Bap. 1 (251013)

Пусть $f(x, y, z) = ((yx) xor (y \lor x)) \lor (z(z xor x))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- **8.** выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 3 (251013)

Пусть $f(x, y, z) = ((xy) \lor (y xor x)) xor ((zx) \lor z)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 5 (251013)

Пусть $f(x, y, z) = ((z \lor y)(x xor z)) \lor ((y xor x)x)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- 3. упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной $\mathcal{J}H\Phi;$
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- 7. проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 2 (251013)

Пусть $f(x, y, z) = ((xz) \lor (yx)) xor ((y \lor z) \lor (x xor z))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- **3.** упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной $\mathcal{J}H\Phi$;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- **8.** выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 4 (251013)

Пусть $f(x, y, z) = ((yz) xor z) xor ((xy) \lor (y \lor x))$:

- **1.** построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 6 (251013)

Пусть $f(x, y, z) = ((z xor y)y) xor ((y \lor x) \lor (xz))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 7 (251013)

Пусть $f(x, y, z) = ((x xor z)(yx)) \lor (y xor (z \lor y))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 9 (251013)

Пусть $f(x, y, z) = ((z xor x)z) \lor ((y xor x)(x \lor y))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКН Φ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 11 (251013)

Пусть $f(x, y, z) = ((z xor x)(x \lor y))((y xor x) \lor (z \lor y))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- 3. упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной $\mathcal{J}H\Phi;$
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 8 (251013)

Пусть $f(x, y, z) = ((x xor z) \lor (zy)) \lor ((xy) xor y)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- **8.** выразить отрицание x и конъюнкцию xy через f и f.

Bap. 10 (251013)

Пусть $f(x, y, z) = ((yx) xor y) \lor ((y \lor z) xor (zx))$:

- **1.** построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 12 (251013)

Пусть $f(x, y, z) = ((yz) xor (x \lor z)) xor ((x \lor y)x)$:

- **1.** построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- 7. проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 13 (251013)

Пусть $f(x, y, z) = ((xy)(z xor x)) xor ((x \lor z) \lor y)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- **8.** выразить отрицание x и конъюнкцию xy через f и f.

Bap. 15 (251013)

Пусть $f(x, y, z) = ((y \lor z) \lor (z \ xor \ x)) \ xor \ ((zy) \ xor \ (yx))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 17 (251013)

Пусть $f(x, y, z) = ((xy) xor (x xor z)) \lor ((x \lor z)y)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- **3.** упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной $\mathcal{J}H\Phi;$
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- 7. проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 14 (251013)

Пусть $f(x, y, z) = ((zx) xor (yz)) \lor ((x \lor z) xor y)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- **3.** упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной $\mathcal{J}H\Phi;$
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- **8.** выразить отрицание x и конъюнкцию xy через f и f.

Bap. 16 (251013)

Пусть $f(x, y, z) = ((yz) \lor (z xor x))(x \lor (x xor y))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 18 (251013)

Пусть $f(x, y, z) = ((yx) \lor (zy)) xor ((zx) \lor (y xor z))$:

- **1.** построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- 7. проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 19 (251013)

Пусть $f(x, y, z) = ((y xor z) xor (xz)) \lor (y(y \lor x))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 21 (251013)

Пусть $f(x, y, z) = ((x \lor y)x) \lor ((z xor y)(x xor z))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКН Φ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 23 (251013)

Пусть $f(x, y, z) = ((x xor z)(y xor x)) \lor (z(y \lor z))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 20 (251013)

Пусть $f(x, y, z) = ((y xor x) \lor (y xor x))((x \lor z)z)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- **3.** упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной $\mathcal{J}H\Phi;$
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- **8.** выразить отрицание x и конъюнкцию xy через f и f.

Bap. 22 (251013)

Пусть $f(x, y, z) = ((xz) \lor (zy)) \lor ((z xor y) xor x)$:

- **1.** построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 24 (251013)

Пусть $f(x, y, z) = ((x xor y)(y \lor x)) xor ((zx)(x \lor z))$:

- **1.** построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- 7. проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 25 (251013)

Пусть $f(x, y, z) = ((z xor x) \lor (xz)) xor ((zy) \lor (y \lor z))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- 4. построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 27 (251013)

Пусть $f(x, y, z) = (y(y \lor x))((x xor z) \lor (y xor z))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 29 (251013)

Пусть $f(x, y, z) = ((x \lor z)(zy)) xor ((x \lor y) xor x)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 26 (251013)

Пусть $f(x, y, z) = (x(y \lor x))((y xor z) xor (x \lor z))$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- **3.** упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной $\mathcal{\overline{H}}\Phi;$
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и f.

Bap. 28 (251013)

Пусть $f(x, y, z) = (x xor (yx)) xor ((z \lor y)(z \lor y))$:

- **1.** построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДНФ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- **7.** проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .

Bap. 30 (251013)

Пусть $f(x, y, z) = ((y xor z) xor (x \lor y))((x \lor z)z)$:

- 1. построить таблицу функции; ответ записать в виде набора значений, упорядоченного в соответствии с лексикографическим порядком набора аргументов;
- **2.** построить СДН Φ этой функции; ответ записать, упорядочив элементарные конъюнкции в лексикографическом порядке;
- упростить полученной выражение с помощью метода минимизирующих карт, ответ записать в виде минимальной ДНФ;
- **4.** построить многочлен Жегалкина исходной функции с помощью метода неопределенных коэффициентов;
- **5.** построить таблицу двойственной функции; ответ записать в виде упорядоченного набора значений;
- **6.** построить СКНФ двойственной функции; ответ записать, упорядочив элементарные дизъюнкции в лексикографическом порядке;
- 7. проверить f и отрицание f на принадлежность основным классам замкнутости T0, T1, L, M, S;
- 8. выразить отрицание x и конъюнкцию xy через f и \overline{f} .