Wiederholunger

· 0 + f e K[X]

færfallt in kinearfaktoren :(=)

es ex. $c, a_1, ..., a_e \in K, m_{11}, ..., m_e \in N$; $f = c(X - a_1)^{m_1} \cdot ... \cdot (X - a_e)^{m_e}$

· K algebraisch abgeschlosser : Jeden 0 + f c K TX 7 zerfallt in Linear fachtoren

. (ist abgebraisch ab geschlesser (ohne Beweis!

. $a_ib \in \mathbb{Z}_i$ $a_ib \neq 0$ $V := \{v \in \mathbb{N} \mid a \text{ teilt } v \text{ u. } b \text{ teilt } v\}$ benitht Minimum begl. ||u|| + |u|| +

Analog für K[X].

85T(a,b) k(a,b) = lab/

falls a, b to

· R = Z, oder R = K[X] - R ist Hauptideal ning, d.h. P ist Integritatsbereich und jede I deal ist Hauptideal · a,b ∈ Z*, b+0 D:= {de N/ d tailt a v. d tailt b} D beritrt Maximum bzgl "1": ggT(a,b) 99T (a10) := la1. 99T(a1b) = 2a+ p 6 , fin geeign. 2, ne Z d := ggT(a,b); Dam: - d/a und d/b - Ist d' E Z: mit d' la und d' lb, dann int d' ld

Analog für K[X].

```
Enveiterter Enblidischer Algorithum:
 gegeben a, b & R, b \ + 0
 hiefert ggTa,b), \, \, n \in R mit ggT(a,b) = \, \, a + \, b
 EUKLID (aib)
1. Pertinue q, r \in R mit \alpha = qb + r mit \nu(r) < \nu(b)
2. If r=c A M
     return (Ibl, O, Ibl/b)
4. else (d, x, n) = EUKLID(b, r)
              return (d, M, A-9h).
Bewein der Korrehtheit; 1. Fall: r=0, |b|=ggT(qb,b), |b|=0.a+\frac{161}{b}.b
2 Fall: r \neq 0 d = ggT(b,r) = ggT(a,b)
              7/m sordans d= 7b+mn = 7b+m(a-gb)
                              = \mu a + (\lambda - q \mu) b.
```

Kongruenzen und Restklassenringe

Setup

- ▶ $R = \mathbb{Z}$ oder R = K[X] für einen Körper K
- ▶ $m \in R \setminus \{0\}$, White $m \in \mathbb{N}$, falls $R = \mathbb{Z}$

(*m* steht für *modulus*, lat. Maß.)

Kongruenzen

Definition

$$a, b \in R$$

$$a \equiv_m b :\Leftrightarrow m \mid a - b$$

Wir lesen $a \equiv_m b$ als "a kongruent b modulo m".

Beispiele

- ightharpoonup in \mathbb{Z} :
 - ► 7 ≡₇ 0
 - ▶ 1 ≡₇ 8
 - **▶** 1 ≡₇ −6
 - **▶** 3 ≡₇ 10
 - ► 2 ≡₇ 9
 - **▶** 2 ≡₇ 16
 - **▶** 2 ≡₇ −5
 - ▶ 16 =₇ -5

- ▶ in $\mathbb{Q}[X]$:
 - ► $X^2 1$ $\equiv_{X^2 1} 0$ ► X^2 $\equiv_{X^2 1} 1$
- $X^4 X^2 + 1 \equiv_{X^2 1} 1$

Kongruenzen (Forts.)

Proposition

 \equiv_m ist Äquivalenzrelation auf R.

- ightharpoonup Äquivalenzklasse von $a \in R$ wird mit \overline{a} bezeichnet.
- $ightharpoonup |R/(m)| = {\overline{a} \mid a \in R}$ Menge der Äquivalenzklassen.
- Für $R = \mathbb{Z}$ schreiben wir auch $\mathbb{Z}_m := \mathbb{Z}/(m)$.

Bevoir der Proposition: (R) $\alpha \equiv_{m} \alpha$ $d\alpha =_{m} \alpha =_{m} \alpha$

Kongruenzen (Forts.)

Beispiele

- ightharpoonup in \mathbb{Z}_7 :
 - $ightharpoonup 7 = \overline{0}$
 - $\overline{1} = \overline{8} = \overline{-6}$
 - $ightharpoonup \overline{3} = \overline{10}$
 - $\overline{2} = \overline{9} = \overline{16} = \overline{-5}$

▶ in $\mathbb{Q}[X]/(X^2-1)$:

$$\overline{X^2 - 1} = \overline{0}$$

$$\overline{X^2} = \overline{X^4 - X^2 + 1} = \overline{1}$$

Kongruenzen und Division mit Rest

Definition

Es sei $a \in R$. Dividiere a durch m mit Rest:

$$a = qm + r$$

mit

$$\begin{cases} 0 \le r < m, & \text{im Fall } R = \mathbb{Z}, \\ \deg r < \deg m, & \text{im Fall } R = K[X]. \end{cases}$$

Wir setzen

$$a \mod m := r$$
.

Beispiele

- ▶ $101 \mod 7 = 3$;
- ▶ $1001 \mod 13 = 0$;
- $X^3 2X^2 + 5 \mod (X^2 + X + 1) = 2X + 8.$

Proposition

- (a) \blacktriangleright Für alle $a \in R$ gilt: $a \equiv_m a \mod m$.
- (b) \blacktriangleright Es seien $a, b \in R$. Dann sind äquivalent:
 - \triangleright a $\equiv_m b$
 - $ightharpoonup a \mod m = b \mod m$

Bleveis des Proposition:

(a)
$$\alpha = qm + r = qm + (a \mod m)$$

 $=$) $m \mid qm, qm = a - (a \mod m)$

(b) a mod
$$m = b \mod m \iff$$

$$enex. q_{11}q_{21}r \in R: \alpha = q_1 m + r_1 b = q_2 m + r \iff$$

$$enex. q_{11}q_{21}r \in R: \alpha - b = (q_1 - q_2)m \iff$$

$$m \mid \alpha - b \iff$$

$$\alpha = mb.$$

Bemerkung

Für $a \in R$ ist

Für
$$a \in R$$
 ist
$$\overline{a} = a + Rm$$
mit $a + Rm = \{a + xm \mid x \in R\}.$

$$\overline{Lsf} \quad r := a \quad mod \quad m \quad , \quad dann \quad nit \quad \overline{a} = \overline{r} \quad , \quad d.h.$$

$$\overline{a} = \{r + xm \mid x \in R\} \quad \text{Perthlane}$$

$$\overline{m} = 2 \quad , \quad R = \overline{Z} \quad ; \quad \overline{o} = 2\overline{Z} \quad \text{gerader} \quad \text{Eablen}$$

$$\overline{1} = 1 + 2\overline{Z} \quad \text{ungerade} \quad \text{Eable}$$

$$m = 3 \quad , \quad R = \overline{Z} \quad ; \quad \overline{o} = 3\overline{Z} \quad , \quad \overline{1} = 1 + 3\overline{Z} \quad , \quad \overline{2} = 2 + 3\overline{Z}$$

Benveir der Bemerkung: Sei $a \in \mathbb{R}$. $b \in \overline{a} \iff a \equiv_{m} b$ $\iff m \mid a - b$ $\iff ex \in \mathbb{R} \text{ unif } a - b = 2m$ $\iff ex \in \mathbb{R} \text{ unif } b = a + (-2)m$.

Definition

Es sei $n \in \mathbb{N}_0$. Wir setzen

$$K[X]_{< n} := \{ f \in K[X] \mid \deg f < n \}$$

$$= \{ \sum_{i=0}^{n-1} a_i X^i \mid a_0, a_1, \dots, a_{n-1} \in K \}.$$

Beipiele

- $ightharpoonup K[X]_{<0} = \{0\}.$
- $K[X]_{<1} = \{ f \in K[X] \mid f \text{ ist konstant} \} = K.$
- ▶ $K[X]_{\leq 2} = \{aX + b \mid a, b \in K\}$: Menge der linearen Polynome.

Korollar

▶ Es sei $n \in \mathbb{N}$.

 $\{0, 1, \dots, n-1\}$ ist Repräsentantensystem von $\mathbb{Z}/(n)$; insbesondere:

$$\mathbb{Z}_n = \mathbb{Z}/(n) = \{\overline{r} \mid r \in \{0, 1, \dots, n-1\}\}.$$

▶ Es sei $g \in K[X] \setminus \{0\}, n := \deg g$.

 $K[X]_{\leq n}$ ist Repräsentantensystem von K[X]/(g); insbesondere:

$$K[X]/(g) = {\overline{r} \mid r \in K[X]_{\leq n}}.$$

Beispiel

$$\mathbb{Z}/(7) = \{ \overline{o}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6} \}$$

$$\mathbb{Q}[X]/(X^2 - 1) = \{ \overline{f} \mid f \in \mathbb{Q}[X]_{\geq 2} \}$$

$$= \{ \overline{aX + b} \mid a, b \in \mathbb{Q} \}.$$

Restklassenringe

Proposition

Es seien $a, a', b, b' \in R$ mit $a \equiv_m a'$, $b \equiv_m b'$. Dann gilt:

Beispiel

In $\mathbb{Q}[X]$:

$$f := X^5 - 3X^4 + 2X^3 - X^2 + 2, h := X^4 - X^3 + 2.$$

$$f \equiv_{X^2-1} 3X - 2$$

$$h \equiv_{X^2-1} -X + 3$$

$$f + h \equiv_{X^2-1} 2X + 1$$

 $f \cdot h \equiv_{X^2-1} -3X^2 + 11X - 6$

Wegen $-3X^2 + 11X - 6 \mod X^2 - 1 = 11X - 9$ gilt auch

$$\oint \cdot h \qquad \equiv_{X^2-1} 11X - 9.$$

Proposition

R/(m) wird kommutativer Ring mit:

Addition:
$$\overline{a} + \overline{b} := \overline{a+b}$$

▶ Null:
$$o = \overline{o}$$

► Negative:
$$-\bar{a} = -\bar{\alpha}$$

► Multiplikation:
$$\bar{f} \cdot \bar{g} := f \cdot g$$

► Eins:
$$1 = \overline{1}$$

AG, KG, DG folger aver derner vor R.

Beispiele

$$\frac{100000}{6} = \frac{100000}{-1} = \frac{1}{1}$$

► In $\mathbb{Z}/(7)$:

►
$$\overline{5} + \overline{4}$$
 = $\overline{9} = \overline{2}$
► $\overline{3} \cdot \overline{4}$ = $\overline{3 \cdot 4} = \overline{12} = \overline{5}$
► $\overline{13} \cdot \overline{13}$ = $\overline{6 \cdot 6} = \overline{(-1)} \cdot \overline{(-1)} = \overline{(1)} \cdot \overline{(-1)} = \overline{1}$.

► In $\mathbb{Q}[X]/(X^2-1)$:

$$\overline{X^5 - X^3 - 3} \cdot \overline{X^4 - X^2 + 2} = \overline{-3} \cdot \overline{2} = \overline{-6}$$

$$\overline{X - 1} \cdot \overline{X + 1} = \overline{0}$$

Quenummen regl: $n \in \mathbb{Z}$ iit durch 3 tellbar (=)Quenummen vor n iit durch 7 tailbar

Bavein; $n = \sum_{i=0}^{k} z_i \cdot 10^i$ $z_i \in [0_1 \dots, 9_3]$.

Rech me module 3. $\overline{10} = \overline{1}$ $3 \mid n \in [n]$ $\overline{n} = \overline{0}$

 $3 \mid N \in) \quad \bar{n} = \bar{0}$ $() \quad \bar{0} = \sum_{i=0}^{k} \bar{z}_{i} \cdot \bar{1} = \sum_{i=0}^{k} \bar{z}_{i}^{-} = \sum_{i=0}^{k} \bar{z}_{i}^{-}$

Bemerkung (Rechnen in \mathbb{Z}_n)

Es seien $i, j \in \mathbb{Z}$ mit $0 \le i, j < n$.

▶ Zur Addition von \bar{i} und \bar{j} , addiere i und j in \mathbb{Z} und dividiere das Ergebnis mit Rest durch n:

$$\overline{i} + \overline{j} = \overline{(i+j) \mod n}.$$

▶ Zur Multiplikation von \bar{i} und \bar{j} , multipliziere i und j in \mathbb{Z} und dividiere das Ergebnis mit Rest durch n:

$$\overline{i} \cdot \overline{j} = \overline{(i \cdot j) \bmod n}.$$

Analoge Regeln gelten für das Rechnen im Restklassenring K[X]/(g) für ein $g \in K[X] \setminus \{0\}$.

Beispiel

Addition und Multiplikation von $\mathbb{Z}/(4) = {\overline{0}, \overline{1}, \overline{2}, \overline{3}}$:

+	0	$\overline{1}$	$\overline{2}$	3		$\overline{0}$			
$\overline{0}$	\overline{c}	T	2	3	0	0	Ū	ō	ō
$\overline{1}$	1	$\overline{2}$	3	ò	1	ō	1	2	7
$\overline{2}$	$\overline{2}$	3	ō	1	2	ō	2	Ö	2
3	3	ō	1	2	3	ō	3	2	1

Lineare Kongruenzgleichungen in einer Unbekannten

Lösbarkeitskriterium für lineare Kongruenzgleichungen

Es seien $a, b \in R$. Dann gilt:

Es gibt
$$x \in R$$
 mit $xa \equiv_m b \Leftrightarrow ggT(a, m) \mid b$.

Korollar

Es sei $a \in R$. Dann gilt: $\overline{a} \in (R/(m))^{\times} \Leftrightarrow \operatorname{ggT}(a, m) = 1$. Folgt our Knitenium für b = 1. Deven de Los barkeits hniterium: =) $m \mid xa - b$ $= \frac{1}{2} \frac{ggT(a_im)}{ggT(a_im)} \left(\frac{xa-b}{a} \right) = \frac{1}{2} \frac{ggT(a_im)}{b}$ "

Sei q e R mit q. ggT(a,m) = b Seien 2, re R mit ggt (a,m) = 2 a+ p&m $=) (q \lambda) \alpha + (q \mu) m = b$ =) m $(9\lambda)\alpha-b$ = $(9\lambda) \alpha = mb$.

Korollar

Es sei $a \in R$. Dann gilt: $\overline{a} \in (R/(m))^{\times} \Leftrightarrow ggT(a, m) = 1$.

Bemerkung

Es sei $a \in R$ mit ggT(a, m) = 1.

Frage: Wie findet man $\overline{a}^{-1} \in R/(m)$?

Antwort: Bestimme $x, y \in R$ mit xa + ym = 1.

Dann ist $\overline{a}^{-1} = \overline{x}$. Deum m $| xa - 1, d.h. xa = m 1, d.h. \overline{x}.\overline{a} = \overline{1}$

Beispiele

▶ $\overline{17} \in (\mathbb{Z}/(30))^{\times}$ mit

$$\overline{17}^{-1} = \overline{23} \qquad 17.23 = 391,391 \equiv_{30} 1$$

 $ightharpoonup \overline{X+2} \in \left(\mathbb{Q}[X]/(X^2-1)\right)^{ imes}$ mit

$$(\overline{X+2})^{-1} = \overline{-X/3 + 2/3}$$

$$(\mathbb{Z}_8)^{\times} = \frac{1}{3} (x+2)(-x+2) = \frac{1}{3}(-x^2+4)$$

$$(\overline{1}, \overline{3}, \overline{5}, \overline{7}).$$

$$= \frac{1}{3}(-x^2+1) + 1.$$

Definition

- ▶ Ein Element $p \in \mathbb{N}$ heißt Primzahl, wenn p > 1 ist und 1 und p die einzigen Teiler von p in \mathbb{N} sind.
- ▶ Ein Element $g \in K[X]$ heißt *irreduzibel*, wenn $g \neq 0$ ist, deg $g \geq 1$ ist und es gilt: die einzigen Teiler von g sind Einheiten oder assoziiert zu g.

Mit anderen Worten: Ist g = fh mit $f, h \in K[X]$, dann ist $f \in K^{\times}$ oder $h \in K^{\times}$.

Satz

Es sei $m \in R, m \neq 0$. Dann sind äquivalent:

- ► R/(m)ist Körper
- $\begin{cases} m \text{ ist Primzahl} & (\text{im Fall } R = \mathbb{Z}) \\ m \text{ ist irreduzibel} & (\text{im Fall } R = K[X]) \end{cases}$