500

Bài Toán Bất Đẳng Thức Chọn Lọc

Cao Minh Quang

500 Bài Toán Bất Đẳng Thức Chọn Lọc

1. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sqrt{a^2 + (1-b)^2} + \sqrt{b^2 + (1-c)^2} + \sqrt{c^2 + (1-a)^2} \ge \frac{3\sqrt{2}}{2}$$
.

Komal

2. [Dinu Serbănescu] Cho $a,b,c \in (0,1)$. Chứng minh rằng

$$\sqrt{abc} + \sqrt{(1-a)(1-b)(1-c)} < 1.$$

Junior TST 2002, Romania

3. [Mircea Lascu] Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

$$\frac{b+c}{\sqrt{a}} + \frac{c+a}{\sqrt{b}} + \frac{a+b}{\sqrt{c}} \ge \sqrt{a} + \sqrt{b} + \sqrt{c} + 3.$$

Gazeta Matematică

4. Nếu phương trình $x^4 + ax^3 + 2x^2 + bx + 1 = 0$ có ít nhất một nghiệm thực, thì

$$a^2+b^2\geq 8.$$

Tournament of the Towns, 1993

5. Cho các số thực x, y, z thỏa mãn điều kiện $x^2 + y^2 + z^2 = 1$. Hãy tìm giá trị lớn nhất của biểu thức

$$x^3 + y^3 + z^3 - 3xyz$$
.

6. Cho a,b,c,x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Chứng minh rằng

$$ax + by + cz + 2\sqrt{(xy + yz + zx)(ab + bc + ca)} \le a + b + c$$
.

Ukraine, 2001

7. [Darij Grinberg] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{(b+c)^2} + \frac{b}{(c+a)^2} + \frac{c}{(a+b)^2} \ge \frac{9}{4(a+b+c)}$$
.

8. [Hojoo Lee] Cho $a,b,c \ge 0$. Chứng minh rằng

$$\sqrt{a^4 + a^2b^2 + b^4} + \sqrt{b^4 + b^2c^2 + c^4} + \sqrt{c^4 + c^2a^2 + a^4} \ge a\sqrt{2a^2 + bc} + b\sqrt{2b^2 + ca} + c\sqrt{2c^2 + ab}.$$

Gazeta Matematică

9. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=2. Chứng minh rằng

$$a^{3} + b^{3} + c^{3} \ge a\sqrt{b+c} + b\sqrt{c+a} + c\sqrt{a+b}$$
.

JBMO 2002 Shortlist

10. [Ioan Tomescu] Cho x, y, z là các số thực dương. Chứng minh rằng

$$\frac{xyz}{(1+3x)(x+8y)(y+9z)(z+6)} \le \frac{1}{7^4}.$$

Gazeta Matematică

11. [Mihai Piticari, Dan Popescu] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$5(a^2+b^2+c^2) \le 6(a^3+b^3+c^3)+1.$$

12. [Mircea Lascu] Cho $x_1, x_2, ..., x_n \in \mathbb{R}$, $n \ge 2$, a > 0 sao cho

$$x_1 + x_2 + ... + x_n = a$$
, $x_1^2 + x_2^2 + ... + x_n^2 \le \frac{a^2}{n-1}$.

Chứng minh rằng

$$x_i \in \left[0, \frac{2a}{n}\right], i = 1, 2, ..., n.$$

13. [Adrian Zahariuc] Cho $a,b,c \in (0,1)$. Chứng minh rằng

$$\frac{b\sqrt{a}}{4b\sqrt{c}-c\sqrt{a}} + \frac{c\sqrt{b}}{4c\sqrt{a}-a\sqrt{b}} + \frac{a\sqrt{c}}{4a\sqrt{b}-b\sqrt{c}} \ge 1.$$

14. Cho a,b,c là các số thực dương thỏa mãn điều kiện $abc \le 1$. Chứng minh rằng

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge a + b + c$$
.

15. [Vasile Cirtoaje, Mircea Lascu] Cho a,b,c,x,y,z là các số thực dương thỏa mãn điều kiện $a+x \ge b+y \ge c+z$, a+b+c=x+y+z. Chứng minh rằng

$$ay + bx \ge ac + xz$$
.

16. [Vasile Cirtoaje, Mircea Lascu] Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$1+\frac{3}{a+b+c}\geq \frac{6}{ab+bc+ca}$$
.

Junior TST 2003, Romania

17. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{a^2} \ge \frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a}.$$

JBMO 2002 Shortlist

18. Cho $x_1, x_2, ..., x_n > 0$, n > 3 thỏa mãn điều kiện $x_1 x_2 ... x_n = 1$. Chứng minh rằng

$$\frac{1}{1+x_1+x_1x_2} + \frac{1}{1+x_2x_3} + \dots + \frac{1}{1+x_n+x_nx_1} > 1.$$

Russia, 2004

19. [Marian Tetiva] Cho x, y, z là các số thực dương thỏa điều kiện $x^2 + y^2 + z^2 + 2xyz = 1$. Chứng minh rằng

a)
$$xyz \leq \frac{1}{8}$$
,

b)
$$x + y + z \le \frac{3}{2}$$
,

c)
$$xy + yz + zx \le \frac{3}{4} \le x^2 + y^2 + z^2$$
,

d)
$$xy + yz + zx \le \frac{1}{2} + 2xyz$$
.

20. [Marius Olteanu] Cho $x_1, x_2, ..., x_5 \in \mathbb{R}$ sao cho $x_1 + x_2 + ... + x_5 = 0$. Chứng minh rằng

$$|\cos x_1| + |\cos x_2| + \dots + |\cos x_5| \ge 1$$
.

Gazeta Matematică

21. [Florina Cârlan, Marian Tetiva] Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = xyz. Chứng minh rằng

$$xy + yz + zx \ge 3 + \sqrt{x^2 + 1} + \sqrt{y^2 + 1} + \sqrt{z^2 + 1}$$
.

22. [Laurentiu Panaitopol] Cho x, y, z là các số thực thỏa mãn điều kiện x, y, z > -1. Chứng minh rằng

$$\frac{1+x^2}{1+y+z^2} + \frac{1+y^2}{1+z+x^2} + \frac{1+z^2}{1+x+y^2} \ge 2.$$

JBMO, 2003

23. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{a^2+b}{b+c} + \frac{b^2+c}{c+a} + \frac{c^2+a}{a+b} \ge 2.$$

24. Cho $a,b,c \ge 0$ thỏa mãn điều kiện $a^4+b^4+c^4 \le 2(a^2b^2+b^2c^2+c^2a^2)$. Chứng minh rằng

$$a^2 + b^2 + c^2 \le 2(ab + bc + ca)$$
.

Kvant, 1988

25. Cho $x_1, x_2, ..., x_n > 0, n > 2$ thỏa mãn điều kiện

$$\frac{1}{x_1 + 1998} + \frac{1}{x_2 + 1998} + \dots + \frac{1}{x_n + 1998} = \frac{1}{1998}.$$

Chứng minh rằng

$$\frac{\sqrt[n]{x_1 x_2 \dots x_n}}{n-1} \ge 1998.$$

Vietnam, 1998

26. [Marian Tetiva] Cho x, y, z là các số thực dương thỏa mãn điều kiện $x^2 + y^2 + z^2 = xyz$. Chứng minh rằng

- a) $xyz \ge 27$,
- b) $xy + yz + zx \ge 27$,
- c) x + y + z > 9,
- d) xy + yz + zx > 2(x + y + z) + 9.

27. Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 3. Chứng minh rằng

$$\sqrt{x} + \sqrt{y} + \sqrt{z} \ge xy + yz + zx$$
.

Russia 2002

28. [D. Olteanu] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a+b}{b+c} \cdot \frac{a}{2a+b+c} + \frac{b+c}{c+a} \cdot \frac{b}{2b+c+a} + \frac{c+a}{a+b} \cdot \frac{c}{2c+a+b} \ge \frac{3}{4}$$

Gazeta Matematică

29. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge \frac{c+a}{c+b} + \frac{a+b}{a+c} + \frac{b+c}{b+a}$$
.

India, 2002

30. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^3}{b^2 - bc + c^2} + \frac{b^3}{c^2 - ac + a^2} + \frac{c^3}{a^2 - ab + b^2} \ge \frac{3(ab + bc + ca)}{a + b + c}.$$

Proposed for the Balkan Mathematical Olympical

31. [Adrian Zahariuc] Cho $x_1, x_2, ..., x_n$ là các số nguyên đôi một phân biệt nhau. Chứng minh rằng

$$x_1^2 + x_2^2 + ... + x_n^2 \ge x_1 x_2 + x_2 x_3 ... + x_n x_1 + 2n - 3$$
.

32. [Murray Klamkin] Cho $x_1, x_2, ..., x_n \ge 0, n > 2$ thỏa mãn điều kiện $x_1 + x_2 + ... + x_n = 1$. Hãy tìm giá trị lớn nhất của biểu thức

$$x_1^2 x_2 + x_2^2 x_3 + ... + x_{n-1}^2 x_n + x_n^2 x_1$$
.

Crux Mathematicorum

33. Cho $x_1,x_2,...,x_n>0$ thỏa mãn điều kiện $x_{k+1}\geq x_1+x_2+...+x_k$ với mọi k. Hãy tìm giá trị lớn nhất của hằng số c sao cho $\sqrt{x_1}+\sqrt{x_2}+...+\sqrt{x_n}\leq c\sqrt{x_1+x_2+...+x_n}$.

IMO Shortlist, 1986

34. Cho các số thực dương a,b,c,x,y,z thỏa mãn điều kiện a+x=b+y=c+z=1. Chứng minh rằng

$$(abc + xyz)\left(\frac{1}{ay} + \frac{1}{bz} + \frac{1}{cx}\right) \ge 3.$$

Russia, 2002

35. [Viorel Vâjâitu, Alexvàru Zaharescu] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{ab}{a+b+2c} + \frac{bc}{b+c+2a} + \frac{ca}{c+a+2b} \le \frac{1}{4}(a+b+c).$$

Gazeta Matematică

36. Cho a,b,c,d là các số thực thỏa mãn điều kiện $a^2+b^2+c^2+d^2=1$. Tìm giá trị nhỏ nhất của biểu thức

$$a^{3}(b+c+d)+b^{3}(c+d+a)+c^{3}(d+a+b)+d^{3}(a+b+c)$$
.

37. [Walther Janous] Cho x, y, z là các số thực dương. Chứng minh rằng

$$\frac{x}{x + \sqrt{(x+y)(x+z)}} + \frac{y}{y + \sqrt{(y+z)(y+x)}} + \frac{z}{z + \sqrt{(z+x)(z+y)}} \le 1.$$

Crux Mathematicorum

38. Cho $a_1, a_2, ..., a_n, n \ge 2$ là n số thực sao cho $a_1 < a_2 < ... < a_n$. Chứng minh rằng

$$a_1a_2^4 + a_2a_3^4 + \dots + a_na_1^4 \ge a_2a_1^4 + a_3a_2^4 + \dots + a_1a_n^4$$

39. [Mircea Lascu] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 4\left(\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}\right).$$

40. Cho $a_1, a_2, ..., a_n$ là các số nguyên dương lớn hơn 1. Tồn tại ít nhất một trong các số $\sqrt[a_1]{a_1}, \sqrt[a_2]{a_3}, ..., \sqrt[a_{n-1}]{a_n}, \sqrt[a_n]{a_1}$ nhỏ hơn hoặc bằng $\sqrt[3]{3}$.

Adapted after a well - known problem

- **41.** [Mircea Lascu, Marian Tetiva] Cho x, y, z là các số thực dương thỏa mãn điều kiện xy + yz + zx + 2xyz = 1. Chứng minh rằng
 - a) $xyz \leq \frac{1}{8}$,
 - b) $x+y+z \ge \frac{3}{2}$,
 - c) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 4(x+y+z)$,
 - d) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} 4(x+y+z) \ge \frac{(2z-1)^2}{z(2z+1)}, z = \max\{x, y, z\}.$
- **42.** [Manlio Marangelli] Cho x, y, z là các số thực dương. Chứng minh rằng

$$3(x^2y + y^2z + z^2x)(xy^2 + yz^2 + zx^2) \ge xyz(x + y + z)^3$$
.

43. [Gabriel Dospinescu] Cho a,b,c là các số thực dương thỏa mãn điều kiện

$$\max\{a,b,c\} - \min\{a,b,c\} \le 1$$

Chứng minh rằng

$$1 + a^3 + b^3 + c^3 + 6abc \ge 3a^2b + 3b^2c + 3c^2a.$$

44. [Gabriel Dospinescu] Cho a,b,c là các số thực dương. Chứng minh rằng

$$27 + \left(2 + \frac{a^2}{bc}\right) \left(2 + \frac{b^2}{ca}\right) \left(2 + \frac{c^2}{ab}\right) \ge 6(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

45. Cho $a_0 = \frac{1}{2}$, $a_{k+1} = a_k + \frac{a_k^2}{n}$. Chứng minh rằng

$$1 - \frac{1}{n} < a_n < 1$$
.

TST Singapore

46. [Călin Popa] Cho $a,b,c\in(0,1)$ thỏa mãn điều kiện ab+bc+ca=1. Chứng minh rằng

$$\frac{a}{1-a^2} + \frac{b}{1-b^2} + \frac{c}{1-c^2} \ge \frac{3}{4} \left(\frac{1-a^2}{a} + \frac{1-b^2}{b} + \frac{1-c^2}{c} \right).$$

47. [Titu Vàreescu, Gabriel Dospinescu] Cho $x, y, z \le 1$ thỏa mãn điều kiện x + y + z = 1. Chứng minh rằng

$$\frac{1}{1+x^2} + \frac{1}{1+y^2} + \frac{1}{1+z^2} \le \frac{27}{10}.$$

48. [Gabriel Dospinescu] Cho $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$. Chứng minh rằng

$$(1-x)^2 (1-y)^2 (1-z)^2 \ge 2^{15} xyz(x+y)(y+z)(z+x).$$

- **49.** Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz = x + y + z + 2. Chứng minh rằng
 - a) $xy + yz + zx \ge 2(x + y + z)$,
 - b) $\sqrt{x} + \sqrt{y} + \sqrt{z} \le \frac{3}{2} \sqrt{xyz}$.
- **50.** Cho x, y, z là các số thực thỏa mãn điều kiện $x^2 + y^2 + z^2 = 2$. Chứng minh rằng

$$x + y + z \le xyz + 2$$
.

IMO Shortlist, 1987

51. [Titu Vàreescu, Gabriel Dospinescu] Cho $x_1, x_2, ..., x_n \in (0,1)$ và σ là một hoán vị của $\{1,2,...,n\}$. Chứng minh rằng

$$\sum_{i=1}^{n} \frac{1}{1-x_i} \ge \left(1 + \frac{\sum_{i=1}^{n} x_i}{n}\right) \cdot \left(\sum_{i=1}^{n} \frac{1}{1-x_i \cdot x_{\sigma(i)}}\right).$$

52. Cho $x_1, x_2, ..., x_n$ là các số thực dương thỏa mãn điều kiện $\sum_{i=1}^n \frac{1}{1+x_i} = 1$. Chứng minh rằng

$$\sum_{i=1}^{n} \sqrt{x_i} \ge (n-1) \sum_{i=1}^{n} \frac{1}{\sqrt{x_i}}.$$

Vojtech Jarnik

53. [Titu Vàreescu] Cho n>3 và $a_1,a_2,...,a_n$ là các số thực thỏa mãn điều kiện $\sum_{i=1}^n a_i \geq n$ và $\sum_{i=1}^n a_i^2 \geq n^2$. Chứng minh rằng

$$\max\{a_1, a_2, ..., a_n\} \ge 2$$
.

USAMO, 1999

54. [Vasile Cirtoaje] Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$\frac{a-b}{b+c} + \frac{b-c}{c+d} + \frac{c-d}{d+a} + \frac{d-a}{a+b} \ge 0.$$

55. Cho x, y là các số thực dương. Chứng minh rằng

$$x^y + y^x > 1$$
.

France, 1996

56. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$(a+b)(b+c)(c+a) \ge 4(a+b+c-1)$$
.

MOSP, 2001

57. Cho a,b,c là các số thực dương. Chứng minh rằng

$$(a^2+b^2+c^2)(a+b-c)(b+c-a)(c+a-b) \le abc(ab+bc+ca).$$

58. [D.P.Mavlo] Cho a,b,c là các số thực dương. Chứng minh rằng

$$3+a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \ge 3\frac{(a+1)(b+1)(c+1)}{1+abc}$$
.

Kvant, 1988

59. [Gabriel Dospinescu] Cho $x_1, x_2, ..., x_n$ là các số thực dương thỏa mãn điều kiện $x_1x_2...x_n=1$. Chứng minh rằng

$$n^{n} \cdot \prod_{i=1}^{n} (x_{i}^{n} + 1) \ge \left(\sum_{i=1}^{n} x_{i} + \sum_{i=1}^{n} \frac{1}{x_{i}} \right)^{n}$$
.

60. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$a^3 + b^3 + c^3 + abcd \ge \min\left\{\frac{1}{4}, \frac{1}{9} + \frac{d}{27}\right\}.$$

Kvant, 1993

61. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sum (1+a^2)^2 (1+b^2)^2 (a-c)^2 (b-c)^2 \ge (1+a^2) (1+b^2) (1+c^2) (a-b)^2 (b-c)^2 (c-a)^2.$$

AMM

62. [Titu Vàreescu, Mircea Lascu] Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz = 1 và $\alpha \ge 1$. Chứng minh rằng

$$\frac{x^{\alpha}}{y+z} + \frac{y^{\alpha}}{z+x} + \frac{z^{\alpha}}{x+y} \ge \frac{3}{2}.$$

63. Cho $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in \mathbb{R}$ thỏa mãn điều kiện $x_1^2 + x_2^2 + ... + x_n^2 = y_1^2 + y_2^2 + ... + y_n^2 = 1$. Chứng minh rằng

$$(x_1y_2 - x_2y_1)^2 \le 2\left(1 - \sum_{i=1}^n x_iy_i\right).$$

Korea, 2001

64. [Laurentiu Panaitopol] Cho $a_1, a_2, ..., a_n$ là các số nguyên dương khác nhau từng đôi một. Chứng minh rằng

$$a_1^2 + a_2^2 + \dots + a_n^2 \ge \frac{2n+1}{3} (a_1 + a_2 + \dots + a_n).$$

TST Romania

65. [Călin Popa] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{b\sqrt{c}}{a\left(\sqrt{3c}+\sqrt{ab}\right)} + \frac{c\sqrt{a}}{b\left(\sqrt{3a}+\sqrt{bc}\right)} + \frac{a\sqrt{b}}{c\left(\sqrt{3b}+\sqrt{ca}\right)} \ge \frac{3\sqrt{3}}{4}.$$

66. [Titu Vàreescu, Gabriel Dospinescu] Cho a,b,c,d là các số thực thỏa mãn điều kiện $(1+a^2)(1+b^2)(1+c^2)(1+d^2)=16$. Chứng minh rằng

$$-3 \le ab + bc + cd + da + ac + bd - abcd \le 5.$$

67. Cho a,b,c là các số thực dương. Chứng minh rằng

$$(a^2+2)(b^2+2)(c^2+2) \ge 9(ab+bc+ca).$$

APMO, 2004

68. [Vasile Cirtoale] Cho x, y, z là các số thực thỏa mãn các điều kiện $0 < x \le y \le z$, x + y + z = xyz + 2. Chứng minh rằng

a)
$$(1-xy)(1-yz)(1-zx) \ge 0$$
,

b)
$$x^2y \le 1, x^3y^2 \le \frac{32}{27}$$
.

69. [Titu Vàreescu] Cho a,b,c là các số thực dương thỏa mãn điều kiện $a+b+c \ge abc$. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau đây là đúng

$$\frac{2}{a} + \frac{3}{b} + \frac{6}{c} \ge 6, \frac{2}{b} + \frac{3}{c} + \frac{6}{a} \ge 6, \frac{2}{c} + \frac{3}{a} + \frac{6}{b} \ge 6.$$

TST 2001, USA

70. [Gabriel Dospinescu, Marian Tetiva] Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = xyz. Chứng minh rằng

$$(x-1)(y-1)(z-1) \le 6\sqrt{3}-10$$
.

71. [Marian Tetiva] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\left| \frac{a^3 - b^3}{a + b} + \frac{b^3 - c^3}{b + c} + \frac{c^3 - a^3}{c + a} \right| \le \frac{(a - b)^2 + (b - c)^2 + (c - a)^2}{4}.$$

Moldova TST, 2004

72. [Titu Vàreescu] Cho a,b,c là các số thực dương. Chứng minh rằng

$$(a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3) \ge (a+b+c)^3$$
.

USAMO, 2004

73. [Gabriel Dospinescu] Cho $x_1, x_2, ..., x_n > 0, n > 2$ thỏa mãn điều kiện

$$\left(\sum_{k=1}^{n} x_{k}\right) \left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right) = n^{2} + 1.$$

Chứng minh rằng

$$\left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} \frac{1}{x_k^2}\right) > n^2 + 4 + \frac{2}{n(n-1)}.$$

74. [Gabriel Dospinescu, Mircea Lascu, Marian Tetiva] Cho a,b,c là các số thực dương. Chứng minh rằng

$$a^{2}+b^{2}+c^{2}+2abc+3 \ge (1+a)(1+b)(1+c)$$
.

75. [Titu Vàreescu, Zuming Feng] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{\left(2a+b+c\right)^{2}}{2a^{2}+\left(b+c\right)^{2}}+\frac{\left(2b+a+c\right)^{2}}{2b^{2}+\left(a+c\right)^{2}}+\frac{\left(2c+b+c\right)^{2}}{2c^{2}+\left(a+b\right)^{2}}\leq 8.$$

USAMO, 2003

76. Cho x, y là các số thực dương và m, n là các số nguyên dương. Chứng minh rằng

$$(n-1)(m-1)(x^{m+n}+y^{m+n})+(m+n-1)(x^my^n+x^ny^m) \ge mn(x^{m+n-1}y+y^{m+n-1}x).$$

Austrian - Polish Competition, 1995

77. Cho a,b,c,d,e là các số thực dương thỏa mãn điều kiện abcde = 1. Chứng minh rằng

$$\frac{a+abc}{1+ab+abcd} + \frac{b+bcd}{1+bc+bcde} + \frac{c+cde}{1+cd+cdea} + \frac{d+dea}{1+de+deab} + \frac{e+eab}{1+ea+eabc} \ge \frac{10}{3} \,.$$

Crux Mathematicorum

78. [Titu Vàreescu] Cho $a,b,c \in \left(0,\frac{\pi}{2}\right)$. Chứng minh rằng

$$\frac{\sin a.\sin(a-b).\sin(a-c)}{\sin(b+c)} + \frac{\sin b.\sin(b-c).\sin(b-a)}{\sin(c+a)} + \frac{\sin c.\sin(c-a).\sin(c-b)}{\sin(a+b)} \ge 0.$$

TST 2003, USA

79. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sqrt{a^4 + b^4 + c^4} + \sqrt{a^2b^2 + b^2c^2 + c^2a^2} \ge \sqrt{a^3b + b^3c + c^3a} + \sqrt{ab^3 + bc^3 + ca^3}.$$

KMO Summer Program Test, 2001

80. [Gabriel Dospinescu, Mircea Lascu] Cho $a_1,a_2,...,a_n>0,n>2$ thỏa mãn điều kiện $a_1a_2...a_n=1$. Hãy tìm hằng số k_n nhỏ nhất sao cho

$$\frac{a_1a_2}{\left(a_1^2+a_2\right)\!\left(a_2^2+a_1\right)}+\frac{a_2a_3}{\left(a_2^2+a_3\right)\!\left(a_3^2+a_2\right)}+\ldots+\frac{a_na_1}{\left(a_n^2+a_1\right)\!\left(a_1^2+a_n\right)}\leq k_n\,.$$

81. [Vasile Cirtoaje] Cho a,b,c,x,y,z là các số thực dương. Chứng minh rằng

$$ax + by + cz + \sqrt{(a^2 + b^2 + c^2)(x^2 + y^2 + z^2)} \ge \frac{2}{3}(a + b + c)(x + y + z).$$

Kvant, 1989

82. [Vasile Cirtoaje] Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng

$$3\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} - 1\right) \ge 2\left(\frac{b}{a} + \frac{c}{b} + \frac{a}{c}\right).$$

83. [Walther Janous] Cho $x_1, x_2, ..., x_n > 0, n > 2$ thỏa mãn điều kiện $x_1 + x_2 + ... + x_n = 1$. Chứng minh rằng

$$\prod_{i=1}^{n} \left(1 + \frac{1}{x_i}\right) \ge \prod_{i=1}^{n} \left(\frac{n - x_i}{1 - x_i}\right).$$

Crux Mathematicorum

84. [Vasile Cirtoaje, Gheoghe Eckstein] Cho $x_1, x_2, ..., x_n$ là các số thực dương thỏa mãn điều kiện $x_1x_2...x_n = 1$. Chứng minh rằng

$$\frac{1}{n-1+x_1} + \frac{1}{n-1+x_2} + \dots + \frac{1}{n-1+x_n} \le 1.$$

TST 1999, Romania

85. [Titu Vàreescu] Cho a,b,c là các số thực không âm thỏa điều kiện $a^2+b^2+c^2+abc=4$. Chứng minh rằng

$$0 \le ab + bc + ca - abc \le 2$$
.

USAMO, 2001

86. [Titu Vàreescu] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a+b+c}{3} - \sqrt[3]{abc} \le \max\left\{ \left(\sqrt{a} - \sqrt{b}\right)^2, \left(\sqrt{b} - \sqrt{c}\right)^2, \left(\sqrt{c} - \sqrt{a}\right)^2 \right\}.$$

TST 2000, USA

87. [Kiran Kedlaya] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a+\sqrt{ab}+\sqrt[3]{abc}}{3} \leq \sqrt[3]{a.\frac{a+b}{2}.\frac{a+b+c}{3}}.$$

88. Tìm hằng số k lớn nhất sao cho với bất kì số nguyên dương n không chính phương, ta có

$$\left|\left(1+\sqrt{n}\right)\sin\left(\pi\sqrt{n}\right)\right|>k$$
.

Vietnamese IMO Training Camp, 1995

89. [Trần Nam Dũng] Cho x, y, z là các số thực dương thỏa điều kiện $(x + y + z)^3 = 32xyz$. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

$$\frac{x^4 + y^4 + z^4}{(x + y + z)^4}.$$

Vietnam, 2004

90. [George Tsintifas] Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$(a+b)^3(b+c)^3(c+d)^3(d+a)^3 \ge 16a^2b^2c^2d^2(a+b+c+d)^4$$
.

Crux Mathematicorum

91. [Titu Vàreescu, Gabriel Dospinescu] Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=1 và n là số nguyên dương. Tìm giá trị lớn nhất của biểu thức

$$\frac{\left(ab\right)^{n}}{1-ab}+\frac{\left(bc\right)^{n}}{1-bc}+\frac{\left(ca\right)^{n}}{1-ca}.$$

92. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{1}{a(1+b)} + \frac{1}{b(1+c)} + \frac{1}{c(1+a)} \ge \frac{3}{\sqrt[3]{abc}(1+\sqrt[3]{abc})}.$$

93. [Trần Nam Đũng] Cho a,b,c là các số thực dương thỏa mãn điều kiện $a^2+b^2+c^2=9$. Chứng minh rằng

$$2(a+b+c)-abc \le 10.$$

Vietnam, 2002

94. [Vasile Cirtoaje] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\left(a + \frac{1}{b} - 1\right)\left(b + \frac{1}{c} - 1\right) + \left(b + \frac{1}{c} - 1\right)\left(c + \frac{1}{a} - 1\right) + \left(c + \frac{1}{a} - 1\right)\left(a + \frac{1}{b} - 1\right) \ge 3.$$

95. [Gabriel Dospinescu] Cho n là số nguyên lớn hơn 2. Tìm số thực lớn nhất m_n và số thực nhỏ nhất M_n sao cho với các số thực dương bất kì $x_1, x_2, ..., x_n$ (xem $x_n = x_0, x_{n+1} = x_1$), ta có

$$m_n \leq \sum_{i=1}^n \frac{x_i}{x_{i-1} + 2(n-1)x_i + x_{i+1}} \leq M_n.$$

96. [Vasile Cirtoaje] Cho x, y, z là các số thực dương. Chứng minh rằng

$$\frac{1}{x^2 + xy + y^2} + \frac{1}{y^2 + yz + z^2} + \frac{1}{z^2 + zx + x^2} \ge \frac{9}{(x + y + z)^2}.$$

Gazeta Matematică

97. [Vasile Cirtoaje] Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$2(a^3+1)(b^3+1)(c^3+1)(d^3+1) \ge (1+abcd)(1+a^2)(1+b^2)(1+c^2)(1+d^2).$$

Gazeta Matematică

98. Cho a,b,c là các số thực dương. Chứng minh rằng

$$(a+b)^4 + (b+c)^4 + (c+a)^4 \ge \frac{4}{7}(a^4+b^4+c^4).$$

Vietnam TST, 1996

99. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\frac{1}{1+a+b} + \frac{1}{1+b+c} + \frac{1}{1+c+a} \le \frac{1}{2+a} + \frac{1}{2+b} + \frac{1}{2+c}$$
.

Bulgaria, 1997

100. [Trần Nam Dũng] Cho a,b,c là các số thực dương thỏa $21ab + 2bc + 8ca \le 12$. Tìm giá trị nhỏ nhất của biểu thức

$$\frac{1}{a} + \frac{2}{b} + \frac{3}{c}$$
.

Vietnam, 2001

101. [Titu Vàreescu, Gabriel Dospinescu] Cho a,b,c,x,y,z là các số thực dương thỏa mãn điều kiện xy + yz + zx = 3. Chứng minh rằng

$$\frac{a}{b+c}(y+z) + \frac{b}{c+a}(z+x) + \frac{c}{a+b}(x+y) \ge 3.$$

102. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{\left(b+c-a\right)^{2}}{\left(b+c\right)^{2}+a^{2}}+\frac{\left(c+a-b\right)^{2}}{\left(c+a\right)^{2}+b^{2}}+\frac{\left(a+b-c\right)^{2}}{\left(a+b\right)^{2}+c^{2}}\geq\frac{3}{5}.$$

Ianan, 1997

103. [Vasile Cirtoaje, Gabriel Dospinescu] Cho $a_1, a_2, ..., a_n \ge 0, a_n = \min\{a_1, a_2, ..., a_n\}$. Chứng minh rằng

$$a_1^n + a_2^n + \dots + a_n^n - na_1a_2\dots a_n \ge (n-1)\left(\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} - a_n\right)^n$$
.

104. [Turkervici] Cho x, y, z, t là các số thực dương. Chứng minh rằng

$$x^4 + y^4 + z^4 + t^4 + 2xyzt \ge x^2y^2 + y^2z^2 + z^2t^2 + x^2z^2 + y^2t^2$$
.

Kvant

105. Cho $a_1, a_2, ..., a_n$ là các số thực dương. Chứng minh rằng

$$\left(\sum_{i=1}^n a_i\right)^2 \leq \sum_{i,j=1}^n \frac{ij}{i+j-1} a_i a_j.$$

106. Cho $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n \in (1001, 2002)$ sao cho $a_1^2 + a_2^2 + ... + a_n^2 = b_1^2 + b_2^2 + ... + b_n^2$. Chứng minh rằng

$$\frac{a_1^3}{b_1} + \frac{a_2^3}{b_2} + \dots + \frac{a_n^3}{b_n} \le \frac{17}{10} \left(a_1^2 + a_2^2 + \dots + a_n^2 \right).$$

TST Singapore

107. [Titu Vàreescu, Gabriel Dospinescu] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$(a^2+b^2)(b^2+c^2)(c^2+a^2) \ge 8(a^2b^2+b^2c^2+c^2a^2)^2$$
.

108. [Vasile Cirtoaje] Cho a,b,c,d là các số thực dương thỏa mãn điều kiện abcd=1. Chứng minh rằng

$$\frac{1}{\left(1+a\right)^{2}} + \frac{1}{\left(1+b\right)^{2}} + \frac{1}{\left(1+c\right)^{2}} + \frac{1}{\left(1+d\right)^{2}} \ge 1.$$

Gazeta Matematică

109. [Vasile Cirtoaje] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^2}{b^2+c^2} + \frac{b^2}{c^2+a^2} + \frac{c^2}{a^2+b^2} \ge \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}.$$

Gazeta Matematică

110. [Gabriel Dospinescu] Cho n số thực $a_1, a_2, ..., a_n$. Chứng minh rằng

$$\left(\sum_{i\in\mathbb{N}^*} a_i\right)^2 \leq \sum_{1\leq i\leq j\leq n} \left(a_i + \ldots + a_j\right)^2.$$

TST 2004, Romania

111. [Trần Nam Đũng] Cho $x_1,x_2,...,x_n\in[-1,1]$ thỏa mãn điều kiện $x_1^3+x_2^3+...+x_n^3=0$. Tìm giá trị lớn nhất của biểu thức

$$x_1 + x_2 + ... + x_n$$
.

112. [Gabriel Dospinescu, Călin Popa] Cho n số thực $a_1,a_2,...,a_n,n\geq 2$ thỏa mãn điều kiện $a_1a_2...a_n=1$. Chứng minh rằng

$$a_1^2 + a_2^2 + ... + a_n^2 - n \ge \frac{2n}{n-1} \sqrt[n]{n-1} (a_1 + a_2 + ... + a_n - n).$$

113. [Vasile Cirtoaje] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sqrt{\frac{2a}{a+b}} + \sqrt{\frac{2b}{b+c}} + \sqrt{\frac{2c}{c+a}} \le 3.$$

Gazeta Matematică

114. Cho x, y, z là các số thực dương. Chứng minh rằng

$$(xy + yz + zx) \left[\frac{1}{(x+y)^2} + \frac{1}{(y+z)^2} + \frac{1}{(z+x)^2} \right] \ge \frac{9}{4}.$$

Iran, 1996

115. [Cao Minh Quang] Cho $x_1, x_2, ..., x_n$ là các số thực dương thỏa mãn điều kiện

$$\prod_{i=1}^n (3x_i+1) \leq 2^n.$$

Chứng minh rằng

$$\sum_{i=1}^{n} \frac{1}{6x_i + 1} \ge \frac{n}{3}.$$

116. [Suranyi] Cho $a_1, a_2, ..., a_n$ là các số thực dương. Chứng minh rằng

$$(n-1)(a_1^n+a_2^n+\ldots+a_n^n)+na_1a_2\ldots a_n\geq (a_1+a_2+\ldots+a_n)(a_1^{n-1}+a_2^{n-1}+\ldots+a_n^{n-1}).$$

Miklos Schweitzer Competition

117. [Gabriel Dospinescu] Cho $x_1, x_2, ..., x_n > 0$ thỏa mãn điều kiện $x_1 x_2 ... x_n = 1$. Chứng minh rằng

$$\sum_{1 \le i \le j \le n} (x_i - x_j)^2 \ge \sum_{i=1}^n x_i^2 - n.$$

A generazation of Tukervici's Inequality

118. [Vasile Cirtoaje] Cho $a_1,a_2,...,a_n<\frac{1}{n-1}$ và $a_1+a_2+...+a_n=1,n>2$. Tìm giá trị nhỏ nhất của biểu thức

$$\sum_{i=1}^{n} \sqrt{\frac{a_1 a_2 ... a_n}{1 - (n-1) a_i}}.$$

119. [Vasile Cirtoaje] Cho $a_1, a_2, ..., a_n \in [0,1]$ thỏa mãn điều kiện

$$a = \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} \ge \frac{\sqrt{3}}{3}$$
.

Chứng minh rằng

$$\frac{a_1}{1-a_1^2} + \frac{a_2}{1-a_2^2} + \dots + \frac{a_n}{1-a_n^2} \ge \frac{na}{1-a^2}.$$

120. [Vasile Cirtoaje, Mircea Lascu] Cho a,b,c,x,y,z là các số thực dương thỏa mãn điều kiên

$$(a+b+c)(x+y+z) = (a^2+b^2+c^2)(x^2+y^2+z^2) = 4.$$

Chứng minh rằng

$$abcxyz < \frac{1}{36}$$
.

121. [Gabriel Dospinescu] Cho $x_1, x_2, ..., x_n > 0, n > 2$ thỏa mãn điều kiện $x_1x_2...x_n = 1$. Tìm hằng số k_n nhỏ nhất sao cho

$$\frac{1}{\sqrt{1+k_n x_1}} + \frac{1}{\sqrt{1+k_n x_2}} + \dots + \frac{1}{\sqrt{1+k_n x_n}} \le n - 1.$$

Mathlinks Contest

122. [Vasile Cirtoaje, Gabriel Dospinescu] Cho $x_1, x_2, ..., x_n > 0, n > 2$ thỏa mãn điều kiện $x_1^2 + x_2^2 + ... + x_n^2 = 1$. Tìm hằng số k_n lớn nhất sao cho

$$(1-x_1)(1-x_2)...(1-x_n) \ge k_n x_1 x_2...x_n$$

123. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}.$$

IMO, 1995

124. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\frac{ab}{a^5 + b^5 + ab} + \frac{bc}{b^5 + c^5 + bc} + \frac{ca}{c^5 + a^5 + ca} \le 1.$$

IMO Shortlist, 1996

125. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\frac{1+ab^2}{c^3} + \frac{1+bc^2}{a^3} + \frac{1+ca^2}{b^3} \ge \frac{18}{a^3+b^3+c^3}.$$

Hong Kong, 2000

126. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\frac{1}{(a+1)^2+b^2+1} + \frac{1}{(b+1)^2+c^2+1} + \frac{1}{(c+1)^2+a^2+1} \le \frac{1}{2}.$$

127. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

$$\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \le 1.$$

IMO, 2000

128. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\frac{a^3}{(1+b)(1+c)} + \frac{b^3}{(1+a)(1+c)} + \frac{c^3}{(1+a)(1+b)} \ge \frac{3}{4}.$$

IMO Shortlist, 1998

129. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{ab}{1+c} + \frac{bc}{1+a} + \frac{ca}{1+b} \le \frac{1}{4}$$
.

130. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$a^2 + b^2 + c^2 + 2\sqrt{3abc} \le 1.$$

Poland, 1999

131. Cho a,b,c là các số thực dương thỏa mãn điều kiện $a^2 + b^2 + c^2 = 1$. Chứng minh rằng

$$a+b+c+\frac{1}{abc} \ge 4\sqrt{3}$$
.

Macedonia, 1999

132. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\sqrt{ab+c} + \sqrt{bc+a} + \sqrt{ca+b} \ge 1 + \sqrt{ab} + \sqrt{bc} + \sqrt{ca}$$
.

133. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$(1+a)(1+b)(1+c) \ge 8(1-a)(1-b)(1-c)$$
.

Russia, 1991

134. Cho a,b là các số thực dương thỏa mãn điều kiện a+b=1. Chứng minh rằng

$$\frac{a^2}{a+1} + \frac{b^2}{b+1} \ge \frac{1}{3}$$
.

Hungary, 1996

135. Cho các số thực x, y. Chứng minh rằng

$$3(x+y+1)^2+1 \ge 3xy$$
.

Columbia, 2001

136. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sqrt[3]{2(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)} \ge \sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{a}}$$
.

Czech and Slovakia, 2000

137. Cho $a,b,c \ge 1$. Chứng minh rằng

$$\sqrt{a-1} + \sqrt{b-1} + \sqrt{c-1} \le \sqrt{c(ab+1)}.$$

Hong Kong, 1998

138. Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = xyz. Chứng minh rằng

$$\frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{1+y^2}} + \frac{1}{\sqrt{1+z^2}} \le \frac{3}{2}.$$

Korea, 1998

139. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \ge 1.$$

IMO, 2001

140. Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$\frac{a}{b+2c+3d} + \frac{b}{c+2d+3a} + \frac{c}{d+a+3b} + \frac{d}{a+2b+3c} \ge \frac{2}{3}$$
.

IMO Shortlist, 1993

141. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện ab+bc+cd+da=1. Chứng minh rằng

$$\frac{a^3}{b+c+d} + \frac{b^3}{c+d+a} + \frac{c^3}{d+a+b} + \frac{d^3}{a+b+c} \ge \frac{1}{3}.$$

IMO Shortlist, 1990

142. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^2}{a^2 + 2bc} + \frac{b^2}{b^2 + 2ca} + \frac{c^2}{c^2 + 2ab} \ge 1 \ge \frac{bc}{a^2 + 2bc} + \frac{ca}{b^2 + 2ca} + \frac{ab}{c^2 + 2ab}.$$

Romania, 1997

143. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab} \ge a + b + c.$$

Canada, 2002

144. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{1}{a^3 + b^3 + abc} + \frac{1}{b^3 + c^3 + abc} + \frac{1}{c^3 + a^3 + abc} \le \frac{1}{abc}.$$

USA, 1997

145. Cho a,b,c là các số thực dương thỏa mãn điều kiện $a^2 + b^2 + c^2 = 3$. Chứng minh rằng

$$\frac{1}{1+ab} + \frac{1}{1+bc} + \frac{1}{1+ca} \ge \frac{3}{2}$$
.

Belarus, 1999

146. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge \frac{a+b}{b+c} + \frac{b+c}{a+b} + 1.$$

Belarus, 1998

147. Cho $a,b,c \ge -\frac{3}{4}, a+b+c=1$. Chứng minh rằng

$$\frac{a}{a^2+1} + \frac{b}{b^2+1} + \frac{c}{c^2+1} \le \frac{9}{10}.$$

Poland. 1996

148. Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz = 1. Chứng minh rằng

$$\frac{x^9 + y^9}{x^6 + x^3 y^3 + y^6} + \frac{y^9 + z^9}{y^6 + y^3 z^3 + z^6} + \frac{z^9 + x^9}{z^6 + z^3 z^3 + x^6} \ge 2.$$

Roamania, 1997

149. Cho $x \ge y \ge z > 0$. Chứng minh rằng

$$\frac{x^2y}{z} + \frac{y^2z}{x} + \frac{z^2x}{y} \ge x^2 + y^2 + z^2.$$

Vietnam, 1991

150. Cho $a \ge b \ge c > 0$. Chứng minh rằng

$$\frac{a^2 - b^2}{c} + \frac{c^2 - b^2}{a} + \frac{a^2 - c^2}{b} \ge 3a - 4b + c.$$

Ukraine, 1992

151. Cho x, y, z là các số thực dương. Chứng minh rằng

$$\frac{xyz(x+y+z+\sqrt{x^2+y^2+z^2})}{(x^2+y^2+z^2)(xy+yz+zx)} \le \frac{3+\sqrt{3}}{9}.$$

Hong Kong, 1997

152. Cho $a_1, a_2, ..., a_n > 0$ và $a_1 + a_2 + ... + a_n < 1$. Chứng minh rằng

$$\frac{a_1 a_2 ... a_n (1 - a_1 - a_2 - ... - a_n)}{(a_1 + a_2 + ... + a_n)(1 - a_1)(1 - a_2) ... (1 - a_n)} \le \frac{1}{n^{n+1}}.$$

IMO Shortlist, 1998

153. Cho hai số thực a,b, $a \ne 0$. Chứng minh rằng

$$a^2 + b^2 + \frac{1}{a^2} + \frac{b}{a} \ge \sqrt{3}$$
.

Austria, 2000

154. Cho $a_1, a_2, ..., a_n > 0$. Chứng minh rằng

$$\frac{a_1^2}{a_2} + \frac{a_2^2}{a_3} + \dots + \frac{a_{n-1}^2}{a_n} + \frac{a_n^2}{a_1} \ge a_1 + a_2 + \dots + a_n.$$

China, 1984

155. Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz = 1. Chứng minh rằng

$$x^{2} + y^{2} + z^{2} + x + y + z \ge 2(xy + yz + zx).$$

Russia, 2000

156. Cho x, y, z là các số thực dương thỏa mãn điều kiện $xyz \ge xy + yz + zx$. Chứng minh rằng

$$xyz \ge 3(x+y+z).$$

India, 2001

157. Cho x, y, z > 1 và $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2$. Chứng minh rằng

$$\sqrt{x+y+z} \ge \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}$$
.

IMO, 1992

158. Cho a,b,c là các số thực dương thỏa mãn điều kiện ab+bc+ca=1. Chứng minh rằng

$$\sqrt[3]{\frac{1}{a}+6b}+\sqrt[3]{\frac{1}{b}+6c}+\sqrt[3]{\frac{1}{c}+6a} \leq \frac{1}{abc}$$
.

IMO Shortlist, 2004

159. Cho $x \ge 2$, $y \ge 2$, $z \ge 2$. Chứng minh rằng

$$(x^3 + y)(y^3 + z)(z^3 + x) \ge 125xyz$$
.

Saint Petersburg, 1997

160. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện $c^2+d^2=\left(a^2+b^2\right)^3$. Chứng minh rằng

$$\frac{a^3}{c} + \frac{b^3}{d} \ge 1.$$

Singapore, 2000

161. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{b+2c} + \frac{b}{c+2a} + \frac{c}{a+2b} \ge 1.$$

Czech - Slovak Match, 1999

162. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{ab}{c(c+a)} + \frac{bc}{a(a+b)} + \frac{ca}{b(b+c)} \ge \frac{a}{c+a} + \frac{b}{b+a} + \frac{c}{c+b}.$$

Moldova, 1999

163. Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$\frac{a+c}{a+b} + \frac{b+d}{b+c} + \frac{c+a}{c+d} + \frac{d+b}{d+a} \ge 4.$$

Baltic way, 1995

164. Cho x, y, u, v là các số thực dương. Chứng minh rằng

$$\frac{xy + xu + uy + uv}{x + y + u + v} \ge \frac{xy}{x + y} + \frac{uv}{u + v}.$$

Poland, 1993

165. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right) \ge 2\left(1+\frac{a+b+c}{\sqrt[3]{abc}}\right).$$

APMO, 1998

166. Cho x, y, z là các số thực không âm thỏa mãn điều kiện x+y+z=1. Chứng minh rằng

$$x^2y + y^2z + z^2x \le \frac{4}{27}$$
.

Canada, 1999

167. Cho a,b,c,d,e,f là các số thực dương thỏa mãn điều kiện

$$a+b+c+d+e+f=1, ace+bdf \ge \frac{1}{108}.$$

Chứng minh rằng

$$abc + bcd + cde + def + efa + fab \le \frac{1}{36}$$
.

Poland, 1998

168. Cho $a,b,c \in [0,1]$. Chứng minh rằng

$$a^2 + b^2 + c^2 \le a^2b + b^2c + c^2a + 1$$
.

Italy, 1993

169. Cho $a,b,c \ge 0, a+b+c \ge abc$. Chứng minh rằng

$$a^2 + b^2 + c^2 > abc$$
.

Ireland, 1997

170. Cho $a,b,c \ge 0, a+b+c \ge abc$. Chứng minh rằng

$$a^2 + b^2 + c^2 \ge \sqrt{3}abc$$
.

BMO, 2001

171. Cho x, y, z là các số thực dương thỏa mãn điều kiện $x+y+z=\sqrt{xyz}$. Chứng minh rằng

$$xy + yz + zx \ge 9(x + y + z).$$

Belarus, 1996

172. Cho x_1, x_2, x_3, x_4 là các số thực dương thỏa mãn điều kiện $x_1x_2x_3x_4 = 1$. Chứng minh rằng

$$x_1^3 + x_2^3 + x_3^3 + x_4^3 \ge \max \left\{ x_1 + x_2 + x_3 + x_4, \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} \right\}.$$

Iran, 1997

173. Cho a,b,c,x,y,z là các số thực dương. Chứng minh rằng

$$\frac{a^{3}}{x} + \frac{b^{3}}{y} + \frac{c^{3}}{z} \ge \frac{(a+b+c)^{3}}{3(x+y+z)}.$$

Belarus TST, 2000

174. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện

$$\frac{1}{1+a^4} + \frac{1}{1+b^4} + \frac{1}{1+c^4} + \frac{1}{1+d^4} = 1.$$

Chứng minh rằng

$$abcd > 3$$
.

Latvia, 2002

175. Cho x, y, z > 1. Chứng minh rằng

$$x^{x^2+2yz}y^{y^2+2zx}z^{z^2+2xy} \ge (xyz)^{xy+yz+zx}$$
.

Proposed for 1999 USAMO

176. Cho $c \ge b \ge a \ge 0$. Chứng minh rằng

$$(a+3b)(b+4c)(c+2a) \ge 60abc$$
.

Turkey, 1999

177. Cho x, y, z là các số thực dương. Chứng minh rằng

$$x^2 + y^2 + z^2 \ge \sqrt{2}(xy + yz).$$

Macedonia, 2000

178. Cho các số thực a,b,c thỏa mãn điều kiện $a^2 + b^2 + c^2 = 1$. Chứng minh rằng

$$\frac{a^2}{1+2bc} + \frac{b^2}{1+2ca} + \frac{c^2}{1+2ab} \ge \frac{3}{5}.$$

Bosnia and Hercegovina, 2002

179. Cho a,b,c là các số thực dương thỏa mãn điều kiện $abc \ge 1$. Chứng minh rằng

$$\frac{1}{a+b^4+c^4} + \frac{1}{a^4+b+c^4} + \frac{1}{a^4+b^4+c} \le 1.$$

Korea, 1999

180. Cho a > b > c > 0, x > y > z > 0. Chứng minh rằng

$$\frac{a^2x^2}{(by+cz)(bz+cy)} + \frac{b^2y^2}{(cz+ax)(cx+az)} + \frac{c^2z^2}{(ax+by)(ay+bx)} \ge \frac{3}{4}.$$

Korea, 2000

181. Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Chứng minh rằng

$$\frac{a}{b^2+1} + \frac{b}{c^2+1} + \frac{c}{a^2+1} \ge \frac{3}{2}.$$

Mediterranean, 2003

182. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{2a+b} + \frac{b}{2b+c} + \frac{c}{2c+a} \le 1.$$

Moldova, 2002

183. Cho $\alpha, \beta, x_1, x_2, ..., x_n > 0, x_1 + x_2 + ... + x_n = 1$. Chứng minh rằng

$$\frac{x_1^3}{\alpha x_1 + \beta x_2} + \frac{x_2^3}{\alpha x_2 + \beta x_3} + \dots + \frac{x_n^3}{\alpha x_n + \beta x_1} \ge \frac{1}{n(\alpha + \beta)}.$$

Moldova TST, 2002

184. Cho *a* là một số thực dương, $x_1, x_2, ..., x_n > 0, x_1 + x_2 + ... + x_n = 1$. Chứng minh rằng

$$\frac{a^{x_1-x_2}}{x_1+x_2} + \frac{a^{x_2-x_3}}{x_2+x_3} + \dots + \frac{a^{x_n-x_1}}{x_n+x_1} \ge \frac{n^2}{2}.$$

Serbia, 1998

185. Cho $x, y \in [0,1]$. Chứng minh rằng

$$\frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{1+y^2}} \le \frac{2}{\sqrt{1+xy}}$$
.

Russia, 2000

186. Cho
$$x, y, z > 0, xyz = 1, \frac{1}{x} + \frac{1}{y} + \frac{1}{z} > x + y + z, k \in N^*$$
. Chứng minh rằng
$$\frac{1}{x^k} + \frac{1}{y^k} + \frac{1}{z^k} > x^k + y^k + z^k.$$

Russia, 1999

187. Cho $x_n \ge x_{n-1} \ge x_{n-2} \ge ... \ge x_1 > 0, n \ge 3$. Chứng minh rằng

$$\frac{x_n x_1}{x_2} + \frac{x_1 x_2}{x_3} + \dots + \frac{x_{n-1} x_n}{x_1} \ge x_1 + x_2 + \dots + x_n.$$

Saint Petersburg, 2000

188. Cho $x_1, ..., x_6 \in [0,1]$. Chứng minh rằng

$$\frac{x_1^3}{x_2^5 + x_3^5 + \dots + x_6^5 + 5} + \frac{x_2^3}{x_3^5 + x_4^5 + \dots + x_1^5 + 5} + \dots + \frac{x_6^3}{x_1^5 + x_2^5 + \dots + x_5^5 + 5} \le \frac{3}{5}.$$

Ukraine, 1999

189. Cho $a_1, a_2, ..., a_n > 0$. Chứng minh rằng

$$(a_1^3+1)(a_2^3+1)...(a_n^3+1) \ge (a_1^2a_2+1)(a_2^2a_3+1)...(a_n^2a_1+1).$$

Czech - Slovak - Polish Match 2001

190. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$a.\sqrt[3]{1+b-c} + b.\sqrt[3]{1+c-a} + c.\sqrt[3]{1+a-b} < 1.$$

Japan, 2005

191. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right)^2 \ge \left(a + b + c\right)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

Iran, 2005

192. Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$\frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} + \frac{1}{d^3} \ge \frac{a+b+c+d}{abcd}$$
.

Austria, 2005

193. Cho $a,b,c \in [0,1]$. Chứng minh rằng

$$\frac{a}{bc+1} + \frac{b}{ca+1} + \frac{c}{ab+1} \le 2.$$

Poland, 2005

194. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$a\sqrt{b} + b\sqrt{c} + c\sqrt{a} \le \frac{1}{\sqrt{3}}$$
.

Bosnia and Hercegovina, 2005

195. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$2\left(\frac{b}{a} + \frac{c}{b} + \frac{a}{c}\right) \ge \frac{1+a}{1-a} + \frac{1+b}{1-b} + \frac{1+c}{1-c}.$$

Germany, 2005

196. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \ge a + b + c + \frac{4(a-b)^2}{a+b+c}$$
.

Balkan, 2005

197. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=8. Chứng minh rằng

$$\frac{a^2}{\sqrt{\left(a^3+1\right)\left(b^3+1\right)}} + \frac{b^2}{\sqrt{\left(b^3+1\right)\left(c^3+1\right)}} + \frac{c^2}{\sqrt{\left(c^3+1\right)\left(a^3+1\right)}} \ge \frac{4}{3}.$$

APMO, 2005

198. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\frac{a}{a^2+2} + \frac{b}{b^2+2} + \frac{c}{c^2+2} \le 1.$$

Baltic way, 2005

199. Cho x, y, z là các số thực dương thỏa mãn điều kiện $xyz \ge 1$. Chứng minh rằng

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{y^5 + z^2 + x^2} + \frac{z^5 - z^2}{z^5 + x^2 + y^3} \ge 0.$$

IMO, 2005

200. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right) \ge \left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)$$

Belarusian, 2005

201. Cho a,b,c là các số thực dương thỏa mãn điều kiện $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$. Chứng minh rằng

$$(a-1)(b-1)(c-1) \ge 8$$

Croatia, 2005

202. Cho x là số thực dương. Chứng minh rằng

$$1+x^{n+1} \ge \frac{(2x)^n}{(1+x)^{n-1}}.$$

Russia, 2005

203. Cho a,b,c là các số thực dương thỏa mãn điều kiện $abc \ge 1$. Chứng minh rằng

$$\frac{1}{1+a+b} + \frac{1}{1+b+c} + \frac{1}{1+c+a} \le 1.$$

Romania, 2005

204. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\frac{a}{(a+1)(b+1)} + \frac{a}{(b+1)(c+1)} + \frac{a}{(c+1)(a+1)} \ge \frac{3}{4}.$$

Czech and Slovak, 2005

205. Cho a,b,c là các số thực không âm thỏa mãn điều kiện $ab+bc+ca=\frac{1}{3}$. Chứng minh rằng

$$\frac{1}{a^2 - bc + 1} + \frac{1}{b^2 - ca + 1} + \frac{1}{c^2 - ab + 1} \le 3.$$

China, 2005

206. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\sqrt{ab(1-c)} + \sqrt{bc(1-a)} + \sqrt{ca(1-b)} \le \sqrt{\frac{2}{3}}.$$

Republic of Srpska, 2005

207. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{\sqrt{b+c}} + \frac{b}{\sqrt{c+a}} + \frac{c}{\sqrt{a+b}} \ge \sqrt{\frac{3}{2}(a+b+c)}.$$

Serbia and Montenegro, 2005

208. Cho a,b,c là các số thực dương thỏa mãn điều kiện $a^4+b^4+c^4=3$. Chứng minh rằng

$$\frac{1}{4-ab} + \frac{1}{4-bc} + \frac{1}{4-ca} \le 1.$$

Moldova, 2005

209. Cho a,b,c là các số thực dương thỏa mãn điều kiện ab+bc+ca=1. Chứng minh rằng

$$3.\sqrt[3]{\frac{1}{abc} + 6(a+b+c)} \le \frac{\sqrt[3]{3}}{abc}.$$

Slovenia TST, 2005

210. Cho a,b,c là các số thực dương thỏa mãn điều kiện $a,b,c \ge 1$. Chứng minh rằng

$$(2+abc)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9.$$

211. [Huỳnh Tấn Châu] Cho x, y, z là các số thực dương thỏa mãn điều kiện

$$xy\sqrt{xy} + yz\sqrt{yz} + zx\sqrt{zx} = 1.$$

Chứng minh rằng

$$\frac{x^6}{x^3 + y^3} + \frac{y^6}{y^3 + z^3} + \frac{z^6}{z^3 + x^3} \ge \frac{1}{2}.$$

212. [Đặng Thanh Hải] Cho x là một số thực bất kì. Chứng minh rằng

$$\sin x + \sin 2x + \sin 3x < \frac{3\sqrt{3}}{2}.$$

213. [Ngô Văn Thái] Cho $x_1, x_2, ..., x_n > 0, n > 2$. Chứng minh rằng

$$\frac{x_1^2 + x_2 x_3}{x_1 \left(x_2 + x_3\right)} + \frac{x_2^2 + x_3 x_4}{x_2 \left(x_3 + x_4\right)} + \ldots + \frac{x_{n-1}^2 + x_n x_1}{x_{n-1} \left(x_n + x_1\right)} + \frac{x_n^2 + x_1 x_2}{x_n \left(x_1 + x_2\right)} \ge n.$$

214. [Nguyễn Duy Liên] Cho a,b,c là các số thực dương thỏa mãn điều kiện $a,b,c \in [1,2]$. Chứng minh rằng

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \le 10.$$

215. [Lê Thanh Hải] Cho a,b,c d là các số thực dương. Chứng minh rằng

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{d^2} + \frac{d^2}{a^2} \ge \frac{a+b+c+d}{\sqrt[4]{abcd}}.$$

216. Cho $x \in [0,2]$. Chứng minh rằng

$$\sqrt{4x-x^3} + \sqrt{x+x^3} \le 3\sqrt[4]{3}$$
.

217. Cho x là một số thực bất kì. Chứng minh rằng

$$\sqrt{2}\sin x + \sqrt{15 - 10\sqrt{2}\cos x} \le 6.$$

218. [Trần Văn Hạnh] Cho x, y, z là các số thực dương thỏa mãn điều kiện $x^2 + y^2 + z^2 = 1$, $n \ge 1$. Chứng minh rằng

$$\frac{x}{1-x^{2n}} + \frac{y}{1-y^{2n}} + \frac{z}{1-z^{2n}} \ge \frac{(2n+1)^{2n}\sqrt{2n+1}}{2n}.$$

219. [Kiều Phương Chi] Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

$$\frac{1}{a^2 + 2b^2 + 3} + \frac{1}{b^2 + 2c^2 + 3} + \frac{1}{c^2 + 2a^2 + 3} \le \frac{1}{2}.$$

220. [Vũ Đức Cảnh] Cho x, y là các số thực dương thỏa mãn điều kiện $x^2 + y^2 = 1$. Chứng minh rằng

$$(1+x)\left(1+\frac{1}{y}\right)+(1+y)\left(1+\frac{1}{x}\right) \ge 4+3\sqrt{2}$$
.

221. [Ngô Văn Thái] Cho $a,b,c \in (0,1]$. Chứng minh rằng

$$\frac{1}{a+b+c} \ge \frac{1}{3} + (1-a)(1-b)(1-c)$$
.

222. [Nguyễn Văn Thông] Cho x, y, z là các số thực dương thỏa mãn điều kiện

$$\frac{3x}{x+1} + \frac{4y}{y+1} + \frac{2z}{z+1} = 2.$$

Chứng minh rằng

$$x^3 y^4 z^2 \le \frac{1}{8^9} \,.$$

223. [Nguyễn Bá Nam] Cho a,b,c là các số thực dương. Chứng minh rằng

$$(a^3 + b^3 + c^3) \left(\frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) \ge \frac{3}{2} \left(\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \right).$$

224. Cho x là một số thực bất kì. Chứng minh rằng

$$(16\cos^4 x + 3)^4 + 768 \ge 2048\cos x.$$

225. [Lê Quốc Hán] Cho x là một số thực bất kì. Chứng minh rằng

$$\frac{1}{8} \le \frac{\left(1+x\right)^8 + 16x^4}{\left(1+x^2\right)^4} \le 17.$$

226. [Nguyễn Lê Dũng] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^2+b^2}{a+b} + \frac{b^2+c^2}{b+c} + \frac{c^2+a^2}{c+a} \le 3\frac{a^2+b^2+c^2}{a+b+c}.$$

227. [Trần Xuân Đáng] Cho a,b,c là các số thực dương, $n \ge 2$. Chứng minh rằng

$$\sqrt[n]{\frac{a}{b+c}} + \sqrt[n]{\frac{b}{c+a}} + \sqrt[n]{\frac{c}{a+b}} > \frac{n}{n-1} \sqrt[n]{n-1}$$
.

228. [Trịnh Bằng Giang] Cho x, y, z là các số thực không âm thỏa điều kiện x + y + z = 1, $n \ge 2$. Chứng minh rằng

$$x^{n}y + y^{n}z + z^{n}x \le \frac{n^{n}}{(n+1)^{n+1}}$$
.

229. [Nguyễn Văn Ngọc] Cho x, y, z là các số thực dương. Chứng minh rằng

$$16xyz(x+y+z) \le 3\sqrt[3]{(x+y)^4(y+z)^4(z+x)^4} .$$

230. [Nguyễn Bá Đang] Cho $x, y, z \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$. Chứng minh rằng

$$\left| \frac{\sin x - \sin y}{\sin z} + \frac{\sin y - \sin z}{\sin x} + \frac{\sin z - \sin x}{\sin y} \right| \le \left(1 - \frac{1}{\sqrt{2}} \right)^2.$$

231. [Thái Nhật Phượng] Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz = 1. Chứng minh rằng

$$\frac{x^2}{x+y+y^3z} + \frac{y^2}{y+z+z^3x} + \frac{z^2}{z+x+x^3y} \ge 3.$$

232. [Thái Nhật Phượng] Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz = 1. Chứng minh rằng

$$\frac{x^2y^2}{x^2y^2 + x^7 + y^7} + \frac{y^2z^2}{y^2z^2 + y^7 + z^7} + \frac{z^2x^2}{z^2x^2 + z^7 + x^7} \le 1.$$

233. [Trương Ngọc Đắc] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{a}{a+bc} + \frac{b}{b+ca} + \frac{\sqrt{abc}}{c+ab} \le 1 + \frac{3\sqrt{3}}{4}.$$

234. [Nguyễn Minh Phương] Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=2007 . Chứng minh rằng

$$\frac{x^{20}}{y^{11}} + \frac{y^{20}}{z^{11}} + \frac{z^{20}}{x^{11}} \ge 3.669^{9}.$$

235. [Phạm Thị Thanh Quỳnh] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{5b^3 - a^3}{ab + 3b^2} + \frac{5c^3 - b^3}{bc + 3c^2} + \frac{5a^3 - c^3}{ca + 3a^2} \le a + b + c.$$

236. [Lê Quang Nẫm] Cho x, y, z là các số thực thỏa mãn điều kiện $x, y, z \ge -1$ và $x^3 + y^3 + z^3 \ge x^2 + y^2 + z^2$. Chứng minh rằng

$$x^5 + y^5 + z^5 \ge x^2 + y^2 + z^2$$
.

237. [Nguyễn Đễ] Cho $\alpha, \beta, \gamma \in \mathbb{R}$, $|\sin \alpha + \sin \beta + \sin \gamma| \ge 2$. Chứng minh rằng

$$|\cos \alpha + \cos \beta + \cos \gamma| \le \sqrt{5}$$
.

238. [Huỳnh Tấn Châu] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=6. Chứng minh rằng

$$\sqrt{a^2 + \frac{1}{b+c}} + \sqrt{b^2 + \frac{1}{c+a}} + \sqrt{c^2 + \frac{1}{a+b}} \ge \frac{3\sqrt{17}}{2}$$
.

239. [Đỗ Thanh Hải] Cho x, y, z, t là các số thực dương thỏa mãn điều kiện xyzt = 1. Chứng minh rằng

$$\frac{1}{x^{3}(yz+zt+ty)} + \frac{1}{y^{3}(xz+zt+tx)} + \frac{1}{z^{3}(xt+ty+yx)} + \frac{1}{t^{3}(xy+yz+zx)} \ge \frac{4}{3}.$$

240. [Đỗ Bá Chủ] Cho $a_1, a_2, ..., a_k > 0, a_1 + a_2 + ... + a_k \ge k; k, n \ge 1$. Chứng minh rằng

$$\frac{a_1^n + a_2^n + \dots + a_k^n}{a_1^{n+1} + a_2^{n+1} + \dots + a_k^{n+1}} \le 1.$$

241. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc+a+c=b. Chứng minh rằng

$$\frac{2}{a^2+1} - \frac{2}{b^2+1} + \frac{3}{c^2+1} \le \frac{10}{3}.$$

Vietnam, 1999

242. [Đặng Thanh Hải] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} \ge 2 \left(\sqrt{\frac{c}{a+b}} + \sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{a+c}} \right).$$

243. Cho a,b,c là các số thực dương thỏa mãn điều kiện ab+bc+ca=1. Chứng minh rằng

$$a+b+c+abc \ge \frac{10\sqrt{3}}{9}.$$

244. [Phan Hoàng Vinh] Cho $a_1, a_2, ..., a_n \in [0,1], n \ge 2$. Chứng minh rằng

$$\frac{a_1}{a_2a_3...a_n+1} + \frac{a_2}{a_1a_3...a_n+1} + ... + \frac{a_n}{a_1a_2...a_{n-1}+1} \leq n-1.$$

245. [Đào Mạnh Thắng] Cho a,b,c là các số thực dương thỏa mãn điều kiện

$$a^2b^2 + b^2c^2 + c^2a^2 \ge a^2b^2c^2$$
.

Chứng minh rằng

$$\frac{a^2b^2}{c^3(a^2+b^2)} + \frac{b^2c^2}{a^3(b^2+c^2)} + \frac{c^2a^2}{b^3(c^2+a^2)} \ge \frac{\sqrt{3}}{2}.$$

246. [Đỗ Ngọc Ánh] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=6. Chứng minh rằng

$$\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right) \ge \frac{729}{512}$$
.

247. [Trương Hoàng Hiếu] Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{a^2+1}{b^2+1} + \frac{b^2+1}{c^2+1} + \frac{c^2+1}{a^2+1} \le \frac{7}{2}$$
.

248. [Trần Tuấn Anh] Cho a,b,c là các số thực dương và $k \ge \frac{2}{3}$. Chứng minh rằng

$$\left(\frac{a}{b+c}\right)^k + \left(\frac{b}{c+a}\right)^k + \left(\frac{c}{a+b}\right)^k \ge \frac{3}{2^k}.$$

249. [Trương Ngọc Đắc] Cho x, y là các số thực dương thỏa mãn điều kiện x + y = 1. Chứng minh rằng

$$\frac{1}{x^3 + y^3} + \frac{1}{xy} \ge 4 + 2\sqrt{3} .$$

250. [Hồ Quang Vinh] Cho a,b,c,d là các số thực thỏa điều kiện $a^2+b^2=c+d=4$. Chứng minh rằng

$$ac+bd+cd < 4+4\sqrt{2}$$

251. [Trương Ngọc Đắc] Cho x, y, z với $x = \max\{x, y, z\}$. Chứng minh rằng

$$\frac{x}{y} + \sqrt{1 + \frac{y}{x}} + \sqrt[3]{1 + \frac{z}{x}} \ge 1 + \sqrt{2} + \sqrt[3]{2}.$$

252. Cho a là số thực dương và x, y, z là các số thực thỏa mãn điều kiện xy + yz + zx = 1. Chứng minh rằng

$$a(x^2+y^2)+z^2 \ge \frac{-1+\sqrt{1+8a}}{2}$$
.

253. [Triệu Văn Hưng] Cho a,b,c > 1. Chứng minh rằng

$$a^{\log_b c} + b^{\log_c a} + c^{\log_a b} \ge 3\sqrt[3]{abc}.$$

254. [Phạm Văn Thuận] Cho x, y là các số thực không âm thỏa mãn điều kiện $x^2 + y^2 = 1$. Chứng minh rằng

$$xy + \max\left\{x, y\right\} \le \frac{3\sqrt{3}}{4}.$$

255. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{a^6}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^6}{a^3+b^3}\geq \frac{1}{18}.$$

256. Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 1. Chứng minh rằng

$$\sqrt{\frac{xy}{z+xy}} + \sqrt{\frac{yz}{x+yz}} + \sqrt{\frac{zx}{y+zx}} \le \frac{3}{2}.$$

257. [Trần Tuấn Anh] Cho x là các số thực không âm. Chứng minh rằng

$$\frac{2\sqrt{2}}{\sqrt{x+1}} + \sqrt{x} \le \sqrt{x+9}.$$

258. Cho a,b là các số thực thỏa mãn điều kiện $a > b \ge 0$. Chứng minh rằng

$$2a + \frac{32}{(a-b)(2b+3)^2} \ge 5$$
.

259. Cho a,b là các số thực dương thỏa mãn điều kiện a+b=4. Chứng minh rằng

$$2a+3b+\frac{6}{a}+\frac{10}{b}\geq 18$$
.

260. Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Chứng minh rằng

$$\sqrt[5]{2a+b} + \sqrt[5]{2b+c} + \sqrt[5]{2c+a} \le 3\sqrt[5]{3}$$
.

261. Cho x, y, z là các số thực dương. Chứng minh rằng

$$(x+y+z)^6 \ge 432xy^2z^3$$
.

262. Cho $a \in [0,1]$. Chứng minh rằng

$$13.\sqrt{a^2 - a^4} + 9.\sqrt{a^2 + a^4} \le 16.$$

263. Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$\left(2 + \frac{3a}{5b}\right)\left(2 + \frac{3b}{5c}\right)\left(2 + \frac{3c}{5d}\right)\left(2 + \frac{3d}{5a}\right) \ge \frac{28561}{625}.$$

264. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện $a+b+c+d \le 1$. Chứng minh rằng

$$\left(1 + \frac{1}{a} + \frac{1}{b}\right)\left(1 + \frac{1}{b} + \frac{1}{c}\right)\left(1 + \frac{1}{c} + \frac{1}{d}\right)\left(1 + \frac{1}{d} + \frac{1}{a}\right) \ge 9^4.$$

265. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện $abcd \ge 16$. Chứng minh rằng

$$\left(a + \frac{2}{b} + \frac{1}{c}\right) \left(b + \frac{2}{c} + \frac{1}{d}\right) \left(c + \frac{2}{d} + \frac{1}{a}\right) \left(d + \frac{2}{a} + \frac{1}{b}\right) \ge \frac{2401}{16}.$$

266. Cho a,b là các số thực dương thỏa mãn điều kiện $a+b \le 1$. Chứng minh rằng

$$\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\geq 20.$$

267. Cho a,b,c là các số thực dương thỏa mãn điều kiện $a+b+c \le 1$. Chứng minh rằng

$$\frac{1}{a^2+b^2} + \frac{1}{b^2+c^2} + \frac{1}{c^2+a^2} + \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} \ge \frac{81}{2}.$$

268. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=3. Chứng minh rằng

$$\sqrt[5]{(2a+b)(a+c)a} + \sqrt[5]{(2b+c)(b+a)b} + \sqrt[5]{(2c+a)(c+b)c} \le 3\sqrt[5]{6}.$$

269. Cho a,b,c là các số thực dương thỏa mãn điều kiện $(a^2+a+2)(b+1)^2(c^2+3c)=64$. Chứng minh rằng

$$a^3b^4c^5 \leq 1$$
.

270. [Trần Hồng Sơn] Cho a,b,c là các số thực dương thỏa mãn điều kiện $a+b+c \le \frac{3}{2}$. Chứng minh rằng

$$\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right) \ge 343.$$

271. Cho a,b,c,m,n,p là các số thực dương thỏa mãn điều kiện $a+b+c \le 1, m+n+p \le \frac{3}{2}$. Chứng minh rằng

$$\left(1+\frac{2}{a}+\frac{1}{m}\right)\left(1+\frac{2}{b}+\frac{1}{n}\right)\left(1+\frac{2}{c}+\frac{1}{p}\right) \ge 9^3$$
.

272. [Phùng Văn Sự] Cho x, y, z là các số thực. Chứng minh rằng

$$27(x^2+3)(y^2+3)(z^2+3) \ge 4(3xy+3yz+3zx)^2.$$

273. [Trần Anh Đức] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^3+b^3+c^3}{2abc} + \frac{a^2+b^2}{c^2+ab} + \frac{b^2+c^2}{a^2+bc} + \frac{c^2+a^2}{b^2+ac} \ge \frac{9}{2}.$$

274. [Lê Thanh Hải] Cho a,b là các số thực dương thỏa mãn điều kiện ab=1. Chứng minh rằng

$$\frac{a^3}{1+b} + \frac{b^3}{1+a} \ge 1$$
.

275. [Dương Châu Dinh] Cho x, y, z là các số thực không âm thỏa mãn điều kiện x + y + z = 2. Chứng minh rằng

$$2(x^3 + y^3 + z^3) \le 2 + (x^4 + y^4 + z^4).$$

276. [Nguyễn Tất Thu] Cho a,b,c, α là các số thực dương. Chứng minh rằng

$$\left(a^2 + \frac{1}{ab}\right)^{\alpha} + \left(b^2 + \frac{1}{bc}\right)^{\alpha} + \left(c^2 + \frac{1}{ca}\right)^{\alpha} \ge 3.2^{\alpha}.$$

277. [Trần Xuân Đáng] Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

$$(a+b)(b+c)(c+a) \ge 2(1+a+b+c)$$
.

278. Cho x, y, z là các số thực dương. Chứng minh rằng

$$(xyz+1)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{x}{z}+\frac{z}{y}+\frac{y}{x} \ge x+y+z+6$$
.

279. [Đàm Văn Nhỉ] Cho $a,b,c,d \in [0,1]$. Chứng minh rằng

$$\frac{a}{bcd+1} + \frac{b}{cda+1} + \frac{c}{dab+1} + \frac{d}{abc+1} \le 3$$
.

280. [Cao Xuân Nam] Cho a,b,c là các số thực dương thỏa mãn điều kiện ab+bc+ca=1. Chứng minh rằng

$$\frac{a^8}{\left(a^2+b^2\right)^2} + \frac{b^8}{\left(b^2+c^2\right)^2} + \frac{c^8}{\left(c^2+a^2\right)^2} \ge \frac{1}{12}.$$

281. [Trần Hồng Sơn] Cho a,b,c là các số thực dương thỏa mãn điều kiện $a+b+c \le 3$. Chứng minh rằng

$$\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{a^2} + 27\left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right) \ge 84.$$

282. [Dương Châu Dinh] Cho a,b,c là các số thực dương thỏa mãn điều kiện

$$6\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \le 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$

Chứng minh rằng

$$\frac{1}{10a+b+c} + \frac{1}{a+10b+c} + \frac{1}{a+b+10c} \le \frac{1}{12}.$$

283. [Lê Văn Quang] Cho a,b,c,d,e,f là các số thực thỏa mãn điều kiện

$$ab+bc+cd+de+ef=1$$
.

Chứng minh rằng

$$a^{2} + b^{2} + c^{2} + d^{2} + e^{2} + f^{2} \ge \frac{1}{2\cos\frac{\pi}{7}}.$$

284. [Cao Minh Quang] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{a}{a^3+a^2+1} + \frac{b}{b^3+b^2+1} + \frac{c}{c^3+c^2+1} \le \frac{27}{31}.$$

285. Cho x, y, z là các số thực dương. Chứng minh rằng

$$\frac{x+y+z}{3\sqrt{3}} \ge \frac{xy+yz+zx}{\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}}.$$

286. [Walther Janous] Cho a,b,c là các số thực dương. Chứng minh rằng

$$a^4 + b^4 + 3 \ge a + b + 3 \cdot \frac{3ab + 1}{4} \cdot \sqrt[3]{\frac{3ab + 1}{4}}$$
.

287. [Trần Thị Thuận] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{1}{a(b+1)} + \frac{1}{b(c+1)} + \frac{1}{c(a+1)} \ge \frac{3}{abc+1}.$$

288. Cho x, y, z là các số thực không âm. Chứng minh rằng

$$8(x^3 + y^3 + z^3)^2 \ge 9(x^2 + yz)(y^2 + zx)(z^2 + xy).$$

289. Cho x, y, z là các số thực dương. Chứng minh rằng

$$\frac{x^2 - z^2}{y + z} + \frac{y^2 - x^2}{z + x} + \frac{z^2 - y^2}{x + y} \ge 0.$$

290. Cho x, y là các số thực dương thỏa mãn điều kiện x + y = 1. Tìm giá trị nhỏ nhất của

$$(x^x + y^y).$$

291. [Nguyễn Hữu Bằng] Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3(a-b)(b-c)(c-a)}{abc} \ge 9.$$

292. [Cao Minh Quang] Cho 10 số thực không âm a_i, b_i (i=1,2,...,5) thỏa mãn điều kiện $a_i^2+b_i^2=1$ (i=1,2,...,5) và $a_1^2+a_2^2+...+a_5^2=1$. Hãy tìm giá trị nhỏ nhất của biểu thức

$$\frac{b_1 + b_2 + b_3 + b_4 + b_5}{a_1 + a_2 + a_3 + a_4 + a_5}.$$

293. Cho x, y, z là các số thực không âm. Chứng minh rằng

$$[(x+y)(y+z)(z+x)]^{2} \ge xyz(2x+y+z)(2y+z+x)(2z+x+y)$$

294. [Vedula N. Murty] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a+b+c}{3} \le \frac{1}{4} \sqrt[3]{\frac{(a+b)^2(b+c)^2(c+a)^2}{abc}}.$$

295. [Cao Minh Quang] Cho $x_1, x_2, ..., x_n > 0, x_1 + x_2 + ... + x_n = 2n, n \ge 3$. Chứng minh rằng

$$\sum_{j=1}^{n} \sum_{\substack{i=1\\i\neq j}}^{n} \frac{x_j}{\sqrt{x_i^3 + 1}} \ge \frac{2n(n-1)}{3}.$$

296. Cho hàm số $f:[1,+\infty)\longrightarrow \mathbb{R}, f(x)=\int_{1}^{x}\frac{dt}{t+2002t^{2002}}$. Chứng minh rằng với các số

thực $x_1, x_2, ..., x_n \ge 1$, ta có

$$\frac{f\left(x_1\right)+f\left(x_2\right)+\ldots+f\left(x_n\right)}{n} \leq \ln \frac{x_1+x_2+\ldots+x_n}{n}.$$

297. Cho các số thực a,b,c thỏa mãn điều kiện $0 \le a \le b \le c \le 3$. Chứng minh rằng

$$(a-b)(a^2-9)+(a-c)(b^2-9)+(b-c)(c^2-9) \le 36$$
.

298. Cho các số thực $a_1, a_2, ..., a_n$. Chứng minh rằng

$$\sqrt[3]{a_1^3 + a_2^3 + \dots + a_n^3} \le \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.$$

Nordic 1990

299. Cho các số thực $x_1, x_2, ..., x_n (n \ge 2)$ thỏa mãn các điều kiện $x_1 + x_2 + ... + x_n \ge 0$ và $x_1^2 + x_2^2 + ... + x_n^2 = 1$. Đặt $M = \max\{x_1, x_2, ..., x_n\}$. Chứng minh rằng

$$M \geq \frac{1}{\sqrt{n(n-1)}}.$$

Nordic, 1995

300. Cho $a_1, a_2, ..., a_n (n \ge 1)$ là các số thực dương. Chứng minh rằng

$$n\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \ge \left(\frac{1}{1+a_1} + \frac{1}{1+a_2} + \dots + \frac{1}{1+a_n}\right) \left(n + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right).$$

Đẳng thức xảy ra khi nào?

Nordic, 1999

301. Tìm tất cả các số nguyên dương n sao cho với các số thực $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n$, ta luôn có bất đẳng thức

$$x_1x_2...x_n + y_1y_2...y_n \le \sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2} + ... + \sqrt{x_n^2 + y_n^2}$$
. Poland, 2002

302. Cho $x_1, x_2, ..., x_n (n \ge 3)$ là các số thực dương. Chứng minh rằng ít nhất một trong hai bất đẳng thức sau là đúng

$$\sum_{i=1}^n \frac{x_i}{x_{i+1}+x_{i+2}} \geq \frac{n}{2}, \sum_{i=1}^n \frac{x_i}{x_{i-1}+x_{i-2}} \geq \frac{n}{2}.$$
 (ở đây ta xem $x_{n+1}=x_1, x_{n+2}=x_2, x_0=x_n, x_{-1}=x_{n-1}$)

Poland, 2002

303. Cho a,b,c là các số thực. Chứng minh rằng

$$\sqrt{2(a^2+b^2)} + \sqrt{2(b^2+c^2)} + \sqrt{2(c^2+a^2)} \ge \sqrt{3(a+b)^2 + 3(b+c)^2 + 3(c+a)^2}.$$

Poland, 2004

304. Cho a,b là các số thực dương và các số thực $x_i,y_i\in[0,1],i=1,2,...,n(n\geq 1)$ thỏa mãn các điều kiện $x_1+x_2+...+x_n\leq a,y_1+y_2+...+y_n\leq b$. Hãy tìm giá trị lớn nhất của biểu thức

$$x_1y_1 + x_2y_2 + ... + x_ny_n$$
.

305. Cho các số thực dương $x_1, x_2, ..., x_n$ và số thực c > -2. Chứng minh rằng nếu

$$\sqrt{x_1^2 + cx_1x_2 + x_2^2} + \sqrt{x_2^2 + cx_2x_3 + x_3^2} + \dots + \sqrt{x_n^2 + cx_nx_1 + x_1^2} = \sqrt{c + 2} \left(x_1 + x_2 + \dots + x_n \right)$$
 thì $c = 2$ hoặc $x_1 = x_2 = \dots = x_n$.

Poland, 2005.

306. Cho a,b,c là các số thực dương thỏa mãn điều kiện ab+bc+ca=abc. Chứng minh rằng

$$\frac{a^4 + b^4}{ab(a^3 + b^3)} + \frac{b^4 + c^4}{bc(b^3 + c^3)} + \frac{c^4 + a^4}{ca(c^3 + a^3)} \ge 1.$$

307. Cho $\frac{1}{2} \le a, b, c \le 1$. Chứng minh rằng

$$2 \le \frac{a+b}{1+c} + \frac{b+c}{1+a} + \frac{c+a}{1+b} \le 3$$
.

308. Cho $a,b\in\left[0,\frac{\pi}{4}\right]$ và $n\in\mathbb{N}$. Chứng minh rằng

$$\frac{\sin^n a + \sin^n b}{\left(\sin a + \sin b\right)^n} \ge \frac{\sin^n 2a + \sin^n 2b}{\left(\sin 2a + \sin 2b\right)^n}$$

309. Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng

$$\big(-a+b+c\big)\big(a-b+c\big)+\big(a-b+c\big)\big(a+b-c\big)+\big(a+b-c\big)\big(-a+b+c\big)\leq \sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right).$$

Romania TST, 2002

310. Cho $a_1, a_2, ..., a_n (n \ge 3)$ là các số thực dương thỏa mãn điều kiện $a_1^2 + a_2^2 + ... + a_n^2 = 1$. Chứng minh rằng

$$\frac{a_1}{a_2^2+1} + \frac{a_2}{a_3^2+1} + \dots + \frac{a_n}{a_1^2+1} \ge \frac{4}{5} \left(a_1 \sqrt{a_1} + a_2 \sqrt{a_2} + \dots + a_n \sqrt{a_n} \right)^2.$$
Romania TST, 2002

311. Cho các số thực x, y thỏa mãn điều kiện $1 \le x^2 - xy + y^2 \le 2$. Chứng minh rằng

a)
$$\frac{2}{9} \le x^4 + y^4 \le 8$$
,

b)
$$x^{2n} + y^{2n} \ge \frac{2}{3^n}, n \ge 3$$
.

312. Cho $x_1, x_2, ..., x_{n-1}$ $(n \ge 3)$ là các số tự nhiên thỏa mãn điều kiện $x_1 + x_2 + ... + x_{n-1} = 2$ và $x_1 + 2x_2 + ... + (n-1)x_{n-1} = 2n-2$. Hãy tìm giá trị nhỏ nhất của biểu thức

$$F(x_1, x_2, ..., x_n) = \sum_{k=1}^{n-1} k(2n-k)x_k$$
.

313. [V. Senderov] Cho $x \in \left(0, \frac{\pi}{2}\right)$ và m, n là các số tự nhiên sao cho n > m. Chứng minh rằng

$$2\left|\sin^n x - \cos^n x\right| \le 3\left|\sin^m x - \cos^m x\right|.$$

314. [S. Berlov] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \ge \frac{2}{1+a} + \frac{2}{1+b} + \frac{2}{1+c}.$$

315. Cho $x \in \left[0, \frac{\pi}{2}\right]$. Chứng minh rằng

$$\sin \sqrt{x} \le \sqrt{\sin x} .$$

316. [D. Tereshin] Cho a,b,c là các số thực không âm. Chứng minh rằng

$$(a+b+c)^2 \ge 3(a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}).$$

317. Cho $x_1, x_2, ..., x_n (n \ge 4)$ là các số thực dương. Chứng minh rằng

$$\frac{x_1}{x_n + x_2} + \frac{x_2}{x_1 + x_3} + \ldots + \frac{x_{n-1}}{x_{n-2} + x_n} + \frac{x_n}{x_{n-1} + x_1} \ge 2.$$

Xác định điều kiện xảy ra đẳng thức khi n = 4.

318. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện

$$3(a+b+c+d)+4(abc+bcd+cda+dab) = 8.$$

Chứng minh rằng

$$ab + ac + bc + ad + bd + cd < 2$$
.

319. Cho x, y, z là các số thực thỏa mãn điều kiện $x^2 \le y + z, y^2 \le z + x, z^2 \le x + y$. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của z.

Serbia and Montenegro, 2002

320. Cho a,b,c là các số thực dương và n,k là các số tự nhiên. Chứng minh rằng

$$\frac{a^{n+k}}{b^n} + \frac{b^{n+k}}{c^n} + \frac{c^{n+k}}{a^n} \ge a^k + b^k + c^k.$$

321. [R. Sanojevic] Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

$$\frac{1}{\sqrt{b+\frac{1}{a}+\frac{1}{2}}} + \frac{1}{\sqrt{c+\frac{1}{b}+\frac{1}{2}}} + \frac{1}{\sqrt{a+\frac{1}{c}+\frac{1}{2}}} \ge \sqrt{2}.$$

Serbia and Montenegro, 2004

322. Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 1. Chứng minh rằng

$$xy + yz + zx \ge 4(x^2y^2 + y^2z^2 + z^2x^2) + 5xyz$$
.

Serbia and Montenegro, 2006

323. Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 1. Chứng minh rằng

$$\frac{x}{y^2 + z} + \frac{y}{z^2 + x} + \frac{z}{x^2 + y} \ge \frac{9}{4}.$$

Serbia and Montenegro, 2006

324. Chứng minh rằng

$$\sqrt[44]{\tan 1^0 \tan 2^0 ... t \tan 44^0} < t \tan 2^0 30' < \frac{1}{44} \left(\tan 1^0 + \tan 2^0 + ... + t \tan 44^0 \right).$$

325. Cho a,b,c,d,e,f là các số thực dương. Chứng minh rằng

$$\frac{ab}{a+b} + \frac{cd}{c+d} + \frac{ef}{e+f} \le \frac{(a+c+e)(b+d+f)}{a+b+c+d+e+f}.$$

Yugolavia, 1985

326. Cho $a \ge 1, b \ge 1$. Chứng minh rằng

$$3\left(\frac{a^2-b^2}{8}\right)^2 + \frac{ab}{a+b} \ge \sqrt{\frac{a^2+b^2}{8}}.$$

Yugolavia, 199

327. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{\left(a-b\right)^2}{2(a+b)} \le \sqrt{\frac{a^2+b^2}{2}} - \sqrt{ab} \le \frac{\left(a-b\right)^2}{4\sqrt{ab}}.$$

Yugolavia, 1993

328. Cho các số thực x_1, x_2, x_3, x_4, x_5 . Hãy xác định giá trị lớn nhất của số thực a để

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \ge a(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5).$$

Yugolavia, 1996

329. [Đ. Dugosija] Cho a,b,c là các số thực thỏa mãn điều kiện abc=1. Chứng minh rằng ít nhất hai trong ba số $2a-\frac{1}{b},2b-\frac{1}{c},2c-\frac{1}{a}$ đều lớn hơn 1.

Serbia and Montenegro TST, 2004

330. Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$\frac{a}{b+c} + \frac{b}{c+d} + \frac{c}{d+a} + \frac{d}{a+b} \ge 2.$$
Yugolayia TST, 1985

331. Cho a > b > 0. Chúng minh rằng

$$\frac{\left(a-b\right)^{2}}{8a} < \frac{a+b}{2} - \sqrt{ab} < \frac{\left(a-b\right)^{2}}{8b}.$$

Sweden, 1985

332. Cho $x_1, x_2, x_3, x_4 \in \left[0, \frac{1}{2}\right]$. Chứng minh rằng

$$\frac{x_1 x_2 x_3 x_4}{(1-x_1)(1-x_2)(1-x_3)(1-x_4)} \le \frac{x_1^4 + x_2^4 + x_3^4 + x_4^4}{(1-x_1)^4 + (1-x_2)^4 + (1-x_3)^4 + (1-x_4)^4}.$$
Taiwan, 2002

333. Cho $x_1, x_2, ..., x_n$ là các số thực dương thỏa mãn điều kiện $x_1^2 + x_2^2 + ... + x_n^2 = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức

$$\sum_{i=1}^{n} \frac{x_i^5}{x_1 + x_2 + \dots + x_n - x_i}.$$

Turkey TST, 1997

334. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\sqrt{\frac{1}{a}-1}\sqrt{\frac{1}{b}-1}+\sqrt{\frac{1}{b}-1}\sqrt{\frac{1}{c}-1}+\sqrt{\frac{1}{c}-1}\sqrt{\frac{1}{a}-1}\geq 6\ .$$

335. Cho $x \in \left[0, \frac{\pi}{2n}\right], n \in \mathbb{N}$. Chứng minh rằng

$$\frac{\sin 2x}{\sin x} + \frac{\sin 3x}{\sin 2x} + \dots + \frac{\sin (n+1)x}{\sin nx} < 2\frac{\cos x}{\sin^2 x}.$$

Ukraina TST, 1999

336. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=2. Chứng minh rằng

$$\frac{1}{1+ab} + \frac{1}{1+bc} + \frac{1}{1+ca} \ge \frac{27}{13}.$$
Swiss TST 2003

337. Cho $a_1, a_2, ..., a_n$ là các số thực dương thỏa mãn điều kiện $a_1 a_2 ... a_n = 1$. Chứng minh rằng

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n} \le a_1 + a_2 + \dots + a_n$$
.

338. Cho a,b,c là độ dài ba cạnh của một tam giác thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$a^2 + b^2 + c^2 + 4abc \le \frac{1}{2}.$$

Italy, 1990

339. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{9}{a+b+c} \le 2\left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}\right) \le \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$
Trish, 1998

340. Cho a,b,c là các số thực không âm. Chứng minh rằng

$$\frac{1}{3} \left[(a-b)^2 + (b-c)^2 + (c-a)^2 \right] \le a^2 + b^2 + c^2 - 3\sqrt[3]{a^2b^2c^2} \le (a-b)^2 + (b-c)^2 + (c-a)^2.$$

Irish 2005

341. Cho 0 < a,b,c < 1. Chứng minh rằng

$$\frac{a}{1-a} + \frac{b}{1-c} + \frac{c}{1-c} \ge \frac{3\sqrt[3]{abc}}{1-\sqrt[3]{abc}}.$$

Irish 2002

342. Cho x, y, z là các số thực thỏa mãn điều kiện xyz = -1. Chứng minh rằng

$$x^4 + y^4 + z^4 + 3(x + y + z) \ge \frac{x^2}{y} + \frac{x^2}{z} + \frac{y^2}{x} + \frac{y^2}{z} + \frac{z^2}{x} + \frac{z^2}{y}$$

Iran, 2004

343. Cho $x_1, x_2, ..., x_n$ là các số thực dương. Chứng minh rằng

$$\frac{x_1^3}{x_1^2 + x_1 x_2 + x_2^2} + \frac{x_2^3}{x_2^2 + x_2 x_3 + x_3^2} + \dots + \frac{x_n^3}{x_n^2 + x_n x_1 + x_1^2} \ge \frac{x_1 + x_2 + \dots + x_n}{3}.$$

Hungary – Israel Competition, 2003

344. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện a+b+c+d=1. Chứng minh rằng

$$6(a^3+b^3+c^3+d^3) \ge (a^2+b^2+c^2+d^2) + \frac{1}{8}.$$

Hong Kong, 2006

345. Cho $a_1, a_2, ..., a_{n+1} \, \big(n \geq 2 \big)$ là các số thực dương thỏa mãn điều kiện

$$a_2 - a_1 = a_3 - a_2 = \dots = a_{n+1} - a_n$$
.

Chứng minh rằng

$$\frac{1}{a_2^2} + \frac{1}{a_3^2} + \ldots + \frac{1}{a_n^2} \leq \frac{n-1}{2} \cdot \frac{a_1 a_n + a_2 a_{n+1}}{a_1 a_2 a_n a_{n+1}} \,.$$

Hong Kong, 2004

346. Cho x, y, z > 0, k > 2, a = x + ky + kz, b = kx + y + kz, c = kx + ky + z. Chứng minh rằng

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} \ge \frac{3}{2k+1}.$$

Greek TST, 1998

347. Cho x, y, z là các số thực. Chứng minh rằng

$$\frac{x^2 - y^2}{2x^2 + 1} + \frac{y^2 - z^2}{2y^2 + 1} + \frac{z^2 - x^2}{2z^2 + 1} \le 0.$$

Greek TST, 2005

348. Cho x, y là các số thực thỏa mãn điều kiện $x^2 + xy + y^2 = 1$. Hãy tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức

$$K = x^3 y + x y^3.$$

Greek, 2006

349. Cho α, β, γ là các số thực thỏa mãn điều kiện $\beta \gamma \neq 0, \frac{1-\gamma^2}{\beta \gamma} \geq 0$. Chứng minh rằng

$$10(\alpha^2 + \beta^2 + \gamma^2 - \beta\gamma^3) \ge 2\alpha\beta + 5\alpha\gamma.$$

Greek , 2002

350. Cho α, β, x, y là các số thực thỏa mãn điều kiện $\alpha + \beta = 1$. Chứng minh rằng

$$(\alpha x + \beta y) \left(\frac{\alpha}{x} + \frac{\beta}{y} \right) \ge 1.$$

Đẳng thức xảy ra khi nào?

Greek, 2001

351. Cho x, y là các số thực dương. Hãy xác định số k lớn nhất để

$$\frac{xy}{\sqrt{\left(x^2+y^2\right)\left(3x^2+y^2\right)}} \le \frac{1}{k}.$$

Greek, 2000

352. Cho a,b,c là các số thực thỏa mãn điều kiện a < b < c, a+b+c=6, ab+bc+ca=9. Chứng minh rằng

$$0 < a < 1 < b < 3 < c < 4$$
.

Britain, 1995

353. Cho $0 \le x, y, z \le 1$. Hãy tìm giá trị lớn nhất của các biểu thức

$$S = x^2y - y^2x$$
, $P = x^2y + y^2z + z^2x - x^2z - y^2x - z^2y$.

Britain, 1995

354. Cho a,b,c,d,e là các số thực dương. Chứng minh rằng

$$\left(\frac{a}{b}\right)^4 + \left(\frac{b}{c}\right)^4 + \left(\frac{c}{d}\right)^4 + \left(\frac{d}{e}\right)^4 + \left(\frac{e}{a}\right)^4 \ge \frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e}.$$

Britain, 1984

355. Cho x, y, z là các số thực dương thỏa mãn điều kiện $x^2 + y^2 + z^2 = 1$. Chứng minh rằng

$$x^2yz + xy^2z + xyz^2 \le \frac{1}{3}.$$

Britain, 2004

356. Cho $a,b,c,p,q,\alpha \in (0,1)$.

a) Hãy tìm giá trị nhỏ nhất của $f(x) = \frac{x^{\alpha+1}}{c^{\alpha}} + \frac{\left(1-x\right)^{\alpha+1}}{\left(1-c\right)^{\alpha}}, \forall x \in \left(0,1\right).$

b) Chứng minh rằng
$$\frac{a^{\alpha+1}}{p^{\alpha}} + \frac{b^{\alpha+1}}{q^{\alpha}} \ge \frac{\left(a+b\right)^{\alpha+1}}{\left(p+q\right)^{\alpha}}$$
.

Bulgarian, 1984

357. Cho x_1, x_2, x_3, x_4, x_5 là các số thực dương. Hãy xác định số C bé nhất để

$$C\left(x_1^{2005} + x_2^{2005} + \dots + x_5^{2005}\right) \ge x_1 x_2 x_3 x_4 x_5 \left(x_1^{125} + x_2^{125} + \dots + x_5^{125}\right)^{16}.$$

358. Cho a, x, y, z là các số thực dương. Chứng minh rằng

$$x\frac{a+z}{a+x}+y\frac{a+x}{a+y}+z\frac{a+y}{a+z}\leq x+y+z\leq x\frac{a+y}{a+z}+y\frac{a+z}{a+x}+z\frac{a+x}{a+y}\,.$$

359. Cho $n \ge 2$. Chứng minh rằng

$$\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[n]{n}}}} < 2.$$

Austria, 1990

360. Cho a,b,c,d là các số thực. Chứng minh rằng

$$a^6 + b^6 + c^6 + d^6 + 2 \ge 6abcd$$
.

Austria, 2004

361. Cho a,b,c là các số thực. Chứng minh rằng

$$\min\left\{ (a-b)^2, (b-c)^2, (c-a)^2 \right\} \le \frac{a^2+b^2+c^2}{2}.$$

Italy, 1992

362. Cho a,b,c là các số thực không âm thỏa mãn các điều kiện $a^2 \le b^2 + c^2, b^2 \le c^2 + a^2$, $c^2 \le a^2 + b^2$. Chứng minh rằng

$$(a+b+c)(a^2+b^2+c^2)(a^3+b^3+c^3) \ge 4(a^6+b^6+c^6).$$

Japan, 2001

363. Cho $n \ge 2$. Chứng minh rằng

$$\sum_{k=1}^{n-1} \frac{n}{n-k} \cdot \frac{1}{2k-1} < 4.$$

364. Cho a,b,c là các số thực không âm thỏa mãn điều kiện $a^2+b^2+c^2=1$. Chứng minh rằng

$$\frac{a}{b^2+1} + \frac{b}{c^2+1} + \frac{c}{a^2+1} \ge \frac{3}{4} \left(a\sqrt{a} + b\sqrt{b} + c\sqrt{c} \right).$$

Mediteranean, 2002

365. Cho a,b,c là các số thực dương thỏa mãn điều kiện ab+bc+ca+2abc=1. Chứng minh rằng

$$2(a+b+c)+1 \ge 32abc.$$

Mediteranean, 2004

366. Cho a,b,c là các số khác 0; x,y,z là các số thực dương thỏa điều kiện x+y+z=3. Chứng minh rằng

$$\frac{3}{2}\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} \ge \frac{x}{1+a^2} + \frac{y}{1+b^2} + \frac{z}{1+c^2}.$$

Mediteranean 1999

367. Cho $a_1, a_2, ..., a_n$ là các số thực dương. Chứng minh rằng

$$\frac{1}{\frac{1}{1+a_1} + \frac{1}{1+a_2} + \dots + \frac{1}{1+a_n}} - \frac{1}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \ge \frac{1}{n}.$$

368. Cho $n \ge 2$. Chứng minh rằng

$$\log_2 3 + \log_3 4 + ... + \log_n (n+1) < n + \ln n - 0.9$$
.

369. Cho $x, y \in \left[1, \frac{3}{2}\right]$. Chứng minh rằng

$$y\sqrt{3-2x} + x\sqrt{3-2y} \le x^2 + y^2.$$

Moldova, 2001

370. Cho a,b,c là các số thực thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$a^2 + b^2 + c^2 + 1 \ge 4(ab + bc + ca).$$

Moldova, 2002

371. Cho n là một số tự nhiên và x là một số thực. Chứng minh rằng

$$\left|\cos x\right| + \left|\cos 2x\right| + \left|\cos 4x\right| + \dots + \left|\cos 2^{n} x\right| \ge \frac{n}{2\sqrt{2}}$$

372. [V. Yasinsky] Cho $\alpha, \beta, \gamma \in \left(0, \frac{\pi}{2}\right)$. Chứng minh rằng

$$\alpha + \beta + \gamma \ge \alpha \frac{\sin \beta}{\sin \alpha} + \beta \frac{\sin \gamma}{\sin \beta} + \gamma \frac{\sin \alpha}{\sin \gamma}.$$

373. [V. Yasinsky] Cho $\alpha, \beta, \gamma \in \left(0, \frac{\pi}{2}\right)$. Chứng minh rằng

$$\alpha+\beta+\gamma \geq \alpha \frac{\sin\beta+\sin\gamma}{2\sin\alpha}+\beta \frac{\sin\gamma+\sin\alpha}{2\sin\beta}+\gamma \frac{\sin\alpha+\sin\beta}{2\sin\gamma}\,.$$

374. [M. Kurylo] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^{6}}{b^{2}+c^{2}}+\frac{b^{6}}{c^{2}+a^{2}}+\frac{c^{6}}{a^{2}+b^{2}}\geq\frac{abc(a+b+c)}{2}.$$

375. [M. Kurylo] Cho a,b,c,x,y,z là các số thực dương. Chứng minh rằng

$$\sqrt[3]{a(b+1)\,yz} + \sqrt[3]{b(c+1)\,zx} + \sqrt[3]{c(a+1)\,xy} \le \sqrt[3]{(a+1)(b+1)(c+1)(x+1)(y+1)(z+1)}.$$

376. [V. Brayman] Cho $0 \le a, b, c < \frac{1}{\sqrt{3}}$. Chứng minh rằng

$$\frac{a+b}{1-ab} + \frac{b+c}{1-bc} + \frac{c+a}{1-ca} \le 2\frac{a+b+c-abc}{1-ab-bc-ca}$$

377. [O. Kukush, R. Ushakov] Cho $n \ge 1$. Chứng minh rằng

$$\sqrt{1+\sqrt{3+\sqrt{5+\sqrt{...+\sqrt{2n-1}}}}} < 2.$$

378. [V. Gavran] Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng

$$\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{a^2} \ge \frac{a}{c}(a+b-c) + \frac{c}{b}(c+a-b) + \frac{b}{a}(b+c-a).$$

379. [R. Ushakov] Cho $n \ge 2$, $p \ge 3$. Chứng minh rằng

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^p}\right) > \frac{p}{p+1}$$

380. [Prymak] Cho $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n$ là các số thực dương. Chứng minh rằng

$$\frac{x_1^3}{y_1^2} + \frac{x_2^3}{y_2^2} + \dots + \frac{x_n^3}{y_n^2} \ge \frac{\left(x_1 + x_2 + \dots + x_n\right)^3}{\left(y_1 + y_2 + \dots + y_n\right)^2}.$$

381. [D. Mitin] Cho $x, y \in \left[0, \frac{\pi}{2}\right]$. Chứng minh rằng

$$\frac{\cos x \cos y - 4}{\cos x + \cos y - 4} \le 1 + \frac{1}{2} \cos \left(\frac{x + y}{\cos x + \cos y - 4} \right).$$

382. [D. Mitin] Cho $x_1, x_2, ..., x_n \neq 0$, $\frac{x_1}{x_2} + \frac{x_2}{x_3} + ... + \frac{x_n}{x_1} = 0$. Chứng minh rằng

$$|x_1x_2 + x_2x_3 + \ldots + x_nx_1| \le \left(\max_{1 \le k \le n} |x_k| - \min_{1 \le k \le n} |x_k|\right) \left(|x_1| + |x_2| + \ldots + |x_n|\right).$$

383. [V. Yasinskyy] Cho a,b,c là các số thực thỏa mãn các điều kiện a+b+c=2 và ab+bc+ca=1. Chứng minh rằng

$$\max\left\{a,b,c\right\} - \min\left\{a,b,c\right\} \le \sqrt{\frac{4}{3}}.$$

384. [V. Brayman] Cho $1 \le a, b, c, d \le 2$. Chứng minh rằng

$$\frac{4}{3} \le \frac{a}{b+cd} + \frac{b}{c+da} + \frac{c}{d+ab} + \frac{d}{a+bc} \le 2.$$

385. [O. Makarchuk] Cho a,b,c>1 thỏa mãn điều kiện a+b+c=abc . Chứng minh rằng $(a^2-1)(b^2-1)(c^2-1)\leq 8\,.$

386. [V. Yasinskyy] Cho x, y, z là các số thực thỏa điều kiện $|x+y+z| \le 1, |x-y+z| \le 1, |4x+2y+z| \le 8, |4x-2y+z| \le 8$. Chứng minh rằng

$$|x|+3|y|+|z| \le 7$$
.

387. [O. Rybak] Cho a,b,c là các số thực không âm. Chứng minh rằng

$$\sqrt{a^4 + \frac{b^4}{2} + \frac{c^4}{2}} + \sqrt{b^4 + \frac{c^4}{2} + \frac{a^4}{2}} + \sqrt{c^4 + \frac{a^4}{2} + \frac{b^4}{2}} \ge \sqrt{a^4 + b^3 c} + \sqrt{b^4 + c^3 a} + \sqrt{c^4 + a^3 b}.$$

388. [Cezar Lupu] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{a^2 + bc}{(a+b)(a+c)} + \frac{b^2 + ca}{(b+a)(b+c)} + \frac{c^2 + ab}{(c+a)(c+b)}.$$

389. [Daniel Campos Salas] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c+1=4abc .

Chứng minh rằng

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 3 \ge \frac{1}{\sqrt{ab}} + \frac{1}{\sqrt{bc}} + \frac{1}{\sqrt{ca}}$$
.

390. [Bogdan Enescu] Cho x, y, z là các số thực thỏa mãn các điều kiện $\cos x + \cos y + \cos z = 0$, $\cos 3x + \cos 3y + \cos 3z = 0$.

Chứng minh rằng

$$\cos 2x \cdot \cos 2y \cdot \cos 2z < 0$$
.

391. [Phạm Hữu Đức] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} + \sqrt{\frac{a+b}{c}} \ge \sqrt{6 \cdot \frac{a+b+c}{\sqrt[3]{abc}}}.$$

392. [Vasile Cartoaje] Cho a,b,c,d là các số thực không âm thỏa mãn điều kiện

$$a^2 + b^2 + c^2 + d^2 = 4$$

Chứng minh rằng

$$\sqrt{2}(4-ab-bc-cd-da) \ge (\sqrt{2}+1)(4-a-b-c-d).$$

393. [Hồ Phú Thái] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{\sqrt{a^2 + 2bc}} + \frac{b}{\sqrt{b^2 + 2ca}} + \frac{c}{\sqrt{c^2 + 2ab}} \le \frac{a + b + c}{\sqrt{ab + bc + ca}}.$$

394. [Gabriel Dospinescu] Cho $a_1, a_2, ..., a_5$ là các số thực dương thỏa mãn điều kiện

$$a_1 a_2 a_3 a_4 a_5 = a_1 \left(1 + a_2 \right) + a_2 \left(1 + a_3 \right) + \ldots + a_5 \left(1 + a_1 \right) + 2 \,.$$

Hãy tìm giá tri nhỏ nhất của biểu thức

$$\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} + \frac{1}{a_5}$$
.

395. Cho x_1, x_2, x_3, x_4 là các số thực thỏa mãn các điều kiện

$$x_1 + x_2 + x_3 + x_4 = 0, x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1.$$

Hãy tìm giá trị lớn nhất của biểu thức

$$x_1^3 + x_2^3 + x_3^3 + x_4^3$$
.

396. [Cezar Lupu] Cho a,b,c là các số thực không âm. Chứng minh rằng

$$\frac{a^3 + abc}{b + c} + \frac{b^3 + abc}{c + a} + \frac{c^3 + abc}{a + b} \ge a^2 + b^2 + c^2.$$

397. [Titu Andresscu] Cho ABC là tam giác nhọn. Chứng minh rằng

$$\cos^3 A + \cos^3 B + \cos^3 C + \cos A \cos B \cos C \ge \frac{1}{2}.$$

398. [Phạm Hữu Đức] Cho a,b,c là các số thực không âm nhưng không có hai số nào trong ba số đồng thời bằng 0. Chứng minh rằng

$$\sqrt[3]{\frac{a^2 + bc}{b^2 + c^2}} + \sqrt[3]{\frac{b^2 + ca}{c^2 + a^2}} + \sqrt[3]{\frac{c^2 + ab}{a^2 + b^2}} \ge \frac{9\sqrt[3]{abc}}{a + b + c}.$$

399. [Titu Andresscu] Cho a,b,c là các số thực. Chứng minh rằng

$$3(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) \ge a^3b^3+b^3c^3+c^3a^3$$
.

400. [Darij Grinberg] Cho tam giác ABC. Chứng minh rằng

$$\cos\frac{A}{2}\cot\frac{A}{2} + \cos\frac{B}{2}\cot\frac{B}{2} + \cos\frac{C}{2}\cot\frac{C}{2} \ge \frac{\sqrt{3}}{2} \left(\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}\right).$$

401. [Marian Tetiva] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=3. Chứng minh rằng

a) Nếu
$$a \le b \le 1 \le c$$
 thì $\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}$.

b) Nếu
$$a \le 1 \le b \le c$$
 thì $\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \le \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}$.

402. [Vasile Cartoaje] Cho x, y, z là các số thực không âm. Chứng minh rằng

$$x^{4}(y+z)+y^{4}(z+x)+z^{4}(x+y) \leq \frac{1}{12}(x+y+z)^{5}$$
.

403. [Zdravko F. Starc] Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

$$a(b^2-\sqrt{b})+b(c^2-\sqrt{c})+c(a^2-\sqrt{a})\geq 0$$
.

404. [Ivan Borsenco] Cho a,b,c là các số thực dương. Chứng minh rằng

$$(ab+bc+ca)^3 \le 3(a^2b+b^2c+c^2a)(ab^2+bc^2+ca^2).$$

405. [Nikolai Nikolov] Cho 0 < y < x < 1, 0 < z < 1. Chứng minh rằng

$$(x^z - y^z)(1 - x^z y^z) > \frac{x - y}{1 - xy}.$$

406. [Bogdan Enescu] Cho *a,b* là hai số thực phân biệt thỏa mãn điều kiện

$$|a-1|+|b+1|=|a|+|b|=|a-1|+|b+1|$$
.

Hãy tìm giá trị nhỏ nhất của biểu thức |a+b|.

407. [Iurie Boreico, Marcel Teleucă] Cho $x_1, x_2, ..., x_n \ge \frac{1}{2}$. Chứng minh rằng

$$\prod_{i=1}^{n} \left(1 + \frac{2x_i}{3}\right)^{x_i} \ge \left(\frac{4}{3}\right)^n \sqrt[4]{(x_1 + x_2)(x_2 + x_3)...(x_{n-1} + x_n)(x_n + x_1)}.$$

408. [Iurie Boreico, Ivan Borsenco] Cho a,b,c là các số thực dương phân biệt. Chứng minh rằng

$$\frac{a^2b + a^2c + b^2a + b^2c + c^2a + c^2b}{a^2 + b^2 + c^2 - ab - bc - ca} \ge \frac{16abc}{(a+b+c)^2}.$$

409. [Titu Andreescu] Cho a,b,c là các số thực thỏa mãn điều kiện $3(a+b) \ge 2|ab+1|$. Chứng minh rằng

$$9(a^3+b^3) \ge |a^3b^3+1|$$
.

410. [Titu Andreescu] Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$3(a^2-ab+b^2)(c^2-cd+d^2) \ge 2(a^2c^2-abcd+b^2d^2).$$

411. [Ivan Borsenco] Cho a,b,c là các số thực dương. Chứng minh rằng

a)
$$(a^3 + b^3 + c^3)^2 \ge (a^4 + b^4 + c^4)(ab + bc + ca)$$
.

b)
$$9(a^4+b^4+c^4)^2 \ge (a^5+b^5+c^5)(a+b+c)^3$$
.

412. [Titu Andreescu] Cho a,b là các số thực thỏa mãn điều kiện $9a^2 + 8ab + 7b^2 \le 6$. Chứng minh rằng

$$7a + 5b + 12ab < 9$$

413. [Phạm Hữu Đức] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{1}{a+b+c} \left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \right) \ge \frac{1}{ab+bc+ca} + \frac{1}{2(a^2+b^2+c^2)}.$$

414. [Cezar Lupu] Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

$$\frac{1}{a^{3}(b+c)} + \frac{1}{b^{3}(c+a)} + \frac{1}{c^{3}(a+b)} + \frac{4(ab+bc+ca)}{(a+b)(b+c)(c+a)} \ge ab+bc+ca.$$

415. [Bin Zhao] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sqrt{\frac{a^2}{4a^2 + ab + 4b^2}} + \sqrt{\frac{b^2}{4b^2 + bc + 4c^2}} + \sqrt{\frac{c^2}{4c^2 + ca + 4a^2}} \le 1.$$

416. Cho a,b,c là các số thực thỏa mãn điều kiện $a \ge 1, a+b+c=0$. Chứng minh rằng

$$a^4 + b^4 + c^4 - 3abc$$
.

417. Cho a,b,c là các số thực dương thỏa mãn điều kiện $abc \le 8$. Chứng minh rằng

$$\frac{1}{a^2 - a + 1} + \frac{1}{b^2 - b + 1} + \frac{1}{c^2 - c + 1} \ge 1.$$

418. Cho $x_1, x_2, ..., x_n$ là các số thực dương thỏa mãn điều kiện $S = \sum_{i=1}^n x_i = \sum_{i=1}^n \frac{1}{x_i}$. Chứng minh rằng

$$\sum_{i=1}^{n} \frac{1}{n-1+x_i} \ge \sum_{i=1}^{n} \frac{1}{1+S-x_i}.$$

419. Cho x, y, z là các số thực dương thỏa mãn điều kiện $(x+y-z)\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)=4$. Hãy tìm giá trị nhỏ nhất của biểu thức

$$E(x, y, z) = (x^4 + y^4 + z^4) \left(\frac{1}{x^4} + \frac{1}{y^4} + \frac{1}{z^4} \right).$$

420. Cho a,b,c là các số thực dương thỏa mãn điều kiện ab+bc+ca=1. Chứng minh rằng

$$\frac{1+a^2b^2}{\left(a+b\right)^2} + \frac{1+b^2c^2}{\left(b+c\right)^2} + \frac{1+c^2a^2}{\left(c+a\right)^2} \ge \frac{5}{2}.$$

421. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$\sqrt{\frac{a+b}{b+1}} + \sqrt{\frac{b+c}{c+1}} + \sqrt{\frac{c+a}{a+1}} \ge 3.$$

422. Cho a,b,c là độ dài ba cạnh của một tam giác vuông. Hãy tìm giá trị lớn nhất của số thực k để

$$a^3 + b^3 + c^3 \ge k(a+b+c)^3$$
.
Iran 2006

423. Cho $x_1, x_2, ..., x_n$ là các số thực dương thỏa mãn điều kiện $\sum_{i=1}^n x_i = 1$. Chứng minh rằng

$$\left(\sum_{i=1}^n \sqrt{x_i}\right) \left(\sum_{i=1}^n \frac{1}{\sqrt{1+x_i}}\right) \le \frac{n^2}{\sqrt{n+1}}.$$

China TST, 2006

424. Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 1. Chứng minh rằng

$$\frac{xy}{\sqrt{xy+yz}} + \frac{yz}{\sqrt{yz+zx}} + \frac{zx}{\sqrt{zx+xy}} \le \frac{\sqrt{2}}{2}.$$

China TST, 2006

425. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=3. Chứng minh rằng

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge a^2 + b^2 + c^2.$$

Romania TST, 2006

426. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right)^2 \ge \frac{3}{2} \left(\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b}\right).$$

Junior Balkan TST, 2006

427. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \ge 3(a^2 + b^2 + c^2).$$

Junior Balkan TST, 2006

428. Cho x, y, z là các số thực dương thỏa mãn điều kiện xy + yz + zx = 1. Chứng minh rằng

$$\frac{27}{4}(x+y)(y+z)(z+x) \ge \left(\sqrt{x+y} + \sqrt{y+z} + \sqrt{z+x}\right)^2 \ge 6\sqrt{3}.$$

Turkey TST 2006

429. Cho $a_1, a_2, ..., a_n (n \ge 3)$ là các số thực. Giả sử rằng ta có

$$(a_1 + a_2 + ... + a_n)^2 \ge 4(a_1a_2 + a_2a_3 + ... + a_na_1).$$

- a) Tìm tất cả các giá trị của n
 để bất đẳng thức trên đúng khi $a_1,a_2,...,a_n$ là các số thực dương.
- b) Tìm tất cả các giá trị của n để bất đẳng thức trên đúng khi $a_1, a_2, ..., a_n$ là các số thực bất kì.

430. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\left(\frac{a+2b}{a+2c}\right)^{3} + \left(\frac{b+2c}{b+2a}\right)^{3} + \left(\frac{c+2a}{c+2b}\right)^{3} \ge 3.$$
MOP, 2004

431. Cho $k \in \mathbb{Z}^+$, $a_1, a_2, ..., a_n$ là các số thực dương thỏa mãn điều kiện $a_1 + a_2 + ... + a_n = 1$. Chứng minh rằng

$$\prod_{i=1}^n \frac{1-a_i^k}{a_i^k} \ge \left(n^k - 1\right)^n.$$

432. Cho $a_1, a_2, ..., a_n$ là các số thực không âm thỏa mãn điều kiện $a_1 + a_2 + ... + a_n = 1$. Chứng minh rằng

$$a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n \le \frac{1}{4}$$
.

433. Cho $a_1, a_2, ..., a_n (n > 1)$ là các số thực dương thỏa mãn điều kiện $a_1 a_2 ... a_n = 1$. Chứng minh rằng

$$\frac{1}{1+a_1} + \frac{1}{1+a_2} + \dots + \frac{1}{1+a_n} \le \frac{a_1 + a_2 + \dots + a_n + n}{4}.$$

434. [Aaron Pixton] Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

$$5 + \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge (1+a)(1+b)(1+c).$$

435. [Mildorf] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\sqrt[3]{4a^3 + 4b^3} + \sqrt[3]{4b^3 + 4c^3} + \sqrt[3]{4c^3 + 4a^3} \le \frac{4a^2}{a+b} + \frac{4b^2}{b+c} + \frac{4c^2}{c+a}.$$

436. [Po – Ru Loh] Cho a,b,c > 1 thỏa mãn điều kiện $\frac{1}{a^2 - 1} + \frac{1}{b^2 - 1} + \frac{1}{c^2 - 1} = 1$. Chứng minh rằng

$$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} \le 1$$
.

437. [Weighao Wu] Cho $x \in \mathbb{R}$. Chứng minh rằng

$$(\sin x)^{\sin x} < (\cos x)^{\cos x}.$$

438. Cho a,b,c là các số thực dương. Chứng minh rằng

$$1 < \frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{b^2 + c^2}} + \frac{c}{\sqrt{c^2 + a^2}} \le \frac{3\sqrt{2}}{2}$$
.

439. [Gabriel Dospinescu] Cho $a_1, a_2, ..., a_n (n > 1)$ là các số thực dương thỏa mãn điều kiện $a_1 a_2 ... a_n = 1$. Chứng minh rằng

$$\sqrt{\frac{a_1^2+1}{2}} + \sqrt{\frac{a_2^2+1}{2}} + \dots + \sqrt{\frac{a_n^2+1}{2}} \le a_1 + a_2 + \dots + a_n.$$

440. [Vascile Cartoaje] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=3. Chứng minh rằng

$$\frac{a}{ab+1} + \frac{b}{bc+1} + \frac{c}{ca+1} \ge \frac{3}{2}$$
.

441. Cho x_1, x_2, x_3, x_4, x_5 là các số thực không âm thỏa mãn điều kiện $\sum_{i < j} |x_i - x_j| = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức

$$\sum_{i=1}^{5} x_i.$$

442. Cho $x_1, x_2, x_3, x_4 \in [-1,1]$. Hãy tìm giá trị nhỏ nhất của biểu thức

$$F = \sum_{i=1}^{4} x_i - (x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4) + (x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4) - \prod_{i=1}^{4} x_i.$$

443. Cho $a,b,c \in [0,1]$. Chứng minh rằng

$$\sqrt{a(1-b)(1-c)} + \sqrt{b(1-c)(1-a)} + \sqrt{c(1-a)(1-b)} \le 1 + \sqrt{abc}$$
.

444. [Cao Minh Quang] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \ge \frac{3(a^2 + b^2 + c^2)}{a + b + c}$$
.

445. [Cao Minh Quang] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=3. Chứng minh rằng

$$\frac{a^{2}(b+1)}{a+b+ab} + \frac{b^{2}(c+1)}{b+c+ca} + \frac{c^{2}(a+1)}{c+a+ca} \ge 2.$$

446. [Cao Minh Quang] Cho $x_1, x_2, ..., x_n$ $(n \ge 2)$ là n số thực dương thỏa điều kiện

$$\sum_{i=1}^{n} \frac{x_i}{x_i + 2} \le 1.$$

Chứng minh rằng

$$\sum_{i=1}^{n} \frac{1}{x_i + 1} \ge \frac{n(n-1)}{n+1}.$$

447. [Cao Minh Quang] Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\frac{ab}{3a^2 + 2b + 3} + \frac{bc}{3b^2 + 2c + 3} + \frac{ca}{3c^2 + 2a + 3} \le \frac{1}{12}.$$

448. Cho $x_1, x_2, ..., x_{2n}$ là các số thực thỏa mãn điều kiện $\left|x_{i+1} - x_i\right| \le 1, i = 1, 2, ..., 2n - 1$. Chứng minh rằng

$$|x_1| + |x_2| + \dots + |x_{2n}| + |x_1 + x_2 + \dots + |x_{2n}| \le n(n+1).$$

Romania TST, 2000

449. Cho a,b,c là các số thực dương. Chứng minh rằng

$$3\left(a+\sqrt{ab}+\sqrt[3]{abc}\right) \le 4\left(a+b+c\right).$$

450. [Rumen Kozarev] Cho $x \in \mathbb{R}$. Chứng minh rằng

$$x\left(2.3^{x} - \frac{4x^{2} + x + 2}{x^{2} + x + 1}\right) \ge 0.$$

451. Cho $0 \le x_i \le 1, i = 1, 2, ..., n (n \ge 2)$. Chứng minh rằng

$$(x_1 + x_2 + ... + x_n) - (x_1x_2 + x_2x_3 + ... + x_{n-1}x_n + x_nx_1) \le \left[\frac{n}{2}\right].$$

Bulgaria, 1995

452. Cho a,b,c,d là các số thực dương. Chứng minh rằng

$$\sqrt{a^4 + c^4} + \sqrt{a^4 + d^4} + \sqrt{b^4 + c^4} + \sqrt{b^4 + d^4} \ge 2\sqrt{2} \left(ad + bc\right).$$

Turkey, 2006

453. [Phan Thị Mùi] Cho $1 \le a,b \le 2$. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức

$$P = \frac{\left(a+b\right)^2}{a^3 + b^3}$$

454. [Lê Quang Nẫm] Cho x, y, z là các số thực dương. Chứng minh rằng

$$4(xy + yz + zx) \le \sqrt{(x+y)(y+z)(z+x)} \left(\sqrt{x+y} + \sqrt{y+z} + \sqrt{z+x}\right).$$

455. Cho a,b,c>1. Chứng minh rằng

$$\frac{a}{\sqrt{b}-1} + \frac{b}{\sqrt{c}-1} + \frac{c}{\sqrt{a}-1} \ge 12$$
.

456. [Nguyễn Đức Tấn] Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} \ge a\sqrt{ac} + b\sqrt{ba} + c\sqrt{cb}.$$

457. Cho x, y, z là các số thực dương thỏa mãn điều kiện $x^3 + y^3 + z^3 = 1$. Chứng minh rằng

$$\frac{x^2}{\sqrt{1-x^2}} + \frac{y^2}{\sqrt{1-y^2}} + \frac{z^2}{\sqrt{1-z^2}} \ge 2.$$

458. Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=1. Tìm giá trị lớn nhất của biểu thức

$$S = ab + 2bc + 3ca$$
.

459. [Thái Nhật Phượng] Cho x, y, z là các số thực dương thỏa mãn điều kiện

$$2xyz + xy + yz + zx \le 1.$$

Hãy tìm giá trị lớn nhất của biểu thức

$$xyz$$
.

460. [Minh Trân] Cho $x_1, x_2, ..., x_n$ là các số thực không âm thỏa mãn điều kiện $\sum_{i=1}^n x_i = 1$.

Tìm giá trị lớn nhất của biểu thức

$$x_1x_2 + x_2x_3 + ... + x_{n-1}x_n$$
.

461. [Trần Văn Tỏ] Cho $a,b,c \ge 1$. Chứng minh rằng

$$a(b+c)+b(c+a)+c(a+b)+2\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\right)\geq 9.$$

462. [Tạ Hoàng Thông] Cho x, y, z là ba số thực dương thỏa điều kiện $x^3 + y^3 + z^3 = 3$. Tìm giá trị lớn nhất của biểu thức

$$P = 3(xy + yz + zx) - xyz.$$

463. [Trương Ngọc Đắc] Cho $a_1, a_2, ..., a_n$ là các số thực dương thỏa mãn điều kiện

$$\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} i(i+1), k = 1, 2, ..., n.$$

Chứng minh rằng

$$\sum_{i=1}^n \frac{1}{a_i} \ge \frac{n}{n+1}.$$

464. [Tạ Hoàng Thông] Cho a,b,c là ba số thực dương thỏa điều kiện $a^2+b^2+c^2=3$. Tìm giá trị nhỏ nhất của biểu thức

$$M = \frac{ab^2 + bc^2 + ca^2}{\left(ab + bc + ca\right)^2}.$$

465. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Hãy xác định giá trị lớn nhất của số thực k để ta luôn có bất đẳng thức

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + 3k \ge (k+1)(a+b+c).$$

466. Cho $x, y, z \in [1, 2]$. Chứng minh rằng

$$(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \ge 6\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right).$$

467. [Đỗ Văn Ta] Cho a,b,c là các số thực dương thỏa mãn điều kiện $abc \ge 1$. Chứng minh rằng

$$\frac{a}{\sqrt{b+\sqrt{ac}}} + \frac{b}{\sqrt{c+\sqrt{ab}}} + \frac{c}{\sqrt{a+\sqrt{bc}}} \ge \frac{3}{\sqrt{2}}.$$

468. Cho $\frac{1}{2} \le x$, y, $z \le 1$. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức

$$P = \frac{x+y}{1+z} + \frac{y+z}{1+x} + \frac{z+x}{1+y}.$$

469. [Phạm Hoàng Hà] Cho x, y, z là ba số thực không âm thỏa điều kiện x + y + z = 4. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

$$P = \sqrt{2x+1} + \sqrt{3y+1} + \sqrt{4z+1}$$

470. [Trần Tuấn Anh] Cho a,b,c là các số thực không âm thỏa điều kiện a+b+c=1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

$$P = a(b-c)^3 + b(c-a)^3 + c(a-b)^3$$
.

471. [Tạ Đức Hải] Cho a,b,c là các số thực dương. Chứng minh rằng

$$4abc\left[\frac{1}{(a+b)^{2}c} + \frac{1}{(b+c)^{2}a} + \frac{1}{(c+a)^{2}b}\right] + \frac{a+c}{b} + \frac{b+c}{a} + \frac{a+b}{c} \ge 9.$$

472. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=abc. Chứng minh rằng

$$\frac{3\sqrt{3}}{4} \le \frac{bc}{a(1+bc)} + \frac{ca}{b(1+ca)} + \frac{ab}{c(1+ab)} \le \frac{a+b+c}{4}.$$

473. [Trần Tuấn Anh] Cho $x, y \in \left[0, \frac{\sqrt{2}}{2}\right]$. Tìm giá trị lớn nhất của biểu thức

$$P = \frac{x}{1 + y^2} + \frac{y}{1 + x^2}.$$

474. Cho $x_1, x_2, ..., x_{2007} \in [-1,1]$ thỏa mãn điều kiện $\sum_{i=1}^{2007} x_i^3 = 0$. Chứng minh rằng

$$\left| x_1 + x_2 + \dots + x_{2007} \right| \le \frac{2007}{3}$$
.

Đẳng thức xảy ra khi nào?

475. [Phạm Hoàng Hà] Cho x, y, z là các số thực dương thỏa mãn điều kiện

$$\sqrt{x^2 + y^2} + \sqrt{y^2 + z^2} + \sqrt{z^2 + x^2} = 2006.$$

Tìm giá trị nhỏ nhất của biểu thức

$$H = \frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} \,.$$

476. [Cao Xuân Nam] Cho x, y, z là các số thực thỏa mãn điều kiện

$$\frac{8-x^4}{16+x^4} + \frac{8-y^4}{16+y^4} + \frac{8-z^4}{16+z^4} \ge 0.$$

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

477. [Nguyễn Khánh Nguyên] Cho a,b,c là các số thực dương thỏa mãn điều kiện

$$a^2 + b^2 + c^2 = 1$$

Chứng minh rằng

$$\frac{a^2}{1+b-a} + \frac{b^2}{1+c-b} + \frac{c^2}{1+a-c} \ge 1.$$

478. [Phan Tiến Thành] Cho $x, y, z \in (0,1)$ thỏa mãn điều kiện xyz = (1-x)(1-y)(1-z). Chứng minh rằng

$$x^2 + y^2 + z^2 \ge \frac{3}{4}.$$

479. [Trần Tuấn Anh] Cho $a,b,c \ge -1, a+b+c = \sqrt[3]{4}-1$. Tìm giá trị nhỏ nhất của biểu thức

$$P = a^3 + b^3 + c^3$$
.

480. [Bùi Tuấn Anh] Cho a,b,c là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức

$$P = \frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{(a+b+c)^3}{abc}.$$

481. [Trần Việt Anh] Cho $n \in \mathbb{N}$. Kí hiệu (2n+1)!! là tích các số nguyên dương lẻ từ 1 đến 2n+1. Chứng minh rằng

$$(2n+1)^{n+1} \leq (2n+1)!!\pi^n$$
.

482. [Ngô Trung Kiên] Cho a,b,c là các số thực dương thỏa mãn điều kiện

$$ab+bc+ca \leq 3abc$$
.

Chứng minh rằng

$$\frac{a^4b}{2a+b} + \frac{b^4c}{2b+c} + \frac{c^4a}{2c+a} \ge 1.$$

483. [Phạm Văn Thuận] Cho a,b,c,d là các số thực phân biệt thỏa mãn các điều kiện

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} = 4, ac = bd.$$

Tìm giá trị lớn nhất của biểu thức

$$\frac{a}{c} + \frac{b}{d} + \frac{c}{a} + \frac{d}{b} - \frac{abcd}{(ad+cd)^2}$$
.

484. [Phạm Kim Hùng] Cho a,b,c là các số thực dương thỏa mãn điều kiện $abc \ge 1$. Chứng minh rằng

$$a+b+c \ge \frac{1+a}{1+b} + \frac{1+b}{1+c} + \frac{1+c}{1+a}$$
.

485. [Trần Nam Dũng] Cho x, y, z là các số thực dương. Chứng minh rằng

$$xyz + 2(x^2 + y^2 + z^2) + 8 \ge 5(x + y + z).$$

Đẳng thức xảy ra khi nào?

486. [Trần Nam Dũng] Cho $k \in (-1,2)$ và a,b,c là ba số thực đôi một khác nhau. Chứng minh rằng

$$\left[a^{2}+b^{2}+c^{2}+k\left(ab+bc+ca\right)\right]\left[\frac{1}{\left(a-b\right)^{2}}+\frac{1}{\left(b-c\right)^{2}}+\frac{1}{\left(c-a\right)^{2}}\right]\geq\frac{9(2-k)}{4}.$$

Đẳng thức xảy ra khi nào?

487. Cho $x_1, x_2, ..., x_n > -1$ thỏa mãn điều kiện $x_1^3 + x_2^3 + ... + x_n^3 = 0$. Chứng minh rằng

$$x_1 + x_2 + \dots + x_n \le \frac{n}{3}$$
.

488. Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Chứng minh rằng

$$\sqrt{\frac{ab}{c}+1}+\sqrt{\frac{bc}{a}+1}+\sqrt{\frac{ca}{b}+1}\geq 2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right).$$

489. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\left(\frac{bc+a}{1+a}\right)\left(\frac{ca+b}{1+b}\right)\left(\frac{ab+c}{1+c}\right) \ge abc.$$

490. Cho x, y, z là các số thực dương. Chứng minh rằng

$$\frac{yz}{x(x+y+z)+1} + \frac{zx}{y(x+y+z)+1} + \frac{xy}{z(x+y+z)+1}$$

$$\geq \frac{x^2}{x(x+y+z)+1} + \frac{y^2}{y(x+y+z)+1} + \frac{z^2}{z(x+y+z)+1}.$$

491. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1. Chứng minh rằng

$$a^{3}b + b^{3}c + c^{3}a \ge a + b + c$$
.

492. Cho x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 1. Chứng minh rằng

$$\frac{1}{\sqrt{1+xy}} + \frac{1}{\sqrt{1+yz}} + \frac{1}{\sqrt{1+zx}} \ge \frac{9}{\sqrt{10}}.$$

493. Cho $-1 \le x, y \le 1$. Chứng minh rằng

$$\sqrt{1-x^2} + \sqrt{1-y^2} \le 2\sqrt{1-\left(\frac{x+y}{2}\right)^2}$$
.

494. Cho *n* là một số nguyên dương. Chứng minh rằng

$$\sqrt[n]{n+\sqrt[n]{n}} + \sqrt[n]{n-\sqrt[n]{n}} < \sqrt[n]{n}.$$

495. Cho a,b,c là các số thực dương thỏa mãn điều kiện ab+bc+ca=1. Chứng minh rằng

$$\frac{a}{\sqrt{a^2+1}} + \frac{b}{\sqrt{b^2+1}} + \frac{c}{\sqrt{c^2+1}} \le \frac{3}{2}.$$

496. Cho a,b,x,y là các số thực dương, a < b. Chứng minh rằng

$$(x^a + y^a)^b \ge (x^b + y^b)^a$$
.

497. Cho $0 < a,b,c \le \frac{1}{2}$. Chứng minh rằng

$$\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right) \ge \left(\frac{3}{a+b+c}-1\right)^3$$
.

498. Cho a,b,c,d là các số thực dương thỏa mãn điều kiện $a^2+b^2+c^2+d^2=1$. Chứng minh rằng

$$(1-a)(1-b)(1-c)(1-d) \ge abcd$$
.

499. Cho a,b,c là các số thực dương. Chứng minh rằng

$$\frac{a}{\sqrt{a^2 + (b+c)^2}} + \frac{b}{\sqrt{b^2 + (c+a)^2}} + \frac{c}{\sqrt{c^2 + (a+b)^2}} \ge 1.$$

500. Cho a,b,c là các số thực dương. Chứng minh rằng

$$(a^2 + 2ab)^a (b^2 + 2bc)^b (c^2 + 2ca)^c \ge (a^2 + b^2 + c^2)^{a+b+c}$$
.

... sẽ tiếp tục cập nhật