

DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA,
DE SISTEMAS INFORMÁTICOS Y AUTOMÁTICA

ARQUITECTURA DE COMPUTADORES. PRÁCTICAS DE LABORATORIO. 2do. Curso Grado Ingeniería Informática

1. INTRODUCCIÓN

Las prácticas de laboratorio de la asignatura de Arquitectura de Computadores tienen por objetivo profundizar en los conceptos tratados en las sesiones de teoría a lo largo de los distintos temas desarrollados.

El programa de laboratorio se organiza en base a los siguientes módulos:

- Módulo 1: Diseño de un Benchmark para evaluación del rendimiento de un sistema computador.
- Módulo 2: Rendimiento de la caché según estructura. Utilización de un simulador de memoria caché.
- Módulo 3: Ejecución de instrucciones en un computador serie Von Neumann. Definición de cronogramas mediante la aplicación *Cronos*.
- Módulo 4: Paralelismo interno. Software para ejecución de instrucciones en computador segmentado. Ejecución segmentada de instrucciones. Instrucción multiciclo. Rendimiento en instrucciones de salto.

2. METODOLOGÍA

Las sesiones de prácticas se desarrollarán en su totalidad en las aulas de informática del edificio José Isidoro Morales del Campus del Carmen. Dichas sesiones están destinadas a que el alumno conozca aplicaciones prácticas de los conceptos tratados en las sesiones de teoría. Las sesiones de laboratorio están destinadas a introducir los conocimientos básicos de cada práctica, llegando a ser necesario el trabajo autónomo del alumno en casa, para la asimilación de dichos conocimientos y profundización en los mismos.

Además, se tendrá en cuenta lo siguiente:

 La asistencia a las sesiones prácticas es obligatoria, permitiendo una única falta de asistencia injustificada.

- Los alumnos que no alcancen una nota igual o superior a 5 en las prácticas o hayan faltado a dos o más sesiones sin justificar, deberán hacer el examen final que tendrá lugar en fecha posterior al examen de teoría.
- En las sesiones de prácticas, se intercalarán sesiones de problemas, previo aviso de los profesores de la asignatura.

A continuación se detalla la relación de prácticas a realizar junto con el módulo y el número del tema al que está asociada cada práctica, así como la planificación.

Tema	Módulo	Práctica
Tema 1 . ANÁLISIS DE PRESTACIONES EN LOS SISTEMAS COMPUTADORES.	Módulo1:Diseñode unBenchmark para evaluación delrendimientode un sistemacomputador.	Práctica 1 . Diseño de un Benchmark sintético
Tema 2 . JERARQUÍA DE MEMORIA.	Módulo 2 : Rendimiento de la caché según estructura	Práctica 2. Caché y funciones de correspondencia. - Efecto del algoritmo de reemplazo en la tasa de fallos. - Diseño de trazas de memoria para el simulador SMPCache.
Tema 3. TÉCNICAS BÁSICAS DE IMPLEMENTACIÓN DE PROCESADORES.	Módulo 3 . Ejecución de instrucciones en un computador serie Von Neumann.	Práctica 3. Aplicación Cronos.
Tema 4. EL PARALELISMO INTERNO EN LOS SISTEMAS COMPUTADORES.	Módulo 4 . Paralelismo interno. Software para ejecución de instrucciones en computador segmentado.	Práctica 4. Programación para DLX (I). - Ejecución segmentada de instrucciones. - Instrucción multiciclo. - Rendimiento en instrucciones de salto.

3. PLANIFICACIÓN y EVALUACIÓN

La evaluación de las prácticas será de forma oral y continua. Es decir, los integrantes de cada grupo defenderán en presencia del profesor, cada una de las prácticas. Para ello, se establecerán varias sesiones de evaluación a lo largo del cuatrimestre. Estas sesiones de evaluación corresponderán con el final de cada módulo, y en ellas los grupos expondrán en clase el trabajo realizado en las prácticas a evaluar. Posteriormente, el profesor realizará de forma individual,

una serie de preguntas a cada integrante del grupo. La valoración de la defensa junto con las respuestas, permitirá al profesor otorgar una calificación por práctica, a cada uno.

- La calificación final de prácticas resulta de la media aritmética de la nota obtenida en cada uno de los módulos evaluados.
- La demora en la defensa de las prácticas supondrá una penalización en la nota alcanzada.
- Los alumnos que no superen la evaluación continua o hayan faltado a dos o más sesiones sin justificar, deberán hacer el examen final que tendrá lugar en fecha posterior al examen de teoría.
- En las sesiones de prácticas, se intercalarán sesiones de problemas según la siguiente planificación semanal¹.

4. PROFESORES DE LA ASIGNATURA

Manuel J. Redondo González

Pabellón Torreumbría, despacho TUPB-20 (Planta baja pasillo derecho)

Teléfono: 959 217672; e-mail: redondo@diesia.uhu.es

Francisca Segura Manzano

Pabellón Torreumbría, despacho TUP1-07 (Planta alta torre izquierda)

Teléfono: 959 217385; e-mail: francisca.segura@diesia.uhu.es

¹ La planificación semanal propuesta puede estar sujeta a cambios dependiendo de la evolución de las clases teóricas y prácticas.