## MEK4300

# Oblig 2

Greger Svenn

## Problem 1

i\_FSa.py

a)

the Falkner-Skan equation reads

$$f''' + ff'' + \beta(1 - (f')^2) = 0$$
 (1)

where

$$\beta = \frac{2m}{1+m}. (2)$$

By defining H = f', we get two equations

$$H = f'$$

$$H'' + fH' + \beta(1 - H^2) = 0$$
(3)

Implementing this FENics gives us results (figures below) that corresponds well with Fig. 4-11 in White, for all values of  $\beta$ .



Figure 1: velocity profiles



Figure 2: Shear-stress profiles

#### b)

According to table 4-2 in White the shear stress at  $\eta=0$  and with  $\beta=-0.19884$  should be 0.0. I get 0.0097.

Furthermore the initial guess in the solver is important to get the wanted results in a). According to the guess we may acquire two solutions for  $-0.19884 \le \beta \le 0$ . One we've already found, the other shows backflow at the wall. Both solutions are shown in the figures below for  $\beta = -0.1$ .



Figure 3: Velocity profiles: two solutions



Figure 4: Shear-stress: Two solutions

## Problem 2

#### 2D-1

#### ii\_comparea.py

The steady-state Navier-Stokes equation is solved in a mixed function space. The results and lower- and upper bound are displayed in the table below

| Unknowns    | $c_D$  | $c_L$  | $L_a$  | $\Delta P$ |
|-------------|--------|--------|--------|------------|
| 86484       | 5.5772 | 0.0106 | 0.0846 | 0.1175     |
| 343446      | 5.5767 | 0.0106 | 0.0846 | 0.1175     |
| lower bound | 5.5700 | 0.0104 | 0.0842 | 0.1172     |
| upper bound | 5.5900 | 0.0110 | 0.0852 | 0.1176     |

All computed parameters are in the "allowed" interval.



Figure 5: Steady state velocity field



Figure 6: Steady state, pressure field

#### 2D-2

ii\_compareb.py For the unstedy Navier-Stokes equation, I've used FEM in space and FDM in time.

I've used a splitting scheme where, first, the tentative velocity is computed using an approximation/guess, then we need to correct the pressure and last compute a corrected velocity.

| Unknowns    | $c_{Dmax}$ | $c_{Lmax}$ | St     | $\Delta P$ |
|-------------|------------|------------|--------|------------|
| 16134       | 3.2057     | 0.9808     | 0.2994 | 2.4729     |
| 63111       | 3.2495     | 1.0730     | 0.3030 | 2.4965     |
| lower bound | 3.2200     | 0.9900     | 0.2950 | 2.4600     |
| upper bound | 5.2400     | 1.0100     | 0.3050 | 2.5000     |

We can see from the table above that the results are fairly close or correct according to the supposed results. Except maybe  $c_{Lmax}$  for de finest mesh.



Figure 7: One preiod starting form  $t=t_0$  at  $c_L max$ 

The parameters are calculated in a separate file, ii\_parameters.py.

### Problem 3

iii\_MixingLength.py

 $\mathbf{a}$ 

Since the pressure gradient is constant, we may integrate the momentum equation across the channel to compute the value using  $v^*$ .

$$0 = \nu \int_0^H \frac{\partial^2 \overline{u}}{\partial y^2} dy - \frac{1}{\rho} \frac{\partial \overline{p}}{\partial x} \int_0^H dy - \int_0^H \frac{\partial \overline{u'v'}}{\partial y} dy$$
 (4)

There are n fluctuations at the wall, so the last term becomes zero.

$$\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x} H = \nu \frac{\partial \overline{u}}{\partial y} \bigg|_{0}^{H} \tag{5}$$

From the identity  $v^* = \sqrt{\nu \frac{\partial \bar{u}}{\partial y_{wall}}}$  we have that at the upper wall, the friction will be "pointing" upwards, so  $\frac{\partial \bar{u}}{\partial y_{wall}} = \frac{v^{*2}}{\nu}$ . At the bottom wall  $\frac{\partial \bar{u}}{\partial y_{wall}} = -\frac{v^{*2}}{\nu}$ . This gives us the pressure gradient, with the hight equal to

$$\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x} = 2v^{*2} \tag{6}$$



Figure 8: Numerical velocity profile for half the channel

To ensure that the first node is less than  $\nu/v^*$   $(y^+<1)$  we need at least 1001 nodes.



Figure 9: Numerical and theoretical velocity profiles

For  $y^+ < 5$  the approximation is good, for  $y^+ > 30$  modifying B = 5 gives me somewhat the better results, but not great.

 $\nu_T$  at center is 0.000246 for least amount of nodes. Should be zero.

## Problem 4

Momentum and continuity equations reads

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u}$$
 (7)

$$\nabla \cdot \mathbf{u} = 0 \tag{8}$$

#### **RANS**

Defining u and p in terms of mean flow and fluctuations

$$u = \bar{u} + u'$$
$$p = \bar{p} + p'$$

Now if we average (7) we get

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u}$$
(9)

Some similarities are necessary to show if we are to continue

$$\overline{u_i + u_j} = \overline{u_i} + \overline{u_j} 
\overline{\frac{\partial u_i}{\partial x_j}} = \frac{\partial \overline{u_i}}{\partial x_j}$$
(10)

Now (9) looks like

$$\frac{\partial \overline{\mathbf{u}}}{\partial t} + \overline{(\mathbf{u} \cdot \nabla)\mathbf{u}} = -\frac{1}{\rho} \nabla \overline{p} + \nu \nabla^2 \overline{\mathbf{u}}$$
 (11)

The convection term now may be written as, using commuting

$$\overline{(\mathbf{u} \cdot \nabla)\mathbf{u}} = \overline{\frac{\partial}{\partial x_j} u_i u_j} = \frac{\partial}{\partial x_j} \overline{u_i u_j}$$
 (12)

(11) becomes

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial}{\partial x_j} \overline{u_i u_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{x_i} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_j^2}$$
(13)

$$\frac{\partial \overline{u_i} + u_i'}{\partial t} + \frac{\partial}{\partial x_j} \overline{(\overline{u_i} + u_i')(u_j + u_j')} = -\frac{1}{\rho} \frac{\partial \overline{\overline{p} + p'}}{x_i} + \nu \frac{\partial^2 \overline{u_i} + u_i'}{\partial x_j^2}$$
(14)

Since  $\overline{u_i'} = 0$ ,  $\frac{\partial u_i u_j}{\partial x_j} = u_j \frac{\partial u_i}{\partial x_j}$  because of the continuity equation

$$\rho \frac{\partial \overline{u_i}}{\partial t} + \rho \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \mu \frac{\partial^2 \overline{u_i}}{\partial x_i^2} - \rho \frac{\partial \overline{u_i' u_j'}}{\partial x_j}$$
(15)

## Turbulent kinetic energy equation

Subtracting NS form RANS, dot with  $u_i'$  and time average the whole thing and we end up with

$$u_{i}' \left( \frac{\partial u_{i}'}{\partial t} + \overline{u_{j}} \frac{\partial u_{i}'}{\partial x_{j}} = -\frac{1}{\rho} \frac{p'}{\partial x_{i}} + \nu \frac{\partial^{2} u_{i}'}{\partial x_{j}^{2}} + \frac{\partial \overline{u_{i}' u_{j}'}}{\partial x_{j}} - \frac{\partial \overline{u_{i}} u_{j}'}{\partial x_{j}} - \frac{\partial u_{i}' u_{j}'}{\partial x_{j}} \right)$$

$$I \qquad II \qquad III$$

1 11 1

The left hand side can be rewritten as

$$\overline{u_i' \frac{\partial u_i'}{\partial t} + u_i' \overline{u_j} \frac{\partial u_i'}{\partial x_j}} 
\frac{1}{2} (\frac{\partial}{\partial t} (\overline{u_i' u_i'} + \overline{u_j} \frac{\partial}{\partial x_j} (\overline{u_i' u_i'}) = \frac{DK}{Dt}$$
(17)

where  $\overline{u_i'u_i'} = 2K$ , kinetic energy.

Looking at the right hand side

$$I \to 0$$

$$II \to -u_i' \frac{\partial \overline{u_i} u_j}{\partial x_j} = -\overline{u_i' u_j'} \frac{\partial \overline{u_i}}{\partial x_j}$$

$$II \to -\overline{u_i' \frac{\partial u_i u_j}{\partial x_j}} = -\frac{1}{2} \frac{\partial \overline{u_j'} u_i' u_i'}{\partial x_j}$$

$$(18)$$