A bidendriform automorphism of WQSym Seminar at York University

PHD at LISN:

Hugo Mlodecki

Supervisors:

Florent Hivert Viviane Pons

March 22, 2021

Examples of Hopf algebras

- Planar binary trees, PBT, Loday-Ronco
- Non-commutative symmetric functions, Sym
- Quasi-symmetric functions, QSym
- Permutations, FQSym, Malvenuto-Reutenauer
- Packed words, WQSym, Hivert

Definition

A word over the alphabet $\mathbb{N}_{>0}$ is packed if all the letters from 1 to its maximum m appears at least once.

Definition

A word over the alphabet $\mathbb{N}_{>0}$ is packed if all the letters from 1 to its maximum m appears at least once.

Packed words of size 0, 1, 2 and 3

ϵ

Definition

A word over the alphabet $\mathbb{N}_{>0}$ is packed if all the letters from 1 to its maximum m appears at least once.

Packed words of size 0, 1, 2 and 3

- €
- 1

Definition

A word over the alphabet $\mathbb{N}_{>0}$ is packed if all the letters from 1 to its maximum m appears at least once.

Packed words of size 0, 1, 2 and 3

- €
- 1
- 12 21 11

Definition

A word over the alphabet $\mathbb{N}_{>0}$ is packed if all the letters from 1 to its maximum m appears at least once.

Packed words of size 0, 1, 2 and 3

- ϵ
- 1
- 12 21 11
- 123 132 213 231 312 321
 122 212 221 112 121 211 111

Definition

A word over the alphabet $\mathbb{N}_{>0}$ is packed if all the letters from 1 to its maximum m appears at least once.

Packed words of size 0, 1, 2 and 3

- €
- 1
- 12 21 11
- 123 132 213 231 312 321
 122 212 221 112 121 211 111

Packed words of size *n* [OEIS A000670]

n	1	2	3	4	5	6	7	8
PW_n	1	3	13	75	541	4683	47293	545835

Paking

Example

24154 **∉ PW**

Paking

Example

24154 $\notin PW$ but $pack(24154) = 23143 \in PW$

Paking

Example

24154 ∉ **PW**

but

$$pack(24154) = 23143 \in PW$$

One representation : $\#rows \le \#columns$

remove empty lines

$$ightarrow$$
 pack $ightarrow$

Example

•
$$_{3112} + _{212} - 3 _{212341} - \frac{5}{3} _{111}$$

Example

$$\bullet \ \mathbb{R}_{3112} + \mathbb{R}_{212} - 3\mathbb{R}_{212341} - \frac{5}{3}\mathbb{R}_{111}$$

Example

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\mathbf{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$

Example

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\bullet \ \mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\bullet \ \Delta(\mathbb{R}_{24231}) = \mathbb{R}_{\epsilon} \otimes \mathbb{R}_{24231} + \mathbb{R}_{121} \otimes \mathbb{R}_{21} + \mathbb{R}_{1312} \otimes \mathbb{R}_1 + \mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$

Example

- $\bullet \ \mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\bullet \ \mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\bullet \ \Delta(\mathbb{R}_{24231}) = \mathbb{R}_{\epsilon} \otimes \mathbb{R}_{24231} + \mathbb{R}_{121} \otimes \mathbb{R}_{21} + \mathbb{R}_{1312} \otimes \mathbb{R}_1 + \mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$
- unitary associative product ·
- ullet counitary coassociative coproduct Δ
- Hopf relation $\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$

3

 \mathbb{R}_{24231}

2 4 2 3

3

2 4

3

2 4

$$\mathbb{R}_\epsilon\otimes\mathbb{R}_{24231}$$
 $\mathbb{R}_{121}\otimes\mathbb{R}_{21}$

+

 \mathbb{R}_{24231} $\stackrel{\Delta}{
ightarrow}$

$$\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$$
 $+$ $\mathbb{R}_{121}\otimes\mathbb{R}_{21}$ \mathbb{R}_{24231} $\stackrel{\Delta}{ o}$ $\mathbb{R}_{1312}\otimes\mathbb{R}_{1}$ $+$ $\mathbb{R}_{24231}\otimes\mathbb{R}_{\epsilon}$

4

 \mathbb{Q}_{2413} +

3

2

2 4 3

$$\mathbb{Q}_{\epsilon}\otimes\mathbb{Q}_{2413_{+}}\,\,\mathbb{Q}_{1}\otimes\mathbb{Q}_{132_{\,+}}\,\,\mathbb{Q}_{21}\otimes\mathbb{Q}_{21}$$

$$\mathbb{Q}_{2413}$$
 $\overset{\Delta}{ o}$ $\mathbb{Q}_{213}\otimes\mathbb{Q}_{1}$ $\mathbb{Q}_{2413}\otimes\mathbb{Q}_{\epsilon}$

ullet R and ${\mathbb Q}$ bases of WQSym and WQSym*

- ullet R and $\mathbb Q$ bases of WQSym and WQSym*
- 2001 Duchanp-Hivert-Thibon conjecture the auto-duality of WQSym

- ullet R and $\mathbb Q$ bases of WQSym and WQSym*
- 2001 Duchanp-Hivert-Thibon conjecture the auto-duality of WQSym
- 2005 Foissy demonstrates the self-duality of bidendriform bialgebra (rigidity)

- ullet R and $\mathbb Q$ bases of WQSym and WQSym*
- 2001 Duchanp-Hivert-Thibon conjecture the auto-duality of WQSym
- 2005 Foissy demonstrates the self-duality of bidendriform bialgebra (rigidity)
- No explicit isomorphism

Half coproducts

Example of left and right coproducts

$$\bullet \ \tilde{\Delta}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321} + \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$$

Half coproducts

Example of left and right coproducts

- $\bullet \ \ \tilde{\Delta}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321} + \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$
- $\bullet \ \Delta_{\prec}(\mathbb{R}_{2425531}) = \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$
- $\bullet \ \Delta_{\succ}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321}$

Half coproducts

Definitions

$$\Delta_{\prec}(\mathbb{R}_u) := \sum_{\substack{i=k\\\{u_1,\dots,u_i\}\cap\{u_{i+1},\dots,u_n\}=\emptyset\\u_k=\max(u)}}^{n-1} \mathbb{R}_{\textit{pack}(u_1\cdots u_i)} \otimes \mathbb{R}_{\textit{pack}(u_{i+1}\cdots u_n)},$$

$$\bullet \ \Delta_{\succ}(\mathbb{R}_u) := \sum_{\substack{i=1\\\{u_1,\dots,u_i\}\cap\{u_{i+1},\dots,u_n\}=\emptyset\\u_k=\mathsf{max}(u)}}^{k-1} \mathbb{R}_{\mathsf{pack}(u_1\cdots u_i)} \otimes \mathbb{R}_{\mathsf{pack}(u_{i+1}\cdots u_n)}$$

Example of left and right coproducts

$$\bullet \ \ \tilde{\Delta}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321} + \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$$

$$ullet$$
 $\Delta_{\prec}(\mathbb{R}_{2425531}) = \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$

$$ullet$$
 $\Delta_{\succ}(\mathbb{R}_{2425531})=\mathbb{R}_{121}\otimes\mathbb{R}_{3321}$

Definition • Refinement of associativity and co-associativity

• 3 and 3 equations

Definition

- Refinement of associativity and co-associativity
 - 3 and 3 equations
- Refinement of the Hopf relation
 - 4 equations

Definition

- Refinement of associativity and co-associativity
 - 3 and 3 equations
- Refinement of the Hopf relation
 - 4 equations

Theorem [Foissy]

If A is a bidendriform bialgebra then A is freely generated by $\mathsf{TPrim}(A)$ as a dendriform algebra.

Definition

- Refinement of associativity and co-associativity
 - 3 and 3 equations
- Refinement of the Hopf relation
 - 4 equations

Theorem [Foissy]

If A is a bidendriform bialgebra then A is freely generated by $\mathsf{TPrim}(A)$ as a dendriform algebra.

Series

n	1	2	3	4	5	6	7	8
WQSym _n	1	3	13	75	541	4 683	47 293	545 835
TPrim _n	1	1	4	28	240	2 384	26 832	337 168

Definition

- Refinement of associativity and co-associativity
 - 3 and 3 equations
- Refinement of the Hopf relation
 - 4 equations

Theorem [Foissy]

If A is a bidendriform bialgebra then A is freely generated by $\mathsf{TPrim}(A)$ as a dendriform algebra.

Corollary

WQSym is self-dual.

Primitive element

P is a primitive element $\iff \tilde{\Delta}(P) = 0$

 $\mathsf{Ex}:\,\mathbb{R}_{1213}-\mathbb{R}_{2321}$

Primitive element

$$P$$
 is a primitive element $\iff \tilde{\Delta}(P) = 0$

$$Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_{11213}$$

$$ilde{\Delta}(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Primitive element

$$P$$
 is a primitive element $\iff \tilde{\Delta}(P) = 0$

$$Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

$$ilde{\Delta}(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Totally primitive element

P is a totally primitive element
$$\iff \Delta_{\prec}(P) = \Delta_{\succ}(P) = 0$$

$$\mathsf{Ex}: \mathbb{R}_{12443} - \mathbb{R}_{21443} - \mathbb{R}_{23441} + \mathbb{R}_{32441}$$

Primitive element

$$P$$
 is a primitive element $\iff \tilde{\Delta}(P) = 0$

$$Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_{1213}$$

$$\Delta(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Totally primitive element

$$P$$
 is a totally primitive element $\iff \Delta_{\prec}(P) = \Delta_{\succ}(P) = 0$

$$\mathsf{Ex}: \mathbb{R}_{12443} - \mathbb{R}_{21443} - \mathbb{R}_{23441} + \mathbb{R}_{32441}$$

$$ilde{\Delta}(\mathbb{R}_{12443}) = \mathbb{R}_{1233} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{12} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{1332}$$

$$ilde{\Delta}(\mathbb{R}_{21443}) = \mathbb{R}_{2133} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{21} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{1332}$$

$$ilde{\Delta}(\mathbb{R}_{23441}) = \mathbb{R}_{1233} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{12} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{2331}$$

$$ilde{\Delta}(\mathbb{R}_{32441}) = \mathbb{R}_{2133} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{21} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{2331}$$

My goal

Explicit bidendriform isomorphism between WQSym and it's dual

My goal

Explicit bidendriform isomorphism between WQSym and it's dual Explicit isomorphism between TPrim(WQSym) and it's dual

My goal

Explicit bidendriform isomorphism between **WQSym** and it's dual Explicit isomorphism between TPrim(**WQSym**) and it's dual

Construction of two bases of totally primitive (in **WQSym** and **WQSym***)

Biplane Forests, representation of decompositions

 $F_{ske}(8767595394312)$

 F_{ske} (8767595394312)

Global descents factorisation

 $F_{ske}(8767595394312) =$ $T_{ske}(65453731721)T_{ske}(12)$

Global descents factorisation + paking


```
F_{ske}(8767595394312) =
T_{ske}(65453731721)T_{ske}(12)
```


 $F_{ske}(8767595394312) = T_{ske}(65453731721) T_{ske}(12)$

Remove all the occurences of the maximal value

 $F_{ske}(8767595394312) =$ $T_{ske}(65453731721)T_{ske}(12)$

Global descents factorisation

$F_{ske}(8767595394312) = T_{ske}(65453731721) T_{ske}(12)$

Distinction of two groups of factors

 $F_{ske}(8767595394312) =$ $T_{ske}(65453731721)T_{ske}(12)$ Reinsert the removed letters + paking

$F_{ske}(8767595394312) =$

 $T_{ske}(12)$

3

3431421 is Red irreductible

Red irreductible

A packed word w is **red irreductible** if it is not decomposable by this algorithm.

$$F_{ske}(8767595394312) =$$
 Loop
 $T_{ske}(65453731721)T_{ske}(12) =$
 $T_{ske}(12)$
 $T_{ske}(12)$
 $T_{ske}(12)$

Red irreductible

A packed word w is **red irreductible** if it is not decomposable by this algorithm.

$F_{ske}(8767595394312) =$

Red irreductible

A packed word w is **red irreductible** if it is not decomposable by this algorithm.

 $\forall n, \#RedIrreductible_n = \dim(\mathsf{TPrim}_n).$

First part for basis \mathbb{P}

$$\mathbb{P}_{\underbrace{1}} := \mathbb{R}_{1},$$

$$\mathbb{P}_{t_{1},...,t_{k}} := (...(\mathbb{P}_{t_{k}} \prec ...) \prec \mathbb{P}_{t_{2}}) \prec \mathbb{P}_{t_{1}},$$

$$\mathbb{P}_{\underbrace{w}} := \langle \mathbb{P}_{\ell_{1}}, \mathbb{P}_{\ell_{2}}, ..., \mathbb{P}_{\ell_{g}}; \mathbb{P}_{T(w)} \rangle.$$

F(8767595394312) =

The right part!

F(8767595394312) =

Positions of max

F(8767595394312) =

Right children

Loop again

F(8767595394312) =

$$F(8767595394312) =$$

The basis \mathbb{P}

$$egin{aligned} \mathbb{P}_{\stackrel{}{ o}} &:= \mathbb{R}_1, \ \mathbb{P}_{t_1,...,t_k} &:= \left(...ig(\mathbb{P}_{t_k} \prec ...ig) \prec \mathbb{P}_{t_2}ig) \prec \mathbb{P}_{t_1}, \ \mathbb{P}_{\stackrel{}{ o}} &:= \langle \mathbb{P}_{\ell_1}, \mathbb{P}_{\ell_2}, ..., \mathbb{P}_{\ell_g}; \mathbb{P}_{T(w)}
angle, \ \mathbb{P}_{\stackrel{}{ o}} &:= \Phi_I(\mathbb{P}_{r_1,...,r_d}). \end{aligned}$$

The basis \mathbb{P}

$$egin{aligned} \mathbb{P}_{\stackrel{}{ o}} &:= \mathbb{R}_1, \ \mathbb{P}_{t_1,...,t_k} &:= (...(\mathbb{P}_{t_k} \prec ...) \prec \mathbb{P}_{t_2}) \prec \mathbb{P}_{t_1}, \ \mathbb{P}_{\ell_1} &:= \langle \mathbb{P}_{\ell_1}, \mathbb{P}_{\ell_2}, ..., \mathbb{P}_{\ell_g}; \mathbb{P}_{\mathcal{T}(w)}
angle, \ \mathbb{P}_{\ell_1} &:= \Phi_I(\mathbb{P}_{r_1,...,r_d}). \end{aligned}$$

Example

200

The basis \mathbb{P}

$$\mathbb{P}_{1}:=\mathbb{R}_{1},$$
 $\mathbb{P}_{t_{1},...,t_{k}}:=(...(\mathbb{P}_{t_{k}}\prec...)\prec\mathbb{P}_{t_{2}})\prec\mathbb{P}_{t_{1}},$
 $\mathbb{P}_{1}:=\langle\mathbb{P}_{\ell_{1}},\mathbb{P}_{\ell_{2}},...,\mathbb{P}_{\ell_{g}};\mathbb{P}_{T(w)}\rangle,$
 $\mathbb{P}_{\ell_{1}}:=\Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}}).$

Theorem [M.]

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_n}$ is a basis of **WQSym**_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ is a basis of Prim_n ,
- $(\mathbb{P}_t)_{t\in\mathfrak{N}_n}$ is a basis of TPrim_n .

17/24

F_{ske}^* (8967647523314)

 F_{ske}^* (8967647523314)

Global descents factorisation

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

Global descents factorisation + paking + swap

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

Remove of the last letter

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

Global descents factorisation

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

Distinction of two groups of factors

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12) = T_{ske}^*(2331)$$

3431421 is

Blue irreductible

A packed word w is **blue irreductible** if it is not decomposable by this algorithm.

$$F_{ske}^*(8967647523314) =$$
 Loop $T_{ske}^*(67647523314) T_{ske}^*(12) =$ $T_{ske}^*(12) = T_{ske}^*(12) = T$

Blue irreductible

A packed word w is **blue irreductible** if it is not decomposable by this algorithm.

 $F_{ske}^*(8967647523314) =$

Blue irreductible

A packed word w is **blue irreductible** if it is not decomposable by this algorithm.

 $\forall n, \#Bluelrreductible_n = \#RedIrreductible_n = \dim(\mathsf{TPrim}_n).$

First part for basis O

$$\mathbb{O}_{\stackrel{\textstyle \bigcirc}{\mathbb{I}}} := \mathbb{Q}_1,$$

$$\mathbb{O}_{t_1,\dots,t_k} := (\dots(\mathbb{O}_{t_k} \prec \dots) \prec \mathbb{O}_{t_2}) \prec \mathbb{O}_{t_1},$$

$$\mathbb{O} := \langle \mathbb{O}_{\ell_1}, \mathbb{O}_{\ell_2}, \dots, \mathbb{O}_{\ell_g}; \mathbb{O}_{T^*(w)} \rangle.$$

 $F^*(8967647523314) =$

The right part!

$$F^*(8967647523314) =$$

The last lettre appears in the rest of the word?

20/24

Right child

0

20/24

 $F^*(8967647523314) =$

 $F^*(8967647523314) =$

	•			•	
•		•			
×	←	←	←	←	0
			•		
3	4	3	1	4	2

$F^*(8967647523314) =$

The basis \mathbb{O}

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{T^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi^{lpha}_i(\mathbb{O}_r).$$

The basis O

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{T^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi^{lpha}_{\stackrel{}{\imath}}(\mathbb{O}_r).$$

Example

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{\mathcal{T}^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi_i^{lpha}(\mathbb{O}_r).$$

Theorem [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}^*_n}$ is a basis of **WQSym**_n*,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}^*_n}$ is a basis of Prim_n^* ,
- $(\mathbb{O}_t)_{t\in\mathfrak{P}^*}$ is a basis of TPrim_n.

Theorems [M.]

Theorem [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}_n^*}$ basis of **WQSym**_n*,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}_n^*}$ basis of Prim_n^* ,
- $(\mathbb{O}_t)_{t\in\mathfrak{P}_n^*}$ basis of TPrim_n.

Theorem[M.]

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_n}$ basis of **WQSym**_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ basis of Prim_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{P}_n}$ basis of TPrim_n.

Rigidity

∀ bijection between red and blue irreducible words, re-coloring of the skeletons

22/24

Bicolor forests through an example

$$T_{ske}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9) =$$

$$T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9)$$

 $T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9)$

$$T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9) =$$

 $T_{hi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9,$ 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9) =

Bicolor forests through an example

$$T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9) =$$

 $T_{ske}(14, 12, 11, 13, 13, 14, 7, 10, 9, 8, 7,$ 5, 15, 6, 3, 3, 4, 2, 2, 2, 1, 1, 1, 4, 5) =

Theorems [M.]

Theorem [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}_n^*}$ basis of **WQSym**_n*,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}_n^*}$ basis of Prim_n,
- $(\mathbb{O}_t)_{t\in\mathfrak{P}_n^*}$ basis of TPrim_n.

Theorem [M.]

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_n}$ basis of **WQSym**_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ basis of Prim_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{P}_n}$ basis of TPrim_n.

Bijection [M.]

Involution thanks to the bicolor forests.

Bidendriform isomorphism between **WQSym** and **WQSym***.