Machine Learning

Alexandre Allauzen – Michèle Sebag Thomas Schmitt LIMSI – LRI

Oct. 7th, 2015

Hypothesis Space ${\cal H}$ / Navigation

	ı	
	$ \mathcal{H} $	navigation operators
Version Space	Logical	spec / gen
Decision Trees	Logical	specialisation
Neural Networks	Numerical	gradient
Support Vector Machines	Numerical	quadratic opt.
Ensemble Methods	_	adaptation ${\cal E}$

This course

- Decision Trees
- Support Vector Machines

$$h: \mathcal{X} = \mathbb{R}^D \mapsto \mathbb{R}$$

Binary classification

 $h(\mathbf{x}) > 0 \rightarrow \mathbf{x}$ classified as True else, classified as False

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle

Examples

Discussion

Extensions

Multi-class discrimination

Regression

Novelty detection

On the practitioner side

Improve precision

Reduce computational cost

Theory

Linear Discriminant Analysis

R. Guttierez-Osuna, http://research.cs.tamu.edu/prism/lectures/pr/pr_l10.pdf

Input

$$\mathcal{E} = \{(\mathbf{x}_i, y_i), \mathbf{x}_i \in \mathbb{R}^d, y_i \in \{+1, -1\}, i = 1 \dots n\}$$

Output

$$h(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$$
 $\hat{y} = sg(h(\mathbf{x}))$

Remark

One might need $\langle \mathbf{w}, \mathbf{x} \rangle + b$

Solution: $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d : \mapsto \mathbf{x}' = (x_1, \dots, x_d, 1) \in \mathbb{R}^{d+1}$ and $\mathbf{w} \in \mathbb{R}^d \mapsto \mathbf{w}' = (w_1, \dots, w_d, b) \in \mathbb{R}^{d+1}$

$$\langle \mathbf{w}, \mathbf{x} \rangle + b = \langle \mathbf{w}', \mathbf{x}' \rangle$$

LDA, 2

Criterion

Find w s.t. it maximizes the discrimination.

Define

$$\mu_+=$$
 average of \mathbf{x}_i s.t. $y_i=+1$ $\mu_-=$ average of \mathbf{x}_i s.t. $y_i=-1$

Build

$$\mathbf{w}$$
 s.t. $\langle \mathbf{w}, \mu_+ - \mu_- \rangle = 0$

LDA, 3

LDA, 4

Intuition

Characterize the variance:

within-class scatter matrix

$$S_W = \sum_{x_i, y_i = 1} (\mathbf{x}_i - \mu_+) \cdot (\mathbf{x}_i - \mu_+)' + \sum_{x_i, y_i = -1} (\mathbf{x}_i - \mu_-) \cdot (\mathbf{x}_i - \mu_-)'$$

Characterize the difference:

between-class scatter matrix

$$S_B = (\mu_+ - \mu_-).(\mu_+ - \mu_-)'$$

Solution

find
$$\mathbf{w} = argmax \frac{\mathbf{w}' S_B \mathbf{w}}{\mathbf{w}' S_W \mathbf{w}}$$

Some limitations

There is another limitation: any idea?

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle

Examples

Discussion

Extensions

Multi-class discrimination

Regression

Novelty detection

On the practitioner side

Improve precision

Reduce computational cost

Theory

The separable case: More than one separating hyperplane

Linear Support Vector Machines

Linear Separators

$$f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Region $\hat{y} = 1$: $f(\mathbf{x}) > 0$

Region $\hat{y} = -1$: $f(\mathbf{x}) < 0$

Criterion

$$\forall i, \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) > 0$$

Remark

Invariant by multiplication of \mathbf{w} and b by a positive value

Canonical formulation

Fix the scale:

$$min_i \{y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b)\} = 1$$

 \Leftrightarrow

$$\forall i, \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1$$

Maximize the Margin

Criterion

Maximize the minimal distance (points, hyperplane).

Obtain the largest possible band

Margin

$$\langle \mathbf{w}, \mathbf{x}_+ \rangle + b = 1$$
 $\langle \mathbf{w}, \mathbf{x}_- \rangle + b = -1$ $\langle \mathbf{w}, \mathbf{x}_+ - \mathbf{x}_- \rangle = 2$

Margin = projection of $\mathbf{x}_+ - \mathbf{x}_-$ on the normal vector of the hyperplane, $\frac{\mathbf{w}}{||\mathbf{w}||_2}$

$$\Rightarrow$$
 Maximize $\frac{1}{||\mathbf{w}||}$

$$\Leftrightarrow$$
 minimize $||\mathbf{w}||^2$

Maximal Margin Hyperplane

Maximize the Margin (2)

Problem

```
 \left\{ \begin{array}{ll} \mathsf{Minimize} & \frac{1}{2} \ ||\mathbf{w}||^2 \\ \mathsf{with the constraints} & \forall \ i, \ y_i \big( \langle \mathbf{w}, \mathbf{x}_i \rangle + b \big) \geq 1 \end{array} \right.
```

Primal Problem

$$\mathsf{Min}_{\mathbf{W},b}\,\mathsf{Max}_{\alpha\geq 0}\,L(\mathbf{w},b,\alpha) = \frac{1}{2}||\mathbf{w}||^2 - \sum_i \alpha_i(y_i(\langle \mathbf{x}_i,\mathbf{w}\rangle + b) - 1),\ \alpha_i\geq 0$$

• Differentiate w.r.t. b: at the optimum,

$$\frac{\partial L}{\partial b} = 0 = \sum \alpha_i y_i$$

• Differentiate w.r.t. w :

$$\frac{\partial L}{\partial \mathbf{w}} = 0 = \mathbf{w} - \sum \alpha_i y_i \mathbf{x}_i$$

• Replace in $L(\mathbf{w}, b, \alpha)$:

Dual problem (Wolfe)

$$\begin{cases} \text{ Maximize } & W(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j < \mathbf{x}_i, \mathbf{x}_j > \\ \text{ with the constraint } & \forall \ i, \ \alpha_i \geq 0 \\ & \sum_i \alpha_i y_i = 0 \end{cases}$$

Quadratic form w.r.t. α

quadratic optimization is easy

Solution: α_i^*

• Compute **w*** :

$$\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i$$

- If $(\langle \mathbf{x}_i, \mathbf{w}^* \rangle + b) y_i > 1$, $\alpha_i^* = 0$.
- If $\alpha_i^* > 0$, then $(\langle \mathbf{x}_i, \mathbf{w}^* \rangle + b)y_i = 1$ \mathbf{x}_i support vector
- Compute b^* :

$$b^* = -\frac{1}{2}(\langle \mathbf{w}^*, \bar{\mathbf{x}}^+ \rangle + \langle \mathbf{w}^*, \bar{\mathbf{x}}^- \rangle)$$

Summary

$$\mathcal{E} = \{(\mathbf{x}_i, y_i)\}, \ \mathbf{x}_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}, i = 1..n\} \ (\mathbf{x}_i, y_i) \sim P(\mathbf{x}, y)$$

Two goals Role

- ▶ Data fitting $sign(y_i) = sign(h(\mathbf{x}_i)) \rightarrow maximize margin y_i.h(\mathbf{x}_i)$ achieve learning
- ▶ Regularization : minimize ||**w**||

Support Vector Machines

General scheme

- Minimize the regularization term
- ... subject to data constraints

$$=$$
 margin ≥ 1 (*)

$$\begin{cases} \text{Min.} & \frac{1}{2} ||\mathbf{w}||^2 \\ \text{s.t.} & y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 \quad \forall i = 1 \dots n \end{cases}$$

Constrained minimization of a convex function

 \rightarrow introduce Lagrange multipliers $\alpha_i \geq 0$, $i = 1 \dots n$

$$\operatorname{Min} \mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i} \alpha_i (1 - y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b))$$

Primal problem

- ightharpoonup d+1 variables (+ n Lagrange multipliers)
- (*) in the separable case; see later for non-separable case

Support Vector Machines, 2

At the optimum

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial \alpha} = 0$$

Dual problem

Wolfe

$$\begin{cases} \text{Max.} & \mathcal{Q}(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \ \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle \\ \text{s.t.} & \forall \ i, \ \alpha_{i} \geq 0 \\ & \sum_{i} \alpha_{i} y_{i} = 0 \end{cases}$$

Support vectors

Examples
$$(\mathbf{x}_i, y_i)$$
 s.t. $\alpha_i > 0$

the only ones involved in the decision function

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

Support vectors, examples

Support vectors, examples

MNIST data

Remarks

- ► Support vectors are critical examples near-miss
- ▶ Show that the Leave-One-Out error is less than # sv.

LOO: iteratively, learn on all examples but one, and test on the remaining one

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle

Examples

Discussion

Extensions

Multi-class discrimination

Regression

Novelty detection

On the practitioner side

Improve precision

Reduce computational cost

Theory

Separable vs non-separable data

Linear hypotheses, non separable data

Cortes & Vapnik 95

Non-separable data \Rightarrow not all constraints are satisfiable

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1 - \xi_i$$

Formalization

- ▶ Introduce slack variables ξ_i
- And penalize them

$$\left\{ \begin{array}{ll} \text{Minimize} & \frac{1}{2} \ ||\mathbf{w}||^2 + \ \mathbf{C} \sum_{\mathbf{i}} \xi_{\mathbf{i}} \\ \text{Subject to} & \forall i, \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1 - \xi_{\mathbf{i}} \\ & \xi_i \geq 0 \end{array} \right.$$

Critical decision: adjust C = error cost.

Primal problem, non separable case

Same resolution: Lagrange Multipliers α_i and β_i , with $\alpha_i \geq 0$, $\beta_i \geq 0$

$$\mathcal{L}(\mathbf{w}, b, \xi, \alpha, \beta) = \operatorname{\mathsf{Min}}_{\mathbf{w}, b, \xi} \operatorname{\mathsf{Max}}_{\alpha, \beta} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ - \sum_i \alpha_i (y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \xi_i) \\ - \sum_i \beta_i \xi_i$$

At the optimum

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial \xi_i} = 0$$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \qquad \sum_{i} \alpha_{i} y_{i} = 0 \qquad C - \alpha_{i} - \beta_{i} = 0$$

Likewise

► Convex (quadratic) optimization problem \rightarrow it is equivalent to solve the primal and the dual problem (expressed with multipliers α, β)

Dual problem, non separable case

$$Min\sum_{i}\alpha_{i}-\frac{1}{2}\sum_{i,j}\alpha_{i}\alpha_{j}y_{i}y_{j}\langle\mathbf{x}_{i},\mathbf{x}_{j}\rangle,\ 0\leq\alpha_{i}\leq C$$

Mathematically nice problem

▶ $H = \text{semi-definite positive } n \times n \text{ matrix}$

$$H_{i,j} = y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

Dual problem

quadratic form

Minimize
$$\langle \alpha, \mathbf{e} \rangle - \alpha^T H \alpha$$

with
$$e = (1, \dots, 1) \in \mathbb{R}^n$$
.

Support vectors

▶ Only support vectors $(\alpha_i > 0)$ are involved in h

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

- ▶ Importance of support vector \mathbf{x}_i : weight α_i
- ▶ Difference with the separable case $0 < \alpha_i < C$ bounded influence of examples

The loss (error cost) function

Roles

The goal is data fitting

loss function characterizes the learning goal

while solving a convex optimization problem

and makes it tractable/reproducible

The error cost

- ▶ Binary cost: $\ell(y, h(\mathbf{x})) = 1$ iff $y \neq h(x)$
- Quadratic cost: $\ell(y, h(\mathbf{x})) = (y h(x))^2$
- ► Hinge loss

$$\ell(y, h(\mathbf{x})) = \max(0, 1 - y \cdot h(x)) = (1 - y \cdot h(x))_{+} = \xi$$

Complexity

Learning complexity

- ▶ Worst case: $\mathcal{O}(n^3)$
- ► Empirical complexity: depends on C
- \triangleright $\mathcal{O}(n^2 n_{sv})$ where n_{sv} is the number of s.v.

Usage complexity

 \triangleright $\mathcal{O}(n_{sv})$

Overview

Linear Discriminant Analysis
Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle Examples
Discussion

Extensions

Multi-class discrimination Regression Novelty detection

On the practitioner side

Improve precision
Reduce computational cost

Theory

Non-separable data

Representation change

$$\mathbf{x} \in \mathbb{R}^2 o ext{ polar coordinates } \in \mathbb{R}^2$$

Principle

$$\Phi: X \mapsto \Phi(X) \subset \mathbb{R}^D$$

Intuition

- In a high-dimensional space, every dataset is linearly separable
 - ightarrow Map data onto $\Phi(X)$, and we are back to linear separation

Glossary

- ► X: input space
- \blacktriangleright $\Phi(X)$: feature space

The kernel trick

Remark

- ▶ Generalization bounds do not depend on the dimension of input space X but on the capacity of the hypothesis space H.
- ▶ SVMs only involve scalar products $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$.

Intuition

- ▶ Representation change is only "virtual" $\Phi: X \mapsto \Phi(X)$
- ▶ Consider scalar product in $\Phi(X)$
- \triangleright ... and compute it in X

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$

Example: polynomial kernel

Principle

$$\mathbf{x} \in \mathbb{R}^3 \mapsto \Phi(\mathbf{x}) \in \mathbb{R}^{10}$$

$$\mathbf{x} = (x_1, x_2, x_3)$$

$$\Phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3, x_1^2, x_2^2, x_3^2)$$

Why $\sqrt{2}$?

Example: polynomial kernel

Principle

$$\mathbf{x} \in \mathbb{R}^3 \mapsto \Phi(\mathbf{x}) \in \mathbb{R}^{10}$$

$$\mathbf{x} = (x_1, x_2, x_3)$$

$$\Phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3, x_1^2, x_2^2, x_3^2)$$

Why $\sqrt{2}$?

because

$$\langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle)^2 = K(\mathbf{x}, \mathbf{x}')$$

Primal and dual problems unchanged

Primal problem

$$\begin{cases} & \text{Min.} & \frac{1}{2} ||\mathbf{w}||^2 \\ & \text{s.t.} & y_i(\langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle + b) \ge 1 & \forall i = 1 \dots n \end{cases}$$

Dual problem

$$\begin{cases} \text{Max.} & \mathcal{Q}(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \ K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ \text{s.t.} & \forall \ i, \ \alpha_{i} \geq 0 \\ & \sum_{i} \alpha_{i} y_{i} = 0 \end{cases}$$

Hypothesis

$$h(\mathbf{x}) = \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x})$$

Example, polynomial kernel

$$K(\mathbf{x},\mathbf{x}')=(a\langle\mathbf{x},\mathbf{x}'\rangle+1)^b$$

- ► Choice of a, b : cross validation
- ▶ Domination of high/low degree terms ?
- ► Importance of normalization

Example, Radius-Based Function kernel (RBF)

$$K(\mathbf{x}, \mathbf{x}') = exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

- No closed form Φ
- $\Phi(X)$ of infinite dimension For x in \mathbb{R}

$$\Phi(x) = \exp(-\gamma x^2) \left[1, \sqrt{\frac{2\gamma}{1!}} x, \sqrt{\frac{(2\gamma)^2}{2!}} x^2, \sqrt{\frac{(2\gamma)^3}{3!}} x^3, \dots \right]$$

▶ Choice of γ ? (intuition: think of H, $H_{i,j} = y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$)

String kernels

Watkins 99, Lodhi 02 Notations

- ightharpoonup s a string on alphabet Σ
- $\mathbf{i} = (i_1, i_2, \dots, i_n)$ an ordered index sequence $(i_j < i_{j+1})$, avec $\ell(\mathbf{i}) = i_n i_1 + 1$
- ▶ s[i] substring of s, extraction pattern is i s = BICYCLE, i = (1, 3, 6), s[i] = BCL

Definition

$$K_n(s,s') = \sum_{u \in \Sigma^n} \sum_{\mathbf{i}s.t.s[\mathbf{i}]=u} \sum_{\mathbf{j}s.t.s'[\mathbf{i}]=u} \varepsilon^{\ell(\mathbf{i})+\ell(\mathbf{j})}$$

with $0 < \varepsilon < 1$ (discount)

String kernels, followed

Φ: projection on \mathbb{R}^D où $D = |\Sigma|^n$

	СН	CA	CT	ΑT
CHAT	ε^2	$arepsilon^3$	$arepsilon^{4}$	ε^2
CARTOON	0	$arepsilon^2$	$arepsilon^{4}$	$arepsilon^3$

$$K(CHAT, CARTON) = 2\varepsilon^5 + \varepsilon^8$$

Prefer the normalized version

$$\kappa(s,s') = \frac{K(s,s')}{\sqrt{K(s,s)K(s's')}}$$

String kernels, followed

Application 1

Document mining

- Pre-processing matters a lot (stop-words, stemming)
- Multi-lingual aspects
- Document classification
- ▶ Information retrieval

Application 2, Bio-informatics

- Pre-processing matters a lot
- Classification (secondary structures)

Application to musical analysis

- Input: Midi files
- Pre-processing, rythm detection
- Representation: the musical worm (tempo, loudness)
- Output: Identification of performer styles

Using String Kernels to Identify Famous Performers from their Playing Style, Saunders et al., 2004

Kernels: key features

Absolute → **Relative representation**

- $ightharpoonup \langle \mathbf{x}, \mathbf{x}' \rangle \propto \text{angle of } \mathbf{x} \text{ and } \mathbf{x}'$
- More generally K(x, x') measures the (non-linear) similarity of x and x'
- **x** is described by its similarity to other examples

Necessary condition: the Mercer condition

K must be positive semi-definite

$$\forall g \in L_2, \int K(\mathbf{x}, \mathbf{x}')g(\mathbf{x})g(\mathbf{x}')d\mathbf{x} \geq 0$$

Why?

Related to Φ Mercer condition holds $\to \exists \phi_1, \phi_2, ...$

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \phi_i(\mathbf{x}) \phi_i(\mathbf{x}')$$

with ϕ_i eigen functions, $\lambda_i > 0$ eigen values

Kernel properties: let K, K' be p.d. kernels and $\alpha > 0$, then

- $ightharpoonup \alpha K$ is a p.d. kernel
- ightharpoonup K + K' is a p.d. kernel
- ▶ K.K' is a p.d. kernel
- $ightharpoonup K(\mathbf{x},\mathbf{x}') = limit_{p\to\infty}K_p(\mathbf{x},\mathbf{x}')$ is p.d. if it exists
- $K(A,B) = \sum_{\mathbf{X} \in A, \mathbf{X}' \in B} K(x,x')$ is a p.d. kernel

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle Examples

Discussion

Extensions

Multi-class discrimination Regression Novelty detection

On the practitioner side Improve precision Reduce computational cos

Theory

Multi-class discrimination

Input

Binary case

$$\mathcal{E} = \{(\mathbf{x}_i, y_i)\}, \ \mathbf{x}_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}, i = 1..n\} \ (\mathbf{x}_i, y_i) \sim P(\mathbf{x}, y)$$

Multi-class case

$$\mathcal{E} = \{(\mathbf{x}_i, y_i)\}, \ \mathbf{x}_i \in \ \mathbb{R}^d, \ y_i \in \{1...k\}, i = 1..n\} \ (\mathbf{x}_i, y_i) \sim P(\mathbf{x}, y)$$

Output: \hat{h} : $\mathbb{R}^d \mapsto \{1 \dots k\}$.

Multi-class learning: one against all

First option: *k* binary learning problems

Pb 1: class
$$1 \rightarrow +1$$
, classes $2 \dots k \rightarrow -1$

$$h_1$$

Pb 2: class
$$2 \rightarrow +1$$
, classes $1, 3, \dots k \rightarrow -1$

h₂

• • •

Prediction

$$h(\mathbf{x}) = i \text{ iff } h_i(\mathbf{x}) = argmax\{h_j(\mathbf{x}), j = 1 \dots k\}$$

Justification

If x belongs to class 1, one should have

$$h_1(\mathbf{x}) \ge 1, h_j(\mathbf{x}) < -1, j \ne 1$$

Where is the difficulty?

Multi-class learning: one vs one

Second option: $\frac{k(k-1)}{2}$ binary classification problems

Pb
$$i, j$$
 class $i \rightarrow +1$, class $j \rightarrow -1$

 $h_{i,j}$

Prediction

- ▶ Compute all $h_{i,j}(\mathbf{x})$
- Count the votes

Cla	sses	winner					
1	2	1					
1	3	1					
1	4	1					
2	3	2					
2	4	4	class	1	2	3	4
3	4	3		3	1	1	1

NB: One can also use the $h_{i,j}(\mathbf{x})$ values.

Multi-class learning: additionnal constraints

Another option

Vapnik 98; Weston, Watkins 99

$$\begin{cases} \text{ Minimise } & \frac{1}{2} \sum_{j=1}^{k} ||\mathbf{w}_j||^2 + C \sum_{i=1}^{n} \sum_{\ell=1, \ell \neq y_i}^{k} \xi_{i,\ell} \\ \text{ Subject to } & \forall i, \forall \ell \neq y_i, \\ & (\langle w_{y_i}, \mathbf{x}_i \rangle + b_{y_i}) \geq (\langle w_\ell, \mathbf{x}_i \rangle + b_\ell) + 2 - \xi_{i,\ell} \\ & \xi_{i,\ell} \geq 0 \end{cases}$$

Hum!

 \triangleright $n \times k$ constraints: $n \times k$ dual variables

Recommendations

In practice

- Results are in general (but not always!) similar
- ▶ 1-vs-1 is the fastest option

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle Examples

Extensions

Multi-class discrimination Regression Novelty detection

On the practitioner side Improve precision Reduce computational cos

Theory

Regression

Input

$$\mathcal{E} = \{(x_i, y_i)\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}, i = 1..n\} (x_i, y_i) \sim P(x, y)$$

Output: $\hat{h}: \mathbb{R}^d \mapsto \mathbb{R}$.

Regression with Support Vector Machines

Intuition

- ▶ Find h deviating by at most ε from the data
- ... while being as flat as possible

loss function regularization

Formulation

$$\begin{cases} & \text{Min.} & \frac{1}{2} ||\mathbf{w}||^2 \\ & \text{s.t.} & \forall i = 1 \dots n \\ & & (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge y_i - \varepsilon \\ & & & (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \le y_i + \varepsilon \end{cases}$$

Regression with Support Vector Machines, followed

Using slack variables

$$\begin{cases} \text{Min.} & \frac{1}{2} ||\mathbf{w}||^2 + \mathbf{C} \sum_{\mathbf{i}} (\xi_{\mathbf{i}}^+ + \xi_{\mathbf{i}}^-) \\ \text{s.t.} & \forall i = 1 \dots n \\ & (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge y_i - \varepsilon - \xi_{\mathbf{i}}^- \\ & (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \le y_i + \varepsilon + \xi_{\mathbf{i}}^+ \end{cases}$$

Regression with Support Vector Machines, followed

Primal problem

$$\mathcal{L}(\mathbf{w}, b, \xi, \alpha, \beta) = \min \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} (\xi_i^+ + \xi_i^-) \\ - \sum_{i} \alpha_i^+ (y_i + \varepsilon + \xi_i^+ - \langle \mathbf{w}, \mathbf{x}_i \rangle + b) \\ - \sum_{i} \alpha_i^- (\langle \mathbf{w}, \mathbf{x}_i \rangle + b - y_i + \varepsilon + \xi_i^-) \\ - \sum_{i} \beta_i^+ \xi_i^+ - \sum_{i} \beta_i^- \xi_i^-$$

Dual problem

$$\begin{cases} \mathcal{Q}(\alpha^{+}, \alpha^{-}) = & \sum_{i} y_{i}(\alpha_{i}^{+} - \alpha_{i}^{-}) - \varepsilon \sum_{i} (\alpha_{i}^{+} + \alpha_{i}^{-}) \\ & + \sum_{i,j} (\alpha_{i}^{+} - \alpha_{i}^{-})(\alpha_{j}^{+} - \alpha_{j}^{-}) \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle \\ \text{s.t.} & \forall i = 1 \dots n \\ & \sum_{i} (\alpha_{i}^{+} - \alpha_{i}^{-}) = 0 \\ & 0 \leq \alpha_{i}^{+} \leq C \\ & 0 \leq \alpha_{i}^{-} \leq C \end{cases}$$

Regression with Support Vector Machines, followed Hypothesis

$$h(\mathbf{x}) = \sum (\alpha_i^+ - \alpha_i^-) \langle \mathbf{x}_i, \mathbf{x} \rangle + b$$

With no loss of generality you can replace everywhere

$$\langle \mathbf{x}, \mathbf{x}' \rangle \rightarrow \mathcal{K}(\mathbf{x}, \mathbf{x}')$$

Beware

High-dimensional regression

$$\mathcal{E} = \{(\mathbf{x}_i, y_i)\}, \ \mathbf{x}_i \in \mathbb{R}^D, \ y_i \in \mathbb{R}, i = 1..n\} \ (\mathbf{x}_i, y_i) \sim P(\mathbf{x}, y)$$

A very slippery game if D >> n

curse of dimensionality

Dimensionality reduction mandatory

- Map **x** onto \mathbb{R}^d
- Central subspace:

$$\pi: X \mapsto S \subset \mathbb{R}^d$$

with S minimal such that y and \mathbf{x} are independent conditionally to $\pi(x)$.

Find
$$h, \mathbf{w} : y = h(\mathbf{w}, \mathbf{x})$$

Sliced Inverse Regression

Bernard-Michel et al, 09

More:

http://mistis.inrialpes.fr/learninria/ S. Girard

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle

Examples

Discussion

Extensions

Multi-class discrimination

Regression

Novelty detection

On the practitioner side

Improve precision

Reduce computational cost

Theory

Novelty Detection

Input

$$\mathcal{E} = \{(x_i)\}, \ x_i \in X, i = 1..n\} \ (x_i) \sim P(x)$$

Context

Information retrieval

Identification of the data support

estimation of distribution

Critical issue

Classification approaches not efficient: too much noise

One-class SVM

Formulation

$$\left\{ \begin{array}{ll} \text{Min.} & \frac{1}{2} \ ||\mathbf{w}||^2 - \rho \ + \mathbf{C} \sum_{\mathbf{i}} \xi_{\mathbf{i}} \\ \text{s.t.} & \forall \ i = 1 \dots n \\ & \langle \mathbf{w}, \mathbf{x}_i \rangle \geq \rho \ - \xi_{\mathbf{i}} \end{array} \right.$$

Dual problem

$$\left\{ \begin{array}{ll} \mathsf{Min.} & \sum_{i,j} \alpha_i \alpha_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \\ \mathsf{s.t.} & \forall \ i = 1 \dots n \quad 0 \leq \alpha_i \leq C \\ & \sum_i \alpha_i = 0 \end{array} \right.$$

Implicit surface modelling

Schoelkopf et al, 04 Goal: find the surface formed by the data points

$$\langle \mathbf{w}, \mathbf{x}_i \rangle \ge \rho$$
 becomes $-\varepsilon \le (\langle \mathbf{w}, \mathbf{x}_i \rangle - \rho) \le \varepsilon$

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle

Examples

Discussion

Extensions

Multi-class discrimination

Regression

Novelty detection

On the practitioner side

Improve precision

Reduce computational cost

Theory

Normalisation / Scaling

Needed to prevent attributes to steal the game

	Height	Gender	Class
$\overline{\mathbf{x}_1}$	150	F	1
\mathbf{x}_2	180	M	0
x ₂ x ₃	185	М	0
	$\overset{\scriptscriptstyle\Delta}{x}_1$, o	0 X 3

⇒ Normalization

$$\mathsf{Height} \to \frac{\mathsf{Height} - 150}{180 - 150}$$

Beware

Usual practice

- Normalize the whole dataset
- ► Learn on the training set
- ► Test on the test set

Beware

Usual practice

- Normalize the whole dataset
- Learn on the training set
- Test on the test set

NO!

Good practice

- Normalize the training set (Scale_{train})
- Learn from the normalized training set
- Scale the test set according to Scale_{train} and test

Imbalanced datasets

Typically

- ▶ Normal transactions: 99.99%
- Fraudulous transactions: not many

Practice

Define asymmetrical penalizations

std penalization
$$C\sum_{i}\xi_{i}$$
 asymmetrical penalizations $C_{+}\sum_{i,y_{i}=1}\xi_{i}+C_{-}\sum_{i,y_{i}=-1}\xi_{i}$

Other options?

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle

Examples

Discussion

Extensions

Multi-class discrimination

Regression

Novelty detection

On the practitioner side

Improve precision

Reduce computational cost

Theory

Data sampling

Simple approaches

- Uniform sampling
- Stratified sampling

often efficient

same distribution as in ${\mathcal E}$

Incremental approaches

Syed et al. 99

- ▶ Partition $\mathcal{E} \to \mathcal{E}_1, \dots \mathcal{E}_N$
- ▶ Learn from $\mathcal{E}_1 o$ support vectors SV_1
- ▶ Learn from $\mathcal{E}_2 \cup SV_1 \to \mathsf{support}$ vectors SV_2
- etc.

Data sampling, followed

Select examples

Bakir 2005

- ▶ Use k-nearest neighbors
- Train SVM on k-means (prototypes)
- Pb about distances

Hierarchical methods

Yu 2003

- ► Use unsupervised learning and form clusters learning, J. Gama
- Unsupervised

- Learn a hypothesis on each cluster
- Aggregate hypotheses

Reduce number of variables

Select candidate s.v. $\mathcal{F} \subset \mathcal{E}$

$$w = \sum \alpha_i y_i \mathbf{x}_i \text{ with } (\mathbf{x}_i, y_i) \in \mathcal{F}$$

Optimize α_i on \mathcal{E}

$$\begin{cases} & \text{Min.} \quad \frac{1}{2} \sum_{i,j,\in\mathcal{F}} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + C \sum_{\ell=1}^n \xi_\ell \\ & \text{t.q.} \quad \forall \ell = 1 \dots n, \\ & (\langle w, \mathbf{x}_\ell \rangle + b) \ge 1 - \xi_\ell \\ & \xi_\ell \ge 0 \end{cases}$$

Sources

- Vapnik, The nature of statistical learning, Springer Verlag 1995; Statistical Learning Theory, Wiley 1998
- Cristianini & Shawe Taylor, An introduction to Support Vector Machines, Cambridge University Press, 2000.
- http://www.kernel-machines.org/tutorials
- ► Videolectures + ML Summer Schools
- Large scale Machine Learning challenge, ICML 2008 wshop: http://largescale.ml.tu-berlin.de/workshop/

Overview

Linear Discriminant Analysis

Linear SVM, separable case

Linear SVM, non separable case

The kernel trick

The Kernel principle

Examples

Discussion

Extensions

Multi-class discrimination

Regression

Novelty detection

On the practitioner side

Improve precision

Reduce computational cost

Theory

Reminder

Vapnik, 1995, 1998

Input

$$\mathcal{E} = \{(x_i, y_i)\}, \ x_i \in \ \mathbb{R}^m, \ y_i \in \ \{-1, 1\}, i = 1..n\} \ \ (x_i, y_i) \sim P(x, y)$$

Criterion: ideally, minimize the generalization error

$$Err(h) = \int \ell(y, \hat{h}(x)) dP(x, y)$$

 $\ell = \text{loss function: } 1_{y \neq \hat{h}(x)}, \ (y - \hat{h}(x))^2$ P(x,y) = joint distribution of the data.

The Bias-Variance Tradeoff

Choice of a model: The space \mathcal{H} where we are looking for \hat{h} .

Bias: Distance between y and $h^* = argmin\{Err(h), h \in \mathcal{H}\}.$

the best we can hope for

Variance: Distance between \hat{h} and h^*

between the best h^* and the \hat{h} we actually learn

Note:

Only the empirical risk (on the available data) is given

$$Err_{emp,n}(\hat{h}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \hat{h}(x_i))$$

Principle:

$$Err(\hat{h}) < Err_{emp,n}(\hat{h}) + \mathcal{B}(n,\mathcal{H})$$

If \mathcal{H} is "reasonable", $\mathit{Err}_{emp,n} \to \mathit{Err}$ when $n \to \infty$

Statistical Learning

Statistical Learning Theory

Learning from a statistical perspective.

Goal of the theory

in general

Model a real / artificial phenomenon, in order to:

- * understand
- * predict
- * exploit

General

A theory: hypotheses → predictions

- Hypotheses on the phenomenon
- Predictions about its behavior

here, Learning

errors

Theory \rightarrow algorithm

- Optimize the quantities allowing prediction
- Nothing practical like a good theory!

Vapnik

General

A theory: hypotheses → predictions

- Hypotheses on the phenomenon
- Predictions about its behavior

here, Learning

errors

Theory \rightarrow algorithm

- Optimize the quantities allowing prediction
- Nothing practical like a good theory!

Vapnik

Strength/Weaknesses

- + Stronger Hypotheses \rightarrow more precise predictions
- BUT if the hypotheses are wrong, nothing will work

What Theory do we need?

Approach in expectation

- A set of data
- $ightharpoonup ar{x}^+$: average of positive examples
- $ightharpoonup ar{x}^-$: average of negative examples
- ▶ h(x) = +1 iff $d(x, \bar{x}^+) < d(x, \bar{x}^-)$

Estimate the generalization error

- ▶ Data → Training set, test set
- ▶ Learn \bar{x}^+ et \bar{x}^- on the training set, measure the errors on the test set

one example breast cancer

Classical Statistics vs Statistical Learning

Classical Statistics

Mean error

We want guarantees

- ► PAC Model Probably Approximately Correct
- ► What is the probability that the error is greater than a given threshold?

Example

Assume

$$Err(h) > \varepsilon$$

What is the probability that $Err_{emp,n}(h) = 0$?

$$Pr(Err_{emp,n}(h) = 0, Err(h) > \varepsilon) = (1 - Err(h))^n$$

 $< (1 - \varepsilon)^n$
 $< exp(-\varepsilon n)$

Example

Assume

$$Err(h) > \varepsilon$$

What is the probability that $Err_{emp,n}(h) = 0$?

$$Pr(Err_{emp,n}(h) = 0, Err(h) > \varepsilon) = (1 - Err(h))^n < (1 - \varepsilon)^n < exp(-\varepsilon n)$$

Hence, in order to guarantee a risk δ

$$Pr(Err_{emp,n}(h) = 0, Err(h) > \varepsilon) < \delta$$

Example

Assume

$$Err(h) > \varepsilon$$

What is the probability that $Err_{emp,n}(h) = 0$?

$$Pr(Err_{emp,n}(h) = 0, Err(h) > \varepsilon) = (1 - Err(h))^n$$

 $< (1 - \varepsilon)^n$
 $< exp(-\varepsilon n)$

Hence, in order to guarantee a risk δ

$$Pr(Err_{emp,n}(h) = 0, Err(h) > \varepsilon) < \delta$$

The error should not be greater than

$$\varepsilon < \frac{1}{n} \ln \frac{1}{\delta}$$

Statistical Learning

Principle

- Find a bound on the generalization error
- Minimize the bound.

Note

 \hat{h} should be considered as a random variable, depending on the training set \mathcal{E} and the number of examples n.

 \hat{h}_n

Results

deviation of the empirical error

$$Err(\widehat{h_n}) \leq Err_{emp,n}(\widehat{h_n}) + \mathcal{B}_1(n,\mathcal{H})$$

bias-variance

$$Err(\widehat{h_n}) \leq Err(h^*) + \mathcal{B}_2(n, \mathcal{H})$$

Approaches

Minimization of the empirical risk

- ullet Model selection: Choose hypothesis space ${\cal H}$
- Choose $\widehat{h_n} = argmin\{Err_n(h), h \in \mathcal{H}\}$

beware of overfitting

Minimization of the structual risk

Given
$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset ... \subset \mathcal{H}_k$$
,

Find
$$\widehat{h}_n = argmin\{Err_n(h) + pen(n, k), h \in \mathcal{H}_k\}$$

Which penalization?

Regularization

Find
$$\widehat{h}_n = argmin\{Err_n(h) + \lambda ||h||, h \in \mathcal{H}\}$$

 λ is identified by cross-validation

Structural Risk Minimization

Tool 1. Hoeffding bound

Hoeffing 1963

Let $X_1 \dots, X_n$ be independent random variables, and assume X_i takes values in $[a_i, b_i]$

Let $\overline{X} = (X_1 + \cdots + X_n)/n$ be their empirical mean.

Theorem

$$\Pr(|\overline{X} - \mathrm{E}[\overline{X}]| \ge \varepsilon) \le 2 \exp\left(-\frac{2\varepsilon^2 n^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

where $\mathrm{E}[\overline{X}]$ is the expectation of \overline{X} .

Hoeffding Bound (2)

Application: if

$$Pr(|Err(g) - Err_n(g)| > \varepsilon) < 2e^{-2n\varepsilon^2}$$

then with probability at least $1-\delta$

$$Err(g) \le Err_n(g) + \sqrt{\frac{\log 2/\delta}{2n}}$$

but this does not say anything about \hat{h}_{n} ...

Uniform deviations

$$|Err(\hat{h}_n) - Err_n(\hat{h}_n)| \le sup_{h \in H} |Err(h) - Err_n(h)|$$

- if \mathcal{H} is finite, consider the sum of $|Err(h) Err_n(h)|$
- ullet sif ${\cal H}$ is infinite, consider its trace on the data

Statistical Learning. Definitions

Vapnik 92, 95, 98 Trace of
$$\mathcal H$$
 on $\{x_1,\ldots x_n\}$ $Tr_{x_1,\ldots x_n}(\mathcal H)=\{(h(x_1),\ldots h(x_n)),\ h\in \mathcal H\}$

Growth Function

$$S(\mathcal{H},n) = \sup_{(x_1,...x_n)} |Tr_{x_1,...x_n}(\mathcal{H})|$$

Statistical Learning. Definitions (2)

Capacity of an hypothesis space ${\cal H}$

If the training set is of size n, and some function of \mathcal{H} can have "any behavior" on n examples, nothing can be said!

$$\mathcal{H}$$
 shatters $(x_1, \ldots x_n)$ iff

$$\forall (y_1, \ldots y_n) \in \{1, -1\}^n, \exists h \in \mathcal{H} \text{ s.t. } \forall i = 1 \ldots n, h(x_i) = y_i$$

Vapnik Cervonenkis Dimension

$$VC(\mathcal{H}) = \max \{n; (x_1, \dots x_n) \text{ shattered by } \mathcal{H}\}$$

$$VC(\mathcal{H}) = max\{n / S(\mathcal{H}, n) = 2^n\}$$

A shattered set

3 points in \mathbb{R}^2 $\mathcal{H}=$ lines of the plane

Growth Function of linear functions over \mathbb{R}^{20}

THe growth function is exponental w.r.t. n for $n < d = VC(\mathcal{H})$, then polynomial (in n^d).

Theorem, separable case

 $\forall \delta > 0$, with probability at least $1 - \delta$

$$Err(h) \leq Err_n(h) + \sqrt{2 \frac{log(S(H,2n)) + log(2/\delta)}{n}}$$

Idea 1: Double sample trick

Consider a second sample \mathcal{E}'

$$Pr(sup_h(Err(h) - Err_n(h)) \ge \varepsilon) \le$$

$$2Pr(sup_h(Err'_n(h) - Err_n(h)) \ge \varepsilon/2)$$

where $Err'_n(h)$ is the empirical error on \mathcal{E}' .

Double sample trick

- ► There exists h s.t.
- ightharpoonup A: $Err_{\mathcal{E}}(h) = 0$
- ▶ B: $Err(h) \ge \varepsilon$
- ▶ C: $Err_{\mathcal{E}'} \geq \frac{\varepsilon}{2}$

$$\begin{array}{ll} P(A(h)\&C(h)) & \geq P(A(h)\&B(h)\&C(h)) \\ & = P(A(h)\&B(h)).P(C(h)|A(h)\&B(h)) \\ & \geq \frac{1}{2}P(A(h)\&B(h)) \end{array}$$

Tool 2. Sauer Lemma

Sauer Lemma

If $d = VC(\mathcal{H})$

$$S(\mathcal{H},n) = \sum_{i=1}^{d} \binom{n}{i}$$

For n > d,

$$S(H, n) \le \left(\frac{en}{d}\right)^d$$

Idea 2: Symmetrization

Count the permutations that swap \mathcal{E} et \mathcal{E}' .

Summary

$$\textit{Err}(h) \leq \textit{Err}_n(h) + \mathcal{O}(\sqrt{\frac{d \log n}{n}})$$