

Основа ТРИЗ

?

Приведите примеры проявления основных законов развития технических систем.

Понятие о веполе

Веполь

элементарная модель технической системы: объединение двух веществ B_1 и B_2 при помощи поля взаимодействия Π . От слов «вещество» и «поле».

Пример 1. B_1 - изделие, B_2 - инструмент, «обрабатывающий» изделие B1, а Π - поле (энергия, сообщаемая инструменту), то веполь

Пример 2. Нож B_2 действует на хлеб B_1 через механическое поле П, представляющее собой давление ножа на хлеб или трение между ножом и хлебом, то вепольная схема

Избыточные связь / действия

$$B_1 \Longrightarrow B_2; \ B_1 \Longrightarrow B_2; \ B_1 \Longrightarrow B_2$$

Недостаточные связь / действия

$$B_1 - - - B_2$$
; $B_1 - - \triangleright B_2$; $B_1 \leftarrow - \triangleright B_2$

Вредные связь / действия

$$B_1 \sim B_2$$
; $B_1 \sim B_2$; $B_1 \sim B_2$

Приведите примеры веполей.

Разбор трех задач

В ТРИЗ эти задачи решаются стандартом на устранение «вредной» связи.

Техническое противоречие

Техническое противоречие (ТП)

модель описания изобретательской ситуации, в которой выделены желательные и нежелательные последствия конкретного изменения TC.

В ТРИЗ изобретательская ситуация формулируется в виде технического противоречия.

Выявление технических противоречий

Шаг	Пример выполнения		
1. Выберите техническую систему	Окно	Акваланг	
2. Поставьте цель развития ТС - улучшить какую-либо характеристику	Повысить пропускание света	Увеличить срок автономной работы	
3. Предложите, какой элемент ТС можно изменить и как, чтобы достичь цели	Увеличить площадь стекла	Увеличить размер воздушных баллонов	
4. Выявите, какая полезная характеристика ТС при этом ухудшится	Ухудшится теплозащита	Ухудшится маневренность аквалангиста	
5. На основе шагов 3 и 4 сформулируйте техническое противоречие	Увеличивая площадь стекла в окне, улучшаем освещённость в комнате, но ухудшаем способность теплозащиты	Увеличивая размер баллонов, увеличиваем длительность автономного плавания, но при этом акваланг становится менее удобным для маневров	
6. Измените элемент, выбранный на шаге 3, противоположным образом и постройте техническое противоречие, обратное сделанному на шаге 5	Уменьшая площадь стекла в окне, улучшаем способность теплозащиты, но при этом ухудшаем освещённость в комнате	Уменьшая размер баллонов, делаем акваланг удобным для маневров, но при этом снижается длительность автономного плавания	

Выявление технических противоречий (продолжение)

Формулировка изобретательской ситуации в виде технического противоречия (ТП) имеет эвристический потенциал:

- «отрезает» пути поиска компромиссных, не идеальных решений;
- позволяет использовать инструмент «Приемы устранения технических противоречий».

Г.С. Альтшуллер сформулировал 40 основных приемов устранения технических противоречий. Источник: https://www.altshuller.ru/triz/technique1.asp

Главный тезис ТРИЗ: если удалось сформулировать противоречие требований, то возможно найти и решение этого противоречия.

Физическое противоречие

Физическое противоречие (ФП)

модель описания задачи, в которой противоположные требования предъявляются к одному элементу ТС.

Основные способы разрешения противоречивых требований, определенных в ФП

- В пространстве (одна часть ТС удовлетворяет одному требованию, а другая часть
- другому).
- Во времени (в одно время элемент TC удовлетворяет одному требованию, а в другое время другому).
- В отношениях (элемент должен обладать определенным свойством по отношению к одному объекту надсистемы и противоположным свойством по отношению к другому объекту надсистемы).
- ?
- 1. Какой способ разрешения противоречия в объектах : сковорода, стекла очков, москитная сетка.
- 2. Как решать задачу, если разрешить противоречие не удается?

Информационный фонд ТРИЗ: приемы устранения ТП

Г.С. Альтшуллер в 60-х годах XX века разработал специальный поисковый аппарат — таблицу выбора приемов устранения технических противоречий.

Источник: https://www.altshuller.ru/triz/technique2.asp

Фрагмент	Tabullel
YUALMEN	таолицы.

Что ухудшается при изменении	1	2	3	4	5 ←	_
нужно изменить	Bec	Вес	Длина	Длина	Площадь	
по условиям	ного	неподвиж- ного	подвиж- ного	неподвиж- ного	подвиж- ного	
задачи	объекта	объекта	объекта	объекта	объекта	
01. Вес подвижного объекта		-	15, 8, 29, 34	-	29, 17, 38, 34	
02. Вес неподвижного объекта	-		-	10, 1, 29, 35	-	
03. Длина подвижного объекта	8, 15, 29, 34	-		-	15, 17, 4	
04. Длина неподвижного объекта		35, 28, 40, 29	-		-	
05. Площадь подвижного объекта	2, 17, 29, 4	-	14, 15, 18 <mark>,</mark> 4			

39 характеристик ТС

Номера 40 приемов устранения ТП. Источник:

https://www.altshuller.ru/
triz/technique1.asp

39 характеристик ТС

Необходимо сформулировать ТП, составляющее суть изобретательской задачи. Описанные характеристики в противоречии адаптируются к характеристикам на осях таблицы.

Идеальный конечный результат

Один из фундаментальных законов ТРИЗ - технические системы стремятся в своем развитии (в филогенезе, т. е. в историческом развитии) к идеальному конечному результату (ИКР): **системы нет, а ее функция выполняется.**

$$MKP = \frac{\sum F_{\text{пол}}}{\sum Q + \sum F_{\text{вр}}}$$

NKP

должен увеличиваться ↑;

- сумма полезных функций системы должна увеличиваться 🕇;
- сумма затрат для выполнения всех функций, например, времени и других ресурсов (должна уменьшаться \downarrow);
- сумма вредных функций системы должна уменьшаться ↓.

Идеальный конечный результат:

X-элемент сам выполняет требуемое действие (вместо какой-то специализированной TC), продолжая выполнять функцию, ради которой он был первоначально создан.

«Х-элемент» - сама проблемная ТС или какая-то ее подсистема.

?

Дана изобретательская ситуация: необходимо повысить идеальность комнатного очистителя воздуха. Что может быть X-элементом?

Ресурсы для решения задач

Pecypc:

пространство, время, вещество, энергия, информация, которые могут быть использованы для решения задачи.

Системный подход к поиску ресурсов

- 1) Анализа объекта, подвергаемого обработке.
- 2) Анализ системы, используемой для выполнения работы, прежде всего, ее рабочего органа.
- 3) Исследование возможности ближайших надсистем.

При поиске ресурсов важно преждевременно не вводить каких-либо ограничений. Иногда фантазийные на первый взгляд идеи приводят к самым интересным, неочевидным решениям.

Системный подход повышает надежность поиска и позволяет планомерно рассматривать входящие в систему и надсистемы ресурсы и связи между ними.

Приведите примеры энергетических, пространственных и временных ресурсов.

Задача: убрать деревянную сваю из реки

- 1) Анализ объекта. Свая это древесина, а значит, ее можно сжечь, пропитав специальным веществом. Свая имеет определенную частоту собственных колебаний, а значит, может быть разрушена при помощи резонанса.
- 2) Поиск ресурсов системы по извлечению свай: подъемные механизмы на лодках. Можно рассмотреть возможность использования более мощных подъемных механизмов, а можно подумать об увеличении подъемной силы лодки путем их облегчения. Такой ресурс лодок, как площадь боковой поверхности, соединившись с напором течения, может обеспечить силу, выламывающую сваю из дна.
- 3) Ресурсы надсистем. Сваи находятся в реке, поэтому рассматриваются прежде всего ресурсы реки. Следует рассмотреть силу и давление потока воды. Поиск пространственных ресурсов, в том числе на дне и под дном реки, может привести к новому решению не вытаскивать сваю, а вбить ее как можно глубже в дно, чтобы не мешала.

Информационный фонд ТРИЗ: стандарты на решение изобретательских задач

Система стандартов, разработанная Г.С. Альтшуллером, содержат 76 стандартов. Она состоит из классов, подклассов и конкретных стандартов.

Источник: https://www.altshuller.ru/triz/standards.asp

Задачи слайда 4.

Класс 1. ПОСТРОЕНИЕ И РАЗРУШЕНИЕ ВЕПОЛЬНЫХ СИСТЕМ.

Подкласс 1.2. Разрушение веполей

Стандарт 1.2.2. Устранение вредной связи видоизменением имеющихся веществ:

Если между двумя веществами в веполе возникают сопряженные - полезное и вредное - действия, причем непосредственное соприкосновение веществ сохранять необязательно, а использование посторонних веществ запрещено или нецелесообразно, задачу решают введением между веществами третьего, являющегося их видоизменением.

Вещество B_3 может быть введено в систему извне в готовом виде или получено (действием Π_1 или Π_2) из имеющихся веществ. В частности, B_3 может быть "пустотой", пузырьками, пеной и т. д.

Алгоритм решения изобретательских задач (АРИЗ)

АРИЗ

- это подробное и достаточно трудоемкое описание последовательности изобретательского процесса.

Алгоритм отличается высокой гибкостью: разные задачи могут решаться разными путями, зависящими не только от сложности задачи, но и от знаний, опыта самого изобретателя.

Автор методики Г.С. Альтшуллер писал:

«АРИЗ - инструмент для мышления, а не вместо мышления».

Этапы упрощенного варианта АРИЗ

- 1 Анализ задачи
- 2 Противоречия и ИКР
- 3 Ресурсы
- 4 Решение
- 5 Анализ решения

Этапы упрощенного варианта АРИЗ

1	Анализ задачи	Определиться с типом задачи: исследовательская или изобретательская? Исследовательская задача требует описания нового явления, неизвестного ранее и непонятного. Изобретательская же имеет дело с известным явлением, которое нужно изменить или устранить. Очевидно, что такие задачи решаются проще, поэтому нужно уметь переводить исследовательскую задачу в изобретательскую. Чтобы сделать это, нужно к условию задачи поставить вместо вопроса «Почему (как) это происходит?» вопрос: «Как это делать?» Для этого записать формулировку обращенной задачи по схеме: «Система (указать назначение) включает (перечислить входящие в систему элементы). Необходимо при заданных условиях обеспечить получение (указать наблюдаемое явление).
2	Противоречия и ИКР	Нужно сформулировать противоречия и идеальный конечный результат.
3	Ресурсы	Ресурсами может быть все, что полезно для нахождения решения. Желательно, чтобы для этого использовались те ресурсы, которые уже присутствуют в проблемной ситуации, а также максимально дешевые ресурсы.
4	Решение	Применить приемы и принципы, созданные для поиска решений в ТРИЗ. См. Информационный фонд ТРИЗ.
5	Анализ	Анализ полученных решений с позиции идеальности. Необходимо определить, насколько сложно и дорого обойдется реализация, задействованы ли все ресурсы системы, какие нежелательные эффекты возникли, как их минимизировать или устранить.

Схематичное представление АРИЗ

В первую очередь формулируется **поверхностное противоречие (ПП)**, которое логично выделяется из условия задачи. О нем, как правило, говорит сам заказчик. Зачастую **ПП** — это нежелательный эффект, который нужно устранить, предъявив к системе определенные требования. Так определяют **углубленное противоречие (УП)**. Дальше ТС представляется такой, какой она должна быть в результате устранения нежелательного эффекта с сохранением (улучшением) положительных качеств — формулируется **ИКР**. Когда разработана концепция идеального результата, он сравнивается с текущим состоянием системы, на основании чего ищутся причины ее несовершенства Эти причины и составляют **ОП** — **обостренные противоречия**, выявление и устранение которых приводит к **решению (Р)** проблемы.

Последовательность характерна для основных модификаций АРИЗ.

Рассмотрите и оцените возможность дальнейшего применения данной последовательности при решении задач проекта.

Основные модификации АРИЗ

```
АРИЗ-56: АП \rightarrow ТП \rightarrow Причины ТП \rightarrow Р. 

АРИЗ-59 и 61: АП \rightarrow ИКР \rightarrow ТП \rightarrow Причины ТП \rightarrow Условия разрешения ТП \rightarrow Р. 

АРИЗ-62: АП \rightarrow ИКР \rightarrow ТП \rightarrow Физ./хим. прич. ТП \rightarrow Условия разрешения ТП \rightarrow Р. 

АРИЗ-63 - 71: АП \rightarrow ИКР \rightarrow ТП \rightarrow Причины ТП \rightarrow Условия разрешения ТП \rightarrow Р. 

АРИЗ-716: АП \rightarrow ИКР \rightarrow ТП \rightarrow ФП \rightarrow Р. 

АРИЗ-82: АП \rightarrow ТП \rightarrow ИКР \rightarrow ФП _{\text{мак}} \rightarrow ФП _{\text{мик}} \rightarrow Р. 

АРИЗ-82B и Г АП \rightarrow ТП _1 \rightarrow ТП _2 \rightarrow ТП \rightarrow ТП _2 \rightarrow ТП \rightarrow ТП _3 \rightarrow ИКР _4 \rightarrow ФП _{\text{мак}} \rightarrow ФП _{\text{мик}} \rightarrow Р. 

АРИЗ-85A, Б, В: АП \rightarrow ТП _1 \rightarrow ТП _2 \rightarrow ТП \rightarrow ТП _3 \rightarrow ИКР _4 \rightarrow ИКР _4 \rightarrow ФП _{\text{мак}} \rightarrow ФП _{\text{мик}} \rightarrow Р.
```

АП – административное противоречие - «надо улучшить систему, но я не знаю как сделать это».

Это противоречие является самым слабым и может быть снято либо изучением дополнительных материалов, либо принятием/снятием административных решений. В глубине АП лежат ТП.

ТП – техническое противоречие.

 $T\Pi_{v}$ – усиленное техническое противоречие (предельное состояние).

ИКР – идеальный конечный результат.

ИКР_{1v} – усиленная формулировка ИКР1.

ФП – физическое противоречие.

ФП_{мак} – физическое противоречие на макроуровне.

ФП_{мик} – физическое противоречие на микроуровне.

Р – решение.

Последняя модификация APИ3-85В — сложный инструмент. Примеры авторских материалов решения таких задач: https://www.altshuller.ru/triz/ariz85v-p2.asp и https://www.trizland.ru/cases/33/

Самостоятельная работа

Упражнения

Приведите примеры, иллюстрирующие приемы устранения ТП (номера приемов совпадают с номерами, под которыми они даны Альтшуллером в полном списке 40 приемов устранения ТП):

- 1. Принцип дробления:
- а) разделить объект на независимые части;
- б) выполнить объект разборным;
- в) увеличить степень дробления объекта.
- 15. Принцип динамичности:
- а) характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы;
- б) разделить объект на части, способные перемещаться относительно друг друга;
- в) если объект в целом неподвижен, сделать его подвижным, перемещающимся.

Болобанова
Наталия Леонидовна
доцент кафедры металлургии,
машиностроения и
технологического оборудования
nlbolobanova@chsu.ru

