Robotics

Estimation and Learning with Dan Lee

Week 4. Localization

4.1 Odometry Modeling4.2 Sensor Registration4.3 Particle Filter

Week 4. Localization

4.1 Odometry Modeling

Localization

- Encoder and local sources of information can be very precise ~200,000 pulse/m [1]
- Laser range finding: 3-5 cm obstacle detection [2,3]
- RGB(-D) Vision: 1-10cm
- Gyroscope (turning)
 - Accelerometer integration provides poor accuracy
- Higher precision, but local information

¹ http://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

² http://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx_ew.html

³ http://velodynelidar.com/vlp-16-lite.html

⁴ Robust Real-Time Visual Odometry for Dense RGB-D Mapping

Simple Approach

- Integrate odometry information
- Form a model of the vehicle
 - Skid steer, in this case

 Map ticks of the wheel encoders to translation and rotation of the body

Tracking Angular Movement

 Encoder ticks (e) are observed at the inner and outer radii

$$e_i = \theta r_i \quad e_o = \theta r_o$$

Known width between wheels

$$w = r_o - r_i$$

Calculate angular odometry

$$\theta = \frac{e_o - e_i}{w}$$

Tracking Translational Motion

- Translation requires knowledge of the angular movement
 - Use circular sector approximation, valid for small movements
- Quiz: Spinning in Place

$$y = \frac{e_o + e_i}{2} \cos \theta$$

$$x = \frac{e_o + e_i}{2} \sin \theta$$

Aiding Pure Encoder Odometry

- Encoder measurements can be noisy
- Angular estimate feeds into translation, propagating error
- Solution: Utilize more precise gyroscope for angular change

• Gyroscope is accurate for small Δt

$$\theta = \dot{\theta} \Delta t$$

$$y = \frac{e_o + e_i}{2} \cos \theta$$

$$x = \frac{e_o + e_i}{2} \sin \theta$$

Simple Approach Characteristics

- Local frame of reference of the robot starting point
- Issue: Encoders suffer from slippage, missing counts
- Issue: Gyroscope integration suffers from drift
- Utilizing maps of the world can correct localization errors