

Московский государственный технический университет Факультет ИУ «Информатика и системы управления» Кафедра ИУ-1 «Системы автоматического управления»

ОТЧЕТ

по лабораторной работе №3

«Модальное управление»

по дисциплине «Основы теории управления»

Выполнили: Мочульский С.А.

Бубелов Ф.Р.

Фигурнов М.В.

Группа: ПС4-62

Проверил: Замараев И.В.

Работа выполнена:

Отчет сдан:

Оценка:

Цель работы

Исследование метода модального управления.

Общий порядок выполнения лабораторной работы

- 1. Задаём передаточную функция незамкнутой системы через функцию zpk(), установив один ноль системы, равный единице, четыре полюса равные -3,-4,-5,-6 и коэффициент усиления равный 100.
- 2. Используем функцию ss() для преобразования передаточной функции к минимальному описанию в переменных состояния. Для приведения к минимальному описанию задаем параметр 'minimal' в функции ss().
- 3. Определяем полюса замкнутой системы с единичной обратной связью через формулу A BI, где I матрица, состоящая из коэффициентов усиления, равных единице, и нужной размерности.
- 4. Задать модальное управление, а именно через функцию place(), которая решает задачу синтезу матриц A,B и полюсов p, найти матрицу F с полюсами p = {-9, -6, -7, -8}, которая учувствует в формуле A BF, для формирования замкнутой системы..
- 5. Проделать те же действия, описанные в пункте четыре, для полюсов 0,5 р и 2 р.
- 6. Исследовать разницу между всеми описанными системами по критериям качества, построить для каждой системы свой переходной процесс. Назначим общее время исследования для переходного процесса равным 5 сек.

Теоретическая часть

Модальное управление можно определить как задачу управления, в которой меняются моды (собственные числа матрицы объекта управления) для достижения желаемых целей управления. При этом необходимо определить матрицу К коэффициентов динамической обратной связи, обеспечивающей замкнутой системе требуемое расположение мод. Суть модального метода синтеза заключается в приравнивании действительного и желаемого характеристических уравнений замкнутой системы и вычислении из полученных соотношений параметров регулятора.

Модальный регулятор – регулятор, в котором интегратор регулируется по ошибке, а пропорциональность регулируется по обратной связи по состоянию системы (x(t)).

Особенность: Регулирование полюсов для задавание целевых качеств системы, не меняю движение системы (x), использование ОС по состоянию системы.

Недостатки: знание всего состояния системы, все x(t).

Влияние полюсов:

Уменьшение полюсов увеличивает время переходного процесса, увеличивает ошибку.

Увеличивание полюсов уменьшает время переходного процесса, уменьшает ошибку, но увеличивает перерегулирование на сверхмалые значения

Незамкнутая система.

Берем за базу нерегулируемую систему. Задаем её через функцию zpk(), в которую передаём один ноль равный единице, четыре полюса равные -3-4,-5,-6, коэффициент усиления равный 100. Переведем передаточную функцию в пространство состояния и получим минимальные матрицы A,B,C,D через функцию ss() с критерием 'minimal'.В ожидаемом результате ожидается график зависимости амплитуды от времени и матрицы состояния A,B,C,D, и их считаем за базу для дальнейшего исследования.

В результате был получен график зависимости амплитуды от времени и матрицы состояния разомкнутой системы, показанных на рис.1 и рис.2.

Рис.1. Переходной процесс незамкнутой системы

Рис.2. Матрицы состояния незамкнутой системы

Вывод:

Система демонстрирует устойчивость, не имеет перерегулирования и колебательности. Однако обладает заметной статической ошибкой (-0.278) и сравнительно длительным временем переходного процесса (2.7 сек), что говорит о невысоком качестве управления. Система приводится к устойчивому положению.

Замкнутая система при помощи единичной обратной связи.

Модифицируем разомкнутую систему тем, что добавляем единичную обратную связь, тем самым замыкая систему. Для вычисления собственных значений новой передаточной функции воспользуемся формулой A' = A-BI, где A- матрица состояния разомкнутой системы, A'- матрица состояния замкнутой системы, B — матрицы входа (она не меняется), I — единичная матрица коэффициентов равных единице, размерности 1x4, т.е. I = [1, 1, 1, 1]. В ожидаемом результате ожидается график зависимости амплитуды от времени.

В результате был получен график зависимости амплитуды от времени, показанных на рис.3.

Рис.3. Переходной процесс замкнутой системы с единичной обратной связью

```
Полюса замкнтуой системы с единичной обратной связью ans =

-6.3650 + 1.4927i
-6.3650 - 1.4927i
-2.6350 + 1.4927i
-2.6350 - 1.4927i
```

Рис.4. Полюса (собственные значения) замкнутой системы с единичной обратной связью

Вывод:

Включение единичной ОС снижает статическую ошибку (-0.255) и ускоряет переходной процесс (2.22 сек). Незначительное перерегулирование (0.562%) не оказывает критического влияния, общая устойчивость сохраняется. Система приводится к устойчивому положению.

Замкнутая система при помощи модального управления.

Модифицируем разомкнутую систему тем, синтезируем её с полюсами $p = \{-9, -6, -7, -8\}$, тем самым замыкая систему. Для решения задачи синтеза необходимо получить матрицу F через функцию place(), в которую задаём значения матриц A, B и список новых полюсов р.Для вычисления собственных значений новой передаточной функции воспользуемся формулой A' = A-BF, где A- матрица состояния разомкнутой системы, A'- матрица состояния замкнутой системы, B — матрицы входа (она не меняется), E —матрица синтеза. Исполним вышенаписанный алгоритм для решения задач синтеза с полюсами E0.5 р и E1. Ожидаемом результате ожидаются графики зависимости амплитуды от времени.

В результате были получены графики зависимости амплитуды от времени, показанных на рис.5, рис.6, рис.7.

Рис.5. Переходной процесс замкнутой системы с модальным управлением с полюсами 0.5p

Рис. б. Переходной процесс замкнутой системы с модальным управлением с полюсами р

Рис. 7. Переходной процесс замкнутой системы с модальным управлением с полюсами

Вывод:

Для 0,5р: Смещение полюсов ближе к нулю увеличивает время переходного процесса (3 сек) и ухудшает статическую ошибку (-0.529). Система устойчива и без колебаний, но качество управления снижается. Система приводится к устойчивому положению.

2p

Для р: Ошибка резко снижается (-0.0331), время переходного процесса сокращается до 1.61 сек, перерегулирование и колебания отсутствуют. Система приводится к устойчивому положению.

Для 2р: Увеличение полюсов ускоряет систему (0.729 сек), минимизирует ошибку (-0.00207), однако приводит к практически незаметному, существующему перерегулированию (\approx 10⁻¹²⁰%). Система приводится к устойчивому положению.

Общий вывод

	Разомкнутая система	Замкнутая с единичной ОС	Замкнутая с модальным управлением с полюсами 0.5р	Замкнутая с модальным управлением с полюсами р	Замкнутая с модальным управлением с полюсами 2р
Статическая ошибка	-0.278	-0.255	-0.529	-0.0331	-0.00207
Перерегулирование	0	0.562	0	0	9.99 ·10 ⁻¹³
Время переход проц	2.7	2.22	3	1.61	0.729
Колебательность	0	0	0	0	0

Вывод по типу системы:

Замкнутая с единичной ОС: уменьшается ошибка на доли сотых (на 0.023), уменьшается время переходного процесса на десятые секунды (на 0.48 сек), однако, увеличивается на десятые части процента (на 0.562%).

Замкнутая с модальным управлением с полюсами р: уменьшается ошибка в ≈ 10 раз, уменьшается время переходного процесса в ≈ 2 раза.

Вывод по типу выбора полюса:

Уменьшение полюсов увеличивает время переходного процесса, увеличивает ошибку. Увеличивание полюсов уменьшает время переходного процесса, уменьшает ошибку, но увеличивает перерегулирование на сверхмалые значения (увеличение полюсов в 2 раза, увеличило перерегулирование $\approx 10 \cdot 10^{-13}$ %).

Выводы

Модальное управление хорошо тем, чтобы решать задачу нахождения полюсов для нужных критериев качества, при не изменении самой системы.