Investigation of Impacts of Deploying Reactors Fueled by High Assay Low Enriched Uranium Final Defense

Amanda M. Bachmann Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

November 2, 2023

Outline

- Introduction
 Motivation
 Background
 Objectives
- 2 Transition analysis
 Once-through fuel cycles
 Once-through results
 Closed fuel cycles
 Recycle results
- Sensitivity analysis & Optimization Sensitivity analysis Optimization
- 4 Effects of impurities
- 5 Conclusions
 Conclusions

The US is looking to develop supplies of HALEU

- Multiple new reactor designs require High Assay Low Enriched Uranium (HALEU) fuel, which allows for:
 - Longer cycle time
 - Increased capacity factor
 - Higher burnup

Table 1: Categories of uranium enrichment by weight fraction of 235 U.

Category	Weight fraction (%)
Depleted	< 0.711
Natural	0.711
LEU	0.711-20
HALEU	5-20
HEU	≥20

The US is looking to develop supplies of HALEU

- Multiple new reactor designs require HALEU fuel, which allows for:
 - Longer cycle time
 - Increased capacity factor
 - Higher burnup
- The US does not have any commercial supplies of HALEU

Table 1: Categories of uranium enrichment by weight fraction of ²³⁵U.

Category	Weight fraction (%)	
Depleted	< 0.711	
Natural	0.711	
LEU	0.711-20	
HALEU	5-20	
HEU	≥20	

The US is looking to develop supplies of HALEU

- Multiple new reactor designs require HALEU fuel, which allows for:
 - Longer cycle time
 - Increased capacity factor
 - Higher burnup
- The US does not have any commercial supplies of HALEU
- There are two methods to produce HALEU:
 - Enrichment of natural uranium
 - Recovery and downblending of HEU

Table 1: Categories of uranium enrichment by weight fraction of ²³⁵U.

Category	Weight fraction (%)		
Depleted	< 0.711		
Natural	0.711		
LEU	0.711-20		
HALEU	5-20		
HEU	≥20		

The nuclear fuel cycle

Figure 1: Overview of the Nuclear Fuel Cycle.

The nuclear fuel cycle

Figure 1: Overview of the Nuclear Fuel Cycle.

The nuclear fuel cycle

Figure 1: Overview of the Nuclear Fuel Cycle.

Enriching natural uranium to produce HALEU

- Increase the relative abundance ²³⁵U in the fuel
- Enrichment facility designs are based on product mass, product assay, and the Separative Work Unit (SWU) capacity

П

Enriching natural uranium to produce HALEU

- Increase the relative abundance ²³⁵U in the fuel
- Enrichment facility designs are based on product mass, product assay, and the SWU capacity

Enriching natural uranium to produce HALEU

- Increase the relative abundance ²³⁵U in the fuel
- Enrichment facility designs are based on product mass, product assay, and the SWU capacity

$$F = P + T$$
 $x_f F = x_p P + x_t T$
 $SWU = [P \times V(x_p) + T * V(x_t) - F * V(x_f)] * t$
in which:

$$V(x_i) = (2x_i - 1) * \ln\left(\frac{x_i}{1 - x_i}\right)$$

Variable	Definition	
F	Feed mass	
Р	Product mass	
Т	Tails mass	
× _i	Assay of material	
	stream <i>i</i>	
SWU	Separative work	
	units	
$V(x_i)$	Separation poten-	
	tial function	
t	Time	

Downblending HEU to produce HALEU

If we downblend HEU to produce HALEU:

- Spent fuel from Experimental Breeder Reactor II (EBR-II) can produce 10 MT of HALEU [12]
- HEU from Savannah River Site (SRS) can produce 4-20 MT of HALEU [12, 14]

Downblending HEU to produce HALEU

If we downblend HEU to produce HALEU:

- Spent fuel from EBR-II can produce 10 MT of HALEU [12]
- HEU from SRS can produce 4-20 MT of HALEU [12, 14]
- The fuel will have uranium impurities that are not typically in enriched fuel or considered for reactor modeling [11, 18]

I

Efforts to estimate HALEU needs

Efforts are underway to estimate potential HALEU needs:

- Nuclear Energy Institute (NEI) surveyed multiple reactor design companies to estimate HALEU needs between now and 2035 [8, 12]
- National labs modeled the transition to some HALEU-fueled reactors to estimate HALEU needs to meet current net-zero carbon goals in 2050 [5]

Efforts to estimate HALEU needs

Efforts are underway to estimate potential HALEU needs:

- NEI surveyed multiple reactor design companies to estimate HALEU needs between now and 2035 [8, 12]
- National labs modeled the transition to some HALEU-fueled reactors to estimate HALEU needs to meet current net-zero carbon goals in 2050 [5]

Limitations of this previous work:

- All start from announced advanced reactor projects
- · Very prescriptive in reactor deployment

Efforts to estimate HALEU needs

Efforts are underway to estimate potential HALEU needs:

- NEI surveyed multiple reactor design companies to estimate HALEU needs between now and 2035 [8, 12]
- National labs modeled the transition to some HALEU-fueled reactors to estimate HALEU needs to meet current net-zero carbon goals in 2050 [5]

Limitations of this previous work:

- All start from announced advanced reactor projects
- Very prescriptive in reactor deployment
- Mostly concerned with HALEU mass, don't consider other fuel cycle needs for HALEU-fueled reactors

I

Technical gaps & objectives

Technical Gaps

- Understand changes to the US nuclear fuel cycle to commercially supply HALEU
- Understand limitations of using downblended HEU in advanced reactors

Technical gaps & objectives

Technical Gaps

- Understand changes to the US nuclear fuel cycle to commercially supply HALEU
- Understand limitations of using downblended HEU in advanced reactors

Objectives

- Explore how the deployment of HALEU-fueled reactors affects the US nuclear fuel cycle
- Quantify potential material requirements for the transition from LWRs to advanced reactors in a once-through and recycling fuel cycle
- Understand the impacts of fuel cycle parameters on the material requirements and design optimized transition scenarios
- Identify potential limitations in using downblended HEU in advanced reactors

Outline

- Transition analysis
 Once-through fuel cycles
 Once-through results
 Closed fuel cycles
 Recycle results
- Sensitivity analysis & Optimization Sensitivity analysis Optimization
- 4 Effects of impurities
- 5 Conclusions
 Conclusions

Transition analysis

To meet the second objective, I model the transition from the current LWR fleet to advanced reactors

Transition analysis

To meet the second objective, I model the transition from the current LWR fleet to advanced reactors

- Use CYCLUS [7], a fuel cycle simulator, to model the transition
- Model the deployment and decommissioning of fuel cycle facilities
- Model material transactions between facilities
- Quantify material requirements for different fuel cycles

Transition analysis assumptions

Figure 2: Fuel cycle facilities and material flow between facilities. Facilities in red are deployed at the start of the transition.

- Simulations model reactor deployment from 1965-2090
- Transitions begin in 2025

Transition analysis assumptions

Figure 2: Fuel cycle facilities and material flow between facilities. Facilities in red are deployed at the start of the transition.

- Simulations model reactor deployment from 1965-2090
- Transitions begin in 2025
- LWR commission dates are obtained from the IAEA PRIS database [1]
- LWRs are assumed to operate until their current license expires

Transition analysis assumptions

Figure 2: Fuel cycle facilities and material flow between facilities. Facilities in red are deployed at the start of the transition.

- Simulations model reactor deployment from 1965-2090
- Transitions begin in 2025
- LWR commission dates are obtained from the IAEA PRIS database [1]
- LWRs are assumed to operate until their current license expires
- Assume natural uranium is enriched to produce all fuel
- Materials quantified include uranium mass, SWU capacity, feed uranium, and used nuclear fuel (UNF)

Advanced reactors

Table 2: Advanced reactor design specifications

Design Criteria	USNC MMR [2]	X-energy Xe- 100 [10]	NuScale VOYGR [13, 15, 16]
Reactor type	HTGR	HTGR	SMR
Fuel form	UO ₂ FCM	UCO TRISO	UO_2 pellets
Power (MWe)	5	80	77
Power (MWth)	15	200	250
Enrichment (% ^{235}U)	19.75	15.5	4.09
Cycle Length (yr)	20	Online	1.5
Number of cycles	1	6	3
Reactor Lifetime (yr)	20	60	60
Burnup $(\frac{MWd}{kgU})$	82	168	45

 $\mathsf{mass}\;(\mathsf{kg}) = \frac{\mathsf{Power}\;(\mathsf{MWth})\; *\; \mathsf{cycle}\; \mathsf{length}\; (\mathsf{d}) * \mathsf{number}\; \mathsf{of}\; \mathsf{cycles}}{\mathsf{Burnup}\; (\mathsf{MWd/kg})}$

Once-through scenario definitions

Table 3: Summary of the once-through fuel cycle transition scenarios. Energy growth is relative to energy from LWRs in 2025.

Scenario number	Reactors present	Energy demand
1	LWRs	N/A
2	LWRs and MMR	No growth
3	LWRs and Xe-100	No growth
4	LWRs, Xe-100, and MMR	No growth
5	LWRs, MMR, and VOYGR	No growth
6	LWRs, Xe-100, and VOYGR	No growth
7	LWRs, Xe-100, MMR, and VOYGR	No growth
8	LWRs and MMR	1% growth
9	LWRs and Xe-100	1% growth
10	LWRs, Xe-100, and MMR	1% growth
11	LWRs, MMR, and VOYGR	1% growth
12	LWRs, Xe-100, and VOYGR	1% growth
13	LWRs, Xe-100, MMR, and VOYGR	1% growth

Once-through scenario definitions

Table 4: Summary of the once-through fuel cycle transition scenarios. Energy growth is relative to energy from LWRs in 2025.

Scenario number	Reactors present	Energy demand
1	LWRs	N / A
_ _	LVVKS	IV/A
2	LWRs and MMR	No growth
3	LWRs and Xe-100	No growth
4	LWRs, Xe-100, and MMR	No growth
5	LWRs, MMR, and VOYGR	No growth
6	LWRs, Xe-100, and VOYGR	No growth
7	LWRs, Xe-100, MMR, and VOYGR	No growth
8	LWRs and MMR	1% growth
9	LWRs and Xe-100	1% growth
10	LWRs, Xe-100, and MMR	1% growth
11	LWRs, MMR, and VOYGR	1% growth
12	LWRs, Xe-100, and VOYGR	1% growth
13	LWRs, Xe-100, MMR, and VOYGR	1% growth

Advanced reactor deployment scheme

Calculate the deployment scheme for advanced reactors outside CYCLUS

- Apply a modified greedy algorithm
- Deploy reactor with largest power output until an oversupply of power would be produced, deploy the next reactor until an oversupply of power, then deploy the last reactor until demand is met
- Deployment schedule is given to CYCLUS

Figure 3: Example of how advanced reactors in Scenario 7 are deployed to meet a fictitious demand of 530 MWe.

Reactor numbers scales with the power output of the reactors

- Scenario 2 (MMR) deploys the most reactors
- Scenario 3 (Xe-100) deploys the fewest reactors
- Similar number of Xe-100s and VOYGRs are deployed
- Scenarios 4 (Xe-100+MMR), 6 (Xe-100+VOYGR), and 7 (Xe-100+VOYGR+MMR) mostly deploy Xe-100s
- Scenario 5 (MMR+VOYGR) mostly deploys VOYGRs

Figure 4: Number of advanced reactors deployed in Scenarios 2-7 (left) and Scenarios 3-7 (right).

Reactor designs drives the uranium mass required

- Scenario 5 (MMR + VOYGR) requires the largest average mass of enriched uranium
- Scenario 5 (MMR + VOYGR) requires the smallest mass of HALEU
- Scenario 2 (MMR) requires the largest mass of HALEU
- Scenario 3 (Xe-100) requires the smallest mass of enriched uranium

Figure 5: Annual average mass of enriched uranium required to fuel advanced reactors in Scenarios 2-7.

SWU capacity is a function of product mass and assay

- Scenario 2 (MMR) requires the largest average SWU
- The other scenarios are comparable for the average capacity they require
- Xe-100 and VOYGR differences in product mass and assay offset each other

Figure 6: Annual average SWU capacity required to produce enriched uranium for and advanced reactors in Scenarios 2-7.

Once-through fuel cycles Once-through results Closed fuel cycles Recycle results

I

What about a different fuel cycle option?

What if we had a closed fuel cycle that required HALEU?

- How does the fuel cycle option impact the material requirements?
- How many resources does this save?

Once-through fuel cycles Once-through results Closed fuel cycles Recycle results

Reactor models account for fuel depletion

- CYCLUS uses archetypes to model reactors, and the physics of a reactor
- Different reactor archetypes use different methodologies to model fuel depletion

Reactor models account for fuel depletion

- CYCLUS uses archetypes to model reactors, and the physics of a reactor
- Different reactor archetypes use different methodologies to model fuel depletion
- \bullet The $\operatorname{Cycamore}$ Reactor uses recipes to define used fuel compositions
- Other CYCLUS reactor archetypes can dynamically model fuel depletion, but they require export controlled software or are reactor design specific

Reactor models account for fuel depletion

- CYCLUS uses archetypes to model reactors, and the physics of a reactor
- Different reactor archetypes use different methodologies to model fuel depletion
- \bullet The $\operatorname{Cycamore}$ Reactor uses recipes to define used fuel compositions
- Other CYCLUS reactor archetypes can dynamically model fuel depletion, but they require export controlled software or are reactor design specific
- UNF compositions impact numerous fuel cycle considerations:
 - decay heat
 - criticality safety
 - amount of plutonium and transuranic elements

OpenMCyclus: an open source coupling with OpenMC

- Developed a reactor archetype that couples CYCLUS with stand-alone depletion solver in OpenMC
- Publicly available on GitHub [4]

Figure 7: Material handling pathways between different material inventories in OpenMCyclus and the dynamic resource exchange (DRE) of CYCLUS.

OpenMCyclus: an open source coupling with OpenMC

- Developed a reactor archetype that couples CYCLUS with stand-alone depletion solver in OpenMC
- Publicly available on GitHub [4]
- Compared against the CYCAMORE Reactor in a simple closed fuel cycle

Figure 7: Material handling pathways between different material inventories in OpenMCyclus and the DRE of CYCLUS.

Benchmark description

- Closed fuel cycle with 1 reactor type, modeled with either CYCAMORE or OpenMCyclus
- Reactors prefer MOX over UOX

Figure 8: Fuel cycle facilities and material flow between facilities for the sample fuel cycle scenarios used to compare the results of the CYCAMORE Reactor and OpenMCyclus DepleteReactor archetypes.

Benchmark description

- Closed fuel cycle with 1 reactor type, modeled with either CYCAMORE or OpenMCyclus
- Reactors prefer MOX over UOX
- 2 reactors deployed at time step 1, then 1 deployed at time steps 50, 100, 150
- Reactors have 60 time step lifetime

Figure 8: Fuel cycle facilities and material flow between facilities for the sample fuel cycle scenarios used to compare the results of the CYCAMORE Reactor and OpenMCyclus DepleteReactor archetypes.

Benchmark description

- Closed fuel cycle with 1 reactor type, modeled with either CYCAMORE or OpenMCyclus
- Reactors prefer MOX over UOX
- 2 reactors deployed at time step 1, then 1 deployed at time steps 50, 100, 150
- Reactors have 60 time step lifetime
- Ran with CYCAMORE
 Reactor twice, toggling the
 decom_transmute_all
 setting

Figure 8: Fuel cycle facilities and material flow between facilities for the sample fuel cycle scenarios used to compare the results of the CYCAMORE Reactor and OpenMCyclus DepleteReactor archetypes.

 Separated plutonium masses differ because of different depletion methodologies

Figure 9: Comparison of cumulative separated plutonium in benchmark between OpenMCyclus and CYCAMORE Reactor.

- Separated plutonium masses differ because of different depletion methodologies
 - CYCAMORE
 Reactor applies the
 same UNF
 composition
 - OpenMCyclus depletes fuel on a per cycle basis

Figure 9: Comparison of cumulative separated plutonium in benchmark between OpenMCyclus and CYCAMORE Reactor.

- Separated plutonium masses differ because of different depletion methodologies
 - CYCAMORE
 Reactor applies the
 same UNF
 composition
 - OpenMCyclus depletes fuel on a per cycle basis
- Temporarily changing OpenMCyclus method shows better agreement

Figure 10: Comparison of cumulative separated plutonium in benchmark between OpenMCyclus and CYCAMORE Reactor.

- Separated plutonium masses differ because of different depletion methodologies
 - CYCAMORE
 Reactor applies the
 same UNF
 composition
 - OpenMCyclus depletes fuel on a per cycle basis
- Temporarily changing OpenMCyclus method shows better agreement
- Results suggests
 CYCAMORE Reactor
 overestimates separated
 plutonium inventory

Figure 10: Comparison of cumulative separated plutonium in benchmark between OpenMCyclus and CYCAMORE Reactor.

- Differences in separated plutonium masses propagate into different fuel receipts
- Used fuel masses are mostly consistent, except when a reactor is decommissioned

(a) Comparison of used UOX fuel discharged.

(b) Comparison of used MOX fuel discharged.

Figure 11: Used fuel transactions in OpenMCyclus/CYCAMORE benchmark

Recycle scenario definitions

Table 5: Summary of the recycle fuel cycle transition scenarios. Energy growth is relative to energy from LWRs in 2025

Scenario	Advanced Reactors	Energy demand	Recycle scheme
14	Xe-100, MMR, VOYGR	No growth	Limited
15	Xe-100, MMR, VOYGR	No growth	Limited, no TRISO
16	Fast reactor	No growth	Continuous
17	Xe-100, MMR, VOYGR	1% growth	Limited
18	Xe-100, MMR, VOYGR	1% growth	Limited, no TRISO
19	Fast reactor	1% growth	Continuous

Recycle scenario definitions

Table 6: Summary of the recycle fuel cycle transition scenarios. Energy growth is relative to energy from LWRs in 2025

S	cenario	Advanced Reactors	Energy demand	Recycle scheme
	14	Xe-100, MMR, VOYGR	No growth	Limited
	15	Xe-100, MMR, VOYGR	No growth	Limited, no TRISO
	16	Fast reactor	No growth	Continuous
	17	Xe-100, MMR, VOYGR	1% growth	Limited
	18	Xe-100, MMR, VOYGR	1% growth	Limited, no TRISO
	19	Fast reactor	1% growth	Continuous

Limited recycle fuel cycle assumptions

Figure 12: Fuel cycle facilities and material flow between facilities for the limited recycling scenarios

- Reprocess uranium-based fuel, dispose plutonium-based fuel
- Reactors prefer plutonium-based fuel over uranium-based fuel
- Separations remove only plutonium (aqueous reprocessing)

Limited recycle fuel cycle assumptions

Figure 12: Fuel cycle facilities and material flow between facilities for the limited recycling scenarios.

- Reprocess uranium-based fuel, dispose plutonium-based fuel
- Reactors prefer plutonium-based fuel over uranium-based fuel
- Separations remove only plutonium (aqueous reprocessing)
- Use the same deployment schedule as Scenarios 7, 13
- Modeled Xe-100 and VOYGR with OpenMCyclus

Limited recycle fuel cycle assumptions

Figure 12: Fuel cycle facilities and material flow between facilities for the limited recycling scenarios.

- Reprocess uranium-based fuel, dispose plutonium-based fuel
- Reactors prefer plutonium-based fuel over uranium-based fuel
- Separations remove only plutonium (aqueous reprocessing)
- Use the same deployment schedule as Scenarios 7, 13
- Modeled Xe-100 and VOYGR with OpenMCyclus
- Separations start in 2020
- Vary if TRISO UNF is reprocessed

Continuous recycle fuel cycle assumptions

Figure 13: Fuel cycle facilities and material flow between facilities for the continuous recycling scenarios.

- Reprocess all UNF
- Introduce a fast reactor for transition, modeled through OpenMCyclus
- Separation start 2020
- Can accept plutonium-based fuel (preferred) or HALEU
- Separations remove U, Np, Pu, Am (electrochemical reprocessing)

Continuous recycle fuel cycle assumptions

Figure 13: Fuel cycle facilities and material flow between facilities for the continuous recycling scenarios.

- Reprocess all UNF
- Introduce a fast reactor for transition, modeled through OpenMCyclus
- Separation start 2020
- Can accept plutonium-based fuel (preferred) or HALEU
- Separations remove U, Np, Pu, Am (electrochemical reprocessing)
- Use the same deployment scheme to determine how many fast reactors to deploy

Advanced reactors

Table 7: Fast reactor design specification.

-		
Design Criteria	Fast Reactor [6, 17]	
Reactor type	Sodium-Cooled Fast Reactor (SFR)	
Fuel form	Metallic	
Power Output (MWe)	311	
Power Output (MWth)	840	
Enrichment (wt% fissile Pu)	11.3/13.5	
Cycle Length (yrs)	1	
Number of cycles	4	
Reactor Lifetime (yrs)	60	
Burnup (MWd/kg)	87.51	

Recycling scheme dictates amount of separated material

- Scenario 16 (Continuous reprocessing) has the most separated material
- Scenario 15 (Limited, no TRISO) has the least separated material

(a) Annual average mass in Scenarios 14-15

(b) Annual average mass in Scenarios 14-16

Figure 14: Separated actinide masses for advanced reactors in Scenarios 14-16

Recycling decreases HALEU needs

- Scenario 15 (Limited, no TRISO) requires the most enriched uranium, has least plutonium-based fuel
- Scenario 16 (Continuous reprocessing) doesn't require any enriched uranium, most plutonium-based fuel

(a) Uranium-based fuel mass

(b) Plutonium-based fuel mass

Figure 15: Fuel masses for advanced reactors in Scenarios 14-16

Transition analysis conclusions

- The advanced reactors deployed drive the materials required for each scenario
- Reprocessing decreases HALEU needs
- Decrease in HALEU needs is driven by the material available for reprocessing and the material separated from UNF

Transition analysis conclusions

- The advanced reactors deployed drive the materials required for each scenario
- Reprocessing decreases HALEU needs
- Decrease in HALEU needs is driven by the material available for reprocessing and the material separated from UNF
- These scenarios consider large changes in the transition. What about small changes?

Outline

- Introduction
 Motivation
 Background
 Objectives
- 2 Transition analysis
 Once-through fuel cycles
 Once-through results
 Closed fuel cycles
 Recycle results
- Sensitivity analysis & Optimization Sensitivity analysis Optimization
- 4 Effects of impurities
- 5 Conclusions
 Conclusions

To meet the third objective, I performed sensitivity analysis on Scenario 7 (once-through, no growth, Xe-100 + VOYGR + MMR), comparing the impact of different model parameters

Couple CYCLUS with Dakota [3]

To meet the third objective, I performed sensitivity analysis on Scenario 7 (once-through, no growth, Xe-100 + VOYGR + MMR), comparing the impact of different model parameters

- Couple CYCLUS with Dakota [3]
- Input parameters include:
 - Transition start time
 - Percent of LWRs operating for 80 years
 - Build share of Xe-100, VOYGR, MMR
 - Discharge burnup of Xe-100 and MMR

To meet the third objective, I performed sensitivity analysis on Scenario 7 (once-through, no growth, Xe-100 + VOYGR + MMR), comparing the impact of different model parameters

- Couple CYCLUS with Dakota [3]
- Input parameters include:
 - Transition start time
 - Percent of LWRs operating for 80 years
 - Build share of Xe-100, VOYGR, MMR
 - Discharge burnup of Xe-100 and MMR
- Output metrics include:
 - Total enriched uranium mass
 - HALEU mass
 - Total SWU capacity
 - SWU capacity to produce HALEU
 - Feed uranium to produce HALEU
 - UNF mass

To meet the third objective, I performed sensitivity analysis on Scenario 7 (once-through, no growth, Xe-100 + VOYGR + MMR), comparing the impact of different model parameters

- Couple CYCLUS with Dakota [3]
- Input parameters include:
 - Transition start time
 - Percent of LWRs operating for 80 years
 - Build share of Xe-100, VOYGR, MMR
 - Discharge burnup of Xe-100 and MMR
- Output metrics include:
 - Total enriched uranium mass
 - HALEU mass
 - Total SWU capacity
 - SWU capacity to produce HALEU
 - Feed uranium to produce HALEU
 - UNF mass
- Varied parameters individually and multiple combinations
- Modify deployment scheme to prioritize reactor with specified build share, then deploy others in the same manner as before

Increasing MMR build share increases all metrics

- All of the materials increase
- Enrichment-related metrics increase the most

Figure 16: Relative effect of varying MMR build share

Increasing MMR build share increases all metrics

- All of the materials increase
- Enrichment-related metrics increase the most
- Results are a function of the number of each advanced reactor deployed

Figure 16: Relative effect of varying MMR build share

Effects of varying MMR build share

Figure 17: Number of Xe-100s (top left), MMRs (top right), and VOYGRs (bottom left) as a function of MMR build share.

Effects of varying Xe-100 burnup and MMR build share

- Non-uniform relationship
- At smaller Xe-100 burnup values, increasing MMR share decreases the HALEU mass
- At larger Xe-100 burnup values, increasing MMR share increases the HALFU mass
- Comparison of how much fuel each reactor needs

Figure 18: Effects of varying the Xe-100 burnup and MMR build share on HALEU mass requirements.

Varying multiple parameters shows importance of the Xe-100 burnup

Table 8: Sobol' indices for the Gaussian model when varying the MMR build share. Highlighted values indicate a total Sobol' indices of above 0.5.

	Output Metric					
Parameter	Fuel	HALEU	SWU	HALEU SWU	Feed	UNF
Transition Start	0.006	0.004	0.001	0.001	0.001	0.006
LWR Lifetime	0.068	0.063	0.071	0.069	0.069	0.071
MMR Share	0.107	0.107	0.203	0.204	0.193	0.055
Xe-100 Burnup	0.846	0.858	0.732	0.734	0.747	0.900
MMR Burnup	0.049	0.050	0.071	0.071	0.069	0.053

П

Use the $\operatorname{Cyclus-Dakota}$ coupling to optimize the transition

- Use the genetic algorithms in Dakota to perform optimization
- Consider the same input parameters as the sensitivity analysis, except the transition start time

Use the $\operatorname{Cyclus-Dakota}$ coupling to optimize the transition

- Use the genetic algorithms in Dakota to perform optimization
- Consider the same input parameters as the sensitivity analysis, except the transition start time
- Apply a linear constraint for the advanced reactor build shares

Use the $\operatorname{CYCLUS\text{-}Dakota}$ coupling to optimize the transition

- Use the genetic algorithms in Dakota to perform optimization
- Consider the same input parameters as the sensitivity analysis, except the transition start time
- Apply a linear constraint for the advanced reactor build shares
- Goal is to minimize the SWU capacity needed to produce HALEU, the mass of UNF, or both in a multi-objective problem

Single-objective optimization isn't perfect

- Maximize Xe-100 build share, LWR lifetimes, and Xe-100 burnup to minimize UNF mass
- Find a solution that has less UNF mass than the transition scenarios and the OAT analysis

Table 9: Values resulting in a minimum waste mass disposed of for a once-through transition scenario.

Variable	Value
LWR Lifetime	50%
Xe-100 build share	100%
MMR build share	7%
VOYGR build share	11%
Xe-100 burnup	185 MWd/kgU
MMR burnup	90 MWd/kgU
UNF mass	1,736 MT

Single-objective optimization isn't perfect

- Maximize Xe-100 build share, LWR lifetimes, and Xe-100 burnup to minimize UNF mass
- Find a solution that has less UNF mass than the transition scenarios and the OAT analysis
- Genetic algorithm struggles with linear constraint for the three build shares

Table 9: Values resulting in a minimum waste mass disposed of for a once-through transition scenario.

Variable	Value
LWR Lifetime	50%
Xe-100 build share	100%
MMR build share	7%
VOYGR build share	11%
Xe-100 burnup	185 MWd/kgU
MMR burnup	90 MWd/kgU
UNF mass	1,736 MT

Single-objective optimization isn't perfect

- Maximize Xe-100 build share, LWR lifetimes, and Xe-100 burnup to minimize UNF mass
- Find a solution that has less UNF mass than the transition scenarios and the OAT analysis
- Genetic algorithm struggles with linear constraint for the three build shares
- Results provide guidance, but should explore other optimization algorithms

Table 9: Values resulting in a minimum waste mass disposed of for a once-through transition scenario.

	Variable	Value	
	LWR Lifetime	50%	
	Xe-100 build share	100%	
	MMR build share	7%	
	VOYGR build share	11%	
Xe-100 burnup		185 MWd/kgU	
	MMR burnup	90 MWd/kgU	
	UNF mass	1,736 MT	

Outline

- 1 Introduction
 Motivation
 Background
- 2 Transition analysis
 Once-through fuel cycles
 Once-through results
 Closed fuel cycles
 Recycle results
- Sensitivity analysis & Optimization Sensitivity analysis Optimization
- 4 Effects of impurities
- 5 Conclusions
 Conclusions

Downblending HEU is a potential source of HALEU

To meet the fourth objective, I modeled the neutronics of different HALEU compositions in the Xe-100 and MMR

- Consider pure HALEU (²³⁵U and ²³⁸U only) and HALEU from downblended EBR-II [18] and Y-12 [11] HEU inventories
- Create models in Serpent [9] for these two reactors
- Compare the performance of the fuels with respect to:
 - k_{eff}
 - β_{eff}
 - Energy- and spatially-dependent flux
 - Fuel, coolant, moderator, and total reactivity temperature feedback coefficients

$k_{\it eff}$ and $\beta_{\it eff}$ of Xe-100

• Impurities increase k_{eff} , larger η value $(\frac{\nu\sigma_f}{\sigma_a})$ of the fuel

Table 10: k_{eff} values for the Xe-100-like reactor model using each fuel type.

Fuel type	$k_{\it eff}$	
Pure	1.06663 ± 0.00016	
EBR-II	1.08086 ± 0.00016	
Y-12	1.08016 ± 0.00014	

$k_{\it eff}$ and $\beta_{\it eff}$ of Xe-100

• Impurities increase k_{eff} , larger η value $(\frac{\nu \sigma_f}{\sigma_a})$ of the fuel

• Impurities decrease β_{eff} because non-²³⁵U isotopes have a smaller β_{eff} than ²³⁵U

Table 10: k_{eff} values for the Xe-100-like reactor model using each fuel type.

$k_{\it eff}$
1.06663 ± 0.00016
1.08086 ± 0.00016
1.08016 ± 0.00014

Table 11: β_{eff} value for the Xe-100-like reactor mode using each fuel type.

Fuel type	$eta_{\sf eff}$		
Pure	0.00617 ± 0.00003		
EBR-II	0.00604 ± 0.00003		
Y-12	0.00598 ± 0.00003		

Energy dependent neutron flux in Xe-100

Figure 19: Energy-dependent flux through the active region of the Xe-100 core. The purple line is the delineation between fast and thermal neutrons for this work.

Spatitally-dependent neutron flux in Xe-100

Figure 20: Radial fluxes through Xe-100.

Outline

- Introduction
 Motivation
 Background
 Objectives
- 2 Transition analysis
 Once-through fuel cycles
 Once-through results
 Closed fuel cycles
 Recycle results
- Sensitivity analysis & Optimization Sensitivity analysis Optimization
- 4 Effects of impurities
- Conclusions
 Conclusions
 Limitations & Future work

• This work investigates the impacts of deploying HALEU-fueled reactors on the nuclear fuel cycle

- This work investigates the impacts of deploying HALEU-fueled reactors on the nuclear fuel cycle
- The material requirements of the transitions modeled are governed by the design characteristics of the reactors deployed
- Closing the fuel cycle decreases material needs, but the decrease is governed by the recycling scheme and the material available for reprocessing

- This work investigates the impacts of deploying HALEU-fueled reactors on the nuclear fuel cycle
- The material requirements of the transitions modeled are governed by the design characteristics of the reactors deployed
- Closing the fuel cycle decreases material needs, but the decrease is governed by the recycling scheme and the material available for reprocessing
- Sensitivity analysis highlighted how the advanced reactor characteristics affect the material requirements, and the importance of the Xe-100 burnup
- Found transitions to minimize HALEU SWU and SNF mass, but other algorithms should be used when using a linear constraint

- This work investigates the impacts of deploying HALEU-fueled reactors on the nuclear fuel cycle
- The material requirements of the transitions modeled are governed by the design characteristics of the reactors deployed
- Closing the fuel cycle decreases material needs, but the decrease is governed by the recycling scheme and the material available for reprocessing
- Sensitivity analysis highlighted how the advanced reactor characteristics affect the material requirements, and the importance of the Xe-100 burnup
- Found transitions to minimize HALEU SWU and SNF mass, but other algorithms should be used when using a linear constraint
- The impurities from downblending HEU affect reactor parameters, but won't necessarily prevent key design parameters from being met

A methodology for comprehensive fuel cycle analysis

- Develop and demonstrate how to expand transition analysis with sensitivity analysis and optimization
- Develop a reactor-agnostic archetype to dynamically model depletion in CYCLUS, without needing an export-controlled code

A methodology for comprehensive fuel cycle analysis

- Develop and demonstrate how to expand transition analysis with sensitivity analysis and optimization
- Develop a reactor-agnostic archetype to dynamically model depletion in CYCLUS, without needing an export-controlled code
- Provide a detailed insight on how parameters and decisions affect fuel cycle needs and their relative impact

A methodology for comprehensive fuel cycle analysis

- Develop and demonstrate how to expand transition analysis with sensitivity analysis and optimization
- Develop a reactor-agnostic archetype to dynamically model depletion in CYCLUS, without needing an export-controlled code
- Provide a detailed insight on how parameters and decisions affect fuel cycle needs and their relative impact
- Deployment scheme is an important facet of this work and greatly impacts the results, but can be replaced

Limitations and Future Work

• Transition analysis provided a macroscopic view of material needs

Limitations and Future Work

- Transition analysis provided a macroscopic view of material needs
 - Break up the material needs into time periods or reactor-specific quantities
 - Determine and model facility capacities
 - Design enrichment centrifuge cascades
 - Account for processing time
 - Model the needs of non-fuel materials, like reactor-grade graphite

Acknowledgements

- This material is based upon work supported under a University Nuclear Leadership Program Graduate Fellowship. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Department of Energy Office of Nuclear Energy.
- Grainger College of Engineering for providing me with a SURGE Fellowship
- Committee Members
- ARFC Group members
- RFCA members, Drs. Bo Feng and Scott Richards
- CYCLUS and OpenMC communities
- Kyle and Little R

References I

- Power Reactor Information System (PRIS): Reference and On-line Access Manual.
 Technical Report, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 1989.
- [2] USNC Micro Modular Reacotr (MMR Block 1) Technical Information, 2021.
- [3] Brian M. Adams, Michael Scott Eldred, Gianluca Geraci, and William J. Bohnhoff. Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.15 User's Manual, November 2021.
- [4] Amanda M. Bachmann, Olek Yardas, and Madicken Munk. OpenMCyclus v0.1.0, September 2023.
- [5] Brent Dixon, Son Kim, Bo Feng, Taek Kim, Scott Richards, and Jin Bae. Estimated HALEU Requirements for Advanced Reactors to Support a Net-Zero Emissions Economy by 2050.

Technical Report INL/EXT-21-64913-Rev000, 1838156, January 2022.

[6] Christopher Fichtlscherer, Friederike Frieß, and Moritz Kütt. Assessing the PRISM reactor as a disposition option for the British plutonium stockpile. Science & Global Security, 27(2-3):124–149, September 2019. Publisher: Routledge _eprint: https://doi.org/10.1080/08929882.2019.1681736.

References II

[7] Kathryn D. Huff, Matthew J. Gidden, Robert W. Carlsen, Robert R. Flanagan, Meghan B. McGarry, Arrielle C. Opotowsky, Erich A. Schneider, Anthony M. Scopatz, and Paul P. H. Wilson

Fundamental concepts in the Cyclus nuclear fuel cycle simulation framework. Advances in Engineering Software, 94:46–59, April 2016.

- Maria Korsnick.
 Updated Need for High-Assay Low Enriched Uranium, December 2021.
- [9] Jaakko Leppanen.
 Serpent a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code.
 VTT Technical Research Centre of Finland, Espoo, Finland, 4, 2013.
- [10] Eben J. Mulder. Overview of X-Energy's 200 MWth Xe-100 Reactor, January 2021.
- [11] T. Nelson and B.G. Eddy. Foreign research reactor uranium supply program: The Y-12 national security complex process. Technical Report 978-92-95064-10-2, Belgium, 2010.

References III

[12] Nuclear Energy Institute.

Establishing a HALEU Infrastructure for Advanced Reactors.

Technical report, Nuclear Energy Institute, January 2022.

[13] NuScale.

Chapter One Introdcution and General Description of the Plant, July 2020.

- [14] Monica C. Regalbuto.
 Addressing HALEU Demand, April 2020.
- [15] Jose Reyes. NuScale Power - A Scalable Clean Energy Solution, January 2021.
- [16] Jose N. Reyes.
 Correction of Factual Error in PNAS Paper titled "Nuclear waste from small modular reactors", May 2022.
- [17] Brian S. Triplett, Eric P. Loewen, and Brett J. Dooies. PRISM: A Competitive Small Modular Sodium-Cooled Reactor. Nuclear Technology, 178(2):186–200, May 2012.

[18] DeeEarl Vaden.

Isotopic Characterization of HALEU from EBR-II Driver Fuel Processing.

 $Technical\ Report\ INL/EXT-18-51906-Rev000,\ 1484450,\ November\ 2018.$

Conclusions Limitations & Future work

More limitations and future work

- Ignores other externalities, like nonproliferation safeguards
 - Incorporate potential safeguards measures into models
 - Account for construction time and/or licensing
- Expand analysis on impurities in HALEU
 - Consider power-peaking factors
 - Model burnable poisons and control rods
 - Model core in non-isothermal state

Once-through feed uranium

Recycle HLW

Recycle SNF

Recycle SWU

Effects of varying VOYGR build share

Effects of varying Xe-100 build share

Effects of varying LWR lifetimes

Effects of varying transition start time

HALEU SWU Optimization

Table 12: Values resulting in a minimum HALEU SWU capacity for a once-through transition scenario.

Variable	Value	
LWR Lifetime	36%	
Xe-100 build share	0%	
MMR build share	2%	
VOYGR build share	100%	
Xe-100 burnup	151 MWd/kgU	
MMR burnup	90 MWd/kgU	
HALEU SWU	4.812 ×10 ⁷ kg-SWU	
-		

Axial flux through Xe-100

Figure 21: Axial fluxes through Xe-100.

Reactivity feedback coefficients for Xe-100

Table 13: Reactivity temperature feedback coefficients for each material type in the Xe-100-like model for each fuel type.

	Material feedback coefficient (pcm/K)							
Fuel Type	Fuel	Coolant	Moderator	Total				
Pure	-3.875 ± 0.094	-0.044 ± 0.112	-0.071 ± 0.459	-4.216 ± 0.502				
EBR-II	-3.759 ± 0.138	-0.433 ± 0.048	-0.708 ± 0.404	-4.817 ± 0.438				
Y-12	-3.797 ± 0.157	-0.351 ± 0.092	-0.728 ± 0.469	-4.700 ± 0.349				