Data Mining Project - Sustainability Around The World

Aradhya Mathur and Ozlem Gunes

Simple and Multiple Linear Regression

```
#Importing Libraries
In [1]:
         import warnings
         warnings.filterwarnings('ignore')
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import numpy as np
         import scipy.stats as stats
         import statsmodels.api as sm
         import sklearn.metrics as mt
         from sklearn.linear_model import LinearRegression
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear_model import Ridge
         #Reading dataset
In [2]:
         factors = pd.read_csv('external_factors.csv')
         factors.head()
Out[2]:
              Country
                         Region
                                  EPI Population_2022
                                                           GDP_PC GHS_Index Life_Expectancy
                        Southern
         0 Afghanistan
                                 43.6
                                             41128771
                                                         489.101348
                                                                          28.8
                                                                                       62.879 15.5
                            Asia
                          Eastern
               Albania
                                              2842321
                                                        6424.342465
                                                                          45.0
                                                                                       76.833 37.5
                          Europe
                          Greater
         2
                Algeria
                          Middle
                                 29.6
                                             44903225
                                                        3741.003942
                                                                          26.2
                                                                                       77.129 39.4
                            East
                            Sub-
         3
                         Saharan 30.5
                                             35588987
                                                        2038.467285
                                                                          29.1
                                                                                       61.929 23.1
                Angola
                           Africa
                            Latin
               Antigua
                         America
                  and
                                 52.4
                                                98728 14900.797400
                                                                          30.0
                                                                                       79.236 56.5
                              &
               Barbuda
                       Caribbean
In [3]:
         #Heatmap for external factors and EPI
         plt.figure(figsize = (12,8))
         sns.heatmap(factors.corr(), cmap="Spectral")
         <AxesSubplot:>
Out[3]:
```



```
In [4]: #EPI vs GDP
        x_train = factors[['GDP_PC']]
        y_train = factors['EPI']
        x_test = factors[['GDP_PC']]
        y_test = factors['EPI']
        x_train = sm.add_constant(x_train)
        model = sm.OLS(y_train, x_train).fit()
        predictions_train = model.predict(x_train)
        print_model = model.summary()
        print(print_model)
        #Plotting
        fig = plt.figure(figsize=(12,3))
        sns.scatterplot(y=factors.EPI, x=factors.GDP_PC, hue=factors.Region, legend='full'
        sns.regplot(data=factors, y=factors.EPI, x=factors.GDP_PC, ax=fig.gca(), scatter =
        sns.regplot(data=factors, y=factors.EPI, x=factors.GDP_PC, ax=fig.gca(), scatter =
        plt.axhline(factors['EPI'].mean(), color='maroon')
        plt.title("EPI vs. GDP")
        plt.xlabel('GDP')
        plt.ylabel('EPI')
        plt.show()
        #Correlation
        x = factors.EPI
        y = factors.GDP_PC
        stats.spearmanr(x,y)
```

```
______
Dep. Variable:
                     EPI
                        R-squared:
Model:
                     OLS
                        Adj. R-squared:
                                              0.526
Method:
               Least Squares
                        F-statistic:
                                              186.4
Date:
             Sun, 11 Dec 2022 Prob (F-statistic):
                                            6.27e-29
Time:
                  15:22:12 Log-Likelihood:
                                            -609.76
No. Observations:
                         AIC:
                                              1224.
                     168
Df Residuals:
                     166
                         BIC:
                                              1230.
Df Model:
                      1
Covariance Type:
                 nonrobust
______
                               P>|t| [0.025
          coef std err
                          t
const
        36.0659 0.870 41.472
                              0.000
                                     34.349
                                             37,783
        0.0004 3.16e-05
                      13.651
                            0.000
GDP PC
                                     0.000
______
Omnibus:
                   0.698 Durbin-Watson:
                                              2.085
Prob(Omnibus):
                   0.705 Jarque-Bera (JB):
                                              0.434
Skew:
                   -0.107 Prob(JB):
                                              0.805
                    3.127 Cond. No.
Kurtosis:
                                           3.38e+04
_____
```

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 3.38e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Out [4]. SpearmanrResult(correlation=0.7781825131823187, pvalue=2.3129598993934406e-35)

```
In [5]:
        #EPI vs Life Expectancy
        x_train = factors[['Life_Expectancy']]
        y_train = factors['EPI']
        x test = factors[['Life Expectancy']]
        y_test = factors['EPI']
        x train = sm.add constant(x train)
        model = sm.OLS(y_train, x_train).fit()
        predictions_train = model.predict(x_train)
        print_model = model.summary()
        print(print_model)
        #Plotting
        fig = plt.figure(figsize=(12,3))
        sns.scatterplot(y=factors.EPI, x=factors.Life_Expectancy, hue=factors.Region, legel
        sns.regplot(data=factors, y=factors.EPI, x=factors.Life_Expectancy, ax=fig.gca(),
        sns.regplot(data=factors, y=factors.EPI, x=factors.Life_Expectancy, ax=fig.gca(),
        plt.axhline(factors['EPI'].mean(), color='maroon')
        plt.title("EPI vs. Life Expectancy")
        plt.xlabel('Life Expectancy')
        plt.ylabel('EPI')
        plt.show()
        #Correlation
```

```
x = factors.EPI
y = factors.Life_Expectancy
stats.spearmanr(x,y)
```

===========	========	========				=====	
Dep. Variable:		EPI	R-squared:			0.509	
Model:		OLS	Adj. R-squa	ared:		0.506	
Method:	Leas	t Squares	F-statistic	:		172.4	
Date:	Sun, 11	Dec 2022	Prob (F-sta	atistic):	1.	85e-27	
Time:		15:22:13	Log-Likelih	nood:	-	613.16	
No. Observations:		168	AIC:			1230.	
Df Residuals:		166	BIC:			1237.	
Df Model:		1					
Covariance Type:		nonrobust					
===========	=======	========				=======	
=							
	coef	std err	t	P> t	[0.025	0.97	
5]							
-							
const	-45.0233	6.741	-6.679	0.000	-58.332	-31.71	
5							
_ '	1.2241	0.093	13.128	0.000	1.040	1.40	
8							
Oma i b	=======	0.261			========	2.045	
Omnibus:		0.361				2.045	
Prob(Omnibus):		0.835	Jarque-Bera	a (JR):		0.127	
Skew:		-0.031	Prob(JB):			0.938	
Kurtosis:		3.120	Cond. No.			675.	
===========	========	========				======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[5]: SpearmanrResult(correlation=0.7238613414141891, pvalue=1.487683365074239e-28)

```
In [6]: #EPI vs GHS Index

x_train = factors[['GHS_Index']]
y_train = factors[['GHS_Index']]
x_test = factors[['GHS_Index']]
y_test = factors['EPI']

x_train = sm.add_constant(x_train)
model = sm.OLS(y_train, x_train).fit()
predictions_train = model.predict(x_train)
print_model = model.summary()
print(print_model)
#Plotting
fig = plt.figure(figsize=(12,3))
sns.scatterplot(y=factors.EPI, x=factors.GHS_Index, hue=factors.Region, legend='fusns.regplot(data=factors, y=factors.EPI, x=factors.GHS_Index, ax=fig.gca(), scatter
```

```
sns.regplot(data=factors, y=factors.EPI, x=factors.GHS_Index, ax=fig.gca(), scatte
plt.axhline(factors['EPI'].mean(), color='maroon')
plt.title("EPI vs. Global Health Security Index")
plt.xlabel('GHS Index')
plt.ylabel('EPI')
plt.show()
#Correlation
x = factors.EPI
y = factors.GHS_Index
stats.spearmanr(x,y)
```

==========	=======================================	=======================================	==========
Dep. Variable:	EPI	R-squared:	0.410
Model:	OLS	Adj. R-squared:	0.407
Method:	Least Squares	F-statistic:	115.6
Date:	Sun, 11 Dec 2022	Prob (F-statistic):	8.57e-21
Time:	15:22:13	Log-Likelihood:	-628.59
No. Observations:	168	AIC:	1261.
Df Residuals:	166	BIC:	1267.
Df Model:	1		
Covanianco Typo:	nonnohust		

Covariance Type: nonrobust

	·					
	coef	std err	t	P> t	[0.025	0.975]
const GHS_Index	17.1410 0.6288	2.529 0.058	6.778 10.751	0.000 0.000	12.148 0.513	22.134 0.744
========		========	=======	========		=======
Omnibus:		1.	726 Durb	in-Watson:		2.033
Prob(Omnibus	5):	0.	422 Jarq	ue-Bera (JB):	:	1.330
Skew:	•	0.	188 Prob	(JB): `´		0.514
Kurtosis:		3.	220 Cond	. No.		138.
=========						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

SpearmanrResult(correlation=0.6028575893932931, pvalue=5.313985829190582e-18) Out[6]:

```
#EPI vs BHI
In [7]:
        x_train = factors[['BHI']]
        y_train = factors['EPI']
        x_test = factors[['BHI']]
        y_test = factors['EPI']
        x_train = sm.add_constant(x_train)
        model = sm.OLS(y_train, x_train).fit()
        predictions_train = model.predict(x_train)
        print_model = model.summary()
        print(print_model)
        #Plotting
        fig = plt.figure(figsize=(12,3))
```

```
sns.scatterplot(y=factors.EPI, x=factors.BHI, hue=factors.Region, legend='full', pass.regplot(data=factors, y=factors.EPI, x=factors.BHI, ax=fig.gca(), scatter = Falsns.regplot(data=factors, y=factors.EPI, x=factors.BHI, ax=fig.gca(), scatter = Falplt.axhline(factors['EPI'].mean(), color='maroon')
plt.title("EPI vs. Biodiversity Habitat Index")
plt.xlabel('BHI')
plt.ylabel('BHI')
plt.show()
#Correlation
x = factors.EPI
y = factors.BHI
stats.spearmanr(x,y)
```

=======================================			=========
Dep. Variable:	EPI	R-squared:	0.194
Model:	OLS	Adj. R-squared:	0.189
Method:	Least Squares	F-statistic:	39.93
Date:	Sun, 11 Dec 2022	<pre>Prob (F-statistic):</pre>	2.33e-09
Time:	15:22:14	Log-Likelihood:	-654.87
No. Observations:	168	AIC:	1314.
Df Residuals:	166	BIC:	1320.
Df Model:	1		
Covariance Type:	nonrobust		

========	========	========	=======	========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const BHI	19.2386 0.4923	3.867 0.078	4.976 6.319	0.000 0.000	11.605 0.338	26.872 0.646
========	========		=======	========	========	=======
Omnibus:		6.3	92 Durbi	n-Watson:		1.829
Prob(Omnibu	us):	0.0	41 Jarqu	e-Bera (JB):		6.463
Skew:	•	0.4		, ,		0.0395
Kurtosis:		2.6	57 Cond.	No.		207.
========	========		=======	========	========	=======

Notes.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[7]: SpearmanrResult(correlation=0.41239376268679917, pvalue=2.7835796323273694e-08)

```
In [8]: #EPI vs Population
   x_train = factors[['Population_2022']]
   y_train = factors['EPI']
   x_test = factors[['Population_2022']]
   y_test = factors['EPI']

   x_train = sm.add_constant(x_train)
   model = sm.OLS(y_train, x_train).fit()
   predictions_train = model.predict(x_train)
   print_model = model.summary()
   print(print_model)
```

```
#Plotting
fig = plt.figure(figsize=(12,3))
sns.scatterplot(y=factors.EPI, x=factors.Population_2022, hue=factors.Region, leges
sns.regplot(data=factors, y=factors.EPI, x=factors.Population_2022, ax=fig.gca(),
sns.regplot(data=factors, y=factors.EPI, x=factors.Population_2022, ax=fig.gca(),
plt.axhline(factors['EPI'].mean(), color='maroon')
plt.title("EPI vs. Population")
plt.xlabel('Population')
plt.ylabel('EPI')
plt.xlim(0, 400000000)
plt.show()
#Correlation
x = factors.EPI
y = factors.Population_2022
stats.spearmanr(x,y)
```

=======================================		========		.=======		=====	
Dep. Variable:		EPI	R-squared:			0.044	
Model:		OLS	Adj. R-squa	ared:	0.038		
Method:	Leas	st Squares	F-statistic	:		7.578	
Date:	Sun, 13	1 Dec 2022	Prob (F-sta	atistic):	0.	.00657	
Time:		15:22:15		nood:	-6	569.23	
No. Observations:	:	168	AIC:			1342.	
Df Residuals:		166	BIC:			1349.	
Df Model:		1					
Covariance Type:		nonrobust					
=							
	coef	std err	t	P> t	[0.025	0.97	
5]							
_							
const	43.7600	1.050	41.695	0.000	41.688	45.83	
2	45.7000	1.050	41.000	0.000	41.000	45.05	
Population_2022 -	1.743e-08	6.33e-09	-2.753	0.007	-2.99e-08	-4.93e-0	
9		0.000	_,,,,,		_,,,,,	.,,,,,,	
Omnibus:	:=======	 9.617	======= Durbin-Wats	:====== :on:	========	1.850	
Prob(Omnibus):		0.008			1	L0.288	
Skew:		0.592	•	. (35).		.00584	
Kurtosis:		2.738	Cond. No.			72e+08	
=======================================		========	=========			=====	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 1.72e+08. This might indicate that there are strong multicollinearity or other numerical problems.

SpearmanrResult(correlation=-0.2924976763612847, pvalue=0.00011938583848988639)

```
In [9]: #Environmental Health vs Life_Expectancy
        x_train = factors[['Life_Expectancy']]
        y_train = factors['Env_Health']
        x_test = factors[['Life_Expectancy']]
        y_test = factors['Env_Health']
        x_train = sm.add_constant(x_train)
        model = sm.OLS(y_train, x_train).fit()
        predictions_train = model.predict(x_train)
        print_model = model.summary()
        print(print_model)
        #Plotting
        fig = plt.figure(figsize=(12,3))
        sns.scatterplot(y=factors.Env_Health, x=factors.Life_Expectancy, hue=factors.Region
        sns.regplot(data=factors, y=factors.Env_Health, x=factors.Life_Expectancy, ax=fig.
        sns.regplot(data=factors, y=factors.Env_Health, x=factors.Life_Expectancy, ax=fig.
        plt.axhline(factors['EPI'].mean(), color='maroon')
        plt.title("Environmental Health vs. Life Expectancy")
        plt.xlabel('Life Expectancy')
        plt.ylabel('Environmental Health')
        plt.show()
        #Correlation
        x = factors.Env_Health
        y = factors.Life_Expectancy
        stats.spearmanr(x,y)
```

		========		=======	========	=====
Dep. Variable:	E	nv_Health	R-squared:		0.738	
Model:		OLS	Adj. R-squa	ared:		0.736
Method:	Leas	t Squares	F-statistic	:		466.8
Date:	Sun, 11	Dec 2022	Prob (F-sta	ntistic):	4.1	L9e-50
Time:		15:22:15	Log-Likelih	nood:	-6	544.03
No. Observations:	:	168	AIC:			1292.
Df Residuals:		166	BIC:			1298.
Df Model:		1				
Covariance Type:		nonrobust				
=======================================		========		========	========	=======
=						
	coef	std err	t	P> t	[0.025	0.97
5]						
-						
const	-130.3468	8.100	-16.091	0.000	-146.340	-114.35
4	2 4200	0.440	24 605	0.000	2 200	2 64
Life_Expectancy	2.4209	0.112	21.605	0.000	2.200	2.64
2						
Omnibus:		0.994	Durbin-Wats	:on:		1.836
Prob(Omnibus):		0.608				1.006
Skew:		-0.056	•	(35).		0.605
Kurtosis:		2.638	Cond. No.			675.
		2.036				
						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Environmental Health vs. Life Expectancy

Out[9]: SpearmanrResult(correlation=0.8791698145428337, pvalue=2.547680881811889e-55)

```
#Water vs Life_Expectancy
In [10]:
         x_train = factors[['Life_Expectancy']]
         y_train = factors['Water']
         x_test = factors[['Life_Expectancy']]
         y_test = factors['Water']
         x_train = sm.add_constant(x_train)
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print_model = model.summary()
         print(print_model)
         #PLotting
         fig = plt.figure(figsize=(12,3))
         sns.scatterplot(y=factors.Water, x=factors.Life_Expectancy, hue=factors.Region, leg
         sns.regplot(data=factors, y=factors.Water, x=factors.Life_Expectancy, ax=fig.gca()
         sns.regplot(data=factors, y=factors.Water, x=factors.Life_Expectancy, ax=fig.gca()
         plt.axhline(factors['EPI'].mean(), color='maroon')
         plt.title("Water vs. Life Expectancy")
         plt.xlabel('Life Expectancy')
         plt.ylabel('Water')
         plt.show()
         #Correlation
         x = factors.Water
         y = factors.Life_Expectancy
         stats.spearmanr(x,y)
```

===========	========	=======	=========	=======	========	
Dep. Variable: Model:		Water OLS	R-squared: Adj. R-squa	red.	0.805 0.803	
Method:	Leas		F-statistic		683.7	
Date:		•	Prob (F-sta		9.5	52e-61
Time:	•	15:22:16	Log-Likelih	•	-6	63.17
No. Observations	:	168	AIC:			1330.
Df Residuals:		166	BIC:			1337.
Df Model:		1				
Covariance Type:		nonrobust				
=======================================	=======	========		=======	=======	=======
=				5 1.1	F.O. 00.5	
-1	coef	std err	t	P> t	[0.025	0.97
5]						
_						
const	-187.3841	9.078	-20.642	0.000	-205.307	-169.46
2	207.30.12	3.070	201012	0.000	203,307	2031.10
Life_Expectancy	3.2833	0.126	26.147	0.000	3.035	3.53
1						
=======================================	=======	=======			========	=====
Omnibus:		0.981	Durbin-Wats	on:		1.731
Prob(Omnibus):			Jarque-Bera	ı (JB):		0.907
Skew:			Prob(JB):			0.635
Kurtosis:		2.962	Cond. No.			675.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Out[10]: SpearmanrResult(correlation=0.8984046821748846, pvalue=3.265359668561759e-61)

```
#Fuel PC vs Air
In [11]:
         x_train = factors[['Air']]
         y_train = factors['FC_PC']
         x_test = factors[['Air']]
         y_test = factors['FC_PC']
         x_train = sm.add_constant(x_train)
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print_model = model.summary()
         print(print_model)
         #Plotting
         fig = plt.figure(figsize=(12,3))
         sns.scatterplot(y=factors.Air, x=factors.FC_PC, hue=factors.Region, legend='full',
         sns.regplot(data=factors, y=factors.Air, x=factors.FC_PC, ax=fig.gca(), scatter =
         sns.regplot(data=factors, y=factors.Air, x=factors.FC_PC, ax=fig.gca(), scatter =
         plt.axhline(factors['EPI'].mean(), color='maroon')
         plt.title("Air vs. Fuel")
```

```
plt.xlabel('Fuel')
plt.xlim(0, 0.055)
plt.ylabel('Air')
plt.show()
#Correlation
x = factors.FC_PC
y = factors.Air
stats.spearmanr(x,y)
```

R-squared:

0.002

OLS Regression Results

FC PC

M - J - T .		_	C 41.	· D		0.004
Model:			9	. R-squared:		-0.004
Method:		Least Square	s F-s	tatistic:		0.3127
Date:		Sun, 11 Dec 202	22 Pro	b (F-statistio	:):	0.577
Time:		15:22:1	.6 Log	-Likelihood:		451.32
No. Obser	vations:	16	8 AIC	•		-898.6
Df Residu	als:	16	66 BIC	:		-892.4
Df Model:			1			
Covarianc	e Type:	nonrobus	st			
=======	:=======	:========		=========		=======
	coef	std err	t	P> t	[0.025	0.975]
const	0.0108	 3 0.003	3.884	0.000	0.005	0.016
Air	-3.356e-05	6e-05	-0.559	0.577	-0.000	8.49e-05
Omnibus:	:=======	 185.80	2 Dun	======== bin-Watson:		2.239
Prob(Omni	.bus):	0.00		que-Bera (JB):	;	4003.966
Skew:		4.41	.2 Pro	b(JB):		0.00
Kurtosis:		25.22	29 Con	d. No.		101.

Notes:

Dep. Variable:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[11]: SpearmanrResult(correlation=-0.10478415255054824, pvalue=0.17645787539869248)

Multiple Linear Regression

```
In [12]: #MLR for(Life Expectancy, GHS Index, GDP PC, BHI) and EPI.
    x_train = factors[['Life_Expectancy', 'GHS_Index', 'GDP_PC', 'BHI']]
    y_train = factors['EPI']
    x_test = factors['Life_Expectancy', 'GHS_Index', 'GDP_PC', 'BHI']]
    y_test = factors['EPI']
    x_train = sm.add_constant(x_train)
    model = sm.OLS(y_train, x_train).fit()
    predictions_train = model.predict(x_train)
    print_model = model.summary()
    print(print_model)
    x_test = sm.add_constant(x_test, has_constant='add')
```

```
predictions = model.predict(x_test)
mt.r2_score(y_test, predictions)
```

=======================================					========	=====
Dep. Variable:		EPI	R-squared:		0.666	
Model:		OLS	Adj. R-squa	ared:	0.657	
Method:	Leas	st Squares	F-statistic	:		81.14
Date:	Sun, 11	L Dec 2022	Prob (F-sta	atistic):	9.1	.8e-38
Time:		15:22:17	Log-Likelih	nood:	-5	80.95
No. Observations:		168	AIC:			1172.
Df Residuals:		163	BIC:			1188.
Df Model:		4				
Covariance Type:		nonrobust				
=======================================	=======		========		========	=======
=						
	coef	std err	t	P> t	[0.025	0.97
5]						
-						
const	-17.9789	7.580	-2.372	0.019	-32.946	-3.01
2						
Life_Expectancy	0.5786	0.118	4.890	0.000	0.345	0.81
2						
GHS_Index	0.1372	0.066	2.064	0.041	0.006	0.26
8						
GDP_PC	0.0002	3.94e-05	5.179	0.000	0.000	0.00
0						
BHI	0.2172	0.055	3.984	0.000	0.110	0.32
5						
=======================================	=======		========		========	=====
Omnibus:		0.240	Durbin-Wats			2.089
Prob(Omnibus):		0.887	•	a (JB):		0.199
Skew:		-0.083	Prob(JB):			0.905
Kurtosis:		2.971	Cond. No.		3.4	l6e+05
=======================================					========	=====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 3.46e+05. This might indicate that there are strong multicollinearity or other numerical problems. 0.6656692594960063

Out[12]:

```
In [13]: #MLR for (Air quality and Water Quality ) and Life Expectancy
    x_train = factors[['Air', 'Water']]
    y_train = factors['Life_Expectancy']
    x_test = factors['Life_Expectancy']
    y_test = factors['Life_Expectancy']
    x_train = sm.add_constant(x_train)
    model = sm.OLS(y_train, x_train).fit()
    predictions_train = model.predict(x_train)
    print_model = model.summary()
    print(print_model)
    x_test = sm.add_constant(x_test, has_constant='add')
    predictions = model.predict(x_test)
    mt.r2_score(y_test, predictions)
```

==========	======			======			
Dep. Variabl	e:	Life_Expect	tancy	R-squ	uared:		0.807
Model:			OLS	Adj.	R-squared:		0.804
Method:		Least Squ	uares	F-sta	ntistic:		344.6
Date:		Sun, 11 Dec	2022	Prob	(F-statistic)	:	1.22e-59
Time:		15:2	22:17	Log-L	ikelihood:		-444.23
No. Observat	ions:		168	AIC:			894.5
Df Residuals	:		165	BIC:			903.8
Df Model:			2				
Covariance T	ype:	nonro	bust				
=========	=======	:=======		======	:=======		=======
	coef	std err		t	P> t	[0.025	0.975]
			10	201	0.000		60.777
const	59.6373			3.291			60.777
Air	0.0323				0.172		0.079
Water	0.2245	0.018	12	2.708	0.000	0.190	0.259
Omnibus:		:	 3.495	Durbi	n-Watson:		1.792
Prob(Omnibus):		3.174		ue-Bera (JB):		3.053
Skew:	, .		3.310		, ,		0.217
Kurtosis:			3.226	Cond.			157.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Out[13]: 0.8068408628799345

Observations

- 1) Positive strong correlation between EPI and GDP
- 2) Positive strong correlation between EPI and Life Expectancy
- 3) Positive correlation between EPI and GHS Index
- 4) Positive correlation between EPI and Biodiversity Habitat Index
- 5) Negative correlation between EPI and Population
- 6) Negative correlation between Fuel Consumption Per Capita and Air Quality
- 7) Positive strong correlation between Environment Health and Life_Expectancy
- 8) Positive strong correlation between Water and Life_Expectancy
- 9) Using Multiple Linear Regression, a strong correlation was found between (Life Expectancy, GHS Index, GDP PC, BHI) and EPI.
- 10) Using Multiple Linear Regression, a very strong correlation was found between (Air quality and Water Quality) and Life Expectancy