STAT40810 — Stochastic Models

Brendan Murphy

Week 5

Non-Parametric Survival Analysis

Non-Parametric Estimate

- Suppose we wish to estimate the survival function without assuming a particular family of distributions.
- We want to be able to do this when we have (right) censored observations.
- We will look at a method called the Kaplan-Meier estimator.
- It is the most cited statistical paper of all time.

will be the same in every respect except the treatment they receive. Such randomized

No Censoring

- Suppose we had a data set with no censoring.
- Let the observed values be

$$t_1, t_2, \ldots, t_n$$

- How would we do this?
- If we want to estimate S(t), for any t we could use

$$\hat{S}(t) = \frac{\text{Number of } t_i > t}{\text{Number of observations}}.$$

Calculation

• Let's do the calculation manually.

j	t_j	$obs > t_j$	$\hat{S}(t_j)$
1	9.00	11	0.92
2	14.00	10	0.83
3	25.00	9	0.75
4	39.00	8	0.67
5	48.00	7	0.58
6	55.00	6	0.50
7	67.00	5	0.42
8	79.00	4	0.33
9	105.00	3	0.25
10	132.00	2	0.17
11	153.00	1	0.08
12	570.00	0	0.00

Example: Failure Times

• For the failure time data we get...

Alternative Formulation

- Suppose at each time where an event occurs, we record the following:
 - d_j : the number of events that occurred at time t_j
 - n_j : the number of observations in the study at time t_j
 - $\lambda_j = d_j/n_j$: this is called the discrete hazard at time t_j .
- We can estimate $S(t_j)$ as

$$\hat{S}(t_j) = \prod_{k=1}^j (1-\lambda_k) = \prod_{k=1}^j \left(1-\frac{d_k}{n_k}\right).$$

• This is precisely how the Kaplan-Meier estimate works.

Alternative Calculation

• Let's do the calculation manually.

j	t_j	d_j	nj	λ_{j}	$S(t_j)$
1	9.00	1.00	12	0.08	0.92
2	14.00	1.00	11	0.09	0.83
3	25.00	1.00	10	0.10	0.75
4	39.00	1.00	9	0.11	0.67
5	48.00	1.00	8	0.12	0.58
6	55.00	1.00	7	0.14	0.50
7	67.00	1.00	6	0.17	0.42
8	79.00	1.00	5	0.20	0.33
9	105.00	1.00	4	0.25	0.25
10	132.00	1.00	3	0.33	0.17
11	153.00	1.00	2	0.50	80.0
_12	570.00	1.00	1	1.00	0.00

R Code

```
# Read in Failure Times
x <- scan()
79 105  14 153 67 25 39 9 55 132 48 570

#Fit Kaplan-Meier Curve
library(survival)
fit <- survfit(Surv(x)~1,se=FALSE)

# Plot the fit
plot(fit)

#Add the exponential model fit
lambda<-1/mean(x)
tvec<-seq(0,1000,length=201)
points(tvec,1-pexp(tvec,lambda),type="1",col="blue",lty=3)</pre>
```

Fit

```
Call: survfit(formula = Surv(x) ~ 1, se = FALSE)
time n.risk n.event survival
    9
          12
                        0.9167
   14
          11
                        0.8333
   25
          10
                        0.7500
                        0.6667
   39
   48
           8
                        0.5833
   55
                        0.5000
   67
           6
                        0.4167
   79
                        0.3333
  105
                        0.2500
  132
           3
                        0.1667
  153
                        0.0833
  570
                        0.0000
```

Fit Comparison

Figure : Survival curves are very similar.

Example: Leukemia

- The survival times of a number of leukemia patients who were on a maintained treatment were recorded.
- The times recorded are:

```
9 13 13+ 18 23 28+ 31 34 45+ 48 161+
```

- The times marked with a + are right censored.
- We want to do estimate the survival function non-parametrically.
- How do we do it?

Kaplan-Meier

• Let's try the same approach...

9 13 13+ 18 23 28+ 31 34 45+ 48 161+

j	tj	dj	nj	λ_j	$\overline{S(t_j)}$
1	9	1.00	11	0.09	0.91
2	13	1.00	10	0.10	0.82
3	28	1.00	8	0.13	0.72
4	23	1.00	7	0.14	0.61
5	31	1.00	5	0.20	0.49
6	34	1.00	4	0.25	0.37
_7	48	1.00	2	0.50	0.18

• This is the Kaplan-Meier estimate with censoring.

Example: Leukemia

• We plot the survival estimate to get

Example: Leukemia

```
Call: survfit(formula = survdat ~ 1, se = FALSE)
time n.risk n.event survival
   9
                       0.909
         11
  13
                      0.818
         10
   18
          8
                  1 0.716
  23
                    0.614
  31
                    0.491
  34
                    0.368
  48
                       0.184
```

R Code

```
#Load survival package
library(survival)

#Load leukemia data
data(leukemia)

#Extract data for Maintained group
dat<-leukemia[leukemia$x=="Maintained",1:2]
dat

#Set up Surv() object
survdat <- Surv(time=dat[,1],event=dat[,2])
survdat

#Fit the KM to the data
fit <- survfit(survdat~1,se=FALSE)
summary(fit)
plot(fit)</pre>
```