#### Отчёт по теме 5.2 Математический маятник

## Нестеров Даниил группа 11916/1

#### Вариант 5

## Модель с учетом сопротивления среды

## Словестно-смысловое описание работы:

Маятник состоит из материальной точки массой m, подвешенной на невесомой нити (или на невесомом стержне) длиной L, причем эта материальная точка качается из стороны в сторону, как показано на рисунке 1



Рисунок 1 – Математический маятник

Предполагая, что в начальный момент времени t=0известно положение маятника, а также его начальная скорость, требуется определить положение и скорость маятника в произвольный момент времени t>0.

Математический маятник со стержнем способен колебаться только в какой-то одной плоскости (вдоль какого-то выделенного горизонтального направления) и, следовательно, является системой с одной степенью свободы. Если же стержень заменить на нерастяжимую нить, получится система с двумя степенями свободы (так как становятся возможными колебания по двум горизонтальным координатам).

При колебаниях в одной плоскости маятник движется по дуге окружности радиуса L, а при

наличии двух степеней свободы может описывать кривые на сфере того же радиуса. Нередко, в том числе в случае нити, ограничиваются анализом плоского движения; оно и рассматривается далее.

#### Математическая модель:

$$\frac{d^2\Theta}{dt^2} + \beta \frac{d\Theta}{dt} + \frac{g}{L} \sin\Theta = 0$$

$$\theta(0) = \theta_0, \frac{d\theta}{dt}(0) = v_0$$

 $\beta$  - коэффициент затухания,  $\theta$  - угол, определяющий положение маятника

#### Компьютерная модель:

На рисунке 2 представлена модель:



Рисунок 2 - Компьютерная модель

В блоке «Integrator, Second-Order» формируется начальный сигнал, в блоке происходит интегрирование второго порядка входного сигнала

$$\frac{d^2x}{dt^2} = u,$$

где u - является входным сигналом. Блок является динамической системой с двумя непрерывными состояниями x u  $\frac{dx}{dt}$ .

Сигнал х переходит в блок «Trigonometric Function», который находит синус входа, сигнал идет в блок «Gain», где умножается на -9.8, что соответствует -g/L в уравнении математической модели. После сигнал проходит на положительный вход блока «Subtract». Сигнал  $\frac{dx}{dt}$  в блоке «Gain» умножается на коэффициент затухания, после чего сигнал проходит на отрицательный вход в блок «Subtract». В «Subtract» производит вычитание входных параметров, после чего сигнал попадает в блок «Integrator, Second-Order». Также сигнал х проходит через Radians to Degrees», который переводит

радианы в градусы, затем попадает в блок «scope» для визуализации и «To Workspace» для сохранения.

# Планирование эксперимента:

1 Построить динамику колебаний:

$$b = 0.0k;$$

$$T = 100.$$

$$\Theta(0) = \left[\frac{2pi}{3} + 0.0k\right];$$

$$\dot{\Theta}(0) = 0;$$

2 Построить фазовый портрет маятника:

$$b = 4 + 0.0k;$$

$$T = 4.$$

$$\theta(0) = \left[ -\frac{2pi}{3} - 0.03k, \frac{2pi}{3} + 0.03k \right];$$

$$\dot{\theta}(0) = 0;$$

$$\theta(0) = [pi - 0.001k];$$

$$\dot{\theta}(0) = -1;$$

$$\theta(0) = [-pi + 0.001k];$$

$$\dot{\theta}(0) = 1;$$

k - номер варианта.

# Эксперимент

1. Построить динамику колебаний:



$$\theta_0 = \frac{2 * \pi}{3} + 0.05$$

Видно что с течением времени колебания маятника затухают.

# 2. построить фазовый портрет маятника:



Особая точка (0,0) является фокусом. К ней стремятся все фазовые траектории при  $t -> \infty$ .



Фазовый портрет маятника вблизи.

# Источники информации:

https://eluniver.ugrasu.ru/mod/folder/view.php?id=133214

https://ru.wikipedia.org/wiki

https://docs.exponenta.ru/

https://questions-physics.ru/