

FIG. 1

Tobamovirus Expression Vectors

TMV

TMV-Expression Vector

FIG. 2

Tobamovirus Vector for rGal-A Expression

FIG. 3

Accumulation and Activity of WT rGal-A

FIG. 4

**Accumulation and Activity
of WT and ER-Targeted rGal-A**

FIG. 5

Carboxy-Modifications to rGal-A

	-30	-20	-10
WT	TS [*] RLLRSHINPTGTVVLLQLENTMQMSLKDLL		
WTR	TSRLLRSHINPTGTVVLLQLENTMQMSLKDLLSEKDEL		
Δ4	TSRLLRSHINPTGTVVLLQLENTMQMSL		
Δ4R	TSRLLRSHINPTGTVVLLQLENTMQMSLSEKDEL		
Δ8	TSRLLRSHINPTGTVVLLQLENTM		
Δ8R	TSRLLRSHINPTGTVVLLQLENTMSEKDEL		
Δ12	TSRLLRSHINPTGTVVLLQLENTMSEKDEL		
Δ12R	TSRLLRSHINPTGTVVLLQLENTMSEKDEL		
Δ25	TSRLLR		
Δ25R	TSRLLRSEKDEL		
Control virus (GFP, AMP, IFN γ)			

* potential CTPP cleavage (Gene 58:177, 1987).

FIG. 6
Western Blot Analysis of
Carboxy-modified rGal-A

FIG. 7

Enzymatic Activity of Carboxy-Modified rGal-A

FIG. 8

Coomassie Stain - IF

Mr kDa

M	C.V.	C.V.	$\Delta 12R$	$\Delta 4$	$\Delta 4R$	$\Delta 8$	$\Delta 8$	$\Delta 8R$
200	-	-	-	-	-	-	-	-
116	-	-	-	-	-	-	-	-
97	-	-	-	-	-	-	-	-
66	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-
31	-	-	-	-	-	-	-	-
21.5	-	-	-	-	-	-	-	-
14.4	-	-	-	-	-	-	-	-
6.5	-	-	-	-	-	-	-	-

FIG. 9
Coomassie Stain - IF

BEST AVAILABLE COPY

FIG. 10

Schematic of rGal-A Secretion

Apoplast Golgi Network Subcellular target

FIG. 11

FIG. 12-1

GTATTTTACAACAATTACCAACAACAACAACAACAACAACATTACAATTACTATTTACAATTACAATGGCATAACACA
CAGACAGCTACCACATCAGCTTGCGGACACTGTCGAGGAAACAACCTCTGGTCAATGATCTAGCAAAGCGTCGTCT
TTACGACACAGCGGTTGAAGAGTTAACGCTGTGACCGCAGGCCAAGGTAACCTTTCAAAAGTAATAAGCGAGGAGC
AGACGTTATTGCTACCCGGCGTATCCAGAATTCAAAATTACATTATAACACGAAATGCCGTGCAATTGCTTGCA
GGTGGATTGCATCTTAGAAGTGAATATCTGATGATGCAAAATTCCATCGGATCATTGACTTATGACATAGGCCGAA
TTTGCACTCGCATCTGTTCAAGGGACGAGCATATGTACACTGCTGTATGCCAACCTGGACGTTGAGACATCATGCGC
ACGAAGGCCAGAAAGACAGTATTGAACTATACTCTAGGCTAGAGAGGGGGAAAACAGTCCCCAATTCCAAAG
GAAGCATTGACAGATACCGAAATTCTGAAGACGCTGTGACAAACTACTTCCAGACAATGCGACATCAGCCGAT
GCAGCAATCAGGAGGTGATGCCATTGGCTACACGATATGACATACCGCGATGAGTTCGGGCCGCACTCT
TGAGGAAAAATGTCATACGCTGTGCTTCCACTCTGTGAGAACCTGCTTCAAGGATTCAGTCAATTGCA
GACGAAATCAACGCGTGTTCGCGCAAGGACAAGTTCAGCTTCTGGATCAGAGAGTACTCTTAATTATTG
TCATAGTTATTCTAATATTCTAAGTATGTTGCAAAACTACTTCCCGCCTCTAATAGAGAGGTTACATGAGGAGT
TTTAGTCACCAAGAGTTAACCTGGTTTGTAAAGTTCTAGAATAGATACTTTCTTTGACAAAGGTGTTGCCAT
AAAAGTGTAGATAGTGAACAGTTTACTGCAATGGAAGACGATGCCATTACAAAAGACTTTGCAATGTGCAACAG
CGAGAGAATCCTCTTGGAGATTCACTCATCAGTCATTTCTGGGAAACGATCTGTTCCAAAATGAGGATATGGTCA
TCGACATTTCTTGGAGACTTAAGAGGACGCGAAGGAAAGCTTACTGTCAGGATTTGCTTCAACTGCTTAAAC
CACATTGCAACATACCAGCGAAAGCTTACATACGCAATGTTTGTGCAATCGATCGAGGGTAAT
CATTAACGGTGTGACAGCGAGGTCCGAATGGATGTGCAAAATCTTGTACATCTTGTCCATGACGTTTACCTGC
ATACTAAGCTGGCTTAAAGGATGACTTACTGATTAGCAAGGTTAGTCTGGTTGCAAAACGGTGTGCCAGCATGTG
TGGGATGAGATTGCGCTGGCTTGGGAAACGATTTCCCTCCGTGAAAGAGAGGGCTTGTGAAACAGGAAACTTACAGAGT
GGCAGCGACGCATTAGAGATCAGGGTGCCTGATCTATGTGACCTCCAGACAGATTAGTGAAGTACAAGGCCT
CTGGGACATGCTGCGCTTGCACATTAGGAAGAAGATGAAAGAAACGGAAGTGTACATGCACTTCAAGGTTATCG
GTGTTAAAGGAGTCTGACAAATTGATGTTGATGTTTCTCCAGATGTGCAATTTGAAAGTGTGACCCAATGACGGC
AGCGAAGGTTAGTGCCTGCTGAGGAGCGCTGACTCTCACATTGAAACGACCTACTGAGGCGAATGTTG
CGCTAGCTTACAGGATCAAGAGAAGGCTTCAAGGGTCTGGTAGTTACCTCAAGAGAAGTTGAAGAACCGTCCATG
AAGGGTTCGATGCCAGAGGAGAGTTAACATTAGCTGCTTGTGGAGATCATCGGAGTCTGCTTCAAGGTTATCTAAGA
GGAGATAGAGTCTTCTAGAGCAGTTCATATGGCAACGGAGATTGTTAATTCGTAAGCAGATGAGCTGATTGTTACA
CGGGTCGATTAAGTTCAGCAAATGAAAACCTTATCGATAGCCTGGTAGCATCACTATCTGCTGGTGTGAACTCTC
GTCAGATCCTCAAAGATACAGCTGATTGACCTTGAAACCCGTCAAAAGTTGGAGTCTGGATGTTGCACTAGGAA
GTGTTAATCAAACCAACGGCAAGAGTCATGCGATGGGTGTTGAAACCCACGGAGGAAGTATCATGTCGCTT
TGGAAATATGAGTGGAGCAGGGTGTGGTACATGCGATGTTGAGAAGAGTAGCTGTCAGCTCTGAGTCTGTT
GACATGGCAAACACTCAGGAGCTGGCAAGGAGAACGGGATCTGCACTAGCGCAAAGGTTGTTCTTGT
GGACGGAGTCCGGCTGTGGAAAACCAAAGAAATTCTTCCAGGGTTAATTGATGAAAGATCTAATTGAGTACCTG
GGAAGCAGCCGGAAATGATCAGAAGACGTCGAATTCTCAGGGATTATTGTGCCACGAAGGACAACGTTAAACC
GTTGATTCTTCATGATGAATTGGAAAAGCACACGCTGTCAGTTCAAGAGGTTATTGATGAAGGGTGTGTT
GCATACTGGTTGTGTTAATTCTTGCGGATGTCATTGCGAAATTGCAATTGTTACGGAGACACACAGCAGATT
CATACATCAAAGTTCAGGATTCCGATCCCCGCAATTGGCAAATTGGAAGTTGACGAGGTGGAGACACGCAGA
ACTACTCTCGTTGTCAGCGATGTCACACATTCTGCAACAGGAGATATGAGGGCTTGTGTCATGAGCCTTCTCGT
TAAAGGTTCAATCTTTGTTGCACTGGGAAAGACTGGTGTATTTCTGATATGTCAGTTACTATGATAAGTGT
CCCAGGCAACAGCAGGATGTAATAATTGATGCTGTACCATGAGGTTGACTGACATTGATGAATGTCAGGATT
GCATATTGGATATGCTAAGCTGTTGCTGCCCTAAGGATCAAACCCACTACACGTTGACGAAACGGGCA
GAAATGCCACGCCAGACTGGACTATTGGAAAATTGAGGAGTGTGATGTTAAAGGAAACTTAAACGCAACCGAGTTGCTGG
CATCATTGATATTGAAAATACTGCATCTTAGTTGAGATAAGTTGATGTTGCTTAAAGAAAAGAAAAC
CAAATAAAATGTTCTTGTCAAGAGAGTCTCTCAATAGATGTTGAGAAAAGCAGGAACAGGTAACAATAGGCC
CTGGCAGATTGTTGATTTGAGATTGCGCAGCAGTTGACAGACACATGATTAAGCACAACCCAAGAAAATT
GGACACTTCATCCAAACGGAGTACCCGGCTTGCAAGCAGATTGTTACCAAAAGATCAATGCAATTG
CGTTGTTAGTGAAGCTTACTAGGCAATTACTGGACAGTGTGTTGATTCGAGCAGATTGTTTCAAGAAAGACCCA
GCGCAGATTGAGGATTCTCGGAGATCTCGACAGTCATGTCGCGATGATGTCCTGGAGCTGGATATCAAATACGA

FIG. 12-2

CAAATCTCAGAATGAATTCCACTGTGCAGTAGAACGAGATCTGGCGAAGATTGGGTTTGAAAGACTTCTGGGAGAAG
TTGGGAAACAAGGGCATAGAACGACCCCTCAAGGATTATAACCGCAGGTATAAAAACCTGATCTGGTATCAAAGAAAG
AGCGGGGACGTACGACGTTCATGGAAACACTGTGATCATCTGCTGATGTTGGCTCGATGCTCCGATGGAGAAAAT
AATCAAAGGAGCCTTTGCGGTGACGATAGTCTGCTGTACTTCCAAGGGTTGTGAGTTCCGGATGTGCAACACTCCG
CGAATCTATGTGGAAGCAGGAAACTGTTAAAAAACAGTATGGGAACTTTGCGGAAGATATGTAATACATCAC
GACAGAGGATGCAATTGTGATACGATCTGAAAGITGATCTGAAACACATCAAGGATTGGGAACA
CTTGGAGGAGTTCAGAGGCTCTTGTGATGTTGCTGTTGAAACAATTCGCTGTTGACACAGTTGGACGACG
CTGATGGGAGGTTCATAGACGCCCTCCAGGTTGTTGTTATAAAAGTCTGGTGAAGTTGCTGATAAAAGTT
CTTTTAGAAGTTGTTATAGATGGCTTAGTTGTTAAAGGAAAGTGAATATCAATGAGTTATGACCTGACAAAAA
TGGAGAAGATCTACCGTCATGTTACCCCTGTAAGAGTGTATGTTCAAAGTGTATAAAATAATGGTCATGAG
AATGAGTCATTGTCAGAGGTGAAACCTTAAAGGAGTTAACGCTTATTGATAGTGGATACGTCGTTAGCCGTTGGT
CGTACCGGGCAGGTTGAACTTGCCTGACAAATTGCAAGGAGGTGAGCGCTGTCGTTGACAAAAGGATGGAAAGAG
CCGACGAGGCCACTCTGGATCTTACTACACAGCAGCTGCAAAGAAAAGATTTCAAGGTCGTTCCAAATTATGCT
ATAACACCCAGAGCAGTAAAAAGCTGCGAAGTTGTTAGTAAATAGAATGAGTTGAGGAAAGATGTCAGGGTTCTG
TCCGCTTCTGGAGTTGTCGGTGTATTGTTATAGAATAATAAAATTAGTTGAGAGAGAAGATTACAA
ACGTGAGAGACGGAGGGCCCATTGAACTTACAGAAGAACGCTGTTGATGAGTTCATGGAAGATGTCCTATGTCATCAGG
CTTGCAAAGTTGCGATCTCGAACCGGAAAAAAAGAGTGTGATGTCGCAAGGGAAAATAGTAGTAATGATCGGTCACTG
GAACAAGAACTATAGAAATGTAAGGATTGGAGGAATGAGTTTAAAGAATAATTAAATCGATGATGATTGGAGG
CTACTGTCGCCGAATCGGATTGTTAAATAGATCTACAGTATCACTACTCCATCTCAGTCGTTGCTGTCATTAA
TATGCAAGGTGTCGAACACATTGTAACAAACACTCTGTCCTCCCTGGCTCATCGTCCTCCCTGGCTCTCC
ACTTGACAGCCGCGATCTGGACAATGGATGGCAAGGACGCCAACATGGCTGGTCACTGGGAGCGCTCATGTGC
AACCTTGACTGCCAGGAAGAGCCAGATTCTGCATCAGTGAAGACTCTCATGGAGATGGCAGAGCTCATGGTCTCAGA
AGGCTGGAAGGATGCAAGTTGAGTACCTCTGCAATTGATGACTGTTGATGGCTCCCCAAAGAGATTCAAGGGCAGAC
TTCAGGCAGACCTCAGCGTTCTCATGGGATTGCCAGCTAGCTAATTATGTCACAGCAAAGGACTGAAGCTAGGG
ATTATGCAAGATTTGAAATAAAACCTGGCAGGCTCCCTGGGAGTTGGGAACTACGACATTGATGCCAGACCTT
TGCCTGACTGGGAGTAGATGCTAAATTGATGGTTACTGTGACAGTTGGGAAATTGGCAGATGGTTATAAGC
ACATGTCCTGGCCCTGAAATAGGACTGGCAGAACGATTGTCGACTCTGTGAGTGGCCCTTTTATATGTCG
AAAGCCAAATTATAACAGAACACTGCAATCTGGCAAACTTGTGACATTGATGATTCTGGAAAAGTAT
AAAGACTATCTGGACTGGACATCTTAAACAGGAGAGATTGTTGATGTTGCTGGGAGCAGGGGGTTGGAAATGACCCAG
ATATGTTAGTGTGAACTTGGCTCAGCTGGAACTCGAAGTAACCTCAGATGCCCTCTGGCTATCATGGCTGCT
CCTTATTATGTCATGACCTCCGACACATCAGCCCTCAAGCCTAACGCTCTCCTCAGGATAAGGACGTAATTG
CAATCAGGACCCCTGGCAAGCAAGGGTACCGAGCTAGACAGGGAGACAACCTTGAAGTGTGGGAACGACCTCTCAG
GCTTAGCCTGGGCTGTAGCTATGATAAACCGGCAAGGAGATTGGTGGACCTCGCTTATACCATCGCAGTC
GGTAAAGGAGTGGCTGTAATCCTGCTCATCACACAGCTCCCTGTGAAAAGGAGCTAGGGTCTATGAATG
GACTTCAGGTTAAGGTCACATAAACTTCCACAGGACTGTTGCTCAGCTATTGCTGCTGCTGCTGCT
GGCTCGCAAAGTTGCAACAAATCCTCAAAAGAGGCTGAAAATAATAATTAGGTAAGGGCGCTCAGGCG
AGGCTCAAACAAAAGTTGATGAAAGTTGAAAAAAAGGTTGATAATTGATTGAGATGAAAGCCGAGACGT
GGATTCTGATTGCTTAAATATGCTTACTCAATCACTCTCCATCGAATTGTTGCTGATCTGATGGCTGA
CCCTATAGAATTGTTAAACGTTGACAAATTGTTAGGTAAACAGTTCAAACACAGCAAGCAAGAACACTGTT
AGCAGTTCAGCGAGGTGAAACCTTCCCTCAGAGCACCGTCAGATTCCCTGGGATGTTATAAGGTGACAGGTAC
AATGAGTTTAAAGTCTCTAAATTACTGCGTTGCTGGGGCTTTGATGACTAGGAATGAAATACGAAAGTAGAAA
GCAGAGTCCGACAACAGCTGAAACGTTAGATGCTACCCCGAGGGTAGACGAGCAGCTACGGGTC
ATAATTAGTTAAAGACTAGAAGGACTGGACTGTCACATCAAGATAACTTTGAAAGTAGTCTGGGTTGGCTGG
ACCTCTGCACCTGCTCATCTTAAATGCAATTGCTGCTGAAATTAAAGTTGTTCTAAACACAGGGTACGTAC
ACGTACAGTGTGTTTCCCTCACTTAAATCGAAGGGTAGTGTCTGGAGCGCGGGAGTAAACATAATG
GTCCGTAGGCACGTTAAAGCGAGGGATTGCAATTCCCCCGGAACCCCCGGTTGGGGCCAGGTACCAATT
ACGAAAGGGCTCGTGTACGCCATTGTTAGGTTATGTCATGATAATAATGGTTCTAGACGTCAGGTGG
TTCCGGGAAATGCGCGGAACCCATTGTTTATTTCTAAATACATTCAAATATGATCCGCTCATGAGACA
CCCTGATAAAATGCTTCAATAATATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGCTGTC
TGCGGCTATTGCGCTTCCCTGTTGCTCACCCAGAAACGCTGGTAAGGTTGAGGTTGCTGAC
GAGTGGGTTACATCGAACACTGGATCTCAACAGCGGTAAAGATCCTTGAGGAGTTGCGCC
AGGCTTCCAAATGATGAGCACTTTGCGCTGTTGAGGAGAGTGGCAG
AGCACTTTAAAGTTGCTATGTCGCGGTATTATCCCGTGTGTTGACGCC
AGGCAAGAGCAACTCGTCGCCACATA
CTATTCTCAGAATGACTGGTTGAGTACTCACCAGTCACAGAAAGCATCTACGGATGGCATGACAGTAAGAGAATTAT

FIG. 12-3

GCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCG
GCTTTTTGCAACACATGGGGATCATGTAACCTCGCCTTGATCGTTGGAACCGGAGCTGAATGAAGCCATACCAAACGA
CGAGCGTGACACCACGATGCCGAGCAATGGCAACACGTTGCGAAACTATTAACTGGCGAACTACTTACTCTAGCTT
CCCGCAACAAATTAAATAGACTGGATGGAGCGGATAAAAGTTGAGGACCACCTCTGCGCTCGGCCCTTCGGCTGGCTGG
TTTATTGCTGATAAATCTGGAGCGGTGAGCGTGGGTCTCGCGTATATTGCAAGCACTGGGCCAGATGTAAGCCCTC
CCGTATCGTAGTTACTCATACGACGGGAGCTAGGCAACTATGGATGAAACGAAATAGACAGATCGCTGAGATAGGTGCTT
CACTGATTAAAGCATTGGTAACGTCAGACCAAGTTACTCATATACTATTAGTTAGTTAAAACCTCATTTTAAATT
AAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCGTTCCACTGAGCGTC
AGACCCCGTAGAAAAGATCAAAGGATCTCTTGAGATCCTTTCTGCGCTAATCTGCTGTTGCAAACAAAAAAC
CACCGTACCGGGTGGTTGTTGCCGGATCAAGAGTACCAACTCTTTCGAAGGTAACGGCTTACAGCAGAGCG
CAGATAACAAATACTGCTCTAGTGAGCGTAGTTAGGCCACCACTCAAGAACCTGTAGCACCGCCTACATACCT
CGCTCTGCTAATCTGTACCGTAGGGCTCTGCGTAGGGATAAGCTGTCTTACCGGGTTGGACTCAAGACGATAGT
TACCGGATAAGGGCAGCGTGGCTGAACGGGGGGTCTGTCACACAGCCCAGCTGGAGCGAACGACCTACACCGAA
CTGAGATACTACAGCGTAGCTGAGAAAGCGCACCGCAAGGGAGAACGGGAGACAGGTATCCGGTAAGCGG
CAGGGTCCGAACAGGAGACGCCACGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTTATAGTCCTGCGGTTTCGCC
ACCTCTGACTTGAGCGTAGTTTGATGTCGTCAGGGGGCGGACCTATGGAAAACGCCAGAACCGCCCTTT
TTACGGTTCTGGCTTTGTCGGCTTCTGTCACATGTTCTTCTGCTTATCCCTGATTCTGTGATAACCGTAT
TACCGCCTTGTAGTGAACGCTGACCCATCTGCGGTTATTCACACCGCATATGGTCACTCTAGTACAATCTG
TCTGATGCCCATAGTTAACGCACTACACTCGCTACTCGTACGGTACTGGTACTGGCTGCCGACACCCGCC
ACACCCGCTGACGCCCTGACGGCTTGCTGCTCCGGCATCGCTACAGACAAGCTGTGACCGTCTCCGGAGCTG
CATGTGTCAGAGGTTTACCGCTACCGAAACGCCAGGGCAGCTGGTAAAGCTCATCAGCGTGGTCTGAAAGCG
ATTACAGATGTCGCTGTTACCGCTGTCAGCTGTTGAGTTCTCAGAAGGCTTAATGTCGCTTCTGATAAAAG
CGGCCATGTTAAGGGGGTTTTCTGTTGACTTGATGCCCTCGTGAAGGGGAATTCTGTTATGGGTA
ATGATAACGATGAAACGAGAGAGGATGTCACGATACTGGTTACTGATGATGAAACATGCCGGTTACTGAACTGGTGTGA
GGTAAACAACGGCTGATGGATGCCGGGACCAGAGAAAATCAGCTGGCTAATGCCAGCGCTCGTTAATACAG
ATGTTAGGTGTTCCACAGGGTAGCCAGCAGCATCTGCGATGCACTGGGAACATAATGGTGCAGGGGCTGACTTCCGC
GTTTCCAGACTTACGAAACACGGAAAGACCATTCATGTTGTCAGGTGAGCTGGCCGACGCTTGCAGCAGTC
GCTTCACTGCTGCTATCGGTATTCTGCTAACAGTAAGGCAACCCCGCAGGCTAGCCGGTCTCAACCG
ACAGGAGCACGATCATCGCACCGTGCCAGGACCCACGCTGCCAGATGCCGGTGTGGAGATGGCG
GACCGCATGGATATGTTCTGCAAGGGTTGTTGCGCATTACAGTTCTCGCAAGAATTGATTGCTCCAATTCTGG
AGTGGTGAATCGTTAGCGAGGTGCGCCGGCTTCCATTAGGTGAGGTGGCCGGCTCATGCAACCGCAGCAGC
GGGAGGCAGACAAGGTATAGGGCGCCCTACAATCCATGCCAACCGTCCATGCTCGCCAGGGCGATAATACG
CCGTGACGATCGCGTCCAGTGAAGTTAGGCTGTAAGGCCGGAGCGATCTTGAGCTGCTCCCTGATGGTC
TCATCTACCTGCTGGACGATGGCTGCAACGCCGGCATCCGATGCCGGAAAGCGAGAAATCATAATGGGAA
GCCCATCCAGCCTCGCGTCGCAACGCCAGCAAGACGTAGCCCAGCGCTGCCGGCATGCCGGATAATGGCTGCT
TCTCGCGAAAGCTTGGTGGGGGACCAGTGACGAAAGGCTTGAGCGAGGGCGTCAAGATTCCGAAATACCGCAAGCGAC
AGGCCGATCATCGTCGCGCTCAGCGAAAGGGCTCTGCCGAAATGACCCAGAGCGCTGCCGACCTGCTTACGAG
TTGCATGATAAAAGAACAGTCATAAGTGCAGCGACGATAGTCATGCCCGCGCCACCGGAAGGAGCTGACTGGGTTGA
AGGCTCTCAAGGGCATCGGTGAGATTAGGTGACACTATA

FIG. 13-1

GTATTTTACAACAATTACCAACAACAACAAACAGACAACATTACAATTACTATTTACAATTACAATGGCATACACA
CAGACAGCTACCACATCAGCTTGTGGACACTGTCGGAGGAACAAACTCCTGGTCAATGATCTAGCAAAGCGTCGTCT
TTACGACACAGCGTTGAAGAGTTAACGCTCGACCGCAGGCCAAGGTGAACCTTCAAAAGTAATAAGCGAGGAGC
AGACGCTTATTGCTACCCGGCGTATCCAGAATTCAAATTACATTATAACAGCAAATGCCGTGCATTGGCTTGCA
GGTGGATTGCGATCTTAGAAGTGGAAATATCTGATGATGCAAATTCCCTACGGATCATGACTTATGACATAGGGGGAA
TTTGCACTCGCATGTTCAAGGAGCAGCATATGTACACTGCTGCATGCCAACCTGGACGTCAGACATCGCC
ACGAAGGCCAGAAAGACAGTATTGAACTATACCTTCTAGGCTAGAGAGAGGGGGAAAAGACGTCCCCAACTTCAAAG
GAAGCATTGACAGATAACGAGAAATTCTGAAAGACGCTGTGTCACAATACTTCCAGACATGCGAACATCAGCCGAT
GCAGCAATCAGGAGAGTGTGCTACCGCATATGACATACCCAGCGATGAGTTGGGGGGCAGCT
TGAGGAAAAATGTCCTACGTCATGCGCTTCCACTCTCGAGAACCTGCTTCAAGGATTATCGTCAATTG
GACGAAATCACCGTGTTTCGCGCATGGAGACAAGTGCACCTTCTTGATCAGAGAGTACTCTTAATTACTG
TCATAGTTATTCTAATATTCTTAAGTATGTCGAAAACCTACTTCCGGCTCTAAATAGAGAGTTACATGAAGGAGT
TTTAGTCACCAGAGTTAACCTGGTTTGTAAGTTCTAGAATAGATACTTCTTTGACAAAGGTGTGGCCCAT
AAAAGTGTAGATAGTGAGCAAGTTACTGCAATGGAAGACGCATGGCATTACAAAAGACTCTGCAATGTCAACAG
CGAGAGAACTCCTGGGGATTCTACATCAGTCATGCAACTACTGTTTCCAAAATGAGGGATATGGTCACTGTCACCTATT
TCGACATTCTGGAGACTAGTAAGAGGAGCAGGAAAGGAGCTTCAGGAAAGGATCTTCAGGTTACAGTGCTTAAC
CACATTGAAACATACCCAGGCGAAAGCTCTTACATACGCAAATGTTCTGCGTCAAGGATTCGATCGAGGGTAAT
CATTAACGGTGTGACAGCGAGGTCCAATGGGATGTGGCAAATCTTGTTCATACCTTGTCCATGACGTTTACCTGC
ATACTAAGCTTGCCTCTAAAGGATGACTTACTGATTAGCAAGTTAGTCTCGGTTGAAAACGGTGTGCCAGCATGTG
TGGGATGAGATTCGCTGGCTTGGGAACGATTCCCTCCGTGAAAGAGAGGCTCTGAAACAGGAAACTTACAGAGT
GGCAGGGCAGCCTTACAGGATCAGGGTGCCTGATCTATATGACCTTCCAGACAGATTAGTGAUTGACTGAAAGGCCT
CTGTTGACATGCGCTTGCCTGACATTAGGAAAGAAGATGGAAGAAACGGAAGTGTGACATGCACCTTCAGAATTATCG
GTGTTAAGGGAGTCTGACAATTCTGATGTTGATGTTTCCAGATGTCGCAATCTTGGAAAGTTGACCCAAATGACGGC
AGCGAAGGTTAGTCTCGGTCTAGAGCAATGAGGCGTCTGACTCTCACATTGAAACGACCTACTGAGGCGAATGTTG
CGCTAGGTTACAGGATCAAGAGAAGGCTTCAGAAGGTCATTGGTAGTTACCTCAAGAGAAGTTGAAAGAACGGTCCATG
AAGGGTTGATGCCAGGGAGAGTTACAATTAGTGTGCTTGTGGAGATCATCGGAATCGTCTTCAAGAACGA
GGAGATAGTCTTAGAGCAGTTCTATGGGACGGCAGATTCTGTTAATTGTAAGCAGATGAGCTCGATTGTGATCA
CGGGTCCGATTAAGGTCAGCAAATGAAAACCTTATGATAGCCTGTTAGCATCACTATCTGCTGCGGTGTCGAATCTC
GTCAAGATCCTCAAAGATACAGTGTGTTGACCTTGAACACCCTGCAAAAGTTGGAGTCTGGATGTTGATCTAGGAA
GTGGTTAATCAAACCAACGGCCAAGACTCATGGATGGGTGTTGATGAAACCCACGGAGGGAGTATCATGTGGCGTTT
TGGAAATATGATGAGCAGGGTGTGGATCATGCGATGTTGAGAAGAGTAGCTGTTAGCTGAGTCTGAGTTGTTTATTC
GACATGGGAAACTCAGAACTCTGCGAGACTGCTTGTGAAACGGAGAACGGCATGTCAGTAGCGCAAAGGTTGTTCTTGT
GGACGGAGTCTGGGTGTTGAAAACCAAAGAAATTCTCAGGGTTAATTGATGAGGATCTAATTGAGTTACTG
GGAAGCAAGCCGGAAATGATCAGAAGACGTCGAATTCTCAGGGATTATTGTCGACAGGAAACACGTTAAACC
GTTGATTCTTCATGATGAAATTGGAAAAGCACGCTGCAGTTCAAGAGGTTATTCTGATGAAAGGTTGATGTT
GCATACTGGTTGTTAATTCTGTCGCGATGTCATTGTCGAAATTGCAATATGTTACGGAGACACACAGCAGATT
CATACATCAATAGGTTTCAAGGATCTCCGATACCCCGCCATTGCAAATTGGAAGTGTGACGGTGGAGACACGCGA
ACTACTCTCCGGTTGTCAGGATGTCACATATTCTGAAACAGGAGATATGGGGCTTGTGATGAGCACTTCTGGT
TAAAAAGTGTGTTCCAGGAGATGGTGGCGGAGCCGGTGTCAATCCGATCTCAAACCCCTGCACTGGCAAGATCC
TGACTTTACCCAACTCGATAAAGAAGCTCTGTTCAAGAGGGTATTGAGTGTGTCACACTGTCATGAGTGAAGTGC
GAGACATACTCTGATGTTCACTAGTTAGGTTAACCCCTACACGGCTCTCATGTCAGGAGACAGCCCACATGTTT
GGTCGCAATTGTCAGGACACCTGTCGCTCAAGTACTACACTGTTGTTATGGATCTTGTAGTTAGTATCATTAGAGTC
TAGAGAAACTTAGCTGTTACTGTTAGATATGATAAGGTCGATGCGAGAACACAATAGCAATTACAGATTGACTCGGT
TTCAAGGTTCCAATCTTGTGTCAGCGCCAAAGACTGGTGAATTCTGATGATGCACTTACTATGATAAGTGTCT
CCCAGGAAACAGCACCAGTGAATAATTGATGTCGTTACCATGAGGTTGACTGACATTCTGATGAAATGTCAAAGATT
GCATATTGGATATGTCAGTCTGTCGACCTAACGGATCAAACCAACTAACACTATGGTACGAACGGCGCA
GAAATGCCACGCCAGACTGGACTATTGGAAAATTAGGGCATGATGAAAGAAAACCTTAAACGCACCCGAGTTGTC
CATCATTGATATTGAAAATACTGCACTTGGTTGAGATAAGTTTTGATAGTTATTGCTTAAAGAAAAAGAAAAC
CAAATAAAATGTTCTTGTTCAGTAGAGAGTCTCAATAGATGGTAAAGAAGCAGGAACAGGTAACAATAGGCCAG
CTCGCAGATTGATTTGTTGAGTTGCGAGCAGTGTGATCAGTAGACACATGATTAAGCACAACCCAAACAAAAGTT
GGACACTTCAATCCAAACGGAGTACCCGGTTTGCAGACGATGTTGATCAGGTTTGTGATCATTGAGGTTTGTCTGG
CGTTGTTAGTGAAGCTTACTAGGCATTACTGGACAGTGTGATTGAGCAGGAGTTTGTGTTTGTGAGGTTTGTG
GCGCAGATTGAGGATTCTCGGAGATCTCGACAGTCATGTGCCGATGGATGTCCTGGAGCTGGATATCAAAATACGA

FIG. 13-2

TRANSGENIC VECTOR FOR rGCB EXPRESSION

FIG. 14

VIRAL VECTOR FOR rGCCB EXPRESSION

FIG. 15