Estimation Theory Presentation

Recapitulation

Problem Formulation

Algorithms

Propositions

 d_2 Revisited

Filtering Alphas

BIC-based Source

Coloured Noise

Conclusions

Enumeration for a Large Number of Sources Based on a Two-Step Difference Operation of Linear Shrinkage Coefficients

Bijo John Sai Shashank GP Aditya Khandavally Haricharan B EE20B021 EE20B040 EE20B062 EP21B015

Jan-May '25

Problem Formulation

Estimation Theory Presentation

Recapitulation

Problem Formulation

Algorithms

Propositions

d₂ Revisited

Filtering Alphas

BIC-based Source Enumeratio

Coloured Noise • *m* - # of Receiver Antennas, *n* - # of Samples

- ullet Signals from d sources. $\mathbf{s}_t \sim \mathcal{CN}(0, \Sigma_s) \in \mathbb{C}^d$
- Matrix of Steering vectors $\mathbf{A} \in \mathbb{C}^{m \times d}$
- Observed Signal: $\mathbf{x}_t = \mathbf{A}\mathbf{s}_t + \mathbf{w}_t \in \mathbb{C}^m$, $\mathbf{w}_t \sim \mathcal{CN}(0, \sigma_w^2 I_m)$
- $m \to \infty$, $n \to \infty$, $c = \frac{m}{n}$ is constant.

Problem Statement

Given the signals \mathbf{x}_t for n time instants, can we determine the number of sources d?

Figure: Schematic Diagram

Linear Shrinkage-based methods

Estimation Theory Presentation

Recapitulation

Problem Formulation

Algorithms

Propositions

 \hat{d}_2 Revisited

Filtering Alphas

BIC-based Source Enumeration

Coloured Voise

Conclusions

• Solve the optimization problem for *k* presumed number of sources:

$$\begin{split} \min_{\boldsymbol{\alpha}^{(k)}} \quad & g(\boldsymbol{\alpha}^{(k)}) = \mathbb{E}\left[\left\|\mathbf{R}^{(k)} - \boldsymbol{\Sigma}_{\mathcal{N}}^{(k)}\right\|_F^2\right] \\ \text{subject to} \quad & \mathbf{R}^{(k)} = \boldsymbol{\alpha}^{(k)} \mu_k \mathbf{I}_{m-k} + \left(1 - \boldsymbol{\alpha}^{(k)}\right) \mathbf{S}_{\mathcal{N}}^{(k)} \end{split}$$

$$\mathbf{\Sigma}_{\mathcal{N}}^{(k)} = \operatorname{diag}(\lambda_{k+1}, \dots, \lambda_m)$$
 and $\mathbf{S}_{\mathcal{N}}^{(k)} = \operatorname{diag}(I_{k+1}, \dots, I_m)$ $\hat{\alpha}^{(k)} \in [0, 1]$ are the linear shrinkage coefficients $\mu_k = \operatorname{tr}(\mathbf{\Sigma}_{\mathcal{N}}^{(k)})/(m-k)$ is the regularization term

- Let $\gamma_k = \frac{\frac{1}{m-k}\sum_{i=k+1}^m I_i^2}{\left(\frac{1}{m-k}\sum_{i=k+1}^m I_i\right)^2}$ and $\bar{m} = \min(m, n)$
- Solution is: [Chen et al.]

$$\hat{\alpha}^{(k)} = \min\left(\frac{\gamma_k + (m-k)}{(n+1)(\gamma_k - 1)}, 1\right)$$

Structure of $\hat{\alpha}^{(k)}$

Estimation Theory Presentation

Recapitulatio

Problem Formulation

do Revisite

Filtering

BIC-based

Source Enumeration

Coloured

Recap: Algorithms

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

∂₂ Revisite

Filtering Alphas

BIC-based Source Enumeration

Coloured Noise Conclusions

Algorithm	Key Principle	Limitations
SCD_{heur}	Largest indexed $\hat{lpha}^{(k)}$ below the	Proposition 1: Ineffective
	threshold.	when $c ightarrow 1$ or $c \geq 1$ and for
		large d.
First-Step	Maximum difference in LS coef-	Effective only in high SNR. Re-
	ficients	quires $m, m - k \to \infty$.
	$\hat{d}_1 = 1 + \operatorname*{argmax}_{k=1,,\min(n,m)} \hat{\Delta}^{(k)}$	
Second-Step	Modified difference with previous	Requires proper <i>i</i> selection.
	differences	
	$\hat{d}_2 = 1 + \operatorname{argmax} \dot{\Delta}^{(k)} \equiv \hat{\Delta}^{(k)} + \tau \bar{\Delta}_g^k$	
	$k=i,,\bar{d}$	

$$\hat{\Delta}^{(k)} \equiv \hat{\alpha}^{(k)} - \hat{\alpha}^{(k-1)}, \; \hat{\Delta}^{v}_{g} = \max\left(0, \hat{\Delta}^{(v)}\right), \; \bar{\Delta}^{k}_{g} = \frac{\sum_{v=0}^{k-1}\hat{\Delta}^{v}_{g}}{k}, \; \bar{d} \geq d-1.$$

Propositions Schematic

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

do Revisited

Filtering

Source Enumeration

Coloured Noise

Figure: Schematic of the Propositions for (a) High SNR = 30dB (b) Low SNR = 0dB

Propositions

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

d₂ Revisite

Filtering Alphas

Source Enumeratio

Noise

- The variation of $\alpha^{(k)}$ with respect to k also relies on c, provided that $k \in [d, \bar{m}-1]$, and SCD_{heur} is effective only if $\forall k, \gamma_k$ is less than a threshold function g_c . When $c \to 1$ or $c \ge 1$, this condition might be violated, potentially leading to failed estimation.
- The difference between noise LS coefficients $\hat{\alpha}^{(k)}$ and $\hat{\alpha}^{(k+1)} \to 0$ for k > d-1 provided that $m, n, m-k \to \infty$.
- There is a clear gap between $\hat{\alpha}^{(d-1)}$ and $\hat{\alpha}^{(d)}$ for relatively high SNR (β) cases, provided that $m, n, m-d \to \infty$ and $m/n = c \in (0, \infty)$.
- For low SNRs, the clear gap between $\hat{\alpha}^{(d-1)}$ and $\hat{\alpha}^{(d)}$ does not exist. However, for relatively low or medium SNRs where $\rho_d \beta m < \mathcal{O}(m-d)$ but $\sqrt{\sum_{j=i}^d \rho_j^2} \beta m > \mathcal{O}(m-d)$, i < d, there must be a gap between $\hat{\alpha}^{(i)}$ and $\hat{\alpha}^{(d)}$.

Note:
$$I_i = \sigma_w^2 \rho_i \beta m$$

Recap: Results

Estimation Theory Presentation

Recapitulatio

Algorithms

Propositions

a₂ Revisite

Filtering

BIC-based Source

Coloured

Directions from Mid-Review

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

d₂ Revisited

Filtering Alphas

BIC-based Source Enumeration

Coloured Noise

onclusions

- Understanding the significance of Proposition 4
- Understanding the intuition behind the second-step estimate
- Determining how to choose *i*, which is critical in the second-step estimate
- Applying the estimator for coloured noise
- Attempt using this method in DoA estimation

Our mails to the author regarding the selection principle for i did not elicit a response.

Second-Step difference

Significance of Proposition 4

Estimation Theory Presentation

Recapitulatio
Problem Formulati
Algorithms
Propositions

 \hat{d}_2 Revisited

Filtering Alphas

BIC-based Source Enumeratio

Colour Noise

Conclusions

Proposition 4

For sufficiently low SNRs, the clear gap between $\hat{\alpha}^{(d-1)}$ and $\hat{\alpha}^{(d)}$ (mentioned in Proposition 3) does not exist. However, for relatively low or medium SNRs where $\rho_d \beta m < \mathcal{O}(m-d)$ but $\sqrt{\sum_{v=i}^d \rho_v^2} \beta m \geq \mathcal{O}(m-d)$, i < d, there must exist a gap between $\hat{\alpha}^{(i)}$ and $\hat{\alpha}^{(d)}$.

• **Essential claim:** There is some i < d such that the difference between $\hat{\alpha}^{(i)}$ and $\hat{\alpha}^{(d)}$ is significant.

$$\hat{\alpha}^{(d)} - \hat{\alpha}^{(i)} = \hat{\Delta}^{(d-1)} + \hat{\Delta}^{(d-2)} + \dots + \hat{\Delta}^{(i)}$$

- Proposition 4 implies that at least one of the $\hat{\Delta}^{(k)}$ terms is significant.
- Second-Step difference tries to make $\hat{\Delta}^{(d-1)}$ the largest term.

Second-Step difference: Why it works

Estimation Theory Presentation

Problem Formulat
Algorithms
Propositions

 \hat{d}_2 Revisited

Filtering Alphas

BIC-based Source Enumeration

Noise

Conclusions

We will demonstrate why the second-step difference works in the following slides.

- Step 1: $\dot{\Delta}^{(d-1)} > \dot{\Delta}^{(k)} \ \forall \ k \in [i,d-1]$
- Step 2: $\dot{\Delta}^{(d)} > \dot{\Delta}^{(k)} \ \forall \ k > d$
- Step 3: $\dot{\Delta}^{(d-1)} > \dot{\Delta}^{(d)}$

Second-Step difference: When k < d

Estimation Theory Presentation

Recapitulation
Problem Formulat
Algorithms
Propositions

Filtering Alphas

Source Enumeration

Coloured Noise

Conclusions

- ullet The parameter i is chosen such that $\hat{\Delta}^{(k)} > ar{\Delta}_{\mathsf{g}}^k$ holds $orall k \in [i,d-1]$
- Since $\hat{\alpha}^{(k)} \to 0$ for small k, it can be seen that such an interval must exist in most cases.
- This has also been verified through a large number of simulations.
- For $k \in [i, d-1]$,

$$\bar{\Delta}_{g}^{k} = \frac{\hat{\Delta}_{g}^{k-1} + \sum_{v=0}^{k-2} \hat{\Delta}_{g}^{v}}{k} > \frac{\left(\frac{1}{k-1} + 1\right) \sum_{v=0}^{k-2} \hat{\Delta}_{g}^{v}}{k} = \bar{\Delta}_{g}^{k-1}$$

ullet Defining $ilde{\Delta}^k = ar{\Delta}_{arphi}^k - ar{\Delta}_{arphi}^{k-1} > 0$, we have

$$\dot{\Delta}^{(i)} < \dot{\Delta}^{(i+1)} < \dots < \dot{\Delta}^{(d-1)}$$

as long as $\hat{\Delta}^{(k-1)} < \hat{\Delta}^{(k)} + \tau \tilde{\Delta}^k$ holds for $k \in [i, d-1]$

Second-Step difference: When $k \ge d$

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

$$\hat{d}_2$$
 Revisited

Filtering Alphas

BIC-based Source Enumeration

Coloured Noise

Conclusions

For $k \geq d$:

- By Proposition 2, $\hat{\Delta}^{(k)} \rightarrow 0$.
- The definition of $\bar{\Delta}_g^{(k)}$ gives:

$$\bar{\Delta}_{g}^{(k)} = \frac{\sum_{v=0}^{k-1} \hat{\Delta}_{g}^{(v)}}{k} = \frac{\sum_{v=0}^{d-1} \hat{\Delta}_{g}^{(v)} + \sum_{v=d}^{k-1} \hat{\Delta}_{g}^{(v)}}{k} \approx \frac{\sum_{v=0}^{d-1} \hat{\Delta}_{g}^{(v)}}{k}$$

• Substituting in the expression for $\dot{\Delta}^{(k)}$:

$$\dot{\Delta}^{(k)} = \hat{\Delta}^{(k)} + \tau \bar{\Delta}_{\mathcal{g}}^{(k)} pprox \frac{\tau}{k} \sum_{v=0}^{d-1} \hat{\Delta}_{\mathcal{g}}^{(v)}$$

• Since $k \ge d$, we can bound this by:

$$\dot{\Delta}^{(k)} \leq \frac{\tau}{d} \sum_{i=0}^{d-1} \hat{\Delta}_{g}^{(v)} \leq \dot{\Delta}^{(d)}$$

Second-Step difference: Comparison between d-1 and d

Estimation Theory Presentation

Recapitulation
Problem Formulatio
Algorithms
Propositions

 \hat{d}_2 Revisited

Filtering Alphas

Source Enumeration

Loloured Noise

Conclusions

$$ullet$$
 Now, we compare between $\dot{\Delta}^{(d-1)}$ and $\dot{\Delta}^{(d)}$

- By Proposition 2, $\hat{\Delta}^{(d)} \rightarrow 0$
- Hence, we have

$$\dot{\Delta}^{(d)} \approx \frac{\tau}{d} \left(\sum_{v=0}^{d-1} \hat{\Delta}_g^v \right)$$

$$= \frac{\tau}{d} \Delta_g^{d-1} + \frac{\tau(d-1)}{d} \frac{\sum_{v=0}^{d-2} \hat{\Delta}_g^v}{d-1}$$

$$< \Delta_g^{d-1} + \tau \bar{\Delta}_g^k$$

$$= \dot{\Delta}^{(d-1)}$$

• Thus, the second-step difference method correctly chooses $\hat{d}_2 = 1 + (d-1) = d$, provided the assumptions hold.

Second-Step difference: Choice of i

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

$$\hat{d}_2$$
 Revisited

Filtering Alphas

Source Enumeration

Colour Noise

Conclusions

• $\forall i \leq k < d$, it must hold that $\hat{\Delta}^{(k-1)} < \hat{\Delta}^{(k)} + \tau(\bar{\Delta}_g^k - \bar{\Delta}_g^{k-1})$

ullet We choose i as the first index k such that $\hat{\Delta}^{(k-1)} < \hat{\Delta}^{(k)} + au(ar{\Delta}_{g}^{k} - ar{\Delta}_{g}^{k-1})$

Our attempts: Imagining the Problem as Change Detection

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

 d_2 Revisited

Filtering Alphas

Source Enumeration

C----

- We have a series of $\hat{\alpha}^{(k)}$ values such that there is a significant difference between $\hat{\alpha}^{(d)}$ and $\hat{\alpha}^{(i)}$ for some i
- This is a change detection problem, and there exist classical techniques to achieve this.
- We tried out two change detection methods: Inflection-point based filter and Running average filter.

Applying Filters over $\hat{\alpha}^{k}$

Running average filter

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

 \hat{d}_2 Revisite

Filtering Alphas

BIC-based Source

Coloured

Explanation of Running Average Filter

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

 \hat{d}_2 Revisited

Filtering Alphas

BIC-based Source Enumeration

Colour Noise

Conclusions

We consider the following cases:

- Step 1: $\rho^{(k)} \approx 0$ for k < i
- Step 2: $\rho^{(k+1)} > \rho^{(k)}$ for $k \in [i, d-1]$
- Step 3: $\rho^{(k+1)} < \rho^{(k)}$ for $k \ge d$

Running Average Filter: Step 1

Estimation Theory Presentation

Problem Formulation
Algorithms
Propositions

d₂ Revisite

Filtering Alphas

BIC-based Source

Source Enumeration

Conclusions

• For k < i, $\rho^{(k)} \approx 0$ as $\hat{\alpha}^{(0)}, \dots, \hat{\alpha}^{(i)} \to 0$.

Running Average Filter: Step 2

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

 \hat{d}_2 Revisited

Filtering Alphas

BIC-based Source Enumeration

Coloure Noise

Conclusions

• For $k \in [i, d-1]$:

It can be deduced that $\hat{\Delta}^{(k)} \gg \bar{\Delta}_g^k$ for a very small range of $k \in [i, d-1]$, which has also been verified via a large number of simulations. Thus,

$$\hat{\Delta}^{k} > \frac{\hat{\alpha}^{(k)} - \hat{\alpha}^{(0)}}{k}$$

$$\implies \hat{\alpha}^{(k+1)} - \hat{\alpha}^{(k)} > \frac{\hat{\alpha}^{(k)}}{k} \text{ (Since } \hat{\alpha}^{(0)} \text{ is small)}$$

Some rearranging yields $\rho^{(k+1)} > \rho^{(k)} \ \forall \ k \in [i, d-1]$, where we use:

$$\rho^{(k)} = \left(\hat{\alpha}^{(k)} - \frac{\sum_{j=0}^{k-1} \hat{\alpha}^{(j)}}{k}\right) = \left(\frac{\sum_{j=0}^{k-1} (\hat{\alpha}^{(k)} - \hat{\alpha}^{(j)})}{k}\right)$$

Running Average Filter: Step 3

Presentation

Estimation

Theory

Filtering

Alphas

• For k > d: According to Proposition 2, we have $\hat{\Delta}^k \to 0$. This implies $\hat{\alpha}^{(k+1)} \approx \hat{\alpha}^{(k)}$.

$$\rho^{(k+1)} = \frac{\sum_{j=0}^{k} \hat{\alpha}^{k+1} - \hat{\alpha}^{j}}{k+1}$$

$$\approx \frac{\sum_{j=0}^{k-1} \hat{\alpha}^{k} - \hat{\alpha}^{j}}{k+1} \text{ (Since } \hat{\alpha}^{k+1} \approx \hat{\alpha}^{k}\text{)}$$

$$< \frac{\sum_{j=0}^{k-1} \hat{\alpha}^{k} - \hat{\alpha}^{j}}{k}$$

Therefore, $\rho^{(k+1)} < \rho^{(k)} \ \forall \ k > d$.

 $= \rho^{(k)}$

From this, we see that in the low-medium SNR when Prop. 4 holds, the method

can be proven to predict d with a high accuracy.

BIC-based Source Enumeration

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

 \hat{d}_2 Revisited

Filtering Alphas

BIC-based Source Enumeration

Coloure Noise

Conclusions

Another paper dealing with $m o \infty$

On Accurate Source Enumeration: A New Bayesian Information Criterion, by Xiaochuan Ke, Yuan Zhao, Lei Huang in 2021

• Assuming that each k (# of sources) are equally likely, we maximise likelihood function.

$$\hat{d} = \underset{k=1,\dots,\bar{m}}{\operatorname{argmax}} f(X|d=k)$$

• The likelihood function is approximated to second order around ML estimate of $\hat{\theta}_k$ (unknown parameter), gives

$$BIC = LLF + PPF + PF$$

BIC based Source Enumeration

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

d₂ Revisite

Filtering Alphas

BIC-based Source Enumeration

Coloured

Coloured Noise

First-step and second-step estimators in case of colored noise: A case of misspecified model.

Estimation Theory Presentation

 $\mathsf{Recapitulatio}$

Problem Formulation
Algorithms
Propositions

à- Pavioita

Filtering

BIC-based Source

Enumeration

Coloured Noise

Conclusions

Estimation Theory Presentation

Recapitulation
Problem Formulation
Algorithms
Propositions

d₂ Revisite

Filtering Alphas

BIC-based Source Enumeration

Coloured Noise

- In the low SNR regime, incorporating the running average of the first-step differences scales the first-step difference to maximize the d^{th} term (as shown in Propositions 2 and 4), leading to improved performance of \hat{d}_2 .
- We proposed an empirical method for selecting the index i in \hat{d}_2 calculation, based on the correctness proof of \hat{d}_2 .
- We experimented with a running average filter on the sequence of shrinkage coefficients and proved correctness.
- We observe that in the coloured noise setting, the algorithms demonstrate good performance only in the high SNR regime.
- We also explored a source enumeration technique that leverages Bayesian information criterion (BIC) to improve PCD.