CS 70 Discrete Mathematics and Probability Theory Fall 2017 Satish Rao and Kannan Ramchandran

DIS 4B

1 Amaze Your Friends

You want to trick your friends into thinking you can perform mental arithmetic with very large numbers. What are the last digits of the following numbers?

- (a) 11²⁰¹⁷
- (b) 9¹⁰⁰⁰¹
- (c) 3⁹⁸⁷⁶⁵⁴³²¹

Solution:

- (a) 11 is always 1 mod 10, so the answer to (a) is 1.
- (b) 9 is its own inverse mod 10, therefore, if 9 is raised to an odd power, the number will be 9 mod 10. So the answer is 9.

Also notice that $9 \equiv -1 \pmod{10}$ so $9^{10001} \equiv (-1)^{10001} \equiv -1 \equiv 9 \pmod{10}$. In general, $m-1 \equiv -1 \pmod{m}$, so m-1 is always its own inverse. This is a useful trick so you can avoid computing the inverse of m-1 by hand. You can also check that $(m-1)^2 \equiv m^2 - 2m + 1 \equiv 1 \pmod{m}$, which is another proof that m-1 is its own inverse modulo m.

(c) $3^4 = 9^2 = 1 \mod 10$. We see that the exponent $987654321 = 1 \mod 4$ so the answer is 3.

2 Combining Moduli

Suppose we wish to work modulo n = 40. Note that $40 = 5 \times 8$, with gcd(5,8) = 1. We will show that in many ways working modulo 40 is the same as working modulo 5 and modulo 8, in the sense that instead of writing down $c \pmod{40}$, we can just write down $c \pmod{5}$ and $c \pmod{8}$.

- (a) What is 8 (mod 5) and 8 (mod 8)? Find a number $a \pmod{40}$ such that $a \equiv 1 \pmod{5}$ and $a \equiv 0 \pmod{8}$.
- (b) Now find a number $b \pmod{40}$ such that $b \equiv 0 \pmod{5}$ and $b \equiv 1 \pmod{8}$.

CS 70, Fall 2017, DIS 4B

- (c) Now suppose you wish to find a number $c \pmod{40}$ such that $c \equiv 2 \pmod{5}$ and $c \equiv 5 \pmod{8}$. Find c by expressing it in terms of a and b.
- (d) Repeat to find a number $d \pmod{40}$ such that $d \equiv 3 \pmod{5}$ and $d \equiv 4 \pmod{8}$.
- (e) Compute $c \times d \pmod{40}$. Is it true that $c \times d \equiv 2 \times 3 \pmod{5}$, and $c \times d \equiv 5 \times 4 \pmod{8}$?

Solution:

- (a) $8 \equiv 3 \pmod{5}$ and $8 \equiv 0 \pmod{8}$. We can find such a number by considering multiples of 8, i.e. 0, 8, 16, 24, 32, and find that if a = 16, $16 \equiv 1 \pmod{5}$. Therefore 16 satisfies both conditions.
- (b) We can find such a number by considering multiples of 5, i.e. 0, 5, 10, 15, 20, 25, 30, 35, and find that if b = 25, $25 \equiv 1 \pmod{8}$, so it satisfies both conditions.
- (c) We claim $c \equiv 2a + 5b \equiv 37 \pmod{40}$. To see that $c \equiv 2 \pmod{5}$, we note that $b \equiv 0 \pmod{5}$ and $a \equiv 1 \pmod{5}$. So $c \equiv 2a \equiv 2 \pmod{5}$. Similarly $c \equiv 5b \equiv 5 \pmod{8}$.
- (d) We can repeat the same procedure as above, and find that $d = 3a + 4b \equiv 28 \pmod{40}$.
- (e) $c \times d = 37 \times 28 \equiv 36 \pmod{40}$. Note that if $w \equiv x \pmod{n}$ and $y \equiv z \pmod{n}$ then $w \times y \equiv x \times z \pmod{n}$. Therefore we can multiply $c \equiv 2 \pmod{5}$ and $d \equiv 3 \pmod{5}$ to get $c \times d \equiv 2 \times 3 \pmod{5}$. Similarly we can multiply these equations modulo 8 and get $c \times d = 5 \times 4 \pmod{8}$.

3 Baby Fermat

Assume that a does have a multiplicative inverse mod m. Let us prove that its multiplicative inverse can be written as $a^k \pmod{m}$ for some $k \ge 0$.

- (a) Consider the sequence $a, a^2, a^3, \ldots \pmod{m}$. Prove that this sequence has repetitions.
- (b) Assuming that $a^i \equiv a^j \pmod{m}$, where i > j, what can you say about $a^{i-j} \pmod{m}$?
- (c) Prove that the multiplicative inverse can be written as $a^k \pmod{m}$. What is k in terms of i and j?

Solution:

(a) There are only m possible values mod m, and so after the m-th term we should see repetitions.

CS 70, Fall 2017, DIS 4B

(b) We will temporarily use the notation a^* for the multiplicative inverse of a to avoid confusion. If we multiply both sides by $(a^*)^j$ in the third line below, we get

$$a^{i} \equiv a^{j} \qquad (\text{mod } m),$$

$$a^{i-j} \underbrace{a \cdots a}_{j \text{ times}} \equiv \underbrace{a \cdots a}_{j \text{ times}} \qquad (\text{mod } m),$$

$$a^{i-j} \underbrace{a \cdots a \cdot a^{*} \cdots a^{*}}_{j \text{ times}} \equiv \underbrace{a \cdots a \cdot a^{*} \cdots a^{*}}_{j \text{ times}} \qquad (\text{mod } m),$$

$$a^{i-j} \equiv 1 \qquad (\text{mod } m).$$

(c) We can rewrite $a^{i-j} \equiv 1 \pmod{m}$ as $a^{i-j-1}a \equiv 1 \pmod{m}$. Therefore a^{i-j-1} is the multiplicative inverse of $a \pmod{m}$.

CS 70, Fall 2017, DIS 4B 3