FONDAMENTI DI INFORMATICA

Alessandro Renda

Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste

RAPPRESENTAZIONE DEI NUMERI

Anno Accademico 2024/2025

Introduzione

Codifica binaria

- Necessità di ottenere una rappresentazione dell'informazione su cui il sistema di calcolo sia in grado di operare
- La codifica usata nei calcolatori è quella binaria
- Convenzionalmente, i simboli usati sono 0 e 1
- La cifra binaria prende il nome di bit (Blnary digiT)

Codifica binaria: perchè

- Transistor: componente elettronico che può essere usato come interruttore
 - Quando alla base B si applica un'opportuna tensione V_i , l'interruttore è chiuso
 - La corrente fluisce fra collettore C ed emettitore E
 - La tensione in uscita V_{out} è nulla
 - Quando alla base B la tensione applicata è nulla, l'interruttore è aperto
 - La corrente non fluisce fra collettore C ed emettitore E
 - La tensione in uscita V_{out} è pari a V_+

• $\sim 10~000~000~000$ (decine / centinaia di miliardi) transistor in un nostro PC

Codifica binaria: perchè

- Si potrebbero rappresentare elettronicamente più cifre? Sì, ma...
 - Maggiore consumo energetico
 - Maggiore dissipazione del calore
 - Minore affidabilità dei dispositivi
 - Minore velocità di funzionamento
- Il transistor permette di rappresentare 0 e 1 elettronicamente
 - Costo relativamente basso, efficienza relativamente alta

Codifica binaria

Codifiche notevoli

 Binaria 	0, 1	1101 ₂
-----------------------------	------	-------------------

- Decimale 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 13₁₀
- Esadecimale (HEX) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F $D_{16} = 0xD$

- In pratica, i simboli dell'alfabeto che vengono usati in una generica base b sono i primi b della sequenza $(0,1,\ldots,9,A,B,\ldots,Z)$
 - dove A = 10, B = 11 e così via

https://xkcd.com/953/

 1990_{10}

- Rappresentazione in base 10 di un valore
- «1» è detta cifra più significativa
- «0» è detta cifra meno significativa

- Il codice sfrutta un **alfabeto:** insieme finito di b elementi, da 0 a b-1
- Notazione posizionale: il codice per rappresentare i numeri è basato sulla posizione delle cifre

$$1990_{10} = 1 \cdot 1000 + 9 \cdot 100 + 9 \cdot 10 + 0$$
$$1990_{10} = 1 \cdot 10^3 + 9 \cdot 10^2 + 9 \cdot 10^1 + 0 \cdot 10^0$$

- ullet Ogni cifra è moltiplicata per la potenza della costante b detta **base**
- Nella determinazione del valore, ogni cifra della rappresentazione assume un peso che dipende dalla posizione in cui è collocata

- Con k cifre e un alfabeto con k simboli si possono rappresentare k^k elementi
- L'intervallo di valori che possiamo rappresentare è $[0 \dots b^k 1]$

Esempio: b = 10, k = 3 000 001 002 003 ... 998 999

Conversioni di base: da base b a 10

• «Ogni cifra è moltiplicata per la potenza di una costante b detta **base**»

$$x = \sum_{i=0}^{k-1} a_i \cdot b^i = a_{k-1} \cdot b^{k-1} + \dots + a_1 \cdot b^1 + a_0 \cdot b^0$$

$$21011_3 = 2 \cdot 3^4 + 1 \cdot 3^3 + 0 \cdot 3^2 + 1 \cdot 3^1 + 1 \cdot 3^0$$

= $2 \cdot 81 + 1 \cdot 27 + 0 \cdot 9 + 1 \cdot 3 + 1 \cdot 1$
= 193_{10}

Conversioni di base: da base b a 10

$$1B_{12} = 1 \cdot 12^{1} + 11 \cdot 12^{0}$$
$$= 1 \cdot 12 + 11 \cdot 1$$
$$= 23_{10}$$

Esercizio

$$3F4_{16} =$$

Esercizio

$$3F4_{16} = 3 \cdot 16^{2} + 15 \cdot 16^{1} + 4 \cdot 16^{0}$$

= $3 \cdot 256 + 15 \cdot 16 + 4 \cdot 1$
= 1012_{10}

- Si calcola la divisione intera tra il numero (e i successivi quozienti) e la base
- Si registrano i resti delle divisioni fino a quando il quoziente è nullo
- Il valore in base b è costituito dai resti letti al contrario

Esempio: trasformazione del valore 22_{10} in base b=2

valore	base	quoziente	resto
22	2	11	0
11	2	5	1
5	2	2	1
2	2	1	0
1	2	0	1

$$22_{10} = 10110_2$$

Esempio: trasformazione del valore 179_{10} in base b = 12

valore	base	quoziente	resto
179	12	14	11
14	12	1	2
1	12	0	1

$$179_{10} = 12B_{12}$$

$$x = \sum_{i=0}^{k-1} a_i \cdot b^i = a_{k-1} \cdot b^{k-1} + \dots + a_1 \cdot b^1 + a_0 \cdot b^0$$

$$= a_0 + \sum_{i=1}^{k-1} a_i \cdot b^i$$

$$= a_0 + b \cdot \sum_{i=1}^{k-1} a_i \cdot b^{i-1}$$

$$= a_0 + b \cdot q_1$$

con
$$0 \le a_0 < b$$
 e $q_1 = \sum_{i=1}^{k-1} a_i \cdot b^{i-1} > 0$

$$x = a_0 + b \cdot q_1$$

• Il valore a_0 è il **resto** della divisione intera x/b

Dato $x = a_0 + b \cdot q_1$, analogamente si ricava:

$$q_{1} = \sum_{i=1}^{k-1} a_{i} \cdot b^{i-1} = a_{1} + b \cdot \sum_{i=2}^{k-1} a_{i} \cdot b^{i-1} = a_{1} + b \cdot q_{2}$$

$$q_{2} = \sum_{i=2}^{k-1} a_{i} \cdot b^{i-1} = a_{2} + b \cdot \sum_{i=2}^{k-1} a_{i} \cdot b^{i-1} = a_{2} + b \cdot q_{3}$$

• • •

• I valori a_i (con i > 0) sono i **resti** della divisione intera q_i/b , dove il valore q_i è il **quoziente** di q_{i-1}/b

• L'ultimo coefficiente (ovvero la cifra più significativa) si ottiene quando si arriva ad avere un quoziente

$$a_{k-1} = q_{k-1} < b$$

• Il valore in base b è costituito dai **resti letti al contrario** a_{k-1} , a_{k-2} , ... a_1 , a_0

Esercizio

Esempio: trasformazione del valore 672_{10} in base b=16

Esercizio

Esempio: trasformazione del valore 672_{10} in base b=16

valore	base	quoziente	resto
672	16	42	0
42	16	2	10
2	16	0	2

$$672_{10} = 2A0_{16}$$

- In certi ambiti il numero binario può essere lungo e scomodo da usare. Esempi:
 - MAC address: codice di 48 bit associato ad ogni dispositivo di rete
 - Codifica RGB: codice di 24 bit per la rappresentazione di un colore a partire dai primari
- Si raggruppano le cifre a gruppi di 4, e si convertono in esadecimale $(2^4 = 16)$

$$10011011_2 = 1001 \ 1011$$

= $9B_{16}$

- · A ogni cifra esadecimale si fa corrispondere una sequenza di quattro bit
- Infine si concatenano le sequenze di bit ottenute

Esempio:: trasformazione del valore $FA5_{16}$ in base b=2

$$F_{16} = 15_{10} = 1111_2$$

 $A_{16} = 10_{10} = 1010_2$
 $5_{16} = 5_{10} = 0101_2$

$$FA5_{16} = 1111\ 1010\ 0101_2$$

thon

• Da decimale a binario, ottale, esadecimale

```
>>> bin (42)
'0b101010'
```

```
>>> hex (42)
'0x2a'
```

• Da binario, ottale, esadecimale a decimale

```
>>> int("2a", 16)
```

Operazioni aritmetiche con notazione posizionale

- Somma:
 - si procede da destra a sinistra, riportando l'eccedenza sulla colonna successiva

Esempio:

$$137_{10} + 492_{10} = 629_{10}$$

eccedenza	1			
\boldsymbol{x}	1	3	7	+
у	4	9	2	=
x + y	6	2	9	

$$0101_2 + 1001_2 = 1110_2$$

eccedenza			1		
x	0	1	0	1	+
y	1	0	0	1	
x + y	1	1	1	0	

Operazioni aritmetiche con notazione posizionale

• Somma:

- Si procede da destra a sinistra, riportando l'eccedenza sulla colonna successiva
- Se le cifre non sono sufficienti per rappresentare il valore del risultato: overflow

Esempio: supponiamo di avere 4 bit a disposizione

$$1101_2 + 1001_2 = 0110_2$$
$$13 + 9 = 6$$

Overflow

Overflow aritmetico

- Errore che si verifica quando il **risultato di un'operazione** non è rappresentabile con la medesima codifica e il numero di cifre degli operandi
- Si verifica nella somma di numeri positivi:
 - Quando ho un numero fisso di bit a disposizione
 - Quando ho un riporto sul bit più significativo

Possiamo accorgercene

Python sfrutta questa possibilità e garantisce che l'overflow fra interi non si verifichi mai

Limiti nella rappresentazione dei dati

I'M GLAD WE'RE SWITCHING TO 64-BIT, BECAUSE I WASN'T LOOKING FORWARD TO CONVINCING PEOPLE TO CARE ABOUT THE UNIX 2038 PROBLEM.

https://xkcd.com/607/

Y2K problem aka "Millennium Bug"

Binary : 01111111 11111111 11111111 11110000

Decimal: 2147483632

Date : 2038-01-19 03:13:52 (UTC

Date : 2038-01-19 03:13:52 (UTC

Y2K38 problem

https://en.wikipedia.org/wiki/Year_2000_problem#Documented_errors

Codifica binaria

• Le prime potenze di 2

2^0	1		
2^1	2	2 ¹¹	2048
2^2	4	2 ¹²	4096
2^3	8	2 ¹³	8192
2^4	16	2 ¹⁴	16384
2^5	32	2 ¹⁵	32768
2^6	64	2 ¹⁶	65536
2 ⁷	128	2 ¹⁷	131072
28	256	2 ¹⁸	262144
2 ⁹	512	2 ¹⁹	524288
2 ¹⁰	1024	2^{20}	1048576

Codifica binaria

• Grandezze fondamentali

simbolo	nome	valore		
b	bit	1 bit: 0 o 1		
В	byte	8 bit		
kB	kilobyte	2 ¹⁰ byte	2 ¹⁰ byte	
MB	megabyte	2 ¹⁰ kilobyte	2 ²⁰ byte	
GB	gigabyte	2 ¹⁰ megabyte	2 ³⁰ byte	
ТВ	terabyte	2 ¹⁰ gigabyte	2 ⁴⁰ byte	
РВ	petabyte	2 ¹⁰ terabyte	2 ⁵⁰ byte	
EB	exabyte	2 ¹⁰ petabyte	2 ⁶⁰ byte	
ZB	zettabyte	2 ¹⁰ exabyte	2 ⁷⁰ byte	
YB	yottabyte	2 ¹⁰ zettabyte	2 ⁸⁰ byte	

SI	Differenza %	
10 ³	2.40	
10 ⁶	4.86	
10 ⁹	7.37	
10^{12}	9.95	
10 ¹⁵	12.59	
10^{18}	15.29	
10^{21}	18.06	
10^{24}	20.89	

Codifica binaria dei numeri interi

- Di seguito, si presentano pregi e difetti di due codifiche
 - Modulo e segno
 - Complemento a due: tipicamente adottata nei calcolatori elettronici

Codifica binaria dei numeri interi: modulo e segno

• Si codifica il segno sul bit più significativo. I restanti bit codificano il modulo.

b = 2	b = 10	b = 2	b = 10
000	0	100	-0
001	1	101	-1
010	2	110	-2
011	3	111	-3

- Osservazioni:
 - Con k cifre, consente di rappresentare i numeri da $-(2^{k-1}-1)$ a $+(2^{k-1}-1)$
 - La codifica per valori positivi coincide con la codifica binaria naturale
 - La rappresentazione dello 0 è duplice (nell'esempio con k=3: $\{000,100\}$)

Codifica binaria dei numeri interi: modulo e segno

- Osservazioni (continua):
 - Non consente di svolgere velocemente le principali operazioni aritmetiche: non si possono usare le stesse regole usate per i numeri naturali

x_{10}	x_{C2}
-3	111
-2	110
-1	101
-0	100
0	000
1	001
2	010
3	011

Esempio: come non si può fare

eccedenza				
x = -2	1	1	0	+
y = +1	0	0	1	Е
x + y = -1	1	1	1	

• Il bit più significativo rappresenta il segno, è fattore additivo e ha peso -2^{k-1}

x_{10}	x_{C2}
0	000
1	001
2	010
3	011

x_{10}	x_{C2}
-1	111
-2	110
-3	101
-4	100

Esempio:

$$010_{C2} = -0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$
$$= 2_{10}$$

Esempio:

$$110_{C2} = -1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$
$$= -2_{10}$$

Codifica binaria dei numeri interi

Figura 2.8
Interpretazione
grafica delle
rappresentazioni dei
numeri interi.

Esercizio

```
Esempio: trasformazione del valore 10101101 in base b = 10
Esempio: trasformazione del valore 00101101_2 in base b=10
Esempio: trasformazione del valore 00101101_{C2} in base b=10
Esempio: trasformazione del valore 10101101_{C2} in base b=10
Esempio: trasformazione del valore 011111111_{C2} in base b=10
Esempio: trasformazione del valore 10000000_{C2} in base b=10
Esempio: trasformazione del valore 11111111_{C2} in base b=10
Esempio: trasformazione del valore 0000000_{C2} in base b=10
```

• Altra interpretazione: dato x il numero da rappresentare e k il numero di bit a disposizione, si codifica x con il valore binario naturale corrispondente a $2^k + x$

<i>x</i> ₁₀	$\left(2^3+x\right)_{10}$	$\left(2^3+x\right)_2$	x_{C2}
0	8	1000	000
1	9	1001	001
2	10	1010	010
3	11	1011	011

x_{10}	$\left(2^3+x\right)_{10}$	$\left(2^3+x\right)_2$	x_{C2}
-1	7	0111	111
-2	6	0110	110
-3	5	0101	101
-4	4	0100	100

• Osservazioni:

- Consente di rappresentare i numeri da $-(2^{k-1})$ a $+(2^{k-1}-1)$
- La codifica per x positivi coincide con la codifica binaria naturale
- C'è un'unica rappresentazione dello 0

- Osservazioni (continua):
 - La codifica in complemento a 2 per x negativi può essere svolta **meccanicamente**
 - Si rappresenta il numero negativo binario senza tenere conto del segno
 - Si invertono i valori dei singoli bit
 - Si aggiunge 1 al risultato

x_{10}	$ x _2$	Inverto	Aggiungo 1
-1	001	110	111
-2	010	101	110
-3	011	100	101
-4	100	011	100

- Osservazioni (continua):
 - Il bit più significativo rappresenta il segno: è un fattore additivo e ha peso -2^{k-1}
 - Consente di svolgere velocemente le principali operazioni aritmetiche:

x_{10}	x_{C2}
-4	100
-3	101
-2	110
-1	111
0	000
1	001
2	010
3	011

eccedenza				
x = -2	1	1	0	+
y = +1	0	0	1	=
x + y	1	1	1	

- Osservazioni (continua):
 - Il bit più significativo rappresenta il segno: è un fattore additivo e ha peso -2^{k-1}
 - Consente di svolgere velocemente le principali operazioni aritmetiche:

Esempio:

x_{10}	$ x _2$	Inverto	Aggiungo 1
-25	0001 1001	1110 0110	1110 0111
-65	0100 0001	1011 1110	1011 1111
-90	0101 1010	1010 0101	1010 0110

eccedenza	1	1	1	1	1	1	1		
-25	1	1	1	0	0	1	1	1	+
-65	1	0	1	1	1	1	1	1	=
x + y	1	0	1	0	0	1	1	0	

Nota: il bit in eccesso viene scartato

Operazioni aritmetiche in complemento a 2

Esempio:

x_{10}	x_{C2}
-25	1110 0111
+65	0100 0001
+40	0010 1000

eccedenza	1				1	1	1		
-25	1	1	1	0	0	1	1	1	+
+65	0	1	0	0	0	0	0	1	=
x + y	0	0	1	0	1	0	0	0	

Nota: il bit in eccesso viene scartato

• Il riporto sul bit più significativo non è indicativo della condizione di overflow

Overflow

- L'overflow è associato ad un'anomalia di segno
- Consideriamo il caso della somma di due numeri A e B espressi in C2
 - Se A e B hanno segno diverso (**discorde**): non può esserci overflow
 - Se A e B hanno lo stesso segno (concorde)
 - $A \ge 0, B \ge 0, A + B \ge 0$
 - $A \ge 0, B \ge 0, A + B < 0$
 - A < 0, B < 0, A + B < 0
 - $A < 0, B < 0, A + B \ge 0$

Esempio:

eccedenza		1	1						
80	0	1	0	1	0	0	0	0	+
52	0	0	1	1	0	1	0	0	Е
x + y	1	0	0	0	0	1	0	0	

Anomalia di segno indica overflow

Esempio:

Anomalia di segno indica overflow

Esempio:

Gli operandi hanno segno discorde: non può esserci overflow

Operazioni elementari sui bit

+	0	1
0	0	1
1	1	0

AND

1

0

×	0	1
0	0	0
1	0	1

	NOT
0	1
1	0

Negazione	Congiunzione logica

OR	0	1
0	0	1
1	1	1

Disgiunzione inclusiva

XOR	0	1
0	0	1
1	1	0

Disgiunzione esclusiva

- Di seguito, si presentano pregi e difetti di due codifiche
 - Virgola fissa
 - Virgola mobile

Rappresentazione di numeri reali: virgola fissa

- Il sistema di calcolo utilizza k cifre per la rappresentazione
 - Le f cifre più a destra sono dedicate alla parte frazionaria
 - Le k-f cifre più a sinistra sono dedicate alla parte intera
- Per la rappresentazione della parte intera x_I : metodo della divisione (già visto)
- Per la rappresentazione della parte frazionaria x_F :

$$x_F = a_{-1} \cdot b^{-1} + a_{-2} \cdot b^{-2} + a_{-3} \cdot b^{-3} + \cdots$$

$$b \cdot x_F = b \cdot (a_{-1} \cdot b^{-1} + a_{-2} \cdot b^{-2} + a_{-3} \cdot b^{-3} + \cdots)$$

$$= a_{-1} + a_{-2} \cdot b^{-1} + a_{-3} \cdot b^{-2} + \cdots$$

• a_{-1} si ottiene come parte intera di $b \cdot x_F$. Analogo per i coefficienti successivi

Esempio: trasformazione del valore 3.125_{10} in base b=2 con k=7, f=4

valore	base	quoziente	resto
3	2	1	1
1	2	0	1

valore	base	prodotto	parte decimale	parte intera
0.125	2	0.250	.250	0
0.250	2	0.500	.500	0
0.500	2	1.000	.000	1

$$3.125_{10} = 011.0010_2$$

Esempio: trasformazione del valore 0.1_{10} in base b=2 con k=7, f=4

valore	base	prodotto	parte decimale	parte intera
0.1	2	0.2	.2	0
0.2	2	0.4	.4	0
0.4	2	0.8	.8	0
0.8	2	1.6	.6	1

- Ho esaurito le cifre a disposizione: il risultato è 000.0001
- L'ultima parte decimale è diversa da 0: la rappresentazione che ottengo è approssimata

Esempio: trasformazione del valore 0.1_{10} in base b=2

valore	base	prodotto	parte decimale	parte intera
0.1	2	0.2	.2	0
0.2	2	0.4	.4	0
0.4	2	0.8	.8	0
0.8	2	1.6	.6	1
0.6	2	1.2	.2	1
0.2	2	0.4	.4	0
0.4	2	0.8	.8	0
0.8	2	1.6	.6	1
0.6	2	1.2	.2	1

Python

• Rappresenta il valore 0.1 su 50 cifre decimali

```
>>> print(f'{0.1:.50}')
0.100000000000000055511151231257827021181583404541
```

Anche in base decimale si verifica lo stesso fenomeno, per altri valori:

$$\frac{1}{2} = 0.5$$

$$\frac{1}{3} = 0.333333...$$

- In un sistema di calcolo si può operare soltanto su un numero finito di cifre
- Ha senso utilizzare la stessa *precisione* (errore massimo in valore assoluto) per numeri molto piccoli e numeri molto grandi?
- L'errore massimo dovrebbe essere piccolo per numeri piccoli, e può essere più grande per numeri grandi

Rappresentazione di numeri reali: virgola mobile

• Per numeri grandi o piccoli, diventa preferibile utilizzare la notazione scientifica

$$0.00072345_{10} = 0.72345 \cdot 10^{-3}$$

$$723450000_{10} = 0.72345 \cdot 10^9$$

- Vale lo stesso anche in altre basi
- In generale un numero è rappresentato in base b come:

$$(-1)^{s} \cdot m \cdot b^{e}$$

- s: segno
- m: mantissa
- e: esponente

- Per la rappresentazione in virgola mobile (floating point) si utilizzano:
 - 1 bit per il segno
 - k_m bit per la mantissa
 - k_e bit per l'esponente

Esempio: trasformazione del valore 13.75_{10} in base b=2 con k=16,

$$k_e = 7 \text{ e } k_m = 8$$

- Bit di segno: 0
- Conversione in binario della parte intera: $13_{10} = 1101_2$
- Conversione in binario della parte frazionaria: $0.75_{10} = 0.11_2$
- Normalizzazione della mantissa: $1101.11_2 = 1.10111_2 \cdot 2^3$
- Calcolo esponente (bias pari a $2^{k_e-1} 1 = 63$): $66_{10} = 1000010_2$

<u>+</u>	
0	

Esponente						
1	0	0	0	0	1	0

Mantissa							
1	0	1	1	1	0	0	0

Rappresentazione di numeri reali: virgola mobile

- Nella rappresentazione in virgola mobile i valori rappresentabili non sono equidistanti
- La precisione della codifica dipende dal modulo del valore rappresentato

- Per la rappresentazione in virgola mobile (floating point) si utilizzano:
 - 1 bit per il segno
 - k_m bit per la mantissa
 - k_e bit per l'esponente
- La IEEE (Institute of Electrical and Electronic Engineers) ha definito uno standard per la rappresentazione in virgola mobile dei reali nei sistemi di calcolo

IEEE 754	Segno	k_e (esponente)	k_m (mantissa)
Precisione singola (32 bit)	1	8	23
Precisione doppia (64 bit)	1	11	52

Significato	Segno	Valore esponente	Valore mantissa
0	0/1	0	0
±∞	0/1	Tutti 1	0
NaN (not a number)	0/1	Tutti 1	≠ 0

• Considerando le configurazioni speciali, gli intervalli di rappresentabilità variano:

Area di overflow negativo $(-\infty)$	Numeri negativi con mantissa normalizzata	Area di underflow	Numeri positivi con mantissa normalizzata	Area di overflow positivo ($+\infty$)
-10 ³⁸	Ni c	umeri negativi Numeri pon mantissa con man	ntissa	10 ³⁸

Precisione	Esponente	Valore	Valore
singola	-127	2^{-127}	$\approx 10^{-38}$
singola	127	2^{127}	$\approx 10^{38}$
doppia	-1023	2^{-1023}	$\approx 10^{-308}$
doppia	+1023	2^{-1023}	$\approx 10^{308}$