

Variable selection

Does it matter from a machine learning perspective?

Filippo Biscarini Senior Scientist CNR, Milan (Italy)

Traditional statistics

Two groups of pigs: diet A, diet B \rightarrow which promotes growth better?

weight = mean + diet + e

!! is "diet" relevant/significant for growth?

Diet A	Diet B
90 kg	89 kg
88 kg	82 kg
92 kg	79 kg
87.5 kg	83 kg

Traditional statistics

What about the sex of the pigs? And their age? Or breed? Interactions?

weight = mean + diet + sex	+ age + e
----------------------------	-----------

weight = mean + diet + sex + age + breed + e
--

weight = mean	+ diet + sex + age	+ breed + + e
---------------	--------------------	---------------

weight = mean + diet + sex	+ age + breed +	age*breed + + e
----------------------------	-----------------	-----------------

Diet A	Diet B
90 kg	89 kg
88 kg	82 kg
92 kg	79 kg
87.5 kg	83 kg

What about machine learning?

In machine learning the model learns on its own which variables to use and how (not easily accessible by humans)

"black box"

What about machine learning?

In machine learning the model learns on its own which variables to use and how (not easily accessible by humans)

- If the ML model is able to determine that burying ground quartz stuffed into the horn of a cow (which are said to harvest "cosmic forces in the soil") has no effect on the growth of pigs, this information is kept hidden in the model
- Sounds suboptimal, but the interpretability of single variables loses sense as the number of variables and their combinations and transformations increases
- And in modern statistics we usually have A LOT of variables!

An illustration - ANOVA

*term	SS	d.f.	F	p-value
intercept	189.2	1	415.11	5.2e-37
diet	2.35	1	5.39	0.022

100

variable 🖮 diet_a Ė diet_b

*made up numbers!!

4.79

residual

variable

75 -

*term	SS	d.f.	F	p-value
intercept	189.2	1	415.11	5.2e-37
diet	2.35	1	5.39	0.022
residual	4.79	100		

=

weight = mean + b1*diet + e

weight = mean + b1*diet + e

```
*mean = 80 kg
*b1 = +2.75 kg [coding diet A = 1; diet B = 0]
```

Interpretation

- mean: average weight of pigs
- b1: average difference in weight between pigs fed with diet A and pigs fed with diet B

*made up numbers!!

weight = mean + b1*diet + b2*age + e

```
mean = 80 kg
b1 = +2.75 kg [coding diet A = 1; diet B = 0]
p-value = 0.006 \rightarrow b2 = +1.47 kg [coding age in years]
```

Interpretation

- mean: average weight of pigs
- b1: average difference in weight between pigs fed with diet A and pigs fed with diet B
- b2: average weight gain per year of age, keeping diet constant

made up numbers!!

weight = mean + b1*diet + b2*age + b3*motion_time + e

Traditional statistics approach!

The coefficient for "motion time" (b3) has a p-value of 0.29: we decide not to include motion time in the model

But what if the relationship between motion time and weight is not linear? We can fit **polynomial terms**! (square, cube etc.) [\rightarrow this is still a linear model!]

weight = mean + b1*diet + b2*age + b3*motion_time + b4*motion_time² + b5*motion_time³ + e

The p-values for the polynomial terms are now 0.075, 0.051 and 0.032:

- should we include these in the model?

The coefficients for the polynomial terms are: -1.57, 0.24 and -0.03

- how should we interpret these?
- on average, we lose 1.57 kg per hour of motion, we gain 0.24 kg per hour-of-motion squared, and we lose 30 grams per hour-of-motion cubed

How to build and interpret the model becomes more and more confused

The machine learning perspective

With many variables (but already with a handful of variables) it becomes a titanic task to decide which variables, combinations of variables and functions of variables include in the model

→ let the model decide!

The questions of variable selection and model interpretability become ill-posed

→ predictions matter more than inference!

Is this the end of the story? Can we really say nothing about why our model works (or does not work)?

→ don't panic, we'll be able to crack the black box (at least partially)

The machine learning perspective

variable selection ≠ data representation

variable selection ≠ feature engineering

How does the model decide which variables to use? (hold on a little longer ...)