Mathematics/Statistics Bootcamp Part I: Linear Algebra

Steven Winter Christine Shen

Department of Statistical Science Duke University

MSS Orientation, August 2022

Motivation

The real world is non-linear. Non-linear objects are usually:

- ▶ Difficult to study mathematically.
- Difficult to solve numerically.

We can get quite far with linear approximations. Linear objects are usually:

- Easy to study mathematically.
- ► Easy¹ to solve numerically.

Linear algebra studies linear/vector spaces and linear transformations.

¹Nothing is easy in 1 million dimensions.

Outline

Basic Linear Algebra

Basic Matrix Theory

Special Matrices

Key Example: Linear Models

Intermediate Matrix Theory

Basic Linear Algebra

Vector Spaces

A **real vector space** V is a set equipped with two functions $+: V \times V \to V$ and $\cdot: \mathbb{R} \times V \to V$ satisfying

- 1. u + v = v + u,
- 2. u + (v + w) = (u + v) + w,
- 3. There exists $\mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$,
- 4. For any $\mathbf{v} \in V$, there exists $-\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$,
- 5. $a \cdot (b \cdot \mathbf{v}) = (ab) \cdot \mathbf{v}$,
- 6. $1 \cdot v = v$,
- 7. $a \cdot (\mathbf{u} + \mathbf{v}) = a \cdot \mathbf{u} + a \cdot \mathbf{v}$,
- 8. $(a+b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$.

Usually $V = \mathbb{R}^n$, and $+, \cdot$ are defined coordinate-wise. Random variables with pth moments also form a vector space called L^p .

Linear Transformations

Let V, W be real vector spaces. A **linear transformation** is a function $T: V \to W$ such that

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}),$
- 2. $T(c \cdot \mathbf{v}) = c \cdot T(\mathbf{v})$.

Examples: $V = W = \mathbb{R}^3$. Which are linear?

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 3x - y/2 \\ y + z \\ x - y \end{pmatrix}, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \log(x) \\ \log(y) \\ \log(z) \end{pmatrix}$$

Linear Independence

A set of vectors $\{\mathbf{v}_1,...,\mathbf{v}_N\}$ is **linearly dependent** if there exist scalars c_1,c_2,\ldots,c_N , not all equal to zero, such that

$$\sum_{i=1}^{N} c_i \mathbf{v}_i = 0$$

For example,

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} \pi \\ \pi \end{pmatrix}$$

are linearly dependent as elements of $V = \mathbb{R}^2$.

If no such scalars exist, the set is said to be linearly independent.

Basis

Recall

$$\mathsf{span}_{\mathbb{R}}(\{\mathbf{v}_1,...,\mathbf{v}_{\mathcal{N}}\}) = igg\{\sum_{i=1}^{\mathcal{N}} c_i \mathbf{v}_i \mid c_1,...,c_{\mathcal{N}} \in \mathbb{R}igg\}.$$

A set of vectors $\{\mathbf{v}_1, ..., \mathbf{v}_N\}$ forms a **basis** for a vector space V if it is linearly independent and spans V.

The number of basis vectors, $\dim(V)$, is the **dimension** of V.

Almost always, $V = \mathbb{R}^n$ with standard basis

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

Dot Products

The **dot product** is a function $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v} = \sum_{i=1}^n u_i v_i.$$

Vectors are **orthogonal** if $\mathbf{u}^T \mathbf{v} = 0$.

The average of a vector can be written as

$$\bar{\mathbf{v}} = (\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T \mathbf{v} = \frac{1}{n} \sum_{i=1}^n v_i.$$

Inner products (specifically kernels) are *very* useful in statistics: covariances, feature expansion (Mercer's theorem), building Gaussian processes, etc.

Norms

The dot product induces the Euclidean norm,

$$||\mathbf{v}||_2 = \sqrt{\mathbf{v}^T \mathbf{v}} = \sqrt{\sum_{i=1}^n v_i^2}$$

Recall

- 1. $||c\mathbf{v}||_2 = c||\mathbf{v}||_2$,
- 2. $||{\bf v}||_2 = 0$ if and only if ${\bf v} = {\bf 0}$,
- 3. $||\mathbf{u} + \mathbf{v}||_2 \le ||\mathbf{u}||_2 + ||\mathbf{v}||_2$,
- 4. $|||\mathbf{u}||_2 ||\mathbf{v}||_2| \le ||\mathbf{u} \mathbf{v}||_2.$
- 5. $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}||_2 ||\mathbf{v}||_2$. (Cauchy-Schwarz)

A vector is a **unit vector** if $||\mathbf{v}||_2 = 1$.

Basic Matrix Theory

Notation

A matrix represents a linear transformation $T:V\to W$ in a fixed basis. Always assume $V=\mathbb{R}^n$, $W=\mathbb{R}^m$ with the standard basis.

Write

$$\mathbf{A} = (a_{ij}) = egin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \ dots & dots & dots & \ddots & dots \ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Matrix operations follow naturally from properties of linear transformations.

Fundamental Subspaces

A subset S of a vector space V is a **subspace** if it is also a vector space. E.g., $\mathbb{R} \subseteq \mathbb{R}^2$.

Fix $\mathbf{A} \in \mathbb{R}^{m \times n}$. The **column space**, $C(\mathbf{A})$ is the subspace of \mathbb{R}^m spanned by the columns of \mathbf{A} . By definition,

$$C(\mathbf{A}) = {\mathbf{A}\mathbf{v} \mid \mathbf{v} \in \mathbb{R}^n}.$$

The **row space**, $C(\mathbf{A}^T)$, is defined similarly.

The **rank** of **A** is the dimension of the column space (equivalently the row space). An $n \times n$ matrix **A** is **full rank** if rank(**A**) = n. This is equivalent to being invertible.

Rank Nullity

The **null space**, $N(\mathbf{A})$, is the vector subspace of \mathbb{R}^n defined by

$$N(\mathbf{A}) = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = \mathbf{0} \}.$$

The null space is orthogonal to the row space: if $\mathbf{Av} = \mathbf{0}$ and $\mathbf{u} = \mathbf{A}^T \mathbf{w} \in \mathcal{C}(\mathbf{A}^T)$, then

$$\mathbf{v}^T \mathbf{u} = \mathbf{v}^T \mathbf{A}^T \mathbf{w} = (\mathbf{A} \mathbf{v})^T \mathbf{w} = \mathbf{0}.$$

The rank-nullity theorem says

$$\dim(C(\mathbf{A})) + \dim(N(\mathbf{A})) = n$$

Example

Consider

$$\mathbf{A} = \begin{pmatrix} 2 & -4 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Then $\dim(C(\mathbf{A})) \leq 4$, $\dim(C(\mathbf{A}^T)) \leq 3$, so the rank is at most 3.

The column space includes

$$\begin{pmatrix} 4 \\ -2 \\ -3 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

but not $(2,0,0)^T$. What is the dimension of the column space? Basis? Rank? Dimension of null space? Basis?

Matrix Addition

Corresponds to adding linear transformations. Find sums element-wise:

$$\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n} \implies (A+B)_{ij} = a_{ij} + b_{ij}.$$

Associative and commutative:

$$\label{eq:abs} \begin{aligned} \textbf{A} + \textbf{B} &= \textbf{B} + \textbf{A} \\ \textbf{A} + (\textbf{B} + \textbf{C}) &= (\textbf{A} + \textbf{B}) + \textbf{C} \end{aligned}$$

Typically $O(n^2)$.

Matrix Multiplication

Corresponds to composing linear transformations. Multiply by dotting rows and columns:

$$\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times q} \implies (\mathbf{AB})_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Equivalently: $\mathbf{AB} = \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{b}^{i}$. Get $\mathbf{AB} \in \mathbb{R}^{m \times q}$.

For example:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} 1(5) + 2(8) & 1(6) + 2(9) & 1(7) + 2(10) \\ 3(5) + 4(8) & 3(6) + 4(9) & 3(7) + 4(10) \end{pmatrix}$$

Naively $O(n^3)$.

Matrix Multiplication Properties

Associative, but generally not commutative:

$$\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$$

 $\mathbf{AB} \neq \mathbf{BA}$ (usually)

Respects addition

$$A(B+C) = AB + AC$$

 $(A+B)C = AC + BC$

and scalar multiplication

$$c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

 $c\mathbf{A}\mathbf{B} = (c\mathbf{A})\mathbf{B} = \mathbf{A}(c\mathbf{B})$

The identity matrix, I = diag(1,...,1), satisfies IA = AI = A.

Matrix Inversion

Corresponds to inverting linear transformations. A matrix $A \in \mathbb{R}^{n \times n}$ is invertible (or nonsingular) if and only if $\exists \mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A}^{-1} \mathbf{A} = \mathbf{A} \mathbf{A}^{-1} = \mathbf{I}$.

For example:

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$

Naively $O(n^3)$. Try to avoid it entirely if you're solving $\mathbf{A}\mathbf{x} = \mathbf{b}^2$.

²http://gregorygundersen.com/blog/2020/12/09/matrix-inversion/

Matrix Inversion Properties

Let **A**, **B** be nonsingular and $c \neq 0$. Then

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
 $(c\mathbf{A})^{-1} = \frac{1}{c}\mathbf{A}^{-1}$ $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ $(\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_N)^{-1} = \mathbf{A}_N^{-1}\mathbf{A}_{N-1}^{-1}\cdots\mathbf{A}_1^{-1}$

Transposes

Corresponds to the adjoint/dual linear transformation. Swap rows and columns: if $\mathbf{A} \in \mathbb{R}^{m \times n}$, then $\mathbf{A}^T \in \mathbb{R}^{n \times m}$ and $(\mathbf{A}^T)_{ij} = a_{ji}$. Useful properties:

$$(\mathbf{A}^T)^T = \mathbf{A}$$

$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$$

$$(\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_N)^T = \mathbf{A}_N^T\mathbf{A}_{N-1}^T\cdots\mathbf{A}_1^T$$

$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$$

Exercises

- 1. a) Fix $\gamma > 0$ and let $V = \mathbb{R}^3$. Find a set of linearly independent vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ such that $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \gamma$ for all $i \neq j$.
 - b) (Bonus) Let V be the vector space of smooth functions:

$$V = \{f : \mathbb{R} \to \mathbb{R} \mid \text{all derivatives of } f \text{ exist and are continuous}\}$$

equipped with pointwise addition and the usual scalar multiplication. Are $f(t) = e^t$ and $g(t) = -3e^{2t}$ linearly independent? Prove/disprove.

- 2. Verify a special case of the Sherman–Morrison–Woodbury formula: $(\mathbf{I} + \mathbf{U}\mathbf{V})^{-1} = \mathbf{I} \mathbf{U}(\mathbf{I} + \mathbf{V}\mathbf{U})^{-1}\mathbf{V}$.
- 3. Prove $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$ by definition.

Special Matrices

Special Matrices

Some common structures:

- ▶ A matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ is square if n = m. Write \mathbf{A}^k for $\mathbf{A}\mathbf{A}\cdots\mathbf{A}$.
- ▶ A square matrix **A** is **diagonal** if $i \neq j \implies a_{ij} = 0$.
- ▶ The **identity** matrix **I** is diagonal with all diagonal elements equal to 1. Recall AI = IA = A.
- A square matrix **A** is **symmetric** if $\mathbf{A}^T = \mathbf{A}$. E.g., covariances.
- ▶ A square matrix **A** is **idempotent** if $A^2 = A$.
- An invertible matrix **A** is **orthogonal** (or **orthonormal**) if $\mathbf{A}^T = \mathbf{A}^{-1}$. E.g., rotations, reflections, permutations.
- Triangular matrices, partitioned matrices, quadratic forms, projection matrices, etc.

Triangular Matrices

A square matrix **U** is **upper triangular** if $i > j \implies u_{ij} = 0$. For example:

$$\mathbf{U} = \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{pmatrix}$$

Inversion and solving $\mathbf{U}\mathbf{x} = \mathbf{b}$ is $O(n^2)$. Lower triangular matrices defined analogously.

Partitioned Matrices

Obtain a **submatrix** of **A** by deleting rows and/or columns. A **partitioned matrix** has the following decomposition:

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \dots & \mathbf{A}_{1c} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \dots & \mathbf{A}_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}_{r1} & \mathbf{A}_{r2} & \dots & \mathbf{A}_{rc} \end{pmatrix}$$

where the submatrix \mathbf{A}_{ij} is referred to as the ijth block of \mathbf{A} . All operations (e.g., multiplication) pass to submatrices.

Quadratic Forms

Let **A** be a square symmetric matrix. A **quadratic form** is a function mapping vectors to scalars:

$$\mathbf{x} \mapsto \mathbf{x}^T \mathbf{A} \mathbf{x}$$
.

If $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$, then **A** is **positive definite** (PD). If instead $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$, then **A** is **positive semi-definite** (PSD).

Covariance matrices must be PSD.³

 $^{^3}$ Exercise: prove this after the probability session. \bigcirc

Projection Matrices

A **projection** matrix P is an idempotent matrix: $P^2 = P$.

An orthogonal projection is a projection that is symmetric: $\mathbf{P}^T = \mathbf{P}$. Can show an orthogonal projection \mathbf{P} sends a vector to the closest point in $C(\mathbf{P})$ (see board).

Extremely important in statistics - e.g., linear regression.

Quick Exercises

Let **P** be an orthogonal projection.

- 1. Show $\mathbf{I} \mathbf{P}$ is also an orthogonal projection.
- 2. Show $(\mathbf{I} \mathbf{P})^T \mathbf{P} = \mathbf{0}$.
- 3. Show $\mathbf{P}\mathbf{v} = \mathbf{v}$ for $\mathbf{v} \in C(\mathbf{P})$.

Key Example: Linear Models

Linear Models

We have a response y_i (e.g., lifespan) and covariates $\mathbf{x}_i \in \mathbb{R}^p$ (e.g., heart rate, blood pressure, etc) for individuals i = 1, ...n.

Try modeling y_i as a *linear combination* of the \mathbf{x}_i , plus noise:

$$y_i = \boldsymbol{\beta}^T \mathbf{x}_i + \varepsilon_i$$

Here $\beta \in \mathbb{R}^p$ are unknown regression **coefficients** and the ε_i are unobserved mean zero **errors**.

Goal: understand how changing x influences y.

Ordinary Least Squares

Let $\mathbf{Y} = (y_1, ..., y_n)^T$, and $\mathbf{X} \in \mathbb{R}^{n \times p}$ have rows $\mathbf{x}_1^T, ..., \mathbf{x}_n^T$. We can write the linear model as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

or equivalently $E[Y] \in C(X)$.

How to estimate β ? Often we minimize the **residual sum of squares**,

$$\mathsf{RSS}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i)^2 = ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2$$

Calculus approach: compute $dRSS(\beta)/d\beta$, set to zero, etc.

OLS via Projections

Let P be an orthogonal projection with $C(\mathbf{P}) = C(\mathbf{X})$. Then

$$\begin{aligned}
\mathsf{RSS}(\boldsymbol{\beta}) &= ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2 \\
&= ||(\mathbf{I} - \mathbf{P}\mathbf{Y}) + (\mathbf{P}\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})||_2^2 \\
&= ||(\mathbf{I} - \mathbf{P})\mathbf{Y} + \mathbf{P}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})||_2^2 \\
&= \mathbf{Y}^T (\mathbf{I} - \mathbf{P})^T (\mathbf{I} - \mathbf{P})\mathbf{Y} + 2\mathbf{Y}^T (\mathbf{I} - \mathbf{P})^T \mathbf{P}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) \\
&+ (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{P}^T \mathbf{P}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) \\
&= ||(\mathbf{I} - \mathbf{P})\mathbf{Y}||_2^2 + 0 + ||\mathbf{P}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})||_2^2 \\
&= ||(\mathbf{I} - \mathbf{P})\mathbf{Y}||_2^2 + ||\mathbf{P}\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2 \\
&\geq ||(\mathbf{I} - \mathbf{P})\mathbf{Y}||_2^2
\end{aligned}$$

The minimizer $\hat{\beta}$ satisfies $\mathbf{PY} = \mathbf{X}\hat{\beta}$. No calculus!

OLS Geometry

From https://en.wikipedia.org/wiki/Ordinary_least_squares.

Exercises

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ have rank $p \leq n$ (so $\mathbf{X}^T \mathbf{X}$ is invertible). Consider the model $\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$.

- 1. Show $\mathbf{P_X} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection matrix and $\mathbf{P_XX} = \mathbf{X}$. Guess $C(\mathbf{P_X})$ and $C(\mathbf{I} \mathbf{P_X})$ but don't worry about proving it.
- 2. Assume $P_XY = X\hat{\beta}$. Does this imply $\hat{\beta} = (X^TX)^{-1}X^TY$? Why or why not?
- 3. Now assume $\mathbf{X} = [\mathbf{1} \quad \mathbf{z}] \in \mathbb{R}^{n \times 2}$ for some $\mathbf{z} \in \mathbb{R}^n$. Describe the model in words. Calculate $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} \in \mathbb{R}^2$ and interpret these values. How do things simplify if \mathbf{z} has mean zero?

Intermediate Matrix Theory

Trace

The **trace** is a function $\text{Tr}: \mathbb{R}^{n \times n} \to \mathbb{R}$ defined by summing the diagonal elements:

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

Some properties of the trace are

$$\mathsf{Tr}(c\mathbf{A}) = c\mathsf{Tr}(\mathbf{A})$$
 $\mathsf{Tr}(\mathbf{A} + \mathbf{B}) = \mathsf{Tr}(\mathbf{A}) + \mathsf{Tr}(\mathbf{B})$
 $\mathsf{Tr}(\mathbf{A}^T) = \mathsf{Tr}(\mathbf{A})$
 $\mathsf{Tr}(\mathbf{AB}) = \mathsf{Tr}(\mathbf{BA})$
 $\mathsf{Tr}(\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_N) = \mathsf{Tr}(\mathbf{A}_N\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_{N-1})$

Defining Determinants

Let

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

The **determinant** is defined as

$$|\mathbf{A}| = \det(\mathbf{A}) = ad - bc$$

Determinant Geometry

From https://en.wikipedia.org/wiki/Determinant.

Extending to Square Matrices

The **minor M**_{ij} of a_{ij} is the $n-1 \times n-1$ matrix that is formed by removing the *i*th row and *j*th column from **A**. Determinants for $n \times n$ matrices are found with cofactor expansion:

$$|\mathbf{A}| = \sum_{j=1}^n (-1)^{i+j} a_{ij} |\mathbf{M}_{ij}|$$

Properties:

$$|\mathbf{A}^T| = |\mathbf{A}|$$
 $|\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}| = |\mathbf{B}||\mathbf{A}| = |\mathbf{B}\mathbf{A}|$
 $|c\mathbf{A}| = c^n|\mathbf{A}|$
 $\mathbf{A} \text{ singular } \iff |\mathbf{A}| = 0$
 $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$

Eigenvalues and Eigenvectors

Let ${f A}$ be a square matrix. If there is a vector ${f v}
eq {f 0}$ such that

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}.$$

for some scalar λ , then λ is called an eigenvalue with eigenvector \mathbf{v} . Eigenvectors are special vectors that are stretched, but not rotated.

The rank of **A** is the number of nonzero eigenvalues.

The set of eigenvalues is called the **spectrum** of **A**.

Spectral Theorem (Eigendecomposition)

Let **A** be an invertible $n \times n$ symmetric square matrix. We can always choose orthonormal eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_n$ for eigenvalues $\lambda_1 \geq ... \geq \lambda_n$. This gives the unique decomposition

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^T$$

where $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ and \mathbf{V} has columns $\mathbf{v}_1, ..., \mathbf{v}_n$. Still works if \mathbf{A} is not symmetric, but then $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$.

Computational complexity? Geometric interpretations?.

Note $\mathbf{V}^T\mathbf{V} = \mathbf{I}$. Very important in statistics - e.g., if $\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \mathbf{A})$ then $\mathbf{V}^T\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \mathbf{A})$. Entries become independent! Also PCA.

Application: Pseudoinverses and Square Roots

A pseudoinverse of A is a matrix G satisfying

$$AGA = A.$$

If ${\bf A}$ is invertible then ${\bf G}={\bf A}^{-1}$ is the unique pseudoinverse. Otherwise there are infinitely many ${\bf G}$.

Most common is the **Moore-Penrose inverse** for a symmetric⁴ matrix **A**:

$$G = V\Lambda^-V^T$$

where $\Lambda^- = \text{diag}(1/\lambda_1, ..., 1/\lambda_k, 0, ..., 0)$. Useful when $\mathbf{X}^T \mathbf{X}$ is singular (e.g., OLS).

Ideas for defining $A^{1/2}$?

⁴General case via SVD.

SVD

The singular value decomposition generalizes the eigendecomposition. Factor $\mathbf{A} \in \mathbb{R}^{m \times n}$ as

$$A = UDV^T$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$, $\mathbf{V} \in \mathbb{R}^{n \times n}$ are such that $\mathbf{U}^T \mathbf{U} = \mathbf{I_m}$, $\mathbf{V}^T \mathbf{V} = \mathbf{I_n}$, and $\mathbf{D} \in \mathbb{R}^{m \times n}$ is a nonnegative rectangular diagonal matrix of singular values $d_1 \geq \cdots \geq d_n$.

How are U, D, V related to the eigendecompositions of A^TA and AA^T ?

Compact SVD (Optional)

The compact singular value decomposition factors a rank r matrix as $\mathbf{A} \in \mathbb{R}^{m \times n}$ as

$$\mathbf{A} = \mathbf{U}_r \mathbf{D}_r \mathbf{V}_r^T$$

where $\mathbf{U}_r \in \mathbb{R}^{m \times r}$, $\mathbf{V} \in \mathbb{R}^{n \times r}$ are such that $\mathbf{U}^T \mathbf{U} = \mathbf{I}_r$, $\mathbf{V}^T \mathbf{V} = \mathbf{I}_r$, and $\mathbf{D} \in \mathbb{R}^{r \times r}$ is a nonnegative square diagonal matrix of nonzero singular values $d_1 \geq \cdots \geq d_r$.

Can write

$$\mathbf{A} = \sum_{i=1}^r d_i \mathbf{u}_i \mathbf{v}_i^T.$$

Cholesky Decomposition

We can write any symmetric PSD matrix (e.g., covariances) as

$$A = LL^T$$

where **L** is lower triangular. Naively $O(n^3)$

Can efficiently simulate multivariate normals after you have L: if $Z \sim N(0, I)$, then $\mu + LZ \sim N(\mu, LL^T)$.

If you have $\mathbf{A} = \mathbf{L}\mathbf{L}^T$, then you can find the Cholesky of

$$a\mathbf{A} + b\mathbf{v}\mathbf{v}^T$$

in $O(n^2)$.⁵ Order of magnitude faster for adaptive Metropolis, approximating Gaussian processes, etc.

Other Decompositions

Many other ways to decompose a matrix:

- 1. LU decomposition for a square matrix: $\mathbf{A} = \mathbf{L}\mathbf{U}$ with \mathbf{L} lower triangular and \mathbf{U} upper triangular. Good for solving equations.
- 2. QR decomposition for a general $m \times n$ matrix: $\mathbf{A} = \mathbf{QR}$, where \mathbf{Q} is an orthogonal $m \times m$ matrix and \mathbf{R} is an upper triangular $m \times n$ matrix. Useful for least squares.
- 3. Polar decomposition for a general $m \times n$ matrix: $\mathbf{A} = \mathbf{Q}\mathbf{S}^{1/2}$ where \mathbf{Q} is an orthogonal $m \times n$ matrix and \mathbf{S} is a symmetric square root of $\mathbf{A}^T\mathbf{A}$. Good for sampling orthogonal matrices.

Warning: matrix decomposition functions will often pad or transpose the things you want. For example: np.linalg.svd both pads the singular vectors and returns \mathbf{V}^T .

Exercises

- 1. Prove a symmetric matrix is PSD if and only if all eigenvalues are non-negative.
- 2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_1, ..., \lambda_n$. Prove

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i$$
 and $|\mathbf{A}| = \prod_{i=1}^n \lambda_i$.

Bonus: prove it without assuming symmetry.

3. Let $\mathbf{P} \in \mathbb{R}^{n \times n}$ be a singular⁶ projection matrix of rank k < n. Find all eigenvalues of \mathbf{P} . Use this to find $|\mathbf{I} + c\mathbf{P}|$.

Useful References

- ► Mathematics for Machine Learning Garrett Thomas⁷
- Matrix Algebra from a Statistician's Perspective Harville
- ► The Matrix Cookbook Petersen and Pedersen

Acknowledgements

Past contributors:

- ▶ Jordan Bryan, PhD student
- Brian Cozzi, MSS alumni
- ► Michael Valancius, MSS alumni
- Graham Tierney, PhD student
- Becky Tang, PhD student