Material Maju

USULAN PENELITIAN TAHUN ANGGRAN 2020 SKEMA PENELITIAN INOVASI DAN PERCEPATAN HILIRISASI

PRODUKSI DAN KARAKTERISASI *DISSOLVING PULP* DARI PANDAN RASAU (*Pandanus helicopus*) HUTAN RAWA GAMBUT SEBAGAI BAHAN BAKU INDUSTRI TEKSTIL

KETUA : Chairul, ST, MT NIDN 0014117103 ANGGOTA : Evelyn, ST, M.Eng, MSc, PhD NIDN 0014037504

Dra. Yusnimar, MS, MPhill. NIDN 0012066217

SUMBER DANA : DIPA LPPM UNIVERSITAS RIAU TAHUN 2020 Nomor Kontrak :

LEMBAGA PENELITIAN DAN PENGABDIAN MASYARAKAT
UNIVERSITAS RIAU
PEKANBARU
MARET 2020

HALAMAN PENGESAHAN

 Judul Kegiatan Produksi Dan Karakterisasi Dissolving Pulp Dari

Pandan Rasau (Pandanus helicopus) Hutan Rawa

Gambut Sebagai Bahan Baku Industri Tekstil

2. Ketua Peneliti

Chairul, ST, MT a. Nama Lengkap b. Jenis Kelamin Laki-laki 0014117103 c. NIDN

d. Jabatan Struktural e. Jabatan Fungsional

Lektor Teknik / Teknik Kimia f. Fakultas/Jurusan

g. Alamat Kantor Fakultas Teknik Universitas Riau JI H.R.

Subrantas km 12,5 Simpang Baru Pekanbaru

h. Telpon/Fax 082174737114

i. Alamat Rumah Perumnas griya Binawidya UNRI Blok A No A6 Jl. Garuda Sakti km.3 Kelurahan Air Dingin

Kecamatan Tampan Kota Pekanbaru

Tahun ke 1 dari rencana 2 tahun

j. HP/Terlp?Fax/E-mail chairul@lecturer.unri.ac.id

3. Anggota Peneliti (1)

a. Nama Lengkap Evelyn, ST, M.Eng, MSc, PhD b. Jabatan Fungsional Lektor

c. NIDN 0014037504 4. Anggota Peneliti (2)

a. Nama Lengkap b. Jabatan Fungsional

Fakultas Teknik

r. Ari Sandhyavitri, M.Sc

N. 0027016802

Dra. Yusnimar, MS, MPhill. Lektor Kepala c. NIDN 0012066217

5. Jangka waktu Penelitian

*engetahui

6. Pembiayaan

a. Dana Diusulkan Rp 70.000.000,00

DIPA LPPM Universitas Riau 2020 b. Sumber Dana

Pekanbaru, 13 Maret 2020

Ketua Peneliti

Chairu/ST., MT. NIDN. 0014117103

Menyetujui Ketua LPPM

Prof. Dr. H. Almasdi Svahza, SE., MP NIDN. 0022086001

Ringkasan Rencana Penelitian

Saat ini, minat penggunaan biomassa untuk produksi biofuel dan material maju semakin meningkat pesat dan sejalan dengan penugasan membuka dan menjalankan program studi diploma tiga pulp dan kertas (prodi D3TPK), dosen homebase prodi D3TPK UNRI menentukan arah topik riset yang sesuai dengan bidang program studi. Dissolving pulp (DP) atau disebut juga dissolving cellulose, adalah pulp putih yang mempunyai kandungan selulosa yang tinggi (>90%) dengan kadar hemiselulosa dan lignin yang rendah. DP merupakan material yang penting untuk pembuatan serat rayon, selofan dan produk-produk turunan selulosa lainnya. DP dapat dibuat dari bahan-bahan baku berbasis non kayu atau kayu lunak untuk mengatasi berkurangnya bahan baku hutan alam dan pemanasan global. Indonesia khususnya Provinsi Riau kaya akan bahan-bahan non kayu berupa hasil hutan non kayu yang bisa dimanfaatkan untuk pembuatan DP yaitu daun pandan rasau (Pandanus helicopus). Pandan rasau biasanya hidup di tepi sungai atau danau di kawasan rawa gambut. Pandan rasau dapat tumbuh dengan baik di daerah rawa yang memiliki karakteristik air berwarna kehitaman dan tidak berbau. Tanaman ini berkembang biak melalui tunas dan tumbuh dengan lebat sehingga tingginya dapat mencapai enam meter. Pandan rasau memiliki cabang lebih dari satu dengan daun yang mengumpul di ujung dan tersusun spiral dalam tiga baris; daunnya berwarna hijau tua dengan bagian pangkal kekuningan atau kemerahan, serta bagian bawah berwarna keputihan.

Pembuatan DP dari bahan non kayu dapat dilakukan melalui tiga tahap yaitu prehidrolisis, pemasakan dengan proses soda atau Kraft, dan pemutihan atau bleaching. Prehidrolisis bertujuan untuk menurunkan kadar hemiselulosa dan membantu dalam pemisahan lignin dari bahan baku. Kombinasi antrakuinon (AQ) pada pemasakan proses soda (soda-AQ) dapat memberi nilai tambah dalam pembuatan DP yaitu dapat meningkatkan rendemen pulp yang dihasilkan serta ramah lingkungan karena tidak menggunakan sulfur dalam prosesnya. Studi terdahulu telah meneliti proses soda-AQ pada serat bambu, tandan kosong sawit dan ampas tebu, namun belum melakukan penelitian menggunakan bahan serat pandan rasau yang mempunyai kandungan selulosa yang tinggi. Hasil penelitian terdahulu menunjukkan bahwa proses soda-AQ dapat meningkatkan kualitas pulp yang dihasilkan seperti meningkatkan kadar kecerahan dan menurunkan nilai kappa. Elementary chlorinefree (ECF) bleaching terbukti dapat meningkatkan kecerahan pulp, namun masih menghasilkan senyawa organoklorin dalam limbahnya. Total chlorine-free (TCF) dapat menurunkan emisi lingkungan serta dapat membantu meningkatkan kecerahan pulp yang dihasilkan. Tujuan utama penelitian ini adalah menggunakan kombinasi prehidrolisis, soda-AQ, dan ECF atau TCF bleaching untuk membuat dissolving pulp dari bahan baku serat daun pandan rasau.

Penelitian ini akan menjadi bagian dari roadmap penelitian sehingga akan didapatkan data karakteristik pandan rasau dan kualitas DP. Aspek penelitian yang akan ditinjau dilakukan secara bertahap yaitu pembuatan DP dari serat daun pandan rasau skala laboratorium pada tahun pertama, kemudian dilanjutkan dengan pembuatan DP dari serat daun pandan rasau skala *scale up* pada tahun kedua. Data yang diperoleh akan memberikan informasi baru mengenai potensi pandan rasau yang belum pernah dimanfaatkan sebelumnya. Hasil penelitian ini akan tercermin dalam luaran penelitian yang ditargetkan dapat menghasilkan 1 (satu) buah Jurnal Internasional yang terindeks di data base bereputasi. Diharapkan hasil penelitian ini dapat menghasilkan material baru yaitu *dissolving pulp* dari serat daun pandan rasau.

IDENTITAS ANGGOTA KEGIATAN PENELITIAN

1. Ketua Pelaksana

Nama Lengkap dan Gelar : Chairul, ST, MT

NIP : 19711114 199803 1001

Jabatan Akademik : Lektor

Jabatan Struktural : -

Pangkat dan Golongan : Penata / III.c

Fakultas / Jurusan : Teknik / Teknik Kimia

2. Anggota 1

Nama Lengkap dan Gelar : Evelyn, ST, M.Eng, MSc, PhD

NIP : 197503142001122000

Jabatan Akademik : Lektor

Jabatan Struktural : Koordinator Prodi D3 Teknologi Pulp Kertas

Pangkat dan Golongan : Pembina Utama/IVc Fakultas / Jurusan : Teknik / Teknik Kimia

3. Anggota 2

Nama Lengkap dan Gelar : Dra. Yusnimar, MS, MPhill. NIP : 196206121988032002

Jabatan Akademik : Lektor Kepala

Jabatan Struktural : Sekretaris Jurusan Teknik Kimia

Pangkat dan Golongan : Pembina Utama/IVc Fakultas / Jurusan : Teknik / Teknik Kimia

4. PLP

Nama Lengkap dan Gelar : Suci Ramanadi, Amd

NIP : -

Jabatan : Pranata Laboratorium

Fakultas / Jurusan : Teknik / Teknik Kimia

5. Mahasiswa 1

Nama Lengkap dan Gelar : Fachriza Izzaty
NIM : 1707111317
Status : Mahasiswa aktif
Fakultas / Jurusan : Teknk / Teknik Kimia

6. Mahasiswa 2

Nama Lengkap dan Gelar : Nadila Aulia
NIM : 1707111284
Status : Mahasiswa aktif
Fakultas / Jurusan : Teknk / Teknik Kimia

DAFTAR ISI

Halaman Pengesahan	
Ringkasan Rencana Kegiatan Penelitian	iii
Identitas Anggota Kegiatan Penelitian	v
Daftar Isi	vi
A. LATAR BELAKANG PENELITIAN	
B. PERUMUSAN MASALAH	
C. MAKSUD DAN TUJUAN PENELITIAN	2
D. LUARAN/MANFAAT PENELITIAN	2
E. TINJAUAN PUSTAKA	3
1. Teori yang Relevan	3
2. Penelitian Terdahulu	4
3. Kerangka Pemikiran	5
F. METODE PENELITIAN	6
1. Lokasi dan Waktu Penelitian	6
2. Tahapan Penelitian	6
G. JADWAL KEGIATAN	8
H. DAFTAR PUSTAKA	9
I. REKAPITULASI BIAYA	11
J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI	11
K. JUSTIFIKASI ANGGARAN PENELITIAN	13
L1. LAMPIRAN SURAT PERNYATAAN MITRA INDUSTRI	15
L2. LAMPIRAN PENGUKURAN TINGKAT KESIAPTERAPAN TEKNOLOGI (*	ГКТ) 16
L3. LAMPIRAN Biodata Peneliti	,

A. LATAR BELAKANG PENELITIAN

Dissolving pulp (DP) adalah pulp selulosa berkualitas tinggi yang mempunyai kandungan hemiselulosa, lignin, dan resin yang rendah (Behin, 2009). DP merupakan material yang penting untuk pembuatan serat rayon, selofan dan produk-produk turunan selulosa lainnya. DP juga dapat digunakan dalam bidang farmasi dan sebagai bahan aditif dalam makanan (Maryana, 2017). Permintaan pasar global akan DP telah mencapai angka 7,6 juta ton pada tahun 2017 dan diperkirakan semakin meningkat tiap tahunnya (Andritz, 2017). Pertumbuhan pohon yang lambat, degradasi hutan yang cepat dan banyaknya industri yang menggunakan kayu sebagai bahan baku utama, menyebabkan ketersediaan kayu sebagai bahan baku pulp dan DP menipis. Sehingga perlu dilakukan berbagai upaya untuk memenuhi kebutuhan bahan baku pulp, DP dan kertas bahan berlignoselulosa selain kayu yang memiliki potensi cukup besar tetapi belum dimanfaatkan dengan baik.

Provinsi Riau memiliki hasil hutan bukan kayu yang belum dimanfaatkan secara optimal seperti anggota suku pandan-pandanan (Pandanaceae), terutama dari marga Pandanus yaitu pandan rasau (*Pandanus helicopus*). Pandan r<u>asau</u> biasanya hidup di tepi sungai atau danau di kawasan rawa gambut. Pandan rasau dapat tumbuh dengan baik di daerah rawa yang memiliki karakteristik air berwarna kehitaman dan tidak berbau. Tanaman ini berkembang biak melalui tunas dan tumbuh dengan lebat sehingga tingginya dapat mencapai enam meter. Pandan rasau memiliki cabang lebih dari satu dengan daun yang mengumpul di ujung dan tersusun spiral dalam tiga baris; daunnya berwarna hijau tua dengan bagian pangkal kekuningan atau kemerahan, serta bagian bawah berwarna keputihan (Pantau Gambut, 2017). Potensi kawasan hidrologi gambut (KHG) Provinsi Riau terbesar di Sumatera, yaitu sebesar 5.719.583 Hektar (Hilman, 2010). Cagar Biosfer Giam Siak Kecil Bukit Batu salah satu KHG di Riau merupakan habitat pandan rasau. Limpahan potensi Pandan rasau ini belum dimanfaatkan secara optimal. Saat ini penggunaannya hanya sebagai bahan baku pembuatan tikar dan keranjang. Herlina (2018) melaporkan telah menguji kandungan kimia daun pandan rasau yang terdiri dari ekstraktif 4,6%, mlignin 31,67%, hemiselulosa 31,67%, dan selulosa 27,06%. Daun pandan rasau ini dapat dimanfaatkan sebagai sumber fiber untuk pembuatan DP, dan turunannya.

Pemasakan soda-antrakuinon (soda-AQ) adalah metode pemasakan pulp yang ramah lingkungan dibandingkan dengan metode pemasakan secara Kraft yang banyak digunakan, karena tidak menggunakan sulfur dan sesuai untuk pemasakan bahan baku berbasis non kayu (Maryana, 2017), bahkan juga kayu (Harsono, 2015). Soda-AQ diawali dengan proses prehidrolisis untuk membantu dalam mengurangi kadar hemiselulosa dan penurunan kadar lignin dalam bahan baku (Harsono, 2015). Untuk meningkatkan kecerahan pulp, prehidrolisis dan soda-AQ dilanjutkan dengan tahap *bleaching* atau pemutihan. Tujuan khusus dari penelitian yang diusulkan ini adalah pembuatan DP dari daun pandan rasau menggunakan tahap prehidrolisis, pemasakan soda-AQ, dan elementary chlorine-free (ECF) atau total chlorine-free (TCF). Diharapkan penelitian ini mendapatkan DP yang berkualitas serta juga mendapatkan tulisan untuk dipublikasi di

reputable international journal. Urgensi penelitian ini adalah untuk memanfaatkan hasil hutan bukan kayu untuk pembuatan material baru yang ramah lingkungan dan sekaligus memberikan nilai ekonomi bagi masyarakat yang hidup di KHG. Sehingga dapat mengurangi import DP dari jenis serat panjang.

B. PERUMUSAN MASALAH

- 1. Apakah daun pandan rasau cukup layak dijadikan bahan baku pembuatan DP?
- 2. Apakah DP yang dihasilkan dari rangkaian proses produksi memenuhi persyaratan industri tekstil?

C. MAKSUD DAN TUJUAN PENELITIAN

Maksud dan tujuan dari penelitian ini adalah memproduksi dan mengkarakterisasi DP menggunakan kombinasi prehidrolisis, soda-AQ, dan ECF atau TCF *bleaching* dari bahan baku pandan rasau untuk kebutuhan industri tekstil. DP yang berkualitas harus memenuhi standar industry tekstil. Penelitian ini bertujuan untuk:

- 1. Mendapatkan karakteristik pandan rasau sebagai bahan baku DP.
- 2. Mendapatkan prototipe skala laboratorium proses prehidrolisis, soda-AQ, dan ECF atau TCF *bleaching* pandan rasau menjadi DP.
- 3. Karakterisasi DP sebagai bahan kayu industri tekstil.
- 4. Melakukan scale-up prototipe ke skala yang lebih besar.

D. LUARAN/MANFAAT PENELITIAN

Luaran Penelitian

Luaran yang ingin dicapai melalui penelitian ini ditampilkan pada Tabel 1 di bawah ini. TABEL 1. Target Luaran Penelitian

No		Jenis Luaran	Luaran		
			Tahun ke-1	Tahun ke-2	
1	Publikasi	Jurnal Selulosa (Jurnal Nasional	Submitted	Accepted	
	Ilmiah	Bereputasi)			
		Journal Wood Science (Jurnal	Submitted	Accepted	
		Internasional Bereputasi)			
2	Kekayaan	Teknologi Pengumpulan dan	Draft	Terdaftar	
	Intelektual	preparasi Daun Pandan Rasau			
		untuk Bahan Baku DP			
3	Model/	Prototipe peralatan proses	Skala	Skala scale up	
	Purwarupa	pengolahan DP	Laboratorium		
	(prototipe)				
	/ design				
4	Dokumen	Karakteristik Kimia Pandan Rasau	Skala	Skala scale up	
	Uji		Laboratorium		
	Produk	Karakteristik DP	Skala	Skala scale up	
			Laboratorium		

Manfaat Penelitian

Melalui penelitian ini akan diperoleh prototipe skala laboratorium yang selanjutnya akan di-scale-up pada skala yang lebih besar. Prototipe ini akan dapat diaplikasikan pada industri DP dan rayon. Keuntungan sinergi yang akan diperoleh oleh industri DP dan rayon adalah adanya ketersediaan bahan baku DP untuk kebutuhan rayon dan benang dan mengurangi import DP untuk jenis serat Panjang. Kegiatan ini juga akan meningkatkan perekonomian masyarakat di sekitar KHG dengan adanya peningkatan nilai tambah dari Pandan Rasau.

E. TINJAUAN PUSTAKA

1. Teori Yang Relevan

Proses pembuatan pulp adalah proses pemisahan lignin untuk memperoleh selulosa dan hemiselulosa dari bahan berserat. Oleh karena itu, bahan ini harus bersih dari lignin supaya kualitas kertas yang dihasilkan tidak berubah selama pemakaian. Terdapat tiga metode pembuatan pulp yaitu mekanik, kimia, dan semi-kimia {(Bahri, 2015), (Rullifank, 2019)]. Pembuatan pulp secara mekanis dilakukan dengan cara menguraikan serat yang ada di dalam kayu secara paksa dengan menggunakan aksi mekanis. Bahan baku digiling dalam keadaan basah, serat-serat kayu akan terlepas, kemudian disaring sampai kehalusan tertentu untuk memperoleh pulp. Kelemahan proses ini adalah rendahnya mutu kertas yang dihasilkan yaitu kertas mudah sekali menjadi kuning dan kecoklatan karena kandungan ligninnya masih banyak. Sedangkan proses semi kimia adalah pembuatan pulp yang diawali dengan penggunaan bahan-bahan kimia memutuskan ikatan lignoselulosa dan menghilangkan sebagian hemiselulosa dan lignin. Kemudian diperlakukan secara mekanis untuk memisahkan serat-seratnya. Pulp semi kimia masih mengandung lebih dari 25 % lignin yang terdapat dalam kayu.

Proses pembuatan pulp secara kimia adalah dengan menggunakan bahan-bahan kimia. Ada tiga macam proses kimia yaitu proses soda, proses sulfat atau kraft, dan proses sulfit, dimana masing-masing proses menggunakan larutan pemasak yang berbeda. Keuntungan-keuntungan memakai bahan kimia pada pembuatan pulp antara lain dapat dilakukan pada semua jenis bahan baku, menghasilkan kekuatan pulp yang tinggi, dapat diproses lebih lanjut untuk pembuatan rayon, dan perolehan kualitas kertas yang lebih tinggi.

Sebagian besar (90–95%) bahan baku pulp berasal dari kayu-kayu hutan alam, diantaranya kayu akasia, kayu eukaliptus, dan lain-lain. Seiring dengan terus bertambahnya kapasitas industri pulp dan kertas, maka persediaan kayu-kayu hutan alam akan menipis. Selama dua dekade terakhir, pemanfaatan bahan baku non kayu untuk produksi pulp mulai makin meningkat. Rasio penggunaan fiber berbasis non kayu tercatat meningkat dari 21% pada tahun 1990 menjadi 37% pada tahun 2010 (FAO, 2011). Tidak

hanya mengurangi penggunaan bahan baku kayu, energi dan bahan kimia, pemakaian bahan non kayu untuk produksi pulp juga dapat mengurangi impor serat selulosa dan produksi yang lebih ramah lingkungan.

Dissolving pulp (DP) atau disebut juga dissolving cellulose, adalah pulp putih yang mempunyai kandungan selulosa yang tinggi (>90%), kadar hemiselulosa yang relatif rendah (1-10%), serta kadar lignin dan mineral yang sangat rendah (<0,05%) (Behin, 2009). DP mempunyai sifat-sifat khusus seperti tingkat kecerahan yang tinggi dan distribusi berat molekul yang seragam. DP juga diketahui memiliki sifat reaktifitas selulosa yang tinggi sehingga menghasilkan produk dengan kualitas yang baik (Bajpai, 2012). DP umumnya dimanfaatkan untuk pembuatan serat rayon yang menggantikan serat kapas pada pembuatan tekstil dan berbagai turunan selulosa (ester dan eter selulosa).

Pembuatan DP dari bahan baku non kayu dapat dilakukan dengan tiga tahap yaitu prehidrolisis, pemasakan proses soda atau Kraft dan *elementary chlorine/totally chlorine-free bleaching* [(Maryana, 2017), (Harsono, 2015)]. Prehidrolisis merupakan satu tahap penting yang berguna dalam menurunkan kadar hemiselulosa dan membantu dalam pemisahan lignin dari bahan baku. Dibandingkan dengan proses Kraft yang banyak digunakan, pemasakan dengan soda-AQ dinilai lebih ramah lingkungan karena tidak menghasilkan gas-gas toksik seperti hidrogen sulfida dan sulfur dioksida serta sesuai untuk bahan-bahan non kayu. AQ disebutkan bertindak sebagai redoks katalis selama proses soda, menurunkan grup akhir aldehid dari karbohidrat, membentuk asam karboksilat, menghambat depolimerisasi alkalin, sehingga meningkatkan rendemen pulp (Omer, 2019). Alejous dkk. (2006) membandingkan proses Kraft dan soda-AQ pada pohon ek, dimana menghasilkan pulp dengan bilangan kappa yang lebih rendah, tingkat kecerahan yang lebih tinggi, dan viskositas sedikit lebih kecil untuk proses soda-AQ.

2. Penelitian Terdahulu

Beberapa peneliti terdahulu telah memanfaatkan limbah agro industri sebagai bahan baku pembuatan DP. Andrade dan Colodette (2014) memproduksi DP dari limbah ampas tebu menggunakan proses soda dan ECF *bleaching* dengan tahap oksigen (O), *chlorine dioxide* (D), *alkaline extraction* dengan hidrogen peroksida (Ep), *klorin dioksida* (D), dan alkalin hidrogen peroksida (P) atau O-D-Ep-D-P. Hasil kecerahan ISO pulp diperoleh sebesar 88,5%. Peneliti lain menggunakan proses yang sama dengan memanfaatkan batang tanaman pisang dan memperoleh tingkat kecerahan pulp sebesar 77,9% (Das, 2016). Tingkat kecerahan sebesar 89% dilaporkan oleh Matin dkk. (2015) untuk batang *jute* dan tahap *bleaching* yang berbeda (D0-Ep-D1-Ep-D1). Batalha dkk. (2011) dan Purwita dan Sugesty (2018) memanfaatkan bambu sebagai bahan baku, dimana peneliti kedua memperoleh kecerahan pulp lebih rendah (89%) dengan proses soda dibandingkan dengan peneliti pertama yang menggunakan soda-AQ (92%).

Rizaluddin dkk. (2016) dan Ohi dkk. (2019) melaporkan bahwa penggunaan TCF bleaching dapat mengurangi dampak lingkungan dari ECF bleaching. TCF bleaching

meliputi penggunaaan hydrogen peroxide (Ep-P), oksigen (O), ozon (Z), dan peroxymonosulfuric acid (Psa) dalam tahapannya untuk menggantikan klorin. Beberapa peneliti telah menggunakan metode ini untuk produksi DP dari bahan baku non kayu, diantaranya Hedjazi dkk. (2008) dan Khristova dkk. (2006) yang mengaplikasikan TCF *bleaching* pada ampas tebu dan memperoleh kecerahan ISO antara 76.9-83.5%. Harsono dkk. (2015) membandingkan ECF dan TCF *bleaching* setelah proses soda-AQ untuk tandan kosong sawit dimana diperoleh tingkat kecerahan pulp sebesar 81.6% untuk ECF dan 90.7% untuk proses TCF. Maryana dkk. (2017) memproduksi DP dari ampas tebu menggunakan kombinasi proses pemasakan pulp soda-AQ dan TCF *bleaching*, dimana tingkat kecerahan pulp sebesar 89.1% dan viskositas sebesar 6,4 cP dapat diperoleh. Standar nasional Indonesia untuk DP yaitu tingkat kecerahan minimal 88%, viskositas besar dari 6,2 cP, kadar α-selulosa minimum 94%, dan kadar abu maksimum 0,15% (SNI 0938:2010).

3. Kerangka Pemikiran

Penelitian yang akan dilakukan adalah bagian dari *roadmap* penelitian baru dibidang pulp dan kertas yang mulai dirintis oleh peneliti mulai tahun 2020, dan akan dikembangkan untuk beberapa tahun yang akan datang (**Gambar 1**).

Gambar 1. Roadmap penelitian dari bidang topik yang dikembangkan

F. METODE PENELITIAN

1. Lokasi dan Waktu Penelitian

Penelitian ini akan dilaksanakan di Laboratorium Teknologi Pulp Jurusan Teknik Kimia dan Laboratorium R & D PT. Riau Andalan Pulp & Paper pada rentang tahun 2020 sampai dengan 2021.

2. Tahapan Penelitian

Dalam rangka pencapaian tujuan penelitian ini, maka secara umum penelitian pembuatan dissolving pulp (DP) dari daun pandau rasau ini akan dibagi dalam dua tahap, dimana tiap tahap tersebut akan menyelidiki efek prehidrolisis, pemasakan dengan proses soda-antrakuinon (soda-AQ), dan bleaching dengan metode ECF dan TCF terhadap DP yang dihasilkan sehingga nantinya dapat dibandingkan satu dengan yang lainnya (Gambar 2). Adapun tiap tahap, yaitu: tahap pertama: penggunaan serat daun pandan rasau sebagai bahan baku pembuatan DP pada skala laboratorium. Setelah itu dilanjutkan pada tahap kedua: pembuatan DP pada skala scale up. Pada tiap tahap akan dilakukan pengamatan terhadap kualitas dan rendemen DP. Untuk dapat memberikan gambaran yang lebih rinci, pada bagian berikut akan diuraikan urutan tata kerja dan hasil/kemajuan yang diharapkan pada setiap tahun.

Tahun Pertama

Penelitian yang akan dilakukan mencakup:

- 1. Analisis komposisi kimia bahan baku serat pandan rasau meliputi lignin, kadar ekstraktif, glukan dan xilan, dan kadar abu.
- 2. Mempelajari pengaruh waktu dan temperatur pada proses prehidrolisis terhadap kualitas pulp (kappa number, pulp yield, viskositas).
- 3. Mempelajari pengaruh alkali aktif (AA) pada proses pemasakan soda-AQ serat daun nanas terhadap kualitas pulp (kappa number, pulp yield, tingkat kecerahan dan viskositas).
- 4. Mempelajari pengaruh metode ECF *bleaching* DP terbaik terhadap tingkat kecerahan, viskositas, dan α-selulosa pulp.
- 5. Mempelajari pengaruh metode TCF *bleaching* DP terbaik terhadap tingkat kecerahan, viskositas, dan α-selulosa pulp.

Dari hasil penelitian tahun pertama ini akan dapat ditentukan: komposisi kimia bahan baku serat daun pandan rasau, kualitas *dissolving pulp* hasil prehidrolisis, pemasakan, dan hasil *bleaching* serta pemenuhan terhadap standar SNI pada skala laboratorium.

Pembuatan DP dari serat daun pandan rasau

Pembuatan *dissolving pulp* dari serat pandan rasau menggunakan tahap prehidrolisis, pemasakan soda-AQ, dan ECF atau TCF *bleaching*:

- Pengaruh waktu dan temperatur pada proses prehidrolisis terhadap kualitas pulp (kappa number, pulp vield, viskositas).
- Pengaruh alkali aktif (AA) pada proses pemasakan soda-AQ serat daun pandan rasau terhadap kualitas pulp (kappa number, pulp yield, tingkat kecerahan dan viskositas).
- lacktriangle Pengaruh metode ECF *bleaching* DP terbaik terhadap tingkat kecerahan, viskositas, dan α -selulosa pulp.
- ◆ Analisa kualitas DP setelah prehidrolisis, pemasakan dan *bleaching* (TAPPI Test Methods:
- **⊃** T204 cm-07; T222 om-11; T236 om-13; T230 om-13; T452 om-08; T203 cm-09)

Pembuatan *dissolving pulp* dari serat pandan rasau menggunakan tahap prehidrolisis, pemasakan soda-AQ, dan ECF atau TCF *bleaching*:

- Pengaruh waktu dan temperatur pada proses prehidrolisis terhadap kualitas pulp (kappa number, pulp yield, viskositas).
- Pengaruh alkali aktif (AA) pada proses pemasakan soda-AQ serat daun pandan rasau terhadap kualitas pulp (kappa number, pulp yield, tingkat kecerahan dan viskositas).
- Pengaruh metode ECF *bleaching* DP terbaik terhadap tingkat kecerahan, viskositas, dan α selulosa pulp.
- ◆ Analisa kualitas DP setelah prehidrolisis, pemasakan dan bleaching (TAPPI Test Methods:
- **⊃** T204 cm-07; T222 om-11; T236 om-13; T230 om-13; <u>T452 om-08· T203 cm-09</u>)

Gambar 2. Alur Penelitian

Tahun Kedua

Penelitian yang akan dilakukan mencakup:

- 1. Analisis komposisi kimia bahan baku serat pandan rasau meliputi lignin, kadar ekstraktif, glukan dan xilan, dan kadar abu.
- 2. Mempelajari pengaruh waktu dan temperatur pada proses prehidrolisis terhadap kualitas pulp (kappa number, pulp yield, viskositas).
- 3. Mempelajari pengaruh alkali aktif (AA) pada proses pemasakan soda-AQ serat pandan rasau terhadap kualitas pulp (kappa number, pulp yield, tingkat kecerahan dan viskositas).
- 4. Mempelajari pengaruh metode ECF *bleaching* DP terbaik terhadap tingkat kecerahan, viskositas, dan α-selulosa pulp.
- 5. Mempelajari pengaruh metode TCF *bleaching* DP terbaik terhadap tingkat kecerahan, viskositas, dan α-selulosa pulp.

Dari hasil penelitian tahun kedua ini akan dapat ditentukan pada skala *scale up*: komposisi kimia bahan baku serat daun pandan rasau, kualitas *dissolving pulp* hasil prehidrolisis, pemasakan, dan hasil *bleaching* serta pemenuhan terhadap standar SNI.

G. Jadwal Kegiatan

Tahun ke 1

No	Kegiatan		Bulan								
140			4	5	6	7	8	9	10	11	12
1.	Pengajuan Proposal										
2.	Kontrak										
3.	Persiapan > Update referensi > Bahan dan Alat										
4.	Analisis komposisi kimia bahan baku serat daun nanas meliputi lignin, kadar ekstraktif, glucan, xilan, dan kadar abu										
5.	Tahap Prehidrolisis dan Analisis DP Pengaruh waktu Pengaruh temperatur										
6.	Tahap pemasakah soda-AQ dan analisis DP										
7.	Tahap bleaching dan analisis DP ➤ Pengaruh EFC ➤ Pengaruh TCF										
8.	Analisis Data dan pelaporan										
9.	Publikasi Pembuatan makalah Pengiriman makalah ke Jurnal										

Tahun ke-2

No	No Kegiatan		Kegiatan Bulan										
110			2	3	4	5	6	7	8	9	10	11	12
1.	Pengajuan Proposal tahun ke-2												
2.	Kontrak												
3.	Persiapan > Update referensi > Bahan Alat												
4.	Analisis komposisi kimia bahan baku serat pandan rasau meliputi lignin, kadar ekstraktif, glucan, xilan, dan kadar abu												
5.	Tahap Prehidrolisis dan Analisis DP ➤ Pengaruh waktu ➤ Pengaruh temperatur												
6.	Tahap pemasakah soda-AQ dan analisis DP												
7.	Tahap bleaching dan analisis DP ➤ Pengaruh EFC ➤ Pengaruh TCF												
8.	Analisis Data dan pelaporan												
9.	Publikasi Pembuatan makalah Pengiriman makalah ke Jurnal												

H. DAFTAR PUSTAKA

- Admin Pantau Gambut, (2017). Rasau dan Bekantan. *Pantau Gambut*. 23 Nopember 2017. https://pantaugambut.id/cerita/rasau-dan-bekantan. Diakses 15 Januari 2020.
- Alaejos, J., Lopez, F., Eugenio, M. E., dan Tapias, R., 2006. Soda-anthraquinone, kraft and organosolv pulping of holm oak trimmings. *Bioresour. Technol.*, 97, 2110-2116.
- Andrade, M. F. dan Colodette, J. L., 2014. Dissolving pulp production from sugar cane bagasse. *Ind. Crop. Prod.*, 52, 58-64.
- Andritz, 2017. Global trends in dissolving pulp. *Spectrum*, 36(2), 52-53. https://www.andritz.com/resource/blob/252268/c64a0d79062815a0d77cfe7c7cbfb9b5/s pectrum 36-markettrends-dissolvingpulp-en-data.pdf. Diakses 1 September 2019.
- Bahri, S., 2015. Pembuatan pulp dari batang pisang. J. Teknol. Kimia Unimal, 4(2), 36-50.
- Bajpai, P. 2012. Production of dissolving-grade pulp. In *Biotechnology for pulp and paper processing* (pp. pp 291-311). Singapore: Springer.
- Batalha, L. A. R., Colodette, J. L., Gomide, J. L., Barbosa, L. C., Martha, C. R., dan Gomes, F. J. B., 2011. Dissolving pulp from bamboo. *Bioresour.*, 71, 640-651.
- Behin, J., dan Zeyghami, M., 2009. Dissolving pulp from corn stalk residue and waste water of Merox unit. *Chem. Eng. J.*, 152, 26-35.
- BPS (Bandan Pusat Statistik), 2015. Produksi tanaman buah-buahan. https://www.bps.go.id/site/resultTab. Diakses 20 Agustus, 2018.
- Das, A. K., Nakagawa-izumi, A., dan Ohi, H., 2016. Quality evaluation of dissolving pulp fabricated from banana plant stem and its potential for biorefinery. *Carbohyd. Polym.*, 147, 133-138.
- FAO, 2011. Food and agriculture organization of united nations. http://www.fao.org/docrep/013 i 2000 e/i 2000 e/pdf. Diakses 29 Agustus 2019.

- Harsono, H., Putra, A. S., Maryana, R., Rizaludin, A. T., H'ng, Y. Y., Nakagawa-izumi, A., dan Ohi., H., 2015. Preparation of dissolving pulp from oil palm empty fruit bunch by prehydrolysis soda-anthraquinone cooking method. *J. Wood Sci.*, 62(1), 65-73.
- Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A. J., dan Tschirner, U., 2008. Bagasses alkaline sulfit-anthraquinone (AS/AQ) pulping and totally chlorine free (TCF) bleaching. *Holzforschung.*, 62, 142-148.
- Herlina, Istikowati, W. T., Fatriani. 2018. Analisis Kimia Dan Serat Pandan Rasau (Pandanus Helicopus) Sebagai Alternatif Bahan Baku Pulp Kertas. Jurnal Sylva Scienteae Vol. 01 No. 2
- Hermiati, E., Mangunwidjaja, D., Sunarti, T. C., Suparno, O., dan Prasetya, D. B. 2010. *J. Litbang. Pertanian*, 29, 121-130.
- Hilman, M. 2010. Masterplan Pengelolaan Ekosisitem Gambut Provinsi Riau. Kementrian Negara Lingkungan Hidup. Maret 2010.
- Khristova, P., Kordsachia, O., Patt, R., Karar, I., dan Khider, T., 2006. Environmentally friendly pulping and bleaching of bagasse. *Ind. Crop, Prod.*, 23, 131-139.
- Maryana, R., Nakagawa-Izumi, A., Kajiyama, M., Ohi, H., 2017. Environment friendly non-sulfur cooking and totally chlorine-free bleaching for preparation of sugarcane bagasse cellulose. *J. Fiber. Sci. Technol.*, 73(8), 182-191.
- Matin, M., Rahaman, M. M., Nayeem, J., Sarkar, M., dan Jahan, M. S., 2015. Dissolving pulp from jute stick. *Carbohyd. Polym.* 115, 44-48.
- Ohi, H., Salaghi, A., dan <u>Evelyn</u>, 2019. An improved process of prehydrolysis/alkaline cooking with a soluble AQ and chlorine-free bleaching with peroxymonosulfuric acid for wood biorefinery. *Submitted to 20th International Symposium on Wood, Fiber and Pulping Chemistry (ISWFPC) 2019*.
- Okahisa, Y., Furukawa, Y., Ishimoto, K., Narita, C., Intharapichai, K., Ohara, H., 2018. Comparison of cellulose nanofiber properties produced from different parts of the oil palm tree. *Carbohyd. Polym.*, 198, 313-319.
- Omer, S. H., Khider, T. O., Elzaki, O. T., Mohieldin, S. D., dan Shomeina, A. K., 2019. Application of soda-AQ pulping to agricultural waste (okra stalks) from Sudan. *BMC Chem. Eng.*, 1(6), 1-6.
- Pinickha, N., dan Kaentong, S., 2018. Regenerated cellulose from high alpha cellulose pulp of steam-exploded sugarcane bagasse. *Mater. Res. Technol.*, 218, 55-65.
- Purwita, C. A., dan Sugesty, S., 2018. Pembuatan dan karakterisasi *dissolving pulp* selulosa serat panjang dari bamboo duri (*bambusa blumeana*). *J. Selulosa*, 8(1), 21-32.
- Rizaluddin, A. T., Salaghi, A., Ohi, H., dan Nakamata, K., 2016. Peroxymonosulfuric acid treatment as an alternative to ozone for totally chlorine-free and elementary chlorine free of hardwoods prehydrolisis-Kraft pulp. *Japan TAPPI J.*, 70, 724-742.
- Rullifank, K., Roefinal, M. E., Konstanti, M., Sartika, L., dan <u>Evelyn</u>, 2019. Pulp and paper industry: An overview on pulping technologies, factors, and challenges. *Submitted to International Conference on Chemical Engineering and Applied Science (ICCHEAS)* 2019.
- Standard Nasional Indonesia (SNI) 0938:2010, 2010. Pulp rayon (in Indonesian). *National standard Agency of Indonesia (BSN)*. Jakarta: Indonesia. www.sisni.bsn.go.id/index.php?/sni_main/sni/detail_sni/9701. Diakses 21 Agustus 2019.

I. REKAPITULASI BIAYA

Rekapitulasi biaya yang dibutuhkan untuk kegiatan penelitian ini adalah seperti yang ditunjukkan pada Tabel berikut ini:

No	Jenis Pengeluaran	Biaya	(Rp)
110	Jems rengetuaran	Tahun ke-1	Tahun ke-2
	Biaya perjadin pengambilan daun pandan		
I	rasau ke Bengkalis	5.000.000	5.000.000
II	Honorarium	10.000.000	10.000.000
III	Belanja alat dan bahan	45.000.000	40.000.000
IV	Perakitan Prototipe	5.000.000	10.000.000
V	ATK + Laporan	5.000.000	5.000.000
	Total anggaran (I + II + III+IV)	70.000.000	70.000.000

J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI

Susunan Organisasi dan Pembagian Tugas Tim Pada kegiatan penelitian ini dapat dilihat pada tabel berikut:

No.	Nama	Jabatan/ Keahlian	Alokasi Waktu (jam/mgg)	Uraian Tugas
1.	Chairul, ST, MT	Ketua / Teknologi Pulp	20	 Bertanggungjawab seluruh kegiatan penelitian. Secara khusus bertanggung jawab pada tahap Mengkoordinir pemesanan bahan dan alat Proses prehidrolisis Pembuatan laporan kemajuan, laporan keuangan, laporan akhir. Penyusunan draft artikel
2.	Evelyn, ST, M.Eng, MSC, PhD	Anggota / Teknologi Pulp	15	 Melaksanakan riset Menyiapkan sampel/mengumpulkan data Membantu analisis data Proof reading
3.	Dra. Yusnimar, MSi, MPhill	Anggota / Analisis Kimia	15	 Melaksanakan riset Menyiapkan sampel/mengumpulkan data Membantu analisis karakteristik bahan baku dan produk Proof reading

4.	Suci Ramadani	PLP	15	- Membantu persiapan bahan dan peralatan
5.	Fachriza Izzaty	Mahasiswa	15	 Membantu menyediakan bahan dan peralatan Membantu pelaksanaan percobaan dan analisa hasil percobaan dan menyusun draft artikel
6.	Nadilla Aulia	Mahasiswa	15	 Membantu menyediakan bahan dan peralatan Membantu pelaksanaan percobaan dan analisa hasil percobaan dan menyusun draft artikel

K. JUSTIFIKASI ANGGARAN PENELITIAN

No	USTIFIKASI ANGGARAN PENELITIAN Item Pengeluaran	unit	satuan	biaya satuan (Rp)	Biaya (Rp)
Ι	Biaya perjalanan dinas pemesanan Pandan rasau ke Bengkalis				8.520.000
1.1	Transportasi darat Pekanbaru - Bengkalis (PP x 3 orang x 1 kegiatan)	3	OK	300.000	900.000
1.2	uang harian (3 orang x 2 hari)	6	ОН	370.000	2.220.000
1.3	Akomodasi Hotel (3 orang x 1 hari)	3	ОН	350.000	1.050.000
1.4	Ongkos Petik Daun Pandan Rasau	1	paket	830.000	830.000
1.5	Biaya Perjalanan Dinas ke Jakarta	1	paket	3.520.000	3.520.000
II	Honorarium				10.000.000
2.1	Pranata Lab / Teknisi	200	jam	30.000	6.000.000
2.2	Pencacah data	200	jam	20.000	4.000.000
III	Belanja alat dan bahan				41.480.000
3.1	Pressure gage	2	unit	2.000.000	4.000.000
3.2	Termocouple	2	unit	2.000.000	4.000.000
3.3	Pressure cooker	1	unit	4.000.000	4.000.000
3.4	Pressure Reactor	2	unit	3.500.000	7.000.000
4.5	electric stove	1	unit	5.000.000	5.000.000
3.6	Tabung Oksigen	1	unit	1.000.000	1.000.000
3.7	H2SO4	1	unit	1.000.000	1.000.000
3.8	СНЗСООН	1	unit	500.000	500.000
3.9	HNO3	1	unit	1.000.000	1.000.000
3.10	Benzene	1	unit	1.000.000	1.000.000
3.11	Aceton	1	unit	1.000.000	1.000.000
3.12	Etanol	1	unit	1.000.000	1.000.000
3.13	NaOH	1	unit	500.000	500.000
3.14	H2O2	1	unit	500.000	500.000
3.15	KMNO4	1	unit	1.000.000	1.000.000
3.16	Na2S2O3	1	unit	500.000	500.000
3.17	HCl	1	unit	500.000	500.000
3.18	BaCl2	1	unit	500.000	500.000
3.19	Formalin	1	unit	250.000	250.000
3.20	Na2S	1	unit	500.000	500.000
3.21	KI	1	unit	250.000	250.000
3.22	Antraquinon	1	unit	1.700.000	1.700.000
3.23	Cuppri Etilen Diamine	1	Unit	9.000.000	4.500.000
IV	Perakitan Prototipe	1	paket	5.000.000	5.000.000

V	ATK + Laporan				5.000.000
5.1	kertas A4 2 rim	2	rim	60.000	120.000
5.2	cardtridge printer brother	1	unit	980.000	980.000
5.3	Penyusunan dan penggandaan laporan kemajuan	1	paket	1.000.000	1.000.000
5.4	Penyusunan dan penggandaan laporan akhir	1	paket	1.100.000	1.100.000
5.5	Penyusunan draft artikel ilmiah	1	paket	1.100.000	1.100.000
	Total anggaran (I + II + III+IV+V)				70.000.000

L1. LAMPIRAN SURAT PERNYATAAN MITRA INDUSTRI

SURAT PERNYATAAN KESEDIAAN KERJASAMA MITRA INDUSTRI / LEMBAGA RISET SKIM PENELITIAN INOVASI DAN PERCEPATAN HILIRISASI

Yang bertandatangan dibawah ini,

Nama

Nama Lembaga

Jabatan

: PT. RAPP-ALI (APRIL · Learning Institute)
: P. Manager
: PT. RAPP Plet · Kerinci Pian-Pelalawan. Alamat

Dengan ini menyatakan Bersedia untuk Bekerjasama dengan pelaksanaan Kegiatan SKIM PENELITIAN INOVASI DAN PERCEPATAN HILIRISASI:

Nama Ketua Tim Pengusul : Chairul, ST, MT Perguruan Tinggi : Universitas Riau

: Produksi Dan Karakterisasi Dissolving Pulp Dari Pandan Rasau (*Pandanus Helicopus*) Melalui Proses Judul Kegiatan

Pre-Hidrolisis Dan Alkaline Cooking Yang Ramah

Lingkungan

guna menerapkan IPTEKS dan mengembangkan produk yang sudah pula di sepekati bersama sebelumnya.

Demikian Surat Pernyataan ini dibuat dengan penuh kesadaran dan tanggung jawab tanpa ada unsur pemaksaan di dalam pembuatannya untuk dapat digunakan

EARNING W.S. Pelalawan, 18 Januari 2020

sebagaimana mestinya.

L2. LAMPIRAN PENGUKURAN TINGKAT KESIAPTERAPAN TEKNOLOGI (TKT)

L3. LAMPIRAN BIODATA PENELITI

BIODATA KETUA PENELITI

IDENTITAS DIRI					
: Chairul, ST, MT					
: 19711114 199803 1 001					
: Simalungun, 14 Nopember 1971					
: ☑ Laki-laki □ Perempuan					
: ☑ Kawin □ Belum Kawin □ Duda/Janda					
: Islam					
: III-c / Penata					
: Lektor					
: Universitas Riau					
: Jl. H. R. Subrantas Km. 12,5 Simpang Baru Pekanbaru					
: 0761 566937					
: Griya Bina Widya Universitas Riau Blok A No. A6 Jl. Garuda					
Sakti Km.3 Kelurahan Air Putih Pekanbaru 28293					
: 082174737114					
: chairulunri@yahoo.com; chairulunri1971@gmail.com					

	RIWAYAT PENDIDIKAN PERGURUAN TINGGI							
Tahun Lulus	Program Pendidikan	Perguruan Tinggi	Jurusan/Program Studi					
1997	S 1	Universitas Syiah Kuala	Teknik Kimia					
2002	S2	Universitas Gadjah Mada	Teknik Kimia					

Mata Kuliah yang diampu	1. Matematika 1
	2. Matematika 2
	3. Termodinamika Teknik Kimia 1
	4. Termodinamika Teknik Kimia 2
	5. Perancangan Alat Proses
	6. Perancangan Kolom Pemisah
	7. Distilasi Multikomponen
	8. Praktikum Teknologi Pulp 1
	9. Teknologi Pulp 2
	10. Praktikum Teknologi Pulp 2
	11. Rekoveri Bahan Kimia

	PENGALAMAN PENELITIAN							
Tahun	Judul Penelitian	Ketua/anggota Tim	Sumber Dana					
2000-	Perpindahan Massa Gas-Cair dan	Peneliti Utama	ADB – EEDP Project					
2001	Flooding Dalam Kolom		-					
	Berpenghalang Sungkup							
2003	Unjuk Kerja Pengolahan Limbah Cair	Peneliti Utama	Program Riset Grant					
	Industri Dengan Proses Lumpur Aktif.		Semi-QUE V Prodi					
			Teknik Kimia UNRI					

	PENGALAMAN PENELITIAN					
Tahun	Judul Penelitian	Ketua/anggota Tim	Sumber Dana			
2003	Pengolahan COD Air Limbah Kota	Anggota	Program Riset Grant			
	Dengan Menggunakan Sistem		Semi-QUE V Prodi			
	Lumpur Aktif dan EM4 Sebagai		Teknik Kimia UNRI			
	Kultur Mikroorganisme.					
2003	Pembuatan Kalium Hidroksida	Peneliti Utama	Dana Anggaran			
	(KOH) Dari Ekstrak Abu Tandan		Pendapatan dan Belanja			
	Kosong Sawit: Kinetika Reaksi dan		Daerah Provinsi Riau			
	Konversi.					
2003	Pemanfaatan Abu Industri Sawit	Anggota	Dana PEMDA Kabupaten			
	Sebagai Filler pada Industri Bata		Kuantan Singingi Riau			
	Kabupaten Kuantan Singingi Riau.					
2004	Kinetika dan Karateristik Unjuk Kerja	Peneliti Utama	Dana Penelitian Dosen			
	Oksidasi Basah Asam Formiat dan		Muda (DM), DP3M			
	Asam Asetat.		DIKTI			
2004	Pemanfaatan Batang Sawit Sebagai	Anggota	Dana PT. Perkebunan			
	Bahan Baku Pembuatan Particle		Nusantara V			
	Board.					
2005	Pemanfaatan Batang Sawit Sebagai	Anggota	Dana Penelitian Dosen			
	Bahan Baku Pembuatan Parkid (Ubin		Muda (DM), DP3M			
	Kayu) dan Papan Partikel		DIKTI			
	(Particleboard)					
2005	Prehydrolysis Tandan Kosong Sawit	Peneliti Utama	Dana Proyek			
	dengan Larutan Asam Sulfat untuk		Pengembangan Diri			
2007	Produksi Bioetanol	D 11:1 XX:	(PPD) Proyek HEDS			
2007	Pretreatment Tandan Kosong Sawit	Peneliti Utama	Dengan Dana Penelitian			
	Dengan Larutan Asam Sulfat Untuk		Dosen Muda (DM),			
2000	Produksi Bioethanol.,	Dambinshing Clainsi	DP3M DIKTI			
2008	Fermentasi Nira Nipah Menjadi	Pembimbing Skripsi Mahasiswa	Dana Mandiri			
	Etanol Menggunakan Saccharomyces Cerevisiae.	Manasiswa				
2009	Produksi Bioetanol Dari Limbah	Peneliti Utama	Dana Penelitian Hibah			
2009	Padat Industri Pulp Dengan Proses	Penenti Otama				
	Sakarifikasi & Ko-Fermentasi		Bersaing (HIBER), DP2M DIKTI			
	Serentak Menggunakan Ekstrak Kasar		DI ZIVI DIKTI			
	Enzim Trichoderma spp.					
2009	Pemanfaatan Kompos Sludge Pada	Anggota	DIPA Universitas Riau			
2007	Tanaman Selada (<i>Lactuca sativa</i>)	7 mggotti	Dif 11 Oniversitus Ridu			
2010-	Pengembangan Produksi Bioetanol	Peneliti Utama	Dana Penelitian Hibah			
2011	Dari <i>Reject Pulp</i> Pabrik Pulp & Paper		STRANAS, DP2M			
	Dengan Proses Sakarifikasi & Ko-		DIKTI			
	Fermentasi Serentak					
2012	Fermentasi Nira Nipah Skala Pilot	Pembimbing Skripsi	Kyoto University			
	Menjadi Bioetanol Menggunakan	Mahasiswa				
	Saccharomyces cereviceae Pichia					
	stipitis dan kombinasi Saccharomyces					
	cereviceae – Pichia stipitis					
2012	Produksi Bioetanol Dari Pati Sorgum	Pembimbing Skripsi	Dana Mandiri			
	Dengan Proses Sakarifikasi Dan	Mahasiswa				

	PENGALAMA	N PENELITIAN	
Tahun	Judul Penelitian	Ketua/anggota Tim	Sumber Dana
	Fermentasi Serentak Dengan Variasi Temperatur Liquifikasi		
2012	Konversi Pati Sorgum Menjadi Bioetanol Menggunakan Enzim Stargen tm 002 Dan Yeast Saccharomyces Cerevisiae Dalam Bioflo 2000 Fermentor	Pembimbing Skripsi Mahasiswa	Dana Mandiri
2013	Produksi Pati Sorgum Menjadi Bioetanol Menggunakan Enzim Stargen TM 002 dan Yeast Saccharomyces cereviceae Dalam Bioflo 2000 Fermentor	Anggota	HIBER (BOPTN)
2014	Produksi Bioetanol Melalui Teknik Fermentasi Nira Nipah dari Kawasan Pesisir Provinsi Riau sebagai Usaha Mendukung Ketahanan Energi Nasional	Anggota	Dana Penelitian Hibah Bersaing (HIBER), DP2M DIKTI
2015	Produksi Bioetanol Melalui Teknik Fermentasi Nira Nipah dari Kawasan Pesisir Provinsi Riau Sebagai Usaha Mendukung Ketahanan Energi Nasional	Anggota	Dana Penelitian Hibah Bersaing (HIBER), DP2M DIKTI
2016	Produksi Bioetanol Dari Nira Nipah Menggunakan Teknik Fermentasi Immobilisasi Selsaccharomyces Cerevisiae	Peneliti Utama	Dana Hibah Dosen Muda (DIPA UR 2016)
2019	Produksi Cuka Nira Nipah Menggunakan Teknologi Dua Tahap Fermentasi Sebagai Upaya Penguatan Ekonomi Masyarakat Wilayah Pesisir	Peneliti Utama	Dana Hibah Dosen Muda (DIPA UR 2019)

Daftar Publikasi Ilmiah

- 1. **Chairul**, 2001, *Perpindahan Massa Gas-Cair dan Flooding Dalam Kolom Berpenghalang Sungkup*, Tesis, Program Studi Teknik Kimia Program Pascasarjana UGM, Yogyakarta.
- Chairul, 2002, Perpindahan Massa Gas-Cair Dalam Kolom Berpenghalang Sungkup, Prosiding Seminar Nasional Perkembangan Riset dan Teknologi di Bidang Industri, Pusat Studi Teknik UGM, Yogyakarta.
- 3. Saputra, Edy dan **Chairul**, 2002, Karakteristik Reaksi Heterogen Padat Cair Untuk CaCO₃-CH₃COOH Dalam Reaktor Slurry Tangki Berpengaduk, *Prosiding Seminar Nasional Teknik Kimia Pengembangan Teknologi Proses dan Pemanfaatannya*, USU, Medan.
- 4. Saputra, E., Sunarno, **Chairul**, 2004, "Analisis Reaksi Ekstrak Limbah Padat Industri Sawit Dengan Ca(OH)₂ dalam Pembuatan Kalium Hidroksida (KOH)", *Prosiding Seminar Nasional Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia.*, UVN "Veteran", Yogyakarta...
- 5. Saputra, E., Sunarno, **Chairul**, Agus Setiawan, Mirawati 2004, "Kalium Hidroksida dari Ekstrak Abu Tandan Kosong Sawit: Model Reaksi Homogen", *Prosiding Seminar Nasional Perkembangan Riset dan Teknologi di Bidang Industri.*, UGM, Yogyakarta

Daftar Publikasi Ilmiah

- Chairul, 2005, Pengolahan Limbah Cair Sintetis Industri Tapioka Dengan Proses Lumpur Aktif, *Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2005*, UPN VETERAN, Yogyakarta.
- 7. Padil, **Chairul** dan Amun A., 2005, Pengaruh Sifat Fisik dan Mekanik Terhadap papan partikel dari batang sawit, *Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2005*, UPN *VETERAN*, Yogyakarta.
- 8. Padil, **Chairul**, Evelyn, 2007, *Pembuatan Papan Partikel dari Batang Kelapa Sawit*, *Jurnal Media Teknik* Universitas Gadjah Mada, edisi Mei 2007, Yogyakarta
- 9. Evelyn, **Chairul**, Diana Lestari, Fauziah R.Purnama, 2008. Produksi Enzim Protease Alkalin Dari *Bacillus Substilis* Dengan Media Limbah Cair Tahu, *Prosiding Seminar Nasional Teknik Kimia Teknologi Oleokimia dan Petrookimia Indonesia 2008*, Universitas Riau, Pekanbaru.
- 10. Is Sulistyati Purwaningsih, **Chairul**, Said Zul Amraini, 2008. Kinetika Reaksi Pengolahan Limbah Cair dengan Sistem Lumpur Aktif Menggunakan EM 4 sebagai Kultur Mikroorganisme *Prosiding Seminar Nasional Teknik Kimia Teknologi Oleokimia dan Petrokimia Indonesia 2008*, Universitas Riau, Pekanbaru.
- 11. **Chairul**, Is Sulistyati Purwaningsih, 2009. Fermentasi Nira Nipah Menjadi Etanol Menggunakan *Saccharomyces Cerevisiae*, Prosiding Seminar Nasional Teknik Kimia Kejuangan 2009.
- 12. **Chairul**, Edy Saputra, 2009. Hidrolisa *Reject Pulp* Menjadi Glukosa Menggunakan Katalis Asam Sulfat: Pengaruh Temperatur Dan Waktu, Prosiding Seminar Nasional ke-2 Added Value of Energy Resources (AVoER) 2009 29 30 Juli 2009.
- 13. **Chairul,** Maria Peratenta, Misri Gozan, 2009. Pemanfaatan *Reject Pulp* untuk Produksi Bioetanol Melalui Sakarifikasi dan Fermentasi Serentak dengan Enzim *Sellulase* dan *Xylanase, Prosiding Simposium Nasional Bioenergi 2009, 23 Nopember 2009, IPB, Bogor.*
- 14. Chairul, Titania Nugroho, Misri Gozan, Said Zul Amraini, Sri Rezeki Muria, Muhammad Rifai. 2011. Sakarifikasi dan Ko-Fermentasi Serentak Reject Pulp Menjadi Bioetanol Menggunakan Enzim Selulase- Xilanase serta Kombinasi S. Cerevisiase - P. Stipitis. Prosiding Seminar Nasional Perkembangan Riset dan Teknologi di Bidang Industri ke-17 tahun 2011. Yogyakarta, 16 Mei 2011.
- 15. Chairul, Misri Gozan, Syahiddin Dahlan Said, Said Zul Amraini, Sri Rezeki Muria, dan Andi Akbar. 2011. Sakarifikasi dan Ko-Fermentasi Serentak Reject Pulp Menjadi Bioetanol Menggunakan Enzim Karbohidrase dan Kombinasi Saccharomyces cerevisiae-Pichia stipitis. INDO BIOENERGY 2011 Seminar & Eksibisi Revitalisasi Program Bioenergi Nasional. 23 & 24 Mei 2011. Jakarta.
- 16. Sri Rezeki Muria, Putri Safariani Sari, Chairul, Misri Gozan, Hendri Salmi, dan Said Zul Amraini. 2011. Sakarifikasi dan Ko-Fermentasi Serentak (SKFS) untuk Produksi Bioetanol dari Limbah Padat Industri Pulp dan Paper. Prosiding Seminar Nasional ITENAS Bandung, 10 November 2011
- 17. Hafidawati, Chairul, Sodiq, M. 2012. Fermentasi Nira Nipah Skala Pilot Menjadi Bioetanol Menggunakan Saccharomyces cereviceae. Prosiding Seminar Nasional Teknik Kimia Kejuangan, UPN Yogjakarta. April 2012.
- 18. Chairul, Hafidawati, Febrio Jenova, Riki Antoni. 2012. Fermentasi Nira Nipah Menjadi Bioetanol Menggunakan Saccharomyces cereviceae, Pichia stipitis dan kombinasi Saccharomyces cereviceae Pichia stipitis. Prosiding Seminar Nasional Teknik Kimia Indonesia IV Depok, 22-23 Septeber 2012.
- Chairul, Silvia Reni Yenti, Heriyanti, Irsyad Abdullah. 2013. Bioethanol production from Nipa Sap in Riau Province Coastal Zone. 4th International Conference on Sustainable Future for Human Security, SustaiN 2013. Clock Tower Centennial Hall, Kyoto University, Kyoto – Japan. 19 - 21 October 2013

Daftar Publikasi Ilmiah

 Chairul, Evelyn, Syaiful Bahri, Ella Awaltanova. 2019. A novel immobilization method of Saccharomyces cerevisiae to fermentation nypa palm sap for fuel grade bioethanol production, 2nd Annual Symposium on Solid Waste Refinery (2nd ANSWER), PIAT-UGM, Yogyakarta, 13-14 Nopember 2019.

	KEGIATAN PROFESIONAL/PENGABDIAN KEPADA MASYARAKAT					
Tahun	Jenis/Nama Kegiatan	Tempat				
2007	Tim Teknis Koordinasi Penerapan dan Pengembangan	Badan Perlindungan dan				
	Teknologi Tepat Guna Provinsi Riau	Pemberdayaan Masyarakat				
		Provinsi Riau				
2008	Tim Teknis Koordinasi Penerapan dan Pengembangan	Badan Perlindungan dan				
	Teknologi Tepat Guna Provinsi Riau	Pemberdayaan Masyarakat				
		Provinsi Riau				
2009	Tim Teknis Koordinasi Penerapan dan Pengembangan	Badan Pemberdayaan				
	Teknologi Tepat Guna Provinsi Riau	Masyarakat dan				
		Pembangunan Desa Provinsi				
		Riau				
2018	Pembimbing KUKERTA mahasiswa UNRI	Kecamatan Tebing Tinggi				
		Timur Kabupaten				
		Kepulauan Meranti				
2019	Pembimbing KUKERTA mahasiswa UNRI	Kecamatan Tebing Tinggi				
		Barat Kabupaten Kepulauan				
		Meranti				

Saya menyatakan bahwa semua keterangan dalam *Curriculum Vitae* ini adalah benar dan apabila terdapat kesalahan, saya bersedia mempertanggungjawabkannya.

Pekanbaru, 20 Januari 2020 Yang Menyatakan,

(Chairul, ST, MT)

NIP. 19711114 199803 1 001

BIODATA ANGGOTA PENELITI 1

Nama Lengkap (dengan gelar)	Evelyn, ST., MSc., MEng., PhD.
Jenis Kelamin	Perempuan
Jabatan Fungsional / TMT	Lektor / 1 Agustus 2006
NIP /NIDN	197503142001122001 / 0014037504
Tempat dan Tanggal Lahir	Pekanbaru, 14 Maret 1975
Alamat Rumah	Jl. Mahoni No.160 Komplek Beringin Indah Sidomulyo Timur
	Marpoyan Damai Pekanbaru 28294 Riau
Nomor Telepon/Faks	(0761) 589882
Nomor Hp	081221761653
Alamat Kantor	Kampus Bina Widya Jl. HR. Subrantas KM 12.5
	Simpang Baru Panam 28293
Nomor Telepon/Faks	(0761) 566937
Alamat Email	evelyn@eng.unri.ac.id
Lulusan yang telah dihasilkan	S1 = 15 orang
Mata Kuliah yang diampu	1. Bioteknologi Lingkungan
	2. Pengendalian Pencemaran
	3. Dasar-Dasar Bioproses
	4. Mikrobiologi Industri
	5. Ekonomi Teknik
	6. Keselamatan Industri
	7. Perancangan Alat Proses
	8. Teknologi Pulp 1
	9. Keselamatan dan Kesehatan Kerja

B. Riwayat Pendidikan

Program	Nama PT	Bidang Ilmu	Tahun Masuk-Lulus	Judul Skripsi/Tesis/ Disertasi	Pembimbing/ Promotor
S-3	University of Auckland- New Zealand	Chemical and Materials Engineering	2013-2016	Power ultrasound and high pressure processing for the inactivation of specific microbial spores	Dr. Filipa Silva
S-2	University of Canterbury- New Zealand	Chemical and Process Engineering	2010-2013	Mediator combined gaseous substrate for electricity generation in microbial fuel cells and potential integration of an MFC into an anaerobic biofiltration system	Dr. Peter Gostomski
	University of Birmingham- United Kingdom	Biochemical Engineering	1999-2000	Control of biofouling in flowing water systems with polymer fiber	Dr. TR Bott
S-1	Universitas Jayabaya- Indonesia	Teknik Kimia	1993-1998	Demineralisasi air dengan ion exchange	Ir. Suparno

C. Pengalaman Penelitian dalam 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Pend	lanaan
			Sumber	Jumlah (Juta Rp.)
1.	2020	Pasteurisasi termal jus nanas melalui	DRPM DIKTI	92,4
		inaktivasi spora bakteri dan jamur heat		
		resistant untuk peningkatan keamanan		
		pangan dan umur simpan Tahun ke-2		
		(Ketua)		
2.	2019	Pasteurisasi termal jus nanas melalui	DRPM DIKTI	82,5
		inaktivasi spora bakteri dan jamur heat		
		resistant untuk peningkatan keamanan		
		pangan dan umur simpan Tahun ke-1		
2	2010	(Ketua)	DIDA	60.0
3.	2019	Pengembangan Katalis Heterogen	DIPA	60,0
		sulfonated carbon nanosphere @	Universitas Riau	
		ferromagnetic yang Ramah Lingkungan		
		dan Memiliki Sifat magnetik berbasis carbon dan Aplikasinya untuk		
		Memproduksi Biodiesel (Anggota)		
4.	2018	Pemanfaatan Bahan Alam Sebagai Green	DIPA	16,0
7.	2010	Inhibitor Untuk Mengendalikan Korosi	Universitas Riau	10,0
		Pada Sistem Perpipaan (Anggota)	Chiversitus Itiuu	
5.	2013-	11 00 1	Dansiewe DIV	FL and Equility of
٥.	2013-	Power Ultrasound and High Pressure		II and Faculty of
	2010	Processing Inactivation of Specific		earch Development
		Microbial Spores in Foods. This project was supported by Indonesia Government		sity of Auckland o: 3701175)
		and Non thermal Food Pasteurization	(Floject III	0. 3/011/3)
		Project University of Auckland.		
		1 roject Oniversity of Auckland.		

D. Pengalaman Pengabdian Kepada Masyarakat Dalam 5 Tahun Terakhir

No.	Tahun	Judul PKM	Pend	anaan
			Sumber	Jumlah (Juta Rp.)
1.	2019	Pembuatan Pupuk Organik dari Limbah	DIPA	18,0
		Agro Industri Untuk Kebutuhan Pertanian	UNRI	
		Masyarakat		
2.	2018	Pembuatan Sabun Cair untuk keperluan	Dana Rutin	15,0
		Cuci Piring Bagi Masyarakat Kelurahan	LPPM 2018	
		Batu Basurat		
3.	2017	Pelatihan pembuatan barang kerajinan	Dana rutin	8,0
		tangan dari sampah plastik di desa Mayang	LPPM UNRI	
		Sari, Kecamatan, Kecamatan Lesung	2017	
		(Anggota)		
4.	2017	Pengenalan Kuliner Olahan Air Tawar	Fakultas Teknik	5,0
		Teratak Buluh kepada siswa SMA Negeri	UNRI	
		2 Rumbio Jaya Kabupaten Kampar		
		(Anggota)		
5.	2016	Pelatihan pembuatan bakso sehat skala	Fakultas Teknik	4,0
		rumah tangga di desa bunga raya	UNRI	

		Kecamatan Bunga Raya Kabupaten Siak		
		(Ketua)		
6.	2016	Pemanfaatan sampah plastik menjadi	Dana rutin	8,0
		barang kerajinan tangan di kelurahan Buni	LPPM UNRI	
		Ayu, Kecamatan Dumai Selatan (Anggota)	2016	

E. Pengalaman Penulisan Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No.	Tahun	Judul Artikel Ilmiah	Volume / Nomor	Nama Jurnal
1.	2020	Thermal inactivation of <i>Talaromyces flavus</i> ascospores in pineapple juice as influenced by temperature, soluble solids, and spore age	(In Press)	Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
2.	2019	Heat Assisted HPP for the inactivation of bacteria, moulds and yeasts spores in foods: log reductions and mathematical models	88: 143-156	Trends in Food Science and technology
3.	2018	Differences in the resistance of microbial spores to thermosonication, high pressure thermal processing and thermal treatment alone	222: 292-297	Journal of Food Engineering
4.	2017	Comparing high pressure thermal processing and thermosonication with thermal processing for the inactivation of bacteria, moulds, and yeasts spores in foods	214 : 90-96	Journal of Food Engineering
5.	2017	Resistance of <i>Byssochlamys nivea</i> and <i>Neosartorya fischeri</i> mould spores of different age to high pressure thermal processing and thermosonication.	201 : 9-16	Journal of Food Engineering
6.	2016	Modeling the inactivation of psychrotrophic <i>Bacillus cereus</i> spores in beef slurry by 600 MPa HPP combined with 38–70°C: Comparing with thermal processing and estimating the energy requirements.	99 : 179-187	Food and Bioproducts processing
7.	2016	High pressure thermal processing for the inactivation of <i>Clostridium perfringens</i> spores in beef slurry.	33:26-31.	Innovative Food Science & Emerging Technologies
8.	2016	Modeling the inactivation of <i>Neosartorya fischeri</i> ascospores in apple juice by high pressure, power ultrasound and thermal processing.	59 : 530–537.	Food Control
9.	2015	High pressure processing pretreatment enhanced the thermosonication inactivation of <i>Alicyclobacillus acidoterrestris</i> spores in orange juice.	62 : 365-372.	Food Control

10.	2015	Inactivation of Byssochlamys nivea	214 : 129-	International
		ascospores in strawberry puree by high	136.	Journal of Food
		pressure, power ultrasound and thermal		Microbiology
		processing.		
11.	2015	High pressure processing of milk: Modeling	165 : 141-	Journal of Food
		the inactivation of <i>Bacillus cereus</i> spores at	148.	Engineering
		38-70°C.		
12.	2015	Use of power ultrasound to enhance the	206 : 17-23	International
		thermal inactivation of <i>Clostridium</i>		Journal of Food
		perfringens spores in beef slurry.		Microbiology
13.	2015	Thermosonication versus thermal processing	67 : 67-74.	Food Research
		of skim milk and beef slurry: Modeling the		International
		inactivation kinetics of psychrotrophic		
		Bacillus cereus spores.		
14.	2014	Gaseous pollutant treatment and electricity	13:35-51	Review in
		generation in microbial fuel cells (MFCs)		Environmental
		utilizing redox mediator.		Science and
		-		Bio/Technology

F. Pengalaman Penyampaian Makalah Secara Oral Pada Pertemuan / Seminar Ilmiah dalam 5 Tahun Terakhir

No.	Nama pertemuan	Judul Artikel	Waktu	Tempat
	ilmiah/seminar			
1.	International	Thermal inactivation of	23-24	Banda Aceh,
	Conference on Chemical	Talaromyces flavus ascospores	Oktober,	Indonesia
	Engineering and	under different	2019	
	Applied Sciences	temperature and soluble solids for		
	(ICChEAS) 2019	pineapple juice pasteurization		
2.	UR International	Production and characterization	10	Pekanbaru,
	Conference on Science	of paper from pineapple leaves	September,	Indonesia
	and Environment	and sugarcane bagasse pulp	2019	
	(URICSE-2019)			
3.	The 20 th International	An improved process of	9-11	Tokyo, Jepang
	Symposium on Wood,	prehydrolysis/alkaline cooking	September,	
	Fiber, and Pulping	with a soluble AQ and chlorine-	2019	
	Chemistry (ISWFPC)	free bleaching with		
		peroxymonosulfuric acid for		
		wood		
		biorefinery		
4.	ISIChem 2018	Heat resistance analysis of	4-6 Oktober,	Padang,
	1 st International	Talaromyces sp. ascospores for	2018	Indonesia
	Symposium of	pineapple juice pasteurization		
	Indonesian Chemical			
	Engineering 2018			
5.	ICAnCEE 2018	Reaction kinetics for microbial-	24-25	Bali, Indonesia
	The International	reduced mediator in an ethanol-	Oktober,	
	Conference on	fed microbial fuel cell	2018	
	Advances in Civil and			
	Environmental			
	Engineering			

6.	ICOOPChE 2017.	Perpectives of high power	29-30	Pekanbaru,
	International	ultrasound in Food Preservation.	November,	Riau Indonesia
	Conference on Oleo and		2017	
	Petrochemical			
	Engineering			
7.	Seminar Nasional	Teknologi High Pressure Thermal	1-2 Oktober,	Pekanbaru,
	Teknik Kimia Teknologi	Processing (HPTP) Untuk	2016	Riau Indonesia
	Oleo dan Petrokimia	Inaktivasi Spora Mikroorganisme		
	Indonesian 2016.	Dalam Pangan.		
8.	Poster dalam Seminar	High Pressure-Thermal	1-2 Oktober,	Pekanbaru,
	Nasional Teknik Kimia	Destruction Kinetics of Specific	2016	Riau Indonesia
	Teknologi Oleo dan	Spores in Foods		
	Petrokimia Indonesian			
	2016.			
9.	ICFM (International	Use of <i>Byssochlamys nivea</i> mould	13-15 Juni,	Freising -
	Commission on Food	spores as target of pasteurization	2016	Germany,
	Mycology) Workshop	for high pressure		
	2016.	processed fruit products.		
10.	ULTRASONICS 2016	Examples of ultrasound	06-08 Juni,	Caparica,
	II International	pasteurization of foods.	2016	Portugal
	Conference on			
	Ultrasonic-based			
	applications: from			
	analysis to synthesis.			
11.	ICOOPChE 2015.	Inactivation of Clostridium	23-24	Pekanbaru,
	International	perfringens and Neosartorya	November,	Riau Indonesia
	Conference on Oleo and	fischeri spores in foods by high	2015	
	Petrochemical	pressure, power ultrasound, and		
	Engineering.	thermal processing		
12.	iCEF12 (International	Power ultrasound, high pressure	14-18 Juni,	Quebec City,
	Congress on Food and	and thermal processing for the	2015	Canada
	Engineering).	inactivation of microbial spores		

G.Pengalaman Penulisan Buku

No.	Tahun	Judul Buku	hapter/pp.	Publisher	Editor
1.	2018	Inactivation of pathogenic microorganisms in foods by high pressure processing in Food Safety and Protection (<i>Book Chapter</i>)	Chapter 10 (pp.343-378)	CRC Press	V. R. Rai and A. J. Bai
2.	2017	High pressure processing effect on microorganisms in fruit and vegetable products in High Pressure Processing of Fruit and Vegetable Products (Book Chapter)	Chapter 2, (pp.3-38)	CRC Press	M. Houška and F.V.M. Silva

H. Penghargaan yang Pernah Diraih dalam 10 tahun Terakhir

No.	Award	Tahun
1.	Salah satu dari 5 Dosen terbaik dengan jumlah H-Indeks tertinggi tingkat	2019
	Universitas Riau	
2.	Salah satu dari 3 dosen terbaik dengan jumlah artikel yang dimuat ter-	2019
	indeks scopus periode 2016-2018 tingkat Universitas Riau	
3.	Presenter terbaik pada 2 nd International Conference on Oleo and	2017
	Petrochemical Engineering (ICOOPChE) 2017	
4.	Salah satu Thesis Doktoral terbaik pada Faculty of Engineering	2016
	University of Auckland dan nominasi untuk Vice-Chancellor's Prize	
	pada University of Auckland (2016)	
5.	Presenter poster terbaik pada Seminar Nasional Teknik Kimia Teknologi	2016
	Oleo dan Petrokimia Indonesia 2016	
6.	Presenter oral terbaik kedua Seminar Nasional Teknik Kimia Teknologi	2016
	Oleo dan Petrokimia Indonesian 2016	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima risikonya.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan proposal hibah akreditasi

.

Pekanbaru, 20 Januari 2020 Yang Menyatakan,

Evelyn, S.T., M.Sc., M.Eng. Ph.D

NIP. 19750314 200112 2 00

BIODATA ANGGOTA PENELITI 2

A. Identitas Diri

1	Nome Langken	Dra. Yusnimar, M.Si., M.Phil
	Nama Lengkap	
2	Jabatan Fungsional	Lektor Kepala
3	Jabatan Struktural	-
4	NIP/NIK/No. Identitas	19620612 198803 2 002
	lainnya	
5	NIDN	0012066217
6	Tempat dan Tanggal Lahir	Rengat/ 12 Juni 1962
7	Alamat Rumah	Jl. Leon Darwis No. 8 RT.04/RW. 07 Kel. Tuah
		Karya, Kec. Tampan, Panam-Pekanbaru 28293
8	Nomor Telepon/ HP	081371669358
9	Alamat Kantor	Kampus BinaWidya KM. 12,5 Simpang Baru
		Panam, Pekanbaru, Kode Pos: 28293
10	Nomor Telepon/Faks	(0761) 566937
11	Alamat e-mail	Yusnimar_sahan@unri.ac.id
		yusnisahan@lecturer.unri.ac.id
		yusnisahan@yahoo.co.id
12	Lulusan yang telah	85 orang
	dihasilkan	
13	Mata Kuliah yang diampu	1 Perpindahan panas
		2 Bahan konstruksi teknik kimia/
		Bahan kontruksi & korosi
		3 Kimia Terapan

B. Riwayat Pendidikan

Program:	S-1	S-2	
Nama Perguruan Tinggi	Universitas Riau	ITB-Bandung & UMIST-UK	
Bidang Ilmu	Kimia	Kimia Analitik&Teknik Kimia	
Tahun Masuk	1981	1994 (ITB); 1999 (UMIST)	
Tahun Lulus	1987	1996 (ITB); 2002 (UMIST)	
Judul Skripsi/ Tesis/Disertasi	Studi metoda penentuan oksitetrasiklin dalam buah jeruk	ITB: Pemisahan merkuri pada limbah karbon aktif penyerap merkuri asal PT. Arun NGL. UMIST: Investigation of o-xylend to 3,4-dimethylbenzophenone	
		over zeolite beta	
Nama Pembimbing/	Dra.Chainulfiffah, M.Sc	Dr. Soemanto Imamkhasani (ITB-	
Promotor	Dr. Soemanto Imamkhasani	LIPI)	
		Dr. Buchari (ITB)	

Dr. Arthur A Ga	arforth (UMIST)
-----------------	-----------------

C. Pengalaman Penelitian 2015 - 2019

No	Tahun	Judul Penelitian	Pendanaan	
			Sumber	Jumlah (jt Rp)
1	2019	Pemanfaatan Spent Bleaching Earth (SBE) dan Polimer dari Barang Elektronik Bekas Sebagai Bahan Pengisi (Filler) Pada Pembuatan Material Infrastruktur	Dana DIPA UNRI 2019 No kontrak; 1013/UN.19.5.1.3/PT.01.03/2019	40
2	2018	Pemanfaatan Barang Elektronik Bekas pada Pembuatan Material Infrastruktur	Dana DIPA UNRI 2018 No kontrak; 742/UN.19.5.1.3/PP/2018	30
3	2017	Unit Pembangkit Listrik Portable dengan Menggunakan Barang Elektronik Bekas Sebagai Elektroda (ketua)	Dana DIPA UNRI 2017 No kontrak; 989/UN.19.5.1.3/PP/2017	31
4	2016	Kinetika Transesterifikasi minyak sawit tinggi FFA dengan katalis ZnO presipitant Zinc karbonat (Tahun ke 2 sebagai ketua)	Hibah Fundamental DRPM-DIKTI No Kontrak: 478/UN.19.5.1.3/LT/ 2016	60
5	2016	Recovery emas pada barang elektronik bekas dengan metode ramah lingkunga (Tahun ke 2 sebagai anggota)	Hibah Bersaing DRPM-DIKTI No Kontrak: 478/UN.19.5.1.3/LT/ 2016	51
6	2015	Kinetika Transesterifikasi minyak sawit tinggi FFA dengan katalis ZnO presipitant Zinc karbonat (Tahun ke 1 sebagai ketua)	Hibah Fundamental DIKTI No. DIPA 023.04.1.673453/2015 , Tgl 14 Nopember 2014 No Kontrak: 526/UN.19.5.1.3/LT/ 2015	56
7	2015	Recovery emas pada barang elektronik bekas dengan metode ramah lingkunga (Tahun ke 1 sebagai anggota)	Hibah DIKTI No. DIPA 023.04.1.673453/2015 , Tgl 14 Nopember 2014 No Kontrak: 577/UN.19.5.1.3/LT/ 2015	50

D. Pengalaman Pengabdian Kepada Masyarakat 2015 - 2019

D. 1 CII	D. Pengalaman Pengabulan Kepada Masyarakat 2015 - 2019				
No	Tahun	Judul Pengabdian Kepada Masyarakat	Pendanaa	an	
			Sumber	Jumlah	
				(Rp, jt)	
1	2019	Pemberdayaan Kelompok PKK Melalui	Dana DIPA	20	
		Pemanfaatan Sampah Plastik Pada Tanaman	UNRI 2019		
		Toga Untuk Meningkatan Pelestarian	No kontrak;		
		Lingkungan di Kelurahan Tuah Karya,	514/UN19.5.1.3		
		Kecamatan Tampan	/PT.01.03/2019		
		-			
2	2018	Pemberdayaan Kelompok Pemuda Karang	DIPA UNRI	16	
		Taruna Dalam meningkatkan Pelestarian			
		Lingkungan di Desa Ketaping Jaya,			
		Kecamatan Inuman			
3	2017	Pemanfaatan minyak goreng bekas	DIPA UNRI	8,5	
		sebagai bahan bakar kompor di Kelurahan			
		Mayang Sari, Pelalawan			
4	2017	Pelatihan Keterampilan Pembuatan Barang	DIPA UNRI	8,5	
		Kerajinan Tangan dari Sampah Plastik di			
		Kelurahan Mayang Sari, Pelalawan			
5	2016	Pemanfaatan minyak goreng bekas	DIPA UNRI	8	
		sebagai bahan bakar kompor di Kelurahan			
		Bumi Ayu, Kec, Dumai Selatan			
6	2016	Pelatihan Keterampilan Pembuatan Barang	DIPA UNRI	8	
		Kerajinan Tangan dari Sampah Plastik di			
		Kelurahan Bumi Ayu, Kec, Dumai Selatan			
7	2015	Pemanfaatan pelepah sawit sebagai bahan	DIPA UNRI	10	
		pakan ternak di desa Pasir Jaya, Kec.			
		Rambah Hilir, Kab. Rohul			

E.Pengalaman Penulisan Artikel Ilmiah dalam Jurnal 2014- 2019

No	Tahun	Judul Artikel ilmiah	Nama Jurnal dan Tautan/link/URL
1	2019	Utilization Electronic	MATEC Web of Conferences 276 , 01024 (2019).
		Scraps on making Concrete	https://doi.org/10.1051/matecconf /20192760
		Brick	1024
2	2018	Performance of the	To cite this article: Y Sahan et al 2018 IOP Conf.
		electrical generator cell by	Ser.: Mater. Sci. Eng. 345 012038
		the ferrous alloys of printed	
		circuit board scrap and Iron	IOP Conference Series: Materials science and
		Metal 1020	Engineering
			http://iopscience.iop.org/issue/1757-899X/345/1

			http://iopscience.iop.org/article/10.1088/1757-899X/345/1/012038/pdf
3	2016	Conversion Crude Palm Oil to FAME over ZnO Catalyst precipitant zinc carbonate	International Journal of Ocean, Mechanical and Aerospace, Science and Engineering (JOMAse) Vol. 32, June 30, 2016
			https://isomase.org/JOMAse%204-32.php atau
			http://isomase.org/JOMAse/Vol.32%20Jun%202 016/32-2.pdf
4	2016	Gold Separation of	International Journal Environmental Research &
		Handphone Circuit Board Scraps (PCBs) by Leaching	Clean Energy, Vol. 3, July 2016, ISSN:2502-3888
		Process	http://isomase.org/IJERCE%204-3.php
			http://isomase.org/IJERCE/Vol.3%20Jul%20201
5	2014	Konversi tepung sagu	6/3-1.pdf Sagu Vol. 13, No.1, Maret 2014, ISSN: 1412-
	2011	menjadi sirup glukosa	4424
		dengan menggunakan	
		katalis asam klorida	https://ejournal.unri.ac.id/index.php/JSG/issue/view/275

F. Pengalaman Penyampaian Makalah Secara Oral Pada Pertemuan / Seminar Ilmiah Dalam 5 Tahun Terakhir

No	Nama Pertemuan	Judul Artikel Ilmiah	Waktu dan Tempat
	Ilmiah / Seminar		
1	International	Utilization of Spent	23-24 Oktober 2019
	Conference	Bleaching Earth (SBE) as a	Hermes Hotel ,
	Chemical	Filler of Material	Banda Aceh
	Engineering and	Construction	
	Applied Science		
	(ICCheAS 2019)		
2	The International	Utilization Electronic Scraps	24 - 25 Oktober, 2018
	Conference on	on making Concrete Brick	Prime Plaza Hotel
	Advances in Civil	MATEC Web of	Sanur, Bali
	and Environmental	Conferences 276 , 01024	
	Engineering	(2019).	
	(ICANCEE 2018).	https://doi.org/10.1051/mate	
		cconf /20192760 1024	
3	Seminar hasil	Kinetika transesterifikasi	13 – 14 Maret 2017,
	penelitian dasar	minyak sawit FFA tinggi	Hotel Basko, Padang
	DRPM-DIKTI 2016		

		dengan katalis ZnO presipitan zinc karbonat	
4	Seminar nasional SNTK-TOPI ke 7	Penentuan aktivitas katalitik ZnO presipitan zinc karbonat pada pembuatan biodiesel dari crude palm oil ber-FFA tinggi	1 – 2 Oktober 2016, Hotel Pangeran, Pekanbaru
5	Seminar Nasional Masif II Tahun 2016	Absorptansi dan Emitansi Lapisan Tembaga Kobal Oksida yang Disintesis Menggunakan Metode Sol- Gel Dip-Coating Berbasis Prekursor Nitrat prosiding.upgris.ac.id/index. php/masif/m2016/paper/vie w/amun amri	Universitas PGRI Semarang ISBN 978-602- 74268-1-8
6	1 st International conference on oleo and petrochemical Engineering	Biodiesel production from crude palm oil off-grade over a ZnO catalyst presipitant zinc carbonate	4 – 5 Nopember 2015, Hotel Hotel Pangeran, Pekanbaru
7	Regional conference on chemical engineering (RCChe 7 th)	Conversion extracted oil of spent bleaching earth to biodiesel and regenerating spent bleaching earth https://repository.unri.ac.id/xmlui/bitstream/handle/123456789/7935/cover%20RCCHE%202014.pdf?sequence=1&isAllowed=y	2 – 3 Desember 2014, Hotel Melia Purosani, Yogyakarta

G.Pengalaman Penulisan Buku 2006 - 2019

No	Tahun	Judul	Jumlah	Penerbit	
			Halaman		
1	2019	Pemanfaatan Sampah Plastik	37	UR Press Pekanbaru 2019	
		sebagai Media Tanaman TOGA		ISBN 978-979-7929329	
2	2019	Penuntun Praktikum Kimia	80	Jurusan Teknik Kimia Fakutas	
		Analisa Pulp dan Kerta		Teknik Universitas Riau 2019	
3	2018	Penuntun Praktikum Kimia	70	Jurusan Teknik Kimia Fakutas	
		Terapan		Teknik Universitas Riau 2018	
4	2011	Buku Ajar ; Bahan konstruksi	210	Pusat Pengembangan	
		Teknik Kimia		Pendidikan Universitas Riau	
				ISBN 978-602-9066-18-0	

5	2010	Penuntun Praktikum Dasar-Dasar Proses Kimia I	65	Jurusan Teknik Kimia Fakutas Teknik Universitas Riau 2011
6	2008	Buku Ajar; Konsep Dasar Perpindahan Panas	137	Pusat Pengembangan Pendidikan Universitas Riau ISBN 978-979-1222-22-8
7	2007	Diktat; Panduan Dasar-Dasar Teknis Kimia Analisa Kualitatif dan Kuantitatif	64	Jurusan Teknik Kimia FT- UNRI
8	2007	Diktat;Teknik Analisis Kromatografi Gas	64	Jurusan Teknik Kimia FT- UNRI
9	2006	Penuntun Praktikum Kimia Analitik Klasik	56	Jurusan Teknik Kimia FT-UNRI
10	2006	Penuntun Praktikum Kimia Analisa Instrumentasi	85	Jurusan Teknik Kimia FT-UNRI

H. PengalamanPerolehan HKI Dalam 5 – 10 TahunTerakhir

No	Tahun	Judul	Jenis	Nomor P/ID
1	2017	Buku Ajar ; Bahan konstruksi	Hak cipta	084232
		Teknik Kimia		
2	2017	Buku Ajar; Konsep Dasar	Hak Cipta	084234
		Perpindahan Panas	_	
3	2018	Proses pembuatan Seng Oksida	Hak Paten	Nomor
		(ZnO) dari ZnSO ₄ dan Na ₂ CO ₃		publikasi
		Teknis		2018/06774

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya Dalam 5 Tahun Terakhir

No	Judul/Tema/Jenis Rekayasa Sosial yang Telah Diterapkan	Tahun	Tempat Penerapan	Respon Masyarakat
	-	-	-	-

J. Penghargaan yang Pernah Diraih dalam 10 tahunTerakhir

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Satya Lencana	Universitas Riau	2011

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima risikonya.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan usulan proposal penelitian.

Pekanbaru, 6 Januari 2020

Dra Yusnimar, M.Si., M.Phil.