# **PM Distribution System**

Client: Dr. Ben Nephew

Team: Mina Akdogan, Freddy Davaris, Baris Erdemli, George Pesmazoglou, Faris Shamsi

### **Problem Background**

- Ever since the industrial revolution in the 19th century, environmental pollution is becoming increasingly prevalent.
- The most worrisome forms of pollution are the fine particulate matter as these are particles that are small enough to be inhaled and can penetrate deep into the lungs.
- In particular there has been increased attention to investigating the effects of particulate matter on developing autism.



**Particulate Matter Size Comparison** 

### **Problem Statement**

- Our task is to design and construct the setup of an experiment that delivers tunnel Particulate Matter (PM) in aerosol form to a total of 6 cages containing the test animals (rats).
- Our client would like to investigate autism occurrences as a result to PM exposure.
- We must ensure the safety of the test animals as well as the surrounding scientists while maintaining ideal conditions during the 5 hour PM exposure period, 3 times a week.

# **Weighted Matrix of Requirements and Needs**

| Need          | Description                                                | Weight | Size | Flow<br>Rate | Cost | Pressure | Safety | Concent |
|---------------|------------------------------------------------------------|--------|------|--------------|------|----------|--------|---------|
| Accuracy      | It should evenly distribute the PM to 6 different cages    | 2      | 8    | 7            | 3    | 6        | 3      | 9       |
| Repeatability | Experiment must be repeated with similar results           | 4      | 2    | 8            | 2    | 2        | 6      | 8       |
| Accuracy      | Keep the concentration constant                            | 2      | 7    | 7            | 1    | 3        | 7      | 9       |
| Durability    | Setup must last at least 6 months (duration of experiment) | 4      | 5    | 1            | 7    | 4        | 4      | 4       |
| Usability     | Easy to gain access to enclosures                          | 3      | 6    | 1            | 4    | 1        | 5      | 1       |
| Usability     | Easy to assemble/disassemble                               | 1      | 9    | 1            | 6    | 1        | 1      | 1       |
| Safety        | Avoid leakage of pollutants to lab atmosphere              | 4      | 1    | 4            | 2    | 7        | 10     | 5       |
| Safety        | Keep the concentration of PM below a harmful level         | 5      | 1    | 8            | 3    | 8        | 10     | 4       |
|               | Total Sum                                                  |        | 94   | 124          | 85   | 114      | 166    | 128     |

# **Weighted Matrix of Requirements and Needs**

| Need          | Description                                                | Weight | Size | Flow<br>Rate | Cost | Pressure | Safety | Concent |
|---------------|------------------------------------------------------------|--------|------|--------------|------|----------|--------|---------|
| Accuracy      | It should evenly distribute the PM to 6 different cages    | 2      | 8    | 7            | 3    | 6        | 3      | 9       |
| Repeatability | Experiment must be repeated with similar results           | 4      | 2    | 8            | 2    | 2        | 6      | 8       |
| Accuracy      | Keep the concentration constant                            | 2      | 7    | 7            | 1    | 3        | 7      | 9       |
| Durability    | Setup must last at least 6 months (duration of experiment) | 4      | 5    | 1            | 7    | 4        | 4      | 4       |
| Usability     | Easy to gain access to enclosures                          | 3      | 6    | 1            | 4    | 1        | 5      | 1       |
| Usability     | Easy to assemble/disassemble                               | 1      | 9    | 1            | 6    | 1        | 1      | 1       |
| Safety        | Avoid leakage of pollutants to lab atmosphere              | 4      | 1    | 4            | 2    | 7        | 10     | 5       |
| Safety        | Keep the concentration of PM below a harmful level         | 5      | 1    | 8            | 3    | 8        | 10     | 4       |
|               | Total Sum                                                  |        | 94   | 124          | 85   | 114      | 166    | 128     |

### **Concept Selection Approach**



### Overall Idea Generation/ Functional Decomposition



# **Morphological Analysis**

| Sub-Functions                 | Concept 1        | Concept 2                         | Concept 3                 |
|-------------------------------|------------------|-----------------------------------|---------------------------|
| Stir the PM                   | Magnetic Stirrer | Manual                            | Blender                   |
| Transform Solution to Aerosol | Dust feeder      | Nebulizer                         | Rapid Cooling             |
| Exhaust Excess PM             | Hepa Filter      | Pipe from exit hole to atmosphere | Open Ventilation (in lab) |
| Transport PM aerosol to E.C.  | Manifold System  | Common container                  | Attach device to E.C.     |
| Evenly Distribute PM in E.C.  | Flute            | Double Input/Output               | Single Input/Output       |
| Control Humidity              | Dehumidifier     | Mix PM with dry air               | Refrigerator Coil         |

### **Decision Matrices**

**Function: Stir the PM** 

|                    |        |                  |       | Concepts |         |        |       |
|--------------------|--------|------------------|-------|----------|---------|--------|-------|
| Selection Criteria | Weight | Magnetic Stirrer |       | Manu     | Blender |        |       |
|                    |        | Rating           | Score | Rating   | Score   | Rating | Score |
| Safety             | 0.1    | 8                | 0.8   | 4        | 0.4     | 3      | 0.3   |
| Cost               | 0.3    | 8                | 2.4   | 2        | 0.6     | 5      | 1.5   |
| Speed              | 0.2    | 9                | 1.8   | 5        | 1       | 8      | 1.6   |
| Size               | 0.2    | 10               | 2     | 3        | 0.6     | 4      | 0.8   |
| Usability          | 0.1    | 8                | 0.8   | 8        | 0.8     | 6      | 0.6   |
| Durability         | 0.1    | 2                | 0.2   | 7        | 0.7     | 6      | 0.6   |
| Total Score        |        |                  | 8     |          | 4.1     |        | 5.4   |



Magnetic Stirrer Total Score: 8



Total Score: 4.1



Blender Total Score: 5.4

#### **Function: Transform Solution into Aerosol**

| Selection Criteria |        | Concepts    |       |        |       |               |       |  |
|--------------------|--------|-------------|-------|--------|-------|---------------|-------|--|
|                    | Weight | Dust Feeder |       | Nebuli | zer   | Rapid Cooling |       |  |
|                    |        | Rating      | Score | Rating | Score | Rating        | Score |  |
| Safety             | 0.1    | 8           | 0.8   | 9      | 0.9   | 6             | 0.6   |  |
| Cost               | 0.3    | 2           | 0.6   | 10     | 3     | 4             | 1.2   |  |
| Accuracy           | 0.2    | 9           | 1.8   | 7      | 1.4   | 7             | 1.4   |  |
| Size               | 0.1    | 6           | 0.6   | 9      | 0.9   | 2             | 0.2   |  |
| Usability          | 0.1    | 7           | 0.7   | 6      | 0.6   | 3             | 0.3   |  |
| Durability         | 0.2    | 7           | 1.4   | 5      | 1     | 4             | 0.8   |  |
| Total Score        |        |             | 5.9   |        | 7.8   |               | 4.5   |  |



Dust Feeder Total Score: 5.9



Nebulizer Total Score: 7.8



Rapid Cooling Total Score: 4.5

#### **Function: Exhaust Excess PM (from EC)**

| Selection Criteria | Weight | HEPA Filter |       | Pipe from exit hole to atmosphere |       | Open ventilation (in lab) |       |
|--------------------|--------|-------------|-------|-----------------------------------|-------|---------------------------|-------|
|                    |        | Rating      | Score | Rating                            | Score | Rating                    | Score |
| Safety             | 0.5    | 8           | 4     | 7                                 | 3.5   | 3                         | 1.5   |
| Cost               | 0.3    | 6           | 1.8   | 7                                 | 2.1   | 10                        | 3     |
| Size               | 0.05   | 7           | 0.35  | 2                                 | 0.1   | 10                        | 0.5   |
| Usability          | 0.05   | 9           | 0.45  | 3                                 | 0.15  | 8                         | 0.4   |
| Durability         | 0.1    | 6           | 0.6   | 5                                 | 0.5   | 7                         | 0.7   |
| Total Score        |        |             | 7.2   |                                   | 6.35  |                           | 6.1   |



HEPA Filter Total Score: 7.2



Pipe from exit hole to atmosphere Total Score: 6.35



Open ventilation(in lab) Total Score: 6.1

#### **Function: Transport PM to the Exposure Chamber**

|                    |        | Concepts        |       |           |                     |        |       |  |
|--------------------|--------|-----------------|-------|-----------|---------------------|--------|-------|--|
| Selection Criteria | Weight | Manifold system |       | Common co | Attach device to EC |        |       |  |
|                    |        | Rating          | Score | Rating    | Score               | Rating | Score |  |
| Safety             | 0.2    | 8               | 1.6   | 2         | 0.4                 | 5      | 1     |  |
| Cost               | 0.3    | 7               | 2.1   | 9         | 2.7                 | 8      | 2.4   |  |
| Fabrication        | 0.25   | 4               | 1     | 6         | 1.5                 | 3      | 0.75  |  |
| Size               | 0.1    | 5               | 0.5   | 2         | 0.2                 | 8      | 0.8   |  |
| Usability          | 0.05   | 9               | 0.45  | 6         | 0.3                 | 4      | 0.2   |  |
| Durability         | 0.1    | 8               | 0.8   | 8         | 0.8                 | 5      | 0.5   |  |
| Total Score        |        |                 | 6.45  |           | 5.9                 |        | 5.65  |  |







Common Container Total Score: 5.9



Attach device to EC Total Scor: 5.65

#### **Function: Evenly distribute PM in EC**

|                    | Concepts |        |       |               |        |                      |       |
|--------------------|----------|--------|-------|---------------|--------|----------------------|-------|
| Selection Criteria | Weight   | Flute  |       | Single Input/ | Output | Double Input/ Output |       |
|                    |          | Rating | Score | Rating        | Score  | Rating               | Score |
| Safety             | 0.2      | 8      | 1.6   | 7             | 1.4    | 7                    | 1.4   |
| Cost               | 0.3      | 4      | 1.2   | 10            | 3      | 8                    | 2.4   |
| Fabrication        | 0.2      | 2      | 0.4   | 9             | 1.8    | 7                    | 1.4   |
| Size               | 0.05     | 5      | 0.25  | 9             | 0.45   | 6                    | 0.3   |
| Accuracy           | 0.2      | 9      | 1.8   | 6             | 1.2    | 8                    | 1.6   |
| Durability         | 0.05     | 7      | 0.35  | 8             | 0.4    | 8                    | 0.4   |
| Total Score        |          |        | 5.6   |               | 8.25   |                      | 7.5   |







Flute Total Score: 5.6 Single Input/Output Total Score: 8.25

Double Input/Output Total Score: 7.5

#### **Function: Control Humidity**

| Selection Criteria |        | Concepts     |       |                |                   |        |       |  |  |
|--------------------|--------|--------------|-------|----------------|-------------------|--------|-------|--|--|
|                    | Weight | Dehumidifier |       | Mix PM aerosol | Refrigerator Coil |        |       |  |  |
|                    |        | Rating       | Score | Rating         | Score             | Rating | Score |  |  |
| Safety             | 0.1    | 8            | 0.8   | 9              | 0.9               | 6      | 0.6   |  |  |
| Cost               | 0.4    | 3            | 1.2   | 7              | 2.8               | 4      | 1.6   |  |  |
| Fabrication        | 0.2    | 4            | 0.8   | 7              | 1.4               | 4      | 0.8   |  |  |
| Size               | 0.1    | 5            | 0.5   | 9              | 0.9               | 6      | 0.6   |  |  |
| Accuracy           | 0.15   | 6            | 0.9   | 5              | 0.75              | 9      | 1.35  |  |  |
| Durability         | 0.05   | 9            | 0.45  | 8              | 0.4               | 6      | 0.3   |  |  |
| Total Score        |        |              | 4.65  |                | 7.15              |        | 5.25  |  |  |



Demuhidifier Total Score: 4.65



Refrigerator Coil Total Score: 5.25



Mix PM Aerosol with dry air Total Score: 7.15

### Flow Schematic







### **Fabrication Processes**







**3D Printer** 

**CNC (Computer Numeric Control)** 

**Laser Cutter** 

### **Humidity and Temperature Regulation**

- According to "Guidelines for the Housing of Rats in Scientific Institutions":
  - Humidity: >40%
  - o Temperature: 17-30C
- Using a HOBO Temperature/Relative Humidity 3.5% Data Logger we measured:
  - Humidity: 50-55%
  - Temperature is not altered by introducing aerosol and thus temperature should be regulated in the room in which the chambers are located.



### **Exposure Chamber Concentration Testing**

- PM2.5 Yearly
   Concentration in the
   US = 12μg/m³
- Desired
   Concentration level in
   Exposure Chamber =
   24µg/m³
- $1\mu g/m^3 = 1x10e-9 g/L$

### **Testing Method**

- After 1 hour of overhead time the system is in a steady state
- We are going to measure the concentration of PM in the box for different concentrations of PM in the solution, we will plot those points to find their relationship
- Our goal is for the concentration of PM in the box to be at a constant level of twice the PM in the atmosphere, for the duration of 5 hours

### **Analysis**

#### Assumptions:-

- Uniform Flow
- Steady State
- Each Compressor Output = 10LPM (According to Product Specifications)
- Rats intake and fur absorption is negligible

# **Technical Engineering Analysis**

V = 20L/min aerosol = 0.5 mL/min



Volume of Chamber = 560 L



V = 20L/minC = 0.5 mL/min

Target concentration: 24 µg/mL

Volume of aerosol in chamber: 280 mL

Residence time: 560/20 = 28 min

Aerosol: 28 min \* 0.5 mL/min = 14 mL

Mass of PM: 24  $\mu$ g/m3 \* 0.560 = 13.44 g

Concentration of solution: ~ 1µg/mL

### **Special Thanks to....**

- Prof. Kristen Wendell, Tufts University
- Pat Fennessy, Tufts University
- Dr.Ben Nephew, Cummings School of Veterinary Medicine, Tufts University
- Ben & Marya, Tufts University
- Joy Lawrence, Harvard School of Public Health
- Prof. John Durant, Tufts University
- Dr. John Godleski, Harvard School of Public Health

# Questions

