DD2434 - Machine Learning, Advanced Course Assignment 1A

Tristan Perrot tristanp@kth.se

Étienne Riguet riguet@kth.se

November 2023

Assignment 1A DD2434 - Machine Learning, Advanced Course		Tristan Perrot Étienne Riguet
C	Contents	
1	Exponential Family	3
2	Dependencies in a Directed Graphical Model	4
3	CAVI	5

7

Appendix

1 Exponential Family

Question 1.1

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= h(x) \exp(\eta(\lambda) \cdot T(x) - A(\eta(\lambda)))$$

$$= h(x) \exp(\log \lambda \cdot x - A(\log \lambda))$$

$$= h(x) \exp(\log \lambda \cdot x - \lambda)$$

$$= h(x) \exp(\log \lambda \cdot x) \exp(-\lambda)$$

$$= e^{-\lambda} \frac{\lambda^x}{x!}$$
(1)

We can see that the distribution correspond to a Poisson distribution of parameter λ .

Question 1.2

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= \exp(\eta([\alpha, \beta]) \cdot [\log x, x] - A(\alpha - 1, -\beta))$$

$$= \exp([\alpha - 1, -\beta] \cdot [\log x, x] - \log \Gamma(\alpha) + \alpha \log(\beta))$$

$$= \exp((\alpha - 1) \log x - \beta x - \log \Gamma(\alpha) + \alpha \log(\beta))$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
(2)

We can see that the distribution correspond to a Gamma distribution of parameters α and β .

Question 1.3

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= \frac{\exp(\eta([\mu, \sigma^{2}]) \cdot [x, x^{2}] - A(\eta([\mu, \sigma^{2}])))}{\sqrt{2\pi}}$$

$$= \frac{\exp([\frac{\mu}{\sigma^{2}}, -\frac{1}{2\sigma^{2}}] \cdot [x, x^{2}] - A([\frac{\mu}{\sigma^{2}}, -\frac{1}{2\sigma^{2}}]))}{\sqrt{2\pi}}$$

$$= \frac{\exp(\frac{\mu x}{\sigma^{2}} - \frac{x^{2}}{2\sigma^{2}} - \frac{\mu^{2}}{2\sigma^{2}} - \log \sigma)}{\sqrt{2\pi}}$$

$$= \frac{\exp(-\frac{(x-\mu)^{2}}{2\sigma^{2}})}{\sigma\sqrt{2\pi}}$$
(3)

We can see that the distribution correspond to a Normal distribution of parameters μ and σ^2 .

Question 1.4

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= 2 \exp(\eta(\lambda) \cdot x - A(\eta(\lambda)))$$

$$= 2 \exp(-\lambda x - A(-\lambda))$$

$$= 2 \exp\left(-\lambda x + \log\left(\frac{\lambda}{2}\right)\right)$$

$$= \lambda e^{-\lambda x}$$
(4)

We can see that the distribution correspond to a Exponential distribution of parameter λ .

Question 1.5

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= \exp(\eta([\psi_1, \psi_2]) \cdot [\log x, \log(1 - x)] - A(\eta([\psi_1, \psi_2])))$$

$$= \exp([\psi_1 - 1, \psi_2 - 1] \cdot [\log x, \log(1 - x)] - A([\psi_1 - 1, \psi_2 - 1]))$$

$$= \exp((\psi_1 - 1) \log x + (\psi_2 - 1) \log(1 - x) - \log \Gamma(\psi_1) - \log \Gamma(\psi_2) + \log \Gamma(\psi_1 + \psi_2))$$

$$= \frac{\Gamma(\psi_1 + \psi_2)}{\Gamma(\psi_1)\Gamma(\psi_2)} x^{\psi_1 - 1} (1 - x)^{\psi_2 - 1}$$
(5)

We can see that the distribution correspond to a Beta distribution of parameters ψ_1 and ψ_2 .

2 Dependencies in a Directed Graphical Model

Figure 1: Graphical model of smooth LDA.

Question 2.6

The Bayes net take this form:

Then, if we use the method using the d-separation, we obtain this:

Therefore, we can see that $W_{d,n} \perp W_{d,n+1} | \theta_d, \beta_{1:K}$ is <u>false</u>.

Figure 2: Graphical model of Labeled LDA.

3 CAVI

Figure 3: DGM

Question 3.12

In the bishop book, we can see that:

$$p(X|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left\{-\frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$
 (6)

$$p(\mu|\tau) = \mathcal{N}(\mu|\mu_0, (\lambda_0 \tau)^{-1}) \tag{7}$$

$$p(\tau) = \operatorname{Gam}(\tau|a_0, b_0) \tag{8}$$

Then, by using the code in appendix 3, we obtain :

Figure 4: Generated Data.

Question 3.13

Let's find the ML estimates of μ and τ . We know that $\log(q^*(\mu)) = \mathbb{E}[\log p(X, \mu, \tau)]$. Then, we can write :

$$\log(q^*(\mu)) = \mathbb{E}[\log p(X, \mu, \tau)]$$

$$\stackrel{+}{=} \mathbb{E}[\log p(X|\mu, \tau)] + \mathbb{E}[\log p(\mu|\tau)]$$

$$= \mathbb{E}\left[\left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left\{-\frac{\tau}{2}\sum_{n=1}^{N}(x_n - \mu)^2\right\}\right]$$
(9)

Appendix

Python Code

```
from typing import List
import numpy as np
import scipy.special as sp_spec
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score
import seaborn as sns
def generate_data(N: int, mu: float, tau: float) -> np.ndarray:
   return np_rand.normal(mu, tau, N)
def plot_data(X: np.ndarray, ax: plt.Axes) -> None:
   ax.hist(X, bins=20, density=True)
   ax.set_xlabel('x')
   ax.set_ylabel('p(x)')
   ax.set_title(f'N = {len(X)}')
MU = 1
TAU = 0.5
N = [10, 100, 1000]
Xs = [generate_data(n, MU, TAU) for n in N]
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
for i in range(len(Xs)):
   plot_data(Xs[i], axs[i])
plt.tight_layout()
plt.savefig('12_data.png')
```