【本日アジェンダ】

- ・研究の問題設定/方向性について
- ・テンソル変換のモデル説明
- ・実験

■研究の問題設定・方向性について

研究テーマ: テンソルを用いたマルチモーダル学習

研究内容:

- ・テンソル変換を用いた前学習
- ・テンソルベースの予測

モチベーション

- モーダル間の情報を捉える
- ・モーダルごとに異なるサンプル頻度にうまく対処できる

全体像

■テンソル変換の説明

銘柄sの時刻tにおけるテンソル(株価データ,ニュースデータ,センチメントデータ)を $\mathcal{X}_{s,t}$ とする。 $\mathcal{X}_{s,t}$ の各要素を $x_{i,j,k}^{s,t}$ とすると,(株価データ,ニュースデータ,センチメントデータ)は次のように入っている.

$$x_{i,1,1}^{s,t}$$
 , $1\leq i\leq I_1$: 株価データの特徴量 $x_{2,j,2}^{s,t}$, $1\leq j\leq I_2$: ニュースデータの特徴量 $x_{3,3,k}^{s,t}$, $1\leq k\leq I_3$: センチメントデータの特徴量 それ以外は 0

このテンソルは以下のようにタッカー分解することができる.

$$\mathcal{X}_{s,t} = \mathcal{C}_{s,t} \times_1 U_1^{s,t} \times_2 U_2^{s,t} \times_3 U_3^{s,t}$$

最終的に欲しいもの

$$\hat{\mathcal{X}}_{s,t} = \mathcal{C}_{s,t} \times_{1} (V_{s,1}^{T}U_{1}^{s,t}) \times_{2} (V_{s,2}^{T}U_{2}^{s,t}) \times_{3} (V_{s,3}^{T}U_{3}^{s,t})$$

 $\mathcal{X}_{s,t} \in R^{I_1 imes I_2 imes I_3}$:銘柄s, 時刻tのテンソル

 $\mathcal{C}_{s,t} \in R^{D_1 imes D_2 imes D_3}$: 銘柄s,時刻tのテンソルをタッカー分解したときのコアテンソル

 $U_{\mathbf{k}}^{s,t} \in R^{I_{\mathbf{k}} \times D_{\mathbf{k}}}$: 銘柄s,時刻tのテンソルをタッカー分解したときのファクターk

 $V_{s,k} \in R^{I_k imes J_k}$ $(J_k \leq I_k)$: 銘柄sのファクターkの補助行列

この V_k を得るための最適化式について

①銘柄内補完

$$\begin{split} \min_{V_{s,k}} \ J(V_{s,k}) &= \frac{\mu}{sumW_s} \sum_{i=1}^T \sum_{j=1}^T ||V_{s,k}^T U_k^{s,i} - V_{s,k}^T U_k^{s,j}||^2 w_{s,i,j} \\ &+ \frac{1}{sumW_s} \sum_{i=1}^T \sum_{j=1}^T ||V_{s,k}^T U_k^{s,i} - I_{s,k} U_k^{s,j}||^2 w_{s,i,j} \\ w_{s,i,j} &= \begin{cases} 1 & \text{(時刻 } i,j \text{ がの熱果が似ている場合)} \\ 0 & \text{(その他)} \end{cases} & \text{(Wsは対称行列)} \end{cases} \\ sumW_s &= \sum_{i=1}^T \sum_{j=1}^T w_{s,i,j} \\ V_{s,k} &= sumW_s (\frac{2\mu+1}{sumW_s} D_{U_k^s} - \frac{2\mu}{sumW_s} W_{U_k^s})^{-1} D_{U_k^s} \\ d_{s,i} &= \sum_{j=1}^T w_{s,i,j} &= \sum_{m=1}^T w_{s,m,i} \\ D_{U_k^s} &= \sum_{i=1}^T d_{s,i} U_k^{s,i} U_k^{s,i}^T, & W_{U_k^s} &= \sum_{i=1}^T \sum_{j=1}^T w_{i,j} U_k^{s,i} U_k^{s,j}^T \end{split}$$

②関連銘柄間の補完

$$\min_{V_{s,k}} J(V_{s,k}) = \frac{\gamma}{sumE_s} \sum_{t=1}^{T} \sum_{m=1}^{C} ||V_{s,k}^T U_k^{s,t} - V_{s,k}^T U_k^{m,t}||^2 z_{s,m} e_{s,t,m}$$
(68)

$$+\frac{1}{sumW_s} \sum_{i=1}^{T} \sum_{j=1}^{T} ||V_{s,k}^T U_k^{s,i} - I_{s,k} U_k^{s,j}||^2 w_{s,i,j}$$
(69)

$$e_{s,t,m} = \begin{cases} 1 & \text{(時刻 } t \text{ の銘柄 } s, m \text{ のデータがある場合)} \\ 0 & \text{(その他)} \end{cases}$$
 (70)

$$z_{s,m}$$
: 銘柄 s と m の関連度 (Z は対称行列) (71)

$$sumE_{s} = \sum_{i=1}^{T} \sum_{m=1}^{C} e_{s,t,m}$$
(72)

$$V_{s,k} = sumW_s \left(\frac{1}{sumW_s} D_{U_k^s} + \frac{\gamma}{sumE_s} (A_k^s + 2B_k^s + C_k^s)\right)^{-1} D_{U_k^s}$$
(73)

$$A_k^s = \sum_{t=1}^T \sum_{m=1}^C U_k^{s,t} U_k^{s,t}^T e_{s,t,m} z_{s,m}, \ B_k^s = \sum_{t=1}^T \sum_{m=1}^C U_k^{s,t} U_k^{m,t}^T e_{s,t,m} z_{s,m}, \ C_k^s = \sum_{t=1}^T \sum_{m=1}^C U_k^{m,t} U_k^{m,t}^T e_{s,t,m} z_{s,m}$$

③銘柄内・関連銘柄間の補完

$$\begin{split} \min_{V_{s,k}} \ J(V_{s,k}) &= \frac{\mu}{sumW_s} \sum_{i=1}^{T} \sum_{j=1}^{T} ||V_{s,k}^T U_k^{s,i} - V_{s,k}^T U_k^{s,j}||^2 w_{s,i,j} \\ &+ \frac{\gamma}{sumE_s} \sum_{t=1}^{T} \sum_{m=1}^{C} ||V_{s,k}^T U_k^{s,t} - V_{s,k}^T U_k^{m,t}||^2 z_{s,m} e_{s,t,m} \\ &+ \frac{1}{sumW_s} \sum_{i=1}^{T} \sum_{j=1}^{T} ||V_{s,k}^T U_k^{s,i} - I_{s,k} U_k^{s,j}||^2 w_{s,i,j} \end{split}$$

$$V_{s,k} = sumW_s(\frac{2\mu + 1}{sumW_s}D_{U_k^s} - \frac{2\mu}{sumW_s}W_{U_k^s} + \frac{\gamma}{sumE_s}(A_k^s + 2B_k^s + C_k^s))^{-1}D_{U_k^s}$$

□w_{s,i,j} の種類

• Up:時刻 i, j のResidual Returnが共に正の場合

・Down:時刻 i, j のResidual Returnが共に負の場合

□Z_{s,m}の種類

①終値の値動きの方向性の一致度

N_{s,m}: 銘柄s, mの終値が共に上昇・下落した日数

M:全取引日数

 $Z \{s,m\} = N \{s,m\} / M$

- ②ResidualReturnでの動きの方向性の一致度
- ③終値の変化率のピアソン相関係数
- ④Residual Returnのピアソン相関係数

(⑤記事の中の共起度合)

■実験

前回の総合ゼミまでの結果は、コードミスで正確な実験ができていませんでした。 今実験をやり直していますが、今回は実験の一部のみ報告します。

【問題設定】

(前日の15:30, 今日の15:30]のデータを利用して、今日の16:00の終値のResidual Returnが上昇・下落するかを予測

• 予測対象

NY証券取引所に上場されている2業界13銘柄(景気連動型消費財6社、生活必需品4社、素材7社) ※ニュースの数が多い企業を選択

・使用データと取得のタイミング

	項目	データ期間	データ取得のタイミング
株価データ	終値、出来高、%K、RSI	2013 - 2019年	NY時間 16:00
ニュース データ	ニュースタイトルの単語をword2vecで分散 表現(300次元)。PCAで20次元に減らす	2006 - 2019年	グリニッジ標準時間 ニュースが出たタイミング
TRMI	sentiment、buzz、emotionVsFact	1998 - 2019年	NY時間 15:30

※NY証券取引所の取引時間はNY時間 9:30~16:00 サマータイム等を考慮して、すべてのデータをNY時間に合わせる

• 予測期間

トレーニング: 2013 - 2017年 テスト: 2018 - 2019年

・ 予測モデル

ランダムフォレスト

今までの実験では、3つのデータソースがそろっている日のみをpick upして実験を行っていた。 今回からは、株価データ+(ニュースデータ or TRMI)のデータがある日をpick upして実験を行う。 nullはトレーニングデータを使って、平均で埋める。

⇒ 実験のデータ数が増える & より実用的

■テンソル補完で前処理 VS 前処理なし

①銘柄内補完

実験未完了

②関連銘柄間の補完

実験未完了

③銘柄内・関連銘柄間の補完

300						
テンソル補完	あり				なし	
μ, γ, W, Z	0.1, 1, Up, ②	0.1, 1, Up, ③	0.1, 1, Down, ②	0.1, 1, Down, ③	-	
素材	0.5576	0.5556	0.5564	0.5554	0.5161	
景気連動型消費財	0.5031	0.5009	0.4995	0.4991	0.4953	
All	0.5324	0.5303	0.5302	0.5294	0.5065	

20						
テンソル補完	あり				なし	
μ, γ, W, Z	0.1, 1, Up, ②	0.1, 1, Up, ③	0.1, 1, Down, ②	0.1, 1, Down, ③	-	
素材	0.5510	0.5520	0.5509	0.5507	0.5293	
景気連動型消費財	0.5045	0.5037	0.5067	0.5034	0.5025	
All	0.5295	0.5297	0.5305	0.5289	0.5169	

前処理としてテンソル補完をしたら精度がよくなった。

■今後の予定

- ・上記の追加の実験の実施
- ・テンソル補完はデータが不足している日の予測に強い?⇒テストデータをデータが不足している日にしてみての実験
- ・企業間の類似度を、記事内の共起度合にする
- テンソルベースの予測モデルでの実験