

Linking RFID to BIM

A demystification of research methods 链接RFID和BIM:解密研究方法

A material for Research Methodology, Renmin Univ. of China 为中国人民大学《研究方法》课程编制

21/22 March 2018

Dr Frank Xue 薛帆

Research Assistant Professor Dept of REC, HKU iLab, HKURBANlab, HKU

Outline

iLab

简介

Introduction to linking RFID to BIM

分析

Model and Analysis (R & SPSS)

讨论

Discussion

0.1 Aim and scope 目的和范畴

iLab

♦ Aim of this presentation 本课件的目的

- To apply research methods 应用所学研究方法
- To share a recent study 分享一项最新成果
- To demonstrate the use of R and SPSS 演示R和SPSS的使用
- To present a whole research in AECO (Architecture, Engineering, Construction & Operation) 展现完整研究流程
- To encourage debates on the methods 鼓励方法的讨论

- The *method* domain 方法范畴
 - o Contingency table, correlation, & decision tree, etc.
- The application domain 应用领域
 - AECO

0.2 Rationale of the research design 研究设计逻辑

iLab

- ♦ Goal: **To** promote *A* in AECO **研究目的**: **为业界推广***A*
- ◆ Data source: Credible cases in literature 数据: 文献实例
- ♦ Research design 研究设计
 - 1. Scientific questions decomposition 分解科学问题
 - (i) *History*: What can be concluded for *A*?
 - o (ii) *Future*: What are the trends (*B, C, D*) relating to *A*?
 - 2. Conceptual model formation 组织概念模型
 - How *A B C D* work together?
 - 3. Data of ABCD 数据获取
 - Number, category, & description in cases → extraction
 - 4. Data analysis 数据分析
 - Statistics and data analytics (R & SPSS)

研究过程范式 The research process

0.3 Expected outputs to form a paper 预期论文组织

预期研究结果

- ♦ 1. Scientific questions
- ♦ 2. Conceptual model
- **♦** 3. Data of *A B C D*
 - 3.1 Source of data
 - 3.2 Extracted data
- ♦ 4. Data analysis

Expertise & insights

Paper organization

论文组织

- ♦ 1. Introduction
- ♦ 2 Research methods
 - 2.1 Conceptual model
 - 2.2 Literature search
 - 2.3 Data extraction
- ♦ 3. Analytical results
- ♦ 4. Summarized guidelines
- ♦ 5. Conclusion

0.4 A quiz 课堂练习

iLab

◆ Q1: What type is this research? 课堂练习1: 此为何种研究?

- (A) survey research/literature review 综述
- (B) experimental research 实验
- ■(C) meta-analysis 元分析
- (D) correlational research 相关性分析
- ♦ Note: To cite the slides/work, you can
 - Cite my paper (under 2nd round review)
 - Xue, F., Chen, K., Lu, W., Niu, Y., & Huang G.Q. (2018). Linking radio-frequency identification (RFID) to building information modeling (BIM): Status quo, development trajectory, and practitioner guidelines. *Automation in Construction*, under review.
 - Freely use the pictures shared under CC-BY/CC-BY-SA

1.1 Smart construction & beyond 智能建造

iLab

◆ What is smart construction 何为智能建造

- Construction (noun) versus construction (verb)
- Smart: Context aware, ad hoc information-sharing^[1]
- ♦ A "backward industry" wants to be smart "落后产业"
 - A consensus of global research institutes on future const.^[2]
 - Advances in [*smart*] ICT (info. & comm. tech.)

Our focus ----- Salar, RFID, LiDAR, GPS, UAV, CV, VR/AR, smart phones...

- ◆ The vision beyond **长远前**景
 - Construction industrialization: Quality, cost, & "forward"
 - Smart and resilient city: For 70% world population by 2050
 - Robot and AI-assisted future: Next-gen industrial revolution

Recent advances in ICT

(Some sources shared under CC-BY 2.0/3.0)

Resilient city comic (Source: flickr, CC-BY 2.0)

1.2 BIM: A shared information hub BIM: 信息枢纽

iLab

◆ BIM (building information modeling)[3] 建筑信息模型

- The digital representation of physical and functional characteristics of a facility
- A shared *information hub* about a facility serving as a reliable basis for decisions making
- Evolved from CAD (computer-aided design)^[4]
- ◆ The "I" in BIM includes^[3, 5] 信息包括
 - ■Constant attributes and relationships of components 静态
 - o E.g., As-designed geometry, material, function, ...
 - ■User's & Dynamic **动态**
 - o E.g., occupants, equipment, worker's location, as-is statuspresentation
 - Risking "blind and deaf" to on-going AECO processes^[6]

(Source: advenser.com)

An evolution view of CAD model/BIM [4]

F Xue: Linking RFID to BIM, 21/22 March 2018, RUC

1.3 RFID: Contactless identification & localization RFID: 非接触式识别和定位

◈ RFID: Radio-frequency identification 射频识别

- Incepted in 1800s (Faraday, Maxwell, Hertz, Tesla, & Marconi)
- Commercialized in 1960s, the era of civil radar and radio
- Boomed in recent 20 years, as *one* core technology of IoT
- Properties: ID (native), time, location, stored, extra sensors ...
- ◈ Is a (collective) generic term 是一系列技术的统称

Table 1: The family of RFID systems in different frequencies^[7]

			<u> </u>	1	
Band	LF	HF	UHF	MW	UWB
Frequency	125~134 kHz	13.56 MHz	433, 865~956 MHz	2.45~5.8 GHz	3~10.6 GHz
Comm. Distance(m)	< 2	< 0.2	< 100 (left); < 2 (r)	< 1	< 10
Example	Access	Smart card,	Library, baggage	ETC	Locationing
applications	control	NFC	tracking	LIC	Locationing
Approximate tag	0.1	5	0.1	20~30	10~15
unit cost (USD)					

RFID applications (Some photos from Wikipedia, CC-BY 3.0)

1.4 Linking RFID to BIM 链接RFID和BIM

iLab

◆ Possible work in the life-cycle of construction 生命周期中

- *Architecture design*: (*None*?)
- Engineering design: RFID selection, plan drawings, testing
- Construction: Component, material, worker, progress, safety...
 - Above two highly related to *construction industrialization*
- Operation: Indoor location, asset management, facility records...
- Demolition: Planning facilitation, as-is calibration, recycling...
- ◈ Reported work and cases in literature 文献中报告的研究
 - Almost all cases were conducted in *Const.* to *O&M*
 - A few incepted scenarios mentioned *Eng*. or *Demo*.
 - Stage *Arch*. was not mentioned

Linking RFID to BIM in different stages of construction life cycle and possible barriers (Popular stages in bold)

Section 2 分析 MODEL AND ANALYSIS (R & SPSS)

2.1 The conceptual model 概念模型

iLab

CEM activities Object (e.g., Phase (e.g., component) construction. or personnel O&M) Tracking Decision property support Information linkage RFID system BIM (including information storage plan)

◆ What comprise of A? **研究目标** A **包括**?

- RFID system
- BIM
- Information storage 信息
- ◆ Independent variables (*B C D*) **自变量包括**?
 - Phase 生命周期的阶段
 - Object **对象**
 - 。Property 属性

A conceptual model of linking RFID to BIM **链接RFID和BIM的概念模型**

2.2 Source of data: The real cases in literature 数据源: 文献中的真实案例

iLab

- ♦ Cases collection 案例收集
 - Search "(RFID OR UWB OR NFC OR "smart card") (construction OR infrastructure OR building) BIM" from Google Scholar (N= 2,190)
 - Screening non-AECO and review papers (*N*= 264)
 - Selecting real cases with details (N=41)
- ◆ Data (sample size) 数据 (样本数)
 - **■** *Eng*.: *N*= 1
 - Excluded for insufficient sample size
 - **■** *Const.: N*= 21
 - \bigcirc O&M: N= 21

2.3 Data extraction 数据提取

iLab

	Possible options		Explanations
RFID	Frequency	LF	125-135 kHz
system		HF	13.56 MHz
		UHF	433 MHz; 865-956 MHz
		MW	2.45-5.8 GHz
		UWB	3.1-10 GHz
	Туре	active	with built-in batteries
		passive	without built-in batteries
BIM	Digital	3D	The model is presented in 3D
	representation	2D	The model is presented in 2D, like floor plan
	Cloud-based	Yes	In the cloud servers that allow remote access.
		No	O.W.
Info.	Both BIM and F	RFID tag	
storage	BIM only		
plan	RFID tag only		
	third-party data	base	

◆ We normalize the cases as samples of 从案例中提取五类数据

RFID

- 。Freq. 频率
- o Type 主动?

BIM

- o 2D/3D?
- 。Cloud 云端?
- Info. storage
- Phase
- Object

2.3 An overview of extracted data 提取出的数据

iLab

		T 6		to monitor	DEID tomot		Information	BIM#	
Reference	Phase*	intor	mation	to monitor	RFID type+		storage	DIM.	
(Author-year)			Prop‡	Details	Frequency	Α?	plan	Type	Clou
Hammad and Motamedi (2007)	Const.	С	Sta.	Activity timeline	UHF		BIM	3D-M	
Hämäläinen and Ikonen (2008)	Const.	С	Rec.	Inspection result	HF	1	RFID	3D-M	
Chin et al. (2008)	Const.	M	Sta.	Activity timeline	LF		BIM	3D-M	
Motamedi and Hammad	Const.	С	Rec.	Progress	UHF		BIM+RFID	3D-M	
(2009)	O&M	С	Rec.	Inspection records	UHF		BIM+RFID	3D-M	
Razavi and Haas (2010)	Const	M	Loc.	Material's location	UHF*		3rd party	2D-F	
Xie et al. (2010)	Const.	С	Loc.	Steel frame's location	UHF*		3rd party	3D-N	
Azimi et al. (2011)	Const.	С	Sta.	Steel piece's locations over time	UHF [^]		3rd party	7	
El-Omari and Moselhi	Const.	С	Sta.	Activity & progress	UHF		BIM	3D-M	\setminus
(2011)									
Shahi et al. (2012)	Const.	M	Loc.	Material's location & progress	UWB		BIM	3D-M	
Ding et al. (2013)	Const.	P	Loc.	Worker's location	UHF*		BIM	2D-FP	
Ikonen et al. (2013)	Const.	С	Sta.	Activity timeline	HF & UHF		3rd party	3D-M	V
Shahi et al. (2013)	Const.	С	Loc.	Location-based activity	UWB		3rd party	3D-M	
Guo et al. (2014)	Const.	P	Loc.	Safety of a worker's location	UHF [^]		3rd party	3D-M	
Sattineni (2014)	Const.	P	Loc.	Indoor location	UHF		BIM	3D-M	V
Costin et al. (2015)	Const.	P	Loc.	Worker's location	UHF		BIM	3D-M	
Zhang and Bai (2015)	Const.	С	Strain	Strain and breakage	UHF		BIM+RFID	3D-M	
Fang et al. (2016)	Const.	P	Loc.	Worker's location	UHF		BIM	3D-M	V
Niu et al. (2016)	Const.	С	Sta.	Component's status	UHF [^]		BIM	3D-M	√
Srewil et al. (2016)	Const.	С	Loc.	Component's location	UHF		BIM	3D-M	√
Mirzaeifar et al. (2017)	Const.	С	Sta.	Logistic status	HF		3rd party	3D-M	V
Zhong et al. (2017)	Const.	С	Sta.	Status and locations	HF & UHF		BIM	3D-M	V
Rueppel and Stuebbe (2008)	O&M	P	Loc.	Fire fighter's location	UHF & UWB		3rd party	2D-FP	V
Cong et al. (2010)	O&M	С	Rec.	Repair record, inventory	UHF	V	3rd party	2D-FP	
Krukowski and Arsenijevic (2010)	O&M	P	Loc.	Indoor location	MW	V	3rd party	2D-FP	V
Meadati et al. (2010)	O&M	С	Sta.	Component's status	UHF		BIM	3D-M	
Petrushevski (2012)	O&M	P	Loc.	User's presence for light control	HF		3rd party	2D-FP	
Shen et al. (2012)	O&M	С	Loc.	Asset's location	LF		BIM	2D-FP	V
Akanmu et al. (2013)	O&M	С	Sta.	Component's status, e.g., failure	UHF*		BIM	3D-M	
Zhang et al. (2013)	O&M	С	Sig.	Visible area of a grid	UWB	V	3rd party	3D-M	
Masoudifar et al. (2014)	O&M	C	Loc.	Facility's location	UWB	•	3rd party	2D-FP	
Montaser and Moselhi		P	Loc.	Indoor location	UHF		BIM	3D-M	
(2014)									
Rafiee (2014)		Р	Loc.	locations of authorized persons			BIM	3D-M	
Costin and Teizer (2015)	O&M	P	Loc.	Indoor location	UHF		3rd party	3D-M	

◆ Extracted data in format 数据格式

■ 42 rows (21+21)

■ 9 columns (except for 'details'; 'reference' → 'Year')

。 Mostly categorical data 大多是非数值型

Reference		Infor	mation	to monitor	RFID type ⁺		Information	BIM#	
(Author-year)	Phase*	Obj [†]	Prop [‡]	Details	Frequency	A?	storage plan	Туре	Cloud:
Hammad and Motamedi (2007)	Const.	С	Sta.	Activity timeline	UHF		BIM	3D-M	
Hämäläinen and Ikonen (2008)	Const.	С	Rec.	Inspection result	HF	1	RFID	3D-M	
Chin et al. (2008)	Const.	M	Sta.	Activity timeline	LF		BIM	3D-M	
Motamedi and Hammad	Const.	С	Rec.	Progress	UHF		BIM+RFID	3D-M	
(2009)	O&M	С	Rec.	Inspection records	UHF		BIM+RFID	3D-M	
Razavi and Haas (2010)	Const.	M	Loc.	Material's location	UHF [^]		3rd party	2D-FP	
Xie et al. (2010)	Const.	С	Loc.	Steel frame's location	UHF [^]		3rd party	3D-M	
Azimi et al. (2011)	Const.	С	Sta.	Steel piece's locations over time	UHF [^]		3rd party	3D-M	
El-Omari and Moselhi ((2011)	Const.	С	Sta.	Activity & progress	UHF		BIM	3D-M	

F Xue: Linking RFID to BIM, 21/22 March 2018, RU (2011

iLab

2.3 A visualization 可视化

- ♦ Visualization 可视化
 - RFID
 - Mostly UHF, UWB
 - Mostly passive
 - BIM
 - Mostly 3D
 - Info storage
 - A few in RFID
- ◆ Note: in Sankey chart桑 基图

2.4 Task 1: 2D/3D vs. time 任务1: 2D/3D与时间

iLab

- \blacksquare (1) Data sample (N = 42)
 - 。Contingency table 列联表
 - 。Correlation 相关性
- \bullet (2) Annual sum (N = 11+11)
 - 。Correlation 相关性
- \blacksquare (3) Annual ratio (N = 11)
 - 。Correlation 相关性
- ◆ Q2: What are the differences? 课堂练习2: 四种研究的异同?
 - Results 结果
 - Rationale **原理**

		_		
	Const. 建设	•	O&M 运维	•
•	Year	3D	Year	3D
٠	2007	1	2008	(
	2008	1	2009	•
	2008	1	2010	(
	2009	1	2010	(
	2010	0	2010	1
	2010	1	2012	(
	2011	1	2012	(
	2011	1	2013	1
	2012	1	2014	1
	2013	0	2013	1
	2013	1	2014	(
	2013	1	2014	1
	2014	1	2015	1
	2014	1	2015	1
	2015	1	2016	(
	2015	1	2016	1
	2016	1	2016	1
	2016	1	2016	1
	2016	1	2016	
	2017	1	2017	1
	2017	1	2017	

_	年度	ar sum 总计			年度采	
	Year	3D	2D		Year	3D (%)
	2007	1	0	,	2007	100
	2008	2	1		2008	66.67
	2009	2	0		2009	100
k.	2010	2	3		2010	40
1	2011	2	0		2011	100
7	2012	1	2		2012	33.33
	2013	4	1		2013	80
	2014	4	1		2014	80
	2015	4	0		2015	100
	2016	7	1		2016	87.5
	2017	4	0		2017	100

Annual ratio

Annual cum

2.4.1 Contingency table 列联表 (N = 42)

Year * BIM3D Crosstabulation

iLab

◆ "Is 2D/3D presentation covaried with Year?" "2D/3D是否与年份共变?"

- $\blacksquare H_0$: Not covaried
- Contingency table
 - Open in SPSS, under menu "Analyze"
 - o "Descriptive statistics"—"Crosstab"

(Note: Crosstab = 列联表)

- Between Year and BIM3D
- $\chi^2 = 12.254$ 卡方
- Exact significance = 0.27 精确显著性
 - 。 NOT Significant 不显著
 - ∘ Accept *H*₀

Const	建设	0&M.	运维
Year	3D	Year	3D
2007	1	2008	0
2008	1	2009	1
2008	1	2010	0
2009	1	2010	0
2010	0	2010	1
2010	1	2012	0
2011	1	2012	0
2011	1	2013	1
2012	1	2014	1
2013	0	2013	1
2013	1	2014	0
2013	1	2014	1
2014	. 1	2015	1
2014	. 1	2015	1
2015	1	2016	0
2015	1	2016	1
2016	1	2016	1
2016	1	2016	1
2016	1	2016	1
2017	1	2017	1
2017		2017	4

		BIM3D			
			0	1	Total
Year	2007	Count	0	.1Š	en en
		Expected Count	.2	.В	1.0
2008	Count	1	2		
		Expected Count	.6	2.4	3.0
	2009	Count	0	2	
		Expected Count	4	1.6	2.0
	2010	Count	3	2	
		Expected Count	1.1	3.9	5.0
	2011	Count	0	2	
		Expected Count	.4	1.6	2.0
2012	Count	2	1	- 3	
		Expected Count	6	2.4	3.0
	2013	Count	1	4	
		Expected Count	1.1	3.9	5.0
	2014	Count	1	4	- 9
		Expected Count	1.1	3.9	5.0
	2015	Count	0	4	4
		Expected Count	.9	3.1	4.0
	2015	Count	1	7	8
		Expected Count	1.7	5.3	8.0
	2017	Count	0	4	4
		Expected Count	.9	3.1	4.0
Total		Count	9	33	42
	Expected Count	9.0	33.0	42.0	

2017 1	2017	<u>1</u>	Asymptotic			
_	Value	Significance Ex df (2-sided)		Exact Sig. (2- sided)	Exact Sig. (1- sided)	Point Probability
Pearson Chi-Square	12.254ª	10	.268	.270		
Likelihood Ratio	13.240	10	.211	342		
Fisher's Exact Test	10.146			.327		
Linear-by-Linear Association	2.516 ^b	1	.113	127	.067	.015
N of Valid Cases	42					

a. 21 cells (95.5%) have expected count less than 5. The minimum expected count is .21

b. The standardized statistic is 1.586

2.4.2 Pearson's correlation 相关性 (N = 42)

iLab

◆ "Is 2D/3D presentation correlated with Year?" "2D/3D是否与年份相关?"

- $\blacksquare H_0$: Not correlated
- ◆ Pearson's correlation 相关性
 - Open in SPSS, under menu "Analyze"
 - "Correlate"—"Bivariate"
 - Between Year and BIM3D
 - Single-tailed

Assuming one-direction effect

- Pearson cor. = 0.248 相关性: 弱
- Sig. (1-tailed) = 0.057 **单尾显著性**
 - 。 NOT Significant 不显著

Const. 建设 O&M. 运维

J 0 115 00	~~	<u> </u>	<u> </u>
Year	3D	Year	3D
2007	1	2008	0
2008	1	2009	1
2008	1	2010	0
2009	1	2010	0
2010	0	2010	1
2010	1	2012	0
2011	1	2012	0
2011	1	2013	1
2012	1	2014	1
2013	0	2013	1
2013	1	2014	0
2013	1	2014	1
2014	1	2015	1
2014	1	2015	1
2015	1	2016	0
2015	1	2016	1
2016	1	2016	1
2016	1	2016	1
2016	1	2016	1
2017	1	2017	1
2017	1	2017	1

Correlations

		Year	BIM3D
Year	Pearson Correlation	1	.248
	Sig. (1-tailed)		.057
	N	42	42
BIM3D	Pearson Correlation	.248	1
	Sig. (1-tailed)	.057	
	N	42	42

Pearson cor.	Interpretation
.00 ~ .19	Very weak
.20 ~ .39	Weak
.40 ~ .59	Moderate
.60 ~ .79	Strong
.80 ~ 1.0	Very strong

2.4.3 Correlation on annual sum 年度总计相关性

(N=11+11)

iLab

- $\blacksquare H_0$: Not correlated
- ◆ Pearson's correlation 相关性
 - Open in SPSS, under menu "Analyze"
 - "Correlate"—"Bivariate"
 - Between Year and Sum3D, Sum2D
 - Yearly 3D
 - 。 Pearson cor. = 0.792 相关性: 强
 - Sig. (1-tailed) = 0.002 单尾显著性
 Significant; reject H₀显著正相关
 - Yearly 2D: Insignificant 不显著

Annual sum 年度总计

Year	3D	2D		
2007	1	0		
2008	2	1		
2009	2	0		
2010	2	3		
2011	2	0		
2012	1	2		
2013	4	1		
2014	4	1		
2015	4	0		
2016	7	1		
2017	4	0		

Correlations

		Year	Sum3D	Sum2D
Year	Pearson Correlation	1	.792**	092
	Sig. (1-tailed)		.002	.394
	N	11	11	11
Sum3D	Pearson Correlation	.792**	1	114
	Sig. (1-tailed)	.002		.369
	N	11	11	11
Sum2D	Pearson Correlation	092	114	1
	Sig. (1-tailed)	.394	.369	
	N	11	11	11

^{**.} Correlation is significant at the 0.01 level (1-tailed).

Pearson cor.	Interpretation
.00 ~ .19	Very weak
.20 ~ .39	Weak
.40 ~ .59	Moderate
.60 ~ .79	Strong
.80 ~ 1.0	Very strong

2.4.4 Correlation on annual ratio 年度采用率相关性

(N=11)

- ◆ "Is yearly 3D ratio correlated with Year?" "年度3D采用率与年份相关?"
 - $\blacksquare H_0$: Not correlated
- ◆ Pearson's correlation 相关性
 - Open in SPSS, under menu "Analyze"
 - "Correlate"—"Bivariate"
 - Between Year and Ratio3D
 - Yearly 3D ratio
 - 。 Pearson cor. = 0.176 相关性: 极弱
 - Sig. (1-tailed) = 0.302 单尾显著性
 Insignificant 不显著
 Accept H₀

Annual ratio 年度采用率

Year	3D (%)
2007	100
2008	66.67
2009	100
2010	40
2011	100
2012	33.33
2013	80
2014	80
2015	100
2016	87.5
2017	100

Correlations

		Year	Ratio3D
Year	Pearson Correlation	1	.176
	Sig. (1-tailed)		.302
	N	11	11
Ratio3D	Pearson Correlation	.176	1
	Sig. (1-tailed)	.302	
	N	11	11

Pearson cor.	Interpretation
.00 ~ .19	Very weak
.20 ~ .39	Weak
.40 ~ .59	Moderate
.60 ~ .79	Strong
.80 ~ 1.0	Very strong

🥫 2.4.5 A review of the results 结果回顾

iLab

Test	N	χ²	Pearson cor.	Sig.	H_0	Cor.?	Interpret
1	42	12.3		0.270	Accept	No	共变
2	42		0.248	0.057	Accept	No	相关
3 _{3D}	11		0.792	0.002**	Rejected	Yes	年度总量
3 _{2D}	11		0.092	0.394	Accept	No	年度总量
4	11		0.176	0.302	Accept	No	年度比率

♦ Q2: What are the differences? 课堂练习2: 四种研究的异同?

■请思考

2.5 Task 2: Decision tree of cloud/standalone 决策树

iLab

◆ Decision tree[10] 决策树

- Mirrors human decision making 模仿人的决策过程
- Multivariate analysis 多变量分析 ✓
- Nonlinear statistical model 非线性统计模型 ✓
- Easy to interpret, unlike ANN **容易理解** ✓
- Contains
 - 。A root node 根结点(起点)
 - 。 Branches 分支结点
 - 。Leaves 叶结点(终点)
- ◆ Application domains 常见领域
 - Machine learning, big data, knowledge engineering, operations (1) 湿度正常 且 没有大风; 或者 research 机器学习,大数据,知识工程,运筹学等

A decision tree of playing outside 户外活动的决策树

(Source: Wikipedia, CC-BY-SA 3.0)

Playing outside:

- (1) Humidity= normal AND windy= false; OR
- (2) Humidity= high AND outlook≠ sunny

户外活动:

- (2) 湿度高 但 没有暴晒

2.5.1 Mining decision trees with R 用R归纳决策树

- iLab
- ◆ "How did literature use cloud/ standalone BIM?" "文献中何时使用云端/单机 BIM?"
- Open data in R
 - R: Free scientific packages
 - Run 'rpart' package
 - Draw with 'rattle' package
- ♦ Result interpretation 结果解读
 - Cloud 云端:
 - 。Phase=Const. AND Property= Status (实时)

2.5.2 Decision tree pruning 修剪决策树

iLab

- ◆ Drawbacks of the decision tree 缺点
 - Biased from *outdated* cases back to 10 years ago **陈旧数据导致决策规则偏颇**
- ♦ Complement 补完
 - Needs pruning for future use 为未来应用修剪决策树
 - 。With recent stablished trends in industry 使用最新确立的工业趋势
- ◆ Pruned tree 修剪后的决策树
 - Cloud 云端:
 - 。All scenarios in construction phase if having available network 建造阶段(实时要求高)且 有可用网络

A recent burst of cloud BIMs 云端BIM已趋于流行

Pruned decision tree 修剪后的决策树(面向智能建造)

2.6 A final guideline 最终编成的实用指南

iLab

3 Further discussion 进一步讨论

iLab

- ◆ Q1: What type is this research? 课堂练习1: 此为何种研究?
 - (A) survey research/literature review **综述**✓
 - (B) experimental research 实验 ×
 - **■**(C) meta-analysis **元分析**(分析的分析) ✓
 - (D) correlational research 相关性分析✓

(Source: Wikipedia, CC-BY-SA 3.0)

- ◆ Q2: What are the differences? 课堂练习2: 四种研究的异同?
 - Results 结果
 - Rationale **原理**
- ◆ Q3: Any limitations in this research? 课堂练习3: 本研究局限性在.....?
 - Data 数据
 - Methods 方法

References 参考文献

iLab

- [1] Beigl, M., Gellersen, H. W., & Schmidt, A. (2001). Mediacups: Experience with design and use of computer-augmented everyday artefacts. *Computer Networks*, *35*(4), 401-409.
- [2] Harty, C., Goodier, C. I., Soetanto, R., Austin, S., Dainty, A. R., & Price, A. D. (2007). The futures of construction: a critical review of construction future studies. *Construction Management and Economics*, 25(5), 477-493.
- [3] National Institute of Building Sciences (NIBS). (2015). National Building Information Modeling Standard. Available at: https://www.nationalbimstandard.org/, retrieved on Nov 22, 2017.
- [4] Penttilä, H. (2007). Early architectural design and BIM. *Computer-Aided Architectural Design Futures (CAADFutures 2007)*, 291-302.
- [5] Eastman, C. M., Teicholz, P., Sacks, R., and Liston, K. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons.
- [6] Chen, K., Lu, W., Peng, Y., Rowlinson, S., & Huang, G. Q. (2015). Bridging BIM and building: From a literature review to an integrated conceptual framework. *International journal of project management*, 33(6), 1405-1416.
- [7] Valero, E., Adán, A., & Cerrada, C. (2015). Evolution of RFID applications in construction: A literature review. Sensors, 15(7), 15988-16008.
- [8] Kortuem, G., Kawsar, F., Sundramoorthy, V., & Fitton, D. (2010). Smart objects as building blocks for the internet of things. *IEEE Internet Computing*, 14(1), 44-51.
- [9] Niu, Y., Lu, W., Chen, K., Huang, G. G., & Anumba, C. (2015). Smart construction objects. *Journal of Computing in Civil Engineering*, 30(4), 04015070.
- [10] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). New York: springer.

