

CLAIMS

1 1. (original) A method for processing an input signal for application to an amplifier to
2 generate an amplified output signal, comprising:
3 generating an index into a look-up table based on the input signal;
4 adjusting the index to compensate for changes in operating characteristics of the amplifier over
5 time;
6 retrieving one or more pre-distortion parameters from the look-up table based on the adjusted
7 index; and
8 pre-distorting the input signal based on the one or more pre-distortion parameters to generate a
9 pre-distorted input signal for application to the amplifier.

1 2. (currently amended) The invention method of claim 1, wherein the index is adjusted
2 based on a measure of distortion in the amplified output signal.

1 3. (currently amended) The invention method of claim 2, wherein the measure of distortion
2 is based on a narrow-band power level in the amplified output signal.

1 4. (currently amended) The invention method of claim 1, further comprising amplifying the
2 pre-distorted input signal with the amplifier to generate the amplified output signal.

1 5. (currently amended) The invention method of claim 4, wherein amplifying the pre-
2 distorted input signal comprises controlling overall gain of the amplifier to compensate for the changes in
3 the operating characteristics of the amplifier.

1 6. (currently amended) The invention method of claim 5, wherein the overall gain is
2 controlled based on a comparison of power of the pre-distorted input signal and power of the amplified
3 output signal.

1 7. (currently amended) The invention method of claim 5, wherein the overall gain is
2 controlled to keep the overall gain substantially constant over time.

1 8. (currently amended) The invention method of claim 7, wherein the overall gain is
2 further controlled to reduce distortion in the amplified output signal.

1 9. (currently amended) The invention method of claim 5, wherein the overall gain is
2 controlled to reduce distortion in the amplified output signal.

1 10. (currently amended) The invention method of claim 5, wherein amplifying the pre-
2 distorted input signal further comprises controlling bias applied to one or more amplifier stages of the
3 amplifier.

1 11. (currently amended) The invention method of claim 10, wherein the bias is controlled
2 based on a measure of distortion in the amplified output signal.

1 12. (currently amended) The invention method of claim 11, wherein the measure of
2 distortion is based on a narrow-band power level in the amplified output signal.

1 13. (currently amended) The invention method of claim 4, wherein amplifying the pre-
2 distorted input signal comprises controlling bias applied to one or more amplifier stages of the amplifier.

1 14. (currently amended) The invention method of claim 13, wherein the bias is controlled
2 based on a measure of distortion in the amplified output signal.

1 15. (currently amended) The invention method of claim 14, wherein the measure of
2 distortion is based on a narrow-band power level in the amplified output signal.

1 16. (currently amended) The invention method of claim 1, wherein the look-up table
2 corresponds to frequency-independent pre-distortion processing.

1 17. (currently amended) The invention method of claim 1, wherein the look-up table
2 corresponds to frequency-dependent pre-distortion processing.

1 18. (currently amended) The invention method of claim 1, further comprising:
2 retrieving one or more other pre-distortion parameters from a different look-up table based on the
3 input signal; and

4 pre-distorting the input signal based on the one or more other pre-distortion parameters to
5 generate a different pre-distortion component for the pre-distorted input signal, wherein the different
6 look-up table is automatically updated by:

7 generating a measure based on current operations of the amplifier;
8 applying the measure to one or more algebraic equations to generate one or more
9 parameter values; and

10 applying the one or more parameter values to one or more polynomials to update the
11 different look-up table.

1 19. (currently amended) The invention method of claim 1, wherein the look-up table is
2 automatically updated by:

3 generating a measure based on current operations of the amplifier;
4 applying the measure to one or more algebraic equations to generate one or more parameter
5 values; and

6 applying the one or more parameter values to one or more polynomials to update the look-up
7 table.

1 20. (currently amended) The invention method of claim 1, wherein the look-up table is
2 generated during training of the amplifier and always kept fixed after training is complete.

1 21. (currently amended) The invention method of claim 1, wherein the index is based on
2 power of the input signal.

1 22. (original) Apparatus for processing an input signal for application to an amplifier to
2 generate an amplified output signal, comprising:
3 an index generator adapted to generate an index into a look-up table based on the input signal;
4 an index adjuster adapted to adjust the index to compensate for changes in operating
5 characteristics of the amplifier over time;
6 the look-up table adapted to provide one or more pre-distortion parameters based on the adjusted
7 index; and
8 a pre-distorter adapted to pre-distort the input signal based on the one or more pre-distortion
9 parameters to generate a pre-distorted input signal for application to the amplifier.

1 23. (currently amended) The invention apparatus of claim 22, wherein the index adjuster is
2 adapted to adjust the index based on a measure of distortion in the amplified output signal.

1 24. (currently amended) The invention apparatus of claim 23, wherein the measure of
2 distortion is based on a narrow-band power level in the amplified output signal.

1 25. (currently amended) The invention apparatus of claim 22, further comprising the
2 amplifier adapted to amplify the pre-distorted input signal to generate the amplified output signal.

1 26. (currently amended) The invention apparatus of claim 25, wherein the amplifier is
2 adapted to control overall gain of the amplifier to compensate for the changes in the operating
3 characteristics of the amplifier.

1 27. (currently amended) The invention apparatus of claim 26, wherein the amplifier is
2 adapted to control the overall gain based on a comparison of power of the pre-distorted input signal and
3 power of the amplified output signal.

1 28. (currently amended) The invention apparatus of claim 26, wherein the amplifier is
2 adapted to control the overall gain to keep the overall gain substantially constant over time.

1 29. (currently amended) The invention apparatus of claim 28, wherein the overall gain is
2 further controlled to reduce distortion in the amplified output signal.

1 30. (currently amended) The invention apparatus of claim 26, wherein the overall gain is
2 controlled to reduce distortion in the amplified output signal.

1 31. (currently amended) The invention apparatus of claim 26, wherein the amplifier is
2 further adapted to control bias applied to one or more amplifier stages of the amplifier.

1 32. (currently amended) The invention apparatus of claim 31, wherein the amplifier is
2 adapted to control the bias based on a measure of distortion in the amplified output signal.

1 33. (currently amended) The invention apparatus of claim 32, wherein the measure of
2 distortion is based on a narrow-band power level in the amplified output signal.

1 34. (currently amended) The invention apparatus of claim 25, wherein the amplifier is
2 adapted to control bias applied to one or more amplifier stages of the amplifier.

1 35. (currently amended) The invention apparatus of claim 34, wherein the amplifier is
2 adapted to control the bias based on a measure of distortion in the amplified output signal.

1 36. (currently amended) The invention apparatus of claim 35, wherein the measure of
2 distortion is based on a narrow-band power level in the amplified output signal.

1 37. (currently amended) The invention apparatus of claim 25, further comprising:
2 a first power detector adapted to detect power of the pre-distorted input signal;
3 a second power detector adapted to detect power of the amplified output signal;
4 a receiver adapted to detect narrow-band power of the amplified output signal at a selected
5 frequency; and
6 a controller adapted to process the detected powers from the first and second power detectors and
7 from the receiver to generate one or more control signals used to control operations within the apparatus.

1 38. (currently amended) The invention apparatus of claim 37, wherein the one or more
2 control signals control the index adjuster, a variable attenuator in the amplifier, and bias levels applied to
3 one or more amplifier stages in the amplifier.

1 39. (currently amended) The invention apparatus of claim 37, wherein the first and second
2 power detectors are wide-band power detectors.

1 40. (currently amended) The invention apparatus of claim 37, wherein the controller is
2 adapted to change the selection of the frequency of the receiver.

1 41. (currently amended) The invention apparatus of claim 22, wherein the look-up table
2 corresponds to frequency-independent pre-distortion processing.

1 42. (currently amended) The invention apparatus of claim 22, wherein the look-up table
2 corresponds to frequency-dependent pre-distortion processing.

1 43. (currently amended) The invention apparatus of claim 22, further comprising:
2 a different look-up table adapted to provide one or more other pre-distortion parameters based on
3 the input signal, wherein the pre-distorter is further adapted to pre-distort the input signal based on the
4 one or more other pre-distortion parameters to generate a different pre-distortion component for the pre-
5 distorted input signal; and
6 a controller adapted to automatically update the different look-up table by:
7 generating a measure based on current operations of the amplifier;
8 applying the measure to one or more algebraic equations to generate one or more
9 parameter values; and
10 applying the one or more parameter values to one or more polynomials to update the
11 different look-up table.

1 44. (currently amended) The invention apparatus of claim 22, further comprising a
2 controller adapted to automatically update the look-up table by:
3 generating a measure based on current operations of the amplifier;
4 applying the measure to one or more algebraic equations to generate one or more parameter
5 values; and
6 applying the one or more parameter values to one or more polynomials to update the look-up
7 table.

1 45. (currently amended) The invention apparatus of claim 22, wherein the look-up table is
2 generated during training of the amplifier and always kept fixed after training is complete.

1 46. (currently amended) The invention apparatus of claim 22, wherein the index is based on
2 power of the input signal.

1 47. (original) A method for processing an input signal for application to an amplifier to
2 generate an amplified output signal, comprising:
3 retrieving one or more pre-distortion parameters from a look-up table based on the input signal;
4 and
5 pre-distorting the input signal based on the one or more pre-distortion parameters to generate a
6 pre-distorted input signal for application to the amplifier, wherein the look-up table is automatically
7 updated by:
8 generating a measure based on current operations of the amplifier;

9 applying the measure to one or more algebraic equations to generate one or more
10 parameter values; and
11 applying the one or more parameter values to one or more polynomials to update the
12 look-up table.

1 48. (currently amended) The invention method of claim 47, wherein the measure is average
2 power of the input signal.

49. (currently amended) The invention method of claim 47, wherein each algebraic equation
is a piecewise linear curve.

1 50. (currently amended) The invention method of claim 47, wherein:
2 the measure is applied to four algebraic equations to generate four parameter values; and
3 the four parameter values are applied to two second-order polynomials to update two pre-
4 distortion parameters in the look-up table.

1 51. (currently amended) The invention method of claim 47, wherein the pre-distortion
2 parameters are frequency-dependent pre-distortion parameters.

1 52. (currently amended) The invention method of claim 47, wherein the pre-distortion
2 parameters are frequency-independent pre-distortion parameters.

1 53. (currently amended) The invention method of claim 47, wherein the look-up table is
2 updated at a specified periodic rate.

1 54. (currently amended) The invention method of claim 47, wherein the look-up table is
2 updated based on a detected change in operating conditions of the amplifier.

1 55. (currently amended) The invention method of claim 54, wherein the detected change in
2 the amplifier operating conditions corresponds to a change in a parameter value greater than a specified
3 threshold value.

1 56. (currently amended) The invention method of claim 47, wherein the one or more
2 parameter values are fine-tuned based on output spectrum of the amplifier.

1 57. (original) Apparatus for processing an input signal for application to an amplifier to
2 generate an amplified output signal, comprising:

a look-up table adapted to provide one or more pre-distortion parameters based on the input signal;

a pre-distorter adapted to pre-distort the input signal based on the one or more pre-distortion parameters to generate a pre-distorted input signal for application to the amplifier; and

a controller adapted to automatically update the look-up table by:

generating a measure based on current operations of the amplifier;

9 applying the measure to one or more algebraic equations to generate one or more
0 parameter values; and

1 applying the one or more parameter values to one or more polynomials to update the
2 look-up table.

1 58. (currently amended) The invention apparatus of claim 57, wherein:
2 the measure is average power of the input signal; and

3 further comprising an envelope detector adapted to detect current power of the input signal,
4 wherein the controller uses the current input signal power to generate the average input signal power.

1 59. (currently amended) The invention apparatus of claim 57, wherein each algebraic
2 equation is a piecewise linear curve.

1 60. (currently amended) The invention apparatus of claim 57, wherein:
2 the controller is adapted to apply the measure to four algebraic equations to generate four
3 parameter values; and
4 the controller is adapted to apply the four parameter values to two second-order polynomials to
5 update two pre-distortion parameters in the look-up table.

1 61. (currently amended) The invention apparatus of claim 57, wherein the pre-distortion
2 parameters are frequency-dependent pre-distortion parameters.

1 62. (currently amended) The invention apparatus of claim 57, wherein the pre-distortion
2 parameters are frequency-independent pre-distortion parameters.

1 63. (currently amended) The invention apparatus of claim 57, wherein the controller is
2 adapted to update the look-up table at a specified periodic rate.

1 64. (currently amended) The invention apparatus of claim 57, wherein the controller is
2 adapted to update the look-up table based on a detected change in operating conditions of the amplifier.

1 65. (currently amended) The invention apparatus of claim 64, wherein the detected change
2 in the amplifier operating conditions corresponds to a change in a parameter value greater than a
3 specified threshold value.

1 66. (currently amended) The invention apparatus of claim 57, wherein the controller is
2 adapted to fine-tune the one or more parameter values based on output spectrum of the amplifier.