

Escola Tècnica Superior d'Enginyeria Informàtica Universitat Politècnica de València

Detección de perfiles políticos en Twitter

TRABAJO FINAL DE MÁSTER

Máster en Big Data Analytics

Autor: José Alberto Pérez Melián

Tutor: Francisco Manuel Rangel Pardo

Curso 2015-2016

Canarias son siete islas arrulladas por el mar, siete corazones guanches, siete notas de un cantar. Una guitarra en la mano y en el aire una folía; no hay canto como mi canto ni tierra como la mía.

Popular

Agradecimientos

Resumen

Resumen en lengua española

Palabras clave: Palabra clave español 1, palabra clave español 2

Abstract

Resumen en lengua inglesa

Key words: Keyword english 1, keyword english 2

Índice general

Ín	Índice general Índice de figuras XI Índice de tablas				
1	Intr	oducción	1		
2	Met	todología para la construcción del dataset	3		
	2.1	Araña web	3		
	2.2	Revisión manual	5		
	2.3	Refinamiento del corpus	6		
	2.4	Recuperación de timelines	8		
3		luación del dataset	9		
	3.1	Representación de los documentos	9		
		3.1.1 Bolsas de <i>n</i> -gramas de palabras	9		
	2.2	3.1.2 Métodos de representación de palabras: TF y TF-IDF	10		
	3.2	Algoritmos de clasificación	10		
		3.2.1 Máquinas de Vectores de Soporte	10		
		3.2.2 Naïve Bayes	10 10		
	3.3	Configuración experimental	10		
	3.3	3.3.1 Corpus de evaluación	11		
		3.3.2 Marco experimental	11		
		3.3.3 Medidas de evaluación	12		
	3.4	Análisis de la varianza (ANOVA)	12		
4	Res	ultados experimentales	15		
_	4.1	Modelos de <i>n</i> -gramas de palabras	15		
	4.2	Análisis de varianza (ANOVA)	15		
		4.2.1 Consideraciones previas	15		
		4.2.1.1 Independencia	16		
		4.2.1.2 Normalidad	16		
		4.2.1.3 Homogeneidad de varianzas	16		
		4.2.2 Escenario 1 - PP y PSOE	16		
		4.2.3 Escenario 2 - PP, PSOE, PODEMOS y CIUDADANOS	17		
		4.2.4 Escenario 3 - PP, PSOE, PODEMOS, CIUDADANOS y OTROS	17		
		4.2.5 Escenario 4 - Todos los partidos	18		
5	Cor	nclusiones y líneas de trabajo futuras	19		
Bi	bliog	grafía	21		
— A1	oénd:	ices			
-		ultados del análisis experimental	23		

X ÍNDICE GENERAL

B Resultados del estudio del análisis de la varianza (ANOVA)

29

Índice de figuras

2.1	Ejemplo de perfiles de las páginas web del Congreso y del Senado de España	4
B.1	Prueba de normalidad para el Escenario 1 con un ANOVA de 4 factores	30
B.2	Prueba de normalidad para el Escenario 1 con un ANOVA de 2 factores	31
B.3	Prueba de normalidad para el Escenario 2 con un ANOVA de 4 factores	32
B.4	Prueba de normalidad para el Escenario 2 con un ANOVA de 2 factores	33
B.5	Prueba de normalidad para el Escenario 3 con un ANOVA de 4 factores	34
B.6	Prueba de normalidad para el Escenario 3 con un ANOVA de 2 factores	35
B.7	Prueba de normalidad para el Escenario 4 con un ANOVA de 4 factores	36
B.8	Prueba de normalidad para el Escenario 4 con un ANOVA de 2 factores	37
B.9 B.10	Prueba de homogeneidad para el Escenario 1	38 38
B.11 B.12	Prueba de homogeneidad para el Escenario 3	39 39
B.13	Modelo ANOVA para el Escenario 1 con 2 factores	40
	Pruebas post-hoc para el Escenario 1 con el factor CLASNGRAM . Pruebas post-hoc para el Escenario 1 con el factor VOCABCARACT	40 41
	Modelo ANOVA para el Escenario 2 con 2 factores	41
B.17	Pruebas post-hoc para el Escenario 2 con el factor CLASNGRAM .	42
	Pruebas post-hoc para el Escenario 2 con el factor VOCABCARACT	42 43
	Modelo ANOVA para el Escenario 3 con 2 factores	43 43
	Pruebas post-hoc para el Escenario 3 con el factor VOCABCARACT	44
	Modelo ANOVA para el Escenario 4 con 2 factores	44
B.23	Pruebas post-hoc para el Escenario 4 con el factor CLASNGRAM .	44
B.24	Pruebas post-hoc para el Escenario 4 con el factor VOCABCARACT	45

Índice de tablas

2.1	Número de diputados por grupo parlamentario que disponen o no	_
2.2	de una cuenta de Twitter	5
2.2	Número de senadores por grupo parlamentario que disponen o no	_
2.2	de una cuenta de Twitter	5
2.3	Número de diputados por grupo parlamentario que disponen o no	(
2.4	de una cuenta de Twitter tras la revisión manual	6
2.4	Número de senadores por grupo parlamentario que disponen o no	6
2 5	de una cuenta en Twitter tras la revisión manual	6
2.5	Correspondencia entre grupos parlamentarios en el Congreso y partidos políticos	6
2.6	Correspondencia entre grupos parlamentarios en el Senado y par-	O
2.0	tidos políticos	7
2.7	Número de diputados y senadores etiquetados por partido político	,
2.7	que disponen de cuentas de Twitter	7
2.8	Número de diputados y senadores, tweets, proporción de tweets	,
2.0	por persona y longitud media (en palabras y en caracteres) de los	
	tweets tras la descarga de los timelines.	8
3.1	Ejemplo de la extracción de n -gramas de palabras para $n = 1, 2, 3$.	9
A.1	Accuracies obtenidos para el Escenario 1 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con Naïve Bayes como	
	clasificador para distintos tamaños de vocabulario	23
A.2	Accuracies obtenidos para el Escenario 1 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con SVM como clasifi-	
	cador para distintos tamaños de vocabulario	23
A.3	Accuracies obtenidos para el Escenario 1 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con Árboles de clasifi-	
	cación como clasificador para distintos tamaños de vocabulario	24
A.4	Accuracies obtenidos para el Escenario 2 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con Naïve Bayes como	
	clasificador para distintos tamaños de vocabulario	24
A.5	Accuracies obtenidos para el Escenario 2 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con SVM como clasifi-	
	cador para distintos tamaños de vocabulario	24
A.6	Accuracies obtenidos para el Escenario 2 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con Árboles de clasifi-	~-
	cación como clasificador para distintos tamaños de vocabulario	25
A.7	1 1	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con Naïve Bayes como	٥.
	clasificador para distintos tamaños de vocabulario	25

ÍNDICE DE TABLAS XIII

A.8	Accuracies obtenidos para el Escenario 3 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con SVM como clasifi-	
	cador para distintos tamaños de vocabulario	25
A.9	Accuracies obtenidos para el Escenario 3 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con Árboles de clasifi-	
	cación como clasificador para distintos tamaños de vocabulario	26
A.10	Accuracies obtenidos para el Escenario 4 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con Naïve Bayes como	
	clasificador para distintos tamaños de vocabulario	26
A.11	Accuracies obtenidos para el Escenario 4 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con SVM como clasifi-	
	cador para distintos tamaños de vocabulario	26
A.12	Accuracies obtenidos para el Escenario 4 utilizando representacio-	
	nes TF y TF-IDF para <i>n</i> -gramas de palabras con Árboles de clasifi-	
	cación como clasificador para distintos tamaños de vocabulario	27

CAPÍTULO 1 Introducción

Las redes sociales como Facebook, Twitter o Instagram se pueden definir como servicios que proveen a los usuarios la posibilidad de establecer conexiones con sus amigos a través de una aplicación y compartir información con ellos. Son, con diferencia, las aplicaciones más populares de lo que se conoce como Web 2.0, término que comprende «aquellos sitios web que facilitan el compartir información, la interoperabilidad, el diseño centrado en el usuario y la colaboración en la World Wide Web»¹. Se cuentan por millones los usuarios que las utilizan para estar en contacto con amigos, para conocer gente nueva o para hacer vínculos profesionales.

El crecimiento de las redes sociales por su uso e impacto en la sociedad ha crecido de forma exponencial en los últimos años al permitir «evaluar» la opinión de la gente en áreas muy diversas. Hoy en día es normal leer noticias en los periódicos donde se hacen eco de la repercusión social en Twitter de un suceso, como la aprobación o derogación de una ley, un evento deportivo o musical o la opinión sobre un nuevo producto o servicio. A la vez que aumenta la cantidad de usuarios de estas redes y los servicios que estas prestan, aumenta también el interés de muchos sectores (política, comercial, cultural...) debido al incremento de los datos generados por los usuarios que, tratados y analizados, pueden ser usados para la extracción de conocimiento mediante tareas de minería de opiniones (opinion mining) y de análisis de sentimientos (sentiment analysis).

La mayoría de los mensajes enviados por estas redes contienen información personal de los usuarios. Sin embargo, su uso y finalidad está cambiando y en los últimos años se ha visto un incremento en la cantidad de mensajes que contienen algún contenido político. El auge de estos mensajes ha permitido a los partidos políticos, a los candidatos y a los ciudadanos interactuar en tiempo real sobre cuestiones de actualidad. La importancia de las redes sociales en el ámbito político pudo verse claramente en la campaña de Barack Obama para las Elecciones Presidenciales de los Estados Unidos de América del año 2008, donde la presencia en redes sociales como Twitter, Facebook o MySpace fue parte fundamental de la campaña del candidato del Partido Demócrata. Algunos analistas atribuyen su victoria a la extensa presencia en estas redes, marcando así un hito que superó con creces el avance que supuso la aparición de las primeras páginas web de los candidatos a la Presidencia en el año 1996, la aparición del correo electrónico

¹Wikipedia. Accedido el 25 de junio de 2016. [Enlace]

2 Introducción

(1998), la recaudación online (2000) o la aparición de los primeros blogs (2004), estableciendo así redes como Twitter como un medio legítimo de comunicación en el terreno político desde el año 2008.

De todas las redes sociales existentes en este trabajo nos centraremos en Twitter, una red social de *microblogging* lanzada en el año 2006 cuya misión es «ofrecer a todo el mundo la posibilidad de generar y compartir ideas e información al instante y sin obstáculos»². Cuenta con alrededor de 310 millones de usuarios activos mensuales y en el año 2012³ se generaban en ella un total de 340 millones de *tweets* diarios⁴. Los mensajes o *tweets* no son más que pequeños mensajes de texto limitados a 140 caracteres de longitud en los que los usuarios pueden insertar fotos, vídeos, hipervínculos y emoticonos. Las siglas RT hacen referencia a los retweets, que son mensajes escritos por un usuario que otro comparte y propaga a su red de seguidores, dando más difusión al tweet original. También se ofrece la posibilidad de mencionar en el tweet a otros usuarios, añadiendo el símbolo @ seguido del nombre de la cuenta del usuario, y de poner etiquetas o *hashtags*, precedidas por el símbolo #, permitiendo así clasificar el tweet en una o varias temáticas.

El contenido y la estructura de la discusión que se lleva a cabo en Twitter presenta una oportunidad única para estudiar el rol que desempeña la red social como plataforma generadora de datos sobre los que realizar análisis posteriores.

El objetivo de este trabajo es lograr determinar el perfil político de los usuarios en Twitter. Para ello se presenta un corpus compuesto por hasta 1000 tweets de los diputados y senadores electos de la XII Legislatura de las Cortes Generales Españolas que tienen presencia en Twitter etiquetados según el partido político al que pertenecen. Este corpus se evalúa mediante distintas técnicas basadas en n-gramas, utilizadas para este tipo de tareas. Se usa, además, las Support Vector Machines (SVM) como método de clasificación para detectar el partido político de las cuentas de Twitter recuperadas.

La memoria se encuentra estructurada tal como sigue. En el Capítulo 2 se presenta la metodología empleada para la construcción del dataset que será objeto de estudio. Seguidamente, en el Capítulo 3 se presentarán las herramientas y técnicas por las que se evaluará el conjunto de datos para finalmente, en el Capítulo 4, presentar los resultados experimentales del estudio. Por último, en el Capítulo 5, se presentan las conclusiones y se esbozan las líneas de trabajo futuras.

²About Twitter. Accedido el 25 de junio de 2016. [Enlace]

³No se han encontrado datos oficiales más recientes

⁴Twitter Blog, 12 de marzo de 2012. Accedido el 25 de junio de 2016. [Enlace]

CAPÍTULO 2

Metodología para la construcción del dataset

En este capítulo se detalla la metodología que se ha seguido para la construcción de un dataset con mensajes escritos en Twitter por los diputados y senadores de la XII legislatura de las Cortes Generales Españolas. El proceso de construcción del dataset puede verse en más detalle en la Figura XX. En primer lugar, para la obtención de las cuentas de Twitter de los diputados y senadores se hace uso de una araña web que rastrea sus perfiles en las páginas institucionales del Congreso de los Diputados y del Senado de España, obteniendo para cada diputado o senador su nombre de usuario de Twitter y el grupo parlamentario al que se encuentra adscrito. Una vez obtenida esta información se hace una revisión manual en la que se comprueban los diputados o senadores que no disponen de cuenta de Twitter en las páginas institucionales y se añaden sus respectivas cuentas si disponen de ellas. A continuación se realiza un refinamiento del corpus, donde se identifica a cada diputado o senador según el partido político (y no grupo parlamentario) al que pertenece. Por último se procede a recuperar los timelines de los usuarios obtenidos en las etapas anteriores, descargando los últimos 1000 tweets escritos por cada diputado o senador.

2.1 Araña web

Para obtener las cuentas de usuario de Twitter de los diputados y senadores de la XII legislatura de las Cortes Generales Españolas se ha desarrollado una araña web con la herramienta Scrapy¹, un software de código abierto implementado en Python para extraer los datos que se quieran de la web de una forma rápida y sencilla.

La araña web se encarga de extraer los datos de la página web del Congreso de los Diputados y del Senado de España, donde se encuentran los perfiles personales de los miembros que integran ambas cámaras junto a sus datos personales. En la Figura 2.1 puede verse el perfil del diputado Mariano Rajoy Brey (Congreso) y de Francisco Javier Arenas Bocanegra (Senado). En ellos se tiene información como el nombre completo, su foto, el grupo parlamentario al que pertenece o la

¹https://scrapy.org

provincia por la que ha resultado electo, entre otras. En la parte inferior se ve también información relativa a las redes sociales; en este caso, Facebook, Twitter y YouTube. El objetivo de la araña web es extraer, si existe, la información relacionada con Twitter junto al nombre y apellidos del diputado o senador, el grupo parlamentario al que está adscrito y el nombre de usuario de Twitter del mismo.

(b) Perfil del senador Javier Arenas

Figura 2.1: Ejemplo de perfiles de las páginas web del Congreso y del Senado de España

Las Tablas 2.1 y 2.2 muestran respectivamente para el Congreso y el Senado el número de diputados y senadores que disponen o no de cuenta en su perfil personal de ambas cámaras agrupados por los grupos parlamentarios a los que están adscritos. Los datos muestran que aproximadamente el 82 % de los dipu-

2.2 Revisión manual 5

tados tienen cuenta en Twitter frente al 30 % de senadores que también disponen de cuenta en la red social.

Congreso de los Diputados			
Grupo	Con Twitter	Sin Twitter	Total
GCUP-EC-EM	62	5	67
GC	32	0	32
GER	8	1	9
GMx	14	5	19
GP	94	40	134
GS	71	13	84
GV (EAJ-PNV)	4	1	5
Total	285	65	350

Tabla 2.1: Número de diputados por grupo parlamentario que disponen o no de una cuenta de Twitter

Grupo	Senado de Con Twitter	-	Total
GPER	2	10	13
GPMX	6	10	16
GPP	52	96	148
GPPOD	8	13	21
GPS	11	61	62
GPV	0	6	6
Total	79	186	265

Tabla 2.2: Número de senadores por grupo parlamentario que disponen o no de una cuenta de Twitter

2.2 Revisión manual

Los diputados o senadores no tienen la obligación de añadir a su perfil las redes sociales en las que participan, por lo que los datos obtenidos en el punto 2.1. deben ser revisados para buscar aquellos que no han proporcionado su usuario, bien porque no tienen cuenta en Twitter o porque no la han especificado. Por ello es necesario hacer una revisión manual y comprobar si hay algún caso que cumpla alguna de estas condiciones.

Tras comprobar si los diputados o senadores sin cuenta en las páginas oficiales de las cámaras disponen de cuentas en Twitter se realiza una anotación manual cuyos resultados pueden verse en las Tablas 2.3 y 2.4.

Grupo	Diputados con Twitter
GCUP-EC-EM	63 (+1)
GC	32 (=)
GER	8 (=)
GMx	18 (+4)
GP	98 (+4)
GS	73 (+2)
GV (EAJ-PNV)	4 (=)
Total	296 (+11)

Grupo	Senadores con Twitter
GPER	7 (+5)
PMX	10 (+4)
GPP	74 (+22)
GPPOD	13 (+5)
GPS	27 (+16)
GPV	1 (+1)
Total	132 (+53)

Tabla 2.3: Número de diputados por grupo parlamentario que disponen o no de una cuenta de Twitter tras la revisión manual

Tabla 2.4: Número de senadores por grupo parlamentario que disponen o no de una cuenta en Twitter tras la revisión manual

2.3 Refinamiento del corpus

Llegados a este punto se tiene, para cada diputado y senador, el grupo parlamentario al que se encuentra adscrito. Se procede ahora a sustituir el grupo parlamentario por el partido político o coalición electoral a la que pertenece. En el Congreso de los Diputados en la XII legislatura hay 7 grupos parlamentarios, mientras que en el Senado hay 6. Las Tablas 2.5 e 2.6 muestran las siglas de los grupos parlamentarios de ambas cámaras junto su nombre, además del partido político al que encuentran adscritos los diputados y senadores.

Grupo	Nombre	Partido político	
GCUP-EC-EM	Grupo de Candidaturas	PODEMOS	
	de Ûnidad Popular - En		
	Comú - En Marea		
GC	Grupo Ciudadanos	CIUDADANOS	
GER	Grupo Esquerra Repu-	ERC	
	blicana		
GMx	Grupo Mixto	CDC, COMPROMIS,	
		BILDU, UPN, CC,	
		FORO, NC	
GP	Grupo Popular	PP	
GS	Grupo Socialista	PSOE	
GV (EAJ-PNV)	Grupo Vasco	PNV	

Tabla 2.5: Correspondencia entre grupos parlamentarios en el Congreso y partidos políticos

Una vez se llega a este punto es necesario etiquetar a los diputados y senadores en el partido político al que están adscritos para predecir con mayor precisión la opción política en el modelo que se construirá en pasos sucesivos.

Realizado este cambio el estado del dataset queda como en la Tabla 2.7, donde se observa el número de diputados y senadores etiquetados por partido político.

Grupo	Nombre	Partido político	
GER	Grupo Esquerra Repu-	ERC	
	blicana		
GC	Grupo Popular	PP	
GPPOD	Grupo Esquerra Repu-	PODEMOS	
	blicana		
GPS	Grupo Socialista	PSOE	
GP V	Grupo Popular	PNV	
GMx	Grupo Mixto	CIUDADANOS, CDC,	
		CC, COMPROMIS, NC,	
		ASG, BILDU, FORO,	
		UPN	

Tabla 2.6: Correspondencia entre grupos parlamentarios en el Senado y partidos políticos

Partido	Diputados	Senadores	Total
PP	98	74	172
PSOE	73	27	100
PODEMOS	63	13	76
CIUDADANOS	32	2	34
ERC	8	7	15
PNV	4	1	5
COMPROMIS	3	2	5
BILDU	2	0	2
CDC	8	3	11
UPN	2	0	2
CC	1	2	3
FORO	1	0	1
NC	1	1	2
Total	296	132	428

Tabla 2.7: Número de diputados y senadores etiquetados por partido político que disponen de cuentas de Twitter

2.4 Recuperación de timelines

Una vez etiquetados todos los diputados y senadores con cuenta en Twitter el siguiente paso consiste en recuperar los últimos 1.000 tweets de los *timelines* de los diputados y senadores del punto anterior. En la Tabla 2.8 se muestran, para cada partido político, el número de tweets que han sido recuperados para ambas cámaras, así como el número de tweets por usuario y la longitud media de los tweets en palabras y en caracteres.

Partido	Dip./Sen.	Tweets	Tweets/usuario	Longit Palabras	ud media Caracteres
PP	172	135.458	787,55	17,06	126,30
PSOE	100	81.870	818,70	16,88	124,08
PODEMOS	76	68.784	905,05	17,54	129,94
CIUDADANOS	34	33.747	992,56	17,29	130,28
ERC	15	14.416	943,07	17,05	124,67
PNV	5	3.398	677,80	15,78	119,43
COMPROMIS	5	3.796	759,20	16,21	122,04
BILDU	2	1.995	997,50	16,72	129,08
CDC	11	10.992	999,27	17,60	127,13
UPN	2	1.996	998,00	16,30	119,13
CC	3	2.439	812,33	16,81	125,88
FORO	1	99	99,00	14,06	110,77
NC	2	1.672	836,00	16,75	127,46
Total	428	360,662	-	-	-
Media	32,92	27.743,23	817,39	16,62	124,32
SDev	52,32	42.117,95	240,23	0,93	5,43

Tabla 2.8: Número de diputados y senadores, tweets, proporción de tweets por persona y longitud media (en palabras y en caracteres) de los tweets tras la descarga de los timelines.

CAPÍTULO 3 Evaluación del dataset

En este capítulo se abordan las técnicas aplicadas sobre el dataset para construir un sistema que sea capaz de discernir la orientación política de un perfil en Twitter. Para ello se experimenta con distintas representaciones de documentos basadas en *n*-gramas de palabras empleando los métodos TF y TF-IDF y usando las Máquinas de Vectores de Soporte como método de clasificación para la identificación de la orientación política.

3.1 Representación de los documentos

En esta sección se detallan las técnicas empleadas para la representación de los documentos o *tweets*. Estos documentos se representan mediante vectores de características de *n*-gramas en los que se proyectan la frecuencia de los términos en los documentos o *Term Frequency* (TF) o *Term Frequency-Inverse Document Frequency* (TF-IDF).

3.1.1. Bolsas de *n*-gramas de palabras

Los n-gramas son muy utilizados en tareas de minería de texto o Text Mining y en procesamiento del lenguaje natural o Natural Language Processing (NLP). Un n-grama es una subsecuencia de n elementos de una secuencia dada. La Tabla 3.1 muestra la descomposición del texto «somos una gran nación» en unigramas (n=1) bigramas (n=2) y trigramas (n=3) de palabras.

- ·				• /
I exto.	«somos	una	oran	nación»
ICALO.	"DOIIIOD	aria	Siuii	TIUCIOII"

n	n-gramas de palabras
1	(somos), (una), (gran), (nación)
2	(somos, una), (una, gran), (gran, nación)
3	(somos una gran), (una, gran, nación)

Tabla 3.1: Ejemplo de la extracción de n-gramas de palabras para n = 1, 2, 3.

10 Evaluación del dataset

3.1.2. Métodos de representación de palabras: TF y TF-IDF

Una vez se tiene para cada documento los *n*-gramas calculados es necesario obtener el vector de características bien con la frecuencia con la que cada término aparece en el documento o la frecuencia ponderada de aparición en el total de documentos. En el primer caso se hace referencia a la técnica *Term Frequency* (TF), en la que se contabiliza el número de apariciones de un término en un documento. En el otro caso se trata del método *Term Frequency-Inverse Document Frequency* (TF-IDF).

3.2 Algoritmos de clasificación

En esta sección de describen las Máquinas de Vectores de Soporte (SVM) como el método de clasificación implementado para abordar el problema de la identificación de perfiles políticos en Twitter.

Para implementar todos los algoritmos se hace uso de la librería scikit-learn¹.

3.2.1. Máquinas de Vectores de Soporte

Las Máquinas de Vectores de Soporte (en inglés, *Support Vector Machines*) son un método de clasificación que se basa en la construcción de hiperplanos para separar las muestras de las clases a predecir, de forma que el margen entre la distancia entre las muestras más próximas de cualquier clase y los hiperplanos sea la máxima, haciendo uso de métodos basados en *kernels* para operar en espacios de alta dimensionalidad.

3.2.2. Naïve Bayes

Los métodos de Bayes naïve son un conjunto de algoritmos de aprendizaje supervisados basados en la aplicación del teorema de Bayes con la suposición «ingenua» de independencia entre cada par de características.

3.2.3. Árboles de clasificación

Los árboles de clasificación sirven para resolver problemas de clasificación, con el objetivo de asignar un caso u observación a una de las categorías o clases especificadas. Un árbol consiste en un conjunto secuencial de condiciones y acciones que relacionan unos determinados factores con un resultado o decisión. Es un método de clasificación supervisada que analiza los datos proporcionados en busca de patrones y usa los resultados de este análisis para definir la secuencia y condiciones para la creación del modelo de clasificación. Un árbol de clasificación busca en cada nodo (split) maximizar la variabilidad explicada por ese nodo.

¹scikit-learn.org

3.3 Configuración experimental

A continuación se procede a explicar el dataset empleado, el marco experimental y las medidas de evaluación para medir la calidad del modelo.

3.3.1. Corpus de evaluación

El proceso de evaluación se realiza con una muestra significativa del dataset construído en el Capítulo 2, que contiene hasta 1.000 tweets de los miembros del Congreso de los Diputados y del Senado de España de la XII Legislatura de las Cortes Generales Españolas. La Tabla 2.8 muestra más en detalle la composición del corpus.

Con el objetivo de estudiar el rendimiento de los distintos clasificadores se generan tres escenarios para los que se construyen varios modelos modelos:

- Escenario 1. Se tienen en cuenta los partidos PP y PSOE.
- Escenario 2. Se tienen en cuenta los partidos PP, PSOE, PODEMOS y CIU-DADANOS.
- Escenario 3. Se tienen en cuenta los partidos PP, PSOE, PODEMOS, CIU-DADANOS y OTROS, en los que se engloban el resto de partidos presentes del dataset.
- Escenario 4. Se tienen en cuenta todos los partidos presentes en el dataset.

3.3.2. Marco experimental

A continuación se explican más en detalle los pasos seguidos para la realización de los experimentos.

- **Paso 1** Se extrae el texto de los tweets descargados y se aplica un proceso de tokenización para la división del texto en palabras, pasándolas a minúscula.
- **Paso 2** Con las secuencias de palabras obtenidas se generan bolsas de *n*-gramas de palabras para distintos valores de *n* (de 1 a 5) variando el tamaño del vocabulario (500, 1.000 y 5.000 términos). Para cada configuración se generan las características aplicando los métodos TF y TF-IDF de representación de documentos.
- **Paso 3** Generación de los modelos mediante las técnicas de clasificación vistas en el punto 3.2.
- **Paso 4** Realización de un estudio ANOVA multifactorial para determinar el modelo más significativo para los escenarios propuestos.

Los experimentos se han llevado a cabo bajo un esquema de validación cruzada de k iteraciones o K-Fold cross-validation con k = 10.

12 Evaluación del dataset

3.3.3. Medidas de evaluación

Para la evaluación de los modelos generados para los distintos escenarios se emplean las métricas aquí descritas.

Accuracy Relación entre el número de verdaderos positivos (TP) y verdaderos negativos (TN) frente a la suma de positivos (P) y negativos (N). Indica la relación de muestras bien clasificadas frente al total.

$$accuracy = \frac{TP + TN}{P + N}$$

Precision Relación entre los verdaderos positivos (TP) frente a la suma de verdaderos positivos (TP) y falsos positivos (FP).

$$precision = \frac{TP}{TP + FP}$$

Recall Relación entre el número de verdaderos positivos (TP) frente a la suma de verdaderos positivos (TP) y falsos negativos (FN).

$$recall = \frac{TP}{TP + FN}$$

F1-score o F-score Media armónica entre la precision y el recall.

$$Fscore = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

3.4 Análisis de la varianza (ANOVA)

El análisis de la varianza o ANOVA (*Analysis of variance*) estudia el efecto de una o varias variables independientes, denominadas factores, sobre una o varias variables dependientes. Se trata, por tanto, de una generalización del contraste de medias para dos muestras con datos independientes y se aplica en situaciones en las que se quieran comparar tres o más grupos de datos. Los grupos vienen definidos por los factores a estudio.

Para este trabajo se tienen las siguientes variables o factores a estudio:

- CLASIFICADOR, con los niveles NAIVE-BAYES, SVM y TREE.
- **NGRAMAS**, con los niveles 1, 2, 3, 4 y 5.
- **VOCABULARIO**, con los niveles 500, 1.000 y 5.000.
- **CARACTERÍSTICAS**, con los niveles TF y TF-IDF.

Debido a esto se aplica un modelo factorial de análisis de varianza con los factores antes mencionados para evaluar sus efectos individuales y en conjunto sobre una variable dependiente cuantitativa, que en este caso es el ACCURACY de los modelos. En un análisis de varianza factorial existe una hipótesis nula por cada factor y por cada posible combinación de factores. La hipótesis nula referida a un factor afirma que las medias de las poblaciones definidas por los niveles del factor son iguales. La hipótesis referida al efecto de una interacción afirma que tal efecto es nulo. Para contrastar estas hipótesis el ANOVA facorial se sirve de estadísticos *F*.

En un modelo de cuatro factores, los efectos de interés a estudiar son quince: los cuatro factores principales (uno por cada factor), el efecto de la interacción de los factores dos a dos, el efecto de la interacción de los factores tres a tres y el efecto de la interacción entre todos los factores. A medida que aumenta el número de factores en un análisis ANOVA este se complica, por lo que se ha optado por realizar un análisis con dos factores, siendo éstos una combinación de los originales. Más adelante se argumentará y comprobará que el análisis no varía en sus resultados y es equivalente. A continuación se especifican los nuevos dos factores y la combinación escogida entre los iniciales:

- CLASNGRAM, combinación de los factores CLASIFICADOR y NGRA-MAS.
- VOCABCARACT, combinación de los factores VOCABULARIO y CARAC-TERÍSTICAS.

CAPÍTULO 4 Resultados experimentales

En este capítulo se describen los resultados obtenidos durante el proceso de evaluación, aplicando las técnicas y representaciones ya mencionadas en el Capítulo 3 para los cuatro escenarios propuestos.

4.1 Modelos de *n*-gramas de palabras

Las Tablas A.1, A.2 y A.3 muestra los resultados para el Escenario 1, las Tablas A.4, A.5 y A.6 para el Escenario 2, las Tablas A.7, A.8 y A.9 para el Escenario 3 y las Tablas A.10, A.11 y A.12 para el Escenario 4.

Las tablas anteriores muestran para cada combinación la media de 10 modelos. Con el objetivo de estudiar el impacto de cada variable en la precisión de los modelos se realiza un análisis de la varianza o ANOVA. Tras el mismo se presentan los resultados y la combinación de características que mejor explican la precisión global.

4.2 Análisis de varianza (ANOVA)

4.2.1. Consideraciones previas

Para poder aplicar el análisis ANOVA se deben cumplir tres hipótesis, aunque se aceptan ligeras desviaciones de las condiciones ideales:

- Independencia de las observaciones. Cada conjunto de datos debe ser independiente del resto.
- Normalidad de las observaciones. Los resultados obtenidos para cada conjunto deben seguir una distribución normal.
- Homogeneidad de las varianzas. Las varianzas de cada conjunto no deben diferir de forma significativa.

4.2.1.1. Independencia

En los modelos generados en los cuatro escenarios propuestos se cumple la condición de independencia de las observaciones. Los tweets con los que se han generado dichos modelos han sido seleccionados de forma totalmente aleatoria e independiente para cada uno de ellos.

4.2.1.2. Normalidad

En la Figura B.1 se observan las pruebas de normalidad relativas al modelo ANOVA de 4 factores para el Escenario 1. Según el test de normalidad de Kolmogorov-Smirnov, de los 90 grupos todos resultan asemejarse a una distribución normal (p>0.05) salvo 4 de ellos. Si estudiamos ahora la normalidad para el mismo escenario en el modelo ANOVA de 2 factores (ver Figura B.2), también se cumple el test de normalidad para los grupos salvo para 4 casos. De igual forma se cumple la normalidad para el Escenario 2 (ver Figuras B.3 y B.3), para el Escenario 3 (ver Figuras B.5 y B.5) y para el Escenario 4 (ver Figuras B.7 y B.7).

4.2.1.3. Homogeneidad de varianzas

La prueba de igualdad de Levene de varianzas de error prueba la hipótesis nula que la varianza de error de la variable dependiente (ACCURACY) es igual entre grupos.

En las Figuras B.9a y B.9b se observa el resultado de la prueba para el Escenario 1 con el modelo ANOVA de 4 y 2 factores respectivamente. En ambos casos se puede afirmar que no existen diferencias significativas entre las varianzas de error de los grupos para ambos casos y se ve además que coinciden, probando la equivalencia de los dos modelos. De igual forma se cumple este supuesto para el Escenario 2 (ver Figuras B.10a y B.10b), para el Escenario 3 (ver Figuras B.11a y B.11b) y para el Escenario 4 (ver Figuras B.12a y B.12b).

Tras presentar los resultados de las consideraciones previas necesarias para realizar los análisis ANOVA se pasan a estudiar los demolos de 2 variables.

4.2.2. Escenario 1 - PP y PSOE

En primer lugar se procede a estudiar los resultados obtenidos para los dos partidos mayoritarios de ambas cámaras, el Partido Popular (PP) y el Partido Socialista Obrero Español (PSOE). En la Figura B.13 se observa la tabla de los factores inter-sujetos. El *modelo corregido* se refiere a todos los efectos del modelo tomados juntos (el efecto de los dos factores, el de la interacción y de la constante o intersección). El p-valor asociado es menor a 0.05, lo que indica que el modelo explica una parte significativa de la variación observada en la variable dependiente. El valor $R^2 = 0,538$ indica que los factores incluídos en el modelo están explicando el 53.8 % de la varianza de la variable dependiente ACCURACY. La *intersección* se refiere a la constante del modelo. Esta constante forma parte del

modelo y permite contrastar, el en caso de que esto tenga sentido, la hipótesis de que la media total de la variable dependiente vale cero en la población.

El resto de items recogen los efectos principales, es decir, los efectos individuales de los dos factores incluídos en el modelo: CLASNGRAM y VOCABCARACT. Los p-valores menores a 0.05 indican que los grupos definidos por los factores combinados CLASIFICADOR-NGRAMAS y VOCABULARIO-CARACTERÍSTICAS producen que las precisiones de los modelos sean significativamente diferentes para cada combinación de ellos. Por último vemos el efecto de la interacción entre CLASNGRAM y VOCABCARACT. Como el p-valor es mayor a 0.05 el efecto de esta interacción no es significativo, lo que indica que en base a las distintas combinaciones de estos nuevos factores no se producen diferencias significativas en la precisión de los modelos; esto es, ni el método de clasificación, ni la combinación de *n*-gramas, ni el tamaño de vocabulario ni el método de representación de características hacen que la precisión de los modelos sea distinta o, dicho de otra forma, da igual la combinación de factores a escoger, pues la precisión obtenida será significativamente igual en todos los casos.

Como en todo análisis ANOVA se hace necesario realizar comparaciones post hoc de los factores. En la Figura B.14 se muestra el efecto de la variable CLASN-GRAM sobre la precisión de los modelos. De todas las combinaciones son solamente dos (NAIVE-BAYES-1 y SVM-1) las que presentan un mayor accuracy, siendo significativamente diferentes del resto. En la Figura B.15 se evalúa, por otro lado, el factor VOCABCARACT. La mejor combinación en este caso la presentan las combinaciones 5000-TF-IDF y 5000-TF.

4.2.3. Escenario 2 - PP, PSOE, PODEMOS y CIUDADANOS

Si se observa ahora el escenario 2, formado por los 4 partidos mayoritarios (PP, PSOE, PODEMOS y CIUDADANOS), se ve en la Tabla B.16 los factores intersujetos. El p-valor asociado al *modelo corregido* es menor a 0.05, signo de que el modelo explica la variación observada en la variable dependiente. El valor $R^2 = 0.824$ indica que los factores incluídos en el modelo están explicando el 82.4 % de la varianza de la variable dependiente ACCURACY.

Los p-valores menores a 0.05 indican que los grupos definidos por los factores combinados CLASIFICADOR-NGRAMAS y VOCABULARIO-CARACTERÍSTICAS producen que las precisiones de los modelos sean significativamente diferentes para cada combinación de ellos. El efecto de la interacción entre CLASNGRAM y VOCABCARACT arroja un p-valor de 0.640 (mayor, por tanto, a 0.05) indicando así que no hay diferencias significativas en la interacción de ambos factores.

Las comparaciones post-hoc de la Figura B.17 indica que la mejor combinación es SVM-1. En la Figura B.18, por otra parte, las mejores combinaciones son 5000-TF-IDF y 5000-TF.

4.2.4. Escenario 3 - PP, PSOE, PODEMOS, CIUDADANOS y OTROS

En el escenario 3 se realiza el análisis para los cuatro partidos mayoritarios pero se incluye una clase, OTROS, donde se aglutinan el resto de partidos de las

cámaras legislativas españolas. En la Tabla B.19 se muestran los factores intersujetos. Con un p-valor inferior a 0.05, el *modelo corregido* explica la variación en la variable independiente y su valor $R^2 = 0.896$ indica que explica el 89.6% de la varianza de la variable dependiente ACCURACY.

Los p-valores menores a 0.05 indican que los grupos definidos por los factores combinados CLASIFICADOR-NGRAMAS y VOCABULARIO-CARACTERÍSTICAS producen que las precisiones de los modelos sean significativamente diferentes para cada combinación de ellos. El efecto de la interacción entre CLASNGRAM y VOCABCARACT arroja un p-valor menor a 0.05) indicando que sí que hay diferencias significativas en la interacción de ambos factores.

En lo que respecta a las pruebas post-hoc, la Figura B.20 muestra que la mejor combinación de la variable CLASNGRAM es aquella que tiene las SVM como método de clasficación y 1 n-gramas. La Figura B.21 muestra que la mejor combinación de la variable VOCABCARACT es aquella donde se tienen en cuenta solamente 5000 palabras de vocabulario y se escoge el método TF como método de representación de características.

4.2.5. Escenario 4 - Todos los partidos

El escenario 4, donde se tienen en cuenta todos los partidos presentes en las Cortes, arroja los siguientes resultados. En la Tabla B.22 se muestran los factores inter-sujetos. Con un p-valor inferior a 0.05, el *modelo corregido* explica la variación en la variable independiente y su valor $R^2 = 0.985$ indica que explica el 98.5% de la varianza de la variable dependiente ACCURACY.

Los p-valores menores a 0.05 indican que los grupos definidos por los factores combinados CLASIFICADOR-NGRAMAS y VOCABULARIO-CARACTERÍSTICAS producen que las precisiones de los modelos sean significativamente diferentes para cada combinación de ellos. El efecto de la interacción entre CLASNGRAM y VOCABCARACT arroja un p-valor menor a 0.05) indicando que sí que hay diferencias significativas en la interacción de ambos factores.

Las pruebas post-hoc (ver Figuras B.23 y B.24) sostienen que la mejor combinación para la variable VOCABCARACT es aquella en la que se tiene un vocabulario de tamaño 5000 usando el método de representación TF. Para la variable CLASNGRAM, por su parte, la mejor combinación la produce el clasificador SVM escogiendo 1 n-gramas de palabras.

CAPÍTULO 5 Conclusiones y líneas de trabajo futuras

En esta memoria se presenta el trabajo llevado a cabo para la tarea de identificación de perfiles políticos de usuarios en Twitter. Para ello se ha construido un dataset con hasta 1000 tweets de cada diputado y senador de la XII Legislatura de las Cortes Españoles con presencia en dicha red social. Para obtener las cuentas de sus señorías ha sido necesario programar una araña web para extraer la información que se encuentra en las páginas oficiales tanto del Congreso de los Diputados como del Senado de España, y una vez descargados los tweets se ha prodecido a etiquetarlos según la adscripción al partido político de su autor.

Para la tarea de identificación de perfiles políticos se han aplicado distintas técnicas de representación de documentos: se han utilizado n-gramas de palabras (con n=1,2,3,4,5), distintos métodos de representación como el TF y el TF-IDF teniendo en cuenta distintos tamaños de vocabulario (500, 1000 ó 5000 palabras). Con el objetivo de evaluar el rendimiento de los clasificadores y las características antes mencionadas se diseñaron 4 escenarios de pruebas. El primer escenario, formado por cuentas del PP y del PSOE; el segundo, con tweets pertenecientes a los 4 partidos mayoritarios de las Cámaras: PP, PSOE, PODEMOS y CIUDADANOS; un tercer modelo similar al segundo pero añadiendo una categoría OTROS (donde se incluían el resto de partidos) y, finalmente, un último escenario con todos los partidos presentes en las Cortes.

Para cada combinación de factores y para cada escenario se realizó un k-fold cross validation con k=10 y se midió el rendimiento de los modelos, para luego realizar un análisis de la varianza o ANOVA para estudiar y determinar el comportamiento del *accuracy* de los mismos. Si nos fijamos en el rendimiento de los clasificadores en el escenario 1, las máquinas de vectores de soporte o SVM y el clasificador bayesiano presentan los mejores resultados, escogiendo uni-gramas de palabras, 5000 palabras de vocabulario y con los métodos TF y TF-IDF de representación de documentos, obteniendo *accuracies* cercanos al 60 %. Fijándonos en el escenario 2 se cumplen los supuestos vistos en el primer escenario. Las SVM, junto con los uni-gramas de palabras, las 5000 palabras de vocabulario y los métodos TF-IDF presentan los mejores resultados, logrando *accuracies* del 40 %. Para los dos escenarios restantes se repite la misma configuración: los mejores resultados se obtienen, nuevamente, con las SVM y escogiendo 5000 palabras de vocabulario, uni-gramas de palabras y TF como método de representación de

documentos, logrando *accuracies* del 40 % para el escenario 3 y del 36 % para el escenario 4.

Uno de los trabajos de investigación futuros consiste en la reducción de las variables consideradas a estudio en este trabajo. La recolección de tweets es muy costosa en tiempo de descarga debido también a la cantidad de usuarios que se han tenido en cuenta en el estudio y el número de tweets a obtener para cada uno de ellos.

Otro futuro trabajo consistiría en realizar el estudio para distintos usuarios, ya que en este caso se han tenido en cuenta perfiles de políticos de primer nivel. Resultaría de mucho interés analizar los resultados obtenidos si se cambia el corpus de usuarios; por ejemplo, teniendo en cuenta perfiles de analistas políticos o periodistas e incluso usuarios a nivel general de Twitter. Esto añadiría cierta complejidad al trabajo, ya que sería difícil encontrar un dataset de personas de distintos perfiles de los cuales se conozca su afiliación política para entrenar los modelos correspondientes. En este caso se debería estudiar también el posible impacto legal del estudio, ya que se tendrían almacenados en uno o varios ficheros una lista de usuarios o personas con su correspondiente afiliación política.

Bibliografía

APÉNDICE A Resultados del análisis experimental

Escenario 1 - PP y PSOE Naïve Bayes								
	500 términos 1.000 términos 5.0					érminos		
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF		
1	0,5781	0,5868	0,6038	0,6113	0,6193	0,6206		
2	0,5588	0,5631	0,5738	0,5731	0,5718	0,5825		
3	0,5043	0,5193	0,5019	0,5087	0,5250	0,5181		
4	0,5043	0,5193	0,5019	0,5087	0,5250	0,5181		
5	0,5019	0,5137	0,5075	0,5125	0,5425	0,5206		

Tabla A.1: *Accuracies* obtenidos para el Escenario 1 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con Naïve Bayes como clasificador para distintos tamaños de vocabulario.

	Escenario 1 - PP y PSOE SVM								
	500 té	500 términos 1.000 términos 5.000 términos							
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF			
1	0,6000	0,5981	0,6175	0,5875	0,6188	0,6106			
2	0,5725	0,5668	0,5706	0,5525	0,5775	0,5569			
3	0,5300	0,5275	0,5306	0,5431	0,5581	0,5493			
4	0,4887	0,4956	0,5062	0,5075	0,5106	0,5138			
5	0,4706	0,4931	0,4775	0,4768	0,4906	0,5050			

Tabla A.2: *Accuracies* obtenidos para el Escenario 1 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con SVM como clasificador para distintos tamaños de vocabulario.

Escenario 1 - PP y PSOE Árboles de clasificación								
	500 términos 1.000 términos 5.000 términos							
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF		
1	0,5700	0,5613	0,5800	0,5781	0,5750	0,5675		
2	0,5425	0,5406	0,5419	0,5438	0,5706	0,5488		
3	0,5363	0,5356	0,5175	0,5262	0,5393	0,5300		
4	0,4731	0,4918	0,4981	0,5000	0,5088	0,4988		
5	0,4868	0,4863	0,4793	0,4868	0,5038	0,5031		

Tabla A.3: *Accuracies* obtenidos para el Escenario 1 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con Árboles de clasificación como clasificador para distintos tamaños de vocabulario.

Escenario 1 - PP, PSOE, PODEMOS y CIUDADANOS Naïve Bayes								
	500 té	rminos	1.000 términos		5.000 términos			
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF		
1	0,3800	0,3775	0,3921	0,3734	0,4134	0,4003		
2	0,3478	0,3440	0,3400	0,3415	0,3640	0,3603		
3	0,3062	0,2990	0,3146	0,3100	0,3306	0,3231		
4	0,2662	0,2706	0,2709	0,2625	0,2828	0,2875		
5	0,2518	0,2593	0,2587	0,2603	0,2821	0,2759		

Tabla A.4: *Accuracies* obtenidos para el Escenario 2 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con Naïve Bayes como clasificador para distintos tamaños de vocabulario.

Escenario 1 - PP, PSOE, PODEMOS y CIUDADANOS SVM								
	500 té	5.000 t	érminos					
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF		
1	0,4156	0,4053	0,4121	0,3931	0,4287	0,3943		
2	0,3490	0,3425	0,3659	0,3456	0,3762	0,3609		
3	0,3081	0,3006	0,3253	0,3084	0,3321	0,3190		
4	0,2481	0,2631	0,2437	0,2556	0,2803	0,2581		
5	0,2462	0,2521	0,2484	0,2521	0,2503	0,2571		

Tabla A.5: *Accuracies* obtenidos para el Escenario 2 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con SVM como clasificador para distintos tamaños de vocabulario.

Escenario 2 - PP, PSOE, PODEMOS y CIUDADANOS
Árboles de clasificación

	500 términos		1.000 términos		5.000 términos	
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF
1	0,3584	0,3618	0,3562	0,3665	0,3737	0,3721
2	0,3412	0,3459	0,3562	0,3625	0,3653	0,3725
3	0,3078	0,2938	0,3128	0,3075	0,3171	0,3238
4	0,2612	0,2618	0,2646	0,2496	0,2606	0,2588
5	0,2556	0,2496	0,2521	0,2531	0,2481	0,2544

Tabla A.6: *Accuracies* obtenidos para el Escenario 2 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con Árboles de clasificación como clasificador para distintos tamaños de vocabulario.

Escenario 3 - PP, PSOE, PODEMOS, CIUDADANOS y OTROS
Naïve Bayes

	500 términos		1.000 términos		5.000 términos	
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF
1	0,3318	0,3267	0,3533	0,3475	0,4223	0,4018
2	0,2948	0,2910	0,3210	0,3210	0,3645	0,3620
3	0,2553	0,2580	0,2708	0,3675	0,2958	0,2898
4	0,2203	0,2251	0,2303	0,2293	0,2368	0,2353
5	0,2140	0,1985	0,2070	0,2110	0,2193	0,2170

Tabla A.7: *Accuracies* obtenidos para el Escenario 3 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con Naïve Bayes como clasificador para distintos tamaños de vocabulario.

Escenario 3 - PP, PSOE, PODEMOS, CIUDADANOS y OTROS
SVM

	500 términos		1.000 términos		5.000 términos	
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF
1	0,3793	0,3700	0,3198	0,3823	0,4250	0,3738
2	0,3393	0,3268	0,3498	0,3380	0,3703	0,3415
3	0,2733	0,2693	0,2773	0,2768	0,2955	0,2945
4	0,2218	0,2195	0,2283	0,2290	0,2338	0,2350
5	0,1928	0,2033	0,2005	0,2043	0,2190	0,2188

Tabla A.8: *Accuracies* obtenidos para el Escenario 3 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con SVM como clasificador para distintos tamaños de vocabulario.

Escenario 3 - PP, PSOE, PODEMOS, CIUDADANOS y OTROS Árboles de clasificación								
	500 té	rminos	1.000 to	érminos	5.000 términos			
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF		
1	0,3225	0,3098	0,3148	0,3125	0,3383	0,3228		
2	0,3110	0,3185	0,3228	0,3455	0,3363	0,3308		
3	0,2648	0,2698	0,2753	0,2740	0,2788	0,2788		
4	0,2225	0,2175	0,2225	0,2230	0,2268	0,2265		
5	0,2078	0,2070	0,1958	0,1963	0,2145	0,2135		

Tabla A.9: *Accuracies* obtenidos para el Escenario 3 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con Árboles de clasificación como clasificador para distintos tamaños de vocabulario.

	Escenario 4 - Todos los partidos Naïve Bayes										
	500 términos 1.000 términos 5.000 términos										
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF					
1	0,2590	0,2532	0,2931	0,2898	0,3670	0,3610					
2	0,1775	0,1756	0,2129	0,2074	0,3008	0,2901					
3	0,1413	0,1410	0,1636	0,1597	0,2108	0,2148					
4	0,1114	0,1109	0,1164	0,1169	0,1331	0,1386					
5	0,0955	0,1016	0,0979	0,0968	0,1115	0,1085					

Tabla A.10: *Accuracies* obtenidos para el Escenario 4 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con Naïve Bayes como clasificador para distintos tamaños de vocabulario.

	Escenario 4 - Todos los partidos SVM											
	500 términos 1.000 términos 5.000 término											
n	TF	TF-IDF	TF	TF-IDF	TF	TF-IDF						
1	0,3584	0,3576	0,3896	0,3774	0,4292	0,3747						
2	0,2561	0,2519	0,2923	0,2793	0,3402	0,2981						
3	0,1654	0,1647	0,1846	0,1831	0,2284	0,2173						
4	0,2218	0,2195	0,2283	0,2290	0,2338	0,2350						
5	0,1139	0,1122	0,1193	0,1164	0,1381	0,1389						

Tabla A.11: *Accuracies* obtenidos para el Escenario 4 utilizando representaciones TF y TF-IDF para *n*-gramas de palabras con SVM como clasificador para distintos tamaños de vocabulario.

Escenario 4 - Todos los partidos Árboles de clasificación 500 términos 1.000 términos 5.000 términos **TF-IDF** TF **TF-IDF** TF **TF-IDF** 0,2876 0,3011 0,3020 0,3169 0,3150 0,2497 0,2514 0,2809 0,2219 0,2830 0,1580 0,1781 0,1729 0,2153 0,2151

0,2230

0,1149

0,2268

0,1329

0,2265

0,1335

Tabla A.12: Accuracies obtenidos para el Escenario 4 utilizando representaciones TF y TF-IDF para n-gramas de palabras con Árboles de clasificación como clasificador para distintos tamaños de vocabulario.

0,2225

0,1160

TF

0,2858

0,2226

0,1530

0,2225

0,1129

0,2175

0,1143

1

3

4

5

APÉNDICE B Resultados del estudio del análisis de la varianza (ANOVA)

				Pruebas de	normalidad					
					Kolmo	gorov-Smirn	IOV ^a	St	napiro-Wilk	
CLASIFICADOR	NGRAMAS	VOCABULARIO	CARACTE	RÍSTICAS	Estadístico	gl	Sig.	Estadístico	gl	Sig.
IAIVE-BAYES	1	500	TF	ACCURACY	,137	10	,200	,974	10	,9
			TF-IDF	ACCURACY	,209	10	,200	,905	10	,4
		1000	TF	ACCURACY	,192	10	,200	,938	10	,5
			TF-IDF	ACCURACY	,137	10	,200	,962	10	,8
		5000	TF	ACCURACY	,151	10	,200	,945	10	,6
			TF-IDF	ACCURACY	,277	10	,028	,831	10),
	2	500	TF	ACCURACY	,165	10	,200	,944	10	,5
			TF-IDF	ACCURACY	,154	10	,200	,938	10	,š
		1000	TF	ACCURACY	,243	10	,095	,921	10	
			TF-IDF	ACCURACY	,166	10	,200	,899	10	
		5000	TF	ACCURACY	,229	10	,145	,823	10	
			TF-IDF	ACCURACY	,176	10	,200	.962	10	
	3	500	TF	ACCURACY	,144	10	,200	.968	10	
			TF-IDF	ACCURACY	,240	10	,106	.831	10	
		1000	TF	ACCURACY	,175	10	,200	,947	10	
			TF-IDF	ACCURACY	,239	10	,112	,879	10	
		5000	TF	ACCURACY	,276	10	,030	,796	10	
			TF-IDF	ACCURACY	,256	10	,062	,847	10	_
	4	500	TF	ACCURACY	,215	10	,200	,878	10	
	1	500	TF-IDF	ACCURACY	,215	10		,979	10	
		1000	TF	ACCURACY			,200			
		1000	TF-IDF		,268	10	,041	,907	10	
		5000		ACCURACY	,151	10	,200	,934	10	
		5000	TF	ACCURACY	,135	10	,200	,965	10	
		500	TF-IDF	ACCURACY	,130	10	,200	,980	10	
	5	500	TF	ACCURACY	,205	10	,200	,951	10	
			TF-IDF	ACCURACY	,195	10	,200	,898,	10	
		1000	TF	ACCURACY	,175	10	,200	,951	10	
			TF-IDF	ACCURACY	,168	10	,200	,960	10	
		5000	TF	ACCURACY	,255	10	,065	,870	10	
			TF-IDF	ACCURACY	,170	10	,200	,957	10	
M	1	500	TF	ACCURACY	,152	10	.200	,951	10	_
			TF-IDF	ACCURACY	,214	10	,200	.896	10	
		1000	TF	ACCURACY	,173	10	,200	,940	10	
			TF-IDF	ACCURACY	,224	10	,170	,929	10	
		5000	TF	ACCURACY	,250	10	,076	,861	10	
		5555	TF-IDF	ACCURACY		10			10	
	2	500	TF	ACCURACY	,182 ,217	10	,200	,953 ,914	10	
	-	300	TF-IDF	ACCURACY			,200		_	_
		1000	TF	ACCURACY	,172	10	,200	,943	10	
		1000	TF-IDF	ACCURACY	,182	10	,200	,950	10	
		5000			,158	10	,200	,916	10	
		5000	TF	ACCURACY	,252	10	,071	,853	10	
			TF-IDF	ACCURACY	,121	10	,200	,979	10	
	3	500	TF	ACCURACY	,255	10	,064	,918	10	
			TF-IDF	ACCURACY	,131	10	,200	,981	10	
		1000	TF	ACCURACY	,175	10	,200	,953	10	
			TF-IDF	ACCURACY	,193	10	,200	,916	10	
		5000	TF	ACCURACY	,167	10	,200	,927	10	
			TF-IDF	ACCURACY	,139	10	,200	,957	10	
	4	500	TF	ACCURACY	,154	10	,200	.962	10	
			TF-IDF	ACCURACY	,142	10	,200	,967	10	
		1000	TF	ACCURACY	,238	10	,115	,870	10	
			TF-IDF	ACCURACY	,180	10	,200	.921	10	
		5000	TF	ACCURACY	,158	10	,200	,956	10	_
			TF-IDF	ACCURACY	,189	10		,896	10	
	5	500	TF	ACCURACY		10	,200	,937	10	
	5	500	TF-IDF	ACCURACY	,162		,200		_	
		4000			,238	10	,116	,862	10	
		1000	TF-IDF	ACCURACY	,249	10	,079	,883	10	
		5000		ACCURACY	,178	10	,200	,942	10	
		5000	TF	ACCURACY	,148	10	,200	,936	10	
		500	TF-IDF	ACCURACY	,148	10	,200	,940	10	
EE	1	500	TF	ACCURACY	,158	10	,200	,956	10	
			TF-IDF	ACCURACY	,156	10	,200	,963	10	
		1000	TF	ACCURACY	,166	10	,200	,909	10	
			TF-IDF	ACCURACY	,169	10	,200	,965	10	
		5000	TF	ACCURACY	,207	10	,200	,894	10	
		<u> </u>	TF-IDF	ACCURACY	,314	10	,006	,770	10	
	2	500	TF	ACCURACY	,190	10	,200	,965	10	
			TF-IDF	ACCURACY	,175	10	,200	,865	10	
		1000	TF	ACCURACY	,255	10	,065	,918	10	
			TF-IDF	ACCURACY	,152	10	,200	,957	10	_
		5000	TF	ACCURACY	,129	10	,200	,983	10	_
			TF-IDF	ACCURACY	,196	10	,200	,913	10	_
	3	500	TF	ACCURACY	,199	10	,200	,935	10	_
			TF-IDF	ACCURACY	,150	10	,200	,964	10	_
		1000	TF	ACCURACY	,189	10	,200°	,947	10	
		1	TF-IDF	ACCURACY	,189	10	,200	,795	10	_
		5000	TF-IDF	ACCURACY						
		2000			,137	10	,200	,942	10	
	74	E00	TF-IDF	ACCURACY	,146	10	,200	,942	10	
	4	500	TF	ACCURACY	,120	10	,200	,975	10	
		4000	TF-IDF	ACCURACY	,202	10	,200	,875	10	
		1000	TF	ACCURACY	,100	10	,200	,990	10	
			TF-IDF	ACCURACY	,142	10	,200	,942	10	
		5000	TF	ACCURACY	,178	10	,200	,941	10	_
			TF-IDF	ACCURACY	,152	10	,200	,970	10	
	5	500	TF	ACCURACY	,202	10	,200	,895	10	
			TF-IDF	ACCURACY	,217	10	,200	,956	10	_
		1000	TF	ACCURACY	,217	10	,200	,932	10	_
			TF-IDF	ACCURACY	,161	10		,952	10	
		5000	TF	ACCURACY			,200			
					,171	10	,200	,910	10	
			TF-IDF	ACCURACY	,204	10	,200	,915	10	

Figura B.1: Prueba de normalidad para el Escenario 1 con un ANOVA de 4 factores

			Kolmo	gorov-Smirn	ov ^a	Sh	apiro-Wilk	
CLASNGRAM	VOCABNCAR	ACT	Estadístico	gl	Sig.	Estadístico	gl	Sig.
NAIVE-BAYES-1	1000-TF	ACCURACY	,192	10	,200	,938	10	,5
	1000-TF-IDF	ACCURACY	,137	10	,200	,962	10	,8
	500-TF	ACCURACY	,137	10	,200	,974	10	,9
	500-TF-IDF	ACCURACY	,209	10	,200	,905	10	,2
	5000-TF	ACCURACY	,151	10	,200	,945	10	,6
	5000-TF-IDF	ACCURACY	,277	10	,028	,831	10	,0
IAIVE-BAYES-2	1000-TF	ACCURACY	,243	10	,095	,921	10	,3
	1000-TF-IDF	ACCURACY	,166	10	,200	,899	10	,2
	500-TF 500-TF-IDF	ACCURACY	,165	10	,200	,944	10	,,
	500-TF-IDF	ACCURACY	,154	10	,200	,938	10	,5
	5000-TF-IDF	ACCURACY	,229	10 10	,145	,823	10 10),
IAIVE-BAYES-3	1000-TF	ACCURACY	,176 ,175	10	,200	,962	10	,e ,e
	1000-TF-IDF	ACCURACY	,239	10	,200 ,112	,879	10	.1
	500-TF	ACCURACY	,144	10	.200	,968	10	3,
	500-TF-IDF	ACCURACY	,240	10	,200	,831	10	.0
	5000-TF	ACCURACY	,276	10	,030	,796	10	,,
	5000-TF-IDF	ACCURACY	,256	10	,062	,847	10	,(
AIVE-BAYES-4	1000-TF	ACCURACY	,268	10	,041	,907	10	.2
	1000-TF-IDF	ACCURACY	,151	10	.200	,934	10	,4
	500-TF	ACCURACY	,215	10	,200	,878	10	,1
	500-TF-IDF	ACCURACY	,141	10	,200	,979	10	,,
	5000-TF	ACCURACY	,135	10	,200	,965	10	3,
	5000-TF-IDF	ACCURACY	,130	10	,200	,980	10	2,
IAIVE-BAYES-5	1000-TF	ACCURACY	,175	10	,200	,951	10	,6
	1000-TF-IDF	ACCURACY	,168	10	,200	,960	10	,7
	500-TF	ACCURACY	,205	10	,200	,951	10	,6
	500-TF-IDF	ACCURACY	,195	10	,200	,898	10	,
	5000-TF	ACCURACY	,255	10	,065	,870	10	,1
	5000-TF-IDF	ACCURACY	,170	10	,200	,957	10	,7
VM-1	1000-TF	ACCURACY	,173	10	,200	,940	10	,5
	1000-TF-IDF	ACCURACY	,224	10	,170	,929	10	٨,
	500-TF 500-TF-IDF	ACCURACY	,152	10	,200	,951	10	,6
	500-TF-IDF	ACCURACY	,214	10	,200	,896	10	,
	5000-TF-IDF	ACCURACY	,250	10	,076	,861	10 10),
VM-2	1000-TF	ACCURACY	,182	10 10	,200	,953	10	,
viii 2	1000-TF-IDF	ACCURACY	,182 ,158	10	,200	,950 ,916	10	ا,
	500-TF	ACCURACY	.217	10	,200°, ,200°	.914	10	
	500-TF-IDF	ACCURACY	,172	10	,200	,943	10	.5
	5000-TF	ACCURACY	.252	10	,200	.853	10	
	5000-TF-IDF	ACCURACY	,121	10	,200	,979	10	.,
VM-3	1000-TF	ACCURACY	,175	10	,200	,953	10	,
	1000-TF-IDF	ACCURACY	,193	10	,200	,916	10	· ·
	500-TF	ACCURACY	,255	10	,064	,918	10	,;
	500-TF-IDF	ACCURACY	,131	10	,200°	,981	10	,,
	5000-TF	ACCURACY	,167	10	,200	,927	10	,
	5000-TF-IDF	ACCURACY	,139	10	,200	,957	10	,
VM-4	1000-TF	ACCURACY	,238	10	,115	,870	10	,
	1000-TF-IDF	ACCURACY	,180	10	,200	,921	10	į,
	500-TF	ACCURACY	,154	10	,200	,962	10	,
	500-TF-IDF 5000-TF	ACCURACY	,142	10	,200	,967	10	,,
	5000-TF-IDF	ACCURACY	,158	10	,200	,956	10	,
VM-5	1000-TF-IDF	ACCURACY	,189	10	,200	,896	10	
VM-5	1000-TF-IDF	ACCURACY	,249 ,178	10 10	,079	,883	10	
	500-TF	ACCURACY	,178	10	,200	,942	10	,;
	500-TF-IDF	ACCURACY	,162	10	,200°, 116,	,937	10	., ,
	5000-TF	ACCURACY	,230	10	,200	,936	10	.,
	5000-TF-IDF	ACCURACY	,148	10	,200	,940	10	,,
REE-1	1000-TF	ACCURACY	,166	10	,200	,909	10	
	1000-TF-IDF	ACCURACY	,169	10	,200	,965	10	,, ,,
	500-TF	ACCURACY	,158	10	,200	,956	10	,
	500-TF-IDF	ACCURACY	,156	10	,200	,963	10	,,
	5000-TF	ACCURACY	,207	10	,200	,894	10	
	5000-TF-IDF	ACCURACY	,314	10	,006	,770	10),
REE-2	1000-TF	ACCURACY	,255	10	,065	,918	10	,;
	1000-TF-IDF	ACCURACY	,152	10	,200	,957	10	į,
	500-TF	ACCURACY	,190	10	,200	,965	10	,
	500-TF-IDF	ACCURACY	,175	10	,200	,865	10),
	5000-TF	ACCURACY	,129	10	,200	,983	10	,9
DEE 0	5000-TF-IDF	ACCURACY	,196	10	,200	,913	10	į.
REE-3	1000-TF	ACCURACY	,189	10	,200	,947	10	,
	1000-TF-IDF	ACCURACY	,348	10	,001	,795	10	,(
	500-TF 500-TF-IDF	ACCURACY	,199	10	,200	,935	10	,
	500-TF-IDF	ACCURACY	,150	10	,200	,964	10	,,
	5000-TF-IDF	ACCURACY	,137 ,146	10 10	,200	,942	10	,, ,,
REE-4	1000-TF-IDF	ACCURACY	,146	10	,200	,942	10	,;
	1000-TF-IDF	ACCURACY	,100	10	,200	,990	10	,, ,,
	500-TF	ACCURACY	,142	10	,200	,942	10	,;
	500-TF-IDF	ACCURACY	,202	10	,200	,975	10	,,
	5000-TF	ACCURACY	,202	10	,200 ,200	,875	10	
	5000-TF-IDF	ACCURACY	,170	10	,200	,941	10	, s
REE-5	1000-TF	ACCURACY	,182	10	,200	,932	10	,,
	1000-TF-IDF	ACCURACY	,161	10	,200	,956	10	
	500-TF	ACCURACY	,202	10	,200	,895	10	,
	500-TF-IDF	ACCURACY	,217	10	,200	,956	10	- ;
						,910	10	,
	5000-TF	ACCURACY	,171	10	,200	,5101	101	

Figura B.2: Prueba de normalidad para el Escenario 1 con un ANOVA de 2 factores

					Volmes	gorov-Smirno	wa	Ch.	apiro-Wilk	
CLASIFICADOR	NGRAMAS	VOCABULARIO	CARACTE	RISTICAS	Estadístico	gl gl	Sig.	Estadístico	gl gl	Sig.
IAIVE-BAYES	1	500	TF	ACCURACY	,230	10	,144	,868	10	O.g.).
			TF-IDF	ACCURACY	,224	10	,168	,863	10),
		1000	TF	ACCURACY	,180	10	,200	,922	10	,;
			TF-IDF	ACCURACY	,139	10	,200	,926	10	,4
		5000	TF	ACCURACY	,166	10	,200	,948	10	
			TF-IDF	ACCURACY	,301	10	,011	,807	10	
	2	500	TF	ACCURACY	,135	10	,200	,964	10	
			TF-IDF	ACCURACY	,124	10	,200	,983	10	
		1000	TF	ACCURACY	,147	10	,200	,951	10	
			TF-IDF	ACCURACY	,165	10	,200	,927	10	
		5000	TF	ACCURACY	,162	10	,200	,977	10	
			TF-IDF	ACCURACY	,172	10	,200	,912	10	
	3	500	TF	ACCURACY	,182	10	,200	,924	10	
			TF-IDF	ACCURACY	,186	10	,200	,948	10	
		1000	TF	ACCURACY	,154	10	,200	,945	10	
			TF-IDF	ACCURACY	,142	10	,200	,950	10	
		5000	TF	ACCURACY	,169	10	,200	,923	10	
			TF-IDF	ACCURACY	,155	10	,200	,928	10	
	4	500	TF	ACCURACY	,136	10	,200	,965	10	
			TF-IDF	ACCURACY	,128	10	,200	,978	10	
		1000	TF	ACCURACY	,185	10	,200	,939	10	
			TF-IDF	ACCURACY	,230	10	,142	,898	10	
		5000	TF	ACCURACY	,303	10	,010	,824	10	
			TF-IDF	ACCURACY	,139	10	,200	,931	10	
	5	500	TF	ACCURACY	,176	10	,200	,913	10	
			TF-IDF	ACCURACY	,248	10	,083	,936	10	
		1000	TF	ACCURACY	,135	10	,200	,952	10	
			TF-IDF	ACCURACY	,133	10	,200	,885	10	
		5000	TF	ACCURACY	,215	10	,200	,894	10	
		1	TF-IDF	ACCURACY	,213	10	,200	,867	10	
M	1	500	TF	ACCURACY	,234	10	,130	,902	10	
	1	1	TF-IDF	ACCURACY	,193	10		,902	10	
		1000	TF-IDF	ACCURACY	,193	10	,200	,941	10	
		1000	TF-IDF	ACCURACY			,200			
		E000		ACCURACY	,139	10	,200	,967	10	
		5000	TF-IDF	ACCURACY	,150	10	,200	,956	10	
	2	500	TF		,289	10	,018	,861	10	
	2	500	TF-IDF	ACCURACY	,301	10	,010	,795	10	
		1000		ACCURACY	,157	10	,200	,966	10	
		1000	TF	ACCURACY	,190	10	,200	,932	10	
			TF-IDF	ACCURACY	,190	10	,200	,941	10	
		5000	TF	ACCURACY	,160	10	,200	,958	10	
			TF-IDF	ACCURACY	,273	10	,033	,846	10	
3	3	500	TF	ACCURACY	,117	10	,200	,985	10	
			TF-IDF	ACCURACY	,155	10	,200	,959	10	
		1000	TF	ACCURACY	,206	10	,200	,943	10	
			TF-IDF	ACCURACY	,237	10	,118	,913	10	
		5000	TF	ACCURACY	,098	10	,200	,988	10	
			TF-IDF	ACCURACY	,219	10	,190	,917	10	
	4	500	TF	ACCURACY	,272	10	,035	,823	10	
			TF-IDF	ACCURACY	,207	10	,200	,888	10	
		1000	TF	ACCURACY	,158	10	,200	,943	10	
			TF-IDF	ACCURACY	,150	10	,200	,953	10	
		5000	TF	ACCURACY	,141	10	,200	,976	10	
			TF-IDF	ACCURACY	,230	10	,144	,897	10	
	5	500	TF	ACCURACY	,218	10	,196	,878	10	
			TF-IDF	ACCURACY	,189	10	,200	,928	10	
		1000	TF	ACCURACY	,164	10	,200	,948	10	
			TF-IDF	ACCURACY	,205	10	,200	,876	10	_
		5000	TF	ACCURACY	,203	10	,200	,963	10	
		[TF-IDF	ACCURACY	,143	10		.977	10	
EE	1	500	TF	ACCURACY	,143	10	,200°	,959	10	
	1	300	TF-IDF	ACCURACY	,156	10		959	10	
		1000	TF-IDF	ACCURACY	,140		,200	,000	10	
			TF-IDF	ACCURACY	,196	10 10	,200	,883	10 10	
		5000	TF-IDF	ACCURACY	,294		,014	,772		
		3000	TF-IDF	ACCURACY	,182	10	,200	,869	10	
	2	500			,171	10	,200	,900	10	
	4	300	TF IDE	ACCURACY	,127	10	,200	,986	10	
		1000	TF-IDF	ACCURACY	,204	10	,200	,929	10	
		1000	TF-IDF	ACCURACY	,153	10	,200	,948	10	
		5000		ACCURACY	,106	10	,200	,949	10	
		5000	TF	ACCURACY	,225	10	,166	,898	10	
	6	500	TF-IDF	ACCURACY	,205	10	,200	,902	10	
	3	500	TF	ACCURACY	,182	10	,200	,937	10	
		Manac	TF-IDF	ACCURACY	,155	10	,200	,958	10	
		1000	TF	ACCURACY	,147	10	,200	,983	10	
			TF-IDF	ACCURACY	,134	10	,200	,972	10	
		5000	TF	ACCURACY	,199	10	,200	,924	10	
			TF-IDF	ACCURACY	,186	10	,200	,896	10	
	4	500	TF	ACCURACY	,133	10	,200	,932	10	
			TF-IDF	ACCURACY	,156	10	,200	,936	10	
		1000	TF	ACCURACY	,240	10	,106	,889	10	
			TF-IDF	ACCURACY	,177	10	,200	,973	10	
		5000	TF	ACCURACY	,133	10	,200	,974	10	
			TF-IDF	ACCURACY	,148	10	,200°	,980	10	
	5	500	TF	ACCURACY	,170	10	,200°	,966	10	
			TF-IDF	ACCURACY	,167	10	,200	,932	10	
		1000	TF	ACCURACY	,173	10	,200	,962	10	
			TF-IDF	ACCURACY	,200	10	,200	,923	10	
		5000	TF	ACCURACY	,120	10	,200	,978	10	
			TF-IDF	ACCURACY	,179	10	,200	,929	10	_

Figura B.3: Prueba de normalidad para el Escenario 2 con un ANOVA de 4 factores

			Kolmod	gorov-Smirn	ov ^a	Sha	apiro-Wilk	
CLASNGRAM	VOCABCARAC	т	Estadístico	gl	Sig.	Estadístico	gl	Sig.
NAIVE-BAYES-1	1000-TF	ACCURACY	,180	10	,200	,922	10	,37
	1000-TF-IDF	ACCURACY	,139	10	,200	,926	10	,40
	500-TF	ACCURACY	,230	10	,144	,868	10	,09
	500-TF-IDF	ACCURACY	,224	10	,168	,863	10	,08
	5000-TF	ACCURACY	,166	10	,200	,948	10	,64
	5000-TF-IDF	ACCURACY	,301	10	,011	,807	10	,0
NAIVE-BAYES-2	1000-TF	ACCURACY	,147	10	,200	,951	10	,6
	1000-TF-IDF	ACCURACY	,165	10	,200	,927	10	,4
	500-TF	ACCURACY	,135	10	,200	,964	10	,8;
	500-TF-IDF	ACCURACY	,124	10	,200	,983	10	,9
	5000-TF	ACCURACY	,162	10	,200	,977	10	,9
	5000-TF-IDF	ACCURACY	,172	10	,200	,912	10	,2
NAIVE-BAYES-3	1000-TF	ACCURACY	,154	10	,200	.945	10	.6
	1000-TF-IDF	ACCURACY	,142	10	,200	,950	10	.6
	500-TF	ACCURACY	,182	10	.200	,924	10	,3
	500-TF-IDF	ACCURACY	,186	10	,200	,948	10	.6
	5000-TF	ACCURACY	,169	10	.200	,923	10	,3
	5000-TF-IDF	ACCURACY	,155	10	,200	,928	10	,4
NAIVE-BAYES-4	1000-TF	ACCURACY	,185	10	,200	939	10	.,,
	1000-TF-IDF	ACCURACY	.230	10	,200	.898	10	.2
	500-TF	ACCURACY	,136	10		,965	10	.8
	500-TF-IDF	ACCURACY			,200			
	5000-TF-IDF	ACCURACY	,128	10	,200	,978	10	,9
	5000-TF		,303	10	,010	,824	10	,0,
IAN/E DAVES 5		ACCURACY	,139	10	,200	,931	10	,4
IAIVE-BAYES-5	1000-TF	ACCURACY	,135	10	,200	,952	10	,6
	1000-TF-IDF	ACCURACY	,248	10	,083	,885	10	,1
	500-TF	ACCURACY	,176	10	,200	,913	10	,3
	500-TF-IDF	ACCURACY	,248	10	,083	,936	10	,5
	5000-TF	ACCURACY	,215	10	,200	,894	10	,1
	5000-TF-IDF	ACCURACY	,234	10	,130	,867	10	,0
SVM-1	1000-TF	ACCURACY	,178	10	,200	,921	10	,3
	1000-TF-IDF	ACCURACY	,139	10	,200	,967	10	,8
	500-TF	ACCURACY	,234	10	,129	,902	10	,2
	500-TF-IDF	ACCURACY	,193	10	,200	,941	10	,5
	5000-TF	ACCURACY	,150	10	,200	,956	10	,7
	5000-TF-IDF	ACCURACY	,289	10	,018	,861	10	,0
VM-2	1000-TF	ACCURACY	,190	10	,200	,932	10	,4
	1000-TF-IDF	ACCURACY	,190	10	,200	,941	10	5
	500-TF	ACCURACY	,301	10	,010	.795	10	.0
	500-TF-IDF	ACCURACY	,157	10	,200	,966	10	.8,
	5000-TF	ACCURACY	,160	10	.200	.958	10	.7
	5000-TF-IDF	ACCURACY	,273	10	,200	,846	10	,0
VM-3	1000-TF	ACCURACY		10	-	,943	10	.5
· · · · · · · · · · · · · · · · · · ·	1000-TF-IDF	ACCURACY	,206	10	,200		10	.3
	500-TF	ACCURACY	,237		,118	,913		
	500-TF-IDF	ACCURACY	,117	10	,200	,985	10	,9
	5000-TF	ACCURACY	,155	10	,200	,959	10	,7
	5000-TF-IDF	ACCURACY	,098	10	,200	,988	10	,9
N. M. J.			,219	10	,190	,917	10	,3
SVM-4	1000-TF	ACCURACY	,158	10	,200	,943	10	,5
	1000-TF-IDF	ACCURACY	,150	10	,200	,953	10	,7
	500-TF	ACCURACY	,272	10	,035	,823	10	,0
	500-TF-IDF	ACCURACY	,207	10	,200	,888,	10	,1
	5000-TF	ACCURACY	,141	10	,200	,976	10	,9
	5000-TF-IDF	ACCURACY	,230	10	,144	,897	10	,2
SVM-5	1000-TF	ACCURACY	,164	10	,200	,948	10	,6
	1000-TF-IDF	ACCURACY	,205	10	,200	,876	10	,1
	500-TF	ACCURACY	,218	10	,196	,878,	10	,1
	500-TF-IDF	ACCURACY	,189	10	,200	,928	10	,4
	5000-TF	ACCURACY	,157	10	,200	,963	10	,8
	5000-TF-IDF	ACCURACY	,143	10	,200	,977	10	,9
REE-1	1000-TF	ACCURACY	,196	10	,200	,883	10	,1
	1000-TF-IDF	ACCURACY	,294	10	,014	,772	10	,0
	500-TF	ACCURACY	,156	10	,200	,959	10	,7
	500-TF-IDF	ACCURACY	,140	10	,200	,959	10	,7
	5000-TF	ACCURACY	,182	10	,200°	,869	10	,,
	5000-TF-IDF	ACCURACY	,171	10		,900	10	,0
REE-2	1000-TF-IDF	ACCURACY		10	,200	,900	10	,2
	1000-TF	ACCURACY	,153		,200	-		
		ACCURACY	,106	10	,200	,949	10	,6
	500-TF		,127	10	,200	,986	10	,9
	500-TF-IDF	ACCURACY	,204	10	,200	,929	10	,4
	5000-TF	ACCURACY	,225	10	,166	,898	10	,2
	5000-TF-IDF	ACCURACY	,205	10	,200	,902	10	,2
REE-3	1000-TF	ACCURACY	,147	10	,200	,983	10	,9
	1000-TF-IDF	ACCURACY	,134	10	,200	,972	10	,9
	500-TF	ACCURACY	,182	10	,200	,937	10	,5
	500-TF-IDF	ACCURACY	,155	10	,200	,958	10	,7
	5000-TF	ACCURACY	,199	10	,200	,924	10	,3
	5000-TF-IDF	ACCURACY	,186	10	,200	,896	10	,1
REE-4	1000-TF	ACCURACY	,240	10	,106	,889	10	,1
	1000-TF-IDF	ACCURACY	,177	10	,200	,973	10	,9
	500-TF	ACCURACY	,133	10	,200	,932	10	,4
	500-TF-IDF	ACCURACY	,156	10		,936	10	,5
	5000-TF	ACCURACY		10	,200		10	.9
			,133		,200	,974		
חרר כ	5000-TF-IDF	ACCURACY	,148	10	,200	,980	10	9,
REE-5	1000-TF	ACCURACY	,173	10	,200	,962	10	,8,
	1000-TF-IDF	ACCURACY	,200	10	,200	,923	10	,3
	500-TF	ACCURACY	,170	10	,200	,966	10	8,
	500-TF-IDF	ACCURACY	,167	10	,200	,932	10	,4
	5000-TF	ACCURACY	,120	10	,200	,978	10	,9
	5000-TF-IDF	ACCURACY	,179	10	,200	,929	10	,4
			, 17 01					

Figura B.4: Prueba de normalidad para el Escenario 2 con un ANOVA de 2 factores

							1		ander term	
CLASIFICADOR	NGRAMAS	VOCABULARIO	CARACTI	ERISTICAS	Estadístico	gorov-Smirno gl	Sig.	Estadístico	apiro-Wilk gl	Sia.
VAIVE-BAYES	1	500	TF	ACCURACY	,175	10	,200°	,953	10	,7
			TF-IDF	ACCURACY	,136	10	,200°	,971	10	,5
		1000	TF	ACCURACY	,217	10	,198	,914	10	,3
			TF-IDF	ACCURACY	,176	10	,200	,945	10	,6
		5000	TF-IDF	ACCURACY ACCURACY	,153	10	,200	,974	10	9,
	2	500	TF	ACCURACY	,104 ,236	10 10	,200° ,123	,984	10 10	2, 1,
	-		TF-IDF	ACCURACY	,230	10	,020	,822	10	.(
		1000	TF	ACCURACY	,229	10	,148	,901	10	,2
			TF-IDF	ACCURACY	,120	10	,200	,955	10	
		5000	TF	ACCURACY	,209	10	,200	,915	10	,
			TF-IDF	ACCURACY	,228	10	,149	,923	10	·
	3	500	TF-IDF	ACCURACY	,206	10	,200	,882	10	
		1000	TF-IDF	ACCURACY	,214 ,198	10	,200	,868 ,877	10 10	
		1000	TF-IDF	ACCURACY	,182	10	,200° ,200°	,975	10	-
		5000	TF	ACCURACY	,188	10	,200	,937	10	
			TF-IDF	ACCURACY	,188	10	,200°	,915	10	
	4	500	TF	ACCURACY	,195	10	,200	,962	10	
			TF-IDF	ACCURACY	,158	10	,200	,961	10	
		1000	TF	ACCURACY	,215	10	,200	,838	10	
		5000	TF-IDF	ACCURACY	,187	10	,200	,960	10	
		5000	TF-IDF	ACCURACY	,234	10	,129	,876	10	
	5	500	TF-IDF	ACCURACY	,159	10	,200	,912	10	
	3	200	TF-IDF	ACCURACY	,123 ,223	10	,200	,966 ,812	10 10	
		1000	TF-IDF	ACCURACY	,223	10	,171 ,200	,812	10	
			TF-IDF	ACCURACY	,220	10	,200	,941	10	
		5000	TF	ACCURACY	,191	10	,200	,940	10	_
			TF-IDF	ACCURACY	,169	10	,200	,947	10	
VM	1	500	TF	ACCURACY	,180	10	,200	,940	10	
			TF-IDF	ACCURACY	,141	10	,200	,975	10	
		1000	TF	ACCURACY	,174	10	,200	,890	10	
			TF-IDF	ACCURACY	,122	10	,200	,949	10	
		5000	TF	ACCURACY	,194	10	,200	,917	10	
	0	500	TF-IDF TF	ACCURACY	,187	10	,200	,931	10	
	2	500	TF-IDF	ACCURACY	,257	10	,060	,805	10	
		1000	TF-IDF	ACCURACY	,176 ,200	10 10	,200	,904 ,936	10 10	
		1000	TF-IDF	ACCURACY	,180	10	,200°	.947	10	
		5000	TF	ACCURACY	,136	10	,200	,953	10	
			TF-IDF	ACCURACY	,225	10	,162	.883	10	
	3	500	TF	ACCURACY	,170	10	,200	,921	10	
			TF-IDF	ACCURACY	,172	10	,200	,920	10	
		1000	TF	ACCURACY	,156	10	,200	,947	10	
			TF-IDF	ACCURACY	,113	10	,200 [°]	,955	10	
		5000	TF-IDF	ACCURACY	,254	10	,066	,909	10	
	4	500	TF-IDF	ACCURACY	,170	10	,200	,895	10	
	4	300	TF-IDF	ACCURACY	,213 ,110	10 10	,200°	,872 ,977	10 10	
		1000	TF	ACCURACY	,110	10	,200	,944	10	
			TF-IDF	ACCURACY	,153	10	,200	,932	10	
		5000	TF	ACCURACY	,138	10	,200°	,981	10	
			TF-IDF	ACCURACY	,170	10	,200	,947	10	
	5	500	TF	ACCURACY	,247	10	,084	,911	10	
			TF-IDF	ACCURACY	,185	10	,200	,940	10	
		1000	TF	ACCURACY	,222	10	,176	,896	10	
		5000	TF-IDF	ACCURACY	,200	10	,200	,892	10	
		5000	TF-IDF	ACCURACY	,195	10	,200	,915 ,971	10	
REE	1	500	TF-IDF	ACCURACY	,146 ,120	10 10	,200° ,200°	,971	10 10	_
			TF-IDF	ACCURACY	,120	10	,200 ,200	,950	10	
		1000	TF	ACCURACY	,166	10	,200	,940	10	
			TF-IDF	ACCURACY	,225	10	,165	,910	10	
		5000	TF	ACCURACY	,140	10	,200	,948	10	
			TF-IDF	ACCURACY	,279	10	,027	,825	10	
	2	500	TF	ACCURACY	,241	10	,102	,904	10	
		4000	TF-IDF	ACCURACY	,152	10	,200	,937	10	
		1000	TF-IDF	ACCURACY	,173	10	,200	,904	10	
		5000	TF-IDF	ACCURACY	,208	10	,200	,880	10	
		2000	TF-IDF	ACCURACY	,204 ,176	10 10	,200°	,889 ,885	10 10	
	3	500	TF	ACCURACY	,176	10	,200	,954	10	
			TF-IDF	ACCURACY	,179	10	,200°	,945	10	
		1000	TF	ACCURACY	,151	10	,200	,984	10	
			TF-IDF	ACCURACY	,202	10	,200	,940	10	
		5000	TF	ACCURACY	,202	10	,200	,927	10	
			TF-IDF	ACCURACY	,147	10	,200	,958	10	
	4	500	TF	ACCURACY	,166	10	,200	,972	10	
		4000	TF-IDF	ACCURACY	,176	10	,200	,966	10	
		1000	TEIDE	ACCURACY	,233	10	,134	,891	10	
		5000	TF-IDF TF	ACCURACY	,156	10	,200	,957	10	
		5000	TF-IDF	ACCURACY	,148 ,221	10	,200° ,182	,952 ,919	10 10	
	5	500	TF	ACCURACY	,163	10	,200	,919	10	
	ľ		TF-IDF	ACCURACY	,134	10	,200°	,949	10	
		1000	TF	ACCURACY	,145	10	,200	,984	10	
			TF-IDF	ACCURACY	,244	10	,094	,900	10	
		5000	TF	ACCURACY	,203	10	,200	,944	10	
			TF-IDF	ACCURACY	,177	10	,200	.940	10	

Figura B.5: Prueba de normalidad para el Escenario 3 con un ANOVA de 4 factores

			Kolmo	gorov-Smirn	0V°	Sh	apiro-Wilk	
CLASSNGRAM	VOCABCARAC	т	Estadístico	gl	Sig.	Estadístico	gl	Sig.
IAIVE-BAYES-1	1000-TF	ACCURACY	,217	10	,198	,914	10	,3
	1000-TF-IDF	ACCURACY	,176	10	,200	,945	10	,6
	500-TF	ACCURACY	,175	10	,200	,953	10	,7
	500-TF-IDF	ACCURACY	,136	10	,200	,971	10	,,
	5000-TF	ACCURACY	,153	10	,200	,974	10	,9
	5000-TF-IDF	ACCURACY	,104	10	,200	,984	10	,9
AIVE-BAYES-2	1000-TF	ACCURACY	,229	10	,148	,901	10	,;
	1000-TF-IDF	ACCURACY	,120	10	,200°	,955	10	,
	500-TF	ACCURACY	,236	10	,123	,893	10	,
	500-TF-IDF	ACCURACY	,285	10	,020	,822	10	,(
	5000-TF	ACCURACY	,209	10	,200	,915	10	,
	5000-TF-IDF	ACCURACY	,228	10	,149	,923	10	,
AIVE-BAYES-3	1000-TF	ACCURACY	,198	10	,200	,877	10	-
	1000-TF-IDF	ACCURACY	,182	10	,200	,975	10	
	500-TF	ACCURACY	,206	10	,200	,882	10	- ;
	500-TF-IDF	ACCURACY	,214	10	,200	,868	10	
	5000-TF	ACCURACY	,188	10	,200	,937	10	,
	5000-TF-IDF	ACCURACY	,188	10	,200	.915	10	
AIVE-BAYES-4	1000-TF	ACCURACY	.215	10	,200	838	10	,
	1000-TF-IDF	ACCURACY	.187	10		.960	10	
	500-TF	ACCURACY	,195	10	,200	,962	10	
	500-TF-IDF	ACCURACY			,200			
	500-TF-IDF	ACCURACY	,158	10	,200	,961	10	
			,234	10	,129	,876	10	,
ANCE DAVES 5	5000-TF-IDF	ACCURACY	,159	10	,200	,912	10	,,
AIVE-BAYES-5	1000-TF	ACCURACY	,141	10	,200	,966	10	,1
	1000-TF-IDF	ACCURACY	,220	10	,188	,941	10	,
	500-TF	ACCURACY	,123	10	,200	,966	10	,
	500-TF-IDF	ACCURACY	,223	10	,171	,812	10	,
	5000-TF	ACCURACY	,191	10	,200	,940	10	,
	5000-TF-IDF	ACCURACY	,169	10	,200	,947	10	,
VM-1	1000-TF	ACCURACY	,174	10	,200	,890	10	
	1000-TF-IDF	ACCURACY	,122	10	,200	,949	10	,
	500-TF	ACCURACY	,180	10	,200	,940	10	,
	500-TF-IDF	ACCURACY	,141	10	,200	,975	10	,
	5000-TF	ACCURACY	,194	10	,200	,917	10	,
	5000-TF-IDF	ACCURACY	,187	10	,200	,931	10	
VM-2	1000-TF	ACCURACY	,200	10	,200	,936	10	į.
	1000-TF-IDF	ACCURACY	,180	10	,200	,947	10	
	500-TF	ACCURACY	.257	10	,060	.805	10	
	500-TF-IDF	ACCURACY	,176	10	,200	,904	10	
	5000-TF	ACCURACY	,136	10	,200	.953	10	
	5000-TF-IDF	ACCURACY	,225	10	,162	,883	10	
VM-3	1000-TF	ACCURACY	,156	10	,200	.947	10	
	1000-TF-IDF	ACCURACY	,113	10	,200	.955	10	- :
	500-TF	ACCURACY	.170	10		921	10	
	500-TF-IDF	ACCURACY	,170	10	,200	,921	10	
	5000-TF	ACCURACY	,254	10	,200	.909	10	
	5000-TF-IDF	ACCURACY				,		
VM-4	1000-TF-IDI	ACCURACY	,170	10	,200	,895	10	,
VIVI-4	1000-TF		,151	10	,200	,944	10	,
		ACCURACY	,153	10	,200	,932	10	,
	500-TF	ACCURACY	,213	10	,200	,872	10	,
	500-TF-IDF	ACCURACY	,110	10	,200	,977	10	,
	5000-TF	ACCURACY	,138	10	,200	,981	10	,
	5000-TF-IDF	ACCURACY	,170	10	,200	,947	10	,
VM-5	1000-TF	ACCURACY	,222	10	,176	,896	10	,
	1000-TF-IDF	ACCURACY	,200	10	,200	,892	10	
	500-TF	ACCURACY	,247	10	,084	,911	10	,
	500-TF-IDF	ACCURACY	,185	10	,200	,940	10	,
	5000-TF	ACCURACY	,195	10	,200	,915	10	į.
	5000-TF-IDF	ACCURACY	,146	10	,200	,971	10	,
REE-1	1000-TF	ACCURACY	,166	10	,200	,940	10	,
	1000-TF-IDF	ACCURACY	,225	10	,165	,910	10	,
	500-TF	ACCURACY	,120	10	,200	,950	10	,
	500-TF-IDF	ACCURACY	,156	10	,200	,952	10	,
	5000-TF	ACCURACY	,140	10	,200	,948	10	,
	5000-TF-IDF	ACCURACY	,279	10	,027	,825	10	-
REE-2	1000-TF	ACCURACY	,173	10	,200	,904	10	,
	1000-TF-IDF	ACCURACY	,208	10	,200	,880	10	
	500-TF	ACCURACY	,241	10	,102	.904	10	
	500-TF-IDF	ACCURACY	,152	10	,200	,937	10	,
	5000-TF	ACCURACY	,204	10		,889	10	
	5000-TF-IDF	ACCURACY	,204	10	,200	,885	10	
REE-3	1000-TF	ACCURACY	,176	10	,200	,885	10	,
	1000-TF-IDF	ACCURACY			,200			
	500-TF	ACCURACY	,202	10	,200	,940	10	,
	500-TF-IDF	ACCURACY	,198	10	,200	,954	10	,
	500-TF-IDF		,179	10	,200	,945	10	,
		ACCURACY	,202	10	,200	,927	10	
DEE 4	5000-TF-IDF	ACCURACY	,147	10	,200	,958	10	
REE-4	1000-TF	ACCURACY	,233	10	,134	,891	10	-
	1000-TF-IDF	ACCURACY	,156	10	,200	,957	10	,
	500-TF	ACCURACY	,166	10	,200	,972	10	,
	500-TF-IDF	ACCURACY	,176	10	,200	,966	10	,
	5000-TF	ACCURACY	,148	10	,200	,952	10	,
	5000-TF-IDF	ACCURACY	,221	10	,182	,919	10	į.
REE-5	1000-TF	ACCURACY	,145	10	,200	,984	10	,
	1000-TF-IDF	ACCURACY	,244	10	,094	,900	10	,
	500-TF	ACCURACY	,163	10	,200	,926	10	-
	500-TF-IDF	ACCURACY	,134	10	,200	,949	10	
	5000-TF	ACCURACY	,203	10	,200	.944	10	.,
	5000-TF-IDF	ACCURACY		10	,200	,940	10	,,
			,177					

Figura B.6: Prueba de normalidad para el Escenario 3 con un ANOVA de 2 factores

CLASIFICADOR NAIVE-BAYES	1					gorov-Smirno			apiro-Wilk	
	1									01-
		500	TF	ACCURACY	Estadístico ,149	gl 10	Sig. ,200	Estadístico 946	gl 10	Sig.
		555	TF-IDF	ACCURACY	,149	10	,200	,959	10	.7
		1000	TF	ACCURACY	,188	10	.200	.964	10	.8
			TF-IDF	ACCURACY	,253	10	,069	,904	10	,2
		5000	TF	ACCURACY	,144	10	,200	,908	10	,2
			TF-IDF	ACCURACY	,196	10	,200	,919	10	,3
	2	500	TF	ACCURACY	,186	10	,200	,975	10	,9
			TF-IDF	ACCURACY	,079	10	,200	,984	10	2,
		1000	TF	ACCURACY	,156	10	,200	,967	10	3,
			TF-IDF	ACCURACY	,156	10	,200	,967	10	.8
		5000	TF	ACCURACY	,152	10	,200	,944	10	
			TF-IDF	ACCURACY	,186	10	,200	,891	10	- 7
	3	500	TF	ACCURACY	,255	10	,064	,921	10	į,
			TF-IDF	ACCURACY	,250	10	,076	,892	10	- 7
		1000	TF	ACCURACY	,171	10	,200	,918	10	į,
			TF-IDF	ACCURACY	,256	10	,062	,801	10	,(
		5000	TF	ACCURACY	,191	10	,200	,961	10	
			TF-IDF	ACCURACY	,126	10	,200	,960	10	1
	4	500	TF	ACCURACY	,135	10	,200	,949	10	,
			TF-IDF	ACCURACY	,265	10	,045	,888	10	
		1000	TF	ACCURACY	,187	10	,200	,953	10	
			TF-IDF	ACCURACY	,263	10	,049	,800	10	
		5000	TF	ACCURACY	,167	10	,200	,961	10	
			TF-IDF	ACCURACY	,128	10	,200	,938	10	į
	5	500	TF	ACCURACY	,271	10	,036	,884	10	,
			TF-IDF	ACCURACY	,144	10	,200	,961	10	
		1000	TF	ACCURACY	,156	10	,200	,934	10	
			TF-IDF	ACCURACY	,160	10	,200	,934	10	
		5000	TF	ACCURACY	,250	10	,077	,862	10	
		505	TF-IDF	ACCURACY	,144	10	,200	,977	10	
VM	1	500	TEIDE	ACCURACY	,263	10	,048	,806	10	,
			TF-IDF	ACCURACY	,148	10	,200	,958	10	
		1000	TF	ACCURACY	,232	10	,137	,945	10	
		5000	TF-IDF	ACCURACY	,139	10	,200	,972	10	
		5000	TF	ACCURACY	,159	10	,200	,938	10	
	_		TF-IDF	ACCURACY	,199	10	,200	,923	10	
	2	500	TF	ACCURACY	,231	10	,139	,904	10	
			TF-IDF	ACCURACY	,158	10	,200	,930	10	
		1000	TF	ACCURACY	,199	10	,200	,962	10	
		5000	TF-IDF	ACCURACY	,159	10	,200	,959	10	
		5000	TF-IDF	ACCURACY	,226	10	,161	,962	10	
	3	500			,174	10	,200	,917	10	
	3	500	TF-IDF	ACCURACY	,182	10	,200	,914	10	
		1000	TF	ACCURACY	,229	10	,145	,941	10 10	
		1000	TF-IDF	ACCURACY	,213	10	,200	,940	10	-
		5000	TF	ACCURACY	,213	10	,200°	,909	10	-
		0000	TF-IDF	ACCURACY	,147	10	,200	,974	10	
	4	500	TF	ACCURACY	,213	10	,200	,921	10	
			TF-IDF	ACCURACY	,176	10	,200	,916	10	-
		1000	TF	ACCURACY	,143	10	,200	,941	10	
			TF-IDF	ACCURACY	,172	10	,200	,945	10	
		5000	TF	ACCURACY	,201	10	,200	,947	10	
			TF-IDF	ACCURACY	,167	10	,200	,947	10	
	5	500	TF	ACCURACY	,135	10	,200	,985	10	
			TF-IDF	ACCURACY	,175	10	,200	,913	10	
		1000	TF	ACCURACY	,209	10	,200	,937	10	
			TF-IDF	ACCURACY	,139	10	,200	.938	10	
		5000	TF	ACCURACY	,230	10	,142	,910	10	
			TF-IDF	ACCURACY	,230	10	,200	,910	10	
REE	1	500	TF	ACCURACY	,216	10	,200	,947	10	
	1		TF-IDF	ACCURACY	154	10	,200	936	10	
		1000	TF	ACCURACY	,154	10	,200	,936	10	
		1	TF-IDF	ACCURACY	,240	10	,005	,845	10	
		5000	TF	ACCURACY	,168	10	,200	,942	10	
			TF-IDF	ACCURACY	,275	10	,200	,842	10	-
	2	500	TF	ACCURACY	,273	10	,200	,936	10	
			TF-IDF	ACCURACY	,144	10	,200	,982	10	
		1000	TF	ACCURACY	,233	10	,133	,875	10	
			TF-IDF	ACCURACY	,263	10	,049	,912	10	
		5000	TF	ACCURACY	,246	10	,086	,895	10	
			TF-IDF	ACCURACY	,182	10	,200	,922	10	
	3	500	TF	ACCURACY	,183	10	,200	,948	10	
			TF-IDF	ACCURACY	,182	10	,200	,880	10	
		1000	TF	ACCURACY	,200	10	,200	,897	10	
			TF-IDF	ACCURACY	,135	10	,200	,976	10	
		5000	TF	ACCURACY	,168	10	,200	,899	10	
			TF-IDF	ACCURACY	,184	10	,200	,897	10	
	4	500	TF	ACCURACY	,180	10	,200	,931	10	
			TF-IDF	ACCURACY	,217	10	,198	,901	10	
		1000	TF	ACCURACY	,262	10	,051	,833	10	
			TF-IDF	ACCURACY	,240	10	,109	,923	10	
		5000	TF	ACCURACY	,148	10	,200	,928	10	
			TF-IDF	ACCURACY	,173	10	,200	,965	10	
	5	500	TF	ACCURACY	,195	10	,200	,909	10	
			TF-IDF	ACCURACY	,225	10	,162	,843	10	
		1000	TF	ACCURACY	,184	10	,200	,919	10	
			TF-IDF	ACCURACY	,186	10	,200	,902	10	
		5000	TF	ACCURACY	,248	10	,082	,835	10	
			TF-IDF	ACCURACY	,181	10	,200	,928	10	

Figura B.7: Prueba de normalidad para el Escenario 4 con un ANOVA de 4 factores

			Pruebas de no		a 1			
		_		orov-Smirn			apiro-Wilk	-
LASSNGRAM IAIVE-BAYES-1	1000-TF	ACCURACY	Estadístico	gl	Sig.	Estadístico	gl	Sig.
IAIVE-BATES- I	1000-TF	ACCURACY	,188	10	,200	,964	10	8,
	500-TF		,253	10	,069	,904	10	,2
	000 11	ACCURACY	,149	10	,200	,946	10	,6
	500-TF-IDF	ACCURACY	,196	10	,200	,959	10	,7
	5000-TF	ACCURACY	,144	10	,200	,908	10	,2
	5000-TF-IDF	ACCURACY	,196	10	,200	,919	10	į,
AIVE-BAYES-2	1000-TF	ACCURACY	,156	10	,200	,967	10	3,
	1000-TF-IDF	ACCURACY	,156	10	,200	,967	10	,8
	500-TF	ACCURACY	,186	10	,200	,975	10	,,
	500-TF-IDF	ACCURACY	,079	10	,200	,984	10	,,
	5000-TF	ACCURACY	,152	10	,200	,944	10	,5
	5000-TF-IDF	ACCURACY	,186	10	,200	,891	10	,1
AIVE-BAYES-3	1000-TF	ACCURACY	,171	10	,200	,918	10	,;
	1000-TF-IDF	ACCURACY	,256	10	,062	,801	10	
	500-TF	ACCURACY	,255	10	,064	,921	10	.3
	500-TF-IDF	ACCURACY	,250	10	,076	,892	10	
	5000-TF	ACCURACY	,191	10	,200°	,961	10	- ;
	5000-TF-IDF	ACCURACY	,126	10	,200	.960	10	
AIVE-BAYES-4	1000-TF	ACCURACY	,120	10		,953	10	,
AIVE-BATES-4	1000-TF-IDF	ACCURACY	.263	10	,200	,800	10	
	500-TF	ACCURACY	,===		10.00			
	500-TF-IDF	ACCURACY	,135	10	,200	,949	10	,6
			,265	10	,045	,888	10	
	5000-TF	ACCURACY	,167	10	,200	,961	10	3,
	5000-TF-IDF	ACCURACY	,128	10	,200	,938	10	,5
AIVE-BAYES-5	1000-TF	ACCURACY	,156	10	,200	,934	10	,4
	1000-TF-IDF	ACCURACY	,160	10	,200	,934	10	,4
	500-TF	ACCURACY	,271	10	,036	,884	10	,
	500-TF-IDF	ACCURACY	,144	10	,200	,961	10	,
	5000-TF	ACCURACY	,250	10	,077	,862	10	,(
	5000-TF-IDF	ACCURACY	,144	10	,200	,977	10	.,
VM-1	1000-TF	ACCURACY	,232	10	,200	,945	10	.,
	1000-TF-IDF	ACCURACY	,139	10	,200	.972	10	.,,
	500-TF	ACCURACY	,133	10	,200	,806	10	,,
	500-TF-IDF	ACCURACY	,148	10	-	,958	10	
	5000-TF	ACCURACY	,159	10	,200	,938	10	
	5000-TF-IDF	ACCURACY			,200			
VM-2			,199	10	,200	,923	10	,
VM-2	1000-TF	ACCURACY	,199	10	,200	,962	10	,,
	1000-TF-IDF	ACCURACY	,159	10	,200	,959	10	,
	500-TF	ACCURACY	,231	10	,139	,904	10	,
	500-TF-IDF	ACCURACY	,158	10	,200	,930	10	,4
	5000-TF	ACCURACY	,226	10	,161	,962	10	,;
	5000-TF-IDF	ACCURACY	,174	10	,200	,917	10	,
VM-3	1000-TF	ACCURACY	,125	10	,200	,946	10	,(
	1000-TF-IDF	ACCURACY	,213	10	,200	,909	10	,
	500-TF	ACCURACY	,182	10	,200	,914	10	,;
	500-TF-IDF	ACCURACY	,229	10	,145	,941	10	,,
	5000-TF	ACCURACY	,214	10	,200	,855	10	,
	5000-TF-IDF	ACCURACY	,147	10	,200	,974	10	.9
VM-4	1000-TF	ACCURACY	,143	10	,200	,941	10	
	1000-TF-IDF	ACCURACY	,172	10	,200	,945	10	,
	500-TF	ACCURACY	.213	10	,200	921	10	
	500-TF-IDF	ACCURACY	,176	10	,200	,916	10	,,
	5000-TF	ACCURACY	,201	10	-	,947	10	······································
	5000 TF-IDF	ACCURACY			,200			
VM-5	1000-TF-IDF	ACCURACY	,167	10	,200	,947	10	,,
VM-5			,209	10	,200	,937	10	,
	1000-TF-IDF	ACCURACY	,139	10	,200	,938	10	,
	500-TF	ACCURACY	,135	10	,200	,985	10	,,
	500-TF-IDF	ACCURACY	,175	10	,200	,913	10	,
	5000-TF	ACCURACY	,230	10	,142	,910	10	,
	5000-TF-IDF	ACCURACY	,216	10	,200	,879	10	,
REE-1	1000-TF	ACCURACY	,246	10	,088	,905	10	,;
	1000-TF-IDF	ACCURACY	,317	10	,005	,845	10	,(
	500-TF	ACCURACY	,153	10	,200	,947	10	,
	500-TF-IDF	ACCURACY	,154	10	,200	,936	10	,
	5000-TF	ACCURACY	,168	10	,200	,942	10	,,
	5000-TF-IDF	ACCURACY	,100	10	,200	,842	10	٠,
REE-2	1000-TF	ACCURACY	,275	10	,031	,842	10	
	1000-TF-IDF	ACCURACY						
	500-TF	ACCURACY	,263	10	,049	,912	10	,
	500-TF-IDF		,157	10	,200	,936	10	,,
		ACCURACY	,144	10	,200	,982	10	,,
	5000-TF	ACCURACY	,246	10	,086	,895	10	,
255.0	5000-TF-IDF	ACCURACY	,182	10	,200	,922	10	,
REE-3	1000-TF	ACCURACY	,200	10	,200	,897	10	,
	1000-TF-IDF	ACCURACY	,135	10	,200	,976	10	,
	500-TF	ACCURACY	,183	10	,200	,948	10	,
	500-TF-IDF	ACCURACY	,182	10	,200	,880	10	
	5000-TF	ACCURACY	,168	10	,200	,899	10	,
	5000-TF-IDF	ACCURACY	,184	10	,200	,897	10	,
REE-4	1000-TF	ACCURACY	,262	10	,051	,833	10	,
	1000-TF-IDF	ACCURACY	,240	10	,109	,923	10	,
	500-TF	ACCURACY	,180	10	,200	,931	10	,,
	500-TF-IDF	ACCURACY						
			,217	10	,198	,901	10	,
	5000-TF	ACCURACY	,148	10	,200	,928	10	,
	5000-TF-IDF	ACCURACY	,173	10	,200	,965	10	,
REE-5	1000-TF	ACCURACY	,184	10	,200	,919	10	,
	1000-TF-IDF	ACCURACY	,186	10	,200	,902	10	,2
	500-TF	ACCURACY	,195	10	,200	,909	10	,
	500-TF-IDF	ACCURACY	,225	10	,162	,843	10	,,
	5000-TF	ACCURACY	,248	10	,082	,835	10	,,
								_
	5000-TF-IDF	ACCURACY	,181	10	,200	,928	10	.4

Figura B.8: Prueba de normalidad para el Escenario 4 con un ANOVA de 2 factores

Prueba de igualdad de Levene de varianzas de error^a

Variable dependiente: ACCURACY

F	df1	df2	Sig.
1,119	89	810	,223

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos.

a. Diseño : Interceptación + CLASIFICADOR + NGRAMAS + VOCABULARIO + CARACTERISTICAS + CLASIFICADOR * NGRAMAS + CLASIFICADOR * VOCABULARIO + CLASIFICADOR * CARACTERISTICAS + NGRAMAS * VOCABULARIO + NGRAMAS * CARACTERISTICAS + VOCABULARIO * CARACTERISTICAS + CLASIFICADOR * NGRAMAS * VOCABULARIO + CLASIFICADOR * NGRAMAS * CARACTERISTICAS + CLASIFICADOR * VOCABULARIO * CARACTERISTICAS + NGRAMAS * VOCABULARIO * CARACTERISTICAS + CLASIFICADOR * NGRAMAS * VOCABULARIO * CARACTERISTICAS

Prueba de igualdad de Levene de varianzas de error^a

ACCURACY F df1 df2 Sig. 1,119 89 810 ,223

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos.

- a. Diseño : Interceptación + CLASNGRAM + VOCABCARACT
- + CLASNGRAM * VOCABCARACT
 - (b) ANOVA de 2 factores

(a) ANOVA de 4 factores

Figura B.9: Prueba de homogeneidad para el Escenario 1

Prueba de igualdad de Levene de varianzas de error^a

Variable dependiente: ACCURACY

F	df1	df2	Sig.	
1,307	89	810	,036	

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos.

a. Diseño: Interceptación + CLASIFICADOR + NGRAMAS + VOCABULARIO + CARACTERISTICAS + CLASIFICADOR * NGRAMAS + CLASIFICADOR * VOCABULARIO + CLASIFICADOR * CARACTERISTICAS + NGRAMAS * VOCABULARIO + NGRAMAS * CARACTERISTICAS + VOCABULARIO * CARACTERISTICAS + CLASIFICADOR * NGRAMAS * VOCABULARIO + CLASIFICADOR * NGRAMAS * CARACTERISTICAS + CLASIFICADOR * VOCABULARIO * CARACTERISTICAS + NGRAMAS * VOCABULARIO * CARACTERISTICAS + CLASIFICADOR * NGRAMAS * VOCABULARIO CARACTERISTICAS

(a) ANOVA de 4 factores

Prueba de igualdad de Levene de varianzas de error^a

Variable dependiente: ACCURACY

variable ac	portaronto.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	'	
F df1		df2	Sig.	
1,307	89	810	,036	

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos.

- a. Diseño: Interceptación + CLASNGRAM + VOCABCARACT + CLASNGRAM * VOCABCARACT
 - (b) ANOVA de 2 factores

Figura B.10: Prueba de homogeneidad para el Escenario 2

Prueba de igualdad de Levene de varianzas de error^a

Variable dependiente: ACCURACY

F	df1	df2	Sig.	
1,366	89	810	,018	

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos.

a. Diseño : Interceptación + CLASIFICADOR + NGRAMAS + VOCABULARIO + CARACTERISTICAS + CLASIFICADOR * NGRAMAS + CLASIFICADOR * VOCABULARIO + CLASIFICADOR * CARACTERISTICAS + NGRAMAS * VOCABULARIO + NGRAMAS 3 CARACTERISTICAS + VOCABULARIO * CARACTERISTICAS + CLASIFICADOR * NGRAMAS * VOCABULARIO + CLASIFICADOR * NGRAMAS * CARACTERISTICAS + CLASIFICADOR * VOCABULARIO * CARACTERISTICAS + NGRAMAS * VOCABULARIO * CARACTERISTICAS + CLASIFICADOR * NGRAMAS * VOCABULARIO * CARACTERISTICAS

Prueba de igualdad de Levene de varianzas de error^a

Variable dependiente: ACCURACY

F	df1	df2	Sig.	
1,366	89	810	,018	

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos.

a. Diseño : Interceptación + CLASSNGRAM + VOCABCARACT + CLASSNGRAM * VOCABCARACT

(b) ANOVA de 2 factores

(a) ANOVA de 4 factores

Figura B.11: Prueba de homogeneidad para el Escenario 3

Prueba de igualdad de Levene de varianzas de error^a

Variable dependiente: ACCURACY

F	df1	df2	Sig.	
1,417	89	810	,009	

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos

a. Diseño: Interceptación + CLASIFICADOR + NGRAMAS + VOCABULARIO + CARACTERISTICAS + CLASIFICADOR * NGRAMAS + CLASIFICADOR * VOCABULARIO + CLASIFICADOR * CARACTERISTICAS + NGRAMAS * VOCABULARIO + NGRAMAS * CARACTERISTICAS + VOCABULARIO * CARACTERISTICAS + CLASIFICADOR * NGRAMAS * VOCABULARIO + CLASIFICADOR * NGRAMAS * CARACTERISTICAS + CLASIFICADOR * VOCABULARIO * CARACTERISTICAS + NGRAMAS * VOCABULARIO * CARACTERISTICAS + CLASIFICADOR * NGRAMAS * VOCABULARIO * CARACTERISTICAS

Prueba de igualdad de Levene de varianzas de error^a

Variable dependiente: ACCURACY

F	df1	df2	Sig.
1,417	89	810	,009

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos.

a. Diseño: Interceptación + CLASSNGRAM + VOCABCARACT + CLASSNGRAM * VOCABCARACT

(b) ANOVA de 2 factores

(a) ANOVA de 4 factores

Figura B.12: Prueba de homogeneidad para el Escenario 4

Pruebas de efectos inter-sujetos

ACCURACY

Origen	Tipo III de suma de cuadrados	gl	Cuadrático promedio	F	Sig.
Modelo corregido	1,363 ^a	89	,015	10,612	,000
Interceptación	260,829	1	260,829	180702,586	,000
CLASNGRAM	1,262	14	,090	62,472	,000
VOCABCARACT	,048	5	,010	6,588	,000
CLASNGRAM * VOCABCARACT	,053	70	,001	,527	,999
Error	1,169	810	,001		
Total	263,362	900			
Total corregido	2,532	899			

a. R al cuadrado = ,538 (R al cuadrado ajustada = ,488)

Figura B.13: Modelo ANOVA para el Escenario 1 con 2 factores

ACCURACY

HSD Tukey ^{a,b}						Subconjunto				
CLASNGRAM	N	1	2	3	4	5	6	7	8	9
SVM-5	60	,4856250								
TREE-5	60	,4910417	,4910417							
TREE-4	60	,4951042	,4951042	,4951042						
SVM-4	60	,5037500	,5037500	,5037500						
NAIVE- BAYES-4	60		,5129167	,5129167	,5129167					
NAIVE- BAYES-5	60			,5164583	,5164583	,5164583				
TREE-3	60				,5308333	,5308333	,5308333			
NAIVE- BAYES-3	60				,5341667	,5341667	,5341667			
SVM-3	60					,5397917	,5397917			
TREE-2	60						,5480208	,5480208		
SVM-2	60							,5661458	,5661458	
NAIVE- BAYES-2	60							,5705208	,5705208	
TREE-1	60								,5719792	
NAIVE- BAYES-1	60									,6033333
SVM-1	60									,6054167
Sig.		,363	,104	,127	,132	,056	,458	,080	1,000	1,000

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Figura B.14: Pruebas post-hoc para el Escenario 1 con el factor CLASNGRAM

Se basa en las medias observadas. El término de error es la media cuadrática(Error) = ,001. a. Utiliza el tamaño de la muestra de la media armónica = 60,000.

b. Alfa = .05.

HSD Tukeya,b

		Subconjunto					
VOCABCARACT	N	1	2	3			
500-TF	150	,5295417					
500-TF-IDF	150	,5330000	,5330000				
1000-TF	150	,5352500	,5352500				
1000-TF-IDF	150	,5364583	,5364583				
5000-TF-IDF	150		,5451250	,5451250			
5000-TF	150			,5506667			
Sig.		,614	,064	,805			

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Figura B.15: Pruebas post-hoc para el Escenario 1 con el factor VOCABCARACT

Pruebas de efectos inter-sujetos

Variable dependiente: ACCURACY

Origen	Tipo III de suma de cuadrados	gl	Cuadrático promedio	F	Sig.
Modelo corregido	2,490ª	89	,028	42,553	,000
Interceptación	89,316	1	89,316	135850,673	,000
CLASNGRAM	2,404	14	,172	261,189	,000
VOCABCARACT	,043	5	,009	13,090	,000
CLASNGRAM* VOCABCARACT	,043	70	,001	,930	,640
Error	,533	810	,001		
Total	92,339	900			
Total corregido	3,022	899			

a. R al cuadrado = ,824 (R al cuadrado ajustada = ,804)

Figura B.16: Modelo ANOVA para el Escenario 2 con 2 factores

Se basa en las medias observadas. El término de error es la media cuadrática(Error) = ,001.

a. Utiliza el tamaño de la muestra de la media armónica = 150,000.

b. Alfa = ,05.

HSD Tukeva,b

TISD Tukey			Subconjunto							
CLASNGRAM	N	1	2	3	4	5	6			
SVM-5	60	,25109375								
TREE-5	60	,25218750								
SVM-4	60	,25817708	,25817708							
TREE-4	60	,25947917	,25947917							
NAIVE-BAYES- 5	60	,26473958	,26473958							
NAIVE-BAYES- 4	60		,27343750							
TREE-3	60			,31046875						
NAIVE-BAYES- 3	60			,31395833						
SVM-3	60			,31562500						
NAIVE-BAYES- 2	60				,34963542					
SVM-2	60				,35671875					
TREE-2	60				,35729167					
TREE-1	60				,36484375					
NAIVE-BAYES- 1	60					,38947917				
SVM-1	60						,40822917			
Sig.		,192	,077	,999	,079	1,000	1,000			

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Figura B.17: Pruebas post-hoc para el Escenario 2 con el factor CLASNGRAM

ACCURACY

HSD Tukeya,b

		Subconjunto				
VOCABCARACT	N	1	2	3		
500-TF-IDF	150	,30850000				
1000-TF-IDF	150	,30947917				
500-TF	150	,30958333				
1000-TF	150	,31429167	,31429167			
5000-TF-IDF	150		,32122917	,32122917		
5000-TF	150			,32706250		
Sig.		,369	,178	,360		

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Figura B.18: Pruebas post-hoc para el Escenario 2 con el factor VOCABCARACT

Se basa en las medias observadas.

El término de error es la media cuadrática(Error) = ,001.

a. Utiliza el tamaño de la muestra de la media armónica = 60,000.

Se basa en las medias observadas.

El término de error es la media cuadrática(Error) = ,001.

a. Utiliza el tamaño de la muestra de la media armónica = 150,000.

b. Alfa = ,05.

Pruebas de efectos inter-sujetos

Variable dependiente: ACCURACY

Origen	Tipo III de suma de cuadrados	gl	Cuadrático promedio	F	Sig.
Modelo corregido	3,388ª	89	,038	78,369	,000
Interceptación	70,577	1	70,577	145281,572	,000
CLASSNGRAM	3,180	14	,227	467,609	,000
VOCABCARACT	,106	5	,021	43,547	,000
CLASSNGRAM* VOCABCARACT	,102	70	,001	3,009	,000
Error	,393	810	,000		
Total	74,359	900			
Total corregido	3,782	899			

a. R al cuadrado = ,896 (R al cuadrado ajustada = ,885)

Figura B.19: Modelo ANOVA para el Escenario 3 con 2 factores

ACCURACY

HSD Tukey^{a,b}

		Subconjunto										
CLASSNGRAM	N	1	2	3	4	5	6	7	8			
TREE-5	60	,205792										
SVM-5	60	,206417										
NAIVE-BAYES- 5	60	,211125	,211125									
TREE-4	60		,223125	,223125								
SVM-4	60			,227875								
NAIVE-BAYES- 4	60			,228875								
NAIVE-BAYES- 3	60				,272833							
TREE-3	60				,273542							
SVM-3	60				,281083							
TREE-1	60					,321542						
NAIVE-BAYES- 2	60					,325708						
TREE-2	60					,327458						
SVM-2	60						,344250					
NAIVE-BAYES- 1	60							,363875				
SVM-1	60								,387000			
Sig.		,992	,163	,985	,767	,980	1,000	1,000	1,000			

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Figura B.20: Pruebas post-hoc para el Escenario 3 con el factor CLASNGRAM

Se basa en las medias observadas.

El término de error es la media cuadrática(Error) = ,000.

a. Utiliza el tamaño de la muestra de la media armónica = 60,000.

HSD Tukeya,b

		Subconjunto					
VOCABCARACT	N	1	2	3	4		
500-TF-IDF	150	,267133					
500-TF	150	,270050					
1000-TF	150		,277383				
1000-TF-IDF	150		,277767				
5000-TF-IDF	150			,289433			
5000-TF	150				,298433		
Sig.		,862	1,000	1,000	1,000		

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Figura B.21: Pruebas post-hoc para el Escenario 3 con el factor VOCABCARACT

Pruebas	de	efectos	inter	-sujetos
---------	----	---------	-------	----------

Variable dependiente: ACCURACY

Origen	Tipo III de suma de cuadrados	gl	Cuadrático promedio	F	Sig.
Modelo corregido	7,565ª	89	,085	586,746	,000
Interceptación	34,791	1	34,791	240171,863	,000
CLASSNGRAM	7,003	14	,500	3453,173	,000
VOCABCARACT	,377	5	,075	520,652	,000
CLASSNGRAM* VOCABCARACT	,184	70	,003	18,182	,000
Error	,117	810	,000		
Total	42,473	900			
Total corregido	7,682	899			

a. R al cuadrado = ,985 (R al cuadrado ajustada = ,983)

Figura B.22: Modelo ANOVA para el Escenario 4 con 2 factores

HSD Tukey ^{Ab}													
			Subconjunto										
CLASSNGRAM	N	1	2	3	4	5	6	7	8	9	10	11	
TREE-5	60	.09194444444418											
SVM-5	60	,093908250000015											
NAIVE-BAYES- 5	60		,101961805555517										
TREE-4	60			,120763888888922									
NAIVE-BAYES- 4	60			,121215277777882									
SVM-4	60			,123107638888878									
NAIVE-BAYES- 3	60				,171874999999987								
TREE-3	60					,182083333333367							
SVM-3	60						,190807638888917						
NAIVE-BAYES- 2	60							.227395833333267					
TREE-2	60								,251579861111133				
SVM-2	60									,28631944444400			
TREE-1	60										,301408250000000		
NAIVE-BAYES- 1	60										,303871527777717		
SVM-1	60											,3811458333333	
Sig.		1,000	1,000	.999	1,000	1,000	1,000	1,000	1,000	1,000	.999	1,0	

Se basa en las medias observadas. El término de error es la media cuadrática(Error) = ,000.

Se basa en las medias observadas.

El término de error es la media cuadrática(Error) = ,000.

a. Utiliza el tamaño de la muestra de la media armónica = 150,000.

b. Alfa = .05.

a. Utiliza el tamaño de la muestra de la media armónica = 60,

Figura B.23: Pruebas post-hoc para el Escenario 4 con el factor CLASNGRAM

HSD Tukey^{a,b}

TIOD TUKEY											
		Subconjunto									
VOCABCARACT	N	1	2	3	4						
500-TF-IDF	150	,174750000000054									
500-TF	150	,174840277777786									
1000-TF-IDF	150		,189798611111101								
1000-TF	150		,192805555555529								
5000-TF-IDF	150			,219909722222217							
5000-TF	150				,22756944444418						
Sig.		1,000	,256	1,000	1,000						

Se visualizan las medias para los grupos en los subconjuntos homogéneos. Se basa en las medias observadas. El término de error es la media cuadrática(Error) = ,000. a. Utiliza el tamaño de la muestra de la media armónica = 150,000.

b. Alfa = ,05.

Figura B.24: Pruebas post-hoc para el Escenario 4 con el factor VOCABCARACT