Universidade Federal do Ceará - Campus Quixadá

QXD0041 – Projeto e Análise de Algoritmos – 1º Semestre de 2024 Lista de Exercícios

Relações de Recorrência

Método da Substituição

Questão 1. Utilize o método da substituição para calcular a complexidade de tempo do algoritmo abaixo.

```
Algoritmo3 (N):
soma <- 0
Para j <- 1, ..., N faça
   soma <- soma + j
Retorne soma + Algoritmo3(N/2)</pre>
```

Questão 2. Utilizando o método de substituição prove limitantes superiores e inferiores assintóticos para as recorrências a seguir:

```
1. T(n) = T(n/2) + 15, T(1) = 1.
```

2.
$$F(n) = 2F(n/2) + n, F(1) = 1.$$

3.
$$G(n) = 2G(\sqrt{n}), G(1) = 1.$$

Questão 3. (CLRS) 4.3-1 Mostre que a solução de T(n) = T(n-1) + n é $O(n^2)$

Questão 4. (CLRS) 4.3-2 Mostre que a solução de $T(n) = T(\lceil n/2 \rceil) + 1$ é $O(\lg n)$

Questão 5. (CLRS) 4.3-3 Vimos que a solução de $T(n) = 2T(\lfloor n/2 \rfloor) + n$ é $O(n \lg n)$. Mostre que a solução dessa recorrência é também $\Omega(n \lg n)$. Conclua que a solução é $\Theta(n \lg n)$.

Questão 6. (CLRS) 4.3-4 Mostre que, formulando uma hipótese indutiva diferente, podemos superar a dificuldade com a condição de contorno T(1) = 1 para a recorrência (4.19) do livro sem ajustar as condições de contorno para a prova indutiva.

Questão 7. (CLRS) 4.3-5 Mostre que a solução para $T(n) = \Theta(n \lg n)$ é a solução para a recorrência (4.3) do livro.

Questão 8. (CLRS) 4.3-6 Mostre que a solução para $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ é $O(n \lg n)$.

Questão 9. (CLRS) 4.3-7 Usando o Teorema Mestre da Seção 4.5 do livro, você pode mostrar que a solução para a recorrência T(n) = 4T(n/3) + n é $T(n) = \Theta(n^{\log_3 4})$. Mostre que uma prova de substituição que considere $T(n) \le c n^{\log_3 4}$ falha. Depois, mostre como subtrair um termo de ordem mais baixa para fazer com que uma prova de substituição funcione.

Questão 10. (CLRS) 4.3-8 Usando o Teorema Mestre da Seção 4.5 do livro, você pode mostrar que a solução para a recorrência T(n) = 4T(n/2) + n é $T(n) = \Theta(n^2)$. Mostre que uma prova de substituição que considere $T(n) \le cn^2$ falha. Então, mostre como subtrair um termo de ordem mais baixa para fazer com que uma prova de substituição funcione.

Questão 11. (CLRS) 4.3-9 Resolva a recorrência $T(n) = 3T(\sqrt{n}) + \log n$ fazendo uma troca de variáveis. Sua solução deve ser assintoticamente apertada. Não se preocupe com saber se os valores são inteiros.

Método da Árvore de Recursão

Questão 12. (CLRS) 4.4-1 Use uma árvore de recursão para determinar um bom limite superior assintótico para a recorrência $T(n) = 3T(\lfloor n/2 \rfloor) + n$. Use o método de substituição para verificar sua resposta.

Questão 13. (CLRS) 4.4-2 Use uma árvore de recursão para determinar um bom limite superior assintótico para a recorrência $T(n) = T(n/2) + n^2$. Use o método de substituição para verificar sua resposta.

Questão 14. (CLRS) 4.4-3 Use uma árvore de recursão para determinar um bom limite superior assintótico para a recorrência T(n) = 4T(n/2 + 2) + n. Use o método de substituição para verificar sua resposta.

Questão 15. (CLRS) 4.4-4 Use uma árvore de recursão para determinar um bom limite superior assintótico para a recorrência T(n) = 2T(n-1) + 1. Use o método de substituição para verificar sua resposta.

Questão 16. (CLRS) 4.4-5 Use uma árvore de recursão para determinar um bom limite superior assintótico para a recorrência T(n) = T(n-1) + T(n/2) + n. Use o método de substituição para verificar sua resposta.

Questão 17. (CLRS) 4.4-6 Demonstre que a solução para a recorrência T(n) = T(n/3) + T(2n/3) + cn, onde c é uma constante, é $\Omega(n \lg n)$, apelando para uma árvore de recursão.

Questão 18. (CLRS) 4.4-7 Trace a árvore de recursão para $T(n) = 4T(\lfloor n/2 \rfloor) + cn$, onde c é uma constante, e forneça um limite assintótico restrito para a sua solução. Verifique o limite pelo método de substituição.

Questão 19. (CLRS) 4.4-8 Use uma árvore de recursão para dar uma solução assintoticamente justa para a recorrência T(n) = T(n-a) + T(a) + cn, onde $a \ge 1$ e c > 0 são constantes.

Questão 20. Utilizando o método de árvore de recursão prove as recorrências a seguir. Assuma que para todos as alternativas T(1) = 1.

- 1. $T(n) = 3T(n/4) + n^2$.
- 2. T(n) = 4T(n/2) + 3n.
- 3. T(n) = T(0.9n) + 5.

Método Mestre

Questão 21. (CLRS) 4.5-1 Use o método mestre para fornecer limites assintóticos restritos para as recorrências a seguir.

- a. T(n) = 2T(n/4) + 1
- b. $T(n) = 2T(n/4) + \sqrt{n}$
- c. T(n) = 2T(n/4) + n
- d. $T(n) = 2T(n/4) + n^2$

Questão 22. (CLRS) 4.5-3 Use o método mestre para mostrar que a solução para a recorrência de busca binária $T(n) = T(n/2) + \Theta(1)$ é $T(n) = \Theta(\lg n)$. (Veja no Exercício 2.3-5 do livro uma descrição da busca binária.)

Questão 23. (CLRS) 4.5-4 O método mestre pode ser aplicado à recorrência $T(n) = 4T(n/2) + n^2 \lg n$? Justifique sua resposta. Dê um limite superior assintótico para essa recorrência.

Método da Iteração

Questão 24. (CLRS) 4.2-1 Primeira Edição. Use o método da iteração para determinar um bom limite superior assintótico para a recorrência T(n) = 3T(|n/2|) + n.

Questão 25. (CLRS) 4.2-4 Primeira Edição. Use o método da iteração para resolver a recorrência T(n) = T(n-a) + T(a) + n, onde $a \ge 1$ é uma constante.

Qualquer Método

Questão 26. Utilizando qualquer método que desejar, prove as recorrências a seguir. Assuma que para todos as alternativas T(1) = 1.

- 1. $T(n) = 4T(n/4) + n^2$.
- 2. T(n) = 4T(n/2) + 3n.
- 3. T(n) = 4T(n/3) + 5.
- 4. $T(n) = 4T(n/2) + n^3$.

Questão 27. Utilizando qualquer método que desejar, contanto que no final deverá ter pelo menos uma prova por substituição, por árvore de recursão e por método mestre prove as recorrências a seguir. Assuma que para todos as alternativas T(1) = 1.

- 1. $T(n) = 2T(n/2) + n^3$.
- 2. $T(n) = 7T(n/3) + n^2$.
- 3. $T(n) = T(\sqrt{n}) + 5$.
- 4. $T(n) = 3T(n/2) + n \lg n$.
- 5. $T(n) = 4T(n/2) + n^2\sqrt{n}$.
- 6. $T(n) = 2T(n/2) + n/\lg n$.
- 7. T(n) = T(n-1) + 1/n.
- 8. $T(n) = T(n-2) + 2\lg n$.