BHARAT ACHARYA EDUCATION

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

INTERRUPTS OF 8051

8051 supports **5** interrupts.

2 External Interrupts are on the following pins

INT1

INTO

2 Internal Timer interrupts are:

Timer 1 Overflow Interrupt Timer 0 Overflow Interrupt

1 Serial Port Interrupt (Common for RI or TI)

All interrupts are **vectored** i.e. they cause the program to execute an ISR from a pre-determined address in the Program Memory. #Please refer Bharat Sir's Lecture Notes for this ...

Interrupts are controlled mainly by IE and IP SFR's and also by some bits of TCON SFR.

<u>IE - Interrupt Enable (SFR)</u> [Bit-Addressable As IE.7 to IE.0]

IP - Interrupt Priority (SFR) [Bit-Addressable As IP.7 to IP.0]

MICROPROCESSORS 8051 & ARM

Author: Bharat Acharya Sem V – EXTC Mumbai 2018

Timer Overflow Interrupts (TF1 and TF0)

When any of the 2 **Timers overflow**, their respective bit **TFX** (TF1 or TF0) is **set** in **TCON** SFR. If Timer Interrupts are enabled then the **timer interrupt occurs**.

The **TFX** bits are **cleared** when their respective **ISR** is executed.

Serial Port Interrupt (RI or TI)

While receiving serial data, when a **complete byte** is **received** the **RI** (receive interrupt) bit is set in the **SCON**.

During transmission, when a **complete byte** is **transmitted** the **TI** (transmit interrupt) bit is set in the **SCON**.

ANY of these events can cause the **Serial Interrupt** (provided Serial Interrupt is enabled). The **RI/TI** bit is **not cleared** automatically on **executing** the **ISR**. The program should **explicitly clear** this bit to allow further Serial Interrupts.

External Interrupts (INT1 and INT0)

Pins **INT1** and **INT0** are inputs for external interrupts.

These interrupts can be -ve **edge** or low-**level triggered** depending upon the **ITO and IT1** bit in **TCON** SFR. (ITX = $1 \rightarrow$ -ve edge triggered)

Whew any of these interrupts occur the respective bits **TE1** or **IE0** are **set** in the **TCON** SFR.

If External Interrupts are enabled then the **ISR** is **executed** from the respective address.

Interrupt Sequence

The following sequence is executed to service an interrupt:

Address of next instruction of the main program i.e. PC is Pushed into the Stack.

All **interrupts** are **disabled**, by making EA bit in IE SFR \leftarrow 0.

Program Control is shifted to the **Vector Address** (location) of the **ISR**.

The **ISR begins**.

Returning Sequence

RETI instruction denotes the **end** of the **ISR**.

It causes the processor to **POP** the contents of the Stack Top into the **PC.**

It also re-enables interrupts by making EA bit in IE SFR ← 1.

The main program resumes.

Interrupt Priorities

8051 has only **two priority levels** for the interrupts: **Low** and **High**.

Interrupt priorities are set using the **IP** SFR.

As the name suggests, a high priority interrupt can interrupt a low priority interrupt.

It two or more interrupts at the same level occur simultaneously then priorities are decided as follows:

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

INTERRUPT	PRIORITY	VECTOR ADDRESS
ĪNTO	1	00 03 H
TF0	2	0 0 0 B H
INT1	3	00 13 H
TF1	4	00 1B H
Serial (RI or TI)	5	00 23 H

DIAGRAM FOR INTERRUPTS... OPTIONAL DRAW ONLY IF ASKED

