Implementation Notes of the Stationary and Spatially Varying Velocity Models for SFBA

Grigorios Lavrentiadis Elnaz Seylabi Feiruo Xia Hesam Tehrani Domniki Asimaki David McCallen

January 2025

1 Introduction

This note outlines the steps for implementing the stationary and spatially varying models presented in Lavrentiadis et al., 2025: Lavrentiadis et al., 2025 "Data-driven Characterization of Near-Surface Velocity in the San Francisco Bay Area: A Stationary and Spatially Varying Approach"

The required files and a Python implementation of the velocity models are available at: https://github.com/glavrentiadis/svm_sfba

2 Stationary model

- 1. Read V_{S30} at the given location
- 2. Compute V_{S30scl} , n and k

$$V_{S30scl} = (\ln(V_{S30}) - V_{S30ref}) / V_{S30w} \tag{1}$$

$$n = 1 + s_2 S(V_{S30scl}) (2)$$

$$k = \exp\left[r_1 + r_2 S(V_{S30scl}) + r_3 V_{S30w} H(V_{S30scl})\right]; \tag{3}$$

where the two functions S(x) and H(x) for a given variable x are defined as follows:

$$S(x) = 1/(1 + \exp(-x)) \tag{4}$$

$$H(x) = x \ln(1 + \exp(x)) \tag{5}$$

NOTE: To compute the coefficients, use the Median values of Table 1.

Table 1: Model coefficients for the stationary model

Coefficient	V_{S30ref}	V_{S30w}	r_1	r_2	r_3	s_2	σ
Mean	6.5045	0.4368	-2.2960	5.4669	0.4236	7.1685	0.3759
Median	6.4990	0.4354	-2.2986	5.3966	0.3886	7.0741	0.3759
5 th Percentile	6.3505	0.3866	-2.4135	3.9247	0.0335	5.7509	0.3686
95 th Percentile	6.6780	0.4916	-2.1700	7.2551	0.9193	8.9065	0.3834

3. Compute V_{S0}

$$V_{S0} = V_{S30} \begin{cases} \frac{(1 + (30 - z^*)k)^{1/n} + 2.5k(1 - \frac{1}{n}) - 1}{z^* k(1 - \frac{1}{n})} & \text{for } n \neq 1\\ \frac{z^* + \frac{1}{k} \ln(1 + k(30 - z^*))}{30} & \text{for } n = 1 \end{cases}$$
 (6)

4. Compute V_s for a given depth z

$$V_S(z) = \begin{cases} V_{S0} & \text{for } z \le z^* \\ V_{S0}(1 + k(z - z^*))^{1/n} & \text{for } z > z^* \end{cases}$$
 (7)

NOTE: $z^* = 2.5 \text{ m}.$

5. Truncation criteria: $z_{\text{max}} = \min\{z_1, z_2\}$ where

(a) z_1 : Depth at which $V_S(z) \ge 1000 \text{ m/s}$

(b) z_2 : Depth at which $V_{USGS}(z) \ge 1000 \text{ m/s}$

NOTE: If $z_{\text{max}} = z_1$, for $z_{\text{max}} \le z \le z_2$, $V_S(z) = 1000$ m/s.

3 Spatially varying model

 Load the regression output file for the spatially varying model: (Reporting/EQ_Spectra/data/svarying_model_stan_parameters.csv)

NOTES:

- (a) Regression file can be found on GitHub
- (b) Columns X, Y represent the profile location in UTM zone 10S
- (c) param_dBr_med and param_dBr_std contain the median and standard deviation of the profile-specific slope adjustment term.
- 2. Read V_{S30} and location, \vec{x}_s , for the profile of interest. Convert the profile location to UTM coordinates.
- 3. Compute the profile-specific slope adjustments (δB_r) . Using the covariance function:

$$\kappa_{\delta B_r}(\vec{x}_s, \vec{x}_{s'}) = \omega_{\delta Br}^2 \exp\left(\frac{|\vec{x}_s - \vec{x}_{s'}|}{\ell_{\delta Br}}\right)$$
(8)

compute the covariance matrices between the regression data:

$$\mathbf{K}_{ij} = \kappa_{\delta B_r}(\vec{x}_{s\ i}, \vec{x}_{s\ j}) \tag{9}$$

where \vec{x}_{s} i and \vec{x}_{s} i are the coordinates of the i^{th} and j^{th} site in the regression dataset. Compute the covariance matrix between regression data and the new location:

$$\mathbf{k}_i = \kappa_{\delta B_r}(\vec{x}_{s\ i}, \vec{x}_s) \tag{10}$$

The mean of the δB_r can be computed as follows:

$$\mu_{\delta B_r} = \mathbf{k}^T \ \mathbf{K}^{-1} \ \delta \mathbf{B}_{r \ med} \tag{11}$$

where $\delta \mathbf{B}_{r\ med}$ are the median slope adjustments of the regression dataset. The variance of δB_r is given by:

$$\sigma_{\delta B_r}^2 = \omega_{\delta B_r}^2 - \mathbf{k}^T \mathbf{K}^{-1} \mathbf{k} + \mathbf{k}^T \mathbf{K}^{-1} \operatorname{diag}(\delta \mathbf{B}_{r \ std}) \mathbf{K}^{-T} \mathbf{k}$$
(12)

where $\operatorname{diag}(\delta \mathbf{B}_{r \ std})$ is a diagonal matrix with the standard deviation of the slope adjustment of the regression dataset.

NOTES:

- (a) For a single profile realization using the mean value of δB_r (Equation 11)
- (b) For multiple realizations sample δB_r from a normal distribution $\mathcal{N}(\mu_{\delta B_r}, \sigma_{\delta B_r})$
- (c) For a cross-section compute all slope adjustments together
- 4. Compute V_{S30scl} , n and k

$$V_{S30scl} = (\ln(V_{S30}) - V_{S30ref}) / V_{S30w}$$
(13)

$$n = 1 + s_2 S(V_{S30scl}) (14)$$

$$k = \exp\left[r_1 + r_2 S(V_{S30scl}) + r_3 V_{S30\ w} H(V_{S30scl}) + \delta B_r\right]$$
(15)

where the two functions S(x) and H(x) for a given variable x are defined as follows:

$$S(x) = 1/(1 + \exp(-x)) \tag{16}$$

$$H(x) = x \ln(1 + \exp(x)) \tag{17}$$

NOTE: Use the Median values of Table 2 to compute k and Fixed Values to compute n and V_{S30scl} .

Table 2: Posterior distributions of spatially varying model coefficients

rable 2. I obtain distributions of spatially varying model coemicions											
Coefficient	V_{S30ref}	V_{S30w}	r_1	r_2	r_3	s_2	σ	$\ell_{\delta Br} \; (\mathrm{km})$	$\omega_{\delta Br}$		
Fixed Value	6.4990	0.4355	-	-	0.3897	7.0713	-	-	-		
Mean	-	-	-2.6097	5.9316	-	-	0.2807	1.9471	0.3159		
Median	-	-	-2.6102	5.9329	-	-	0.2807	1.9104	0.3156		
5th Percentile	-	-	-2.7168	5.6428	-	-	0.2746	1.4690	0.2860		
95th Percentile	-	-	-2.5012	6.2179	-	-	0.2869	2.5526	0.3458		

5. Compute V_{S0}

$$V_{S0} = V_{S30} \begin{cases} \frac{(1+(30-z^*)k)^{1/n} + 2.5k(1-\frac{1}{n}) - 1}{z^*k(1-\frac{1}{n})} & \text{for } n \neq 1\\ \frac{z^*k(1-\frac{1}{n})}{30} & \text{for } n = 1 \end{cases}$$
(18)

6. Compute V_s for a given depth z

$$V_S(z) = \begin{cases} V_{S0} & \text{for } z \le z^* \\ V_{S0}(1 + k(z - z^*))^{1/n} & \text{for } z > z^* \end{cases}$$
 (19)

NOTE: $z^* = 2.5 \text{ m}.$

7. Truncation criteria: $z_{\text{max}} = \min\{z_1, z_2\}$ where

(a) z_1 : Depth at which $V_S(z) \ge 1000 \text{ m/s}$

(b) z_2 : Depth at which $V_{USGS}(z) \ge 1000 \text{ m/s}$

NOTE: If $z_{\text{max}}=z_1$, for $z_{\text{max}} \leq z \leq z_2$, $V_S(z)=1000$ m/s.