Assignment: 9

Objective: Analyze the Boston Housing Dataset to build and compare the performance of Multiple Regression, Ridge Regression, and Lasso Regression models using Root Mean Squared Error (RMSE) as the evaluation metric.

1. Data Loading and Exploration

- a. Load the **Boston Housing Dataset** from sklearn.datasets or from a CSV file using pandas.
- b. Convert it into a Pandas DataFrame and display the first **5 rows** of the dataset.
- c. How many **rows and columns** are there in the dataset?
- d. Display the **data types** of all columns. Which columns are **categorical**, and which are **numerical**?
- e. Are there any missing values in the dataset? If yes, handle them appropriately.
- f. Display the **basic statistical details** (mean, median, standard deviation, etc.) of all numerical columns

2. Feature Selection

- a. Select the following columns as input features (independent variables):
 - **CRIM** (per capita crime rate)
 - **RM** (average number of rooms per dwelling)
 - **AGE** (proportion of owner-occupied units built before 1940)
 - **DIS** (weighted distances to five Boston employment centers)
 - LSTAT (percentage lower status of the population)
 b. Use the MEDV (Median value of owner-occupied homes in \$1000s) as the target variable (dependent variable).

3. Data Splitting

- a. Split the dataset into **training and testing sets**, ensuring **80% of the data** is used for training and **20% for testing**.
- b. Display the **shapes** of the training and testing datasets.

4. Model Implementation and Training

a. Multiple Regression

- i. Train a **Multiple Regression** model using the training data.
- ii. Display the **coefficients** and **intercept** of the trained model.

b. Ridge Regression

- i. Train a Ridge Regression model with an alpha value of 1.0 using the training data.
- ii. Display the **coefficients** and **intercept** of the trained Ridge model.

c. Lasso Regression

- i. Train a Lasso Regression model with an alpha value of 1.0 using the training data.
- ii. Display the **coefficients** and **intercept** of the trained Lasso model.

5. Model Evaluation

- a. Use all three models (Multiple Regression, Ridge Regression, and Lasso Regression) to make **predictions** on the test dataset.
- b. Calculate and display the following **performance metrics** for each model:
 - Root Mean Squared Error (RMSE)
 - R² Score
 - c. Present the **performance metrics** for the three models in a **comparison table**.

6. Comparison and Analysis

- a. Based on the RMSE and R² scores, which model performs the best?
- b. Experiment with different alpha values (e.g., 0.1, 5, 10) for Ridge and Lasso Regression. How do these changes affect the performance metrics (RMSE and R² Score)?
- c. Visualize the actual vs. predicted prices for all three models using scatter plots.