Lectures 7 and 8: Max Flow & Min Cut

Yury Makarychev

TTIC and the University of Chicago

Maximum Flow & Minimum Cut

An (s, t)-flow network:

- Directed graph G = (V, E).
- ullet Two designated nodes (terminals): source s and sink t
- Every edge e has a capacity c(e).

in(v) is the set of edges incoming in v out(v) is the set of edges outgoing from v

Assume:
$$in(s) = out(t) = \emptyset$$

Feasible Flow

Flow $f: E \to \mathbb{R}_{\geq 0}$. We route f(e) units of flow over each edge e.

a. Flow conservation constraints: for all vertices $v \notin \{s, t\}$,

$$\sum_{e \in in(v)} f(e) = \sum_{e \in out(v)} f(e)$$

Feasible Flow

Flow $f: E \to \mathbb{R}_{\geq 0}$. We route f(e) units of flow over each edge e.

a. Flow conservation constraints: for all vertices $v \notin \{s, t\}$,

$$\sum_{e \in in(v)} f(e) = \sum_{e \in out(v)} f(e)$$

b. Capacity constraints: for all edges e:

$$f(e) \le c(e)$$

The value of the flow f equals

$$val(f) = \sum_{e \in out(s)} f(e)$$

Maximum Flow Problem

Given a network G = (V, E), find the maximum feasible flow from S to t.

$$f_{in}(S) = \sum_{\substack{(u,v) \in E \\ u \notin S, v \in S}} f(u,v) \qquad f_{out}(S) = \sum_{\substack{(u,v) \in E \\ u \in S, v \notin S}} f(u,v)$$

$$5 + 6 + 10 = 21 \qquad 5 + 7 + 9 = 21$$

In this example $f_{in}(S) = f_{out}(S)$.

Q: is it always the case?

$$5+6+10=21$$
 $5+7+9=21$
 $5(20)$
 $7(18)$
 $10(20)$
 $9(20)$

Claim

```
a) If s,t \notin S then f_{in}(S) = f_{out}(S) b) If s,t \in S then f_{in}(S) = f_{out}(S) c) If s \in S and t \notin S then f_{in}(S) = f_{out}(S) - val(f) d) If s \notin S and t \in S then f_{in}(S) = f_{out}(S) + val(f) Proof
```

The claim is very intuitive. E.g.,

- (a) says: no flow originates or terminates in S if $s, t \notin S$
- (c) says: all flow leaving S either originates at $S \in S$ or first enters S and then leaves it

Prove item (c).

If
$$s \in S$$
 and $t \notin S$ then $f_{in}(S) = f_{out}(S) - val(f)$

Proof

$$f_{in}(S) = \sum_{\substack{(u,v) \in E \\ u \notin S, v \in S}} f(u,v) = \sum_{u \in S} f_{in}(u) - \sum_{\substack{(u,v) \in E \\ u,v \in S}} f(u,v)$$

(A) the sum is over all edges entering *S*

(B) the sum is over all edges entering vertices in *S*. Those include (A) and edges between vertices in *S*.

If
$$s \in S$$
 and $t \notin S$ then $f_{in}(S) = f_{out}(S) - val(f)$

Proof

$$f_{in}(S) = \sum_{u \in S} f_{in}(u) - \sum_{\substack{(u,v) \in E \\ u,v \in S}} f(u,v) = \sum_{\substack{u \in S \setminus \{s\} \\ u,v \in S}} f_{in}(u) - \sum_{\substack{(u,v) \in E \\ u,v \in S}} f(u,v)$$
since $f_{in}(s) = 0$

$$val(f) = f_{out}(s)$$

If
$$s \in S$$
 and $t \notin S$ then $f_{in}(S) = f_{out}(S) - val(f)$

Proof

$$f_{in}(S) = \sum_{u \in S \setminus \{s\}} f_{in}(u) - \sum_{\substack{(u,v) \in E \\ u,v \in S}} f(u,v) = \sum_{u \in S \setminus \{s\}} f_{out}(u) - \sum_{\substack{(u,v) \in E \\ u,v \in S}} f(u,v)$$

the flow conservation constraint (use that $s, t \notin S \setminus \{s\}$)

$$val(f) = f_{out}(s)$$

If
$$s \in S$$
 and $t \notin S$ then $f_{in}(S) = f_{out}(S) - val(f)$

Proof

$$f_{in}(S) = \sum_{u \in S \setminus \{s\}} f_{in}(u) - \sum_{\substack{(u,v) \in E \\ u,v \in S}} f(u,v) = \sum_{u \in S \setminus \{s\}} f_{out}(u) - \sum_{\substack{(u,v) \in E \\ u,v \in S}} f(u,v)$$

the flow conservation constraint (use that $s, t \notin S \setminus \{s\}$)

$val(f) = f_{out}(s)$

Proof

If
$$s \in S$$
 and $t \notin S$ then $f_{in}(S) = f_{out}(S) - val(f)$

Proof

$$f_{in}(S) = \sum_{u \in S \setminus \{s\}} f_{out}(u) - \sum_{(u,v) \in E} f(u,v)$$

$$= \left(\sum_{u \in S} f_{out}(u) - f_{out}(s)\right) - \sum_{(u,v) \in E} f(u,v)$$

If
$$s \in S$$
 and $t \notin S$ then $f_{in}(S) = f_{out}(S) - val(f)$

Proof

$$f_{in}(S) = \left(\sum_{u \in S} f_{out}(u) - \sum_{\substack{(u,v) \in E \\ u,v \in S}} f(u,v)\right) - val(f)$$

$$= f_{out}(S) - val(f)$$

Corollary

$$f_{in}(t) = f_{out}(V \setminus \{t\}) = f_{in}(V \setminus \{t\}) + val(f) = val(f)$$
 \uparrow

why?

$$val(f) = f_{out}(s) = f_{in}(t) = f_{out}(S) - f_{in}(S)$$

for every set *S* that contains *s* but not *t*

Minimum Cut

Directed Cut

A directed cut is a partition of V into two nonempty sets S and T:

$$V = S \cup T$$
 and $S \cap T = \emptyset$

An edge (u, v) is cut if $u \in S$ and $v \in T$. Edges from T to S are not cut!

The capacity or cost of the cut is the total capacity of all cut edges.

The capacity/cost of a cut

$$cap(S,T) = \sum_{\substack{(u,v) \in E \\ u \in S, v \in T}} c(u,v)$$

In this example, cap(S,T) = 5 + 8 + 2 + 4 + 1 = 20.

s-t Cut

(S,T) is an S-t cut if $S \in S$ and $t \in T$.

(S,T) is a minimum S-t cut if $cap(S,T) \leq cap(S',T')$ for every S-t cut (S',T').

$$f_{in}(S) = f_{out}(S) - val(f)$$

Weak Duality

Let f be a feasible s-t flow and (S,T) be an s-t cut. Then $val(f) \le cap(S,T)$

Proof: Since $s \in S$ and $t \notin S$,

$$val(f) = f_{out}(S) - f_{in}(S) \le f_{out}(S) = \sum_{\substack{(u,v) \in E \\ u \in S, v \in T}} f(u,v)$$

$$\le \sum_{\substack{(u,v) \in E \\ u \in S, v \in T}} cap(u,v) = cap(S,T)$$

Ford-Fulkerson Algorithm

Attempt #1: Naïve Greedy Algorithm

Attempt #1: Naïve Greedy Algorithm

Attempt #1: Naïve Greedy Algorithm

Two edges are at capacity and cannot route any more flow. The algorithms cannot increase the flow.

Maximum flow: 2 Our algorithm found a flow of value 1

Given a flow f , define the residual network G_f

 G_f is a directed graph on V with the following edges:

- edges $(u,v) \in E$ with f(u,v) < c(u,v)edge (u,v) is a forward edge of G_f its residual capacity $c_f(u,v) = c(u,v) - f(u,v)$
- edges e'=(v,u) where $(u,v)\in E$ and f(u,v)>0 edge (v,u) is a backward edge $c_f(v,u)=f(u,v)$

Residual Network

Flow network G

Residual network G_f

Forward edges – solid lines Backward edges – dotted lines

Augmenting the flow along a path

Let f be a feasible s-t flow and P be a path in G_f . Let $\delta \leq c_f(e)$ for every $e \in P$.

• for every forward edge $(u, v) \in P$, increase f(u, v) by δ

$$f'(u, v) = f(u, v) + \delta$$

ullet for every backward edge $(v, oldsymbol{u})$, decrease $f(oldsymbol{u}, v)$ by δ

$$f'(u, v) = f(u, v) - \delta$$

Augmenting the Flow

- $f'(u, v) = f(u, v) + \delta$ if (u, v) is a forward edge
- $f'(u,v) = f(u,v) \delta$ if (v,u) is a backward edge

Augmenting the flow

Claim: Obtained flow f' is a feasible flow.

Proof: Verify that f' satisfies capacity constraints.

If
$$(u,v) \in P$$
 and (u,v) is a forward edge,
$$f'(u,v) = f(u,v) + \delta \le f(u,v) + c_f(u,v) = c(u,v)$$
 ≥ 0

If
$$(v,u) \in P$$
 and (v,u) is a backward edge,
$$f'(u,v) = f(u,v) - \delta \ge f(u,v) - c_f(v,u) = 0$$
 $\le f(u,v) \le c(u,v)$

Otherwise, f'(e) = f(e)

Augmenting the Flow

Claim: Obtained flow f' is a feasible flow.

Proof: Verify that f' satisfies flow conservation constraints.

$G_f: v \to u \to w$	$f_{in}(u)$	$f_{out}(u)$
0 → 0 → 0	$+\delta$	$+\delta$
→u ←	$+\delta + (-\delta) = 0$	0
○ ← U →	0	$-\delta + \delta = 0$
○← U ←	$-\delta$	$-\delta$

Q: What is the value of the augmented flow f'?

$$val(f') = ?$$

Q: What is the value of the augmented flow f'?

$$val(f') = val(f) + \delta$$

Q: What is the best choice of δ for a given path P?

Q: What is the value of the augmented flow f'?

$$val(f') = val(f) + \delta$$

Q: What is the best choice of δ for a given path P?

A:
$$\delta = \min_{e \in P} c_f(e)$$

 \mathbb{Q} : What happens with the residual capacities of edges on P?

Q: What is the value of the augmented flow f'?

$$val(f') = val(f) + \delta$$

Q: What is the best choice of δ for a given path P?

A:
$$\delta = \min_{e \in P} c_f(e)$$

 \mathbb{Q} : What happens with the residual capacities of edges on P?

Forward edge:
$$f'(e) = f(e) + \delta$$
 \Rightarrow $c_{f'}(e) = c_e - f'(e) = c_f(e) - \delta$
Backward edge: $f'(e') = f(e') - \delta$ \Rightarrow $c_{f'}(e) = f'(e') = f(e') - \delta = c_f(e) - \delta$
here e is the backward edge for e'

Summary

A bottleneck edge on P is the edge with the least residual capacity δ .

- $val(f') = val(f) + \delta$
- The residual capacity of each edge on P decreases by δ .
- Bottleneck edges disappear.

Ford-Fulkerson Algorithm

- start with an empty flow f: f(e) = 0 for all $e \in E$. $G_f = G$
- ullet while there is an S-t path P in G_f augment flow f along path P update G_f
- return f

Ford-Fulkerson Algorithm

- start with an empty flow f: f(e) = 0 for all $e \in E$. $G_f = G$
- ullet while there is an S-t path P in G_f augment flow f along path P update G_f
- return *f*

TODO items:

- Prove that the algorithm finds an optimal flow (if it stops)
- Does the algorithm stop? Find its running time.

Need to prove: when the algorithm, f is a maximum flow.

The Max Flow / Min Cut Theorem:

- 1. If there is no s-t path P in G_f then f is a maximum flow.
- 2. (Strong Duality)

$$val(f) = cap(A, B)$$

where (A, B) is a minimum cut.

Let $A = \{u : \text{there is a path from } s \text{ to } u \text{ in } G_f\}$ (vertices reachable from s) $B = V \setminus A$

Note that

- $s \in A$ (trivially)
- $t \notin A$, since there is no s-t path in G_f . Thus, $t \in B$.

Thus, (A, B) is an S-t cut

There are no edges from A to B in G_f . Why?

$$\Rightarrow$$
 if $u \in A$, $v \in B$, $(u, v) \in E$, then $f(u, v) = c(u, v)$

$$\Rightarrow$$
 if $u \in B$, $v \in A$, $(u, v) \in E$, then $f(u, v) = 0$

- \Rightarrow if $u \in A$, $v \in B$, $(u, v) \in E$, then f(u, v) = c(u, v)
- \Rightarrow if $u \in B$, $v \in A$, $(u, v) \in E$, then f(u, v) = 0

$$cap(A,B) = \sum_{\substack{(u,v) \in E \\ u \in A, v \in B}} c(u,v) = \sum_{\substack{(u,v) \in E \\ u \in A, v \in B}} f(u,v) = f_{out}(A) = f_{in}(A) + val(f) = val(f)$$

Using weak duality:

$$val(f') \le cap(A, B) = val(f) \le cap(A', B')$$

Thus f is a maximum flow, (A,B) is a minimum cut, and val(f)=cap(A,B).

Integrality

Assume that all capacities are integers.

Prove by induction that after each iteration:

- The flow will be integral.
- All residual capacities will be integral.
- ullet The bottleneck capacity δ will be integral.

The algorithm returns an integral maximum flow.

Corollary: There is an integral maximum flow.

Note that there may be a fractional maximum flow as well.

Running Time

In each iteration the flow increases by 1.

Therefore, the algorithm stops in at most val^* iterations.

$$val^* \le C = \sum_{e \in out(s)} c(e)$$

Each iteration can be implemented in O(n) time (use BFS or DFS). Running time: $O(val^* \cdot n)$.

If all capacities are rational numbers, the algorithm also always terminates.

Variants of Ford-Fulkerson

There are various rules for choosing path P.

The running time depends on the rule.

- 1. Scaling variant: $O((\log C + 1) m^2)$ (see the textbook)
- 2. Edmonds-Karp: $O(m^2n)$ doesn't depend on the capacities (strongly polynomial-time algorithm).

The algorithm uses BSF to find a shortest path P between s and t.

Finding a Minimum Cut

Q: Can we find a minimum cut (A, B) in G using the Ford-Fulkerson algorithm?

Max flow & Min Cut in Undirected Graphs

Undirected Graphs

We can reduce the case of undirected graphs to that of directed.

The capacity of an S-t cut (S,T) is the total capacity of edges from S to T.

The Max Flow / Min Cut Theorem also holds or undirected graphs.

Applications of Max Flow and Min Cut

Routing

- Routing vehicles on the road.
- Routing electricity.
- Routing internet traffic.

Bipartite Matching

Matching

Consider an undirected graph.

A subset of edges M is a matching if no two edges in M share a vertex. A vertex u is matched by M if there is an edges $(u, v) \in M$ for some v.

Matching

A matching is a perfect matching in G if all vertices are matched.

not a perfect matching perfect matching

Matching

M is a maximum matching if $|M| \ge |M'|$ for every matching M'. M is a maximal matching if $M \cup \{e\}$ is not a matching for every $e \notin M$.

maximal matching (not maximum)

maximum matching

Greedy Algorithm for Finding Matchings

Consider a greedy algorithm:

- start with $M = \emptyset$
- while there is an edge $e \notin M$ s.t. $M \cup \{e\}$ is a matching add e to M
- Q: What kind of matching will this algorithm find?

Assume that $G = (L \cup R, E)$ is a bipartite graph. Transform G to an S-t flow network G'. Then the size of the maximum matching in G equals the value of the maximum S-t flow in G'.

If M is a matching, then there is a flow f in G' of value |M|.

$$val(f^*) \ge \max_{M} |M|$$

Let f^* be an integral maximum flow in G'. Note $f(e) \in \{0,1\}$ for every $e \in E$. Let M be the set of edges between L and R used by the flow.

Is M a matching? Is it possible that a vertex u in incident to two edges in M?

- Transform the graph into a flow network
- Find an integral maximum flow using Ford-Fulkerson
- Return the corresponding matching

Running time: $O(m f^*) = O(mn)$.

- Transform the graph into a flow network
- Find an integral maximum flow using Ford-Fulkerson
- Return the corresponding matching

Running time: $O(m f^*) = O(mn)$.

Consider a bipartite graph $G = (L \cup R, E)$. For every subset $A \subset L$, let N(A) be the set of neighbors of A in R.

Consider a bipartite graph $G = (L \cup R, E)$. For every subset $A \subset L$, let N(A) be the set of neighbors of A in R.

Assume that there is a matching M of size |L|. l.e., every vertex L is matched.

Then every $A \subset L$ is matched with exactly |A| vertices in R. All of them are neighbors of A. Thus, $|N(A)| \geq |A|$.

Hall's Theorem

There is a matching M of size |L| if and only if

$$|N(A)| \ge |A|$$

for every $A \subset L$.

Proof:

We showed that "⇒" holds.

Now we prove "⇐".

Assume that |M| < |L| for a maximum matching M

We will show that |N(A)| < |A| for some set $A \subset L$.

Max Flow / Min Cut Thm \Rightarrow There is a cut (P, Q) of size |M| < |A| in G'.

What edges are cut?

- edges from s to $Q \cap L$
- edges from $P \cap R$ to t

? edges from $P \cap L$ to $Q \cap R$

Thus, $|\mathbf{L}| > cap(P,Q) = |Q \cap L| + |P \cap R|$. That is,

(#blue vertices on the left) + (#red vertices on the right) < |L|

Thus, $|L| > cap(P,Q) = |Q \cap L| + |P \cap R|$. That is, $(\#blue\ vertices\ on\ the\ left)\ + (\#red\ vertices\ on\ the\ left)$

(#blue vertices on the left) + (#red vertices on the right) < |L| (#red vertices on the right) < (#red vertices on the left)

Let $A = P \cap L$ (red vertices on the left). What is the size of N(A)? All vertices in N(A) are on the right.

Q: Can a vertex in N(A) be blue?

(#red vertices on the right)
< (#red vertices on the left)

Hall's theorem

```
Let A = P \cap L (red vertices on the left). What is the size of N(A)?
```

```
A = P \cap L = \{ \text{red vertices on the left} \}

N(A) \subseteq P \cap R = \{ \text{red vertices on the right} \}
```

Corollary

Let G be a bipartite graph with |L| = |R|.

There exists a perfect matching in G if and only if $|N(A)| \geq |A| \text{ for every } A \subset L$

Assignment Problems

Basic Assignment Problem

There are m people and n < m jobs.

- For every job i, we are given the list of people S_i that can perform it.
- We may assign only one to each person.

Find an assignment of jobs to people (if it exists).

Solution:

Consider a bipartite graph with $L = \{1, ..., m\}$ representing jobs and $R = \{1, ..., n\}$ representing people connect job i with people $j \in S_i$

Job Assignment Problem

There are m people and m jobs.

- For every job i, we are given the list of people S_i that can perform it.
- We may assign p_i jobs to person j.

Find an assignment of jobs to people subject to the constraints above so as to maximize the number of assigned jobs.

Q: Suggestions?

Job Assignment Problem

There are n projects: 1, ..., n

We are given a set of dependencies between projects of the following form

in order to complete project i we need to complete project j first

E.g.,

1 depends on 3, 2 depends on 3 and 4, 4 depends on 6, etc

A feasible schedule A is a subset of projects s.t. if $i \in A$ then all projects j that i depends on are also in A.

Some projects are profitable and some are not.

For each project i, we are given p_i .

- If $p_i \ge 0$, project i has profit p_i .
- If $p_i < 0$, project i has cost $-p_i$.

Out goal is to find a feasible schedule A that maximizes our profit

$$\sum_{i\in A} p_i$$

Construct the following s-t network.

If i depends on j, we have an edge (i, j) of ∞ capacity.

Observation:

S is a feasible schedule

cut $(A \cup \{s\}, B \cup \{t\})$ has finite cost where $B = \{1, ..., n\} \setminus A$

profitable projects

non-profitable projects

There is a one-to-one correspondence between cuts of finite capacity and feasible schedules!

How are their costs & profits related?

 $cap(A \cup \{s\}, B \cup \{t\})$ equals

the profit of non-scheduled jobs on the left

profitable projects

non-profitable projects

+

the cost of scheduled jobs on the right

 $cap(A \cup \{s\}, B \cup \{t\})$ equals

the profit of non-scheduled jobs on the left

+

the cost of scheduled jobs on the right

$$cap(A \cup \{s\}, B \cup \{t\}) = \sum_{\substack{i \notin A \\ p_i \ge 0}} p_i + \sum_{\substack{i \in A \\ p_i < 0}} (-p_i) = \left(\sum_{\substack{p_i \ge 0 \\ p_i \ge 0}} p_i\right) - \sum_{\substack{i \in A \\ p_i \ge 0}} p_i$$

Q: How can we solve the problem now?

Multicommodity Flow

Multiple Sources & Sinks

Given: Flow network w/ many sources: $S_1, ..., S_{k'}$ and many sinks: $t_1, ..., t_{k''}$.

Goal: Maximize the total amount of flow from all sources to all sinks.

Multiple Sources & Sinks

Given: Flow network w/ many sources: $S_1, \dots, S_{k'}$ and many sinks: $t_1, \dots, t_{k''}$.

Goal: Maximize the total amount of flow from all sources to all sinks.

Imagine that we are solving a truck routing problem.

We want to find a route for each truck.

Imagine that we are solving a truck routing problem.

We want to find a route for each truck.

In this example we have 2 routes.

A flow f_i is a path flow if it uses a single S-t path.

This flow is a sum of two path flows f_1 and f_2 of value 1 each.

Q: Can we represent every flow as a sum of path flows?

A flow f_i is a path flow if it uses a single S-t path.

A flow g_i is a cycle flow if it uses a single cycle.

Theorem

For every flow f there exist path flows f_1, \dots, f_a and cycle flows g_1, \dots, g_b s.t.

$$f(e) = \sum_{i} f_i(e) + \sum_{j} g_j(b)$$

Note $val(f) = \sum_i val(f_i(e))$. If we remove the cyclic component, we will not change the value of the flow.

Edge and Vertex Disjoint Paths

Edge Disjoint Paths: Menger's Theorem

Consider a directed or undirected graph G and two vertices S and t.

We say that S-t paths P_1, \dots, P_k are edge disjoint if no two of them share a common edge.

Q: What is the maximum number of edge disjoint paths between s and t?

A: It is equal to the size of the minimum cut between s and t (in which all edges have capacity 1).

Proof: use path flow decomposition.

Vertex Disjoint Paths: Menger's Theorem

Consider a directed or undirected graph G and two vertices S and t.

We say that S-t paths P_1, \dots, P_k are vertex disjoint if no two of them share a common edge.

Q: What is the maximum number of vertex disjoint paths between s and t? A: It is equal to the size of the minimum vertex separator between s and t.

Exercise: Prove this.