Corrigé du devoir à rendre le 13/01/2020

L'objectif de ce devoir est d'établir la formule de Stirling qui sera désormais considérée comme faisant partie du cours :

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Première étape : $n! \sim C\sqrt{n} \left(\frac{n}{s}\right)^n$

1. Enoncer la formule de Taylor-Young à l'ordre 3 en 0 pour la fonction $t \mapsto$ $\ln(1+t)$.

On a $\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{2} + o_{t\to 0}(t^3)$, cette formule provient de la formule de Taylor-Young à l'ordre 3 en 0 appliquée à la fonction $t \mapsto \ln(1+t)$ sui est de classe \mathcal{C}^3 sur $]-1,+\infty[$.

2. On considère la suite $u = \left(\ln\left(\frac{n^{n+1/2}e^{-n}}{n!}\right)\right)$

Déterminer un équivalent de $u_{n+1} - u_n$. Soit $n \in \mathbb{N}^*$, on a

$$u_{n+1} - u_n = \ln\left(\frac{(n+1)^{n+3/2}e^{-n-1}}{(n+1)!} \frac{n!}{n^{n+1/2}e^{-n}}\right) = \ln\left(\left(1 + \frac{1}{n}\right)^{n+1/2}e^{-1}\right)$$
$$= \left(n + \frac{1}{2}\right)\ln\left(1 + \frac{1}{n}\right) - 1$$

Or
$$\ln\left(1+\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)$$
 donc

$$u_{n+1} - u_n = \left(n + \frac{1}{2}\right) \left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right) - 1 = \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right).$$

Ainsi,
$$u_{n+1} - u_n \sim \frac{1}{12n^2}$$

3. En déduire que la suite u est croissante à partir d'un certain rang.

Les suites $\left(\frac{1}{12n^2}\right)_{n\in\mathbb{N}}$ et $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ étant équivalentes, elles sont de même signe à partir d'un certain rang. Comme la suite $\left(\frac{1}{12n^2}\right)$ est strictement positive, il existe un rang à partir duquel u est croissante.

4. Enoncer la formule de Taylor-Young à l'ordre 4 en 0 pour la fonction $t \mapsto$ $\ln(1+t)$.

On a
$$\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + o_{t\to 0}(t^4)$$
.

5. On considère la suite $v = \left(u_n + \frac{1}{12n} + \frac{1}{n^2}\right)$ Déterminer un équivalent de $v_{n+1} - v_n$.

Soit $n \in \mathbb{N}^*$, on a

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{12} \left(\frac{1}{n+1} + \frac{1}{n} \right) + \frac{1}{12} \frac{1}{(n+1)^2} + \frac{1}{n^2}$$

$$= \left(n + \frac{1}{2} \right) \ln \left(1 + \frac{1}{n} \right) - 1 - \frac{1}{12n} \left(\frac{1}{1 + \frac{1}{n}} - 1 \right) - \frac{1}{n^2} \left(\frac{1}{\left(1 + \frac{1}{n} \right)^2} - 1 \right)$$

$$= \left(n + \frac{1}{2} \right) \left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3} \right) \right) - 1$$

$$- \frac{1}{12n} \left(-\frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2} \right) \right) - \frac{1}{n^2} \left(\frac{-2}{n^2} + o\left(\frac{1}{n^2} \right) \right)$$

donc $v_{n+1} - v_n = \frac{-1}{2n^3} + o\left(\frac{1}{n^3}\right)$

6. En déduire que v est décroissante à partir d'un certain rang.

Les suites $\left(\frac{-1}{2n^3}\right)$ et $(v_{n+1}-v_n)_{n\in\mathbb{N}}$ étant équivalentes, elles sont de même signe à partir d'un certain rang. Comme la suite $\left(\frac{-1}{2n^3}\right)_{n\in\mathbb{N}}$ négative, il existe un rang à partir duquel v est décroissante.

7. En déduire l'existence d'une constante C strictement positive telle que :

$$n! \sim C\sqrt{n} \left(\frac{n}{e}\right)^n$$

Soit n_0 un rang à partir duquel les suites u et v sont respectivement croissante et décroissante. Alors

$$\forall n \in \mathbb{N}, \quad n \geq n_0 \Leftrightarrow u_n \leq v_n \leq v_{n_0}$$

La suite u est donc majorée donc convergente. Il existe donc $\ell \in \mathbb{R}$ tel que $\lim_{n \to +\infty} u_n = \ell$. La fonction exponentielle étant continue en ℓ , on en déduit que $\lim_{n \to +\infty} u_n = \ell$.

$$\lim_{n\to +\infty} \frac{n^{n+1/2}e^{-n}}{n!} = e^{\ell}.$$
 Comme $e^{\ell}\neq 0$ cela est équivalent à

$$n! \sim e^{-\ell} \sqrt{n} \left(\frac{n}{e}\right)^n$$

Deuxième étape : détermination de la constante C

Pour tout entier n, on pose $I_n = \int_0^{\pi/2} \sin^n(t) dt$

1. Calculer I_0 et I_1 . On a:

$$I_0 = \frac{\pi}{2}$$
 et $I_1 = 1$

2. Pour tout entier n, montrer que

$$I_{n+2} = \frac{n+1}{n+2} I_n$$

Que peut-on en déduire sur les suites $(I_n)_{n\in\mathbb{N}}$ et $(I_{n+2})_{n\in\mathbb{N}}$ Soit $n\in\mathbb{N}$, on a

$$I_{n+2} = \int_0^{\pi/2} \sin^{n+2}(t) dt = \int_0^{\pi/2} (1 - \cos^2 t) \sin^n(t) dt = I_n - \int_0^{\pi/2} \cos^2 t \sin^n(t) dt$$

Les fonctions $u: t \mapsto \frac{1}{n+1} \sin^{n+1}(t)$ et $v: \cos t$ sont de classe \mathcal{C}^1 sur $[0, \pi/2]$. Une intégration par parties donne:

$$\int_0^{\pi/2} \cos^2 t \sin^n(t) dt = \left[\cos t \frac{1}{n+1} \sin^{n+1}(t) \right]_0^{\pi/2} + \int_0^{\pi/2} \frac{1}{n+1} \sin^{n+2}(t) dt$$

donc

$$I_{n+2} = I_n - \frac{1}{n+1}I_{n+2}.$$

Ainsi,
$$I_{n+2} = \frac{n+1}{n+2}I_n.$$

Les suites $(I_n)_{n\in\mathbb{N}}$ et $(I_{n+2})_{n\in\mathbb{N}}$ sont donc équivalentes.

3. Prouver que pour tout entier n, on a $I_{2n} = \frac{\pi}{2} \frac{(2n)!}{2^{2n}(n!)^2}$

Pour tout entier n, on pose

$$H(n)$$
: " $I_{2n} = \frac{\pi}{2} \frac{(2n)!}{2^{2n}(n!)^2}$ ".

Initialisation : $I_0 = \frac{\pi}{2}$ et $\frac{\pi}{2} \frac{0!}{2^0(0!)^2} = \frac{\pi}{2}$ donc H(0) est vérifiée.

Hérédité : Soit $n \in \mathbb{N}$ tel que H(n) soit vérifiée. On a alors

$$I_{2(n+1)} = \frac{2n+1}{2n+2}I_{2n} = \frac{2n+1}{2n+2}\frac{\pi}{2}\frac{(2n)!}{2^{2n}(n!)^2} = \frac{\pi}{2}\frac{(2n+1)!}{2^{2n+1}(n+1)!n!}$$

En multipliant le numérateur et le dénominateur par 2n+2, on obtient :

$$I_{2(n+1)} = \frac{\pi}{2} \frac{(2n+2)!}{2^{2n+2}(n+1)!^2}$$

Ainsi, pour tout entier n, on a $I_{2n} = \frac{\pi}{2} \frac{(2n)!}{2^{2n}(n!)^2}$

4. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante. En déduire qu'elle converge. Soit $n\in\mathbb{N}$,

$$I_{n+1} - I_n = \int_0^{\pi/2} \sin^n(t) (\sin t - 1) dt$$

Or pour tout $t \in \left[0, \frac{\pi}{2}\right]$, $\sin^n(t) \ge 0$ et $\sin t - 1 \le 0$ donc $I_{n+1} - I_n \le 0$ ce qui prouve la décroissance de la suite I. Comme cette suite est minorée par zéro, elle converge.

5. Prouver que $I_n \sim I_{n+1}$. Pour tout entier n, on a :

$$I_n \ge I_{n+1} \ge I_{n+2} = \frac{n+1}{n+2} I_n$$

Comme $I_n > 0$, on en déduit que

$$\frac{n+1}{n+2} \le \frac{I_{n+1}}{I_n} \le 1$$

Le théorème d'encadrement implique alors que $\lim_{n \to +\infty} \frac{I_{n+1}}{I_n} = 1$ i.e. que

$$I_n \sim I_{n+1}$$

6. Montrer que pour tout entier n, $(n+1)I_nI_{n+1} = \frac{\pi}{2}$. Pour tout entier n, on pose

$$P(n)$$
: " $(n+1)I_nI_{n+1} = \frac{\pi}{2}$ ".

Initialisation : $I_0 = \frac{\pi}{2}$ et $I_1 = \frac{\pi}{2}$ donc P(0) est vérifiée.

Hérédité : Soit $n \in \mathbb{N}$ tel que P(n) soit vérifiée. On a alors

$$(n+2)I_{n+1}I_{n+2} = \frac{n+2}{n+1}(n+1)I_nI_{n+1}\frac{I_{n+2}}{I_n} = (n+1)I_nI_{n+1} = \frac{\pi}{2}$$

Ainsi, pour tout entier n, on a : $(n+1)I_nI_{n+1} = \frac{\pi}{2}$

7. Déterminer un équivalent de la suite $(I_n)_{n\in\mathbb{N}}$. Comme $I_n \sim I_{n+1}$, on a $(n+1)I_nI_{n+1} \sim nI_n^2$ donc $I_n^2 \sim \frac{\pi}{2n}$ puis :

$$I_n \sim \sqrt{\frac{\pi}{2n}}$$
.

8. En déduire que $C = \sqrt{2\pi}$.

Comme
$$(2n)! \sim C\sqrt{2n} \left(\frac{2n}{e}\right)^{2n}$$
 et $(n!)^2 \sim C^2 n \left(\frac{n}{e}\right)^{2n}$,

$$\frac{(2n)!}{(n!)^2} \sim \frac{1}{C} \sqrt{\frac{2}{n}} 2^{2n}.$$

Par conséquent,

$$I_{2n} = \frac{\pi}{2} \frac{(2n)!}{2^{2n} (n!)^2} \sim \frac{\pi}{2C} \sqrt{\frac{2}{n}}$$

Or $I_{2n} \sim \sqrt{\frac{\pi}{4n}}$ donc, par identification , on a :

$$C = \sqrt{2\pi}$$