Informe de Física: Encontrando el coeficiente de fricción dinámica

Francisco Carruthers, Facundo Firpo y Joel Jablonski

{fcarruthers, ffirpo, jjablonski}@udesa.edu.ar Fisica I, tutorial Vinograd

2do Semestre 2024

Resumen

Utilizando un carrito, una soga y una polea, se busca encontrar el coeficiente de fricción dinámica entre el carrito y la superficie. Para ello, se mide la aceleración del carrito con distintas masas y se calcula el coeficiente de fricción dinámica. También, utilizamos varias superficies para ver cómo afecta el coeficiente de fricción.

1. Introducción

(Descripción del experimento) (Desarrollo de Newton y Vinculos del problema)

Objeto	Masa(g)
Pesa dorada	72 ± 1
Pesa plateada	23 ± 1
Pesa madera	6 ± 1
Trineo	109 ± 1
Metro	134 ± 1

Tabla 1: Mediciones de masa

2. Calibración

Utilizamos un sistema de referencia para calibrar el sistema.

Figura 1: Calibración del sistema

Pendiente: 0.0184 ± 0.0005

Ordenada al origen: (-0.5 ± 0.5) cm

Distancia para 600: (10.5 ± 0.4) cm

3. Resultados

3.1. Posicion

Madera y Trineo

En un primer caso dejamos el trineo deslizar sobre la mesa de madera.

Figura 2: $M = 161 \pm 1g, m = 72 \pm 1g$

Figura 3: $M=243\pm 1g, m=95\pm 1g$

Figura 4: $M = 109 \pm 1g, m = 46 \pm 1g$

Vemos en las figuras 2 y 3 que ambas mediciones se parecen bastante entre si en cada caso pero que en 4 hay una diferencia en la pendiente. Esto nos va a llevar a que la incerteza del μ_d sea grande.

Papel y trineo

Luego, le pegamos papel a la mesa y repetimos el experimento.

Figura 5: $M=161\pm 1g, m=72\pm 1g$

Figura 6: $M = 243 \pm 1g, m = 95 \pm 1g$

Figura 7: $M=109\pm 1g, m=46\pm 1g$

Vemos que en las figuras 5 y 6 las pendientes son muy parecidas, pero en 7 hay una diferencia en la pendiente. Esto nos va a llevar a que la incerteza del μ_d sea grande.

Papel y Papel

Por ultimo, pegamos otro papel al trineo y repetimos el experimento.

Figura 8: $M=243\pm 1g, m=72\pm 1g$

Figura 9: $M=243\pm 1g, m=95\pm 1g$

Figura 10: $M=109\pm 1g, m=72\pm 1g$

3.2. Obtencion del μ_d

Figura 11: Madera y trineo

Figura 12: Papel y trineo

Figura 13: Papel y papel

Sacando un promedio de los valores obtenidos en las figuras 11, 12 y 13 obtenemos un valor de μ_d para cada superficie.

Superficie	μ_d
Madera y trineo	0.4 ± 0.1
Papel y trineo	0.45 ± 0.03
Papel y Papel	0.5 ± 0.2

Tabla 2: Valores de μ_d y sus incertezas para cada superficie

Figura 14: Promedio de μ_d para cada superficie