LINEAR INDEPENDENCE I

Recall from an earlier unit

Recall that if $u_1, u_2, ..., u_k$ are vectors taken from \mathbb{R}^n .

If u_k is a linear combination of $u_1, u_2, ..., u_{k-1}$, then

$$span\{u_1, u_2, ..., u_{k-1}\} = span\{u_1, u_2, ..., u_{k-1}, u_k\}$$

We say that u_k is redundant in the span of $\{u_1, u_2, ..., u_{k-1}, u_k\}$.

Having me around does not 'add value'

The notion of redundancy is closely related to the concept that we will be introducing next.

Linear independence

Let $S = \{u_1, u_2, ..., u_k\} \subseteq \mathbb{R}^n$. Consider the solutions to the following equation (values of $c_1, c_2, ..., c_k$)

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \mathbf{0}$$
 (*)

- 1) Clearly, $c_1 = 0$, $c_2 = 0$,..., $c_k = 0$ is a solution. This is called the trivial solution to (*).
- 2) S is called a linearly independent set if (*) has only the trivial solution. In this case, we say that $u_1, u_2, ..., u_k$ are linearly independent vectors.

Linear independence

Let $S = \{u_1, u_2, ..., u_k\} \subseteq \mathbb{R}^n$. Consider the solutions to the following equation (values of $c_1, c_2, ..., c_k$)

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \mathbf{0}$$
 (*)

- 2) S is called a linearly independent set if (*) has only the trivial solution. In this case, we say that $u_1, u_2, ..., u_k$ are linearly independent vectors.
- 3) S is called a linearly dependent set if (*) has non-trivial solutions. In this case, we say that $u_1, u_2, ..., u_k$ are linearly dependent vectors.

Determine whether (1,-2,3), (5,6,-1), (3,2,1) are linearly independent vectors in \mathbb{R}^3 .

Vector equation:
$$a(1,-2,3)+b(5,6,-1)+c(3,2,1)=(0,0,0)$$

Linear system:
$$\begin{cases} a + 5b + 3c = 0 \\ -2a + 6b + 2c = 0 \\ 3a - b + c = 0 \end{cases}$$

Determine whether (1,-2,3),(5,6,-1),(3,2,1) are linearly independent vectors in \mathbb{R}^3 .

Solving linear system:

$$\begin{pmatrix}
1 & 5 & 3 & 0 \\
-2 & 6 & 2 & 0 \\
3 & -1 & 1 & 0
\end{pmatrix}$$
Gaussian
$$\begin{pmatrix}
1 & 5 & 3 & 0 \\
0 & 16 & 8 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

How many solutions does the linear system have?
$$\begin{cases} a + 5b + 3c = 0 \\ -2a + 6b + 2c = 0 \\ 3a - b + c = 0 \end{cases}$$

Determine whether (1,-2,3), (5,6,-1), (3,2,1) are linearly independent vectors in \mathbb{R}^3 .

The vectors are linearly dependent.

$$\begin{pmatrix} 1 & 5 & 3 & 0 \\ -2 & 6 & 2 & 0 \\ 3 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 5 & 3 & 0 \\ 0 & 16 & 8 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

How many solutions does the vector equation have?

$$a(1,-2,3)+b(5,6,-1)+c(3,2,1)=(0,0,0)$$

Determine whether (1,0,0,1), (0,2,1,0), (1,-1,1,1) are linearly independent vectors in \mathbb{R}^4 .

Vector equation:
$$a(1,0,0,1)+b(0,2,1,0)+c(1,-1,1,1)=(0,0,0,0)$$

$$\begin{cases} a & + c = 0 \\ 2b - c = 0 \\ b + c = 0 \\ + c = 0 \end{cases}$$

Determine whether (1,0,0,1), (0,2,1,0), (1,-1,1,1) are linearly independent vectors in \mathbb{R}^4 .

Solving linear system:

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 2 & -1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{pmatrix}$$
Gaussian
$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 2 & -1 & 0 \\
0 & 0 & \frac{3}{2} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
Elimination

How many solutions does the linear system have?

$$\begin{cases} a & + c = 0 \\ 2b - c = 0 \\ b + c = 0 \\ a & + c = 0 \end{cases}$$

Determine whether (1,0,0,1), (0,2,1,0), (1,-1,1,1) are linearly independent vectors in \mathbb{R}^4 .

Solving linear system:

linearly independent.

$$\begin{pmatrix}
1 & 0 & 1 & | & 0 \\
0 & 2 & -1 & | & 0 \\
0 & 1 & 1 & | & 0 \\
1 & 0 & 1 & | & 0
\end{pmatrix}$$
Gaussian
Elimination
$$\begin{pmatrix}
1 & 0 & 1 & | & 0 \\
0 & 2 & -1 & | & 0 \\
0 & 0 & 3 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

How many solutions does the vector equation have?

$$a(1,0,0,1)+b(0,2,1,0)+c(1,-1,1,1)=(0,0,0,0)$$

Set with only one vector

 $S = \{u\}$. When is S a linearly independent set?

When does the equation $c\mathbf{u} = \mathbf{0}$ have only the trivial solution $c = \mathbf{0}$?

 $c\mathbf{u} = \mathbf{0}$ have only the trivial solution c = 0

 \Leftrightarrow

u is not the zero vector

 $S = \{u\}$ is a linearly independent set if and only if $u \neq 0$.

Set with exactly two vectors

 $S = \{u, v\}$. When is S a linearly independent set?

When does the equation $c_1 \mathbf{u} + c_2 \mathbf{v} = \mathbf{0}$ have non trivial solutions for c_1 and c_2 ?

Suppose $c_1 \neq 0$.

$$c_1 \mathbf{u} + c_2 \mathbf{v} = \mathbf{0} \iff \mathbf{u} = -\left(\frac{c_2}{c_1}\right) \mathbf{v} \iff \mathbf{u} \text{ is a scalar multiple of } \mathbf{v}$$

 $S = \{u, v\}$ is a linearly dependent set if and only if u and v are scalar multiples of each other.

Summary

- 1) Linear independence (definition)
- 2) To check whether a set of vectors are linearly independent:

Vector equation \rightarrow linear system \rightarrow Solve

Only trivial solution

Non trivial solutions exist

 \Rightarrow vectors are

 \Rightarrow vectors are

linearly independent

linearly dependent

3) Linear independence for sets with one or two vectors.