Analogové Ústav n	Jméno Jakub	ID 240844				
Ústav mikroelektroniky FEKT VUT v Brně			Ročník	Obor	Skupina	
	2.	MET	MET/4			
Spolupracoval	Měřeno dne	Odevzdáno dne		Hodnocení		
Radek Kučera	1. 12. 2022	1	15. 12. 2022			
AKO a generátory signálů s OZ						

Teoretický úvod

Obr. 1: Schémata zapojení – a) AKO s jedním OZ a tranzostorovým převodníkem úrovně, b) generátor pilových kmitů

Funkce jednotlivých zapojení

Astabilní klopný obvod

Základním blokem tohoto zapojení je Schmittův klopný obvod s hysterezí, ten v principu umí na výstupu zobrazovat pouze kladné a zápoorné saturační napětí. Nepřeklápí se v obou směrech stejně, ale až po překročení jisté prahové hodnoty napětí, vzniká tak hysterezní smyčka, viz Obr. 2.

Obr. 2: Hysterezní smyčka Schmittova klopného obvodu.

Pokud uvažujeme obvod s vybitým kondenzátorem, objeví se na vstupu po chvíli kladné saturační napětí a kondenzátor se začne nabíjet přes odpory R_1 a R_p . Až se nabije na hodnotu napětí, která je na odporovém děliči R_2 R_3 , obvod se překlopí a kondenzátor se začne vybíjet, překlopením se změní taky referenční hodnota napětí na děliči, tím vzniká zmíněná hysterezní smyčka. kondenzátor s odpory R_1 a R_p tvoří RC čánku, jehož časová konstanta nám určuje frekvenci překlápění, neboli frekvenci našich vzniklých obdélníkových pulsů, $F = \frac{0.455}{RC}$.

Generátor pilových kmitů

Jako základí blok nám opět poslouží komparátor s hysterezí – situace je podobná jako v minulém zapojení a na výstupu prvního OZ je opět obdélníkový průběh, k tomu je připojen invertující integrátor, který z obdélníkových kmitů tvoří pilový signál.

Výsledky počítačové simulace

Obr. 3: Zapojení a) OZ 1458 – Časová závislost napětí v různých bodech obvodu, nejdůležitější je výstup zapojení (červeně) a napětí na kondenzátoru (zeleně), $R_p=100\,\mathrm{k}\Omega$. Dále vidíme hysterezní smyčku komparátoru.

Obr. 4: Zapojení a) OZ 1458 – Stejně jako v Obr. 3, jen pro $R_p=0\,\Omega$. Zde je již patrné zkosení hran dané mezní rychlostí přeběhu.

Obr. 5: Zapojení a) OZ 1458 – Detail náběžné hrany výstupního signálu (červeně) a sestupné hrany signálu na komparátoru (modře).

Obr. 6: Zapojení a) OZ 072 – Časová závislost napětí v různých bodech obvodu, nejdůležitější je výstup zapojení (červeně) a napětí na kondenzátoru (zeleně), $R_p=100\,\mathrm{k}\Omega$. Dále vidíme hysterezní smyčku komparátoru.

Obr. 7: Zapojení a) OZ 072 – Stejně jako v Obr. 6, jen pro $R_p=0\,\Omega$. Zkosení hran je méně výrazné než u OZ 1458, z důvodu lepší hodnoty SR u OZ 072.

Obr. 8: Zapojení a) OZ 072 – Detail náběžné hrany výstupního signálu (červeně) a sestupné hrany signálu na komparátoru (modře).

Obr. 9: Zapojení b) OZ 1458 – Časová závislost napětí na výstupu prvního OZ (obdélník) a druhého OZ (pila), $R_p=100\,\mathrm{k}\Omega$. Dále vidíme hysterezní smyčku komparátoru.

Obr. 10: Zapojení b) OZ 1458 – Stejně jako v Obr. 9, jen pro $R_p=0\,\Omega.$ Opět je zde patrné zkosení hran dané mezní rychlostí přeběhu.

Obr. 11: Zapojení b) OZ 1458 – Detail náběžné hrany signálu na výstupu prvního OZ (modře).

Obr. 12: Zapojení b) OZ 072 – Časová závislost napětí na výstupu prvního OZ (obdélník) a druhého OZ (pila), $R_p=100\,\mathrm{k}\Omega$. Dále vidíme hysterezní smyčku komparátoru.

Obr. 13: Zapojení b
) OZ 072 – Stejně jako v Obr. 12, jen pro $R_p=0\,\Omega.$ Zkosení hran je minimální.

Obr. 14: Zapojení b) OZ 072 – Detail náběžné hrany na výstupu prvního OZ.

Měření v laboratoři

Obr. 15: Zapojení a) – Časová závislost napětí na kondenzátoru (modře) a na výstupu OZ (červeně), $R_p = 100 \, \mathrm{k}\Omega$.

Obr. 16: Zapojení a) – Stejně jako v Obr. 15, ale pro $R_p=0\,\Omega,$ je patrné zkreslení dané mezní rychlostí přeběhu.

Obr. 17: Zapojení b) – Časová závislost napětí na výstupu prvního OZ (obdélník) a druhého OZ (pila), $R_p=100\,\mathrm{k}\Omega$.

Obr. 18: Zapojení b) – Stejě jako v Obr. 17, ale pro $R_p = 0\,\Omega$, opět na této frekvenci vidíme zkosení hran dané nedostatečnou hodnotou SR u tohoto OZ.

Tabulka 1: Porovnání strmostí v simulaci a laboratoři.

	Zap a) sim		Zap a) lab	Zap b) sim		Zap b) lab
typ OZ	1458	072	1458	1458	072	1458
f_{min} [Hz]	100	100	89	108	108	98
f_{max} [Hz]	8000	8000	6860	7634	7634	6340
S [V/µs]	0,44	4,63	0,61	0,48	6,77	0,61

Závěr

Simulovali a měřili jsme dva obvody, které mohou sloužit jako jednoduchý generátor obdélníkového a pilového (přesněji trojúhelníkového) signálu.

Frekvenci kmitů lze nastavit za pomoci potenciometru (R_p) . Tabulka 1 zobrazuje porovnání simulovaného a měřeného frekvenčního rozsahu. Protože fyzický potenciometr není schopný přesně dosáhnout ani jedné z krajních poloh, je rozsah měřený v laboratoři o něco menší.

Z měření kurzory jsme také vypočítali strmost náběžných hran v jednotlivých situacích, hodnoty jsou opět v Tabulce 1. Strmost hran (v podstatě mezní rychlost přeběhu) je pro OZ 072 přibližně 10x větší než pro náš standartní OZ 1458, to odpovídá také obrázkům ze simulace, kde s tímto OZ v podstatě nedocházelo ke zkosení hran ani při maximální frekvenci. V laboratoři jsme toto ale bohužel nemohli ověřit. OZ 1458 ale dosáhl v laboratoři dokonce o něco lepšího výsledku než v simulaci, rozdíl však není velký.

Pro praktické použití je tedy potřeba zvolit OZ s dostatečnou hodnotou SR pro námi žádanou frekvenci. Také by bylo potřeba nějakým způsobem doladit střídu generovaného obdélníkového signálu, protože už i v našem případě je u výsledného trojúhelníkového signálu vidět drobná nesymetrie právě tímto způsobená.