

高精度、宽共模范围、双向 电流分流监视器 零漂移系列产品

查询样品: INA282, INA283, INA284, INA285, INA286

特性

• 宽共模范围: -14V 至 80V

• 偏移电压: ±20uV

• 共模抑制比 (CMRR): 140dB

• 精度:

- ±1.4% 增益误差(最大值)

− 0.3µV/°C 偏移漂移

- 0.005%/°C 增益漂移(最大值)

• 可用增益:

50V/V: INA282
100V/V: INA286
200V/V: INA283
500V/V: INA284
1000V/V: INA285

静态电流: 900μA(最大值)

应用范围

• 电信类设备

• 汽车电子

• 电源管理

• 太阳能逆变器

说明

包括 INA282, INA283, INA284, INA285, 和 INA286 器件在内的 INA282 系列是电压输出电流并联 监控器, 此监控器能够感测共模电压上 -14V 至 +80V 的压降, 与电源电压无关。 零漂移架构的低偏移使得电流感测在整个分流器上的最大压降低至 10mV 的满量程。

这个电流分流监控器由 +2.7V 至 +18V 电源供电运行,使用最大 900µA 的电源电流。 它在 -40℃ 至 +125℃ 扩展的额定温度下运行并采用小外形尺寸集成电路 (SOIC)-8 封装。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

这些装置包含有限的内置 ESD 保护。

存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

封装/订购信息(1)

产品	増益	封装	封装 指示符	封装 标记
INA282	50V/V	SOIC-8	D	I282A
INA283	200V/V	SOIC-8	D	I283A
INA284	500V/V	SOIC-8	D	I284A
INA285	1000V/V	SOIC-8	D	I285A
INA286	100V/V	SOIC-8	D	I286A

⁽¹⁾ 要获得最新的封装和订货信息,请参阅本数据表末尾的封装选项附录,或者访问www.ti.com上的器件产品文件夹。

最大绝对额定值(1)

在自然通风条件下的工作温度范围测得,除非另有说明。

		INA282,INA283, INA284,INA285,INA286	单位
电源电压		+18	V
模拟输 入, V _{+IN} , V _{-IN} ⁽²⁾	差分电压 (V _{+IN})-(V _{-IN}) ⁽³⁾	-5 至 +5	V
	共模	-14 至 +80	V
Ref1,Ref2,输出	1	GND-0.3 至 (V+)+0.3	V
到任一引脚的输入	电流	5	mA
存储温度		-65 至 +150	°C
结温		+150	°C
	人体模型 (HBM)	3000	V
额定 ESD:	充电器件模型 (CDM)	1000	V
	机器模型 (MM)	200	V

⁽¹⁾ 超过这些额定值的应力有可能造成永久损坏。 长时间处于最大绝对额定情况下会降低设备的可靠性。 这些只是应力额定值,在这些值或者 任何超过那些所标明的条件下的功能运行并未注明。

热性能信息

	热度量 ⁽¹⁾	INA282AID , INA2 83AID , INA284AID , INA2 85AID , INA286AID	单位
		D	
		8	
θ_{JA}	结到环境热阻	134.9	
θ_{JCtop}	结至芯片外壳(顶部)热阻	72.9	
θ_{JB}	结至电路板热阻	61.3	°C/W
Ψ_{JT}	结至顶部的特征参数	18.9	C/VV
ΨЈВ	结至电路板的特征参数	54.3	
θ_{JCbot}	结至芯片外壳(底部)热阻	无	

(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。

⁽²⁾ V_{+IN}和 V_{-IN}分别为 +IN 和 -IN 引脚上的电压。

⁽³⁾ 输入电压一定不能超过共模额定值。

电气特性

黑体字应用在额定温度范围上的限值, T_A =-40°C 至 +125°C。

在 T_A=+25°C, V+=5V, V_{+IN}=12V, V_{REF1}=V_{REF2}=2.048V 以 GND 为基准, 并且 V_{SENSE}=V_{+IN}-V_{-IN}时得得, 除非额外注明

				NA282,INA283, 284,INA285,IN			
参数		条件	最小值	典型值	最大值	单位	
输入							
偏移电流,RTI ⁽¹⁾	Vos	V _{SENSE} =0mV		±20	±70	μV	
与温度间的关系	dV _{os} /dT			±0.3	±1.5	μV/°C	
与电源间的关系	电源抑制比 (PSRR)	V_S =+2.7V \cong +18V, V_{SENSE} =0mV		3		μV/V	
共模输入电流	V _{CM}		-14		80	V	
共模抑制	共模抑制比 (CMRR)	V _{+IN} =-14V 至 +80V,V _{SENSE} =0mV	120	140		dB	
每个引脚上的输入偏置电流(2)	I_{B}	V _{SENSE} =0mV		25		μΑ	
输入偏移电流	Ios	V _{SENSE} =0mV		1		μA	
差分输入阻抗				6		kΩ	
基准输入							
基准输入增益				1		V/V	
基准输入电压范围 ⁽³⁾			0		V _{GND} +9	V	
分频器精度(4)				±0.2	±0.5	%	
基准电压抑制比		$V_{REF}1=V_{REF}2=40$ mV \cong 9V, V+=18V					
INA282				±25	±75	μV/V	
与温度间的关系				0.055		μV/V/°C	
INA283				±13	±30	μV/V	
与温度间的关系				0.040		μV/V/°C	
INA284				±6	±25	μV/V	
与温度间的关系				0.015		μV/V/°C	
INA285				±4	±10	μV/V	
与温度间的关系				0.010		μV/V/°C	
INA286				±17	±45	μV/V	
与温度间的关系				0.040		μV/V/°C	
增益 ⁽⁵⁾		GND+0.5V≤V _{OUT} ≤(V+)-0.5V; 对于所有器 件 V _{REF1} =V _{REF2} =(V+)/2					
增益	G						
INA282		V+=+5V		50		V/V	
INA283		V+=+5V		200		V/V	
INA284		V+=+12V		500		V/V	
INA285		V+=+12V		1000		V/V	
INA286		V+=+5V		100		V/V	
增益误差							
INA282, INA283, INA286				±0.4	±1.4	%	
INA284, INA285				±0.4	±1.6	%	
与温度间的关系				0.0008	0.005	%/°C	
输出				<u> </u>			
非线性误差				±0.01		%	
输出阻抗				1.5		Ω	
最大电容负载		无持续振荡		1		nF	

- (1) RTI=以输入为基准。
- 请见典型特征图Figure 20。 引脚 REF1 和 REF2 上的电压平均值必须介于 V_{GND}和 (V_{GND}+9V) 的较小值以及 V+ 之间。 基准分频器精度指定了使用Figure 37中配置的基准分频电阻器间的匹配。 请见典型特征图Figure 25。
- (4)

电气特性 (continued)

黑体字应用在额定温度范围上的限值, $T_A=-40$ °C 至 +125°C。

在 T_A=+25°C, V+=5V, V_{+IN}=12V, V_{REF1}=V_{REF2}=2.048V 以 GND 为基准,并且 V_{SENSE}=V_{+IN}-V_{-IN}时得得,除非额外注明。

		INA			
参数	条件	最小值	典型值	最大值	单位
电压输出 ⁽⁶⁾	相对于 GND R _L =10kΩ				
摆动至 V+ 电源轨	V+=5V		(V+)-0.17	(V+)-0.4	V
摆动至 GND			GND+0.015	GND+0.04	V
频率响应					
有效带宽(7) 带宽					
INA282			10		kHz
INA283			10		kHz
INA284			4		kHz
INA285			2		kHz
INA286			10		kHz
噪声,RTI ⁽⁸⁾					
电压噪声密度	1kHz		110		nV/√ Hz
电源					
指定电压范围 V _S		+2.7		+18	V
静态电流 I _Q			600	900	μA
温度范围					
指定范围		-40		+125	°C

- (6) 请见Figure 29到Figure 31的典型特征图。(7) 请见应用信息中的典型特征图Figure 15和有效带宽部分。
- (8) RTI=以输入为基准。

引脚配置

(1) NC: 这个引脚不是内部连接的。 NC 引脚应该被保持悬空或者连接至 GND。

引脚说明

so	IC-8						
引脚编号	名称	说明					
1 -IN		连接到分流电阻器的负输入一侧。					
2 GND		接地					
3	REF2	基准电压连接-连接选项请见应用部分。					
4	NC	这个引脚不是内部连接。 NC 引脚应该保持悬空或者连接到 GND。					
5	OUT	输出电压					
6	V+	电源					
7	REF1	基准电压连接-连接选项请见应用部分。					
8 +IN		连接到分流电阻器的正输入一侧。					

典型特性

在 T_A =+25°C,V+=5V, V_{+IN} =12V, V_{REF1} = V_{REF2} =2.048V 以 GND 为基准,并且 V_{SENSE} = V_{+IN} - V_{-IN} 时测得,除非额外注明。

Figure 1.

Figure 3.

启动瞬态响应

Figure 2.

Figure 4.

Figure 6.

50V 共模阶跃响应

典型特性 (continued)

在 T_A =+25°C,V+=5V, V_{+IN} =12V, V_{REF1} = V_{REF2} =2.048V 以 GND 为基准,并且 V_{SENSE} = V_{+IN} - V_{-IN} 时测得,除非额外注明。

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

TEXAS INSTRUMENTS

典型特性 (continued)

在 T_A =+25°C,V+=5V,V_{+IN}=12V,V_{REF1}=V_{REF2}=2.048V 以 GND 为基准,并且 V_{SENSE} =V_{+IN}-V_{-IN}时测得,除非额外注明。

INA282 PSRR (RTI) 与频率间的关系 120 Power-Supply Rejection Ratio (dB) 100 90 80 70 60 50 40 30 20 100 1k 10k 100k 1M Frequency (Hz)

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 18.

典型特性 (continued)

在 T_A =+25°C,V+=5V,V_{+IN}=12V,V_{REF1}=V_{REF2}=2.048V 以 GND 为基准,并且 V_{SENSE} =V_{+IN}-V_{-IN}时测得,除非额外注明。

Figure 19.

Figure 20.

Figure 21.

Figure 24.

典型特性 (continued)

在 T_A =+25°C,V+=5V,V_{+IN}=12V,V_{REF1}=V_{REF2}=2.048V 以 GND 为基准,并且 V_{SENSE} =V_{+IN}-V_{-IN}时测得,除非额外注明。

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 30.

典型特性 (continued)

在 T_A =+25°C,V+=5V, V_{+IN} =12V, V_{REF1} = V_{REF2} =2.048V 以 GND 为基准,并且 V_{SENSE} = V_{+IN} - V_{-IN} 时测得,除非额外注明。

Figure 31.

应用信息

总说明

INA282 系列电压输出电流并联监控器特有一个共模范围,此范围在负电源轨之下扩展了 14V,并且高达 80V,这 使得此器件可用于低侧或者高侧电流感应。

基本连接

Figure 32显示了 INA282 系列器件的基本连接。 输入引脚,+IN 和 -IN,应该被连接到尽可能靠近分流电阻器的位置以大大减少任何与分流电阻串联的电阻值。

Figure 32. 典型应用

需要电源旁路电容器来实现稳定性。 带有嘈杂或者高阻抗电源的应用也许需要额外的去耦合电容器来抑制电源噪声。 将旁路电容器连接到接近器件引脚的位置。

电源

INA282 系列能够准确地测量其自身电源电压,V+,范围之外的电压,这是因为它的输入(IN+ 和 IN-)可以在独立于 V+ 之外的 -14V 至 +80V 电压范围内的任一电压值上运行。 例如,V+ 电源可以为 5V,而分路监控的共模电压可以高至 +80V。 当然,INA282 系列的输出电压范围受到电源电压(在 V+ 上为 INA282 供电)的限制。 请注意,当 INA282 系列的电源被关闭时(也就是说,不为 V+ 引脚提供电压),输入引脚(+IN 和 -IN)相对接地为高阻抗并且在 -14V 至 +80V 完全共模范围上的典型漏电流少于 ±1μA。

选择Rs

INA282 系列的零漂移加工可使用低至 10mV 的满量程分流电压。

有效带宽

INA282 系列极高的直流 CMRR 由开关电容器输入结构导致。由于这个架构,INA28x 显示出了Figure 16的增益与频率间关系图中说明的离散时间系统运行方式以及Figure 3至Figure 10的阶跃响应曲线。 当输入阶跃出现时,对一个阶跃输入的响应在一定程度上取决于内部 INA28x 时钟的阶段。 可使用一个输入共模电压内的快速变化来使输入放大器过载(请见Figure 17)。 由共模电压阶跃和/或者过载情况导致的误差通常在干扰被去除的 15µs 内消失。

瞬态保护

INA282 系列的 -14V 至 28V 的共模范围非常适合于耐受汽车故障情况,此故障情况的范围从 12V 电池反接到高达 +80V 的瞬态;达到这些级别无需额外的保护组件。如果 INA282 系列受到超过其额定值输入上的瞬态的影响,那么就需要带有半导体瞬态吸收器(齐纳二极管或者*瞬态电压抑制器(Transzorb*))的外部瞬态吸收。 除非在不使用半导体瞬态吸收器时使用,否则不建议使用金属氧化物压敏电阻 (MOV) 或者压敏电阻(VDR)。 选择瞬态吸收器,这样就使得 INA282 系列不受大于 80V 瞬态影响(也就是说,支持瞬态吸收器耐受,以及由瞬态吸收器动态阻抗产生的额外电压)。 尽管使用了内部齐纳类型静电放电(ESD) 保护二极管,在不会降低增益精度的情况下,INA282系列也不会使用与输入串联的外部电阻器。

关断

虽然 INA282 系列不提供关断引脚,600μA 的静态电流使得它能够由一个逻辑栅极的输出供电。 将此栅极置为低电平来关闭 INA282 系列器件。

基准引脚连接选项

Figure 33解释了一个针对基准分频器精度的测试电路。 INA282系列的输出可被连接用于单向或者双向运转。 请注意,无论 REF1 引脚还是 REF2 引脚都不可以被连接至任何低于 GND 或者高于 V+ 的电压源,并且有效基准电压 (REF1+REF2)/2 必须为 9V 或者更低。 这个参数意味着Figure 35显示的 V+ 基准输出连接不支持大于 9V 的 V+。 然而,Figure 37显示的分离电源基准连接支持所有高达 18V 的 V+ 值。

(1) 通过测量带有应用到替代基准电阻器上的基准电压的输出并算出一个结果,可确定基准分频器精度,这样在最终的测量中放大器偏移被消除。

Figure 33. 针对基准分频器精度的测试电路

单向运转

单向运转使得 INA282 能够测量从一个方向流经一个阻性分路的电流。 在单向运行的情况下,当差分输入为 0V 时,输出可被设定在负电源轨(近接地,并且为最常见的连接)或者被正电源轨(近 V+)上。 当采用一个正确的 极性差分输入电压时,输出移动到相对的电源轨。

差分输入所需的极性取决于输出电压设置。 如果输出被设定在正电源轨,输入极性必须为负以将输出向下移动。如果输出被设定在接地上,则极性为正以将输出向上移动。

下面的部分描述了如何为单向运行配置输出。

以接地为基准的输出

当在这个模式中使用 INA282 时,两个基准输入都被连接至接地;当输入上有 0V 差分电压时,这个配置将输出带到负电源轨(如Figure 34所示)。

Figure 34. 以接地为基准的输出

V+ 基准输出

当两个基准引脚都被连接至正电源时,这个模式被设定。 这个模式通常当一个诊断机制要求功率被应用到负载之前检测放大器和接线时使用(如Figure 35所示)。

Figure 35. V+ 基准输出

双向运转

双向运转使得 INA282 系列能够测量在两个方向上流经阻性分路的电流。 在这个情况下,可在基准输入所允许的限值内的任一位置设定输出(即, 0V 到 9V, 但是不要超过电源电压)。 通常,它在两个方向上被设定为等值半量程。 在一些情况下,当双向电流不对称时,它被设定为半量程之外的电压值。

通过将电压应用到基准输入上,可设定静态输出电压。 REF1 和 REF2 被连接至与一个内部偏移节点相连的内部电阻器上。 这两个引脚之间没有操作差异。

外部基准输出

当没有差分输入时,将两个引脚接在一起并连接至一个基准会在基准电压上产生一个输出; Figure 36对这个配置进行了说明。 当输入相对于 -IN 引脚为负值时,输出从基准电压向下移动,而当输入相对于 -IN 引脚为正值时,向上移动。 请注意,这个技术是将输出偏置到一个精确电压的最准确的方法。

Figure 36. 外部基准输出

分离电源

如Figure 37所示,通过将一个基准引脚连接至 V+ 并将其余引脚连接到接地引脚,当没有差分输入时,输出被设定为电源的一半。 这个方法创建了一个与电源电压成比例的中量程偏移;如果电源增加或者减少,输出保持在电源的一半。

Figure 37. 分离电源输出

分离一个外部基准

在这个情况下,通过将一个 REF 引脚接地而另外一个 REF 引脚接至基准,一个外部基准被除以 2 且精度接近 0.5%(如Figure 38所示)。

Figure 38. 分离基准输出

扩展的负共模范围

使用一个负电源可向下扩展共模范围 14V,超过电源使用的负电压。 例如,一个 -10V 的电源支持高达 -24V 的负共模。 请牢记,将 GND 引脚 和 V+ 引脚间的总电压保持在少于 18V。 正共模减少同样的数量。

由于输出静态偏置点一直基于基准连接,基准输入简化了此类操作。Figure 39显示一个针对 -24V 至 +70V 共模电压范围的电路配置。

(1) 按需连接 REF 引脚; 然而,它们只能最多比 GND 引脚电压多 9 V。

Figure 39. 针对 -24V 至 +24V 共模范围的电路配置

计算总体误差

器件的 INA282-286 系列的电气规范包括典型独立误差项,例如增益误差、偏移误差、和非线性误差。 包括所有这些独立误差成分的总体误差未在 电气特性表中列明。 为了准确计算被认为是来自器件的误差,我们必须首先知道器件所处的运行条件。 一些电流并联监控器在产品数据表中指定一个总体误差。 然而,这个总体误差项只在一个运行条件的特定设定下才是准确的。 由于从这些特定运行条件的偏离不再产生同样的总体误差值,在这一个点上指定总体误差具有很小的实际价值。 这个部分讨论了独立误差源,其中的信息包括为了计算用于正常运行条件下器件的总体误差值,如何应用它们。

对器件的总体误差有最大影响的典型误差源为输入偏移电压、共模电压抑制、增益误差和非线性误差。 对于INA282-286,被称为*基准共模抑制*的一个额外误差源也被包括在总体误差值中。

与增益误差规范相比较,INA282-286 的非线性误差相对少,这导致一个增益误差,此误差可被认为在器件的线性输入范围内相对恒定。 虽然增益误差在器件的线性输入范围内保持恒定,与输入偏移电压相关的误差不是如此。当 INA282-286 输入上的分流电阻器内逐渐形成的差分输入电压减少时,器件所固有的输入偏移电压成为引起测量中误差增加的已测得的输入信号的较大部分。 考虑到输入偏移电压与器件感测到的电压间的比,这个变化的误差出现在所有电流并联监控器中。 出现在 INA282-286 器件的相对低输入偏移电压限制总体误差项上偏移电压所具有的基值数量。

基准共模抑制项是指将一个基准电压应用到 INA282-286 器件所引起的误差数量,此基准电压偏离了出现在器件第一级输出上的固有偏置电压。 开关电容器网路和首级放大器的输出有一个大约 2.048V 的固有偏置电压。 将一个 2.048V 的基准电压应用到 INA282-286 基准引脚上会导致无额外误差项基值。 在基准引脚上应用一个 2.048V 之外的电压会在内部差异放大器中引起一个电势,从而导致流经电阻器网络的额外电流。 由于电阻器容限和电阻不匹配,这个额外的电流在输出上引起额外误差。 此外,由于电阻器容限,这个额外的电流在基于输出级放大器共模抑制比的输出上引起额外误差。 这个误差项被指回器件输入作为额外的输入偏移电压。 2.048V 内部偏置间的差异和外部基准电压的增加会导致一个更高的输入偏移电压。 此外,由于输出上的误差反过来以输入为基准,会对以输入为基准的偏移产生一个更大的影响,Vos,针对器件的更低增益版本。

提供的两个例子详述了不同的运行条件是如何影响总体误差计算的。 典型和最大计算结果也被显示以为用户提供更多的信息,这些信息是关于从器件到器件可出现有多少误差变量。

示例 1

INA282; $V_S=5V$; $V_{CM}=12V$; $V_{REF}=2.048V$; $V_{SENSE}=10mV$

Table 1. 示例 1

		10010 11 /1 / / 1		
项	符号	等式	典型值	最大值
初始输入偏移电压	V _{OS}	_	20μV	70μV
由于共模电压而增加的输入偏移电压	V_{OS_CM}	$\frac{1}{10^{\left(\frac{\text{CMRR_dB}}{20}\right)}} \times (V_{\text{CM}} - 12V)$	0μV	0μV
由于基准电压而增加 的输入偏移电压	V _{OS_REF}	R _{CMR} × (2.048V – V _{REF})	0μV	0μV
总输入偏移电压	V _{OS_Total}	$\sqrt{(V_{OS})^2 + (V_{OS_CM})^2 + (V_{OS_REF})^2}$	20μV	70μV
来自输入偏移电压的 误差	Error_V _{OS}	$\frac{V_{OS_Total}}{V_{SENSE}} \times 100$	0.20%	0.70%
增益误差	Error_Gain	_	0.40%	1.40%
非线性误差	Error_Lin	_	0.01%	0.01%
总体误差	_	$\sqrt{(\text{Error}_V_{OS})^2 + (\text{Error}_Gain)^2 + (\text{Error}_Lin)^2}$	0.45%	1.56%

示例 2

INA286; $V_S=5V$; $V_{CM}=24V$; $V_{REF}=0V$; $V_{SENSE}=10mV$

Table 2. 示例 2

项	符号	等式	典型值	最大值
初始输入偏移电压	V_{OS}	_	20μV	70μV
由于共模电压而增加的输入偏移电压	Vos_cm	$\frac{1}{10^{\left(\frac{CMRR_dB}{20}\right)}} \times (V_{CM} - 12V)$	1.2μV	12μV
由于基准电压而增加 的输入偏移电压	V _{OS_REF}	$R_{CMR} \times (2.048V - V_{REF})$	34.8μV	92.2µV
总输入偏移电压	V_{OS_Total}	$\sqrt{(V_{OS})^2 + (V_{OS_CM})^2 + (V_{OS_REF})^2}$	40.2μV	116.4µV
来自输入偏移电压的误差	Error_V _{OS}	$\frac{V_{OS_Total}}{V_{SENSE}} \times 100$	0.40%	1.16%
增益误差	Error_Gain	_	0.40%	1.40%
非线性误差	Error_Lin	_	0.01%	0.01%
总体误差	_	$\sqrt{(\text{Error}_V_{OS})^2 + (\text{Error}_Gain)^2 + (\text{Error}_Lin)^2}$	0.57%	1.82%

电流求和以及并行

通过将一个 INA282 系列器件的输出连接到第二个 INA282 系列器件的基准输入,可以很容易地计算多个 INA282 系列器件输出的和。 可通过重复这个连接来对多余两个器件求和,Figure 40中显示了针对三个器件求和的情况。第一个 INA282 系列器件的基准输入为串中所有的器件设定输出静态电平。

NOTE: 应用到基准输入上的电压不能超过 9V。

Figure 40. 多个 INA282 系列器件的输出求和

电流差分

有时候,需要确认进入一个负载的电流与流出一个负载的电流一样,通常作为诊断测试或者故障检测的一部分。 这个情况要求精准电流差分,这与求和一样,除了两个放大器将它们之间的输入相反连接。 在正常运行条件下,最终的输出非常接近于基准值并与任一电流差异成比例。Figure 41是一个电流差分所需连接的示例。

NOTE: 这个例子与电流求和示例相同,除了两个分流输入极性相反,当进入负载和流出负载的电流不匹配时,这个电流差分电路可用于检测二者的差异。

Figure 41. 使用一个 INA282 系列器件的电流差分

共模动态和电流差分

电流感测经常被用在图腾柱输出级上,诸如那些桥式电机驱动。 我们能够在一个图腾柱输出上的三个位置感测电流:在接地一侧(低侧感应);在电源一侧(高侧感应);或者在输出一侧(相位感应)。 只有输出线路报告准确的负载电流。 很明显,接地和电源侧感应只报告独立各自相位内的电流。Figure 42描述了一个三相电机驱动器上的不同方法。

NOTE: 电机驱动电流感测可在低侧、相位侧、或者高侧上完成。 只有相位输出给出了电机中与电流相关的完整信息,但是会受到共模瞬态的影响,即使是最好的放大器也不能完全抵制此类瞬态。

Figure 42. 电机驱动电流感测

然而,对输出的感测会受到由大型共模电压阶跃的影响,此电压阶跃会导致即使是最佳放大器也无法避免的穿通现象。由于静态共模环境,接地和电源一侧感测配置不会出现这个问题。只感测接地或者电源只能提供与电机电流相关的部分信息,但是分别地感测这些值并且将它们相加,我们就获得了与相位感测所提供的一样的信息,而其中得到的额外的好处就是不受瞬态共模人为缺陷的影响。 Figure 43显示了一个以这种方式被连接的两个 INA282 系列器件的连接图。 从技术上讲,虽然这个配置为电流差分,因为我们希望上部感测报告一个总体输出内的正走向移动,而负感测报告一个负走向移动。

NOTE: 通过在正电源轨和负电源轨上感测图腾柱电流并求和,动态共模问题可被完全避免。 请注意, IC_2 被连接时它的输入被反相,这是因为它应该报告极性与 IC_1 相反的电流。

Figure 43. 感测并求和图腾柱电流

INA282, INA283 INA284, INA285 INA286

www.ti.com.cn

Ch	anges from Revision A (July 201	0) to Revision B Pag	e
•	将器件从产品预览改为生产数据。		1

20-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)				•	(2)	(6)	(3)		(4/5)	
INA282AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I282A	Samples
INA282AIDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	NIPDAU CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(CFI ~ CFIF)	Samples
INA282AIDGKT	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	NIPDAU CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(CFI ~ CFIF)	Samples
INA282AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I282A	Samples
INA283AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I283A	Samples
INA283AIDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(CFJ ~ CFJF)	Samples
INA283AIDGKT	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(CFJ ~ CFJF)	Samples
INA283AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I283A	Samples
INA284AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I284A	Samples
INA284AIDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(CFK ~ CFKF)	Samples
INA284AIDGKT	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(CFK ~ CFKF)	Samples
INA284AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I284A	Samples
INA285AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I285A	Samples
INA285AIDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(CFL ~ CFLF)	Samples
INA285AIDGKT	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(CFL ~ CFLF)	Samples
INA285AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I285A	Samples
INA286AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I286A	Samples

PACKAGE OPTION ADDENDUM

20-May-2015

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
INA286AIDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(ODY ~ ODYF)	Samples
INA286AIDGKT	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	(ODY ~ ODYF)	Samples
INA286AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I286A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

20-May-2015

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF INA282:

• Automotive: INA282-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2015

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA282AIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA282AIDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA282AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA283AIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA283AIDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA283AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA284AIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA284AIDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA284AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA285AIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA285AIDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA285AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA286AIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA286AIDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA286AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 25-Sep-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA282AIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA282AIDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0
INA282AIDR	SOIC	D	8	2500	367.0	367.0	35.0
INA283AIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA283AIDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0
INA283AIDR	SOIC	D	8	2500	367.0	367.0	35.0
INA284AIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA284AIDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0
INA284AIDR	SOIC	D	8	2500	367.0	367.0	35.0
INA285AIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA285AIDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0
INA285AIDR	SOIC	D	8	2500	367.0	367.0	35.0
INA286AIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA286AIDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0
INA286AIDR	SOIC	D	8	2500	367.0	367.0	35.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III (或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

成田

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

立 口

产品	四 用				
www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom			
www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer			
www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps			
www.dlp.com	能源	www.ti.com/energy			
www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial			
www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical			
www.ti.com.cn/interface	安防应用	www.ti.com.cn/security			
www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive			
www.ti.com.cn/power	视频和影像	www.ti.com.cn/video			
www.ti.com.cn/microcontrollers					
www.ti.com.cn/rfidsys					
www.ti.com/omap					
www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com			
	www.ti.com.cn/amplifiers www.ti.com.cn/dataconverters www.dlp.com www.ti.com.cn/dsp www.ti.com.cn/clockandtimers www.ti.com.cn/interface www.ti.com.cn/logic www.ti.com.cn/power www.ti.com.cn/microcontrollers www.ti.com.cn/rfidsys www.ti.com/omap	www.ti.com.cn/audio 通信与电信 www.ti.com.cn/amplifiers 计算机及周边 www.ti.com.cn/dataconverters 消费电子 www.dlp.com 能源 www.ti.com.cn/dsp 工业应用 www.ti.com.cn/clockandtimers 医疗电子 www.ti.com.cn/interface 安防应用 www.ti.com.cn/logic 汽车电子 www.ti.com.cn/power 视频和影像 www.ti.com.cn/rfidsys www.ti.com.cn/rfidsys www.ti.com/omap ***			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated