Spis treści

1	Cel ćwiczenia	2
2	Wstęp teorytyczny	2
3	Układ pomiarowy	4
4	Przebieg ćwiczenia	4
5	Wyniki pomiarów	5
6	Opracowanie wyników pomiarowych dla kondensatora płaskiego 6.1 Obliczenie średnich wartości potencjałów oraz wartości doświadczalnych natężenia pola	7 8 9
7	Opracowanie wyników pomiarowych dla kondensatora cylindrycznego 7.1 Obliczenie średnich wartości potencjałów oraz wartości doświadczalnych natężenia pola	10 10 11 12
8	Wnioski	12

1 Cel ćwiczenia

Celem ćwiczenia było poznanie podstawowych wielkości opisujących pole elektrostatyczne oraz wyznaczenie powierzchni ekwipotencjalnych i wektorów natężenia pola elektrycznego na płaszczyźnie różnych konfiguracji elektrod.

2 Wstęp teorytyczny

Rozpatrzmy zamkniętą powierzchnię obejmującą dwa ładunki Q_1 i Q_2 . Całkowity strumień (liczba linii sił) przechodzący przez powierzchnię otaczającą ładunki Q_1 i Q_2 jest równy:

$$\phi_c = \oint \mathbf{E} d\mathbf{S} = \oint (\mathbf{E}_1 + \mathbf{E}_2) d\mathbf{S} = \oint \mathbf{E}_1 d\mathbf{S} + \oint \mathbf{E}_2 d\mathbf{S},$$

gdzie pole E_1 jest wytwarzane przez Q_1 , a pole E_2 przez Q_2 . Kółko na znaku całki oznacza, że powierzchnia całkowania jest zamknięta. Zachodzi wtedy:

$$\phi_c = \frac{Q_1}{\varepsilon_0} + \frac{Q_2}{\varepsilon_0} = \frac{Q_1 + Q_2}{\varepsilon_0}$$

Całkowity strumień pola elektrycznego przez zamkniętą powierzchnię jest więc równy całkowitemu ładunkowi otoczonemu przez tę powierzchnię podzielonemu przez ε_0 . Analogiczne rozumowanie można przeprowadzić dla dowolnej liczby ładunków wewnątrz dowolnej zamkniętej powierzchni. Otrzymujemy więc ogólny związek znany jako prawo Gaussa:

$$\oint \mathbf{E}d\mathbf{S} = 4\pi k Q_{wewn.} = \frac{Q_{wewn.}}{\varepsilon_0}$$

Układ dwóch jednakowych co do wartości ładunków elektrycznych, mających przeciwne znaki nazywany jest dipolem elektrycznym. W przypadku dipola ładunki znajdują się na tyle blisko siebie, że pola elektrostatyczne przez nie wytworzone wpływają wzajemnie na siebie, w wyniku czego linie pola centralnego pojedynczych ładunków ulegają zakrzywieniu.

Rys. 1: Powierzchnie ekwipotencjalne (linie przerywane) i linie sił pola (linie ciągłe) dipola elektrycznego

Powierzchnie ekwipotencjalne (linie przerywane) i linie sił pola (linie ciągłe) dipola elektrycznego; linie ekwipotencjalne oznaczają przecięcia powierzchni ekwipotencjalnych z płaszczyzną rysunku. Mówimy, że w danym obszarze istnieje jednorodne pole elektryczne, jeżeli w każdym punkcie tego obszaru wartość natężenia pola jest jednakowa. Jednorodne pole elektryczne wytwarzamy na przykład między okładkami kondensatora płaskiego.

Kondensator płaski tworzą dwie równoległe naładowane płyty metalowe (każda z płyt ma ładunek przeciwny do drugiej). Linie sił pola jednorodnego są wzajemnie równoległe. W jednorodnym polu elektrycznym zależność między natężeniem pola elektrycznego a różnicą potencjałów wyraża się wzorami: $E = \frac{\Delta V}{d}$ lub $E = \frac{U}{d}$ gdzie ΔV to różnica potencjałów płyt kondensatora (inaczej napięcie U), zaś d to odległość płyt kondensatora.

Przybliżoną wartość natężenia pola E możemy uzyskać obliczając numerycznie gradient potencjału:

$$E_x = -\frac{\partial V}{\partial x} \approx \frac{V(x+h,y)-V(x,y)}{h}$$

$$E_y = -\frac{\partial V}{\partial y} \approx \frac{V(x,y+k)-V(x,y)}{k}$$

gdzie h i k sa krokami siatki.

Wewnątrz kondensatora płaskiego pole elektryczne jest jednorodne, o wartości:

$$E = \frac{U}{d}$$

Potencjał rośnie liniowo od zera do wartości napięcia zasilacza U:

$$V(x) = \frac{U}{d}x$$

Na zewnątrz kondensatora płaskiego pole jest niejednorodne oraz rozproszone.

Wewnątrz kondensatora cylindrycznego natężenie pola elektrycznego jest dane wzoremi:

$$E(x) = \frac{U}{x * ln(\frac{r_z}{r_w})}$$

Poprzez obliczenie pochodnej z wzoru E(x) otrzymujemy wyrażenie na potencjał:

$$V(x) = \frac{U}{\ln(\frac{r_z}{r_{av}})} \ln(\frac{x}{r_z})$$

3 Układ pomiarowy

Przyrządy potrzebne do wykonania doświadczenia (Rys. 2):

- 1. Płyty modelowe będące modelami kondensatorów: płaskiego, cylindrycznego oraz o dowolnym kształcie elektrod.
- 2. Zasilacz 10V
- 3. Woltomierz cyfrowy

Rys. 2: Schemat połączeń układu pomiarowego do modelowania pola elektrycznego

4 Przebieg ćwiczenia

Na początku połączyliśmy obwód elektryczny tak jak na Rys. 2 używając płyty modelowej dla kondensatora płaskiego oraz sprawdziliśmy czy napięcie zasilacza wynosi $10\ V$. Przy pomocy sondy upewniliśmy się, że dobrze podłączyliśmy płytę modelową. Następnie zmierzyliśmy wartości potencjału wzdłuż trzech różnych kierunków wewnątrz kondensatora oraz wartości 51 punktów na zewnątrz kondensatora (Prostokąt 3×17). Po wykonaniu tego podłączyliśmy płytę modelową dla kondensatora cylindryczengo oraz zmierzyliśmy wyniki wzdłuż trzech promieni. Wszystkie wyniki zapisaliśmy.

5 Wyniki pomiarów

Rys. 3: Płaski układ elektrod z zaznaczonymi punktami pomiarów. Odległość między punktami jest równa 5 mm. Na rysunku narysowano również linie ekwipotencjalne zielonym kolorem $(1.5\ V,\ 3\ V,\ 4.5\ V,\ 6\ V,\ 7.5\ V,\ 9\ V)$

	Wynik pomiaru [V]															
1.093	1.452	1.392	1.923	2.553	2.903	3.052	3.771	4.360	4.902	5.521	6.098	6.742	7.528	8.323	8.492	8.439
1.023	1.301	1.102	2.032	2.705	2.598	3.251	4.011	4.302	5.019	5.742	6.204	6.923	7.506	8.420	8.820	8.723
0.831	1.220	1.052	1.982	2.803	2.702	3.452	4.157	4.790	4.917	5.871	6.787	7.387	7.682	8.447	8.762	8.895

Tab. 1: Wyniki pomiarów potencjału dla kondensatora płaskiego na zewnątrz kondensatora. Wyniki podane w takiej samej kolejności jak na rysunku.

Wynik pomiaru [V]									
Linia a	1.124	2.060	3.145	3.865	4.660	5.560	6.585	7.517	8.428
Linia b	1.144	2.083	2.930	4.029	4.798	5.693	6.556	7.500	8.360
Linia c	0.982	1.934	2.938	3.896	4.722	5.747	6.536	7.489	8.302

Tab. 2: Wyniki pomiarów potencjału dla kondensatora płaskiego wewnątrz kondensatora.

Rys. 4: Cylindryczny układ elektrod z zaznaczonymi punktami pomiarów. Odległość między punktami jest równa w przybliżeniu 7 – 8 mm. Na rysunku narysowano również linie ekwipotencjalne czarnym kolorem (6 V, 5 V, 4 V, 3 V, 2 V, 1 V)

Wynik pomiaru [V]								
Linia A	6.482	4.883	3.710	2.839	1.990	1.543	0.877	
Linia B	6.514	5.112	4.003	3.092	2.410	1.598	1.122	
Linia C	6.664	5.146	3.998	3.001	2.260	1.627	1.016	

Tab. 3: Wyniki pomiarów potencjału dla kondensatora cylindrycznego.

6 Opracowanie wyników pomiarowych dla kondensatora płaskiego

6.1 Obliczenie średnich wartości potencjałów oraz wartości doświadczalnych natężenia pola

Dla obszaru wewnątrz kondensatora obliczyliśmy średnie wartości potencjału jako średnią arytmetyczną trzech zmierzonych wartości potencjału. Dla przykładu, dla x = 5 mm:

$$V_{dosw} = \frac{V_a + V_b + V_c}{3} = \frac{1.124 V + 1.144 V + 0.982 V}{3} = 1.083 V$$

Pozostałe wyniki, obliczone w identyczny sposób, wpisaliśmy do Tab. 4. Następnie obliczyliśmy wartości doświadczalne natężenia pola korzystając ze wzoru:

$$E_{dosw} = \frac{V_{n+1} - V_n}{x_{n+1} - x_n}$$

Dla $x_1 = 5 \ mm, \ x_2 = 10 \ mm, \ V_1 = 1.083 \ V \ {\rm oraz} \ V_2 = 2.026 \ V$:

$$x^* = \frac{x_{n+1} + x_n}{2} = \frac{10 \ mm + 5 \ mm}{2} = 7.5 \ mm$$

$$E_{dosw} = \frac{V_{n+1} - V_n}{x_{n+1} - x_n} = \frac{2.026 \ V - 1.083 \ V}{10 \ mm - 5 \ mm} = 188.6 \ \frac{V}{m}$$

Pozostałe wyniki, obliczone w identyczny sposób, wpisaliiśmy do Tab. 4. Na końcu policzyliśmy wartości teorytyczne używając wzorów:

$$V_{teor} = \frac{U}{d}x$$
 oraz $E_{teor} = \frac{U}{d}$

Dla powyższych przykładów:

$$V_{teor} = \frac{U}{d}x = \frac{10 V}{50 mm} * 5 mm = 1 V$$

$$E_{teor} = \frac{U}{d} = \frac{10 V}{50 mm} = 200 \frac{V}{m}$$

Wszystkie wyniki teorytyczne, obliczone w identyczny sposób, wpisaliśmy do Tab. 4.

6.2 Wykresy zależności potencjału Vi natężenia pola elektrycznego Eod odległości \boldsymbol{x}

6.3 Obszar na zewnątrz kondensatora

Wartość składowych wektora E można obliczyć korzystając ze wzorów:

$$E_x = \frac{V(x+h,y)-V(x,y)}{h}$$
 oraz $E_y = \frac{V(x,y+k)-V(x,y)}{k}$,

gdzie h i k są krokami siatki. U nas $h=k=5\ mm$. Dla ostatniego punktu w pierwszym wierszu Tab. 1:

$$V(0,0) = 8.439 V, V(5,0) = 8.723 V, V(0,5) = 8.492 V$$

$$E_x = \frac{8.723 \, V - 8.439 \, V}{5 \, mm} = 56.8 \, \frac{V}{m}$$

$$E_y = \frac{8.492 \, V - 8.439 \, V}{5 \, mm} = 10.6 \, \frac{V}{m}$$

Obliczenia powtórzono dla kilku innych punktów oraz zaznaczono wektor natężenia pola wraz ze składowymi na Rys. 3.

6.4 Linie ekwipotencjalne oraz linie pola

Linie ekwipotencjalne oraz linie pola zostały pokazane na Rys. 3.

L.p	X	$V_{\text{dośw}} = (V_a + V_b + V_c)/3$	\mathbf{V}_{teor}
	[mm]	[V]	[V]
1	5	1.083	1
2	10	2.026	2
3	15	3.004	3
4	20	3.930	4
5	25	4.727	5
6	30	5.667	6
7	35	6.559	7
8	40	7.502	8
9	45	8.363	9

L.p	x* [mm]	E _{dośw} [V/m]	$\frac{E_{\text{teor}}}{[V/m]}$
1	7.5	188.6	200
2	12.5	195.6	200
3	17.5	185.2	200
4	22.5	159.4	200
5	27.5	188.0	200
6	32.5	178.4	200
7	37.5	188.6	200
8	42.5	172.2	200

Tab. 4: Wyniki obliczeń dla kondensatora płaskiego

7 Opracowanie wyników pomiarowych dla kondensatora cylindrycznego

7.1 Obliczenie średnich wartości potencjałów oraz wartości doświadczalnych natężenia pola

Dla obszaru wewnątrz kondensatora obliczyliśmy średnie wartości potencjału jako średnią arytmetyczną trzech zmierzonych wartości potencjału. Dla przykładu, dla $x = 35 \ mm$:

$$V_{dosw} = \frac{V_a + V_b + V_c}{3} = \frac{6.482 V + 6.514 V + 6.664 V}{3} = 6.533 V$$

Pozostałe wyniki, obliczone w identyczny sposób, wpisaliśmy do Tab. 5. Następnie obliczyliśmy wartości doświadczalne natężenia pola korzystając ze wzoru:

$$E_{dosw} = \frac{V_{n+1} - V_n}{x_{n+1} - x_n}$$

Dla $x_1 = 35 \ mm$, $x_2 = 44 \ mm$, $V_1 = 6.533 \ V$ oraz $V_2 = 5.047 \ V$:

$$x^* = \frac{x_{n+1} + x_n}{2} = \frac{35 \ mm + 44 \ mm}{2} = 39.5 \ mm$$

$$E_{dosw} = \frac{V_{n+1} - V_n}{x_{n+1} - x_n} = \frac{5.047 \ V - 6.533 \ V}{44 \ mm - 35 \ mm} = -165.11 \ \frac{V}{m}$$

Pozostałe wyniki, obliczone w identyczny sposób, wpisaliiśmy do Tab. 5. Na końcu policzyliśmy wartości teorytyczne używając wzorów:

$$V_{teor} = \frac{U}{ln(\frac{r_z}{r_w})} ln(\frac{x}{r_z}) \text{ oraz } E_{teor} = -\frac{U}{xln(\frac{r_z}{r_w})}$$

Dla powyższych przykładów oraz $r_w = 21 \ mm, r_z = 91 \ mm$:

$$V_{teor} = \frac{U}{ln(\frac{r_z}{r_w})} ln(\frac{x}{r_z}) = \frac{10 V}{ln(\frac{91 mm}{21 mm})} ln(\frac{35 mm}{91 mm}) = -6.516 V$$

$$E_{teor} = -\frac{U}{xln(\frac{r_z}{r_w})} = -\frac{10 V}{35 mm * ln(\frac{91 mm}{21 mm})} = -178.31 \frac{V}{m}$$

Wszystkie wyniki teorytyczne, obliczone w identyczny sposób, wpisaliśmy do Tab. 5. Ponieważ wzór użyty do obliczenia V_{teor} jest innego punktu odniesienia, niż ten który był mierzony w doświadczeniu, w Tab.6 podaliśmy wartość przeciwną V_{teor} .

7.2 Wykresy zależności potencjału V i natężenia pola elektrycznego E od odległości x

7.3 Linie ekwipotencjalne oraz linie pola

Linie ekwipotencjalne oraz linie pola zostały pokazane na Rys. 4.

L.p	x [mm]	$V_{\text{dośw}} = (V_a + V_b + V_c)/3$ [V]	V _{teor}
1	35	6.533	6.516
2	44	5.047	4956
3	52	3.904	3.816
4	60	2.977	2.841
5	67	2.220	2.088
6	75	1.589	1.319
7	83	1.005	0.628

L.p	x* [mm]	-uosw		
1	39.5	-165.11	-178.31	
2	48	-142.88	-146.73	
3	56	-115.88	-125.77	
4	63.5	-108.14	-110.92	
5	71	-78.88	-99.20	
6	79	-73.00	-89.15	

Tab. 5: Wyniki obliczeń dla kondensatora płaskiego

8 Wnioski

Uzyskane wyniki dla kondensatora płaskiego okazały się nie do końca zgodne z wartościami teorytycznymi. Wewnątrz kondensatora nie wszystkie punkty pomiaru pokryły się z linią teorytyczną wyznaczoną przez wzór $V = \frac{U}{d}x$. Na zewnątrz zaś wyniki czasami malały, zamiast rosnąć. Wykres natężenia pola elektrycznego od położenia E(x) nie jest linią stałą, a wszystkie obliczone punkty znajdują się pod lnią teorytyczną $E = \frac{U}{d}$. Wyniki dla kondensatora cylindrycznego okazały się bardziej zgodne, ale mimo tego nadal odbiegały od teorytycznych. Prawie wszystkie punkty pokryły się z linią teorytyczną wyznaczoną przez wzór $V = \frac{U}{\ln(\frac{rz}{r_w})} \ln(\frac{x}{r_z})$. Gorzej wypadł wykres natężenia pola elektrycznego w zależności od położenia E(x), w którym jedynie dwa punkty pokryły się z linią teorytyczną $E = -\frac{U}{x*\ln(\frac{rz}{r_w})}$. Niezgodności te mogą być spowodowane uszkodzeniami płyt modelowych (możliwe uszkodzenia przy zbyt mocnym nacisku sondy), zbyt małą dokładnością pomiarów przy użyciu sondy (za słabe/mocne dociśnięcie sondy) oraz niedokładności woltomierza.