

STUDIJŲ DALYKO (MODULIO) APRAŠAS

Dalyko (modulio) pavadinimas	Kodas
Įvadas į robotiką	

Dėstytojas (-ai)	Padalinys (-iai)
Koordinuojantis: Linas Aidokas	Matematikos informatikos fakultetas
Kitas(-i): Gediminas Navickas	Duomenų mokslo ir skaitmeninių technologijų institutas

Studijų pakopa	Dalyko (modulio) tipas		
Pirmoji	Pasirenkamas		

Įgyvendinimo forma	Vykdymo laikotarpis	Vykdymo kalba (-os)
Auditorinė	5 semestras	Lietuvių

Reikalavimai studijuojančiajam					
Išankstiniai reikalavimai:	Gretutiniai reikalavimai:				
Procedūrinis programavimas					

Dalyko (modulio) apimtis kreditais	Visas studento darbo krūvis	Kontaktinio darbo valandos	Savarankiško darbo valandos
5	135	64	71

Dalyko (modulio) tikslas: studijų programos ugdomos kompetencijos Dalyko tikslas: suteikti studentams bazines elektronikos žinias, supažindinti su robotika, jos veikimo ir programavimo principais, suteikti praktinius robotinės įrangos projektavimo ir kūrimo įgūdžius. Dalyko (modulio) studijų siekiniai Studijų metodai Vertinimo metodai Žinios ir jų taikymas. Bazinės elektronikos inžinerijos žinios, leidžiančios suvokti esminius robotikos principus ir Paskaitos terminus, paaiškinti juos. Teorinės žinios vertinamos egzaminu. Specialieji gebėjimai: Gebėjimas analizuoti įvairius daiktų interneto, robotikos sprendimus, juos modifikuoti atnaujinimo, vystymo Praktiniai įgūdžiai vertinami laboratorinių darbų metu atliekant užduotis ir parengiant bei pristatant ataskaitas. tikslais. Laboratoriniai darbai Mikrovaldiklių programavimo įgūdžiai, leidžiantys kurti įvairius daiktų interneto, robotikos sisteminius sprendimus ir taikymus.

		Kon	taktini	o darl	o vala	ndos			Savarankiškų studijų laikas ir užduotys
Temos	Paskaitos	Konsultacijos	Seminarai	Pratybos	Laboratoriniai darbai	Praktika	Visas kontaktinis darbas	Savarankiškas darbas	Užduotys
Elektronikos pagrindai: baziniai elektronikos elementai.	2				2		4	2	Susipažinti su pagrindiniais elektronikos elementais.
2. Elektronikos pagrindai: įtampa ir srovė, įtampos ir srovės šaltiniai, elektros pavojai.	2				2		4	2	Susipažinti su elektronikos pagrindais ir pagrindinėmis sąvokomis.
3. Mikrovaldikliai, Arduino mikrovaldiklio specifika.	2				2		4	4	Susipažinti su programuojamu Arduino rinkiniu, prijungti jį prie kompiuterio, įdiegti programinę įrangą ir patikrinti jos veikimą.
4. Arduino pagrindai, Arduino programavimas, elektrinės schemos, paprasto šviesos diodo (LED) valdymas, Omo dėsnis.	2				2		4	4	Paprasto šviesos diodo valdymas, gebėjimas suskaičiuoti ir teisingai sujungti paprastą diodą su varža.
5. Analoginė ir skaitmeninė elektronika, potenciometrai, šviesos diodai.	2				2		4	4	Susipažinti su potenciometrais ir kita elektronika, valdyti diodus ar kitus elektronikos elementus panaudojant analoginę elektroniką – potenciometrus.

6. Mygtukai, įvairūs elektronikos jutikliai, mygtukų "atšaukimo" (angl. debouncing) problemos sprendimas elektroniniu ir programiniu būdu.	2		2	4	4	Susipažinti su įvairiais triukšmais elektronikoje, išspręsti problemą programuojant ir pasinaudojant elektronika.
7. Potenciometrai, įtampos dalikliai, keitikliai "skaičius-analogas" ir "analogas-skaičius", sinusiniai signalai.	2		2	4	4	Teisingai nuskaityti ir naudoti ADC ir DAC modulius.
8. PWM signalai ir jų generavimas, servo varikliuko pozicijos valdymas, loginių signalų lygiai.	2		2	4	4	Servo varikliukų pozicijos valdymas, teisingų formų ir dažnių PWM signalų formavimas.
9. Tranzistoriai ir varikliai, H-tilteliai, diodai, apsaugos, voltamperinės charakteristikos.	2		2	4	4	Nuolatinės srovės variklių valdymas.
10. Rėlės, galios elektronika, lauko tranzistoriai.	2		2	4	4	Rėlės valdymas.
11. Įvairūs protokolai: LCD, I2C, oneWire.	2		2	4	2	Susipažinti su protokolais.
12. Pažangūs jutikliai, IMU plokštės: akselerometrai, giroskopai, magnetometrai.	2		2	4	2	Susipažinti su pažangiais jutikliais, naudojamais elektronikoje.
13. LC, RC filtrai, triukšmo elektronikoje mažinimas, įtampos stabilizatoriai.	2		2	4	5	Susipažinti su triukšmo filtrais elektronikoje.
14. Stiprintuvai, stiprinimo koeficientų skaičiavimas.	2		2	4	5	Susipažinti su stiprintuvais, panaudoti integruotus stiprintuvus Arduino plokštėje laboratorinių darbų metu.
15. Mikrovaldiklių registrai, būsenos registrai, mikrovaldiklio architektūra.	2		2	4	4	Susipažinti su Arduino mikrovaldiklio registrais, architektūra.
16. Programuojamos loginės matricos, ASIC, MEMS.	2		2	4	4	Susipažinti su programuojamomis loginėmis matricomis, ASIC moduliais, MEMS elektronika.
17. Egzaminas					13	
Iš viso	32		32	64	71	

Vertinimo strategija	Svoris proc.	Atsiskaitymo laikas	Vertinimo kriterijai								
Laboratoriniai darbai	60 proc.	Semestro metu	Vertinamos atliktos laboratorinių darbų užduotys, ataskaitų pilnumas, programinio kodo originalumas.								
Egzaminas (raštu)	40 proc.	Semestro pabaigoje	Vertinami teorinės laboratorinių darbų dalies atsakymai, susiję su elektronika ir programavimu.								

Autorius	Leidimo	Pavadinimas	Periodinio leidinio	Leidimo vieta ir leidykla
	metai		Nr.	ar internetinė nuoroda
			ar leidinio tomas	
Privaloma literatūra				
Horowitz and Hill	2015	The Art of Electronics 3rd Edition	ISBN-13:978-	Cambridge University Press
			0521809269	
Papildoma literatūra				
Jody Culkin	2017	Make: learn electronics with	9-781-68045-374-4	USA
		Arduino		
William P. Osborne	2017	Learn to Program in Arduino C.	978-0-9981287-1-9	CreateSpace
William 1. Osborne	2017	18 Lessons, From setup() to Robots	970 0 9901207 1 9	Cionespace
				Arduino.cc, Instructables.com, hackaday.io

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Introduction to robotics	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: Linas Aidokas	Faculty of Mathematics and Informatics
Other(s): Gediminas Navickas	Institute of Data Science and Digital Technologies

Study cycle	Type of the course unit (module)					
First	Optional					

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	5 th semester	Lithuanian

Requirements for students					
Prerequisites: Additional requirements (if any):					
Procedural Programming					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	135	64	71

Purpose of the course unit (module): programme competences to be developed Aim of the course: to provide students with a basic knowledge of electronics, to introduce robotics, its principles of operation, and programming, to provide practical skills in the design and development of robotic equipment. Learning outcomes of the course unit (module) Teaching and learning methods Knowledge and its application. Basic knowledge and

Knowledge and its application. Basic knowledge and understanding of electronics engineering, abilities to explain the fundamental principles and terms of robotics.

Special abilities:

• Ability to analyse various solution in IoT, robotics, to modify them for updating and development purposes.

• Microcontroller programming skills to develop various solutions and applications IoT, robotics.

Lectures

Theoretical knowledge is assessed during the examination. Practical skills are assessed during laboratory works, writing and presenting task reports.

Content: breakdown of the topics		Contact hours							Self-study work: time and assignments		
		Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments		
Basics of electronics: electronic components.	2				2		4	2	Inspection of basic electronic components.		
2. Basics of electronics: voltage and current, sources of voltage and current, dangers of electricity.	2				2		4	2	Overview of basic concepts in electronics.		
3. Microcontrollers, specifics of an Arduino microcontroller.					2		4	4	Analysis to Arduino boards, installation and verification of the software.		
4. Arduino basics, Arduino programming, electrical schematics, simple LED control, Ohm's law.	2				2		4	4	Simple LED control, connection and control of a simple diode with a resistor.		
5. Analog and digital electronics, potentiometers, LED diodes.	2				2		4	4	Potentiometers. Control of diodes and other components using analogue electronics (potentiometers).		
6. Buttons and switches, various sensors in electronics, solution to button debouncing problem using electronics and programming code.	2				2		4	4	Noises in electronics. Solving the noise problem in electronics and software.		

7. Potentiometers, voltage dividers, ADC, DAC, sinusoidal signals.	2		2	4	4	Correct reading and use of ADC and DAC modules in Arduino boards.
PWM signals, generation of PWM, servo position control, logic signal levels.	2		2	4	4	Servo motor position control, generation of appropriate PWM signals.
9. Transistors and motors, H-bridges, diodes, protection, current-voltage characteristics.	2		2	4	4	Control of DC motor.
10. Relays, power electronics, field effect transistors.	2		2	4	4	Control of relays.
11. Various protocols: LCD, I2C, oneWire.	2		2	4	2	Learning data protocols.
12. Advanced sensors, IMU boards: accelerometers, gyroscopes, magnetometers.	2		2	4	2	Use of advanced electronic sensors.
13. LC, RC filters, electronic noise reduction, voltage stabilizers.	2		2	4	5	Implementation of denoising filters.
14. Op amps, calculation of amplification coefficients.	2		2	4	5	Use of the built-in op amps on the Arduino board.
15. Microcontroller registers, status registers, microcontroller architecture.	2		2	4	4	Analysis of Arduino board architecture and registers.
16. Programmable Logic Arrays, ASIC, MEMS.	2		2	4	4	Architecture of PLA, ASIC, MEMS electronics.
17. Exam					13	
Total	32		32	64	71	

Assessment strategy	Weight	Deadline	Assessment criteria
Laboratory works	60 %	During the semester	The quality of the laboratory task reports and originality of source code is assessed.
Exam (in written form)	40 %	The exam session	The answers to theoretical questions of laboratory works are assessed.

Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
Horowitz and Hill	2015	The Art of Electronics 3rd Edition	ISBN-13:978- 0521809269	Cambridge University Press
Optional reading				
Jody Culkin	2017	Make: learn electronics with Arduino	9-781-68045-374-4	USA
William P. Osborne	2017	Learn to Program in Arduino C. 18 Lessons, From setup() to Robots	978-0-9981287-1-9	CreateSpace
				Arduino.cc, Instructables.com, hackaday.io