

Soutenance du Stage de deuxième année F4
Amélioration d'algorithme d'apprentissage pour la localisation en environnement intérieur

Julien Feuillas

ISIMA

23 Mai 2019

Objectifs du groupe ALTIPHARMA

AITIPHARMA

- Groupement de pharmacies en France
- Clients potentiels : plus de 250 000 personnes
- Représentant : M. PORTAL
- Objectifs
 - Suivi de clients au sein de la pharmacie
 - Création d'offres personnalisées

Travaux réalisés dans le cadre du projet

- Stage de 6 mois
- Création de capteurs
 - Utilisation des téléphones portables des clients
 - Informations recueillies :
 - Puissance du signal
 - Adresse MAC
 - Date
- Mise en place d'une première solution
 - Acquisition de données
 - Algorithme de Machine Learning

Cadre du Projet

- Nos Objectifs
 - Calcul de la position des clients à un instant donné
 - Étude de différentes solutions
- Cadre d'étude
 - Calcul mathématique direct?
 - Machine Learning
 - Classification
 - Régression

Problématique

Introduction

Quelle est la méthode de Machine Learning la plus efficace pour effectuer de la localisation en environnement intérieur?

Plan

- 1 Travaux précédents et Déroulement du Projet
- 2 Présentation des méthodes à implémenter
- Résultats

Plan

- 1 Travaux précédents et Déroulement du Projet
- 2 Présentation des méthodes à implémenter
- 3 Résultats

Acquisition des données

- Découpage de la pharmacie en différentes zones
- Méthode d'acquisition des données :
 - Téléphone posé dans une zone
 - Émission de signaux pendant une certaine durée
- Stockage des données : x; y; date; c1; c2; c3; c4

- Vocabulaire :
 - Feature (*c1,c2,c3,c4*)
 - Target (x,y)
- Algorithmes paramétrés
- Deux étapes :
 - Entraînement
 - Test

Classification et Régression

- Classification
 - Regroupement en classes
 - Classes Targets
- Régression
 - Forme de la fonction : features → targets
 - Minimisation de l'erreur
 - Méthodes linéaires : $\begin{cases} t_1 &= \alpha_{1,0} + \alpha_{1,1}f_1 + \dots + \alpha_{1,n}f_n \\ &\vdots \\ t_m &= \alpha_{m,0} + \alpha_{m,1}f_1 + \dots + \alpha_{m,n}f_n \end{cases}$

Outils utilisés

- Python
- Bibliothèques Python :
 - Numpy
 - Scikit-Learn et Pandas
 - Matplotlib et Seaborn

- Rendez-vous hebdomadaires
- Objectifs définis au cours du projet

- Travaux précédents et Déroulement du Projet
- 2 Présentation des méthodes à implémenter
- 3 Résultats

Méthodes de Classification

- K Nearest Neighbors
 - Recherche des voisins
 - Détermination de la classe
- Support Vector Machine (SVM)
 - Choix d'une méthode
 - Itération

- $\bullet \ \, \mathsf{Pr\'ecision} = \frac{\mathsf{Nombre} \ \mathsf{de} \ \mathsf{pr\'edictions} \ \mathsf{correctes}}{\mathsf{Nombre} \ \mathsf{de} \ \mathsf{donn\'ees}}$
- Matrice de confusion :

	A B	
Α	2345	0
В	213	2143

Régressions linéaire et polynomiale

- Régression linéaire
 - Méthode des moindres carrés
 - Erreur : $||.||_2^2$
- Régression polynomiale
 - Paramètre : degré
 - Exemple :

$$t = a_0 + a_1 f_1 + a_2 f_2 + a_3 f_1^2 + a_4 f_2^2 + a_5 f_1 f_2$$

Méthode linéaire?

Régressions linéaires paramétrées

- Régression Ridge
 - Redondance d'information entre les individus
 - ullet Coefficient de pénalité lpha
- Régression LASSO
 - Redondance d'information dans les features
 - ullet Coefficient de pénalité lpha
- Régression Elastic-Net
 - Combinaison des méthodes précédentes
 - Deux Coefficients :
 - ullet α : Coefficient de pénalité
 - $\rho \in [0,1]$: Contrôle de la combinaision

Métriques pour la régression

- Erreur de "distance" :
 - Erreur quadratique :

•
$$MSE(Y, Y_{pred}) = \frac{1}{N_{test}} \sum_{l=1}^{N_{test}} (Y_l - Y_{pred,l})^2$$

Erreur moyenne absolue

•
$$MAE(Y, Y_{pred}) = \frac{1}{N_{test}} \sum_{l=1}^{N_{test}} |Y_l - Y_{pred, l}|$$

- Capacité de prédiction du modèle
 - Coefficient de détermination

•
$$R^2(Y, Y_{pred}) = 1 - \frac{\sum_{l=1}^{N_{test}} (Y_l - Y_{pred,l})^2}{\sum_{l=1}^{N_{test}} (Y_l - \bar{Y})^2}$$

- Score de variance expliquée
 - $EVS(Y, Y_{pred}) = 1 \frac{Var(Y Y_{pred,l})}{Var(Y)}$

Efficacité des méthodes de régression

- Résultats dépendants du découpage initial
- Écriture d'une fonction Python :
 - apply_regressions
 - Plusieurs applications du même modèle de régression
 - Renvoie la valeur des métriques pour chaque application
 - Variables d'entrée :
 - Nombre de régressions
 - Le modèle à appliquer
 - Conservation des lignes dupliquées?
- Utilisable pour la détermination de paramètres

Plan

- 1 Travaux précédents et Déroulement du Projet
- 2 Présentation des méthodes à implémenter
- Résultats

K Nearest Neighbors

• Précision = 98%

• Précision = 68%

Détermination des paramètres : polynomiale

Détermination des paramètres : Elastic-Net

- Méthode précédente non utilisable
- Utilisation d'un objet déjà implémenté :
 - MultiTaskElasticNetCV de sklearn.linear_model
 - Validation croisée + méthode de régression
- Paramètre de construction :
 - Nombre de plis à effectuer
 - Un tableau de valeurs possibles pour α er ρ

Tableau de résultats

	Duplications?	MSE	MAE	R2	EVS
Linéaire	oui	1.862	1.097	0.642	0.643
	non	2.061	1.158	0.602	0.606
Polynomiale	oui	0.900	0.666	0.824	0.825
	non	1.299	0.773	0.717	0.720
Elastic-Net	oui	1.864	1.098	0.642	0.642
	non	2.064	1.160	0.601	0.604

Comparaison entre classification et régression

- Efficacité de la régression :
 - Au sens des métriques de régression
 - Différentes des métriques de classification
- Passage régression → classification
 - Pour la régression polynomiale

Résultats de la régression polynomiale pour la classification

- Résultats :
 - Précision : 54%
 - Termes extra-diagonaux de la matrice de confusion
- Résultats peu précis
 - Zones trop grandes
 - Nécessité d'un nouveau jeu de données

Résumé du travail réalisé

- Méthodes de régression implémentées
 - Méthodes linéaires
 - Méthodes probabilistes? Régressions à noyau?
- Résultats obtenus
 - Non concluants
 - Méthodes employées réutilisables
- Ce qu'il reste à faire
 - Mise en place de nouvelles régressions
 - Étude d'un nouveau jeu de données

Remerciements

Nous vous remercions pour votre attention