Tutamen: A Next-Generation Secret-Storage System

Andy Sayler, Taylor Andrews, Matt Monaco, and Dirk Grunwald

Presented by Andy Sayler

SoCC 2016 10/06/16

Please Login	
Use your CS Moodle (i.e. IdentiKey) C	redentials
DTrump	9+
GreatPassword	9+
Login	

Secrets

SFg5asknmc6e

DTrump GreatPassword

Modern Use Cases

Multi-Device Access

Multi-User Sharing

Cloud Infrastructure

Secret-Storage Problem

Secret-Storage Problem

How do we store and protect secrets while also supporting a range of modern use cases?

Secret-Storage as a Service

Storage

Storage

Access Control

Storage

Access Control

Auditing

- Requires single (semi-)trusted third party
- Not designed for automated use cases

- Requires single (semi-)trusted third party
- Not designed for automated use cases

- Requires single (semi-)trusted third party
- Not designed for automated use cases

- Lacks support for out-of-band approval
- Designed for single administrative domain

Tutamen: Next-Gen Secret-Storage

Goals

Flexible Authentication

Plugins for Multi-factor, Out-of-Band, Etc Auth

Flexible Authentication

Plugins for Multi-factor, Out-of-Band, Etc Auth

Minimally Trusted Infrastructure

Sharding Across Multiple Servers

Flexible Authentication

Plugins for Multi-factor, Out-of-Band, Etc Auth

Minimally Trusted Infrastructure

Sharding Across Multiple Servers

Beyond a Single Administrative Domain

Distributed Federation Between Servers

Architecture

Access Control Server

Access Control Server

Application

Access Control Server

Storage Server

Access Control Server

Access Control Server Storage Server 7 Ken Posonse Ferch Secret : ISW TOKEN Client **Application**

Storage Server

Access Control Server

Why Place Trust In Single Servers?

Multi-Server Operation

AC Server A

AC Server B

Storage Server A

Storage Server B

Storage Server C

AC Server A

AC Server B

AC Server A

AC Server B

Application

Storage Server A

AC Server A

Storage Server B

AC Server B

Storage Server C

Secret

Application

Secret Retrieval

Secret Retrieval

w/ Out of Band Human-in-the-Loop

```
Permissions for Collection cf3529eb13be:
    { read: [ Verifier a74b2e2d493d ] }
```

```
Permissions for Collection cf3529eb13be:
    { read: [ Verifier a74b2e2d493d ] }

Verifier a74b2e2d493d
    { Accounts: [ Account cceb832edcdb ] }
    Authenticators: [ Authenticator 34e85e1bb264 ] }
```

```
Permissions for Collection cf3529eb13be:
    { read: [ Verifier a74b2e2d493d ] }

Verifier a74b2e2d493d
    { Accounts: [ Account cceb832edcdb ] }
        Authenticators: [ Authenticator 34e85e1bb264 ] }

Authenticator 34e85e1bb264
    { Plugin: SMS Challenge/Response }
```


Applications

Fusebox: Tutamen-backed Dropbox Client

Tutamen-backed dm-crypt/LUKS FDE

Evaluation

Useful Across a Range of Applications

Access Control Server - Get Token

Requests Per Second

Storage Server - Fetch Secret

Requests Per Second

Conclusion

Next-Generation Secret Storage as a Service

Next-Generation Secret Storage as a Service

Tutamen

Flexible Authentication

Plugins for Multi-factor, Out-of-Band, Etc Auth

Minimally Trusted Infrastructure

Sharding Across Multiple Servers

Beyond a Single Administrative Domain

Distributed Federation Between Servers

Thank You

Questions?

Extra Slides

How can we secure and control our data?

(even in the presence third parties)

(while also supporting modern use cases)

Client-Side Encryption?

Cryptography!

Tutamen Management Utility

Traditional Trust Model

Feature Provider

Traditional Trust Model

Feature Provider

Storage (S)
Access (R)
Manipulation (W)
Meta-Analysis (M)

Feature Provider

Storage (S)

Access (R)

Manipulation (W)

Meta-Analysis (M)

Storage (S) Access (R) Manipulation (W) Secret Storage Meta-Analysis (M) Provider Secrets **Minimal** Trust

SSaaS Security & Trust

Single SSP

Private Key

Client Application

Should we trust a single provider?

Maybe

Incentives aligned with upholding trust

Incentives aligned with upholding trust

Reputation at stake

Incentives aligned with upholding trust

Reputation at stake

Still a "minimally trusted" entity

Must we trust a single provider?

No

Multiple SSPs

Private Secret

Client Application

Storage Applications

Communication Applications

Personal Data Repository

Authentication Applications

Crypto Processing Applications

Management Server

SSH Server Key Management

EncFS: Custos-Backed Encrypted File System

Relative Performance

Requests Per Second

Relative Time

Tutamen Operation

Future Work

Auditing -> Automation

Auditing -> Automation

Performance

Auditing -> Automation

Performance

Additional Client Integrations