

Proyecto Final: Parcial 1

Cristian Caballero Alexandra Shulca

Tabla de contenido

01020304DefiniciónDescripciónEjecuciónTópicos Cloud

Definición de la Aplicación

Clasificador de sentimiento para reseñas de Amazon

Aplicación basada en Inteligencia Artificial diseñada para analizar reseñas de productos de Amazon y determinar si son positivas o negativas. La aplicación utiliza técnicas avanzadas de procesamiento de lenguaje natural y machine learning para proporcionar precisión en sus resultados.

Funcionalidades, Características y Arquitectura

Funcionalidades

Ingreso de Datos:

Los usuarios pueden ingresar reseñas de productos a través de la interfaz web para su análisis

Análisis de Sentimientos:

La aplicación procesa las reseñas y determina si son positivas o negativas.

Acceso a Modelos de ML:

Posibilidad de acceder directamente a los modelos entrenados, así como a datos y métricas relacionados.

Entornos de Contenedores:

Despliegue de la aplicación en contenedores, como Docker, facilitando la replicación, escalabilidad y gestión del sistema.

Características

Interfaz Intuitiva:

Una interfaz de usuario clara y amigable que permite cargar fácilmente sus reseñas y visualizar los resultados del análisis

Escalabilidad

Capacidad de manejar grandes conjuntos de datos sin degradar el rendimiento, usando tecnologías como Apache Spark.

Modelo SVM Preentrenado

La aplicación cuenta con un modelo SVM ya entrenado, lo que facilita un análisis rápido para nuevos usuarios.

Costo Eficiente

Al utilizar funciones serverless, solo se paga por el tiempo de computación usado realmente.

Estructura de los datos

Los datos de estas reseñas en archivos parquet en el depósito amazon-reviews-pds S3.Cada línea de los archivos de datos representa una reseña individual.

Home Wireless Video Sports Toys

Arquitectura Machine Learning

Arquitectura Aplicación Web

Ejecución de la aplicación

- Preparación del entorno:
 - Azure Kubernetes Service
 - Azure Blob Storage
- Contenerizar la aplicación PySpark
- Acceso a Azure Blob Storage para leer datos y guardar el modelo
- Despliegue en AKS
- Entrenamiento: Trabajo en ejecución en AKS para procesar los datos de Azure Blob Storage, entrenará el modelo SVM y guardar el modelo resultante en Blob Storage.
- Backend (Serverless):
 - Crear una función en Azure Functions para cargar el modelo entrenado desde Blob Storage y realizar predicciones.
 - Esta función actúa como una API que el frontend puede llamar para obtener predicciones.
- Frontend: Interfaz web donde los usuarios puedan ingresar reseñas
 - Conectar la interfaz con el backend para que cuando un usuario ingrese una reseña, se haga una llamada a la función Azure y se muestre el resultado de la clasificación.

Tecnologías de Cloud Computing

Tecnologías de Cloud

Machine Learning

Backend

Frontend

Azure Web App for Containers

B