#### **ESEIAAT**



# Trajectòries interplanetàries Sense integració numèrica

#### Informe

Curs: Màster en Enginyeria Aeronàutica

Assignatura: Aerodinàmica, Mecànica de Vol i Orbital

**Data d'entrega:** 22-01-2018

#### **Estudiants:**

González García, Sílvia Kaloyanov Naydenov, Boyan Pla Olea, Laura Serra Moncunill, Josep Maria

Professor: Calaf Zayas, Jaume



# Llista de continguts

| Lli | sta d | le taules                          | ii  |
|-----|-------|------------------------------------|-----|
| Lli | sta d | le figures                         | iii |
| 1   | Intr  | oducció                            | 1   |
| 2   | Òrb   | ita el·líptica heliocèntrica       | 2   |
|     | 2.1   | Plantejament d'equacions           | 2   |
|     | 2.2   | Mètode de resolució                | 4   |
| 3   | Sort  | cida del planeta origen            | 5   |
|     | 3.1   | Òrbita planetocèntrica hiperbòlica | 5   |
|     | 3.2   | Òrbita d'aparcament                | 5   |
|     | 3.3   | DeltaV                             | 5   |
| 4   | Arri  | bada al planeta destí              | 6   |
|     | 4.1   | Òrbita planetocèntrica hiperbòlica | 6   |
|     | 4.2   | Òrbita d'aparcament                | 6   |
|     | 4.3   | DeltaV                             | 6   |
| 5   | Fun   | cions auxiliars                    | 7   |
| 6   | Res   | ultats                             | 8   |
|     | 6.1   | Cas de la Terra a Mart             | 8   |
|     | 6.2   | Cas de Mart a Júpiter              | 8   |
|     | 6.3   | Cas 1 de Mart a Júpiter            | 8   |
|     | 6.4   | Cas 2 de la Terra a Mart           | 9   |
|     | 6.5   | Cas 3 de la Terra a Mart           | 9   |
|     | 6.6   | Cas 4 de la Terra a Mart           | 9   |
|     | 6.7   | Cas 5 de la Terra a Venus          | 10  |
|     | 6.8   | Cas 6 de Mart a la Terra           | 10  |
|     | 6.9   | Cas 7 de Mart a la Terra           | 10  |
| 7   | Con   | clusions                           | 12  |



### Llista de taules

| 6.1 | Elements orbitals del primer cas resolt |
|-----|-----------------------------------------|
| 6.1 | Elements orbitals del segon cas resolt  |
| 6.1 | Elements orbitals del cas 1             |
| 6.1 | Elements orbitals del cas 2             |
| 6.1 | Elements orbitals del cas 3             |
| 6.1 | Elements orbitals del cas 4             |
| 6.1 | Elements orbitals del cas 5             |
| 6.1 | Elements orbitals del cas 6             |
| 6.1 | Elements orbitals del cas 7             |



# Llista de figures

| 2.1 | Òrbita interplanetària heliocèntrica del planeta d'origen al planeta de destí | 2  |
|-----|-------------------------------------------------------------------------------|----|
| 2.1 | Triangle esfèric de l'òrbita interplanetària heliocèntrica                    | 3  |
| 6.1 | Òrbita interplanetària del cas 7                                              | 11 |



# 1 | Introducció

miau miau miaaauu



# 2 Drbita el·líptica heliocèntrica

El primer pas en la resolució de la trajectòria interplanetària és l'obtenció dels elements de l'òrbita que porta la nau d'un planeta a l'altre. Per tal de conèixer aquests elements és necessari saber quins són els punts d'origen i de destí de la nau. És a dir, cal saber la posició dels planetes en l'instant en què la sonda surt del planeta d'origen i en l'instant en què arriba al planeta de destí. Coneixent aquestes dues posicions ja és possible projectar una òrbita com la que es veu en la figura 2.1.



Figura 2.1: Òrbita interplanetària heliocèntrica del planeta d'origen al planeta de destí

#### 2.1 Plantejament d'equacions

Com es dedueix de la figura, és possible calcular la inclinació de l'òrbita sabent la posició dels dos planetes. A partir dels vectors de posició, es pot calcular la desviació respecte de l'eclíptica dels planetes d'origen (en blau) i de destí (en groc),  $\beta_1$  i  $\beta_2$  respectivament. També



es pot obtenir la longitud eclíptica dels dos planetes,  $\lambda_1$  i  $\lambda_2$ . A partir d'aquestes variables, el problema es resol aplicant trigonometria esfèrica:

$$\cos \Delta \theta = \sin \beta_1 \sin \beta_2 + \cos \beta_1 \cos \beta_2 \cos \Delta \lambda \tag{2.1}$$

Del triangle groc s'obté:

$$\sin A = \cos \beta_2 \frac{\sin \Delta \lambda}{\sin \Delta \theta} \tag{2.2}$$



Figura 2.1: Triangle esfèric de l'òrbita interplanetària heliocèntrica

D'altra banda, del triangle esfèric de la figura 2.1 s'obtenen les següents expressions:

$$\tan \sigma = \frac{\cos \beta_1}{\tan \beta_1} \tag{2.3}$$

$$\cos i = \sin A \cos \beta_1 \tag{2.4}$$

$$\sin l = \frac{\tan \beta_1}{\tan i} \tag{2.5}$$

De la figura 2.1 també es poden deduir l'ascensió recta del node ascendent i l'argument del perigeu:

$$\Omega = \lambda_1 - l \tag{2.6}$$

$$\omega = 2\pi - (\theta_1 - \sigma) \tag{2.7}$$

Finalment, a partir dels vectors de posició també s'obtenen els tres elements orbitals que falten. Assumint que la trajectòria és el·líptica, els mòduls dels vectors de posició vénen donats per les expressions:

$$r_1 = \frac{a(1 - e^2)}{1 + e\cos\theta_1} \tag{2.8}$$

$$r_2 = \frac{a(1 - e^2)}{1 + e\cos(\theta_1 + \Delta\theta)}$$
 (2.9)

D'altra banda, també es pot relacionar el temps amb la posició de la sonda en l'òrbita mitjançant l'equació:

$$\frac{2\pi t}{T} = 2\arctan\left(\sqrt{\frac{1-e}{1+e}}\tan\frac{\theta_1}{2}\right) - \frac{e\sqrt{1-e^2}\sin\theta_1}{1+e\cos\theta_1}$$
 (2.10)



on T és el període en dies del planeta d'origen.

Per tant, es pot plantejar un sistema de tres equacions amb tres incògnites:

$$e = \frac{r_2 - r_1}{r_1 \cos \theta_1 - r_2 \cos (\theta_1 + \Delta \theta)}$$
 (2.11)

$$a = \frac{r_1 \left(1 + e \cos \theta_1\right)}{1 - e^2} \tag{2.12}$$

$$t_{2} - t_{1} = \frac{365.25}{2\pi} a^{3/2}.$$

$$\cdot \left[ 2 \arctan\left(\sqrt{\frac{1 - e}{1 + e}} \tan\frac{(\theta_{1} + \Delta \theta)}{2}\right) - \frac{e\sqrt{1 - e^{2}} \sin(\theta_{1} + \Delta \theta)}{1 + e \cos(\theta_{1} + \Delta \theta)} \right] -$$

$$- 2 \arctan\left(\sqrt{\frac{1 - e}{1 + e}} \tan\frac{\theta_{1}}{2}\right) - \frac{e\sqrt{1 - e^{2}} \sin\theta_{1}}{1 + e \cos\theta_{1}} \quad (2.13)$$

en què tant els vectors  $\vec{r_1}$  i  $\vec{r_2}$  com el semieix major a estan expressats en AU, per tal de treballar amb valors més simples.

#### 2.2 Mètode de resolució

- 1. Es calcula la posició del planeta d'origen en l'instant de temps de sortida i la posició del planeta de destí en l'instant de temps d'arribada.
- 2. A partir dels vectors de posició es calculen les longituds i latituds eclíptiques dels planetes.
- 3. A partir del sistema d'equacions donat per 2.11, 2.12 i 2.13 s'obtenen l'excentricitat e i el semieix major a de l'òrbita, i l'anomalia vertadera de la sonda  $\theta_1$  en l'instant de sortida.
- 4. Es calcula la inclinació a partir de les equacions donades pels triangles esfèrics 2.4.
- 5. Càlcul de la longitud eclítpica del node ascendent donat per 2.6.
- 6. Es calcula l'argument del periheli amb 2.7.



## 3 | Sortida del planeta origen

- 3.1 Òrbita planetocèntrica hiperbòlica
- 3.2 Òrbita d'aparcament
- 3.3 DeltaV



## 4 Arribada al planeta destí

- 4.1 Òrbita planetocèntrica hiperbòlica
- 4.2 Òrbita d'aparcament
- 4.3 DeltaV



# | Funcions auxiliars



### 6 Resultats

### 6.1 Cas de la Terra a Mart

ullet Sortida:  $t_1 = 2020$  Juliol 19

• Arribada:  $t_2 = 2021$  Gener 25

| a          | e       | $\theta_1$ | ω               | i               | Ω                 |
|------------|---------|------------|-----------------|-----------------|-------------------|
| 1.33073 AU | 0.23629 | 359.613°   | $0.387^{\circ}$ | $1.434^{\circ}$ | $296.515^{\circ}$ |

Taula 6.1: Elements orbitals del primer cas resolt

### 6.2 Cas de Mart a Júpiter

 $\bullet$  Sortida:  $t_1 = 2026$  Juny 05

ullet Arribada:  $t_2 = 2029$  Abril 25

| a               | e       | $\theta_1$ | ω        | i               | Ω                 |
|-----------------|---------|------------|----------|-----------------|-------------------|
| $3.45405 \; AU$ | 0.59043 | 356.872°   | 176.203° | $7.508^{\circ}$ | $207.127^{\circ}$ |

Taula 6.1: Elements orbitals del segon cas resolt

### 6.3 Cas 1 de Mart a Júpiter

 $\bullet$  Sortida:  $t_1 = 2037$  Octubre 25

ullet Arribada:  $t_2 = 2039$  Octubre 15



| a          | e       | $\theta_1$ | ω        | i               | Ω       |
|------------|---------|------------|----------|-----------------|---------|
| 3.87684 AU | 0.64755 | 392.516°   | 317.644° | $1.267^{\circ}$ | 52.502° |

Taula 6.1: Elements orbitals del cas 1

#### 6.4 Cas 2 de la Terra a Mart

ullet Sortida:  $t_1=$ 2033 Març 13

• Arribada:  $t_2 = 2033$  Agost 05

| a          | e       | $\theta_1$        | $\omega$         | i               | Ω        |
|------------|---------|-------------------|------------------|-----------------|----------|
| 1.34585 AU | 0.26502 | $347.845^{\circ}$ | $12.155^{\circ}$ | $2.154^{\circ}$ | 172.263° |

Taula 6.1: Elements orbitals del cas 2

### 6.5 Cas 3 de la Terra a Mart

ullet Sortida:  $t_1 = 2031$  Gener 23

ullet Arribada:  $t_2 = 2031$  Agost 01

| a          | e       | $\theta_1$      | ω                 | i               | Ω                 |
|------------|---------|-----------------|-------------------|-----------------|-------------------|
| 1.24568 AU | 0.20996 | $1.674^{\circ}$ | $358.471^{\circ}$ | $2.293^{\circ}$ | $122.188^{\circ}$ |

Taula 6.1: Elements orbitals del cas 3

#### 6.6 Cas 4 de la Terra a Mart

ullet Sortida:  $t_1 = 2025$  Juliol 18

• Arribada:  $t_2 = 2025$  Octubre 21

| a          | e       | $	heta_1$         | $\omega$         | i               | Ω        |  |
|------------|---------|-------------------|------------------|-----------------|----------|--|
| 1.07039 AU | 0.46551 | $112.076^{\circ}$ | $67.350^{\circ}$ | $0.563^{\circ}$ | 115.868° |  |

Taula 6.1: Elements orbitals del cas 4



#### 6.7 Cas 5 de la Terra a Venus

• Sortida:  $t_1 = 2023$  Maig 27

ullet Arribada:  $t_2 = 2023$  Novembre 01

| a          | e       | $	heta_1$         | $\omega$         | i      | Ω       |
|------------|---------|-------------------|------------------|--------|---------|
| 0.86221 AU | 0.23212 | $147.050^{\circ}$ | $32.951^{\circ}$ | 1.678° | 65.165° |

Taula 6.1: Elements orbitals del cas 5

### 6.8 Cas 6 de Mart a la Terra

ullet Sortida:  $t_1 = 2033$  Gener 18

 $\bullet$  Arribada:  $t_2 = 2033$  Agost 28

| a          | e       | $\theta_1$ | ω        | i      | Ω        |
|------------|---------|------------|----------|--------|----------|
| 1.31415 AU | 0.24918 | 191.345°   | 207.993° | 1.696° | 154.559° |

Taula 6.1: Elements orbitals del cas 6

#### 6.9 Cas 7 de Mart a la Terra

ullet Sortida:  $t_1 = 2030$  Novembre 20

 $\bullet$  Arribada:  $t_2 = 2031$  Juliol 06

| a          | e       | $\theta_1$ | ω                 | i      | Ω        |
|------------|---------|------------|-------------------|--------|----------|
| 1.31613 AU | 0.26617 | 184.700°   | $220.499^{\circ}$ | 2.572° | 103.210° |

Taula 6.1: Elements orbitals del cas 7





Figura 6.1: Òrbita interplanetària del cas 7



## **7** Conclusions

miau miau miaaauu