

ERC-Lynx

Eviter, réduire et compenser le risque de mortalité du Lynx par collision avec les véhicules de transport

ET SOLIDAIRE

Le modèle Lynx-Habitat-Collisions : un modèle individu-centré spatialement explicite

Le modèle Lynx-Habitat-Collisions : un <u>modèle</u> individu-centré spatialement explicite

Exemples de modèles scientifiques

Un modèle scientifique

 « Un modèle scientifique est une représentation simplifiée, et souvent idéale, de la réalité d'un phénomène permettant d'élaborer une théorie plus ou moins précise adhérant aux observations et de prévoir ce qu'il se passerait dans certaines conditions. »

Un modèle scientifique

 « Un modèle scientifique est une représentation simplifiée, et souvent idéale, de la réalité d'un phénomène permettant d'élaborer une théorie plus ou moins précise adhérant aux observations et de prévoir ce qu'il se passerait dans certaines conditions. »

Le modèle Lynx-Habitat-Collisions : un modèle individu-centré spatialement explicite

Exemple d'un modèle individu-centré spatialement explicite

Pacman

Contrôle du jeu = modèle

Autres exemples SE-IBMs simples

- Un papillon
- Dix papillons, version 1
- Dix papillons, version 2

Autres exemples SE-IBMs simples

- Un papillon
- Dix papillons, version 1

• Dix papillons, version 2

Un modèle individu-centré spatialement explicite

Modèle individu centré :

- Règles au niveau de l'individu
- Résultats au niveau de la population

Spatialement explicite :

Paysage influençant les règles

Le modèle Lynx-Habitat-Collisions: un modèle individu-centré spatialement explicite

- Basé sur travaux antérieurs
- Assemblage de différentes composantes

Déterminants de la probabilité de collisions lynx-véhicules

- 73 collisions documentées 1982-2013 (ONCFS), grille 1x1km²
- Aire d'étude = Jura français
- Approche statistique, plusieurs variables explicatives testées
- Probabilité de collision par cellule en fonction de :
 - Type de structure (autoroute, route principale, route secondaire, rail)
 - Présence du lynx (régulière, récente, irrégulière, absence)
 - Trafic (nombre moyen de voitures/an)

Déterminants de l'habitat favorable du lynx

- Données télémétrie, sur grille résolution 1x1km²
- Approche statistique, plusieurs variables explicatives testées
- Préférences d'habitat du lynx déterminées par :
 - Forêts (+)
 - Arbustes (+)
 - Altitude (+)
 - Pente (+)
 - Centres urbains (-)
 - Lacs (-)
- Préférences classées en catégories

Catégories d'habitat

- Départements français
- Installation
- Dispersion
- Matrice
- Barrière

SE-IBM Mouvement et démographie du lynx

REPRODUCTION

- Femelle résidente de 2 ans et plus
- Mâle résident sur le même territoire de 3 ans et plus
- Probabilité de reproduction = 80% (Breitenmoser et al. 2007)
- 1 ou 2 petits survivants jusqu'à dispersion

- Variabilité dans les résultats dues à :
 - Mortalité (fixe et par collisions)
 - Reproduction
 - Mouvement (type d'habitat et direction)

Variabilité dans les résultats Exemple : Modèle Papillons

Viabilité du lynx Valeurs relatives

Questions?