

Arhitectura sistemelor de calcul

- Prelegerea 14 -

Sisteme multiprocesor

Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Multicore

- > Sisteme multiprocesor: sisteme cu două sau mai multe procesoare
- Sisteme uniprocesor: sisteme cu un singur processor
- O proprietate importantă a sistemelor multiprocesor este scalabilitatea, i.e. trebuie să funcţioneze pe un număr variabil de procesoare (ex.: se pot adăuga procesoare pentru creşterea eficienţei)
- Sistemele procesor prezintă și *disponibilitate* crescută, pentru că se pot strica unele procesoare și sistemul trebuie să funcționeze cu procesoarele rămase
- Din punct de vedere software, acceptă **programe procesate în paralel**, i.e. un program rulează simultan pe mai multe procesoare

Procesor vs. microprocesor

- Un *mircroprocesor* este un circuit integrat unitar (o singură componentă, chip) care poate să conţină mai multe procesoare
- Pentru a reduce confuzia între procesor şi microprocesor, se utilizează termenul core pentru procesoare (multicore microprocessors în loc de multiprocessor microprocessors)
- Astfel, un microprocesor quadcore este un chip cu 4 procesoare sau 4 core-uri
- Un cluster este o mulţime de computere conectate într-un LAN (Local Area Network) care funcţionează ca un singur multiprocesor

- Pentru a facilita programarea paralelă pe mai multe core-uri, se poate utiliza acelaşi spaţiu de memorie fizică de către toate procesoarele (ex. toate procesoarele au acces direct la variabilele stocate în memorie)
- > SMP (Shared Memory MultiProcessors): oferă un singur spaţiu fizic de adrese pentru toate procesoarele
- Această soluție este în general folosită de microprocesoarele multicore

> Structura generală a sistemelor multiprocessor cu memorie fizică partajată:

- Există 2 tipuri de SMP:
 - ✓ UMA (Uniform Memory Access): toate procesoarele au nevoie de aproximativ acelaşi timp pentru accesarea memoriei, indiferent de procesorul care a iniţiat cererea şi de word-ul de memorie utilizat
 - ✓ NUMA (NonUniform Memory Access): anumite operaţii de acces la memorie sunt mai rapide în funcţie de procesorul care a iniţiat operaţia şi memoria accesată
- Între procesoarele care operează în paralel este nevoie de sincronizare,
 i.e. coordonarea proceselor care rulează pe procesoare diferite
- Spre exemplu, pentru partajarea datelor, se poate bloca o variabilă partajată între mai multe procesoare (*lock*). Un singur procesor poate cere lock, celelalte procesoare aşteaptă până la *unlock*

- O alternativă la SMP este să se folosească spaţii de memorie fizică separate pentru fiecare procesor
- Coordonarea procesoarelor se face prin mesaje prin care se transmit şi se primesc informaţii (message passing)
- > Clustrele sunt un exemplu de astfel de arhitectură

> Structura generală a sistemelor multiprocessor cu memorie fizică separată:

- Un cluster cu n maşini are n memorii independente, deci n copii ale sistemului de operare, în timp ce un sistem SMP necesită o singură copie a sistemului de operare
- Întrebare: Fie un sistem SMP care deţine 20GB memorie principală şi un cluster cu 5 componente, fiecare având 4GB. Sistemul de operare ocupă 1GB. Cu cât este mai multă memoria utilizabilă pentru SMP faţă de cluster?
- > Răspuns:

$$\frac{20-1}{5(4-1)} \approx 1.25$$

SMP prezintă deci aproximativ 25% mai multă memorie utilizabilă

- Chip-urile multiprocesor necesită reţele de conectare (interconnection network) a procesoarelor
- Acestea includ: comutatoare pentru conectarea la reţea, numărul de biţi transferaţi prin conexiune (*link*), etc.
- Reţelele sunt reprezentate ca grafuri, pentru care arcele reprezintă conexiunile şi procesoarele reprezintă nodurile
- Conexiunile sunt considerate *bidirecţionale*, i.e. informaţia circulă în ambele direcţii

Topologie bus

Topologie ring (inel)

Topologie 2-D grid (mesh)

Topologie 3-D (cub)

- ➤ O alternativă la utilizarea unui procesor în orice nod este utilizarea comutatoarelor (*switch*)
- ➤ Din punct de vedere constructiv ocupă mai puţin spaţiu şi deci pot conduce la crearea unor microprocesoare mai compacte, scăzând distanţa şi crescând eficienţa
- Multistage network sunt reţele care utilizează un comutator în fiecare nod

A C D

[COD]

c. Omega network switch box

Crossbar Topology: UltraSPARC T2 Sun Microsystems, 2007

	L2 Data Bank 0		SPARC Core 1	SPARC Core 5	SPARC Core 4	L2 Dank		
	L2B0	SPARC Core 0				L2B4		
	L2 Data Bank 1					L2 Data Bank 5		
	L2B1					L2B	5	
	MCU1 B	L2	L2	L2	L2	1 1	TU2	
		TAG0	TAG1	TAG5	TAG4	M EFG	TU3	FSR
FSR	L2B3 L2 Data Bank 3	SII	SII CCX		SIO	L2B	7	
					CCU	L2 Data Bank 7		
		L2	L2	L2	L2		L2B6	
	L2 Data Bank 2 DMU	TAG2	TAG3	TAG7	TAG6			
						L2 Da Bank		
		SPARC Core 2	SPARC Core 3	SPARC Core 7	SPARC Core 8	RDP	TDS	
	PEU							
	PSR	ESR	FSR		MAC	RTX		

Niagra 2 / UltraSPARC T2 / OpenSPARC T2 - Die Micrograph Diagram (davidhalko)

Intel® QuickPath Interconnect

[http://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf]

- Elemente cu impact în implementarea reţelelor sunt multiple
- > **Distanţa** link-urilor:
 - √ în general, cu cât distanţele sunt mai lungi, cu atât este mai dificil
 să se păstreze o perioadă scurtă a tactului de ceas
 - ✓ link-urile scurte necesită mai puţin spaţiu şi un consum de energie mai mic
- ightharpoonup Numărul de noduri: o rețea Omega folosește $2n\log n$ comutatoare, în loc de n^2 necesare unei rețele Crossbar

Referințe bibliografice

[AAT] A. Atanasiu, Arhitectura calculatorului

[COD] D. Patterson and J. Hennessy, Computer Organisation and Design

Schemele [Xilinx - ISE] au fost realizate folosind http://www.xilinx.com/tools/projnav.htm

Grafurile [JFLAP] au fost realizate folosind http://www.jflap.org/