Intelligente Sehsysteme - Übungsblatt 1

Jan Konrad (2533619)

Aufgabe 2 1/1

Aufgabe 3///

Aufgabe 4 17512

	Ι	$0\ 1\ 2\ 3\ 4\ 5\ 6\ 7$	
1.	$h(\mathbf{I_1})$	0 3 5 2 3 2 1 0	/
	$h(\mathbf{I_2})$	17400031	/

	Ι	0	1	2	3	4	5	6	7	
2.	$p(\mathbf{I_1})$	0	0.1875	0.3125	0.125	0.1875	0.125	0.0625	0 _	/
	$p(\mathbf{I_2})$	0.0625	0.4375	0.25	0	0	0	0.1875	0.0625	

3.
$$m_{\bf I_1}=2.9375$$
, $m_{\bf I_2}=2.5$, $q_{\bf I_1}\approx 1.5194$, $q_{\bf I_2}\approx 2.2361$ r -0.25 ρ

4. Aus $m_{\mathbf{I_1}} \approx m_{\mathbf{I_2}}$ lässt sich ableiten, dass im Mittel beide Bilder ungefähr gleich hell sind, wobei $m_{\mathbf{I_2}}$ etwas dunkler ist. Aus $q_{\mathbf{I_2}} > q_{\mathbf{I_1}}$ folgt, dass der Kontrast von $\mathbf{I_2}$ höher als der Kontrast von $\mathbf{I_1}$ ist. Bei der Auswertung muss beachtet werden, dass das Bild $\mathbf{I_2}$ bimodal verteilt ist. D.h. es gibt zwei klar getrennte Bereiche. Die örtliche Anordnung der Intensitätswerte kann aus den Werten nicht abgeleitet werden.

Aufgabe 52/2

3. Bei der linearen Histogrammspreizung $T(\mathbf{I})$ wird das Histogramm zuerst nach links verschoben, s.d. $\mathbf{I}_{minGiven} = \mathbf{I}_{min}$ gilt. Anschließend wird das Historgram skaliert, s.d. $\mathbf{I}_{maxGiven} = \mathbf{I}_{max}$ gilt. Für $\mathbf{I}_{min} = 0$ gilt für $T(\mathbf{I})$ demnach Folgendes:

$$c_{1} = -\mathbf{I}_{minGiven} = -2 \checkmark$$

$$c_{2} = \frac{\mathbf{I}_{max}}{\mathbf{I}_{maxGiven} - \mathbf{I}_{minGiven}} = \frac{7}{5-2} = \frac{7}{3} \checkmark$$

$$T(\mathbf{I}) = (\mathbf{I} + c_{1}) \cdot c_{2}$$

$$= (\mathbf{I} - 2) \cdot \frac{7}{3} \checkmark$$

Da es sich hier um ein diskretes Histogramm handelt, wird $T(\mathbf{I})$ gerundet.

4.
$$\mathbf{I'} = T(\mathbf{I}) = \begin{bmatrix} 0 & 2 & 2 & 7 \\ 0 & 5 & 5 & 7 \end{bmatrix}$$

Aufgabe 6 4/4

1.
$$\mathbf{I}' = T_{\gamma=0.5}(\mathbf{I}) = \begin{bmatrix} 0 & 3 & 3 & 6 \\ 0 & 4 & 4 & 6 \end{bmatrix}$$

2.
$$\mathbf{I}' = T_{\gamma=2}(\mathbf{I}) = \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

3. Für $\gamma>1$ werden hohe Intensitätswerte gespreizt und niedrige Intensitätswerte gestaucht. Das Gegenteil gilt für $\gamma<1$. $\sqrt{}$ Das Bild I ist ein unterbelichtetes Bild (Mehrheit der Intensitätswerte ist niedrig), daher ist eine Korrektur mit $\gamma=0.5$ sinnvoller. Bei dieser Korrektur wird mit $\{0,\ldots,6\}$ fast das gesamte Spektrum genutzt. Bei einer Korrektur mit $\gamma=2$ wird das genutze Spektrum dagegen sogar kleiner.

Aufgabe 7//

1.
$$\frac{\mathbf{I}}{h(\mathbf{I})} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 1 & 0 & 0 & 0 & 2 & 2 \end{vmatrix}$$

2.	Ι	0	1	2	3	4	5	6	7	
	$p(\mathbf{I})$	0.125	0.25	0.125	0	0	0	0.25	0.25	/

3.
$$\frac{\mathbf{I} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7}{s(\mathbf{I}) \quad 0.125 \quad 0.375 \quad 0.5 \quad 0.5 \quad 0.5 \quad 0.5 \quad 0.75 \quad 1}$$

4.
$$\mathbf{I'} = T_H(\mathbf{I}) = \begin{bmatrix} 1 & 3 & 3 & 7 \\ 4 & 6 & 6 & 7 \end{bmatrix} /$$