Proofs

April 4, 2025

1 Proofs

1.1 Question 13

1.1.1 Question

- 1. $(x)(y)(z)((Lxy \cdot Lyz) \supset Lxz)$
- 2. $(x)(y)(Kxy \supset Lyx)$

 $\therefore(x)Lxx$

1.1.2 S/I rules strictly

- 1. $(x)(y)(z)((Lxy \cdot Lyz) \supset Lxz)$
- 2. $(x)(y)(Kxy \supset Lyx)$

REFUTE

1.1.3 Resolution proof

- 1. $(x)(y)(z)((Lxy \cdot Lyz) \supset Lxz)$
- $\sim Lxy \lor \sim Lyz \lor Lxz$
- Clauses:

$$- \{ \sim Lxy, \sim Lyz, Lxz \}$$

- 2. $(x)(y)(Kxy \supset Lyx)$
- $\sim Kxy \lor Lyx$
- Clauses:
 - $\{ \sim Kxy, Lyx \}$
- 3. ASM: $\sim (x)Lxx$
- Clauses:
 - $\{ \sim Lxx \}$
- Substitute x = a:
 - $\{ \sim Lay, \sim Lyz, Laz \} \{ \text{from 1} \}$
 - $\{ \sim Kay, Lya \} \{ \text{from } 2 \}$
 - $\sim Laa \{\text{from } 3\}$

- Substitute y = a:
 - $\{ \sim Laa, \sim Laz, Laz \}$
 - $\{ \sim Kaa, Laa \}$
 - $\sim Laa$
- Resolving $\sim Laa$ with $\{\sim Kaa, Laa\}$ gives $\sim Kaa$
- Substitute z = a:
 - $\{ \sim Laa, \sim Laa, Laa \} = \{ \sim Laa, Laa \}$
 - $\sim Kaa$
- Resolving $\sim Laa$ with $\{\sim Laa, Laa\}$ gives $\sim Laa$ or tautology
- Can't resolve $\sim Kaa$ so REFUTE

1.2 Question 15

1.2.1 Question

- 1. $(x)(y)(Lxy \supset (Fx \cdot \sim Fy))$
- $\therefore(x)(y)(Lxy\supset\sim Lyx)$

1.2.2 S/I rules strictly

- 1. $(x)(y)(Lxy \supset (Fx \cdot \sim Fy))$

1.2.3 Resolution proof

- 1. $(x)(y)(Lxy \supset (Fx \cdot \sim Fy))$
- $(\sim Lxy \vee Fx)$
- $(\sim Lxy \lor \sim Fy)$
- Clauses:
 - $\{ \sim Lxy, Fx \}$
 - $\{ \sim Lxy, \sim Fy \}$
- 2. ASM: $\sim (x)(y)(Lxy \supset \sim Lyx)$
- $(\exists x)(\exists y) \sim (Lxy \supset Lyx) = Lxy \cdot Lyx$
- Clauses:
 - -Lxy
 - -Lyx
- Substituting x = a:
 - $\{ \sim Lay, Fa \} \{ \text{from } 1 \}$
 - $\{ \sim Lay, \sim Fy \} \{ \text{from } 1 \}$
 - Lay $\{\text{from }2\}$
 - Lya $\{\text{from } 2\}$
- Substituting y = a:

$$- \{ \sim Laa, Fa \}$$

$$- \{ \sim Laa, \sim Fa \}$$

$$- Laa$$

- Resolving Laa with $\{\sim Laa, Fa\}$ gives Fa
- Resolving Laa with $\{\sim Laa, \sim Fa\}$ gives $\sim Fa$
- Resolving Fa with $\sim Fa$ gives empty clause