Solução numérica de Equações Diferenciais Ordinárias: Métodos de Runge-Kutta

Marina Andretta/Franklina Toledo

ICMC-USP

31 de outubro de 2013

Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires; e Cálculo Numérico, de S. Arenales e A. Darezzo.

Considere o Problema de Valor Inicial bem-posto

$$y'(t) = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Dentre os métodos numéricos para resolver este tipo de problema, os mais utilizados por sua precisão e simplicidade são os Métodos de Runge-Kutta.

Estes métodos possuem a precisão dos Métodos de Taylor, mas não exigem que sejam calculadas derivadas de ordem superior.

O método geral de Runge-Kutta de R-estágios é definido por

$$\omega_{i+1} = \omega_i + h\phi_R(t_i, \omega_i, h),$$

com

$$\phi_R(t_i, \omega_i, h) = c_1 k_1 + c_2 k_2 + ... + c_R k_R,$$

$$c_1 + c_2 + \dots + c_R = 1.$$

As funções k_j são dadas por

$$k_1 = f(t_i, \omega_i),$$
 $k_2 = f(t_i + ha_2, \omega_i + h(b_{21}k_1)), \quad a_2 = b_{21},$ $k_3 = f(t_i + ha_3, \omega_i + h(b_{31}k_1 + b_{32}k_2)), \quad a_3 = b_{31} + b_{32},$

$$k_4 = f(t_i + ha_4, \omega_i + h(b_{41}k_1 + b_{42}k_2 + b_{43}k_3)), \quad a_4 = b_{41} + b_{42} + b_{43},$$

 $k_R = f(t_i + ha_R, \omega_i + h(b_{R1}k_1 + \dots + b_{R,R-1}k_{R-1})), \quad a_R = b_{R1} + \dots + b_{R,R-1}.$

Note que a aproximação ω_{i+1} é calculada a partir de ω_i e uma média de valores de f(t,y) em vários pontos.

Os valores de c_r , a_r e b_{rs} são escolhidos de modo que o Método de Runge-Kutta tenha a mesma ordem do erro de um Método de Taylor. Isso é o que define a ordem do Método de Runge-Kutta.

Note que o Método de Runge-Kutta de Primeira Ordem coincide com o Método de Euler e o Método de Taylor de Primeira Ordem.

Métodos de Runge-Kutta de Segunda Ordem

O Método de Runge-Kutta de 2-estágios é definido por

$$\omega_{i+1}=\omega_i+h(c_1k_1+c_2k_2),$$

com

$$c_1+c_2=1,$$

$$k_1=f(t_i,\omega_i),$$

$$k_2 = f(t_i + ha_2, \omega_i + h(a_2k_1)).$$

Métodos de Runge-Kutta de Segunda Ordem

Para determinar os valores de c_1 , c_2 e a_2 , podemos desenvolver a função k_2 pelo polinômio de Taylor, em torno do ponto (t_i, ω_i) até segunda ordem, de modo a expressar o método da seguinte forma

$$\omega_{i+1} = \omega_i + (...)h + (...)h^2 + O(h^3)$$

e, então, igualar os coeficientes de h e h^2 com os coeficientes deles no Método de Taylor de segunda ordem.

Métodos de Runge-Kutta de Segunda Ordem

Fazendo estas contas, obtemos o seguinte sistema não-linear

$$\begin{cases} c_1 + c_2 = 1, \\ c_2 a_2 = 0.5. \end{cases}$$

Este sistema possui infinitas soluções. Cada uma delas gera um Método de Runge-Kutta de Segunda Ordem diferente.

Métodos de Runge-Kutta de Segunda Ordem: Método do Ponto Médio

Tomando $c_1=0$, $c_2=1$ e $a_2=\frac{1}{2}$, temos o Método do Ponto Médio:

$$\omega_0 = \alpha$$
,

$$\omega_{i+1} = \omega_i + hf\left(t_i + \frac{h}{2}, \omega_i + \frac{h}{2}f(t_i, \omega_i)\right),$$

Métodos de Runge-Kutta de Segunda Ordem: Método de Euler Modificado

Tomando $c_1 = \frac{1}{2}$, $c_2 = \frac{1}{2}$ e $a_2 = 1$, temos o Método de Euler Modificado:

$$\omega_0 = \alpha$$
,

$$\omega_{i+1} = \omega_i + \frac{h}{2} \left[f(t_i, \omega_i) + f(t_{i+1}, \omega_i + hf(t_i, \omega_i)) \right],$$

Métodos de Runge-Kutta de Segunda Ordem: Método de Heun

Tomando $c_1 = \frac{1}{4}$, $c_2 = \frac{3}{4}$ e $a_2 = \frac{2}{3}$, temos o Método de Heun:

$$\omega_0 = \alpha$$
,

$$\omega_{i+1} = \omega_i + \frac{h}{4} \left[f(t_i, \omega_i) + 3f\left(t_i + \frac{2}{3}h, \omega_i + \frac{2}{3}hf(t_i, \omega_i)\right) \right],$$

Considere o seguinte Problema de Valor Inicial

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

Utilize os Métodos de Ponto Médio (PM), de Euler Modificado (EM) e de Heun (H), com ${\it N}=10$, para aproximar a solução deste problema.

Aplicando os métodos pedidos ao problema, obtemos os valores fornecidos na tabela a seguir:

ti	$y_i = y(t_i)$	ω_i (PM)	$ \omega_i - y_i $	ω_i (EM)	$ \omega_i - y_i $	ω_i (H)	$ \omega_i - y_i $
0.0	0.5000000	0.5000000	0.0000000	0.5000000	0.0000000	0.5000000	0.0000000
0.2	0.8292986	0.8280000	0.0012986	0.8260000	0.0032986	0.8273333	0.0019653
0.4	1.2140877	1.2113600	0.0027277	1.2069200	0.0071677	1.2098800	0.0042077
0.6	1.6489406	1.6446592	0.0042814	1.6372424	0.0116982	1.6421869	0.0067537
0.8	2.1272295	2.1212842	0.0059453	2.1102357	0.0169938	2.1176014	0.0096281
1.0	2.6408591	2.6331668	0.0076923	2.6176876	0.0231715	2.6280070	0.0128521
1.2	3.1799415	3.1704634	0.0094781	3.1495789	0.0303627	3.1635019	0.0164396
1.4	3.7324000	3.7211654	0.0112346	3.6936862	0.0387138	3.7120057	0.0203944
1.6	4.2834838	4.2706218	0.0128620	4.2350972	0.0483866	4.2587802	0.0247035
1.8	4.8151763	4.8009586	0.0142177	4.7556185	0.0595577	4.7858452	0.0293310
2.0	5.3054720	5.2903695	0.0151025	5.2330546	0.0724173	5.2712645	0.0342074

Método de Runge-Kutta de Quarta Ordem

Usando o mesmo procedimento usado para calcular os Métodos de Runge-Kutta de Segunda Ordem, podemos definir os parâmetros c_1 , c_2 , c_3 , c_4 , a_2 , a_3 , a_4 , b_{21} , b_{31} , b_{32} , b_{41} , b_{42} e b_{43} do Método Runge-Kutta de 4-estágios para definir um Método de Runge-Kutta de Quarta Ordem.

Fazendo estas contas, chegamos a um sistema não-linear com solução única, dada por

$$c_1 = \frac{1}{6}$$
, $c_2 = \frac{2}{6}$, $c_3 = \frac{2}{6}$, $c_4 = \frac{1}{6}$, $a_2 = b_{21} = \frac{1}{2}$, $a_3 = \frac{1}{2}$, $b_{31} = 0$, $b_{32} = \frac{1}{2}$,

Método de Runge-Kutta de Quarta Ordem

$$\omega_0 = \alpha,$$

$$\omega_{i+1} = \omega_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = hf(t_i, \omega_i),$$

$$k_2 = hf(t_i + \frac{h}{2}, \omega_i + \frac{1}{2}k_1),$$

$$k_3 = hf(t_i + \frac{h}{2}, \omega_i + \frac{1}{2}k_2),$$

$$k_4 = hf(t_{i+1}, \omega_i + k_3),$$

Considere o seguinte Problema de Valor Inicial

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

Utilize o Método de Runge-Kutta de Quarta Ordem, com ${\it N}=10$, para aproximar a solução deste problema.

Aplicando o Método de Runge-Kutta de Quarta Ordem, obtemos os valores fornecidos na tabela a seguir:

ti	$y_i = y(t_i)$	ω_i	$ \omega_i-y_i $
0.0	0.5000000	0.5000000	0.0000000
0.2	0.8292986	0.8292933	0.0000053
0.4	1.2140877	1.2140762	0.0000114
0.6	1.6489406	1.6489220	0.0000186
8.0	2.1272295	2.1272027	0.0000269
1.0	2.6408591	2.6408227	0.0000364
1.2	3.1799415	3.1798942	0.0000474
1.4	3.7324000	3.7323401	0.0000599
1.6	4.2834838	4.2834095	0.0000743
1.8	4.8151763	4.8150857	0.0000906
2.0	5.3054720	5.3053630	0.0001089

Exercício: Considere o seguinte problema de valor inicial

$$y' = e^{t-y}$$
, $0 \le t \le 1$, $y(0) = 1$.

- (a) Utilize os seguintes métodos de Runge-Kutta de segunda ordem: Ponto Médio (PM), Euler Modicado (EM) e de Heun (H), para aproximar uma solução deste problema, com h=0.5.
- (b) Sabendo que a solução exata desse problema é $y(t) = \ln(e^t + e 1)$, calcule o erro cometido em cada método.