Kontextfreie Sprache

Gegeben ist die Grammatik $G = (\{a, b\}, \{S, A, B\}, S, P)$ und den Produktionen

 $P = \{$

$$S \rightarrow SAB \mid \epsilon$$

 $BA \rightarrow AB$
 $AA \rightarrow aa$
 $BB \rightarrow bb$

}

(a) Geben Sie einen Ausdruck an, der die Wörter der Sprache beschreibt.

Einige Testableitungen um die Grammatik in Erfahrung zu bringen: "." nur als optische Stütze nach 4 Zeichen eingefügt.

Mit 4 Buchstaben

 $S \rightarrow SAB \rightarrow SABAB \rightarrow ABAB \rightarrow AABB \rightarrow aabb$

Mit 6 Buchstaben

 $S \rightarrow ... \rightarrow ABAB.AB \rightarrow AABB.AB \rightarrow AABA.BB \rightarrow AAAB.BB \rightarrow \varnothing$

Mit 8 Buchstaben

 $S \rightarrow ... \rightarrow ABAB.ABAB \rightarrow ... \rightarrow aabb.aabb$

 $S \to ... \to ABAB.ABAB \to ... \to AABB.AABB \to AABA.BABB \to AABA.BABB \to AAAB.ABBB \to AAAA.BBBB \to aaaa.bbbb$

Mit 12 Buchstaben

 $S \rightarrow ... \rightarrow ABAB.ABAB.ABAB \rightarrow ... \rightarrow aabb.aabb.aabb$

 $S \rightarrow ... \rightarrow ABAB.ABAB.ABAB \rightarrow AAAA.BBBB.AABB \rightarrow aaaa.bbbb.aabb$

 $AB \rightarrow AAAB.BBAB.ABAB ... \rightarrow aaaa.aabb.bbbb$

(b) Geben Sie eine kontextfreie Grammatik G' an, für die gilt: L(G') = L(G)

$$P = \{$$
 $S
ightarrow aaSbb \, | \, SS \, | \, \epsilon$ $\}$

(c) Geben Sie einen Kellerautomaten an, der die Sprache akzeptiert.

