

Journal of Non-Crystalline Solids 201 (1996) 37-46

Blue and green upconversion fluorescences of Ho³⁺ in fluoride glasses

Xuelu Zou *, Hisayoshi Toratani

R&D center, Hoya Corporation, 3-3-1 Musashino Akishima-shi, Tokyo 196, Japan Received 24 July 1995; revised 28 November 1995

Abstract

Blue and green upconversion fluorescences at about 424, 485, and 545 nm were observed in Ho³⁺ singly doped fluoride glasses under 647 nm excitation. The relative intensities of these fluorescences for ZrF₄ (HfF₄) based glasses were found to be larger than those for AlF₃ based glasses due to their lower phonon energies. The upconversion efficiency and the emission efficiency of Ho³⁺ doped fluoride systems are primarily dominated by the populations of the corresponding intermediate levels from which a part of the excited ions can be re-excited to the upper emitting levels. Rate equation modeling of the upconversion fluorescence has been established and utilized to reveal the upconversion mechanisms for the Ho³⁺ doped systems. Using this model, the concentration and the excitation dependences of these upconversion fluorescences are well interpreted.

1. Introduction

Upconversion lasers are able to provide a useful route to the development of visible lasers pumped by cheap semiconductor lasers operating in the near infrared region. Some rare earth ions such as Er^{3+} , Ho^{3+} and Tm^{3+} , when incorporated as impurities in sufficient concentration into a suitable host lattice, can upconvert infrared radiation to various shorter wavelengths. Several comprehensive review papers provide details on the upconversion process [1–3]. The practical interest in frequency upconversion arises from the possibility of making infrared beams visible, the opportunity to change infrared light to a

spectral region in which efficient detection by photomultipliers or photodiodes can be realized, and the promise of using upconversion pumping for laser device systems. Upconversion lasers using the rare earth ions in crystals and fluoride glasses have been demonstrated in bulk materials and fibers [4-9]. Recently, Allain et al. [10] demonstrated cw upconversion lasing action in Ho³⁺ doped fluorozirconate glass fiber at room temperature. The interesting feature of their work is the linear dependence on pump power despite the fact that the upconversion process requires two or more photons as proposed by them. This feature has been also reported for other upconversion lasers, [6,11] and has not yet received a conclusive explanation. The purpose of this work is to study the excitation and concentration dependences of the upconversion fluorescences corresponding to the ${}^{5}G_{5} - {}^{5}I_{8}$, ${}^{5}F_{3} - {}^{5}I_{8}$, and ${}^{5}S_{2} - {}^{5}I_{8}$ tran-

^{*} Corresponding author. Tel: +81-425 46 2748; fax: +81-425 46 2742; e-mail: hoyafcg1@po.iijnet.or.jp.

sitions of Ho³⁺ in several fluoride glasses using the rate equation model, and thereby identifying the underlying physical phenomena which give rise to the observed linear dependences on pump power.

2. Experimental procedure

Glass hosts used in this study were prepared by highly purified fluorides as starting materials. The batches were melted in carbon crucibles at 850 to 950°C for 1 to 2 h in argon gas atmosphere. The melts were rapidly cooled to the glass transition temperatures and then annealed. The glass compositions are listed in Table 1. All samples for the optical property measurements were cut and polished by the same process to the size of $25 \times 25 \times 5$ mm³.

Fluorescence spectra were measured by exciting the samples with a krypton laser operating at 647 nm. The pumping light was chopped at 80 Hz and focused on the 25×25 mm² face of sample. The position of 1 mm from an edge of sample was excited to minimize the re-absorption of emission. Average beam size of pumping light through sample was about 0.5 mm². The fluorescence from the 25 × 5 mm² face was focused onto a monochromater and detected by a R-2228 photomultiplier tube. The signal was intensified with a lock-in amplifier and processed by a computer. The errors in these measurements were estimated to be $< \pm 5\%$. Fluorescence lifetimes were measured by exciting the samples with a Nd:YAG laser pumped Rhotamine-101 dye laser operating around 645 nm, and the fluorescences were detected with the R-2228 photomultiplier tube and a InAs detector. The fluorescence decay curves were recorded and averaged with a computer controlled transient digitizer. The errors in the lifetime measurements were estimated to be < $\pm 10\%$.

3. Experimental results

Initial spectroscopic studies were carried out using krypton laser operating at 647 nm which corresponds to the ${}^5I_8 - {}^5F_5$ absorption as a pump source. Upconversion fluorescences corresponding to the ${}^5G_5 - {}^5I_8$, ${}^5F_3 - {}^5I_8$, and ${}^5S_2 - {}^5I_8$ transitions were ob-

Fig. 1. Emission spectrum of 0.5 mol% Ho³⁺ doped AZF glass excited by a krypton laser at 647 nm. Dashed lines indicate scale changes of factors of 1140 and 60.

served at about 424, 485, and 545 nm in various fluoride glasses, respectively. Fig. 1 shows, for example, the fluorescence spectrum of 0.5 mol% $\mathrm{Ho^{3+}}$ doped AZF glass. The fluorescence intensities, evaluated from the fluorescence bands in Fig. 1, decrease in the order of ${}^5\mathrm{S}_2{}^{-5}\mathrm{I}_8{}>{}^5\mathrm{F}_3{}^{-5}\mathrm{I}_8{}>{}^5\mathrm{G}_5{}^{-5}\mathrm{I}_8{}$ due to the differences in their upconversion efficiencies and their energy gaps to the nearest lower levels. The latter effect seems to be especially important, since the fluorescence intensity increases in the order of increasing the energy gaps with a linear relationship as shown in Fig. 2.

Fig. 3 exhibits composition dependences of the ${}^5G_5-{}^5I_8$, ${}^5F_3-{}^5I_8$, and ${}^5S_2-{}^5I_8$ fluorescence intensities for 0.5 mol% Ho³⁺ doped fluoride glasses. The upconversion fluorescences for the Ho³⁺ doped ZrF₄ (HfF₄) based glasses are more intense than those for the Ho³⁺ doped AlF₃ based glasses. This behavior is attributed to lower phonon energies of the ZrF₄ (HfF₄)based glasses of 500-550 cm⁻¹ than the AlF₃ based glasses of 600-640 cm⁻¹ which were determined via Raman spectroscopy. Generally, the populations of the excited states involving the emitting levels and the intermediate levels from which a part of the excited ions can be re-excited to the upper emitting levels by pump excited state absorption (ESA) are substantially impacted by the non-radiative decay rate that increases as the lattice phonon energy [12] becomes higher. Therefore, the lattice phonon energy of host glass not only affects quantum efficiencies of the emitting levels such as ⁵G₅, ⁵F₃ and ⁵S₂, but also impacts the upconversion efficiencies which are primarily determined by the populations of intermediate levels such as 5I6 and

Fig. 2. Relative intensities of upconversion fluorescences originating from the 5G_5 , 5F_3 , and 5S_2 levels of Ho^{3+} versus the energy gaps from these levels to the nearest lower levels. Line is a guide to the eye.

⁵I₇. Clearly, the excitation populations of intermediate levels and the quantum efficiencies of emitting levels of Ho³⁺ in a host glass with a lower phonon energy are undoubtedly higher than those in a glass with a higher phonon energy. Consequently, for enhancing the upconversion efficiency and fluorescence of Ho³⁺ doped system, the glass with lower lattice phonon energy is available as the host medium.

The relative intensities of the ${}^5G_5 - {}^5I_8$, ${}^5F_3 - {}^5I_8$, and ${}^5S_2 - {}^5I_8$ upconversion fluorescences are plotted in Fig. 4 as a function of the Ho³⁺ concentration in AZF glass. The pump power for the upconversion excitation was about 80 mW. It is apparent from Fig. 4 that when the Ho³⁺ concentration is increased, the ${}^5F_3 - {}^5I_8$ fluorescence intensity increases monotoni-

Fig. 3. Relative intensities of upconversion fluorescences originating from the 5G_5 , 5F_3 , and 5S_2 levels of ${}^{Ho}{}^{3+}$ in various fluoride glasses excited at 647 nm.

cally, while the ${}^5G_5 - {}^5I_8$ and ${}^5S_2 - {}^5I_8$ fluorescence intensities increase initially and decrease after the maximum values occurred. The concentration dependent

Table 1 Composition of fluoride glasses used in this study (mol%)

Glass	ZrF_4	HfF_4	AlF_3	YF ₃	LaF ₃	MgF_2	CaF ₂	SrF_2	BaF_2	PbF_2	NaF	HoF_3
ZBLAN	53.00	_	3.00	-	3.50			-	20.00	-	20.00	0.50
HBLAN	_	53.00	3.00	_	3.50	_	_	_	20.00	-	20.00	0.50
ZBYLAN	32.59	11.87	8.09	5.58	3.03	-	_	_	26.58	9.80	1.96	0.50
AZF	13.00	_	25.00	$11 - X^{a}$	_	4.00	15.00	13.70	12.70	_	5.60	X
AHF	-	12.00	27.00	8.50	_	3.50	18.30	13.60	12.60	_	4.00	0.50
AZYP	10.00	_	27.00	12.50	_	4.00	16.00	_	10.00	20.00	_	0.50
ZYP	_	-	35.00	14.50	_	5.00	15.00	-	10.00	20.00	_	0.50
AYC	-	_	34.50	13.00	_	8.90	26.00	8.90	8.20	_	_	0.50

^a X = 0.1, 0.2, 0.5, 1.0, 2.0, 4.0, and 8.0 mol% HoF₃.

Fig. 4. Concentrational dependences of upconversion fluorescence intensities corresponding to the $^5G_5-^5I_8$, $^5F_3-^5I_8$, and $^5S_2-^5I_8$ transitions of Ho³⁺ in AZF glass excited at 647 nm. Lines are a guide to the eye.

dence of the ${}^5F_3 - {}^5I_8$ fluorescence is distinguishable from those of the ${}^5G_5 - {}^5I_8$ and ${}^5S_2 - {}^5I_8$ fluorescences. It indicates that the upconversion processes for populating these upper emitting levels may be different.

In order to understand differences in the concentration dependences of these upconversion fluorescences, the 5G_5 , 5F_3 , and 5S_2 lifetimes were measured for Ho³⁺ doped AZF glass. In these measurements, the emission levels were excited by absorbing second photon from the corresponding intermediate levels such as 5I_6 and 5I_7 . The decay times for the ${}^5G_5-{}^5I_8$ and ${}^5F_3-{}^5I_7$ transitions were found to be nearly exponential and their lifetimes evaluated from the e-folding time values do not vary with the Ho³⁺ concentration as shown in Fig. 5. However, the

Fig. 5. Concentrational dependences of the 5G_5 , 5F_3 , and 5S_2 lifetimes of Ho^{3+} in AZF glass excited at 645 nm. Lines are a guide to the eye.

⁵S₂-⁵I₈ fluorescence decays non-exponentially and its lifetime decreases strongly as the Ho³⁺ concentration increases. These results indicate that the en-

Fig. 6. Upconversion excitation mechanisms for $\mathrm{Ho^{3+}}$ doped fluoride glass. Energy levels are used in theoretical rate equation model.

ergy transfers from the 5G_5 and 5F_3 levels are possibly inexistent, while the efficient energy transfer for quenching population of the 5S_2 level are virtually existent in the system. Obviously, only using the above lifetime measurements, the behavior of concentration dependences of the upconversion fluorescences can hardly receive a conclusive explanation. For clarifying this behavior, therefore, the upconversion mechanism and concentration dependences of the populations of intermediate levels for the ${\rm Ho}^{3+}$ doped system under the 647 nm excitation need further research.

4. Discussion

4.1. Upconversion excitation mechanism for Ho³⁺ doped fluoride glass

The upconversion excitation pathways which was proposed by Allain et al. [10] are shown in Fig. 6. The ⁵F₅ level is fed from the ground state level by ground state absorption. It then depopulates rapidly via non-radiative de-excitation down to the nearest lower metastable ⁵I₆ level. The ions in this level can either de-excite radiatively towards the ⁵I₇ and ⁵I₈ levels, or be brought by ESA to the ⁵G, level, from which a part of the excited ions emits towards the ground state and another part feeds into the ⁵S₂ level through the ⁵F₃ level via non-radiative de-excitation. In this case, the ⁵F₄ and ⁵S₂ levels are thermally coupled and can be considered as a whole. Another similar pathway is also shown in Fig. 6, starting from the ⁵I₇ level which is mainly fed from the ⁵I₆ level, i.e., the ions in the ⁵I₇ level can either de-excite radiatively towards the ground state, or be re-excited to the ⁵F₃ level by ESA, from which a part of the excited ions emits and another part feeds into the ⁵S₂ upper level. This excitation mechanism has been proved by the measured fluorescence spectrum for the Ho³⁺ doped AZF glass as shown in Fig. 1. In this spectrum the upconversion fluorescence bands corresponding to the ${}^5G_5 - {}^5I_8$ and ${}^5F_3 - {}^5I_8$ transitions are clearly observed. It indicates that the excitation populations of the emitting levels of 5G_5 and 5F_3 are built up from the intermediate levels of 5I_6 and 5I_7 by ESA, respectively. Here it is noteworthy that the non-radiative decay from the 5F_5 level to the 5I_6 level occurs via a cascade through the 5I_4 and 5I_5 levels, which are not included in the proposed mechanistic scheme in Fig. 6. The energy gaps between these levels are around 2000 cm $^{-1}$, which is of the order of about three lattice phonons of the glass hosts. For such a small energy gaps the empirical multiphonon expression fails and the non-radiative decay rate will be much higher than predicted.

To understand theoretically two upconversion excitation pathways as described above, it is interesting to apply rate equations to this system. The rate equation model we will use here is identical to the upconversion mechanism shown in Fig. 6 for the blue fluorescences originating from the 5G_5 and 5F_3 levels and the green fluorescence from the 5S_2 level of Ho³⁺ under 647 nm excitation. The rate equations required to describe this model are

$$\frac{\mathrm{d}n_1}{\mathrm{d}t} = W_{21}n_2 - \phi U_{15}n_1 - \left(C_1 + \tau_1^{-1}\right)n_1,\tag{1}$$

$$\frac{\mathrm{d}n_2}{\mathrm{d}t} = W_{32}n_3 - \phi U_{26}n_2 - \left(C_2 + \tau_2^{-1}\right)n_2,\tag{2}$$

$$\frac{\mathrm{d}n_3}{\mathrm{d}t} = \Phi U_{03} n_0 + W_{43} n_4 - \left(C_3 + \tau_3^{-1}\right) n_3,\tag{3}$$

$$\frac{\mathrm{d}n_4}{\mathrm{d}t} = W_{54}n_5 + W_{64}n_6 - \left(C_4 + \tau_4^{-1}\right)n_4,\tag{4}$$

$$\frac{\mathrm{d}n_5}{\mathrm{d}t} = \Phi U_{15} n_1 - \tau_5^{-1} n_5,\tag{5}$$

$$\frac{\mathrm{d}n_6}{\mathrm{d}t} = \Phi U_{26} n_2 - \tau_6^{-1} n_6, \tag{6}$$

where n_0 and n_i represent the populations of ground state and excited level i, respectively. Transitions between levels i and j of a single ion are denoted by W_{ij} and the lifetime of level i of single ion in the absence of ion—ion transfer is denoted by τ_i (it is inversely proportional to the total of the non-radiative and radiative emission rates). The energy transfer rates comprising so-called concentration quenching rates are denoted by C_i . The absorption cross section for each transitions is U_{ij} and the incident pumping flux is ϕ .

If the steady state fluorescence intensities from levels 4, 5, and 6 are sought, the time derivatives of the level populations are set equal to zero and the

equations can be solved for the excitation populations of the 5G_5 , 5F_3 , and 5S_2 levels, i.e.,

$$n_6 = \frac{\Phi^2 U_{03} U_{26} W_{32} n_0}{\tau_6^{-1} (C_3 + \tau_3^{-1}) (C_2 + \tau_2^{-1})},\tag{7}$$

$$n_5 = \frac{\Phi^2 U_{03} U_{15} W_{32} W_{21} n_0}{\tau_5^{-1} (C_3 + \tau_3^{-1}) (C_2 + \tau_2^{-1}) (C_1 + \tau_1^{-1})}, \quad (8)$$

$$n_{4} = \frac{\Phi^{2} U_{03} W_{32} n_{0}}{\left(C_{4} + \tau_{4}^{-1}\right) \left(C_{3} + \tau_{3}^{-1}\right) \left(C_{2} + \tau_{2}^{-1}\right)} \times \left[\frac{W_{54} W_{21} U_{15}}{\tau_{5}^{-1} \left(C_{1} + \tau_{1}^{-1}\right)} + \frac{W_{64} U_{26}}{\tau_{6}^{-1}}\right]. \tag{9}$$

In solving these expressions, we have assumed that depopulation rate of a intermediate level by upconversion can be neglected with respect to the spontaneous and non-radiative emission from this level. This approximation that enables the analytic solutions to be simplified is valid, since no significant depopulation of the intermediate levels were observed in this system for the given pump powers.

If we assume that the excitation intensity is sufficiently weak that the ground state is not considerably depopulated, the ground state population of n_0 can be approximated by the total concentration of Ho^{3+} ions, N_0 . Then the ${}^5\mathrm{G}_5-{}^5\mathrm{I}_8$, ${}^5\mathrm{F}_3-{}^5\mathrm{I}_8$, and ${}^5\mathrm{S}_2-{}^5\mathrm{I}_8$ fluorescence intensities which can be related to n_i by equation $\mathrm{I}_i = h\nu_{io}W_{io}n_i$ [2] are described by the expressions

$$I_6(^5G_5) = \frac{h\nu_{60}W_{60}W_{32}U_{03}U_{26}N_0\Phi^2}{\tau_6^{-1}(C_3 + \tau_3^{-1})(C_2 + \tau_2^{-1})},$$
 (10)

$$I_{5}(^{5}F_{3}) = \frac{h\nu_{50}W_{50}W_{32}W_{21}U_{03}U_{15}N_{0}\Phi^{2}}{\tau_{5}^{-1}(C_{3} + \tau_{3}^{-1})(C_{2} + \tau_{2}^{-1})(C_{1} + \tau_{1}^{-1})},$$
(11)

$$I_{4}(^{5}S_{2}) = \frac{h\nu_{40}W_{40}W_{32}U_{03}N_{0}\phi^{2}}{\left(C_{4} + \tau_{4}^{-1}\right)\left(C_{3} + \tau_{3}^{-1}\right)\left(C_{2} + \tau_{2}^{-1}\right)} \times \left[\frac{W_{21}W_{54}U_{15}}{\tau_{5}^{-1}\left(C_{1} + \tau_{1}^{-1}\right)} + \frac{W_{64}U_{26}}{\tau_{6}^{-1}}\right]. \tag{12}$$

One can notice from these expressions that the ${}^5G_5 - {}^5I_8$, ${}^5F_3 - {}^5I_8$, and ${}^5S_2 - {}^5I_8$ fluorescence intensities have the characteristic square-law dependence on the

Fig. 7. Excitation-power dependences of the ${}^5G_5 - {}^5I_8$, ${}^5F_3 - {}^5I$, and ${}^5S_2 - {}^5I_8$ fluorescence intensities for 0.5 mol% Ho³⁺ doped AZF glass excited at 647 nm.

incident pump flux at low excitation intensities. Fig. 7 shows the dependences of these fluorescence intensities on the absorbed pump power. The quadratic dependences expected from the Eqs. (10)-(12) fit the experimental data very well at lower pumping intensities, proving that the upconversion processes requires two photons. However, at higher pump powers, the fluorescence intensities depend upon the excitation intensity with lower slopes than two and these dependences are gradually reduced from quadratic to linear as shown in Fig. 7. This reduction is because the analysis stated above will only be applicable at the pump power sufficiently low that a depletion of the ground state population can be neglected, but this approximation will be invalid at higher pumping intensities. To understand the effects of excitation power that would be expected, we assumed that the levels 1 and 2 are metastable and

their populations can build up to a larger value. Then the ground state population n_0 should be written as

$$n_0 = N_0 - n_1 - n_2 - n_3 - n_4 - n_5 - n_6$$

$$\cong N_0 - n_1 - n_2. \tag{13}$$

If we assume that the initial absorption of a photon can produce a significant population depletion of the ground state, the ground state population will be much smaller than the Ho^{3+} concentration. Then the Eq. (13) can be solved by combining the Eqs. (1)–(3), and the n_0 can be expressed as

$$n_0 =$$

$$\frac{N_0}{1 + \frac{W_{32}U_{03}\Phi}{\left(C_3 + \tau_3^{-1}\right)\left(C_2 + \tau_2^{-1}\right)} \left[1 + \frac{W_{21}}{\left(C_1 + \tau_1^{-1}\right)}\right]}.$$
(14)

The second and third terms in the denominator are responsible for the ground state depopulation and are appreciably larger than unity if depopulation is significant. The ground state population will therefore be inversely proportional to the incident pumping intensity as shown in the following equation:

$$n_0 \cong \frac{N_0 (C_3 + \tau_3^{-1}) (C_2 + \tau_2^{-1}) (C_1 + \tau_1^{-1})}{\Phi U_{03} W_{32} [(C_1 + \tau_1^{-1}) + W_{21}]}.$$
 (15)

Combining the expression for n_0 in Eq. (15) and the equation of $I_i = h v_{i0} W_{i0} n_i$ with Eqs. (7)–(9), the intensity of upconversion fluorescence, for example, from the 5S_2 level can be expressed as

$$I_{4}(^{5}S_{2}) \approx \frac{h\nu_{40}W_{40}(C_{1} + \tau_{1}^{-1})N_{0}\Phi}{(C_{4} + \tau_{4}^{-1})[(C_{1} + \tau_{1}^{-1}) + W_{21}]} \times \left[\frac{W_{21}W_{54}U_{15}}{\tau_{5}^{-1}(C_{1} + \tau_{1}^{-1})} + \frac{W_{64}U_{26}}{\tau_{6}^{-1}}\right].$$
(16)

One can see that the fluorescence intensities corresponding to the ${}^5G_5 - {}^5I_8$, ${}^5F_3 - {}^5I_8$, and ${}^5S_2 - {}^5I_8$ transitions will now be only directly proportional to the incident pumping intensity, ϕ . From Fig. 7 we can find that the linear dependences expected from the rate equation model fit the experimental data very well at higher pump powers. It well interprets why the output power was linearly dependent on pump power despite the fact that the green upconversion fluorescence requires two photons as reported by

Fig. 8. Excitation-power dependences of the $^5I_6-^5I_8$ and $^5I_7-^5I_8$ fluorescence intensities for 0.5 mol% Ho $^{3+}$ doped AZF glass excited at 647 nm.

Allain et al. [10]. Indeed, at higher pump powers, a saturation effect reduces the pump power dependences of the fluorescences. There are two possible processes that may cause the saturation effect. The first is the depletion of the ground state population by the optical pump, corresponding to the saturation of the ⁵I₈-⁵F₅ transition. A second process results when the rate of depopulation of a intermediate level by upconversion exceeds the spontaneous and nonradiative emission rates from this level [13]. Since intensities of both the fluorescences originating from the intermediate levels of ${}^5\mathrm{I}_6$ and ${}^5\mathrm{I}_7$ have characteristic linear-law dependences on the incident pump power as shown in Fig. 8, the intermediate levels are considered to be not significantly depopulated by ESA. The saturation effect is therefore only attributed to the former mechanism, i.e., the initial absorption of a photon can produce a significant depletion of the ground state population which saturates at relatively high pump powers. Also, this population depletion of the ground state is observed to saturate at about 60 mW which below laser threshold pump power of 147 mW [14], indicating that the rate limiting step in the excitation process is the absorption of the second pump photon, by either of the two parallel paths. It gives rise to a linear, rather than quadratic, dependence of output power on pump power.

4.2. Concentration dependence of the upconversion fluorescences

It is noteworthy that the effect of energy transfers among Ho³⁺ ions involving concentration quenching always appear in the system and this effect is to reduce the observed fluorescence intensity by an amount that depends on the ratio of the energy transfer rate C_i to the intrinsic depopulation rate W_{ij} . If the energy transfer rates can be negligible compared to the intrinsic decay rates, the fluorescence intensities will be directly proportional to the Ho³⁺ concentration and lifetimes of the emitting and intermediate levels as shown in Eqs. (10)–(12). However, from Fig. 4 it can be seen that the ${}^5G_5 - {}^5I_8$ and ⁵S₂-⁵I₈ fluorescence intensities do not increase monotonically with increasing the Ho3+ concentration except for the ⁵F₃-⁵I₈ fluorescence. This behavior is undoubtedly ascribed to the energy transfers among Ho3+ ions in the system. In general, the energy transfer rates increase when the interactive ion concentration increases. If the energy transfer rates C_i become larger than the intrinsic decay rates W_{ij} for some levels, the concentration dependences can be lowered or eliminated depending upon the levels. The advantage of a long intermediate level lifetime is also lost if the energy transfer from that level is high. For instance, with increasing the concentration of Ho³⁺ in AZF glass system, the lifetime of the 516 intermediate level from which a part of the excited Ho³⁺ ions can be re-excited to the ⁵G₅ emitting level by ESA rapidly decreases as shown in Fig. 9 due to the so-called 'concentration quenching', emphasizing significant depopulation of that level. It is therefore impossible that the upconversion fluorescence from the ⁵G₅ level required to be populated by ESA from the ⁵I₆ level increases monotonically with increasing the Ho³⁺ concentration. At lower concentrations, the effect of energy transfer from the ⁵I₆ intermediate level is sufficiently low that the upconversion fluorescence intensity increases regularly. At higher concentrations, however, the energy transfer rate becomes so large that the ⁵I₆ level is considerably depopulated to reduce the upconversion effi-

Fig. 9. Concentrational dependence of the 5I_6 lifetime of Ho³⁺ in AZF glass excited at 645 nm. Line is a guide to the eye.

ciency from this level to the 5G_5 level, and thereby making the ${}^5G_5-{}^5I_8$ fluorescence decreased after the maximum value taken place as shown in Fig. 4(a).

Similarly, for understanding the concentration dependence of upconversion fluorescence from the 5F_3 level, the population of the corresponding intermediate level of 5I_7 must be estimated at first, since the energy transfer from the 5F_3 level as well as the 5G_5 level is inexistent in the system. The fluorescence and lifetime required to estimate the population of the 5I_7 level were measured and plotted in Fig. 10 as a function of the Ho concentration for AZF glass. The fluorescence intensity and lifetime of this intermediate level increase monotonically with increasing the Ho concentration due to the following possible cross relaxations of [14]

$${}^{5}F_{5} - {}^{5}I_{6} \text{ to } {}^{5}I_{8} - {}^{5}I_{7},$$

 ${}^{5}S_{2} - {}^{5}I_{4} \text{ to } {}^{5}I_{8} - {}^{5}I_{7},$
 ${}^{5}S_{2} - {}^{5}I_{7} \text{ to } {}^{5}I_{8} - {}^{5}I_{4},$

which can cause the 5F_5 and 5S_2 lifetimes to be decreased and the 5I_7 intermediate level to be populated. The 5F_5 and 5I_7 lifetimes, which have been illustrated in Figs. 5 and 11, rapidly decrease as the Ho³⁺ concentration increases, indicating that the energy transfers from the 5F_5 and 5S_2 to the 5I_7 are very sensitive to the Ho³⁺ concentration, i.e., these

Fig. 10. Concentrational dependences of the ${}^5I_7 - {}^5I_8$ fluorescence intensity and the 5I_7 lifetime of Ho³⁺ in AZF glass. Lines are a guide to the eye.

energy transfer rates can be enhanced by increasing the $\mathrm{Ho^{3+}}$ concentration. This is because the non-resonant energy transfer rate is, in general, inversely proportional to the intrinsic distance between the interactive ion pairs and this distance will be shorter if the $\mathrm{Ho^{3+}}$ concentration is high. Obviously, all of these energy transfers can cause the $^5\mathrm{I}_7$ intermediate

Fig. 11. Concentrational dependence of the 5F_5 lifetime of Ho $^{3+}$ in AZF glass excited at 645 nm. Line is a guide to the eye.

Fig. 12. Relationship between the ${}^5G_5 - {}^5I_8$ and ${}^5F_3 - {}^5I_8$ fluorescence intensities and the populations of the intermediate levels of 5I_6 and 5I_7 . Lines are a guide to the eye.

level to be populated and thus gives rise to a high upconversion efficiency from this level to the 5F_3 level by absorbing a second photon. It is therefore concluded that a monotonical increase in the upconversion fluorescence from the 5F_3 level with increasing the ${\rm Ho}^{3+}$ concentration is due to an increase in population of the corresponding intermediate level.

In order to further understand the correlation between populations of the emitting level and the corresponding intermediate level, we plotted the intensities of upconversion fluorescences from the 5G_5 and 5F_3 levels in Fig. 12 versus relative populations of the corresponding intermediate levels of 5I_6 and 5I_7 . All the upconversion fluorescence intensities have the characteristic linear-law dependences on the populations of the intermediate levels. It reveals that the blue upconversion fluorescences of the ${\rm Ho}^{3+}$ doped system is primarily determined by the populations of the corresponding intermediate levels of 5I_6 and 5I_7 .

However, the 5S_2 emitting level is distinguishable from the 5G_5 and 5F_3 levels. This level is populated by de-excitations from the upper 5F_3 and 5G_5 levels but not by ESA directly from intermediate level. Since the multiphonon relaxation rates of the 5G_5 and 5F_3 levels are more than 10×10^5 and 4.5×10^5

s⁻¹ which are far greater than their spontaneous emission rates of 2580 and 1665 s⁻¹, respectively, a great part of the excited ions in the ⁵G₅ and the ⁵F₃ levels are non-radiatively de-excited to the ⁵F₃ level and then to the ⁵S₂ level. This fact shows that the ⁵S₂ emitting level is mainly populated from the upper excited ⁵F₃ level by the multiphonon relaxation. If the energy transfer from the ⁵S₂ level is taken no account, the concentration dependence of the upconversion fluorescence from the ⁵S₂ level ought to have been agreement with that from the ⁵F₃ level. Comparing the results in Fig. 4, however, it can be seen that the concentration dependence of the ${}^{5}S_{2}-{}^{5}I_{8}$ fluorescence is distinguishable from that of the ${}^5F_3 - {}^5I_8$ fluorescence. It indicates that the variation behavior of the upconversion fluorescence from the ⁵S₂ level against the Ho³⁺ concentration is only interpreted by the energy migrations between Ho3+ ion pairs through the ⁵S₂ level. The non-exponential decays of the ⁵S₂ level and the rapid decrease of the phenomenon (as shown in Fig. 5) reveal that the quick energy transfers of

$${}^{5}S_{2} - {}^{5}I_{4}$$
 to ${}^{5}I_{8} - {}^{5}I_{7}$

and

$${}^{5}S_{2} - {}^{5}I_{7}$$
 to ${}^{5}I_{8} - {}^{5}I_{4}$

occur in the system. When the 5S_2 level is populated, the closest interactive ion pairs rapidly undergo energy transfer initially and therefore their population becomes depleted early in the decay. The depletion continues radially outward from the donor ions as time progresses until the only pairs remaining are sufficiently separated the energy transfer does not occur. The decay has then resumed the intrinsic exponential decay. The energy transfers between ${\rm Ho}^{3+}$ ion pairs are so efficient at higher concentrations (as shown in Fig. 5) that the 5S_2 level is significantly depopulated and thus causes the upconversion fluorescence intensity to be lower.

5. Conclusion

The blue and green upconversion fluorescences originating from the 5G_5 , 5F_3 , and 5S_2 levels of Ho³⁺ were observed in several fluoride glasses under the 647 nm excitation. The relative intensities of these upconversion fluorescences for ZrF_4 (HfF₄)

based glasses are more intense than those for AlF₃ based glasses due to their lower phonon energies. The upconversion and fluorescence efficiencies of Ho³⁺ doped fluoride system are primarily determined by the populations of the corresponding intermediate levels such as 5I_6 and 5I_7 , and by the energy transfers from the emitting and intermediate levels. Rate equation modeling of the upconversion fluorescence of Ho³⁺ doped fluoride glass has been established and has been utilized to reveal the upconversion mechanism that the observed linear dependence on pump power is shown to arise primarily from the absorption of the second photon in the upconversion route. Using this model, the concentration dependences of the upconversion fluorescences can be well interpreted. The concentration dependences of the blue upconversion fluorescences ${}^{5}G_{5}-{}^{5}I_{8}$ and ⁵F₃-⁵I₈ are strongly impacted by the energy transfers from the intermediate levels of ⁵I₆ and ⁵I₇, but the green upconversion fluorescence ${}^{5}S_{2} - {}^{5}I_{8}$ is mainly affected via the energy transfers from the emitting level of ⁵S₂.

References

- [1] F.E. Auzel, Proc. IEEE 61 (1973) 758; Phys. Rev. B13 (1976) 2809.
- [2] J.C. Wright, in: Topics in Applied Physics, Vol. 15, ed. F.K. Fong (Springer, Berlin, 1976) p. 239.
- [3] A.A. Bergh and P.J. Dean, Light-Emitting Diodes (Clarendon, Oxford, 1976) p. 343.
- [4] R.M. Macfarlane, F. Tong, A.J. Silversmith and W. Lenth, Appl. Phys. Lett. 52 (1988) 1300.
- [5] S.A. Pollack, D.B. Chang and M. Birnbaum, Appl. Phys. Lett. 54 (1989) 869.
- [6] J.Y. Allain, M. Monerie and H. Poignant, Electron. Lett. 26 (1990) 166.
- [7] R.A. Mcfarlane, Appl. Phys. Lett. 54 (1989) 2301.
- [8] R.G. Smart, D.C. Hanna, A.C. Tropper, S.T. Davey, S.F. Carter and D. Szebesta, Electron. Lett. 27 (1991) 1307.
- [9] K. Hirao, S. Todoroki and N. Soga, J. Non-Cryst. Solids 143 (1992) 40.
- [10] J.Y. Allain, M. Monerie and H. Poignant, Electron. Lett. 26 (1990) 261.
- [11] F. Tong, W.P. Risk, R.M. Macfarlane and W. Lenth, Electron. Lett. 25 (189) 1389.
- [12] K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe and N. Soga, J. Non-Cryst. Solids 139 (1992) 151.
- [13] J.E. Geusic, F.W. Ostermayer, H.M. Marcos, J.P. van der Ziel and L.G. Van Uitert, J. Appl. Phys. 42 (1971) 1958.
- [14] G.R. Atkins, M.G. Sceats and S.B. Poole, J. Non-Cryst. Solids 140 (1992) 123.