Induction – chapitre 3

#### TD: Lois de l'induction, induction de NEUMANN

# I |Étude qualitative de l'induction

1) Pour les quatre schémas ci-dessous, indiquer le signe de l'intensité dans le circuit.



2) En partant de la figure ci-dessous avec  $S_1$  et  $S_2$  deux solénoïdes dont  $S_1$  est relié à un générateur et  $S_2$  à un ampèremètre, répondre aux questions suivantes par « vrai » ou « faux » en justifiant.



- a Le courant I dans  $S_1$  étant constant, un courant circule dans  $S_2$  dans le sens indiqué sur la figure.
- b Un courant circule dans  $S_2$  dans le sens indiqué lorsque I augmente.
- c Un courant circule dans  $S_2$  dans le sens indiqué lorsqu'on éloigne  $S_2$  de  $S_1$ .
- d Un courant circule dans  $S_2$  dans le sens indiqué lorsque  $S_2$  tourne autour de son axe.
- 3) L'auto-inductance d'une bobine augmente quand le courant qui la traverse augmente : vrai ou faux?

# Spire en rotation

On considère une spire conductrice circulaire de surface S et de résistance électrique r. Cette spire est mise en rotation à la vitesse angulaire  $\Omega = \dot{\theta}$  constante autour d'un de ses diamètres, qui définit l'axe  $\Delta$  (cf. figures en perspectives ci-contre). Elle est placée dans un champ magnétique uniforme et stationnaire  $\overrightarrow{B}$  orthogonal à  $\Delta$ .



- 1) Établir l'expression de la f.é.m. induite dans la spire. En déduire celle du courant induit dans la spire.
- 2) Déterminer le moment magnétique instantané (dépendant de t) de la spire.
- 3) En déduire le couple de LAPLACE instantané puis moyen qui s'exerce sur la spire. Quel est qualitativement son effet sur le mouvement de la spire? Aurait-on pu le prévoir sans calcul?

#### III | Mesure d'une inductance mutuelle

Le montage ci-contre permet de mesurer le coefficient d'inductance mutuelle entre deux bobines. Les deux bobines se font face comme sur la figure ci-contre. La première bobine est montées en série avec une résistance  $R=100\,\Omega$  et un générateur de tension  $e_0$  harmonique de fréquence  $f=2,0\,\mathrm{Hz}$ . Les tensions  $u_1$  et  $u_2$  sont mesurées grâce à un oscilloscope supposé idéal, c'est-à-dire de résistance d'entrée infinie.



- 1) Quelle est l'intensité circulant dans la bobine 2? D'après la loi de comportement habituelle de la bobine, que vaudrait alors la tension  $u_2$ ? Pourquoi cette n'est-elle pas applicable telle quelle ici?
- 2) Exprimer la tension  $u_2$  en fonction de M et  $u_1$ .
- 3) Calculer M en sachant que les tensions lues à l'oscilloscope ont des amplitudes  $U_1 = 3,00 \,\mathrm{V}$  et  $U_2 = 0,5 \,\mathrm{V}$ .
- 4) On fait tourner la bobine sur elle-même dans le plan de la paillasse. Indiquer sans calcul comment est modifiée la valeur de M lorsque l'angle de rotation vaut  $180^{\circ}$ , et  $90^{\circ}$ . Même question si on aligne les axes des deux bobines.

## IV Solénoïdes imbriqués

Deux solénoïdes  $S_1$  et  $S_2$  de même axe (Oz), de même longueur  $\ell$  et de rayons  $r_1$  et  $r_2 > r_1$  sont emboîtés l'un dans l'autre, comme représenté Figure 3.1. Ils possèdent tous deux le même nombre de spires N. On suppose que la longueur  $\ell$  est très supérieure aux rayons. La bobine intérieure est parcourue par un courant  $i_1(t) = I \cos \omega t$  avec I = 11. La



FIGURE 3.1 – Solénoïdes imbriqués.

bobine extérieure est en court-circuit.

- 1) Déterminer les coefficients d'induction propre  $L_1$  et  $L_2$ , ainsi que le coefficient d'induction mutuelle M.
- 2) En négligeant les résistances internes des fils, déterminer le courant  $i_2(t)$  parcourant la bobine extérieure. Quelle est son amplitude?
- 3) Que vaut le champ magnétique à l'intérieur du solénoïde central?

# $V \mid$ Plaque de cuisson à induction

Le chauffage du fond métallique des casseroles et autres poêles de cuisson peut être réalisé par effet Joule des courants induits directement dans le fond de la casserole par un champ magnétique variable, appelés *courants de Foucault*.

- $\diamond$  Logé dans une table support en céramique, un bobinage alimenté en courant sinusoïdal (appelé <u>inducteur</u>) génère ce champ. L'inducteur a un rayon de 5 cm et compte 20 spires de cuivre de résistance électrique  $R_1 = 18 \,\mathrm{m}\Omega$  et d'auto-inductance  $L_1 = 30 \,\mathrm{\mu H}$ . Il est alimenté par une tension harmonique  $v_1$  de pulsation  $\omega$ .
- $\diamond$  Du point de vue électromagnétique, on modélise le fond de la casserole par une spire circulaire unique, fermée sur elle-même, appelée <u>induit</u>. L'induit a une résistance  $R_2=8.3\,\mathrm{m}\Omega$  et une auto-inductance  $L_2=0.24\,\mu\mathrm{H}$ .
- $\diamond$  Le transfert d'énergie électrique s'effectue par un couplage inductif entre l'inducteur et l'induit d'inductance mutuelle  $M=2\,\mu\mathrm{H}.$
- 1) En s'appuyant sur un schéma électrique équivalent, établir les équations électriques relatives aux deux circuits.
- 2) En déduire l'expression littérale de la fonction de transfert  $\underline{H} = \frac{I_2}{\overline{I_1}}$ .
- 3) En déduire l'impédance d'entrée  $\underline{Z_e} = \frac{V_1}{\overline{I_1}}$  du système.
- 4) La pulsation  $\omega$  est choisie bien plus grande que  $R_1/L_1$  et  $R_2/L_2$ . Simplifier les deux expressions précédentes et calculer numériquement leur module.
- 5) On soulève la casserole. Indiquer qualitativement comment varie l'amplitude du courant appelé par l'inducteur.

## VI | Peut-on négliger l'auto-induction?

On fait très souvent l'approximation de négliger l'auto-induction dans les circuits ne comportant aucun bobinage. On s'intéresse dans cet exercice à la validité de cette approximation pour un circuit a priori quelconque, schématisé ci-contre, d'auto-inductance L. Le circuit, de surface totale S et de résistance R, est plongé dans un champ magnétique extérieur  $\vec{B}_{\rm ext} = B_0 \cos \omega t \vec{n}$ .



1) Commençons par ne prendre en compte que la f.é.m. induite par le champ  $\vec{B}_{\rm ext}$ . Calculer son flux au travers du circuit, et en déduire la schéma électrique équivalent. Que vaut l'intensité i?

- 2) Considérons en plus le phénomène d'auto-induction. Exprimer le flux magnétique au travers du circuit et représenter le schéma électrique équivalent. Établir l'équation différentielle vérifiée par i.
- 3) Passons maintenant en notation complexe. Exprimer le rapport  $|H| = |\underline{E}_L|/|\underline{E}_{\rm ext}|$  des amplitudes de la f.é.m. auto-induite et de la f.é.m. induite par le champ extérieur. En déduire à quelle condition sur la pulsation la f.é.m. auto-induite est négligeable devant la f.é.m. induite.
- 4) Pour fixer les idées, calculer numériquement la pulsation et la fréquence caractéristiques avec des valeurs de R et L utilisées habituellement en TP d'électrocinétique. Quel résultat connu retrouve-t-on?
- 5) En proposant des ordres de grandeur raisonnables, refaire le même calcul pour un circuit de même résistance mais à une seule « spire » composée d'un fil de cuivre de TP. L'inductance d'un circuit circulaire de diamètre D et donnée par

$$L = \mu_0 \frac{D}{2} \left( \ln \frac{8D}{d} - 2 \right)$$

où d est le diamètre du fil de cuivre. Est-il légitime de négliger l'inductance du circuit ?

## $\mathrm{VII}ig|\mathrm{Principe}$ de fonctionnement d'un générateur synchrone

Un aimant de moment magnétique  $\overrightarrow{m_0}$  est placé dans le plan (Oxy). Un système mécanique le met en rotation à vitesse angulaire  $\omega$  constante autour de l'axe (Oz). Un spire circulaire de rayon a et de résistance R est placée sur l'axe (Ox) à distance  $x \gg a$ .



#### Donnée

En coordonnées polaires d'axe colinéaire à  $\vec{m}$ , un moment magnétique  $\vec{m}$  placé à l'origine créé en un point M quelconque un champ magnétique

$$\vec{B}(\mathbf{M}) = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \vec{u_r} + \sin\theta \vec{u_\theta})$$

- 1) Déterminer l'intensité i du courant induit dans la spire. En déduire la puissance électrique qu'elle reçoit. Une attention particulière sera donnée à l'orientation de l'angle  $\theta$ , et on vérifiera qualitativement les signes de la f.é.m. et du courant induits.
- 2) Exprimer le couple magnétique subi par l'aimant de la part de la spire. On fera attention au point d'origine du champ magnétique que subit l'aimant, et on vérifiera encore les signes obtenus.
- 3) Quelle puissance le système mécanique doit-il fournir à l'aimant pour le maintenir à vitesse constante? Conclure : en quoi a-t-on modélisé un générateur électrique rudimentaire?