CLAIMS

I claim:

1	1. A method of evaporating cooling fluids in a turbine engine, comprising:			
2	spraying a cooling fluid from at least one fluid emitting device into a duct,			
3	whereby a plurality of droplets is formed;			
4	applying an electrical charge to the plurality of droplets forming charged			
5	droplets; and			
6	directing the plurality of charged droplets through the duct upstream of a			
7	compressor of a turbine engine whereby substantially all of the plurality of charged			
8	droplets are evaporated before reaching the compressor.			
1	2. The method of claim 1, further comprising applying an electrical charge			
2	to the duct, whereby the electrical charge applied to the duct has a polarity that is			
3	opposite to a polarity of the charge applied to the plurality of droplets.			
1	3. The method of claim 1, further comprising applying an electrical charge			
2	to the duct, whereby the electrical charge applied to the duct has a polarity that is			
3	equal to a polarity of the charge applied to the plurality of droplets.			
1	4. The method of claim 1, further comprising applying an electrical charge			
2	to at least one baffle positioned downstream from the at least one fluid emitting			
3	device.			

1	5. The method of claim 4, wherein applying an electrical charge to at least
2	one baffle comprises applying an electrical charge having a polarity that is opposite
3	to a polarity of the electrical charge applied to the plurality of droplets if a residence
4	time of the cooling fluids in the duct is not sufficient for a substantial portion of the
5	plurality of droplets emitted into the duct to be evaporated before reaching the
3	compressor of the turbine engine.

- 1 6. The method of claim 4, wherein applying an electrical charge to at least
 2 one baffle comprises applying an electrical charge having a polarity that is equal to a
 3 polarity the electrical charge applied to the plurality of droplets if a residence time of
 4 the cooling fluids in the duct is sufficient for a substantial portion of the plurality of
 5 droplets emitted into the duct to be evaporated before reaching the compressor of
 6 the turbine engine.
- 1 7. A turbine engine, comprising:
- 2 a compressor having a plurality of turbine blades coupled to a rotatable disc;
- at least one duct coupled to the compressor for directing air into the
- 4 compressor;
- at least one fluid emitting device for spraying a cooling fluid into the at least
- 6 one duct, whereby a plurality of droplets are formed; and
- at least one electrode positioned in the duct for applying an electrical charge
- 8 to at least a portion of the plurality of droplets.

1	8.	The turbine engine of claim 7, further comprising at least one baffle		
2	positioned in	the at least one duct downstream of the at least one fluid emitting		
3	device and u	ipstream of the compressor.		
1	9.	The turbine engine of claim 8, further comprising at least one electrode		
2	coupled to the at least one baffle for applying an electrical charge to the at least one			
3	baffle.			
1	10.	The turbine engine of claim 7, further comprising at least one electrode		
2	coupled to th	ne duct for applying an electrical charge to the duct.		
1	11.	The turbine engine of claim 7, wherein the at least one device for		
2	spraying a co	ooling fluid into the at least one duct comprises at least one nozzle		
3	adapted to e	mit droplets having a Dv90 measurement less than about 50 microns.		
1	12.	The turbine engine of claim 11, wherein the at least one device for		
2	spraying a co	ooling fluid into the at least one duct comprises at least one nozzle		
3	adapted to e	mit droplets having a Dv90 measurement less than about 20 microns.		
1	13.	The turbine engine of claim 7, wherein the duct is grounded.		
1	14.	An evaporative cooling system for a turbine engine, comprising:		
2	at lea	st one duct for directing air into a compressor of a turbine engine;		

3	at least one fluid emitting device for spraying a cooling fluid into the at least		
4	one duct, whereby a plurality of droplets are formed;		
5	at least one electrode positioned in the duct for applying an electrical charge		
6	to at least a portion of the plurality of droplets.		
1	15. The evaporative cooling system of claim 14, further comprising at leas		
2	one electrode coupled to the duct for applying an electrical charge to the duct.		
1	16. The evaporative cooling system of claim 14, wherein the at least one		
2	fluid emitting device for spraying a cooling fluid into the at least one duct comprises		
3	at least one nozzle adapted to emit droplets having a Dv90 measurement less than		
4	about 50 microns.		
1	17. The evaporative cooling system of claim 14, further comprising at leas		
2	one baffle positioned in the at least one duct downstream of the at least one fluid		
3	emitting device and upstream of the compressor.		
1	18. The evaporative cooling system of claim 17, further comprising at leas		
2	one electrode coupled to the at least one baffle for applying an electrical charge to		
3	the at least one baffle.		
1	19. The evaporative cooling system of claim 14, wherein the duct is		
2	grounded.		