Notes on

Analysis

Aadithyaa Sridharbaskari asridharbaskari@ucdavis.edu

My journey of spending a year learning analysis, starting on December 18th, 2022, using these references.

- Principles of Mathematical Analysis by Walter Rudin. Every exercise is included.
- Understanding Analysis by Stephen Abbott. Source of analogies and explanations.
- Calculus by Michael Spivak. Selected exercises and thoughts.
- The Cauchy-Schwarz Masterclass by Michael Steele. Excellent practice for inequalities and entertaining read.

2 Contents

Contents

1	Four	$\operatorname{ndations}$																	3
	1.1	Problems	 					•	 	•			•	•	•				3
2	Real	numbers																	3
	2.1	Problems	 	 		 			 										4

1 Foundations

Here's a cute proof of the Schwarz inequality. We want to prove that $x_1y_1+x_2y_2 \leq \sqrt{x_1^2+x_2^2}\sqrt{y_1^2+y_2^2}$. These are the steps ahead.

- $b^2 4c < 0 \implies x^2 + bx + c > 0$
- In the following two cases, equality holds:
 - 1. $\exists \lambda$ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$
 - 2. x = y = 0
- Otherwise, the following must hold for all λ : $(x_1 \lambda y_1)^2 + (x_2 \lambda y_2)^2 > 0$.
- After expanding and rearranging the above equation into a quadratic in λ , we can use the first lemma above to derive a constraint that happens to be the Schwarz inequality!

1.1 Problems

Problem. (Spivak, Chapter 1) Prove that if x and y are not both 0, then

$$x^2 + xy + y^2 > 0 (1)$$

$$x^4 + x^3y + x^2y^2 + xy^3 + y^4 > 0 (2)$$

Proof. First, observe that x = y trivially satisfies both inequalities $(3x^2 > 0 \text{ and } 5x^4 > 0)$.

Then, recall that $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$. We then have $x^2 + xy + y^2 = \frac{x^3 - y^3}{x - y}$ for $x \neq y$. This is always positive since x^3, y^3, x , and y all increase monotonically on their respective domains, and thus $x > y \iff x^3 > y^3$ and vice versa.

The same line of reasoning applies for the second inequality, as $x^4 + x^3y + x^2y^2 + xy^3 + y^4 = \frac{x^5 - y^5}{x - y}$.

2 Real numbers

The rational numbers have gaps.

- There exists no $q \in \mathbb{Q}$ such that $q^2 = 2$
- Between any two rational numbers, we can find another.

Theorem. Two real numbers a, b are equal iff for every real $\epsilon > 0$, $|a - b| < \epsilon$.

Proof. We consider both directions of the if and only if.

- \implies Trivial.
- \Leftarrow Suppose there exists a positive real number that is greater than or equal to |a-b|. Let ϵ saturate this bound. Without loss of generality, let a > b. Then, $a = b + \epsilon \neq b$.

2.1 Problems

Problem. (Abbott, Chapter 1) Prove that $\sqrt{3}$ is irrational.

Proof. Assume for the sake of contradiction that there exists $m, n \in \mathbb{Z}$ such that $m/n = \sqrt{3}$.

$$m^2/n^2 = 3 \tag{3}$$

$$m^2 = 3n^2 \tag{4}$$

$$\implies 3 \mid m^2$$
 (5)

$$\implies 3 \mid m$$
 (6)

(4) is true because 3 is prime.

Problem. (Rudin, Chapter 1) Let E be a nonempty subset of an ordered set. Suppose α is a lower bound of E and β is an upper bound of E. Prove $\alpha \leq \beta$.

Proof. Suppose $\alpha > \beta$. By the definition of a lower bound, for every $x \in E$, $x \ge \alpha$. Take a particular $x \ge \alpha$. $x \ge \alpha \implies x > \beta$, which violates the definition of an upper bound, since every $x \in E$ must be less than or equal to β . Contradiction.