

Virtual FPGA Fabrics: Implementation of an Overlay FPGA

Neil Isaac and Keyi Shi

Group #2011-017

Supervisor: Jason Anderson

Administrator: Ross Gillett

Goal:

To implement an FPGA on an FPGA.

It's like building a lego block out of lego!

Why bother?

- Build FPGA prototypes to test new designs
- Abstraction layer for bitstream compatibility
- Works with open-source FPGA tools like VPR
- Can now test output from VPR in hardware

Overlay FPGA Hierarchy

The overlay is an array of tiles

marviadai tile compositio

Basic Logic Element (BLE)

Challenges:

- Learning and implementing an FPGA architecture
- Hardware programming specification
- Consistency with our bitstream software
- Working around issues in third party tools

Placement and routing of 4-bit adder circuit in VPR

Versatile Place and Route (VPR) version 5.0.2 was used 64 Tiles with 4 BLEs per tile, 4 tracks per channel Logic Blocks are shown in grey as ".clb" Inputs and Outputs are they grey boxes at the top Routing connections shown as lines between logic blocks

Implementation Overhead

Overhead = Virtex 5 lookup tables used / Overlay logic elements
Uses 24 inputs to logic block and track width of 10 when not varying

"Lego block made of lego" image by Adrea R: www.flickr.com/photos/andrear/6147923734 (licensed under Creative Commons)