Please finish the following questions in Rmarkdown notebook. And submit both rmd and pdf files.

Problem 1. (15 points) You are asked to invest in one of 3 equities. Suppose we know the future distribution of returns is:

	Return	Probability
Stock A	6%	0.6
	-3%	0.4
Stock B	3%	0.7
	-1%	0.3
Stock C	45.43%	0.5
	-50%	0.5

- (a) Calculate the expected return for each stock.
- (b) Compute the variance of the returns for each stock.
- (c) Which choice you would make and argue why.

Problem 2. (30 points)

Let the stochastic processes $X = \{X_t : t \in \{0, 1, 2, 3, 4\}\}$ represent the price of stock through years 1 to 4. ω here represents possible paths of the processes. Specifically, the table below gives the probability distribution for the 4 variables.

	$X_0(\omega)$	$X_1(\omega)$	$X_2(\omega)$	$X_3(\omega)$	$X_4(\omega)$	$\mathbb{P}(\omega)$
ω_1	11	13	15	16	16	0.06
ω_2	11	13	15	16	14	0.065
ω_3	11	13	15	15	16	0.06
ω_4	11	13	15	15	14	0.065
ω_5	11	13	15	14	16	0.06
ω_6	11	13	15	14	14	0.065
ω_7	11	13	12	13	14	0.0625
ω_8	11	13	12	13	18	0.08
ω_9	11	13	12	13	12	0.04
ω_{10}	11	13	12	13	11	0.0675
ω_{11}	11	11	12	13	14	0.0625
ω_{12}	11	11	12	13	12	0.0625
ω_{13}	11	11	12	12	12	0.0625
ω_{14}	11	11	11	14	20	0.0625
ω_{15}	11	11	11	14	12	0.0625
ω_{16}	11	11	11	12	12	0.0625

- (a) Give the conditional distribution of X_4 , knowing X_2 .
- (b) Calculate the conditional expectation of X_4 , knowing X_2 .

Problem 3. (40 points) Please recall the example question from lecture 2. We roll a die Y times to get the first number 6. $(Y \sim Geometric(\frac{1}{6}))$. Let X denote the number of occurrences of the number 1 in the Y rolls. Recall that fixing the number of trials Y = y, there are no 6 in the first y - 1 trails, and the last roll is a 6. Thus X has a binomial distribution. $(X \mid Y = y \sim Binomial(y - 1, \frac{1}{5}))$

- (a) Simulate $X \mid Y = y$ using a sample size of 100 when y = 10
- (b) Calculate the mean of the sample. Also, calculate the expectation of $X \mid Y = y$. Compare your numerical result with the theoretical result and interpret your finding.
- (c) Calculate the variance of the sample. Also, calculate the variance of $X \mid Y = y$. Compare your numerical result with the theoretical result and interpret your finding.
- (d) Increase the sample size in simulation (a) from 100 to 10,000 with an increment of 100. (That is generate a sequence of sample with size 100, 200, ..., 10000) Calculate the expectation of each sample. And plot the expectation over sample size. (Expectation on the Y-axis and sample size on the X-axis) Add a horizontal line in the plot indicating the theoretical value of expectation. Please interpret your finding.

Problem 4. (15 points) A 90% confidence interval for a population mean is (25, 32).

- (a) Can you reject the null hypothesis that $\mu = 24$ against the two-sided alternative at the 10% significance level? Why?
- (b) Can you reject the null hypothesis that $\mu = 30$ against the two-sided alternative at the 10% significance level? Why?
- (c) Can you reject the null hypothesis that $\mu = 24$ against the two-sided alternative at the 5% significance level? Explain.