# Model Documentation of the 'Mach 2.7 flight condition of a supersonic transport aircraft'

#### 1 Nomenclature

#### 1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

#### 2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u \qquad \qquad \in \mathbb{R}^2 w \in \mathbb{R}^4 z \qquad \qquad \in \mathbb{R}^6 y \in \mathbb{R}^3$$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t) \tag{1c}$$

Outputs: z

#### 2.1 Exemplary parameter values

| -        |                                                                  |
|----------|------------------------------------------------------------------|
| Symbol   | Value                                                            |
| A        | $\begin{bmatrix} -0.037 & 0.0123 & 0.00055 & -1.0 \end{bmatrix}$ |
|          | 0 0 1.0 0                                                        |
|          | $\begin{bmatrix} -6.37 & 0 & -0.23 & 0.0618 \end{bmatrix}$       |
|          | $\begin{bmatrix} 1.25 & 0 & 0.016 & -0.0457 \end{bmatrix}$       |
|          | 0.00084 0.000236                                                 |
| B        | 0 0                                                              |
| Б        | 0.08 0.804                                                       |
|          | $\begin{bmatrix} -0.0862 & -0.0665 \end{bmatrix}$                |
| $B_1$    | $\begin{bmatrix} 0.00084 & 0.000236 \end{bmatrix}$               |
|          | 0 0                                                              |
|          | 0.08 0.804                                                       |
|          | $\begin{bmatrix} -0.0862 & -0.0665 \end{bmatrix}$                |
| $C_1$    | [1.0  0  0  0]                                                   |
|          | 0 1.0 0 0                                                        |
|          | 0 0 1.0 0                                                        |
|          | 0 0 0 1.0                                                        |
|          |                                                                  |
|          |                                                                  |
|          | $\begin{bmatrix} 0 & 1.0 & 0 & 0 \end{bmatrix}$                  |
| C        | 0 0 1.0 0                                                        |
|          | 0 0 0 1.0                                                        |
|          | [0 0 0 0]                                                        |
| $D_{11}$ |                                                                  |
|          |                                                                  |
|          |                                                                  |
|          |                                                                  |
|          | $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$                    |
|          |                                                                  |
|          |                                                                  |
|          |                                                                  |
| $D_{12}$ |                                                                  |
|          | $\begin{bmatrix} 0 & 0 \\ 1.0 & 0 \end{bmatrix}$                 |
|          | $\begin{bmatrix} 1.0 & 0 \\ 0 & 1.0 \end{bmatrix}$               |
|          |                                                                  |
| $D_{21}$ |                                                                  |
| 21       |                                                                  |
|          | [                                                                |

### 3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

AC15 Mach 2.7 flight condition of a supersonic transport aircraft ehemalsNN2 "Computation of Optimal Output Feedback Gains for Linear Multivariable Systems", TOAC, Vol. 19, pp. 257-258, 1974

## 4 Simulation



Figure 1: Simulation of the Mach 2.7 flight condition of a supersonic transport aircraft.

#### References

[1] Computation of Optimal Output Feedback Gains for Linear Multivariable Systems", TOAC, Vol. 19, pp. 257-258, 1974