Matemática Discreta

Vaira, Stella - Fedonczuk, Miguel Colliard, David - Cottonaro, Mariana

Lic en Sistemas de Información - FCyT - UADER

2022

Anillos.

Propiedades. Subestructuras de un anillo.

${ m Teorema}$

En cualquier anillo $(R, +, \cdot)$

- a) el elemento neutro z es único
- b) el inverso aditivo de cada elemento del anillo es único.

Demostración:

a) Si R tiene más de una identidad aditiva, sean z₁, z₂ dos de tales elementos. Entonces

$$z_1 = z_1 + z_2 = z_2.$$

Ya que z, es una Ya que z, es una identidad aditiva

identidad aditiva

b) Para $a \in R$, supongamos que existen dos elementos b, $c \in R$ tales que a + b = b + a =z y a + c = c + a = z. Entonces b = b + z = b + (a + c) = (b + a) + c = z + c = c. (El lector debe indicar la condición que establece cada igualdad.)

Observación:

- a) De ahora en más el inverso aditivo de un elemento a se denotará como -a
- b) Hablaremos de resta en un anillo haciendo referencia a x y = x + (-y)

TEOREMA 14.2 (Las leyes de cancelación para la suma) Para cualesquiera
$$a, b, c \in R$$
,

a)
$$a + b = a + c \Rightarrow b = c$$
, y
b) $b + a = c + a \Rightarrow b = c$.

TEOREMA 14.3 Para cualquier anillo
$$(R, +, \cdot)$$
 y cualquier $a \in R$, tenemos $az = za = z$.

TEOREMA 14.4 Dado un anillo
$$(R, +, \cdot)$$
 y $a, b \in R$,

$$\mathbf{a)} \qquad -(-a)=a,$$

b)
$$a(-b) = (-a)b = -(ab)$$
, y
c) $(-a)(-b) = ab$.

TEOREMA 14.5 Para un anillo
$$(R, +, \cdot)$$
,

Para un anillo $(R, +, \cdot)$,

- a) Si R tiene un elemento unidad, entonces es único, y
- si R tiene un elemento unidad y x es una unidad de R, entonces el inverso multiplicativo de x es único.
- **TEOREMA 14.7** Si $(F, +, \cdot)$ es un cuerpo, entonces es un dominio de integridad.

TEOREMA 14.8 Un dominio de integridad *finito* $(D, +, \cdot)$ es un cuerpo.

Para cualquier anillo $(R, +, \cdot)$, si $\emptyset \neq S \subseteq R$, **TEOREMA 14.10**

Definición 14.5

- a) entonces $(S, +, \cdot)$ es un subanillo de R si y sólo si para todos $a, b \in S$, tenemos que $a-b \in S y ab \in S$;
- b) y si S es finito, entonces $(S, +, \cdot)$ es un subanillo de R si y sólo si para todos $a, b \in$ S, tenemos que a + b, $ab \in S$. (De nuevo, la ayuda adicional proviene de una condición de ser finito.)

Consideremos el anillo $R = M_2(\mathbf{Z})$ y el subconjunto Ejemplo 14.11

$$S = \left\{ \begin{bmatrix} x & x+y \\ x+y & x \end{bmatrix} \middle| x, y \in \mathbf{Z} \right\}$$

de R. Cuando x = y = 0, se sigue que $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in S$ y $S \neq \emptyset$. Así, ahora analizamos cualquier

par de elementos de S; es decir, dos matrices de la forma

$$\begin{bmatrix} x & x+y \\ x+y & x \end{bmatrix} \qquad y \qquad \begin{bmatrix} v & v+w \\ v+w & v \end{bmatrix},$$

donde x, y, v, $w \in \mathbb{Z}$. Tenemos que

$$\begin{bmatrix} x & x+y \\ x+y & x \end{bmatrix} - \begin{bmatrix} v & v+w \\ v+w & v \end{bmatrix} = \begin{bmatrix} x-v & (x-v)+(y-w) \\ (x-v)+(y-w) & x-v \end{bmatrix},$$

por lo que S es cerrado en la resta. Al pasar a la multiplicación, tenemos

$$\begin{bmatrix} x & x+y \\ x+y & x \end{bmatrix} \begin{bmatrix} v & v+w \\ v+w & v \end{bmatrix}$$

$$= \begin{bmatrix} xv + (x+y)(v+w) & x(v+w) + (x+y)v \\ (x+y)v + x(v+w) & (x+y)(v+w) + xv \end{bmatrix}$$

$$= \begin{bmatrix} xv + xv + yv + xw + yw & xv + xw + xv + yv \\ xv + yv + xv + xw & xv + yv + xw + yw + xv \end{bmatrix}$$

$$= \begin{bmatrix} xv + xv + yv + xw + yw & (xv + xv + yv + xw + yw) + (-yw) \\ (xv + xv + yv + xw + yw) + (-yw) & xv + xv + yv + xw + yw \end{bmatrix},$$

por lo que S también es cerrado en la multiplicación.

Recurrimos entonces a la parte (a) del teorema 14.10 y tenemos que S es un subanillo de R.

Definición 14.6 Un subconjunto no vacío I de un anillo R es un ideal de R si para todos $a,b \in I$ y todo $r \in R$, tenemos que (a) $a-b \in I$ y (b) $ar, ra \in I$.

Un ideal es un subanillo, pero el recíproco no siempre se cumple: $(\mathbf{Z}, +, \cdot)$ es un subanillo de $(\mathbf{Q}, +, \cdot)$ pero no es un ideal, ya que, por ejemplo, $(1/2)9 \notin \mathbf{Z}$ aunque $(1/2) \in \mathbf{Q}, 9 \in \mathbf{Z}$. Por otro lado, todos los subanillos del ejemplo 14.8(a) son ideales de $(\mathbf{Z}, +, \cdot)$.

EJERCICIOS 14.2

10. Sea $R = M_2(\mathbf{Z})$ y sea S el subconjunto de R dado por

$$S = \left\{ \begin{bmatrix} x & x - y \\ x - y & y \end{bmatrix} \middle| x, y \in \mathbf{Z} \right\}.$$

Demuestre que S es un subanillo de R.

15. a) Para $R = M_2(\mathbf{Z})$, demuestre que

$$S = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \middle| a \in \mathbf{Z} \right\}$$

es un subanillo de R.

- b) ¿Cuál es el elemento unidad de R?
- c) ¿Tiene S un elemento unidad?
- d) ¿Tiene S propiedades que R no tenga?
- e) ¿Es S un ideal de R?

20. Sea (R, +, ·) el anillo (finito) conmutativo con elemento unidad, dado por las tablas 14.6(a) y (b).

Tabla 14.6

+	z	и	a	b		2	и	a	b
z	z	и	a	ь	z	z	z	z	z
u	u	z	b	a	u	z	u	a	b
a b	a	b	Z	u	a	Z	a	b	u a
b	b	a	и	z	b	z	Ь	u	a

- a) Verifique que R es un cuerpo.
- b) Encuentre un subanillo de R que no sea un ideal.
- c) Sean x, y incógnitas. Resuelva el siguiente sistema de ecuaciones lineales en R:bx+y=u; x+by=z.