Оценяване на варианти на неокейнсиански модели

Андрей Василев avassilev@fmi.uni-sofia.bg

Основни въпроси

- Модели с ненаблюдаеми компоненти
- Елементи на бейсовото оценяване
- Оценяване на модели с ненаблюдаеми компоненти в Dynare

• Уравнение на наблюденията:

$$y_t = Z_t \alpha_t + \varepsilon_t,$$

където:

- y_t е p-мерен вектор с наблюдения
- α_t е \emph{m} -мерен вектор на фазови променливи (състояния)
- ullet Z $_t$ е p imes m матрица с коефициенти
- $\varepsilon_t \sim iid\ N(0,H_t)$ е *p*-мерен вектор с шокове

• Фазово уравнение (уравнение на състоянията):

$$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t,$$

където:

- T_t е $m \times m$ преходна матрица
- ullet шокът $\eta_t \sim \mathit{iid} \ \mathit{N}(0,Q_t)$ е r -мерен $(\mathit{r} \leq \mathit{m})$
- матрицата R_t с размерност $m \times r$ се нарича селектираща матрица
- Ако няма специална информация за началните състояния, стандартно се приема, че

$$\alpha_1 \sim N(a_1, P_1)$$

- Нека означим наблюденията y_1, \dots, y_t с Y_t , като цялата извадка е с големина n
- Ако матриците Z_t , H_t , T_t и Q_t , и разпределението на α_1 са известни, то:
 - ullet оценяването на състоянията $lpha_t$ чрез Y_t се нарича ϕ илтриране
 - оценяването на състоянията α_t чрез пълната извадка Y_n се нарича изглаждане
 - ullet когато Y_t се използва, за да опишем $lpha_s,\ s>t$, имаме прогнозиране
- Съществуват рекурсивни алгоритми като филтъра на Калман, които реализират горните операции

- От практическа гледна точка е много малко вероятно матриците в модела да са известни
- Техните коефициенти всъщност трябва да бъдат оценени
- В хода на прилагането на филтъра на Калман се получава функция на правдоподобие за модела, което позволява да се използват методи като този на максималното правдоподобие

Филтър на Калман

• Дефинираме

$$egin{aligned} a_{t|t} &= E(lpha_t|Y_t) \ &P_{t|t} &= Var(lpha_t|Y_t) \ &a_{t+1} &= E(lpha_{t+1}|Y_t) \ &P_{t+1} &= Var(lpha_{t+1}|Y_t) \ &v_t &= y_t - Z_t a_t \end{aligned}$$

Филтър на Калман

 Филтърът на Калман се задава от следните рекурсивни връзки:
 (1)

$$egin{aligned} a_{t|t} &= a_t + P_t Z_t' F_t^{-1} v_t, \quad F_t = Var(v_t|Y_{t-1}) = Z_t P_t Z_t' + H_t \ P_{t|t} &= P_t - P_t Z_t' F_t^{-1} Z_t P_t \ a_{t+1} &= T_t a_t + K_t v_t, \quad K_t = T_t P_t Z_t' F_t^{-1} \ P_{t+1} &= T_t P_t (T_t - K_t Z_t)' + R_t Q_t R_t' \end{aligned}$$

- Численото максимизиране на функция на правдоподобие може да срещне трудности:
 - Много локални максимуми или области с почти постоянни стойности
 - Чувствителност към началните условия на използвания метод за оптимизация
 - Нелогични или теоретично неиздържани оценки на параметрите
- Тези проблеми понякога могат да бъдат преодолени с използването на бейсови методи

- По-точно, бейсовите методи могат да са полезни при:
 - Малка извадка
 - Необходимост дадени параметри да бъдат ограничени
 - Налична допълнителна теоретична или емпирична информация

- Традиционният подход в статистиката приема параметрите на един модел за фиксирани, но неизвестни, а данните се приемат за случайни величини
- Бейсовият подход третира параметрите като случайни величини и провежда анализа за фиксиран набор от данни
- По този начин се отчита несигурността по отношение на параметрите
- Формално се работи с разпределението на параметрите ψ на модела, при зададени наблюдения Y_n .

• Ако пълният модел се формализира чрез съвместното разпределение на параметрите и данните, $p(\psi, Y_n)$, можем да използваме формулата на Бейс и да запишем условната плътност $p(\psi|Y_n)$ във вида:

(2)
$$p(\psi|Y_n) = \frac{p(\psi)p(Y_n|\psi)}{p(Y_n)}$$

- Плътността $p(\psi)$ се нарича априорна плътност
- Условната плътност $p(Y_n|\psi)$ е всъщност функцията на правдоподобие
- Условната плътност $p(\psi|Y_n)$, от която се интересуваме, се нарича *апостериорна плътност*

• Понеже маргиналната плътност $p(Y_n)$ е просто нормираща константа за фиксирани данни, често тя се изпуска и се работи с т.нар. ядро на апостериорната плътност $p(\psi)p(Y_n|\psi)$, като (2) се записва във вида:

(3)
$$p(\psi|Y_n) \propto p(\psi)p(Y_n|\psi)$$

- Априорната плътност $p(\psi)$ отчита информация за параметрите, която не е включена в наблюденията ("какво знаем, преди да сме взели данните") теоретични съображения, експертни оценки, субективни преценки, резултати от предходни изследвания
- Функцията на правдоподобие се конструира по стандартен начин, като отчита вероятната форма на процеса, генериращ данните, доколкото е възможно

- Така апостериорната плътност комбинира информация от данните и такава, която не идва от наблюденията, което може да се интерпретира като:
 - актуализиране на априорната информация с информация от данните
 - допълване на информацията от наличния набор от наблюдения с информация от допълнителни източници
- С помощта на апостериорната плътност могат да се правят аналози на редица стандартни статистически процедури като конструиране на точкови оценки, доверителни интервали, проверка на хипотези и пр.
- Най-често апостериорните плътности не могат да се пресметнат аналитично и се приближават с помощта на подходящи симулации

Оценяване в Dynare

Общи положения

- Декларира се кои са наблюдаемите променливи
- Задават се априорните плътности, ако се ползва бейсов метод
 - Ако се работи в класическа схема, тогава се задават начални условия за оптимизатора
- Задава се командата за оценяване със съответните параметри

Задаване на наблюденията

Наблюдения

varobs y infl u;

- Те трябва да бъдат ендогенни за модела променливи
- В модела трябва да има поне толкова шокове, колкото и наблюдаеми променливи
- Разрешава се само един блок с декларации на наблюдаеми променливи за всеки .mod файл
- Данните могат да са записани в .m, .mat, .csv или .xlsx/xls формат

Априорни плътности

- Задават се в блок estimated_params
- В този блок може да се дава и информация за целите на стандартно оценяване с максимално правдоподобие
- Декларират се дисперсии на шоковете, корелации между шокове и свойства на параметри, които вече са били декларирани в блока parameters
- Има налични различни разпределения, напр. нормално, равномерно, бета, гама, и обратно гама разпределение, както и възможности някои разпределения да се параметризират по различен начин

Априорни плътности

Оценявани параметри

```
 \begin{array}{l} estimated\_params; \\ stderr\ e1,\ inv\_gamma\_pdf,\ 0.005\ ,\ inf; \\ c1\ ,\ normal\_pdf\ ,\ 0.7\ ,\ 0.03; \\ end; \end{array}
```

- След като се укаже типът на разпределението се задават средната и стандартното отклонение
- Ако искаме да пропуснем някой параметър, това се указва с празна позиция, отделена със запетаи, напр.

```
corr\ eps\_1,\ eps\_2,\ 0.5,\ ,\ ,\ beta\_pdf,\ 0,\ 0.3,\ -1,\ 1;
```

Оценяване

Оценяване

 $estimation(datafile = estdata, mh_replic = 2000, \ mh_nblocks = 2, \\ filtered_vars, \ smoother, \ diffuse_filter) \ yp \ z;$

- Използва файл *estdata* (в случая .m файл)
- Пуснати са две вериги със симулации, всяка с по 2000 итерации
- Да се оценят филтрирани и изгладени стойности
- Опцията diffuse filter се използва при нестационарни наблюдения
- ullet Да се визуализират резултати за променливите yp и z

Формулировка

$$y_{t} = \tau_{t} + \zeta_{t}$$

$$\tau_{t} = \tau_{t-1} + \beta_{t-1} + v_{1,t}$$

$$\beta_{t} = \beta_{t-1} + v_{2,t}$$

$$\zeta_{t} = c_{1}\zeta_{t-1} + v_{3,t}$$

$$\pi_{t} = (1 - c_{2})c_{3} + c_{2}\pi_{t-1} + c_{4}\zeta_{t} + v_{4,t}$$

Означения

 y_t – БВП (логаритмуван), au_t – тренд, ζ_t – цикличен компонент, π_t – инфлация, $v_{i,t}$ – шокове

Типично $c_1\in(0,1)$. Също така $c_2\in(0,1)$, а c_3 се интерпретира като дългосрочна (равновесна) инфлация.

Формулировка

$$y_{t} = \tau_{t} + \zeta_{t}$$

$$\tau_{t} = \tau_{t-1} + \beta_{t-1} + v_{1,t}$$

$$\beta_{t} = \beta_{t-1} + v_{2,t}$$

$$\zeta_{t} = c_{1}\zeta_{t-1} + v_{3,t}$$

$$\pi_{t} = (1 - c_{2})E_{t}\{\pi_{t+1}\} + c_{2}\pi_{t-1} + c_{4}\zeta_{t} + v_{4,t}$$

Означения

 y_t – БВП (логаритмуван), au_t – тренд, ζ_t – цикличен компонент, π_t – инфлация, $v_{i,t}$ – шокове

Отново $c_1 \in (0,1)$ и $c_2 \in (0,1)$.