CS-300: Data-Intensive Systems

Tree-Structured Indexing

(Chapter 14.1-14.4)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

DBMS bigger picture

Support DBMS execution engine to read/write data from pages!

next

Queries

Two types of data structures:

- 1. Trees (ordered)
- 2. Hash tables (unordered)

Query Optimization and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Today's focus

- B⁺ Tree overview
- Operations on B⁺Tree

Index structures

- Recall: 3 alternatives for data entries k*:
 - Data record with key value k
 - <k, rid of data record with search key value k>
 - <k, list of rids of data records with search key k>
- Data is often indexed:
 - Speeds up lookup
 - Mandatory for primary keys
 - Useful for selective queries
- Choice is orthogonal to the *indexing technique* used to locate data entries k*
- Tree-structured indexing techniques support both range searches and equality searches

Example: range search

Let's run a query: "Find all students with gpa > 3.0"

- If data is in a sorted file, do binary search to find first such student, then scan to find others
- Cost of maintaining sorted file + performing binary search in a database can be quite high!

Data file

Example: range search

Let's run a query: "Find all students with gpa > 3.0"

- If data is in a sorted file, do binary search to find first such student, then scan to find others
- Cost of maintaining sorted file + performing binary search in a database can be quite high!

Simple idea: Create an 'index' file

• Can do binary search on (smaller) index file

Basic idea of **B**⁺ **Tree!**

Data file

B⁺ Trees: The most widely-used index structure

- B-trees (including variants) are the preferred data structure for external storage
- Class of balanced tree data structures:
 - B-Tree
 - B⁺Tree
 - B*Tree
 - B^{link} Tree
 - B^ε Tree

What is a B⁺ Tree?

 A self-balancing (height balanced), ordered tree data structure that allows searches, sequential access, insertions, and deletions in O(log_FN)

• N: Number of leaf nodes

• F: Fanout

- Generalization of a binary search tree, since a node can have more than one children
- Optimized for systems that read and write large blocks of data

B⁺ Tree properties

- A B⁺ Tree is an *d*-way search tree with the following properties:
 - Perfectly balanced
 - Every leaf node is at the same depth in the tree
 - Every node other than root is at least half-full
 - o d ≤ #keys ≤ 2d
 - d is also called order of the tree
 - Nodes are of three types: root, inner, and leaf
 - Every inner node with **k** keys has **k+1** non-null children

B⁺ Tree example

B⁺ Tree another example

- Search begins at root, and key comparisons direct it to a leaf.
- •Search for 5, 15, all data entries >= 24 ...

B⁺ Tree: Lookup/search operation

Looks for a search key v within the tree:

- Start by setting C to the root node
- While the current node (*C*) is not a leaf node:
 - a. Identify the smallest index i where v is less than or equal to the key of i.
 - b. If no such index exists, set *C* to the last non-null pointer in *C*.
 - c. If v equal to the key of i, move to the right child pointer
 - d. Otherwise, move to the left child pointer
- If the leaf node contains an entry with key equal to v return it
- Otherwise, return null → no record with key v exists

Lookup can return the concrete entry or just the position of the appropriate leaf page

B⁺ Tree: Insert operation

- Find the correct leaf node L
- Insert data entry into *L* in sorted order
 - If *L* has enough space, done!
 - Else, split L into L and a new node L2
 - Redistribute entries evenly, copy up middle key
 - Insert index entry pointing to L2 into parent of L
- This can happen recursively
 - To split index node, redistribute entries evenly, but push up middle key
- Splits "grow" tree; root split increases height
 - Tree growth: gets wider or one level taller at top

- Node for 8 will be present in the first leaf node
- Node is already full

Node for 8 will be present in the first leaf node

16

- Node is already full
- Allocate a new node
- Redistribute evenly
- Insert 5 into the parent of the leaf node

- Node for 8 will be present in the first leaf node
- Node is already full
- Allocate a new node
- Redistribute evenly
- Insert 5 into the parent of the leaf node

- Allocate a new node as the leaf node is full
- Split the node with values 19–23 evenly

- Allocate a new node as the leaf node is full
- Split the node with values 19–23 evenly

- Allocate a new node as the leaf node is full
- Split the node with values 19–23 evenly

B⁺ Tree root splitting

Data vs index page split

 Observe how minimum occupancy is guaranteed in both leaf and index page splits

13

5

21

30

Note difference
between copy-up and
push-up; be sure you
understand the reasons
for this.

B⁺ Tree: Before inserting 28, 6, and 25

B⁺ Tree: After inserting 28, 6

B⁺ Tree: After inserting 28, 6, 25

B⁺ Tree: Delete operation

- Start at root, find leaf L where entry belongs
- Remove the entry
 - If L is at least half-full, done!
 - If L has only d-1 entries,
 - Try to redistribute, borrowing from <u>sibling</u> (adjacent node with same parent as L)
 - If redistribution fails, merge L and sibling
- On merge, delete entry from parent of L
 - Either the entry pointing to L, or the one pointing to sibling
- Propagate merge to root, as needed
 - Height decreases

 Remove 24 and merge two nodes and update the parent

Another take at non-leaf redistribution

Another take at non-leaf redistribution

Another take at non-leaf redistribution

Clustered indexes

- The table is physically stored in the sort order specified by the primary key
 - Can be either heap- or index-organized storage
- Some DBMSs always use a clustered index
 - If a table does not contain the primary key, the DBMS will automatically make a hidden primary key
- Meanwhile, other DBMSs do not support them!

B⁺ Tree traversal

Clustered:

- Traverse to the leftmost leaf page and then retrieve tuples from all leaf pages
- This will always be better than sorting data for each query

Non-clustered:

- For non-clustered index, retrieving records in the order they appear in the leaves causes redundant page reads
- Better approach: Find all pages the query needs and then sort them based on their page ID

B⁺ Tree design choices

- Node size
- Merge threshold
- Variable-length keys
- Intro-node search

Node size

• The slower the storage device, the larger the optimal node size for the tree:

• HDD: ~1MB

• SSD: ~10KB

In-memory: ~512B

- Optimal sizes can vary depending on the workload
 - Leaf node scans vs root-to-leaf traversals

Merge threshold

- Some DBMS do not always merge nodes when they are half full
 - (data sizes are growing, we expect more insertions than deletions)
 - Average occupancy rate for nodes is around 67%
- Delaying a merge operation may reduce the amount of reorganization
- Sometimes, it is better to just let smaller nodes exist and then periodically rebuild entire tree
 - Example: PostgreSQL calls their implementation as a "non-balanced" B⁺ Tree

Variable-length keys

Pointers

Store the keys as pointers to the tuple's attribute

Variable-length nodes

- The size of each node in the index may vary
- Requires careful memory management

Padding

Always pad the key to be max length of the key type

Key Map / Indirection

Embed an array of pointers that map to the key + value list within the node

- Linear search
 - Scan node keys from beginning to end
 - High performance using SIMD instructions

- Linear search
 - Scan node keys from beginning to end
 - High performance using SIMD instructions

Linear search

- Scan node keys from beginning to end
- High performance using SIMD instructions

Binary search

 Jump to middle key, pivot left/right depending on comparison

Linear search

- Scan node keys from beginning to end
- High performance using SIMD instructions

Binary search

 Jump to middle key, pivot left/right depending on comparison

Linear search

- Scan node keys from beginning to end
- High performance using SIMD instructions

Binary search

 Jump to middle key, pivot left/right depending on comparison

Linear search

- Scan node keys from beginning to end
- High performance using SIMD instructions

Binary search

Jump to middle key, pivot left/right depending on comparison

Interpolation

• Approximate the location of desired key based on known distribution of keys

x: search key

arr[]: array where elements

need to be searched

low: starting index in arr[]

high: ending index in arr[]

Index of x:
$$low + \frac{(x-arr[low])*(high-low)}{arr[high]-arr[low]} = 0 + \frac{(8-4)*(6-0)}{10-4} = 4$$

Concurrently accessing B⁺ Tree

- Handling concurrent access for the tree is not straightforward:
 - Simple page locking/latching is not enough
 - Will protect against "simple" (single page) changes
 - However, pages depend on each other
- Classical technique is lock coupling
 - A thread latches both the page and its parent page
 - i.e., latch the root first, latch the first level, release the root, latch the second level etc.
 - Prevents conflicts, as pages can only be split when the parent is latched
 - No deadlocks, as the latches are ordered (canonical)

Concurrently accessing B⁺ Tree

- Handling inserts:
 - When a leaf is split, the entry is propagated up
 - Might go up all the way to the root
 - But we only have locked one parent
- Naive lock coupling can result in deadlocks

Concurrently accessing B⁺ Tree

Alternative approach: Use restart or optimistic coupling

- 1. First try to insert using simple lock coupling
- 2. If we do not split the inner node, everything is fine
- 3. Otherwise, release all latches
- 4. Restart the operation, but now hold all the latches all the way to the root
- 5. All operations can now be executed safely
- Greatly reduces concurrency
- A rare scenario
- Simple to implement

B⁺ Tree in practice (cool facts!)

- Typical order: 100. Typical fill-factor: 67%.
 - Average fanout = 2*100*0.67 = 134
- Typical capacities:
 - Height 4: 134⁴ = 322,417,936 entries
 - Height 3: $134^3 = 2,406,104$ entries
- Top levels can always be in memory:
 - Level 1 = 1 page = 8 KB
 - Level 2 = 134 pages = 1 MB
 - Level 3 = 17,956 pages = 140 MB

Summary

- Tree indexes are ideal for range-searches
 - Also good for equality search
- B⁺ Tree is a versatile, dynamic data structure
 - Inserts/deletes leave tree height-balanced
 - High fanout means depth rarely more than 3 or 4
 - Almost always better than maintaining a sorted file
 - 67% occupancy on an average
- Most widely-used index in database systems
 - One of the most optimized component of a DBMS