	Name : W. K. D. D. Senuruk Index Number : 190586H
	EN2550 Homework 1 on Python and NumPy (1) for i in range(1,6):
[-]	<pre>print(i, ':', (i)**(2)) 1 : 1 2 : 4 3 : 9 4 : 16</pre>
In [2]:	5 : 25 (2) import sympy
	<pre>for i in range(1,6): if not sympy.isprime(i): print(i, ':', (i)**(2)) 1 : 1 4 : 16</pre>
In [3]:	(3) ans = [i**(2) for i in range(1, 6)] print(ans)
In [4]:	<pre>[1, 4, 9, 16, 25] (4) ans = [i**(2) for i in range(1,6) if not sympy.isprime(i)] print(ans)</pre>
In [5]:	[1, 16] (5) (a) import numpy as np
	<pre>A = np.array([[1, 2], [3, 4], [5, 6]]) B = np.array([[7, 8, 9, 1], [1, 2, 3, 4]]) C = np.matmul(A, B) print(C)</pre>
	[[9 12 15 9] [25 32 39 19] [41 52 63 29]] (5) (b)
In [6]:	<pre>A = np.array([[1, 2], [3, 4], [5, 6]]) B = np.array([[3, 2], [5, 4], [3, 1]]) D = np.multiply(A, B) print(D) [[3 4] [15 16]</pre>
In [7]:	[15 16] [15 6]] (6) E = np.random.rand(5, 7) F = 10 * E
	<pre>for i in range(5): for j in range(7): F[i][j] = round(F[i][j]) print(F,'\n') G = F[1:4, :2] print(G, '\n') print('Size of the Resulting Array : 3 x 2')</pre>
	[[0. 1. 4. 1. 1. 9. 4.] [3. 2. 9. 0. 0. 5. 6.] [5. 6. 4. 6. 8. 1. 7.] [6. 2. 4. 8. 10. 9. 1.] [7. 2. 0. 0. 6. 8. 1.]] [[3. 2.] [5. 6.] [6. 2.]] Size of the Resulting Array : 3 x 2
	<pre>x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.array([10, 100]) z = np.array([10, 100, 1000]) k = 10 print('</pre>
	<pre>print(x + z) print('Add a vector to each column') print(x + np.reshape(y, (2, 1))) Broadcasting multiply a matrix by a constant</pre>
	[[10 20 30] [40 50 60]] Add a vector to each row [[11 102 1003] [14 105 1006]] Add a vector to each column [[11 12 13] [104 105 106]]
In [9]:	<pre>(8) (a) import matplotlib.pyplot as plt m, c = 2, -4 N = 10</pre>
	<pre>x = np.linspace(0, N - 1, N).reshape(N, 1) sigma = 10 y = m*x + c + np.random.normal(0, sigma, (N, 1)) plt.plot(x, y) plt.show() X = np.append(np.ones((N, 1)), x, axis = 1) print(X)</pre>
	30 - 20 - 10 -
	$\begin{pmatrix} 0 \\ -10 \\ -20 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 4 \\ 6 \\ 8 \end{pmatrix}$
	[[1. 0.] [1. 1.] [1. 2.] [1. 3.] [1. 4.] [1. 5.] [1. 6.] [1. 7.]
In [10]:	[1. 8.] [1. 9.]] (8) (b) ans = np.linalg.inv(X.T @ X) @ X.T @ y
	print(ans) [[-12.26964242] [4.3520699]] (9) (a)
In [11]:	<pre>def sqrt_hyper_est(s): if s > 100: a = "(:e)".format(s) idx = a.index('+') n = int(float(a[idx + 1:])) if n % 2 == 0: a = float(a[:idx - 1]) else: n = n - 1 a = float(a[:idx - 1]) * 10 sqrtS = (((-190)/(a + 20)) + 10) * 10**(n//2) else: sqrtS = (((-190)/(s + 20)) + 10) * 10**(0) return sqrtS</pre> (9) (b)
In [12]:	<pre>def sqrt_new_rap(s): x = sqrt_hyper_est(s) tolerance = 1e-5 epsilon = 1e-14 maxIterations = 20 solutionFound = False for i in range(20): y = x**(2) - s yp = 2*x if abs(yp) < epsilon: break xx = x - y/yp if abs(xx - x) <= tolerance: solutionFound = True break x = xx if solutionFound == True: print('Square root of', s, 'is', xx) else: print('Not converging')</pre>
In [13]:	<pre>print('Square roots for a precision of 0.00001') sqrt_new_rap(64) sqrt_new_rap(75)</pre>
	sqrt_new_rap(100) sqrt_new_rap(1600) Square roots for a precision of 0.00001 Square root of 64 is 8.0000000000000094 Square root of 75 is 8.660254037844386
In [14]:	Square root of 100 is 10.0 Square root of 1600 is 40.0 (10) import cv2 as cv
	<pre>img = cv.imread(r'./Images/gal_gaussian.png') gBlur = cv.GaussianBlur(img, (5, 5), 0) cv.namedWindow('Image', cv.WINDOW_AUTOSIZE) cv.imshow('Image', img) cv.waitKey(5000) cv.imshow('Image', gBlur) cv.waitKey(5000) cv.destroyAllWindows()</pre>
In [15]:	<pre>img = cv.imread(r'./Images/gal_sandp.png') mBlur = cv.medianBlur(img, 5) cv.namedWindow('Image', cv.wINDOW_AUTOSIZE) cv.imshow('Image', img) cv.waitKey(5000) cv.imshow('Image', mBlur) cv.waitKey(5000) cv.waitKey(5000) cv.destroyAllWindows()</pre>
In [16]:	<pre>img = np.zeros((40, 60), dtype = np.uint8) img[0:21, 30:61] = 125 cv.namedWindow('Image', cv.WINDOW_AUTOSIZE) cv.imshow('Image', img) cv.waitKey(5000) cv.destroyAllWindows()</pre>
	<pre>fig, ax = plt.subplots() ax.imshow(img, cmap = 'gray', vmin = 0, vmax = 255) plt.show()</pre>
	5 - 10 - 15 - 15 - 15 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17
	25 - 30 - 35 - 40 10 20 30 40 50
In [17]:	<pre>img = np.zeros((40, 60, 3), dtype = np.uint8) img = cv.cvtColor(img, cv.COLOR_BGR2RGB) img[20:41,0:31] = (132, 24, 218) cv.namedWindow('Image', cv.WINDOW_AUTOSIZE) cv.imshow('Image', img) cv.waitKey(5000) cv.destroyAllWindows() img[20:41,0:31] = (218, 24, 132) fig, ax = plt.subplots() ax.imshow(img, cmap = 'brg')</pre>
	plt.show() 0 -
	25 - 30 - 35 - 35 - 30 - 30 - 30 - 30 - 3
In [18]:	<pre>img = cv.imread(r'./Images/tom_dark.jpg') cv.namedWindow('Image', cv.WINDOW_AUTOSIZE) cv.imshow('Image', img) cv.waitKey(5000) hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) for x in range(0, len(hsv)): for y in range(0, len(hsv[0])): hsv[x, y][2] += 120 img = cv.cvtColor(hsv, cv.COLOR_HSV2BGR) cv.imshow('Image', img)</pre>
	<pre>cv.waitKey(5000) cv.destroyAllWindows()</pre>