Векторная алгебра

п. 1. Понятие линейного пространства

Определение 1. Множество V называется **линейным пространством**, а его элементы — **векторами**, если по некоторому правилу:

- а) любым двум элементам $x, y \in V$ поставлен в соответствие элемент $x + y \in V$, называемый *суммой* элементов x и y;
- б) любому элементу $x \in V$ и произвольному числу $\lambda \in \mathbf{R}$ поставлен в соответствие элемент $\lambda \cdot x \in V$, называемый *произведением* числа λ на элемент x, причем справедливы следующие аксиомы $(\forall x, y, z \in V, \lambda, \mu \in \mathbf{R})$:
 - 1) $\bar{x} + \bar{y} = \bar{y} + \bar{x}$ (коммутативность сложения);
 - 2) (x + y) + z = x + (y + z) (ассоциативность сложения);
 - 3) существует *нулевой* элемент $\bar{0}$ такой, что $\bar{x} + \bar{0} = \bar{x}$;
- 4) для каждого элемента \bar{x} существует *противоположный* элемент $-\bar{x}$ такой, что $\bar{x} + (-\bar{x}) = \bar{0}$;
 - 5) $\lambda(x + y) = \lambda x + \lambda y$;
 - 6) $(\lambda + \mu)\overline{x} = \lambda \overline{x} + \mu \overline{x}$;
 - 7) $\lambda(\mu x) = (\lambda \mu)x$;
 - 8) $1 \cdot \bar{x} = \bar{x}$.

Линейные пространства часто называют векторными пространствами.

Примерами линейных пространств являются:

- 1) множество решений системы однородных линейных уравнений;
- 2) множество функций, определенных на отрезке [a;b] с обычными операциями сложения функций и умножения функции на число;
- 3) множество всех многочленов с обычными операциями сложения многочленов и умножения многочлена на число;
 - 4) арифметическое n-мерное векторное пространство (см. п.3.4.).

Свойства операций в линейных пространствах ($\forall x \in V, \lambda \in R$):

1°. В линейном пространстве существует единственный нулевой элемент $\bar{0}$;

$$2^{\circ}$$
. $0 \cdot \bar{x} = \bar{0}$;

$$3^{\circ}. - \overline{x} = (-1) \cdot \overline{x};$$

$$4^{\circ}$$
. $\lambda \cdot \overline{0} = \overline{0}$;

$$5^{\circ}$$
. $(-\lambda) \overline{x} = -(\lambda \overline{x})$.

п. 2. Арифметическое п-мерное векторное пространство

Определение 2. **Арифметическим п-мерным вектором** называется упорядоченная совокупность n действительных чисел $x_1, x_2, ..., x_n$, записываемая в виде $x = (x_1, x_2, ..., x_n)$ Числа $x_1, x_2, ..., x_n$, образующие вектор, называются *компонентами* вектора.

В дальнейшем слово «арифметический» в названии вектора будем опускать.

При n=2 или n=3 совокупность чисел можно интерпретировать как совокупность координат вектора на плоскости или в пространстве.

Определение 3. Два n-мерных вектора $\overline{x} = (x_1, x_2, ..., x_n)$ и $\overline{y} = (y_1, y_2, ..., y_n)$ называются **равными**, если равны соответствующие их компоненты: $x_i = y_i$ ($i = \overline{1, n}$). Равенство векторов обозначается обычным образом: $\overline{x} = \overline{y}$.

Вектор $\bar{0} = (0,0,...,0)$ называется **нулевым**.

Вектор $-\bar{x} = (-x_1, -x_2, ..., -x_n)$ называется **противоположным** вектору $\bar{x} = (x_1, x_2, ..., x_n)$.

Пусть
$$\bar{x} = (x_1, x_2, ..., x_n), \bar{y} = (y_1, y_2, ..., y_n), \lambda \in \mathbf{R}.$$

Операции над п-мерными векторами:

- 1) Суммой векторов \bar{x} и \bar{y} называется вектор $\bar{x} + \bar{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$.
- 2) Произведением вектора \bar{x} на число (скаляр) λ называется вектор $\lambda \bar{x} = (\lambda x_1, \lambda x_2, ..., \lambda x_n).$

Нетрудно проверить, что введенные таким образом операции удовлетворяют аксиомам векторного пространства.

Множество всех n-мерных арифметических векторов, в котором введены указанные выше операции сложения и умножения вектора на число, называется apuфметическим n-мерным векторным пространством и обозначается R^n .

п. 3. Линейная зависимость векторов

Произвольный набор векторов $a_1, a_2, ..., a_m \in \mathbb{R}^n$ называется *системой векторов*. Отличие системы векторов от множества векторов в том, что все векторы пронумерованы и среди них могут быть совпадающие.

Пусть даны векторы \overline{a}_1 , \overline{a}_2 , ..., $\overline{a}_m \in \mathbf{R}^n$. Любой набор вида $\overline{a} = \lambda_1 \overline{a}_1 + \lambda_2 \overline{a}_2 + ... + \lambda_m \overline{a}_m$, где λ_1 , λ_2 , ..., λ_m – произвольные числа, называется линейной комбинацией векторов \overline{a}_1 , \overline{a}_2 , ..., \overline{a}_m .

При наличии равенства $\overline{a} = \lambda_1 \overline{a}_1 + \lambda_2 \overline{a}_2 + ... + \lambda_m \overline{a}_m$ говорят, что вектор \overline{a} линейно выражается через векторы \overline{a}_1 , \overline{a}_2 ,..., \overline{a}_m , или что вектор \overline{a} разлагается по векторам \overline{a}_1 , \overline{a}_2 ,..., \overline{a}_m .

Определение 4. Система векторов $a_1, a_2, ..., a_m$ называется линейно зависимой, если существуют такие числа $\lambda_1, \lambda_2, ..., \lambda_m$, не равные одновременно нулю, что справедливо равенство: $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_m a_m = \bar{0}$.

Если же система векторов \bar{a}_1 , \bar{a}_2 , ..., \bar{a}_m такова, что равенство $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + ... + \lambda_m \bar{a}_m = \bar{0}$ возможно, только если $\lambda_1 = \lambda_2 = ... = \lambda_m = 0$, то эта система называется линейно независимой.

Пример 1.

Примером линейно зависимой системы, состоящей из двух векторов в \mathbb{R}^3 , является система, состоящая из двух коллинеарных векторов; из трех векторов — система, состоящая из трех компланарных векторов.

Пример 2.

Является ли система векторов $\overline{a_1}=(1,-1,2,2), \ \overline{a_2}=(-1,-2,3,0), \ \overline{a_3}=(2,1,-1,2),$ $\overline{a_4}=(1,0,-2,-1)$ линейно зависимой? Если да, найти все значения коэффициентов λ_1 , λ_2 , λ_3 , λ_4 , при которых система векторов $\overline{a_1}$, $\overline{a_2}$, $\overline{a_3}$, $\overline{a_4}$ является линейно зависимой.

Решение. Составим векторное равенство $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \lambda_3 \bar{a}_3 + \lambda_4 \bar{a}_4 = \bar{0}$. Запишем его в векторном виде, представив векторы в виде матриц-столбцов своих координат:

$$\lambda_{1} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 2 \end{pmatrix} + \lambda_{2} \begin{pmatrix} -1 \\ -2 \\ 3 \\ 0 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 2 \\ 1 \\ -1 \\ 2 \end{pmatrix} + \lambda_{4} \begin{pmatrix} 1 \\ 0 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

откуда, умножая матрицы на соответствующие числа и складывая полученные матрицы, получаем:

$$\begin{pmatrix} \lambda_1 - \lambda_2 + 2\lambda_3 + \lambda_4 \\ -\lambda_1 - 2\lambda_2 + \lambda_3 \\ 2\lambda_1 + 3\lambda_2 - \lambda_3 - 2\lambda_4 \\ 2\lambda_1 + 2\lambda_3 - \lambda_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Таким образом, векторное равенство $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \lambda_3 \bar{a}_3 + \lambda_4 \bar{a}_4 = \bar{0}$ свелось к решению следующей системы линейных однородных уравнений:

$$\begin{cases} \lambda_1 - \lambda_2 + 2\lambda_3 + \lambda_4 = 0 \\ -\lambda_1 - 2\lambda_2 + \lambda_3 = 0 \\ 2\lambda_1 + 3\lambda_2 - \lambda_3 - 2\lambda_4 = 0 \\ 2\lambda_1 + 2\lambda_3 - \lambda_4 = 0 \end{cases}$$

Решим СЛУ методом Гаусса:

$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ -1 & -2 & 1 & 0 \\ 2 & 3 & -1 & -2 \\ 2 & 0 & 2 & -1 \end{pmatrix} + I \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & -3 & 3 & 1 \\ 0 & 5 & -5 & -4 \\ 0 & 2 & -2 & -3 \end{pmatrix} + 2IV \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 1 & -1 & 2 \\ 0 & 2 & -2 & -3 \end{pmatrix} - III \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot 7 \sim \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 0 &$$

Так как rang(A) = rang(A|B) = 3 < n = 4, то СЛУ совместная и неопределенная, следовательно, имеет ненулевое решение. Таким образом, система векторов линейно зависима. Из последней матрицы найдем коэффициенты λ_1 , λ_2 , λ_3 , λ_4 , при которых система векторов $\overline{a_1}$, $\overline{a_2}$, $\overline{a_3}$, $\overline{a_4}$ является линейно зависимой:

$$\begin{cases} \lambda_1 - \lambda_2 + 2\lambda_3 + \lambda_4 = 0 \\ \lambda_2 - \lambda_3 - 5\lambda_4 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_1 = -\lambda_3 \\ \lambda_2 = \lambda_3 \end{cases}, \text{ где } \lambda_3 \in \mathbf{R}. \\ \lambda_4 = 0 \end{cases}$$

Свойства линейно зависимых (независимых) систем векторов:

- 1° . Система, состоящая из одного вектора \overline{a} , линейно зависима тогда и только тогда, когда $\overline{a}=\overline{0}$.
- 2°. Система, содержащая более одного вектора, линейно зависима тогда и только тогда, когда среди векторов системы имеется такой, который линейно выражается через остальные векторы.

- 3°. Если часть системы векторов линейно зависима, то и вся система линейно зависима.
- 4° . Если система векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_m$ линейно независима, но при добавлении к ней еще одного вектора \overline{a} она становится линейно зависимой, то добавленный вектор \overline{a} линейно выражается через $\overline{a}_1, \overline{a}_2, ..., \overline{a}_m$.

Лестничной системой векторов называется система вида:

$$\overline{a_1} = (a_{11}, a_{12}, ..., a_{1r}, ..., a_{1n}),$$

$$\overline{a_2} = (0, a_{22}, ..., a_{2r}, ..., a_{2n}),$$

$$\overline{a_r} = (0, 0, ..., a_{rr}, ..., a_{rn}).$$

5°. Лестничная система векторов линейно независима.

Из свойства 5° вытекает тот факт, что в пространстве \mathbf{R}^n существует линейно независимая система, содержащая ровно n векторов. Примером такой системы может служить система вида: $\overline{e_1} = (1,0,...,0), \ \overline{e_2} = (0,1,...,0), \ ..., \ \overline{e_n} = (0,0,...,1)$. Указанная система обладает важным свойством: любой вектор $\overline{a_n} \in \mathbf{R}^n$ может быть разложен по этой системе: $\overline{a_n} = a_1\overline{e_1} + a_2\overline{e_2} + ... + a_n\overline{e_n}$, где $\overline{a_n} = (a_1,a_2,...,a_n)$.

Tеорема. B пространстве \mathbf{R}^n любая система, состоящая более чем из n векторов, линейно зависима.

п. 4. Базис векторного пространства

Пусть S' — какая-либо часть системы S.

Определение 5. S называется *базисом* системы S, если S — максимальная линейно независимая подсистема S. Другими словами, подсистема S есть базис системы S, если:

- 1) она линейно независима;
- 2) добавление к S' любого другого вектора из системы S превращает эту подсистему в линейно зависимую.

Любой вектор системы *S* линейно выражается через базис.

Из линейной независимости векторов, входящих в базис, следует, что базис любой системы векторов пространства всегда содержит не более чем n векторов.

Теорема (о базисах). Два различных базиса одной и той же системы векторов содержат одинаковое число векторов.

Рангом системы векторов называется число векторов в любом базисе системы.

Пример 3. Дана система из четырех векторов в \mathbf{R}^5 : $\overline{a_1} = (-1,3,3,2,5)$, $\overline{a_2} = (-3,6,2,3,4)$, $\overline{a_3} = (-3,1,-5,0,7)$, $\overline{a_4} = (-5,7,1,4,1)$. Найти ранг и базис этой системы.

Решение. Запишем векторное равенство: $\lambda_1^- a_1 + \lambda_2^- a_2 + \lambda_3^- a_3 + \lambda_4^- a_4 = \bar{0}$. Приравнивая координаты векторов слева и справа, получим следующую однородную систему:

$$\begin{cases} -\lambda_{1} - 3\lambda_{2} - 3\lambda_{3} - 5\lambda_{4} = 0 \\ 3\lambda_{1} + 5\lambda_{2} + \lambda_{3} + 7\lambda_{4} = 0 \\ 3\lambda_{1} + 2\lambda_{2} - 5\lambda_{3} + \lambda_{4} = 0 \\ 2\lambda_{1} + 3\lambda_{2} + 4\lambda_{4} = 0 \\ 5\lambda_{1} + 4\lambda_{2} - 7\lambda_{3} + \lambda_{4} = 0 \end{cases}.$$

Решим последнюю систему методом Гаусса:

$$\begin{pmatrix}
-1 & -3 & -3 & -5 \\
3 & 5 & 1 & 7 \\
3 & 2 & -5 & 1 \\
2 & 3 & 0 & 4 \\
5 & 4 & -7 & 1
\end{pmatrix}
+3I \sim
\begin{pmatrix}
-1 & -3 & -3 & -5 \\
0 & -4 & -8 & -8 \\
0 & -7 & -14 & -14 \\
0 & -3 & -6 & -6 \\
0 & -11 & -22 & -24
\end{pmatrix}
\cdot (-1)$$

$$\begin{pmatrix}
1 & 3 & 3 & 5 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 2 \\
0 & 11 & 22 & 24
\end{pmatrix}
-II \sim
\begin{pmatrix}
1 & 3 & 3 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 3 & 3 & 5 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 3 & 3 & 5 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 3 & 3 & 5 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 3 & 3 & 5 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 2
\end{pmatrix}$$

Так как rang(A) = rang(A|B) = 3 < n = 4, то система неопределенная, т.е. имеет бесконечное число решений.

Таким образом, исходная система линейных уравнений свелась к следующей:

$$\begin{cases} \lambda_1 + 3\lambda_2 + 3\lambda_3 + 5\lambda_4 = 0 \\ \lambda_2 + 2\lambda_3 + 2\lambda_4 = 0 \\ 2\lambda_4 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_1 = 3\lambda_3 \\ \lambda_2 = -2\lambda_3 \text{ , где } \lambda_3 \in \mathbf{R}. \\ \lambda_4 = 0 \end{cases}$$

Наличие свободной переменной указывает на линейную зависимость системы.

Исследуем теперь линейную зависимость векторов $\overline{a_1}$, $\overline{a_2}$, $\overline{a_4}$, соответствующих базисным переменным λ_1 , λ_2 , λ_4 . Для этого рассмотрим уравнение $\lambda_1 \overline{a_1} + \lambda_2 \overline{a_2} + \lambda_4 \overline{a_4} = \overline{0}$ Так как это уравнение получается из исходного уравнения $\lambda_1 \overline{a_1} + \lambda_2 \overline{a_2} + \lambda_3 \overline{a_3} + \lambda_4 \overline{a_4} = \overline{0}$ в предположении $\lambda_3 = 0$, то и общее решение уравнения $\lambda_1 \overline{a_1} + \lambda_2 \overline{a_2} + \lambda_4 \overline{a_4} = \overline{0}$ может быть получено из общего решения уравнения $\lambda_1 \overline{a_1} + \lambda_2 \overline{a_2} + \lambda_3 \overline{a_3} + \lambda_4 \overline{a_4} = \overline{0}$, задаваемого

соотношениями
$$\begin{cases} \lambda_1 = 3\lambda_3 \\ \lambda_2 = -2\lambda_3 \text{ , если положить } \lambda_3 = 0. \text{ Получим: } \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \text{ , следовательно,} \\ \lambda_4 = 0 \end{cases}$$

векторы $\overline{a_1}$, $\overline{a_2}$, $\overline{a_4}$ линейно независимы. Значит, ранг этой системы равен трем, т.к. в этой системе существуют три линейно независимых вектора, а сама система (состоящая из четырех векторов) линейно зависима.

Кроме того, из равенства
$$\lambda_1 \ddot{a}_1 + \lambda_2 \ddot{a}_2 + \lambda_4 \ddot{a}_4 = \ddot{0}$$
 и системы
$$\begin{cases} \lambda_1 = 3\lambda_3 \\ \lambda_2 = -2\lambda_3 \end{cases}$$
 следует, что $\lambda_4 = 0$

вектор $\overline{a_3}$ представляет собой линейную комбинацию векторов $\overline{a_1}$, $\overline{a_2}$, $\overline{a_4}$: $\overline{a_3}$ =-3 $\overline{a_1}$ +2 $\overline{a_2}$ +0 $\overline{a_4}$. Таким образом, векторы $\overline{a_1}$, $\overline{a_2}$, $\overline{a_4}$ образуют базис данной системы.

Частным случаем системы n-мерных векторов служит множество всех n-мерных векторов, т.е. все пространство \mathbb{R}^n . Как уже было отмечено , в этом пространстве существует система из n линейно независимых векторов, по которым можно разложить любой вектор пространства. Следовательно, эта система и есть базис пространства \mathbb{R}^n . Любой другой базис должен состоять из n векторов. Таким образом, любой базис пространства \mathbb{R}^n есть система из n линейно независимых векторов. Верно и обратное: любая система из n линейно независимых векторов будет базисом пространства \mathbb{R}^n .

Пример 4. Система векторов $\overline{a_1} = (7,1,3,-2), \quad \overline{a_2} = (0,-1,2,0), \quad \overline{a_3} = (0,0,-2,6),$ $\overline{a_4} = (0,0,0,1)$ образует базис \mathbf{R}^4 , поскольку это лестничная система и количество векторов равно 4.

Пример 5. Базисом пространства \mathbf{R}^n может являться система из n единичных векторов $\overline{e_1} = (1,0,...,0), \ \overline{e_2} = (0,1,...,0), \ ..., \ \overline{e_n} = (0,0,...,1),$ называемая элементарным (простейшим) базисом.

Размерностью линейного пространства V называется число векторов его базиса, обозначается dimV.

Tеорема. Каждый вектор x линейного пространства можно представить, и притом единственным образом, в виде линейной комбинации векторов базиса

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n \tag{1}$$

Доказательство.

Пусть векторы $e_1, e_2, ..., e_n$ образуют произвольный базис n-мерного пространства R. Так как любые из (n+1) векторов n-мерного пространства R зависимы, то будут зависимы, в частности, векторы $e_1, e_2, ..., e_n$ и рассматриваемый вектор x. Тогда существуют такие не равные одновременно нулю числа $\lambda_1, \lambda_2, ..., \lambda_n, \lambda$, что

$$\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \ldots + \lambda_n \mathbf{e}_n + \lambda x = \mathbf{0}.$$

При этом $\lambda \neq 0$, ибо в противном случае, если $\lambda = 0$ и хотя бы одно из чисел $\lambda_1, \lambda_2, ..., \lambda_n$ было бы отлично от нуля, то векторы $e_1, e_2, ..., e_n$ были бы линейно зависимы. Следовательно,

$$x = -\frac{\lambda_1}{\lambda}e_1 - \frac{\lambda_2}{\lambda}e_2 - \dots - \frac{\lambda_n}{\lambda}e_n$$
 или

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n,$$

где
$$\mathbf{x}_i = -\frac{\lambda_i}{\lambda} (i = 1, 2, ..., n).$$

Равенство (1) называется разложением вектора \overline{a} по базису $\overline{a_1}$, $\overline{a_2}$, ..., $\overline{a_n}$, числа x_1, x_2, \ldots, x_n называются координатами вектора \overline{a} в этом базисе и обозначаются $\overline{a} = (x_1, x_2, \ldots, x_n)$.

п. 5. Переход к новому базису

Пусть $E = (\overline{e_1}, \overline{e_2}, ..., \overline{e_n})$ и $E' = (\overline{e_1'}, \overline{e_2'}, ..., \overline{e_n'})$ - векторы линейного n-мерного пространства V. Выразим векторы базиса E' через векторы базиса E:

$$\begin{cases} \overline{e_{1}'} = a_{11}\overline{e_{1}} + a_{21}\overline{e_{2}} + \dots + a_{n1}\overline{e_{n}} \\ \overline{e_{2}'} = a_{12}\overline{e_{1}} + a_{22}\overline{e_{2}} + \dots + a_{n2}\overline{e_{n}} \\ \\ \overline{e_{n}'} = a_{1n}\overline{e_{1}} + a_{2n}\overline{e_{2}} + \dots + a_{nn}\overline{e_{n}} \end{cases}$$

Представим последнюю систему в матричном виде

$$(\overline{e_1'}, \overline{e_2'}, \dots, \overline{e_n'}) = (\overline{e_1}, \overline{e_2}, \dots, \overline{e_n}) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix},$$

сокращенно:
$$E'=ET$$
, где $T=\begin{pmatrix} a_{11}&a_{12}&\dots&a_{1n}\\a_{21}&a_{22}&\dots&a_{2n}\\\dots&\dots&\dots&\dots\\a_{n1}&a_{n2}&\dots&a_{nn} \end{pmatrix}$ - матрица, называемая матрицей

nepexoda от базиса E к базису E'. Как видим матрица перехода от «старого» E базиса к «новому» E' состоит из координат векторов «нового» базиса в «старом», записанных в столбцы.

Свойства матрицы перехода:

- 1°. Матрица перехода невырождена.
- 2° . Матрица перехода от базиса E' к базису E имеет вид T^{-1} .

Пусть вектор \bar{x} в старом базисе E имеет координаты $\bar{x} = (x_1, x_2, ..., x_n)$, в новом базисе E' координаты $\bar{x} = (x_1', x_2', ..., x_n')$. Зависимость между координатами вектора в

разных базисах имеет вид:
$$X = TX'$$
, где $X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$, $X' = \begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$. Координаты вектора в

новом базисе выражаются через координаты вектора в старом базисе следующим образом: $X' = T^{-1}X$.

Пример 6. Векторы $\overline{x} = (1,3,-2), \ \overline{e_1'} = (1,1,0), \ \overline{e_2'} = (1,0,1), \ \overline{e_3'} = (0,1,1)$ заданы своими координатами в старом базисе $E = (\overline{e_1},\overline{e_2},\overline{e_3})$. Выразить координаты вектора \overline{x} в новом базисе $E' = (\overline{e_1'},\overline{e_2'},\overline{e_3'})$

Решение. Матрица перехода от старого базиса к новому базису имеет вид:

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
. Найдем матрицу, обратную матрице перехода: $T^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$.

Тогда искомые координаты вектора \bar{x} в новом базисе $E' = (\overline{e_1'}, \overline{e_2'}, \overline{e_3'})$ вычисляются

следующим образом:
$$X' = \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = T^{-1}X = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix}.$$

п. 6. Евклидовы пространства

Определение 6. Линейное пространство V называется **евклидовым** пространством, если каждой паре векторов $x, y \in V$ поставлено в соответствие действительное число, обозначаемое xy (или (x,y)), причем выполнены следующие условия (аксиомы)

 $(\forall x, y, z \in V, \forall \lambda \in \mathbf{R})$:

1)
$$\bar{x}\bar{y} = \bar{y}\bar{x}$$
;

2)
$$(\bar{x} + \bar{y})\bar{z} = \bar{x}\bar{z} + \bar{y}\bar{z}$$
;

3)
$$(\lambda \overline{x})\overline{y} = \lambda(\overline{x}\overline{y});$$

4)
$$\bar{x}^2 = \bar{x} \, \bar{x} \ge 0$$
, причем $\bar{x} \, \bar{x} = 0 \Leftrightarrow \bar{x} = 0$.

Число \overline{xy} называется *скалярным произведением* векторов \overline{x} и \overline{y} . Число $\overline{x}^2 = \overline{xx}$ называется *скалярным квадратом* вектора.

Если векторы \overline{x} , \overline{y} задаются своими координатами: $\overline{x} = (x_1, x_2, ..., x_n)$, $\overline{y} = (y_1, y_2, ..., y_n)$, то скалярное произведение этих векторов определяется формулой: $\overline{xy} = x_1y_1 + x_2y_2 + ... + x_ny_n$.

Два ненулевых вектора \bar{x} и \bar{y} называются *ортогональными*, если их скалярное произведение равно нулю. Для пространств \mathbf{R}^2 и \mathbf{R}^3 ортогональность векторов означает их взаимную перпендикулярность.

Длиной вектора \overline{x} называется число $|\overline{x}| = \sqrt{\overline{x}^2}$.

Вектор, длина которого равна единице, называется нормированным.

Если вектор $\overline{x}=(x_1,x_2,...,x_n),$ то длина вектора определяется по формуле $|\overline{x}|=\sqrt{x_1^2+x_2^2+...+x_n^2}$.

Свойства длины вектора:

1°.
$$\bar{x} = \bar{0} \Leftrightarrow |\bar{x}| = 0$$
.

$$2^{\circ}$$
. $|\lambda \overline{x}| = |\lambda| \overline{x}| \ (\forall \lambda \in \mathbf{R})$.

3°. $|\overline{x}| |\overline{y}| \le |\overline{x}| |\overline{y}|$ (неравенство Коши-Буняковского).

4°.
$$|x + y| \le |x| + |y|$$
 (неравенство треугольника).

Углом между ненулевыми векторами \bar{x} и \bar{y} евклидова пространства называется число φ , определяемое из равенства $\cos \varphi = \frac{xy}{|\overline{x}||\overline{y}|}$; считается, что $\varphi \in [0;\pi]$.

Если в пространстве \mathbf{R}^3 базисные векторы \bar{e}_1 , \bar{e}_2 , \bar{e}_3 взаимно перпендикулярны и $|\bar{e}_1|$ $|\neq|\bar{e}_2|\neq|\bar{e}_3|$, то такая система векторов называется прямоугольной системой базисных векторов в пространстве. Если базисные векторы \bar{e}_1 , \bar{e}_2 , \bar{e}_3 взаимно перпендикулярны и $|\bar{e}_1|$ = $|\bar{e}_2|$ = $|\bar{e}_3|$ =1, то такая система векторов называется ∂ екартовой системой базисных векторов в пространстве. Векторы $\bar{e}_1(1;0;0)$, $\bar{e}_2(0;1;0)$, $\bar{e}_3(0;0;1)$ обозначаются соответственно символами \bar{i} , \bar{j} , \bar{k} .

Векторы $e_1, e_2, ..., e_n$ *п*-мерного евклидова пространства образуют ортогональный базис, если эти векторы попарно ортогональны, и ортонормированный базис, если эти векторы попарно ортогональны и норма каждого из них равна единице, т.е. если $(e_i, e_j) = 0$ при $i \neq j$ и $|e_i| = 1$ при i = 1, 2, ..., n.

Теорема. Во всяком п-мерном евклидовом пространстве существует ортонормированный базис.

Примером ортонормированного базиса является система n единичных векторов e_i , у которых i-я компонента равна единице, а остальные компоненты равны нулю: $e_1 = (1, 0, 1)$ $e_2 = (0, 1, ..., 0)', \qquad e_n = (0, 0, ..., 1)'.$

Построение ортогонального базиса

Рассмотрим пространство R^n с базисом $a_1, a_2, ..., a_n$. Покажем, произвольного базиса можно получить ортогональный. Данный процесс называют ортогонализацией по Шмидту.

Пусть $e_1, e_2, ..., e_n$ искомый ортогональный базис.

- 1) Выбираем $e_1 = a_1$ (можно взять любой другой вектор исходного базиса.
- 2) Будем искать e_2 по правилу $e_2=a_2-\alpha\cdot e_1$, где α произвольное действительное число. Найдем формулу для α , используя ортогональность векторов e_1 и e_2 . Их скалярное произведение должно быть равно нулю, т.е. $(e_1, e_2) = 0$.

$$(e_1, e_2) = (e_1, a_2 - \alpha \cdot e_1) = (e_1, a_2) - \alpha(e_1, e_1)$$

Получаем уравнение $(e_1,a_2)-\alpha(e_1,e_1)=0$. Находим α . $\alpha=\frac{(e_1,a_2)}{(e_1,e_1)}=\frac{(e_1,a_2)}{|e_1|^2}.$

$$\alpha = \frac{(e_1, a_2)}{(e_1, e_1)} = \frac{(e_1, a_2)}{|e_1|^2}.$$

Тогда $e_2 = a_2 - \frac{(e_1, a_2)}{|e_1|^2} \cdot e_1.$

3) Аналогично получаем формулу для $e_3 = a_3 - \frac{(e_1, a_3)}{|e_1|^2} \cdot e_1 - \frac{(e_2, a_3)}{|e_2|^2} \cdot e_2$

4) Окончательно получим формулу:

$$e_n = a_n - \frac{(e_1, a_n)}{|e_1|^2} \cdot e_1 - \frac{(e_2, a_n)}{|e_2|^2} \cdot e_2 - \dots - \frac{(e_{n-1}, a_n)}{|e_{n-1}|^2} \cdot e_{n-1}.$$

Полученную ортогональную систему векторов можно сделать ортонормированной, поделив каждый вектор на его длину.

Пример. Дана система векторов $a_1 = (1; 2; 2; -1), a_2 = (1; 1; -5; 3), a_3 = (3; 2; 8; -7).$ Применяя процесс ортогонализации по Шмидту, построить ортогональный базис.

Решение.

1) Пусть $e_1 = a_1 = (1; 2; 2; -1)$.

2) Найдем
$$\alpha = \frac{(e_1, a_2)}{(e_1, e_1)} = \frac{1 \cdot 1 + 2 \cdot 1 + 2 \cdot (-5) + (-1) \cdot 3}{1^2 + 2^2 + 2^2 + (-1)^2} = \frac{-10}{10} = -1.$$

Находим $e_2 = a_2 - \frac{(e_1, a_2)}{|e_1|^2} \cdot e_1$. Удобно выполнять действия в матричной форме.

$$e_{2} = \begin{pmatrix} 1 \\ 1 \\ -5 \\ 3 \end{pmatrix} - (-1) \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -3 \\ 2 \end{pmatrix}.$$

Таким образом, $e_2 = (2; 3; -3; 2)$.

3) Находим
$$\frac{(e_1,a_3)}{|e_1|^2} = \frac{1\cdot 3 + 2\cdot 2 + 2\cdot 8 + (-1)\cdot (-7)}{1^2 + 2^2 + 2^2 + (-1)^2} = \frac{30}{10} = 3$$
 и $\frac{(e_2,a_3)}{|e_2|^2} = \frac{2\cdot 3 + 3\cdot 2 + (-3)\cdot 8 + 2\cdot (-7)}{2^2 + 3^2 + (-3)^2 + 2^2} = \frac{-26}{26} = -1$. Находим $e_3 = a_3 - \frac{(e_1,a_3)}{|e_1|^2} \cdot e_1 - \frac{(e_2,a_3)}{|e_2|^2} \cdot e_2$.

$$e_{3} = \begin{pmatrix} 3 \\ 2 \\ 8 \\ -7 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix} - (-1) \cdot \begin{pmatrix} 2 \\ 3 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 8 \\ -7 \end{pmatrix} + \begin{pmatrix} -3 \\ -6 \\ -6 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -1 \\ -2 \end{pmatrix}$$

Таким образом, $e_3 = (2; -1; -1; -2)$.

Окончательно ортогональный базис состоит из векторов : $e_1 = (1; 2; 2; -1)$, $e_2 = (2; 3; -3; 2)$ и , $e_3 = (2; -1; -1; -2)$.

Проверим ортогональность векторов: $e_1 \cdot e_2 = 2 + 6 - 6 - 2 = 0$, $e_1 \cdot e_3 = 2 - 2 - 2 + 2 = 0$, $e_2 \cdot e_3 = 4 - 3 + 3 - 4 = 0$. Следовательно векторы e_1 , e_2 , e_3 попарно ортогональны. Можно нормировать эти векторы поделив каждый на его длину. $|e_1| = \sqrt{10}$, $|e_2| = \sqrt{26}$, $|e_3| = \sqrt{10}$,

Тогда получим ортонормированный базис: $e_1' = \left(\frac{1}{\sqrt{10}}; \frac{2}{\sqrt{10}}; \frac{2}{\sqrt{10}}; -\frac{1}{\sqrt{10}}\right)$,

$$e_2' = \left(\frac{2}{\sqrt{26}}; \frac{3}{\sqrt{26}}; -\frac{3}{\sqrt{26}}; \frac{2}{\sqrt{26}}\right)$$
 и $e_3' = \left(\frac{2}{\sqrt{10}}; -\frac{1}{\sqrt{10}}; -\frac{1}{\sqrt{10}}; -\frac{2}{\sqrt{10}}\right)$.