Chap 1.030 One-Sided Limits

Recall this statement about limits from an earlier lesson

If
$$\lim_{x \to a^{-}} f(x) = b$$
 and if $\lim_{x \to a^{+}} f(x) = b$ then $\lim_{x \to a} f(x) = b$

However, if $\lim_{x \to a^-} f(x)$ exists and if $\lim_{x \to a^+} f(x)$ exists but $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$, then $\lim_{x \to a} f(x)$ does not exist.

Example 1

Given that $f(x) = \begin{cases} -x - 3, x \le -1 \\ 3x, & x > -1 \end{cases}$, use a graphing approach to determine $\lim_{x \to -1} f(x)$ or justify that it does not exist.

Example 2

Evaluate the following using a graphing approach

$$\lim_{x\to 2}(\sqrt{x-2}+3)$$

Example 3

Evaluate $\lim_{x\to 0} |x|$

Example 4

Evaluate $\lim_{x\to 4} \frac{|x-4|}{x-4}$

