Problem 1

- (13579)(2468) (A)
- (197(45)(67)

Problem 2:

$$(A)$$
 $(3+2i)(3-i) = 2(e-2i)$

(B)
$$(1+i)^{16} = (\sqrt{2}e^{i\pi/4})^{16} = (\sqrt{2})^{16}e^{i4\pi \theta}$$

$$= 2^{8}(\cos(4\pi) + i\sin(4\pi)) = 256$$

Problem 3:

- (A) Suppose Z, w & Un. Then Z=1 and w=1 so (zw)" = 2"w" = 1. Thus zweln.
 - · Also multiplication is associative for complex numbers.
 - · LEUn is an identity element because
 - $1\overline{z} = 21 = 2$ for all $2 \in U_n$. hastly, if $2 \in U_n$, then $\left(\frac{1}{2}\right)^n = \frac{1}{2^n} = \frac{1}{1} = 1$ So $\frac{1}{2} \in U_n$. Since $\frac{1}{2} = 2 = 2 = 1$, we have movesu! Thus Un is a group.

Therefore
$$f(jt_nk) = \begin{cases} 2\pi i (jtk)/n & jtk \leq n \\ 2\pi i (jtk-n)/n & jtk \geq n \end{cases}$$

STACE
$$e^{2\pi i (j+k-n)/n} = e^{2\pi i (j+k)/n} = e^{2\pi i (j+k)/n}$$

There $e^{2\pi i (j+k-n)/n} = e^{2\pi i (j+k)/n} = e^{2\pi i (j+k)/n}$
 $e^{2\pi i (j+k-n)/n} = e^{2\pi i (j+k)/n} = e^{2\pi i (j+k)/n}$

Lastly, we know $U_n = \begin{cases} 2\pi i k/n \\ k=0,1,...,n-1 \end{cases}$ So clearly f is swjective. Since $|U_n| = |\mathcal{R}_{kn}|$ this implies f is bijective. Hence it is an isomorphism

Problem 4:

(A) First of all, an automorphism will have to send a vertex to another vertex with the same number of edges coming out of it. Thus an automorphism must send 1+1 and 6+6 or 1+6 and 6+1.

Case I (1+1 and 6+6): Since I and 2 have to be connected, this forces 2+2. Likewise 5+5. So the only automorphisms we get are

id: 2 h 2 5 h 5 or fi 2 h 2 5 h 5 3 h 3 6 h 6 3 h 4 6 h 6

Case II (1+6 and (e++1): Sonce 1 and 2 have to be connected, this forces 2++5. Likewise 5++2 so the only automorphisms we get are

9:21=5 51=2 OR h:21=5 51=2 31=3 61=6 31=4 61=6

The multiplication table is

6	īd	ç	9	h
ìd	id	4	9	h
f	f	id	h	g
g	9	h	id	ę
h	h	0	ρ	id
	'	y	†	

Composition is assoc.

and we have an identity id.

Each map is its own

Thurse, so we have

Thurses. Thus this

is a group.