МАТЕМАТИЧЕСКАЯ КИБЕРНЕТИКА

Глава 1. Введение

Определение 1.1. Кибернетика (с др.-греч. "искусство управления") – наука об общих закономерностях получения, хранения, преобразования и передачи информации в сложных управляющих системах, будь то машины, живые организмы или общество

Термин "кибернетика" изначально ввёл в научный оборот Ампер, который в своём фундаментальном труде «Опыт о философии наук, или аналитическое изложение естественной классификации всех человеческих знаний», определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. В современном понимании — как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе, термин впервые был предложен Норбертом Винером в 1948 году.

Глава 2. Терминология

Определение 2.1. Динамические системы — это операторы, которые входные сигналы переводят в выходные сигналы. А сигналы — это просто функция времени, которое может быть либо дискретным, в этом случае сигнал — это последовательность значений, либо непрерывным, и тогда сигнал — это функция, заданная на полуоси.

Кроме входного сигнала на выходе сказывается значение вектора начального состояния. И часть выхода возможного системы — это тоже ее состояние. Размерности x_0 и x(t) совпадают в любой момент t.

$$e(\widehat{\cdot}) \longrightarrow \begin{bmatrix} y(\cdot) \\ x(\cdot) \end{bmatrix} = A \left(\begin{bmatrix} e(\cdot) \\ x_0 \end{bmatrix} \right) \longrightarrow y(\widehat{\cdot})$$

$$x(\cdot)$$

Рисунок 2. Пространство состояний

Динамические системы от операторов общего вида отличает принцип причинности.

Определение 2.2. *Неупреждаемость: для любого* x(0) *из равенств:*

$$e_1(t) = e_2(t) \forall t \in T, \tag{1}$$

следует, что

$$s_1(t) = s_2(t), x_1(t) = x_2(t) \forall t \in T,$$
 (2)

где

$$\begin{bmatrix} s_{1,2}(\cdot) \\ x_{1,2}(\cdot) \end{bmatrix} = A \begin{bmatrix} e_{1,2}(\cdot) \\ x_0 \end{bmatrix}, \tag{3}$$

Состояние от других компонент выхода отличается одним важным свойством — если два разных входных сигнала привели систему в одну и ту же точку по состоянию, и после этого входные сигналы совпадают, то и выходные, начиная с этого момента, будут совпадать, причем это относится к любому выходу. Примером может служить движение материальной точки в пространстве. Ее состоянием является не только координата, но и скорость в текущий момент.

Определение 2.3. Динамическая система линейна, если линеен задающий её оператор.

Определение 2.4. Динамическая система стационарна, если сдвиг входа приводит к сдвигу выхода.

Если у нас есть несколько динамических систем с подходящими размерностями входов и выходов, мы можем из них комбинировать более сложные системы. Есть три типичных способа комбинировать динамические системы:

- 1. последовательное соединение, когда выход одной системы служит входом для другой системы.
- 2. параллельное соединение, когда один и тот же вход поступает на обе системы, а выходы их складываются.
- 3. соединение типа обратной связи. Предположим, что у системы A имеется два входа e и u, и мы u формируем, как выход другой динамической системы B, на вход которой поступает выход y. Не всякая таким образом составленная система будет корректно отображать некоторое отображение из входов e в выходы y.

Обычно имеет смысл выделять некий содержательный смысл разных компонент входа и выхода. В случае входа мы имеем:

1. внешний вход или возмущение. Например, ветер, который бросает самолет или автомобиль.

- 2. управление, управляющее воздействие
- 3. это начальное состояние.

Выходы, помимо того, что некоторые из них являются состоянием, а некоторые только функцией от состояния, бывают:

- 1. измеряемыми, те, которые мы можем использовать при построении управляющего сигнала.
- 2. регулируемые это те, значения которых нам важны для достижения цели управления.

Цели управления бывают, например, следующие:

- стабилизация выхода около конкретного постоянного значения.
- отслеживание переменного сигнала, доступного, например, измерению.
- минимизация некоторого функционала, заданного на выходах и входах. Пример это перевести спутник с одной орбиты на другую с минимальным расходом горючего.

Для решения этих задач есть два принципиально разных подхода:

- 1. программное управление. Программное управление возможно именно там, где возмущающие воздействия отсутствуют или незначительные. Имеется в виду тот же спутник.
- 2. управление обратными связями. Если внешняя среда активно влияет на объект управления, то добиться цели управления чаще всего можно только с помощью обратных связей. Схема ее такая имеется внешние воздействия, обычно неизмеряемые, но из известного класса, есть регулируемая величина, есть измеряемый выход, который используется для генерации управляющего воздействия.

Глава 3. Примеры

3.1. Груз на пружине

Рассмотрим груз, подвешенный на пружине. Пусть выход y — это отклонение пружины от точки равновесия. Сил в данном случае три:

- 1. u управляющее воздействие, приложенное к грузу.
- 2. сила растяжения пружины пропорциональное выходу.
- 3. сила вязкого трения, пропорциональная скорости движения груза.

Рисунок 3

Воспользуемся вторым законом Ньютона. Масса \times ускорение — это сумма всех действующих на тело сил:

$$M\ddot{y} = u - Ky - b\dot{y} \iff M\ddot{y} + b\dot{y} + Ky = u, u(0) = y_0, \dot{y}(0) = y_1,$$
 (4)

где:

- $[y(t), \dot{y}(t)]$ состояние в момент t
- ullet начало отсчета y в точке равновесия

- ullet входное воздействие u приложенная к грузу сила
- b коэффициент вязкого трения
- К коэффициент упругости

3.2. Управляемый маятник

Рассмотрим груз, подвешенный на тонкой нитке. u – приложенная сила к грузу, y – угол отклонения груза. Тогда по закону Ньютона имеем:

$$ML\ddot{y} = -Mg\sin y + u, (5)$$

Рисунок 4

При условии, что $|y| < \pi/4 \implies \sin y \approx y$, тогда имеем:

$$\ddot{y} + \frac{g}{L}y = \frac{1}{ML}u,\tag{6}$$