Chapitre 7 Analyse de la variance (ANOVA)

Introduction

L'analyse de la variance (ANOVA) a pour objectif d'étudier l'influence d'un ou plusieurs facteurs sur une variable quantitative. Nous nous intéresserons ici au cas où les niveaux, ou modalités, des facteurs sont fixés par l'expérimentateur. On parle alors de modèle *fixe*.

C'est la comparaison de moyennes pour plusieurs groupes (> 2). Il s'agit de comparer la variance intergroupe (entre les différents groupes : écart des moyennes des groupes à la moyenne totale) à la variance intragroupe (somme des fluctuations dans chaque groupe).

S'il n'y a pas de différence entre les groupes, ces deux variances sont (à peu près) égales. Sinon, la variance intergroupe est nécessairement la plus grande.

L'ANOVA se résume à une comparaison multiple de moyennes de différents échantillons constitués par les différentes modalités des facteurs. Les conditions d'application du test paramétrique de comparaison de moyennes s'appliquent donc à nouveau.

L'analyse de variance (analysis of variance ou ANOVA) peut être vue comme une généralisation du test de Student.

On souhaite tester les effets de k traitements qui ont été administrés respectivement à n_1, \ldots, n_k individus. En analyse de variance, le paramètre susceptible d'influer sur les données étudiées s'appelle un *facteur*, et ses valeurs sont les *modalités* (ici les différents traitements).

Dans le modèle probabiliste, chaque modalité correspond à un échantillon. Pour $h=1,\ldots,k$, on note :

$$(X_1^{(h)},\ldots,X_{n_h}^{(h)})$$
,

On cherche à savoir si la variabilité observée dans les données est uniquement due au hasard, ou s'il existe effectivement des différences significatives entre les classes, imputables au facteur. Pour cela, on va comparer les variances empiriques de chaque échantillon, à la variance de l'échantillon global, de taille n1+...+nk=n. La moyenne des variances (pondérée par les effectifs) résume la variabilité à l'intérieur des classes, d'où le nom de variance *intra-classes* (*intra-groupes*), ou variance *résiduelle*. La variance des moyennes décrit les différences entre classes qui peuvent être dues au traitement, d'où le nom de variance *inter-classes* (*intra-groupes*), ou variance *expliquée*.

On note:

- $\overline{X}^{(h)}$ la moyenne empirique de la h-ième classe,
- $V^{(h)}$ la variance empirique de la h-ième classe,
- \overline{X} la moyenne de l'échantillon global,
- La moyenne des variances (variance intra-classes), V_{intra}

La variance des moyennes (variance inter-classes), V_{inter}

 S^2 la variance de l'échantillon global.

Alors:

$$S^2 = V_{intra} + V_{inter}$$
.

Test d'homogénéité des variances

Pour beaucoup de tests paramétriques (ANOVA, régression), l'homogénéité des variances est une condition nécessaire.

Homogénéité des variances = homoscédasticité

Plusieurs méthodes existent pour tester l'homogénéité des variances dans plusieurs groupes qui n'ont pas nécessairement le même nombre d'objets. Un test très utilisé est le test de Bartlett, détaillé ici. Ce test est valide si les distributions des objets sont Normales (*Le test de Bartlett estime si les différentes sous-catégories d'une variable de distribution normale ont la même variance*). Le test donne un résultat global et ne permet pas d'estimer les différences de variances des sous-catégories deux à deux. Il est très sensible à la non-normalité.

Exemple

Nombre/km2 (densité) de sapins poussant dans 3 (= k) forêts différentes (groupes) :

	Groupe 1	Groupe 2	Groupe 3
	45	78	354
	34	69	338
	35	86	351
	29	58	332
	42	57	341
	37	64	358
	44		347
	28		
Variance	42,214	131,867	86,476

Avant de tester l'effet du milieu (forêt) sur la densité de sapins par une ANOVA, il faut vérifier l'homogénéité des variances.

Question : à un niveau de risque de 5 %, les variances de ces trois groupes sont-elles homogènes?

Hypothèses:

H0: toutes les variances sont égales

H1: au moins une des variances est différente des autres

Test

$$Sp^2 = \Sigma((ni - 1)si^2)/\Sigma(ni - 1)$$

 $B = (\Sigma(ni - 1))(\ln Sp^2) - \Sigma((ni - 1)\ln si^2)$

 $C = 1 + 1/(3(k-1))[\Sigma 1/(ni-1) - 1/(\Sigma(ni-1))]$ BC = B/C. Sous H₀, B_C suit une loi du Khi-carré (χ^2) à (k – 1) ddl (v).

Condition: distributions Normales des populations d'origine.

Règle de décision : H_0 est rejetée si $B_C > \chi^2_{0,05;2}$, soit 5,99.

Calcul du test:

 $Sp^2 = ((7)42,214 + (5)131,867 + (6)86,476)/(7 + 5 + 6) = 81,872$

 $B = (7 + 5 + 6)\ln 81,872 - (7 \ln 42,214 + 5 \ln 131,867 + 6 \ln 86,476) = 1,925$

C = 1 + (1/6)[(1/7 + 1/5 + 1/6) - (1/(7 + 5 + 6))] = 1,076

 $B_C = 1,925/1,076 = 1,789$

Décision : $B_C < 5,99$, H_0 est acceptée : Les trois variances sont homogènes.

Explication de ANOVA à un critère (ou facteur)

Considérons le cas où il y a 4 groupes

Si H₀ est vrai:

les moyennes μ 1, μ 2, μ 3, μ 4 sont égales La variance totale σ^2_T = la variance σ^2 de chaque population

Si H₁ est vrai :

les moyennes $\mu1$, $\mu2$, $\mu3$, $\mu4$ sont différentes

La variance totale $\sigma^2_T \neq$ la variance σ^2 de chaque population

Principe de l'analyse de variance (3)

- La dispersion totale σ²_T a 2 composantes
 - Fluctuations individuelles : σ^2 qui est la variance interne à chaque groupe (variance intra-groupe)
 - Fluctuations entre les groupes : la variation entre les μ_i qui correspond à la variabilité entre les groupes (variance inter-groupe)
- Si la variabilité inter-groupe > la variabilité intragroupe ⇒ 2 moyennes au moins diffèrent
- Principe général :
 - [∞] Décomposer σ²_⊤ en ses 2 parties
 - $^{⋄ -}$ Tester si $σ^2$ _T est différent de $σ^2$

Principe de l'analyse de variance (4)

- Hypothèses
 - Echantillons (groupes) indépendants
 - Distribution normale du critère au sein des groupes
 - Variances identiques d'un groupe à l'autre
- L'ANOVA est un test robuste (résultats assez peu affectés par de légers écarts à ces hypothèses)

 $H_0: \mu_1 = \mu_2 = ... = \mu_k$ (k groupes)

H₁ : au moins l'une des moyennes diffère des autres

Conventions de notations

Facteur	Groupe 1	Groupe 2	 Groupe j
Effectif	n ₁	n ₂	 n _j
Mesure	x ₁₁	x ₁₂	 X _{1j}
Mesure	x ₂₁	x ₂₂	 x _{2j}
Mesure			
Mesure	X _{i1}	X _{i2}	 X _{ij}
Moyennes	\overline{x}_1	\overline{x}_2	 $\overline{\mathbf{x}}_{\mathbf{j}}$

x : variable à laquelle on s'intéresse

k : nombre de groupes n_i : taille du groupe j

 $X_{ij}^{'}$: ième observation du groupe j

Décomposition de la variabilité des observations

- Mesure de la dispersion totale : SCE_T
 - Somme des carrés des écarts à la moyenne générale : $\sum \left(x_{_{ij}} \overline{x} \right)^2$
- Mesure de la dispersion intra-groupe : SCE_R
 - Somme des carrés des écarts à la moyenne d'un groupe : $\sum (x_{ij} \overline{x}_j)^2$
- Mesure de la dispersion inter-groupe SCE_A
 - Somme des carrés des écarts de la moyenne d'un groupe à la moyenne générale : $\sum n_j \big(\overline{x}_j \overline{x}\big)^2$

$$FSCE_T = SCE_R + SCE_A$$

ANOVA: méthode de calcul (1)

Estimation de la variance inter-groupe SCE_A

- Elle ne dépend que de la dispersion des moyennes des groupes comparés
 - ⇔ Somme des carrés des écart due au facteur étudié
- SCE_A a k-1 degrés de liberté
- Sa variance σ^{2}_{A} est estimée par :

$$S_A^2 = \frac{SCE_A}{k-1} = \frac{\sum_{j=1}^k n_j (\overline{x}_j - \overline{x})^2}{k-1}$$

Pour les calculs, on montre que SCE_A s'écrit :

$$SCE_{A} = \sum_{j} \frac{T_{j}^{2}}{n_{j}} - \frac{T_{G}^{2}}{n}$$

- T_i = total des valeurs de x du groupe j (somme des valeurs x du groupe j)
- T_G = total général (somme globale des valeurs x)

ANOVA: méthode de calcul (2)

Estimation de la variance intra-groupe SCER

- Elle ne dépend que de la dispersion des valeurs x_{ij} au sein de chaque groupe
 - ⇔ Somme des carrés des écart intra-classe ou résiduelle
- SCE_R a n-k degrés de liberté
- Sa variance σ^{2}_{R} est estimée par :

$$S_R^2 = \frac{SCE_R}{n-k} = \frac{\sum_{j=1}^k \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)^2}{n-k}$$

Pour les calculs, on montre que SCE_A s'écrit :

$$SCE_R = \sum_{ij} x_{ij}^2 - \sum_{j} \frac{T_j^2}{n_j}$$

avec T_j = total des valeurs de x du groupe j (somme des valeurs x du groupe j)

ANOVA: méthode de calcul (3)

- Après avoir décomposé la variance totale, le principe consiste à comparer S²_A/S²_R
- Tester si le rapport des 2 variances S²_A/S²_R est proche de 1
- Statistique de test distribuée selon une loi dite de Fisher à v_1 = k-1 et v_2 = n-k degrés de liberté (ddl)
 - $F_0 = S_A^2/S_R^2$
 - Test unilatéral dans tous les cas
 - si H_0 vraie : $S_A^2 \approx S_R^2$ et donc $F_0 \approx 1$
 - $si H_1 vraie : S_A^2 > S_R^2 et donc F_0 > 1$

ANOVA: Execution du test (1)

$$H_0: \sigma_A^2 = \sigma_R^2$$
 $H_1: \sigma_A^2 > \sigma_R^2$

- 1. Calculer $F_0 = \frac{s_A^2}{s_R^2}$ à partir des observations sur l'échantillon
- Comparer F₀ à la valeur seuil de F^{k-1}_{n-k}:
- => règle de décision

 $F_0 \ge F_{n-k}^{k-1}(\alpha)$: rejet de H_0 (au risque α) d'indépendance

 $F_0 < F_{n-k}^{k-1}(\alpha)$: non rejet de H_0

ANOVA: Execution du test (2)

Tableau d' "analyse de la variance"

Source de variation	Somme des carrés des écarts	ddl	Carré moyen (ou variance)	F
Entre groupes (facteur A)	SCEA	k-1	$s_A^2 = \frac{SCE_A}{k-1}$	$F_0 = \frac{s_A^2}{s_R^2}$
Résiduelle	SCER	n-k	$s_R^2 = \frac{SCE_R}{n-k}$	
Total	SCE _T = SCE _A +SCE _R	n-1		

Avec:

$$S_A^2 = \frac{SCE_A}{k-1} = \frac{\sum_{j=1}^k n_j (\overline{x}_j - \overline{x})^2}{k-1}$$

$$S_{R}^{2} = \frac{SCE_{R}}{n - k} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (x_{ij} - \overline{x}_{j})^{2}}{n - k}$$

Exemple

Mêmes données que précédemment, mais la question devient : la densité moyenne de sapin est-elle la même dans les 3 forêts ?

Hypothèses

H₀: toutes les moyennes selon le facteur sont égales

 H_1 : au moins une des moyennes μ_r est différente des autres

Variable dépendante : Densité en sapin (nb/km2)

Facteur : Forêt (s = 3 niveaux).

Calculs:

$$\begin{split} & \operatorname{Total}_1 = 294, \operatorname{Total}_2 = 412, \operatorname{Total}_3 = 2421 \; ; \operatorname{Total}\left(T\right) = 3127 \\ & \Sigma x^2 = 877889 \\ & n = 21 \; ; \; n_1 = 8 \; ; \; n_2 = 6 \; ; \; n_3 = 7 \\ & k \; (\text{Nbre de groupes}) = 3 \\ & \operatorname{SCE}_R = \Sigma \Sigma x^2 - \Sigma (\operatorname{Tj}^2/\operatorname{nj}) = 877889 - (294^2/8 + 412^2/6 + 2421^2/7) = 1473,69 \\ & \operatorname{SCE}_A = \Sigma (\operatorname{Tj}^2/\operatorname{nj}) - \operatorname{T2/n} = (294^2/8 + 412^2/6 + 2421^2/7) - 31272/21 = 410790,119 \\ & \operatorname{S}_R^2 = \operatorname{SCE}_R/(n - k) = 1473,69/(21 - 3) = 81,872 \\ & \operatorname{S}_A^2 = \operatorname{SCE}_A/(k - 1) = 410790,119/(3 - 1) = 205395,060 \end{split}$$

Test statistique

$$F = S_A^2 / S_R^2 = 205395,060/81,872 = 2508,743$$

F est comparé à un F à (3-1=2) et (21-3=18) degrés de liberté

Donc:

Fcritique = F(2; 18) = 3,555 à 5 %. Attention, l'ANOVA est *toujours* un test unilatéral.

Si Fcal > F* (H0) : on rejette l'hypothèse d'indépendance

Si Fcal < F* (H1) on accepte l'hypothèse d'indépendance, on accepte H_1 (pas de relation entre les variables).

Décision

Fcalculé > Fcritique: les densités moyennes de sapins ne sont pas les mêmes = le facteur « Forêt » a un effet sur la densité des sapins (il y a un effet du milieu (forêt) sur la densité de sapins). Il y a une relation de dépendance.

Exemple 2:

AN	OV.	A - E	Ξχ	((emp	ole	(1)
			P	oid	ls (kg)		Total
Groupes		[50 - 59] [60 - 6	59]	[70 - 79]	[80 - 8	9]
Effectifs (nj)		10	10		10	10	40
Corticoïdes urinair	es (mg/24h)						
$\overline{\mathbf{x}}_{\mathbf{i}}$		3,78	5,26	5	5,97	6,79	218 et ≅=5,45
$\mathbf{n}_{\mathbf{j}} \cdot (\overline{\mathbf{x}}_{\mathbf{j}} - \overline{\mathbf{x}}_{\mathbf{j}})$	x) ²	27,89	0,36	5	2,70	17,96	48,91
$\sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{ij})$	$(\bar{\mathbf{x}}_j)^2$	6,84	22,2	6	19,94	20,83	69,87
	Construire le tableau d'ANOVA						
	Tableau	d' "analyse d	le la v	/ari	ance"		
	Source de variation	Somme des carrés des éci	- 1 -	idl	Carré moyen (ou variance)	F	
	Entre groupes (facteur A)	SCEA	k	(-1	$s_A^2 = \frac{SCE_A}{k-1}$	$F_0 = \frac{s_A^2}{s_R^2}$	
	Résiduelle	SCER	n	ı-k	s _R ² = SCE _R		
	Total	SCE _T = SCE _A +SCE		1-1			

 H_0 : lorsque le poids augmente, on n'assiste pas forcement à une augmentation des corticoïdes urinaires.

ANOVA - Exemple (2)

Source de variation	Somme des carrés	Degré de liberté (ddl)	Variance	F
Entre groupes $ \sum_{j=1}^{k} n_{j} (\bar{x}_{j} - \bar{x})^{2} $	SCE _A = 48,91	k-1 = 4 - 1 = 3	$S_A^2 = \frac{48.91}{3} = 16.30$	$\frac{16,30}{1,94} = 8,40$
Résiduelle $\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)^2$	SCE _R = 69,87	n-k = 40 - 4 = 36	$S_R^2 = \frac{69.87}{36} = 1.94$	
Totale	$SCE_T = 118,78$	n-1 = 40 - 1 = 39		

⇒
$$\mathbb{F}_3^{36}$$
(5%)=2,90 ⇒ on rejette H0 au risque de 5%
⇒ \mathbb{F}_3^{36} (1%)=4,60 ⇒ on rejette H0 au risque de 1%

Exercice 1

Le tableau suivant présente des mesures de la hauteur (en mm) de la plante *Saede brassica*, réalisées dans plusieurs milieux différents. Un chercheur désire comparer ces données afin de connaître l'effet du milieu sur la taille de *S. brassica* (on admet que les données suivent une distribution Normale).

I	Milieu 1	Milieu 2	Milieu 3	Milieu 4	Milieu 5
	12	141	56	87	241
	15	146	67	105	264
	12	135	43	79	225
	18	147	78	123	257
	24	154	45	114	248
	32		69		258
	31				236
	15				
Tj (=Σxj)	159	723	358	508	1729

- 1. Quelle analyse permet d'estimer l'effet du milieu sur la hauteur des plantes ?
- 2. Quelles sont les conditions requises pour pouvoir réaliser cette analyse ?
- 3. Vérifiez ces conditions et réalisez l'analyse statistique appropriée.

Exercice 2

On veut savoir si la quantité de nitrates varie d'une station à l'autre le long d'une rivière. Pour cela, on prélève en 10 points (n=10) chaque fois une certaine quantité d'eau dans 3 stations différentes (k=3).

Station 1	Station 2	Station 3
50,00	162,00	120,00
52,00	350,00	120,00
123,00	125,00	122,00
100,00	320,00	221,00
200,00	112,00	253,00
250,00	200,00	141,00
220,00	40,00	182,00
220,00	162,00	175,00
300,00	160,00	160,00
220,00	250,00	214,00