LIGADURAS

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. Máquina de Atwood simple

Obtenga a partir de la ecuación de Euler-Lagrange la aceleración que presentan las pesas de masas m_1 y m_2 que cuelgan de una cuerda de longitud ℓ que pasa por sobre una polea de radio R_p y masa m_p .

- (a) Resuelva el caso en que se considera m_p irrelevante.
- (b) Resuelva ahora considerando m_p , y que la polea presenta una sección cilíndrica. El momento de inercia de tal cilindro de masa m ante rotaciones en torno a su eje de simetría longitudinal es $(m/2)R^2$.

2. Aro y polea

Una pesa de masa m pende de una sección de cuerda de longitud ℓ_{pesa} que sobresale a la derecha de una polea de radio R_{polea} y masa m_{poleo} . La cuerda tiene un longitud total ℓ , su masa es despreciable y gira solidaria con la una polea.

El otro extremo se ata con un nudo de masa M_{nude} a un aro de masa m_{aro} , enrollándose parcialmente en torno a éste. El centro de la polea está a una altura h por sobre el del aro de radio R_{aro} que como puede rotar libremente presenta un momento de inercia $m_{aro}R_{aro}^2$. Denomine el ángulo desde el centro hasta el nudo medido desde la horizontal con θ . Recuerde que el sentido positivo para un ángulo es el antihorario.

- (a) Escriba la posición de las partículas con masa con origen el centro del aro.
- (b) Describa la función de ligadura y utilícela para expresar las posiciones en función de θ .
- (c) Obtenga la ecuación de Euler-Lagrange para la dinámica.

Resultado: $M_{nudo}R_{aro}^2\ddot{\theta}_{aro} + M_{nudo}R_{aro}g\cos(\theta_{aro}) + R_{aro}^2m_{aro}\ddot{\theta}_{aro} + \frac{R_{polea}^2m_{polea}\ddot{\theta}_{aro}}{2} = 0$

3. Péndulo de pesas engarzadas y acopladas

Dos pesas de masa m_1 y m_2 están unidas por una barra rígida inextensible de longitud ℓ y masa despreciable frente a las anteriores. La de m_1 está engarzada en un eje horizontal y la de m_2 en uno vertical.

- (a) Escriba las posiciones de ambas partículas en función de una única coordenada haciendo uso de la ligadura que impone la barra rígida. Hágalo para: i. y, la coordenada para la pesa de m_2 , ii. θ
- (b) Obtenga las aceleraciones y responda: ¿cuál coordenada generalizada preferiría? Resultado: $\ddot{y} = \frac{-\ell^2 m_1 y \dot{y}^2 + g m_2 \left(\ell^2 y^2\right)^2}{\ell^4 m_2 + \ell^2 m_1 y^2 2\ell^2 m_2 y^2 m_1 y^4 + m_2 y^4} \qquad \ddot{\theta} = \frac{\left(\ell m_1 \cos\left(\theta\right) \dot{\theta}^2 \ell m_2 \cos\left(\theta\right) \dot{\theta}^2 g m_2\right) \sin\left(\theta\right)}{\ell \left(m_1 \cos^2\left(\theta\right) + m_2 \sin^2\left(\theta\right)\right)}$
- (c) (*) ¿Cuál es el período de movimiento de pequeñas oscilaciones para el caso $m_1 = m_2 = m$?

Computational Analytical Mechanics

4. Maquina de Atwood compuesta [Marion (english) ex. 7.8]

(a) Escriba la posición de las tres pesas y de la polea inferior en función de las cuatro coordenadas generalizadas indicadas en la figura: y_i con i = 1, 2, 3, p.

(b) Modele las ligaduras que proveen las cuerdas en dos funciones.

(c) Haciendo uso de estas últimas reemplace en las posiciones para expresarles en función de solo dos y_i .

(d) Calcule energías potenciales y cinéticas contemplando los momentos de inercia de las poleas. Recuerde la relación entre el perímetro (circunferencia) de un círculo y su radio para escribir la velocidad angular en función del \dot{y}_i correspondiente.

(e) Obtenga las dos ecuaciones de Euler-Lagrange.

Resultados:

$$-gm_1 + gm_2 + gm_3 + gm_p + m_1\ddot{y}_1 + m_2\ddot{y}_1 - m_2\ddot{y}_2 + m_3\ddot{y}_1 + m_3\ddot{y}_2 + \frac{3m_p\ddot{y}_1}{2} = 0$$

$$-gm_2 + gm_3 - m_2\ddot{y}_1 + m_2\ddot{y}_2 + m_3\ddot{y}_1 + m_3\ddot{y}_2 + \frac{m_p\ddot{y}_2}{2} = 0$$

(f) Resuelva este sistema de ecuaciones para obtener las dos correspondientes aceleraciones generalizadas y con estas escribir las aceleraciones de los cuatro cuerpos en cuestión.

Resultados:

Resultations:
$$\ddot{y}_1 = \frac{4gm_1m_2 + 4gm_1m_3 + 2gm_1m_p - 16gm_2m_3 - 6gm_2m_p - 6gm_3m_p - 2gm_p^2}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

$$\ddot{y}_2 = \frac{8gm_1m_2 - 8gm_1m_3 + 2gm_2m_p - 2gm_3m_p}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$