Total	l No. c	of Questions : 8] SEAT No. :
P36	602	[Total No. of Pages : 2
		T.E.(E&TC)
INFORMATION THEORY, CODING & COMMUNICATION NETWORK		
		(2015 Course) (Semester - II)
Time	: 21/2	Hours] [Max. Marks : 70
		is to the candidates:
	<i>1</i>)	All questions are compulsory.
	<i>2</i>)	Figures to the right indicate full marks.
		(C) (S)
Q1)	a)	A source emits 1000 symbols per second from a range of 5 symbols
		with probabilities $\left[\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}\right]$ find source entropy and information
		rate. [6]
	b)	For a systematic (7,4) LBC, the parity matrix is given by [110; 011;111;101]
	1	i) Construct Generator matrix
	V	ii) Find code vectors for messages 1100, 0011
		iii) If the received code vector is $R = 0111101$, find the corrected
		codeword.
	c)	Construct $GF(2^3)$ finite field for a primitive polynomial $x^3 + x + 1$. Find
	,	minimal polynomials for all elements. [7]
		OR
<i>Q</i> 2)	a)	Apply Huffman coding for the symbols [A E H N G S] generated by a
~		DMS with probabilities [0.19 0.15 0.2 0.16 0.4 0.08]. Also calculate
		coding efficiency. (7)
	b)	State information capacity theorem. A channel has B.W. of 5kHz and
	- /	signal to Noise power ratio of 63. Determine the BW needed if SNR is
		reduced to 31. [7]
	c)	Obtain Generator & Parity check matrix for $(7,4)$ systematic cyclic code, using Generator polynomial $G(x) = x^3 + x + 1$. [6]
		[0]

Define following terms related to convolutional code

i) Constraint length

ii) Code rate

iii) Free length

iv) Path metric **Q3**) a) [8]

P.T.O.

b) For (15,7) double error correcting BCH code with primitive poly $p(x) = x^4 + x + 1$, the received codeword polynomial is $r(x) = x^9 + x^6 + x^5 + x^4 + x + 1$ Find the corrected codeword. [10] OR

For the convolutional encoder shown in fig, show state table, state diagram *04*) a) and code tree. Find the codeword sequence for input message sequence 1011 [8]

For (15,11) RS code, find generator polynomial find code for the message b) polynomial (x + 1). [10]

Explain classes of transmission media & give example of each. [8] **Q5**) a)

What is Network? Compare OSI & TCP/IP models. [8]

OR

- Explain types of addresses in TCP-IP. **Q6**) a) [8]
 - Explain design issues for Network layers. b) [8]
- What is ARQ? Explain three types of ARQ. **Q7**) a)
 - Explain different data transfer modes of HDLC. b)

OR

- **Q8**) a) Give functions/services of DLL. Compare Data Link Layer with physical layer. [8]
 - ain the Draw & explain HDLC frame format. Explain the control field used in b) HDLC for different frames types. [8]

