

TD 2. Graphes et dénombrements

Exercice 1. Amis dans un groupe

Montrer que dans un groupe d'au moins 3 personnes, il y a deux personnes ayant le même nombre d'amis présents.

Exercice 2. Comptage sur les graphes

- (a) Combien d'arêtes possède le graphe non orienté complet à n sommets?
- (b) Combien y a-t-il de graphes non orientés ayant pour ensemble de sommets [1, n]?

Exercice 3. Existence de graphes k-réguliers

- (a) Décrire les graphes (non orientés) à n sommets 1-réguliers, puis les 2-réguliers.
- (b) Existe-t-il des graphes k-réguliers à n sommets si k et n sont deux entiers impairs?
- (c) **Application :** on dispose de 15 ordinateurs, et on souhaite relier directement chaque ordinateur à exactement trois autres ordinateurs. Est-ce possible ?

Exercice 4. Théorème de Ramsey

Le but de cet exercice est de montrer l'énoncé (R) suivant :

(R) Dans un groupe de 6 personnes, il y a 3 personnes qui se connaissent mutuellement, ou bien 3 personnes qui ne se connaissent pas.

Nous distinguerons deux cas: 1) l'une des personnes connaît au moins trois autres personnes; 2) la négation de 1.

- (a) Expliquer pourquoi dans le cas (1), l'énoncé (R) est vrai.
- (b) Quelle est la négation de (1)?
- (c) Expliquer pourquoi dans le cas (2), l'énoncé (R) est vrai.
- (d) Que peut-on dire si le groupe est formé de 5 personnes?

Exercice 5. Sacs de billes

Quel est le nombre de façons de placer 4 billes dans 10 sacs numérotés si :

- (a) les billes sont toutes différentes et chaque sac ne peut contenir qu'une bille,
- (b) les billes sont identiques et chaque sac ne peut contenir qu'une bille,
- (c) les billes sont toutes différentes et chaque sac peut contenir plusieurs billes,
- (d) les billes sont identiques et chaque sac peut contenir plusieurs billes.

Exercice 6. Petit problème de placement

Quatre enfants, chacun accompagné d'un de ses parents vont au cinéma. Il ne reste qu'une rangée de huit places. Combien de façons ont-ils de s'installer

- (a) sans imposer de restriction particulière?
- (b) en alternant les enfants et adultes?
- (c) en groupant les enfants d'une part, et les adultes d'autre part?
- (d) en groupant les enfants (mais pas nécessairement les adultes)?
- (e) sans séparer les parents de leurs enfants?

MD5 TD 2

Exercice 7. Problème de domino

De combien de façons différentes est-il possible de choisir un domino, puis un deuxième qui a une face en commun avec le premier? Pour rappel, dans un jeu de dominos, il y a :

- 7 dominos de la forme (a, a) pour $0 \le a \le 6$
- exactement un domino pour chaque sous-ensemble de cardinal 2 de l'ensemble $\{0, 1, ..., 6\}$.

Exercice 8. Combinaisons avec répétitions

On note Γ_n^k le nombre de k-combinaisons avec répétition d'un ensemble à n éléments. Dit autrement, Γ_n^k est le nombre de multi-ensembles contenant k éléments et construit à partir d'un support de cardinal n.

- (a) Donner les valeurs de Γ_1^5 , Γ_5^0 et plus généralement Γ_1^k (pour $0 \le k$) et Γ_n^0 (pour $1 \le n$).
- (b) Montrer pour tout n > 1 et k > 0, la relation de récurrence suivante $\Gamma_n^k = \Gamma_n^{k-1} + \Gamma_{n-1}^k$.
- (c) En utilisant une récurrence sur l'entier n+k, en déduire pour tout $k \ge 0$ et $n \ge 1$, la formule $\Gamma_n^k = \binom{n+k-1}{k}$.
- (d) **Application :** une pâtisserie vend quatre types de viennoiseries : des croissants, des pains au chocolat, des pains aux raisins et des chaussons aux pommes.
 - 1. Blanche veut en acheter sept : combien de choix a-t-elle?
 - 2. Blanche veut maintenant distribuer ses viennoiseries à ses sept amis : combien de possibilités y a-t-il?

Exercice 9. Formulaire

Combien y-a-t-il de façons de colorier k cases d'une rangée de n cases? Utiliser cette interprétation et le principe du double comptage pour montrer les formules suivantes sans utiliser une preuve par récurrence :

(a)
$$\binom{n}{k} = \binom{n}{n-k}$$

(b) $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$
(c) $\binom{n}{k} \binom{k}{l} = \binom{n}{l} \binom{n-l}{k-l}$
(d) $\sum_{k=0}^{n} \binom{n}{k} = 2^n$
(e) $\sum_{p=k}^{n} \binom{p-1}{k-1} = \binom{n}{k}$

Exercice 10. Jeu de cartes

Une main de cinq cartes est sélectionnée parmi un paquet de 4n cartes. Pour chaque couleur (coeur, carreau, trèfle, pique), il y a n cartes (n > 5) numérotées de 1 à n.

- (a) Combien de mains différentes peut-on obtenir?
- (b) Combien de mains y a-t-il contenant
 - 1. une quinte flush (cinq cartes consécutives de la même couleur) (exemple : 7,6,5,4,3 de coeur)
 - 2. un carré (quatre cartes avec le même numéro et la cinquième différente) (exemple : 4 des quatre couleurs et 2 de pique)
 - 3. un full (trois cartes d'un numéro et deux autres d'un autre numéro) (exemple : 7 de pique, trèfle et coeur et 3 de pique et trèfle)
 - 4. une couleur ou flush (cinq cartes de la même couleur) (exemple : 1,2,6,8,9 de coeur)
 - 5. une quinte ou suite (cinq cartes consécutives) (exemple : 7 de coeur, 6,5 de pique, 4 de carreau et 3 de trèfle)
 - 6. une double paire (deux cartes d'un numéro, deux cartes d'un autre numéro et la dernière d'un numéro différent) (exemple : 6 de carreau et pique, 4 de pique et trèfle, 9 de coeur)
 - 7. une paire (deux cartes d'un numéro et les trois autres de numéros tous différents) (exemple : 2 de coeur et pique, 3 de coeur, 5 de trèfle, 6 de carreau)