DERIVADAS DE FUNÇÕES POLINOMIAIS

Exemplo 9: Dada a função $f(x) = x^2 - 8x + 12$, calcule o valor de x tal

que f'(x) = 0.

$$f'(x) = 2x - 8$$

$$2x - 8 = 0$$

$$2x = 8$$

$$\sqrt{x} = 4$$

$$y = ax^{2} + bx + c$$

$$y' = 2ax + b = 0$$

$$2ax = -b$$

$$z = -\frac{b}{2a}$$

Exemplo 10: Dada a função $f(x) = x^3 - 3x + 4$, calcule os valores de x tais que f'(x) = 0.

NÚMERO DE EULER

Definição do Número \emph{e}

$$e$$
 é um número tal que
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$

X	(1+1/x)^x
10	2,59374246
100	2,704813829
1000	2,716923932
10000	2,718145927
1000000	2,718280469
10000000	2,718281786

DERIVADA DA FUNÇÃO EXPONENCIAL $f(x) = e^x$

Para demonstrar a derivada desta função, vamos usar a definição de derivada:

$$y' = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$y' = \lim_{h \to 0} \frac{e^{x} \cdot e^{h} - e^{x}}{h} = \lim_{h \to 0} \frac{e^{x} \cdot (e^{h} - 1)}{h}$$

$$y' = e^{x} \cdot \lim_{h \to 0} \frac{(e^{h} - 1)}{h} = e^{x} \cdot 1 = e^{x}$$

Então, se $y = e^x$ então $y' = e^x$.

DERIVADA DA FUNÇÃO EXPONENCIAL $f(x) = e^x$

h	e^h - 1	(e^h -1)/h
0,1	0,105170918	1,051709
0,01	0,010050167	1,005017
0,001	0,0010005	1,0005
0,0001	0,000100005	1,00005

h	e^h - 1	(e^h -1)/h
-0,1	-0,095162582	0,951626
-0,01	-0,009950166	0,995017
-0,001	-0,0009995	0,9995
-0,0001	-9,9995E-05	0,99995

$$\lim_{h\to 0} \frac{\left(e^{h}-1\right)}{h} = 1$$

DERIVADA DA FUNÇÃO y = e^x

Exemplo: Obtenha a derivada de cada função:

a)
$$f(x) = 2e^x$$
 \Rightarrow $f'(x) = 2 \cdot e^x$ $(e^{x})' = e^x$
b) $f(x) = 3e^x$ \Rightarrow $f'(x) = 3 \cdot e^x$
c) $f(x) = 2 + e^x$ \Rightarrow $f'(x) = 0 + e^x = e^x$
d) $f(x) = 5x + e^x$ \Rightarrow $f'(x) = 5 + e^x$

DERIVADA DA FUNÇÃO EXPONENCIAL $f(x) = e^x$

Exemplo: Obtenha a equação da reta tangente ao gráfico da função $f(x) = e^x$ no ponto de abscissa 2.

Coeficiente angular de reta tangente = derivada no ponto

$$f(x) = e^{x}$$

$$f'(x) = e^{x}$$

$$m = f'(x) = e^{x}$$

$$y - y_p = m(x - x_p)$$

 $y - e^2 = e^2 \cdot (x - 2)$
 $y = e^3 \cdot x - 2 \cdot e^2 + e^2$
 $y = e^3 \cdot x - e^2$
 $y = e^2 \cdot (x - 1)$

AS REGRAS DO PRODUTO E DO QUOCIENTE

Vimos em um texto anterior que a derivada de uma soma é a soma das derivadas, um resultado análogo valendo para a diferença de duas funções. Deste modo, é natural questionarmos se a derivada de um produto é o produto das derivadas. Vamos investigar esta questão com um exemplo.

Se
$$f(x) = x^3$$
 e $g(x) = x^2$, temos que

$$f'(x) \cdot g'(x) = (x^3)' \cdot (x^2)' = 3x^2 \cdot 2x = 6x^3, \qquad (f \cdot g)'(x) = (x^3 \cdot x^2)' = (x^5)' = 5x^4.$$

Assim, o produto das derivadas é $6x^3$, que é um polinômio de grau 3, enquanto que a derivada do produto é $5x^4$, que é um polinômio de grau 4. Este exemplo mostra que a derivada de um produto não é o produto das derivadas. Utilizando as mesmas funções acima pode-se facilmente calcular

$$\frac{f'(x)}{g'(x)} = \frac{3x^2}{2x} = \frac{3x}{2}, \qquad \left(\frac{f}{g}\right)'(x) = (x)' = 1,$$

e portanto a a derivada de um quociente não é o quociente das derivadas.

A Regra do Produto Se f e g são ambas deriváveis, então

$$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)] \qquad (f \cdot g)' = f \cdot g' + g \cdot f'$$

Em outras palavras, a Regra do Produto diz que a derivada de um produto de duas funções é a primeira função vezes a derivada da segunda função mais a segunda função vezes a derivada da primeira função.

Voltando às funções $f(x) = x^3 e g(x) = x^2$, então a derivada do produto $f(x) \cdot g(x)$ é:

$$y = x^{3} \cdot x^{2}$$
 $y = 5x^{2}x = 6x^{3}$
 $y = x^{5}$ $y' = 5x^{4}$
Rega do produto:
 $(f \cdot g)' = f \cdot g' + g \cdot f'$
 $(x^{3} \cdot x^{2})' = x^{3} \cdot 2x^{4} + x^{2} \cdot 3x^{2} = 2x^{4} + 3x = 5x^{4}$

2º Exemplo: Derive a função

$$f(x) = x^2 \cdot (5x^2 + 3x + 1).$$

Sem a regra do produto:

$$y = x^{2} (5x^{2} + 3x + 1)$$

$$y = 5x^{4} + 3x^{3} + x^{2}$$

$$y' = 20x^{3} + 9x^{2} + 2x$$

Com a regra do produto:

$$f = x^2$$
 $y = 5x^2 + 3x + 1$
 $y' = f \cdot y' + y \cdot f'$
 $y' = x^2 \cdot (10x + 3) + (5x^2 + 3x + 1) \cdot 2x$
 $y' = 10x^3 + 3x^2 + 10x^3 + 6x^2 + 2x$
 $y' = 20x^3 + 9x^2 + 2x$

3º Exemplo: Derive as funções: $(f \cdot g) = f \cdot g + g \cdot f$

a)
$$f(x) = x^4 e^x$$

 $f = x^4$ $f' = 4x^3$
 $g = e^x$ $g' = e^x$

$$f'(x) = x^4 \cdot e^x + e^x \cdot 4x^3$$

 $f'(x) = x^3 \cdot e^x(x+4)$

b)
$$f(x) = (x^3 + 2x)e^x$$

 $f = x^3 + 2x$ $f' = 3x^2 + 2$
 $g = e^x$ $g' = e^x$

$$(f \cdot g)' = f \cdot g' + g \cdot f'$$

$$f'(x) = (x^3 + 2x) \cdot e^x + e^x \cdot (3x^2 + 2)$$

$$f'(x) = e^x \cdot (x^3 + 2x + 3x^2 + 2)$$

$$f'(x) = e^x \cdot (x^3 + 3x^2 + 2x + 2)$$

c)
$$g(x) = \sqrt{x} \cdot e^x$$

 $f = \sqrt{x} = x^{\frac{1}{2}} = x^{0.5} \Rightarrow f' = 0.5x^{-0.5}$
 $g = e^x$ $g' = e^x$

$$(f \cdot q)' = f \cdot q' + q \cdot f'$$

$$q'(x) = x^{0.5} \cdot e^{x} + e^{x} \cdot 0.5x^{-0.5}$$

$$q'(x) = e^{x} \cdot (x^{0.5} + 0.5x^{-0.5})$$

$$e^{x}$$

$$q'(x) = e^{x} \cdot (\sqrt{x} + \frac{1}{2\sqrt{x}})$$

d)
$$f(x) = (1 + 2x^2)(x - x^2)$$

$$e) f(x) = \frac{e^x}{x^2}$$

f)
$$g(x) = \sqrt[3]{x^2}(x+2)$$

Obtenha a derivada de cada função f dada abaixo:

a)
$$f(x) = (3x^2 + x)(1 + x + x^3)$$

b)
$$f(x) = x^2(x + x^4)(1 + x + x^3)$$

c)
$$f(x) = 2 + 3x + x^2$$

d)
$$f(x) = (2x + 3)^2$$

e)
$$f(x) = x^3 + ex$$

f)
$$f(x) = x^3 + e^x$$

g)
$$f(x) = x^4 + 2x$$

h)
$$f(x) = 3x - 7e$$

i)
$$f(x) = e^x + 1$$

j)
$$f(x) = 3 + 5x^2 + x^3$$