

Financial Econometrics Potential Outcomes Framework

Tim C.C. Hung 洪志清

May 2^{nd} , 2022

Causal Effect and Potential Outcomes

- LSE motto: Rerum cognoscere causas
 - → to know the causes of things
- Estimating Causal effect of treatment is a challenging task.
 - Because we can NOT observe counterfactual outcomes if one had chosen different treatments.
- In order to obtain causal effect, we need to compare observed outcomes with counterfactual outcomes.
- The potential outcomes framework provides a way to quantify causal effects.

Causal Effect and Potential Outcomes

Unobservable Counterfactuals

Causal Effect and Potential Outcomes

Textbook resources:

by Joahua Angrist (MIT) and Jorn-steffen Pischke (LSE)

• Slides revised from 楊子霆 (IEAS)

Potential Outcomes Framework

- Treatment: An intervention, whose effect(s) we wish to assess relative to some other (non-)interventions.
- D_i : a dummy that indicates whether individual i receive treatment.

$$D_i = \begin{cases} 1, & \text{if individual } i \text{ received the treatment} \\ 0, & \text{otherwise} \end{cases}$$

- Examples:
 - Attend graduate school or not
 - ▶ Have health insurance or not
 - ▶ Win a lottery or not
 - ▶ Increase corporate tax rate or not
 - Democracy v.s. Dictatorship

Potential Outcomes Framework

• D_i can be a multiple valued (continuous) variable.

$$D_i = s$$

- Examples:
 - Schooling years
 - Number of children
 - Number of polices
 - Number of advertisements
 - Money supply
 - Income tax rate
- ullet In the following slides, we assume treatment variable D_i is a dummy.

Potential Outcomes Framework

- A potential outcome is the outcome that would be realized if the individual received a specific value of the treatment.
- Suppose there are two treatments for each individual:
 - ▶ $D_i = 1$
 - $D_i = 0$
- Thus, each individual i has two potnetial outcomes and one for each value of the treatment:
 - $ightharpoonup Y_i^1$: Potential outcome for an individual i if getting treatment
 - lacksquare Y_i^0 : Potential outcome for an individual i if NOT getting treatment
- Example:
 - Annual earnings if attending graduate school
 - Annual earnings if NOT attending graduate school

Causal Effect

- Causal Effect: the comparisons between the potential outcomes under each treatment.
- The differences between observed (potential) outcome and counterfactual (potential) outcome!
- Individual Treatment Effect (ITE):

$$\tau_i = Y_i^1 - Y_i^0$$

- ► Also called Individual Causal Effect
- ► The difference between an individual *i*'s outcome under treatment v.s. without treatment
- Example:
 - ► The difference in individual *i*'s earnings if he/she attends graduate school v.s. not attending graduate school.
- Almost always unidentified without strong assumptions.

Individual Causal Effect

• Imagine a population with 4 people.

i	Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$
David	3	?	3	1	?
Tina	2	?	2	1	?
Mary	?	1	1	0	?
Bill	?	1	1	0	?

- We want to evaluate the effect of attending graduate school on the annual earnings.
 - $ightharpoonup Y_i$: observed annual earnings for individual i
 - ▶ D_i : Attending graduate school, $D_i = 1$; otherwise, $D_i = 0$
 - $ightharpoonup Y_i^1$: (Potential) annual earnings if individual i attend graduate school
 - $igwedge Y_i^{0}$: (Potential) annual earnings if individual i do not attend grad school

Individual Causal Effect

- What is Individual causal effect of attending graduate school for David?
 - ▶ We only observe earnings for David who attended graduate school
 - ▶ Only observe Y^1
- What is Individual causal effect of attending graduate school for Bill?
 - ▶ We only observe earnings for Bill who did not attend graduate school
 - ▶ Only observe Y^0

Suppose we can observe counterfactual outcomes.

$\underline{}$	Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$
David	3	2	3	1	1
Tina	2	1	2	1	1
Mary	1	1	1	0	0
Bill	1	1	1	0	0

- The ITE for David: $\alpha_{David} = 1$
- The ITE for Bill: $\alpha_{Bill} = 0$

Causal Effect for General Population

- People might be more interested in the causal effect for general population
- We usually cannot rule out that the ITE differs across individuals.
 → effect heterogeneity!
- Thus, ITE might not represent causal effect for general population.
- Understand the treatment effect (causal effect) for general population:
 - ► Estimate the **population average of the individual treatment effects**.
- ullet We usually use $E[Y_i]$ to denote **population average** if Y_i
- ullet Suppose we have a population with N individuals:

$$E[Y_i] = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

Causal Effect for General Population

Average Treatment Effect (ATE):

$$\alpha_{ATE} = E[\tau_i] = E[Y_i^1 - Y_i^0] = \frac{1}{N} \sum_{i=1}^{N} [Y_i^1 - Y_i^0]$$

- Average of ITEs over the population.
 - E.g. Average effect of attending graduate school on annual earnings for the whole population.
 - \rightarrow Average difference between the earnings of the same individuals if they attend graduate schools v.s. if not attending graduate schools!
- We'll spend a lot time trying to identify/estimate ATE!

Average Treatment Effect (ATE)

Missing data problem also arises when we estimate ATE.

i	Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$
David	3	?	3	1	?
Tina	2	?	2	1	?
Mary	?	1	1	0	?
Bill	?	1	1	0	?
$E[Y_i^1]$?				_
$E[Y_i^0]$?			
$E[Y_i^1 - Y_i^0]$?

- What is the effect of attending graduate school on average annual earnings of the whole population (ATE)?
- $\alpha_{ATE} = E[Y_i^1 Y_i^0] = ?$

Average Treatment Effect (ATE)

• Suppose we can observe counterfactual outcomes.

i	Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$
David	3	2	3	1	1
Tina	2	1	2	1	1
Mary	1	1	1	0	0
Bill	1	1	1	0	0
$E[Y_i^1]$	1.75				
$E[Y_i^0]$		1.25			
$E[Y_i^1 - Y_i^0]$					0.5

 What is the effect of attending graduate school on average annual earnings of the whole population (ATE)?

•
$$\alpha_{ATE} = \frac{1+1+0+0}{4} = 0.5$$

Causal Effect for a Specific Sub-population

• Conditional Average Treatment Effect (CATE):

$$\alpha_{CATE} = E[\tau_i | X_i = f] = E[Y_i^1 - Y_i^0 | X_i = f] = \frac{1}{N_f} \sum_{i: X_i = f} [Y_i^1 - Y_i^0]$$

- N_f is the number of units in the sub-population.
 E.g. Average effect of attending graduate school on annual earnings for females.
- More formally, the average difference between the earnings of females if they attend graduate schools v.s. if not attending graduate schools.

Average Treatment Effect on the Treated (ATT):

$$\alpha_{ATT} = E[\tau_i | D_i = 1] = E[Y_i^1 - Y_i^0 | D_i = 1] = \frac{1}{N_1} \sum_{i:D_i = 1} [Y_i^1 - Y_i^0]$$

- $ightharpoonup N_1 = \sum_i D_i$
- ▶ Note that ATT is a special case of CATE.
- Average of ITEs over the treated population. \rightarrow Average effect of attending graduate school on annual earnings for those attending graduate school ($D_i = 1$)
- More formally, the average difference between the earnings of those attending graduate schools v.s. earnings if they had not attended graduate schools.
- We'll also spend a lot time trying to identify/estimate ATT!

Average Treatment Effect on Treated (ATT

Missing data problem also arises when we estimate ATT.

i	Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$
David	3	?	3	1	?
Tina	2	?	2	1	?
Mary	?	1	1	0	?
Bill	?	1	1	0	?
$E[Y_i^1 D_i=1]$	2.5				
$E[Y_i^{0} D_i=1]$?			
$E[Y_i^1 - Y_i^0 D_i = 1]$				•	?

 What is the effect of attending graduate school on average annual earnings for those who choose to attend graduate school (ATT)?

•
$$\alpha_{ATT} = E[Y_i^1 - Y_i^0 | D_i = 1] = ?$$

Average Treatment Effect on Treated (ATT

Suppose we can observe counterfactual outcomes.

i	Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$
David	3	2	3	1	1
Tina	2	1	2	1	1
Mary	1	1	1	0	0
Bill	1	1	1	0	0
$E[Y_i^1 D_i=1]$	2.5				
$E[Y_i^0 D_i=1]$		1.5			
$E[Y_i^1 - Y_i^0 D_i = 1]$					1

 What is the effect of attending graduate school on average annual earnings for those who choose to attend graduate school (ATT)?

$$\bullet \ \alpha_{ATT} = \frac{1+1}{2} = 1$$

Fundamental Problem of Causal Inference

- We can never **directly observe** causal effects (ITE, ATE, or ATT).
- ullet : we can't observe both potential outcomes (Y_i^1,Y_i^0) for any individual.
- For someone receiving the treatment $(D_i = 1)$,
 - $ightharpoonup Y_i^1$ is observed
 - But Y_i^0 is the **unobserved** counterfactual outcome.
 - \rightarrow This represents what would have happened to an individual i if assigned to the control group.
- We need to compare potential outcomes, but we only have observed outcomes.
- Causal inference is a missing data problem.

Stable Unit Treatment Value Assumption

Assumption

Observed outcomes are realized as:

$$Y_i = Y_i^1 D_i + Y_i^0 (1 - D_i)$$

- Implies that observed outcomes for an individual i are **unaffected** by the treatment status of other individual j.
- Individual *i*'s observed outcomes are only affected by his/her own treatment.
- Rules out possible treatment effect from other individuals (spillover effect/externality).

- Causality is defined by potential outcomes, not by realized (observed) outcomes.
- In fact, we can **NOT** observe all potential outcomes.
- By using observed data, we can only establish association (correlation).
- That is, the observed difference in average outcome between those getting treatment and those not getting treatment.

$$\alpha_{corr} = \underbrace{E[Y_i|D_i=1] - E[Y_i|D_i=0]}_{\text{observed difference in average outcome}}$$

• Note that the values of **observed outcomes** Y depend on either treatment status D or the value of potential outcomes (Y^1, Y^0) .

$$Y_i = Y_i^1 D_i + Y_i^0 (1 - D_i) \text{ or }$$

$$Y_i = \begin{cases} Y_i^1, & \text{if } D_i = 1 \\ Y_i^0, & \text{if } D_i = 0 \end{cases}$$

- If we find two individuals (groups) have different **observed outcomes** Y, it could be due to:
 - 1 They receive different treatment D (causal effect of treatment). $\rightarrow D_i \neq D_j$
 - 2 Given they receive the same treatment, their value of potential outcomes (Y^1, Y^0) are different (selection bias).
 - \rightarrow Both receive treatment, D=1, but $Y_i^1 \neq Y_i^1$
 - ightarrow Both do not receive treatment, D=0, but $Y_i^0
 eq Y_j^0$

 The observed association usually mix up causal effect (ATT) and selection bias.

$$\begin{split} \alpha_{corr} &= \underbrace{E[Y_i|D_i=1] - E[Y_i|D_i=0]}_{\text{observed difference in average outcome} \\ &= E[Y_i^1|D_i=1] - E[Y_i^0|D_i=1] + E[Y_i^0|D_i=1] - E[Y_i^0|D_i=0] \\ &= \underbrace{E[Y_i^1 - Y_i^0|D_i=1]}_{\text{ATT}} + \underbrace{E[Y_i^0|D_i=1] - E[Y_i^0|D_i=0]}_{\text{Selection Bias}} \end{split}$$

- Selection Bias implies:
 - ► The value of potential outcomes for treatment and control groups are different even if both groups receive the same treatment (e.g. Both are Y_i⁰).
 - ► This means two groups could be quite different in other dimensions: other things are NOT equal!

Observed Association

- Observed association is neither necessary nor sufficient for causality.
- In graduate school example, the observed difference in average earnings between those attending graduate school v.s. those not attending:

$$\alpha_{corr} = E[Y_i|D_i = 1] - E[Y_i|D_i = 0] = 1.5$$

i	Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$	
David	3	?	3	1	?	
Tina	2	?	2	1	?	
Mary	?	1	1	0	?	
Bill	?	1	1	0	?	
$E[Y_i D_i=1]$	2.5					
$E[Y_i D_i=0]$	1					

Average Treatment Effect on Treated (ATT) 🔊 🐧 🛊 費 🛪 🕏

• But we are interested in the causal effect (ATT).

$$\alpha_{ATT} = E[Y_i^1 | D_i = 1] - E[Y_i^0 | D_i = 1] = 1$$

• suppose we can observe the counterfactual outcomes

i	Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$
David	3	2	3	1	1
Tina	2	1	2	1	1
Mary	1	1	1	0	0
Bill	1	1	1	0	0
$E[Y_i^1 D_i=1]$	2.5				
$E[Y_i^0 D_i = 1]$		1.5			

$$E[Y_i|D_i=1] - E[Y_i|D_i=0]$$
 observed difference in average outcome (1.5)
$$= \underbrace{E[Y_i^1 - Y_i^0|D_i=1]}_{\text{ATT (1)}} + \underbrace{E[Y_i^0|D_i=1] - E[Y_i^0|D_i=0]}_{\text{Selection Bias}}$$

• $\alpha_{corr} \neq \alpha_{ATT}$

• Selection Bias = $E[Y_i^0|D_i=1] - E[Y_i^0|D_i=0] = 0.5$

			L 0 1		
Y_i^1	Y_i^0	Y_i	D_i	$Y_i^1 - Y_i^0$	
3	2	3	1	1	
2	1	2	1	1	
1	1	1	0	0	
1	1	1	0	0	
1.5					
	1				
	Y_i^1 3 2 1 1	$\begin{array}{ccc} Y_i^1 & Y_i^0 \\ 3 & 2 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{c cccc} Y_i^1 & Y_i^0 & Y_i \\ \hline 3 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

- Here, selection bias is positive (0.5 million NT\$).
- Those who attend graduate school could be more intelligent so they can earn more even if they did not attend graduate school.

Causal Effect and Identification Strategy

- Identification Strategy tells us what we can learn about a causal effect from the observed data.
- The goal of identification strategy is to eliminate the selection bias.
- Identification depends on assumptions, not on estimation strategies!
- If an effect is not identified, no estimation method will recover it.
- "What's your identification strategy?" = what are the assumptions that allow you to claim you've estimated a causal effect?

Regression and Potential Outcome

• Assume **potential outcomes** are determined by the following equations:

$$Y_i^1 = \delta + \alpha + \beta X_i + \epsilon_i$$

$$Y_i^0 = \delta + \beta X_i + \epsilon_i$$

- Assume $E[\epsilon_i|X_i]=0$
- ullet α is the causal effect of the treatment:
 - \rightarrow constant effects: $Y_i^1 Y_i^0 = \alpha$ for all individuals.
- Observed outcome can be represented by the following equation:

$$Y_{i} = Y_{i}^{1}D_{i} + Y_{i}^{0}(1 - D_{i})$$

$$= Y_{i}^{0} + (Y_{i}^{1} - Y_{i}^{0})D_{i}$$

$$= \delta + \alpha D_{i} + \beta X_{i} + \epsilon_{i}$$

Identification Results for Regression

• What if we don't include an observed characteristics X in the regression:

$$Y_i = \delta + \alpha D_i + u_i, \text{ and}$$

$$u_i = \beta X_i + \epsilon_i$$

• The causal effect from the above regression $\hat{\alpha}$:

$$\begin{split} \hat{\alpha} &= \underbrace{E[Y_i|D_i=1] - E[Y_i|D_i=0]}_{\text{observed difference in average outcome} \\ &= \underbrace{E[Y_i^1 - Y_i^0|D_i=1] + \underbrace{E[Y_i^0|D_i=1] - E[Y_i^0|D_i=0]}_{\text{Selection Bias}} \\ &= \alpha + E[u_i|D_i=1] - E[u_i|D_i=0] \\ &= \alpha + \underbrace{\beta E[X_i|D_i=1] - \beta E[X_i|D_i=0]}_{\text{Selection Bias}} \end{split}$$

Identification Results for Regression

• To identify causal effect of D, we need to include an observed characteristics X into the regression model:

$$Y_i = \delta + \alpha_{reg} D_i + \beta X_i + \epsilon_i$$

- Based on CIA, including key observed covariates into regression can help us eliminate selection bias.
- Therefore, we can get causal effect of D by running the above regression:

$$\alpha_{reg}(X) = \underbrace{E[Y_i|X_i,D_i=1] - E[Y_i|X_i,D_i=0]}_{\text{observed difference in average outcome at given } X_i$$

Conditional Independence Assumption (CIA) 🚳 🐧 🛓 哲 🔭

Assumption (Conditional Independence Assumption)

$$(Y_i^1, Y_i^0) \perp D_i | X_i$$

- CIA asserts that conditional on observable characteristics X, potential outcomes are independent of treatment assigned D.
- In other words, observed covariates X can fully explain the difference in potential outcome between treatment and control groups.
- CIA ensures:
 - ► $E[Y_i^0|X_i, D_i = 1] = E[Y_i^0|X_i, D_i = 0]$ ► $E[Y_i^1|X_i, D_i = 1] = E[Y_i^1|X_i, D_i = 0]$

Identification Results for Regression

$$\alpha_{reg}(X) = \underbrace{E[Y_i|X_i,D_i=1] - E[Y_i|X_i,D_i=0]}_{\text{observed difference in average outcome at given } X_i$$

$$= E[Y_i^1|X_i,D_i=1] - E[Y_i^0|X_i,D_i=1]$$

$$+ E[Y_i^0|X_i,D_i=1] - E[Y_i^0|X_i,D_i=0]$$

$$= \underbrace{E[Y_i^1 - Y_i^0|X_i,D_i=1] + E[Y_i^0|X_i,D_i=1] - E[Y_i^0|X_i,D_i=0]}_{\text{Causal Effect (CATT)}}$$
 Selection Bias
$$= \underbrace{E[Y_i^1 - Y_i^0|X_i,D_i=1]}_{\text{Causal Effect (CATT)}} + \underbrace{\beta E[X_i|X_i,D_i=1] - \beta E[X_i|X_i,D_i=0]}_{\text{Selection Bias}}$$
 Selection Bias
$$= \underbrace{E[Y_i^1 - Y_i^0|X_i,D_i=1] + 0}_{\text{Causal Effect (CATE)}} = \underbrace{E[Y_i^1 - Y_i^0|X_i]}_{\text{Causal Effect (CATE)}}$$

Identification Results for Regression

- Note that there are as many causal effects (CATE or CATT) as the number of value in X_i
- People might find it useful to boil a set of estimates down to a single summary measure.
 - e.g. population average treatment effect
- Again, applying the law of iterated expectations (LIE), we can identify average treatment effect (ATE) or average treatment effect on the treated (ATT).
 - ▶ Take average of CATE or CATT over all subgroups (all possible X-values).
- Lastly, think again, what are the asumptions we have made so far?