TPS79301-EP, TPS79318-EP, TPS79325-EP, TPS79328-EP TPS793285-EP, TPS79330-EP, TPS79333-EP, TPS793475-EP

SGLS163B-APRIL 2003-REVISED NOVEMBER 2006

ULTRALOW-NOISE, HIGH-PSRR, FAST RF 200-mA LOW-DROPOUT LINEAR REGULATORS

FEATURES

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- 200-mA Low-Dropout Regulator With EN
- Available in 1.8 V, 2.5 V, 2.8 V, 2.85 V, 3 V, 3.3 V, 4.75 V, and Adjustable
- High PSRR (70 dB at 10 kHz)
- Ultralow Noise (32 μV)
- Fast Start-Up Time (50 μs)
- Stable With a 2.2-µF Ceramic Capacitor
- Excellent Load/Line Transient
- Very Low Dropout Voltage (112 mV at Full Load, TPS79330)
- 5-Pin SOT23 (DBV) Package

APPLICATIONS

- VCOs
- RF
- Bluetooth™, Wireless LAN

(1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over specified temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

DESCRIPTION

The TPS793xx family of low-dropout (LDO) low-power linear voltage regulators features high power-supply rejection ratio (PSRR), ultralow noise, fast start-up, and excellent line and load transient responses in a small-outline SOT23 package. Each device in the family is stable, with a small 2.2-µF ceramic capacitor on the output. The TPS793xx family uses an advanced, proprietary, BiCMOS fabrication process to yield extremely low dropout voltages (e.g., 112 mV at 200 mA, TPS79330). Each device achieves fast start-up times (approximately 50 μs with a 0.001-μF bypass capacitor), while consuming very low quiescent current (170 µA typical). Moreover, when the device is placed in standby mode, the supply current is reduced to less than 1 µA. The TPS79328 exhibits approximately 32 μV_{RMS} of output voltage noise with a 0.1- μF capacitor. Applications with bypass components that are noise sensitive, such as portable RF electronics, benefit from the high PSRR and low-noise features, as well as the fast response time.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Bluetooth is a trademark of Bluetooth SIG, Inc.

TPS79301-EP, TPS79318-EP, TPS79325-EP, TPS79328-EP TPS793285-EP, TPS79330-EP, TPS79333-EP, TPS793475-EP

AVAILABLE OPTIONS

TJ	VOLTAGE	PACKAGE	PART NUMBER	SYMBOL
	1.2 to 5.5 V		TPS79301DBVREP ⁽¹⁾	PGVE
	1.8 V		TPS79318DBVREP ⁽¹⁾	PHHE
	2.5 V		TPS79325DBVREP ⁽¹⁾	PGWE
4000 to 40500	2.8 V	SOT23 (DBV)	TPS79328DBVREP ⁽¹⁾⁽²⁾	PGXE
–40°C to 125°C	2.85 V		TPS793285DBVREP ⁽¹⁾⁽²⁾	PHIE
	3 V	(331)	TPS79330DBVREP ⁽¹⁾⁽²⁾	PGYE
	3.3 V		TPS793333DBVREP ⁽¹⁾	PHUE
	4.75 V		TPS793475DBVREP ⁽¹⁾	PHJE
–55°C to 125°C	1.2 to 5.5 V		TPS79301MDBVREP ⁽¹⁾	PMBM

⁽¹⁾ The DBVR indicates tape and reel of 3000 parts.

⁽²⁾ Product preview

TPS79301-EP, TPS79318-EP, TPS79325-EP, TPS79328-EP TPS793285-EP, TPS79330-EP, TPS79333-EP, TPS793475-EP

SGLS163B-APRIL 2003-REVISED NOVEMBER 2006

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
	Input voltage range ⁽²⁾		-0.3	6	V	
	Voltage range at EN		-0.3	V _I + 0.3	V	
	Voltage on OUT	-0.3	6	V		
	Peak output current	Ir	limited			
	ESD rating Huma	Human-Body Model (HBM)				
	Chan	Changed-Device Model (CDM)				
	Continuous total power dissipation	8	See Diss Rating	sipation g Table		
T_{J}	Operating virtual junction temperature range		- 55	125	°C	
T _{stg}	Storage temperature range		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Dissipation Ratings

BOARD	PACKAGE	$R_{ heta JC}$	$R_{ heta JA}$	DERATING FACTOR ABOVE T _A = 25°C	T _A ≤ 25°C POWER RATING	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
Low K ⁽¹⁾	DBV	63.75°C/W	256°C/W	3.906 mW/°C	391 mW	215 mW	156 mW
High K ⁽²⁾	DBV	63.75°C/W	178.3°C/W	5.609 mW/°C	561 mW	308 mW	224 mW

⁽¹⁾ The JEDEC low K (1s) board design used to derive this data was a 3-in × 3-in, two layer board with 2-oz copper traces on top of the board.

⁽²⁾ All voltage values are with respect to network ground terminal

⁽²⁾ The JEDEC high K (2s2p) board design used to derive this data was a 3-in × 3-in, multilayer board with 1-oz internal power and ground planes and 2-oz copper traces on top and bottom of the board.

TPS79301-EP, TPS79318-EP, TPS79325-EP, TPS79328-EP TPS793285-EP, TPS79330-EP, TPS79333-EP, TPS793475-EP

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range, EN = V_I , T_J = -55 to 125°C and T_J = -40 to 125°C, V_I = $V_{O(typ)}$ + 1 V, I_O = 1 mA, C_o = 10 μ F, $C_{(byp)}$ = 0.01 μ F (unless otherwise noted)

PARAMETER		TEST CON	MIN	TYP	MAX	UNIT				
V _I Input voltage ⁽¹⁾				2.7		5.5	V			
I _O Continuous output	current ⁽²⁾			0		200	mA			
T _J Operating junction	temperature			-55		125	°C			
	TPS79301	0 μ A < I _O < 200 mA, 1.22 V \leq V _O \leq 5.2 V ⁽³⁾	$T_J = -40 \text{ to } 125^{\circ}\text{C},$	0.98 Vo		1.02 Vo				
	17379301	0 μ A < I _O < 200 mA, 1.22 V \leq V _O \leq 5.2 V ⁽³⁾	$T_{J} = -55 \text{ to } 125^{\circ}\text{C},$	0.97 Vo		1.025 Vo				
	TPS79318	$T_J = 25^{\circ}C$								
	153/9310	$0 \mu A < I_O < 200 mA$,	$2.8 \text{ V} < \text{V}_{\text{I}} < 5.5 \text{ V}$	1.764		1.836				
	TPS79325	$T_J = 25^{\circ}C$			2.5					
	1F3/9325	$0 \mu A < I_O < 200 mA$,	$3.5 \text{ V} < \text{V}_{\text{I}} < 5.5 \text{ V}$	2.45		2.55				
	TPS79328	T _J = 25°C			2.8					
Output voltage	17579326	$0 \mu A < I_O < 200 mA$,	3.8 V < V _I < 5.5 V	2.744		2.856	V			
	TD070000	T _J = 25°C			2.85					
	TPS793285	$0 \mu A < I_O < 200 mA$	3.85 V < V _I < 5.5 V	2.793		2.907				
	TPS79330	T _J = 25°C			3					
		$0 \mu A < I_O < 200 mA$	4 V < V _I < 5.5 V	2.94		3.06				
		$T_J = 25^{\circ}C$			3.3					
	TPS79333	$0 \mu A < I_O < 200 mA$	4.3 V < V _I < 5.5 V	3.234		3.366				
	TD0700475	T _J = 25°C			4.75					
	TPS793475	$0 \mu A < I_O < 200 mA$	5.25 V < V _I < 5.5 V	4.655		4.845				
0.1		$0 \mu A < I_O < 200 mA$	T _J = 25°C		170					
Quiescent current (GND c	urrent)	0 μA < I _O < 200 mA			220	μΑ				
Load regulation		$0 \mu A < I_O < 200 mA$	T _J = 25°C		5		mV			
0		$V_{O} + 1 V < V_{I} \le 5.5 V$	T _J = 25°C		0.05		0/ 0/			
Output voltage line regula	tion $(\Delta V_0/V_0)^{(4)}$	$V_0 + 1 V < V_1 \le 5.5 V$				0.12	%/V			
			$C_{(byp)} = 0.001 \mu F$		55					
O	770000)	BW = 200 Hz to 100 kHz,	$C_{(byp)} = 0.0047 \mu\text{F}$		36		.,			
Output noise voltage (TPS	579328)	$I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	$C_{(byp)} = 0.01 \mu F$		33		μV_{RMS}			
			$C_{(byp)} = 0.1 \mu F$		32					
			$C_{(byp)} = 0.001 \mu\text{F}$		50					
Time, start-up (TPS79328)		$R_L = 14 \Omega,$ $C_0 = 1 \mu F, T_J = 25^{\circ}C$	$C_{(byp)} = 0.0047 \mu\text{F}$		70		μs			
		$C_0 = 1 \mu \text{F}, 1 \text{J} = 25 \text{C}$	$C_{(byp)} = 0.01 \mu\text{F}$		100					
Output current limit		$V_{O} = 0 \ V^{(3)}$		285		600	mA			
Standby current		EN = 0 V,	-		0.07	1	μΑ			
High-level enable input voltage		2.7 V < V _I < 5.5 V					V			
Low-level enable input vol	tage	2.7 V < V _I < 5.5 V				0.7	V			
Input current (EN)		EN = 0	-1		1	μΑ				

⁽¹⁾ To calculate the minimum input voltage for your maximum output current, use the following formula: $V_I(min) = V_O(max) + V_{DO} (max load)$

(4) If
$$V_0 \le 2.5 \text{ V}$$
, then $V_{\text{Imin}} = 2.7 \text{ V}$, $V_{\text{Imax}} = 5.5 \text{ V}$:

output current is 200 mA. If
$$V_O \le 2.5$$
 V, then $V_{Imin} = 2.7$ V, $V_{Imax} = 5.5$ V: Line Reg. (mV) = $(\%/V) \times \frac{V_O(V_{Imax} - 2.7 \text{ V})}{100} \times 1000$ If $V_O \ge 2.5$ V, then $V_{Imin} = V_O + 1$ V, $V_{Imax} = 5.5$ V.

Continuous output current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that

the device operate under conditions beyond those specified in this table for extended periods of time. The minimum IN operating voltage is 2.7 V or $V_{O(typ)}$ + 1 V, whichever is greater. The maximum IN voltage is 5.5 V. The maximum

SGLS163B-APRIL 2003-REVISED NOVEMBER 2006

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range, EN = V_I , T_J = -55 to 125°C and T_J = -40 to 125°C, V_I = $V_{O(typ)}$ + 1 V, I_O = 1 mA, C_o = 10 μ F, $C_{(byp)}$ = 0.01 μ F (unless otherwise noted)

PARAN	METER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT	
Input current (FB) (TPS	79301)	FB = 1.8 V				1	μΑ	
		f = 100 Hz, T _J = 25°C,	I _O = 10 mA		70			
Power-supply ripple	TPS79328	$f = 100 \text{ Hz}, T_J = 25^{\circ}\text{C},$	$I_{O} = 200 \text{ mA}$		68		-ID	
rejection	175/9326	$f = 10 \text{ Hz}, T_J = 25^{\circ}\text{C},$	I _O = 200 mA		70		dB	
		f = 100 Hz, T _J = 25°C,	I _O = 200 mA		43			
	TPS79328	I _O = 200 mA,	T _J = 25°C		120			
	175/9326	I _O = 200 mA				200		
	TD0702005	I _O = 200 mA,	T _J = 25°C		120		200	
	TPS793285	I _O = 200 mA				200		
Dranaut valtage (5)	TPS79330	I _O = 200 mA,	T _J = 25°C		112		m)/	
Dropout voltage ⁽⁵⁾	17579330	I _O = 200 mA				200	mV	
	TPS79333	I _O = 200 mA,	T _J = 25°C		102			
	17579333	I _O = 200 mA				180		
	TD0702475	I _O = 200 mA,	T _J = 25°C		77			
	TPS793475	I _O = 200 mA				125		
UVLO threshold		V _{CC} rising		2.25		2.65	V	
UVLO hysteresis		T _J = 25°C	V _{CC} rising		100		mV	

⁽⁵⁾ IN voltage equals $V_{O(typ)}$ - 100 mV; The TPS79325 dropout voltage is limited by the input voltage range limitations.

DEVICE INFORMATION

FUNCTIONAL BLOCK DIAGRAM - ADJUSTABLE VERSION

FUNCTIONAL BLOCK DIAGRAM - FIXED VERSION

TERMINAL FUNCTIONS

TERMINAL		ERMINAL		TERMINAL		TERMINAL		DESCRIPTION
NAME	ADJ	FIXED	I/O	DESCRIPTION				
BYPASS	4	4		An external bypass capacitor, connected to this terminal, in conjunction with an internal resistor, creates a low-pass filter to further reduce regulator noise.				
EN	3	3	1	Enable input that enables or shuts down the device. When EN goes to a logic high, the device is enabled. When the device goes to a logic low, the device is in shutdown mode.				
FB	5	N/A	I	Feedback input voltage for the adjustable device				
GND	2	2		Regulator ground				
IN	1	1	I	Input to the device				
OUT	6	5	0	Regulated output of the device				

0.001

0.01

 $C_{(byp)}$ – Bypass Capacitance – μF

0.1

10 100

TYPICAL CHARACTERISTICS

Figure 7. Figure 8. Figure 9.

f - Frequency - Hz

10 k 100 k

-40 -25 -10 5 20 35 50 65 80 95 110 125 T_J – Junction Temperature – $^{\circ}C$

TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

TYPICAL REGIONS OF STABILITY EQUIVALENT SERIES RESISTANCE (ESR)

TYPICAL REGIONS OF STABILITY EQUIVALENT SERIES RESISTANCE (ESR)

Figure 19. Figure 20.

9

APPLICATION INFORMATION

The TPS793xx family of low-dropout (LDO) regulators has been optimized for use in noise-sensitive battery-operated equipment. The device features extremely low dropout voltages, high PSRR, ultralow output noise, low quiescent current (170 μ A typically), and enable-input to reduce supply currents to less than 1 μ A when the regulator is turned off.

A typical application circuit is shown in Figure 22.

Figure 22. Typical Application Circuit

External Capacitor Requirements

A $0.1-\mu F$ or larger ceramic input bypass capacitor, connected between IN and GND and located close to the TPS793xx, is required for stability and improves transient response, noise rejection, and ripple rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source.

Like all LDOs, the TPS793xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance is 2.2-μF. Any 2.2-μF or larger ceramic capacitor is suitable, provided the capacitance does not vary significantly over temperature.

The internal voltage reference is a key source of noise in an LDO regulator. The TPS793xx has a BYPASS pin that is connected to the voltage reference through a 250-k Ω internal resistor. The 250-k Ω internal resistor, in conjunction with an external bypass capacitor connected to the BYPASS pin, creates a low pass filter to reduce the voltage reference noise and, therefore, the noise at the regulator output. In order for the regulator to operate properly, the current flow out of the BYPASS pin must be at a minimum, because any leakage current creates an IR drop across the internal resistor, thus, creating an output error. Therefore, the bypass capacitor must have minimal leakage current.

For example, the TPS79328 exhibits only 32 μV_{RMS} of output voltage noise using a 0.1- μF ceramic bypass capacitor and a 2.2- μF ceramic output capacitor. Note that the output starts up slower as the bypass capacitance increases due to the RC time constant at the BYPASS pin that is created by the internal 250- $k\Omega$ resistor and external capacitor.

Board Layout Recommendation to Improve PSRR and Noise Performance

To improve ac measurements like PSRR, output noise, and transient response, it is recommended that the board be designed with separate ground planes for V_{IN} and V_{OUT} , with each ground plane connected only at the GND pin of the device. In addition, the ground connection for the bypass capacitor should connect directly to the GND pin of the device.

SGLS163B-APRIL 2003-REVISED NOVEMBER 2006

APPLICATION INFORMATION (continued)

Power Dissipation and Junction Temperature

Specified regulator operation is ensured to a junction temperature of 125°C; the maximum junction temperature should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_D , which must be less than or equal to $P_{D(max)}$.

The maximum power dissipation limit is determined using the following equation:

$$P_{D(max)} = \frac{T_{J}max - T_{A}}{R_{\theta JA}}$$
(1)

Where:

T_.Imax = Maximum allowable junction temperature

 $R\theta_{JA}$ = Thermal resistance, junction to ambient, for the package, see the dissipation rating table

 T_A = Ambient temperature

The regulator dissipation is calculated using:

$$P_{D} = (V_{I} - V_{O}) \times I_{O}$$
 (2)

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation triggers the thermal protection circuit.

Programming the TPS79301 Adjustable LDO Regulator

The output voltage of the TPS79301 adjustable regulator is programmed using an external resistor divider as shown in Figure 23. The output voltage is calculated using:

$$V_{O} = V_{ref} \times \left(1 + \frac{R1}{R2}\right) \tag{3}$$

Where:

 V_{ref} = 1.2246 V typical (the internal reference voltage)

APPLICATION INFORMATION (continued)

Programming the TPS79301 Adjustable LDO Regulator (continued)

Resistors R1 and R2 should be chosen for approximately 50- μ A divider current. Lower-value resistors can be used for improved noise performance, but the solution consumes more power. Higher resistor values should be avoided as leakage current into/out of FB across R1/R2 creates an offset voltage that artificially increases/decreases the feedback voltage and, thus, erroneously decreases/increases V_0 . The recommended design procedure is to choose R2 = 30.1 k Ω to set the divider current at 50 μ A, C1 = 15 pF for stability, and then calculate R1 using:

$$R1 = \left(\frac{V_{O}}{V_{ref}} - 1\right) \times R2 \tag{4}$$

In order to improve the stability of the adjustable version, it is suggested that a small compensation capacitor be placed between OUT and FB. For voltages <1.8 V, the value of this capacitor should be 100 pF. For voltages >1.8 V, the approximate value of this capacitor can be calculated as:

C1 =
$$\frac{(3 \times 10^{-7}) \times (R1 + R2)}{(R1 \times R2)}$$
 (5)

The suggested value of this capacitor for several resistor ratios is shown in the table below. If this capacitor is not used (such as in a unity-gain configuration) or if an output voltage <1.8 V is chosen, then the minimum recommended output capacitor is $4.7 \, \mu F$ instead of $2.2 \, \mu F$.

OUTPUT VOLTAGE PROGRAMMING GUIDE

OUTPUT VOLTAGE	R1	R2	C1
2.5 V	31.6 kΩ	30.1 kΩ	22 pF
3.3 V	51 kΩ	30.1 kΩ	15 pF
3.6 V	59 kΩ	30.1 kΩ	15 pF

Figure 23. TPS79301 Adjustable LDO Regulator Programming

Regulator Protection

The TPS793xx features internal current limiting and thermal protection. During normal operation, the TPS793xx limits output current to approximately 400 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package or the absolute maximum voltage ratings of the device. If the temperature of the device exceeds approximately 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to below approximately 140°C, regulator operation resumes.

17-Dec-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS79301DBVREP	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PGVE	Samples
TPS79301MDBVREP	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PMBM	Samples
TPS79318DBVREP	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PHHE	Samples
TPS79333DBVREP	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PHUE	Samples
TPS793475DBVREP	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PHJE	Samples
V62/03634-01YE	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PGVE	Samples
V62/03634-02XE	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PHHE	Samples
V62/03634-07XE	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PHUE	Samples
V62/03634-08XE	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PHJE	Samples
V62/03634-09XE	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	РМВМ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

17-Dec-2015

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS79333-EP:

Catalog: TPS79333

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Sep-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS79301DBVREP	SOT-23	DBV	6	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS79301MDBVREP	SOT-23	DBV	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS79318DBVREP	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS79333DBVREP	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TPS793475DBVREP	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3

www.ti.com 15-Sep-2017

*All dimensions are nominal

7 til dillionsions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS79301DBVREP	SOT-23	DBV	6	3000	182.0	182.0	20.0
TPS79301MDBVREP	SOT-23	DBV	6	3000	203.0	203.0	35.0
TPS79318DBVREP	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS79333DBVREP	SOT-23	DBV	5	3000	182.0	182.0	20.0
TPS793475DBVREP	SOT-23	DBV	5	3000	182.0	182.0	20.0

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DBV (R-PDSO-G6)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.