1. Cours: Convexité

Convexité, concavité

Définition 1 : Soit f une fonction définie sur un intervalle I. On note \mathscr{C}_f la courbe représentative de f dans un repère $(O; \vec{\iota}, \vec{\jmath})$.

- On dit que f est convexe sur I si, **pour tous réels** a et b dans I, avec a < b, la sécante reliant les deux points de la courbe d'abscisses a et b se trouve au-dessus de la courbe \mathcal{C}_f sur [a,b].
- On dit que f est concave sur I si, **pour tous réels** a et b dans I, avec a < b, la sécante reliant les deux points de la courbe d'abscisses a et b se trouve en-dessous de la courbe \mathcal{C}_f sur [a,b].

Fonction convexe

Fonction concave

Rappel de certaines courbes représentatives

 $x \mapsto e^x$

■ Exemple 1 : Les fonction $x \mapsto x^2$ et $x \mapsto e^x$ sont convexes sur \mathbb{R} .

La fonction $x \mapsto \sqrt{x}$ est concave sur \mathbb{R}_+ . La fonction $x \mapsto \ln(x)$ est concave sur \mathbb{R}_+^* . La fonction $x \mapsto x^3$ est concave sur \mathbb{R}_- et convexe sur \mathbb{R}_+ .

2 1. Cours : Convexité

■ Exemple 2 : Attention : on parle bien de convexité sur un intervalle. Par ailleurs, ce n'est pas parce qu'une fonction f est convexe sur deux intervalles [a,b] et [b,c] que f est aussi convexe sur [a,c].

La fonction représentée ci-dessus est convexe sur [-3;0] et sur [0;3] mais n'est pas convexe sur [-3,3].

2 Fonctions dérivables

2.1 Caractérisation des fonctions convexes

Propriété 1 : Soit f une fonction définie et dérivable sur un intervalle I. On note \mathscr{C}_f la courbe représentative de f dans un repère $(O; \vec{\imath}, \vec{\jmath})$.

- f est convexe sur I si et seulement si la courbe \mathscr{C}_f se trouve au-dessus de toutes ses tangentes aux points d'abscisses $x \in I$.
- f est concave sur I si et seulement si la courbe \mathscr{C}_f se trouve en-dessous de toutes ses tangentes aux points d'abscisses $x \in I$.

Fonction convexe

Fonction concave

- Exemple 3 : Montrons que la fonction $x \mapsto x^2$ est convexe sur \mathbb{R} . Notons \mathscr{C}_f la courbe de f dans un repère (O, \vec{i}, \vec{j}) . Soit a un réel.
 - f est dérivable sur \mathbb{R} et pour tout réel x, f'(x) = 2x.
 - La tangente à \mathscr{C}_f a pour équation y = f'(a)(x-a) + f(a), c'est-à-dire $y = 2ax 2a^2 + a^2$ ou encore $y = 2ax a^2$.

Jason LAPEYRONNIE http://mathoutils.fr

2 Fonctions dérivables 3

• Pour tout réel x,

$$f(x) - (2ax - a^2) = x^2 - 2ax + a^2 = (x - a)^2 \ge 0.$$

Ainsi, \mathscr{C}_f est toujours au-dessus de sa tangente à l'abscisse a, et ce, peu importe le réel a choisi. f est donc convexe sur \mathbb{R} .

Propriété 2 : Soit f une fonction dérivable sur un intervalle I.

- f est convexe sur I si et seulement si f' est croissante sur I.
- f est concave sur I si et seulement si f' est décroissante sur I.

De cette propriété vient naturellement la suivante...

Propriété 3 : Soit f une fonction deux fois dérivable sur un intervalle I.

- f est convexe sur I si et seulement si pour tout $x \in I$, $f''(x) \ge 0$.
- f est concave sur I si et seulement si pour tout $x \in I$, $f''(x) \le 0$.

L'étude de la convexité d'une fonction revient à l'étude de signe de sa dérivée seconde (si celle-ci existe, bien entendu).

Démonstration 1 : Si $f'' \ge 0$, alors f est convexe : Soit f une fonction deux fois dérivable sur I telle que pour tout $x \in I$, $f''(x) \ge 0$.

Soit $a \in I$. La tangente à la courbe de f au point d'abscisse a a pour équation y = f'(a)(x-a) + f(a).

Pour tout $x \in I$, posons alors g(x) = f(x) - (f'(a)(x-a) + f(a)). g est deux fois dérivable sur I, et pour tout $x \in I$, on g'(x) = f'(x) - f'(a) et g''(x) = f''(x).

Ainsi, puisque pour tout $x \in I$, $f''(x) \ge 0$, on a aussi $g''(x) \ge 0$. g' est donc croissante sur I. Or, g'(a) = 0. Résumons toutes ces informations dans un tableau.

x	а
g''(x)	+
g'	0
g'(x)	- 0 +
g	0
g(x)	+ 0 +

Finalement, pour tout $x \in I$, $g(x) \ge 0$, ce qui signifie que $f(x) \ge f'(a)(x-a) + f(a)$: la courbe de f est au-dessus de la tangente à cette courbe au point d'abscisse a.

Jason LAPEYRONNIE http://mathoutils.fr

1. Cours : Convexité

- Exemple 4 : Pour tout entier naturel pair $n \ge 2$, la fonction $x \mapsto x^n$ est convexe sur \mathbb{R} . En effet, la dérivée seconde de cette fonction est la fonction $x \mapsto n(n-1)x^{n-2}$. Or, n étant pair, n-2 l'est aussi, et pour tout réel x, on a donc $x^{n-2} \ge 0$.
- Exemple 5 : La fonction $f: x \mapsto x^3$ est concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.

En effet, f est deux fois dérivable sur \mathbb{R} et pour tout réel x, f''(x) = 6x, qui est positif si et seulement si x l'est aussi.

2.2 Point d'inflexion

Définition 2 : Soit f une fonction dérivable sur un intervalle I.

Un point d'inflexion est un point où la convexité de la fonction f change. La tangente à la courbe de f en un point d'inflexion traverse la courbe de f.

Propriété 4 : Soit f une fonction deux fois dérivable sur un intervalle I.

- Si f présente un point d'inflexion à l'abscisse a, alors f''(a) = 0.
- Réciproquement, si f''(a) = 0 et f'' change de signe en a, alors f présente un point d'inflexion en a.

Cela rappelle naturellement le cas des extremum locaux. Si f admet un extremum local en a, alors f'(a) = 0. Cependant, si f'(a) = 0, f admet un extremum local en a seulement si f' change de signe en a.

Exemple 6 : Pour tout réel x, on pose $f(x) = \frac{x^3}{2} - x + 1$.

f est deux fois dérivable sur \mathbb{R} et pour tout réel x, on a $f'(x) = \frac{3x^2}{2} - 1$ et f''(x) = 3x.

Ainsi, $f''(x) \ge 0$ si et seulement si $x \ge 0$.

f est donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.

La courbe de f présente un point d'inflexion à l'abscisse 0.

Attention : l'annulation de la dérivée seconde n'est pas une condition suffisante de présence d'un point d'inflexion !

■ **Exemple 7**: Pour tout réel x, on pose $g(x) = \frac{1}{12}x^4 - \frac{2}{3}x^3 + 2x^2$.

La fonction g est deux fois dérivable sur \mathbb{R} et pour tout réel x,

$$g'(x) = \frac{1}{3}x^3 - 2x^2 + 4x$$
 et $g''(x) = x^2 - 4x + 4 = (x - 2)^2$.

Ainsi, pour tout réel x, $g''(x) \ge 0$. g est donc convexe sur \mathbb{R} .

Puisqu'il n'y a pas de changement de convexité, g ne présente pas de point d'inflexion, et ce, même si g''(2) = 0.

Jason LAPEYRONNIE

3 Inégalités de convexité

3.1 Inégalités de milieux

Propriété 5 : Soit f une fonction convexe sur un intervalle I.

Pour tous réels a et b de I, $f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2}$.

Démonstration 2 : On considère les points A(a, f(a)) et B(b, f(b)).

Le milieu du segment [AB] a pour coordonnées

$$\left(\left(\frac{a+b}{2}\right), \frac{f(a)+f(b)}{2}\right).$$

Or, la fonction f étant convexe sur I, le segment [AB] se situe audessus de la courbe représentative de f. En particulier,

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2}.$$

■ Exemple 8 : La fonction exponentielle est convexe sur \mathbb{R} . Pour tous réels a et b, $\exp\left(\frac{a+b}{2}\right) \leqslant \frac{\mathrm{e}^a + \mathrm{e}^b}{2}$.

Propriété 6 : Soit f une fonction concave sur un intervalle I.

Pour tous réels a et b de I, $f\left(\frac{a+b}{2}\right) \geqslant \frac{f(a)+f(b)}{2}$.

■ **Exemple 9**: La fonction $x \mapsto \sqrt{x}$ est concave sur \mathbb{R}_+ .

Ainsi, pour tous réels a et b positifs, $\sqrt{\frac{a+b}{2}} \geqslant \frac{\sqrt{a}+\sqrt{b}}{2}$.

3.2 Inégalités avec les tangentes

La convexité des fonctions dérivables permet d'établir des inégalités en utilisant les équations des tangentes.

Exemple 10 : Montrons que pour tout réel x, $e^x \ge x + 1$.

La tangente à la courbe de la fonction exponentielle au point d'abscisse 0 a pour équation $y = \exp'(0)(x-0) + \exp(0)$, c'està-dire y = x+1.

Puisque la fonction exp est convexe sur \mathbb{R} , la courbe de la fonction exponentielle est donc au-dessus de toutes ses tangentes et donc, en particulier, la tangente au point d'abscisse 0. On a donc, pour tout réel x, $e^x \geqslant x+1$.

_