

BUNDESREPUBLIK DEUTSCHLAND

SFP
28
1993

FF 2
11-3-93

**CERTIFIED COPY OF
PRIORITY DOCUMENT**

Bescheinigung

Die Bayer Aktiengesellschaft in 5090 Leverkusen hat eine Patentanmeldung unter der Bezeichnung

"Mikrobizide Mittel"

am 5. Oktober 1992 beim Deutschen Patentamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Symbole A 01 N 43/653 und B 27 K 3/34 der Internationalen Patentklassifikation erhalten.

München, den 19. August 1993
Der Präsident des Deutschen Patentamts
Im Auftrag

En: P 42 33 337.7

H. Lissner
Lissner

BUNDESREPUBLIK DEUTSCHLAND

SEP
28
1993

H 2
11-3-93

Bescheinigung

Die Bayer Aktiengesellschaft in 5090 Leverkusen hat eine Patentanmeldung unter der Bezeichnung

"Mikrobizide Mittel"

am 5. Oktober 1992 beim Deutschen Patentamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Symbole A 01 N 43/653 und B 27 K 3/34 der Internationalen Patentklassifikation erhalten.

München, den 19. August 1993

Der Präsident des Deutschen Patentamts

Im Auftrag

Aktenzeichen: P 42 33 337.7

Hanser
Hanser

Mikrobizide Mittel

Z u s a m m e n f a s s u n g

Beschrieben wird die Verwendung von α -(4-Chlorphenyl)- α -(1-cyclopropylethyl)-1H-1,2,4-triazol-1-ethanol als Mikrobizid zum Schutz technischer Materialien, sowie diese Verbindung enthaltende Mittel.

BAYER AKTIENGESELLSCHAFT 5090 Leverkusen, Bayerwerk
5 Konzernverwaltung RP LIN/ABC 2. OKT. 1992
Patente Konzern

10

Mikrobizide Mittel

15 Die Anmeldung betrifft die Verwendung der Verbindung
 α -(4-Chlorphenyl- α -(1-cyclopropyl-ethyl)-1H-1,2,4-triazol-1-ethanol (Cyproconazol) als Mikrobizid zum Schutz von technischen Materialien sowie synergistische Mischungen enthaltend diese Verbindung.

20

Es ist bekannt, daß die in der DE-OS 3 406 993 beschriebenen Azolderivate zum Schutz von Pflanzen verwendet werden können.

25 Gegenstand der vorliegenden Anmeldung ist die Verwendung eines Azolderivats der Formel (I)

30

35

5 dessen Metallsalze oder Säureadditionsverbindungen als
Mikrobizid zum Schutz von technischen Materialien.

Das Azolderivat kann nicht nur in Form der freien
Base sondern auch in Form eines Metallsalz-Komplexes
oder als Säureadditions-Salz vorliegen. Als Metallsalz
10 kommen vorzugsweise Salze von Metallen der II. bis IV.
Hauptgruppe und der I. und II. sowie IV. bis VII.
Nebengruppe des Periodensystems in Frage, wobei Kupfer,
Zink, Mangan, Magnesium, Zinn, Eisen, Calcium, Alumi-
nium, Blei, Chrom, Kobalt und Nickel, beispielhaft
15 genannt seien.

Als Anionen der Salze kommen solche in Betracht, die
sich vorzugsweise von folgenden Säuren ableiten:
Halogenwasserstoffsäuren, wie z.B. Chlorwasserstoff-
20 säure und Bromwasserstoffsäure, ferner Phosphorsäure,
Salpetersäure und Schwefelsäure.

Die Metallsalz-Komplexe des Azolderivats können in ein-
facher Weise nach üblichen Verfahren erhalten werden,
25 so z.B. durch Lösen des Metallsalzes in Alkohol, z.B.
Ethanol und Hinzufügen zum Azolfungizid. Man kann Me-
tallsalz-Komplexe in bekannter Weise, z.B. durch Abfil-
trieren isolieren und gegebenenfalls durch Umkristalli-
sieren reinigen.

30 Zur Herstellung von Säureadditionssalzen des Azolderi-
vates kommen vorzugsweise folgende Säuren in Frage: Die
Halogenwasserstoffsäuren, wie z.B. Chlorwasserstoffsäure
und Bromwasserstoffsäure, insbesondere Chlorwasserstoff-

35

säure, ferner Phosphorsäure, Salpetersäure, Schwefel-
5 säure, mono- und bifunktionelle Carbonsäuren und Hy-
droxycarbonsäuren, wie z.B. Essigsäure, Propionsäure,
2-Ethylhexansäure, Buttersäure, Mandelsäure, Oxalsäure,
Bernsteinsäure, 2-Hydroxy-ethan-dicarbonsäure, Malein-
säure, Fumarsäure, Weinsäure, Citronensäure, Salicyl-
10 säure, Sorbinsäure, Milchsäure sowie Sulfonsäuren, wie
z.B. p-Toluolsulfonsäure, 1,5-Naphthalindisulfonsäure,
Alkansulfonsäuren, Benzoesäure und gegebenenfalls
substituierte Benzoesäuren.

15 Die Säureadditions-Salze der Verbindungen können in ein-
facher Weise nach üblichen Salzbildungsmethoden, z.B.
durch Lösung einer Verbindung in einem geeigneten iner-
ten Lösungsmittel und Hinzufügen der Säure, z.B. Chlor-
wasserstoffsäure, erhalten werden und in bekannter
20 Weise, z.B. durch Abfiltrieren, isoliert und gegebenen-
falls durch Waschen mit einem inerten organischen
Lösungsmittel gereinigt werden.

25 Besonders bevorzugt ist die Verbindung (R*, R*)- α -(4-
Chlorphenyl)- α -(1-cyclopropylethyl)1H-1,2,4-triazol-1-
ethanol (Cyproconazol).

Überraschenderweise zeigen diese Verbindungen eine
besonders hohe mikrobizide, insbesondere fungizide Wir-
30 kung, verbunden mit einem breiten Wirkpektrum gegen im
Materialschutz relevante Mikroorganismen; sie sind vor
allem wirksam gegen Schimmelpilze, holzverfärbende und
holzzerstörende Pilze. Beispiellohaft - ohne jedoch zu

limitieren - seien die folgenden Gruppen von Mikro-
5 organismen genannt:

A: Holzverfärbende Pilze:

A1: Ascomyceten:

Ceratocystis wie Ceratocystis minor

10

A2: Deuteromyceten:

Aspergillus wie Aspergillus niger

Aureobasidium wie Aureobasidium pullulans

Dactylium wie Dactylium fusarioides

15

Penicillium wie Penicillium brevicaule oder

Penicillium variabile

Sclerophoma wie Sclerophoma pithyophila

Scopularia wie Scopularia phycomyces

Trichoderma wie Trichoderma viride oder

20

Trichoderma lignorum

A3: Zygomyceten:

Mucor wie Mucor spinorus

25

B: Holzzerstörende Pilze:

B1: Ascomyceten:

Chaetomium wie Chaetomium globosum oder

Chaetomium alba-arenulum

30

Humicola wie Humicola grisea

Petriella wie Petriella setifera

Trichurus wie Trichurus spiralis

35

B2: Basidiomyceten

5 Coniophora wie Coniophora puteana
 Coriolus wie Coriolus versicolor
 Donkioporia wie Donkioporia expansa
 Glenospora wie Glenospora graphii
 Gloeophyllum wie Gloeophyllum abietinum oder
10 Gloeophyllum adoratum oder Gl. protactum oder
 Gloeophyllum sepiarium oder Gl. trabeum
 Lentinus wie Lentinus cyathiformes oder
 Lentinus edodes oder Lentinus lepideus oder
 Lentinus grinus oder L. squarrolosus
15 Paxillus wie Paxillus panuoides
 Pleurotus wie Pleurotis ostreatus
 Poria wie Poria monticola oder Poria placenta
 oder Poria vaillantii oder Poria vaporaria
 Serpula wie Serpula himantoides oder Serpula
20 lacrymans
 Stereum wie Stereum hirsutum
 Tyromyces wie Tyromyces palustris

B3: Deuteromyceten

25 Alternaria wie Alternaria tenius
 Cladosporium wie Cladosporium herbarum

Die Menge des eingesetzten Wirkstoffes ist von der Art und dem Vorkommen der Mikroorganismen der Keimzahl und
30 von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,001 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, des

Wirkstoff, bezogen auf das zu schützende Material,
5 einzusetzen.

Der Wirkstoff kann als solcher, in Form von Konzentra-
ten oder allgemein üblichen Formulierungen wie Pulver,
Granulate, Lösungen, Suspensionen, Emulsionen oder
10 Pasten angewendet werden.

Die genannten Formulierungen können in an sich bekannter
Weise hergestellt werden, z.B. durch Vermischen des
Wirkstoffes mit mindestens einem Lösungs- bzw. Verdün-
15 nungsmittel, Emulgator, Dispergier- und/oder Binde-
oder Fixiermittels, Wasser-Repellent, gegebenenfalls
Sikkative und UV-Stabilisatoren und gegebenenfalls
Farbstoffen und Pigmenten sowie weiteren Verarbei-
tungshilfsmitteln.

20 Als Lösungs- bzw. Verdünnungsmittel kommen organisch-
chemische Lösungsmittel oder Lösungsmittelgemische
und/oder ein polares organisches Lösungsmittel oder Lö-
sungsmittelgemische und/oder ein öliges bzw. ölartiges
25 organisch-chemisches Lösungsmittel oder Lösungsmittel-
gemisch und/oder Wasser mit gegebenenfalls einem Emul-
gator und/oder Netzmittel in Frage. Als übliche schwer-
flüchtige wasserunlösliche ölige oder ölartige Lösungs-
mittel werden vorzugsweise die jeweiligen Mineral-
30 öle/mineralölhaltige Lösungsmittelgemische oder deren
Aromatenfraktionen verwendet. Vorzugsweise seien Test-
benzin, Petroleum oder Alkylbenzole genannt, daneben
Spindelöl und Monochlornaphthalin. Die Siedebereiche
dieser schwerflüchtigen Lösemittel(gemische) über-
35 streichen den Bereich von ca. 170°C bis maximal 350°C.

5 Die vorbeschriebenen schwerflüchtigen ölichen oder ölar-
tigen Lösungsmittel können teilweise durch leichter
flüchtige organisch-chemische Lösungsmittel ersetzt
werden.

10 Zur Herstellung eines Holzschutzmittels wird vorzugs-
weise ein Teil des oben beschriebenen Lösungsmittels
oder Lösungsmittelgemisches durch ein polares organisch-
chemisches Lösungsmittel oder Lösungsmittelgemisch
ersetzt. Vorzugsweise gelangen dabei Lösungsmittel, die
Hydroxylgruppen, Estergruppen, Ethergruppen oder Ge-
15 mische dieser Funktionalität enthalten, zum Einsatz.
Beispielhaft seien Ester oder Glykolether genannt. Als
Bindemittel werden erfindungsgemäß verstanden wasser-
verdünnbare bzw. in organisch-chemischen Lösungsmitteln
lösliche, dispergier- oder emulgierbare Kunstharze, bin-
20 dende trocknende Öle, z.B. auf Basis von Acrylharzen,
Vinylharzen, Polyesterharzen, Polyurethanharzen, Alkyd-
harzen, Phenolharzen, Kohlenwasserstoffharzen, Silikon
harzen. Das benutzte Bindemittel kann als Lösung, Emul-
sion oder Dispersion eingesetzt werden. Vorzugsweise
25 werden Gemische aus Alkydharzen und trockendem pflanz-
lichen Öl verwendet. Besonders bevorzugt sind Alkyd-
harze mit einem Ölanteil zwischen 45 und 70 %.

30 Das erwähnte Bindemittel kann ganz oder teilweise durch
ein Fixierungsmittel(gemisch) oder ein Weichmacher(ge-
misch) ersetzt werden. Diese Zusätze sollen einer Ver-
flüchtigung der Wirkstoffe sowie einer Kristallisation
bzw. Ausfällen vorbeugen. Vorzugsweise ersetzen sie
0,01 bis 30 % des Bindemittels (bezogen auf 100 % des
35 eingesetzten Bindemittels).

Die Weichmacher stammen aus den chemischen Klassen der
5 Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributylphosphat,
Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate
wie Butylstearat und Amylstearat, Oleate wie Butyloleat,
10 Glycerinether oder höhermolekulare Glykolether, Glycerinester sowie p-Toluolsulfonsäureester.

Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinylmethylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.

15 Als Lösungs- bzw. Verdünnungsmittel kommt vorzugsweise Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der obengenannten Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.

20 Technische Materialien sind erfindungsgemäß nicht lebende Materialien, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch den Wirkstoff vor
25 mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papiere und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden
30 können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Bevorzugte technische Materialien im Sinne der Erfindung sind Kleb-

35

5 stoffe, Leime, Papiere und Kartone, Leder, Holz, Holzwerkstoffe, Anstrichmittel, Kühlschmiermittel, wässrige Hydraulikflüssigkeiten und Kühlkreisläufe.

Der Wirkstoff der Formel (I) bzw. diesen enthaltende Mittel bzw. Konzentrate werden vorzugsweise zum Schutz
10 von Holz und Holzwerkstoffen gegen Mikroorganismen, z.B. gegen holzzerstörend oder holzerfärbende Pilze, insbesondere im tropischen Holzschutz eingesetzt.

Unter Holz, welches durch den Wirkstoff der Formel (I)
15 bzw. diese enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen: Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzzäune, Holzverkleidungen, Holzfenster und -türen,
20 Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.

Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.

Der Wirkstoff der Formel (I) wird vorzugsweise mit mindestens einem weiteren antimikrobiell wirksamen Stoff, Fungizid und insbesondere mit anderen Wirkstoffen zur Vergrößerung des Wirkspektrums oder Erzielung besonderer Effekte wie z.B. dem zusätzlichen Schutz vor Insekten gemischt. In vielen Fällen erhält man dabei synergistische Effekt, daß heißt, die Wirksamkeit der

Mischung ist größer als die Wirksamkeit der Einzelkomponenten. Besonders bevorzugte Mischungspartner sind z.B. die folgenden Verbindungen:

5 Sulfenamide wie Dichlofluanid, Tollylfluanid, Folpet, Fluorfolpet;

10 Benzimidazole wie Carbendazim, Benomyl, Fuberidazole, Thiabendazole oder deren Salze;

15 Thiocyanate wie Thiocyanatomethylthiobenzothiazol, Methylenbisthiocyanat;

quartäre Ammoniumverbindungen wie Benzyldimethyltetradecylammoniumchlorid, Benzyldimethyldodecylammoniumchlorid, Didecyldimethylammoniumchlorid;

20 Morpholinderivate wie Tridemorph, Fenpropimorph, Falimorph;

25 Azole wie Triadimefon, Triadimenol, Bitertanol, Tebuconazole, Propiconazole, Azaconazole, Hexaconazole, Prochloraz, Bromuconazole;

30 2-(1-Chlorcyclopropyl)-1-(2-chlorphenyl)-3-(1,2,4-triazol-1-yl)-propan-2-ol;

35 Iodederivate wie Diiodmethyl-p-tolylsulfon, 3-Iod-2-propinyl-alkohol, 4-Chlorphenyl-3-iodpropargylformal, 3-Brom-2,3-diiod-2-propenylethylcarbamat, 2,3,3-Triiodallylalkohol, 3-Brom-2,3-diiod-2-propenylalkohol,

3-Iod-2-propinyl-n-butylicarbamat, 3-Iod-2-propinyl-n-hexylcarbamat, 3-Iod-2-propinyl-cyclohexylcarbamat, 3-Iod-2-propinyl-phenylcarbamat;

5 Phenolderivate wie Tribromphenol, Tetrachlorphenol, 3-Methyl-4-chlorphenol, Dichlorophen, o-Phenylphenol, m-10 Phenylphenol, p-Phenylphenol, 2-Benzyl-4-chlorphenol;

Bromderivate wie 2-Brom-2-nitro-1,3-propandiol;

15 Isothiazolinone wie N-Methylisothiazolin-3-on, 5-Chloro-N-methyl-isothiazolin-3-on, 4,5-Dichloro-N-octylisothiazolin-3-on, N-Octyl-isothiazolin-3-on;

Benzisothiazolinone, Cyclopentenisothiazolinone;

20 Pyridine wie 1-Hydroxy-2-pyridinthion (und ihre Na-, Fe-, Mn-, Zn-Salze), Tetrachlor-4-methylsulfonylpyridin;

Metallseifen wie Zinn-, Kupfer-, Zinknaphthenat,
-octoat, -2-ethylhexanoat, -oleat, -phosphat, -benzoat;

25 Oxide wie Tributylzinnoxid, Cu₂O, CuO, ZnO;

Dialkyldithiocarbamate wie Na- und Zn-Salze von Dialkyl-dithiocarbamaten, Tetramethylthiuramdisulfid;

30 Nitrile wie 2,4,5,6-Tetrachlorisophthalodinitril;

Benzthiazole wie 2-Mercaptobenzothiazol;

35 Chinoline wie 8-Hydroxychinolin und deren Cu-Salze;

5 Borverbindungen wie Borsäure, Borsäureester, Borax;

10 Formaldehyd und Formaldehydabspaltende Verbindungen wie Benzylalkoholmono(poly)-hemiformal, Oxazolidine, Hexahydro-S-triazine, N-Methylolchloracetamid, Paraformaldehyd;

15 Tris-N-(cyclohexyldiaziniumdioxy)-aluminium, N-(Cyclohexyldiaziniumdioxy)-tributylzinn bzw. K-Salze, Bis-N-(cyclohexyldiaziniumdioxy)-kupfer.

20 Als Insektizide werden bevorzugt zugesetzt:

25 Phosphorsäureester wie Azinphos-ethyl, Azinphos-methyl, 1-(4-Chlorphenyl)-4-(O-ethyl,S-propyl)phosphoryloxy-pyrazol, Chlorpyrifos, Coumaphos, Demeton, Demeton-S-methyl, Diazinon, Dichlorvos, Dimethoate, Ethoprophos, Etrimfos, Fenitrothion, Fenthion, Heptenophos, Parathion, Parathion-methyl, Phosalone, Phoxim, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Prothiofos, Sulfprofos, Triazophos und Trichlorphon;

30 Carbamate wie Aldicarb, Bendiocarb, 2-(1-Methylpropyl)-phenylmethylcarbamat, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Isoprocarb, Methomyl, Oxamyl, Pirimicarb, Promecarb, Propoxur und Thiadicarb;

35 Organosiliciumverbindungen, vorzugsweise Dimethyl(phenyl)silyl-methyl-3-phenoxybenzylether wie Dimethyl-(4-ethoxyphenyl)-silylmethyl-3-phenoxybenzylether oder

(Dimethylphenyl)-silyl-methyl-2-phenoxy-6-pyridylmethyl-
5 ether wie z.B. Dimethyl(9-ethoxy-phenyl)-silylmethyl-2-
phenoxy-6-pyridylmethylether oder [(Phenyl)-3-(3-phen-
oxyphenyl)-propyl](dimethyl)-silane wie z.B. (4-Ethoxy-
phenyl)-[3-(4-fluoro-3-phenoxyphenyl-propyl]dimethyl-
silan.

10 Pyrethroide wie Allethrin, Alphamethrin, Bioresmethrin,
Byfenthrin, Cycloprothrin, Cyfluthrin, Decamethrin,
Cyhalothrin, Cypermethrin, Deltamethrin, Alpha-cyano-3-
phenyl-2-methylbenzyl-2,2-dimethyl-3-(2-chlor-2-tri-
15 fluor-methylvinyl)cyclopropancarboxylat, Fenpropathrin,
Fenfluthrin, Fenvalerate, Flucythrinate, Flumethrin,
Fluvalinate, Permethrin, Resmethrin und Tralomethrin;

Nitroimine und Nitromethylene wie 1-[(6-Chlor-3-
20 pyridinyl)-methyl]-4,5-dihydro-N-nitro-1H-imidazol-2-
amin (Imidacloprid).

Die auf diese Weise hergestellten erfundungsgemäßen
Mischungen, Konzentrate und Formulierungen zeigen
25 Wirksamkeit nicht nur gegen die vorbenannten Pilze
sondern auch gegen materialzerstörende Insekten, falls
ein Insektizid zugegen ist. Beispielsweise - ohne zu
limitieren - seien als materialzerstörende Insekten
genannt:

30 A: Hautflügler:
Sirex juvencus
Urocerus augur
Urocerus gigas
35 Urucerus gigas taignus

B: Käfer:

5 *Anobium punctatum*
 Apate monachus
 Bostrychus capucinus
 Chlorophores pilosus
 Dendrobium pertinax
10 *Dinoderus minutus*
 Ernobius mollis
 Heterobostrychus brunneus
 Hylotrupes bajulus
 Lyctus africanus
15 *Lyctus brunneus*
 Lyctus linearis
 Lyctus planicollis
 Lyctus pubescens
 Minthea rugicollis
20 *Priobium carpini*
 Ptilinus pecticornis
 Sinoxylon spec.
 Trogoxylon aequale
 Tryptodendron spec.
25 *Xestobium rufovillosum*
 Xyleborus spec.

C: Termiten:

30 *Coptotermes formosanus*
 Cryptotermes brevis
 Heterotermes indicola
 Kalotermes flavicollis
 Mastotermes darwiniensis
 Reticulitermes flavipes

5 *Reticulitermes lucifugus*
 Reticulitermes santonensis
 Zootermopsis nevadensis

10 Als andere Wirkstoffe kommen in Betracht Algizide,
 Molluskizide, Wirkstoffe gegen "sea animals", die sich
 auf z.B. Schiffsbodenanstrichen ansiedeln.

Besonders bevorzugt sind folgende Abmischpartner:

15 Dichlofluanid, Tolylfluanid,
 Benzyldimethyldodecylammoniumchlorid, Didecyldimethyl-
 ammoniumchlorid,

20 Tebuconazole, Propiconazole, Azaconazole, Hexaconazole,
 3-Brom-2,3-diod-2-propenylalkohol, 3-Iod-2-propinyl-n-
 butylcarbamat,

25 o-Phenylphenol, m-Phenylphenol, p-Phenylphenol, 3-
 Methyl-4-chlorphenyl,

 Thiocyanatomethylthiobenzothiazol,

30 N-Methylisothiazolin-3-on, 5-Chloro-N-methylisothiazo-
 lin-3-on, 4,5-Dichloro-N-octylisothiazolin-3-on, N-
 Octyl-isothiazolin-3-on,

 Benzylalkoholmono(poly)-hemiformal, N-Methylolchlor-
 acetamid,
35

Phoxim,

5

Cyfluthrin, Permethrin, Cypermethrin, Deltamethrin,
Imidacloprid.

Die zum Schutz der technischen Materialien verwendeten
10 mikrobiziden Mittel oder Konzentrate enthalten den
Wirkstoff der Formel in einer Konzentration von 0,01 bis
95 Gew.-%, insbesondere 0,01 bis 60 Gew.-%, daneben
gegebenenfalls 0,001 bis 95 Gew.-% eines oder mehrerer
15 geeigneter weiterer Fungizide, Insektizide oder weitere
Wirkstoffe wie oben genannt.

Die erfindungsgemäßen Mittel ermöglichen in vorteil-
hafter Weise, die bisher verfügbaren mikrobiziden Mittel
durch effektivere zu ersetzen. Sie zeigen eine gute
20 Stabilität und haben in vorteilhafter Weise ein breites
Wirkungsspektrum.

25

30

35

Beispiel 1

5

Hemmtest an Riesenkolonien von Basidiomyceten

Aus Kolonien von *Gloeophyllum trabeum*, *Coniophora puteana*, *Poria placenta*, *Lentinus tigrinus*, *Coriolus versicolor* und *Stereum sanguinolentum* wurden Mycelstücke ausgestochen und auf einem Malzextrakt-Pepton-haltigen Agarnährboden bei 26°C inkubiert. Die Hemmung des Hyphenwachstums auf wirkstoffhaltigen Nährböden wurde mit dem Längewachstum auf Nährboden ohne Wirkstoffzusatz verglichen und als prozentuale Hemmung bonitiert.

Bei einer Konzentration von 10 ppm erhält man mit der Verbindung Cyproconazol eine 100 %ige Hemmung.

20

25

30

35

Patentansprüche

5

1. Verwendung der Verbindung der Formel (I)

10

15 deren Metallsalze oder Säureadditionsverbindungen

als Mikrobizid zum Schutz technischer Materialien.

20 2. Verwendung gemäß Anspruch 1, dadurch gekenn-
zeichnet, daß als technisches Material Holz oder
Holzwerkstoffe geschützt werden.

25

3. Mikrobizide Mittel zum Schutz von technischen Ma-
terialien enthaltend eine Verbindung der Formel (I)
nach Anspruch 1 oder deren Metallsalze oder Säure-
additionsverbindungen.

30

4. Mittel gemäß Anspruch 3, dadurch gekennzeichnet,
daß als zusätzlicher Bestandteil mindestens ein
weiterer antimikrobiell wirksamer Stoff, Fungizid
und/oder andere Wirkstoffe zur Vergrößerung des
Wirkspektrums oder Erzielung besonderer Effekte
enthalten ist.

35 5. Mittel gemäß Anspruch 4, dadurch gekennzeichnet,
daß mindestens ein Insektizid enthalten ist.

6. Verfahren zum Schutz von technischen Materialien,
5 dadurch gekennzeichnet, daß man die technischen
Materialien mit einer Verbindung der Formel 1 nach
Anspruch 1 behandelt.

10

15

20

25

30

35