

CONSTANTS

E: 210000

nu: 0.3

f_y: 235

G: 81000

gamma_M1: 1.05

INPUT DATA

b_sup: 4000

t_deck: 5

b_inf: 3000

t_bottom: 5

h: 1500

t_side: 5

a: 10000

L_e: 15000

bending type: sagging bending

cs position: neither

Buckling Proof according to EC 1993 Part 1-5

3.2 Effective width for elastic shear lag

Shear lag reduction for flange 1

Shear Lag is not neglectable

Beta: 0.6345317205957003

Shear lag reduction for flange 3

Shear Lag is not neglectable

Beta: 0.9173257837904699

4.4 Plate elements without longitudinal stiffeners

Iteratively changing the widths until M_Rd_el_eff converges to a limit of 0.005

4.5 Stiffened plate elements with longitudinal stiffeners

Side 2

4.5.4 Interaction between plate and column buckling

all_tension: False

 $rho_c = 1$

Side 3

4.5.2 Plate type behaviour

sigma_cr = 372.25502000000006

Lambda: 0.5549513175280283

Rho_Global: 1.0

4.5.3 Column type buckling behaviour

Column number 8

A_sl=11311.55, A_sl_eff=5518.29, I_sl=13625049.83

sigma_cr_c=249651.92

e1=96.75, e2=35.9

All tension =False

Buckling Values 8

beta_A_c = 0.4878456922159876

lambda_c_bar =0.02142928655464255

Phi_c =0.4669902232800209

Chi_c = 1.0712504611120048

Critical buckling values

Chi_c: 1.0712504611120048

sigma_cr_c: 249651.9209402946

4.5.4 Interaction between plate and column buckling

all_tension: False

rho c = 1.0712504611120048

Side 4

4.5.4 Interaction between plate and column buckling

all_tension: False

 $rho_c = 1$

Resistance to shear and interaction shear force and bending moment for side 1

- 5. Resistance to shear
- 7.1 Interaction between shear force, bending moment and axial force

Deck plate is ignored, as it is dimensioned with EC 3-2

Resistance to shear and interaction shear force and bending moment for side 2

5. Resistance to shear

unstiffened plate; (A.5)

k_tau: 5.965

eta 3: 0.00021511872325957862

7.1 Interaction between shear force, bending moment and axial force

Web -> (7.1) without iterating

eta_3 <= 0.5; no interaction needed

utilisation: -1

Resistance to shear and interaction shear force and bending moment for side 3

5. Resistance to shear

7.1 Interaction between shear force, bending moment and axial force

Flange -> (7.1), comment (5)

eta_3 > 0.5; interaction needed

eta_1: 4.2002242955507585e-08

utilisation: 1.000000042002243

Proofing Resistance to shear for each subpanel

5. Resistance to shear

unstiffened plate; (A.5)

k_tau: 5.795625

eta_3: 7.482115742394911e-05

eta_3_panel < 1: pass subpanel

5. Resistance to shear

unstiffened plate; (A.5)

k_tau: 5.3625

eta_3: 1.8833259078449485e-06

eta_3_panel < 1: pass subpanel

5. Resistance to shear

unstiffened plate; (A.5)

k_tau: 5.795625

eta_3: 7.482115742394911e-05

eta_3_panel < 1: pass subpanel

Resistance to shear and interaction shear force and bending moment for side 4

5. Resistance to shear

unstiffened plate; (A.5)

k_tau: 5.965

eta_3: 0.00021511872325957862

7.1 Interaction between shear force, bending moment and axial force

Web -> (7.1) without iterating

eta_3 <= 0.5; no interaction needed

utilisation: -1

Results:

EI: 3050998Nm^2

interaction side 2: -1

interaction side 3: 1.000000042002243

interaction side 4: -1

cost: 1913CHF/m

