TA 3- Ej1 función logística (5 min)

- utilizando una planilla electrónica:
- generar en 1 columna 10 valores aleatorios para X, con distribución normal
- en la 2da columna, calcular los valores de Y = función logística aplicados a los valores de X
- generar un gráfico para visualizar la función
- entonces es una función continua?
- ¿no era que la regresión logística es para clasificación, particularmente de 2 clases?

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (1)

utilizando una planilla electrónica,

insertar los siguientes datos:

X1	X2	Y
2.781	1 2.5505	0
1.465	5 2.3621	0
3.396	6 4.4003	0
1.388	1 1.8502	0
3.064	1 3.0053	0
7.627	5 2.7593	1
5.332	4 2.0886	1
6.922	6 1.7711	1
8.675	4 -0.2421	1
7.673	8 3.5086	1

- graficar como puntos, con dos series,
 - para Y=0 e Y = 1
- ¿cómo se ven los ejemplos en cuanto a su clasificación?

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (2

vemos que en este caso, los ejemplos están bastante bien separados en las clases

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (3) Universidad Católica del Uruguay

 recordemos que el modelo de regresión logística, para este problema, sería:

salida =
$$B0 + B1 \times X1 + B2 \times X2$$

- el algoritmo de aprendizaje debe encontrar los mejores coeficientes (B0, B1 y B2) en función de los datos de entrenamiento
- la salida se transforma en una probabilidad con la función logística:

$$p(clase = 0) = 1 / (1 + e^{-salida})$$

(en la planilla electrónica se utiliza la función "EXP")

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (4) Universidad Católica del Católica del

- utilizaremos el algoritmo con descenso de gradiente estocástico
 - es más eficiente que el descenso de gradiente común, para conjuntos grandes
 - -ilustrativo del proceso de aprendizaje
- Comenzamos asignando un valor inicial 0.0 a los tres coeficientes B0, B1 y B2
- con estos valores, ¿cuánto da la predicción?
 (simplemente aplicar el modelo)

$$prediction = \frac{1}{1 + e^{-(B0 + B1 \times X1 + B2 \times X2)}}$$

¿cuánto da?

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (5) Universidad Católica del Uruguay

- Calcular los nuevos coeficientes:
- $\mathbf{b} = \mathbf{b} + \mathbf{alpha} \times (\mathbf{y} \mathbf{predicción}) \times \mathbf{predicción} \times (1 \mathbf{predicción}) \times \mathbf{x}$
 - -b es el coeficiente que estamos calculando
 - -alpha es la tasa de aprendizaje (aprox entre 0.1 y 0.3). Usemos 0.3.
- B0 es el término independiente, podemos asumir un valor de entrada fijo = 1.0 para éste
 - ¿cuáles son los nuevos valores de B0, B1 y B2?

$$B0 = -0.0375$$

$$B1 = -0.104290635$$

$$B2 = -0.095645138$$

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (6) Universidad Católica del Uruguay

- Repetir el proceso anterior
- una iteración completa es llamada "época"
 - para cada ejemplo de entrenamiento en la época,
 calcular la predicción, el cuadrado del error y el error de clase
- repetir el proceso una cantidad fija de épocas
- al final de cada época, calcular los valores de error medio cuadrático para el modelo y la exactitud
- graficar los valores de:
 - -exactitud vs. época
 - error medio cuadrático vs época

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (8) Universidad Católica del Uruguay

• ¿cuáles son los valores finales de los coeficientes?

B0 = -0.4066055

B1 = 0.85257332

B2 = -1.1047463

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (9) Universidad Católica del Uruguay

B0 = -0.4066055

B1 = 0.85257332

B2 = -1.1047463

 aplicar predicción ahora sobre los ejemplos que tenemos, utilizando el modelo, calcular el % de exactitud

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (10) Universidad Católica del Uruguay

• ¿cuánto es?

Predicción				
X1	X2	Predicción	Concreto	Y
2.7810836	2.550537	0.29875699	0	0
1.46548937	2.36212508	0.14595106	0	0
3.39656169	4.40029353	0.08533327	0	0
1.38807019	1.85022032	0.21973731	0	0
3.06407232	3.00530597	0.247059	0	0
7.62753121	2.75926224	0.95470213	1	1
5.33244125	2.08862678	0.86203419	1	1
6.92259672	1.77106367	0.97177291	1	1
8.67541865	-0.2420687	0.99929545	1	1
7.67375647	3.50856301	0.90548932	1	1

Exactitud = 100%

TA 3- Ej2 Regresión logística con descenso de gradiente estocástico (11)

Cambiar el conjunto de datos a:

X1	X2	Y
6.5000	1.8976	0
7.4659	3.5000	0
5.7000	1.5347	0
6.1000	2.5500	0
6.3300	3.7700	О
2.8310	2.0086	1
3.1000	1.4182	1
2.8502	1.0488	1
3.5545	3.6439	1
3.5500	1.6343	1

- Repetir todo el proceso, hallar la exactitud
- ¿cuánto da? ¿por qué? (discusión en equipos!)