Homework 4 - Cache Experiments

CS2323 - Computer Architecture, Autumn 2023

Soham Rajesh Pawar CS22BTECH11055

November 9, 2023

1 Question 1:

1.1 Variation with Lines:

Setting	Program	Lines	Hit Rate	Number of Hits	Number of Misses	Total Acceses
		1	0.7424	49	17	66
	1	2	0.7424	49	17	66
1.1. (0.0)		3	0.7424	49	17	66
L1: (8, 8)	2	1	0.0303	2	64	66
		2	0.0303	2	64	66
		3	0.04545	3	63	66
						•
		1	0.7481	193	65	258
	1	2	0.7481	193	65	258
_1 : (16, 16)		3	0.7481	193	65	258
		1	0.007752	2	256	258
	2	2	0.007752	2	256	258
		3	0.007752	2	256	258

Inference:

- a) Program 1: The number of lines doesn't significantly impact the hit rate. This is because the memory access exhibits contiguous increasing spatial locality.
- b) Program 2: A slight impact is observed on the hit rate, reducing the number of collisions.

1.2 Variation with Blocks:

Varying Blocks, Keeping Lines = 3 and Ways = 0								
Setting	Program	Blocks	Hit Rate	Number of Hits	Number of Misses	Total Acceses		
L1: (8, 8)	1	3	0.8636	57	9	66		
		4	0.9242	61	5	66		
		5	0.9545	63	3	66		
		3	0.8636	57	9	66		
	2	4	0.9242	61	5	66		
		5	0.9545	63	3	66		
		3	0.8721	225	33	258		
L1: (16, 16)	1	4	0.9341	241	17	258		
		5	0.9651	249	9	258		
		3	0.007752	2	256	258		
	2	4	0.01163	3	255	258		
		5	0.9574	247	11	258		

Inference:

- a) Program 1: Larger block size increases the hit rate due to contiguous memory access.
- b) Program 2: Larger block size enhances hit rate by increasing the chances of the requested word being present in the cache.

Note:

In the latter setting for program 2, the hit rate jumps suddenly due to the huge increase in block size and increased spatial locality.

1.3 Variation with Ways:

Setting	Program	Ways	Hit Rate	Number of Hits	Number of Misses	Total Acceses
L1: (8, 8)	1	0	0.7424	49	17	66
		1	0.7424	49	17	66
	2	0	0.04545	3	63	66
		1	0.7424	49	17	66
L1: (16, 16)	1	0	0.7481	193	65	258
	1	1	0.7481	193	65	258
	2	0	0.007752	2	256	258
		1	0.007752	2	256	258

Inference:

- a) Program 1: The number of ways doesn't significantly affect the hit rate, as once a block is exhausted, it is not accessed again.
- b) Program 2: Increases the hit rate by utilizing data fetched in the past, taking advantage of the temporal locality of the program.

2 Question 2:

Setting	Program	Write Policy	Allocate	Hit Rate	Number of Hits	Number of Misses	Writebacks	
	1	WriteThrough	YES	0.7424	49	17	6	
			NO	0.04545	3	63	6	
		WriteBack	YES	0.7424	49	17		
L1: (8, 8)			NO	0.04545	3	63	6	
	2	WriteThrough	YES	0.7424	49	17	6	
			NO	0.04545	3	63	6	
		WriteBack	YES	0.7424	49	17		
			NO	0.04545	3	63	6	
L1: (16, 16)	1	, [WriteThrough	YES	0.7481	193	65	25
			Wittermough	NO	0.01163	3	255	25
		WriteBack	YES	0.7481	193	65	3	
			NO	0.01163	3	255	25	
	2	WriteThrough	YES	0.01163	3	255	25	
			NO	0.01163	3	255	25	
		WriteBack	YES	0.01163	3	255	22	
		WriteBack	vviiteBack	NO	0.01163	3	255	25

Inference:

- a) Program 1: Allocation allowed increases the number of hits compared to when disallowed, regardless of the policy. This is because the block is allocated in the cache on a miss, increasing subsequent hits due to increased spatial locality.
- b) Program 2: In the former setting, the above logic applies. However, in the latter setting, the data is too large to benefit from spatial locality before it can be accessed again; it's replaced by another block due to collisions.

3 Question 3:

Setting	Preset Configuration	Hit Rate	Number of Hits	Number of Misses	Total Acceses
	32 Entry 4 Word Direct Mapped	0.01538	2	128	130
L1: (8, 8)	32 Entry 4 Word 2 Way Set Associative	0.7385	96	34	130
	32 Entry 4 Word Fully Associative	0.7385	96	34	130
	32 Entry 4 Word Direct Mapped	0.06809	35	479	514
L1: (16, 16)	32 Entry 4 Word 2 Way Set Associative	0.7471	384	130	514
	32 Entry 4 Word Fully Associative	0.7471	384	130	514

Inference:

As the data is the same, having more ways would be beneficial, allowing retention of older blocks and possibly taking advantage of any temporal locality the program may have.