

Linear Optimal Topic Transport for Document Similarity

Yilin Zhu, Parijat Dube

Contributions

Our research introduce linear optimal topic transport for measuring document similarities:

- Efficiency: improves computation while maintains accuracy
- **Scalability**: supports for large-scale applications
- Adaptability: enables topic weighting for personalized retrieval

Word Mover's Distance

Consider discrete OT, 1-Wasserstein distance between p and q is:

$$W_1(p,q) = \min_{\Gamma \in \mathbb{R}_+^{n \times m}} \sum_{ij} C_{ij} \Gamma_{ij}$$

subject to $\sum_j \Gamma_{ij} = p_i$ and $\sum_i \Gamma_{ij} = q_j$

Where C is the cost matrix with entries C_{ij} the distance between points x_i from distribution p and y_j from distribution q. Γ is the transport plan specifies how much mass is moved from each x_i to y_j to minimize the overall transport cost between p and q.

Let d^1 and d^2 represent normalized word counts across vocabulary, Word Mover's Distance is defined as $WMD(d^1, d^2) = W_1(d^1, d^2)$.

Hierarchical Optimal Topic Transport

If we represent document d^1 , d^2 as distributions over topics, then hierarchical optimal topic transport (HOTT) is defined as

$$HOTT(d^1, d^2) = W_1(\sum_{k=1}^{T} d_k^1 \delta_{t_k}, \sum_{k=1}^{T} d_k^2 \delta_{t_k})$$

where δ_{t_k} denotes a Dirac delta centered at topic t_k , weighted by d_k , the proportions of topic t_k contribute to the document.

Linear Optimal Transport

Let σ be a fixed reference measure on \mathbb{R}^n . The linear optimal transport embedding (LOT) is defined as a mapping $F_{\sigma}: P_2(\mathbb{R}^n) \mapsto L^2(\mathbb{R}^n, \sigma)$ where P_2 is probability space with second finite moment.

It takes a probability measure $\mu \in P_2(\mathbb{R}^n)$ to the optimal transport map T_{σ}^{μ} that pushes σ to μ , namely $F_{\sigma}(\mu) = T_{\sigma}^{\mu}$.

We approximate HOTT in L^2 -space and define linear optimal topic transport distance (LOTT) between document d^1 , and d^2 as

$$LOTT(d^{1}, d^{2}) = ||F_{\sigma}(d^{1}) - F_{\sigma}(d^{2})||_{\sigma}$$

where σ is gaussian and the embedding is in L^2 -space.

Datasets

	Documents	Vocab	Words Overlaps	Uniquewords	Classes
BBCSPORT	737	3657	0.066	116.5	5
TWITTER	3108	1205	0.029	9.7	3
OHSUMED	9152	8261	0.046	59.4	10
CLASSIC	7093	5813	0.017	38.5	4
REUTERS8	7674	5495	0.06	35.7	8
AMAZON	8000	16753	0.019	44.3	4

Classification Accuracy

Computational Efficiency

	Document pairs per second							
Dataset	RWMD	\mathbf{WMD}	WMDT20	HOFTT	HOTT	LOTT		
bbcsport	1494	526	1545	2016	2548	129318		
twitter	2664	2536	2194	1384	1552	201999		
ohsumed	454	377	473	829	908	1402163		
classic	816	689	720	980	1053	865099		
reuters8	834	685	672	918	989	1312662		
amazon	289	259	253	927	966	514521		

T-SNE Visualization

Sensitivity Analysis

