Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом

Ким Реачна

24 октября, 2023, Москва, Россия

Российский Университет Дружбы Народов

Цель лабораторной работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Выполнение лабораторной работы

Гаммирование

Гаммирование – это наложение (снятие) на открытые (зашифрованные) данные криптографической гаммы, т.е. последовательности элементов данных, вырабатываемых с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных.

Алгоритм взлома

Шифротексты обеих телеграмм можно получить по формулам режима однократного гаммирования:

$$C_1 = P_1 \oplus K$$
$$C_2 = P_2 \oplus K$$

Алгоритм взлома

Открытый текст можно найти, зная шифротекст двух телеграмм, зашифрованных одним ключом. Для это оба равенства складываются по модулю 2. Тогда с учётом свойства операции XOR получаем:

$$C_1 \oplus C_2 = P_1 \oplus K \oplus P_2 \oplus K = P_1 \oplus P_2$$

Алгоритм взлома

Предположим, что одна из телеграмм является шаблоном — т.е. имеет текст фиксированный формат, в который вписываются значения полей. Допустим, что злоумышленнику этот формат известен. Тогда он получает достаточно много пар $C_1\oplus C_2$ (известен вид обеих шифровок). Тогда зная P_1 имеем:

$$C_1 \oplus C_2 \oplus P_1 = P_1 \oplus P_2 \oplus P_1 = P_2$$

Схема работы алгоритма

Рис. 1: Работа алгоритма гаммирования

Пример работы программы

```
14 def vzlom(P1, P2):
           code = []
       15
       16 for i in range(len(P1)):
                 code.append(liters[(liters.index(P1[i]) + liters.index(P2[i])) % len(liters)])
       18 print(code)
            pr = "".join(code)
       19
             print(pr)
       20
/ [2] 1 len(P1)
       13
(3) 1 len(P2)
       13
[4] 1 vzlom(P1, P2)
       ['x', 'y', 'Л', 'b', 'r', 'A', 'p', 'b', '0', 'C', 'Щ', 'b', 'Щ']
       хУЛЬгАрБЮСЩЬЩ
```

Рис. 2: Работа алгоритма взлома ключа

Пример работы программы

```
у [26] 1 Р1 = "КодофаяФраза1" 2 gamma = "xУЛЬгАрБЮСШЬЩ"

У [27] 1 shifr(P1, gamma)

Числа текста [44, 16, 5, 16, 22, 1, 32, 54, 18, 1, 9, 1, 66]
Числа гаммы [23, 53, 45, 62, 4, 33, 18, 34, 64, 51, 59, 62, 59]

3 13
7 50

Числа шифротекста [67, 69, 50, 3, 26, 34, 50, 13, 7, 52, 68, 63, 50]

Шифротекст 24РвшБРлёТЗЭР
Расшифрованный текст: КодофаяФраза1
```

Рис. 3: Работа алгоритма шифрования и дешивровки

Выводы

Результаты выполнения лабораторной работы

В ходе выполнения лабораторной работы было разработано приложение, позволяющее шифровать тексты в режиме однократного гаммирования.