SCD Instruction Scheduling

11 Dec. 2020

Pipelined instruction scheduling to calculate half of the **alpha profile**:

Cycle	PE 0	PE 1	PE 2	PE K	PE K+1	PE127
32	X_0^T , Y_0^T	_	_	_	_	
32	MULT	X_1^T , Y_1^T				
160	FFT_32	MULT	X_2^T , Y_2^T			
16	Abs	FFT_32	MULT			
32	$X_0^T Y_1^T$	Abs	FFT_32			
32	MULT	$X_1^T Y_2^T$	Abs			
160	FFT_32	MULT	$X_2^T Y_3^T$			
16	Abs	FFT_32	MULT			
16	Max	Abs	FFT_32		••••	
8	Forward	Max	Abs			
32	$X_0^T Y_2^T$	Forward	Max			
		$X_1^T Y_3^T$	Forward			
			$X_2^T Y_4^T$			
						$X_{127}^T Y_{127}^T$
						MULT
						FFT_32
			$X_2^T Y_{255}^T$			Abs
		$X_1^T Y_{255}^T$	MULT			Max
32	$X_0^T Y_{255}^T$	MULT	FFT_32			alpha_127
32	MULT	FFT_32	Abs			
160	FFT_32	Abs	Max			
16	Abs	Max	alpha_2			
16	Max	alpha_1				
8	alpha_0					
32	$X^{\prime T}_{0}$, $Y^{\prime T}_{0}$					
32	MULT	X_1^T, Y_1^T				

(X, Y are the input signals of size 128*32, streaming into the PE array. alphas are the outputs of size 8*128, which are streaming out of the PE array after processing.)

```
latency = latency of PE_0
```

= latency of 1st iteration + latency of iteration 1-127

= (32 + 32 + 160 + 16) + (32 + 32 + 160 + 16 + 16 + 8) * 127

= 33,768 cycles = 67.5 us (Fmax = 500MHz, Tmin = 2ns)

Throughput = 1 / 67.5 * 1000000 = 14,814 signals/sec

SIMD instruction scheduling to generate half of the SCD matrix:

	detion senedan				1	T _		
Cycle	PE_0	PE_1	PE_2	PE_K	PE_K+1	PE127		
32	X_0^T , Y_0^T							
32		X_1^T , Y_0^T						
32			X_2^T , Y_0^T					
32								
32								
32						$X_{127}^T Y_0^T$		
32	MULT							
160	FFT_32							
16	Abs							
16*128 = 2048	Abs[0][0]	Abs[1][0]	Abs[2][0]					
					•••••	Abs[127][0]		
32	$X_0^T Y_1^T$	$X_1^T Y_1^T$	$X_2^T Y_1^T$			Abs[127][0] $X_{127}^T Y_1^T$		
32	A ₀ I ₁	A ₁ I ₁	MUL	т	•••••	A 127 I 1		
160								
160			FFT_:					
10	Abs							
16*128 = 2048	Abs[0][1]	Abs[1][1]	Abs[2][1]			Abs[127][1]		
32	$X_0^T Y_{127}^T$	$X_1^T Y_{127}^T$	$X_2^T Y_{127}^T$			$X_{127}^T Y_{127}^T$		
32	MULT							
160	FFT 32							
16	Abs							
16*128 = 2048	Abs[0][127]	Abs[1][127]	Abs[2][127]			Aba[427][427]		
						Abs[127][127]		
22	V/T v/T							
32	X_0^T, Y_0^T	**/T **/T						
32		X_1^T, Y_0^T						

No. of latency = load latency + (compute latency + output latency + shift latency)*128 = 32 * 128 + (32 + 16*128 + 32) * 128 = 274,432 cycles = 548.9 us (Fmax = 500MHz, Tmin = 2ns)

Throughput = 1 / 548.9 * 1000000 = 1,822 signals/sec