AP Calculus

3.3 Worksheet Day 2

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

1. What is the product rule?

2. What is the quotient rule?

$$\frac{\sqrt{u'-u'v'}}{\sqrt{2}}$$

3. Let $f(x) = (3x^3 + 4x^2)(2x^4 - 5x)$

a) Find
$$f'(x)$$
 without using the product rule

b) Find
$$f'(x)$$
 using the product rule.

$$(3x^3+4x^2)(8x^3-5)+(2x^4-5x)(9x^2+8x)$$

 $24x6-15x^3+32x65x^2+18x65+16x5-45x^3$
 $42x6-60x^3+48x^5-60x^2$

4. Let
$$f(x) = \frac{x^2 + 4}{x}$$
.

a) Find f'(x) without using the quotient rule

$$(x^{2}) + 4/3$$

 $x + 4/2 = 1 = 4$
 $x + 4/2 = 1 = 4$

b) Find
$$f'(x)$$
 using the quotient rule.

$$\frac{\chi(2\chi) - (\chi^{2}+4)(1)}{2\chi^{2} - \chi^{2} - 4} = \frac{\chi^{2} - 4}{\chi^{2}}$$

$$= 1 - \frac{2\chi}{2\chi^{2}}$$

5. Find $\frac{dy}{dx}$ for each of the following functions.

a)
$$y = \frac{2x-5}{3x+2}$$

b)
$$y = (3-x)(2+x^2)^{-1}$$

c)
$$y = \frac{x^3}{8 - x^2}$$

$$\ln y = \ln(2x-5) - \ln(3x+2)$$

$$y' = \frac{3}{3}$$

$$3x+2$$

$$|u| = \pi^2 - 6\pi - 2$$

a)
$$y = \frac{2x-5}{3x+2}$$

(b) $y = (3-x)(2+x^2)^{-1}$

(c) $y = \frac{x^3}{8-x^2}$

(1) $y = (1 (2x-5)) - (1 (3x+2))$

(2) $y = 4 (3-x) - (1 (2+x^2))$

(3) $y = 2x-5$

(2) $y = (3-x)(2+x^2)$

(2) $y = (3-x)(2+x^2)$

(3) $y = (3-x)(2+x^2)$

(4) $y = (3-x)(2+x^2)$

(5) $y = (3-x)(2+x^2)$

(6) $y = (3-x)(2+x^2)$

(7) $y = (3-x)(2+x^2)$

(8) $y = (3-x)(2+x^2)$

(9) $y = (3-x)(2+x^2)$

(10) $y = (3-x)(2+x^2)$

(11) $y = (3-x)(2+x^2)$

(12) $y = (3-x)(2+x^2)$

(13) $y = (3-x)(2+x^2)$

(14) $y = (3-x)(2+x^2)$

(15) $y = (3-x)(2+x^2)$

(17) $y = (3-x)(2+x^2)$

(18) $y = (3-x)(2+x^2)$

(19) $y = (3-x)(2+x^2)$

(21) $y = (3-x)(2+x^2)$

(21) $y = (3-x)(2+x^2)$

(22) $y = (3-x)(2+x^2)$

(23) $y = (3-x)(2+x^2)$

(24) $y = (3-x)(2+x^2)$

$$\frac{1}{(2+x^2)}$$

$$y' = \frac{19}{(3x+2)^2}$$

6. For a-d, write a expression for f'(x) and then use it to find f'(2) given the following information:

$$g(2) = 3$$
 $g'(2) = -2$
 $h(2) = -1$ $h'(2) = 4$

a)
$$f(x) = 2g(x) + h(x)$$

 $f(z) = 2g'(x) + h'(x)$
 $f'(z) = 2(-2) + 14$
 $(f'(z) = 0)$
c) $f(x) = g(x)h(x)$
 $f'(x) = g'(x)h'(x)$
 $f'(x) = -2(4)$

b)
$$f(x) = 4 - h(x)$$

 $f'(x) = 0 - h'(x)$
 $f'(x) = 4$

d)
$$f(x) = \frac{g(x)}{h(x)}$$
$$f'(x) = \frac{g'(x)}{h(x)}$$
$$f'(x) = \frac{g'(x)}{h(x)}$$
$$f'(x) = \frac{g'(x)}{h(x)}$$

7. Suppose u and v are differentiable functions of x = 3 and that u(3) = 4, $\frac{du}{dx}\Big|_{x=3} = -3$, v(3) = 2, and $\frac{dv}{dx}\Big|_{x=3} = 3$. Find the values of the following derivatives at x = 3.

a)
$$\frac{d}{dx} \left(\frac{u}{v} \right)$$

$$\begin{array}{l}
\sqrt{u'} - \frac{uv'}{2} = 2(-3) - \frac{u(3)}{2} \\
= -1 \cdot 2 = 6 \\
c) \frac{d}{dx} (5u - 2v + 4uv)
\end{array}$$

$$\begin{array}{l}
5u' - 2v' + 4(6) \\
5(-3) - 2(3) + 4(6) \\
-15 - 6 + 10 = -11
\end{array}$$

b)
$$\frac{d}{dx}(uv)$$

$$2(-3) + 4(3)$$

$$-6 + 12$$

$$= 6$$
d) $\frac{d}{dx}(\frac{v}{u}) = \frac{4(3)}{2} + \frac{2(-3)}{4^2} = \frac{18}{16} = \frac{9}{9}$

8. Solve for a and b in order for f(x) to be both continuous and differentiable at x = 1. (be sure to use the definition of continuity) $f(x) = \begin{cases} x^2 + 2 & \text{if } x \leq 1 \\ a(x - 1) + b & \text{if } x > 1 \end{cases}$

- 9. For each of the following, find the equation of the tangent line to the given function at the indicated point.
 - a) $f(x) = (x^3 3x + 1)(x + 2)$ at the point (1, -3).
- b) $y = \frac{8}{4 + x^2}$ at the point (-2, 1).

- 10. At what point on the graph of $y = \frac{1}{2}x^2$ is the tangent line parallel to the line 2x 4y = 3?
 - A) $\left(\frac{1}{2}, \frac{1}{2}\right)$
 - B) $\left(\frac{1}{2}, \frac{1}{8}\right)$
 - C) $(1, -\frac{1}{4})$
 - D) $(1,\frac{1}{2})$
 - E) (2,2)
- 11. Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f at x = 3 is used to find an approximation to a zero of f, that approximation is
 - A) 0.4
 - B) 0.5
 - C) 2.6
 - D) 3.4
 - E) 5.5
- 12. An equation of the line tangent to the graph of $y = \frac{2x+3}{3x-2}$ at the point (1, 5) is
 - A) 13x y = 8
 - B) 13x + y = 18
 - C) x 13y = 64
 - D) x + 13y = 66
 - E) -2x + 3y = 13

- 13. What is the instantaneous rate of change at x = 2 of the function f given by $f(x) = \frac{x^2 2}{x 1}$?
 - A) –2
 - B) -
 - C) -
 - D) 2
 - E) 6
- 14. If u, v, and w are nonzero differentiable functions of x, then the $\frac{d}{dx} \left(\frac{uv}{w} \right)$ is
 - A) $\frac{uv' + u'v}{w'}$
 - B) $\frac{u'v'w uvw'}{w^2}$
 - C) $\frac{uvw' uv'w u'vw}{w^2}$
 - D) $\frac{u'vw + uv'w + uvw'}{w^2}$
 - E) $\frac{uv'w + u'vw uvw'}{w^2}$
- 15. When an object is thrown off a 100 foot cliff with an initial velocity of 40 feet/second, the height h, in feet, of the object can be modeled as a function of time t, in seconds, using the function

$$h(t) = -16t^2 + 45t + 100.$$

- a) Find $\frac{dh}{dt}$... What is the unit of measurement for this equation?
- b) Find $\frac{d^2h}{dt^2}$... What is the unit of measurement for this equation?
- 16. Let $g(x) = x \frac{1}{x}$. Find the following:
 - a) g'(x)

b) g''(x)

c) The tangent line equation when x = 2