EMA2: Lecture contents, week 2

1.1. ODE of order 1

Example.

$$y' = 3y^{2/3}, y(0) = 0.$$

Stationary solution y(x) = 0, $x \in \mathbb{R}$. Separation: $\frac{dy}{dx} = 3y^{2/3} \iff \int \frac{1}{3}y^{-2/3}dy = \int dx \iff y^{1/3} = x + C$, hence $y(x) = (x + C)^3$, $x \in \mathbb{R}$.

Initial conditions give $y(x) = x^3$.

The stationary solution also fits, thus there are two solutions to this Cauchy problem.

Theorem. (on existence and uniqueness for ODE of order 1 with isolated y)

Consider an ODE that can be written in the form y' = f(x, y).

Let I, J be open intervals such that f is continuous on the set $I \times J$. Then $\forall (x_0, y_0) \in I \times J$ there exists a solution of the Cauchy problem (O1), $y(x_0) = y_0$ on some neighborhood of x_0 and this solution can be extended to the boundary of $I \times J$.

If moreover $\frac{\partial f}{\partial y}$ is continuous or bounded on $I \times J$, then this solution is unique.

We already had a theorem on existence for separable ODE, now if we also know that h' is on I continuou or bounded, we get uniqueness as well.

1.2. Linear ODE of order 1

Definition.

By a linear ODE of order 1 we mean any ODE that can be written in the form y' + a(x)y = b(x), where a, b are some functions.

This equation is called **homogeneous** if b(x) = 0.

Given an ODE y' + a(x)y = b(x), we define its **associated homogeneous equation** y' + a(x)y = 0.

Fact.

If a, b are continuous on an open interval I, then $\forall x_0 \in I$ and $\forall y_0 \in IR$ there exists a solution of the Cauchy problem y' + a(x)y = b(x), $y(x_0) = y_0$ on I and it is unique there.

This follows from the theorem on E and U for ODE of order 1.

Theorem. (on **solution** of homogeneous linear ODE of order 1)

If a is continuous on an open interval I, then the equation y' + a(x)y = 0 has a solution on I in the form $y(x) = C e^{-A(x)}$, where A is some antiderivative of a on I.

The set of all solutions $\{C \cdot e^{-A(x)}; C \in C\}$ is a linear space of dimension 1, its basis is $\{e^{-A(x)}\}$.

Theorem. (on **solution** of a linear ODE of order 1)

If a, b are continuous on an open interval I, then the equation y' + a(x)y = b(x) has a solution on I in the form $\left(\int b(x)e^{A(x)}dx\right)e^{-A(x)}$, where A is some antiderivative of a on I.

If B is some antiderivative of $b(x)e^{A(x)}$ on I, then a general solution of this equation on I is $y(x) = (B(x) + C) e^{-A(x)}$.

Multiplying this formula out we get $y(x) = B(x) e^{-A(x)} + C e^{-A(x)}$, that is, $y = y_p + y_h$, where y_p is one particular solution of the equation y' + a(x)y = b(x) and y_h is a general solution of the associated homogeneous equation y' + a(x)y = 0.

Thus we get:

(on **structure of solutions** of linear ODE of order 1) Theorem.

Let y_p be some particular solution of the equation y' + a(x)y = b(x) on an open interval I. Then the set of all solutions of this equation on I is

 $\{y_p + y_h; y_h \text{ is a solution of the associated homogeneous equation on } I\}.$

Method of variation of parameter for linear ODE with non-zero RHS.

Given an equation y' + a(x)y = b(x).

Step 1. By separation find a general solution y_h of the associated homogeneous equation y' + a(x)y=0. It has the form $y_h(x)=C\cdot u(x)$, it also includes the stationary solution.

Step 2. Do the variation of parameter trick: We are looking for a solution of the form y(x) = $C(x) \cdot u(x)$. Such a solution exists for a certain C(x), we find it by substituting y(x) into the given equation y' + a(x)y = b(x). We get an equation C'(x)u(x) = b(x).

Then $C(x) = \int \frac{b(x)}{u(x)} dx$ and we put this C(x) into y = Cu. If we take for C(x) one concrete antiderivative, we get one particular solution $y_p(x)$, a general solution is then $y = y_p + y_h$.

If we use +C when integrating to get C(x), then after substituting it into y = Cu we get a general solution right away.

Example.

Cauchy problem $y' - y \cot(x) = 2x \sin(x)$, $y\left(\frac{3\pi}{2}\right) = 1 - \left(\frac{3\pi}{2}\right)^2$. 1) Associated homogeneous equation: $y' - y \cot(x) = 0$. Separation: $\frac{dy}{dx} = y \cot(x) \iff \int \frac{dy}{y} = \int \frac{\cos(x)}{\sin(x)} dx \iff \ln|y| = \ln|\sin(x)| + C,$

$$\frac{dy}{dx} = y \cot(x) \iff \int \frac{dy}{y} = \int \frac{\cos(x)}{\sin(x)} dx \iff \ln|y| = \ln|\sin(x)| + C,$$

hence $y_h(x) = C\sin(x), x \neq k\pi$.

2) Variation: $y(x) = C(x)\sin(x)$, after substituting into the given equation we get $C'(x)\sin(x) =$ $2x\sin(x), C'(x) = 2x.$

a) $C(x) = x^2$, $y_p(x) = x^2 \sin(x)$, general solution $y(x) = y_p(x) + y_h(x) = x^2 \sin(x) + C \sin(x)$,

b) $C(x) = x^2 + C$, general solution $y(x) = (x^2 + C)\sin(x), x \neq k\pi$.

3) Initial conditions: $1 - \left(\frac{3\pi}{2}\right)^2 = \left[\left(\frac{3\pi}{2}\right)^2 + C\right] \cdot (-1)$, hence C = -1, solution $y(x) = (x^2 - 1)\sin(x), x \in (\pi, 2\pi)$.

1.3. Linear ODE of order n

Definition.

By a linear ODE of order n we mean any ODE that can be written in the form

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x),$$

where a_{n-1}, \ldots, a_0, b are some functions.

This equation is called **homogeneous** if b(x) = 0.

Given a linear ODE $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$, we define its **associated** homogeneous equation as $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x) = 0$.

(on existence and uniqueness for linear ODE)

Consider an equation $y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$. If a_{n-1},\ldots,a_0,b are continuous on an open interval I, then $\forall x_0\in I$ and $\forall y_0,y_1,\ldots,y_{n-1}\in \mathbb{R}$ there exists a solution to the Cauchy problem (L), $y(x_0) = y_0, y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) =$ y_{n-1} on I and it is unique there.

(on structure of solutions of linear ODE)

Let y_p be some particular solution of a given linear ODE on an open interval I. Then the set of all solutions of this equation is

 $\{y_p + y_h; y_h \text{ is a solution of the associated homogeneous equation on } I\}.$