CS353 Machine Learning Lab

Lab-2 (19/03/21)

Shumbul Arifa (181CO152)

Task:

Perform logistic regression on a sample dataset.

Dataset Wine

The wine dataset is a classic and very easy multi-class classication dataset avilable in sklearn standard library.

import numpy as np

Importing Libraries

```
In [18]:
         import pandas as pd
         from sklearn.model_selection import train_test_split
         import matplotlib.pyplot as plt
         from sklearn.datasets import load_wine
         %matplotlib inline
```

dataset = load_wine()

Loading dataset

```
In [19]:
         X, y = load_wine(return_X_y=True)
In [20]:
         print("Features of first five values are: ")
         print(X[0:5])
         print("Classes of first five values are: ", y[0:5])
         Features of first five values are:
         [[1.423e+01 1.710e+00 2.430e+00 1.560e+01 1.270e+02 2.800e+00 3.060e+00
           2.800e-01 2.290e+00 5.640e+00 1.040e+00 3.920e+00 1.065e+03]
          [1.320e+01 1.780e+00 2.140e+00 1.120e+01 1.000e+02 2.650e+00 2.760e+00
           2.600e-01 1.280e+00 4.380e+00 1.050e+00 3.400e+00 1.050e+03]
          [1.316e+01 2.360e+00 2.670e+00 1.860e+01 1.010e+02 2.800e+00 3.240e+00
           3.000e-01 2.810e+00 5.680e+00 1.030e+00 3.170e+00 1.185e+03]
          [1.437e+01 1.950e+00 2.500e+00 1.680e+01 1.130e+02 3.850e+00 3.490e+00
           2.400e-01 2.180e+00 7.800e+00 8.600e-01 3.450e+00 1.480e+03]
          [1.324e+01 2.590e+00 2.870e+00 2.100e+01 1.180e+02 2.800e+00 2.690e+00
           3.900e-01 1.820e+00 4.320e+00 1.040e+00 2.930e+00 7.350e+02]]
         Classes of first five values are: [0 0 0 0 0]
In [21]: | df = pd.DataFrame(dataset.data, columns = dataset.feature_names)
         df['Target'] = dataset.target
```

df.head() Out[21]: color inten alcohol malic acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins 1.71 2.43 14.23 15.6 127.0 2.80 3.06 0.28 2.29

101.0

113.0

118.0

96.0

178.000000

19.494944

ash alcalinity_of_ash magnesium total_phenols

178.000000

99.741573

18.6

16.8

21.0

24.5

Out[22]:

In [23]:

Out[23]:

In [22]:

: [df.tail()											
:		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_in	
	173	13.71	5.65	2.45	20.5	95.0	1.68	0.61	0.52	1.06		
	174	13.40	3.91	2.48	23.0	102.0	1.80	0.75	0.43	1.41		
	175	13.27	4.28	2.26	20.0	120.0	1.59	0.69	0.43	1.35		
	176	13.17	2.59	2.37	20.0	120.0	1.65	0.68	0.53	1.46		

2.80

3.85

2.80

2.05

3.24

3.49

2.69

0.76

178.000000 178.000000

2.029270

2.295112

0.30

0.24

0.39

0.56

flavanoids nonflavanoid_phenols proanthocyani

178.000000

0.361854

0.124453

0.130000

0.270000

0.340000

0.437500

2.81

2.18

1.82

1.35

178.0000

1.5908

0.5723

0.4100

1.2500

1.5550

1.9500

count 178.000000 13.000618 mean

0

1

3

4

5

50

40

30

20

alcohol

malic_acid

magnesium

total_phenols

alcalinity_of_ash

13.16

14.37

13.24

14.13

alcohol

Number of target classes: 3

df.describe()

2.36 2.67

1.95 2.50

2.59 2.87

4.10 2.74

malic_acid

2.336348

178.000000 178.000000

2.366517

std 0.811827 1.117146 0.274344 3.339564 14.282484 0.625851 0.998859 min 11.030000 0.740000 1.360000 10.600000 70.000000 0.980000 0.340000 25% 12.362500 1.602500 2.210000 17.200000 88.000000 1.742500 1.205000 13.050000 2.360000 2.355000 2.135000 50% 1.865000 19.500000 98.000000 **75**% 13.677500 3.082500 2.557500 21.500000 107.000000 2.800000 2.875000

3.5800 14.830000 5.800000 3.230000 30.000000 162.000000 3.880000 5.080000 0.660000 max print("Dataset shape: ", df.shape) print("Target classes: ", pd.unique(df['Target'])) print("Number of target classes: ", len(pd.unique(df['Target']))) print("\n\n") df.info() Dataset shape: (178, 14) Target classes: [0 1 2]

178 non-null

178 non-null

178 non-null

178 non-null

178 non-null

178 non-null

float64

float64

float64

float64

float64

float64

<class 'pandas.core.frame.DataFrame'> RangeIndex: 178 entries, 0 to 177 Data columns (total 14 columns): # Column Non-Null Count Dtype

6 flavanoids 178 non-null float64 nonflavanoid_phenols float64 178 non-null 8 proanthocyanins 178 non-null float64 9 color_intensity float64 178 non-null 10 178 non-null float64 od280/od315_of_diluted_wines 178 non-null float64 float64 proline 178 non-null 178 non-null int64 Target dtypes: float64(13), int64(1) memory usage: 19.6 KB In [25]: # printing label's plot import seaborn as sns sns.countplot(x="Target", data=df) Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7542de2bd0> 70 60

10 Target **Splitting Data** We are using X-y split method with test size 20 % and random state 5. In [26]: X = dataset.datay = dataset.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=25)

from sklearn.linear_model import LogisticRegression In [28]: log_reg = LogisticRegression()

In [27]:

```
log_reg.fit(X_train,y_train)
/home/shumbul/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py:940: Convergenc
```

extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)

Implementing Logistic regression

```
eWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
```

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2',

random_state=None, solver='lbfgs', tol=0.0001, verbose=0,

warm_start=False) log_reg.coef_ In [29]: Out[29]: array([[-1.14459351e-01, 5.36838655e-02, 1.15923962e-01, -1.92026891e-01, -2.55766412e-02, 7.21772825e-02, 3.47187510e-01, -1.87830187e-02, 8.46976656e-02,

[5.14084767e-01, -5.74794189e-01, -1.46149756e-01, 1.49735020e-01, 3.25205654e-03, 3.65897542e-01, 4.66051253e-01, 1.41354451e-02, 2.60985828e-01, 4.56981289e-01, -1.13051830e+00, 2.21753149e-01, -8.83814007e-03], [-3.99625417e-01, 5.21110324e-01, 3.02257937e-02,

> 4.22918716e-02, 2.23245846e-02, -4.38074825e-01, -8.13238764e-01, 4.64757359e-03, -3.45683494e-01,

> -4.28877695e-02, -1.01476803e-02, 2.22820710e-01,

https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options:

Out[28]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

1.17340607e+00, -2.11605468e-01, -6.79801999e-01, -1.44944096e-04]]) In [30]: log_reg.intercept_ Out[30]: array([-0.03548303, 0.08491677, -0.04943373]) In [31]: y_pred = log_reg.predict(X_test) y_pred Out[31]: array([1, 0, 0, 0, 1, 1, 0, 2, 1, 2, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 2, 2, 0, 0, 2, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 1])

8.98308416e-03],

Analysis

import matplotlib.pyplot as plt

disp = metrics.plot_confusion_matrix(log_reg, X_test, y_test) disp.figure_.suptitle("Confusion Matrix") plt.show()

In [33]: **from sklearn import** metrics

In [32]: y_pred.shape

Out[32]: (36,)

```
Confusion Matrix
0
       11
                                               14
```


In [34]: **from sklearn.metrics import** accuracy_score print("Accuracy of the classifier: ", accuracy_score(y_test, y_pred)) print("Percentage Accuracy of Classifier: {0:0.4f}%".format(accuracy_score(y_test, y_pred)*100))

Accuracy of the classifier: 0.972222222222222 Percentage Accuracy of Classifier: 97.2222%