Sistema de Monitorização de Atividade Física

Especificação Fase C

Grupo 3

Índice

Constituição do Grupo	4
Introdução	5
Diagrama de Gantt	6
Arquitetura da Fase C	7
Diagrama de blocos da Arquitetura	8
Sistema Central	9
WebSite	. 10
Host	. 11
WebServices	. 11
Base de Dados relacional	. 12
PHPMyAdmin	. 13
UI através de página Web	. 14
BootStrap	. 14
Imagens da interface do WebSite	. 15
Conclusão	. 20
Referências	. 21

Índice de Figuras

Figura 1 - Diagrama de Gantt	6
Figura 2 - Sistema Central e Gestor de Serviço	7
Figura 3 - Modelo Conceptual de Dados	12
Figura 4 - Página de Login	15
Figura 5 - Página de Registo de Utilizador	15
Figura 6 - Página Registo de Paciente	16
Figura 7 - Página de Inicio	16
Figura 8 - Página da Lista de Utilizadores	17
Figura 9 - Página da Lista de Pacientes	17
Figura 10 - Gráfico do Comportamento de um paciente	18
Figura 11 - Gráfico com valores de Acelerómetro de um paciente	18
Figura 12 - Gráfico com valores de Giroscópio de um paciente	19

Constituição do Grupo

Augusto Mota (a76563) a76563@halunos.uminho.pt

Hugo Machado (a80362) a80362@alunos.uminho.pt

Miguel Moreira (a77314) a77314@alunos.uminho.pt

Introdução

Nesta última fase do projeto, Fase C, o grupo terá como objetivos principais dar o paço final no projeto da cadeira de LTI II (Laboratórios de Telecomunicações 2) "Sistema de Monitorização de Atividade Física".

Nesta fase teremos como foco o desenvolvimento de um *software* que implemente um Sistema Central com uma base de dados para a gestão de todo o sistema de monitorização em todas as áreas da instituição. Para o sistema de gestão teremos de contruir uma base de dados que nos recolha as informações necessárias nos gestores de serviço desenvolvidos na fase anterior.

Em suma o nosso sistema irá incluir um módulo/componente que funcione como base de dados, um módulo gestor que nos permita interligar o interface com a base de dados, um módulo de interface através de uma página web para o administrador do sistema (para configuração do sistema) e ainda para os utilizadores normais (para visualização dos dados estatísticos de monitorização dos sujeitos e outros dados armazenados na base de dados), incluirá também um módulo de comunicação com os gestores de serviço baseado num protocolo aplicacional WebService.

Diagrama de Gantt

Apresentamos de seguida, na figura 1, a planificação temporal do grupo relativa à Fase C.

Figura 1 - Diagrama de Gantt

Arquitetura da Fase C

Para esta última fase, o grupo terá como objetivo principal a implementação do Sistema Central e ainda a sua interligação com os Sistemas Gestores de Serviço através de um *WebService* conforme podemos visualizar na figura 2.

Figura 2 - Sistema Central e Gestor de Serviço

Diagrama de blocos da Arquitetura

De seguida pode ser visualizado o nosso diagrama de blocos relativo ao nosso projeto.

Sistema Central

Para esta última fase, um dos grandes objetivos é gerir toda a informação de alto nível disponível numa Base de Dados relacional local ou num sistema distribuído.

De modo a que os utilizadores possam aceder ao sistema central, o grupo terá de implementou um *browser web* e uma interface de utilizador (UI) implementado com páginas HTML num *site web* tradicional. Esta interface permite:

- O registo de novos utilizadores e atribuição do seu tipo de acesso;
- O registo de pacientes;
- A consulta de listas de pacientes internados em cada serviço;
- E ainda a consulta de dados estatísticos do sistema, serviços e pacientes.

A comunicação entre gestores de serviço e o sistema central, conforme é demonstrado na figura 1, foi executada através do paradigma de *WebServices*. Desta forma é-nos possível:

- A existência de um fluxo de dados do sistema central para os gestores de serviço que irão conter os dados dos pacientes e dos próprios serviços. Este fluxo é iniciado por um pedido por parte dos gestores de serviço com os identificadores de um paciente (quando estes são internados) ou pelo identificador do próprio serviço (quando o gestor de serviço arranca);
- A existência de um fluxo de dados dos gestores de serviço para o sistema central que contêm os dados resumidos do comportamento físico dos pacientes (estes dados são constituídos pelo identificador de serviço, do paciente, o código do comportamento físico interpretado pelo gestor de serviço e um ou mais timestamps que servirão para situar temporalmente o comportamento).

WebSite

Para o desenvolvimento do nosso WebSite usamos múltiplas linguagens tais como HTML (Hypertext Markup Language), PHP (Personal Home Page) e JavaScript que trabalham em conjunto para a aplicação final web.

HTML é uma linguagem de marcação para a construção de páginas web, ou seja, é aqui que contruímos a parte gráfica da nossa página.

PHP é uma linguagem de *script open source* usada para o desenvolvimento *web* que pode ser colocada dentro de ficheiros HTML, foi também com esta linguagem que conseguimos fazer a interligação da base de dados com o WebSite em si. Através de *scripts* em PHP que criamos para executar operações como adicionar/eliminar/alterar utilizadores ou pacientes diretamente através da página *web*.

JavaScript é outra linguagem de *scripts* muito usada em páginas *web*. Esta permite desenvolver aplicações interativas e dinâmicas de modo a que seja possível executa-las dentro do WebSite. Usamos esta linguagem na construção dos gráficos dos comportamentos, acelerómetro e giroscópio.

Host

Para a realização do *website* o grupo necessitou de utilizar um servidor com capacidade de alojar um WebSite e uma base de dados de preferência sem custos. Como fruto da nossa pesquisa por um servidor gratuito encontramos o 000Webhost pois neste tínhamos o suporte adequado para os nossos requisitos, PHP e MySQL. Uma das grandes vantagens do 000Webhost foi que este era um dos poucos servidores web que nos dava a capacidade de hospedar o nosso site sem pagar nada. Este oferece aos utilizadores 1GB de espaço livre em disco e ainda 10GB de largura de banda, possíveis graças às conexões ilimitadas que os servidores utilizam.

Inicialmente para o desenvolvimento do nosso WebSite e da nossa base de dados, usamos os nossos computadores como servidores locais através da aplicação XAMPP (X corresponde à plataforma usada + Apache + MariaDB + PHP + Perl).

O XAMPP é uma plataforma OpenSource que integra um conjunto de ferramentas que facilita a construção de WebSites com a integração de bases de dados, e é um sistema multiplataforma.

WebServices

Os WebServices são uma solução utilizada na integração de sistemas e na comunicação entre aplicações diferentes. Um WebService de um modo geral é um conjunto de métodos acedidos e invocados por outros programas onde são utilizadas tecnologias *web*.

Para a comunicação entre o gestor de serviço e o sistema central (web) criamos os nossos próprios WebServices. Na pasta onde armazenamos os ficheiros do nosso WebSite possuímos duas scripts em formato PHP, um para os valores do sensor e outro para o comportamento. Estes, quando são chamados na forma "mywebsite.com/valores.php?id=1&comportamento=2", a script irá pegar nos valores referidos e inseri-los na base de dados (o link em cima representado é apenas um exemplo). No gestor, de forma a efetuar o envio da informação usamos o comando curl (comando de transferência de URL), nativo de Linux.

Base de Dados relacional

Para a construção da nossa Base de Dados o grupo decidiu utilizar a tecnologia MySQL. Este formato de construção é um sistema de gestão de base de dados que utiliza como interface uma linguagem de consulta estruturada (SQL – *Structured Query Language*). É atualmente um dos sistemas de gestão de base de dados mais usado.

A nossa base de dados relacional contem os seguintes dados relativos:

- Pacientes de modo a que seja possível associar um identificador de paciente às suas informações pessoais relevantes incluindo as médias que serão obtidas dos sistemas de serviço;
- Serviços disponíveis onde os dados de cada serviço também conterão um identificador;
- Utilizadores do sistema que terão associado para além dos dados pessoais relevantes um identificador e o tipo de acesso permitido;
- Estatísticas relevantes do sistema tendo em conta o sistema como um todo ou tendo em consideração serviços individuais ou pacientes individuais.

A base dados foi uma ferramenta que foi muito importante para realizar esta fase final, ferramenta que serve para recolher e organizar a informação que nos é fornecida pelo sistema sensor. A informação pode ser consultada, alterada, apagada na totalidade, através de uma aplicação conhecida como SGBD(sistema de gestão base dados).

Nas bases de dados, a informação é organizada em linhas, colunas e tabelas com o principal objetivo facilitar e agilizar o acesso á informação. Os dados que estão presentas na base de dados são atualizados ou removidos à medida que novas informações são adicionadas.

Neste projeto conseguimos desenvolver uma base de dados, utilizando a linguagem SQL para permitir um controlo de acesso ao nosso site e guardar as informações.

Para esta fase desenvolvemos o seguinte modelo conceptual que esta presente na figura 3.

Figura 3 - Modelo Conceptual de Dados

Para percebermos melhor como esta organizada a informação, apresentamos o seguinte modelo relacional para percebermos como estão definidas as chaves primárias e as chaves estrangeiras.

- Utilizadores (<u>User_Name</u>, Primeiro_Nome, Ultimo_Nome, Email, Password, Permissão)
- Pacientes (<u>ID_PACIENTE</u>, Nome, Peso, Altura, Data_Nascimento)
- Valores (<u>ID_PACIENTE</u>, Tempo, Data, Acx, Acy, Acz, Gx, Gy, Gz, Temperatura)
- Comportamento (ID PACIENTE, Tempo, Data, Comportamento)

Nota: Chaves primárias sublinhadas e chaves estrangeiras em itálico.

Através deste sistema de base dados, é possível consultar os vários registos do sistema sensor para um determinado paciente e apresentar esses registos no nosso WebSite, também sendo permitido realizar a adição pacientes, remover pacientes, adicionar utilizadores e entre outros.

PHPMyAdmin

De forma a lidarmos com a administração do MySQL através da web os elementos do grupo utilizaram o phpMyAdmin, uma interface web intuitiva, que é uma ferramenta de software de escrita em PHP. Este ofereceu-nos uma gama alargada de operações do MySQL, operações estas frequentemente utilizadas para gerenciamento de bancos de dados, tabelas, colunas, relações, entre outros, sendo possível criar e remover bases de dados, criar, remover e alterar tabelas, inserir, remover e editar campos, executar códigos SQL e manipular campos chave. Através desta interface foi-nos também possível executar, editar e marcar qualquer instrução SQL, gerir contas de utilizadores e privilégios do MySQL, carregar arquivos de texto em tabelas, importar dados de arquivos CSV e SQL e ainda exportar dados para vários formatos.

UI através de página Web

De modo a que o acesso dos utilizadores ao sistema central possa ser feito em qualquer local e em qualquer sistema operativo através de um *browser web*, o grupo elaborou este acesso através de páginas HTML num servidor *web* tradicional.

Para além do que já foi referido anteriormente, o UI terá implementado também um mecanismo de autenticação dos utilizadores e de atribuição de tipos de acesso diferenciados. O sistema arrancará com pré-instalação de um supervisor que terá atribuído um nível de acesso máximo.

BootStrap

O bootstrap é uma framework Javascript de código aberto. É uma combinação de código HTML, CSS e Javascript projetado para ajudar a criar componentes da interface do usuário. Também é chamado de *Front-end-framework*. Esta *framework* é utilizada para a criação de sites e aplicativos da *web*. Contém modelos de design baseados em HTML e CSS para tipografia, formulários, botões, navegação e outros componentes de interface, além de extensões JavaScript opcionais. Devido a todos estes pontos que nos foram disponibilizados, decidimos utilizar esta *framework* para a escolha dos nossos *templates*.

Pontos que nos levou a usar Bootstrap:

- Fácil de começar;
- Um bom sistema de grade;
- Estilo base para a maioria dos elementos HTML;
- Vasta lista de componentes;
- Inclui plugins JavaScript.

Imagens da interface do WebSite

De seguida apresentamos algumas imagens relativas à interface do nosso WebSite.

Figura 4 - Página de Login

Figura 5 - Página de Registo de Utilizador

Figura 6 - Página Registo de Paciente

Figura 7 - Página de Inicio

Figura 8 - Página da Lista de Utilizadores

Figura 9 - Página da Lista de Pacientes

Figura 10 - Gráfico do Comportamento de um paciente

Figura 11 - Gráfico com valores de Acelerómetro de um paciente

Figura 12 - Gráfico com valores de Giroscópio de um paciente

Conclusão

Nesta última fase do projeto o grupo decidiu começar por aprimorar todo o trabalho feito até então. Começamos por corrigir alguns erros executados em fases anteriores tanto num nível de Software como a um nível de escrita de relatórios.

Ao longo de toda esta fase deparamo-nos com algumas dificuldades relativamente à realização do WebSite e da comunicação entre o gestor e o sistema central, pois eram necessários aprender novos conhecimentos e conceitos para a finalização do problema. Contudo, embora o WebSite não tenha ficado como desejávamos, foi possível chegar a um produto final operacional e atrativo.

Referências

https://startbootstrap.com/themes/sb-admin-2/

https://www.w3schools.com/php/

https://www.w3schools.com/php/php_mysql_intro.asp

https://www.dyclassroom.com/chartjs/chartjs-how-to-draw-line-graph-using-data-from-mysql-table-and-php