Problemario Nivel Superior

Problema 1. Sean O, A, B, C algunos puntos del espacio que no están en un plano. Denotemos por θ al valor del ángulo diedro entre los planos OAB y OAC. Exprese $\cos(\theta)$ a través de algunas funciones trigonométricas de los ángulos $\alpha = \angle BOC$, $\beta = \angle AOC$, $\gamma = \angle AOB$.

Problema 2. Sea ε una n-ésima raíz de la unidad, es decir, un número real o complejo tal que $\varepsilon^n = 1$. Calcule la siguiente suma:

$$\varepsilon + 2\varepsilon^2 + \ldots + (n-1)\varepsilon^{n-1}$$
.

Problema 3. Calcule la suma:

$$\cos \frac{2\pi}{n} + 2\cos \frac{4\pi}{n} + \ldots + (n-1)\cos \frac{2(n-1)\pi}{n}.$$

Problema 4. Calcule la suma:

$$\operatorname{sen}(x) + 2\operatorname{sen}(2x) + 3\operatorname{sen}(3x) + \ldots + n\operatorname{sen}(nx).$$

Problema 5. Encuentre una fórmula para el término general x_n de la sucesión x_0, x_1, x_2, \ldots definida mediante la siguiente fórmula recursiva y dos valores iniciales:

$$x_n = 5x_{n-1} - 6x_{n-2}$$
 $(n \ge 2),$
 $x_0 = 6,$
 $x_1 = 19.$

Problema 6. Deduzca una fórmula para el siguiente determinante de orden n:

$$D_n = \begin{vmatrix} 7 & 5 & 0 & 0 & \ddots & 0 & 0 \\ 2 & 7 & 5 & 0 & \ddots & 0 & 0 \\ 0 & 2 & 7 & 5 & \ddots & 0 & 0 \\ 0 & 0 & 2 & 7 & \ddots & 0 & 0 \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & 0 & 0 & \ddots & 7 & 5 \\ 0 & 0 & 0 & 0 & 0 & \ddots & 2 & 7 \end{vmatrix}.$$

Problema 7. Sea $\mathcal{M}_n(\mathbb{R})$ el conjunto de las matrices reales cuadradas $n \times n$. Denotemos por C al conjunto de todos los conmutadores del álgebra $\mathcal{M}_n(\mathbb{R})$:

$$C = \{AB - BA \colon A, B \in \mathcal{M}_n(\mathbb{R})\},\$$

y consideremos al subespacio S del espacio vectorial $\mathcal{M}_n(\mathbb{R})$ generado por el conjunto C. Calcule la dimensión de S.

Problema 8. Sea $a \in \mathbb{R}^n$ un vector unitario, esto es, $a^t a = 1$. Sea $T : \mathbb{R}^n \to \mathbb{R}^n$ la reflexión del espacio \mathbb{R}^n respecto al hiperplano $\{v \in \mathbb{R}^n : a^t v = 0\}$. Halle la matriz A asociada a la transformación lineal T respecto a la base canónica del espacio \mathbb{R}^n . Muestre que $A^t = A$ y $A^2 = I$. Aquí I es la matriz identidad de orden n y A^t es la matriz A transpuesta.

Problema 9. Calcule el límite de la sucesión a_n definida mediante la siguiente fórmula:

$$a_n = \frac{\cos\frac{1}{n} + \cos\frac{2}{n} + \ldots + \cos\frac{n}{n}}{n}.$$

Problema 10. Sean $a_1, \ldots, a_m > 0$. Calcule el límite

$$\lim_{n\to\infty}\frac{s_{n+1}}{s_n},$$

donde

$$s_n = \sum_{k=1}^m a_k^n.$$

Problema 11. Sean $a_1, \ldots, a_m > 0$. Calcule el límite

$$\lim_{n\to\infty} \left(a_1^n + \dots + a_m^n \right)^{1/n}.$$

Problema 12. Denotemos por I_n a la integral

$$\int_{(x_1, \dots, x_n) \in \mathbb{R}^n} e^{-(x_1^2 + \dots + x_n^2)} dx_1 \cdots dx_n.$$

- 1. Establezca una relación entre I_n e I_1 .
- 2. Calcule I_2 pasando a las coordenadas polares.
- 3. Calcule el volumen de la bola unitaria en \mathbb{R}^n .

Problema 13. Sea $f: [0, +\infty) \to [0, +\infty)$ una función continua de soporte compacto (es decir, existe un b > 0 tal que f(x) = 0 para todo x > b). Definimos la función $g: (0, +\infty) \to [0, +\infty)$ de la siguiente manera:

$$\forall x > 0 \qquad g(x) = \frac{1}{x} \int_0^x f(x) \, dx.$$

Demuestre la desigualdad de Hardy: para todo p > 1,

$$\int_0^{+\infty} g(x)^p dx \le \frac{p}{p-1} \int_0^{+\infty} f(x)^p dx.$$

Problema 14. Sea D un conjunto abierto en \mathbb{C} , sea $f: D \to \mathbb{C}$ una función holomorfa. Se define la función $g: D \to \mathbb{C}$ mediante la regla: $g(z) = \overline{f'(z)}$ para todo $z \in D$. Calcule g'(z) para todo $z \in D$.

Problema 15. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^2 y sea $g: \mathbb{C} \to \mathbb{C}$ una función holomorfa. Se define la función $h: \mathbb{R}^2 \to \mathbb{R}$ mediante la regla:

$$h(x,y) = f(\Re(g(x+iy)), \Im(g(x+iy)))$$

Calcule $\Delta(f \circ g)$, donde $f \circ g$ es la función compuesta y Δ es el operador diferencial de Laplace:

$$\Delta = \frac{\partial^2}{(\partial x)^2} + \frac{\partial^2}{(\partial y)^2}.$$

Problema 16. Sea $n \in \mathbb{N}$. Consideremos la ecuación $x^n = 1$. Las raíces de esta ecuación son $\omega_k = \cos \frac{2k\pi}{n} + i \operatorname{sen} \frac{2k\pi}{n}$, las cuales son llamadas raíces n-ésimas de la unidad. Una raíz n-ésima de la unidad ω se le llama raíz primitiva de la unidad si $1, \omega, \omega^2, \ldots, \omega^{n-1}$ son todas las raíces n-ésimas de la unidad. Demuestre que ω_k es una raíz primitiva de la unidad si y sólo si (k, n) = 1.

Problema 17. Sea $T : \mathbb{R} \to \mathbb{R}$ una función. Demuestre que T es una transformación lineal si y sólo si existe $\lambda \in \mathbb{R}$ tal que $T(x) = \lambda x$, para todo $x \in \mathbb{R}$.

Problema 18. Si $T: \mathbb{R}^2 \to \mathbb{R}^2$ es una transformación lineal tal que T(1,2) = (2,3) y T(0,1) = (1,4). Determinar T(x,y) para $(x,y) \in \mathbb{R}^2$. Y encontrar T(-2,3).

Problema 19. Sea $T: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}_2[x]$ la transformación lineal dada por

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+d)x^2 + (c-b)x + (a+2b+c+2d).$$

Encuentre

- 1. una base y la dimensión del Kernel de T,
- 2. una base y la dimensión de la Imagen de T,
- 3. la matriz asociada a T respecto a las bases canónicas de $\mathcal{M}_{2\times 2}(\mathbb{R})$ y $\mathbb{R}_3[x]$.

Problema 20. Sea V un espacio vectorial real de dimensión impar y sea T un operador lineal en V. Demuestre que Im $T \neq \ker T$.

Problema 21. Sea $T: \mathbb{R}^n \to \mathbb{R}$ una transformación lineal no cero. Demuestre que T es suprayectiva y obtenga la dimensión del Ker T.

Problema 22. Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal. Pruebe que existe M>0 tal que

$$||T(x)|| \le M||x||$$
, para todo $x \in \mathbb{R}^n$.

Problema 23. Sea (V, <, >) un espacio euclidiano. Demuestre:

1.
$$\|\alpha\| = \|\beta\|$$
 si y sólo si $<\alpha + \beta, \alpha - \beta> = 0$.

2. $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$ si y sólo si $<\alpha, \beta>=0$.

Pruebe que las afirmaciones anteriores no son ciertas para el espacio unitario \mathbb{C}^2 .

Problema 24. Sea A una matriz real de orden n. Demuestre que

- 1. $A y A^T$ tienen el mismo polinomio característico.
- 2. $A y A^T$ tienen el mismo polinomio mínimo.
- 3. Si A es diagonalizable, entonces A^T también lo es.

Problema 25. Sea A un conjunto no vacío. Sean R y S dos relaciones en A. Se define la composición de R y S denotada por $R \circ S$ como:

$$a\,R\circ S\,b$$
si y sólo si existe $c\in A$ tal que aRc y cSb

- 1. Demuestre que la composición de relaciones es asosciativa.
- 2. Si R y S son relaciones de equivalencia, ¿la composición será una relación de equivalencia?