DATA CREATOR CAMP

2024 데이터 크리에이터 캠프

대학부 실습영상

6강. 추천시스템 개요

목차

- 추천시스템이란?
- 추천시스템 분류
- 추천시스템 평가

1. 추천시스템이란?

추천 시스템은 정보 필터링 (IF) 기술의 일종으로, 특정 사용자가 관심을 가질만한 정보 (영화, 음악, 책, 뉴스, 이미지, 웹 페이

지 등)를 추천하는 것이다. (Wikipedia)

1. 추천시스템이란?

- 추천시스템은 사용자의 제품을 찾는 시간을 줄여주고, 의사결정의 질을 높여주며, 의사결정에 대한 신념을 높여주고 정신적인 노력을 줄여줌으로써 사용자의 성과에 긍정적인 영향을 미치는 것으로 보고하고 있다. (Hostler et al., 2005)
- 추천 시스템을 사용하는 경우 기업 입장에서는 개인화된 경험을 제공하여 유저의 만족도를 높여 매출 증대를 기대할 수 있다.[1]

1. 추천시스템이란?

- ❖ 추천시스템의 목적
 - Relevance: 사용자의 관심사에 관련된 아이템을 추천해주어야 함
 - Novelty: 사용자가 과거에 경험해보지 못한 아이템을 추천해주어야 함
 - Serendipity: 추천되는 아이템은 단순히 경험해보지 못한 것뿐(novelty) 아니라 놀랍고 신선해야 함
 - Diversity : 추천되는 아이템들의 유사성을 줄여 추천의 성공 확률을 높임

- Collaborative Filtering Models
 - Memory-based methods
 - User-based collaborative filtering
 - Item-based collaborative filtering
 - Model-based methods
- Content-Based Recommender Systems
- Knowledge-Based Recommender Systems
- Demographic Recommender Systems
- Hybrid and Ensemble-Based Recommender Systems

- Collaborative Filtering Models
 - Memory-based methods
 - User-based collaborative filtering
 - Item-based collaborative filtering
 - Model-based methods
- Content-Based Recommender Systems
- Knowledge-Based Recommender Systems
- Demographic Recommender Systems
- Hybrid and Ensemble-Based Recommender Systems

- Collaborative Filtering (CF)
 - 형석이는 "인사이드아웃2"를 좋아할까?
 - 형석이와 비슷한 취향을 가진 민정이의 시청기록을 확인해보자.
 - 민정이가 봤던 "인사이드아웃2 "도 좋아할 것으로 보인다.
 - 특정 사용자가 평가하지 않은 아이템의 평가를 예측할 때, 해당 아이템에 대한 다른 사용자들의 평가를 이용
 - 평가 = rating, likes, buying 등

- ❖ Collaborative Filtering(CF)의 종류
 - Memory-based method
 - Neighborhood Models로 사용자가 이전에 평가한 데이터를 사용하여, 유사한 user나 유사한 item을 찾아 서 추천함.
 - 행렬(matrix) 형태로 저장된 평가 데이터를 사용함.
 - Model-based method
 - 과거의 평가 데이터를 학습하여 예측할 수 있는 모델(예: 결정 트리, 베이지안 모델, 잠재 요인 모델)을 학습함.
 - 학습된 모델은 새로운 데이터가 주어졌을 때, 학습한 내용을 바탕으로 예측을 수행함.

- ❖ 협업필터링(CF): Memory-based method의 종류
 - User-based collaborative filtering
 - 이전에 시청한 영화들 중 비슷하게 평가한 사용자를 통해서 타겟 사용자의 타겟 아이템에 대한 점수를 예측함
 - 사용자간의 유사성 평가는 row를 기준으로 구함

	7번방의 선물	검은사제들	극한직업	엑시트	파묘	국제시장
사용자1	5	1	3	2	2	5
사용자2	5	2	2	2	2	?
사용자3	1	5	3	3	5	1
사용자4	2	?	2	1	4	1

- ❖ 협업필터링(CF): Memory-based method의 종류
 - User-based collaborative filtering
 - 이전에 시청한 영화들 중 비슷하게 평가한 사용자를 통해서 타겟 사용자의 타겟 아이템에 대한 점수를 예측함
 - 사용자간의 유사성 평가는 row를 기준으로 구함

	7번방의 선물	검은사제들	극한직업	엑시트	파묘	국제시장
사용자1	5	1	3	2	2	5
사용자2	5	2	2	2	2	?
사용자3	1	5	3	3	5	1
사용자4	2	?	2	1	4	1

- ❖ 협업필터링(CF): Memory-based method의 종류
 - User-based collaborative filtering
 - 이전에 시청한 영화들 중 비슷하게 평가한 사용자를 통해서 타겟 사용자의 타겟 아이템에 대한 점수를 예측함
 - 사용자간의 유사성 평가는 row를 기준으로 구함

	7번방의 선물	검은사제들	극한직업	엑시트	파묘	국제시장
사용자1	5	1	3	2	2	5
사용자2	5	2	2	2	2	?
사용자3	1	5	4	4	5	1
사용자4	2	?	4	5	4	1

- ❖ 협업필터링(CF): Memory-based method의 종류
 - User-based collaborative filtering
 - 이전에 시청한 영화들 중 비슷하게 평가한 사용자를 통해서 타겟 사용자의 타겟 아이템에 대한 점수를 예측함
 - 사용자간의 유사성 평가는 row를 기준으로 구함

감동적인 한국 영화를 좋아하며, 무서운 영화에 대해서 흥미가 없는 사용자인 것으로 추정 => <국제시장>을 좋아할 것이다.

	7번방의 선물	검은사제들	극한직업	엑시트	파묘	국제시장	sim
사용자1	5	1	3	2	2	5	0.98
사용자2	5	2	2	2	2	5	
사용자3	1	5	4	4	5	1	0.66
사용자4	2	?	4	5	4	1	0.75

- ❖ 협업필터링(CF): Memory-based method의 종류
 - User-based collaborative filtering
 - 이전에 시청한 영화들 중 비슷하게 평가한 사용자를 통해서 타겟 사용자의 타겟 아이템에 대한 점수를 예측함
 - 사용자간의 유사성 평가는 row를 기준으로 구함

오컬트 한국 영화를 좋아하며, 감동적인 영화에는 흥미가 없는 사용자인 것으로 추정된다. => <검은사제들>을 좋아할 것이다.

	7번방의 선물	검은사제들	극한직업	엑시트	파묘	국제시장	sim
사용자1	5	1	3	2	2	5	0.79
사용자2	5	2	2	2	2	?	0.75
사용자3	1	5	4	4	5	1	0.97
사용자4	2	5	4	5	4	1	

- ❖ 협업필터링(CF): Memory-based method의 종류
 - Item-based collaborative filtering
 - 타겟 사용자가 이전에 시청한 영화들과 <mark>비슷한 영화</mark>를 찾아, 타겟 사용자의 평가를 바탕으로 타겟 아이템에 대한 점수를 예측함.
 - 아이템간 유사성 평가는 column를 기준으로 구함

	7번방의 선물	검은사제들	극한직업	엑시트	파묘	국제시장
사용자1	5	1	3	2	2	5
사용자2	5	2	2	2	2	?
사용자3	1	5	4	4	5	1
사용자4	2	?	4	5	4	1

- ❖ 협업필터링(CF): Memory-based method의 종류
 - Item-based collaborative filtering
 - 타겟 사용자가 이전에 시청한 영화들과 <mark>비슷한 영화</mark>를 찾아, 타겟 사용자의 평가를 바탕으로 타겟 아이템에 대한 점수를 예측함.
 - 아이템간 유사성 평가는 column를 기준으로 구함

	7번방의 선물	검은사제들	극한직업	엑시트	파묘	국제시장
사용자1	5	1	3	2	2	5
사용자2	5	2	2	2	2	?
사용자3	1	5	4	4	5	1
사용자4	2	4	4	5	4	1
	0.56		0.92	0.92	0.97	0.49

- ❖ 협업필터링(CF): Memory-based method의 종류
 - Item-based collaborative filtering
 - 타겟 사용자가 이전에 시청한 영화들과 <mark>비슷한 영화</mark>를 찾아, 타겟 사용자의 평가를 바탕으로 타겟 아이템에 대한 점수를 예측함.
 - 아이템간 유사성 평가는 column를 기준으로 구함

	7번방의 선물	검은사제들	극한직업	엑시트	파묘	국제시장
사용자1	5	1	3	2	2	5
사 용 자2	5	2	2	2	2	5
사용자3	1	5	4	4	5	1
사 용 자4	2	?	4	5	4	1
	0.93	0.49	0.72	0.59	0.59	

- ❖ Collaborative Filtering(CF) 장단점
 - 상호작용의(rating, 구매빈도..) 데이터만 있으면 적용할 수 있음. 따라서 도메인에 의존되지 않고 사용할 수 있음
 - 일반적으로 content-based보다 좋은 성능을 가짐.
 - cold start 문제가 존재함. 새로운 item이나 user들에 대한 feedback(상호작용 데이터)이 부족하기 때문임.

- Collaborative Filtering Models
 - Memory-based methods
 - User-based collaborative filtering
 - Item-based collaborative filtering
 - Model-based methods
- Content-Based Recommender Systems
- Knowledge-Based Recommender Systems
- Demographic Recommender Systems
- Hybrid and Ensemble-Based Recommender Systems

- Content-based Recommender
 - 핵심 아이디어:사용자는 과거에 자신이 선택한 아이템들과 비슷한 아이템을 좋아할 가능성이 높다.
 - 콘텐츠 기반 추천시스템은 특정 아이템의 구체적인 특징들을 기반으로 추천한다.
 - CB 모델에서는 다른 사용자들의 피드백은 사용되지 않으며, 오로지 추천 대상이 되는 "타겟 사용자"에만 초점을 둔다

지능정보원

- Content-based Recommender
 - 방법
 - 1. 유저 프로필 파악: 이전 시청 기록을 기반으로 유저의 취향 파악
 - 매드 맥스: 분노의 도로와 다크 나이트를 좋아했다면, 이 영화들의 장르(액션, 스릴러), 감독(조지 밀러, 크리스 토퍼 놀란), 출연 배우 등의 정보가 사용자 프로필에 반영됨.
 - ⇒ 액션 장르와 스릴러 장르를 좋아하며, 크리스토퍼 놀란이나 톰 하디가 출연한 영화를 선호한다고 예측
 - 2. 유사 아이템 선택
 - 인셉션: 크리스토퍼 놀란 감독, 액션/스릴러 장르, 출연 배우 중 톰 하디 포함
 - 인터스텔라: 크리스토퍼 놀란 감독, 톰 하디 출연

- Content-based Recommender
 - 알고리즘 예시
 - 1. TF-IDF (Term Frequency-Inverse Document Frequency)를 사용하여 아이템에 대한 속성 벡터 구하기
 - 아이템에 대한 설명 데이터(text)가 존재한다면, 텍스트 데이터를 벡터로 변환함.
 - 텍스트 데이터를 벡터로 변환시에 TF-IDF 방법을 사용함.
 - 2. 코사인 유사도를 통해서 가장 유사한 아이템 찾기
 - 각 아이템에 대한 벡터를 사용하여 코사인 유사도를 구하고 가장 높은 유사도를 보인 아이템을 추천함.

Term Frequency X Inverse Document Frequency

$$w_{x,y} = t f_{x,y} \times log(\frac{N}{df_x})$$

Text1: Basic Linux Commands for Data Science
Text2: Essential DVC Commands for Data Science

	basic	commands	data	dvc	essential	for	linux	science
Text 1	0.5	0.35	0.35	0.0	0.0	0.35	0.5	0.35
Text 2	0.0	0.35	0.35	0.5	0.5	0.35	0.0	0.35

- ❖ Content-based Recommender 장단점
 - cold-start problem에서 사용가능한 방법
 - 새로운 아이템에 대한 평가 점수가 없더라도 아이템간의 특징만을 비교하여 추천이 가능함.
 - 사용자의 과거 구매 이력을 바탕으로 제품을 추천하기 때문에 추천 상품의 다양성 보장이 어려움.
 - 무작위 요소를 추가하여 새로운 아이템을 추천할 수 있음.(유전자 알고리즘 활용)
 - 추천하고자 하는 사용자의 독립적인 정보만을 필요함.
 - 다른 사용자의 정보가 부족한 경우에도 유용하게 사용할 수 있는 추천 방법임.
 - 과거 구매 이력이 부족한 경우 추천 성능 보장이 어려움.

- Collaborative Filtering Models
 - Memory-based methods
 - User-based collaborative filtering
 - Item-based collaborative filtering
 - Model-based methods
- Content-Based Recommender Systems
- Knowledge-Based Recommender Systems
- Demographic Recommender Systems
- Hybrid and Ensemble-Based Recommender Systems

- * Knowledge-based Recommender
 - 지식 기반 추천 시스템은 평가 데이터를 사용하지 않고, 고객의 요구 사항과 항목 설명 간의 유사성을 바탕으로 추천을 수행함.
 - cold-start problem에서 사용가능한 방법임.

- ❖ Knowledge-based Recommender 특징
 - 1. 명시적인 사용자 요구사항
 - 사용자가 제공하는 구체적인 요구사항을 바탕으로 추천함.
 - 자동차를 구입하려고 할 때, "세단", "하이브리드", "5천만 원 이하" 등의 명확한 요구사항을 입력하면, 이 조건에 맞는 자동차를 추천함.
 - 2. 규칙 기반 추천
 - "연비가 높은 차"를 선호한다고 했을 경우, 해당 규칙에 부합하는 아이템들을 추천할 수 있습니다.
 - 3. 사용자 행동 이력이 필요하지 않음
 - KB 추천 시스템은 협업 필터링이나 컨텐츠 기반 필터링처럼 사용자 행동 데이터를 필요로 하지 않음.
 - 4. 복잡한 제품과 서비스에 적합
 - 부동산, 자동차, 금융 상품처럼 다양한 특성과 옵션이 결합된 제품에 대해 매우 효과적임.
 - 구매 빈도가 낮고, 사용자마다 요구 조건이 명확하기 때문에 KB 추천 시스템이 잘 맞음.

Table 1.2: The conceptual goals of various recommender systems

Approach	Conceptual Goal	Input
Collaborative	Give me recommendations based on a collaborative approach	User ratings +
	that leverages the ratings and actions of my peers/myself.	community ratings
Content-	Give me recommendations based on the content (attributes)	User ratings +
based	I have favored in my past ratings and actions.	item attributes
Knowledge-	Give me recommendations based on my explicit specification	User specification +
based	of the kind of content (attributes) I want.	item attributes $+$
		domain knowledge

❖ 세가지 방법의 장단점

	장점	단점
Collaborative Filtering	 다양한 추천 가능 순수 사용자의 행동데이터만 필요함. 메타 데이터 불필요함. 충분한 사용자 데이터가 확보되면 매우 정확하고 개인화된 추천이 가능함 	Cold start 문제 발생데이터 희소성 문제 : 유사도 계산에 어려움이 존재함계산 복잡도가 높음
Content-based Recommendation	 Cold Start 문제 완화 사용자 개인화 : 사용자의 과거 선호도를 분석해 유사한 특성을 가진 아이템을 추 천 	다양한 추천이 어려움아이템 메타데이터에 의존적 : 메타데이터가 부족한 경우 부정확함
Knowledge-based Recommendation	명확한 통제 및 신뢰성Cold Start 문제 없음복잡한 제품에 적합	 규칙 설정의 어려움 사용자가 예상하지 못한 새로 운 제품 추천이 어려움 도메인 지식이 변하는 경우 유지보수에 비용이 많이 듦

- ❖ 추천시스템에서 사용하는 데이터
 - 사용자 데이터
 - 사용자 프로필 정보: 사용자의 기본 정보(이름, 나이, 성별, 위치 등)
 - 아이템 데이터
 - 아이템 특성: 영화라면 장르, 감독, 출연 배우, 제품이라면 브랜드, 가격, 카테고리 등 아이템의 속성 정보 => 컨텐츠 기반 추천
 - 아이템 메타데이터: 아이템의 설명, 태그, 출시 날짜, 이미지, 사용자 리뷰 등 추가적인 메타데이터=> 컨텐츠 기반 추천시 아이템간의 유사도 평가시 더 풍부한 정보 제공 가능
 - 사용자-아이템 상호작용 데이터
 - 명시적 피드백(Explicit Feedback): 사용자가 명시적으로 남긴 데이터(ex. 영화에 대한 별점 평가, 리뷰, 좋아요) => 협업 필터링 사용
 - 암묵적 피드백(Implicit Feedback): 사용자의 행동을 통해 수집된 데이터 (ex.상품 구매, 영화 시청 시간, 웹페이지 조회 수). 사용자의 관심사를 추론가능 => 협업 필터링 사용

3. 추천시스템 평가 방법

- ❖ 사용자 스터디
 - 피험자를 모집하여 추천 시스템과 상호작용하도록 요청하고, 이 과정에서 피드백을 수집함.
 - 예) 사용자에게 제품 사이트에서 추천을 받고 그 품질에 대한 피드백을 제공하도록 하거나, 노래를 듣고 평가를 제공하도록 할 수 있음.
 - 대규모 사용자 모집이 어렵고 비용이 많이 들며, 모집된 사용자들이 일반 사용자를 대표하지 않을 가능성도 있음.

3. 추천시스템 평가 방법

- ❖ 온라인 평가
 - 실 사용자들이 실제 상업 시스템에서 추천 시스템과 상호작용하는 데이터를 활용
 - 모집 과정에서 발생하는 편향을 줄일 수 있으며, A/B 테스트를 통해 두 알고리즘의 성능을 비교
 - 대규모 사용자 기반이 필요하기 때문에 초기 단계에서는 사용하기 어려움. 주로 상업 시스템 내에서만 활용되기 때문에 연구자들이 다양한 상황에서 테스트하기에는 제한적임.

3. 추천시스템 평가 방법

- ❖ 오프라인 평가
 - 우리가 기존에 모델 학습 후에 진행하는 평가하는 것을 오프라인 평가라고 함.
 - 주어진 벤치마크 데이터셋에 대해 추천 알고리즘이 얼마나 효과적인지 평가하는 것.
 - 오프라인 평가의 단점은 실제 사용자 반응을 측정하지 못하며, 데이터가 시간에 따라 변할 수 있어 미래에 적합하지 않을 수 있음.

Mini Quiz

- ❖ 협업 필터링(Collaborative filtering)은 사용자의 평가와 동료의 평가를 활용하여 추천을 생성하는 방식이다. ○ / X
- ❖ 콘텐츠 기반(Content-based) 추천 시스템은 사용자가 과거에 평가하고 행동한 항목의 속성을 기반으로 추천을 제공한다. / X
- ❖ 지식 기반(Knowledge-based) 추천 시스템은 사용자의 명시적인 요구 사항과 도메인 지식을 활용하여 추천을 제공한다.
 / X
- ❖ 콘텐츠 기반 추천 시스템에서는 주로 사용자 평가와 커뮤니티 평가를 입력으로 사용한다.○ / X
- ❖ 협업 필터링 방식에서는 아이템 속성(Item attributes)을 입력으로 사용하지 않는다. ○ / X
- ❖ 지식 기반 추천 시스템에서는 사용자 요구 사항, 아이템 속성, 도메인 지식이 모두 추천의 입력 요소로 활용된다.○ / X

참고자료

Recommender Systems

The Textbook

Textbook | © 2016

Access provided by Korea University

Download book PDF 🕹

Download book EPUB 坐

이 문서의 외부 유출 및 공유를 금합니다.

본 콘텐츠는 한국지능정보사회진흥원(NIA)의 동의 없이 무단 사용할 수 없으며, 상업적 목적으로 이용을 금합니다.

