4. Equações Diferenciais Ordinárias

baseado no texto de Alexandre Almeida, Cálculo II, fev. 2018, pp. 51–92, e nos slides de 2016/2017 do Cálculo II – Agrup. II

Isabel Brás

UA, 6/5/2018

Cálculo II - Agrup. IV 17/18

Resumo dos Conteúdos

- Diferencial de uma função
- EDOs Introdução, Conceitos e Terminologia
- ③ Problemas de Valores Iniciais e Problemas de Valores na Fronteira
- Equações de variáveis separáveis
- Equações Diferenciais Homogéneas
- 6 EDOs Exatas
- 🕖 EDOs Redutíveis a Exatas, usando fatores integrantes
- 8 EDOs Lineares de Primeira Ordem
- Equações de Bernoulli
- DEDOs Lineares de Ordem Arbitrária
 - EDOs lineares com coeficientes constantes
 - Problemas de Cauchy

Diferencial de uma função real de uma variável real

Reta Tangente/Linearização em torno de um ponto:

 $f:D\subseteq\mathbb{R}\to\mathbb{R}$ diferenciável em $x_0\in \mathrm{int}(D)$. A reta tangente ao gráfico de f no ponto $P=(x_0,f(x_0))$ tem equação $y=f(x_0)+f'(x_0)(x-x_0)$. A função L definida por

$$L(x) = f(x_0) + f'(x_0)(x - x_0) ,$$

cujo gráfico é a reta tangente, é a chamada linearização de f em x_0 .

Diferencial: Como L é uma boa aproximação local de f, para x próximo de x_0 , considerando $\Delta f := f(x_0 + \Delta x) - f(x_0)$, $\Delta x := x - x_0$,

$$\Delta f \approx f'(x_0) \Delta x$$
.

Representando Δx por dx, (para valores próximos de zero),

o diferencial de f em x_0 é

$$df = f'(x_0)dx$$

Diferencial de uma função real de uma variável real (interpretação geométrica)

Diferencial de uma função real de duas variáveis reais

Plano Tangente/Linearização em torno de um ponto:

 $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ diferenciável em $(x_0,y_0)\in \mathrm{int}(D)$. O plano tangente ao gráfico de f no ponto $P=(x_0,y_0,f(x_0,y_0))$ tem equação

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

A função L definida por

$$L(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

cujo gráfico é o plano tangente, é a chamada linearização de f em (x_0, y_0) .

Diferencial Total: Analogamente ao caso n=1, para x próximo de x_0 e y próximo de y_0 , considerando $\Delta f:=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)$, $\Delta x:=x-x_0$ e $\Delta y:=y-y_0$,

$$\Delta f \approx \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y \ .$$

Representando Δx por dx e Δy por dy (para valores próximos de zero), o diferencial total de f em (x_0, y_0) é

$$df = \frac{\partial f}{\partial x}(x_0, y_0)dx + \frac{\partial f}{\partial y}(x_0, y_0)dy$$

Generalização para *n* variáveis (análogo):

 $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ diferenciável em $(x_1^0,x_2^0,\ldots,x_n^0)\in \mathrm{int}(D)$.

O diferencial total de f em $(x_1^0, x_2^0, \dots, x_n^0)$ é

$$df = \frac{\partial f}{\partial x_1}(x_1^0, x_2^0, \dots, x_n^0)dx_1 + \dots + \frac{\partial f}{\partial x_n}(x_1^0, x_2^0, \dots, x_n^0)dx_n$$

Equações Diferenciais, o que são?

Equações que envolvem uma função e as suas derivadas e/ou a variável que é o argumento dessa função.

Estas equações aparecem frequentemente quando se pretende modelar matematicamente fenómenos reais, em especial, naqueles de evolução temporal.

Exemplos:

Taxa de variação de temperatura de um objeto:

$$\frac{dT}{dt} = -k(T - T_m),$$

 $T(t) \rightarrow \text{temperatura do objeto}$,

 $T_m \rightarrow$ temperatura do meio ambiente, $k \rightarrow$ constante positiva.

Exemplos (cont.):

2. Movimento harmónico de uma mola:

$$m\,\frac{d^2x}{dt^2} = -kx$$

 $m \rightarrow$ massa do objeto colocado na extremidade da mola vertical;

 $x(t)
ightarrow ext{deslocamento a partir da posição (inicial) de equilíbrio da mola;}$

 $k > 0 \rightarrow \text{constante de mola}$; Ver figura

3. Lei de Kirchhoff aplicada a uma malha constituída por uma bobine em série com uma resistência:

$$L\frac{dI}{dt} + RI = E(t),$$

onde L e R são constantes (indutância e resistência, respetivamente), I(t) a intensidade de corrente e E(t) a tensão da fonte de energia.

Equação diferencial ordinária

Definição:

Chama-se equação diferencial ordinária (EDO) de ordem n ($n \in \mathbb{N}$), a uma equação do tipo

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$
 (EDO)

onde y é função (real) de x.

Terminologia associada:

y é designada por variável dependente;

x é designada por variável independente;

Uma EDO diz-se estar na forma normal quando se apresenta na forma

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)})$$

Notação alternativa: No slide anterior $y^{(n)}$ denota a derivada de ordem n da função y. Em alternativa, podemos usar a notação $\frac{d^ny}{dx^n}$ e (re)escrever a EDO na forma

$$F\left(x,y,\frac{dy}{dx},\frac{d^2y}{dx^2},\ldots,\frac{d^ny}{dx^n}\right)=0.$$

Exemplos:

1

$$-y' + x^3 - 1 = 0$$

é uma equação diferencial de ordem 1, onde x é a variável independente e y a variável dependente;

2

$$3t\frac{d^2x}{dt^2} + \frac{dx}{dt} = \cos(t)$$

é uma equação diferencial de ordem 2, onde t é a variável independente e x a variável dependente;

Solução de uma EDO

Definição

Chama-se solução da equação diferencial

$$F(x, y, y', y'', \dots, y^{(n)}) = 0,$$

num intervalo I, a toda a função $\varphi:I\to\mathbb{R}$, com derivadas finitas até à ordem n, tal que

$$F(x, \varphi(x), \varphi'(x), \varphi''(x), \dots, \varphi^{(n)}(x)) = 0, \quad \forall x \in I.$$

Exemplo:

 $\varphi_1(x)= {\sf sen} \; x \; {\sf e} \; \varphi_2(x)= {\sf cos} \, x - {\sf sen} \; x \; {\sf são} \; {\sf duas} \; {\sf soluções} \; ({\sf em} \; \mathbb{R}) \; {\sf de}$

$$y'' + y = 0$$

Identifique outras!

Mais terminologia associada a uma EDO de ordem n

Integral Geral: Família de soluções que se obtêm por técnicas de integração adequadas, que é definida, em geral, usando n constantes arbitrárias; o processo de obtenção dessa família de soluções é usualmente designado por integração (ou resolução) da EDO.

Integral Particular (ou solução particular): Solução que faz parte do integral geral;

Solução Singular: Solução que não se obtém a partir do integral geral;

Solução Geral: Conjunto de todas as soluções.

Exemplo:
$$(y')^2 - 4y = 0$$
.

Integral geral: $y=(x+C)^2$, onde $C\in\mathbb{R}$; Solução particular: $y=x^2$; Solução singular: y=0.

Problema de valores iniciais

Definição:

Chama-se problema de valores iniciais (PVI) (ou problema de Cauchy) a todo o problema que consiste em encontrar a solução (ou soluções) de uma dada equação diferencial satisfazendo certas condições (ditas condições iniciais) num mesmo ponto:

$$\begin{cases} F(x, y, y', y'', \dots, y^{(n)}) = 0 \\ y(x_0) = y_0, \ y'(x_0) = y_1, \ \dots, \ y^{(n-1)}(x_0) = y_{n-1}. \end{cases}$$

Exemplo:

$$y = -\frac{x^3}{6} + 1$$
 é a solução do PVI

$$\begin{cases} y'' + x = 0 \\ y(0) = 1 \\ v'(0) = 0 \end{cases}$$

Verifique!

Problema de valores na fronteira

Definição:

Chama-se problema de valores na fronteira (ou problema de fronteira) a todo o problema que consista em encontrar a solução (ou soluções) de uma dada equação diferencial satisfazendo condições em dois ou mais pontos.

Exemplo:

O problema de fronteira

$$\begin{cases} y'' + x = 0 \\ y(0) + y'(1) = -\frac{1}{3} \\ y(1) + y'(0) = 0 \end{cases}$$

tem uma única solução. Qual é?

Existência e Unicidade de Solução para um PVI

- Nem todo o PVI admite solução;
- Caso exista solução para o PVI, esta pode não ser única;
- É possível provar que um PVI de primeira ordem na forma normal, i.e., do tipo

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

admite uma e uma só solução (definida num intervalo centrado em x_0), desde que a função f satisfaça determinadas condições (*Teorema de Cauchy-Picard*). Não estudamos aqui este resultado, mas trataremos um caso particular a propósito das EDO's lineares (mais à frente).

Equações de variáveis separáveis

EDO de primeira ordem da forma:

$$y' = \frac{p(x)}{q(y)}$$
, $(com q(y) \neq 0)$

para p e q dependentes apenas de x e de y, respetivamente.

Determinação dum integral geral

Escrever a equação na forma:

$$y'q(y) = p(x) \tag{1}$$

2 Integrar ambos os membros de (1), para obter um integral geral da equação na seguinte forma implícita:

$$\int q(y)\,dy=\int p(x)\,dx$$

Exemplo

$$y' = \frac{1}{y}e^x, y \neq 0$$

Separando as variáveis a equação toma a forma:

$$yy' = e^x$$

Integrando membro a membro

$$\int y \, dy = \int e^x \, dx \,,$$

obtendo-se o seguinte integral geral:

$$y^2 = 2e^x + C, C \in \mathbb{R}$$

Equações Diferenciais Homogéneas

EDO de primeira ordem da forma:

$$y' = f(x, y)$$

onde $f: D \to \mathbb{R}$ é homogénea de grau zero, i.e., $f(\lambda x, \lambda y) = f(x, y), \ \forall (x, y) \in D, \ \forall \lambda \in \mathbb{R}, \ \text{tais que} \ (\lambda x, \lambda y) \in D.$

Exemplo:

$$y' = \underbrace{\frac{x^2 + xy + y^2}{x^2}}_{f(x,y)}$$

f é homogénea de grau zero pois, desde que $\lambda \neq 0$,

$$f(\lambda x, \lambda y) = \frac{\lambda^2 x^2 + \lambda x \lambda y + \lambda^2 y^2}{\lambda^2 x^2} = \frac{x^2 + xy + y^2}{x^2} = f(x, y)$$

Determinação dum integral geral de uma equação diferencial homogénea:

Escrever a equação na forma:

$$y' = f(1, \frac{y}{x}) \tag{1}$$

② Em (1), fazer a mudança de variável zx = y:

$$z + xz' = g(z), \tag{2}$$

onde $g(z) = f(1, \frac{y}{x});$

- 1 Integrar a equação (2), como equação de variáveis separáveis.
- 4 No integral geral obtido fazer $z = \frac{y}{x}$.

Voltando ao Exemplo do Slide 18

$$y' = \frac{x^2 + xy + y^2}{x^2}$$

Ora,

$$\frac{x^2 + xy + y^2}{x^2} = 1 + \frac{y}{x} + \left(\frac{y}{x}\right)^2, \quad x \neq 0,$$

Através da substituição y=zx, obtemos a equação de variáveis separáveis

$$\frac{1}{1+z^2}z'=\frac{1}{x},$$

com integral geral dado por

$$arctg z = ln |x| + C$$
, $C \in \mathbb{R}$.

Por conseguinte, um integral geral da equação homogénea dada tem a forma

$$\operatorname{arctg}\,\frac{y}{x}=\ln|x|+C\,,\qquad \text{i.e.}\qquad y=x\,\operatorname{tg}\,\left(\ln|x|+C\right)\,,\qquad C\in\mathbb{R}.$$

Equações Diferenciais Exatas

Uma equação da forma

$$M(x,y)dx + N(x,y)dy = 0,$$

onde $M, N: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ são contínuas e D é aberto, diz-se uma equação diferencial exata se existir $F: D \subseteq \mathbb{R}^2 \to \mathbb{R}$, $F \in C^1(D)$, tal que

$$dF = M(x, y)dx + N(x, y)dy, (1)$$

i.e.,
$$\frac{\partial F}{\partial x}(x,y) = M(x,y) \in \frac{\partial F}{\partial y}(x,y) = N(x,y)$$
.

Resolver uma equação diferencial exata é encontrar uma função F (nas condições descritas). A família de funções

$$F(x,y)=C,C\in\mathbb{R}\,,$$

forma o conjunto das soluções da equação (1).

Exemplo:

$$y^2 dx + 2xy dy = 0$$

Esta equação é exata se existir $F\colon \mathbb{R}^2 \to \mathbb{R}$ tal que

$$\frac{\partial F}{\partial x}(x,y) = M(x,y) = y^2$$
 (2)

$$\frac{\partial F}{\partial y}(x,y) = N(x,y) = 2xy$$
 (3)

De (2) conclui-se que

$$F(x,y) = y^2 x + \phi(y),$$

derivando em ordem a y e conjugando com (3), $\phi(y) = C$, $C \in \mathbb{R}$. Deste modo, a equação é exata e o conjunto das suas soluções é

$$y^2x=C,C\in\mathbb{R}$$
.

Caracterização das EDOs exatas em abertos simplesmente conexos

Conjuntos abertos simplesmente conexos:

Um conjunto simplesmente conexo em \mathbb{R}^2 é aquele que não apresenta "buracos" ^a. Exemplos de abertos simplesmente conexos:

 \mathbb{R}^2 ;] $a, b[\times]c, d[$, onde $a, b, c, d \in \mathbb{R}$, $a < b \in c < d$; bolas abertas; semiplanos abertos.

Proposição:

Sejam $M, N: D \subseteq \mathbb{R}^2 \to \mathbb{R}, M, N \in C^1(D)$, e D aberto simplesmente conexo.

$$M(x, y)dx + N(x, y)dy = 0$$

é uma equação diferencial exata se e só se $\frac{\partial M}{\partial y}(x,y) = \frac{\partial N}{\partial x}(x,y)$.

^aA definição rigorosa ultrapassa o âmbito desta u.c., trabalharemos com casos dentro dos exemplos dados.

Exemplos de classificação de EDOs em exatas/não exatas

Sejam
$$M(x,y)=y^2$$
 e $N(x,y)=2xy$, $(x,y)\in\mathbb{R}^2$. Como

$$\frac{\partial M}{\partial y}(x,y) = \frac{\partial N}{\partial x}(x,y) = 2y$$
,

a equação é exata (por aplicação da proposição do slide anterior).

$$(3y + 4xy^2) dx + (2x + 3yx^2) dy = 0.$$

Sejam
$$M(x,y) = 3y + 4xy^2$$
 e $N(x,y) = 2x + 3yx^2$, $(x,y) \in \mathbb{R}^2$.
Como

$$\frac{\partial M}{\partial y}(x,y) \neq \frac{\partial N}{\partial x}(x,y)$$
,

a equação não é exata (por aplicação da proposição do slide anterior).

Fatores integrantes para EDOs redutíveis a exatas

Uma função não nula $\mu(x,y)$ diz-se um fator integrante da equação (não exata)

$$M(x,y)\,dx+N(x,y)\,dy=0$$

se a equação

$$\mu(x,y)M(x,y)\,dx + \mu(x,y)N(x,y)\,dy = 0$$

é diferencial exata.

Exemplo:

A equação $(3y + 4xy^2) dx + (2x + 3yx^2) dy = 0$ não é exata. Mas

$$x^2y(3y + 4xy^2) dx + x^2y(2x + 3yx^2) dy = 0$$

é exata [Verifique!]. Assim, $\mu(x,y) = x^2y$ é um fator integrante da equação $(3y + 4xy^2) dx + (2x + 3yx^2) dy = 0$.

Equações Diferenciais Lineares de Primeira Ordem:

$$a_0(x) y' + a_1(x) y = b(x)$$

onde a_0, a_1, b são funções definidas num certo intervalo I, com $a_0(x) \neq 0$ para todo $x \in I$. Deste modo, esta equação pode tomar a seguinte forma:

$$y'+p(x)\,y=q(x).$$

Quando $b\equiv 0$ ($q\equiv 0$), a equação diz-se incompleta ou homogénea.

Exemplos

- y' + xy = 1 equação diferencial linear de 1.ª ordem completa.
- y' + xy = 0 equação diferencial linear de 1.ª ordem incompleta (ou homogénea).

Note que, se $q \equiv 0$ ou se p e q forem funções constantes a EDO é de variáveis separáveis.

EDOs Lineares de Primeira Ordem (cont.):

Para resolver a equação

$$y'+p(x)\,y=q(x).$$

basta determinar uma primitiva P da função p, multiplicar ambos os membros pelo fator integrante $\mu(x) = e^{P(x)}$ e integrar de seguida em ordem a x.

Exemplo:

$$y'-y=-e^x$$

Um fator integrante é e^{-x} , pois p(x) = -1. Multiplicando ambos os membros da equação por e^{-x} obtemos

$$e^{-x}y' - e^{-x}y = -1$$
, i.e., $\frac{d}{dx}(e^{-x}y) = -1$.

Integrando vem

$$e^{-x}y = \int (-1) dx = -x + C$$
, $C \in \mathbb{R}$.

Assim, um integral geral da equação linear é

$$y = (C - x) e^x, \qquad C \in \mathbb{R}.$$

EDOs Lineares de Primeira Ordem (cont.):

Teorema (existência e unicidade de solução):

Se p e q são funções contínuas num intervalo I, então o problema de Cauchy

$$\begin{cases} y' + p(x) y = q(x) \\ y(x_0) = y_0 \end{cases}$$

tem nesse intervalo uma e uma só solução.

Exemplo:

O problema de Cauchy

$$\begin{cases} y' - y = -e^x \\ y(0) = 0 \end{cases}$$

tem como solução única $y=-xe^x$, para $x\in\mathbb{R}$. Porquê?

Equações de Bernoulli:

$$y' + a(x) y = b(x) y^{\alpha}, \quad \alpha \in \mathbb{R}$$

- Se $\alpha=0$ ou $\alpha=1$, a equação é linear de $1^{\rm a}$ ordem.
- Se $\alpha \neq 0$ e $\alpha \neq 1$, a equação é redutível a uma linear de 1ª ordem, usando a mudança de variável $z = y^{1-\alpha}$. De facto, a equação de Bernoulli pode escrever-se na forma

$$y^{-\alpha}y' + a(x) y^{1-\alpha} = b(x)$$

(eventualmente com $y \neq 0$). Com a substituição $z = y^{1-\alpha}$, chegamos à equação linear de 1^a ordem

$$z' + (1 - \alpha)a(x)z = (1 - \alpha)b(x),$$

Exemplo:

A equação

$$y' + y = e^x y^2$$

é uma equação de Bernoulli (com $\alpha=2$). Fazendo z=1/y ($y\neq 0$) obtemos

$$z'-z=-e^x$$

cujo integral geral é

$$z = (C - x) e^x$$
, $C \in \mathbb{R}$,

▶ Ver slide 27

Assim, um integral geral da equação de Bernoulli é

$$y=\frac{e^{-x}}{C-x}, C\in\mathbb{R}$$

Equações Lineares de Ordem Arbitrária:

$$a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_{n-1}(x) y' + a_n(x) y = b(x)$$

onde

```
b: I \to \mathbb{R};
a_i: I \to \mathbb{R}, i = 0, ..., n, \text{ com } a_0(x) \neq 0 \text{ para todo } x \in I.
\downarrow
coeficientes da equação
```

- Se $b \equiv 0$, a equação diz-se incompleta (ou homogénea); Caso contrário, a equação diz-se completa (ou não homogénea);
- Se os coeficientes da equação são funções constantes, a equação diz-se de linear de coeficientes constantes.

Exemplos

1.

$$\frac{d^2x}{dt^2} + x = 0$$

EDO linear homogénea de segunda ordem com coeficientes constantes;

2.

$$e^{x} y' - \cos x y = x$$

EDO linear completa de primeira ordem;

3.

$$v^{(5)} + 2v' = 0$$

EDO linear homogénea de quinta ordem com coeficientes constantes.

Equação homogénea associada a uma EDO linear

Se na equação

$$a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_{n-1}(x) y' + a_n(x) y = b(x)$$

tomarmos $b(x) \equiv 0$, obtemos a chamada equação homogénea associada.

Exemplo:

A equação homógenea associada à equação completa

$$y'' + y = \cos(x)$$

é a equação:

$$y'' + y = 0.$$

Solução geral de uma EDO linear completa

Teorema:

A solução geral de uma equação linear completa obtém-se adicionando uma qualquer sua solução à solução geral da equação homogénea associada.

Exemplo:

$$y'-2y=e^{5x}.$$

A equação homogénea associada é a equação

$$y'-2y=0\;,$$

cuja solução geral é dada por $y_h=C\,e^{2x}$, com $C\in\mathbb{R}$. Uma solução da EDO completa é $y_p=\frac{1}{3}\,e^{5x}$ [Verifique!]. Assim, a solução geral da equação completa é

$$y = \underbrace{C e^{2x}}_{y_h} + \underbrace{\frac{1}{3} e^{5x}}_{y_0}, \ C \in \mathbb{R}.$$

EDO linear homogénea – Conjunto das soluções

Considere-se a EDO:

$$a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + \dots + a_{n-1}(x) y' + a_n(x) y = 0$$
 (4)

onde $a_i : I \to \mathbb{R}$, i = 0, ..., n, com $a_0(x) \neq 0$ para todo $x \in I$.

Teorema:

Sejam $y: I \to \mathbb{R}$, $w: I \to \mathbb{R}$ e $\alpha \in \mathbb{R}$.

- (i) $y \equiv 0$ é solução de (4);
- (ii) Se y e w são soluções de (4), então y + w é solução de (4);
- (iii) Se y é solução de (4), então αy é solução de (4);

Isto é, o conjunto das soluções de (4) é um subespaço vetorial do espaço vetorial das funções reais de variável real definidas em *I*.

EDO linear homogénea – Conjunto das soluções (cont.)

Na verdade, o conjunto das soluções de uma EDO linear homógenea é um subespaço vetorial de dimensão n, como se conclui do seguinte teorema:

Teorema: Toda a equação linear homogénea de ordem n

$$a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_{n-1}(x) y' + a_n(x) y = 0,$$

num dado intervalo I $(a_0, a_1, \ldots a_n$ contínuas em I; $a_0(x) \neq 0$ para todo o $x \in I)$ admite n soluções, $\varphi_1, \varphi_2, \ldots, \varphi_n$, linearmente independentes e qualquer sua solução, y, pode escrever-se como sua combinação linear, i.e.,

$$y = C_1 \varphi_1 + \cdots + C_n \varphi_n$$
, para $C_j \in \mathbb{R}$.

Qualquer conjunto de n soluções linearmente independente de uma EDO linear homogénea de ordem n é designado por sistema fundamental de soluções dessa equação.

Exemplo:

$$y'' + y = 0 (5)$$

 $\varphi_1(x) = \cos x$, $\varphi_2(x) = \sin x$ são soluções desta equação e são linearmente independentes.

Assim, $\{\varphi_1(x), \varphi_2(x)\}$ é sistema fundamental de soluções de (5). Logo, a solução geral da equação é

$$y = C_1 \cos x + C_2 \sin x, \ C_1, C_2 \in \mathbb{R}$$
.

Observação:

A resolução de uma EDO linear homogénea reduz-se à determinação de um sistema fundamental de soluções.

Método da variação das constantes

método de determinação de uma solução particular de uma equação linear completa que:

 pressupõe o conhecimento da solução geral da equação homogénea associada:

$$y_h = C_1 \varphi_1(x) + \cdots + C_n \varphi_n(x), \quad C_1, \ldots, C_n \in \mathbb{R},$$

onde $\{\varphi_1, \dots, \varphi_n\}$ é um sistema fundamental de soluções desta equação.

• procura obter uma solução particular da equação completa da forma

$$y_p = C_1(x)\varphi_1(x) + \cdots + C_n(x)\varphi_n(x)$$
,

admitindo que as constantes são funções de x diferenciáveis.

Método da variação das constantes (cont.)

• As funções $C_i(x)$, $i=1,2,\ldots,n$ determinam-se calculando as suas derivadas que constituem a solução do seguinte sistema de equações:

$$\begin{cases} C'_{1} \varphi_{1} + \dots + C'_{n} \varphi_{n} = 0 \\ C'_{1} \varphi'_{1} + \dots + C'_{n} \varphi'_{n} = 0 \\ \vdots \\ C'_{1} \varphi_{1}^{(n-2)} + \dots + C'_{n} \varphi_{n}^{(n-2)} = 0 \\ C'_{1} \varphi_{1}^{(n-1)} + \dots + C'_{n} \varphi_{n}^{(n-1)} = \frac{b}{a_{0}} \end{cases}$$

• Calculando as primitivas $G_i(x)$, $i=1,\ldots,n$, das funções que se obtêm da resolução do sistema anterior, podemos escrever a seguinte solução particular da equação completa:

$$y_p = G_1(x)\varphi_1(x) + \cdots + G_n(x)\varphi_n(x).$$

$$y'' + y = \csc x, \ x \in]0, \pi[$$

(6)

1. A solução geral da equação homogénea associada é

$$y = C_1 \cos x + C_2 \sin x, \ C_1, C_2 \in \mathbb{R}$$
.

▶ Ver slide 37

2. Procure-se uma solução particular da forma

$$y_p = C_1(x)\cos x + C_2(x)\sin x,$$

onde

$$\begin{cases} C_1'(x)\cos x + C_2'(x) \sin x = 0 \\ C_1'(x)(-\sin x) + C_2'(x)\cos x = \csc x. \end{cases}$$

3. Da resolução do sistema obtemos $C_1'(x)=-1$ e $C_2'(x)=\cot x$. Logo, podemos tomar

$$C_1(x) = -x$$
 e $C_2(x) = \ln(\sin x)$, $0 < x < \pi$,

Exemplo (cont.):

4. Assim, uma solução particular é

$$y_p = -x \cos x + \sin x \ln(\sin x).$$

5. Logo, a solução geral da equação completa (6) é

$$y = \underbrace{C_1 \cos x + C_2 \sec x}_{y_h} \underbrace{-x \cos x + \sec x \ln(\sec x)}_{y_p}, \quad 0 < x < \pi,$$
$$= (C_1 - x) \cos x + (C_2 + \ln(\sec x)) \sec x, \quad 0 < x < \pi,$$

onde C_1 , C_2 são constantes reais arbitrárias.

Princípio de sobreposição

Teorema:

Suponha-se que y_1 é uma solução particular da equação

$$a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_n(x) y = b_1(x),$$

e que y2 é uma solução particular da equação

$$a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_n(x) y = b_2(x)$$
.

Então $y_1 + y_2$ é uma solução particular da equação

$$a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_{n-1}(x) y' + a_n(x) y = b_1(x) + b_2(x).$$

EDOs lineares com coeficientes constantes

EDO linear de ordem n com coeficientes constantes tem a forma:

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \cdots + a_{n-1} y' + a_n y = b(x)$$
,

onde $a_0, a_1, \ldots, a_n \in \mathbb{R}$ com $a_0 \neq 0$.

Equação homogénea associada:

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \cdots + a_{n-1} y' + a_n y = 0$$

Polinómio associado (polinómio característico):

$$P(r) = a_0 r^n + a_1 r^{n-1} + \cdots + a_{n-1} r + a_n$$

As n raízes do polinómio P(r) permitem determinar n soluções linearmente independentes da equação homógenea, cada uma associada a cada uma dessas raízes (ver como no slide seguinte). Portanto, permitem determinar a solução geral da equação homógenea.

Construção dum sistema fundamental de soluções (base do subespaço das soluções) da EDO linear com coeficientes constantes e homogénea:

Considerem-se as raízes de P(r) identificadas e para cada uma delas real e para cada par delas complexas (se existirem) proceda-se à seguinte associação de soluções (no final do processo ter-se-à n soluções linearmente independentes):

- 1.º Caso: A raíz, r, é real simples.
 Solução: e^{rx}
- 2.º Caso: A raíz, r, é real de mutiplicidade k.
 Solucões: e^{rx}, xe^{rx},..., x^{k-1}e^{rx}
- 3.° Caso: As raízes são complexas conjugadas simples, $\alpha + \beta i$ e $\alpha \beta i$.
 - Soluções: $e^{\alpha x} \cos(\beta x)$ e $e^{\alpha x} \sin(\beta x)$
- 4.º Caso: As raízes são complexas conjugadas, $\alpha + \beta i$ e $\alpha \beta i$, com multiplicidade k.

Soluções:
$$e^{\alpha x} \cos(\beta x)$$
, $x e^{\alpha x} \cos(\beta x)$,..., $x^{k-1} e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$, $x e^{\alpha x} \sin(\beta x)$,..., $x^{k-1} e^{\alpha x} \sin(\beta x)$

Exemplo:
$$y^{(5)} + 2y^{(4)} + 2y^{(3)} + 8y^{(2)} + 4y' + 8 = 0$$

Polinómio característico: $r^5 + 2r^4 + 2r^3 + 8r^2 + 4r + 8$

Raízes do polinómio característico:

$$-2$$
 (simples); $i\sqrt{2}$ e $-i\sqrt{2}$, raízes duplas;

Sistema fundamental de soluções:

$$\{e^{-2x}, \cos(\sqrt{2}x), x\cos(\sqrt{2}x), \operatorname{sen}(\sqrt{2}x), x\operatorname{sen}(\sqrt{2}x)\}$$

Assim, a solução geral da equação dada é

$$y = B e^{-2x} + (C_1 + C_2 x) \cos(\sqrt{2}x) + (D_1 + D_2 x) \sin(\sqrt{2}x),$$

com $B, C_1, C_2, D_1, D_2 \in \mathbb{R}$.

Método dos Coeficientes Indeterminados:

 Método para determinar uma solução particular, aplicável às EDOs lineares de coeficientes constantes completas

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = b(x)$$
 (7)

com b(x) da forma

$$b(x) = P_m(x) e^{\alpha x} \cos(\beta x)$$
 ou $b(x) = P_m(x) e^{\alpha x} \sin(\beta x)$,

onde $P_m(x)$ denota um polinómio de grau $m \in \mathbb{N}_0$ e $\alpha, \beta \in \mathbb{R}$.

 Neste caso, prova-se que existe uma solução particular da equação (7) do tipo

$$y_p(x) = x^k e^{\alpha x} \left(P(x) \cos(\beta x) + Q(x) \sin(\beta x) \right) \tag{8}$$

onde:

- (i) k é a multiplicidade de $\alpha + i\beta$, se $\alpha + i\beta$ for raiz do polinómio característico da equação homogénea associada a (7); Senão, k = 0;
- (ii) P(x), Q(x) são polinómios de grau m cujos coeficientes terão de ser determinados usando a EDO (7) e a expressão para a solução (8).

Exemplo (Cálculo de solução particular de uma EDO linear de coeficientes

constantes completa, usando o método dos coeficientes indeterminados):

$$y'-3y=e^{3x}.$$

Como

$$e^{3x} = P(x) e^{\alpha x} \cos(\beta x)$$

com $P(x) \equiv 1$ (grau zero), $\alpha = 3$, $\beta = 0$ e 3 é raiz do polinómio característico, então a solução particular procurada é da forma

$$y_p = x A e^{3x}$$
, com $A \in \mathbb{R}$ a determinar.

Substituíndo y_p e y_p' na equação:

$$\underbrace{A e^{3x} + 3Ax e^{3x}}_{y_p'} - 3(\underbrace{A \times e^{3x}}_{y_p}) = e^{3x}$$

obtemos $(A-1)e^{3x}=0$, e portanto A=1. Assim, $y_p=xe^{3x}$.

Problemas de Cauchy

Teorema (existência e unicidade de solução):

Se $a_0(x), a_1(x), \ldots, a_{n-1}, a_n(x)$ e b(x) são funções contínuas num intervalo $I, a_0(x) \neq 0$, para todo o $x \in I$, então o problema de Cauchy

$$\begin{cases} a_0(x) y^{(n)} + a_1(x) y^{(n-1)} + \dots + a_{n-1}(x) y' + a_n(x) y = b(x) \\ y(x_0) = \beta_0, y'(x_0) = \beta_1, \dots, y^{n-1}(x_0) = \beta_{n-1}, \end{cases}$$

onde $x_0 \in I$ e β_i , $i=0,1,\ldots,n-1$, são reais dados, tem nesse intervalo uma e uma só solução.

Exemplo: O problema de Cauchy

$$\begin{cases} y'' + y = 0 \\ y(0) = 0, y'(0) = 2 \end{cases}$$

tem uma solução única em R. Porquê? e Qual?