ИУ5Ц-84Б Карпов И.Е.

Рубежный контроль №2 (вариант 26)

Задание

Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Набор данных

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris_(https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris)

Методы

- метод опорных векторов
- случайный лес

Решение

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confus
```

In [2]:

```
iris = load_iris()
data = pd.DataFrame(data=iris.data, columns=iris.feature_names)
data['target'] = iris.target
data.head()
```

Out[2]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

In [3]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	150 non-null	float64
1	sepal width (cm)	150 non-null	float64
2	petal length (cm)	150 non-null	float64
3	petal width (cm)	150 non-null	float64
4	target	150 non-null	int32

dtypes: float64(4), int32(1)

memory usage: 5.4 KB

In [4]:

```
data.describe()
```

Out[4]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

```
In [5]:
```

```
data['target'].value_counts(normalize=True)

Out[5]:
0     0.333333
1     0.333333
2     0.333333
Name: target, dtype: float64

In [6]:
print('Количество пропущенных значений')
data.isnull().sum()
```

Количество пропущенных значений

Out[6]:

```
sepal length (cm) 0
sepal width (cm) 0
petal length (cm) 0
petal width (cm) 0
target 0
dtype: int64
```

Пропуски в данных не обнаружены.

Выбор метрик и подготовка данных

Так как выполняется задача небинарной классификации и в тестовой выборке возможен дисбаланс классов, были выбраны следующие метрики:

- · precision;
- recall;
- f1-score.

Всем метрикам был задан уровень детализации average='weighted'.

In [7]:

```
def print_metrics(y_test, y_pred):
    rep = classification_report(y_test, y_pred, output_dict=True)
    print("weighted precision:", rep['weighted avg']['precision'])
    print("weighted recall:", rep['weighted avg']['recall'])
    print("weighted f1-score:", rep['weighted avg']['f1-score'])
    plt.figure(figsize=(4, 3))
    plt.title('Матрица ошибок')
    sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, cmap="Blues");
```

In [8]:

```
x_train, x_test, y_train, y_test = train_test_split(data.drop(['target'], axis=1), data['ta
```

SVC

Базовая модель

In [11]:

```
svm_model = SVC()
svm_model.fit(x_train_scaled, y_train)
y_pred_svm = svm_model.predict(x_test_scaled)
print_metrics(y_test, y_pred_svm)
```

weighted precision: 0.9602828282828282

weighted recall: 0.96

weighted f1-score: 0.9598945386064031

Масштабирование данных

In [19]:

```
scaler = StandardScaler().fit(x_train)
x_train_scaled = pd.DataFrame(scaler.transform(x_train), columns=x_train.columns)
x_test_scaled = pd.DataFrame(scaler.transform(x_test), columns=x_train.columns)
x_train_scaled.describe()
```

Out[19]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	7.500000e+01	7.500000e+01	7.500000e+01	7.500000e+01
mean	1.169435e-16	-7.460699e-16	-6.069219e-17	6.365279e-17
std	1.006734e+00	1.006734e+00	1.006734e+00	1.006734e+00
min	-1.710367e+00	-2.351670e+00	-1.469543e+00	-1.377354e+00
25%	-8.901782e-01	-5.655914e-01	-1.200725e+00	-1.188848e+00
50%	-6.998944e-02	-1.190719e-01	3.584252e-01	2.563688e-01
75%	5.861615e - 01	5.507074e-01	8.154174e-01	8.847238e-01
max	2.226539e+00	3.006565e+00	1.702520e+00	1.513079e+00

Подбор гиперпараметров

In [20]:

```
params = {'C': np.concatenate([np.arange(0.1, 2, 0.03), np.arange(2, 20, 1)])}
grid_cv = GridSearchCV(estimator=svm_model, param_grid=params, cv=10, n_jobs=-1, scoring='f
grid_cv.fit(x_train_scaled, y_train)
print(grid_cv.best_params_)
```

{'C': 4.0}

Лучшая модель

In [21]:

```
best_svm_model = grid_cv.best_estimator_
best_svm_model.fit(x_train_scaled, y_train)
y_pred_svm = best_svm_model.predict(x_test_scaled)
print_metrics(y_test, y_pred_svm)
```

weighted precision: 0.9750537634408601
weighted recall: 0.9733333333333334
weighted f1-score: 0.97317171717171

RandomForestClassifier

Базовая модель

In [22]:

```
rfc_model = RandomForestClassifier()
rfc_model.fit(x_train, y_train)
y_pred_rfc = rfc_model.predict(x_test)
print_metrics(y_test, y_pred_rfc)
```


Подбор гиперпараметров

In [25]:

```
params = {'n_estimators': [5, 10, 50, 100], 'max_features': [2, 3, 4], 'criterion': ['gini'
grid_cv = GridSearchCV(estimator=rfc_model, param_grid=params, cv=10, n_jobs=-1, scoring='f
grid_cv.fit(x_train, y_train)
print(grid_cv.best_params_)
```

```
{'criterion': 'gini', 'max_features': 3, 'min_samples_leaf': 1, 'n_estimator
s': 10}
```

Лучшая модель

In [26]:

```
best_rfc_model = grid_cv.best_estimator_
best_rfc_model.fit(x_train, y_train)
y_pred_rfc = best_rfc_model.predict(x_test)
print_metrics(y_test, y_pred_rfc)
```


Сравнение результатов

In [27]:

```
print("SVC result\n")
print_metrics(y_test, y_pred_svm)
```

SVC result

weighted precision: 0.9750537634408601
weighted recall: 0.9733333333333334
weighted f1-score: 0.97317171717171

In [28]:

```
print("RandomForestClassifier result\n")
print_metrics(y_test, y_pred_rfc)
```

RandomForestClassifier result

Вывод

Модели с подобранными гиперпараметрами оказались лучше базовых моделей. Обе конечные модели показали очень высокую точность прогноза, что объясняется спецификой используемого "игрушечного" датасета. Из матриц ошибок видим, что обе модели совершили по 2 неверных прогноза из 75, однако ошибки у них разные. Метрики показывают, что качества рассматриваемых моделей практически одинаковое: отличия начинаются лишь в 4 знаке после запятой.

In []:			