

Name and section: \cdot			
ID number:			
F mail:			

1. Recall Taylor's theorem from Calculus: "Assume a function f(x) that has k+1 derivatives in an interval [a,b], or simply, $f \in C^{k+1}[a,b]$ and $x_0 \in [a,b]$. Then, for every $x \in [a,b]$, $\exists \xi$ between x_0 and x such that

$$f(x) = \underbrace{\sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n}_{P_k(x)} + \underbrace{\frac{f^{(k+1)}(\xi)}{(k+1)!} (x - x_0)^{k+1}}_{R_k(x)},\tag{1}$$

where $P_k(x)$ is called the kth Taylor polynomial for f around x_0 and $R_k(x)$ is called the remainder, or truncation error". Note that

$$\lim_{k\to\infty} P_k(x)$$

gives the Taylor series for the same function f about $x = x_0$ and also a function f is analytic in (a, b) if the Taylor series equals $f \ \forall x \in (a, b)$. Finally, the Taylor series around $x = x_0 \equiv 0$ are called Maclaurin ones.

- (a) Find $P_1(x)$, $P_2(x)$ and $P_3(x)$ around $x_0 = 0$ if $f(x) = x^2 4x + 3$. How $P_3(x)$ is related to f(x)?
- (b) Same as part (a) but consider $x_0 = 1$.
- (c) In general, given a polynomial f(x) with degree m, what can you say about $f(x) P_k(x)$ for $k \ge m$?
- 2. Given the function $f(x) = \cos x$, find both $P_2(x)$ and $P_3(x)$ about $x_0 = 0$, and use them to approximate $\cos (0.1)$. Show that in each case the remainder term provides an upper bound for the true (absolute) error.
- 3. If $f(x) = e^x$, then
 - (a) derive the Maclaurin series of the function $f(x) = e^x$, i.e., the Taylor series about $x_0 = 0$ (write separately $P_k(x)$ and $R_k(x)$),
 - (b) find a minimum value of k necessarary for $P_k(x)$ to approximate f(x) to within 10^{-6} on the interval [0, 0.5] (here, you must use the remainder term).

4. Use Taylor series to show that the first derivative of a function f(x) at x_0 can be approximated by:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h} + O(h^2).$$

The above formula is called the centered difference formula for the first derivative. Then, if $f(x) = e^x$ and $x_0 = 1/2$ write a MATLAB script which does the following: approximates the first derivative of f(x) given using the above formula and shows in a log-log plot the absolute error by halving h at each step, i.e., use h = 0.1, h = 0.05, h = 0.025 etc. Also, show that your approximation has $O(h^2)$ truncation error, i.e., the order of accuracy is 2. When your approximation starts getting worse and why does this happen?

Hints: Note that if $error \approx Ch^q$ where q is the order of accuracy, then $\log{(error)} \approx \log{C} + q \log{h}$. Therefore in the log-log plot, you must determine the slope of the straight line obtained therein which eventually is the value of q. Recall that for a straight line of the form of y = b + ax, two points can be selected on the x-axis, e.g., x_1 and x_2 and we can find the corresponding ordinates $y_1 = y(x_1)$ and $y_2 = y(x_2)$. Then, we obtain the slope via

$$a = \frac{y_2 - y_1}{x_2 - x_1}.$$

5. Consider the integral given by

$$y_n = \int_0^1 \frac{x^n}{x + \alpha} dx, \quad \alpha > 0, \tag{2}$$

where n is a non-negative integer, that is, $n \in \mathbb{Z}^*$.

- (a) Show that $0 < y_n < 1$ for $n \ge 1$.
- (b) Show that the recurrence relation

$$y_n = \frac{1}{n} - \alpha y_{n-1} \tag{3}$$

holds for any positive integer, that is, $n \in \mathbb{Z}^+$.

(c) Write a MATLAB script that computes the first 20 values of Eq. (3) with $\alpha = 10$. Attach your code and also a figure containing the graph of y_n as a function of n. Note that you have to initialize Eq. (3), that is, determine y_0 . What is happening?