

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Segundo Examen Parcial								
Lic. en Ciencias de la Computación – Ing. en Computación – Ing. en Sistemas de Información								
Apellido y Nombre:	LU:	Hojas entregadas:						
(en ese orden)		(sin enunciado)						
Profesor:								
NOTA: Resolver los ejercicios en hojas separadas. Poner n	nombre. LU u núm	ero en cada hoja						

Apague cualquier dispositivo electrónico en su poder y manténgalo guardado. No puede utilizar auriculares. Lea todo el ejercicio antes de comenzar a desarrollarlo.

Ejercicio 1. Considerando una representación en punto flotante donde la mantisa está codificada con 12 bits en signo magnitud, el exponente con 4 bits en exceso, y la base utilizada es 2, realizar las siguientes operaciones aritméticas, normalizando el resultado obtenido e indicando claramente qué hace en cada paso y la existencia o no de *underflow* y/o *overflow*:

a)
$$(-28,50) + 57,17$$

b)
$$12,62 \times 7,5$$

Ejercicio 2. En el marco de la norma IEEE 754, considerando la representación en punto flotante de media precisión: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Dados los números $X=(1\ 10110\ 0011111001)$ e $Y=(0\ 00111\ 1000111100)$, realizar el producto $X\times Y$ aplicando redondeo por proximidad hacia los pares y hacia $+\infty$, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits G, R y S del resultado y con R y S al redondear. El resultado debe ser expresando según la representación enunciada.

Ejercicio 3.

Ejercicio 4. Determinar cuál es el contenido final de cada uno de los registros y posiciones de memoria involucrados en la siguiente secuencia de instrucciones. Indicar en cada caso, el número de instrucción que origina cada cambio. Asumir que el primer operando es el destino y el segundo la fuente de información para la operación.

(1) mov $R1, \#0200$	Interpretació	ón
(2) mov (R1), #0100	#xxxx	Inmediato
(3) mov 0100(R1), R1	R	Registro
(4) mov R2, #0500	(R)	Registro indirecto
(5) mov @0100(R1), #0500	XXXX	Absoluto
(6) mov (0200), 0300	xxxx(R)	Indexado
(7) mov R3, 0200	(xxxx)	Memoria indirecto
(8) mov R3. @0100(R3)	@xxxx(R)	Pre-indexado indirecto

Ejercicio 5. Considerando el siguiente programa para la arquitectura OCUNS, en la que toda lectura/escritura sobre la dirección FF es redireccionada a la E/S estándar:

ΙD	A RO, FFh											
	-					P.	Descr.	Fo	RM.	Pseudocód:	IGO	
	AD R1, O(R0)					0	add		I	$R[d] \leftarrow R[s]$	s] + R[t]
	AD R2, O(R0)					1	sub		Ι	$R[d] \leftarrow R[s]$	s] - R[t]
	R R3, R3, R3					2	and		Ι	$R[d] \leftarrow R[s]$	s] & R[t]
	A R4, 1b13					3	xor		Ι	$R[d] \leftarrow R[s]$	s] ^ R[t]
	R1, 1b13					4	lsh		I	$R[d] \leftarrow R[s]$	s] << R[t]
	R2, 1b13					5	rsh		I	$R[d] \leftarrow R[s]$	s] >> R[t]
	B R5, R1, R2					6	load		I	$R[d] \leftarrow mem$	[offset	+ R[s]]
	R5, 1b12					7	store		I	mem[offset	+ R[d]]	\leftarrow R[s]
	D R3, R3, R2					8	lda]	ΙI	$R[d] \leftarrow add$	lr	
	C R1					9	jz]	ΙΙ	if (R[d] ==	= 0) PC	← PC + addr
	R1, 1b13				1	A	jg]	ΙI	if (R[d] >	0) PC +	- PC + addr
	PR4					В	call]	ΙΙ	$R[d] \leftarrow PC;$	$\mathtt{PC} \; \leftarrow \;$	addr
	D R3, R3, R1					C	jmp	Ι	II	$PC \leftarrow R[d]$		
	C R2]	D	inc	Ι	II	$R[d] \leftarrow R[d]$	l] + 1	
	R2, 1b12					E	dec	Ι	II	$R[d] \leftarrow R[d]$	l] - 1	
	ORE R3, O(RO) -)				F	hlt	I	II	exit		
HL'	Γ							1				
	FORMATO	15	14	13	12	11	10 9	8	7 6	5 4 3 2	2 1 0	
	I	0	×	×	×		dest. d		S	c. s src.	t / off.	
	II	1	0	×	×		dest. d			address addi	r	

a) Ensamblar el programa a partir de la dirección 00h.

 $\Pi\Pi$

b) Si se reubicara el código máquina obtenido en el inciso (a) a partir de la dirección 20h, ¿qué referencias a memoria requieren ser ajustadas? Justificar adecuadamente.

dest. d

×

- c) Suponiendo que los valores ingresados por teclado son 1Ah y 04h, realice una traza mostrando la evolución del contenido de cada registro, para luego, describir el propósito del programa en su conjunto.
- d) ¿Qué sucede con el resultado retornado si los valores ingresados fueran 04h y 1Ah? ¿Cuál es la diferencia? ¿Existe alguna restricción para los datos de entrada en cuanto al correcto funcionamiento del programa?