Mathematical Statistics

How to get information from the experiment?

Sergey Titov, Konstantin Grotov

Neapolis University Pafos, Pahpos

07.07.2023

Outline

- 1 Law of Large Numbers and CLT
- 2 Random Sample
- 3 Statistics and Estimators

- 1 Law of Large Numbers and CLT
- 2 Random Sample
- Statistics and Estimators

Theorem (Markov's Inequality)

Let X be a random variable and let g(x) be a nonnegative function. Then, for any r > 0

$$P(g(X) \ge r) \le \frac{\mathbb{E}g(X)}{r}$$

Theorem (Chebyshev's Inequality)

if the variance is small then X is unlikly to be too far from the mean

$$P(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$$

Theorem (Weak Law of Large Numbers)

Let X_1, \ldots, X_n be iid random variables with $\mathbb{E} X_i = \mu$ and $\operatorname{Var} X_i = \sigma^2 < \infty$. Define $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$. Then for every $\epsilon > 0$,

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| < \epsilon) = 1$$

that is, X_n converges in probability to μ .

The law of large numbers states that the sample mean converges to the distribution mean as the sample size increases, and is one of the fundamental theorems of probability. There are different versions of the law, depending on the mode of convergence.

Proof.

$$P(|\bar{X}_n - \mu| \ge \epsilon) = P((\bar{X}_n - \mu)^2 \ge \epsilon^2) \le \frac{\mathbb{E}(\bar{X}_n - \mu)^2}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Hence,

$$P(|\bar{X}_n - \mu| < \epsilon) = 1 - P(|\bar{X}_n - \mu| \ge \epsilon) \ge 1 - \frac{\sigma^2}{n\epsilon^2} \to 1$$
, as $n \to \infty$

Theorem (Central Limit Theorem)

Let X_1,\ldots,X_n be a sequence of iid random variables. Let $\mathbb{E}X_i=\mu$ and $\operatorname{Var}X_i=\sigma^2>0$ and finite. Define $\bar{X}_n=(1/n)\sum\limits_{i=1}^n X_i$. Let $G_n(x)$ denote the cdf of $\sqrt{n}(\bar{X}_n-\mu)/\sigma$. Then for any $-\infty < x < \infty$,

$$\lim_{n\to\infty} G_n(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$$

that is, $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ has a limiting standard normal distribution.

Theorem

Roughly, the central limit theorem states that the distribution of the sum (or average) of a large number of independent, identically distributed variables will be approximately normal, regardless of the underlying distribution.

Example

Let $X_i \sim U(0,1)$

- 1 Law of Large Numbers and CLT
- 2 Random Sample
- Statistics and Estimators

Random Sample

Definition

The random variables X_1, \ldots, X_n are called a random sample of size n from the population f(x) if X_1, \ldots, X_n are mutually independent random variables and the marginal pdf or pmf of each X_i is the same function f(x). Alternatively, X_1, \ldots, X_n are called independent and identically distributed (iid) random variables with pdf or pmf f(x). Another notation is $X_{[n]} = [X_1, \ldots, X_n]$

Definition

The list of $[x_1, \ldots, x_n] = x_{[n]}$ called a sample of size n of realization of **random element** X.

Population of Sample

for sample $x_{[n]}$ assume empirical distribution:

$$\mathbb{P} \quad \frac{X_1}{n} \quad \frac{X_2}{n} \quad \dots \quad \frac{X_n}{n}$$

This is discrete distribution. Let A be an event, then

$$P(A) = \frac{1}{n} \sum_{i=1}^{n} [x_i \in A]$$

Definition

Empirical random variable X^* – r.v. that has distribution function F_n^*

Population of sample

For sample
$$x_{[n]}$$
 assume $F_n^*(x) = \frac{1}{n} \sum_{i=1}^n [x_i < x]$

Why Sample?

Theorem (Glivenko-Cantelli)

$$\sup_{x \in \mathbb{R}} |F_n^*(x) - F_X(x)| = ||F_n^* - F_X||_{\infty} \xrightarrow{a.s.} 0$$

Theorem (Kolmogorov)

If F_X is continuous, then

$$\sqrt{n} \|F_n^* - F_X\|_{\infty} \xrightarrow{d} K$$

Where K - Kolmogorov's distribution

Why Sample?

- 1 Law of Large Numbers and CLT
- 2 Random Sample
- 3 Statistics and Estimators

Statistics and Estimators

Definition

Let X_1, \ldots, X_n be a random sample of size n from a population and let $T = (x_1, \ldots x_n)$ be a real-valued or vector-valued function whose domain includes the sample space of $(X_i, \ldots X_n)$. Then the random variable or random vector $Y = T(X_1, \ldots, X_n)$ is called a statistic. The probability function of a statistic Y is called the sampling distribution of Y.

Definition

A point estimator is any function $W(X_1, ..., X_n)$ of a sample; that is, any statistic is a point estimator.

Estimate =
$$W(x_1, ... x_n)$$

A Note About Statistic

Statistic is a function of sample! Statistic NOT a function of a unknown parameter.

$$T(x_1,\ldots,x_n)=x_1+x_2+\cdots+x_n$$
 Statistic
$$T(x_1,\ldots,x_n)=\mathbb{E}X_1 - \text{ NOT statistic}$$
 $\mathbb{E}X_i=\mu$ $T(x_1,\ldots,x_n)=\sum (x_i-\mu)^2 - \text{depends on }\mu$ status

Statistics

Definition

The sample mean is the arithmetic average of the values in a random sample. It is usually denoted by

$$\bar{X} = \frac{X_1 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

Definition

The sample variance (or corrected sample variance) is the statistic defined by

$$S^{2} = \frac{n}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

The Order Statistics

Definition

The order statistics of a random sample X_1, \ldots, X_n are the sample values placed in ascending order. They are denoted by $X_{(1)}, \ldots X_{(n)}$

The order statistics are random variables that satisfy $X_{(1)} \leq \cdots \leq X_{(n)}$. In particular,

$$\begin{cases} X_{(1)} = \min_{1 \le 1 \le n} X_i, \\ X_{(2)} = \text{second smallest } X_i \\ \vdots \\ X_{(1)} = \max_{1 \le 1 \le n} X_i, \end{cases}$$

Quantiles, Quartiles, Median

Definition (α -Quantile)

A number x_{α} that $\mathbb{P}(X \leq x_{\alpha}) \geq \alpha$ and $\mathbb{P}(X \geq x_{\alpha}) \geq 1 - \alpha$. If continuous we can write $P(X < x_{\alpha}) = \alpha$

Definition (Sample α -Quantile)

- if $\frac{k}{n} < \alpha < \frac{k+1}{n}$, then $x_{\alpha}^* = x_{(k+1)}$
- if $\alpha = \frac{k}{n}$, then x_{α}^* any number in $[x_{(k)}, x_{(k+1)}]$

Definition (Sample Quartile)

$$Q_1 = x_{0.25}^*$$
 $Q_2 = x_{0.5}^*$ $Q_3 = x_{0.75}^*$

Quantiles, Quartiles, Median

Definition (Sample Median m^*)

- if n = 2k + 1, then $m^* = x_{(k+1)}$
- if n = 2k, then $m^* = \frac{1}{2}(x_{(k)} + x_{(k+1)})$

Method of Moments

Let's remember definitions of the moments:

Definition

$$\mu_1 = \frac{\left(\sum x\right)}{n}$$

$$\mu_2 = \frac{\sum (x-\mu)^2}{n}$$

$$\mu_3 = \frac{1}{n} \frac{\sum (x-\mu)^3}{\sigma^3}$$

$$\mu_4 = \frac{1}{n} \frac{\sum (x-\mu)^4}{\sigma^4}$$

Method of Moments

Let's assume that we have a X_1, \ldots, X_n sample form population with pdf $f(x|\theta_1, \ldots, \theta_k)$

The idea of the method of moments is to equate the first k sample moments to corresponding k population moments and then solve the system of equation.

Method of Moments

Example

Suppose X_1, \ldots, X_n are iid $n(\theta, \sigma^2)$. $\theta_1 = \theta$, $\theta_2 = \sigma^2$. We have $m_1 = \bar{X}, m_2 = (1/n) \sum_i X_i^2, \mu_1 = \theta, \mu_2 = \theta^2 + \sigma^2$, so we must solve

$$\bar{X} = \theta, \quad \frac{1}{n} \sum X_i^2 = \theta^2 + \sigma^2$$

Solving this system for $heta, \sigma^2$ yields method of moments estimators

$$\tilde{\theta} = \bar{X}, \quad \sigma^2 = \frac{1}{n} \sum_{i} X_i^2 - \bar{X}^2 = \frac{1}{n} \sum_{i} (X_i - \bar{X})^2$$