Chương 4. Thực hiện hệ thống rời rạc

Nội dung

- 4.1. Giới thiệu
- 4.2. Biểu diễn hệ thống rời rạc
- 4.3. Cấu trúc các hệ thống FIR
- 4.4. Cấu trúc các hệ thống số IIR
- 4.5. Bộ lọc lưới

4.1. Giới thiệu

Một hệ thống rời rạc tuyến tính bất biến được mô tả bởi phương trình sai phân hệ số hằng:

$$y(n) = -\sum_{r=1}^{N} a_r y(n-r) + \sum_{k=0}^{M} b_k x(n-k)$$
 (7.1)

Hàm hệ thống:

$$H(Z) = \frac{\sum_{k=0}^{M} b_k Z^{-k}}{1 + \sum_{r=1}^{N} a_k Z^{-r}}$$

- Giá trị của các điểm o và điểm cực phụ thuộc vào các hệ số $a_{\rm r}$ và $b_{\rm k}$
- Có thể thực hiện hệ thống rời rạc bằng các phương pháp khác nhau dựa trên phần cứng hoặc phần mềm máy tính
- Từ phương trình sai phân → xây dựng sơ đồ khối (gồm các phần tử trễ, bộ nhân, bộ cộng)

4.1. Giới thiệu

Thực hiện hệ thống trên phần mềm

Biến đổi pt sai phân→ hệ phương trình tương đương

Xây dựng thuật toán

Viết chương trình phần mềm

Thực hiện hệ thống trên phần cứng

Cấu trúc sơ đồ khối

Cấu hình phần cứng

Thực hiện hệ thống (bộ trễ, bộ cộng, bộ nhân)

4.1. Giới thiệu

Các yếu tố chính ảnh hưởng đến thực hiện hệ thống rời rạc

4.2. Biểu diễn hệ thống rời rạc

- ❖ Có 2 phương pháp để biểu diễn một hệ thống rời rạc:
 - Sử dụng sơ đồ khối
 - Sử dụng Graph tín hiệu

Sơ đồ khối

Ví dụ

$$y(n) = a_1 y(n-1) + a_2 y(n-2) + bx(n)$$

Cấu trúc trực tiến dang l

$$y(n) = \sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

$$v(n) = \sum_{k=0}^{M} b_k x(n-k)$$

$$y(n) = \sum_{k=1}^{N} a_k y(n-k) + v(n)$$

Cấu trúc trực tiếp dạng I

$$H_{1}(z) = \sum_{k=0}^{M} b_{k} z^{-k}$$

$$X(n) \xrightarrow{b_{0}} + \xrightarrow{t} y(n)$$

$$X_{(n-1)} \xrightarrow{Z^{-1}} b_{1} \xrightarrow{t} y(n-1)$$

$$X_{(n-2)} \xrightarrow{b_{M-1}} + \xrightarrow{t} a_{N-1} \xrightarrow{Z^{-1}} y(n-2)$$

 $X_{(n-M)}$

Cấu trúc trực tiếp dạng II

$$w(n) = \sum_{k=1}^{N} a_k w(n-k) + x(n)$$

$$y(n) = \sum_{k=0}^{M} b_k x(n-k) + w(n)$$

$$x(n)$$

$$y(n) = \sum_{k=0}^{M} b_k x(n-k) + w(n)$$

4.2. Biểu diễn hệ thống rời rạc

Cấu trúc hệ thống rời rạc

Graph tín hiệu

Nút và nhánh

Nút nguồn và nút đích

Nút nguồn là nút không có nhánh nào đi vào

Nút đích là nút chỉ có 1 nhánh đi vào

Ví du

Source Node

$$w_1(n) = x(n) + aw_2(n) + bw_2(n)$$

 $w_2(n) = cw_1(n)$
 $y(n) = dx(n) + ew_2(n)$

Sơ đồ khối và Graph tín hiệu

Sơ đồ khối và Graph tín hiệu

$$y(n) = w_3(n) = b_0 w_2(n) + b_1 w_2(n-1)$$

$$w_2(n) = w_1(n) = x(n) + aw_2(n-1)$$

$$Y(Z) = (b_0 + b_1 Z^{-1}) W_2(Z)$$

$$W_2(Z) = X(Z) + aZ^{-1}W_2(Z)$$

$$W_2(Z) = \frac{X(Z)}{1 - aZ^{-1}}$$

$$Y(Z) = \frac{(b_0 + b_1 Z^{-1})}{1 - aZ^{-1}} X(Z)$$

$$y(n) = ay(n-1) + b_0x(n) + b_1x(n-1)$$

Cấu trúc hệ thống rời rạc

Cấu trúc cơ bản của hệ thống IIR

Cấu trúc cơ bản

- Dạng trực tiếp
- Dạng nối tiếp
- Dang song song

Trưc tiếp dang I

$$y(n) - \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

$$H(z) = \frac{\sum_{k=1}^{M} b_k Z^{-k}}{1 - \sum_{k=1}^{N} a_k Z^{-k}}$$

Trực tiếp dạng II

$$y(n) - \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{N} b_k x(n-k)$$

Ví du

$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.75z^{-1} + 0.125z^{-2}}$$

Trực tiếp dạng I

Trực tiếp dạng II

Dang mắc nối tiếp

$$y(n) - \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

$$H(z) = \frac{\sum_{k=1}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

$$H(z) = \frac{\prod_{k=1}^{M_1} (1 - g_k Z^{-1}) \prod_{k=1}^{M_2} (1 - h_k Z^{-1}) (1 - h_k^* Z^{-1})}{\prod_{k=1}^{N_1} (1 - c_k Z^{-1}) \prod_{k=1}^{N_2} (1 - d_k Z^{-1}) (1 - d_k^* Z^{-1})}$$

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k}Z^{-1} + b_{2k}Z^{-2}}{1 - a_{1k}Z^{-1} - a_{2k}Z^{-2}}$$

Dạng nối tiếp

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}}$$

Dạng nối tiếp

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}}$$

Dạng nối tiếp kiểu khác

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}}$$

$$H(z) = b_0 \prod_{k=1}^{N_s} \frac{1 + \widetilde{b}_{1k} z^{-1} + \widetilde{b}_{2k} z^{-2}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

Dang song song

$$y(n) - \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

$$H(z) = \frac{\sum_{k=1}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

$$H(z) = \sum_{k=0}^{N_P} C_k z^{-k} + \sum_{k=1}^{N_1} \frac{A_k}{1 - c_k z^{-1}} + \sum_{k=1}^{N_1} \frac{B_k (1 - e_k z^{-1})}{(1 - d_k z^{-1})(1 - d_k^* z^{-1})}$$

Poles at zero

Real Poles

Complex Poles

$$H(z) = \sum_{k=0}^{N_P} C_k z^{-k} + \sum_{k=1}^{N_s} \frac{e_{0k} + e_{1k} z^{-1}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

Dang song song

$$H(z) = \sum_{k=0}^{N_P} C_k z^{-k} + \sum_{k=1}^{N_S} \frac{e_{0k} + e_{1k} z^{-1}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

Ví du

$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.75z^{-1} + 0.125z^{-2}}$$

$$H(z) = 8 + \frac{-7 + 8z^{-1}}{1 - 0.75z^{-1} + 1.25z^{-2}}$$

Ví du

$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.75z^{-1} + 0.125z^{-2}}$$

$$H(z) = 8 + \frac{18}{1 - 0.5z^{-1}} - \frac{25}{1 - 0.25z^{-1}}$$

Cấu trúc hệ thống rời rạc

Dạng chuyển vị

Chuyển vị Graph tín hiệu

- Hướng của các mũi tên được đánh dấu ngược lại
- ❖ Đổi vai trò của đầu ra và đầu vào

Cấu trúc hệ thống rời rạc

Cấu trúc cơ bản của hệ thống FIR

Hệ thống rời rạc FIR

Đối với hệ thống FIR nhân quả, hàm hệ thống chỉ có các điểm o.

$$y(n) = \sum_{k=0}^{M} b_k x(n-k)$$

$$\Rightarrow y(n) = \sum_{k=0}^{M} h(k)x(n-k)$$

$$y(n) = \sum_{k=0}^{M} h(k)x(n-k)$$

$$h(n) = \begin{cases} b_n & n = 0, 1, \dots, M \\ 0 & otherwise \end{cases}$$

Dạng trực tiếp

Dạng nối tiếp

$$y(n) = \sum_{k=0}^{M} b_k x(n-k)$$

$$H(z) = \sum_{n=0}^{M} h(n)z^{-n}$$

$$H(z) = \prod_{k=1}^{M_s} (b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2})$$

Box the : 1 Cho he thong TTBB is so to phin ghep san: H(+); hu); prsp; větai st.

Both tip: Cho his thong co lotal truyen dat
$$4(2)$$
 sau:

$$H(2) = \frac{1+\frac{1}{2}-6\frac{1}{2}}{(1+2\frac{1}{2})(1+5\frac{1}{2}-6\frac{1}{2})}$$

a) $h(x) = ?$ Xet tinh on tinh & reque? (Lin sur)

b) Ve so to day not trep & chyon vi; sony sony & chuyen vi.

(Duny hair bai 1)

Một số bài tập

Bài 1: Cho hệ thống rời rạc có sơ đồ:

- a) Xác định H(z), h(n), viết PTSP
- b) Vẽ lại sơ đồ thực hiện hệ thống (dạng nối tiếp, song song, chuyển vị)

Bài 2: Cho hệ thống rời rạc như sơ đồ sau:

- a) Xác định H(z), viết PTSP
- b) Vẽ dạng trực tiếpII, I

Một số bài tập

Bài 3: Cho hệ thống rời rạc như sơ đồ (a) và (b) sau:

Xác định hàm truyền đạt của hai hệ thống và so sánh.

Bài 4: Cho hệ thống:
$$H(z) = (37.8 - 2.05z^{-1}) + \frac{-28.64 + 18.86z^{-1}}{1 - 0.32z^{-1} + 0.56z^{-2}} + \frac{-5 - 12.31z^{-1}}{1 - 0.93z^{-1} + 0.58z^{-2}}$$
. Vẽ sơ đồ thực hiện hệ thống dạng: song song và

chuyển vị, trực tiếp I, II, graph

Cấu trúc hệ thống pha tuyến tính

Một hệ thống pha tuyến tính thỏa mãn điều kiện:

$$h(M-n) = h(n)$$
 với $n = 0,1,...,M$
 $Hoặc:$
 $h(M-n) = -h(n)$ for $n = 0,1,...,M$

	M chẵn	M lé
h(M-n)=h(n)	Loại I	Loại II
h(M-n)=-h(n)	Loại III	Loại IV

Loai I

$$H(z) = \sum_{n=0}^{M} h(n)z^{-n} = \sum_{n=0}^{M/2-1} h(n)z^{-n} + h(M/2)z^{-M/2} + \sum_{n=M/2+1}^{M} h(n)z^{-n}$$

$$= \sum_{n=0}^{M/2-1} h(n)z^{-n} + h(M/2)z^{-M/2} + \sum_{n=M/2+1}^{M} h(M-n)z^{-n}$$

$$= \sum_{n=0}^{M/2-1} h(n)z^{-n} + h(M/2)z^{-M/2} + \sum_{n=0}^{M/2-1} h(n)z^{n-M}$$

$$= \sum_{n=0}^{M/2-1} h(n)(z^{-n} + z^{n-M}) + h(M/2)z^{-M/2}$$

Loại II, III, IV

Cấu trúc hệ thống rời rạc

Cấu trúc lưới

FIR Lattice

$$A(z) = H(z) = 1 - \sum_{m=1}^{N} a_m z^{-m}$$

$$e_0(n) = \widetilde{e}_0(n) = x(n)$$

$$e_i(n) = e_{i-1}(n) - k_i \widetilde{e}_{i-1}(n-1)$$

$$\widetilde{e}_i(n) = -k_i e_{i-1}(n) + \widetilde{e}_{i-1}(n-1)$$

$$y(n) = e_N(n)$$

FIR Lattice

$$e_0(n) = \widetilde{e}_0(n) = x(n)$$

$$e_i(n) = e_{i-1}(n) - k_i \tilde{e}_{i-1}(n-1)$$

$$\widetilde{e}_i(n) = -k_i e_{i-1}(n) + \widetilde{e}_{i-1}(n-1)$$

$$y(n) = e_N(n)$$

Đặt:

$$\widetilde{A}_{i}(z) = \frac{\widetilde{E}_{i}(z)}{\widetilde{E}_{0}(z)}$$

$$E_0(z) = \widetilde{E}_0(z) = X(z)$$

$$E_i(z) = E_{i-1}(z) - k_i z^{-1} \widetilde{E}_{i-1}(z)$$

$$\widetilde{E}_{i}(z) = -k_{i}E_{i-1}(z) + z^{-1}\widetilde{E}_{i-1}(z)$$

$$Y(z) = E_N(z)$$

$$A_0(z) = \widetilde{A}_0(z) = 1$$

$$A_i(z) = 1 - \sum_{m=1}^{i} a_m^{(i)} z^{-m}$$

$$A_{i}(z) = A_{i-1}(z) - k_{i}z^{-i}A_{i-1}(z^{-1})$$

Chứng minh:

$$\widetilde{A}_i(z) = z^{-i} A_i(z^{-1})$$

$$A_i(z) = 1 - \sum_{m=1}^{i} a_m^{(i)} z^{-m}$$

$$A_0(z) = \widetilde{A}_0(z) = 1$$

$$\int a_i^{(i)} = k_i$$

$$a_m^{(i)} = a_m^{(i-1)} - k_i a_{i-m}^{(i-1)}$$

FIR Lattice

$$A(z) = 1 - \sum_{m=1}^{N} a_m z^{-m}$$

$$a_m = a_m^{(N)}$$

$$A(z) = A_N(z)$$

$$a_N = a_N^{(N)} = k_N$$

$$a_i^{(i)} = k_i$$

$$a_m^{(i)} = a_m^{(i-1)} - k_i a_{i-m}^{(i-1)}$$

m < i

FIR Lattice

$$k_i = a_i^{(i)}$$

$$a_{m}^{(i-1)} = a_{m}^{(i)} + k_{i} a_{i-m}^{(i-1)}$$

$$a_{i-m}^{(i-1)} = a_{i-m}^{(i)} + k_{i} a_{m}^{(i-1)}$$

$$a_{m}^{(i-1)} = a_{m}^{(i)} + k_{i} (a_{i-m}^{(i)} + k_{i} a_{m}^{(i-1)})$$

$$a_m^{(i-1)} = \frac{a_m^{(i)} + k_i a_{i-m}^{(i)}}{1 - k_i^2}$$

$$a_i^{(i)} = k_i$$

$$a_m^{(i)} = a_m^{(i-1)} - k_i a_{i-m}^{(i-1)}$$

m < i

$$A(z) = (1 - 0.8 jz^{-1})(1 + 0.8 jz^{-1})(1 - 0.9 z^{-1})$$

$$= 1 - 0.9 z^{-1} + 0.64 z^{-2} - 0.576 z^{-3}$$

$$a_m^{(0)} \qquad a_m^{(1)} \qquad a_m^{(2)} \qquad a_m^{(3)}$$

$$m=0 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

$$m=1 \qquad 0.6728 \qquad 0.7952 \qquad 0.9$$

$$m=2 \qquad -0.1820 \qquad -0.64$$

$$m=3 \qquad 0.576$$

$$x(n) \qquad 0.1820 \qquad -0.576$$

$$0.1820 \qquad -0.576$$

$$0.1820 \qquad -0.576$$

Bộ lọc toàn điểm cực

Nếu đổi vai trò của x(n) và y(n) trong sơ đồ bộ lọc lưới có hàm truyền toàn điểm o. Khi đó:

$$\frac{X(z)}{Y(z)} = A(z) = 1 - \sum_{m=1}^{N} a_m z^{-m}$$

$$\frac{Y(z)}{X(z)} = A^{-1}(z) = \frac{1}{1 - \sum_{m=1}^{N} a_m z^{-m}}$$

$$e_0(n) = \widetilde{e}_0(n) = y(n)$$

$$e_{i-1}(n) = e_i(n) + k_i \widetilde{e}_{i-1}(n-1)$$

$$\widetilde{e}_i(n) = -k_i e_{i-1}(n) + \widetilde{e}_{i-1}(n-1)$$

$$e_N(n) = x(n)$$

Bộ loc toàn điểm cực

Đảo chiều mũi tên và đổi dấu hệ số phản xạ

$$e_{i-1}(n) = e_i(n) + k_i \widetilde{e}_{i-1}(n-1)$$

Sự ổn định

$$H(z) = \frac{1}{A(z)} = \frac{1}{1 - \sum_{m=1}^{N} a_m z^{-m}}$$

Tất cả các điểm cực của H(z) phải nằm trong vòng tròn đơn vị

Điều kiện cần và đủ để bộ lọc lưới toàn điểm cực ổn định: $|k_i|$ <1

Bộ lọc lưới có cả điểm o và điểm cực

$$H(z) = \frac{1 + 3z^{-1} + 3z^{-2} + z^{-3}}{1 - 0.9z^{-1} + 0.64z^{-2} - 0.576z^{-3}}$$

$$c_{m} = b_{m} + \sum_{i=m+1}^{N} c_{i} a_{i-m}^{(i)}$$

	$a_m^{(0)}$	$a_m^{(1)}$	$a_{m}^{(2)}$	$a_{m}^{(3)}$
m=0	1	1	1	1
	<i>m</i> =1	0.6728	0.7952	0.9
		<i>m</i> =2	-0.1820	-0.64
			<i>m</i> =3	0.576

$$c_{m} = b_{m} + \sum_{i=m+1}^{N} c_{i} a_{i-m}^{(i)}$$

$$c_{1} = b_{1} + c_{2} a_{1}^{(3)} = 3.9$$

$$c_{1} = b_{1} + c_{2} a_{1}^{(2)} + c_{3} a_{2}^{(3)} = 5.4612$$

$$c_{0} = b_{0} + c_{1} a_{1}^{(1)} + c_{2} a_{2}^{(2)} + c_{3} a_{3}^{(3)} = 4.5404$$

$$H(z) = \frac{1 + 3z^{-1} + 3z^{-2} + z^{-3}}{1 - 0.9z^{-1} + 0.64z^{-2} - 0.576z^{-3}}$$

$$c_3 = b_3 = 1$$
 $c_1 = b_1 + c_2 a_1^{(2)} + c_3 a_2^{(3)} = 5.4612$ $c_2 = b_2 + c_3 a_1^{(3)} = 3.9$ $c_0 = b_0 + c_1 a_1^{(1)} + c_2 a_2^{(2)} + c_3 a_3^{(3)} = 4.5404$