

Construção de Compiladores

Autômatos

Professor: Luciano Ferreira Silva, Dr.

Identificação e classificação

Autômatos finitos

 Máquina de estados finitos que permite reconhecer se uma determinada string pertence ou não a uma linguagem regular.

Autômatos finitos

- Formalmente representável por uma quíntupla $M = (K, \Sigma, \delta, s, F)$:
 - 1. K é um conjunto finito de estados;
 - 2. Σ é o alfabeto de entrada finito;
 - 3. δ é o conjunto de transições. Sendo que cada transição é representada por uma tripla (s_i, Σ_T, s_f) :
 - 1. $s_i \in K$ é o estado de origem da transição;

Autômatos finitos

- 2. $\Sigma_T \subseteq \Sigma$ é o conjunto de símbolos do alfabeto que disparam essa transição quando o estado corrente é s_i ;
- 3. $s_f \in K$ é o novo estado corrente do autômato após a transição.
- 4. s é o estado inicial, sendo que $s \in K$;
- 5. F é o conjunto de estados finais. Sendo $F \subseteq K$.

Classificação de autômatos finitos

Não-determinísticos

- 1. Permitem a transição (s_i, ε, s_f) ;
- 2. Permitem as transições (s_i, α, s_f) e (s_i, α, s_g) , sendo que $\alpha \subset \Sigma$ e $s_f \neq s_g$;

Determinísticos

✓ Não permitem a ocorrência dos itens (1) e (2);

Representação de autômatos finitos

- Transições são representadas por meio grafos ou matrizes;
 - ✓ Exemplo, transição $(s_i, \{a\}, s_f)$

	 Si	
а	 Sf	

Representação de autômatos finitos

 Estados iniciais são indicados por uma seta os finais apresentam linhas duplas;

 \checkmark Exemplo, considere o autômato M = (K, Σ , δ , s, F):

 $K: \{S_0, S_1, S_2\}$

 $\Sigma:\{a,b\}$

 $\delta: \{(S_0, \{a\}, S_1), (S_0, \{b\}, S_2)\}$

s:SO

F: $\{S_1, S_2\}$

Exemplo de reconhecimento

- Considere a seguinte linguagem sobre o alfabeto {a, b}: L1={w | w possui aa ou bb como subpalavra}
- O autômato finito: M1=({q0, q1, q2, qf}, {a, b}, δ1, q0, {qf}), onde δ1 é dado pela matriz abaixo, reconhece a linguagem L1.

	q o	q1	q 2	q f
а	q 1	q f	q 1	q f
b	q 2	q 2	q f	q f

Exemplo de reconhecimento

Diagrama do autômato:

Exemplo de reconhecimento

Autômato M1 trabalhando sobre a entrada abba:

Construção de autômatos

- Considere a linguagem regular (0|1)*0 do alfabeto binário.
- Um solução intuitiva seria a matriz:

	Si	Sn	Sa
0	Sa	Sa	Sa
1	Sn	Sn	Sn

Estado inicial: S_i

Estado final: S_a

Construção de autômatos

Construção sistemática segue três etapas:

1. Construção de um autômato finito que representa diretamente os elementos de uma expressão regular. Pela característica dessa construção, esse primeiro autômato é nãodeterminístico;

Construção de autômatos

2. Conversão do autômato finito nãodeterminístico para um autômato finito determinístico equivalente, ou seja, reconhece strings da mesma linguagem;

3. Redução, se possível, do número de estados do autômato.

 Considere dois autômatos A_R e A_S que reconhecem as expressões regulares R e S, respectivamente.

 RS também é uma expressão regular (operação concatenação) e de acordo com o algoritmo, o autômato A_{RS} que a reconhece RS é:

 R|S também é uma expressão regular (operação alternativa) e de acordo com o algoritmo, o autômato A_{R|S} que a reconhece R|S é:

• R* também é uma expressão regular (operação repetição) e de acordo com o algoritmo, o autômato A_{R*} que a reconhece A_{R*} é:

O símbolo σ do alfabeto de uma expressão regular é uma expressão regular. O autômato A_σ que reconhece σ é:

- Seja R a expressão regular (0|1)*0;
- Perceba que R é a concatenação de R_1 e R_2 , com R_1 = (0|1)* e R_2 = 0;
- O autômato para reconhecer a expressão
 R₁R₂ é:

- R₁ por sua vez pode ser escrito como R₁
 - $= R_3^*$, sendo $R_3 = 0|1$;
- O autômato para reconhecer a expressão
 R₁R₂, com R₁=R₃* é:

- R₃ pode ser escrito como R₃ = R₄|R₅, sendo R₄ = 0 e R₅
 = 1;
- O autômato para reconhecer a expressão R₁R₂, com
 R₁=R₃* e R₃ = R₄|R₅ é:

Como R₂=0, R₄=0 e R₅=1 o autômato para reconhecer a expressão (0|1)*0 é:

