Funkcje tworzące i transformaty

GeneratingFunction[a[n], n, z];

Funkcje tworzące

W Mathematice funkcję tworzącą ciągu {a_n} wyznaczamy w następujący sposób:

Postać szeregu możemy zobaczyć używając funkcji Series

Współczynnik przy wybranym składniku znajdziemy przy pomocy funkcji SeriesCoefficient

```
 \left\{ \begin{array}{l} \text{PoissonDistribution[0], 8 PoissonDistribution'[0], 32 PoissonDistribution''[0],} \\ \frac{256}{3} \text{ PoissonDistribution}^{(3)} \left[ 0 \right], \\ \frac{512}{3} \text{ PoissonDistribution}^{(4)} \left[ 0 \right], \\ \frac{4096}{15} \text{ PoissonDistribution}^{(5)} \left[ 0 \right], \\ \frac{16 \, 384}{45} \text{ PoissonDistribution}^{(6)} \left[ 0 \right], \\ \frac{131 \, 072}{315} \text{ PoissonDistribution}^{(7)} \left[ 0 \right], \\ \frac{131 \, 072}{315} \text{ PoissonDistribution}^{(9)} \left[ 0 \right], \\ \frac{1048 \, 576 \, \text{PoissonDistribution}^{(9)} \left[ 0 \right]}{2835}, \\ \frac{4 \, 194 \, 304 \, \text{PoissonDistribution}^{(10)} \left[ 0 \right]}{14 \, 175} \right\}
```

Dla λ =1, prawdopodobieństwo, że zmienna losowa o rozkładzie Poissona przyjmie wartość 3 wynosi

```
SeriesCoefficient[P[z], {z, 0, 3}] /. \lambda \to 1. 

|znajdź współczynnik szeregu | \frac{256}{3} PoissonDistribution (3) [0]
```

Wartość oczekiwaną dla danego rozkładu możemy znaleźć licząc pochodną funkcji tworzącej w punkcie 1

$D[P[z], z] /. z \rightarrow 1$ oblicz pochodną

8 PoissonDistribution'[8]

Transformata Laplace'a

Transformatę Laplace'a Stieltjesa dystrybuanty rozkładu ciągłego dostaniemy wyznaczając transformatę Laplace'a jej gęstości

 $F[s] = LaplaceTransform[PDF[ExponentialDistribution[<math>\mu$], t], t, s] transformata Laplace'a fu··· rozkład wykładniczy

$$\left\{ \left\{ \frac{15 \, \mathrm{e}^{2\, y} \, \mu}{4 \, y^{5} + 15 \, \mathrm{e}^{2\, y} \, \mu}, \frac{14175 \, \mathrm{e}^{2\, y} \, \mu}{4 \, y^{10} + 14175 \, \mathrm{e}^{2\, y} \, \mu}, \frac{638\, 512\, 875 \, \mathrm{e}^{2\, y} \, \mu}{16 \, y^{15} + 638\, 512\, 875 \, \mathrm{e}^{2\, y} \, \mu}, \frac{9\, 280\, 784\, 638\, 125 \, \mathrm{e}^{2\, y} \, \mu}{4 \, y^{20} + 9\, 280\, 784\, 638\, 125 \, \mathrm{e}^{2\, y} \, \mu} \right\}, \\ \left\{ \frac{15 \, \mathrm{e}^{4\, y} \, \mu}{128\, y^{5} + 15 \, \mathrm{e}^{4\, y} \, \mu}, \frac{14\, 175 \, \mathrm{e}^{4\, y} \, \mu}{4096\, y^{10} + 14\, 175 \, \mathrm{e}^{4\, y} \, \mu}, \frac{9\, 280\, 784\, 638\, 125 \, \mathrm{e}^{4\, y} \, \mu}{4\, 194\, 304\, y^{20} + 9\, 280\, 784\, 638\, 125 \, \mathrm{e}^{4\, y} \, \mu} \right\}, \\ \left\{ \frac{5 \, \mathrm{e}^{6\, y} \, \mu}{324\, y^{5} + 5 \, \mathrm{e}^{6\, y} \, \mu}, \frac{175 \, \mathrm{e}^{6\, y} \, \mu}{2916\, y^{10} + 175 \, \mathrm{e}^{6\, y} \, \mu}, \frac{875\, 875 \, \mathrm{e}^{6\, y} \, \mu}{314\, 928\, y^{15} + 875\, 875 \, \mathrm{e}^{6\, y} \, \mu}, \frac{14\, 175 \, \mathrm{e}^{8\, y} \, \mu}{2125\, 764\, y^{20} + 1\, 414\, 538\, 125 \, \mathrm{e}^{6\, y} \, \mu} \right\}, \\ \left\{ \frac{15 \, \mathrm{e}^{8\, y} \, \mu}{2125\, 764\, y^{20} + 1\, 414\, 538\, 125 \, \mathrm{e}^{6\, y} \, \mu}, \frac{15 \, \mathrm{e}^{8\, y} \, \mu}{4096\, y^{5} + 15 \, \mathrm{e}^{8\, y} \, \mu}, \frac{14\, 175 \, \mathrm{e}^{8\, y} \, \mu}{4194\, 304\, y^{10} + 14\, 175 \, \mathrm{e}^{8\, y} \, \mu}, \frac{9\, 280\, 784\, 638\, 125 \, \mathrm{e}^{8\, y} \, \mu}{4\, 194\, 304\, y^{10} + 14\, 175\, \mathrm{e}^{8\, y} \, \mu}, \frac{9\, 280\, 784\, 638\, 125 \, \mathrm{e}^{8\, y} \, \mu}{4\, 398\, 046\, 511\, 104\, y^{20} + 9\, 280\, 784\, 638\, 125\, \mathrm{e}^{8\, y} \, \mu} \right\} \right\}$$

Wartość oczekiwaną zmiennej losowej można obliczyć przy pomocy pochodnej transformaty

$-D[F[s], s] /. s \rightarrow 0$

oblicz pochodną

D: Multiple derivative specifier

$$\left\{ \left\{ \frac{4}{15} e^{-2y} y^5, \frac{4 e^{-2y} y^{10}}{14175}, \frac{16 e^{-2y} y^{15}}{638512875}, \frac{4 e^{-2y} y^{20}}{9280784638125} \right\}, \left\{ \frac{128}{15} e^{-4y} y^5, \frac{4096 e^{-4y} y^{10}}{14175}, \frac{524288 e^{-4y} y^{15}}{638512875}, \frac{4194304 e^{-4y} y^{20}}{9280784638125} \right\}, \\ \left\{ \frac{324}{5} e^{-6y} y^5, \frac{2916}{175} e^{-6y} y^{10}, \frac{314928 e^{-6y} y^{15}}{875875}, \frac{2125764 e^{-6y} y^{20}}{1414538125} \right\}, \left\{ \frac{4096}{15} e^{-8y} y^5, \frac{4194304 e^{-8y} y^{10}}{14175}, \frac{17179869184 e^{-8y} y^{15}}{638512875}, \frac{4398046511104 e^{-8y} y^{20}}{9280784638125} \right\} \right\} does not have the form {variable, n}, where n is$$

symbolic or a non-negative integer.

General: 0 is not a valid variable.

$$\begin{array}{l} -\partial_{\theta} \Big\{ \Big\{ \frac{15 \, \mathrm{e}^{2\, y} \, \mu}{4 \, y^{5} + 15 \, \mathrm{e}^{2\, y} \, \mu}, \frac{14 \, 175 \, \mathrm{e}^{2\, y} \, \mu}{4 \, y^{10} + 14 \, 175 \, \mathrm{e}^{2\, y} \, \mu}, \frac{638 \, 512 \, 875 \, \mathrm{e}^{2\, y} \, \mu}{16 \, y^{15} + 638 \, 512 \, 875 \, \mathrm{e}^{2\, y} \, \mu}, \frac{9 \, 280 \, 784 \, 638 \, 125 \, \mathrm{e}^{2\, y} \, \mu}{4 \, y^{20} + 9 \, 280 \, 784 \, 638 \, 125 \, \mathrm{e}^{2\, y} \, \mu} \Big\}, \Big\{ \frac{15 \, \mathrm{e}^{4\, y} \, \mu}{128 \, y^{5} + 15 \, \mathrm{e}^{4\, y} \, \mu}, \frac{14 \, 175 \, \mathrm{e}^{4\, y} \, \mu}{4096 \, y^{10} + 14 \, 175 \, \mathrm{e}^{4\, y} \, \mu}, \frac{9 \, 280 \, 784 \, 638 \, 125 \, \mathrm{e}^{4\, y} \, \mu}{4194 \, 304 \, y^{20} + 9 \, 280 \, 784 \, 638 \, 125 \, \mathrm{e}^{4\, y} \, \mu} \Big\}, \Big\{ \frac{5 \, \mathrm{e}^{6\, y} \, \mu}{324 \, y^{5} + 5 \, \mathrm{e}^{6\, y} \, \mu}, \frac{175 \, \mathrm{e}^{6\, y} \, \mu}{2916 \, y^{10} + 175 \, \mathrm{e}^{6\, y} \, \mu}, \frac{875 \, 875 \, \mathrm{e}^{6\, y} \, \mu}{314 \, 928 \, y^{15} + 875 \, 875 \, \mathrm{e}^{6\, y} \, \mu}, \frac{14175 \, \mathrm{e}^{8\, y} \, \mu}{2125 \, 764 \, y^{20} + 1414 \, 538 \, 125 \, \mathrm{e}^{6\, y} \, \mu} \Big\}, \Big\{ \frac{15 \, \mathrm{e}^{8\, y} \, \mu}{4096 \, y^{5} + 15 \, \mathrm{e}^{8\, y} \, \mu}, \frac{14175 \, \mathrm{e}^{8\, y} \, \mu}{4194 \, 304 \, y^{10} + 14175 \, \mathrm{e}^{8\, y} \, \mu}, \frac{14175 \, \mathrm{e}^{8\, y} \, \mu}{4194 \, 304 \, y^{10} + 14175 \, \mathrm{e}^{8\, y} \, \mu}, \frac{17179 \, 869 \, 184 \, y^{15} + 638 \, 512 \, 875 \, \mathrm{e}^{8\, y} \, \mu}, \frac{14175 \, \mathrm{e}^{8\, y} \, \mu}{4398 \, 046 \, 511 \, 104 \, y^{20} + 9 \, 280 \, 784 \, 638 \, 125 \, \mathrm{e}^{8\, y} \, \mu} \Big\} \Big\}$$

Proces Poissona

$M = PoissonProcess[\lambda]$

proces Poissona

PoissonProcess[λ]

Przykładowo wyznaczymy prawdopodobieństwo, że przez czas t proces Poissona z intensywnością λ wygeneruje mniej niż 4 zdarzenia

Probability $[m[t] < 4, m \approx M]$ prawdopodobieństwo

$$\frac{1}{6} e^{-t \lambda} \left(6 + 6 t \lambda + 3 t^2 \lambda^2 + t^3 \lambda^3 \right)$$

$$\left[\begin{array}{ll} \frac{e^{-t\,\lambda}\,\,(t\,\lambda)^{\,k}}{k\,!} & k\,\geq\,0 \\ 0 & \text{True} \end{array} \right.$$

DiscretePlot[p[k, 4] $/.\lambda \rightarrow 3$, {k, 0, 30}]

Plot[p[5, t] /. $\lambda \rightarrow 3$, {t, 0, 10}]

Generowanie procesu Poissona

proces = RandomFunction[M /. $\lambda \rightarrow 3$, {0, 5}]; | funkcja losowa

ListStepPlot[proces]

Czas pomiędzy zdarzeniami z procesu Poissona z parametrem λ ma rozkład wykładniczy z tym samym parametrem. Jeśli rozważamy dwa (ten wynik można uogólnić na większą liczbę procesów) procesy Poissona z intensywnościami λ i μ , to prawdopodobieństwo, że jako pierwsze nastąpiło

zdarzenie np. z tego pierwszego procesu wynosi

```
Probability[X == Min[X, Y],
prawdopodobieństwo minimum
 \{X \approx Exponential Distribution[\lambda], Y \approx Exponential Distribution[\mu]\}
       rozkład wykładniczy
                                                 rozkład wykładniczy
\lambda + \mu
```

Zadania

- 1. Trzy razy dziennie kierowca parkuje swój samochód na pół godziny bez uiszczenia opłaty za postój. Kontroler odwiedza każde miejsce postojowe zgodnie z procesem Poissona z parametrem λ (na godzinę). Jeśli natrafi na samochód, za który nie została wniesiona opłata, wystawia mandat.
- (a) Jakie jest prawdopodobieństwo, że danego dnia kierowcy się upiecze?
- (b) Jakie jest prawdopodobieństwo, że kierowca otrzyma w jednym dniu dwa mandaty?
- (c) Załóżmy, że opłata za parkowanie wynosi 5 zł/h, a jednorazowa kara za nieopłacenie miejsca wynosi 50 zł. Jaka jest wartość oczekiwana łącznej kary dla naszego niesfornego kierowcy?-Jaka musiałaby być intensywność kontroli, żeby kierowcy opłacało się ryzykować?
- 1. Ze względu na właściwości procesu Poissona, nie jest ważne, w jakich kawałkach kierowca parkuje samochód, istotny jest tylko łączny czas parkowania w ciągu dnia.

```
Kontrola = PoissonProcess[\lambda];
             proces Poissona
```

a) Szukane prawdopodobieństwo:

```
Probability[k[1.5] = 0, k \approx Kontrola]
prawdopodobieństwo
e<sup>-1.5 λ</sup>
```

b) Prawdopodobieństwo, że kierowca dostanie dwa mandaty wynosi:

```
Probability [m[1.5] = 2, m \approx Kontrola]
prawdopodobieństwo
1.125 e^{-1.5 \lambda} \lambda^2
c) Wartość oczekiwana kary w ciągu dnia to
kara[\lambda] = Expectation[50 m[1.5], m \approx Kontrola]
             wartość oczekiwana
75. λ
```

Żeby ryzyko było opłacalne, wartość oczekiwana kary nie powinna przekroczyć zaoszczędzonej kwoty

```
Reduce [\{kara[\lambda] < 5 * 1.5, \lambda > 0\}, \lambda]
zredukuj
```

Reduce: Reduce was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

 $0 < \lambda < 0.1$

- 2. Student wychodzi z zajęć o losowej godzinie między 16:00 a 17:00. Do domu dojechać może jednym z dwóch autobusów, A i B.Autobus A odjeżdża regularnie co 10 min., a autobus B zgodnie z procesem Poissona z tą samą częstością. Zakładając, że student zawsze wybiera autobus, który pojawi się wcześniej, jakie jest prawdopodobieństwo, że danego dnia pojedzie do domu autobusem A?
- 2. Przez A i B oznaczymy rozkłady czasu oczekiwania na każdy autobusów.

```
A = UniformDistribution[{0, 10}];
   rozkład jednostajny
B = ExponentialDistribution[1/10];
   rozkład wykładniczy
```

Probability[a < b, $\{a \approx A, b \approx B\}$] // N

prawdopodobieństwo przybliżenie numeryczne

43980<u>46511104 e^{-8 y} y²⁰</u> is Protected. ••• NIntegrate: Tag Times in 9280784638125

NIntegrate: Tag Times in $\frac{4398046511104 e^{-8y} y^{20}}{9280784638125}$ is Protected.

NIntegrate: Tag Times in 0.473887 2.71828^{-8.y} y²⁰ is Protected.

General: Further output of NIntegrate::write will be suppressed during this calculation.

NProbability | 0.473887 \times 2.71828^{-8. y} $y^{20} <$ b, $\left\{$ 0.473887 \times 2.71828^{-8. y} y^{20} , $b\right\} \approx$ ProductDistribution[UniformDistribution[{0., 10.}], ExponentialDistribution[0.1]]

- 3. Pieszy chce przejść przez ulicę dwukierunkową. Z obu stron samochody nadjeżdżają zgodnie z procesem Poissona z intensywnościami $\lambda 1$ z lewej i $\lambda 2$ z prawej strony. Przejście możliwe jest, jeśli przez czas T z żadnej ze stron nie nadjedzie samochód.
- (a) Jakie jest prawdopodobieństwo, że pieszy nie będzie musiał czekać na przejście?
- (b) Jakie jest prawdopodobieństwo, że pierwszy samochód nadjedzie z lewej strony?
- (c) Jaki jest rozkład liczby samochodów, które miną pieszego zanim ten będzie mógł bezpiecznie przejść na drugą stronę?

a)

```
lp = PoissonProcess[\lambda 1];
     proces Poissona
```

```
pp = PoissonProcess[\lambda 2];
       proces Poissona
praw = Probability[l[T] == 0, l \approx lp] * Probability[p[T] == 0, p \approx pp] // N
                                                   prawdopodobieństwo
         prawdopodobieństwo
2.71828<sup>-1. Τ λ1-1. Τ λ2</sup>
b)
Probability[X == Min[X, Y],
prawdopodobieństwo minimum
   \{X \approx \text{ExponentialDistribution}[\lambda 1], Y \approx \text{ExponentialDistribution}[\lambda 2]\}\};
          rozkład wykładniczy
                                                        rozkład wykładniczy
c)
p[k_, t_] = PDF[lp[t], k] PDF[pp[t], k];
               funkcja gęstości · · · funkcja gęstości prav
DiscretePlot[p[k, 2] /. \{\lambda 1 \rightarrow 12, \lambda 2 \rightarrow 20\}, \{k, 1, 60\}]
wykres dyskretny
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001
```

- 4. Zgłoszenia napływają do serwera zgodnie z procesem Poissona z parametrem λ .
- (a) Dla wartości $\lambda = 2, 4, 6, 8$ [/min] oblicz i przedstaw w tabeli i w formie graficznej prawdopodobieństwo, że w ciągu dwóch minut pojawi się k (=0,...,10) zgłoszeń.
- (b) Dla wartości λ z (a) i t=0.1, 0.2, ..., 1 przedstaw w tabeli i w formie graficznej prawdopodobieństwa, że odstęp pomiędzy kolejnymi zgłoszeniami będzie mniejsza niż t
- (c) Dla tych samych λ przedstaw w formie graficznej rozkład czasu do pojawienia się 5, 10, 15, i 20 zgłoszeń.

%39

1 e4	4 e ⁴	8 e ⁴	32 3 e ⁴	32 3 e ⁴	_ <u>128</u>	_ <u>256</u>	_ <u>1024_</u> 315 e ⁴	<u>512</u>	2048 /	4096 /
	e	· ·	3 6	3.6	13 6	43 6	313 6	313 6	(2835	(14 175
									(e ⁴)	(e ⁴)
1 e ⁸	8 8 8	32 e ⁸	256 3 e ⁸	512 3 e ⁸	<u>4096</u> 15 e ⁸	<u>16 384</u> 45 e ⁸	131 072 /	131 072 /	1 048 576 /	4 194 304 /
e .	e.	6.	3 e	3 €.	12 G.	45 e*	(315 e ⁸)	(315 e ⁸)	(2835	(14 175
							, ,		e ⁸)	€8)
1 e ¹²	12 e ¹²	72 e ¹²	288 @12	864 e ¹²	10 368 5 e ¹²	20736 5 e ¹²	248 832 35 e ¹²	373 248 35 e ¹²	497 664 35 e ¹²	2 985 984 /
e	е	e	е	е	5 €	∍ €	35 €	35 €	35 €	(175 e ¹²)
1 e ¹⁶	16 e ¹⁶	128 _© 16	2048 3 e ¹⁶	8192 3 e ¹⁶	131 072 /	1 048 576 /	16 777 216	33 554 432	5368709%	4 294 967 %
•	е.	е.	3 e ·	3 e	(15 e ¹⁶)	(45 e ¹⁶)	/	/	12 /	296 /
					, ,	, ,	(315 e ¹⁶)	(315 e ¹⁶)	(2835	(14 175
							, ,		(e ¹⁶)	(e ¹⁶)

ListPlot[Table[P = PoissonProcess[i];

wykres d··· tabela proces Poissona

a = Probability[m[2] == j, m
$$\approx$$
 P], {i, 2, 8, 2}, {j, 0, 10}], Filling -> Axis] prawdopodobieństwo [wypełnienie oś

b)

tabela proces Poissona

a = Probability[m[y] < t, m
$$\approx$$
 P], {i, 2, 8, 2}, {t, 0.1, 1, 0.1}];
 prawdopodobieństwo

Grid[s, Frame -> All]

krata ramka wszystko

| e ^{-2 y} |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| e ^{-4 y} |
| e ⁻⁶ y | e ^{-6 y} | e ^{−6} y | e ^{-6 y} | e ^{−6 y} | e ^{-6 y} | e ^{-6 y} | _€ -6 y | e ^{−6} y | e ^{−6} y |
| e ^{-8 y} | e-8 y | e-8 y | e ^{-8 y} | e-8 y | e ^{-8 y} | e-8 y | _{€-8} y | e ⁻⁸ y | e ^{-8 y} |

c)

tabela proces Poissona

a = Probability[m[y] == j, $m \approx P$], {i, 2, 8, 2}, {j, 5, 20, 5}]; prawdopodobieństwo

$\frac{4}{15} e^{-2y} y^5$	4 e ^{-2 y} y ¹⁰	_16 e ^{-2 y} y ¹⁵	4 e ^{-2 y} y ²⁰		
15	14 175	638 512 875	9 280 784 638 125		
$\frac{128}{15} e^{-4y} y^5$	4096 e ^{-4 y} y ¹⁰	524 288 e ^{-4 y} y ¹⁵	4 194 304 e ^{-4 y} y ²⁰		
15	14 175	638 512 875	9 280 784 638 125		
324 e ^{-6 y} y ⁵	2916 e ⁻⁶ y y ¹⁰	314 928 e ^{-6 y} y ¹⁵	2 125 764 e ^{-6 y} y ²⁰		
5	175	875 875	1 414 538 125		
4096 e ^{-8 y} y ⁵	4 194 304 e ^{-8 y} y ¹⁰	17 179 869 184 e ^{-8 y} y ¹⁵	4 398 046 511 104 e ^{-8 y} y ²⁰		
15	14 175	638 512 875	9 280 784 638 125		