УДК 681.3

П. Е. Булавский

МЕТОДИКА ОЦЕНКИ КАЧЕСТВА ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ НА УСТРОЙСТВА СЦБ

Приведены определения технического документа, отраслевого формата технической документации на устройства сигнализации, централизации и блокировки, элементов и атрибутов чертежа. Проведен анализ составляющих качества технических документов. Предложена методика количественной оценки качества технической документации.

технический документ, отраслевой формат, качество технической документации, оценка качества.

Введение

Процессы разработки, проектирования, строительства и эксплуатации систем автоматики и телемеханики, которые выполняются под управлением специализированных программных комплексов, должны находиться под жестким контролем для обеспечения высокого качества производства работ.

К особенностям систем автоматизации проектирования и ведения технической документации относится то, что основным результатом их работы являются технические документы, от качества которых непосредственно зависит эффективность строительства, производства пусконаладочных работ и безопасность эксплуатации систем автоматики и телемеханики.

В настоящее время практически во всех организациях обеспечивается контроль важнейших характеристик, связанных с производственными процессами. Однако при этом оценка качества технической документации количественными методами не производится. Отсутствие возможности количественной оценки качества технической документации вызывает рост числа проектных и эксплуатационных ошибок, увеличивает финансовые и временные риски, связанные с проектированием, внедрением и эксплуатацией систем автоматики и телемеханики. Качество технических документов является одной из наиболее важных характеристик производственных процессов проектирования и ведения технической документации, однако для его контроля необходима разработка соответствующих методик.

1 Определение технического документа

Определение электронного технического документа дается в [1].

Электронный технический документ (ЭТД) — авторизованный набор данных в электронном виде, содержащий сведения технического характера, оформленный установленным порядком и имеющий в соответствии с действующим законодательством и иными нормативными документами правовое значение. Авторизация ЭТД представляется набором электронных подписей должностных лиц.

Такое определение не дает возможности оценки конкретных свойств технических документов, создаваемых в процессе проектирования систем, и их взаимосвязи. Сформулируем определение для технических документов, создаваемых при проектировании систем СЦБ.

Введем определение технического документа, отражающее особенности его внутренней структуры.

Технический документ (ТД) — это структурированный документ, имеющий логические связи с другими техническими документами, ограничения по построению в соответствии с нормативно-справочной информацией и описывающий техническую систему или ее часть.

Логические связи с другими техническими документами обусловливаются структурой и информационным наполнением документа, которые могут быть формализованы с помощью отраслевого формата технической документации на устройства СЦБ [2].

Введем определение отраслевого формата технической документации на устройства СЦБ.

Отраслевой формат технической документации на устройства СЦБ – это структурированный документ, в котором определены все возможные элементы технического документа; все типы связей между элементами и все атрибуты, отражающие все возможные свойства элементов и, следовательно, присваиваемые элементам чертежа по мере необходимости, связанный с базой данных элементов.

В базе данных элементов хранятся графические изображения элементов в соответствии с ГОСТ [3] и дополнительные данные, не используемые системами автоматизированного проектирования (например, данные о заводах, выпускающих рассматриваемый тип оборудования).

Элемент чертежа – это отображаемый на чертеже объект, имеющий атрибуты.

Атрибуты элементов — это свойства элементов, не всегда отображающиеся на чертеже и определяющие все отличительные особенности элемента.

Некоторые атрибуты, например сторонность стрелочного перевода, могут отображаться на чертеже с помощью условных обозначений.

Таким образом, общее количество атрибутов технического документа определяется как сумма атрибутов каждого элемента, представленного на чертеже,

$$N_{\text{атртд}} = \sum_{i=1}^{n} N_{\text{атр } i}.$$

В таблице 1 показаны элементы, графические изображения и атрибуты элементов схематического плана станции, путевое развитие которой включает 52 стрелки.

ТАБЛИЦА 1. Элементы схематического плана станции

Элемент	Количество на чертеже	Количество атрибутов	Графическое изображение	Всего атрибутов
1	2	3	4	5
Здание	1	3	·	3
Участок пути	80	13	<u>П</u>	1040
Стрелка	52	15	14	780
Стрелочный привод	52	8	•	416
Изолирующий стык	93	2	I	186
Тупик	5	4	12T	20
Светофоры: поездной	31	22	H2 ├─ ○● ○ ⊘	682
маневровый	30	19	M1 💽	570
повторительный	3	18	Нз—	54
Пешеходный пере- ход	1	3		3
Платформа	2	5	Платформа	10
Рельсовая цепь	53	11	I I	583
Релейный шкаф	7	3	РШ	21
Батарейный шкаф	4	3	<u>О</u> БШ	12
Коммутационные устройства	3	3	10 утс	9
Итого				4389
Количество атрибутов на каждую стрелку				85

2 Качество технической документации

Наиболее широко известным и используемым стандартом для организации процессов контроля качества является серия стандартов ISO 9000. Для процесса разработки программ используется стандарт ISO 9001 [4], предусматривающий проектирование в процессе производства. Специально для обеспечения процессов разработки программных систем организацией ISO разработано руководство ISO 9000-3 [5], которое формулирует требования модели качества ISO 9001 к организации процесса разработки программного обеспечения.

К особенностям систем автоматизации проектирования и ведения технической документации относится то, что основным результатом их работы являются технические документы, от качества которых непосредственно зависит эффективность строительства, производства пусконаладочных работ и безопасность эксплуатации систем автоматики и телемеханики.

Определение качества программной продукции дается в [6]. Под качеством технической документации будем понимать весь объем признаков и характеристик технических документов, который относится к их способности удовлетворять установленным или предполагаемым потребностям.

Рассмотрим качество технической документации как внешнее и внутреннее. Под внешним качеством технической документации для систем железнодорожной автоматики и телемеханики (СЖАТ) будем понимать способность СЖАТ удовлетворять потребностям:

- организации процесса перевозок;
- изготовления и строительства СЖАТ;
- проведения пусконаладочных работ;
- безопасности эксплуатации СЖАТ;
- технического обслуживания.

Под внутренним качеством технической документации будем понимать качество с точки зрения реализации технической системы управления СЖАТ, т. е. качество, определяющее эффективность и время проектирования, проверки и обработки технической документации, количество ошибок и время их устранения в технической системе.

Таким образом, внутреннее качество технической документации можно описать в терминах электронного документооборота.

На рисунке 1 показаны взаимосвязи основных видов технической документации в порядке формирования разделов проекта. Связанность технических документов представляет собой соответствие документов, разрабатываемых на ранних стадиях проектирования, более поздним и наоборот.

Рис. 1. Виды технических документов

На рисунке 2 показан пример формирования основных элементов схематического плана станции с соответствующими им атрибутами. Кроме этого, элементы схематического плана станции имеют связи между собой, описываемые в ОФ-ТД. Таким образом, соответствие документов на рисунке 1 предполагает соответствие элементов, атрибутов и связей между ними элементам, атрибутам и связям между техническими документами, создаваемыми на более поздних стадиях проектирования.

Таким образом, качество технической документации по схематическим планам станций можно представить как:

- полноту заполнения атрибутов в элементах схематического плана станции;
 - полноту описания связей между элементами;
- соответствие элементов, атрибутов и связей схематического плана станции элементам, атрибутам и связям других технических документов данного проекта;
- соответствие графических изображений элементов и правил оформления чертежа действующим нормативным документам;
- возможность моделирования схематического плана станции и, как следствие, автоматического построения таблицы взаимозависимости стрелок и сигналов;
- возможность реализации схематического плана станции при строительстве системы электрической централизации.

Рис. 2. Элементы и атрибуты схематических планов станций

При этом возможности моделирования и реализации схематического плана станции существенно различаются. Так, например, если ширина междупутья не позволяет установить светофор данного типа, моделирование схематического плана станции при построении таблицы взаимозависимостей проходит успешно, а реализация его без исправлений исключена.

Для определения внутреннего качества технической документации построим дерево качества технической документации. Для этого выделим составляющие качества технического документа (ТД) верхнего уровня, которые в свою очередь будем описывать показателями низших уровней до достижения подробности описания, позволяющей производить количественную оценку показателей.

Качество технического документа характеризуется следующими показателями: полнотой ТД; связанностью ТД, соответствием стандартам, моделируемостью и реализуемостью ТД (рис. 3).

Рис. 3. Характеристики качества технического документа

Под полнотой ТД понимается количество информации, содержащейся в техническом документе. При этом можно выделить обязательную информацию, отображаемую на чертеже ТД, и дополнительную информацию, хранящуюся в базе данных чертежа (информационной системы, в которой выполнен данный чертеж) или ОФ-ТД. Для обеспечения возможности измерения полноты ТД выделим показатели второго уровня: соответствие ОФ-ТД и количество заполненных атрибутов элементов технического документа. К показателям третьего уровня относятся: открытость структуры ТД (т. е. возможность получения информации из базы данных ТД) и удобство получения информации. При этом, если атрибуты ТД соответствуют ОФ-ТД, информацию можно получать непосредственно из базы данных ТД, если не соответствуют — косвенно, путем вычисления неизвестных атрибутов на основе известных (такая операция может быть выполнена не для всех атрибутов).

Для численной оценки полноты ТД вычисляется количество атрибутов ОФ-ТД, заполненных в конкретном чертеже. На рисунке 2 показан пример заполнения атрибутов элементов для схематического плана станции.

Под связанностью или достоверностью ТД будем понимать соответствие данного ТД всем техническим документам, входящим в состав проекта данной системы управления. При этом содержание одних ТД определяет содержание других, но такое соответствие не всегда однозначно. Наличие прямых связей между ТД упрощает проверку достоверности ТД, входящих в состав проекта. Количество прямых связей между различными ТД определяется количеством информации (количеством атрибутов), содержащейся в каждом ТД. На рисунке 1 показаны основные технические документы проекта СЖАТ и связи между ними.

Под соответствием стандартам понимается соответствие технической документации ГОСТ [7] и нормативно-справочной информации. На третьем уровне для численной оценки данных показателей выделяются соответствие стандартам графических изображений элементов, используемых на чертеже, соответствие чертежей правилам оформления, соответствие ТД нормам, правилам и руководящим указаниям.

Моделируемость ТД характеризуется возможностью построения модели на основе данных, представленных в базе данных чертежа, и уровнем автоматизации процесса моделирования. На третьем уровне представления моделируемость ТД оценивается наличием стандартных, разработанных моделей, достаточностью данных для работы модели и способом загрузки данных в модель.

Реализуемость ТД подразумевает возможность строительства и ввода в эксплуатацию СЖАТ на основе технических документов, входящих в проектную документацию по данной системе, т. е. возможность реализации системы и возможность выполнения системой всех действий, определяемых технической документацией. Так, например, если в проектной до-

кументации на СЖАТ отсутствуют монтажные схемы одного статива, систему невозможно реализовать, а если в монтажных схемах имеются ошибки, система будет работать неправильно. При этом количество ошибок, время поиска и время устранения ошибок зависят от полноты ТД. Для определения количества ошибок, содержащихся в проектной документации, необходим анализ журналов пусконаладочных работ.

3 Количественная оценка качества технической документации

Качество технического документа можно представить на основе структурного описания с помощью отраслевого формата и предложенных выше характеристик.

Таким образом, качество технического документа описывается функционалом вида

$$K_{T} = \{C_{\phi}, C_{\pi}, C_{H}, C_{M}, C_{\Pi}\},\$$

где C_{φ} – полнота технического документа (соответствие технического документа отраслевому формату технической документации);

 C_{π} – связанность (соответствие технического документа другим техническим документам, относящимся к данной системе);

 $C_{\rm H}$ – соответствие стандартам (соответствие технического документа государственным и отраслевым стандартам и нормативно-справочной информации);

 $C_{\scriptscriptstyle M}$ – моделируемость (возможность выполнения всех действий, предписываемых данным техническим документом, при моделировании системы;

 C_{π} – реализуемость (возможность выполнения всех действий реальной системы, определяемых данным техническим документом).

Для оценки качества технических документов предлагается методика, состоящая из следующих этапов.

- 1. Определение порядка оценки характеристик технических документов, указанных выше.
- 2. Определение методов и порядка измерения и оценки выбранных характеристик.
 - 3. Оценка характеристик с помощью предложенных методов.
- 4. Оценка взаимосвязи характеристик и их влияния на качество технических документов.

Количественную оценку характеристик технических документов произведем следующим образом.

Соответствие технического документа отраслевому формату технической документации определим как

$$C_{\Phi} = \frac{N_{\pi}}{N_{\Omega}} 100 \%,$$

где $N_{\rm д}$ – количество атрибутов, заполненных в данном техническом документе;

 $N_{\rm o}$ – общее количество атрибутов, определяемое в документе данного типа отраслевым форматом технической документации.

Для технической документации вместо $N_{\rm o}$ может использоваться $N_{\rm max}$ — максимальное количество атрибутов, заполняемых в технических документах данного типа для представительной выборки технических документов.

Связанность определим как

$$C_{\rm II} = \frac{N_{\rm o}}{N_{\rm out}} 100 \, \%$$

где $N_{\rm 9}$ – количество элементов, содержащихся в данном техническом документе;

 $N_{\rm og}$ – количество ошибок, обнаруженных в техническом документе при его проверке на соответствие техническому заданию, техническим условиям и другим техническим документам.

Соответствие стандартам определим как

$$C_{\rm H} = \frac{N_{\odot}}{N_{\rm oc}} 100 \%,$$

где $N_{\rm 3}$ – количество элементов, содержащихся в данном техническом документе;

 $N_{\rm oc}$ – количество ошибок, обнаруженных в техническом документе при его проверке на соответствие государственным и отраслевым стандартам и нормативно-справочной информации.

Моделируемость определим как

$$C_{\rm M} = \frac{N_{\rm 9}}{N_{\rm om}} 100 \%,$$

где N_9 – количество элементов, содержащихся в данном техническом документе;

 $N_{\rm om}$ — количество ошибок, обнаруженных в техническом документе при его тестировании на модели технической системы.

Реализуемость определим как

$$C_{\Pi} = \frac{N_{9}}{N_{\text{out}}} 100 \%,$$

где $N_{\rm 9}$ – количество элементов, содержащихся в данном техническом документе;

 $N_{\rm on}$ – количество ошибок, обнаруженных в техническом документе при производстве пусконаладочных работ на реальной технической системе.

Для измерения и количественной оценки выбранных характеристик технических документов необходимо:

- сформировать запись технического документа, например схематического плана станции, в отраслевом формате технической документации;
- сравнить полученную запись с отраслевым форматом схематических планов станций;
- определить количество элементов, содержащихся в данном техническом документе, методами экспертного подсчета и автоматически программным методом;
- определить $N_{\rm o}$, $N_{\rm og}$, $N_{\rm og}$, $N_{\rm om}$, $N_{\rm on}$ в данном техническом документе методами экспертной оценки и автоматически программными методами;
- выполнить количественную оценку характеристик качества технического документа предложенными методами.

Заключение

Предложенная иерархическая структура показателей качества технической документации позволяет производить количественную оценку качества ТД, моделировать процессы электронного документооборота ТД с учетом качества участвующей в них технической документации, обеспечивает возможность предъявления требований к ТД в электронном виде и позволяет осуществлять сравнение вариантов реализации технических документов.

Библиографический список

- 1. **Технический** документооборот: система управления документацией или придаток к приложениям обработки данных? / М. Головко // Открытые системы. -2002. -№ 10. C. 37–43.
- 2. **Отраслевой** формат технической документации на устройства СЦБ / М. Н. Василенко, В. Г. Трохов, П. Е. Булавский, О. А. Максименко // Автоматика, связь, информатика. -2003. -№ 4. C. 9-11.
- 3. **ГОСТ 2.749–84.** Единая система конструкторской документации. Элементы и устройства железнодорожной сигнализации, централизации и блокировки. Введ. 1985–01–01. М.: Изд-во стандартов, 2001. 22 с.
- 4. **ISO 9001:1994.** Quality systems. Model for quality assurance in design, development, production, installation and servicing. Опубл. 1994-07-01.

- 5. **ISO 9000-3:1997.** Quality management and quality assurance standards. Part 3: Guidelines for the application of ISO 9001:1994 to the development, supply, installation and maintenance of computer software. Опубл. 1997-12-15.
- 6. **ГОСТ Р ИСО/МЭК 9126–93.** Оценка программной продукции. Характеристики качества и руководства по их применению. Введ. 1993-28-12. М. : Изд-во стандартов, 2004. 12 с.
- 7. **ГОСТ 2.109–73.** Единая система конструкторской документации. Основные требования к чертежам. Введ. 1974–01–07. М.: Стандарты информации, 2007. 28 с.

Статья поступила в редакцию 30.09.2010; представлена к публикации членом редколлегии Вл. В. Сапожниковым.

УДК 681.326.7

М. Н. Василенко, М. Б. Соколов

ПРИМЕНЕНИЕ МОДЕЛИРОВАНИЯ ДЛЯ АНАЛИЗА ТОНАЛЬНЫХ РЕЛЬСОВЫХ ЦЕПЕЙ

Приводится доказательство необходимости использования моделирования при анализе рельсовых цепей на примере тональной рельсовой цепи. Сформулированы цели моделирования и основные требования к модели. Приведена методика представления рельсовой цепи в виде блочной схемы.

функциональный блок, модель ТРЦ, имитационное моделирование, процессное моделирование.

Введение

Рельсовая цепь (РЦ) является основным элементом практически всех устройств железнодорожной автоматики и телемеханики: автоблокировки, автоматической локомотивной сигнализации, электрической централизации стрелок и сигналов, диспетчерской централизации и диспетчерского контроля движения поездов, систем горочной централизации [1]–[4]. В этих системах рельсовые цепи служат в качестве путевого датчика в пределах перегонов и станций для получения первичной дискретной информации о состоянии путевых участков и целостности рельсовых нитей, на основании которой автоматизируется процесс управления и повышается безопасность движения поездов [1], [5].