

RISC-V: The Free and Open RISC Instruction Set Architecture

Rodolfo Azevedo – Ricardo Pannain

MC404 – Organização Básica de Computadores e Linguagem de Montagem

Variáveis Globais

- Variáveis globais ficam na área de dados
- .section .data

altura:

.word 200

largura:

.word 17

Constantes

- Constantes ficam na área de dados
- .section .rodata

altura:

.word 200

largura:

.word 17

Variáveis Locais

 Variáveis locais são alocadas na pilha, de forma similar ao utilizado para armazenar registradores

```
addi sp, sp, -16
sw ra, 12(sp)
sw s0, 8(sp)
```


Struct

- É importante considerar o tamanho total de cada estrutura de dados
- Reservar o espaço de memória tipicamente na ordem em que os campos aparecem
- É comum fazer padding dos dados
 - Alinhar o tamanho para múltiplo de 4 bytes para usar instruções de palavras

Exemplo

```
static struct \{ \text{ int } x, y \} v = \{ 7, 3 \};
```

```
v:

.word 7
.word 3

x:

.int 0
y:
.int 1
```

Exemplo

```
struct Pessoa {
  char nome [20];
  char sobrenome [20];
  int idade;
  float altura;
```

Exceções e Interrupções

- Eventos que podem causar a transferência da execução para outra parte do código, tipicamente para o Sistema Operacional
- Exceções
 - Causas internas ao core
 - Divisão por zero, falha de página, etc
- Interrupções
 - Causas externas ao core
 - Movimento do mouse, tecla digitada, dados prontos da rede ou disco

Comunicação com periféricos

- · Cada periférico possui um ou mais endereços de memória
- O algoritmo básico de leitura de um periférico é fazer polling:

```
if (tem_algo_para_ler()) {
    Leia();
    Processe();
```

Utilizando interrupções

- Forma alternativa de tratamento onde o periférico avisa o processador quando tem algo para tratar, chamando uma rotina de interrupção
- Existem múltiplas alternativas de interrupções para implementar, as variações são relacionadas à quantidade de trabalho de software e hardware

Distribuição de trabalho entre SW e HW

Totalmente em SW

 Uma única rotina é chamada para qualquer evento externo e deve consultar todos os periféricos para descobrir o que aconteceu

Híbrido

– Uma única rotina é chamada para qualquer evento externo e recebe um registrador indicando o causador da interrupção

Auxiliada por HW

– Uma rotina diferente é chamada para cada evento externo facilitando a forma como o software é escrito

Tipos de rotinas

Endereço único

- Único tratador cujo endereço fica num registrador especial
- A cada evento externo, o PC atual é salvo e alterado para esse valor especial

Tratador individualizado

- Único endereço base que fica num registrador especial
- Os endereços das rotinas de tratamento podem ser encontrados interpretando esse registrador como um vetor de endereços

Exemplos de eventos que podem causar exceções/interrupções

Tipo de Evento	Fonte	Terminologia MIPS
Requisição de I/O	Externa	Interrupção
Chamada ao SO	Interna	Exceção
Overflow aritimético	Interna	Exceção
Uso de instrução não definida	Interna	Exceção
Mau funcionamento do	Ambos	Exceção ou Interrupção
hardware		