Preregistration & Open Science

(many slides created by Sebastian Schuster)

Terminology

direct vs. conceptual replication

analytic flexibility (p-hacking) and publication bias (file drawer problem)

A typical psycholinguistics study

Hypothesis

Reading of sentences with reduced relative clauses is slower than reading of sentences with overt complementizer

H₀: Average reading times of both sentence types are equal

The horse raced past the barn fell into a ditch. The horse that was raced past the barn fell into a ditch.

p-values

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

- 1. Number of subjects per condition
 - a. Run 10 subjects per condition
 - b. Perform a t-test
 - c. If p < .05: Publish paper!

Otherwise: Go to step a.

- 2. Have multiple dependent variables
 - a. Run tests to predict each of the variables
 - b. Pick the dependent variable that gives you a significant *p*-value

The horse raced past the barn fell nto a ditch.

The horse that was raced past the barn fell nto a ditch.

- 3. Run models with many different independent variables
 - a. Have a set of many independent variables
 - b. Run models with various combinations and interactions until your manipulation is significant

- 4. Have conditions that you don't report on
 - a. Run n > 2 conditions
 - b. Pick 2 conditions which differ significantly and don't tell anybody about the other conditions

DON'T DO ANY OF THESE THINGS!!!

Researcher degrees of freedom	Significance level		
Researcher degrees of freedom	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%

Researcher degrees of freedom	Significance level		
	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%

Researcher degrees of freedom	Significance level		
	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%

Researcher degrees of freedom	Significance level		
	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%
Situation D: dropping (or not dropping) one of three conditions	23.2%	12.6%	2.8%

Researcher degrees of freedom	Significance level		
	p < .1	p < .05	p < .01
Situation A: two dependent variables $(r = .50)$	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%
Situation D: dropping (or not dropping) one of three conditions	23.2%	12.6%	2.8%
Combine Situations A and B	26.0%	14.4%	3.3%
Combine Situations A, B, and C	50.9%	30.9%	8.4%
Combine Situations A, B, C, and D	81.5%	60.7%	21.5%

p-values

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Pre-registration

- To keep p-value meaningful, fix the following things
 before collecting data
 - 1. number of subjects you'll run
 - exclusion criteria: Which data points are you going to exclude from your analysis
 - 3. dependent variable
 - 4. independent variables
 - 5. experimental conditions

Preregistration

- Preregistering provides you (and reviewers and readers of your paper) with proof that you actually fixed all these things
- Only requires filling out a short questionnaire which is permanently stored on a pre-registration platform

A good preregistration workflow

- 1. Come up with and implement experiment
- 2. Run pilot study with ~4 subjects
- 3. Write analysis scripts and test them with pilot data
- 4. Preregister study and upload analysis scripts to OSF
- 5. Run actual study
- 6. Analyze data with pre-registered analysis script
- 7. (optional) Do **exploratory** post-hoc analyses

www.osf.io

Guidelines

- Decide rule for terminating data collection before starting
- Collect at least 20 observations per cell
- List all variables collected in study
- Report all experimental conditions, including failed manipulations
- If observations are excluded also report results without exclusion
- Report results with and without covariates (where applicable)