

# Informe Pràctica 3 Sessió 1: Generador de polsos

### **Testbench**

**Taula 1:** Llista dels diferents tasques del testbench i la seva funcionalitat.

| Tasca           | Descripció                                                                                                       |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------|--|--|
| Reset           | Restableix tots els valors a un estat conegut                                                                    |  |  |
| Wait_cycles     | El sistema s'espera el nombre de cicles de rellotges escollit                                                    |  |  |
| Async_check     | Comprova que no hi ha errors asíncronament                                                                       |  |  |
| Check_errors    | Comprova que la variable errors és 0                                                                             |  |  |
| Test_and_result | Mostra els resultats del test                                                                                    |  |  |
| Load_ticks      | Carrega el valor del comptador al timer                                                                          |  |  |
| Test_hold       | Comprova el correcte funcionament del timer permetent afegir el nombre de cicles que es vol que s'aturi. Mesura: |  |  |
|                 | - Que l'output sigui sempre l'esperat                                                                            |  |  |
|                 | - El temps entre dos polsos consecutius                                                                          |  |  |
|                 | - El nombre de cicles entre dos polsos consecutius                                                               |  |  |
| Test_spread     | Permet distribuir uniformement els polsos d'espera. Desestimat degut a                                           |  |  |
| (deprecated)    | que no és el que demana l'enunciat però pot ser útil en futures ocasions.                                        |  |  |

### Verificació Funcional

```
# [Info- 47.00 ns] Test counter

# [Info- 47.00 ns] Reset

# No ticks!

# ** TEST PASSED **

# [Info- 97.00 ns] Reset

# [Info- 167.00 ns] Successful check at time

# [Info- 187.00 ns] Successful check at time

# ** TEST PASSED **

# [Results @ n = 1, StopCycles = 8] Errors = 0 | TimeGap = 20.00 ns | CyclesGap = 1
```

Figura 1: Verificació funcional del comptador quan n = 0 i n = 1 (variable "ticks"). Es pot veure que en el primer cas s'emet un avís de que no hi ha un valor de "ticks" usable i que en el segon el comportament és el que s'espera. Encara que StopCycles = 8, com que no hi ha punt intermig entre 1 i 0, el comptador no s'atura  $\rightarrow$  El "gap" entre polsos és d'un (1) cicle; 20ns.

```
# [Info- 187.00 ns] Reset
 [Info- 257.00 ns] Successful check at time
 [Info- 267.00 ns] Successful check at time
 [Info- 277.00 ns] Successful check at time
 [Info- 287.00 ns] Successful check at time
 [Info- 377.00 ns] Successful check at time
 [Info- 387.00 ns] Successful check at time
 [Info- 397.00 ns] Successful check at time
 [Info- 407.00 ns] Successful check at time
 [Info- 407.00 ns] Successful check at time
 [Info- 427.00 ns] Successful check at time
 [Info- 437.00 ns] Successful check at time
 [Info- 447.00 ns] Successful check at time
 [Info- 457.00 ns] Successful check at time
 [Info- 547.00 ns] Successful check at time
 [Info- 557.00 ns] Successful check at time
 [Info- 567.00 ns] Successful check at time
 [Info- 577.00 ns] Successful check at time
 [Info- 577.00 ns] Successful check at time
# ** TEST PASSED **
# [Results @ n = 8, StopCycles = 8] Errors =
                                                      0 | TimeGap = 170.00 ns | CyclesGap =
                                                                                                      16
```

**Figura 2:** Verificació funcional del comptador quan n = 8. Es pot veure com amb n = 8 i StopCycles = 8, el "gap" entre polsos és de 16 cicles (8 de comptatge + 8 de stop) i que el temps entre aquests és de 170ns.

```
# [Info- 577.00 ns] Reset
[Info- 647.00 ns] Successful check at time
 [Info- 657.00 ns] Successful check at time
# [Info- 667.00 ns] Successful check at time
# [Info- 677.00 ns] Successful check at time
 [Info- 687.00 ns] Successful check at time
# [Info- 697.00 ns] Successful check at time
[Info- 707.00 ns] Successful check at time
 [Info- 717.00 ns] Successful check at time
 [Info- 807.00 ns] Successful check at time
# [Info- 817.00 ns] Successful check at time
# [Info- 827.00 ns] Successful check at time
 [Info- 837.00 ns] Successful check at time
[Info- 847.00 ns] Successful check at time
 [Info- 857.00 ns] Successful check at time
 [Info- 867.00 ns] Successful check at time
# [Info- 867.00 ns] Successful check at time
 [Info- 887.00 ns] Successful check at time
 [Info- 897.00 ns] Successful check at time
# [Info- 907.00 ns] Successful check at time
# [Info- 917.00 ns] Successful check at time
 [Info- 927.00 ns] Successful check at time
# [Info- 937.00 ns] Successful check at time
# [Info- 947.00 ns] Successful check at time
# [Info- 957.00 ns] Successful check at time
[Info- 1047.00 ns] Successful check at time
 [Info- 1057.00 ns] Successful check at time
 [Info- 1067.00 ns] Successful check at time
 [Info- 1077.00 ns] Successful check at time
# [Info- 1087.00 ns] Successful check at time
 [Info- 1097.00 ns] Successful check at time
 [Info- 1107.00 ns] Successful check at time
# [Info- 1107.00 ns] Successful check at time
# ** TEST PASSED **
# [Results @ n = 15, StopCycles = 8] Errors =
                                                         0 | TimeGap = 240.00 ns | CyclesGap =
```

**Figura 3:** Verificació funcional del comptador quan n = 15. Es pot veure com amb n = 8 i StopCycles = 8, el "gap" entre polsos és de 23 cicles (15 de comptatge + 8 de stop) i que el temps entre aquests és de 240ns.



Figura 1: Diagrama d'ones de la simulació.

- Zona taronja (n=0): es veu que vExpected i vObtained són 0 tota l'estona.
- Zona groga (n=1): vExpected i vObtained són idèntics tot el període d'avaluació i no hi ha stop ja que no hi ha punt mig entre 0 i 1.
- Zona blava (n=8): vExpected i vObtained són idèntics tot el període d'avaluació i podem veure com el comptador es dilata 8 cicles quan arriba a 4 (la meitat del comptatge).
- Zona blanca (n=15): vExpected i vObtained són idèntics tot el període d'avaluació i podem veure com el comptador es dilata 8 cicles quan arriba a 7 (la meitat del comptatge).

### Síntesis en FPGA

La Figura 3 mostra el esquema RTL de la netlist generada amb el Quartus del timer.



Figura 3: Esquema RTL de la netlist generada amb el Quartus.



Taula 2: Llista dels recursos utilitzats en la implementació de registre de desplaçament.

| Recurs          | Utilitzats | %  |
|-----------------|------------|----|
| Pins E/S        | 13/224     | 6  |
| Elements Lògics | 7/18.480   | <1 |
| Registres       | 9          | -  |
| RAMs            | 0          | 0  |
| DSPs            | 0          | 0  |
| PLLs            | 0          | 0  |
| FMAX            | 376,36MHz  | -  |

## **Verificació Post-síntesis**

A la Figura 4 es mostra ...



**Figura 4:** Diagrama d'ones de la verificació post síntesi. Es pot veure que no hi ha molts canvis excepte algun petit delay.