sine basis 08

Design matrix

Statistics: p-values adjusted for search volume

set-level		cluster-level				peak-level					mm mm mm		
p	С	p g k FWE-corrFDR-corr E			puncorr	$ ho_{FWE-corr} q$		$(Z_{\equiv}) p_{\text{uncorr}}$		mm mm mm			
		1.000 0.866	0.791 0.342	9 87	0.363 0.010	1.000 1.000 1.000 1.000	0.923 0.923 0.923 0.965	3.32 3.30 3.25 2.75	3.30 3.28 3.23 2.74	0.000 0.001 0.001 0.003	-52 -54 -60 -56	30 -14 -8 -2	4 18 22 28
		1.000 1.000 1.000 1.000	0.791 0.791 0.791 0.791 0.791	20 11 18 17 15	0.178 0.314 0.200 0.212 0.240	1.000 1.000 1.000 1.000	0.923 0.923 0.923 0.923 0.923	3.28 3.28 3.26 3.26 3.25	3.27 3.26 3.24 3.24 3.23	0.001 0.001 0.001 0.001 0.001	28 -52 26 8 -12	-30 -20 -78 46 -20	16 -24 0 -20 72
		1.000 1.000 1.000 1.000 1.000	0.791 0.768 0.791 0.791 0.791	22 12 26 5 18 36	0.159 0.293 0.128 0.504 0.200 0.078	1.000 1.000 1.000 1.000 1.000	0.923 0.923 0.923 0.923 0.923	3.24 3.24 3.21 3.21 3.20	3.22 3.22 3.19 3.19 3.19	0.001 0.001 0.001 0.001 0.001	42 -36 28 42 -54 36	-36 -80 38 -44 0 -46	18 0 38 68 42 50
		0.998	0.632		0.043	1.000 1.000 1.000	0.923 0.923 0.965	3.20 2.96 3.19 2.78	3.19 2.95 3.17 2.77	0.001 0.002 0.001 0.003	-24 -18 16 22	-32 -28 52 60	60 68 28 20
		1.000	0.791 0.739	10 33	0.337	1.000 1.000 1.000	0.923 0.923 0.965	3.18 3.18 2.71	3.16 3.16 2.70	0.001 0.001 0.003	20 28 34	-94 -62 -58	-26 -24 -28