Matrix

[oase.daffodilvarsity.edu.bd]

Lecture-01: Introduction to matrix

Date: August 11, 2020

Definition:

A matrix is a rectangular arrangement of numbers.

In short,
$$M = [a_{ij}], 1 \leq i \leq r, 1 \leq j \leq c$$
.

$$M = \begin{bmatrix} 2 & 4 & -7 \\ 6 & 8 & 0 \\ -3 & 5 & 8 \end{bmatrix}$$
 is a Matrix.

In general,
$$\mathbf{M} = \begin{bmatrix} a_{11} & a_{12} \dots \dots a_{1c} \\ b_{21} & b_{22} \dots b_{2c} \\ \dots \dots \dots \\ a_{r1} & a_{r2} \dots a_{rc} \end{bmatrix}$$

Zero Matrix:

A matrix, $M=[a_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$, is called a **Zero Matrix** if $a_{ij}=0$ for all $1 \le i \le r$ and $1 \le j \le c$.

Row Matrix:

A matrix, $M=[a_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$, is called a Row Matrix if r=1.

Example:

$$A = \begin{bmatrix} 5 & 0 & -1 & 10 \end{bmatrix}$$
 is a row matrix.

Column Matrix:

A matrix, $M = [a_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$, is called a **Column Matrix** if c = 1.

Example:

$$B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ -4 \end{bmatrix}$$
 is a column matrix.

Square Matrix:

A matrix, $M = [a_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$, is called a **Square Matrix** if r = c. Then we write $M = [a_{ij}]$, where $1 \le i, j \le r$. Here "r" is called the **order** of the matrix.

Example:

$$M = \begin{bmatrix} 2 & 4 & -7 \\ 6 & 8 & 0 \\ -3 & 5 & 8 \end{bmatrix}$$
 is a square matrix.

Identity Matrix:

A square matrix, $M = [a_{ij}]$, where $1 \le i, j \le r$ is called an **Identity Matrix** if $a_{ij} = 1$ when $a_{ij} = 1$ when i = j and $a_{ij} = 0$ otherwise.

Example:

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is an identity matrix.

Upper Triangular Matrix:

A square matrix, $M=[a_{ij}]$, where $1 \le i,j \le r$ is called an **Upper Triangular** Matrix if $a_{ij}=0$ when i>j.

Example:

$$U_1 = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
 and $U_2 = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ are two upper triangular matrices.

Lower Triangular Matrix:

A square matrix, $M = [a_{ij}]$, where $1 \le i, j \le r$ is called an Lower Triangular Matrix if $a_{ij} = 0$ when i < j.

Example:

$$L_1 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$$
 and $L_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 5 \end{bmatrix}$ are two lower triangular matrices.

Diagonal Matrix:

A square matrix, $M=[a_{ij}]$, where $1 \le i,j \le r$ is called an **Diagonal Matrix** if $a_{ij}=0$ when $i \ne j$.

Example:

$$D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
 is a diagonal matrix.

Scalar Matrix:

A square matrix, $M=[a_{ij}]$, where $1 \leq i,j \leq r$ is called an **Scalar Matrix** if $a_{ij}=\lambda$ when i=j and $a_{ij}=0$ otherwise. Here λ is a constant.

Example:

$$S = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
 is a scalar matrix.

Lecture-02: Basic Operations in Matrix

Date: August 13, 2020

Addition:

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two matrices where $1 \le i \le r$ and $1 \le j \le c$. Then $C = [c_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$, is the sum of A and B, that is, C = A + B if and only if $c_{ij} = a_{ij} + b_{ij}$ for all $1 \le i \le r$ and $1 \le j \le c$.

• Note that if the dimensions of **A** and **B** are not same, then their sum is undefined.

Example:

$$\begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 3 & 4 \\ 0 & 3 & 7 \end{bmatrix} = undefined$$

$$And \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 4 & 3 \end{bmatrix}$$

Subtraction:

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two matrices where $1 \le i \le r$ and $1 \le j \le c$. Then $C = [c_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$, is the difference of A and B, that is, C = A - B if and only if $c_{ij} = a_{ij} - b_{ij}$ for all $1 \le i \le r$ and $1 \le j \le c$.

• Note that if the dimensions of **A** and **B** are not same, then their difference is **undefined**.

Example:

$$\begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 3 & 4 \\ 0 & 3 & 7 \end{bmatrix} = undefined$$

$$And \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4 & -3 \end{bmatrix}$$

Scalar Multiplication:

Let $A = [a_{ij}]$ where $1 \le i \le r$ and $1 \le j \le c$. Then $C = [c_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$, is a scalar multiple of A, that is, $C = \alpha$. A if an only if $c_{ij} = \alpha$. a_{ij} for all $1 \le i \le r$ and $1 \le j \le c$.

Example:

$$\frac{1}{2} \times \begin{bmatrix} 2 & 4 \\ 0 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

Matrix Multiplication:

Let $A = [a_{ij}]$ where $1 \le i \le r$ and $1 \le j \le c'$

and $B = [b_{ij}]$ where $1 \le i \le c'$ and $1 \le j \le c$ be two matrices.

Then $C = [c_{ij}]$ where $1 \le i \le r$ and $1 \le j \le c$ is the matrix product of A and B, that is, $C = A \times B$ if and only if $c_{ij} = \sum_{k=1}^{n} a_{ik} \times b_{kj}$.

For example, $c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + \cdots + a_{1n}b_{n1} = \sum_{k=1}^{n} a_{1k} b_{k1}$

Example:

$$\begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} = undefined$$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 14 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

Here, $AB \neq BA$.

So, Matrix Multiplication does not follow Communicative Law of Multiplication.

Transpose of A Matrix:

Let $= [a_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$. Then $C = [c_{ij}]$, where $1 \le i \le r$ and $1 \le j \le c$, is the transpose matrix of A, denoted by $C = A^T$ if an only if $c_{ij} = a_{ji}$ for all $1 \le i \le r$ and $1 \le j \le c$.

Example:

$$A = \begin{bmatrix} 1 & 5 & 7 & 0 \\ 5 & 0 & 4 & 1 \\ 7 & 4 & 9 & 2 \\ 0 & 1 & 2 & 3 \end{bmatrix} then A^{T} = A.$$

Symmetric Matrix:

A square matrix, $M = [a_{ij}]$, where $1 \le i, j \le r$, is called a **Symmetric Matrix** if $a_{ij} = a_{ji}$ for all $1 \le i, j \le r$.

Remark: If M is a symmetric matrix, then $M = M^T$.

Skew-symmetric Matrix:

A square matrix, $M=[a_{ij}]$, where $1 \le i,j \le r$, is called a **Symmetric Matrix** if $a_{ij}=-a_{ji}$ for all $1 \le i,j \le r$.

Remark: If M is a skew-symmetric matrix, then $M = -M^T$.

Some Properties of Matrix Transpose:

1.
$$(A + B)^T = A^T + B^T$$

2.
$$(A - B)^T = A^T - B^T$$

$$3. \ (\alpha A)^T = \alpha A^T$$

4.
$$(AB)^T = B^T A^T$$

5.
$$(A^T)^T = A$$

Class Work:

For any square matrix, A, do the following operations and comment about the result matrices:

1.
$$A + A^T$$

$$2. A - A^T$$

3.
$$A \times A^T$$

Comments: $A + A^T$ = Symmetric, $A - A^T$ = Skew-symmetric and

$$A \times A^T$$
 = symmetric.

Theorem:

For any square matrix, A -

- (i) $A + A^T$ is symmetric;
- (ii) $A A^T$ is skew-symmetric and
- (iii) $A \times A^T$ is symmetric.

Home Work:

Prove the above theorem.

#Proof of the previous theorem:

(i) Let $X = A + A^T$

We have

$$X^{T} = (A + A^{T})^{T} = A^{T} + (A)^{T} = A^{T} + A = A + A^{T} = X$$

As $X = X^T$, X is symmetric.

(ii) Let $X = A - A^T$

We have

$$X^{T} = (A - A^{T})^{T} = A^{T} - (A^{T})^{T} = A^{T} - A = -(A - A^{T}) = -X$$

As $X = -X^T$, X is skew-symmetric.

(iii) Let X = A. A^T

We have

$$X^{T} = (A.A^{T})^{T} = (A^{T})^{T}.A^{T} = A.A^{T} = X$$

As $X = X^T$, X is symmetric.

[Proved]

#Problem:

Let A be any square matrix. Find B and C such that A = B + C where B is symmetric and C is skew-symmetric.

Solution:

Theory

Let $A = [a_{ij}]$, $B = [b_{ij}] \& C = [c_{ij}]$ be three square matrices such that $1 \le i, j \le r$.

If A = B + C where B is symmetric and C is skew-symmetric, then

$$b_{ij} = \frac{a_{ij} + a_{ji}}{2}$$
 and $c_{ij} = \frac{a_{ij} - a_{ji}}{2}$

For all $1 \le i, j \le r$.