How to Simulate it in Isabelle: Towards Formal Proof for Secure Multi-Party Computation

David Butler, David Aspinall, Adrià Gascón

The Alan Turing Institute University of Edinburgh

Outline

- Motivation for formal methods in Cryptography.
- ► Introduce Secure Multi-Party Computation.
- How is security defined in SMPC?
- CryptHOL, the framework we use in Isabelle.
- Basic proof techniques.
- Toy example to demonstrate how formalisation works.

Do we have a problem with cryptographic proof?

"... Yes we do. The problem is that as a community, we generate more proofs than we carefully verify."

S. Halevi. 2005

Do we have a problem with cryptographic proof?

"... Yes we do. The problem is that as a community, we generate more proofs than we carefully verify."

S. Halevi. 2005

"In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor".

Bellare and Rogaway. 2004

Do we have a problem with cryptographic proof?

"... Yes we do. The problem is that as a community, we generate more proofs than we carefully verify."

S. Halevi. 2005

"In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor".

Bellare and Rogaway. 2004

"Security proof for even simple cryptographic systems are dangerous and ugly beasts. Luckily, they are only rarely seen: they are usually safely kept in the confines of "future full-versions" of papers, or only appear in cartoon-ish form, generically labelled as ... "proof sketch"

Bristol Crypto Group. 2017

Contributions

Contributions

Starting from Lindell's tutorial 'How to Simulate it: A tutorial on the simulation proof technique.'

- Demonstrated how the simulation-based proof method can be formalised.
- Defined computational indistinguishability up to polynomial time distinguishers.

Protocols formalised:

- Secure multiplication protocol.
- Noar Pinkas Oblivious Transfer.
- Protocol that securely computes an AND gate.

Secure Multi-Party Computation (SMPC)

Parties jointly compute a function on their private inputs.
 Goal: Their inputs remain private.

Secure Multi-Party Computation (SMPC)

- Parties jointly compute a function on their private inputs.
 Goal: Their inputs remain private.
- First introduced in *The Millionaire's Problem -* Yao, 1982.

The two party millionaire's problem, who is the most wealthy?

Secure Multi-Party Computation (SMPC)

Parties jointly compute a function on their private inputs.
 Goal: Their inputs remain private.

► First introduced in *The Millionaire's Problem* - Yao, 1982.

The two party millionaire's problem, who is the most wealthy?

Recommended as an "emerging approach that enhances privacy protections" in the report of the US commission on Evidence-Based Policymaking, 2017.

► Initially cryptographers studied MPC, but did not have efficient solutions.

- Initially cryptographers studied MPC, but did not have efficient solutions.
- Goldreich, Micali and Widgerson (GMW) showed how to compute any boolean circuit securely.

- Initially cryptographers studied MPC, but did not have efficient solutions.
- Goldreich, Micali and Widgerson (GMW) showed how to compute any boolean circuit securely.
- Efficient implementations with applications in mind were developed in 2000s.
- ► SMPC began to become more widely implemented.
 - First real life deployment was in 2008 at a Danish sugar beat auction.

- Initially cryptographers studied MPC, but did not have efficient solutions.
- Goldreich, Micali and Widgerson (GMW) showed how to compute any boolean circuit securely.
- Efficient implementations with applications in mind were developed in 2000s.
- ► SMPC began to become more widely implemented.
 - First real life deployment was in 2008 at a Danish sugar beat auction.
- Could be considered as a counterpart to Homomorphic encryption.

Our set up and security model

Our set up and security model

What are we considering?

- Two party setting.
- Semi honest adversary model honest but curious adversaries.
 - Adversaries follow the protocol specification exactly.
 - They attempt to learn additional information by analysing the transcript of messages received during the execution.

Simulation based security: intuition

The Real World

Simulation based security: intuition

The Ideal World

Simulation based security: intuition

Show that the two worlds are equivalent or indistinguishable.

Assume party one is corrupt.

Assume party one is corrupt.

The Real World

► Create the *real view* of the party one - the transcript it sees.

Assume party one is corrupt.

The Real World

► Create the *real view* of the party one - the transcript it sees.

The Ideal World

▶ Construct *simulator*, S_1 , which only takes as input the input and output of party one. Outputs the *simulated view of the party*.

Assume party one is corrupt.

The Real World

▶ Create the *real view* of the party one - the transcript it sees.

The Ideal World

▶ Construct *simulator*, S_1 , which only takes as input the input and output of party one. Outputs the *simulated view of the party*.

Show the two output distributions are *computationally indistinguishable*.

$$\{Real_{View1}(input_1, input_2)\} \stackrel{c}{\equiv} \{S_1(input_1, out_1)\}$$

- ▶ A game defines the goal of an attacker explicitly.
 - Prove that no adversary can achieve the goal.

- ▶ A game defines the goal of an attacker explicitly.
 - Prove that no adversary can achieve the goal.
- Frameworks have been developed to formalise game-based proofs - EasyCrypt, FCF.

- A game defines the goal of an attacker explicitly.
 - Prove that no adversary can achieve the goal.
- Frameworks have been developed to formalise game-based proofs - EasyCrypt, FCF.
- Cryptographers view game-based and simulation-based proofs as distinct.

- A game defines the goal of an attacker explicitly.
 - Prove that no adversary can achieve the goal.
- Frameworks have been developed to formalise game-based proofs - EasyCrypt, FCF.
- Cryptographers view game-based and simulation-based proofs as distinct.
- ► We use a game-based framework, CryptHOL, to do simulation-based proofs.

CryptHOL (Lochbilher, 2016)

CryptHOL (Lochbilher, 2016)

▶ Provides probabilistic programming framework.

CryptHOL (Lochbilher, 2016)

- ▶ Provides probabilistic programming framework.
 - ▶ Real and simulated views modelled as probabilistic programs.

CryptHOL (Lochbilher, 2016)

- Provides probabilistic programming framework.
 - ► Real and simulated views modelled as probabilistic programs.
- Defines theory on sub probability mass functions (spmfs).

Formalising security in Isabelle: CryptHOL

CryptHOL (Lochbilher, 2016)

- Provides probabilistic programming framework.
 - ► Real and simulated views modelled as probabilistic programs.
- Defines theory on sub probability mass functions (spmfs).
- Can reason about probabilistic programs.

Formalising security in Isabelle: CryptHOL

CryptHOL (Lochbilher, 2016)

- Provides probabilistic programming framework.
 - Real and simulated views modelled as probabilistic programs.
- Defines theory on sub probability mass functions (spmfs).
- Can reason about probabilistic programs.
- Designed with game-based proofs in mind.

CryptHOL: some key features

CryptHOL: some key features

- ► Many protocols require uniform sampling from sets.
 - uniform : α set $\Rightarrow \alpha$ spmf
 - ▶ sample_{uniform} $n \equiv uniform \{.. < n\}$
 - ightharpoonup coin_{spmf} \equiv uniform {True, False}

CryptHOL: some key features

- Many protocols require uniform sampling from sets.
 - uniform : α set $\Rightarrow \alpha$ spmf
 - ▶ sample_{uniform} $n \equiv uniform \{.. < n\}$
 - $ightharpoonup coin_{spmf} \equiv uniform \{True, False\}$
- Much of our reasoning comes from the functorial structure map_{spmf}.
 - $map_{spmf}: (\alpha \Rightarrow \beta) \Rightarrow \alpha \ spmf \Rightarrow \beta \ spmf$
 - ▶ $map_{spmf} f p = bind_{spmf} p (\lambda x. return_{spmf} (f x))$

Information theoretic security:

Information theoretic security:

Show real and simulated views are equal.

Information theoretic security:

- Show real and simulated views are equal.
- Use CryptHOL to manipulate probabilistic programs so we can reason about distributions.

Information theoretic security:

- Show real and simulated views are equal.
- Use CryptHOL to manipulate probabilistic programs so we can reason about distributions.
- ▶ Then we prove lemmas like:

$$map_{spmf} (\lambda b. (y + b) \mod q) (sample_{uniform} q)$$

= $sample_{uniform} q$

Information theoretic security:

- Show real and simulated views are equal.
- Use CryptHOL to manipulate probabilistic programs so we can reason about distributions.
- ▶ Then we prove lemmas like:

$$map_{spmf} (\lambda b. (y + b) \mod q) (sample_{uniform} q)$$

= $sample_{uniform} q$

To show equality between the views.

- Assume the problem is hard.
 - ▶ In the Noar Pinkas OT this is the Diffie-Hellman assumption.

- Assume the problem is hard.
 - ▶ In the Noar Pinkas OT this is the Diffie-Hellman assumption.
- Construct the real and simulated views.

- Assume the problem is hard.
 - ▶ In the Noar Pinkas OT this is the Diffie-Hellman assumption.
- Construct the real and simulated views.
- ▶ Assume there exists a distinguisher, *D*, that can distinguish the two views.

- Assume the problem is hard.
 - ▶ In the Noar Pinkas OT this is the Diffie-Hellman assumption.
- Construct the real and simulated views.
- ► Assume there exists a distinguisher, *D*, that can distinguish the two views.
- ▶ Use D to construct an adversary, A(D), that *breaks* the known hard problem.

- Assume the problem is hard.
 - ▶ In the Noar Pinkas OT this is the Diffie-Hellman assumption.
- Construct the real and simulated views.
- ► Assume there exists a distinguisher, *D*, that can distinguish the two views.
- ▶ Use D to construct an adversary, A(D), that *breaks* the known hard problem.
- This is a contradiction.

Refresher

What have we seen so far?

- Why formal methods are useful to cryptography.
- What SMPC is and how security is defined.
- ► The basics of CryptHOL.
- ▶ The proof methods we use.

Refresher

What have we seen so far?

- Why formal methods are useful to cryptography.
- What SMPC is and how security is defined.
- The basics of CryptHOL.
- ▶ The proof methods we use.

Now we will see a toy example of how we actually formally prove security for an Oblivious Transfer protocol.

► Fundamental two party primitive.

► Fundamental two party primitive.

▶ The Sender holds two messages (m_0, m_1) . The Receiver has a choice bit, b.

Fundamental two party primitive.

- ▶ The Sender holds two messages (m_0, m_1) . The Receiver has a choice bit, b.
- ▶ The *Receiver* learns *m_b* the *Sender* learns nothing.

Fundamental two party primitive.

- ▶ The Sender holds two messages (m_0, m_1) . The Receiver has a choice bit, b.
- ▶ The *Receiver* learns *m_b* the *Sender* learns nothing.
- ▶ The *Receiver* learns nothing of m_{b-1} and the *Sender* does not learn b.

Oblivious Transfer: A toy example.

Oblivious Transfer: A toy example.

Trusted Initialiser $r_0, r_1, d \stackrel{\$}{\leftarrow} \{0, 1\}$ P_1 P_2 $m_0, m_1 \in \{0, 1\}$ $b \in \{0, 1\}$ d, r_d r_0, r_1 e $e = b \oplus d$ $f_0 = m_0 \oplus r_e$ f_0, f_1 $f_1 = m_1 \oplus r_{1-2}$ f_0, f_1 $m_b = f_b \oplus r_d$

Oblivious Transfer: A toy example - real view for party 2.

$$R_2 (m_0, m_1) b = do \{$$

 $r_0, r_1, d \leftarrow coin_{spmf};$
 $let e = b \oplus d;$
 $let r_e = (if e then r_1 else r_0);$
 $let r_{1-e} = (if e then r_0 else r_1);$
 $return_{spmf}(m_0 \oplus r_e, m_1 \oplus r_{1-e})\}$

The real and simulated views.

```
 \begin{array}{ll} R_2 \left( m_0, m_1 \right) \, b = do \, \{ \\ r_0 \leftarrow coin_{spmf}; \\ r_1 \leftarrow coin_{spmf}; \\ d \leftarrow coin_{spmf}; \\ let \, e = b \oplus d; \\ let \, r_e = \left( if \, e \, then \, r_1 \, else \, r_0 \right); \\ let \, r_{1-e} = \left( if \, e \, then \, r_0 \, else \, r_1 \right); \\ return_{spmf} \left( m_0 \oplus r_e, m_1 \oplus r_{1-e} \right) \} \end{array}
```

The real and simulated views.

```
R_{2}\left(m_{0},m_{1}\right) b = do \left\{ \begin{array}{c} S_{2} \ b \ m_{b} = do \left\{ \\ r_{0} \leftarrow coin_{spmf}; \\ r_{1} \leftarrow coin_{spmf}; \\ d \leftarrow coin_{spmf}; \\ let \ e = b \oplus d; \\ let \ r_{e} = \left(if \ e \ then \ r_{1} \ else \ r_{1}\right); \\ return_{spmf}\left(m_{0} \oplus r_{e}, m_{1} \oplus r_{1-e}\right) \right\} \end{array}
```

We can show these two probabilistic programs are equal.

We manipulate the real view using lemmas from CryptHOL.

We manipulate the real view using lemmas from CryptHOL.

```
\begin{array}{ll} R_2 \ (m_0, m_1) \ b = do \ \{ \\ f_0 \leftarrow map_{spmf} (\lambda r_e. \ m_0 \oplus r_e) \ coin_{spmf}; \\ f_1 \leftarrow map_{spmf} (\lambda r_{1-e}. \ m_1 \oplus r_{1-e}) \ coin_{spmf}; \\ return_{spmf} (f_0, f_1) \} \end{array} \quad \begin{array}{ll} S_2 \ b \ m_b = do \ \{ \\ r_0 \leftarrow coin_{spmf}; \\ r_1 \leftarrow coin_{spmf}; \\ return_{spmf} (r_0, r_1) \} \end{array}
```

We manipulate the real view using lemmas from CryptHOL.

```
 \begin{array}{ll} R_2 \ (m_0, m_1) \ b = do \ \{ \\ f_0 \leftarrow map_{spmf} (\lambda r_e. \ m_0 \oplus r_e) \ coin_{spmf}; \\ f_1 \leftarrow map_{spmf} (\lambda r_{1-e}. \ m_1 \oplus r_{1-e}) \ coin_{spmf}; \\ return_{spmf} (f_0, f_1) \} \end{array} \quad \begin{array}{ll} S_2 \ b \ m_b = do \ \{ \\ r_0 \leftarrow coin_{spmf}; \\ r_1 \leftarrow coin_{spmf}; \\ return_{spmf} (r_0, r_1) \} \end{array}
```

Prove the lemma:

$$map_{spmf}(\lambda r. m \oplus r) coin_{spmf} = coin_{spmf}$$

We manipulate the real view using lemmas from CryptHOL.

```
\begin{array}{ll} R_2 \ (m_0, m_1) \ b = do \ \{ \\ f_0 \leftarrow map_{spmf} (\lambda r_e. \ m_0 \oplus r_e) \ coin_{spmf}; \\ f_1 \leftarrow map_{spmf} (\lambda r_{1-e}. \ m_1 \oplus r_{1-e}) \ coin_{spmf}; \\ return_{spmf} (f_0, f_1) \} \end{array} \quad \begin{array}{ll} S_2 \ b \ m_b = do \ \{ \\ r_0 \leftarrow coin_{spmf}; \\ r_1 \leftarrow coin_{spmf}; \\ return_{spmf} (r_0, r_1) \} \end{array}
```

Prove the lemma:

$$map_{spmf}(\lambda r. m \oplus r) coin_{spmf} = coin_{spmf}$$

and apply it twice to show:

$$R_2 (m_0, m_1) b = do \{$$

 $f_0 \leftarrow coin_{spmf};$
 $f_1 \leftarrow coin_{spmf};$
 $return_{spmf}(f_0, f_1) \}$

Oblivious Transfer: A toy example - security.

Lemma

$$R_2(m_0, m_1) b = S_2 b m_b$$

Oblivious Transfer: A toy example - security.

Lemma

$$R_2(m_0, m_1) b = S_2 b m_b$$

This implies security for party two, namely:

$$R_2(m_0, m_1) b \stackrel{\mathsf{c}}{=} S_2 b m_b$$

Together with similar analysis of party one we have the security result.

Oblivious Transfer: A toy example - security.

Lemma

$$R_2(m_0, m_1) b = S_2 b m_b$$

This implies security for party two, namely:

$$R_2(m_0,m_1) b \stackrel{\mathsf{c}}{=} S_2 b m_b$$

Together with similar analysis of party one we have the security result.

Theorem The Bit Oblivious Transfer protocol is information theoretic secure in the semi honest adversary model.

Formalised security in this model for:

- Secure multiplication protocol.
- Noar Pinkas OT.
- ► A protocol to securely compute an AND gate.

Formalised security in this model for:

- Secure multiplication protocol.
- Noar Pinkas OT.
- ▶ A protocol to securely compute an AND gate.

Future work:

► GMW protocol - allows for the secure computation of any boolean circuit.

Formalised security in this model for:

- Secure multiplication protocol.
- Noar Pinkas OT.
- A protocol to securely compute an AND gate.

Future work:

- GMW protocol allows for the secure computation of any boolean circuit.
- Garbled circuits originally how the Millionaire's problem was solved by Yao.

Formalised security in this model for:

- Secure multiplication protocol.
- Noar Pinkas OT.
- ▶ A protocol to securely compute an AND gate.

Future work:

- GMW protocol allows for the secure computation of any boolean circuit.
- Garbled circuits originally how the Millionaire's problem was solved by Yao.
- ► These methods are the main ways in which SMPC is realised.

