

Item Fit

Master Rasch Seminar 3 – 30.09.2020

Carolina Fellinghauer : c.fellinghauer@psychologie.uzh.ch

Item Fit

How accurately or predictably data **fit** the Rasch model

Infit and Outfit

To find the item fit requires computation of:

1) Expected response for each observation X_{ij}

$$E_{ij} = \Sigma_{k=0}^{mi} k(P_{ikj})$$

2a) The score residual Y_{ii}

$$Y_{ij} = X_{ij} - E_{ij}$$

2b) The standardized residual Z_{ij}

$$Z_{ij}=rac{Y_{ij}}{(W_{ij})^{1/2}}$$

The variance of X_{ij} is formalized as

$$W_{ij} = \Sigma_{k=0}^{mi} (k - E_{ij})^2 P_{ikj}$$

Infit and Outfit

3) A chi-square statistic by summing the standardized residuals.

$$\chi^2 = \Sigma_{n=1}^N Z_{ij}^2$$

The chi-square divided by the sample size corresponds to the Mean-Square Outfit Statistic.

$$Outfit_i = rac{\Sigma_{n=1}^N Z_{ij}^2}{N}$$

The Outfit Statistic is sensitive to outlier. To diminish the effect of outlier, the standardized residuals can be adjusted by their variance. This is the Mean-Square Infit Statistic.

$$Infit_i = \frac{\Sigma_{n=1}^N W_{ij} Z_{ij}^2}{\Sigma_{n=1}^N W_{ij}}$$

Underfit and Overfit

An item is fitting the Rasch model if the Infit and Outfit statistics are close to 1.

Underfit indicates underdiscrimination, the information is «blurred». It is not possible to differentiate ability levels. Underfit is found when the Infit or Outfit are much above 1.

Overfit indicates overderdiscrimination, the information is too sharp. An item acts like an on-off switch. Underfit is found when the Infit or Outfit are much below 1.

Note: overfit is less critical for scales than underfit.

Exercise

Smith (1998, p.78) suggests cut-off based on sample sizes. Have a look at the article. Write down the two formulas and calculate the reasonable cut-offs for infit and outfit. Discuss item fit of the SRG-data under this light.