МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Вятский государственный университет» Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по лабораторной работе №6 по дисциплине «Организация ЭВМ и систем» Задание 8

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил преподаватель	/Вожегов Д.В./

1 Задание

Определить архитектуру ЭВМ с системой прерываний; разработать структурную схему и алгоритм работы ЭВМ; составить и отладить микропрограмму командного цикла ЭВМ.

Разработать микропрограмму, вычисляющую логический сдвиг числа X на N разрядов.

2 Определение архитектуры и программирование

2.1 Формат данных

X и N изменяются в пределах 0...65535, поэтому любое число можно представить 16-разрядным двоичным кодом без знака.

2.2 Программно-доступные регистры

ЭВМ имеет девять программно-доступных регистров: шесть регистров общего назначения (r0-r5), программный счетчик – IP (r6), регистр признаков – FLAGS (r7), содержащий разряд признака нуля (Z), регистр указателя стека – SP (r8), регистр адреса таблицы прерываний – ITR (r9), а также 8-разрядный регистр маски RM.

2.3 Система команд

Название	Мнемоника	Описание	Изменение признака Z
Суммирование	ADD r r*	$r := r + r^*, IP := IP + 1$	+
Вычитание	SUB r r*	$r := r - r^*, IP := IP + 1$	+
Добавление С	AD r C	r := r + C, IP := IP + 1	+
Вычитание С	SB r C	r := r - C, IP := IP + 1	+
Чтение в регистр	LD r A	r := M[A], IP := IP + 1	-
Запись регистра	MV r A	M[A] := r, IP := IP + 1	-
Чтение в регистр с индексацией	LDI r, r*	$r := M[r^*], IP := IP + 1$	-
Запись в стек	PUSH r (SP)	M[SP] := r, SP := SP - 1, IP := IP + 1	-
Чтение из стека РОР r (SP)		SP := SP + 1, r := M[SP], IP := IP + 1	-
Переход	JMP A	IP := A	-
Переход, если нуль JZ A		Если Z = 1, то IP := A, иначе IP := IP + 1	-
Обращение к подпрограмме	CALL (SP) A	M[SP] := IP, SP := SP - 1, IP := IP + 1	-

Загрузка маски	LM A	RM := M[A], IP := IP + 1	-
Сдвиг вправо логический	SHR r r*	$r := r^* / 2$, $IP := IP + 1$	+
Останов	HLT A	IP := A, останов	-
Возврат из прерывающей программы	IRET	SP := SP + 1, RM := M[SP], SP := SP + 1, IP := M[SP]	-

В описании системы команд приняты следующие обозначения:

- $r, r^* \in \{r0, r1, \dots r8\}$ программно-доступные регистры: регистр r^* является источником данных, а регистр r приемником результата, но может также служить источником второго операнда
- М[А] ячейка памяти с адресом А
- Знак "+" в описании признаков означает, что устанавливается новое значение признака по результату выполнения команды, а знак "-" свидетельствует о сохранении старого значения признака

3 Кодирование программы и распределение памяти программ и данных

3.2 Коды операций

Название	Мнемоника	Код операции
Суммирование	ADD	0x01
Вычитание	SUB	0x02
Добавление С	AD	0x9
Вычитание С	SB	0xA
Чтение в регистр	LD	0xB
Запись регистра	MV	0xC
Чтение в регистр с индексацией	LDI	0x0E
Запись в стек	PUSH	0x07
Чтение из стека	POP	0x06
Переход	JMP	0x03
Переход, если нуль	JZ	0x04
Обращение к подпрограмме	CALL	0xD
Возврат из подпрограммы	IRET	0x05
Сдвиг вправо логический	SHR	0x08
Останов	HLT	0x00
Загрузка маски	LM	0xF

3.3 Распределение памяти программ и данных

```
00: 000000000000110 |SIP
01: 0000000011111111 | MS
02: 0000000011111111 | BP
03: 0000000000001011 | IT
04: 0000000000100001 |PIP
06: 11110000000000001 |LM MS.....
07: 10111000000000010 |LD SP BP.....
08: 1011100100000011 |LD ITR IT.....
09: 1011011000000100 |LD IP PIP.....
0A: 0000000000000000 |.....
OB: 000000000110100 |POIP (IT)
OC: 0000000001001010 | P1IP.....
OD: 0000000001001101 | P2IP.....
0E: 0000000001010000 |P3IP.....
OF: 0000000001010011 | P4IP.....
10: 0000000001010110 | P5IP.....
11: 0000000001011001 [P6IP.....
12: 0000000001011100 | P7IP.....
```

Рисунок 1 – Служебная программа и таблица прерываний

```
14: 0000000011111110 | MP......
15: 0000000011111101 |MO.......
16: 0000000011001011 | M1.......
17: 0000000011010111 | M2.....
18: 0000000010101111 | M3......
19: 0000000010011101 |M4......
1A: 0000000010111101 | M5.....
1B: 0000000001111101 | M6.....
1C: 0000000011110011 | M7......
1D: 00000000000000000 |.....
1E: 0000000000101110 | ARRAY......
1F: 00000000000000011 | N......
20: 0000000000000110 |SUM......
21: 11110000000010100 |LM MP.....
22: 1011010100011110 |LD R5 ARRAY.....
23: 1011010000011111 | LD R4 N......
24: 0000001000110011 | SUB R3 R3......
25: 0000111000010101 |LDI R1 R5 (L2)....
26: 10010101000000001 | AD R5 01......
27: 0000000100110001 | ADD R3 R1......
28: 1010010000000001 | SB R4 01......
29: 0000010000101011 | JZ L1.......
2A: 0000001100100101 |JMP L2......
2B: 1100001100100000 | MV R3 SUM (L1)....
2C: 0000000000000000 | HLT SIP......
2D: 0000000000000000 |.....
2E: 00000000000000001 | TO..........
2F: 0000000000000010 |T1.....
30: 00000000000000011 |T2.....
```

Рисунок 2 – Маски и основная программа

```
32: 0000001111101111 |X......
33: 0000000000000100 |N......
34: 1111000000010101 |LM M0 (P0)......
35: 0000011101110000 | PUSH FLAGS......
36: 0000011100010000 | PUSH R1......
37: 0000011100100000 | PUSH R2.....
38: 1011000100110010 |LD R1 X......
39: 1011001000110011 |LD R2 N......
3A: 10010010000000000 | AD R2 00......
3B: 0000010001000001 | JZ L3......
3C: 0000100000010001 | SHR R1 R1 (L4)....
3D: 0000010001000001 | JZ L3.....
3E: 1010001000000001 |SB R2 01.....
3F: 0000010001000001 | JZ L3......
40: 0000001100111100 |JMP L4.....
41: 1100000101000110 | MV R1 RES (L3)....
42: 0000011000100000 | POP R2.....
43: 0000011000010000 | POP R1......
44: 0000011001110000 | POP FLAGS......
45: 0000010100000000 | IRET.....
46: 0000000000000000 | RES.....
```

Рисунок 3 – Прерывающая программа Р0

```
4A: 1111000000010110 |LM M1.....
4B: 00000101000000000 | IRET.....
4C: 0000000000000000 |.....
4D: 1111000000010111 |LM M2.....
4E: 00000101000000000 | IRET.....
4F: 0000000000000000 |.....
50: 1111000000011000 |LM M3.....
51: 00000101000000000 | IRET.....
53: 1111000000011001 |LM M4.....
54: 0000010100000000 | IRET.....
55: 0000000000000000 |........
56: 1111000000011010 |LM M5.....
57: 00000101000000000 | IRET.....
58: 0000000000000000 | ......
59: 11110000000011011 |LM M6.....
5A: 00000101000000000 | IRET.....
5B: 0000000000000000 |......
5C: 11110000000011100 |LM M7......
5D: 00000101000000000 | IRET.....
```

Рисунок 4 – Прерывающие программы Р1...Р7

3.4 Разработка структуры и алгоритма работы

Алгоритм работы ЭВМ представлен на рисунке 3 в виде укрупненной граф-схемы микропрограммы командного цикла.

3.5 Форматы команд

		Пример				
0	КО	Π	r*	PUSH		
0	КО	Π	A	JZ		
1	КОП	r*	A	CALL		
1	КОП	r*	imm	AD		

3.6 Распределение регистров

	РЗУ (R0 – R7)		РЗУ (R8 – R15)
0	r0	8	r8 (SP)
1	r1	9	r9 (ITA)
2	r2	10	
3	r3	11	
4	r4	12	

	РЗУ (R	0 - R7)			P3V (R8 – R15)
5	r.	5		13	Буферный регистр команд
6	r6 ((IP)		14	Регистр константы
7	r7 (FLAC	GS)	Z	15	Счетчик адреса ЗУ RK[A]
RA	Адрес ЗУ			RQ	

3.7 Коды операций

Название	Мнемоника	Код операции			
Суммирование	ADD	0x01			
Вычитание	SUB	0x02			
Добавление С	AD	0x9			
Вычитание С	SB	0xA			
Чтение в регистр	LD	0xB			
Запись регистра	MV	0xC			
Чтение в регистр с индексацией	LDI	0x0E			
Запись в стек	PUSH	0x07			
Чтение из стека	POP	0x06			
Переход	JMP	0x03			
Переход, если нуль	JZ	0x04			
Обращение к подпрограмме	CALL	0xD			
Возврат из подпрограммы	IRET	0x05			
Сдвиг вправо логический	SHR	0x08			
Останов	HLT	0x00			
Загрузка маски	LM	0xF			

3.8 Микропрограмма командного цикла

90	3:	571	Ε	Ε	0	0	00	1	1	1	006	C	000	0	0	1	1	0	99	1
91	1:	533	0	Ε	0	0	00 j	1	1	1	001	9	000	0	0	1	1	0	00	1
02	2:	143	0	6	0	0	00 j	1	1	0	000	Ε	000	0	0	1	1	0	00	1
03	3:	337	0	6	0	1	00 j	0	1	1	000	Ε	000	0	0	1	1	0	00	1
Θī	+ :	133	0	0	0	1	00 j	1	1	1	040	3	100	1	0	1	1	0	00	1
05	; :	203	ó	6	1	0	00	1	1	0	000	Ε	000	0	0	1	1	0	00	1
96	5:	337	0	C	0	1	00	0	1	1	008	3	991	1	0	1	1	0	00	0
07	7:	345	Ε	F	0	1	00	1	1	1	000	2	000	0	0	1	1	0	00	1
08	3:	345	Ε	F	0	1	00	1	1	1	003	C	000	0	0	1	1	0	00	1
09):	533	0	C	0	0	00	1	1	1	009	9	000	0	0	1	1	0	00	1
96	1:	131	C	C	0	0	00	1	1	1	000	2	000	0	0	1	1	0	00	0
OE OE	3:	343	0	7	0	1	00	1	1	1	000	Ε	000	0	0	1	1	0	00	1
90	: :	133	0	0	0	1	00	1	1	1	004	3	000	0	0	0	0	0	01	1
90):	303	0	7	1	1	00 j	1	1	1	004	3	000	0	1	1	1	0	00	1

Рисунок 6 – Микропрограмма командного цикла

```
34: 303 8 8
                      00| 1
                                        000
                                             E 000 0
                                                                           00
                                                                  1
                                                                                 1
35: 337 Ø A
                                              E 000 0
                      00 0
                                    1 |
              0
                   1
                               1
                                        000
                                                         0
                                                              1
                                                                  1
                                                                       0
                                                                           00
                                                                                 1
36: 133 Ø A
                      00| 1
                   0
                               1
                                              E 000 0
                                                                       0
                                                                           00
                                                                                 1
              0
                                    1
                                        000
                                                         0
                                                              1
                                                                  1
37: 303 8 8
              1
                   0
                      00| 1
                               1
                                        000
                                              E 000 0
                                                                       0
                                                                           00
                                                                                 1
38: 337 0 6
                      00| 0
                                    1 |
                                              3 000 0
                   1
                               1
                                        004
                                                              1
                                                                  1
                                                                       0
                                                                           00
                                                                                 1
                      00i 1
40: 213 8 8
                   0
                               1
                                        000
                                              E 000 0
                                                              1
                                                                  1
                                                                       0
                                                                           00
                                                                                 1
                                   1 |
41: 133 6 6
              0
                   0
                      00| 0
                                        000
                                             E 000 0
                                                                       0
                                                                           00
                                                                                 1
                               0
                                                         0
                                                              1
                                                                  1
42: 213 8 8
                   0
                      00| 1
                               1
                                        000
                                             E 000 0
                                                                       0
                                                                           00
                                                                                 1
                      00| 0
                                   1 |
43: 133 0 0 0
                   1
                                        000
                                             E 000 0
                                                                           00
                                                                                 1
                                             E 000 0
44: 305 9 F
                      00| 1
                                   1 |
                                        000
              0
                   1
                               1
                                                              1
                                                                  1
                                                                       0
                                                                           00
                                                                                 1
45: 133 F F
                      00| 1
                                    0 |
              0
                   0
                               1
                                        000
                                             E 000 0
                                                         0
                                                              1
                                                                  1
                                                                       0
                                                                           00
                                                                                 1
46: 337 6 6
                   1
                      00| 0
                                        000
                                              E 000 0
              0
                               1
                                    1
                                                         0
                                                                       0
                                                                           00
                                                                                 1
47: 171 A A
                   0
                      00| 1
                               1
                                   1 |
                                        005
                                              3 000 0
                                                         1
                                                              1
                                                                  1
                                                                       0
                                                                           00
                                                                                 1
```

Рисунок 7 – Подмикропрограммы операций (IRET и INT)

Рисунок 8 – Алгоритм решения задачи

4 Ввод и отладка микропрограммы командного цикла и программы решения задачи

Диаграмма переключения представлена на рисунке 9.

Рисунок 9 – Диаграмма переключений

5 Выводы

В ходе лабораторной работы была разработана и изучена учебная ЭВМ. В ходе выполнения лабораторной работы была изучена система и добавлена система прерываний. Добавленная система прерываний может получать 8 запросов на прерывание. Запросы имеют приоритет, выражаемый позицией запроса в регистре запросов от 7 до 0, чем ниже значение, тем выше приоритет. Для запрета или разрешения обработки запроса существует маска. Так, если некоторый бит маски равен 1, то соответствующий запрос (располагающийся в соответствующем бите регистра запросов) обработан не будет. Таким образом были запрещены любые прерывания в служебной программе. После обработки бит обработанного запроса устанавливается в 0 для устранения возможности повторной обработки запроса.