

SB 503 - Avionics Technologies 1- introduction to Avionics Technologies

1-1 Introduction to Safety & Systems
1-2 Avionics Certification Process including applicable Standards
1-3 Human Factors Prospectives

1-4 Avionics System Architectures (Logical- Functional)

1-5 Avionics Systems & [Missions- Functions - Resources]

Professor: H. GOUTELARD (Contractor ENAC/ Sup'Aéro)
Thales Avionics

Agenda

- Avionics Systems general context
 - Architecture development process
 - Architectural general aspects
 - Architecture main drivers
 - Variability analysis
 - Architectural building: addressing safety requirements
 - Architecture building rule-of-thumb
 - Safety requirements ←→ Candidate logical architectures
 - Architecture building examples
 - Display primary parameters

Com. Means

GEA Tianjin / 中国民航大学中欧航空工程师学院

The Aircraft is a node of the Airliner "IT System"

Aircraft Overview - Operations (AEEC-ARINC Ref. Model)

4 Domains: Flight Controls, Avionics, A/C Systems, Engines Systems

CS-25 - Jet or turbo prop Capacities Airplane required by CS-23 - Jet or turbo prop Regulations CS-27 - mono or bi-turb related to A/C Helicoptère platform Type CS-29 - mono or bi-turb Basic RNAV Performance LPV (Localizer Performance with Vertical Guidance) Based RNP AR 0,3 / 0,1 Navigation A/C Capacities RVSM / NAT MNPS (vols transatlantiques) **Capacities** Specific ETOPS (Extended Twin Engine Operations) required by routes Regulations related to A/C Remote - Oceanic Airspace (FANS 1/A,) Airspace missions requiring **EURope Mandatory Datalink Carriage** COMM/ **Capacity Content** (Air Trafic Datalink Control Inter-ATSAW / ASPA / ... operability) Aircrafts SESAR Roadmap Separation **Paperless** Crew Capacities Synthetic Vision Situational Awereness Assistance to Taxi operations / Protection against runway overrun driven by A/C market trends Assistance to Taxi operations Common Crew Qualification with TBD previous Aircraft Capacities driven by Featuring operational and functional innovations Airframer offer Reduced training → Simplified systems management strategy

For each market segment

- A/C type regulations compliance
 - Helico, Turbo prop, Jet
 - Pax seats → Single / dual pilots
- A/C capacities (A/C missions)
 - Driven by ATC interoperability or imperative A/C capacities
 - Operations regulations
- **Crew capacities (market trends)**
 - Options becoming standards
 - Mission Management efficiency
 - Situational awareness
- Airframer choices
 - Cross Crew Qualification
 - Innovative cockpit

Method Steps

Method Contents

Customer Operational Need Analysis

What **the users** of the system have to accomplish

ORD/OCD CONOPS

System/SW Need Analysis What **the system** has to accomplish for the Users

SSS

Logical Architecture design

How the system will work so as to fulfil expectations

SSDD

Physical Architecture design

GROUP

How the system will be developed & built

THALES

AIRBUS GROUP

Actors	Tasks	Avionics Functions List
	Fly	ENSURE AUTOFLIGHT / FLIGHT ENVELOP PROTECTION PROVIDE PRIMARY FLIGHT REFERENCES AND A/C CONF DATA
FLIGHT CREW	Navigate [LOCALIZE AIRCRAFT MANAGE MISSION PROVIDE EXTERNAL PROTECTION
	Communicate	PROVIDE EXTERNAL VOICE COMMUNICATION PROVIDE EXTERNAL DATA COMMUNICATION PROVIDE INTERNAL AUDIO COMMUNICATION
System Need FINANCE TENANCE	Manage A/C systems	PROVIDE ALERTING PROVIDE ABNORMAL PROCEDURES PROVIDE CHECK LISTS
Syster MAINTENANCE	Maintain Operational Conditions	PROVIDE CENTRALIZED MAINTENANCE SERVICES ENSURE DATA LOAD SERVICES PROVIDE A/C CONDITION MONITORING RECORDING
RESCUE	Search & Rescue	TRANSMIT EMERGENCY LOCATING INFORMATION
BEA	Analyze Crash	PROVIDE VOICE RECORDING PROVIDE DATA RECORDING

Each of the functions provides a service for one or several user(s)

Mastering A/C interfaces is the perequisite to Master an Avionics System

Core Avionics Platform External ICD- Ex: Pgr1

Core Avionics Platform – ICD Ex: Pgr2

Avionics + Utilities – ICD with Integrated Utilities (Ex: Pgr3)

Agenda

- Avionics suite general context
- Architecture development process
- Architectural general aspects
 - Architecture main drivers
 - Variability analysis
- Architectural building: addressing safety requirements
 - Architecture building rule-of-thumb
 - Safety requirements ←→ candidate logical architectures
- Architecture building examples
 - Display primary parameters

中国民航大学中欧航空工程师学院

Architecture Development Process (1/2)

THALES

Architecture Development Process (2/2)

SD1 **Define Stakeholder Needs and the Development** Strategy

Customer Operational Need Analysis

What the users of the system have to accomplish

SD₂ **Formalise System Requirements**

System/SW Need Analysis

What the system has to accomplish for the Users

Σ Sys

SD3 **Develop System Architectural Design**

Logical Architecture design

How the system will work so as to fulfil expectations

Physical Architecture design

How the system will be developed & built

SD4 **Formalise Component Requirements**

Contracts for Development & IVVQ

What is expected from each designer / sub-contractor

AIRBUS GROUP

THALES

Architectiure Building

Agenda

- Avionics suite general context
- Architecture development process

- Architectural general aspects
 - Architecture main drivers
 - Variability analysis
- Architectural building: addressing safety requirements
 - Architecture building rule-of-thumb
 - Safety requirements ←→ candidate logical architectures
- Architecture building examples
 - Display primary parameters

Architecture Main Drivers

- Operational drivers
 - Cockpit philosophy
 - Capacity requirements (CAT III, LPV, RNP-AR, VNAV ...)
 - Maintainability and Dispatch requirements
- Functional drivers
 - CPU throughput sizing, I/O sizing, Safety requirements, latency
 - Memory (type, sizing, access needs, Power-off context saving)
- Non functional drivers
 - Environmental, Safety Airworthiness,...
- Platform drivers
 - Redundancy (availability) & integrity management
 - Required spare for growth margin / Upgradeability / Options
- Installation / Aircraft integration drivers
- Program drivers
 - NRC / RC objectives
 - Re-use / Product policy / Industrial share drivers
 - Development time

GEA Tianjin / 中国民航大学中欧航空面翻漏流流流nctional requirements

Physical Architecture Trade-off Items

✓ Data CPU throughput OK¹

☑ Graphics CPU throughput OK

☑ I/O Capacity OK

~ >	 ☑ I/O Capacity OK ☑ Data flow Bus Capacity OK ☑ Latency constraints OK AC DO Dispatch Maintain A Property Of The Condition
Computing	> Trade-Off
Resources	Ex: Processing in Remote Controllers
Graphical	DU Smart ←→ DU Dumb
Resources	Ex: Displays network connectivity
I/O Resources	Distributed I/Os Mgt ←→ Centralized I/Or Dual I/O boards with wiring Y's ←→ Sim Others Trade-Off Others Trade-Off
Networks	High integrity network High Perf. N/W ←→ Low cost access ne Increased Network Redundancy
General IMA Architecture	Cabinet ←→ Stand-alones Racks Tray or racks ←→ Direct mounting Packaging Robustness Centralized PWR supplies ←→ Distributed Single bus bar or dual bus bars equipment Aircraft Power supply Specific Charactericities

AIRBUS GROUP

Agenda

- Avionics suite general context
- Architecture development process
- Architectural general aspects
 - Architecture main drivers
- Variability analysis
 - Architectural building: addressing safety requirements
 - Architecture building rule-of-thumb
 - Safety requirements ←→ candidate logical architectures
 - Architecture building examples
 - Display primary parameters

Modular approach for the functional building blocks

HOSTING PLATFORM VARIABILITY

Significant Variability on Install Concerns

HOSTING PLATFORM VARIABILITY

Variability upon Plateforms form factor

COCKPIT ELEMENTS VARIABILITY

A need to define Modular Cockpit Solutions

Agenda

- Avionics suite general context
- Architecture development process
- Architectural general aspects
 - Architecture main drivers
 - Variability analysis
- Architectural building: addressing safety requirements
 - Architecture building rule-of-thumb
 - Safety requirements ←→ candidate logical architectures
- Architecture building examples
 - Display primary parameters

Architecture Building Rule-of-Thumb

- Functions Availability Concerns
 - Loss of all attitude displays including standby: Catastrophic
- Functions Integrity Concerns
 - Display of misleading attitude information on both primary displays: Catastrophic

Architecture Building Rule-of-Thumb

Functions Availability Considerations

Some functions are absolutely necessary for a "Continuous Safe Flight and Landing" whatever systems malfunction is subject to occur in the aircraft

- Loss of these functions is considered as a catastrophic event
- Rule of design consists in providing at least a 3 or 4-channels redundancy
 (*)
- Additional dissimilarity design rules do apply (single event [e.g. design flaw] can not lead to a catastrophic situation)
- 3 or 4-level redundancy depends on the specific system components MTBF, flight duration and dispatch reliability considerations (ability to take-off with one failure)

Catastrophic Functions

- → 3 or 4 channels
- → Dissimilarity required
- (*) One channel can be composed of one or several computing lanes It depends on integrity requirements and hardware safety characteristics

Architecture Building Rule-of-Thumb

Functions Availability Considerations (Cont'd)

Loss of other functions lead to operational situations which are evaluated as Hazardous, Major or Minor situations

- Besides CSFL functions, avionics functions are most generally essential (effect of their loss is Major), or non-essential (Minor)
- Essential functions
 - » Rule of design consists in providing a 2 or 3-channels redundancy
 - 2 or 3 redundancy depends mostly on dispatch reliability considerations (ability to take-off with one failure) – No general rule
- Non-Essential functions
 - » Rule of design consists in providing a 1-channel redundancy
 - » Minor criticality means that the effect of the loss of such functions has no significant impact on the flight, hence dispatch of the aircraft without this function is acceptable (with operational limitations)
 - » A 2-channel redundancy is sometimes provided upon economic considerations to avoid potential operational limitations (e.g. weather radar)

Essential (Major)
Non-essential (Minor)

→ 2 or 3 channels

→ 1 or 2 channels

Architecture Building Rule-of-Thumb

Functions Integrity Considerations

- Integrity requirements address the effect of potential undetected malfunctions (erroneous data computation, erroneous control, ..)
- Integrity requirements are derived by the introduction of safety monitoring features which aims at improving the detection of malfunctions
 - A single thread computation channel has generally the following intrinsic failure detection capability
 - 10⁻⁷/h < Undetected erroneous computation < 10⁻⁵/h
 - Rule-of-Thumb: Any function whose integrity requirement is worse than major will have to be monitored against another channel

HAZ or

CAT

Single thread computation intrinsic failure detection capability

AIRBUSGROUP

If detection and passivation mechanisms are independent from monitored channel

Agenda

- Avionics suite general context
- Architecture development process
- Architectural general aspects
 - Architecture main drivers
 - Variability analysis
 - Generational improvements
- Architectural building: addressing safety requirements
 - Architecture building rule-of-thumb
 - Safety requirements ←→ candidate logical architectures
- Architecture building examples
 - Display primary parameters

Safety Requirements Candidate Architectures

- For illustration purpose only: not meant to be exhaustive, neither valid in all cases – Dissimilarity aspects not addressed
- Click on Architecture name to visualize architecture
- Assumption on computing platform
 - Integrity: 10⁻⁻/h < Undetected erroneous computation < 10⁻⁵/h
 - Availability: $10^{-5}/h < \lambda < 10^{-3}/h$

Simplex Architecture

 $10^{-5}/h < Loss of function < 10^{-3}/h$ $10^{-7}/h < Erroneous control < 10^{-5}/h$

User Other system,
Display,
Actuator, ...

One channel

Computing platform

Inputs acquisition / outputs generation

Sensors
Control panel
Other system data

THALES

Inputs

Simplex Architecture

Weather Radar

Click anywhere to come the transmary/ta中国民航大学中欧航空工程师学院

Duplex Architecture

Availability capability: MAJ - HAZ

Integrity capability: MAJ

 $10^{-7}/h - 10^{-9}/h < Loss of function < 10^{-5}/h - 10^{-7}/h$ $10^{-7}/h < Erroneous cntrl < 10^{-5}/h$

Click anywhere to composite the composite that the composite the composite that the comp

THALES

Triplex-ORed Architecture

GROUP

Sensors
Control panel
Other system data

Click anywhere to come back to summary table Triplex-ORed Architecture

Click anywhere to come @ My to Figury jary table 国民航大学中欧航空工程师学院

Quadruplex-ORed Architecture

Availability capability: CAT Integrity capability: MAJ

Loss of function $< 10^{-9}/h$ $10^{-7}/h < Erroneous cntrl <math>< 10^{-5}/h$

Other system, Display, Actuator, ...

Computing platform

Inputs acquisition / outputs generation

Example

THALES

Inputs 2

Sensors
Control panel
Other system data

Availability capability: MIN

Integrity capability: CAT

10⁻⁵/h < Loss of one channel < 10⁻³/h **Dual or COM/MON**Erroneous cntrl < 10⁻⁹/h

Passivation mechanism or logic located in User system or in COM/MON

Other system,
Display,
Actuator, ...

Computing platform

Inputs acquisition / outputs generation

Sensors
Control panel
Other system data

SAFRAN

Click anywhere to come bask to summary tabb 国民航大学中欧航空工程师学院

Dual Dual or Dual COM/MON

Dual Dual or Dual COM/MON

Triple Dual Architecture

Availability capability: CAT Quad Dual Architecture Loss of function < 10⁻⁹/h Integrity capability: CAT Erroneous cntrl < 10⁻⁹/h up to User User User **Passivation** mechanism more Ch1 Ch2 Ch4 likely to be in COM/MON **Passivation Passivation Passivation Passivation Outputs Outputs Outputs Outputs** Outputs **Outputs Outputs Outputs Monitor** Monitor Monitor **Monitor** Monitor Monitor Monitor **Monitor** MON COM COM MON MON MON COM COM Inputs Inputs Inputs Inputs Inputs Inputs Inputs Inputs Monitor Monitor **Monitor Monitor** Monitor Monitor Monitor **Monitor** Inputs Inputs Inputs Inputs **Inputs** Inputs Inputs Inputs COM₁ COM₂ COM4 MON1 MON₂ COM₃ MON₃ MON4

Availability capability: MAJ/HAZ 10⁻⁸/h < Loss of function < 10⁻⁵/h Integrity capability: CAT **Triplex-AND Architecture** Erroneous cntrl < 10⁻⁹/h

Vote passivation mechanism or logic located in User system or in triplex archi User User ch1 ch2

Other system, Display, Actuator, ...

Computing platform

Inputs acquisition / outputs generation

Example

Inputs Inputs Inputs 1 2 3

AIRBUSGROUP

Sensors
Control panel
Other system data

Click anywhere to come character to the come character to come ch

Availability capability: CAT Loss of function < 10⁻⁹/h Integrity capability: CAT Loss of function < 10⁻⁹/h Erroneous cntrl < 10⁻⁹/h

Vote passivation mechanism or logic located in User system or in triplex archi

User ch1 User ch2

User ch3

Agenda

- Avionics suite general context
- Architecture development process
- Architectural general aspects
 - Architecture main drivers
 - Variability analysis
 - Generational improvements
- Architectural building: addressing safety requirements
 - Architecture building rule-of-thumb
 - Safety requirements ←→ candidate logical architectures

- Architecture building examples
 - · Display primary parameters

Avionics Suite - General

- An Avionics Suite is composed of
 - A Display System that provides to the crew the necessary visual information (PFD, ND, EWD, SD, ...)
 - Means of control for the crew to configure the various systems. They can be either:
 - Dedicated to one specific operational activity (Radio Management Panel)
 - But, more and more shared by several systems (track-ball, keyboard)
 - Peripheral systems that provide operational services to the crew or to other systems
 - Using the Display system obviously as the main shared HMI mean
 - Potentially using IMA elements as a hosting platform for part or all of their component functions
 - With their own sensors, actuators or other specific peripherals
 - An interface standard as the main communication media between the various systems (A429, AFDX, ...)

Avionics Suite – Architecture Early Sketch

AC 25-11A Attitude Reqts → Logical Design Rules

Failure Condition	Hazard Classification
Loss of all attitude displays, including standby display	Catastrophic
Loss of all primary attitude displays	Major – Hazardous(*)
Display of misleading attitude information on both primary displays	Catastrophic
Display of misleading attitude information on one primary display	Hazardous
Display of misleading attitude information on the standby display	Major
Display of misleading attitude information on one primary display combined with a standby failure (loss of attitude or incorrect attitude)	Catastrophic

Display

need to be

monitored

GEA Tianjin / 中国民航大学中欧航空正程师学院

AC 25-11A Attitude Reqts → **Logical Design Rules**

AIRBUS

GROUP

Interfaces shall guarantee independence between data flows to primary displays At least 2 dissimilar types of display

At least 3 PFD displays
(2 primary + Stby)
Additional PFD display
and/or Stby for dispatch
improvement

Failure Condition	Hazard Classification
Loss of all attitude displays, including standby display	Catastrophic
Loss of all primary attitude displays	Major – Hazardous(*)
Display of misleading attitude information on both primary displays	Catastrophic
Display of misleading attitude information on one primary display	Hazardous
Display of misleading attitude information on the standby display	Major
Display of misleading attitude information on one primary display combined with a standby failure (loss of attitude or incorrect attitude)	Catastrophic

Attitude displayed to Copilot **Display** Display pilots need to be Area Area monitored Interfaces data flows between inertial sources and displays shall be independent **Pilot** Copilot Control Control Interfaces Systems **Systems** Systems

At least 2 dissimilar types of inertial reference

At least 3 inertial sources
(2 primary + Stby)
A 3rd primary source and/or
2nd standby can be added for
No need to monitor staistastch improvement
display or standby attitude

THALES

SAFRAN

1 stby display (dissimilar from primary displays

1 Stby inertial source

Basic Certification Architecture

AIRBUS GROUP

3 IRS directly interfaced to CDS

GROUP

Airbus proprietary

Example of Flight Deck under MMEL conditions

GROUP

Agenda

- Avionics suite general context
- Architecture development process
- Architectural general aspects
 - Architecture main drivers
 - Variability analysis
 - Generational improvements
- Architectural building: addressing safety requirements
 - Architecture building rule-of-thumb
 - Safety requirements ←→ candidate logical architectures
- Architecture building examples
 - Display primary parameters

Thank you!

