Pr. Morad Lakhssassi

ANALYSE 2 EXAMEN FINAL – Durée 2h

CPI 1

Calculatrices, Documents et Téléphones NON AUTORISES

0,5 points

- Laisser une MARGE à gauche
- **NUMEROTER vos feuilles doubles**
- **Inscrire votre GROUPE**

Exercice 1: 3,5 points

Considérons les suites $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ de termes généraux :

$$a_n = \sum_{k=n+1}^{2n} \frac{1}{k}$$
 et $b_n = \sum_{k=n}^{2n} \frac{1}{k}$

- a) Montrer que ces deux suites sont adjacentes.
- b) Qu'en déduit-on?

Exercice 2: 4,5 points

Calculer:

a)
$$DL_4(x^2.e^{2x}, 0)$$

b)
$$DL_3(th(x), 0)$$

a)
$$DL_4(x^2, e^{2x}, 0)$$
 b) $DL_3(th(x), 0)$ c) $DL_3\left(x, \left(\sqrt{1 + \sin(x)}\right)^3, 0\right)$

Exercice 3: 4,5 points

Calculer, en utilisant les <u>équivalents</u>, les <u>limites</u> suivantes :

a)
$$\lim_{x \to 0} \frac{1 - \cos(\arcsin(x))}{\ln(1 + x^2)}$$

b)
$$\lim_{x \to 0} \ln(x) \cdot \ln(1 + \ln(1 + x))$$

a)
$$\lim_{x\to 0} \frac{1-\cos(\arcsin(x))}{\ln(1+x^2)}$$
 b) $\lim_{x\to 0} \ln(x) \cdot \ln(1+\ln(1+x))$ c) $\lim_{x\to +\infty} \frac{\ln\left(\cos\left(\frac{3}{x}\right)\right)}{\ln\left(\cos\left(\frac{5}{x}\right)\right)}$ (attention $+\infty$)

Exercice 4: 4,5 points

Soit f définie par f(x) = artan(ln(x))

- a) Donner le domaine de définition de f.
- b) Montrer que f est bijective.
- c) Notons $g = f^{-1}$. Calculer g(1).
- d) En déduire g'(1).

Exercice 5: 2,5 points

Soient x et y deux réels avec 0 < x < y. Montrer <u>en utilisant le Théorème des Accroissements Finis</u> que :

$$x < \frac{y - x}{\ln(y) - \ln(x)} < y$$