Readme

1. Count the occurrences of each ngram

2. Build LM using ngram counts from the Q1:

a. Unigram:
$$P(w_n|w_1^{n-1}) \sim P(w_n) = \frac{\#wn}{\#token}$$

b. Bigram:
$$P(w_n|w_1^{n-1}) \sim P(w_n|w_{n-1}) = \frac{CWn-1Wn}{CWn-1}$$

a. Unigram:
$$P(w_n|w_1^{n-1}) \sim P(w_n) = \frac{\#w_n}{\#token}$$

b. Bigram: $P(w_n|w_1^{n-1}) \sim P(w_n|w_{n-1}) = \frac{CWn-1Wn}{CWn-1}$
c. Trigram: $P(w_n|w_1^{n-1}) \sim P(w_n|w_{n-2}w_{n-1}) = \frac{CWn-2Wn-1Wn}{CWn-2Wn-1}$

3. Write a script ppl.sh that calculates the perplexity of a test data set given an LM using interpolation for smoothing

$$\mathsf{P}(\mathsf{w}_{\mathsf{n}} \, | \mathsf{w}_{\mathsf{n-2}} \mathsf{w}_{\mathsf{n-1}}) = \lambda_{\mathsf{3}} \mathsf{P}_{\mathsf{3}}(\mathsf{w}_{\mathsf{n}} \, | \mathsf{w}_{\mathsf{n-2}} \mathsf{w}_{\mathsf{n-1}}) + \, \lambda_{\mathsf{2}} \mathsf{P}_{\mathsf{2}}(\mathsf{w}_{\mathsf{n}} \, | \mathsf{w}_{\mathsf{n-1}}) + \, \lambda_{\mathsf{1}} \mathsf{P}_{\mathsf{1}}(\mathsf{w}_{\mathsf{n}})$$

4

lambda_1	lambda_2	lambda_3	perplexity
0.05	0.15	0.8	378.9072777164
0.1	0.1	0.8	358.3443256944
0.2	0.3	0.5	227.1302127488
0.2	0.5	0.3	205.9901976918
0.2	0.7	0.1	206.3451185266
0.2	0.8	0	231.4900511022
1.0	0	0	871.8097461884