1. Электростатика

Урок 11

Метод изображений на границе диэлектрик-диэлектрик

1.1. (Задача 2.39) Точечный заряд q находится на расстоянии h от плоской границы раздела двух бесконечно протяженных однородных диэлектриков с проницаемостями ε_1 и ε_2 (заряд находится в диэлектрике с ε_1). Найти потенциал электрического поля.

Решение Поле в первом диэлектрике \mathbf{E}_1 будет создаваться зарядом q и поляризационными зарядами, которые возникнут на границе раздела диэлектриков. По методу изображения попытаемся подобрать величину заряда q' такой, чтобы поле

от него в первом диэлектрике было эквивалентно полю поляризационных зарядов, когда q' находится в точке O', зеркально симметричной с точкой O относительно границы раздела в среде с проницаемостью ε_1 , т. е.

$$\mathbf{E}_1 = \frac{q \, \mathbf{r}}{\varepsilon_1 r^3} + \frac{q' \, \mathbf{r}'}{\varepsilon_1 r'^3} \,,$$

где \mathbf{r} и \mathbf{r}' – радиус-векторы, проведенные из зарядов q и q' в рассматриваемую точку. Поле во втором диэлектрике \mathbf{E}_2 будем искать как поле фиктивного заряда q'', находящегося в однородном диэлектрике с проницаемостью ε_2 , но пространственно совмещенного с зарядом q, т. е.

$$\mathbf{E}_2 = \frac{q'' \mathbf{r}}{\varepsilon_2 r^3} \,.$$

Каждое из этих полей является решением уравнения Лапласа, и если нам удастся удовлетворить граничным условиям, то \mathbf{E}_1 и \mathbf{E}_2 в силу теоремы единственности будут описывать действительное поле.

Из уравнений div $\mathbf{D}=0$ и rot $\mathbf{E}=0$ следуют условия непрерывности на границе раздела двух диэлектриков нормальных компонент D_n вектора \mathbf{D} и касательных компонент E_{τ} вектора \mathbf{E} :

$$q\cos\theta - q'\cos\theta = q''\cos\theta,$$

$$\frac{q}{\varepsilon_1}\sin\theta + \frac{q'}{\varepsilon_1}\sin\theta = \frac{q''}{\varepsilon_2}\sin\theta.$$

Из этой системы уравнений находим

$$q' = -\frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + \varepsilon_1} q$$
, $q'' = \frac{2\varepsilon_2}{\varepsilon_2 + \varepsilon_1} q$.

Поскольку угол θ выпадает из уравнений, граничные условия будут удовлетворены во всех точках границы раздела и полученные поля \mathbf{E}_1 и \mathbf{E}_2 являются решением задачи. Откуда для потенциалов получаем

$$\phi_1 = \frac{q}{\varepsilon_1 r_1} + \frac{1}{\varepsilon_1} q \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \frac{1}{r_2},
\phi_2 = \frac{1}{\varepsilon_2} q \frac{2\varepsilon_2}{\varepsilon_1 + \varepsilon_2} \frac{1}{r_1}.$$

1.2. (Задача 2.40) Найти плотность $\sigma_{\text{связ}}$ связанных поверхностных зарядов, наведенных на плоской границе раздела двух однородных диэлектриков ε_1 и ε_2 , точечным зарядом q, находящимся на расстоянии a над этой границей (заряд в диэлектрике с ε_1). Какой результат получится при $\varepsilon_2 \to \infty$, каков его физический смысл?

Решение На границе раздела нет свободных зарядов, поэтому плотность связанных зарядов пропорциональна скачку нормальной составляющей поля E.

$$\sigma_{\text{\tiny CBH3}} = \frac{E_{2n} - E_{1n}}{4\pi}.$$

$$E_{1n} = \frac{q}{\varepsilon_1} \left[\left(\frac{\mathbf{r}_1}{r_1^3} \right)_n + \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \left(\frac{\mathbf{r}_2}{r_2^3} \right)_n \right] = \frac{q}{\varepsilon_1} \frac{h}{(h^2 + R^2)^{3/2}} \frac{2\varepsilon_2}{\varepsilon_1 + \varepsilon_2}$$

$$E_{2n} = \frac{q''}{\varepsilon_2} \left(\frac{\mathbf{r}_1}{r_1^3} \right)_n = \frac{q}{\varepsilon_2} \frac{h}{(h^2 + R^2)^{3/2}} \frac{2\varepsilon_2}{\varepsilon_1 + \varepsilon_2}$$

$$q \ \varepsilon_1 - \varepsilon_2 \qquad h$$

Тогда

$$\sigma_{\text{\tiny CBSI3}} = \frac{q}{\varepsilon_1} \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \frac{h}{2\pi \left(h^2 + R^2\right)^{3/2}},$$

при $\varepsilon_2 \to \infty$,

$$\sigma_{\text{\tiny CBH3}} = -rac{qh}{2\pi arepsilon_1 \left(h^2 + R^3\right)^{3/2}}.$$

Плотность связанных зарядов, индуцируемых внешним полем на поверхности диэлектрика с $\epsilon_2 = \infty$, равна плотности свободных зарядов, индуцируемых при тех же условиях на поверхности металла.

1.3. (Задача 2.43) Полупространства заполнены диэлектриком: верхнее с проницаемостью ε_1 , нижнее — ε_2 . На оси, перпендикулярной плоскости раздела, расположены три заряда q_1 , q_2 и q_3 . В начале координат расположен заряд q_2 , а q_1 и q_3 — симметрично на расстоянии a от заряда q_2 . Найти силу, действующую на заряд q_1 .

Решение Поле, создаваемое зарядом q_2 , будет иметь вид (см. 2.4)

$$\mathbf{E}_2 = \mathbf{E} = \frac{2q_2}{\varepsilon_2 + \varepsilon_1} \frac{\mathbf{R}}{R^3} \,.$$

Используя метод изображений (см. 2.42), находим, что поле, которое возникнет на месте заряда q_1 , когда в диэлектрик с диэлектрической проницаемостью ε_2 вносится заряд q_3 , равно

$$E_3'' = \frac{2 q_3 \varepsilon_1}{(2a)^2 \varepsilon_1 (\varepsilon_2 + \varepsilon_1)} \frac{\mathbf{z}}{z}.$$

Заряд q_1 через поле поляризационных зарядов на границе раздела создает на месте своего нахождения дополнительное поле \mathbf{E}_1' :

$$\mathbf{E}_1' = -\frac{q_1}{4a^2} \frac{(\varepsilon_2 - \varepsilon_1)}{\varepsilon_1(\varepsilon_2 + \varepsilon_1)} \frac{\mathbf{z}}{z}.$$

Основываясь на принципе суперпозиции, окончательно находим силу, действующую на заряд q_1 :

$$\mathbf{F} = \left[\frac{2q_2q_1}{a^2(\varepsilon_2 + \varepsilon_1)} + \frac{q_3q_1}{2a^2(\varepsilon_2 + \varepsilon_1)} - \frac{q_1^2(\varepsilon_2 - \varepsilon_1)}{4a^2\varepsilon_1(\varepsilon_2 + \varepsilon_1)} \right] \frac{\mathbf{z}}{z}.$$