

ConTac: Continuum-Emulated Soft Skinned Arm with Vision-based Shape Sensing and Contact-aware Manipulation

Tuan Tai Nguyen¹, Quan Khanh Luu¹, Dinh Quang Nguyen², and Van Anh Ho¹

¹Japan Advanced Institute of Science and Technology (JAIST)

²Institute of Technology, Hanoi University of Industry

Email: van-ho@jaist.ac.jp

Introduction

Hyper-redundant and continuum robots provide great advantages in flexibility, dexterity, and the capability to handle unexpected situations. However, providing them with perception solutions remains a challenge. In this work, we present the ConTac framework that can estimate the shape and contact of a continuum-emulated robot with soft skin.

Project's website

Methods

Design of robotic module Camera

Sensing principle

From a tactile image, the Shape Network predicts the displacement of the skin, while the of the contact. Contact Network estimates the location and magnitude.

Data acquisition

physical We SOFA acquire use to collect deformations Unity and to simulation images.

Results

Sensing capabilities

The sensing models trained with simulation data can be applied to two ConTac Units (No extra calibration).

(a) Robot. (b) Shape reconstruction (c) Contact error

Applications

Robot can:

- detect, avoid collision,
- adjust its trajectory.

Shape sensing for soft robot:

The ConTac system can be immediately used to estimate the bending of a soft robot (No extra calibration).

Future work: ConTac for true continuum robots.

