

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/12, C07K 14/705, C12N 5/10, A01K 67/027, C12N 15/00, A61K 38/17, 48/00, 38/45, 31/00, 31/70, G01N 33/68, C12Q 1/68, C12N 15/11

(11) International Publication Number:

WO 00/55318

(43) International Publication Date: 21 September 2000 (21.09.00)

(21) International Application Number:

PCT/IB00/00532

A2

(22) International Filing Date:

15 March 2000 (15.03.00)

(30) Priority Data:

15 March 1999 (15.03.99) US 60/124,702 8 June 1999 (08.06.99) US 60/138,048 17 June 1999 (17.06.99) US 60/139,600 1 September 1999 (01.09.99) 60/151,977 US

UNIVERSITY OF BRITISH COLUMBIA (71) Applicants: [CA/CA]; 2329 West Mall, Vancouver, British Columbia V6T 1Z4 (CA). XENON BIORESEARCH, INC. [CA/CA]; NRC Innovation Centre, 3250 East Mall, Vancouver, British Columbia V6T 1W5 (CA).

(72) Inventors: HAYDEN, Michael, R.; 4484 West 7th Avenue, Vancouver, British Columbia V6R 1W9 (CA). WILSON, Angela, R.; 7100 Langton Road, Richmond, British Columbia V7C 4B2 (CA). PIMSTONE, Simon, N.; 4746 West 6th Avenue, Vancouver, British Columbia V6T 1C5 (CA).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published |

Without international search report and to be republished upon receipt of that report.

(54) Title: METHODS AND REAGENTS FOR MODULATING CHOLESTEROL LEVELS

Mutation Polymorphism

(57) Abstract

The invention features ABC1 nucleic acids and polypeptides for the diagnosis and treatment of abnormal cholesterol regulation. The invention also features methods for identifying compounds for modulating cholesterol levels in an animal (e.g., a human).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Treland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	· Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHODS AND REAGENTS FOR MODULATING CHOLESTEROL LEVELS

5

10

15

20

25

30

Background of the Invention

Low HDL cholesterol (HDL-C), or hypoalphalipoproteinemia, is a blood lipid abnormality which correlates with a high risk of cardiovascular disease (CVD), in particular coronary artery disease (CAD), but also cerebrovascular disease, coronary restenosis, and peripheral vascular disease. HDL, or 'good cholesterol' levels are influenced by both environmental and genetic factors.

Epidemiological studies have consistently demonstrated that plasma HDL-C concentration is inversely related to the incidence of CAD. HDL-C levels are a strong graded and independent cardiovascular risk factor. Protective effects of an elevated HDL-C persist until 80 years of age. A low HDL-C is associated with an increased CAD risk even with normal (<5.2 mmol/l) total plasma cholesterol levels. Coronary disease risk is increased by 2% in men and 3% in women for every 1 mg/dL (0.026 mmol/l) reduction in HDL-C and in the majority of studies this relationship is statistically significant even after adjustment for other lipid and non-lipid risk factors. Decreased HDL-C levels are the most common lipoprotein abnormality seen in patients with premature CAD. Four percent of patients with premature CAD with have an isolated form of decreased HDL-C levels with no other lipoprotein abnormalities while 25% have low HDL levels with accompanying hypertriglyceridemia.

Even in the face of other dyslipidemias or secondary factors, HDL-C levels are important predictors of CAD. In a cohort of diabetics, those with isolated low HDL cholesterol had a 65% increased death rate compared to diabetics with normal HDL cholesterol levels (>0.9 mmol/l). Furthermore, it has been shown that even within high risk populations, such as those with familial hypercholesterolemia, HDL cholesterol level is an important predictor of CAD. Low HDL cholesterol levels thus constitute a major, independent, risk for CAD.

5

10

15

20

25

30

These findings have led to increased attention to HDL cholesterol levels as a focus for treatment, following the recommendations of the National Cholesterol Education Program. These guidelines suggest that HDL cholesterol values below 0.9 mmol/l confer a significant risk for men and women. As such, nearly half of patients with CAD would have low HDL cholesterol. It is therefore crucial that we obtain a better understanding of factors which contribute to this phenotype. In view of the fact that pharmacological intervention of low HDL cholesterol levels has so far proven unsatisfactory, it is also important to understand the factors that regulate these levels in the circulation as this understanding may reveal new therapeutic targets.

Absolute levels of HDL cholesterol may not always predict risk of CAD. In the case of CETP deficiency, individuals display an increased risk of developing CAD, despite increased HDL cholesterol levels. What seems to be important in this case is the functional activity of the reverse cholesterol transport pathway, the process by which intracellular cholesterol is trafficked out of the cell to acceptor proteins such as ApoAI or HDL. Other important genetic determinants of HDL cholesterol levels, and its inverse relation with CAD, may reside in the processes leading to HDL formation and intracellular cholesterol trafficking and efflux. To date, this process is poorly understood, however, and clearly not all of the components of this pathway have been identified. Thus, defects preventing proper HDL-mediated cholesterol efflux may be important predictors of CAD. Therefore it is critical to identify and understand novel genes involved in the intracellular cholesterol trafficking and efflux pathways.

HDL particles are central to the process of reverse cholesterol transport and thus to the maintenance of tissue cholesterol homeostasis. This process has multiple steps which include the binding of HDL to cell surface components, the acquisition of cholesterol by passive absorption, the esterification of this cholesterol by LCAT and the subsequent transfer of esterified cholesterol by CETP, to VLDL and chylomicron remnants for liver uptake. Each of these steps is known to impact the plasma concentration of HDL.

Changes in genes for ApoAI-CIII, lipoprotein lipase, CETP, hepatic lipase, and LCAT all contribute to determination of HDL-C levels in humans. One rare form of genetic HDL deficiency is Tangier disease (TD), diagnosed in approximately 40

patients world-wide, and associated with almost complete absence of HDL cholesterol (HDL-C) levels (listed in OMIM as an autosomal recessive trait (OMIM 205400)). These patients have very low HDL cholesterol and ApoAI levels, which have been ascribed to hypercatabolism of nascent HDL and ApoAI, due to a delayed acquisition of lipid and resulting failure of conversion to mature HDL. TD patients accumulate cholesterol esters in several tissues, resulting in characteristic features, such as enlarged yellow tonsils, hepatosplenomegaly, peripheral neuropathy, and cholesterol ester deposition in the rectal mucosa. Defective removal of cellular cholesterol and phospholipids by ApoAI as well as a marked deficiency in HDL mediated efflux of intracellular cholesterol has been demonstrated in TD fibroblasts. Even though this is a rare disorder, defining its molecular basis could identify pathways relevant for cholesterol regulation in the general population. The decreased availability of free cholesterol for efflux in the surface membranes of cells in Tangier Disease patients appears to be due to a defect in cellular lipid metabolism or trafficking. Approximately 45% of Tangier patients have signs of premature CAD, suggesting a strong link between decreased cholesterol efflux, low HDL cholesterol and CAD. As increased cholesterol is observed in the rectal mucosa of persons with TD, the molecular mechanism responsible for TD may also regulate cholesterol adsorption from the gastrointestinal (GI) tract.

20

25

30

15

5

10

A more common form of genetic HDL deficiency occurs in patients who have low plasma HDL cholesterol usually below the 5th percentile for age and sex (OMIM 10768), but an absence of clinical manifestations specific to Tangier disease (Marcil et al., Arterioscler. Thromb. Vasc. Biol. 19:159-169, 1999; Marcil et al., Arterioscler. Thromb. Vasc. Biol. 15:1015-1024, 1995). These patients have no obvious environmental factors associated with this lipid phenotype, and do not have severe hypertriglyceridemia nor have known causes of severe HDL deficiency (mutations in ApoAI, LCAT, or LPL deficiency) and are not diabetic. The pattern of inheritance of this condition is most consistent with a Mendelian dominant trait (OMIM 10768).

The development of drugs that regulate cholesterol metabolism has so far progressed slowly. Thus, there is a need for a better understanding of the genetic components of the cholesterol efflux pathway. Newly-discovered components can

then serve as targets for drug design.

5

10

15

20

25

30

Low HDL levels are likely to be due to multiple genetic factors. The use of pharmacogenomics in the aid of designing treatment tailored to the patient makes it desirable to identify polymorphisms in components of the cholesterol efflux pathway. An understanding of the effect of these polymorphisms on protein function would allow for the design of a therapy that is optimal for the patient.

Summary of the Invention

In a first aspect, the invention features a substantially pure ABC1 polypeptide having ABC1 biological activity. Preferably, the ABC1 polypeptide is human ABC1 (e.g., one that includes amino acids 1 to 60 or amino acids 61 to 2261 of SEQ ID NO: 1). In one preferred embodiment, the ABC1 polypeptide includes amino acids 1 to 2261 of SEQ ID NO: 1.

Specifically excluded from the polypeptides of the invention are the polypeptide having the exact amino acid sequence as GenBank accession number CAA10005.1 and the nucleic acid having the exact sequence as AJ012376.1. Also excluded is protein having the exact amino acid sequence as GenBank accession number X75926.

In a related aspect, the invention features a substantially pure ABC1 polypeptide that includes amino acids 1 to 2261 of SEQ ID NO: 1.

In another aspect, the invention features a substantially pure nucleic acid molecule encoding an ABC1 polypeptide having ABC1 biological activity (e.g., a nucleic acid molecule that includes nucleotides 75 to 254 or nucleotides 255 to 6858 of SEQ ID NO: 2). In one preferred embodiment, the nucleic acid molecule includes nucleotides 75 to 6858 of SEQ ID NO: 2.

In a related aspect, the invention features an expression vector, a cell, or a nonhuman mammal that includes the nucleic acid molecule of the invention.

In yet another aspect, the invention features a substantially pure nucleic acid molecule that includes nucleotides 75 to 254 of SEQ ID NO: 2, nucleotides 255 to 6858 of SEQ ID NO: 2, or nucleotides 75 to 6858 of SEQ ID NO: 2.

In still another aspect, the invention features a substantially pure nucleic acid molecule that includes at least fifteen nucleotides corresponding to the 5' or 3' untranslated region from a human ABC1 gene. Preferably, the 3' untranslated region includes nucleotides 7015-7860 of SEQ ID NO: 2.

In a related aspect, the invention features a substantially pure nucleic acid molecule that hybridizes at high stringency to a probe comprising nucleotides 7015-7860 of SEQ ID NO: 2.

In another aspect, the invention features a method of treating a human having low HDL cholesterol or a cardiovascular disease, including administering to the human an ABC1 polypeptide, or cholesterol-regulating fragment thereof, or a nucleic acid molecule encoding an ABC1 polypeptide, or cholesterol-regulating fragment thereof. In a preferred embodiment, the human has a low HDL cholesterol level relative to normal. Preferably, the ABC1 polypeptide is wild-type ABC1, or has a mutation increases its stability or its biological activity. A preferred biological activity is regulation of cholesterol.

10

15

20

25

30

In a related aspect, the invention features a method of preventing or treating cardiovascular disease, including introducing into a human an expression vector comprising an ABC1 nucleic acid molecule operably linked to a promoter and encoding an ABC1 polypeptide having ABC1 biological activity.

In another related aspect, the invention features a method of preventing or ameliorating the effects of a disease-causing mutation in an ABC1 gene, including introducing into a human an expression vector comprising an ABC1 nucleic acid molecule operably linked to a promoter and encoding an ABC1 polypeptide having ABC1 biological activity.

In still another aspect, the invention features a method of treating or preventing cardiovascular disease, including administering to an animal (e.g., a human) a compound that mimes the activity of wild-type ABC1 or modulates the biological activity of ABC1.

One preferred cardiovascular disease that can be treated using the methods of the invention is coronary artery disease. Others include cerebrovascular disease and peripheral vascular disease.

The discovery that the ABC1 gene and protein are involved in cholesterol transport that affects serum HDL levels allows the ABC1 protein and gene to be used in a variety of diagnostic tests and assays for identification of HDL-increasing or CVD-inhibiting drugs. In one family of such assays, the ability of domains of the ABC1 protein to bind ATP is utilized; compounds that enhance this binding are potential HDL-increasing drugs. Similarly, the anion transport capabilities and membrane pore-forming functions in cell membranes can be used for drug screening.

5

10

15

20

25

30

ABC1 expression can also serve as a diagnostic tool for low HDL or CVD; determination of the genetic subtyping of the ABC1 gene sequence can be used to subtype low HDL individuals or families to determine whether the low HDL phenotype is related to ABC1 function. This diagnostic process can lead to the tailoring of drug treatments according to patient genotype (referred to as pharmacogenomics), including prediction of the patient's response (e.g., increased or decreased efficacy or undesired side effects upon administration of a compound or drug.

Antibodies to an ABC1 polypeptide can be used both as therapeutics and diagnostics. Antibodies are produced by immunologically challenging a B-cell-containing biological system, e.g., an animal such as a mouse, with an ABC1 polypeptide to stimulate production of anti-ABC1 protein by the B-cells, followed by isolation of the antibody from the biological system. Such antibodies can be used to measure ABC1 polypeptide in a biological sample such as serum, by contacting the sample with the antibody and then measuring immune complexes as a measure of the ABC1 polypeptide in the sample. Antibodies to ABC1 can also be used as therapeutics for the modulation of ABC1 biological activity.

Thus, in another aspect, the invention features a purified antibody that specifically binds to ABC1.

In yet another aspect, the invention features a method for determining whether a candidate compound modulates ABC1 biological activity, comprising: (a) providing an ABC1 polypeptide; (b) contacting the ABC1 polypeptide with the candidate compound; and (c) measuring ABC1 biological activity, wherein altered ABC1 biological activity, relative to an ABC1 polypeptide not contacted with the compound,

indicates that the candidate compound modulates ABC1 biological activity. Preferably, the ABC1 polypeptide is in a cell or is in a cell-free assay system.

5

10

15

20

25

30

In still another aspect, the invention features a method for determining whether a candidate compound modulates ABC1 expression. The method includes (a) providing a nucleic acid molecule comprising an ABC1 promoter operably linked to a reporter gene; (b) contacting the nucleic acid molecule with the candidate compound; and (c) measuring reporter gene expression, wherein altered reporter gene expression, relative to a nucleic acid molecule not contacted with the compound, indicates that the candidate compound modulates ABC1 expression.

In another aspect, the invention features a method for determining whether candidate compound is useful for modulating cholesterol levels, the method including the steps of: (a) providing an ABC1 polypeptide; (b) contacting the polypeptide with the candidate compound; and (c) measuring binding of the ABC1 polypeptide, wherein binding of the ABC1 polypeptide indicates that the candidate compound is useful for modulating cholesterol levels.

In a related aspect, the invention features method for determining whether a candidate compound mimics ABC1 biological activity. The method includes (a) providing a cell that is not expressing an ABC1 polypeptide; (b) contacting the cell with the candidate compound; and (c) measuring ABC1 biological activity of the cell, wherein altered ABC1 biological activity, relative to a cell not contacted with the compound, indicates that the candidate compound modulates ABC1 biological activity. Preferably, the cell has an ABC1 null mutation. In one preferred embodiment, the cell is in a mouse or a chicken (e.g., a WHAM chicken) in which its ABC1 gene has been mutated.

In still another aspect, the invention features a method for determining whether a candidate compound is useful for the treatment of low HDL cholesterol. The method includes (a) providing an ABC transporter (e.g., ABC1); (b) contacting the transporter with the candidate compound; and (c) measuring ABC transporter biological activity, wherein increased ABC transporter biological activity, relative to a transporter not contacted with the compound, indicates that the candidate compound is useful for the treatment of low HDL cholesterol. Preferably the ABC transporter is

in a cell or a cell free assay system.

5

10

15

20

25

30

In yet another aspect, the invention features a method for determining whether candidate compound is useful for modulating cholesterol levels. The method includes (a) providing a nucleic acid molecule comprising an ABC transporter promoter operably linked to a reporter gene; (b) contacting the nucleic acid molecule with the candidate compound; and (c) measuring expression of the reporter gene, wherein increased expression of the reporter gene, relative to a nucleic acid molecule not contacted with the compound, indicates that the candidate compound is useful for modulating cholesterol levels.

In still another aspect, the invention features a method for determining whether a candidate compound increases the stability or decreases the regulated catabolism of an ABC transporter polypeptide. The method includes (a) providing an ABC transporter polypeptide; (b) contacting the transporter with the candidate compound; and (c) measuring the half-life of the ABC transporter polypeptide, wherein an increase in the half-life, relative to a transporter not contacted with the compound, indicates that the candidate compound increases the stability or decreases the regulated catabolism of an ABC transporter polypeptide. Preferably the ABC transporter is in a cell or a cell free assay system.

In a preferred embodiment of the screening methods of the present invention, the cell is in an animal. The preferred ABC transporters are ABC1, ABC2, ABCR, and ABC8, and the preferred biological activity is transport of cholesterol (e.g., HDL cholesterol or LDL cholesterol) or interleukin-1, or is binding or hydrolysis of ATP by the ABC1 polypeptide.

Preferably, the ABC1 polypeptide used in the screening methods includes amino acids 1-60 of SEQ ID NO: 1. Alternatively, the ABC1 polypeptide can include a region encoded by a nucleotide sequence that hybridizes under high stringency conditions to nucleotides 75 to 254 of SEQ ID NO: 2.

In another aspect, the invention features a method for determining whether a patient has an increased risk for cardiovascular disease. The method includes determining whether an ABC1 gene of the patient has a mutation, wherein a mutation indicates that the patient has an increased risk for cardiovascular disease.

In related aspect, the invention features a method for determining whether a patient has an increased risk for cardiovascular disease. The method includes determining whether an ABC1 gene of the patient has a polymorphism, wherein a polymorphism indicates that the patient has an increased risk for cardiovascular disease.

5

10

15

20

25

30

In another aspect, the invention features a method for determining whether a patient has an increased risk for cardiovascular disease. The method includes measuring ABC1 biological activity in the patient, wherein increased or decreased levels in the ABC1 biological activity, relative to normal levels, indicates that the patient has an increased risk for cardiovascular disease.

In still another aspect, the invention features a method for determining whether a patient has an increased risk for cardiovascular disease. The method includes measuring ABC1 expression in the patient, wherein decreased levels in the ABC1 expression relative to normal levels, indicates that the patient has an increased risk for cardiovascular disease. Preferably, the ABC1 expression is determined by measuring levels of ABC1 polypeptide or ABC1 RNA.

In another aspect, the invention features a non-human mammal having a transgene comprising a nucleic acid molecule encoding a mutated ABC1 polypeptide. In one embodiment, the mutation is a dominant-negative mutation.

In a related aspect, the invention features a non-human mammal, having a transgene that includes a nucleic acid molecule encoding an ABC1 polypeptide having ABC1 biological activity.

In another related aspect, the invention features a cell from a non-human mammal having a transgene that includes a nucleic acid molecule encoding an ABC1 polypeptide having ABC1 biological activity.

In still another aspect, the invention features a method for determining whether a candidate compound decreases the inhibition of a dominant-negative ABC1 polypeptide. The method includes (a) providing a cell expressing a dominant-negative ABC1 polypeptide; (b) contacting the cell with the candidate compound; and (c) measuring ABC1 biological activity of the cell, wherein an increase in the ABC1 biological activity, relative to a cell not contacted with the compound, indicates that

the candidate compound decreases the inhibition of a dominant-negative ABC1 polypeptide.

5

10

15

20

25

30

By "polypeptide" is meant any chain of more than two amino acids, regardless of post-translational modification such as glycosylation or phosphorylation.

By "substantially identical" is meant a polypeptide or nucleic acid exhibiting at least 50%, preferably 85%, more preferably 90%, and most preferably 95% identity to a reference amino acid or nucleic acid sequence. For polypeptides, the length of comparison sequences will generally be at least 16 amino acids, preferably at least 20 amino acids, more preferably at least 25 amino acids, and most preferably 35 amino acids. For nucleic acids, the length of comparison sequences will generally be at least 50 nucleotides, preferably at least 60 nucleotides, more preferably at least 75 nucleotides, and most preferably 110 nucleotides.

Sequence identity is typically measured using sequence analysis software with the default parameters specified therein (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705). This software program matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine, valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

By "high stringency conditions" is meant hybridization in 2X SSC at 40°C with a DNA probe length of at least 40 nucleotides. For other definitions of high stringency conditions, see F. Ausubel et al., *Current Protocols in Molecular Biology*, pp. 6.3.1-6.3.6, John Wiley & Sons, New York, NY, 1994, hereby incorporated by reference.

By "substantially pure polypeptide" is meant a polypeptide that has been separated from the components that naturally accompany it. Typically, the polypeptide is substantially pure when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the polypeptide is an ABC1 polypeptide that is at least 75%,

5

10

15

20

25

30

more preferably at least 90%, and most preferably at least 99%, by weight, pure. A substantially pure ABC1 polypeptide may be obtained, for example, by extraction from a natural source (e.g., a pancreatic cell), by expression of a recombinant nucleic acid encoding a ABC1 polypeptide, or by chemically synthesizing the protein. Purity can be measured by any appropriate method, e.g., by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.

A polypeptide is substantially free of naturally associated components when it is separated from those contaminants that accompany it in its natural state. Thus, a polypeptide which is chemically synthesized or produced in a cellular system different from the cell from which it naturally originates will be substantially free from its naturally associated components. Accordingly, substantially pure polypeptides include those which naturally occur in eukaryotic organisms but are synthesized in *E. coli* or other prokaryotes.

By "substantially pure nucleic acid" is meant nucleic acid that is free of the genes which, in the naturally-occurring genome of the organism from which the nucleic acid of the invention is derived, flank the nucleic acid. The term therefore includes, for example, a recombinant nucleic acid that is incorporated into a vector; into an autonomously replicating plasmid or virus; into the genomic nucleic acid of a prokaryote or a eukaryote cell; or that exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. It also includes a recombinant nucleic acid that is part of a hybrid gene encoding additional polypeptide sequence.

By "modulates" is meant increase or decrease. Preferably, a compound that modulates cholesterol levels (e.g., HDL-cholesterol levels, LDL-cholesterol levels, or total cholesterol levels), or ABC1 biological activity, expression, stability, or degradation does so by at least 10%, more preferably by at least 25%, and most preferably by at least 50%.

By "purified antibody" is meant antibody which is at least 60%, by weight, free from proteins and naturally occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably 90%, and most preferably at least 99%, by weight, antibody. A purified antibody may be

obtained, for example, by affinity chromatography using recombinantly-produced protein or conserved motif peptides and standard techniques.

By "specifically binds" is meant an antibody that recognizes and binds to, for example, a human ABC1 polypeptide but does not substantially recognize and bind to other non-ABC1 molecules in a sample, e.g., a biological sample, that naturally includes protein. A preferred antibody binds to the ABC1 polypeptide sequence of Fig. 9A (SEQ ID NO: 1).

5

10

15

20

25

30

By "polymorphism" is meant that a nucleotide or nucleotide region is characterized as occurring in several different forms. A "mutation" is a form of a polymorphism in which the expression level, stability, function, or biological activity of the encoded protein is substantially altered.

By "ABC transporter" or "ABC polypeptide" is meant any transporter that hydrolyzes ATP and transports a substance across a membrane. Preferably, an ABC transporter polypeptide includes an ATP Binding Cassette and a transmembrane region. Examples of ABC transporters include, but are not limited to, ABC1, ABC2, ABCR, and ABC8.

By "ABC1 polypeptide" is meant a polypeptide having substantial identity to an ABC1 polypeptide having the amino acid sequence of SEQ ID NO: 1.

By "ABC biological activity" or "ABC1 biological activity" is meant hydrolysis or binding of ATP, transport of a compound (e.g., cholesterol, interleukin1) or ion across a membrane, or regulation of cholesterol or phospholipid levels (e.g., either by increasing or decreasing HDL-cholesterol or LDL-cholesterol levels).

The invention provides screening procedures for identifying therapeutic compounds (cholesterol-modulating or anti-CVD pharmaceuticals) which can be used in human patients. Compounds that modulate ABC biological activity (e.g., ABC1 biological activity) are considered useful in the invention, as are compounds that modulate ABC concentration, protein stability, regulated catabolism, or its ability to bind other proteins or factors. In general, the screening methods of the invention involve screening any number of compounds for therapeutically active agents by employing any number of *in vitro* or *in vivo* experimental systems. Exemplary methods useful for the identification of such compounds are detailed below.

5

10

15

20

25

30

The methods of the invention simplify the evaluation, identification and development of active agents for the treatment and prevention of low HDL and CVD. In general, the screening methods provide a facile means for selecting natural product extracts or compounds of interest from a large population which are further evaluated and condensed to a few active and selective materials. Constitutes of this pool are then purified and evaluated in the methods of the invention to determine their HDL-raising or anti-CVD activities or both.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Brief Description of the Drawings

Figs. 1A and 1B are schematic illustrations showing two pedigrees with Tangier Disease, (TD-1 and TD-2). Square and circle symbols represent males and females, respectively. Diagonal lines are placed through the symbols of all deceased individuals. A shaded symbol on both alleles indicates the probands with Tangier Disease. Individuals with half shaded symbols have HDL-C levels at or below the 10th percentile for age and sex, while those with quarter shaded symbols have HDL-C between the 11th and 20th percentiles.

Each individual's ID number, age at the time of lipid measurement, triglyceride level and HDL cholesterol level followed by their percentile ranking for age and sex are listed below the pedigree symbol. Markers spanning the 9q31.1 region are displayed to the left of the pedigree. The affected allele is represented by the darkened bars which illustrate the mapping of the limits of the shared haplotype region as seen in Fig. 3. Parentheses connote inferred marker data, questions marks indicate unknown genotypes, and large arrows show the probands.

Fig. 1C shows ApoAI (10 μ g/mL) -mediated cellular cholesterol efflux in control fibroblasts (n=5, normalized to 100%) and two subjects with Tangier disease (TD). Cells were ³H-cholesterol (0.2 μ Ci/mL) labeled during growth and cholesterol (20 μ g/mL) loaded in growth arrest. Cholesterol efflux is determined as ³H medium/(³H cell + ³H medium)

5

10

15

20

25

30

Fig. 2A - 2D are schematic illustrations showing four French Canadian pedigrees with FHA (FHA-1 to -4). The notations are as in Fig. 1. Exclamation points on either side of a genotype (as noted in Families FHA-3 and FHA-4) are used when the marker data appears to be inconsistent due to potential microsatellite repeat expansions. A bar that becomes a single thin line suggests that the haplotype is indeterminate at that marker.

Figs. 3A - 3E are a schematic illustration showing a genetic and physical map of 9q31 spanning 35 cM. Fig. 3A: YACs from the region of 9q22-34 were identified and a YAC contig spanning this region was constructed. Fig. 3B: A total of 22 polymorphic CA microsatellite markers were mapped to the contig and used in haplotype analysis in TD-1 and TD-2. Fig 3C: The mutant haplotypes for probands in TD-1 and -2 indicate a significant region of homozygosity in TD-2, while the proband in TD-1 has 2 different mutant haplotypes. The candidate region can be narrowed to the region of homozygosity for CA markers in proband 2. A critical crossover at D9S1690 in TD-1 (A)* also provides a centromeric boundary for the region containing the gene. Three candidate genes in this region (ABC1, LPA-R and RGS-3) are shown. Fig. 3D: Meiotic recombinations in the FHA families (A-H) refine the minimal critical region to 1.2 cM between D9S277 and D9S1866. The heterozygosity of the TD-2 proband at D9S127, which ends a continuous region of homozygosity in TD-2, further refines the region to less than 1 cM. This is the region to which ABC1 has been mapped. Fig. 3E: Isolated YAC DNA and selected markers from the region were used to probe high-density BAC grid filters, selecting BACs which via STS-content mapping produced an 800 Kb contig. Four BACs containing ABC1 were sequenced using high-throughput methods.

Fig. 4A shows sequence of one mutation in family TD-1. Patient III-01 is heterozygous for a T to C transition at nucleotide 4503 of the cDNA; the control is homozygous for T at this position. This mutation corresponds to a cysteine to arginine substitution in the ABC1 protein (C1477R).

Fig 4B shows the amino acid sequence conservation of residue 1477 in mouse and human, but not a related *C. elegans* gene. A change from cysteine to arginine likely has an important effect on the protein secondary and tertiary structure, as noted

5

10

15

20

25

30

by its negative scores in most substitution matrices (Schuler et al., A Practical Guide to the Analysis of Genes and Proteins, eds. Baxevanis, A.D. & Ouellette, B.F.F. 145:171, 1998). The DNA sequences of the normal and mutant genes are shown above and below the amino acid sequences, respectively.

Fig. 4C shows the segregation of the T4503C mutation in TD-1. The presence of the T4503C mutation (+) was assayed by restriction enzyme digestion with HgaI, which cuts only the mutant (C) allele (1). Thus, in the absence of the mutation, only the 194 bp PCR product (amplified between - and -) is observed, while in its presence the PCR product is cleaved into fragments of 134 bp and 60 bp. The proband (individual III.01) was observed to be heterozygous for this mutation (as indicated by both the 194 bp and 134 bp bands), as were his daughter, father, and three paternal cousins. A fourth cousin and three of the father's siblings were not carriers of this mutation.

Fig. 4D shows Northern blot analysis with probes spanning the complete ABC1 gene reveal the expected ~8 Kb transcript and, in addition, a ~3.5 kb truncated transcript only seen in the proband TD-1 and not in TD-2 or control. This was detected by probes spanning exons 1-49 (a), 1-41 (b), 1-22 (c), and 23-29 (d), but not with probes spanning exons 30-41 (e) or 42-49 (f).

Fig. 5A shows the sequence of the mutation in family TD-2. Patient IV-10 is homozygous for an A to G transition at nucleotide 1864 of the cDNA (SEQ ID NO: 2); the control is homozygous for A at this position. This mutation corresponds to a glutamine to arginine substitution in the ABC1 protein (Q597R).

Fig. 5B shows that the glutamine amino acid, which is mutated in the TD-2 proband, is conserved in human and mouse ABC1 as well as in an ABC orthologue from *C. elegans*, revealing the specific importance of this residue in the structure/function of this ABC protein in both worms and mammals. The DNA sequences of the normal and mutant proteins are shown above and below the amino acid sequences, respectively.

Fig. 5C shows the segregation of the A1864G mutation in TD-2. The presence of the A1864G mutation (indicated by +) was assayed by restriction enzyme digestion with *Aci*I. The 360 bp PCR product has one invariant *Aci*I recognition site

(1), and a second one is created by the A1864G mutation. The wild-type allele is thus cleaved to fragments of 215 bp and 145 bp, while the mutant allele (G-allele) is cleaved to fragments of 185 bp, 145 bp and 30 bp. The proband (individual IV-10), the product of a consanguineous mating, was homozygous for the A1864G mutation (+/+), as evidenced by the presence of only the 185 bp and 145 bp bands, while four other family members for whom DNA was tested are heterozygous carriers of this mutation (both the 215 bp and 185 bp fragments were present). Two unaffected individuals (-/-), with only the 215 bp and 145 bp bands are shown for comparison.

5

10

15

20

25

30

Fig. 6A shows a sequence of the mutation in family FHA-1. Patient III-01 is heterozygous for a deletion of nucleotides 2151-2153 of the cDNA (SEQ ID NO: 2). This deletion was detected as a superimposed sequence starting at the first nucleotide after the deletion. This corresponds to deletion of leucine 693 in the ABC1 protein (SEQ ID NO: 1).

Fig. 6B is an alignment of the human and mouse wild-type amino acid sequences, showing that the human and mouse sequences are identical in the vicinity of ΔL693. L693 is also conserved in *C. elegans*. This highly conserved residue lies within a predicted transmembrane domain. The DNA sequences of the normal and mutant proteins are shown above and below the amino acid sequences, respectively.

Fig. 6C shows segregation of the ΔL693 mutation in FHA-1, as assayed by EarI restriction digestion. Two invariant EarI restriction sites (indicated by !) are present within the 297 bp PCR product located between the horizontal arrows (--) while a third site is present in the wild-type allele only. The presence of the mutant allele is thus distinguished by the presence of a 210 bp fragment (+), while the normal allele produces a 151 bp fragment (-). The proband of this family (III.01) is heterozygous for this mutation, as indicated by the presence of both the 210 and 151 bp bands.

Fig. 6D shows a sequence of the mutation in family FHA-3. Patient III-01 is heterozygous for a deletion of nucleotides 5752-5757 of the cDNA (SEQ ID NO: 2). This deletion was detected as a superimposed sequence starting at the first nucleotide after the deletion. This corresponds to deletion of glutamic acid 1893 and aspartic acid 1894 in the ABC1 protein (SEQ ID NO: 1).

5

10

15

20

25

30

Fig. 6E is an alignment of the human and mouse wild-type amino acid sequences, showing that the human and mouse sequences are identical in the vicinity of $\Delta 5752-5757$. This region is highly conserved in *C. elegans*. The DNA sequences of the normal and mutant proteins are shown above and below the amino acid sequences, respectively.

Fig. 6F shows a sequence of the mutation in family FHA-2. Patient III-01 is heterozygous for a C to T transition at nucleotide 6504 of the cDNA (SEQ ID NO: 2). This alteration converts an arginine at position 2144 of SEQ ID NO: 1 to a STOP codon, causing truncation of the last 118 amino acids of the ABC1 protein.

Figs. 7A and 7B show cholesterol efflux from human skin fibroblasts treated with ABC1 antisense oligonucleotides. Fibroblasts from a control subject were labeled with ³H cholesterol (0.2 μCi/mL) during growth for 48 hours and transfected with 500 nM *ABC1* antisense AN-1 (5'-GCA GAG GGC ATG GCT TTA TTT G-3'; SEQ ID NO: 3) with 7.5 μg lipofectin for 4 hours. Following transfection, cells were cholesterol loaded (20 μg/mL) for 12 hours and allowed to equilibrate for 6 hours. Cells were either then harvested for total RNA and 10 μg was used for Northern blot analysis. Cholesterol efflux experiments were carried out as described herein. Fig. 7A: AN-1 was the oligonucleotide that resulted in a predictable decrease in *ABC1* RNA transcript levels. Fig. 7B: A double antisense transfection method was used. In this method, cells were labeled and transfected with AN-1 as above, allowed to recover for 20 hours, cholesterol loaded for 24 hours, and then re-transfected with AN-1. Twenty hours after the second transfection, the cholesterol efflux as measured. A ~50% decrease in *ABC1* transcript levels was associated with a significant decrease in cholesterol efflux intermediate between that seen in wild-type and TD fibroblasts.

Fig. 7C shows show cholesterol efflux from human skin fibroblasts treated with antisense oligonucleotides directed to the region encoding the amino-terminal 60 amino acids. Note that the antisense oligonucleotide AN-6, which is directed to the previously unrecognized translation start site, produces a substantial decrease in cellular cholesterol efflux.

Fig. 8 is a schematic illustration showing predicted topology, mutations, and polymorphisms of ABC1 in Tangier disease and FHA. The two transmembrane and

ATP binding domains are indicated. The locations of mutations are indicated by the arrows with the amino acid changes, which are predicted from the human ABC1 cDNA sequence. These mutations occur in different regions of the ABC1 protein.

Fig. 9A shows the amino acid sequence of the human ABC1 protein (SEQ ID NO: 1).

5

10

15

20

25

30

Figs. 9B - 9E show the nucleotide sequence of the human ABCI cDNA (SEQ ID NO: 2).

Fig. 10 shows the 5' and 3' nucleotide sequences suitable for use as 5' and 3' PCR primers, respectively, for the amplification of the indicated ABC1 exon.

Fig. 11 shows a summary of alterations found in ABC1, including sequencing errors, mutations, and polymorphisms.

Fig. 12 shows a series of genomic contigs (SEQ ID NOS. 14-29) containing the ABC1 promoter (SEQ ID NO: 14), as well as exons 1-49 (and flanking intronic sequence) of ABC1. The exons (capitalized letters) are found in the contigs as follows: SEQ ID NO: 14--exon 1; SEQ ID NO: 15--exon 2; SEQ ID NO: 16--exon 3; SEQ ID NO: 17--exon 4; SEQ ID NO: 18--exon 5; SEQ ID NO: 19--exon 6; SEQ ID NO: 20--exons 7 and 8; SEQ ID NO: 21--exons 9 through 22; SEQ ID NO: 22--exons 23 through 28; SEQ ID NO: 23--exon 29; SEQ ID NO: 24--exons 30 and 31; SEQ ID NO: 25--exon 32; SEQ ID NO: 26--exons 33 through 36; SEQ ID NO: 27--exons 37 through 41; SEQ ID NO: 28--exons 42-45; SEQ ID NO: 29--exons 46-49.

Fig. 13 is a series of illustrations showing that the amino-terminal 60 amino acid region of ABC1 is protein-coding. Lysates of normal human fibroblasts were immunoblotted in parallel with a rabbit polyclonal antibody to amino acids 1-20 of human ABC1 (1); a rabbit polyclonal antibody to amino acids 1430-1449 of human ABC1 (2); and a mouse monoclonal antibody to amino acids 2236-2259 of human ABC1. The additional bands detected in lane 2 may be due to a lack of specificity of that antibody or the presence of degradation products of ABC1.

Fig. 14 is a schematic illustration showing that the WHAM chicken contains a non-conservative substitution (G265A) resulting in an amino acid change (E89K).

Fig. 15 is a schematic illustration showing that the mutation in the WHAM chicken is at an amino acid that is conserved among human, mouse, and chicken.

5

10

15

20

25

30

Fig. 16 show a summary of locations of consensus transcription factor binding sites in the human ABC1 promoter (nucleotides 1-8238 of SEQ ID NO: 14). The abbreviations are as follows: PPRE=peroxisome proliferator-activated receptor. SRE=steroid response element-binding protein site. ROR=RAR-related orphan receptor.

Detailed Description

Genes play a significant role influencing HDL levels. Tangier disease (TD) was the first reported genetic HDL deficiency. The molecular basis for TD is unknown, but has been mapped to 9q31 in three families. We have identified two additional probands and their families, and confirmed linkage and refined the locus to a limited genomic region. Mutations in the ABC1 gene accounting for all four alleles in these two families were detected. A more frequent cause of low HDL levels is a distinct disorder, familial HDL deficiency (FHA). On the basis of independent linkage, meiotic recombinants and disease associated haplotypes, FHA was localized to a small genomic region encompassing the ABC1 gene. A mutation in a conserved residue in ABC1 segregated with FHA. Antisense reduction of the ABC1 transcript in fibroblasts was associated with a significant decrease in cholesterol efflux.

Cholesterol is normally assembled with intracellular lipids and secreted, but in TD the process is diverted and cholesterol is degraded in lysosomes. This disturbance in intracellular trafficking of cholesterol results in an increase in intracellular cholesterol ester accumulation associated with morphological changes of lysosomes and the Golgi apparatus and cholesteryl ester storage in histiocytes, Schwann cells, smooth muscle cells, mast cells and fibroblasts.

The clinical and biochemical heterogeneity in patients with TD has led to the possibility that genetic heterogeneity may also underlie this disorder. Considering this, we initially performed linkage analysis on these two families of different ancestries (TD-1 is Dutch, TD-2 is British; Frohlich et al., Clin. Invest. Med. 10:377-382, 1987) and confirmed that the genetic mutations underlying TD in these families were localized to the same 9q31 region, to which a large family with TD had been

5

10

15

20

25

30

assigned (Rust et al., Nature Genetics 20:96-98, 1998). Detailed haplotype analysis, together with the construction of a physical map, refined the localization of this gene. Mutations in the ABC1 gene were found in TD.

FHA is much more common than TD, although its precise frequency is not known. While TD has been described to date in only 40 families, we have identified more than 40 FHA families in the Netherlands and Quebec alone. After initial suggestions of linkage to 9q31, thirteen polymorphic markers spanning approximately 10 cM in this region were typed and demonstrated the highest LOD score at D9S277. Analysis of the homozygosity of markers in the TD-2 proband, who was expected to be homozygous for markers close to TD due to his parents' consanguinity, placed the TD gene distal to D95127. Combined genetic data from TD and FHA families pointed to the same genomic segment spanning approximately 1,000 kb between D9S127 and D9S1866. The *ABC1* transporter gene was contained within the minimal genomic region. RT-PCR analysis in one family demonstrated a deletion of leucine at residue 693 (Δ693) in the first transmembrane domain of ABC1, which segregated with the phenotype of HDL deficiency in this family.

ABC1 is part of the ATP-binding cassette (ABC transporter) superfamily, which is involved in energy-dependent transport of a wide variety of substrates across membranes (Dean et al., Curr. Opin. Gen. Dev. 5:779-785, 1995). These proteins have characteristic motifs conserved throughout evolution which distinguish this class of proteins from other ATP binding proteins. In humans these genes essentially encode two ATP binding segments and two transmembrane domains (Dean et al., Curr. Opin. Gen. Dev. 5:779-785, 1995). We have now shown that the ABC1 transporter is crucial for intracellular cholesterol transport.

We have demonstrated that reduction of the ABCI transcript using oligonucleotide antisense approaches results in decreased efflux, clearly demonstrating the link between alterations in this gene and its functional effects. TD and FHA now join the growing list of genetic diseases due to defects in the ABC group of proteins including cystic fibrosis (Zielenski, et al., Annu. Rev. Genet. 29:777-807, 1995), adrenoleukodystrophy (Mosser et al., Nature 361: 726-730, 1993), Zellweger syndrome (Gärtner et al., Nat. Genet. 1:23, 1992), progressive familial

5

10

15 .

20

25

30

intrahepatic cholestatis (Bull et al., Nat. Genet. 18:219-224, 1998), and different eye disorders including Stargardt disease (Allikmets et al., Nat. Genet.15:236-246, 1997), autosomal recessive retinitis pigmentosa (Allikmets et al., Science 277:1805-1807, 1997), and cone-rod dystrophy (Cremers et al., Hum. Mol. Genet. 7:355-362, 1998).

Patients with TD have been distinguished from patients with FHA on the basis that Tangier disease was an autosomal recessive disorder (OMIM 20540) while FHA is inherited as an autosomal dominant trait (OMIM 10768). Furthermore, patients with TD have obvious evidence for intracellular cholesterol accumulation which is not seen in FHA patients. It is now evident that heterozygotes for TD do have reduced HDL levels and that the same mechanisms underlie the HDL deficiency and cholesterol efflux defects seen in heterozygotes for TD as well as FHA. Furthermore, the more severe phenotype in TD represents loss of function from both alleles of the ABC1 gene.

ABC1 is activated by protein kinases, presumably via phosphorylation, which also provides one explanation for the essential role of activation of protein kinase C in promoting cholesterol efflux (Drobnick et al., Arterioscler, Thromb. Vasc. Biol. 15: 1369-1377, 1995). Brefeldin, which inhibits trafficking between the endoplasmic reticulum and the Golgi, significantly inhibits cholesterol efflux, essentially reproducing the effect of mutations in ABC1, presumably through the inhibition of ABC1 biological activity. This finding has significance for the understanding of mechanisms leading to premature atherosclerosis. TD homozygotes develop premature coronary artery disease, as seen in the proband of TD-1 (III-01) who had evidence for coronary artery disease at 38 years. This is particular noteworthy as TD patients, in addition to exhibiting significantly reduced HDL, also have low LDL cholesterol, and yet they develop atherosclerosis despite this. This highlights the importance of HDL intracellular transport as an important mechanism in atherogenesis. There is significant evidence that heterozygotes for TD are also at increased risk for premature vascular disease (Schaefer et al., Ann. Int. Med. 93:261-266, 1980; Serfaty-Lacrosniere et al., Atherosclerosis 107:85-98, 1994). There is also preliminary evidence for premature atherosclerosis in some probands with FHA (Fig. 2B), e.g., the proband in FHA-2 (III-01) had a coronary artery bypass graft at 46 years

while the proband in FHA-3 (Fig. 2C) had evidence for GAD around 50 years of age. The TD-1 proband had more severe efflux deficiency than the TD-2 proband (Fig. 1C). Interestingly, the TD-2 proband had no evidence for CAD by 62 when he died of unrelated causes, providing preliminary evidence for a relationship between the degree of cholesterol efflux (mediated in part by the nature of the mutation) and the likelihood of atherosclerosis.

The ABCI gene plays a crucial role in cholesterol transport and, in particular, intracellular cholesterol trafficking in monocytes and fibroblasts. It also appears to play a significant role in other tissues such as the nervous system, GI tract, and the cornea. Completely defective intracellular cholesterol transport results in peripheral neuropathy, corneal opacities, and deposition of cholesterol esters in the rectal mucosa.

HDL deficiency is heterogeneous in nature. The delineation of the genetic basis of TD and FHA underlies the importance of this particular pathway in intracellular cholesterol transport, and its role in the pathogenesis of atherosclerosis. Unraveling of the molecular basis for TD and FHA defines a key step in a poorly defined pathway of cholesterol efflux from cells and could lead to new approaches to treatment of patients with HDL deficiency in the general population.

HDL has been implicated in numerous other biological processes, including but not limited to: prevention of lipoprotein oxidation; absorption of endotoxins; protection against *Trypanosoma brucei* infection; modulation of endothelial cells; and prevention of platelet aggregation (see Genest et al., J. Invest. Med. 47: 31-42, 1999, hereby incorporated by reference). Any compound that modulates HDL levels may be useful in modulating one or more of the foregoing processes. The present discovery that ABC1 functions to regulate HDL levels links, for the first time, ABC1 with the foregoing processes.

The following examples are to illustrate the invention. They are not meant to limit the invention in any way.

5

10

15

20

25

Analysis of TD Families

5

10

15

20

25

30

Studies of cholesterol efflux

Both probands had evidence of marked deficiency of cholesterol efflux similar to that previously demonstrated in TD patients (Fig. 1C). TD-1 is of Dutch descent while TD-2 is of British descent.

Linkage analysis and establishment of a physical map

Multiple DNA markers were genotyped in the region of 9q31 to which linkage to TD had been described (Rust et al., Nat. Genet. 20, 96-98, 1998). Two point linkage analysis gave a maximal peak LOD score of 6.49 at D9S1832 (Table 1) with significant evidence of linkage to all markers in a ~10 cM interval. Recombination with the most proximal marker, D9S1690 was seen in II-09 in Family TD-1 (A* in Fig. 3D) providing a centromeric boundary for the disease gene. Multipoint linkage analysis of these data did not increase the precision of the positioning of the disease trait locus.

A physical map spanning approximately 10 cM in this region was established with the development of a YAC contig (Fig. 3A). In addition, 22 other polymorphic multi-allelic markers which spanned this particular region were mapped to the contig (Fig. 3B) and a subset of these were used in construction of a haplotype for further analysis (Figs. 1A and 1B; Table 2).

While the family of Dutch decent did not demonstrate any consanguinity, the proband in TD-2 was the offspring of a first-cousin consanguineous marriage (Fig. 1B). We postulated, therefore, that it was most likely that this proband would be homozygous for the mutation while the proband in the Dutch family was likely to be a compound heterozygote. The Dutch proband shows completely different mutation bearing haplotypes, supporting this hypothesis (Fig. 3C).

The TD-2 proband was homozygous for all markers tested (Fig. 1B) distal to D9S127 but was heterozygous at D9S127 and DNA markers centromeric to it (Fig. 3C). This suggested that the gene for TD was likely located to the genomic region telomeric of D9S127 and encompassed by the markers demonstrating homozygosity (Fig. 3B).

TABLE 1

Two Point Linkage Analysis of TD-1 and TD-2

	LOD Score at recombination fraction								
Marker Locus	0 .	0.01	0.05	0.10	0.20	0.30	0.40		
D9S1690	-infini	4.25	4.52	4.26	3.39	2.30	1.07		
D9\$277	6.22	6.11	5.67	5.10	3.90	2.60	1.17		
D9S1866	4.97	4.87	4.49	4.00	2.96	1.85	0.70		
D9S1784	5.50	5.40	5.00	4.47	3.36	2.17	0.92		
D9S1832	6.49	6.37	5.91	5.31	4.05	2.69	1.21		
D9S1677	4.60	4.51	4.18	3.76	2.88	1.93	0.93		

Results of pairwise linkage analysis using MLINK. Values correspond to the LOD score for linkage between the disease locus and a marker locus for specified values of the recombination fraction.

TABLE 2. Microsatellite markers used in this study

Genetic Markers	Type	Heiero-	Number of alleles	Allele frequency' size.br (proportion)				
		zygocity						
D9S283	CA ·	0.80	10	179(0.04); 181(0.34); 183(0.15); 185(0.20% 189(0.05); 193(0.04); 197(0.07); 155(0.02); 201(0.04); 203(0.04)				
D9S176	C.A	0.32	9	129(0.03); 131(0.16); 133(0.25); 135(0.12); 137(0.25); 139(0.03); 14((0.01); 145(0.05); 147(0.05)				
D9S1690	C.A.	0.79	\$	225(0.38): 227(0.14); 229(0.64); 231(0.12); 233(0.05); 235(0.16); 237(0.05); 219(0.05)				
D9S277	CA	0.89	15	167(0.07); 171(0.02); 173(0.15;; 175(0.11); 177(0.07); 179(0.04); 181(0.17); 182(0.06); 185(0.02); 187(0.02); 189(0.12); 191(0.13); 193(0.02); 197(0.00); 199(0.00)				
D9S127	CA	0.72	6	149(0.11): 151(0.07): 153(0.25): 155(0.05): 157(0.45): 159(0.06)				
D9S306 .	CA .	0.87	13	102(0.06): 104(0.01): 110(0.03): 112(0.08): 114(0.16): 116(0.15): 118(0.11): 120(0.23): 122(0.06): 124(0.06): 126(0.03): 134(0.02): 136(0.01)				
D9S1866	CA	. 0.62	11	248(0.06); 252(0.04); 254(0.01); 256(58); 258(0.03); 260(0.06); 262(0.02); 264(0.12); 266(0.06); 268(0.03); 270(0.01)				
D9S1784	C.A	0.86	15	174(0.10): 176(0.02): 178(0.00): 180(0.05): 182(0.11): 184(0.22): 186(0.15): 188(0.06): 190(0.04): 192(0.07): 194(0.6): 196(0.07): 198(0.01): 200(0.01): 202(0.01)				
AFMa107xf9	CA	n.a.	n.a.	п.а.				
D9S2170	C.₹′	n.a.	n.a	n.a.				
D9S2171	CA	n.a.	n.a.	n.a.				
D9S2107	C.A.	0.63	5	n.a.				
D9S172	CA	0.54	5	291(0.00); 297(0.05); 299(0.32); 303(0.62); 305(0.02)				
D9S2109	CA	0.51	3	1(0.42); 2(0.56); 3(0.02)				
D9S1832	C.A	88.0	12	161(0.04); 163(0.02); 167(0.02); 169(0.04); 171(0.10); 173(0.09); 175(0.15); 177(0.28); 179(0.19); 181(0.04); 183(0.91); 185(0.01)				
D9S1835	C.A	. 0.48	4	110(0.02); 112(0.23); 116(0.53); 118(0.07)				
D9S1801	C.A	0.77	10	166(0.10); 172(0.04); 174(0.02); 132(0.02);134(0.19); 186(0.40); 188(0.15); 150(0.04); 192(0.02); 194(0.02)				
D9S261	CA,	0.63	7	90(0.02); 92(0.52); 94(0.02); 58(0.02); 100(0.29); 102(0.04); 104(0.08)				
D9S160	CA	0.62	6	136(0.25); 138(0.53); 140(0.01); 142(0.12); 144(0.00); 146(0.07)				
D9S1677	C.A	0.81	. 10	251(0.27); 257(0.27); 259(0.07); 261(0.09); 263(0.27); 265(0.14); 267(0.02); 269(0.02) 271(0.04); 273(0.02)				
D9S279	CA	0.78	6	244(0.09); 246(0.18); 248(0.29); 250(0.29); 252(0.07); 254(0.09)				
D9S275	CA	0.62	4	190(0.31); 196(0.07); 198(6.22); 200(0.09)				

[†] In a Caucasian population of French Canadian or French descent (J. Weissenbach, Personnal Communication 1993). n.a = not assessed.

These polymorphic microsatellite markers were used for DNA typing in the region of 9q31 seen in Fig.3. The majority come from the last version of the Généthon human linkage map ⁵³. The frequency of heterozygosity, the number of alleles as well as the allele frequency of each marker are presented.

Mutation detection

5

10

15

20

25

30

Based on the defect in intracellular cholesterol transport in patients with TD, we reviewed the EST database for genes in this region which might be relevant to playing a role in this process. One gene that we reviewed as a candidate was the lysophosphatidic acid (LPA) receptor (EDG2) which mapped near D9S1801 (Fig. 3C). This receptor binds LPA and stimulates phospholipase-C (PLC), and is expressed in fibroblasts. It has previously been shown that the coordinate regulation of PLC that is necessary for normal HDL3 mediated cholesterol efflux is impaired in TD (Walter et al., J. Clin. Invest. 98:2315-2323, 1996). Therefore this gene represented an excellent candidate for the TD gene. Detailed assessment of this gene, using Northern blot and RT-PCR and sequencing analysis, revealed no changes segregating with the mutant phenotype in this family, in all likelihood excluding this gene as the cause for TD. Polymorphisms were detected, however, in the RT-PCR product, indicating expression of transcripts from both alleles.

The second candidate gene (RGS3) encodes a member of a family regulating G protein signaling which could also be involved in influencing cholesterol efflux (Mendez et al., Trans. Assoc. Amer. Phys. 104:48-53, 1991). This gene mapped 0.7 cM telomeric to the LPA-receptor (Fig. 3C), and is expressed in fibroblasts. It was assessed by exon-specific amplification, as its genomic organization was published (Chatterjee et al., Genomics 45:429-433, 1997). No significant sequence changes were detected.

The ABC1 transporter gene had previously been mapped to 9q31, but its precise physical location had not been determined (Luciani et al., Genomics 21:150-159, 1994). The ABC1 gene is a member of the ATP binding cassette transporters which represents a super family of highly conserved proteins involved in membrane transport of diverse substrates including amino acids, peptides, vitamins and steroid hormones (Luciani et al., Genomics 21:150-159, 1994; Dean et al., Curr. Opin. Gen. Dev. 5:779-785, 1995). Primers to the 3' UTR of this gene mapped to YACs spanning D9S306 (887-B2 and 930-D3) compatible with it being a strong candidate for TD. We initiated large scale genomic sequencing of BACs spanning approximately 800 kb around marker D9S306 (BACs 269, 274, 279 and 291) (Fig

3E). The ABC1 gene was revealed encompassing 49 exons and a minimum of 75 Kb of genomic sequence. In view of the potential function of a gene in this family as a cholesterol transporter, its expression in fibroblasts and localization to the minimal genomic segment underlying TD, we formally assessed ABC1 as a candidate.

5

10

15

20

25

30

Patient and control total fibroblast RNA was used in Northern blot analysis and RT-PCR and sequence analyses. RT-PCR and sequence analysis of TD-1 revealed a heterozygous T to C substitution (Fig. 4A) in the TD-1 proband, which would result in a substitution of arginine for cysteine at a conserved residue between mouse and man (Fig. 4B). This mutation, confirmed by sequencing exon 30 of the ABC1 gene, exhibited complete segregation with the phenotype on one side of this family (Fig. 4C). This substitution creates a HgaI site, allowing for RFLP analysis of amplified genomic DNA and confirmation of the mutation (Fig. 4C). The point mutation in exon 30 was not seen on over 200 normal chromosomes from unaffected persons of Dutch decent, and 250 chromosomes of Western European decent, indicating it is unlikely to be a polymorphism. Northern blot analysis of fibroblast RNA from this patient, using a cDNA encompassing exons 1 to 49 of the gene, revealed a normal sized ~8 Kb transcript and a truncated mutant transcript which was not visible in control RNA or in RNA from other patients with HDL deficiency (Fig. 4D). Additionally, Northern blot analysis using clones encompassing discrete regions of the cDNA revealed that the mutant transcript was detected with a cDNA compassing exons 1 to 49 (a), 1 to 41 (b), 1 to 22 (c), much more faintly with a probe spanning exon 23 to 29 (d) and not seen with probes encompassing exons 30 to 42 (e), but not seen with cDNA fragment spanning exons 30 to 49 (f). This was repeated on multiple filters with control RNA, RNA from other patients with HDL deficiency and the other TD proband, and only in TD-1 was the truncated transcript observed. Sequence analysis of the coding region did not reveal an alteration in sequence that could account for this finding. Furthermore, DNA analysis by Southern blot did not reveal any major rearrangements. Completion of exon sequencing in genomic DNA showed that this mutation was a G to C transversion at position (+1) of intron 24, (Fig. 11) affecting a splice donor site and causing aberrant splicing.

RT-PCR analysis of fibroblast RNA encoding the ABC1 gene from the

proband in TD-2 (Fig. 1B) revealed a homozygous nucleotide change of A to G at nucleotide 1864 of SEQ ID NO: 2 in exon 13 (Fig. 5A), resulting in a substitution of arginine for glutamine at residue 597 of SEQ ID NO: 1 (Fig. 5B), occurring just proximal to the first predicted transmembrane domain of ABC1 (Fig. 8) at a residue conserved in mouse and as well as a *C. elegans* homolog. This mutation creates a second *Aci*I site within exon 13. Segregation analysis of the mutation in this family revealed complete concordance between the mutation and the low HDL phenotype as predicted (Fig 5C). The proband in TD-2 is homozygous for this mutation, consistent with our expectation of a disease causing mutation in this consanguineous family.

10

15

20

25

30

5

Analysis of FHA families

Linkage analysis and refinement of the minimal genomic region containing the gene for FHA

Data from microsatellite typing of individual family members from the four pedigrees of French Canadian origin were analyzed (Fig. 2). A maximum LOD score of 9.67 at a recombination fraction of 0.0 was detected at D9S277 on chromosome 9q31 (Fig. 3; Table 3). Thereafter, 22 markers were typed in a region spanning 10 cM around this locus in these families (Figs. 2 and 3). The frequency for these markers were estimated from a sample of unrelated and unaffected subjects of French ancestry (Table 2).

TD and FHA have thus far been deemed distinct with separate clinical and biochemical characteristics. Even though the genes for these disorders mapped to the same region, it was uncertain whether FHA and TD were due to mutations in the same gene or, alternatively, due to mutations in genes in a similar region. Refinement of the region containing the gene for FHA was possible by examining haplotype sharing and identification of critical recombination events (Fig. 2). Seven separate meiotic recombination events were seen in these families ("A" through "G" in Figs. 2 and 3), clearly indicating that the minimal genomic region containing the potential disease gene was a region of approximately 4.4 cM genomic DNA spanned by marker D9S1690 and D9S1866 (Figs. 2 and 3). This region is consistent with the results of two point linkage analysis which revealed maximal LOD scores with markers

TABLE 3.
Two Point Linkage Analysis in FHA

		·							
	LOD Score at recombination fraction								
Marker Locus	0	0.01	0.05	0.10	0.20	0.30	0.40		
D9S253	-infini	-2.57	0.51	1.48	1.84	1.48	0.76		
D95:76	-infini	1.42	3.07	3.39	3.05	2.22	1.12		
D95:690	-infini	3.11	4.04	4.04	3.33	2.24	0.96		
D95277	9.67	9.51	8,89	8.06	6.29	4.30	2.10		
D9S306	5.60	5.51	5.13	4.62	3.55	2.36	1.11		
D9S1866	-infini	7.24	7.35	6.87	5.50	3.82	1.91		
D9S:784	-infini	9.85	9.76	9.03	7.09	4.78	2.25		
D95172	-infini	2.63	3.00	2.87	2.25	1.50	0.67		
D9S1832	-infini	5.20	5.97	5.75	4.59	3.02	1.30		
D9S1801	0.14	0.13	0.11	0.09	0.06	0.03	0.01		
D9S1677	-infini	7.83	7.90	7.38	5.90	4.08	2.01		
D9S279	-infini	3.43	. 3.80	3.66	3.01	2.12	1.05		
D9S275	-infini	2.57	2.98	2.91	2.41	1.69	0.81		

Results of pairwise linkage analysis using MLINK. Values correspond to the LOD score for linkage between the disease locus and a marker locus for specified values of the recombination fraction.

D9S277 and D9S306 and essentially excluded the region centromeric to D9S1690 or telomeric to D9S1866. An 8th meiotic recombination event ("H" in Fig. 3) further refined the FHA region to distal to D9S277.

As described herein, the ABC1 gene mapped within this interval. The overlapping genetic data strongly suggested that FHA may in fact be allelic to TD. Utilization of sets of genetic data from FHA and TD provided a telomeric boundary at D9S1866 (meiotic recombinant) (Fig. 3D) and a centromeric marker at D9S127 based on the homozygosity data of TD-2. This refined the locus to approximately 1 Mb between D9S127 and D9S1866. The ABC1 gene mapped within this minimal region (Fig. 3E).

Mutation detection in FHA

5

10

15

20

25

30

Mutation assessment of the *ABC1* gene was undertaken in FHA-1 (Fig. 2A). Using primers that spanned overlapping segments of the mRNA we performed RT-PCR analysis and subjected these fragments to mutational analysis. A deletion of three nucleotides is evident in the RT-PCR sequence of FHA-1 III.01 (Fig. 6A), resulting in a loss of nucleotides 2151-2153 of SEQ ID NO: 2 and deletion of a leucine (ΔL693) at amino acid position 693 of SEQ ID NO: 1 (Fig. 6A). This leucine is conserved in mouse and *C. elegans* (Fig. 6B). The alteration was detected in the RT-PCR products as well as in genomic sequence from exon 14 specific amplification. This mutation results in a loss of an *EarI* restriction site. Analysis of genomic DNA from the family indicated that the mutation segregated completely with the phenotype of HDL deficiency. The loss of the *EarI* site results in a larger fragment being remaining in persons heterozygous for this mutation (Fig. 6C). This mutation maps to the first putative transmembrane domain of ABC1 (Fig. 8) and was not seen in 130 chromosomes from persons of French Canadian descent nor seen in over 400 chromosomes from persons of other Western European ancestry.

A mutation has also been found in patient genomic DNA in pedigree FHA-3 from Quebec. The alteration, a 6 bp deletion of nucleotides 5752-5757 of SEQ ID NO: 2 within exon 41, results in a deletion of amino acids 1893 (Glu) and 1894 (Asp) of SEQ ID NO: 1. The deletion was detected as a double, superimposed, sequence

5

10

15

20

25

30

starting from the point of the deletion (Fig. 6D), and was detected in sequence reads in both directions. The deletion can be detected on 3% agarose or 10% polyacrylamide gels, and segregates with disease in FHA-3. It was not seen in 128 normal chromosomes of French-Canadian origin or in 434 other control chromosomes. Amino acids 1893 and 1894 are in a region of the ABC1 protein that is conserved between human, mouse, and *C. elegans* (Fig. 6E), implying that it is of functional importance.

An additional mutation has been found in patient genomic DNA in pedigree FHA-2 from Quebec (Fig. 6F). The alteration, a C to T transition at position 6504 of SEQ ID NO: 2, converts an arginine at position 2144 of SEQ ID NO: 1 to a STOP codon, causing truncation of the last 118 amino acids of the ABC1 protein. This alteration segregates with disease in family FHA-2.

A summary of all mutations and polymorphisms found in ABC1 is shown in Fig. 11. Each variant indicated as a mutation segregates with low HDL in its family, and was not seen in several hundred control chromosomes.

Functional relationship between changes in ABC1 transcript levels and cholesterol efflux

Antisense approaches were undertaken to decrease the ABC1 transcript and assess the effect of alteration of the transcript on intracellular cholesterol transport. The use of antisense primers to the 5' end of ABC1 clearly resulted in a decrease to approximately 50% of normal RNA levels (Fig. 7A). This would be expected to mimic in part the loss of function due to mutations on one allele, similar to that seen in heterozygotes for TD and patients with FHA. Importantly, reduction in the mRNA for the ABC1 gene resulted in a significant reduction in cellular cholesterol efflux (Fig. 7B), further establishing the role of this protein in reverse cholesterol transport and providing evidence that the mutations detected are likely to constitute loss of function mutations. Furthermore, these data support the functional importance of the first 60 amino acids of the protein. Antisense oligonucleotide AN-6 is directed to the novel start codon 5' to the one indicated in AJ012376.1; this antisense oligonucleotide effectively suppresses efflux.

The above-described results were obtained using the following materials and methods.

Patient selection

5

10

15

20

30

The probands in TD families had previously been diagnosed as suffering from TD based on clinical and biochemical data. Study subjects with FHA were selected from the Cardiology Clinic of the Clinical Research Institute of Montréal. The main criterion was an HDL-C level <5th percentile for age and gender, with a plasma concentration of triglycerides <95th percentile in the proband and a first-degree relative with the same lipid abnormality. In addition, the patients did not have diabetes.

Biochemical studies

Blood was withdrawn in EDTA-containing tubes for plasma lipid, lipoprotein cholesterol, ApoAI, and triglyceride analyses, as well as storage at -80°C. Leukocytes were isolated from the buffy coat for DNA extraction.

Lipoprotein measurement was performed on fresh plasma as described elsewhere (Rogler et al., Arterioscler. Thromb. Vasc. Biol. 15:683-690, 1995). The laboratory participates and meets the criteria of the Lipid Research Program Standardization Program. Lipids, cholesterol and triglyceride levels were determined in total plasma and plasma at density d<1.006 g/mL (obtained after preparative ultracentrifugation) before and after precipitation with dextran manganese. Apolipoprotein measurement was performed by nephelometry for ApoB and ApoAI.

25 Linkage analysis

Linkage between the trait locus and microsatellite loci was analyzed using the FASTLINK version (4.0 P). FASTLINK/MLINK was used for two-point linkage analysis assuming an autosomal dominant trait with complete penetrance. In FHA and TD heterozygotes, the phenotype was HDL deficiency <5th percentile for age and sex. The disease allele frequency was estimated to be 0.005. Marker allele frequencies were estimated from the genotypes of the founders in the pedigrees using

NEWPREP. Multipoint linkage analysis was carried out using FASTLINK/LINKMAP.

Genomic clone assembly and physical map construction of the 9q31 region

Using the Whitehead Institute/MIT Center for Genome Research map as a reference, the genetic markers of interest at 9q31 were identified within YAC contigs. Additional markers that mapped to the approximate 9q31 interval from public databases and the literature were then assayed against the YAC clones by PCR and hybridization analysis. The order of markers was based on their presence or absence in the anchored YAC contigs and later in the BAC contig. Based on the haplotype analysis, the region between D9S277 and D9S306 was targeted for higher resolution physical mapping studies using bacterial artificial chromosomes (BACs). BACs within the region of interest were isolated by hybridization of DNA marker probes and whole YACs to high-density filters containing clones from the RPCI-11 human BAC library (Fig. 3).

Sequence retrieval and alignment

10

15

20

25

30

The human ABC1 mRNA sequence was retrieved from GenBank using the Entrez nucleotide query (Baxevanis et al., A Practical Guide to the Analysis of Genes and Proteins, eds. Baxevanis, A.D. & Ouellette, B.F.F. 98:120, 1998) as GenBank accession number AJ012376.1. The version of the protein sequence we used as wild-type (normal) was CAA10005.1.

We identified an additional 60 amino acids in-frame with the previously-believed start methionine (Fig. 9A). Bioinformatic analysis of the additional amino acids indicates the presence of a short stretch of basic amino acid residues, followed by a hydrophobic stretch, then several polar residues. This may represent a leader sequence, or another transmembrane or membrane-associated region of the ABC1 protein. In order to differentiate among the foregoing possibilities, antibodies directed to the region of amino acids 1-60 are raised against and used to determine the physical relationship of amino acids 1-60 in relation to the cell membrane. Other standard methods can also be employed, including, for example, expression of fusion

proteins and cell fractionation.

5

10

15

20

25

30

We also identified six errors in the previously-reported nucleotide sequence (at positions 839, 4738, 5017, 5995, 6557, and 6899 of SEQ ID NO: 2; Fig. 11). Hence, the sequence of the ABC1 polypeptide of Fig. 9A differs from CAA10005.1 as follows: Thr⇒Ile at position 1554; Pro⇒Leu at position 1642; Arg⇒Lys at position 1973; and Pro⇒Leu at position 2167. We also identified 5' and 3' UTR sequence (Figs. 9B - 9E).

The mouse ABC1 sequence used has accession number X75926. It is very likely that this mouse sequence is incomplete, as it lacks the additional 60 amino acids described herein for human ABC1.

Version 1.7 of ClustalW was used for multiple sequence alignments with BOXSHADE for graphical enhancement (http://www.isrec.isb-sib.ch:8080/software/BOX_form.html) with the default parameter. A *Caenorhabditis elegans* ABC1 orthologue was identified with BLAST (version 2.08) using CAA1005.1 (see above) as a query, with the default parameter except for doing an organism filter for *C. elegans*. The selected protein sequence has accession version number AAC69223.1 with a score of 375, and an E value of 103.

Genomic DNA sequencing

BAC DNA was extracted from bacterial cultures using NucleoBond Plasmid Maxi Kits (Clontech, Palo Alto, CA). For DNA sequencing, a sublibrary was first constructed from each of the BAC DNAs (Rowen et al., Automated DNA Sequencing and Analysis, eds. Adams, M.D., Fields, C. & Venter, J.C., 1994). In brief, the BAC DNA was isolated and randomly sheared by nebulization. The sheared DNA was then size fractionated by agarose gel electrophoresis and fragments above 2 kb were collected, treated with Mung Bean nuclease followed by T4 DNA polymerase and klenow enzyme to ensure blunt-ends, and cloned into *SmaI*-cut M13mp19. Random clones were sequenced with an ABI373 or 377 sequencer and fluorescently labeled primers (Applied BioSystems, Foster City, CA). DNAStar software was used for gel trace analysis and contig assembly. All DNA sequences were examined against available public databases primarily using BLASTn with RepeatMasker (University

of Washington).

Reverse transcription (RT)-PCR amplification and sequence analysis

Total RNA was isolated from the cultured fibroblasts of TD and FHA patients, and reverse transcribed with a CDS primer containing oligo d(T)18 using 250 units of SuperScript II reverse transcriptase (Life Technologies, Inc., Rockville, MD) as described (Zhang et al., J. Biol. Chem. 27:1776-1783, 1996). cDNA was amplified with Taq DNA polymerase using primers derived from the published human ABC1 cDNA sequence (Luciani et al., Genomics 21:150-159, 1994). Six sets of primer pairs were designed to amplify each cDNA sample, generating six DNA fragments which are sequentially overlapped covering 135 to 7014 bp of the full-length human ABC1 cDNA. The nucleotides are numbered according to the order of the published human cDNA sequence (AJ012376.1). Primer pairs (1): 135-158 (f) and 1183-1199 (r); (2): 1080-1107 (f) and 2247-2273 (r); (3): 2171-2197 (f) and 3376-3404 (r); (4): 3323-3353 (f) and 4587-4617 (r); (5) 4515-4539 (f) and 5782-5811 (r); (6): 5742-5769 (f) and 6985-7014 (r). RT-PCR products were purified by Qiagen spin columns. Sequencing was carried out in a Model 373A Automated DNA sequencer (Applied Biosystems) using Taq di-deoxy terminator cycle sequencing and Big Dye Kits according to the manufacturer's protocol.

20

25

15

5

10

Northern blot analysis

Northern transfer and hybridizations were performed essentially as described (Zhang et al., J. Biol. Chem. 27:1776-1783, 1996). Briefly, 20 µg of total fibroblast RNA samples were resolved by electrophoresis in a denaturing agarose (1.2%; w/v) gel in the presence of 7% formaldehyde, and transferred to nylon membranes. The filters were probed with ³²P-labeled human ABC1 cDNA as indicated. Prehybridization and hybridizations were carried out in an ExpressHyb solution (ClonTech) at 68°C according to the manufacturer's protocol.

30 Detection of the mutations in TD

Genotyping for the T4503C and A1864G variants was performed by PCR

amplification of exon 30 followed by restriction digestion with HgaI and amplification of exon 13 followed by digestion with Acil, respectively. PCR was carried out in a total volume of 50 µL with 1.5 mM MgCl₂, 187.5 nM of each dNTP, 2.5U Tag polymerase and 15 pmol of each primer (forward primer in exon 30: 5'-CTG CCA GGC AGG GGA GGA AGA GTG-3' (SEQ ID NO: 4); reverse primer spanning the junction of exon 30 and intron 30: 5'-GAA AGT GAC TCA CTT GTG GAG GA-3' (SEQ ID NO: 5); forward primer in intron 12: 5'-AAA GGG GCT TGG TAA GGG TA-3' (SEQ ID NO: 6); reverse in intron 13: 5'-CAT GCA CAT GCA CAC ACA TA -3' (SEQ ID NO: 7)). Following an initial denaturation of 3 minutes at 95°C, 35 cycles consisting of 95°C 10 seconds, 58°C 30 seconds, 72°C 30 seconds were performed, with a final extension of 10 minutes at 72°C. For detection of the T4503C mutation, 15 µL of exon 30 PCR product was incubated with 4 U HgaI in a total volume of 25 µL, for 2 hours at 37°C, and the resulting fragments were separated on a 1.5% agarose gel. The presence of the T4503C mutation creates a restriction site for HgaI, and thus the 194 bp PCR product will be cut into fragments of 134 and 60 bp in the presence of the T4503C variant, but not in its absence. For detection of the A1864G mutation, 15 µL of exon 13 PCR products were digested with 8 U Acil for three hours at 37°C. Products were separated on 2% agarose gels. The presence of the A1864G mutation creates a second Acil site within the PCR product. Thus, the 360 bp PCR product is cleaved into fragments of 215 bp and 145 bp on the wild-type allele, but 185 bp, 145 bp and 30 bp on the mutant allele.

Detection of mutation in FHA

5

10

15

20

25

30

Genotyping for the Δ693 variant was performed by PCR amplification of exon 14 followed by restriction enzyme digestion with EarI. PCR was carried out in a total volume of 80 μL with 1.5 mM MgCl₂, 187.5 nM of each dNTP, 2.5 U Taq polymerase and 20 pmol of each primer (forward primer in exon 14: 5'- CTT TCT GCG GGT GAT GAG CCG GTC AAT-3' (SEQ ID NO: 8); reverse primer in intron 14: 5'-CCT TAG CCC GTG TTG AGC TA-3' (SEQ ID NO: 9)). Following an initial denaturation of 3 minutes at 95°C, 35 cycles consisting of 95°C 10 seconds, 55°C 30 seconds, 72°C 30 seconds were performed, with a final extension of 10

minutes at 72°C. Twenty microliters of PCR product was incubated with 4 U EarI in a total volume of 25 μ L, for two hours at 37°C, and the fragments were separated on a 2 % agarose gel. The presence of the $\Delta 693$ mutation destroys a restriction site for EarI, and thus the 297 bp PCR product will be cut into fragments of 151 bp, 59 bp, 48 bp and 39 bp in the presence of a wild-type allele, but only fragments of 210 bp, 48 bp and 39 bp in the presence of the deletion.

5

10

15

20

25

30

A 6 bp deletion encompassing nucleotides 5752-5757 (inclusive), was detected in exon 41 in the proband of family FHA-3 by genomic sequencing using primers located within the introns flanking this exon. Genotyping of this mutation in family FHA-3 and controls was carried out by PCR with forward (5'-CCT GTA AAT GCA AAG CTA TCT CCT CT-3' (SEQ ID NO: 10)) and reverse primers (5'-CGT CAA CTC CTT GAT TTC TAA GAT GT (SEQ ID NO: 11)) located near the 5' and 3' ends of exon 41, respectively. Each PCR was carried out as for the genotyping of the 693 variant, but with annealing temperature of 58°C. Twenty microliters of PCR product was resolved on 3% agarose or 10% acrylamide gels. The wild type allele was detected as a 117 bp band and the mutant allele as a 111 bp band upon staining with ethidium bromide.

A C to T transition was detected at nucleotide 6504 in genomic DNA of the proband of family FHA-2. It was detectable as a double C and T peak in the genomic sequence of exon 48 of this individual, who is heterozygous for the alteration. This mutation, which creates a STOP codon that results in truncation of the last 118 amino acids of the ABC1 protein, also destroys an *RsaI* restriction site that is present in the wild type sequence. Genotyping of this mutation in family FHA-2 and controls was carried out by PCR with forward (5'-GGG TTC CCA GGG TTC AGT AT-3') (SEQ ID NO: 12)) and reverse (5'-GAT CAG GAA TTC AAG CAC CAA-3') (SEQ ID NO: 13)) primers directed to the intronic sequences flanking exon 48. PCR was done as for the 693 variant. Fifteen microliters of PCR product was digested with 5 Units of *RsaI* at 37°C for two hours and the digestion products resolved on 1.5% agarose gels. The mutant allele is detected as an uncut 436 bp band. The normal sequence is cut by *RsaI* to produce 332 and 104 bp bands.

Cell culture

Skin fibroblast cultures were established from 3.0 mm punch biopsies of the forearm of FHD patients and healthy control subjects as described (Marcil et al., Arterioscler. Thromb. Vasc. Biol. 19:159-169, 1999).

5

10

15

Cellular cholesterol labeling and loading

The protocol for cellular cholesterol efflux experiments was described in detail elsewhere (Marcil et al., Arterioscler. Thromb. Vasc. Biol. 19:159-169, 1999). The cells were ³H-cholesterol labeled during growth and free cholesterol loaded in growth arrest.

Cholesterol efflux studies

Efflux studies were carried out from 0 to 24 hours in the presence of purified ApoAI (10 µg protein/mL medium). Efflux was determined as a percent of free cholesterol in the medium after the cells were incubated for specified periods of time. All experiments were performed in triplicate, in the presence of cells from one control subject and the cells from the study subjects to be examined. All results showing an efflux defect were confirmed at least three times.

20 Oligonucleotide synthesis

Eight phosphorothioate deoxyoligonucleotides complementary to various regions of the human ABC1 cDNA sequence were obtained from GIBCO BRL. The oligonucleotides were purified by HPLC. The sequences of the antisense oligonucleotides and their location are listed. One skilled in the art will recognize that other ABC1 antisense sequences can also be produced and tested for their ability to decrease ABC1-mediated cholesterol regulation.

25

	Name	Sequence (5'- 3')	mRNA target	% control
	AN-1	GCAGAGGGCATGGCTTTATTTG (SEQ ID NO: 3)	AUG codon	46
30	AN-2	GTGTTCCTGCAGAGGGCATG (SEQ ID NO: 30)	AUG codon	50
	AN-3	CACTTCCAGTAACAGCTGAC (SEQ ID NO: 31)	5'-Untranslated	79
	AN-4	CTTTGCGCATGTCCTTCATGC (SEQ ID NO: 32)	Coding	80

AN-5	GACATCAGCCCTCAGCATCTT (SEQ ID NO: 33)	Coding	120
AN-6:	CAACAAGCCATGTTCCCTC (SEQ ID NO: 34)	Coding	
AN-7:	CATGTTCCCTCAGCCAGC (SEQ ID NO: 35)	Coding	
AN-8:	CAGAGCTCACAGCAGGGA C (SEQ ID NO: 36)	Coding	

Cell transfection with antisense oligonucleotides

5

10

15

20

25

30

Cells were grown in 35 mm culture dishes until 80 % confluent, then washed once with DMEM medium (serum and antibiotics free). One milliliter of DMEM (serum and antibiotics free) containing 500 nM antisense oligonucleotides and 5 μ g/ml or 7.5 μ g/ml of lipofectin (GIBCO BRL) were added to each well according to the manufacturer's protocol. The cells were incubated at 37°C for 4 hours, and then the medium was replaced by DMEM containing 10% FCS. Twenty-four hours after the transfection, the total cell RNA was isolated. Ten micrograms of total RNA was resolved on a 1% of agarose-formaldehyde gel and transferred to nylon membrane. The blot was hybridized with α -32P dCTP labeled human *ABC1* cDNA overnight at 68°C. The membrane was subsequently exposed to x-ray film. The hybridizing bands were scanned by optical densitometry and standard to 28S ribosome RNA.

Cholesterol efflux with anti-ABC1 oligonucleotides

Human skin fibroblasts were plated in 6-well plates. The cells were labeled with ³H-cholesterol (0.2 μCi /ml) in DMEM with 10% FBS for two days when the cell reached 50% confluence. The cells were then transfected with the antisense *ABC1* oligonucleotides at 500nM in DMEM (serum and antibiotic free) with 7.5 μg/ml Lipofectin (GIBCO BRL) according to the manufacturer's protocol. Following the transfection, and the cells were loaded with nonlipoprotein (20 μg/ml) for 12 hours in DMEM containing 2 mg/ml BSA without serum. The cellular cholesterol pools were then allowed to equilibrate for 6 hours in DMEM-BSA. The cholesterol efflux mediated by ApoAI (10μg /ml, in DMEM-BSA) were then carried out which is 48 hours after transfection.

Radiolabeled cholesterol released into the medium is expressed as a percentage of total ³H-cholesterol per well (medium + cell). Results are the mean +/-

SD of triplicate dishes.

Determination of genomic structure of the ABC1 gene

Most splice junction sequences were determined from genomic sequence generated from BAC clones spanning the ABC1 gene. More than 160 kb of genomic sequence were generated. Genomic sequences were aligned with cDNA sequences to identify intron/exon boundaries. In some cases, long distance PCR between adjacent exons was used to amplify intron/exon boundary sequences using amplification primers designed according to the cDNA sequence.

10

15

20

25

30

5

Functionality of the newly-discovered 60 amino acids at the N-terminus Antisense experiments

Phosphorothioate antisentisense oligonucleotides were designed to be complementary to the regions of the cDNA near newly discovered translation start site. AN-6 and AN-7 both overlap the initiator methionine codon; this site is in the middle of oligonucleotide AN-6. AN-8 is complementary to the very 5' end of the ABC1 cDNA. Antisense oligonucleotide AN-1 is complementary to the region of the ABC1 cDNA corresponding to the site identified as the ABC1 initiator methionine in AJ012376. Fig. 7C shows that antisense oligonucleotide AN-6 interferes with cellular cholesterol efflux in normal fibroblasts to the same extent as does antisense oligonucleotide AN-1. Transfection with either of these antisense oligonucleotides results in a decrease in cellular cholesterol efflux almost as severe as that seen in FHA cells. In general, antisense oligonucleotides complementary to coding sequences, especially near the 5' end of a gene's coding sequence, are expected to be more effective in decreasing the effective amount of transcript than are oligonucleotides directed to more 3' sequences or to non-coding sequences. The observation that AN-6 depresses cellular cholesterol efflux as effectively as AN-1 implies that both of these oligonucleotides are complementary to ABC1 coding sequences, and that the amino terminal 60 amino acids are likely to be contained in ABC1 protein. In contrast, the ineffectiveness of AN-8 shows that it is likely to be outside the protein coding region of the transcript, as predicted by presence of an in-frame stop codon

between the initiator methionine and the region targeted by AN-8.

Antibody experiments

5

10

15

20

25

30

Polyclonal and monoclonal antibodies have been generated using peptides corresponding to discrete portions of the ABC1 amino acid sequence. One of these, 20-amino acid peptide #2 (Pep2: CSVRLSYPPYEQHECHFPNKA (SEQ ID NO: 37), in which the N-terminal cysteine was added to facilitate conjugation of the peptide) corresponds to a protein sequence within the 60 amino-terminal amino acids of the newly-discovered ABC1 protein sequence. The peptide was coupled to the KLH carrier protein and 300 µg injected at three intervals into two Balb/c mice over a four week period. The spleen was harvested from the mouse with the highest ELISA-determined immune response to free peptide, and the cells fused to NS-1 myeloma cells by standard monoclonal antibody generation methods. Positive hybridomas were selected first by ELISA and then further characterized by western blotting using cultured primary human fibroblasts. Monoclonal cell lines producing a high antibody titre and specifically recognizing the 245 kD human ABC1 protein were saved. The same size ABC1 protein product was detected by antibodies directed to four other discrete regions of the same protein. The 245 kD band could be eliminated in competition experiments with appropriate free peptide, indicating that it represents ABC1 protein (Fig. 13).

The foregoing experiments indicate that ABC1 protein is detected not only by antibodies corresponding to amino acid sequences within the previously-described ABC1 amino acid sequence, but also by the Pep2 monoclonal antibody that recognizes an epitope within the newly-discovered N-terminal 60 amino acids. The N-terminal 60 amino acid region is therefore coding, and is part of the ABC1 protein.

The epitope recognized by the Pep2 monoclonal antibody is also conserved among human, mouse, and chicken. Liver tissues from these three species employed in a Western blot produced an ABC1 band of 245 kD when probed with the Pep2 monoclonal antibody. This indicates that the 60 amino acid N-terminal sequence is part of the ABC1 coding sequence in humans, mice, and chickens. Presence of this region is therefore evolutionarily conserved and likely to be of important functional

significance for the ABC1 protein.

5

10

35

Bioinformatic analyses of ABC1 protein sequences

Transmembrane prediction programs indicate 13 transmembrane (TM) regions, the first one being between amino acids 26 and 42 (http://psort.nibb.ac.jp:8800/psort/helpwww2.html#ealom). The tentative number of TM regions for the threshold 0.5 is 13. (INTEGRAL Likelihood = -7.75 Transmembrane 26-42). The other 12 TM range in value between -0.64 and -12 (full results below). It is therefore very likely that the newly-discovered 60 amino acids contain a TM domain, and that the amino end of ABC1 may be on the opposite side of the membrane than originally thought.

```
ALOM: TM region allocation
            Init position for calculation: 1
15
            Tentative number of TMs for the threshold 0.5: 13
            INTEGRAL Likelihood = -7.75 Transmembrane 26 - 42
           INTEGRAL Likelihood = -3.98 Transmembrane 640 - 656
            INTEGRAL Likelihood = -8.70 Transmembrane 690 - 706
           INTEGRAL Likelihood = -9.61 Transmembrane 717 - 733
20
            INTEGRAL Likelihood = -1.44 Transmembrane 749 - 765
           INTEGRAL Likelihood = -0.64 Transmembrane 771 - 787
           INTEGRAL Likelihood = -1.28 Transmembrane 1041 -1057
            INTEGRAL Likelihood =-12.79 Transmembrane 1351 -1367
            INTEGRAL Likelihood = -8.60 Transmembrane 1661 -1677
            INTEGRAL Likelihood = -6.79 Transmembrane 1708 -1724
25
           INTEGRAL Likelihood = -3.40 Transmembrane 1737 -1753
           INTEGRAL Likelihood = -1.49 Transmembrane 1775 -1791
           INTEGRAL Likelihood = -8.39 Transmembrane 1854 -1870
           PERIPHERAL Likelihood = 0.69 (at 1643)
30
           ALOM score: -12.79 (number of TMSs: 13)
```

There does not appear to be an obvious cleaved peptide, so this first 60 amino acid residues are not likely to be cleaved, and are therefore not specifically a signal/targeting sequence. No other signals (e.g., for targeting to specific organelles) are apparent.

Agonists and Antagonists

Useful therapeutic compounds include those which modulate the expression, activity, or stability of ABC1. To isolate such compounds, ABC1 expression,

biological activity, or regulated catabolism is measured following the addition of candidate compounds to a culture medium of ABC1-expressing cells. Alternatively, the candidate compounds may be directly administered to animals (for example mice, pigs, or chickens) and used to screen for their effects on ABC1 expression.

In addition its role in the regulation of cholesterol, ABC1 also participates in other biological processes for which the development of ABC1 modulators would be useful. In one example, ABC1 transports interleukin-1 β (IL-1 β) across the cell membrane and out of cells. IL-1 β is a precursor of the inflammatory response and, as such, inhibitors or antagonists of ABC1 expression or biological activity may be useful in the treatment of any inflammatory disorders, including but not limited to rheumatoid arthritis, systemic lupus erythematosis (SLE), hypo- or hyper- thyroidism, inflammatory bowel disease, and diabetes mellitus. In another example, ABC1 expressed in macrophages has been shown to be engaged in the engulfment and clearance of dead cells. The ability of macrophages to ingest these apoptotic bodies is impaired after antibody-mediated blockade of ABC1. Accordingly, compounds that modulate ABC1 expression, stability, or biological activity would be useful for the treatment of these disorders.

ABC1 expression is measured, for example, by standard Northern blot analysis using an ABC1 nucleic acid sequence (or fragment thereof) as a hybridization probe, or by Western blot using an anti-ABC1 antibody and standard techniques. The level of ABC1 expression in the presence of the candidate molecule is compared to the level measured for the same cells, in the same culture medium, or in a parallel set of test animals, but in the absence of the candidate molecule. ABC1 activity can also be measured using the cholesterol efflux assay.

25

30

5

10

15

20

Transcriptional Regulation of ABC1 Expression

ABC1 mRNA is increased approximately 8-fold upon cholesterol loading. This increase is likely controlled at the transcriptional level. Using the promoter sequence described herein, one can identify transcription factors that bind to the promoter by performing, for example, gel shift assays, DNAse protection assays, or *in vitro* or *in vivo* reporter gene-based assays. The identified transcription factors are

themselves drug targets. In the case of ABC1, drug compounds that act through modulation of transcription of ABC1 could be used for HDL modulation, atherosclerosis prevention, and the treatment of cardiovascular disease. For example, using a compound to inhibit a transcription factor that represses ABC1 would be expected to result in up-regulation of ABC1 and, therefore, HDL levels. In another example, a compound that increases transcription factor expression or activity would also increase ABC1 expression and HDL levels.

5

10

15

20

25

30

Transcription factors known to regulate other genes in the regulation of apolipoprotein genes or other cholesterol- or lipid-regulating genes are of particular relevance. Such factors include, but are not limited to, the steroid response element binding proteins (SREBP-1 and SREBP-2), the PPAR (peroxisomal proliferation-activated receptor) transcription factors. Several consensus sites for certain elements are present in the sequenced region 5' to the ABC1 gene (Fig. 16) and are likely to modulate ABC1 expression. For example, PPARs may alter transcription of ABC1 by mechanisms including heterodimerization with retinoid X receptors (RXRs) and then binding to specific proliferator response elements (PPREs). Examples of such PPARs include PPARa, β, γ and δ. These distinct PPARs have been shown to have transcriptional regulatory effects on different genes. PPARa is expressed mainly in liver, whereas PPARy is expressed in predominantly in adipocytes. Both PPARa and PPARy are found in coronary and carotid artery atherosclerotic plaques and in endothelial cells, smooth muscle cells, monocytes and monocyte-derived macrophages. Activation of PPARa results in altered lipoprotein metabolism through PPARa's effect on genes such as lipoprotein lipase (LPL), apolipoprotein CIII (apo CIII) and apolipoprotein AI (apo AI) and AII (apo AII). PPARa activation results in overexpression of LPL and apoA-I and apoA-II, but inhibits the expression of apo CIII. PPARa activation also inhibits inflammation, stimulates lipid oxidation and increases the hepatic uptake and esterification of free fatty acids (FFA's). PPARa and PPARy activation may inhibit nitric oxide (NO) synthase in macrophages and prevent interleukin-1 (IL-1) induced expression of IL-6 and cyclo-oxygenase-2 (COX-2) and thrombin induced endothelin-1 expression secondary to negative transcriptional regulation of NF-KB and activation of protein-1

signaling pathway. It has also been shown that PPARa induces apoptosis in monocyte-derived macrophages through the inhibition of NF-KB activity.

5

10

15

20

25

30

Activation of PPARα can be achieved by compounds such as fibrates, β-estradiol, arachidonic acid derivatives, WY-14,643 and LTB4 or 8(s)HETE. PPARγ activation can be achieved through compounds such as thiozolidinedione antidiabetic drugs, 9-HODE and 13-HODE. Additional compounds such as nicotinic acid or HMG CoA reductase inhibitors may also alter the activity of PPARs.

Compounds which alter activity of any of the PPARs (e.g., PPARα or PPARγ) may have an effect on ABC1 expression and thereby could affect HDL levels, atherosclerosis and risk of CAD. PPARs are also regulated by fatty acids (including modified fatty acids such as 3 thia fatty acids), leukotrienes such as leukotriene B4 and prostaglandin J2, which is a natural activator/ligand for PPARγ. Drugs that modulate PPARs may therefore have an important effect on modulating lipid levels (including HDL and triglyceride levels) and altering CAD risk. This effect could be achieved through the modulation of ABC1 gene expression. Drugs may also effect ABC1 gene expression and thereby HDL levels, by an indirect effect on PPARs via other transcriptional factors such as adipocyte differentiation and determination factor-1 (ADD-1) and sterol regulatory element binding protein-1 and 2 (SREBP-1 and 2). Drugs with combined PPARα and PPARγ agonist activity or PPARα and PPARγ agonists given in combination for example, may increase HDL levels even more.

A PPAR binding site (PPRE element) is found 5' to the ABC1 gene (nucleotides 2150 to 2169 of SEQ ID NO: 14). Like the PPRE elements found in the C-ACS, HD, CYP4A6 and ApoA-I genes, this PPRE site is a trimer related to the PPRE consensus sequence. Partly because of its similarity in the number and arrangement of repeats in this PPAR binding site, this element in particular is very likely to be of physiological relevance to the regulation of the ABC1 gene.

Additional transcription factors which may also have an effect in modulating ABC1 gene expression and thereby HDL levels, atherosclerosis and CAD risk include; REV-ERBα, SREBP-1 & 2, ADD-1, EBPα, CREB binding protein, P300, HNF 4, RAR, LXR, and RORα. Additional degenerate binding sites for these factors

can be found through examination of the sequence in SEQ ID NO: 14.

Additional utility of ABC1 polypeptides, nucleic acids, and modulators

5

10

15

20

25

30

ABC1 may act as a transporter of toxic proteins or protein fragments (e.g., APP) out of cells. Thus, ABC1 agonists/upregulators may be useful in the treatment of other disease areas, including Alzheimer's disease, Niemann-Pick disease, and Huntington's disease.

ABC transporters have been shown to increase the uptake of long chain fatty acids from the cytosol to peroxisomes and, moreover, to play a role in β -oxidation of very long chain fatty acids. Importantly, in x-linked adrenoleukodystrophy (ALD), fatty acid metabolism is abnormal, due to defects in the peroxisomal ABC transporter. Any agent that upregulates ABC transporter expression or biological activity may therefor be useful for the treatment of ALD or any other lipid disorder.

ABC1 is expressed in macrophages and is required for engulfment of cells undergoing programmed cell death. The apoptotic process itself, and its regulation, have important implications for disorders such as cancer, one mechanism of which is failure of cells to undergo cell death appropriately. ABC1 may facilitate apoptosis, and as such may represent an intervention point for cancer treatment. Increasing ABC1 expression or activity or otherwise up-regulating ABC1 by any method may constitute a treatment for cancer by increasing apoptosis and thus potentially decreasing the aberrant cellular proliferation characterized by this disease. Conversely, down-regulation of ABC1 by any method may provide opportunity for decreasing apoptosis and allowing increased proliferation of cells in conditions where cell growth is limited. Such disorders include but are not limited to neurodeficiencies and neurodegeneration, and growth disorders. ABC1 could, therefore, potentially be used as a method for identification of compounds for use in the treatment of cancer, or in the treatment of degenerative disorders.

Agents that have been shown to inhibit ABC1 include, for example, the antidiabetic agents glibenclamide and glyburide, flufenamic acid, diphenylamine-2carbonic acid, sulfobromophthalein, and DIDS.

Agents that upregulate ABC1 expression or biological activity include but are

not limited to protein kinase A, protein kinase C, vanadate, okadaic acid, and IBMX1.

Those in the art will recognize that other compounds can also modulate ABC1 biological activity, and these compounds are also in the spirit of the invention.

Drug screens based on the ABC1 gene or protein

5

10

15

- 20

25

30

The ABC1 protein and gene can be used in screening assays for identification of compounds which modulate its activity and may be potential drugs to regulate cholesterol levels. Useful ABC1 proteins include wild-type and mutant ABC1 proteins or protein fragments, in a recombinant form or endogenously expressed. Drug screens to identify compounds acting on the ABC1 expression product may employ any functional feature of the protein. In one example, the phosphorylation state or other post-translational modification is monitored as a measure of ABC1 biological activity. ABC1 has ATP binding sites, and thus assays may wholly or in part test the ability of ABC1 to bind ATP or to exhibit ATPase activity. ABC1, by analogy to similar proteins, is thought to be able to form a channel-like structure; drug screening assays could be based upon assaying for the ability of the protein to form a channel, or upon the ability to transport cholesterol or another molecule, or based upon the ability of other proteins bound by or regulated by ABC1 to form a channel. Alternatively, phospholipid or lipid transport can also be used as measures of ABC1 biological activity.

There is evidence that, in addition to its role as a regulator of cholesterol levels, ABC1 also transports anions. Functional assays could be based upon this property, and could employ drug screening technology such as (but not limited to) the ability of various dyes to change color in response to changes in specific ion concentrations in such assays can be performed in vesicles such as liposomes, or adapted to use whole cells.

Drug screening assays can also be based upon the ability of ABC1 or other ABC transporters to interact with other proteins. Such interacting proteins can be identified by a variety of methods known in the art, including, for example, radioimmunoprecipitation, co-immunoprecipitation, co-purification, and yeast two-hybrid screening. Such interactions can be further assayed by means including but

5

10

15

20

25

30

not limited to fluorescence polarization or scintillation proximity methods. Drug screens can also be based upon functions of the ABC1 protein deduced upon X-ray crystallography of the protein and comparison of its 3-D structure to that of proteins with known functions. Such a crystal structure has been determined for the prokaryotic ABC family member HisP, histidine permease. Drug screens can be based upon a function or feature apparent upon creation of a transgenic or knockout mouse, or upon overexpression of the protein or protein fragment in mammalian cells in vitro. Moreover, expression of mammalian (e.g., human) ABC1 in yeast or C. elegans allows for screening of candidate compounds in wild-type and mutant backgrounds, as well as screens for mutations that enhance or suppress an ABC1-dependent phenotype. Modifier screens can also be performed in ABC1 transgenic or knock-out mice.

Additionally, drug screening assays can also be based upon ABC1 functions deduced upon antisense interference with the gene function. Intracellular localization of ABC1, or effects which occur upon a change in intracellular localization of the protein, can also be used as an assay for drug screening. Immunocytochemical methods will be used to determine the exact location of the ABC1 protein.

Human and rodent ABC1 protein can be used as an antigen to raise antibodies, including monoclonal antibodies. Such antibodies will be useful for a wide variety of purposes, including but not limited to functional studies and the development of drug screening assays and diagnostics. Monitoring the influence of agents (e.g., drugs, compounds) on the expression or biological activity of ABC1 can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase ABC1 gene expression, protein levels, or biological activity can be monitored in clinical trails of subjects exhibiting altered ABC1 gene expression, protein levels, or biological activity. Alternatively, the effectiveness of an agent determined by a screening assay to modulate ABC1 gene expression, protein levels, or biological activity can be monitored in clinical trails of subjects exhibiting decreased altered gene expression, protein levels, or biological activity. In such clinical trials, the expression or activity of ABC1 and, preferably, other genes that have been implicated in, for example,

cardiovascular disease can be used to ascertain the effectiveness of a particular drug.

For example, and not by way of limitation, genes, including ABC1, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates ABC1 biological activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cholesterol levels or cardiovascular disease, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of ABC1 and other genes implicated in the disorder. The levels of gene expression can be quantified by Northern blot analysis or RT-PCR, or, alternatively, by measuring the amount of protein produced, by one of a number of methods known in the art, or by measuring the levels of biological activity of ABC1 or other genes. In this way, the gene expression can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.

15

20

25

30

10

5

In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) including the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of an ABC1 protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the ABC1 protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the ABC1 protein, mRNA, or genomic DNA in the pre-administration sample with the ABC1 protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of ABC1 to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of ABC1 to lower levels than detected.

5

10

15

20

25

30

The ABC1 gene or a fragment thereof can be used as a tool to express the protein in an appropriate cell *in vitro* or *in vivo* (gene therapy), or can be cloned into expression vectors which can be used to produce large enough amounts of ABC1 protein to use in *in vitro* assays for drug screening. Expression systems which may be employed include baculovirus, herpes virus, adenovirus, adeno-associated virus, bacterial systems, and eucaryotic systems such as CHO cells. Naked DNA and DNA-liposome complexes can also be used.

Assays of ABC1 activity includes binding to intracellular interacting proteins; interaction with a protein that up-regulates ABC1 activity; interaction with HDL particles or constituents; interaction with other proteins which facilitate interaction with HDL or its constituents; and measurement of cholesterol efflux. Furthermore, assays may be based upon the molecular dynamics of macromolecules, metabolites and ions by means of fluorescent-protein biosensors. Alternatively, the effect of candidate modulators on expression or activity may be measured at the level of ABC1 protein production using the same general approach in combination with standard immunological detection techniques, such as Western blotting or immunoprecipitation with an ABC1-specific antibody. Again, useful cholesterol-regulating or anti-CVD therapeutic modulators are identified as those which produce an change in ABC1 polypeptide production. Agonists may also affect ABC1 activity without any effect on expression level.

Candidate modulators may be purified (or substantially purified) molecules or may be one component of a mixture of compounds (e.g., an extract or supernatant obtained from cells). In a mixed compound assay, ABC1 expression is tested against progressively smaller subsets of the candidate compound pool (e.g., produced by standard purification techniques, e.g., HPLC or FPLC; Ausubel et al.) until a single compound or minimal compound mixture is demonstrated to modulate ABC1 expression.

Agonists, antagonists, or mimetics found to be effective at modulating the level of cellular ABC1 expression or activity may be confirmed as useful in animal models (for example, mice, pigs, rabbits, or chickens). For example, the compound may ameliorate the low HDL levels of mouse or chicken hypoalphalipoproteinemias.

A compound that promotes an increase in ABC1 expression or activity is considered particularly useful in the invention; such a molecule may be used, for example, as a therapeutic to increase the level or activity of native, cellular ABC1 and thereby treat a low HDL condition in an animal (for example, a human).

One method for increasing ABC biological activity is to increase the stabilization of the ABC protein or to prevent its degradation. Thus, it would be useful to identify mutations in an ABC polypeptide (e.g., ABC1) that lead to increased protein stability. These mutations can be incorporated into any protein therapy or gene therapy undertaken for the treatment of low HDL-C or any other condition resulting from loss of ABC1 biological activity. Similarly, compounds that increase the stability of a wild-type ABC polypeptide or decrease its catabolism may also be useful for the treatment of low HDL-C or any other condition resulting from loss of ABC1 biological activity. Such mutations and compounds can be identified using the methods described herein.

10

15

20

25

30

In one example, cells expressing an ABC polypeptide having a mutation are transiently metabolically labeled during translation and the half-life of the ABC polypeptide is determined using standard techniques. Mutations that increase the half-life of an ABC polypeptide are ones that increase ABC protein stability. These mutations can then be assessed for ABC biological activity. They can also be used to identify proteins that affect the stability of ABC1 mRNA or protein. One can then assay for compounds that act on these factors or on the ability of these factors to bind ABC1.

In another example, cells expressing wild-type ABC polypeptide are transiently metabolically labeled during translation, contacted with a candidate compounds, and the half-life of the ABC polypeptide is determined using standard techniques. Compounds that increase the half-life of an ABC polypeptide are useful compounds in the present invention.

If desired, treatment with an agonist of the invention may be combined with any other HDL-raising or anti-CVD therapies.

It is understood that, while ABC1 is the preferred ABC transporter for the drug screens described herein, other ABC transporters can also be used. The

replacement of ABC1 with another ABC transporter is possible because it is likely that ABC transporter family members, such as ABC2, ABCR, or ABC8 will have a similar mechanism of regulation.

Exemplary assays are described in greater detail below.

5

10

15

20

25

30

Protein-based assays

ABC1 polypeptide (purified or unpurified) can be used in an assay to determine its ability to bind another protein (including, but not limited to, proteins found to specifically interact with ABC1). The effect of a compound on that binding is then determined.

Protein Interaction Assays

ABC1 protein (or a polypeptide fragment thereof or an epitope-tagged form or fragment thereof) is harvested from a suitable source (e.g., from a prokaryotic expression system, eukaryotic cells, a cell-free system, or by immunoprecipitation from ABC1-expressing cells). The ABC1 polypeptide is then bound to a suitable support (e.g., nitrocellulose or an antibody or a metal agarose column in the case of, for example, a his-tagged form of ABC1). Binding to the support is preferably done under conditions that allow proteins associated with ABC1 polypeptide to remain associated with it. Such conditions may include use of buffers that minimize interference with protein-protein interactions. The binding step can be done in the presence and absence of compounds being tested for their ability to interfere with interactions between ABC1 and other molecules. If desired, other proteins (e.g., a cell lysate) are added, and allowed time to associate with the ABC polypeptide. The immobilized ABC1 polypeptide is then washed to remove proteins or other cell constituents that may be non-specifically associated with it the polypeptide or the support. The immobilized ABC1 polypeptide is then dissociated from its support, and so that proteins bound to it are released (for example, by heating), or, alternatively, associated proteins are released from ABC1 without releasing the ABC1 polypeptide from the support. The released proteins and other cell constituents can be analyzed, for example, by SDS-PAGE gel electrophoresis, Western blotting and detection with

specific antibodies, phosphoamino acid analysis, protease digestion, protein sequencing, or isoelectric focusing. Normal and mutant forms of ABC1 can be employed in these assays to gain additional information about which part of ABC1 a given factor is binding to. In addition, when incompletely purified polypeptide is employed, comparison of the normal and muatant forms of the protein can be used to help distinguish true binding proteins.

The foregoing assay can be performed using a purified or semipurified protein or other molecule that is known to interact with ABC1. This assay may include the following steps.

1. Harvest ABC1 protein and couple a suitable fluorescent label to it;

- 2. Label an interacting protein (or other molecule) with a second, different fluorescent label. Use dyes that will produce different quenching patterns when they are in close proximity to each other vs. when they are physically separate (i.e., dyes that quench each other when they are close together but fluoresce when they are not in close proximity);
- 3. Expose the interacting molecule to the immobilized ABC1 in the presence or absence of a compound being tested for its ability to interfere with an interaction between the two; and
 - 4. Collect fluorescent readout data.

20

5

10

15

Another assay is includes Fluorescent Resonance Energy Transfer (FRET) assay. This assay can be performed as follows.

- 1. Provide ABC1 protein or a suitable polypeptide fragment thereof and couple a suitable FRET donor (e.g., nitro-benzoxadiazole (NBD)) to it;
- 2. Label an interacting protein (or other molecule) with a FRET acceptor (e.g., rhodamine);
- 3. Expose the acceptor-labeled interacting molecule to the donor-labeled ABC1 in the presence or absence of a compound being tested for its ability to interfere with an interaction between the two; and
 - 4. Measure fluorescence resonance energy transfer.

25

Quenching and FRET assays are related. Either one can be applied in a given case, depending on which pair of fluorophores is used in the assay.

Membrane permeability assay

5

The ABC1 protein can also be tested for its effects on membrane permeability. For example, beyond its putative ability to translocate lipids, ABC1 might affect the permeability of membranes to ions. Other related membrane proteins, most notably the cystic fibrosis transmembrane conductance regulator and the sulfonylurea receptor, are associated with and regulate ion channels.

10

15

ABC1 or a fragment of ABC1 is incorporated into a synthetic vesicle, or, alternatively, is expressed in a cell and vesicles or other cell sub-structures containing ABC1 are isolated. The ABC1-containing vesicles or cells are loaded with a reporter molecule (such as a fluorescent ion indicator whose fluorescent properties change when it binds a particular ion) that can detect ions (to observe outward movement), or alternatively, the external medium is loaded with such a molecule (to observe inward movement). A molecule which exhibits differential properties when it is inside the vesicle compared to when it is outside the vesicle is preferred. For example, a molecule that has quenching properties when it is at high concentration but not when it is at another low concentration would be suitable. The movement of the charged molecule (either its ability to move or the kinetics of its movement) in the presence or absence of a compound being tested for its ability to affect this process can be determined.

20

In another assay, membrane permeability is determined electrophysiologically by measuring ionic influx or efflux mediated by or modulated by ABC1 by standard electrophysiological techniques. A suitable control (e.g., TD cells or a cell line with very low endogenous ABC1 expression) can be used as a control in the assay to determine if the effect observed is specific to cells expressing ABC1.

25

In still another assay, uptake of radioactive isotopes into or out of a vesicle can be measured. The vesicles are separated from the extravesicular medium and the radioactivity in the vesicles and in the medium is quantitated and compared.

30

Nucleic acid-based assays

ABC1 nucleic acid may be used in an assay based on the binding of factors necessary for ABC1 gene transcription. The association between the ABC1 DNA and the binding factor may be assessed by means of any system that discriminates between protein-bound and non-protein-bound DNA (e.g., a gel retardation assay). The effect of a compound on the binding of a factor to ABC1 DNA is assessed by means of such an assay. In addition to in vitro binding assays, in vivo assays in which the regulatory regions of the ABC1 gene are linked to reporter genes can also be performed.

10

15

20

5

\Assays measuring ABC1 stability

A cell-based or cell-free system can be used to screen for compounds based on their effect on the half-life of ABCI mRNA or ABCI protein. The assay may employ labeled mRNA or protein. Alternatively, ABCI mRNA may be detected by means of specifically hybridizing probes or a quantitative PCR assay. Protein can be quantitated, for example, by fluorescent antibody-based methods.

In vitro mRNA stability assay

- 1. Isolate or produce, by *in vitro* transcription, a suitable quantity of ABC1 mRNA;
 - 2. Label the ABC1 mRNA;
- 3. Expose aliquots of the mRNA to a cell lysate in the presence or absence of a compound being tested for its ability to modulate *ABC1* mRNA stability;
 - 4. Assess intactness of the remaining mRNA at suitable time points.

25

30

In vitro protein stability assay

- 1. Express a suitable amount of ABC1 protein;
- 2. Label the protein;
- 3. Expose aliquots of the labeled protein to a cell lysate in the presence or absence of a compound being tested for its ability to modulate ABC1 protein stability;
 - 4. Assess intactness of the remaining protein at suitable time points

In vivo mRNA or protein stability assay

5

10

15

20

25

30

1. Incubate cells expressing ABC1 mRNA or protein with a tracer (radiolabeled ribonucleotide or radiolabeled amino acid, respectively) for a very brief time period (e.g., five minutes) in the presence or absence of a compound being tested for its effect on mRNA or protein stability;

- 2. Incubate with unlabeled ribonucleotide or amino acid; and
- 3. Quantitate the ABC1 mRNA or protein radioactivity at time intervals beginning with the start of step 2 and extending to the time when the radioactivity in ABC1 mRNA or protein has declined by approximately 80%. It is preferable to separate the intact or mostly intact mRNA or protein from its radioactive breakdown products by a means such as gel electrophoresis in order to quantitate the mRNA or protein.

Assays measuring inhibition of dominant negative activity

Mutant ABC1 polypeptides are likely to have dominant negative activity (i.e., activity that interferes with wild-type ABC1 function). An assay for a compound that can interfere with such a mutant may be based on any method of quantitating normal ABC1 activity in the presence of the mutant. For example, normal ABC1 facilitates cholesterol efflux, and a dominant negative mutant would interfere with this effect. The ability of a compound to counteract the effect of a dominant negative mutant may be based on cellular cholesterol efflux, or on any other normal activity of the wild-type ABC1 that was inhibitable by the mutant.

Assays measuring phosphorylation

The effect of a compound on ABC1 phosphorylation can be assayed by methods that quantitate phosphates on proteins or that assess the phosphorylation state of a specific residue of a ABC1. Such methods include but are not limited to ³²P labelling and immunoprecipitation, detection with antiphosphoamino acid antibodies (e.g., antiphosphoserine antibodies), phosphoamino acid analysis on 2-dimensional TLC plates, and protease digestion fingerprinting of proteins followed by detection of ³²P-labeled fragments.

Assays measuring other post-translational modifications

The effect of a compound on the post-translational modification of ABC1 is based on any method capable of quantitating that particular modification. For example, effects of compounds on glycosylation may be assayed by treating ABC1 with glycosylase and quantitating the amount and nature of carbohydrate released.

Assays measuring ATP binding

5

10

15

20

25

30

The ability of ABC1 to bind ATP provides another assay to screen for compounds that affect ABC1. ATP binding can be quantitated as follows.

- 1. Provide ABC1 protein at an appropriate level of purity and reconsititute it in a lipid vesicle;
- 2. Expose the vesicle to a labeled but non-hydrolyzable ATP analog (such as gamma ³⁵S-ATP) in the presence or absence of compounds being tested for their effect on ATP binding. Note that azido-ATP analogs can be used to allow covalent attachment of the azido-ATP to protein (by means of U.V. light), and permit easier quantitation of the amount of ATP bound to the protein.
 - 3. Quantitate the amount of ATP analog associated with ABC1

Assays measuring ATPase activity

Quantitation of the ATPase activity of ABC1 can also be assayed for the effect of compounds on ABC1. This is preferably performed in a cell-free assay so as to separate ABC1 from the many other ATPases in the cell. An ATPase assay may be performed in the presence or absence of membranes, and with or without integration of ABC1 protein into a membrane. If performed in a vesicle-based assay, the ATP hydrolysis products produced or the ATP hydrolyzed may be measured within or outside of the vesicles, or both. Such an assay may be based on disappearance of ATP or appearance of ATP hydrolysis products.

For high-throughput screening, a coupled ATPase assay is preferable. For example, a reaction mixture containing pyruvate kinase and lactate dehydrogenase can be used. The mixture includes phosphoenolpyruvate (PEP), nicotinamide adenine dinucleotide (NAD+), and ATP. The ATPase activity of ABC1 generates ADP from

ATP. The ADP is then converted back to ATP as part of the pyruvate kinase reaction. The product, pyruvate, is then converted to lactate. The latter reaction generates a colored quinone (NADH) from a colorless substrate (NAD+), and the entire reaction can be monitored by detection of the color change upon formation of NADH. Since ADP is limiting for the pyruvate kinase reaction, this coupled system precisely monitors the ATPase activity of ABC1.

Assays measuring cholesterol efflux

5

10

15

20

25

30

A transport-based assay can be performed *in vivo* or *in vitro*. For example, the assay may be based on any part of the reverse cholesterol transport process that is readily re-created in culture, such as cholesterol or phospholipid efflux. Alternatively, the assay may be based on net cholesterol transport in a whole organism, as assessed by means of a labeled substance (such as cholesterol).

For high throughput, fluorescent lipids can be used to measure ABC1-catalyzed lipid efflux. For phospholipids, a fluorescent precursor, C6-NBD-phosphatidic acid, can be used. This lipid is taken up by cells and dephosphorylated by phosphatidic acid phosphohydrolase. The product, NBD-diglyceride, is then a precursor for synthesis of glycerophospholipids like phosphatidylcholine. The efflux of NBD-phosphatidylcholine can be monitored by detecting fluorescence resonance energy transfer (FRET) of the NBD to a suitable acceptor in the cell culture medium. This acceptor can be rhodamine-labeled phosphatidylethanolamine, a phospholipid that is not readily taken up by cells. The use of short-chain precursors obviates the requirement for the phospholipid transfer protein in the media. For cholesterol, NBD-cholesterol ester can be reconstituted into LDL. The LDL can efficiently deliver this lipid to cells via the LDL receptor pathway. The NBD-cholesterol esters are hydrolyzed in the lysosomes, resulting in NBD-cholesterol that can now be transported back to the plasma membrane and efflux from the cell. The efflux can be monitored by the aforementioned FRET assay in which NBD transfers its fluorescence resonance energy to the rhodamine-phosphatidylethanoline acceptor.

Animal Model Systems

5

15

20

25

Compounds identified as having activity in any of the above-described assays are subsequently screened in any available animal model system, including, but not limited to, pigs, rabbits, and WHAM chickens. Test compounds are administered to these animals according to standard methods. Test compounds may also be tested in mice bearing mutations in the *ABC1* gene. Additionally, compounds may be screened for their ability to enhance an interaction between ABC1 and any HDL particle constituent such as ApoAI, ApoAII, or ApoE.

The cholesterol efflux assay as a drug screen

The cholesterol efflux assay measures the ability of cells to transfer cholesterol to an extracellular acceptor molecule and is dependent on ABC1 function. In this procedure, cells are loaded with radiolabeled cholesterol by any of several biochemical pathways (Marcil et al., Arterioscler. Thromb. Vasc. Biol. 19:159-169, 1999). Cholesterol efflux is then measured after incubation for various times (typically 0 to 24 hours) in the presence of HDL3 or purified ApoAI. Cholesterol efflux is determined as the percentage of total cholesterol in the culture medium after various times of incubation. ABC1 expression levels and/or biological activity are associated with increased efflux while decreased levels of ABC1 are associated with decreased cholesterol efflux.

This assay can be readily adapted to the format used for drug screening, which may consist of a multi-well (e.g., 96-well) format. Modification of the assay to optimize it for drug screening would include scaling down and streamlining the procedure, modifying the labeling method, using a different cholesterol acceptor, altering the incubation time, and changing the method of calculating cholesterol efflux. In all these cases, the cholesterol efflux assay remains conceptually the same, though experimental modifications may be made. A transgenic mouse overexpressing ABC1 would be expected to have higher than normal HDL levels.

30 Knock-out mouse model

An animal, such as a mouse, that has had one or both ABC1 alleles inactivated

(e.g., by homologous recombination) is likely to have low HDL-C levels, and thus is a preferred animal model for screening for compounds that raise HDL-C levels. Such an animal can be produced using standard techniques. In addition to the initial screening of test compounds, the animals having mutant ABC1 genes are useful for further testing of efficacy and safety of drugs or agents first identified using one of the other screening methods described herein. Cells taken from the animal and placed in culture can also be exposed to test compounds. HDL-C levels can be measured using standard techniques, such as those described herein.

WHAM chickens: an animal model for low HDL cholesterol

5

10

15

20

25

30

Wisconsin Hypo-Alpha Mutant (WHAM) chickens arose by spontaneous mutation in a closed flock. Mutant chickens came to attention through their a Z-linked white shank and white beak phenotype referred to as 'recessive white skin' (McGibbon, 1981) and were subsequently found to have a profound deficiency of HDL (Poernama *et al.*, 1990).

This chicken low HDL locus (Y) is Z-linked, or sex-linked. (In birds, females are ZW and males are ZZ). Genetic mapping placed the Y locus on the long arm of the Z chromosome (Bitgood, 1985), proximal to the ID locus (Bitgood, 1988). Examination of current public mapping data for the chicken genome mapping project, ChickMap (maintained by the Roslin Institute; http://www.ri.bbsrc.ac.uk/chickmap/ChickMapHomePage.html) showed that a region of synteny with human chromosome 9 lies on the long arm of the chicken Z chromosome (Zq) proximal to the ID locus. Evidence for this region of synteny is the location of the chicken aldolase B locus (ALDOB) within this region. The human ALDOB locus maps to chromosome 9q22.3 (The Genome Database, http://gdbwww.gdb.org/), not far from the location of human ABC1. This comparison of maps showed that the chicken Zq region near chicken ALDOB and the human 9q region near human ALDOB represent a region of synteny between human and chicken.

Since a low HDL locus maps to the 9q location in humans and to the Zq region in chickens, these low HDL loci are most probably located within the syntenic region. Thus we predicted that ABC1 is mutated in WHAM chickens. In support of

5

10

15

20

25

30

this, we have identified an E=>K mutation at a position that corresponds to amino acid 89 of human ABC1 (Figs. 14 and 15). This non-conservative substitution is at a position that is conserved among human, mouse, and chicken, indicating that it is in a region of the protein likely to be of functional importance.

Discovery of the WHAM mutation in the amino-terminal portion of the ABC1 protein also establishes the importance of the amino-terminal region. This region may be critical because of association with other proteins required to carry out cholesterol efflux or related tasks. It may be an important regulatory region (there is a phosphorylation site for casein kinase near the mutated residue), or it may help to dictate a precise topological relationship with cellular membranes (the N-terminal 60 amino acid region contains a putative membrane-spanning or membrane-associated segment).

The amino-terminal region of the protein (up to the first 6-TM region at approximately amino acid 639) is an ideal tool for screening factors that affect ABC1 activity. It can be expressed as a truncated protein in ABC1 wild type cells in order to test for interference of the normal ABC1 function by the truncated protein. If the fragment acts in a dominant negative way, it could be used in immunoprecipitations to identify proteins that it may be competing away from the normal endogenous protein.

The C-terminus also lends itself to such experiments, as do the intracellular portions of the molecule, expressed as fragments or tagged or fusion proteins, in the absence of transmembrane regions.

Since it is possible that there are several genes in the human genome which affect cholesterol efflux, it is important to establish that any animal model to be used for a human genetic disease represents the homologous locus in that animal, and not a different locus with a similar function. The evidence above establishes that the chicken Y locus and the human chromosome 9 low HDL locus are homologous. WHAM chickens are therefore an important animal model for the identification of drugs that modulate cholesterol efflux.

The WHAM chickens' HDL deficiency syndrome is not, however, associated with an increased susceptibility to atherosclerosis in chickens. This probably reflects the shorter lifespan of the chicken rather than an inherent difference in the function of

the chicken ABC1 gene compared to the human gene. We propose the WHAM chicken as a model for human low HDL for the development and testing of drugs to raise HDL in humans. Such a model could be employed in several forms, through the use of cells or other derivatives of these chickens, or by the use of the chickens themselves in tests of drug effectiveness, toxicity, and other drug development purposes.

Therapy

5

10

15

20

25

30

Compounds of the invention, including but not limited to, ABC1 polypeptides, ABC1 nucleic acids, other ABC transporters, and any therapeutic agent that modulates biological activity or expression of ABC1 identified using any of the methods disclosed herein, may be administered with a pharmaceutically-acceptable diluent, carrier, or excipient, in unit dosage form. Conventional pharmaceutical practice may be employed to provide suitable formulations or compositions to administer such compositions to patients. Although intravenous administration is preferred, any appropriate route of administration may be employed, for example, perenteral, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intranasal, aerosol, or oral administration. Therapeutic formulations may be in the form of liquid solutions or suspension; for oral administration, formulations may be in the form of tablets or capsules; and for intranasal formulations, in the form of powders, nasal drops, or aerosols.

Methods well known in the art for making formulations are found in, for example, Remington: The Science and Practice of Pharmacy, (19th ed.) ed. A.R. Gennaro AR., 1995, Mack Publishing Company, Easton, PA. Formulations for parenteral administration may, for example, contain excipients, sterile water, or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated napthalenes. Biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds. Other potentially useful parenteral delivery systems for agonists of the invention include ethylenevinyl acetate

copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation may contain excipients, or example, lactose, or may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.

Compounds

10

15

20

25

30

In general, novel drugs for the treatment of aberrant cholesterol levels and/or CVD are identified from large libraries of both natural product or synthetic (or semisynthetic) extracts or chemical libraries according to methods known in the art. Those skilled in the field or drug discovery and development will understand that the precise source of test extracts or compounds is not critical to the screening procedure(s) of the invention. Accordingly, virtually any number of chemical extracts or compounds can be screened using the exemplary methods described herein. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds. Numerous methods are also available for generating random or directed synthesis (e.g., semi-synthesis or total synthesis) of any number of chemical compounds, including, but not limited to, saccharide-, lipid-, peptide-, and nucleic acid-based compounds. Synthetic compound libraries are commercially available from Brandon Associates (Merrimack, NH) and Aldrich Chemical (Milwaukee, WI). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceangraphics Institute (Ft. Pierce, FL), and PharmaMar, U.S.A. (Cambridge, MA). In addition, natural and synthetically produced libraries are produced, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods. Furthermore, if desired, any library or compound is readily modified using standard chemical, physical, or biochemical methods.

In addition, those skilled in the art of drug discovery and development readily understand that methods for dereplication (e.g., taxonomic dereplication, biological

dereplication, and chemical dereplication, or any combination thereof) or the elimination of replicates or repeats of materials already known for their HDL-raising and anti-CVD activities should be employed whenever possible.

When a crude extract is found to have cholesterol-modulating or anti-CVD activities or both, further fractionation of the positive lead extract is necessary to isolate chemical constituent responsible for the observed effect. Thus, the goal of the extraction, fractionation, and purification process is the careful characterization and identification of a chemical entity within the crude extract having cholesterol-modulating or anti-CVD activities. The same *in vivo* and *in vitro* assays described herein for the detection of activities in mixtures of compounds can be used to purify the active component and to test derivatives thereof. Methods of fractionation and purification of such heterogeneous extracts are known in the art. If desired, compounds shown to be useful agents for the treatment of pathogenicity are chemically modified according to methods known in the art. Compounds identified as being of therapeutic value are subsequently analyzed using any standard animal model of diabetes or obesity known in the art.

It is understood that compounds that modulate activity of proteins that modulate or are modulated by ABC1 are useful compounds for modulating cholesterol levels. Exemplary compounds are provided herein; others are known in the art.

Compounds that are structurally related to cholesterol, or that mimic ApoAI or a related apolipoprotein, and increase ABC1 biological activity are particularly useful compounds in the invention. Other compounds, known to act on the MDR protein, can also be used or derivatized and assayed for their ability to increase ABC1 biological activity. Exemplary MDR modulators are PSC833, bromocriptine, and cyclosporin A.

Screening patients having low HDL-C

5

10

15

20

25

30

ABC1 expression, biological activity, and mutational analysis can each serve as a diagnostic tool for low HDL; thus determination of the genetic subtyping of the ABC1 gene sequence can be used to subtype low HDL individuals or families to

determine whether the low HDL phenotype is related to ABC1 function. This diagnostic process can lead to the tailoring of drug treatments according to patient genotype, including prediction of side effects upon administration of HDL increasing drugs (referred to herein as pharmacogenomics). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual is examined to determine the ability of the individual to respond to a particular agent).

5

10

15

20

25

30

Agents, or modulators which have a stimulatory or inhibitory effect on ABC1 biological activity or gene expression can be administered to individuals to treat disorders (e.g., cardiovascular disease or low HDL cholesterol) associated with aberrant ABC1 activity. In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in efficacy of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of ABC1 protein, expression of ABC1 nucleic acid, or mutation content of ABC1 genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons (Eichelbaum, M., Clin. Exp. Pharmacol. Physiol., 23:983-985, 1996; Linder, M. W., Clin. Chem., 43:254-266, 1997). In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). Altered drug action may occur in a patient having a polymorphism

5

10

15

20

25

30

(e.g., an single nucleotide polymorphism or SNP) in promoter, intronic, or exonic sequences of ABC1. Thus by determining the presence and prevalence of polymorphisms allow for prediction of a patient's response to a particular therapeutic agent. In particular, polymorphisms in the promoter region may be critical in determining the risk of HDL deficiency and CVD.

In addition to the mutations in the ABC1 gene described herein, we have detected polymorphisms in the human ABC1 gene (Fig. 11). These polymorphisms are located in promoter, intronic, and exonic sequence of ABC1. Using standard methods, such as direct sequencing, PCR, SSCP, or any other polymorphism-detection system, one could easily ascertain whether these polymorphisms are present in a patient prior to the establishment of a drug treatment regimen for a patient having low HDL, cardiovascular disease, or any other ABC1-mediated condition. It is possible that some these polymorphisms are, in fact, weak mutations. Individuals harboring such mutations may have an increased risk for cardiovascular disease; thus, these polymorphisms may also be useful in diagnostic assays.

Association Studies of ABC1 Gene Variants and HDL Levels or Cardiovascular Disease

The following polymorphisms have been examined for their effect on cholesterol regulation and the predisposition for the development of cardiovascular disease.

Substitution of G for A at nucleotide -1045 [G(-1045)A]. This variant is in complete linkage disequilibrium with the variant at -738 in the individuals we have sequenced, and thus any potential phenotypic effects currently attributed to the variant at -738 may at least in part be due to changes at this site.

Substitution of G for A at nucleotide -738 [G(-738)A]. This variant has been found at very high frequencies in populations selected for low HDL cholesterol or premature coronary artery disease.

Insertion of a G nucleotide at position -4 [G ins (-4)]. This variant has been associated with less coronary artery disease in its carriers than in non-carriers.

Substitution of a C for G at nucleotide -57 [G(-57)C]. This variant is in

complete linkage disequilibrium with the variant at -4 in the individuals we have sequenced, and thus the phenotypic effects currently attributed to the variant at -4 may at least in part be due to changes at this site.

Substitution of A for G at nucleotide 730 (R219K). We have found carriers to have significantly less cardiovascular disease.

Substitution of C for T at nucleotide 1270 (V399A). Within the French Canadian population, this variant has only been found in individuals from the low HDL population. It has also been seen in individuals with low HDL or premature coronary artery disease in individuals of Dutch ancestry.

10

15

20

25

30

Substitution of A for G at nucleotide 2385 (V771M). This variant has been found at an increased frequency in a Dutch population selected for low HDL and at an increased frequency in a population selected for premature coronary artery disease compared to a control Dutch population, indicating carriers of this variant may have reduced HDL and an increased susceptibility to coronary artery disease.

Substitution of C for A at nucleotide 2394 (T774P). This variant has been seen at lower frequencies in populations with coronary artery disease or low HDL than in individuals without.

Substitution of C for G at nucleotide 2402 (K776N). This variant has been found at a significantly lower frequency (0.56% vs. 2.91%, p=0.02) in a coronary artery disease population vs. a control population of similar Dutch background.

Substitution of C for G at nucleotide 3590 (E1172D). This variant is seen at lower frequencies in individuals with low HDL and in some populations with premature coronary artery disease.

Substitution of A for G at nucleotide 4384 (R1587K). This variant has been found at decreased frequencies in the 1/3 of individuals with the highest HDL levels in our large Dutch coronary artery disease population (p=0.036), at increased frequencies in those with HDL cholesterol <0.9 mmol/L (p<0.0001) and at decreased frequencies in the cohorts with HDL cholesterol >1.4 mmol/L in both this population (p=0.002) and the Dutch control population (p=0.003).

Substitution of G for C at nucleotide 5266 (S1731C). Two FHA individuals who have this variant on the other allele have much lower HDL cholesterol

(0.155±0.025) than the FHA individuals in the family who do not have this variant on the other allele (0.64±0.14, p=0.0009). This variant has also been found in one general population French Canadian control with HDL at the 8th percentile (0.92) and one French Canadian individual from a population selected for low HDL and coronary disease (0.72).

Substitution of G for A at nucleotide -1113 [A(-1113)G]. This variant has been seen at varying frequencies in populations distinguished by their HDL levels.

Additional polymorphisms that may be associated with altered risk for cardiovascular disease or altered cholesterol levels are as follows:

5

10

15

20

25

Substitution of G for A at nucleotide 2723 (I883M). This variant has been seen at a much higher frequency in individuals of Dutch ancestry with premature coronary artery disease.

Insertion of 4 nucleotides (CCCT) at position -1181.

Substitution of C for A at nucleotide -479 (linkage disequilibrium with -518).

Substitution of G for A at nucleotide -380.

Other Embodiments

All publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent publication was specifically and individually indicated to be incorporated by reference.

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications. This application is intended to cover any variations, uses, or adaptations following, in general, the principles of the invention and including such departures from the present disclosure within known or customary practice within the art to which the invention pertains and may be applied to the essential features hereinbefore set forth.

What we claim is:

5

10

15

20

25

1. A substantially pure ABC1 polypeptide having ABC1 biological activity.

- 2. The substantially pure ABC1 polypeptide of claim 1, wherein said ABC1 polypeptide is human ABC1.
 - 3. The substantially pure ABC1 polypeptide of claim 1, wherein said polypeptide comprises amino acids 1 to 60 of SEQ ID NO: 1.

4. The substantially pure ABC1 polypeptide of claim 1, wherein said polypeptide comprises amino acids 61 to 2261 of SEQ ID NO: 1.

- 5. The substantially pure ABC1 polypeptide of claim 1, wherein said polypeptide comprises amino acids 1 to 2261 of SEQ ID NO: 1.
- 6. A substantially pure ABC1 polypeptide comprising amino acids 1 to 60 of SEQ ID NO: 1.
- 7. A substantially pure ABC1 polypeptide comprising amino acids 61 to 2261 of SEQ ID NO: 1.
- 8. A substantially pure ABC1 polypeptide comprising amino acids 1 to 2261 of SEQ ID NO: 1.
- 9. A substantially pure nucleic acid molecule that hybridizes at high stringency conditions to nucleotides 75 to 254 of SEQ ID NO: 2 and encodes a polypeptide having ABC1 biological activity.
- 10. A substantially pure nucleic acid molecule encoding an ABC1 polypeptide having ABC1 biological activity.

11. The substantially pure nucleic acid molecule of claim 9 or 10, wherein said nucleic acid molecule comprises nucleotides 75 to 254 of SEQ ID NO: 2.

- 12. The substantially pure nucleic acid molecule of claim 9 or 10, wherein said nucleic acid molecule comprises nucleotides 255 to 6857 of SEQ ID NO: 2.
- 13. The substantially pure nucleic acid molecule of claim 9 or 10, wherein said nucleic acid molecule comprises nucleotides 75 to 6857 of SEQ ID NO: 2.
 - 14. An expression vector comprising the nucleic acid molecule of claim 9.
 - 15. A cell expressing the nucleic acid molecule of claim 9.
 - 16. A non-human mammal expressing the nucleic acid molecule of claim 9.
- 17. A substantially pure nucleic acid molecule comprising nucleotides 75 to 254 of SEQ ID NO: 2.
- 18. A substantially pure nucleic acid molecule comprising nucleotides 255 to 6857 of SEQ ID NO: 2.
 - 19. A substantially pure nucleic acid molecule comprising nucleotides 75 to 6857 of SEQ ID NO: 2.
 - 20. A substantially pure nucleic acid molecule comprising at least thirty consecutive nucleotides corresponding to nucleotides 7015-7860 of SEQ ID NO: 2.
 - 21. The substantially pure nucleic acid molecule of claim 20, wherein said nucleic acid molecule comprises nucleotides 7015-7860 of SEQ ID NO: 2.

25

5

10

15

22. A substantially pure nucleic acid molecule that hybridizes at high stringency to a probe comprising nucleotides 7015-7860 of SEQ ID NO: 2.

- 23. A method of treating a human having low HDL cholesterol or cardiovascular disease, said method comprising administering to said human an ABC1 polypeptide, or cholesterol-regulating fragment thereof.
- 24. The method of claim 23, wherein said ABC1 polypeptide has the sequence of SEQ ID NO: 1.

25. The method of claim 23, wherein said ABC1 polypeptide comprises a mutation that increases its stability.

- 26. The method of claim 23, wherein said ABC1 polypeptide comprises a mutation that increases its biological activity.
- 27. A method of treating a human having low HDL cholesterol or cardiovascular disease, said method comprising administering to said human a nucleic acid molecule encoding an ABC1 polypeptide or a cholesterol-regulating fragment thereof.
- 28. The method of claim 27, wherein said ABC1 polypeptide has the amino acid sequence of SEQ ID NO: 1.
- 29. The method of claim 27, wherein said ABC1 polypeptide comprises a mutation that increases its stability.
 - 30. The method of claim 27, wherein said ABC1 polypeptide comprises a mutation that increases its biological activity.

30

5

10

15

20

31. The method of claim 30, wherein said biological activity is regulation of cholesterol.

32. The method of claim 27, wherein said human has low HDL cholesterol levels relative to normal.

5

10

15

- 33. A method of increasing ABC1 biological activity in a human, said method comprising administering to said human a nucleic acid molecule that hybridizes at high stringency conditions to nucleotides 75 to 254 of SEQ ID NO: 2 and encodes a polypeptide having ABC1 biological activity.
- 34. The method of claim 33, wherein said human has a disease selected from the group consisting of Alzheimer's disease, Niemann-Pick disease, Huntington's disease, x-linked adrenoleukodystrophy, and cancer.
- 35. A method of increasing ABC1 biological activity in a human, said method comprising administering to said human a compound that increases ABC1 biological activity.
- 36. The method of claim 35, wherein said human has a disease selected from the group consisting of Alzheimer's disease, Niemann-Pick disease, Huntington's disease, x-linked adrenoleukodystrophy, and cancer.
- 37. A method of preventing cardiovascular disease in a human, said method comprising administering to said human an expression vector comprising an *ABC1* nucleic acid molecule operably linked to a promoter, said *ABC1* nucleic acid molecule encoding an ABC1 polypeptide having ABC1 biological activity.

38. A method of preventing or ameliorating the effects of a disease-causing mutation in an ABC1 gene in a human, said method comprising introducing into said human an expression vector comprising a promoter operably linked to an ABC1 nucleic acid molecule encoding an ABC1 polypeptide having ABC1 biological activity.

- 39. A method of treating or preventing cardiovascular disease in an animal, said method comprising administering to said animal a compound that mimics the activity of wild-type ABC1.
 - 40. The method of claim 39, wherein said animal is a human.

5

10

15

- 41. A method of treating or preventing cardiovascular disease in an animal, said method comprising administering to said animal a compound that modulates the biological activity of ABC1.
 - 42. The method of claim 41, wherein said animal is a human.
- 43. The method of claim 41, wherein said compound is selected from a group consisting of protein kinase A, protein kinase C, vanadate, okadaic acid, IBMX1, fibrates, β-estradiol, arachidonic acid derivatives, WY-14,643, LTB4, 8(s)HETE, thiozolidinedione antidiabetic drugs, 9-HODE, 13-HODE, nicotinic acid, HMG CoA reductase inhibitors, and compounds that increase PPAR-mediated ABC1 expression.
- 44. The method of claim 23, 27, 39, or 41, wherein said cardiovascular disease is coronary artery disease, cerebrovascular disease, coronary restenosis, or peripheral vascular disease.

45. A method for determining whether a candidate compound is useful for modulating cholesterol levels, said method comprising the steps of:

- (a) providing a chicken comprising a mutation in an ABC1 gene;
- (b) administering said candidate compound to said chicken; and

5

10

15

20

25

- (c) measuring ABC1 biological activity in said chicken, wherein altered ABC1 biological activity, relative to a WHAM chicken not contacted with said compound, indicates that said candidate compound modulates cholesterol levels.
- 46. The method of claim 45, wherein said ABC1 biological activity is transport of cholesterol.
 - 47. A method for determining whether a candidate compound modulates ABC1 biological activity, said method comprising the steps of:
 - (a) providing a cell expressing an ABC1 polypeptide comprising amino acids 1 to 60 of SEQ ID NO: 1;
 - (b) contacting said cell with said candidate compound; and
 - (c) measuring ABC1 biological activity of said cell, wherein altered ABC1 biological activity, relative to a cell not contacted with said compound, indicates that said candidate compound modulates ABC1 biological activity.
 - 48. A method for determining whether a candidate compound modulates ABC1 expression, said method comprising the steps of:
 - (a) providing a cell expressing an ABC1 gene comprising nucleotides 75 to 254 of SEQ ID NO: 2;
 - (b) contacting said cell with said candidate compound; and
 - (c) measuring ABC1 expression of said cell, wherein altered ABC1 expression, relative to a cell not contacted with said compound, indicates that said candidate compound modulates ABC1 expression.

49. A method for determining whether a candidate compound modulates ABC1 expression, said method comprising the steps of:

- (a) providing a nucleic acid molecule comprising an ABC1 promoter operably linked to a reporter gene;
 - (b) contacting said nucleic acid molecule with said candidate compound; and
- (c) measuring expression of said reporter gene,
 wherein altered reporter gene expression, relative to a control not contacted with said
 compound, indicates that said candidate compound modulates ABC1 expression.
- 50. The method of claim 49, wherein said promoter comprises 50 consecutive nucleotides selected from nucleotides 1 to 8238 of SEQ ID NO: 14.

10

15

20

- 51. The method of claim 50, wherein said promoter comprises a binding site for a transcription factor selected from a group consisting of steroid response element binding proteins, peroxisomal proliferation-activated receptors, retinoid X receptors, and RAR-related orphan receptors.
- 52. A method for determining whether a candidate compound modulates ABC1 biological activity, said method comprising the steps of:
- (a) providing an ABC1 polypeptide comprising amino acids 1 to 60 of SEQ ID NO: 1;
 - (b) contacting said polypeptide with said candidate compound; and
- (c) measuring ABC1 biological activity, wherein a change in ABC1 biological activity, relative to a control not contacted with said compound, indicates that said candidate compound modulates ABC1 biological activity.

53. A method for determining whether a candidate compound modulates ABC1 expression, said method comprising the steps of:

- (a) providing an ABC1 polypeptide comprising amino acids 1 to 60 of SEQ ID NO: 1;
 - (b) contacting said polypeptide with said candidate compound; and
- (c) measuring expression of said ABC1 polypeptide, wherein a change in expression of said ABC1 polypeptide, relative to a control not contacted with said compound, indicates that said candidate compound modulates ABC1 expression.

10

5

- 54. A method for determining whether candidate compound modulates ABC1 biological activity, said method comprising the steps of:
- (a) providing an ABC1 polypeptide comprising amino acids 1 to 60 of SEQ ID NO: 1;

(b) contacting said polypeptide with said candidate compound; and

candidate compound modulates ABC1 biological activity.

15

(c) measuring binding of said ABC1 polypeptide to said candidate compound, wherein binding of said ABC1 polypeptide to said compound indicates that said

20

- 55. A method for determining whether candidate compound modulates ABC1 biological activity, said method comprising the steps of:
- (a) providing (i) an ABC1 polypeptide comprising amino acids 1 to 60 of SEQ ID NO: 1, and (ii) a second polypeptide that interacts with said ABC1 polypeptide;
 - (b) contacting said polypeptides with said candidate compound; and

25

(c) measuring interaction of said ABC1 polypeptide with said second polypeptide, wherein an alteration in the interaction of said ABC1 polypeptide with said second polypeptide indicates that said candidate compound modulates ABC1 biological activity.

56. A method for determining whether a candidate compound increases the stability or decreases the regulated catabolism of an ABC1 polypeptide, said method comprising the steps of:

- (a) providing a cell comprising an ABC1 polypeptide comprising amino acids 1 to 60 of SEQ ID NO: 1;
 - (b) contacting said cell with said candidate compound; and
- (c) measuring the half-life of said ABC1 polypeptide, wherein an increase in said half-life, relative to a control not contacted with said compound, indicates that said candidate compound increases the stability or decreases the regulated catabolism of an ABC1 polypeptide.
- 57. A method for determining whether a candidate compound modulates ABC1 biological activity, said method comprising the steps of:
 - (a) providing an ABC1 polypeptide in a lipid membrane;
 - (b) contacting said polypeptide with said candidate compound; and
- (c) measuring ABC1-mediated lipid transport across said lipid membrane, wherein a change in lipid transport, relative to a control not contacted with said compound, indicates that said candidate compound modulates ABC1 biological activity.

20

25

5

10

- 58. The method of claim 49, 52, 53, 54, 55, or 57, wherein said ABC1 polypeptide is in a cell-free system.
- 59. The method of claim 49, 52, 53, 54, 55, or 57, wherein said ABC1 polypeptide is in a cell.
 - 60. The method of claim 59, wherein said cell is from a WHAM chicken.
- 61. The method of claim 59, wherein said cell is in a human or in a non-human mammal.

62. The method of claim 61, wherein said animal-is a WHAM chicken.

- 63. The method of claim 52, wherein said biological activity is transport of lipid or interleukin-1.
 - 64. The method of claim 62, wherein said lipid is cholesterol.
 - 65. The method of claim 64, wherein said cholesterol is HDL-cholesterol.
- 10 66. The method of claim 52, wherein said biological activity is binding or hydrolysis of ATP by the ABC1 polypeptide.
 - 67. A method for determining whether a patient has an increased risk for cardiovascular disease, said method comprising determining whether an *ABC1* gene of said patient has a mutation, wherein a mutation indicates that said patient has an increased risk for cardiovascular disease.
 - 68. A method for determining whether a patient has an increased risk for cardiovascular disease, said method comprising measuring ABC1 biological activity in said patient or in a cell from said patient, wherein increased or decreased levels in said ABC1 biological activity, relative to normal levels, indicates that said patient has an increased risk for cardiovascular disease.
- 69. A method for determining whether a patient has an increased risk for cardiovascular disease, said method comprising measuring ABC1 expression in said patient or in a cell from said patient, wherein decreased levels in said ABC1 expression relative to normal levels, indicates that said patient has an increased risk for cardiovascular disease.

5

15

70. The method of claim 69, wherein said ABC1 expression is determined by measuring levels of ABC1 polypeptide.

- 71. The method of claim 69, wherein said ABC1 expression is determined by measuring levels of ABC1 RNA.
- 72. A non-human mammal comprising a transgene comprising a nucleic acid molecule encoding a dominant-negative ABC1 polypeptide.
- 73. A cell isolated from a non-human mammal comprising a transgene comprising a nucleic acid molecule encoding an ABC1 polypeptide having biological activity.
 - 74. A method for determining whether a candidate compound decreases the inhibition of a dominant-negative ABC1 polypeptide, said method comprising the steps of:
 - (a) providing a cell expressing a dominant-negative ABC1 polypeptide;
 - (b) contacting said cell with said candidate compound; and
 - (c) measuring ABC1 biological activity of said cell, wherein an increase in said ABC1 biological activity, relative to a cell not contacted with said compound, indicates that said candidate compound decreases the inhibition of a dominant-negative ABC1 polypeptide.
- 75. A method for determining whether a person has an altered risk for developing cardiovascular disease, comprising examining the person's ABC1 gene for polymorphisms, wherein the presence of a polymorphism associated with cardiovascular disease indicates the person has an altered risk for developing cardiovascular disease.

5

15

76. A method for predicting a person's response to a drug, comprising determining whether the person has a polymorphism in an ABC1 gene that alters the person's response to said drug.

- 77. A method for predicting a person's response to a drug, comprising determining whether the person has a polymorphism in an ABC1 promoter that alters the person's response to said drug.
- 78. A method for altering ABC1 expression in a cell, said method comprising contacting said cell with a compound selected from a group consisting of fibrates, β-estradiol, arachidonic acid derivatives, WY-14,643, LTB4, 8(s)HETE, thiozolidinedione antidiabetic drugs, 9-HODE, 13-HODE, nicotinic acid, HMG CoA reductase inhibitors, and compounds that increase PPAR-mediated ABC1 expression.
- 15 79. A pharmaceutical composition comprising (i) a nucleic acid molecule that hybridizes under high stringency conditions to nucleotides 75 to 254 of SEQ ID NO: 2 and encodes a polypeptide having ABC1 biological activity; and (ii) a pharmaceutically acceptable carrier.
 - 80. A nucleic acid that hybridizes under high stringency conditions to nucleotides 1 to 8236 of SEQ ID NO: 14.
 - 81. A nucleic acid comprising a region that is 80% identical to at least thirty contiguous nucleotides of nucleotides 1 to 8236 of SEQ ID NO: 14.

20

5

82. A method for determining whether candidate compound modulates ABC1 biological activity, said method comprising the steps of:

(a) providing an ABC1 polypeptide;

5

10

- (b) contacting said polypeptide with cholesterol and said candidate compound; and
- (c) measuring binding of said cholesterol to said ABC1 polypeptide, wherein binding of said cholesterol to said ABC1 polypeptide indicates that said candidate compound modulates ABC1 biological activity.
 - 83. The method of claim 82, wherein said cholesterol is HDL cholesterol.
- 84. The method of claim 82, wherein said method is performed in a cell free assay.
- 85. The method of claim 82, wherein said ABC1 polypeptide comprises amino acids 1 to 60 of SEQ ID NO: 1.
 - 86. the method of claim 82, wherein said cholesterol or said ABC1 polypeptide is detectably labeled.

Family TD - 1

פאופרטטורי אוט טעבנאופאט ו

1g. 2C

BNSDOCID- -WO MEESTRAS I -

Exon 30 mutation:

Fig. 4A

Fig. 4B

ig. (D

Exon 13 mutation:

Control

G C T A G G A

G C T A G G A

Family TD-2, patient 1V:10

G C T A C T T B G G A

A1864G (Q597R)

1854

Fig. 5/

Excm 13

1842

1864

1886

wt sequence HUMIN_ABC1 MOUSE_ABC1 Patient CASSU_ABC Patient

Fig. 5B

Exon 14: FHA - 1, patient III:01

Fig. 6/

Fig. 6B

Fig. 6D

Fig. 6E

₩002

Fig. 8

MACWPOLRLLLWKNLTFRRRQTCQLLLEVAWPLFIFLILISVRLSYPPYEQHECHFPNKAMPSAGTLPWVQ GIICNANNPCFRYPTPGEAPGVVGNFNKSIVARLFSDARRLLLYSQKDTSMKDMRKVLRTLQQIKKSSSNL KLCDFLVDNETFSGFLYHNLSLPKSTVDKMLRADVILHKVFLQGYQLHLTSLCNGSHSEEMIQLGDQEVSE LCGLPREKLARAERVLRSNMDILKPILRTLNSTSPFPSKELAEATKTLLHSLGTLACELFSMRSWSDMRQE VMFLTNVNSSSSSTQIYQAVSRIVCGHPEGGGLKIKSLNWYEDNNYKALFGGNGTEEDAETFYDNSTTPYC NDLMKNLESSFLSRIIWKALKPLLVGKILYTPDTPATRQVMAEVNKTFQELAVFHDLEGMWEELSPKIWTF MENSQEMDLVRMLLDSRDNDHFWEOOLDGLDWTAQDIVAFLAKHPEDVQSSNGSVYTWREAFNETNQAIRT ISRFMECVNLNKLEPIATEVWLINKSMELLDERKFWAGIVFTGITPGSIELPHHVKYKIRMDIDNVERTNK IKDGYWDPGPRADPFEDMRYVWGGFAYLQDVVEQAIIRVLTGTEKKTGVYMQQMPYPCYVDDIFLRVMSRS MPLFMTLAWIYSVAVIIKGIVYEKEARLKETMRIMGLDNSILWFSWFISSLIPLLVSAGLLVVILKLGNLL PYSDPSVVFVFLSVFAVVTILQCFLISTLFSRANLAAACGGIIYFTLYLPYVLCVAXQDYVGFTLKIFASL LSPVAFGFGCEYFALFEEQGIGVQWDNLFESPVEEDGFNLTTSVSMMLFDTFLYGVMTWYIEAVFPGQYGI PP.PWYFPCTKSYWFGEESDEKSHPGSNQKRISEICMEEEPTHLKLGVSIQNLVKVYRDGMKVAVDGLALNF YEGQITSFLGHNGAGKTTTMSILTGLFPPTSGTAYILGKDIRSEMSTIRQNLGVCPQHNVLFDMLTVEEHI WFYARLKGLSEKHVKAEMEQMALDVGLPSSKLKSKTSQLSGGMQRKLSVALAFYGGSKVVILDEPTAGVDP YSPRGIWELLLKYRQGRTIILSTHHMDEADVLGDRIAIISHGKLCCVGSSLFLKNQLGTGYYLTLVKKDVE SSLSSCRNSSSTVSYLKKEDSVSQSSSDAGLGSDHESDTLTIDVSAISNLIRKHVSEARLVEDIGHELTYV LPYEAAKEGAFVELFHEIDDRLSDLGISSYGISETTLEEIFLKVAEESGVDAETSD3TLPARRNRRAFGDK QSCLRPFTEDDAADPNDSDIDPESRETDLLSGMDGKGSYQVKGWKLTQQQFVALLWKRLLIARRSRKGFFA QIVLPAVFVCIALVFSLIVPPFGKYPSLELQPWMYNEQYTFVSNDAPEDTGTLELLNALTKDPGFGTRCME GNPIPDTPCQAGEEEWTTAPVPQTIMDLFQNGNWTMQNPSPACQCSSDKIKKMLPV:CPPGAGGLPPPQRKQ NTADILODLTGRNISDYLVKTYVOIIAKSLKNKIWVNEFRYGGFSLGVSNTQALPPSQEVNDAIKQMKKHL KLAKDSSADR FLNSLGRFMTGLDTRNNVKVWFNNKGWHAISSFLNVINNAILRANLQKGENPSHYGITAFN HPLNLTKQQLSEVALMTTSVDVLVSICVIFAMSFVPASFVVFLIQERVSKAKHLQFISGVKPVIYWLSNFV WDMCNYVVPATLVIIIFICFQQKSYVSSTNLPVLALLLLYGWSITPLMYPASFVFKIPSTAYVVLTSVNL FIGINGSVATFVLELFTDNKLNNINDILKSVFLIFPHFCLGRGLIDMVKNQAMADALERFGENRFVSPLSW DLVGRNLFAMAVEGVVFFLITVLIQYRFFIRPRPVNAKLSPLNDEDEDVRRERQRILDGGGQNDILEIKEL TKIYRRKRKPAVDRICVGIPPGECFGLLGVNGAGKSSTFKMLTGDTTVTRGDAFLNKNSILSNIHEVHQNM GYCPQFDAITELLTGREHVEFFALLRGVPEKEVGKVGEWAIRKLGLVKYGEKYAGNYSGGNKRKLSTAMAL IGGPPVVFLDE PTTGMDPKARRFLWNCALSVVKEGRSVVLTSHSMEECEALCTRMA IMVNGRFRCLGSVQH LKNRFGDGYTI VVRIAGSNPDLKPVQDFFGLAFPGSVLKEKHRNMLQYQLPSSLSSLARIFSILSQSKKRL HIEDYSVSOTTLDOVFVNFAKDQSDDDHLKDLSLHKNQTVVDVAVLTSFLQDEKVKESYV*

GTCCCTGCTGTGAGCTCTGGCCGCTGCCTTCCAGGGCTCCCGAGCCACACGCTGGGGGGTG CTGGCTGAGGGAACATGGCTTGTTGGCCTCAGCTGAGGTTGCTGCTGTGGAAGAACCTCA CTTTCAGAAGAAGACAAACATGTCAGCTGTTACTGGAAGTGGCCTGGCCTCTATTTATCT TCCTGATCCTGATCTCTGTTCGGCTGAGCTACCCACCCTATGAACAACATGAATGCCATT TTCCAAATAAAGCCATGCCCTCTGCAGGAACACTTCCTTGGGTTCAGGGGATTATCTGTA ATGCCAACACCCCTGTTTCCGTTACCCGACTCCTGGGGAGGCTCCCGGAGTTGTTGGAA ACTTTAACAAATCCATTGTGGCTCGCCTGTTCTCAGATGCTCGGAGGCTTCTTTATACA GCCAGAAAGACACCAGCATGAAGGACATGCGCAAAGTTCTGAGAACATTACAGCAGATCA AGAAATCCAGCTCAAACTTGAAGCTTCAAGATTTCCTGGTGGACAATGAAACCTTCTCTG GGTTCCTGTATCACAACCTCTCTCCCCAAAGTCTACTGTGGACAAGATGCTGAGGGCTG ATGTCATTCTCCACAGGTATTTTTGCAAGGCTACCAGTTACATTTGACAAGTCTGTGCA ATGGATCAAAATCAGAAGAGATGATTCAACTTGGTGACCAAGAAGTTTCTGAGCTTTGTG GCCTACCAAGGGAGAACTGGCTGCAGCAGGAGCGAGTACTTCGTTCCAACATGGACATCC AAGCCACAAAAACATTGCTGCATAGTCTTGGGACTCTGGCCCAGGAGCTGTTCAGCATGA GAAGCTGGAGTGACATGCGACAGGAGGTGATGTTTCTGACCAATGTGAACAGCTCCAGCT GGCTGAAGATCAAGTCTCTCAACTGGTATGAGGACAACAACTACAAAGCCCTCTTTGGAG GCAATGGCACTGAGGAAGATGCTGAAACCTTCTATGACAACTCTACAACTCCTTACTGCA ATGATTTGATGAAGAATTTGGAGTCTAGTCCTCTTTCCCGCATTATCTGGAAAGCTCTGA AGCCGCTGCTCGTTGGGAAGATCCTGTATACACCTGACACTCCAGCCACAAGGCAGGTCA TGGCTGAGGTGAACAAGACCTTCCAGGAACTGGCTGTTTCCATGATCTGGAAGGCATGT GGGAGGAACTCAGCCCCAAGATCTGGACCTTCATGGAGAACAGCCAAGAAATGGACCTTG TCCGGATGCTGTTGGACAGCAGGGACAATGACCACTTTTGGGAACAGCAGTTGGATGGCT TAGATTGGACAGCCCAAGACATCGTGGCGTTTTTGGCCAAGCACCCAGAGGATGTCCAGT CCAGTAATGGTTCTGTGTACACCTGGAGAGAGCTTTCAACGAGACTAACCAGGCAATCC GGACCATATCTCGCTTCATGGAGTGTGTCAACCTGAACAAGCTAGAACCCATAGCAACAG AAGTCTGGCTCATCARCAAGTCCATGGAGCTGCTGGATGAGAGGAAGTTCTGGGCTGGTA TTGTGTTCACTGGAATTACTCCAGGCAGCATTGAGCTGCCCCATCATGTCAAGTACAAGA TCCGAATGGACATTGRCAATGTGGAGAGGACAAATAAAATCAAGGATGGGTACTGGGACC TGCAGGATGTGGTGGAGCAGCAATCATCAGGGTGCTGACGGGCACCGAGAAGAAAACTG

Fig. 9B

GTGTCTATATGCAACAGATGCCCTATCCCTGTTACGTTGATGACATCTTTCTGCGGGTGA TGAGCCGGTCAATGCCCCTCTTCATGACGCTGGCCTGGATTTACTCAGTGGCTGTGATCA TCAAGGGCATCGTGTATGAGAAGGAGGCACGGCTGAAAGAGACCATGCGGATCATGGGCC TGGACAACAGCATCCTCTGGTTTAGCTGGTTCATTAGTAGCCTCATTCCTCTTCTTGTGA GCGCTGGCCTGCTAGTGGTCATCCTGAAGTTAGGAAACCTGCTGCCCTACAGTGATCCCA GCGTG3TGTTTGTCTTCCTGTCCGTGTTTGCTGTGACAATCCTGCAGTGCTTCCTGA TTAGCACACTCTTCTCCAGAGCCAACCTGGCAGCCTGTGGGGGCATCATCTACTTCA CGCTGTACCTGCCCTACGTCCTGTGTGTGGCATGGCAGGACTACGTGGGCTTCACACTCA AGATCTTCGCTAGCCTGCTGTCTCCTGTGGCTTTTGGGTTTGGCTGTGAGTACTTTGCCC TTTTTGAGGAGCAGGCATTGGAGTGCAGTGGGACAACCTGTTTGAGAGTCCTGTGGAGG AAGATGGCTTCAATCTCACCACTTCGGTCTCCATGATGCTGTTTGACACCTTCCTCTATG GGGTGATGACCTGGTACATTGAGGCTGTCTTTCCAGGCCAGTACGGAATTCCCAGGCCCT GGTATTTTCCTTGCACCAAGTCCTACTGGTTTGGCGAGGAAAGTGATGAGAAGAGCCACC AGCTGGGCGTGTCCATTCAGAACCTGGTAAAAGTCTACCGAGATGGGATGAAGGTGGCTG GAGCGGGGAAGACGACCACCATGTCAATCCTGACCGGGTTGTTCCCCCCGACCTCGGGCA CCGCCTACATCCTGGGAAAAGACATTCGCTCTGAGATGAGCACCATCCGGCAGAACCTGG GGGTCTGTCCCCAGCATAACGTGCTGTTTGACATGCTGACTGTCGAAGAACACATCTGGT TCTATGCCCGCTTGAAAGGGCTCTCTGAGAAGCACGTGAAGGCGGAGATGGAGCAGATGG CCCTGGATGTTGGTTTGCCATCAAGCAAGCTGAAAAGCAAACAAGCCAGCTGTCAGGTG GAATGCAGAGAAAGCTATCTGTGGCCTTGGCCTTTGTCGGGGGATCTAAGGTTGTCATTC TGGATGAACCCACAGCTGGTGTGGACCCTTACTCCCGCAGGGGAATATGGGAGCTGCTGC TGAAATACCGACAAGGCCGCACCATTATTCTCTCTACACACCACATGGATGAAGCGGACG TCCTGGGGGACAGGATTGCCATCATCTCCCATGGGAAGCTGTGCTGTGGGGCTCCTCCC AATCCTCCCTCAGTTCCTGCAGAAACAGTAGTAGCACTGTCATACCTGAAAAAGGAGG ACAGTGTTTCTCAGAGCAGTTCTGATGCTGGCCTGGGCAGCGACCATGAGAGTGACACGC TGACCATCGATGTCTCT3CTATCTCLAACCTCATCAGGAAGCATGTGTCTGAAGCCCGGC TGGTGGAAGACATAGGGCATGAGCTGACCTATGTGCTGCCATATGAAGCTGCTAAGGAGG GAGCCTTTGTGGAACTCTTTCATGAGATTGATGACCGGCTCTCAGACCTGGGCATTTCTA GTTATGGCATCTCAGAGACGACCCTGGAAGAAATATTCCTCAAGGTGGCCGAAGAGAGTG GGGTGGATGCTGAGACCTCAGATGGTACCTTGCCAGCAAGACGAAACAGGCGGGCCTTCG GGGACAAGCAGAGCTGTCTTCGCCCGTTCACTGAAGATGATGCTGCTGATCCAAATGATT

Fig. 9C

CCTACCAGGTGAAAGGCTGGAAACTTACACAGCAACAGTTTGTGGCCCTTTTGTGGAAGA GACTGCTAATTGCCAGACGGAGTCGGAAAGGATTTTTTGCTCAGATTGTCTTGCCAGCTG TGTTTGTCTGCATTGCCCTTGTGTTCAGCCTGATCGTGCCACCCTTTGGCAAGTACCCCA GCCTGGAACTTCAGCCCTGGATGTACAACGAACAGTACACATTTGTCAGCAATGATGCTC CTGAGGACACGGGAACCCTGGAACTCTTAAACGCCCTCACCAAAGACCCTGGCTTCGGGA GGACCACTGCCCCAGTTCCCCAGACCATCATGGACCTCTTCCAGAATGGGAACTGGACAA TGCAGAACCCTTCACCTGCATGCCAGTGTAGCAGCGACAAAATCAAGAAGATGCTGCCTG TCCTTCAGGACCTGACAGGAAGAACATTTCGGATTATCTGGTGAAGACGTATGTGCAGA TCATAGCCAAAAGCTTAAAGAACAAGATCTGGGTGAATGAGTTTAGGTATGGCGGCTTTT CCCTGGGTGTCAGTAATACTCAAGCACTTCCTCCGAGTCAAGAAGTTAATGATGCCATCA AACAAATGAAGAAACACCTAAAGCTGGCCAAGGACAGTTCTGCAGATCGATTTCTCAACA GCTTGGGAAGATTTATGACAGGACTGGACACCAGAAATAATGTCAAGGTGTGGTTCAATA ACAAGGGCTGGCATCAACCACTCTTTCCTGAATGTCATCAACAATGCCATTCTCCGGG CCAACCTGCAAAAGGGAGAGCCCTAGCCATTATGGAATTACTGCTTTCAATCATCCCC TGAATCTCACCAAGCAGCAGCTCTCAGAGGTGGCTCTGATGACCACATCAGTGGATGTCC TGATCCAGGAGCGGGTCAGCAAAGCAAACACCTGCAGTTCATCAGTGGAGTGAAGCCTG TCATCTACTGGCTCTCTAATTTTGTCTGGGATATGTGCAATTACGTTGTCCCTGCCACAC TGGTCATTATCATCTTCATCTGCTTCCAGCAGAAGTCCTATGTGTCCTCCACCAATCTGC CTGTGCTAGCCCTTCTACTTTTGCTGTATGGGTGGTCAATCACACCTCTCATGTACCCAG CCTCCTTTGTGTTCA33ATCCCCAGCACAGCCTATGTGGTGCTCACCAGCGTGAACCTCT TCATTGGCATTAATGGCAGCGTGGCCACCTTTGTGCTGGAGCTGTTCACCGACAATAAGC TGAATAATATCAATGATATCCTGAAGTCCGTGTTCTTGATCTTCCCACATTTTTGCCTGG GACGAGGGCTCATCGACATGGTGAAAAACCAGGCAATGGCTGATGCCCTGGAAAGGTTTG GGGAGAATCGCTTTGTGTCACCATTATCTTGGGACTTGGTGGGACGAAACCTCTTCGCCA TGGCCGTGGAAGGGGTGGTGTTCTTCCTCATTACTGTTCTGATCCAGTACAGATTCTTCA TCAGGCCCAGACCTGTAAATGCAAAGCTATCTCCTCTGAATGATGAAGATGAAGATGTGA GGCGGGAAGACAGAGAATTCTTGATGGTGGAGGCCAGAATGACATCTTAGAAATCAAGG AGTTGACGARGATATRTAGAAGGAAGCGGAAGCCTGCTGTTGACAGGATTTGCGTGGGCA TTCCTCCTGGTGAGTGCTTTGGGCTCCTGGGAGTTAATGGGGCTGGAAAATCATCAACTT TCLAGATGTTAACAGGAGATACCACTGTTACCAGAGGAGATGCTTTCCTTAACAAAAATA

Fig. 9D

OTATETTATCAAACATCCATGAAGTACATCAGAACATGGGCTACTGCCCTCAGTTTGATG CCATCACAGAGCTGTTGACTGGGAGAGAACACGTGGAGTTCTTTGCCCTTTTGAGAGGAG TCCCAGAGAAAGAAGTTGGCAAGGTTGGTGAGTGGGCGATTCGGAAACTGGGCCTCGTGA AGTATGGAGAAAATATGCTGGTAACTATAGTGGAGGCAACAAACGCAAGCTCTCTACAG CCATGGCTTTGATCGGCGGGCCTCCTGTGGTGTTTCTGGATGAACCCACCACACAGGCATGG ATCCCARAGCCCGGCGGTTCTTGTGGAATTGTGCCCTAAGTGTTGTCAAGGAGGGGGAGAT CAGTAGTGCTTACATCTCATAGTATGGAAGAATGTGAAGCTCTTTGCACTAEGATGGCAA TCATGGTCAATGGAAGGTTCAGGTGCCTTGGCAGTGTCCAGCATCTAAAAAATAGGTTTG GAGATGETTATACAATAGTTGTACGAATAGCAGGGTCCAACCCGGACCTGAAGCCTGTCC AGGATTTCTTTGGACTTGCATTTCCTGGAAGTGTTCTAAAAGAGAAACACCGGAACATGC TACAATACCAGCTTCCATCTTCATTATCTTCTCTGGCCAGGATATTCAGCATCCTCTCCC AGAGCAAAAAGCGACTCCACATAGAAGACTACTCTGTTTCTCAGACAACACTTGACCAAG TATTTGTGAACTTTGCCAAGGACCAAAGTGATGATGACCACTTAAAAGACCTCTCATTAC ACARARACCAGACAGTAGTGGACGTTGCAGTTCTCACATCTTTTCTACAGGATGAGAAAG TGAAAGAAAGCTATGTATGAAGAATCCTGTTCATACGGGGTGGCTGAAAGTAAAGAGGAA CTAGACTTTCCTTTGCACCATGTGAAGTGTTGTGGAGAAAAGAGCCAGAAGTTGATGTGG GAAGAAGTAAACTGGATACTGTACTGATACTATTCAATGCAATGCAATTCAATGCAATGA AAACAAAATTCCATTACAGGGGCAGTGCCTTTGTAGCCTATGTCTTGTATGGCTCTCAAG TGAAAGACTTGAATTTAGTTTTTTACCTATACCTATGTGAAACTCTATTATGGAACCCAA GGGGTTGCAACAATAATTCATCAAGTAATCATGGCCAGCGATTATTGATCAAAATCAAAA GGTAATGCACATCCTCATTCACTAAGCCATGCCATGCCCAGGAGACTGGTTTCCCGGTGA CACATCCATTGCTGGCAATGAGTGTGCCAGAGTTATTAGTGCCAAGTTTTTCAGAAAGTT TGRAGCACCATGGTGTGTCATGCTCACTTTTGTGAAAGCTGCTCTGCTCAGAGTCTATCA ACATTGAATATCAGTTGACAGAATGGTGCCATGCGTGGCTAACATCCTGCTTTGATTCCC TCTGATAAGCTGTTCTGGTGGCAGTAACATGCAACAAAAATGTGGGTGTCTCCAGGCACG GGAAACTTGGTTCCATTGTTATATTGTCCTATGCTTCGAGCCATGGGTCTACAGGGTCAT CCTTATGAGACTCTTALATATACTTAGATCCTGGTAAGAGGCAAAGAATCAACAGCCAAA CTGCTGGGGCTGCAACTGCTGAAGCCAGGGCATGGGATTAAAGAGATTGTGCGTTCAAAC CTAGGGAAGCCTGTGCCCATTTGTCCTGACTGTCTGCTAACATGGTACACTGCATCTCAA GATGTTTATCTGACACAAGTGTATTATTTCTGGCTTTTTGAATTAATCTAGAAAATGAAA

Fig. 9E

	Ē,	Exon Forward Primer	SEO 10 No		35.00		4
	Ē				:		-
e.o. 1	5		ę	A ICCCAND ICANACION	2 9		
exon 2	6	GGATTICCCAGATCCCAGTG	-	AAGTCCAATTTAGCCCACGTT	02		
	3		22	CCAGCCATTCAAATTCTCC	-2-		
	:		22	GGTGCAGGTCAATITCCAAT	122		÷
1000	:	_	77	CCCCTTCACCACCATTACAA	£21	mtron 5 > 1.769 (3)	-
6 100	=		75	TGTCCAAGGAAAAGCCTCAC	124	Intron 6 >2.728 (10)	2
	3	-	84	AGGACCICITGCCAGACICA	135	intron 7 4 957	'n
6	3	- •	2 2	AGGAGATGACACAGGCCAAG	126	infron 8 > 2 311 (2 5)	5.5
5	ξ:			CGCACACCTCTGAAGCTACC	121	mitton 9 0 332	0.3
eron 9	₹ :			ACCTCACTCACTCGGAA	128	intron 10 4.208	4.2
eron 10	=			COLUMN TO TO THE T	520	mirno 11 0.747	0.7
eron 11	198		09	פרנוריופרנופשריושו		miron 12 0.523	9
erm 12	ž		-	CAAAATCATGACACCAAGTTGAG	2 :	miron 12 1.263	
£1 (101.4)	=	-	82	CATGCACATGCACATA	5 9		2 -
At onse	223		63	CCTTAGCCCGTGTTGAGCTA	25	10 1 10 1 10 1 10 1 10 1 10 1 10 10 10 1	::
51 00.0	22	CAAGIGAGIGCTIGGGAITG	3	1GCTTTATTCAGGGACTCCA	<u> </u>	SED I CI WOILUI	::
81 00.0	Š		85	CCCATGCACTGCAGAGATTC	7	COL.1 81 nonlin	: :
	3		120	AAGGCAGGAGACATCGCTT	135	intron 17 1.798	9.
	:			GGGATCAGCATGGTTTCCTA	55	intran 18 0.99	-
6100	2	-		GCTTAAGTCCCACTCCTCCC	137		2
A	3			ATTITICETCCGCATGTGTGT	138		0 2
	2		5	1CACAGAAGCC1AGCCA1GA	139	intron 21 0.706	0.7
- C - C - C - C - C - C - C - C - C - C	2 :		≈ 5	AACAGAGCAGGGAGATGGTG	<u>1</u>	Intron 22 > 0.866 (1.7)	-
eron 22	≅ :			TOTACACCTCTCCTCTCTG	Ξ	Intron 23 0.986	-
£100 23	2		75	ACTOGGGCCAACATTAATCA	142	Intron 24 1.668	-1
5 400	E	ACCIGGACAGG GIGGIGI		CTTCCCCATCTGCAACAAC	Ξ	Intron 25 0.196	0.2
eron 25	?	GGGCIAACAIGCCACICAGIA	76	GCTAAAGGCCATCCAAAGAA	3	Intron 26 1.396	=
07 vo 19	: :	0400404404404	8 \$	TCAAGTGCATCTGGGCATAA	145	miron 27 1,649	9.
/ L	2	C1CCAGACAGACAGACAGACAGACAGACAGACAGACAGAC	16	ICIGAAGICCATICCCTIGG	971	Intron 28 >0 728 (14)	-
200	9 5	CONTRACTOR CONTRACTOR	3	CAAIGIGGCAIGCAGIIGAI	147	intron 29 +2.589 (3)	.
67 LON 29	\$ 8	######################################	2 2	GAAGCTACCAGCCCATCCT	148	mitton 30 1 521	2
6x04 30	3 2	TACCCATTONIC CONTRACTOR		CATTICCCCCACTGTTICAG	149	Intron 31 >0 944 (1)	
E 60 31	S :	AG1CAGG171CCGG1CACAC	2	CCAAGGCTITCTICAATCCA	150	miture 32 +1 062 (/ 6 5)	•
e100 32	3	CCGTICTIAINCCICAGGG		GATCCGTTTAACCTGCCAAC	151	minon 33 1475	-
6.00	§ ;	***************************************	101	ATGCCCTGCCAACTTTAC	152	infron 34 0.522	S 0
2010		101001100011	701	CTCTGCAGCTGTTCCCCTAC	153	Intron 35 1.228	1.2.
eron 35	2 :	A1011111111111111111111111111111111111	105	TATCAATCCATGGCCTGAC	154	intron 36 > 1.898 (2)	~
2 xou 70	2	ATOTOTOTITOTOTO	901	AGAGTCCCTGCCTCCTTCT	. 551	intron 37 0 112	5
eron 3/	2 :	**************************************	201	AAGGCAGTCAGCAGTGTCAA	156	intron 38 1,545	<u>.</u>
ex 00 20	2	TO STATE OF THE PROPERTY OF TH	801	GGGGAACATCCTGTGCTTAG	157	mfron 39 1.087	=
eron 19		**************************************	601	CCATTGGTGAGTGTTCCCT	P.78	Princes 40 0 265	
eron 40	3	TOTAL SOCIONATOR SOCIAL		AGTCAGCAAACTGCTGGGTT	159	Infron 41 >0.622 (09)	
exon 4	9	ACTOCATICATION	=======================================	ATTGCTCCATCCTGGCATAA	160	intron 42 0.909	60
2 Lucia	3	ACTICAL CONTRACTOR OF THE PROPERTY OF THE PROP	- 21	TCATGGATGATTTTATGTGCTTC	161	intron 43 2,355	7.
- Louis	<u> </u>	CACCASTATAGGGCTAGGATTG	511	GCGTGTGGAAAAGCCATAAG	162	Intron 44 0 372	_
E CO.	ž :	CATOTATOTETAGGACAGCATGA	=	GCCAATCATACAACAGCCCT	163	intron 45 > 1,059 [1.3]	
6	2 3	CATGLATICAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA	- 12	TGATCGCATATTCTACTTGGAAA	164	Intron 46 0.483	9.5
5	Š 2	C16111COOC010C1CC	118	TCCCTTTATTTAGAGGCACCA	165	intron 47 0.659	2.0
eron 4:	3	CC1AGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	117	GATCAGGAATTCAAGCACCAA	991	intron 48 0.941	60
6100	2	GGGTTCCCMPSGTTCMSTCT		TGGGTTCCATAATAGAGTTTCACA	167	×1.075	
6100 49	292	CHEACLIANTICANONICS	•				

Fig. 10

	sequence Idifference	· ·		-1	SEG ID NO:
on/mron	Nucleotides	Amino acid : change :		Sequence difference-reptest	: 32 U NU:
			VIDEC SEQUENCE;	TOTOACCTOTTACTORACTO	168
	A152G		orred sequence:	PROTOKE VECTOC TOCAL TO	100
	CATRY	no change of	UDIC SEQUENCE:	MOCACCITOCOCCACA	170
			orrect sequence:	MOCAGCTGGCTGAAGCCAGAA	171
77	C47387		uok: sequence:	MATCHTCCCACCAMBAAT:	172
		<u>F</u>	Lamera sequence:	AATEATECCATEGAACAA!	173
33	C5017T	PISBBL	uthic sequence:	EAGGREGATE COLOR	174
			Correct sequence:	CACCIOCICICATEACCAS	175
43	G5995A		UDIC SEQUENCE:	HTCCTTAACAGAAATAGTATT	176
		! 	Comed sequence	TTCC.TACOMMITAGEATT	1 111
48	C6577Y	P71081	Public sequence:	ECHACICTICCAAACACACA	178
			Correct sequence:	DEAL TOTTE : ALLEGE ALL	179
		!			
40	G8899A		Public sequence:	ACTAMENOGOIC ACAC	180
		:	Correct sequence:	AGTANGAGGAACTACTACTT	181
		; -!			
TOPS.		; -			SEO ID NO:
		1		1	
13	A1884G	Q597R	More common:	CCCTACTICCACTATOTCCTS	182
			Less common	GCC.ACCCCGCATC.TCC	183
14		steeting (CC)	PAORE COMMON:		184
	Geta CTT 2151-3		Less common:	CONTROL CONTRACT	185
		1	1	1	
15	G2385A		More common:	COCCACTACOTOCCCTTCA:	186
		1	Less common:	GEAGGAETAEATSGGCCA.	187
	#31	R909Sino		PARACTETACETACATOCIA"	188
18	C2799T		Less common	AMOTOTACTUCATUCAT	189
		1			·
18	C2660Y	179294	More common	DECEMENTACETECTIC	190
		1	Less common	COCCAGATOA TETET TEET.	191
		MIDSIY	<u></u>	hodica to the	192
_=	T3346C	MILIPIT	Work Countrion	WCACCOLDECTE TOWARD	193
		+	Less Conversion	TO COLORESCE TO THE PARTY OF TH	
tranon 24	(+1) G to C	Altered transcript	More common:	CC-CCAACIATTALC.TALT.	194
	spice donor see	liength.	Yess common.	CCTCCAACATTAACTTAACTT	195
30		C1477R	Mare common	persecution of the second	196
	T4503C	CIEZIN	Less common	ECTRECTIONS COCCCCC	197
			LESS COMMON	1	
35	GG 4956-57 to C	Framesiva	More common:	TAGCCATTA TODAL TACTOT	198
		26 22 16.28	Less common	PACCEATTATIANTIAL TOTAL	199
			<u> </u>	CATGAAGA TAACA TO GASCOSOGA	200
-41	OPLS AAGATG 5752	-7idettarE.011893-1894	Tiss countou.	CATCAACATE/TEACCOCCA	200
-			Less Controll		
48	C6504T	R21445100	More common:	MATAGETE ACCALINGUES	202
		1	Less common:	MATACTICITATIONATACCIONI	200
			 		
ocation	ention	Pasmon	† 		SEQ ID NO:
	Relative to	Relative to	1 '		
	Kenon CDNA	SEG ID NO: 14	1	1	•
		Containing Exon 1	1	ļ.	3.0
		Exon 1	1		
	GS7C	216	More common	ACACSCTSSSSSSTCTTSSSTS	204
			Less common	ACACHOLICACIO	205
5	- (-) 4 ms, G	1 9158	More common.	RACOGCIA COCCUTECTOS	200 207
			Less common	ENTRACES ESSENTE:	207
•	A (-) 380 G	·	More common	OTTO TO STATE OF THE PARTY OF T	208
	- 1-1 ad G		Less common	CATTALL AND	209
5	A (-) 479 C	: 681	More common	CAMATRISTATO ANGELIS	210
			Less common	GUANTATT TOTAL GUAS	213
	A (-) 738 G	422	More common	ATTRICET AND CONTROLLED TO	212
	- (1/380		Less common	KTHING STREET, UKTA-T	213
		•			
5	A (-) 1045 G	1 115	More common	FATORETTA CONTRACTOR TO	214
			Less commor	MATTHEE TARESTANDANCETT TO	215
			•		216
	X 7 3 3 4 4 5 4 7				
5'	A (-) 1113 G	'y.	More common	· · · · · · · · · · · · · · · · · · ·	217
5'	A (-) 11:3 G	**************************************	Less common	AUTATEUR TO TABLE	

Fig. 11

Page 1 of 2

	Nucleations				
	mcreq110em	Ameno acid change	1	dequence difference, runtait	SEQ IO NO:
				- 	<u></u>
\$	GSaBA	un cumba	More common:	CTOOC.TCCTGTATCACAL.	
			Carry coupusous:	CHOOCITEL ATATCACAL"	21
4	G730A	6219K			
	C/30A	RZTUR .	More common:	OGCCTACCANGGAAA.TI	22
			Less common:	DECCTACEMENTAL TO	23
Ireron :	G (*1 2383 *	Not aconcasse	Added 11	ПТАМОССЕНСИТАНИ	
			When 2:	(TTAAACCOCTICAT, ACA	225
tratton 7	G (+) 3035 T	Not aconcache	'Abro I.	GAACAAATTIUTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	. 226
			sales I.	CACCALTETTITITITITI	227
	CIDIDI	500 FANCES			
	C10101	un cyaude	Yes common:	CONSCRIPTION AND AND AND AND AND AND AND AND AND AN	220
			· ces minor	DELECATECTEAGGALAC	; 229
3	G 1022A	TO Change	More convince	MOSCACOCCCCTCAACA?5	230
			Ferr Courseou.	MODEL ACCOUNT OF THE PARTY OF T	231
			_1		· ····
ILELOW 3	(-) 42 ms. G	MOT appricable	More common:	MOCACCALACTICATICS	232
			Less common:	MOCAGOCAMOCOCTES	233
weron 13	T (+) 24 A	NOT appricable			
	11.724	1	Yess common	MCCACIGITATITACEAT	734
			1		
15	A2394C	1774P	More common:	KOTOGOCT-SLOCEGOUSE:	236
			CESS COMPTON.	CONCECT: COCACTOLASA?	1 237
	55	1			
:5	G2402C	K776N	More common	Treacher carea terres	238
			Less common:	FOACAC-CALCATOT	239
tremon 14	C (+) 16 T	9401 approapre	Altere 1	ECASCOT ACCOUNTS	240
-			'Altro 2:	BOACCTCACTOCCCTT	241
17	A2723G	#883K1	iAllere 1	ACALCAGUATATCAGALAT.	242
		+	Allery 2.	MCANCAGUATUTCAGALATIT	243
tranço 17	C (*) 2000 G	Pior acceptable	SARre 1	PRESCRICTOR TOTAL TOTAL	244
		1	IARRE 2	GCCAGGCCCCCCCCCA	244
			-		- 243
	TOZOSG	the change	More common	PATC:MOT.GTCATTCT	246
			Less common	FATCTAAGGTGGTCATTCTTC	247
Imites 21	G (+) 118 7	The state of the s			
IIIII . I	G (*) 118 1	PHOT ADDRESSHE	JARNE 1 JARNE 2	TICT CO. ACCACACACACACA	248
			P-44 4.	THE THE PROPERTY OF THE PARTY O	249
Intron 21	A (+) 563 G	Not acorcable	Alicie 1"	CATTCTAGGGATCATAGGGGG	250
			Allete 2:	CATTCTAGGGATGATAGGGAT	251
					
IMION 24	G (-) 321 T	Not acorcable	Abrie 1.	MACTACAC TOCACCAACACTE	252
			Nature 2:	ANGTACAGESTRAGGAACASTS	253
Interpr 29	A (-) 624 G	Not acorcable	Magne 1"	MTTCCTALLIATACANTTEA	- 264
			Allete 2:	ATTOCTANUOTACHATEC	255
Invon 31	7 (+) 30 C	Not accepable	More common.	COCCUTATION ATTACK	, 256
			Less common:	FACCOCTACCOUTATIATIAT.	257
Freign 33	A (+) 732 G	NOI aroscable	IABele 1.		258
	117.00	1	Marre 1.	MGAGAGATTACTTGAACTTG	258
		<u> </u>	1		
ICE GOLDIN	C (+) 898 T	P401 Anorecable	(Alleie 1:	PATECTOLINGUATES.T.C.C.	250
			Milele 2.	TITICICAL TAXTCACTAC	261
trayon 34	C (-) 234 T	The second			
	C (-) 234 1	Piot acoucable	Milese 1' LABour 2:	WCCTCACCCC.CATCC	262
		+	(Allete 2:	MCCTOGTCCTOXC	263
34	G4834A	R 155 K	More common	ETGGGGGGGGGGGGTATTETT	264
			Less common	CTGGGGGGGGGGGGTAATTATTCC	265
					1
37	C5266G	IS 173 °C	More common	PECTATO DE CETECACIDAT	266
			Less common	hactatutaticitecaecus;	: 267
ireron 43	T (+) 18 C	34C1 3CC=C3D10	More common	ALCALC: 201710:A-11122	208
			Less common	AAGAACTIGCCTUTATTTCC	269
'mm 43	A (+) 1565 G	Not accurable	JANgre 1	AACTGATTTATTTATTATTA	270
			sAfete 2	AACTGATTTSGTTSGTATAGTT	271
	F44.54	الم المعارد	More common		
46			Less common	CASCOTT SATTERCACTURE	272
48	C65217		Personal Contractions		7/3
48				CONTENCENTOCOCACAC	
	(*) 14 ms T	Net accepte	940re common	· ALVI CARLOUR I COLOR - ALVI CARLOUR - ALVI CARLOU	284
		Net accepte	More common Less common	FACTORISATIONICADAS	284 285
Interpri 10	(*) 14 ms T		Less common	120100311000000	
48 Ireron 10 Exon 16		Net 200-0204 78251	Less common	FACTORISM THORNOLOGY	285
Interpri 10	(*) 14 ms T		Less common	KOOTOWNATIONALES KOOTTOWNSTICATE KOOTTOWNSTICATE	285
Expn 16	(+) 14 ms T	V8251	Less common	FACTORISM THORNOLOGY	285
Eson 16	(*) 14 ms T G2547A	V8Z51	Less common More common Less common	KOOTOWNATIONALES KOOTTOWNSTICATE KOOTTOWNSTICATE	285 : 285 : 287
Eson 16	(*) 14 ms T G2547A	V8251	Less common More common Less common	KOOTOWNATIONALES KOOTTOWNSTICATE KOOTTOWNSTICATE	285

Fig. 11 Page 2 of 2

WO 00/55318

SEO ID NO: 14

Genomic contig containing ASC1 exon 1:

Underline = putitive promotor element

acctettatagaatgatagaatteetetggaatgattggataaetteattteateettgaettttaeettggaggattt cttaccccttttggcttctcaaatttgactattaaaatgttgcctttaaaaataggaacacagtttcagggggggagtac caçcocatgacosttotgcaaggcococtaactcaaggtagtttocotggaactgtggtttatggaatgtttcaggagt gzşaggaggtataatttaaggctgtcctagcaaggatacccttaaggatagagggcccagtagcatctggaggccagaa aagttaaactgaggcagtcagattagcttcaggctcaattaagctgatgggtcagcctgggagaaattgcaggatgact creatarececteceaececeaeageagecaegaretgtetgtetttaateatgggtgcagtgaacetgttettteca ggtgtcttcggccttcagtaaccttgttaggcttgtccctgaacgtggctaccgatccaaagacacatgatcagagaggc aattagagaacagacettttecaaagcaagcatgttetgttgggettagaagttteatgtectaatattataggaceet gzgcatczczczggagatgaggcacatgagtcatazczgtgattczzgctzzzgtgtcaacatczcatgaataggcaat cagagetttggcaccaatgtattttcagttcatatetgatgtagttaaatecacctestgetttgtagtttaetggcaa getgtttttgatataagacatctagaacactgtaaatatataacattttatttgtctattatacctcaattacgaaaa açacatotagaagoaacotoatoaagagagataotgaggoogggoatggtagotoacaottgcaatoccattaotttgg çaggetgaggtagateaettgaggtcaagagtttgaaaccageetggecaacatgttgaaaccetgtetetatta aaaatacaaaaaagttagetgggcttggtgggcacctgtaateecagetacteeggaggetgaggcaggagtaatea cttgaacctgggaggcagaggttgcagtgagctgagatcacaccactgcactccaacctggggcaccagagtgagattac atctaaaaaataaaataaagtaataaaaaagagagatattgatagctgttgggaaatttcaacttccatctcacttc ggtttaatgaaatagetgtcatataatcactgtttttgaaagaggagaattagttgctatctgtacattttgggtatgt ccatataagagttgttgaaaaagttatttcttgagaaaccagctctaatgctaggcaagtcacttgctttggggggaggc crcagctrototgrotataagattgcagcaggggrgtagtggggaatgagtcttcaacattccaagagattttatctact aatacgacagtcaaatggagcatgactttgtggaagcctctcctcttccacccagaggggccaatttctctgtcccagt çagatgttgacacttgtatgatccctgcttggagacttccctcttctggaacctgccctggctcaggcatgagggctga agacagatttagtgctgtagaagagtagagggcagtcacgggaaggagttcctgtttttcttttggctatgccaaatgg ggaaaaatcctcctatettgtcttttagtgtcatcctctctccccttttcttcttcttataattctcatctctcatc tctcctggaaatgtgcatgtcaagttcaaaagggcacaatgttttggtgaggaagaggtgggagaacacgtgccaggtg agtaaaagtaattttataatcccagctgtcatttaagccacccctttgtgggtagcatatggtccactctctcagttca tigtectaaagatgetteateagaaaggaataaetteeaccccgttactetgteccettactetgetttattttet regreatectaceaceaceaceactgritgaacaacecactarrattgretgritcecatecetggragaaragga gccccatgaatgaaggaactttgcttctgttgttcaccactgaatctctaaggtatggaacacacctggcatgtgatag taatgaatatttatctactattcctcttccaaggcgatcacacaataatcaggctttacactatccagttcttaggtct tccaagttatgacttgtgaggtatgttaattatgataatagaaggcagtttatttggttcagatttattgatgtgtaat ttaccacagtaagacttcccctttacaaaagtatgatgagttttgacaaatggatacacatgtgtatctaccactgcca tgctcsttttcagtctgtcgtcscctccacscatgaccactggtcaccactgcagtgatttctgtccccttcatttcac cttttcsagaatgtcatataaatggaatcatgcagtatgtagttttttgtgtctgccttatttttcttagcattaggct tatatttatgaggaggtgtctcactctgtcacccaggctggagtgcggtagcgcgatctcagctcactgcaacct cogectocoaggiteaageaattetectecticitegagiagetgggattacaggcacccaccaccgccaactaatt tttatatttttagtagagatggggtttcaccatgttggccaggctgatctcaaaactsttgacctcaggtgatccgccca gtottttcgacaactaattgtttccagtttttggctattctgtataaggcttctataaatattcacaaatacctaggat gggatgactgggtcatataatagtactgtataaccttagcagaaactgtcaaactattttccaaagtggctcttccatt ttacaattccacagtgtattgagtcccagtgtctccatacacatgctagcacttttaatatttaattggggtatgt aatgatateteattgtggttttaatttgeatttetetgeagetaatgatgagtgtttetgettatttgggaaggtttta atttagcagtctgttgtattctgtagatattaataacttcaaaatatcagtggcatttgcagttaaaatttccttaaaa aattggccaaaggtttccagcagtcacttstgccatgcccaaactgtatgaaacaaggctgaggtgtggagattgtcac atttiggcaaggagtgatccacttgggtgacigatgagacccagagagcgtacgcctcgggcttgagggtgaggacggg cgggaagtcgactgcatggccctgctggccttgggaggctgcccagtccttagctaaagctggcagttatgggaaacag acctagattotattacgtttttcaggatgtcccaggagtcacctgggaagctcagcagttctttgtgactttcaagcat siggiagaagetgetgaacacagageteettetttggggataattigeecaaateatttaateaggettgagaaatgag ;acatccccaagtgcttacgacaagccaggacccttttgcatactaaggaaaacagggatgaaggaaacagaaatggtc totgototgactoagaaggtagaaatoototttoocagooaagtottootagggagcacgtaggaagggctotgaacoo acgtgtcagttgcaggggaggatatcaggaaaggacattgaagaagtggagacctaagtttgagacctaggcattagcc aggctagcagtgcttgaaaaagtgtcttaggacaagagaactcaccagtgaagtcccagtggtaggagagcgtgcagca tattotgagootgtatacacatotocagggcattgottagoaggtggggagtggcaagagagtaggotggagtcacaga agggaggccaggtagaccttggtgagcactggactctatgttcaggtgctgaggagctggcaaaaaggttttaagtcggg şagaggcazgttcagatatttggtctagctgagtaactttgggtgctstgtgacaaatggttgggagaccagtgaggtg taactggaaatgtgtatgagggcagaagtgagtgtactgcatttgaaacattgagaaatctagtacatagtactgtctc ::ggct:cagttacctgagcagaaggggccgggcattgccaaactc:cctcttaggacagaattgctcccagtattgat cattgtgtttttgagttggggagcaaattgtgcaggaggccaggtcagtgccaaggtggggtgggaggaattggagcagg aaccttgcctaagtgtccccagcaaacccacggtagaactttctactgtggctctatgctacttcttagcaaccttctc catgtgcttcctggagagtccttggagtcagaacctttttcttgaaacccagacactttacttccaagaaaatgCtgtc şşştttaggggaggtgatattctatatttgggtttggctctgggtactgcaacactaggctattaagatttcatcctta stectttecccttcttttccagaaacccacaategatttectagaaataategaacetttttegacaegata :aacca:::ctcagctagaggatattgt:ggaatgaagaaagataaa:ggggagaagggaactcacattgct:ttggcac :taaattaagccatgtactgtgttgggaaattatttatatattetcgttgaatccacagtagaacacagttgaacacca tacaaggtaagtattgtcatccttattttaccatgaggaaattgatgcttagagagcataaagccttggccaggggcac atagttgggaagccggggctaattcatgcctgggctctttctgatagttttccttttttaattgtcccctcctcattgt taccttggggatttcaagagattcatgtagcttctaaatcaacgaactgattcctggagagcagcttctgtatgagaaa aatctagctaattattttatttcagtgtctctggaatgcaagctctgtcctgagccacttagaaaacaatttgggatgac aagcatgtgtctcacaatgctgctctggttgccagtgctgtgctagttgtcatctttgaacaaactgatgcagtgc tggtttaactcttcctctttttggagtaagaaactttggaggcctgtgtccttctagaagtttgctgagcaaatggtaa ggaaaagaaataggtootaaggottgaotatttoagagaatttottgatttattggactgtcaatgaatgaattggaat acatagregetaggetgtettttetteteagacaetgeaattteetecaatetettgaettttttagaagttttaateea agtoottgttgggtggtagataaaagggtattgttotactagagactgacottggcatggagatotoatttggactoac agatttctagtctagcgcttcgttttgtatccatacctcgctactccattcttagttccttctgctccttgttcctcat gcccagtgtcccaccctacccttgcccctactcctctagaggccacagtgattcactgagccatttcataagcacagct aggagagttcatggctaccaagtgccagcagggccgaattttcacctgtgtgtcctcccttccatttttcatcttctgc ccccccccagctttaactttaatataactacttgggactattccagcattaaataagggtaactgctggatgggtggc tgggatacacagaatgtagtateccttgttcacgagaagacettettgecctagcatggcaaacagtectecaaggagg cacctglgacacccaacggagtagggggggggtgtgttcaggtgcaggtgggaacaaggccagaagtgtgcatatgtgct gaccatgggagcttgtttgtcggtttcacagttgatgccctgagcctgccatagcagacttgtttctccatgggatgct tgagacagagtotogototgtogocatgotggagtgtagtggcacaatottggotoaotgcacotoogootgccaggtt cagogattotootgootoagootoocaagtagotgggactacaggtgcotgocaccatgoocagotaatttttgtattt ttagtagagacggggtttcaccgtattggctaggatggtctcgatttcttgacctcgtgatccgcctggcctcggcctcc caaagtgctgggattataggcttgagccaccacgcctggctgatggtgctttttatcatttgaaggactcagt<u>tgtata</u> acccactgasaattagtatgtaaggaagttcagggaatagtataagtcactccaggcttgaggcaaaatttacaaatgc tertestatetatetatetaagegegagecatttttttagaaaagagagetagetetegggattccagtateccatttccat ccicagigtttttggccaccigagaggtciattttcagaaatgcattcttcattcccagatgataacatctatagaa Ctaaaatgattaggaccataacacgtagct:ctagcctgctgtcggaacacctcccgagtccctctttgtgggtgaacs cagaggetgggagetggtgaeteatgatesaltgagaagsagteatgatgcagagetgtgtgtgttggaggteteagetga gagggctggattagcagtcctcattggtgtatggctttgcagcaataactgatggctgtttcccctcctgctttatctt tcagttaatgaccagccacggcGTCCCTGCTGTGAGCTCTGGCCGCTGCCTTCCAGGGCTCCCGAGCCACACGCTGGGG GTGCTGGCTGAGGGAACATGGCTTGTTGGCCTCAGCTGAGGTTGCTGCTGTGGAAGAACCTCACTTTCAGAAGAAGACA gagggagggaaggaagctgtgttggtttcacacagggattgatggaatctggctcttatggacacagaactgtgtggt ccggatatggcatgtggcttatcatagagggcagatttgcagccaggtagaaatagtagctttggtttgtgctactgcc caggcatgagttctgatccctaggacctggctccgaatcgcccctgagcaccccactttttccttttgctgcagccctg ggaccacctggctctccaaaagcccctaatgggcccctgtatttctggaagctgtgggtgaagtgagttagtggcccca ctcttagagatcaatactgggtatcttggtgtcaatctggattctttccttcaggcctggaggaatataataactgaga

Fig. 12 Page 2 of 30

cttgttttatttctgcagagggttctaagccattcacttcccagatgggccaataatgctttgagtaatctggagatca tetttaatgegeaggtgaatggaactetteeacagagggatgtgagggetgtagagecagagtgaacteeetgaaactea cacqtcagctcttqtctcttatctctgaacacccttccttagagatcccatctctaggatccatttctctqtagtta ettectaagtetettgtteetgttetgeetttattttttteetgeattetaagetagtateecaettggetetet aatgtagcttaacatgtctgtaatcaaaatgatcatctttctgagattcaaagggctataagggactttggagagaaatt ctaaatttcctttttattatagtgttacttaaatattaggaagttaaaagtaggtataaacttcttataggctgttat tatacaactatatgacccatacatatttacaaattaagtgcagccaaaattgcaaaatcaataccattcaaattaatac cttaaatgtggtgaggcagctgttgttcaactgaaaccaaattataagttgcatggcagtaaatgctatcatgctgatc atttgagtttggccagtctatattatcatgtgctaatgattgaattstccacccatttttctacttgtatgaccttaa ttgatggcacctgttccatcctcatgagtttgctacaattatactggtgccaacacaatcataaacacaaatataaac ttgggctttgaaatcttgtgccagaacttggctttaaagtaagcatttaaaaaaatccatatgtgtttattagactttgt ttagatgactgttgaaatgaaaacaaagtgtttaaaatcctcttagagaacttaaatataatccctcagcaatatgtat acagatettettgagaaaaactgattgtgtteageeteteatgttacaaatggggaacetgaattetgaggteteta aaaaagagagnnnnnacacttagaatgagcttccatgtgtgaggcactaactgattaggcattattaactagatttat tccttttaaeecccegesatgtactettatttccacatgttgtagctggggaacgtsctactcagagaggttaagtaac ttgtctgaggtccacaccactaacaaggagcacaggtagggttcaaatccagataatctgactttggagctggcactct aactcaatgtgcctaategcttttcagtggtgtcattattttgcctattctcatctgagaatattgaagtttctgact tattectttgctacagtgtgatecagggetectgccettettatectggtagagggggccaettgctgggaaattgte tccgccatggtttatccatgttctgtgtccattagtgagtagtgggaagaatcatatcatgttggcaatgaaagggggg ctatggctctggggtagtctagtctgaactcttatttt

> Fig. 12 Page 3 of 30

SEO ID NO: 15

Genomic contig containing ABC1 exon 1:

ctttttttttttttttttttttttgaggtgaagtctcactstgttgcccaggctggagtgcaatggagcgatc tiggotcaccccaacctctgtctcctgggttcaaacagttctcctgcctcagcctcccgagtagctgggattacaggctc cogocaccatgoccagocatttttttgtattttcagtagagatggggtttcaccottttgaccaggctggtcttgaactc ctgacctcatgatcaacccacctcagcctcccaaagtgctgggattacaggtgtgagccaccacgcccggcctcataagt attttctaaatttattacagtcatgccatttaaaaggaaagttgtattcctgtctttgttaatatttataagtgatttt attcagctacaagcttggaatggcatataattttgtattctgcttttttcacttaatattacatggctaatgatttctgt gittcataaacattattcigatgatggcatgatatattgttgagtacatgtaccataattgaatcatttccctattgcta cttaagttcagtttcctaggatgaatttccaggaatagtaattgggcaaatgggataaacatgactcttgaatacgtatt şttaacattgctttcccaaagggctcaactgatttatatttccgtgttcattatcttttaaaccagctcatttactcacc ggtccctggtgtaccaagtgctgatacagacacaaagtacctggggaaattgagatgagggagtcctggctcagctggga çagtatgttgcctctttgggattatttacagaaatattagcaagaccagccccatctttggtcttgagtactccactgtc agcatgctttttccagagagggatccatttgcctttatttttcattctgttgtgccgtctatgcaaactattcttgata gttttatggtaacagtgtttttttgttccatgagataaatttatacatgctcattgtggaaaatttagaaaagacaggaa ggagtgcagtggctctcagctcacagcaacctccgcttcccaggtttaagtgattctcctgcctcagcctcccaag tagotgggagtacaggcatgcaccaccacgcccggctaattttgtatttttagtagagatggggtttcaccatgttggcc aggotggtotcaaactootgacotcaggtgatoogootgoottggootogoaaagttotgggattataggcaggagooac :gcgccagccacacctacgttcttatcatcctagtacatccactgtcattatcttgctgtatttccttctgcccagtctc actotgateatgeagtggcgtgateatgeagtgateteggeteactgeaacetaggeettetgggttegagtgattetee taccttagectectgggttcaagtgattetettgeettggesteccaagtagetgggattacaggcatacacccccatge ccatctaatttttgtatttttagtagacacagcgtttcactaaaattttgtatttttagtagagatggggtttcaccatg ttggccaggctggtctccaactcctgacctcaggtgatccgccttggccttaggcstcacaaagtgattacaggcatgagcca ctgcatccatcgccaaaaagattttttaaaagagtttaatgtagaaccatatcaaaggtctttggaaataaaaaacagtt cagaaaggttcaattatgatctattcatagagtggaatatcaagtagacattacaggacatgttttaagattatatttta tgtcatgggaaatgctctcccagtatgatgttaaatgaaaaaacagaatacaaaagtatatatgctgcatagtctcaata ttgtagagaaaaaatattatttatgtatgcatgaaaaaagacaaaagatgttaacagagatccattgttacttcagttta attttccataaaatataaggacttgaagatcaagaaaaaatttctgctttggctcagtgcagtcgtcacgcctgtaatc ccagcagtttgggagccctaggggagaggatcacttgaacccaagagtttgacgttccagtgagctatgatctccggatc agtetetetetgttgecceagetggagtacagtggcacaateteagetcacegcaacetetgeetectgggttcaagega ttotottgootcagootcocaagtacotgggattocatgcacocaccactatgoocagotacttttttgtattttoagta gagacagggtttcaccatgttggccaggctggtctcgaattcctgacctcagctgatccaccggccttggcctcccaaag ataccagtattatettggetgtgtgactetgaageeacagttgtaagttataattaetetgaaacacaaggeeetgtgae tcttttgggctctttggtgtttatcttgattacaacgttggaatatagaaatgaaaggaatgggagaggtgatagacttc aggcagtgtaactagttgtctgaacactactgctcaattatattgtgtctagtgatttccatcttgtccgtctgctaat ttatcgcctggtaactcactgaggcagggttttcctttggagaaacctcattgttttaaccagtgtatcatgcttgttta gaagttcaatgatctttttaactcatcggagaagatgatgaccagacctggacagatggggaaggactttgcactctct tttacagteetgagtgeacaeaggteaatatggaactatgtgtgaatttteattgtetttgagageeetetteteteee catagggagcagctttgtgtgtgcaattagaggagcaagggttgtgtgtatttagcacagcaggttggcctggtcctctcct atgrgcigaggaagccagcaacagaacagatgatttcaggagciccaggaaaatgctacaggaggagtgtgcctgggtt actggagtagcacaggaggagggcttctagctcaggctgagattttagtaaaggaaattatgccacgatgaatcctgaag aatgaatagaagtgaaccagataaagcacgataggaagcatcttcccttacctaagggaagacacagaggtatatggaat gçtatçttaaaaggttgççactccaaacagttctgttaaaçcttagagagtggtgggagagactggagaagttgattaat tagtaaatgaagttgtctgtggatttcccagatcccagtggcattggatatccatattatttttaaatttacagtgttct atcttatttcccactcactcactGCTGCTGCTGGAAGTGGCCTGGCCTCTATTTATCTTCCTGATCCTGATCTCTGTTCG GCTGAGCTACCCACCCTATGAACAACATGAATgtaagtaactgtggatgttgcctgagactcaccaatggcagggaaaat

Fig. 12 Page 4 of 30

ccaggcaattaacgtgggctaaattggacttttccaaagatgctgtctttgggaaacatcacacatgctttggatcagaa aacctaggcttctaatttgttagataaggcatgaactcaggagactgttttcagtcctagtgaatggtgataattgtaatt ataacagtagacaacatctcttttacacattttaaaatcatgaaaatagaataaccttactgataattttagaaagtggtgattaaaagcacatttaagatagctctaatccatatgcatgatgtcttaatcacacattgcaaatca tggaacacagaatttt

Fig. 12 Page 5 of 30

Jenomic contig containing ABC1 exon 3:

zsacatttacgtagotgggaaatgtagotgggacttcagtttcactgccctagtgattttcctaccactaagcagotca tatattattactagectgeteccatetteccacaatatatageaacaettatttacttacttgetgattttetaatgeacateae saaccageetggccaacaeggtggaacetegtetetactaaaaatacaaaattageeaggegtggtggegcacacetgt aatcccagctactggggaggctgaggcaggagaattgcttcaacctgcgaggctgaggttgcagtgagccgagattgcgc acattttaçattttatttaagcattatgccaagcaccactgaagtataagtttcaagggcaaactcagtttttcatcta ctagacgaatgattttctggaatgattacaagcaggcaagatggtctagtggaaatagcaaatgtcttcggcatcagaca agttggggtttgtttgtatcctgcctctgcccttaaccgaggttgtgatcttgggcagattgttgagttttaacctagat tectetactecagateataaatttteagaaaagttetgaaattettgtatatactgatggtaaatgagaetttteetta catctatgcacttctttgtttgtttgttttgagatggtcttgctctgttgcccagactggagtgcagtagtgcaatctcc geteactacaatgtetgeeteecaggttecagtgageeteetgeeteageeteecaaatagetgagaetacaggeatgtg ccaccacgccaatttttgtatttttagtagagacagggttttgccatgttgaccacactggtctcgaactcctgg acttettgcaaccttaccttetttctcatcaccctccagggacctagttggaagagcagagttaaaagttaaggtgaaa cttggaçaggtgtcttgtccctaggaacaaaggactggtttgaaattctctgtaaatcttcccagttcaaaccagagtt gcaaggggccttgtttggttttccttgaactattaacaggaagatagggagattaactgtgtaaatgttcaataggccag agrecciocagagggrogecacagroateagarettateaeateettgettroggrottgeetetetggtrogagrateg atagaaaagaaagaccctatattgaaatgcaaagtgcagcaagtcctgactttggattaacttctcagcccatttg ctgggcaacagcagagtaagtgctggggtagattcactcccacagtgcctggaaaatcctcataggctcatttgttgagt ctttgcctacaccaggcactctgcaaaaaccctttgcctgcaaggtctcatgcgatgctcaccacagctctgtgaagtt aattgtacttttatcaccattttacagatgagaaaactgagggtatggggtcaatgacttggctaaagtcactgcttagc aagctgcagggactggatgtgaattccaattggtttgactccaaagcctgtgaagctacttgttcttcaccacctagagc tergettettgataactgtgaactettttggggtcacaaatagccetgagaatargatagaagcaggagetetggeettt ctgtccatacctgaacaggtccttgggttaagagcccctcgtccagggcctattaatcttgatcctcataagcagcatcc atgrattacggccgcaaaccaaactgrgccagaccgaatcctaggaccaagcccaaatatgtcccatcatccttttggta agaageteattgtaagaaagaagagagagageaagaggatgaeetagtgeatggggeeteattgttttaattagtgaeaa aacaacaataataacaacaaaaacccccgaagcttcacagatgacatcagaccccaagcctgtgtttttcaggtgccct tşagçagctttgtagctggcaçagaggtgaaactgacaaatgtttggcacatggaggagagtaccagaggggtttgaga tgagctaaattccaatctaaccgcagtgttgaggaagaggcttggattgggaccatggagatgggggttctactcccagt tegetettgtegeccagettgeagtgaaategeegegatettegeteactecaaceteecettetgagtteaagegatte tectecsteagectecagagtacetgggattacaggegectgcaccaageccategaatttttgtatgettagtagaga caggetttcgccatgttggccagggtggtcttgaactcctgacctcaggtgatccgccaccttggcctcccaaagtgct ggattacaggcgcgagccactgtgcccagctcacttcatcttaccgtacttacctccttagagtatgaaaaaataggct gettaggacecetetcateacttetccaacgatggtatcatgaaceccattetacagatgatgtecaetagattaagaat ggcatgtgaggccaagtttccacctgagagicagttttattcagaagagacaggtctctggggatgtgggaatgggacgg acagaettggcatgaagcattgtataaatggagcctcaaaatcgcttcagggaattaatgtttctccctgtgtttttcta CLCCLEGATTECARCAGGCCATTTTCCAAATAAAGCCATGCCCTCTGCAGGAACACTTCCTTGGGTTCAGGGGATTATCT GTANTGCCANCANCCCTGTTTCCGTTNCCCGACTCCTGGGGAGGCTCCCGGAGTTGTTGGANACTTTANCANATCCATG aattiggggtatttggggtatccatcacctigagtatttatcatttctgtatgttgtgaacatttcaagtcctgtctgct Sadestadaderferacavagarêcarêcisavadêrecrifecerradavaderracadecavadêcradaderre

Fig. 12 Page 6 of 30

> Fig. 12 Page 7 of 30

Genomic contig containing ABC1 exon 4:

tratgactgccattggtataaagatgaatataatccagaccagattcatgattattcatacatttttagtgtattaactt taatggagetggggtgtggggageeatgggagtgggttagggeeageetgtggaggaeetgggageeaggetgagtteta tgcacttggcagtcacttctgtaaagcagcagaggcagttggcctagctaaagcctttcgccttttcttgcaccstttac *GTGTGGCTCGCCTGTTCTCAGATGCTCGGAGGCTTCTTTTATACAGCCAGAAAGACACCAGCATGAAGGACATGCGCAA AGTTCTGAGAACATTACAGCAGATCAAGAAATCCAGCTCAAgtaagtaaaaaccttctctgcatccgtttataattggaa attgacctgcaccagggaaagagtagcccaggtgtctggggcttgttcccattagatcttccccaaggggtttttctc gractaatettetetgggaagacagaagaaagteeecagggaagaataetacagaettggeettagggacagetagggg tgcagattgctgccaactgcattttttctgaagttggccatatggttgcagtgaatggatttatagacagagtatttctg teatttteecetaateattteaattagtetgatgggcatttgaacttgttgtetttaaaaagtgaaatetttacetetga tetggtaagtatecaggeaatttettgtgtgccaeccaggaggtatetggggagtgggcattttetgaetgaggeattgg cccagtaatggcatgt

81:64 DI Q32

Genomic contig containing ABC1 exon 5:

agetetecagetgattetgatgeataettaagttteagaaceattecttgttttgcattaaacageagattagtetetee accttgtgggaataaagctttaaatctctccaattttagctctgtgaaaaggcagtggggagacaggaatgaacggacta etgccacaaacctcagetgggtgggtgagatcatttagaagagaaacaccgggcatggtggctcacgcctgtactgtca tgtactaaagataaaaaaaaaaaatttgccagtcatggtgatgcatacctgtaatcccagctactcgggaggctgaggc aggagaatetettgaacecgggaggcggggttgcagtgagctgagattccaccattgcactccaacetaggtgacaggg gtgtgtgtaacagcaccatcacactgtttgagttgaggagcacatgctgagtgtggctcaacatgttaccagaaagcaat acactatttcccaatagACTTGAAGCTTCAAGATTTCCTGGTGGACAATGAAACCTTCTCTGGGTTCCTGTATCACAACC TCTCTCTCCCAAAGTCTACTGTGGACAAGATGCTGAGGGCTGATGTCATTCTCCACAAGGtaagctgatgcctccagctt tggaatatgcaacctggcgtcatgggccagctggttaaaataaaattgatttctggcttatcacttggcatttgtgatga tttcctcctacaagggatacattttaagttgagttaaacttaaaaaatattcacagttctgaggcaataaccgtggttaa çççttattçatctggaçgagctctçtctaaaaattgagçacaggaçactttagacaagggtgtatttggagacttttaa ccctgcagcttgtgggaataaggctttaaatctctccaattttagctstgtgagatggcactggggaaacagaaatgaac ggactagtgtcacaaagctcaggtgggatggacgagatcacttcaaaggtctgtaatcccacgtctataatcccagcact ttgggaggccaaggcgggaaaatcacttgaggtcaggagttcgagaccatcctggccaacaatgcaaagcctgtctctac taaaaatatgaaaattagctcagcgtggtggcatgctcctgtagtcccagctactcgtgaggctgagacaggagaatcgt ttgaacetgggaggcggaggttgcagtgagccaatatcacgccattgcactccagcetggctgacagagtgagactccat ctcaaaaaaaaaaaaaaaaaaagaattttataaaatcaggaaataatattagtgtttatgttgaatttttaactttagaat catagaaaacttcctctggcatcattattagacagctcttgtgcactgggtagcaccagaccagcttgcatggttattg attttcagagacactttttgagcttattctctggcagaaaggggaactgcttcctcccctatctcgtgtctgcatacta gcttgtcttacaagaagcagaagtagtggaaatgtttattcttgaaaataagctttttgcttcacatgatctagaattt ttaaaattagaaaaatgtgcttactgcg

> Fig. 12 Page 9 of 30

Genomic contig containing ABC1 exon 6:

> Fig. 12 Page 10 of 30

Benomic exam containing ABC1 exon T and 8:

ccgtttggcaaatgctcagtaaaagaaaagggttagaaggggagaaaggcattttatcccaagccttcaggaatcaggat gaggatgtcttcaccttgtggggggggagtaattatacaattagagacagcacattggagtgtggctgatatgctgtgtga tgatagetetagetetetgeetageaggaaggacattteaatagaagaaaaagtttaagacettgeegagaaacagag aaaggatgtttgtctttttaagaagttgaaaaccttgtttgcagacaaaagccctccagttttggcagtaaactttcatg :aagggaagaaaaaggcaggggatgacattgttgacaattgtgaggaattaccatgtgccaggcactgtgcgaggggctt zgtacatatestetagttttagtgettataaaaastetgtgatatgtgcacagcattttaaactttgetgeatagtegag saaatgçaaçgatggggaatttgagtcatttgcccagggttctatagctaccccaggttcccatgactggagaattgggg cacagggtegegggggggggggggggggggacaagaatectaacaatettatttecattgagteettataaaagaagtggatta actaccacetttttaaettttcttaaatttaeettatggatcteeegtttettettettettettettettett ttgctatectgtcttgaacatctgtcatcttgtaggcctaacggtaaacacaaaaacactttacctctatagctttca attaagateteteagtttgtgttgtaatagttttccaggcaagtteteetagtttgggettetagtgtgttaaeettt ggaacaatcatgaacacetetgegtateacagaggeetatetgagtetgaegtttaagggagaeeggtaggteeetttg atagaacetttaggcaggttttcttagaaatgcacattgaggattatgcttggatattgtgatgatcagaatgatactca atcccttctccagagattctctttgaaagaaaacatcccaggcagctatttctcagagatagtgagtcccagccact totagacattttottgtgtagtotacattataatttcacagcagtototgatatgacaaatgtcaaaatagcccaacett ctctaaacttcagagatgtctgatatgatattgaataaaacaatgctcatagaaacatcaagaaaggtggattttccctg gatacttttttcctgcttgacaaataacagtgaagaaactgatctcacgtctttttctcttttggaagcctgaacactcag tgetttectgecctaatttatettttecctgttctaatgaattattgtcctatatetgetgtgcagttaggtgacatataa cagcaattaaatatatgaattggtacatataaagatttgactaaaactcgatgtaaaaataagtgttctacattcaattt ccagtgttagaaacagtgctgacttgaacagagtgacagaattccatctttccctatttttgacagctttaaactttata ttttcttccttcttgtgagccgtcattaacttgtttctcaaagccattcccgtattacccatcttgcagacgcagacag atttgggaatttgcggtcagagttgtattggacacatccccccagcccacatgagatccttttaatctattgcatattaa ctagttttaagtacaatattcctactttaaaaccattaatcaaagaatgagtttgaaaatgaacaaaatgcaaact **GAGAACACTAAACTCTACATCTCCCTTCCCGAGCAAGGAGCTGGCCGAAGCCACAAAACATTGCTGCATAGTCTTGGGA** CTCTGGCCCAGGAGGtaagttgtgtctttccagtaccaggaagcggatcatccactgtatcagtattttcattcctgagt ctggcaagaggtccttttgagttgaatatcacatgggatgtaatatcaattttcaaagtataagtgatgtaaacaataat gttttgatttccttattttagaaatgaagaaacctaaaactcatagatgtctcagagctaattggttagtggctaacagc ctgccactgcccatgcactgcttttgtctgaccagcaatttctccatattgcttcttcagtagcaaggccaatcattta ccaacacacatgettgetaactaacaggaataacgtggtacccctaattcagccctttcccttgaaagcatctggettet gaggttcaactatgggaatatggtctcttaatgaacattaagttgagtttgccttttaggtccacatgttgacaaatgta gctgacccacggggcagtccccacaacaatacagactttaacctgtaccatattcggaaaataattattgtgggcaaat tgtctcagacttggtccaccettatttttagctgcttctctaatccgtttttctttttttggtgcttgtatctaacctac ccattttttggtgcttgcatcattttttcaaatatcaaaaacgaactttatgttttctaacaatgaaagtattgcatgtt cattgtggaaaatgctgaagacttggaaaatacaaaaatgctgagatcaaacactattgatacgttagtgtatttcttcc tgtcctgttctactttctttcttgaattctgotcacgtgtttctgactgatgaggtctgacttttgggttccttttcca gaggagaagccttctttcagcttgccatttgttaccctggttatgaaggctggtaacctttttttactaggtagagaagct ggaczaaczggggtzettecaggggagaazgagaaagagaaactgttttgcaagteegtagetatttetetagggeeet gttagotgacattgacatgcottgcattgctotgcagatcocctcgcagccctctgtcccttgttcatttctggccttag agaaagcaaagcagggtetgtaacaggggaggetgcetetaaactcagggtttggttacagetgttttcacttacattac tggccctggtttttttttttttttttatataaaaaaattggaagcaggtgatgttcccattgctgatgtggtgga gaccatctgcctctttcaatagaacacctcsagatccstttgatcaaaagttactcattgtctgacttgctatttstgtg agataaatgggagaagatcaataaatgcacttgtttgtccagtcagcgtgtggaaagttgataattttgaccaaagcaca accctgaaaggaaaagaaaaagggagtgaatgtettetgagaagetgeetaggtteagaeagtgteacceattteeetgt atgctcacatgacaaacctgagtgggtcttatcatgtccattttgcagatggcaccaaggctcagaaaggttaggcaac triccagroacccaatgagroaattgacaaaactgggattcaaacccagaactgttggattccaaagcctgtgtgttg cctecttectgaaaaactecagtagegactggaatagaaaggagaacettecaagaaagaaaatacgcactagcagaace

Fig. 12 Page 11 of 30

acaggagggatatatgcagtgaagaaaaagcagggtaaggggcatagagcatgagaaggtgctttttttaaaggggktga ttaggaaagetetetetaaggtgacagttggacetgaaggagatgatageatgtetgtggtgagggaaggaaacteegaa caggaaçaatçgcagatacaaagacattgatgctagagcatgcctaaggaatgtgtttaaggaccagggaaagtgagcaa gragargagatccagcggagggcttgagggaggggacatgatgtgatctagagtttagactgtttacactctggttgt taggsteagaagaactgagatgaggaaaaggacaaaaggacattgtgctagattgagaaagcagtaagtcagtttc atteatteatcaacceatgatgttcaaataccaccatcatcegteggetaaageatgaagaeccatcectegagag tcaggaagcacttcccaçataaagtttggagtgtgagctgaggtgtaggagaaagagtaagagtttacccctgaaacggg tgctgggaagagtcaatagtttggaataactcaataatttatggtgcttctttagaaagatttgctggctttatgtggga ctgttatttaaaaatctctagggctgttccaataagcaacaaaaggcaaaatggcctggttctctgtcccctttctgtct tagatgececctetetggagaaaaaaateettgtggectetgacceacetetggagageetagtteeettetggaggea çaaggcaaagcttaggacctagagagtgctggaccacgccactcacaggaaccagcaggctgtgaggttgaaagctaggc atatggagetttccaggetgggtgcagggectegtggccettecceteceetetgtgetetatagetcagtetteccagg cggtgtgaacacgcagtgacatttccaggaatacagggatttattaatgatttcttgtgaaatgtttggaaatacaaagt actetataaatattteataatageattegggeteagaacteeacaaagteeeggaatacattteeatgtaagacagaace ctgcctgggtcattgatgcctgttgagtggcagtcacagacactgcctagggtttctgactcacgctgttgggactgttc tatgcagggcaccctcttgtgtggcataggatttgtgcctcaccacacactgttgtagctttgctgtcttgatgatgagt agagggcagtgtccaggccatggtataagcatctactgccccccagggttaccaaaaccaagccaagttgtgtctcagcg ageteegtgaageatggagaagttgagtaeteaçagacatgaegtgaetttteaaaggetgtaagetgaegagggaeata ggctggattgcagtggttggctcactgcaacctctgcctcccgggttcaagcaattctcctgcctcagcctccccag tagctgggattacaggcacctgccaccatgcctggccaacatttttgtattttttagtagagatggggtttcaccatgt tggccaggctggtcttgaactcctgacctcaggtgatccacccgcctcgacctcccaaagtactgggattacaggtgtga gccactgcacccggcccagactcgagtttttcaccttaatgctttttcattgcetgacactttactgagaccaagatacg gaacttcacatacagtaccttttctcccaaggcggaagagggctgttcaatttctacactagagttcggggagttttaga aatgagtcagttatcgaggatgagagcagttcctgataggctcaaccacaatgagatgtagctgttcagagaaagcattc ttttatctataaactggaagataatcccggtgaaacgaagcccagccccaggggcttcactaactccaggctgtgcttct caaactttagtgagcataggaatcacctgggcatcttgtgaagctgtagatttgaattctgcaggtcggcagaggggtct cagaatecgcatttccaacaatgtctccagtaatgctgatgctgctcgtccctggaccacagattggggtagccaggttct ggcaagctcatcccaaggctttgagatgacatcagacaaaatatgttctgggacatggcttttgagaggtcaagaaaata agatgtttcttttctctctctcatcccaacccttgcactgcccttttctcccctttcctctttctgtcccatcc CEGACGECAGCTGTTCAGCATGAGAAGCTGGAGTGACATGCGACAGGAGGTGATGTTTCTGACCAATGTGAACAGCTCCA CTCAACTGGTATGAGGACAACAACTACAAAGCCCTCTTTGGAGGCAATGGCACTGAGGAAGATGCTGAAACCTTCTATGA CAACTCTACAAgtgagtgtccatgcagaccccagccctgtccccaaccccatcccttagttctggccttggcctgt gtcatctcctcctctgtagcagcgttagatgtstacatgcccatttgcscaccagactgagctcttcctagaggagaga ggettetettgaatagetaeetgteeecagttetetgaatgeageetggeacateteaggtgeacagtagtgtttateaa tggaatgaatgattgacagccaaccttctggttttctggggatgtggatgggatgcggttccagggtgatcaagaatgaga taatggcagaaggacaaatcctgcaagatctsecttatetatggaatatatgtaaggtagaaagtgtcagtttcacatga gagagtagatccgaagtgttcacactacacaaaaaaggcaactatgaggtgatgattattaacagcttgattgtggtg atcottttacaaagtatacatattaaaacatcacattgtatacottaaatatacaatttttatttgtcagttgtaa Ctcaaaaaagctaçaaaaaccattttaaaaasgatgatgtactggtcttaaatattaccattgagataagctttataataa Cataasaagaaataacagtaatgataatagcaacaacaacaacaacaactaatatttaagtagaatttettgtgca ctgtgcattctgtttaagttatctcattttaccctcatgataacctgcagggaagattctttaaccccacatttcatagg ctragagaggttaagtgccttggttagagccaratcagagttaatccacaagagccaggattcaagcccaaatctgcctg gatczgzgctctctaagataaczgttagtggzggcgtgtgtgttctcacactcagacatttgatctgccctttgtttccc attettagetgeaaggeagtgttaaagaaceetgtgteteeatateeacteeceacacttaageacttttgtgggeeegt gtgccgtatgcctcgtggcagcagggatccaatgtcacagttttaggcagtggcatccttttccttgaaaacttgatgca gggaacetttetccatttetaaccacaggtgtgtetttcagacactgagtgaggcaggttttgtactttattgtaacac aagaacettttettetetggagtaaageacttcagacattcgcaagttgcttaacaagecttaaaaaggatggtattgtag

Fig. 12 Page 12 of 30

gcaactttaattaaatcccatctcctcctcccccagcttgcaagttgacccaaggaagccttcatttccatgacagacttaattgtgagggcatcctca

Fig. 12 Page 13 of 30

Jenomic contig containing ABC1 exons 9 through 22:

actgtgttagcaaggatggtctcgatctcctgacctcgtgatccgcctgtatcggcctcccaaagtgctgggattacagg tgcagtgacacaatctcggctcactgcaacctctgcctcctgggttcaagcaattctcctgcctcagcctcatgcgtcac zacgcccagctaattttctagtagagacagggtttctccatgttggtcaggcttggtctcgaactcccaacctca ggtggttcgcccgccttggcctcccaaagtgctgggattgcaggcatgagccactgcgcccaaacttttggtttt tgcttgaaaactgaggtctgaattcagcettctegttgcccctcaagagtcagtttaaatgttggtcatgttagttgtca gtgaaaacaatggtgaggctgggcatgagagtgtgaatctggatgggagggcttgtgctcatgaaaacatttttccagat zagtttaatctgagataatcttctccacatctctccacatagatgttatgaattttacttttacagaggagccaactgag gctcagataagttacttattatatgactagtagtggtagagctggggtttcaactaagaactctctggctccaaagccct GATGAAGAATTTGGAGTCTAGTCCTCTTTCCCGCATTATCTGGAAAGCTCTGAAGCCGCTGCTCGTTGGGAAGATCCTGT ATACACCTGACACTCCAGCCACAAGGCAGGTCATGGCTGAGgtaagctgccccagcccaagactccctccccagaatct cccaçaactgggggcaaaaaactcaaggtagcttcaçaggtgtgcgctaagtatactcacggctcttctggaaftccca gagtgaaaacetcaagtctgatgcagaccagagetgggccagctcccagtcgtgggtatagaatcatagttacaagcag gcatttettegggatgeggactgecacagegetectetgatgeggtatetttteagggagecaaacgeteattg construction of the state of th TGTTCCATGATCTGGAAGGCATGTGGGAGGAACTCAGCCCCAAGATCTGGACCTTCATGGAGAACAGCCAAGAAATGGAC CTTGTCCGGgtgagtgtccctcccattattaccatgtgcctgcttgatactgcagaggtgagtttctggtcactttccca ggtgtgagtgagtgagaattettteagtttatetagetggggaatgtagtgageatagetaaagteacagggcaceac ctctccagaagtacaggccatggtgcagagataacgctgtgcatatcagcatccatgccactcacggtcaaatagcagzt trctgcaaaacttagtgagggctggtgtttggaagtggagttgagtaattgcagtaccctattttcctttttgctgcagc ctctcagctagccacagcatctccctgtgtcttggtaggttttggaaagaagtgtgggagcaaaagcatgatgttacatg tagactggcctgagatactcattctcagggcactgtgaatgatgactgctgctgttactgtgtggaggggaaatgcactt agtgcttcagagccacttgaaagggataagtgctctagagacaattgggttcaaatgtggagcaggctgagcaagaacag aatgtototttgootgagootgagtgotgttaatoacatottottgccttgcgctgagttagagaatcattagactatt tectetttecatggtgagggaggeettttecttttgtetetgetecettaagaageaggtgaggattttgeeaggttte ggactattccctgatccgctgggaggcaggttactgaggaagtccctttaaaaacaaaggagtttatactgagaaaagca taaacagtgatttgtatggattcacactgactaatatagctcatgccattaaagtggggtctctttctctaaaggagggtt atatgatctagccccgtagacctaagtgtggtttcagacctgttcttcctggtcctccttggaatccatatttctact agttggactttttctgtttgtctggctctcagaggattataggaggccctgtgaagtgactcagtgaattttgatttgtg ggcaagtagatggttccctagtctgaaattgactttgccttaggtgcttcaattcttcataagctcccagttcttaaagg acaagateettgtaaacatggcaatggcattcattaggaatetagetgggaaaateeagtgtgtatgettggaaatgagg gcagagaccagggaggaggctctccaagtggccaagccataaagcaagaaatgaggcctggtgactgcttagtggcagag cagigaaagagaggaggcatcaaacigagtcicgatttotacttgciggiggiagcgatgtccagtaggccagtggc tactgaggtctgcagtggagggagggttggcttggacacacatgatgagggagtcatcagcctgtgggaagaaaa cacccaggctgaaatgcagtggcatgatcttggctcaccacagcctccgcctcctgggttcaagcaatictcctgtcica gcclccagagtagctgggattacaggcacatátcactgtgcczggctaatttttcagtggagatgggatttca ccatgttggtcgggctggaatgaactcctgasctcaagtgatcsacctgcctcagcctccaaagtgttgggattacagg tgtagcotggcatotoctacasgaggtgatggotgaggcttctgcttctgctggggtagctctgatotttctgctttctc tggcactgtctacccatgttgcctcaccccataggtcccagggcacctctctgggcaagtcttggaaccctctgacact gatttgctctctctctctgagcttttagccacccattttgggacctgttttctctctgccaccctgcgggcag tottaggtotootgoocotoacgagcaccocagagaggcocacgtgctcagtgatotcagtgggcgcatetttotagtett gctatictttttggccatgttgttcagaaaccatactgggcagggccgacttcaccctaaaggctgcgtctcttcactct getttgtttgttccaaataaagtggettcagaattgctaaccetagecetctgtgaacttgtgaggtacaattttgtgte tettatettaacaaaatacatacataccttectegteatectataaattectatteeaaatteeaattteeaat ataattttaaagaagtcaccatatgagagaaaatgttattgctatattcttattgtgagaaattgcaaatagactaaatg Secera a gegege a a a a contrata a tenta e to a a a contrata e a contrata a a gea gea general to a ga contre g

Fig. 12 Page 14 of 30

agactocaattoggtagaaccagagottoatottotototgtogaagotgtgacaggagttgcaaatgcototootttttgo tagtttageagetgetgtttteeggeageacatetgtgeaggeetetgeetetggatetgetgattgagea gzggattgatztgtccttztctttcgtgttgacccatgtgaggaaccaactggcaagggaacaaggaaatggaaataggcc tecttecatcatgacctgtacatcctgcaattggaaaagattgtactttagttggtttaaccagcagcattattttct aaactaagcagtaagaaggaattaggttttatgtgggatcaacagactgggtctcaaaagaggaaggtgatagaacacag 19999agggggaggtgcactagaaacagagggcctatgctttcattctggctttgctacttaatagctgtgtgacccaat citagacacttaacctcictgaacttccattttctcatgtataaaatgggaaacattaaaggatactcactgggctggtg gattgtgcctgtaatcccagcacttggggaggttgaggtgggaggatcacttgagcccaggtgttcaagaccagcccagg tagtagecagaegatgggagatcacttgggcttgggaggtcaaggctgcggtgagctgtgataccatcactgcactccag cccgggcggcagagcgagacactgaatccaaacgacaacaacaacaaaggcaaaaaaataaaagtgccctcttatgga gttgtgtaaggtgaagcatatacactattcaacatagtaactatataaaggaagtattgttgttgttactgtagttaata ccattaactcagatgtttcgtatagtgcaaagcacatggactctgaattcacactcgctctgactttgagtctcagctcca catctagraatactatgaccaagccctggttaaaarcatgttttrrtttcttcagcctcagtcrtctcacatataaaata gggacactgtcatttacctcagttttctgtgaggataaaacaacgacagtgtatatgcaagtattttgtaaattttgtag zgctcczcaagatttagztggtgtttaczacttgtactztctcactggaatggcagATGCTGTTGGACAGCAGGGACAAT GACCACTTTTGGGAACAGCAGTTGGATGGCTTAGATTGGACAGCCCAAGACATCGTGGCGTTTTTTGGCCAAGCACCCAGA GGATGTCCAGTCAGTAATGGTTCTGTGTACACCTGGAGAGAAGCTTTCAACGAGACTAACCAGGCAATCCGGACCATAT şettcacecageagecaagtttagaaataatetataqtatagtctcatttacaaaactatccttcaagcctaacacageatttea tattotatataggotcaagagaatatttstacotattttottotaggttttostatotcagtgactaatggtagcaaago attoccttaaaaaggcattatttgtgaaacttaystaaaatcgaattcgggstccaattaaatttttgaaattttatatta aaaattatattagtagggatgggtaagaggtgttttggtttggttggttagttgctatgactcagaattgctaaga aaacacaaactaagataacattcttttaasstcttttcctccacaaatcaataacatatccctaaattact cttagaatttctcttaaattgcagtgaaaaaccaaaatccttcattcttggttgaaggttggaaaactacgttagagagg attagaçagaggatgagcaatcgtgtagtcagcccttgcctcctagtgtaggatttgtctcagccactgcttgttgtc CtggctgccaacgttctcatgaaggctgttcttttatcagtGtGtCAACCTGAACAAGCTAGAACCCATAGCAACAGAAG TCTGGCTCATCAACAAGTCCATGGAGCTGCTGGATGAGAGGAAGTTCTGGGCTGGTATTGTGTTCACTGGAATTACTCCM RGCAGCATTGAGCTGCCCCATCATGTCAAGTACAAGATCCGAATGGACATTGACAATGTGGAGAGGACAAATAAAATCAA GGATGGgtaagtggaatcccatcacaccagcctggtcttggggaggtccagagcacctattatattaggacaagaggtac tttatt:taactaaaatttggtagaaatttcaacaacaaqaaaaaaactcaacttggtgtcatgattttggtgaaattg gtacatgacttgctggaaggtttttcataggtcataaaataacagtatcttttgatttagcatttctactcaagggaatt aattccaggaattttggtggcaggcacctgtaatcccagctactcgggaggctgaggcaggagaattgcttgaacccagg aggcaçaggttgcagtgagctaagatcgcatczttgcactcccgcctgggcaataagagtgaaactccatctcaaaaaaa attgtatggttctaaaggaatggttgattacctgtggtttggttttagGTACTGGGACCCTGGTCCTCGAGCTGACCCCT TTGAGGACATGCGGTACGTCTGGGGGGGGCTTCGCCTACTTGCAGGATGTGGTGGAGCAGGCAATCATCAGGGTGCTGACG GGCACCGAGAAGAAACTGGTGTCTATATGCAACAGATGCCCTATCCCTGTTACGTTGATGACATgtaagttacctgcaa Ctggaaataagatgccagatgtaagttgtcaazagttgcagccacatgacagacatagatatatgtgcacacactagtaa acctetttecttetcatecatggttgecaettttatettttatttttatttttttgagatggagtetegetetga cgcccaggctggagtgcagtggctcgatctcggctcactgcaacctttgcctcccgggttcaagctattctcctgcctca ccatettacccagectagacttcaactccteaectcagecaatccaccctteecteecaaagtgcteegattacae grgreagecactgeacceaeccaccacttrastrattracactetaccettreetcaaattreetcaatctgeaage ttaaaatgtgtcatgacaaacacatgcaagcatatactcacacatagatgcagaaacagcgtctaaacttataaaagcac ttettestettagaetttttagaaaatettteagtgetgagteaetaagetgecaagtteteattgtgggaaetatgeet ttggatgtaatgatttcttctaagacaatgggtggaggtgtagttattgcagacatctgaaatatgtaatgtttcttcca tgtatggctatctatagcttttcaaggtcacsagaaattatcctgtttttcaccttctaaacaattagctggaattttt aaaggaagacttttacaaagacccctaagctaaggtttactctagaaaggatgtcttaagacagggcacaggagttcaga ggcattaagagctggtgcctgttgtcatgtagtgagtatgtgcctacatggtaaagctttgacgtgaacctcaagttcag CGTCCBBBBTCTGTGTCCCTTTTTBCTTTGCECATCTCCBTTTTCTBTTTTGCTTGCBBTCTGBBBCTTGACBTCGBBCBBCBCC TGCCTGAAATGTATGTCTGTGGTGATTAGAGTTACGATAAGCAAGTCAATAGTGAGATGACCTTGGAGATGTTGAACT :::gtgagagaatgag::gtttttttg:::tgg:::ttag:act::aacataatc:acctttagtttaagtatcgctcac gcattgctcgtgaagcattggatcatacgtacatttcagagtctagagggcctgtctttctgtggcccagatgtggtgct sectetageatgeaggeteagaggeettggeeeateaceetggeteacgtgtgtgtetttetteteeettgteetteett gggcctccagCTTTCTGCGGGTGATGAGCCGGTCAATGCCCCTCTTCATGACGCTGGCCTGGATTTACTCAGTGGCTGT SATCATCAAGGGCATCGTGTATGAGAAGGAGGCACGGCTGAAAGAGACCATGCGGATCATGGGCCTGGACAACAGCATCC TCTGGTTTAGCTGGTTCATTAGTAGCCTCATTCCTCTTGTGAGCGCTGGCCTGCTAGTGGTCATCCTGAAGgtaagg cageeteactegetetteeetgeeaggaaacteegaaatageteaacaegggetaagggaggagaagaaaaaaate caageetetggtagagaaggggteatacetgteattteetgeattteateeatttatagttggggaaagtgaggeecag agaggggcagtgacttccccaaggtcaacccagccgggtagcagctaagtaggatgagagtgcagggttcatgctttcca gatatattggggggattcttcctaagaacaataatcagaaggatatattgttgcaggttagactgtct çgaaçcaçaçççtgaaatagagtttçatgtatçççtatttatçaçççttcaatacctatggaagatatggaagatqca ggattgggcagagggaggagttgaactgtgatatagggccaaccccgtggggcactctagagaatatgcagcttgttgga gttgttetteategagetgaaacatecageeetttgtgeteeeccaaggeeteeetetgacaccacettaceteageeet ctcaatcaatcactggatgtgggctgcctgcgaaggtcgtgccccaggggcctacatggctctctgctgctgtgacaaac ccagagttgctgatgcctgaggccgtttactgacagctgggcaacaaggcttccctgaatggggactctggggagtgcag ttttgtgtctgaaccatacattaatatatttatatccgaattttcttttctctgcaagcatttcatataaagacacatcag aaatagtteetaetgattgesaaggaetgtttaaacaeateaestgggettettettetateeteaetaaceettttaae agacaaggaaatgaggctcaggaaggtcaaggactttattgaggttccacagtaggatacagttcttgctaaaagcaacc tgctctgagacaactgcatgctggtgggtcctgcagatatgtacccatcagccggagataggctcaaaatatccacaaga gtttggatgattgtgggaatgcagaatccatggtgatcaagagggaaagtcaagttgcctggccattttccttggctttt agacagaaaagttacgtgggatattatctcccacagctcttctgtggccaccagtcatagtccttatataaggagaaa ccagttgaaattacctattgaagaaacaaagagcaaactcgcctactgaaatgcgtagaaagccctggactctgttgtat tcataactctgccattatttttctgcgtagttttgggtaagtcacttatcttctttaggatggtaatgatcagttgcctc arcagaaagatgaacagcattacgcctctgcattgtctctaacatgagtaggaataaaccctgtctttttctgtagatc atacazgtgagtgottggggattgttgaggcagtacatttgatgtgtotottecttoctagTTAGGAAACCTGCTGCCCTA CAGTGATCCCAGCGTGTGTTTGTCTTCCTGTCCGTGTTTGCTGTGGTGACAATCCTGCAGTGCTTCCTGATTAGCACAC GCATGGCAGGACTACGTGGGCTTCACACTCAAGATCTTCGCTg:gagtacctctggcctttcttcagtggctgtaggcat ttgaccttcctttggagtccctgaataaaagcagcagttgacaacagaagatgattgtcttttccaatgggacatgaac cttagetetagattetaagetetttaagggtaaggcaageattgtetttattaaattgtttaeetttagtetteteag ttgaggaatggcttcaggcaacagatgccatctctgccctttatctcccagctctgttggctatgttaagctcatgacaa accaaggccacaaatagaactgaaaactsttgatgtcagagatgacctctttgtcttccttgtgtccagtatggtgttt tectteagtaatettttttgaactaagcacaastegaggagcacettcctcatcccacaaattcctgactteggacacttcc ticccccgtacagagcagggggatatettggagagtgtgtgagcccctacaagtgcaagttgtcagatgtccccaggtca cttatcaggaaagctaagagtgactcataggatgctcctgttgcctcagtctgggcttcataggcatcagcagcccaaa acaggattgetgageetttgggggcatetttggaaacataaagttttaaaagttttatgetteaetgtatatgeatttetga astgtttgtataatgagtggttacaaatggaatcattttatatgttacttggtagcccaccactccctaaagggactc tataçgtaaatactacttctgcaccttatgattgatccattttgcaaattcaaatttctccaggtataatttacactaga agagatagaaaaatgagactgaccaggaaatggataggtgactttgcctgtttctcacagAGCCTGCTGTCTCCTGTGGC TTTTGGGTTTGGCTGTGAGTÄCTTTGCCCTTTTTGAGGÄGCAGGGCATTGGAGTGCAGTGGGACAACCTGTTTGAGAGTC CTGTGGAGGAAGATGGCTTCAATCTCACCACTTCGGTCTCCATGATGCTGTTTGACACCTTCCTCTATGGGGTGATGACC TGGTACATTGAGGCTGTCTTTCCAGgtacactgotttgggcatctgtttggazaatatgacttctagctgatgtcctttc tttgtgctagaatetetgcagtgcatgggcttfcctgggaagtggtttgggctatagatetatagtaaacagatagteca aggacaggcagctgatgctgaaagtacaattgtcactacttgtacagcacttgtttcttgaaaactgtgtgccaggcagc atgcaaaatgttttatacacattgcttcattlaattctmacaaggctactctgaagtagttactataataaccagcaatt ttcaaatgagagaactgtgactcaaagacgttaagtaaccagctttggtcacacaactgttaaatgttggtacgtggagg tgaatecactteggttacactgggtcaataageccaggcgaatectcccaatgeteacccaattetgtatttetgtgtec tragagggggtacaactaggaggttotgtttcctgagtacaggttgttaataattaaatatactagctotaaggcotg congregatitaattagcaticaataaaaaticatgtigaatitttotttagtacttotttottaatataatacatottot tgaccaagtccaagaggaacctgcgttggacagttttcatatgagatcaaattctgagagagcaagatttaacccttttt

Fig. 12 Page 16 of 30

saattttgcagcatgcagattctggatttaaattctgagtcttaacttactggctgagggaccttggataggctccttat secteagetetecteatetetaaaatggggatggcacetgccccgtgggttgttggaaggacttacagaggtgcagaatgt acgttgtacatagcaggtttcagcaaatgttagctccctctttccccacatccattcaaatctgttccttctccaaagga zatatcaaeeaeeaaeeaaceteeeteeegaaacectcagaataceeggateatecteagctcagecteataceteteete SAGAAGAGCCACCCTGGTTCCAACCAGAAGAGAATGTCAGAAAgtaagtgctgttgacctcctgctctttttaaccta \$18018018010180101801310858860aa608at8101001800TtCtaaaagaCtgtgaaaccactcca999gca pagaaatcacatgcagtgtccctttccaaatccttccatgccatttatgtccaatgctgttgacctattgggagttcatg ştötegatecetgagegacattttetttettegtettettegettetagaagagtatetittaetigeececteccaaacacac atttcatggtctcctaacaagctagaagaaagaggtaaagacaagcgtgattgtggaaccatagcctcgctgcctg zgacazgergacetgtetateageetgtetgegeetgaeaecaaetegetaecaeaeaegeetateetaatet aatcattacccagatccctaatcctctttggctcttaactgcacagacatgtccacagctcatcaaaggctctgctt ctgggttctttgtgcttagagtggcttcctaaatatttaataggtcccttttctgccagtctcttctgtgcccatcccst gattgcccttggtaaaagtatgatgccccttagtgtagcacgcttgcctgctgctcctaatcatcttctcctacctcctc tttacacctagetectgtttcagtcacctagaaatgeteacagtegetggaatatgtcatgttettecacacctccatge ctttgtaggtactgtttgctctcacaggagaactttctctctaacttgcctatcttctcaactcctcctttctccaag gcacgigaaagaaatctttttattttaaaacaattacagactcacaagaagtaatacaaattacatgaggggttccct taaacctttcatccagtttccccaatggtagcagcatgtgtaactgtagaatagtatcaaaaccatgaaattgacatagg caattttatcatgtgtgtaattcatgtaattactagctcagtcaagctgcagaaatatctcattgtcacaaagctccttta tgctaccccttaatggccacaccccccttcttcctcagttcctgacacctgtcaaccactaatgcgttcctcgtt ccctgggagggtgtatcacagttccatggcattttagatgtatttttaaacagctttcagcatcctctattttaatt gttcatcaagtcctttttcccaatagactctgaatgctctttatcatcgtattcccatcaccaacatcagtacccaaat aggccctaaataaacatttatagcctcctgcctgcctgagaaaccagggtgcacatggagagaaggcacttctgaaagtt caagegeagtgesetgtgteettacaeteeacteeteagtgetttetgtgtgtgtteatttetgtettetetetgteasag TCTGCATGGAGGAACCCACCCACTTGAAGCTGGGCGTGTCCATTCAGAACCTGGTAAAAGTCTACCGAGATGGGATG GACGACCACCATgtaagaagagggtgtgggttcccgcagaatcagccacaggagggttctgcagtagagttagaaatttat accttaggaaaccatgctgatccs;şggccaagggagcacatgaggagttgccgaatgtgaacatgttatctaatc atgagtgtctttccacgtgctagtttgctagatgttatttcttcagcctaaaacaagctggggcctcagatgacctttcc taattcccaggaactctgtctctaagcagatgtgagaagcacctgtgagacgcaatcaagctgggcagctggcttgattg ccttccctgcgacctcaaggaccttacagtgggtagtatcaggaggggtcaggggctgtaaaggaccagcgttagcctca grggcrrccagcacgattccrcaaccattcraaccattccaaagggratatcrtrggggggggacattcrtrtccrgrtr tetttttaatettttttaaaacatagaattaatattatgagetttteagaagatttttaaaaaggeagteagaaatee atacaaaatacatttttaaagaatactttcattgcaaattggaaacttcgtttaaaaaatgctcatactaaaattggca tttctaacccataggcccacttgtagttatttaccgaagcaaaaggacagctttgctttgtgtgggtctggtagggttca ggtcaaccetgacttetgtacttetaaatttitgtesteagGTCAATCCTGACCGGGTTGTTCCCCCGACCTCGGGCAC CGCCTACATCCTGGGAAAAGACATTCGCTCTGAGATGAGCACCATCCGGCAGAACCTGGGGGTCTGTCCCCAGCATAACG ctotgtagccaggctggactgtagtggcgcgatcttggctcactgcaaccttggcctcccaggttcaagcgattctsctg cctcagcctcccgagtagctgggactctaggcacacaccatgcccagctaatttttgtgtttttagtagagacgggg tttcaccatgttggccagcatggctcaatgtcttgacctcgtgatccgccacctcggtctcccaaagtgctgggaaca caççcatgagccactgtgtczggccacatzzzactttczttgaatatggcaggctcaccttcgtgaacaccttgagacct agtigttetttgattttaggagaagtgggaggtgaatggttgagetgtagaggtgacateageccagecagtgga=9999 gettgggaaacattgetteccattattgttatgetggagggecetttageccatectttecececgccacecetetatt gaggcctggagcagacttcccagacctggtagtgcttcagggccctggtatgatggacctatatttgctgcttaagacat taaagtgaacacatggggctcatgtgcagggtcctccccgctttcagaggcctgaggtcccctgaggctcaggaaggctgc tccaggtgagtgccgagctgacttcttggtggacgtgctgtggggacagcccattaaagaccacatcttggggccstgaa

Fig. 12 Page 17 of 30

attgaaagttgtaactgcctggtgcatggtggccaggcctgctggaaacaggttggaagcgatctgtcacctttcacttt gatttcctgagcagctcatgtggttgctcactgttgttctaccttgaatcttgaagattattttcagaaattgataaag ttattttaasaagcacggggagagaaaatatgcccattctcatctgttctgggccaggggacactgtattctggggtat ccagtagggcccagagctgacctgccctgtccccagGCTGACTGTCGAAGAACACATCTGGTTCTATGCCCGCTTGA AGCAAAACAAGCCAGCTGTCAGgtgcggcccagagctaccttccctatccctctccctctcctcctcctggctacacacatg cggaggaasatcagcactgccccagggttccaggctgggtgcggttggtaacagaaacttgtccctggctgtgcccctag processes cacteactes to the second se AGCTATCTGTGGCCTTTGGCGGGGGATCTAAGGTTGTCATTCTGGATGAACCCACAGCTGGTGTGGACCCTTAC TCCCGCAGGGGAATATGGGAGCTGCTGAAATACCGACAAGgtgcctgatgtgtatttattctgagtaaatggactga gagagagcgggggcttttgagaagtgtggctgtatctcatggctaggCttctgtgaagccatgggatactcttctgtta kcacaçaagagataaagggcattgagactgagattcctgagaggaggaggtgctgtgtctttattcatctttttgtccccaac ectototgettagagatotgatgtggtacagtatgaggagcacaggcaggcottggagccaactotggottggcootgaga cattgggaaagtcacaacttgcctcaccttctttgccgataataatagtggtgcgttacctcatagaggattaaattaaa :gagaa:gcacacaaccacctagcacaatgcc:ggcatatagcaagttcccaaataaaatgcgtactgttcttacctct gtgaggatgtggtacctatatatacaaagctttgccattctaggggtcatagccatacagggtgaaaggtggcttccagg totottocagtgottacccotgotaatatotototagtccctgtcactgtgacaaatcagaactgagaggootcacotgt GGACAGGATTGCCATCATCTCCCATGGGAAGCTGTGCTGTGTGGGCTCCTCCTGTTTCTGAAGAACCAGCTGGGAACAG ctccatttccaccccttttgccatgttgaaaccaccatcttcctgctcgttgcccctttgaaatcatatcatacttaag gcatggaaagctaaggggccctctgctcccattgtgctacttctgttgaatcccgttttccttttcctatgaggcacana çaçtçatçqaqaaggtccttaçaqgacattattatgtcaaagasaqacttqtcaaqaggtaaqaqccttgqctacaa atttcaacctttttttttttaacctctatcatctcaattaaag

Jenomic contig containging ASC1 excns 23 to 28:

ştgaacacacattaaagcatgagaagcatgaactaşacatgtagccaggtaaaggccttgctgagatggttggcaaaggc treattgeageatteattggcaggecaeagttettttggcagetetgetteetgaeettteaceeteaggaagegagget cogtiniacocctetitiqccatcagGAGGACAGTGTTTCTCAGAGCAGTTCTGATGCTGGCCTGGGCAGCCAT GAGAGTGACACGCTGACCATCGgtaaggactctggggtttcttattcaggtggtgcctgagcttccccagctgggcaga tgtcccagagagctgagatgattgggggtttggggaatcccttaggggagtggacactgaataccagggatgaggagctga gggccaagccaggagggtgggatttgagcttagtacataagaagagtgagagcccaggagatgaggaacagccttccaga ttttcttgggtagcgtgtaggaggccagtgttaccagtagcatatgtggaacagaagtcttgaccettgctatctct gagggaacctactttataagcataggaaagggtgaagaatcttttaagattcctttactcaagttttcttttgaagaatc catectecatecteceattcacccatecacccatecagetgtccacccattctacactgagtacctataatgtgcctgg ctttggtgatacaaaggtgaataagacatagtcctttcctttgcccccaaccctcagaccagatgaacatgtggaatg acctaaacacctggaacaggtgtggtgtatgagcggcaggcctctgatgagagggtgggggatggccagccctcactccg ATGTGTCTGAAGCCCGGCTGGTGGAAGACATAGGGCATGAGCTGACCTATGTGCTGCCATATGAAGCTGCTAAGGAGGGA GCCTTTGTGGAACTCTTTCATGAGATTGATGACCGGCTCTCAGACCTGGGCATTTCTAGTTATGGCATCTCAGAGACGAC CCTGGAAGAAgtaagttaagtggctgactgtcggaatatatagcaaggccaaatgtcctaaggccagaccagtagcctgc attgggagcaggattatcatggagttagtcattgagtttttaggtcatcgacatctgattaatgttggccccagtgagcc atttaagatggtagtgggagatagcaggaaagaagtgttttcctctgtaccacagtacatgcctgagatttgtgtgttga aaccagtggtacctaacacatttacatcccaaccttaaactcctatgcacttatttaccctttaatgagcctctttactt aagtacactckgaggaacagccccagctcaggatcacttggcaacttgttacaaattcagcaacttgggcccagctcagacc tgacaaacgtttatggatggatagtctacttgtgccaggtgctcagatttgtttttgttttttgatttttttaatca ctgtgacctcatttaattctcaaaaaaagatgaaaaatgaacactcaggaatgctgacatgagattcagaatcaggggt trggggcttcaaagtccatcctctttatccatgtaatgcctccccttagagatacaacatcacagaccttgaaggctg aaggggatataaaagctgtctggccaagtggtccccaagcttgacagtgcagcagaatcacctggggatattattaaaaa taaacatactaaggtttggcttcagggcctgtgaatcagaatttctggaggtcgaggccttgaagtctgtatttctattgc atactttggacacagtggtctatagactagagtttggaaatgattgcgctcattcagattctcttctgatgtttgaattg ctgccatcatatttctagtgctctatttcctcttgctcattctgtcttggataacttatcatagtactagcctactcaaa gatttagagccacagtcctgaaagaagccacttgactcattccctgtaggttcagaataaatttcttctgcgcagtgtct grcatagetetettaaatetetetetatetetjatgagaetggagtetegetettattgeceaagetggagtgeagtgg tgcgattttggctcactgcaacctccacctccaggttcaagcgattctcctgcctcagcctcccaagtagctgagatta caagcatgtgctaccacgcccagctaattttgtattttagtagagatgggttttatccatgttggtcaggctggtctcg agetesagaceteaggtgatetgeeegdeteggeeteccaaagtgetgggattataggeetgagecacagegeteageea taactttaatttgaaaatgattgtctagcttgatagctctcaccactgaggaaatgttctctggcaaaaacggcttctct cccaççtaactctçagaaaçtçttattaagaaatgtggcttctactttctctgtcttacggggctaacatgccactcagt aatataataatogtegcagtegctactetegtaatettegctecttataatettetcatetctctctctctctcacATA TTCCTCAAGGTGGCCGAAGAGAGTGGGGTGGATGCTGAGACCTCAGGTaactgccttgagggagaatggcacacttaaga tagtecettetgetggettteteagtgeacgagtattgttestttesetttgaattetetattgcatteteatttgtag <u>ENTGGTÄCCTTĞCCÄGCÄAGÄČŠÄÄÄČÄGGCĞGGCCTTCĞGGGACAAGCAGAGČTGTČTTCGCCCGTTCACTGÄAGATGA</u> TGCTGCTGATCCAAATGATTCTGACATAGACCCAGGtctgttagggcaagatcaaacagtgtcctactgtttgaatgtga aatteteteteatgeteteaestgttttetttggatggeetttageeaaggtgatagateeetaeagagteeaaagagaa grgaggaaatggtaaaagccacttgttetttgcagcatcgtgcatgtgatcaaacctgaaagagcctatccatatcactt cctttaaagacataaagatggtgcctcaatsstctgaacccatgtatttattatcttttstgcggggtcctagtttcttg gctgttaggttaattgtaccctaagacttagatatttgaggctgggcatggtggctcatgccagtaatcccagegettt gagaggctgaggtgggtagatcacctgaggttaggggtttgagaccagtctgaccaacaaggtgaaaccccgtctctact aaatacaaaaaattagccgagtggtggcasatgcctgtcatcccagctacttgggaggctgaggcaggagaatcgctt gaacccaggaggcagaggttgcagtcagccatggttgcgccattgcactccagactgggcaacaagagtgaaaactccat Stillaaaagaaaaaaaagaattagatattitggatgaçtgtgtctttgtgtgtttaactgagatggagagagcta

Fig. 12 Page 19 of 30

agacatcaaacaaatattgttaagatgtaaaagcacatcagttaggtatcattagtttaggacaaggatttctagaaaat cttcatacagtatcagtacttagatcatttgaaatgtgtccacgttttaccaaaatataatagggtgagaagctgagatg staattgccattgtgtattctcaaatatgtcaagctacgtacatggcctgtttcatagagtagtctataagaaattgatg actteatteatecgaatggetggtaacacetggttacgeatgaacacetettteagttgtetcaagacacetttet tttetgtacttatcagacaaggactgaaaggcagagactgctactgttagacattttgagtcaagcttttccttggacat agettigteatgaaageeetttaetteigagaaaettetagetteagacacatgeetteaagatagttgttgaagacace agaagaaggagcatggcaatgccgaaaacacctaagataataggtgaccttcagtgttggcttcttgcagAATCCAGAGA GACAGACTTGCTCAGTGGGATGGATGGCAAAGGGTCCTACCAGGTGAAAGGCTGGAAACTTACACAGCAACAGTTTGTGG CCCTTTTGTGGAAGAGACTGCTAATTGCCAGACGGAGTCGGAAAGGATTTTTTGCTCAGGtgagacgtgctgttttcgcc agagactctggcttcatgggttgggctgcaggctttgtgaccagtgaaggcaggatagcatcttggtcaagatatggatgc cggagccagatttatctgtatttcaatccagttctattccttgccagttgtgtatccgctggcaagttacttctctatg cctcaatctcctcatcigtaaaatggggataaiaatattacctgcaatacagggttgttacgaaaataaaaatgaatagg aaaggacaaagtgtagaaaaactggttgggtgtatttagctgtcataacatgagagttgttatgcccagatgcacttgac atgtgaatttattagaaacatgatttttctctgagttgatgtttaactcaaactgatagaaaagataggtcagaatatag atttttcactctataaaatcaagaaatatagagaaaaggtctgcagagagtcttcatttgatgatgtggatattgtta agagegggagtttggagcatacagagetcaagttgaateetgactttgetacttattggetatatgacettgggcaaget gagatagttotoattatagtagttgttatacagaattattoactcaatgttaattttotgcattgaaatcccagaacatt agaattgggggcattatttgaatctttaaggttataaggaatacatttctcagcaataaatggaaggagttttgggttaa cttataaagtatacccaagtcatttttttcagagaagatatggtagaaagtcttaggaggttgaagaaggaattggata tttattetttetgagaetateatgggagataatgaetatggttgteeatgattggageegttgetgtagagttggtttta ttatagtgtaggatttgaatgggccatgtgttttcagacctcagaataaaaagagaaaactgaggccagtggggagcgtg acttcacatgggtacacttgtgctagagacagaaccaggattcaggacttctggctcctgggttcatggcccaa tgtagtctttctcagtcttcaggaggaagggcaggacccagtgttctgagtcaccctgaatgtgagcactatttact tcgtgaacttcttggcttagtgcctctgccaggtggccataacctctggccttgtgttgccagagaaaaggtttagtttt cagectccattgettcccagetgccaagaatgecttgetgcagcacagtcataggecetgcattcctcattgecgtgetg grtggtcggggaggtgggctggactcgtagggatttgccccttggccttgttctaacacttgccgtttcctgctgtcc CCTGCCCCCCCCCCCCGGGTaaagATTGTCTTGCCAGCTGTTTTGTCTGCATTGCCCTTGTGTTCAGCCTGATCGT GCCACCCTTTGGCAAGTACCCCAGCCTGGAACTTCAGCCCTGGATGTACAACGAACAGTACACATTTGTCAGgtatgttt gtottotacatocoaggaggggtaagattogagocaagatgtttacgagggccaagggaatggacttcagaatt acacçgtggaat

ت ، در، در، کرد

Genomic contig containg ABC1 exon 19:

ttgccctttcttggaaaatcctgcttgtctgtgccaaagggataattgtgaaagcacttttgaaatacttaatgagttga tttttttaaattaaaaaaatatataaatgtatstgtgtatgtscatgtgtgtacacatacacacctttatacatacag ccatttaaaacaagctccactttggagtgctctacgtcaccctgatgccgaatacagggccagagtctgagatccttct gggtggtttttgttcatttctgttttaagagcctgtcacagagaaatgcttcctaaaatgtttaatttataaa aacattittatetetegattaetggttitaatgaattaetaagetggetgeeteteatgtaeeeacag**caatgatgete**e ${\tt CAATCCCgtgagtgccactttagccataagcagggcttcttgtgcttgttgcctggtttgatttctaatatgctgcattt}$ gtaaccgaactaaattatctaggaacaaacgtttggagagtcttctaacaccgyscaaagcacgtcattacagacatttg tttactgatttagaaccttaatatttaatttaaatacgcactttacacttactgatgaaatgcttttcctttctct cccagcccctgtacttaagtgcttcaataggctctcattatatatgatttttaggttttgcttatcagcttcttcgcttt tataatctgaaaagatggcatatgaatttttataaaaagggacactttcttcttcttcaaattgtatatttttattgtact taggggaaggggaggtcaccagatcactgtgagtgaagatggtgaggtgaggatcttatgaggccgtgctcaaggctg gtagaggtgggttagtgtttccaggtttaggcagaatctcagctgaggtcatgaaacaacagtgatctctgaaaaattat ggcaaggtgggaaggtgctggagaattggagagggggcaaacttgactttcaagtttcaatgggaagataggtgactctg cacaccacagaacagtgagcatgataacctgtttatacaaggttctagagcagatttctaaatggatagctactgtgtgc ttgtttgttcttaattagtattggatagttactaaatacttgttagtacttagtacataatgggtggtaaatcctagcag ctaatattggttcccaaataaccagatgacaaggatagagaaggacacagacacggcctatctggatttcatggtgcctt tgattttccacatgaaggttgtgtgtagggaagatagaagcatgagatgagatgataatatagttatctggattcatcactg gccagctgaaccatatgaactcatggattgatgctagcttaggaaggctctgtaggagccagaactgggctgagagccag cccatagagacaaaagaggcccggccctgacatcagagggttcaaacatgatgtctgagccccacctacagtctgccgga ggtggttggaaggaagagcctttatccttacaattcttactgaaattcaaatttttaggttttgcaaaaaatggtggac ctgaaggaaatttgacaggagcatgtctcagctgtatttaaatttgtctcagccaatccccttttgaatgttcagagtgt aagetteaggagggéagegegtettagtgtgaettttetggteagtteaggtgetttaaggagaeaattagagateaate ctctgttgcccaggctggagtgcagtggctcaatcttggctcactgccacctctgcctcccaggttcaagtgattctcct acctcagcctcctgagtagctgggattacaagcatgtgccaccacactggctaa

PCT/IB00/00532

SEO ID NO: 24

Genomic contig containing AEC1 excns 30 and 31:

tottgccagtototactcatttttcagcacatcgagcataagatccagactctttcccaggcctctctcatctggctcct ctcctcctcttatcattactcttcttcgtagcttatcctactccagccatgctgtcttcctattattcctaaaaarta gaaatgcatttcttaggggccttigtacctgcacttgccattgcttttgctcagaatgttctttttgccaagcttttg cccagcttgttctccatcattgttatgttttggctgaaatgtcttctcttagtaggttcattttatccccagtcactgtctt tttattttgctttattttgggccatctaaggttatcttattagtgtatttgttgttcgtctcctccatgggcatacacct ccatgaaggcaggtattttcaccttaggccctcgaatatactggacagcatctggcacgtagtagatgctcaacgaatgt ttgttgtgtgagcaaatggttggttgattggattgaactgagtttagtatgtaaatatttagggcttctttgcattctat tttacttatgtataaaatgatacataatgatgatataaatgatgtcacagtgtacaaggctgttgtggggatcaagcaatc ctgaggcaacagaaaggccaggccatctctggtaatcctactcttgctgtcttccctttgcagAGACACGCCCTGCCAGG GCCTCCTCCACAAgteagtcactttcagggggtsatteggcaeaaggggttcaggatgggctggtagcttccgcttggaa trgctctgtcgcccaggctggagtgctgtggcatgatcttgcctcactgcaacctccacctccaggttcaagcgattct aggstttcgccgtgttggctaggctggtctggaattcctgacctcaggtgatccacccgcctcggcctcccaaagtgctg ggattacaggcgtgagccactacgcccagccctgtttcagtctttaactcgcttcttgtcataagaaaaagcatgtgagt tttgaggggagaaggtttggaccacactgtgcccatgcctgtcccacagcagtaaagtcacaggacagactgtggcaggc ctggcttccaatcttggctctgcaacaaatgagctggtagcctttgacaggcctgggcctgtttcttcacctctgaatta occaccctgcaccagaaaactcctgtggatcttgtcaactctgctattcttagagactctgtttgggaaggagtcctgag ccatttttttttttttttttatcaggaagagggagtgcttatgatagctctctgctgcttttatcagcaaccaaattgc aggatgaggacaagcaattctaaatgagtacaggaactaaaagaaggcttggttaccactcttgaaaaataatagctagtc caggigggggggggctcacaccigtaatcicagiattitigggatgccgaggiggactgatcacctaaggicaggagticg aaaccagettggecaatgtggegaaaccetgtetetactaaaaattcaaaaattagecaggcatggtggcacatgeetgt aatcccacttacttgggaggctgaagcaggagaattgcttgaacctgggaggtggaggtcgcaggggagccaaaattgcgc cactetactccagcctgagcaacacagcaaaactccatatcaaaaaataaaatgaataaaataaacagctaatctagtcat cagtataactccagtgaacagaagatttattaggcatagtgaatgatggtgcttcctaaaaatctcttgactacaaagaa tctcatttcaatgtttattgtttagatgttcagaataaattcttgggaaagaccttggcttggtgtaagtgaattaccag tgccçagggcagggtgaaccaagtctcagtgctggttgactgagggcagtgtctgggacctgtagtcaggtttccggtca cactgtggacatggtcactgttgtccttgatttgttttctgtttcaattcttgtctataaagacccgtatgcttggtttt CatgleatgacagAGAAAACAAAACACTGCAGATATCCTTCAGGACCTGACAGGAAGAAACATTTCGGATTATCTGGTGA AGACGTATGTGCAGATCATAGCCAAAAGgtgactttttactaaacttggcccctgccttattattactaattagaggaat taaagacctacaaataacagactgaaacagtggggaaatgccagattatggcctgattctgtctattggaagtttagga tattatcccaaactagaaaagatgacgagagggactgtgaacattcagttgtcagcttcaaggctgaggcagcctggtct agaatgaaaatagaattggattcaacgtcaaattttgccac

Genomic contig containing ABC1 excn 32:_

> Fig. 12 Page 23 of 30

Benomic contig containing ABC1 excns 33 to 36:

gctttatagagtttctgcctagagcatcatggctcagtgcccagcagcccctccagaggcctctgaatatttgatatact ttgtactttccccccaaaccagattcccgaggcttcttaaggactcaaggacaatttctaggcatttagcacgggactaa aaaggtcttagaggaaataagaagcgccaaaaccatctctttgcactgtatttcaacccatttgtccttctgggttttgaaggaacaggtgggactggggacagaagagttcttgaagccagtttgtccatcatggaaaatgagataggtgatgtggcta cgrcagggggcccgaaggctccttgttactgatttccgtcttttctctctgccttttccccaagggccaggaccccttgga zetetgggcagagcagacgcaggcccctataatagccctcatgctagaaaggagccggagcctgtgtataaggccagcgc agcctactctggacagtgcagggttcccactctcccaactccccatctgcttgcctccagacccacattcacacacgagc ggccaggtcctccctgctgggcagaaaccatgggagttaagagattgccaacatttattagaggaagctgacgtgtaact tctgaggcaaaatttagccctcctttgaacaggaatttgactcagtgaaccttgtacacactcgcactgagtctgctgct gatgatactgtgcaccccactgtctgggttttaatgtcaggctgttctttttagcTATGGCGGCTTTTCCCTGGGTGTCAG taaaatatotatogtaagatgtatoagaaaaatgggcatgtagotggggatataggagtagttggcaggttaaacgga tcacctggcagctcattgttctgaatatgttggcatacagagccgtctttggcatttagcgatttgagccagacaaaact gaattacttagttgtacgtttaaaagtgtaggtcaaaaacaaatccagaggccaggagctgtggctcatgcctgtaatcc tagcactttgggaggctgaagcgggtggatcacttgaggtcaggagttcgagaccagcctggcctacatgacaaaacccc gratctactaaaaatacaaaaaattagctgggcttggtggcacacacctgtaatcccagctacttgggaggctgaggca ggagaattgcttgaaccctgtaggaagaggttgtagtgagccaagatcgcaccgttgcactccagcctgggcaacaagag caaaactccatctcaaaaaacaaattaaatccagagatttaaaagctctcagaggctgggcgcgggtggcttacacctgtt atcccagcattttggggatgccgaggcgggcaaagcacaaggtcaggagtttgagaccagcctggccaacatagtgaaacc ctgtctctgctaaaacatagaaaaattagccgcgcatggtggcgtgcgctgtaatcccagctactcgggaggctgagg tgagagaattrottgaaccogggaggoggaggttgcagtgagoccagattgcaccactgcactccagootgggcgacaga taggacctgataagtactcacttcatttctctgtgtctcaggtttcccatttttaggtgagaattaaggggctctgataa aacagaccctaggattgtggacagcagtgatactcctagagtccacaagtctgcttttgagtgatgggcccatgtatctg gcacatetgcaggcagagegtggttetggetetteagatgatgeeggtggageaetttgaggagteeteaeeecaeegtg ataaccagacattaaaatcttggggctttgcattccaggatttctctgtgattccttctagacttgtggcatcatggcag ggtagtggcattgctcttcacagggccgtcctgttgtccacaggttccagattgactgttgccccttatctatgtgaaca gccacaactgaggcaggtttctgttgtttacagGACAGTTCTGCAGATCGATTTCTCAACAGCTTGGGAAGATTTATGAC AGGACTGGACACCAGAAATAATGTCAAGgtaaaccgctgtctttgttctagtagctttttgatgaacaataatccttatg tttcctggagtactttcaactcatggtaaagttggcaggggcattcacaacagaaaagagcaaactattaactttaccag tgaggcagtacggtgtagtgtagtgattcagagaatttgctttsccaccagacataccaggtaaccttgactaagttact taacctatctaaacctcagttycctcatctgtgaaatggagacagtaatcatagctatttccaaactgttgtgagaattc aatgagttaaaggtataaggtcctcaccacagcgccctgcccacatagtcagtgatcactatgtcctgaacactgtaatta TAACAAGGGCTGGCATGCAATCAGCTCTTTCCTGAATGTCATCAACAATGCCATTCTCCGGGCCAACCTGCAAAAGGGAG AGAACCCTAGCCATTATGGAATTACTGCTTTCAATCATCCCCTGAATCTCACCAAGCAGCAGCTCTCAGAGGTGGCTCTG taagtgtggctgtgtctgtatagatggagtggggcaagggagagggttatggagaaggggagaaaaatgtgaatctcatt gtaggggaacagetgcagagaccgttatattatgataaatctggattgatccaggctctgggcagaagtgataagtttac gaattggctggttgggcttcttgaactgcagaagaaaatgacactgatatgtaaaaatcgtaacatttagtgaattca tataaagtgagttcaaaaattgttaattaaattataatttaattataagtgtttaatcagtttgatttgtttaaaaacca atacaçatotgggtttgaatotggtototaaassttatatagatgtatgatattaaatgaggcagttcatgtaaattgocaa gcccagcactcagcacagagttgatatttcacacacattagatacctttcctgtatgtggagcatggcagttcctgtttc tgctttactcctacaggatactaatataggacactaggatctttataccaagaccccatgtaatgggcttatgagaccat tcttcttataaaaatctgacagaatttttgtatgtgttagattaataggctgcatactgttattttcaagttgatttaca gccagaaatattaatttatttgagtagttacagagtaatatttctgctctcatttagttttcaagccccactagtccttt gratataaaatttacaacttactgctcttacaagatcatgaacagtagaccaaagtgaatgccattaaccactctgact tectteattagttttattgtgacagtggactettttgacetexgtaataceagtttggcatttacattgteatattttta gacttaaaaatgatcatcttaaccctgaataaaatgtstctsstgaacasatgtttttccttggctgtgcctcasatatc

Fig. 12 Page 24 of 30

tctgtgtgtgtgtacgtgtgttgtctgtgtgtgtccatgtcctcactgattgagccctaactgcatcaaagacccctca gatttcacacgcttttctctctcaggATGACCACATCAGTGGATGTCCTTGTGTCCATCTGTGTCATCTTTGCAATGTC CTTCGTCCCAGCCAGCTTTGTCGTATTCCTGATCCAGGAGCGGGTCAGCAAAGCAACACCTGCAGTTCATCAGTGGAG TGAAGCCTGTCATCTACTGGCTCTCTAATTTTGTCTGGGATATGGtaaggacacaggcctgctgtatctttctgatgtct gtcagggccatggattgatatggataagaaagaagctctggctatcatcaggaaatgttccagctactctaaagatg tatgaaaaagaaatagccagaggcaggtgatcactttcatgacaccaaacacagcattgggtaccagagttcatgtcaca ccagagggaaaattctgtacacaatgatgaaaattaataccactaccacttaagttcctatgtgacaactttcccaagaa tcagagagatacaagtcaaaactccaagtcaatgcctctaacttcttgatgggttttaacctccagagtcagaatgttc tgtttttgtgccasccacaatatattgcttctatttggaccaatatgggggatttgaaggaattctgaagttctaattat ctaattcttctcccaccgaacaagtccctggatatttaaaaataactctcatactctcatttaacctgagtattacccag ataagatgatatatgagaatacaccttgtaacstccgaagcactgtacaaatgtgagcaatgatggtggagatgatgatg agatetttgetgtttataccaageeeettagaetgtgteaetettetgateeggttgteettgtatggeeatgetgtata ttgtgaatgtcccgttttcaaaagcaaagccaagaattaaccttgtgttcaggctgtggtctgaatggttatgggtccag agggagttgatctttagctcacacttctattactgcagcacaaagattttgcattttggaaggagcaccgtcttactggc aacttagtggtaaaccaaaacctccatttcacacaaatgattgtgaaattcgggtctccttcattctatacaaattcatt ttactcctttcagtaaacacagactgagtgctgtgtctgacttatgccaggcataggtgattcagagatgaaaggtca agtecetgaacceatetettgtetteetgggtattatetgtetetettagagettettagageteetgaaatttgetagaagea tgtcttcatctaagttgttgataaacacatcaagtaggattggactgaggcagagccctgtagtctgaagctgcagttct tctagcggctgacaagccccactatcacttccctgctgctgctctgctctgccagctgtgaattctcataattgtcctat cgtcaagtctttatttctgcattttactgcttcatacactgtcaggacagactttaaaattattctcagtgcgatgaaac aattotgacattoatgttatgagcagttacotcataaatagattacatg

> Fig. 12 Page 25 of 30

Senomic contig containing ABC1 excns 37 to 42:

aaattactctgactgggaatccatcgttcagtaagtttactgagtgtgacaccttggcttgactgttggaaagacagaaa gggcatgtagtttataaaatcagccaaggggaaaatgcttgtcaaaatgtattgtcgggtattttgattaatagtttatg cattgtatatttgatttaggggtgaactggatgtctttgtttttagttttagTGCAATTACGTTGTCCCTGCCACACTGG TCATTATCATCTTCATCTGCTTCCAGCAGAAGTCCTATGTGTCCTCCACCAATCTGCCTGTGCTAGCCCTTCTACTTTTG CTGTATGGgtaagtcacctctgagtgaggtgcacagtggataaggcatttggtgcccagtgtcagaaggagggcag ggactetcagtagacacttatetttttgtgteteaacagGTGGTCAATCACACCTCTCATGTACCCAGCCTCCTTTGTGT TCAAGATCCCCAGCACAGCCTATGTGGTGCTCACCAGCGTGAACCTCTTCATTGGCATTAATGGCAGCGTGGCCACCTTT GTGCTGGAGCTGTTCACCGACAATgtgagtcatgcagagagacactcctgctgggatgagcatctctggggagccagagg acagtgtttaattgtgatcttattccacttgttagtggtattgacactgctgactgccttgtcctgtcttcagagtctgt cttccctgagaaggcaaagcacctttctttcttgctgtgccttacattttgctggtcaagcctttcagtttcttttgaca gtttttttacttctttttttcaatgttgttcttaccaagagtagctcctctgccttccactttacacatgagagct gggcgacgcattcagtcctaaggcttttaccattacctctcttggtgtttttattgtcatctctaagatcaatgccttta gccttgatcataaccttgaactctaatctcaaattctcacttgcctagtggattgctccatttagatagtatatagatac cccaacctggatatgtcctagttttctttccccttggaacttaatgcttttcttgccatccctgtcacactcagtggcac actggttatgttgtcagttcttccaggtatggacctctaaaataaggctttcttccattccggttgtcattgcctttgt ccaaacacagcacacaaggccttttacagttgtacaactctttctgtccatacccacaccctttcccagctgtaagc ttcagatgagttgcctccaaccaccatgctcctgtaggcctggcttgaaatgcccttcttctgtcacagggtctggtagt atatecettgeeettcaagatttagetaaaatgtgaagettteettaeetgetgggaggtgttetetetttetetgtge totcagagtcottagtccatgcotccagtacaacgtacatocasttacatggtaatttcctgtttacatacttttcctac teggagteggagtetgtttttaataattttgcctctcccatgccctagcacagtgcatccagcgtatagccccttattca grrggragatatrrggccactgrrgccrrgrgggatcaraagrrcrgargratrrgagaagaatrrcraaaatrcrgaca aaatcctgaaactcaaatattgacccagacatgagcaatttgcttttcaaatgctaagggatttttaatggatttgcttt aattaaatctagcctgtttctaagctttattcattatttctccatactcagagcatttctccagattttctaaagaatag aattttattgctacatatcatcagctatgcctgctatttaattggtatctgaattaaaaggtctggtttgtccctag CGTGTTCTTGATCTTCCCACATTTTTGCCTGGGACGAGGGCTCATCGACATGGTGAAAAACCAGGCAATGGCTGATGCCC TGGANAGGTTTGgtgagtgaagcagtggctgtaggatgctttaatggagatggcactctgcataggccttggtaccctga actttgttttggaaagaagcaggtgactaagcacaggatgttttccccacccccatgcccagtgacagggctcatgccaac acagorggttgtggcatgggttttgtgacacaacoatttgtctgtgtctttstjatagcattgagaaaagtgaaagggcagt aagtcaaaccataactttgagaattaggtgatcagggaatcagaaggaaagatgcaaactttggctcttttaggcgaatc atgtgcctgcagatgaggtcatttattatcttttacacagtctataaaattataatgtattacatctttttctacttta gaatggttaaaaatatttctccggtagccatatgattattattcatccattagataatatagtcaaatgggccatgttat ttactgttcatagaagaggggctttttgcaacttgggctacaaaggagatatgtaaggaatttaaggaatggttacatgg aactagatttaattgaatctagtggtttaattgattcactaggatatatgctactgaaaggggaatctgcttaaagtgct aaaaggatttttggcatgtctcattaaaaaaaagaaatactagatatcttcagtgaagttacaaatcgaatacacattggc tctgaaattctgattgatactgggtcataaaaagttttcccaaatcagacttggaaagtgatcactctttgttactctt ttttccttgtcatgggtgatagccatttgtgttttattggaagattggtgaattttaaggaacataggcccaaatttgagg aagggccatggtttttgatccctccattctgaccggatctctgcattgtgtctactagGGGAGAATCGCTTTGTGTCACC ATTATCTTGGGACTTGGTGGGACGAAACCTCTTCGCCATGGCCGTGGAAGGGGTGGTGTTCTTCCTCATTACTGTTCTGA TCCAGTACAGATTCTTCATCAGGCCCAGGTSagctttttcttagaacccgtggagcacctggttgagggtcacagasgas gcgcacagggaaacactcaccaatgggggttgcattgaactgaactcaaaatatgtgataaaactgattttcctgatgtg ggcatcoogcagccoccttoctgcccatcotggagastgtggcaagtaggtttataatactacgttagagactgaatct tigtcctgaaaaatagtttgaaaggttcatttttcttgttttttcccccaagACCTGTAAATGCAAAGCTATCTCCTCTG AATGATGAAGATGAAGATGTGAGGCGGGAAAGACAGAGAATTCTTGATGGTGGAGGCCAGAATGACATCTTAGAAATCAA GGAGTTGACGAAGgtgagagagtacaggttacaatagctcatcttcagttttttcagctttatgtgctgtaacctagca gitigotgacttgottaataaaagggcatgigttoccaaaaigtacatotataccaaggttotgtcaattttatiitaaa aacaccatggagacttottaaagaattottactgagaattottttgtgatatgaattoccattotogaatactttggttt tatatgettacatttatgtettagttattasaacataetastattgtatatetagteaaaetgagtagagagataatggt catt

Fig. 12 Page 26 of 30

3EQ ID .1U: 48

Genemic contig containing exons 42 through 45:

ttttaaaatacctgcaatacatatatatgttgaatagatgaaaaattatgtagatgataatgatacggttctaaaa agacaggttaaaaagtaagttcacttttattttgagcttcagaatcattcagaagccagtcgccacaaacgcagaccaag gctcttggcacatcaaatatgcctatggcttagggttattgacaagtcttatgttgcagtgtatgtggtttatagtcctg GGAAGCGGAAGCCTGCTGTTGACAGGATTTGCGTGGGCATTCCTCCTGGTGAGGtaaagacactttgtctatattgcgtt tgtccctattagttcagactatctctacccaatcaagcaacgatgctcgttaagaggtaaaagtggattttaaaggcttc tgtatttatgccagcatggagcaattagtcatcgacaagagagggaccctctatgtcaagagaatgatttcagagaatcc aatacaatttaagaaaaagcatggggctggggcgcagtgattcactcctgtaatcccagcactttggggaggccgaggtggg cggactcacgaggtcaggagattgagaccatcctggccaacatggtgaaaccccatctctactataaatacaaaaattag ctgggcatagtagtgcattcctgtagtcccagctactcgggaggctgaggcaggagaattgcttgaacctaggaggggga ggttgcccagattgcgctgctgcactccagcctggtgacagagtgagactcatgtcaacaacaaaaaacagaaaaagcacg cacatctaaaacatgcttttgtgatccatttgggatggtgatgacattcaaatagttttttaaaaaatagattttctcctt tctggtttccgtttgtgttcttttatgcccttttgccagagtaggtggtgcaatttggctagctggctttcattactgtt tttcacacattaactttggcctcaacttgacaactcaaataatatttataaatacagccacacttaaaatggtcccatta tgaaatacatatttaaatatotatacgatgtgttaaaaccaacaaaatatttgattottototgatatttaagaattgaa ggtttgaggtagttacgtgttaggggcatttatattcatgtttttagagtttgcttatacaacttaatctttccttttca GTGCTTTGGGCTCCTGGGAGTTAATGGGGCTGGAAAATCATCAACTTTCAAGATGTTAACAGGAGATACCACTGTTACCA GAGGAGATGCTTTCCTTAACAAAAATAGgtgagaaaagaagtggcttgtattttgctgcaaagactttgttttaattta tttaaagaaataggttgttatttttgattacagtggtatttttagagttsataaaaatgttgaaatatagtaaagggtaa agaagcacataaaatcatccatgatttcaatatctagacataatcacaatttacatttcctttcagtctcattcttct tttaacagctttattcaggtataatttacatacaatataatttgcttgtttttaagagtataatttagtgatttttggt aaattgagagttttgcaaccatcaccacaatccagttttagaacttttccatcaccccacatctgtcttatatacacata tttcccagtgggttacatttcctaagatgtggaattttacattgctacataaaatccccctatgtacatgtacctataat ttatttaataaattccttataaatgttggacacattagtttccatttttcactatgtaaatatgtccctgtatacatctt ttattatttcctcaggaacaattcctacaaagtaaattgccctctctaaagagcatacaaattgactgagccaccgttag gccattttctgagactgcacaggtcacaaagcaatctgatctttgggaatacagctacattttataggcttcttagataa ggctggagagcaatggcgcgaccttggctcactgcaacctccgcctcccaggttcaagcgattctcctgcctcagcctcc tgagtagetgagattacaggtgeeegeeacaztgeetgeetaattttttttgtattttcagtagagatggggttteaceat gttggccagactggtctcgagctcctgacctcagctgatccacctgcctcagcctcccaaagttctgggattacaggcat gagccactgcgcccggcttctctggacttattatgtggagagatagtacaaggcagtggctttcagagttttttgaccat gaccgttgtgggaaatacattttatatctcaacctagtatgtacacacagacatgtagacacatgtataacctaaagttt cataaagcagtacctactgttactaattgtactgcactctcctatttcttattctaccttatactgcgtcattaaaaaag tgctggtcatgacccactaaatttatttcccaaaccactaatgaacaatgactcacaatttgaacacactggacaggggg aatgtaaaggaateetaagagaacagacattetgggaatagcaggeetagegetgeacaaetgettteetaggettgete ctagtaccaageteetgaegeatatageagtggcagtaataaccageecatagtaaggtttgtcacagggaetggttgta agaactgatttgrttggtatagctgtgagggcctggcacggtgtccacgtgtgcctcaatcctaattctgaaaaaggctg accorggoggtgctaattagatacacagagagggaatgaatgctgccagaaggccaagttcatggcaatgccgctgtggct Gaggtgcagtcatcagtctggaacgtgaacattgaacttcttcacatgtgattcttcacttgactggcttcatagaacc ccaaagccaccccaccacacataaattgtgtctttaggttctgtgttctcacactcaaaatttctgggccttctcatt tggtgcatgtgaatggtgcatatgagtgaagtctagcatcgggccttaccgttaaagccctggggtagtgtgactgagat tgttggtaaagaatgtgcagtggttggcatgaccicagaaattctgaaatgggactgcacctgcagactgaagtgttcag aaaggctgtgctttcaagtagcagcagatgtattggtatctttgtaatggagaagcatactttacaggaacattaggcca gattgtctaaccagagtatctctacctgcttaaaatctaagtagttttcttgtcctttgcagtATCTTATCAAACATCCA TGAAGTACATCAGAACATGGGCTACTGCCCTCAGTTTGATGCCATCACAGAGCTGTTGACTGGGAGAGAACACGTGGAGT TCTTTGCCCTTTTGAGAGGAGTCCCAGAGAAAGAAGTTGGCAAGgtactgtgggcacctgaaagccagcctgtctcctt ggcatcctgacaatatataccttatggcttttccacacgczttgacttcaggctgtttttcctcatgaatgcagcagcac gtgctgctcccaccacgagtcccttctccctgctttggctcctcaccagttgtcaggttatgattatagaatctagtc Chacteagtgaaagaactttcatacatgtatgtqtaggacagcatgataaaattcccaagccagaccaaagtcaaggtgc TITITATOROUGERAGATTOGTGAGTGAGTTTTGGAAACTTGGGCCTTGTGAAGTATGGAGAAAAATATGCTGGTÄÄCTA TAGTGGAGGCAÁCAÁACGCAAGCTCTCTACAGCCATGGCTTTGATCGGCGGCCTTCTTGTTGGTGTTTTCTGgtgagtataa

Fig. 12 Page 27 of 30

> Fig. 12 Page 28 of 30

SEQ ID NO: 29

Genomic contig containing ABC1 excns 46 to 49:

ngccnngttnaaaangaaaatttnnnnnaaattnaannttannggngnnntttccccagaaaaaacnaaaangatttccn cccnggggggncccccnantcnaaaaggccccncttntttgnggngagggaaagntttttttggaatttttaatttttgg tececcaaaacetattattgagaatttaattacataaaaaagtactcagaatatttgagtttecetgcatcaataagacat ttataataatgaccttgtttacaaatgaatttgaaagttactctaattctttgattcatcaagaaataactagaatggca agttaaaatttaagetgtttcaaagatgettetgeatttaaaaacaaatttatetttgatttttttteeccccagcaaat aagacttattttattctaattacagGATGAACCCACCACAGGCATGGATCCCAAAGCCCGGCGGTTCTTGTGGAÄTTGTG CCCTAAGTGTTGTCAAGGAGGGGAGATCAGTAGTGCTTACATCTCATAGGtccgtagtaaagtcttgggttcctcactgt gggatgttttaactttccaagtagaatatgccatcatttgtaaaaattagaaaatacagaaaagcaaagagtaaaacaa ttattacctçaaattatatatgcatattcttacaaaaatgcaagcccagtataaatactgctctttttcacttaatatat tgtaaacattattccaagtcagtgcatttaggtgtcatttcttatagctggatagtattccattaggatatactcttatt taactattcccccttttgtagacatttggattatttccaacttgttcacaattgtaaacaccactacactgaacagcatc atccctatatccacatgtacttgtaacagaatacaattccctaggaagctggaatgctggaagtcatggtgatgttctca tggttacagagaatctctctaaaactaaaacctcttctgttttaccgcacTATGGAAGAATGTGAAGCTCTTTGCACTA GGATGGCAATCATGGTCAATGGAAGGTTCAGGTGCCTTGGCAGTGTCCAGCATCTAAAAAATAGgtaataaagataattt ctttgggatagtgcctagtgagaaggcttgatatttattcttttgtgagtatataaatggtgcctctaaaataaagggaa ataaaactgagcaaaacagtatagtggaaagaatgagggctttgaagtccgaactgcattcaaattctgtctttaccatt tgctatagatgaaatgaaaaaatttacatgtgccagtactggtgagagcgcaagctttggagtcaaacacaaatgggtt tgcatcctogccctaccaattatgagctctgagccatgggcaactgactaactccctggccctcagtttctctgtaacat ctgtcagacttcatgggtccaggtgaggattaaaggagatcatgtatttacagcacatggcatggtgcttcacataaaat aagtatttagtaaatgataactggttccttcttcagaaacttatttctgggcctgccaggggccgccctttttcatggc acaagttgggttcccagggttcagtattcttttaaatagttttctggagatcctccatttgggtaftttttcctgcttc ACTTGCATTTCCTGGAAGTGTTCYAAAAGAGAAACACCGGAACATGCTACAATACCAGCTTCCATCTTCATTATCTTCTC TGGCCAGGATATTCAGCATCCTCTCCCAGAGCAAAAAGCGACTCCACATAGAAGACTACTCTGTTTCTCAGACAACACTT GACCAAgtaagetttgagtgtcaaaacagatttaetteteagggtgtgggatteetgeeeegaeaeteeegeeeataggte caagagcagtttgtatcttgaattggtgcttgaattcctgatctactattcctagctatgctttttactaaacctctctg aacctgaaaagggagatgatgcctatgtactctataggattattgtgagaatttactgtaataataaccataaaaactac catttagtgagcacctaccatgggccaggcatttacttggtgcctaatcctatttaaattagataaaaaagtaccaaat aggtcctgacacttaagaagtactcagtaaatattttcttccctcttccctttaatcaagaccgtatgtgccaaagtaaa tggatgactgagcagttggtgatgtaggggtgggcgatatagaaagtcagtttttggccgggcgtggtggctcatgc ctgtaatcccagcactttgggaggctgaggagcaggatcatgaggtcaggagatccagataatcctggccaacaggg tgaaaccccgtctctactaaaaatacaaaaattagctgggcatggtggtgcgcacttgtagtcccagctacttgcgaggc tgaççcaggagaattgctcqaacccaggaççtggaggttacaçtgagccaaggtctcgccactgcactccagcctgggga cagagcaagaccccatttcaaggggggaaaaaagtctattttaagttgttattgcttttttaagtattcttccctcc ttcacacacagttttctagttaatccatttatgtaattctgtatgctcctacttgacctaatttcaacatctggaaaaat agaactagaataaagaatoagcaagttgagtggtatttataaaggtccatcttaatcttttaacagGTATTTGTGAACTT TGCCAAGGACCAAAGTGATGATGACCACTTAÁAAGACCTCTCATTACACAAAAACCAGACAGTAGTGGACGTTGCAGTTC AGAGGAACTAGACTTTCCTTTGCACCATGTGAAGTGTTGTGGAGAAAAGAGCCAGAAGTTGATGTGGGAAGAAGTAAACT GGATACTGTACTGATACTATTCAATGCAATGCAATTCAATGcaatgaaaacaaaattccattacaggggcagtgcctttg tagcctatgtcttgtatggctctcaagtgaaagacttgaatttagttttttacctatacctatgtgaaactctattatgg taattcatcaagtaatcatggccagcgattattgatcaaaattaaaaggtaatgcacatcctcattcactaagccatgcc atçcccaggagactggtttcccggtgacacatccattgctggcaatgagtgtgccagagttattagtgccaagtttttca gttgacagaatggtgccatgcgtggctaasstcctgctttgattccctctgataagctgttctggtggcagtaacatgca acaaaaatgtgggtgtctccaggcacgggaaacttggttcsattgttatattgtcctatgcttcgagccatgggtstaca gggtcatccttatgagactcttaaatatasstagatcctggtaagaggcaaagaatcaacagccaaactgctggggetgc aactgctgaagccagggcatgggattaaagagattgtgcgttcaaacctagggaagcctgtgcccatttgtcctgactgt ctgctaacatggtacactgcatctcaagatgtttatctgacacaagtgtattatttctggctttttgaattaatctagaa aatgaaaagatggagttgtattttgacaaaaatgttigtactttttaatgttatttggaattttaagttctatcagtgac ttotgaatcottagaatggcototttgtagaaccotgtggtatagaggagtatggccactgcccactatttttatttot tatgtaagtttgcatatcagtcatgactagtgcctagaaagcaatgtgatggtcaggatctcatgacattatatttgagt ttctttcagatcatttaggatactcttaatstcacttcattaatcaaatattttttgagtgtatgctgtagctgaaagag

Fig. 12 Page 29 of 30

> Fig. 12 Page 30 of 30

Fig. 13

. Historia

Fig. 15

No.	Name	Location in SEQ ID No. 14	Secuence	Sequence Strand
				Length
1	PPRE	58-69	AGGTAAAAGTCA	12 Complement
	PPRE	1997-2009	AGAGTAGAGGGCA	13 Lead
	PPRE	2150-2161	ATGTCAAGTTCA	12 Lead
	PPRE	2156-2169	AGTTCAAAAGGGCA	14 Lead
	PPRE	4126-4139	AGGCCAGCAGGGCC	14 Complement
	PPRE	5075-5087	AGGGCAGAAGTGA	13 Lead
	PPRE	6604-6615	ATGCCAAGGTCA	12 Complement
	PPRE	673:-6743	GGGGCAAGGGTA	
	PPRE	7220-7233	AGGTAATGAGGACA	
		7554.7568	GGATCACGAGGTCA	15 Complement
10	PPRE	75247500	00	
	SRE	159-166	CAGCCCAT	8 Lead
		1133-1140		
	SRE	1145-1152		
	SRE	1809-:816		
	SRE	1894-1901		
	5 SRE	2563-2570		
	5 SRE	3303-3310		
	7 SRE	3470-3477		
	8 SRE	4794-479		
	9 SRE	4802-4809		
	o SRE	4973-497		
	1 SRE	6487-649		
	2 SRE	6555-657		
	3 SRE	6727-673		
	4 SRE	704:-704		
	S SRE	8059-806		
1	6 SRE	0023-000		
	4 800/	n :56-17	AGGGTC	A 7 Complement
	1 ROR(retinoic and receptor related			
	2 ROR(retinoic and receptor related 3 ROR(retinoic and receptor related			
	4 ROR(retinoic acid receptor retated			
	5 ROR(retinoic acid receptor relater			
	6 ROR(retinous and receptor related			
	7 ROR(retinoic and receptor relate			
	8 ROR(retinoic acid receptor relate	u, 000=100		
	1 SREBP-1 or "E box"	±73 - 41	rg ±CACCT	rG 7 Complement
	2 SREBP-1 or "E DOX"	£26-5-	ACACAT	rG 7 Lead
	3 SREBP-1 or "E box"	527-5		TG 7 Complement
	4 SREBP-1 or "E box"	555-6		TG 7 Complement
	5 SREBP-1 or "E box"	₽25-9	31 ACACT	TG 7 Lead
	6 SREBP-1 or "E box"	~ 957-9	73 TCACT	
	7 SREBP-1 or "E box"	968-9	74 TCAAG	
	6 SREBP-1 or "E box"	1053-10	69 ACAGG	
	9 SREBP-1 or "E box"	1104-11	10 TCACT	
	10 SREBP-1 or "E box"	1-35-11	11 TCAAG	
	11 SREBP-1 or "E box"	1551-15	67 TCACT	
	12 SREBP-1 or "E box"	1570-16	TCAAA	
	13 SREBP-1 or "E box"	1748-17	54 ACACT	
	14 SREBP-1 or "E box"	;*49-1		·· ·
	15 SREBP-1 or "E box"	* \$52-11	155 TCATG	
	16 SREBP-1 or "E box"	* 853-11		
	17 SREBP-1 or "E bes"	* 559-1		
	18 SREBP-1 or "E box"	2*99-2		
	19 SREBP-1 or "E box"	2293-2		
	20 SREBP-1 or "E box"	2559-27		
	21 SREBP-1 or "E box"	2577-2		
	22 SREBP-1 or "E box"	2740-2		
	23 SREBP+1 or "E box"	1959-2		
	24 SREBP-1 or "E box"	2979-2		
	25 SREBP-1 or "E box"	2951-2		
	26 SREBP-1 or "E box"	2980-2		
	27 SREBP-1 or "E box"	2982-2		
	28 SREBP-1 or "E box"	2-51-		
	29 SREBP-1 or "E box"	3462-		
	30 SREBP-1 or "E box"	2547-		
	31 SREBP-1 of "E DC"	1782-		
	32 SREBP-1 or "E box"	4226- 4582-		GTG 7 Complement
	33 SREBP-1 or "E box"			
	34 SREBP-1 or "E box"	±588-		GTG 7 Lead
	35 SREBP-1 or "E box"			ATG 7 Lead
	35 SREBP-1 or "E box"			ATG 7 Complement
	37 SREBP-1 or "E box"			STIG 7 Lead
	38 SREBP-1 or "E box"			ACTG 7 Complement
	39 SREBP-1 or "E box"			CATG 7 Complement
	40 SREBP-1 or "E box"			ACTG 7 Complement
	41 SREBP-1 or "E box"			TTTG 7 Lead
	42 SREBP-1 or "E box"			CCTG 7 Lead
	43 SREBP-1 or "E box"			GGTG 7 Complement
	44 SREBP-1 or "E box" 45 SREBP-1 or "E box"			GGTG 7 Complement
	-3 SKEDF-1 07 E 001			

Fig. 16

Page 1 of 2

7069-7075	TCAGGTG	- ead
7101-7107	ACATATG	- Complement
7139-7144	ACAGTTG	: Lead
7139-7145		7 Complement
7240-7245	ACACCTG	7 Complement
7467-7473	ACAGGTG	? Lead
	TCATTTG	7 Lead
7641-7647	TCAAATG	* Complement
7653-7659	TCAGTTG	: Lead
7654-7660	ACAACTG	7 Complement
		7 Lead
		7 Complement
		7 Camplement
		: Lead
8052-8058	TCAGCTG	7 Complement
	7101-7107 7139-7144 7139-7145 7240-7245 7467-7473 7640-7646 7641-7647 7653-7859 7654-7660 7735-7741 7838-7844 7880-7886	7101-7107 ACATATG 7138-7144 ACAGTTG 7139-7145 TCAACTG 7240-7246 ACACCTG 7467-7473 ACAGGTG 7640-7646 TCATTTG 7641-7647 TCAAATG 7653-7659 TCAGTTG 7654-7660 ACAACTG 7735-7741 ACAAATG 7838-7844 TCAGGTG 7838-7846 TCATCTG 8051-8057 TCAGCTG

Fig. 16 Page 2 of 2 WO 00/55318 PCT/IB00/00532

1

SEQUENCE LISTING

<110> University of British Columbia Xenon Bioresearch, Inc.

<120> METHODS AND REAGENTS FOR MODULATING CHOLESTEROL LEVELS

<130> 50110/002WO5

<150> 60/124,702

<151> 1999-03-15

<150> 60/138,048

<151> 1999-06-08

<150> 60/139,600

<151> 1999-06-17

<150> 60/151,977

<151> 1999-09-01

<160> 287

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 2261

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Cys Trp Pro Gln Leu Arg Leu Leu Trp Lys Asn Leu Thr

1 10 15

Phe Arg Arg Gln Thr Cys Gln Leu Leu Leu Glu Val Ala Trp Pro 20 25 30

Leu Phe Ile Phe Leu Ile Leu Ile Ser Val Arg Leu Ser Tyr Pro Pro 35 40 45

Tyr Glu Gln His Glu Cys His Phe Pro Asn Lys Ala Met Pro Ser Ala 50 55 60 .

Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn Ala Asn Asn Pro 65 70 75 80

Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly Val Val Gly Asn 85 90 95

Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp Ala Arg Arg Leu
100 105 110

Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp Met Arg Lys Val

Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Ser Asn Leu Lys Leu 130 135 140

Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly Phe Leu Tyr His 145 150 155 160

Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met Leu Arg Ala Asp 165 170 175

Val	Ile	Leu	His 180	Lys	Val	Phe	Leu	Gln 185	Gly	Tyr	Gln	Leu	His 190	Leu	Thr
Ser	Leu	Cys 195	Asn	Gly	Ser	Lys.	Ser 200	Glu	Glu	Met	Ile	Gln 205	Leu	Gly	Asp
Gln	Glu 210	Val	Ser	Glu	Leu	Cys 215	Gly	Leu	Pro	Arg	Glu 220	Lys	Leu	Ala	Ala
Ala 225	Glu	Arg	Val	Leu	Arg 230	Ser	Asn	Met	Asp	Ile 235	Leu	Lys	Pro	Ile	Leu 240
Arg	Thr	Leu	Asn	Ser 245		Ser	Pro	Phe	Pro 250	Ser	Lys	Glu	Leu	Ala 255	Glu
Ala	Thr	Lys	Thr 260	Leu	Leu	His	Ser	Leu 265	Gly	Thr	Leu	Ala	Gln 270	Glu	Leu
Phe	Ser	Met 275	Arg	Ser	Trp	Ser	Asp 280	Met	Arg	Gln	Glu	Val 285		Phe	Leu
	290		•			295					300	_		Ala	
305			•	•	310					315				Ile	320
				325					330	_				Gly 335	_
			340					345					350	Thr	
		355					360		٠.	٠.	. '.	365		Leu	
	370					375					380			Ile	
385			_		390					395				Val	400
_				405					410	_			_	Met 415	_
			420					425					430	Gln	
		435					440				_	445		His	
_	450					455			_		460	•	_	Ile	
465					470					475				Gly	480
				485					490	•				Ile 495	
	•		500					505					510	Glu	
		515					520					525		Leu	
	530					535					540			Pro	
545					550					555				Asp	560
				565					570					Asp 575	
			580					585					590	Gly	
		595					600					605	_	Val	
Thr	GTA	Thr	Glu	Lys	гàг	Thr	GТА	Val	Tyr	Met	Gln	Gln	Met	.Pro	Tyr

WO 00/55318 PCT/IB00/00532

3

615 Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met Ser Arg Ser Met 630 635 Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val Ala Val Ile Ile 650 Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys Glu Thr Met Arg 660 665 Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser Trp Phe Ile Ser 680 Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu Val Val Ile Leu 695 700 Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser Val Val Phe Val 710 715 Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln Cys Phe Leu Ile 730 Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala Cys Gly Gly Ilė 745 750 Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys Val Ala p Gln 760 765 Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser Leu Leu Ser Pro 775 780-Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu. Phe Glu Ofe Gln 790 795 . ` Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser Pro Val Glu Glu 805 810 . 815 Asp Gly Phe Asn Leu Thr Thr Ser Val Ser Met Met Leu Phe Asp Thr 825 Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala Val Phe Pro Gly 840 Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys Thr Lys Ser Tyr 855 860 Trp Phe Gly Glu Glu Ser Asp Glu Lys Ser His Pro Gly Ser Asn Gln 870 875 Lys Arg Ile Ser Glu Ile Cys Met Glu Glu Glu Pro Thr His Leu Lys 885 890 Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr Arg Asp Gly Met 905 910 Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr Glu Gly Gln Ile 920 Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr Thr Thr Met Ser 935 Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr Ala Tyrzile Leu 950 955 Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg Gln Asn Leu Gly 970 Val Cys Pro Gln His Asn Va Leu Phe Asp Met Leu Thr Val Glu Glu 980 985 His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser Glu Lys His Val 1000 Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly Leu Pro Ser Ser 1015 1020 Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly Met Gln Arg Lys 1030 1035 Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys Val Val Ile Leu 1045 1050

WO 00/55318

Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg Arg Gly Ile Trp 1060 1065 107Ŏ Glu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile Ile Leu Ser Thr 1075 1080 1085 His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg Ile Ala Ile Ile 1095 1100 Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu Phe Leu Lys Asn _. 1110 1115 Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys Lys Asp Val Glu 1125 1130 . 1135 Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr Val Ser Tyr Leu 1140 1145 1150 Lys Lys Glu Asp Ser Val Ser Gln Ser Ser Asp Ala Gly Leu Gly 1160 1165 Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val Ser Ala Ile Ser 1175 . 1180 Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu Val Glu Asp Ile 1190 1195 Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala Ala Lys Glu Gly 1205 1210 Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg Leu Ser Asp Leu 1220 1225 1230 Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu Glu Glu Ile Phe 1240 1245 1235 Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu Thr Ser Asp Gly 1255 1260 Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly Asp Lys Gln Ser 1265 1270 1275 Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp Pro Asn Asp Ser 1285 1290 Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu Ser Gly Met Asp 1305 Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu Thr Gln Gln Gln 1320 1315 1325 Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala Arg Arg Ser Arg 1335 1340 Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val Phe Val Cys Ile 1350 1355 Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly Lys Tyr Pro Ser 1365 1370 Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr Thr Phe Val Ser 1385 1390 Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu Leu Asn Ala Leu 1395 1400 Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu Gly Asn Pro Ile 1415 1420 Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Trp Thr Thr Ala Pro 1430 1435 Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly Asn Trp Thr Met 1445 1450 Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp Lys Ile Lys Lys 1460 1465 1470 Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu Pro Pro Pro Gln 1480 Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu Thr Gly Arg Asn

The Ser Asp Tyr Leu Val Lys Thr Tyr Val Gin Ile Ile Ala Lys Ser 1505	1490	1495	3	1500	
Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr Gly Gly Phe Ser 1525 Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser Gln Glu Val Asn 1545 Asp Ala Ile Lys Gln Met Lys Lys His Leu Lys Leu Ala Lys Asp Ser 1550 Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe Met Thr Gly Leu 1570 Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His 1585 Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe Met Thr Gly Leu 1570 Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His 1585 Ser Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala Ile Leu Arg Ala 1600 Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala Ile Leu Arg Ala 1600 Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe 1620 Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1635 Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala 1650 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Agn 1665 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Agn 1665 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Agn 1665 Met Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 I660 Met Ser Ser The Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1685 I1670 Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu 1705 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu 1735 Tyr Cly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe Leu Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1785 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1820 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1820 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1820 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1825 1830 1865 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 Asp Asp Asp Lys Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met 1845 1850 1855 Asp Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Sin Leu Phe Ala Met 1845 1860 Asp Glu Gly Gly Gln Asn Asp Ile Leu Glu Ile L		Leu Val Lys	Thr Tyr Val	Gln Ile Ile	Ala Lys Ser
Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser Gln Glu Val Asn 1540 Asp Ala 11e Lys Gln Met Lys Lys His Leu Lys Leu Ala Lys Asp Ser 1550 Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe Met Thr Gly Leu 1570 Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His 1580 Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His 1585 Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His 1585 Asn Leu Gln Lys Gly Glu Asn Pro Ser His Try Gly He Thr Ala Phe 1620 Asn Leu Gln Lys Gly Glu Asn Pro Ser His Try Gly He Thr Ala Phe 1635 Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1635 Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1650 Met Thr Thr Ser Val Asp Val Leu Val Ser He Cys Val Tle Phe Ala 1650 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu He Gln Glu Arg 1665 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu He Gln Glu Arg 1665 Te Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Try Val Val 1700 Pro Ala Thr Leu Val He He Pro Val Leu Ala Leu Leu Leu Leu 1730 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu 1730 Tyr Gly Trp Ser He Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu Leu 1745 Lys He Pro Ser Thr Ala Try Val Val Leu Thr Ser Val Asn Leu Phe 1755 1760 Asp Asn Lys Leu Asn Asn He Asn Asp Ala Cys Asn Try Sal Phe 1755 1870 Asp Asn Lys Leu Asn Asn He Asn Asp Ala Leu Glu Leu Phe Thr 1755 1880 Asp Asn Lys Leu Asn Asn He Asn Asp He Leu Gly Arg Gly Leu He Asp Ala Lys Phe 1825 1880 Ala He Pro Leu Ser Try Asp Leu Gly Arg Gly Leu He Asn Leu Phe 1855 Ala Val Glu Gly Val Val Phe Phe Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 Ala Val Glu Gly Val Val Phe Phe Leu He Leu Leu Leu Leu Leu 1855 Ala Val Glu Gly Val Val Phe Phe Leu He Glu Arg Phe Gly Glu Asn Arg Phe 1825 Ala Val Glu Gly Val Val Phe Phe Leu Glu Arg Asn Leu Phe Ala Ser Pro Leu 1865 Ala Val Glu Gly Val Val Phe Phe Leu Glu Arg Asn Leu Phe Ala Met 1865 Ala Val Glu Gly Val Val Phe Phe Leu Glu Arg Glu Arg Ine Leu Asp Asp 1860 Gly Gly Gly Gly Gln Asn Asp 11e Leu Glu 11e Lys Glu Leu T	1505	1510	_	1515	1520
Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser Gln Glu Val Asn 1540 1540 1550 1550 1550 1555 1560 1565 1565 1565 1565 1565 1565 1565 1565 1565 1565 1565 1565 1565 1565 1570 1577 1575 1580 1580 1580 1580 1580 1580 1580 1580 1580 1580 1580 1580 1580 1580 1580 1600	Leu Lys Asn Lys	Ile Trp Val	Asn Glu Phe	Arg Tyr Gly	Gly Phe Ser
Asp Ala Ile Lys Gin Met Lys Lys His Leu Lys Leu Ala Lys Asp Ser 1555		1525	153	0	1535
Asp Ala Ile Lys Gln Met Lys Lys His Leu Lys Leu Ala Lys Asp Ser 1555	Leu Gly Val Ser	Asn Thr Gln	Ala Leu Pro	Pro Ser Gln	Glu Val Asn
1555					
Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe Met Thr Gly Leu 1570	Asp Ala Ile Lys	Gln Met Lys	Lys His Leu	Lys Leu Ala	Lys Asp Ser
Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His 1585					
Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn Lys Gly Trp His 1585 1590 1590 1690 Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala Ile Leu Arg Ala 1605 1610 Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe 1620 1625 1630 Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1635 1640 1645 Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala 1650 1665 1660 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 1660 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 1660 Met Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 1690 1695 Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val Val 1685 1710 Pro Ala Thr Leu Val Ile Ile Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser 1715 1720 1725 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu 1730 1735 1740 Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745 Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 1765 Lys Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1795 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 1830 1835 1840 Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Ser Phe Leu 1845 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Glu Arg Ile Leu Asp Leu Phe 1855 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Glu Arg Ile Leu Asp 1890 Gly Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1990 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1990 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1990 Tyr Arg Arg Lys Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile	_			_	Thr Gly Leu
1595					-1 - w.
Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala Ile Leu Arg Ala 1605 Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe 1620 Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1635 1635 1640 Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala 1650 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1695 Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1705 Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1705 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Larg 1730 Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745 Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1745 Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1810 Ala Val Glu Gly Val Val Phe Leu Ile Glu Asn Arg Phe 1825 Ala Val Glu Gly Val Val Phe Leu Ile Thr Val Leu Ile Glu Asn Arg Phe 1825 Ala Val Glu Gly Val Val Phe Leu Ile Thr Val Leu Ile Glu Tyr 1840 Ala Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe 1845 Ala Val Glu Asp Glu Asp Val Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1845 Ala Val Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Ala Met 1850 Ala Val Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Leu Ser Pro Leu 1875 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 Glyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile	-	_	val Trp Phe	-	
Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe 1620 1625 1630 Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1635 1660 Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala 1650 16650 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 1660 Met Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 1690 1695 The Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1685 1690 1695 The Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1700 17700 17710 Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser 1715 1700 1735 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu Leu 1730 1735 1765 Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1765 1770 Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 1770 1770 1775 Tle Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1795 1800 Asn Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 1800 1805 Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 1830 1830 1835 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1865 Asn Asp Glu Asp Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1845 1850 1850 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Arg Phe 1867 1870 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Arg Phe 1867 1870 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Arg Phe 1867 1870 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Arg Phe 1867 1870 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Arg Phe 1860 1865 1870 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 Tyr Arg Arg Lys Arg Lys Pro Ala Val Ash Arg Arg Ile Cys Val Gly Ile			Wal Tla New		
Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly Ile Thr Ala Phe 1620 1625 Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1635 Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala 1650 1655 1660 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 1670 1685 Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 1690 1695 Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1700 1705 1770 Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser 1715 1720 1725 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu Leu 1730 1735 1740 Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745 1750 1755 1760 Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 1770 1775 Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1895 1800 1805 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 1800 1805 Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1810 1815 Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1865 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ser Pro Leu 1875 1860 1855 Ala Val Glu Asp Glu Asp Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 1860 1865 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Glu Leu Thr Lys Ile 1890 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile	Ala lie sei sei				
Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1635	Asn Leu Gla Lvs				
Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser Glu Val Ala Leu 1635	-	_		171 017 110	
Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys Val Ile Phe Ala 1650 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1705 Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1700 Pro Ala Thr Leu Val Ile Ile Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser 1715 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu Leu 1730 Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745 Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 Lys Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 Ala Nal Lys Leu Ser Trp Asp Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1810 Asn Gln Ala Met Ala Asp Ala Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1825 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 Arg Phe Phe Ile Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Cys Val Gly Ile Asn Asp Ile Leu Ser Pro Leu 1875 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1860 Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 Gly Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Arg Ile Leu Arg 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile				Leu Ser Glu	
1650 1655 1660 Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Gln Arg 1665 1670 1675 1680 1680 Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 1685 1690 1695 1695 1695 1695 1695 1695 1695 1695 1695 1695 1700 1700 1705 1710 1700 1705 1710 1705 1710 1705 1715 1720 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1726 1725 1725 1726 1726					
Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu Ile Gln Glu Arg 1665 1670 1675 1680 Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 1690 1695 Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1700 1705 1710 Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser 1715 1725 1725 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu Leu Leu 1730 1735 1740 Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745 1750 1775 1760 Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 1770 1775 Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1785 1790 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 1805 1805 Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1810 1815 1820 1835 1840 Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 1830 1855 1850 1855 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1865 1850 1855 Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 1860 1855 1850 1855 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 1895 1900 1900 1915 1920 Gly Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 1920	Met Thr Thr Ser	Val Asp Val	Leu Val Ser	Ile Cys Val	Ile Phe Ala
1665	1650	1655	5	1660	
Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly Val Lys Pro Val 1685 1690 1695 1695	Met Ser Phe Val	Pro Ala Ser	Phe Val Val	Phe Leu Ile	Gln Glu Arg
1685 1690 1695 1695 1697 1695 1697 1697 1797 Leu Ser Asn Phe Val Trp Asp Met Cys Asn Tyr Val Val 1700 1705 1710 1710 1710 1710 1710 1710 1710 1710 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1740 1730 1735 1740 1740 1740 1740 1740 1740 1740 1740 1740 1740 1740 1755 1760 1755 1760 1755 1760 1755 1760 1755 1760 1765 1760 1765 1770 1775 1760 1775 1760 1765 1770 1775 1760 1775 1770 1775 1770 1775 1770 1775 1770 1775 1790 1790 1780 1780 1785 1790 1805 1800 1805 1805 1805 1805 1805 1805 1810 1815 1820 1805 1820 1805 1815 1820 1835 1840 1835 1835 1840 1835 1830 1835 1840 1835 1835 1840 1835 1830 1835 1840 1835 1835 1840 1835 1830 1835 1840 1835 1840 1845 1850 1855 1850 1855 1840 1860 1865 1870	1665	1670		1675	1680
Try Try Leu Ser Asn Phe Val Try Asp Met Cys Asn Tyr Val Val 1700 1705 1710 1710 1710 1710 1710 1710 1710 1710 1710 1710 1715 1720 1725 1725 1720 1725 1725 1720 1725 1720 1725 1725 1740 1730 1735 1740 1735 1740 1730 1735 1740 1740 1740 1750 1755 1760 1755 1760 1755 1760 1765 1765 1760 1765 1765 1775 1760 1765 1775 1760 1765 1775 1760 1775 1760 1775 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1770 1775 1800 1805 1800 1805 1	Val Ser Lys Ala	Lys His Leu	Gln Phe Ile	Ser Gly Val	Lys Pro Val
1700				•	
Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe Gln Gln Lys Ser 1715 1720 1725 Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu Leu Leu 1730 1735 1740 Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745 1750 1755 1760 Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 1770 1775 Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1785 1795 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 1800 1805 Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1810 1815 1820 Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 1830 1835 1840 Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met 1845 1850 1855 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1865 1870 Asp Asp Asp Glu Asp Glu Asp Gla Arg Gla Arg Gla Arg Ile Leu Ser Pro Leu 1875 1880 Asp Asp Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gla Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile				Met Cys Asn	
Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu Leu Leu 1730				a 5) 63	
Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu Leu Leu Leu Leu Leu 1730 1735 1740 Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745 1750 1755 1760 Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 1770 1775 Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1785 1790 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 1800 1805 Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1810 1815 1820 Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 1830 1835 1835 1840 Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met 1845 1850 1855 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1865 1865 Asn Asp Glu Asp Glu Asp Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 1880 1885 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 1895 1895 1990 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile		Val lie lie		-	
Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745		The New You		_	
Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala Ser Phe Val Phe 1745	-				neu neu neu
1745 1750 1750 1755 1760 1770 1775 11e Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe 1765 1770 1775 11e Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1785 1780 1785 1890 1800 1805 1810 1815 1820 Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 1830 1845 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Phe Ala Met 1845 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1875 Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile					Phe Val Phe
Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser Val Asn Leu Phe 1765 1770 1775 Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu Glu Leu Phe Thr 1780 1785 1790 Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795 1800 1805 Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1810 1815 1820 Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825 1830 1835 1840 Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met 1845 1850 1855 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1865 1865 Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 1880 1895 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 1895 1990 Gly Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile			204 172		
1765			Val Val Leu		
Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795	•	-			
Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys Ser Val Phe Leu 1795	Ile Gly Ile Asn	Gly Ser Val	Ala Thr Phe	Val Leu Glu	Leu Phe Thr
1795	1780)	1785		1790
The Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Lys 1810	Asp Asn Lys Leu	Asn Asn Ile	Asn Asp Ile	Leu Lys Ser	Val Phe Leu
1810					
Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly Glu Asn Arg Phe 1825				_	Met Val Lys
1825					_
Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn Leu Phe Ala Met 1845 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 Tyr Arg Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile	•	_	Leu Glu Arg	-	-
1845 1850 1855 Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1865 1870 Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 1880 1885 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 1895 1900 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile			T TT-1		
Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val Leu Ile Gln Tyr 1860 1865 1870 Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 1880 1885 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 1895 1900 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile	val Ser Pro Leu		-	_	
Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 1880 1885 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 1895 1900 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile 1920 1920	Nla Val Clu Clu				
Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys Leu Ser Pro Leu 1875 1880 1885 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 1895 1900 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile				Ini vai beu	
1875 Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile				Ala Lvs Len	
Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln Arg Ile Leu Asp 1890 1895 1900 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile		go arg			
1890 1895 1900 Gly Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile		Glu Asp Val			
Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu Leu Thr Lys Ile 1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile					
1905 1910 1915 1920 Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile Cys Val Gly Ile					Thr Lys Ile
1925 1930 1935	Tyr Arg Arg Lys	Arg Lys Pro	Ala Val Asp	Arg Ile Cys	Val Gly Ile
		1925	193	0	1935

Pro	Pro	Gly	Glu 1940	_	Phe	Gly	Leu	Leu 1945		Val	Asn	Gly	Ala 195		Lys	
Ser	Ser	Thr 1955		Lys	Met	Leu	Thr 1960	_	Asp	Thr	Thr	Val 1965		Arg	Gly	
Asp	Ala 1970	Phe		Asn	Lys	Asn 1975	Ser		Leu	Ser	Asn 1980	Ile		Glu	Val '	
1114.0			Mot	C1	T1 ***			C1 n	Dho	7 ~~			ጥኮ~	C1.,	T 011	
	Gln	ASI	Mer	GTÅ	_	_	PIO	GIII	Phe	_		TIE	Int	GIU		
1985			_		1990			_, `	_,	199		_	_		2000	
Leu	Thr	GIA	Arg			Val	GIU	Phe			Leu	Leu	Arg	-		
				2005					2010					2015		
Pro	Glu	Lys	Glu	Val	Gly	Lys	Val	Gly	Glu	Trp	Ala	Ile	Arg	Lys	Leu	
	•		2020)			•	2025	5				2030	ο,		
Glv	Leu	Val	Lys	Tyr	Gly	Glu	Lys	Tyr	Ala	Gly	Asn	Tyr	Ser	Gly	Gly	
		2035		-	_		2040			-		2045		2	2	
) cn	Lys			Len	502	Thr			λ1 =	T.OU	Tla			Bro	Pro	
	_	_	Lys	пец	261			Mec		пец		_	GIY	PIO	PIO	
٠.					_	2055					2060					
Val,	Val	Phe	Leu	Asp	Glu	Pro	Thr	Thr	Gly	Met	Asp	Pro	Lys	Ala	Arg	
20,65	5				2070)				2075	5.				2080	
Arg	Phe	Leu	Trp	Asn	Cys	Ala	Lèu	Ser	Val	Val	Lys	Glu	Gly	Arg	Ser ·	
_			-	2085	5				2090)	- ;		_	2095	5	•
Val	Val.	Leu	Thr			Ser	Met	Glu			Glu	Δla	Leu			
			2100					2105					2110	_		
3	N/ 4-	n 3'-			37- 7	3				7	C 1	· •			17-7	
Arg	Met			Met	vai	Asn	-				_		_	ser	vai.	
		2119					2120				. 4	2125				
Gln	His	Leu	Lys	Asn	Arg	Phe	Gly	Asp	Gly	Tyr			Val	Val	Arg	
	2130)				2135	5				2140)				
Ile	Ala	Gly	Ser	Asn	Pro	Asp	Leu	Lys	Pro	Val	Gln	Asp	Phe	Phe	Gly	
2145		_			2150	_				2155		_			2160	
	Ala	Phe	Pro	Glv					Glu			Ara	Asn	Met		
LLC U	ALU	F 11C		216		vai	LCu	шуз	2170	_	1123	AL 9		2175		
01 -	m	G3				0	T	0			n 7 -	3	•			
GIN	Tyr	GIH			ser	ser				Leu	Ala	Arg			Ser	
			2180					2185				•	2190			
Ile	Leu	Ser	Gln	Ser	Lys	Lys	Arg	Leu	His	Ile	Glu	Asp	Tyr	Ser	Val	
		219	5		:		2200)				2205	5			
Ser	Gln	Thr	Thr	Leu	Asp	Gln	Val	Phe	Val	Asn	Phe	Ala	Lys	Asp	Gln	
	2210)			•	2215	5				2220)				
Ser	Asp	Asp	Asp	His	Leu	Lvs	Asp	Leu	Ser	Leu	His	Lvs	Asn	Gln	Thr	
222	-		1		2230	-				2235					2240	
	Val	700	17-1				ጥኮ~	602	Dho			7.55	Glas	Lvc		-
Vai	val.	ASP	.vai	224		Deu	1111	361			GIII	лэр	GIU	2255		
~	~·`	_	_				-		2250	,				2255	•	
ьуs	Glu	Ser	-													
			2260)												
<210	0 > 2				•											
<21	1> 78	364														
	2 > DI															
	3 > Ho		zania	en c												
	110		- up 1 t													
-40	0 - 0														-	
	0 > 2															
															ggggtg	60
															acctca	120
ctti	tcaga	aag a	aaga	caaa	ca to	gtcag	gctgi	t tac	ctgga	agt	ggcd	tgg	cct o	ctatt	tatct	180
															gccatt	240
															ctgta	300
															tggaa	360
	~	'		'	:	,	3			フララム	220		י דכי	22	3300	200

actttaacaa	atccattgtg	gctcgcctgt	tctcagatgc	tcggaggctt	cttttataca	420
			gcaaagttct			480
			atttcctggt			540
ggttcctgta	tcacaacctc	tctctcccaa	agtctactgt	ggacaagatg	ctgagggctg	600
			gctaccagtt			660
			ttggtgacca			720
			agcgagtact			780
tgaagccaat	cctgagaaca	ctaaactcta	cątctccctt	cccgagcaag	gagctggctg	840
aagccacaaa	aacattgctg	catagtcttg	ggactctggc	ccaggagctg	ttcagcatga	900
			tgtttctgac			960
cctccaccca	aatctaccag	gctgtgtctc	gtattgtctg	cgggcatccc	gagggagggg	1020
			aggacaacaa			1080
gcaatggcac	tgaggaagat	gctgaaacct	tctatgacaa	ctctacaact	ccttactgca	1140
			ctctttcccg			1200
agccgctgct	cgttgggaag	atcctgtata	cacctgacac	tccagccaca	aggcaggtca	1260
			tggctgtgtt			1320
gggaggaact	cagccccaag	atctggacct	tcatggagaa	cagccaagaa	atggaccttg	1380
			accacttttg.			1440
tagattggac	agcccaagac	atcgtggcgt	ttttggccaa	gcacccagag	gatgtccagt	1500
			aagctttcaa			1560
ggaccatatc	tcgcttcatg	gagtgtgtca	acctgaacaa	gctagaaccc	atagcaacag	1620
			tgctggatga			1680
			ttgagctgcc			1740
			caaataaaat			1800
ctggtcctcg	agctgacccc	tttgaggaca	tgcggtacgt	ctgggggggc	ttcgcctact	1860
tgcaggatgt	ggtggagcag	gcaatcatca	gggtgctgac	gggcaccgag	aagaaaactg	1920
			ctgttacgtt			1980
gatgagccgg	tcaatgcccc	tcttcatgac	gctggcctgg	atttactcag	tggctgtgat	2040
			acggctgaaa			2100
cctggacaac	agcatcctct	ggtttagctg	gttcattagt	agcctcattc	ctcttcttgt	2160
gagcgctggc	ctgctagtgg	tcatcctgaa	gttaggaaac	ctgctgccct	acagtgatcc	2220
cagcgtggtg	tttgtcttcc	tgtccgtgtt	tgctgtggtg	acaatcctgc	agtgcttcct	2280
gattagcaca	ctcttctcca	gagccaacct	ggcagcagcc	tgtgggggca	tcatctactt	2340
cacgctgtac	ctgccctacg	tcctgtgtgt	ggcatggcag	gactacgtgg	gcttcacact	2400
caagatcttc	gctagcctgc	tgtctcctgt	ggcttttggg	tttggctgtg	agtactttgc	2460
cctttttgag	gagcagggca	ttggagtgca	gtgggacaac	ctgtttgaga	gtcctgtgga	2520
ggaagatggc	ttcaatctca	ccacttcggt	ctccatgatg	ctgtttgaca	ccttcctcta	2580
tggggtgatg	acctggtaca	ttgaggctgt	ctttccaggc	cagtacggaa	ttcccaggcc	2640
ctggtatttt	ccttgcacca	agtcctactg	gtttggcgag	gaaagtgatg	agaagagcca	2700
ccctggttcc	aaccagaaga	gaatatcaga	aatctgcatg	gaggaggaac	ccacccactt	2760
gaagctgggc	gtgtccattc	agaacctggt	aaaagtctac	cgagatggga	tgaaggtggc	2820
tgtcgatggc	ctggcactga	atttttatga	gggccagatc	acctccttcc	tgggccacaa	2880
tggagcgggg	aagacgacca	ccatgtcaat	cctgaccggg	ttgttccccc	cgacctcggg	2940
caccgcctac	atcctgggaa	aagacattcg	ctctgagatg	agcaccatcc	ggcagaacct	3000
gggggtctgt	ccccagcata	acgtgctgtt	tgacatgctg	actgtcgaag	aacacatctg	3060
			gaagcacgtg			3120
			gctgaaaagc			3180
			ggcctttgtc			3240
			ttactcccgc			3300
			tctctctaca			3360
			ccatgggaag			3420
			ctactacctg			3480
			tagtagcact			3540
			tggcctgggc			3600
			cctcatcagg			3660
	_		23			

gctggtggaa	gacatagggc	atgagctgac	ctatgtgctg	ccatatgaag	ctgctaagga	3720
gggagccttt	gtggaactct	ttcatgagat	tgatgaccgg	ctctcagacc	tgggcatttc	3780
		cgaccctgga				3840
		cagatggtac				3900
		ttcgcccgtt				3960
		tccagagaga				4020
		tggaaactta			· · · · · · · · · · · · · · · · · · ·	4080
		cggagtcgga				4140
		cttgtgttca				4200
		tggatgtaca				4260
		ctggaactct				4320
		aacccaatcc				4380
		ccccagacca				4440
		gcatgccagt				4500
		ggggggctgc				4560
		ggaagaaaca				4620
					tatggcggct	4680
		actcaagcac				4740
		ctaaagctgg				4800
		acaggactgg				4860
		atcagctctt				4920
		gagaacccta				4980
		cagctctcag				5040
		atctttgcaa				5100
		agcaaagcaa				5160
		aattttgtct				5220.
		atctgcttcc				5280 5340
		cttttgctgt atccccagca				5400
		agcgtggcca				5460
		atcctgaagt				5520
		atggtgaaaa				5580
		tcaccattat				5640
		gtgttcttcc				5700
		aatgcaaagc				5760
		attcttgatg				5820
•		agaaggaagc				5880
		tttgggctcc				5940
		gataccactg				6000
		ccatgaagta				6060
		gactgggaga				6120
		tggcaaggtt				6180
		tgctggtaac				6240
		cgggcctcct				6300
		gttcttgtgg				6360
		tcatagtatg				6420
		gttcaggtgc				6480
		agttgtacga				6540
		tgcatttcct				6600
		atcttcatta				6660
		ccacatagaa				6720
caagtatttg	tgaactttgc	caaggaccaa	agtgatgatg	accacttaaa	agacctctca	6780
ttacacaaaa	accagacagt	agtggacgtt	gcagttctca	catcttttct	acaggatgag	6840
aaagtgaaag	aaagctatgt	atgaagaatc	ctgttcatac	ggggtggctg	aaagtaaaga	6900
		accatgtgaa				6960
					-	

atgaaaacaa caagtgaaag ccaatggacaca cattggggtt aaaaggtaat gtgacacatc agtttgaagc atcaacattg tccctctgat cacgggaaac tcatccttat caaactgctg aaacctaggg	aattccatta acttgaattt tatgggtttg gcaacaataa gcacatcctc cattgctggc accatggtgt aatatcagtt aagctgttct ttggttccat gagactctta gggctgcaac aagcctgtgc	caggggcagt agtttttac aactcacact ttcatcaagt attcactaag aatgagtgtg gtcatgctca gacagaatgg ggtggcagta tgttatattg aatatactta tgctgaagcc ccatttgtcc	atactattca gcctttgtag ctatacctat ttttttttt aatcatggcc ccatgccatg	cctatgtctt gtgaaactct tttttgttcc agcgattatt cccaggagac tagtgccaag agctgctctg ggctaacatc aaaatgtggg cgagccatgg agaggcaaag attaaagaga ctaacatgt	gtatggetet attatggaac tgtgtattet gateaaaate tggttteeeg ttttteagaa eteagagtet etgetttgat tgteteeagg gtetaeaggg aateaaeage ttgtgegtte acaetgeate	7020 7080 7140 7200 7360 7320 7380 7440 7500 7560 7620 7680 7740 7800 7860 7864
<210> 3 <211> 22 <212> DNA <213> Homo	sapiens			÷		
<400> 3 gcagagggca	tggctttatt	tg				22
<210> 4 <211> 24 <212> DNA <213> Homo	sapiens					
<400> 4 ctgccaggca	ggggaggaag	agtg				24
<210> 5 <211> 23 <212> DNA <213> Homo	sapiens			·		
<400> 5 gaaagtgact	cacttgtgga	gga				23
<210> 6 <211> 20 <212> DNA <213> Homo	sapiens					
<400> 6 aaaggggctt	ggtaagggta					20
<210> 7 <211> 20 <212> DNA	capiena					
<213> Homo	aghtens					

WO 00/55318 PCT/IB00/00532

10

<400> 7 catgcacatg	cacacacata	·						20
<210> 8 <211> 27 <212> DNA <213> Homo	sapiens					·		
<400> 8								
etttetgegg.	gtgatgagcc	ggtcaat						27
<210> 9 <211> 20 <212> DNA <213> Homo	sapiens							
400						•		
<400> 9 ccttagcccg	tgttgagcța				••	<i>:</i> •		20
<210> 10 <211> 26 <212> DNA <213> Homo	sapiens		•			*		
<400> 10					. 4			
	caaagctatc	tcctct			•	·		26
<210> 11 <211> 26 <212> DNA <213> Homo	saniens							
• •	oup rono			,				
<400> 11	ttasttats	202505						2.0
Cyccaacccc	ttgatttcta	agatgt						26
<210> 12 <211> 20 <212> DNA				•			•	
<213> Homo	sapiens							
<400> 12 gggttcccag	ggttcagtat							20
<210> 13								
<211> 21							-	
<212> DNA					_			
<213> Homo	sapiens							
<400> 13								
	tcaagcacca	a			•			21
<210> 14	_							
<211> 10545	5							
<212> DNA <213> Homo	saniens							

2940

11

<220> <221> misc_feature <222> (1)...(10545) <223> n = a, t, c, or g

<400> 14 acctcttata gaatgataga attcctctgg aatgattgga taacttcatt tcatccttga 60 cttttacctt ggaggatttc ttaccccttt tggcttctca aatttgacta ttaaaatgtt 120 gcctttaaaa ataggaacac agtttcaggg gggagtacca gcccatgacc cttctgcaag 180 gcccctaac tcaaggtagt ttccctggaa ctgtggttta tggaatgttt caggagtgtg 240 aggaggtata atttaagget gteetageaa ggataeeett aaggatagag ggeeeagtag 300 360 catctggagg ccagaaaagt taaactgagg cagtcagatt agcttcaggc tcaattaagc tgatgggtca gcctgggaga aattgcagga tgactctcaa tatcccctcc caccccaca 420 gcagccacga totgtotgto tttaatcatg ggtgcagtga acctgttott tocaggtgto 480 ttggccttca gtaaccttgt taggcttgtc cctgaacgtg gctaccgatc caaagacaca 540 tgatcagaga ggcaattaga gaacagacct tttccaaagc aagcatgttc tgttgggctt 600 agaagtttca tgtcctaata ttataggacc ctgtgcatct ctctggagat gaggcacatg 660 agtcatatct gtgattcttg cttttgtgtc aacatctcat gaataggcaa tcagagcttt 720 780 ggcaccaatg tattttcagt tcatatctga tgtagttaaa tccacctcct gctttgtagt ttactggcaa gctgtttttg atataagaca tctagaacac tgtaaatata taacattttt 840 atttgtctat tatacctcaa ttacgaaaaa gacatctaga agcaacctca tcaagagaga 900 tactgaggcc gggcatggta gctcacactt gcaatcccat tactttggga ggctgaggca 960 ggtagatcac ttgaggtcaa gagtttgaaa ccagcctggc caacatgttg aaaccctgtc 1020 tctattaaaa atacaaaaaa gttagctggg cttggtggtg .ggcacctgta atcccagcta 1080 ctccggaggc tgaggcagga gaatcacttg aacctgggag gcagaggttg cagtgagctg 1140 agatcacacc actgcactcc aacctgggca ccagagtgag attacatcta aaaaataaaa 1200 taaagtaata aaaaagagag atattgatag ctgttgttgg aaatttcaac ttccatctca 1260 cttctggtaa ctttttggaa gtttgttgaa caaagtggaa tacacgcaca tacacacaca 1320 1380 cacatactct cttgtttgtt taaggtttaa tgaaatagct gtcatataat cactgttttt gaaagaggag aattagttgc tatctgtaca ttttgggtat gtgaactatt tggatagaac 1440 1500 tctgagaaat gcattcagaa caacaaacaa aatcatagga gaaatagcta agtgggaagg ggcatataag agttgttgaa aaagttattt cttgagaaac cagctctaat gctaggcaag 1560 tcacttgctt tgggggaggc ctcagcttct ctgtctataa gattgcagca ggggtgtagt 1620 gggaatgagt cttcaacatt ccaagagatt ttatctacta atacgacagt caaatggagc 1680 1740 atgactttgt ggaagcctct cctcttccac ccagaggggc caatttctct gtcccagtga 1800 gatgttgaca cttgtatgat ccctgcttgg agacttccct cttctggaac ctgccctggc 1860 tcaggcatga gggctgactg tcacccttcg ataggagccc agcactaaag ctcatgtgtt ggcagtgttc ttgcgggaag gaaaaagacc agccagccca tttgttactg cacaagcaaa 1920 cagettetgg tagetgtaca gatacatgca etttettee teactgtgtt tecatagaca 1980 2040 gatttagtgc tgtagaagag tagagggcag tcacgggaag gagttcctgt ttttcttttg gctatgccaa atggggaaaa atcctcctat cttgtctttt tagtgtcatc ctctctccc 2100 ttttcttctt ctttataatt ctcatctctc atctctcctg gaaatgtgca tgtcaagttc 2160 2220 aaaagggcac aatgttttgg tgaggaagag gtgggagaac acgtgccagg tgctaactag ggtcatcatt tcccccttca cagccagctt cctgtgaatg tgtgtgtgtg tgtgtgtgtg 2280 tgtgtgtgtg tgtgtgtgt tgtgtatttc ttttgccagc atcactgaat ctgtctgctg 2340 tctggtattc caggttttgg tttagggaaa agtaaaagta attttataat cccagctgtc 2400 atttaagcca cccctttgtg ggtagcatat ggtccactct ctcagttcat tgtcctaaag 2440 atgetteate agaaaggaat aactteeace cegttaetet etgteeeett aetetgettt 2520 attittette gicaateeta ceaceaceae ceaetgitig aacaaceeae tattatitgi 2580 ctgtttccca tccctggtag aataggagcc ccatgaatga aggaactttg cttctgttgt 2640 tcaccactga atctctaagg tatggaacac acctggcatg tgataggcac tcgataaata 2700 tttgttgtgg ctcatgggca ccttgcagag ttaaggctgc agttgtttgt ggaatttata 2760 agtggtaatg aatatttatc tactatteet ettecaagge gateacacaa taateagget 2820 ttacactatc cagttettag gtettecaag ttatgaettg tgaggtatgt taattatgat 2880

aatagaaggc agtttatttg gttcagattt attgatgtgt aatttaccac agtaagactt

cccctttaca aaagtatgat gagttttgac aaatggatac acatgtgtat ctaccactgc 3000 catgeteett tteagtetgt egteeettee acceatgace actggteace actgeagtga 3060 tttctgtccc cttcatttca ccttttccag aatgtcatat aaatggaatc atgcagtatg 3120 tagttttttg tgtctggctt atttttctta gcattaggct tttgggattc atccaggttg 3180 tegeatgtaa cagtagetta tteettttta tggetgagta agtgteecag ttttatttat . 3240 atatttattt atgaggaggt gtctcactct gtcacccagg ctggagtgcg gtagcgcgat 3300 ctcageteae tgcaacetee geeteecagg ttcaageaat teteetgeet eetgagtage 3360 tgggattaca ggcacccacc gccacgccca actaattttt atattttag tagagatggg 3420 gtttcaccat gttggccagg ctgatctcaa actcttgacc tcaggtgatc cgcccacctc 3480 tggctcccaa agtgctagga ttacaggcat gagccactgt gcccagcccc agttttattt 3540 attcaccagt tgatggtctt ttcgacaact aattgtttcc agtttttggc tattctgtat 3600 aaggetteta taaatattea caaataeeta ggatgggatg aetgggteat ataatagtae 3660 tgtataacct tagcagaaac tgtcaaacta ttttccaaag tggctcttcc attttacaat 3720 tocacagtgt attgagtoco agtgtotoca tacacatgot agcactttta atatttaatt 3780 tagtgggtat gtaatgatat ctcattgtgg ttttaatttg catttctctg cagctaatga 3840 tgagtgtttc tgcttatttg ggaaggtttt aatttagcag tctgttgtat tctgtagata 3900 ttaataactt caaaatatca gtggcatttg cagttaaaat ttccttaaaa aattggccaa 3960 aggtttccag cagtcacttc tgccatgccc aaactgtatg aaacaaggct gaggtgtgga 4020 gattgtcaca ttttggcaag gagtgatcca cttgggtgac tgatgagacc cagagagcgt 4080 acgcctcggg cttgagggtg aggacgggcg ggaagtcgac tgcatggccc tgctggcctt 4140 gggaggctgc ccagtcctta gctaaagctg gcagttatgg gaaacagact tagattctat 4200 tacgtttttc aggatgtccc aggagtcacc tgggaagctc agcagtcctt tgtgactttc 4260 aagcatatgg tagaagctgc tgaacacaga gctccctctt tggggataat ttgcccaaat 4320 catttaatca ggcttgagaa atgagttacc acaggtccag gagtgctgcc acccttgaat 4380 totgacacco tatttotoct atcogtotot taattaatta agcagacato cocaagtgot 4440 tacgacaagc caggaccctt ttgcatacta aggaaaacag ggatgaagga aacagaaatg 4500 gtctctgctc tgactcagaa ggtagaaatc ctctttccca gccaagtctt cctagggagc 4560 acgtaggaag ggctctgaac ccacgtgtca gttgcagggg aggatatcag gaaaggacat 4620 tgaagaagtg gagacctaag tttgagacct aggcattagc caggctagca gtgcttgaaa 4680 aagtgtetta ggacaagaga acteaceagt gaagteeeag tggtaggaga gegtgeagea 4740 tattctgagc ctgtatacac atctccaggg cattgcttag caggtgggga gtggcaagag 4800 agtaggetgg agteacagaa gggaggeeag gtagaeettg gtgageaetg gaetetatgt 4860 tcaggtgctg aggagctggc aaaaggtttt aagtcgggga gaggcatgtt cagatatttg 4920 gtctagctga gtaactttgg gtgctctgtg acaaatggtt gggagaccag tgaggtggca 4980 gttgcggtca tctaggagca ggatcagagt ggcctattga ctgggatgac tgtgaagtgg 5040 gatcetttee agecagtaae tggaaatgtg tatgagggea gaagtgagtg tactgeattt 5100 gaaacattga gaaatctagt acatagtact gtctctttta tatcttttt tttttttt 5160 ttgattttgg tttgtttgtt cactaacttg gaaaactgat gtggaaatgt ccctttggct 5220 tcagttacct gagcagaagg ggccgggcat tgccaaactc tcctcttagg acagaattgc 5280 teccagtatt gateattgtg ttetgagttg ggggageaaa ttgtgeagga ggeeaggtea 5340 gtgccaaggt gggtgggagg aattggagca ggaagcttgc ctaagtgtgc ccagcaaagc 5400 cacggtagaa ctttctactg tggctctatg ctacttctta gcaaccttct ccatgtgctt 5460 cctggagagt ccttggagtc agaacctttt tcttgaaacc cagacacttt acttccaaga 5520 aaatgctgtc caagaaaact catccttccc ttcttctcat gaacgttgtg tagaggtgtg 5580 tettetette etttgagett tteeacteag ggtttagggg aggtgatatt etatatttgg 5640 gtttggctct gggtactgca acactaggct attaagattt catccttact gctttgcccc 5700 tcctatcttt ccagaaaccc acaatggatt tgctagaaat aatggaacgt cctgtttgga 5760 caggatataa ccatttctca gctagaggat attgttggaa tgaagaaaga taaatgggga 5820 gaagggaact cacattgctt tggcacttaa attaagccat gtactgtgtt gggaaattat 5880 ttatattatc tcgttgaatc cacagtagaa cacagttgaa caccatacaa ggtaagtatt 5940 gtcatcctta ttttaccatg aggaaattga tgcttagaga gcataaagcc ttggccaggg 6000 gcacatagtt gggaagccgg ggctaattca tgcctgggct ctttctgata gttttccttt 6060 tttaattgtc ccctcctcat tgttaccttg gggatttcaa gagattcatg tagcttctaa 6120 atcaacgaac tgattcctgg agagcagctt ctgtatgaga aaaatctagc taattattta 6180 tttcagtgtc tctggaatgc aagctctgtc ctgagccact tagaaaacaa tttgggatga 6240

caagcatgtg	tctcacaatg	ctgctctggt	tgccagtgct	gtgctgccag	ttgtcatctt	6300
tgaacaaact	gatgcagtgc	tggtttaact	cttcctctt	ttggagtaag	aaactttgga	6360
ggcctgtgtc	cttctagaag	tttgctgagc	aaatggtaag	gaaaagaaat	aggtcctaag	6420
gcttgactat	ttcagagaat	ttcttgattt	attggactgt	caatgaatga	attggaatac	6480
atagtggtag	gctgtctttt	cttctcagac	actgcaattt	cctccaatct	cttgactttt	6540
ctagaagttt	taatccaagt	ccttgttggg	tggtagataa	aagggtattg	ttctactaga	6600
gactgacctt	ggcatggaga	tctcatttgg	actcacagat	ttctagtcta	gcgcttggtt	6660
				ctccttgttc		6720
				cagtgattca		6780
				agcagggccg		6840
				ccagctttaa		6900
				tggatgggtg		6960
				ccctagcatg		7020
				cggtgtgttc		7080
				gcttgtttgt		7140
				tgggatgctg		7200
				aggtgtcggt		7260
				ccagattagg		7320
				cgctctgtcg		7380
				caggttcagc		7440
				ccatgcccag		7500
				tggtctcgat		7560 7620
				taggcttgag		7620
				ataacccact		7740
				ttgaggcaaa		7800
				aagagaggta		7860
				ctgagagagg		7920
				ctaaaatgat		7980
				ccctctttgt gtcatgatgc		8040
				attggtgtat		8100
				gttaatgacc		8160
				gagccacacg		8220
				ctgctgtgga		8280
				geggggggtt		8340
				gggaaggaag		8400
				agaactgtgt		8460
				tagaaatagt		8520
				ggctccgaat		8580
				ggctctccaa		8640
				agtggcccca		8700
				tcaggcctgg		8760
				attcacttcc		8820
				aggtgaatgg		8880
				aaactcagac		8940
			_	ctctaggatg		9000
				tttttttcc		9060
gccagtatcc	ccacttggct	gtcttaatgt	agcttaacat	gtctgtaatc	aaaatgatca	9120
				aatttcattc		9180
aactagaat	aatgcttgca	ctgtctgtaa	aagaacaaaa	gtgtcaaagc	atccttttgt	9240
				taggaagtta	•	9300
				atacatattt		9360
tgcagccaaa	at.tgcaaaat	caataccatt	caaattaata	ccttaaatgt	ggtgaggcag	9420
ctgttgttca	actgaaacca	aattataagt	tgcatggcag	taaatgctat	catgctgatc	9480
attttgagtt	tggccagtct	atattatcat	gtgctaatga	ttgaattctc	cacccatttt	9540

	tctacttgta	tgaccttaat	ttgatggcac	ctgttccatc	ctcatgagtt	tgctacaatt	9600
	atactggtgc	caacacaatc	ataaacacaa	atataaactt	gggćtttgaa	atcttgtgcc	9660
	agaacttggc	tttaaagtaa	gcatttaaaa	aatccatatg	tgtttattag	actttgttta	9720
	gatgactgtt	gaaatgaaaa	caaagtgttt	aaaatcctct	tagagaactt	aaatataatc	9780
	cctcagcaat	atgtatacag	atcttccttt	gagaaaaact	gattgtgttc	agcctctcat	9840
	gttacaaatg	gggaacctga	attctgaggt	ctctagtgag	agaacaggga	ctggaatctg	9900
	tggatcctat	ctgttttaat	aataattgta	aagtataata	gataatatta	tattaaaaag	9960
	agagnnnnnn	acacttagaa	tgagcttcca	tgtgtgaggc	actaactgat	taggcattat	10020
	taactagatt	tattcctttt	aaggccccgc	gatgtactgt	tatttccaca	tgttgtagct	10080
	ggggaacgtg	ctactcagag	aggttaagta	acttgtctga	ggtccacacc	actaacaagg	10140
	agcacaggta	gggttcaaat	ccagataatc	tgactttgga	gctggcactc	taactcaatg	10200
	tgcctaatcg	cttttcagtg	gtgtcattat	tttgcctatt	ctccatctga	gaatattgaa	10260
	gtttctgact	ccttccttgc	ctttctccct	gcctcccgtg	gttatcccca	ggtcttggtg	10320
•	ttccagtcct	ctatgtccgt	ccttactctt	attcctttgc	tacagtgtga	tccagggctc	10380
	ctgcccttct	tatcctggta	gagggggccç	acttgctggg	aaattgtctc	cgccatggtt	10440
	tatccatgtt	gtgtgtccat	tagtgagtag	tgggaagaat	catatcatgt	tggcaatgaa	10500
	aggggggcta	tggctctggg	gtagtctagt	ctgaactctt	atttt		10545

<210> 15 <211> 4736 <212> DNA

<213> Homo sapiens

<400> 15

ctttttttt tttttttt ttttttttt tgaggtgaag tctcactctg ttgcccaggc 60 tggagtgcaa tggagcgatc ttggctcacc ccaacctctg tctcctgggt tcaaacagtt 120 etcetgeete ageeteeega gtagetggga ttacaggete cegecaceat geecagetat 180 ttttttgtat tttcagtaga gatggggttt caccettttg accaggetgg tettgaacte 240 ctgacctcat gatcaaccca cetcagecte ccaaagtget gggattacag gtgtgageca 300 ccacgcccgg cctcataagt attttctaaa tttatttaca gtcatgccat ttaaaaggaa 360 agttgtatto ctgtctttgt taatatttat aagtgatttt attcagctac aagcttggaa 420 tggcatataa ttttgtattc tgcttttttc acttaatatt acatggctaa tgatttctgt 480 gtttcataaa cattattctg atgatggcat gatatattgt tgagtacatg taccataatt 540 gaatcatttc cctattgcta tgcaattaag ttgtttccaa tattttgcaa ttataatgtt 600 tcaatgaatg aataacttta tgcatatagc tttttgatat cttaagttca gtttcctagg 660 atgaatttcc aggaatagta attgggcaaa tgggataaac atgactcttg aatacgtatt 720 gttaacattg ctttcccaaa gggctcaact gatttatatt tccgtgttca ttatcttta 780 aaccagctca tttactcacc aaacattttt aaagccatta tcatgtggta ggcttagtaa 840 gaagaaagtg accctaaggg agaagcttat atataaatag ggtccctggt gtaccaagtg 900 ctgatacaga cacaaagtac ctggggaaat tgagatgagg gagtcctggc tcagctggga 960 gaaaagttca ttttcataga gtcatggttt tgttctttgg cagaaagaaa attgctttct 1020 tccccacccc caccccagc tttattgagg tataattgac aaataaaaat tgtatatctt 1080 taagatatgc aatgtgatat atatgtatat ctcaacttaa aaaataagct acagaataaa 1140 aaggtgtttg ctattaaaaa aaaagaaaag gctgaatgtc attcccaagc ttggaaattt 1200 gagtatgttg cctctttggg attatttaca gaaatattag caagaccagc cccatctttq 1260 gtottgagta ctccactgtc agcatgottt cttccagaga gggatccatt tgcctttatt 1320 tttcattctg ttgtgccgtc tatgcaaact attcttgata gttttatggt aacagtgttt 1380 ttttgttcca tgagataaat ttatacatgc tcattgtgga aaatttagaa aagacaggaa 1440 agtattaaaa acatcmcytt tttttttttt ttttttttt tttttttamg cagacagagt 1500 cttgctctgt cgcccaggcc ggagtgcagt ggcgtgatct cagctcacag caacctccgc 1560 ttcccaggtt taagtgattc tcctgcctca.gcctcccaag tagctgggag tacaggcatg 1620 caccaccacg cccggctaat tttgtatttt tagtagagat ggggtttcac catgttggcc 1680 aggotggtot caaactootg acctoaggtg atcogootgo ottggootog caaagttotg 1740

ggattatagg	caggagccac	tgcgccagcc	acacctacgt	tcttatcatc	ctagtacatc	1800
cactgtcatt	atcttgctgt	atttccttct	gcccagtctc	actctgatca	tgcagtggcg	1860
tgatcatgca	gtgatctcgg	ctcactgcaa	cctaggcctt	ctgggttcga	gtgattctcc	1920
tgccttagcc	tcctgggttc	aagtgattct	cttgccttgg	cctcccaagt	agctgggatt	1980
			tttgtatttt			2040
taaaattttg	tatttttagt	agagatgggg	tttcaccatg	ttggccaggc	tggtctccaa	2100
ctcctgacct	caggtgatcc	gcctgccttg	gcctcacaaa	gtgattacag	gcatgagcca	2160
ctgcatccat	cgccaaaaag	atttttaaa	agagtttaat	gtagaaccat	atcaaaggtc	2220
			atcagaaata			2280
			gagcacctag			2340
			ttacaggaca			2400
			ttaaatgaaa			2460
			aaaatattat			2520
			cttcagttta			2580
gtaggattaa	ggtgatttat	atttaccttt	ttaaactttt	ctgtatttt	ttattttcaa	2640
attttccata	aaaatataag	gacttgaaga	tcaagaaaaa	atttctgctt	tggctcagtg	2700
cagtcgtcac	gcctgtaatc	ccagcagttt	gggagcccta	ggggagagga	tcacttgaac	2760
ccaagagttt	gacgttccag	tgagctatga	tctccggatc	gtaccgcctg	gacgatggag	2820
caagaccctg	tctcaaaaaa	aaaaatcttt	gcttttttt	tttgtttgtt	tttgagacgg	2880
agtctctctc	tgttgcccca	gctggagtac	agtggcacaa	tctcagctca	ccgcaacctc	2940
tgcctcctgg	gttcaagcga	ttctcttgcc	tcagcctccc	aagtacctgg	gattccatgc	3000
			attttcagta			3060
			agctgatcca			3120
tgctgggatt	acaggcatga	gccactgtgc	ccagcccaat	.cttttgcttt	ttttaaaaaa	3180
agaagacaaa	aagggatttt	ataccagtat	tatcttggct	gtgtgactct	gaagccacag	3240
ttgtaagtta	taattactct	gaaacacaag	gccctgtgac	tcttttgggc	tctttggtgt	3300
			atgaaaggaa			3360
			tggctcaatt			3420
catcttgtcc	gtctgctaat	ttatcgcctg	gtaactcact	gaggcagggt	tttcctttgg	3480
agaaacctca	ttgttttaac	cagtgtatca	tgcttgttta	gaagttcaat	gatcttttta	3540
actcatcgga	gaagatgatg	accagacctg	gacagatggg	gaaggacttt	gcactctctc	3600
tttacagtcc	tgagtgcaca	caggtcaata	tggaactatg	tgtgaatttt	cattgtcttt	3660
			agctttgtgt			3720
tgtgtgtatt	tagcacagca	ggttggcctg	gtcctctcct	ctcaacatag	tcaccacata	3780
cctggcacta	tgctaaggct	gggaatgcag	acagatgggt	gcctgctttc	agagtgctca	3840
			atgatttcag			3900
aggaggagtg	tgcctgggtt	actggagtag	cacaggagga	gggcttctag	ctcaggctga	3960
gattttagta	aaggaaatta	tgccacgatg	aatcctgaag	aatgaataga	agtgaaccag	4020
ataaagcacg	ataggaagca	tcttccctta	cctaagggaa	gacacagagg	tatatggaat	4080
ggtatgttaa	aaggttggga	ctccaaacag	ttctgttaaa	gcttagagag	tggtgggaga	4140
gactggagaa	gttgattaat	tagtaaatga	agttgtctgt	ggatttccca	gatcccagtg	4200
					ccactcagtg	4260
					tctctgttcg	4320
					tgcctgagac	4380
					tttccaaaga	4440
					tctaatttgt	4500
tgataaggca	tgaactcagg	agactgtttt	cagtcctagt	gaatggtgat	aattgtaatt	4560
					taaccttact	4620
					cacctagtct	4680
tttccatatg	catgatgtct	taatcacaca	ttgcaaatca	tggaacacag	aatttt	4736

<210> 16

<211> 4768

<212> DNA

<213> Homo sapiens

<400> 16						
atcttacaat	cacagtcttt	ctcttagggc	tgggctcagt	gggtggattg	acactgcaga	60
aatggccaga	tctaaaggat	caacatttac	gtagctggga	aatgtagctg	ggacttcagt	120
ttcactgccc	tagtgatttt	tcctaccact	aagcagctca	gtccataccc	ctacgagacc	180
cacaagctta	tgagatactg	ttcttccagg	aaagcagtgg	ggccagggcc	accttttaat	240
tgtgtttctt	ggcctggtcc	catctttctc	acaatatata	gcaacagtta	tttacttgct	300
gattttctaa	tgcacatcac	acatagtcat	attaaacaca	cacacacaca	cacacacaca	360
cacacacccc	tcaagaaaca	ttttctgaga	cgtgatttcc	tgatttcatc	aaaaagaaa	420
agagcgggcc	aggcacagtg	ggaagtcaag	gtgggtggat	cacttgaggt	caggagtttg	480
aaaccagcct	ggccaacacg	gtggaacctc	gtctctacta	aaaatacaaa	aattagccag	540
gcgtggtggc	gcacacctgt	aatcccagct	actggggagg	ctgaggcagg	agaattgctt	600
caacctgcga	ggctgaggtt	gcagtgagcc	gagattgcgc	cattgcactc	cagcctgggc	660
aacagagtga	gactctgtct	caaaaaaaa	aaaaaaaaa	aaagcataaa	ctgaaattta	720
tatgcaattt	atatgcctgt	gagataattc	tgttttctct	tttggaaccc	caaagagatt	780
tttttgattg	atgagcaaat	acattttaga	ttttatttaa	gcattatgcc	aagcaccact	. 840
gaagtataag	tttcaagggc	aaactcagtt	ttttcatcta	ctagacgaat	gattttctgg	900
	agcaggcaag					960
agttggggtt	tgtttgtatc	ctgcctctgc	ccttcaccga	.ggttgtgatc	ttgggcagat	1020
	taacctagat					1080
	tatactgatg					1140
	gagatggtct					1200
	atgtctgcct					1260
	caggcatgtg					1320
	atgttgacca					1380
	aaagtgctgg					1440
	accttacctt					1500
	taaggtgaaa					1560
	tgtaaatctt					1620
	gagagcccat					1680
	cttttgtttg					1740
	aagggataac				•	1800
	tctgtctaca					1860
	tatttggttg					1920
	ttgtttggtt					1980
	aataggccag					2040
	ttgggtgttg					2100
	atgcaaagtg					2160
	aaaagatgaa					2220
	agtgttcctg					2280
	ggaaaatcct					2340
	cgctttgcct					2400
	ttatcaccat			_		2460
	actgcttagc					2520
	tgaagctact					2580
	gggtcacaaa					2640
	ctgaacaggt		_			2700
					agaccgaatc	
	gccçaaatat					2820
	gcaagaggat					2880
	ataacaacaa					2940
	caggtgccct					3000
	gatggaggag					3060
	gaggaagagg					3120
	gactttgcga					3180
tattttttr	aaatggagtt	tegetettet	Cacceagget	ggägtgeeet	agcacastct	3240
			Jacobayyot	JJug-yaaat	ggegegatet	7240

tggctcactg caacct	cccc ctcctgagtt	caagcgattc	tcctgcctca	gcctccagag	3300
tacctgggat tacagg	gegee tgecaccaag	cccatcgaat	ttttgtatgc	ttagtagaga	3360
cagggtttcg ccatgt	tggc cagggtggtc	ttgaactcct	gacctcaggt	gatccgccca	3420
ccttggcctc ccaaag	tgct gggattacag	gcgcgagcca	ctgtgcccag	cccacttcat	3480
cttaccgtag ttacct	cctt agagtatgaa	aaaataggct	tagggcatcc	ccaagtcccc	3540
tctatgtctg agagct					3600
gcttaggacc cctctc					3660
atgtccacta gattaa	agaat ggcatgtgag	gccaagtttc	cacctgagag	tcagttttat	3720
tcagaagaga caggto					3780
tgtataaatg gagcct	caaa atcgcttcag	ggaattaatg	tttctccctg	tgtttttcta	3840
ctcctcgatt tcaaca	aggcc attttccaaa	taaagccatg	ccctctgcag	gaacacttcc	3900
ttgggttcag gggatt					3960
ggaggctccc ggagtt					4020
ctttccaaac ttgtca	agtta atccttttcc	ttcctttctt	gtcctctgga	gaattttgaa	4080
tggctggatt taagtg					4140
gggaagggag aatttt					4200
tcatttctgt atgttg					4260
tatgttgtta atgata	atcat gcagcagacg	tgcatctgaa	tgggctggct	ctaggagcta	4320
gagggtaggg gctggd	cacaa agatgcatgc	tggaagggtc	cttgcccata	agaagcttac	4380
agccaaggct agggga	agttc tgtcttctct	gcatcaggtc	acctctctca	cctctgtcac	4440
tgccccatca gactad					4500
aagcaggatg ctgcc	ccttc cctttgtatt	ccttgctcct	tgcttcagtg	cctgtacata	4560
agtatgggca taataa					4620
ccgtgatgtg agttag					4680
aagctgcagc tgcgg		tgtcatgttc	atggacccta	gactggcttt	4740
gtagcctcca tgggc	ccctt ccatacac				4768
<210> 17 <211> 1295 <212> DNA <213> Homo sapie	ns				
<400> 17					
tcatgactgc cattg	gtata aagatgaata	taatccagac	cagattcatg	attattcata	60
catttttagt gtatt					120
cccttaagag tatcc	cagee caggeeactg	, agcctactgt	ggttcatgga	taagtttgcc	180
cctgggggca tgtgtg					240
ggtggtaaga tttgg	gtgtg tagaccaatg	gagaaaggca	tttggggcag	tgatgatggg	300
tgggggaggg aacat					360
ggccagcctg tggag					420
gtaaagcagc agagg					480
agtgtggctc gcctg					540
agcatgaagg acatg					600
agtaagtaaa aacct					660
agagtagccc aggtg					720
ttggtggctg gcctg					780
ggttgccaca gacag					840
gaagaatact acaga					900
ttttttctga agttg					960
gcatataaga gcaat					1020
tctaaaaaga gaatg					1080
gaacttgttg tcttt					1140
ttcttgtgtg ccacc					1200
tgccatagca tcaga			aaggggacag	aggctggtgg	1260
gagcagctgg ctgag	rgcag ccagtaatg	g catgt			1295

```
<210> 18
<211> 2188
<212> DNA
<213> Homo sapiens
<400> 18
agctctccag gtgattctga tgcatactta agtttgagaa ccattgcttg ttttgcatta
                                                                      60
aacaggagat tagtototgo agottgtggg aataaagott taaatototo caattttago
                                                                     120
tctgtgaaaa ggcagtgggg agacaggaat gaacggacta gtgccacaaa gctcaggtgg
                                                                     180
ggtgggtgag atcatttaga agagaaagac cgggcatggt ggctcacgcc tgtactgtca
                                                                     240
gcactttggg aggccaaggc aggttggatc acaaggtcag gagtttgaga ccagcctqcc
                                                                     300
tatcatggtg aaaccctgtc tgtactaaag ataaaaaaaa aaaaatttgc cagtcatggt
                                                                     360
gatgcatacc tgtaatccca gctactcggg aggctgaggc aggagaatct cttgaacccg
                                                                     420
ggaggcgggg gttgcagtga gctgagattc caccattgca ctccaaccta ggtgacaggg
                                                                     480
tgagactccg tctcaaaata aaaaaaaaa aagaaaagga aaggctgtgt gtgtgtat
                                                                     540
gtgtgtgtgt gtgtgtgtgt gtgtgtgtaa cagcaccatc acactgtttg agttgaggag
                                                                     600
cacatgorga gtgtggctca acatgttacc agaaagcaat attttcatgc.ctctcctgat
                                                                     660
atggcgatgc tecectatet catteetgtg tgtgtttage caggcaactg ttgatcatca
                                                                     720
780
acttactaaa taaaaataaa acactattto toaatagact tgaagottoa agatttootg
                                                                     840
gtggacaatg aaaccttctc tgggttcctg tatcacaacc tctctctccc aaaqtctact
                                                                     900
gtggacaaga tgctgagggc tgatgtcatt ctccacaagg taagctgatg cctccagctt
                                                                     960
cctcagtagg gctgatggca attacgttgt gcagctactg gaaagaaatg aataaaccct
                                                                    1020
tgtccttgta atggtggtga aggggaggga ggtagtttga atacaacttc acttaatttt
                                                                    1080
actteeetat teaggeagga attgeeaaac cateeaggag tggaatatge aacetggegt
                                                                    1140
catgggccag ctggttaaaa taaaattgat ttctggctta tcacttggca tttgtgatga
                                                                    1200
tttcctccta caagggatac attttaagtt gagttaaact taaaaaatat tcacagttct
                                                                    1260
gaggcaataa ccgtggttaa gggttattga tctggaggag ctctgtctaa aaaattgagg
                                                                    1320
acaggagact ttagacaagg gtgtatttgg agacttttaa gaattttata aaataagggc
                                                                    1380
tggacgcagt ggcactgagt tgagaactgt tgcttgcttt gcattaaata ggagatcagt
                                                                    1440
ccctgcagct tgtgggaata aggctttaaa tctctccaat tttagctctg tgagatggca
                                                                    1500
ctggggaaac agaaatgaac ggactagtgt cacaaagctc aggtgggatg gacgagatca
                                                                    1560
cttcaaaggt ctgtaatccc acgtctataa tcccagcact ttgggaggcc aaggcgggaa.
                                                                    1620
aatcacttga ggtcaggagt tcgagaccat cctggccaac aatgcaaagc ctgtctctac
                                                                    1680
taaaaatatg aaaattaget cagegtggtg geatgeteet gtagteecag etaetegtga
                                                                    1740
ggctgagaca ggagaatcgt ttgaacctgg gaggcggagg ttgcagtgag ccaatatcac
                                                                    1800
gccattgcac tccagcctgg ctgacagagt gagactccat ctcaaaaaaa aaaaaaaaa
                                                                    1860
aagaatttta taaaatcagg aaataatatt agtgtttatg ttgaatttta actttagaat
                                                                    1920
catagaaaac ttcctctggc atcattatta gacagctctt gtgcagtggg tagcaccaga
                                                                    1980
cccagcttgc atggttattg atttttcaga gacacttttt gagcttattc tctggcagaa
                                                                    2040
aggggaactg cttcctcccc tatctcgtgt ctgcatacta gcttgtcttt acaagaagca
                                                                    2100
gaagtagtgg aaatgtttat tettgaaaat aagetttttg etteacatga tetagaattt
                                                                    2160
ttaaaattag aaaaatgtgc ttactgcg
                                                                    2188
<210> 19
<211> 1183
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(1183)
<223> n = a, t, c, or g
```

<400> 19

agtaaaatgg	agaattccaa	attctgaaat	tgttagaaca	tagttctgtg	tcttagttaa	60
				ccatatttca		120
				ttcatctaat		180
				tgtcccactc		240
				tgtgggagat		300
				tgctttgata		360
				acctgtttta		420
				ccagcttcca		480
				gtatttttgc		540
				gagatgattc		600
				ctggctgcag		660
				agtagacttg		720
				cttggacagc		780
				tttagttcag		840
				aaagggtgaa		900 960
				cttgtttcaa		
				agctcatttg		1020 1080
tcttcatatt	taaaaaaaaa	aagtettgaa	accattgatg	ggaagatgga	tatctattta	
				acagttggaa	ggccctggaa	1140
ttagatgaga	ccacactatt	tagcttactt	agtaataaca	ttg		1183
<210> 20						
<211> 8981						
<212> DNA	anniana			. 6		
<213> Homo	sapiens			•		
<400> 20						
	aatoctcaot	aaaagaaaag	aattaaaaa	ggagaaaggc	attttatccc	60
aageetteag	gaatcaggat	gaggatgtct	tcaccttata	gtggggagta	attatacaat	120
				tgatagctct		180
				gaccttgccg		240
aaaggatgtt	tatcttttta	agaagttgaa	aaccctqttt	gcagacaaaa	gccctccagt	300
tttggcagta	aactttcatq	caaqqqaaqa	aaaaggcagg	ggatgacatt	gttgacaatt	360
gtgaggaatt	accatgtgcc	aggcactgtg	cgaggggctt	tgtacatatc	ctctagtttt	420
				aactttgctg		480
				tctatagcta		540
				tgagtgacaa		600
				actaccacgt		660
				tgtcctgggt		720
tttgctatgc	tgtcttgaac	atctgtcatc	ttgtaggcct	aacggtaaac	acaaaaacac	780
				gtttgtaata		840
				agttataaag		900
gagagaaagt	agaaacaaaa	cacctcacct	gtttttgctc	atgaattact	ctctatggaa	960
ggaacaatca	tgaacacctc	tgcgtatcac	agaggcctat	ctgagtctga	cgtttaaggg	1020
agaccgcgta	ggtccctttg	aggactgtga	atgtgggagt	cctgggactc	tggtgaagaa	1080
cccgttccag	aagagatgaa	tgagctggac	aagttctttc	atagaacctt	taggcaggtt	1140
ttcttagaaa	tgcacattga	ggattatgct	tggatattgt	gatgatcaga	atgatactca	1200
atcccttctg	catttggaat	tctctttgaa	agaaaacatc	ccaggcagct	atttctcaga	1260
gatagtgagt	cccagccact	tctagacatt	ttcttgtgta	gtctacatta	taatttcaca	1320
					cagagatgtc	1380
					attttccctg	1440
					ctttttctct	1500
					attctgactt	1560
					cctaatttat	1620
cttttccctg	ttctaatgaa	ttattgtcct	: atatctgctg	tgcagttagg	tgacatataa	1680

cagcaattaa	atatatgaat	tggtacatat	aaagatttga	ctaaaactcg	atgtaaaaat	1740
aagtgttcta	cattcaattt	ccagtgttag	aaacagtgct	gacttgaaca	gagtgacaga	1800
attccatctt	tccctatttt	tgacagcttt	aaactttata	ttttcttcct	ttcttgtgag	1860
ccgtcattaa	cttgtttctc	aaagccattc	ccgtattacc	catcttgcag	acgcagacag	1920
atttgggaat	ttgcggtcag	agttgtattg	gacacatccc	cccagcccac	atgagatcct	1980
tttaatctat	tgcatattaa	ctagttttaa	gtacaatatt	cctacttcat	ttaaaaccat	2040
taatcaaaga	atgagtttga	aaatgaacaa	aatgcaaact	tacagttaga	aataattgta	2100
gtgtctttag	ttttggttag	gagtcggttt	cttgtttgtt	aaactcaaga	ttgtgaacag	2160
ttttaattca	cttgtttatt	tccaatagag	atttcaggtt	tacatttgaa	ttcagaaaca	2220
aagttttctt	tctcattaca	gagaacacta	aactctacat	ctcccttccc	gagcaaggag	2280
				ctctggccca		2340
				cagtattttc		2400
				taatatcaat		2460
				gaaatgaaga		2520
				tggatatcta		2580
				tgtaaagagg		2640
				tctccatatt		2700
				ctaacaggaa		2760
				gaggttcaac		2820
				tccacatgtt		2880
				acttgcaaaa		.2940
				agccttgtct		3000
				gctgagccag		3060
				ataataattt		3120
				taatccgttt		3180
				cattttttca		3240
				cattgtggaa		3300
				tacgttagtg		3360
				tttctgactg		3420
				cttgccattt ggaccaactg		3480 _. 3540
				agctatttct		3600
				ccctcgcagc		3660
				taacagggga		3720
				tggccctggt		3780
				cccattgctg		3840
				tttcttgtgc		3900
				agaacacctc		3960
				agataaatgg		4020
				ataattttga		4080
				gaagctgcct		4140
				gagtgggtct		4200
				ttttccagtc		4260
				ttccaaagcc		4320
				ggagaacctt		4380
				ggacttgagg		4440
atgaaagctg	acctgagttt	cacatctggg	tgatgggaag	ggaggacagg	gaggcagcat	4500
ctcagatgtc	cacccagcac	cgaccagctg	cctggcattg	ctaggtgttg	aggactcagc	4560
agtgaacacg	ctaacttctc	tgctttcttg	gggcacgtat	agggtgagag	acagaaacaa	4620
acaggtcagt	gtacaatgcc	acaggaggga	tatatgcagt	gaagaaaaag	cagggtaagg	4680
ggcatagagc	atgagaaggt	gctttttta	aaggggktga	ttaggaaagc	tctctctaag	4740
gtgacagttg	gacctgaagg	agatgatagc	atgtctgtgg	tgagggaagg	aaactccgaa	4800
caggaagaat						4860
ggaccaggga	aagtgagcaa	gtggtggggg	gaggagagga	gctcagagca	ggaggaggtg	4920
agtgccatac	aggcctggca	agactttgga	ttcctgctgg	gtgagatgag	aatccagcgg	4980
						•

				201011120	ctctaattat	5040
agggcttgag	ggagggaca	tgatgtgatc	tagagillag	accectaca	actagattaa	5100
tgggttgaga	agagactggg	atgggggaaa	gggaggacaa	aggacaccgc	accaccatca	5160
gaaagcagta	agtcagtttc	attcattcac	tcaaccgatg	tanganaga	cttcccacat	5220
tccgtgggct	aaaggatgaa	gagccatccc	tecetgagag	caggaagea	ctcaaacccc	5280
aaagtttgga	gtgtgagctg	aggtgtagga	gaaagagtaa	gagettacte	tttagaaaggg	5340
tgctgggaag	agtcaatagt	ttggaataac	tcaataattt	arggradere	acattaataa	5400
tttgctggct	ttatgtggga	agaaatttkt	tttttgatt	ggggagtggt	gggccggcgg	5460
tgaggctgcc	tgtggaaaga	gaagtgagtg	ttttgactca	tatatata	ctttctctct	5520
gggctgttcc	aataagcaac	aaaaggcaaa	atggcctggt	tetetgteee	ctcacctaat	5580
gtatgcctcg	tacaggttat	gaaaagaaaa	agttgggaaa	agetgteeae	attataact	5640
tgtgttcttg	tggagtgtgc	tagatgcccc	ctctctggag	aaaaaaaacc	ettagggcct	5700
ctgacccacc	tctggagagc	ctagttccct	tctggaggca	gaaggcaaag	cccaggaccc	5760
agagagtgct	ggaccacgcc	actcacagga	accagcaggc	tgtgaggttg	adagetagge	5820
atatggagct	ttccaggctg	ggtgcagggc	ctcgtggccc	ttcccctccc	etergracie	5880
tatagctcag	tcttcccagg	cggtgtgaac	acgcagtgac	atttccagga	atacagggat	5940
ttattaatga	tttcttgtga	aatgtttgga	aatacaaagt	actctataaa	caccicacaa	6000
tagcattggg	gctgagaact	ccacaaagtg	ccggaataca	tttgcatgta	agacagaacg	6060
ctgcctgggt	cattgatgcc	tgttgagtgg	cagtcacaga	cactgectag	ggtttttgat	6120
tcacgctgtt	gggactgttc	tatgcagggc	accetettgt	gtggcatagg	atttgtgeet	6180
caccacacac	tgttgtagct	ttgctgtctt	gatgatgagt	agagggcagt	gtccaggcca	6240
tggtataagc	atctactgcc	ccccagggtt	accaaaacca	agccaagttg	tgteteageg	6300
agetecataa	agcatggaga	agttgagtac	tcagagacat	gacgtgactt	ttcaaaggct	6360
gtaagctgac	gagggacata	gctagggttc	agacttgagt	ttttctttt	CELECTE	6420
ttctttttt	tttaagactg	agtcttgctt	ttgtcgccca	. ggctggattg	cagtggtgct	6480
tageteacta	caacctctgc	ctcccgggtt	caagcaattc	teetgeetea	geeteecag	
tagctgggat	tacaqqcacc	tgccaccatg	cctggccaac	atttttgtat	tttttagta	6540
gagatggggt	ttcaccatqt	tggccaggct	ggtcttgaac	tcctgacctc	aggtgatcca	6600
cccacctcaa	cctcccaaag	tactgggatt	acaggtgtga	gccactgcac	ccggcccaga	6660
ctcgagtttt	tcatcttaat	gctttttcat	tgcctgacac	tttactgaga	ccaagatagg	6720
gaacttcaca	tacagtacct	tttctcccaa	. ggcggaagag	ggctgttcaa	tttctacact	6780
agagttcggg	gagttttaga	aatgagtcag	r ttatcgagga	tgagagcagt	teetgalagg	6840
ctcaaccaca	atgagatgta	gctgttcaga	gaaagcatto	ttttatctat	aaactggaag	6900
ataatcccgg	tqaaacgaag	cccagcccca	. ggggcttcac	taactccagg	ctgtgcttct	6960
caaactttac	tgagcatagg	aatcacctgg	, gcatcttgtg	, aagctgtaga	tttgaattet	7020
gcaggtcggc	: agaggggtct	cagaatccgc	: atttccaaca	atgtctccas	taatgetgat	7080
actactcato	cctggaccac	: agattgggta	ı gccaggttct	; ggcaagctca	teccaagger	7140
ttgagatgag	atcagacaaa	atatgttctg	g ggacatggct	: tttgagaggt	: caagaaaata	7200
agatgtttct	ttctcttctc	: atccccaaco	cttgcactgo	c ccttttctcc	CTTCCCCTac	7260
cctcctttct	gtccccatco	ctgacgccag	g ctgttcagca	a tgagaagctg	g gagtgacatg	7320
cgacaggagg	tgatgtttct	: gaccaatgtg	g aacagctcca	a geteeteead	e ccaaatctat	7380
caggetgtgt	ctcgtattgt	: ctgcgggcat	cccgagggag	g gggggctgaa	a gatcaagtct	7440
ctcaactqqt	atgaggacaa	a caactacaaa	a gccctcttt	g gaggcaatg	g cactgaggaa	7500
gatgctgaaa	a ccttctatga	a caactctaca	a agtgagtgt	c catgcagac	c ccagecetgt	7560
ccccaaccc	atccctccct	tagttctgg	c cttggcctg	t gtcatctcc	t ccctctgtag	7620
cagcqttag	a tgtctacate	cccatttgc	c caccagact	g agctcttcc	t agaggagaga	7680
ggcttctct	t gaatagcta	ctgtcccca	g ttctctgaa	t gcagcctgg	c acatctcagg	7740
tgcacagtag	tqtttatca	a tggaatgaa	t gattgacag	c caaccttct	g gttttctggg	7800
ggatgtgga	a gggtggctt	c cagggtgat	c aagaatgag	a taatggcag	a aggacaaatc	7860
ctgcaagat	c tcacttata	t atggaatat	a tgtaaggta	g aaagtgtca	g tttcacatga	7920
tgaataagt	t cctqqqatc	t tgatgtaca	t cgtgatgac	t atagttagt	a acactgtata	7980
gtatacttg	a aatttocta	a gagagtaga	t ccgaagtgt	t cacactaca	c aaaaaaggca	8040
actatoaco	t gatggattt	a ttaacaqct	t gattgtggt	g atcctttta	c aaagtataca	8100
tatattasa	a catcacatt	g tatacctta	a atatataca	a tttttattt	g tcagttgtaa	8160
ctcaaaaaa	g ctagaaaag	c attttaaa	a aggatgatg	t actggtctt	a atattaccat	8220
tgagataag	c tttataata	a cataaaaaq	a aataacaqt	a atgataata	g caacaacaac	8280
cyayacaay				_	-	

22

```
aacaacaaag aactaacatt taagtagaat ttcttgtgca ctgtgcattc tgtttaagtt
                                                                      8340
atctcatttt accctcatga taacctgcag ggaagattct ttaaccccac atttcatagg
                                                                      8400
ctcagagagg ttaagtgcct tggttagagc cacatcagag ttaatccaca agagccagga
                                                                      8460
ttcaagccca aatctgcctg gatctgtgct ctctaagata actgttagtg gtggcgtgtg
                                                                      8520
tgttctcaca ctcagacatt tgatctgccc tttgtttccc attcttagct gcaaggcagt
                                                                      8580
gttaaagaac cctgtgtctc catatccact ccccacactt aagcactttt gtgggcccgt
                                                                      8640
gtgccgtatg cctcgtggca gcagggatcc aatgtcacag ttttaggcag tggcatcctt
                                                                      8700
ttccttgaaa acttgatgca ggggaacctt tctccatttc caaccacagg tgtgtctttc
                                                                      8760
agacactgag tgaggcaggt tttgtacttt attgtaacac aagaaccttt tcttctctgg
                                                                      8820
agtaaagcac tccagacatt cgcaagttgc tttacaagcc ttaaaaaggat ggtattgtag
                                                                      8880
gcaactttaa ttaaatccca tctcctcctc tcccccagct tgcaagttga cccaaggaag
                                                                      8940
ccttcatttc catgacagac ttaattgtga gggcatcctc a
                                                                      8981
```

```
<210> 21

<211> 20284

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(20284)

<223> n = a, t, c, or g
```

<400> 21

actgtgttag caaggatggt ctcgatctcc tgacctcgtg atccgcctgt atcggcctcc 60 caaagtgctg ggattacagg cgtgaaccac tgcgccctgt tgagaatttt tttttttt 120 tttgggagaa agagtttcgc tcttgttgcc cgggctagag tgcagtgaca caatctcggc 180 teactgcaac ctetgcetee tgggttcaag caatteteet geeteageet catgegteae 240 cacgcccage taattttgta tttttagtag agacagggtt tetecatgtt ggtcaggetg 300 gtctcgaact cccaacctca ggtggttcgc ccgccttggc ctcccaaagt gctgggattg 360 caggcatgag ccactgcgcc cagccccaaa tttttggtttt tgcttgaaaa ctgaggtctg 420 aattcagcct totggttgcc cotcaagagt cagtttaaat gttggtcatg ttagttgtca 480 gtgaaaacaa tggtgaggct ggcatgagag tgtgaatctg gatgggaggg cttgtgcttc 540 atgaaaacat ttttccagat cagctcagtc gtgagttatc cgtcattgac gttataataa 600 gctctgatta tttatcaagc atcattcttt atagatatct cagtttaatc tgagataatc 660 ttctccacat ctctccacat agatgttatg aattttactt ttacagagga gccaactgag 720 gctcagataa gttacttatt atatgactag tagtggtaga gctggggttt caactaagaa 780 ctctctggct ccaaagccct tgtaagtttc tatcagtata tgaccatgca tatgagcatt 840 tgtctctcct cttcttcata gctccttact gcaatgattt gatgaagaat ttggagtcta 900 gtcctctttc ccgcattatc tggaaagctc tgaagccgct gctcgttggg aagatcctgt 960 atacacctga cactccagcc acaaggcagg tcatggctga ggtaagctgc ccccagccca 1020 agactecete cecagaatet eeccagaaet gggggcaaaa aacteaaggt agetteagag 1080 gtgtgcgcta agtatactca cggctcttct ggaattccca gagtgaaaac ctcaagtctg 1140 atgcagacca gagctgggcc agctccccag tcgtgggtat agaatcatag ttacaagcag 1200 gcatttcttg gggatgggga ggactggcac agggctgctg tgatggggta tcttttcagg 1260 gaggagecaa acgeteattg tetgtgette teeteetttt tetgeggtee_etggeteeee 1320 acctgactcc aggtgaacaa gaccttccag gaactggctg tgttccatga tctggaaggc 1380. atgtgggagg aactcagccc caagatctgg accttcatgg agaacagcca agaaatggac 1440 cttgtccggg tgagtgtccc tcccattatt accatgtgcc tgcttgatac tggagaggtg 1500 agtttctggt cactttccca ggtgtgagtg aggtgagaat tctttcagtt tatctagctg 1560 ggggaatgta gtgagcatag ctaaagtcac agggcaccac ctctccagaa gtacaggcca 1620 tggtgcagag ataacgctgt gcatatcagc atccatgcca ctcacggtca aatagcagtt 1680 ttctgcaaaa cttagtgagg gctggtgttt ggaagtggag ttgagtaatt gcagtaccct 1740

attttccttt	ttgctgcagc	ctctcagcca	gccacagcat	ctccctgtgt	cttggtaggt	1800
tttggaaaga	agtgtgggag	caaaagcatg	atgttacatg	tagactggcc	tgagatactc	1860
attctcaggg	cactgtgtga	atgatgagct	gctgttactg	tgtggagggg	aaatgcactt	1920
agtgcttcag	agccacttga	aagggataag	tgctctagag	acaattgggt	tcaaatgtgg	1980
agcaggctga	gcaagaacag	aatgtctcct	ttgcctgagc	ctgagtgctg	ttaatcacat	2040
cttcctgcct	tgggctgagt	tagagaatca	ttagactatt	tcctgtttcc	atggtgaggg	2100
aggcctcttc	cttttgtctc	tgctcccctt	aagaagcagg	tgaggatttt	gccaggtttc	2160
ttgttttgaa	ccttattgac	tttaagggcg	gctgggtttt	agagactgta	cctacctagg	2220
gggaacactt	ccgaagttta	ggactattcc	ctgatccgct	gggaggcagg	ttactgagga	2280
agtcccttta	aaaacaaagg	agtttatact	gagaaaagca	taaacagtga	tttgtatgga	2340
ttcacactga	ctaatatagc	tcatgccatt	aaagtggggt	ctcttctcta	aaggagggtt	2400
atatgatcta	gccccgtaga	cctaagtgtg	gtttcagacc	tgttcttcct	ggtcctctcc	2460
ttqqaatcca	tatttctact	agttggactt	tttctgtttg	tctggctctc	agaggattat	2520
aggaggccct	gtgaagtgac	tcagtgaatt	ttgatttgtg	ggcaagtaga	tggttcccta	2580
gtctgaaatt	gactttgcct	taggtgcttc	aattcttcat	aagctcccag	ttcttaaagg	2640
acaagatcct	tgtaaacatg	gcaatggcat	tcattaggaa	tctagctggg	aaaatccagt	2700
gtgtatgctt	ggaaatgagg	gatctggggc	tggagagaaa	ggcatgggca	tgccttggag	2760
ggacttgtgt	gtcaagctga	ggacctttac	tttaagctct	aggggaccag	gcaaggggag	2820
atgtagatac	gttactctga	tggggtggat	gaattgaaga	aggatgaggc	aagaatgaag	2880
gcagagacca	gggaggaggc	tctccaagtg	gccaaggcat	aaagcaagaa	atgaggcctg	2940
gtgactgctt	agtggcagag	cagtgaaaga	gagggaggca	tcaaagtgag	tctcgatttc	3000
tagctgggtg	ggtggtagcg	atgtccagta	ggccagtggc	tactgaggtc	tgcagtggag	3060
gagggtggtt	gggctggaga	cagatgatga	gggagtcatc	agcctgtggg	tggaagaaaa	3120
gggaacctct	tccaactgtt	ttctttgctt	cttccctctc	tttctcttt	tttttttt	3180
tqqacagagt	cttgctctgt	cacccaggct	gaaatgcagt	ggcatgatct	tggctcacca	3240
cagcctccgc	ctcctgggtt	caagcaattc	tcctgtctca	gcctccagag	tagctgggat	3300
tacaggcaca	tatcactgtg	cccggctaat	ttttgtattt	tcagtggaga	tgggatttca	3360
ccatgttggt	cgggctggaa	tgaactcctg	acctcaagtg	atccacctgc	ctcagcctcc	3420
caaagtgttg	ggattacagg	catgagccac	cgcgcccggc	ctttcttccc	tctcttaaag	3480
agtgtttatt	taattccaca	aacatgagct	tgtcaccccc	tgtagcctgg	catctcctac	3540
acgaggtgat	ggctgaggct	tctgcttctg	ctggggtagc	tctgatcttt	ctgctttctc	3600
tggcactgtc	tacccatgtt	gcctcacccc	acaggtccca	gggcacctct	ctcgggcaag	3660
tcttggaacc	ctctgacact	gatttgctct	cttttctgag	ctgcttttag	ccacccatcc	3720
tegggaeetg	ttttctctct	gcctccaccc	ctgcgggcag	tcttaggtct	. cctgccctc	3780
acgagcaccc	cagagaggcc	acgtgctcag	tgatctcagt	gggcgcatct	ttctagtctt	3840
gctattcttt	ttggccatgt	tgttcagaaa	ccatactggg	cagggccgac	ttcaccctaa	3900
aggctgcgtc	tcttcactct	gcttttgttt	gttccaaata	. aagtggcttc	: agaattgcta	3960
accctagcct	ctgtgaactt	gtgaggtaca	attttgtgtc	: tgttatgtta	. acaaaaatac	4020
atacatacct	tcctggtgat	ggtataaatt	gctattctct	attggaaago	: aatttggaat	4080
gaaaatttaa	agaaccattt	taaaatatgo	: tatcctgcgt	acctccattc	cacccacccc	4140
cagggatgta	gcctactgaa	ataattttaa	agaagtcacc	: atatgagaga	a aaatgttatt	4200
gctatattgt	tattgtgaga	aattggaaat	agactaaatg	, ttcagcacta	taggaataat	4260
taatgaaatt	acatatacto	tatacaatca	ttatgctgcc	: attgaaataa	a taaatacaaa	4320
ggcgcaaggg	gggaaaagct	tataatgtta	a gtgaaactaa	ı gactgatttt	tttataaagc	4380
agcagttttc	agacccttgg	agactccaat	t tcggtagaac	: cagagettea	a tcttctctgt	4440
cgaagctgtg	acaggagttg	caaatgccto	tcctttttgc	tgagtttgca	a gctgctgttt	4500
ttccggcagc	acatctgtgo	aggcctctg	c ctcggcccct	ctggatctg	c tgattgagca	4560
gcggattgat	ctgtccttct	ctttcgtgtt	gacccatgte	g aggaaccaac	tggcaaggga	4620
acaagaaato	g gaaataggco	tcctttgcat	catgacctgt	acatcctgc	a attggaaaag	4680
attgtacttt	agttggttta	accagcagca	a ttatttttct	aaactaagc	a gtaagaagga	4740
attaggtttt	atgtgggato	aacagactg	g gtctcaaaa	g aggaaggtg	a tagaacacag	4800
tggggaqqq	g gaggtgcact	agaaacaga	g ggcctatgct	t ttcattctg	g ctttgctact	4860
taatagctqt	gtgacccaat	cttagagac	t taacctctct	t gaacttcca	t tttctcatgt	4920
ataaaatgg	g aaatattaaa	ggatactca	c tgggctggt	g gcttgtgcc	t gtaatcccag	4980
cacttagaa	a ggttgaggto	ggaggatca	c ttgagccca	g gtgttcaag	a ccagcccagg	5040
2229					•	

	caacatggca	agactctgtc	tctatgaaaa	aattaaaaat	tagccaggtg	tggtggtgtg	5100
	cacctgtagt	cttagctact	tggtaggctg	agatgggagg	atcacttggg	cttgggaggt	5160
	caaggctgcg	gtgagctgtg	attccatcac	tgcactccag	cccgggcggc	agagcgagac	5220
	actgaatcca	aacgacaaca	acaacaaag	gcaaaaaaat	aaaagtgccc	tctttatgga	5280
	gttgtgtaag	gtgaagcata	tacactattc	aacatagtaa	ctatataaag	gaagtattgt	5340
			ccattaagtg				5400
	ctctgaattc	agactggtct	gactttgagt	ctcagctcca	catctagtaa	tactatgacc	5460
			ttttttttc				5520
			agttttctgt				5580
			tgctcctcaa				5640
	ctcactggaa	tggcagatgc	tgttggacag	cagggacaat	gaccactttt	gggaacagca	5700
	gttggatggc	ttagattgga	cagcccaaga	catcgtggcg	tttttggcca	agcacccaga	5760
	ggatgtccag	tccagtaatg	gttctgtgta	cacctggaga	gaagctttca	acgagactaa	5820
			ctcgcttcat				5880
	aaaagactta	acggcttctt	tctctgagac	gttacaataa	ggttcaggca	ggaggcaagt	5940
	ttagaaataa	tgtatagtct	catttacaaa	actatccctc	aagcctaaca	caggatttga	6000
			atgttagttg				6060
	ttagtaaatt	aactctagct	tattctatat	aggctcaaga.	gaatatttct	acccattttc	6120
			gtgactaatg				6180
			tcgaattcgg		•		6240
			gggtaagagg				630Ó
			aaacagaaaa				6360
,			taacatatcc				6420
			ttcattcttg				6480
			aatcgtgtag				6540
			ctggctgcca				6600
			agaacccata				6660
			gaagttctgg				6720
			tcatgtcaag				6780
			ggatgggtaa				6840
			tatattagga				6900
			caaaaaaact				6960
•			tttttcatag				7020
			aattccagga				7080
			gagaattgct				7140
			cccgcctggg				7200
			aaaggggctt				7260
			ttgtatggtt				7320
			ggtcctcgag				7380
			caggatgtgg				7440
			gtctatatgc				7500
			ccactgtttt	_			7560
			gcatgcatgt				7620
			ccacatgaca				7680
			ggttgccact				7740
			gcccaggctg				7800
			aagctattct				7860
			ccggctgact				7920
			tcaactcctg				7980
	actctaccct	tttcctcaaa	tgtgagccac	totaccoage	tasastatat	aatttttac	8040
			atttgctcaa				8100
	atttatata	atatatacea	acatagatgc	taggtagtag	accadattta	Laaaagcaca	8160
			ttcttctccc tcttcctctt				8220
			cattgtggga				8280
	uccaaget	Judagueet	Jucigigga	uctatgeett	-ggargraat	gattlettet	8340

aagacaatgg	gcggaggtgt	agttattgca	gacatctgaa	atatgtaatg	tttcttccag	8400
attctggaaa	ttctcttatt	ctctgtggtt	ggtggtggtg	gtgggatgtg	tgtgtgtgtg	8460
tgtgtgtgtg	tgtgtgtgtg	tgtgtaggga	tcaggatgcg	ggaggagctg	ggttctgctt	8520
gtattggttc	tctgttttgc	attgaatagt	gtgtttcctt	gtatggctat	ctatagcttt	8580
tcaaggtcac	cagaaattat	cctgtttttc	accttctaaa	caattagctg	gaatttttca	8640
aaggaagact	tttacaaaga	cccctaagct	aaggtttact	ctagaaagga	tgtcttaaga	8700
cagggcacag	gagttcagag	gcattaagag	ctggtgcctg	ttgtcatgta	gtgagtatgt	8760
gcctacatgg	taaagctttg	acgtgaacct	caagttcagg	gtccaaaatc	tgtgtgcctt	8820
tttactttgc	acatctgcat	tttctattct	àgcttggaat	ctgaaacatt	gacaagagct	8880
gcctgaaatg	tatgtctgtg	gtgtgattag	agttacgata	agcaagtcaa	tagtgagatg	8940
accttggaga	tgttgaactt	ttgtgagaga	atgagttgtt	tttttgtttt	ggtttttagt	9000
actttaacat	aatctacctt	tagtttaagt	atcgctcaca	gttacctagt	tactgaagca	9060
agcccccaaa	gaaatttggt	ttggcaacac	tttgttagcc	tcgtttttct	ctctacattg	9120
cattgctcgt	gaagcattgg	atcatacgta	catttcagag	tctagagggc	ctgtccttct	9180
gtggcccaga	tgtggtgctc	cctctagcat	gcąggctcag	aggccttggc	ccatcaccct	9240
ggctcacgtg	tgtctttctt	tctccccttg	tccttccttg	gggcctccag	ctttctgcgg	9300
atda. Asacc	ggtcaatgcc	cctcttcatg	acgctggcct	ggatttactc	agtggctgtg	9360
atcr aagg	gcatcgtgta	tgagaaggag	gcacggctga	aagagaccat	gcggatcatg	9420
ggc: igaca	acagcatcct	ctggtttagc	tggttcatta	gtagcctcat	tcctcttctt	9480
ataaacacta	gcctgctagt	ggtcatcctg	aaggtaaggc	agcctcactc	gctcttccct	9540
gccaggaaac	tccgaaatag	ctcaacacgg	gctaagggag	gàgaagaaga	aaaaaaatcc	9600
aagcctctgg	tagagaaggg	qtcatacctq	tcatttcctg	caatttcatc	catttatagt	9660
tagagaaagt	gaggcccaga	gaggggagt	gacttgccca	aggtcaaccc	agccgggtag	9720
cagctaagta	ggatgagagt	gcagggttca	tqctttccag	ataaccacat	gctcaactgt	9780
accatactat	ctcattggta	gtggttcatg	gcagcatctg	aaagctattt	attttcttag	9840
atatattooo	tggcgattct	tectaaqttt	ctaaqaacaa	taatcagaag	gatatatatt	9900
attacaaatt	agactgtctg	gaagcagagg	ctgaaataga	qtttgatgta	tgggtattta	9960
tgagggttca	atacctatgg	aagagatatg	gaagatgcag	gattgggcag	agggaggagt	10020
tgagggetea	tatagggcca	accccataga	gcactctaga	gaatatgcag	cttgttggag	10080
ttattette	tcgagctgaa	acatccagcc	ctttatactc	ccccaaggcc	tccctcctga	10140
caccacctac	ctcagccctc	tcaatcaatc	actogatoto	agetaceeta	ggaaggtcgt	10200
acccsaaaa	ctacatggct	ctctactact	gtgacaaacc	cagagttgct	gatgcctgag	10260
gccctaggg	gacagetggg	caacaaggct	tccctgaatg	gggactctgg	gcagtgcagt	10320
tttatatatat	aaccatacat	taatatatt	atatccgaat	tttctttctc	tgcaagcatt	10380
tcatataaac	acacatcagg	taaaaataaa	tgtttttgaa	gcaaaaggag	tacaaaqaqa	10440
taagaagtaa	ctaatttaat	actagttacc	atctottaca	aataqttcct	actgattgcc	10500
aagaactat	taaacacatc	acatggggtt	cttcttctat	cctcactaac	ccttttaaca	10560
aaggaccgc	tgaggctcag	gaaggtcaag	gactttattg	aggttccaca	gtaggataca	10620
gataaggaa	a aaagcaaccc	ctcctcato	ctctattatc	taactgcaag	gggaaggtca	10680
gtcctcgct	tagtggtccc	ataattaata	cataagaget	gctctgagac	aactgcatgc	10740
tagtagata	tgcagacatg	tacccatcag	ccagagatag	gctcaaaata	tccacaagag	10800
tttaastasi	tgtgggaatg	caccactccat	ggtgatcaag	aggaaagtc	aagttgcctg	10860
gggatttt	ttggctttta	cagaaceeac	ttacqtqqqa	tattatctcc	cacagetett	10920
gtcacttcc	c accagtcata	gucaguauag	aaggagaaac	cagttgaaat	tacctattga	10980
2022202	g agcaaactcg	ccactasas	tacatacaaa	accetagact	ctattatatt	11040
agaaacaaa	g ccattatttt	totaccgaaa	tttaaataaa	tcacttatct	totttaggat	11100
cataattet	c agttgcctca	tcagagagat	ceegggeaug	acgettetge	attototota	11160
ggcaacgac	agitgeecea	totottttt	ctatagatea	tacaagtgag	tacttaggat	11220
tattasass	g gaataaaccc	tatatatatat	cetteceast	taggaaacct	actaccetae	11280
ryctgaggc	a gcacatttga	tatattaata	tecatatta	ctataataac	aatcctccac	11340
agrgatece	a gcgtggtgtt	attatass	geeneetes	cegeggegae	tagagacata	11400
tgetteetg	a ttagcacact	celetecaga	gecaacetgg	, cagcagcety	ctacctccc	11460
atctacttc	a cgctgtacct	geeetaegte	. cigigigigg	catyytayya chtcochccc	tatacacett	11520
ttcacactc	a agatcttcgc	tgtgagtaco	: congecttt	. ccccagigge	atgattatat	11520
tgaccttcc	t ttggagtccc	cgaataaaag	cagcaagttg	agaacagaag	acyactycct	
tttccaatg	g gacatgaaco	: ttagctctag	g attctaagct	. ctttaagggt	aayyycaayc	11640

			ttacctttag				11700
			gccagactgc				11760
	tgaggaatgg	cttcaggcaa	cagatgccat	ctctgccctt	tatctcccag	ctctgttggc	11820
			ccaaggccac				11880
			tgtgtccagt				11940
	actaagcaca	actgaggagc	aggtgcctca	tcccacaaat	tcctgacttg	gacacttcct	12000
			gatatcttgg				12060
			ttatcaggaa				12120
			aggcatcagc				12180
			gcctcagaag				12240
			gcatctttgg				12300
			atgtttgtat				12360
			ccactcccta				12420
			ttgcaaattc				12480
			accaggaaat				12540
			tttgggtttg				12600
			gacaacctgt				12660
			atgatgctgt				12720
			ccaggtacac				12.780
			ttgtgctaga				12840
			atagtaaaca				12900
			gtacagcact				12960
			ttgcttcatt				13020
			tcaaatgaga				13080
			aaatgttggt				13140
			atcctcccaa				13200
			gaggttctgt				13260
			ctgtgattta				13320
			ttaatataat				13380
			tgagatcaaa				13440
			ctaaggaggt		_		13500
•			aattttgcag				13560
			ccttggatag				13620
			ccgtgggttg				13680 13740
			agcaaatgtt				·13/40
			gtgtcaagga				13860
			ttggctcata ccttgcacca				13920
			aaccagaaga				13980
			tgctgctgcc				14040
			tgaaaccact				14100
			catttatgtc				14160
			tttctttgtt				14220
			tttcatggtc				14280
			tagcctcgct				14340
			aagtggctac				14400
			tectetettg				14460
			tgggttcttt				14520
			tcttctgtgc				14580
	gatgcccctt	agtgtagcac	gcttgcctgc	tgttcctaat	catcttctcc	tacctcctct	14640
			agtcacctag				14700
			tttgtaggta				14760
			ctcctccttt				14820
	cctgagcatc	cctccttggt	tctcaggtag	tcagtcactc	tctqccctqa	acttccatqq	14880
	cacgtgaaaq	aaaatctttt	tattttaaaa	caattacaga	ctcacaaqaa	gtaatacaaa	14940
			•			-	

ttacatgagg	gggttccctt	aaacctttca	tccagtttcc	ccaatggtag	cagcatgtgt	15000
	tagtatcaaa					15060
agatttcact	agctttatgt	gcgctcattt	gtgtgtgtgt	gtgcgtattt	agttctatgc	15120
aattttatca	tgtgtgaatt	catgtaatta	ctagctcagt	caagctgcag	aaatatctca	15180
ttgtcacaaa	gctccttcat	gctacccctt	aatggccaca	gccacctccc	ttcttcctca	15240
gttcctgaca	cctgtcaacc	actaatgcgt	tcctcgtttt	tacagtttta	ttatttctag	15300
aatgttacat	aaatggaacc	atacagtagg	tatccttttg	atactggctt	tttttttt	15360
ttcactcagc	agtattccct	tagatctatc	caagttgtgt	gtgtcaacag	ttcattcctc	15420
ttcactgctg	agtagtgttc	cctgggaggg	gtgtatcaca	gttccatggc	atttttagat	15480
	aacagctttc					15540
aatagactct	gaatgctcct	ttatcatcgt	attcccatca	ccaacatcag	tacccaaata	15600
ggccctaaat	aaacatttat	agcctcctgc	ctgcctgaga	aaccagggtg	gacatggaga	15660
gaaggcactt	ctgaaagttc	aagcgcagtg	csctgtgtcc	ttacactcca	ctcctcagtg	15720
ctttctgtgg	gttcatttct	gtcttctctc	ctgtcacagt	ctgcatggag	gaggaaccca	15780
cccacttgaa	gctgggcgtg	tccattcaga	acctggtaaa	agtctaccga	gatgggatga	15840
aggtggctgt	cgatggcctg	gcactgaatt	tttatgaggg	ccagatcacc	tccttcctgg	15900
gccacaatgg	agcggggaag	acgaccacca	tgtaagaaga	gggtgtggtt	cccgcagaat	15960
cagccacagg	agggttctgc	agtagagtta	gaaatttata	ccttaggaaa	ccatgctgat	16020
ccctgggcca	agggaaggag	cacatgagga	gttgccgaat	gtgaacatgt	tatctaatca	16080
tgagtgtctt	tccacgtgct	agtttgctag	atgttatttc	ttcagcctaa	aacaagctgg	16140
ggcctcagat	gacctttccc	atgtagttca	cagaattctg	cagtggtctt	ggaacctgca	16200
gccacgaaaa	gatagattac	atatgttgga	gggagttggt	aattcccagg	aactctgtct	16260
ctaagcagat	gtgagaagca	cctgtgagac	gcaatcaagc	tgggcagctg	gettgattge	16320
cttccctgcg	acctcaagga	ccttacagtg	ggtagtatca	ggagggtca	ggggctgtaa	16380
agcaccagcg	ttagcctcag	tggcttccag	cacgattcct	caaccattct	aaccattcca	16440 16500
aagggtatat	ctttgggggg	tgacattctt	ttcctgtttt	ctttttaatc	coccetaaa	16560
acatagaatt	aatatattat	gagcttttca	gaagatttt	aaaaggcagt	cagaaateet	16620
actacctaac	acaaaaattg	tttttatctt	tgaataatat	gittigitt	attacasatt	16680
catgcatgcg	atgttaggca	tacaaaatac	attttttaaa	ttetaacccc	tagggggggt	16740
ggaaacttcg	tttaaaaaat	geteataeta	tttaattat	atagatataa	taggetteat	16800
tgtagttatt	taccgaagca	aaaggacagc	atattatatt	statatacea	actgaatgga	16860
tagaaaggaa	tgggggcggt	gggagggttg	grattetetee	ttctasattt	ttatactcaa	16920
gcatctagag	ttaagggtag	tesassess	attagggag	acctacatec	tagaaaaaa	16980
greaateerg	accgggttgt	ceeeeeegae	gaacctccc	geetacacce	accataacct	17040
cattegetet	gagatgagca	ceattetggta	ttaagaatag	gccttttcta	gatgtgtgtg	17100
tatastagas	atgtgagtac tcatgggagg	agrageact	aaggaatag	ctttactata	tttttattt	17160
ttottttt	cttttttatt	ttttgagat	ggagtetege	totatagos	aactagacta	17220
tagtagaga	atctcggctc	actocaacct	tagectees	ggttcaagcg	attetectee	17280
	cgagtagctg					17340
	gagacggggt					17400
gtattcagta	cacctcggtc	teccaaagtg	ctgggaacac	aggcatgagc	cactgtgtct	17460
gegateeget	tactttcttt	gaatatggca	ggctcacctc	cgtgaacacc	ttgagaccta	17520
attattett	gattttagga	gaadtagaaa	gtgaatggtt	gagctgtaga	ggtgacatca	17580
					tgctggaggg	17640
					cagacttccc	17700
agacctggta	gtacttcaga	gccctggtat	gatggaccta	tatttqctqc	ttaagacatt	17760
					gtgatggagc	17820
					tcttcttatc	17880
					catggggctc	17940
					gaaggctgct	18000
					cattaaagac	18060
					gccaggcctg	18120
					cagctcatgt	18180
					ttgataaagt	18240
55 - 5	J - J	J				

tattttaaaa	agcacgggga	gagaaaaata	tgcccattct	catctgttct	gggccagggg	18300
acactgtatt	ctggggtatc	cagtagggcc	cagagctgac	ctgcctccct	gtccccaggc	18360
tgactgtcga	agaacacatc	tggttctatg	cccgcttgaa	agggctctct	gagaagcacg	18420
tgaaggcgga	gatggagcag	atggccctgg	atgttggttt	gccatcaagc	aagctgaaaa	18480
gcaaaacaag	ccagctgtca	ggtgcggccc	agagctacct	tccctatccc	tctcccctcc	18540
tcctccggct	acacacatgc	ggaggaaaat	cagcactgcc	ccagggtccc	aggctgggtg	18600
cggttggtaa	cagaaacttg	tecetggetg	tgcccctagg	tcctctgcct	tcactcactg	18660
tctggggctg	gtcctggagt	ttgtcttgct	ctgtttttt	gtaggtggaa	tgcagagaaa	18720
gctatctgtg	gccttggcct	ttgtcggggg	atctaaggtt	gtcattctgg	atgaacccac	18780
agctggtgtg	gacccttact	cccgcagggg	aatatgggag	ctgctgctga	aataccgaca	18840
aggtgcctga	tgtgtattta	ttctgagtaa	atggactgag	agagagcggg	gggcttttga	18900
gaagtgtggc	tgtatctcat	ggctaggctt	ctgtgaagcc	atgggatact	cttctgttak	18960
cacagaagag	ataaagggca	ttgagactga	gattcctgag	aggagatgct	gtgtctttat	19020
tcatctttt	gtccccaaca	tggtgcacta	aatttatggt	tagttgaaag	ggtggatgct	19080
taaatgaatg	gaagcggaga	ggggcaggaa	gacgattggg	ctctctggtt	agagatctga	19140
tgtggtacag	tatgaggagc	acaggcaggc	ttggagccaa	ctctggcttg	gccctgagac	19200
attgggaaag	tcacaacttg	cctcaccttc	tttgccgata	ataatagtgg	tgcgttacct	19260
catagaggat	taaattaaat	gagaatgcac	acaaaccacc	tagcacaatg	cctggcatat	19320
agcaagttcc	caaataaaat	gcgtactgtt.	cttacctctg	tgaggatgtg	gtacctatat	19380
atacaaagct	ttgccattct	aggggtcata	gccatacagg	gtgaaaggtg	gcttccaggt	19440
ctcttccagt	gcttacccct	gctaatatct	ctctagtccc	tgtcactgtg	acaaatcaga	19500
actgagaggc	ctcacctgtc	ccacatcctt	gtgtttgtgc	ctggcaggcc	gcaccattat	19560
tctctctaca	caccacatgg	atgaagcgga	cgtcctgggg	gacaggattg	ccatcatctc	19620
ccatgggaag	ctgtgctgtg	tgggctcctc	cctgtttctg	aagaaccagc	tgggaacagg	19680
ctactacctg	accttggtca	agaaagatgt	ggaatcctcc	ctcagttcct	gcagaaacag	19740
tagtagcact	gtgtcatacc	tgaaaaaggt	gagctgcagt	cttggagctg	ggctggtgtt	19800
gggtctgggc	agccaggact	tgctggctgt	gaatgatttc	tccatctcca	ccccttttgc	19860
catgttgaaa	ccaccatctc	cctgctctgt	tgcccctttg	aaatcatatc	atacttaagg ,	19920.
catggaaagc	taaggggccc	tctgctccca	ttgtgctagt	tctgttgaat	cccgttttcc	19980
ttttcctatg	aggcacanag	agtgatggag	aaggtcctta	gaggacatta	ttatgtcaaa	20040
gaaaagagac	ttgtcaagag	gtaagagcct	tggctacaaa	tgacctggtc	gttcctgctc	20100
attacttttc	aatctcattg	accttaactt	ttaaactata	aaacagccaa	tatttattag	20160
gcactgattt	catgccagag	acactctggg	cattgaaaga	aagtaatgat	aatagttaat	20220
tttatatagc	gttgttacca	tttcaacctt	tttttttt	taacctctat	catctcaatt	20280
aaag						20284

```
<210> 22
<211> 7052
<212> DNA
<213> Homo sapiens
<400> 22
gtgaacacac attaaagcat gagaagcatg aactagacat gtagccaggt aaaggccttg
                                                                        60
ctgagatggt tggcaaaggc ctcattgcag cattcattgg caggccacag ttcttttggc
                                                                       120
agetetgett cetgacettt cacceteagg aagegagget gttcacaegg cacacaeatg
                                                                       180
ccagacaggg tcctctgaag ccacggctgc cagtgcatgt gtcccaggga aagctttttc
                                                                       240
ctttagttct cacacaacag agettettgg aageceteee eggegaaggt getggtgget
                                                                       300
ctgccttgct ccgtccctga cccgttctca cctccttctt tgccatcagg aggacagtgt
                                                                       360
tteteagage agttetgatg etggeetggg eagegaceat gagagtgaea egetgaeeat
                                                                       420
cggtaaggac tctggggttt cttattcagg tggtgcctga gcttccccca gctgggcaga
                                                                       480
gtggaggcag aggaggagag gtgcagaggc tggtggcgct gactcaaggt ttgctgctgg
                                                                       540
gctggggctg ggtggctgcg ggggtgggag cagcttggtg gcgggttggc ctaatgcttg
                                                                       600
```

etggggtgee tggggetegg tttgggaget ageagggeag tgteceagag agetgagatg

attggggttt	ggggaatccc	ttaggggagt	ggacactgaa	taccagggat	gaggagctga	720
gggccaagcc	aggagggtgg	gatttgagct	tagtacataa	gaagagtgag	agcccaggag	780
		tttttcttgg				840
tagcatatgt	ggaacagaag	tcttgaccct	tgctatctct	gcctagtcct	aatggctggc	900
ttttcccagg	aaggcttctg	cttccatgga	ctgttagatt	aaccctttat	ttaggtaaat	960
gagggaacct	actttataag	cataggaaag	ggtgaagaat	cttttaagat	tcctttactc	1020
aagttttctt	ttgaagaatc	ccagagctta	ggcaatagac	accagacttt	gagcctcagt	1080
tatccattca	cccatccacc	cacccaccca	cccatccttc	catcctccca	tcctcccatt	1140
		tgtccaccca				1200
		ataagacata				1260
agagatgaac	atgtggaatg	acctaaacac	ctggaacagg	tgtggtgtat	gagcggcagg	1320
		gatggccagc				1380
		cctgcagatg				1440
		gtggaagaca				1500
atgaagctgc	taaggaggga	gcctttgtgg	aactctttca	tgagattgat	gaccggctct	1560
cagacctggg	catttctagt	tatggcatct	cagagacgac	cctggaagaa	gtaagttaag	1620
tggctgactg	tcggaatata	tagcaaggcc	aaatgtccta	aggccagacc	agtagcctgc	1680
attgggagca	ggattatcat	ggagttagtc	attgagtttt	taggtcatcg	acatctgatt	1740
aatgttggcc	ccagtgagcc	atttaagatg	gtagtgggag	atagcaggaa	agaagtgttt	1800
		gcctgagatt				1860
tttacatccc	aaccttaaac	tcctatgcac	ttatttaccc	tttaatgagc	ctctttactt	1920
aagtacagtg	kgaggaacag	cggcatcagg	atcacttggg	aacttgttag	aaattcagca	1980
		tactgaatca				2040
		ggattctcat				2100
		gctgagattt				2160
		caaaaaaaga				2220
		ttggggcttc				2280
		atcacagacc				2340
		ttgacagtgc				2400
		ttcagggcct				2460
		atactttgga				2520
		ctcttctgat				2580
		tctgtcttgg				2640 2700
		aaagaagcca				2760
					tttgatgaga	2820
		cccaagctgg				2880
					gctgagatta	2940
caagcatgtg	ctaccacgcc	cagctaattt	tgtatttta	gragagargg	gttttatcca	3000
					cggcctccca	3060
					ttgaaaatga	3120
					cggcttctct	3180
					ctgtcttacg	3240
					ctcgtaatgt	3300
					tggccgaaga	3360
					acacttaaga	3420
					tgaattgttc	3480
					tgttttgttg	3540
					tgccagcaag	3600
					ctgaagatga	3660
					atcaaacagt	3720
					ttggatggcc	3780
					ggtaaaagcc	3840
					catatcactt	3900
					ttatctttc	3960
rgeggggree	. Lagittitite	, catacattac	, gryrttaatt	. yeeyaacaa	tattcattcg	2,500

agtagatgag	tgattttgaa	agagtcagaa	aggggaattt	gctgttagag	ttaattgtac	4020
cctaagactt	agatatttga	ggctgggcat	ggtggctcat	gccagtaatc	ccagcgcttt	4080
gagaggctga	ggtgggtaga	tcacctgagg	tcaggagttt	gagaccagtc	tgaccaacaa	4140
ggtgaaaccc	cgtctctact	aaatacaaaa	aattagccga	gtgtggtggc	acatgcctgt	4200
catcccagct	acttgggagg	ctgaggcagg	agaatcgctt	gaacccagga	ggcagaggtt	4260
gcagtcagcc	acggttgcgc	cattgcactc	cagactgggc	aacaagagtg	aaaactccat	4320
ctcaaaaaag	aaaaaaaag	aattagatat	tttggatgag	tgtgtctttg	tgtgtttaac	4380
tgagatggag	aggagagcta	agacatcaaa	caaatattgt	taagatgtaa	aagcacatca	4440
gttaggtatc	attagtttag	gacaaggatt	tctagaaaat	ttttaggaac	agaaaacttt	4500
ccagttctct	cacccctgct	caaagagtgt	atggctctta	cattatatat	aactgcctga	4560
cttcatacag	tatcagtact	tagatcattt	gaaatgtgtc	cacgttttac	caaaatataa	4620
tagggtgaga	agctgagatg	ctaattgcca	ttgtgtattc	tcaaatatgt	caagctacgt	4680
acatggcctg	tttcatagag	tagtctataa	gaaattgatg	acttgattca	tccgaatggc	4740
tggctgtaac	acctggttac	gcatgaacac	ctcttttcag	ttgtctcaag	acacctttct	4800
tttctgtact	tatcagacaa	ggactgaaag	gcagagactg	ctactgttag	acattttgag	4860
tcaagctttt	ccttggacat	agctttgtca	tgaaagccct	ttacttctga	gaaacttcta	4920
gcttcagaca	catgccttca	agatagttgt	tgaagacacc	agaagaagga	gcatggcaat	4980
gccgaaaaca	cctaagataa	taggtgacct	tcagtgttgg	cttcttgcag	aatccagaga	5040
gacagacttg	ctcagtggga	tggatggcaa	agggtcctac	caggtgaaag	gctggaaact	5100
tacacagcaa	cagtttgtgg	cccttttgtg	gaagagactg	ctaattgcca	gacggagtcg	5160
gaaaggattt	tttgctcagg	tgagacgtgc	tgttttcgcc	agagactctg	gcttcatggg	5220
tgggctgcag	gctctgtgac	cagtgaaggc	aggatagcat	cctggtcaag	atatggatgc	5280
		tttcaatccc				5340
		cctcaatctc				. 5400
cctgcaatac	agggttgtta	cgaaaataaa	aatgaatagg	tgcttagaat	ggggcctgac'	5460
attagtaagt	gcttagtttt	gtgtgtgtat	atgttatttt	tattttggag	gagaacataa	5520
aaaggacaaa	gtgtagaaaa	actggttggg	tgtattcagc	tgtcataaca	tgagagttgt	5580
tatgcccaga	tgcacttgac	atgtgaattt	attagaaaca	tgatttttct	ctgagttgat	5640
gtttaactca	aactgataga	aaagataggt	cagaatatag	ttggccaaca	gagaagactt	5700
gttagactat	tgtctgcatg	tcagtgtttg	catgctaact	tgcttagtta	gaaaggttaa	5760
attttttcac	tctataaaat	caagaaatat	agagaaaagg	tctgcagaga.	gtctttcatt	5820
tgatgatgtg	gatattgtta	agagcgggag	tttggagcat	acagagctca	agttgaatcc	5880
tgactttgct	acttattggc	tatatgacct	tgggcaagct	gcttagtctc	tctgatcctc	5940
agttaccttt	gtttgttgat	gatgaccatt	gataacacaa	ccataaataa	tgacaacata	6000
gagatagttc	tcattatagt	agttgttata	cagaattatt	cactcaatgt	taattttctg	6060
cattgaaatc	ccagaacatt	agaattgggg	gcattatttg	aatctttaag	gttataagga	6120
atacatttct	cagcaataaa	tggaaggagt	tttgggttaa	cttataaagt	atacccaagt	6180
cattttttt	cagagaagat	atggtagaaa	gtcttaggag	gttgaagaag	gaattggata	6240
tttattcttt	ctgagactat	catgggagat	aatgactatg	gttgtccatg	attggagccg	6300
ttgctgtaga	gttggtttta	ttatagtgta	ggatttgaat	gggccatgtg	ttctcagacc	6360
tcagaataaa	aagagaaaac	tgaggccagt	ggggagcgtg	acttcacatg	ggtacacttg	6420
tgctagagac	agaaccagga	ttcaggactt	ctggctcctg	gtcctgggtt	catggcccaa	6480
tgtagtcttt	ctcagtcttc	aggaggagga	agggcaggac	ccagtgttct	gagtcaccct	6540
gaatgtgagc	actatttact	tcgtgaactt	cttggcttag	tgcctctgcc	aggtggccat	6600
aacctctggc	cttgtgttgc	cagagaaaag	gtttagtttt	caggctccat	tgcttcccag	6660
ctgccaagaa	tgccttggtg	cagcacagtc	ataggccctg	cattcctcat	tgccgtgctg	6720
		ggactcgtag				6780
ttgccgtttc	ctgctgtccc	cctgccccct	ccactgcctg	ggtaaagatt	gtcttgccag	6840
		cttgtgttca				6900
		tggatgtaca				6960
		gggtaagatt				7020
		acacggtgga				7052

31

```
<210> 23
<211> 2534
<212> DNA
<213> Homo sapiens
```

<400> 23 60 attggcctct ttttctctaa gcccacattt tcttcttaca tagttcaggt ttactttatt 120 ttttcctttc cggctgctga ccctgtattg cccgtagttg tggaacatag catgtgtttg 180 tgacctgtgc ctgttatttt tgtgctttct agttgtgcat gcaaagagta caaagttttc 240 ttgccctttc ttggaaaatc ctgcttgtct gtgccaaagg gataattgtg aaagcacttt 300 tgaaatactt aatgagttga ttttcttcaa attaaaaaaa atatataaat gtatatgtgt 360 atgtacatgt gtgtacacat acacaccttt atacatacag cccatttaaa acaagctcca 420 ctttggagtg ctctacgtca ccctgatgcc gaatacaggg ccagagtctg agatccttct 480 gggtggtttc tgtgttttgt tcatttctgt tttaagagcc tgtcacagag aaatgcttcc 540 taaaatgttt aatttataaa aacattttta tctctcgatt actggtttta atgaattact 600 aagctggctg cctctcatgt acccacagca atgatgctcc tgaggacacg ggaaccctgg 660 720 aactettaaa egeeeteace aaagaeeetg gettegggae eegetgtatg gaaggaaace caatcccgtg agtgccactt tagccataag cagggcttct tgtgcttgtt gcctggtttg 780 atttctaata tgctgcattt atcaactgca tgccacattg tgaccgccag catttgccct 840 ttgaattatt attatgtttt atttacaaaa agcgaaggta gtaaccgaac taaattatct 900 aqqaacaaac gtttggagag tcttctaaca ccqyscaaaq cacgtcatta cagacatttg 960 tttactgatt tagaacctta atatttaatt taaatacgca ctttacactt actgatgaaa 1020 tgcttttcct ttctttctct cccagcccct gtacttaagt gcttcaatag gctctcatta 1080 tatatgattt ttaggttttg cttatcagct tcttcgcttt tataatctga aaagatggca 1140 tatgaatttt tataaaaagg gacactttct tcttctcaaa ttgtatattt ttattgtact 1200 ttccttcaaa accccctttt aaaaagtaag cagtggataa ataaattcag tgaagcatcc 1260 atatgaccct taagtgagtg taggggaagg gaggtcacca gatcactgtg agtgaagatg 1320 gtggagaggt gaggatetta tgaggeegtg etcaaggetg gtagaggtgg gttagtgttt 1380 ccaggtttag gcagaatctc agctgaggtc atgaaacaac agtgatctct gaaaaattat 1440 ggcaaggtgg gaaggtgctg gagaattgga gagggggcaa acttgacttt caagtttcaa 1500 tgggaagata ggtgactctg cacaccacag aacagtgagc atgataacct gtttatacaa 1560 ggttctagag cagatttcta aatggatagc tactgtgtgc ttgtttgttc ttaattagta 1620 ttggatagtt actaaatact tgttagtact tagtacataa tgggtggtaa atcctagcag 1680 1740 ctaatattgg ttcccaaata accagatgac aaggatagag aaggacacag acacggccta tctggatttc atggtgcctt tgattttcca catgaaggtt gtgtagggaa gatagaagca 1800 1860 tgagatgaga tgataatata gttatctgga ttcatcactg gccagctgaa ccatatgaac tcatggattg atgctagctt aggaaggctc tgtaggagcc agaactgggc tgagagccag 1920 cccatagaga caaaagaggc ccggccctga catcagaggg ttcaaacatg atgtctgagc 1980 cccacctaca gtctgccgga ggtggttgga aggaagagcc tttatcctta caattcttac 2040 tgaaattcaa atttttaggt tttgcaaaaa aatggtggac ctgaaggaaa tttgacagga 2100 gcatgtctca gctgtattta aatttgtctc agccaatccc cttttgaatg ttcagagtgt 2160 aagetteagg agggeagege gtettagtgt gaettttetg gteagtteag gtgetttaag 2220 gagacaatta gagatcaatc tggaaaactt catttgaatt tttaatacat aagaaaacaa 2280 2340 2400 ctctgttgcc caggctggag tgcagtggct caatcttggc tcactgccac ctctgcctcc 2460 caggiticaag tgatteteet accteageet cetgagtage tgggattaca ageatgtgee 2520 accacactgg ctaa 2534

```
<210> 24
<211> 2841
<212> DNA
<213> Homo sapiens
```

<400> 24						
tcttgccagt	ctctactcat	ttttcagcac	atcgagcata	agatccagac	tctttcccag	60
gcctctctca	tctggctcct	ctcctcctcc	tttatcatta	ctcttcttcg	tagcttatcc	120
tactccagcc	atgctgtctt	cctattattc	ctaaaaarta	gaaatgcatt	tcttcctagg	180
gcctttgtac	ctgcacttgc	catcgctttt	gctcagaatg	ttctttttgc	caagcttttg	240
cccagcttgt	tctccatcat	tgttatgttt	tggctgaaat	gtcttctctt	agtaggttca	300
	tcactgtctt					360
	gttgttcgtc					420
	ctcgaatata					. 480
ttgttgtgtg	agcaaatggt	tggttgattg	gattgaactg	agttcagtat	gtaaatattt	540
agggcctctt	tgcattctat	tttacttatg	tataaaatga	tacataatga	tgatataaat	600
gatgtcacag	tgtacaaggc	tgttgtggga	tcaagcaatc	aaatgagatc	atgcttgtct	660
	gtgagggaat					720
ctgaggcaac	agaaaggcca	ggccatctct	ggtaatccta	ctcttgctgt	cttccctttg	780
	ccctgccagg					840
catcatggac	ctcttccaga	atgggaactg	gacaatgcag	aacccttcac	ctgcatgcca	900
gtgtagcagc	gacaaaatca	agaagatgct	gcctgtgtgt	ccccagggg	caggggggct	960
	caagtgagtc					1020
ctggtagctt	ccgcttggaa	gcaggaatga	gtgagatatc	atgttgggag	ggtctgtttc	1080
agtcttttt	gttttttgtt	tttttttctg	aggcggagtc	ttgctctgtc	gcccaggctg	1140
	gcatgatctt					1200
cctgcctcag	cctcctgagt	agctgggatt	acaggcacgc	accaccatgt	ctggctaatt.	1260
	tagtagagat					1320
	atccacccgc					1380
tacgcccagc						1440
tttgagggga	gaaggtttgg	accacactgt	gcccatgcct	gtcccacage	agtaaagtca	1500
caggacagac	tgtggcaggc	ctggcttcca	atcttggctc,	tgcaacaaat	gagctggtag	1560
cctttgacag	gcctgggcct	gtttcttcac	ctctgaatta	gggaggctgg	accagaaaac	1620
tcctgtggat	cttgtcaact	ctggtattct	tagagactct	gtttgggaag	gagtcctgag	1680
ccatttttt	tttcttgaga	atttcaggaa	gaggagtgct	tatgatagct	ctctgctgct	1740
tttatcagca	accaaattgc	aggatgagga	caagcaattc	taaatgagta	caggaactaa	1800
aagaaggctt	ggttaccact	cttgaaaata	atagctagtc	caggtgcggg	gtggctcaca	1860
cctgtaatct	cagtattttg	ggatgccgag	gtggactgat	cacctaaggt	caggagttcg	1920
aaaccagctt	ggccaatgtg	gcgaaaccct	gtctctacta	aaaattcaaa	aattagccag	1980
	acatgcctgt					2040
	ggtggaggtċ					2100
aacacagcaa	aactccatat	caaaaaataa	aatgaataaa	ataacagcta	atctagtcat	2160
	ccagtgaaca					2220
aatctcttga	ctacaaagaa	tctcatttca	atgtttattg	tttagatgtt	cagaataaat	2280
	gaccttggct					2340
	gctggttgac					2400
	atggtcactg					2460
	gcttggtttt					2520
	caggaagaaa					2580
	gacttttac					2640
	caaataacag					2700
	aagtttagga					2760
	gtcagcttca	•	agcctggtct	agaatgaaaa	tagaaatgga	2820
·ttcaacgtca	aattttgcca	c ·				2841

<210> 25

<211> 852

<212> DNA

<213> Homo sapiens

<400> 25						
gcatgctgga (gtgatagtga	ccatgagttt	ctaagaaaga	agcataattt	ctccatatgt	60
catccacaat						120
atgcctgtaa	tcccagcact	ttaggagcca	aggcgggtgg	atcacttgag	gtcaggagtt	180
tgagaccagc						240
ggcgtggtgg						300
tgaatctggg						360
caacaagagc	gaaaccatct	cccaaaagaa	aaaaaaaga	aagaaaaagc	ttctagtttg	420
gttacatctt	ggtctataag	gtggtttgta	àattggttta	acccaaggcc	tggttctcat	480
ataagtaata						540
tttctctagc						600
tatcctcagg						660
gaactgattt						720
ttaggtaagt						780
tgcttggatt						. 840
tcactgtgag	•					852
	_					
<210> 26						
<211> 6289						
<212> DNA				•		
<213> Homo	sapiens			•		
	•					
<400> 26						
gctttataga	gtttctgcct	agagcatcat	ggctcagtgc.	ccagcagccc	ctccagaggc	60
ctctgaatat						120
agggatttca						180
agattcccga						240
aaaggtctta	gaggaaataa	gaagcgccaa	aaccatctct	ttgcactgta	tttcaaccca	300
tttgtccttc	tgggttttga	aggaacaggt	gggactgggg	acagaagagt	tcttgaagcc	360
agtttgtcca						420
ccttgttact	gatttccgtc	ttttctctct	gccttttccc	caagggccag	gacccctgga	480
tctctgggca	gagcagacgc	aggcccctat	aatagccctc	atgctagaaa	ggagccggag	540
cctgtgtata						600
ccccatctgc						660
tgtgagatga						720
ggccaggtcc						780
gaggaagctg						840
ctcagtgaac						900
					tgggtgtcag	960
					aaatgaagaa	1020
					aatgggcatg	1080
					gctcattgtt	1140
					agacaaaact	1200
					gccaggagct	1260
					cacttgaggt	1320
					aaaatacaaa	1380
					ggctgaggca	1440
					accgttgcac	1500
					ccagagattt	1560
					tttgggatgc	1620
					tagtgaaacc	1680
					ctgtaatccc	1740
					ggttgcagtg	1800
					atctcaaaaa	1860
					tgggtttcaa	1920
			JJJ	J =	JJJ	

acatactttg	ctgaaayaat	cactgactaa	ataggaaatg	aatcttttt	tttttttt	1980
taagctggca	agctggtctg	taggacctga	taagtactca	cttcatttct	ctgtgtctca	2040
ggtttcccat	ttttaggtga	gaattaaggg	gctctgataa	aacagaccct	aggattgtgg ·	2100
acagcagtga	tagtcctaga	gtccacaagt	ctgcttttga	gtgatgggcc	catgtatctg	2160
gcacatctgc	aggcagagcg	tggttctggc	tcttcagatg	atgccggtgg	agcactttga	2220
ggagtcctca	ccccaccgtg	ataaccagac	attaaaatct	tggggctttg	catcccagga	2280
tttctctgtg	attccttcta	gacttgtggc	atcatggcag	catcactgct	gtagatttct	2340
agtcacttgg	ttctcaggag	ccgtttattt	aatggcttca	catttaattt	cagtgaacaa	2400
ggtagtggca	ttgctcttca	cagggccgtc	ctgttgtcca	caggttccag	attgactgtt	2460
gccccttatc	tatgtgaaca	gtcacaactg	aggcaggttt	ctgttgttta	caggacagtt	2520
ctgcagatcg	atttctcaac	agcttgggaa	gatttatgac	aggactggac	accagaaata	2580
atgtcaaggt	aaaccgctgt	ctttgttcta	gtagcttttt	gatgaacaat	aatccttatg	2640
tttcctggag	tactttcaac	tcatggtaaa	gttggdaggg	gcattcacaa	cagaaaagag	2700
	actttaccag	and the second s				2760
	gacataccag	•				2820
	gtgaaatgga					2880
	aggtataagg					2940
tgtcctgaac	actgtaatta	cttcgccata	ttctctgatc	atagtgtttt	gccttggtat	3000
	tttctttctg					3060
	ttgggggcat					3120
	tggcatgcaa					3180
	caaaagggag					3240
	accaagcagc		•			3300
	ggggcaaggg					3360
	agctgcagag		•	•		3420
	ataagtttac					3480
	atgtaaaaat		-			3540
	attataattt					3600
•	tttggtggaa					3660
•	gtgtgtgtgt					3720
	gctagtttaa					3780
	aactttatag				· ·	3840
	cagcacagag					3900
	ttcctgtttc					3960
	agaccccatg					4020
	tatgtgttag					4080
	ttaatttatt					4140
	ctagtccttt					4200
gaacagtgga	ccaaagtgaa	tgccattaac	cactctgact	tccttcatta	gttttattgt	4260
gacagtggac	tcttttgacc	tcagtaatac	cagtttggca	tttacattgt	catatttta	4320
gacttaaaaa	tgatcatctt	aaccctgaat	aaaatgtgtc	tggtgaacag	atgttttcc	4380
ttggctgtgc	ctcagatatc	tctgtgtgtg	tgtacgtgtg	tgtttgtctg	tgtgtccatg	4440
tcctcactga	ttgagcccta	actgcatcaa	agacccctca	gattttcaca	cgctttttct	4500
	accacatcag					4560
	gccagctttg					4620
cctgcagttc	atcagtggag	tgaagcctgt	catctactgg	ctctctaatt	ttgtctggga	4680
	acacaggcct					4740
tggataagaa	agaaagagct	ctggctatca	tcaggaaatg	ttccagctac	tctaaagatg	4800
	aaatagccag					4860
	tcatgtcaca					4920
	taagttccta					4980
	aatgcctcta					5040
	taggaaagcc					5100
	ttgcaaatat					5160
	gatttgaagg					5220

tatctccctg aaatatatct ccctgtaact tctattaatt ataagctaca cagagcaaat	5280
ctaattcttc tcccaccgaa caagtccctg gatatttaaa aataactctc atactctcat	5340
ttaacctgag tattacccag ataagatgat atatgagaat acaccttgta acctccgaag	5400
cactgtacaa atgtgagcaa tgatggtgga gatgatgatg agatctttgc tgtttatacc	5460
aagcccctta gactgtgtca ctcttctgat ccggttgtcc ttgtatggcc atgctgtata	5520
ttgtgaatgt cccgttttca aaagcaaagc caagaattaa ccttgtgttc aggctgtggt	5580
ctgaatggtt atgggtccag agggagttga tctttagctc acacttctat tactgcagca	5640
caaagatttt gcattttgga aggagcaccg tcttactggc aacttagtgg taaaccaaaa	5700
cctccatttc acacaaatga ttgtgaaatt cgggtctcct tcattctata caaattcatt	5760
tgattttttt gaaactaaac tttatattta tccatattaa attacatggg ttttattttt	5820
gttttatctt gattcagtaa ttactccttt cagtaaacac agactgagtg ctgtgtgtct	5880
gacttatgcc aggcataggt gattcagaga tgaaaggtca agtccctgaa cccatctctt	5940
gtcttcctgg gtattatctg tccctccctg ctttagagct cctgaaattt gctagaagca	6000
tgtcttcatc taagttgttg ataaacacat caagtaggat tggactgagg cagagccctg	6060
tagtotgaag otgoagttot totagoggot gacaagoooc actatoactt cootgotggt	6120
gctttgctct gccagctgtg aattctcata attgtcctat cgtcaagtct ttatttctgc	6180
attttactgc ttgatacact gtcaggacag actttaaaat tattctcagt gcgatgaaac	6240
aattotgaca ttoatgttat gagoagttao otoataaata gattacatg	6289

<210> 27 <211> 4244 <212> DNA

<213> Homo sapiens

<400> 27

aaattactot gactgggaat ccatcgttca gtaagtttac tgagtgtgac accttggctt 60 gactgttgga aagacagaaa gggcatgtag tttataaaat cagccaaggg gaaaatgctt 120 180 gtcaaaatgt attgtcgggt attttgatta atagtttatg tggcttcatt aattcagagt tactctccaa tatgtttatc tgccctttct tgtctgataa tggtgaaaac ttgtgtgatg 240 cattgtatat ttgatttagg ggtgaactgg atgtctttgt tttcactttt agtgcaatta 300 cgttgtccct gccacactgg tcattatcat cttcatctgc ttccagcaga agtcctatgt 360 gtcctccacc aatctgcctg tgctagccct tctacttttg ctgtatgggt aagtcacctc 420 tgagtgaggg agctgcacag tggataaggc atttggtgcc cagtgtcaga aggagggcag 480 ggacteteag tagacaetta tettittigtg teteaacagg tggteaatea caceteteat 540 gtacccagee teetttgtgt teaagateee cageacagee tatgtggtge teaccagegt 600 gaacctette attggcatta atggcagegt ggccacettt gtgctggage tgttcacega 660 caatgtgagt catgcagaga gaacactcct gctgggatga gcatctctgg gagccagagg , 720 acagtgttta attgtgatct tattccactt gtcagtggta ttgacactgc tgactgcctt 780 gtcctgtctt cagagtctgt cttccctgag aaggcaaagc acctttcttt cttgctgtgc 840 cttacatttt gctggtcaag cctttcagtt tcttttgaca gtttttttta cttcttctt 900 ttttcaatgt tgctcttacc aagagtagct cctctgcctt ccactttaca catgagagct 960 gggcgacgca ttcagtccta aggcttttac catcacctct cttggtgttt ttattgtcat 1020 ctctaagatc aatgccttta gccttgatca taaccttgaa ctctaatctc aaattctcac. 1080 ttgcctagtg gattgctcca tttagatagt atatagatac cccaacctgg atatgtccta 1140 gttttctttc cccttggaac ttaatgcttt tcttgccatc cctgtcacac tcagtggcac 1200 taccatccac teggttgeec aagetggete ttagagttat cetagatget tgetttgetg 1260 ttgcagattt cccacattca actggttatg ttgtcagttc ttccaggtat ggacctctaa 1320 aataaggett eeteteeatt eeggttgtea ttgeetttgt eeaaacaeag cacacaagge 1380 cttttacagt tgcacaactc ttcctgtcca tacccaccac accctttccc agctgtaagc 1440 ttcagatgag ttgcctccaa ccaccatgct cctgtaggcc tggcttgaaa tgcccttctt 1500 ctgtcacagg gtctggtagt atatcccttg cccttcaaga tttagctaaa atgtgaagct 1560 ttccttacct gctgggaggt gttctctctt ttctctgtgc tctcagagtc cttagtccat 1620 gcctccagta caacgtacat ccacttacat ggtaatttcc tgtttacata cttttcctac 1680

300

	tcggagtgga	gtctgtttct	taataatttt	gcctctccca	tgccctagca	cagtgcatcc	1740
	agcgtatagc	cccttattca	gttggtagat	atttggccac	tgttgccttg	tgggatcata	1800
				aattctgaca			1860
				atgctaaggg			1920
				tcattatttc			1980
				ctacatatca			2040
	•			ttgtccctag			2100
				aggataaacc			2160
				tittttttt			2220
				atcttcccac			2280
				gctgatgccc			2340
•				tggcactctg			2400
				gcacaggatg			2460
				gtggcatggg			2520
				aaagggcagt			2580
						agcactggaa	2640
				atcagggaat			2700
				agatgaggtc			2760
				tctaccttta			2820
				tagataatat			2880
				acttgggcta			2940
				aattgaatct			3000
	and the second s			ttaaagtgct			3060
				gtgaaaatta			3120
				aagaaatact			3180
				tgattgatac			3240
				tgttactctt			3300
				attttaagga			3360
				gaccggatct			3420
				gacttggtgg			3480
				actgttctga			3540
				tggagcacct			3600
				tgcattgaac			3660
				agccccctcc			3720
				gactgaatct			3780
				agacctgtaa			3840
				agacagagaa			3900
				aaggtgagag			3960
				taacccagca		•	4020
	_	_		ataccaaggt		_	4080
				actgagaatt			4140
		_	-	catttatgtg		_	. 4200
				agataatggt			4244
	2	,	3 3 3 3	3			
	<210> 28				•		
	<211> 5023						
	<212> DNA	-		•			
	<213> Homo	sapiens					
			•				
	<400> 28						
				tgaatagatg			60
				aaaagtaagt			120
				gcagaccaag			180
				atgttgcagt			240
	ccttccacag	ttacttagga	gagetgtgag	tractgagge	ttatgaatgt	ttacattttc	300

ccttccacag ttgcttggga gagctgtgag tcactgaggc ttatgaatgt ttacattttg

tttgttgcag	atatatagaa	ggaagcggaa	gcctgctgtt	gacaggattt	gcgtgggcat	360
	gaggtaaaga					420
atctctaccc	aatcaagcaa	cgatgctcgt	taagaggtaa	aagtggattt	taaaggcttc	480
	ccaggatgga					540
	cagagaatçc					600
	aatcccagca					660
	tcctggccaa					720
	tagtgcattc					780
	aggagggga					840
	catgtcaaca					900
	tgggatggtg					960
	gtttgtgttc					1020
	cattactgtt					1080
	aatacagcca					1140
	tgttaaaacc					1200
	agttacgtgt					1260
	ttccttttca					1320
	agatgttaac					1380
	gagaaaagaa					1440 1500
	taggttgtta					1560
	taaagggtaa					1620
	ttacatttcc					1680
	tacaatataa					1740
	ttttgcaacc					1800
	tatacacata					1860
	tttttattgt					1920
	ggaattttac					1980
	aattccttat tatacatctt					2040
	gagcatacaa					2100
	gcaatctgat					2160
	agtactttaa					2220
	ttactgccca					2280
	ggttcaagcg					2340
	aatgcctgcc					2400
	ctggtctcga					2460
	ttacaggcat					2520
	aggcagtggc					2580
	aacctagtat					2640
	tacctactgt					2700
	attaaaaaag					2760
	actcacaatt					2820
	attaatgtat					2880
	aatcctaaga					2940
	aggcttgctc					3000
	tagtaaggtt					3060
	gcctggcacg					3120
	tgctaattag					3180
	cgctgtggct					3240
	gattcttcac					3300
	gtctctaggt					3360
	gaatggtgca					3420
					gacctcagaa	3480
					aggtgcaagg	3540
					ctgggggcag	3600

1020

<210>.29

```
aaaggetgtg ettteaagta geageagatg tattggtate titgtaatgg agaageatae
                                                                      3660
tttacaggaa cattaggcca gattgtctaa ccagagtatc tctacctgct taaaatctaa
                                                                      3720
gtagttttct tgtcctttgc agtatcttat caaacatcca tgaagtacat cagaacatgg
                                                                      3780
gctactgccc tcagtttgat gccatcacag agctgttgac tgggagagaa cacgtggagt
                                                                      3840
                                                                      3900
tetttgeeet tttgagagga gteecagaga aagaagttgg caaggtactg tgggeaeetg
aaagccagcc tgtctccttt ggcatcctga caatatatac cttatggctt ttccacacgc
                                                                      3960
attgacttca ggctgttttt cctcatgaat gcagcagcac aaaatgctgg ttctttgtat
                                                                      4020
ctgctttcag ggtggaaacc tgtaacggtg gtggggcagg gctgggtggg cagagaggga
                                                                      4080
gtgctgctcc caccacacga gtcccttctc cctgctttgg ctcctcacca gttgtcaggt
                                                                      4140
tatgattata gaatctagtc ctactcagtg aaagaacttt catacatgta tgtgtaggac
                                                                      4200
agcatgataa aattcccaag ccagaccaaa gtcaaggtgc tttttatcac tgtaggttgg
                                                                      4260
tgagtgggcg attcggaaac tgggcctcgt gaagtatgga gaaaaatatg ctggtaacta
                                                                      4320
tagtggagge aacaaacgca agetetetae agecatgget ttgateggeg ggeeteetgt
                                                                      4380
ggtgtttctg gtgagtataa ctgtggatgg aaaactgttg ttctggcctg agtggaaaac
                                                                      4440
atgactgttc aaaagtccta tatgtccagg gctgttgtat gattggcttg tcttccccca
                                                                      4500
gggacagcag agcaaccttg gaaaagcaga gggaagcttc tcccttggca cacactgggg
                                                                      4560
tggctgtacc atgcctgcag atgctcccaa atagaggcac tccaagcact ttgtttctta
                                                                      4620
gegtgattga ggetggatat gtgatttgat etttetetgg aacattettt etaateatet
                                                                      4680
ttgtgttcat tccctgaaaa tgaagagtgt ggacacagct ttaaaatccc caaggtagca
                                                                      4740
actaggicat agitectiac acaeggatag atgaaaaaca gateagacig ggaagiggee
                                                                      4800
cttgaccttt tttcttctgt agataagagc attgatgtta ttacgggaag aagcctttga
                                                                      4860
ggcttttatg tattccacct cggtctggaa tttgtttctg taaggctaac agttgcaata
                                                                      4920
                                                                      4980
tactagggta atctgagtga gctggaatta aaaaaaaaa ggaatttcac cccaatctta
tactgacttc aatagaggtt tcagacaaaa agttgttttg tat
                                                                      5023
```

```
<211> 5138
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(5138)
<223> n = a, t, c, or g
ngccnngttn aaaangaaaa tttnnnnnaa attnaanntt annggngnnn tttccccaga
                                                                       - 60
aaaaacnaaa angatttccn cccngggggg ncccccnant cnaaaaggcc ccncttnttt
                                                                       120
gnggngaggg aaagnttttt ttggaatttt taatttttgg tcccccaaaa cctattattg
                                                                       180
                                                                       240
agaatttaat tacataaaaa agtactcaga atatttgagt ttcctgcatc aataagacat
ttataataat gaccttgttt acaaatgaat ttgaaagtta ctctaattct ttgattcatc
                                                                       300
aagaaataac tagaatggca agttaaaatt taagctgttt caaagatgct tctgcattta
                                                                       360
aaaacaaatt tatctttgat tttttttccc cccagcaaat aagacttatt ttattctaat
                                                                       420
tacaggatga acccaccaca ggcatggatc ccaaagcccg gcggttcttg tggaattgtg
                                                                       480
ccctaagtgt tgtcaaggag gggagatcag tagtgcttac atctcatagg tccgtagtaa
                                                                       540
agtettgggt teeteactgt gggatgtttt aacttteeaa gtagaatatg egateatttt
                                                                       600
gtaaaaatta gaaaatacag aaaagcaaag agtaaaacaa ttattacctg aaattatata
                                                                       660
tgcatattct tacaaaaatg caagcccagt ataaatactg ctctttttca cttaatatat
                                                                       720
tgtaaacatt attocaagto agtgcattta ggtgtcattt cttatagctg gatagtatto
                                                                       780
cattaggata tactcttatt taactattcc cccttttgta gacatttgga ttatttccaa
                                                                       840
cttgttcaca attgtaaaca ccactacact gaacagcatc atccctatat ccacatgtac
                                                                       900
ttgtaacaga atacaattcc ctaggaagct ggaatgctgg aagtcatggt gatgttctca
                                                                       960
```

tggttacaga gaatctctct aaaactaaaa cctctttctg ttttaccgca gtatggaaga

atgtgaagct ctttgcacta ggatggcaat catggtcaat ggaaggttca ggtgccttgg 1080 cagtgtccag catctaaaaa ataggtaata aagataattt ctttgggata gtgcctagtg 1140 agaaggettg atatttatte ttttgtgagt atataaatgg tgeetetaaa ataaagggaa 1200 ataaaactga gcaaaacagt atagtggaaa gaatgagggc tttgaagtcc gaactgcatt 1260 caaattctgt ctttaccatt tactggttct gtgactcttg ggcaagttac ttaactactg 1320 taagagttag tttccctgga agatctacct cctagctttg tgctatagat gaaatgaaaa 1380 aaatttacat gtgccagtac tggtgagagc gcaagctttg gagtcaaaca caaatgggtt 1440 tgcatcctgg ccctaccaat tatgagctct gagccatggg caagtgacta actccctggg 1500 cctcagtttc tctgtaacat ctgtcagact tcatgggtcc aggtgaggat taaaggagat 1560 catgtattta cagcacatgg catggtgctt cacataaaat aagtatttag taaatgataa 1620 ctggttcctt ctctcagaaa cttatttctg ggcctgccag gggccgccct ttttcatggc 1680 acaagttggg ttcccagggt tcagtattct tttaaatagt tttctggaga tcctccattt 1740 gggtattttt tcctgctttc aggtttggag atggttatac aatagttgta cgaatagcag 1800 ggtccaaccc ggacctgaag cctgtccagg atttctttgg acttgcattt cctggaagtg 1860 ttcyaaaaga gaaacaccgg aacatgctac aataccagct tccatcttca ttatcttctc 1920 tggccaggat attcagcatc ctctcccaga gcaaaaagcg actccacata gaagactact 1980 ctgtttctca gacaacactt gaccaagtaa gctttgagtg tcaaaacaga tttacttctc 2040 agggtgtgga ttcctgcccc gacactcccg cccataggtc caagagcagt ttgtatcttg 2100 aattggtgct tgaattcctg atctactatt cctagctatg ctttttacta aacctctctg 2160 aacctgaaaa gggagatgat gcctatgtac tctataggat tattgtgaga atttactgta 2220 ataataacca taaaaactac catttagtga gcacctacca tgggccaggc attttacttg 2280 gtgcctaatc ctatttaaat tagataaaaa agtaccaaat aggtcctgac acttaagaag 2340 tactcagtaa atattttctt ccctcttccc tttaatcaag accgtatgtg ccaaagtaaa 2400 tggatgactg agcagttggt gatgtagggg tggggggggattatagaaagt cagtttttgg 2460 ccgggcgtgg tggctcatgc ctgtaatccc agcactttgg gaggctgagg agcaggcaga 2520 tcatgaggtc aggagatcca gataatcctg gccaacaggg tgaaaccccg tctctactaa 2580 aaatacaaaa attagctggg catggtggtg cgcacttgta gtcccagcta cttgcgaggc 2640 tgaggcagga gaattgctcg aacccaggag gtggaggtta cagtgagcca aggtctcgcc 2700 actgcactcc agcctgggga cagagcaaga ccccatttca aggggggaaa aaaagtctat 2760 ttttaagttg ttattgcttt tttcaagtat tcttccctcc ttcacacaca gttttctagt 2820 taatccattt atgtaattct gtatgctcct acttgaccta atttcaacat ctggaaaaat 2880 agaactagaa taaagaatga gcaagttgag tggtatttat aaaggtccat cttaatcttt 2940 taacaggtat ttgtgaactt tgccaaggac caaagtgatg atgaccactt aaaagacctc 3000 tcattacaca aaaaccagac agtagtggac gttgcagttc tcacatcttt tctacaggat 3060 gagaaagtga aagaaagcta tgtatgaaga atcctgttca tacggggtgg ctgaaagtaa 3120 agaggaacta gactttcctt tgcaccatgt gaagtgttgt ggagaaaaga gccagaagtt 3180 gatgtgggaa gaagtaaact ggatactgta ctgatactat tcaatgcaat gcaattcaat 3240 gcaatgaaaa caaaattcca ttacaggggc agtgcctttg tagcctatgt cttgtatggc 3300 tctcaagtga aagacttgaa tttagttttt tacctatacc tatgtgaaac tctattatgg 3360 aacccaatgg acatatgggt ttgaactcac actttttttt ttttttttgt tcctgtgtat 3420 tctcattggg gttgcaacaa taattcatca agtaatcatg gccagcgatt attgatcaaa 3480 atcaaaaggt aatgcacatc ctcattcact aagccatgcc atgcccagga gactggtttc 3540 ccggtgacac atccattgct ggcaatgagt gtgccagagt tattagtgcc aagtttttca 3600 gaaagtttga agcaccatgg tgtgtcatgc tcacttttgt gaaagctgct ctgctcagag 3660 tctatcaaca ttgaatatca gttgacagaa tggtgccatg cgtggctaac atcctgcttt 3720 gattccctct gataagctgt tctggtggca gtaacatgca acaaaaatgt gggtgtctcc 3780 aggcacggga aacttggttc cattgttata ttgtcctatg cttcgagcca tgggtctaca 3840 gggtcatcct tatgagactc ttaaatatac ttagatcctg gtaagaggca aagaatcaac 3900 agccaaactg ctggggctgc aactgctgaa gccagggcat gggattaaag agattgtgcg 3960 ttcaaaccta gggaageetg tgeeeatttg teetgaetgt etgetaacat ggtacaetge 4020 atctcaagat gtttatctga cacaagtgta ttatttctgg ctttttgaat taatctagaa 4080 aatgaaaaga tggagttgta ttttgacaaa aatgtttgta ctttttaatg ttatttggaa 4140 ttttaagttc tatcagtgac ttctgaatcc ttagaatggc ctctttgtag aaccctgtgg 4200 tatagaggag tatggccact gcccactatt tttattttct tatgtaagtt tgcatatcag 4260 tcatgactag tgcctagaaa gcaatgtgat ggtcaggatc tcatgacatt atatttgagt 4320

7					
ttctttcaga tcattt gtatgctgta gctgaa gtacacttcc tgtgcc ttgtaggagc ccactg aatgcaaaag ccaaga aaaacagcta gcttga ttcatactctc aatcac cattttcag agtttt actgtttcac taatac attgtttggg gaagtt agaatttgaa tattaa ttttttaaat ttacag tagaagttaa aggtca	agag tatgtacgta atgt tattcagctc taac aatactgggcaagt ttaagggtca aaac ttgctgaaaa tgca gatattggat caagaaaaaa ctaa cccagtctta tgttac tgttaactgt caag tgatctttca cgct aaaggtgtaa aata ttatataacc	cgtataagac actggtttac agccttttt caagtctaaa acacaacttg acccattaa tataaaaaca tttttctagt cttgagagaa atatcattac gacttcagat cactgctgaa	tagagagata aaatataggt ttttttttt caatgaattc tgtttatggc atctgacagt acaaatactt cagtaaacat aagaaaaata taacttcttc ttcaaattaa	ttaagtctca tgtcttgtgg taattgcaac ttcaacaggg atttagtacc ctcaaatttt ccatatggag ttgtaaaaat tgagagaact cacttttcc tcttctata	4380 4440 4500 4560 4620 4680 4740 4860 4920 4980 5040 5138
•				•	
<210> 30 <211> 20 <212> DNA <213> Homo sapien	s		<i>₹</i> •.		,
<400> 30			•		
gtgttcctgc agaggg	catg		. 14		20
<210> 31 <211> 20 <212> DNA <213> Homo sapien	. · · · · · ·	· · · · · · · · · · · · · · · · · · ·		٠.	
· <400> 31	•				•
cacttccagt aacagc	tgac	,	•		20
<210> 32 <211> 21 <212> DNA <213> Homo sapien	 s				
<400> 32	·				
ctttgcgcat gtcctt	catg c				2 Î
<210> 33 <211> 21 <212> DNA <213> Homo sapien	s	•			
<400> 33					
gacatcagec etcage	atct t				21
<210> 34 <211> 19 <212> DNA <213> Homo sapien			·		

caacaagcca tgttccctc	19
<210> 35	
<211> 18	
<212> DNA	
<213> Homo sapiens	
<400> 35	
catgttccct cagccagc	18
<210> 36	
<211> 19	
<212> DNA	
<213> Homo sapiens	
<400> 36	
cagageteae ageagggae .	19
<210> 37 <211> 21	
<212> PRT	
<213> Homo sapiens	
TO TO THE BUPTONS	
<400> 37	
Cys Ser Val Arg Leu Ser Tyr Pro Pro Tyr Glu Gln His Glu Cys His	
1 5 10 15	
Phe Pro Asn Lys Ala	
20	
<210> 38	
<211> 14	
<212> DNA	
<213> Homo sapiens	
<400> 38	
gcctgtgtgt cccc	14
-210- 20	
<210> 39 <211> 14	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)(14)	
<222> (1)(14) <223> n = t or c	
<222> (1)(14) <223> n = t or c <400> 39	1 4
<222> (1)(14) <223> n = t or c	14
<222> (1)(14) <223> n = t or c <400> 39	14
<222> (1)(14) <223> n = t or c <400> 39 gcctgtgngt cccc	14
<222> (1)(14) <223> n = t or c <400> 39 gcctgtgngt cccc <210> 40	14

PCT/IB00/00532 .

```
<400> 40
 aagaagatgc tgcctgtgtg tcccccaggg gcaggggggc tgcct
                                                                        45
 <210> 41
 <211> 15
 <212> PRT
 <213> Homo sapiens
 <400> 41
Lys Lys Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu Pro
<210> 42
 <211> 15
 <212> PRT
 <213> Mus musculus
 <400> 42
Lys Lys Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu Pro
                                     10
                                                         15.
<210> 43
 <211> 15
<212> PRT
<213> Homo sapiens
<400> 43
Lys Lys Met Leu Pro Val Arg Pro Pro Gly Ala Gly Gly Leu Pro
                 5
                                     10
<210> 44
<211> 5
<212> PRT
 <213> Caenorhabditis elegans
 <400> 44
Leu Leu Gly Gly Ser
 1
<210> 45
<211> 45
<212> DNA
<213> Homo sapiens
<400> 45
aagaagatgc tgcctgtgcg tcccccaggg gcaggggggc tgcct
                                                                         45
<210> 46
<211> 14
<212> DNA
<213> Homo sapiens
<400> 46
gcctacttgc agga
                                                                         14
```

14

```
<210> 47
<211> 14
<212> DNA
<213> Homo sapiens
<400> 47
gcctacttgc ggga
<210> 48
<211> 45
<212> DNA
<213> Homo sapiens
<400> 48
tgggggggct tcgcctactt gcaggatgtg gtggagcagg caatc
<210> 49
<211> 15
<212> PRT
<213> Homo sapiens
<400> 49
Trp Gly Gly Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile
                                         . 4.
                  5
 <210> 50
 <211> 15
 <212> PRT
 <213> Mus musculus
 <400> 50
 Trp Gly Gly Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile
                                      10
                  5
 <210> 51
 <211> 15
 <212> PRT
 <213> Homo sapiens
 <400> 51
 Trp Gly Gly Phe Ala Tyr Leu Arg Asp Val Val Glu Gln Ala Ile
                                      10
                   5
  1
 <210> 52
 <211> 12
 <212> PRT
 <213> Caenorhabditis elegans
 Phe Met Thr Val Gln Arg Ala Val Asp Val Ala Ile
                                       10
                   5
  <210> 53
  <211> 45
  <212> DNA
```

```
<213> Homo sapiens
 •
<400> 53
tggggggct tcgcctactt gcgggatgtg gtggagcagg caatc
                                                                        45
<210> 54
<211> 25
<212> DNA
<213> Homo sapiens .
<220>
<221> misc_feature
<222> (1)...(25)
<223> n is a, t, c, or g.
<400> 54
tcattcctct tgtnngcncn gnncn
                                                                        25
<210> 55
<211> 45
<212> DNA
<213> Homo sapiens
<400> 55
agtagectea tteetettet tgtgageget ggeetgetag tggte
                                                                        45
<210> 56
<211> 15
<212> PRT
<213> Homo sapiens
<400> 56
Ser Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu Val Val
                 5
<210> 57
<211> 15
<212> PRT
<213> Mus musculus
<400> 57
Ser Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu Val Val
<210> 58
<211> 14
<212> PRT
<213> Homo sapiens
<400> 58
Ser Ser Leu Ile Pro Leu Val Ser Ala Gly Leu Leu Val Val
                 5
<210> 59
<211> 15
```

```
<212> PRT
<213> Caenorhabditis elegans
<400> 59
Ile Asn Tyr Ala Lys Leu Thr Phe Ala Val Ile Val Leu Thr Ile
                                     10
                 5
<210> 60
<211> 42
<212> DNA
<213 > Homo sapiens
<400> 60
                                                                          42
agtagcctca ttcctcttgt gagcgctggc ctgctagtgg tc
<210> 61
<211> 25
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(25)
<223> n is a, t, c, or g.
                                            . 4.
<400> 61
                                                                          25
tgatgaagat ganannengn ngega
<210> 62
<211> 36
<212> DNA
<213> Homo sapiens
<400> 62
                                                                          36
aatgatgaag atgaagatgt gaggcgggaa agacag
<210> 63
<211> 12
<212> PRT
<213> Homo sapiens
<400> 63
Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln
                                      10
 1
                  5
<210> 64
<211> 12
<212> PRT
<213> Mus musculus
Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln
                  5
                                      10
 <210> 65
```

<210> 71

```
<211> 10
<212> PRT
<213> Homo sapiens
<400> 65
Asn Asp Glu Asp Val Arg Arg Glu Arg Gln
<210> 66
<211> · 15
<212> PRT
<213> Caenorhabditis elegans
<400> 66
Asp Glu Arg Asp Val Glu Asp Ser Asp Val Ile Ala Glu Lys Ser
<210> 67
<211> 30
<212> DNA
<213> Homo sapiens
<400> 67
                                                                          30
aatgatgaag atgtgaggcg ggaaagacag
<210> 68
<211> 14
<212> DNA
<213> Homo sapiens
<400 × 68
agttgtacga atag
<210>.69
<211> 14
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(14)
<223> n is t or c.
<400> 69
agttgtanga atag
                                                                          14
<210> 70
<211> 20
<212> DNA
<213> Homo sapiens
<400> 70
ggctggatta gcagtcctca
                                                                          20
```

<211> 20 <212> DNA				
<213> Homo	sapiens			
<400> 71				
ggatttccca	gatcccagtg			20
<210> 72 <211> 20		•		
<211> 20				
<213> Homo	sapiens			
<400> 72				
gacagacttg	gcatgaagca			20
<210> 73				
<211> 20				
<212> DNA			••	
<213> Homo	sapiens			
<400> 73			•	
gcacttggca	gtcacttctg			20
<210> 74			.:	
<211> 20				
<212> DNA				
<213> Homo	sapiens			
<400> 74				
cgtttctcca	ctgtcccatt			20
<210> 75	•			
<211> 20				
<212> DNA				
<213> Homo	sapiens			
<400> 75				
acttcaagga	cccagcttcc			. 20
<210> 76				
<211> 24				
<212> DNA	•			
<213> Homo	sapiens			
<400> 76				
tcggtttctt	gtttgttaaa	ctca		24
<210> 77				
<211> 20				·
<212> DNA				
<213> Homo	sapiens			
<400> 77			•	
tcccaaggct	ttgagatgac			2

<210><211><212><212><213>	19 DNA	sapiens	
<400> ggctco		cccttgtaa	19
<210><211><211><212><213>	20 DNA	sapiens	
<400> gctgct		tggggtatct	20
<210><211><212><213>	25 DNA	sapiens	
<400> tttgta		ttgtagtgct cctca	25
<210><211><212><213>	20 DNA	sapiens	
<400>		ttgcctccta	20
<210><211><212><213>	20 DNA	sapiens	
<400> aaagg		ggtaagggta	. 20
<210><211><212><212><213>	20 DNA	sapiens	
<400> gatgt		tccctctagc .	20
<210><211><212><213>	20 DNA	o sapiens	
<400>		g cttgggattg	20

<210> 85		
<211> 21		
<212> DNA		
<213> Homo	sapiens	
	•	
<400> 85	•	
qcaaattcaa	atttctccag g	
J		
<210> 86		•
<211> 20		
<212> DNA		
<213> Homo	saniens	
	F	
<400> 86		
	aatggacctg	
ccaaggagga	aacggacccg	
<210> 87		
<211> 20		
<211> 20		•
	sanions	
<213> Homo	sapiens	.*
.400. 07		
<400> 87		
ctgaaagttc	aagcgcagtg	
		.4
<210> 88		•
<211> 20		
<212> DNA		
<213> Homo	sapiens	
<400> 88	•	
tgcagactga	atggagcatc	
<210> 89		
<211> 20		
<212> DNA		
<213> Homo	sapiens	
<400> 89		
gccaggggac	actgtattct	
<210> 90		
<211> 20		
<212> DNA		
<213> Homo	sapiens	
<400> 90		
aggtcctctg	ccttcactca	
<210> 91		
<211> 20		
<212> DNA		
<213> Homo	sapiens	
<400> 91		
	cccctgctaa	
g-gccca	ccccyccaa	

<210> 92		
<211> 21 <212> DNA		
<213> Homo sapiens		
	•	
<400> 92		•
cacacaacag agcttcttgg	a	21
<210> 93 <211> 20		
<211> 20		
<213> Homo sapiens		
		. •
<400> 93		
acctggaaca ggtgtggtgt	2	20
<210> 94		
<211> 21		
<212> DNA		
<213> Homo sapiens		
<400> 94	_	21
gggctaacat gccactcagt	d	: т
<210> 95		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<400> 95		
gtttgttgca gatggggaag	2	20-
33333		
<210> 96		
<211> 20		
<212> DNA <213> Homo sapiens		
(213) Nomo sapiens		
<400> 96		
caccagaaga aggagcatgg	2	5 Ó
23.0		
<210> 97 <211> 20		
<212> DNA		
<213> Homo sapiens		
<400> 97	* * * * * * * * * * * * * * * * * * * *	
ctggactcgt agggatttgc		0 2
<210> 98		
<211> 21		
<212> DNA		
<213> Homo sapiens		
.40000		
<400> 98	+	
gcctgtcaca gagaaatgct		21

<210><211><212>	21 DNA		
<213>	Homo	sapiens	
<400>			
ttacgg	gaatg	atcctgtgct	c · 21
<210>			•
<211>			
<212>		sapiens	
(213)	HOIIO	sapiens	
<400>			
agtcag	gttt	ccggtcacac	20
<210>	101		
<211>			
<212>		sapiens	
(215)	1101110	sapiens	·
<400>			
ccgttc	ctta	tatcctcagg	
<210>	102		.∜
<211>			•
<212>		sapiens	
(213)	HOIIO	saprens	
<400>			
ccttgt	acac	actcgcactg	a 21
<210>	103		
<211>			
<212>		sapiens	
12252	2201110	Supiens	
<400>			
tgttgt	ccac	aggttccaga	20
<210>	104		
<211>			
<212>		sapiens	
(213)	1101110	sapiens	
<400>			
tgaggt	ttat	gggcatggtt	20
<210>	105		
<211>			
<212>			
<213>	HOMO	sapiens	
<400>			
atgttt	ttcc	ttggctgtgc	20

52

WO 00/55318

<210>	106									
<211>	20									
<2.12>	DNA									
<213>	Homo	sapiens								
		F								
									-	
<400>	106									
atctq	cctt	tcttgtctga								20
<210>	107									
<211>	20									
<212>										
<213>	Homo	sapiens .								
<400>	107						*			
		:								
agggag	gctgc	açagtggata		•						20
<210>	108				•					
		•								
<211>	24								•	
<212>	DNA								•	
		sapiens								
12237	1101110	- Supremo				• '			-	
		•								
<400>	108									
tèacto	ccat	atttcagaac	ttga							24
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	accouguas	0094							~ .
		•				. 4				
<210>	109								•	
<211>	22									
<212>		•								
<213>	Homo	sapiens					•			
	•								•	
<400>	100			:	•					
			-						•	
tgttta	attgg	aagatcggtg	aa			-				22
<210>	110									
								•		
<211>										
<212>	DNA									
<213>	Homo	sapiens	•						•	
		JF	•							
			•							
<400>	110						•			
cgttag	gagac	tgaatctttg	tcctq			-				25
	_		,=							
<210>					-					
<211>	20	•			•				•	
<212>	DNA									
		coniona				*				
<213>	HOIIIO	sapiens								
					•					
<400>	111									
		tccacagttg								20
agecei	-gccc	cccacageeg								20
<210>	112									
<211>										
<212>										
<213>	Homo	sapiens								
-400	110									
<400>										
ggtagt	tacg	tgttaggggc	a							21

<210> 113 <211> 21 <212> DNA			
<213> Homo	sapiens		
<400> 113 caggaacatt	aggccagatt	g 2	1
<210> 114			
<211> 23			
<212> DNA <213> Homo	sapiens		
<400> 114			
catgtatgtg	taggacagca	tga 2	3
<210> 115			
<211> 21 <212> DNA			
<213> Homo	sapiens	· ·	
<400> 115			
ctgtttcaaa	gatgcttctg		1
<210> 116			
<211> 20			
<212> DNA <213> Homo	sapiens		
<400> 116			
cctaggaagc	tggaatgctg	2	0
<210> 117		·	
<211> 20 <212> DNA			
<212> DNA <213> Homo	sapiens		
<400> 117			
gggttcccag	ggttcagtat	2	0
<210> 118			
<211> 23 <212> DNA			
<213> Homo	sapiens		
<400> 118			
cttgacctaa	tttcaacatc	tgg 2	3
<210> 119			
<211> 20			
<212> DNA <213> Homo	sapiens		
<400> 119			
atccccaact	caaaaccaca	2	2 0

<210>	120					•			
<211>									
<212>									
		anniena							
<213>	HOIIIO	sapiens							•
<400>						•			
aagtc	caatt	tagcccacgt	t						21
							· -	•	
<210>	121	•		•					
<211>	20			•			•		
<212>	DNA								
<213>	Homo	sapiens							
							•		
<400>	121	•							
		aaaattctcc	•						20
ccage	-4000	aaaacccccc							20
-230-						•			
<210>									
<211>		•							
<212>		_			•				
<213>	Homo	sapiens							
		· · · · ·	,						
<400>	122					· •		•	
ggtgca	aggtc	aatttccaat							20
					:	1 1			
<210>	123								
<211>	20								
<212>		•							
		sapiens				•			•
<400>	123					•*	•		•
		accattacaa							20
		accactacaa							20
-230-	104		• .						
<210>		•				,			
<211>						•			
<212>			,	•	•				
<213>	HOMO	sapiens							
								•	
<400>									
tgtcca	aagga	aaagcctcac						•	20
<210>	125						•		
<211>	20	•							
<212>	DNA								
<213>	Homo	sapiens ·				•			
		_				*			
<400>	125								
		gccagactca							20
2520		J	•			•			
<210>	126	•	•						
<211>				•					
<212>									
<213>	HOMO	sapiens							
		-10-							
<400>	126								
aggaga	atgac	acaggccaag							20

<210> 127 <211> 20 <212> DNA <213> Homo	sapiens		
<400> 127 cgcacacctc	tgaagctacc	2	90
<210> 128 <211> 20 <212> DNA <213> Homo	sapiens		
<400> 128 acctcactca	cacctgggaa	2	20
<210> 129 <211> 20 <212> DNA <213> Homo	sapiens	 	
<400> 129 gcctcctgcc	tgaaccttat		20
<210> 130 <211> 23 <212> DNA <213> Homo	sapiens		
<400> 130 caaaatcatg	acaccaagtt	gag 2	23
<210> 131 <211> 20 <212> DNA <213> Homo	sapiens		
<400> 131 catgcacatg	cacacacata		20
<210> 132 <211> 20 <212> DNA <213> Homo	sapiens		
<400> 132 ccttagcccg	tgttgagcta	2	20
<210> 133 <211> 21 <212> DNA <213> Homo	sapiens		
<400> 133	cagggactcc	: a	21

<210>	134		•	
<211>	20.			
<212>	DNA		•	
		sapiens	•	
		-		
<400>	134		•	
cccato	gcact	gcagagattc	•	2
~				
<210>	135		•	
<211>				•
<212>				
		sapiens	- -	
	•			
<400>	135		Ä1	
		acatcgctt		i
	-53-5	J .		
<210>	136	•		
<211>				
<212>		•		
		sapiens		
10101				
<400>	136			
		tggtttccta		2
999450	Jugeu	caaccccca	· · · · · · · · · · · · · · · · · · ·	_
<210>	127			
<211>				
<212>				
		sapiens		
	Homo	sapiens		•
	•			
-400×	127			
<400>		cactectece		. 2
		cactectece		2
gcttaa	agtcc	cactcctccc		2
gcttaa <210>	agtcc 138	cactcctccc		2
gcttaa <210> <211>	agtcc 138 20	cactcctccc		2
gcttaa <210> <211> <212>	agtee 138 20 DNA	<i>:</i>		2
gcttaa <210> <211> <212>	agtee 138 20 DNA	cactcctccc		2
<pre>gcttaa <210> <211> <212> <213></pre>	138 20 DNA Homo	<i>:</i>		2
<pre>gcttaa <210> <211> <212> <213> <400></pre>	138 20 DNA Homo	sapiens		
<pre>gcttaa <210> <211> <212> <213> <400></pre>	138 20 DNA Homo	<i>:</i>		2
<pre></pre>	138 20 DNA Homo 138	sapiens		
<pre>gcttaa <210> <211> <212> <213> <400> atttt <210></pre>	138 20 DNA HOMO 138 cctcc	sapiens		
<pre>gcttaa <210> <211> <212> <213> <400> attttc <210> <211></pre>	138 20 DNA HOMO 138 Ectcc	sapiens		
<pre>gcttaa <210> <211> <212> <213> <400> attttc <210> <211> <212></pre>	138 20 DNA HOMO 138 cctcc 139 20	sapiens gcatgtgtgt		
<pre>gcttaa <210> <211> <212> <213> <400> attttc <210> <211> <212></pre>	138 20 DNA HOMO 138 cctcc 139 20	sapiens		
<pre>gcttaa <210> <211> <212> <213> <400> atttta <210> <211> <212> <213></pre>	138 20 DNA Homo 138 cctcc 139 20 DNA Homo	sapiens gcatgtgtgt		
<pre>gcttaa <210> <211> <212> <213> <400> atttta <210> <211> <212> <213></pre>	138 20 DNA Homo 138 cctcc 139 20 DNA Homo	sapiens gcatgtgtgt sapiens		2
<pre>gcttaa <210> <211> <212> <213> <400> atttta <210> <211> <212> <213></pre>	138 20 DNA Homo 138 cctcc 139 20 DNA Homo	sapiens gcatgtgtgt		
<pre> <210> <211> <212> <213> <400> atttt <210> <211> <212> <213> <400 <table border="1"> <100</table></pre>	138 20 DNA Homo 138 cctcc 139 20 DNA Homo	sapiens gcatgtgtgt sapiens		2
<pre>gcttaa <210> <211> <212> <213> <400> atttta <210> <211> <212> <213> <400> tcacag</pre>	138 20 DNA Homo 138 cctcc 139 20 DNA Homo	sapiens gcatgtgtgt sapiens		2
<pre>gcttaa <210> <211> <212> <213> <400> attttc <210> <211> <212> <213> <400> tcacas <210> <211></pre>	138 20 DNA Homo 138 cctcc 139 20 DNA Homo 139 gaagc	sapiens gcatgtgtgt sapiens		2
<pre>gcttaa <210> <211> <212> <213> <400> atttta <210> <211> <212> <213> <400> tcacas <210> <211> <212></pre>	138 20 DNA HOMO 138 CCTCC 139 20 DNA HOMO 139 Gaagc 140 20 DNA	sapiens gcatgtgtgt sapiens ctagccatga		2
<pre>gcttaa <210> <211> <212> <213> <400> atttta <210> <211> <212> <213> <400> tcacas <210> <211> <212></pre>	138 20 DNA HOMO 138 CCTCC 139 20 DNA HOMO 139 Gaagc 140 20 DNA	sapiens gcatgtgtgt sapiens		2
<pre>gcttaa <210> <211> <212> <213> <400> atttta <210> <211> <212> <213> <400> tcacag <210> <210> <213></pre>	138 20 DNA HOMO 138 CCCC 139 20 DNA HOMO 139 Gaagc 140 20 DNA HOMO	sapiens gcatgtgtgt sapiens ctagccatga		2
<pre>gcttaa <210> <211> <212> <213> <400> atttta <210> <211> <212> <213> <400> tcacaa <210> <211> <212> <400> </pre>	138 20 DNA Homo 138 cctcc 139 20 DNA Homo 139 gaagc 140 20 DNA Homo	sapiens gcatgtgtgt sapiens ctagccatga		2

<210> 141 <211> 20				
<212> DNA <213> Homo	sapiens			
<400> 141				
	tectectetg			2 (
<210> 142		٠		
<211> 20				
<212> DNA				
<213> Homo	sapiens			
<400> 142				
actggggcca	acattaatca			20
<210> 143				
<211> 20				
<212> DNA			•	
<213> Homo	sapiens		<i>:</i>	
<400> 143				
cttccccatc	tgcaacaaac			20
<210> 144			.4	
<211> 20				
<212> DNA				
<213> Homo	sapiens			
<400> 144				
gctaaaggcc	atccaaagaa			20
<210> 145	•			
<211> 20				
<212> DNA				
<213> Homo	sapiens			
<400> 145				
	ctgggcataa			2
2 2	333			
<210> 146				
<211> 20			•	
<212> DNA				
<213> Homo	sapiens			
<400> 146				
tctgaagtcc	attcccttgg			. 2
<210> 147				
<211> 20				
<212> DNA				
<213> Homo	sapiens			
<400> 147	•			
	tgcagttgat			2
	=			

58 .

<210>	148			0
<211>	19			
<212>	DNA			
<213>	Homo	sapiens		
		•	•	
<400>	148			
		gcccatcct	•	1:
54450		3000000		
<210>	140			
<211>			·	
<212>		•		
<213>	Homo	sapiens		
		*		
<400>	149			
cattt	cccc	actgtttcag		20
			î.	
<210>	150	•		
<211>	20	. •	• • • • • • • • • • • • • • • • • • •	
<212>	DNA	,		
<213>	Homo	sapiens		,
<400>	150			
		cttcaatcca		. 20
	,			
<210>	151			
<211>				
<212>			÷.	
		canions		
<213>	HOIIIO	sapiens		
. 4 0 0 .	252			
<400>				
gatcc	gttta	acctgccaac		20
<210>		•		
<211>		•		
<212>			•	
<213>	Homo	sapiens		
			,	
<400>	152 ·			
atgcco	cctgc	caactttac		19
		,		
<210>	153	•		•
<211>	20			
<212>	DNA			
		sapiens		
<400>	153		• .	·
		gttcccctac		20
0.0009	Jugee	greeceetae	·	21
<210>	154		•	
			•	
<211>				
<212>			·	
<213>	ното	sapiens		
<400>				
tatcaa	atcca	tggccctgac		20

<210> 155		
<211> 20		
<212> DNA <213> Homo	saniens	
(213) HOMO		
<400> 155		
agagtccctg	ccctccttct	20
<210> 156	·	
<211> 20		
<212> DNA		
<213> Homo	sapiens	
<400> 156		
	gcagtgtcaa	20
22 3		
<210> 157		
<211> · 20		
<212> DNA		
<213> Homo	sapiens	
<400> 157		
	ctgtgcttag	20
5955446466		20
<210> 158		
<211> 20		
<212> DNA		
<213> Homo	sapiens	
<400> 158		
	gtgtttccct	20
coaccagaca	92900000	20
<210> 159		
<211> 20		
<212> DNA		
<213> Homo	sapiens	
-100- 350		
<400> 159	atastasatt	
agicagcada	ctgctgggtt	20
<210> 160		
<211> 20		
<212> DNA		
<213> Homo	sapiens	
400		
<400> 160		_
accgcccat	cctggcataa	20
<210> 161		
<211> 23		
<212> DNA		
<213> Homo	sapiens	
<400> 161		
tcatggatga	ttttatgtgc ttc	23

<210 > 1	0			
<212> Di <213> Ho		sapiens		
<400> 1		aagccataag		20
<210> 1	63			
<211> 2				
<212> D				
<213> H		sapiens		
<400> 1				2.0
gccaatc	ata	caacagccct		20
<210> 1	64			
<211> 2		•		,
<212> D		anniona		
<213> H	Ollio	saprens		
<400> 1	64			
tgaticgc	ata	ttctacttgg	aaa	, 23
<210> 1	6 E			
<211> 2				
<212> D				
<213> H	omo	sapiens		
<400> 1	65			
		ttagaggcac	Ca	22
<210> 1				
<211> 2 <212> D				
		sapiens	·	
<400> 1				
gatcagg	aat	tcaagcacca	a · · · · · · · · · · · · · · · · · · ·	2,1
<210>, 1	67			
<211> 2	4			•
<212> D				
<213> H	omo	sapiens		
<400> 1	67			
tgggttc	cat	aatagagttt	caca	24
<210> 1	68			
<211> 2		•	•	
<212> D				
		sapiens		
	. -			
<400> 1		tactggaagt		· ·

<210> 169 <211> 22 <212> DNA <213> Homo sapiens	
<400> 169 tgtcagctgc tgctggaagt gg	22
<210> 170 <211> 21 <212> DNA <213> Homo sapiens	
<400> 170 aggagetgge egaageeaca a	21
<210> 171 <211> 21 <212> DNA <213> Homo sapiens	
<400> 171 aggagetgge tgaagecaca a	21
<210> 172 <211> 21 <212> DNA <213> Homo sapiens	
<400> 172 aatgatgcca ccaaacaaat g	21
<210> 173 <211> 21 <212> DNA <213> Homo sapiens	
<400> 173 aatgatgcca tcaaacaaat g	21
<210> 174 <211> 21 <212> DNA <213> Homo sapiens	
<400> 174 gaggtggctc cgatgaccac a	21
<210> 175 <211> 21 <212> DNA <213> Homo sapiens	
<400> 175 gaggtggctc tgatgaccac a	21

<210>	176										
<211>											
<212>						•					
		sapiens		•					•		
<400>	176	•									
		gaaatagtat	С								21
<210>	177										
<211>										•	
<212>											
		sapiens									
<400>	177										
ttcctt	aaca	aaaatagtat	С								21
•		_	•								
<210>	178									•	
<211>	21	•									
<212>	DNA						•	•	•		
<213>	Homo	sapiens			~	. :					
				•							
<400>	178										
ggaagt	gttc	caaaagagaa	а								21
		•						*			
<210>	179								•		
<211>	21 .										
<212>	DNA										
<213>	Homo	sapiens									
<400>	179										
ggaagt	gttc	taaaagagaa	a								21
	,										
<210>					•						
<211>		•									
<212>		*									
<213>	Homo	sapiens									
						4					
<400>				•							
agtaaa	agagg	gactagactt	t								21
<210>											
<211>											
<212>											
<213>	ното	sapiens									
- 4 0 0	101							,			
<400>			_			•					~ 1
ayraa	agagg	aactagactt	L					•			21
~27A+	192										
<210><211>											
<211>											
		sapiens									
~413>	1101110	Pahrens									
<400>	182							•			
		aggatgtggt	c		•						21
Julia	90	~334-9-39-	\exists								21

<210> 183		
<211> 21		
<212> DNA		
	:	
<213> Homo	sapiens	
<400> 183		
gcctacttgc	gggatgtggt g	21
<210> 184		•
<211> 23		
<212> DNA		
<213> Homo	canions	
(213) HOMO	sapiens	
<400> 184		2.2
cctcattcct	cttcttgtga g	cg 23
<210> 185		
<211> 20		
<212> DNA		
<213> Homo	saniens	1
12227 1100		•
.400. 305		
<400> 185		20
CCTCATTCCT	cttgtgagcg	20
		\mathcal{A}
<210> 186		
<211> 21		
<212> DNA		
<213> Homo	sapiens	
	•	
<400> 186		
	gtgggcttca c	21
gcaggactac	graggerrea c	·
<210> 187		
<211> 21		
<212> DNA		
<213> Homo	sapiens	
		•
<400> 187		
gcaggactac	atgggcttca c	21
30-55-0-0		
<210> 188		
<211> 21		
<212> DNA		
<213> Homo	sapiens	
<400> 188		
aaaagtctac	cgagatggga t	2:
		•
<210> 189		
<211> 21		
<212> DNA		
	, caniene	
<213> Homo	, sabiens	
.400. 200		
<400> 189		
aaaagtctad	: tgagatggga t	2

<210> 190 <211> 21 <212> DNA <213> Homo	o sapiens					
<400> 190			•			
ggccagatca	cctccttcct	g		<i>y</i>		21
<210> 191 <211> 21 <212> DNA			`			
<213> Homo	sapiens					
<400> 191 ggccagatca	tctccttcct	g		į.		21
<210> 192 <211> 21 <212> DNA						
<213> Homo	sapiens	•		2 - 1		
<400> 192				$(x_{ij},x_{ij}) = (x_{ij},x_{ij})$		
acacaccaca	tggatgaagc	g	8	\$		21
<210> 193 <211> 21 <212> DNA						
<213> Homo	sapiens		÷.	•		
<400> 193	a cggatgaagc	g			= 1	21
<210> 194 <211> 21 <212> DNA		•			· .	
<213> Home						
<400> 194					•	
cctggaaga	a gtaagttaag	t		*		21
<210> 195 <211> 21 <212> DNA						
<213> Home			•		•	
<400> 195 cctggaaga	a ctaagttaag	t		Y-8-		2:
<210> 196 <211> 21 <212> DNA <213> Home	o sapiens				·	
<400> 196	g tgtcccccag	g g			•	2

<210> 197 <211> 21 <212> DNA <213> Homo	canjenc		
(213) 1101110	sapiens		
<400> 197 gctgcctgtg	cgtcccccag	g	21
<210> 198 <211> 22 <212> DNA		•	
<213> Homo	sapiens		
<400> 198 tagccattat	ggaattactg	ct	22
<210> 199 <211> 21 <212> DNA			
<213> Homo	sapiens	·	
<400> 199 tagccattat	caattactgc	t .A	21
<210> 200 <211> 26 <212> DNA		· ·	
<213> Homo	sapiens		
<400> 200	aagatgtgag	acada	26
	~~3~~3~3	203334	
<210> 201 <211> 20 <212> DNA			
<213> Homo	sapiens		
<400> 201 gatgaagatg	tgaggcggga		20
<210> 202 <211> 21 <212> DNA			
<213> Homo	sapiens.		
<400> 202			
aatagttgta	cgaatagcag	g	21
<210> 203 <211> 21 <212> DNA			
<213> Homo	sapiens		
<400> 203 aatagttgta	tgaatagcag	g	21

<210> <211> <212>	21	·							
<213>	Homo	sapiens						•	
<400> acacgo		ggtgctggct	g						21
<210> <211>	21			•		•			
<212> <213>		sapiens					•		
-100-	205		,					•	
<400> acacgo		cgtgctggct	g ·		•				21
<210>				•	•				
<211> <212>					••				
		sapiens			, ,				
<400>	206						•		
gaccag	gccac	ggcgtccctg		•	, •				20
<210>	207		•						
<211>									
<212>		sapiens							
		Sapiciis				. • .			
<400> gaccag		gggcgtccct	g						21
<210><211>					,				
<212>									
<213>	Homo	sapiens	•	•					
<400>									. 22
Cattt	ctta	gaaaagagag	gt.						22
<210>		,						•	
<211><212>									
		sapiens							,
<400>	209								
		gagaagagag	gt						22
<210>	210								
<211>									
<212> <213>		sapiens							
-100-	210								
<400> gaaaat		atgtaaggaa	g		•		•		21

<210> 211 <211> 21 <212> DNA <213> Homo	sapiens	
<400> 211 gaaaattagt	ctgtaaggaa g	21
<210> 212 <211> 25 <212> DNA <213> Homo	sapiens	
<400> 212 cctccgcctg	ccaggttcag cgatt	25
<210> 213 <211> 25 <212> DNA <213> Homo	sapiens	
<400> 213 cctccgcctg	ccgggttcag cgatt	25
<210> 214 <211> 25 <212> DNA <213> Homo	sapiens	
<400> 214 tatgtgctga	ccatgggagc ttgtt	25
<210> 215 <211> 25 <212> DNA <213> Homo	sapiens	
<400> 215 tatgtgctga	ccgtgggagc ttgtt	25
<210> 216 <211> 21 <212> DNA <213> Homo	sapiens	
<400> 216 gtgacaccca	acggagtagg g	2:
<210> 217 <211> 21 <212> DNA <213> Homo	sapiens	
<400> 217 gtgacaccca	gcggagtagg g	2:

68.

<210> 218 <211> 21 <212> DNA						
<213> Homo	sapiens		·			
<400> 218	gttcacgaga	а .				23
·	5000a0Juga	u				
<210> 219			•			
<211> 25						•
<212> DNA						
<213> Homo	sapiens	, v				
<400> 219						
•	ccttgttcac	gagaa		•		25
<210> 220 <211> 21						
<211> 21 <212> DNA	,		••			
<213> Homo	sapiens			• •		
400 000	•					
<400> 220	gtatcacaac	C	•			21
009990000	gcaccacaac					~ -
<210> 221						
<211> 21		•	•			
<212> DNA			•			
<213> Homo	saprens					
<400> 221		•				
ctgggttcct	atatcacaac	c ····································				· 21
<210> 222		•		•		
<211> 21						
<212> DNA						
<213> Homo	sapiens	•				
<400> 222			,	•	. •	
ggcctaccaa	gggagaaact	g		•	•	. 21
<210> 223 <211> 21		•				
<212> DNA		•				
<213> Homo	sapiens					•
<400> 223						
ggcctaccaa	aggagaaact	9 .				21
<210> 224			·			
<211> 20						
<212> DNA						
<213> Homo	sapiens	9				
<400> 224						
	gtgattagga					2.0

<210> 225 <211> 20 <212> DNA		
<213> Homo	sapiens	
<400> 225 tttaaagggg	ttgattagga	20
<210> 226 <211> 22 <212> DNA	•	
<213> Homo	sapiens	
<400> 226 gaagaaattt	gttttttga tt	22
<210> 227 <211> 22		
<212> DNA <213> Homo	sapiens	
<400> 227 gaagaaattt	tttttttga tt	22
<210> 228	. :	
<211> 21	•	
<212> DNA <213> Homo	sapiens	
<400> 228		
	cgagggaggg g	21
<210> 229 <211> 21		
<212> DNA <213> Homo	sapiens	
<400> 229		23
gcgggcatcc	tgagggaggg g	21
<210> 230 <211> 21		
<212> DNA		
<213> Homo	sapiens	
<400> 230	r gatanagata a	21
	g gctgaagatc a	21
<210> 231 <211> 21		
<211> 21 <212> DNA		
<213> Homo	sapiens	
<400> 231		
agggagggg	actgaagatc a	21

<210><211><211>	20				
		sapiens			
<400>		cgctcattgt			20
-99-9-		-3			
<210> <211> <212>	21. DNA				
<213>	Homo	sapiens			
				•	
<400>		gcgctcattg	t.	•	21
555-		5-95	_	·	~~
<210>					
<211>.		*		• • • •	
<212>					•
<213>	HOMO	sapiens			
<400>	224	•			
		ttttaaccag	+		21
aagcca	actgt	ccccaaccag	٠.		21
<210>	235				
<211>					
<212>				*	
		sapiens			
<400>	235			* .	
		atttaaccag	t		21
aagcca	ctgt	atttaaccag	t		21
aagcca	ctgt 236	atttaaccag	t		21
<210><211>	236 21	atttaaccag	t		21
<210><211><212>	236 21 DNA	· .	t		21
<210><211><212>	236 21 DNA	atttaaccag sapiens	t 		21
<210><211><211><212><213>	236 21 DNA Homo	· .	t 		21
<pre>aagcca <210> <211> <212> <213> <400></pre>	236 21 DNA Homo	sapiens			
<pre>aagcca <210> <211> <212> <213> <400></pre>	236 21 DNA Homo	· .			21
<pre>aagcca <210> <211> <212> <213> <400></pre>	236 21 DNA Homo	sapiens			
<pre>aagcca <210> <211> <212> <213> <400> cgtggg</pre>	236 21 DNA Homo 236 gcttc	sapiens			
aagcca <210> <211> <212> <213> <400> cgtggg	236 21 DNA Homo 236 Jette 237 21	sapiens			
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212>	236 21 DNA Homo 236 GCttc 237 21 DNA	sapiens			
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212> <213>	236 21 DNA Homo 236 3cttc 237 21 DNA Homo	sapiens acactcaaga			
aagcca <210> <211> <212> <213> · · · · · · · · · · · · · · · · · · ·	236 21 DNA Homo 236 3cttc 237 21 DNA Homo	sapiens acactcaaga sapiens	t		21
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212> <213>	236 21 DNA Homo 236 3cttc 237 21 DNA Homo	sapiens acactcaaga	t		
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212> <213> cgtggg	236 21 DNA Homo 236 gcttc 237 21 DNA Homo	sapiens acactcaaga sapiens	t		21
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212> <213> <400> cgtggg	236 21 DNA Homo 236 gcttc 237 21 DNA Homo	sapiens acactcaaga sapiens	t		21
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212> <213> <400> <211> <212> <213>	236 21 DNA Homo 236 JCttc 237 21 DNA Homo 237 JCttc 238 21	sapiens acactcaaga sapiens	t		21
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212> <213> <4100> cgtgggg <211> <212> <213>	236 21 DNA Homo 236 GCttc 237 21 DNA Homo 237 GCttc 238 21 DNA	sapiens acactcaaga sapiens ccactcaaga	t		21
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212> <213> <4100> cgtgggg <211> <212> <213>	236 21 DNA Homo 236 GCttc 237 21 DNA Homo 237 GCttc 238 21 DNA	sapiens acactcaaga sapiens	t		21
aagcca <210> <211> <212> <213> <400> cgtggg <210> <211> <212> <213> <4100> cgtgggg <211> <212> <213>	236 21 DNA Homo 236 3cttc 237 21 DNA Homo 237 3cttc 238 21 DNA Homo	sapiens acactcaaga sapiens ccactcaaga	t		21

<210> 239 <211> 21 <212> DNA <213> Homo	sapiens		
<400> 239 tcacactcaa	catcttcgct	g	21
<210> 240 <211> 21 <212> DNA <213> Homo	sapiens		
<400> 240 gcagcctcac	ccgctcttcc	c ·	21
<210> 241 <211> 21 <212> DNA <213> Homo	sapiens		
<400> 241	tegetettee	·	21
<210> 242 <211> 21 <212> DNA			
<213> Homo <400> 242 agaagagaat	atcagaaatc	t	21
<210> 243 <211> 21 <212> DNA <213> Homo	sapiens		
<400> 243 agaagagaat	gtcagaaatc	t	21
<210> 244 <211> 21 <212> DNA <213> Homo	sapiens		
<400> 244 gcgcagtgco	ctgtgtcctt	a	21
<210> 245 <211> 21 <212> DNA <213> Homo	o sapiens		
<400> 245	ctgtgtcctt	. a	21

<210>	246						
<211>	21						
<212>	DNA						
		sapiens					
		Dapiens					
<400>	246	•					
gatcta	aggt	tgtcattctg	q			•	21
-			-				
<210>	247			•		•	
<211>	21		•				
<212>	DNA		•				
<213>	Homo	sapiens	·	· i			
<400>							
gatcta	aggt	ggtcattctg	g				21
-270-	248						
<210>							
<211>		•			••		
<212>							
<213>	Homó	sapiens			.:		
<400>	248				•		
			200			,	23
·	rigit	agcacagaag	aga .				23
<210>	249						
<211>							
<212>							
		sapiens					•
(213)	HOMO	saprens		•			
<400>	249						
		atcacagaag	aga				23
<210>	250					•	
<211>	21						
<212>	DNA	•					
		sapiens	•	•			·
	•						
<400>				-			
cattct	caggg	atcatagcca	t				· 21
-210-	251		•				
<210>				•		•	
<211>							
<212>							
<213>	Homo	sapiens					
<400>	251					•	
		gtcatagcca	+				21
Catte	Laggg	gccacagcca	C				21
<210>	252					•	
<211>							
<212>							
		sapiens					
		•		•			
<400>	252					•	
aagta	cagtg	ggaggaacag	cg			•	22

73

•

<210> 253 <211> 22 <212> DNA <213> Homo sapiens		
<400> 253 aagtacagtg tgaggaacag	cg	22
<210> 254 <211> 22 <212> DNA <213> Homo sapiens		
<400> 254 attcctaaaa aatagaaatg	ca	22
<210> 255 <211> 22 <212> DNA <213> Homo sapiens		
<400> 255 attectaaaa agtagaaatg	ca	22
<210> 256 <211> 21 <212> DNA <213> Homo sapiens		
<400> 256 ggccctgcc ttattattac	t	21
<210> 257 <211> 21 <212> DNA <213> Homo sapiens		
<400> 257 ggcccctgcc gtattattac	t	21
<210> 258 <211> 22 <212> DNA <213> Homo sapiens		
<400> 258. tgagagaatt acttgaaccc	gg	22
<210> 259 <211> 22 <212> DNA		
<213> Homo sapiens <400> 259 tgagagaatt gcttgaaccc	e gg	22

<210> 260 <211> 21 <212> DNA <213> Homo	sapiens			
<400> 260	caatcactga	С		21
<210> 261 <211> 21	-			·
<212> DNA <213> Homo	sapiens			
<400> 261 tttgctgaaa	taatcactga	С		21
<210> 262 <211> 22				•
<212> DNA <213> Homo	sapiens		÷	
<400> 262 aacctcagtt	ccctcatctg	tg		22
<210> 263 <211> 22				
<212> DNA <213> Homo	sapiens	•		
<400> 263 aacctcagtt	tectcatetg	tg		. 22
<210> 264 <211> 21 <212> DNA				
<213> Homo	sapiens			
<400> 264 ctggacacca	gaaataatgt	С		21
<210> 265 <211> 21 <212> DNA <213> Homo	capiens	•		
<400> 265				
ctggacacca <210> 266	aaaataatgt			21
<211> 21 <212> DNA				
<213> Homo <400> 266	sapiens		٠.	
++-+-+		· •		

<210> 267					
<211> 21					
<212> DNA					
<213> Homo	sapiens				
<400> 267			•		
tcctatgtgt	gctccaccaa	t			21
<210> 268					
<211> 21					
<212> DNA					
<213> Homo	sapiens				
<400> 268					
aagaagtggc	ttgtattttg	C			21
<210> 269					
<211> 21			••		
<212> DNA					
<213> Homo	sapiens				
<400> 269					
aagaagtggc	ctgtattttg	C			21
			. 4		
<210> 270	•				
<211> 23					
<212> DNA					
<213> Homo	sapiens				
<400> 270					
aactgatttg	attggtatag	ctg			23
<210> 271					
<211> 23					
<212> DNA					
<213> Homo	sapiens				
<400> 271					
aactgatttg	gttggtatag	ctg			23
<210> 272					
<211> 21					
<212> DNA					
<213> Homo	sapiens				
					•
<400> 272				·	
cagggtccaa	cccggacctg	a			21
.046 655					
<210> 273					
<211> 21					
<212> DNA	•				
<213> Homo	sapiens				
<400> 273					
cagggtccaa	tccggacctg	a			21

<210> 274
<211 ^{>} 22
<212> DNA
<213> Homo sapiens
·
<400> 274
ttgggaggct aaggcaggag aa 22
·
<210> 275
<211> 22
<212> DNA
<213> Homo sapiens
2137 None Buplens
<400> 275
ttgggaggct gaggcaggag aa 22
<210> 276
<211> 15
<212> DNA
<213> Gallus gallus
<400> 276
accaggggaa tctcc
<210> 277
<211> 15
<212> DNA
<213> Gallus gallus
<400> 277
accagggaaa tctcc
<210> 278
<211> 45
<212> DNA
<213> Gallus gallus
value delles delles
<400> 278
cgctacccaa caccagggga atctcctggt attgttggaa acttc 45
<210> 279
<211> 15
<212> PRT
<213> Homo sapiens
2257 Nomo Bupiens
<400> 279
Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly Val Val Gly Asn Phe
1 5 10 15
_ 10 15
<210> 280
<211> 15
<212> PRT
<213> Mus musculus
<400> 280
NIUU/ 20U

Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly Val Val Gly Asn Phe 1 5 10 15	
<210> 281 <211> 15 <212> PRT <213> Gallus gallus	
<pre><400> 281 Arg Tyr Pro Thr Pro Gly Glu Ser Pro Gly Ile Val Gly Asn Phe 1 5 10 15</pre>	
<210> 282 <211> 15 <212> PRT <213> Gallus gallus	
<400> 282	
Arg Tyr Pro Thr Pro Gly Lys Ser Pro Gly Ile Val Gly Asn Phe	
1 5 10 EVALUATION OF THE SET PRO GIV THE VALUE OF ASIA PRO GIV THE VAL	
<210> 283	
<211> 45	
<212> DNA	
<213> Gallus gallus	
<400> 283	
cgctacccaa caccagggaa atctcctggt attgttggaa acttc	4 5
<210> 284	
<211> 19	
<212> DNA	
<213> Homo sapiens	
<400> 284	
gcgtcaggga tggggacag	19
<210> 285 <211> 20	
<212> DNA	
<213> Homo sapiens	
datas nome bapacino	
<400> 285	
gcgtcaggga ttggggacag	20
<210> 286	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 286	
ccactteggt etecatg	1
<210> 287	

78

<212> DNA <213> Homo sapiens

<400> 287 ccacttcgat ctccatg

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 September 2000 (21.09.2000)

PCT

(10) International Publication Number WO 00/55318 A3

- (51) International Patent Classification7: C12N 15/12, C07K 14/705, C12N 5/10, A01K 67/027, C12N 15/00, A61K 38/17, 48/00, 38/45, 31/00, 31/70, G01N 33/68, C12Q 1/68, C12N 15/11
- PCT/IB00/00532 (21) International Application Number:
- (22) International Filing Date: 15 March 2000 (15.03.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/124,702	15 March 1999 (15.03.1999)	US
60/138,048	8 June 1999 (08.06.1999)	US
60/139,600	17 June 1999 (17.06.1999)	US
60/151,977	1 September 1999 (01.09.1999)	US

- (71) Applicants: UNIVERSITY OF BRITISH COLUMBIA [CA/CA]; 2329 West Mall, Vancouver, British Columbia V6T 1Z4 (CA). XENON GENETICS INC. [CA/CA]; Suite 100, 2386 East Mall, Vancouver, British Columbia V6T 1Z3 (CA).
- (72) Inventors: HAYDEN, Michael, R.; 4484 West 7th Avenue, Vancouver, British Columbia V6R 1W9 (CA). BROOKS-WILSON, Angela, R.; 7100 Langton Road,

Richmond, British Columbia V7C 4B2 (CA). PIM-STONE, Simon, N.; 4746 West 6th Avenue, Vancouver, British Columbia V6T 1C5 (CA).

- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (88) Date of publication of the international search report:

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ABC1 POLYPEPTIDE AND METHODS AND REAGENTS FOR MODULATING CHOLESTEROL LEVELS

regulation. The invention also features methods for identifying compounds for modulating cholesterol levels in an animal (e.g., a human).

anal Application No PCT/IB 00/00532

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C07K14/705

C12N5/10 A61K38/45 A01K67/027

C12N15/00

A61K38/17 G01N33/68 A61K48/00 C12Q1/68

C12N15/11

A61K31/00

A61K31/70

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C07K A61K G01N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, STRAND, MEDLINE

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	LUCIANI M F ET AL: "CLONING OF TWO NOVEL ABC TRANSPORTERS MAPPING ON HUMAN CHROMOSOME 9" GENOMICS,US,ACADEMIC PRESS, SAN DIEGO, vol. 21, no. 1, 1 May 1994 (1994-05-01), pages 150-159, XP000869719 ISSN: 0888-7543	1,2,9, 10, 14-16, 33-36, 38, 49-51, 72,73, 80,81
Y	the whole document	23,27, 32,37, 39-46, 67-71, 74-79
	-/	

X Furt	her documents are listed in the continuation of box C.	X	Patent family members are listed in annex.
° Special ca	itegories of cited documents :		
"A" docum	ent defining the general state of the art which is not dered to be of particular relevance	ا مل	ater document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier filling o	document but published on or after the international late	"X" (document of particular elevance; the claimed invention cannot be considered, sevel or cannot be considered to
"L" docume	ent which may throw doubts on priority claim(s) or		involve an inventive sea when the document is taken alone
which citatio	is cited to establish the publication date of another n or other special reason (as specified)	.A.	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the
	ent reterring to an oral disclosure, use, exhibition or means		document is combined with one or more other such docu- ments, such combination being obvious to a person skilled
.b. docnu	ent published prior to the international filing date but		in the art.
	nan the priority date claimed	.8.	document member of the same patent family
Date of the	actual completion of the international search	T	Date of mailing of the international search report
2	3 October 2000		0 8. 11. 00

Authorized officer

3

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Van der Schaal, C

PCT/IB 00/00532

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
	EMBL/GENBABK DATABASE Accession no AJ012376 Sequence ID HSA012376 7 January 1999 LANGMANN T ET AL: "Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1)" XP002144900		1,2,9, 10, 14-16, 33-36, 38, 49-51, 72,73, 80,81
f	the whole document	·	23,27, 32,37, 39-46, 67-71, 74-79
°,X	LANGMANN T ET AL: "MOLECULAR CLONING OF THE HUMAN ATP-BINDING CASSETTE TRANSPORTER 1 (HABC1): EVIDENCE FOR STEROL-DEPENDENT REGULATION IN MACROPHAGES" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, US, ACADEMIC PRESS INC. ORLANDO, FL, vol. 257, no. 1, 2 April 1999 (1999-04-02), pages 29-33, XP000877240 ISSN: 0006-291X		1,2,9, 10,14, 16, 33-36, 38, 49-51, 72,73, 80,81
'	the whole document		23,27, 32,37, 39-46, 67-71, 74-79
(.	RUST S ET AL: "ASSIGNMENT OF TANGIER DISEASE TO CHROMOSOME 9Q31 BY A GRAPHICAL LINKAGE EXCLUSION STRATEGY" NATURE GENETICS,US,NEW YORK, NY, vol. 20, no. 1, September 1998 (1998-09), pages 96-98, XP000884511 ISSN: 1061-4036 the whole document		23,27, 32,37, 39-46, 67-71, 74-79
	BECQ FREDERIC ET AL: "ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, generates a regulated anion flux after expression in Xenopus laevis oocytes." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, no. 5, 1997, pages 2695-2699, XP002150648 ISSN: 0021-9258		
	-/		

en nal Application No PCT/IB 00/00532

		PCT/IB 00/00532
<u> </u>	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
ategory °	Citation of document, with indication,where appropriate, of the relevant passages	Helevant to claim No.
4	LUCIANI MARIE-FRANCOISE ET AL: "The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 15, no. 2, 1996, pages 226-235, XP002150649 ISSN: 0261-4189	·
:	WO 00 18912 A (BAYER AG ;KLUCKEN JOCHEN (DE); SCHMITZ GERD (DE)) 6 April 2000 (2000-04-06)	1,2,9, 10, 14-16, 23, 25-27, 29-42, 44,67-71
	the whole document	
Ρ,Χ	RUST S ET AL: "TANGIER DISEASE IS CAUSED BY MUTATIONS IN THE GENE ENCODING ATPBINDING CASSETTE TRANSPORTER 1" NATURE GENETICS,US,NEW YORK, NY, vol. 22, no. 4, August 1999 (1999-08), pages 352-355, XP000884993 ISSN: 1061-4036 the whole document	1,2,9, 10, 14-16. 23,27, 32-42, 67-73, 75-77,79
>,Х	EMBL/GENBABK DATABASE Accession no AF165281 Sequence ID AF165281 17 August 1999 RUST S ET AL: "Tangier disease is caused by mutations in the gene" XP002144901 the whole document	1,2,9, 10,14-16
Ρ,Χ	REMALEY A T ET AL: "HUMAN ATP-BINDING CASSETTE TRANSPORTER 1 (ABC1): GENOMIC ORGANIZATION AND IDENTIFICATION OF THE GENETIC DEFECT IN THE ORIGINAL TANGIER DISEASE KINDRED" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, US, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 96, no. 22, 26 October 1999 (1999-10-26), pages 12685-12690, XP000877247 ISSN: 0027-8424 the whole document	1,2,9, 10, 14-16, 23,27, 32-42, 67-73, 75-77,79
	-/	

eri nal Application No PCT/IB 00/00532

Clasion of document, with indication, where appropriate, of the relevant passages	C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
## ATP-binding cassette transporter 1 is mutated in Tangier disease." MATURE GENETICS, vol. 22, no. 4, August 1999 (1999-08), pages 347-351, XP002150650 TSN: 1061-4036 75-77,79 75-77,79 75-77,79 75-77,79 BROOKS-WILSON A ET AL: "MUTATIONS IN ABC1 1,2,9, 10, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 11 1,2,9, 10, 10, 11 1,2,9, 10, 10, 11 1,2,9, 10, 11 1,2,9, 10, 10, 11 1,2,9, 10, 10, 11 1,2,9, 10, 11 1,2,9, 10, 10, 11 1,2,9, 10, 10, 10, 11 1,2,9, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10	Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
IN TANGIER DISEASE AND FAMILIAL HIGH-DENSITY LIPOPROTEIN DEFICIENCY" NATURE GENETICS, US, NEW YORK, NY, vol. 22, no. 4, August 1999 (1999-08), pages 336-345, XP000889767 ISSN: 1061-4036 the whole document A HAMON YANNICK ET AL: "Interleukin-1-beta secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1." BLOOD, vol. 90, no. 8, 1997, pages 2911-2915, XP002150651 ISSN: 0006-4971 the whole document X DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; KIM-SCHULZE S ET AL: "Estrogen stimulates delayed mitogen-activated protein kinase activity in human endothelial cells via an autocrine loop that involves basic fibroblast growth factor." retrieved from STN Database accession no. 1998377893 XP002150652 Y abstract & CIRCULATION, (1998 AUG 4) 98 (5) 413-21. X DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; HANSEN P S: "Familial defective apolipoprotein B-100." retrieved from STN Database accession no. 1998450452 XP002150653 abstract & DANISH MEDICAL BULLETIN, (1998 SEP) 45 (4) 370-82. REF: 139 ,	Ρ,Χ	ATP-binding cassette transporter 1 is mutated in Tangier disease." NATURE GENETICS, vol. 22, no. 4, August 1999 (1999-08), pages 347-351, XP002150650 ISSN: 1061-4036	10, 14-16, 23,27, 32-42, 67-73,
secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1." BLOOD, VOI. 90, no. 8, 1997, pages 2911-2915, XP002150651 ISSN: 0006-4971 the whole document X DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; KIM-SCHULZE S ET AL: "Estrogen stimulates delayed mitogen-activated protein kinase activity in human endothelial cells via an autocrine loop that involves basic fibroblast growth factor." retrieved from STN Database accession no. 1998377893 XP002150652 y abstract & CIRCULATION, (1998 AUG 4) 98 (5) 413-21. X DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; HANSEN P S: "Familial defective apolipoprotein B-100." retrieved from STN Database accession no. 1998450452 XP002150653 abstract & DANISH MEDICAL BULLETIN, (1998 SEP) 45 (4) 370-82. REF: 139 ,	Ρ,Χ	IN TANGIER DISEASE AND FAMILIAL HIGH-DENSITY LIPOPROTEIN DEFICIENCY" NATURE GENETICS,US,NEW YORK, NY, vol. 22, no. 4, August 1999 (1999-08), pages 336-345, XP000889767 ISSN: 1061-4036	10, 14-16, 23,27, 32-42, 67-73,
US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; KIM-SCHULZE S ET AL: "Estrogen stimulates delayed mitogen-activated protein kinase activity in human endothelial cells via an autocrine loop that involves basic fibroblast growth factor." retrieved from STN Database accession no. 1998377893 XP002150652 Y abstract & CIRCULATION, (1998 AUG 4) 98 (5) 413-21. X DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; HANSEN P S: "Familial defective apolipoprotein B-100." retrieved from STN Database accession no. 1998450452 XP002150653 abstract & DANISH MEDICAL BULLETIN, (1998 SEP) 45 (4) 370-82. REF: 139,	A	secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1." BLOOD, vol. 90, no. 8, 1997, pages 2911-2915, XP002150651 ISSN: 0006-4971	41-44
Y abstract & CIRCULATION, (1998 AUG 4) 98 (5) 413-21. X DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; HANSEN P S: "Familial defective apolipoprotein B-100." retrieved from STN Database accession no. 1998450452 XP002150653 abstract & DANISH MEDICAL BULLETIN, (1998 SEP) 45 (4) 370-82. REF: 139,	X	US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; KIM-SCHULZE S ET AL: "Estrogen stimulates delayed mitogen-activated protein kinase activity in human endothelial cells via an autocrine loop that involves basic fibroblast growth factor." retrieved from STN Database accession no. 1998377893	41-44
US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; HANSEN P S: "Familial defective apolipoprotein B-100." retrieved from STN Database accession no. 1998450452 XP002150653 y abstract & DANISH MEDICAL BULLETIN, (1998 SEP) 45 (4) 370-82. REF: 139,	Y	abstract & CIRCULATION, (1998 AUG 4) 98 (5) 413-21.	41-44
Y abstract & DANISH MEDICAL BULLETIN, (1998 SEP) 45 (4) 370-82. REF: 139,	X	US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; HANSEN P S: "Familial defective apolipoprotein B-100." retrieved from STN Database accession no. 1998450452	41-44
	Y	abstract & DANISH MEDICAL BULLETIN, (1998 SEP) 45 (4) 370-82. REF: 139 ,	41,44

PCT/IB 00/00532

		PC1/1B 00/00532
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; BELLOSTA S ET AL: "Direct vascular effects of HMG- CoA reductase inhibitors." retrieved from STN Database accession no. 1998357922 XP002150654	41-44
Y	abstract & ATHEROSCLEROSIS, (1998 APR) 137 SUPPL S101-9. REF: 66 ,	41-44
A	DATABASE BIOSIS 'Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1994 SCHREYER SANDRA A ET AL: "Hypercatabolism of lipoprotein-free apolipoprotein A-I in HDL-deficient mutant chickens." Database accession no. PREV199598077611 XP002150728 abstract & ARTERIOSCLEROSIS AND THROMBOSIS, vol. 14, no. 12, 1994, pages 2053-2059, ISSN: 1049-8834	

3

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

PCT/IB 00/00532

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Please see Claims, Invention 1 on additional sheet enclosed.
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

International Application No. PCT/IB 00 00532

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claims 23-44 78 are (partially) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition. Although claims 45-46 61 62 and 67-71 75-77 are (partially) directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-22 24 28 47 48 52-56 63 66 79 85 completely 23 25-27 29-40 45 46 57-62 64 65 67-74 82-84 86 partially

ABC1 polypeptide with amino acid sequence SEQ ID NO 1 encoded by SEQ ID NO 2 and their uses

2. Claims: 23 25-27 29-40 partially

Use of ABC1 polypeptides or its encoding polynucleotides not being SEQ ID NO 1 or 2 as pharmaceutical

3. Claims: 41-44 78

Use of compounds that modulates the biological activity of ABC1 as pharmaceutical

4. Claims: 45 46 57-62 64 65 72-74 82-84 86 partially

Use of ABC1 polypeptides or their encoding nuleotides not being SEQ ID NO 1 or 2 in assays

5. Claims: 49-51 80 81

Nucleic acid comprising a region at leat 80% identical to at least 30 contigious nucleotides of SEQ ID NO 14 and their use.

6. Claims: 67-71 75-77

Methods for determining a persons properties related to the ABC1 gene or activity

information on patent family members

an nal Application No PCT/IB 00/00532

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 0018912 A	06-04-2000	AU 5980499 A	17-04-2000

REVISED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 September 2000 (21.09.2000)

PCT

(10) International Publication Number WO 00/55318 A3

- (51) International Patent Classification⁷: C12N 15/12, C07K 14/705. C12N 5/10, A01K 67/027, C12N 15/00, A61K 38/17. 48/00. 38/45, 31/00, 31/70, G01N 33/68, C12Q 1/68. C12N 15/11
- (21) International Application Number: PCT/IB00/00532
- (22) International Filing Date: 15 March 2000 (15.03.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data:
 60/124,702 15 March 1999 (15.03.1999) US
 60/138,048 8 June 1999 (08.06.1999) US
 60/139,600 17 June 1999 (17.06.1999) US
 60/151,977 1 September 1999 (01.09.1999) US
- (71) Applicants: UNIVERSITY OF BRITISH COLUMBIA [CA/CA]; 2329 West Mall, Vancouver, British Columbia V6T 1Z4 (CA). XENON GENETICS INC. [CA/CA]; Suite 100, 2386 East Mall. Vancouver, British Columbia V6T 1Z3 (CA).
- (72) Inventors: HAYDEN, Michael, R.; 4484 West 7th Avenue, Vancouver, British Columbia V6R 1W9 (CA).

BROOKS-WILSON, Angela, R.; 7100 Langton Road, Richmond, British Columbia V7C 4B2 (CA). PIM-STONE, Simon, N.; 4746 West 6th Avenue, Vancouver, British Columbia V6T 1C5 (CA).

- (74) Agent: MBM & CO.; P.O. Box 809, Station B, Ottawa, Ontario K1P 5P9 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (88) Date of publication of the international search report: 22 March 2001

[Continued on next page]

(54) Title: ABCI POLYPEPTIDE AND METHODS AND REAGENTS FOR MODULATING CHOLESTEROL LEVELS

(57) Abstract: The invention features ABC1 nucleic acids and polypeptides for the diagnosis and treatment of abnormal cholesterol regulation. The invention also features methods for identifying compounds for modulating cholesterol levels in an animal (e.g., a human).

00/55318 43

WO 00/55318 A3

Date of publication of the revised international search report: 12 July 2001

(15) Information about Correction: see PCT Gazette No. 28/2001 of 12 July 2001, Section II For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Inter mional Application No PC:/IB 00/00532

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/12 C07K14/705

A61K38/17 G01N33/68 A61K48/00

C12Q1/68

C12N5/10 A61K38/45 C12N15/11 A01K67/027 A61K31/00

C12N15/00 A61K31/70

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, STRAND, MEDLINE

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	LUCIANI M F ET AL: "CLONING OF TWO NOVEL ABC TRANSPORTERS MAPPING ON HUMAN CHROMOSOME 9" GENOMICS,US,ACADEMIC PRESS, SAN DIEGO, vol. 21, no. 1, 1 May 1994 (1994-05-01), pages 150-159, XP000869719 ISSN: 0888-7543	1,2,9, 10, 14-16, 33-36, 38, 49-51, 72,73, 80,81
Υ	the whole document	23,27, 32,37, 39-46, 67-71, 74-79
	-/	
		· ·

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
Special categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but
"A" document defining the general state of the art which is not considered to be of particular relevance	cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another	involve an inventive step when the document is taken alone
citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but later than the priority date claimed	in the art. "%" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
22 October 2000	0 8. 11. 00

23 October 2000

Fax: (+31-70) 340-3016

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Authorized officer

VAN DER SCHAAL C.A.

Inter 'ional Application No PC I / I B 00/00532

Category 3	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	EMBL/GENBABK DATABASE Accession no AJ012376 Sequence ID HSA012376 7 January 1999 LANGMANN T ET AL: "Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1)" XP002144900 the whole document	1,2,9, 10, 14-16, 33-36, 38, 49-51, 72,73, 80,81 23,27, 32,37,
		39-46, 67-71, 74-79
P,X	LANGMANN T ET AL: "MOLECULAR CLONING OF THE HUMAN ATP-BINDING CASSETTE TRANSPORTER 1 (HABC1): EVIDENCE FOR STEROL-DEPENDENT REGULATION IN MACROPHAGES" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, US, ACADEMIC PRESS INC. ORLANDO, FL, vol. 257, no. 1, 2 April 1999 (1999-04-02), pages 29-33, XP000877240 ISSN: 0006-291X	1,2,9, 10,14, 16, 33-36, 38, 49-51, 72,73, 80,81
Υ	the whole document	23,27, 32,37, 39-46, 67-71, 74-79
Y	RUST S ET AL: "ASSIGNMENT OF TANGIER DISEASE TO CHROMOSOME 9031 BY A GRAPHICAL LINKAGE EXCLUSION STRATEGY" NATURE GENETICS,US,NEW YORK, NY, vol. 20, no. 1, September 1998 (1998-09), pages 96-98, XP000884511 ISSN: 1061-4036 the whole document	23,27, 32,37, 39-46, 67-71, 74-79
A	BECQ FREDERIC ET AL: "ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, generates a regulated anion flux after expression in Xenopus laevis oocytes." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, no. 5, 1997, pages 2695-2699, XP002150648 ISSN: 0021-9258	

Inter ional Application No PCI/IB 00/00532

C.(Continua	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages Relevant to claim No.		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.	
Α	LUCIANI MARIE-FRANCOISE ET AL: "The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 15, no. 2, 1996, pages 226-235, XP002150649 ISSN: 0261-4189		
E .	WO 00 18912 A (BAYER AG ;KLUCKEN JOCHEN (DE); SCHMITZ GERD (DE)) 6 April 2000 (2000-04-06) the whole document	1,2,9, 10, 14-16, 23, 25-27, 29-42, 44,67-71	
P,X	RUST S ET AL: "TANGIER DISEASE IS CAUSED BY MUTATIONS IN THE GENE ENCODING ATPBINDING CASSETTE TRANSPORTER 1" NATURE GENETICS,US,NEW YORK, NY, vol. 22, no. 4, August 1999 (1999-08), pages 352-355, XP000884993 ISSN: 1061-4036 the whole document	1,2,9, 10, 14-16, 23,27, 32-42, 67-73, 75-77,79	
P,X	EMBL/GENBABK DATABASE Accession no AF165281 Sequence ID AF165281 17 August 1999 RUST S ET AL: "Tangier disease is caused by mutations in the gene" XP002144901 the whole document	1,2,9, 10,14-16	
P,X -	REMALEY A T ET AL: "HUMAN ATP-BINDING CASSETTE TRANSPORTER 1 (ABC1): GENOMIC ORGANIZATION AND IDENTIFICATION OF THE GENETIC DEFECT IN THE ORIGINAL TANGIER DISEASE KINDRED" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA,US,NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 96, no. 22, 26 October 1999 (1999-10-26), pages 12685-12690, XP000877247 ISSN: 0027-8424 the whole document	1,2,9, 10, 14-16, 23,27, 32-42, 67-73, 75-77,79	
	-/		

Inter 'tonal Application No PC I / IB 00/00532

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
P,X -	BODZIOCH MAREK ET AL: "The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease." NATURE GENETICS, vol. 22, no. 4, August 1999 (1999-08), pages 347-351, XP002150650 ISSN: 1061-4036 the whole document	1,2,9, 10, 14-16, 23,27, 32-42, 67-73, 75-77,79		
P,X	BROOKS-WILSON A ET AL: "MUTATIONS IN ABC1 IN TANGIER DISEASE AND FAMILIAL HIGH-DENSITY LIPOPROTEIN DEFICIENCY" NATURE GENETICS,US,NEW YORK, NY, vol. 22, no. 4, August 1999 (1999-08), pages 336-345, XP000889767 ISSN: 1061-4036 the whole document	1,2,9, 10, 14-16, 23,27, 32-42, 67-73, 75-77,79		
A	HAMON YANNICK ET AL: "Interleukin-1-beta secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1." BLOOD, vol. 90, no. 8, 1997, pages 2911-2915, XP002150651 ISSN: 0006-4971 the whole document	41-44		
X	DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; KIM-SCHULZE S ET AL: "Estrogen stimulates delayed mitogen-activated protein kinase activity in human endothelial cells via an autocrine loop that involves basic fibroblast growth factor." retrieved from STN Database accession no. 1998377893 XP002150652	41-44		
Y -	abstract & CIRCULATION, (1998 AUG 4) 98 (5) 413-21.,	41-44		
x	DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; HANSEN P S: "Familial defective apolipoprotein B-100." retrieved from STN Database accession no. 1998450452 XP002150653	41-44		
Y	abstract & DANISH MEDICAL BULLETIN, (1998 SEP) 45 (4) 370-82. REF: 139,	41,44		
	-/			

Inte tonal Application No PCT/IB 00/00532

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
	DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; BELLOSTA S ET AL: "Direct vascular effects of HMG- CoA reductase inhibitors." retrieved from STN Database accession no. 1998357922 XP002150654		41-44	
	abstract & ATHEROSCLEROSIS, (1998 APR) 137 SUPPL S101-9. REF: 66,		41-44	
	DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1994 SCHREYER SANDRA A ET AL: "Hypercatabolism of lipoprotein-free apolipoprotein A-I in HDL-deficient mutant chickens." Database accession no. PREV199598077611 XP002150728 abstract			
	& ARTERIOSCLEROSIS AND THROMBOSIS, vol. 14, no. 12, 1994, pages 2053-2059, ISSN: 1049-8834			
-) -	
	·			
		·		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

. Finational application No. PCT/IB 00/00532

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see FURTHER INFORMATION sheet PCT/ISA/210			
	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:			
з	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)			
This Inter	national Searching Authority found multiple inventions in this international application, as follows:			
	see additional sheet			
	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.			
	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:			
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:			
Remark (The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.			

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-22 24 28 47 48 52-56 63 66 79 85 completely 23 25-27 29-40 45 46 57-62 64 65 67-74 82-84 86 partially

ABC1 polypeptide with amino acid sequence SEQ ID NO 1 encoded by SEQ ID NO 2 and their uses

2. Claims: 23 25-27 29-40 partially

Use of ABC1 polypeptides or its encoding polynucleotides not being SEQ ID NO 1 or 2 as pharmaceutical

3. Claims: 41-44 78

Use of compounds that modulates the biological activity of ABC1 as pharmaceutical

4. Claims: 45 46 57-62 64 65 72-74 82-84 86 partially

Use of ABC1 polypeptides or their encoding nuleotides not being SEQ ID NO 1 or 2 in assays

5. Claims: 49-51 80 81

Nucleic acid comprising a region at leat 80% identical to at least 30 contigious nucleotides of SEQ ID NO 14 and their use.

6. Claims: 67-71 75-77

Methods for determining a persons properties related to the ABC1 gene or activity

International Application No. PCT/IB 00/00532

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claims 23-44 78 are (partially) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Although claims 45-46 61 62 and 67-71 75-77 are (partially) directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

aformation on patent family members

WO 0018912

tional Application No Int PCT/IB 00/00532

Publication Patent family member(s) Publication date Patent document cited in search report date 17-04-2000 5980499 A ΑU 06-04-2000

THIS PAGE BLANK (USPTO)