Inteligência Artificial

Aula 24- Aprendizagem de Máquina: Pré-processamento ¹

Sílvia M.W. Moraes

Faculdade de Informática - PUCRS

October 19, 2017

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, introduzimos em aprendizagem de máquina.
- Este material foi construído com base no material sobre Data Mining dos professores Rodrigos Barros, Duncan e Renata de Paris e também nos capítulos:
 - 1,2 e 3 Inteligência Artificial: Uma abordagem de Aprendizagem de Máquina: Facelli e outros.
 - 10 do livro Inteligência Artificial: Luger
 - 18 do livro Artificial Intelligence a Modern Approach: Russel & Norvig

Sumário

- 1 O que vimos ...
- 2 Descoberta de Conhecimento em Bases de Dados
- 3 Pré-processamento dos Dados

Aulas anteriores

- Agente Reativos e Cognitivos
- Solução de Problemas: Algoritmos de busca
- Planejamento Clássico
- Introdução à Raciocínio Probabilistico
- Introdução a Aprendizagem de Máquina

Processo de Descoberta de Conhecimento

 Knowledge Discovery in Databases (KDD): consiste em uma série de passos bem definida cuja meta é transformar dados em conhecimento.

Processo de Descoberta de Conhecimento

- Knowledge Discovery in Databases (KDD):
 - (d) Pré-processamento :
 - Etapa de ajuste fino dos dados para atender ao objetivo da aprendizagem de máquina
 - ~85% de todo o processo (trabalhosa, mas valiosa)

Pré-processamento dos Dados

- É fundamental para a qualidade dos resultados
- Inclui usualmente:
 - Limpeza de dados
 - Transformação dos dados
 - Redução de dimensionalidade

Limpeza dos Dados

- Muitos dados do mundo real são potencialmente incorretos (falha no instrumento de leitura, erro humano ou de máquina, erro de transmissão). Os dados podem ser:
 - **Incompletos**: falta de valores de atributos, falta de certos atributos de interesse ou contendo apenas dados agregados. Por exemplo, Ocupação = "" (dados em falta).
 - **Ruidosos**: contendo ruído, erros ou outliers. Por exemplo, Salário = "- 10" (um erro)
 - Inconsistentes: contendo discrepâncias em códigos ou nomes.
 Exemplos: Idade = "42" e Aniversário = "03/07/2010"; ora a é classificação "1, 2, 3" ora é "A, B, C"; "01 de janeiro" como o aniversário de todos? CEP de todos 90000-000?

Limpeza dos Dados: Dados Incompletos

- Como lidar com dados faltantes?
 - Ignorar a tupla: geralmente feito quando o rótulo da classe está faltando (ao fazer a classificação) ou o atributo é irrelevante
 - não é eficaz quando o % de valores em falta por atributo varia consideravelmente
 - Preencher manualmente: tedioso ? inviável?
 - Preencher automaticamente: (uso de alguma heurística é usual)
 - uma constante global: por exemplo, "desconhecido"
 - média: a média ou mediana do atributo para todas as amostras pertencentes à mesma classe ou moda, em caso de valor simbólico (uma boa opção)
 - valor mais provável: baseado em inferência (uso de uma fórmula bayesiana ou árvore de decisão)

Limpeza dos Dados: Dados Ruidosos

Como lidar com ruídos?

Encestamento

- Classificar os dados e organizá-los em cestas ou faixas (de frequência igual)
- Suavizar o ruído, substituindo os valores pela média ou mediana dos valores pertencentes à mesma faixa de valor.
- Agrupamento: detectar e remover outliers (atributos que não formarem grupos)
- Regressão: Ajustando os dados por meio de funções de regressão e por classificação, no caso de dados simbólicos.
- Distância: técnicas baseadas em distância verificam a que classe pertencem objetos mais próximos de cada objeto x. Se x for de outra classe, ele pode ser um ruído. Borderlines devem ser eliminados.

Limpeza dos Dados: Dados Inconsistentes

- Podem ser resultantes do processo de integração de bases.
 - escalas diferentes para uma mesma medida (m, cm)
 - codificação diferente para representar um atributo relacionado a tamanho (pequeno e grande; médio e enorme).

Limpeza dos Dados: Dados Inconsistentes

- Como lidar com inconsistências?
 - Podem ser identificados pelo cálculo de correlação (mede o quanto duas variáveis tendem a mudar juntas) e análise de covariância (mede a relação linear entre duas variáveis).
 - coeficiente de correlação amostral= $\frac{\sum\limits_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_{i}-\bar{x})^{2}\sum\limits_{i=1}^{n}(y_{i}-\bar{y})^{2}}}$ entre os atributos x e y (\bar{x} e \bar{y} são médias)
 - covariância $\sigma = \frac{\sum\limits_{i=1}^{n}(x_i \bar{x})(y_i \bar{y})}{n-1}$

Limpeza dos Dados: Dados Inconsistentes

- O que fazer com dados inconsistentes ?
 - Eliminar dados redundantes: tuplas cujos atributos possuem os mesmos valores (ou muito próximos).
 - Eliminar atributos redundantes (atributos que podem ser deduzidos a partir de outros). Ex: idade e data de nascimento; quantidade de vendas, valor por venda e venda total.

Transformação de Dados

- Algumas técnicas em aprendizagem de máquina só trabalham com um tipo de dado: apenas númerico ou apenas simbólico.
- As transformações pode ser:
 - Conversão Simbólico-Numérico
 - Conversão Numérico-Simbólico
 - Normalização
 - Simplificação

Transformação de Dados: Simbólico-Numérico

Conversão Simbólico-Numérico

- Necessário para redes neurais, SVM e alguns algoritmos de agrupamento.
- Atributo nominal
 - de 2 valores: um dígito binário é suficiente.
 - de mais de 2 valores:
 - se houver relação de ordem (ordinal), deve ser preservada;
 - o mesmo vale para a ausência de ordem(nominal).
 - uso de sequência binárias de comprimento c , onde c corresponde à quantidade de valores.

Transformação de Dados: Simbólico-Numérico

Conversão Simbólico-Numérico

- Exemplo nominal: 100(Azul),010(Verde), 001(vermelho).
- Exemplo ordinal: 00 (primeiro), 01(segundo), 10 (terceiro) e 11 (quarto).

No caso de cadeias binárias muito longas, uma alternativa é a representação de pseudos-atributos (binários, inteiros ou reais). Ex: pais representados por continente, pib, população e área.

Transformação de Dados: Numérico-Simbólico

Conversão Numérico-Simbólico

- Técnicas que trabalham com dados qualitativos: algoritmos de classificação e associação.
- Algumas estratégias:
 - Larguras iguais: divide o intervalo original de valores em subintervalos com mesma largura. (outliers podem prejudicar essa estratégia)
 - Frequências iguais: divide o intervalo original por frequência (pode gerar subintervalos de tamanhos bem diferentes).
 - Uso de algum algoritmo de agrupamento
 - Inspeção Visual

Transformação de Dados: Normalização

Normalização

- Recomendada quando os limites de valores de atributos distintos são muito diferentes;
- Evita que um atributo predomine sobre outro;
- A normalização pode ser por amplitude ou distribuição:
 - Distribuição: muda a escala de valores de um atributo. Ex: ordena os valores e substitui seus valores pela sua posição no ranking. (Valores: 9,8,7,2,7; substitui por 4,3,2,1,2)
 Se todos os valores forem distintos, a distribuição é uniforme.

Transformação de Dados: Normalização

Normalização

- Amplitude: pode ser por reescala ou padronização. (padronização lida melhor com outliers)
 - Reescala: define uma nova escala, com limites mínimo (min)
 e máximo(max) novos para todos os atributos
 valor_{novo} = min + valor_{atual} menor (max min), onde menor é o
 menor valor na escala atual; idem para maior.
 - Padronização: define um valor central e um valor de espalhamento comuns a todos os atributos. $valor_{novo} = \frac{valor_{atual} \mu}{\sigma}$, onde μ é a média e σ é a covariância.

Transformação de Dados: Simplificação

• **Simplificação**: transformação para um valor mais facilmente manipulável. Ex: idade ao invés de data de nascimento.

Redução de Dimensionalidade

- Muitos problemas possuem um número elevado de atributos (ex: textos e imagens)
- As técnicas com esse fim seguem as abordagens:
 - agregação
 - seleção de atributos

Redução de Dimensionalidade: Agregação

- Agregação: combina os atributos originais por meio de funções lineares ou não lineares.
 - Análise de Componentes Principais (Principal Component Analysis): técnica bem conhecida que correlaciona estatisticamente os exemplos, reduzindo a dimensionalidade do conjunto de dados original pela eliminação de redundâncias.
 - Obs: Essa técnica leva a perda dos valores originais. Em várias aplicações (áreas de biologia, finanças, medicina, etc), os valores originais são importantes para a interpretação dos resultados. Por isso, técnicas de seleção de atributos são mais usadas.

Redução de Dimensionalidade: Seleção de Atributos

- A seleção de atributos busca um subconjunto ótimo de atributos para o problema.
- Ela permite:
 - identificar atributos importantes;
 - melhorar o desempenho dos algoritmos de aprendizagem;
 - reduzir exigência de memória e processamento;
 - eliminar atributos irrelevantes e ruídos;
 - simplificar o modelo gerado e, consequentemente, sua compreensão;
 - facilita a visualização dos dados;

Redução de Dimensionalidade: Seleção de Atributos

- A seleção de atributos não é uma tarefa trivial, pois pode existir:
 - número muito grande de exemplos;
 - número muito grande de atributos;
 - relações complexas entre atributos, que dificultam a descoberta de relações entre eles.

Redução de Dimensionalidade: Seleção de Atributos

- Existem várias técnicas que visam selecionar atributos, as mais simples são baseadas em ordenação
 - Ordena de acordo com algum critério (exemplo frequência)
 - Seleciona
 - por Ranking: escolhe os *n* primeiros melhor classificados.
 - por Relevância: escolhe todos os atributos cujo valor está acima de um limiar n.