Quality trimming

Jenni Hultman

Department of Microbiology

University of Helsinki

Jenni.hultman@helsinki.fi

Raw data Illumina

• We have paired end data on the sequenced genomes A004_07004-B_TTGCATGT_GACTCGCA_run20171107N_S4_R1_001.fastq

A004_07004-B_TTGCATGT_GACTCGCA_run20171107N_S4_R2_001.fastq

- 150 + 150 bp
- Can contain
 - Sequence adapters
 - low quality sequence (usually in the end)
 - Occurrence: substitutions > indels
 - Quality scores: substitutions < indels
 - Overall quality: R1 > R2; beginning > end
- Need to check quality and trim the reads

Adapter contamination

Fastq

 Sequence data is commonly delivered in FASTQ format. No chromatograms!

Read name and position in Barcode sequence the sequence flowcell @HWI-D00482:50:C5KL8ANXX:1:1101:2025:1969 1:N:0:TAAGGCGAACTGCATA GAGTGAATGGGATCTTAACAACGATGTTCATCGGTTTAGTTCCTGTTGGACAAGTGATATATGGTTA TCTATTTACAGTTTTACCTGTTCAAGTCCCTTTT Sequence **FFFBFFFFFFFFFFFFFFF** Quality scores as ASCII characters

Quality scores

- measure of the quality of the identification of the bases generated by sequencer
- Phred-score

Phred Quality Score	Probability of incorrect base call	Base call accuracy	ASCHII
10	1 in 10	90%	+
20	1 in 100	99%	5
30	1 in 1000	99.9%	?
40	1 in 10000	99.99%	1

- Phred score above 20-25 considered as acceptable
 - 1 mistake in 100

@HWI-D00482:50:C5KL8ANXX:1:1101:2025:1969 1:N:0:TAAGGCGAACTGCATA GAGTGAATGGGATCTTAACAACGATGTTCATCGGTTTAGTTCCTGTTGGACAAGTGATATATCT ATTTACAGTTTTACCTGTTCAAGTCCCTTTT

ASC	II_BASE=3	3 Illumina	a, Io	n Torrent	, PacBio	and S	anger				
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

FASTQC

- Quality assessment program
 - How the data looks like. No trimming.
 - http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Output of FASTQC is a zip archive and an HTML document
- Combine files with multiqc

View the HTML in web browser

How does the data look like?

- Where is the best quality sequence?
 - Begin, middle, end?
- Are there adapters?
 - What are adapters? Why to remove?
- Differences in R1 and R2?
 - Forward and reserve reads

What kind of trimming do you think should be done?

Quality filtering

Removal of low-quality regions and adapters

 Several programs available, we will use cutadapt http://cutadapt.readthedocs.io/en/stable/

Cutadapt

• When looking at the cutadapt manual, which flags (="-letter") are for

•	ength tr	imming	
---	----------	--------	--

- 3' adapter ____
- Paired end 3'adapter
- Quality score
- Output name _____
- Paired end output

Cutadapt

• When looking at the cutadapt manual, which flags (="-letter") are for

•	Length	n trimming	-m
	U		

- 3' adapter -a
- Paired end 3'adapter -A
- Quality score -q
- Output name-o
- Paired end output -p

Nanopore data

- One nanopore MinION Flow Cell /sample
- Quality issues of Nanopore: substitutions
- A MinION flow cell contains 512 channels with 4 nanopores in each channel, for a total of 2,048 nanopores used to sequence DNA or RNA.
 - As nucleotides pass through the nanopore, a characteristic current change is measured and is used to determine the corresponding nucleotide type at ~450 bases per s

https://www.nature.com/articles/s41587-021-01108-x

QC & filtering: NanoPlot, nanoQC, Nanofilt

- Nanoplot: (A) Cumulative yield plot (B) Flow cell activity heatmap showing number of reads per channel. (C) Violin plots comparing base call quality over time. (D) NanoComp plot comparing log transformed read lengths of the *E.coli* dataset with a *K.pneumoniae* and human dataset.
- NanoOQ
- Nanofilt: Filtering and trimming of long read sequencing data.

Garbage in – garbage out