组合数学

Discrete Mathematics

zhaoheji Computer Science Department Shandong University

计数问题?

计数问题?

十进制数串中有偶数个O的数串个数。

0 0 0

Chapter 13

§ 13.1 计数基础

(1) The product rule 乘法规则

定义:

假设一个任务的完成需要进行两步,第一步有 \mathbf{n}_1 种方法完成,第二步有 \mathbf{n}_2 种方法完成,则整个任务的完成有 $\mathbf{n}_1 \times \mathbf{n}_2$ 种方法。

n1×n2:种方法完成任务

(2) The sum rule 加法规则

定义:

如果有n₁种方法完成任务,同时也有n₂种方法 完成任务,而两种方法可以分别独立进行,则完 成任务的方法是n₁+n₂种。

n1种方法完成任务T

n2方法完成任务T

n1+n2种方法完成任务

例IPV4地址的计算。

解:设用 x_A , x_B ,和 x_C 分别代表每类地址总数,则

- x_A : $2^7 1 = 127$ 网络地址。 $2^{24} 2 = 16,777,214$ 主机地址。 $x_A = 127 \cdot 16,777,214 = 2,130,706,178$.
- x_B : $2^{14} = 16,384$ 网络地址。 $2^{16} 2 = 16,534$ 主机地址。 $x_B = 16,384 \cdot 16,534 = 1,073,709,0513$.
- x_C : $2^{21} = 2,097,152$ 网络地址。 $2^8 2 = 254$ 主机地址。 $x_C = 2,097,152 \cdot 254 = 532,676,608$.
- 因此IPv4地址总数是:

$$x = x_A + x_B + x_C$$

= 2,130,706,178 + 1,073,709,056 + 532,676,608
= 3,737.091.842.

§ 13.2 鸽巢原理

举例,如果有13只鸽子要入住12个鸽巢,每个鸽子要有一个鸽巢,则会发生什么情况那。

(A)		P.P.
D.D.	(A)	(A)
BB.	(A)	(A)
	e 1	W.

鸽巢原理: 把K+1个物体放入K个箱子中,至少有一个箱子中至少有两个物体.

例: 有367 人,如果一年有366天,则至少有两人出生 在同一天 定义: 假设p, q为正整数, p, q \geq 2 ,则存在最小正整数R(p, q),使得n \geq R(p, q)时,或者有p人是彼此相识,或者有q人彼此不相识,称R(p, q)为Ramsey数(拉姆齐数)。

Ramsey Numbers 拉姆齐数

p	3	4	5	6	7	8	9	10	11	12	13	14	15
3	6	9	14	18	23	28	36	40 43	46 51	52 59	59 69	66 78	73 88
4		18	25	35 41	49 61	56 84	69 115	80 149	96 191	128 238	133 291	141 349	153 417
5			43 49	58 87	80 143	95 216	121 316	141 442	153	181	193	221	242
6				102 165	111 298	127 495	153 780	177 1171	253	262	278	292	374
7					205 540	216 1031	7 1713	7 2826	322	416	511		
8		2		S	3	282 1870	8 3583	316 6090	3	S	635		703
9				(d) (d)			565 6588	580 12677		23			
10				3				798 23556					37

$$R(p,q) = R(q,p)$$

拉姆齐数的应用图中边着色

k6完全图,对他的边用红,黑两种颜色任意涂色,则必存在同色边的三角形。

§ 13.3 排列与组合

(1) r-排列

从n个有区别物体中选取r个进行排列,计为: P(n,r).

$$P(n,r) = \begin{cases} 1 & n \ge r = 0 \\ 0 & n < r \end{cases}$$

定理:

$$P(n,r) = n(n-1)(n-2)....(n-r+1).$$

$$P(n,r) = n(n-1)(n-2)...(n-r+1) = \frac{n!}{(n-r)!}$$

$$P(n,n) = n(n-1)(n-2)...2 \cdot 1 = n!$$

(2) 允许重复选取的排列

定理:

n个有区别的物体允许重复的选取r个元素进行排列的总数是: nr。

(3) r-组合

从n个物体中不允许重复选取r个的方案数是: C(n,r)。

有时C(n,r) 表示二项式的系数,即: $\binom{n}{r}$

$$C(n,r) = \begin{cases} 1 & n \ge r = 0 \\ 0 & n < r \end{cases}$$

定理:

$$C(n,r) = \binom{n}{r} = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

(4) 允许重复的组合

定理: n个物体允许重复的选取r个的组合数是 C(n+r-1,r)。

15=3+6+3+3 solutions

定理:n个元素允许重复的r组合。

$$C(n+r-1,r)=C(n+r-1, n-1).$$

§13.4 一般的排列和组合

- 1、允许重复的组合计数模型
 - (1)、n个无区别的小球放入m个有区别的箱子里的方案数?
 - 相当于从m类物体中允许重复的选取n个物体的方案数:

选择物体: C(m+n-1,n)、选择类别: C(m+n-1,m-1)

(2)、(x+y+z)⁴展开式有多少项?

$$C(3+4-1,4), C(3+4-1,3-1)$$

更一般情况下,(x+y+z)n展开式有多少项?

$$C(3+n-1,n)=C(3+n-1,3-1)$$

(3)、 $x_1+x_2+x_3=11(n)$ 其中x1≥0,x2≥0,x3≥0 正整数解的个数?

2、分配物体装入箱子的计数模型

n个球	m个盒子	是否允许空盒	计数方案	备注
有区别	有区别	允许空盒	m^n	全排列
无区别	有区别	允许空盒	C(m+n-1,n)	m个有区别的元素,取n个 作允许重复的组合
无区别	有区别	不允许空盒	C(n-1,m-1)	(1)选取m个球每盒一个 (2)n-m有区别的球放入m个有区 别盒子中,允许某盒不放 C(n- m+m-1,n-m)=C(n-1,m-1)
无区别	无区别	允许空盒		一本书的6本复印件放入4个相同的 箱子中
无区别	无区别	不允许空盒		n-m个无区别物体允许为空的放入 无区分m盒子

2、分配物体装入箱子的计数模型

n个球	m个盒子	是否允许空盒	计数方案	备注
有区别	有区别	不允许空盒		映上函数的个数
有区别	无区别	允许空盒	(集合的划分)	4人分配完全相同的3间办公室
有区别	无区别	不允许空盒		Stirling数

小结

- 1、乘法规则,加法法则,鸽巢原理
- 2、排列(允许重复)、组合(允许重复)
- 3、给盒子分装物体的计数模型