The Pumping Lemma and the

Myhill-Nerode Theorem

The Pumping Lemma is a powerful technique for proving that certain languages are *not* regular.

The Myhill-Nerode Theorem gives another exact characterization of regular languages.

Claim:
$$B = \{0^n 1^n : n \ge 0\}$$
 is not regular

Informal argument.

If there were a DFA that recognises B, it would need to remember the number of 0s read from the input string. This would require a way to store an arbitrarily large number, but any DFA has only a finite amount of memory (given by the fixed number of states).

But we need to be careful: both

$$L_1 = \{w \in \{0,1\}^* : w \text{ has an equal number of } 0 \text{s and } 1 \text{s} \}$$
 $L_2 = \{w \in \{0,1\}^* : w \text{ has an equal number of occurrences} \}$ of 01 and 10 as substrings

seem to require infinite memory to recognise.

Now L_1 is not regular, but L_2 is.

The Pumping Lemma

Pumping Lemma. If A is a regular language, then there is a number p – the pumping length – such that if $s \in A$ of length at least p, then s may be divided into three pieces, $s = x \ y \ z$, satisfying:

- (i) for each $i \geq 0$, $x\,y^i\,z \in A$ 'Words "pumped up" from s belong to A.'
- (ii) |y| > 0
- (iii) $|xy| \le p$.

Note: without (ii), the Lemma is vacuous (because $e^i = \epsilon$ for all $i \ge 0$).

The Pumping Lemma is a complex statement: it is equivalent to

$$\forall L \in \mathbf{Reg} . \exists p \ge 1 . \forall s \in L . \exists x, y, z \in \Sigma^* . \forall i \ge 0 .$$
$$|s| \ge p \to s = x y z \land |x y| \le p \land |y| > 0 \land x y^i z \in L.$$

Proof of the Pumping Lemma

Let $M=(Q,\Sigma,\delta,q_{\rm init},F)$ be a DFA that accepts A, and let p=|Q|. Suppose $s=a_1\cdots a_n\in L(M)$ where $n\geq p$. We have

$$\underbrace{q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_p} q_p}_{p+1 \text{ states}} \cdots \xrightarrow{a_n} q_n \in F$$

where $q_0 = q_{\rm init}$. By the Pigeonhole Principle, q_0, \cdots, q_p cannot all be distinct. So $q_j = q_{j'}$ for some $0 \le j < j' \le p$. Thus the above transition sequence is

$$q_0 \xrightarrow{x} q_j \xrightarrow{y} q_{j'} (=q_j) \xrightarrow{z} q_n \in F$$

where $x=a_1\cdots a_j$, $y=a_{j+1}\cdots a_{j'}$ and $z=a_{j'+1}\cdots a_n$. We have $|x\,y|\leq p$ and |y|>0, and for every $i\geq 0$, $x\,y^i\,z\in L(M)$ as

$$q_0 \xrightarrow{x} {}^* \underbrace{q_j \xrightarrow{y} {}^* q_j \cdots \xrightarrow{y} {}^* q_j}_{i} \xrightarrow{z} {}^* q_n \in F$$

Example: $B = \{0^i 1^i : i \ge 0\}$ is not regular.

Proof. Suppose, for a contradiction, B is regular. Let the pumping length be p.

Take $s=0^p1^p\in B$. Since |s|>p, by the Lemma, there are x,y,z such that $s=x\,y\,z$ where $|x\,y|\leq p$ and |y|>0. Hence $x=0^a$, $y=0^b$ and $z=0^{p-a-b}1^p$ where b>0, and $a+b\leq p$.

The Lemma further asserts: for each $i \geq 0$, $x y^i z = 0^a 0^{bi} 0^{p-a-b} 1^p \in B$. In particular (taking i = 0) $0^a 0^{p-a-b} 1^p = 0^{p-b} 1^p \in B$, a contradiction. \square

Exercise. Convince yourself that the same argument above can be used to show that $L_1 = \{ w : w \text{ has equal number of } 0 \text{s and } 1 \text{s } \}$ is not regular.

Note. The Pumping Lemma is not always easy to apply: the trick is to identify an appropriate word to "pump". It is often useful to "pump down" i.e. take i=0.

Pumping Lemma reversed

$$L \text{ is regular } \supset \exists p \geq 1 \,.\, \forall s \in L \,. |s| \geq p \,\to\, \exists x,y,z \in \Sigma^* \,.\, s = x\,y\,z \\ \wedge |y| > 0 \,\wedge\, |xy| \leq p \,\wedge\, \forall i \geq 0 \,.\, x\,y^i\,z \in L.$$

As the Pumping Lemma is not a characterisation of regular languages it is mainly used in its contrapositive form:

Pumping Lemma in contrapositive form.

If for all $p\geq 1$ there exists an $s\in L$ with $|s|\geq p$ such that for all $x,y,z\in \Sigma^*$ with s=xyz and $|xy|\leq p$ there is an $i\geq 0$ such that $xy^iz\notin L$, then L is not regular.

The Pumping Lemma, in poetic form

"Any regular language L has a magic number p And any long-enough word in L has the following property: Amongst its first p symbols is a segment you can find Whose repetition or omission leaves x amongst its kind."

"So if you find a language L which fails this acid test, And some long word you pump becomes distinct from all the rest, By contradiction you have shown that language L is not A regular guy, resilient to the damage you have wrought."

"But if, upon the other hand, x stays within its L,

Then either L is regular, or else you chose not well.

For w is xyz, and y cannot be null,

And y must come before p symbols have been read in full."

"As mathematical postscript, an addendum to the wise:

The basic proof we outlined here does certainly generalise.

So there is a pumping lemma for all languages context-free,

Although we do not have the same for those that are r.e."

By Martin Cohn and Harry Mairson

An exact characterization of regular languages

Let $x, y \in \Sigma^*$ be strings and let $L \subseteq \Sigma^*$.

We say that x and y are L-indistinguishable, written $x\equiv_L y$, if for every $z\in\Sigma^*$, $xz\in L$ iff $yz\in L$.

Fact. \equiv_L is an equivalence relation.

We define the *index* of L to be the number of equivalence classes of \equiv_L .

The index of L may be finite or infinite.

Examples

Take
$$\Sigma = \{ 0, 1 \}$$
.

(i) $L_3=\{\,w:w \text{ has even length}\,\}.$ $u\equiv_{L_3}v \text{ iff } |u|\equiv |v| (\text{mod }2).$

Now \equiv_{L_3} has two equivalence classes:

$$[\epsilon] = [00] = [10] = \dots = \{ w : |w| \text{ even } \} \text{ and }$$

$$[0] = [1] = [010] = [110] = \dots = \{ w : |w| \text{ odd } \}.$$

(ii) $L_1 = \{ w : w \text{ has equal numbers of 0s and 1s } \}$.

For any $i, j \geq 0$, if $i \neq j$ then $0^i \not\equiv_{L_1} 0^j$ (because $0^i 1^i \in L_1$ but $0^j 1^i \not\in L_1$).

Therefore the index of L_1 is infinite.

An exact characterization of regular languages (cont'd)

Myhill-Nerode Theorem: A language L is regular iff \equiv_L has finite index. Moreover the index is the size (= number of states) of the *smallest* DFA accepting L.

Note: The Pumping Lemma is *not* a characterization of regular languages: it is *not* an if-and-only-if statement. In contrast the Myhill-Nerode Theorem is a characterization of regular languages.

Proof of the Myhill-Nerode Theorem

It suffices to prove:

- (i) If L is accepted by a DFA with k states, then L has index at most k.
- (ii) If L has a finite index k (say), then it is accepted by a DFA with k states.
- (i): Suppose L is accepted by a DFA $M=(Q,\Sigma,\delta,q_0,F)$. We check that

$$\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y) \implies x \equiv_L y.$$

(Recall: for $x \in \Sigma^*$, we have $\hat{\delta}(q,x) = q'$ iff $q \xrightarrow{x} q'$.)

Take $x_1,\cdots,x_{k+1}\in \Sigma^*$, all distinct. Since M has only k states, by the Pigeonhole Principle, for some $1\leq i< j\leq k+1$, we have $\hat{\delta}(q_0,x_i)=\hat{\delta}(q_0,x_j)$, and so, $x_i\equiv_L x_j$. It follows that \equiv_L has at most k equivalence classes.

(ii) Assume that L has a finite index. Define a structure $M=(\Sigma,Q,q_0,\delta,F)$ as follows:

$$Q = \{ [x] : x \in \Sigma^* \}$$

$$q_0 = [\epsilon]$$

$$\delta([x], a) = [xa]$$

$$F = \{ [w] : w \in L \}$$

We need to verify: (a) M is a DFA, (b) M accepts L.

For (a), |Q| is the index of L which is finite, and δ is a well-defined function because $x \equiv_L y$ implies $xa \equiv_L ya$ for any $a \in \Sigma$.

For (b), for any
$$w \in \Sigma^*$$
, $w \in L(M)$ iff $[\epsilon] \xrightarrow{w} [w] \in F$ iff $w \in L$.

Example: $L = \{ww : w \in \{0,1\}^*\}$ is not regular

Take any distinct $i, j \geq 0$. We have $0^i 1 \not\equiv_L 0^j 1$ because $0^i 10^i 1 \in L$ but $0^j 10^i 1 \not\in L$. Hence \equiv_L has an infinite index. Thus L is not regular by Myhill-Nerode.

Closure Properties of Regular Languages

Regular languages are closed under the following operations:

- 1. The regular operations: union, concatenation, star
- 2. Intersection

proof idea: use product construction with $F = F_1 \times F_2$.

3. Complementation

proof idea: interchange accepting and non-accepting states of a DFA.

4. Word reversal

proof idea: reverse all transitions and interchange start and accepting state of an NFA with exactly one accepting state.

5. Homomorphism: Given a function $\phi: \Sigma_1 \to \Sigma_2^*$. Define $\phi^*(a_1 \cdots a_n) = \phi(a_1) \cdots \phi(a_n)$, and for any language L_1 over Σ_1 , define

$$\phi(L_1) \stackrel{\text{def}}{=} \{ \phi^*(w) : w \in L_1 \}.$$

If L_1 is regular, so is $\phi(L_1)$.

6. Inverse homomorphism: For any L_2 over Σ_2 . Define

$$\phi^{-1}(L_2) \stackrel{\text{def}}{=} \{ w \in \Sigma_1^* : \phi(w) \in L_2 \}.$$

If L_2 is regular, so is $\phi^{-1}(L_2)$.