Pré-distorcedor digital descrito em linguagem VHDL e baseado em polinômio com memória

Leonardo de Andrade Santos Sibilla Batista da Luz França

Universidade Federal do Paraná

2024

Programação

- 1 Fundamentação teórica
 - Sistema de comunicação
 - Problema
 - Mudar
 - Pré-distorcedor
 - Polinômio de Memória
 - Field Programmable Gate Array (FPGA)

 - Metodologia
 - Dados Utilizados
- 2 Implementação e software
 - Modelagem do PA
 - Ajuste da Resolução do Sinal
 - Modelagem do DPD
- 3 Implementação em Hardware
 - Desenvolvimento do VHDI
 - Fluxo de cálculo

Leonardo de Andrade Santos

■ Resultado simulação FPGA

Introdução

Leonardo de Andrade Santos

- Devido à evolução dos sistemas de comunicação móveis, que oferecem diversos servicos, como aplicacões multimídia, desenvolvimento web e IoT, houve um aumento na necessidade de criar sistemas mais energeticamente eficientes. Além disso, a largura de banda reservada para comunicações sem fio tornou-se mais limitada
- Largura de banda reservada para sistemas de comunicação sem fio reduzida
- A modulação de amplitude (AM) é sensível à linearidade.
- Uma alternativa para superar esses desafios é a implementação de um DPD (Pré-Distorcedor Digital) em cascata com o amplificador

Objetivos

Objetivo deste trabalho é desenvolver um circuito integrado dedicado de um DPD.

- Realizar a modelagem de um PA e do DPD com o modelo de polinômio de memória.
- Implementar a descrição de hardware em linguagem VHDL.
- Validar o sistema em FPGA.

Fundamentação teórica

00000000

Leonardo de Andrade Santos

Sistema de comunicação

- A comunicação sem fio é dividida em 3 sub-sistemas principais: o transmissor, o meio transmissor (ar), receptor.
- O PA é o componente de maior demanda energética por ser o componente que transfere potência da fonte para potência irradiada pela antena

Leonardo de Andrade Santos

Fundamentação teórica

Problema

00000000 Problema

- A curva amarela representa a restrição imposta pela norma regulamentadora.
- A curva em verde representa o especto de frequência do amplificador ideal.
- A curva em azul representa o sinal após a amplificação.
- As diferenças de densidade de potência nas bandas adjacentes ao canal representam a distorção causada pela não linearidade do PA.
- Maior eficiência implica em maior distorção do sinal.

Mudar

Mudar

- A característica de transferência não linear do PA é caracterizada pela potência de saída que decai 1 dB da potência ideal, ou ponto de 1 dB de compressão de ganho (OCP1dB).
- Efeito chamado memória causado. devido aos componentes armazenadores (capacitâncias de energia e indutâncias), contribuindo significativamente na distorção.
- O DPD operando em banda base é uma solução eficiente com baixo custo computacional.

Pré-distorcedor

- De maneira sucinta, o DPD é conectado em cascata ao PARF (Amplificador de Potência de Rádio Frequência), e é projetado para apresentar a função de transferência inversa ao PARE.
- Modelagem física: alto custo computacional.
- Modelagem matemática: baixo custo computacional.

Polinômio de Memória

$$y(n) = \sum_{p=1}^{P} \sum_{m=0}^{M} h_{p,m} x(n-m) |x(n-m)|^{p-1}$$
 (1)

$$\begin{bmatrix} y(1) \\ y(2) \\ y(3) \\ y(5) \\ y(5) \end{bmatrix} = \begin{bmatrix} x(1) & x(0) & x(1)|x(1)| & x(0)|x(0)| \\ x(2) & x(1) & x(2)|x(2)| & x(1)|x(1)| \\ x(3) & x(2) & x(3)|x(3)| & x(2)|x(2)| \\ x(4) & x(3) & x(4)|x(4)| & x(3)|x(3)| \\ x(5) & x(4) & x(5)|x(5)| & x(4)|x(4)| \end{bmatrix} \begin{bmatrix} h_{1,0} \\ h_{2,0} \\ h_{2,1} \end{bmatrix}$$

- Utilizado na modelagem comportamental simplificada das séries de Volterra.
- Considera apenas componentes unidimensionais.
- Modelo compacto.
- Baixo custo computacional.
- Modelo linear nos coeficientes.

Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA)

- FPGAs compõem uma classe de dispositivos lógicos programáveis.
- Eles possuem a capacidade de sintetizar arquiteturas complexas de eletrônica digital.
- São descritas como um conjunto de blocos digitais interconectados.
- Permite que tarefas possam ocorrer de forma paralela e sequencial.

Metodologia

Leonardo de Andrade Santos

Metodologia

O trabalho foi dividido em quatro etapas:

- Etapa 1: Estudos do DPD e modelagem matemática do PA.
- Etapa 2: Implementação do DPD em software.
- Etapa 3: Implementação do DPD em FPGA.
- Etapa 4: Simulação em FPGA.

Dados Utilizados

- Amplificador de potência classe AB, HEMT (transistor de efeito de campo de heterojunção) fabricado em tecnologia GaN.
- Excitado por um sinal portadora de frequência de 900 MHz.
- Modulado por um sinal de envoltória WCDMA 3GPP 3,84 MHz de largura de banda.
- Os dados de entrada e saída do amplificador de potência foram medidos usando um analisador de sinal vetorial (VSA) Rohde & Schwarz FSQ com uma taxa de amostragem de 61,44 MHz.

Modelagem do PA

- Implementação em Python.
- Modelagem do PA, com cálculo em vírgula flutuante.
- NMSE de -23,57 dB, para um Polinômio de 2° grau com uma amostra de memória.

Ajuste da Resolução do Sinal

- Adaptação para realizar dos cálculos em vírgula fixa, com uma resolução N de bits.
- Inicialmente foi realizado uma normalização dos dados e em seguida são feitos os cálculos em vírgula fixa.
- Dados DPD com polinômio de memória de grau 2 com um sinal de memória.

Leonardo de Andrade Santos

Modelagem do DPD

Cálculo do módulo DPD da mesma forma que do PA, apenas invertendo os dados de entrada com os de saída.

Implementação em Hardware
●○○○

Desenvolvimento do VHDL

Fluxo de cálculo

Fluxo de cálculo

Resultado simulação FPGA

- FPGA Virtex5 XC5VLX50T;
- frequência de operação 61,5 MHz.

Recursos	Unidade	Percentual
Registradores	150	100%
LUTs	692	100%
DSP48E	4	100%

Elton John, "Modelagem comportamental de amplificadores de potência de radiofrequência usando termos unidimensionais e bidimensionais de séries de Volterra". 2016.

Peter Kenington, "High Linearity RF Amplifier Design", 2000.

Implementação e software

Steve Cripps, "RF Power Amplifiers for Wireless Communications", 2006.

Joel Huanca Chavez, "Estudo comparativo entre as arquiteturas de identificação de pré-distorcedores digitais através das aprendizagens direta e indireta", 2018.

Volnei Pedroni, "Eletrônica Digital e VHDL", 2010.

Eduardo Goncalves de Lima and Giovanni Ghione, "Behavioral modeling and digital base-band predistortion of RF power amplifiers", 2009.

Luis Schuartz and Eduardo Lima. "Polinômios com Memória de Complexidade Reduzida e sua Aplicação na Pré-distorção Digital de Amplificadores de Potência", 2017.

Elton J Bonfim and Eduardo G De Lima, "A Modified Two Dimensional Volterra-Based Series for the Low-Pass Equivalent Behavioral Modeling of RF Power Amplifiers", vol. 47, pp. 27-35, 2016.

