Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Object-Relational Logic

Gen Zou, Harold Boley, Dylan Wood, Kieran Lea

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

11th International Rule Challenge, RuleML+RR 2017 July 12-15, 2017

OnTheMove Federated Conferences & Workshops (OTM 2017) Industry Case Studies Program (ICSP 2017) October 24, 2017

Outline

- Background
- Formalizing the Port Clearance Rules in PSOA
- 3 Enrichment by Port Clearance Facts and Queries
- Conclusions and Future Work

Outline

- Background
- Pormalizing the Port Clearance Rules in PSOA
- 3 Enrichment by Port Clearance Facts and Queries
- Conclusions and Future Work

Background

- Decision Management (DM) Community has been running Challenges about decision modeling problems since 2014
- The DM Challenge of March 2016 consisted of creating decision models from the structured text of English Port Clearance Rules, available online

Port Clearance Rules

Jacob Feldman
pointed us to this
DM Challenge on
The Game of Rules /
Port Clearance Rules

- Decide whether a ship can enter a Dutch port on a certain date
- Ten English rules inspired by the international Ship and Port Facility Security Code, originally developed by Silvie Spreeuwenberg et al. for "The Game of Rules"
- The English of each one of these independently given rules is moderately controlled, some having a structured 'if' part
- We formalized the rules in PSOA RuleML, added facts (data) directly in PSOA, queried result in PSOATransRun, and propose generalized decision models

Generalized Decision Models: Non-ground, Non-deterministic, Horn Logic

Ground term No variables (inside)

Non-ground term At least one variable (inside)

Deterministic No predicate occurs more than once in rule conclusions

Non-deterministic At least one predicate occurs more than once in rule conclusions

Datalog No (constructor) function applications

Horn logic At least one (constructor) function application

PSOA RuleML in a Nutshell (1)

 Novel object/frame-relational rule language generalizing relationships (e.g., in LP) and frames (e.g., in RDF) into positional-slotted object-applicative (psoa) terms

Single-tuple case, where "#" means "member of":

- Oidless psoa terms are interpreted as atoms (i.e., predicate applications) on the top-level and as expressions (i.e., function applications) when embedded in another term
- Oidful psoa terms are interpreted as atoms both on the top-level and when embedded
- Embedded oidful atoms can be extracted via unnesting

PSOA RuleML in a Nutshell (2)

Special cases of psoa atoms

```
Relationships: f(t_1 \dots t_n)
Frames: o \# f(p_1 -> v_1 \dots p_k -> v_k)
```

- PSOA RuleML syntax
 - Constants include Top, numbers, strings, and Internationalized Resource Identifiers (IRIs)
 - A full IRI, e.g., http://ex.org/a, can be abbreviated using a namespace prefix ending with ':', e.g., :a, if the KB contains a declaration Prefix (: http://ex.org/) for the prefix ':'
 - Variables in PSOA are '?'-prefixed names, e.g., ?x
 - A PSOA KB consists of clauses, mostly as ground facts (psoa atoms) and non-ground rules (conclusion: - condition with Forall wrappers)
- Reference implementation:
 Prolog instantiation of PSOATransRun

Outline

- Background
- Formalizing the Port Clearance Rules in PSOA
- 3 Enrichment by Port Clearance Facts and Queries
- Conclusions and Future Work

Visualization of PSOA's Formal Decision Model (1)

 An object-relational And-Or DAG with rule names as nodes and conclusion predicates as side labels of nodes

Visualization of PSOA's Formal Decision Model (2)

- For the not side-labeled nodes, the root-class predicate
 Top is understood, while slot names are shown as labels
 of incoming arcs and top labels of the rule nodes (for the
 slot name: hull the filler: double does not require any
 further rule)
- The blank, unlabeled node represents the only 'Or' branch in this model, where Rules 8 and 7 are – operationally speaking – 'pre-invoked' via the conclusion predicate :MeetsSafetyRequirementsUnloaded, having conditions with a first conjunct immediately determining whether the slot :size is :small or :large, so that only either Rule 8 or Rule 7, respectively, can be 'fully invoked', causing near-deterministic behavior
- The model is object-relational in that the upper part running to the conclusions of Rules 8 and 7 involves unary relations applied to ships while the lower part involves frames with ship OIDs described by slots

Subgroup 1 (1)

- 2. An unloaded ship may only enter a Dutch port if the ship complies with the requirements of the Inspection for unloaded ships.
- 3. A ship must comply with the requirements of the Inspection for unloaded ships if the ship complies with all of the following: a) the ship meets the safety requirements for unloaded ships; b) the ship has a certificate of registry that is valid.

```
% Main relational rule invokes inspection rule for
                             certificate And safety
% Rule 2
Forall ?s (
  :MayEnterDutchPortUnloaded(?s) :-
    :CompliesInspectionRequirementsUnloaded(?s)
% Rule 3
Forall ?s (
  :CompliesInspectionRequirementsUnloaded(?s) :-
    And (: Has Valid Certificate (?s)
        :MeetsSafetyRequirementsUnloaded(?s))
```

Subgroup 1 (2)

- Both rules are relational, on the Datalog level of expressiveness
- :Ship-type test for ?s is postponed to the later object-centered rules, where :Ship becomes a class

Subgroup 2 (1)

10. A ship's certificate of registry must be considered valid if the date up to which the registration is valid of the certificate of registry is after the current date.

Subgroup 2 (2)

- Rule 10 transits from the relational to the object-centered paradigm
- The relational conclusion argument ?s in the first condition conjunct becomes the OID of class : Ship of a frame
- Filler of a :registryExpirationDate slot is a date encoded as a Hornlog-expressiveness-level function application phys:date(year month day) - this depth-1 nesting could be easily eliminated, hence stays on the (Datalog-transformable) near-Datalog expressiveness level
- Second conjunct queries the current date in the above encoding, optionally yielding the local date for deployment (using phys:currentDate from the physics library) or a fixed date (using:currentDate) for reproducibility
- Third conjunct checks phys:lessThanDate between these dates

Subgroup 3 (1)

- 8. A ship only meets the safety requirements for small unloaded ships if the ship complies with all of the following: a) the ship is categorized as small; b) the hold of the ship is clean.
- 7. A ship only meets the safety requirements for large unloaded ships if the ship complies with all of the following: a) the ship is categorized as large; b) the hold of the ship is clean; c) the hold of the ship is double hulled.

```
% Object-relational size-switched safety rules check status (small)
                                          or status and hull (large)
% Rule 8 (includes disjunct of original Rule 6)
Forall ?s ?h (
  :MeetsSafetyRequirementsUnloaded(?s) :-
    ?s#:Ship(:size->:small
             :hold->?h#:ShipHold(:status->:clean))
% Rule 7 (includes disjunct of original Rule 6)
Forall ?s ?h (
  :MeetsSafetyRequirementsUnloaded(?s) :-
    ?s#:Ship(:size->:large
             :hold->?h#:ShipHold(:status->:clean
                                  :hull->:double))
```

(□) (□) (□) (□) (□)

Subgroup 3 (2)

- Rules 8 and 7 each includes a disjunct of the original Rule 6, which uses intermediate predicates that are not needed for realizing the decision logic
- Both rules again transit from the relational to the object-centered paradigm: relational conclusion argument ?s becomes the OID of class: Ship of condition frame
- Slot filler of : hold is an embedded frame corresponding to an embedded : ShipHold function application – can be regarded as raising the expressiveness level to Hornlog, but – being only a depth-1 nesting – can be easily unnested, hence stays on the near-Datalog level

Unnesting and Slotribution

Condition of Rule 7:

After unnesting:

```
And(
   ?h#:ShipHold(:status->:clean :hull->:double)
   ?s#:Ship(:size->:large :hold->?h)
)
```

After slotribution:

```
And(
  And(?h#:ShipHold ?h#Top(:status->:clean) ?h#Top(:hull->:double))
  And(?s#:Ship ?s#Top(:size->:large) ?s#Top(:hold->?h))
)
```

Subgroup 4

- 9. A ship must be categorized as small if the total length of the ship is less than 80 meters.
- 4. A ship must be categorized as large if the total length of the ship is at least 80 meters.

```
% Object-centered (except for math) rules to get qualitative size
                                            by thresholding length
% Rule 9
Forall ?s ?l (
  ?s#Top(:size->:small) :-
    And (?s#:Ship (:totalLength->?1)
        math:lessThan(?1 80))
% Rule 4
Forall ?s ?l (
  ?s#Top(:size->:large) :-
    And(?s#:Ship(:totalLength->?1)
        math:greaterEq(?1 80))
```

Subgroup 5

- 1. The hold of a ship must be considered clean if the hold does not contain remainders of cargo.
- 5. A ship's hold contains remainders of cargo if the residual cargo measurement is higher than 0.5 mg dry weight per cm².

```
% Rule 1&5 (combines Rule 1 and Rule 5)
Forall ?h ?c (
   ?h#Top(:status->:clean) :-
        And(?h#:ShipHold(:residualCargoMeasurement->?c)
        math:lessEq(?c 0.5))
)
```

Negation is eliminated by propagation into Rule 5's condition, where the negated math:greaterThan call is simplified to a math:lessEq call

Outline

- Background
- Formalizing the Port Clearance Rules in PSOA
- 3 Enrichment by Port Clearance Facts and Queries
- Conclusions and Future Work

- Since the DM Challenge has introduced only ship rules, we have developed ship facts for systematic testing of rules using PSOATransRun[PSOA2Prolog,XSBProlog] 1.3
- Example of ship facts

Queries that Answer DM Challenge Questions

 Queries for Port Clearance questions are ground, using top-level predicate: MayEnterDutchPortUnloaded applied to specific ship instances

```
:MayEnterDutchPortUnloaded(:ship1)
No
:MayEnterDutchPortUnloaded(:ship7)
Yes
```

Generalized non-ground query can also be posed

```
:MayEnterDutchPortUnloaded(?w)
?w=<http://psoa.ruleml.org/usecases/PortClearance#ship14>
?w=<http://psoa.ruleml.org/usecases/PortClearance#ship2>
?w=<http://psoa.ruleml.org/usecases/PortClearance#ship12>
?w=<http://psoa.ruleml.org/usecases/PortClearance#ship7>
?w=<http://psoa.ruleml.org/usecases/PortClearance#ship4>
```

Supporting Computation via Specialized Queries (1)

Whether : h7 is a ship hold and is clean (proved by Rule 1&5 and : h7 frame embedded inside : ship7 fact)

```
:h7#:ShipHold(:status->:clean) % Query centered on OID :h7 Yes
```

Whether hold ?h of :ship7 is clean (proved by previous (sub)query and :hold slot in :ship7 fact)

```
:ship7#:Ship(:hold->?h#:ShipHold(:status->:clean))
?h=<http://psoa.ruleml.org/usecases/PortClearance#h7>
```

Whether :ship7 is a large ship (proved by Rule 4 using its :totalLength slot in :ship7 fact)

```
:ship7#:Ship(:size->:large)
Yes
```

Supporting Computation via Specialized Queries (2)

Whether : ship7 is a large ship and its hold is clean and double hulled (proved by previous two (sub)queries and : ship7 fact)

Whether : ship7 meets safety requirements (proved by Rule 7 and previous (sub)query)

```
:MeetsSafetyRequirementsUnloaded(:ship7)
Yes
```

Supporting Computation via Specialized Queries (3)

Whether: ship7 has valid certificate (proved by Rule 10 based on its: registryExpirationDate slot in: ship7 fact)

```
:HasValidCertificate(:ship7) % As of 2017-05-06 Yes
```

Whether: ship7 complies with requirements of inspection for unloaded ships (proved by Rule 3 based on previous two (sub)queries)

```
:CompliesInspectionRequirementsUnloaded(:ship7) % As of 2017-05-06 Yes
```

Top-level query : MayEnterDutchPortUnloaded(:ship7) can now be proved by Rule 2 and previous (sub)query

Non-ground Queries Extracting Interesting Content (1)

A ship's size

```
:ship1#:Ship(:size->?z)
?z=<http://psoa.ruleml.org/usecases/PortClearance#small>
```

Any ship that is large and has hold that is clean

```
?s#:Ship(:size->:large :hold->?#:ShipHold(:status->:clean))
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship7>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship13>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship10>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship14>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship6>
```

Non-ground Queries Extracting Interesting Content (2)

Any ship that is large and has valid certificate

```
:HasValidCertificate(?s#:Ship(:size->:large))
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship5>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship14>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship6>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship9>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship13>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship7>
```

Any ship that is small and meets safety requirements for unloaded ships

```
:MeetsSafetyRequirementsUnloaded(?s#:Ship(:size->:small))
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship4>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship1>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship12>
?s=<http://psoa.ruleml.org/usecases/PortClearance#ship2>
```

Outline

- Background
- Formalizing the Port Clearance Rules in PSOA
- 3 Enrichment by Port Clearance Facts and Queries
- Conclusions and Future Work

Conclusions

- Demonstrated formalization of moderately controlled English rules as a decision model being part of a logical KB enabling formal query, proof, analysis, and translation
- English rules formalized as (deontically contextualized) near-Datalog, non-recursive, near-deterministic, ground-queried, and non-subpredicating KB rules
- KB rules complemented by PSOA facts queried in PSOATransRun for decision-making
- Provides extra evidence that PSOA RuleML is well-suited to capture real-world problems and PSOATransRun is well-suited for KB development
- While this KB uses integrated object-relational modeling, the original English rules are amenable also to purely object-centered modeling and to purely relational modeling, where these paradigms are bridged within PSOA

Future Work

- Further generalizations of the use case, e.g. adding recursion and subpredicating
- Interchange of presentation-syntax and (XML-)serialization formats of DM systems such as OpenRules with PSOA RuleML
- Based on the preliminary serialization of PSOA RuleML, formally define the schema in Relax NG and develop an XML serialization of Port Clearance KB
- Proof-explanation facility could be added to PSOATransRun, providing visualization, presentation, and serialization formats for queries reduced to facts
- Extensions of the Port Clearance Rules including for loaded ships – should be of interest, e.g. as part of legal-informatics efforts such as OASIS LegalRuleML and Stanford CodeX