NAS via RNN + RL

Shusen Wang

Prerequisites

- Recurrent neural networks (RNNs).
- Policy-based reinforcement learning.

RNN for Generating CNN Architectures

Reference:

Zoph & Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

Predict Number of Filters

Predict Number of Filters

Predict Number of Filters

\mathbf{a}_1 $\mathbf{p}_2 = [0.5, 0.1, 0.4]$ \mathbf{h}_2 \mathbf{h}_1 \mathbf{h}_1 \mathbf{h}_2

Predict Size of Filters

$\mathbf{a_2} = [1, 0, 0]$ \mathbf{a}_1 $\mathbf{p}_2 = [0.5, 0.1, 0.4]$ \mathbf{h}_2 \mathbf{h}_1 \mathbf{h}_1 \mathbf{h}_2

Predict Size of Filters

Probability

An embedding layer can be shared among the same task.

- E.g., \mathbf{a}_2 , \mathbf{a}_5 , \mathbf{a}_8 , \mathbf{a}_{11} are for size of filters.
- They can share embedding layer.

Different tasks do not share embedding layers.

- E.g., a_1 and a_2 are for different tasks.
- They cannot share embedding layer.

Predict Stride \mathbf{a}_1 \mathbf{a}_2 **Probability** $\mathbf{p}_3 = [0.3, 0.7]$ \mathbf{p}_2 \mathbf{p}_1 0.7 \mathbf{h}_2 \mathbf{h}_3 \mathbf{h}_1 0.3 \mathbf{h}_1 \mathbf{h}_2 \mathbf{h}_3 ➤ Stride 2 3 \mathbf{X}_0

Training Controller RNN

How to train the controller RNN?

- The controller RNN outputs the hyper-parameters of a CNN.
- With the hyper-parameters at hand, instantiate a CNN.
- Train the CNN on a dataset, e.g., CIFAR-10, ImageNet, etc.
- Compute validation accuracy on a held-out dataset.
- Validation accuracy is the supervision for training the controller RNN.

How to train the controller RNN?

How to train the controller RNN?

Challenges

r: objective function (to maximize).

 \bullet • θ : optimization variable.

Challenges

- r: objective function (to maximize).
- θ : optimization variable.
- What if r is a differentiable function of θ ?
- Update θ by gradient ascent:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \quad \frac{\partial r}{\partial \mathbf{\theta}}.$$

Challenges

- r: objective function (to maximize).
- θ : optimization variable.
- What if r is a differentiable function of θ ?
- Update θ by gradient ascent:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial r}{\partial \mathbf{\theta}}.$$

• However, if r is **not** a differentiable function of θ , then we cannot use the gradient to update θ .

Challenges

• r: objective function (to maximize).

Validation Accuracy

• θ : optimization variable.

Controller RNN Parameters

- Validation accuracy (r) is **not** a differentiable function of the controller RNN parameters (θ) .
- They have to use reinforcement learning.

Reinforcement Learning

- Objective: Improve the controller RNN so that validation accuracies improve over time.
- Rewards: validation accuracies.
- Policy function: the controller RNN.
- Improve the policy function by policy gradient ascent.

Probability Density

$$\pi(\mathbf{a}_{t+1} \mid [\mathbf{h}_t, \mathbf{x}_t]; \mathbf{\theta}).$$

- $\pi("3\times3" | [\mathbf{h}_t, \mathbf{x}_t]; \mathbf{\theta}) = 0.5.$
- $\pi(5\times5'' | [\mathbf{h}_t, \mathbf{x}_t]; \mathbf{\theta}) = 0.1.$
- $\pi("7\times7" | [\mathbf{h}_t, \mathbf{x}_t]; \mathbf{\theta}) = 0.4.$

Reward & Return

- Suppose the controller RNN runs 60 steps.
- The first 59 rewards are zeros: $r_1 = r_2 = \cdots = r_{59} = 0$.
- The last reward is the validation accuracy: $r_{60} = ValAcc$.

Reward & Return

- Suppose the controller RNN runs 60 steps.
- The first 59 rewards are zeros: $r_1 = r_2 = \cdots = r_{59} = 0$.
- The last reward is the validation accuracy: $r_{60} = ValAcc$.
- Return (aka cumulative reward) is defined as:

$$u_t = r_t + r_{t+1} + r_{t+2} + \dots + r_{59} + r_{60}.$$

• Thus, all the returns are equal:

$$u_1 = u_2 = \dots = u_{60} = ValAcc.$$

REINFORCE Algorithm

Approximate policy gradients by:

$$\frac{\partial \log \pi(\mathbf{a}_{t+1} | [\mathbf{h}_t, \mathbf{x}_t]; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot u_t.$$

REINFORCE Algorithm

Approximate policy gradients by:

$$\frac{\partial \log \pi(\mathbf{a}_{t+1} | [\mathbf{h}_t, \mathbf{x}_t]; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot u_t.$$

Update trainable parameters by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \sum_{t=1}^{60} \frac{\partial \log \pi(\mathbf{a}_{t+1} | [\mathbf{h}_t, \mathbf{x}_t] ; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot u_t.$$

Recap

- Run the controller RNN to generate the hyper-parameters of the 20 convolutional layers.
- Instantiate a CNN, train the CNN, and then obtain a validation accuracy (to be used as a reward.)
- REINFORCE algorithm uses the reward to update the policy function (i.e., the controller RNN.)
- Repeat this process thousands of times.

NAS is expensive!

- To update the controller RNN once, we need to train a CNN from scratch. (Once is already expensive.)
- 10,000+ updates to train the RNN well → Train 10,000+ CNNs from scratch. (Extremely expensive!)
- The controller RNN itself has tuning hyper-parameters.
 - E.g., # of layers, size of **x**, size of **h**, etc.
 - Hyper-parameter tuning will make the overall time cost many times higher!

Thank You!