$(2\frac{1}{2} \text{ hours})$

Total Marks: 75

- N. B.: (1) All questions are compulsory.
 - (2) Make suitable assumptions wherever necessary and state the assumptions made.
 - (3) Answers to the same question must be written together.
 - (4) Numbers to the **right** indicate **marks**.
 - (5) Draw neat labeled diagrams wherever necessary.
 - (6) Use of Non-programmable calculators is allowed.
 - Attempt any three of the following: 1.

15

Find the adjoint of the given matrix and hence find Inverse if exist a.

b. Find the Characteristic values and characteristic vectors of the given matrix.

$$\begin{array}{ccccc}
-17 & 18 & -6 \\
[-18 & 19 & -6] \\
-9 & 9 & 2
\end{array}$$

Discuss the consistency of the following systems of equations and solve them c. whenever possible.

$$X_1 + 2X_2 + 2X_3 = 1$$

 $2X_1 + 2X_2 + 3X_3 = 3$
 $X_1 - X_2 + 3X_3 = 5$

- d. Express in a + ib form cot (x + iy).
- Solve the equation $x^7 + x^4 + x^3 + 1 = 0$. e.
- Prove that $(1 + \cos x + i \sin x)^n = 2^n \cos^n x/2 (\cos nx/2 + i \sin nx/2)$ f.
- 2. Attempt any three of the following:

15

- Solve the Differential Equation $(1 2xy x^3) dy (1 + y^2 + 3x^2y) dx = 0$ a.
- Solve the Differential Equation $x^2dy/dx = 3x^2 2xy + 1$ b.
- Solve the following Equation sec $x \frac{dy}{dx} = y + \sin x$ c.
- Solve the following Equation $p^{2}x(x-2) + p(2y 2xy x + 2) + y^{2} + y = 0$ d.
- Find the Complementary and Particular Solution of the equation (D 3 + D 2 + D + 1) y e. $= \sin 2x$.
- Find the General Solution of the equation $(D^3 + 3D)y = \cos x$ f.
- Attempt <u>any three</u> of the following: Evaluate $\int_0^\infty e^{-3t} t \cos 2t \ dt$ 3.

15

- a.
- b.

Find the inverse Laplace transform for the function
$$F(s) = \frac{5s+3}{(s-1)(s^2+2s+5)}$$

[TURN OVER]

munotes.in

Paper / Subject Code: 80705 / Applied Mathematics

c. Find Laplace transformation of the function

$$f(t) = t(2\sin 3t + e^{2t})$$

d. Obtain the Laplace transform of each of the given function

$$F(t) = e^{-2t}\cos^{2} 4t + e^{3t}\sin 6t$$

e. Find Inverse Laplace Transformation by convolution theorem for

$$F(s) = \frac{s^2}{(s^2 + a^2)^2}$$

f. Using Laplace transform method solve the following differential equations with the given condition.

$$(D^2 + 3d + 2)y = 4t + e^{3t}$$
 if $y = 1$, $Dy = -1$ at $t = 0$.

4. Attempt *any three* of the following:

a.

Evaluate
$$\int_0^2 \int_x^{4-x} \int_0^1 e^{2x+2y} dxdy$$
.

- b. Evaluate $\int_{0}^{4} \int_{0}^{\sqrt{4x-x^2}} \frac{y dx dy}{(x^2 + y^2)^{1/2}}$
- c. $Evaluate \int_0^1 \quad \int_{y*y}^1 \quad \int_0^{1-x} x \, dx dy dz.$
- d. $Evaluate \int_0^a \int_0^{(a^2-x^2)^{1/2}} \int_0^{(a^2-x^2-y^2)^{1/2}} (xyz) dxdydz$.
- e. Change the order of integration and evaluate $\int_{-1}^{2} \int_{x^2}^{x+2} dxdy$
- f. Change to polar coordinates and evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$.
- 5. Attempt *any three* of the following:

a. Evaluate $\int_0^{\pi} \sin^2 x (1 + \cos x)^4 dx.$

b. Evaluate $\int_0^\infty \frac{x^2 dx}{(1+x^6)^{7/2}}$.

[TURN OVER]

15

15

munotes.in

Page 2 of 3

Paper / Subject Code: 80705 / Applied Mathematics

Q. P. Code: 53636

c. Evaluate $\int_0^\infty e^{-\alpha x} \sin x / x \ dx$

- d. Evaluate $\int_0^{\pi/2} \frac{\log(1 + a \sin^2 x) dx}{\sin^2 x}.$
- e. Evaluate $\int_0^1 x^m (\log x)^n dx$.
- f. Define error function. Evaluate $erf(\sqrt{x})$

munotes.in

Page 3 of 3