代数结构 HW12 答案

张朔宁

May 31, 2025

19. $H, K \in G$ 的正规子群,如果 G/H, G/K 是交换群,那么 $G/(H \cap K)$ 也是交换群。

解. 由 G/H 为交换群,有 $(g_1H)(g_2H)=(g_2H)(g_1H)$,等价于 $g_1g_2H=g_2g_1H$,即 $g_1g_2g_1^{-1}g_2^{-1}\in H$ 同理, $g_1g_2g_1^{-1}g_2^{-1}\in K$,故 $g_1g_2g_1^{-1}g_2^{-1}\in H\cap K$ 故 $G/(H\cap K)$ 为交换群

- 20. 在群 G 中, a,b 是 G 中的元素, 称 $aba^{-1}b^{-1}$ 为 G 的换位元, 证明:
 - (1) G' 的所有有限个换位元乘积构成 G', G' 是 G 的正规子群;
 - (2) G/G' 是交换群;
 - (3) 若 N 是 G 的正规子群且 G/N 是交换群,那么 G' 是 N 的子群。
 - **解**. (1) 设 $c_i = a_i b_i a_i^{-1} b_i^{-1}$ 为换位元, $i = 1, \ldots, n$,且满足结合律,单位元为 G 的单位元。 $\forall c_i = a_i b_i a_i^{-1} b_i^{-1}$,有 $c_i = b_i^{-1} a_i^{-1} a_i b_i$ 也为换位元。 $\forall x = c_1 c_2 \cdots c_m \in G'$,有 $x \in G$,故 G' 为 G 的子群。 下证正规性: $\forall g \in G$, $\forall x = c_1 c_2 \cdots c_m \in G'$,有

$$gxg^{-1} = g(c_1c_2\cdots c_m)g^{-1} = (gc_1g^{-1})(gc_2g^{-1})\cdots(gc_mg^{-1})$$

对 $\forall c_i = a_i b_i a_i^{-1} b_i^{-1}$,有

$$gc_ig^{-1} = g(a_ib_ia_i^{-1}b_i^{-1})g^{-1} = (ga_ig^{-1})(gb_ig^{-1})(ga_ig^{-1})^{-1}(gb_ig^{-1})^{-1} \in G'$$

故 $qxq^{-1} \in G'$, 即 $G' \neq G$ 的正规子群。

(2) 设 $\forall a, b \in G$, 即证 (aG')(bG') = (bG')(aG'):

$$(aG')(bG') = abG', \quad (bG')(aG') = baG'$$

因为 $ab(a^{-1}b^{-1}) \in G'$, 所以 abG' = baG', 得证 G/G' 是交换群。

- (3) G/N 是交换群, $\forall a,b \in G$,有 (aN)(bN) = (bN)(aN),即 $aba^{-1}b^{-1} \in N$ 。 因为 $\forall x = c_1c_2 \cdots c_m \in G'$,其中 $c_i = a_ib_ia_i^{-1}b_i^{-1} \in N$,所以 $x \in N$,故 G' 是 N 的子群。
- 3. 在环 $(R, +, \cdot)$ 中,如果 (R, +) 是循环群,则 $(R, +, \cdot)$ 是交换环。

解. 设 g 为 (R,+) 的一个生成元, $\forall x,y \in R$,有 x=mg,y=ng,其中 $m,n \in \mathbb{Z}$ 。则

$$x \cdot y = (mg) \cdot (ng) = (mn)g^2 = (nm)g^2 = (ng) \cdot (mg) = y \cdot x$$

故 $(R, +, \cdot)$ 是交换环。

- 4. 在环 R 中,如果对于任意 $a \in R$ 均有 $a^2 = a$,则称该环是布尔环。证明:
 - (1) $\forall a \in R, \ 2a = 0_R;$
 - (2) R 是交换环。
 - **解**. (1) $(a+a)^2 = 2a \cdot 2a = 4a^2 = 4a$, 而 $(a+a)^2 = a+a=2a$, 故 4a=2a, 即 $2a=0_R$, 得证!

(2) $\forall a, b \in R$,

$$(a + b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + b = a + b$$

故 ab + ba = 0, 由 2a = 0_R 得 a = -a, 所以 ab = -ba = ba, 故 R 是交换环。

- 5. 下列环中哪些是整环,哪些是域?说明理由。
 - (2) $\{(a+b\sqrt{2} \mid a,b \in \mathbb{Z})\};$
 - **解**. (2) 是整环不是域。乘法满足交换律,为交换环。要证整环,即证 $\forall a,b,c,d \in \mathbb{Z}$, $(a+b\sqrt{2})(c+a)$ $d\sqrt{2}$) $\neq 0$ 当且仅当 $a+b\sqrt{2} \neq 0$ 且 $c+d\sqrt{2} \neq 0$ 。若 $(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd)+(ad+bc)\sqrt{2} = (ac+2bd)+(a$ 0, 则 ac + 2bd = 0 且 ad + bc = 0, 解得 (a, b) = (0, 0) 或 (c, d) = (0, 0) 。 下证不是域: 考虑 $\sqrt{2}$, 其逆元 $c + d\sqrt{2}$ 满足 $(0 + \sqrt{2})(c + d\sqrt{2}) = 1$, 即 $2d + c\sqrt{2} = 1$, 无整数 解,故该环不是域。
- 7. 在交换环中, 若 ab 是零因子, 则 a 是零因子或 b 是零因子。

解. 由 ab 是零因子,即 $\exists c \neq 0$,使得 (ab)c = 0。 (ab)c = a(bc) = 0,若 $bc \neq 0$,则 a 是零因子;若 bc = 0,则 b 是零因子。

8. 设加群 (G,+) 的自同态环为 E, 如果 H 是 G 的子群, 那么

$$E_H = \{ f \mid f \in E, f(H) \subseteq H \}$$

是E的子环。

 \mathbf{R} . 由 $0 \in E_H$,得 E_H 为 E 的非空子集。

 $\forall f, g \in E_H$, 则 $(f+g)(H) = f(H) + g(H) \subseteq H$, 满足加法封闭性。 对 $\forall f \in E_H$, $(-f)(H) = -f(H) \subseteq H$, 即 $-f \in E_H$, 为 f 的逆元。 $(E_H,+)$ 是 (E,+) 的子群。 $\forall f, g \in E_H$,有 $(f \circ g)(H) = f(g(H)) \subseteq f(H) \subseteq H$,满足乘法封闭性。 且单位元 $f: G \to G$, $f \in E$ 且 $f \in E_H$ 。 综上, E_H 为 E 的子环。

9. 一个环的任意两个子环的交仍是子环。

 \mathbf{R} . 设 S,T 为两个子环。

由 $0 \in S$ 且 $0 \in T$,得 $0 \in S \cap T$,非空。 $1 \in S$ 且 $1 \in T$,得 $1 \in S \cap T$ $\forall a, b \in S \cap T$, 则 $a + b \in S$ 且 $a + b \in T$, 故 $a + b \in S \cap T$, 满足加法封闭性。 $\forall a \in S \cap T$,有 $-a \in S$ 且 $-a \in T$,存在逆元,则 $(S \cap T, +)$ 是 (S, +) 和 (T, +) 的子群。 $\forall a,b \in S \cap T$, $\uparrow ab \in S \perp ab \in T$, $\downarrow ab \in S \cap T$, $\downarrow 1 \in S \cap T$. 综上, $S \cap T$ 是子环。