Lecture17: Common-source amplifier (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Common-source amplifer

The source terminal is the reference.

- The output voltage is
$$V_{out} = V_{DD} - I_D R_D$$
.
$$V_{out}(t) = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{G,DC} + v_{in}(t) - V_{TH} \right)^2 R_D$$

$$V_{DD} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{G,DC} + v_{in}(t) - V_{TH} \right)^2 R_D$$

$$V_{DD} = V_{D,DC} + v_{out}(t)$$

Small-signal model

- Let's draw its small-signal model together!
 - A transistor small-signal model is introduced.
 - Resistors → resistors
 - Ground → AC ground

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives $v_{out} = -g_m(R_D||r_O)v_{in}$

Increasing the gain

- The voltage gain has two factors.
 - Transconductance(g_m): Selecting W, L, and V_{GS} to maximize the transconductance
 - Resistance($R_D || r_O$): A large R_D value is desirable. However, there is a restrction.

$$V_{D,DC} = V_{DD} - R_D I_{D,DC}$$

- A too large value of R_D reduces $V_{D,DC}$ too much. The triode mode is not suitable for the amplification due to its smaller transconductance.
- A drain load other than a simple resistor can be tried.

Impact of R_S

- Consider a source resistance, R_S .
 - Repeat the previous slide.

Input/output impedances

- When calculating the impedance, the voltage sources at other terminals are neglected.
- Input and output impedances

Homework#8

- Due: 09:00, May 13 (Mon)
- Design the common-source state.
 - A voltage gain is 5 and an **input** impedance is 1 $k\Omega$. Bias the transistor so that it operates 100 mV away from the triode region. Assume the capacitors are very large and $R_D = 10 k\Omega$.

GIST Lecture on May 8, 2019 (Internal use only)