DOE/NASA/0058-79/1 NASA CR-159494

MOD 1 WIND TURBINE GENERATOR FAILURE MODES AND EFFECTS ANALYSIS

General Electric Company Space Division

February 1979

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Contract NAS 3-20058

MAY 1980

MCDONNELL DOUGLAS

RESEARCH & ENGINEERING LIBRARY

ST. LOUIS

U.S. DEPARTMENT OF ENERGY
Office of Energy Technology
Division of Distributed Solar Technology

NASK-CR-158484

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product, or process disclosed in this report, or represents its use by such third party would not infringe privately owned rights.

MOD 1 WIND TURBINE GENERATOR FAILURE MODES AND EFFECTS ANALYSIS

DOE/NASA/0058-79/1 NASA CR-159494

General Electric Company Space Division Advanced Energy Systems Philadelphia, Pennsylvania 19101

February 1979

Prepared for National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 Under Contract NAS 3-20058

For U. S. DEPARTMENT OF ENERGY Office of Energy Technology Division of Distributed Solar Technology Washington, D.C. 20545 Under Interagency Agreement EX-77-A-29-1010

TABLE OF CONTENTS

SECTION		PAGE
Introduction		
Tack Approach	· · · · · · · · · · · · · · · · · · ·	11
Summant & Co.	nolusiana	· · iii
Buildiary & Coi	nclusions	• • iv
Rotor Blade	• • • • • • • • • • • • • • • • • • • •	1
Yaw Subsystem	n	. 1
Yaw Stru	acture	• 4
Vaw Driv	ro	4
Var. Unde	re	5
Drive Trein	raulics	7
Drive Irain	• • • • • • • • • • • • • • • • • • • •	8
ROLOF RUD .		• • 12
ritch Change	Mechanism	• • 14
PCM Hyar	caulics	• • 17
Power Generat	ion	24
Nacelle - Fai	ring	31
Nacelle - Bed	lplate	• • 32
Controls		• • 33
CRU		33
NMU .		36
GMU		47
Tower		E 9
Structure	e	52
Lift Dev	ice	52
A 1.		
Appendix A -		
Unbalance	ed Loads after Blade Separation	• A-1
Interface	e Ring Flange	• A-2
Test Pro	gram	· A-6
Quality 1	Program	• A-10
•		
Appendix B - H	Rotor Overspeed	• B−1
		2 2
• ,	FIGURES	
1	FMEA System Diagram	
2	MOD-1 Blade	V
. 3	Yaw Motor/Drive	vi
4		vii
5	Yaw Hydraulics Drive Train	viii
6		ix
	Pitch Change Mechanism	×
7	PCM Hydraulic Package	хi
8	Power Generation FMEA Diagram	xii
8a	Trip Circuits	xiii
8ъ	FMEA Diagram/Drawing Cross Reference	xiv
9	Control Subsystem	xv
9a	Control Subsystem (cont.)	xvi
10	Emergency Shutdown Redundancy	xvii

FAILURE MODES AND EFFECTS ANALYSIS

Introduction

The following figures and tables present the results of a Failure Modes and Effects Analysis (FMEA) of the Mod 1 Wind Turbine Generator. This analysis was of limited scope, in accordance with Statement of Work NAS3-20058, and was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. As a result, the analysis was conducted from the "top down", minimizing the extent of analysis that would lead to trivial conclusions, had the analysis been approached from the "bottom up". For example, a component-by-component analysis of the lubrication system was not pursued, once it had been established that all lubrication system failures lead to the same, non-critical conclusion.

Evaluation Criteria

The criteria used for evaluation of the system is that none of the following injuries or damage shall occur because of a single failure or a single failure following an undetected failure of the wind turbine system.

- Category I: Failures which would result in death or serious injury to the operator or general public.
- Category II: Failures which would result in major or significant damage to the wind turbine system, extended outage, or damage to the connected utility.

All other failures are Category III. The failure categories are listed under Column 9 in the attached tables.

Task Approach

Figure 1 illustrates how the Mod 1 Wind Turbine Generator system was broken down for analysis. This organization corresponds roughly to the drawing system, defined by Drawing Tree 298E470. Since subsystem descriptions are beyond the scope of this report, reference should be made to the drawings that are identified on the Drawing Tree, should further details be required. Figures 2 through 10 provide an overview of each subsystem, with circled numbers corresponding to principal line items in the accompanying tables. Figures 8, 9 and 10 are simplified diagrams to further break down the Power Generation and Controls subsystems.

Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detailed analysis. The attached tables, pages 1 through 55, were prepared as worksheets through several stages of review, including review by qualified GE specialists outside of the Mod 1 program and two reviews by knowledgeable.

NASA Lerc personnel. These summary tables were supplemented by analyses on topics of special interest that are included as appendices to this report covering:

- o Unbalance Loads after Blade Separation
- o Blade Interface Ring Flange Stress Analysis
- o Blade Test Program
- o Blade Quality Program
- o Rotor Overspeed

Summary and Conclusions

The results of this study have been evaluated and the failure evaluation criteria have been met for all Category I failures, except for the blade and its attachment structure. Should a blade separate, as shown in Appendix A. no additional failures would propagate. Also, the probability of a blade separation is acceptably small based on the other information presented in the Appendices, i.e., the analysis of the interface ring flange, the design verifications to be achieved by the test program (especially the 1.7.4 tests of fatigue strength of welds), the inspections and checks of the quality program, and the redundancy built into the overspeed shutdown circuits.

A few Category II failures are also possible. These mainly involve conservatively designed items such as shafting, bearings, and gears where the possibility of failure, or premature failure, is acceptably small and it is not practical to completely avoid such failures. These items are discussed in more detail in the tables.

Some minor changes have been identified as a result of this study and are being incorporated. They are

- o Pitch jam circuit redesigned to be fail-safe
- Overspeed reset redesigned to mechanically latch after power failure
- o Software revised to check sensors in their non-active state
- o Specific inspection points identified for checks during periodic maintenance

It may be necessary to incorporate additional changes later, if, for example, additional Category I or II failure modes are identified during the test and field check-out phases.

MOD - I BLADE

PITCH CONTROL MECHANISM (IN NACELLE)

FIGURE 3

FIGURE 5

DRIVE TRAIN

FIGURE 6

PITCH CHANGE MECHANISM

POWER GENERATION FMEA

FMEA DIAGRAM/DRAWING CROSS REFERENCE

1	BLUE RIDGE BLECTRIC MEM	BERSHIP CORPORATION
2	TRANSFORMER ASM	273A6418
3	AUX SUPPLY	273A6509 (PART)
4	MAIN BREAKER	273A6509 (PART)
3	SLIP RING	273A6519
6	GENERATOR	273A6429
⑦	EXCITATION	273A6510 (REGUL. PART)
8	STABILIZER	265A7087
9	RELAYING	273A6510 (PART)
10	SYNC	273A6510 (PART)
11	MOTOR CONTROL	273A6431
12	GND, C.P.	848E893
13a	NAC. C.B.	132D6390
(13b)	BATTERY ASM	273A6432
14)	WARN LAMP	273A6690
15	LIFT REEL	132D6046
16	CONTROL ENCLOSURE	273A6507
17)	TRIP CIRCUIT RELAYS ONE-LINE DIAGRAM	298E475 REV. 3

 PAGE
 1
 OF
 55

 DATE:
 May 1978

 PREPARED BY:
 F. Stearns

SUBSY3TEM: ROTOR BLADE (1.0)
COMPOJENT: BLADE DWG 276-10520
SUBAS HABLX:

SEE FICURE 2

	REMARKS	Analyses complete but documented results not available. It is recommended that inspection of the blades be performed at regular intervals.		
CRIT	CAI.	H 80	1 I	
FAILURE	DETECTION METHOD	'iigh stresse recorded by operating instrumen- tation. Excessive Vubration sensed by rotor bear- ing accel- erometer in hub. Smrtgency Burgency Emtrated	High stresse recorded by operating. Instrumentation. Excessive vibration sensed by sensed by excenter in Baccel-tog accel-tog shutdown shu	
COMPENSATING	PROVISIONS	• Fatigue structural analysis performed. • Loads calculated with factors trace- able to MOD-0 meas- ured data. • Material certifica- tion provided by steel manufacturer. • Demonstrated QA capability of de- tecting flaws down to acceptable size. • Blades difficult to hit from a distance particularly when operating.	Patigue structural analysis performed, Loads calculated with factors traceable to MOD-0 measured data. Material certification provided by steel manufacturer, Demonstrated QA capability of detecting flaws down to acceptable size.	
ON	SYSTEM	Excessively large rotor system unbalance and vibration ligh WTG vibration resulting in emergency shutdown	Excessively large rotor system unbalance and vibration. High WTG vibration resulting in emergency shutdown.	
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Blade Separation	Blade Separation th)	
	PRUBABLE CAUSE	• Fatigue loads higher than anti- cipated than unti- cipated flaw which grew in fatigue stress environment • Spar struck or grazed by a hard foreign object (Bullet or rock)	Fatigue loads Higher than anti- cipated. Undetected flaw which grew in fatigue stress environment ing the periodic (6 month) tection or function is still	ropriate WTG states to check
TATITUDE MODE	FALLUKE MODE	Grack in Spar	lade to Crack in Ring Flange higher than anti- solts) Bolts) Which grew in white grains stress environment FMEA NOTES These failures will be checked for during the periodic (6 month) maintenance activity to assure the protection or function is sti	Working. Software processing is used during appropriate for these latent failures.
MOTECHIE	FUNCTION	Carry Blade Aero- dynamic and dynamic loads	Retain Blade to Hub (via Hub/King attach, Bolts) 1. These failures	2. Software processing is used for these latent fallures.
UNIT OR	ASSEMBLY	SPAR DAG 276-10521	SPAR RING DMG 276-10509 2	

SUBSYSTEM: ROTOR BLADE (1.0)
COMPONENT: BLADE DMG 276-10520
SUBASSEMBLY:

results not available rate than undeformed, the blade failure RPM is ≥ 60 RPM, The spar will yield at approx. 48 RPM at the middle por-tion of the blade. Considering that the deformed blade Will accumulate that inspection of the blades be performed at regu-lar intervals. steady flap moment due to centrifugal force at a lower Analyses complete but documented It is recommended REMARKS CAIT CAI. Ħ Ħ Ħ FAILURE DETECTION METHOD ing accel-erometer Emergency shutdown initiated automati-cally. vibration sensed by rotor bear ing accel-eromiter in ing accel-Excessive vibration rotor bear rotor bear-Excessive Emergency shutdown initiated automati-cally. Emergency shutdown initiated automati-cally. Excessive vibration sensed by erometer in hub. sensed by in hub. hub. Belly Band will retain T.E. Section Cover over tip weight installation. Blade will yield decreasing effective cone angle. Requires multiple failures in control system sensing Failure of redundant mechanism. (Ref. Hydraulic Sys. PMEA) hydraulic paths in the pitch control Restrained with 55 bolts. COMPENSATING PROVISIONS Excessively large rotor system un-balance and vibra-tion. High WTG vibration resulting in emer-gency shutdown. Excessive rotor sys. vibration resulting in emer-gency shutdown. Excessive rotor sys. vibration resulting in emer-gency shutdown. SYSTEM FAILURE EFFECT ON Spar yielding/ failure in tension leading to deformed or separated blade. NEXT HICHER ASSEMBLY Blade unbalance Blade unbalance Environment & prema-ture fatigue failure of adhesive, Failure of tip wt. attach bolts Excessive blade loads PROBABLE CAUSE Primary control system failure resulting in an overspeed condition on the blades. Rota-tional velocity exceed 48 RPM. Adhesive Bond Failure Separation of tip Weight(s) from blade FAILURE MODE Control Rotor System RPM Retain T.E.to Spar Balance Blades WRT each other. Control Frequency Placement FUNCTION PRIMARY CONTROL SYSTEM TRAILING EDGE TO SPAR TIE TIP WEIGHT INSTALLATION DMG 276-10524 DMC 276-10538 (b) ASSEMBLY (b) 4) UNIT OR

PAGE 2 OF 55
DATE: May 1978
PREPARED BY: F. Stearns

PAGE 3 OF 55
DATE: May 1978
PREPARED BY: R. Stearns

SUBSYSTEM: ROTOR BLADE (1,0)
COMPONENT: BLADE DMG 276-10520
SUBASSEMBLY:

	REMARKS	Valves will be inspected during normal maintenance periods.	Failure of both positive pressure relief valves would not produce critical stresses in the sept unless the external temp. exceeded 241P (not possible)	Failure of both negative pressure relief valves would not produce critical stresses in the spar unless the external temp. Greatly exceeded 58.50%. (not likely in lower 48 states)
CRIT	CAT.		· · · · · ·	
FAILURE	DETECTION METHOD	Visual Inspection during regular mainten- ance period.		
COMPENSATING	PROVISIONS	Parallel redundant valves for both post- tive and negative pres- sure relact valves. Valves will actuate very infrequently approx. once per year. Spar fitternal surfaces are primed with		
NO	SYSTEM	NONE	NONE	***
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Spar will no longer be sealed. As the spar internal press, tends to fluctuate due to external temp, and barometric pressure variations, the spar will inpremeturely seturate the desicant and will increase the possibility of internal spar corrosion.	Spar will temain sealed. Spar internal pressure might increase or decrease past design cracking pressure.	
1011	PROBABLE CAUSE	Foreign material on valve seat	Sticky fluid on seat, i.e., bugs or oily smoke which contamin- ated valve during time it was open.	
EATTING MONE	FALLUKE MODE	Valve stuck open	Valve stuck closed	
MATTONIA	FUNCTION	Control Spar Internal Pressure to t 2 #fin ²		
UNIT OF	ASSEMBLI	SPAR PRESSURE RELIEF VALVES (C)		

PAGE 4 OF 55
DATE: May 1978
PREPARED BY: R. Cockfield

SUBSYSTEM: YAW SUBSYSTEM (2.1)
COMPONENT: YAW STRUCTURE
SUBASSEMBLY: 47JZ40701

	REMARKS	Inspection and repair of large cracks during periodic maintenance	Inspection and repair of large cracks during periodic maintenance.
CRIT	cAT.	III	Ĭ
FALLURE	DETECTION METHOD	Vibration sensors (after extensive cracking)	Vibration sensors (after extensive cracking)
COMPENSATING	PROVISIONS	• Calculated range stress is below AISC limits • Weld has passed MT and UT inspection • Benefit of stress relief has not been accounted for • Yaw structure pro- vides redundant jagd paths	e Calculated range stress is below AISC limits I limits and UT inspection Benefit of stress relief has not been accounted for example accounted for redundant load paths redundant load paths
NO	SYSTEM	Excessive vibration e Calculated range (after extensive stress is below indited to be and or inspection power, reduced yaw drive bearing life accounted for a Yaw structure provides redundant in paths	Excessive vibration (after extensive cracking)
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Degraded atiffness (after extensive cracking) Distortion of yaw drive	Degraded stiffness (after extensive crecking)
	PROBABLE CAUSE	Cyclic loads were underestimated Undetected flaw	Cyclic load were under Degraded stiffness estimated (after extensive cracking)
	FAILURE MODE	Patigue cracks in weld (Web to flange joint)	Fatigue cracks in weld (Web to flange joint)
	FUNCTION	Structural support and mounting for yaw drive	Structural support and disk for yaw brake
UNIT OR	ASSEMBLY	UPPER YAW STRUCTURE	LOWER YAN STRUCTURE (2)

PAGE 5 OF 55
DATE: May 1978
PREPARED BY: S. ONUÉREJCEUK

SUBSYSTEM: YAW SUBSYSTEM (2.1)
COMPONENT: YAW DRIVE
SUBASSEMBLY: 473240701

SEE FIGURE 3

Multiple roller failures are re-quired before a significant loss of yaw torque to nacelle Two motors used in parallel. Limited level of redundance is available. Colt failures be-fore loss of yaw Require multiple = maneuver. REMARKS = CRIT CAT. Ħ 111 H H Ħ FAILURE DETECTION NETHOD Yaw error signal Yaw posi-tion sen-sor Yaw posttransducer tion sen-sor Yaw posi-NONE tion Coupling was extensived ly stress analyzed and proven to have adequate margins. Periodic main tenance Will cause ade-quate lubrication in lytical methods, and built and tested to stringent design spec-ifications Bearings were selected for the radial and Pinion was stress analyzed and produced to exacting fabri· thrust forces expected All bolts are torqued to prescribed levels using torque wrench. with adequate design was selected based on the high performance capability Motor This motor has an extensive history and using the latest ana-Bearing was designed tested and inspected cating process. COMPENSATING PROVISIONS design mergin. Parallel motor will provide sufficient corque to yaw nacelle. Progressive damage No yaw rotation of nacelle - shutdown Sluggish yaw move-ment of nacelle No yaw rotation of nacelle - shutdown can lead to even-tual shutdown Lack of yawing capability will cause shutdown NONE SYSTEM Reduced yaw capa-bility if only one print failed. No yaw capability if both pinions failed No yew rotation torque transmitted motor torque, po-tential pinion-bullgear tooth FAILURE EFFECT NEXT HIGHER ASSEMBLY No yaw rotation Torque impacted to bull gear Yaw maneuver can not be performed Increased power consumption Increased yaw misalignment NONE Sheared shaft or cracked pinion housing (c) lack of lubrication Pitted or fractured rollers Overload Severe misalignment Internal leakage or valve failure Blockage or foreign object between gear cracked roller (b) galled surface Stripped teeth PROBABLE CAUSE and bearing Overload teeth rotates without transmitting motion to bull gear Stripped gear teeth Sheared flange bolt Insufficient torque Increased friction move Increased bearing friction FAILURE MODE fails to No torque 3 3 To transmit torque from (
motor to bull gear on
yaw bearing. One
pinion each per yaw. To locate and facilitate rotation of pinion Enables the nacelle to rotate on the tower To connect the yaw drive pinion to the respective hydraulic To provide torque to impact yaw rotation to nacelle yaw drive motor. drive motor. FUNCTION YAW DRIVE MOTOR 2.1.2 UPPER AND LOWER PINION BEARINGS GRAR COUPLING YAW BEARING UNIT OR ASSEMBLY (O) (O **O** PINION 2.1.2 \odot \odot

٠, ξ

PAGE 6 OF DATE: May 1978 PREPARED BY: S. O

SUBSYSTEM: YAW SECTION (2.1)
COMPONENT: YAW DEAVE
SUBASSEMBLY:

SEE FIGURES 3 & 4

								Ì	
UNIT OR ASSEMBLY	FINCTION	PATTIBE MODE	201140 21040000	FAILURE EFFECT ON	ON	COMPENSATING		CRIT	
		TOTTONE HODE	TRUBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	FRUVISIONS	DETECTION METHOD	CAT.	REMARKS
Yaw Brake Calipers and Disc	To hold nacelle posi- tion and to provide drag forces during yawing	a. Drag Force high (yaw maneuver)	Puck/disc interface rough due to sand or other environment	Sluggish yaw move- ment	Sluggish yaw move- ment	Change in rates observed by existing yaw position instrumentation - clean up disc & pucks	Yaw Posi- tion Poten- tiometer	111	Yaw Drive Motor has sufficient torque to override increased drag
		b. Drag Force low (Yaw Maneuver)	Ice on Disc	Reduced Breaking Torque	Macelle yaw excitation - increased moments and structural loads	Short Duration - Ice melts immediately under pressure between puck and disc.	Accelero- meter and Strain Gauges		
Yaw Brake Release Valve 35 A	Apply and release hydraulic pressure to yaw	a, Stuck in "POWER ON" position	Broken Return Spring	Holding Brakes re- main "OFF"	Reduced Brake Holding Torque	Yaw Drive Motors pro- vide Holding Torque	Yaw Drive Pressure	111	
(see Pigure 4)		ė	Solenoid Circuit Open	Holding Brakes re- main "ON"	No Yaw Maneuver Shut- down	None	Brake Status Pres	III	
		c. Internal leakage	Forn Seal	None	None	None		III	
Brake System charg- ing valve 21 A	To charge the brake accumulators on demand	a. Valve Open	Broken Return Spring	None	None	None			
(2)		b. Valve Closed	Solenoid Circuit Open	Accumulators Fail to Charge	Lack of Braking Pressure Initiates Shutdown	Valve has extensive operating history Tested prior to installation	L.P. Alarm Switches	III	
Yew Brake Accumula- tor (1)	To store hydraulic oil for yaw brakes	a. Lack of Pressureb. Leak in Bladderc. External Leak	Aging of Bladder Pinching Rupture	Loss of all brake pressure	Shutdown		LP Alarm Switch	III	
	,		• Crack						
High-Speed Shaff Brake (12)	To provide stopping and holding torque to hub during shutdown operation	a. Low brake torque	Environmental effect- ice, water on disc	None	None	Short duration- water ice quickly wiped off			
)		c. Higher brake torqu	Higher brake torqueGrit, sand on disc	Larger than normal torque on hub and drive train	Increased loads on blade	Very unlikely - puck drags on disc continuous ly keeping disc clean	Tachometer	III	
H. S. Shaft Brake Control Valve	To control brake application and release	a. Valve failed in "ON" mode	Return spring broken	Brakes locked	• System will not start up • If running system	Examine valve and fix as required	Pressure Switch at brake	111	
9		b. Valve failed in	Solenoid coil circuit open	No braking or hold- ing torque	shutdown occurs Cannot use brake to stop blade rotation during shutdown	Use feather system to stop	Pressure switch at brake		
			_			· - .			

BSYSTEM: YAW SECTION (2.1)

4PONENT: YAW HYDRAULICS
BASSEMBLY:

	១										
	REMARKS		•					. •			
CRIT	CAT.	Ш		Ш	II	111	ij	111	H ₄		
FALLURE	DETECTION			LP Alarm switch	LP Alarm switch		Yaw position potentio- meter		Pump failed alarm Low oil level switc	High oil temp. switch.	
COMPENSATING	PROVISIONS	This unit is a passive device with few failure	prone elements. Test- ing prior to installa tion will ensure high quality component.		Component selected has extensive operating history. Will be tested prior to installation.	Yaw brake recharge cycle will recharge h.s. shaft brake accu- mulator	Valve selected has an extensive operating history and will be lested prior to installation.	Since all six yaw brakes are engaged, no unscheduled yaw motion will result.	Sundstrand pump has a long history of relia- ble service. Extensive testing prior to instal- lation.		,
ON	SYSTEM	Power consumption increases		Shutdown	Eventual shutdown	NONE	Non yaw rotation possible WTG shuts down	Will attempt to yaw when broken accumulators are recharging.	Yaw Drive disabled WTG shutdown re- quired.	Shut down WIG	
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Hydraulic supply motor	Duty cycle increase	Loss of brake pres- sure	Cannot recharge accumulater	Accumulator will be charged to pump capability	No hydraulic fluid admitted to motors	Motor always con- nected to power supply	Accumulators not re-charged. Yaw drive motors inoperative	Temperature of hydraulic fluid Will increase	
20000	PROBABLE CAUSE	Leak in compressed air side	Leak in bladder	• Rupture • Crack	Contamination Broken feed-back spring	Broken spring	Electrical lead broken Contamination on spool	Broken return spring Contamination on spool	(a) Failed electrical motor (b) sheared coupling (c) damaged charge pump (d) failed cross-over relief valve (e) loss of hydraulic fluid	Control signal problem	
TATT TO SERVICE STATE OF THE SERVICE STATE STATE OF THE SERVICE STATE STATE STATE STATE STATE STATE STATE STATE ST	FALLURE MODE	(a) lack of pressure	(b) requires frequent re-charging - gets progressively worse	(c) external leak	(a) Fails closed	(b) Fails open	(a) Failed closed	(b) Failed open	Lack of pressure	Pump fails to shut off	
FINCTTON	FORCETON	To store hydraulic oil for h.s. shaft			To regulate inlet pressure to accumu- lator		To connect the yaw motors to, or iso- late from, the yaw hydraulic supply		To provide hydraulic fluid under pressure to the yaw motors and the brake accumulators on demand.		
UNIT OR	ASSEMBLI	H.S. SHAFT BRAKE ACCUMU-	(2)		H.S. SHAFT BRAKE PRESSURE REGULATOR (15)		MOTOR CONTROL VALVE		HYDRAULIC SUPPLY		

PAGE 8 OF 55
DATE: May 1978
PREPARED BY: R. Cockffeld

SUBSYSTIM: DRIVE TRAIN (2.2)
COMPONENT: DMG 298E464
SUBASSE(BLX:

	REMARKS					
CRIT	CAT.	Ħ		H	III	II
_	DETECTION	LS speed sensor Bearing Vibration Sensor				LS speed sensor OR Bearing Vibration Sensor
COMPENSATING	PROVISIONS	(a) Conservative factore applied to fatigue analysis, infinite life calculated life calculated vides over torque protection. Stresses low at operating torque. Normal shutdown above 35 MPH	(c) Material certs available. No failure, even with improper heat treatment	(a) Fit verified by dimensional check,	(a) Calibrated torque wrench used. Torque below yield strength. (b) Design stresses conservat (c) Standard bolt with identification on head (d) Stresses low, embrittlement reduced by proper plating techniques	(a) Conservative calculation of fatigue life (b) Slip clutch protects against overload
ON	SYSTEM	Shut down but with rotor not at 3-9 Excessive vibration		Excessive vibra- tion if shaft fractures,	None	Same as shaft failure, above
FAILURE EFFECT	NEXT HIGHER ASSEMBLY	Initiates emergency shutdown High speed brace does not stop rotor at 3-9		Fracture of shaft if occurring fre- quently.	None, due to number of bolts	Same as shaft failure, above
	PROBABLE CAUSE	(a) Fatigue loads underestimated (b) Operation of WTG at Off design conditions (c) Material properties below specs		(a) Improper instal- lation (b) Load in excess of design load	(a) Overtorquing (b) Load in excess of design load (c) Wrong bolt or material (d) Stress corrosion, hydrogen embrittle- ment of cadmium plating	(a) Fatigue loads underestimated (b) Load in excess of design load
	FAILURE MODE	Fracture		Slip at tapered fit with shaft	Bolt Failure	Internal Gear Failure (a) Fatigue loads underestimate. (b) Load in excess design load
	FUNCTION	Transmit Torque at 34,7 RPM		Transmit torque at 34.7 RPM Permit angular mis-	alignment.	
UNIT OR	ASSEMBLY	DRIVE SHAFT		LS COUPLINGS		

PAGE 9 OF 55
DATE: May 1978
PREPARED BY: R. Gockfield

SUBSYSTAM: DRIVE TRAIN (2.2)
COMPONENT:
SUBASSEBLY:

UNIT OR	NA THOUSE	EA YI IME WORK	abite of tayour	FAILURE EFFECT	ON	COMPENSATING		CRIT	5 A 1 7 A 6
ASSEMBLY	FUNCILON	FALLUKE MODE	rkubable Cause	NEXT HIGHER ASSEMBLY	SYSTEM	FRUVISTORS	METHOD	; 5	KZPAKKS
gearbox (3	Transmit torque with speed increase from 34.7 RPM to 1800 RPM	Internal Gear Tooth Fallure	(a) Fatigue loads underestimated	Increased noise level, vibration	None, initially. Gearbox life may be reduced.	(a) Multiple teeth, failure of several adjacent teeth	Vibration sensor	H	Periodic maintenance Will include tooth inspection on crit-
)			(b) Load in excess of design load			required before performance lost.			ical gear. Failure initiates as sur-
			(c) Improper material or hardening			gear train provides redundancy. Spal-			See Note 1
,			(d) Loss of lubricating oil			ling of gear surface would be seen long before fracture.			
						Conservative fatigue analysis.			
						(b) Conservative strength analysis. Sitp clutch provides overload protection			
						(c) Material certs & process records available			
						(d) Emergency shutdown infliged with rise in oil temp. or drop in level	Oil Level Sensor Oil Temp Sensor		
		Bearing Fallure	(a) Fatigue loads underestimated	Increased noise & vibration	None, initially gearbox life may be reduced	(a) Conservative life estimates	Vibration Sensor	H	Bearing failure initially as sur- face pitting.
			(b) Loads in excess of design loads (c) Loss of lubricating oil		Excessive vibra- tion will initiate shutdown	(b) Sitp clutch	Bearing Temp Sensor OR		See Note 1
·		FMEA NOTES					Ofl Level Sensor		
	These failures will be checked for during the periodic (6 maintenance activity to assure the protection or function working.	hecked for during the pe assure the protection or	riodic (6 month) function is still	-					• .
2.	Software processing is used during appropriate WTG states for these latent failures.	sed during appropriate W	TC states to check						
		_	_						

SUBSYSTEM: DRIVE TRAIN (2.2)
COMPONENT: DMG 298E464
SUBASSEMBLY:

•			P	9				
		REMARKS	Oil filter cleaned during periodic maintenance	Oil sample tested during periodic maintenance				
	CRIT	Ą.	111	111	II	111		
	_	DETECTION METHOD	Oil Plow Switch	Ofl temp Sensor	Oil Temp Sensor Air temp Sensor Oil flow switch	(a) Controld self-check (b) Rotor position sensor		
	COMPENSATING	PROVISIONS	(a) Emergency shutdown initiated by lack of flow (b) Emergency shutdown initiated by drop in oil level	Dmergency shutdown infligted by overtemp condition	Emergency shut down initiated by under temp, condition, or low flow to rotor bearing	(a) Data 1ink anomoly causes shutdown (b) Pressure bleed on caliper releases brake		
	NO	SYSTEM	Shuedown	Shutdoen	Failure to start if not operating	(a) shutdoen	Blade not parked in 3-9 position, may rotate when not operating	
	FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Reduced bearing & Gear life	Reduced Bearing 11fe Breakdown of oil	Excessive pumping power Reduced bearing life	Excessive puck wear, overheating of disk		
	DD CDA by the CANADA	FRUBABLE CAUSE	(a) Pump failure (b) Leakage (c) Blocked Orifice (d) Clogged Filter	(a) Diverting valve failure (b) Leakage (c) Ambient Temperature above design condi- tions (d) Excessive Friction Losses	(a) Diverting valve failure (b) Heater failure (c) Ambient temperature below design conditions (d) Nacelle vent fan fails on	(a) Controls error (b) Stuck puck	(a) Controls error (b) Caliper friction (c) Hydraultc leak (d) Worn pads	
	EATTER MONE	FALLUKE MODE	Loss of oil	Oil Overheating	Oil under temperature	Fails "ON"	Fails 'OFF'	
	MOTHONIE	FUNCTION	Lubricate Gearbox and rotor bearing			Hold rotor when parked Place blades in 3-9 position		
	UNIT OR	ASSEMBLI	SYSTEM (2.2.1)			HS BRAKE		

SUBSYSTEM: DRIVE TRAIN (2.2) COMPONENT: DMG 298E464 SUBASSEMBLY:

UNIT OR	WINCTTOWN	24 FT 1000		FAILURE EFFECT ON	NO	SK	FAILURE	CRIT	
ASSERBLI	FUNCTION	FALLURE MODE	PROBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS		CAT.	REMARKS
ять стохен	To protect drive train from torque overload	Fails to slip	(a) Improper adjustment (b) Mechanical jam or bearing seizure	Shaft or coupling failure if overload occurs	Shutdown if over- speed occurs as a result of shaft or coupling failure	ted by Se. Sation Jjust-	Speed	III	Torque setting verified during periodic maintenance.
						statically. (b) Anti-friction bear- ing, grease packed			
		Slips as too low a torque	(a) Improper adjustment	Excessive clutch plate wear	None	(a) Same as above	Speed . gensor	Ħ	Clutch wear measured during periodic
			(b) Cyclic loading underestimated	Overheating	-	(b) Clutch life conser- vatively designed			maintenance. Torque setting verified. Plates easily re-
			(c) Degradation of facing material	Overspeed if very low torque	Shutdown if over- speed occurs	Plates are replaceable			placed.
HS SHAPT ASSY	Transmit torque at 1800 RPM & permit angular misalignment	Fracture of shaft	(a) Fatigue loading underestimated (b) Load in excess of design loads	Rotor overspeed Local damage if shaft: shaft parts are thrown	Shutdown	(a) Conservative fatigue analysis, infinite life calculated (b) Silp clutch	Speed Gensor	11	No critical systems in path of fractured shaft (1.e., hydraul- ic lines)
			(c) Improper material or heat treatment			Stresses low at operating torque			
						Normal shutdown above 35 MPH			
•				٠	•	(c) Material certs available			
					·		•		
	1					:			
						,			

PACE 12 OF 55
DATE: May 1978
PREPARED 8Y: F. Mamrol

SUBSYSTEM:
COMPONENT:
SUBASSEMBLY: 848E88561

UNIT OR	FUNCTION	WATTING MOIN	201100 11 11 11 11 11 11	FAILURE EFFECT ON	NO	COMPENSATING		CRIT	
		TALLONG MODE	FRUBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS	DETECTION C	AT.	REMARKS
ELADE RETENTION BOLTS 19782589P2	Hold Blade to Bearing and Bearing to Hub	Bolt failure	Excessive preload	NONE	NONE	Hydraulic tensioning device cannot yield bolt at max, canacity	Periodic inspection for losse	H	Bolts are fatigue raced, Rolled
BEARING RETEN- TION STUDS			Loads in excess of design loads.	-			or missing bolts.		fillet. At least half the bolts can be missing before
Θ			Stress corrosion	•		 Preload is below stress corrosion 			ultimate strength of remaining bolts is reached. Several
						threshold • Face and threads sealed to corrosive environment.			
elade retentión eraring 1640640191 (Z)	Allow pitch change of blade.	Breakup of rollers and raceway surfaces.	Loads in excess of design loads	Roughness in pitch change mechanism operation	NONE	• Periodic inspection • Bearings do not usually fail cata- strophically. • Calculated B ₁₀ lite • Calculated Margin of Safety non Brinell • sadequate.		II	See Note 1
		Structural failure of inner race shoulder	Loads greatly in r excess of design loads	Decreased root restraint of blade	Shutdown	Shoulder on hub and pitch mount captivate inner race,	Rotor brg. acceler- ometer	#	
HUB ASSEMBLY 848E946 (3)	Transmit torque from blades	Structural failure	Loads in excess of design loads	One or both blades separate. Extreme vibration.	Shutdown	Finite Element Analysis shows positive margins? Flaw size limited by NDT.	Rotor brg. accelero- meter.	н	
		Bolt failure	Excessive preload	NONE	NONE	Hydraulic tensioning device cannot yield bolt at max, capacity		H	Bolts are fatigue rated. Rolled threads and head
	* Minimum Marg = 0.29 on ter for Emergence	Minimum Margin of Safety (M.S.) = 0.29 on tensile yield strength for Emergency Feather condition	Loads in excess of design loads				or missing bolts.		fillet. At least one bolt can be missing before ul-
. !	Worst case,	worst case, 2 places.	Stress corrosion			e Preload is below stress corrosion threshold • Face and threads sealed to corrosive			timate strength or fatigue endurance limit is resched on remaining.
:	;			ę		environment			

PAGE 13 OF 55
DATE: May 1978
PREPARED BY: F. Mamrol

SUBSYSTEM: ROTOR HUB (2.2.2) COMPONENT: SUBASSEMBLY: 848E88501

	!	REMARKS	See Note 1		See Note 1						·				
	L														
	CRIT		Ħ			#		H	· œ						
	FAILURE	DETECTION NETHOD	244		Low oil switch	Rotor Accelero-	Rotor Accelero meter		Periodic inspection for loss or missing bolts						
	COMPENSATING	PROVISIONS	Periodic inspection Bearings do not usu- ally fail catastroph-	• Calculated B ₁₀ life adequate • Calculated Margin of safety non Brinell is adequate	Usually evident at checkout Periodic inspection Initial leakage rate is low	Calculated margin of safety = large		Hydraulic tensioning device cannot yield bolt at max, capacity		* Preload is below stress corrosion threshold • Face and threads sealed to corrosive environment • Margin of safety (torque) = .46 Several bolts can be loose or failed					
	NO	SYSTEM	Excessive vibration will initiate emergency shutdown		Shutdown	Shutdown		NONE							
	FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Vibration		Depletion of trans- mission oil	Decreased huberestraint		NONE							
		PROBABLE CAUSE	Loads in excess of design loads		Installation damage Wear	Loads in excess of design loads		Excessive preload	Loads in excess of design loads	Stress corrosion	÷				
	TATI	ralluke Mode	Breakup of rollers and raceway surfaces		Cut or wear in lip	Structural failure	Loss of bolt torque	Bolt failure							
	NOTTONITA	MOTIONAL	Support rotor		Retain oil in main bearing housing; exclude foreign matter	Clamp main bearing	Transmit torque to rotor shaft								
	UNIT OR	Tallaco	MAIN ROTOR BEARING 132D6044P1.	4).	on seas 1978256691 P2 (5)	TORQUE PLATE 848E937G1	<u>(છ</u> ે								

PACE 14 OF 55
DATE: May 1978
PREPARED BY: F. Mamrol

SUBSYSTEM: PITCH CHANGE MECHANISM (2.2.3) COMPONENT: Pitch Red Assy 132D5422G1 SUBASSEMBLY: Link Assy 132D6423G1

									Ω		
PFMARKS	CONTRACTOR OF THE PROPERTY OF	NOTE 1	NOTE A		NOTE A	NOTE 1	NOTE 1	NOTE 1	NOTE A,		
CRIT		H		Ħ	Ħ .	ш	II	111	I .		
FAILURE		Periodic inspection		Rotor brg.	Rotor brg Accel.	Periodic Inspection	Periodic inspection	Periodic inspection.	Rotor brg Accel. Pitch change brg		
COMPENSATING	PROVISIONS	Low bearing pressure increases useful life	Environment moderated inside hub & nacelle	Low stress level Margin of Safety (Ra- tigue) = .80 Margin of Safety (limit)	Low stress level Margin of Safety (Fa- tigue) = large Margin of Safety(limit) = large	Differential threads of same hand cannot turn enough to come out of engagement	• Locking tab washer • Studs engage in holes in adjacent part	Low bearing pressure increases useful life Environment moderated	• Actuator sleeve contained by shaft • Link limited by clevis-see "support beam"		
NC	SYSTEM	NONE		Shutdown	Shutdown	Shutdown (if severe)	NONE	·	Shutdown (1f severe)		
FAILURE EFFECT ON	NEXT HICHER ASSEMBLY	Shock & vibration in PCM linkage		Uncontrolled pitch of blade - unbalanced forces - vibration	Uncontrolled pitch of blade - unbalanced forces - vibration	Differential blade pitch variation	NONE	Shock & vibration in PCM linkage	Differential blade pitch vibration		
	PROBABLE CAUSE	Loads in excess of design loads	Contamination	Loads in excess of design loads	Excessive induced load	Loosening of locking studs	Vibration	Loads in excess of design loads Contamination	Loads in excess of design loads		
	FAILURE MODE	Liner Wear		Structural failure of eye or shank	Structural failure	Change adjustment	Loose preload	. Liner Wear	Structural failure of eye or shank		····
	FUNCTION	Transmit Axial Load allowing rotation		,	Transmit axial load	Blade pitch change (maintenance)	Preload & lock ad- justing nut	Transmit axial load allowing rotation			
ao TIMI	ASSEMBLY	ROD END BEARING 132D6418P1	(D)		кор 132b639771	ADJUSTING NUT 132D642OP1	STUD 19782576P1	ROD END BEARING 132D6419P1		•	

SUBSYSTEM: PITCH CHANGE MECHANISM (2.2.5)
COMPONENT:
SUBASSEMBLY:

												,			
	1	KEMARKS	NOTE A, B		NOTE 1 ~	NOTE A, B					Note A,B		Note A	Note A	
	CRIT	; ;	H		Ш	Ħ			 *		 #		ij	— <u></u>	
	FAILURE	METHOD	Rotor brg accel.	brg. accel.	Periodic inspection		Rotor Acceler-	ometer			Rotor Accelero-	ne ter	Rotor Acceler- ometer		
	COMPENSATING PROVISIONS		• Actuator sleeve contained by shaft • Link limited by	clevis-see "support beam"	Bolts safety wired	Low stress level	(fatigue) = 1.0 Margin of safety (limit) = .16	Displacement of actu-	ator sleeve is limited by shaft or by pitch rods in torque plate	holes.	Low stress level MS (fatigue) = MS (14mt+) =	Displacement of actu- ator sleeve is limited by shaft or by pitch rods in torque plate	Low stress level MS (fatigue) = large MS (limit) = .12	Low stress level NS (farigue) = .60 MS (limit) = .28	
	ON	SYSTEM	Shutdown (1f severe)		NONE	Shutdown					Shutdown		Shutdown	Rotor overspeed Without shutdown	
	FALLUKE EFFECT ON	NEXT HIGHER ASSEMBLY	Differential blade pitch vibration		Fretting	Actuator sleeve has lateral freedom	Small differential pitch between blade may produce sensi-	ble vibration	Unrestrained parts will impact at	least lower actu- ators, which may inhibit complete feathering,	Same as for support beam		One blade pitch uncontrolled - differential pitch-	Pitch of both blades uncontrolled	
	PROBABLE CAUSE		Loads in excess of design loads		Vibration	Loads in excess of design loads		-			Loads in excess of design loads		Loads in excess of design loads	Loads in excess of design loads	
	FAILURE MODE		Structural failure		Lose Preload	Structural failure		•			Structural failure of link lugs		Structural failure of pitch rod clevis	Structural failure of sleeve	
	FUNCTION		Support & guide actuator sleeve		Preload Threads	Support aft end of PCM					Transmit actuator force to pitch rods		<u> </u>		
UNIT OR	ASSEMBLY	LINK	132D6348P1		JAM NUT 19782578P1	SUPPORT BEAM 848E889	<u></u>				ACTUATOR SLEEVE 848E933)			<u></u>

PAGE 16 OF 55 DATE: May 1978 PREPARED BY: F. Mamro

SUBSYSTEM: PITCH CHANGE MECHANISM (2.2.3)
COMPONENT:
SUBASSEMBLY:

SER FIGURE 6

									;		
REMARKS		See Note 1	NOTE A								
CRIT CAI.		Ħ	Ħ	I					 		
_	DETECTION		Rotor Accelero- meter	Rotor Accelero- meter							
COMPENSATING	PROVISIONS	• Periodic inspection • Bearings do not usually fail cata- strophically	Low stress level MS (fatigue) = large MS (limit) = large	Low stress level MS (fatigue) = large MS (limit) = large Redundant actuators (2 pair) MS is still large with one pair of actuators			THAT MAY RESULT	PER AISC			
	SYSTEM	HONE	Shutdown	Shutdown		, ULTRASONIC).	S THE RATE OF DAMAGE	MINIMIM YIELD STRENGTH (42 KSI MEASURED) PER AISC			
NO TODDAD DUILLEA	NEVT UTCHER ASSEMBLY	Roughness in pitch change mechanism	Same as support beam	Upper actuators may fall into rotating PCM. Lower actuators will fall clear		TESTING (MAG. FARTICLE, RADIOGRAPHIC RACK.	IGHER ASSEMBLY, NOR PECTION.	MINIMUM YIELD STRENG	 	,	
	PROBABLE CAUSE	Loads in excess of design loads	Loads in excess of design loads	Loads in excess of design loads		TRUCTIVE TESTING (MAG. F	EDIATE RESULIS ON NEXT F DETECTED AT PERIODIC INS	ALLOWABLE STRESS IS 60% OF S. IS GREATER THAN 1.0.	÷		
	FAILURE MODE	Breakup of rollers and raceway surface	Structural failure of forward link lugs	Structural failure of actuator lugs		S ARE SUBJECT TO NON-DES	FECTS THAT WILL HAVE INT THAN WHAT CAN BE SAFELY	ALLOWABLE STRESS ALCOULATED STRESS TEN INDICATED W.S. = LARGE, M.S. IB GREATER			·
	FUNCTION	Transmit actuator force to pitch rods	Transmit actuator force to pitch change	200 100 100 100 100 100 100 100 100 100	·	SINCLE POINT CRITICAL FAILURE ELEMENTS ARE SUBJECT TO NON-DESTRUCTIVE TESTI ACCEPTANCE CRITERIA BASED ON MINIMUM SIZE DEFECT THAT WILL PROPAGATE CRACK.	PALLURE OF THIS ITEM MAY NOT CAUSE EFFECTS THAT WILL HAVE INFEDIATE RESULTS ON NEXT HIGHER ASSEMBLY, NOR IS THE RATE OF DAMAGE ASSESSABLE. THE RATE MAY BE GREATER THAN WHAT CAN BE SAFELY DETECTED AT PERIODIC INSPECTION.	MARGIN OF SAFETY (M.S.) = $\begin{bmatrix} ALLOMABLE & STRESS \\ \hline CALCULATED STRESS \\ UNLESS & OTHERWISE NOTED. WHEN INDICATED M.S. \\ \end{bmatrix}$,
<u> </u>	UNIT OR ASSEMBLY	PITCH CHANGE BEARING 132D6045	THRUST RING 848E934G1	(2)		A. SINGLE POINT ACCEPTANCE C	B. FAILURE OF T ASSESSABLE.	C. MARGIN OF SA			

PACE 1/ OF 22 DATE: May 1978 PREPARED BY: S. Onufreiczuk

SUBSYSTEM: PCM COMPONENT: PCM Hydraulics 2.2.4 SUBASSEMBLY: A84K810

SEE FIGURE 7

Hydraulic fluid temp will rise Relief valve in circuit REMARKS G 11 H III Η H Η Blade angle Potentio-FAILURE DETECTION METHOD Main accu-mulator low meter L.P. alarm switch pressure slarm switch Oil temp. Oil temp. Sensor Pump alarm Potentioswitch meter Blade Pitch Pump tested prior to installation. Has extensive operating history behind it. Pump is tested prior to installation. Extensive operating history exists for Valve tested prior to assembly. Has extensive oper-CCMPENSATING PROVISIONS ating history, this pump. Blade pitching rate limited to 1½ deg/ sec until SHUTDONN occurs when accu-mulators are dis-charged Shutdown Blade pitching rate limited to 1½ deg/sec Blade pitch control disabled
 Shutdown Blade pitch con-trol impaired SYSTEM NONE FAILURE EFFECT ON • • Reduced slewing flow B rate UNTL main accumulator dis-High power consumption by motor -- overhead possible RELIEF VALVE OPENS GENT HIGHER ASSEMBLY Main accumulator will be discharged Pump relief valve Will open Slewing system is disabled Solenoid circuit open, or contaminant on spool Pressure compensation in pump leaks or has broken feedback spring Shafts/coupling sheare (c) Contamination bind-ing gears Return spring broken or contaminated on spool in pressure compensation Jammed spool valve (a) Electric motor failed (b) Shaft/coupling sheared Electrical motor PROBABLE CAUSE Lack of flow/pressure, Lack of flow or pressure Excessive pressure (b) Failed in "OFF" position (a) Failed in "ON" FALLURE MODE position To provide the hydraulic power supply for blade pitch control To direct charging (a flow to accumulators on demand, or to return to reservoir as re-quired. To change the main and emergency feather accumulator FUNCTION CHARGE PUMP UNLOADING VALVE ACCUMULATOR CHARGING PUMP UNIT OR ASSEMBLY SLEW PUMP (P)

PACE 18 OF 55 DATE: May 1978 PREPARED BY: S. Onufreicauk

SUBSYSTEM: PCH COMPONENT: PCM Hydraulics 2.2.4 SUBASSEMBLY: 884E810

SEE FIGURE 7

discharged (hydraulic oil only) and the residual gas pres-sure checked. Pres-sure should not fall During periodic maintenance, accumulators should be Hydraulic fluid temp, will rise below 1000 psf. REMARKS III H gg. H Η H H Ħ meter Blade pitch 1 Potentio-L.P. alarm switch Blade pitch FAILURE DETECTION METHOD Low temp. switch Low level switch in oil tank Oil temp. Potentio-Blade Pitch Potentio-meter meter NONE -- the redundant set can probefore it becomes catavide feathering flow strophic. Feather
accumulators are arrange
Reduction of system in two mutually redunstiffness.
alone can accomplish Heaters will be tested thoroughly to assure high reliability Regulator tested prior to installation Switch tested prior to installation feathering maneuver. Proven device --extensively tested COMPENSATING PROVISIONS Blade pitch rate limited to 1% deg/ sec. System shuts down. Reduction of system stiffness. System can not start up below 00F. Blade pitching rate limited to 1½ deg/ Eventual shutdown SYSTEM NONE NOME sec. FAILURE EFFECT ON Air entering hydrau-lic fluid NEXT HIGHER ASSEMBLY PCM slew pump and charge pump will not start up if ambient temp. is a) Contaminant in spool (a) Slightly higher Relief valve will open as pressure builds up Loss of feathering pressure (b) Slewing flow rate limited to slew pump flow Main Accumulator depleted (c) Progressive depletion of stored fluid slew rates below 0°F. Contaminant under pis-Welded contacts, leaky disphragm Broken spring, contam-inant on contacts ton seal. Scratched piston seal Contaminant on seat Burned out heating element (c) Damaged body seal (b) Broken feedback PROBABLE CAUSE spring (b) Piston seal leakage (b) Stuck in closed position (a) Leakage of air valve Stuck in open position (b) Stuck closed (c) Body leakage FAILURE NODE Open circuit (a) Stuck open 3 To cycle unloading valve on-off to main-tain accumulator pressure above 2500 psig 20°P. Keeps viscosity in the desired range. To heat the hydraulic fluid when its temp-erature drops below To store sufficient hydraulic fluid at 3000 psi to permit full stroking of actuators in the store sufficient event the pumps are deactivated. To limit the slew control pressure to 1200 psi FUNCTION MAIN ACCUMULATOR FLOW PRESSURE REGULATOR (1200 PSI) UNICOADING VALVE CONTROL SWITCH PCM HYDRAULIC FLUID REATER EMERGENCY FEATHER ACCUMULATOR UNIT OR ASSEMBLY \mathcal{I} (b) **(9)**

PAGE 19 OF 55
DATE: May 1978
PREPARED BY: S. Onufreiczuk

SUBSYSTEM: PCM COMPONENT: PCM Hydraulics 2.2.4 SUBASSIMBLY: 884E810

\vdash	M CAT. REMARKS	ch 111	th III	is III This failure would only occur during an emergency shutdown caused by another failure.		II .	III This failure is effective when the WTG is down, there- fore it will not adversely affect	_,
FAILURE	DETECTION	Blade pitch angle potentio- meter	Blade pitch angle potentio- meter	If blade 1. bent, bear ing vibra- tion sen- sors will s detect excess vi-	shut down system	Pitch increase pressure transducer	Pitch increase pressure transducer	Blade angle III position indicator
COMPENSATING	PROVISIONS	Servo valves are a high reliability item. High degree of filtra- tion provided to assure reliable operation.	Accumulators tested prior to installation	Feather system will be tested and calibrated Fluid is filtered through 10 micron filter and periodically checked to eliminate contaminant that can oause silting.		This valve is one of two mutually redundant valves	Valves tested before installation.	Extensive testing Proven device
r on	SYSTEM	Undesired blade pitch angle causes SHUTDOWN	NONE	High blade stresses may cause blade to buckle		NONE potential reduced feather rate	Will prevent start- up	Feather blade and system shutdown
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Unscheduled move- ment of actuators	Slew rate limited/ max. pumping rate = 30 gpm	Blade pitch rate is constant		Two of four actuators are not pressurized during feather mode.	Two of four actu- ators will remain pressurized after feather signal is removed.	Pressure applied to two pitch change actuators
DDODA 11 TAILER		Open command signal circuit Contamination in Élapper valve	(a) leaky fill valve(b) leaky body seal(c) leaky piston seal	Blocked spool movement Metering valve (a) Block open (b) Block closed		Poppet held in place by contaminant	SAME	Loss of pilot pressure Pressure applied to two pitch change actuators
PATTINE MORE	TOOL TOOTAGE	(a) Fails to respond to signal	Loss of pressure on compressed air side	Plow does not vary		Valve stuck in closed position	Valve stuck in open position	Inadvertant open
FUNCTION		To meter the hydraulic fluid to the actuators in response to a command signal	To store sufficient hydraulic fluid to assist the slew pump during gust conditions	To schedule flow into actuators during feathering		To admit fluid to actuators from emer- gency feather accu- mulators		
UNIT OR ASSEMBLY		PCM SERVO VALVE	PCM MAIN ACCUMULATORS	FEATHERING FLOW CONTROL VALVE		FEATHER VALVE		

PAGE 20 OF 55 DATE: May 1978 PREPARED BY: S. Onufreiczuk

SUBSYSTEM: PCM
CCMPONENT: PCM Hydraulics 2.2.4
SULASSEMBLY: 884E810

1	1				٥					
	KEMAKKS	Exercise units during mainten- ance.			Servo valve opens more than usual to compensate for internal leakage.	٠.			 	
CRIT	; §	II .				H				
	DETECTION	Emergency Accumulator pressure switch				Low level switch			 	 <u>.</u>
COMPENSATING	PROVISIONS	Two, mutually redundant valves are provided driving mutually redundant plioted check			In-process flushing and filtration pro- vided to minimize contaminant inclusion		Actuator designed to eliminate side loading	Sphere-rod is made of self-lubricated mater-		
МО	SYSTEM	NONE - Feather con- trol is redundant	System will auto- matically shutdown		NONE	System shuts down when liquid level trips level switch in tank				
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	NONE - Feather con- trol is redundant	while operating, while operating, feather control system will be activated	(b) If failure occurs while system is inoperative, start up will be impos- sible.	NONE	Gradual loss of fluid in reservoir				
	PROBABLE CAUSE	Broken return spring	Open solenoid coil circuit		Contaminant in fluid caused scoring of ID or "O"-ring	Contaminant in fluid causes scoring of rod or rod seals	Misalignment or excessive side loads	Contaminant in sphere rod bearing		
	FALURE MODE	(a) Stuck in energized position	(b) Stuck in de-ener- gized position		(a) Internal Leakage	(b) External leakage	(c) Binding of piston or rod	(d) Binding of sphere rod bearings		
	FUNCTION	To control pilot pres- (a) Stuck in energized sure to feather valves, position block check, feather dump, and pitch lock valves neilesters.	her		To provide motive force to pitch change mechanism					1
UNIT OR	ASSEMBLY	FEATHER SOLENOID VALVE	<u> </u>		PITCH CHANGE ACTUATOR) `				

SUBSYSTEM: PCM Hydraulics 2.2.4
SUBASSEMBLY: 884E810

SEE FIGURE 7

This failure is critical only if a tank leak develops simultaneously This failure is most likely to occur when the tank is being temporary condition. Circulation of fluid will cause temp, to rise. filled, but the switch indicates it nored until new switch replacement Signal can be ig-This would be a to be empty. is provided. REMARKS 9817 9417 III III Ħ III 111 III H Motor falled I alarm switch will close if condition becomes severe. L.P. alarm K slew pump failed alarm will warn of low system Blade angle position indicator FAILURE DETECTION METHOD pressure transducer Decrease ressure NONE pitch Valves tested before installation. Liquid filtered to eliminate particles that can cause this failure. Two valves in parallel Switch tested prior to assembly, Has a long operating history Switch tested fully before installation Switch tested fully before installation Switch tested fully before installation Extensive testing Proven device CCMPENSATING PROVISIONS Sluggish system operation may cause shutdown Prevents system startup System will not start up Cannot startup Shutdown Shutdown SYSTEM NONE NONE FAILURE EFFECT ON NEXT HIGHER ASSEMBLY Pumps may cavitate, if startup is at low temp. Depressurize rod end of all pitch change actuators Prevents startup of PCM hydraulics Backpressure in rod-end manifold slightly higher than normal, PCM power supply will not start up False indication of low oil level Blade stuck in feather mode. NONE Loss of pilot pressure Contamination blocked Broken thermostat Broken spring PROBABLE CAUSE Broken spring Loose wire Broken spring Broken spring SAME poppet Switch fails to close Switch fails to open Inadvertent opening Switch fails closed Inadvertent closure Switch fails OPEN FAILURE MODE Fails to open Fails to close To provide an indication of safe operating temperature in PCM Eluid reservoir.
Temp. must be above 200°F for start-up To prevent operation of system with low oil level, To provide an unrestricted drain path for the rod and of all four actuators when in feathering mode. FUNCTION LOW OIL LEVEL SWITCH FEATHER DUMP VALVE LOW OIL TEMP SWITCH UNIT OR ASSEMBLY (ف (B) (<u>a</u>)

PAGE 21 OF 55
DATE: May 1978
PREPARED BY: S. Onufreicauk

PAGE 22 OF 55 DATE: May 1978 PREPARED BY: S. Onufr

SUBSYSTEM: PCH COMPONENT: PCM Hydraulics 2.2.4 SUBASSEMBLX: 884E810

coken spring or akage pressure psule coken spring or coken spring or saky pressure sensing tament coken spring or saky daphragm reken spring or saky dispiration or andom failure									
To warn of charging Switch fails closed Broken spring or leakage pressure capsule Inadvertent closure " Switch fails open Broken spring or pump failure Switch failed closed Broken spring or leaky pressure sensing element Switch failed open Broken spring or sure condition in emergency accumulators Switch failed closed Broken spring or leaky disphragm sure condition in emergency accumulators Switch failed closed Broken spring or leaky disphragm cannot closure the switch failed closed Broken spring or leaky disphragm cannot failed closed Broken spring or leaky disphragm closure failed closed Broken spring or leaky disphragm closure				FAILURE EFFECT	NO	COMPENSATING	FAILURE	CRIT	
To warn of charging Switch fails closed Broken spring or laskage pressure Inadvertent closure To warn of slewing Switch failed closed Broken spring or leaky pressure sensing element Switch failed open Broken spring or leaky pressure sensing element Switch failed open Broken spring or sure condition in emergency accumulators Switch failed closed Broken spring or leaky disphragen To warn of low press- sure condition in emergency accumulators Switch failed closed Broken spring or leaky disphragen Switch failed closed Broken spring or leaky disphragen Switch failed closed Broken spring or leaky disphragen To warn of low press- sure condition in emergency accumulators Switch failed closed Broken spring or leaky disphragen Switch failed closed Broken spring or leaky disphragen Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen Switch failed closed Broken spring or leaky disphragen To warn of low press- switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Broken spring or leaky disphragen To warn of low press- Switch failed closed Brok	FUNCTION	FALLURE NODE	PROBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS	DE TECT LON	.i	KEMARKS
To warn of slewing Switch fails open Broken spring bump failure To warn of low press- sure cohdition in emergency accumulators Switch failed open Broken spring or leaky pressure sensing element Switch failed open Broken spring or sure cohdition in emergency accumulators Switch failed open Broken spring or leaky disphrage Switch failed closed Broken spring or leaky disphrage spring inadvertent switch random failure random failure	To warn of chan			Prevents startup of PCM hydraulics	Prevents system startup	Switch tested fully before installation	NONE	111	
To warn of slewing Switch failed closed pump failure To warn of low pressure condition in emergency accumulators Switch failed open Switch failed closed Switch failed closed Switch failed closed closed closed closed closers		Inadvertent closum		False indication of pump failure	Shutdown			H	
To warn of slewing Switch failed closed pump failure Switch failed open To warn of low pres- sure condition in emergency accumulators Switch failed open Switch failed closed Inadvertent switch closure		Switch fails open		NONE	NONE	Switch tested fully before installation	NONE	111	Pailure of this switch in open position will
To warn of slewing Switch failed closed pump failure Switch failed open To warn of low pres- sure condition in emergency accumulators Switch failed open Switch failed closed Switch failed closed Switch failed closed Closure									not effect operation unless accompanied by motor or pump
To warn of slewing Switch failed closed pump. failure To warn of low pres- sure condition in emergency accumulators Switch failed open Switch failed closed closed closed closed closed closed closure									failure. In that case, emergency
To warn of slewing Switch failed closed pump failure Switch failed open To warn of low pres- sure condition in emergency accumulators Switch failed open Switch failed closed Inadvertent switch closure	-								feather accumulator pressure switches will indicate any
To warn of slewing Switch failed closed pump failure Switch failed open To warn of low pressure condition in emergency accumulators Switch failed open Switch failed closed Switch failed closed closure		· .							proorem.
To warn of slewing Switch failed closed pump' failure Switch failed open To warn of low pres- sure condition in emergency accumulators Switch failed open Switch failed open Inadvertent switch closure		-							
To warn of low pressure condition in emergency accumulators Switch failed open sure condition in Emergency accumulators Switch failed closed Inadvertent switch closure				NONE	Will shutdown or prevent startup of system.	Switch tested before installation	NONE	H	Failure of switch to close alone will not affect operation
To warn of low pressure condition in emergency accumulators Switch failed closed Inadvertent switch closure		Switch failed open	Broken spri	NOME	NONE		NONE	<u> </u>	by simultaneous pump
To warn of low pres- sure condition in emergency accumulators Switch failed closed Inadvertent switch closure									
Switch failed closed Inadvertent switch closure				NONE	NONE	Switch tested prior to installation	Periodic check out	111	There are two sets of accumulators, each with its wan
Inadvertent switch closure				NONE	Prevents startup of system				switch. Since both sets are mutually
		Inadvertent switch		NONE	Will cause shut				redundant, adequate protection against failure exists
		 							1 .

PACE 23 OF 55
DATE: May 1978
PREPARED BY: S. Onufreigeuk

SUBSYSTEM: PCM COMPONENT: PCM Hydraulics 2.2.4 SUBASSEMBLY: 884R810

	REMARKS							
				· · · · · · · · · · · · · · · · · · ·		 		
CRIT		H				 		
FAILURE	DETECT FOR	Low ofl Level switch				 		 •
COMPENSATING	PROVISIONS	Filter tested and inspected prior to installation						
ON	SYSTEM	Eventuál shutdown of system						,
FAILURE EFFECT ON	NEXT ILGHER ASSEMBLY	Depletion of oil in reservoir				-	-	
PROBAGI E CANCE	TANDARE CAUSE	Damage to case or seals						
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·		 -
FAILURE MODE		Case Leakage			·			
FUNCTION		To extract and hold all particulate contaminants from hydraulic fluid						
UNIT OR ASSEMBLY		FILTERS						

PAGE 24 OF 55 DATE: May 12 1978 PREPARED BY: R. Barton

SUBSYSTEM: Power Generation (2,3).
COMPONENT:
SUBASSEMBLY:
See Diagram 8

DEMARKE	K ETVAKKS	Infrequent 5 hrs/yr typical		Unlikely occurrence	Remote fire possible if lightning ruptures tank. Inspection of cooling tubes airflow req'd		Periodic inspection	Secondary loss of phase protection not provided Periodic inspection and test	
CRIT	:	· III		I	111	111	111	111	,
	DETECTION	No power or voltage	Neg. seq. relay	Relays Archive	Oil level & temp. a Marms Visual leak	Neg. seq. relay		Archive	
COMPENSATING	PROVISIONS	None	None	Slip coupling protects drivetrain	FusesPressure relief ventMaintenanceLightning arrestors	None	FusesLightning arrestors	Starter overload devices	
ON	SYSTEM		Phase unbalance causing shutdown Lockout after time delay	Varies: Loss of fatigue life on drivetrain Shutdown with re- start on over-	Shutdown with lock- out on temp. or low oil	Phase unbalancing causing shutdown with lockout after time delay	Shutdown on loss of phase or no power	Shutdown if computer loses power	
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	No power interchange Power loss causing shutdown with restart	Auxiliary motors nay overheat	Current & torque surges at generator	• Pressure in tank from fault • Decreased insul. life	luxiliary motors may everheat	 Decreased insul. life 	Motor overheat Loss of some power	
	PROBABLE CAUSE	• Fault • Switching	Line downFuse	Voltage block failure	 Low oil Overload Blocked cooling Lightning Leak 	FuseOpen winding	Overload Lightning Damage	• Line down • Fuse	
	FAILURE MODE	No voltage at line interface	Loss of a phase	Close out of sync. with WIG running	Overheat Internal fault Tank rupture	Loss of Phase	Overheat Fault	Loss of phase .	
	FUNCTION	Supply/accept power (Mot part of WTG system)		Protect line (Not part of WTG System)	'oltage match		Voltage match ATG auxiliary systems		·
UNIT OR	ASSEMBLY	() Utility		© Utility Recloser	③ Step-up Transf.		(A) Auxiliary Supply Voltage match		

PACE 25 OF 55
DATE: May 12, 1978
PREPARED BY: R. Bart

SUBSYSTEM: Power Generation (2.3)
COMPONENT:
SURASSEMBLY:
See Diagram 8

	FALLURE MODE	PROBABLE CAUSE	FAILURE EFFECT ON NEXT HIGHER ASSEMBLY	NO	COMPENSATING PROVISIONS	FAILURE DETECTION	CAI.	REMARKS
No close	, ,	• io close signal	Cannot complete start-up	Shutdown after time out	None	Archive	E	Periodic inspection
interruption	• • •	No trip signal Jam No trip power See 14 and 19	Cannot disconnect generator from line Sip coupling overheats	Shutdown against torque load Generator insulation or drive damage Fire if Slip Coupling continuously running	DC trip Parallel circuits Conservative rating Field removed from generator Manual operation to trip if attended Line recloser trip on high current	Archive	=	Reliable control over disconnection from line requires periodic test and maintenance on main breaker.
Close at wrong time Ci	ž Še	Circuit failure See 11 Manual operation	Generator connected to line	Shutdown and breaker Requires multiple open via overcurrent failure in close cout. Slip coupling protestin.	Requires multiple failure in close cir- cuit. Slip coupling protects drive train.	Protective relays Archive	II	Manual control on close will be disabled
Open at wrong time (Loss of load)		Circuit failure Latch failure Manual operation	Generator discon- nected	Shutdown via breaker None open and overspeed	чоле	Protective relays Archive	111	Safe failure mode Periodic maintenance required on mechansm
not turn	es à	Stuck	Slightly higher yaw torque	None	Yaw drive will move even badly jammed bearing.	None	111	Assembly care needed to prevent mis- alignment
Fault D		Lightning Dirty insultion	Breaker opens	Probable shutdown by current relays g	H.V. circuit has ground shield rings to reduce damage.	Archive	11	Major repair if in- ternal slipring damage
Open or noisy signal Dirt	i i	Dirty ring or brush or burnt spot	Bad signals Loss of power	Shutdown by com-	Dual communication lines	Archive Test	Ε	Realign 90° or repair burnt spots

26 OF 55 May 12, 1978 ED BY: R. Barton

PAGE 26 OF DATE: May 12.

Power Generation (2.3) SUBSYSTEM: CONPONENT: SUBASSEMBLY:

See Diagram

Fan on shaft is not directional. Periodic inspection of air flow path is required. Major repair if stator or rotor rinding damage Unlikely due to multiple redundant speed shutdown means. Periodic visual lube check required Actual speed where damage occurs is un-known. Periodic inspection req'd Bearing replacement does not require major disassembly Manual reset req'd Manual reset req'd **Embedded spares** REMARKS CAIT CAI. RTD in con- III trol or vibration Computer or III backup over speed detec-tion Ξ Ξ Ξ H Prot. relays III FAILURE DETECTION METHOD Protective relays Protective relays Prot. relays Comp. sensor Archive Archive Test Most of operating time below rating Space heaters, lightning arrestors & surge capacitors Redundant detection and powerful control elements Computer has current and power sense of overload High reliability sleeve bearing with oil ring None - except for multiple sensing devices COMPENSATING PROVISIONS None None - Shutdown with lock-out through over-voltage or power factor relays or ex-citer field current Shutdown with lock-out through winding temp. relay Shutdown with lock-out.through current relay Shutdown with lock-out on overspeed possible repair Shutdown with lock-out or no thermal protection Shutdown on temp. or vibration with repair Shutdown after time out SYSTEM FAILURE EFFECT ON Full output over-Sheats generator or totor circuits • Fire damased insul HENT HIGHER ASSEMBLY Incorrect signal to protective relay Will not rotate in low winds Age or circuit deterior- Low output reduces ation Journal damage Metal to metal on stator Rotor winding distortion Decreased insul. life Scoring Mechanical failure Loss of drivetrain control Piece part failure Wet insulation Circuit failure No excitation Misalignment PROBABLE CAUSE Blocked air Unbalance Lightning Overload Bearings No lube No power No Jube Fatigue • • • RTD sensors open/short Bearing seizure while running Jammed bearing while not rotating Overspeed (more than 125% rated) Incorrect reading No or full output Incorrect output FAILURE MODE Overheat Fault Control output voltage and reactive power Generate electric power FUNCTION (2) Generator ASM (Exciter & Regulator & VAR Control) UNIT OR ASSEMBLY © Excitation

PAGE 27 OF 55
DATE: May 12, 1978
PREPARED BY: R. Barton

SUBSYSTEM: POWER Generation (2.3)
COMPONENT:
SUBASSIMBLY:

See Diagram 8

	FUNCTION	FAILURE MODE	PROBABLE CAUSE	FAILURE EFFECT ON	ON	COMPENSATING	FAILURE	CRIT	
	Ī			NEXT HIGHER ASSEMBLY	SYSTEM	FRUVISTONS	DETECTION	ž.	REMARKS
Modify drivetrain damping to increase stability via excita- tion system		No or incorrect signal	No power Speed sensor cir- cuitry failure	Larger variations in drivetrain torque & power Possible loss of synchronization	Slip coupling thermal damage Decreased drive- train fatigue	None Vibration may cause shutdown for severe oscillations	Test Prot. relays Customer complaints about vol-	111	Periodic inspection of circuit and slip coupling required. Index marks on coup- ling to indicate
					 Excessive voltage variations 		tage Archive		motion should be pro- vided.
Detect electrical problems		No or incorrect operation	Jam Loose connection No power Circuit failure	Main breaker fails to open when req'd Main breaker open	Shutdown or reduced protection	Highly reliable devices Test Periodic adjustment Histo Overlapping function	ory	II	Critical items are covered in detail under 19 See Note 1
Closes main breaker when generator output is in Sync. with utility, under correct frequency and phase		No output	Potential circuitNo enable signalNo power	Cannot complete startup	Shutdown after timeout	None	Test	Ш	Slip coupling thermal rating adequate to accommodate asynch- ronous closing with
		Output at wrong time	Mechanism failure	Current & torque surges at generator	Shutdown with restart decreases drivetrain fatigue	• 2 vote redundancy • Slip coupling limits torque	Test Archive	III	no drivetrain damage.
Start, stop Protect motors		No output	No power No signal	Motor Will not start	Cannot start-up	Reliable devices used extensively in in- dustry	Visual	III.	Routine preventative maintenance
		Overload inoperative	Jammed relay	No motor overload protection and over- leat	Shutdown from final parameter such as pressure	Reliable devices	Test	III ,	
				•	-				

PAGE 28 OF
DATE: May 12
PREPAKED BY: R

Power Generation (2.3)

See Diagram SURASSEMBLY: SUBSYSTEM: COMPONENT:

Dispatcher notification of local aviation authorities until repair recommended Personnel can lower lift or use escape device Periodic battery maintenance required Periodic maintenance REMARKS III 111 Ξ Alarm on DC III to control CRIT CAT. 111 Ξ Alarm on DC to control FAILURE DETECTION METHOD Computer status feedback Current sensing Visual Dual lamps on inde-pendent circuits (one should be on) Main feather circuits are dropout relay action independent of box Switch on cable stops lift Met tower lighting DC loads supplied by battery Lift may not operate None - Replace ring in one position DC loads supplied thru charger COMPENSATING PROVISIONS None - Repair Sealed relays Issues warning notice to dispatcher Shutdown by control Shutdown by control Shutdown by control Lift inoperative SYSTEM None ö Cable jerk or break Opens power circuit FAILURE EFFECT MEKT HECHER ASSEMBLY Trip power lost if voltage below 70% Battery charge not maintained Load not energized Energized at wrong time or remain on Reduced warning Cable lies on ground Bad battery cells Mechanical damage Loose connection Filament burnout spring Contact weld Circuit failure Circuit failure Cold weather PROBABLE CAUSE Burnt ring Broken No power No signal No DC • Ice Ice Jam Jam • • • Output at wrong time Loss of DC voltage Skip spot on ring No charger output Does not wind up Does not pay out FAILURE MODE No output No light Supply D.C. (125V) for breaker trip & air-craft warn lamps Wind up & pay out lift cable Interface computer output with power circuits Warn pilots of tower hazard FUNCTION Aircraft Warning Light Battery Assembly A & B Control Boxes Lift Cable Reel UNIT OR ASSEMBLY ூ **@ @ ©**

PACE 29 OP 55
DATE: May 12, 1978
PREPARED BY: R. Barton

SUBSYSTEM: Power Generation (2.3)
COMPONENT:
SUBASSMBLY:
See Diagram 8 and 8a

House ground equipment No heating or cooling Air cond. No or less entrol No	UNIT OR	AW ALLOYDE		1	FAILURE EFFECT ON	NO	COMPENSATING	-	CRIT	
House ground equipment No heating or cooling A fir cond. No or less environ- None - until out of Redundancy Resp. 111	ASSEMBLY	FUNCTION	FAILURE MODE	PROBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS	NOI	۲. ۲.	Remarks
Detect overcurrent or a) Output fails open control of the main breaker when not operating the meteral current or a) Output fails open control of the meteral current or a) Output fails open control of the meteral current or a) Output fails open control of the main breaker when not operating the meteral current and output fails open control of the main breaker when not operating the meteral current and output fails closed control of the main breaker when not operating the meteral current control of the main breaker when not operating the meteral current control of the main breaker when not operating the meteral current control of the main breaker when not operating the meteral current control of the main breaker when not operating the meteral current control of the main breaker control of the main breaker when not operating the meteral current control of the main breaker control of the m		House ground equipment	No heating or cooling	Air cond. Heater thermostat No power External AC damage	No or less environ- ment control - will go hot or cold	None - until out of computer band, then shutdown initiated by computer	Redundancy (3) A/C (2) Htrs.	_	111	
Detect overcurrent or a) Output fails open Loss of CT or PT signal at trip main breaker by Output fails closed Mechanical or electrical phase unbalance and by Output fails closed when not operating closed when not operating closed when not operating closed when not operating closed close trip main breaker closed when operating closed close trip main breaker close close trip closed close trip main breaker closed close trip closed close trip main breaker close clos	(a) Security	1	Unauthorized entry	VandalThiefCuriosity seeker	Power & interface equipment spurious operation	Shutdown on door Entry Alarm	No windows on C.E. Low probability Door locks	Door sensor	=	Potential hazard to people; a fence should be considered
Detect line neutral cur—a) Output fails open We have to be continue operating by the continue operating when not operating when not operating to the continue operation to	current relay circuit thousened the form of the form o	Detect overcurrent or phase unbalance and trip main breaker	a) Output fails open b) Output fails closed when operating c) Output fails closed when not operating	Loss of CT or PT signal Mechanical or electrical failure of relay		No overcurrent protection on one phase or phase balance System shutdown due to breaker trip	a) Other (2) phase relays will operate on phase to phase faults or over power b) None c) None	rlag)		Periodic test and maintenance required to insure proper operation of relays. Trip relay pickup sixcuit blooking close-May be added for C)
	(9B) Line Ground Current Relay Circuit 6463 on 298E475 Rev. 3 (See Diagram 8a)	Detect line neutral current indicating phase to ground fault and trip main breaker	a) Output fails open b) Output fails closed when operating c) Output fails closed when not operating			No line fault protection by 6463 and WIG will continue operating System shutdown due to trip Same as b)	a) Frequency drift or phase overcurrent or phase unbalance relays will operate depending on current value and cause main breaker trip and system shutdown. Utility voltage block on recloser			Same as 19A See Note 1

SUBSYSTEM: Power Generation (2.3)
COMPONENT:
SUBASSEMBLY:

See Diagram 8a

Same as 19A See Note 1 Same as 19A See Note 1 REMARKS CAIT 111 П FAILURE DETECTION METHOD Test Test a) Computer can operate a) Utility voltage
block on recloser
computer can operate lockout relay
which has parallel
function on detection of frequency
drift, overpower
or unbalanced curtripping relay which has parallel function on detec-tion of frequency drift, reverse power, or unbalance COMPENSATING PROVISIONS b), c) None b),c) None from phase current, line ground current, phase balance relays power, gen.
ground current,
overvoltage,
power factor,
transformer temp.
or oil level System shutdown due to breaker trip System shutdown due to breaker a) No protection from reverse No start up c) No start SYSTEM trip a) â FAILURE EFFECT ON G 9 Breaker will not be tripped when required NEX' HIGHER ASSEMBLY Startup sequence blocked Same as 19C, a,b,c b) Breaker trips a) · 😙 a) No DC, open coil or output circuit, jam on latch release a) No DC, open coil or output circuit b),c) circuit failure or welded contact b),c) Circuit failure, latch failure PROBABLE CAUSE b) Output fails closed when operating Output fails closed when not operating b) Output fails closed when operating Output fails closed when not operating a) Output fails open a) Output fails open FAILURE MODE Trip main breaker (non lockout) Trip main breaker (lockout) FUNCTION (90)-Tripping Relay 94G on 298E475 Rev. 3 (99) Lockout Relay 866 on 298E475 Rev. 3 and 32, 6462, 57, 55, 71, 49 supply-ing 866 UNIT OR ASSEMBLY

PACE 30 OF 55 DATE: May 12, 1978 PREPARED BY: R. Barton

PACE 31 OF 55
DATE: May 1978
PREPARED BY: R. Cockfield

SUBSYSTEM: NACELLE (2,4)
COMPONENT: PAIRING 298E461
SUBASSEMBLY:

UNIT OR	ROLLONIE	MON MOIL	TO A DA D	FAILURE EFFECT ON	NO	COMPENSATING		CRIT	
		TOTTONE HORE	FRUDABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS	DETECTION	CAT.	RPMARKS
SIDE PANELS	Protection of Nacelle- mounted equipment from environment	Structural Pailure	Loads in excess of design conditions (150 MPH wind)	Collapse or com- plete loss of fairing	Loss of wind sensor, causing normal shut-	• Conservative and detailed stress anal- ysis was performed	Temp. sensors, Wind	Ħ	Inspection during periodic mainten- ance and after
					Loss of obstruction 11ghts (2), causing normal shutdown	 Aluminum structure can yield without collapse 	sensor		known hurricane conditions
					Under or over temperature of temperature sensitive systems, causing normal shutdown				
EXHAUST FAN	Cooling air for Nacelle-mounted equip- ment	(a) Fan fails to operate (b) Louvers jammed shut	Electrical short or open Mechanical failure of fan Thermostat failure Louver bearing failure Bird strike	Over temperature within nacelle	Overtemperature in MNU, causing normal shutdown Overtemperature in lube oil, causing normal shutdown normal shutdown	Some air circulation even with exhaust closed High ambient temper- atures improbable	Temp.	Ħ	
		(c) Fan does not shut down (d) Louvers jammed open	• Thermostat failure	Under tämperature vithin nacelle	Under temperature shutdown Under temperature Cuder temperature continuous heart operation or shut- down	• Air velocity within nacelle is limited by intake louvers • Low ambient temperatures improbable • Lube system and gearbox provide heat to nacelle	Sensors	III	
					· .				

PAGE 32 OF 55
DATE: May 1978
PREPARED BY: R. Cockfield

SUBSYSTEM: NACELLE (2.4)
COMPOJENT: BEDFLATE 298E471
SUBASSEMBLY:

	REMARKS	Inspection and repair of large cracks during periodic anintenance Analysis based on bedplate finite element model and local hand calculations	Inspection during periodic mainten- ance	
CRIT	CAT.	П	Ħ	
FAILURE	DETECTION	Vibration sensors efter extensive cracking)	Vibration Safter extensive distortion)	
COMPENSATING	PROVISIONS	stress is below AISC sensors limits and limits at gearbox was conser-cracking) variatively overcestimated by a factor of 2 and UI inspection and UI inspection bedplate structure provides redundant load paths	Calculated stress is below 60% of yield below 60% of yield and UT inspection Gentification of material mechanical properties available	
ON	SYSTEM	Excessive vibration (after extensive cracking)	Excessive vibration (after extensive distortion)	
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Degraded stiffness (after extensive cracking)	Distortion of gearbox mounting (affer extensive yielding)	nge is 7000 psi, more than 2 x 106
	PRUBABLE CAUSE	Cyclic loads were underestimated Undetected flaw	(a) Unusual loads not anticlosted (b) Translents during start-up and shut-down	si. Allowable stress raid loading condition 4 (
	FALLUKE MODE	Fatigue cracks in weld *	Yielding	*Calculated stress range is 6852 psi. Allowable stress range is 7000 psi, based on AISC stress category D and loading condition 4 (more than 2 x 106 cycles) MS = \frac{7000}{6852} \cdot 1 = +0.02
SAC THICKER	FUNCTION	Structural support and rigid mounting for drive train		falculate based on cycles)
UNIT OR	ASSEMBLY	JOINT AT STA. 256, UPPER FLANGE		

PACE 33 OP 55 DATE: 6 April 1978 PREPARED BY: R. T. Hedges

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: CONTROL 6 RECORDING UNIT (CRU) AND PERIPHERAL RACK
SUBASSEMBLY: CONTROL 6 RECORDING UNIT (CRU) WITH BATTERY BACKUP

								ns & te	,			
	REMARKS							Spare ribbons & paper on site				·
CRIT	ą Į	ш				111	111	Ħ	Ш	ш		
PAILURE	DETECTION	GMU and NMU look- ing for loss of signal				GMU and NMU look- ing for parity	GMU and NMU looking for loss of signal		DPM Time out	Software · Processing		
COMPENSATING	PROVISIONS	GMU and NMU issue Emer- gency Shurdown Lockout commands instantly upon loss of Signal				GMU and NMU issue Emer- cency Shutdown Lockout commands instantly upon loss of Parity	None until power in- GMU and NMU issue Emer- terrupt, then com- plete loss of system commands instantly upon control and data ac- loss of signal quisition both local and dispatcher		Software Processing shuts down system	Software first checks for validity of input command. If command is invalid it is is general and messare is sent to	operator.	
r on	Malsks	Complete loss of system control and data acquisition both local and dispatcher				Same as above	None until power in- GMU and NMU iss terrupt, then com- gency Shutdown plete loss of system commands instan control and data ac- loss of signal quisition both local	Operator	Loss of operator control	NONE		
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Remote MUXs are not commanded Decwriter interface lost	• Peal time clock interface lost	• Modem interface lost	Disk interface lost	Same as above	None until power interrupt, then CRU goes down	NONE	CRU would not receive commands	CRU would receive wrong command		
	PRUBABLE CAUSE	 Power supply failure Unibus failure 	<u> </u>			• Circuit failure	 Open circuit, breaker interrupt, etc. 	Circuit failureMechanical failureRibbon or paper	Circuit failureKeyboard failure	• Operator error		
PA Y1 ITO D MOUNT	FALLUKE MUDE	No output				Confused or scrambled output	No output .	Pails to print	Fails to respond to command inputs			
NO LL JONE	NOTION OF	Central processing unit No output for WTG. 64K parity memory. Phone line control, local operator control, real time process control.	archive control				To retain data in MOS memory through power interrupt	Operator Interface: contains keyboard for operator commands and				
UNIT OR	17017CV	CRU (DEC PDP 11/34)					CRU BATTERY BACKUP (DEC H775CA)	TERMINAL (DEC 1A36)			. •	>

PAGE 34 OF SATE: 6 April PREPARED BY: R.

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: CONTROL & RECORDING UNIT (CRU) AND PERIPHERAL RACK
SUBASSEMBLY: DISK DRIVE

1		ı						٠		٠.		•	
	REMARKS	Should be cleaned	and checked every six months		Should be cleaned and checked every six months					:			
CRIT	CAT.	H			Ħ	111	•						
FAILURE	DETECTION	None	Dispatcher would not receive hourly	message	None	Playback							
COMPENSATING	PROVISIONS	None	None		Data can be reviewed using another drive	None							
NO	SYSTEM	None	Fails to restart		None	Diagnosis of fail- ure must be per- formed without the insight provided by			, .				
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	None - not used	Operating software would not "boot" after next-power interrupt		None - not used until system is off	Archive data is lost	-						
TOTAL OF THE AGO OF	rkubabir CAUSE	Circuit failure	Circuit failure		Circuit failure	Circuit failure				-			
PATTICE MOIN	TOTAL MODE	Will not write	Will not read		Will not read	Will not write							
FUNCTION		Non-volatile mass storage of the oper-	ating software system 2.5 Megabytes		Diagnostic archive for sensor, CMD, status, and state values 2.5 Megabytes							,	
UNIT OR ASSEMBLY		DISK DRIVE "O" (DEC RKOS)		.· 	DISK DRIVE "1" (DEC RKOS)						 		

PAGE 35 OF 55
DATE: 6 April 1978
PREPARED BY: K. T. Hedges

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: CONTROL & RECORDING UNIT (CRU) AND PERIPHERAL RACK SUBASSEMBLY:

UNIT OR				FAILURE EFFECT ON	ON	COMPENSATING	FAILURE	CRIT	
ASSEMBLY .	FUNCTION	FAILURE MODE	PROBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM		_	; ;	KETHAKAS
							7		
REAL TIME CLOCK WITH 60-HOUR BATTERY BACKUP (DATUM 9100)	Time tag data	No output or wrong time	Circuit failure or ex- tended power interrupt	None	Data will be time tagged with erroneous time and flagged as such	None	Playback . of archive	III	Front panel lamp indicates battery failure
AUTOCALL AND MODEM (VADIC)	Dial dispatcher, phone number modulate outgoing data, de-modulate incoming data	No output	Circuit failure	None	Dispatcher communications interrupted	None	Hourly message and soll- cited communica- tion not present	Ħ	
ISOLATION TRANSFORMER AC INPUT PANEL	Line noise attenuation	Short circuit	Insulation breakdown	Circuit breaker opens after over- current, inter- rupting CRU power	Complete loss of system control and data acquisition both local and dispatcher	NMU and GMU issue Emergency Shutdown Lockout commands in- stantly upon loss of signal	GMU and NMU look- ing for loss of signal	H _	
-		Open circuit	Connection or wiring parts	CRU power lost	Same as above	Same as above	Same as above	III	
,									
			:						
:				· · · · · ·					

PAGE 36 OF 55
DATE: 6 April 1978
PREPARED BY: R. T. Hedges

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: NACELLE MULTIPLEXER UNIT (NMU) RACK
SURASSEMBLY:

SEE FIGURE 9

REMARKS GRIT 111 111 CRU looks for loss of signal FAILURE DETECTION METHOD CRU looks for parity GMU issues Emergency Shutdown Lockout com-mand instantly upon CRU detection of loss of Signal GMU issues Emergency Shutdown Lockout com-mand instantly upon. CRU detection of loss of <u>Parity</u> COMPENSATING PROVISIONS Loss of control and data acquisition of nacelle user subsystems Same as above SYSTEM FAILURE EFFECT ON Data not sent to CRU, commands not issued to user subsystems, ESD cannot be issued to nacelle user sub-NEXT HIGHER ASSEMBLY Same as above Power supply failure Other circuit failure Circuit failure • Unibus failure PROBABLE CAUSE Confused or scrambled output No output to CRU PAILURE MODE Data multiplexer,
issue commands,
data compression,
sense link with CRU
issue Emergency Shutdown Lockout indememory
memory FUNCTION NACELLE MULTI FLEXER UNIT (NMU) (DEC FOP 11/04) UNIT OR ASSEMBLY

PAGE 37 OF 55
DATE: 14 April 1978
PREPARED BY: R. T. Hedges

SUBSYSTEM: CONTROLS (2.5)
COMPONINT: NACELLE MULTIPLEXER UNIT (NMU) RACK
SUBASSIMBLY: NACELLE DIGITAL INTERFACE PANEL (N-DIP)

SKE FIGURE 9

UNIT OR	NOLLIONIA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		FAILURE EFFECT ON	NO	COMPENSATING	$\overline{}$	CRIT	
Tambacon	TOTAL COLOR	FALLURE MUDE	PROBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS	DETECTION C	S.	REMARKS
STATUS DEBOUNCE CIRCUITS, DRIVERS, OR ANY OTHER IN LINE	Remove signal ambiguity and drive PDP	Any combination "on" when it should be "off"	Circuit failure	"On" status in- dicated to MUX	None	MUX only samples when command is "ective"	None	Ш	
STATUS CIRCUIT		Any combination "off" when it should be "on"	Circuit failure	"Off" status indi- cated to MUX	Corresponding com- mand indicated to be failed	Shutdown is commanded in response	MUX mea- sures re- sponse	II	
COMMAND RELAY DRIVERS OR ANY OTHER IN LINE COMMAND CIRCUIT	Boost signal to drive relay coils	Fails to change command state when required	Circuit failure	User device is not commanded	Corresponding function does not respond	Shutdown is commended in response to timeout	MUX mea- sures response time	H	
PCM-13	Emergency feather even on/off	"On" when not requested	Circuit failure	Actuators 2 & 4 are pressurized	Blades are driven to feather	ESD is commanded	Pitch jam	ш	See Pigure 9
PCM-14	PCM Auto on/off	"On" when not re- quested	Circuit failure	Pitch ramp is initiated in servo	PCM slider pushes against feather latch	ESD is commanded	Pitch jam]	111	
		"Off" when it should be on	Circuit failure	Output relay opens	Blades begin to drift toward feather	ESD is commended	Pitch jam]	111	
PCM-15	PCM Manual on/off	"On" when not re- quested	Circuit failure	In "SPEED" mode reference is re- moved, In "POWER" mode no effect	Shaft RPM will de- crease	ESD is commanded	Pitch jam or timer time out	II.	
		"Off" when it should be on	Circuit failure	Output relay opens	Blades begin to drift toward feather	ESD is commanded	Pitch jam]	111	
PCM-32	Speed schedule on/off	"On" when not re- quested	Circujt failure in manual mode	None	None	None	None	111	
			Circuit failure in auto mode	Step input	Step from 0 to 1800 RPM	ESD is commanded	Pitch jam]	III	
		"Off" when it should be on	Circuit failure	Ramp generator disabled in servo controller	Rotor shaft attempts to go to zero speed	ESD is commended	Pitch jam jon At	ш	
							. , , , -		

PACE 38 OF 55 DATE: 11 May 1978 PREPARED BY: R.T. Hedg

SUBSYSTEM: CONTROLS (2.5)
CCHPONENT: NACELLE MULITPLEXER UNIT (NMU) RACK
SUBASSEMBLY: NACELLE DIGITAL INTERFACE PANEL (N-DIP)

		-											;		ı		
	REMARKS			See Figure 9													
78.77		H	111	111	III	ш	111	111	1111	ш	III :	П	111				
FATLIRE	DETECTION	None	Pressure	Pitch jam signal	None	None	۵t	Accumula- tor alarm	Δt	DPM 24 senses YAW-16 status	Δţ	DPM 24 senses YAW-16 status	Same as above				
COMPENSATING	FROVISIONS	None	NSD, AR	ESD is commanded	Redundant set	None	USN .	NSD shutdown	NSD	NSD 1s commanded	NSD	NSD is commanded	NSD is commanded			i.	
NO	SYSTEM	None	Terminates accum.	Blades are driven to feather	None	None	Yaw terminated	No yaw brake No shaft brake	Yaw terminated	If in accumulator charge mode, na-celle will attempt to yaw	Yaw terminated	Yaw brakes released	Yaw brakes apply				
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Yaw rate increases by 50%	Valve closed	Actuators 1 & 3 are pressurized	1 & 3 are shut off	Yaw accumulator charge rate in- creases by 200%	Valve closed	Cannot charge yaw accumulator	Valve closed	Yaw drive solenoid valve actuates	Valve closed	Brake solenoid actuates	Brake solenoid release				
	PROBABLE CAUSE	Circuit failure	=	z			=	=	=	=	ŧ	=	=				
	FAILURE MODE	"On" when not requested	"Off" when not requested	"On" when not requested	"Off" when not requested	CW when not requested	"Off" when not requested	CCW when not requested	"Off" when not requested	''On'' when not requested	"Off" when not requested	Disable "on" when not required	"Off" when not requested				_
TAN CALL CALL	FORCITON	Yaw accum, flow enable on/off		Emergency feather odd on/off		Yaw drive GW/off		Yaw drive CCW/off		Yaw drive on/off		Yaw brake					<u></u>
UNIT OR	Individual	YAW-22		PCM-29		YAW-12		YAW-13		YAW-16		YAW-15		*******			-

PAGE 39 OF 55 DATE: 11 May 1978 PREPARED BY: R. T. Heds

MEDNENT: CONTROLS (2.5)
MACELLE MULTIPLEXER UNIT (NMU)

1						100						
	REMARKS	Brake would require rework							See Figure 9			
CRIT	CAT.	II	111	III	1111	H	111	Ħ :	H	H	H	
-	METHOD	Switchgear protective relaying & software processing	None	CRU DPM is counting time to reach full speed	Protective switchgear	Relief valves	Pressure sensors	None	None	Notie	None	
COMPENSATING	PROVISIONS	ESD is commanded in response to main breaker open	None	ESD is commanded	Breaker will be commanded open and ESD will follow	Relief valves will dump fluid	NSD, AR	Momentary reset circuit does not inhibit next shutdown action	None	Slip clutch trims torque peaks	Slip clutch trims torque peaks	
ON	SYSTEM	Shaft slows slightly	Shaft is free to turn	Rotor RPM decreases smoothly back to O RPM	If utility frequency significantly differ- ent front gen, synchronization is lost	Accumulators will attempt to over- pressure	Terminates accum, charging	None	Camot restart	Larger drive train variational torques & decrease in fatigue life	Larger drive train variational torques s decrease in fatigue life	
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Generator shaft brake is applied. causing overheating	Gen shaft brake releases	Servo controller transfers modes from speed to power	Servo controller transfer to speed control at RPM setting for previous	Charge accumulator solenoid actuated	Valve closed	Backup overspeed device will be reset	Overspeed detector remains tripped	Servo controller switches "On" wind feed forward	Servo controller switches out wind feed forward	
	PROBABLE CAUSE	Circuit failure	= 14	Ē	=	E .	=	E =	.			
	FAILURE MODE	"On" when not re- quested at 1800 RPM	"Off" when not requested	Speed-to-power when not requested	Power-to-speed when not requested	"On" when not requested	Failed off	"On" when not requested	Failed off	"On" when not requested	Failed "off" when requested "on"	
	FUNCTION	Shaft brake		Power node	Power mode power/speed	Charge accum. on/off		Hub backup overspeed reset on/off		Wind feed forward on/off		
UNIT OR	ASSEMBLY	DRT-25		PCM-34		YAW-14		DRT-27		PCM-38		

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: NHU RACK
SUBASSEMBLY: N-DIP

1				PATIJIRE EFFECT ON	NO	COMPENSATING	PAILURE	CRIT	
FUNCTION	NO	FAILURE MODE	PROBABLE CAUSE			PROVISIONS	Z.	CAT.	REMARKS
				NEXT HIGHER ASSEMBLY	SYSTEM		METIIOD	1	
Video co	Video camera disable on/off	"On" when not requested	Circuit failure	Video camera turns off	None	None	None	111	
	-	Failed off	Circuit failure	Video camera won't	None	None	None	111	
Video on/off	Video pan disable on/off	"On" when not requested	Circuit failure	Video pan turns off	None	None	None	H.	
		Failed off	Circuit failure	Video pan won't turn off	None	None	Nome	Ħ	
Reconf paths comput check switch	Reconfigure signal paths to accommodate computer driven self check or front panel switch positions	Oper/test fails in "test"	Circuit failure	DIP will output erroneous "sensor" states	CRU will receive inconsistent date	Shutdown is commanded when incorrect state is detected	Software	III .	
Remove biguit DR11C	Remove signal ambiguity, drive 11/04, DRIIC interface, etc.	Any failure which indicates WTG failure	Short or open circuit	Computer receive false indication of failure	Shutdown	None	Software processing	·	
Rotor	Rotor bearing oil flow	Ind. flow	Short circuit	None	None	None	None	H	See Note 2
Odd fe	Odd feather accum.	Alarm off	Open circuit	None	None	None	None		See Note 1
Even	Even feather accum.	Alarm off	Open circuit	None	None	None	None	Ħ	See Note 1
Main	Main accum, alarm	Alarm off	Open circuit	None	None	None	None	111	See Note 1
PCM h	PCM hyd low oil level	Level high	Short circuit	None	None	None	None	111	See Note 1
Feath	Feather latch pos.	Either way	Short or open circuit	False indication of failure	Shutdown	None	Software processing	ш	All combinations are continuously moni- tored
					:				,
						(
		_						_	

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: NMU Rack
SUBASSEMBLY: NACELLE DIP

SEE FIGURE 9

PAGE 41 OF 55
DATE: 17 April 1978
PREPARED 8Y: R.T. Hedges

UNIT OR				FAILURE EFFECT ON	NO	COMPENSATING	_	CRIT	
ASSEMBLY	FUNCTION	FAILURE MODE	PROBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS	DETECTION	CAT.	REMARKS
PCM-17	Pitch jam	No pitch jam	Open circuit	None	None	None	Software processing	ш	Signal presence is checked at every shutdown
PWR-43	Gen htr. monitor	Htrs on	Short circuit	None	None	None	None	III	
XAW-02	Yaw hyd oil level	Level high	Short circuit	None	None	None	Note		See Note 1
YAW-03	Yaw hyd pump fail alarm	No output	Open circuit	None	None	None	None	H	See Note 2
DRT-01	Shaft brake accum low	Pressure normal	Open circuit	None	None	None	None	III	Has backup alarm
DRT-02	Shaft brake alarm	Pressure normal	Open circuit	None	None	None	None .	111	See Note 1
YAW-04	Yaw brake accum low	Pressure normal	Open circuit	None	None	None	None	111	Has backup alarm
DRT-13	Xmission oil level	Level high	Open circuit	None	None	None	None	111	See Note 1
PCM-28	Slew pump failed alarm No output	No output	Open circuit	None	None	None	None	111	See Note 2
DRT-26	Shaft brake pressure	Either way	Short or open circuit	None	None	None	None	111	See Note 2
YAW-05	Yaw brake alarm	Pressure normal	Open circuit	None	None	None	None	III	See Note 1
					,				
		-							·

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: MACELLE DIP

	REMARKS		See Note 2	See Note 1	All combinations are continuously monitored	All combinations are continuously monitored	See Note 1	See Note 1			
CRIT			H	H	ııı	H	H	<u>H</u>			
FAILURE	DETECTION		None	Note	Software Processing	Software Processing	None	None	<u></u>	 	
COMPENSATING	PROVISIONS		None	None	None	None	None	None			
ON .	KALSKS		Shutdown	None	None	None	None	None			
FAILURE EFFECT ON	NEXT HICHER ASSEMBLY		None	None	None	None .	None	None			
DOOR OF THE ASSESSMENT	- CAUSE		Short or Open Circuit	Short circuit	Short circuit	Short circuit	Short circuit	Short circuit			
PATITUS MONE	TOTTONE WORK	·	Either Way	Indicates Warm	Either Way	Either Way	8	NO			-
FUNCTION			Yaw Brake ON/OFF	Lube Oil Temp.	Yaw Drive CN/OFF	Charge Accum. ON/OFF	Obs. Lite #1 ON/OFF	Obs. Lite #2 ON,OFF			
UNIT OR ASSEMBLY		Sensors and their circuits (cont.)	YAW-07	DRT-22	XAW-10	ZAW-11	PWR-06	PWR-42			

PAGE 43 OF 55
DATE: May 1978
PREPARED BY: R.T. Hedges

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: NAU RACK
SUBASSEMBLY: NACELLE CONTROL ELECTRONICS (NCE)
SER FIGUR 9

ANALOG SENSORS. The following failures could occur either in the sensor itself or somewhere in the signal conditioning or test logic circuitry. Each sensor and its associated circuitry provides a proportional analog signal indicating value of function being monitored.

		REMARKS				See Note I				<i>5</i> .		
		CAT. B	1111			III Se			H	II	ı.	III
	\vdash	DETECTION CO	2nd RVDT I is compared to lst.	2nd RVDT is compared to lat	Ground I power sen- sor is com- pared to nacelle unit in CRU	NONE	Tach sig- I nals are compared in comp	At to I synchronize	2nd sensor I compared to first	2nd sensor I compared to first	2nd sensor I compared to first	2nd sensor I compared to first
	COMPRISATING	PROVISIONS	Shutdown is commanded if incorrect angle is detected.	Shutdown is commanded if incorrect angle is detected.	Shutdown is commanded if incorrect power is detected.	NONE	NONE	NONE	NONE	NONE	NONE	NONE .
on being monitored.	NO	SYSTEM	Possible overspeed	NONE	rossible overstress	Blade stowed to other than 3-9 position after shutdown.	Unable to synchron- ize. Shutdown	Unable to synchron- ize. Shutdown	Overstress Shurdown & message	Overstress Shutdown & message	Loss of energy collection. Shut- down & message	Loss of energy collection. Shut- down & message
ating value of function	FAILURE EFFECT	NEXT . HIGHER ASSEMBLY	Servo Cont'r. sets wrong blade angle	CRU received different angle	Servo Cont'r. sets Wrong power	Blade Position software receives wrong angle	Incorrect Shaft Speed	Incorrect Shaft Speed	Incorrect wind regimes	Incorrect wind regimes	Incorrect yaw position setting	Incorrect yaw position setting
nat analog signal indica	100000	PROBABLE CAUSE	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure	Sensor or conditioning circuitry failure
ordered a proportional analog signal indicating value of function being monitored	10000 11011 24 40	FALLURE MODE	No output or incorrect value	No output or incorrect value	No output or incrarect	No output or incorrect value	No output or incorrect value	No output or incorrect value	No output or incorrect value	No output or incorrect value	No output or incorrect value	No output or incorrect value
		FUNCTION	Blade pitch angle #1	Bladepitch Angle #2	Generator power transducer	Rotor Shaft Position	Gen. Shaft Speed (0-1900 RPM)	Gen. Shaft Speed (1400-2200 RPM)	Wind Speed #1	Wind Speed #2	Wind Direction #1	And Direction #2
	UNIT OR	ASSEMBLI	PCM-01	PCM-02	PWR-30	DRT-06	DRT-07	DRT-29	ENV-01	ENV-02	ENV-03	ENV-04

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: NMU RACK
SUBASSPARLY: NAGELLE CONTROL ELECTRONICS (NCE)

SEE FIGURE 9

ANALOG SENSORS

See Figure 9 See Note 1 See Note 1 REMARKS III CAIT III 111 III III III Software & hardware Software processing FAILURE DETECTION METHOD Software processing overspeed detection NONE NONE NONE COMPENSATING PROVISIONS NONE NONE NONE NONE NONE NONE Under speed -synchronization will not occur Shutdown Wrong generator output power in the range of 0 to 2000 kilowatts Possible overspeed Shutdown. SYSTEM Shutdown NONE NONE FAILURE EFFECT ON NEXT HIGHER ASSEMBLY Servo controller sets wrong blade angle Servo Controller set wrong shaft speed Receives false indication of failure NONE NONE D/A converter or interface circuitry failure D/A converter or interface circuitry failure Sensor or circuit malfunction Sensor or circuit malfunction Sensor or circuit malfunction. PROBABLE CAUSE Any failure which falsely indicates WTG failure Incorrect Value FAILURE MODE Incorrect Value Low output Low temp. Gen. Winding Temp. WA Gen. Bearing Temp. Shaft Gen. Bearing Temp. aft Transmission Hi spd. Cen. Winding Temp (A. Cen. Bearing Temp. Shaft Cen. Bearing Temp. aft Cen. Shaft vib. Pitch change Bearing Vib. Fransmission Hi spd. brg. Rotor Bearing Vib.
JDD Increase Pressure
EVEN increase pressure
Decrease pressure Speed Trim to Servo Controller acelle temperature Rotor Bearing Vib. Power Reference to Servo Controller temperature FUNCTION brg. temp Analog Command PCM-30 Analog Command PCM-16 ROT-04 PCM-03 PCM-05 PCM-05 PWR-01 PWR-04 PWR-05 DWT-08 PCM-27 DRT-14 PWR-01 PWR-04 PWR-05 DRT-14 **ENV-05** ROT-04 UNIT OR ASSEMBLY

PAGE 44 OF 55
DATE: May 1978
PREPARED BY: R.T. Hedgas

PAGE 45 OF 55
DATE: May 1978
PREPARED BY: R.T. Hedges

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: NHU RACK
SUBASSEMBLY: SERVO CONTROLLER

	REMARKS													
CRIT			II	111	H	111	111	ııı	———	ш				
FAILURE	DETECTION	pitch jam	Pitch jam	Pitch jam	Pitch jam	Pitch jam	Pitch jam	Pitch jam	Pitch jam 1	Pitch jam I		•	-	· · · ·
COMPENSATING	PROVISIONS	Hydraulic bias in servo valve toward feather and emergency		NONE	Hydraulic bias in servo valve toward feather and emergency shutdown	NONE	NONE	NONE	NONE	NONE				
ON	SYSTEM	No blade angle con- trol	Blade goes to feather Emergency shutdown	Blade angle attempts to go to full power. Emergency shuldown	No blade angle con- trol	Blade goes to feather Emergency shutdown	Blade angle attempts to go to full power. Emergency shutdown	Loss of blade control. Emergency shutdown	No blade angle con trol. Emergency shutdown.	No blade angle control. Emergency shutdown				
FAILURE EFFECT ON	NEXT HICHER ASSEMBLY	No valve coil current	Full rate valve coil current	Full rate valve coil current	No valve coil current	Full rate valve coil current	Full rate valve coil current	Valve coil current oscillatory	Loss of feedback in servo loop	Incorrect feed- back in servo loop				
100000	FRUBABLE CAUSE	Circuit failure	Shorted CE on output transistor	Shorted CE on output transistor	Circuit failure	Shorted CE on output transistor	Shorted CE on output transistor	Piece part open or short changing com- pensation network	Open connection or piece part	Shorted amplifier				
TATTING MORE	THEORE HODE	No outpur	Full on toward feather	Full on toward full power	. No output	Full on toward feather	Full on toward full power	Unstable	No output	Full scale output	•			
FUNCTION		Linear Drive Ampl. for servo valve coil			Closed loop servo control and compensation for speed and power modes.				Condition sensor input signals					
UNIT OR		OUTPUT AMPLI- FIER			SERVO CONTROL LOGIC				OSCILLATOR/ DEMODULATOR, POWER TRANSINGER BUFFER, &	TACHOMETERS				

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: NMU RACK
SUBASSEMBLY: SERVO CONTROLLER (CONT.)

SEE FIGURE 9

PAGE 46 OF
DATE: May 1978
PREPARED BY: R.T.

FALLURE CRIT		Pitch jam III or ∆time	At time III out to synchronize			 							
COMPENSATING	•	NONE	NONE										-
ON	SYSTEM	Blade goes to feather. Emergency shutdown.	Will not synchronize With utility line. Normal shutdown										
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Loss of ramp	Servo controls to wrong speed									\$	-
	PROBABLE CAUSE	Open connection or piece part failure	Open connection or failed piece part	selle DIP:									
	FAILURE MODE	No output when ramp function is called for	HI voltage LO voltage (speed mode)	mmand circuits under Na				- American de la companya de la comp					
ENIMORYON	FUNCTION	Generator speed ramp signal for startup & shutdown	Common voltage ref. for servo speed loop and tachometers	Same as the following command circuits under Napelle DIP:	PON-14 PON-15 PON-32 PON-34 PON-38								
UNIT OR	ASSEMBLI	RAMP GENERATOR	SPEED REFERENCE	RELAY INTERFACE			·			-		 ,	

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: Ground Multiplexer Unit (GMU) Rack
SUBASSEMBLY:

	REMARKS						
	CAI.	H	H	 	· · · · · · · · · · · · · · · · · · ·	· ·	·
	DETECTION	CRU looks for loss of signal	CRU looks for parity		:		
	COMPENSATING PROVISIONS	NMU issues ESD, LO commends instantly upon CRU detection of loss of signal.	NAU issues ESD, LO commands instantly upon CRU detection of loss of parity.				
	SYSTEM	Loss of control & data acquistion of Ground user subsystems.	Same as above				
mpadad dontary	NEXT HIGHER ASSEMBLY	Data not sent to CRU, commands not issued to user subsystems, ESD cannot be issued to Ground user subsystems.	Same as above				
	PROBABLE CAUSE	• Power supply failure • Unibus failure • Other circuft failure	Circuit failure				
	FAILURE MODE	No output to CRU	Confused or Scrambled output				
	FUNCTION	Data Multiplexer, issue commands, data compression, sense link with CRU, plsue ESD, LO independently, 32 K MOS memory					
UNIT OR	ASSEMBLY	GROUND MULTIFLEKER UNIT (GMU) (DEC PDP 11/04)	·		·		

PAGE 48 OF 55
DATE: May 1978
PREPARED BY: R.T. Hedges

SUBSYSTEM: CONTROL (2.5)
COMPONENT: GMU RACK
SURASSEMBLY: G-DIP

										tate	:	•		
	REMARKS	,								In Gen. state				
CRIT	CAT.	111	III	III ;	III	Ħ	II	H	111	III	111	ш	III	
FAILURE	DETECTION	Software Processing	NONE	MUX meas- ures re- sponse time	MUX meas- ures re- sponse time	NONE	Software processing	Protective relaying	Protective relaying	Protective relaying	Protective relaying	Protective relaying	NONE	
COMPENSATING	PROVISIONS	Shutdown is commanded when incorrect state is detected.	MUX only samples when command is "ACTIVE"	Shutdown	Shutdown	Synchronizer will not close breaker	Emergency shutdown	Shutdown	Siutdown	Shutdown	Shutdown	Shut down	NONE	
ON	SYSTEM	CRU will receive inconsistant data,	NONE	Corresponding command indicated to be failed.	Corresponding function does not respond	NONE	Attempted overspeed	Overvoltage	Lagging power factor	Lagging power factor	Overvoltage	Lagging power factor	Data is not recorded	
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	DIP will output er- roneous "sensor" states,	"ON" status indi- cated to MUX	"OFF" status indi- cated to MUX	User device is not commanded	Switchgear is en- abled	Breaker opens	Full Excitation motor pot to limit	Minimum excitation motor pot limit	Loss of excitation power	Full excitation motor pot to limit	Minimum excitation motor pot limit	SAIR is disabled	
	PROGREES, CAUSE	Circuit failure	Circuit malfunction	Circuit malfunction	Circuit malfunction	=	=======================================	= =	= .	: :	= ,	# · · · · · · · · · · · · · · · · · · ·	=	
	FAILURE MODE	OPER/TEST fails in "TEST"	Any combination "ON" when it should be "OFF"	Any combination "OFF" when it should be "ON"	Falls to change state when required	NO	on (open)	ON (RAISE)	ON (LOWER)	OFF	RAISE	LOWER	NO	
TO A BOTTON	FUNCTION	Switch signal paths to suit computer driven test	Remove signal ambiguity and drive		Boost signal to drive relay coils	Sync Enable ON/OFF	Main Breaker OPEN ON/OFF	Voltage Reg, RAISE/OFF	Voltage Reg, LOWER/OFF	Voltage Reg, PWR ON/OFF	Power Factor RAISE/OFF	Power Factor LOWER/OFF	SAIR DISABLE ON/OFF	
UNIT OR	ASSEMBLY	TEST LOGIC	Status debounce circuits, drivers, or any	other in-line status ckt,	Command relay drivers or any other in line command circuit	CMD PWR-23	CŅD PWR-24	CMD PWR-25	CMD FWR-26	CMD PWR-31	CMD PWR-27	CMD PWR-28	ENV-09	

PAGE 49 OF 55 DATE: May 1978 PREPARED BY: R.T. Hedges

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: GAU BACK
SUBA SWEIBLY: G-DIP

SEE FIGURE 9

COMMANDS

	s						·.				٠	· · · · · · · · · · · · · · · · · · ·
	REMARKS			See Figure 9.		٠	*					•
CRIT	Ę.	Ħ	111	ш	H	ш	III		- /			
FAILURE DETECTION NETHOD		Pump failed alarm	Main Accum. Alarm	Valves are "dead man" connected	Flow is measured	NONE	Pump failed alarm	-			·	
COMPENSATING	PROVISIONS	NSD (Normal Shut Down) Pump failed alarm	=	RSD	NSD	NOVE	NSD			•		
ON	SYSTEM	PCM hydraulic flow capability is reduced	•	Blades Feather	Loss of lube oil	Vulnerable to Breakin	Yaw stops			·.		
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Pump Stops	:	Loose power to Emergency feather valves	Pump stops	No alarm and message if breakin	Pump stops				,	
ASIG	Acox	Circuit Malfunction	:	=	:	=	=					
PROBABILE		Circuit M	=	=	: 	:	:					
FAILURE MODE		OFF	OPF	OFF	OFF	OFF	84 0	,				
FUNCTION		Slew Pump ON/OFF	Charge Pump ON/OFF	Aux Power Disable ON/OFF	011 Lube Pump ON/OFF	Security alarm ON/OFF	YAW Pump ON/OFF					
ASSEMBLY		PCM-22	PCM-23	P4R-29	DRT-23	ENV-13	YAW-17					

PACE 50 OF 5 DATE: Maly 1978 PREPARED BY: R.T.

SUBSYSTEM: CONTROLS
COMPONENT: GMU RACK
SURASSEMBLY: G-DIP

ı		1															
	3/8 VP.3 0	KETAKKAS					All combinations are continuously monitored	Note 1	Hourly message will indicate repeated startup	accempts	All combinations with pump failed alarm are contin- uously monitored	=		2nd FAILURE or one procedural failure causes safety hazard.	· ·		·
	CRIT	;	III	ш	m	· III	111	III	H	н	111	ш	Ħ	Ħ.			·
	FAILURE DETECTION METHOD		Software Processing	NONE	ŧ	=	Software Processing	NONE	NONE	NONE	Software Processing	Software	NONE	NONE		•	 . ,
	COMPENSATING PROVISIONS		NONE	NONE			NONE	NONE	Main Breaker will not respond to command	NONE	ESD	NSD	NONE	Procedure requires reading message on DEC writer to verify shutdown.			
	NO	SYSTEM	Shurdown	NONE	=	=	Shutdown		Allows system startup	Vulnerable to breakin	NONE	NONE	Vulnerable to breakin	Operation is not inhibited. Potential safety hazard			
	FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	False indication of failure	NONE	=		Ξ		Computer does not detect lockout	No alarm & message if breakin	NONE	NONE	No alarm and message if breakin	Can use lift			<u>.</u>
		PROBABLE CAUSE	Circuit malfunction	=	= .	=	Short or open ckt	Circuit malfunction	=	:	E **	ë e	=	=			
		FAILURE MODE	Any failure which indicates WTG failure	OFF	OFF	OFF	Either way	Normal voltage	Not locked out	OFF	OFF	OFF	OFF	WTG Enabled			
& CKTS	NO ABOVE IN	FUNCTION	Provide sensor signals to multiplier	XFVR Temp Alarm	XFMR Oil level alarm	XFMR Ground Current Alarm	Main Breaker Position	Battery low voltage alarm	Main Breaker Lockout	Encl. Door Alarms	Slew Pump ON/OFF	Yaw Pump ON/OFF	Entrance Alarm ON/OFF	Lift Interlock			
DICITAL SENSORS & CKTS	UNIT OR	ASSEMBLY	SENSORS & THEIR CIRCUITS	PWR-17	PWR-18	PWR-19	PWR-20	PWR-32	PWR-41	ENV-12 & ENV-19	PCN-24	YAW-18	ENV-14	ENV-15			

SUBSYSTEM: CONTROLS (2.5)
COMPONENT: GMU RACK
SUBASSEMBLY: GGE

SEE FIGURE 9

ANALOG SENSORS:

Max. effective control range is t 10% Max. effective control range is ± 10% CAI. 111 111 111 III H III Compared with nacelle power sensor FAILURE DETECTION METHOD Software Processing Software Processing Compared with DRT-07 NONE NONE COMPENSATING PROVISIONS Shutdown Shutdown Shutdown NONE NONE NONE AV between gen. and utility too large at synchron-ization Δ V between gen. and utility too large at synchron-ization The following failures could occur either in the sensor itself or in signal conditioning or test logic circuitry Shutdown NONE SYSTEM MONE NONE FAILURE EFFECT ON NEXT HIGHER ASSEMBLY False indication of failure Exciter voltage set wrong Exciter voltage set wrong NONE NONE NONE Circuit Malfunction Circuit Malfunction Circuit Malfunction Circuit Malfunction Circuit Malfunction Sensor or circuit malfunction PROBABLE CAUSE Any failure which indicates WTG failure FAILURE MODE Wrong Value Wrong value Wrong value Wrong value Wroug Value Gen. Current &A

" " Volt &A - ØB

" Wolt &A - ØB

" KVAR

" KVAR

" I KVAR

" I KVAR

" I KVAR

" KVA Exciter field current Gen. Volt AA - ØB Rotor Shaft Speed Utility Voltage ØA - ØB Gen. Current Gen, Power KW FUNCTION PWR-07
PWR-08
PWR-09
PWR-10
PWR-11
PWR-12
PWR-13
PWR-16
PWR-22
DRT-05 PWR-10 PWR-13 PWR-22 DRT-05 UNIT OR ASSEMBLY PWR-11

PACE 51 OF 55
DATE: May 1978
PREPARED BY: R.T. Hedgen

REMARKS

PACE 52 OF 55
DATE: MAY 1978
PREPARED BY: R. COCKfield

STATEM: TOWER (3.0)
COMPONENT: STRUCTURE 848E834
SUBASSEMBLY:

	REMARKS	Inspection and repair of large cracks during periodic maintenance Analysis based on tower finite element model and local hand calculations.	Inspection during periodic mainten- ance,	Inspection during periodic mainten-ance.
CRIT	CAT.	II.	H	II
FAILURE	DETECTION METHOD	Vibration Sensors (after extensive cracking)	Vibration sensors (after extensive distortion)	Vibration sensors (after extensive distortion)
COMPENSATING	PROVISIONS	calculated range stress is below AISC limits limits a limit of stress ended to be accounted for wild area exceeds minimum required wield has passed MT and VI inspection and VI inspection and VI inspection compressive (no crack gröwth likely)	Calculated stress is below 60% of yield weld area exceeds minimum required weld has passed MT and UT inspection Truss structure provides redundant load paths'	• Calculated stress is below critical buckling • Truss structure provides redundant load paths • Rugged section is immune to all but massive ice projectile
NO	SYSTEM	Excessive vibration (after extensive cracking)	Excessive vibration • Calculated stress (after extensive is below 60% of y distortion) • Weld area exceeds minimum required • Weld has passed Mand UT inspection • Truss structure provides redundan load paths	Excessive vibration (after extensive distortion)
FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	Degraded stiffness (after extensive cracking)	Distortion of nacelle mounting (after extensive yielding)	Distortion of tower (after extensive buckling)
	PROBABLE CAUSE	Cyclic loads were under estimated Undetected flaw	(a) Unusual loads not anticipated (b) Transients during start-up and shut- down	(a) Unusual loads not anticipated (b) Translents during start-up and shutdown (c) Ice shed from blade
	FAILURE MODE	Fatigue cracks in weld	Yielding of weld	Buckling
	FUNCTION	Structural support		Structural support
UNII OR	ASSEMBLY	FINIL, JOINT 17 OR LEG, JOINT 1		BRACE, MEMBER 20 - 26

FAILURE MODE EFFECTS AND CRITICALITY ANALYSIS

PAGE 53 OF 55
DATE: May 1978
PREPARED 8Y: R. Gockffeld

SUBSYSTEM: ICMER (3.1)
COMPONENT: LIFT DRVICE 273A6500
SUBASSEMBLY:

UNIT OR	MOLLONIA	2007		FAILURE EFFECT ON	ON	COMPENSATING	FAILURE	CRIT	
ASSEMBLI	POT TOWN	FALLUKE MUDE	PROBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS	DETECTION	Ç A I.	REMARKS
LIFT DEVICE	Transfer personnel &	Broken cable	(a) Overload	NONE	NONE. System can	(a) Factor of safety	Loss of	111	Loss of tension
	tower		(b) Stress corrosion		continue to operate with lift inopera-	of 8 on each drive	tension		in cable will
			(c) Fatigue		tive	Drive cables are redundant			be cut to both
			(4) Wandah (4)				tension		direction and
			(d) vandalism			Safety cable with factor of safety of	switch		will apply brakes.
			(e) Wear	,		six if both drive			Tension exceeding
			(f) Wrong material			cables break Small floor area			125% of normal will cut power to
						limits inadvertant overload			both motors in up
	- gaga-san rate, e					 Check out by Mfg. prior to use 			
	······································					(b) Cables are stainless steel aircraft type			
	28-w-4/4a					Periodic inspection & lubrication			See Note 1
						(c) Low atress, low no. of cycles in 30 yrs.			
				-		(d) Fenced area			
						(e) No rubbing loads			
						Smooth surfaces at all contacts			
						(f) Material certs available		_	
			•						
			•						

FAILURE MODE EFFECTS AND CRITICALITY ANALYSIS

SUBSYSTEM: TOWER (3.1)
COMPONENT: LIFT DEVICE 273A6500
SUBASSPABLY:

RIT OR	and and miles			FAILURE EFFECT ON	NO	CNIEASVAGO	Г		
	LONCITON	FAILURE MODE	PROBABLE CAUSE	NEXT HIGHER ASSEMBLY	SYSTEM	PROVISIONS	DETECTION C	CAT.	REMARKS
LIFT DEVICE		Fracture of anchor points for cables	(a) Overload (b) Fatigue	NONE	NONE. System can continue to operate with lift inopera-	(a) See (a) above (b) Low stress, low no. of corles in 30 yrs	Loss of tension	F	Periodic inspection Will include anchor
			(c) Vandalism		tive.	(c) Fenced area, criti-			oolts & support structure
			(d) Improper material or installation			are at top of tower & not accessible (d) Check out by Mfg prior to use	switch		
		Slipping of drive	(a) Mechanical failure of drive mechanism (b) Failure of cable termination on drive drum (c) Brake failure (d) Icing	NONE		Grip will engage on safety cable	Loss of tension	111	Brake force is sufficient to break or melt ice on cable
		Loss of electrical power	(a) Electrical short (b) Loss of Utility power (c) Overtension of power cable (d) Relay, switch or component failure	NONE	NONE	• Power supply on independent circuit e Fuset terminal box located at ground level . Emergency descent with	Over- tension switch on power cable		
						Accuments to weather tight (NEWA type 4) If cable is over- tensioned, over- tensioned, over- switch enables oper- ation "Down" only	٠.		
		Electrical short resulting in shock hazard	(a) Insulation failure (b) Component failure (c) Moisture in enclo- sures	NONE	NONE	• Power supply is fused • All structure grounded • Weathertight enclo- sures (NEMA type 4) • Check out by Mfg.	-	III	Check out of wiring will include ground resistance on all
	· · ·		•		:		. :		
				•			· · · · · · · · · · · · · · · · · · ·		

FAILUNE MODE EFFECTS AND CRITICALITY ANALYSIS

SUBSYSTEM: TOWER (3.1)
COMPONENT: LIFT DEVICE 273A6500
SUBASSEMBLY:

		REMARKS				Periodic inspection will include secur- ity of railings.					
			H		· · ·	Peri will ity				 	
	CRIT		H			H .				 	
	FALLURE	DETECTION	Gate open switch		-						
	COMPENSATING	FROVISIONS	(a) Gate is rugged construction	(b) Gate opens inward only. • Gate is self-closing & self-latching • Latch requires post-tive, double morion to unlatch; cannot: be unlatched inadvertanly • Switch on gate enables power only when closed	(c) Requires double fail. ure or double overt action	(a) No. of people in lift is limited by available floor area as well as posted limit.	Construction of railings is to OSHA standards	(b) Checkout by manu- facturer prior to operation	Periodic inspection		
	NO J	SYSTEM	NONE			NONE					
	FAILURE EFFECT ON	NEXT HIGHER ASSEMBLY	NONE			NONE					
	PROBABLE CAUSE		(a) Mechanical failure of gate or hinges	(b) Latch not secure (c) Intentional disablin of safety switch & opening of gate		(a) Overload (b) Improper material or installation					
	FALLURE MODE		Gate open during operation			Structural failure of rails or attach- ments					
	FUNCTION		To keep personnel from falling through open- ing in railings	·		To keep personnel from falling from lift or tower	-		-		
UNIT OR	ASSEMBLY		LIFT DEVICE GATE			RAILING					

APPENDIX A - BLADE

Unbalance Loads after Blade Separation
Interface Ring Flange
Test Program
Quality Program

I-1 UNBALANCED LOADS AFTER BLADE SEPARATION

A loads analysis was performed to determine the loads on the major items of structure resulting from the loss of a blade. These loads are presented on Table I-1. For comparison purposes, the maximum infrequent loading condition of emergency feather - 15% overspeed is presented. Effects on major items are:

The remaining blade has loads imposed which are within its capacity and should suffer no damage.

The blade retention bearing in the hub also will be subjected to loads which are within its capacity and will suffer no degradation.

The hub bearing on the bedplate side will be subjected to loads which are substantially higher than the emergency feather condition. The bearing has the capacity to carry these loads for the few cycles they will be imposed with a small reduction in life.

The bedplate will experience local yielding but no failure due to loads somewhat in excess of design values.

The yaw bearing will be subjected to bending moments which approach the maximum moment capability of the bearing. For the few cycles this loading occurs, there should be no damage to the rollers or races. The yaw brake, however, will slip due to the high yawing moment.

The tower base will experience overturning bending moments approaching 50×10^6 ft-lbs. This will result in local yielding of some of the tower secondary members; however, the 4 corner legs have the inherent stability in buckling and as a column to carry the higher loads.

I-2 BLADE INTERFACE RING FLANGE

A three-dimensional finite element stress was performed for the WTG blade ring adapter (Boeing DWG #276-10509, Rev. B, 5/11/78, trans-mitted via Datafax). It was performed to verify the design and analysis submitted by Boeing.

The ring adapter was analyzed using the latest worst case loads for both fatigue conditions and emergency feather conditions. The equivalent axial load at the blade attachment section was 1,404,000 pounds (7,152 psi) for the fatigue case, and 4,379,130 pounds (22,310 psi) for the emergency feather case. The bolt preload was given as 110,340 pounds (-31,022 psi).

RESULTS

As expected, the peak stresses in each case occurred at the root of the elliptical transition section on the outer surface of the ring, immediately adjacent to the bolt head location. For the fatigue case, the peak principal tensile (cyclic) stress was found to be 20,200 psi. For the emergency feather case, the peak principal tensile stress was found to be 50,000 psi. The margins of safety were found to be +.416 and +.26, respectively. Also, the preload applied by the attachment bolts was not exceeded.

ALLOWABLE STRESSES

The allowable stresses in the ring adapter material are given as

 $MAX_{FATTGIIF} = 28,600 \text{ psi [Ref: Blade Spec. 273A6684]}$

 $MAX_{FEATHER} = 63,000 psi$

MARGINS OF SAFETY

The margins of safety were determined using the peak stresses obtained from the finite element run.

M.S. =
$$\frac{28,600}{20,200}$$
 - 1 = .42

For the emergency feather case:M.S. =
$$\frac{63,000}{50,000}$$
 - 1 = +.26

ANALYSIS

A sketch showing the modelling approach is presented on Figure I-2.

The stress distribution within the WTG blade ring adapter was determined by using the finite element method, due to the non-uniform geometry of the ring cross-section. The SAP V finite element computer program was used for the actual numerical determination. This code was developed at the University of California, Berkeley, and is well documented and accepted throughout the technical community. Using the initial geometry of Figure I-2, a three-dimensional finite element model was developed for the 1/112 section. This model consisted of 765 elements and 1185 nodes.

Table I-1 DYNAMIC & GRAVITY LOADS

	Two Bla	ades	One I	Blade
LOAD	50 MPH 40.25 RI		35 MPH 35 RPM	
LBS FOR SHEAR FT-LBS FOR MOMEN		CYCLIC (+)	MEAN	CYCLIC(+)
F1-LDS FOR MOMEN	NI MEAN	CICLIC (+)	MEAN	CICLIC (+)
BLADE VX RET BRNG VZ (BLADE MX SIDE) * MY MZ	396,130	7,518	293,050	26,138
	-25,435	18,956	-12,830	19,434
	65,021	22,400	31,943	12,154
	5,968	17,769	8,399	16,195
	-3,107,330	1,021,300	-1,485,420	523,030
	-1,043,770	792,160	-59,430	733,800
VX	396,130	7,518	293,050	26,138
VY	-2,576	20,684	-5,884	19,693
BLADE V	69,130	23,843	32,522	12,810
RET BRNG MZ	5,968	17,769	8,399	16,195
(HUB MX	3,207,870	1,126,200	-1,556,400	670,340
SIDE) + MY	10,940	869,910	-141,498	604,410
HUB BRNG VX (HUB VY SIDE) + MZ MX MY Z	-52	66,225	276,610	833,230
	35	86,466	6,846	69,698
	-2,359	18,680	-13,432	10,363
	106	606,630	-50,535	266,490
	2,639	2,339,700	-3,187,200	769,480
	66,386	184,210	-194,540	628,260
VX HUB BRNG VY (B/P SIDE MZ SIDE) ** MY MY Z	-91,795	13,970	-66,665	52,678
	-5,286	21,627	-4,333	156,720
	-2,359	18,680	-13,432	10,363
	82,336	507,490	-3,964	2,167,700
	1,311,000	1,051,600	749,170	1,933,900
	66,386	184,210	-194,540	628,260
YAW BRNG** V VX VY VZ MX MY MY	-339,830 18,220 -6,105 -5,369 842,030 -35,132	17,162 60,879 34,807 636,680 947,600 454,260	-318,650 -8,156 -13,586 57,842 103,970 -326,310	219,810 268,110 57,064 5,285,900 2,210,700 1,351,600
TOWER VY BASE** MZ MY MY Z	-680,180	22,181	-662,290	382,840
	-23,166	80,510	-1,227	348,320
	-6,779	45,747	-9,793	71,981
	-4,539	807,110	143,550	6,073,900
	1,168,500	5,539,300	2,305,400	5,279,500
	-3,149,500	10,766,000	-797,300	47,697,000

^{*}Ref. to blade angle @ 3/4 R +Blade coord (rotating) **Tower coord (stationary)

Figure I-2. Model Geometry and Coordinate System

I-3 BLADE TEST PROGRAM

Three areas of testing have been planned for the Mod-1 blade. To verify design assumptions or to demonstrate specification compliance:

- 1) ENGINEERING DEVELOPMENT TESTS

 Tests performed on sub-element structures to obtain early indication of design adequacy.
- 2) BLADE DEVELOPMENT TESTS

 Tests performed on full-scale portions of the blade to ascertain structural adequacy. In most cases, the test data from these tests will be available after the final design is complete.
- 3) BLADE TESTS

Tests which will be performed on the completed blade to determine dynamic characteristics or basic property data such as elastic axis location, static moment, chordwise c.g. locations, and stress and deflection data vs. load.

A summary of the tests in each of the above categories follows in Table I-3, I-4 and I-5.

TABLE I-3 ENGINEERING DEVELOPMENT TESTS

	1.2. Tele in 1998. supplimentation and project of the state of the second continuous second s	1				
TESTS	CONFIGURATION	NO.	TYPE TEST	CONDITIONS	DURATION	COMMENTS
T.E./SPAR ATTACH. INBD SPECIMEN	STA. 212 (2' long 1' wide 3" thick)	т.	STATIC	AMBIENT	1 TEST CYCLE	STATIC TEST OF ATTACH, DESIGN
OUTBD SPECIMEN	STA. 844 (10" long 6" wide 1" thick)	н	DYNAMIC	TEMP: -31 ^O F to 140 ^O F HUM: 10% to 100%	5 x 10 ⁷	FATIGUE TEST OF ATTACH. DESIGN.
SUB-ELEMENT T.E. JOINT SPECIMENS	LAP SHEAR	20	STATIC	10 AMBIENT 10 R.T. & 140 ^O F		TO OBTAIN DATA ON ADHESIVE STRENGTH OF BONDED JOINT
		r	DYNAMIC	TEMP. & HUM. CYCLED	5 x 10 ⁷	

TABLE I-4 BLADE DEVELOPMENT TESTS

COMMENTS	TO ESTABLISH VALIDITY OF COMP. BUCK- LING ANAL. OF LOWER CAMBER.	TO ESTABLISH VALIDITY OF WELD JOINT FATIGUE ALLOWABLES	WILL BE LOADED TO SIMULATE MAX. BLADE BOND STRESS
EXPECTED DURATION	100% D.L.L (INCL. 1.15 COMPRESSIVE BUCKLING FACTOR)	VARIABLE DEPENDING UPON IMPOSED STRESS LEVEL 1 x 10 ⁸ CYCLES MAX	50 × 106 CYCLES
CONDITIONS	EMERGENCY FEATHER LOAD COND. AMB. ENVIRONMENT	AMBIENT (R.T.)	35 MPH FATIGUE LOADING COND. ENVIRONMENTAL CONDITIONS
TYPE TEST	STATIC	FATIGUE	FATIGUE
NO.	н	v	г
CONFIGURATION	16' SECTION OF SPAR BETWEEN STA. 388 & STA. 580	6 COUPONS CUT FROM A SECTION OF BLADE THRU WELDS FABRICATED BY APPROVED PROCEDURES	6 FT. SPANWISE LENGTH OF TRAILING EDGE. CONFIG. PER BLADE STA. 1000.
TEST	STATIC TEST [1.7.3]	FATIGUE STRENGTH OF WELDS [1.7.4]	FATIGUE STRENGTH OF BONDED T.E./SPAR JOINT [1.7.5]

TABLE I-5 BLADE TESTS

COMMENTS	THIS TEST WILL DETERMINE TIP WT. BALANCE REQUIRE- MENTS	THIS TEST WILL LOCATE THE CHORDWISE C.G. LOCATION. IF IT IS WITHIN SPEC., IT WILL PRECLUDE CERTAIN DYNAMIC INSTABILITY	ALSO REQUIRED TO JUSTIFY DYNAMIC STABILITY	THIS TEST WILL VERIFY THE OVERALL BLADE ATLAS ANALYSIS AND MODELLING TECHNIQUE. THIS TEST CAN ALSO BE USED TO CALI- BRATE THE STRAIN GAGES	VERIFY ADEQUACY OF DYNAMIC ANAL. OF THE BLADE AND THE OVERALL WTG EFFECTS	
BLADF SPEC 273A6684 REQUIREMENT	3.14.1	3.14.1	3.14.3	3.14.3 & 3.14.4	3.14.2	
OBJECTIVE	DETERMINE EA. BLADE TOT. WT. & C.G. LOC.	DETERMINE OVERALL BLADE CHORDWISE C.G. LOCATION	DETERMINE BLADE FLASTIC AXIS	TO LOAD A CANTILEVERED BLADE WITH A REPRESENTATIVE AIR LOAD, RUN AN ATLAS ANALYSIS OF THIS CONDITION AND COMPARE ANAL. RESULTS WITH MEASURED DATA.	DETERMINE BLADE DYNAMIC CHARACTERISTICS	
TEST	• WT. & BALANCE IN- CLUDING SPANWISE STATIC MOMENT	• CHORDWISE C.G. LOCATION	• ELASTIC AXIS DETERMINATION	• STATIC LOAD TESTS	DYNAMIC TESTS MODE SHAPES FUNDAMENTAL FREQUENCIES STRUCTURAL DAMPING	

I-4 QUALITY PROGRAM

The blade Quality Program is summarized on Table I-6. The trailing edge portion of the blade is, at this writing, just completing the development phase. Consequently, the Quality Control plans for it are preliminary and subject to change.

TARLE I-6 PLADE QUALITY PROGRAM

TABLE I-6 BLADE QUALITY PROGRAM

INSPECTIONS PERFORMED & SPECIFIC CONTROLS			CHEMICAL & PHYSICAL TESTS ON FACH LOT ORDERED. WELDING TATERIAL STORAGE & HANDLING TO DATE 10080.1	TOURTH OF THE STATE OF THE STAT	SPAR WELD JIG CONTROLS CONTOUR & ALIGNMENT, GO-NO-GO GAGES FOR DIMENSIONAL INSPECTION, WELDING BY CERTIFIED OPERATORS & PROCESSES, WELDS INSPECTED VISUALLY - D276-10503-1 DYE PENETRANT - D276-10504-1 ULTRASONIC - D276-10502-1 RADIOGRAPHIC - D276-10502-1 WELD REPAIR D277-10087-1 POST WELD HEAT TREATMENT D277-10086-1 WELD MATERIAL CONTROL D277-10086-1 D277-10089-1
ACCEPTANCE CRITERIA	PER ASTM A533, GR. B CLASS 2 SUPPLEMENTAL REQUIREMENTS PER ASTM-A20 S-14 BRND TESTS S-5 CHARPY V NOTCH, 20 FT-LBS AT -10°F S-12 ULTRASONIC INSPECTION (STRAIGHT BEAM) PER ASTM A578	CHEMICAL ANALYSIS, GRAIN SIZE PER ASTM A508, MAGNETIC PARTICLE PER ASTM-A275, ULTRA- SONIC INSP. PER BAC5439, CL.A & ASTM A388, CHARPY V-NOTCH (20 FT-LBS 0 -10°F) ULTIMATE & YIELD STRENGTH			DIMENSIONAL & ALIGNMENT TO DRAWING REQUIREMENTS FLAW CRITERIA-UNACCEPTABLE: 1. Any crack or zone of incomplete fusion or penetration; 2. Any indication, elongated or rounded with a length 12. Any group of indications in line that have an aggregate length > 3/8 in. in line that have an aggregate length > 4/1/2 except where distance between the successive indications exceeds 6L, where L = longest indication in the group; 4. Rounded indications whose total area exceeds .03IN in 6 linear inches of weld.
CRITICAL PARAMETERS	CHEMICAL & MECHANICAL CHARACTERISTICS		CHEMICAL & MECHANICAL PROPERTIES	DIMENSIONAL, INDUCED FLAWS & CRACKS	DIMENSIONAL, ALIGNMENT, PROCESS, OPERATOR, MATERIAL, INSPECTION CAPABILITY, REPAIR PROCEDURE
BLADE ITEM	<u>SPAR</u> A533 STEEL (LUKENS FINELINE)	RING FORGING TO ASTM-A508, CL. 4B	WELD MATERIAL	SPAR FORMING & TRANSITION FORMING	UPPER CHORD WELDS, TRAILING EDGE WELD INBOARD ST. 301, TRANSITION TRAILING EDGE WELD, RING ADAPTER/TRANSITION WELD, SPAR TO TRANSITION WELD

APPENDIX B

ROTOR OVERSPEED

ROTOR OVERSPEED

One of the more serious failure scenarios on a wind turbine is rotor overspeed. If permitted to "run-away", blade separation due to large rotor centrifugal stress is a probable final result. The MOD-1 pitch control system is the mechanism whereby overspeed is controlled, with redundant stored energy and redundant deadman control valve elements built into the system.

The maximum rotational speed of the rotor is a function of rotor inertia, accelerating torque due to loss of load and wind increases, a time delay from the start of acceleration to initiation of blade pitch motion towards feather, and the torque rate of change with time, which is a function of pitch rate. In order to simplify the following analysis, step changes in wind velocity over the entire rotor disc were assumed, a condition not reasonably occurring in nature. Acceptable response to these step inputs will indicate better than acceptable response to realistic wind perturbations.

Values utilized in the analysis are:

Inertia of rotating system
Rated torque (2160 KW, 34.7 RPM)
Nominal control delay
Maximum blade rate
Maximum torque rate

2.1 x 10⁶ 1b-ft-sec²
4.4 x 10⁵ ft-1b (100%)
0.2 sec
14 deg/sec
150% /sec at 14 deg/sec

Wind steps considered and their torque effects are:

1.0 to 1.4 normalized velocity = 100% to 235% normalized torque 1.0 to 1.8 normalized velocity = 100% to 376% normalized torque

The torque increase does not follow a wind velocity cubic due to assuming initial conditions just at rated wind velocity near the peak power coefficient value. Any wind increase thus is effective at a reduced power or torque coefficient value. A linear torque-pitch relationship, no compensation for torque change with rotor speed, and no losses are assumed. The combined effect of these assumptions is believed to balance out as the second and third assumptions are conservative, while the first is not conservative.

Four scenarios, as follows, describe a range of increasingly severe accelerating torque conditions. Loss of load is considered to be a "normal" design event as the main circuit breaker can be tripped open due to a variety of electrical anomolies.

Case 1	loss of 40% load	No Gust
Case 2	loss of 100% load	No. Gust
Case 3	loss of 100% load	1.4 Gust
Case 4	loss of 100% load	1.8 Gust

Response was computed on the basis of a normal control system de-energization of the feather solenoid valves, permitting the fluid in the feather accumulators to discharge into the blade actuators towards feather through a programmed flow valve. This valve has the characteristics and adjustability shown in Figure 1.

A nominal program for the flow valve has been selected with the dual goals of limiting peak speed in a significant upgust wind and also limiting blade loading in decelerating torque conditions. The initial rate is at a blade equivalent of 14 deg/sec for 0.8 seconds, followed by a linear decrease to 4.4 deg/sec over the next 1.6 seconds, then maintained at 4.4 deg/sec. Starting from 0.0 degrees, this schedule reaches 90.0 degrees feather in 17 seconds, with 25 degrees change in the first 2.5 seconds. The flow program is field modifiable for rate change, final rate, and time at maximum rate.

Results, with 0.2 second nominal control delay and activation of the feather system due to either high wind, breaker opening, large yaw error, or vibration are as follows:

Case	- 1	2	3	4
Max. spd % over 100%	.77	3.08	10.71	22.7
Time at max	.47	.87	1.25	1.72

Hybrid runs of cases analogous to the above cases 2 and 4 were made during the course of system design simulation. The control algorithm was to shift to speed control at rated speed reference with no delay. On 100% load loss, 2.2% overspeed occurred and with a 1.8 gust, 11% overspeed occurred. Pitch angle response started at the maximum rate near 14 deg/sec and maintained a higher rate than the programmed valve, due to the speed control loop gain. These two cases are shown in Figures 2 and 3.

If a control system failure prevents initiation of the feather system at rated rotor speed, software and hardware switch actuation of the feather valves are provided as backup. Present settings for the software and hardware overspeed switches are 5% and 10% respectively. These speeds are additive to the response values and in the case of the realistic 1.4 wind gust, result in 15.7 to 20.7% overspeed. Resetting of these switches to 3 and 6% respectively is recommended to reduce maximum speed, providing adequate separation from startup variation, overshoot and switch tolerance bands can be maintained. The lower settings would result in 13.7 or 16.7% overspeed for software and hardware initiated feather with the nominal valve program and a Case 3 scenario.

To summarize, maximum rotor overspeed is expected to be less than 5% (3.08 % calculated) on loss of load and less than 20% on loss of load plus a sustained 1.4 upgust plus a primary control input or output failure requiring use of the hardware backup overspeed circuit. These values are acceptable for a rotor and blade system with positive stress margin at a rotor speed above 20% overspeed. The MOD-1 blade has positive margin near 20% overspeed.

Figure B-1
Programmed Flow Valve Characteristics

PERCENT VALUE STROKE

->	K	10	sec
----	---	----	-----

		71 6	
VARIABLE	FULL SCALE	the same and a same and	
	UNITS	·: 177: 1: 17: 17: 11: 11: 11: 11: 11: 11	
WIND AT 1.2 sec AHEAD	0 ± 125 FPS		
BLADE #1 WIND	0 ± 125 FPS		
BLADE #1 TORQUE	0 ± 1,250,000 ft-1b		
GENERATOR POWER	.8 ± 2.5 pu		
PITCH ANGLE	0 ± 50 deg.		
COS POWER ANGLE	0 ± 1.25		
GENERATOR SPEED	1800 ± 119 rpm		
ROTOR SPEED	34.7 ⁺ 4.8 rpm		rpm 2% overshoot

Figure B-3

VARIABLE	FULL SCALE UNITS	**************************************
WIND AT 1.2 sec AHEAD	0 ± 125 FPS	1.5 GUST
BLADE #1 WIND	0 t 125 FPS	
BLADE #1 TORQUE	0 ± 1,250,000 ft-1b	
GENERATOR POWER	.8 ± 2.5 pu	
PITCH ANGLE	0 ± 50 deg.	6° to 22°
ROTOR SPEED	34.7 ± 24 rpm	3.84 rpm = 11% overshoot

4. Title and Subtitle MOD 1 WIND TURBINE GENERATOR FAILU MODES AND EFFECTS ANALYSIS 7. Author(s) 9. Performing Organization Name and Address General Electric Co. Space Division P. O. Box 8661 Philadelphia, PA 19101	JRE		5. Report Date February 1979 6. Performing Organiza 8. Performing Organiza 10. Work Unit No	ation Code			
MODES AND EFFECTS ANALYSIS 7. Author(s) 9. Performing Organization Name and Address General Electric Co. Space Division P. O. Box 8661 Philadelphia, PA 19101			8. Performing Organiza				
9. Performing Organization Name and Address General Electric Co. Space Division P. O. Box 8661 Philadelphia, PA 19101				ation Report No.			
General Electric Co. Space Division P. O. Box 8661 Philadelphia, PA 19101			10. Work Unit No				
General Electric Co. Space Division P. O. Box 8661 Philadelphia, PA 19101		-		1			
Philadelphia, PA 19101		ľ	11. Contract or Grant	No.			
12 Supervision Approved Address		-	NAS 3-20058 13. Type of Report and Period Covered				
	12. Sponsoring Agency Name and Address						
U. S. Department of Energy Division of Distributed Solar Tech Washington, D. C. 20545	nnology		14. Sponsoring Agency-Code- Report No. DOE/NASA/0058-79/1				
15. Supplementary Notes Prepared under Interagency Agreement EC-77-A-31-1044 Project Manager, R. Puthoff NASA Lewis Research Center, Cleveland, Ohio 44135							
16. Abstract							
A Failure Modes and Effects Analys The analysis was directed primaril hazardous to life or would result from the top down, and broken down criticality of the failure mode wa knowlegeable specialists from outs recommended.	ly at identifyir in major damage to successive erranted more de	ng those critical factor to the system. Eac Lower Levels where it tail analysis. The	ilure modes that th subsystem was it appeared that results were rev	would be approached the viewed by			
			e.				
	al						
		•					
17. Key Words (Suggested by Author(s)) Wind turbine generator; failure modes, Mod 1 WTG		18. Distribution Statement Unclassified - unlimited STAR Category 44 DOE Category UC-60					
19. Security Classif. (of this report) Unclassified	20. Security Classif. (c	· -	21. No. of Pages 91	22. Price			

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22161