Bayesian Probabilities

Simulate Monty Hall Problem: three binary variables, run the simulations and get the fractions, which converges to the final probability.

Case study: determine the precise year the change in regulation was introduced Method: Bayesian principle + MC chain

Probability Theory

Frequentist view: repeat the experiments infinite number of times, and the result obtained is the probability, regardless of whether the event is composite.

A trial is conducted n times, and the results fall into the following grid.

Sum Rule : $p(X) = \sum_{Y} p(X, Y)$

Product Rule: p(X,Y) = p(Y|X)p(X)

Bayes' Theorem : $p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$

Marginal probability: $p(X = x_i) = \frac{c_i}{N}$

Conditional probability: $p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$

Prior probability: the probability that the knight captures a troll Posterior probability

Apply Bayes' Theorem on Trolls under the bridge: calculate $P(H_1|T)$

Kolmogorov probability

sample space S, event A as an area in the sample space (Ω, F, P) probability space : Ω -- sample space; F -- set of events;

• each event is a subset of Ω cotaining zero or more outcomes

Axioms: (satisfied by frequentist definition of probability)

- 1. $P(A) \ge 0$ for an event A
- 2. $P(\Omega) = 1$
- 3. if $A \cap B = 0$, then $P(A \cup B) = P(A) + P(B)$

Venn Diagrams: think of probability as area

Law of Exhaustion

If R_i is EME (exhaustive and mutually exclusive) $\rightarrow \sum_i P(R_i) = 1$ Inclusion-exclusion principle: $P(E^c) = P(\Omega \setminus E) = 1 - P(E)$

Law of Total Probability/Law of de-Anding

$$P(B) = P(BH1) + P(BH2) + \ldots = \sum_i P(BH_i)$$

 $P(B) = \sum_i P(B|H_i)P(H_i)$

$$P(H_i|B) \propto P(B|H_i)P(H_i)$$

Normalization factor: $\frac{1}{\sum_i P(B|H_i)P(H_i)}$

Example of Bird sighting

$$\frac{H1|D}{H2|D} = \frac{P(D|H1)P(H1)}{P(D|H2)P(H2)}$$

Calculate Monty Problem using $P(H_i|O_3) \propto P(O_3|H_i)P(H_i)$ $P(O_3|H_i)$: probability that Monty opens door 3 if the prize is behind door i.

Bayesian Parameter Estimates

Example of releasing prisoners: only two prisoners will be released

$$P(A|S_B) = P(AB|S_B) + P(AC|S_B) = rac{1}{1+x}$$

 $P(S_B|BC) = x$: the probability of BC being released while the jailer says B

Bernoulli Distribution

Bernoulli trials : 2 possible outcomes; independent identical events; single parameter x (probability of one outcome); N & N_B

$$P(data|x) = x^{N_B}(1-x)^{N-N_B}$$

$$P(x|data) \propto x^{N_B}(1-x)^{N-N_B} \times P(x|I)$$
 calculate x given data

Central limit theorem

$$egin{aligned} u_i = &< x^i> = \int x^i p(x) dx \ M_i = \int (x - < x >)^i p(x) dx \ M_2 = Var(x) \ ext{Skew}(x) = rac{M_3}{} \end{aligned}$$

Skew(x)= $\frac{M_3}{M_2^{3/2}}$

Gaussian Distribution / Normal distribution

$$p(x) = rac{1}{\sqrt{2\pi}\sigma}exp(-rac{1}{2}[rac{x-\mu}{\sigma}]^2)$$

Cauchy Distribution

$$p(x) = rac{1}{\pi \sigma} (1 + [rac{x - \mu}{\sigma}]^2)^{-1}$$

Slowest falling tails, area=1 (M_0), divergent M_1 and M_2

Semi-invariants: higher moments that are additive

Characteristic Function of a distribution is its Fourier Transform

$$\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} p_X(x) dx$$

$$S=X+Y$$

$$p_S(s) = \int p_X(u) p_Y(s-u) du$$

$$\phi_S(t) = \phi_X(t)\phi_Y(t)$$

the simple sum of a larger number of random variables is normally distributed, with variance equal to the sum of the variances

$$p \sum X_i(\cdot) \sim Normal(0, \sum \sigma_i^2)$$

Maximum a posteriori (MAP): the maximum of the posterior distribution given some data for a uniform prior