Relations binaires

QCOP RELB. 1

- 1. Définir la notion de relation d'équivalence, en explicitant chaque terme.
- **2.** On considère la relation ${\mathscr R}$ de divisibilité sur ${\mathbb N}$:

$$\forall a, b \in \mathbb{N}, \quad a \mathscr{R} b \iff \exists k \in \mathbb{N} : b = ka.$$

- a) Montrer que \mathcal{R} est réflexive et transitive.
- **b)** La relation \mathcal{R} est-elle une relation d'équivalence?

QCOP RELB.2

Soit E un ensemble. Soit \mathcal{R} une relation d'équivalence sur E.

- 1. Définir la classe d'équivalence de $a \in E$ pour \mathcal{R} , notée $c\ell_{\mathcal{R}}(a)$.
- 2. Montrer que $\{c\ell_{\mathscr{R}}(a) \; ; \; a \in E\}$ forme une partition de E.
- **3.** Soit $n \in \mathbb{N}^*$.
 - a) Justifier que la congruence modulo n est une relation d'équivalence sur \mathbb{Z} .
 - **b)** En déduire une partition de \mathbb{Z} .

QCOP RELB.3

Soit E un ensemble. Soit \leq une relation d'ordre sur E.

- **1.** Définir « \leq est une relation d'ordre sur E » et « (E, \leq) est totalement ordonné ».
- **2.** Donner des exemples d'ensembles ordonnés. Lesquels sont totalement ordonnés? On s'intéressera par exemple à \mathbb{R} , \mathbb{Z} , $\mathscr{P}(E)$ et $\mathscr{F}(\mathbb{R}, \mathbb{R})$.