

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	:
B01J 31/22, B05D 3/00, C08G C09K 3/00	18/22,
(21) International Application Numbers	D/

(11) International Publication Number:

WO 98/41322

(43) International Publication Date: 24 September 1998 (24.09.98)

PCT/US98/04997

A1

(22) International Filing Date:

16 March 1998 (16.03.98)

(30) Priority Data:

08/820,120

19 March 1997 (19.03.97)

US

(71) Applicant: KING INDUSTRIES, INC. [US/US]; Science Road. P.O. Box 588, Norwalk, CT 06852 (US).

(72) Inventors: BLANK, Werner, J.; 89 Spectacle, Wilton, CT 06897 (US). HE, Zhiqiang, Alex; 58 Silver Spring Road, Ridgefield, CT 06877 (US). PICCI, Marie, E.; 146 New Canaan Avenue, Norwalk, CT 06850 (US). FLORIO, John, J.; 27 Styles Lane, Norwalk, CT 06850 (US).

(74) Agents: LIN, Maria, C., H. et al.; Morgan & Finnegan, L.L.P., 345 Park Avenue, New York, NY 10154 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NOVEL ZIRCONIUM URETHANE CATALYSTS

(57) Abstract

The present invention is directed to novel metal organocomplexes as catalysts for the reaction of compounds with isocyanate and hydroxy functional groups to form urethane and/or polyurethane and the proces employing such catalysts. More particularly, the present invention is directed to novel complexes of zirconium or hafnium with diketones or alkylacetoacetoates. These novel catalysts are useful for the production of urethanes and polyurethanes which are important in many industrial applications, such as: coatings, foams, adhesives, sealants, and reaction injection molding (RIM) plastics.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PC

AL Albania ES Spain LS Lesotho SI Slovenia AM Armenia FI Finland LT Lithuania SK Slovakia AM Armenia FR France LU Luxembourg SN Senegal AT Austria FR France LV Latvia SZ Swaziland AU Australia GA Gabon LV Latvia SZ Swaziland AZ Azerbaijan GB United Kingdom MC Monaco TD Chad AZ Azerbaijan GE Georgia MD Republic of Moldova TG Togo BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo BB Barbados GH Ghana MG Madagascar TJ Tajikistan BB Belgium GN Guinea MK The former Yugoslav TM Turkmenistan BE Belgium GN Guinea MK The former Yugoslav TR Turkey BF Burkina Faso GR Greece Republic of Macedonia TR Turkey BF Burkina Faso HU Hungary ML Mali TT Trinidad and Tobago BG Bulgaria HU Hungary ML Mali UK ukraine BJ Benin IE Ireland MN Mongolia UA Ukraine BR Brazil IL Israel MR Mauritania UG Uganda									
BY Belarus IS Iceland MX Mexico UZ Uzbekistan CA Canada IT Italy MX Mexico UZ Uzbekistan CF Central African Republic JP Japan NE Niger VN Viet Nam CG Congo KE Kenya NL Netherlands YU Yugoslavia CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe CH Cote d'Ivoire KP Democratic People's NZ New Zealand CH Cameroon KR Republic of Korea PL Poland CN China KR Republic of Korea PT Portugal CU Cuba KZ Kazakstan RO Romania CU Cuba KZ Kazakstan RO Romania CU Cuba CZ Czech Republic LC Saint Lucia RU Russian Federation CD Germany LI Liechtenstein SD Sudan DE Germany LK Sri Lanka SE Sweden DE Estonia LR Liberia SG Singapore	AM AT AU AZ BA BB BE BF BG BJ BR CA CF CG CH CCI CM CN CU DE DK	Armenia Austria Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Cermany Cermany Denmark	FI Fir Fir FR Fr. GA Ga Ga Gr. GG GR GG GR HU H IL Is KE K K K K K K K K K K K K K K K K K K	inland rance labon Jinted Kingdom Jointed Kingdom Jointed Kingdom Jointed Join	LT LU LV MC MD MG MK ML MN MR NN NE NL NO NZ PL PT RO RU SD SE	Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden	SK SN SZ TD TG TIJ TM TR TT UA UG US UZ VN YU	Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of Americ Uzbekistan Viet Nam Yugoslavia	a

10

15

20

25

30

35

NOVEL ZIRCONIUM URETHANE CATALYSTS

FIELD OF INVENTION

The present invention is directed to novel metal organocomplexes as catalysts for the reaction of compounds with isocyanate and hydroxy functional groups to form urethane and/or polyurethane and the process employing such catalysts. More particularly, the present invention is directed to novel complexes of zirconium or hafnium wherein one of the ligands is a diketone with at least 7 carbons in the hydrocarbon backbone chain.

These novel catalysts are useful for the production of urethanes and polyurethanes which are important in many industrial applications, such as: coatings, foams, adhesives, sealants, and reaction injection molding (RIM) plastics.

BACKGROUND OF THE INVENTION

The reaction of isocyanate and hydroxy compounds to form urethanes is the basis for the production of polyurethanes. Metal compounds (e.g., tin, zinc and bismuth compounds) and tertiary amines have been known to catalyze the reaction of isocyanate and hydroxyl groups to form urethane. See, Proceedings of Water Borne and High Solids Coatings Symposium, February 25-27, 1987, New Orleans, at Page 460. Compounds useful for the isocyanate-hydroxy reaction are also referred to as urethane catalysts. At present, the commercially available catalysts used in this reaction are organotin compounds (e.g., dibutyltin dilaurate and dibutyltin diacetate), zinc carboxylates, bismuth carboxylates, organomercury compounds and tertiary amines.

There are several problems with these commercially available catalysts. When they are used in the process for polyurethane coatings, the cure of the coatings under high humidity or at low temperature

10

15

20

25

30

conditions is not satisfactory. They catalyze the undesirable side reaction of isocyanate with water to form amines and carbon dioxide. The carbon dioxide may cause blisters in the coating and the amines react with isocyanates resulting in low gloss coatings. Moreover, the cure rate at low temperatures is too slow. The commercially available catalysts also catalyze the degradation of the resulting polymer product. Furthermore, several of the commercially available urethane catalysts, particularly those containing heavy metals and tertiary amines, are highly toxic and are environmentally objectionable.

The testing of zirconium acetylacetonate and zirconium tetra-3-cyanopentanedionate, as catalysts for the isocyanate-hydroxy reaction have been described in GB Patents 908949, 890,280 and 869988. Subsequent testing by others, however, has shown that zirconium acetylacetonate is a poor catalyst for the urethane reaction. Nahlovsky and G.A. Zimmerman, Int. Jahrestag. Fraunhofer -Inst. Treib-Explosivst., 18th (Technol. Energ. Mater.), 39:1-12, reported that the catalytic efficiency of zirconium acetylacetonate for the isocyanate-hydrox reaction to form urethane is low. The solubility of zirconium acetylacetonate and zirconium tetra-3-cyanopentanedionate in solvents commonly used in the production of coatings is poor. Examples of such solvents include esters ketones, glycolesters and aromatic hydrocarbons, such as: butyl acetate, methyl iso-amyl ketone, 2-methoxy propylacetate, xylene and toluene. Because of the low catalytic efficiency and the poor solvent solubility, the use of these compounds as catalysts in processes involving urethane or polyurethanes have been limited.

Further testing using zirconium acetylacetonate in our laboratory has shown that zirconium compounds disclosed in the prior art, will only catalyze the

10

15

20

25

isocyanate-hydroxy reaction when carried out in a closed system, i.e., in a closed pot. This is impractical for many of the polyurethane applications. The zirconium diketonates of the prior art failed as catalysts when the reaction is carried out in the open atmosphere, unless there is present a large excess of the corresponding diketone. For zirconium acetylacetonate, the presence of over 1000 to 1 mole ratio of 2,4-pentanedione to zirconium acetylacetonate is required. However, 2,4-pentanedione and other similar diketones are volatile solvents which, when used in an open vessel, pollute the air, and pose both an environmental and a fire hazard. In addition, the presence of the free diketone causes discoloration of the catalyst, resulting in an undesirable, discolored product.

The objective of this invention is to develop catalysts with high catalytic efficiency for the isocyanate-hydroxy reaction to form urethane and/or polyurethane.

A second objective of the present invention is to develop catalysts which provide improved cure at a lower temperature and is less sensitive to the presence of water.

A further objective of the present invention is to develop metal diketonates as catalysts which would not be deactivated when the reaction is exposed to the atmosphere nor require an excess of free diketone.

Another objective of the present invention is to provide catalysts for the isocyanate-hydroxy reaction which would not catalyze the undesired side reaction of water with isocyanates or the undesired degradation of the polyurethane.

SUMMARY OF THE INVENTION

This invention is directed to a catalyst for the isocyanate-hydroxy reaction having the chemical structure:

WO 98/41322 PCT/US98/04997

- 4 -

$Me(X_1, X_2, X_3, X_4)$ (I)

wherein Me is zirconium (Zr) or hafnium (Hf) and X_1 , X_2 , X_3 , and X_4 , are the same or different and selected from the group consisting of a diketone and an alkylacetoacetate having the structures:

 $R_1COCH_2COR_2$ (II) and

R₁OCOCH₂COR₂ (III)

wherein each of R_1 and R_2 is a branched or linear C_1 - C_{20} hydrocarbon and at least one of X_1 , X_2 , X_3 , and X_4 is a diketone with structure (II) wherein the total number of carbons in R_1 + R_2 is at least 4. That is, the number of carbons in the backbone of the hydrocarbon chain is at least 7. The preferred diketones are those containing a total number of carbons in R_1 + R_2 of at least 5, i.e. the number of carbons in the hydrocarbon backbone is at least 8. Also preferred are metal complexes wherein all of the ligands, X_1 , X_2 , X_3 , and X_4 are diketones with structure (II).

The catalyst may also be a mixture of zirconium or hafnium diketonates as defined above or a mixture of a diketonate and an alkylacetoacetate of zirconium or hafnium, with at least one of the compounds in the mixture being a zirconium or hafnium diketonate complex wherein one of the four ligands in the complex is a diketone having at least 7 carbons in the hydrocarbon backbone of the molecule.

The catalyst may also be a blend of zirconium or hafnium pentaedionate or acetylacetonate with a diketone having at least 7 carbons in the hydrocarbon backbone of the molecule. This is because the ligands of the zirconium or hafnium complex readily exchange with the diketone of structure (II) to form the catalyst in situ.

5

10

15

20

25

DETAILED DESCRIPTION OF THE INVENTION

The catalyst for an isocyanate-hydroxy reaction to produce urethane or polyurethane comprise a metal organocomplex with the chemical structure:

 $Me(X_1, X_2, X_3, X_4)$ (I)

wherein Me is zirconium (Zr) or hafnium (Hf) and X_1 , X_2 , X_3 , and X_4 , are the same or different selected from the group consisting of a diketone and an alkylacetoacetate having the structures:

 $R_1COCH_2COR_2$ (II)

and

 $R_1OCOCH_2COR_2$ (III)

15

20

25

30

35

10

5

wherein each of R_1 and R_2 is a branched or linear $C_1 - C_{20}$ hydrocarbon and at least one of X_1 , X_2 , X_3 , and X_4 is a diketone with structure (II) wherein the total number of carbons in $R_1 + R_2$ is at least 4. That is, the number of carbons in the backbone of the diketone is at least 7. The preferred diketones are those wherein the total number of carbons in $R_1 + R_2$ is at least 5, i.e., with at least 8 carbons in the backbone of the molecule. Also preferred are metal complexes wherein all of the ligands, X_1 , X_2 , X_3 , and X_4 are diketonates.

The catalyst may also be a mixture of zirconium or hafnium diketonates or a mixture of diketonate and alkylacetoacetate of zirconium or hafnium, with at least one of the compounds in the mixture being a zirconium or hafnium diketonate complex wherein one of the four ligands in the complex has at least 7 carbons in the hydrocarbon backbone.

The catalyst may also be a blend of zirconium or hafnium pentanedionate or acetylacetonate with a diketone having at least 7 carbons in the hydrocarbon backbone of

10

15

20

25

30

35

- 6 -

the molecule.

The metal complexes of this invention can be synthesized via the known ligand exchange reactions of zirconium or hafnium compounds with the desired diketone. These reactions are described by R.C. Fay in the chapter on zirconium and hafnium, in Geoffrey Wikinson ed., Comprehensive Coordination Chemistry, Vol.3, page 363, Pergamon Press, (1987).

The metal complexes with mixed ligands can be prepared by charging the starting zirconium compound into a solution containing the desired ligand(s) at specified mole ratios. The ligand exchange reaction is facile and can be accomplished by blending the starting zirconium or hafnium compound and the desired ligand as a chelating agent at an ambient or slightly elevated temperature. This blending can be carried out in a solvent such as a polyol, e.g. propylene glycol, dipropylene glycol, 1,3-butylene glycol, 1,6-hexane diol, polypropylene glycol (MW 400-2600), polytetramethylene glycol (MW 200-1000), dimethoxy-dipropylene glycol or other diluents, such as xylene, methyl iso-amyl ketone, dibutylether, butoxy/propoxy/ethoxy polypropylene ethylene glycol ether.

Typical starting zirconium or hafnium compounds include the chloride, oxychloride, alkoxide, carbonate, and acetylacetonate of zirconium or hafnium. Typical ligands or chelating agents of Structure II include: 6-methyl-2,4-heptanedione (wherein $R_1\!=\!C1$ and $R_2\!=\!C4)$, 2,2,6,6-tetramethyl-3,5-heptanedione (wherein $R_1\!=\!C1$ and $R_2\!=\!C4)$, n-valerylacetone (wherein $R_1\!=\!C1$ and $R_2\!=\!C4)$, n-hexanoylacetone (wherein $R_1\!=\!C1$ and $R_2\!=\!C4)$, n-octanoylacetone (wherein $R_1\!=\!C1$ and $R_2\!=\!C5)$, n-nonanoylacetone(R1=C1, R2=C8), n-decanoylacetone (wherein $R_1\!=\!C1$ and $R_2\!=\!C1$) and the like.

The isocyanates useful in this invention are aliphatic, aromatic isocyanates or polyisocyanates or resins with terminal isocyanate groups. The resins may be

10

15

20

25

30

monomeric or polymeric isocyanates. Typical monomeric isocyanates include: toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), 1,6-hexamethylene diisocyanate (HDI), phenyl isocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate(IPDI), meta-tetramethylxylene diisocyanate (TMXDI), nonanetriisocyanate (TTI) or vinyl isocyanate, or The above monomeric isocyanates are those which the like. are more commonly used and is not meant to be exclusive. The polymeric polyisocyanates useful in the invention are isocyanurate, allophanate, or biuret compounds and polyurethane products derived from the monomeric diisocyanates as listed hereinablove. Also useful are addition products of monomeric isocyanates with polyester and polyether polyols containing terminal isocyanate groups.

The polyols or resins with hydroxy functional groups useful in this invention comprise monomeric compounds or polymeric compositions containing at least two hydroxy groups per molecule. The molecular weight of the hydroxy containing compounds useful in this invention ranges from 62 to 1,000,000; the preferred range for polyols being between 300 to 2000 when used in solvent borne high solids coatings. Typically, the hydroxyl number of the hydroxy containing resin can be from 10-1000. Optionally, the polyol may contain other functional groups such as carboxyl, amino, urea, carbamate, amide and epoxy groups. The polyol, a blend of polyols or a combination of polymeric polyols and monomeric diols may be employed in a solvent free system, or as a solution in an organic solvent, or as a dispersion/emulsion in water. Typical examples include: polyether polyol, polyester polyol, acrylic polyol, alkyd resin, polyurethane polyol, and the like.

The polyether polyols are the reaction products of ethylene or propylene oxide or tetrahydrofuran with

. 1

5

10

15

20

25

30

35

diols or polyols. Polyethers derived from natural products such as cellulose and synthetic epoxy resins may also be used in this invention. Typical polyester polyols are prepared by the reaction of diols, triols or other polyols with di- or polybasic acids. Alkyds with hydroxy functional groups are prepared in a similar process except that mono functional fatty acids may be included. Acrylic polyols are the polymerization products of an ester of acrylic or methacrylic acid with hydroxy containing monomers such as hydroxyethyl, hydroxypropyl or hydroxybutyl ester of acrylic or methacrylic acid. These acrylic polymers can also contain other vinyl monomers such as styrene, acrylonitrile vinyl chloride and others. In addition, polyurethane polyols are also useful in this invention. These are the reaction products of polyether or polyester polyols with diisocyanates.

The polyols listed above are illustrative and are not meant to limit the scope of the invention.

Typically the polyols are either synthesized in bulk in the absence of a solvent or are prepared in the presence of a diluent or by emulsion polymerization in water. Alternatively, they may be prepared in bulk or in a solvent and then dispersed in water. For a description of the methods of preparing polyols see Organic Coatings Science Technology, vol. 1, Wiley-Interscience Co., 1992.

The concentration of the catalysts used is generally from 0.0001wt% to 5wt% on total resin solids. Typically, the concentration of catalysts used is between 0.001 to 0.1wt% based on the total amount of polyol and polyisocyanate, also known as binders. The catalyst concentration used is generally a compromise between potlife of the formulation and the required cure rate.

The catalyst of the present invention is particularly suitable for applications where exceptionally fast cure is required. For example, the catalysts of the present invention is particularly useful in plural

component spray gun applications wherein the catalyst is added to one of the components and the polyol and the isocyanate is mixed in situ in the spray gun. These are important in applications for roof or floor coatings, where the person applying the coating would be able to walk on the freshly applied coating a few minutes after the coating has been applied. Good cure rate is also required for coatings applied at a low temperature or in the presence of moisture, conditions where the catalyst of this invention excels.

10

5

Reactive injection molding (RIM) is another area where fast cure is essential. The reactants and catalyst are injected concurrently into a mold, and mixing is achieved during injection. In this application, fast reaction is essential to permit a short cycle time.

.15

-- .

The ratio of NCO/OH in the formulation is in the range of 0.1-10.0 to 1, preferably 0.5-2.0 to 1 depending upon the end use. For a typical high solids application, the preferred isocyanate to hydroxy ratio is usually 1.0:1 to 1.1:1. For many water-borne applications, an excess of isocyanate is required. Typically the ratio for such applications is 1.5:1 to 2.0:1.

20

The catalyst formulation can be solvent borne, high solids, 100% solids or dispersable in water. Other additives which may be utilized in the formulation to impart desired properties for specific end uses. For example, 2,4-pentanedione, can be used together with the catalyst to extend pot life.

25

For most isocyanate crosslinked coatings, solvents which are free of hydroxy groups and water are used. Typical solvents are esters, ketones, ethers and aliphatic or aromatic hydrocarbons.

30

35

The catalytic efficiency of the metal complexes of this invention is determined by measuring the drying time of the coated film or by a gel test. For drying time measurement, the liquid formulation containing

10

15

20

25

30

polyisocyanate, polyol and catalyst was cast on a metal panel and the surface dry time and the through dry time were recorded with a circular Gardner Drying Time Recorder. For the gel test, liquid polyisocyanate, liquid polyol solution and catalyst were mixed thoroughly at room temperature. The time needed from mixing the liquid components to forming a gel (the time interval when the liquid formulation becomes non-flowable) was recorded as gel time.

The catalysts of this invention exhibit excellent catalytic efficiency, measured as drying time of the coated film and/or gel time, for the isocyanate-hydroxy reaction compared to zirconium diketonates reported in prior art and commercially available organotin catalysts, especially at low temperatures. For example, in a coating formulation with polyisocyanate and acrylic polyol, the cure rate of a formulation with zirconium tetra 6-methyl-2,4-heptanedionate as a catalyst is more than 5 times faster than the formulation with commercial dibutyltin dilaurate at the same metal concentration.

This is surprising. Zirconium tetraacetylacetonate described in the prior art (wherein $X_1=X_2=X_3=X_4$ and $R_1=R_2=CH_3$), does not function as an effective curing catalyst. Even though the gel time is shorter than the uncatalyzed process, it is still too long. Further, exposure to atmosphere deactivates zirconium tetraacetylacetonate. However, when one of the ligands in zirconium tetraacetylacetonate is replaced with a diketonate with at least 7 carbons in the backbone, or when zirconium tetraacetylacetonate is in a mixture with a metal complex of the present invention, or when zirconium tetraacetylacetonate in mixed with a diketone with at least 7 carbons in the hydrocarbon backbone, an effective catalyst is obtained.

The catalyst of this invention also preferentially catalyze the isocyanate-hydroxy reaction

10

15

1 4...

20

25

30

over the isocyanate-water reaction. Organo tin does not exhibit this preferential catalysis, and also catalyze the isocyanate-water reaction, which leads to the formation of carbon dioxide and gassing. For example, to prepare a polyurethane coating with exclusive carbamate linkages, a coating formulation containing HDI based aliphatic isocyanate and a polyurethane diol with beta-carbamate was formulated. When the metal complex of the present invention was used as the catalysts, a hard glossy film was obtained. Whereas, with dibutyltin dilaurate as the catalyst, a hazy film was obtained. This is due to the competing reaction of isocyanate with moisture in the air.

Furthermore, it is known that commercial organotin urethane catalysts will affect the durability of the final product. This is due to the catalytic effect of organotin catalysts on the degradation of the polymer product. The metal complexes of the present invention shows less of a catalytic effect on the degradation of the polymer than the tin urethane catalysts. For a solution with polyester resin, water and catalysts, the degradation rate of polyester with the catalyst of this invention is 5 times slower than a typical tin catalyst.

To avoid pigment adsorption or interference from other components which may deactivate the catalyst, it would be an advantage if the catalysts can be pre-blended with the isocyanate component in a two component system. However, a number of urethane catalysts also catalyze the dimerization or trimerization reactions of isocyanate and cannot be pre-blended with the isocyanate component. A solution of a polyisocyanate with the catalysts of this invention showed good compatibility and stability.

The following examples are provided to illustrate the present invention and are not meant to limit the scope thereof.

5

10

15

20

25

- 12 -

Example 1

Catalyst Evaluation

A liquid coating formulation containing polyisocyanate, polyol and the catalyst as shown in Table 1 was prepared. The formulation was applied to an iron phosphate treated cold roll steel (Bo 1000) panel via a draw down bar to provide a wet film thickness of 1.7 mils. The panels were allowed to cure at room temperature and at 5°C at a relative humidity of 50-60%. The cure rate for formulations wherein zirconium complexes were used as the catalyst is presented in Table IIA. This can be compared with the formulation wherein dibutyltin dilaurate was used as the catalyst shown in Table IIB. The drying time of the coated film was recorded using a Gardner Circular Drying Time Recorder with a Teflon stylus. stylus moves at a constant speed on the top of the film The time between applying the after the film was applied. film and when the Teflon stylus no longer leaves a clear channel, but begins to rupture the drying film is recorded as surface dry time. The time between applying the film and when the stylus no longer ruptures or dents the film is recorded as through dry time. The time between mixing isocyanate and polyol solutions and the moment that the liquid becomes a non-flowable gel is recorded as gel time. The solubility of each catalyst in the formulation was The results presented in Tables IIA & IIB showed that the catalysts of this invention provided much improved catalytic efficiency and are more soluble in the solvent, methyl amyl ketone, than the catalysts of the prior art.

- 13 -

Table I Polyurethane Formulation used In Cure Rate Test

<u>Material</u>

Parts by Weight

Part A:

Acrylic polyol solution^a58.8 Methyl amyl ketone (solvent)

24.8

Part B:

Aliphatic polyisocyanate^b 16.4 Metal catalyst as wt% metal 0.0046 based on total resin solids

10

5

Formulation parameters
Total resin solids by weight 58.7%
NCO/OH ratio 1.2

^aJoncryl SCX- 906 Acrylic polyol: 72wt% in methyl amyl ketone with a hydroxy equivalent weight on solids of 600 (SC Johnson Polymer, Racine, WI).

15

bDesmodur N-3300 Polyisocyanate (isocyanurate of hexamethylene diisocyanate), 100% solids, NCO-equivalent weight of 194 (Bayer Corporation, Pittsburgh, PA).

20

25

30

- 14 -

Table IIA

Cure Rate of Zirconium Complexes (Room Temperature: 22-25°C)

Zr Catalyst (moles of chelating agent)	Wt% Me in complex	Gel time MIN	Surface dry time MIN	Through dry time MIN	Solubility in Formulation
TMHD (4)	11.1	20	40	120	good
MHD (4)	13.9	10	15	20	excellent
MHD (2) & ACAC (2)	16.0	20	75	180-240	good
DMHFOD (4)	7.2	240	120	240-300	good
MHD (2) & DMHFOD (2)	9.5	25	20	120-180	excellent
MHD (3) butanol (1)	15.5	60	150	300	excellent
MHD (2) & ethylacetoacetate (2)	14.4	120-180	150	360	excellent
MHD (3) & ACP (1)	14.0	25	30	60	good
DBM (2) & MHD (2)	11.1	20	45	120-180	good
Zr acac/MHD (1:1 by weight)*		15	10	15	good

20

5

10

15

25

30

10

15

20

25

- 15 -

Table IIB Comparative Examples

Zr Catalyst (moles of chelating agent)	Wt% Me in complex	Gel time	Surface dry time MIN	Through dry time MIN	solubility in the formulation
ACAC (4)	18.7	90	>720	>1440	poor
Zr Butoxide	23.8	>720	>720	>720	good
Ethylacetoacetate (4)	115.0	>720	>720	>720 .	good
cyclopetadiene (2) & chloride (2)	31.2	>720	>720	>720	good
DBM (4)	9.3	35	80	180	poor
3-Ethyl-acetylacetone (4)	15.2	>720	>720	>720	poor
1, 1, 1-trifloro- acetylacetone (4)	13.0	30	>720	>720	poor .
DBM (2) BAC (2)	10.6	40	70	180	poor
BAC (4)	12.4	>720	>720	>720	poor
Triacetyl methane (4)	13.9	90	>720	>720	good
Dibutyltin dilaurate	18.8	120	90	180-240	excellent
no catalyst		>720	>720	>720	
			-		

Key for Tables IIA & IIB:

ACAC: 2, 4-Pentanedione 2-acetocyclopetanone

BAC: Benzoylacetone

DBM: dibenzoylmethane

DMHFOD: 2,2-dimethyl-6,6,7,7,8,8-heptafluoro-3,5-

octanedione

MHD: 6-methyl- 2,4- heptanedione

2,2,6,6- tetra-methyl-3,5-heptanedione

30 Blend of zirconium acetylacetonate with 6-methyl-2,4-heptanedione

- 16 -

Example 2

Catalyst Efficiency

The cure rate of zirconium tetra 6-methyl-2,4-heptane -dionate was compared with dibutyltin dilaurate in an aromatic polyisocyanate and polyether polyol system. In this experiment, polyisocyanate, polyether polyol and the metal catalyst were mixed thoroughly. The time from mixing to the formation of gel, i.e., when the liquid formulation became non-flowable, was recorded as gel time. The results in Table 3 showed that the catalytic efficiency of the catalysts of this invention is significantly higher than that of the commercially available tin catalyst.

Table III

15

25

5

10

Comparison of Gel Time For Reaction of Aromatic Polyisocyanate and Polyether Polyol

Formulation parameters:

NCO/OH=1.04

0.01% metal on total resin solids

20 Gel time Comparison (Room temperature, 22-25°C)

polyether polyol	Zr (MHD) ₄ ^a	DBTDL ^b	NO CATALYST
Polypropylene glycol PPG-425 OH eq wt 224.4	50 min	> 8 hours	10-20 hours
Polypropylene glycol PPG-1025 OH eq wt 522.34	150 min	4 hours	>48 hours
Polyethylene glycol 400 OH eq wt 200	4 min	3 hours	>4 hours

a Zr(MHD)₄ = Zirconium tetra-6-methyl-2,4-heptanedione b DBTDL = dibutyltin dilaurate

Aromatic polymeric isocyanate based on diphenylmethane 4,4'-diisocyanate, 100% solids, 130 equivalent weight (Bayer Corporation, Pittsburgh, PA).

Polypropylene glycol (Arco Chemical Company, Newtown Square, PA).

Polyethylene glycol, Union Carbide Corporation, 39 Old Ridgebury Road, Danbury, CT 06817-0001.

- 17 -

Example 3

Efficiency of Catalyst for the Reaction of Aliphatic Isocyanate and Polyurethane Diol

In this experiment, aliphatic polyisocyanate was
reacted with a polyurethanediol (bis β-hydroxypropyl
carbamate) in the presence of catalysts. The appearance
of each of the resulting coating film was noted. The
coating film cured with dibutyltin dilaurate appeared
hazy. It is believed that the haziness resulted from the
reaction of isocyanate with moisture. On the other hand,
the coating film cured with zirconium tetra
6-methyl-2,4-heptanedionate (Zr(MHD)₄) is clear and
glossy.

15

20

25

30

35 °

o

15

20

25

0.03

- 18 -

Table IV

Comparison of Film Properties

Formulation: NCO/OH= 1.0, total resin solids by weight: 80%

Part A:
Urethanediol^a 36.1
Methyl ethyl ketone
solvent 15.2

Part B:
Polyiscoyanurate^b 48.7
Metal catalyst* varied

* Catalyst was added at a concentration of 0.01wt% metal on total resin solids.

^aK-Flex UD-320-100 Polyurethanediol: 100% solids, hydroxy number: 350 (King Industries, Norwalk, CT).

bDesmodur N-3390 Polyisocyanate based on isocyanurate of hexamethylene diisocyanate, 90% in butyl acetate, 216 equivalent weight. Bayer Corporation, 100 Bayer Road, Pittsburgh, PA 15205-9741.

Cure Rate and Film Properties (Room temperature)

		T
Catalyst	Zr(MHD) ₄	DBTDL*
Surface dry	2 hours	24 hours
Gloss 60°	95 75	25 9
	1.	

Zr(MHD)₄ = Zirconium tetra-6-methyl-2,4-heptanedione,
*DBTDL = dibutyltin dilaurate

* Comparative example

30

- 19 -

Example 4

Effect of Catalyst on the Degradation of Polymer
It is a known that polyester-urethane resins lose
strength on exposure to water and is a problem. The
potential for increased degradation of resins containing
polyester groups in the presence of a catalyst has been of
concern. The degradation is due to the hydrolysis of
polyesters groups in the polymer to form carboxyl groups.
The degradation can be monitored by determining the change
in acid number of the resin composition.

10

15

20

5

To test the catalytic effect on the degradation of polyester containing resins, formulations were prepared wherein each catalyst was mixed together with a polyester polyol, water, and methyl ethyl ketone and maintained at Periodically, alliquots were withdrawn and the acid number of each formulation was monitored by titration. A higher acid number indicates a higher degree of The results of using Zirconium tetra-6degradation. methylheptanedione, dibutyltin diacetate and no catalyst are shown in Table V. The results illustrate an advantage of the catalysts of this invention. These catalysts showed no effect on the degradation of polyester polyol as compared to the uncatalyzed formulation. Whereas, the formulation with the organotin catalyst showed marked degradation of the polyester polyol.

25

30

- 20 -

0

5

10

Table V

Change in Acid Number of a Polyester/H2O/Catalyst Mixture vs. aged time

Formulation: Methyl ethyl ketone 31.55% 59.20% Polyester polyol* 9.25% water

0.01% metal on catalyst total resin solids (TRS)

					
		2 weeks	4 weeks	8 weeks	13 weeks
catalyst			0.94	1.25	1.96
Zr(MHD) ₄ a	0.63	0.74	0.94	-	9.85
DBTDAcb	0.63	2.78	3.97	6.56	
	0.63	0.71	0.94	1.49	2.30
Control	0.03	<u> </u>			•

^aZr(MHD)₄ = Zirconium tetra-6-methyl-2,4-heptanedione ^bDBTDAc = dibutyltin diacetate

control = no catalyst

*K-FLEX 188 Polyester resin, 100% solids, OH number: 230, acid number: <1.0 (King Industries, Norwalk, CT) 15

20

25

30

We claim:

An isocyanate-hydroxy reaction catalyst having the chemical structure:

 $Me(X_{1}, X_{2}, X_{3}, X_{4})$ (I)

wherein Me is zirconium (Zr) or hafnium (Hf) and X_1 , X_2 , X_3 , and X_4 , are the same or different and selected from the group consisting of a diketone having the structure:

 $R_1 COCH_2 COR_2$ (II)

and

an alylacetoacetate having the structure:

 $R_1OCOCH_2COR_2$ (III) wherein each of R_1 and R_2 is a branched or linear C_1 - C_{20} hydrocarbon and at least one of X_1 , X_2 , X_3 , and X_4 is a diketone with structure (II) and wherein the total number of carbons in R_1 + R_2 in (II) and (III) is 4-21.

20

15

- An isocyanate-hydroxy reaction catalyst according to Claim 1, wherein Me is zirconium.
- 3. An isocyanate-hydroxy reaction catalyst according to Claim 2, wherein the total number of carbons in R_1 + R_2 is 5-18.
- 4. An isocyanate-hydroxy reaction catalyst composition comprising a mixture, wherein each component of the mixture is a catalyst of Claim 1, and wherein Me(X₁, X₂, X₃, X₄) of each component in the mixture is different.
- 5. An isocyanate-hydroxy reaction catalyst composition comprising a mixture of tetrakis-(2,4-pentanedionato)

15

20

zirconium and a compound selected from the group consisting of a diketone having the structure: (II.)

R1COCH2COR2

and an alkylacetoacetate having the structure: R,OCOCH,COR, wherein each of R_1 and R_2 is a branched or linear C_1 - C_{20} hydrocarbon and the total number of carbons in R_1 + R₂ is at least 4.

- A composition comprising a polyol, a polyisocyanate 10 6. and a catalyst of Claim 4.
 - A composition comprising a polyol, a polyisocyanate 7. and a catalyst of Claim 5.
 - A composition according to Claim 6 wherein the polyol 8. is selected from the group consisting hydroxy containing compounds having a molecular weight in the range of between 62 to 1,000,000 and the polyisocyanate is selected from the group consisting diisocyante, isocyanurate, allophanate, biuret compounds and polyurethane products derived from monomeric diisocyanato compounds.
 - A composition according to Claim 7 wherein the polyol 25 9. is selected from the group consisting hydroxy containing compounds having a molecular weight in the range of between 62 to 1,000,000 and the polyisocyanate is selected from the group consisting diisocyante, isocyanurate, allophanate, biuret 30 compounds and polyurethane products derived from monomeric diisocyanato compounds.
 - A composition according to Claim 8 wherein the 10. molecular weight of the hydroxy containing compound 35

is in the range of between 400 to 2,000.

- 11. A composition according to Claim 9 wherein the molecular weight of the hydroxy containing compound is in the range of between 400 to 2,000.
- 12. A composition according to Claim 8 wherein the polyol further contain carboxyl, amine, carbamate, amide and epoxy functional groups.
- 13. A composition according to Claim 9 wherein the polyol further contain carboxyl, amine, carbamate, amide and epoxy functional groups.
- 14. A process of preparing a coating or adhesive film by blending a composition according to Claim 6.
 - 15. A process of preparing a coating or adhesive film by blending a composition according to Claim 7.
- 20 16. A process of preparing a coating or adhesive film by blending a composition according to Claim 8.
- 17. A process of preparing a coating or adhesive film by blending a composition according to Claim 9.
 - 18. A process of preparing a coating or adhesive film by blending a composition according to Claim 10.
- 19. A process of preparing a coating or adhesive film by blending a composition according to Claim 11.
 - 20. A process of preparing a coating or adhesive film by blending a composition according to Claim 12.
- 35 21. A process of preparing a coating or adhesive film by

- blending a composition according to Claim 13.
 - 22. A coating or adhesive film prepared according to Claim 14.
- 5 23. A coating or adhesive film prepared according to Claim 15.
 - 24. A coating or adhesive film prepared according to Claim 16.

- 25. A coating or adhesive film prepared according to Claim 17.
- 26. A coating or adhesive film prepared according to Claim 18.
 - 27. A coating or adhesive film prepared according to Claim 19.
- 20 28. A coating or adhesive film prepared according to Claim 20.
 - 29. A coating or adhesive film prepared according to Claim 21.

25

- 30. A coating or adhesive film prepared according to Claim 14 wherein the polyol is selected from the group consisting a polyester polyol, an alkyd polyol, an acrylic polyol, a polyether polyol or a mixture thereof and the polyisocyanate is selected from a group consisting of an aliphatic polyisocyanate.
- 31. A coating or adhesive film prepared according to

 Claim 15 wherein the polyol is selected from the

 group consisting a polyester polyol, an alkyd polyol,

an acrylic polyol, a polyether polyol or a mixture thereof and the polyisocyanate is selected from a group consisting of an aliphatic polyisocyanate.

- 32. A coating or adhesive film prepared according to Claim 16 wherein the polyol is selected from the group consisting a polyester polyol, an alkyd polyol, an acrylic polyol, a polyether polyol or a mixture thereof and the polyisocyanate is selected from a group consisting of an aliphatic polyisocyanate.
 - 33. A coating or adhesive film prepared according to Claim 17 wherein the polyol is selected from the group consisting a polyester polyol, an alkyd polyol, an acrylic polyol, a polyether polyol or a mixture thereof and the polyisocyanate is selected from a group consisting of an aliphatic polyisocyanate.
- 20 A coating or adhesive film prepared according to Claim 18 wherein the polyol is selected from the group consisting a polyester polyol, an alkyd polyol, an acrylic polyol, a polyether polyol or a mixture thereof and the polyisocyanate is selected from a group consisting of an aliphatic polyisocyanate.
- 25
 35. A coating or adhesive film prepared according to Claim 19 wherein the polyol is selected from the group consisting a polyester polyol, an alkyd polyol, an acrylic polyol, a polyether polyol or a mixture thereof and the polyisocyanate is selected from a group consisting of an aliphatic polyisocyanate.
 - 36. A coating or adhesive film prepared according to Claim 20 wherein the polyol is selected from the group consisting a polyester polyol, an alkyd polyol, an acrylic polyol, a polyether polyol or a mixture

35

- 26 -

thereof and the polyisocyanate is selected from a group consisting of an aliphatic polyisocyanate.

37. A coating or adhesive film prepared according to Claim 21 wherein the polyol is selected from the group consisting a polyester polyol, an alkyd polyol, an acrylic polyol, a polyether polyol or a mixture thereof and the polyisocyanate is selected from a group consisting of an aliphatic polyisocyanate.

10

5

15

20

25

30

International application No. PCT/US98/04997

	SSIFICATION OF SUBJECT MATTER		
	:B01J 31/22; B05D 3/00; C08G 18/22; C09K 3/00 :Please See Extra Sheet	•	
	o International Patent Classification (IPC) or to both	national classification and IPC	
	DS SEARCHED		
Minimum d	ocumentation searched (classification system followers	ed by classification symbols)	
U.S. :	502/150, 152, 161, 170, 172, 427302, 340; 252/182.	2, 182.21, 182.22, 528/55, 905	
Documentat	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched
		<u></u> .	
Electronic d	lata base consulted during the international search (n	ame of data base and, where practicable,	search terms used)
APS			
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
X	US 5,372,850 A (UCHIKAWA et al. lines 35-45.) 13 December 1994, col. 5,	1-3
X	US 4,202,990 A (MURAKAMI et al 55-68.	.) 13 May 1980, col. 2, lines	1-4
A .	US 5,306,759 A (SAKAGAMI et al.) 6, lines 20-37, col. 7, line 64 to col.	26 April 1994, abstract, col. 8, line 6.	1-5
A	GB 908,949 A (GUDGEON et al document.	.) 24 October 1962, entire	1-37
A	GB 890,280 A (STEPHENSON et a document.	I.) 28 February 1962, entire	1-37
A	GB 869,988 A (TWITCHETT) 7 June	e 1961, entire document.	1-37
X Furth	er documents are listed in the continuation of Box C	C. See patent family annex.	
"A" doc	scial categories of cited documents: cument defining the general state of the art which is not considered be of particular relevance.	"T" later document published after the inte- date and not in conflict with the appli- the principle or theory underlying the	cation but cited to understand
	her document published on or after the international filing date	"X" document of particular relevance; the	claimed invention cannot be
"L" doc	nument which may throw doubts on priority claim(s) or which is d to establish the publication data of another citation or other	considered novel or cannot be consider when the document is taken alone "Y" document of perticular relevance: the	
-	cial reason (as specified) sument referring to an oral disclosure, use, exhibition or other ans	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	step when the document is documents, such combination
P doc	nument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent	
Date of the	actual completion of the international search	Date of mailing of the international sear	ch report
Commission Box PCT Washington	nailing address of the ISA/US aer of Patents and Trademarks D.C. 20231	Authorized officer	
Facsimile No	o. (703) 305-3230	Telephone No. (703) 308-0661	

Form PCT/ICA/210 (second sheet)(July 1992)*

International application No.
PCT/US98/04997

	INTERNATIONAL SEARCH REPORT	PCT/US98/0499	
	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
(Continuat	Citation of document, with indication, where appropriate, of the relation	evant passages	Relevant
Category*	Nahlovsky et al., Catalysis of Diol Propellant Binder Reactions with Isocyanates, Int. Jahrestag-Fraunhofer Explosivst, 18th (Technol. Energ. Mater.) 39:1-12, et	Cure r-Inst. Treib-	1-37
	document.		
			·
	a a		
1			
	DOT/ISA/210 (continuation of second sheet)(July 1992)*		

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

International application No. PCT/US98/04997

A. CLASSIFICATION OF SUBJECT MATTER: US CL

502/150, 152, 161, 170, 172; 427302, 340; 252/182.2, 182.21, 182.22; 528/55, 905

Form PCT/ISA/210 (extra sheet)(July 1992)*

THIS PAGE BLANK (USPTO)