

Ma/CS 6a

Class 7: More BFS

By Adam Sheffer

- Problem. Given a database of every actor and the movies that s\he played in, how can we compute everybody's Bacon numbers?
- We build the actors graph, and run the BFS algorithm from Kevin Bacon's vertex.

- The output is a BFS tree, containing only shortest paths from s.
 - A rooted tree with root s.

BFS: The Main Idea

- A queue Q holds the vertices that are currently gray. At first $Q = \{s\}$.
- At each step, take out a vertex $u \in Q$ and for every edge e adjacent to u.
 - If the other vertex of e is gray or black, do nothing.
 - If the other vertex of e is white, color it gray and insert it into Q.
- After going over all of u's edges, color u
 black, and move to the next vertex in Q.

BFS: Pseudocode

The BFS Tree

- We keep only edges that correspond to a π field of some vertex.
- We now prove that this results in a rooted tree of shortest paths from s.

• Using the π values, how can we find a shortest path between s and v?

$$v, \pi[v], \pi[\pi[v]], \cdots, s$$

Shortest Paths

- $\delta(s, v)$ the length of the shortest path between s and v.
- If there's no path between these two vertices, then $\delta(s, v) = \infty$.
- To prove the correctness of the BFS algorithm, we need to prove that for every v ∈ V:

$$d[v] = \delta(s, v).$$

• Claim 1. Given a graph G = (V, E) and an edge $(u, v) \in E$, then

$$\delta(s, v) \le \delta(s, u) + 1.$$

Examples.

$$2 = \delta(s, c) \le \delta(s, e) + 1 = 3$$

$$3 = \delta(s, d) \le \delta(s, c) + 1 = 3$$

Proof of Warm-up Claim

- Claim 1. Given a graph G = (V, E) and an edge $(u, v) \in E$, then $\delta(s, v) \leq \delta(s, u) + 1$.
- Proof.
 - If there are no paths between s and u, then $\delta(s,v)=\delta(s,u)=\infty$.
 - \circ Otherwise, there is a path of length $\delta(s,u)$ between s and u. Adding the edge (u,v) at the end of this path results in a path from s to v of length $\delta(s,u)+1$.

• Claim 2. At every step of the BFS algorithm, and for every $v \in V$, we have $d[v] \ge \delta(s, v)$.

Proof of $d[v] \ge \delta(s, v)$

- Proof. By induction on the number of vertices discovered by the algorithm:
 - Basis: at first the claim holds since d[s] = 0 and $d[v] = \infty$ for any other $v \in V$.
 - Step: when discovering vertex v by examining an edge going out of u:
 - $\circ d[v] = d[u] + 1 \ge \delta(s, u) + 1 \ge \delta(s, v)$

Induction hypothesis

Claim 1

- Claim 2. At every step of the BFS algorithm, and for every $v \in V$, we have $d[v] \ge \delta(s, v)$.
- How does this help us in proving the correctness of the BFS algorithm?
 - If suffices to claim that at the end of the algorithm $d[v] \leq \delta(s, v)$ for every v.

Erdős-Bacon Numbers

 The Erdős-Bacon number of a person is the sum of his/her Bacon number and Erdős number.

Stephen Hawking E#=4 B#=3 E+B=7

Natalie Portman E#=6 B#=1 E+B=7

Daniel Kleitman E#=1 B#=2 E+B=3

- Claim 3. At any step, if the queue Q consists of $v_1, v_2, ..., v_i$ (in this order), then
- $.\,d[v_1] \leq d[v_2] \leq \cdots \leq d[v_i] \leq d[v_1] + 1$

Proof: Vertices in the Queue

- Claim 3. At any step, if the queue Q consists of $v_1, v_2, ..., v_i$ (in this order), then $d[v_1] \le d[v_2] \le \cdots \le d[v_i] \le d[v_1] + 1$
- **Proof.** By induction on the state of *Q*:
 - Basis: At first only s is in the queue.
 - Step: Assume that the claim holds up to now:
 - Removing the element at the front of Q is OK.
 - When inserting v at the back of Q, and having u at the front, by definition d[v] = d[u] + 1.

- **Theorem.** Running BFS on a graph G and vertex s sets the correct values of d[v] and $\pi[v]$ for every vertex v.
- Proof.
 - If $\delta(s, v) = \infty$ then by claim 2 that $d[v] \ge \delta(s, v) = \infty$.
 - If we discover v during the algorithm, $\delta[v] \neq \infty$, so this never happens and $\pi[v] = \emptyset$.

BFS Correctness (cont.)

- The case where $\delta(s, v) \neq \infty$ is proved by induction on $\delta(s, v)$:
- Basis: The only vertex with $\delta = 0$ is s.
- Step: Assume that this holds for $\delta(s, v) \le k 1$ and consider a vertex u with $\delta(s, u) = k$.
 - By Claim 3 and $\delta(s, u) = k$, the alg. discovers u after discovering every v with $\delta(s, v) = k 1$.
 - Let v be the first vertex that was discovered such that there exists an edge (u, v) and $\delta(s, v) = k 1$.
 - \circ The algorithm discovers v through u and sets d[v]=d[u]+1=k and $\pi[v]=u$.

• Given a graph G = (V, E) and a vertex $s \in V$, the **shortest paths graph** of s is the graph G' = (V, E'), where

 $E' = \{e \in E \mid e \text{ is part of a shortest path from } s\}.$

• **Problem.** Given an undirected graph G = (V, E) and a vertex $s \in V$, find an efficient algorithm for computing the shortest paths graph of s.

Example: Shortest Paths Graph

- Run the BFS algorithm from s, to obtain a shortest paths tree from s.
- There might be shortest paths that are not in this tree!

Levels of the BFS Tree

• The *i'th level* of the BFS tree is the set of vertices $v \in V$ that satisfy d(v) = i.

* This is the origin of the name **B**readth **F**irst **S**earch.

- A graph edge that is not in the BFS tree:
 - Can be between vertices of the same level.
 - Can be between vertices in consecutive levels.
 - Cannot be between vertices not in consecutive levels. That would mean that the lower vertex is in the wrong level.
 - **Example.** Adding the edge (b, d) changes the level of d.

Solution - Second Attempt

 Change the BFS algorithm so that it only removes edges between vertices of the same level.

- **Prove.** An edge e between vertices u, v of respective levels i-1, i is on a shortest path:
 - \circ The length of any shortest path to v is i.
 - There is a path P of length i-1 between s and u.
 - Connecting e to the end of P yields a path of length i to v (i.e., a shortest path).
- We can similarly show that an edge between vertices of the same level cannot participate in a shortest path.

BFS in a Directed Graph

- In a directed graph, a path has to be in the direction of the edges.
- It's not hard to verify that BFS also works for directed graphs.
 - When taking a vertex v out of the queue, consider only edges that come out of v.
- Another difference is that the edges of the BFS tree are directed down.
 - More in Assignment 3...

- **Problem.** Consider a graph G = (V, E) and a vertex $s \in V$. Additionally, every edge is colored either red or blue.
 - We redefine the length of a path as the number of blue edges in it.
 - Perform a *small* change in the BFS algorithm, to work according to this new definition.

$$\delta(s, f) = 0$$
$$\delta(s, d) = 1$$

- Sabbath number a series of musical collaborations to get to the rock band Black Sabbath.
- Erdős-Bacon-Sabbath Numbers:

	Erdős	Bacon	Sabbath	E-B-S
Richard Feynman	3	3	4	10
Carl Sagan	4	2	3	9
Terry Pratchett	4	2	3	9
Condoleeza Rice	6	3	4	13
Buzz Aldrin	6	2	3	11
Natalie Portman	5	2	4	11

