Word Embedding 词嵌入简介

数据科学沙龙 李韶华

提纲

- □ NLP的基本概念
- □ 词嵌入的直观认识
- □词嵌入的基本原理
- □ Word2vec的优化
- □一些实验

NLP常见任务

- □自动摘要
- □指代消解
- □机器翻译
- □词性标注
- □ 分词 (中文,日文等)
- □ 主题识别
- □ 文本分类
-

小明放学了,妈妈去接他

小心地滑 Slide carefully

大水沟/很/难/过

heat (v.) water (n.) in (p.) a (det.) pot (n.)

NLP基本方法

- □传统:基于规则
- □ 现代: 基于统计机器学习
 - HMM, CRF, SVM, LDA, CNN...
 - 规则隐含在模型参数里
 - 越来越像机器学习在文本处理方面的应用

One-hot encoding

- □ 怎么把文本表示成适合机器处理的形式
 - 词是基本单元
 - 之前: 词用one-hot encoding表示
 - □ "天气": (1,0,0...,0), "气候": (0,1,0,...0)
- □ one-hot encoding的问题
 - 高维(几万-几十万),稀疏
 - 没有编码不同词之间的语义相似性
 - 难以做模糊匹配

词嵌入的直观印象

- □词映射到低维连续向量
 - Cat: (-0.065, -0.035, 0.019, -0.026, 0.085,...)
 - Dog: (-0.019, -0.076, 0.044, 0.021,0.095,...)
 - Table: (0.027, 0.013, 0.006, -0.023, 0.014, ...)
- □相似词映射到相似方向
 - 语义相似性被编码了
 - Cosine相似度衡量方向

Projection of the embedding vectors to 2-D

词嵌入可以做类比题

- □ v("国王") v("王后") ≈ v("男") v("女")
- □ v("英国") + v("首都") ≈ v("伦敦")
- □ 词嵌入编码了语义空间中的线性关系
 - 向量的不同部分对应不同的语义
- □应用
 - 两个句子: A含"英国","首都",不含"伦敦"; B含"伦敦"
 - 所有词的词向量的和表示句子 ("fastText")
 - 两个句子仍会比较相似

相似词如何映射到相似方向

- □ 基本假设: "相似"词的邻居词分布类似
- □ 倒推: 两个词邻居词分布类似 → 两个词语义相近
- □猫宠物主人喂食蹭喵
- □狗宠物主人喂食咬汪
- □ **v**("猫")≈v("狗")
- Apple: tree red growth design music company engineering executive
- □ v("apple")≈v("orange"), v("apple")≈v("microsoft")

词嵌入的优点

- □ 维度低(100 500维), 连续向量, 机器学 习算法好处理
- □ 无监督学习, 容易获得大语料
- □天然有聚类后的效果
- □罕见词也可以学到不错的表示
 - "风姿绰约" ≈ "漂亮"

Word2vec 模型

- 回归连结函数: $P(w_k|w_i) = \frac{\exp(\tilde{\boldsymbol{v}}_{w_k}^{\top} \boldsymbol{v}_{w_i})}{\sum_{w_i \in V} \exp(\tilde{\boldsymbol{v}}_{w_i}^{\top} \boldsymbol{v}_{w_i})}$
- □ 分母: 归一化项,可暂时忽略
- $\square p(w_k|w_i) \propto \exp(\widetilde{\boldsymbol{v}}_{w_k}^T \boldsymbol{v}_{w_i})$
- \square $\tilde{v}_{w_{k,n}}$ 和 $v_{w_{i,n}}$ 方向相似: 预测的 $p(w_k|w_i)$ 大
 - 方向不同: 预测的概率小
- \square w_k 经常出现在 w_i 周围, $p(w_k|w_i)$ 大, 驱使 $\tilde{v}_{w_{k,n}}$ 和 $v_{w_{i,n}}$ 指向相似方向

Word2vec 优化

- □ 两套词向量,使用时只保留一套
- □ 优化方法: 随机梯度递降(SGD)
- □ 每次扫描到一个词, 算一下梯度, 更新......
- □ 收敛很快。大语料: 1、2个pass, 小语料: ~10个pass

词嵌入算法的评估

- □ 词相似性任务
 - 哪一对更接近?

tiger cat

street children

- □类比任务
 - Beijing to China is like Berlin to _____
- □ 传统NLP任务
 - Named Entity Recognition (命名实体识别), Noun phrase chunking (名词短语识别)

不同算法性能比较

	Similarity Tasks				Analogy Tasks		NLP Tasks	
Method	WS	WR	MEN	Turk	Google	MSR	NER	Chunk
word2vec	74.1	54.8	73.2	68.0	72.3	63.0	84.8	94.8
SVD	69.2	60.2	70.7	49.1	24.0	11.3	81.2	94.1
GloVe	75.9	63.0	75.6	64.1	54.4	43.5	84.5	94.6
Singular	76.3	68.4	74.7	58.1	50.8	39.9	83.8	94.8
Sparse	74.8	56.5	74.2	67.6	71.6	61.9	78.8	94.9
PSDVec	79.2	67.9	76.4	67.6	62.3	50.7	84.7	94.7

□ NER: 命名实体识别,Chunk: 名词短语识别

词嵌入相关资源

- □ Word2vec, C语言实现
- □ <u>Gensim</u>,Python实现,接口多
 - >>trained_model.most_similar(positive=['woman', 'king'], negative=['man'])
 [('queen', 0.50882536), ...]
- □ <u>DL4J</u>, Deep Learning for Java
- □ 我自己的PSDVec(未来topicvec也会在这里)
- □ 分词软件 jieba, Python实现

语料资源

- □ 英文Wikipedia 12G
- □ 中文Wikipedia 1.2G
- □ <u>http://lafnews.com/corpus/</u> 只含新闻链接(需自己使用 爬虫抓取)
- □ 人民日报1998年1月词性标注语料
- □ 500万微博语料
- □ 分词词库
- □ 命名实体识别语料(英文)和训练代码
- 使用词嵌入的CRF Chunking代码和数据

谢谢大家!

欢迎大家批评指正!