Κεραίες και Διάδοση - Σειρά Ασκήσεων 1

Δάφνη Νικολαΐδου - ΑΕΜ 10546

1.1 Δισδιάστατες Στοιχειοκεραίες

α. Σχεδίαση οριζόντιου και κατακόρυφου διαγράμματος ακτινοβολίας στο ΜΑΤLAB

Οριζόντια διαγράμματα ακτινοβολίας

Κατακόρυφα διαγράμματα ακτινοβολίας

β. Σχεδίαση στερεού ακτινοβολίας στο ΜΑΤLAB

Στερεό Ακτινοβολίας Στοιχειοκεραίας d = 0.5, θ = 0 μοίρες

Στερεό Ακτινοβολίας Στοιχειοκεραίας d = 0.5, θ = 60 μοίρες

Στερεό Ακτινοβολίας Στοιχειοκεραίας d = 0.5, θ = 90 μοίρες

Στερεό Ακτινοβολίας Στοιχειοκεραίας d = 0.75, θ = 0 μοίρες

Στερεό Ακτινοβολίας Στοιχειοκεραίας d = 0.75, θ = 60 μοίρες

Στερεό Ακτινοβολίας Στοιχειοκεραίας d = 0.75, θ = 90 μοίρες

1ος τρόπος:

Κάνουμε χρήση της σχέσης $D=\pi\cos(\theta o)\,DxDy$. Η μέθοδος αυτή μπορεί να χρησιμοποιηθεί μόνο για στοιχειοκεραίες με ευρύπλευρη ή σχεδόν ευρύπλευρη λειτουργία. Αυτό σημαίνει ότι λαμβάνουμε αποτελέσματα για θο = 0, 30, 60 μοίρες, αλλά δεν μπορούμε να την εφαρμόσουμε στην περίπτωση που θο = 90 μοίρες.

Η γραμμική στοιχειοκεραία στον άξονα z λειτουργεί ως ευρύπλευρη άρα μπορούμε να χρησιμοποιήσουμε τον τύπο $Dz = 2M \, rac{dz}{\lambda}$

Αντιθέτως, η γραμμική στοιχειοκεραία στον άξονα x δεν λειτουργεί ως ευρύπλευρη. Για τις περιπτώσεις όμως των γωνιών θο = 0, 30, 60 μοίρες, θεωρούμε ότι δεν υπάρχει σημαντική απόκλιση από την ευρύπλευρη. Γι' αυτό μπορούμε να υπολογίσουμε τη κατευθυντικότητά της ως εξής:

 $Dx = D \varepsilon v \rho rac{HPBW \varepsilon v
ho}{HPBW heta o}$ με $HPBW \varepsilon v
ho = 2 \mathrm{N} x rac{dx}{\lambda}$ και τα HPBW heta o να δίνονται από το γνωστό διάγραμμα

Τελικά, καταλήγουμε στα εξής:

Για γωνία θ= 0 μοίρες: Κατευθυντικότητα 27.17 dBi

Για γωνία θ= 30 μοίρες: Κατευθυντικότητα 25.97 dBi

Για γωνία θ= 60 μοίρες: Κατευθυντικότητα 21.15 dBi

Για γωνία θ= 90 μοίρες: Κατευθυντικότητα -142.53 dBi

Το αποτέλεσμα που προκύπτει για θ= 90 από την υπολοίηση στο MATLAB είναι ενδεικτικό του γεγονότος ότι η μέθοδος δεν είναι αποτελεσματική για μη ευρύπλευρη στοιχειοκεραία.

2ος τρόπος:

Θα χρησιμοποιήσουμε μια εναλλακτική σχέση που αξιοποιεί τα HPBWs των επιμέρους γραμμικών στοιχειοκεραιών στους άξονες z και x. Η κατευθυντικότητα σε αυτή τη περίπτωση δίνεται από τη σχέση:

$$D=rac{32400}{\Theta h\Psi h}$$
, όπου $\Theta h=rac{\Theta x}{\cos(heta o)}$ και $\Psi h=\Theta z$

Η z στοιχειοκεραία είναι ευρύπλευρη, επομένως $\,\varTheta z = 48,4^{\circ} rac{\lambda}{Nzdz}\,$

Η x στοιχειοκεραία έχει απόκλιση θο από την ευρύπλευρη και το Θx προκύπτει από το γνωστό διάγραμμα

Οι αριθμητικές τιμές του HPBW για κάθε μία από τις γωνίες θο συναρτήσει του αριθμού των στοιχείων (N=16) δίνονται στον παρακάτω πίνακα και οι τιμές που πήραμε είναι οι εξής:

HPBW(0)=7

HPBW(30)= 8

HPBW(60)= 14

HPBW(90)= 40

Τα τελικά αποτελέσματα είναι:

Για γωνία θ= 0 μοίρες: Κατευθυντικότητα 27.59 dBi

Για γωνία θ=30 μοίρες: Κατευθυντικότητα 26.38 dBi

Για γωνία θ=60 μοίρες: Κατευθυντικότητα 21.57 dBi

Για γωνία θ=90 μοίρες: Κατευθυντικότητα 20.02 dBi

Παρατηρούμε ότι τα αποτελέσματα των δύο μεθόδων για θο = 0, 30, 60 μοίρες σχεδόν ταυτίζονται, ενώ η δεύτερη μέθοδος χρησιμοποιείται επιτυχώς και στην περίπτωση που θ=90 μοίρες.

δ. Υπολογισμός κατευθυντικότητας βάσει του ορισμού

Η κατευθυντικότητα μίας ομοιόμορφης στοιχειοκεραίας ορίζεται από τη σχέση:

$$D = \frac{4\pi \left| E_0 \right|_{\max}^2 \left| A \right|_{\max}^2}{\int\limits_0^\pi \int\limits_0^{2\pi} \left| E_0 \right|^2 \left| A \right|^2 \sin\theta d\theta d\varphi}$$

Σε αυτή την εφαρμογή, προσεγγίζουμε το διπλό ολοκλήρωμα του παρονομαστή με ένα διπλό άθροισμα Riemann

Από την υλοποίηση της παραπάνω σχέσης προκύπτουν κατευθυντικότητες ίσες με:

Για γωνία θ= 0 μοίρες: Κατευθυντικότητα 24.58 dBi

Για γωνία θ=30 μοίρες: Κατευθυντικότητα 22 dBi

Για γωνία θ=60 μοίρες: Κατευθυντικότητα 22.09 dBi

Για γωνία θ=90 μοίρες: Κατευθυντικότητα 23.38 dBi

Υπάρχει μια μικρή απόκλιση μεταξύ αυτών των αποτελεσμάτων και εκείνων που πήραμε από τις προηγούμενες δύο μεθόδους.

ε. Σχεδίαση κεραίας για λειτουργία ως Hansen – Woodyard

Προκειμένου να λειτουργεί επιτυχώς η κεραία ως Hansen – Woodyard, θέτουμε την απόσταση των διπόλων ίση με $\lambda/4$.

Η κεραία θα είναι ευρύπλευρη στον κατακόρυφο άξονα, επομένως $\delta z=0$ και ακροπυροδοτική Hansen – Woodyard στον οριζόντιο, άρα $\delta x=-kd-\frac{2.92}{Nx}$

Με τον αναλυτικό τρόπο η κατευθυντικότητα είναι ίση με 21.2119 dBi

Υπολογιστικά, με βάση τον όρισμο, η κατευθυντικότητα υπολογίζεται στα 21.4505 dBi

Παρατηρούμε ότι και αυτή τη φορά η δύο μέθοδοι έχουν ελάχιστη απόκλιση μεταξύ των αποτελεσμάτων τους

Στερεό Ακτινοβολίας Στοιχειοκεραίας

1.2 Κεκλιμένο Δίπολο

α. Υπολογισμός έκφρασης μακρινού πεδίου

β. Σχεδίαση κατακόρυφων διαγραμμάτων ακτινοβολίας

γ. Εύρεση γωνίας για μέγιστη ακτινοβολία στο οριζόντιο επίπεδο

Για μέγιστη ακτινοβολία στο οριζόντιο επίπεδο θ = 90 και φ=0.

Θέλουμε να βρούμε τη τιμή της θο που θα μεγιστοποιεί τον παράγοντα στοιχειοκεραίας Α.

Η ζητούμενη γωνία θο είναι ίση με 135 μοίρες περίπου.

1.3 Σχεδίαση στοιχειοκεραίας με υπολογισμό της αντίστασης εισόδου

α. Υπολογισμός αμοιβαίας σύνθετης αντίστασης δύο διπόλων λ/2

Υλοποιούνται στο MATLAB οι σχέσεις που δίνουν την αμοιβαία σύνθετη αντίσταση με χρήση του ολοκληρωτικού ημιτόνου και συνημίτονου.

$$\begin{split} R_{21m} &= \frac{n}{4\pi} [2C_i(u_0) - C_i(u_1) - C_i(u_2)] \\ X_{21m} &= -\frac{n}{4\pi} [2S_i(u_0) - S_i(u_1) - S_i(u_2)] \\ \end{split} \qquad \begin{aligned} u_0 &= kd \\ u_1 &= k \left(\sqrt{d^2 + l^2} + l \right) \\ u_2 &= k \left(\sqrt{d^2 + l^2} - l \right) \end{aligned}$$

β. Οριζόντιο διάγραμμα ακτινοβολίας και σύνθετη αντίσταση εισόδου στοιχειοκεραίας

Σε αυτή τη διάταξη 3 κατακόρυφα και παράλληλα τοποθετημένα δίπολα λ/2, εκ των οποίων μόνο το μεσαίο τροφοδοτείται, διαμορφώνουν μία γραμμική στοιχειοκεραία. Η μαθηματική ανάλυση για την εύρεση της σύνθετης αντίστασης εισόδου, που εφαρμόζεται στον κώδικα MATLAB, παρουσιάζεται παρακάτω:

(1) (2) (3)
$$\begin{vmatrix}
V_1 = 2II \hat{I}_1 + 2I_2 \hat{I}_2 + 2I_3 \hat{I}_3 = 0 \\
V_2 = 2I_1 \hat{I}_1 + 2I_2 \hat{I}_2 + 2I_3 \hat{I}_3 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
V_2 = 2I_1 \hat{I}_1 + 2I_2 \hat{I}_2 + 2I_3 \hat{I}_3 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
V_3 = 2I_1 \hat{I}_1 + 2I_2 \hat{I}_2 + 2I_3 \hat{I}_3 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
V_3 = 2I_1 \hat{I}_1 + 2I_2 \hat{I}_2 + 2I_3 \hat{I}_3 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
V_3 = 2I_1 \hat{I}_1 + 2I_2 \hat{I}_2 + 2I_3 \hat{I}_3 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
V_3 = 2I_1 \hat{I}_1 + 2I_2 \hat{I}_2 + 2I_3 \hat{I}_3 = 2I_3 \hat{I}_3 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
V_1 = 2I_1 \hat{I}_1 + 2I_2 \hat{I}_2 + 2I_3 \hat{I}_3 = 2I_3 \hat{I}_3 =$$

Προκύπτει αντίσταση εισόδου Zin = 61.863 + 119.08i και το παρακάτω διάγραμμα ακτινοβολίας:

Radiation Pattern of Three-Element Array

γ. Συντελεστής ανάκλασης για διάφορες αποστάσεις d

Από το διάγραμμα που τυπώσαμε, συμπεραίνουμε ότι η απαίτηση για μέτρο του συντελεστή ανάκλασης μικρότερο του 0.3 ικανοποιείται για αποστάσεις μεταξύ των στοιχείων d από 0.49λ έως 0.61λ.

δ. Στοιχειοκεραία με ανακλαστήρα - Συντελεστής ανάκλασης

Με τη προσθήκη του ανακλαστήρα η γεωμετρία του προβλήματος αλλάζει, εφαρμόζουμε τη μέθοδο των ειδώλων και τα αποτελέσματα δίνονται πλέον από την ακόλουθη ανάλυση

Στο σχήμα απεικονίζεται ο συντελεστής ανάκλασης για κάθε συνδυασμό d και h

Οι περιοχές που ο συντελεστής ανάκλασης είναι μικρότερος από 0.3, είναι αυτές που περικλείονται από τις γαλάζιες γραμμές του contour plot.

1.4 Σχεδίαση ανομοιόμορφης στοιχειοκεραίας με τεχνικές βελτιστοποίησης

α. Βελτιστοποίηση στοιχειοκεραίας με χρήση γενετικού αλγόριθμου

Οι βέλτιστες τιμές για τα ρευματα Ιη που προκύπτουν είναι οι εξής:

l1	12	13	14	15
1	1.937	2.72	3.57	4

Από το διάγραμμα ακτινοβολίας μπορούμε να υπολογίσουμε το ύψος του 1ου (και υψηλότερου) πλευρικού λοβού σε σχέση με τον κύριο, το οποίο είναι ίσο με $20\log_{10}\frac{1.376}{26.67}=-25.748~dB$.

β. Βελτιστοποίηση με χρήση συντελεστών βάρους

Οι βέλτιστες τιμές για τα ρευματα Ιη που προκύπτουν είναι οι εξής:

I1	12	13	14	15
1	1.644	2.614	3.485	4

Υπολογίζουμε και πάλι από το διάγραμμα ακτινοβολίας το ύψος του 1ου πλευρικού λοβού σε σχέση με τον κύριο, το οποίο είναι ίσο με $20\log_{10}\frac{0.60}{25.49}=-32.564~dB$. Έχει σαφώς βελτιωθεί το αποτέλεσμα.

γ. Βελτιστοποίηση κατευθυντικότητας κεραίας

Ζητείται η μεγιστοποίηση της παρακάτω σχέσης:

$$D = \frac{kd(\sum_{n=0}^{N-1} I_n)^2}{\sum_{n=0}^{N-1} \sum_{m=0}^{N-1} I_n I_m^* e^{j(n-m)\delta} \frac{\sin(n-m)kd}{n-m}}$$

Θα χρησιμοποιήσουμε και πάλι τον γενετικό αλγόριθμο, εφαρμοσμένο όμως στην -D, ώστε να πετύχουμε μεγιστοποίηση (ο ga είναι αλγόριθμος ελαχιστοποίησης της συνάρτησης)

Οι βέλτιστες τιμές για τα ρεύματα Ιη που προκύπτουν είναι οι εξής:

I1	12	13	14	15
4	4	4	4	4

Πρόκειται, δηλαδή, για ομοιόμορφη στοιχειοκεραία.