HW1 Classification Report 113024510 廖振宇

1. Executive Summary 摘要

- 以純 numpy 手刻的Forward Classification Neural Network (FCNN) 在 第二題的資料集 Ionosphere
 上達成 Test Accuracy = 91.55% / Error Rate = 8.45%。
- Baseline 架構 [34 → 64 → 32 → 16(Baseline) → 1] 於 第 99 個 epoch 取得最佳驗證表現
 (Val Loss = 0.271, Val Accuracy = 89.29%, Val Error Rate = 10.71%);並且也順利通過梯度檢查(ε=1e-5,相對誤差 < 1e-3)。
- 對第四層中的node(原先的size = 16)數量進行置換 $(4 \times 16 \times 32 \times 64 \times 128)$ 並訓練後分析其模型結果,分析顯示 latent=64 時測試錯誤率最低 (5.63%),且 latent 投影呈現更清晰的類別分離。

2. Data & Preprocessing 資料與前處理

- 資料集 Dataset: HW1/datasets/2025_ionosphere_data.csv ,共 351 筆樣本。
- 切分策略 Split:依作業規範打散後切為 Train 224 / Val 56 / Test 71 (64% / 16% / 20%)。
- 標準化與標籤轉換:
 - 。 34 個數值特徵以訓練集均值與標準差進行 z-score,並保存於 metadata。
 - 。 標籤 'g' → 1.0, 'b' → 0.0 ;最終輸入/輸出皆為 float64 。
- 輸出檔案 Artifacts:
 - 。 artifacts/classification/training_history.csv :完整訓練紀錄。
 - ∘ results/classification_summary.json : Train/Val/Test loss \ accuracy \ error rate ∘

3. Model Architecture & Hyperparameters 模型與超參數

- 網路結構 Architecture: [34, 64, 32, latent, 1]
 - 。 latent 節點數量可調整 (4, 16, 32, 64, 128)。
 - 。 隱藏層 ReLU、輸出層 Sigmoid。
 - 。 Baseline latent 維度 = 16 (取 latent_layer_sizes 第二個元素)。

。 權重以 Xavier Uniform 初始化; get_latent_output() 提供倒數第二層特徵。

Hyperparameters:

參數	值
Learning Rate	0.01
Epoch 上限	30,00
Mini-batch Size	32
Gradient Clip	±1.0
Early Stopping (patience, min_delta)	3,00, 1e-6 (監控 Val Loss)
Random Seed	666,666
Gradient Check	epsilon=1e-5 , 隨機抽取 25 個權重 & Bias; 最大相對誤差 < 1e-3

• 訓練特色 Highlights:

- 。 每個 epoch 重新打亂批次 (seed + epoch)。
- 。 預設儲存以下 latent 的模型狀況: epoch0_init , epoch1_after_first_update , epoch_mid , epoch_best 。
- 。 透過 TrainingRecord 追蹤 Train/Val Loss & Accuracy;最佳權重存於 artifacts/classification/best_model.pkl 。

4. Learning Dynamics & Best Epoch 學習歷程

• 最佳驗證點 Best Epoch(Baseline):第 99 epoch

Metric	Train	Val
Loss	0.1359	0.2712
Accuracy	95.09%	89.29%
Error Rate	4.91%	10.71%

• 學習曲線 Learning Curves:

- 。 Loss 自 0.68 降至 <0.3,Val Loss 於 100 epoch 左右達最低並輕微回升,可以看出在100以後繼續訓練會有點overfitting的跡象,因此 early stopping 在此發揮作用。
- 。 Accuracy 曲線顯示訓練過程平滑且無劇烈震盪,表明梯度裁剪有效穩定收斂。
- 。整體而言,學習曲線反映出模型在訓練過程中表現穩定且有效,early stopping 有助於防止過 擬合。

5. Final Performance 最終效能(Baseline)

• 整體指標 Overall Metrics:

Split	Loss	Accuracy	Error Rate
Train	0.1359	95.09%	4.91%
Val	0.2712	89.29%	10.71%
Test	0.2679	91.55%	8.45%

• 測試集混淆矩陣 Test Confusion Matrix:

- 。 數值 (由最佳權重重新推論):
 - TP = 37, FN = 1
 - FP = 5, TN = 28
- 。 衍生指標 Derived Metrics:Precision = 0.881、Recall = 0.974、F1 = 0.925。
- 。 觀察:模型對正類 (良好訊號 $\, {
 m g} \,)$ 的召回率極高;誤判主要集中於少數 false positive。

6. Latent Nodes Analysis

6.1 Baseline Latent (16-d)

• 抽樣視覺化 (驗證集):

訓練階段 Stage	2D 投影圖	說明	
初始 Initialization	Baseline latent=16 epoch0_init 1.0 0.5 0.6 Ped = 0 Pool Pool Pool Pool Pool Pool Pool Po	類別混雜,僅呈現隨機雜訊。	
第 1 次更新 After First Update	Baseline latent=16 epoch1_after_first_update 1.0 0.5 0.6 0.7 0.7 0.9 0.6 0.7 0.7 0.7 0.8 0.6 0.7 0.9 0.7 0.9 0.9 0.9 0.9 0.9	早期權重已將少數樣本分離。	
最佳驗證 Best	Baseline latent=16 epoch99_best 1.0 0.5 0.6 0 po b 1.0 0.4 0 po b 1.0 0.5 -1.0 -1.5 -2.0 0.0 0.0 0.0	g 與 b 形成明顯集群, 僅少數邊界點重疊。	

6.1 整體 Latent Sweep Visualization

• 可以看出幾乎所有的latent維度在經過訓練後都能有效分離兩類樣本,而其中又以latent=64的效果 最佳,經過訓練後可以幾乎完整的分離兩類樣本,僅有少數邊界點重疊。

6.2 Latent Dimension Sweep

• artifacts/classification/latent_comparison.csv 摘要:

Latent Size	Train Err	Val Err	Test Err
4	1.79%	8.93%	8.45%
16	4.91%	10.71%	8.45%
32	3.13%	8.93%	7.04%
64	4.02%	8.93%	5.63%
128	5.36%	8.93%	8.45%

• 分析 Observations:

- 。 Latent 維度 4 雖在訓練集表現優異,但測試錯誤率與 baseline 相近,顯示泛化的能力有限。
- 。 64 維達到最佳測試錯誤率 5.63%,同時維持穩定的驗證錯誤率;而從上方的圖也能看出在這個設定下的訓練後,兩類距離更遠,邊界更清晰。且64的latent所帶來的訓練/測試落差也不

大,顯示其泛化能力較佳。

。 128 維雖然有較高的訓練錯誤率,但測試錯誤率反而回升至 8.45%,暗示過高維度可能導致過 擬合。

7. Appendix 附錄

主要檔案:

。 程式: project/src/classification_pipeline.py

。 設定: classification_pipeline.CONFIG

○ 最佳權重: artifacts/classification/best_model.pkl

。 Latent 比

較: $artifacts/classification/latent_comparison.csv$ 、 artifacts/classification/latents/

○ 圖表: project/figures/classification_*.png

• 重現步驟 Reproducibility:

cd HW1/project
python src/classification_pipeline.py

將自動完成前處理、baseline 訓練、評估與 latent 分析,並重新生成所有指標與圖表。