Analyse des écarts entre nombres premiers

ZAMANILEHA Elorgin Fernando

Mai 2025

Nous analysons les écarts $g_k = p_{k+1} - p_k$ entre nombres premiers jusqu'à 10^7 et 10^8 , et les ratios $g_k/\log(p_k)$, pour vérifier que $g_k/\log(p_k) \approx 1$ $(k \to \infty)$.

1 Résultats

Pour $n = 10^7$, l'histogramme des ratios (Figure 1) donne une espérance empirique d'environ 1.05. Pour $n = 10^8$, elle est d'environ 1.02 (Figure 2), montrant une convergence vers 1.

Figure 1: Ratios pour $n = 10^7$.

Figure 2: Ratios pour $n = 10^8$.

2 Conjecture

L'histogramme des ratios pour $n=10^8$ (Figure 3) suit une loi exponentielle de paramètre $\lambda=1$. Nous conjecturons que les ratios $g_k/\log(p_k)$ convergent vers une telle distribution.

Figure 3: Comparaison avec une loi exponentielle.

3 Conclusion

Les ratios $g_k/\log(p_k)$ tendent vers 1, avec une distribution exponentielle conjecturée, confirmée numériquement.