Se consideră sistemul de reglare automată cu schema bloc prezentată în fig. 1, în care r(t) este referința (intrarea de referință), e(t) este eroarea de reglare și modelul de stare (MM-ISI) al blocului P este

$$\dot{x}_1 = -2x_1 + 2x_2 + 40d,
\dot{x}_2 = -0.5x_2 + 12.5m,
z = x_1.$$
(1)

Fig. 1. Schema bloc a sistemului de reglare automată.

Sunt considerate două variante de regulatoare (R) cu funcția de transfer

- rândul 1:

$$H_R(s) = k_R \left(1 + \frac{1}{T_i s}\right).$$
 (2)

- rândul 2:

$$H_R(s) = \frac{k_R (1 + T_d \mathbf{s})}{1 + T_f s} \,. \tag{3}$$

(1) Calculați caracteristicile de transfer, adică cu funcția de transfer în raport cu referința $H_{y,r}(s)$ și funcția de transfer $H_{y,d}(s)$ în raport cu perturbația d(t), considerând ieșirea y(t), și funcția de transfer a sistemului decchis $H_0(s)$ (e(t) este intrarea și y(t) este ieșirea) pentru:

- rândul 1: $T_i = 2.5 \sec .$
- rândul 2: $T_d = 2.5 \sec_{f} T_f = 0.1 \sec_{f}$.
- (2) Găsiți valorile parametrului $k_R > 0$ pentru care sistemul de reglare automată este stabil.
- (3) Considerând ieşirea y(t), acceptând că sistemul este stabil și alegând o valoare a lui $k_R > 0$, găsiți valoarea statismului natural $\gamma_{n(y)}$. Acceptând valorile nominale $d_n = 50$ și $y_n = 100$, găsiți valoarea statismului natural în unități raportate (normate) în procente, $\gamma_{n(y)}$.
- (4) Acceptând că sistemul este stabil și alegând o valoare a lui $k_R > 0$, pentru $d_{\infty} = 50$ și $z_{\infty} = 5000$ calculați valorile de regim staționar constant $\{r_{\infty}, e_{\infty}, u_{\infty}, m_{\infty}, y_{\infty}\}$.
- (5) Determinați valorile parametrului real c care garantează stabilitatea sistemului liniar în timp discret cu funcția de transfer

- rândul 1:
$$H(z) = \frac{3z^2 - 4z + 1}{z^3 - 2z^2 + (c+1.3)z - 0.1}$$
,

- rândul 2:
$$H(z) = \frac{6z^2 - 3z + 0.5}{z^3 + 2z^2 + (c - 1.3)z + 0.1}$$
.

Punctaj: start: 1, (1): 1.5, (2): 2, (3): 1.5, (4): 2, (5): 2. Total: 10