Potential Fields

October 16, 2008

Potential Fields

Introduction to Potential Fields:

- Potential field: array (or field) of vectors representing space
- Vector $\mathbf{v} = (m, d)$: consists of magnitude (m) and direction (d)
- Vector represents a force
- Typically drawn as an arrow:

Length of arrow = m = magnitude

Angle of arrow = d = direction

Potential Field Path Planning

180 140-120 100-80-40-40-40-50 100 150 200 250

- Robot is treated as a *point under the influence* of an artificial potential field.
 - Generated robot movement is similar to a ball rolling down the hill
 - Goal generates attractive force
 - Obstacles are repulsive forces
- Note that this is more than just path planning: it is also a control law for the robot's motion

Potential Fields – More detail

- Vector space is 2D world, like bird's eye view of map
- Map divided into squares, creating (x,y) grid
- Each element represents square of space
- Perceivable objects in world exert a force field on surrounding space

Some Primitive Types of Potential Fields

Uniform

Perpendicular

Attraction

Repulsion

Tangential

Magnitude Profiles

Change in velocity in different parts of the field

(See your text for 3D versions of these profiles)

→ Field closest to an attractor/repellor will be stronger

Programming a Single Potential Field

Repulsive field with linear drop-off:

$$V_{direction} = 180^{o}$$

$$V_{magnitude} = \begin{cases} \frac{(D-d)}{D} & \text{for } d \leq D\\ 0 & \text{for } d > D \end{cases}$$

where *D* is max range of field's effect

Important Note: Entire Field Does Not Have to Be Computed

- Only portion of field affecting robot is computed
- Robot uses functions defining potential fields at its position to calculate component vector

Combining Fields/Behaviors

Compute each behavior's potential field

Sum vectors at robot's position to get resultant output vector

Issues with Combining Potential Fields

- Impact of update rates:
 - Lower update rates can lead to "jagged" paths
- Robot treated as point:
 - → Expect robot to change velocity and direction instantaneously (can't happen)
- Local minima:
 - Vectors may sum to 0.

The Problem of Local Minima

• If robot reaches local minima, it will just sit still

Local minima: vectors sum to 0

Solutions for Dealing with Local Minima

- Inject noise, randomness:
 - "Bumps" robot out of minima
- Include "avoid-past" behavior:
 - Remembers where robot has been and attracts the robot to other places
- Use "Navigation Templates" (NaTs):
 - The "avoid" behavior receives as input the vector summed from other behaviors
 - Gives "avoid" behavior a preferred direction
- Insert tangential fields around obstacles

Again now, with more math: Potential Field Generation

- Generation of potential field function U(q) for robot at point q:
 - attracting (goal) and repulsing (obstacle) fields
 - -summing up the fields $U(q) = U_{att}(q) + U_{rep}(q)$
 - functions must be differentiable

$$\nabla U = \begin{bmatrix} \partial U / \partial x \\ \partial U / \partial y \end{bmatrix}$$

• Generate artificial force field F(q) as the gradient of the potential field:

$$\begin{split} F(q) &= -\nabla U(q) \\ F(q) &= F_{att}(q) + F_{rep}(q) \\ &= -\nabla U_{att}(q) - \nabla U_{rep}(q) \end{split}$$

Converting to robot control

- Set robot velocity (v_x, v_y) proportional to the force F(q) generated by the field
 - the force field drives the robot to the goal
 - robot is assumed to be a point mass

Mathematical Representation: Attractive Potential Field

• Parabolic function representing the Euclidean distance $\|q-q_{goal}\|$ to the goal:

$$U_{att}(q) = \frac{1}{2}k_{att} \cdot \rho_{goal}^2(q)$$

where k_{att} is a positive scaling factor, and $\rho_{goal}(q)$ is distance $\|q-q_{goal}\|$

Attracting force converges linearly towards 0 (goal):

$$F_{att}(q) = -\nabla U_{att}(q)$$

$$= -k_{att} \cdot \rho_{goal}(q) \nabla \rho_{goal}(q)$$

$$= -k_{att} \cdot (q - q_{goal})$$

Mathematical Representation: Repulsive Potential Field

- Should generate a barrier around all the obstacles:
 - strong if close to the obstacle
 - no influence if far from the obstacle

$$U_{rep}(q) = \begin{cases} \frac{1}{2} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0} \right)^2 & \text{if } \rho(q) \le \rho_0 \\ 0 & \text{if } \rho(q) \ge \rho_0 \end{cases}$$

- $-\rho(q)$: minimal distance to the obst. from q; ρ_0 is distance of influence of obst.
- Field is positive or zero and tends to infinity as q gets closer to the obstacle

$$F_{rep}(q) = -\nabla U_{rep}(q) = \begin{cases} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0} \right) \frac{1}{\rho^2(q)} \frac{q - q_{obstacle}}{\rho(q)} & \text{if } \rho(q) \le \rho_0 \\ 0 & \text{if } \rho(q) \ge \rho_0 \end{cases}$$

Potential Field Path Planning: Using Harmonic Potentials

- Hydrodynamics analogy
 - robot is moving similar to a fluid particle following its stream
- Ensures that there are no local minima

- Note:
 - Complicated, only simulation shown

(backup)

Return to Motor Schemas: Example Motor Schema Encodings

Move-to-goal (ballistic):

 $V_{magnitude}$ = fixed gain value $V_{direction}$ = towards perceived goal

Avoid-static-obstacle:

$$V_{magnitude} = \begin{cases} 0 & \text{for } d > S \\ \frac{S - d}{S - R} * G & \text{for } R < d \le S \end{cases}$$

where S = sphere of influence of bstacle

R = radius of obstacle

G = gain

d = distance of robot to center of obstacle

More Motor Schema Encodings

• Stay-on-path:

$$V_{magnitude} = \begin{cases} P & \text{for } d > (W/2) \\ \frac{d}{W/2} * G & \text{for } d \le (W/2) \end{cases}$$

where:

W = width of path

P = off-path gain

G = on-path gain

D = distance of robot to center of path

 $V_{direction}$ = along a line from robot to center of path, heading toward centerline

More Motor Schema Encodings (con't.)

Move-ahead:

 $V_{magnitude}$ = fixed gain value

 $V_{direction}$ = specified compass direction

Noise:

 $V_{magnitude}$ = fixed gain value

V_{direction} = random direction changed every p time steps

