Table 1. Summary of several results for lesion detection/segmentation on IDRiD dataset

Reference	Backbone	Loss	PR/%	SE/%	SP/%	ACC/%	AUPR/%	AUC/%	F1/%
		Hemor	rhage det	ection/seg	mentation	1			
Guo et al. (2019)	FCN	Top-k loss,	-	-	-	-	-	67.34	-
		Bin loss							
Yan et al. (2019a)	U-Net	weighted	-	-	-	-	70.3	-	-
		CE							
		Microan	eurysms d	letection/s	egmentati	on			
Sarhan et al.	FCN	Dice loss,	61.12	28.07	-	-	41.96	-	38.4877
(2019)(geometric)		CE and	8						
		Triplet loss							
Guo et al. (2019)	FCN	Top-k loss,	-	-	-	-	-	46.27	-
		Bin loss							
Yan et al. (2019a)	U-Net	weighted	-	-	-	-	52.5	-	-
		CE							
Xue et al. (2019)	Mask-	log loss,	-	76.4	99.8	99.7	-	-	_
	RCNN	regression							
		loss, CE loss							
Xia et al. (Knowledge-	CNN	BCE	_	_	_	_	77.9	99.5	_
Based Systems 2021)									
		Hard e	xudate de	tection/ses	gmentatio	n			
Guo et al. (2020a)	HED	Top-k loss,		95.74	-	-	_	98.71	95.57
		Bin loss							
Guo et al. (2019)	FCN	Top-k loss,	_	_	_	_	_	79.45	_
(2007)		Bin loss							
Yan et al. (2019a)	U-Net	weighted	_	_	_	_	88.9	_	_
Tun et un (2017u)	O TVOL	CE					00.5		
Xue et al. (2019)	Mask-	log loss,	_	77.9	99.6	99.2	_	_	_
Auc et al. (2017)	RCNN	regression		77.5	<i>)</i>	77.2			
	RCIVIV	loss, CE loss							
Huang at al	CNN	CE loss		98.40	90.67	98.19		96.74	
Huang et al.	CIVIN	CE 1088	-	90.40	90.67	98.19	-	90.74	-
(Neurocomputing 2021)		C - 6		4: /					
G (1 (2010)	EGN			ection/seg	mentation	1			
Guo et al. (2019)	FCN	Top-k loss,	-	-	-	-	-	71.13	-
V 1 (0010.)		Bin loss					~ • •		
Yan et al. (2019a)	U-Net	weighted	-	-	-	-	67.9	-	-
		CE							
				on/segmei					
Wang et al. (ISBI 2021)	U-Net	BCE,MSE	64.93	48.54	99.88	98.33	-	-	-
			±1.27	±3.94	±0.02	±0.33			

Table 2. Summary of several results for lesion detection/segmentation on E-ophtha dataset

Reference	Task	Backbo	Loss	PR/%	SE/%	SP/%	ACC/%	AUPR/%	AUC/%	F1/%
		ne								
Carson et al. (2018)	MA	CNN	-	-	-	-	-	86	94	-
	classification									
Guo et al. (2019)	MA	FCN	Top-k loss,	-	-	-	-	-	16.87	-
	segmentation		Bin loss							
Xue et al. (2019)	MA	Mask-	log loss,	-	67.2	99.8	99.7	-	-	-
	segmentation	RCNN	regression							
			loss and CE							
			loss							
Xia et al. (Knowledge-	MA	CNN	BCE	-	-	-	-	61.5	99.8	-
Based Systems 2021)	segmentation									
Carson et al. (2018)	Exudates	CNN	-	-	-	-	-	64	95	-
	classification									
Guo et al. (2020a)	EX detection	HED	Top-k loss,	-	86.44	-	-	-	91.84	87.01
			Bin loss							
Guo et al. (2019)	EX	FCN	Top-k loss,	-	-	-	-	-	41.71	-
	segmentation		Bin loss							
Xue et al. (2019)	EX	Mask-	log loss,	-	84.6	98.8	98.4	-	-	-
	segmentation	RCNN	regression							
			loss and CE							
			loss							
Huang et al.	EX	CNN	CE loss	-	98.33	91.17	97.65	-	97.03	-
(Neurocomputing 2021)	segmentation									
Playout et al. (2019)	Bright	U-Net	loss based	78.50	80.02	99.88	99.77	-	-	79.25
	Lesion		on Cohen's							
	segmentation		coefficient							
Playout et al. (2019)	Red Lesion	U-Net	loss based	75.26	75.62	99.99	99.88	-	-	75.44
	segmentation		on Cohen's							
			coefficient							

Table 3. Summary of several results for lesion detection/segmentation on DiaretDB1 dataset

Reference	Task	Backbone	Loss			PR/%	SE/%	SP/%	ACC/%	AUC/%	F1/%
Dai et al.	MA	CNN	-			99.7	87.8	-	96.1	93.4	-
(2018)	detection										
Adem	Exudate	CNN	-			-	99.2	97.97	-	-	-
(2018)	detection										
Playout et	Bright lesion	U-Net	loss	based	on	-	75.35	99.86	-	-	-
al. (2018)	segmentation		Cohe	n's coeffic	ient						
Playout et	Bright lesion	U-Net	loss	based	on	81.70	88.29	99.93	99.89	-	84.87
al. (2019)	segmentation		Cohe	n's coeffic	ient						
Playout et	Red lesion	U-Net	loss	based	on	-	66.91	99.82	_	-	-

al. (2018)	segmentation	Cohen's coefficient
Playout et	Red lesion U-No	loss based on 78.96 85.18 99.89 99.83 - 81.95
al. (2019)	segmentation	Cohen's coefficient

Table 4. Summary of several results for lesion detection/segmentation on other datasets

Reference	Task	Dataset	Backbone	Loss		SE/%	SP/%	AUC/%	mAP/%
van Grinsven et al.	HE detection	Kaggle	CNN	CE		83.7	85.1	89.4	-
(2016)									
van Grinsven et al.	HE detection	Messidor	CNN	CE		91.9	91.4	97.2	-
(2016)									
Huang et al. (2020)	HE	private	CNN	MSE,	IoU,	-	-	-	52.20
	segmentation			GIoU					
Yan et al. (2018a)	Drusen	STARE,	Encoder-	-		92.02	97.30	-	-
	segmentation	DRIVE	decoder						
			Network						
Adem (2018)	Exudate	DiaretDB0	CNN	-		100	98.41	-	-
	detection								
Adem (2018)	Exudate	DrimDB	CNN	-		100	98.44	-	-
	detection								
Tan et al. (2017)	EX detection	CLEOPATRA	CNN	log-likel	ihood	87.58	98.73	-	-
				function					
Tan et al. (2017)	HE detection	CLEOPATRA	CNN	log-likel	ihood	62.57	98.93	-	-
				function					
Tan et al. (2017)	MA	CLEOPATRA	CNN	log-likel	ihood	46.06	97.99	-	-
	detection			function					
Guo et al. (2019)	EX	DDR	FCN	Top-k	loss,	-	-	55.46	-
	segmentation			Bin loss					
Guo et al. (2019)	SE	DDR	FCN	Top-k	loss,	-	-	26.48	-
	segmentation			Bin loss					
Guo et al. (2019)	HE	DDR	FCN	Top-k	loss,	-	-	35.86	-
	segmentation			Bin loss					
Guo et al. (2019)	MA	DDR	FCN	Top-k	loss,	-	-	10.52	-
	segmentation			Bin loss					
Xia et al.	MA	RC-RGB-MA	CNN	BCE		-	-	99.9	-
(Knowledge-Based	segmentation								
Systems 2021)									

 ${\bf Table~5.~Summary~of~several~results~for~vessel~segmentation~on~DRIVE~dataset}$

Reference	Backbone	Loss	SE/%	SP/%	ACC/%	AUC/%	F1/%
Khalaf et al. (2016)	CNN	-	83.97	95.62	94.56	-	-
Liskowski and Krawiec	CNN	CE	91.60	92.41	92.30	97.38	-
(2016)							

Yu et al. (2020)	CNN	-	76.43	98.03	95.24	97.23	-
Fu et al. (2016)	FCN	CBCE	76.03	-	95.23	-	-
Dasgupta and Singh	FCN	CE	76.91	98.01	95.33	97.44	-
(2017)							
Feng et al. (2017)	FCN	CBCE	78.11	98.39	95.60	97.92	-
Oliveira et al. (2018)	FCN	categorical	80.39	98.04	95.76	98.21	-
		CE					
Zhang and Chung (2018)	U-Net	CE	87.23	96.18	95.04	97.99	-
He et al. (2018)	U-Net	Focal loss	77.61	97.92	95.19	-	81.29
Yan et al. (2018b)	U-Net	Proposed	76.53	98.18	95.42	97.52	-
		segment-					
		level loss					
Yan et al. (2019b)	U-Net	CE	76.31	98.20	95.38	97.50	-
Wu et al. (2018)	U-Net	CE	78.44	98.19	95.67	98.07	-
Wu et al. (2020)	U-Net	CE	79.96	98.13	95.82	98.30	-
Wang et al. (2020)	U-Net	CE	78.49	98.13	95.67	97.88	82.41
Hu et al. (2018)	FCN	improved CE	77.72	97.93	95.33	97.59	-
Wu et al. (2019)	U-Net	CE	80.38	98.02	95.78	98.21	-
Soomro et al. (2019)	SegNet	CBCE	87	98.5	95.6	98.6	-
Zhang et al. (2019a)	U-Net	-	81.00	98.48	96.92	98.56	-
Wang et al. (2019a)	U-Net	CE and	79.40	98.16	95.67	97.72	82.70
		Jaccard loss					
Ma et al. (2019)	U-Net	CE	79.16	98.11	95.70	98.10	-
Zhao et al. (2020a)	Dense U-	global pixel	83.29	97.67	-	-	82.29
	Net	loss, local					
		matting loss					
Mishra et al. (2020)	U-Net	CE	89.16	96.01	95.40	97.24	-
Feng et al. (2020)	FCN	MSE	76.25	98.09	95.28	96.78	-
Cherukuri et al. (2020)	Residual	MSE	84.25	98.49	97.23	98.70	-
	FCN						
Kromm and Rohr (2020)	CapsNet	margin loss	76.51	98.18	95.47	97.50	-
Liu et al. (2019a)	No-	MSE	80.72	97.80	95.59	97.79	82.25
	reference						
	net						
Wang et al.	U-Net		81.07	98.45	96.81	98.17	-
(MICCAI2020)							
Xu et al.(MICCAI2020)	U-Net	CE	91.2	94.7	-	98.1	-
Zhang et al.	U-Net	-	82.15	98.45	97.01	98.67	82.67
(MICCAI2020)							
Kamran et al. (MICCAI	GAN	Proposed loss	79.27	99.69	97.90	98.87	86.90
2021)							
Zhou et al. (MICCAI	U-Net	CE	83.80	98.34	97.05	98.86	-
2021)							

Mishra et al.(ISBI2021)	Encoder-	Proposed	90.14	96.50	95.84	98.33	-
	decoder						
Wang et al.(ISBI2021)	U-Net	BCE	83.05	-	96.47	98.65	-
Wu et al. (MIA2021)	U-shape	Dice loss	82.89±0.11	98.38±0.29	96.97±0.05	98.37±0.06	-
	FCN						
<u>Li et al. (JBHI 2021)</u>	U-Net	CE	81.45	98.83	97.69	98.95	-
Wang et al. (JBHI 2021)	U-Net	CE	80.71	97.82	95.65	98.01	82.51
Xu et al. (JBHI 2021)	Encoder-	class-	83.39	97.50	95.71	98.21	83.19
	decoder	balanced CE					
Zhao et al. (Pattern	Nested U-	CE	80.60	98.55	97.09	98.78	-
Recognition 2021)	Net						
Chala et al. (Expert	Encoder	Dice loss	82.14	98.59	97.16	-	83.21
Systems with	decoder						
Applications 2021)							
Yang et al.	Encoder	Focal loss	83.53	97.51	95.79	-	82.97
(Neurocomputing 2021)	decoder						
Zhou et al.	Encoder	Proposed	82.94	98.12	95.63	98.30	83.45
(Neurocomputing 2021)	decoder,						
	GAN						

Table 6. Summary of several results for vessel segmentation on STARE dataset
--

Reference	Backbone	Loss	SE/%	SP/%	ACC/%	AUC/%	F1/%
Liskowski and Krawiec	CNN	CE	93.07	93.04	93.09	98.20	-
(2016)							
Yu et al. (2020)	CNN	-	78.37	98.22	96.13	97.87	-
Fu et al. (2016)	FCN	CBCE	74.12	-	95.85	-	-
Oliveira et al. (2018)	FCN	categorical CE	83.15	98.58	96.94	99.05	-
Zhang and Chung (2018)	U-Net	CE	76.73	99.01	97.12	98.82	-
He et al. (2018)	U-Net	Focal loss	81.20	98.95	97.04	-	85.53
Yan et al. (2018b)	U-Net	Proposed	75.81	98.46	96.12	98.01	-
		segment-level					
		loss					
Yan et al. (2019b)	U-Net	CE	77.35	98.57	96.38	98.33	-
Wu et al. (2020)	U-Net	CE	79.63	98.63	96.72	98.75	-
Wang et al. (2020)	U-Net	CE	90.24	99.34	98.49	99.60	91.84
Hu et al. (2018)	FCN	improved CE	75.43	98.14	96.32	97.51	-
Feng et al. (2020)	FCN	MSE	77.09	98.48	96.33	97	-
Soomro et al. (2019)	SegNet	CBCE	84.8	98.6	96.8	98.8	-
Cherukuri et al. (2020)	Residual	MSE	86.64	98.95	98.03	99.35	-
	FCN						
Zhao et al. (2020a)	Dense U-Net	global pixel loss,	84.33	98.57	-	-	83.51
		local matting loss					

Mishra et al. (2020)	U-Net	СЕ	87.71	96.34	95.71	97.42	-
Liu et al. (2019a)	No-	MSE	77.71	98.43	96.23	97.93	80.36
	reference net						
Xu et al. (MICCAI 2020)	U-Net	CE	92.8	95.4	-	98.6	-
Kamran et al. (MICCAI	GAN	Proposed loss	83.56	98.64	97.54	98.87	83.23
2021)							
Mishra et al. (ISBI2021)	Encoder-	Proposed	89.11	97.23	96.66	98.59	-
	decoder						
Wu et al. (MIA2021)	U-shape	Dice loss	82.07±0.66	98.39±0.68	97.36±0.28	98.77±0.06	-
	FCN						
<u>Li et al. (JBHI 2021)</u>	U-Net	CE	85.05	98.89	97.79	99.24	-
Wang et al. (JBHI 2021)	U-Net	CE	84.32	98.45	97.02	98.25	85.16
Xu et al. (JBHI 2021)	Encoder-	class-balanced	84.63	98.02	96.64	98.81	83.84
	decoder	CE					
Zhao et al. (Pattern	Nested U-	CE	85.11	99.00	97.94	99.44	-
Recognition 2021)	Net						
Chala et al. (Expert	Encoder	Dice loss	80.96	98.41	96.53	-	82.61
Systems with Applications	decoder						
<u>2021)</u>							
Yang et al.	Encoder	Focal loss	79.46	98.21	96.26	-	81.55
(Neurocomputing 2021)	decoder						
Zhou et al.	Encoder	Proposed	88.12	97.81	96.71	98.63	-
(Neurocomputing 2021)	decoder,						
	GAN						

Table 7. Summary of several results for vessel segmentation on CHASE DB1 dataset

Reference	Backbone	Loss	SE/%	SP/%	ACC/%	AUC/%	F1/%
Fu et al. (2016)	FCN	CBCE	71.30	-	94.89	-	-
Oliveira et al. (2018)	FCN	categorical CE	77.79	98.64	96.53	98.55	-
Zhang and Chung (2018)	U-Net	CE	76.70	99.09	97.70	99.00	-
Yan et al. (2018b)	U-Net	Proposed segment-level	76.33	98.09	96.10	97.81	-
		loss					
Yan et al. (2019b)	U-Net	CE	76.41	98.06	96.07	97.76	-
Wu et al. (2018)	U-Net	CE	75.38	98.47	96.37	98.25	-
Wu et al. (2020)	U-Net	CE	80.03	98.80	96.88	98.94	-
Wang et al. (2020)	U-Net	CE	79.48	98.42	96.48	98.47	82.20
Wu et al. (2019)	U-Net	CE	81.32	98.14	96.61	98.60	-
Soomro et al. (2019)	SegNet	CBCE	88.6	98.2	97.6	98.5	-
Zhang et al. (2019a)	U-Net	-	81.86	98.48	97.43	98.63	-
Cherukuri et al. (2020)	Residual	MSE	80.17	99.08	97.88	98.64	-
	FCN						
Wang et al. (2019a)	U-Net	CE and Jaccard loss	80.74	98.21	96.61	98.12	80.37

Mishra et al. (2020)	U-Net	CE	88.05	96.51	96.01	97.63	-
Liu et al. (2019a)	No-	MSE	87.69	98.43	97.42	99.05	85.98
	reference						
	net						
Wang et al. (MICCAI	U-Net	-	80.69	98.36	97.26	98.33	-
2020)							
Xu et al. (MICCAI2020)	U-Net	CE	92.3	95.4	-	98.5	-
Kamran et al. (MICCAI	GAN	Proposed loss	81.99	98.06	96.97	99.14	89.57
2021)							
Zhou et al. (MICCAI	U-Net	CE	86.90	98.43	97.71	99.20	-
2021)							
Mishra et al. (ISBI 2021)	Encoder-	Proposed	89.07	97.78	97.18	98.63	-
	decoder						
Wang et al.(ISBI2021)	U-Net	BCE	86.78	-	97.06	98.96	-
Wu et al. (MIA2021)	U-shape	Dice loss	83.65	98.39	97.44	98.67	-
	FCN		±0.69	±0.47	±0.10	±0.05	
<u>Li et al. (JBHI 2021)</u>	U-Net	CE	83.34	98.62	98.03	99.12	-
Wang et al. (JBHI 2021)	U-Net	CE	84.27	98.36	97.06	98.24	81.05
Xu et al. (JBHI 2021)	Encoder-	class-balanced CE	85.08	97.80	96.51	98.73	82.70
	decoder						
Yang et al.	Encoder	Focal loss	81.76	97.76	96.32	-	79.97
(Neurocomputing 2021)	decoder						
Zhou et al.	Encoder	Proposed	84.35	97.82	96.30	98.72	82.18
(Neurocomputing 2021)	decoder,						
	GAN						

Table 8. Summary of several results for vessel segmentation on HRF dataset

Reference	Backbone	Loss	SE/%	SP/%	ACC/%	AUC/%	F1/%
Soomro et al. (2019)	SegNet	CBCE	82.9	96.1	96.2	98.5	-
Zhao et al. (2020a)	Dense U-	global pixel loss, local	78.09	98.18	-	-	78.13
	Net	matting loss					
Wu et al. (MIA2021)	U-shape	Dice loss	81.14	98.23	96.87	98.42	-
	FCN		±0.22	±0.40	±0.17	±0.05	
Zhao et al. (Pattern	Nested	CE	85.54	97.41	96.48	98.24	-
Recognition 2021)	U-Net						
Zhou et al.	Encoder	Proposed	83.10	97.30	95.59	96.93	82.11
(Neurocomputing 2021)	decoder,						
	GAN						

 ${\bf Table~9.~Summary~of~several~results~for~OD/OC~segmentation~on~Drishiti-GS~dataset}$

Reference	Backbone	Loss	OD		OC		δ
			Dice/%	IoU/%	Dice/%	IoU/%	_'
Edupuganti et al. (2018)	FCN	weighted CE	-	69.58	-	81.22	-

M. 1. (2010)	ECN	1 1 CE 1 D'	06.4				
Mohan et al. (2018)	FCN	bootstrapped CE and Dice	96.4	-	-	-	-
		loss					
Mohan et al. (2019)	FCN	bootstrapped CE and Dice	97.13	-	-	-	-
		loss					
Liu et al. (2019e)	FCN	spatial-aware error	98	-	89	-	-
		function					
Shankaranarayana et	Encoder-	multi-class CE	96.3	-	84.8	-	0.1045
al.(2019)	decoder net						
Shah et al. (2019) (PSBN)	U-Net	logarithmic dice loss	95	91	88	80	-
Shah et al.	U-Net	logarithmic dice loss	96	93	89	80	-
(2019)(WRoIM)							
Wang et al. (2019c)	Deeplab,	dice coefficient loss,	97.4	-	90.1	-	0.048
	GAN	smoothness loss and					
		adversarial loss					
Wang et al. (2019b)	DeeplabV3+,	CE, MSE, Adversarial loss	96.1	-	86.2	-	-
	GAN						
Chen et al. (MICCAI	Encoder-	CE	96.39 ±	-	83.53 ±	-	-
<u>2021)</u>	decoder		1.33		17.80		
Zhang et al. (Knowledge-	U-Net	CE	-	-	-	-	-
based systems 2021)							

Table 10. Summary of several results for OD/OC segmentation on ORIGA dataset

Reference	Backbone	Loss	OI)	(OC	OC R		δ
			A/%	Е	A/%	Е	A/%	Е	•
Liu et al. (2019e)	FCN	spatial-aware error	-	0.059	-	0.208	-	0.215	-
		function							
Fu et al. (2018a)	U-Net	proposed multi-	98.3	0.071	93.0	0.230	94.1	0.233	0.071
		label loss							
Shankaranarayana	Encoder-	multi-class CE	97.4	0.051	92.8	0.212	-	-	0.067
et al.(2019)	decoder net								
Yin et al. (2019)	RPN	Multi-label CE	98.6	0.066	94.2	0.208	94.9	0.224	0.065
Jiang et al. (2020)	atrous CNN	Smooth L1 loss and	-	0.063	-	0.209	-	-	0.068
	and RPN	BCE							
Wang et al. (Pattern	Encoder-	Dice loss	99.38	-	-	-	-	-	-
Recognition 2021)	decoder		±1.31						

Table 11. Summary of several results for OD/OC segmentation on RIM-ONE-r3 dataset

Reference	Backbone	Loss		OD					δ		
			A/%	E	Dice/%	IoU/%	A/%	E	Dice/%	IoU/%	_
Shankaranarayanaet	Encoder-	multi-class CE	97.5	0.058	97.0	-	92.0	0.284	87.6	-	0.066
al. (2019)	decoder net										
Shah et al.	U-Net	logarithmic dice	-	-	91	84	-	-	75	60	-
(2019)(PSBN)		loss									

Shah et al.	U-Net	logarithmic d	ice		94	90	-	-	82	71	-
(2019)(WRoIM)		loss									
Wang et al.(2019c)	Deeplab,	dice coeffici	ent -	-	96.8	-	-	-	85.6	-	0.049
	GAN	loss, smoothn	ess								
		loss, adversar	rial								
		loss									
Wang et al.	DeeplabV3	CE, MS	SE, -	-	89.8	-	-	-	81.0	-	-
(2019b)	+, GAN	Adversarial lo	oss								
Chen et al.	Encoder-	CE	-	-	90.13 ±	-	-	-	79.78 ±	-	-
(MICCAI 2021)	decoder				3.06				11.05		
Li et al. (MICCAI	Transformer	Proposed	-	-	91.3	-	-	-	76.3	-	-
<u>2021)</u>		domain									
		adversarial lo	SS								
Zhang et al.	U-Net	CE	_	-	-	-	_	-	-	-	-
(Knowledge-based											
systems 2021)											

Table 12. Summary of several results for OD/OC segmentation on REFUGE dataset

	1a0	ole 12. Summary of severa	results 10	r OD/O	_ segment	auon oi	1 KEFU	GE datase	:ι		
Reference	Backbone	Loss		OD			OC		R	lim	δ
			A/%	Е	Dice/%	A/%	Е	Dice/%	A/%	Е	-
Wang et al. (2019f)	RPN	Weighted CE,	-	-	95.3	-	-	87.2	-	-	0.047
		regression loss									
Yin et al. (2019)	RPN	Multi-label CE	97.9	0.088	-	98.0	0.223	-	93.6	0.204	0.048
Wang et al. (2019c)	Deeplab,	dice coefficient loss,	-	-	96.02	-	-	88.26	-	-	0.0450
	GAN	smoothness loss and									
		adversarial loss									
Liu et al. (2019d)	GAN	dice segmentation loss,	-	-	94.16	-	-	86.27	-	-	0.0481
		adversarial loss and									
		MSE loss									
Wang et al. (Pattern	Encoder-	Dice loss	0.9627	-	-	-	-	-	-	-	-
Recognition 2021)	decoder		±0.0246								
Zhang et al.	U-Net	CE	-	-	-	-	-	-	-	-	-
(Knowledge- based											
<u>systems 2021)</u>											

Table 13. Summary of several results for OD/OC segmentation on other datasets

Reference	Dataset	Backbone	Loss		OD		OC	δ
				E	Dice/%	Е	Dice/%	_
Mohan et al. (2018)	DrionsDB	FCN	bootstrapped CE,	-	95.5	-	-	-
			Dice loss					
Mohan et al. (2019)	DrionsDB	FCN	bootstrapped CE,	-	96.6	-	-	-
			Dice loss					
Mohan et al. (2018)	MESSIDOR	FCN	bootstrapped CE,	-	95.7	-	-	-

			Dice loss					
Mohan et al. (2019)	MESSIDOR	FCN	bootstrapped CE,	-	96.8	-	-	-
			Dice loss					
Fu et al. (Pattern	MESSIDOR	U-Net	Balanced CE	-	-	-	-	-
Recognition 2021)								
Wang et al. (Pattern	MESSIDOR	Encoder-	Dice loss	-	98.70	-	-	-
Recognition 2021)		decoder			±1.23			
Escorcia-Gutierrez	MESSIDOR	CNN	-	-	-	-	-	-
et al. (Knowledge-								
based systems 2021)								
Jiang et al. (2020)	SCES	atrous CNN,	Smooth L1 loss,	0.063	-	0.209	-	0.068
		RPN	BCE					
Sedai et al. (2017a)	EyePACS	VAE	negative KL-	-	-	-	-	0.80
			divergence, BCE					

Table 14. Summary of several results for DR diagnosis/grading

Reference	Dataset	Category	Backbone	Loss	SE/%	SP/%	AUC/%	Kappa/%
David et al. (2016)	Messidor-2	4	CNN	-	96.8	87.0	98.0	-
Gulshan et al. (2016)	Messidor-2	2	Inception-v3	-	87.0	98.5	99.0	-
Gargeya and Leng(2017)	Messidor-2	2	CNN	2-class	93	87	94	-
				categorical CE				
Wang et al. (2017)	Messidor	5	CNN	-	-	-	95.7	-
Lin et al. (2018)	Messidor	5	CNN	-	-	-	96.8	-
He et al. (TMI 2021)	Messidor	4	CNN	CE	-	-	-	87.23
Martinez-Murcia et al.	Messidor	2	CNN	-	98.3	94.5	-	-
(Neurocomputing 2021)								
Gargeya and Leng(2017)	E-Ophtha	2	CNN	2-class	90	94	95	-
				categorical CE				
Quellec et al. (2017)	E-Ophtha	2	CNN	-	-	-	94.9	-
Gulshan et al. (2016)	EyePACS	2	Inception-v3	-	90.3	98.1	99.1	-
Gargeya and Leng(2017)	EyePACS	2	CNN	2-class	94	98	97	-
				categorical CE				
Yang et al. (2017)	EyePACS	4	CNN	-	-	-	95.90	-
Quellec et al. (2017)	EyePACS	2	CNN	-	-	-	95.5	-
Galdran et al. (MICCAI	EyePACS	5	CNN	proposed	-	-	-	78.71 ±
<u>2020)</u>								0.28
Liu et al.(MICCAI2020)	EyePACS	-	CNN+GCN	-	-	-	-	72.7
Huang et al. (MICCAI	EyePACS	5	CNN	defined	-	-	-	83.22
<u>2021)</u>				contrastive loss				
Galdran et al. (MICCAI	EyePACS	5	CNN	CE	-	-	-	80.78
<u>2021)</u>								
Wang et al. (AAAI2021)	EyePACS	5	CNN,	proposed	-	-	-	83.7
			encoder-					
			decoder					

He et al. (TMI 2021)	EyePACS	5	CNN	CE	-	-	-	86.78
Sun et al. (CVPR2021)	EyePACS	5	Transformer	proposed	-	-	-	88.4
Gondal et al. (2017)	DiaretDB1	2	CNN	-	93.6	97.6	95.4	-
Wang et al. (AAAI2021)	DDR	5	CNN,	proposed	-	-	-	77.8
			encoder-					
			decoder					
He et al. (TMI 2021)	DDR	5	CNN	CE	-	-	-	78.63
Foo et al. (2020)	SiDRP14-15	5(No DR	U-Net,	binary CE	-	-	78.56	-
		here)	VGG16					
Foo et al. (2020)	IDRiD	5(No DR	U-Net,	binary CE	-	-	99.00	-
		here)	VGG16					
Lin et al. (2018)	private	5	CNN	-	-	-	-	87.5
Krause et al. (2017)	private	5 (moderate	e Inception-v4	-	97.1	92.3	98.6	84
		or worse DR	1					
		here)						
Li et al. (2018b)	private	2	Inception-v3	-	92.5	98.5	95.5	-
Zhang et al. (2019b)	private	2	CNN	CE	97.5	97.7	97.7	-
Zhang et al. (2019b)	private	4	CNN	CE	98.1	98.9	-	-
Gulshan et al. (2019)	hospital in	2	CNN	-	92.1	95.2	98.0	-
	Sankara							
Gulshan et al. (2019)	hospitals in	2	CNN	-	88.9	92.2	96.3	-
	Aravind							
Liu et al.(MICCAI2020)	APTOS2019	-	CNN+GCN	-	-	-	-	91.2
Xing et al.(MICCAI2021)	APTOS2019	5	Teacher-	Proposed loss	-	-	-	-
			student net					
Yu et al. (MICCAI 2021)	APTOS2019	5	Transformer	CE	-	-	97.9	92.0
Bi et al. (MICCAI 2021)	APTOS2019	5	CNN	-	99.46	-	-	-
Marrakchi et al. (MICCAI	APTOS2019	5	CNN	CE	-	-	-	-
<u>2021)</u>								
Yu et al. (MICCAI 2021)	RFMiD2020	2	Transformer	CE	93.7	-	95.9	-
Luo et al. (Pattern	private	5	CNN	-	-	-	-	-
Recognition 2021)								

Table 15. Summary of several results for glaucoma diagnosis/grading

Reference	Dataset	Backbone	Loss	SE/%	SP/%	ACC/%	BACC/%	AUC/%
Li et al. (2019a)/Li	RIM-ONE	CNN	K-L divergence	84.8	85.5	85.2	-	91.6
et al. (2020b)			function and CE					
dos Santos Ferreira	RIM-ONE,	U-Net, CNN	-	100	100	100	-	100
et al. (2018)	DRISHTI-							
	GS							
Carvalho et al.	RIM-ONE,	CNN,3DCNN	CE	100	93.02	96.40	-	96.5
(Neurocomputing 2021)	DRISHTI-							

Zhao et al. (ECCV 2020)	RIM-ONE	CNN, teacher-	proposed	91.6	97.9	95.1	-	97.6
		student						
Zhao et al. (2019d)	ORIGA	CNN	contrastive loss	-		-	-	92
			and hinge loss					
Liao et al. (2020)	ORIGA	CNN	-	-	-		-	88
Li et al. (2019a)	LAG	CNN	K-L divergence	95.4	95.2	95.3	-	97.5
			function and CE					
Li et al. (2020b)	LAG	CNN	K-L divergence	95.4	96.7	96.2	-	98.3
			function and CE					
Wu et al. (MICCAI 2020)	LAG	CNN, teacher-	BCE	98.72	94.75	96.04	-	99.51
		student						
Zhao et al. (ECCV 2020)	LAG	CNN, teacher-	proposed	97.21	97.07	97.12	-	99.31
		student						
<u>Tian et al. (MICCAI</u>	LAG	CNN (self-	Proposed CCD	-	-	-	-	87.4
<u>2021)</u>		supervised way)	loss					
Bi et al. (MICCAI 2021)	LAG	CNN	-	97.08	-	97.74	-	-
Pal et al. (2018)	DRIONS-	Encoder-decoder	Reconstruction	-	-	-	-	92.3
	DB	network	loss and CE					
Fu et al. (2018b)	SCES	U-Net, ResNet50	Dice coefficient	84.78	83.80	-	84.29	91.83
			loss and CE					
Fu et al. (2018b)	SINDI	U-Net, ResNet50	Dice coefficient	78.76	71.15	-	74.95	81.73
			loss and CE					
Raghavendra et al.(2018)	Private	CNN	-	98.00	98.30	98.13	-	-
Li et al. (2018a)	Private	Inception-v3	-	95.6	92.0	-	-	98.6
Phene et al. (2019)	Private	Inception-v3	-	-	-	-	-	94.5
Chai et al. (2018)	Private	FCN, CNN,	CE	92.33	90.90	91.51	-	-
		Faster-RCNN						
Liu et al. (2019c)	Private	ResNet	CE	96.2	97.7	-	-	99.6
	FIGD							
Wu et al. (MICCAI2020)	RIGA	Teacher-student	BCE	96.03	91.42	93.29	-	98.29
		net						
Yu et al. (MICCAI2020)	DRISHTI	CNN	CE, KL loss	91.43	74.19	86.14	-	89.63
Li et al. (MICCAI2020)	SIGF	CNN+LSTM	-	85.7	80.6	80.7	-	87.0
Gunasinghe et al. (ISBI	REFUGE2	CNN+classifier	-	-	-	-	-	97.85
2021)								
Jun et al. (Expert	private	CNN	categorical cross-	95.12	93.33	92.96	-	-
Systems with			entropy loss with					

Table 16. Summary of several results for AMD diagnosis/grading

Reference	Dataset	Backbone	Loss	Category	SE/%	SP/%	ACC/%	AUC/%	Kappa/%
Burlina et al. (2016)	AREDS	CNN with	-	2(1vs.3,4)	93.4	95.6	95.0	-	-
		SVM							
Burlina et al. (2017)	AREDS	CNN with	-	2	-	-	88.4~91.6	94~96	-

		SVM							
Horta et al. (2017)	AREDS	CNN with	-	2	66.34	88.95	79.04	84.76	-
		RF							
Govindaiah et al.	AREDS	CNN	-	2	-	-	92.5	_	-
(2018)									
Govindaiah et al.	AREDS	CNN	-	-	-	-	83	-	-
(2018)									
Burlina et al. (2018)	AREDS	ResNet50	Regression	4	-	-	75.7	-	-
			loss						
Peng et al. (2018)	AREDS	Inception-	-	6	59.0	93.0	67.1	-	55.8
		v3							
Burlina et al. (2018)	AREDS	ResNet50	Regression	9	-	-	59.1	-	-
			loss						
Grassmann et al.	AREDS,	CNN	weighted k	13	-	-	63.3	-	-
(2018)	KORA		metric						
Tan et al. (2018)	Collected	CNN	-	2	96.43	93.75	95.45	-	-
Bi et al. (MICCAI	private	CNN	-	-	98.09	-	98.20	-	-
2021)									
Li et al. (TMI 2021)	Ichallenge-	CNN (self-	proposed	2	78.11	-	87.85	78.11	-
	AMD	supervised)							
Hervella et al. (Expert	ADAM	CNN (self-	BCE	2	-	-	-	89.57 ±	-
Systems with		supervised)						3.22	
Applications 2021)									

Table 17. Summary of several results for	r other	· tasks
--	---------	---------

Reference	Task	Dataset	Backbone	Loss	SE/%	SP/%	ACC/%	AUC/%	F1/%	Dice/%
Sedai et al. (ISBI 2017)	Fovea seg	EyePACS	VGG16	CE						81 ± 5
Xie et al. (TMI 2021)	Fovea	PALM,	CNN	weighted	-	-	-	-	-	-
	Localisation	Messidor		sum of the						
				Euclidean						
				distance						
Raj et al. (ISBI 2020)	A/V	HRF	ResNet50	CE	90.7	91.5	91.5	96.5		
	classification									
Raj et al. (ISBI2020)	A/V	IOSTAR	ResNet50	CE	92.5	93.2	93.2	97.5		
	classification									
Raj et al. (ISBI2020)	A/V	LES-AV	ResNet50	CE	94.4	94.6	94.6	98		
	classification									
Galdran et al. (ISBI	A/V	LES-AV	U-Net	-	88	85	86	94	86	
<u>2019)</u>	classification									
Zhou et al. (MICCAI	A/V	LES-AV	Encoder-	adversarial	62.94	-	-	81.03	66.69	-
<u>2021)</u>	classification		decoder	loss, BCE,	±0.93			±0.04	±0.47	
			GAN	MSE						
Raj et al. (ISBI2020)	A/V	DRIVE-	ResNet50	CE	93.7	94.3	94.3	98		
	classification	AV								

Galdran et al. (ISBI	A/V	DRIVE-	U-Net	-	89	90	89	95	88	
<u>2019)</u>	classification	AV								
Zhou et al. (MICCAI	A/V	DRIVE-	Encoder-	adversarial	69.87	-	-	84.13	70.03	-
<u>2021)</u>	classification	AV	decoder	loss, BCE,	±0.11			±0.05	±0.03	
			GAN	MSE						
Galdran et al. (ISBI	A/V	INSPIRE	U-Net	-	89	90	89	89	86	
2019)	classification									
Zhou et al. (MICCAI	A/V	HRF-AV	Encoder-	adversarial	67.68	-	-	83.44	71.7	-
<u>2021)</u>	classification		decoder	loss, BCE,	±1.57			±0.75	±0.44	
			GAN	MSE						
Mo et al.	DME	HEI-MED	Residual	CE				97.09		
(Neurocomputing 2018)	recognition		net							
Mo et al.	DME	e-ophtha	Residual	CE	-			96.47		
(Neurocomputing 2018)	recognition	EX	net							
He et al. (MICCAI2019)	DME grading	IDRiD	VGG-16	-	95.53	93.84	94.17	96.37		
			XGBoost							
He et al. (MICCAI	DME grading	Messidor	VGG-16	-	97.12	95.91	96.33	98.24		
<u>2019)</u>			XGBoost							
Cheng et al. (MICCAI	Image	Eye-Q	Encoder-	proposed	-	-	-	-	-	_
<u>2021)</u>	enhancement		decoder							
			GAN							
Cheng et al. (ISBI 2021)	Image	Eye-Q	Encoder-	proposed	-	-	-	-	-	-
	enhancement		decoder							
			GAN							
Shen et al. (TMI 2021)	Image	Eye-Q	Encoder-	proposed	-	-	-	-	-	-
	enhancement		decoder							
<u>Ilanchezian et al.</u>	Gender	UK	CNN	-	-	-	85.26	93	-	-
(MICCAI 2021)	Classification	Biobank								
Li et al. (ISBI2021)	Image	Collected	GAN	proposed	-	-	-	-	-	-
	restoration									
Li et al. (TMI 2021)	Pathological	Ichallenge-	CNN (self-	proposed	99.12	-	99.19	99.12	99.18	-
	Myopia	PM	supervised)							
	classification									
Hervella et al. (Expert	Pathological	PALM	CNN (self-	BCE	-	-	-	99.48 ±	-	-
Systems with	Myopia		supervised)					0.58		