Contents

1	Wh	at is space?	2											
2	Fun 2.1	ction Space Hilbert space	2											
3	Vec	tors	3											
	3.1	Vectors	4											
	3.2	Component reprasentation	4											
4	core	dinate transformation	5											
	4.1	cordinate transformation	5											
5	Inn	er product of functions	5											
	5.1	Inner product continue	6											
	5.2	Inner product continue	6											
	5.3	Innerproduct	6											
	5.4	Inner product matlab	6											
6	Orthogonal Functions 8													
	6.1	Orthogonal Functions continue	8											
	6.2	Why Importent	8											
7	Fourier Series 8													
	7.1	Fourier Series	9											
	7.2	FS continue	9											
	7.3	Fs	9											
	7.4	Complex Fourier Series	9											
	7.5	Reprasentation	9											
	7.6	<u> </u>	10											
	7.7	÷	10											
8	Fourier Transform 13													
	8.1	FT	13											
	8.2	Work in progress	13											
9	Des	crete Fourier Transform 1	.3											
	9.1	DFT	14											
	9.2		14											
	9.3		14											

	9.4	Matrics form										14
	9.5	Beauty of matrices										14
	9.6	Matlab code for DFT matrix										15
	9.7	Matlab Gibbs phenomena										15
	9.8	Work in progres										18
10	\mathbf{FFT}	1										18
	10.1											18
11	Gab	or Transform										18
	11.1	Limitations of Fourier transfo	rm									18
	11.2	Gabor transform										19
	11.3	Gabor transform										19
	11.4	picture										19
	11.5	Problems of gabor transform										20
	11.6	matlab code for spectrogram .										20
	11.7	beethoven code matlab										21
	11.8	Idea										22
12	Wav	elet Transform										22
	12.1	Wavelet										22
		Haar Wavelet										

1 What is space?

• When we think of space we think about space where we live but in mathematics it more then that In mathamatics any generic abstract collection of elements are called space

2 Function Space

- Space of all possible function F(x)
- Idea is come from linear algebra
- It is like vector space with infinit dimenstions

2.1 Hilbert space

Space all possible wave functions

3 Vectors

Figure 1: This is Vector

• It has both direction and magnitude

3.1 Vectors

3.2 Component representation

- ullet $ec{a}=\mathrm{x}\hat{i}+\mathrm{y}\hat{j}+\mathrm{z}\;\hat{k}$
- Also i can write this way
- $ullet \ ec{a} = rac{ec{a}.\hat{i}}{||\hat{i}||^2} + rac{ec{a}.\hat{j}}{||\hat{j}||^2} + rac{ec{a}.\hat{k}}{||\hat{k}||^2}$

4 cordinate transformation

4.1 cordinate transformation

- I can write p interms of x and y
- ullet $ec{p}=rac{ec{p}.x}{||x||^2}+rac{ec{p}.y}{||y||^2}$
- I can alse write in terms of x' and y'
- $ullet \; ec p = rac{ec p.x'}{||x'||^2} + rac{ec p.y'}{||y'||^2}$
- here dot product give projection on to each axis and tell how much that vector in point in x direction
- Also when dot product is zero the vectors are in orthogonal to each other

5 Inner product of functions

- It is just like dot product between two vectors
- A function can be thought as vector of infinit dimensiion

- For defining innerproduct just descritize our functions f and g in some intervel a and b
- We have $[f_1 \ f_2 \ \dots \ f_n]$ and $[g_1 \ g_2 \ \dots \ g_n]$ Now we can find innerproduct of this it just two vectors

5.1 Inner product continue

• Now the innerproduct is

•

$$\sum_{k=0}^{n-1} f_k g_k$$

 \bullet This as one problem when n increses this changes by huge amound so we need to normalize this by Δ x

5.2 Inner product continue

• Now after normalization by Δ x the equation become

.

$$\sum_{k=0}^{n-1} f_k g_k \Delta x$$

• This is Riemann approximation of inegral

5.3 Innerproduct

- Now the equation become
- $\langle f(x), g(x) \rangle = \int_a^b f(x)g(x) dx$

5.4 Inner product matlab

clear all, close all, clc

```
xf = (.01:.01:x(end));
ff = interp1(x,f,xf,'cubic')
gf = interp1(x,g,xf,'cubic')
plot(xf(20:end-10),ff(20:end-10),'k','LineWidth',1.5)
hold on
plot(x(2:end-1),f(2:end-1),'bo','MarkerFace','b')
plot(xf(20:end-10),gf(20:end-10),'k','LineWidth',1.5)
plot(x(2:end-1),g(2:end-1),'ro','MarkerFace','r')
xlim([.1 2.7])
ylim([-.1.6])
set(gca,'XTick',[.2:.1:2.6],'XTickLabels',{},'LineWidth',1.2)
set(gca,'YTick',[]);
box off
set(gcf, 'Position', [100 100 550 250])
set(gcf,'PaperPositionMode','auto')
print('-depsc2', '-loose', '../figures/InnerProduct');
% %%
% xc = x;
% fc = f;
% n = length(x);
% hold on
% fapx = 0*ff;
% dx = xc(2)-xc(1);
% L = xc(end)-xc(1);
% L = 2.5
% AO = (1/pi)*sum(fc.*ones(size(xc)))*dx*L;
% fapx = fapx + A0/2;
% for k=1:10
%
      Ak = (1/pi)*sum(fc.*cos(2*pi*k*xc/L))*dx*L;
%
      Bk = (1/pi)*sum(fc.*sin(2*pi*k*xc/L))*dx*L;
%
      fapx = fapx + Ak*cos(2*k*pi*xf/L) + Bk*sin(2*k*pi*xf/L);
```

```
% end
% plot(xf,fapx,'k')
```

6 Orthogonal Functions

- In vectors to check orthogonality we do dot product if dot product is zero then the vectors is orthogonal to each other
- $\vec{a} \cdot \vec{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta) = 0$
- mean $\theta = 90^{\circ}$
- In functions we can do the same thing

6.1 Orthogonal Functions continue

- In function space if f and g are orthogonal to each other then innerproduct is zero
- $\int_a^b f(x)g(x) dx = 0$

6.2 Why Importent

- In vectorspace we represents vectors in terms of orthogonal basis
- Same can do in Function Space Represent any function in terms of orthogonal functions
- One example of this is Fourier Transform
- It represent f(x) in terms of orthogonal sins and cosins

7 Fourier Series

- It is a coodinate transformation
- It is made for solving heat equation in 1800s
- It decompose the signal f into sins and cosins
- sins and cosins are form a orthogonal basis for function space

7.1 Fourier Series

• Any periodic signals can be represent in terms of sum of sins and cosins

•

$$f(x) = \frac{A_0}{2} + \sum_{k=1}^{\infty} (A_k Cos(kx) + B_k Sin(kx))$$

7.2 FS continue

• It can be thought as the

•
$$f(x) = \sum_{k=0}^{\infty} (\langle f(x), \cos(kx) \rangle = \frac{\cos(kx)}{||\cos(kx)||^2} + \langle f(x), \sin(kx) \rangle = \frac{\sin(kx)}{||\sin(kx)||^2}$$

7.3 Fs

•
$$A_k = \frac{1}{||cos(kx)||^2} < f(x), cos(kx) >$$

•
$$B_k = \frac{1}{||sin(kx)||^2} < f(x), sin(kx) >$$

•
$$||f(x)||^2 = \langle f(x), f(x) \rangle$$

7.4 Complex Fourier Series

- ullet it uses complex exponential to represent signal
- Coefficient can be found exactly same as that of fourier series
- \bullet project function into each complex exponential basis you get the coefficient c_k

7.5 Reprasentation

•

$$f(x) = \sum_{k=-\infty}^{\infty} C_k e^{j\omega_0 kt}$$

• $C_k = \frac{1}{2\pi} < f(x), e^{jk\omega_0 t} >$

7.6 Example

• Assume we have a signal $f(x) = 3\sin(x) + 3\cos(x)$ then it will look like this

7.7 Matlab

```
clear all, close all, clc
kmax = 7;
dx = 0.001;
L = pi;
x = (-1+dx:dx:1)*L;
f = 0*x;
n = length(f);
nquart = floor(n/4);
nhalf = floor(n/2);
f(nquart:nhalf) = 4*(1:nquart+1)/n;
f(nhalf+1:3*nquart) = 1-4*(0:nquart-1)/n;
subplot(3,1,1)
plot(x,f,'-','Color',[0 0 0],'LineWidth',1.5)
ylim([-.2 1.5])
xlim([-1.25*L 1.25*L])
set(gca,'LineWidth',1.2)
```

```
set(gca,'XTick',[-L 0 L],'XTickLabels',{});%{'-L','0','L','2L'})
set(gca,'YTick',[0 1],'YTickLabels',{});
box off
CC = colormap(jet(8));
% CCsparse = CC(5:5:end,:);
% CCsparse(end+1,:) = CCsparse(1,:);
CCsparse = CC(1:3:end,:);
subplot(3,1,2)
L = pi;
A0 = sum(f.*ones(size(x)))*dx;
plot(x, A0+0*f, '-', 'Color', CC(1,:)*.8, 'LineWidth', 1.2);
hold on
fFS = A0/2;
for k=1:kmax
    A(k) = sum(f.*cos(pi*k*x/L))*dx;
    B(k) = sum(f.*sin(pi*k*x/L))*dx;
    plot(x, A(k)*cos(k*pi*x/L),'-','Color',CC(k,:)*.8,'LineWidth',1.2);
      plot(x,B(k)*sin(2*k*pi*x/L),'k-','LineWidth',1.2);
    fFS = fFS + A(k)*cos(k*pi*x/L) + O*B(k)*sin(k*pi*x/L);
end
ylim([-.7.7])
xlim([-1.25*L 1.25*L])
set(gca,'LineWidth',1.2)
set(gca,'XTick',[-L 0 L],'XTickLabels',{});%{'-L','0','L','2L'})
set(gca,'YTick',[-.5 0 .5],'YTickLabels',{});
box off
subplot(3,1,1)
hold on
plot(x,fFS,'-','Color',CC(7,:)*.8,'LineWidth',1.2)
l1=legend('
             ,,,
                       ')
set(l1,'box','off');
11.FontSize = 16;
subplot(3,1,3)
A0 = sum(f.*ones(size(x)))*dx;
plot(x, A0+0*f, '-', 'Color', CC(1,:), 'LineWidth', 1.2);
```

```
hold on
fFS = A0/2;
for k=1:7
    Ak = sum(f.*cos(pi*k*x/L))*dx;
    Bk = sum(f.*sin(pi*k*x/L))*dx;
    plot(x,Ak*cos(k*pi*x/L),'-','Color',CC(k,:)*.8,'LineWidth',1.2);
      plot(x,Bk*sin(2*k*pi*x/L),'k-','LineWidth',1.2);
    fFS = fFS + Ak*cos(k*pi*x/L) + O*Bk*sin(k*pi*x/L);
ylim([-.06.06])
xlim([-1.25*L 1.25*L])
set(gca,'LineWidth',1.2)
set(gca,'XTick',[-L 0 L],'XTickLabels',{});%{'-L','0','L','2L'})
set(gca,'YTick',[-.05 0 .05],'YTickLabels',{});
box off
set(gcf, 'Position', [100 100 550 400])
set(gcf,'PaperPositionMode','auto')
print('-depsc2', '-loose', '../figures/FourierTransformSines');
%% Plot amplitudes
clear ERR
clear A
fFS = A0/2;
A(1) = A0/2;
ERR(1) = norm(f-fFS);
kmax = 100;
for k=1:kmax
    A(k+1) = sum(f.*cos(2*pi*k*x/L))*dx*2/L;
    B(k+1) = sum(f.*sin(2*pi*k*x/L))*dx*2/L;
      plot(x,B(k)*sin(2*k*pi*x/L),'k-','LineWidth',1.2);
    fFS = fFS + A(k+1)*cos(2*k*pi*x/L) + 0*B(k+1)*sin(2*k*pi*x/L);
    ERR(k+1) = norm(f-fFS)/norm(f);
thresh = median(ERR)*sqrt(kmax)*4/sqrt(3);
r = max(find(ERR>thresh));
r = 7;
subplot(2,1,1)
semilogy(0:1:kmax,A,'k','LineWidth',1.5)
hold on
```

```
semilogy(r,A(r+1),'bo','LineWidth',1.5)
xlim([0 kmax])
ylim([10^(-7) 1])
subplot(2,1,2)
semilogy(0:1:kmax,ERR,'k','LineWidth',1.5)
hold on
semilogy(r,ERR(r+1),'bo','LineWidth',1.5)
xlim([0 kmax])
ylim([3*10^(-4) 20])
set(gcf,'Position',[100 100 500 300])
set(gcf,'PaperPositionMode','auto')
% print('-depsc2', '-loose', '../figures/FourierTransformSinesERROR');
```

8 Fourier Transform

- Fourier series is for periodic signals
- If signal is not periodic then we can't use fourier series
- Fourier transform is limiting case of fourier series when $L \to \infty$

8.1 FT

•

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega x} dx$$

•

$$F(\omega) = \int_{-\infty}^{infty} f(x)e^{-j\omega x}d\omega$$

8.2 Work in progress

9 Descrete Fourier Transform

- In real life the data sould be in measurements in some time
- We get time series insted of nice continues function
- So the descrete fourier transform is descritized version of fourier transform

9.1 DFT

- In dft the integration become summation
- DFT
- $F(k) = \sum_{n=0}^{N-1} f_n e^{-2\pi n \frac{k}{N}}$
- $k \in 0$ to N-1

9.2 Inverse DFT

- To come back to time series
- f(n) = $\sum_{k=0}^{N-1} F_k e^{2\pi k \frac{n}{N}}$
- $n \in 0$ to N-1

9.3 DFT

- ullet let $\omega_{
 m n}={
 m e}^{{
 m -}{
 m j}rac{2\pi}{N}}$
- Then we can represent DFT in matrix form

9.4 Matrics form

$$\begin{pmatrix} F_0 \\ F_1 \\ \vdots \\ F_{n-1} \end{pmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & \omega & \dots & \omega^{N-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{n-1} & \dots & \omega^{(N-1)^2} \end{bmatrix} \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{pmatrix}$$

9.5 Beauty of matrices

• DFT matrix

•

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & \omega & \dots & \omega^{N-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{n-1} & \dots & \omega^{(N-1)^2} \end{bmatrix}$$

9.6 Matlab code for DFT matrix

```
clear all, close all, clc
n = 256;
w = exp(-i*2*pi/n);

% Slow
for i=1:n
    for j=1:n

DFT(i,j) = w^((i-1)*(j-1));
    end
end

% Fast
[I,J] = meshgrid(1:n,1:n);
DFT = w.^((I-1).*(J-1));
imagesc(real(DFT))
```

9.7 Matlab Gibbs phenomena

```
clear all, close all, clc
kmax = 7;
dx = 0.001;
L = pi;
x = (-1+dx:dx:1)*L;
f = 0*x;
n = length(f);
nquart = floor(n/4);
nhalf = floor(n/2);
f(nquart:nhalf) = 4*(1:nquart+1)/n;
f(nhalf+1:3*nquart) = 1-4*(0:nquart-1)/n;
subplot(3,1,1)
plot(x,f,'-','Color',[0 0 0],'LineWidth',1.5)
ylim([-.2 1.5])
xlim([-1.25*L 1.25*L])
set(gca,'LineWidth',1.2)
```

```
set(gca,'XTick',[-L 0 L],'XTickLabels',{});%{'-L','0','L','2L'})
set(gca,'YTick',[0 1],'YTickLabels',{});
box off
CC = colormap(jet(8));
% CCsparse = CC(5:5:end,:);
% CCsparse(end+1,:) = CCsparse(1,:);
CCsparse = CC(1:3:end,:);
subplot(3,1,2)
L = pi;
A0 = sum(f.*ones(size(x)))*dx;
plot(x, A0+0*f, '-', 'Color', CC(1,:)*.8, 'LineWidth', 1.2);
hold on
fFS = A0/2;
for k=1:kmax
    A(k) = sum(f.*cos(pi*k*x/L))*dx;
    B(k) = sum(f.*sin(pi*k*x/L))*dx;
    plot(x, A(k)*cos(k*pi*x/L),'-','Color',CC(k,:)*.8,'LineWidth',1.2);
      plot(x,B(k)*sin(2*k*pi*x/L),'k-','LineWidth',1.2);
    fFS = fFS + A(k)*cos(k*pi*x/L) + O*B(k)*sin(k*pi*x/L);
end
ylim([-.7.7])
xlim([-1.25*L 1.25*L])
set(gca,'LineWidth',1.2)
set(gca,'XTick',[-L 0 L],'XTickLabels',{});%{'-L','0','L','2L'})
set(gca,'YTick',[-.5 0 .5],'YTickLabels',{});
box off
subplot(3,1,1)
hold on
plot(x,fFS,'-','Color',CC(7,:)*.8,'LineWidth',1.2)
l1=legend('
             ,,,
                       ')
set(l1,'box','off');
11.FontSize = 16;
subplot(3,1,3)
A0 = sum(f.*ones(size(x)))*dx;
plot(x, A0+0*f, '-', 'Color', CC(1,:), 'LineWidth', 1.2);
```

```
hold on
fFS = A0/2;
for k=1:7
    Ak = sum(f.*cos(pi*k*x/L))*dx;
    Bk = sum(f.*sin(pi*k*x/L))*dx;
    plot(x,Ak*cos(k*pi*x/L),'-','Color',CC(k,:)*.8,'LineWidth',1.2);
      plot(x,Bk*sin(2*k*pi*x/L),'k-','LineWidth',1.2);
    fFS = fFS + Ak*cos(k*pi*x/L) + O*Bk*sin(k*pi*x/L);
ylim([-.06.06])
xlim([-1.25*L 1.25*L])
set(gca,'LineWidth',1.2)
set(gca,'XTick',[-L 0 L],'XTickLabels',{});%{'-L','0','L','2L'})
set(gca,'YTick',[-.05 0 .05],'YTickLabels',{});
box off
set(gcf, 'Position', [100 100 550 400])
set(gcf,'PaperPositionMode','auto')
print('-depsc2', '-loose', '../figures/FourierTransformSines');
%% Plot amplitudes
clear ERR
clear A
fFS = A0/2;
A(1) = A0/2;
ERR(1) = norm(f-fFS);
kmax = 100;
for k=1:kmax
    A(k+1) = sum(f.*cos(2*pi*k*x/L))*dx*2/L;
    B(k+1) = sum(f.*sin(2*pi*k*x/L))*dx*2/L;
      plot(x,B(k)*sin(2*k*pi*x/L),'k-','LineWidth',1.2);
    fFS = fFS + A(k+1)*cos(2*k*pi*x/L) + 0*B(k+1)*sin(2*k*pi*x/L);
    ERR(k+1) = norm(f-fFS)/norm(f);
thresh = median(ERR)*sqrt(kmax)*4/sqrt(3);
r = max(find(ERR>thresh));
r = 7;
subplot(2,1,1)
semilogy(0:1:kmax,A,'k','LineWidth',1.5)
hold on
```

```
semilogy(r,A(r+1),'bo','LineWidth',1.5)
xlim([0 kmax])
ylim([10^(-7) 1])
subplot(2,1,2)
semilogy(0:1:kmax,ERR,'k','LineWidth',1.5)
hold on
semilogy(r,ERR(r+1),'bo','LineWidth',1.5)
xlim([0 kmax])
ylim([3*10^(-4) 20])
set(gcf,'Position',[100 100 500 300])
set(gcf,'PaperPositionMode','auto')
% print('-depsc2', '-loose', '../figures/FourierTransformSinesERROR');
```

9.8 Work in progres

10 FFT

- FFT is anlgorithm to compute DFT fast and efficiently
- It uses symetry in DFT
- \bullet To compute DFT Without FFT it require $O(n^2)$ but FFT require only O(n log(n))

10.1

11 Gabor Transform

11.1 Limitations of Fourier transform

- FT is good for representing smooth signal when there is sudden jump or discontinuity then it is not capture very well Gibbs phenomena
- FT is good for stationary signal
- Stationary means frequency of signal not change with time
- When we compute Fourier Transform we loss all of time information so we can't say when this frequency occured

• non stationary signals example is audio signal which frequency changes with time

11.2 Gabor transform

- it solve the problem of FT
- Gabor Transfom allow us to compute spectrogram a time frequency plot
- Also called windowed FT
- We take a window function multiply with the signal and translate the signal to get gabor transform

11.3 Gabor transform

- pull out both time and frequency content
- instead of computinf FT of entire signal we devide into several sections and compute FT of each section
- Mathamaticaly we can write

•

$$G(f(t)) = \int_{\infty}^{\infty} f(\tau)e^{-i\omega\tau}g(\tau - t)d\tau$$

- g is the window function it can be gaussian or rectangular
- We can't know what frequency exist at what time instead but we can know what frequency band exist at what time

11.4 picture

- gabor grid
- ./gab.gif

11.5 Problems of gabor transform

- Uncertainity principle
- It tells about when when you narrow the window you get better time resalution but you get poor frequency resalution
- when you stretch the window you get better frquency inforation but poor time information
- uncertainity principle tell us
- $\Delta t \Delta f \geq \frac{1}{4\pi}$

11.6 matlab code for spectrogram

```
clear all, close all, clc
n = 128;
L = 30;
dx = L/(n);
x = -L/2:dx:L/2-dx;
f = cos(x).*exp(-x.^2/25);
                                               % Function
df = -(\sin(x).*\exp(-x.^2/25) + (2/25)*x.*f); % Derivative
%% Approximate derivative using finite Difference...
for kappa=1:length(df)-1
    dfFD(kappa) = (f(kappa+1)-f(kappa))/dx;
end
dfFD(end+1) = dfFD(end);
%% Derivative using FFT (spectral derivative)
fhat = fft(f);
kappa = (2*pi/L)*[-n/2:n/2-1];
kappa = fftshift(kappa);  % Re-order fft frequencies
dfhat = i*kappa.*fhat;
dfFFT = real(ifft(dfhat));
%% Plotting commands
plot(x,df,'k','LineWidth',1.5), hold on
plot(x,dfFD,'b--','LineWidth',1.2)
plot(x,dfFFT,'r--','LineWidth',1.2)
```

11.7 beethoven code matlab

```
clear all, close all, clc
% If you download mp3read, you can use this code
% also, need to download mp3read from
% http://www.mathworks.com/matlabcentral/fileexchange/13852-mp3read-and-mp3write
% [Y,FS,NBITS,OPTS] = mp3read('../../DATA/beethoven.mp3'); % add in your own song
% T = 40;
                     % 40 seconds
% y=Y(1:T*FS);
                     % First 40 seconds
load ../../DATA/beethoven_40sec.mat
%% Spectrogram
spectrogram(y,5000,400,24000,24000,'yaxis');
%% SPECTROGRAM
% uncomment remaining code and download stft code by M.Sc. Eng. Hristo Zhivomirov
% wlen = 5000;
% h=400:
                % Overlap is wlen - h
\% % perform time-frequency analysis and resynthesis of the original signal
% [S, f, t_stft] = stft(y, wlen, h, FS/4, FS); % y axis range goes up to 4000 HZ
% imagesc(log10(abs(S)));
% load CC.mat
% colormap(ones(size(CC))-(CC))
% axis xy, hold on
% XTicks = [1 300 600 900 1200 1500 1800 2100];
% XTickLabels = {'0','5','10','15','20','25','30','35'};
% YTicks = [0 1000 2000 3000];
% YTickLabels = {'0', '4000', '8000', '12000'};
% set(gca,'XTick',XTicks,'XTickLabels',XTickLabels);
% set(gca,'YTick',YTicks,'YTickLabels',YTickLabels);
% % plot a frequency
% freq = Q(n)(((2^{(1/12)})^{(n-49)})*440);
% freq(40) % frequency of 40th key = C
```

11.8 Idea

12 Wavelet Transform

- ullet supercharged Fourier transform
- Generalize Fourier transform
- Reprasent signals in erms of other orthogonal functions

•

12.1 Wavelet

- Wavelets are new basis functions also act as window function
- Wavelets are some wave like oscilations functions in limited durations
- $\bullet\,$ There are somany wavelets are avialable

12.2 Haar Wavelet