Chapter 6 Dynamical Systems

Discrete Mathematics II/Mathematical Modelling

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of ${\cal CO}_2$ concentration in greenhouses

Numerical methods

Nguyen An Khuong, Nguyen Tien Thinh

Faculty of Computer Science and Engineering
University of Technology, VNU-HCM
ntthinh@hcmut.edu.vn

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

1 A dynamical system model of CO_2 concentration in greenhouses

Contents

A dynamical system model of CO_2 concentration in greenhouses

Numerical methods

Microclimate forecasting and control in greenhouses

Figure: Greenhouses.

- Optimum growing environment;
- Longer growing season;
- Garden in any weather condition;
- Protection from pests;
- ..

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

model of CO_2 concentration in greenhouses

Greenhouse elements and functions

Figure: Greenhouse elements and functions.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Internal thermal screen that divides the air in a greenhouse into two compartments: above and below the thermal screen.

-0.5 m

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: CO_2 flow in a greenhouse.

- Top/Air: the compartment above/below the thermal screen;
- *Out/Ext*: outside the greenhouse/external source;
- Blow/Pad: the direct air heater/pad and fan;
- Can: the canopy inside the greenhouse;
- MC_{AB} : the net CO_2 flux from A to B.

Dynamical Systems
Nguyen An Khuong,
Nguyen Tien Thinh

Contents

concentration in greenhouses

Balance laws:

$$cap_{CO_{2Air}}CO_{2Air}^{2} = MC_{BlowAir} + MC_{ExtAir} + MC_{PadAir} - MC_{AirCan} - MC_{AirTop} - MC_{AirOut}.$$
(1)

$$cap_{CO_{2Top}}CO_{2Top}^{\cdot} = MC_{AirTop} - MC_{TopOut}.$$
 (2)

- $cap_{CO_{2\,Top/Air}}$: capacity of the compartment above/below the thermal screen to store CO_2 (m);
- CO_{2 Top/Air}: the rate change of CO₂ concentration in the compartment above/below the thermal screen in time (mg m⁻³ s⁻¹);
- MC_{AB} : the net CO_2 flux from A to B (mg m⁻² s⁻¹).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system nodel of CO_2 concentration in greenhouses

$$MC_{BlowAir} = \eta_{HeatCO_2} H_{BlowAir} = \frac{\eta_{HeatCO_2} U_{Blow} P_{Blow}}{A_{Flr}}.$$
 (3)

- η_{HeatCO_2} : the amount of CO_2 released when 1 Joule sensible energy is produced by the direct air heater (mg $\{CO_2\}\ J^{-1}$);
- H_{BlowAir}: the heat flux from the direct air heater to the greenhouse air (W m⁻²);
- U_{Blow} : the control valve of the direct air heater ranging in [0,1];
- P_{Blow} : the heat capacity of the direct air heater (W);
- A_{Flr} : the area of the greenhouse floor (m²).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

dynamical systen odel of CO_2 oncentration in reenhouses

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

- $MC_{ExtAir} = \frac{U_{ExtCO_2}\phi_{ExtCO_2}}{A_{Flr}}. (4)$
- U_{ExtCO_2} : the control valve of the external CO_2 source ranging in [0,1];
- ϕ_{ExtCO_2} : the capacity of the external CO_2 source (mg s⁻¹).

$$MC_{PadAir} = f_{Pad}(CO_{2Out} - CO_{2Air})$$

$$= \frac{U_{Pad}\phi_{Pad}(CO_{2Out} - CO_{2Air})}{A_{Flr}}.$$
 (5)

- f_{Pad} : the ventilation flux due to the pad and fan system (m s⁻¹);
- U_{Pad} : the control valve of the pad and fan system ranging in [0,1];
- ϕ_{Pad} : the capacity of the air flux through the pad (m³ s⁻¹).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

$$MC_{AirTop} = f_{ThScr}(CO_{2Air} - CO_{2Top}),$$
 (6)

$$f_{ThScr} = U_{ThScr} K_{ThScr} |T_{Air} - T_{Top}|^{\frac{2}{3}} + (1 - U_{ThScr}) \left[\frac{g(1 - U_{ThScr})}{2\rho_{Air}^{Mean}} |\rho_{Air} - \rho_{Top}| \right]^{\frac{1}{2}}.$$

- f_{ThScr} : the air flux through the thermal screen (m s⁻¹);
- U_{ThScr} : the control of the thermal screen ranging in [0,1];
- K_{ThScr} : the screen flux coefficient determining the permeability of the screen (m K $^{-\frac{2}{3}}$ s $^{-1}$);
- g: the gravitational acceleration (m s⁻²);
- $\rho_{Air/Top}$: the density of the greenhouse air below/above the thermal screen (kg m⁻³);
- ho_{Air}^{Mean} : the mean density of the greenhouse air (kg m $^{-3}$);
- $T_{Air/Top}$: the temperature below/above the thermal screen (K).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Air flow through the thermal screen.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

- $MC_{AirOut} = (f_{VentSide} + f_{VentForced})(CO_{2Air} CO_{2Out}).$ (7)
 - $f_{VentSide}$: the rate for the sidewall ventilation system (m s⁻¹);
 - $f_{VentForced}$: the rate for the forced ventialtion system (m s⁻¹).

Figure: Without/With Chimney's effect.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Air flow through the roof opening.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

$$f_{VentRoofSide} =$$

$$\frac{C_d}{A_{Flr}} \left[\frac{U_{Roof}^2 U_{Side}^2 A_{Roof}^2 A_{Side}^2}{U_{Roof}^2 A_{Roof}^2 + U_{Side}^2 A_{Side}^2} \cdot \frac{2g h_{SideRoof} (T_{Air} - T_{Out})}{T_{Air}^{Mean}} \right]$$

$$+\left(rac{U_{Roof}A_{Roof}+U_{Side}A_{Side}}{2}
ight)^2C_wv_{Wind}^2$$
 . • $f_{VentRoofSide}$: the ventilation rate through both the roof and

- side vents (m s $^{-1}$);
 $C_{d/w}$: discharge/global wind pressure coefficient depending on the greenhouse shape and the use of an outdoor thermal
- screen (-); • $U_{Roof/Side}$: the control of the roof/side openings ranging in [0,1];
- $A_{Roof/Side}$: the roof/side opening area (m²);
- $h_{SideRoof}$: the vertical distance between mid-points of side wall and roof ventilation openings (m);
- T_{Air}^{Mean} : the mean temperature between the indoor and outdoor temperatures (K); v_{Wind} : wind speed (m s⁻¹).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Insect-screen effect:

$$\eta_{InsScr} = \zeta_{InsScr}(2 - \zeta_{InsScr}).$$

- η_{InsScr}: reduction factor (-);
- ζ_{InsScr} : the screen porosity i.e. the area of holes per unit area of the insect screen (-).

Greenhouse leakage:

$$f_{leakage} = \begin{cases} 0.25 \cdot c_{leakage}, & v_{Wind} < 0.25, \\ v_{Wind} \cdot c_{leakage}, & v_{Wind} \ge 0.25. \end{cases}$$

- $f_{leakage}$: the leakage rate depending on wind speed (m s⁻¹);
- $c_{leakage}$: the leakage coefficient depending on the greenhouse type (-).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system nodel of CO_2 oncentration in greenhouses

If
$$\eta_{Side} \geq \eta_{Side_Thr}$$
,

$$f_{VentSide} = \eta_{InsScr} f_{VentRoofSide}(A_{Roof} = 0) + 0.5 f_{leakage}.$$

Otherwise,

$$f_{VentSide} = \eta_{InsScr} \left[U_{ThScr} f_{VentRoofSide} (A_{Roof} = 0) + (1 - U_{ThScr}) f_{VentRoofSide} \eta_{Side} \right] + 0.5 f_{leakage}.$$

- η_{Side}: the ratio between the side vents area and total ventilation area (-);
- η_{Side_Thr} : the threshold value above which no chimney effect is assumed to occur (-).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical syster model of CO_2 concentration in greenhouses

$$f_{VentForced} = \frac{\eta_{InsScr} U_{VentForced} \phi_{VentForced}}{A_{Flr}}.$$

- $U_{VentForced}$: the control valve of the forced ventilation ranging in [0,1];
- $\phi_{VentForced}$: the air flow capacity of the forced ventilation system (m³ s⁻¹)

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

$$MC_{TopOut} = f_{VentRoof}(CO_{2Top} - CO_{2Out}).$$
 (8)

$$f_{VentRoof} = \frac{C_d U_{Roof} A_{Roof}}{2A_{Flr}} \left[\frac{g h_{Roof} (T_{Air} - T_{Out})}{2T_{Air}^{Mean}} + C_w v_{Wind}^2 \right]^{\frac{1}{2}}.$$

• h_{Roof} : the vertical dimension of a single ventilation opening (m).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

$$MC_{AirCan} = M_{CH_2O}h_{C_{Buf}}(P - R). (9)$$

- M_{CH_2O} : the molar mass of CH_2O (mg μ mol⁻¹);
- $h_{C_{Buf}}$: the inhibition of the photosynthesis rate by saturation of the leaves with carbohydrates (-), where

$$h_{C_{Buf}} = \begin{cases} 0, & C_{Buf} > C_{Buf}^{Max}, \\ 1, & C_{Buf} \le C_{Buf}^{Max}; \end{cases}$$

- C_{Buf}/C_{Buf}^{Max} : the capacity/maximum capacity of carbonhydrates storage in the canopy buffer (mg $\{CH_2O\}$ m $^{-2}$);
- P/R: the photosynthesis/photorespiration rate of the canopy during the photosynthesis process (μ mol $\{CO_2\}$ m⁻² s⁻¹).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Photosynthesis - Calvin Cycle - Chloroplast.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

CO_2 diffusion:

Figure: CO_2 diffuses into leaf cells through stomata.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

dynamical system nodel of CO_2 oncentration in reenhouses

Fick's law:

$$P = \frac{CO_{2\,Air} - CO_{2\,Stom}}{Res}.$$

- CO_{2 Stom}: the amount of CO₂ in the chloroplasts (μmol m⁻³);
- Res: the resistance to CO_2 diffusion (s m⁻¹).

Carbon fixation:

$$2H_2O \to 4e^- + 4H^+ + O_2$$

 $CO_2 + 4e^- + 4H^+ \to CH_2O + H_2O$

Michaelis-Menten kinetic model

$$P = \frac{P_{Max}}{1 + \frac{CO_{20.5}}{CO_{2Stom}}}.$$

- P_{Max} : the photosynthesis rate at saturating CO_{2Stom} (μ mol $\{CO_2\}$ m⁻² s⁻¹);
- $CO_{2\,0.5}$: the amount of $CO_{2\,Stom}$ such that $P=P_{Max}/2$ (μ mol m $^{-3}$).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Michaelis-Menten kinetic model.

Solve for $CO_{2 \, Stom}$, P satisfies

$$ResP^2 - (CO_{2\,Air} + CO_{2\,0.5} + ResP_{Max})P + CO_{2\,Air}P_{Max} = 0. \label{eq:ResP2}$$

Only P that $P \to P_{Max}$ as $CO_{2,Air} \to +\infty$.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

P_{Max} and the Arrhenius model:

$$k(T) = k(T_0)e^{-\frac{H_a}{R}(\frac{1}{T} - \frac{1}{T_0})}.$$

- T: the temperature of the leaf (K);
- T₀: a specific temperature of the leaf that we know the reaction rate (K);
- K(T): the reaction rate (-);
- H_a : the activation energy (J mol⁻¹);
- R: the ideal gas constant (J mol⁻¹ K⁻¹).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Arrhenius model with $T_0=298.15$, $k(T_0)=1$, $H_a=37000$.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Enzyme activity:

$$f(T) = \frac{1 + e^{-\frac{H_d}{R} \left(\frac{1}{T_0} - \frac{1}{\frac{H_d}{S}}\right)}}{1 + e^{-\frac{H_d}{R} \left(\frac{1}{T} - \frac{1}{\frac{H_d}{S}}\right)}}.$$

- f(T): the enzyme activity rate (-);
- H_d : the deactivation energy (J mol⁻¹);
- S: the entropy term (J mol⁻¹ K⁻¹).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Enzyme activity model with $H_d=220000$ and S=710.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: (Potential photosynthesis rate $P_{Max}(T) = k(T)f(T)$ (normalized).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Photosynthesis rate with different value of CO_2 in the greenhouse air and resistance Res=2.5 (normalized).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Canopy:

Figure: Leaf area index.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

P_{Max} and the Arrhenius model:

$$k(T) = LAI \cdot k(T_0) \cdot e^{-\frac{H_a}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)}.$$

- T: the temperature of the canopy (K);
- T₀: a specific temperature of the canopy that we know the reaction rate (K);
- k(T): the reaction rate of the canopy at T (-);
- $k(T_0)$: the reaction rate in the stroma of a leaf at T_0 (-).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Michaelis-Menten model:

$$P_{Max}(L,T) = \frac{P_{MLT} \cdot P_{Max}(T)}{1 + \frac{L_{0.5}}{L}}.$$

- L: the photosynthetically active radiation absorbed by the canopy (μ mol {photons} m⁻² s⁻¹);
- $L_{0.5}$: the photosynthetically active radiation at which $P_{Max}(L,T)=P_{MLT}\cdot P_{Max}(T)/2$ (μ mol {photons} m $^{-2}$ s $^{-1}$);
- P_{MLT} : the value of P_{Max} at saturation L and optimum T (μ mol $\{CO_2\}$ m $^{-2}$ s $^{-1}$).

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Beer's law:

$$I = \frac{I_0.K.e^{-K.LAI}}{1-m}.$$

- K: the extinction coefficient in between 0.7-1.0 if the leaves are not inclined. Otherwise 0.3-0.5;
- I: the L measured at the ground surface (μ mol {photons} $m^{-2} s^{-1}$);
- I_0 : the L measured above the canopy (μ mol {photons} m⁻² s⁻¹);
- *m*: the transmittance of the leaves, which set as default 0.1.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Absorbed L:

$$L = L_0 \left(1 - \frac{K \cdot e^{-K \cdot LAI}}{1 - m} \right).$$

Figure: Dependence of PAR on LAI.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

CO_2 flow and the photosynthesis of plants

Figure: Photosynthesis with fixed $CO_{2\,Air}$ and different LAI.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

First-order differential equation:

$$\begin{cases} \dot{x} = f(t, x), \\ x(t_0) = x_0. \end{cases}$$
 (10)

Taylor expansion:

$$x(t+h) = x(t) + \dot{x}(t)h + O(h^2)$$

= $x(t) + f(t, x(t))h + O(h^2)$. (11)

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Forward Euler formula:

$$x_{n+1} = x_n + f(t_n, x_n)h,$$
 (12)

where

$$x_n \coloneqq x(t_n) \quad n = 0, 1, 2, \dots$$

Figure: Forward Euler numerical scheme.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Example $\dot{x} = -10x$, $x_0 = 1$ with different h < 0.32.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Example $\dot{x} = -10x$, $x_0 = 1$ with h = 0.32.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Numerical methods

Test equation:

$$\begin{cases} \dot{x} = \alpha x, & \alpha \in \mathbb{R}, \\ x(t_0) = x_0. \end{cases}$$
 (13)

Applying the Forward Euler method

$$x_{n+1} = (1+\alpha h)x_n = (1+\alpha h)^2 x_{n-1} = \dots = (1+\alpha h)^{n+1} x_0.$$
 (14)

Stability condition:

$$|1 + \alpha h| < 1. \tag{15}$$

Stability function and stability region:

$$x_{n+1} = \Phi(\alpha h) x_n. \tag{16}$$

Then $\Phi=\Phi(z)$ for $z\in\mathbb{C}$ is called stability function and the region

$$\{z \in \mathbb{C} : |\Phi(z)| < 1\} \tag{17}$$

is called the stability region for the numerical scheme.

<u>A-stable numerical scheme</u>: A numerical scheme is A-stable if its stability region contains the left half complex plane.

<u>L-stable numerical scheme:</u> A numerical scheme is *L*-stable if it is A-stable and $\Phi(z) \to 0$ as $z \to \infty$.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Figure: Stability region of Forward Euler $\{z\in\mathbb{C}: |1+z|<1\}.$

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of ${\cal C}{\cal O}_2$ concentration in greenhouses

Backward Euler method

Backward Euler formula:

$$x_{n+1} = x_n + f(t_n, x_{n+1})h, (18)$$

where

$$x_n \coloneqq x(t_n) \quad n = 0, 1, 2, \dots$$

Figure: Backward Euler numerical scheme.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Backward Euler method

Figure: Stability region of Backward Euler $\{z\in\mathbb{C}: \frac{1}{|1-z|}<1\}.$

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Newton-Raphson scheme

$$f(x) = 0, (19)$$

where $f=(f_1,\ldots,f_N)$ is differentiable and $x=(x_1,\ldots,x_N)$.

Newton iteration formula:

$$x_{n+1} = x_n - J(x_n)^{-1} f(x_n), (20)$$

where

$$J(x) := \begin{pmatrix} \frac{\partial f_1}{\partial_{x_1}} & \cdots & \frac{\partial f_1}{\partial_{x_N}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial_{x_1}} & \cdots & \frac{\partial f_N}{\partial_{x_N}} \end{pmatrix}$$
(21)

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Newton-Raphson scheme

Figure: Newton iteration scheme.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of ${\cal C}{\cal O}_2$ concentration in greenhouses

Newton-Raphson scheme

Figure: Intersection of two tangent line at 0 and 1 of $f(x) = x^3 - 2x + 2$.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of ${\cal C}{\cal O}_2$ concentration in greenhouses

Figure: Improvement of Forward Euler.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Explicit Midpoint method:

Step 1. Compute the slope at x_n

$$k_1 = f(t_n, x_n). (22)$$

Step 2. Compute the slope at the midpoint

$$k_2 = f(t_n + \frac{1}{2}h, x_n + \frac{1}{2}hk_1).$$
 (23)

Step 3. Compute x_{n+1}

$$x_{n+1} = x_n + hk_2. (24)$$

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Proof for multi-variate scalar case of f:

$$k_1 = f(t_n, x_n). (25)$$

$$k_2 = f(t_n + \alpha h, x_n + \beta h k_1). \tag{26}$$

$$x_{n+1} = x_n + ahk_1 + bhk_2. (27)$$

Contents

A dynamical system model of CO_2 concentration in greenhouses

Taylor expansion:

$$f(t_n + \alpha h, x_n + \beta h k_1) = f(t_n, x_n) + \alpha h \frac{\partial f}{\partial t}(t_n, x_n) + \beta h k_1 \frac{\partial f}{\partial x}(t_n, x_n) + O(h^2)$$

Substituting in (25)-(27)

$$x_{n+1} = x_n + (a+b)hf(t_n, x_n) + bh^2 \left(\alpha \frac{\partial f}{\partial t} + \beta f \frac{\partial f}{\partial x}\right)(t_n, x_n) + O(h^3).$$
 (29)

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

ALC: THE RESERVE

Taylor expansion:

$$x(t_{n+1}) = x(t_n) + h\dot{x}(t_n) + \frac{h^2}{2}\ddot{x}(t_n) + O(h^3)$$

$$= x(t_n) + hf(t_n, x_n) + \frac{h^2}{2} \left(\frac{\partial f}{\partial t} + f\frac{\partial f}{\partial x}\right)(t_n, x_n) + O(h^3) (30)$$

From (29)

$$a+b=1, \quad \alpha b=\frac{1}{2}, \quad \beta b=\frac{1}{2}.$$
 (31)

Choose
$$a=0,b=1,\alpha=\beta=\frac{1}{2}.$$

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

restriction of the

Explicit order-4 Runge-Kutta method

Explicit order-4 Runge-Kutta method:

Step 1. Compute the slope at x_n

$$k_1 = f(t_n, x_n). (32)$$

Step 2. Compute the slope at the midpoint from k_1

$$k_2 = f(t_n + \frac{1}{2}h, x_n + \frac{1}{2}hk_1).$$
 (33)

Step 3. Compute the slope at the midpoint from k_2

$$k_3 = f(t_n + \frac{1}{2}h, x_n + \frac{1}{2}hk_2).$$

Step 4. Compute the slope at the endpoint from k_3

$$k_4 = f(t_n + h, x_n + hk_3).$$
 (35)

Step 5. Compute x_{n+1}

$$x_{n+1} = x_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4). \tag{36}$$

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

lumerical methods

(34)

Explicit Runge-Kutta method

Figure: Stability region of Runge–Kutta of order $1 \leq p \leq 4$ where

$$\Phi(z) = \sum_{i=0}^{p} \frac{z^i}{i!}.$$

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of CO_2 concentration in greenhouses

Explicit Runge-Kutta method

Figure: Forward Euler and Runge-Kutta of order 4.

Dynamical Systems

Nguyen An Khuong, Nguyen Tien Thinh

Contents

A dynamical system model of ${\cal C}{\cal O}_2$ concentration in greenhouses