

Universität Stuttgart

Institute für Photogrammetrie

Bildanalyse Projekt 2:

SFM und Dense Image Matching: 3D Erfassung einer Statue im Stadtgarten

Ausarbeitung im Studiengang Geodäsie und Geoinformatik an der UniversitĤt Stuttgart

Jingyi Bao, 3255519 Jiaxin Liu, 3313749 Hsin-Feng Ho, 3378849 Bingwang Chen, 3190522

Stuttgart, Juli 2021

Betreuer: Prof. Norbert Haala

Universität Stuttgart

Dr. Michael Cramer Universität Stuttgart

1. Einleitung

Die Geometrie einer Statue im Stadtgarten wird mittels terrestrischer Photogrammetrie erfasst werden. Die Aufnahme wird mit GoPro HERO6 Kamera des Instituts für Photogrammetrie erfolgt. Für die Berechnung der vermaschten Punktwolke mittels Structure-from-Motion und Dense Image Matching wird das Softwarepaket agisoft Metashape genutzt.

2. Bildaufnahme

Die Bilder werden mit GoPro Hero 6 aufgenommen, für erhöhte Aufnahmestandpunkte steht ein Einbeinstativ zur Verfügung, die Aufnahmesteuerung wird über eine App vom Mobiltelefon a erfolgt.

2.1 Kamera: HERO6 Black

- Auflösung 4000×3000
- Brennweite 3mm
- Abstand ~2,5m
- GSD ~ 2.3 mm

$$h = c \cdot m_b = c \cdot \frac{GSD}{\Delta pixel} = 3mm \cdot \frac{2,3mm}{2,8\mu m} = 2,5m$$

2.2 Durchführung

Die Kameraparameter bleiben unverändert. Dann wird die Kamera mit Handy durch Gopro App verbunden. In der Einstellung wird das Linearkamera ausgewählt. Um Anzahl und räumliche Verteilung der Aufnahmestandpunkte sicherzustellen, dass jeder

Teil der Statue mit einer genügenden Anzahl von Bildern abgedeckt ist, wird die Statue in 30° Abstand und 3 Zeile aufgenommen.

Die Helligkeit der Vorder- und Rückseite der Statue ist aufgrund der starken Sonneneinstrahlung sehr unterschiedlich.

3. Durchführung mit Metashape

3.1 Align Photos

Die aufgenommenen Fotos werden in Metashape verarbeitet. Zuerst müssen allen Bildern importiert werden. Die Bilder werden dann in Rahmen einer Structure-from-Motion Verfahrens mit integrierter Bündeltriangulation orientiert. Dies kann durch "aligh photos" erreicht werden.

Schließlich erhalten wir folgendes Ergebnis:

Wenn wir weiter untersuchen, können wir festlegen, dass die meisten Verknüpfungen gut sind.

Bei einigen Fotos gibt es aber offensichtlich zu viele ungültige Verknüpfungen.

Wenn wir uns diese Fotos genau ansehen, kann dies an den großen Unterschieden in den Aufnahmebedingungen liegen. Bei der Aufnahme links ist das Stativ niedrig und der Himmel wurde auch fotografiert. Aber für das zweite Foto ist das Stativ offensichtlich hoch, das Gesicht der Statue ist dunkler. Diese können zu einem schlechten Ergebnis führen.

Für Bilder mit mehr ungültigen Verknüpfungen als gültigen Verknüpfungen, es ist nicht schwer für uns zu finden, dass die Software eine andere Statue, mit denen wir überhaupt nicht bearbeiten wollen, erkennt. Außerdem gibt es natürlich fast keine Identische Punkte.

3.2 Dense Cloud

Workflow → Build Dense Cloud

Schließlich erhalten wir folgendes Ergebnis:

3.3 Meshing

Wir wählen nun einen kleinen Bereich um die Statue und dann weiter machen mit "Build Mesh". Schließlich erhalten wir folgendes Ergebnis:

Es gibt ein paar Probleme, die sehr offensichtlich sind. Erstens ist die Statue nicht sehr klar, dies sollte an der Anzahl der Fotos liegen. Zudem ist der Helligkeitsunterschied zwischen Vorder- und Rückseite aufgrund der Sonneneinstrahlung zu groß. Schließlich wurde die Statue mangels ausreichender Fotos an der Spitze schlecht rekonstruiert.

Wenn wir die Textur hinzufügen, Sieht die Statue viel besser aus.

Statue

Processing Report 16 June 2021

Survey Data

Fig. 1. Camera locations and image overlap.

Number of images: 48 Camera stations: 48

Tie points: 48,703

Projections: 127,088

Reprojection error: 0.799 pix

Camera Model	Resolution	Focal Length	Pixel Size	Precalibrated
HERO6 Black (3mm)	4000 x 3000	3 mm	1.73 x 1.73 µm	No

Table 1. Cameras.

Camera Calibration

HER06 Black (3mm) 48 images

Type	Resolution	Focal Length	Pixel Size
Frame	4000 x 3000	3 mm	1.73 x 1.73 µm

	Value	Error	F	Сх	Су	K1	K2	К3	P1	P2
F	2002. 5	0. 091	1. 00	-0.09	0.32	-0.10	0. 26	-0. 24	-0. 10	0. 14
Сх	7. 04045	0. 13		1.00	0.07	-0.00	0.00	-0. 01	0. 96	0.04
Су	11. 9152	0. 099			1.00	0. 04	0. 02	-0.04	0. 03	0. 70
K1	-0.00279206	9. 5e-05				1. 00	-0.94	0. 87	-0. 01	0. 09
K2	0.00266507	0. 00015					1. 00	-0. 98	-0. 01	-0. 03
К3	-0.000693042	7. 2e-05						1. 00	0. 00	0. 01
P1	0.00120914	2. 2e-05							1. 00	0. 02
P2	0.00104795	2e-05								1.00

Table 2. Calibration coefficients and correlation matrix.

Digital Elevation Model

Fig. 3. Reconstructed digital elevation model.

Processing Parameters

General					
Cameras	48				
Aligned cameras	48				
Coordinate system	Local Coordinates (m)				
Rotation angles	Yaw, Pitch, Roll				
Point Cloud					
Points	48,703 of 55,479				
RMS reprojection error	0.327333 (0.79925 piz				
Max reprojection error	1.00991 (37.4495 pix)				
Mean key point size	2.35046 pix				
Point colors	3 bands, uint8				
Key points	No				
Average tie point multiplicity	2. 76869				
Alignment parameters					
Accuracy	Highest				
Generic preselection	Yes				
Reference preselection	No				
Key point limit	60,000				
Tie point limit	6, 000				
Exclude stationary tie points	Yes				
Guided image matching	No				
Adaptive camera model fitting	No				
Matching time	26 seconds				
Matching memory usage	1.62 GB				
Alignment time	10 seconds				
Alignment memory usage	45.63 MB				
Software version	1. 7. 2. 12070				
File size	3.62 MB				
Depth Maps					
Count	48				
Depth maps generation parameters					
Quality	Ultra High				
Filtering mode	Mild				
Processing time	6 minutes 34 seconds				
File size	390.99 MB				
Dense Point Cloud					
Points	42,656,620				
Point colors	3 bands, uint8				
Depth maps generation parameters					
Quality	Ultra High				
Filtering mode	Mild				
Processing time	6 minutes 34 seconds				
Dense cloud generation parameters					
Processing time	33 minutes 3 seconds				
Software version	1. 7. 2. 12070				
File size	606.84 MB				
Model					
Faces	180,000				
Vertices	91, 077				
Vertex colors	3 bands, uint8				
Depth maps generation parameters					

Quality Ultra High Filtering mode Mild 6 minutes 34 seconds Processing time ${\bf Reconstruction\ parameters}$ Arbitrary Surface type Source data Dense cloud Interpolation **Enabled** Strict volumetric masks No $Processing\ time$ 14 seconds Memory usage 491.26 MB 1. 7. 2. 12070 Software version File size 4.14 MB System Software nameAgisoft Metashape Professional Software version 1.7.2 build 12070 0S Windows 64 bit RAM 31.92 GB CPU

GPU(s)

Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz GeForce RTX 2080 Ti