Basic Statistics Final Exam Review

What You'll Need to Know

- Rules of probability
- "and" vs. "or" probability
- Variable types
- Difference between a sample and a population
- Sampling
- Confidence intervals
- z-scores
- Using the normal probability applet
- Hypothesis testing
- Data types for graphs

Tips

Use your notes, the content, a buddy...

 Write down your answers just in case your internet flops

Take your time

Rules of Probability

The Rules!

- All probabilities are between 0 and 1
- There are no negative probabilities
- Total of all possible outcomes is 1
- Probability of an event NOT happening:
 - 1 probability of the event happening

Variable Types

Quantitative / Numeric

Number

- Continuous: With decimal places
- Discrete: Whole number

Qualitative

- NOT a number
- Words

- Categorical: Broken into groups
- Ordinal: Broken into groups where ORDER MATTERS

Samples and Populations

Samples vs. Populations

Population

- Larger
- Use Greek letters
 - Mean: μ (mu)
 - Standard deviation: σ (sigma)

Sample

- Smaller
- Use Roman letters
 - ¬x (x bar)
 - S / SD

Parent vs. Child Distributions

Parent

- Larger SD
- Population

Child

- Smaller SD
- Same mean as the parent
- Sample

Standard Deviation of the Child (Sample)

• What is the standard deviation of the sample if the sigma is 12 and your n is 444?

$$stdev\ of\ child\ distribution = \frac{stdev\ of\ parent\ distribution}{\sqrt{sample\ size}}$$

$$\frac{12}{\sqrt{444}}$$
 $\frac{12}{21.07}$.57

Confidence Intervals

What is a Confidence Interval?

- Band around the mean
- Your true mean falls somewhere in there
 - 90% CI: 90% of the time
 - 95% CI: 95% of the time
 - 99% CI: 99% of the time

What is Margin of Error?

Amount you could be wrong by

Gets added and subtracted from the mean

Putting it All Together

The Larger the Interval, the More Certain

z-scores

The Formula

$$z = \frac{x - \mu}{\sigma}$$

An Example Working Backwards

•
$$x = 30$$

•
$$z = 3.2$$

What is sigma?

$$z = \frac{x - \mu}{\sigma} \qquad 3.2 = \frac{30 - 25}{\sigma} \qquad 3.2\sigma = \frac{30 - 25 * \sigma}{\sigma} \qquad \frac{32\sigma}{3.2} = \frac{30 - 25}{3.2} \qquad \sigma = \frac{5}{3.2} \qquad \sigma = 1.56$$

$$3.2\sigma = \frac{30 - 25 * \sigma}{\sigma}$$

$$\frac{3.2\sigma}{3.2} = \frac{30 - 25}{3.2}$$

$$\sigma = \frac{5}{3.2}$$

$$\sigma = 1.56$$

Using the Normal Probability Applet

An Example

 What is the probability of selecting a value that is either smaller than 12 or greater than 18, for a distribution with a mean of 15 and a standard deviation of 2?

• .13, or 13%

• http://davidmlane.com/hyperstat/z_table.html

Data Types for Graphs

Categorical Only

- Pie
- Bar
- Pareto

Continuous Only

- Histogram
- Boxplot
- Scatterplot
- Line graph

Mixed: Categorical + Continuous

- Histogram with multiple groups
- Side-by-side boxplots
- Stacked bar graph
- Data map
- Tree map
- Heat map

Questions?