PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
 C12Q 1/00, G01N 33/53, 33/567, A61K 39/395, 31/00, A01N 37/18

(11) International Publication Number:

WO 97/20063

(43) International Publication Date:

5 June 1997 (05.06.97)

(21) International Application Number:

PCT/US96/19172

A1

(22) International Filing Date:

27 November 1996 (27.11.96)

(81) Designated States: AU, CA, JP, MX, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, DM, DM, CR.

NL, PT, SE).

(30) Priority Data:

 Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

- (71) Applicants: THE TRUSTEES OF COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK [US/US]; West 116th
 Street and Broadway, New York, NY 10027 (US). BIOGEN, INCORPORATED [US/US]; 14 Cambridge Center,
 Cambridge, MA 02142 (US).
- (72) Inventors: YELLIN, Michael, J.; 2736 Independence Avenue, Riverdale, NY 10463 (US). LEDERMAN, Seth; Apartment 8C, 533 West 112th Street, New York, NY 10025 (US). CHESS, Leonard; 81 Green Acres Avenue, Scarsdale, NY 10538 (US). KARPUSAS, Mihail, N.; 175 Poplar Street #2, Roslindale, MA 02131 (US). THOMAS, David, W.; 9 Upland Road, Wellesley, MA 02181 (US).
- (74) Agent: WHITE, John, P.; Cooper & Dunham L.L.P., 1185 Avenue of the Americas, New York, NY 10036 (US).
- (54) Title: THEREAPEUTIC APPLICATIONS FOR THE ANTI-T-BAM (CD40-L) MONOCLONAL ANTIBODY 5c8
- (57) Abstract

Activation of cells bearing CD40 on their cell surface by CD40 ligand is inhibited by contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells. Activation of cells bearing CD40 on their surface by CD40 ligand in a subject is inhibited by administering to the subject an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells. Conditions dependent on CD40 ligand-induced activation of CD40-bearing cells are treated.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Amenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	МX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	1E	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
	Canada	KP	Democratic People's Republic	SD	Sudan
CA			of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SG	Singapore
CG	Congo	KZ	Kazakhstan	SI	Slovenia
CH	Switzerland	LI	Liechtenstein	SK	Slovakia
Cl	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Cameroon	LR	Liberia	SZ	Swaziland
CN	China	LT	Lithuania	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ.	Czech Republic		Latvia	TJ	Tajikistan
DE	Germany	LV	 :	TT	Trinidad and Tobago
DK	Denmark	MC	Monaco	UA	Ukraine
EE	Estonia	MD	Republic of Moldova	UG	Uganda
ES	Spain	MG	Madagascar	US	United States of America
F]	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon	MR	Mauritania	VN	A MCS LASTIN

THERAPEUTIC APPLICATIONS FOR THE ANTI-T-BAM (CD40-L) MONOCLONAL ANTIBODY 5c8

This application claims the priority of U.S. Serial No. 08/567,391, filed December 1, 1995, and U.S. Serial No. 08/566,258, filed December 1, 1995 and U.S. Serial No. 08/637,323, filed April 22, 1996 the contents of which are hereby incorporated by reference into the present application.

The invention disclosed herein was made with Government support under NIH Grant Nos. K08-AR-01904, R01-CA55713, R01-AI-28367, R01-AI-14969, HL21006, HL42833, HL50629, and R01-AI-14969 from the Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

Throughout this application, various references are referred to within parenthesis. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found in the text or at the end of this application, preceding the sequence listing and claims.

Background of the Invention

15

20

25

30

35

40

CD40 is a 50 kDa cell surface molecule originally described as being expressed on B cells and some epithelial carcinomas (1, 2). CD40 interacts with CD40L (T-BAM, gp39, TRAP), a 30 kDa cell surface molecule transiently expressed on activated CD4⁺ T cells (3-8). CD40L-CD40 interactions have been extensively studied in the context of T cell-B cell interactions. CD40 ligation plays key roles in B cell activation, proliferation, differentiation, Ig production and rescue from apoptotic signals (9-11). The critical in vivo role of CD40 ligation in B cell differentiation is highlighted by the hyper-IgM syndrome, a humoral immunodeficiency due to

mutations in the gene encoding CD40L (12-16). Murine CD40 (17) or CD40L (18) "knockouts" have similar phenotypes to patients with the hyper-IgM syndrome.

Interestingly, recent studies indicate that 5 expression has a broader cellular distribution than originally described. CD40 has been shown to be expressed on monocytes (19), dendritic cells (22), epithelium (23, 21), basophils (24), and Hodgkin's tumor Moreover, various cytokines can regulate cells (25). 10 CD40 expression on non-B cells. CD40 expression on thymic epithelial cells is upregulated by $IL-1\alpha$, $TNF-\alpha$ or INF-y, in addition to IL-3 or GM-CSF, $INF-\vee$ (21). similarly upregulates CD40 expression on monocytes (19). Ligation of CD40 in the presence of INF- γ and IL-1 α 15 stimulates GM-CSF production by thymic epithelial cells (21). In addition, CD40L expressing transfectants induce tumoricidal activity by monocytes and, in the presence of INF-Y, GM-CSF or IL-3, stimulate monocytes to secrete TNF- α , IL-6 or IL-8 (19). 20

CD40 is also expressed on cells found within synovial membrane (SM) in patients afflicted with rheumatoid arthritis (RA). An immunohistological survey of cell surface molecules expressed in RA SM found that CD40 was expressed on a variety of cell types, including cells with fibroblast-like morphology (26). In this report it is shown by FACS analysis that CD40 is expressed on cultured synovial membrane (SM) fibroblasts isolated from patients with RA, non-RA inflammatory arthritis (IA) or osteoarthritis (OA). In addition, dermal fibroblasts isolated from normal donors also express CD40. Moreover, CD40 ligation by CD40L cells induces fibroblast activation and proliferation.

25

30

35

Endothelial cells express surface molecules, such as CD54 (ICAM-1), CD62E (E-selectin) and CD106 (VCAM-1), that

-3-

mediate adhesive interactions with leukocytes (27-35). The expression of endothelial cell surface adhesion molecules orchestrates recruitment of leukocytes to sites of inflammation and therefore is subject to tight regulation (27, 28). Resting endothelial cells express low levels of CD54 and minimal or no CD62E or CD106. Following activation with IL-1, TNFα, or LPS, endothelial cells rapidly upregulate CD54, CD62E and CD106 expression (27, 28). CD4* T cells may contribute to upregulation of endothelial cell surface adhesion molecules by inducing endothelial cells or other target cells to secrete IL-1 or TNFα (36). However, the molecular details involved in CD4* T cell-endothelial cell interactions that induce endothelial cell activation have not been completely delineated.

5

10

15

It can now be reported that normal human endothelial also express CD40 in situ and CD40L-CD40 interactions induce endothelial cell activation in vitro. 20 Frozen sections from normal spleen, thyroid, muscle, kidney, lung or umbilical cord were studied for CD40 expression by immunohistochemistry. Endothelial cells from all tissues studied express CD40 in situ. Moreover, human umbilical vein endothelial cells (HUVEC) express CD40 in vitro and rIFN-y induces HUVEC CD40 25 upregulation. CD40 expression on HUVEC is functionally significant because CD40L* Jurkat T cells upregulate HUVEC CD54 (ICAM-1), CD62E (E-selectin) and CD106 (VCAM-1) expression in vitro in a manner inhibited by anti-CD40L mAb 5C8. Additionally, CD40L expressing 293 kidney cell 30 transfectants, but not control transfectants, upregulate CD54, CD62E and CD106 expression on HUVEC. These results demonstrate that CD40L-CD40 interactions induce endothelial cell activation in vitro. It is shown for the first time that CD40L expressed on the surface of 35 T cells induces activation of CD40+ endothelial cells and that this activation is inhibited by an anti-CD40L

-4-

monoclonal antibody. Moreover, these results demonstrate a mechanism by which activated CD4⁺ T cells augment inflammatory responses <u>in vivo</u> by upregulating the expression of endothelial cell surface adhesion molecules.

5

-5-

Summary of the Invention

This invention provides a method of inhibiting activation by CD40 ligand of cells bearing CD40 on the cell surface, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells.

10

15

This invention provides a method of inhibiting activation by CD40 ligand of cells bearing CD40 on the cell surface, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells in the subject.

Description of the Figures

Figure 1. CD40 expression on SM fibroblasts. Shown are FACS analyses of CD40, CD14, CD45 or MHC Class II expression, as indicated, on representative RA or OA SM adherent cells following the first passage in vitro. The X-axis represents mean fluorescence intensity (MFI) and the Y-axis represents cell number. For RA cells, the MFI of CD40 expression or isotype control mAb was 21 and 9, respectively. For OA cells, the MFI of CD40 expression or isotype control mAb was 33 and 9, respectively.

expression on resting or rINF-v CD40 Figure 2. stimulated dermal fibroblasts. Shown are FACS analyses 15 of CD40, CD54 or control mAb staining, as indicated, on The cells were cultured in 3 dermal fibroblast lines. the presence or absence of rINF-y (1000 U/ml) for 24 SK.1 and SK.2 were studied following the second passage and CCD 965 SK was studied following the third 20 The X-axis represents mean passage in culture. fluorescence intensity (MFI) and the Y-axis represents cell number. The number in the upper right hand corner of each graph indicates CD40 MFI (background subtracted).

25

5

10

Figure 3. Cytokine regulation of SM fibroblast CD40 expression. Shown is a bar graph representing CD40 mean fluorescence intensity (MFI) on a SM fibroblast line (OA.3) following co-culture with rINF- γ (1000 U/ml), rIL-1 α (10 pg/ml), rTNF- α (200 U/ml) or combinations of cytokines, as indicated. CD40 expression was determined by FACS analysis and background staining with a control mAb is subtracted for each value. The experiment shown is representative of 3 similar experiments performed.

35

30

Figure 4. Effect of CD40L-CD40 interactions on SM fibroblast CD54 (ICAM-1) expression. Shown are two-color

WO 97/20063

10

contour graphs demonstrating CD13 expression (X-axis) or CD54 expression (Y-axis) on IA.1 SM fibroblasts cultured 24 hours with media, rINF-Y (1000 U/ml), CD40L Jurkat B2.7 cells or CD40L Jurkat D1.1 cells in the presence or absence of anti-CD40L mAb 5C8 or control mAb P1.17. The number in the upper right hand corner of each graph represents CD54 mean fluorescence intensity (MFI). The background MFI of an isotype control mAb is subtracted from each value. The experiment shown is representative of 3 similar experiments performed.

Figure 5. Transfection of CD40L confers the capacity to upregulate SM fibroblast CD54 (ICAM-1) and CD106 (VCAM-1) expression. Shown are bar graphs indicating CD54 or CD106 MFI on SM fibroblasts following culture for 24 hours with media, CD40L* D1.1 cells, CD40L B2.7 cells or CD40L* B2.7 transfectants, as indicated. CD54 and CD106 expression were determined by two-color FACS analysis as in figure 4. The background MFI of an isotype control mAb is subtracted from each value. The experiment shown is representative of 2 similar experiments performed.

Figure 6A. Effect of CD40L-CD40 interactions on fibroblast IL-6 secretion. Shown are bar graphs indicating ³H-thymidine incorporation by the IL-6 25 indicator cell line B9 following the additions of supernatants (final dilution 1:60) from SM fibroblasts cultured with media alone, CD40L* D1.1 cells in the presence or absence of anti-CD40L mAb 5C8 or control 30 mAb P1.17, CD40L B2.7 cells or CD40L B2.7 transfectants. The proliferative responses of B9 cells cultured with control supernatants from D1.1 cells, B2.7 cells or CD40L* B2.7 transfectants were 1136 cpm (± 113), 2398 cpm (\pm 263) and 1131 cpm (\pm 56). 35 results were obtained with 3 additional SM fibroblast lines.

PCT/US96/19172 WO 97/20063

-8-

Figure 6B. B9 proliferation in response to rIL-6. a parallel experiment to that shown in figure 6A, B9 cells were cultured with varying concentrations of rIL-6.

5

Figure 7. Effect of CD40 ligation on SM fibroblast proliferation. Shown are bar graphs from 2 separate experiments demonstrating SM fibroblast ³H-thymidine incorporation following coculture in 1% FM with mitomycin-C treated CD40L Jurkat B2.7 cells or CD40L* 10 Jurkat B2.7 transfectants for 48 hours. Where indicated, CD40L* Jurkat B2.7 transfectants were pretreated with anti-CD40L mAb 5C8 (5 μ g/ml) or P1.17 control mAb (5 μ g/ml) prior to the addition to fibroblasts. In the experiment studying RA.5 proliferation, the proliferation of CD40L Jurkat B2.7 15 cells or CD40L* Jurkat B2.7 transfectants was 51 ± 7 cpm and 39 ± 3 cpm, respectively. In the experiment studying OA.6 proliferation, the proliferation of CD40L Jurkat B2.7 cells or CD40L* Jurkat B2.7 transfectants 20 was 243 \pm 5 cpm and 453 \pm 95 cpm, respectively. Background proliferation is subtracted in coculture experiments. Also shown are the proliferative responses of fibroblasts following culture in 1% FM or Similar results were obtained in 3 additional 10% FM. 25 experiments. Error bars show observed error.

Figure 8. Effect of rINF-y on CD40L mediated SM Shown are bar graphs fibroblast proliferation. demonstrating SM fibroblast ³H-thymidine incorporation following coculture in 1% FM with mitomycin-C treated 30 CD40L Jurkat B2.7 cells or CD40L Jurkat B2.7 transfectants for 48 hours. Where indicated, SM fibroblasts were pretreated for 18 hours with rINF- γ (1000 U/ml) prior to the addition of mitomycin-C treated CD40L B2.7 cells or CD40L B2.7 transfectants. 35 SM fibroblast proliferation was determined as outlined

-9-

in Materials and Methods for First Series of
Experiments. Background proliferation of CD40L Jurkat
B2.7 cells and CD40L Jurkat B2.7 transfectants was 185
± 66 cpm and 65 ± 5 cpm, respectively. Background
proliferation is subtracted in coculture experiments.
Also shown are the proliferative responses of
fibroblasts following culture in 1% FM or 10% FM.
Similar results were obtained in 2 additional
experiments. Error bars show observed error.

10

15

20

5

Figures 9A-D. Endothelial cells in skin express CD40 \underline{in} \underline{situ} . Shown are immunohistologic studies of frozen sections demonstrating the expression of: (a) CD40, skin (magnification 40x), (b) CD34, skin (magnification 40x), (c) CD21, skin (magnification 40x) and (d) control mouse IgG, skin (magnification 40x).

Figures 10A-D. Endothelial cells in muscle express CD40 in situ. Shown are immunohistologic studies of frozen sections demonstrating the expression of:(a) CD40, muscle (magnification 40x), (b) CD34, muscle (magnification 40x) and (d) control mouse IgG, muscle (magnification 40x).

Figure 11. Endothelial cells in spleen express CD40 <u>in situ</u>. Shown are immunohistologic studies of frozen sections demonstrating the expression of:(a) CD40, spleen (magnification 10x) and (b) control mouse IgG, spleen (magnification 10x).

30

35

Figure 12. Expression of CD40 on HUVEC cells <u>in vitro</u>. Shown are overlapping FACS analysis of CD14, CD40, CD45 or isotype control expression on HUVEC following the first passage. The mean fluorescence intensity of CD14, CD40, CD45 or isotype control expression is 7, 24, 5 and 9, respectively. Shown is representative of CD40 expression on HUVEC isolated from 15 umbilical cords.

Figure 13. Effect of CD40L-CD40 interactions on HUVEC CD54 (ICAM-1) expression. Shown are two-color contour graphs demonstrating the effects on HUVEC CD54 expression following culture with media, CD40L* Jurkat D1.1 cells or 5 CD40L Jurkat B2.7 cells for 6 hours. Where indicated, CD40L* D1.1 cells were pretreated with anti-CD40L mAb 5C8 or isotype control mAb P1.17. The X-axis demonstrates expression and the Y-axis demonstrates CD54 CD13 expression. The numbers in the upper right hand corner 10 of each graph indicates percentage of CD13 cells expressing CD54 (background staining of control mAb is subtracted for each value). Shown is representative of 3 similar experiments with different HUVEC lines.

15

- Figure 14. Effect of CD40L-CD40 interactions on HUVEC CD54 (ICAM-1), CD62E (E-selectin) and CD106 (VCAM-1) Shown are bar graphs representing the expression. percentage of HUVEC expressing CD54, CD62E or CD106 following culture for 6 hours with media, rIL-l α , CD40L * 20 Jurkat D1.1 cells or CD40L Jurkat B2.7 cells. indicated, CD40L* D1.1 cells were pretreated with anti-CD40L mAb 5C8 or isotype control mAb P1.17. HUVEC CD54, CD62E and CD106 expression was determined by two-color FACS analysis as shown in figure 3. Background staining 25 of control mAb is subtracted for each value. representative of 3 similar experiments with different HUVEC lines.
- Figure 15. Effect of CD40L expressing 293 kidney cell 30 transfectants on HUVEC CD54, CD62E and CD106 expression. Shown are two-color contour graphs demonstrating the effects on HUVEC CD54, CD62E and CD106 expression following culture with media, CD40L* Jurkat D1.1 cells, CD8 293 kidney cell transfectants or 35 CD40L 293 kidney cell transfectants for 6 hours. X-axis demonstrates UEA-1 expression and the Y-axis

-11-

demonstrates CD54 (left panel), CD106 (middle panel) or CD62E (right panel) expression. The numbers in the upper right hand corner of each graph indicates the percentage of UEA-1* cells expressing CD54, CD106 or CD62E, as indicated (background staining of control mAb is subtracted for each value). Shown is representative of 3 similar experiments with different HUVEC lines.

Figure 16A. Kinetic analysis of CD40L induced HUVEC CD54, CD62E and CD106 upregulation. Shown are the percentage of HUVEC expressing CD54, CD62E, or CD106 following culture with CD40L* Jurkat D1.1 cells for 6 or 24 hours. The percentage of HUVEC expressing CD54, CD62E or CD106 was determined by two-color FACS analysis (background staining of control mAb is subtracted for each value). Shown is representative of 3 similar experiments with different HUVEC lines.

Figure 16B. Same as figure 16A except that HUVEC were cultured with CD40L - Jurkat B2.7 cells.

25

Figures 17A-Y: Atomic coordinates of crystal structure of soluble extracellular fragment of human CD40L containing residues Gly116-Leu261 (in Brookhaven Protein Data Bank format). (SEQ ID NO:1).

WO 97/20063

-12-

PCT/US96/19172

Detailed Description

10

35

This invention provides a method of inhibiting activation by CD40 ligand of cells bearing CD40 on the cell surface, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells. In one embodiment, the cells bearing CD40 on the cell surface are cells other than B cells. In another embodiment, they are plasma cells, including differentiated plasma cells such as myeloma cells.

This method may be used to inhibit activation of CD40bearing cells either in vivo or ex vivo. "Interaction 15 between CD40 ligand and CD40 on the cells" refers to one or more aspects, functional or structural, of a CD40-CD40 ligand interrelationship. Therefore, in one embodiment, an agent which inhibits interaction may competitively bind to CD40 ligand in such a way to block or diminish 20 the binding of CD40 ligand to cellular CD40. In another embodiment an agent which inhibits interaction may associate with CD40 or CD40 ligand in a manner which does not inhibit binding of CD40 ligand to cellular CD40, but which influences the cellular response to the CD40 25 ligation, such as by altering the turnover rate of the cellular CD40 or the CD40-agent complex, by altering binding kinetics of CD40 with CD40 ligand, or by altering the rate or extent of cellular activation in response to CD40 ligation. 30

In specific embodiments of this invention, the non-B cell, CD40-bearing cells are fibroblasts, endothelial cells, epithelial cells, T cells, basophils, macrophages, Reed-Steinberg cells, or dendritic cells. In a more specific embodiment the epithelial cells are keratinocytes. In another embodiment, the macrophages

are foam cells (lipid-laden macrophages). Foam cells play a role in autoimmune diseases, for example rheumatoid arthritis and atherosclerosis.

5 In an embodiment of this invention the agent inhibits binding of CD40 ligand to CD40 on the cells.

10

15

20

25

30

35

In an embodiment of this method, the agent is a protein. In a more specific embodiment, the protein comprises an antibody or portion thereof, for example a Fab, F(ab'), complementarity determining region (CDR) light and/or heavy chain, antibody variable region light and/or heavy chain, or a portion thereof capable of specifically binding to CD40 ligand or CD40 ligand cell-surface receptor. The antibody can be a monoclonal or polyclonal In embodiments of this invention, antibody. monoclonal antibody is a chimeric antibody, a humanized or a primatized antibody. In embodiment the portion of the antibody comprises a single chain antibody. A single chain antibody is made up of variable regions linked by protein spacers in a single protein chain.

In an embodiment of the above-described method, the agent specifically binds to the antigen to which monoclonal antibody 5c8 specifically binds. In a specific embodiment, the agent is monoclonal antibody 5c8.

Monoclonal antibody 5c8 is produced by a hybridoma cell which was deposited on November 14, 1991 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. The hybridoma was accorded ATCC Accession Number HB 10916.

In another embodiment, the antibody specifically binds to CD40. One example of an anti-CD40 antibody is the monoclonal mouse anti-human CD40, available from Genzyme Customer Service (Product 80-3702-01, Cambridge, MA). In other embodiments the monoclonal antibody is a chimeric antibody, a primatized antibody, a humanized antibody, or an antibody which includes a CDR region from a first human and an antibody scaffold from a second human.

In one embodiment of this invention the protein is soluble, monomeric CD40-L protein, comprising all or part of the extracellular region of CD40-L, or variant thereof. The extracellular region of CD40-L contains the domain that binds to CD40. Thus, soluble CD40-L can inhibit the interaction between CD40L and the CD40-bearing cell. This invention contemplates that sCD40-L may constitute the entire extracellular region of CD40-L, or a fragment or derivative containing the domain that binds to CD40.

20

25

30

5

The meaning of "chimeric", "primatized" and "humanized" antibody and methods of producing them are well known to those of skill in the art. See, for example, PCT International Publication No. WO 90/07861, published July 26, 1990 (Queen, et al.); and Queen, et al. Proc. Nat'l Acad. Sci.-USA (1989) 86: 10029). Methods of making primatized antibodies are disclosed, for example, in PCT International publication No. WO/02108, corresponding to International Application No. PCT/US92/06194 (Idec Pharmaceuticals); and in Newman, et al., Biotechnology (1992) 10:1455-1460, which are hereby incorporated by reference into this application.

Generally, a humanized antibody is an antibody comprising one or more complementarity determining regions (CDRs) of a non-human antibody functionally joined to human framework region segments. Additional residues

-15-

associated with the non-human antibody can optionally be Typically, at least one heavy chain or one present. light chain comprises non-human CDRs. Typically, the non-human CDRs are mouse CDRs. Generally, a primatized antibody comprising one or is an antibody 5 complementarity determining regions (CDRs) of an antibody of a species other than a non-human primate, functionally joined to framework region segments of a non-human primate. Additional residues associated with the species from which the CDR is derived can optionally be present. 10 Typically, at least one heavy chain or one light chain comprises CDRs of the species which is not a nonhuman primate. Typically, the CDRs are human CDRs. Generally, a chimeric antibody is an antibody whose light and/or heavy chains contain regions from different species. 15 example one or more variable (V) region segments of one species may be joined to one or more constant (C) region Typically, a chimeric segments of another species. antibody contains variable region segments of a mouse joined to human constant region segments, although other 20 mammalian species may be used.

In another embodiment of this invention, the protein is soluble CD40 protein (sCD40), comprising the extracellular region of CD40, or portion thereof, or variant thereof. sCD40 inhibits the interaction between CD40L and CD40-bearing cells. sCD40 may be in monomeric or oligomeric form.

25

Variants can differ from naturally occurring CD40 or CD40 ligand in amino acid sequence or in ways that do not involve sequence, or both. Variants in amino acid sequence are produced when one or more amino acids in naturally occurring CD40 or CD40 ligand is substituted with a different natural amino acid, an amino acid derivative or non-native amino acid. Particularly preferred variants include naturally occurring CD40 or

ligand, or biologically active fragments naturally occurring CD40 or CD40 ligand, whose sequences differ from the wild type sequence by one or more conservative amino acid substitutions, which typically have minimal influence on the secondary structure and hydrophobic nature of the protein or peptide. may also have sequences which differ by one or more nonconservative amino acid substitutions, deletions or insertions which do not abolish the CD40 or CD40 ligand Conservative substitutions activity. biological (substituents) typically include the substitution of one amino acid for another with similar characteristics such as substitutions within the following groups: valine, glycine; glycine, alanine; valine, isoleucine; aspartic acid, glutamic acid; asparagine, glutamine; threonine; lysine, arginine; and phenylalanine, tyrosine. The non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

25

30

20

5

10

15

Other conservative substitutions can be taken from Table 4, and yet others are described by Dayhoff in the Atlas of Protein Sequence and Structure (1988).

Table 4: Conservative Amino Acid Replacements

For Amino Acid	Code	Replace with any of
Alanine	Α	D-Ala, Gly,beta-ALa, L-Cys,D-
		Cys
Arginine	R	D-Arg, Lys, homo-Arg, D-homo-
		Arg, Met,D-Met, Ile, D-Ile,
		orn, D-Orn

Asparagine	N	D-Asn, Asp, D-Asp, Glu, D-Glu, Gln, D-Gln
	+	
Aspartic Acid	D	D-Asp,D-Asn,Asn, Glu,D-Glu,
	<u> </u>	Gln, D-Gln
Cysteine	c	D-Cys, S-Me-Cys, Met, D-Met, Thr,
		D-Thr
Glutamine	Q	D-Gln, Asn, D-Asn, Glu, D-Glu, Asp
		D-Asp
Glutamic Acid	E	D-Glu, D-Asp, Asp, Asn, D-Asn,
		Gln, D-Gln
Glycine	G	Ala, D-Ala, Pro, D-Pro, Beta-
-		Ala, Acp
Isoleucine	I	D-Ile, Val, D-Val, Leu, D-Leu,
		Met, D-Met
Leucine	L	D-Leu, Val, D-Val, Met, D-Met
	+	
Lysine	K	D-Lys, Arg, D-Arg, homo-Arg, D-
	İ	homo-Arg, Met, D-Met, Ile, D-
	<u> </u>	Ile, Orn, D-Orn
Methionine	M	D-Met, S-Me-Cys, Ile, D-Ile,
	ļ	Leu, D-Leu, Val, D-Val, Norleu
Phenylalanine	F	D-Phe, Tyr, D-Thr, L-Dopa, His, D-
		His, Trp, D-Trp, Trans 3,4 or
		5-phenylproline, cis 3,4 or 5
		phenylproline
Proline	P	D-Pro, L-I-thioazolidine-4-
		carboxylic acid, D- or L-1-
		oxazolidine-4-carboxylic acid
Serine	S	D-Ser, Thr, D-Thr, allo-Thr,
		Met, D-Met, Met(O), D-Met(O),
		Val, D-Val
Threonine	Т	D-Thr, Ser, D-Ser, allo-Thr,
		Met, D-Met, Met(O) D-Met(O),
		Val, D-Val
Tyrosine	Y	D-Tyr, Phe, D-Phe, L-Dopa,
	_	His,D-His

10

5

-18-

Valine	V	D-Val, Leu, D-Leu, Ile, D-Ile,
		Met, D-Met

Other variants within the invention are those with modifications which increase peptide stability. Such variants may contain, for example, one or more non-peptide bonds (which replace the peptide bonds) in the peptide sequence. Also included are: variants that include residues other than naturally occurring L-amino acids, such as D-amino acids or non-naturally occurring or synthetic amino acids such as beta or gamma amino acids and cyclic variants. Incorporation of D- instead of L-amino acids into the polypeptide may increase its resistance to proteases. See, e.g., U.S. Patent 5,219,990.

15

20

25

30

35

10

5

The peptides of this invention may also be modified by various changes such as insertions, deletions and substitutions, either conservative or nonconservative where such changes might provide for certain advantages in their use.

embodiments, variants with amino acid In substitutions which are less conservative may also result in desired derivatives, e.g., by causing changes in charge, conformation and other biological properties. substitutions would include for substitution of hydrophilic residue for a hydrophobic residue, substitution of a cysteine or proline for another residue, substitution of a residue having a small side chain for a residue having a bulky side chain or substitution of a residue having a net positive charge for a residue having a net negative charge. When the result of a given substitution cannot be predicted with certainty, the derivatives may be readily assayed according to the methods disclosed herein to determine the presence or absence of the desired characteristics.

-19-

Variants within the scope of the invention include proteins and peptides with amino acid sequences having at least eighty percent homology with the extracellular region of CD40 or the extracellular region of CD40 ligand. More preferably the sequence homology is at least ninety percent, or at least ninety-five percent.

Just as it is possible to replace substituents of the scaffold, it is also possible to substitute functional groups which decorate the scaffold with characterized by similar features. These substitutions will initially be conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. Nonsequence modifications may include, for example, in vivo or in vitro chemical derivatization of portions of naturally occurring CD40 or CD40 ligand, as well as changes in acetylation, methylation, phosphorylation, carboxylation or glycosylation.

20

25

30

35

5

10

15

In a further embodiment the protein, including the extracellular region of CD40 ligand and CD40, is modified by chemical modifications in which activity is preserved. For example, the proteins may be amidated, sulfated, singly or multiply halogenated, alkylated, carboxylated, or phosphorylated. The protein may also be singly or multiply acylated, such as with an acetyl group, with a farnesyl moiety, or with a fatty acid, which may be saturated, monounsaturated or polyunsaturated. The fatty acid may also be singly or multiply fluorinated. invention also includes methionine analogs the protein, for example the methionine sulfone and The invention methionine sulfoxide analogs. includes salts of the proteins, such as ammonium salts, including alkyl or aryl ammonium salts, sulfate, hydrogen phosphate, hydrogen phosphate, dihydrogen phosphate, thiosulfate, carbonate, bicarbonate, benzoate,

sulfonate, thiosulfonate, mesylate, ethyl sulfonate and benzensulfonate salts.

The soluble, monomeric CD40-L protein can comprise all or part of the extracellular region of CD40-L. The extracellular region of CD40-L contains the domain that binds to CD40. Thus, soluble CD40-L can inhibit the interaction between CD40L and the CD40-bearing cell. This invention contemplates that sCD40-L may constitute the entire extracellular region of CD40-L, or a fragment or derivative containing the domain that binds to CD40.

5

10

15

20

25

30

In another embodiment of this invention the protein comprising soluble extracellular region of CD40 or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof. In a specific embodiment the Fc region is capable of binding to protein A or protein G. In another embodiment the Fc region comprises IgG, IgG1, IgG2, IgG3, IgG4, IgA, IgA1, IgA2, IgM, IgD, or IgE.

In another embodiment of this invention, the sCD40 comprises CD40/Fc fusion protein. The fusion protein can be prepared using conventional techniques of enzymes cutting and ligation of fragments from desired sequences. Suitable Fc regions for the fusion protein are Fc regions that can bind to protein A or protein G, or that are capable of recognition by an antibody that can be used in purification or detection of a fusion protein comprising the Fc region. For example, the Fc region may include the Fc region of human IgG, or murine IgG_1 . This invention also provides a nucleic acid molecule which encodes the CD40/Fc fusion protein.

The method of creating soluble forms of membrane molecules by recombinant means, in which sequences encoding the transmembrane and cytoplasmic domains are

-21-

deleted, is well known. See generally Hammonds et al., U.S. Patent No. 5,057,417. In addition, methods of preparing sCD40 and CD40/Fc fusion protein are well-known. See, e.g., PCT International Publication No. Wo 93/08207; Fanslow et al., "Soluble Forms of CD40 Inhibit Biologic Responses of Human B Cells, "J. Immunol., vol. 149, pp.655-60 (July 1992).

In an embodiment of this invention, the agent is a small molecule. As used herein a small molecule is a compound having a molecular weight between 20 Da and 1x10⁶ Da, preferably from 50 Da to 2 kDa.

In an embodiment of this invention, the agent is selected by a screening method.

20

25

30

35

In a specific embodiment the small molecule or other agent is selected by a screening method which comprises, isolating a cell sample, for example a sample of a biological fluid (e.g., blood) from an animal; culturing the sample under conditions permitting activation of CD40-bearing cells contained therein; contacting the sample with an amount of cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, effective to activate the CD40-bearing cells; contacting the sample with an amount of a small molecule (or other pharmaceutical compound or agent) effective to inhibit activation of the CD40-bearing cells if the small molecule is capable of inhibiting activation of the CD40-bearing cells; and determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, or with the protein which is specifically

recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916 activate the CD40-bearing cells in the presence of the small molecule (or other pharmaceutical compound or agent). The cell sample may be isolated from diverse tissues, including cell lines in culture or cells isolated from an animal, such as dispersed cells from a solid tissue, cells derived from a bone marrow biopsy, or cells isolated from a body fluid such as blood or lymphatic fluid.

10

15

20

25

30

35

5

In another specific embodiment the agent (molecule) is selected based on a three-dimensional structure of soluble extracellular region of CD40 ligand or portion thereof capable of inhibiting interaction between CD40 ligand and CD40 on the cells. The agent may be selected from a library of known agents, modified from a known agent based on the three-dimensional structure, or designed and synthesized de novo based on the threedimensional structure. In specific embodiments the agent (molecule) is designed by structure optimization of a lead inhibitory agent based on a three-dimensional structure of a complex of the soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitory agent. A lead inhibitory agent is a molecule which has been identified which, when it is contacted with CD40 ligand or portion thereof, binds to and complexes with the soluble extracellular region of CD40 ligand, CD40, or portion thereof, thereby decreasing the ability of the complexed or bound CD40 ligand or CD40 ligand portion to activate CD40-bearing cells. another embodiment, a lead inhibitory agent may act by interacting with either the extracellular region of CD40 ligand, CD40, or in a tertiary complex with both a portion of CD40 ligand and CD40, decreasing the ability of the complexed CD40 ligand-CD40 to activate the CD40bearing cells. In the methods of the invention, the CD40 ligand may be either soluble or bound to cells such as

-23-

activated T cells, and may be either full length native CD40 ligand or portions thereof. Decreased ability to activate CD40-bearing cells may be measured in different ways. One way it may be measured is by showing that CD40 ligand, in the presence of inhibitor, causes a lesser degree of activation of CD40-bearing cells, as compared to treatment of the cells with a similar amount of CD40 ligand without inhibitor under similar conditions. Decreased ability to activate CD40-bearing cells may also be indicated by a higher concentration of inhibitor-CD40 ligand complex being required to produce a similar degree of activation of CD40-bearing cells under similar conditions, as compared to unbound CD40 ligand. At the extreme, the inhibitor-contacted CD40 ligand may be unable to activate CD40-bearing cells at concentrations and under conditions which allow activation of these cells by unbound CD40 ligand or a given portion thereof.

5

10

15

The agent (small molecule) can be selected by a computational screening method using the crystal structure of a soluble fragment of the extracellular domain of human CD40L containing residues Gly116-Leu261 (sCD40L(116-261)).

The crystal structure to be used with the screening 25 method can be determined at 2 Å resolution by the method of molecular replacement. In brief, a soluble fragment of the extracellular domain of human CD40 containing amino acid residues Gly 116 to the C-terminal 30 residue Leu 261 are first produced in soluble form, then purified and crystallized. The crystals can be tested for diffraction capacity on the X-ray beam of an Elliot GX-13 generator. Molecular replacement and refinement can be done with the XPLOR program package and OUANTA 35 (Molecular Simulations, Inc.) Software. In particular, a 3-dimensional model of human sCD40L can be constructed using the murine CD40L model using QUANTA protein

homology modeling software. This model can then be used as a probe for molecular replacement calculations and refined using XPLOR. This method of determining the crystal structure of sCD40L is described in more detail in Karpusas et al., "2 Å crystal structure of an extracellular fragment of human CD40 ligand," Structure (October 1995) 3(10):1031-1039. The atomic coordinates of sCD40L(116-261) are provided in Figures 17A-Y. method for selecting an agent includes screening iterative structure drug design and computational optimization, as described below.

5

10

The agent may be a small molecule inhibitor selected using computational drug design. Using this method, the sCD40L crystal structure coordinates are used as an input 15 for a computer program, such as DOCK, which outputs a list of small molecule structures that are expected to bind to CD40L. Use of such computer programs are well-See, e.g., Kuntz, "Structure-Based Strategies for drug design and discovery," Science, vol. 257, p. 1078 20 The list of small molecule structures can then be screened by biochemical assays for CD40L binding. Competition-type biochemical assays, which are well See, e.g., Bajorath et al., known, can be used. "Identification of residues of CD40 and its ligand which 25 critical for the receptor-ligand interaction," Biochemistry, 34, p. 1833 (1995). The structures that are found to bind to CD40L can thus be used as agents for the present invention. The agent may also be a modified small molecule, determined by interactive cycles of 30 structure optimization. Using this approach, a small molecule inhibitor of CD40L found using the above computational approach or other approach can be cocrystallized with sCD40L and the crystal structure of the complex solved by molecular replacement. The information 35 revealed through molecular replacement can be used to optimize the structure of the small molecule inhibitors

-25-

by clarifying how the molecules interact with CD40L. The molecule be modified may to improve physiochemical properties, including specificity and affinity for CD40L.

5

In an embodiment of this invention the agent specifically binds to CD40 on the cell surface. In a specific embodiment the agent is a protein, for example antibody or the extracellular region of CD40 ligand. antibody may be a polyclonal or monoclonal antibody. is preferred that the monoclonal antibody be chimeric or humanized. It may also be primatized.

In Vivo Use

15

20

25

30

10

This invention provides a method of inhibiting activation by CD40 ligand of cells bearing CD40 on the cell surface, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells in the subject. embodiment, the cells bearing CD40 on the cell surface are cells other than B cells. In another embodiment, they are plasma cells, including differentiated plasma cells such as myeloma cells.

In specific embodiments of this invention, the non-B cell, CD40-bearing cells are fibroblasts, endothelial cells, epithelial cells, T cells, basophils, macrophages, Reed-Steinberg cells, or dendritic cells. In a more specific embodiment the epithelial cells keratinocytes. In another embodiment, the macrophages are foam cells (lipid-laden macrophages). Foam cells a role in autoimmune diseases, for example rheumatoid arthritis and atherosclerosis.

35

In an embodiment of this method, the agent is a protein.

20

In a more specific embodiment, the protein comprises an antibody or portion thereof, for example a Fab, F(ab'), complementarity determining region (CDR) light and/or heavy chain, antibody variable region light and/or heavy chain, or a portion thereof capable of specifically 5 binding to CD40 ligand or CD40 ligand cell-surface One example of an anti-CD40 receptor, or to CD40. antibody is the monoclonal mouse anti-human CD40, available from Genzyme Customer Service (Product 80-3702-01, Cambridge, MA). The antibody can be a monoclonal or 10 polyclonal antibody. In embodiments of this invention, the monoclonal antibody is a chimeric antibody, a humanized antibody, or a primatized antibody. In another embodiment the portion of the antibody comprises a single chain antibody. A single chain antibody is made up of 15 variable regions linked by protein spacers in a single protein chain.

In an embodiment of the above-described method, the agent specifically binds to the antigen to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically binds. In a specific embodiment, the agent is monoclonal antibody 5c8 (ATCC Accession No. HB 10916).

The compounds of this invention may be administered in 25 any manner which is medically acceptable. This may include injections, by parenteral routes such intravenous, intravascular, intraarterial, subcutaneous, intratumor, intraperitoneal, intramuscular, intraventricular, intraepidural, or others as well as 30 oral, nasal, ophthalmic, rectal, topical, or inhaled. Sustained release administration is also specifically included in the invention, by such means as depot injections of erodible implants directly applied during 35 surgery.

The compounds are administered at any dose per body

-27-

weight and any dosage frequency which is medically acceptable. For example, acceptable dosage for the compound of this invention (especially for the antibody or antibody portion of this invention) includes a range of between about 0.01 and 200 mg/kg subject body weight. A dosage range is between about 0.1 and 50 mg/kg. In a still more specific embodiment the dose is between about 1 and 30 mg/kg. The dosage is repeated at intervals ranging from each day to every other month. One dosing regimen is to administer a compound of the invention daily for the first three days of treatment, after which the compound is administered every 3 weeks, with each administration being intravenously at 5 or 10 mg/kg body weight.

15

20

10

5

Another regime is to administer a compound of the invention daily intravenously at 5 mg/kg body weight for the first three days of treatment, after which the compound is administered subcutaneously or intramuscularly every week at 10 mg per subject. Another regime is to administer a single dose of the compound of the invention parenterally at 20 mg/kg body weight, followed by administration of the compound subcutaneously or intramuscularly every week at 10 mg per subject.

25

30

35

The compounds of the invention may be administered as a single dosage for certain indications such as preventing immune response to an antigen to which a subject is exposed for a brief time, such as an exogenous antigen administered on a single day of treatment. Examples of such an antigen would include coadministration of a compound of the invention along with a gene therapy vector, or a therapeutic agent such as an antigenic pharmaceutical or a blood product. In indications where antigen is chronically present, such as in controlling immune reaction to transplanted tissue or to chronically administered antigenic pharmaceuticals, the compounds of

-28-

the invention are administered at intervals for as long a time as medically indicated, ranging from days or weeks to the life of the subject.

invention provides a method of inhibiting an This inflammatory response in a subject, comprising the above-5 described method of inhibiting activation by CD40 ligand of cells, other than B cells, bearing CD40 on the cell surface (e.g., fibroblast cells, endothelial cells, or keratinocyte cells) in a subject. Inflammatory responses are characterized by redness, swelling, heat and pain, as 10 consequences of capillary dilation with edema and Inflammation is migration of phagocytic leukocytes. further defined by Gallin (Chapter 26, Fundamental Immunology, 2d ed., Raven Press, New York, 1989, pp. 721-15 733), which is hereby incorporated by reference.

This method is effective in inhibiting activation of any fibroblasts. In particular embodiments, the fibroblasts are synovial membrane fibroblasts, dermal fibroblasts, pulmonary fibroblasts, or liver fibroblasts. In particular embodiments, the condition dependent on CD40 ligand-induced activation of fibroblast cells is selected from the group consisting of arthritis, scleroderma, and fibrosis (e.g. fibrotic diseases of the liver and lung). In an embodiment of this invention, the fibrotic disease of the lung is caused by rheumatoid arthritis or scleroderma.

In an embodiment of this invention the arthritis is 30 arthritis, non-rheumatoid inflammatory rheumatoid arthritis, arthritis associated with Lyme disease, or In another specific embodiment, the osteoarthritis. hypersensitivity pulmonary fibrosis, fibrosis is pulmonary fibrosis, or pneumoconiosis. In 35 specific embodiment, the fibrotic disease of the liver is Hepatitis-C, Hepatitis-B, Hepatitis non-B

cirrhosis, or cirrhosis of the liver secondary to a toxic insult, drugs, a viral infection, or an autoimmune disease. Alcohol consumption is one example of toxic insult which can cause cirrhosis of the liver. One example of a drug that can cause cirrhosis of the liver is Bleomycin. Others are known in the art.

5

10

15

20

25

Examples of viral infections which can cause fibrotic disease of the liver include, among others known to the art, Hepatitis B, Hepatitis C, and Hepatitis non-B non-C. Examples of autoimmune diseases which can cause fibrotic disease of the liver include, among others known to the art, primary biliary cirrhosis, and Lupoid hepatitis (autoimmune hepatitis). In specific embodiments the pulmonary fibrosis is pulmonary fibrosis secondary to adult respiratory distress syndrome (ARDS), drug-induced pulmonary fibrosis, idiopathic pulmonary fibrosis, or hypersensitivity pneumonitis; the pneumoconiosis is asbestosis, siliconsis, or Farmer's lung as well as other pneumoconioses that are known in the art to which this invention pertains.

This invention provides a method of treating a condition dependent on CD40 ligand-induced activation of endothelial cells in a subject, comprising the above-described method of inhibiting activation of endothelial cells by CD40 ligand in a subject.

In embodiments of this invention the condition dependent on CD40 ligand-induced activation of endothelial cells is selected from the group consisting of atherosclerosis, reperfusion injury, allograft rejection, organ rejection, and chronic inflammatory autoimmune diseases.

35 In a specific embodiment the atherosclerosis is accelerated atherosclerosis associated with organ transplantation. In situ CD40 and CD40L expression in

accelerated atherosclerosis associated with transplant rejection have been studied. Frozen sections of coronary arteries from 4 heart transplant patients that required retransplantation due to accelerated atherosclerosis were analyzed by routine immunohistochemistry utilizing anti-5 CD40 mAb G28.5, anti-CD40L mAb 5C8 or control mAbs. Routine H & E staining revealed the typical intimal smooth muscle cell proliferation, hyperplasia, inflammatory cell infiltration associated with the CD40 was widely expressed in the lesions: 10 disease. cells and infiltrating foam cells. endothelial CD40L CD40. express cells all inflammatory immunoreactivity was observed as discrete, faint staining of infiltrating mononuclear cells, presumably CD4+ T Together, these studies demonstrate the presence cells. 15 of CD40L+ mononuclear cells and CD40+ endothelial cells, foam cells, and inflammatory cells in situ in lesions of atherosclerosis associated with accelerated transplantation.

20

In another specific embodiment the chronic inflammatory autoimmune disease is vasculitis, rheumatoid arthritis, scleroderma, or multiple sclerosis.

This invention provides a method of treating a condition dependent on CD40 ligand-induced activation of keratinocytes in a subject, comprising the above-described method of inhibiting activation of keratinocyte cells by CD40 ligand in a subject.

30

In a specific embodiment the condition dependent on CD40 ligand-induced activation of keratinocytes is psoriasis.

This invention provides a method of treating a condition dependent on CD40 ligand-induced activation of macrophages in a subject, comprising the above-described method of inhibiting activation of macrophages by CD40

-31-

ligand in a subject. In specific embodiments, the condition dependent on CD40 ligand-induced activation of macrophages is atherosclerosis or rheumatoid arthritis.

The subject which can be treated by the above-described methods is an animal. Preferably the animal is a mammal. Examples of mammals which may be treated include, but are not limited to, humans; rodents such as the murine animals rats and mice, as well as rabbits, and guinea pig; cow; horse; sheep; goat; pig; dog and cat.

This invention also provides a method of treating a condition dependent on CD40 ligand-induced activation of plasma cells in a subject (including malignant plasma cells), comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells in the subject. Plasma cells are differentiated B cells. In a specific embodiment the condition is multiple myeloma.

15

20

25

30

35

This invention provides a method of promoting the growth of cells bearing CD40 on the cell, comprising contacting the cells with an amount of CD40 ligand effective to promote growth of the cells. In an embodiment the cells are cells bearing CD40 on the cell surface other than B cells. In specific embodiments the non-B cells bearing CD40 on the cell surface are endothelial cells, fibroblasts, epithelial cells, T cells, or basophils. In another embodiment the cells are plasma cells, including differentiated plasma cells such as myeloma cells.

This invention further provides a pharmaceutical composition comprising a therapeutically effective amount of the agent described herein capable of inhibiting interaction between CD40 ligand and cells bearing CD40 on the cell surface, and a pharmaceutically acceptable

-32-

carrier.

This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.

-33-

Experimental Details

FIRST SERIES OF EXPERIMENTS

5 Materials and Methods

Patients Studied

10

30

35

All RA patients studied met the American College of Rheumatology criteria for RA (19). The diagnosis of OA was established by the patients' physicians utilizing clinical and radiographic criteria. One patient with chronic inflammatory arthritis (IA) of unknown etiology was also studied.

Monoclonal antibodies and T cell lines

- 15 The IgG2a murine anti-CD40L mAb (5C8) was previously generated (3). Hybridomas anti-MHC Class I (W6/32), anti-MHC Class II (L243), anti-CD14 (3C10), anti-CD40 (G28.5) and anti-CD45 (GAP 8.3) were purchased from American Type Culture Collection (ATCC) (Rockville, MD). 20 Hybridoma ascites was purified on a Protein G column (Pharmacia, Piscataway, NJ). Anti-CD13 and anti-CD54 were purchased from Biosource International (Camarillo, CA). Anti-CD106 mAb was kindly provided by Biogen (Cambridge, MA) and biotinylated as previously 25 described (20). Isotype control mAbs utilized for FACS analysis were purchased from Becton-Dickinson (San Jose, CA) or Caltag (South San Francisco, CA). P1.17 is a control IgG2a murine mAb obtained from Biogen and utilized for functional studies.
 - D1.1 is a Jurkat T cell subclone that constitutively expresses CD40L (3, 21). B2.7 is a CD40L Jurkat subclone (3, 21). CD40L Jurkat B2.7 transfectants expressing full length CD40L protein were generated as previously reported (20).

-34-

Isolation of fibroblasts

Synovial membrane was obtained from 6 RA or 8 OA patients undergoing joint replacement surgery. SM from one patient with IA was collected at arthroscopy. SM was cut into small pieces and cultured in 100 mm tissue culture 5 petri dishes (Corning, Corning, NY) or 25 cm2 flasks Cambridge, MA) with Isocove's (Costar. Dulbecco's Media (Gibco, Grand Island, NY) supplemented with 10% FCS (Summit Biotechnology, Ft. Collins, CO) and 1% penicillin-streptomycin (Sigma, St. Louis, MO) (10% 10 Synoviocytes were allowed to adhere for several days at which time tissue debris and non-adherent cells were removed. Synoviocytes were grown to confluence and passaged by treatment with 1% trypsin-EDTA (Sigma). Synoviocytes were studied between 1-6 passages in vitro. 15 A normal dermal fibroblast line frozen following the second passage (CCD 965SK) was purchased from ATCC. fibroblast lines were studied between Dermal passages.

20

25

30

35

studies on the effects of cytokines on fibroblast CD40 expression

To study the effects of cytokines on fibroblast CD40 expression, cells were cultured in 6 well plates (Nunc, Denmark) and grown to near confluence. The media was aspirated and fibroblasts then cultured with the indicated concentrations of rINF-Y (Biogen), rIL-1\alpha (R & D, Minneapolis, MN), rTNF-\alpha (Upstate Biotechnology, Lake Placid, NY), rIL-4 (Biosource International), rGM-CSF (Immunex, Seattle, WA) or combinations of cytokines in 3 ml of 10% FM. At the indicated time points, the media was aspirated, the cells washed once with saline and 1 ml of 1% trypsin-EDTA added to the wells. After 7 minutes cold 10% FM was added to the wells and the cells collected for FACS analysis.

Studies on functional consequences of fibroblast CD40 ligation.

To determine the effect of CD40 ligation on the expression of fibroblast cell surface molecules, fibroblasts were cultured in 6 well plates as described above. When the fibroblasts were near confluence 1 x 10^6 CD40L $^+$ Jurkat D1.1 cells, CD40L Jurkat B2.7 cells or CD40L $^+$ Jurkat B2.7 transfectants were added to the culture. Where indicated, D1.1 cells were pretreated with anti-CD40L mAb 5C8 ($10~\mu g/ml$) or isotype control mAb P1.17 ($10~\mu g/ml$) prior to the addition to fibroblasts. After 24 hours the cells were collected by trypsinization and two-color FACS analyses performed.

10

15 For studies determining the effect of CD40 ligation on fibroblast proliferation, approximately 5 x 103 cells were added to flat bottom 96 well plates (Nunc) in 10% FM. After 18 hours the media was changed to 1% FM and rINF-V added to the indicated cells. 20 additional 18 hours, 1 x 10⁵ mitomycin-C (Sigma) treated CD40L Jurkat B2.7 transfectants or CD40L Jurkat B2.7 cells in 1% FM were added to the fibroblasts. Anti-CD40L mAb 5C8 (5 μ g/ml) or control mAb P1.17 (5 μ g/ml) were also added to some wells as indicated. 10% FM was added to some cells as a control for the induction of SM 25 fibroblast proliferation. Cultures were maintained for an additional 48 hours and pulsed with 1 μ Ci ³H thymidine for the last 18 hours of the experiment. Following trypsinization, 3H thymidine incorporation was determined 30 by harvesting onto glass fiber filter strips (Cambridge Technologies, Watertown, MA) and scintillation counting (BetaCounter, Pharmacia).

To determine the effect of CD40 ligation on IL-6 production, a bioassay utilizing the IL-6 responsive murine B cell line B9 was performed (22). Equal numbers of fibroblasts in 10% FM were seeded in 96 well plates as

After adhering overnight, 1 x 105 mentioned above. mitocycin-C treated CD40L Jurkat D1.1 cells, CD40L Jurkat B2.7 cells or CD40L Jurkat B2.7 transfectants were added to the fibroblasts. Where indicated, D1.1 cells were pretreated with anti-CD40L mAb 5C8 (10 μ g/ml) or control mAb P1.17 (10 μ g/ml). Control wells consisted of Jurkat cells cultured alone. After 48 hours, serial dilutions of fibroblast or control supernatants or rIL-6 were added to 7.5 \times 10³ B9 cells in 96 well plates. cells were maintained in culture for 96 hours, pulsed with 1 μ Ci ³H thymidine for the last 18 hours and harvested as mentioned above.

Cytofluorographic analysis 15

10

The methods utilized for cytofluorographic analysis have been previously described (21). In all experiments the were first treated with aggregated human immunoglobulin (Enzyme International, Fallbrook, CA) to block non-specific Ig binding. For single-color FACS 20 saturating stained with were cells analysis, concentrations of primary antibody for 30-60 minutes at Following washing, FITC conjugated F(ab)2 goat anti-mouse IgG (Cappel, Cochranville, PA) was added for 30-60 minutes at 4° C. The cells were washed and fixed with 1% formaldehyde prior to FACS analysis. For two-25 color FACS analysis, cells were simultaneously stained with the indicated FITC or PE conjugated mAbs for 30-60 minutes at 4° C. Fluorescence intensity was measured on a FACScan cytofluorograph with the Consort-30 software (Becton-Dickinson, Mountainview, CA). Mean fluorescence 30 intensity (MFI) refers to values normalized to the log scale as calculated by Becton-Dickinson C30 software.

Results 35

Expression of CD40 on cultured SM or dermal fibroblasts. To determine whether SM fibroblasts express CD40, SM

-37-

derived from 6 RA, 1 IA, or 8 OA patients was first minced and placed in culture after which non-adherent cells were discarded. As expected, primary cultures of adherent cells were pleiomorphic with regard to morphology and phenotype. A minority of cells assumed a stellate morphology or a rounded appearance characteristic of macrophages. However, the majority of cells in primary culture had fibroblast-like morphology and phenotype, i.e., CD45 CD14 MHC Class II (figure 1). Virtually all cells had fibroblast-like morphology and phenotype following 2-3 passages in vitro.

10

15

20

25

30

Five RA fibroblast lines were studied for CD40 expression following the first or second passage in vitro and were CD40 by FACS analysis (figure 1). An IA fibroblast line similarly expresses CD40 (table 1). One RA fibroblast line had been in culture for 2 months prior to analysis and was CD40 (data not shown). Eight OA fibroblast lines were studied for CD40 expression following the first or second passage in vitro and all were CD40* (figure 1). determine if fibroblast CD40 expression was restricted to SM fibroblasts, normal dermal fibroblasts were analyzed for CD40 expression following 2-4 passages in vitro. variable degrees, all 3 dermal fibroblast lines studied also express cell surface CD40 molecules (figure 2). However, CD40 expression on synovial membrane or dermal fibroblasts decreased with increasing time in culture such that some fibroblast lines became CD40 after 3-4 passages (data not shown). These studies demonstrate that dermal fibroblasts or SM fibroblasts isolated from patients with various arthritides can express CD40 in vitro.

Effect of cytokines on fibroblast CD40 expression known to upregulate CD40 Interferon-y (INF-y) is expression on B cells (23), macrophages (12) and thymic IL-lα or Moreover, epithelial cells (15). upregulates CD40 expression on thymic epithelial cells 5 (15). Therefore, it was next asked if rINF- γ , rIL-la or rTNF- α regulates CD40 expression on cultured Cells were cultured with the indicated fibroblasts. and CD40 expression determined by cytokines As a control for the effects of 10 analysis. cytokines on the expression of SM fibroblast cell surface molecules, CD54 (ICAM-1) expression was also determined (24). rINF- γ upregulates SM fibroblast CD40 expression (table 1 and figure 3). In contrast, rIL-1 α and rTNF- α have minimal effect on SM fibroblast CD40 expression 15 (table 1 and figure 3). However, either rIL-1 α or rTNF- α augment the effect of rINF- γ on SM fibroblast CD40 $rINF-\gamma$ also induces CD40 expression (figure 3). on SM fibroblasts that had lost CD40 expression expression during serial passages in culture (data not 20 shown). Moreover, rINF-y upregulates CD40 expression on rIL-4 or dermal fibroblasts (figure 2). upregulate CD40 expression on B cells (25) or monocytes However, rIL-4 or rGM-CSF have no (12), respectively. effect on SM fibroblast CD40 expression (data not shown). 25 Together, these studies demonstrate that rINF- γ induces and upregulates fibroblast CD40 expression and the addition of rIL-l α or rTNF- α augments this effect.

30 Effect of CD40L-CD40 interactions on SM fibroblast CD54
(ICAM-1) and CD106 (VCAM-1) expression

Because CD40 triggering is known to upregulate a
variety of cell surface molecules on B cells, including
adhesion molecules (26), it was determined if CD40

1 ligation upregulates CD54 or CD106 expression on SM
fibroblasts. SM fibroblasts were cultured with CD40L*

Jurkat D1.1 cells in the presence or absence of anti-

SM fibroblasts were CD40L mAb 5C8 or control mAb. also cultured with CD40L Jurkat B2.7 cells or CD40L Jurkat B2.7 transfectants. After the indicated period of time in culture, SM fibroblast CD54 or CD106 expression was determined by two-color FACS analysis. 5 CD13 expression was utilized to discriminate SM fibroblasts from Jurkat T cells (27). CD40L* D1.1 cells, but not control CD40L B2.7 cells, induce a 2-4 fold increase in SM fibroblast CD54 expression (figures 4 and 5) in a manner that is specifically inhibited by 10 mAb 5C8 but not by control mAb (figure 4). Moreover, CD40L D1.1 and CD40L Jurkat B2.7 transfectants, but not control CD40L B2.7 cells, similarly upregulate SM fibroblast CD106 expression (figure 5). Together, these results demonstrate that CD40L-CD40 interactions 15 upregulate SM fibroblast CD54 and CD106 expression.

Effect of CD40 ligation on SM fibroblast IL-6 secretion. Ligation of CD40 induces B cells (28) and monocytes (12) to produce IL-6. Interestingly, SM fibroblasts produce 20 IL-6 in vivo (29, 30) and in vitro (31). The next series of experiments asked if CD40L-CD40 interactions effect IL-6 secretion by SM fibroblasts. Therefore, fibroblasts were cultured with mitomycin-C treated CD40L* Jurkat D1.1 cells in the presence or absence of anti-25 Additionally, CD40L mAb 5C8 or control mAb. fibroblasts were cultured with CD40L Jurkat B2.7 cells or CD40L Jurkat B2.7 transfectants. Fibroblast supernatants or control supernatants from Jurkat cells cultured alone were collected after 48 hours and dilutions added to the 30 IL-6 responsive murine B cell line B9. D1.1 cells and CD40L B2.7 transfectants, but not CD40L B2.7 cells, augment SM fibroblast IL-6 secretion (figure Additionally, anti-CD40L mAb 5C8, but not control mAb, inhibits this effect of D1.1 cells. Control supernatants 35 collected from Jurkat cells cultured alone did not induce B9 proliferation (See description of Figure 6).

studies indicate that ligation of CD40 on SM fibroblasts augments IL-6 secretion.

5 Effect of CD40L-CD40 interactions on SM fibroblast proliferation

Because CD40 ligation induces B cell proliferation (5, next asked if CD40L cells induce it was SM fibroblasts. Therefore, proliferation of fibroblasts were cultured overnight in 1% FM to arrest 10 growth, as previously described (32), and further additions to the cells were performed in 1% FM, unless otherwise indicated. Mitomycin-C treated CD40L* B2.7 transfectants or CD40L B2.7 cells were than added to the SM fibroblasts. Where indicated, co-culture experiments 15 also included anti-CD40L mAb 5C8 or isotype control mAb In some experiments, SM fibroblasts were pretreated overnight with rINF-y prior to the addition of CD40L B2.7 transfectants. Because fibroblasts are known to proliferate in the presence of media containing 10% 20 FCS ((32)), each experiment included control fibroblasts ³H thymidine incorporation was cultured in 10% FM. determined after 48 hours. CD40L B2.7 transfectants, in contrast to parental CD40L B2.7 cells, induce SM fibroblast proliferation (figure 7). Furthermore, anti-25 CD40L mAb 5C8 specifically inhibits the ability of CD40L* B2.7 transfectants to induce fibroblast proliferation (figure 7). In addition, pretreatment of SM fibroblasts with rINF-y augments the capacity of CD40L* B2.7 transfectants to induce SM fibroblast proliferation 30 (figure 8). Together, these data demonstrate that CD40L mediated signals induce SM fibroblast proliferation in vitro and this effect is enhanced by rINF-y.

35 Discussion

This study extends current knowledge of CD40 expression and function by specifically demonstrating that: 1)

cultured SM or dermal fibroblasts express cell surface CD40 molecules as determined by FACS analysis, 2) rINF- γ upregulates fibroblast CD40 expression and this effect is augmented by rIL-l α or rTNF- α . 3) CD40L-CD40 interactions upregulates SM fibroblast CD54 and CD106 expression, 4) ligation of CD40 augments SM fibroblast IL-6 production and 5) induces SM fibroblast proliferation. Together, these data demonstrate that CD40L-CD40 interactions functionally activate fibroblasts in vitro.

10

15

20

5

Several lines of evidence suggest that T cells modulate fibroblast functions in vivo. This is of importance because fibroblasts play reparative roles following tissue injury by producing extracellular matrix proteins. In addition, lymphocytes, macrophages and fibroblasts are the predominant cell types in granulomatous inflammatory reactions characteristic of certain infections. Moreover, T cells directly or indirectly mediate fibroblast activation and collagen deposition seen in diseases such as scleroderma or chronic graft versus host disease (33-35).

models demonstrate that \mathbf{T} cells modulate fibroblast function during host responses to tissue 25 injury. In this regard, studies of wound healing show that wound strength and hydroxyproline content are significantly decreased by treating mice with cyclosporine A (36) or T cell depleting anti-Thy 1.2 mAb (37). T cells also modulate outcome in various animal 30 models of fibrosis. For example, bleomycin-induced pulmonary fibrosis is significantly attenuated in athymic mice relative to control euthymic mice (38). Moreover, joint or liver inflammatory reactions and collagen deposition are also significantly reduced in athymic rats following intraperitoneal injection of streptococcal cell 35 wall extracts (39, 40).

One study suggests that human fibroblasts can express Potocnik and coworkers studied the CD40 in vivo. expression and distribution of various cell surface molecules, including CD40, on RA PBL, SF and SM (18). By immunohistochemistry they noted CD40 expression on a variety of cells in RA SM, including cells with spindle morphology suggestive of fibroblasts. fibroblasts are a predominant cellular component of the rheumatoid pannus. By producing collagenase, PGE2, IL-6 and other mediators, synovial fibroblasts are thought to important contributors to the joint destruction While electron characteristic of RA (30, 41-43). microscopic studies have demonstrated direct T-fibroblast contact in rheumatoid synovial membrane (44), most studies have suggested that macrophage derived cytokines, such as IL-1 or TNF- α , activate fibroblasts (30). studies suggest that direct contact mediated by CD40Lprovides activation interactions also proliferative signals to SM fibroblasts.

20

25

30

15

5

10

The mechanism by which CD40L mediated signals augment SM fibroblast proliferation is currently unknown. induce the interactions CD40L-CD40 possible that secretion of cytokines, such as IL-1, GM-CSF and FGF, which can stimulate SM fibroblast proliferation in an autocrine or paracrine manner (31). CD40 ligation also induces B cells to express c-myc (45) a proto-oncogene Immunohistologic associated with proliferating cells. fibroblast-like SM that RA demonstrate studies synoviocytes express c-myc in situ (46). Therefore, it will be of interest to specifically determine if CD40 ligation also induces c-myc expression in SM fibroblasts.

Similar to CD40 ligation on B cells (26), CD40L-CD40 interactions augment expression of fibroblast CD54 expression. In addition, CD40L-CD40 interactions upregulate fibroblast CD106 expression. CD54 and CD106

play key role in recruiting immune cells to sites of inflammation by interacting with CD11a/CD18 (LFA-1) or CD49d (VLA-4), respectively, expressed on leukocytes (24).There is also evidence that these counterligand interactions enhance proliferative signals to T cells (47). CD54 and CD106 are known to be expressed on RA fibroblast-like synoviocytes in vivo ((48-50)) and various cytokines upregulate synovial fibroblast CD54 and CD106 expression in vitro (49, 51, Moreover, T cell adhesion to SM fibroblasts in vitro is partly mediated by CD11a/CD18-CD54 interactions (53) and CD49d-CD106 interactions (49). Therefore, CD54 and CD106 upregulation on SM fibroblasts by CD40L* T cells may represent a mechanism to augment cytokine mediated inflammatory cell recruitment/retainment Additionally, CD40L mediated SM fibroblast CD54 and CD106 upregulation may play direct signaling roles to T cells via interactions with their counter-receptors.

10

15

It is of interest that in vivo administration of a 20 hamster anti-murine CD40L mAb (MR1) prevents induction of collagen-induced arthritis, a murine model of RA (54). The fact that MR1 blocks the production of anti-collagen autoantibodies likely relates to the known role of CD40L-CD40 interactions in T cell dependent 25 humoral immune responses (9-11). Moreover, MR1 prevents the development of synovial lining cell thickening and SM inflammatory cell infiltration characteristic of collagen-induce arthritis (54). These studies suggest 30 that T cell-fibroblast CD40L-CD40 interactions play roles in mediating inflammatory reactions seen in collageninduced arthritis, an also plays immunopathogenic roles in human fibrotic diseases such as RA or scleroderma, mediated part by T cell-dependent fibroblast in 35 activation. Moreover, this study provides new rational for blocking CD40L-CD40 interactions as therapy for human diseases mediated by CD4 T cell induced fibroblast

WO 97/20063

-44-

activation.

TABLE 1

	OA.2		OA.3		IA.1		
Stimuli	CD40	CD54	CD40	CD54	CD40	CD54	
Media	18	129	76	134	47	120	
rINF-Y	56	703	228	668	95	755	
rIL-lα	22	286	82	304	37	292	
rTNF-α	22	568	96	506	66	594	

Table 1 Legend. Cytokine regulation of SM fibroblast CD40 expression. Shown is CD40 expression (mean fluorescence intensity) as determined by FACS analysis on the indicated SM fibroblast lines following coculture with media, rINF- γ (1000 U/ml), rIL-1 α (10 pg/ml) or rTNF- α (200 U/ml). Background staining (MFI) of a control mAb is subtracted for each value.

5 SECOND SERIES OF EXPERIMENTS

Materials and Methods

from Sigma (St. Louis, MO).

- Monoclonal antibodies, lectins and T cell lines 10 The IgG2a murine anti-CD40L mAb (5C8) was previously generated (20). Hybridomas W6/32 (anti-MHC Class I), L243 (anti-MHC Class II), 3C10 (anti-CD14), THB.5 (anti-CD21), G28.5 (anti-CD40) and GAP 8.3 (anti-CD45) were purchased from American Type Culture Collection (ATCC) (Rockville, 15 MD). Hybridoma ascites was purified on a Protein G column (Pharmacia, Piscataway, NJ). FITC conjugated anti-CD13, FITC conjugated anti-CD19 and PE conjugated anti-CD54 mAbs was purchased from Biosource International (Camarillo, CA) and anti-CD34 mAb was obtained from Biogenex (San Ramon, 20 CA). An additional anti-CD54 mAb, as well as anti-CD62E and anti-CD106 mAbs, were kindly provided by Biogen (Cambridge, MA). L243 and mAbs provided by Biogen were biotinylated as previously described (37). PE conjugated anti-CD80 and 25 biotinylated anti-CD86 mAbs were purchased from Becton Dickinson (San Jose, CA) and PharMingen (San Diego, CA), respectively. Isotype control mAbs utilized for FACS analysis were purchased from Becton Dickinson or Caltag Laboratories (South San Francisco, CA). P1.17 is irrelevant control IgG2a murine mAb (Biogen) utilized for 30
- D1.1 is a Jurkat T cell subclone that constitutively expresses CD40L (20, 42). B2.7 is a CD40L Jurkat T cell subclone (20, 42). Stably transfected CD40L 293 kidney cells or CD8 293 kidney cells were generated as previously reported (37). Ramos 2G6 B cells respond to CD40L mediated signals (38, 39) and were obtained from ATCC.

functional studies. FITC conjugated UEA-1 were obtained

10

15

35

5 Endothelial cell cultures

Human umbilical vein endothelial cells (HUVEC) were isolated as previously reported (40, 41). HUVEC were cultured in M199 media (Gibco, Grand Island, NY) supplemented with 25% FCS (Summit Biotechnology, St. Collins, CO), 5% human serum (Gemini, Calabasas, CA), heparin 90 μ g/ml (Sigma), endothelial cell growth factor 15 μ g/ml (Collaborative Research, Bedford, MA) and 1% penicillin-streptomycin (Sigma) (M199 complete media). HUVEC were passaged by treatment for 3 minutes with 1% Trypsin-EDTA (Sigma). All HUVEC experiments were performed in M199 complete media following 1-3 passages.

Studies on the effects of cytokines on HUVEC CD40 expression To study the effects of cytokines on CD40 expression, HUVEC were cultured in 6 well plates (Nunc, Denmark) and grown to 20 near confluence. The media was aspirated and HUVEC were then incubated with rIFN-y 1000 U/ml (Biogen), rIL-1 α 10 pg/ml (R & D, Minneapolis, MN) or rTNF- α 200 U/ml (Upstate Biotechnology, Lake Placid, NY) in 3 ml of M199 complete media. At the indicated times, media was aspirated, cells 25 were washed once with saline and 1 ml of 1% trypsin-EDTA was added to the wells. Cold Isocove's Modified Dulbecco's Media (Gibco) containing 10% FCS (Summit) was added to the wells after 3 minutes and the cells collected for FACS 30 analysis.

Studies on functional consequences of HUVEC CD40 ligation. To study the effect of CD40 ligation on the expression of HUVEC cell surface molecules, cells were cultured in 6 well plates as described above. When HUVEC were near confluence 1 x 10⁶ CD40L⁺ Jurkat D1.1 cells, CD40L⁻ Jurkat B2.7 cells, CD40L⁺ 293 kidney cell transfectants or CD8 kidney cell transfectants were added to the culture. Where indicated, CD40L⁺ cells were pretreated with anti-CD40L mAb 5C8 (10

-47-

 μ g/ml) or isotype control mAb Pl.17 (10 μ g/ml) prior to the addition to HUVEC. After the indicated time in culture the cells were collected by trypsinization and two-color FACS analyses performed.

Functional studies of CD40 ligation on Ramos 2G6 cells. Control experiments of CD40 ligation on Ramos 2G6 cells were performed by culturing 2 x 10^5 Ramos 2G6 cells with 1 x 10^5 D1.1 cells or control cells for 24h hours in 96 well plates containing 200 μ l of Isocove's Modified Dulbecco's Media (Gibco) containing 10% FCS (Summit) and 1% penicillinstreptomycin (Sigma).

Cytofluorographic analysis

The methods utilized for cytofluorographic analysis have been previously described (20, 42). In all experiments the 20 treated with aggregated first cells were immunoglobulin (Enzyme International, Fallbrook, CA) to block non-specific Ig binding. For single-color FACS analysis, cells were stained with saturating concentrations of primary antibody for 30-60 minutes at 4°C. Following 25 washing, FITC conjugated F(ab), goat anti-mouse IgG (Jackson Immunoresearch Laboratories, West Grove, PA) was added for 30-60 minutes at 4° C. The cells were washed and fixed with 1% formaldehyde prior to FACS analysis. For two-color FACS analysis, cells were first stained with the indicated 30 Following washing, cells were then biotinylated mAbs. stained with streptavidin-PE (Calbiochem, La Jolla, CA) and FITC conjugated anti-CD13 mAb or FITC conjugated UEA-1, as indicated. HUVEC were distinguished from Jurkat cells in two-color FACS analysis by positive staining with anti-CD13 35 mAb or UEA-1, a lectin that selectively binds endothelial cells (43). Fluorescence intensity was measured on a FACScan cytofluorograph with the Consort-30 (Becton-Dickinson, Mountainview, CA). Mean fluorescence

intensity (MFI) refers to values normalized to the log scale as calculated by the Consort 30 software.

Characterization of endothelial cell CD40 expression in situ.

Frozen sections of normal spleen, thyroid, skin, muscle, kidney, lung or umbilical cord were studied for CD40 expression, as previously described (38). Immunohistologic analysis was performed with the indicated mAbs and reactivity detected using Vector ABC Elite kit and 3-amino-9-ethylcarbazole (AEC) (Vector Laboratories, Burlingame, CA) according to manufacture's instructions. Control frozen sections were stained with appropriate concentrations of mouse IgG (Sigma).

20 Results

In situ and in vitro characterization of endothelial cell CD40 expresssion.

The first series of experiments were performed to determine if normal endothelial cells express CD40 in situ.

Therefore, frozen sections obtained from normal spleen, 25 thyroid, skin, muscle, kidney, lung or umbilical cord were stained with anti-CD40 mAb or control mouse IgG and endothelial cell reactivity noted. Additional controls included staining with anti-CD34 mAb (reactive with hematopoietic stem cells and endothelial cells (44)) or 30 anti-CD21 mAb (reactive with B cell cells and epithelial Endothelial cells from all tissues studied cells (17)). demonstrate CD40 in situ. Figures 9-11 express representative CD40 staining of endothelial cells in normal skin (figure 9), muscle (figure 10) and spleen (figure 11). 35 The pattern of endothelial reactivity was similar to that seen with anti-CD34 mAb (figures 9 and 10). In contrast, endothelial cells did not react with anti-CD21 mAb (figures 9 and 10) or mouse IgG (figures 9-11).

5 To further explore endothelial cell CD40 expression and function in vitro it was next asked if cultured human umbilical vein endothelial cells (HUVEC) also express CD40. HUVEC were isolated, grown to confluence and CD40 expression determined by FACS analysis following trypsinization. 10 cells morphologically resembled endothelial cells and phenotypic analysis demonstrated that the cells were CD13* and reactive with UEA-1, a lectin that selectively binds endothelial cells (43). In addition, the cells were CD14 CD45 MHC Class II by FACS analysis. Therefore, these 15 cultures did contain not significant numbers of contaminating non-endothelial cells. HUVEC constitutively express CD40 in vitro (figure 12). Similar results were obtained from HUVEC isolated from 15 individuals.

To determine if pro-inflammatory cytokines regulate endothelial cell CD40 expression, as has been shown for B cells (45), monocytes (14), thymic epithelial cells (18) and fibroblasts (19), HUVEC were cultured with rIFN-γ, rIL-lα, or rTNF-α for 48 hours. rINF-γ, in contrast to rIL-lα or rTNF-α, induces 2-3 fold increase in HUVEC CD40 expression (table 2). Together, these studies demonstrate that endothelial cells from normal tissue express CD40 in situ and in vitro and that rIFN-γ upregulates endothelial cell CD40 expression in vitro.

30

35

Effect of CD40L-CD40 interactions on HUVEC CD54, CD62E and CD106 expression.

Activated endothelial cells express cell surface molecules, such as CD54, CD62E and CD106 that play important roles in mediating intercellular adhesive interactions (1, 2). Interestingly, ligation of CD40 on B cells (46) or fibroblasts (19) induces the upregulation of adhesion molecules. Therefore, it was next asked if CD40L-CD40 interactions effect the expression of CD54, CD62E or CD106

expression on HUVEC in vitro as determined by two-color FACS analysis. HUVEC were cultured with CD40L* Jurkat D1.1 cells or CD40L Jurkat B2.7 cells. Where indicated, Jurkat D1.1 cells were pretreated with anti-CD40L mAb 5C8 or control mAb prior to the addition to HUVEC. As a positive control, HUVEC were also cultured with rIL-lα. CD40L* Jurkat D1.1 cells, but not CD40L* Jurkat B2.7 cells, induce CD54, CD62E and CD106 upregulation on HUVEC (figures 13 and 14). This effect of D1.1 cells is inhibited by anti-CD40L mAb 5C8 but not by an isotype control mAb (figures 13 and 14). These studies strongly suggest that CD40L-CD40 interactions upregulate CD54, CD62E and CD106 expression on HUVEC.

Effect of CD40L 293 kidney cell transfectants on HUVEC CD54, CD62E and CD106 expression.

To determine if CD40L mediated signals were sufficient, in the absence of additional lymphoid specific interactions, to upregulate endothelial cell adhesion molecules, HUVEC were cultured with stably transfected CD40L* 293 kidney cells or control CD8* 293 transfectants. As a positive control, HUVEC were also cultured with CD40L* D1.1 cells. Similar to CD40L* D1.1 cells, CD40L 293 kidney cell transfectants upregulate CD54, CD62E and CD106 expression on HUVEC (figure 15). Control 293 CD8 transfectants have no effect on HUVEC CD54, CD62E or CD106 expression. Together, these studies demonstrate that CD40L-CD40 interactions are sufficient to upregulate these adhesion molecules on HUVEC in vitro.

Analysis of the kinetics of CD40L mediated HUVEC CD54, CD62E and CD106 upregulation.

35 The kinetics of CD54, CD62E or CD106 upregulation by rIL-l α or rTNF- α in vitro has been well established (1, 2). CD54 and CD106 are upregulated 6 hours following activation and expression persist for greater than 24 hours. In contrast, CD62E expression peaks 6 hours following activation and

20

25

30

35

returns to baseline (no expression) by 24 hours. In the 5 next series of experiments the kinetics of CD40L induced HUVEC CD54, CD62E or CD106 upregulation were determined. HUVEC were cultured with CD40L D1.1 cells or CD40L B2.7 cells and analyzed at various time points for CD54, CD62E or 10 CD106 expression. Following culture with CD40L* D1.1 cells. HUVEC CD54 or CD106 expression was upregulated by 6 hours and persisted in expression for greater than 24 hours (figure 16). In contrast, CD40L induced CD62E expression peaked by 6 hours and returned to baseline by 24 hours 15 (figure 16). Therefore, the kinetics of CD40L, rTNF- α or rIL-1 α mediated upregulation of HUVEC CD54, CD62E or CD106 are similar.

Determining if CD40L-CD40 interactions upregulate CD80, CD86 or MHC Class II expression on HUVEC.

Activated endothelial cells are competent to express MHC Class II molecules and deliver costimulatory signals to T cells (10, 47-49). Ligation of CD40 on B cells or dendritic cells upregulates MHC Class II expression, as well as, the expression of the costimulatory molecules CD80 and CD86 (36, 37, 50-52). Therefore the next series of experiments determined if CD40L-CD40 interactions similarly upregulates MHC Class II, CD80 or CD86 expression on HUVEC. HUVEC were cultured with CD40L D1.1 cells or CD40L B2.7 cells for 24 or 48 hours and CD80, CD86 and MHC Class II expression determined by two-color FACS analysis. As a positive control for the effect of HUVEC CD40 ligation. expression was also determined. In addition, HUVEC were also cultured with rIFN-y as a control for MHC Class II upregulation. As a positive control for CD40L mediated CD80, CD86 and MHC Class II upregulation, D1.1 cells were cultured with Ramos 2G6 B cells (38-39). In contrast to the effects of CD40 ligation on B cells or dendritic cells, CD40L-CD40 interactions do not upregulate MHC Class II, CD80

5 or CD86 expression on HUVEC (table 3).

Discussion

CD40 is a cell surface molecule constitutively expressed on a variety of cells, including B cells (12, 13), monocytes (14), dendritic cells (15), epithelial cells (17, 18), 10 basophils (16) and fibroblasts (19). The counter-receptor for CD40 is CD40L, a 30-33 kDa activation-induced. transiently expressed CD4 T cell surface molecule (20-25). It is shown that endothelial cells in spleen, thyroid, skin, muscle, kidney, lung or umbilical cord express CD40 in situ. 15 This finding is consistent with a previous report that endothelial cells in rheumatoid arthritis synovial membrane In addition, human umbilical vein express CD40 (11). endothelial cells (HUVEC) express CD40 in vitro. importantly, CD40 expression on endothelial cells 20 functionally significant because CD40L+ Jurkat T cells or CD40L* 293 kidney cell transfectants, but not control cells, upregulate the expression of intercellular molecules CD54 (ICAM-1), CD62E (E-selectin) and CD106 (VCAM-1) on HUVEC. The results disclosed herein demonstrate that 25 endothelial cells express CD40 and CD40L-CD40 interactions induce endothelial cell activation in vitro.

Endothelial cells play central roles in inflammatory responses in part by expressing CD54, CD62E and CD106 (1, 30 2). These adhesion molecules interact with specific cell leukocytes and promote on receptors surface transmigration of inflammatory cells across the endothelial The expression of these cell barrier. endothelial cell surface molecules are tightly regulated (1, 35 Resting endothelial cells express low levels of CD54 and minimal or no CD62E or CD106. However, endothelial cells upregulate CD54, CD62E and CD106 expression following activation with IL-1 or TNF. These findings demonstrate a

5 means by which activated CD4* T cells upregulate endothelial cell adhesion molecules by direct cell-cell contact.

Because CD40L expression is also tightly regulated, it is likely that CD40L-CD40 interactions occur during Ag driven 10 immune responses. In this regard, in vitro studies demonstrate that resting CD4 T cells do not express detectable CD40L (20-22, 25, 53). However, CD40L is transiently expressed on activated CD4* T cells in vitro; peak expression is seen 6 hours following activation and levels return to baseline (no expression) by 24-48 hours 15 (20, 21, 53). CD40L is also rapidly down-modulated by CD40 expressing cells in a process that is at least partly due to receptor-mediated endocytosis (54). In vivo, expression is normally restricted to CD4* T cells in 20 secondary lymphoid tissue (38), the site of MHC restricted, Ag specific T-B interactions. However, immunohistologic studies of rheumatoid arthritis synovial membrane or psoriatic plaques demonstrates the presence of CD40L*CD4* T These studies suggest that APCs at sites of 25 inflammation induce infiltrating CD4 T cell to express CD40L. CD40L*CD4* T cells then play roles in augmenting the inflammatory process by interacting with CD40° endothelial The functional consequences of this interaction enable further adhesion and transmigration of immune cells 30 at sites of inflammation.

The fact that CD40 ligation regulates the expression of endothelial cell surface adhesion molecules is consistent with a general role for CD40 signalling in regulating the expression and/or function of adhesion molecules on a variety of cells. In this regard, it has been shown that CD40L mediated signals induce CD54 and CD106 upregulation on fibroblasts cultured from synovial membrane (19). CD40 ligation also upregulates CD54 expression on B cells (46)

35

25

30

35

and induces CD54 dependent homoaggregation of B cells (55). Interestingly, pretreatment of B cells with anti-CD40 mAb augments heterotypic interactions of B cells with activated endothelial cells in vitro in a manner dependent on CD49d (VLA-4)/CD106 interactions (56). Because CD40 ligation did not upregulate B cell CD49d expression, it was hypothesized that CD40 mediated signals induced CD49d activation.

cD40 ligation on B cells or dendritic cells also upregulates expression of MHC Class II, as well as, the costimulatory molecules CD80 and CD86 (36, 37, 50-52). Interestingly, endothelial cells stimulated with rIFN-y are competent to express MHC Class II in vitro (57) and endothelial cells in situ within inflammatory tissue can express MHC Class II (10, 58-60). Moreover, endothelial cells are competent to present Ag to T cells in vitro and deliver appropriate costimulatory signals to T cells required for IL-2 production and proliferation (10, 47-49).

However, it is shown here that CD40L-CD40 interactions do not upregulate MHC Class II, CD80 or CD86 expression on HUVEC in vitro. This finding is consistent with previous studies suggesting that human endothelial cells do not The costimulatory molecules express CD80 (47, 61). expressed on endothelial cells are not precisely known. Work by Pober and colleagues demonstrate that blocking CD2interactions inhibits the (LFA-3) CD54 endothelial cells to induce allogenic T cell proliferation (47, 48). However, it is unclear if CD2-CD58 interactions adhesiveness and/or intercellular costimulatory signals to T cells. It will be of interest to determine if CD40L mediated signals modulate the capacity of endothelial cells to activate T cells.

Finally, endothelial cells are activated in a variety of

-55-

diseases mediated by CD4 T cells. For example, endothelial 5 surface adhesion molecules are upregulated rheumatoid arthritis (62), scleroderma (63) and transplant rejection (64). In addition, CD4 T cells play roles atherosclerosis in (65) and accelerated 10 atherosclerosis associated with transplantation (60). precise mechanistic role of CD40L mediated interactions with endothelial cells in these diseases is not known. However, an antibody to CD40L, MR1, inhibits murine models of diseases mediated by CD4 T cells and/or inflammatory cell 15 infiltrates. For example, MR1 prevents the synovial lining cell hypertrophy and cellular infiltrate associated with collagen-induce arthritis, a murine model of rheumatoid arthritis (66). Moreover, MR1 inhibits a murine model of multiple sclerosis (EAE) and inhibits allograft rejection 20 (67). Blocking CD40L dependent interactions endothelial cells and/or fibroblasts mediates, in part, these effects of MR1. The results disclosed herein suggest that CD40L-CD40 interactions on the surface of endothelial cells play immunopathogenic roles in inflammatory diseases.

25

TABLE 2

Stimuli	HUVEC Expression				
	CD40 (MFI)	CD54 (MFI)			
Media	17	22			
rINF-Y	42	44			
rIL-1α	24	51			
rTNF-α	22	54			

Table 2 Legend. Effect of cytokines on HUVEC CD40 expression. Shown is the mean fluorescence intensity (MFI) of CD40 or CD54 expression on HUVEC cultured in the presence or absence of rIFN- γ (1000 U/ml), rIL-1 α (10 pg/ml) or rTNF- α (200 U/ml) for 48 hours. CD40 or CD54 MFI was determined by FACS analysis and background staining of control mAb is subtracted for each value. Similar results were obtained in 2 additional experiments with different HUVEC lines.

TABLE 3

	HUVEC Expression (MFI)				Ramos Expression (MFI)			
Conditions	CD54	CD80	CD86	MHC II	CD54	CD80	CD86	MHC II
Media	8	0	1	0	22	0	7	128
D1.1	78	0	0	0	71	8	13	223
B2.7	23	0	1	1	25	1	7	127
rIFN-y	16	0	0	97	ND	ND	ND	ND

Table 3 Legend. Effect of CD40L-CD40 interactions on HUVEC MHC Class II, CD80 and CD86 expression. Shown is the mean fluorescence intensity of HUVEC CD54, CD80, CD86 or MHC Class II expression following culture with media, rIFN-y (1000 U/ml), CD40L Jurkat D1.1 cells or CD40L B2.7 cells for 48 hours. In a parallel experiment, the CD40L responsive Ramos 2G6 B cell line (38-39) was cultured with media, CD40L* Jurkat D1.1 cells or CD40L B2.7 cells for 24 hours. HUVEC or Ramos 2G6 MHC Class II, CD54, CD80 and CD86 expresssion was determined by two-color FACS analysis. Background staining of control subtracted for each value. Shown is representative of 3 similar experiments with different HUVEC lines. ND= not done.

WO 97/20063

-58-

REFERENCES FOR BACKGROUND

5

15

- 1. Pauli, S., Ehlin-Henriksson, B., Mellstedt, H., Koho, H., Ben-Aissa, H. Perlmann, P. (1985) A p50 surface antigen restricted to human urinary bladder carcinomas and B lymphocytes. Cancer Immunol. Immunother. 20, 23-28. 10
 - 2. Clark, E.A. Ledbetter, J.A. (1986) Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc. Natl. Acad. Sci. USA. 83, 4494-4498.
- 3. Lederman, S., Yellin, M.J., Krichevsky, A., Belko, J., Lee, J.J. Chess, L. (1992) Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (help). J Exp 20 Med. 175, 1091-1101.
- 4. Lane, P., Traunecker, A., Hubele, S., Inui, S., Lanzavecchia, A. Gray, D. (1992) Activated human T cells express a ligand for the B cell-associated antigen CD40 25 which participates in T cell-dependent activation of B lymphocytes. Eur J Immunol. 22, 2573-2578.
- 5. Armitage, R.J., Fanslow, W.C., Strockbine, L., Sato, T.A., Clifford, K.N., Macduff, B.M., Anderson, D.M., 30 Gimpel, S.D., Davis, S.T., Maliszewski, C.R. et, a.l. (1992) Molecular and biological characterization of a murine ligand for CD40. Nature. 357, 80-82.
- 6. Graf, D., Korthauer, U., Mages, H.W., Senger, G. 35 Kroczek, R.A. (1992) Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol. 22, 3191-3194.
- 7. Hollenbaugh, D., Grosmaire, L.S., Kullas, C.D., Chalupny, N.J., Braesch-Andersen, S., Noelle, R.J., 40 Stamenkovic, I., Ledbetter, J.A. Aruffo, A. (1992) The

-59-

human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: experssion of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 11, 4313-4321.

8. Noelle, R.J., Roy, M., Shepherd, D.M., Stamenkovic, I., Ledbetter, J.A. Aruffo, A. (1992) A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci USA. 89, 6550-6554.

9. Lederman, S., Yellin, M.J., Cleary, A.M., Fortune, S.M. Chess, L. (1994) The understanding of contact-dependent T-cell helper function in molecular, cellular and physiological detail. Res Immunol. 145, 215-220.

15

20

25

30

35

40

- 10. Noelle, R.J., Ledbetter, J.A. Aruffo, A. (1992) CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol Today. 13, 431-433.
 - 11. Banchereau, J., Bazan, F., Blanchard, D., Briere, F., Galizzi, J.P., van Kooten, C., Liu, Y.J., Rousset, F. Saeland, S. (1994) The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881-922.
 - 12. Korthauer, U., D. Graf, H. W. Mages, F. Briere, M. Padayachee, S. Malcolm, A. G. Ugazio, L. D. Notarangelo, R. L. Levinsky and R. A. Kroczek. 1993. Defective expression of T-cell CD40 ligand causes X-linked Immunodeficiency with hyper-IgM. Nature. 361: 539.
 - 13. DiSanto, J. P., J. Y. Bonnefoy, J. F. Gauchat, A. Fischer and G. de Saint Basile. 1993. CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature. 361: 541.

- 5 14. Allen, R. C., R. J. Armitage, M. E. Conley, H. Rosenblatt, N. A. Jenkins, N. G. Copeland, M. A. Bedell, S. Edelhoff, C. M. Disteche, D. K. Simoneaux and a. l. et. 1993. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 259: 990.
- 15. Aruffo, A., M. Farrington, D. Hollenbaugh, X. Li, A. Milatovich, S. Nonoyama, J. Bajorath, L. S. Grosmaire, R. Stenkamp, M. Neubauer and a. l. et. 1993. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 72: 291.
- Ramesh, N., R. Fuleihan, V. Ramesh, S. Lederman, M. J. Yellin, S. Sharma, L. Chess, F. S. Rosen and R. S.
 Geha. 1993. Deletions in the ligand for CD40 in X-linked immunoglobulin deficiency with normal or elevated IgM (HIGMX-1). Int Immunol. 5: 769.
- 17. Kawabe, T., T. Naka, K. Yoshida, T. Tanaka, H. Fujiwara, S. Suematsu, N. Yoshida, T. Kishimoto and H. Kikutani. 1994. The immune response in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1: 167.
- 30 18. Xu, J., T. M. Foy, J. D. Laman, E. A. Elliot, J. J. Dunn, T. J. Waldschmidt, J. Elsemore, R. J. Noelle and R. A. Flavell. 1994. Mice deficient for the CD40 ligand. Immunity. 1: 423.
- 19. Alderson, M. R., R. J. Armitage, T. W. Tough, L. Strockbine, W. C. Fanslow and M. K. Spriggs. 1993. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med. 178: 669.

- 5 20. Caux, C., C. Massacrier, B. Banbervliet, B. Dubois, C. Van Kooten, I. Durand and J. Banchereau. 1994. Activation of human dendritic cells through CD40 crosslinking. J. Exp. Med. 180: 1263.
- 21. Galy, A. H. and H. Spits. 1992. CD40 is functionally expressed on human thymic epithelial cells. J Immunol. 149: 775.
- 22. Freudenthal, P.S. Steinman, R.M. (1990) The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc. Natl. Acad. Sci. USA. 87, 7698-7702.
- 23. Young, L.S., Dawson, C.W., Brown, K.W. Rickinson,
 20 A.B. (1989) Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor of B lymphocytes. Int. J. Cancer. 43, 786-794.
- 25 24. Valent, P., Majdic, O., Maurer, D., Bodger, M., Muhm, M. Bettelheim, P. (1990) Further characterization of surface membrane structures expressed on human basophils and mast cells. Int Arch Allergy Appl Immunol. 91, 198-203.

25. O'Grady, J.T., Stewart, S., Lowrey, J., Howie, S.E.M. Krajewski, A.S. (1994) CD40 expression in hodgkin's disease. Am. J. Path. 144, 21-26.

26. Potocnik, A.J., Kinne, R., Menninger, H., Zacher, J., Emmrich, F. Kroczek, R.A. (1990) Expression of activation antigens on T cells in rheumatoid arthritis patients. Scand. J. Immunol. 31, 213-224.

27. Bevilacqua, M. P. 1993. Endothelial-leukocyte

35

40

30

PCT/US96/19172

WO 97/20063

-62-

adhesion molecules. Ann. Rev. Immunol. 11: 767. 5

28. Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 76: 301.

10

- 29. Bevilacqua, M. P., S. Stengelin, M. A. Gimbrone Jr. 1989. Endothelial leukocyte adhesion Seed. and B. molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science.
- 15 44: 1160.
 - 30. Graber, N., T. Venkat Gopal, D. Wilson, L. Dawson Beall, T. Polte and W. Newman. 1990. T cells bind to cytokine-activated endothelial cells via
- inducible sialoglycoprotein and endothelial leukocyte 20 adhesion molecule-1. J. Immunol. 145: 819.
- 31. Elices, M. J., L. Osborn, Y. Takada, C. Crouse, S. Luhowsky, M. E. Hemler and R. R. Lobb. 1990. VCAM-1 on activated endothelium interacts with the leukocyte 25 integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell. 60: 577.
- 32. Picker, L. J., T. K. Kishimoto, C. Wayne Smith, R. Aaron Warnock and E. C. Butcher. 1991. ELAM-1 is an 30 adhesion molecule for skin-homing T cells. Nature. 349: 796.
- 33. Shimizu, Y., S. Shaw, N. Graber, T. Venkat Gopal, K. J. Horgan, G. A. Van Seventer and W. Newman. 1991. 35 Activation-independent binding of human memory T cells to adhesion molecule ELAM-1. Nature. 349: 799.
- 34. Weller, P. F., T. H. Rand, S. E. Goelz, G. Chi-Rosso and R. R. Lobb. 1991. Human eosinophil adherence to 40 vascular endothelium mediated by binding to vascular cell

-63-

adhesion molecule 1 and endothelial leukocyte adhesion molecule 1. Proc. Nat. Acad. Sci, USA. 88: 7430.

- 35. Weller, A., S. Isenmann and D. Vestweber. 1992. Cloning of the mouse endothelial selectins. Expression of both E- and P-selectin is inducible by tumor necrosis factor α. J. Biol. Chem. 267: 15176.
- 36. Pober, J. S. and R. S. Cotran. 1991. Immunologic interactions of T lymphocytes with vascular endothelium.

 15 Adv Immunol. 50: 261.

REFERENCES FOR FIRST SERIES OF EXPERIMENTS

- Pauli, S., Ehlin-Henriksson, B., Mellstedt, H., Koho,
 H., Ben-Aissa, H. Perlmann, P. (1985) A p50 surface antigen restricted to human urinary bladder carcinomas and B lymphocytes. Cancer Immunol. Immunother. 20, 23-28.
- Clark, E.A. Ledbetter, J.A. (1986) Activation of human
 B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc. Natl. Acad. Sci. USA. 83, 4494-4498.
- 3. Lederman, S., Yellin, M.J., Krichevsky, A., Belko, J.,
 Lee, J.J. Chess, L. (1992) Identification of a novel
 surface protein on activated CD4+ T cells that induces
 contact-dependent B cell differentiation (help). J Exp
 Med. 175, 1091-1101.
- 4. Lane, P., Traunecker, A., Hubele, S., Inui, S., Lanzavecchia, A. Gray, D. (1992) Activated human T cells express a ligand for the B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur J Immunol. 22, 2573-2578.

40

5. Armitage, R.J., Fanslow, W.C., Strockbine, L., Sato,

-64-

- 5 T.A., Clifford, K.N., Macduff, B.M., Anderson, D.M., Gimpel, S.D., Davis, S.T., Maliszewski, C.R. et, a.l. (1992) Molecular and biological characterization of a murine ligand for CD40. Nature. 357, 80-82.
- 10 6. Graf, D., Korthauer, U., Mages, H.W., Senger, G. Kroczek, R.A. (1992) Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol. 22, 3191-3194.
- 7. Hollenbaugh, D., Grosmaire, L.S., Kullas, C.D., Chalupny, N.J., Braesch-Andersen, S., Noelle, R.J., Stamenkovic, I., Ledbetter, J.A. Aruffo, A. (1992) The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: experssion of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 11, 4313-4321.
- 8. Noelle, R.J., Roy, M., Shepherd, D.M., Stamenkovic, I., Ledbetter, J.A. Aruffo, A. (1992) A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci USA. 89, 6550-6554.
- 9. Lederman, S., Yellin, M.J., Cleary, A.M., Fortune, S.M. Chess, L. (1994) The understanding of contact-dependent T-cell helper function in molecular, cellular and physiological detail. Res Immunol. 145, 215-220.
- 10. Noelle, R.J., Ledbetter, J.A. Aruffo, A. (1992) CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol Today. 13, 431-433.
- Banchereau, J., Bazan, F., Blanchard, D., Briere, F., Galizzi, J.P., van Kooten, C., Liu, Y.J., Rousset, F.
 Saeland, S. (1994) The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881-922.

-65-

5 12. Alderson, M.R., Armitage, R.J., Tough, T.W., Strockbine, L., Fanslow, W.C. Spriggs, M.K. (1993) CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med. 178, 669-674.

10

13. Freudenthal, P.S. Steinman, R.M. (1990) The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc. Natl. Acad. Sci. USA. 87, 7698-7702.

15

20

- 14. Young, L.S., Dawson, C.W., Brown, K.W. Rickinson, A.B. (1989) Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor of B lymphocytes. Int. J. Cancer. 43, 786-794.
- 15. Galy, A.H. Spits, H. (1992) CD40 is functionally expressed on human thymic epithelial cells. J Immunol. 149, 775-782.

25

30

- 16. Valent, P., Majdic, O., Maurer, D., Bodger, M., Muhm, M. Bettelheim, P. (1990) Further characterization of surface membrane structures expressed on human basophils and mast cells. Int Arch Allergy Appl Immunol. 91, 198-203.
- 17. O'Grady, J.T., Stewart, S., Lowrey, J., Howie, S.E.M. Krajewski, A.S. (1994) CD40 expression in hodgkin's disease. Am. J. Path. 144, 21-26.

35

18. Potocnik, A.J., Kinne, R., Menninger, H., Zacher, J., Emmrich, F. Kroczek, R.A. (1990) Expression of activation antigens on T cells in rheumatoid arthritis patients. Scand. J. Immunol. 31, 213-224.

40

19. Arnett, F.C., Edworthy, S.M., Bloch, D.A., McShane,

- 5 D.J., Fries, J.F., Cooper, N.S., Healey, L.A., Kapkan, S.R., Liang, M.H., Luthra, H.S., Medsger, T.A.J., Mitchell, D.M., Neustadt, D.H., Pinals, R.S., Schaller, J.G., Sharp, J.T., Wilder, R.L. Hunder, G.G. (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis
- 20. Yellin, M.J., Sinning, J., Covey, L.R., Sherman, W., Lee, J.J., Glickman, N.E., Sippel, K.C., Rogers, J.,

Rheum. 31, 315-324.

20

25

- Cleary, A.M., Parker, M. et, a.l. (1994) T lymphocyte T cell-B cell-activating molecule/CD40-L molecules induce normal B cells or chronic lymphocytic leukemia B cells to express CD80 (B7/BB-1) and enhance their costimulatory activity. J Immunol. 153, 666-674.
- 21. Yellin, M.J., Lee, J.J., Chess, L. Lederman, S. (1991) A human CD4- T cell leukemia subclone with contact-dependent helper function. J Immunol. 147, 3389-3395.
- 22. Aarden, L.A., De Groot, E.R., Schaap, O.L. Lansdorp, P.M. (1987) Production of hybridoma growth factor by human monocytes. Eur. J. Immunol. 17, 1411-1416.
- 30 23. Stamenkovic, I., Clark, E.A. Seed, B. (1989) A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J. 8, 1403-1410.
- 35 24. Springer, T.A. (1990) Adhesion receptors of the immune system. Nature. 346, 425-434.
- 25. Valle, A., Zuber, C.E., Defrance, T., Djossou, O., De Rie, M. Banchereau, J. (1989) Activation of human B lymphocytes through CD40 and interleukin 4. Eur. J. Immunol. 19, 1463-1467.

~67-

5 26. Ranheim, E.A. Kipps, T.J. (1993) Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med. 177, 925-935.

- 27. Raynaud, F., Bauvois, B., Gerbaud, P. Evain, B.D.
 (1992) Characterization of specific proteases associated with the surface of human skin fibroblasts, and their modulation in pathology. J Cell Physiol. 151, 378-385.
- 28. Clark, E.A. Shu, G. (1990) Association between IL-6 and CD40 signalling: IL-6 induces phosphorylation of CD40 receptors. J Immunol. 145, 1400-1406.
- 29. Firestein, G.S., Alvaro, G.J.M., Maki, R. Alvaro, G.J.M. (1990) Quantitative analysis of cytokine gene
 20 expression in rheumatoid arthritis. J Immunol. 144, 3347-3353.
- 30. Arend, W.P. Dayer, J.M. (1990) Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis.

 25 Arthritis Rheum. 33, 305-315.
 - 31. Bucala, R., Ritchlin, C., Winchester, R. Cerami, A. (1991) Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts. J Exp Med. 173, 569-574.

30

35

40

- 32. Butler, D.M., Piccoli, D.S., Hart, P.H. Hamilton, J.A. (1988) Stimulation of human synovial fibroblast DNA synthesis by recombinant human cytokines. J Rheumatol. 15, 1463-1470.
- 33. Fleischmajer, R., Perlish, J.S. Reeves, J.R.T. (1977) Cellular Infiltrates in scleroderma skin. Arthritis Rheum. 20, 975-983.

34. Furst, D.E., Clements, P.J., Granze, P., Gale, R.

- Roberts, N. (1979) A syndrome resembling progressive systemic sclerosis after bone marrow transplantation. A model for scleroderma? Arthritis Rheum. 22, 904-910.
- 35. Ferrara, J.L.M. Deeg, H.J. (1991) Mechanisms of disease. Graft-versus-host disease. N. Engl. J. Med. 324, 667-674.
- 36. Fishel, R., Barbul, A., Wasserkrug, H.L., Penberthy, L.T., Rettura, G. Efron, G. (1983) Cyclosporine A impairs wound healing in rats. J. Surg. Res. 34, 572-575.
 - 37. Peterson, J.M., Barbul, A., Breslin, R.J., Wasserkrug, H.L. Efron, G. (1987) Significance of T-lymphocytes in wound healing. Surgery. 102, 300-304.
- 38. Schrier, D.J., Phan, S.H. McGarry, B.M. (1983) The effects of the nude (nu/nu) mutation on bleomycin-induced pulmonary fibrosis. Am. Rev. Respir. Dis. 127, 614-617.
- 39. Allen, J.B., Malone, D.G., Wahl, S.M., Calandra, G.B. Wilder, R.L. (1985) Role of the thymus in streptococcal cell wall-induced arthritis and hepatic granuloma formation. Comparative studies of pathology and cell wall distribution in athymic and euthymic rats. J. Clin. Invest. 76, 1042-1056.
 - 40. Wahl, S.M., Hunt, D.A., Allen, J.B., Wilder, R.L., Paglia, L. Hand, A.R. (1986) Bacterial cell wall-induced hepatic granulomas. An in vivo model of T cell-dependent fibrosis. J. Exp. Med. 163, 884-902.

35

40

41. Dayer, J.M., Breard, J., Chess, L. Krane, S.M. (1979) Participation of monocyte-macrophages and lymphocytes in the production of a factor that stimulates collagenase and prostaglandin release by rheumatoid synovial cells. J. Clin. Invest. 64, 1386-1392.

- 5 42. Dayer, J.M., Beutler, B. Ceram, A. (1985) Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J. Exp. Med. 162, 2163-2168.
- 10 43. Dayer, J.M., de Rochemonteix, B., Burrus, B., Cemczuk, S. Dinarello, C.A. (1986) Human recombinant inteleukin 1 stimulates collagenase and prostaglandin E2 production by human synovial cells. J Clin Invest. 77, 645-648.

44. Ishikawa, H. Ziff, M. (1976) Electron microscopic observations of immunoreactive cells in the rheumatoid synovial membrane. Arthritis Rheum. 19, 1-14.

15

35

40

- 45. Golay, J., Cusmano, G. Introna, M. (1992) Independent regulation of m-myc, B-myb, and c-myb gene expression by inducers and inhibitors of proliferation in human B lymphocytes. J Immunol. 149, 300-308.
- 46. Qu, Z., Hernandez Garcia, C., O'Rourke, L.M., Planck, S.R., Kohli, M. Rosenbaum, J.T. (1994) Local proliferation of fibroblast-like synoviocytes contributes to synovial hyperplasia: results of proliferating cell nuclear antigen/cyclin, c-myc, and nucleolar organizer staining. Arthritis Rheum. 2, 212-220.
 - 47. Van Seventer, G.A., Newman, W., Shimizu, Y., Nutman, T.B., Tanaka, Y., Horgan, K.J., Gopal, T.V., Ennis, E., O'Sullivan, D., Grey, H. Shaw, S. (1991) Analysis of T cell stimulation by superantigen plus major histocompatibility complex class II molecules or by CD3 monoclonal antibody: costimulation by purified adhesion ligands VCAM-1, ICAM-1, but not ELAM-1. J Exp Med. 174, 901-913.

48. Hale, L.P., Martin, M.E., McCollum, D.E., Nunley,

15

40

1245-1253.

- J.A., Springer, T.A., Singer, K.H. Haynes, B.F. (1989) Immunohistologic analysis of the distribution of cell adhesion molecules within the inflammatory synovial microenvironment. Arthritis Rheum. 32, 22-30.
- 10 49. Morales, D.J., Wayner, E., Elices, M.J., Alvaro, G.J.M., Zvaifler, N.J. Firestein, G.S. (1992) Alpha 4/beta 1 integrin (VLA-4) ligands in arthritis. Vascular cell adhesion molecule-1 expression in synovium and on fibroblast-like synoviocytes. J Immunol. 149, 1424-1431.
- 50. Kriegsmann, J., Keyszer, G.M., Geiler, T., Brauer, R., Gay, R.E. Gay, S. (1995) Expression of vascular cell adhesion molecule-1 mRNA and protein in rheumatoid synovium demonstrated by in situ hybridization and immunohistochemistry. Lab Invest. 72, 208-214.
- 51. Marlor, C.W., Webb, D.L., Bombara, M.P., Greve, J.M. Blue, M.L. (1992) Expression of vascular cell adhesion molecule-1 in fibroblastlike synoviocytes after stimulation with tumor necrosis factor. Am J Pathol. 140, 1055-1060.
- 52. Chin, J.E., Winterrowd, G.E., Krzesicki, R.F. Sanders, M.E. (1990) Role of cytokines in inflammatory synovitis. The coordinate regulation of intercellular adhesion molecule 1 and HLA class I and class II antigens in rheumatoid synovial fibroblasts. Arthritis Rheum. 33, 1776-1786.
- 35 53. Krzesicki, R.F., Fleming, W.E., Winterrowd, G.E., Hatfield, C.A., Sanders, M.E. Chin, J.E. (1991) T lymphocyte adhesion to human synovial fibroblasts. Role of cytokines and the interaction between intercellular adhesion molecule 1 and CD11a/CD18. Arthritis Rheum. 34,

-71-

5 54. Durie, F.H., Fava, R.A., Foy, T.M., Aruffo, A., Ledbetter, J.A. Noelle, R.J. (1993) Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science. 261, 1328-1330.

10 REFERENCES FOR SECOND SERIES OF EXPERIMENTS

- 1. Bevilacqua, M. P. 1993. Endothelial-leukocyte adhesion molecules. Ann. Rev. Immunol. 11: 767.
- 2. Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 76: 301.
- 3. Bevilacqua, M. P., S. Stengelin, M. A. Gimbrone Jr.
 20 and B. Seed. 1989. Endothelial leukocyte adhesion
 molecule 1: an inducible receptor for neutrophils related
 to complement regulatory proteins and lectins. Science.
 44: 1160.
- 4. Graber, N., T. Venkat Gopal, D. Wilson, L. Dawson Beall, T. Polte and W. Newman. 1990. T cells bind to cytokine-activated endothelial cells via a novel, inducible sialoglycoprotein and endothelial leukocyte adhesion molecule-1. J. Immunol. 145: 819.

30

35

- 5. Elices, M. J., L. Osborn, Y. Takada, C. Crouse, S. Luhowsky, M. E. Hemler and R. R. Lobb. 1990. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell. 60: 577.
- 6. Picker, L. J., T. K. Kishimoto, C. Wayne Smith, R. Aaron Warnock and E. C. Butcher. 1991. ELAM-1 is an adhesion molecule for skin-homing T cells. Nature. 349: 796.

WO 97/20063

-72-

- 7. Shimizu, Y., S. Shaw, N. Graber, T. Venkat Gopal, K. 5 J. Horgan, G. A. Van Seventer and W. Newman. 1991. Activation-independent binding of human memory T cells to adhesion molecule ELAM-1. Nature. 349: 799.
- 8. Weller, P. F., T. H. Rand, S. E. Goelz, G. Chi-Rosso and R. R. Lobb. 1991. Human eosinophil adherence to 10 vascular endothelium mediated by binding to vascular cell adhesion molecule 1 and endothelial leukocyte adhesion
- Weller, A., S. Isenmann and D. Vestweber. 1992. 15 Cloning of the mouse endothelial selectins. Expression of both E- and P-selectin is inducible by tumor necrosis factor α. J. Biol. Chem. 267: 15176.

molecule 1. Proc. Nat. Acad. Sci, USA. 88: 7430.

- Pober, J. S. and R. S. Cotran. 1991. Immunologic 20 interactions of T lymphocytes with vascular endothelium. Adv Immunol. 50: 261.
- 11. Potocnik, A. J., R. Kinne, H. Menninger, J. Zacher, F. Emmrich and R. A. Kroczek. 1990. Expression of 25 activation antigens on T cells in rheumatoid arthritis patients. Scand. J. Immunol. 31: 213.
- Pauli, S., B. Ehlin-Henriksson, H. Mellstedt, H. 12. Koho, H. Ben-Aissa and P. Perlmann. 1985. A p50 surface 30 antigen restricted to human urinary bladder carcinomas and B lymphocytes. Cancer Immunol. Immunother.
- Clark, E. A. and J. A. Ledbetter. 1986. Activation of human B cells mediated through two distinct cell 35 surface differentiation antigens, Bp35 and Bp50. Proc. Natl. Acad. Sci. USA. 83: 4494.
- Alderson, M. R., R. J. Armitage, T. W. Tough, L. 14. Strockbine, W. C. Fanslow and M. K. Spriggs. 1993. CD40 40 expression by human monocytes: regulation by cytokines

- and activation of monocytes by the ligand for CD40. J Exp Med. 178: 669.
- 15. Freudenthal, P. S. and R. M. Steinman. 1990. The distinct surface of human blood dendritic cells, as
 10 observed after an improved isolation method. Proc. Natl. Acad. Sci. USA. 87: 7698.
- Valent, P., O. Majdic, D. Maurer, M. Bodger, M. Muhm and P. Bettelheim. 1990. Further characterization of surface membrane structures expressed on human basophils and mast cells. Int Arch Allergy Appl Immunol. 91: 198.
- 17. Young, L. S., C. W. Dawson, K. W. Brown and A. B. Rickinson. 1989. Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor of B lymphocytes. Int. J. Cancer. 43: 786.
- 18. Galy, A. H. and H. Spits. 1992. CD40 is functionally expressed on human thymic epithelial cells. J Immunol. 149: 775.
- Lederman, S., M. J. Yellin, A. Krichevsky, J. Belko, J. J. Lee and L. Chess. 1992. Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (help). J Exp Med. 175: 1091.
- 21. Lane, P., A. Traunecker, S. Hubele, S. Inui, A. Lanzavecchia and D. Gray. 1992. Activated human T cells express a ligand for the B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur J Immunol. 22: 2573.
- 40 22. Armitage, R. J., W. C. Fanslow, L. Strockbine, T. A. Sato, K. N. Clifford, B. M. Macduff, D. M. Anderson, S.

- D. Gimpel, S. T. Davis, C. R. Maliszewski and a. l. et. 1992. Molecular and biological characterization of a murine ligand for CD40. Nature. 357: 80.
- 23. Graf, D., U. Korthauer, H. W. Mages, G. Senger and R. A. Kroczek. 1992. Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol. 22: 3191.
 - 24. Hollenbaugh, D., L. S. Grosmaire, C. D. Kullas, N. J. Chalupny, S. Braesch-Andersen, R. J. Noelle, I.
- 15 Stamenkovic, J. A. Ledbetter and A. Aruffo. 1992. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: experssion of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 11: 4313.

20

- 25. Noelle, R. J., M. Roy, D. M. Shepherd, I. Stamenkovic, J. A. Ledbetter and A. Aruffo. 1992. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells.
- 25 Proc Natl Acad Sci USA. 89: 6550.
 - 26. Lederman, S., M. J. Yellin, A. M. Cleary, S. M. Fortune and L. Chess. 1994. The understanding of contact-dependent T-cell helper function in molecular, cellular and physiological detail. Res Immunol. 145: 215.
 - 27. Noelle, R. J., J. A. Ledbetter and A. Aruffo. 1992. CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol Today.
- 35 13: 431.
 - 28. Banchereau, J., F. Bazan, D. Blanchard, F. Briere, J. P. Galizzi, C. van Kooten, Y. J. Liu, F. Rousset and S. Saeland. 1994. The CD40 antigen and its ligand. Annu.
- 40 Rev. Immunol. 12: 881.

5 29. Korthauer, U., D. Graf, H. W. Mages, F. Briere, M. Padayachee, S. Malcolm, A. G. Ugazio, L. D. Notarangelo, R. L. Levinsky and R. A. Kroczek. 1993. Defective expression of T-cell CD40 ligand causes X-linked Immunodeficiency with hyper-IgM. Nature. 361: 539.

10

30. DiSanto, J. P., J. Y. Bonnefoy, J. F. Gauchat, A. Fischer and G. de Saint Basile. 1993. CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature. 361: 541.

15

20

- 31. Allen, R. C., R. J. Armitage, M. E. Conley, H. Rosenblatt, N. A. Jenkins, N. G. Copeland, M. A. Bedell, S. Edelhoff, C. M. Disteche, D. K. Simoneaux and a. 1. et. 1993. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 259: 990.
- 32. Aruffo, A., M. Farrington, D. Hollenbaugh, X. Li, A. Milatovich, S. Nonoyama, J. Bajorath, L. S. Grosmaire, R. Stenkamp, M. Neubauer and a. l. et. 1993. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 72: 291.
- 33. Ramesh, N., R. Fuleihan, V. Ramesh, S. Lederman, M. J. Yellin, S. Sharma, L. Chess, F. S. Rosen and R. S. Geha. 1993. Deletions in the ligand for CD40 in X-linked immunoglobulin deficiency with normal or elevated IgM (HIGMX-1). Int Immunol. 5: 769.

35

40

34. Kawabe, T., T. Naka, K. Yoshida, T. Tanaka, H. Fujiwara, S. Suematsu, N. Yoshida, T. Kishimoto and H. Kikutani. 1994. The immune response in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1: 167.

WO 97/20063

-76-

- 35. Xu, J., T. M. Foy, J. D. Laman, E. A. Elliot, J. J. 5 Dunn, T. J. Waldschmidt, J. Elsemore, R. J. Noelle and R. A. Flavell. 1994. Mice deficient for the CD40 ligand. Immunity. 1: 423.
- 36. Caux, C., C. Massacrier, B. Banbervliet, B. Dubois, 10 C. Van Kooten, I. Durand and J. Banchereau. Activation of human dendritic cells through CD40 crosslinking. J. Exp. Med. 180: 1263.
- 37. Yellin, M. J., J. Sinning, L. R. Covey, W. Sherman, 15 J. J. Lee, N. E. Glickman, K. C. Sippel, J. Rogers, A. M. Cleary, M. Parker and a. l. et. 1994. T lymphocyte T cell-B cell-activating molecule/CD40-L molecules induce normal B cells or chronic lymphocytic leukemia B cells to express CD80 (B7/BB-1) and enhance their costimulatory 20 activity. J Immunol. 153: 666.
- 38. Lederman, S., M. J. Yellin, G. Inghirami, J. J. Lee, D. M. Knowles and L. Chess. 1992. Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid 25 Roles of T cell-B-cell-activating molecule (5c8 antigen) and CD40 in contact-dependent help. J Immunol. 149: 3817.
- Lederman, S., M. J. Yellin, A. M. Cleary, A. Pernis, 30 G. Inghirami, L. E. Cohn, L. R. Covey, J. J. Lee, P. Rothman and L. Chess. 1994. T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells from programmed cell death. J Immunoi. 152: 2163. 35
 - Jaffe, E., R. Nachman, C. Becker and R. Minick. 1973. Culture of human endothelial cells derived from Identification by morphologic and umbilical veins. immunologic criteria. J. Clin. Invest. 52: 2745.

- 5 41. Thornton, S., S. Mueller and E. Levine. 1983. Human endothelial cells: use of heparin in long term cloning and serial cultivation. **Science**. 222: 623.
- 42. Yellin, M. J., J. J. Lee, L. Chess and S. Lederman.
 10 1991. A human CD4- T cell leukemia subclone with contactdependent helper function. J Immunol. 147: 3389.
- 43. Holthofer, H., I. Virtanen, A. L. Kariniemi, M. Hormia, E. Linder and A. Miettinen. 1982. Ulex europaeus I lectin as a marker for vascular endothelium in human tissue. Lab. Invest. 47: 60.
- 44. Fina, L., H. V. Molgaard, D. Robertson, N. J. Bradley, P. Monaghan, D. Delia, R. D. Sutherland, M. A. Baker and M. F. Greaves. 1990. Expression of the CD34 gene in vascular endothelial cells. **Blood**. 75: 2417.
- 45. Stamenkovic, I., E. A. Clark and B. Seed. 1989. A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J. 8: 1403.
- 46. Ranheim, E. A. and T. J. Kipps. 1993. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med. 177: 925.

35

- 47. Hughes, C. C., C. O. Savage and J. S. Pober. 1990. The endothelial cell as a regulator of T-cell function. Immunol Rev. 117: 85.
- 48. Hughes, C. C. W., C. O. S. Savage and J. S. Prober. 1990. Endothelial cells augment T cell interleukin 2 production by a contact-dependent mechanism involving CD2/LFA-3 interactions. J. Exp. Med. 171: 1453.

WO 97/20063

-78-

- Guinan, E. C., B. R. Smith, J. T. Doukas, R. A. 5 Miller and J. S. Pober. 1989. Vascular endothelial cells enhance T cell responses by markedly augmenting IL-2 concentrations. Cell. Immunol. 118: 166.
- Azuma, M., D. Ito, H. Yagita, K. Okumura, J. H. 10 Phillips, L. L. Lanier and C. Somoza. 1993. B70 antigen is a second ligand for CTLA-4 and CD28. Nature. 366: 76.
- 51. Kennedy, M. K., K. M. Mohler, K. D. Shanebeck, P. R. Baum, K. S. Picha, C. A. Otten-Evans, C. A. Janeway and 15 K. H. Grabstein. 1994. Induction of B cell costimulatory function by recombinant murine CD40 ligand. Eur. J. Immunol. 24: 116.
- Maliszewski, C. R., K. Grabstein, W. C. Fanslow, R. 20 Armitage, M. K. Spriggs and T. A. Sato. 1993. Recombinant CD40 ligand stimulation of murine B cell growth and differentiation: cooperative effects of cytokines. Eur J Immunol. 23: 1044.
- Spriggs, M. K., R. J. Armitage, L. Strockbine, K. N. Clifford, B. M. Macduff, T. A. Sato, C. R. Maliszewski and W. C. Fanslow. 1992. Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. J Exp Med. 176: 1543. 30

25

- 54. Yellin, M. J., K. Sippel, G. Inghirami, L. R. Covey, J. J. Lee, J. Sinning, E. A. Clark, L. Chess and S. Lederman. 1994. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J Immunol. 152: 598.
- Barrett, T. B., G. Shu and E. A. Clark. 1991. CD40 signalling activates CD11a/CD18 (LFA-1)-mediated adhesion 40 in B cells. J. Immunol. 146: 1722.

- 5 56. Flores-Romo, L., D. Estoppey and K. B. Bacon. 1993. Anti-CD40 antibody stimulates the VLA-4-dependent adhesion of normal and LFA-1-deficient B cells to endothelium. Immunology. 79: 445.
- 10 57. Collins, T., A. J. Korman, C. T. Wake, J. M. Boss, D. J. Kappes, W. Fiers, K. A. Ault, M. A. Gimbrone Jr., Strominger and J. S. Prober. 1984. Immune interferon activates multiple class major histocompatibility complex genes and the associated 15 invariant chain gene in human endothelial cells dermal fibroblasts. Proc. Natl. Acad. Sci, USA. 81: 4917.
- 58. Barkley, D., S. Allard, M. Feldmann and R. N. Maini.
 1989. Increased expression of HLA-DQ antigens by interstitial cells and endothelium in the synovial membrane of rheumatoid arthritis patients compared with reactive arthritis patients. Arthrit. Rheum. 32: 955.
- 59. Gruschwitz, M., N. Sepp, H. Kofler and G. Wick. 1991. Expression of class II-MHC antigens in the dermis of patients with progressive systemic sclerosis. Immunobiology. 182: 234.
- 30 60. Salomon, R. N., C. C. W. Huges, F. J. Schoen, D. D. Payne, J. S. Pober and P. Libby. 1991. Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells. Am. J. Path. 138: 791.

61. Murray, A. G., M. M. Khodadoust, J. S. Pober and A. L. M. Bothwell. 1994. Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity. 1: 57.

-80-

5 62. Koch, A. E., J. C. Burrows, G. K. Haines, T. M. Carlos, J. M. Harlan and S. Joseph Leibovich. 1991. Immunolocalization of endothelial and leukocyte adhesion molecules in human rheumatoid arthritis and osteoarthritis synovial tissues. Lab. Invest. 64: 313.

- 63. Gruschwitz, M. S., O. P. Hornstein and P. von den Driesch. 1995. Correlation of soluble adhesion molecules in the peripheral blood of scleroderma patients with their in situ expression and with disease activity.
- 15 Arthrit. Rheum. 38: 184.
- 64. Brockmeyer, C., M. Ulbrecht, D. J. Schendel, E. H. Weiss, G. Hillebrand, K. Burkhardt, W. Land, M. J. Gokel, G. Riethmuller and H. E. Feucht. 1993. Distribution of cell adhesion molecules (ICAM-1, VCAM-1 and ELAM-1) in renal tissue during allograft rejection. Transplantation. 55: 610.
- 65. Wick, G., G. Schett, A. Amberger, R. Kleindienst and Q. Xu. 1995. Is atherosclerosis an immunologically mediated disease. Immunol. Today. 16: 27.
- 66. Durie, F. H., R. A. Fava, T. M. Foy, A. Aruffo, J. A. Ledbetter and R. J. Noelle. 1993. Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science. 261: 1328.
- 67. Durie, F. H., T. M. Foy and R. J. Noelle. 1994. The role of CD40 and its ligand (gp39) in peripheral and central tolerance and its contribution to autoimmune disease. Res. Immunol. 145: 200.

-81-

5 SEQUENCE LISTING (1) GENERAL INFORMATION: 10 (i) APPLICANTS: Yellin, Michael J. Lederman, Seth Chess, Leonard Karpusas, Mihail N. Thomas, David W. 15 (ii) TITLE OF INVENTION: THERAPEUTIC APPLICATIONS FOR THE ANTI-T-BAM (CD40-L) MONOCLONAL ANTIBODY 5c8 20 (iii) NUMBER OF SEQUENCES: 1 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Cooper & Dunham LLP 25 (B) STREET: 1185 Avenue of the Americas (C) CITY: New York (D) STATE: New York (E) COUNTRY: USA (F) ZIP: 10036 30 (V) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS 35 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: Not Yet Known 40 (B) FILING DATE: Herewith (C) CLASSIFICATION: (vii) PREVIOUS APPLICATION DATA: (A) APPLICATION NUMBER: US 08/566,258 45 (B) FILING DATE: 01-DEC-1995 (C) CLASSIFICATION (vii) PREVIOUS APPLICATION DATA: (A) APPLICATION NUMBER: US 08/567,391 50 (B) FILING DATE: 01-DEC-1995 (C) CLASSIFICATION (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: White Esq., John P. 55 (B) REGISTRATION NUMBER: 28,678 (C) REFERENCE/DOCKET NUMBER: 47279-B (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (212)278 0400 60 (B) TELEFAX: (212)391 0525

-82-

5	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:1:							
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 146 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 														
		(ii)	MOI	ECUI	E TY	PE:	prot	ein							
15	((iii)	HYF	POTHE	TICA	L: N	10								
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:														
	Gly 1	Asp	Gln	Asn	Pro 5	Gln	Ile	Ala	Ala	His 10	Val	Ile	Ser	Glu	
25	Ala 15	Ser	Ser	Lys	Thr	Thr 20	Ser	Val	Leu	Gln	Trp 25	Ala	Glu	Lys	
30	Gly	Tyr 30	Tyr	Thr	Met	Ser	Asn 35	Asn	Leu	Val	Thr	Leu 40	Glu	Asn	
	Gly	Lys	Gln 45	Leu	Thr	Val	Lys	Arg 50	Gln	Gly	Leu	Tyr	Tyr 55	Ile	
35	Tyr	Ala	Gln	Val 60	Thr	Phe	Cys	Ser	Asn 65	Arg	Glu	Ala	Ser	Ser 70	
	Gln	Ala	Pro	Phe	Ile 75	Ala	Ser	Leu	Cys	Leu 80	Lys	Ser	Pro	Gly	
40	Arg 85	Phe	Glu	Arg	Ile	Leu 90	Leu	Arg	Ala	Ala	Asn 95	Thr	His	Ser	
4.5	Ser	Ala 100		Pro	Cys	Gly	Gln 105	Gln	Ser	Ile	His	Leu 110	Gly	Gly	
45	Val	Phe	Glu 115	Leu	Gln	Pro	Gly	Ala 120	Ser	Val	Phe	Val	Asn 125	Val	
50	Thr	Asp	Pro	Ser 130		Val	Ser	His	Gly 135	Thr	Gly	Phe	Thr	Ser 140	
	Phe	Gly	Leu	Leu	Lys 145										

5

What is claimed is:

A method of inhibiting activation by CD40 ligand of cells bearing CD40 on the cell surface, other than
 B cells, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells.

The method of claim 1, wherein the CD40-bearing cells are selected from the group consisting of fibroblasts, endothelial cells, epithelial cells, T cells, basophils, macrophages, Reed-Steinberg cells, and dendritic cells.

20

- 3. The method of claim 2, wherein the epithelial cells are keratinocytes.
- 4. The method of claim 1, wherein the agent inhibits binding of CD40 ligand to CD40 on the cells.
 - 5. The method of claim 1, wherein the agent is a protein.
- The method of claim 5, wherein the protein comprises an antibody or portion thereof.
 - 7. The method of claim 6, wherein the antibody is a monoclonal antibody.

- 8. The method of claim 7, wherein the monoclonal antibody is a chimeric antibody.
- 9. The method of claim 7, wherein the monoclonal antibody is a humanized antibody.

-84-

5 10. The method of claim 7, wherein the monoclonal antibody is a primatized antibody.

- 11. The method of claim 6, wherein the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain.
 - 12. The method of claim 6, wherein the portion of the antibody comprises a complementarity determining region or a variable region.
- 13. The method of claim 12, wherein the portion of the antibody comprises a Fab, or a single chain antibody.
- 20 14. The method of claim 5, wherein the protein comprises soluble extracellular region of CD40 ligand, or variants thereof including conservative substituents, or portion thereof; or soluble extracellular region of CD40, or variants thereof including conservative substituents, or portion thereof.
- 15. The method of claim 14, wherein the soluble extracellular region of CD40 ligand or CD40 is a monomer.
 - 16. The method of claim 14, wherein the soluble extracellular region of CD40 is an oligomer.
- 35 17. The method of claim 14, wherein the protein comprising soluble extracellular region of CD40 or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof.

40

18. The method of claim 17, wherein the Fc region is

-85-

5 capable of binding to protein A or protein G.

19. The method of claim 17, wherein the Fc region comprises IgG, IgA, IgM, IgD, or IgE, or subclasses thereof.

10

- The method of claim 19, wherein:
 the IgG is IgG₁, IgG₂, IgG₃, or IgG₄; or
 the IgA is IgA₁ or IgA₂.
- 15 21. The method of claim 1, wherein the agent specifically binds to the antigen to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically binds.
- 20 22. The method of claim 21, wherein the agent is an antibody.
- 23. The method of claim 22, wherein the antibody is monoclonal antibody 5c8 (ATCC Accession No. HB 10916).
 - 24. The method of claim 1, wherein the agent is a small molecule.
- 30 25. The method of claim 1, wherein the agent specifically binds to CD40 on the cell surface.
 - 26. The method of claim 25, wherein the agent is a protein.

- 27. The method of claim 26, wherein the protein is an antibody.
- 28. The method of claim 27, wherein the antibody is a monoclonal antibody.

- 5 29. The method of claim 28, wherein the monoclonal antibody is chimeric, humanized, or primatized.
 - 30. The method of claim 26, wherein the protein comprises the extracellular region of CD40 ligand.
- 10
 31. The method of claim 1, wherein the agent is nonprotein.
- 32. The method of claim 1, wherein the agent is selected from a library of known agents.
 - 33. The method of claim 1, wherein the agent is modified from a known agent.
- 34. The method of claim 33, wherein the modified agent is designed by structure optimization of a lead inhibitory agent based on a three-dimensional structure of a complex of soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitory agent.
 - 35. The method of claim 1, wherein the agent is selected by a screening method, which comprises:
- 30 isolating a sample of cells;

culturing the sample under conditions permitting activation of CD40-bearing cells;

ontacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, effective to

-87-

5 activate the CD40-bearing cells;

contacting the sample with an amount of the agent effective to inhibit activation of the CD40-bearing cells if the agent is capable of inhibiting activation of the CD40-bearing cells; and

determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, activate the CD40-bearing cells in the presence of the agent.

20

10

15

- 36. The method of claim 35, wherein the agent is selected from a library of known agents.
- 25 37. The method of claim 36, wherein the known agents are nonprotein agents.
- 38. A method of inhibiting activation by CD40 ligand of cells bearing CD40 on the cell surface, other than B cells, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells in the subject.

35

40

39. The method of claim 38, wherein the CD40-bearing cells are selected from the group consisting of fibroblasts, endothelial cells, epithelial cells, T cells, basophils, macrophages, Reed-Steinberg cells, and dendritic cells.

-88-

5 40. The method of claim 39, wherein the epithelial cells are keratinocytes.

- 41. The method of claim 38, wherein the agent inhibits binding of CD40 ligand to CD40 on the cells.
- 10
 42. The method of claim 38, wherein the agent is a protein.
- 43. The method of claim 42, wherein the protein comprises an antibody or portion thereof.
 - 44. The method of claim 43, wherein the antibody is a monoclonal antibody.
- 20 45. The method of claim 43, wherein the monoclonal antibody is a chimeric antibody.

25

- 46. The method of claim 44, wherein the monoclonal antibody is a humanized antibody.
- 47. The method of claim 44, wherein the monoclonal antibody is a primatized antibody.
- 48. The method of claim 43, wherein the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain.
- 49. The method of claim 43, wherein the portion of the antibody comprises a complementarity determining region or a variable region.
 - 50. The method of claim 49, wherein the portion of the antibody comprises a Fab, or a single chain antibody.
 - 51. The method of claim 38, wherein the agent

-89-

specifically binds to the antigen to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically binds.

- 52 The method of claim 51, wherein the agent is an antibody.
 - 53. The method of claim 52, wherein the antibody is monoclonal antibody 5c8 (ATCC Accession No. HB 10916).

- 54. The method of claim 38, wherein the subject is a mammal.
- 55. The method of claim 54, wherein the mammalian subject is a human.
 - 56. The method of claim 54, wherein the mammalian subject is a rodent.
- The method of claim 38, wherein the protein comprises soluble extracellular region of CD40 ligand, or variants thereof including conservative substituents, or portion thereof; or soluble extracellular region of CD40, or variants thereof including conservative substituents, or portion thereof.
- 58. The method of claim 57, wherein the soluble extracellular region of CD40 ligand or CD40 is a monomer.
 - 59. The method of claim 57, wherein the soluble extracellular region of CD40 is an oligomer.
- 40 60. The method of claim 57, wherein the protein comprising soluble extracellular region of CD40 or

-90-

- portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof.
- 61. The method of claim 60, wherein the Fc region is capable of binding to protein A or protein G.
 - 62. The method of claim 60, wherein the Fc region comprises IgG, IgA, IgM, IgD, or IgE, or subclasses thereof.
- 63. The method of claim 62, wherein:
 the IgG is IgG₁, IgG₂, IgG₃, or IgG₄; or
 the IgA is IgA₁ or IgA₂.
- 20 64. The method of claim 38, wherein the agent is a small molecule.
 - 65. The method of claim 38, wherein the agent specifically binds to CD40 on the cell surface.
- 66. The method of claim 65, wherein the agent is a protein.
- 67. The method of claim 66, wherein the protein is an antibody.
 - 68. The method of claim 67, wherein the antibody is a monoclonal antibody.
- 35 69. The method of claim 68, wherein the monoclonal antibody is chimeric, humanized, or primatized.
 - 70. The method of claim 66, wherein the protein comprises the extracellular region of CD40 ligand.
- 40
 71. The method of claim 38, wherein the agent is

5 nonprotein.

40

- 72. The method of claim 38, wherein the agent is selected from a library of known agents.
- 10 73. The method of claim 38, wherein the agent is modified from a known agent.
- 74. The method of claim 73 wherein the modified agent is designed by structure optimization of a lead inhibitory agent based on a three-dimensional structure of a complex of soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitory agent.
- 75. The method of claim 38, wherein the agent is selected by a screening method, which comprises:

isolating a sample of cells;

- culturing the sample under conditions permitting activation of CD40-bearing cells;
- contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, effective to activate the CD40-bearing cells;

contacting the sample with an amount of the agent effective to inhibit activation of the CD40-bearing cells if the agent is capable of inhibiting activation of the CD40-bearing cells; and

-92-

determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, activate the CD40-bearing cells in the presence of the agent.

- 15 76. The method of claim 75, wherein the agent is selected from a library of known agents.
 - 77. The method of claim 76, wherein the known agents are nonprotein agents.
 - 78. A method of inhibiting an inflammatory response in a subject, comprising the method of claim 38.

20

35

- 79. A method of treating a condition dependent on CD40 ligand-induced activation of fibroblast cells in a subject, comprising the method of claim 38.
- 80. The method of claim 79, wherein the fibroblasts are synovial membrane fibroblasts, dermal fibroblasts, pulmonary fibroblasts, or liver fibroblasts.
 - 81. The method of claim 79, wherein the condition is selected from the group consisting of arthritis, scleroderma, and fibrosis.
 - 82. The method of claim 81, wherein the arthritis is rheumatoid arthritis, non-rheumatoid inflammatory arthritis, arthritis associated with Lyme disease, or osteoarthritis.
 - 83. The method of claim 81, wherein the fibrosis is

-93-

5 pulmonary fibrosis, hypersensitivity pulmonary fibrosis, or a pneumoconiosis.

- 84. The method of claim 83, wherein the pulmonary fibrosis is pulmonary fibrosis secondary to adult respiratory distress syndrome, drug-induced pulmonary fibrosis, idiopathic pulmonary fibrosis, or hypersensitivity pneumonitis.
- 85. The method of claim 83, wherein the pneumoconiosis is asbestosis, siliconosis, or Farmer's lung.
 - 86. The method of claim 81, wherein the fibrosis is a fibrotic disease of the liver or lung.
- 20 87. The method of claim 86, wherein the fibrotic disease of the lung is caused by rheumatoid arthritis or scleroderma.
- 88. The method of claim 86, wherein the fibrotic disease of the liver is selected from the group consisting of:

Hepatitis-C;

Hepatitis-B;

cirrhosis:

40

cirrhosis of the liver secondary to a toxic insult:

cirrhosis of the liver secondary to drugs; cirrhosis of the liver secondary to a viral infection; and

- cirrhosis of the liver secondary to an autoimmune disease.
 - 89. The method of claim 88, wherein the toxic insult is alcohol consumption.
 - 90. The method of claim 88, wherein the viral infection

-94-

is Hepatitis B, Hepatitis C, or hepatitis non-B non-C.

- 91. The method of claim 88, wherein the autoimmune disease is primary biliary cirrhosis, or Lupoid hepatitis.
 - 92. A method of treating a condition dependent on CD40 ligand-induced activation of endothelial cells in a subject, comprising the method of claim 38.
- 93. The method of claim 92, wherein the condition is selected from the group consisting of atherosclerosis, reperfusion injury, allograft rejection, organ rejection, and chronic inflammatory autoimmune diseases.

15

25

- 94. The method of claim 93, wherein the atherosclerosis is accelerated atherosclerosis associated with organ transplantation.
- 95. The method of claim 93, wherein the chronic inflammatory autoimmune disease is vasculitis, rheumatoid arthritis, scleroderma, or multiple sclerosis.
- 96. A method of treating a condition dependent on CD40 ligand-induced activation of epithelial cells in a subject, comprising the method of claim 38.
- 35 97. The method of claim 96 wherein the epithelial cells are keratinocytes, and the condition is psoriasis.
- 98. A method of inhibiting activation by CD40 ligand of myeloma cells bearing CD40 on the cell surface, comprising contacting the cells with an agent capable of inhibiting interaction between CD40

-95-

ligand and the cells, in an amount effective to inhibit activation of the cells.

- 99. A method of inhibiting activation by CD40 ligand of myeloma cells bearing CD40 on the cell surface, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and the cells, in an amount effective to inhibit activation of the cells in the subject.
- 15 100. A method of treating a condition dependent on CD40 ligand-induced activation of myeloma cells in a subject, comprising the method of inhibiting activation by CD40 ligand of myeloma cells bearing CD40 on the cell surface of claim 99.

20

101. The method of claim 100, wherein the condition is multiple myeloma.

1/46

FIGURE 9B

11/46

FIGURE 10C

FIGURE 11B

FIGURE 11A

FIGURE 12

16/46

CD13 Fluorescence

17/46

22/46

FIGURE 17A

```
REM'RKS ATOMIC COORDINATES OF CD40L CRYSTAL STRUCTURE IN PDB FORMAT
                             90.460 90.00 90.00 120.00 R3
                  77.170
         77.170
CRYST
                                                           1.00 64.71
                                  -7.954 -16.144
                                                  22.488
                  GLY
             N
                        116
          1
MOTA
                                                            1.00 15.00
                                                  21.964
                                  -7.087 -15.852
             HT1 GLY
                        116
          2
ATOM
                                                           1.00 15.00
                                  -8.082 -17.142
                                                  22.242
                        116
             HT2 GLY
ATOM
                                                           1.00 15.00
                                                   21.928
                                  -8.630 -15.576
             HT3 GLY
                        116
MOTA
          4
                                                           1.00 64.37
                                  -7.927 -15.755
                                                   23.928
                  GLY
                        116
          5
             CA
MOTA
                                                           1.00 64.34
                                  -6.990 -16.621
                                                   24.780
          6
             \mathsf{C}
                  GLY
                        116
ATOM
                                                           1.00 64.44
                                  -6.968 -17.814
                                                   24.563
                                                                             Α
                  GLY
                        116
          7
             0
MOTA
                                  -6.238 -16.043
                                                   25.740
                                                           1.00 64.04
                  ASP
                        117
          A
             N
ATOM
                                  -5.617 -16.709
                                                   26.170
                                                           1.00 15.00
                  ASP
                        117
          9
             Н
MOTA
                                                           1.00 63.57
                                  -6.284 -14.616
                        117
                                                   26.130
             CA
                  ASP
         10
MOTA
                                                           1.00 63.36
                                  -5.711 -14.402
                                                  27.539
                                                                             Ą
                        117
             CB
                  ASP
         11
MOTA
                                                           1.00 63.71
                                  -6.518 -15.163
                                                   28.574
                                                                             Α
                        117
             CG
                 ASP
         12
MOTA
                                                   28.965
                                                           1.00 63.24
                                                                             Α
                                  -6.090 -16.247
                        117
             OD1 ASP
         13
ATOM
                                                           1.00 63.29
                                                                             Α
                                  -7.566 -14.66B
                                                   28.987
             OD2 ASP
                        117
         14
ATOM
                                                           1.00 63.31
                                                                             Α
                                  -5.651 -13.585
                                                   25.184
                        117
                  ASP
         15
             \mathsf{C}
MOTA
                                  -6.039 -12.427
                                                   25.145
                                                           1.00 63.35
                                                                             Α
                  ASP
                        117
         16
             0
ATOM
                                  -4.713 -14.090
                                                  24.379
                                                           1.00 62.72
                                                                             Α
         17
             N
                  GLN
                        118
MOTA
                                                           1.00 15.00
                                                                             Α
                                  -4.450 -15.040
                                                  24.541
                  GLN
                        118
ATOM
         18
             Н
                                                           1.00 61.79
                                                                             Α
                                                   23.281
                                  -4.097 -13.313
                        118
                 GLN
         19
             CA
MOTA
                                  -2.918 -14.117
                                                  22.687
                                                           1.00 62.46
                                                                             Α
                        118
             CB
                 GLN
ATOM
         20
                                                   22.562
                                                           1.00 62.95
                                                                             Α
                                  -3.047 -15.659
                        118
             CG
                  GLN
ATOM
         21
                                                           1.00 63.26
                                                   21.790
                                  -4.277 -16.11B
                 GLN
                        118
         22
             CD
ATOM
                                                           1.00 63.43
                                                                             Α
                                                   22.277
                                  -5.396 -16.000
         23
             OE1 GLN
                        118
ATOM
                                                           1.00 63.42
                                  -4.044 -16.665
                                                   20.601
                        118
             NE2 GLN
ATOM
         24
                                  -4.836 -16.715
                                                           1.00 15.00
                                                  19.975
         25 HE21 GLN
                        118
ATOM
                                  -3.151 -16.995
                                                  20.298
                                                           1.00 15.00
                        118
         26 HE22 GLN
ATOM
                                                           1.00 60.59
                                                                             Α
                                                  22.128
                                  -4.999 -12.841
                  GLN
                        118
         27
             C
MOTA
                                                  21.052
                                                           1.00 60.79
                                                                             Α
                                  -4.887 -13.379
                        118
         28
             0
                  GLN
ATOM
                                                           1.00 58.61
                                                                             Α
                                  -5.912 -11.901
                                                   22.445
                  ASN
                        119
ATOM
         29
             N
                                                           1.00 15.00
                                  -5.917 -11.600
                                                   23.389
                  ASN
                        119
             Η
         30
ATOM
                                                           1.00 56.39
                                                                             Α
                                                   21.386
                                  -6.689 -11.222
                 ASN
                        119
             CA
ATOM
         31
                                                   20.936
                                                           1.00 56.95
                                  -7.947 -11.9B2
                  ASN
                        119
             CB
ATCM
         32
                                                   20.375
                                                           1.00 57.45
                                  -7.652 -13.352
                  ASN
                        119
         33
             CG
ATOM
                                                   21.084
                                                           1.00 58.50
                                  -7.941 -14.303
             OD1 ASN
                        119
         34
ATOM
                                                           1.00 58.58
                                                                             Α
                                                   19.241
                                  -7.005 -13.431
                        119
         35
             NT2 ASN
MOTA
                                                   18.646
                                                           1.00 15.00
                                  -6.843 -12.617
         36 HD21 ASN
                        119
MOTA
                                  -6.740 -14.221
                                                   18.684
                                                           1.00 15.00
         37 HD22 ASN
                        119
MOTA
                                                           1.00 53.62
                                                   21.571
                                  -7.053
                                          -9.724
                  ASN
                        119
ATOM
         3.8
             C
                                                   20.694
                                                           1.00 56.55
                                  -6.746
                                          -8.933
                        119
                  ASN
         39
             0
ATCM
                                                           1.00 50.17
                                  -7.737
                                          -9.288
                                                  22.698
                        120
             N
                  PRO
         4.0
ATCM
                                                                             Ą
                                                           1.00 51.90
                                  -8.151 -10.129
                                                  23.810
             CD
                  PRO
                        120
ATOM
         41
                                                           1.00 48.19
                                                                             Α
                                          -7.945
                                                  22.818
                                  -8.402
                        120
ATOM
          42
              CA
                  PRO
                                                           1.00 47.42
                                          -8.008
                                                   24.117
                                  -9.191
                  PRO
                        120
             CB
ATOM
         43
                                          -9.493
                                                   24.321
                                                           1.00 51.93
                                  -9.444
              CG
                  PRO
                         120
          44
ATOM
                                                           1.00 45.59
                                  -7.750
                                          -6.524
                                                   22.657
                        120
              C
                  PRJ
ATOM
          45
                                                           1.00 45.37
                                                   23.225
                                          -5.516
                  PRO
                        120
                                  -8.187
          46
              0
ATOM
                                  -6.789
                                          -6.458
                                                   21.721
                                                           1.00 38.52
         47
              N
                  GLN
                        121
ATOM
                                          -7.704
                                                   21.509
                                                           1.00 15.00
                                  -6.287
                  GLN
                         121
          48
              H
MOTA
                                          -5.359
                                                                             Α
                                                   20.753
                                                           1.00 29.14
                                  -6.733
                  GLN
                         121
ATOM
          49
              CA
                                                   19.971
                                                           1.00 26.30
                                                                             Α
                                          -5.735
                         121
                                  -5.454
                  GLN
          50
              CB
ATOM
                                          -4.943
                                                   18.710
                                                           1.00 26.84
              CS
                                  -5.128
                  GLN
                         121
          5:
ATOM
                                                           1.00 27.26
                                  -4.923
                                          -3.460
                                                   18.949
                                                                             Α
              CD
                  GLN
                         121
          52
MOTA
                                                           1.00 28.66
                                           -2.668
                                                   18.709
                                  -5.822
                         121
              OE1 GLN
ATOM
          53
                                                   19.341
                                                           1.00 33.90
                                          -3.100
             NE2 GLN
                         121
                                  -3.717
          54
MOTA
                                                   19.564
                                                           1.00 15.00
                                   2.883
                                          -3.614
                         121
          SS HE21
                  GLN
MCTA
                                                                             Α
                                                   19.204
                                                           1.00 15.00
                                          -2.138
                  SLN
                                  -3.442
                         121
          55
            HE22
ATOM
                                                           1.00 26.33
                                                   19.903
                                                                             Α
                                  -8.065
                                          -5.218
                  GLN
                         121
MOTA
          57
                                          -6.097
                                                   19.834
                                                           1.00 21.41
                                  -8.905
                         121
                  SLN
          58
             0
MCTA
                                                           1.00 21.21
                                  -8.28B
                                          -4.051
                                                  19.272
                         122
          5 9
             N
ATCM
```

23/46

FIGURE 17B

ATOM	60	Н	ILE	122	-7.500	-3.320	19.337	1.00 15.00	÷
				122	-9.383	-3.952	18.295		
ATOM	51	CA	ILE.	-44					À
ATOM	62	23	ILE	122	-10.238	-2.629	18.396	1.00 22.17	÷
ATCM	63	CG2	ILE	122	-11.275	-2.428	17.272	1.00 21.61	A
					-11.076	-2.744	19.668	1.00 24.13	Ä
ATOM	54	CG1	ILE	122					
ATOM	65	CD1	ILE	122	-11.751	-1.440	20.073	1.00 23.04	À
MCTA	56	C	ILE	122	-8.833	-4.108	16.895	1.00 18.96	Ä
					-3.135	- 3.243	16.379	1.00 17.93	Å
MCTA	67	0	ILE	122					
ATOM	68	N	ALA	123	-9.159	-5.240	16.283	1.00 14.72	A
ATOM	69	H	ALA	123	-9.599	-5.978	16.805	1.00 15.00	Ä
ATOM	70	CA	ALA	123	-8.656	-5.401	14.917	1.00 14.29	A
			ALA	123	-7.176	-5.868	14.903	1.00 12.83	Ä
MCTA	71	CB							
ATOM	72	С	ALA	123	-9.483	-6.315	13.985	1.00 15.66	A
ATOM	73	0	ALA	123	-10.170	-7.261	14.323	1.00 13.58	A
ATOM	74	N	ALA	124	-9.388	-6.009	12.724	1.00 13.45	A
	75	н	ALA	124	-8.894	-5.185	12.456	1.00 15.00	A
ATOM								= : : :	
MOTA	76	CA	ALA	124	-10.087	-6.920	11.836	1.00 14.55	Α
ATOM	77	CB	ALA	124	-11.486	-6.368	11.446	1.00 11.37	A
MCTA	78	С	ALA	124	-9.27	-7.123	10.563	1.00 13.54	A
	79	ō	ALA	124	-8.501	-6.274	10.129	1.00 16.29	Α
ATOM					-9.544	-8.248	9.937	1.00 11.49	
ATOM	80	N	HIS	125					A
ATCM	81	н	HIS	125	-10.100	-8.900	10.426	1.00 15.00	A
ATOM	82	CA	HIS	125	-9.100	-8.524	8.590	1.00 11.51	Α
	83	CB	HIS	125	-7.605	-8.908	8.614	1.00 11.43	A
MOTA					-7.119	-9.116	7.205	1.00 7.41	A
ATCM	84	CG	HIS	125					
ATCM	85	ND1	HIS	125	-6.750	-8.130	6.421	1.00 6.60	A
ATOM	86	HD1	HIS	125	-6.708	-7.168	6.621	1.00 15.00	Α
ATOM	87	CD2	HIS	125	-7.075	-10.291	6.456	1.00 12.36	A
					-6.670	-9.971	5.234	1.00 6.20	A
ATOM	88		HIS	125					
ATOM	8 9	CE1	HIS	125	-6.462	-8.646	5.211	1.00 4.48	A
ATOM	90	C	HIS	125	-10.024	-9.570	7.931	1.00 12.63	Α
ATOM	91	0	HIS	125	-10.324	-10.650	8.383	1.00 13.14	А
					-10.550	-9.129	6.806	1.00 15.65	A
ATOM	92	N	VAL	126					
MOTA	93	Н	VAL	126	-10.169	-8.286	6.428	1.00 15.00	A
MCTA	94	CA	VAL	126	-11.743	-9.717	6.201	1.00 14.38	A
ATOM	95	CB	VAL	126	-12.877	-8.808	6.675	1.00 13.37	A
ATOM	96	CG1	VAL	126	-13.794	-9.722	7.379	1.00 12.60	А
						-7.663	5.814	1.00 9.61	A
MCTA	97	CG2	VAL	126	-13.449				
ATOM	98	\subset	VAL	126	-11.502	-9.971	4.685	1.00 16.03	A
ATOM	99	С	VAL	:26	-10.684	-9.297	4.074	1.00 16.42	A
MCTA	100	N	ILE	127	-12.118	-11.013	4.136	1.00 15.99	Α
			ILE	127	-12.807		4.691	1.00 15.00	A
ATOM	101	H						1.00 14.86	
ATOM	102	CA	ILE	127	- - · · · ·	-11.532	2.831		A
ATOM	103	CB	ILE	127	-11.414	-13.051	3.002	1.00 17.56	A
ATOM	104	CG2	ILE	127	-11.716	-13.910	1.765	1.00 17.17	A
ATOM	105	CG1	ILE	127	-9.972	-13.316	3.399	1.00 16.47	A
				127		-12.992	4.864	1.00 19.64	A
ATOM	106	CD1	ILE						
MCTA	107	\mathbb{C}	ILE	127	-12.691		1.765	1.00 18.96	A
ATOM	:08	0	ILE	127	-13.898	-11.391	2.016	1.00 20.01	A
ATOM	109	N	SER	128	-12.229	-10.882	0.581	1.00 17.54	Α
				128	-11.232		0.382	1.00 15.00	A
ATOM	110	H	SER		-13.274		-0.437	1.00 15.55	Ä
ATOM	111	CA	SER	128					
ATOM	112	CB	SER	128			-1.706	1.00 18.16	A
ATOM	113	0 5	SER	128	-12.205	-11.207	-2.574	1.00 19.90	A
ATOM		HS	SER	128	-11.832		-2.029	1.00 15.00	Ä
	114 115			128	-14.295	-11.761	-0.792	1.00 13.62	Ä
ATCY	>	2	SER				-0.832		
ATCM	116	0	SER	128	-14.052	-12.960			A
ATCY	117	N	SLU	:29		-11.246	-1.027	1.00 13.36	Ä
ATOM	117	H	SLU	129		-10.257	-0.937	1.00 15.00	A
ATOM	113	:: EA	SLU	129	-16.379	-12.024	-1.840	1.00 17.20	À
A		~~							

24/46

FIGURE 17C

	123	ZВ	GLU	129	-17.052	-13.117	-1.021	1.00 20.55	~
MCTA							-0.03 <i>6</i>	1.00 17.92	
MCTA	121	CG	SLU	129	-18.092				÷
	122	CD	GLU	129	-18.781	-13.951	C.376	1,00 21.98	~
ATOM						-13.932	0.368	1.00 32.23	Ä
ATOM	123	OEl	GLU	129					
ATOM	124	OE2	GLU	129	-18.150	-14.938	0.734	1.00 33.12	A
					-17.371	-11.409	-2.809	1.00 17.71	À
ATOM	125	С	GLU	129	_				
ATOM	126	0	GLU	129	-17.972	-10.389	-2.553	1.00 21.59	À
			ALA	130	-17.550	-12.145	-3.914	1.00 20.52	Ą
ATOM	127	N							
ATOM	128	Н	ALA	130	-17.136	-13.057	-3.923		A
	129	CA	ALA	130	-13.379	-11.549	-5.019	1.00 23.36	A
ATOM						-12.633	-6.208	1.00 19.66	À
ATOM	130	CB	ALA	130	-18.424				
ATOM	131	C	ALA	130	-19.811	-11.298	-4.570	1.00 26.86	A
					-20.519	-12.022	-3.869	1.00 29.40	A
MCTA	132	0	ALA	130					
MOTA	133	N	SER	131	-20.198	-10.086	-4.968	1.00 21.70	A
	134	Н	SER	131	-19.515	-9.481	-5.410	1.00 15.00	A
ATOM						-9.782	-4.732	1.00 20.04	A
MCTA	135	CA	SER	131	-21.592				
ATOM	136	CB	SER	131	-21.829	-8.266	-4.787	1.00 20.65	A
					-23.182	-8.001	-4.435	1.00 15.24	A
ATOM	137	OG	SER	131					
MCTA	138	HG	SER	131	-23.329	-7.069	-4.559	1.00 15.00	A
			SER	131	-22.546	-10.501	-5.668	1.00 17.15	Α
ATOM	139	C						1.00 14.30	
ATOM	140	0	SER	131	-22.236	-10.853	-6.786		A
ATOM	141	N	SER	132	- 23 . 756	-10.731	-5.187	1.00 20.15	A
					-23.967		-4.209	1.00 15.00	A
ATOM	142	Н	SER	132					
ATOM	143	CA	SER	132	- 24 . 674	-11.250	-6.218	1.00 21.62	A
			SER	132	-25.266	-12.616	-5.893	1.00 16.00	Α
ATOM	144	CB							
ATOM	145	ЭG	SER	132	-26.203	-12.324	-4.894	1.00 23.84	A
ATOM	146	HG	SER	132	-26.016	-12.944	-4.179	1.00 15.00	Α
					-25.727	-10.268	-6.671	1.00 20.07	A
ATOM	147	\subseteq	SER	132					
MOTA	148	0	SER	132	- 26 . 535	-10.544	-7.547	1.00 20.27	A
		N	LYS	133	-25.606	-9.063	-6.118	1.00 21.87	A
ATOM	149						-5.397	1.00 15.00	А
ATOM	150	H	LYS	133	- 24 . 904	-8.969			
ATOM	151	CA	LYS	133	- 26 . 406	-7.916	-6.517	1.00 19.23	A
				133	-27.024	-7.309	-5.256	1.00 23.08	A
ATOM	152	CB	LYS						
ATOM	153	CG	LYS	133	- 27 . 684	-8.364	-4.354	1.00 21.07	A
ATOM	154	CD	LYS	133	-29.174	-8.110	-4.320	1.00 27.36	A
					-29.939	-7. 884	-5.670	1.00 30.56	A
ATOM	155	CE	LYS	133					
MOTA	156	NZ	LYS	133	-31.323	-7.515	-5.345	1.00 21.56	A
	157		LYS	133	-31,862	-7.351	-6.218	1.00 15.00	A
ATOM						-8.299	-4.811	1.00 15.00	Α
ATOM	158	HZ2	LYS	133	-31.753				
ATOM	159	HZ3	LYS	133	-31.333	-6.654	-4.760	1.00 15.00	A
				133	-25.579	-6.876	-7.194	1.00 20.10	A
ATOM	160	C	LYS					1.00 17.94	A
ATOM	161	0	LYS	133	-24.378	-6.801	-7.007		
ATOM	162	N	THR	134	- 26.260	-6.052	-7.983	1.00 22.95	Α
					- 27 . 275	-6.130	-8.036	1.00 15.00	А
ATOM	153	Н	THE	134					
ATOM	164	CA	THR	:34	-25.556	-4.879	-8.561	1.00 27.89	A
ATCM	165	CB	THR	134	- 25 . 498	-4.274	-9.592	1.00 24.59	Ä
					-26.540		-10.792	1.00 24.32	A
ATOM	165	CGl	THR	134					
MCTA	157	HG1	THR	134	-26.232	-4.411	-11.456	1.00 15.00	Α
			THR	134	-26.044	-2.897	-9.968	1.00 22.97	Α
ATOM	155	223					-7.559	1.00 32.51	Α
ATOM	1 4 9	C	THR	134	-24.987	-3.798			
ATOM	170	Э	THP	134	-25.659	-3.461	-6.603	1.00 38.43	A
					-23.717	-3.352	-7.690	1.00 35.98	A
MCTA	171	N	THR	135					
ATCM	1 7 2	H	THR	135	-23.292	-3.555	-8.585	1.00 15.00	À
ATOM	<u>-</u> - 3	CA	THR	135	-22.964	-3.469	-6.386	1.00 36.02	Α
						-4.276	-6.534	1.00 36.01	A
ATOM		CΒ	THR	135	- 21 . 575				
ATOM	1-3	031	THR	135	-21.645	-5.388	-7.488	1.00 30.60	A
	174	HJ1	THR	135	- 22 . 255		-7.312	1.00 15.00	A
ATOM	• •						-5.264	1.00 35.55	
ATCM		332	THR	135	-20.866				À
MOTA	178	2	THR	: 35	-22.949	-2.266	-5.404	1.00 30.25	A
		_		: 35	-23.541		-4.331	1.00 28.35	A
ATCM	175	Ĵ	THR	- > >	- LJ . JM L	2.540			73

25/46

FIGURE 17D

		٠.	SER	136	- 22 . 294	-1,146	-5.776	1.00 23.29	À
ATOM	180	N				-0.357	-5.460	1.00 15.00	Ä
ATOM	151	H	SER	:36	-22.828			1.00 13.00	
ATOM	162	CA	SER	136	-20.857	-1.051	-6.143	1,00 23 04	Ä
MCTA	153	CB	SER	136	-20.560	0.187	-6.965	1.00 21.03	À
				136	-20.624	1.261	-6.043	1.00 28.21	Ä
ATOM	184	CG	SER			1.793		1.00 15.00	A
ATOM	185	HG	SER	136	-19.815	_	-6.008		
ATOM	186	C	SER	136	-19.853	-1.090	-4.958	1.00 21.77	A
			SER	136	-16.630	-1.096	-5.080	1.00 21.94	Ä
ATOM	197	0			-20.452	-1.227	-3 752	1 00 24.03	A
ATOM	193	N	VAL	137					
ATOM	189	H	VAL	137	-21.440	-1.063	-3.705	1.00 15.00	A
ATOM	190	CA	VAL	137	-19.699	-1.632	-2.570	1.00 19.65	À
			VAL	137	-20.218	-1.010	-1.248	1.00 21.14	Ä
ATOM	191	CB			- -	-1.907	-0.058	1.00 18.16	A
ATOM	192	CG1	VAL	137	-20.419				
ATOM	193	CG2	VAL	137	-21.322	-0.026	-1.442	1.00 13.49	A
ATOM	194	С	VAL	137	-19.370	-3.116	-2.473	1.00 17.15	A
			VAL	137	-20.209	-3.969	-2.593	1.00 16.69	A
ATOM	195	0				-3.344	-2.271	1.00 15.84	A
ATOM	196	N	LEU	138	-18.077				
ATOM	197	Н	LEU	138	-17.502	-2.528	-2.246	1.00 15.00	A
ATOM	198	CA	LEU	138	-17.507	-4.667	-1.938	1.00 18.21	A
				138	-15.962	-4.530	-1.791	1.00 13.60	A
ATOM	199	CB	LEU				-2.998	1.00 16.09	
ATOM	200	CG	LEU	138	-15.273	-3.854			A
ATOM	201	CD1	LEU	138	-15.923	-4.379	-4.300	1.00 20.35	A
ATOM	202		LEU	138	-13.710	-3.936	-2.982	1.00 12.34	A
					-18.170	-5.480	-0.772	1.00 16.29	A
MOTA	203	С	LEU	138			0.301	1.00 12.97	
ATOM	204	0	LEU	138	-18.498	-4.986		· -	A
MCTA	205	N	GLN	139	-18.345	-6.7 68	-1.035	1.00 13.04	Α
ATOM	20€	Н	GLN	139	-18.052	-7.078	-1.950	1.00 15.00	Α
					-18.757	-7.658	0.013	1.00 15.32	A
MCTA	207	CA	GLN	139				1.00 13.99	A
ATOM	208	CB	GLN	:39	-19.847	-8.678	-0.461		
MCTA	209	CG	GLN	139	-21.068	-7.960	-1.113	1.00 20.85	A
ATOM	210	CD	GLN	139	-21.872	-7.022	-0.193	1.00 22.04	A
	# # U				-22.343	-7.439	0.878	1.00 25.45	А
ATOM	211	OE1	GLN	139					
MCTA	212	NE2	GLN	139	-21.963	-5. 739	-0. 618	1.00 17.74	A
MOTA	213	HE21	GLN	139	-22.697	-5.181	-0.206	1.00 15.00	A
ATOM	214	HE22	GLN	139	-21.460	-5.326	-1.374	1.00 15.00	A
					-17.527	-8.383	0.541	1.00 14.26	A
ATOM	215	Ç	GLN	139			-0.144	1.00 14.40	A
ATOM	216	2	GLN	139	-16.554	-8.640			
MOTA	217	N	TRP	140	-17.647	-8.780	1.805	1.00 12.80	A
MCTA	218	Н	TRP	140	-18.433	-8.447	2.297	1.00 15.00	A
			TRP	140	-15.542	-9.500	2.463	1.00 14.03	A
ATOM	219	CA				-8.623	3.483	1.00 14.18	Α
ATOM	220	CB	TRP	140	-15.813				
ATOM	221	CG	TRP	140	-15.467	-7.291	2.823	1.00 8.44	A
ATOM	222	CD2	TRP	140	-14.379	-6.966	1.941	1.00 9.01	A
ATOM	223	CE2	TRP	140	-14.549	-5.625	1.482	1.00 B.40	A
					-13.215	-7.688	1.581	1.00 10.14	À
MCTA	224	CE3	TRP	140					
MCTA	225	CD1	TRP	140	-16.225	-6.137	2.863	1.00 11.29	A
ATOM	226	NE1	TRP	140	-15.710	-5. 15 0	2.077	1.00 14.27	A
ATOM	227	HEL	TRP	140	-15.121	-4.268	2.010	1.00 15.00	A
					-13.640	-5.009	0.590	1.00 8.16	A
ATOM	228	CZ2	TRP	140					
ATOM	229	CZ3	TRP	140	-12.292	-7.069	0.713	1.00 13.90	A
MOTA	230	CH2	TRP	140	-12.497	-5.749	0.215	1.00 12.11	Ä
	231	3	TRP	140	-17.015	-10.701	3.170	1.00 14.34	Α
ATOM		-			-18.193	-10.862	3.392	1.00 16.00	Ä
ATOM	232	9	TRP	140					
ATOM	233	N	ALA	141	-16.082	-11.528	3.558	1.00 14.80	A
ATOM	234	Η	ALA	141	- 15 . 133	-11.377	3.294	1.00 15.00	A
ATOM	238	ΞÀ	ALA	141	-16.489	-12.617	4.394	1.00 15.27	A
				141	- 16.504	-13.920	3.583	1.00 16.97	Ä
ATOM	236	<u> </u>	À	- 7 -		-12.761	5.607	1.00 15.90	Ä
ATOM	237	2	ALA	141	-15.585				
ATOM	238	2	المشا	141	-14.453	-12.338	5.550	1.00 14.25	۸
ATOM	239	N	520	142	-16.068	-13.366	6.688	1.00 19.74	A

26/46

FIGURE 17E

AUOM	240	ਜ਼ 31 0	142	-17.055	-13.574	5.688	1.00 15.00	À
	241	CA GLU	142	-15.149	-13.759	7.731	1.00 25.93	A
ATOM		CB GLU	142	-15.794	-13.910	9.117	1.00 21.75	A
ATOM	242		142	-15.716	-12.456	9.647	1.00 24.05	Ä
ATOM	243			- 16.749	-12.087	10.711	1.00 26.61	A
ATOM	244	CD GLU	142			10.361	1.00 34.72	Ä
ATOM	245	OE1 GLU	142	-17.908	-11.888			
MOTA	246	OE2 GLU	142	-16.404	-11.984	11.886	1.00 30.07	A
ATOM	247	C GLU	142	-14.200	-14.797	7.193	1.00 33.25	À
ATCM	248	O GLU	142	-13.156	-14.349	6.737	1.00 41.84	À
MCTA	249	N LYS	143	-14.577	-16.080	7.084	1.00 34.17	A
	250	H LYS	143	-15.432	-16.384	7.492	1.00 15.00	A
MOTA			143	-13.882	-16.854	5.980	1.00 35.31	Ä
MOTA	251			-14.673	-16.603	4.681	1.00 37.64	A
ATOM	252	CB LYS	143			3.531	1.00 47.37	A
MOTA	253	CG LYS	143	-14.300		2.202	1.00 50.37	Â
MOTA	254	CD LYS	143	-15.022	-17.284			
ATOM	255	CE LYS	143	-14.686	-16.047	1.357	1.00 49.23	A
ATOM	256	NZ LYS	143	-15.632	-16.097	0.221	1.00 51.67	A
ATOM	257	HZ1 LYS	143	-15.333	-15.445	-0.534	1.00 15.00	A
ATOM	258	HZ2 LYS	143	-15.680	-17.061	-0.177	1.00 15.00	A
		HZ3 LYS	143	-16.564-	-15.833	0.585	1.00 15.00	А
ATOM	259		-		-16.979	5.637	1.00 32.80	A
ATOM	260	C LYS	143			5.276	1.00 35.64	A
ATOM	261	O LYS	143	-11.831		5.637	1.00 28.26	Ä
MCTA	262	N GLY	144		-15.923			
ATOM	263	H GLY	144	-11.718	-14.995	5.910	1.00 15.00	A
ATOM	264	CA GLY	144	-10.243	-16.458	5.194	1.00 32.94	A
MOTA	265	C GLY	144	-9.178	-16.862	6.180	1.00 29.93	A
ATOM	266	O GLY	144	-9.345	-17.454	7.205	1.00 24.67	A
MOTA	267	N TYR	145	-8.069	-16.270	5.815	1.00 26.37	A
			145		-15.729	4.966	1.00 15.00	A
MOTA	268		145	-7 027	-16.002	6.777	1.00 27.61	А
ATCM	269	CA TYR			-15.877	5.947	1.00 37.54	A
MCTA	270	CB TYR	145	-5.708		4.456	1.00 50.95	Ä
MCTA	271	CG TYR	145		-15.774			
ATOM	272	CD1 TYR	145	-5.682	-14.633	3.706	1.00 53.22	A
ATOM	273	CE1 TYR	145	-6.313		2.468	1.60 60.28	A
MCTA	274	CD2 TYR	145	-6.591		3.791	1.00 53.11	A
ATOM	275	CE2 TYR	145	-7.207	-16.699	2.551	1.00 56.30	A
ATOM	276	CZ TYR	145	-7.162	-15.430	1.873	1.00 61.12	A
ATOM	277	OH TYR	145	-7.812	-15.119	0.665	1.00 62.63	Α
ATOM	278	HH TYR	145	-8.575	-15.686	0.401	1.00 15.00	A
		C TYR	145	-7.532	-14.762	7.620	1.00 22.41	A
MOTA	279		145	-7.000	-13.677	7.650	1.00 22.68	A
MCTA	280	C TYR			-14.884	8.196	1.00 20.39	A
ATOM	281	N TYR	146	-8.731		8.509	1.00 15.00	Ä
ATOM	282	H TYR	: 46	-8.935	-15.824	8.725	1.00 20.40	
ATOM	283	CA TYR	146	-9.423	-13.700			A
ATOM	284	CB TYR	146	-10.886	-13.673	8.306	1.00 22.53	À
MCTA	285	CG TYR	146	-11.710	-14,460	9.286	1.00 23.02	A
MCTA	286	CD1 TYR	:46	-11.635	-15.873	9.236	1.00 26.99	A
ATOM	287	CE1 TYR	146	-12.254	-16.623	10.239	1.00 25.44	A
ATOM	288	CD2 TYR	146		-13.766	10.236	1.00 23.45	A
			146	-13.150	-14.520	11.205	1.00 26.81	Ä
MCTA	289				-15.937	11.204	1.00 27.40	A
ATOM	290	CD TYR	146			12.170	1.00 31.91	A
ATOM	291	OH TYR	:46	-13.647		12.676	1.00 15.00	Ä
ATOM	292	HH TYR	146	-12.911				
ATOM	293	C TYR	146	-9.291		10.219	1.00 18.79	Ä
ATOM	294	C TYP	145	-8.904	-14.232	11.012	1.00 16.13	A
MCTA	295	N THR	147	- 9 . 5 9 6		10.556	1.00 17.54	A
ATOM	296	H THR	147	- 9 . 973		9.830	1.00 15.00	Α
ATOM	297	ZA THR	147	- 9 . 4 3 2	-11.764	11.948	1.00 14.06	Α
ATOM	298	CB THR	147	-8.162		12.182	1.00 13.66	A
	299	CG: THR	147		-11.505	11.856	1.00 12.56	Ä
ATOM	_ 77	JJ NA		0.711			-	

FIGURE 17F

	220 110		147	-6.934	-11.898	10.980	1 00 15.00	À
ATOM	300 HG		- 7			13.554	1.00 7.22	
ATOM	301 003		147	- 8.025	-10.236			À
ATOM	302 C	THR	147	-10,619	-10.925	12.253	1,00 15,60	À
ATOM	303 0	THR	147	-11.044	-10.074	11.496	1,00 16,39	À
		MET	148	-11.144	-11.139	13.412	1.00 20.67	Ä
MOTA	304 N					13.828	1.00 15.00	Ä
ATOM	305 H	MET	148	-10.838	-11.988			
ATOM	306 CA	MET	148	-12.124	-10.311	14.110	1,00 19,71	A
ATOM	307 CB	MET	148	-13.546	-10.702	13.705	1.00 17.89	Ä
	308 CG	MET	148	-14.541	-9.580	14.019	1.00 13.53	A
ATOM				-14.492	-8.149	12.952	1.00 14.69	A
ATOM	309 SD	MET	148					
ATOM	310 CE	MET	148	-14.566	-8.928	11.333	1.00 10.10	A
ATOM	311 C	MET	148	11.915	-10.282	15.639	1.00 21.49	A
ATOM	312 0	MET	148	-12.594	-10.905	16.436	1.00 22.98	A
	313 N	SER	149	-10. 95 5	-9.412	16.055	1.00 20.58	A
ATOM				-10.516	-8.786	15.406	1.00 15.00	Ā
ATOM	314 H	SER	149					
ATOM	315 CA	SER	149	-10.388	-9.698	17.419	1.00 19.11	A
ATOM	316 CB	SER	149	-9.174	-8.860	17.792	1.00 12.17	A
ATOM	317 OG	SER	149	-9.540	-7.513	17.975	1.00 14.10	A
	318 HG	SER	149	-9.571	-7.487	18.934	1.00 15.00	A
ATOM				-11.203	-9.844	18.727	1.00 22.19	A
MCTA	319 C	SER	149					
ATOM	320 O	SER	149	-10.728	-10.267	19.772	1.00 22.95	A
ATOM	321 N	ASN	150	-12.456	-9.322	18.631	1.00 22.71	A
ATOM	322 H	ASN	150	-12.782	-9.247	17.688	1.00 15.00	А
		ASN	150	-13.361	-9.236	19.764	1.00 20.32	A
ATOM	323 CA			-12.734	-8.446	20.955	1.00 21.56	Ä
ATOM	324 CB	ASN	150					
ATOM	325 CG	ASN	150	-12.343	-6.962	20.706	1.00 20.71	A
MOTA	326 OD1	ASN	150	-13.059	-6.187	20.119	1.00 17.81	Α
ATOM		ASN	150	-11.222	-6.485	21.271	1.00 23.86	А
ATOM		ASN	150	-11.035	-5.521	21.092	1.00 15.00	A
				-10.670	-7.109	21.821	1.00 15.00	A
MCTA		ASN	150					
ATOM	330 C	ASN	150	-14.644	-8.657	19.256	1.00 20.60	A
MOTA	331 0	ASN	150	-14.718	-8.130	18.148	1.00 20.56	A
ATOM	332 N	ASN	151	-15.637	-8.713	20.149	1.00 23.49	A
ATOM	333 H	ASN	151	-15.455	-9.124	21.038	1.00 15.00	A
				-16.974	-8.080	19.823	1.00 24.71	A
ATOM	334 CA	ASN	151					
MOTA	335 CB	ASN	151	-18.130	-8.645	20.712	1.00 28.30	Ą
ATOM	336 CG	ASN	151	-17.959	-8.271	22.173	1.00 33.23	A
ATOM	337 OD1	ASN	151	-17.075	-7.562	22.606	1.00 39.79	A
ATOM	338 ND2		151	-18.782	-8.838	23.011	1.00 38.32	A
MCTA		ASN	151	-18.553	-8.524	23.928	1.00 15.00	A
				-19.495	-9.465	22.733	1.00 15.00	Ä
MCTA		ASN	151					
ATOM	341 C	ASN	151	-17.172	-6.531	19.645	1.00 22.53	A
ATOM	342 O	ASN	151	-18.254	-6.048	19.374	1.00 21.32	A
ATOM	343 N	LEU	152	-16.066	-5.762	19.859	1.00 23.00	A
ATOM	344 H	LEU	152	-15.247	-6.289	20.070	1 00 15.00	A
				- 5.924		19.525	1 00 18.87	A
MCTA	345 CA	LEU	152					
ATOM	346 CB	LEU	152	-14.83C	- 3 . 700	20.325	1.00 21.77	A
MCTA	347 CG	LEU	152	-14.981	-3.999	21.806	1.00 24.80	A
MCTA	348 CD1	LEU	152	-16.390	-3. 64 5	22.316	1.00 22.82	A
MCTA	349 CE2		152	-13.947	-3.256	22.556	1 00 23.56	Ä
			152	- 15 . 565	-3.993	18.094	1.00 17.34	A
MOTA	350 C	LEU				17.708		
MCTA	351 0	LEU	152	- 15 . 590	-2.840		1 00 13.39	A
ATOM	352 N	VAL	153	-15.267	-5.054	17.309	1.00 18.65	Ä
	. 353 H	VAL	153	-15.156	-5.962	17.716	1.00 15.00	A
ATOM	354 CA	VAL	:53	-15 439	-4.910	15.849	1.00 16.81	Ä
		VAL	153	-14.138	-5.021	14.980	1.00 15.33	A
ATOM	355 28					15.562		Ä
MCTA	356 CG:		153	-12.908	-5.718		1.00 21.22	
ATOM	357 000	VAL	153	-13.775	-3.757	14.287	1.00 16.95	Ä
MCTA	358 C	VAL	153	- 16.405	-5.964	15.301	1.00 13.48	A
ATOM	359 0	VAL	153	-16.363	-7.116	15.647	1.00 13.06	À

28/46

FIGURE 17G

	360 N	THR	154	- <u>1</u> 7.207	-5.546	14.358	1.00 11.06	À
ATOM			154	-17.313	-4.568	14.215	1,00 15.00	Ä
ATOM	361 H	THR		-17.903	-6. 6 00	13.615	1,00 16,26	À
MCTA	362 CX		154		-5.747	14.157	1,00 19.51	Ä
ATOM	363 C	3 THR	154	-19.366				Ä
		51 THR	154	-19.995	-5. 45 9	14.205		
MCTA			154	-20.577	-5.508	14.949	1,00 15.00	Ä
ATOM	•			-19.502	-7.288	15.571	1.00 21.62	Α
ATOM	366 C	32 THR	154			12.107	1.00 18.12	À
ATOM	367 C	THR	154	-17.997	-6.252			
	368 0	THR	154	-17.952	-5.110	11.625	1.00 16.55	Ä
MCTA			155	-18.101	-7.324	11.357	1.00 16.77	A
ATOM	369 N	LEU		-18.056	-8.202	11.791	1.00 15.00	A
ATOM	370 H	LEU	155		-7.198	9.967	1.00 17.10	Ä
ATOM	371 C	A LEU	155	-18.514			1.00 20.04	Ä
ATOM	372 C	B LEU	155	-17.829	-8.353	9.204		
	373 C		155	-17.524	-8.428	7.692	1.00 20.81	Ą
ATOM			155	-17.822	-7.1 59	6. 9 08	1.00 17.03	A
ATOM	-	D1 LEU		-17.912	-9.810	7.139	1.00 12.42	A
ATOM	375 C	D2 LEU	155			9.904	1.00 20.71	A
ATOM	376 C	LEU	155	-20.055	-7.187			
ATOM	377 0	LEU	155	-20.712	-8.163	10.217	1.00 18.01	A
	-	GLU	15€	-20.593	-5.995	9.561	1.00 19.51	A
ATOM	378 N			-19.959	-5.230	9.440	1.00 15.00	A
ATOM	379 H		156		-5.888	9.413	1.00 21.95	A
ATOM	380 C	a GLU	156	-22.036			1.00 18.95	A
ATOM	381 €	s GLU	156	-22.641	-4.631	10.033	_	
	382 C		156	-22.098	-4.412	11.436	1.00 27.68	Α
ATOM			155	-22.721	-5.194	12.587	1.00 31.62	A
MOTA	383 C			-23.347	-6.248	12.367	1.00 33.40	Α
ATOM	384 C	El GLU	156		-4.721	13.724	1.00 35.00	A
ATOM	385 O	E2 GLU	156	-22.532			1.00 25.36	A
ATOM	386 €	GLU	156	-22.457	-5.966	7.964		
		GLU	156	-21.958	-5.298	7.077	1.00 22.70	A
ATOM	387 0			-23.437	-6.808	7.696	1.00 30.92	Α
ATOM	388 N		157		-7.590	8.300	1.00 15.00	Α
ATOM	389 H	ASN	157	-23.594				A
ATOM	390 C		157	-23.804	-6.620	6.300		
	391 C		157	-23.856	-7.970	5.614	1.00 31.69	Α
ATOM			157	-23.669	-7.693	4.168	1.00 27.70	A
ATOM	392 C			-23.397	-6.593	3.810	1.00 25.89	Α
MOTA	393 C	D1 ASN	157		-8.640	3.275	1.00 41.69	À
ATOM	394 N	D2 ASN	157	-23.893				A
ATOM	395 HD	21 ASN	157	- 24 . 069	-9.603	3.467		
		22 ASN	157	-23.745	-8.295	2.340	1.00 15.00	Α
ATOM		-	157	-24.988	-5. 658	6.118	1.00 35.08	A
ATOM	397 C			-26.107	-5.949	6.499	1.00 37.06	Α
MCTA	395 O		157		-4.443	5.560	1.00 40.03	A
ATOM	399 N	GLY	158	-24.746			1.00 15.00	A
ATOM	400 H	GLY	158	-25.601	-3.952	5.429		
		A GLY	158	-23.422	-3.887	5.121	1.00 38.11	A
ATOM			158	-23 062	-3.720	3.617	1.00 37.48	A
MOTA	402 C			-23.890	-3.108	2.950	1.00 41.11	A
ATOM	403 0		158	-21,867	-4.220	3.135	1.00 32.75	Ä
ATOM	404 N	LYS	159		4.220		1.00 15.00	À
ATOM	405 H	LYS	159	-21.904	-4.134	2.130		A
		A LYS	159	-20.828	-4.928	3.962	1.00 27.83	
ATOM			159	-20.317	-6.122	3.217	1.00 28.17	A
ATOM				-19.734	-7.168	4.069	1.00 20.48	A
ATOM		IG LY5	159		-B.426	4.192	1.00 29.61	Α
ATOM	409 0	D LYS	159	-20.533		2.869	1.00 40.41	А
MCTA	410 3	E LYS	159	-20.577	-9.191			
		:2 LYS	159		-10.663	2.986	1.00 40.88	Ä
ATOM	7		159	-23.739	-11.087	2.035	1.00 15.00	À
ATOM	411	REL LYS		-20.070	-11.087	3.600	1.00 15.00	À
ATOM	413 3	KZI LYŞ	:59	-21.738	-10.848	3.389	1.00 15.00	A
ATOM	414	HIB LYS	159	-21.730			1.00 26.08	A
ATOM	415	: LYS	159	-19.688	-4.065	4.463		Ä
ATCM	416	i Lys	159	-19.023	-3.369	3.696	1.00 28.01	· ·
	7 4 4		160	- 19.663	-3.990	5.807	1.00 18.90	Ä
ATOM		N 31N	: 60	-20.211	-4.F74	6.319	1.00 15.00	A
ATC*		H 31N		- 18.922	-2.939	6.464	1.00 13.89	Ä
ATOM	419	CA GLM	160					

FIGURE 17H

		1		-19.778	-1.694	6.611	1.00 16.79	
ATOM		IB GLN	160					-
ATOM	421	IS GLN	160	-20.881	-1.89 <i>6</i>	7.633	1.00 18.34	7
ATOM		ED GLN	160	-22.133	-1.166	7.193	1.00 23.97	à
				-23.086	-0.970	7.893	1.00 31.18	÷
ATOM	423 0	DE1 GLN	150					
ATOM	424 1	JE2 GLN	160	-22.257	-0.771	5.948	1.00 28.16	2
ATOM	425 HE	21 GLN	160	-23.194	-0.420	5.928	1.00 15.00	4
					-0.780	5.186	1.00 15.00	
ATOM		22 GLN	160	-21.624				A
ATOM	427 3	GLN	160	-18.313	-3.309	7.777	1.00 12.87	A
ATOM	428		160	-18.838	-4.151	8.498	1.00 14.78	A
				-17.187	-2.637	8.085	1.00 11.22	
ATOM	429 N		161					A
ATOM	430 F	LEU	161	-16. 76 7	-2.124	7.340	1.00 15.00	À
ATOM	431 0	A LEU	161	-16.583	-2.870	9.405	1.00 9.71	A
				-15.052	-2.939	9.390	1.00 4.67	A
ATOM		B LEU	161					
ATOM	433 C	G LEU	161	-14.438	-4.060	8.559	1.00 7.30	A
ATOM	434	D1 LEU	161	-14.511	-5.447	9.207	1.00 10.80	А
			161	-12.964	-3.794	8.389	1.00 5.48	A
ATOM		D2 LEU						
MCTA	436 C	LEU	161	-17.082	-1.836	10.412	1.00 10.17	A
ATOM	437 C	LEU	161	-16.826	-0.657	10.341	1.00 13.36	A
MOTA	438 N		162	-17.848	-2.338	11.375	1.00 16.94	A
				-18.153	-3.279	11.251	1.00 15.00	
ATOM	439 H	THR	162					A
ATOM	440 C	A THR	162	-18.317	-1.480	12.493	1.00 16.14	A
ATOM	441 C	B THR	162	-19.807	-1.769	12.640	1.00 13.33	A
				-20.339	-1.707	11.308	1.00 16.73	A
ATOM		G1 THR	162					
ATOM	443 H	G1 THR	162	-21.211	-1.254	11.343	1.00 15.00	A
ATOM	444 0	G2 THR	162	-20.553	-0.832	13.562	1.00 15.01	A
			162	-17.531	-1.547	13.842	1.00 13.28	A
ATOM	445 C							
MOTA	446 0	THR	162	-17.358	-2.587	14.449	1.00 20.21	Α
MOTA	447 N	VAL	163	-16.994	-0.437	14.282	1.00 14.22	Α
ATOM	448 H		163	-16.859	0.243	13.567	1.00 15.00	Α
				-16.326	-0.358	15.586	1.00 15.72	A
ATOM		A VAL	163					
ATOM	450 C	B VAL	163	-15.038	0.426	15.428	1.00 11.82	Α
ATCM	451 C	G1 VAL	163	-15.191	1.944	15.368	1.00 9.87	A
ATOM		G2 VAL	163	-14.229	-0.124	14.245	1.00 18.88	A
				-17.193	0.283	16.706	1.00 17.93	A
ATOM	453 C		163					
MCTA	454 0	VAL	163	-18.001	1.180	16.453	1.00 20.25	- A
MOTA	455 N	LYS	164	-17.037	-0.232	17.925	1.00 15.44	A
ATOM	456 H		164	-16.254	-0.858	18.020	1.00 15.00	Α
				-17.856	0.138	19.109	1.00 17.33	A
MCTA		A LYS	164					
ATOM	458 C	B LYS	164	-18.351	-1.150	19.807	1.00 19.58	A
ATOM	459 C	G LYS	164	-19.214	-1.885	18.759	1.00 23.56	A
ATOM		D LYS	164	-19.417	-3.410	18.851	1.00 28.85	A
				-20.039	-4.047	17.554	1.00 33.81	A
ATOM		E LYS	164					
ATOM	462 N	Z LYS	164	-19.428	-3.681	16.227	1.00 18.98	A
MOTA	463 H	Z1 LYS	164	-19.195	-2.667	16.222	1.00 15.00	A
		Z2 LYS	164	-18.552	-4.223	16.092	1.00 15.00	Α
MCTA								
ATOM	465 H	Z3 IYS	164	-20 084	-3.888	15.445	1.00 15.00	A
ATOM	466 C	LYS	164	-17.193	1.099	20.056	1.00 15.14	Α
MCTA	467 C		164	-17.712	1.588	21.048	1.00 17.72	Α
				-15.992	1.428	19.621	1.00 17.49	Α
ATOM	468 N		165					
ATOM	469 H		165	-15.550	0.838	18.932	1.00 15.00	Α
ATOM	470 0	A ARG	165	-15.184	2.415	20.325	1.00 20.18	Α
ATOM		B ARG	165	-13.985	1.806	21.049	1.00 24.65	A
			165	-14.363	0.833	22.126	1.00 29.54	A
ATOM		G ARG						
ATCM	473 0	D ARG	165	-13.274	1.077	23.145	1.00 38.82	A
ATOM		E ARG	165	-13.719	1.998	24.186	1.00 43.41	A
ATOM		E ARS	165	-14.331	1.671	24.908	1.00 15.00	Α
				-13.190	3.250	24.362	1.00 44.06	Ä
ATOM		Z ARG	165					
ATOM	4 1	HL ARG	165	- 13.406	3.765	25.562	1.00 41.25	A
ATOM	478 Hr	111 ARG	165	-13.054	4.683	25.763	1.00 15.00	Α
ATOM		112 ARG	165	-13.919	3.249	26.250	1.00 15.00	A
Α				23.743				• •

PCT/US96/19172

FIGURE 17I

1 TOM	480 NH2 AR	g 165	-12.485	3.946	23.425	1,00 31,65	À
ATOM	481 HH21 AR		-12.133	4.860	23.623	1,00 15.00	Ä
MOTA		_	-12.322	3.527	22.530	1.00 15.00	Ä
ATCM			- 14 608	3.554	19.510	1,50 17 70	Ä
ATOM			-14.018	3.450	18.441	1.00 18.26	À
ATCM	484 C AR	•	-14.763	4.687	20.151	1.00 17.43	Ä
ATOM	485 N GL		-15.263	4.614	21.007	1.00 15.00	A
ATOM	486 H GL		-14.138	5.911	19.698	1.00 19.00	A
ATOM	487 CA GL			7.021	20.610	1.00 23.79	Ä
ATOM	488 CB GL		-14.613	8.409	20.386	1.00 34.05	Ä
ATOM	489 CG GL		-14.067		20.659	1,00 45.91	Ä
ATOM	490 CD GL		-15.178	9.399	20.639	1.00 53.64	Ä
ATOM	491 OE1 GL		-15.102	10.492		1.00 44.10	Â
ATOM	492 NE2 GL	N 166	-16.202	9.046	21.418		
MOTA	493 HE21 GL	N 166	-16.906	9.765	21.443		Ä
ATOM	494 HE22 GL	N 166	-16.577	8.287	21.935	1.00 15.00	A
ATOM	495 C GL	N 166	-12.649	5.881	19.644	1.00 17.48	A
ATOM	496 O GL		-12.029	5.378	20.561	1.00 18.13	A
ATOM	497 N GL		-12.160	6.478	18.565	1.00 14.83	A
ATOM	498 H GL		-12.750	6.836	17.850	1.00 15.00	A
ATOM	499 CA GL		-10.728	6.711	18.557	1.00 16.28	A
ATOM	500 C GL	-	-10.044	6.685	17.204	1.00 16.48	A
	501 O GL		-10.674	6.601	16.162	1.00 19.19	A
ATOM		-	-8.720	6.735	17.209	1.00 17.06	A
MOTA	• • • •		-8.311	6.890	18.120	1.00 15.00	A
ATOM	•		-7.925	6.625	15.992	1.00 16.60	A
MCTA			-6.600	7.343	16.289	1.00 21.87	A
MCTA	505 CB LE		-6.247	8.745	15.716	1,00 22.69	A
ATOM	506 CG LE		-5.119	9.410	16.539	1.00 21.20	A
MOTA	507 CD1 LE		-7.436	9.617	15.361	1.00 18.38	A
ATOM	508 CD2 LE		-7.686	5.136	15.604	1.00 14.84	A
ATOM	509 C LE		-7.282	4.278	16.392	1.00 15.89	A
ATOM	510 O LE		-7.943	4.873	14.300	1.00 10.57	Α
ATCM	511 N TY		-8.313	5.659	13.807	1.00 15.00	A
ATOM	512 H TY			3.572	13.656	1.00 5.27	A
ATOM	513 CA TY		-7.683	3.014	13.230	1.00 5.83	A
ATOM	514 CB TY		-8.989	2.620	14.423	1.00 6.94	A
MCTA	515 CG TY		-9.857	3.598	15.168	1.00 7.40	A
MOTA	516 CD1 TY		-10.524		16.218	1.00 7.77	A
ATOM	517 CE1 TY		-11.390	3.193 1.255	14.744	1.00 8.89	A
MOTA	518 CD2 TY		-10.016		15.804	1.00 9.40	Ä
MCTA	519 CE2 TY		-10.850	0.841	16.534	1.00 10.39	Ä
ATOM	520 CZ TY		-11.563	1.827		1.00 7.99	Ä
ATOM	521 OH TY		-12.443	1.410	17.534	1.00 15.00	Ä
MCTA	522 HH TY	YR 169	-13.009	2.117	17.800	1.00 13.00	Ä
MCTA	523 C T	YR 169	-6.810	3.642	12.390	1.00 9.12	Ä
MOTA	524 O T	YR 169	-6.917	4.498	11.557	_	_
ATOM		YR 170	-5. 89 9	2.722	12.228		A
ATOM		YR 170	-5.806	2.081	12.986	1.00 15.00	A
ATOM		YR 170	-5.313	2.511	10.899	1.00 10.01	Ä
ATOM		YR 170	-3.967	1.797	11.044	1.00 7.46	A
MOTA		YR 170	-3.259	1.636	9.679	1.00 13 45	A
ATOM		YR 170	-2.680	2.766	9.052	1.00 12.66	A
ATOM		YR 170	-2.213	2.658	7.738	1.00 10.18	A
ATOM		YR 170	-3.304	0.385	9.057	1.00 10.90	À
ATOM		YR 170	-2.891	0.303	7.730	1.00 8.68	Ą
ATOM		YR 170	-2.331	1.419	7.124	1.00 9.97	A
ATOM		YR 170	-1.774	1.286	5.859	1.00 17.50	A
ATOM		YR 170	-1.886	0.404	5.514	1.00 15.00	A
		YR 170	-6.279	1.610	10.073	1.00 10.40	A
ATOM ATOM		YR 170	-6.679	0.500	10.421	1.00 12.52	À
ATOM	536 0 . 539 N :	LE 171	-6.704	2.174	8.968	1.00 12.16	Ä
A . U!-							

31/46

FIGURE 17J

	540 H	: ILE		-6.475	3.135	8.908	1.00 15.00	À
MCTA				-7.608	1.430	3.138	1.00 9.37	÷
ATOM	541 0	A ILE	171					
MCTA	542	B ILE	- 7 -	-9.070	1.990	8.317	1.33 11.21	À
		G2 ILE	171	-9.326	3.501	8.677	1.00 17.27	Ä
MCTA							1.00 13.33	Ä
MCTA	544 C	G1 ILE	171	-13.046	1.564	7.214		
MCTA	545 C	D1 ILE	171	-10.647	0.250	7.619	1.00 17.53	Ä
			171	-7.074	1.234	6.694	1.00 6.34	À
ATOM							1.00 6.96	A
ATOM	547 0	ILE	171	-6.453	2.088	6.082		
ATOM	548 N	TYR	172	-7.286	0.005	6.216	1.00 11.07	A
	549 H		172	-7.809	-0.624	6.786	1.00 15.00	A
ATOM				-6.708	-0.378	4.922	1.00 15.60	A
ATOM	550 C	A TYR	172					
MCTA	551 C	B TYR	172	-5.332	-1.082	5.037	1.00 14.32	A
ATOM		G TYR	172	- 5 . 38 9	-2.397	5.796	1.00 9.21	À
			172	-5.342	-2.402	7.216	1.00 12.52	A
ATOM						7.901		
ATOM	554 C	E1 TYR	172	-5.607	-3.620		1.00 10.88	А
ATOM	555 C	D2 TYR	172	-5. 565	-3.586	5.050	1.00 12.66	A
	-	E2 TYR	172	-5.829	-4.800	5.740	1.00 15.83	A
ATOM						7.164	1.00 11.94	
ATOM	557 C	Z TYR	172	-5.822	-4.808			A
ATOM	558 0	H TYR	172	-5. 99 5	-6.002	7.820	1.00 12.17	A
ATOM	559 H		172	-6.433	-5.843	8.657	1.00 15.00	Α
				-7.605	-1.276	4.106	1.00 16.85	А
ATOM	560 C		172					
ATOM	561 0	TYR	172	-8.346	-2.057	4.692	1.00 14.06	A
MCTA	562 N	ALA	173	-7.448	-1.141	2.776	1.00 16.29	A
	563 H		173	-6.751	-0.490	2.503	1.00 15.00	А
ATOM				-7.940	-2.152	1.836	1.00 15.11	A
ATOM	564 C.		173					
ATOM	565 C	B ALA	173	-9.300	-1.725	1.292	1.00 12.08	A
ATOM	566 C	ALA	173	-7.007	-2.537	0.653	1.00 15.86	Α
			173	-6.147	-1.806	0.191	1.00 14.20	Α
ATOM	567 0				-3.714	0.109	1.00 16.56	A
ATOM	568 N	GLN	174	-7.244				
MCTA	569 H	GLN	174	-7.774	-4.389	0.620	1.00 15.00	A
ATOM	570 C.	A GLN	174	-6.470	-4.119	-1.070	1.00 19.25	Α
	571 C		174	-5. 582	-5.292	-0.832	1.00 21.99	A.
ATOM					-4.727	-1.030	1.00 30.99	A
ATOM	572 C		174	-4.205				
ATOM	573 C	D GLN	174	-3.174	-5.845	-0.979	1.00 34.25	A
ATOM	574 0	E1 GLN	174	-2.308	-5. 89 9	-0.105	1.00 32.91	À
			274	-3.268	-6.699	-2.014	1.00 31.50	Α
MCTA						-1.970	1.00 15.00	A
MCTA	576 HE	21 GLN	174	-2.668	-7.487			
ATOM	577 HE	22 GLN	174	-3.973	-6.621	-2.714	1.00 15.00	A
ATOM	578 C	GLN	174	-7.413	-4.644	-2.114	1.00 19.20	A
	579 0		174	-8.285	-5.434	-1.880	1.00 20.03	A
MCTA					-4.107	-3.301	1.00 19.28	A
ATOM	580 N	VAL	:75	-7.291				
MOTA	581 H	VAL	175	-6.594	-3.401	-3.400	1.00 15.00	A
MCTA	582 C	A VAL	175	-8.247	-4.500	-4.323	1.00 22.43	Α
MCTA		B VAL	175	-9,319	-3.409	-4.644	1.00 21.41	Α
					-2.830	-3.495	1.00 20.17	А
ATOM		G1 VAL	175	-10.146				_
ATOM	585 C	G2 VAL	175	-10.268	-4.061	-5.639	1.00 22.88	A
ATOM	586 C		175	-7.508	-4.859	-5.615	1.00 24.56	А
	587 0		175	-6.928	-3.997	-6.301	1.00 23.28	A
ATOM					-6.180	-5.879	1.00 25.40	Α
ATOM	588 N		176	-7.563				
ATOM	5 5 9 H	THR	176	-7.994	-6.850	-5.250	1.00 15.00	Ä
ATOM	590 C	A THR	176	- 7 . 0.86	-6.501	-7.222	1.00 24.46	A
			176	-5.844	-7.454	-7.256	1.00 24.78	A
MCTA					-8.650	-8.C28	1.00 20.31	Ä
MCTA		G: THR	:76	-5.948				
MOTA	593 H	G1 THR	:75	-5. 25 0	- 9.253	-7.796	1.00 15.00	À
ATOM	594 C	GD THR	. 76	-5.329	-7.711	-5.867	1.00 17.07	A
ATOM	595	THR	:76	-8.178	-6.700	-8.272	1.00 25.44	À
		- 515			-7.043	-7.995	1.00 26.86	A
ATOM	596 0		176	-9.326				
ATOM	597 8		:77	-7.855	-6.341	-9.506	1.00 22.44	Ä
MCTA	598 H	PHE	177	-6.920	-6.083	-9.732	1.00 15.00	Ä
ATOM		A PHE	:77	-8.939	-6.511	-10.479	1.00 22.70	A
n			-	0.,,,,				

32/46

FIGURE 17K

ATOM	500	25	PHE	177	-9.746	-5.194	-10.599	1.00 20.90	Ä
			PHE		-8.813	-4.034	-10.927	1.00 22.51	Ä
ATOM	501	23			-8.771	-3.546	-12.252	1.00 22.11	Ä
ATOM	602	221	PHE	177					Ä
ATOM	603	CD 2	PHE	177	-0.011	-3.422	-9.920		
MOTA	604	CEl	PHE	177	-6.041	-2.357	-12.550	1.00 20 53	÷
ATOM	605	CE2	PHE	177	-7.289	-2.247	-10.204	1.00 20.44	Ä
ATOM	606	CZ	PHE	177	-7.376	-1.713	-11.500	1.00 22.79	A
	607	c c	PHE	177	-8.381	-6.949	-11.800	1.00 22.14	A
MOTA				177	-7.219	-6.695	-12.072	1.00 21.60	A
ATOM	608	0	PHE		-9.210	-7.555	-12.625	1.00 24.52	Ä
ATOM	609	N	CYS	178					
ATOM	610	н	CYS	178	-10.146	-7.797	-12.370		À
ATOM	611	CA	CYS	178	-8.599	-7.849	-13.942	1.00 29.77	À
ATOM	612	CB	CYS	178	-8.501	-9.365	-14.214	1.00 32.06	À
ATOM	613	SG	CYS	178	-7.685	-9.731	-15.792	1.00 35.17	A
ATOM	614	C	CYS	178	-9.323	-7.146	-15.086	1.00 28.41	Α
			CYS	178	-10.534	-7.247	-15.185	1.00 27.54	A
MOTA	615	0		179	-8.589	-6.393	-15.910	1.00 28.86	A
ATOM	616	N	SER		-7.608	-6.271	-15.754	1.00 15.00	A
MOTA	617	H	SER	179		-5.454	-16.704	1.00 29.01	Â
ATOM	618	CA	SER	179	-9.374				
ATOM	619	CB	SER	179	-9.379	-4.118	-16.020	1.00 30.82	A
ATOM	620	OG	SER	179	-10.615	-3.492	-16.319	1.00 39.79	A
ATOM	621	HG	SER	179	-10.725	-2.812	-15.667	1.00 15.00	A
ATOM	622	C	SER	179	-9.063	-5.196	-18.165	1.00 31.16	A
ATOM	623	Ō	SER	179	-7.931	-4.953	-18.537	1.00 28.58	A
ATOM	624	N	ASN	180	-10.083	-5.255	-19.042	1.00 35.32	A
	625	н	ASN	180	-10.966	-5.700	-18.834	1.00 15.00	A
MCTA			ASN	180	-9.782	-4.725	-20.366	1.00 34.74	A
ATOM	626	CA			-10.205		-21.589	1.00 37.96	A
ATOM	527	CB	ASN	180		-4.980	-22.896	1.00 37.12	Ä
ATOM	528	CG	ASN	180	-9.650				
MOTA	629	OD1		180	-10.058		-23.356	1.00 40.66	A
ATOM	630	ND2	ASN	180	-8.619		-23.456	1.00 35.85	A
ATOM	631	HD21	ASN	180	-8.343		-23.306	1.00 15.00	A
ATOM	632	HD22	ASN	180	-8.153	-4.891	-24.065	1.00 15.00	A
ATOM	633	С	ASN	180	-10.197	-3.331	-20.588	1.00 36.96	A
ATOM	634	Ö	ASN	180	-11.314	-2.894	-20.433	1.00 37.89	A
ATOM	635	N	ARG	181	-9.147	-2.699	-21.068	1.00 41.95	A
ATOM	636	н	ARG	181	-6.363	-3.318	-21.141	1.00 15.00	A
			ARG	181	-8. 9 97	-1.313	-21.489	1.00 44.24	A
ATOM	637	CA			-7.563		-22.026	1.00 43.43	A
ATOM	638	CB	ARG	181	-6.348	-1.638	-21.101	1.00 45.11	A
MCTA	639	CG	ARG	181				1.00 40.68	
ATOM	640	\Box	ARG	181	-6.235		-20.134		Ą
ATOM	641	NΕ	arg	181	-5.064		-19.271	1.00 46.11	A
MCTA	642	HΕ	ARG	181	-4 991	-2.058	-18.578	1.00 15.00	A
MOTA	643	CZ	ARG	191	-4.024	-3.611	-19.432	1.00 49.77	A
MOTA	644	NH1	ARG	181	-2.986		-18.790	1.00 54.33	Ä
ATOM	545	HH11	ARG	181	-2 113	-1.032	-18.918	1.00 15.00	Α
ATOM	546	HH12	ARG	181	-2.807	-2.642	-18.161	1.00 15.00	A
ATOM	547		ARG	181	-4.085	-4.641	-20.247	1.00 54.26	Α
ATOM		HH21		181	-3.286	-5.230	-20.354	1.00 15.00	A
	649	HH22		181	-4.918	-4.833	-20.761	1.00 15.00	À
ATOM			ARG	181	-10.049	-0.866	-22.499	1.00 47.10	A
MCTA	550	Ξ.			10 979	-0.112	-22.227	1.00 49.20	A
ATOM	651	0	ARG	191	-10.979 -9.895	-1.447	-23.690	1.00 49.64	Ä
ATOM	÷52	N	SLU	192			-23.890		
MCTA	653	H	GLU	182	-9.201	-2.166		1.00 15.00	Ä
MCTA	÷ 5 ÷	CA	3 1 0	182	-10.976	-1.385	-24.676	1.00 52.41	A
ATOM	6 5 5	CB	SLU	182	-10.437		-25.970	1.00 56.93	À
ATOM	656	00	SLU	182	-10.932	-1.418	-27.295	1.00 66.05	A
ATOM	£ 5 T	20	SLU	182	-10.758		-27.327	1.00 70.54	A
ATOM	658	CEL	GLU	182	-9.613	0.586	-27.442	1.00 72.98	Α
ATOM	459		ระบ	162	-11.778	0.830	-27.244	1.00 72.46	A

33/46

FIGURE 17L

MCTA	660	0	GLU	182	-12.398	-1.934	-24.304	1,00 53,00	
						-1.492	-24.862		À
ATOM	661		GLU	182	-13.379			1.00 54.27	Ä
MCTA	662	N	ALA	183	-12.505	-2.877		1,00 52,34	À
MCTA	663	H	ALA	183	-11.675	-3.173	-22.865	1,00 15.00	÷.
						-3.258			
MOTA	664		ALA	183	-13.867		-22.899	1,00 50,19	Ä
ATOM	665	CB	ALA	183	-13.855	-4.721	-22.447	1.00 45.02	A
ATOM	666	C	ALA	183	-14.562	-2.321	-21.867	1.00 50.66	A
ATOM	667	0	ALA	183	-15.712	-1.945	-21.990	1.00 47.77	A
ATOM	668	N	SER	184	-13.773	-1.888	-20.878	1.00 52.95	A
ATOM	669	Н	SER	184	-12.826	-2.172	-20.991	1.00 15.00	
									λ
ATOM	670	CA	SER	184	-14.228	-1.043	-19.729	1.00 56.78	A
ATOM	671	CB	SER	184	-13.384	-1.397	-18.481	1.00 53.58	A
ATOM	672	ÓG	SER	184	-13.975	-2.448	-17.721	1.00 47.46	A
							-17.388	· · · · · · · ·	
ATOM	673	HG	SER	184	-13.291			1.00 15.00	A
ATOM	674	С	SER	184	-14.183	0.517	-19.880	1.00 59.95	A
ATOM	675	0	SER	184	-13.913	1.297	-18.964	1.00 65.25	A
	-						-21.131		
ATOM	676	N	SER	185	-14.324	0.995		1.00 60.08	Α
ATOM	677	Н	SER	185	-14.623	0.345	-21.831	1.00 15.00	A
ATOM	678	CA	SER	185	-13.825	2.375	-21.391	1.00 60.12	Α
MCTA	679	CB	SER	185	-13.522	2.640	-22.869	1.00 60.49	Α
MOTA	680	OG	SER	185	-12.243	2.098	-23.242	1.00 59.80	A
ATOM	681	HG	SER	185	-12.158	1.234	-22.833	1.00 15.00	A
ATOM	682	C	SER	185	-14.580	3.589	-20.885	1.00 59.59	A
ATOM	683	0	SER	185	-15.437	4.159	-21.543	1.00 60.08	А
ATOM	684	N	GLN	186	-14.200	3.990	-19.670	1.00 57.71	A
					-13.601		-19.153	1.00 15.00	
ATOM	685	H	GLN	186					Α
ATOM	686	CA	GLN	186	-15.121	4.936	-18.993	1.00 57.00	A
ATOM	687	CB	GLN	186	-16.094	4.062	-18.175	1.00 58.66	Α.
MCTA	688		GLN	186	-15.355	3.354	-17.050	1.00 59.69	
		CG							A
ATOM	689	CD	GLN	186	-16.369	2.789	-16.088	1.00 59.92	A
MCTA	690	OE1	GLN	186	-17.270	3.513	-15.687	1.00 59.81	A
ATOM	691	NE2	GLN	186	-16.249	1.503	-15.787	1.00 59.63	
									Α
MCTA	€92	HE21	GLN	186	-15.492	C.948	-16.113	1.00 15.00	Α
MOTA	693	HE22	GLIN	186	-16.950	1.119	-15.168	1.00 15.00	Α
ATOM	€94	С	GLN	186	-14.758	6.290	-18.221	1.00 54.36	A
					-15.596		-18.298		
ATOM	€95	0	GLN	186					A
ATOM	696	N	ALA	187	-13.566	6.424	-17.511	1.00 50.35	A
MOTA	697	н	ALA	187	-13.476	7.274	-16.970	1.00 15.00	A
MCTA	€98	CA	ALA	187	-12.388		-17.832	1.00 43.26	
									A
ATOM	699	CB	ALA	187	-11.546	6.284	-18.918	1.00 38.95	A
MCTA	700	C	ALA	187	-11.456	4.882	-16.849	1.00 40.48	A
ATOM	701	Ö	ALA	:87	-10.887	3.875	-17.295	1.00 43.24	A
MCTA	702	N	PRC	188	-11.210	_	-15.594	1.00 38.66	A
MCTA	703	CD	PRO	188	-11.543	6.687	-15.000	1.00 38.15	A
ATOM	704	CA	PRO	188	-10.220	4 665	-14.751	1.00 35.94	А
MCTA	705	CB	PRO	188	-9.395		-14.150	1.00 33.99	A
MCTA	706	CG	PRO	188	-10.377	7.000	-14.036	1.00 32.69	A
ATOM	707	C	PRO	188	-10.840	3.783	-13.683	1.00 33.66	A
ATOM	728		PRO	188	11 885		-13.140	1.00 33.41	
		0							A
MCTA	709	N	PHE	189	-10.147		-13.346	1.00 28.66	A
ATOM	710	н	PHE	189	-9.260	2.508	-13.748	1.00 15.00	A
ATOM	711	CA	PHE	189	-10.721		-12.171	1.00 26.71	A
	7							1.00 26.21	
ATOM	712	CB	PHE	189	-10.122		-12.034		A
ATOM	7:3	CG	PHE	189	-10.671		-10.849	1.00 22.92	A
MCTA	714	553	PHE	199	-10.126	0.005	-9.566	1.00 17.72	Ä
ATOM	715	223	PHE	189	-11.687		-11.064	1.00 21.88	
	=								A
ATOM	716	CEI	PHE	189	-10.590	-0.815	-8.522	1.00 19.12	À
ATOM	~:7	CER	PHE	189	-12.124	-1.995	-10.011	1.00 21.13	Ä
ATOM	7:2	C2	PHE	189	-11.571	-1.806	-8.736	1.00 18.44	A
							-10.909		
ATOM	~:9	Ξ	PHE	189	-10.445	4.5.3	-10.303	1.00 27.14	A

34/46

FIGURE 17M

. = 0.14		_	-·· -	159	-9.308	3.244	-10 706	1:00 28 70	À
ATOM	ے ہے	C	FHE						
ATOM	721	N	ILE	190	-11.468	2.964	-10.071	and the second second	À
					-12.408	2.786	-10.399		à
ATOM	722	H	ILΕ	190					
ATOM	723	CA	ΞΞΞ	190	-11,193	3.626	-8.783	1.00 04.03	Ä
					-11.316	5.242	-8.743	1,00 16,86	À
ATOM	724	CB	ILΕ	190					
ATCM	725	C32	ILE	190	-11.892	5.979	-9.997	1.00 19.67	Ä
				_			7 424		A
ATOM	726	CGI	ILE	190	-11.801	5.888	-7.424		
	727	CD1	ILE	190	-12.819	7.012	-7.645	1.00 28.56	À
ATOM									
MCTA	728	C	ILE	190	-11.844	2.812	-7.656	1.00 21.97	A
		_	ILE	190	-12.891	2.197	-7.801	1.00 16.30	Ä
MCTA	729	0							
ATOM	730	N	ALA	191	-11.026	2.700	-6.590	1.00 17.21	Ä
					-10.124	3.124	-6.662	1.00 15.00	Ä
ATOM	731	H	ALA	191					
ATOM	732	CA	ALA	191	-11.501	2.195	-5.321	1.30 15.20	Ä
					-10.730	0.928	-4.968	1.00 14.79	À
ATOM	733	CB	ALA	191					
ATOM	734	С	ALA	191	-11.439	3.230	-4.206	1.00 17.11	Α
						3.961	-4.052	1.00 14.04	A
ATOM	735	0	ALA	191	-10.467				
ATOM	736	N	SER	192	-12.511	3.245	-3.433	1.00 14.72	A
					-13.277	2.694	-3.804	1.00 15.00	A
ATOM	737	Н	SER	192					^
ATOM	738	CA	SER	192	-12.725	4.289	-2.423	1.00 16.69	A
							-2.803	1.00 14.83	Α.
ATOM	739	CB	SER	192	-13.931	5.144			A
ATOM	740	OG	SER	192	-13.556	5.828	-3.994	1.00 21.23	Α
								1.00 15.00	
ATOM	741	HG	SER	192	-14.367	5.966	-4.520	1.00 15.00	A
	742	С	SER	192	-12.980	3.682	-1.069	1.00 17.77	Α
ATOM	142								
ATOM	743	0	SER	192	-13.753	2.738	-0.947	1.00 20.76	A
		N	LEU	193	-12.285	4.209	-0.038	1.00 15.56	A
ATOM	744	1.4						1.00 15.00	
ATOM	745	Н	LEU	193	-11.681	4.959	-0.280		Α
ATOM	746	CA	LEU	193	-12.510	3.761	1.366	1.00 13.27	Α
						3.825	2.217	1.00 12.74	A
ATOM	747	CB	LEU	193	-11.195				
ATCM	748	CG	LEU	193	-11.051	3.141	3.604	1.00 14.37	A
				193	-12.272	2 354	4.116	1.00 14.67	A
ATOM	749	CD1	LEU	_					
ATOM	750	CD2	LEU	193	-10.274	3 9 8 6	4.622	1.00 12.64	Α
ATOM	75:	Ξ	LEU	193	-13.497	4.748	1.911	1.00 11.22	А
								1.00 12.22	A
ATOM	752	O	LEU	193	-13.188	5.912	1.903		
MCTA	753	N	CYS	194	-14 652	4.326	2.310	1.00 13.66	A
					-14.828	3.347	2.276	1.00 15.00	Α
ATOM	754	H	CYS	194					
MCTA	755	CA	CYS	194	-15 595	5.360	2.713	1.00 14.84	A
			CYS	194	-16 915	5.409	1.918	1.00 17.58	Α
ATOM	756	CB							
ATOM	757	SQ	CYS	194	-16.623	5.417	0.165	1.00 16.33	A
			CYS	194	-16.046	5.163	4.137	1.00 12.81	Α
ATOM	758	C							
ATOM	759	C	CYS	194	-15 983	4.072	4.655	1.00 10.34	A
	760	N	LEU	: 95	-16 557	6 254	4.697	1.00 14.32	Α
ATOM					_				
ATOM	761	H	LEU	195	16 541	7 088	4.154	1.00 15.00	A
MCTA	762	CA	LEU	195	-17 C39	6 291	6.076	1.00 14.89	A
					-16.195	7 372	6.789	1.00 15.56	A
ATOM	763	CB	LEU	195					
MCTA	764	CS	LEU	195	-16.571	7.680	8.242	1,00 15.56	A
						8.967	8.762	1.00 13.72	<u> </u>
ATCM	765	201	LEU	195	-15.932				Ã
ATOM	765	CD2	LEU	195	- 16 . 463	6.448	9.154	1.00 17.25	Α
						6.544	6.209	1.00 13.54	Α
ATOM	767	2	LEU	195	-18.546				
ATOM	768	0	LEU	:95	-19.039	7.521	5.705	1.00 14.56	À
					- 19. 238	5.667	6.905	1.00 16.36	À
ATOM	769	N	LYS	196					
ATOM	773	H	LYS	196	-18.719	4.875	7.197	1.00 15.00	A
				196	-20.577	5.972	7.405	1.00 21.01	A
ATOM	:	CA	_YS						
ATOM	~ ~ 2	03	145	:9€	-21.475	4.726	7.146	1.00 22.66	A
ATOM	:	25	LYS	196	- 22.953	4.839	7.590	1.00 31.25	À
						4.915	9.104	1.00 40.25	Ä
ATOM	-	==	L Y 3	295	- 23 . 354				
			· · · · ·	195	- 23. 189	694 . د	10.060	1.00 43.56	٨
	=	2.5	-: :						
ATCM	775	CE	173 • VE		- 73 004	4,158	11.453	1.00 44.46	
ATOM ATOM	:	NZ	_YS	<u>.</u> 96	- 23 . 004	4.158	11.453	1.00 44.46	A
ATCM			1:3 1:3 1:3		-22.182	4.799	11.467	1.00 15.00	Ä
ATOM, ATOM ATOM	776	MZ HZ1	142 142	196 196	-22.182	4.799		1.00 15.00	À
ATOM ATOM ATOM ATOM		N2 H21 H21	142 142 142	196 196 196	-22.182 -23.847	4.799 4.665	11.467 11.778	1.00 15.00 1.00 15.00	A A A
ATOM, ATOM ATOM	776	N2 H21 H21	142 142	196 196	-22.182	4.799	11.467	1.00 15.00	Ä

35/46

FIGURE 17N

ATOM	750		LYS	196	-20.478	6.290	8.899	1.00 19.25	
									^
ATOM	791	. 2	<u>-</u> Y5	196	-25.194	5.434	9.714	1.00 18.35	Ä
ATCM	782	N	SER	197	-25.664	7.534	9.272	1:01 20:63	A
ATOM	753		SER	197	-20.891	8.247	8.615	1.00 15.00	À
					-20.752	7.701			
ATOM	784		SER	197			10.729		Ä
ATOM	785	CB	SER	197	-19.898	8.878	11.207	1.00 25.62	A
ATOM	786		SER	197	-19.563	8.687	12.588	1.00 32.22	A
ATOM	787		SER	197	-18.795	8.110	12.611	1.00 15.00	Ä
ATOM	788	\subset	SER	197	-22.216	7.810	11.218	1.00 26.33	A
ATOM	789		SER	:97	-23.078	8.303	10.497	1.00 26.57	A
				198	- 22 . 534	7.274	12.407		
ATOM	790		PRO						Ä
ATOM	791	CD	PRO	198	-21.649	6.526	13.301	1.00 32.92	A
MCTA	792	CA	PRO	198	-23.919	7.381	12.913	1.00 28.73	A
ATOM	793	CB	PRO	198	-23.784	6.789	14.318	1.00 32.89	A
ATOM	794	CG	PRO	198	-22.289	6.726	14.659	1.00 33.55	A
ATOM	795	C	PRO	198	-24.591	8.789	12.847	1.00 26.60	À
ATOM	796	0	PRO	198	-24.035	9.817	13.242	1.00 20.20	Α
					-25.729	8.773	12.119	1.00 25.75	
ATOM	797		GLY	199					Α
ATOM	798	H	GLY	199	-26.170	7.857	12.057	1.00 15.00	A
ATOM	799	CA	GLY	199	-26.486	10.003	11.790	1.00 26.91	Α
ATOM	800	C	GLY	199	-25.821	10.971	10.816	1.00 28.98	A
ATOM	801	0	GLY	199	-26.084	12.151	10.797	1.00 31.05	Α
ATOM	802	N	ARG	200	-24.898	10.464	10.001	1.00 30.15	A
ATOM	803	Н	ARG	200	-24.629	9.519	10.165	1.00 15.00	A
					-24.140	11.384	9.166		
ATOM	804	CA	ARG	200				1.00 28.98	A
ATOM	805	CB	ARG	200	-22.749	11.590	9.783	1.00 33.16	A
ATOM	806	CG	ARG	200	-22.739	12.290	11.162	1.00 38.34	Α
ATOM	307	CD	ARG	200	-21.327	12.530	11.705	1.00 42.14	A
					-21.292	12.875	13.131	1.00 43.64	
ATOM	808	NE	ARG	200					A
ATOM	809	HE	ARG	200	-21.327	13.831	13.424	1.00 15.00	A
ATOM	810	CZ	ARG	200	-21.138	11.896	14.051	1.00 46.40	A
MOTA	811	NHl	ARG	200	-21.219	10.603	13.733	1.00 46.31	A
ATOM		HH11		200	-21.104	9.910	14.445	1.00 15.00	A
MOTA	813	HH12		200	-21.394	10.320	12.789	1.00 15.00	A
ATOM	814	NH2	ARG	200	-20.901	12.226	15.311	1.00 46.65	A
ATOM	815	HH21	ARG	200	-20.847	13,193	15.566	1.00 15.00	A
ATOM	816	HH22		200	-20.785	11.510	16.002	1.00 15.00	A
					-24.084	10.967	7.710	1.00 27.77	
ATOM	817	2	ARG	200					A
ATOM	818	С	ARG	230	- 24 . 264	9.791	7.449	1.00 28.21	A
MOTA	819	N	PHE	201	-23.853	11.926	6.792	1.00 30.83	A
MCTA	820	Н	PHE	201	-23.513	12.821	7.126	1.00 15.00	Α
						11.708	5.339		
MCTA	821	CA	PHE	201	-24.016			1.00 34.17	A
ATOM	522	CB	PHE	201	-23.851	12.99€	4.572	1.00 31.58	A
MCTA	823	CG	PHE	201	-25 154	13.730	4.614	1.00 34.85	Α
ATOM	824	CD1	PHE	201	-25.174	15.062	5.081	1.00 37.56	A
						13.0B1	4.190	1.00 37.89	
ATOM	825		PHE	201	- 26 . 335				A
ATOM	826	CE1	PHE	201	-26.397	15.749	5.182	1.00 36.91	A
ATOM	827	CE2	PHE	201	-27.566	13.762	4.280	1.00 38.98	Ä
ATOM	818	CZ	PHE	201	-27.572	15.065	4.815	1.00 37.61	A
						10.605	4.545		
ATOM	529	C	PHE	201	- 23 . 277			1.00 39.40	Ä
ATOM	830	0	PHE	201	-23.853	10.034	3.604	1.00 45.71	Α
ATOM	531	N	GLU	202	-22.031	10.316	5.034	1.00 35.75	A
ATOM	832	H	3 <u>1</u> U	202	-21.878	10.753	5.925	1.00 15.00	Ä
			320 320	252	-20.964	9.564	4.318		
ATOM	533	ΞA	J						A
ATOM	934	23	3 <u>1</u> 0	202	- 21 . 295	9.540	3.234	1.00 33.66	Ä
ATCM	ê 3 5	03	SLU	202	-21.924	7.245	3.713	1.00 40.61	Α
ATOM	2 3 €	22	310	202	-22,647	6.505	2.561	1.00 46.12	À
ATOM	837	SE:	270	232	-13.461	5.613	2.886	1.00 46.89	
									À
ATCM	E 3 6	CE2	320	202	- 22 . 417	6.814	1.370	1.00 45.63	A
ATCM	E 3 9	Ç	370	202	-19.924	10.450	3.717	1.00 29.99	A

36/46

FIGURE 170

						11.567	3 300	1.00 30 76	÷
ATOM	340	C	310	202	-20.137				
	341	::	ARG	203	-15.728	9.897	3.856	1,00 26,88	Ä
ATOM				203	-18.690	8.998	4.285	1.00 15.00	÷
ATOM	842	H	ARG				3.358	1.00 21.88	À
ATOM	843	CA	ARG	203	-:7.539	10.603		1.00 11.00	•
			ARG	203	-16.819	11.410	4.457	1.00 27.07	Ä
ATOM	644	CB			-17.681	12.187	5.467	1.00 37.32	À
ATOM	845	CG	ARG	203					
	946	CD	ARG	203	-16.694	13.213	6.339	1.00 48.09	A
ATOM					-15.911	12.667	7.308	1.00 56.90	Ä
ATOM	847	NE	ARG	203					A
ATOM	848	ΗE	ARG	203	-16.240	12.433	8.223		
				203	-14.572	12.475	7.001	1.00 66.77	À
ATOM	649	CZ	ARG			12.002	7.911	1.00 68.44	A
ATOM	850	NH1	ARG	203	-13.702				
		HH11	ARG	203	-12.745	11.829	7.666	1.00 15.00	À
ATOM					-14.016	11.822	8.845	1.00 15.00	A
ATOM	852	HH12	ARG	203				1.00 67.68	A
ATOM	853	NH2	ARG	203	-14.084	12.716	5.766		
		HH21		203	-14.670	13.108	5.060	1.00 15.00	A
ATOM	854					12.499	5.544	1.00 15.00	A
ATOM	855	HH22	ARG	203	-13.143				
ATOM	856	C	ARG	203	-16.517	9.633	2.678	1.00 17.71	A
				203	-16.375	8.418	2.931	1.00 7.69	A
ATOM	857	0	ARG				1.791	1.00 14.42	A
MOTA	858	N	ILE	204	-15.789	10.253			
		Н	ILE	204	-15.91 5	11.228	1.561	1.00 15.00	A
MOTA	859				-14.662	9.482	1.353	1.00 18.32	A
MCTA	860	CA	ILE	204		-			
ATOM	861	CB	ILE	204	-14.520	9.392	-0.231	1.00 24.52	A
					-15.820	9.529	-1.069	1.00 21.85	Α
MCTA	862	CG2	ILE	204				1.00 26.35	А
ATOM	863	CG1	ILE	204	-13.439	10.195	-0. 94 9		
	364		ILE	204	-13.992	11.231	-1.961	1.00 36.33	Α
ATOM					-13.387	9.819	2.153	1.00 16.58	A
ATOM	865	C	ILE	204					
MOTA	866	0	ILE	204	-13.070	10.956	2.457	1.00 18.63	A
			LEU	205	-12.718	8.725	2.571	1.00 13.32	A
MCTA	867	N				7.853	2.321	1.00 15.00	A
ATOM	868	H	LEU	205	-13.142				
ATOM	369	CA	LEU	205	-11.467	8. 3 29	3.322	1.00 10.01	A
					-11 440	7.688	4.382	1.00 6.66	A
MCTA	670	CB	LEU	205				1.00 7.99	Α
MCTA	971	CG	LEU	205	-12.571	7.727	5.441		
	872	CD1	LEU	205	-12.722	9.088	6.089	1.00 8.78	A
MCTA					-12.419	6.720	6.582	1.00 8.08	Α
ATOM	873	CD2	LEU	205					A
ATCM	574	C	LEU	205	-10,268	8.811	2.377	1.00 9.75	
			LEU	205	-9 416	9.655	2.320	1.00 10.25	, A
MCTA	875	C				7.769	1.562	1.00 10.28	A
ATOM	876	N	LEU	206	-10.252			-	
MCTA	877	H	LEU	206	-10.991	7.119	1.684	1.00 15.00	A
			LEU	206	- 9.166	7.555	0.610	1.00 10.02	Α
ATOM	578	CA				6.384	0.990	1.00 11.94	A
ATOM	979	CB	LEU	206	-8.249				
ATOM	380	CG	LEU	206	-7 001	6.527	1.859	1.00 14.40	A
					-7.094	5.595	3.074	1.00 14.49	Α
ATOM	981	CD1	LEU	206				1.00 8.78	A
ATOM	882	CD2	LEU	206	-6.531	7.958	2.151		
		С	LEU	20€	9.756	7.071	-0.697	1.00 11.91	À
MCTA	883				-10.792	6.406	-0.778	1.00 10.67	A
ATOM	3 3 4	0	LEU	206				_	Ä
ATOM	985	N	ARG	207	-9 005	7.428	-1.720		
			ARG	257	-8.196	7.992	-1.553	1.00 15.00	A
MOTA	336	H			-9.309	6.823	-2.992	1.00 10.45	A
ATOM	997	CA	ARG	207					
ATOM	533	CB	ARG	207	-9.974	7.790	-3.904	1.00 8.71	A
				207	-11.258	8.270	-3.3 57	1.00 15.68	A
ATOM	389	CS	ARG				-4.163	1.00 22.25	А
MCTA	390	\Box	ARG	207	-11.652	9.459			
	591	NΞ	ARG	207	-12.670	9.192	-5.171	1.00 29.59	A
ATOM					-13.115	8.300	-5.249	1.00 15.00	A
ATOM	892		ኢጸር	207					Ä
ATOM	3 7 3	22	ARS	227	-13.063	10.272	-5.919	1.00 40.09	
				::-	-12 482	11.498	-5.813	1.00 36.32	À
ATOM	294			3 - 7	-12.813	12.246	-6.391	1.00 15.00	Ä
ATOM	895	HHII	A RG	207					
ATOM	444	44.5	ARG	207	-11.737	11.651	-5.165	1.00 15.00	À
				25-	-14.067	10.111	-6.773	1.00 40.86	Ä
ATIM	= = -	NH2		207		10.977	-7.329	1.00 15.00	Ä
ATOM	898		ARG	207	:4 392			2.00 25.05	
ATOM	.		ARS	207	-14.498	9.257	-6.853	1.00 15.00	Ä
n	- / .								

37/46

FIGURE 17P

ATOM	900	Ξ	ARG	257	- ê . C44	5.456	-3.741	1.00 12.59	Ä
			ARG	237	-7.053	7,150	-3.787	1.00 15.58	À
ATOM	901	Ĉ.							
ATOM	902	N	ALA	205	-3.096	5.358	-4.465	1,00 17,06	Ä
MCTA	903	H	هشه	208	- 5 . 579	4.758	-4.355	1.00 1E.00	Ä
MCTA	904	CA	لمشلا	208	-7.025	5.128	-5.465	1 00 17 00	Ä
		C3	ALA	239	-6.052	4.020	-5.072	1.00 14.69	A
ATOM	905								
ATOM	906	C	ALA	208	-7.544	4.830	-6.854	1.00 20.46	A
ATOM	907	С	ALA	208	-8.438	4.020	-7.057	1.00 21.89	À
MCTA	908	N	ALA	209	-5.986	5.586	-7.808	1.00 26.22	A
ATOM	909	н	ALA	209	-6.280	6.235	-7.533	1.00 15.00	À
					-7.253	5.208	-9.196	1.30 25.36	 A
ATOM	910	CA	ALA	209					
ATOM	911	CB	ALA	209	-7.702	6.380	-10.069	1.00 27.10	Ä
ATOM	912	C	A.A	209	-6.075	4.461	-9.832	1.00 32.54	A
ATOM	913	С	ALA	209	-4.895	4.726	-9.593	1.00 33.00	А
ATOM	914	N	ASN	210	-6.502	3.491	-10.634	1.00 32.11	A
			ASN	210	-7.466	3.249	-10.531	1.00 15.00	Ä
ATOM	915	H							
MCTA	916	CA	ASN	210	-5.674	_	-11.662	1.00 36.00	A
ATOM	917	CB	ASN	210	-5.366	1.446	-11.355	1.00 39.53	A
ATOM	918	CG	ASN	210	-4.463	1.366	-10.154	1.00 42.59	A
MOTA	919	OD1	ASN	210	-4.285	2.273	-9.342	1.00 39.26	A
	920	ND2	ASN	210	-3.951	0.165	-10.055	1.00 41.77	A
MOTA					-3.990		-10.817	1.00 15.00	A
MOTA		HD21		210					
MCTA	922	HD22	ASN	210	-3. 364	-0.081	-9.279	1.00 15.00	A
ATOM	923	C	ASN	210	-6.299			1.00 36.95	A
ATOM	924	0	ASN	210	-7.492	2.752	-13.259	1.00 36.93	A
ATOM	925	N	THR	211	-5.447	3.168	-14.013	1.00 37.83	А
	_				-4.484			1.00 15.00	A
MCTA	926	Н	THR	211					
ATOM	927	CA	THR	211	-6.119	3.224	-15.314	1.00 41.27	A
ATOM	928	CB	THR	211	-5.325	4.158	-16.268	1.00 44.53	A
ATOM	929	OG1	THR	211	-6.076	4.506	-17.438	1.00 49.34	A
STOM	930	HG1	THR	211	-6.032	5.493	-17.508	1.00 15.00	Α
ATOM	931	CG2	THR	211	-3.926	3.604	-16.581	1.00 46.08	A
					-6.434		-15.878	1.00 39,17	A
MCTA	932	С	THR	211					
ATOM	933	0	THR	211	-5.822		-15.475		A
MOTA	934	N	HIS	212	-7.416	1.718	-16.789	1.00 37.14	A
MCTA	935	Н	HIS	212	-8.106	2.438	-16.878	1.00 15.00	Α
ATOM	936	CA	HIS	212	-7.294	0.454	-17.529	1.00 33.23	A
ATOM	937	CB	HIS	212	-8.680		-18.082	1.00 27.73	A
			HIS	212	-9.856		-17.111	1.00 24.58	A
ATOM	938	CG				0.967		1.00 24.59	Â
ATOM	939	ND1		212	-10.862				
ATOM	940	HD:	HIS	212	-11.000	1.702	-17.794	1.00 15.00	A
ATOM	941	CD2	HI5	212	-10.0 49	-0.723	-15.985	1.00 20.65	A
ATOM	942	NE2	HIS	212	-11.154	-C.265	-15.383	1.00 24.01	A
MCTA	943		HIS	212	-11.665	0.780	-16.092	1.00 17.59	A
ATOM	944	C	HIS	212	-6.257		-18.683	1.00 38.31	A
					-5 363		-18.923	1.00 33.92	
ATOM	945	0	ЧIS	212					À
ATCM	346	N	SER	213	-6.444		-19.443	1.00 46.63	A
ATOM	947	Н	SER	213	-7.156			1.00 15.00	A
ATOM	948	CA	SER	213	-5.705	2.177	-20.675	1.00 53.91	A
ATOM	949	CB	SER	213	-4.272	2.704	-20.400	1.00 52.61	A
				213	-3.266		-20.547	1.00 53.97	A
ATOM	95C	os	SER					1.00 15.00	
ATOM	951	HS	SER	213	-3.363	1.064	-19.823		A
MCTA	952	C	SER	213	-5.844		-22.097	1.00 60.03	À
MCTA	953	2	SER	213	-5.005		-22.682	1.00 61.19	Ä
ATOM	984	::	SEF	214	-7 043	1.803	-22.686	1.00 64.96	À
ATOM	355	H	SEF	214	- 7 , 705	2.322	-22.146	1.00 15.00	A
	956	CA	SEP	214	-7.463		-24.094	1.00 69.62	Ä
ATOM							-24.495	1.00 67.82	Ä
ATOM	957	CB	SER	214					
ATOM	958	C 2	SER	214	-9.563		-23.336	1.00 67.64	A
ATCM	959	НG	SER	214	-10.468	2.398	-23.623	1.00 15.00	A

FIGURE 17Q

									_
. = 0		^	SER	214	-5.518	1.587	-25.300	1,00 72,08	À
ATOM	960	C			-6.132	2.653	-25.686	1,00 73,45	A
ATOM	961	S	SER	214	-0.132			1.00 73.38	A
ATOM	962	N	ALA	215	-6.175	0.409	-25.859	2,22	^
		H	ALA	215	-5 456	0.596	-26.565	1.00 15.00	À
ATOM	963			2	-6.858	-0.915	-25.753	1.00 72.62	Ä
ATOM	964	CA	ALA	215					
ATOM	965	CB	ALA	215	-7.199	-1.505	-27.138		A
			ALA	215	-6.331	-2.148	-24.983	1.00 72.11	Ä
ATOM	966	C					-25.069	1.00 72.74	A
ATOM	967	0	ALA	215	-7.020	-3.161			
ATOM	968	N	LYS	216	-5.153	-2.076	-24.282	1.00 70.17	A
			LYS	216	-4.747	-1.165	-24.199	1.00 15.00	Ä
ATOM	969	H				-3.256	-23.626	1.00 67.38	Ä
ATOM	970	CA	LYS	216	-4.482				
MOTA	971	CB	LYS	216	- 3 . 45 8	-2.691	-22.648	1.00 65.30	A
			LYS	216	-2.217	-2.107	-23.321	1.00 66.86	A
ATOM	972	CG		_	-1.419	-3.149	-24.134	1.00 68.81	A
ATOM	973	CD	LYS	216					
ATOM	974	CE	LYS	216	-0.082	-2. 674	-24.740	1.00 67.51	Α
	975	NZ	LYS	216	0.483	-3.722	-25.598	1.00 67.80	A
ATOM					0.620	-4.590	-25.041	1.00 15.00	A
MOTA	976	HZ1	LYS	216					A
ATOM	977	HZ2	LYS	216	-0.168	-3.914	-26.385		
	978	HZ3	LYS	216	1.401	-3.406	-25.973	1.00 15.00	A
ATOM					-5.321	-4.441	-22.993	1.00 66.99	A
ATOM	979	С	LYS	216			-22.575	1.00 69.90	A
MOTA	980	0	LYS	216	-6. 462	-4.266			
ATOM	981	N	PRO	217	-4.835	-5.724	-22.952	1.00 65.06	A
				217	-3.525	-6. 262	-23.308	1.00 67.91	Α
ATOM	982	CD	PRO			-6.827	-22.626	1.00 62.80	A
ATOM	983	CA	PRO	217	-5.792				
MOTA	984	C3	PRO	117	-5.285	-8.004	-23.464	1.00 64.33	A
				217	-3.755	-7. 79 9	-23.33B	1.00 69.63	A
ATOM	985	CG	PRO			-7.237	-21.150	1.00 59.77	A
MCTA	986	С	PRO	217	-5.837			=	
ATOM	987	0	PRO	217	-4.747	-7.318	-20.589	1.00 58.81	A
			CYS	218	-7.115	-7.516	-20.627	1.00 55.45	Α
ATCM	988	N			-7.874	-7.287	-21.233	1.00 15.00	A
MCTA	989	Н	CYS	218					
MCTA	990	CA	CYS	218	-7.433	-7.929	-19.210	1.00 46.55	A
		CB	CYS	218	-8.105	-9.289	-19.079	1.00 44.69	A
MCTA	991				-8.855	-9.822	-17.460	1.00 43.11	Α
ATOM	992	SG	CYS	218					A
ATOM	993	С	CYS	218	-6.265	-7.994	-18.263	1.00 43.24	
	994	Ō	CYS	218	-5.720	-9.026	-17.95 9	1.00 44. 68	A
MCTA					-5.853	-6.820	-17.876	1.00 40.28	Α
MCTA	995	N	GLY	219			-18.059	1.00 15.00	A
ATOM	996	H	GLY	219	-6.328	-5.961			
ATOM	997	CA	GLY	219	-4.659	-6.828	-17.070	1.00 36.27	Α
			GLY	219	-5.017	-7.080	-15.643	1.00 33.86	A
ATOM	998	C			-5 906	-6.452	-15.097	1.00 34.90	A
ATOM	999	0	GLY	219					A
ATOM	1000	N	GIN:	220	-4.313	-7.996	-15.023		
ATOM	1001	Н	GLN	220	-3.835	-B.6 B4	-15.580	1.00 15.00	Α
			GLN	220	-4.448	-7.929	-13.578	1.00 29.92	A
MOTA	1002	CA				-9.282	-12.936	1.00 27.31	A
ATOM	1003	CB	GLN	220	-4.298				
ATOM	1004	CG	GLN	220	-5.380	-9.340	-11.883	1.00 30.94	A
	1005	CD	GLN	220	-5.285	-10.631	-11.132	1.00 36.37	A
ATOM					-4.216	-10.969	-10 661	1.00 38.47	A
ATOM	1006	OE1	GLN	220	4.210			1.00 37.61	A
ATOM	1007	NE2	GLN	220		-11.296			
MOTA	100e			223	-5.295	-12.235	-10.667	1.00 15.00	Α
	1000	11555	C: N		-7.373	-11.036	-11.200	1.00 15.00	Α
ATCM	1009	H=22	الاسدان	220			-12.859	1.00 27.48	A
ATOM	1010	\subseteq	GLN	220	-3.666				
MCTA		0	GLN	223	-2,461	-6.694	-12.999	1.00 27.61	A
	1011		SLN	221	-4.438	-6.040	-12.110	1.00 25.10	A
MCTA		N			-5.433			1.00 15.00	A
ATOM	1213	H	SLN	222					
ATOM	1114	CA	CLN	221	-3.803	-4.929	-11.387	1.00 22.41	À
MCTA	1015	23	SLN	221	-4.077	-3.528	-11.949	1.00 22.12	À
			~	22:	- 3 . 284		-13.163	1.00 32.16	A
ATOM	1016	23	SLN				-13.405	1.00 34.69	A
MCTA	:::7	25	SLN	221	-3.795				
ATCM	1019	ĈE:		221	-3.746		-12.558	1.00 42.12	A
		NES		221	-4.548	-1.507	-14.398	1.00 34.93	À
MCTA	1019	= -	٠٠٠٠		• • • • •				

FIGURE 17R

			~	221	-4.9	81 -2.187	-15.042	1.00 15.0	: 4
ATOM	1020	HE21	GLN					1.00 15.0	
ATOM	1021	HE22	GLN	221	-4.8				: A
		С	GLN	221	-4.2	27 -4.913	-9.942	1.00 19.5	i A
ATOM	1522				-5.30		-9.611	1,00 19,4	£ A
ATOM	1023	Э	JLN	221					
ATOM	1024	N	SER	222	-3.3	74 -4.330	-9.123	1,00 18.1	:
				222	-2.44	2 -4.098	-9.441	1.00 15.00	. A
MOTA	1025	Н	SER						
ATOM	1026	CA	SER	222	-3.85				
ATOM	1027	CB	SER	222	-3.10	04 -4.947	-6.691	1.00 19.99	9 A
					-3.09	6 -6.339	-7.053	1.00 24.64	i A
ATOM	1028	OG	SER	222					
ATOM	1029	HG	SER	222	-2.65			1.00 15.00	
ATOM	1030	С	SER	222	-3.73	31 -2.688	-7.330	1.00 24.09	9 A
					-2.99	-1.929	-7.944	1.00 29.41	L A
ATOM	1031	0	SER	222					
ATOM	1032	N	ILE	223	-4.53	34 -2.386		1.00 22.81	
MOTA	1033	н	ILE	223	-5.17	72 -3.127	-6.074	1.00 15.00) A
					-4.56	7 -1.122	-5.530	1.00 21.06	. A
MOTA	1034	CA	ILE	223					
ATOM	1035	CB	ILE	223	-5.97			1.00 19.87	
ATOM	1036	CG2	ILE	223	-6.56	4 0.315	-4.673	1.00 16.59	A
					-5.91		-7.188	1.00 15.22	. A
ATOM	1037	CG1	ILE	223		-			
ATOM	1038	CD1	ILE	223	-7.22		-7.709	1.00 20.54	
ATOM	1039	C	ILE	223	-4.36	7 -1.446	-4.007	1.00 21.62	. A
					-5.09			1.00 19.58	A
ATOM	1040	0	ILE	223					
ATOM	1041	N	HIS	224	-3.42	9 -0.767	-3.340	1.00 19.73	A
	1042	Н	HIS	224	-2.79	4 -0.230	-3.899	1.00 15.00	A
ATOM					-3.49		-1.858	1.00 16.45	
ATOM	1043	CA	HIS	224					
MCTA	1044	CB	HIS	224	-2.16	4 -1.183	-1.227	1.00 18.74	A
		CG	HIS	224	-2.18	2 -1.442	0.296	1.00 14.92	Α
MOTA	1045						0.682	1.00 15.33	
ATOM	1046	ND1	HIS	224	-2.47				
ATOM	1047	HD1	HIS	224	-2.66	7 -3.515	0.505	1.00 15.00	A
			HIS	224	-1.96	4 -0.524	1.310	1.00 13.79	A
ATOM	1048						2.517	1.00 10.52	
MOTA	1049	NE2	HIS	224	-2.13				
ATOM	1050	CE1	HIS	224	- 2 . 45	8 -2.411	2.232	1.00 11.70	A
		c	HIS	224	-3.91	4 0.699	-1.284	1.00 15.18	A
ATOM	1051						-1.520	1.00 14.36	
ATOM	1052	0	HIS	224	-3.33	-			
MOTA	1053	N	LEU	225	-4.97	0 0.673	-0.468	1.00 16.85	Α
		H	LEU	225	-5.31	7 -0.238	-0.252	1.00 15.00	A
MOTA	1054						0.256	1.00 15.55	Α
MOTA	1055	CA	LEU	225	-5.39				
ATOM	1056	CB	LEU	225	-6.92	7 2.082	0.208	1.00 17.15	A
MOTA	1057	CG	LEU	225	-7.49	5 2.456	-1.154	1.00 18.03	A
					-6.79		-1.774	1.00 19.34	Α
MCTA	1058	CD1	LEU	225					
ATOM	1059	CD2	LEU	225	-8.99		-1.098	1.00 13.66	
ATOM	1060	C	LEU	225	-5.07	4 1.758	1.739	1.00 14.77	A
		_			-5.34		2.345	1.00 12.20	A
ATOM	1061	0	LEU	225					
ATOM	1052	N	GLY	226	-4.54		2.344	1.00 18.04	
ATOM	1063	Н	GLY	226	-4.21	8 3.616	1.813	1.00 15.00	A
				226	-4.54		3.841	1.00 18.37	A
ATOM	1064	CA	GLY				4.544	•	
ATOM	1065	C	GLY	226	-4.19			1.00 17.08	
ATOM	1066	0	GLY	226	-3.38	19 4.906	4.055	1.00 13.75	À
				227	-4.78		5.725	1.00 16.30	A
MOTA	1067	N	GLY					1.00 15.00	
ATOM	1068	н	GLY	227	-5.43		6.036		
ATOM	1069	CA	GLY	227	-4.37	79 5.649	6.490	1,00 8.52	. A
				227	-4.93	5.631	7.959	1.00 12.75	, A
MOTA	1070	2	GLY					1.00 10.57	
ATOM	1071	0	GLY	227	-5.65		8.466		
ATOM	1072	N	VAL	228	-4.58	6.698	8.675	1.00 9.23	
		H	VAL	228	-4.04		8.222	1.00 15.00	Ä
ATOM	1073						10.067	1.00 11.74	
ATOM	::^;	CA	VAL	228	-5.11				
ATOM	1075	25	VAL	228	-4.08			1.00 14.30	
ATOM	1076	cs:	VAL	228	-2.83		11.333	1.00 10.73	A
					-4,78			1.00 17.07	
ATOM	::	030		228					
ATOM	1078	С	VAL	228	-6.23			1.00 9.03	
ATOM	1079	Ĉ	VAL	228	-6.08	39 8.937	9.649	1.00 12.01	. A
A . U.		_	- / -						

40/46

FIGURE 17S

ATOM	1080		PHE	. 229	-7.347	7,299	10.540	1,00 9 88	À
	1081	Ξ	PHE	229	-7.329	6.332	10.922	1,00 15,00	Ä
ATOM					-8.566	9.106	10.772	1.00 11 13	÷
ATOM	1082	CA	PHE	225				1.00 8.01	Ä
ATOM	1083	CB	PHE	229	-9.578	7.687	9.686		· ·
MCTA	1084	23	PHE	229	- 9 . 063	7.912	8.233	1,00 5 40	Ä
MCTA	1085	221	PHE	229	-9.140	9.196	7.649	1.00 10.03	À
			PHE	229	- 8 . 4 3 3	6.883	7.517	1.00 6.57	À
MCTA	1086	CD2			-8.512	9.443	6.395	1.00 5.18	À
ATOM	1087	CEl	PHE	229				1.00 4 26	Ä
ATOM	1098	CE2	PHE	229	-7.771	7.128	6.282		
MCTA	1089	CZ	PHE	229	-7.813	8.424	5.731	1.00 5.71	À
ATOM	1090	C	PHE	229	-9.202	8.014	12.197	1.00 14 39	Ä
			PHE	229	-9.116	7.000	12.870	1.00 13 92	Ä
ATOM	1091	0			-9.863	9.064	12.672	1.00 17.93	Ä
ATOM	1092	N	GLU	230			12.113	1.00 15.00	À
ATOM	1093	H	GLU	230	-9.912	9.892			
ATOM	1094	CA	GLU	230	-10.856	8.944	13.770	1.00 18 68	A
ATOM	1095	СВ	GLU	230	-11.218	10.303	14.393	1.00 16 17	A
		CG	GLU	230	-11.068	10.090	15.889	1.00 27.69	A
ATOM	1096				-12.314	10.091	16.805	1.00 33.06	Α
ATOM	1097	CD	GLU	230		10.707	16.552	1.00 38.26	A
ATOM	1098		GLU	230	-13.355			1.00 38.14	
ATOM	1099	OE2	GLU	230	-12.218	9.477	17.863		A
ATOM	1100	С	GLU	230	-12.225	8.268	13.453	1.00 18.70	A
	1101	ō	GLU	230	-12.967	ε.519	12.492	1.00 21.58	A
ATOM				231	-12.542	7.334	14.361	1.00 13.79	A
ATOM	1102	N	LEU		-11.840	7.125	15.015	1.00 15.00	A
MCTA	1103	H	LEU	231					
ATOM	1104	CA	LEU	231	-13.885	6.836	14.330	1.00 13.52	A
ATOM	1105	CB	LEU	231	-13.954	5.378	14.002	1.00 13.90	A
MCTA	1103	CG	LEU	231	-13.199	5.064	12.725	1.00 15.44	A
		221	LEU	231	-13.781	5.712	11.436	1.00 10.24	A
ATOM	1107 1108				-12.970	3.569	12.769	1.00 11.74	Α
ATOM	7778	CD2	LEU	231		7.074	15.591	1.00 14.88	A
ATOM	1109	C	LEU	231	-14.638			1.00 12.46	Ä
ATOM	1110	0	LEU	231	-14.145	6.912	16.692		
ATOM		N	SLN	232	-15.891	7.411	15.350	1.00 19.40	Α
ATOM	1117	Н	GLN	232	-16.107	7.560	14.394	1.00 15.00	Α
		CA	GLN	232	-16.920	7.509	16.389	1.00 21.07	A
MCTA	1113				-18.132	9.234	15.804	1.00 23.55	A
ATOM	1114	CB	GLN	232	-17.792	9.709	15.687	1.00 28.60	A
MOTA	1115	CG	GLN	232				1.00 33.66	Ä
MCTA	1116	CD	GLN	232	-17.625	10.200	17.102		
MCTA	1117	CEI	GLN	232	-18.623	10.472	17.742	1.00 38.08	A
ATOM	1118	NE2	GLN	232	-16.380	10.254	17.596	1.00 33.41	A
ATOM		HE21	GLN	232	-15.596	10.186	16.972	1.00 15.00	A
ATOM	1120	HE22	GLN	232	-16.387	10.470	18.576	1.00 15.00	À
				232	-17.4C2	6.148	16.851	1.00 21.86	A
ATOM		C	SLN		17 368	5.218	16.052	1.00 21.58	A
MCTA	1122	0	GLN	232			18.115	1.00 22.31	A
ATOM	:::3	N	PRO	233	-17.906	6.013			Ţ.
ATOM	1124	CD	PRC	233	-17 962	7.033	19.168	1.00 21.41	^
ATCM	1125	CA	PRC	233	-18 570	4.747	18.442	1.00 21.21	À
ATOM		CB	PRC	233	-19 013	4.987	19.866	1.00 23.88	A
	1126	23	PRC	233	-19.661	6.404	20.339	1.00 20.95	A
ATCM					-19.667	4.417	17.434	1.00 23.66	Ä
ATOM	1119	\subset	PRO	233		5.319	15.875	1.00 26.89	Ä
ATOM	1119	C	PRO	233	-20 275				Ä
ATCM	1133	N	SLY	234	-19.731	3.140	17.059	1.00 22.77	
ATOM	11111	Η	3:Y	234	-19.082	2.466	17.417	1.00 15.00	À
ATOM	1131	ΞÀ	324	234	-20.766	2.767	16.072	1.00 19.45	Ä
	1133	5	5 <u>2.</u>	234	-20 545	3.241	14.625	1.00 19 67	À
ATOM		-	J	234	- 21, 299	2.980	13.715	1.00 13.81	Ä
ATCM	1114	-	51:	_ 3 ¬		3.926	14.368	1.00 18 89	Ä
ATOM	1135	::	<u>ئے۔</u> ہے	131	19 405		15.135	1.00 15 00	Ä
ATCM	1136	Ξ	A_A	235	- 19.096	4.485		1 00 15 55	
ATOM	1137	ΞÀ	ALA	235	-18.431	3.515	13.296	1.00 22 17	À
ATOM	113a	73	ALA	235	-18.193	2.042	13.039	1.00 6.68	À
ATCY	1139		AA	235	-18 540	4.160	11.993	1,00 11,96	À
0	• • • •	-							

PCT/US96/19172

41/46

FIGURE 17T

ATIOM	1140	0	AA	235	-18.486			1,000 26 42
ATOM	1141		SER	236	-18.699			1 00 20.44
ATOM	1142	Η	SER	236	-18.524	4.326	10.254	
ATOM	1143	CA	SER	236	-18.630	2.225	9.961	
ATCM	1144	23	SER	23€	-19.905	1.676	9.163	
ATOM	1145	CG	SER	236	-20.662	3.908		
MCTA	1146	НG	SER	236	-21.599			. 00
ATOM	1147	0	SER	23€	-17.794			
ATOM	1148	0	SER	236	-17.939	2.538		
						3.614		
ATOM	1149	N	VAL	237	-15.986	1.567		1.00 14.95
MCTA	115C	H	VAL	237	-16.764	0.823		
ATOM	1151	CA	VAL	237	-16.201	1.802		1.00 11.42
ATOM	1152	CB	VAL	237	-14.681	2.004	7.284	1.00 12.49
ATOM	1153	CG1	VAL	237	-14.113	0.726		
ATOM	1154	CG2	VAL	237	-14.254	3.396	7.846	
ATOM	1155	\subset	VAL	237	-16.468	0.746		1.00 8.76
MOTA	1156	0	VAL	237	-16.827	-0.363		1.00 12.84
ATOM	1157	N	PHE	238	-16.354	1.158	4.773	1.00 12.45
ATOM	1158	Н	PHE	238	-16.139	2.128	4.652	
MCTA	1159	CA	PHE	238	-16.521			1.00 15.00
ATOM	1160	CB				0.213		1.00 11.21
ATOM			PHE	238	-18.013		3.322	1.00 13.00
	1161	CG	PHE	238	-18.634	1.468	2.899	1.00 12.17
ATOM	1162		PHE	238	-18.763	1.812	1.518	1.00 12.94
MCTA	1163		PHE	238	-19.135	2.332	3.887	1.00 10.55
ATOM	1164	CEL	PHE	238	-19.407	3.010	1.092	1.00 14.01
MCTA	1165	CE2	PHE	238	-19.786	3.504	3.470	1.00 12.74
ATOM	1166	CZ	PHE	238	-19.917	3.836	2.100	1.00 13.17
ATOM	1157	0	PHE	238	-15.725	0.582	2.379	1.00 11.20
ATCM	1168	С	PHE	238	-15.137	1.638	2.267	1.00 8.73
ATOM	1169	N	VAL	239	-15.726	-0.300	1.383	1.00 14.34
ATCM	1173	Н	VAL	239	-16.187	-1.170	1.523	1.00 15.00
MCTA	7.7	:: CA	VA	239	-14.982	0.027		
ATOM	1171 1172	CB	VAL	239			0.154	1.00 14.65
ATOM	1173				-13.900	-1.043	-0.162	1.00 14.09
ATOM			VAL	239	-13.004	-1.318	1.038	1.00 14.55
	1174 1175		VAL	239	-13.064	-0.594	-1.361	1.00 14.74
ATCM	5		VAL	239	-15.930	0.081	-1.043	1.00 18.32
ATOM	1176		VAL	239	-16.558	-0.903	-1.369	1.00 18.99
MCTA	1177		ASN	240	-16.000	1.207	-1.707	1.00 19.26
ATOM	1178		ASN	240	-15.420	1.947	-1.383	1.00 15.00
ATOM	1179		ASN	24C	-16.613	1.355	-3.031	1.00 21.66
ATOM	1180	CB	ASN	240	-16.850	2.856	-3.095	1.00 24.58
ATOM	1181	CG	ASN	240	-18.167	3.077	-3.708	1.00 29.09
ATOM	1182	CD1	ASN	240	-18.948	2.123	-3.740	1.00 35.44
ATOM	1183	ND2	ASN	240	-18.293	4.331	-4.166	1.00 34.71
ATOM	1134 3		ASN				-4 657	1.00 15.00
ATCM	1185		ASN	240	-15 669	0.950	-4.184	1.00 20.96
ATOM	1186		ASN	240	-14.473	1.128	-4.058	
ATOM	1157		VAL	241	-15.189			1.00 20.99
ATOM	1138		VAL			0.383	-5.275	1.00 21.52
ATOM	1189			241		0.230	-5.295	1.00 15.00
ATOM			VAL	241	-15.387	0.439	-6.516	1.00 20.56
A COM	1190		VAL	241	-14.581	-0.850	-6.849	1.00 18.02
ATOM	1191		VAL	241	-15.501	-2.058	-7.063	1.00 15.06
ATOM	1193	325	VAL	241	-13.597	-1.259	-5.764	1.00 20.05
ATOM	1193	:	VAL	241	-16.253	0.758	-7.741	1.00 18.66
ATIM	1154	-	VAL	141	-17 441	0.500	-7.819	1.00 18.63
ATIM	1195	•	THE	242	-15.541	1.162	-8.762	1.00 21.24
ATOM	1144	Ξ	THR	242	-14.704		-9.486	1.00 15 00
ATCM	1137		THR	242	-15.246	1.653 1.476	-10.031	1.00 20.63
ATOM	1199		THR	242	-15.342	2.269		1.00 15.80
ATIM	1133		THE	242	-14.035	1.663	12.953	1.00 17.72
		-					_ =	00

FIGURE 17U

	1200		THR	242	-13 721	1 949	-11.812		:
ATOM		H31				3.732			
ATOM	1201	002	THR	242	-15,238				
ATOM	1202	C	THR	242	-16,755	0.240		1:00 18:90	
		č	THE	242	-17.845	0.199	-11.297	1 21 21 26	<u>:</u>
ATOM	1203							1.00 21 98	
ATOM	1204	N	ASF	243	- 15 . 923		-10.718		-
ATOM	1205	Н	ASP	243	-15.087	-0.580	-10.221	1.00 15.00	2
					-16.092		-11.628	1.00 21.28	Ä
ATOM	1206	CA	ASP	243				1.00 21.20	
ATOM	1207	CB	ASP	243	-14.905	-2.126	-12.594	1.00 00.05	Ä
ATOM	1208	CS	ASP	243	- 14 . 932	-0.954	-13.492	1,00 28,23	<u>.</u>
					-14 314			1.00 28.43	
ATOM	1209	001	ASP	243			-13.115		A
ATOM	1210	OD2	ASP	243	-15.588	-1.033	-14.535	1.00 33.00	Ä
	1211	C	ASP	243	-16.123	-3 308	-10.923	1.00 20.38	À
ATOM									
ATOM	1212	0	ASP	243	-15.145		-10.967		À
MCTA	1213	N	PRO	244	-17.204	-3.553	-10.154	1.00 19.92	A
	1214	CD	PRO	244	-18.481	-2 871	-10.071	1.00 16.83	À
ATOM									
ATOM	1215	CA	PRO	244	-17.120	-4.706	-9.269		A
ATOM	1216	CB	PRO	244	-18.293	-4.535	-e.275	1.00 15.33	A
	1217	ĈĞ	PRO	244	-18.890	-3 174	-8.634	1.00 15.21	A
ATOM									
MCTA	1218	C	PRO	244	-16.975	-6.034	-9.974	1.00 19.29	Α
ATOM	1219	0	PRO	244	-15.194	-6.859	-9.548	1.00 23.48	А
	1 2 2 2			245	-17.581	-6 163	-11.150	1.00 22.60	A
ATOM	1220	N	SER						
ATOM	1221	Н	SER	245	-18.220		-11.473	1.00 15.00	A
MCTA	1222	CA	SER	245	-17.414	-7.429	-11.942	1.00 25.50	A
					-18.256		-13.234	1.00 21.36	А
ATOM	1223	CB	SER	245					
MCTA	1224	OG	SER	245	-19.667	-7.567	-12.981	1.00 38.26	A
ATOM	1225	HG	SER	245	-19.848	-7.390	-12.038	1.00 15.00	Α
				245	-15.955		-12.328	1.00 24.14	A
MCTA	1226	С	SER						
MCTA	1217	0	SER	245	-15.477		-12.623	1.00 24.84	À
ATOM	1228	N	GLN	246	-15.177	-6. 68 9	-12.385	1.00 28.52	A
					-15.638	-5.804	-12.265	1.00 15.00	A
ATOM	1229	H	GLN	246					
ATOM	1230	CA	GLN	246	-13 743	-6.923	-12.590	1.00 26.45	A
ATOM	1231	CB	GLN	246	-13 144	-5.645	-13.233	1.00 29.90	A
					-13.403	-5.435	-14.758	1.00 26.84	A
ATOM	1232	CG	GLN	246					
MCTA	1233	CD	GLN	246	14 862	-5.341	-15.129	1.00 21.60	A
ATOM	1234	CE:	GLN	246	15.538	-4.503	-14.616	1.00 24.20	A
				246	-15 334	-6.234	-15.975	1.00 26.15	÷
ATOM	1135	NE2	GLN						
ATOM	1136	HE21	GLN	246	-14.763	-6.924	-16.423	1.00 15.00	A
ATOM	1237	HE22	GLN	246	. 6 . 320	-6.119	-16.084	1.00 15.00	А
MCTA	1238	=	GLN	246	-12.936	-7.372	-11.363	1.00 27.14	Α
MOTA	1239	C	GLN	246	-11.721		-11.454	1.00 25.73	Α
ATOM	1240	N	VAL	247	-13 615	-7.395	-10.196	1.00 23.70	Ä
ATOM	1241	Н	VAL	247	- 14 600	-7.594	-10.146	1.00 15.00	A
							-9.097	1.00 21.91	
ATOM	1242	CA	VAL	247	-12 728	-7. 5 69			A
ATCM	1243	CB	VAL	247	- 13.156	-6.814	-7.859	1.00 21.59	Ä
ATCM	1244	CG1	VAL	247	14 027	-7.616	-6.962	1.00 24.52	Ä
							-8.167		
ATCM	1145	CG2	VAL	247	-13 690	-5 409			A
ATOM	1246	C	VAL	247	-12.258	-8.998	-8.910	1.00 21.55	A
ATCM	1247	Ö	VAL	247	-12.946	-9.912	9.251	1.00 19.53	A
7.0									
ATOM	1148	N	SER	248	-11.000	-9.152	-8.444	1.00 21.31	À
MCTA	1249	; ;	SER	248	-10.558	-8.342	-8.070	1.00 15.00	A
ATOM	1250		SER	248	-15.414	-10.499	-8.327	1.00 21.97	A
		CA							
ATOM	1251	C3	SER	248	-8.939	-10.571	-8.828	1.00 23.61	A
ATOM	1252	23	SER	248	-3.860	-9.952	-10.128	1.00 20 21	Ä
ATOM	1283	H S	SER	248	-9.752	-10.627	-10.496	1,00 15.00	÷
									7. 7. 3.
ATCM	1254	-	SER	245	-10.538	-11.076	-5.946	1.00 19.28	^
ATOM	1155	2	SEF	148	-10.048	-10.409	-6.052	1.00 20.64	Ä
ATOM	1188	N	H I S	249	-11.269	-12.204	-6.814	1.00 18.72	÷
							-7.674	1.00 15.00	•
ATOM	1257	Ξ	H 1 5	249	-11.294	-12,753			A A A
ATCM	1155	CA	H15	249	-11.640	-12.673	-5.478	1.00 17.22	A
ATOM	1155	ΞΞ	H15	243	-13.080	-13.152	-5 484	1.00 13.10	÷
/3.20	:					===			

43/46

FIGURE 17V

		~~	HIS	249	-13.919	-11.905	-5.550	1 11 11 11 13	A
ATOM	1260	23						1.00 13 47	
ATCM	1261	ND:	${\tt HIS}$	249	-14,137	-11.129	-4 486	and a second of	_
ATOM	1262	HD:	HIS	249	+13.700	-11.294	-3.611	1,00 15,00	Ä
							-6.610	1.00 10 61	
ATOM	1263	222	ΞIS	249	-14.652	-11.414			~.
ATOM	1264	NEZ	HIS	249	-15.317	-10.347	-6.134	1,00 15 51	À
						-15.142	-4.821	1.00 18 81 1.00 10.36	À
ATOM	1265	CEI	HIS	245					
ATOM	1266	C	HI5	249	-10.701	-13.683	-4.858	1,00 23.58	Ä
					-11.103	-14.729	-4.359	1.00 21 98	.
ATOM	1267	O	HIS	249				1.00 21 35	
ATOM	1268	N	GLY	250	-9.398	-13.258	-4.879	1.00 29.10	Ä
		H	GLY	250	-9.252	-12.351	-5.253	1,00 15.00	Ä
ATOM	1269								
ATOM	1270	CA	GLY	250	-5.410	-14.041	-4.115	1.00 24.27	Ä
ATOM	1271	Ξ	GLY	250	-8.336	-15.372	-4.743	1.00 25.93	Ä
							-5.795	1.00 29.26	Ä
ATOM	1272	0	GLY	250	-8.940	-15.520			
MOTA	1273	N	THR	251	-7.594	-16.302	-4.127	1.00 22.38	A
		Н	THR	251	-7.485	-17.038	-4.804	1.00 15.00	A
ATOM	1274								
ATOM	1275	CA	THR	251	-7.111	-16.139	-2.725	1.00 21.12	Ä
MCTA	1276	CB	THR	251	-6.988	-17.525	-1.933	1.00 24.76	A
ATOM	1277	OG1	THR	251	-5.877	-17.641	-0.981	1.00 22.90	Α
MCTA	1278	HG1	THR	251	-6.063	-18.366	-0.381	1.00 15.00	A
						-18.722	-2.890	1.00 22.77	A
ATOM	1279	CG2	THR	251					
MCTA	1280	C	THR	251	-5.952	-15.158	-2.473	1.00 17.96	A
						-15.043	-3.213	1.00 12.30	A
ATOM	1281	0	THR	251					
ATOM	1282	N	GLY	252	-6.241	-14.367	-1.419	1.00 16.85	A
MCTA	1283	Н	GLY	252	-7.093	-14.432	-0.862	1.00 15.00	A
ATOM	1284	CA	GLY	252		-13.375	-0. 928		À
ATOM	1285	C	GLY	252	-5.357	-12.058	-1.670	1.00 15.51	A
						-11.168	-1.439	1.00 15.18	A
MCTA	1266	0	GLY	252					
ATOM	1257	N	PHE	253	-6.189	-12.063	-2.744	1.00 16.66	À
ATOM	1138	H	PHE	253	-6.868	-12.805	-2.761	1.00 15.00	A
ATOM	1239	CA	PHE	253	-6,110	-10.892	-3.651	1.00 15.77	A
ATOM	1290	CB	PHE	253	-6.649	-11.216	-5.100	1.00 17.11	À
						-11.840	-5.994	1.00 11.82	А
ATOM	1291	23	PHE	253					
ATCM	1192	CC:	PHE	253	-4.385	-11.175	-6.231	1.00 13.69	A
	1293			253	. S R45	-13.089	-6.558	1.00 18.59	A
ATOM		CD2	PHE						
ATOM	1294	CEL	PHE	253	-3.364	-11.771	-6.993	1.00 14.39	Ä
ATOM	1295	CE2	PHE	253	-4.840	-13.680	-7.363	1.00 21.37	· A
							-7.562	1.00 15.72	A
ATOM	1296	CZ	PHE	253		-13 014			
ATOM	1297	С	PHE	253	-6.740	-9.599	-3.147	1.00 13.88	Ä
ATOM		Š	PHE	253	-6.347	-8.477	-3.453	1.00 14.27	A
	1198								
ATOM	1299	N	THR	254	-7.865	-9.837	-2.502	1.00 14.00	÷
ATOM	1200	H	THE	254	-8.079	-10.748	-2.124	1.00 15.00	Ä
					-8 741	-8.681	-2.185	1.00 14.09	A
ATOM	1301	CA	THR	254	_				
ATOM	1302	CВ	THR	154	-9 908	-8.459	-3.201	1.00 11.66	Α
ATOM	: 503	031	THR	254	-9 414	-8.325	-4.536	1.00 13.08	A
						-9 054	-4 992	1.00 15.00	Ä
ATCM	1004	H31	THE	254	-9 826				_
ATOM	1375	231	THR	254	10 882	-7 321	-2.885	1.00 13.78	Ä
					-9.270	-8.779	-0.738	1.00 12.36	Ä
ATOM	1306	С	THR	154					
ATOM	1307	0	THR	254	-9.906	-9.595	-0.240	1 00 14.54	À
ATOM	1308	:;	SER	255	- 9 . 007	-7.683	-0.027	1.00 13.42	÷ ;
						-7.021	-0.490	1.00 15.00	
ATOM	1309	H	SER	255	-8 425				^
ATOM	1311	CA	SER	255	-9.032	-7.725	1.431	1.00 7.59	Ä
				255	-7.793	-8.466	1.976	1.00 6.39	À
ATOM	1311	CE	SER					2.00 5.00	
ATCM	1312	03	SER	255	-5 704	-7 560	2.041	1.00 9.69	÷
ATOM	1313	НS	SEF	255	- 5 . 920	-8.031	1 741	1,00 15 00	7. 7.
				222	9 248	-6 341	2.085	1 00 10.05	•
ATOM	13.4	_	SEF	255				1 00 10.05	Ç
ATOM	1111	-	SEF	255	-9.191	-5.254	1.492		Ä
ATCM		13	FHE	156	-9 653	-6.365	3.369	1.00 8.54	÷
717	7.7.7					-7.323	2.733	1.30 15.30	Ä
ATCS		-	7 – E	256	-9 700				^
ATIM	1318	27	285	256	-10.114	-5.168	4.035	1.00 7.94	Ä
	1319			256	-11 615	-5.009	3.679	1,00 11,65	÷
ATOM	7	33	PHE	- > =	*** 2-3	3.007	2.0.3		^

44/46

FIGURE 17W

N T C 14		ÇS	PHE	256	-12.376	-3.524	4.235	1 33 4 72	À
ATCM	1323								
ATCM	1321	22:	PHE	256	-11.766	-2.570	4.533		\sim
		2= 2		256	-13 756	-3.976	4 327		A
ATOM	1322	35 2	PΗΞ						
ATOM	1323	CE:	PHE	255	-12.503	-1.490	5.034	- 1.00 11.4%	÷
					-14.514	-2.849	4.734	1.00 6.66	Ä
ATOM	:324	CE2	PHE	256					
	1325	CZ	PHE	256	-13.862	-1.657	5.211	1.00 9.17	Ä
ATOM									À
ATOM	1326	\subseteq	PHE	256	- 9 . 933	-5.268	5.560	1.00 11.92	, A
				256	-10.195	-6.290	6.177	1.00 9.43	Ä
MOTA	1327	0	PHE	250					
ATOM	1328	N	GLY	257	-9.420	-4.207	6.169	1.00 10.57	Ä
					-9.217	-3.365	5.653	1.00 15.00	Ä
ATOM	1329	H	GLY	257	- 7	ر ۵ د . د -			
3 TOM	1330	CA	GLY	257	- 9.368	-4.406	7.612	1.00 11.26	A
ATOM							8.287	1.00 11.14	À
ATOM	1331	\subset	GLY	257	-8.965	-3.122			
	1332	0	GLY	257	-8.916	-2.068	7.679	1.00 10.81	à
ATOM							D E C E		
ATOM	1333	N	LEU	258	-8.688	-3.277	9.565	1.00 12.61	À
		Н	LEU	258	-8.776	-4.204	9.943	1.00 15.00	~
ATOM	1334	n							
ATOM	1335	CA	LEU	258	-8.434	-2.098	10.426	1.00 14.72	A
				258	-9.751	-1.212	10.704	1.00 14.67	A
ATOM	1336	CB	LEU	250					
MCTA	1337	CG	LEU	258	-10.991	-1.863	11.379	1.00 18.02	A
					17 717	-1.125	11.094	1.00 15.05	А
ATOM	1338	CD1	LEU	258	-12.317				
ATOM	:339	CD2	LEU	258	-10.743	-2.047	12.905	1.00 15.42	A
ATOM	1340	C	LEU	258	-7.737	-2. 52 5	11.709	1.00 11.84	A
			LEU	258	-7.851	-3.690	12.096	1.00 7.91	Α
ATCM	1341	0							
ATOM	1342	N	LEU	259	-7.058	-1.537	12.343	1.00 11.64	A
					-6.883	-0. 685	11.844	1.00 15.00	A
ATOM	1343	H	LEU	259					
MOTA	1344	CA	LEU	259	-6.581	-1.780	13.714	1.00 9.53	Α
					-5.155	-2.417	13.831	1.00 7.40	A
ATOM	1345	CB	LEU	259					
MOTA	1346	CG	LEU	259	-4.194	-1.621	12.931	1.00 11.40	Ä
						2 412	11.926	1.00 7.83	A
ATOM	1347	CDI	LEU	259	-3.355	-2.412			
ATOM	1345	CD 2	LEU	259	- 3 . 379	-0.670	13.808	1.00 13.30	A
								1.00 10.40	A
MCTA	1349	\subset	LEU	259	-6.652	-0.497	14.531		~
ATOM		2	LEU	259	-6.202	0.556	14.082	1.00 9.73	À
	1350								
ATOM	1351	N	LYS	260	-7.193	-0. 629	15.762	1.00 12.00	A
				260	7.395	-1.553	16.115	1.00 15.00	Α
ATOM	1352	Н	LYS	200					
ATOM	1353	CA	LYS	260	- 7.069	0.521	16.693	1.00 13.51	A
					-8.014	0 312	17.885	1.00 13.49	Ä
ATOM	1354	CB	LYS	260					
ATOM	1355	CG	LYS	260	-8 378	1.656	18.521	1.00 17.16	A
					-9 435	1 456	19.596	1.00 12.01	A
ATOM	1356	CD	LYS	260					
ATOM	:357	CE	LYS	260	-10 151	2.681	20.121	1.00 11.41	А
					- 9 . 175	3.595	20.697	1.00 13.33	A
ATOM	1358	NZ	<u>'Y</u> S	260					
MCTA	1359	HZI	<u> </u>	260	- 6 . 534	3 932	19. 954	1.00 15.00	A
					- 3 693	4 404	21.095	1.00 15.00	A
ATOM	1360	H.Z.2	LYS	260					
ATOM	1361	HZ3	:Y5	262	· ÷ 638	3.136	21.458	1.00 15.00	A
					-5 649	0.921	17.125	1.00 16.54	A
ATOM	1362	\subseteq	LYS	260					
ATOM	1363	O .	LYS	260	-4.828	0.112	17.481	1.00 15.61	A
					- 5 353	2.199	17.015	1.00 14.78	Ä
ATCM	1364	N	LEU	251		2.22			
ATOM	1365	Η	LEU	16:	- s . 0 3 9	2.638	16.856	1.00 15.00	Ä
					- 3 . 705	4.005	17.185	1.00 19.53	A
ATOM	1366	CB	LEU	161					
ATOM	1367	23	LEU	261	-3.177	4 309	15.787	1.00 16.82	A
								1 00 13 45	
ATCM	1368	CD1	TED	261	-3.010	5.779	15.767	1.00 12.45	Å
ATOM	1359	CDB	LEU	261	-4 010	3.906	14.577	1.00 18.20	Ä
	-359								
ATOM	1370	C	TET.	161	-4.243	2.667	19.225	1.00 20.80	Ä
ATCM		0071	LEU	26:	.5 363	2.741	19.746	1.00 22.59	Α.
	1371								
ATOM	1370	0071	LET	261	-3,121	2.595	19.913	1.00 26.97	Ä
ATOM		25	LEU	261	-4 122	2.604	17.684	1.00 18.13	À
V 102	- 3 - 3								
ATCM	1374	-	H 1 H	5:.	20.040	5.837	7 596	1.00 16.33	
ATCM	1378	£1	HÜH	501	-19 411	10.547	7.803	1.00 10.00	₩
	- : :								
ATOM	1374	H 2	H.T	501	19.615	9 317	5.900	1.00 10.00	₩.
ATOM	:377	-	HJH	502	- 5.727	11.545	10.743	1.00 10.94	~
	* -	-		•		11.934	9.919		W
ATOM	1378	Ξ.	HIH	502	-10.039				
ATCM	1375	H.I	HIR	÷::	-10 233	12.125	11.315	1,00 15,00	₩.
^ · •						_	_	· •	•

FIGURE 17X

		_		5.63	-8.158	13.188	13.681	1.00 30.54	₩.
MCTA	1380	٥.	HOH	503	-8.715	12.529	13.277	1.00 15.00	W
ATOM	1381	Hl	HOH	503	-8.700	13.944	13.574	1.00 15.00	¥
MOTA	1382	H2	нон	5 C 3	-16.772	8.440	12.789	1.00 12.20	W
ATOM	1383	0	нон	504	-17.194	9.259	12.886	1.00 10.00	¥
MCTA	1384	Hl	нон	504	-15.921	8.763	12.582	1.00 10.00	₩
MOTA	1385	H2	нон	504		7.297	7.925	1.00 47.03	W
ATCM	1386	0	нон	505	-25.173	8.064	8.239	1.00 10.00	w
ATOM	1387	Hl	нон	505	-24.690	7.684	7.583	1.00 10.00	Ÿ
ATOM	1388	H2	нон	505	-25.990	14.948	13.859	1.00 36.14	
ATOM	1389	0	нон	506	-23.612	15.702	13.605	1.00 10.00	ü
ATOM	1390	Hl	нон	506	-24.160	15.702	14.748	1.00 10.00	₩
MCTA	1391	H2	HOH	506	-23.282	-8.460	-7.186	1.00 34.02	w
MOTA	1392	0	нон	507	-17.329	-7.253	-3.843	1.00 63.14	พื
ATOM	1393	0	нон	508	-18.687	11.327	3.239	1.00 22.26	W
ATOM	1394	0	нон	509	-7.157	7.486	-2.227	1.00 27.69	พ
MOTA	1395	0	нон	510	-19.322	-7.711	-1.931	1.00 26.48	W
MOTA	1396	0	нон	511	-14.645	-9.754	12.556	1.00 24.86	W
MOTA	1397	0	нон	512	-18.377	0.048	-13.455	1.00 26.05	พิ
MOTA	1398	0	нон	513	0.030	5.945	22.862	1.00 28.03	พ
ATOM	1399	0	нон	514	-8.938	-4.922	-7.247	1.00 41.61	W
MOTA	1400	0	нон	515	-29.446		10.038	1.00 47.16	w
MOTA	1401	0	нон	516	-12.982	10.220	7.242	1.00 60.65	W
ATOM	1402	0	HOH	517	-21.797	-9.377	19.484	1.00 40.46	w
ATOM	1403	0	нон	518	-7.867	8.165	14.628	1.00 63.80	w
ATOM	1404	0	HOH	520	-15.588	7.778	20.415	1.00 35.72	w
ATOM	1405	0	нон	521	-21.844		-15.790	1.00 33.72	w
ATOM	1406	0	HOH	522	-6.555		-8.051	1.00 44.08	w
ATOM	1407	0	нон	523	-9.046	-13.476	17.071	1.00 34.06	w
ATOM	1408	0	нон	524	-17.413	-9.311	19.884	1.00 37.99	W
ATOM	1409	0	HOH	525	-23.838	4.781	10.379	1.00 72.49	พ
ATOM	1410	C	нон	526	- 26 . 323	15.525		1.00 43.99	₩
ATOM	1411	0	нон	527		-13.749	17.943	1.00 63.68	W
ATOM	1412	0	нон	528	-0.470	2.513	-14.864	1.00 47.52	w
ATOM	1413	0	HOH	529	-5.580	-12.778 7.004	2.495	1.00 18.07	ü
MOTA	1414	0	нон	530	-2.641	12.847	0.156	1.00 24.96	w
ATOM	1415	0	нон	531	-6.472	-16.426	-0.360	1.00 63.56	W
ATOM	1416	С	нон	532	-10.363	-17.183	-13.053	1.00 67.67	W
ATOM	1417	0	нон	533	-1.378 -4.774	9.073	-0.651	1.00 23.36	W
MOTA	1418	0	нон	534	-18.917	-13.857	6.913	1.00 32.28	w
ATOM	1419	0	нон	535	-23.062	3.270	0.454	1.00 52.03	W
ATCM	1420	0	нон	536 537	- 25 . 906	9.022	16.986	1.00 44.75	w
ATOM	1421	0	нон	538	-21.729	16.972	17.027	1.00 53.12	W
ATOM	1422	0	нон Нон	539	-9 084	11 806	17.034	1.00 70.90	w
ATOM	1423	0		54C	-10.938	-13.296	15.207	1.00 35.65	W
ATOM	1424	0	HOH	541	-5.068	13.255	17.989	1.00 67.36	₩
ATOM	1425	C	нон нон	542	- 20 . 593	-11.039	-9.003	1.00 96.30	W
MOTA MOTA		0	HOH	543	-15 926	13.397	1.269	1.00 35.72	W
	1427 1428	0 0	нон	544	-24.591	-7.285	-2.353	1.00 43.42	W
MCTA			HOH	545	-25.859	-2.666	-15.747	1.00 53.56	W
ATOM ATOM	1429 1430	0	HOH	546	-23.374	-1.533	11.026	1.00 56.44	W
ATOM	1431	0	нон	548	-8.941	-12.649	-12.394	1.00 €4.34	w
ATOM	1432	3	нсн	549	-14.150	6.038	-12.250	1.00 41.38	W
ATOM	1432	~	нон	550	-14.274	-0.613	18.441	1.00 56.17	W
ATOM	1434	000	HDH	551	-12.241	-19.609	8.637	1.00 80.90	W
ATOM	1435	č	HCH	552	-10.316	15.578	10.166	1.00 39.58	W
ATOM	1436	-	нон	553	-15.367	10.941		1.00 40.40	W
ATOM	1437	00	HOH	554	-2.322	1.830		1.00 33.65	W
ATOM	1436	0	нон	555	- 22 . 393	-14.875	-4.217	1.00 52.40	W
ATOM	1439	Ĉ	HOH	556	- 22 . 120	14.279	7.189	1.00 38.55	W
Λ. σ.		-							

FIGURE 17Y

ATOM ATOM ATOM ATOM	1440 1441 1442 1443	0000	HOH HOH HOH	5555 5555 5664	-28.633 -5.554 -22.996 -13.764 -15.556	6.135 -16.509 12.522 2.268 7.750	9.560 13.192 1.162 -14.743 -5.628	1.00 37 40 1.00 88.69 1.00 63 77 1.05 27.47	8.8.8.8
ATOM ATOM ATOM	1444 1445 1446 1447 1448	00000	HOH HOH HOH HOH	562 563 564 565	-1.970 -18.939 -12.619 -9.491	-15.363 -0.335 14.760 18.046	-17.719 -13.842 -6.974 13.682	1.00 76.30 1.00 48.39 1.00100.59 1.00 87.45	8 8 8 8 8
ATOM ATOM ATOM ATOM ATOM	1449 1450 1451 1452	0000	нон нон нон нон	566 567 568 569	-24.072 -27.455 -14.604	-11.140 -3.264 0.119 3.516	22.481 -0.332 -7.117 -6.119 -16.973	1.00 28.88 1.00 35.13 1.00 71.07 1.00 59.45 1.00 59.09	8888
ATOM ATOM ATOM ATOM	1453 1454 1455 1456	0000	нон нон нон	570 571 572 573	-2.635 -18.841 -24.996 -14.666 -14.786	-9.566 4.066 1.301 16.471 1.426	-7.543 17.953 8.995 10.949	1.00 34.10 1.00 70.45 1.00 62.77 1.00 82.68	ម ម ម ម
MOTA ATOM ATOM ATOM	1457 1458 1459 1460 1461	00000	нон нон нон нон нон	574 575 576 577 578	-16.584 -16.273- -25.471	-14.717 -4.590 -0.127 -17.173	-4.352 6.109 -2.510 19.514	1.00 29.09 1.00104.64 1.00 62.74 1.00 89.62	ਬ ਬ ਬ ਬ
MOTA MOTA MOTA MOTA MOTA	1462 1463 1464 1465	0000	нон нон нон	579 580 581 582	-21.060 -19.286 -22.445 -22.434	-15.840 -10.539	19.996 -12.816 0.317 12.489 -2.500	1.00 69.59 1.00 60.37 1.00 58.24 1.00 70.25 1.00 39.32	2 2 2 2
MOTA MCTA MOTA	1466 1467 1468 1469	0000	HOH HOH HOH	583 584 585 586	-21.327 -25.325 -24.945 -24.342 -18.020	3.668 5.247 -10.718 -13.003 11.871	16.919 -2.375 1.927 11.358	1.00 41.31 1.00 38.85 1.00 70.58 1.00 64.47	
ATOM ATOM ATOM ATOM	1470 1471 1472 1473	00000	HOH HOH HOH HOH	587 588 589 590 591	-18.020 -27.135 -14.982 -5.646 -2.745	6.965 -16.230 14.418	13.151 -2.494 -2.232 -17.104	1.00 53.96 1.00 30.24 1.00 41.78 1.00 55.19	3 3 3 3
ATOM ATOM ATOM ATOM ATOM END	1474 1475 1476 1477 1478	0000	нон нон нон нон	592 593 594 595	-3.397 -32.916 -10.913 -24.157	-7.012 -4.705 -18.855 1.821	22.477 -4.143 -3.503 -6.165	1.00 59.46 1.00 51.88 1.00 42.29 1.00 47.43	3 3 3 3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/19172

:C12Q 1/00; G01N 33/53, 33/567; A61K 39/395 :435/4, 7.1, 7.21; 424/130.1; 514/2	, 31/00; A01N 37/18	
, :433/4, /.1, /.21; 424/130.1; 514/2		Į.
International Patent Classification (IPC) or to both	national classification and IPC	
	classification symbols)	
	,	
435/4, 7.1, 7.21; 424/130.1; 514/2		
on searched other than minimum documentation to the ex	ctent that such documents are included in th	e fields searched
base consulted during the international search (name o	f data base and, where practicable, search to	erms used)
ÆNTS CONSIDERED TO BE RELEVANT		
Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No
US 5,474,771 (LEDERMAN et al) entire document.	12 December 1995, see	1-101
WO 94/04570 (HEATH et al) 03 document.	March 1994, see entire	1-101
KUNTZ, I.D. Structure-Based Strat Discovery. Science. 21 August 1028-1031	egies for Drug Design and 1992, Vol. 257, pages	1-101
extracellular fragment of human CI	040 ligand. Structure, 15	1-101
er documents are listed in the continuation of Box C.	See patent family annex.	
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance article document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		
	being obvious to a person skilled in the art "&" document member of the same patent family	
	Date of mailing of the international sea 0 1 APR 1997	uch report
Name and mailing address of the ISA/US Commissioner of Patones and Trademarks Box PCT Washington, D.C. 20231 Authorized officery HEATHER BAKALYAR		
	International Patent Classification (IPC) or to both DS SEARCHED cumentation searched (classification system followed by 435/4, 7.1, 7.21; 424/130.1; 514/2 on searched other than minimum documentation to the end to be searched other than minimum documentation to the end to be searched other than minimum documentation to the end to be searched other than minimum documentation to the end to be searched other than minimum documentation to the end to be searched other than minimum documentation. MENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appeared to be searched to be searched to be searched to be searched to be searched. WO 94/04570 (HEATH et al.) O3 document. KUNTZ, I.D. Structure-Based Stratt Discovery. Science. 21 August 1028-1031 KARPUSAS, M. 2 angstrom to extracellular fragment of human CI October 1995, Vol. 3, No. 10, page document to published from the continuation of Box C. categories of cited documents. In defining the general state of the art which is not considered particular relevance locument but published on or after the international filing date on the retain of the publication date of another citation or other reason (as specified) International filing date but later than rity date claimed actual completion of the international filing date but later than rity date claimed actual completion of the international search US mailing address of the ISA/US secret of Patons and Tradcarsarks	Exercised other than minimum documentation to the extent that such documents are included in the sase consulted during the international search (name of data base and, where practicable, search to the sase consulted during the international search (name of data base and, where practicable, search to the sase consulted during the international search (name of data base and, where practicable, search to the sase consulted during the international search (name of data base and, where practicable, search to the sase consulted during the international search (name of data base and, where practicable, search to the sase consulted during the international search (name of data base and, where practicable, search to the sase consulted during the international search (name of data base and, where practicable, search to the sase consulted during the international search (name of data base and, where practicable, search to the sase and the sase and, where practicable, search to the sase and the sase and the sase and, where practicable, search to the sase and the sase

INTERNATIONAL SEARCH REPORT

International application No

PCT/US96/19172

itegory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	DURIE, F.H. Prevention of Collagen-Induced Arthritis with an Antibody to gp39, the Ligand for CD40. Science. 03 September 1993, Vol. 261, pages 1328-1330, see entire document.	1-101

Form PCT/ISA/210 (continuation of second sheet) (July 1992)