

Annexe 3 Programmes des classes préparatoires aux Grandes Ecoles

Filière : scientifique

Voie: Technologie et sciences industrielles (TSI)

Discipline : Sciences industrielles de l'ingénieur

Première et seconde années

PROGRAMME DE SCIENCES INDUSTRIELLES DE L'INGÉNIEUR DANS LA FILIÈRE TSI

Le programme de sciences industrielles de l'ingénieur, dans la filière TSI, s'inscrit dans une double continuité : en amont avec les programmes rénovés du lycée, en aval avec les enseignements dispensés dans les grandes écoles et plus généralement les poursuites d'études universitaires. Il est conçu pour amener progressivement tous les étudiants au niveau requis, non seulement pour poursuivre avec succès un cursus d'ingénieur, de chercheur, d'enseignant, de scientifique, mais encore pour permettre de se former tout au long de la vie. Les programmes de la filière TSI ont été écrits de façon concertée et avec une volonté de cohérence transversale. Comme pour les autres disciplines, celui de sciences industrielles de l'ingénieur fait apparaître des renvois vers les mathématiques et la physique.

1. OBJECTIFS DE FORMATION

1.1. Finalités

La complexité des systèmes et leur développement dans un contexte économique et écologique contraint requièrent des ingénieurs et des scientifiques, ayant des compétences scientifiques et technologiques de haut niveau, capables d'innover, de prévoir et maîtriser les performances de ces systèmes.

Le programme de sciences industrielles de l'ingénieur s'inscrit dans la préparation des élèves à l'adaptabilité, la créativité et la communication nécessaires dans les métiers d'ingénieurs, de chercheurs et d'enseignants.

L'enseignement des sciences industrielles de l'ingénieur a pour objectif d'aborder la démarche de l'ingénieur qui permet, en particulier :

- de conduire l'analyse fonctionnelle, structurelle et comportementale d'un système pluri-technologique;
- de vérifier les performances attendues d'un système, par l'évaluation de l'écart entre un cahier des charges et des réponses expérimentales;
- de proposer et de valider des modèles d'un système à partir d'essais, par l'évaluation de l'écart entre les performances mesurées et les performances simulées;
- de prévoir les performances d'un système à partir de modélisations, par l'évaluation de l'écart entre les performances simulées et les performances exprimées dans le cahier des charges;
- d'analyser ces écarts et de proposer des solutions en vue d'une amélioration des performances.

L'identification et l'analyse des écarts présentés mobilisent des compétences transversales qui sont développées en particulier en mathématiques et en sciences physiques. Les sciences industrielles de l'ingénieur constituent un vecteur de coopération interdisciplinaire et participent à la poursuite d'études dans l'enseignement supérieur.

Les systèmes complexes pluri-technologiques étudiés relèvent de grands secteurs technologiques : transport, énergie, production, bâtiment, santé, communication, environnement. Cette liste n'est pas exhaustive et les enseignants ont la possibilité de s'appuyer sur d'autres domaines qu'ils jugent pertinents. En effet, les compétences développées dans le programme sont transposables à l'ensemble des secteurs industriels.

Les technologies de l'information et de la communication sont systématiquement mises en œuvre dans l'enseignement. Elles accompagnent toutes les activités proposées.

Toutes ces activités, individuelles et en équipe, s'inscrivent naturellement dans le contexte collaboratif d'un environnement numérique de travail (ENT).

1.2. Objectifs généraux

À partir de systèmes industriels placés dans leur environnement technico-économique, la carte heuristique ci-dessous présente l'organisation du programme qui est décliné en compétences associées à des connaissances et savoir-faire :

Les compétences développées en sciences industrielles de l'ingénieur forment un tout cohérent, en relation directe avec la réalité industrielle qui entoure l'élève. Couplées à la démarche de l'ingénieur, elles lui permettent d'être sensibilisé aux travaux de recherche, de développement et d'innovation.

Analyser permet des études fonctionnelles, structurelles et comportementales des systèmes, conduisant à la compréhension de leur fonctionnement et à une justification de leur architecture. Via les activités expérimentales, elles permettent d'acquérir une culture des solutions industrielles qui facilitent l'appropriation de tout système nouveau. Cette

approche permet de fédérer et assimiler les connaissances présentées dans l'ensemble des disciplines scientifiques de classes préparatoires aux grandes écoles.

Modéliser permet d'appréhender le réel et d'en proposer, après la formulation d'hypothèses, une représentation graphique, symbolique ou équationnelle, pour comprendre son fonctionnement, sa structure et son comportement. Le modèle retenu permet des simulations afin d'analyser, de vérifier, de prévoir et d'améliorer les performances d'un système.

Résoudre permet de donner la démarche pour atteindre de manière optimale un résultat. La résolution peut être analytique ou numérique. L'outil de simulation numérique permet de prévoir les performances de systèmes complexes en s'affranchissant de la maîtrise d'outils mathématiques spécifiques.

Expérimenter permet d'appréhender le comportement des systèmes, de mesurer, d'évaluer et de modifier les performances. Les activités expérimentales sont au cœur de la formation et s'organisent autour de produits industriels instrumentés ou de systèmes didactisés utilisant des solutions innovantes. Elles permettent de se confronter à la complexité de la réalité industrielle, d'acquérir une culture des solutions technologiques, de formuler des hypothèses pour modéliser le réel, d'en apprécier leurs limites de validité, de développer le sens de l'observation, le goût du concret et la prise d'initiative.

Concevoir permet à l'étudiant d'imaginer un produit conforme aux exigences d'un cahier des charges en fonction de la connaissance et du respect de l'outil de production. Les modalités pédagogiques spécifiques liées à la résolution de problèmes et à la recherche documentaire sont mises en œuvre.

Communiquer permet de décrire, avec les outils de la communication technique et l'expression technologique adéquate, le fonctionnement, la structure et le comportement des systèmes.

Réaliser permet à l'étudiant des réalisations partielles à l'aide d'un prototypage rapide et d'effectuer certains contrôles de conformité au travers d'expérimentations.

1.3. Usage de la liberté pédagogique

Les finalités et objectifs généraux de la formation en sciences industrielles de l'ingénieur laissent à l'enseignant une latitude certaine dans le choix de l'organisation de son enseignement, de ses méthodes, de sa progression globale, mais aussi dans la sélection de ses problématiques ou ses relations avec ses élèves, qui met fondamentalement en exergue sa liberté pédagogique, suffisamment essentielle pour lui être reconnue par la loi. La liberté pédagogique de l'enseignant peut être considérée comme le pendant de la liberté d'investigation de l'ingénieur et du scientifique.

Globalement dans le cadre de sa liberté pédagogique, le professeur peut organiser son enseignement en respectant deux principes directeurs :

 pédagogue, il doit privilégier la mise en activités d'étudiants en évitant le dogmatisme : l'acquisition des connaissances, des capacités et des savoir-faire sera d'autant plus efficace que les étudiants seront acteurs de leur formation. Les supports pédagogiques utilisés doivent notamment aider à la réflexion, la participation et l'autonomie des élèves. La détermination des problématiques et des systèmes, alliée à un temps approprié d'échanges, favorise cette mise en activité ;

didacticien, il doit recourir à la mise en contexte des connaissances, des capacités et des systèmes étudiés ; les sciences industrielles de l'ingénieur et les problématiques qu'elles induisent se prêtent de façon privilégiée à une mise en perspective de leur enseignement avec l'histoire des sociétés, des sciences et des techniques, des questions d'actualité ou des débats d'idées. L'enseignant de sciences industrielles de l'ingénieur est ainsi conduit naturellement à mettre son enseignement « en culture » pour rendre sa démarche plus naturelle et motivante auprès des élèves.

2. PROGRAMME

2.1. Organisation de la formation

L'enseignement de sciences industrielles de l'ingénieur dans la filière TSI est centré sur des activités expérimentales et de résolution de problèmes ayant pour support les systèmes présents dans les laboratoires.

Ces activités expérimentales sont proposées en groupe de quinze élèves au maximum. La formation est organisée en quatre semestres. Le premier semestre est une période d'adaptation qui permet d'assurer un continuum de l'enseignement du tronc commun aux étudiants titulaires d'un baccalauréat STI2D et STL.

2.2. Présentation

La diversité des outils existants pour décrire les systèmes pluri-technologiques rend difficile la communication et la compréhension au sein d'une équipe regroupant des spécialistes de plusieurs disciplines. Il est indispensable d'utiliser des outils compréhensibles par tous et compatibles avec les spécificités de chacun.

Le langage de modélisation SysML (System Modeling Language) s'appuie sur une description graphique des systèmes et permet d'en représenter les constituants, les programmes, les flux d'information et d'énergie.

L'adoption de ce langage en classes préparatoires, associé à un outil de simulation non causal, permet de répondre au besoin de modélisation à travers un langage unique. Il intègre la double approche structurelle et comportementale des systèmes représentatifs du triptyque Matière - Énergie - Information.

Le langage SysML permet de décrire les systèmes selon différents points de vue cohérents afin d'en permettre la compréhension et l'analyse. Les diagrammes SysML remplacent les outils de description fonctionnelle et comportementale auparavant utilisés et qui ne sont plus au programme.

Les diagrammes SysML sont présentés à la lecture. Certains pourront être modifiés ou complétés mais la syntaxe du langage SysML doit être fournie.

L'écriture du programme en compétences permet de structurer les connaissances et de développer ainsi chez l'élève l'esprit critique, la prise d'initiative et la créativité indispensables à un ingénieur.

Le programme est organisé selon la structure ci-dessous. Le séquencement, proposé ciaprès, n'a en aucune manière pour objet d'imposer une chronologie dans l'étude du programme.

Il sera fait appel, chaque fois que nécessaire, à une étude documentaire, éventuellement en anglais, destinée à analyser et à traiter l'information relative à la problématique choisie.

Analyser

- o Identifier le besoin et appréhender les problématiques
- o Définir les frontières de l'analyse
- Appréhender les analyses fonctionnelle et structurelle
- Caractériser des écarts
- Apprécier la pertinence et la validité des résultats

Modéliser

- o Identifier et caractériser les grandeurs physiques
- o Proposer un modèle de connaissance et de comportement
- Valider un modèle

Résoudre

- o Proposer une démarche de résolution
- o Procéder à la mise en œuvre d'une démarche de résolution analytique
- o Procéder à la mise en œuvre d'une démarche de résolution numérique

Expérimenter

- Découvrir le fonctionnement d'un système pluri-technologique
- Proposer et justifier un protocole expérimental
- Mettre en œuvre un protocole expérimental

Concevoir

- o Imaginer des architectures ou des solutions technologiques
- o Choisir une solution technologique
- Dimensionner une solution technique

Réaliser

- Réaliser et valider un prototype ou une maquette
- Intégrer des constituants dans un prototype ou une maquette

Communiquer

- Rechercher et traiter des informations
- Choisir les contenus et l'outil de description adapté
- Afficher et communiquer des résultats

Les tableaux liés aux compétences n'ont pas pour objet de définir une progression pédagogique. Les connaissances associées sont répartis selon une progression organisée en quatre semestres, indiqués dans l'annexe (colonnes de droite).

Lorsqu'une connaissance et le(s) savoir-faire associé(s) sont positionnés au semestre n, cela signifie :

- qu'ils doivent être acquis en fin de semestre n;
- qu'ils peuvent être utilisés aux semestres suivants ;
- qu'ils ont pu être introduits au cours des semestres précédents.

2.3. Contenu

A - Analyser

A1 Identifier le besoin et appréhender les problématiques

Connaissances	Savoir-faire
S11 Analyse fonctionnelle	Décrire le besoin
	Présenter la fonction globale
	Identifier les domaines d'application, les critères technico-économiques
	Identifier les contraintes
	Qualifier et quantifier les exigences (critères, niveaux)
	Identifier et caractériser les fonctions de service
Commentaires	
Les diagrammes SysML soi	nt présentés à la lecture. Certains diagrammes peuvent être modifiés ou complétés
mais la syntaxe du langage SysML doit être fournie.	
S12 Impact	Évaluer l'impact environnemental (matériaux, énergie, nuisances)
environnemental	Établir une analyse du cycle de vie (ACV) et analyser les résultats
	Effectuer un bilan carbone
Commentaires	
On met en évidence ces notions par l'intermédiaire d'un outil numérique adapté.	

A2 Définir les frontières de l'analyse

Connaissances	Savoir-faire
S12 Impact	Définir les éléments influents du milieu extérieur
environnemental	Identifier les contraintes
S11 Analyse fonctionnelle	Isoler un système et justifier l'isolement
S13 Analyse structurelle	Définir les limites et les contraintes choisies ou imposées

A3 Appréhender les analyses fonctionnelle et structurelle

Connaissances	Savoir-faire
S11 Analyse fonctionnelle	Identifier les fonctions techniques
S13 Analyse structurelle	Déterminer les constituants dédiés aux fonctions d'un système et en justifier le
	choix
	Identifier les architectures fonctionnelles et structurelles
Commentaires	
Les diagrammes SysML so mais la syntaxe du langage	ont présentés à la lecture. Certains diagrammes peuvent être modifiés ou complétés e SysML doit être fournie.
S432 Systèmes asservis multi-physiques	Identifier la structure d'un système asservi : chaîne directe, capteur, commande (fonction différence, correction)
	Identifier et positionner les perturbations
	Différencier régulation et asservissement
Commentaires Il faut insister sur la justification de l'asservissement par la présence de perturbations et de critères de rapidit et de précision.	
	Préciser leurs caractéristiques (variable potentielle, variable flux)
	Identifier et décrire les chaînes d'information et d'énergie d'un système
	Identifier les constituants réalisant les fonctions : acquérir, traiter, communiquer,
	alimenter, distribuer, moduler, convertir, transmettre et agir.
	Identifier la nature et les caractéristiques des flux échangés
	Vérifier l'homogénéité et la compatibilité des flux entre les différents constituants
Commentaires	
Pour les variables potentie	lles (vitesse, vitesse angulaire, tension, température,) et variables de flux (force,

Cette description permet de construire une culture de solutions technologiques.

couple, courant, débit, flux d'entropie, ...).

S2 Chaîne d'énergie	Identifier les liens entre chaîne d'énergie et chaîne d'information
S3 Chaîne d'information	Analyser l'effet de la commande sur le comportement de la chaîne d'énergie
	Analyser la réversibilité de la chaine d'énergie
Commentaires	
La qualité de l'énergie est a	analysée en rapport avec la commande utilisée.
S4312 Comportement	Analyser le comportement d'un système décrit par un graphe d'état ou un
des systèmes logiques	logigramme
S4313 Comportement	Analyser et interpréter un algorigramme ou un algorithme (écrit en pseudo-code)
des systèmes	
numériques	
Commentaires	
La représentation graphique	ue et le pseudo-code permettent de s'affranchir d'un langage de programmation
spécifique.	
S33 Communiquer	Identifier les architectures matérielles et fonctionnelles d'un réseau de
l'information : transport et	communication
transmission de	Déterminer le mode de transmission
l'information	Décoder une trame en vue d'analyser les différents champs
S42 Solide déformable	Identifier les contraintes, les déformations et les sollicitations d'un solide
S422 Caractéristiques	Identifier les familles des matériaux et analyser le choix des matériaux vis-à-vis
des matériaux	des performances attendues
S31 Acquérir l'information	Identifier et caractériser un capteur
: capteurs et détecteurs	
Commentaires	
Les solutions techniques retenues sont les capteurs de position, de déplacement, de vitesse, d'accélération,	
d'effort, de pression, de débit et de température.	
S62 Réalisation	Analyser une spécification indiquée sur un dessin de définition par rapport aux
	contraintes de montage et de réalisation
Commentaires	
Les spécifications sont défi	inies par la norme ISO.

A4 Caractériser des écarts

Connaissances	Savoir-faire
	Exploiter et interpréter les résultats d'un calcul ou d'une simulation (analyse de la modélisation proposée et des résultats obtenus)
	Traiter des données de mesures et de simulations et extraire les caractéristiques statistiques
	Extraire du cahier des charges les grandeurs pertinentes
Commentaires	
On insiste sur le choix des	résultats de simulation et des réponses expérimentales.
	Quantifier des écarts entre des valeurs attendues et des valeurs mesurées
	Quantifier des écarts entre des valeurs attendues et des valeurs obtenues par simulation
	Quantifier des écarts entre des valeurs mesurées et des valeurs obtenues par simulation
S13 Analyse structurelle	Rechercher et proposer des causes aux écarts constatés
S4 Comportement des systèmes	Vérifier la cohérence du modèle choisi avec des résultats d'expérimentation

A5 Apprécier la pertinence et la validité des résultats

Connaissances	Savoir-faire
S4 Comportement des	Prévoir l'ordre de grandeur et l'évolution de la mesure ou de la simulation
systèmes	Critiquer les résultats issus d'une mesure ou d'une simulation
	Identifier des valeurs erronées
	Analyser la pertinence du choix des grandeurs simulées
	Valider ou affirmer une hypothèse
S6 Protocoles	Exploiter et interpréter des résultats de mesure ou de simulation
expérimentaux et	Utiliser des symboles et des unités adéquates
réalisation	Vérifier l'homogénéité des résultats

B - Modéliser

B1 Identifier et caractériser les grandeurs physiques agissant sur un système

Connaissances	Savoir-faire
S13 Analyse structurelle	Qualifier les grandeurs d'entrée et de sortie d'un système isolé
S4 Comportement des	
systèmes	
Commentaires	
Le point de vue de l'étude d	conditionne le choix de la grandeur potentielle ou de la grandeur de flux à utiliser.
S13 Analyse structurelle	Décrire les évolutions temporelles ou fréquentielles des grandeurs dans les
S51 Représentation des	chaînes d'énergie et d'information
signaux	
S2 Chaîne d'énergie	Associer les grandeurs physiques aux échanges d'énergie et à la transmission
	de puissance
	Identifier les pertes d'énergie dans un convertisseur statique d'énergie, dans un
	actionneur ou dans une liaison
Commentaires	
	égale au produit d'une grandeur potentielle (vitesse, vitesse angulaire, tension,
température,) par une grandeur de flux (force, couple, courant, débit, flux d'entropie,).	
S3 Chaîne d'information	Identifier la nature de l'information et la nature du signal
S13 Analyse structurelle	Identifier les phénomènes dominants
	Proposer des hypothèses simplificatrices en vue de la modélisation
Commentaires	
On vérifiera l'adéquation de	es hypothèses avec les objectifs à atteindre.

B2 Proposer un modèle de connaissance et de comportement

Connaissances	Savoir-faire
S2 Chaîne d'énergie	Associer un modèle aux constituants d'une chaîne d'énergie
S22 Distribuer et moduler	Modéliser l'association convertisseur statique-machine
l'énergie	
S23 Convertir l'énergie	
Commentaires	
On insiste sur l'obligation d	'une commande en couple d'un actionneur électromécanique.
S241 Liaisons	Proposer et justifier un modèle de liaison entre deux solides
mécaniques	Associer aux liaisons un torseur d'action mécanique transmissible et un torseur
S411 Détermination des	cinématique
lois de mouvements	Déterminer la liaison cinématiquement équivalente à un ensemble de liaisons
Commentaires	
	éterminé, soit à partir des surfaces fonctionnelles, soit à partir des mobilités.
	son équivalente se limite à deux liaisons en série ou parallèle.
On ne donne que les éléme	ents essentiels de la théorie des torseurs : opérations, invariants, axe central,
couple et glisseur.	
S411 Lois de mouvement	Paramétrer les mouvements d'un solide indéformable
Commentaires	
Le paramétrage avec les angles d'Euler ou les angles de roulis, de tangage et de lacet est présenté, mais la	
maîtrise de ces angles n'es	t pas exigée.
S52 Schématisation des	Réaliser le graphe de structure de tout ou partie d'un mécanisme
solutions	Proposer un schéma cinématique (plan ou 3D) minimal et d'architecture de tout
	ou partie d'un mécanisme
S412 Actions mécaniques	Réaliser l'inventaire des actions mécaniques extérieures s'exerçant sur un
S4121 Approche statique	solide ou un ensemble de solides
S41 Solide indéformable	Choisir un modèle de solide (indéformable ou déformable) en fonction de
S42 Solide déformable	l'objectif visé
S4122 Approche	Déterminer les caractéristiques d'un solide indéformable (masse, centre
dynamique	d'inertie, matrice d'inertie)
Commentaires	
Ces caractéristiques sont déterminées à l'aide d'un modeleur volumique. Les calculs des élém	
ne donnent pas lieu à évalu	uation.

La relation entre la forme de la matrice d'inertie et la géométrie de la pièce est exigible.

S4121 Approche statique	Associer un modèle à une action mécanique		
34121 Approche statique	Ecrire la relation entre modèle local et modèle global dans le cas d'actions		
	réparties		
Commentaires	1 - 5 5 5 5 5 5 5 5 5 5		
	ent et au pivotement ne sont pas au programme.		
S421 Comportement du	Déterminer le torseur de cohésion dans un solide		
solide déformable	Associer un modèle de contraintes à l'état de sollicitation		
Commentaires			
On se limite aux modèles d	n se limite aux modèles des poutres unidirectionnelles et les sollicitations sont limitées à la flexion, la		
torsion et à la traction-com	rsion et à la traction-compression. Seules les sollicitations simples sont au programme.		
S421 Comportement du	Proposer ou justifier des conditions aux limites dans un logiciel de simulation		
solide déformable	par éléments finis		
S22 Distribuer et moduler	Adapter la typologie d'un convertisseur statique à la nature des sources		
l'énergie			
Commentaires			
On se limite à la conversion			
S432 Systèmes asservis	Établir le schéma bloc du système		
multi-physiques			
S4322 Représentation et	Déterminer les fonctions de transfert à partir d'équations physiques (modèle de		
identification d'un	connaissance)		
système asservi	Déterminer les fonctions de transfert en boucle ouverte et boucle fermée		
Commentaires	e dérivation et d'intégration de la transformée de Laplace.		
S4321 Modélisation d'un	Linéariser un modèle autour d'un point de fonctionnement		
système asservi multi-	Lineariser un modele autour à un point de fonctionnement		
physique			
S4325 Systèmes non			
linéaires			
S4322 Représentation et	Identifier les paramètres caractéristiques d'un modèle du premier ou du second		
identification d'un	ordre à partir de sa réponse indicielle		
système asservi			
Commentaires			
	à l'identification sont fournis pour le modèle du second ordre.		
S4321 Modélisation d'un	Identifier les paramètres d'un modèle de comportement à partir d'un diagramme		
système asservi multi-	de Bode		
physique	Associer un modèle de comportement (premier et second ordre, dérivateur,		
S4322 Représentation et	intégrateur) à partir d'un diagramme de Bode		
identification d'un			
système asservi Commentaires			
	ial, acul la diagramma da Pada cat dávalanná naur l'identification d'un madèla da		
D'un point de vue fréquentiel, seul le diagramme de Bode est développé pour l'identification d'un mod			
comportement. S4321 Modélisation d'un Définir les paramètres du modèle			
système asservi multi-	Utiliser un diagramme paramétrique		
physique	- Othiser an diagramme parametrique		
Commentaires	1		
	n et de calcul de type non causal sont à privilégier.		

B3 Valider un modèle

Connaissances	Savoir-faire
S4321 Modélisation d'un système asservi multi-	Vérifier la cohérence du modèle choisi avec les résultats d'expérimentation
physique	
Commentaires	
On met l'accent sur les approximations faites, leur cohérence et domaine de validité par rapport aux objectifs.	
S4322 Représentation et	Réduire l'ordre de la fonction de transfert selon l'objectif visé, à partir des pôles
identification d'un	dominants qui déterminent la dynamique asymptotique du système
système asservi	
S4321 Modélisation d'un système asservi multi-physique	Modifier les paramètres et enrichir le modèle pour minimiser l'écart entre les résultats simulés et les réponses mesurées

	S4325 Systèmes non	Donner les limites de validité d'un modèle
	linéaires	
	Commentaires	
	L'étude des systèmes non linéaires n'est pas au programme. Les activités de simulation et d'expérimentation doivent être l'occasion de mettre en évidence les limites des modèles linéaires (présence de saturation,	
d'hystérésis, de retard,).		ü

C - Résoudre

C1 Choisir une démarche de résolution

Connaissances	Savoir-faire
S432 Systèmes asservis	Proposer une démarche permettant de prévoir les performances d'un système
multi-physiques	asservi
S4324 Contrôle et	Proposer une démarche de réglage d'un correcteur proportionnel
commande d'un système	
asservi	
S411 Lois de mouvement	Proposer une démarche permettant de déterminer une loi de mouvement
S412 Actions mécaniques	Proposer une méthode permettant la détermination des inconnues de liaison
	Proposer une méthode permettant la détermination des paramètres conduisant
	à des positions d'équilibre
S21 Alimenter en énergie	Proposer une méthode de résolution permettant la détermination des courants,
S221 Moduler l'énergie	des tensions, des puissances échangées, des énergies transmises ou stockées
S23 Convertir l'énergie	-

C2 Procéder à la mise en œuvre d'une démarche de résolution analytique

Connaissances	Savoir-faire		
S432 Systèmes asservis	Prévoir les réponses temporelles des systèmes linéaires du premier et second		
multi-physiques	ordre		
S51 Représentation des	Prévoir les réponses fréquentielles des systèmes linéaires		
signaux			
S4323 Performances	Caractériser la stabilité d'un système du premier et du second ordre		
d'un système asservi	Justifier le choix d'un correcteur vis-à-vis des performances attendues		
Commentaires			
On insiste sur le fait qu'un perturbation additive.	système perturbé conserve la même équation caractéristique dans un cas de		
S4324 Contrôle et	Déterminer des paramètres permettant d'assurer la stabilité, en s'appuyant sur		
commande d'un système	les tracés fréquentiels dans le plan de Bode		
asservi	Déterminer l'erreur en régime permanent vis-à-vis d'une entrée en échelon ou		
S51 Représentation des	en rampe (consigne ou perturbation)		
signaux	,		
Commentaires			
Les diagrammes de Black	et de Nyquist ne sont pas au programme.		
Il faut attirer l'attention des	étudiants sur la nécessité de comparer des grandeurs homogènes, par exemple		
la nécessité d'adapter la so	ortie et sa consigne.		
Les théorèmes de la valeur	Les théorèmes de la valeur finale et initiale sont donnés sans démonstration.		
S4323 Performances	Prévoir les performances de rapidité et de précision d'un système linéaire		
d'un système asservi	continu et invariant		
Commentaires			
On insiste sur la dualité ter			
S411 Lois de mouvement	Déterminer la loi entrée-sortie d'une chaîne cinématique simple		
	Déterminer la trajectoire d'un point d'un solide par rapport à un autre		
	Déterminer le vecteur vitesse d'un point d'un solide par rapport à un autre		
	Déterminer le vecteur accélération d'un point d'un solide par rapport à un autre		
	Déterminer les relations de fermeture géométrique et cinématique d'une chaîne		
	cinématique, et résoudre le système associé		
	Déterminer le degré de mobilité et d'hyperstatisme		
Commentaires			
Pour la dérivée d'un vecteur, on insiste sur la différence entre référentiel d'observation et base d'expression			
du résultat.			

	Les méthodes graphiques peuvent être utilisées mais leur maîtrise n'est pas exigée.		
S412 Actions mécaniques	Déterminer les inconnues de liaison		
	Déterminer les paramètres conduisant à des positions d'équilibre		
Commentaires			
	quilibre pour les mécanismes qui présentent des mobilités constitue une première		
	de recherche des équations de mouvement étudié en seconde année.		
	peuvent être utilisées mais leur maîtrise n'est pas exigée.		
S412 Actions mécaniques	Déterminer les inconnues de liaison ou les efforts extérieurs spécifiés dans le cas		
	où le mouvement est imposé		
	Ecrire le torseur dynamique d'un solide en mouvement au centre de masse ou en		
	un point fixe du solide dans un référentiel galiléen		
Commentaires			
Le modèle est isostatique.			
La résolution de ces équa	ations différentielles peut être conduite indirectement par des logiciels adaptés.		
L'accent est alors mis sur la	modélisation, l'acquisition correcte des données et sur l'exploitation des résultats.		
S411 Lois de mouvement	Donner la loi du mouvement sous forme d'équations différentielles dans le cas où		
S412 Actions mécaniques	les efforts extérieurs sont connus		
	Exprimer l'énergie cinétique d'un solide dans un référentiel galiléen		
	Exprimer les puissances extérieures et les inter-efforts		
	Exprimer le théorème de l'énergie-puissance appliqué à tout ou partie des		
	éléments de la chaîne d'énergie		
Commentaires			
	nature des grandeurs extérieures (variables potentielles, variables flux) dans le		
calcul des puissances. On	ne se limite pas à l'utilisation du théorème de l'énergie-puissance sur un solide ou		
un ensemble de solides. Ce	elui-ci peut être appliqué à tout ou partie de la chaîne d'énergie.		
S211 Alimenter en	Construire graphiquement les lois de l'électricité à partir des vecteurs de Fresnel		
énergie			
S231 Actionneurs et pré-			
actionneurs incluant leurs			
commandes			
Commentaires			
	es vecteurs de Fresnel pour la modélisation des sources alternatives		
sinusoïdales et des machin	es électriques synchrones et asynchrones.		
S22 Distribuer et moduler	Déterminer les pertes en conduction dans un interrupteur statique		
l'énergie	Dimensionner un dissipateur thermique		
Commentaires			
Les pertes en commutation	ne font pas l'objet de calculs.		
S42 Solide déformable	Déterminer la répartition des contraintes dans une section droite		
	Vérifier la résistance mécanique d'une poutre droite		
	Déterminer le coefficient de sécurité par rapport aux exigences du cahier des		
	charges fonctionnel		
	Déterminer l'équation de la flèche dans une poutre droite soumise à de la flexion,		
	avec chargements ponctuels ou répartition linéique constante de la charge		
Commentaires			
	ns suivantes : flexion, traction-compression et torsion non combinées.		
S21 Alimenter en énergie	Déterminer les courants et les tensions dans les composants		
et stocker l'énergie	Déterminer les puissances échangées		
S22 Distribuer et moduler	Déterminer les énergies transmises ou stockées		
l'énergie			
Commentaires			
On insiste sur les formes d	'ondes et la qualité de l'énergie.		
S23 Convertir l'énergie	Déterminer les caractéristiques mécaniques de l'actionneur		
Ç	Déterminer le point de fonctionnement		
	·		

C3 Procéder à la mise en œuvre d'une démarche de résolution numérique

Connaissances	Savoir-faire
	Choisir une méthode d'intégration adaptée au modèle à simuler
	Choisir une durée de simulation adaptée au comportement à observer
Commentaires	
On se limite à la comparais	son entre les méthodes à pas fixe et les méthodes à pas variable.
S13 Analyse structurelle	Utiliser le diagramme paramétrique pour renseigner un modèle
	Choisir et justifier le choix des grandeurs simulées
	Qualifier l'influence d'un paramètre sur les performances simulées
Commentaires	
Le choix des grandeurs an	alysées doit être en lien avec le choix des performances à vérifier.
S4222 Approche produits - matériaux - procédés	Mettre en place des simulations d'obtention de pièces brutes par fonderie, injection plastique, forgeage, emboutissage, et de pièces finies par enlèvement de matière
Commentaires	
	les dimensions géométriques des pièces et le choix du procédé.
	simulations est faite avec des outils logiciels adaptés.
On ne fait pas un cours d'études de cas.	spécifique sur les procédés d'obtention mais ces notions sont introduites lors

D – Expérimenter

D1 Découvrir le fonctionnement d'un système pluri-technologique

Connaissances	Savoir-faire
S61 Protocoles expérimentaux	Mettre en œuvre un système dans le respect des règles de sécurité
S2 Chaîne d'énergie S3 Chaîne d'information S13 Analyse structurelle	Identifier les constituants réalisant les fonctions élémentaires de la chaîne d'énergie et d'information Repérer les flux d'entrée et de sortie de chaque constituant, leurs natures (électrique, mécanique, pneumatique, thermique ou hydraulique) et leurs sens de transfert).

D2 Proposer et justifier un protocole expérimental

Connaissances	Savoir-faire
S51 Représentation des	Prévoir l'allure de la réponse attendue
signaux	Prévoir l'ordre de grandeur de la mesure
S61 Protocoles	Choisir les configurations matérielles du système en fonction de l'objectif visé
expérimentaux	Justifier le choix de la grandeur physique à mesurer
	Choisir les entrées à imposer pour identifier un modèle de comportement
S61 Protocoles	Choisir les appareillages et les conditions d'exploitation en adéquation avec la
expérimentaux	législation
S13 Analyse structurelle	Proposer et justifier le lieu de prise de mesures vis-à-vis de l'objectif à atteindre
S31 Acquérir	Qualifier les caractéristiques d'entrée-sortie d'un capteur
l'information : capteurs et	Justifier le choix d'un capteur ou d'un appareil de mesure vis-à-vis de la
détecteurs	grandeur physique à mesurer
	Justifier les caractéristiques d'un appareil de mesure
S3 Chaine d'information	Proposer les paramètres de configuration d'une chaîne d'acquisition (capteurs
	intelligents, conditionneur, réseaux)
S4311 Conditionnement	Prévoir la quantification nécessaire à la précision souhaitée
du signal	Vérifier l'adéquation entre le temps de conversion et la fréquence
	d'échantillonnage

Connaissances	Savoir-faire
S61 Protocoles	Mettre en œuvre un appareil de mesure
expérimentaux	adapté à la caractéristique de la grandeur à mesurer
S3 Chaine d'information	Paramétrer une chaîne d'acquisition en fonction des caractéristiques des
	capteurs et des résultats de mesures attendus
	Paramétrer les constituants d'un réseau local
Commentaires	
On insiste sur le lien exista	nt entre la fréquence d'échantillonnage et les résultats attendus.
S51 Représentation des	Choisir une fenêtre d'observation en fonction des résultats attendus
signaux	
S61 Protocoles	Régler les paramètres de fonctionnement d'un système
expérimentaux	
S2 Chaîne d'énergie	Mesurer les grandeurs potentielles et les grandeurs de flux dans les différents
S13 Analyse structurelle	constituants d'une chaîne d'énergie
S4312 Comportement	Générer un programme et l'implanter dans le système cible
des systèmes logiques	Réaliser une intégration ou une dérivée sous forme numérique (somme et
S4313 Comportement	différence)
des systèmes	
numériques	
Commentaires	
L'influence du temps d'écha	
S61 Protocoles	Mettre en œuvre un système complexe en respectant les règles de sécurité
expérimentaux	Respecter les protocoles expérimentaux
S32 Traiter l'information	Effectuer des traitements (filtrage, régression linéaire, méthode des moindres
	carrés, analyse statistique,) à l'aide de logiciels adaptés à partir des données
	de mesures expérimentales
Commentaires	
On insiste sur la caractérisation du signal en vue d'une comparaison avec les résultats d'une simulation ou	
les spécifications d'un cahi	er des charges (valeur moyenne, valeur efficace,).

E - Concevoir

E1 Imaginer des architectures ou des solutions technologiques

Connaissances	Savoir-faire	
S11 Analyse fonctionnelle S13 Analyse structurelle	Proposer une architecture fonctionnelle de tout ou partie d'un système en vue de sa conception	
	Proposer une architecture structurelle de tout ou partie d'un système en vue de sa conception	
S52 Schématisation des solutions	Elaborer la maquette numérique de la partie étudiée du produit en intégrant les contraintes fonctionnelles d'assemblage	
S53 Représentation géométrique du réel		
Commentaires		
	sur les modeleurs volumiques sont abordées. Les outils « 3D » sont privilégiés. ut être le point de départ d'une conception.	
S11 Analyse fonctionnelle	Proposer des évolutions sous forme fonctionnelle	
S4312 Comportement	Modifier une programmation à l'aide des outils graphe d'états, logigramme ou	
des systèmes logiques	algorigramme	
S4313 Comportement		
des systèmes		
numériques		
Commentaires	Commentaires	
	On utilisera une approche graphique pour la programmation.	
Les langages VHDL ou VE	RILOG ne sont pas au programme.	

E2 Choisir une solution technologique

Connaissances	Savoir-faire
S2 Chaîne d'énergie	Choisir un convertisseur en fonction des transferts énergétiques souhaités
S23 Convertir l'énergie	Choisir un actionneur adapté à la solution constructive
S4324 Contrôle et	Choisir un correcteur adapté aux performances attendues
commande d'un système	Discrétiser un correcteur analogique
asservi	
Commentaires	
L'amélioration des performa	ances apportée par le correcteur est illustrée.
On montre l'influence de la	période d'échantillonnage sur les résultats attendus.
S12 Impact	Choisir un matériau ou une famille de matériau avec des objectifs multicritères
environnemental	
S422 Caractéristiques	
des matériaux	
S2 Chaîne d'énergie	Proposer et hiérarchiser des critères de choix d'une solution technique
S3 Chaîne d'information	Choisir et justifier la solution technique retenue
S12 Impact	
environnemental	

Commentaires

Critères de choix de la solution technique retenue :

pour la chaîne d'énergie :

- critère énergétique (rendement, autonomie, réversibilité) ;
- rigidité, déformation ;
- durée de vie ;
- impact environnemental;

pour la chaîne d'information :

- débit binaire ;
- topologie;
- nature des grandeurs d'entrées/sorties.

Une notion économique peut être introduite.

Le choix de solutions techniques vis-à-vis d'autres critères peut être étudié à partir de documents ressources fournis.

E3 Dimensionner une solution technique

Connaissances	Savoir-faire
S2 Chaîne d'énergie S3 Chaîne d'information	Dimensionner les constituants de la chaîne d'énergie et de la chaîne d'information à partir d'une documentation technique

Commentaires

Dimensionnement sur critères énergétiques :

- couple (effort) thermique équivalent ;
- critère pV.

Dimensionnement sur critère de déformation/contraintes :

- flèche maximale ;
- coefficient de sécurité.

Dimensionnement sur critère de rapidité et de capacité

- convertisseurs analogiques numériques ;
- mémoires ;
- débit binaire.

Le dimensionnement d'une solution technique vis-à-vis d'autres critères peut être étudié à partir de documents ressources fournis.

F - Réaliser

F1 Réaliser et valider un prototype ou une maquette

Connaissances	Savoir-faire
S62 Réalisation	Réaliser un prototype de tout ou partie d'un système en vue de valider
	l'architecture fonctionnelle et structurelle
Commentaires	
Les solutions de prototypag	ge rapide sont privilégiées (imprimante 3D, cartes de développement).
S4324 Contrôle et	Mettre en place un asservissement à l'aide de constituants numériques
commande d'un système	
asservi	
Commentaires	
La structure est limitée à de	eux boucles imbriquées.
S62 Réalisation	Valider les choix des composants vis-à-vis des performances attendues Analyser les facteurs d'échelle et les proportions des grandeurs influentes
000 0 / 11 / 11	
S62 Réalisation	Mesurer des caractéristiques dimensionnelle et géométrique de pièces Définir les méthodes de mesures
Commentaires	
L'instrument de mesure est laissé au choix des étudiants.	

F2 Intégrer des constituants dans un prototype ou une maquette

Connaissances	Savoir-faire	
S62 Réalisation	Assembler un ou plusieurs constituants pour permettre de répondre à une	
	fonction technique	
Commentaires		
L'approche constituant est favorisée par rapport à l'approche composant.		
S4313 Comportement	Mettre en œuvre des composants programmables à l'aide d'un outil graphique	
des systèmes	de description (graphe d'état, algorigramme,) en y intégrant les constituants	
numériques	réalisant les interfaces entre les grandeurs d'entrées et de sorties	
S13 Analyse structurelle	Identifier le ou les élément(s) limitant(s) du point de vue des performances	
	globales du prototype	

G – Communiquer

G1 Rechercher et traiter des informations

Connaissances	Savoir-faire
	Extraire les informations utiles d'un dossier technique
	Effectuer une synthèse des informations disponibles dans un dossier technique
	Vérifier la nature des informations
	Définir les critères de tri des informations
	Trier les informations selon des critères
	Distinguer les différents types de documents en fonction de leurs usages
S52 Schématisation des	Lire et interpréter un schéma
solutions	
Commentaires	
Les normes de représentat	ion des schémas sont fournies.
S43 Modélisation des	Lire et interpréter un diagramme
systèmes multi-physiques	
Commentaires	
Les normes de représentation du langage SysML sont fournies, la connaissance de la syntaxe n'est pas	
exigible.	

G2 Choisir les contenus et l'outil de description adapté

Connaissances	Savoir-faire
	Cibler le contenu de la communication et choisir l'outil de description adapté
Commentaires On insiste sur la pertinence de la représentation des informations (courbes, tableau, carte heuristique,). Un dessin à main levée peut constituer un outil de description performant.	

G3 Afficher et communiquer des résultats

Connaissances	Savoir-faire	
	Utiliser les outils de communication adaptés à son auditoire	
Commentaires		
Les outils numériques sont	privilégiés.	
	Avoir une attitude conforme à l'éthique	
Respecter son temps de parole		
	Être attentif aux réactions de son auditoire	
	Faire preuve d'écoute et confronter des points de vue	
	Être capable de reformuler un questionnement	
	Synthétiser des informations sous une forme écrite ou orale	

ANNEXE : liste des connaissances associées aux compétences

S1		Outils d'analyse
S11		· ·
S11		Analyse fonctionnelle Impact environnemental
S12		Analyse structurelle
S2		•
		Chaîne d'énergie
S21		Alimenter en énergie et stocker l'énergie
S22	S221	Distribuer et moduler l'énergie
	S221 S222	Moduler l'énergie Distribuer l'énergie
S23	3222	Convertir l'énergie
323	S231	Actionneurs et pré-actionneurs associés incluant leurs commandes
S24	3231	Transmettre l'énergie
024	S241	Liaisons mécaniques
	S241	Composants mécaniques de transmission
S3	0272	Chaîne d'information
S31		
S31		Acquérir l'information : capteurs et détecteurs Traiter l'information
332		S321 Traitement analogique de l'information
		S321 Traitement analogique de l'information S322 Systèmes programmables
S33		Communiquer l'information : transport et transmission de l'information
		S331 Conditionnement du signal
		S332 Modes de transmission
		S333 Réseaux
S4		Comportement des systèmes
S41		Solide indéformable
041	S411	Lois de mouvement
	S412	Actions mécaniques
	0112	S4121 Approche statique
		S4122 Approche dynamique
		S4123 Approche énergétique
S42		Solide déformable
	S421	Comportement du solide déformable
	S422	Caractéristiques des matériaux
		S4221 Caractéristiques physiques des matériaux
		S4222 Approche produits-matériaux-procédés
S43		Modélisation des systèmes multi-physiques
	S431	Systèmes de commande
		S4311 Conditionnement du signal
		S4312 Comportement des systèmes logiques
	0.400	S4313 Comportement des systèmes numériques
	S432	Systèmes asservis multi-physiques
		S4321 Modélisation d'un système asservi multi-physique S4322 Représentation et identification d'un système asservi
		S4323 Performances d'un système asservi
		S4324 Contrôle et commande d'un système asservi
		S4325 Systèmes non linéaires
S5		Représentation des produits
S51		Représentation des signaux
S52		Schématisation des solutions
S53		Représentation géométrique du réel
S6		Protocoles expérimentaux et réalisation
S61		Protocoles expérimentaux
S62		Réalisation

S1 Outils d'analyse S11 Analyse fonctionnelle

/ tilal)	
Besoin à satisfaire	

Cycle de vie du produit.

Expression fonctionnelle du besoin.

Frontière d'étude.

Cahier des charges fonctionnel.

Architecture fonctionnelle.

Diagramme des exigences.

Diagramme des cas d'utilisation.

Commentaires et limitations

L'analyse fonctionnelle, outil indispensable à la conception et à la réalisation de produits compétitifs, constitue un moyen de situer une problématique technique et fournit un cadre structurant des connaissances visées par le programme, quel que soit le champ disciplinaire abordé. La sensibilisation aux différents outils est abordée à travers quelques exemples pertinents et par la mise en situation systématique des objets d'études lors des TD ou des TP.

Sur un système complexe, l'analyse et la description fonctionnelle doivent être partielles. L'étude se limitera donc à une seule chaîne d'énergie dans le cas d'un système complexe.

S12 Impact environnemental

<u> </u>	impact environmental		
	Frontière de l'étude.	1	
	Contraintes de l'environnement.	1	
	Bilan carbone.	1	
	Analyse du Cycle de Vie (ACV).	1	
Commentaires et limitations			
L'ana	lyse du cycle de vie se limite à l'étude d'un produit simple-ou d'une partie d'un système.		

\$13 Analyse structurelle

-			
Lugaramma da blaca	diagramma da blac	s internes, diagramme	noromótrialio
Thadianine de diocs	. CIACIAIIIIE DE DIOC	S IIII EI II ES CIACIAI III II E	· Dalamemone

Diagramme chaîne d'énergie-chaîne d'information.

Architecture structurelle.

Nature des flux : variables potentielles (tension, vitesse, température...) et variables de flux (courant, force ou couple, flux thermique...).

Architecture fonctionnelle des produits et systèmes : chaîne d'énergie, chaîne d'information. Relations entre chaîne d'énergie et chaîne d'information : grandeurs physiques à acquérir et ordres de commande.

Fonctions élémentaires d'une chaîne d'énergie : alimenter, distribuer ou moduler, convertir, transmettre et agir sur la matière d'œuvre.

Fonctions élémentaires d'une chaîne d'information : acquérir, traiter et communiquer.

Nature, caractéristiques et flux des éléments transformés par le produit : Matière, Énergie et Information.

Homogénéité des chaînes fonctionnelles et compatibilité des paramètres d'interface entre les différentes fonctions d'une chaîne.

1

1

1

S2	Chaîne d'énergie
S21	Alimenter en énergie et stocker l'énergie

<u>S21</u>	Alimenter en énergie et stocker l'énergie		
	Sources d'énergies.	2	
	Variables potentielles, variables de flux.	2	
	Grandeurs physiques disponibles.	2	
	Constituants de distribution.	2	
	Sens de transfert de l'énergie, modes de fonctionnement.	2	
	Batteries, super-condensateurs.	2	
	Charges inertielles.		3
	Pour les solutions électriques :		
	- réseaux de distribution monophasé et triphasé équilibré ;	2	
	- réseaux embarqués : piles, panneaux solaires et accumulateurs (différentes technologies et	2	
	leurs principales applications).	_	
	Adaptation des niveaux de tension et isolement galvanique (transformateur monophasé parfait).	2	
	Pour les solutions pneumatiques et hydrauliques :		
	- accumulateurs ;		3
	- pompes.		3

Commentaires et limitations

Les transformateurs seront étudiés en physique à partir d'un modèle linéaire sans pertes. En SII, ils sont utilisés dans le cadre de l'étude de systèmes en faisant référence au cours de physique.

On se limite à l'identification des caractéristiques fonctionnelles fondamentales en entrée et en sortie en vue d'obtenir les performances attendues.

On insiste sur la qualité de l'énergie (contenu harmonique, taux de distorsion).

On insiste sur l'intérêt des super condensateurs dans le stockage et la fourniture d'énergie pour des applications particulières.

S22 Distribuer et moduler l'énergie

S221 Moduler l'énergie (convertisseurs statiques d'énergie)

Nature et caractéristiques des grandeurs physiques d'entrée et de sortie : continu ou alternatif, source de courant ou tension parfaite.	2	
Caractéristiques statique et dynamique des interrupteurs.	2	
Réversibilités (quadrants de fonctionnement).	2	
Règles d'association des sources parfaites – transformation de la nature d'une source.	2	
Pertes par conduction.	2	
Dissipateur thermique.	2	
Pour les solutions électriques relatives à l'entraînement des machines tournantes :		
- conversion alternatif – continu ;	2	
- conversion continu – continu ;	2	
- conversion continu – alternatif.		3

Commentaires et limitations

Voir annexe « outils mathématiques » pour les développements en série de Fourier.

On limite les études aux convertisseurs statiques directs, non isolés. Les convertisseurs statiques au programme sont les hacheurs série, parallèle et 4 quadrants, l'onduleur de tension et les montages redresseurs PD2 et PD3. Dans le cadre d'une démarche pédagogique, les montages PD2 et PD3 sont abordés à partir des montages P2 et P3.

Les caractéristiques statiques des interrupteurs sont limitées aux composants à 2 et 3 segments. Les critères de choix se limitent aux grandeurs électriques et aux nombres de segments.

L'étude de la dissipation se fait en régime permanent.

On montre l'intérêt de la commande MLI du point de vue de la qualité de l'énergie. Les développements en série de Fourier seront fournis.

S222 Distribuer l'énergie

Nature et caractéristiques des grandeurs physiques d'entrée et de sortie	2	
Pour les solutions hydrauliques et pneumatiques : distributeurs.		

S23 Convertir l'énergie

S231 Actionneurs et pré-actionneurs associés incluant leurs commandes

Caractéristiques d'entrée et de sortie.	2	
Modes de fonctionnement, réversibilités (quadrants de fonctionnement).	2	
Domaines d'application.	2	
Principe de la conversion électromécanique.		
Bilan de puissance.	2	.
Caractéristiques mécaniques.	2	
Association convertisseur-machine-charge.	2	
Pour les solutions techniques électriques :		
- machine à courant continu à excitation séparée ou à aimant permanent ;	2	.
- machine synchrone triphasée ;		
- machine asynchrone triphasée à cage.		

Commentaires et limitations

Voir annexe « outils mathématiques » pour les équations non linéaires.

Voir annexe « outils mathématiques » pour les projections d'un vecteur (diagramme de Fresnel).

En physique, les actionneurs électromécaniques sont présentés dans un cadre limitatif essentiellement expérimental.

En SII, les modèles des actionneurs électriques sont donnés sans justification.

Pour la machine à courant continu, le modèle présenté est de type RLE (résistance d'induit R, inductance d'induit L, et force contre électromotrice E).

Pour la machine asynchrone triphasée, le modèle étudié est un modèle statique monophasé composé de l'inductance magnétisante L, de la résistance rotorique ramenée au stator et de l'inductance de fuite rotorique ramenée au stator. Seules les commandes scalaires en U/f et en courant sont étudiées.

Pour la machine synchrone triphasée, le modèle statique étudié est le modèle monophasé composé de l'inductance cyclique L_s , de la résistance statorique R_s , et de la force contre électromotrice à vide E_v . Pour le modèle dynamique, la commande vectorielle est présentée avec un modèle simplifié dans le plan (d,q) $(L_d = L_n)$.

On insiste sur la nécessité d'une commande en couple des actionneurs électromécaniques Pour les actionneurs hydrauliques, le fluide est considéré incompressible.

S24 Transmettre l'énergie

S241 Liaisons mécaniques

Nature des liaisons obtenues. Surfaces fonctionnelles.	1	
Caractérisation : niveau de qualité, tenue aux efforts et vitesse relative admissible.	•	4
Pour les solutions techniques (1):		
- assemblages démontables et permanents ;	2	
- guidages en rotation par glissement et par éléments roulants ;	2	
- guidages en translation par glissement et par éléments roulants.	2	

Commentaires et limitations

Les différentes solutions techniques doivent être abordées en TD ou en TP dans le cadre de la réalisation de problématiques plus générales portant sur un système.

Les points suivants ne sont pas au programme : le collage, le frettage, les calculs des organes filetés précontraints, les calculs par pincement, par déformation élastique ou par coincement, les calculs des clavettes, les guidages hydrostatiques et hydrodynamiques.

Les points suivants ne sont pas évaluables : l'étanchéité et la lubrification des guidages.

Les calculs de durée de vie des roulements, dans le cas d'une utilisation continue sans variation de la vitesse de rotation, font uniquement l'objet de calculs de vérification à partir de documents constructeur et des formules qui seront données.

(1) Les solutions les plus courantes permettant la réalisation des liaisons mécaniques sont étudiées à l'aide de leurs surfaces et conditions fonctionnelles dans le but de mettre en évidence leurs principales caractéristiques : niveau de gualité, tenue aux efforts et vitesse relative admissible.

S242 Composants mécaniques de transmission

Caractérisation cinématique de la transmission : mobilités, loi d'entrée-sortie et réversibilité.	1	
Puissances d'entrée, de sortie et rendement en un point de fonctionnement.		3
Pour les solutions techniques (1):		
transmissions sans transformation de mouvement :	2	
- sans modification de la fréquence de rotation ;		
- avec modification de la fréquence de rotation ;		
transmissions avec transformation de mouvement.	2	
	ł	

Commentaires et limitations

Les différentes solutions techniques doivent être abordées en TD ou en TP dans le cadre de la réalisation de problématiques plus générales portant sur un système.

(1) Les solutions les plus courantes permettant la transmission de mouvement sont étudiées et comparées dans le but de mettre en évidence leurs caractéristiques cinématiques et leurs rendements.

S3 Chaîne d'information

S31 Acquérir l'information : capteurs et détecteurs

331	Acquem i information : capteurs et detecteurs		
Place du cap	oteur dans la chaîne d'information.	1	
Fonctions de	base et structure fonctionnelle de la chaîne d'acquisition de l'information	1	
(principes ph	ysiques de l'acquisition de l'information).	'	
Nature des in	nformations d'entrée et de sortie.	1	
Caractéristiq	ues métrologiques : étendue de mesure, sensibilité, résolution, justesse, fidélité, précision	2	
et temps de	réponse.		
Paramètres	d'un capteur communicant.		4
Commontoi	roa at limitations		

Commentaires et limitations

Les caractéristiques analogiques du capteur sont étudiées en physique.

S32 Traiter l'information

S321 Traitement analogique de l'information		
Filtrage (1).	1	
Opérations élémentaires (addition, soustraction, multiplication, saturation) (2).	1	
Conversions A/N et N/A : approche fonctionnelle (3).	1	
S322 Systèmes programmables		
Structure fonctionnelle des systèmes programmables.	2	
Pour les solutions techniques :		
microcontrôleur, circuit logique programmable.	2	

Commentaires et limitations

- (1) La fonction filtrage est présentée en physique. En SII, l'opération de filtrage se limite à une approche par gabarit. Les filtres sont mis en œuvre dans le contexte de la mesure sur un système.
- (2) Les ALI sont traités en physique à partir d'un modèle parfait en tant que structure. En SII, seule une approche fonctionnelle est utilisée. Le comportement fréquentiel des ALI, en particulier le produit gain x bandepassante, est étudié dans le cas d'un système asservi avec une fonction de transfert en boucle ouverte du 1^{er} ordre.
- (3) L'étude des conversions analogique—numérique se limite en physique à l'aspect expérimental. En SII, la dualité temps-fréquence sera faite avec une approche fonctionnelle dans le cadre de l'association bloqueur ordre 0 et échantillonneur.

S33 Communiquer l'information : transport et transmission de l'information

S331 Conditionnement du signal		
Caractéristiques principales : bande passante et atténuation.	1	
Modulation et démodulation d'amplitude (1).		4
Modulation de largeur d'impulsion (MLI).	2	
S332 Modes de transmission		
Modes de transmission série : mise en œuvre d'une transmission série asynchrone.		1
Topologie, sens de transfert.	1	4
S333 Réseaux(2)	1	
Architecture matérielle et fonctionnelle des réseaux : supports de l'information, topologie, sens de	1	4
transfert.		
Caractéristiques d'un canal de transmission.		4
Multiplexage temporel et fréquentiel.		4
Notion de protocole : rôle des champs dans une trame.	1	
Architecture protocolaire : organisation en couches fonctionnelles.		4
Adressage physique et logique d'un constituant.		4
Pour les solutions techniques : les paires torsadées, les fibres optiques et les liaisons sans fil.		4

Commentaires et limitations

S4

- (1) On se limite à l'approche fonctionnelle sans aborder les aspects technologiques. La modulation et démodulation d'amplitude numérique est réalisée par simulation ou autour de systèmes réels.
- (2) On se limite à une approche qualitative des techniques de multiplexage (temporel et fréquentiel).

L'analyse porte sur les caractéristiques principales du support de transmission : bande passante et atténuation. On se limite à la couche application du modèle OSI.

On se limite aux protocoles de la couche transport (UDP et TCP).

Comportement des systèmes

S41		Solide indéformable			
	S411	Lois de mouvement			
	Mouvement d'un solide, trajectoire d'un point d'un solide.				
	Vecteur position, vecteur vitesse et vecteur accélération.				
	Torseur cinématique associé à une liaison.		1	ļ	
	Liaison équivalente à une association de deux liaisons en série ou en parallèle.		1		
	Loi d'entrée-sortie en vitesse et en position d'un système.		1		
Degré de mobilité et degré d'hyperstatisme (1).		2			
	Conditions	s géométriques associées à l'hyperstatisme.		2	

Commentaires et limitations

Voir annexe « outils mathématiques » pour les projections d'un vecteur.

Voir annexe « outils mathématiques » pour le produit vectoriel.

Voir annexe « outils mathématiques » pour les fonctions.

Voir annexe « outils mathématiques » pour la géométrie (vecteurs et systèmes de coordonnées).

(1) Le degré de mobilité et le degré d'hyperstatisme sont nécessaires à l'interprétation des résultats de simulations numériques.

On met également en évidence qu'un degré d'hyperstatisme non nul induit soit une ruine prématurée du système par un phénomène de fatigue, voire une impossibilité d'assembler les pièces, si aucune précaution n'est prise, soit la nécessité de mettre en place une cotation rigoureuse et plus contraignante que pour un système isostatique, ou un dispositif de réglage (montage des roulements à contacts obliques par exemple). La conclusion dans ce cas étant un surcoût dans la réalisation du produit qu'il faut justifier par l'intérêt ou la nécessité d'avoir recours à une solution hyperstatique.

S412 Actions mécaniques

Modélisation des actions mécaniques.

Nature : action mécanique de contact et action mécanique à distance (gravité et magnétique).

Modèle local du contact : notion de densité surfacique de charge et modèles de répartition sur une surface de contact (sans frottement et avec frottement - lois de Coulomb) (1).

Modèle global des actions transmissibles par une liaison parfaite ou non parfaite : torseur associé.

S4121 Approche statique

Conditions d'utilisation et application du Principe Fondamental de la Statique.

Théorème des actions réciproques.

Méthodologie : isolement, bilan des actions mécaniques extérieures, application du Principe Fondamental de la Statique (PFS) et résolution (2).

Commentaires et limitations

Voir annexe « outils mathématiques » pour les équations algébriques.

- (1) Les points suivant ne sont pas au programme : la théorie de Hertz ainsi que la résistance au pivotement et au roulement.
- (2) Une méthode de résolution graphique peut être utilisée dans le cas d'un solide soumis à deux ou trois actions mécaniques modélisables par des glisseurs coplanaires non parallèles.

S4122 Approche dynamique

Grandeurs inertielles : centre d'inertie, masse, opérateur d'inertie / matrice associée et théorème de Huygens (1).

Grandeurs cinétiques : torseur cinétique, torseur dynamique et énergie cinétique.

Conditions d'utilisation et application du Principe Fondamental de la Dynamique par rapport à un référentiel galiléen.

Méthodologie : isolement, bilan des actions mécaniques extérieures, application du Principe Fondamental de la Dynamique (PFD) et résolution.

S4123 Approche énergétique

Puissances développées par les actions mécaniques extérieures à l'ensemble isolé dans son mouvement par rapport à un référentiel galiléen.

Puissances développées à l'intérieur de l'ensemble isolé.

Utilisation du théorème de l'énergie cinétique galiléenne.

Notion de pertes de puissance et rendement global en un point de fonctionnement.

Méthodologie : isolement, bilan des puissances, application du théorème de l'énergie cinétique galiléenne et résolution.

Commentaires et limitations

Voir annexe « outils mathématiques » pour les équations quelconques.

En physique l'approche dynamique est vue au semestre 2 dans un cadre limitatif (solide en rotation ou translation par rapport à un axe fixe).

Voir annexe « outils mathématiques » pour le barycentre d'un système de points.

Voir annexe « outils mathématiques » pour le calcul matriciel.

(1) En SII, la forme de la matrice d'inertie peut être demandée mais les valeurs des moments et produits d'inertie sont données.

S42 Solide déformable

S421 Comportement du solide déformable

Flexion simple, torsion simple, traction–compression.

Sollicitations, contraintes, déformations. Torseur de cohésion.

Coefficient de sécurité, résistance mécanique.

Commentaires et limitations

Les sollicitations ne seront pas combinées.

2

2

2

2

2

3

3

3

3

3

3

3

3

3

4

4

4

S422 Caractéristiques des matériaux

S4221 Caractéristiques physiques des matériaux		
Caractéristiques dans les domaines de l'électricité, du thermique, de l'acoustique et de la		3
mécanique.		
Matériaux composites.		4
Nano matériaux.	1	4
Familles de matériaux (1).	1	3
	1	
S4222 Adéquation produits-matériaux-procédés		
Procédés d'obtention des produits (2).	2	
Paramètres influents du procédé : matériaux, géométrie, précision.	2	
Choix d'un matériau en fonction du design du produit.		3
Démarche de choix du couple matériaux-procédé.		4

Commentaires et limitations

- (1) Les familles de matériaux retenus sont les métalliques, céramiques, organiques et composites. Une présentation des propriétés communes à chaque famille est à privilégier.
- (2) Les principes et caractéristiques des procédés d'obtention sont abordés en simulation avec des outils informatiques adaptés. Les procédés au programme sont la fonderie, l'injection plastique, le forgeage, l'emboutissage et l'enlèvement de matière.

S43 Modélisation des systèmes multi-physiques

S431 Systèmes de commande

S4311 Conditionnement du signal		
Filtrage analogique passif : réalisation de filtres passifs (1).	2	
Dualité temps / fréquence (2).	2	
Conversions analogique-numérique et numérique-analogique, caractéristiques : fréquence	2	
d'échantillonnage, et résolution (3).	_	
S4312 Comportement des systèmes logiques (4)	1	
Identification des entrées / sorties.	1	
Notion d'état logique, de fonctions logiques.	1	
Description d'un système logique par une table de vérité (5) ou d'un logigramme.	1	
Description d'un système logique par un graphe d'état (6).		
Notions d'état, transitions et variables.	1	
S4313 Comportement des systèmes numériques (7)	1	
Identification des entrées / sorties.	1	
Adressage des variables.	1	
Boucles.	1	
Transitions conditionnelles.	1	
Fonctions.	1	
Description d'un système numérique par algorigramme (8).	1	

Commentaires et limitations

- (1) On se limite au filtre RC et RL. Les filtres actifs ne sont pas au programme.
- (2) On insiste sur le lien entre les caractéristiques fréquentielles et temporelles pour le traitement d'un signal.
- (3) Seules les caractéristiques fondamentales sont exposées (nombre de bits, période d'échantillonnage, temps de conversion). Les structures internes des CAN et des CNA sont hors programme. Le théorème de Shannon est donné sans démonstration. Pour les convertisseurs analogique-numérique, la présence d'un filtre anti-repliement est précisée et justifiée sans calcul.
- (4) Les outils de simulations graphiques sont utilisés pour réaliser les fonctions logiques complexes, étant entendu que celles-ci sont intégrées dans des circuits logiques programmables et ne se présentent pas sous forme de composants discrets. Les langages de description tels que le VHDL ou Verilog ne sont pas au programme.
- (5) La simplification des fonctions logiques n'est pas au programme sauf dans des cas évidents.
- (6) Les règles de représentation des graphes sont fournies. L'encapsulation n'est pas au programme. Les bascules et les registres à décalage ne sont pas au programme.
- (7) La gestion des interruptions n'est pas abordée.
- (8) Seules les structures algorithmiques de base sont étudiées. La mise en œuvre de ces structures peut être l'occasion de réaliser des correcteurs numériques avec des intégrations et dérivations numériques.

S4321 Modélisation d'un système asservi multi-physique (1) (2) Introduction - aspects généraux. Buts et motivations, exemples. 1 Définition et structure d'un système asservi : chaîne directe et chaîne de retour. Consigne et perturbations. Asservissement - régulation. Définition des performances : stabilité, précision et rapidité. Modélisation et comportement des systèmes linéaires continus et invariants. Notions de systèmes linéaires continus et invariants. Modélisation par équations différentielles. Représentation par fonction de transfert : forme canonique, gain, ordre et classe. Systèmes du 1^{er} et du 2nd ordre : réponses temporelle (échelon et signal sinusoïdal) et fréquentielle (diagramme de Bode uniquement). S4322 Représentation et identification d'un système asservi Systèmes linéaires, continus et invariants. Linéarisation autour d'un point de fonctionnement. Représentation par schémas-blocs. Fonctions de transfert en boucle ouverte et en boucle fermée, influence des perturbations. Représentation dans le plan de Bode (asymptotique et réel) (3). Identification des systèmes linéaires continus et invariants : modélisation et identification paramétrique à l'aide d'une réponse indicielle et/ou d'une réponse harmonique pour les systèmes du 1^{er} et du 2nd ordre. Position des pôles dans le plan complexe. Pôles dominants et réduction du modèle. S4323 Performances d'un système asservi Stabilité en BO: position des pôles, marges de phase et de gain dans le plan de Bode (4). Précision: erreur en régime permanent pour une réponse indicielle ou rampe. Effet d'une action intégrale dans la chaîne directe. Rapidité : temps de réponse à 5 %, dépassement et bande passante en boucle ouverte. S4324 Contrôle et commande d'un système asservi (5) Correction des systèmes asservis, classe d'une fonction de transfert. 3 Effets sur les performances. Régulateurs P, PI, avance de phase. Discrétisation d'un correcteur (6). S4325 Systèmes non linéaires (7) Hystérésis. Saturation. Seuil. Retard.

Commentaires et limitations

Voir annexe « outils mathématiques » pour les équations différentielles.

Voir annexe « outils mathématiques » pour la représentation des fonctions.

- (1) L'outil mathématique utilisé est la transformée de LAPLACE. Sa présentation se limite à son énoncé et aux propriétés du calcul symbolique strictement nécessaires à ce cours. Le théorème de la valeur finale est donné sans démonstration. La transformée de Laplace inverse est hors programme.
- (2) Les systèmes multi-physiques sont limités aux domaines de l'électricité, de la mécanique et de la thermique. Une approche par simulation (module non causal) est privilégiée.
- (3) Les représentations dans les plans de Nyquist et de Black sont hors programme.
- (4) La définition de la stabilité est faite au sens : Entrée Bornée, Sortie Bornée (EB/SB) ou en terme de position des pôles. Pour l'étude de la stabilité des systèmes d'ordre 3 notamment, l'usage d'outil informatique est indispensable en vue de déterminer les pôles. Le critère de Routh est hors programme.
- (5) La synthèse complète des correcteurs est hors-programme.
- (6) La transformée en z n'est pas au programme. Les correcteurs numériques sont déterminés par la méthode de la discrétisation de l'équation différentielle d'ordre 2 au maximum.
- (7) L'étude théorique des systèmes non linéaires est hors programme. La mise en évidence des non linéarités est faite lors des activités expérimentales ou au travers de simulations.

S5 Représentation des produits S51 Représentation des signaux

Représentation logique : binaire et hexadécimale des nombres entiers et nombres réels (positif et négatif, virgule fixe et flottante simple précision).

Représentations temporelle (chronogramme) et fréquentielle (spectre), représentation dans le plan complexe.

2

Commentaires et limitations

Ces notions sont introduites en fonction des besoins pédagogiques et ne font pas l'objet d'un cours spécifique.

S52 Schématisation des solutions

Schéma cinématique, schéma cinématique minimal (1), schéma d'architecture (2).

Représentation schématique de la structure des chaînes fonctionnelles (mécaniques, électriques, hydrauliques et pneumatiques):
- schémas électriques (3), hydrauliques et pneumatiques;
- graphe de structure;
- schéma informatique : description graphique.

Commentaires et limitations :

- (1) C'est le schéma minimal qui permet la description des mouvements.
- (2) Le schéma d'architecture traduit la réalité technique de réalisation des liaisons et permet de calculer les actions mécaniques.
- (3) Seuls les constituants étudiés dans le programme sont à identifier.

S53 Représentation géométrique du réel

Dessin et croquis à main levée d'une solution.

Représentation d'une solution constructive en 3D par un modeleur volumique.

Assemblage sous contrainte.

Cotation GPS, MMT.

Utilisation de bibliothèques d'éléments standards.

Commentaires et limitations

Seules les notions de bases sur les modeleurs volumiques sont abordées (création d'une pièce simple, assemblage et visualisation d'une maquette numérique).

Aucune connaissance affiliée aux normes des dessins techniques n'est évaluable.

S6 Protocoles expérimentaux et réalisation S61 Protocoles expérimentaux Environnement du système. Mise en œuvre d'un système, paramètres de fonctionnement d'un système. Choix des appareils de mesures (position, calibre, période d'échantillonnage, précision). Amplitude des grandeurs, caractéristiques fréquentielle et temporelle. Respect des normes de sécurité, protection des biens et des personnes. Respect d'un protocole expérimental.

S62 Réalisation

_	702	
	Prototypage rapide.	3
	Prototype.	3
	Facteurs d'échelle, grandeurs influentes.	3
	Assemblage des constituants.	3
	Programmation des constituants.	3
	Mise en œuvre d'un réseau.	3
	Caractéristiques dimensionnelle et géométrique de pièces.	3
	Méthodes de mesures.	3

Appendice aux programmes de physique-chimie et de sciences industrielles de l'ingénieur de TSI « Outils mathématiques »

Au niveau des classes préparatoires, le rôle structurant des outils fournis par les mathématiques est incontournable en physique-chimie et en sciences industrielles de l'ingénieur, mais il convient d'éviter les dérives formelles ou calculatoires : le recours au calcul analytique doit être limité aux cas les plus simples et on utilisera des outils de calcul numérique ou formel dans tous les autres cas, y compris dans certains cas où des calculs analytiques seraient a priori possibles mais hors de portée des étudiants du fait de leur longueur ou de leur technicité.

Afin de cibler au mieux la formation et l'évaluation, cette annexe liste les outils mathématiques dont une bonne maîtrise est indispensable pour que les objectifs de formation des programmes de physique-chimie et de sciences industrielles de l'ingénieur puissent être pleinement atteints. Le niveau d'exigence requis est systématiquement précisé pour chaque outil afin d'éviter toute dérive.

L'apprentissage de ces outils doit être réparti sur l'année en fonction de l'avancement des cours en ayant un souci permanent de contextualisation. Ceci suppose notamment une concertation au sein de l'équipe pédagogique.

Dans le cas où d'autres outils seraient ponctuellement nécessaires, il conviendrait de les mettre à disposition des étudiants sous une forme opérationnelle (formulaires...) et de faire en sorte que leur manipulation ne puisse pas constituer un obstacle.

OUTILS	NIVEAU D'EXIGENCE
1. Equations algébriques	
Système linéaire de n équations à p inconnues	Identifier un nombre minimal d'inconnues, confronter au nombre d'équations indépendantes disponibles. Exprimer la dépendance dans le seul cas n = p = 2. Résoudre analytiquement dans le seul cas n = p = 2. Utiliser des outils numériques ou formels dans les autres cas. Exemples : systèmes d'ordre 3 : n = p = 3 en mécanique (statique du solide).
Équation non linéaire	Discuter graphiquement dans le cas où l'équation se présente sous la forme $f(x) = g(x)$ de l'égalité de deux fonctions f et g classiques. Résoudre, dans le cas général, à l'aide d'un outil numérique. Exemples: point de fonctionnement d'un actionneur associé à sa charge, d'un générateur associé à sa charge.

OUTILS	NIVEAU D'EXIGENCE
2. Equations différentielles	
Équation différentielle linéaire du premier et du second ordre à coefficients constants	Identifier l'ordre, expliciter les conditions initiales. Exploiter l'équation caractéristique. Prévoir le caractère borné ou non des solutions de l'équation homogène (critère de stabilité). Mettre une équation sous forme canonique. L'écriture de l'équation différentielle doit permettre la vérification de l'homogénéité des grandeurs physiques. Tracer numériquement l'allure du graphe des solutions en tenant compte des conditions initiales (CI). Résoudre analytiquement (solution complète) dans le seul cas d'une équation du premier ordre et d'un second membre constant. Obtenir analytiquement (notation complexe) le seul régime sinusoïdal forcé dans le cas d'un second membre sinusoïdal. Mettre en évidence l'intérêt d'utiliser la notation complexe dans le cas d'un régime forcé sinusoïdal. Déterminer le module et la phase des grandeurs. Mettre en évidence les notions de régime libre, régime permanent, régime forcé et régime transitoire. Exemples: électrocinétique, mécanique, thermique
Équation quelconque	Intégrer numériquement avec un outil fourni. Exemples: équations issues du principe fondamental de la dynamique.

OUTILS	NIVEAU D'EXIGENCE
3. Fonctions	
Fonctions usuelles	Exponentielle, logarithme népérien et décimal,
	cosinus, sinus, tangente, $x \to x^2$, $x \to \frac{1}{x}$, $x \to \sqrt{x}$.
Dérivée	Interpréter géométriquement la dérivée. Dériver une fonction composée. Rechercher un extrémum. Exemples : phénomène de résonance, couple
	maximum d'une machine asynchrone.

Primitive et intégrale	Interpréter l'intégrale comme une somme de contributions infinitésimales.
Valeurs moyenne et efficace	Exprimer la valeur moyenne sous forme d'une intégrale. Connaître la valeur moyenne sur une période des fonctions cos, sin, cos² et sin². Interpréter l'intégrale en termes d'aire algébrique pour des fonctions périodiques simples. Exemples: fonctions périodiques constantes par morceaux pour les convertisseurs statiques.
Représentation graphique d'une fonction	Utiliser un grapheur pour tracer une courbe d'équation donnée. Déterminer un comportement asymptotique; rechercher un extremum. Utiliser des échelles logarithmiques; identifier une loi de puissance en échelle log-log. Exemples: réponses fréquentielles (diagramme de Bode).
Développements limités	Connaître et utiliser la formule de Taylor à l'ordre un ou deux ; interpréter graphiquement. Connaître et utiliser les développements limités usuels au voisinage de 0 jusqu'au premier ordre non nul : (1+x) ^α , exponentielle, sinus, cosinus, logarithme népérien.
Développement en série de Fourier d'une fonction périodique	Utiliser un développement en série de Fourier fourni via un formulaire. Mettre en évidence les propriétés de symétrie dans le domaine temporel (demi-période).

OUTILS	NIVEAU D'EXIGENCE
4. Géométrie	
Vecteurs et systèmes de coordonnées	Exprimer algébriquement les coordonnées d'un vecteur. Utiliser les systèmes de coordonnées cartésiennes et cylindriques. Exemple : repérage d'un point dans l'espace en cinématique.
Projection d'un vecteur et produit scalaire	Interpréter géométriquement le produit scalaire et connaître son expression en fonction des coordonnées dans une base orthonormée. Utiliser la bilinéarité et le caractère symétrique du produit scalaire. Exemples: projection en mécanique dans un repère, diagramme de Fresnel.

Produit vectoriel	Interpréter géométriquement le produit vectoriel et connaître son expression en fonction des coordonnées dans une base orthonormée directe. Utiliser la bilinéarité et le caractère antisymétrique du produit vectoriel. Faire le lien avec l'orientation des trièdres. Exemples : calcul des moments, dérivation des vecteurs unitaires.
Transformations géométriques	Utiliser les symétries par rapport à un plan, les translations et les rotations. Connaître leur effet sur l'orientation de l'espace.
Courbes planes	Reconnaître l'équation cartésienne d'une droite et d'un cercle. Utiliser la représentation polaire d'une courbe plane ; utiliser un grapheur pour obtenir son
Courbes planes paramétrées	tracé ; interpréter l'existence de points limites ou d'asymptotes à partir de l'équation $r=f(\theta)$. Reconnaître les équations paramétriques $x=ax\cos(\omega x)$ et $y=ax\sin(\omega x-\varphi)$ d'une ellipse et la tracer dans les cas particuliers : $\varphi=0, \ \varphi=\frac{\pi}{2}$ et $\varphi=\pi$. Tracer une courbe paramétrée à l'aide d'un
	grapheur.
Longueurs, aires et volumes classiques	Connaître les expressions du périmètre du cercle, de l'aire du disque, de l'aire d'une sphère, du volume d'une boule, du volume d'un cylindre.
Barycentre d'un système de points	Connaître la définition du barycentre. Utiliser son associativité. Exploiter les symétries pour prévoir la position du barycentre d'un système homogène. Exemple: recherche d'un centre de gravité d'un solide.

OUTILS	NIVEAU D'EXIGENCE
5. Trigonométrie	
Angle orienté	Définir une convention d'orientation des angles dans un plan et lire des angles orientés. Relier l'orientation d'un axe de rotation à l'orientation positive des angles de rotation autour de cet axe.

Fonctions cosinus, sinus et tangente	Utiliser le cercle trigonométrique et l'interprétation géométrique des fonctions trigonométriques cosinus, sinus et tangente comme aide-mémoire : relation $\cos^2 x + \sin^2 x = 1$, relations entre fonctions trigonométriques, parités, valeurs des fonctions pour les angles usuels. Connaître les formules d'addition et de duplication des cosinus et sinus ; utiliser un formulaire dans les autres cas. Passer de la forme $A \times \cos(\omega t) + B \times \sin(\omega t)$ à la forme $C \times \cos(\omega t - \varphi)$
Nombres complexes et représentation dans le plan. Somme et produit de nombres complexes	Calculer et interpréter géométriquement la partie réelle, la partie imaginaire, le module et l'argument d'un nombre complexe. Exemples : diagramme de Fresnel. Application aux systèmes triphasés : $\underline{a} = e^{i\frac{2\pi}{3}} 1 + \underline{a} + \underline{a}^2 = 0$
Calcul matriciel (en SII uniquement)	Effectuer le produit d'une matrice par un vecteur Exemple : calcul du moment dynamique. Choisir une base pour simplifier la structure d'une matrice. Exemple : simplification d'une matrice d'inertie.