2.4 Worm Gears

2.4.1 Anatomy

Rim'

2.4.2 Nomenclature

-Pitch dia.--Outside dia.

 N_G = number of teeth on the gear

 N_W = number of worm threads

 D_G = pitch diameter of the gear (in)

 $D_W = \text{pitch diameter of the worm (in)}$

p = circular pitch (in)

 $P_d = \text{diametral pitch (teeth/in)}$

m = module

L = lead (in): axial distance if the worm completes one revolution

 $P_x = \text{axial pitch}$

 $\lambda = \text{lead angle}$

C = center distance (in)

 $\phi_n = \text{normal pressure angle}$

 $\phi_t = \text{transverse pressure angle}$

a = addendum (in)

 $h_t = \text{whole depth (in)}$

 $h_k = \text{working depth (in)}$

b = dedendum (in)

 $D_{rW} = \text{root diameter of worm (in)}$

 $D_{oW} = \text{outside diameter of worm (in)}$

 $D_{rG} = \text{root diameter of gear (in)}$

 $D_t = \text{throat diameter of gear (in)}$

 F_G = face width of wormgear (in)

 $F_W = \text{face length of worm (in)}$

 $n_W = \text{speed of worm (rpm)}$

 $n_G = \text{speed of gear (rpm)}$

 $v_{tW} = \text{pitch line speed for worm (ft/min)}$

 v_{tG} = pitch line speed for gear (ft/min)

VR = velocity ratio

2.4.3 Formulae

Geometry:

circular pitch:
$$p = \frac{\pi D_G}{N_G} = \pi m$$

diametral pitch: $P_d = \frac{N_G}{D_G}$
 $P_d p = \pi$
module: $m = \frac{D}{N}$
axial pitch: $P_x = p$
lead: $L = N_W P_x$
lead angle: $\tan \lambda = \frac{L}{\pi D_W}$
center distance: $C = \frac{D_W + D_G}{2} = \frac{N_W + N_G}{2P_d}$
angle relationship: $\tan \phi_n = \tan \phi_t \cos \lambda$
addendum: $a = 0.3183 P_x = \frac{1}{P_d}$

whole depth:
$$h_t = 0.6866 P_x = \frac{2.157}{P_d}$$

working depth: $h_k = 2a$
dedendum: $b = h_t - a$

root diameter of worm:
$$D_{rW} = D_W - 2b$$

outside diameter of worm:
$$D_{oW} = D_W + 2a = D_W + h_k$$

root diameter of gear:
$$D_{rG} = D_G - 2b$$

throat diameter of gear: $D_t = D_G + 2a$

face width of wormgear:
$$F_G = \sqrt{D_{oW}^2 - D_{W^2}} = 2p = \frac{2\pi}{P_d} \approx \frac{6}{P_d}$$

face length of worm:
$$F_W = 2\sqrt{\left(\frac{D_t}{2}\right)^2 - \left(\frac{D_G}{2-a}\right)^2}$$

Speed:

pitch line speed for worm:
$$v_{tW} = \frac{\pi D_W n_W}{12}$$
 or $v_{tW} = \frac{\pi D_W n_W}{60000}$ m/s pitch line speed for gear: $v_{tG} = \frac{\pi D_G n_G}{12}$ or $v_{tG} = \frac{\pi D_G n_G}{60000}$ m/s velocity ratio: $VR = \frac{n_W}{n_G} = \frac{N_G}{N_W}$ sliding speed: $v_s = \frac{v_{tG}}{\sin \lambda} = \frac{v_{tW}}{\cos \lambda}$

Forces:

force relationship:
$$W_{tG} = W_{xW}, \ W_{xG} = W_{tW}, \ W_{rG} = W_{rW}$$
output torque: $T_o = \frac{63000P_o}{n_G} = \frac{W_{tG}D_G}{2}$
transmitted force: $W_{tG} = \frac{2T_o}{D_G}$
axial force: $W_{xG} = W_{tG} \frac{\cos \phi_n \sin \lambda + \mu \cos \lambda}{\cos \phi_n \cos \lambda - \mu \sin \lambda}$
radial force: $W_{rG} = \frac{W_{tG} \sin \phi_n}{\cos \phi_n \cos \lambda - \mu \sin \lambda}$
friction force: $W_f = \frac{\mu W_{tG}}{\cos \lambda \cos \phi_n - \mu \sin \lambda}$
power loss due to friction: $P_L = \frac{v_s W_f}{33000}$
input power: $P_i = P_o + P_L$
efficiency: $\eta = \frac{P_o}{P_i} = \frac{\cos \phi_n - \mu \tan \lambda}{\cos \phi_n + \frac{\mu}{4\pi n}}$

2.4.4 Design Selection

1. Compute the lead and lead angle

$$p = \frac{\pi}{P_d} = \frac{\pi D_G}{N_G}$$

$$P_x = p$$

$$L = N_W P_x$$

$$\lambda = \arctan\left(\frac{L}{\pi D_W}\right)$$

2. Compute the center distance

$$C = \frac{D_G + D_W}{2}$$

3. Compute the pitch line speed of the gear

$$v_{tG} = \frac{\pi D_G n_G}{12}$$

4. Compute the sliding speed

$$v_s = \frac{v_{tG}}{\sin \lambda}$$

5. Find the coefficient of friction

$$\mu = \begin{cases} 0.15 & v_s = 0\\ 0.124e^{-0.074v_s^{0.645}} & 0 < v_s < 10\\ 0.103e^{-0.11v_s^{0.45}} + 0.012 & v_s > 10 \end{cases}$$

6. Compute the forces on the gear

$$\begin{split} T_o &= \frac{63000 P_o}{n_G} = \frac{W_{tG} D_G}{2} \\ W_{tG} &= \frac{2T_o}{D_G} \\ W_{xG} &= W_{tG} \frac{\cos \phi_n \sin \lambda + \mu \cos \lambda}{\cos \phi_n \cos \lambda - \mu \sin \lambda} \\ W_{rG} &= \frac{W_{tG} \sin \phi_n}{\cos \phi_n \cos \lambda - \mu \sin \lambda} \end{split}$$

7. Compute the friction force

$$W_f = \frac{\mu W_{tG}}{\cos \lambda \cos \phi_n - \mu \sin \lambda}$$

72

8. Compute the power loss due to friction

$$P_L = \frac{v_s W_f}{33000}$$

- 9. Compute the input power $P_i = P_o + P_L$
- 10. Compute the efficiency

$$\eta = \frac{P_o}{P_i} = \frac{\cos \phi_n - \mu \tan \lambda}{\cos \phi_n + \frac{\mu}{\tan \lambda}}$$

11. Find the Lewis form factor y

Approximate Lewis Form Factor for Wormgear Teeth
у
0.100
0.125
0.150
0.175

12. Find the normal circular pitch

$$p_n = p\cos\lambda = \frac{\pi\cos\lambda}{P_d}$$

13. Compute K_v

$$K_v = \frac{1200}{1200 + v_{tG}}$$

14. Compute the dynamic load

$$W_d = \frac{W_{tG}}{K_v}$$

15. Find the stress in the gear teeth

$$\sigma = \frac{W_d}{yFp_n}$$

16. Find C_s

For sand-cast bronze

$$C_s = \begin{cases} 1189.636 - 476.545 \log_{10}(D_G) & D_G > 2.5 \\ 1000 & D_G < 2.5 \end{cases}$$

For static-chill-cast or forged bronze

$$C_s = \begin{cases} 1411.651 - 455.825 \log_{10}(D_G) \\ 1000 & D_G < 8 \end{cases}$$

For centrifugally cast bronze

$$C_s = \begin{cases} 1251.291 - 179.75 \log_{10}(D_G) \\ 1000 & D_G < 25 \end{cases}$$

17. Find C_m

$$C_m = \begin{cases} 0.02\sqrt{-m_G^2 + 40m_G - 76 + 0.46} & 6 < m_G < 20\\ 0.0107\sqrt{-m_G^2 + 56m_G + 5146} & 20 < m_G < 76\\ 1.1483 - 0.00658m_G & m_G > 76 \end{cases}$$

18. Find C_v

$$C_v = \begin{cases} 0.659e^{-0.0011v_s} & 0 < v_s < 700\\ 13.31v_s^{-0.571} & 700 < v_s < 3000\\ 65.52v_s^{-0.774} & v_s > 3000 \end{cases}$$

19. Find F_e

$$F_e = \begin{cases} F & F < \frac{D_W}{3} \\ \frac{D_W}{3} & F > \frac{D_W}{3} \end{cases}$$

20. Find the rated tangential load

$$W_{tR} = C_s D_G^{0.8} F_e C_m C_v$$

21. Check if the design is satisfactory to resist pitting: If $W_{tR} > W_{tG}$ then the design is satisfactory