
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: Mon Sep 10 10:45:04 EDT 2007

```
Reviewer Comments:
```

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> Xaal is Mca = (7-methoxycoumarin-4-yl)acetyl

<220>

<221> MISC_FEATURE

<222> (11)..(11)

<223> Xaa2 is Dnp = 2,4-dinitrophenyl

<220>

<221> MISC FEATURE

<222> (12)..(12)

<223> Xaa3 is OH

The above "Xaa" responses for sequence id# 12 is invalid, "Xaa" can only represent a single amino acid. Please correct sequence id# 7 and all other remaining sequences with similar errors.

Validated By CRFValidator v 1.0.3

Application No: 10593071 Version No: 1.0

Input Set:

Output Set:

Started: 2007-08-28 09:06:28.763

Finished: 2007-08-28 09:06:29.677

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 914 ms

Total Warnings: 2

Total Errors: 0

No. of SeqIDs Defined: 15

Actual SeqID Count: 15

Error code		Error Description											
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)		
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)		

SUBSTITUTE SEQUENCE LISTING

<110		ROUGI HUAUI UNGEI WISNI DUFOI	LME, HEUEI ER, <i>i</i>	Jean R, Ma Anne	n-Fra	anco:										
<120																CODING
<130)>	2964:	15US(0PCT												
<140)>	10593	3071													
<141	.>	2007-	-08-2	28												
<150)>	PCT/:	IB05,	/0070	00											
<151	.>	2005-03-18														
<150)>	EPO (04290	0754	. 3											
		EPO 04290754.3 2004-03-19														
<160)>	15														
<170)>	PatentIn version 3.3														
<210)>	1														
<211	.>	947														
<212	?>	DNA														
<213	3>	Homo	sap:	iens												
<220) >															
<221		CDS														
<222		(81)	(68	86)												
< 400		1					_4				.					
aatt	gag	tat (ctgg	caaga	ag ta	aagai	ctaa	g caq	graai	ttg	ttco	caaaq	gaa q	gaat	cttcta	ı 60
ccaa	ıgga	gca a	actti	taaaq	_	_							_	-	ig gct eu Ala)	
ctt	att	tca	tgt	ttc	aca	CCC	agt	gag	agt	caa	aga	ttc	tcc	aga	aga	161
Leu	Ile	Ser	Cys	Phe	Thr	Pro	Ser	Glu	Ser	Gln	Arg	Phe	Ser	Arg	Arg	
			15					20					25			
cca	tat	cta	cct	aac	cad	cta	cca	cca	cct	сса	ctc	tac	agg	cca	aga	209
		Leu			_	_									_	
		30					35					40				
																0.5.5
	_	cca		-						-		-				257
ттЪ	45	Pro	FIO	neτ	110	50	FIO	FIO	тут	Toh	55	AIY	⊥∈u	Loll	net	
cca	ctt	tct	ctt	CCC	ttt	gtc	cca	ggg	cga	gtt	cca	cca	tct	tct	ttc	305

Pro Leu Ser Leu Pro Phe Val Pro Gly Arg Val Pro Pro Ser Ser Phe

60 65 70 75

	_		_		gca Ala	_								_	-	353
		_			cga Arg			_								401
		_			tat Tyr	_										449
					ttt Phe			-								497
					aac Asn 145				-	-						545
					gca Ala		_									593
		-	-	_	ctc Leu			-							-	641
_	_				atc Ile	_	_			_	_			tga		686
aaat	acta	act o	caaat	ctct	eg e	caac	cgtc	c tca	acaca	agta	ttg	ctcaa	atg (ccact	igteca	746
agtt	acga	act t	tcca	acca	aa ct	tatat	taaq	g caq	gada	agcc	ttta	aaaaq	gtt t	ttg	gcaaaa	806
acto	cttt	gaa a	attti	tggi	tt ga	aacat	gcaa	a taa	aatga	atat	ttt	ccaaa	act o	gatai	tgatat	866
ctta	agaaq	gaa a	ataa	actg	ca at	gati	ttga	a tgo	gaac	caac	cct	gatct	caa d	ccago	cacact	926
aaat	aaaq	gta t	tttga	agca	at a											947

<210> 2

<211> 201

<212> PRT

<213> Homo sapiens

<400> 2

Met Lys Leu Thr Phe Phe Leu Gly Leu Leu Ala Leu Ile Ser Cys Phe 1 5 10 15

Thr Pro Ser Glu Ser Gln Arg Phe Ser Arg Arg Pro Tyr Leu Pro Gly 20 25 30

Gln Leu Pro Pro Pro Leu Tyr Arg Pro Arg Trp Val Pro Pro Ser Pro Pro Pro Tyr Asp Ser Arg Leu Asn Ser Pro Leu Ser Leu Pro 50 55 Phe Val Pro Gly Arg Val Pro Pro Ser Ser Phe Ser Arg Phe Ser Gln Ala Val Ile Leu Ser Gln Leu Phe Pro Leu Glu Ser Ile Arg Gln Pro 85 90 Arg Leu Phe Pro Gly Tyr Pro Asn Leu His Phe Pro Leu Arg Pro Tyr 105 Tyr Val Gly Pro Ile Arg Ile Leu Lys Pro Pro Phe Pro Pro Ile Pro 115 120 125 Phe Phe Leu Ala Ile Tyr Leu Pro Ile Ser Asn Pro Glu Pro Gln Ile 130 135 Asn Ile Thr Thr Ala Asp Thr Thr Ile Thr Thr Asn Pro Pro Thr Thr 145 150 155 Ala Thr Ala Thr Thr Arg His Phe His Lys Thr His Asn Asp Asp Gln 165 170 Leu Leu Asn Ser Thr Tyr Leu Phe Asn Thr Arg Ala Cys His Leu His 185 Ile Ser Ser Asn Pro Arg Ser Ile Tyr 195 200 <210> 3 <211> 5 <212> PRT <213> Homo sapiens <400> 3 Gln Arg Phe Ser Arg <210> 4 <211> 6 <212> PRT <213> Homo sapiens <400> 4

Tyr Gln Arg Phe Ser Arg 1 5

```
<211> 6
<212> PRT
<213> Homo sapiens
<400> 5
Cys Gln Arg Phe Ser Arg
<210> 6
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222> (1)..(2)
<223> Xaa2 is Gln or Glp when Xaal is H. Xaa2 is Gln when Xaal is Tyr
      or Cys.
<400> 6
Xaa Xaa Arg Phe Ser Arg
<210> 7
<211> 5
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaal is Glp.
<400> 7
Xaa Arg Phe Ser Arg
<210> 8
<211> 5
<212> PRT
<213> Rattus rattus
<400> 8
Gln His Asn Pro Arg
```

<210> 5

```
<211> 4
<212> PRT
<213> Rattus rattus
<400> 9
Gln His Asn Pro
<210> 10
<211> 5
<212> PRT
<213> Homo sapiens
<400> 10
Gln Arg Gly Pro Arg
<210> 11
<211> 7
<212> PRT
<213> Homo sapiens
<400> 11
Gln Arg Gly Pro Arg Gly Pro
<210> 12
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaal is Mca = (7-methoxycoumarin-4-yl)acetyl
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Xaa2 is Dnp = 2,4-dinitrophenyl
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Xaa3 is OH
```

<210> 9

```
<400> 12
```

Xaa Arg Pro Pro Gly Phe Ser Ala Phe Lys Xaa Xaa 5 <210> 13 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Construct <220> <221> MISC_FEATURE <222> (1)..(1) <223> Xaal is Suc = succinyl <220> <221> MISC_FEATURE <222> (5)..(5) <223> Xaa5 is Amc = 7-amino-4-methyl coumarin <400> 13 Xaa Ala Ala Phe Xaa <210> 14 <211> 11 <212> PRT <213> Homo sapiens <400> 14 Arg Phe Lys Phe Gln Gln Phe Phe Gly Leu Met <210> 15 <211> 5 <212> PRT <213> Homo sapiens <400> 15 Tyr Gly Gly Phe Met