Strojno učenje - 1. Međuispit

1.

- a) Objasniti razliku između nadziranog i nenadziranog učenja.
- b) Kakvi su neparametarski postupci? Jeli regresija neparametarski postupak? Zašto?

2.

Želimo naučiti Booleovu funkciju u prostoru primjera $X=\{0,1\}^3$. Razmatramo tri modela: H_1 je skup svih logičkih funkcija, H_2 je skup logičkih funkcija prikazivih u konjunktivnoj normalnoj formi s točno dva konjunkta (npr. $h(x_1, x_2, x_3)=((x_1 \lor \neg x_2) \land (x_2 \lor x_3))$, a H_3 je linearan model u R^3 . Skup primjera za učenje je:

 $D = \{((0,0,0),1), ((0,0,1),1), ((0,1,0),1), ((0,1,1),0), ((1,0,1),0)\}.$

- a) Odredite $|H_1|$ te objasnite odnose (prema relaciji \subset) između skupova H_1, H_2, H_3 .
- **b**) Neka je hipoteza h ϵ H_3 definirana s h(x_1, x_2, x_3)=1($x_3 < 0.5$). Koji od primjera iz D zadovoljava hipoteza h, koji su primjeri konzistentni s h te kolika je empirijska pogreška (E(h|D))?
- c) Formalno definirati relaciju \geq_g . Za hipotezu $h_1(x_1, x_2, x_3) = (x_1 \rightarrow (x_2 \land x_3))$ i hipotezu $h_2(x_1, x_2, x_3) = 1(x_3 \leq 0.5)$ dokažite da vrijedi $h_1 \geq_g h_2$.
- **d**) Formalno definirajte prostor inačica. Koje hipoteze iz H_3 čine prostor inačica za gore navedeni skup primjera D i koja je od njih najopćenitija?
- e) Objasniti ideju aktivnog učenja. Koji bi upit algoritam trebao generirati za prostor inačica u gornjem slučaju?
- f) Objasniti što je induktivna pristranost i koje vrste pripadnosti postoje. Kakvu vrstu pristranosti predstavlja odabir modela H_1 , a kakvu odabir modela H_2 ?

3.

- a) Formalno definirajte razdjeljivanje primjera i VC-dimenziju modela H.
- **b**) Izvedite VC- dimenziju za model $h(x_1, x_2 | \Theta_0, \Theta_1, \Theta_2) = sgn(\Theta_1 x_1 + \Theta_2 x_2 + \Theta_0)$. Jeli model s tako malom VC-dimenzijom primjenjiv u praksi i zašto?
- c) Pokažite da je VC-dimenzija sljedećeg modela barem 4: $h(x_1, x_2 | \Theta_{x_1}, \Theta_{y_1}, \Theta_{x_2}, \Theta_{y_2}) = 1((\Theta_{x_1} \le x_1 \le \Theta_{x_2}) \land (\Theta_{y_1} \le x_2 \le \Theta_{y_2})).$
- **d)** U nekom prostoru primjera X razmatramo 2 modela, H_1 i H_2 , takva da $H_1 \cap H_2 \neq \emptyset$. Neka VC(H_1)=2 i VC(H_2)=5. Odredite vrijednost (ili skup mogućih vrijednosti) za VC($H_1 \cup H_2$) odnosno VC ($H_1 \cap H_2$) te obrazložite odgovor.

4.

a) Izvedite jednadžbe za parametre w_0 i w_1 linearno regresijskog modela $h(x|w_0,w_1)=w_1x+w_0$ uz funkciju gubitka: $L(y^{(i)},h(x^{(i)}|w_0,w_1))=(y^{(i)}-h(x^{(i)}|w_0,w_1))^2$.

b) Neka je skup primjera generiran (nama u stvarnosti nepoznatom funkcijom) $f(x) = 6x^2-4x-2-\epsilon$, gdje je ϵ slučajan, uniformno distribuiran šum. Za regresiju koristimo polinom 5. Stupnja. Objasniti kako parametri w_i optimalne hipoteze ovise o (i) broju primjera i (ii) količini šuma.

5.

- a) Objasniti pojmove generalizacije, prenaučenosti i podnaučenosti.
- **b**) Skicirajte odnos empirijske pogreške i pogreške generalizacije u ovisnosti o složenosti modela te ukratko objasniti odabir modela unakrsnom provjerom.
- c) Odabrali smo model H i naučili hipotezu koja minimizira empirijsku pogrešku. Unakrsnom provjerom ustanovili smo da je pogreška generalizacije približno izjednačena s empirijskom pogreškom. Što možemo zaključiti o modelu H (u smislu generalizacije) i što možemo očekivati ako povećamo složenost modela odnosno broj primjera?
- **6.** Tu je bio još neki uvodni tekst....

i	tipkovnica	OS	rezolucija	$y^{(i)}$
1	ima	Android	visoka	1
2	nema	Android	niska	0
3	nema	Android	visoka	1
4	nema	WP7	visoka	0

Uporabom CE algoritma naći prostor inačica. Skicirati dobiveni prostor inačica i uređaj općenitosti hipoteza. Primjere obraditi zadanim redoslijedom, u svakom koraku ispisati sadržaj S i G i ukratko objasniti što se događa.