Should have read Ch.O in Mooculus

This lecture: Ch. 1

- · nots & bolts of limits
- · laws of limits, limit of some nice fons
- · trafunctions

We say that the limit of f(x) as x approaches a is L if if (x) gets clax to L whenever x gets class to a.

What does close mean?

replace clase by "as close as ne want"?

Actual definition

Defi lim f(x)=L means for any positive number E>0 x+a we can find a positive number S>0 such that If(x)-L/<E wheneverox1x-a/<8

Example

$$\lim_{x\to 8} 2x = 6 \quad (guess)$$

How about $z = 1$? $S = ...$
 $|2x-6| < |$ whenever $0 < |x-3| < 8$
 $S = 3$? $0 < |x-3| < 3$ does this near $|2x-6| < |?$
 $ex: x = 5$ $|2x-6| = |2 \cdot 5 - 6| = |4 < |8|$
 $S = 1$? $0 < |x-3| < |?$
 $|x-3| < |$ $|x-3| <$

$$\Sigma = \frac{1}{10}$$
 $S = \frac{1}{20}$ $S = \frac{1}{200}$ $S = \frac{1}{200}$

let 200 be any pasitre number.

Set
$$S = \frac{1}{2} \mathcal{E}$$
 then whenever $0 < |x-3| < S = \frac{1}{2} \mathcal{E}$
we have $2|x-3| < \mathcal{E}$. And so by the definition
$$|x-6| \qquad |x > 3| < 1$$

$$|x > 3| < 3| < 4$$

$$|x > 3| < 5| < 5|$$

Limit laws

Suppose f(x), g(x) are functions and lim f(x)=L, lim g(x)=M x=a, x=a

- 1. lim f(x)+g(x) = L+ M
- 2. lim f(x)g(x) = LM
 - 3. lim Cf(x) = CL

- 1. lim C = C
 - 2. $\lim x = a$

exi
$$\lim_{x\to 3} 2x = CL = 2.3 = 6$$
 $\lim_{x\to 3} f(x) = \lim_{x\to 3} f(x) = \lim_{x\to 3} f(x) = \lim_{x\to 3} f(x)$
 $\lim_{x\to 3} f(x) = \lim_{x\to 3} f(x) = \lim_{x\to 3} f(x)$

Practice

1.
$$\lim_{x \to 2} 3x^2 - 1$$

$$\lim_{x\to 2} 3x^2 + (-1)$$

=
$$\lim_{x\to 2} 3x^2 + \lim_{x\to 2} (-1) = 3 \lim_{x\to 2} x^2 + \lim_{x\to 2} (-1)$$

2. $\lim_{x\to 3} \frac{(x^2-9)2x}{x-3}$

$$=3(2)(2)+(-1)=1$$

2.
$$\lim_{x\to 3} \frac{(x-3)(x+3)2x}{x-3} = \lim_{x\to 3} \frac{(x-3)\lim_{x\to 3} (x+3)(2x)}{(x-3)\lim_{x\to 3} (x+3)}$$

$$\lim_{x \to 3} \frac{x-3}{x-3} = \lim_{x \to 3} | = 1$$

$$\frac{x-3}{x-3} = | \text{ if } x \neq 3$$

$$\lim_{x\to 2} (x^2-4) = \lim_{x\to 2} (x+2)(x-2)$$

=
$$\left(\lim_{x\to 2} (x-2)\right) \left(\lim_{x\to 2} (x+2)\right) = 0$$

$$\lim_{x\to 2} x-2 = \lim_{x\to 2} x + \lim_{x\to 2} (-2) = 2 + (-2) = 0$$

x70

$$\lim_{x\to 0} \frac{x}{x} = \lim_{x\to 0} x \cdot \frac{1}{x} = \lim_{x\to 0} x \cdot \frac{1}{x} = 0.$$

$$\lim_{x\to 0} \frac{1}{x} = \lim_{x\to 0} x \cdot \frac{1}{x} = 0.$$

$$\lim_{x\to 0} \frac{1}{x} = \lim_{x\to 0} x \cdot \frac{1}{x} = 0.$$

$$\lim_{x\to 0} \frac{1}{x} = 0.$$