Aula 6 - Segmentação de Imagens Parte 2

Prof. Adilson Gonzaga

Motivação

Extração do Objeto

Dificuldades

Super segmentação over-segmentation

Efeitos da escolha do Limiar

Imagem Original

Imagem segmentada por Thresholding

Thresholding Alto

Modos de se escolher o Threshold:

- 1. Inspeção visual do histograma
- 2. Tentativa e erro
- 3. Threshold Automático

1. Inspeção visual do histograma

- Imagem f (x, y) composta de objetos brilhantes sobre fundo escuro
- Um ponto (x, y) é parte dos objetos se f(x, y) > T

1. Inspeção visual do histograma

Limiarização em multinível

- Se T₁ < $f(x, y) \le T_2 \rightarrow$ o ponto (x, y) pertence a uma classe de objetos.
- Se $f(x, y) > T_2 \rightarrow o$ ponto (x, y) pertence a outra classe.
- Se $f(x, y) \le T_1 \rightarrow$ o ponto (x, y) pertence ao fundo.
- Dificuldade: estabelecer múltiplos T que efetivamente isolem regiões de interesse.

Influência da Iluminação:

a) Reflectância r(x,y) gerada por computador

b) Histograma da reflectância (Bi-modal)

$$f(x, y) = i(x, y).r(x, y)$$

Influência da Iluminação:

c) Função de Iluminação i(x,y) gerada por computador

d) f(x, y) = i(x, y).r(x, y)

Histograma da f(x,y)

2. Tentativa e erro

Aplicado em processos interativos.

O usuário testa diferentes níveis de Threshold até produzir um resultado satisfatório de acordo com o observador.

3. Threshold Automático

- Algoritmo: (Gonzalez; Woods, 2002)
 - Selecionar um valor estimado para T (Ponto intermediário entre os valores mínimos e máximos de intensidade da imagem)
 - 2. Segmentar a imagem usando T. Isso produzirá dois grupos de píxels

$$G_1 \ge T$$

$$G_2 < T$$

3. Computar a média das intensidades dos píxels em cada região.

$$\mu_1(G_1)$$
 $\mu_2(G_2)$

4. Computar o novo valor de T:

$$T = \frac{1}{2}(\mu_1 + \mu_2)$$

5. Repetir os passo 2 a 4 até que a diferença em T em sucessivas iterações seja menor que um T₀ pré-estabelecido.

Método de Otsu

 Tratar o Histograma da Imagem como uma Função Densidade de Probabilidade Discreta:

$$p_r(r_q) = \frac{n_q}{n}$$
 $q = 0,1,2,....L-1$

Onde:

n = número total de píxels da Imagem n_q = número de píxels com intensidade r_q

L = número total dos possíveis níveis de intensidade da Imagem

Método de Otsu

2. Um valor k para o Threshold pode ser escolhido tal que:

 C_0 seja a classe de Píxels com níveis entre [0, k-1] e C_1 seja a classe de Píxels com níveis entre [k, L-1]

3. O método de Otsu escolhe *k* tal que maximize a variância inter-classes:

$$\sigma_B^2 = \omega_0 (\mu_0 - \mu_T)^2 + \omega_1 (\mu_1 - \mu_T)^2$$

Método de Otsu

$$\sigma_B^2 = \omega_0 (\mu_0 - \mu_T)^2 + \omega_1 (\mu_1 - \mu_T)^2$$

Onde:

$$\omega_0 = \sum_{q=0}^{k-1} p_q(r_q)$$

$$\omega_1 = \sum_{q=k}^{L-1} p_q(r_q)$$

$$\mu_0 = \sum_{q=0}^{k-1} q p_q(r_q) / \omega_0$$

$$\mu_1 = \sum_{q=k}^{L-1} q p_q(r_q) / \omega_1$$

$$\mu_{T} = \sum_{q=0}^{L-1} q p_{q}(r_{q})$$

O Método de Otsu pode ser chamado de Thresholding Dinâmico.

- A Limiarização Global pode falhar quando a iluminação for não uniforme.
- Aplicar um Threshold Local é definir uma função T(x,y)
 que varie o valor de T de acordo com as coordenadas (x,y).

$$g(x, y) = \begin{cases} 1 & se \ f(x, y) \ge T(x, y) \\ 0 & se \ f(x, y) < T(x, y) \end{cases}$$

• Uma função de Threshold Local T(x,y) pode ser obtida como:

$$T(x, y) = f_0(x, y) + T_0$$

• Onde $f_0(x,y)$ é a abertura morfológica de f(x,y) e a constante T_0 o valor do Threshold, pelo método de Otsu, aplicado em $f_0(x,y)$.

2) Segmentação Orientada a Região:

Bordas e Fronteiras – Segmentação baseada em descontinuidades

• Regiões – Segmentação baseada em similaridade das propriedades dos Pixels.

Crescimento de Região: (Region Growing)

- Seja R a região completa da Imagem, e R₁, R₂, ..., R_n subpartições de R tal que:
- a) $\bigcup_{i=1}^{n} R_i = R$ (todo pixel deve estar em uma região)
- b) R_i é uma região conexa, $i = 1, 2, \dots, n$
- c) $R_i \cap R_j = \emptyset$ para todo i e j, i \neq j
- d) $P(R_i) = VERDADEIRO para i = 1, 2,n$
- e) $P(R_i \cup R_j) = FALSO$ para $i \neq j$
- P(R_i) → Propriedade definida para a região é verdadeira para todos os pixels da região

Ex: Intensidade igual.

Crescimento de Região por agregação de pixel.

• Agrupamento de Pixels ou grupo de pixel em regiões maiores.

• Os pixels a serem agrupados devem ter propriedades similares. (nível de cinza, textura, cor, etc...).

• Inicia-se com um conjunto de "sementes" em torno do qual as regiões crescem.

Imagem:

	1	2	3	4	5
1	0	0	5	6	7
2	1	1	5	8	7
3	0	1_	6	<u>7</u>	7
4	2	0	7	6	6
Ŋ.	0	1	5	6	5

				R2		
	а	а	b	b	р	
	а	а	b	b	b	
R1	а	а	b	b	b	T=3
	а	а	b	b	b	
	а	а	b	b	b	

Sementes \rightarrow (3, 2) e (3, 4)

Propriedade (P) \rightarrow | I(x) – I(s) | < T I(s) \rightarrow Intensidade da semente

Problemas com a Técnica:

1) Seleção das sementes: depende da natureza do problema.

Ex: em aplicações militares com imagens com infravermelho, os pontos mais quentes, logo, mais brilhantes, são de interesse.

2) Seleção das Propriedades que estabeleçam os critérios de similaridade: depende do tipo de dados disponíveis.

Ex: as imagens de satélite usam a informação de cor.

3) Utilização de conectividade e adjacência:

Ex: uma imagem formada por um arranjo aleatório de 3 intensidades diferentes. Se a conexão entre pixels não for levada em conta, o resultado da segmentação não terá nenhum significado.

4) Formulação de uma regra de parada: utilização de critérios de tamanho, semelhança entre um pixel candidato e os pixels da Região e Formato de uma dada Região.

Exemplo: Crescimento de Região

- a) Imagem [I(x,y)] com semente I(s)Critério:
- $| I(x, y) I(s) | \le 10\%$ (255 - min)
- 8 conectada em cada pixel.
- b) Inicio do crescimento:
 Pixels com a mesma
 distancia "city-block"
 da semente.

- c) Estado intermediário de crescimento.
- d) Região crescida completa: o processo pára devido a borda de nível mais escuro que fura a conectividade.

Divisão e Fusão de Regiões:

"Split and Merge"

- Seja R uma Imagem e P uma característica de similaridade definida.
- Subdividir R em 4 Regiões (Quadrantes)
 R_i / P(R_i) = VERDADEIRO
- Se P(R_i) = FALSO subdividir a Região em sub-quadrantes.
- Fundir as Regiões adjacentes onde:

$$P(R_i \cup R_k) = VERDADEIRO$$

Parar quando nenhuma divisão nem nenhuma fusão for possível

Divisão e Fusão de Regiões:

Região R

R ₁	R ₂		
R ₃	R ₄₁	R ₄₂	
	R ₄₃	R ₄₄	

Dividir ("Split") uma Região R.

Árvore Quadrática (Quadtree) que representa a Região R.

Exemplo do Algoritmo "Split and Merge":

 $P(R_i)$ = VERDADEIRO para R_i de mesma intensidade

$$P(R) = FALSO$$

Primeira Sub-divisão "Split"

$$P(R_1) = VERDADEIRO$$

$$P(R_2) = FALSO$$

$$P(R_3) = FALSO$$

$$P(R_4) = FALSO$$

Exemplo do Algoritmo "Split and Merge":

Segunda sub-divisão: "Split"

$$P(R_{34}) e P(R_{43}) = FALSO$$

Fusão "Merge":

$$P(R_1 \cup R_{21} \cup R_{22} \cup R_{24} \cup R_{42} \cup R_{44} \cup R_{33} \cup R_{31}) = VERDADEIRO$$

$$P(R_{23} \cup R_{41} \cup R_{32}) = VERDADEIRO$$

"Split"

Região Segmentada.

"Merge"

$$P(R_{341} \cup R_{342} \cup R_{431} \cup R_{432}) = VERDADEIRO$$

 $P(R_{343} \cup R_{344} \cup R_{433} \cup R_{434}) = VERDADEIRO$

3) Transformada Watershed

- Watershed, em geografia, são as saliências que dividem as áreas inundadas por diferentes rios (Bacias Hidrográficas).
- A área que armazena água são as Bacias (Catchment Basin), formada pelas partes mais fundas.
- A Transformada Watershed aplica estas idéias nas imagens em nível de cinza para a segmentação.
- A Imagem é vista como a Topografia 3-D de uma área onde o valor da intensidade do pixel é plotado no eixo z, em cada coordenada (x,y).

3) Transformada Watershed

- A chuva que cai nesta área vai escorrer e ocupar as partes mais baixas do terreno.
- A água que cair exatamente sobre a linha divisória (Watershed) terá a mesma probabilidade de escorrer para qualquer das bacias por ela dividida.
- A Transformada Watershed segmenta as regiões considerando as áreas inundadas entre as linhas de Watershed como as regiões da imagem.

3) Transformada Watershed

Se enchermos esta superfície de um mínimo e prevenirmos a mistura das águas originárias de diferentes pontos, a imagem será separada em dois diferentes conjuntos: as Bacias de Captação(catchment basins) e as Linhas de Watershed (watershed lines).

Exemplo: Aplicação da Transformada Watershed na Segmentação de grãos de café

A Transformada Watershed utiliza diversas técnicas auxiliares para segmentar a imagem de maneira coerente e evitar a supersegmentação (Oversegmentation).

Segmentação por Watershed usando a Transformada da Distância.

• Transformada da Distância:

Transformada da Distância em uma Imagem Binária é a distância de cada pixel para o próximo pixel de valor não zero.

Exemplo: Transformada da Distância Euclidiana.

Imagem Binária

Transformada da Distância Euclidiana

Segmentação por Watershed usando a Transformada da Distância.

Imagem Binária

Imagem Binária Complementada

Transformada da Distância (TDE)

Linhas de Watershed do negativo da TDF

Super-Segmentação

(Oversegmentation) – A
Transformada Watershed
pode gerar segmentação
extra que não corresponde
a regiões na imagem

Superposição das linhas de Watershed na Imagem Original

4) Pirâmides de Resolução:

- Quando a imagem f(x,y) é muito grande e quadrada (n x n), uma abordagem para a detecção das bordas é assumir vários níveis de resolução organizados como uma estrutura de Pirâmide de arranjos bi-dimensionais.
- ☐ Esse procedimento imita a atenção seletiva ou percepção focalizada.
- \square Os arranjos são do tipo f(i,j,n) com n=1, 2,.... p
- ☐ Os arranjos de mais alto nível (n menor) auxiliam a detectar as bordas mais grossas.
- ☐ Os arranjos de mais baixo nível (n maior) fornecem a posição das bordas.

Exemplo de uma Pirâmide para n=4:

Geração da Pirâmide:

Cada 4 píxels no arranjo de nível inferior, gera 1 píxel no arranjo de nível superior (média).

As bordas são mais facilmente detectadas no nível n=1.

A posição da borda detectada em n=1, é localizada em n=4.

Qualquer detector de Bordas pode ser utilizado.

5) Contornos Ativos (Snakes)

- Os algoritmos de Contornos Ativos, deformam um contorno para coincidir com características de interesse em uma imagem.
- Normalmente estas características de interesse são bordas ou fronteiras.
- O nome dado de Snakes é devido ao fato que os contornos se deformam durante o processo iterativo, como serpentes em movimento.
 - Um Contorno Ativo é uma coleção V de n pontos no plano de Imagem.

$$V = \{v_1,, v_n\}$$

$$v_i = (x_i, y_i)$$
 $i = 1,....n$

5) Contornos Ativos (Snakes)

- Os pontos, iterativamente, aproximam-se da fronteira do objeto através da solução de um problema de Minimização de Energia.
- Para cada ponto na vizinhança de v_i , um termo de Energia é computado:

$$E_i = \alpha E_{\text{int}}(v_i) + \beta E_{ext}(v_i)$$

onde

 $E_{\text{int}}(v_i)$ é uma Função de Energia dependente do formato do contorno e

 $E_{ext}(v_i)$ é uma Função de Energia dependente de propriedades da imagem (Ex: Gradiente) próximo a v_i

 α e β são constantes que providenciam a ponderação entre os dois termos de Energia.

5) Contornos Ativos (Snakes)

 E_i , E_{int} e E_{ext} são matrizes.

• O valor no centro de cada matriz corresponde à Energia do Contorno no ponto v_i .

- Os outros valores nas Matrizes correspondem (espacialmente) à energia em cada ponto na vizinhança de v_i .
- Cada ponto v_i é movido para o ponto v_i , correspondendo à posição de menor valor de E_i .

•Se a Função de Energia for escolhida apropriadamente, o contorno V deverá aproximar e parar na fronteira do objeto.

Exemplo: Snake utilizada para segmentar o contorno do cérebro em uma cavidade Craniana.

Exemplo: Snake segmentando um contorno.

Outras Técnicas para Segmentação de Imagens

Segmentação por Textura

Segmentação por Cor (Imagens Coloridas)

Segmentação utilizando Morfologia Matemática

Segmentação por Agrupamento (K-médias)

Segmentação por Movimento

Segmentação utilizando Redes Neurais Artificiais, Lógica Fuzzy, etc...

Segmentação por Textura

A Textura de regiões da imagem pode ser segmentada utilizando-se :

- Abordagem Estatística (Matriz de Co-ocorrência)
- Abordagem Estruturais (Símbolos)
- Abordagem Espectrais (Fourier, Wavelets)
- Padrões Locais (Texture Unit, LBP, Transformada Census)

Segmentação por Cor (Imagens Coloridas)

Deve ser utilizada onde a Cor exerce papel importante na identificação dos segmentos ou objetos da imagem.

Pode-se utilizar os diversos espaços de cor (sRGB, HSI, HSV, YCbCr, LUV, etc...)

Segmentação por Movimento

O movimento de objetos em "frames" de vídeo fornece meio para segmentação do objeto e/ou do fundo da cena.

A principal metodologia é a Subtração do Fundo (Background Subtraction):

- Fundo Simples → Obtém-se um modelo do fundo que é subtraído de cada quadro.
- Fundo Complexo → Modelo de Mistura de Gaussianas (GMM)

Segmentação por Movimento (Fundo Simples)

Curva de Evolução de um píxel (RGB)

Este método é muito popular para operações de rastreamento em tempo real por ser simples e rápido. No entanto, tem dois grandes inconvenientes. Ele não pode lidar com ruídos intermitentes (por exemplo, mudanças de iluminação) e pode gerar objetos fantasmas.

Segmentação por Movimento (Fundo Complexo)

Subtração do fundo usando Mistura de Gaussianas (GMM)

- Cada pixel é classificado baseado na distribuição de Gaussianas que o representa mais eficazmente como fundo.
- Realiza aproximações quadro a quadro para atualizar o modelo de cena de fundo.
- Segmentação ambientes externos dinâmicos, sujeitos a diferentes condições de iluminação.
- Diferentes Gaussianas supostamente representam diferentes cores.
- Espera-se que uma distribuição de Gaussianas que represente fundo tenha grande peso e baixa variância, ou seja, ocorra freqüentemente e varie pouco no tempo.

Exemplo de agrupamentos de densidades criadas usando-se GMM.

Modelo de Mistura de Gaussianas (GMM)

• GMM:

- Robusto com fundos complexos e variações graduais de iluminação.
- Segmentação correta onde existe fundo com cores próximas a da pele.
- Não apresenta bons resultados à variação brusca de iluminação e sombras.
- Objeto praticamente estático, provoca a detecção desse objeto como fundo.

