东南大学考试卷(A卷)答案

课程名称 线性代数A 16-17-3 分

话 用 专 业 非电类专业 考试形式 老试时间长度 120分钟

~ ///	<u> </u>	<u> </u>		1,50		., 1-, 1/2	0 ,, ,	′ 1
题号		=	三	四	五.	六	t	
得分								

-. (30%)填空题

1. 设
$$\alpha = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $A = \alpha \beta^{\mathrm{T}}$, 则 $A^{10} = \underline{\qquad}$

- 2. 设 A, B, C 均为 n 阶方阵,|A|=1,|B|=2,|C|=3,则 $\begin{vmatrix} A & B \\ O & C \end{vmatrix} = 3$. 设 $\alpha_1 = (1, 2, 1)^T$, $\alpha_2 = (0, 2, 3)^T$, $\alpha_3 = (1, 4, t)^T$,若由 $\alpha_1, \alpha_2, \alpha_3$ 生成的向量空间
- $L(\alpha_1, \alpha_2, \alpha_3)$ 的维数是 2, 则 t =______.
- 4. 设 α_1 , α_2 是向量空间V的一组基, $\beta_1 = \alpha_1$, $\beta_2 = \alpha_1 + \alpha_2$.若向量 $\eta \in V$ 在 α_1 , α_2 下 的坐标是 $\binom{1}{2}$,则 η 在 β_1 , β_2 下的坐标是_____ $\binom{-1}{2}$ ______.
- 5. 设矩阵 $A = \begin{pmatrix} 1 & 2 \\ 2 & a \end{pmatrix}$, 若存在矩阵 $B \neq O$ 使得 AB = O, 则 $a = \underline{\qquad \qquad 4 \qquad}$.
- 6. 设 $A \in n$ 阶方阵,向量 α , β 是非齐次线性方程组 $(\lambda E A)x = b$ 的两个不同的解, 则 A 的属于特征值 λ 的一个特征向量为_____ α $-\beta$ ______

7. 已知矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}$$
 与矩阵 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 相似,则 $A \models \underline{\qquad \qquad 6}$

- 8. 若实二次型 $f(x_1, x_2, x_3) = x_1^2 + 2tx_1x_2 + 2x_2^2 + 4x_3^2$ 正定,则 t 的取值范围 是_____*t* \in $(-\sqrt{2},\sqrt{2})$ ____.
- 9. 设三阶矩阵 A 的特征值为1,2,3 , A_{ij} 是行列式|A| 中元素 a_{ij} 的代数余子式,则
- 10. 下列 4 个命题中, **正确**命题的**个数**是______ **2** 个:
 - ①若 α_1 , α_2 , α_3 线性无关,则 α_1 + α_2 , α_2 + α_3 , α_3 + α_4 线性无关;
 - ②无论 $\alpha_1, \alpha_2, \alpha_3$ 是否线性相关,向量组 $\alpha_1 \alpha_2, \alpha_2 \alpha_3, \alpha_3 \alpha_1$ 总线性相关;
 - ③若 α_1 , α_2 , α_3 中任意两个向量都线性无关,则 α_1 , α_2 , α_3 线性无关;
 - ④若 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则其中任一向量可由其余两个向量线性表示.

共 5 页 第 1 页

二. (10%) 计算行列式
$$D = \begin{vmatrix} 2 & 0 & 1 & 7 \\ 3 & 6 & 0 & 3 \\ 5 & -1 & 1 & 4 \\ 2 & 2 & 1 & 5 \end{vmatrix}$$
.

$$\mathbf{MF}: D = \begin{vmatrix} 2 & 0 & 1 & 7 \\ 3 & 6 & 0 & 3 \\ 5 & -1 & 1 & 4 \\ 2 & 2 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 & 7 \\ 0 & 3 & 6 & 3 \\ 1 & 5 & -1 & 4 \\ 1 & 2 & 2 & 5 \end{vmatrix} = 3 \begin{vmatrix} 1 & 2 & 0 & 7 \\ 0 & 1 & 2 & 1 \\ 1 & 5 & -1 & 4 \\ 1 & 2 & 2 & 5 \end{vmatrix}$$

$$= 3\begin{vmatrix} 1 & 2 & 0 & 7 \\ 0 & 1 & 2 & 1 \\ 0 & 3 & -1 & -3 \\ 0 & 0 & 2 & -2 \end{vmatrix} = 6\begin{vmatrix} 1 & 2 & 0 & 7 \\ 0 & 1 & 2 & 1 \\ 0 & 3 & -1 & -3 \\ 0 & 0 & 1 & -1 \end{vmatrix} = 6\begin{vmatrix} 1 & 2 & 0 & 7 \\ 0 & 1 & 2 & 1 \\ 0 & 3 & -1 & -3 \\ 0 & 0 & 1 & -1 \end{vmatrix} = 78.$$

三. (14%) 己知方程组
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0 \end{cases} = \begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2bx_1 + x_2 + (c+1)x_3 = 0 \end{cases}$$
 同解,

- 1. 求参数 a, b, c 的值;
- 2. 求方程组的通解.

解: 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 1 & 1 & a \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & b & c \\ 2b & 1 & c+1 \end{pmatrix}$. 由 $Ax = 0$ 与 $Bx = 0$ 同解可知 $r(A) = r(B)$.

又 $r(A) \ge 2$, $r(B) \le 2$, 故r(A) = r(B) = 2. 因此|A| = 0, 故a = 2.

由此求得
$$Ax = 0$$
 的通解为 $k \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$, $k \in \mathbb{R}$.

由于 Ax = 0 的解是 Bx = 0 的解,将 $x_1 = -1$, $x_2 = -1$, $x_3 = 1$ 代入 Bx = 0,求得 b = 1, c = 2. 经验证、当b=1, c=2时、Ax=0与Bx=0同解. 综上所述,

- 1. 参数的取值为a = 2, b = 1, c = 2.
- 2. 方程组的通解为 $k \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$, $k \in \mathbb{R}$.

四. (12%) 设矩阵
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, 且 $XA - B = 2X$, 求 X .

解: 由已知得X(A-2E) = B, 故 $X = B(A-2E)^{-1}$.

计算得
$$(A-2E)^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 1 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$$
, 因此 $X = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

五. (14%) 设
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ k & 0 & 1 \end{pmatrix}$,

- 1. 求 A 的所有特征值和特征向量;
- 2. 根据参数 k 的取值, 判断矩阵 A, B 是否相似. 若相似, 求可逆矩阵 P, 使得 $P^{-1}AP=B$; 若不相似, 说明理由.

解: 1. 由 $|\lambda E - A| = 0$, 得 *A* 的所有特征值为1,1,-1.

对
$$\lambda = 1$$
,求解 $(E - A)x = 0$ 得基础解系 $\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\eta_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$,

因此属于特征值 $\lambda = 1$ 的所有特征向量为 $k_1\eta_1 + k_2\eta_2$, 其中 k_1, k_2 是不全为0的实数.

对
$$\lambda = -1$$
,求解 $(-E - A)x = 0$ 得基础解系 $\eta_3 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$,

因此属于特征值 $\lambda = -1$ 的所有特征向量为 $k_3\eta_3$,其中 k_3 是不为0的实数.

2. 当
$$k = 0$$
时, A 与 B 相似. 令 $P = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$,则 $P^{-1}AP = B$.

当k ≠ 0时,A 与 B 不相似. 原因如下:

由 1 知,A有三个线性无关的特征向量 η_1, η_2, η_3 ,因此A与对角矩阵相似.

由 $|\lambda E - B| = 0$, 得 B 的所有特征值为 1, 1, -1. 而对二重特征值 $\lambda = 1$, 矩阵 B 仅有

3-r(E-B)=1个线性无关的特征向量,因此 B 不与对角矩阵相似. 由相似关系的传递性可知, A与 B 不相似.

- 六. (12%) 设 $f(x) = x^{T} A x$, 其中 A 是三阶实对称矩阵, A 不可逆, 并且 A 的属于特征值 $\lambda = 2$ 的特征向量有 $\alpha_{1} = (0,1,0)^{T}$, $\alpha_{2} = (1,1,1)^{T}$,
 - 1. 求二次型 f(x) 的表达式;
 - 2. 用正交变换将二次型 f 化为标准形, 并写出所用的正交变换.

解: 由于 A 不可逆, A 必有一个特征值为 0. 设属于特征值 $\lambda = 0$ 的一个特征向量是 α_3 ,由于 A 实对称,故 $\langle \alpha_1, \alpha_3 \rangle = 0$, $\langle \alpha_2, \alpha_3 \rangle = 0$,因此可取 $\alpha_3 = (-1, 0, 1)$.

因此可得

- 1. 二次型 $f(x) = x^{T} A x = x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_3$.
- 2. 经正交变换 x = Qy, 二次型 f 化为标准形 $2y_1^2 + 2y_2^2$.

七. (8%) 证明题:

1. 设 $\alpha_i = (a_{i1}, a_{i2}, a_{i3})^{\mathrm{T}}$, i = 1, 2, 且 α_1, α_2 线性无关. 向量 β 是齐次线性方程组 $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 0 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 0 \end{cases}$ 的非零解, 证明 $\alpha_1, \alpha_2, \beta$ 线性无关.

证明: 设有三个数 k_1, k_2, k_3 ,使得

$$k_1\alpha_1 + k_2\alpha_2 + k_3\beta = 0$$
 -----(1)

由于 β 是 齐 次 线 性 方 程 组 $\begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3=0\\ a_{21}x_1+a_{22}x_2+a_{23}x_3=0 \end{cases}$ 的 非 零 解 , 故 $\langle\alpha_1,\beta\rangle=0$, $\langle\alpha_2,\beta\rangle=0$,因此

$$\langle k_1 \alpha_1 + k_2 \alpha_2, k_3 \beta \rangle = 0$$
 -----(2)

由(1)知, $k_1\alpha_1+k_2\alpha_2=-k_3\beta$,代入(2)得 $\langle -k_3\beta,k_3\beta\rangle=0$,因而 $k_3\beta=0$.而 $\beta\neq 0$,故 $k_3=0$.

代入(1)得 $k_1\alpha_1 + k_2\alpha_2 = 0$,又因为 α_1 , α_2 线性无关,故 $k_1 = k_2 = 0$.

因此 $\alpha_1, \alpha_2, \beta$ 线性无关.

2. 设A是可逆实对称矩阵,证明对任意自然数N, $\sum_{k=-N}^{N}A^{2k+1}$ 与A合同.

证明: 由于A实对称, 故存在正交矩阵Q, 使得

$$Q^{\mathrm{T}}AQ = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的特征值. 由于 A 可逆, 故 $\lambda_i \neq 0, \forall i$.

设 $f(x) = \sum_{k=-N}^{N} x^{2k+1}$,则 $f(A) = \sum_{k=-N}^{N} A^{2k+1}$. 容易验证, f(A) 实对称,且

$$Q^{\mathrm{T}}f(A)Q = \begin{pmatrix} f(\lambda_1) & & & \\ & f(\lambda_2) & & \\ & & \ddots & \\ & & f(\lambda_n) \end{pmatrix}.$$

若 $\lambda_i > 0$,则 $f(\lambda_i) > 0$;若 $\lambda_i < 0$,则 $f(\lambda_i) < 0$.所以f(A)与A有相同的秩和正惯性指数,因而合同.