Solution: Page 5 in https://github.com/yidongzhou/STA-108B-SQ-2021/blob/main/STA108BDiscussion.pdf

 $\frac{\text{University of California, Davis}}{\substack{\text{Department of Statistics}}} \\ \frac{\text{Department of Statistics}}{\text{Midterm 1- Spring 2021}}$

Course Title: Applied Statistical Methods:

Regression Analysis

Date of Examination: 4/30/2021 Teacher's name: Jairo Fúquene-Patiño

Student's name: _

Course Code: STA 108

Sections: B01 and B02.

Time duration: 1 hour for Q.1. The deadline for Q.2 is 5/3/2021, 5:00 p.m.

Total marks: 100

Q.1) Using the following observations You can use the software R to compute ONLY the probabilities/quantiles for the specific problem. You need to show the steps to find the solutions.):

Observation	1	2	3	4	5	6
$\overline{X_i}$	43	39	41	86	72	76
Y_i	106	106	97	60	70	80

• Compute the estimates b_0 and b_1 for the parameters β_0 and β_1 in the simple linear regression model (20 points):

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i : is the value of the response variable in the i-th trial.
- $-\beta_0$ and β_1 are the parameters.
- -X is a known constant, namely, the value of the predictor variable in the i-th trial.
- $-\epsilon_i$ is a random error term with $E(\epsilon_i) = 0$ and $V(\epsilon_i) = \sigma^2$ and follows a normal distribution $N(\epsilon_i; 0, \sigma^2)$
- $-\epsilon_i$ and ϵ_j are uncorrelated so that their covariance is zero (i.e., $cov(\epsilon_i, \epsilon_j) = 0$ for all i, j; with $i \neq j$ and i = 1, ..., n
- Estimate a 90% confidence interval for the parameters β_0 and β_1 (20 points).
- Using $\alpha = 0.01$ compute the p-value for the two alternatives in formula

$$H_0: \beta_1 = 0$$

versus

$$H_a: \beta_1 \neq 0$$
,

state the decision rule and conclusion (20 points).

- Compute a 95% confidence interval for the mean response $E\{Y_h\}$ using $X_h=30$ (20 points).
- Test whether or not $\beta_1 = 0$ using an F test with $\alpha = 0.05$. State the alternatives, decision rule, and conclusion (20 points).

Two-Sided Test A cost analyst in the Toluca Company is interested in testing, using regression model (2.1), whether or not there is a linear association between work hours and lot size, i.e., whether or not $\beta_1 = 0$. The two alternatives then are:

$$H_0: \beta_1 = 0$$

 $H_a: \beta_1 \neq 0$ (2.16)

The analyst wishes to control the risk of a Type I error at $\alpha = .05$. The conclusion H_a could be reached at once by referring to the 95 percent confidence interval for β_1 constructed earlier, since this interval does not include 0.

An explicit test of the alternatives (2.16) is based on the test statistic:

$$t^* = \frac{b_1}{s\{b_1\}} \tag{2.17}$$

The decision rule with this test statistic for controlling the level of significance at α is:

If
$$|t^*| \le t(1 - \alpha/2; n - 2)$$
, conclude H_0
If $|t^*| > t(1 - \alpha/2; n - 2)$, conclude H_a (2.18)

For the Toluca Company example, where $\alpha = .05$, $b_1 = 3.5702$, and $s\{b_1\} = .3470$, we require t(.975; 23) = 2.069. Thus, the decision rule for testing alternatives (2.16) is:

If
$$|t^*| \le 2.069$$
, conclude H_0
If $|t^*| > 2.069$, conclude H_a

Since $|t^*| = |3.5702/.3470| = 10.29 > 2.069$, we conclude H_a , that $\beta_1 \neq 0$ or that there is a linear association between work hours and lot size. The value of the test statistic,

Construction of Decision Rule. Since the test is upper-tail and F^* is distributed as F(1, n-2) when H_0 holds, the decision rule is as follows when the risk of a Type I error is to be controlled at α :

If
$$F^* \le F(1-\alpha; 1, n-2)$$
, conclude H_0
If $F^* > F(1-\alpha; 1, n-2)$, conclude H_a (2.62)

where $F(1-\alpha; 1, n-2)$ is the $(1-\alpha)100$ percentile of the appropriate F distribution.

Here is \alpha, rather than \alpha/2

For the Toluca Company example, we shall repeat the earlier test on β_1 , this time using the F test. The alternative conclusions are:

$$H_0: \beta_1 = 0$$

$$H_a$$
: $\beta_1 \neq 0$

As before, let $\alpha = .05$. Since n = 25, we require F(.95; 1, 23) = 4.28. The decision rule is:

If
$$F^* \leq 4.28$$
, conclude H_0

If
$$F^* > 4.28$$
, conclude H_a

We have from earlier that MSR = 252,378 and MSE = 2,384. Hence, F^* is:

$$F^* = \frac{252,378}{2,384} = 105.9$$

Since $F^* = 105.9 > 4.28$, we conclude H_a , that $\beta_1 \neq 0$, or that there is a linear association between work hours and lot size. This is the same result as when the t test was employed, as it must be according to our discussion below.

- Q.2) Muscle mass. A person's muscle mass is expected to decrease with age. To explore this relationship in women, a nutritionist randomly selected 15 women from each 10-year age group, beginning with age 40 and ending with age 79. The results follow; X is age, and Y is a measure of muscle mass (20 points). Use the software R or R-Studio and the attached data set.
 - 1. Set up the ANOVA table.
 - 2. Test whether or not $\beta_1 = 0$ using an F test with $\alpha = 0.05$. State the alternatives, decision rule, and conclusion.
 - 3. Obtain R² and The sign of r depend on \beta_1
 - 4. Compute the diagnostic plots. State the conclusions.

20 marks

Student's name: End of exam