Characterizing Deterministic-Prover Zero Knowledge

Nir Bitansky

Tel Aviv University

Arka Rai Choudhuri

Johns Hopkins University

Completeness: $\forall x \in \mathcal{L}$, verifier accepts.

(Computational) Soundness

Zero Knowledge

Completeness

(Computational) Soundness: $\forall x \notin \mathcal{L}$, no PPT prover \mathcal{S} can make the verifier accept.

Zero Knowledge

Completeness

(Computational) Soundness

Zero Knowledge: Verifiers 3 3 Simulator

Completeness (Computational) Soundness

Zero Knowledge: ∀ Verifiers 3 ∃ Simulator 3

Completeness (Computational) Soundness

Zero Knowledge: ∀ Verifiers 3 ∃ Simulator 3

Completeness

(Computational) Soundness

Zero Knowledge: Verifiers 3 3 Simulator

Many Flavors of Zero-Knowledge (ZK)

Many Flavors of Zero-Knowledge (ZK)

Many Flavors of Zero-Knowledge (ZK)

Deterministic Prover Zero Knowledge (DPZK)

Deterministic Prover Zero Knowledge (DPZK)

Is prover randomness essential for zero knowledge?

Limitations of DPZK [Golreich-Oren'94]

Limitations of DPZK [Golreich-Oren'94]

Impossible for non-trivial languages.

Prior Work

[Faonio-Nielsen-Venturi'17]

```
Witness encryption for \mathcal{L} \Longrightarrow Honest-verifier DPZK for \mathcal{L} Hash proof system for \mathcal{L} \Longrightarrow Honest-verifier DPZK proofs for \mathcal{L}
```

Prior Work

[Faonio-Nielsen-Venturi'17]

Witness encryption for $\mathcal{L} \Longrightarrow$ Honest-verifier DPZK for \mathcal{L} Hash proof system for $\mathcal{L} \Longrightarrow$ Honest-verifier DPZK proofs for \mathcal{L}

[Dahari-Lindell'20]

Doubly enhanced injective OWFs \Longrightarrow Honest-verifier DPZK proofs for NP Inefficient honest prover.

Malicious-verifier DPZK for languages that have an entropy guarantee from witnesses.

Impossible for non-trivial languages.

Assuming NIWIs + sub-exponentially secure iO + OWF, there exist two message DPZK arguments for NP \(\cappa\) coNP against bounded auxiliary-input verifiers.

Also assuming sub-exponentially secure keyless CRHF, there exist two message DPZK arguments for all of NP against bounded auxiliary-input verifiers.

Assuming NIWIs + sub-exponentially secure iO + OWF, there exist two message DPZK arguments for NP \(\cappa\) coNP against bounded auxiliary-input verifiers.

Also assuming sub-exponentially secure keyless CRHF, there exist two message DPZK arguments for all of NP against bounded auxiliary-input verifiers.

Any DPZK argument for a language \mathcal{L} implies a witness encryption for \mathcal{L} .

Two Message DPZK Arguments

Witness Encryption for \mathcal{L} **Deterministic Decryption** WE.Enc WE.Dec $\operatorname{ct}_{x,m}$ *→* m/⊥ $ct_{x,m}$

 $ct_{x,u}$

 $u \leftarrow \{0,1\}^n$ $\operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u)$

 $\tilde{u} \coloneqq \mathsf{WE.Dec}(\mathsf{ct}_{x,u}, w)$

$$u \leftarrow \{0,1\}^n$$

 $\operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u)$

Output 1 iff $u = \tilde{u}$

 $u \leftarrow \{0,1\}^n$ $\operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u)$

Output 1 iff $u = \tilde{u}$

Completeness: From correctness of WE.

 $\tilde{u} \coloneqq \mathsf{WE.Dec}(\mathsf{ct}_{x,u}, w)$

$$u \leftarrow \{0,1\}^n$$

 $\operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u)$

Output 1 iff $u = \tilde{u}$

Completeness

Soundness: From WE security when $x \notin \mathcal{L}$

$$u \leftarrow \{0,1\}^n$$

 $\operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u)$

Output 1 iff $u = \tilde{u}$

Completeness

Soundness: From WE security when $x \notin \mathcal{L}$

$$u \leftarrow \{0,1\}^n$$

 $\operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u)$

Output 1 iff $u = \tilde{u}$

Completeness Soundness

Honest Verifier Zero Knowledge: Simulator knows u

Explainable Verifier DPZK

There exist honest verifier coins that explains verifier messages as honest messages.

Unlike related notion of semi-malicious adversaries, these coins may be hard to find.

Explainable Verifier DPZK

There exist honest verifier coins that explains verifier messages as honest messages.

Unlike related notion of semi-malicious adversaries, these coins may be hard to find.

Simulator no longer "knows" the message that an explainable verifier encrypts via the Witness Encryption.

Aux-I/P DPZK for explainable verifiers also ruled out by [Goldreich-Oren'94]

There exist honest verifier coins that explains verifier messages as honest messages.

Unlike related notion of semi-malicious adversaries, these coins may be hard to find.

Simulator no longer "knows" the message that an explainable verifier encrypts via the Witness Encryption.

Aux-I/P DPZK for explainable verifiers also ruled out by [Goldreich-Oren'94]

Idea: Use additional trapdoor statement that only the simulator can use.

$$u \leftarrow \{0,1\}^n$$

 $\operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u)$

Output 1 iff $u = \tilde{u}$

$$u \leftarrow \{0,1\}^n \qquad \qquad R \leftarrow \{0,1\}^N$$

$$\operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u) \qquad \widetilde{\operatorname{ct}}_{R,u} \leftarrow \operatorname{WE.Enc}_R(u)$$

$$N \gg b$$

Output 1 iff $u = \tilde{u}$

 $(R, M) \in \operatorname{Rel}_{\tilde{L}}$ if 1) M is a Turing Machine that outputs R. 2) Size of M is $b + \lambda$

$$\begin{array}{c} u \leftarrow \{0,1\}^n \\ \operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u) \end{array} \qquad \begin{array}{c} R \leftarrow \{0,1\}^N \\ \widetilde{\operatorname{ct}}_{R,u} \leftarrow \operatorname{WE.Enc}_R(u) \end{array}$$

$$N \gg b$$

Output 1 iff $u = \tilde{u}$

 $(R, M) \in \operatorname{Rel}_{\tilde{L}}$ if 1) M is a Turing Machine that outputs R. 2) Size of M is $b + \lambda$

$$\begin{array}{c} u \leftarrow \{0,1\}^n \\ \operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u) \end{array} \qquad \begin{array}{c} R \leftarrow \{0,1\}^N \\ \widetilde{\operatorname{ct}}_{R,u} \leftarrow \operatorname{WE.Enc}_R(u) \end{array}$$

$$N \gg b$$

Output 1 iff $u = \tilde{u}$

Completeness: Same as HVZK

- $(R, M) \in Rel_{\tilde{\mathcal{L}}}$ if
 - 1) M is a Turing Machine that outputs R.
 - 2) Size of M is $b + \lambda$

$$\begin{array}{c} u \leftarrow \{0,1\}^n \\ \operatorname{ct}_{x,u} \leftarrow \operatorname{WE.Enc}_x(u) \end{array} \qquad \begin{array}{c} R \leftarrow \{0,1\}^N \\ \widetilde{\operatorname{ct}}_{R,u} \leftarrow \operatorname{WE.Enc}_R(u) \end{array}$$

$$N \gg b$$

Output 1 iff $u = \tilde{u}$

Completeness

Soundness: w.h.p. no short machine exists to satisfy $Rel_{\tilde{L}}$

 $(R, M) \in Rel_{\tilde{\mathcal{L}}}$ if

- 1) M is a Turing Machine that outputs R.
- 2) Size of M is $b + \lambda$

Output 1 iff $u = \tilde{u}$

Completeness Soundness

Zero Knowledge: Simulator uses the verifier's code as witness; verifier's randomness simulated by a PRG.

 $(R, M) \in Rel_{\tilde{\mathcal{L}}}$ if

- 1) M is a Turing Machine that outputs R.
- 2) Size of M is $b + \lambda$

 $Rel_{\tilde{L}}$ is not an NP relation since we do not a priori bound the running time of M.

Efficient Witness Encryption for $Rel_{\tilde{L}}$ can be realized assuming indistinguishability obfuscation for Turing Machines.

$$u \leftarrow \{0,1\}^n$$
 $R \leftarrow \{0,1\}^N$ $ct_{x,u} \leftarrow \text{WE.Enc}_x(u)$ $ct_{R,u} \leftarrow \text{WE.Enc}_R(u)$ $N \gg b$

Output 1 iff $u = \tilde{u}$

$$(R, M) \in Rel_{\tilde{\mathcal{L}}}$$
 if

- 1) M is a Turing Machine that outputs R.
- 2) Size of M is $b + \lambda$

Malicious Verifier DPZK

Verifier proves honest behavior

Malicious Verifier DPZK

Verifier proves honest behavior

$\mathcal{L} \in \mathsf{NP} \cap \mathsf{coNP}$

Verifier proves via NIWI that

- 1. It behaved honestly; OR
- 2. $x \notin \mathcal{L}$

Malicious Verifier DPZK

Verifier proves honest behavior

$\mathcal{L} \in \mathsf{NP} \cap \mathsf{coNP}$

Verifier proves via NIWI that

- 1. It behaved honestly; OR
- 2. $x \notin \mathcal{L}$

$\mathcal{L} \in \mathsf{NP}$

Verifier proves via NIWI that

- 1. It behaved honestly; OR
- 2. It has committed to a collision of keyless CRHF.

Necessity of Witness Encryption for DPZK

[Faonio-Nielsen-Venturi'17]

 $(v_1, p_1) \leftarrow V(x)$

Reject if $\tilde{p}_1 \neq p_1$

[Faonio-Nielsen-Venturi'17]

Verifier (x)

$$(v_1, p_1) \leftarrow V(x)$$

Reject if $\tilde{p}_1 \neq p_1$

$$(v_2, p_2) \leftarrow V(x, v_1, p_1)$$

Reject if $\tilde{p}_2 \neq p_2$

[Faonio-Nielsen-Venturi'17]

Verifier (x)

$$(v_1, p_1, \dots, v_\ell, p_\ell) \leftarrow V(x)$$

Reject if
$$\tilde{p}_1 \neq p_1$$

Reject if
$$\tilde{p}_2 \neq p_2$$

[Faonio-Nielsen-Venturi'17]

Verifier (G_0, G_1)

$$b \leftarrow \{0,1\}, \pi \leftarrow \Pi_n$$

Reject if $\tilde{b} \neq b$

Predictable argument for Graph Non-Isomorphism

DPZK to WE

[Faonio-Nielsen-Venturi'17]

DPZK to WE

[Faonio-Nielsen-Venturi'17]

DPZK to PA

Prover (x, w)

Behaves identically to the DPZK prover

Verifier (x)

Verifier rejects if HVZK simulator does not produce accepting transcript

Reject if
$$\tilde{p}_1 \neq p_1$$

Reject if
$$\tilde{p}_2 \neq p_2$$

DPZK to PA

Prover (x, w)

Behaves identically to the DPZK prover

Completeness: From the ZK property, the simulator and (real) DPZK prover generate the same messages.

Verifier (x)

$$(v_1, p_1, \dots, v_\ell, p_\ell; r) \leftarrow (x)$$

Verifier rejects if HVZK simulator does not produce accepting transcript

Reject if $\tilde{p}_1 \neq p_1$

Reject if
$$\tilde{p}_2 \neq p_2$$

DPZK to PA

Completeness

Soundness: If the verifier does not reject, the cheating prover generates an accepting transcript when $x \notin \mathcal{L}$, breaking soundness of the ZK protocol.*

Verifier (x)

Verifier rejects if HVZK simulator does not produce accepting transcript

Reject if $\tilde{p}_1 \neq p_1$

Reject if $\tilde{p}_2 \neq p_2$

*implicitly assumed that simulated random coins are pseudorandom when $x \notin \mathcal{L}$.

Other Results

Any DPZK argument for bounded auxiliary input verifiers can be made two message, and laconic in the prover message.

Follows from the transformation on predictable arguments in [Faonio-Nielsen-Venturi'17]. We show that the transformations preserve zero-knowledge.

There exist two message DPZK arguments for all of NP against bounded auxiliary-input verifiers.

Any DPZK argument for a language $\mathcal L$ implies a witness encryption for $\mathcal L$.

There exist two message DPZK arguments for all of NP against bounded auxiliary-input verifiers.

Any DPZK argument for a language \mathcal{L} implies a witness encryption for \mathcal{L} .

Thank you. Questions?

Arka Rai Choudhuri achoud@cs.jhu.edu

ia.cr/2020/1160