Examen de Computabilidad y Complejidad

(CMC)

8 de septiembre de 1995

(I) CUESTIONES (justifique formalmente las respuestas)

1. ¿ Es la clase de los lenguajes recursivamente enumerables cerrada bajo cociente por la izquierda ?. Nota.- El cociente por la izquierda entre L_1 y L_2 se define como $L_1/L_2 = \{u \in \Sigma^* \mid \exists v \in L_2, uv \in L_1\}.$

(1.5 puntos)

2. ¿ Es incontextual el lenguaje $L\{baba^2ba^3b\cdots ba^{n-1}ba^nb\mid n\geq 1\}$?.

(1.5 puntos)

3. Sea la operación \mathcal{P} definida sobre cadenas como sigue:

$$\mathcal{P}(\lambda) = \lambda$$
, $\mathcal{P}(a) = a$ para todo $a \in \Sigma$, $\mathcal{P}(abx) = a\mathcal{P}(x)b$ para todo $a,b \in \Sigma$, $x \in \Sigma^*$. Se extiende la operación sobre lenguajes de la forma habitual. ¿ Es la clase de los lenguajes recursivamente enumerables cerrada bajo la operación \mathcal{P} ?. ¿ Y la clase de los lenguajes recursivos ?.

(2 puntos)

4. Sea la operación $\mathcal P$ definida sobre cadenas en el alfabeto $\{a,b\}$ como sigue: $\mathcal P(x) = xc^{|x|}$ para todo $x \in \{a,b\}^*$. Se extiende la operación sobre lenguajes de la forma habitual. ξ Es la clase de los lenguajes incontextuales cerrada bajo la operación $\mathcal P$?.

(1 punto)

(II) PROBLEMAS:

5. Dada la gramática G, obtener una gramática incontextual que genere $h(L(G))\sigma(L(G)^r)$, donde el homomorfismo h se define como h(a) = b y h(b) = aba y la sustitución σ se define como $\sigma(a) = L(G)$ y $\sigma(b) = \{\lambda\}$.

$$S \to SAa \mid BB \mid \lambda$$
 $A \to ABA \mid a$ $B \to a \mid b \mid aB$ (2 puntos)

6. Dada la gramática G, obtener una gramática en Forma Normal de Greibach que genere $L(G) - \{\lambda\}$.

(2 puntos)