Discrete Structures and Theory of Logic Lecture-36

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj October 2, 2023

Lagrange's theorem

Lagrange's theorem

Statement: The order of each subgroup of a finite group G is a divisor of the order of the group.

Proof: Let H be any subgroup of order m of a finite group G of order n.

Consider all the left cosets of H in G.

Let $H = \{h_1, h_2, h_3, \dots, h_m\}$. Then the left cosets of H i.e aH also consists of m elements i.e. $aH = \{ah_i \mid 1 \le i \le m\}$.

Clearly, each cosets of H in G consists of m distinct elements. Since G is a finite group, therefore the number of distinct left cosets is also finite. Let this be k. Therefore,

 $km = n \Rightarrow m$ is a divisor of n.

It is proved.

Exercise

- 1. Consider the group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.
 - 1.1 Find the multiplication table of G.
 - 1.2 Find 2^{-1} , 3^{-1} , 6^{-1} .
 - 1.3 Find the orders and subgroups generated by 2 and 3.
 - 1.4 Is G cyclic?

2.

3. Let Z be the group of integers with binary operation * defined by a*b=a+b-2, for all $a,b\in Z$. Find the identity element of the group (Z,*).

Exercise

Exercise

- 1. What do you mean by cosets of a subgroup? Consider the group Z of integers under addition and the subgroup $H = \{..., -12, -6, 0, 6, 12,\}$ considering of multiple of 6.
 - 1.1 Find the cosets of H in Z.
 - 1.2 What is the index of H in Z.
- 2. Prove or disprove that intersection of two normal subgroups of a group G is again a normal subgroup of G.

Exercise

Exercise

- 1. Let (A,*) be a monoid such that for every x in A, x*x = e, where e is the identity element. Show that (A,*) is an abelian group.
- 2. Let H be a subgroup of a finite group G. Prove that order of H is a divisor of order of G.
- 3. Prove that every group of prime order is cyclic.

Permutation group

Permutation

Let A be a finite set. Then a function $f: A \to A$ is said to be a permutation of A if f is bijective.

Degree of permutation

The number of distinct elements in the finite set A is called the degree of the permutation.

Suppose A = $\{a_1, a_2, a_3, \dots, a_n\}$. Then the notation of permutation will be of the following type:-

$$f = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ f(a_1) & f(a_2) & f(a_3) & \dots & f(a_n) \end{pmatrix}$$

5

Equality of two permutations

Let f and g be two permutations defined on the set A.

$$f=g \text{ iff } f(a)=g(a), \ \forall \ a\in A.$$

Example:
$$f = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$$
, $g = \begin{pmatrix} b & a & c \\ a & c & b \end{pmatrix}$

Clearly f = g because image of each element is same.

Identity permutation

If each element of a permutation is replaced by itself, then it is called an identity permutation.

Example: Identity permutation defined on set $A = \{a,b,c\}$ is

$$I = \left(\begin{array}{ccc} a & b & c \\ a & b & c \end{array}\right)$$

7

Product of permutations or Composition of permutations

The product of two permutations f and g of same degree is denoted by fog or fg, meaning first perform f and then perform g.

Example: If
$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$
, and $g = \begin{pmatrix} b_1 & b_2 & \dots & b_n \\ c_1 & c_2 & \dots & c_n \end{pmatrix}$
Then $fg = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ c_1 & c_2 & \dots & c_n \end{pmatrix}$

Note 1: $fg \neq gf$.

Therefore, the product of two permutations is not commutative.

Note 2: The product of permutations is associative.

Inverse permutation

Consider a permutation
$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$

Then the inverse of this permutation will be

$$f^{-1} = \left(\begin{array}{cccc} b_1 & b_2 & \dots & b_n \\ a_1 & a_2 & \dots & a_n \end{array}\right)$$

5cm

Total number of permutations

If n is the degree of the permutation, then the number of permutations of degree n is n!.

If S_n be the set of all permutations of degree n, then S_n is said to be symmetric set of permutations of degree n.

Permutation group

An algebraic structure $(S_n, *)$ is said to be permutation group, where the operation * is the composition or product of permutations and set S_n is symmetric set of permutations of degree n. This group is also called symmetric group.

Cyclic permutation

A permutation which replaces n objects or elements cyclically is called a cyclic permutation of degree n.

Example: Permutation
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

It is written as $(1\ 2\ 3\ 4) = (2\ 3\ 4\ 1) = (3\ 4\ 1\ 2) = (4\ 1\ 2\ 3)$ The number of elements in a cycle is said to be its length.

Disjoint cycle;

Two cycles are said to be disjoint if there is no common element in both the cycles.

Every permutation of a finite set can be expressed as a cycle or as a product of disjoint cycles.

Example: Permutation
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 6 & 5 & 3 \end{pmatrix}$$

= $(1 \ 2) \ (3 \ 4 \ 6) \ (5)$

Transposition

A cyclic permutation with length 2 is said to be transposition.

Ex.: (1 2), (4 5) are transpositions.

Even or odd permutation

A permutation is said to be even or odd according as it can be expressed as a product of even or odd number of transpositions.

Example: Find out following permutations are even or odd.

$$(1) f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3 \end{pmatrix}, \qquad (2) f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

Solution:

(1)
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3 \end{pmatrix}$$

= (15) (263) (4)
= (15) (26) (23)

Clearly, this permutation is expressed as 3 number of transpositions, therefore this permutation is odd permutation.

(2)
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

= $(1 6) (2 3 4 5)$
= $(1 6) (2 3) (2 4) (2 5)$

Clearly, this permutation is expressed as 4 number of transpositions, therefore this permutation is even permutation.