Discrete probability distributions

Tan Do

Vietnamese-German University

Lecture 12

In this lecture

- The binomial distribution
- The geometric distribution

Bernoulli random variables

Let X be a random variable that takes just 2 (distinct) values.

We can use X to model the outcome of a coin toss, whether a valve is open or shut, whether an item is defective or not, or any other process that has only 2 outcomes. We usually use 0 and 1 to denote the outcomes.

Let p be the probability that the outcome is 1 (0 $\leq p \leq 1$).

Then simple calculations give

$$E(X) = p$$

and

$$Var(X) = p(1 - p).$$

Such a variable X is called a Bernoulli random variable with parameter p. An experiment that has only 2 outcomes is also referred to as a Bernoulli trial.

Definition of the binomial distribution

Let X_1, X_2, \ldots, X_n be independent Bernoulli random variables whose probability of getting a 1 is p. Then

$$X = X_1 + X_2 + \ldots + X_n$$

is called a binomial random variable with parameters n and p, which is denoted by

$$X \sim B(n, p)$$
.

Note that X takes values $0, 1, 2, \ldots, n$ and counts the number of Bernoulli random variables that take value 1.

We usually think of the value 1 as a success, and so in other words, X counts the *number of successes* in a process consisting of n consecutive trials.

The probability mass function of a B(n,p) random variable is

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

for $x=0,1,2,\ldots,n$. In particular, let $X\sim B(4,p)$. Then

$$P(X = 3) = P(0111) + P(1011) + P(1101) + P(1110)$$
$$= (1 - p)ppp + p(1 - p)pp + pp(1 - p)p + ppp(1 - p) = 4p^{3}(1 - p).$$

Outcome of 4 Bernoulli trials	Probability	X = number of successes
0000	(1-p)(1-p)(1-p)(1-p)	0
0001	(1-p)(1-p)(1-p)p	1
0010	(1-p)(1-p)p(1-p)	1
0011	(1-p)(1-p)pp	2
0100	(1-p)p(1-p)(1-p)	1
0101	(1-p)p(1-p)p	2
0110	(1-p)pp(1-p)	2
0111	(1-p)ppp	3
1000	p(1-p)(1-p)(1-p)	1
1001	p(1-p)(1-p)p	2
1010	p(1-p)p(1-p)	2
1011	p(1-p)pp	3
1100	pp(1-p)(1-p)	2
1101	pp(1-p)p	3
1110	ppp(1-p)	3
1111	pppp	4

The expectation of a B(n,p) random variable is

$$E(X) = E(X_1) + E(X_2) + \ldots + E(X_n) = np.$$

The variance of a B(n, p) random variable is

$$Var(X) = Var(X_1) + Var(X_2) + \ldots + Var(X_n) = np(1-p).$$

Example Consider $X \sim B(8, 0.5)$ We have

$$P(X = 3) = {8 \choose 3} \times 0.5^3 \times (1 - 0.5)^5 = 0.219$$

and

$$F(1) = P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= {8 \choose 0} \times 0.5^{0} \times (1 - 0.5)^{8} + {8 \choose 1} \times 0.5^{1} \times (1 - 0.5)^{7} = 0.004 + 0.031 = 0.35.$$

Notice that X is a symmetric distribution.

More generally, B(n,0.5) is a symmetric probability distribution for any value of n. The distribution is symmetric about the expected value n/2.

We can look at the B(8,0.5) distribution as the distribution of the number of heads obtained in 8 tosses of a fair coin.

The probability of obtaining exactly 4 heads in 8 tosses is

$$P(X = 4) = 0.273.$$

The probability of obtaining at least 6 heads in 8 tosses is

$$P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.885 = 0.145.$$

The expected number of heads obtained in 8 tosses is

$$E(X) = np = 8 \times 0.5 = 4.$$

The variance is

$$Var(X) = np(1-p) = 8 \times 0.5 \times (1-0.5) = 2.$$

Example Suppose that a fair die is rolled 8 times and that \$1 is won each time a 5 or a 6 is scored.

The distribution of the winnings is then given by the B(8,1/3) distribution since there is a probability of p=1/3 of winning \$1 on each of the 8 rolls of the die.

The probability that exactly \$4 is won is

$$P(X = 4) = 0.171.$$

The probability that no more than \$2 is won is

$$P(X \le 2) = 0.468.$$

The expected winnings are

$$E(X) = np = 8 \times \frac{1}{3} = $2.67.$$

The variance is

$$Var(X) = np(1-p) = 8 \times \frac{1}{3} \times \frac{2}{3} = 1.78.$$

The following figure illustrates the probability mass function and cumulative distribution function of a B(8,2/3) random variable.

Note that the B(8,2/3) distribution is the reflection of the B(8,1/3) distribution about x=4.

In general, let $X \sim B(n,p)$ and Y = n - X. Then $Y \sim B(n,1-p)$.

That is, if X counts the number of successes in n Bernoulli trials with the probability of a success being p, then Y=n-X counts the number of failures in n Bernoulli trials with the probability of a failure being 1-p.

Example (Milk container contents) Recall that there is a probability of 0.261 that a milk container is underweight. Suppose that the milk containers are shipped to retail outlets in boxes of 20 containers. What is the distribution of the number of underweight containers in a box?

Answer Each milk container represents a Bernoulli trial with a constant probability p=0.261 of being underweight.

Assume that the milk contents of 2 different milk containers are independent of each other.

Let X be the number of underweight containers in a box. Then X has binomial distribution with n=20 and p=0.261.

The expected number of underweight cartons in a box is

$$E(X) = np = 20 \times 0.261 = 5.22$$

and the variance is

$$Var(X) = np(1-p) = 20 \times 0.261 \times 0.739 = 3.86.$$

So the standard deviation is $\sigma = \sqrt{3.86} = 1.96$.

The following figure represents the p.m.f of X:

The probability that a box contains exactly 7 underweight containers is

$$P(X=7) = {20 \choose 7} \times 0.261^7 \times 0.739^{13} = 0.125.$$

The probability that a box contains no more than 3 underweight containers is

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.1935.$$

Games of chance

Coin tossing Suppose that a fair coin is tossed n times.

Let X be the number of heads obtained. Then $X \sim B(n, 0.5)$.

We have

$$E(X) = np = \frac{n}{2}$$

and

$$Var(X) = np(1-p) = \frac{n}{4}.$$

The proportion of heads obtained is $Y = \frac{X}{n}$ which has

$$E(Y) = \frac{E(X)}{n} = \frac{1}{2} \quad \text{and} \quad \operatorname{Var}(Y) = \frac{\operatorname{Var}(X)}{n^2} = \frac{1}{4n}.$$

Implication In practice, as the coin is tossed more and more times, the *number* of heads may vary widely about the expected value n/2.

But there will be a tendency for the *proportion* of heads to become closer and closer to the value 1/2.

n	Result of nth coin toss	Number of heads in first n coin tosses	Proportion of heads in first n coin tosses	п	Result of nth coin toss	Number of heads in first n coin tosses	Proportion of head in first n coin tosses
1	tail	0	0.000	41	head	18	0.439
2	head	ï	0.500	42	tail	18	0.429
3	head	;	0.667	43	tail	18	0.419
4	head	3	0.750	44	head	19	0.432
5	tail	1	0.600	45	head	20	0.444
6	head	4	0.667	46	tail	20	0.435
7	head	5	0.714	47	tail	20	0.426
8	head	6	0.750	48	tail	20	0.417
9	head	7	0.778	49	tail	20	0.408
10	tail	7	0.700	50	tail	20	0.400
11	head	8	0.727	51	head	21	0.412
12	tail	8	0.667	52	tail	21	0.404
13	tail	8	0.615	53	tail	21	0.396
14	tail	8	0.571	54	tail	21	0.389
15	head	9	0.600	55	head	22	0.400
16	head	10	0.625	56	tail	22	0.393
17	tail	10	0.588	57	head	23	0.404
18	tail	10	0.556	58	tail	23	0.397
19	tail	10	0.526	59	head	24	0.407
20	head	11	0.550	60	head	25	0.417
21	head	12	0.571	61	head	26	0.426
22	head	13	0.591	62	tail	26	0.419
23	head	14	0.609	63	head	27	0.429
24	tail	14	0.583	64	head	28	0.438
25	tail	14	0.560	65	head	29	0.446
26	tail	14	0.538	66 67	tail tail	29	0.439
27	tail tail	14	0.519	68	head	29 30	0.433
28 29	tail	14	0.500 0.483	69	head	30 31	0.449
30	tail	14 14	0.483	70	head	31 32	0.449
30 31	tail	14 14	0.467	70	tail	32 32	0.457
32	tail	14	0.432	72	tail	32	0.444
33	tail	14	0.438	73	head	33	0.444
34	tail	14	0.424	74	tail	33	0.446
35	head	15	0.412	75	head	34	0.453
36	tail	15	0.429	76	head	35	0.461
37	head	16	0.432	77	tail	35	0.455
38	tail	16	0.421	78	head	36	0.462
39	head	17	0.436	79	tail	36	0.456
40	tail	17	0.425	80	head	37	0.463

In general, we have the following.

Proportion of success in Bernoulli trials

If the random variable X counts the number of successes in n independent Bernoulli trials with a constant success probability p, so that $X \sim B(n,p)$, then the *proportion* of successes Y = X/n has an expected value and variance of

$$E(Y) = p$$
 and $Var(Y) = \frac{p(1-p)}{n}$.

The variance of the proportion Y decreases as the number of trials n increases. So there is a tendency for Y to become closer and closer to the success probability p as the number of trials n increases.

Definition of the geometric distribution

Consider a sequence of independent Bernoulli trials with a constant success probability p.

We are now interested in counting the number of trials performed until the first success occurs.

This defines the so-called geometric random variable X with parameter p.

The p m f of X is given by

$$P(X = x) = (1 - p)^{x - 1} p$$

for $x = 1, 2, 3, 4, \dots$

The expected value is

$$E(X) = \frac{1}{p}$$

and the variance is

$$Var(X) = \frac{1-p}{p^2}.$$

The c.d.f is

$$P(X \le x) = \sum_{i=1}^{x} P(X = i) = \sum_{i=1}^{x} (1 - p)^{i-1} p = p \left(1 + (1 - p) + (1 - p)^{2} + \dots + (1 - p)^{x-1} \right)$$
$$= p \times \frac{1 - (1 - p)^{x}}{1 - (1 - p)} = 1 - (1 - p)^{x}.$$

Example (Telephone ticket sales) Telephone ticket sales for a popular event are handled by a bank of telephone salespersons who start accepting calls at a specified time. In order to get through to an operator, a caller has to be lucky enough to place a call at just the right time when a salesperson has become free from a previous client. Suppose that the chance of this is 0.1. What is the distribution of the number of calls that a person needs to make until a salesperson is reached?

Answer In this problem, a placing of a call represents a Bernoulli trial with a success probability of p=0.1. Here we define that reaching a salesperson is a success.

Let X be the number of phone calls that a person makes until a salesperson is reached. Then X is a sequence of the above Bernoulli trials performed until the the *first* success. Therefore X is a random variable with the geometric distribution of parameter p=0.1.

The probability that a caller gets through on the fifth attempt is

$$P(X = 5) = 0.9^4 \times 0.1 = 0.066.$$

The expected number of calls needed to get through to a salesperson is

$$E(X) = \frac{1}{p} = \frac{1}{0.1} = 10.$$

The probability that 15 or more calls are needed is

$$P(X \ge 15) = 1 - P(X \le 14) = 1 - (1 - 0.9^{14}) = 0.9^{14} = 0.229.$$

Definition of the negative binomial distribution

Next we consider situations in which we count the number of trials performed until the rth success occurs.

This defines the so-called negative binomial random variable X with 2 parameters r and p. The p.m.f of X is given by

$$P(X = x) = {x - 1 \choose r - 1} (1 - p)^{x - r} p^{r}$$

for
$$x = r, r + 1, r + 2, r + 3, \dots$$

The expected value is

$$E(X) = \frac{r}{p}$$

and the variance is

$$Var(X) = \frac{r(1-p)}{p^2}.$$

Example (Personnel recruitment) Suppose that a company wishes to hire 3 new workers and that each applicant interviewed has a probability of 0.6 of being found acceptable. What is the distribution of the total number of applicants that the company needs to interview?

Answer In this problem, an interview represents a Bernoulli trial with a success being that the applicant is accepted for the position.

The success probability is therefore p = 0.6.

Let X be the number of interviews undertaken until 3 applicants are chosen. Then X is a sequence of the above Bernoulli trials performed until the third success. Therefore X is a random variable with negative geometric distribution of 2 parameters r=3 and p=0.6.

The probability that exactly 6 applicants interviewed is

$$P(X = 6) = {5 \choose 2} \times 0.4^3 \times 0.6^3 = 0.138.$$

The probability that at most 6 applicants interviewed is

$$P(X \le 6)$$

$$= P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$

$$= 0.216 + 0.256 + 0.207 + 0.138 = 0.82$$

The expected number of interview is $E(X) = \frac{r}{n} = \frac{3}{0.6} = 5$.

Games of chance

Die rolling If a fair die is repeatedly thrown, the number of throws made until a 6 is obtained has a geometric distribution with parameter p=1/6.

The expected number of throws made until a 6 is obtained is therefore

$$E(X) = \frac{1}{p} = 6.$$

The probability that a 6 is not obtained in the first six throws is

$$P(X \ge 7) = 1 - P(X \le 6) = 1 - \left(1 - \left(\frac{5}{6}\right)^6\right) = \left(\frac{5}{6}\right)^6 = 0.335.$$

The distribution of the number of throws made until a 6 is obtained for the second time has a negative binomial distribution with parameters p=1/6 and r=2.

The expected number of throws required is

$$E(X) = \frac{r}{p} = 12.$$

The probability that two 6s are obtained in the first four throws is

$$P(X \le 4) = P(X = 2) + P(X = 3) + P(X = 4)$$
$$= 0.028 + 0.046 + 0.058 = 0.132.$$