Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт

3 виконання лабораторної роботи №1 з дисципліни "Схемотехніка аналогової та цифрової радіоелектронної апаратури - 1"

Виконав:

студент групи ДК-62

Кужильний О. В.

Перевірив:

доц. Короткий \in В.

1. Дослідження суматора напруги на резисторі

а. Під час лабораторного заняття було складено суматор напруги за наступною схемою:

В якості джерел напруги було використано керовані джерела, включенні в плату Analog Discovery 2. В якості R було вибрано резистори номіналом 200 кОм, які значно більші за внутрішні опори джерел. Напруги джерел було використано генератори w1,w2

Щупи цифрового вольтметру Mastech MS8233Z було підключено до точки V_{out} .

Результати вимірювань склали 3.953В, що з урахуванням похибок, відповідає теоретичним передбаченням:

b. Симуляція суматора в LTspice для постійного сигналу

 $V_1 = 5V$

 $V_2 = 3V$

 $V_{out} = 4V$

Результати симуляції відповідають формулі Uвих = (U1 + U2)/2 з теоретичного опису суматора.

с. На суматор було подано два сигналу – імпульсний, амплітудою 1В, частотою 1 кГц та коефіцієнтом заповнення 50%, та синусоїдальний, амплітудою 1В та частотою 5 кГц. d. До виходу суматора було під'єднано один зі входів осцилографу, інший вхід було підключено до виходу генератора:

На виході суматора спостерігали комбінацію двох вхідних сигналів, що відповідає теоретичним очікуванням.

Симуляція суматора в LTspice для змінного сигналу:

Джерела налаштовано аналогічно до налаштувань генератору під час лабораторного дослідження. Отриманий вихідний сигнал відповідає за формою сигналу з лабораторних досліджень:

2. Дослідження RC-ланцюжка.

а. Під час лабораторної роботи було складено інтегруючий RC-ланцюжок с наступними параметрами:

$$C = 4.7 \mu F$$

$$R = 10 кОм$$

b. Тривалість заряду/розряду до 95% складає:

$$t = 3\tau = 3 \times R \times C = 3 \times 4,7 \times 10^{-6} \times 10 \times 10^{3} = 140 \text{mC}$$

с. На вхід RC-ланцюжка подали імпульсний сигнал з частотою 1кГц, амплітудою 1В та коефіцієнтом заповнення 50%.

Два щупи осцилографа було підключено відповідно до входу та виходу RC-ланцюжка.

d. Було проведено симуляцію схеми в LTspice, результати якої також відповідають теоретичним очікуванням:

3. Дослідження RC-фільтру низької частоти

а. Під час лабораторної роботи будо складено RC-ФНЧ з наступними параметрами:

C = 2 nF

R = 10 kOm

Частота зрізу такого фільтру:

$$f_3 = \frac{1}{2\pi \times R \times C} = \frac{1}{2 \times 3,14 \times 2 \times 10^{-9} \times 10 \times 10^3} \approx 7,96 kHz$$

b. Для визначення АЧХ фільтру, що було складено, використали Network Analyzer у складі плати Analog Discovery.

с. Було отримано наступні результати:

Загальна форма АЧХ відповідає формі з теоретичної бази.

Точка частоти зрізу (-3dB) знаходиться на частоті 7.468kHz, що, з урахуванням похибки, відповідає очікуванням.

Швидкість спадання AЧХ -20dB/dec. спостерігається у виміряній AЧХ:

d. Було розраховано ряд значень K_u теоретичного фільтру та порівняно з даними, отриманими експериментально. Результати наведено у таблиці:

Nº	<i>f</i> , Гц	K _u теоретичне	К _и експеримент.	Похибка, %
1	10	0,966	1	3,5
2	3000	0,918	0,871	5,1
3	4000	0,873	0,871	0,2
4	5000	0,823	0,822	0,1
5	6000	0,768	0,773	0,7
6	7000	0,716	0,725	1,3
7	7300	0,735	0,721	1,9
8	8000	0,703	0,68	3,3
9	9000	0,661	0,64	3,2
10	10000	0,621	0,6	3,4
11	11000	0,584	0,57	2,4

Виділено K_u на частоті зрізу. Аналіз похибки вимірювань свідчить про коректність отриманих даних.

е. Було проведено моделювання RC-ФНЧ в LTspice, під час якого було отримано AЧX:

Форма АЧХ відповідає теоретичній та загалом співпадає з виміряною з урахуванням масштабу.

Висновки

Було виконано дослідження роботи суматору на резисторах та RC-ланцюжка в умовах роботи з гармонійним і імпульсним сигналом. Під час роботи зняли вихідну осцилограму суматора при постійних та змінних сигналах на вході, частотну та перехідну характеристики RC-фільтру. Проведенні експерименти повторили у симуляторі та порівняли результати. Збіжність даних симуляції та експерименту підтверджують коректність експериментів при урахуванні деякої похибки вимірювань.