

# Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification

François Bachoc Josselin Garnier Jean-Marc Martinez

CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France LPMA, Université Paris 7

June 2012



#### The PhD

#### Two components of the PhD

Use of Kriging model for code validation



Bachoc F, Bois G, and Martinez J.M, Gaussian process computer model validation method. *Submitted*.

▶ Work on the problem of the covariance function estimation



Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification, *Submitted*.



Context for Cross Validation

Case of a single variance parameter

Numerical studies in the general case

Conclusion



## Cross Validation (Leave-One-Out)

Gaussian Process Y observed at  $x_1, ..., x_n$  with values  $y = (y_1, ..., y_n)^t$ 

Cross Validation (Leave-One-Out) principle

$$\hat{y}_{i,-i} = \mathbb{E}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

$$c_{i,-i}^2 = \mathbb{E}((Y(x_i) - \hat{y}_{i,-i})^2 | y_1, ..., y_{i-1}, y_{i+1}, ..., y_n)$$

Can be used for Kriging verification or for covariance function selection



#### Virtual Cross Validation

When mean of Y is parametric :  $\mathbb{E}(Y(x)) = \sum_{i=1}^{p} \beta_i h_i(x)$ . Let

- ▶ **H** the  $n \times p$  matrix with  $\mathbf{H}_{i,i} = h_i(x_i)$
- **R** the covariance matrix of  $y = (y_1, ..., y_n)$

#### Virtual Leave-One-Out

With

$$Q^{-} = R^{-1} - R^{-1}H(H^{T}R^{-1}H)^{-1}H^{T}R^{-1}$$

We have:

$$y_i - \hat{y}_{i,-i} = (diag(\mathbf{Q}^-))^{-1}\mathbf{Q}^-y$$
 and  $c_{i,-i}^2 = \frac{1}{(\mathbf{Q}^-)_{i,i}}$ 

If Bayesian case for  $\beta$  (  $\beta \sim \mathcal{N}(\beta_{prior}, \mathbf{Q}_{prior})$  ), then same formula holds replacing  $\mathbf{Q}^-$  with  $(\mathbf{R} + \mathbf{H}\mathbf{Q}_{prior}\mathbf{H}^t)^{-1}$ 



O. Dubrule. Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology, 1983.



# Cross Validation for covariance function estimation (1/2)

Let  $\left\{\sigma^2K_\theta,\sigma^2\geq 0,\theta\in\Theta\right\}$  be a set of covariance function for Y, with  $K_\theta$  a correlation function. Let

$$\hat{y}_{\theta,i,-i} = \mathbb{E}_{\sigma^2,\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

Leave-One-Out criteria we study

$$\hat{\theta}_{CV} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta,i,-i})^2$$

and

$$\hat{\sigma}_{CV}^2 = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \hat{y}_{\hat{\theta}_{CV}i, -i})^2}{c_{\hat{\theta}_{CV}i, -i}^2}$$



# Cross Validation for covariance function estimation (2/2)

- ▶ Leave-One-Out estimation is tractable
- Other Cross-Validation criteria exist



- ➤ To the best of our knowledge: problems of the choice of the cross validation criterion and of the cross validation procedure are not fully solved for Kriging
- ▶ It is our intuition that when one is primarily interested in prediction mean square error and point-wise estimation of the prediction mean square error, the Leave-One-Out criteria presented are reasonable



# **Objectives**

We want to study the cases of model misspecification, that is to say the cases when the true covariance function  $K_1$  of Y is far from  $\mathcal{K} = \left\{\sigma^2 K_\theta, \sigma^2 \geq 0, \theta \in \Theta\right\}$ 

In this context we want to compare Leave-One-Out and Maximum Likelihood estimators from the point of view of prediction mean square error and point-wise estimation of the prediction mean square error

We proceed in two steps

- ▶ When  $K = \{\sigma^2 K_2, \sigma^2 \ge 0\}$ , with  $K_2$  a correlation function, and  $K_1$  is the true covariance function : Theoretical formula and numerical tests
- In the general case: Numerical studies



Context for Cross Validation

Case of a single variance parameter

Numerical studies in the general case

Conclusion



# Setting

Let  $x_0$  be a new point and assume the mean of Y is zero and  $K_1$  is unit-variance stationary. Let

- $ightharpoonup r_1$  be the covariance vector between  $x_1, ..., x_n$  and  $x_0$  with covariance function K₁
- $ightharpoonup r_2$  be the covariance vector between  $x_1, ..., x_n$  and  $x_0$  with covariance function  $K_2$
- **R**<sub>1</sub> be the covariance matrix of  $x_1, ..., x_n$  with covariance function  $K_1$
- **R**<sub>2</sub> be the covariance matrix of  $x_1, ..., x_n$  with covariance function  $K_2$

 $\hat{y}_0 = r_2^t \mathbf{R}_2^{-1} y$  is the Kriging prediction

 $\mathbb{E}\left[(\hat{y}_0 - Y_0)^2 | y\right] = (r_1^t \mathbf{R}_1^{-1} y - r_2^t \mathbf{R}_2^{-1} y)^2 + 1 - r_1^t \mathbf{R}_1^{-1} r_1$  is the conditional mean square error of the non-optimal prediction

One estimates  $\sigma^2$  with  $\hat{\sigma}^2$  and estimates the conditional mean square error with  $\hat{\sigma}^2 c_{\mathbf{x}_0}^2$  with  $c_{\mathbf{x}_0}^2 := 1 - r_2^t \mathbf{R}_2^{-1} r_2$ 



#### The Risk

#### The Risk

We study the Risk criterion for an estimator  $\hat{\sigma}^2$  of  $\sigma^2$ 

$$R_{\hat{\sigma}^2, x_0} = \mathbb{E}\left[\left(\mathbb{E}\left[(\hat{y}_0 - Y_0)^2 | y\right] - \hat{\sigma}^2 c_{x_0}^2\right)^2\right]$$

#### Formula for quadratic estimators

When  $\hat{\sigma}^2 = y^t \mathbf{M} y$ , we have

$$\begin{array}{lcl} R_{\hat{\sigma}^2,x_0} & = & f(\mathbf{M}_0,\mathbf{M}_0) + 2c_1tr(\mathbf{M}_0) - 2c_2f(\mathbf{M}_0,\mathbf{M}_1) \\ & & + c_1^2 - 2c_1c_2tr(\mathbf{M}_1) + c_2^2f(\mathbf{M}_1,\mathbf{M}_1) \end{array}$$

with

$$f(\mathbf{A}, \mathbf{B}) = tr(\mathbf{A})tr(\mathbf{B}) + 2tr(\mathbf{A}\mathbf{B})$$

$$\mathbf{M}_0 = (\mathbf{R}_2^{-1}r_2 - \mathbf{R}_1^{-1}r_1)(r_2^t\mathbf{R}_2^{-1} - r_1^t\mathbf{R}_1^{-1})\mathbf{R}_1$$

$$\mathbf{M}_1 = \mathbf{M}\mathbf{R}_1$$

$$c_1 = 1 - r_1^t\mathbf{R}_1^{-1}r_1$$

$$c_2 = 1 - r_2^t\mathbf{R}_2^{-1}r_2$$



#### CV and ML estimation

MI estimation :

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} y^t \mathbf{R}_2^{-1} y$$

 $var(\hat{\sigma}_{MI}^2)$  reaches the Cramer-Rao bound  $\frac{2}{n}$ 

CV estimation :

$$\hat{\sigma}_{CV}^2 = \frac{1}{n} y^t \mathbf{R}_2^{-1} \left[ diag(\mathbf{R}_2^{-1}) \right]^{-1} \mathbf{R}_2^{-1} y$$

 $var(\hat{\sigma}_{CV}^2)$  can reach 2

▶ When  $K_2 = K_1$ , ML is best. Numerical study when  $K_2 \neq K_1$ 



## Criteria for numerical studies (1/2)

Risk on Target Ratio (RTR),

$$RTR(x_0) = \frac{\sqrt{R_{\hat{\sigma}^2, x_0}}}{\mathbb{E}\left[(\hat{Y}_0 - Y_0)^2\right]} = \frac{\sqrt{\mathbb{E}\left[\left(\mathbb{E}\left[(\hat{Y}_0 - Y_0)^2 | y\right] - \hat{\sigma}^2 c_{x_0}^2\right)^2\right]}}{\mathbb{E}\left[(\hat{Y}_0 - Y_0)^2\right]}$$

Bias-variance decomposition

$$R_{\hat{\sigma}^2, x_0} = \left(\underbrace{\mathbb{E}\left[(\hat{Y}_0 - Y_0)^2\right] - \mathbb{E}\left(\hat{\sigma}^2 c_{x_0}^2\right)}_{\text{bias}}\right)^2 + \underbrace{var\left(\mathbb{E}\left[(\hat{y}_0 - Y_0)^2 | y\right] - \hat{\sigma}^2 c_{x_0}^2\right)}_{\text{variance}}$$

Bias on Target Ratio (BTR) criterion

$$\textit{BTR}(x_0) = \frac{|\mathbb{E}\left[(\hat{Y}_0 - Y_0)^2\right] - \mathbb{E}\left(\hat{\sigma}^2 c_{x_0}^2\right)|}{\mathbb{E}\left[(\hat{Y}_0 - Y_0)^2\right]}$$





# Criteria for numerical studies (2/2)

$$\left(\underbrace{\textit{RTR}}_{\text{relative error}}\right)^2 = \left(\underbrace{\textit{BTR}}_{\text{relative bias}}\right)^2 + \underbrace{\frac{\textit{var}\left(\mathbb{E}\left[(\hat{y}_0 - Y_0)^2|y\right] - \hat{\sigma}^2 c_{x_0}^2\right)}{\mathbb{E}\left[(\hat{Y}_0 - Y_0)^2\right]^2}}_{\text{relative variance}}$$

Integrated criteria on the prediction domain  $\mathcal{X}$ 

$$IRTR = \sqrt{\int_{\mathcal{X}} RTR^2(x_0) d\mu(x_0)}$$

and

$$IBTR = \sqrt{\int_{\mathcal{X}} BTR^2(x_0) d\mu(x_0)}$$



# Numerical results

70 observations on [0, 1]5. Mean over LHS-Maximin DoE's.

Top:  $K_1$  and  $K_2$  are power-exponential, with  $I_{c,1} = I_{c,2} = 1.2$ ,  $p_1 = 1.5$ , and  $p_2$ varying.

Bot left :  $K_1$  and  $K_2$  are Matérn (nontensorized), with  $l_{c,1} = l_{c,2} = 1.2$ ,  $\nu_1 = 1.5$ , and  $\nu_2$  varying.

Bot right:  $K_1$  and  $K_2$  are Matérn  $\frac{3}{2}$ (non-tensorized), with  $l_{c,1} = 1.2$ , and  $I_{c,2}$  varying.









# Case of a regular grid (Smolyak construction)











# Influence of the number of points

n observations on  $[0,1]^5$ . Pointwise prediction (center).

Top:  $K_1$  and  $K_2$  are power-exponential, with  $I_{c,1} = I_{c,2} = 1.2$ ,  $p_1 = 1.5$ , and  $p_2 = 1.7$ . Bot left:  $K_1$  and  $K_2$  are Matérn (nontensorized), with  $l_{c,1} = l_{c,2} = 1.2$ ,  $\nu_1 = 1.5$ , and  $\nu_2 = 1.8$ .

Bot right:  $K_1$  and  $K_2$  are Matérn  $\frac{3}{2}$ (non-tensorized), with  $l_{c,1} = 1.2$ , and  $I_{c,2} = 1.8$ .









Numerical studies in the general case



# Work on analytical functions

Consider a deterministic function f on  $[0, 1]^d$ 

Ishigami function :

$$f(x_1, x_2, x_3) = \sin(-\pi + 2\pi x_1) + 7\sin((-\pi + 2\pi x_2))^2 + 0.1\sin(-\pi + 2\pi x_1) \cdot (-\pi + 2\pi x_3)^4$$

Morris function :

$$f(x) = \sum_{i=1}^{10} w_i(x) + \sum_{1 \le i < j \le 6} w_i(x)w_j(x) + \sum_{1 \le i < j < k \le 5} w_i(x)w_j(x)w_k(x) + \sum_{1 \le i < j < k \le 6} w_i(x)w_j(x)w_k(x)w_j(x),$$

$$+ \sum_{1 \le i < j < k < l \le 4} w_i(x)w_j(x)w_k(x)w_l(x),$$

$$w_i(x) = \begin{cases} 2\left(\frac{1.1x_i}{x_j + 0.1} - 0.5\right), & \text{if } i = 3, 5, 7\\ 2(x_i - 0.5) & \text{otherwise} \end{cases}$$





# Comparison criteria

Learning sample  $y_{a,1},...,y_{a,n}$ . Test sample  $y_{t,1},...,y_{t,n_t}$ 

Mean Square Error (MSE) criterion :

$$MSE = \frac{1}{n_t} \sum_{i=1}^{n_t} (y_{t,i} - \hat{y}_{t,i}(y_a))^2$$

Predictive Variance Adequation (PVA) criterion :

$$PVA = \left| \log \left( \frac{1}{n_t} \sum_{i=1}^{n_t} \frac{(y_{t,i} - \hat{y}_{t,i}(y_a))^2}{\hat{\sigma}^2 c_{t,i}^2(y_a)} \right) \right|$$

We average MSE and PVA over  $n_p=100$  LHS Maximin DoE's. For each DoE : covariance estimation and Kriging prediction



#### Results with enforced correlation

We use tensorized Exponential and Gaussian correlation functions for the Ishigami function

| Correlation model | Enforced hyper-parameters | MSE  | PVA               |
|-------------------|---------------------------|------|-------------------|
| Exponential       | [1, 1, 1]                 | 2.01 | ML: 0.50 CV: 0.20 |
| Exponential       | [1.3, 1.3, 1.3]           | 1.94 | ML: 0.46 CV: 0.23 |
| Exponential       | [1.20, 5.03, 2.60]        | 1.70 | ML: 0.54 CV: 0.19 |
| Gaussian          | [0.5, 0.5, 0.5]           | 4.19 | ML: 0.98 CV: 0.35 |
| Gaussian          | [0.31, 0.31, 0.31]        | 2.03 | ML: 0.16 CV: 0.23 |
| Gaussian          | [0.38, 0.32, 0.42]        | 1.32 | ML: 0.28 CV: 0.29 |

- Misspecified cases: Exponential and Gaussian isotropic
- ▶ ML have the highest PVA in the worst misspecification cases



## Setting for estimated correlation

- Work on three correlation families
  - Exponential tensorized
  - Gaussian
  - Matérn with estimated regularity parameter
- Work in the isotropic and anisotropic case
  - Case2.i : A common correlation length is estimated
  - Case2.a: d different correlation lengths are estimated



# Results for estimated correlation: Ishigami

| Function | Correlation model    | MSE               | PVA               |
|----------|----------------------|-------------------|-------------------|
| Ishigami | exponential case 2.i | ML: 1.99 CV: 1.97 | ML: 0.35 CV: 0.23 |
| Ishigami | exponential case 2.a | ML: 2.01 CV: 1.77 | ML: 0.36 CV: 0.24 |
| Ishigami | Gaussian case 2.i    | ML: 2.06 CV: 2.11 | ML: 0.18 CV: 0.22 |
| Ishigami | Gaussian case 2.a    | ML: 1.50 CV: 1.53 | ML: 0.53 CV: 0.50 |
| Ishigami | Matérn case 2.i      | ML: 2.19 CV: 2.29 | ML: 0.18 CV: 0.23 |
| Ishigami | Matérn case 2.a      | ML: 1.69 CV: 1.67 | ML: 0.38 CV: 0.41 |

- Gaussian and Matérn are more adapted than exponential because of smoothness (  $\rightarrow$  smaller MSE )
- Estimating several correlation lengths is more adapted
- In the exponential case, CV has smaller PVA and smaller or equal MSE
- In the Gaussian and Matérn cases, ML has MSE and PVA slightly smaller



#### Results for estimated correlation: Morris

| Function | Correlation model    | MSE               | PVA               |
|----------|----------------------|-------------------|-------------------|
| Morris   | exponential case 2.i | ML: 3.07 CV: 2.99 | ML: 0.31 CV: 0.24 |
| Morris   | exponential case 2.a | ML: 2.03 CV: 1.99 | ML: 0.29 CV: 0.21 |
| Morris   | Gaussian case 2.i    | ML: 1.33 CV: 1.36 | ML: 0.26 CV: 0.26 |
| Morris   | Gaussian case 2.a    | ML: 0.86 CV: 1.21 | ML: 0.79 CV: 1.56 |
| Morris   | Matérn case 2.i      | ML: 1.26 CV: 1.28 | ML: 0.24 CV: 0.25 |
| Morris   | Matérn case 2.a      | ML: 0.75 CV: 1.06 | ML: 0.65 CV: 1.43 |

- Gaussian and Matérn are more adapted than exponential because of smoothness ( → smaller MSE )
- Estimating several correlation lengths is more adapted
- In the Exponential case, CV has slightly smaller MSE and smaller PVA
- For Gaussian and Matérn 2.a. ML has smaller MSE and PVA
- For Gaussian and Matérn, going from 2.a to 2.i causes much more harm to ML than CV





Context for Cross Validation

Case of a single variance parameter

Numerical studies in the general case

Conclusion



## Conclusion

#### Conclusion

- We study robustness relatively to prediction mean square errors and point-wise mean square error estimation
- For the variance estimation. CV is more robust than ML to correlation. function misspecification
- ▶ This is not true for the Smolyak construction we tested
- ▶ In the general case of correlation function estimation → this is globally confirmed in a case study on analytical functions

#### Possible perspectives

- Quantify the incompatibility of a DoE for CV?
- Problem of the choice of the CV procedure

#### Current work:

- ▶ In an expansion asymptotic context, is the regular grid a local optimum for covariance function estimation?
- Work on MI and CV estimators

