1. If *F* is function such that
$$F(0) = 2$$
, $F(1) = 3$, $F(x+2) = 2F(x) - F(x+1)$ for $x \ge 0$, then $F(5)$ is equal to

(a) -7
(b) -3

- (c) 17 (d) 13

 2. Let S be a set containing n elements. Then, number of binary operations on S is

 (a) nⁿ (b) 2^{n²}

 (c) n^{n²}

 (d) n²
- (c) n^{n^2} (d) n^2 3. The numerically greatest term in the expansion of $(3-5x)^{11}$ when $x=\frac{1}{5}$, is

 (a) 55×3^9 (b) 55×3^6

(c) 45×3^9

(d) 45×3^6

- 4. The number of solutions of the equation $\sin(e^x) = 5^x + 5^{-x}$, is

 (a) 0 (b) 1
 - (a) 0 (b) 1 (c) 2 (d) infinitely many
- 5. If $a^x = b^y = c^z = d^u$ and a, b, c, d are in GP, then x, y, z, u are in (a) AP (b) GP
- **6.** If z satisfies the equation |z| z = 1 + 2i, then z is equal to

(d) None of these

(a) $\frac{3}{2} + 2i$ (b) $\frac{3}{2} - 2i$ (c) $2 - \frac{3}{2}i$ (d) $2 + \frac{3}{2}i$

(c) HP

14. If $3 \sin \theta + 5 \cos \theta = 5$, then the value of

22. If $\int f(x) dx = f(x)$, then $\int \{f(x)\}^2 dx$ is

(a)
$$\frac{1}{2} \{f(x)\}^2$$
 (b) $\{f(x)\}^3$

(b)
$$\{f(x)\}$$

(c)
$$\frac{\{f(x)\}^3}{3}$$
 (d) $\{f(x)\}^2$

(d)
$$\{f(x)\}^2$$

23.
$$\int \sin^{-1} \left\{ \frac{(2x+2)}{\sqrt{4x^2+8x+13}} \right\} dx$$
 is equal to

(a)
$$(x+1) \tan^{-1} \left(\frac{2x+2}{3} \right)$$

$$-\frac{3}{4}\log\left(\frac{4x^2+8x+13}{9}\right)+c$$

(b)
$$\frac{3}{2} \tan^{-1} \left(\frac{2x+2}{3} \right)$$

$$-\frac{3}{4}\log\left(\frac{4x^2+8x+13}{9}\right)+c$$

(c)
$$(x+1) \tan^{-1} \left(\frac{2x+2}{3} \right)$$

$$-\frac{3}{2}\log(4x^2+8x+13)+c$$

(d)
$$\frac{3}{2}(x+1)\tan^{-1}\left(\frac{2x+2}{3}\right)$$

 $-\frac{3}{4}\log(4x^2+8x+13)+c$

24. If the equation of an ellipse $3x^2 + 2y^2 + 6x - 8y + 5 = 0$, then which of the following are true?

(a)
$$e = \frac{1}{\sqrt{3}}$$

- (b) centre is (-1, 2)
- (c) foci are (-1, 1) are (-1, 3)
- (d) All of the above
- 25. The equation of the common tangents to the two hyperbolas $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$ and $\frac{y^2}{x^2} - \frac{x^2}{x^2} = 1$,

are

(a)
$$y = \pm x \pm \sqrt{b^2 - a^2}$$

(b)
$$y = \pm x \pm \sqrt{a^2 - b^2}$$

(c)
$$y = \pm x \pm \sqrt{a^2 + b^2}$$

(d)
$$y = \pm x \pm (a^2 - b^2)$$

26. Domain of the function $f(x) = \log_x \cos x$, is

(a)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{1\}$$
 (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{1\}$

b)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{1\}$$

(c)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 (d) None of these

27. Range of the function $y = \sin^{-1}\left(\frac{x^2}{1+x^2}\right)$, is

(a)
$$\left(0, \frac{\pi}{2}\right)$$
 (b) $\left[0, \frac{\pi}{2}\right]$ (c) $\left(0, \frac{\pi}{2}\right]$ (d) $\left[0, \frac{\pi}{2}\right]$

(b)
$$\left[0,\frac{\pi}{2}\right]$$

(c)
$$\left[0, \frac{\pi}{2}\right]$$

(d)
$$\left[0,\frac{\pi}{2}\right]$$

28. If $x = \sec \theta - \cos \theta$, $y = \sec^n \theta - \cos^n \theta$, then $(x^2 + 4) \left(\frac{dy}{dx}\right)^2$ is equal to

(a)
$$n^2(y^2-4)$$

(b)
$$n^2 (4 - y^2)$$

(a)
$$n^2 (y^2 - 4)$$
 (b) $n^2 (4 - y^2)$ (c) $n^2 (y^2 + 4)$ (d) None of these

29. If $y = \sqrt{x + \sqrt{y + \sqrt{x + \sqrt{y + \dots \infty}}}}$, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{y+x}{y^2-2x}$$

(a)
$$\frac{y+x}{y^2-2x}$$
 (b) $\frac{y^3-x}{2y^2-2xy-1}$

(c)
$$\frac{y^3 + x}{2y^2 - x}$$

(c) $\frac{y^3 + x}{2y^2 - x}$ (d) None of these

30. If $\int_1^x \frac{dt}{|t| \sqrt{t^2 - 1}} = \frac{\pi}{6}$, then x can be equal to

(a)
$$\frac{2}{\sqrt{3}}$$

(d) None of these

31. The area bounded by the curve $y = |\sin x|$, x-axis and the lines $|x| = \pi$, is

- (a) 2 sq unit
- (b) 1 sq unit
- (c) 4 sq unit
- (d) None of these

32. The degree of the differential equation of all curves having normal of constant length c is

(a) 1

(b) 3

(c) 4

(d) None of these

33. If $\mathbf{a} = 2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$, $\mathbf{b} = -\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\mathbf{c} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}}$, then $\mathbf{a} + t \mathbf{b}$ is perpendicular to \mathbf{c} , if t is equal to

(a) 2

(b) 4

(c) 6

(d) 8

34. The distance between line the

$$\vec{\mathbf{r}} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + \lambda (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}) \quad \text{and} \quad \text{the}$$

$$\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5, \text{ is}$$
(a)

(a)
$$\frac{10}{3}$$
 (b) $\frac{10}{\sqrt{3}}$

(c)
$$\frac{10}{3\sqrt{3}}$$
 (d) $\frac{10}{9}$

35. The equation of sphere concentric with the sphere
$$x^2 + y^2 + z^2 - 4x - 6y - 8z - 5 = 0$$
 and which passes through the origin, is

(a)
$$x^2 + y^2 + z^2 - 4x - 6y - 8z = 0$$

(b) $x^2 + y^2 + z^2 - 6y - 8z = 0$

(c)
$$x^2 + y^2 + z^2 = 0$$

(d)
$$x^2 + y^2 + z^2 - 4x - 6y - 8z - 6 = 0$$

36. If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and

If the lines
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then the value of

k, is
(a)
$$\frac{3}{2}$$
 (b) $\frac{9}{2}$
(c) $-\frac{2}{9}$ (d) $-\frac{3}{2}$

(c)
$$-\frac{2}{9}$$
 (d) $-\frac{3}{2}$

line 37. The two curves
$$y = 3^x$$
 and $y = 5^x$ intersect at an angle

(a) $\tan^{-1} \left(\frac{\log 3 - \log 5}{1 + \log 3 \log 5} \right)$

(b)
$$\tan^{-1} \left(\frac{\log 3 \log 5}{1 - \log 3 \log 5} \right)$$

(c)
$$\tan^{-1} \left(\frac{\log 3 + \log 5}{1 + \log 3 \log 5} \right)$$

(d)
$$\tan^{-1} \left(\frac{\log 3 - \log 5}{1 - \log 3 \log 5} \right)$$

38. The equation
$$\lambda x^2 + 4xy + y^2 + \lambda x + 3y + 2 = 0$$

39. If two circles
$$2x^2 + 2y^2 - 3x + 6y + k = 0$$

and $x^2 + y^2 - 4x + 10y + 16 = 0$ cut
orthogonally, then the value of k is
(a) 41 (b) 14

(c) 4 (d) 1
40. If
$$A (-2, 1)$$
, $B (2, 3)$ and $C (-2, -4)$ are three points. Then, the angle between BA and BC is

(a) $\tan^{-1} \left(\frac{2}{3}\right)$ (b) $\tan^{-1} \left(\frac{3}{2}\right)$

(c)
$$\tan^{-1}\left(\frac{1}{3}\right)$$
 (d) $\tan^{-1}\left(\frac{1}{2}\right)$

Answer Key

1. d	2. c	3. a	4. a	5. c	6. b	7. c	8. d	9. c	10. c
11. c	12. d	13. c	14. b	15. a	16. a	17. a	18. c	19. c	20. a
21. d 31. c	22. a	23. a	24. d	25. b	26. d	27. b	28. c	29. d	30. a
31. c	32. d	33. d	34. c	35. a	36. b	37. a	38. d	39. c	40. a