} | c)p(c)}{p(\boldsymbol{x}_{new})}$$

Bayes Rules (3)

• Expand the denominator over all classes

$$p(y_{new} = c | \mathbf{x}_{new}) = \frac{p(\mathbf{x}_{new} | c)p(c)}{\sum_{c=1}^{C} p(\mathbf{x}_{new} | c) p(c)}$$

Bayes Rules (4)

Likelihood

$$p(\mathbf{x}_{new}|c) = p((\mathbf{x}_1, \dots, \mathbf{x}_p)_{new}|c)$$

- Now, to simplify the matter, an assumption is made
- Independence Assumption: predictors are are conditionally independent given the target

$$p\left(\left(x_{1}, \dots, x_{p}\right)_{new} | c\right) = \prod_{i=1}^{p} p(x_{i} | c)$$

That is why it is called the naïve Bayes

Naïve Bayes Properties

• Estimating $P(x_i | c_j)$ instead of $P(x_1, x_2, ..., x_n | c_j)$ greatly reduces the number of parameters

• The learning step in Naïve Bayes consists of estimating $P(x_i | c_j)$ and $P(c_j)$ based on the frequencies in the training data

 An unseen instance is classified by computing the class that maximizes the posterior

$$c_{NB} = \underset{c_j \in C}{\operatorname{arg\,max}} P(c_j) \prod_i P(x_i \mid c_j)$$

.

Naïve Bayes Example

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

For the day <sunny, cool, high, strong>
What's the play prediction?

Naïve Bayes Example

Based on the examples in the table, classify the data

x=(Outlook=Sunny, Temp=Cool, Hum=High, Wind=strong)

$$h_{NB} = \underset{h \in [yes, no]}{\operatorname{arg}} \max P(h)P(\mathbf{x} \mid h) = \underset{h \in [yes, no]}{\operatorname{arg}} \max P(h) \prod_{t} P(a_{t} \mid h)$$

$$= \underset{h \in [yes, no]}{\operatorname{arg}} \max P(h)P(Outlook = sunny \mid h)P(Temp = cool \mid h)P(Humidity = high \mid h)P(Wind = strong \mid h)$$

$$\underset{h \in [yes, no]}{\operatorname{arg}} \max P(h)P(Outlook = sunny \mid h)P(Temp = cool \mid h)P(Humidity = high \mid h)P(Wind = strong \mid h)$$

Naïve Bayes Example

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

```
P(PlayTennis = yes) = 9/14 = 0.64

P(PlayTennis = no) = 5/14 = 0.36

P(Wind = strong \mid PlayTennis = yes) = 3/9 = 0.33

P(Wind = strong \mid PlayTennis = no) = 3/5 = 0.60

.....

P(yes)P(sunny \mid yes)P(cool \mid yes)P(high \mid yes)P(strong \mid yes) = 0.0053

P(no)P(sunny \mid no)P(cool \mid no)P(high \mid no)P(strong \mid no) = \mathbf{0.0206}

\Rightarrow answer : PlayTennis(x) = no
```

Underflow

 Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{arg\,max}} P(c_{j}) \prod_{i} P(x_{i} \mid c_{j})$$

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{arg\,max}} \log P(c_{j}) + \sum_{i \in \textit{positions}} \log P(x_{i} \mid c_{j})$$

- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final unnormalized log probability score is still the most probable.

Observations

Advantages

 It is easy and fast to predict class of test data set. It also perform well in multi class prediction

 When assumption of independence holds, a Naive Bayes classifier performs better compare to other models like logistic regression and you need less training data.

Allows online learning

Observations

Disadvantages

 If a predictor was not observed in training data set, then model will assign a 0 (zero) probability and will be unable to make a prediction. This is often known as "Zero Frequency".

Solution: To solve this, we can use the smoothing technique.
 One of the simplest smoothing techniques is called <u>Laplace</u> <u>estimation</u>.

Nearest Neighbor Methods

Nearest Neighbor (1)

Nearest Neighbor (2)

Nearest Neighbor (3)

Nearest Neighbor (4)

- The Assumption: <u>Similar points have similar labels</u>,
- Thus find new point's nearest input vector in the training set and copy its label
- How to formalize the concept "nearest"?
- Solution: formalize it in the form of a distance
- Euclidean distance

$$\|\mathbf{x}^a - \mathbf{x}^b\|_2 = \sqrt{\sum_{i=1}^a (x_j^a - x_j^b)^2}$$

Nearest Neighbor (5)

More formally

1. Find the example (x^*, t^*) from the stored training set which is closest to x,

That is

$$x^* = \mathop{argmin}_{x^i \in train} \mathop{dis} an ce\left(x^i, x\right)$$

2. Output: $y = t^*$

Nearest Neighbor (6)

Noisy or Mis-labeled Samples

k-nearest Neighbor

k-nearest Neighbor (KNN)

- Step 1: choose a value for k
- Step 2: Take the k neighbors of the new data point according to Euclidean distance
- Step 3: Among these k neighbor data points, count the number of points in each category
- Step 4: Assign the new data points to the category where you counted the most neighbors

KNN on Our Example (1)

KNN on Our Example (2)

KNN on Our Example (2)

KNN on Our Example (3)

KNN on Our Example (4)

KNN on Our Example (5)

Computational Cost of KNN

- 1. Number of computations performed at training time: 0
- 2. For a naïve implementation, the number of computations performend at test time, per new point
 - Total points: n
 - Number of dimensions: d
 - Computing d-dimensional distance for n points: O(nd)
 - Sorting the distances: O(nlogn)
 - Thus an expensive test time algorithm
- 3. Also, all the data have to be stored in memory
- Efficiency can be increased using better data structures, such as k-d Trees, or Ball Trees

Impact of k

k = 1

[Image credit: "The Elements of Statistical Learning"]

k = 15

[Image credit: "The Elements of Statistical Learning"]

Impact of **k**

- Small k
 - Good at capturing fine-grained paterns
 - May overfit
- Large *k*
 - Makes stable prediction by averaging over a large number of neighbors
 - May underfit
- Balancing k
 - Optimal choice depend on the number of data points n
 - Rule of thumb: $k < \sqrt{n}$
 - Choose the optimal value using a validation set

Things to Remember about KNN (1)

- Do we learn a model?
 - NO!!
 - Our model is the entire training data (Storage issues)

Things to Remember about KNN (2)

Normalize data

Handle missing values

Things to Remember about KNN (3)

- Other names for KNN
 - Instance-Based Learning
 - Lazy Learning
 - Nonparametric Learning

Hyperparameters

Hyperparameters

- Hyperparameters
 - In ML, a hyperparameter is a parameter whose value is used to control the learning process
 - They are set (by the us) not learned like mode parameters
- Examples:
 - *k* in KNN
 - α in GD

Validation and Test Sets

- We can tune hyperparameters using the validation set
- But what is a validation set? Is it the same as test set?

To answer this, let's see how were we splitting our data so far

Validation and Test Sets (2)

• But when we have hyperparameters to tune, we split as follows

As we train model as follows

Validation and Test Sets (2)

- Solves the "Model Selection" problem
 - Selecting the optimal hyperparameters for a given machine learning model
- But there is another problem
 - Once we have chosen a model, how can we estimate its true error?
 - Yes, we are using an independent "test" set to estimate the true error, BUT
 - The true error is a model's error when tested on the ENTIRE POPULATION

K-fold Cross-Validation

$$E = \frac{1}{K} \sum_{i=1}^{K} E$$

Create K-fold partition of the dataset

K = 3

	Data		
	Fold 1	Fold 2	Fold 3
Exp: 1	Val	Train	Train
Exp: 2	Train	Val	Train
Exp: 3	Train	Tain	Val

Regularization

Recall

Goal of Machine Learning
$$f: x \to y$$

 So that we can use the learned function to make predictions on UNSEEN data

- For example, we can use it to predict the risk-scores of contracting COVID of NEW patients based on their clinical symptoms
- And, naturally, we would like to make accurate predictions

Test Error

Training Error

What can go wrong?

- Training Data
- Unseen Test Data

Why does it happen?

 It happens because when we are learning the function, we measure the success as

Success = Goodness of Fit

Smallest Training Error Largest Test Error Most Complex $y = w_o + w_1 x + w_2 x^2 + w_3 x^8$

This is where Regularization helps us

How does Regularization help?

- Improves the "test error" by compromising on the "training error"
- To achieve this, the most common approach is to change the way we measure success of learning as

Success = Goodness of Fit + Simplicity of the Model

Which is usually implemented as

Success = Goodness of Fit + λ Simplicity of the Model

where $\lambda \in [0, \infty)$

Mathematically

Success = Goodness of the Fit + λ Simplicity of the model

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\mathbf{w}^T.\mathbf{x}_i)^2$$

$$\sum_{i=1}^{p} w_j^2$$

L₂ Regularization

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \cdot \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{p} w_j^2$$

$$\lambda \geq 0$$
 is a tuning parameter

Ridge Regression

L₂ Regularization

- 1. If λ is at a "good" value, regularization helps to avoid overfitting
- 2. Choosing λ may be hard: cross-validation is often used
- 3. If there are irrelevant features in the input (i.e. features that do not affect the output), L_2 will give them small, but non-zero weights
- 4. Ideally, irrelevant input should have weights exactly equal to 0

L₁ Regularization

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \cdot \mathbf{x}_i)^2 + \lambda \sum_{i=1}^{p} |w_i|$$

$$\lambda \geq 0$$
 is a tuning parameter

Lasso Regression

L₁ Regularization

- Similar to L_2 , L_1 shrinks the coefficient estimates towards zero
- However, L_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large
- Hence, much like best subset selection, L_1 performs variable selection
- As a result, models are generally much easier to interpret
- We say that the L_1 yields sparse models

Recommended Research

- 1. What is curse of dimensionality and How does it affect KNN?
- 2. Why does L1 regularization give sparse models but L2 does not?

Summary

- Naïve Bayes
- KNN
- Cross-validation
- Regularization