Aprendizaje supervisado

Aprendizaje supervisado

- Entregar entradas y salidas deseadas.
- Máquina produce algoritmo
- Predicciones para nuevas entradas.
- Ejemplos
 - Reconocer escritura a mano
 - Diagnóstico de tumores
 - Actividad fraudulenta en tarjetas de crédito

Clasificación y Regresión

- Clasificación
 - Predecir *etiquetas* de una lista predefinida de posibilidades.
 - Clasificación binaria
 - Clasificación multiclase
- Regresión
 - Predecir de una forma continua un número real

Iris Data Set

K-Neighbors

Test set score: 0.97

Reglas

Age	Number of cars owned	Owns house	Number of children	Marital status	Owns a dog	Bought a boat
66	1	yes	2	widowed	no	yes
52	2	yes	3	married	no	yes
22	0	no	0	married	yes	no
25	1	no	1	single	no	no
44	0	no	2	divorced	yes	no
39	1	yes	2	married	yes	no
26	1	no	2	single	no	no
40	3	yes	1	married	yes	no
53	2	yes	2	divorced	no	yes
64	2	yes	3	divorced	no	no
58	2	yes	2	married	yes	yes
33	1	no	1	single	no	no

Fitting

Accuracy

Model complexity

Clasificación


```
X, y = mglearn.datasets.make_forge()

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)

plt.legend(["Class 0", "Class 1"], loc=4)

plt.xlabel("First feature")

plt.ylabel("Second feature")
```


plt.xlabel("Feature")
plt.ylabel("Target")

k-Neighbors

mglearn.plots.plot_knn_classification(n_neighbors=1)

K-Neighbors

K- Neighbors

```
mglearn.plots.plot_knn_classification(n_neighbors=3)
from sklearn.model_selection import train_test_split
X, y = mglearn.datasets.make\_forge()
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X train, y train)
print("Test set predictions: {}".format(clf.predict(X_test)))
Test set predictions: [1 0 1 0 1 0 0]
print("Test set accuracy: {:.2f}".format(clf.score(X_test, y_test)))
Test set accuracy: 0.86
```

Análisis de k-neighbors

1 neighbor(s)

axes[0].legend(loc=3)

3 neighbor(s)

9 neighbor(s)

```
fig, axes = plt.subplots(1, 3, figsize=(10, 3))

for n_neighbors, ax in zip([1, 3, 9], axes):

# the fit method returns the object self, so we can instantiate

# and fit in one line

clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y) mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=.amglearn.discrete_scatter(X[:,0], X[:,1], y, ax=ax)

ax.set_title("{} neighbor(s)".format(n_neighbors))

ax.set_xlabel("feature 0")

ax.set_ylabel("feature 1")
```

Precisión entrenamiento y prueba

k-vecinos (k=1) Regresión

k-vecinos (k=3) Regresión

Comparación regresiones

Modelos lineales

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b$$

Ejemplo de modelo lineal

$$\hat{y} = w[0] * x[0] + b$$

w[0]: 0.393906 b: -0.031804

Mínimos cuadrados

```
from sklearn.linear_model import LinearRegression
X, y = mglearn.datasets.make_wave(n_samples=60)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
lr = LinearRegression().fit(X_train, y_train)
            print("lr.coef : {}".format(lr.coef ))
            print("lr.intercept_: {}".format(lr.intercept_))
            lr.coef_: [ 0.394]
            lr.intercept_: -0.031804343026759746
            print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
            print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))
            Training set score: 0.67
              Test set score: 0.66
```

Regresión ridge

- Modelo lineal de regresión
- Coeficientes tan pequeños como sea posible
- Regularización para evitar *overfitting*

```
from sklearn.linear_model import Ridge
                                                                                ridge10 = Ridge(alpha=10).fit(X_train, y_train)
                                                                                print("Training set score: {:.2f}".format(ridge10.score(X_train, y_t
ridge = Ridge().fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge.score(X_train, y_train)))
                                                                                print("Test set score: {:.2f}".format(ridge10.score(X_test, y_test)))
print("Test set score: {:.2f}".format(ridge.score(X_test, y_test)))
                                                                                Training set score: 0.79
                                                                                   Test set score: 0.64
Training set score: 0.89
  Test set score: 0.75
                                      ridge01 = Ridge(alpha=0.1).fit(X_train, y_train)
                                      print("Training set score: {:.2f}".format(ridge01.score(X_train, y_train)))
                                      print("Test set score: {:.2f}".format(ridge01.score(X test, y test)))
                                      Training set score: 0.93
                                        Test set score: 0.77
```

Comparación regresión ridge

Curvas de aprendizaje

Lasso

Regularización L1 - algunos coeficientes = 0

```
from sklearn.linear_model import Lasso
```

```
lasso = Lasso().fit(X_train, y_train)

print("Training set score: {:.2f}".format(lasso.score(X_train, y_train))) print("Test set score: {:.2f}".format(lasso.score(X_test, y_test)))

print("Number of features used: {}".format(np.sum(lasso.coef_!=0)))
```

Training set score: 0.29
Test set score: 0.21

Number of features used: 4

Lasso comparado con Ridge

Clasificación lineal

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0$$

Vector de soporte (SVC) y Regresión logística


```
X, y = mglearn.datasets.make\_forge() \\ fig, axes = plt.subplots(1, 2, figsize=(10, 3)) \\ \textbf{for} \ model, ax \ \textbf{in} \ zip([LinearSVC(), LogisticRegression()], axes): clf = model.fit(X, y) \\ mglearn.plots.plot\_2d\_separator(clf, X, fill=False, eps=0.5, \\ ax=ax, alpha=.7) \\ mglearn.discrete\_scatter(X[:,0], X[:,1], y, ax=ax) \\ ax.set\_title("{}".format(clf.\__class\_.\__name\__)) \ ax.set\_xlabel("Feature 0") \ ax.set\_ylabel("Feature 1") \\ axes[0].legend()
```

Sensibilidad a C - SVC

mglearn.plots.plot_linear_svc_regularization()

Sensibilidad a C - Regresión logística from sklearn.datasets import load_breast_cancer cancer =

```
load breast cancer()
X train, X test, y train, y test = train test split(
cancer.data, cancer.target, stratify=cancer.target, random_state=42)
logreg = LogisticRegression().fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg.score(X train,
y_train))) print("Test set score: {:.3f}".format(logreg.score(X_test,
y_test)))
Training set score: 0.953
  Test set score: 0.958
logreg100 = LogisticRegression(C=100).fit(X train, y train)
print("Training set score: {:.3f}".format(logreg100.score(X_train,
y_train))) print("Test set score: {:.
3f\".format(logreg100.score(X_test, y_test)))
 plt.plot(logreg.coef_.T, 'o', label="C=1")
  plt.plot(logreg100.coef_.T, '^', label="C=100")
  plt.plot(logreg001.coef_.T, 'v', label="C=0.001")
  plt.xticks(range(cancer.data.shape[1]), cancer.feature_names,
rotation=90)
  plt.hlines(0, 0, cancer.data.shape[1])
  plt.ylim(-5, 5)
  plt.xlabel("Coefficient index")
  plt.ylabel("Coefficient magnitude")
  plt.legend()
```


Coeficientes con penalidad

```
for C, marker in zip([0.001, 1, 100], ['o', '^', 'v']):
lr 11 = LogisticRegression(C=C, penalty="11").fit(X_train,
y_train) print("Training accuracy of 11 logreg with C={:.3f}: {:.
     format(

:_11.score(X_train, y_train)))

it("Test accuracy of 11 logreg with C={:.3f}: {:.2f}".format(

C, lr_11.score(X_test, y_test)))

plt.plot(lr_11.coef_.T, marker, label="C={:.3f}".format(C))

lt.xticks(range(cancer.data.shape[1]), cancer.feature_names, tion=90)
2f}".format(
C, lr_11.score(X_train, y_train)))
print("Test accuracy of 11 logreg with C={:.3f}: {:.2f}".format(
   plt.xticks(range(cancer.data.shape[1]), cancer.feature_names,
rotation=90)
   plt.hlines(0, 0, cancer.data.shape[1])
   plt.xlabel("Coefficient index")
   plt.ylabel("Coefficient magnitude")
   plt.ylim(-5, 5)
   plt.legend(loc=3)
  Training accuracy of 11 logreg with C=0.001: 0.91
   Test accuracy of 11 logreg with C=0.001: 0.92
   Training accuracy of 11 logreg with C=1.000: 0.96
   Test accuracy of 11 logreg with C=1.000: 0.96
   Training accuracy of 11 logreg with C=100.000: 0.99
   Test accuracy of 11 logreg with C=100.000: 0.98
```


Clasificadores lineales - multiclase

Predicción multiclase - SVC

Decisiones multiclase

Conclusiones

- Principal parámetro es la regularización
- Alto valor de α o bajo valor de C -> modelos más simples
- Si pocas características son importantes use regularización L1.
- Pocas características son más simples de explicar.
- Modelos lineales son rápidos para entrenar y predecir.
- Para bases datos muy grandes solver='sag'

Naive Bayes

- Rápidos en entrenamiento
- Desempeño en generalización inferior a modelos lineales
- Utiles para datasets grandes de múltiples dimensiones
- Usan un parámetro α
- Tipos de Naive Bayes
 - GaussianNB datos continuos
 - BernoulliNB datos binarios
 - MultinomialNB cuentas enteros

Arboles de decisión

- Estructura if/else
- mglearn.plots.plot_animal_tree()
 - Preguntas o terminal en hojas
 - Overfitting se controla con la

max_depth, min_samples_leaf o

max_leaf_nodes

Se pueden analizar

Random forest

Arboles de decisión

Análisis del árbol de decisiones

Importancia de las características

Comparación

Random forest

Gradient boosted regression

- Construye árboles serialmente
- Cada árbol trata de corregir errores de los anteriores
- □ Poca profundidad 1 a 5 lo cual requiere menos memoria y mejora desempeño.
- Arboles agregados iterativamente mejoran desempeño.
- Se controla *learning_rate* que tan fuerte se corrigen los errores anteriores. Un valor alto hace el modelo más complejo
- Desempeño es superior al random forest
- Toma tiempo para entrenar
- Sensible a los parámetros
 - Número de árboles n_estimators
 - learning_rate

Features

Support Vector Machines - SVM

- Los datos del borde de decisión son más importantes. Son el support vector
- Para hacer una predicción, la distancia a cada vector del punto es medida.
- $k_{rbf}(x_1, x_2) = \exp(y \|x_1 x_2\|^2)$
- La importancia de los vectores es el aprendizaje
- γ ancho de la gausiana

C y Gamma (y) en SVM

- Gamma limita el ancho del Gaussiano
- Gamma pequeño significa un radio grande y muchos puntos cercanos son considerados.
- Gamma bajo produce un modelo menos complejo
- C es el parámetro de regularización. Limita la importancia de cada punto.
- C más alto hace que el borde de decisión los clasifique correctamente.

Support Vector Machines (SVM)

Redes neuronales

$$h[0] = \tanh(w[0,0] * x[0] + w[1,0] * x[1] + w[2,0] * x[2] + w[3,0] * x[3])$$

$$h[1] = \tanh(w[0,0] * x[0] + w[1,0] * x[1] + w[2,0] * x[2] + w[3,0] * x[3])$$

$$h[2] = \tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])$$

$$\hat{\mathbf{v}} = v[0] * h[0] + v[1] * h[1] + v[2] * h[2]$$

Redes neuronales

Comparación de modelos

Comparación

- Nearest neighbors
- Linear models
- Naive Bayes
- Decision trees
- Random forests
- Gradient boosted decision trees
- Support vector machines
- Neural networks