A1	gori	itmi	i para	lleli	e	dist	trih	mit	i
7 7 1	gui		і рага			U13		ulu	. 1

Indice

1. Lezione 01	4
1.1. Introduzione	4
1.1.1. Definizione	4
1.1.2. Algoritmi paralleli	4
1.1.3. Algoritmi distribuiti	4
1.1.4. Differenze	4
2. Lezione 02	6
2.1. Definizione di tempo	
2.1.1. Modello di calcolo	
2.1.2. Criterio di costo	
2.2. Classi di complessità	
2.3. Algoritmi paralleli	
2.3.1. Sintesi	
2.3.2. Valutazione	
2.3.3. Universalità	
3. Lezione 03	8
3.1. Architetture	
3.1.1. Memoria condivisa	
3.1.2. Memoria distribuita	
3.1.3. Modello PRAM	
3.1.3.1. Definizione	
3.1.3.2. Modelli per le istruzioni	
3.1.3.3. Modelli per l'accesso alla memoria	
3.1.3.4. Risorse di calcolo	
4. Lezione 04	11
4.1. Parametri in gioco	
5. Lezione 05	
5.1. Sommatoria	
5.1.1. EREW	
5.1.2. Correttezza	15
6. Lezione 06	
6.1. Ancora sommatoria	
6.1.1. Dimostrazione	
6.1.2. Valutazione	
6.2. Sommatoria ottimizzata	
6.2.1. Valutazione	17
7. Lezione 07	18
7.1. Ancora sommatoria	
7.2. AND iterato	18
7.3. Prodotto interno di vettori	
7.4. Prodotto matrice vettore	
7.5. Prodotto matrice matrice	19
7.6. Potenza di matrice	20
7.7. Somme prefisse	20

8. Lezione 08	22
8.1. Ancora somme prefisse	
9. Lezione 09	24
9.1. Ancora pointer doubling	24
9.2. Valutazione di polinomi	24
10. Lezione 10	26
10.1. Ancora valutazione di polinomi	
10.2. Ricerca di un elemento	
11. Lezione 11	28
11.1. Ordinamento	
11.2. Primo approccio parallelo [counting sort]	
11.3. Secondo approccio parallelo [bitonic sort]	29
12. Lezione 12	31
13. Lezione 13	
13.1. BitSort	
13.2. Osservazioni	
13.3. Tecnica del ciclo euleriano	
14. Lezione 14	
14.1. Attraversamento in pre-ordine	
14.2. Architettura distribuita	
15. Lezione 15	40
16. Lezione 16	42
16.1. Array lineari	42
17. Lezione 17	45
17.1. Architettura MESH	46
18. Lezione 18	48
18.1. Ordinamento LS3	48
19. Lezione 19	50
19.1. Terza parte: ambiente di calcolo distribuito	
19.2. Broadcasting	52
19.2.1. Prima versione	52
20. Lezione 20	54
20.1. Seconda versione [flooding]	54
20.2. Problema wake-up	55
21. Lezione 21	56
21.1. Traversal	56
22. Lezione 22	60
22.1. Spanning tree	60
23. Lezione 23	63
23.1. Election	
24. Lezione 24	66
24.1. Routing	

1.1. Introduzione

1.1.1. Definizione

Un **algoritmo** è una sequenza finita di istruzioni che non sono ambigue e che terminano, ovvero restituiscono un risultato. Gli **algoritmi sequenziali** avevano un solo esecutore, mentre gli algoritmi di questo corso utilizzano un **pool di esecutori**.

Le problematiche da risolvere negli algoritmi sequenziali si ripropongono anche qua, ovvero:

- **progettazione**: utilizzo di tecniche per la risoluzione, come *Divide et Impera*, *programmazione dinamica* o *greedy*;
- valutazione delle prestazioni: complessità spaziale e temporale;
- codifica: implementare con opportuni linguaggi di programmazione i vari algoritmi presentati.

I programmi diventano quindi una sequenza di righe, ognuna delle quali contiene una o più istruzioni.

1.1.2. Algoritmi paralleli

Un **algoritmo parallelo** è un algoritmo **sincrono** che risponde al motto *«una squadra in cui batte un solo cuore»*, ovvero si hanno più entità che obbediscono ad un clock centrale, che va a coordinare tutto il sistema.

Abbiamo la possibilità di condividere le risorse in due modi:

- memoria, formando le architetture:
 - a memoria condivisa, ovvero celle di memoria fisicamente condivisa;
 - a memoria distribuita, ovvero ogni entità salva parte dei risultati parziali sul proprio nodo;
- uso di opportuni collegamenti.

Qualche esempio di architettura parallela:

- **supercomputer**: cluster di processori con altissime prestazioni;
- **GPU**: usate in ambienti grafici, molto utili anche in ambito vettoriale;
- processori multicore;
- circuiti integrati: insieme di gate opportunamente connessi.

1.1.3. Algoritmi distribuiti

Un **algoritmo distribuito** è un algoritmo **asincrono** che risponde al motto *«ogni membro del pool è un mondo a parte»*, ovvero si hanno più entità che obbediscono al proprio clock personale. Abbiamo anche in questo caso dei collegamenti ma non dobbiamo supporre una memoria condivisa o qualche tipo di sincronizzazione, quindi dobbiamo utilizzare lo **scambio di messaggi**.

Qualche esempio di architettura distribuita:

- reti di calcolatori: internet;
- reti mobili: uso di diverse tipologie di connessione;
- reti di sensori: sistemi con limitate capacità computazionali che rispondono a messaggi ack, recover, wake up, eccetera.

1.1.4. Differenze

Vediamo un problema semplicissimo: sommare quattro numeri A,B,C,D.

Usiamo la primitiva send (sorgente, destinazione) per l'invio di messaggi.

Un approccio parallelo a questo problema è il seguente.

Somma di quattro numeri

input:

L quattro numeri A, B, C, D

1: send(1, 2), send(3, 4)

2: calcola A + B e C + D

3: send(2,4)

4: calcola (A+B)+(C+D)

Un approccio distribuito invece non può seguire questo pseudocodice, perché le due send iniziali potrebbero avvenire in tempi diversi.

Notiamo come negli algoritmi paralleli ciò che conta è il **tempo**, mentre negli algoritmi distribuiti ciò che conta è il **coordinamento**.

2.1. Definizione di tempo

Il **tempo** è una variabile fondamentale nell'analisi degli algoritmi: lo definiamo come la funzione t(n) tale per cui

$$T(x)=$$
numero di operazioni elementari sull'istanza
$$t(n)=\max\{T(x)\mid x\in\Sigma^n\},$$

dove n è la grandezza dell'input.

Spesso saremo interessati al $tasso\ di\ crescita$ di t(n), definito tramite funzioni asintotiche, e non ad una sua valutazione precisa.

Date $f, g: \mathbb{N} \longrightarrow \mathbb{N}$, le principali funzioni asintotiche sono:

- $\bullet \ f(n) = O(g(n)) \Longleftrightarrow f(n) \leq c \cdot g(n) \quad \forall n \geq n_0;$
- $f(n) = \Omega(g(n)) \iff f(n) \ge c \cdot g(n) \quad \forall n \ge n_0$;
- $f(n) = \Theta(g(n)) \iff c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \quad \forall n \ge n_0$.

Il tempo t(n) dipende da due fattori molto importanti: il **modello di calcolo** e il **criterio di costo**.

2.1.1. Modello di calcolo

Un modello di calcolo mette a disposizione le **operazioni elementari** che usiamo per formulare i nostri algoritmi.

Ad esempio, una funzione palindroma in una architettura con memoria ad accesso casuale impiega O(n) accessi, mentre una DTM impiega $O(n^2)$ accessi.

2.1.2. Criterio di costo

Le dimensioni dei dati in gioco contano: il **criterio di costo uniforme** afferma che le operazioni elementari richiedono una unità di tempo, mentre il **criterio di costo logaritmico** afferma che le operazioni elementari richiedono un costo che dipende dal numero di bit degli operandi, ovvero dalla sua dimensione.

2.2. Classi di complessità

Un problema è **risolto efficientemente** in tempo se e solo se è risolto da una DTM in tempo polinomiale.

Abbiamo tre principali classi di equivalenza per gli algoritmi sequenziali:

- *P*, ovvero la classe dei problemi di decisione risolti efficientemente in tempo, o risolti in tempo polinomiale;
- FP, ovvero la classe dei problemi generali risolti efficientemente in tempo, o risolti in tempo polinomiale;
- NP, ovvero la classe dei problemi di decisione risolti in tempo polinomiale su una NDTM.

Il famosissimo problema P = NP rimane ancora oggi aperto.

2.3. Algoritmi paralleli

2.3.1. Sintesi

Il problema della **sintesi** si interroga su come costruire gli algoritmi paralleli, chiedendosi se sia possibile ispirarsi ad alcuni algoritmi sequenziali.

2.3.2. Valutazione

Il problema della **valutazione** si interroga su come misurare il tempo e lo spazio, unendo questi due in un un parametro di efficienza *E*. Spesso lo spazio conta il **numero di processori/entità** disponibili.

2.3.3. Universalità

Il problema dell'Universalità cerca di descrivere la classe dei problemi che ammettono problemi paralleli efficienti.

Definiamo infatti una nuova classe di complessità, ovvero la classe *NC*, che descrive la classe dei problemi generali che ammettono problemi paralleli efficienti.

Un problema appartiene alla classe *NC* se viene risolto in tempo *polilogaritmico* e in spazio polinomiale

Teorema 2.3.3.1:

 $NC \subseteq FP$.

Dimostrazione 2.3.3.1: Per ottenere un algoritmo sequenziale da uno parallelo faccio eseguire in sequenza ad una sola identità il lavoro delle entità che prima lavoravano in parallelo. Visto che lo spazio di un problema NC è polinomiale, posso andare a «comprimere» un numero polinomiale di operazioni in una sola entità. Infine, visto che il tempo di un problema NC è polilogaritmico, il tempo totale è un tempo polinomiale.

Come per $P=\mathrm{NP}$, qui il dilemma aperto è se vale $\mathrm{NC}=\mathrm{FP}$, ovvero se posso parallelizzare ogni algoritmo sequenziale efficiente. Per ora sappiamo che $\mathrm{NC}\subseteq\mathrm{FP}$, e che i problemi che appartengono a FP ma non a NC sono detti problemi P-completi.

3.1. Architetture

3.1.1. Memoria condivisa

L'architettura a **memoria condivisa** utilizza una memoria centrale che permette lo scambio di informazioni tra un numero n di processori P_i , ognuno dei quali possiede anche una «memoria personale», formata dai registri.

Un **clock** centrale e comune coordina tutti i processori, che comunicano attraverso la memoria centrale in tempo costante O(1), permettendo quindi una forte parallelizzazione.

3.1.2. Memoria distribuita

L'architettura a **memoria distribuita** utilizza una rete di interconnesione centrale che permette lo scambio di informazioni tra un numero n di processori P_i , ognuno dei quali possiede anche una «memoria personale», formata dai registri.

Un **clock** centrale e comune coordina tutti i processori, che comunicano attraverso la rete di interconnesione in un tempo che dipende dalla distanza tra i processori.

3.1.3. Modello PRAM

3.1.3.1. Definizione

Il modello PRAM ($Parallel\ RAM$) utilizza una memoria M formata da registri M[i] e una serie di processori P_i che si interfacciano con essa. Ogni processore P_i è una RAM sequenziale, ovvero contiene una unità di calcolo e una serie di registri R[i].

La comunicazione avviene con la memoria centrale tramite due primitive che lavorano in tempo costante O(1):

- LOAD R[dst] M[src] per copiare nel registro dst il valore contenuto in memoria nella cella src;
- STORE R[src] M[dst] per copiare in memoria nella cella dst il valore contenuto nel registro src.

Le operazioni di ogni processore avvengono invece in locale, cioè con i dati della propria memoria privata. Il tempo di ogni processore P_i è scandito da un clock centrale, che fa eseguire ad ogni processore la «stessa istruzione» istruzione $_i$.

Infatti, andiamo a definire il **passo parallelo** nel seguente modo

```
1: for i \in \mathbb{I} par do:
2: Listruzione,
```

In poche parole, tutti i processori con indice in \mathbb{I} eseguono l'i-esima istruzione, altrimenti eseguono una nop.

3.1.3.2. Modelli per le istruzioni

L'istruzione eseguita dipende dal tipo di architettura:

- **SIMD** (Single Instruction Multiple Data) indica l'esecuzione della stessa istruzione ma su dati diversi;
- MIMD (Multiple Instruction Multiple Data) indica l'esecuzione di istruzioni diverse sempre su dati diversi.

3.1.3.3. Modelli per l'accesso alla memoria

Abbiamo diverse architetture anche per quanto riguarda l'accesso alla memoria:

- EREW (Exclusive Read Exclusive Write) indica una memoria con lettura e scrittura esclusive;
- CREW (Concurrent Read Exclusive Write) indica una memoria con lettura simultanea e scrittura esclusiva:
- CRCW (Concurrent Read Concurrent Write) indica una memoria con lettura e scrittura simultanee.

Per quanto riguarda la scrittura simultanea abbiamo diverse modalità:

- common: i processori possono scrivere solo se scrivono lo stesso dato;
- random: si sceglie un processore Π a caso;
- max/min: si sceglie il processore Π con il dato massimo/minimo;
- **priority**: si sceglie il processore P_i con priorità maggiore.

La politica EREW è la più semplice, ma si può dimostrare che

$$\operatorname{Algo}(\operatorname{EREW}) \Longleftrightarrow \operatorname{Algo}(\operatorname{CREW}) \Longleftrightarrow \operatorname{Algo}(\operatorname{CRCW}) \ .$$

Le implicazioni da sinistra verso destra sono «immediate», mentre le implicazioni opposte necessitano di alcune trasformazioni.

3.1.3.4. Risorse di calcolo

Essendo i singoli processori delle RAM, abbiamo ancora le risorse di tempo t(n) e spazio s(n), ma dobbiamo aggiungere:

- p(n) numero di processori richiesti su input di lunghezza n nel caso peggiore;
- T(n, p(n)) tempo richiesto su input di lunghezza n e p(n) processori nel caso peggiore.

Notiamo come T(n, 1) rappresenta il tempo sequenziale t(n).

Vediamo la struttura di un programma in PRAM.

	p_1	p_2		p(n)
Passo 1	$t_1^{(1)}(n)$	$t_1^{(2)}(n)$		$t_1^{(p(n))}(n)$
Passo 2	$t_2^{(1)}(n)$	$t_2^{(2)}(n)$		$t_2^{(p(n))}(n)$
i	i	ı	i	i
Passo $k(n)$	$t_{k(n)}^{(1)}(n)$	$t_{k(n)}^{(2)}(n)$		$t_{k(n)}^{(p(n))}(n)$

Ogni processore p_i esegue una serie di istruzioni nel passo parallelo, che possono essere più o meno in base al processore e al numero p(n) di processori.

Indichiamo con $t_i^{(j)}(n)$ il tempo che impiega il processore j-esimo per eseguire l'i-esimo passo parallelo su un input lungo n.

Quello che vogliamo ricavare è il tempo complessivo del passo parallelo: visto che dobbiamo aspettare che ogni processore finisca il proprio passo, calcoliamo il tempo di esecuzione $t_i(n)$ dell'i-esimo passo parallelo come

$$t_i(n) = \max\Bigl\{t_i^{(j)}(n) \mid 1 \leq j \leq p(n)\Bigr\}.$$

Banalmente, il tempo complessivo di esecuzione del programma è la somma di tutti i tempi dei passi paralleli, quindi

$$T(n,p(n)) = \sum_{i=1}^{k(n)} t_i(n).$$

Notiamo subito come:

- T dipende da k(n), ovvero dal numero di passi;
- ullet T dipende dalla dimensione dell'input;
- T diepnde da p(n) perché diminuire/aumentare i processori causa un aumento/diminuzione dei tempi dei passi paralleli.

4.1. Parametri in gioco

Confrontando T(n, p(n)) con T(n, 1) abbiamo due casi:

- $T(n, p(n)) = \Theta(T(n, 1))$, caso che vogliamo evitare;
- T(n, p(n)) = o(T(n, 1)), caso che vogliamo trovare.

Introduciamo lo **speed-up**, il primo parametro utilizzato per l'analisi di un algoritmo parallelo: viene definito come

$$S(n,p(n)) = \frac{T(n,1)}{T(n,p(n))}.$$

Se ad esempio S=4 vuol dire che l'algoritmo parallelo è 4 volte più veloce dell'algoritmo sequenziale, ma questo vuol dire che sono nel caso di $T(n,p(n))=\Theta(T(n,1))$, poiché il fattore che definisce la complessità si semplifica.

Vogliamo quindi avere $S \to \infty$, poiché è la situazione di o piccolo che tanto desideriamo. Questo primo parametro è ottimo ma non basta: stiamo considerando il numero di processori? ${\bf NO}$, questo perché p(n) non compare da nessuna parte, e quindi noi potremmo avere $S \to \infty$ perché stiamo utilizzando un numero spropositato di processori.

Ad esempio, nel problema di soddisfacibilità SODD potremmo utilizzare 2^n processori, ognuno dei quali risolve un assegnamento, poi con vari passi paralleli andiamo ad eseguire degli OR per vedere se siamo riusciti ad ottenere un assegnamento valido di variabili, tutto questo in tempo $\log_2 2^n = n$. Questo ci manda lo speed-up ad un valore che a noi piace, ma abbiamo utilizzato troppi processori.

Introduciamo quindi la variabile di efficienza, definita come

$$E(n, p(n)) = \frac{S(n, p(n))}{p(n)} = \frac{T(n, 1)^*}{T(n, p(n)) \cdot p(n)},$$

dove $T(n, 1)^*$ indica il miglior tempo sequenziale ottenibile.

Teorema 4.1.1:

$$0 \le E \le 1$$
.

Dimostrazione 4.1.1: La dimostrazione di $E \ge 0$ risulta banale visto che si ottiene come rapporto di tutte quantità positive o nulle.

La dimostrazione di $E \leq 1$ richiede di sequenzializzare un algoritmo parallelo, ottenendo un tempo $\tilde{T}(n,1)$ che però «fa peggio» del miglior algoritmo sequenziale T(n,1), quindi

$$T(n,1) \le \widetilde{T}(n,1) \le p(n) \cdot t_1(n) + \dots + p(n)t_{k(n)}(n).$$

La somma di destra rappresenta la sequenzializzazione dell'algoritmo parallelo, che richiede quindi un tempo uguale p(n) volte il tempo che prima veniva eseguito al massimo in un passo parallelo.

Risolvendo il membro di destra otteniamo

$$T(n,1) \leq \sum_{i=1}^{k(n)} p(n) \cdot t_i(n) = p(n) \sum_{i=1}^{k(n)} t_i(n) = p(n) \cdot T(n,p(n)).$$

Se andiamo a dividere tutto per il membro di destra otteniamo quello che vogliamo dimostrare, ovvero

$$T(n,1) \leq p(n) \cdot T(n,p(n)) \Rightarrow \frac{T(n,1)}{p(n) \cdot T(n,p(n))} \leq 1 \Rightarrow E \leq 1.$$

Se $E \to 0$ abbiamo dei problemi, perché nonostante un ottimo speed-up stiamo tendendo a 0, ovvero il numero di processori è eccessivo. Devo quindi ridurre il numero di processori p(n) senza degradare il tempo, passando da p a $\frac{p}{k}$.

L'algoritmo parallelo ora non ha più p processori, ma avendone di meno per garantire l'esecuzione di tutte le istruzioni vado a raggruppare in gruppi di k le istruzioni sulla stessa riga, così che ogni processore dei $\frac{p}{k}$ a disposizione esegua k istruzioni.

Il tempo per eseguire un blocco di k istruzioni ora diventa $k \cdot t_i(n)$ nel caso peggiore, mentre il tempo totale diventa

$$T\bigg(n,\frac{p}{k}\bigg) \leq \sum_{i=1}^{k(n)} k \cdot t_i(n) = k \sum_{i=1}^{k(n)} t_i(n) = k \cdot T(n,p(n)).$$

Iniziamo ad avere dei problemi quando $E \to 0$: infatti, secondo il **principio di Wyllie**, se $E \to 0$ quando T(n,p(n)) = o(T(n,1)) allora è p(n) che sta crescendo troppo. In poche parole, abbiamo uno speed-up ottimo ma abbiamo un'efficienza che va a zero per via del numero di processori.

Riprendiamo dalla scorsa lezione.

Calcoliamo l'efficienza con questo nuovo numero di processori, per vedere se è migliorata:

$$E\Big(n,\frac{p}{k}\Big) = \frac{T(n,1)}{\frac{p}{k} \cdot T(n,\frac{p}{k})} \geq \frac{T(n,1)}{\frac{p}{k} \cdot \cancel{k} \cdot T(n,p(n))} = \frac{T(n,1)}{p(n) \cdot T(n,p(n))} = E(n,p(n)).$$

Notiamo quindi che diminuendo il numero di processori l'efficienza aumenta.

Possiamo dimostrare infine che la nuova efficienza è comunque limitata superiormente da 1

$$E(n,p(n)) \leq E\bigg(n,\frac{p}{k}\bigg) \leq E\bigg(n,\frac{p}{p}\bigg) = E(n,1) = 1.$$

Dobbiamo comunque garantire la condizione di un buon speed-up, quindi $T\left(n,\frac{p}{k}\right)=o(T(n,1))$

5.1. Sommatoria

Cerchiamo un algoritmo parallelo per il calcolo di una sommatoria.

Il programma prende in input una serie di numeri M[1], ..., M[n] inseriti nella memoria della PRAM e fornisce l'output in M[n]. In poche parole, a fine programma si avrà

$$M[n] = \sum_{i=1}^{n} M[i].$$

Un buon algoritmo sequenziale è quello che utilizza M[n] come accumulatore, lavorando in tempo T(n,1)=n-1 senza usare memoria aggiuntiva.

Sommatoria sequenziale

input:

lacksquare vettore M[] di grandezza n

1: for i = 1 to n do:

2: LM[n] = M[n] + M[i]

3: return M[n]

Un primo approccio parallelo potrebbe essere quello di far eseguire ad ogni processore una somma.

Usiamo n-1 processori, ma abbiamo dei problemi:

- l'albero che otteniamo ha altezza n-1;
- ogni processore deve aspettare la somma del processore precedente, quindi T(n,n-1)=n-1.

L'efficienza che otteniamo è

$$E(n,n-1)=\frac{n-1}{(n-1)\cdot (n-1)}\to 0.$$

Una soluzione migliore considera la *proprietà associativa* della somma per effettuare delle somme 2 a 2.

Quello che otteniamo è un albero binario, sempre con n-1 processori ma l'altezza dell'albero logaritmica in n. Il risultato di ogni somma viene scritto nella cella di indice maggiore, quindi vediamo la rappresentazione corretta.

Quello che possiamo fare è sommare, ad ogni passo i, gli elementi che sono a distanza i: partiamo sommando elementi adiacenti a distanza 1, poi 2, fino a sommare al passo $\log(n)$ gli ultimi due elementi a distanza $\frac{n}{2}$.

Sommatoria parallela

```
1: for i=1 to \log(n) do:

2:  for k=1 to \frac{n}{2^i} par do:

3:  M[2^ik]=M[2^ik]+M[2^ik-2^{i-1}]

4: return M[n]
```

Nell'algoritmo k indica il numero di processori attivi nel passo parallelo.

5.1.1. EREW

Teorema 5.1.1.1: L'algoritmo di sommatoria parallela è EREW.

Dimostrazione 5.1.1.1: Dobbiamo mostrare che al passo parallelo i il processore a, che utilizza 2^ia e $2^ia - 2^{i-1}$, legge e scrive celle di memoria diverse rispetto a quelle usate dal processore b, che utilizza 2^ib e $2^ib - 2^{i-1}$.

Mostriamo che $2^i a \neq 2^i b$: questo è banale se $a \neq b$.

Mostriamo infine che $2^ia \neq 2^ib - 2^{i-1}$: supponiamo per assurdo che siano uguali, allora $2 \cdot \frac{2^ia}{2^i} = 2 \cdot \frac{2^ib - 2^{i-1}}{2^i} \Longrightarrow 2a = 2b - 1 \Longrightarrow a = \frac{2b-1}{2}$ ma questo è assurdo perché $a \in \mathbb{N}$.

5.1.2. Correttezza

Teorema 5.1.2.1: L'algoritmo di sommatoria parallela è corretto.

Dimostrazione 5.1.2.1: Per dimostrare che è corretto mostriamo che al passo parallelo i nella cella 2^ik ho i 2^i-1 valori precedenti, sommati a $M\big[2^ik\big]$, ovvero che $M\big[2^ik\big]=M\big[2^ik\big]+\ldots+M\big[2^i(k-1)+1\big]$.

Notiamo che se $i = \log(n)$ allora ho un solo processore k = 1 e ottengo la definizione di sommatoria, ovvero M[n] = M[n] + ... + M[1].

Dimostriamo per induzione.

Passo base: se i = 1 allora M[2k] = M[2k] + M[2k - 1].

Continuiamo la prossima volta.

6.1. Ancora sommatoria

6.1.1. Dimostrazione

Finiamo la dimostrazione della scorsa lezione.

Dimostrazione 6.1.1.1: Per dimostrare che è corretto mostriamo che al passo parallelo i nella cella 2^ik ho i 2^i-1 valori precedenti, sommati a $M\big[2^ik\big]$, ovvero che $M\big[2^ik\big]=M\big[2^ik\big]+\ldots+M\big[2^i(k-1)+1\big]$.

Notiamo che se $i = \log(n)$ allora ho un solo processore k = 1 e ottengo la definizione di sommatoria, ovvero M[n] = M[n] + ... + M[1].

Dimostriamo per induzione.

Passo base: se i = 1 allora M[2k] = M[2k] + M[2k-1].

Passo induttivo: supponiamo sia vero per i-1, dimostriamo che vale per i. Sappiamo che al generico passo k eseguiamo l'operazione $M[2^ik] = M[2^ik] + M[2^ik - 2^{i-1}]$.

Andiamo a riscrivere i due fattori della somma in un modo a noi più comodo:

- $M[2^ik]=M[2^{i-1}\cdot 2k]=M[2^{i-1}\cdot 2k]+\ldots+M[2^{i-1}\cdot (2k-1)+1]$ perché vale l'ipotesi del passo induttivo;
- $M[2^ik-2^{i-1}]=M[2^{i-1}\cdot(2k-1)]=M[2^{i-1}\cdot(2k-1)]+...+M[2^{i-1}\cdot(2k-2)+1]$ sempre per l'ipotesi del passo induttivo.

Notiamo ora che il primo e il secondo fattore sono contigui: infatti, l'ultima cella del primo fattore è un indice superiore rispetto alla prima della del secondo fattore. Inoltre, l'ultima cella del secondo fattore $M[2^{i-1}\cdot(2k-2)+1]$ può essere riscritta come $M[2^i(k-1)+1]$, quindi abbiamo ottenuto esattamente quello che volevamo dimostrare.

6.1.2. Valutazione

Se n è potenza di 2 usiamo un numero massimo di processori uguale a $\frac{n}{2}$ e un tempo $T(n, \frac{n}{2}) = 4\log(n)$, dovuto alle microistruzioni che vengono fatte in ogni passo parallelo.

Se n non è potenza di 2 dobbiamo «allungare» l'input fino a raggiungere una dimensione uguale alla potenza di 2 più vicina, aggiungendo degli zeri in coda, ma questo non va ad intaccare le prestazioni perché la nuova dimensione è limitata da 2n.

Infatti, con lunghezza 2n abbiamo un numero di processori uguale a n e un tempo $T(n,n)=4\log(2n)\leq 5\log(n)$. In poche parole:

- p(n) = O(n);
- $T(n, p(n)) = O(\log(n))$.

Se però calcoliamo l'efficienza otteniamo

$$E(n,n) = \frac{n-1}{n \cdot 5\log(n)} \longrightarrow 0,$$

quindi dobbiamo trovare una soluzione migliore, anche se E tende a 0 lentamente.

6.2. Sommatoria ottimizzata

Il problema principale di questo approccio è che i processori sono un po' sprecati: prima vengono utilizzati tutti, poi ne vengono usati sempre di meno. Usiamo l'approccio di Wyllie: vogliamo arrivare ad avere $E \longrightarrow k \neq 0$ diminuendo il numero di processori utilizzati.

Andiamo quindi ad utilizzare p processori, con p < n, raggruppando i numeri presenti in M in gruppi grandi $\Delta = \frac{n}{p}$, ognuno associato ad un processore.

Come prima, andiamo a mettere la somma di un gruppo Δ_i nella cella di indice maggiore. Al primo passo parallelo ogni processore esegue la somma sequenziale dei Δ valori contenuti nel proprio gruppo, ovvero $M[k\Delta] = M[k\Delta] + ... + M[(k-1)\Delta+1]$. I successivi passi paralleli eseguono l'algoritmo sommatoria proposto prima sulle celle di memoria $M[\Delta], M[2\Delta], ..., M[p\Delta]$, e in quest'ultima viene inserito il risultato finale.

6.2.1. Valutazione

In questa versione ottimizzata usiamo p(n)=p processori e abbiamo un tempo T(n,p) formato dal primo passo parallelo «di ottimizzazione» sommato al tempo dei passi successivi, quindi $T(n,p)=\frac{n}{p}+5\log(p)$.

Andiamo a calcolare l'efficienza $E(n,p)=\frac{n-1}{p\cdot\left(\frac{n}{p}+5\log(p)\right)}=\frac{n-1}{n+\frac{5p\log(p)}{n}}\approx\frac{n}{2n}=\frac{1}{2},$ che è il valore diverso da 0 che volevamo.

Per fare questo dobbiamo imporre $5p \log(p) = n$, quindi $p = \frac{n}{5 \log(n)}$ (anche se non ho ben capito questo cambio di variabile, ma va bene lo stesso).

Con questa assunzione riusciamo ad ottenere un tempo $T(n,p(n))=5\log(n)+...+5\log(n)\leq 10\log(n)$.

7.1. Ancora sommatoria

Diamo un **lower bound**: per sommatoria possiamo visualizzare usando un albero binario, con le foglie dati di input e i livelli sono i passi paralleli. Il livello con più nodi dà il numero di processori e l'altezza dell'albero il tempo dell'algoritmo.

Se abbiamo altezza h, abbiamo massimo 2^h foglie, quindi

$$\text{foglie} = n \le 2^h \Longrightarrow h \ge \log(n)$$

quindi ho sempre tempo logaritmico.

La sommatoria può essere uno schema per altri problemi.

Operazione iterata: abbiamo op che è associativa, abbiamo:

- input: M[1], ..., M[n] valori
- output: calcolare op $_iM[i] \to M[n]$ ovvero calcolare op su una serie di valori e mettere nella cella finale.

Abbiamo soluzioni efficienti per questo:

- $p = O\left(\frac{n}{\log(n)}\right);$
- $T = O(\log(n))$.

Con modelli PRAM più potenti (non EREW) possiamo ottenere un tempo costante (per AND e OR).

7.2. AND iterato

Supponiamo una CRCW-PRAM, vediamo il problema **and iterato**, ovvero $M[n] = \bigwedge_i M[i]$.

Qui abbiamo tempo costante perché la PRAM è più potente.

L'algoritmo è il seguente.

$$\bigwedge$$
 iterato

1: for $1 \le k \le n$ par do

2: | if $M[k] = 0$ then

3: | $M[n] = 0$

Serve CW con politica common, quindi scrivono i processori sse il dato da scrivere è uguale per tutti, ma anche le altre vanno bene (random o priority).

Abbiamo:

- p(n) = n;
- T(n,n) = 3;
- $E(n,n) = \frac{n-1}{3n} \to \frac{1}{3}$.

Per

√ iterato stessa cosa, basta che almeno uno sia 1.

La sommatoria può essere usata anche come sotto-problema di altri, ad esempio:

- prodotto interno di vettori;
- prodotto matrice-vettore;
- · prodotto matrice-matrice;
- potenza di una matrice.

7.3. Prodotto interno di vettori

- input $x, y \in \mathbb{N}^n$
- output $\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i$

Il tempo sequenziale è 2n-1, n per le somme e n-1 somme finali.

Sommatoria viene usata qua come modulo:

- prima fase: eseguo $\Delta = \log(n)$ prodotti in sequenza delle componenti e la somma dei valori del blocco in sequenza;
- seconda fase: somma di $p = \frac{n}{\log(n)}$ prodotti.

Per sommatoria ho:

- $\begin{array}{l} \bullet \ p = c_1 \frac{n}{\log(n)}; \\ \bullet \ t = c_2 \log(n). \end{array}$

Per la prima fase:

- $p = \frac{n}{\log(n)}$ quindi $\delta = \frac{n}{p} = \log(n)$; $t = c_3 \log(n)$.

Ma allora ho $p = \frac{n}{\log(n)}$ e $t = \log(n)$.

L'efficienza è

$$E = \frac{2n-1}{\frac{n}{\log(n)} \cdot \log(n)} \to C \neq 0.$$

7.4. Prodotto matrice vettore

Roba di prima è modulo per questo.

- input: $A \in \mathbb{N}^{n \times n}$ e $x \in \mathbb{N}^n$
- output: $A \cdot x$

Il tempo sequenziale è $n(2n-1)=2n^2-n$.

Idea: uso il modulo < ..., ... > in parallelo n volte. Il vettore se è acceduto simultaneamente dai moduli <> ci obbliga ad avere CREW.

Che prestazioni abbiamo? Abbiamo:

- $p(n) = n \frac{n}{\log(n)}$;
- $T(n, p(n)) = \log(n)$.

L'efficienza vale

$$E(n,T(n,p(n))) = \frac{n^2}{\frac{n^2}{\log(n)}\log(n)} \to C \neq 0.$$

7.5. Prodotto matrice matrice

Modulo uso sempre prodotto interno.

- input: $A, B \in \mathbb{N}^{n \times n}$;
- output: $A \cdot B$.

Il tempo sequenziale è $n^{2.8}$ per Strassen.

Uso n^2 prodotto interni in parallelo, anche qui CREW perché ogni riga di A e ogni colonna di B viene acceduta simultaneamente.

19

Prestazioni:

- $p(n) = n^2 \frac{n}{\log(n)}$; $T(n, p(n)) = \log(n)$.

L'efficienza vale

$$E(n, T(n, p(n))) = \frac{n^{2.80}}{\frac{n^3}{\log(n)} \log(n)} \to 0.$$

Tende a 0 ma lentamente.

7.6. Potenza di matrice

- input: $A \in \mathbb{N}^{n \times n}$;
- output: $A^t \operatorname{con} t = 2k$.

Prodotto iterato della stessa matrice, sequenziale è:

Potenza di matrice sequenziale

1: for
$$i = 1$$
 to $\log(n)$ do

2:
$$A = A \cdot A$$

Saltiamo i calcoli intermedi, facciamo $A \rightarrow A^2 \rightarrow A^4 \rightarrow A^8 \rightarrow$

Il tempo è quindi $n^{2.8} \log(n)$.

L'approccio parallelo per $\log(n)$ volte esegue il prodotto $A \cdot A$, anche questo CREW.

Abbiamo:

- $p(n) = \frac{n^3}{\log(n)}$;
- $T(n, p(n)) = \log(n) \cdot \log(n) = \log^2(n)$.

L'efficienza è

$$E = \frac{n^{2.8} \log(n)}{\frac{n^3}{\log(n)} \cdot \log^2(n)} = \frac{n^{2.8}}{n^3} \to 0.$$

Sempre lentamente.

7.7. Somme prefisse

Contiene anche lui il problema della sommatoria.

- $\begin{array}{ll} \bullet \ \ \text{input:} \ M[1],...,M[n]; \\ \bullet \ \ \text{output:} \ \sum_{i=1}^k M[i] \to k \quad 1 \leq k \leq n. \end{array}$

Assumiamo n potenza di 2 per semplicità.

L'algoritmo sequenziale somma nella cella i quello che c'è nella cella i-1.

Algoritmo sequenziale furbo

1: for
$$k=2$$
 to n do

$$\overset{2:}{\perp} M[k] = M[k] + M[k-1]$$

Il tempo di questo algoritmo è n-1.

Vediamo una proposta parallela. Al modulo sommatoria passo tutti i possibili prefissi: un modulo somma i primi due, un modulo i primi tre, eccetera.

Problemi:

- non è EREW ma questo chill;
- ho un CREW su PRAM con $p(n) \le (n-1) \frac{n}{\log(n)} = \frac{n^2}{\log(n)} = \sum_{i=2}^n \frac{i}{\log(i)} \ge \frac{1}{\log(n)} \sum_{i=2}^n i \approx \frac{n^2}{\log(n)}$ e $T(n, p(n)) = \log(n)$.

Ma allora

$$E = \frac{n-1}{\frac{n^2}{\log(n)}\log(n)} \to 0$$

buuuuu poco efficiente.

8.1. Ancora somme prefisse

Usiamo il **pointer doubling**, di Kogge-Stone del 1973.

Idea: sti stabiliscono dei legami tra i numeri, ogni processore si occupa di un legame e ne fa la somma: il processore i fa la somma tra m e k e lo mette nella cella di indice maggiore (quella di k).

All'inizio ho link tra la cella e la successiva.

Alla prima iterazione ho il primo, poi primo secondo, poi secondo terzo, eccetera. Poi aggiorno i link: lego una cella non con quella che avevamo prima ma con quella a distanza doppia. Prima 1, poi 2, poi 4, eccetera. Ovviamente alcuni processori non hanno dei successori.

Mi fermo quando non riesco a mettere archi, quindi alla fine non ho nessun successore.

Rispondiamo ad alcune domande:

- al passo j quanti elementi senza successori ho? 2^{j} ;
- quanti passi dura l'algoritmo? se $2^j = n$ allora $j = \log(n)$, ovvero termino quando ho esattamente n elementi senza successori;
- quanti processori attivo al passo j? Sempre almeno uno, ma faccio sempre $1 \leq k \leq n-2^{j-1}$;
- sia S[k] il successivo di M[k], come inizializzo S? Faccio S[k] = k + 1 e S[n] = 0, perché all'inizio ho tutti i successori e poi l'ultimo che non ce l'ha;
- dato il processore p_k quale istruzione su M deve eseguire? $M[k] + M[S[k]] \rightarrow M[S[k]]$;
- aggiornamento? S[k] == 0?0: S[S[k]] faccio successore del successore.

1: for
$$j=1$$
 to $\log(n)$ do
2: for $1 \le k \le n-2^{j-1}$ par do
3: $M[S[k]] = M[k] + M[S[k]]$
4: $S[k] = (S[k] == 0? \ 0: S[S[k]])$

Competiamo per la stessa cella? No, siamo in EREW, accediamo alle stesse celle ma in momenti diversi.

Correttezza:

- è una EREW-PRAM perché p_k lavora su M[k] e M[S[k]] e se $i=, \neg j$ allora $S[i] \neq S[j]$ quindi hanno successori diversi (solo se S[i]=S[j]=0);
- dimostro che $M[k] = \sum_{i=1}^k M[i]$. Dimostro che al j esimo passo vale

$$M[t] = \begin{cases} M[t] + \dots + M[1] \text{ se } t \le 2^j \\ M[t] + \dots + M[t - 2^j + 1] \text{ se } t > 2^j \end{cases}$$

Se questa è vera allora per $j = \log(n)$ allora vale.

Per induzione su j:

- caso base j = 1:
 - se t < 2 vedi t = 1, 2;
 - se t > 2 ho la seconda proprietà.
- vero j-1 dimostro per j. Al passo j quanto vale S:

$$S[k] = \begin{cases} k + 2^{j-1} \text{ se } k \le n - 2^{j-1} \\ 0 \text{ maggiore} \end{cases}.$$

Le celle con indice $\leq 2^{j-1}$ proprietà vera per ipotesi. Le celle con indice:

• $2^{j-1} \le t \le 2^j$ allora $t = 2^{j-1} + a$ e quindi

$$M\big[a+2^{j-1}\big]=...(\mbox{non ho voglia})$$

 • $t>2^{j}$ ho $t=a+2^{j}$, bla bla bla.

9.1. Ancora pointer doubling

Valutazione:

- p(n) = n 1;
- il passo di aggiornamento di M vale 5 mentre il passo di aggiornamento di S vale 4, quindi $T(n, n-1) \approx 9 \log(n)$ (il log viene dal passo parallelo).

L'efficienza è quindi

$$E(n,p(n)) = \frac{n-1}{(n-1)9\log(n)} = \frac{1}{9\log(n)} \longrightarrow 0$$

ma lentamente, non va bene.

Sfruttiamo Willye per far sparire log(n) da sotto.

Mettiamo $p(n) = O\left(\frac{n}{\log(n)}\right)$ quindi a gruppi di log(n), avremo sempre tempo logaritmico ma andremo ad avere efficienza diversa da 0.

Questo può essere usato come modulo per OP-prefissa, dove in output ho

$$M[k] = \operatorname{op}_{i=1}^k M[i] \quad 1 \le k \le n$$

operazione associativa come prima.

9.2. Valutazione di polinomi

- Input: $p(x) = a_0 + a_1 x + ... + a_n x^n$ e α ;
- Output: $p(\alpha)$.

In memoria ho α e A[0],...,A[n] che tiene i coefficienti.

L'algoritmo sequenziale fa $\sum_{i=0}^n i = n^2(\text{prodotti}) + n(\text{somme}) \approx n^2$ operazioni nel metodo tradizionale.

Con Ruffini-Horner possiamo renderlo migliore, ovvero una raccolta di x iterativa, ottenendo

$$p(x) = a_0 + x(a_1 + \dots(a_{n-2} + x(a_{n-1} + a_n x))\dots).$$

Chiamo $p=a^n$, calcolo $a_{n-1}+a_n\alpha$ e questo lo chiamo p di nuovo e ricomincio. Vale

$$p = a_j + p\alpha$$
.

- 1: $p=a_n$
- 2: for i = 1 to n do
- $3: \quad \mathbf{L} \ p = a_{n-i} + p\alpha$
- 4: output *p*

Le operazioni sono 2 per n volte quindi T(n,1)=2n ed è sequenziale.

Che idea abbiamo per quello parallelo:

- costruisco il vettore delle potenze di α e lo chiamo Q ovvero $Q[k]=\alpha^k \quad 0 \leq k \leq n;$
- eseguo il prodotto interno tra A e Q, ovvero $\sum_{k=0}^n A[k]Q[k];$
- ritorno il valore appena calcolato.

Come lo calcolo il vettore delle potenze? Metto α in tutti gli elementi di Q da 1 a n, applico il prodotto prefisso per il problema REPLICA. Come risolvo replica in parallelo?

1: for
$$k=1$$
 to n par do 2: $\bigsqcup Q[k]=\alpha$

Da finire bene.

10.1. Ancora valutazione di polinomi

1: for
$$k = 1$$
 to n par do:

2:
$$\mathbf{L} Q[k] = \alpha$$

L'algoritmo scritto è CREW (perché alpha è in memoria quindi ho accesso simultaneo), ha processori p=n, tempo t=2 e quindi efficienza $E\to \frac{1}{2}\neq 0$. Se REPLICA è un modulo da usare forse posso fare meglio perché al passo dopo (con prodotto prefisso) ne uso di meno.

Abbassiamo il numero di processori con Willye, raggruppiamo in $\log(n)$ elementi. Il k-esimo processore carica α nelle celle di pozione $(k-1)\log(n)+1,...,k\log(n)$.

Il secondo metodo è il seguente.

Ha processori $p=\frac{n}{\log(n)}$, tempo $t=c\log(n)$ e efficienza $E=\frac{1}{c}\neq 0$. Rimane sempre CREW per l'accesso ad α simultaneo.

Vorremmo un EREW, quindi:

- costruiamo il vettore $\alpha, 0, ..., 0$;
- eseguiamo somme prefisse

1:
$$Q[1] = \alpha$$

2: for k=2 to n par do

Posso anche ridurre i processori con Willye, avendo $p = \frac{n}{\log(n)}$ e tempo $t = \log(n)$ per costruire il vettore e poi usare le somme prefisse con $p = \frac{n}{\log(n)}$ e tempo $t = \log(n)$. Ora abbiamo un EREW.

Cosa abbiamo fatto quindi:

- A ce l'abbiamo in memoria;
- REPLICA di α ;
- prodotto prefisso;
- · prodotto interno.

I processori sono $\frac{n}{\log(n)}$ e il tempo $\log(n)$, quindi l'efficienza è $C \neq 0.$

10.2. Ricerca di un elemento

- **Input**: M[1], ..., M[n] e α ;
- Output: M[n] = 1 se $\alpha \in M$, altrimenti 0.

Il sequenziale classico ha t(n) = n (se ordinato è logaritmico).

Un algoritmo quantistico su non ordinato è $t=\sqrt{n}$ (usa interferenza quantistica).

Vediamo un CRCW parallelo con una flag F.

1:
$$F=0$$

2: for $k=1$ to n par do
3: $if M[k] == \alpha$
4: $if M[n] = F$

Perché usiamo F? Perché non posso sapere se poi M[n] == 1 è perché è il suo valore o perché l'ho trovato.

Ho la CR in α e la CW in F. I processori sono n e il tempo è costante, quindi

$$E =$$

Vediamo un CREW ora, quindi senza flag.

1: for k=1 to n par do 2: $\bigsqcup M[k]=(M[k]==\alpha?\,1:0)$ 3: MAX-iterato

Trasformiamo in un vettore booleano e poi vediamo il massimo. Abbiamo n processori e tempo costante, ma con Willye andiamo a $p=\frac{n}{\log(n)}$ e tempo $\log(n)$, che sono uguali a quelli del max iterato. L'efficienza è quindi $E\approx C\neq 0$. Ho la CR per l'accesso ad alpha.

Vediamo infine un EREW.

1: REPLICA α in A[1],...,A[n]2: for k=1 to n par do
3: $\bot M[k] = (M[k] == A[k]? 1:0)$ 4: MAX-iterato

Le prestazioni di tutti hanno processori $p=\frac{n}{\log(n)}$ e tempo $\log(n)$, quindi l'efficienza vale $E=C \neq 0$.

Varianti:

- conteggio di α dentro M, usando sommatoria al posto di MAX;
- posizione massima di α in M, assegnando M[k]=k se c'è alpha nel vettore;
- posizione minima di α in M, usando una OP iterata tale che

$$\mathrm{OP}(x,y) = \begin{cases} \min(x,y) \text{ se } x \\ y \neq 0 \\ \max(x,y) \text{ altrimenti} \end{cases}.$$

11.1. Ordinamento

Detto problema del **ranking**, abbiamo in input M[1],...,M[n] e vogliamo in output una permutazione $p:\{1,...,n\} \longrightarrow \{1,...,n\}$ tale che $M[p(1)] \le ... \le M[p(n)]$ con p(i) indice dell'elemento del vettore M che va in posizione i. Potremmo anche ordinare direttamente in M, ma noi usiamo gli indici. Quindi la funzione, dato un indice, mi dice che elemento va in quell'indice.

In genere, gli algoritmi di ordinamento sono basati sui confronti, ovvero $M[i] \leq M[j]$? SI: NO. Questi algoritmi hanno tempo $t = \Theta(n \log(n))$:

- upper bound: esistono algoritmi che impiegano al massimo quello, tipo merge sort
- lower bound: gli algoritmi di ordinamento creano degli alberi di decisione, ogni nodo è un confronto, SX positiva DX negativa. Ottengo un albero binario di decisione. Le foglie sono le permutazioni dell'input: ogni foglia individua un cammino a partire dalla radice e quindi i confronti che mi permettono di ordinare l'input. L'altezza dell'albero è il numero di confronti effettuati nel caso peggiore, ma questo è anche il tempo dell'algoritmo di ordinamento. Le possibili permutazioni dell'input sono n!, quindi foglie $\geq n!$. Se t è l'altezza, allora il massimo numero di foglie è 2^t , quindi

$$2^t \geq \operatorname{foglie} \geq n! \Longrightarrow t \geq \log_2(n!)$$

$$\log_2(n!) \geq \log_2\left(\prod_{i=\frac{n}{2}+1}^n i\right) \geq \log_2\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2}\log_2\left(\frac{n}{2}\right) \sim n\log_2(n).$$

Con la formula di Stirling è sicuramente più bella la dimostrazione. Quindi l'altezza è almeno $n \log(n)$ ma questo era il tempo quindi il tempo è così.

11.2. Primo approccio parallelo [counting sort]

ALgoritmo basato sul conteggio, ovvero conta i confronti, sequenzialmente ha $t = \Theta(n^2)$ perché deve confrontare tutte le coppie. Assumiamo che n sia potenza di 2 e che gli elementi siano diversi tra loro.

Prendiamo d'esempio il counting sort sequenziale, ovvero M[i] va in posizione k se e solo se k elementi sono $\leq M[i]$ in M.

Usiamo il vettore V[1], ..., V[n] con V[i] che contiene k. In poche parole, è la permutazione inversa di p, perché sto dicendo che l'elemento i va in posizione k. Dell'elemento so la sua posizione finale. Infatti:

- permutazione normale: ti do la posizione, mi dici che elemento ci va
- permutazione inversa: ti do l'elemento, mi dici in che posizione va

Counting Sort sequenziale

```
1: for i = 1 to n
2: L V[i] = 0
3: for i = 1 to n
4: \int for j = 1 to n
5: \int If M[j] \leq M[i]
6: \int L V[i] = V[i] + 1
7: for i = 1 to n
8: \int F[v[i]] = M[i]
```

Counting Sort sequenziale

9: for
$$i = 1$$
 to n

10:
$$M[i] = F[i]$$

Le prime due fasi vanno già bene, le ultime due servono solo per ordinare effettivamente il vettore. Il numero di confronti è n^2 , visto il doppio for della fase 2. Fase più pesante è questa, e il tempo è $t=n^2$.

La versione parallela ha $\forall i, j$ un processore p_{ij} che calcola $M[j] \leq M[i]$ e aggiorna una matrice booleana V[i,j] con il risultato del confronto. L'i-esima riga individua gli elementi di M che sono $\leq M[i]$. Poi, $\forall i$ effettuo una sommatoria parallela dell'i-esima riga. Ottengo un vettore colonna V[1, n], ..., V[n, n] che coincide con V[1], ..., V[n].

Counting Sort parallelo

```
1: for i \leq n \land j \leq n par do
```

2:
$$V[i,j] = (M[j] \le M[i]?1:0)$$

3: for i = 1 to n par do

4: L SOMMATORIA(V[i, 1], ..., V[i, n])

5: for i = 1 to n par do

6: LM[V[i]] = M[i]

Non è mai nella vita EREW, faccio lettura concorrente, ma la scrittura non è concorrente visto che scrivo in ogni cella diversa, quindi CREW

Vediamo le prestazioni:

- fase 1 ho $p=n^2$ e $T(n,n^2)=4$ per LD LD JE ST fase 1 con Wyllie ho $p=\frac{n^2}{\log(n)}$ e $T=\log(n)$ fase 2 è sommatoria quindi $p=\frac{n^2}{\log(n)}$ perché n moduli sommatoria e $t=\log(n)$ fase 3 ho p=n e T=3 LD LD ST

Totale quindi è $p = \frac{n^2}{\log(n)}$ e $T = \log(n)$, allora

$$E = \frac{n \log(n)}{\frac{n^2}{\log(n)} \log(n)} = \frac{\log(n)}{n} \longrightarrow 0$$

e nemmeno lentamente.

Un algoritmo migliore è bit sort (bitonic sort), che ha efficienza $E=\frac{1}{\log(n)}\longrightarrow 0$ ma lentamente. Un altro ottimo è quello di Cole del 1988 ma non lo vedremo, nonostante abbia $E=C\neq 0.$

11.3. Secondo approccio parallelo [bitonic sort]

Prendiamo spunto dal merge sort, che usa la tecnica divide et impera.

MergeSort

input
$$A[1], ..., A[n]$$

1: if
$$|A| > 1$$

2:
$$A_s = \text{MergeSort}(A[1], ..., A[\frac{n}{2}])$$

3:
$$A_d = \text{MergeSort}(A[\frac{n}{2}+1], ..., A[n])$$

MergeSort

4:
$$A = Merge(A_s, A_d)$$

5: return *A*

La routine merge scorre in sequenza i due array ordinati, confronta i valori correnti e li mette in A. Il tempo peggiore è n.

Il tempo di MergeSort è

$$t(n) = \begin{cases} 0 & \text{se } n = 1\\ 2t(\frac{n}{2}) + n & \text{altrimenti.} \end{cases}$$

Se svogliamo otteniamo

$$t(n) = 2t\left(\frac{n}{2}\right) + n \sim 2\left(2t\left(\frac{n}{4}\right)\right) + n + n \sim \ldots \sim 2^kt\left(\frac{n}{2^k}\right) + kn \underset{k = \log(n)}{=} n \cdot 0 + n\log(n) = n\log(n).$$

Sfruttiamo questa cosa: divido continuamente il vettore fino ad arrivare ad un elemento. Qua devo fare il merge, se usassi il parallelo avrei $\log(n)-1$ passi paralleli essendo un albero. Ma merge non è parallelizzabile e quindi avrei sempre $T\sim n\log(n)$.

Ci chiediamo: quando merge è facile? Supponiamo A_s e A_d ordinati ma gli elementi di A_s tutti minori di A_d : basta concatenarli e basta. Useremo sequenze di numeri particolari, dette **bitoniche**.

Dobbiamo trasformare l'input in quella forma per rendere la vita facile al merge.

Abbiamo bisogno di qualche routine:

- rev(A[1], ..., A[n]) : A[1] = A[n], ..., A[n] = A[1];
- minmax(A[1], ..., A[n]) che non ho capito.

Due operazioni fondamentali:

- REV per fare il reverse in parallelo;
- MINMAX che costruisce gli array A_{\min} e A_{\max} ; divide a metà e prende i valori a distanza $\frac{n}{2}$ e mette il minimo in quello a sx e il massimo a dx; nella prima metà avrò i minimi e nella seconda metà avrò i massimi; ritorniamo poi $A_{\min}A_{\max}$.

Vediamo le procedure.

Reverse

1: for $1 \leq k \leq \frac{n}{2}$ par do 2: L SWAP(A[k], A[n-k+1])

Ho $p = \frac{n}{2}$ processori e t = 4 per LD LD ST ST.

MinMax

 $\begin{array}{ll} \text{1: for } 1 \leq k \leq \frac{n}{2} \text{ par do} \\ \text{2: } & \text{if } A[k] > A\big[k + \frac{n}{2}\big] \\ \text{3: } & \text{L SWAP}\big(A[k], A\big[k + \frac{n}{2}\big]\big) \end{array}$

Ho $p=\frac{n}{2}$ processori e t=5 per LD LD ST ST e confronto.

Diamo alcune definizioni di particolari sequenze numeriche:

• unimodale: A è unimodale se e solo se

$$\exists k \mid A[1] > A[2] > \dots > A[k] < A[k+1] < \dots < A[n]$$

oppure

$$A[1] < A[2] < \ldots < A[k] > A[k+1] > \ldots > A[n]$$

ovvero esiste un valore che mi fa da minimo/massimo e la sequenza è decrescente/crescente poi crescente/decrescente. Non è perfettamente ordinato;

• bitonica: A è bitonica se e solo se esiste una permutazione ciclica di A che mi dà una sequenza unimodale, ovvero se

$$\exists j \ | \ A[j],...,A[n],A[1],...,A[j-1]$$

è unimodale. In poche parole, scelgo un elemento che va in testa e da li, ciclicamente, prendo tutto il resto del vettore; una volta fatto ciò, ho una roba unimodale.

Graficamente, una sequenza unimodale ha un picco (massimo o minimo), mentre una sequenza bitonica ha due picchi, un minimo+massimo con i valori della coda-min più piccoli dei valori della coda-max (coda-max > coda-min) oppure un massimo+minimo con coda-max valori più grandi dei valori di coda-min.

Vediamo l'algoritmo per ordinare sequenze bitoniche di Batcher del 1968.

Osserviamo che:

- una sequenza unimodale è anche bitonica, con la permutazione identità;
- i valori di fine vettore devono essere maggiori di inizio vettore (minmax) oppure devono essere minori di inizio vettore (maxmin);

• siano A, B due sequenze ordinare, allora $A \cdot \text{REV}(B)$ è unimodale.

Vediamo delle proprietà ora.

Lemma 12.1: Sia *A* bitonica, se eseguo minmax su *A* ottengo:

- A_{\min} e A_{\max} bitonica;
- ogni elemento di A_{\min} è minore di ogni elemento di A_{\max}

Dimostrazione 12.1: Dimostrazione grafica.

Ci suggeriscono un DEI:

- minmax suddivide il problema si *n* elementi su istanze più piccole grazie alla prima parte;
- ordinando A_{\min} e A_{\max} la fusione di due sequenze ordinate avviene per concatenazione grazie alla seconda parte.

BitMerge sequenziale

- 1: input A[1], ..., A[n] bitonico
- 2: minmax su A
- 3: if |A| > 2
- 4: | BitonicSort su A_{\min}
- 5: BitonicSort su A_{max}
- 6: return A

Teorema 12.1: Corretto.

Dimostrazione 12.2: Per induzione su n.

Se n=2 con minmax scambio se disordinati, poi ritorno A, quindi ok, banalmente ordinata da minmax.

Sia $n = 2^k$ corretto, mostriamo per $n = 2^{k+1}$:

• viene calcolato minmax su lunghezza 2^{k+1} che ritorna A_{\min} e A_{\max} di lunghezza $\frac{2^{k+1}}{2}=2^k$;

- ma su lunghezza 2^k BitMerge ordina perfettamente A_{\min} e A_{\max} per HP;
- \bullet quindi A viene ritornato ordinato.

Vediamo l'implementazione parallela.

Applichiamo MM con $\frac{n}{2^0}$, poi ..., infine $\frac{n}{2^{i-1}}$. In questo caso avviene una normalissima concatenazione, visto che MM lavora su due elementi.

Algoritmo EREW perché lavoro ogni volta su elementi diversi, no letture concorrenti.

Mi fermo quando $\frac{n}{2^{i-1}}=2$ quindi $i=\log(n)$. MM costa 5 quindi $T(n)=5\log(n)$. Il primo passo richiede $\frac{n}{2}$, il secondo $\frac{n}{4}\cdot 2$, poi ..., quindi sempre $\frac{n}{2}$ processori.

L'equazione di ricorrenza è

$$T(n) = \begin{cases} 5 \text{ se } n = 2 \\ T(\frac{n}{2}) + 5 \text{ altrimenti} \end{cases}$$

non metto costanti alla T perché sono in parallelo. Ottengo lo stesso $T(n)=5\log(n).$

L'efficienza è

$$E = \frac{n \log(n)}{\frac{n}{2} 5 \log(n)} \longrightarrow C \neq 0.$$

13.1. BitSort

Vediamo ora BitSort di Batcher del 1968, algoritmo per una qualunque sequenza.

BitSort sequenziale

input A[1], ..., A[n] generico

- 1: minmax su A
- 2: if |A| > 2
- 3: BitSort su A_{\min}
- 4: BitSort su A_{\max}
- 5: L
 Bit Merge su $A_{\min} \cdot \text{REV}(A_{\max})$ che è unimodale e quindi bitonica
- 6: return A

Teorema 13.1.1: Correttezza.

Dimostrazione 13.1.1: Per induzione su n.

Caso base n=2 facciamo minmax così ho minimo+massimo, viene ritornato il vettore che è ordinato quindi SIUM.

Suppongo vero per $n = 2^k$ e dimostro per $n = 2^{k+1}$.

Sia $|A|=2^{k+1}$, ma:

- minmax divide A in A_{\min} e A_{\max} di lunghezza 2^k entrambi
- la chiamata ricorsiva (doppia) a BitSort prende 2^k ma per HP induttiva essi sono ordinati
- la chiamata poi a bitmerge avviene con parametri C+D oppure D+C, ma BitMerge è corretto, quindi ordinato, poi viene ritornato.

Vamos tutto corretto.

Vediamo l'implementazione parallela (serve immagine).

È un algoritmo PRAM-EREW perché dividiamo sempre l'input ma lavoriamo sempre su dati senza intersezione, accesso e scrittura esclusivi.

Tempo:

- prima fase è come bitmerge, quindi all'ultimo passo ho eseguito $i = \log(n)$;
- seconda passo all'ultimo passo ho $i = \log(n) 1$ da moltiplicare per il costo di bitmerge che è logaritmico, quindi seconda fase è $T(n) = \log^2(n)$.

Il costo totale è quindi quello della seconda fase, per i processori ho sempre $\frac{n}{2}$ in tutte le fasi.

Possiamo usare anche l'equazione di ricorrenza

$$T(n) = \begin{cases} 5 \text{ se } n = 2\\ T(\frac{n}{2}) + 5 + 4 + 5\log(n) \text{ altrimenti} \end{cases}$$

senza costante sul $T(\frac{n}{2})$ perché sono in parallelo. Facendo i conti si ottiene

$$T(n) = \frac{5\log^2(n) + 23\log(n) - 18}{2}.$$

L'efficienza è

$$E = \frac{n \log(n)}{\frac{n}{2} 5 \log^2(n)} = \frac{\alpha}{\log(n)} \longrightarrow 0$$

molto lentamente. Ci va così piano che si preferisce su istanze molto piccole.

13.2. Osservazioni

Buon algoritmo sequenziale non implica buon algoritmo parallelo: esempio è il MergeSort.

Ma anche buon algoritmo parallelo non implica buon algoritmo sequenziale: esempio è il BitSort.

Infatti, vediamo il tempo sequenziale di BitSort:

• prima BitMerge che vale

$$T_m(n) = \begin{cases} O(1) \text{ se } n = 2\\ 2T_m\left(\frac{n}{2}\right) + O(n) \text{ se } n > 2 \end{cases}$$

quindi ci esce $T_b = O(n \log(n))$;

• vediamo BitSort come

$$T_s(n) = \begin{cases} O(1) \text{ se } n = 2\\ 2T_s\left(\frac{n}{2}\right) + O(n\log(n)) \text{ se } n > 2 \end{cases}$$

che ci dà
$$T_s = O\big(n\log^2(n)\big)$$

Vediamo come parallelo è buono perché è $O(\log^2(n))$ mentre qua è $O(n\log^2(n))$ che è peggio di MergeSort.

13.3. Tecnica del ciclo euleriano

Vediamo un po' di basi di teoria dei grafi.

Un grafo diretto D è una coppia V, E dove $E \subseteq V^2$. Indichiamo un arco con $(v,e) \in E$. Un cammino è una sequenza di archi $e_1, ..., e_k$ tale che per ogni coppia di lati consecutivi il nodo pozzo del primo coincide con il nodo sorgente del secondo. Un ciclo è un cammino tale che il nodo pozzo di e_k è il nodo sorgente di e_1 .

Un ciclo è euleriano quando ogni arco in E compare una e una sola volta. Un cammino euleriano è la stessa cosa. Un grafo è euleriano se contiene un ciclo euleriano.

Il problema base è, dato un grafo D, è euleriano?

Diamo notazioni:

- $\forall v \in V$ definiamo $\rho^-(v) = |\{(w, v) \in E\}|$ numero di archi entranti in v ed è detto grado di entrata di v;
- $\forall v \in V$ definiamo $\rho^+(v) = |\{(v,w) \in E\}|$ numero di archi uscenti da v ed è detto grado di uscita di v

Teorema 13.3.1 (di Eulero (1736)): Un grado D è euleriano se e solo se

$$\forall v \in V \quad \rho^-(v) = \rho^+(v).$$

Vediamo un problema simile: molto simile al ciclo hamiltoniano, ovvero un ciclo è hamiltoniano se e solo se è un ciclo dove ogni vertice in V compare una e una sola volta. D è hamiltoniano se e solo se contiene un ciclo hamiltoniano.

Per euleriano ho un algoritmo efficiente in $O(n^3)$ con n=|V| mentre per hamiltoniano ho un problema NP completo.

Abbiamo una tecnica del ciclo euleriano: viene usata per costruire algoritmi paralleli efficienti che gestiscono strutture dinamiche come alberi binari.

Per trasformare un albero in una tabella con righe nodi e colonne figlio sx dx e il padre etichetto i nodi e poi popolo.

Molti problemi ben noti usano alberi binari:

- ricerca:
- costruzione di dizionari;
- query.

Fondamentale in questi problemi è la navigazione dell'albero (ricerca, manutenzione, modifica, cancellazione, inserimento).

Possiamo operare su queste strutture in parallelo con algoritmi efficienti.

Idea: usiamo delle liste che contengono dei puntatori ai nodi dell'albero, e le possiamo usare bene in parallelo (ad esempio Kogge-Stone per le somme prefisse).

Usiamo un vettore S dei successori dell'albero, gli elementi sono i nodi dell'albero.

Associamo ad un albero binario un ciclo euleriano: sostituisco ogni ramo dell'albero con un doppio arco orientato. In questo modo navigo l'albero seguendo il ciclo euleriano.

Così abbiamo un ciclo, noi vogliamo un cammino. Ogni vertice v viene espanso in tre vertici (v,s),(v,c),(v,d) sinistra centro destra. Con questi nuovi vertici creo un cammino: quando devo scendere di altezza collego al nodo s, se non posso scendere scorro tutti, se devo salire mi collego a c o a d (in ordine).

Terzo e ultimo passo è costruire una lista dal cammino euleriano. Quindi avrò S((v,x)) con $1 \le v \le n$ e $x \in \{s,c,d\}$. Costruiamo questa lista a partire dalla tabella con delle regole per nodi foglia o nodi interni.

Se sono in un nodo foglia v allora

$$\begin{split} S[(v,s)] &= (v,c) \\ S[(v,c)] &= (v,d) \\ S[(v,d)] &= \begin{cases} (\operatorname{pad}(v),c) \text{ se } v = \sin(\operatorname{pad}(v)) \\ (\operatorname{pad}(v),d) \text{ se } v = \operatorname{des}(\operatorname{pad}(v)) \end{cases}. \end{split}$$

Se sono in un nodo interno v allora

$$S[(v,s)] = (\sin(v), s)$$

$$S[(v,c)] = (\operatorname{des}(v), s)$$

$$S[(v,d)] = \begin{cases} (\operatorname{pad}(v), c) \text{ se } v = \sin(\operatorname{pad}(v)) \\ (\operatorname{pad}(v), d) \text{ se } v = \operatorname{des}(\operatorname{pad}(v)) \end{cases}$$

Ultima regola è uguale per tutti.

Diamo un algoritmo parallelo per costruire S:

- un processore per ogni vertice, ovvero per ogni riga della tabella;
- il processore deve costruire S[v, ...]
- le letture sono concorrenti, ho accesso a tutta la riga di v ma anche alle righe dei padri. Possiamo eliminare la concorrenza, ci fidiamo. Ad esempio, si fa con i nodi pari/dispari con piccoli accorgimenti per leggere solo dalla propria parte.

Algoritmo EREW con p(n) = n e T(n, p(n)) = O(1). Cambiamo con Wyllie e otteniamo $p(n) = \frac{n}{\log(n)}$ e $T = \log(n)$.

L'array S è utile per risolvere i problemi:

- attraversamento in pre-ordine;
- calcolare la profondità dei nodi.

Abbiamo bisogno di due definizioni:

- $\forall v \in V$ allora N(v) indica l'ordine di attraversamento di v in pre-ordine;
- $\forall v \in V$ allora P(v) indica la profondità di v nell'albero.

La radice ha N(v) = 1 mentre la foglia più a destra ha N(v) = n. La radice ha P(v) = 1/0, il figlio della radice uno in più.

14.1. Attraversamento in pre-ordine

Dai una definizione di pre-ordine (prima radice, poi sx, poi dx).

Definiamo un array A tale che

$$A[(v,x)] = \begin{cases} 1 \text{ se } x = s \\ 0 \text{ altrimenti} \end{cases} \forall v \in V.$$

Ora, su (A,S) andiamo ad applicare somme prefisse. Dentro la cella A[(v,s)] avremo N(v) perché quando facciamo il cammino e visitiamo un nuovo nodo andiamo sempre nel suo nodo sinistro.

L'algoritmo calcola A e S, calcola somme prefisse su A e S. L'output è nel nodo A[(v,s)].

L'algoritmo è EREW con $p(n) = \frac{n}{\log(n)}$ e $T(n,p(n)) = \log(n)$ per entrambi i passi, quindi ottengo

$$E = \frac{n}{\frac{n}{\log(n)}l(n)} \to C \neq 0$$

ottimale si gode.

Per la profondità dei nodi ci serve un array tale che

$$A[(v,x)] = \begin{cases} 1x = s \\ 0x = c \\ -1x = d \end{cases}.$$

Anche su questo vettore applichiamo le somme prefisse. Troviamo P(v) nella cella A[(v,d)].

L'algoritmo parallelo per la profondità calcola A e S, calcolo le somme prefisse su (A, S), l'output è in A[(v, s)] se partiamo da 1, altrimenti in A[(v, d)] se partiamo da 0.

Abbiamo efficienza

$$E = \frac{n}{\frac{n}{\log(n)}\log(n)} \longrightarrow C \neq 0$$

quindi anche lui ottimale efficiente.

14.2. Architettura distribuita

Osservazioni finali sulle PRAM:

- interesse teorico
 - processori sono uguali e alla pari
 - il tempo è strettamente legato alla computazione (comunicazione costante)
- · interesse pratico
 - realizzazione fisica dei multicore

Multicore ha portato l'interesse del calcolo parallelo da ambiti scientifici ad un ambiente più ampio, tipo consumatore o informatico.

Prima del 2000 per aumentare le prestazioni si aumentava il clock con problemi:

- di assorbimento di energia (> 100W)
- di raffreddamento

Dopo il 2000 arrivano i multicore, si aumenta il grado di parallelismo con:

- · clock di minor frequenza
- minor assorbimento di energia
- · vantaggi sul raffreddamento

Questo porta allo sviluppo teorico in ambito di algoritmi paralleli (scrittura, riscrittura, manipolazione di software per i multicore).

Architetture parallele a memoria distribuita erano i paradigmi usati prima del multicore, usato dai supercomputer (anni 60 cray e intel paragon, mentre attuali cray, blue gene, red storm, earth simulator, tianhe-2)

Sono supercomputer a memoria distribuita, ovvero sono grafi con nodi processori e archi reti di connessioni. Alle PRAM manca la memoria condivisa.

I processori sono RAM sequenziali con:

- elementi di calcolo, hanno istruzioni per il calcolo e la loro memoria privata
- router, hanno istruzioni per la comunicazione di send e receive

La comunicazione avviene in parallelo, ma se $p_1, ..., p_k$ mandano contemporaneamente dati a p essi sono fatti in modo simultaneo, ma p lavora sequenzialmente quindi deve fare k receive, quindi servono k+1 passi per la comunicazione (send parallela e k receive).

I collegamenti sono di tipo full-duplex, ovvero comunicazione diretta, archi non orientati. Se c'è collegamento diretto la comunicazione costa 2 passi (send e receive).

Abbiamo anche un clock centrale che scandisce il tempo per tutti i processori.

Il programma, come nelle PRAM, è un PAR DO, quindi

con anche send e receive (architettura SIMD single instruction multiple data)

Cambiano input e output: non abbiamo più la memoria condivisa come la PRAM, quindi l'input viene distribuito tra i processori, mentre l'output o viene messo in un processore dedicato o si legge in un certo ordine tra i vari processori.

Le risorse di calcolo sono:

- numero di processori: può essere la lunghezza dell'input ma ci sono tecniche per abbassare il numero
- tempo, dato da:
 - ▶ tempo di calcolo
 - tempo di comunicazione, può essere rilevante ed è legato alla rete di connessioni

Abbiamo i seguenti parametri di rete: data l'architettura G = (V, E) definiamo:

• grado di *G*: per ogni vertice calcoliamo

$$\gamma = \max\{\rho(v) \mid v \in V\}$$

dove $\rho(v)$ è il numero di archi incidenti su v; un valore alto permette buone comunicazioni ma rende più difficile la realizzazione fisica

• diametro di G: definiamo

$$\delta = \max\{d(v, w) \mid v, w \in V \land v \neq w\}$$

come il massimo tra tutte le distanze minime da v e w; valori bassi di δ sono da preferire, ma aumentano il parametro γ

• ampiezza di bisezione di G: sia β il minimo numero di archi in G che tolti mi dividono i nodi in circa due metà; esso rappresenta la capacità di trasferire le informazioni in G, ancora una volta β alto si preferisce ma incrementa γ

Problemi che vedremo sulle architetture parallela a memoria distribuita:

- max: comunicazione a coppie di processori δ basso comunicazione veloce
- ordinamento: spostamenti di parti dell'input β alto ordinamento efficiente

Valgono i seguenti limiti inferiori per i tempi di soluzione

Lemma 15.1: Il tempo richiesto per MAX in G è almeno δ

Dimostrazione 15.1: Ogni coppia di processori deve comunicazione, quindi servono almeno δ passo parallelo

Lemma 15.2: Il tempo richiesto per ORDINAMENTO in G è almeno

 $\frac{n}{2}\frac{1}{\beta}$

Dimostrazione 15.2: Divido il grafo in due metà:

- in $\frac{n}{2}$ ho i numeri più alti
- in $\frac{n}{2}$ ho i numeri più bassi

Noi vogliamo crescente, nel caso peggiore sono tutto decrescente

Quanti trasferimenti devo fare? Posso trasferire da una nuvola all'altra in beta, quindi facendo $\frac{n}{2}$ ci metto $\frac{n}{2}\frac{1}{\beta}$. Perché ho a disposizione β ponti.

Per analizzare questi problemi abbiamo bisogno dei confrontatori/comparatori e delle loro primitive.

Sono dei ponti che collegano due fili, sopra mettono il minimo e sotto il massimo dei due valori

if
$$A[i] > A[j]$$
 then $SWAP(A[i], A[j])$ con $i < j$

Ci sono alcuni che fanno il contrario, quindi max sopra min sotto e il confronto ha il minore. Se minimo sopra cerchio, se minimo sotto cerchio vuoto.

Possiamo creare reti di confrontatori, ovvero metto un input per ogni filo e metto una serie di confrontatori. Una sorting network è una rete di confrontatori che ordina

Metti esempio per 3 e 4 elementi

Una rete generale di ordinamento è data dal bubble sort, ovvero ad ogni fase l'elemento più pesante viene spinto verso il basso.

Idea parallela: i confrontatori che agiscono su fili diversi vengono messi in un passo parallelo. In quello da 4 elementi ho $T(n)=\#{\rm step}$ e p(n)=4.

Una rete di confrontatori la indichiamo con $R(x_1,...,x_n)=(y_1,...,y_n)$

Si dice che R è una sorting network se e solo se

$$\forall (x_1,...,x_n) \in \mathbb{N}^n \quad R(x_1,...,x_n) = (y_1,...,y_n)$$

con

$$y_1 < ... < y_n$$

Sono anche dette reti di ordinamento test/swap oblivious (confronti non dipendono dall'input ma sono fissati a priori)

Ci chiediamo se R sia una sorting network. Per saperlo usiamo il principio 0-1 (zero uno, knuth nel 1972)

Formalmente,

$$\forall x \in \{0,1\}^n \quad R(x) \text{ ordinato} \longrightarrow \forall y \in \mathbb{N}^n \quad R(y) \text{ ordinato}$$

Se vale un booleano vale anche per tutti gli altro

Vale anche esiste + non ordinato implica esiste + non ordinato

Introduciamo uno strumento: f-shift su R

Abbiamo una rete R e una funzione f. Prima applico f e poi R, oppure prima R e poi f, ovvero

$$R(f(x_1),...,f(x_n)) = f(R(x_1,...,x_n)) = (f(y_1),...,f(y_n))$$

Per essere vero f deve essere monotona crescente, perché i confrontatori trovano minimo e massimo e f
 non cambia niente

Teorema 15.1: Se R non corretta esiste $x \in \mathbb{N}^n$ tale che R(x) non ordina, quindi esistono k,s tali che $y_k > y_s$ ma k < s

Dimostrazione 15.3: Definiamo $g = \mathbb{N} \longrightarrow \{0,1\} = \begin{cases} 1 \text{ se } x \geq y_k \\ 0 \text{ altrimenti} \end{cases}$

Vediamo come sia monotona crescente

Ora applico fa ${\cal R}$ e ottengo

$$R(g(x_1), ..., g(x_n))$$

ma per la regola dello shift questa cosa è uguale a

$$(g(y_1),...,g(y_n))$$

vettore binario che non è ordinato perché $g(y_k)$ vale 1 mentre in $g(y_s)$ vale 0 perché più piccolo.

Ma allora non ho ordinato

Per testare una R e capire se è sorting network mi basta valutare R solo su input binari, molto più facile da fare

16.1. Array lineari

Architettura parallela a memoria distribuita. Ci sono n processori $p_1,...,p_n$ collegati su una riga. I parametri di questa rete sono:

- $\gamma = 2$ grado del grafo (ottimo per la realizzazione)
- $\delta=n-1$ diametro (lower bound per max, non sono soddisfatto perché sequenziale ci mette n)
- $\beta = 1$ ampiezza di bisezione (lower bound per ordinamento)

Sulla PRAM abbiamo max che usa $p = \frac{n}{\log(n)}$ e $T = \log(n)$ mentre per ordinamento abbiamo p = n e $T = \log(n)$ (per Cole) quindi dobbiamo abbassare i processori.

Problemi che affronteremo sono shuffle, max e ordinamento

Abbiamo una serie di processori P_n che tengono i dati A[n]. Se servono dati di altri li chiedono.

Vediamo la primitiva per shuffle.

Per risolvere shuffle facciamo swap contiguo, ovvero swap(k,k+1). Ovvero devo avere Pk con A[k+1] e Pk+1 con A[k]

Avrò bisogno di 3 passi paralleli, ovvero doppia send per mandare, doppia receive per ricevere e poi assegnare A[k]=A[k+1] e A[k+1]=A[k]

Vediamo shuffle

In input ho A[1],...,A[s],A[s+1],...,A[2s] di lunghezza pari, e in output voglio A[1],A[s+1],A[2],A[s+2],...,A[s],A[2s] ovvero voglio primo elemento prima metà + primo seconda metà, poi secondo elemento, poi terzo, eccetera.

Idea: scambio a metà, poi quelli vicini, poi vicini ancora, eccetera. Creo un albero di swap contigui

Il numero di processori è 2(s-1) e il tempo parallelo è 3(s-1). Un algoritmo sequenziale per questo è $\Theta(s^2)$ (senza memoria, sennò n) quindi

$$E = \frac{s^2}{ss} = C \neq 0$$

quindi mega ottimale cazzo

Vediamo massimo MAX

Dobbiamo mandare dati ai vari processori. Se devo mandare da i a j devo fare SEND(i,j), lo faccio in un numero di passi d(i,j), entra nel costo del problema. Quindi faccio send, poi receive-send, poi solo receive in j.

In totale sono 2d(i,j) = 2 abs(i-j)

Vediamo come la trasmissione non è più costante come nelle PRAM

In input ho A[1], ..., A[n] e vogliamo in P_n il valore

$$\max\{A[i] \mid 1 \leq i \leq n\}$$

Il tempo per MAX su array lineari è limitato inferiormente da n, mentre sulle PRAM era $\log(n)$. Il sequenziale invece n.

Idea:

- si considera l'algoritmo per sommatoria delle PRAM
- riduciamo i processori per abbassare $\Theta(n)$ su array a n processori

Al j-esimo passo confrontiamo i numeri a distanza 2^{j-1} , selezioniamo il massimo e lo memorizziamo nel processore 2^jt

Il numero di passi è $\log(n)$. Confronto ogni volta $2_j t - 2^{j-1}$

Vediamo il codice

$$\begin{split} &\text{for } j=1 \text{ to} \log(n) \\ &\text{for } k \in \left\{2^{j}t-2^{j-1} \mid 1 \leq t \leq \frac{n}{2^{j}}\right\} \text{ par do} \\ &\text{SEND}(k,k+2^{j-1}) \\ &\text{for } k \in \left\{2^{j}t \mid 1 \leq t \leq \frac{n}{2^{j}}\right\} \text{ par do} \\ &\text{if } \left(A[k] < A[k-2^{j-1}]\right) \text{ then} \\ &A[k] = A[k-2^{j-1}] \end{split}$$

Fase di send e fase di compare

Vediamo il tempo:

- send è due volte la distanza tra i processori, quindi ho $22^{j-1}=2^j$ per $j=1,...,\log(n)$
- compare vale 2, solo confronto e assegnamento, ma sempre per $j = 1, ..., \log(n)$

Quindi il totale è

$$\sum_{j=1}^{\log(n)} 2^j + 2 = \sum_{i=1}^{\log(n)} 2^j + 2\log(n) = 2^{\log(n)+1} - 1 \underbrace{-1}_{\text{parto da }0} + 2\log(n) = 2n - 2 + 2\log(n) = O(n).$$

Ho n processori, quindi $E \longrightarrow 0$ non va bene

Riduciamo i processori da n a p in questo modo operiamo sul parametro δ distanza massima tra i processori. Ogni processore prende $\frac{n}{p}$ elementi e non più uno. Ora ho array di p elementi e quindi cambia anche δ che si riduce.

Nuovo algoritmo:

- un processore seleziona il max sequenziale tra i suoi $\frac{n}{p}$ numeri
- si esegue MAX su *p* processori

Prestazioni:

- processori p
- tempo $O(\frac{n}{p}) + O(p)$

Efficienza ho numeratore n e denominatore

$$p\bigg(O\bigg(\frac{n}{p}\bigg) + O(p)\bigg) = O(n) + O(p^2) = O(n)$$

Vorremmo $p^2 = n$ per avere O(n) e semplificare, quindi

$$p = \sqrt{n}$$

per avere efficienza non nulla

Quindi MAX lo risolviamo bene su array lineari con $p=\sqrt{n}$ e tempo $T=\left(O\left(\frac{n}{\sqrt{n}}\right)\right)+O(\sqrt{n})=O(\sqrt{n})$

Vediamo invece ordinamento

Abbiamo bisogno di swap tra due processori generici, non più contigui. Scambiamo Pi e Pj, abbiamo diverse soluzioni

USO LA SEND, quindi devo fare una send i, j POI una send j, i, poi alla fine di tutto assegnamento

Il tempo è 2d(i,j) + 2d(j,i) + 1 = 4d(i,j) + 1 ma tempo brutto

USO LA SEND SIMULTANEA abbiamo due casi:

- distanza tra i processori dispari 2k+1 ovvero i processori sono pari 2k+2, divisi a metà k+1 processori. Quelli in mezzo sono k+1 e k+1+1. I dati dai bordi arrivano simultanei con send(i,k+1) e send(j,k+i+1), poi faccio send simultanea (ho un full duplex) e poi le send opposte
- distanza tra i processori pari: come esercizio

Il tempo del primo caso è 2k (distanza bordi) + 2 + 2k (send di nuovo) + 1 (assegnamento) = 4k+3 = 2(2k+1) + 1 = 2d(i,j) + 1

Il tempo nel secondo caso è 2d(i,j) + 3

Altra primitiva per l'ordinamento che ci serve è minmax, ovvero processore di indice minimo metto valore minimo, processore di indice massimo metto valore massimo

In poche parole implementa il confrontatore, ovvero $P_k = \min\{A[k], A[k+1]\}$ e altro bla bla bla

La minmax ha 4 come costo del passo parallelo.

Ordinamento ha in input A[1],...,A[n] assegnati ai processori $P_1,...,P_n$ e in output voglio cont(P_1) < dots < cont(P_n)

Diamo un algoritmo test/swap obliovius descritto da una SN, si chiama ODD/EVEN sorting network.

Abbiamo una colonna di confrontatori dispari (sopra è su un dispari) seguita una colonna di confrontatori pari. Una colonna si chiama round perché è un passo parallelo. Alterno per n volte questi confrontatori.

Per la correttezza di ODD/EVEN usiamo il principio 0/1, ovvero

$$\{0,1\}^n \rightsquigarrow \text{ODD/EVEN} \rightsquigarrow 0^j 1^e \mid j+e=n$$

a patto di fare esattamente n round.

Ogni 1 deve scendere di n-e=j posizioni. Contiamo gli uni a partire da 1 a partire dal basso. Vediamo quanto ci mettono a scednere di j posizioni. Notiamo che i ha i ritardi e poi scende di j posizioni. Quindi il primo uno che abbiamo ci mette j+i, ma i è esattamente il numero di 1 dell'input, è il ritardo.

Regola: l'i-esimo uno dal basso impiega n-e+i passi per posizionarsi correttamente. In generale è un al più.

Dato che $i \leq e$ si ottiene

$$n - e + \underbrace{e}_{i \text{ di prima}} = n.$$

Quindi n passi sono necessari (visto dall'input) e sufficienti.

Implementazione sequenziale è $n\frac{n}{2}\approx n^2$

In parallelo usiamo Haberman del 1972

Abbiamo n passi paralleli o round di confrontatori paralleli con minmax(k,k+1)

1: for
$$i=1$$
 to n
2: for $k\in\left\{2t-(i\%2)\mid 1\leq t\leq\frac{n}{2}\right\}$ par do 3: minmax(k,k+1)

Il tempo è 4n = O(n) mentre efficienza è

$$\frac{n\log(n)}{nn} \longrightarrow 0$$

non va bene riduco i processori

Osservazione: per n processori in un array lineare l'ordinamento vuole tempo $\Omega\left(\frac{n}{2\beta}\right)$ e qui $\beta=1$ quindi ci mettevo n, non va bene

Riduco i processori a p quindi ognuno prende $\frac{n}{p}$ dati e li ordina in sequenza in un tempo $O\left(\frac{n}{p}\log\left(\frac{n}{p}\right)\right)$

L'algoritmo è una versione che non usa minmax ma merge-split: avviene tra due processori contigui. Essa fa:

• processore di sinistra spedisce $\frac{n}{p}$ dati ordinati al processore di destra in un tempo $O\left(\frac{n}{p}\right)$

- il processore di destra riceve e fonde i nuovi $\frac{n}{p}$ dati con i suoi $\frac{n}{p}$ ordinati (operazione di merge) in tempo $O\left(\frac{n}{p}\right)$
- il processore di destra invia i dati più piccoli $\frac{n}{p}$ al processore di sinistra in un tempo $O\left(\frac{n}{p}\right)$ (operazione di split)

```
1: for i=1 to p
2:  for k\in\left\{2t-(i\%2)\mid 1\leq t\leq\frac{p}{2}\right\} par do
3: L merge-split(k,k+1)
```

Ogni primitiva di merge-split viene ripetuta p volte

Il tempo parallelo è $\frac{n}{p}\log\left(\frac{n}{p}\right)+p\frac{n}{p}=O(n)$. Il denominatore è $p\left(\frac{n}{p}\log\left(\frac{n}{p}\right)+n\right)=n\log\left(\frac{n}{p}\right)+np$ e noi vogliamo che sia $n\log(n)$ per avere una frazione uguale. Quindi prendiamo $p=\log(n)$. Efficienza quindi $E\longrightarrow C\neq 0$

Osserviamo come il tempo sia rimasto O(n) ma abbiamo abbassato il tempo parallelo. Ciò si spiega in quanto la riduzione dei processori agisce sul diametro e non sull'ampiezza di bisezione, che rimane sempre $\beta=1$.

Possiamo migliorare questi costi

17.1. Architettura MESH

Usate dai supercomputer, array bidimensionale ovvero griglia di processori

Avendo n processori abbiamo un quadrato $m \times m$ con $m = \sqrt{n}$ disposti come una matrice. Se n non è un quadrato perfetto prendiamo

$$\left(\left\lfloor\sqrt{n}\right\rfloor + 1\right)^2 \le 2n$$

per $n \ge 6$ quindi va bene lo stesso

Parametri di rete:

- $\gamma = 4$ (secondo lei è ρ)
- $\delta = 2\sqrt{n}$ perché devo fare la scala
- $\beta \sim \sqrt{n}$ (due diversi tagli)

I nostri lower bound diventano $\Omega(\sqrt{n})$ per max e $\Omega(\sqrt{n})$ per l'ordinamento, quindi tanta roba

Vediamo il massimo: idea immediata se usiamo la mesh come array lineare di n processori, facendo tipo serpentello, ma si ottiene $\Omega(n)$ per il tempo contro $\Omega(\sqrt{n})$ che abbiamo adesso in una mesh

Pensiamo ad un algoritmo righe-colonna, ovvero non penso al serpentello ma anche ad alte connessioni. Ogni riga è un array lineare di \sqrt{n} processori, in più anche l'ultima colonna è un array lineare di \sqrt{n} processori. Sposto i massimi di ogni riga in fondo e poi max dei massimi.

```
1: m = \sqrt{n}

2: for i = 1 to m par do

3: MAX(Pi1, Pi2, dots, Pim)

in Pim ho il massimo ora

4: MAX(P1m, P2m, dots, Pmm)
```

Tempo per la parte 1 è \sqrt{n} , idem per la seconda parte, quindi eseguo in tempo $O(\sqrt{n})$ quindi siamo soddisfatti. Efficienza purtroppo è

$$\frac{n}{n\sqrt{n}} \longrightarrow 0$$

quindi riduciamo i processori

Passiamo da \boldsymbol{n} a $\boldsymbol{p},$ ma andiamo avanti prossima volta

Riprendiamo ancora la mesh

Riduciamo i processori da n a p, ogni processore calcola il max tra $\frac{n}{p}$ dati in tempo $O\left(\frac{n}{p}\right)$. Poi, si attiva l'algoritmo di prima sulla griglia $\sqrt{p} \times \sqrt{p}$, che viene eseguito però in $O(\sqrt{p})$

Il tempo totale è $T = \frac{n}{p} + \sqrt{p}$

Il denominatore invece è

$$p\left(\frac{n}{p} + \sqrt{p}\right) = n + p^{\frac{3}{2}}$$

Vogliamo un denominatore n per avere una costante per l'efficienza, quindi scelgo $p^{\frac{3}{2}}=n$ ovvero

$$p = n^{\frac{2}{3}}$$

Il tempo totale diventa quindi

$$\frac{n}{p} + \sqrt{p} = n^{1 - \frac{2}{3}} + \sqrt{n^{\frac{2}{3}}} = n^{\frac{1}{3}} + n^{\frac{1}{2} \cdot \frac{2}{3}} = \sqrt[3]{x} + \sqrt[3]{x} = O\left(\sqrt[3]{x}\right)$$

Otteniamo efficienza ok

Limite teorico dobbiamo rifare i conti: con \sqrt{p} il limite è $\Omega(\sqrt{p})$ quindi $\Omega(\sqrt[3]{n})$ ma noi siamo esattamente qua quindi tanta tanta roba

18.1. Ordinamento LS3

Ricercatori anni 80

Ricorsivo con divide et impera. Non ordiniamo più a serpente.

Sia M il quadrato dei processori:

- dividi: divido in 4 quadrati M_1,M_2,M_3,M_4 sx alto dx alto sx basso dx basso (italiano) di dimensione $\frac{m}{2}$ con $m=\sqrt{n}$
- ordina: faccio l'ordinamento a serpente in parallelo
- fondi: mi arrivano 4 matrici, le fondo dando la matrice totalmente ordinata

Vediamo LS3 parallelo

LS3sort

- 1: if |M| == 1
- 2: return M
- 3: LS3sort(M_1)
- 4: LS3sort(M_2)
- 5: LS3sort(M_3)
- 6: LS3sort(M 4)
- 7: LS3merge(...)

Ci serve vedere anche la merge

Ci servono shuffle e odd/even. Data una riga i della mesh, essa è un array lineare di processori. Su questa riga facciamo lo shuffle. Lo shuffle viene fatto su M, formato dalle matrici M_k ordinate. Quindi lo shuffle viene fatto sulla riga di M.

Lo shuffle intramezzava prima metà con la seconda metà, cioè metteva vicini gli elementi con lo stesso indice delle due righe della matrice.

Dopo lo shuffle devo eseguire ODD-EVEN tra due colonne adiacenti i e i+1. Vogliamo vederlo come array lineare: lo costruiamo a serpente. Su questo facciamo ODD-EVEN quindi ordiniamo, sono $2\sqrt{n}$ e quindi avremo quel numero di round

LS3merge

1: for i=1 to \sqrt{n} par do

2: L SHUFFLE(i)

3: for i=1 to $\frac{\sqrt{n}}{2}$ par do

4: L ODD-EVEN(2i-1, 2i)

5: esegui i primi $2\sqrt{n}$ passi di ODD-EVEN sull'intera mesh a serpente

Il tempo per sta roba è $O(\sqrt{n})$ per lo shuffle, $O(\sqrt{n})$ per ODD-EVEN, e ancora $O(\sqrt{n})$ per l'ultima esecuzione, quindi il tempo per la merge è $T_m(n)=h\sqrt{n}$

Risolviamo l'equazione di ricorrenza per sto schifo:

$$T(n) = \begin{cases} 1 \text{ se } n = 1\\ T(\frac{n}{4}) + h\sqrt{n} \text{ altrimenti} \end{cases}$$

Ma allora

$$\sqrt{\frac{n}{4^2}} + h\sqrt{\frac{n}{4}} + h\sqrt{n} = \dots = \sum_{i=0}^{\log_4(n)-1} h\sqrt{\frac{n}{4^i}} + 1 = h\sqrt{n}\sum_{i=0}^{\log_4(n)-1} \sqrt{\frac{1}{4^i}} + 1 = h\sqrt{n}\sum_{i=0}^{\log_2\frac{n}{\log_4}(n)-1} \frac{1}{2^i} + 1 = h\sqrt{n}\sum_{i=0}^{\frac{\log_4(n)-1}{2}-1} \left(\frac{1}{2}\right)^i + 1 =$$

Se aggiungo un 4 ci esce $n\sqrt{n}$ per il sequenziale (peggio del merge sort)

Processori sono p(n) = n e il tempo è $T(n) = O(\sqrt{n})$ quindi

$$E = \frac{n \log(n)}{n \sqrt{n}} \longrightarrow 0$$

che non ci piace

Possiamo migliorare riducendo i processori, ma non lo vedremo

Con una versione del bitonic sort su mesh usa processori $O(\log^2(n))$ e tempo $T(n) = O\left(\frac{n}{\log(n)}\right)$ che è efficiente, ma come tempo è peggiore di LS3

19.1. Terza parte: ambiente di calcolo distribuito

Abbiamo un grafo orientato, dove i nodi sono entità e le frecce sono link/connessioni (non per forza full-duplex). Non abbiamo un clock globale. Ogni entità possiede:

- · memoria locale
- · capacità locale
- · capacità di comunicazione
- · clock locale proprio

Entità sono processori, processi, sensori, switch, eccetera

Nella memoria locale:

- registro di input, il registro è valore(x) = input dell'entità x
- registro di stato, il registro è stato(x) = stato dell'entità x, ovvero è il valore attuale dell'entità ed è cambiata localmente dalla stessa x

Per il clock locale, è possibile settare o resettare una sveglia

Proprietà delle entità:

- · sono reattive: all'accadere di un evento compiono una azione
 - Eventi:
 - interni al sistema: ricezione di messaggi, sveglia
 - esterni al sistema: impulso spontaneo (START)
 - AZIONI:
 - sequenza finita di operazioni indivisibili (inizio l'azione e la porto a termine, non si blocca, un esempio è nil)
- seguono delle regole: una regola è un oggetto della forma stato x evento -> azione. Sia x una entità, definiamo B(x) l'insieme delle regole a cui è soggetta x. Questo insieme deve essere completo e non ambiguo, ovvero è praticamente il codice di x

Se E insieme delle entità che cooperano tra loro, allora

$$B(E) = \bigcup_{x \in E} B(x)$$

che è il comportamento del sistema, ed è importante che sia omogeneo, ovvero

$$\forall x, y \in E \quad B(x) = B(y)$$

ovvero il codice deve essere uguale per tutte le entità

Il codice è detto algoritmo distribuito o protocollo per E, ma solo se B(E) omogeneo

Lemma 19.1.1: È sempre possibile ottenere B(E) omogeneo

Dimostrazione 19.1.1: Idea è utilizzare un registro locale aggiuntivo che differenzia quelle entità che alla stessa coppia stati x evento hanno azioni diverse. Questo è il registro ruolo(x) = ruolo di x. La regola viene modificata in

stato × evento \longrightarrow if ruolo(x) = a then A_a else A_b

Proprietà della rete:

- la comunicazione avviene usando una etichettatura sui link. Per l'entità x, l'etichettatura è denotata con λx (nome di ogni link). x si trova in G, indichiamo con:
 - Nin(x) vicini di ingresso ad x
 - Nout(x) vicini di uscita di x
- assiomi della rete:
 - ritardo finito di comunicazione, in assenza di errori un messaggio è spedito prima o poi arriverà
 - ullet orientamento locale, ogni entità riesce a distinguere tra i suoi vicini Nin e Nout grazie alla conoscenza di λx

Parametri della rete:

- numero di entità: n
- numero di link: m
- diametro della rete: d (delta delle parallele)

Assioma abbiamo anche:

• restrizioni: dichiarate al momento della scrittura del codice, sono proprietà positive della rete su cui facciamo affidamento

Restrizioni sulla comunicazione:

• link bidirezionali: connessioni full-duplex, ovvero

$$\forall x \ \operatorname{Nin}(x) = \operatorname{Nout}(x) \land \lambda_x(x,y) = \lambda_x(y,x) \Longrightarrow N(x)$$

· ordinamento dei messaggi: i messaggi sullo stesso link vengono prelevati con la politica FIFO

Restrizioni sull'affidabilità:

- rilevazione di errori, a livello di entità e di link, quindi l'abbiamo avuta
- affidabilità parziale (non ci saranno errori in futuro)
- affidabilità totale: non ci sono stati errori e non ce ne saranno in futuro

Restrizioni sulla topologia di rete:

• connettività del grafo, abbiamo fortemente connesso (per ogni coppia di entità abbiamo cammino bidirezionale che le collega) oppure connesso (grafo non diretto)

Restrizioni sul tempo:

- tempi di comunicazione unitari
- · clock sincronizzati

Tali restrizioni a volte vengono considerate per il calcolo della prestazioni ideali del codice distribuito Misure di complessità:

- tempo: intervallo tra la prima entità che si attiva e l'ultima che termina
- quantità di comunicazione: numero di messaggi spediti (se sono omogenei, ovvero stessa grandezza) e numero di bit spediti

Esecuzioni diverse dello stesso codice distribuito può portare a tempi diversi, quindi il tempo non va bene Risolviamo quindi con il tempo ideale: tempo misurato considerando comunicazioni unitarie e clock sincroni

Il tempo causale (caso peggiore) è il tempo misurato considerando la catena più lunga di comunicazione richiesta dal codice. Questo difficile da calcolare.

Definizione di un problema: esso è una tripla Pinit, Pfinal e R, dove i primi due sono due predicati che descrivono le configurazioni del sistema all'inizio e alla fine, mentre R sono le restrizioni del sistema.

19.2. Broadcasting

Pinit una entità tiene I:

$$\exists x \in E \mid \text{valore}(x) \land \forall y \neq x \quad \text{valore}(y) = \emptyset$$

Pfinal: tutte le entità ce l'hanno, ovvero

$$\forall x \in E \quad \text{valore}(x) = I$$

Le restrizioni sono:

- link bidirezionali BL
- affidabilità totale TR (total reliability)
- connettività CN
- queste tre sono R
- unico iniziatore UI (parte solo il primo che contiene x, detta I sta cosa)

Tutto detto RI

Vediamo un algoritmo distribuito / protollo

Diamo l'insieme di regole stato times evento -> azione:

- stato t(x) stato di x al tempo t
- evento è impulso spontaneo, sveglia o messaggio
- azione è mini programma indivisibile

L'esecuzione di un protocollo genera una sequenza di configurazioni successive del sistema

Sia $\sum(t)$ il contenuto dei registri delle entità al tempo t, sia futuro(t) eventi già generati al tempo t ma che non sono ancora processati

Indichiamo con C(t) la configurazione del sistema del tempo t, definita dalla coppia $\sum (t)$, futuro(t)

Definiamo $C(0) = (\Sigma(0), \text{Futuro}(0))$ registri inizializzati + impulso spontaneo

L'esecuzione del protocollo è una sequenza di configurazioni successive tale che C(0) a C(f) con il protocollo

Quando una C soddisfa P lo scriviamo con $C \in P$

Dobbiamo definire come un protocollo risolve un problema (definita dalla tripla)

Usiamo due stati $S = \{\text{iniziatore, inattivo}\}$. Abbiamo Sinit = stati delle entità in C(0) e Sterm = stati delle entità in C(f)

19.2.1. Prima versione

S = {iniziatore, inattivo}, Sinit = {iniziatore, inattivo} e Sfinal = {inattivo}

Iniziatore, se ricevo impulso spontaneo

- send(M) to N(x)
- become inattivo

Inattivo, se ricevo M

- processa M (preleva informazione e mettila in valore)
- send(M) to N(x)

Il messaggio è M=(t,o,d,I) con t tipologia del mex, o e d
 sono origine e destinatario, I informazione Abbiamo un problema

Problema dell'altra volta: protocollo corretto ma non termina, perché dopo lo stato iniziale tutto diventa inattivo e gli inattivi ricevono, processano e mandano ancora in giro. Non funziona anche se modifichiamo imponendo di non mandare a chi me l'ha mandato.

Infatti Futuro(t) non è mai il vuoto, la computazione non termina

Modifichiamo gli stati: Sstart subset Sinit stati che fanno iniziare il protocollo, mentre Sfinal subset Sterm stati per cui la sola azione possibile è quella nulla

Abbiamo ora Sinit = {iniziatore, inattivo}, Sstart = {iniziatore}, Sterm e Sfinal = {inattivo}

Grazie a questo stato il protocollo termina

La soluzione per P è tale che

$$\forall C(0) \in \text{Pinit} \quad \exists t' \mid \forall t > t' \quad C(t) \in \text{Pfinal (correttezza)}$$

e anche

$$\forall x \in E \quad \text{stato}_t(x) \in \text{Sfinal (terminazione)}$$

20.1. Seconda versione [flooding]

Abbiamo S = {iniziatore, inattivo, finito}, Sstart = {iniziatore}, Sfinal = {finito}

Abbiamo iniziatore con impulso spontaneo

- send(M) to N(x)
- · become finito

Abbiamo inattivo con ricezione di M

- processa M
- send M to N(x)-sender
- · become finito

Le coppie stato x evento non indicano fanno nil

Vediamo la complessità:

• M[F] =
$$\sum_{x \in E} (N(x) - 1) + \underbrace{1}_{\text{iniziatore}} = 2m - n + 1$$

• $T[F] \le d$ diametro della rete

Abbiamo anche lower bound:

- T[broacast / RI] gt.eq d, tempo causale (caso peggiore)
- M[broacast / RI] gt.eq m per un teorema

Il protocollo è ottimale

Teorema 20.1.1: M[broacast / RI] gt.eq m

Dimostrazione 20.1.1: Per assurdo, risolvo il problema con meno di m messaggi. Sia A il protocollo che non manda messaggi su (x,y). A è corretto e deve lavorare bene su ogni G, quindi anche G' ottenuto da G mettendo un nuovo nodo z non iniziatore, tolgo arco xy e aggiungo xz e zy con

$$\lambda_x(x,z) = \lambda_x(x,y)$$

e

$$\lambda_y(y,z) = \lambda_y(y,x)$$

Se eseguo A su G' allora z non riceve mai il messaggio I quindi A non è corretto.

20.2. Problema wake-up

Broacast parto da una e mando a tutti, in wake-up è generale, ho tot entità attive che devono mandare. Rilassiamo il vincolo unico iniziatore quindi.

Protocollo wFlood, ho S = {dormiente, attivo}, Sinit = Sstart = {dormiente}, Sterm = Sfinal = {attivo}

Se dormiente e impulso spontaneo faccio

- send(W) to N(x)
- · become attivo

Se dormiente e ricevo W

- send(W) to N(X) sender
- become attivo

Il resto è nil

Costi di sta roba:

- T[wFlood] lt.eq d
- 2m n + 1 lt.eq M[wFlood] lt.eq 2m (1 entità e tutte le entità)

21.1. Traversal

Ogni entità della rete deve essere visitata MA sequenzialmente, cioè una dopo l'altra. Applicazioni è la gestione delle risorse condivise. Versione ristretta del wake up.

Si parte da una visitata, le altre sono dormienti/unvisited, finale ho tutte visited ma una alla volta, in sequenza, ad ogni unità di tempo se ne aggiunge una nuova alla volta

Protocollo depth-first traversal, ovvero una visita in profondità, «si scende sempre verso il vicino non ancora visitato»

Usiamo un messaggio particolare, un token T. In ogni istante di tempo deve viaggiare al più un token. Quando un nodo lo riceve diventa visitato.

Passi:

- un nodo che riceve T per la prima volta:
 - ricorda il sender
 - fa una lista dei vicini non visitati
 - ightharpoonup invia T ad uno di essi
 - aspetta un messaggio da quest'ultima di return/back-edge (svegliata da T / già ricevuto il token)
- il vicino che ricevete *T*:
 - se è il primo T ripete il punto 1
 - altrimenti (già visitato) spedisce back-edge
- solo dopo aver finito la lista dei vicini non visitati, un nodo deve inviare la return al sender

Abbiamo tre tipi di messaggi:

- T token (ordine)
- B back-edge (già visitato)
- R return (finito con i vicini)

Vediamo DF-traversal:

- S = {initiator, idle, visited, done}
- Sinit = {initiator, idle}
- Sterm = $\{done\}$

Restrizioni sono RI

Initiator

- se impulso spontaneo
 - ► initiator = true
 - unvisited = N(x)
 - visit

Idle

- se receiving(T)
 - entry = sender
 - unvisited = N(x) sender
 - ► initiator = false
 - visit

Procedura VISIT

• if unvisited non vuoto then

- next = unvisited
- ▶ send(T) to next
- become visited
- else
 - ▶ if (initiator == false) then
 - send(return) to entry
 - become done

Visited

- se receiving(return)
 - visit
- se receiving(back-edge)
 - visit
- se receiving(T)
 - unvisited = unvisited sender
 - ► send(back-edge) to sender

Per tutto il resto c'è mastercard

Complessità: osserviamo che se x,y sono identità, sul loro canale passa il token + return o back-edge

Traversal è sequenziale, perché le attivo una alla volta, ma allora T[DF-traversal] e M[DF-traversal] sono 2m (M perché mando due messaggi per m archi), mentre il tempo idem perché sono sequenziale

Vediamo i lower bound di traversal:

- M[traversal] gt.eq m (vale per broadcast)
- T[traversal] gt.eq n-1 (ogni nodo viene visitato in sequenza)

Nel caso di un grafo connesso si passa a

$$n-1 \le m \le \frac{n(n-1)}{2} = O(n^2)$$

quindi DF-traversal ottimo per messaggi ma nel caso peggiore non ottimo per il tempo, passiamo da n
 teorico a n^2 peggiore

Osservazione: il problema per il costo del tempo è che ad ogni istante viaggia un solo messaggio -> mettiamo concorrenza, aggiungendo una quantità opportuna di messaggiO(m) che possano rendere più veloce il protocollo

Possiamo evitare di inviare T su un link back-edge?

Idea: un nodo non visitato che riceve T comunica l'evento ai vicini mandando un messaggio visited, così i vicini tolgono quel nodo dagli unvisited

Abbiamo evitato i link back-edge? NO, ma migliorato lo stesso

La nuova complessità è:

- messaggi
 - ▶ 2n-2 per T + return
 - ► 2m (n-1) per visited
 - ► 2(m (n-1)) per errori sull'invio dei T su back-edge

In totale è O(m)

Tempo ideale non ho ritardi e gli errori non capitano. Inoltre, visited viaggia assieme a T, quindi il tempo diventa 2(n-1) (TR) = O(n) che è finalmente il lower bound

DF* è protocollo con ste modifiche, ed è ottimo per messaggi e tempo

S = {initiator, idle, available, visited, done}, Sinit = {initiator, idle}, Sterm = {done}

Initiator

- spontaneo
 - ► initiator = true
 - unvisited = N(x)
 - ► next = unvisited
 - ▶ send T to next
 - send visited to N(x) next
 - become visited

Idle

- riceve T
 - unvisited = N(x)
 - ► first-visit
- riceve visited
 - unvisited = N(x) sender
 - become available

Available

- ricevet T
 - ► first-visit
- riceve visited
 - unvisited = unvisited sender

Visited

- · riceve visited
 - unvisited = unvisited sender
 - if (next = sender) then visit
- riceve T
 - unvisited = unvisited sender
 - if (next = sender) then visit
- riceve return
 - visit

Procedura first-visit (prima volta che si riceve il token per mandare tutto asssieme)

- initiator = false
- entry = sender
- unvisited = unvisited sender
- if non vuoto then
 - ► next = unvisited
 - ► send(T) to next
 - ► send(visited) to N(x) {entry,next}
 - become visited
- else
 - send(return) to entry
 - send(visited) to N(x) entry
 - ▶ become done

Procedura visit (già mandato il visited)

• if unvisited non vuoto then

- next = unvisited
- ► send(T) to next
- else
 - if not initiator then
 - send(return) to entry
 - ► become done

22.1. Spanning tree

Osservazione: broadcast, wp e tr sono Theta(m) con m = numero di link e n entità

Ma noi sappiamo che

$$n-1 \le m \le ... = O(n^2)$$

ma n-1 è un albero e l'altro è un grafo completo. Noi non scegliamo la rete, possiamo costruire una sotto-rete

Perché importante? Strategia:

 al posto di usare tutta G usiamo una sottorete per minimizzare la complessità di comunicazione, quale sottorete? ALBERO

Attenzione ai costi:

- costruzione dell'albero
- · costo originale sull'albero

Ad esempio, BD sull'albero è esattamente n-1 su alberi perché hai

$$2m-n+1=2(n-1)-n+1=2n-2-n+1=n-1$$

Vogliamo costruire sottorete tale che

- coinvolge tutte le entità
- le entità sono connesse
- è priva di cicli

La soluzione distribuita richiede la conoscenza dell'albero all'interno della rete, ovvero ogni entità vedrà una piccole parte dell'albero (noi siamo migliori)

Definiamo $\forall x \in E$ la roba Tree-N(x) subset N(x), sottoinsieme di vicini che partecipano all'albero e che sono collegati direttamente a x

Diciamo che un arco (x,y) appartiene agli archi link(Tree-N(x)) se e solo se y sta in sta cosa. Link è un insieme di archi.

Infine, Tree è union di x in E di link(Tree-N(x))

Dobbiamo anche dire chi è la radice

Noi usiamo restrizioni RI con il protocollo Shout:

• ogni entità vede solo i suoi Tree-N(x) e tiene traccia del padre

La radice è l'entità che inizia il protocollo

Strategia Shout: CHIEDI!

Vediamo:

- la s(root) spedisce Q ai suoi vicini e attende le risposte
- ogni entità x diversa da s che riceve Q per:
 - ▶ la prima volta risponde YES e invia Q ai suoi vicini e si mette in attesa
 - una volta successiva alla prima risponde NO
- serve memorizzare l'entità padre e le entità che mi rispondono yes
- entità termina quando riceve tutte le risposte

In pratica è flooding con reply. Dobbiamo

- mandare messaggi Q yes no
- aggiornare variabili root, parent, tree-N(x), counter
- aggiornare lo stato per raggiungere la terminazione

Abiamo quindi

- stati iniziatore, inattivo, attivo, finito
- Sinit = {iniziatore, inattivo}
- Sterm = {finito}

Dobbiamo definire le azioni per iniz, inat e attivo

Iniziatore:

- se impulso spontaneo
 - ► root = true
 - \rightarrow counter = 0
 - tree-N(x) = vuoto
 - ► send(Q) to N(x)
 - ▶ become attivo

Inattivo

- se riceve Q
 - ► root = false
 - ► parent = sender
 - ► counter = 1
 - \rightarrow tree-N(x) = sender
 - ► send yes to sender
 - if counter = |N(x)| then
 - become finito
 - ► else
 - send(Q) to N(x) sender
 - become attivo

Attivo

- se ricevo Q
 - send no to sender
- se riceve yes
 - ► Tree-N(x) $U = \{sender\}$
 - counter += 1
 - if counter == |N(x)| then
 - become finito
- se riceve no
 - ► counter += 1
 - if counter == |N(x)| then
 - become finito

Correttezza di Shout

- terminazione: in assenza di errori ricevuto un numero di risposte pari ai Q inviati, diventando finito
- tutte le entità sono presenti, grazie al flooding di Q
- le entità sono connesse: grazie al fatto che al primo Q rispondo con yes
- è priva di cicli: ogni entità risponde yes una e una sola volta, tranne la radice che risponde sempre no

Vediamo i costi:

- M[Shout] = 2 M[flooding] (Q + risposta) = 2[2m (n-1)] circa 4m
- T[Shout] = T[flooding] + 1 lt.eq d + 1 (+1 è risposta ultimo Q)

I lower bound sono:

- M[SPT / RI] gt.eq m
- T[SPT / RI] gt.eq d

Vediamo Shout++: posso eliminare qualche messaggio? Per il tempo ci siamo, i messaggi non tanto

Yes si tengono, sono necessari, quelli no li cancelliamo. Questo perché se prendo no vuol dire che il bro ha già ricevuto un Q, quindi mi basta vedere un Q e interpretarlo come no

Se la risposta è no ho già ricevuto un Q a cui ha detto si, inviano altri Q in giro, quindi se ricevuto un Q lo interpreto come no e basta

Nuovo costo è 2m, un q in una direzione e nell'altra yes oppure q, quindi M[Shout++] = 2m (q-q o q-yes)

Altra soluzione usa il protocollo traversal, che però costruisce l'albero in sequenza, e a noi piace in parallelo. Tree sono i link su cui viaggiano i return (solo un padre)

23.1. Election

Rompere la simmetria

Individuare una entità specifica tra tante autonome e omogenee. Tale è leader e le altre sono follower. Applicazioni: per certi lavori serve una unità centrale che diventi coordinatrice per le altre entità.

Risultato di impossibilità

Lemma 23.1.1: Impossibile deterministicamente individuare un leader sotto le restrizioni R

Dimostrazione 23.1.1: Idea della prova: siano $x, t \in E$ omogenee. Esse sono nello stato e inizializzate nello stesso modo. Eseguono stesso algoritmo e sono ancora in simmetria. Ma allora non ho trovato un leader.

Risultato di possibilità

Lemma 23.1.2: Sotto RI la starting entità diventa subito leader, il problema però è risolto dall'esterno e non dal sistema

Nuova restrizione: initial distinct values (ID), con IR notazione R union $\{ID\}$, ovvero ho id(x) = nome di x o valore di x (si confonde)

Strategia di soluzione:

- elect minimum:
 - ► trova id(x) minimo e fai x leader
 - $\forall y \neq x \in E$ y diventa follower
- elect minimum initiator:
 - ▶ trova id(x) minimo tra le sole entità initiator ed eleggi x leader
 - same secondo punto

Primo risolviamo in una topologia ring, ad anello

Topologia ring: le entità sono dispose ad anello, ovvero ho $A=(x_0,...,x_{n-1})$ e questo ha m=n

Aggiungiamo una restrizione, ovvero ogni entità x sa di essere in un ring

Chiameremo per ora N(x)-sender come OTHER, perché ho solo un altro vicino se tolgo il sender

Protocollo All the Way

I messaggi viaggiano intorno all'anello, inoltrati dalle entità nella stessa direzione. Messaggi sono («elect», id(x), ...)

Quando x riceve E da y:

- inoltra E
- inoltra E' con id(x) al posto di id(y)

Questi verso OTHER

Ogni entità x vede id(y) forall y eq.not x in E e può calcolare il minimo

Quando facciamo terminare le entità?

Risposta parziale: una volta che x riceve un msgE con il proprio id(x) sa che E ha fatto il giro e quindi non lo inoltra più

Può terminare?

- si: se supponiamo message ordering (prelevo sui link secondo FIFO, ma noi non ce l'abbiamo)
- solo se ne ha visti n diversi: se si suppone che le entità siano a conoscenza della dimensione (ma noi non ce l'abbiamo)
- no: giusto, dobbiamo riempire in maniera opportuna i msg E per far terminare correttamente le altre entità (un contatore)

Come usare il counter su E = (elect, id(x), counter)

- inizio ho counter = 1 per x
- ogni altra entità y diversa da x che inoltra E somma 1 a counter
- quando E ritorna a X, il counter sarà uguale a n = abs(A)
- se x ha ricevuto n diversi id può terminare
- altrimenti aspetta, riceve altri messaggi e li inoltra, controlla per verificare se è arriva a n id diversi

Allora

- stati {asleep, awake, leader, follower}
- Sinit = {asleep}
- Sterm = {leader, follower}

Asleep

- spontaneo
 - ▶ initialize
 - become awake
- ricevono (elect, value, counter)
 - ▶ initialize
 - ▶ send (elect, value, counter + 1) to other
 - ► min = Min{min, value}
 - \rightarrow count = count + 1
 - become awake

Procedura initialize

- count = 0
- size = 1
- know = false
- send(elect, id(x), size) to right
- min = id(x)

Awake

- ricevo (elect, value, counter)
 - ▶ if value diverso id(x) then
 - send (elect, value, counter + 1) to other
 - min = Min{min, value}
 - count = count + 1
 - if know = true then check
 - ► else
 - size = counter

- know = true
- check

Procedura CHECK

- if count == size then
 - if min = id(x) then
 - become leader
 - ► else
 - become follower

Complessità

• $M[All the way / IR union Ring] = n^2$

Troppo costoso, vediamo versione due

Solo gli initiator generano E, mentre le altre inoltrano e basta

Problema di terminazione: da parte delle entità non initiator. Quando gli initiator hanno finito il calcolo del leader mandano messaggio di fine altri += n messaggi di fine

Complessità:

- M[Min] = nk + n dove k sono gli initiator
- T[Min] lt.eq 3n 1 perché vanno in parallelo, per il tempo consideriamo caso peggiore, ovvero solo 2 initiator si attivano (n per il ciclo del primo, n per il secondo, n per il check). Lo raggiungiamo con 2 bro che si svegliano in momenti diversi

24.1. Routing

Scopo: x vuole spedire messaggio a y, vuole cammino in G da x a y

Problema shortest path: scopo determinare cammino migliore (di costo minimo) tra x e y in G

Applicazioni: comunicazione, cruciale in una computazione di un sistema distribuito

Per risolvere il primo basta fare broadcast da x del messaggio a tutte le y in E, ma totalmente inefficiente

Scegliamo quindi un cammino tra i tanti possibili tra x e y. Ovviamente se è il migliore possibile lo preferiamo

Secondo problema: richiede l'uso della memoria per registrare informazioni sui costi di G per ogni entità al fine di calcolare i cammini minimi verso ogni altra entità

Shortest path

Mettiamo restrizioni IR. Le strategie differiscono dal tipo di info che le entità tengono in memoria.

Full routing table: ogni strategia alla fine ha bisogno di questa tabella per risolvere il problema

La tabella ha come righe le destination, mentre sulle colonne il path minimo e il costo (momento reti)

Protocollo gossiping (tanta memoria)

Idea: ogni entità costruisce una mappa del sistema G, una matrice che è la matrice di adiacenza di G e all'occorrenza di calcola le righe della full routing table

Questa la chiamo MAP(G). Nella cella i,j ho peso arco i,j

Per costruire la MAP(G) in un distribuito ogni entità x diffonde le proprio informazioni sui vicini ad ogni altra y in ${\bf E}$

Map-Gossip

- costruzione di un albero T per G
- ogni entità acquisice dai vicini id e i costi del link
- ogni entità diffonde le sue informazioni a tutte le altre usando i link di T

Complessità:

- comunicazione di n^2 messaggi
 - spanning tree T è $O(m + n \log(n))$ il migliore (non l'abbiamo visto)
 - ightharpoonup prendo info dai vicini 2m
 - broadcast delle info su T 2m(n-1)
- quindi M[Map-Gossip] circa 2 m n ovvero $O(n^2)$ se sparso, tempo difficile da calcolare

Richiede tanta memoria

Protocollo Iterated-Construction

Strategia: ogni x costruisce la FRT a più riprese senza usare MAP

Inizialmente la FRT contiene info solo sui vicini, mentre i non vicini hanno infinito

Notiamo che la FRT non deve contenere per forza l'intero shortest path per arrivare a z, basta sapere il vicino coinvolto nello shortest per z

Ovvero

$$\forall z \in E \mid z \neq x \quad \begin{cases} \text{costo dello SP per z} \\ \text{primo link dello SP che si traduce in un nodo} \end{cases}$$

Definiamo il distance vector, ovvero la FRT ristretta alle colonne, con solo destination e cost. Indichiamo sta roba con V

Con V[z] indichiamo il cammino minimo da x a z

Iterazione:

- ogni entità diffonde la propria V ai suoi vicini
- sulla base delle info che gli arrivano dai vicini stabilisce se sono stati trovati cammini minimi migliori di quelli della propria FRT e in tal caso la aggiorna

Il numero di iterazioni è n-1m si dimostra per induzione

Come fa x ad individuare ad ogni iterazione il cammino minimo per arrivare a z?

Sia $V_y^{i[z]}$ il costo del cammino da y a z alla i-esima iterazione. Alla i+1-esima questo costo arriva ai vicini di y.

Sia x uno dei vicini, x si calcola, alla i-esima,

$$w[z] = \min_{y \in N(x)} \Bigl\{ \vartheta(x,y) + V_y^{i[z]} \Bigr\}$$

dove theta è il costo del link x,y

Se $w[z] < V_x^i[z]$ allora x sceglie w[z] come costo per lo sp per z, aggiornato la FRT e memorizza anche il vicino che ha dato questo costo minimo

Vantaggi: la memoria, meno spazio della map, i DV sono lineari, le MAP erano quadratiche

Complessità:

- M[/IR] = 2m n (n-1) ovvero n-1 iterazioni, mando n volte V e 2m sono i link del grafo
- T[/IR] = (n-1) tau(n) tempo ideale per trasmettere V, che è O(1) quando G consente messaggi lunghi, altrimenti O(n)

Se tau O(1) diventa tempo lineare in n e M = O(mn)

Nell'altro caso abbiamo O(mn^2) per i messaggi e tempo quadratico