

26. 10. 2004

The Patent Office

Concept House Cardiff Road

Newport South Wales

NP10 8QQ

EPO4 (12080

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-stra under the Companies Act does not constitute a new legal entity but merely subject the impany to certain additional company law rules.

Signed A

Andres Cry

Dated

08 AUG 2014

Patents Form 1/77 Patents Agt (Rule 16) 27 QCT 2003 FONDOM The Patent Office Request for grant of a patent (See the notes on the back of this form. You can also get Cardiff Road an explanatory leaflet from the Patent Office to help Newport you fill in this form) South Wales NP10 8QQ 1. 4-33440P1 Your reference 2. Patent application number 325031.3 (The Patent Office will fill in this part) **NOVARTIS AG** 3. Full name, address and postcode of the or of each applicant **LICHTSTRASSE 35** (underline all surnames) **4056 BASEL SWITZERLAND** 7125487005 Patent ADP number (if you know it) **SWITZERLAND** If the applicant is a corporate body, give the country/state of its incorporation Title of invention **Organic Compounds** 4. Bernard A. Marsh Б. Name of your agent (If you have one) **Novartis Pharmaceuticals UK Limited** "Address for service" in the United Kingdom to which all correspondence **Patents and Trademarks** should be sent Wimblehurst Road (including the postcode) Horsham, West Sussex **RH12 5AB** Patents ADP number (if you know it) 07181522002 Priority application number Date of filing Country If you are declaring priority from one or 6. (if you know it) (day/month/year) more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number Date of filing 7. If this application is divided or otherwise Number of earlier (day/month/year) derived from an earlier UK application application, give the number and the filing date of the earlier application Is a statement of inventorship and of Yes 8. right to grant of a patent required in support of this request? (Answer 'Yes' if: any applicant named in part 3 is not an inventor, or there is an inventor who is not named as b) an applicant, or

any named applicant is a corporate body.

(see note (d))

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document Continuation sheets of this form Description 16 Claim(s) Abstract Drawing(s) 10. If you are also filing any of the following, state how many against each item. Priority documents Translations of priority documents Statement of inventorship and right to grant of a patent (Patents Form 7/77) Request for preliminary examination and search (Patents Form 9/77) Request for substantive examination (Patents Form 10/77) Any other documents (please specify) 11. I/We request the grant of a patent on the basis of this application Signature Date Bernard A. Marsh October 2003 12. Name and daytime telephone number of person to contact in the United Kingdom Mr. Trevor Drew 01403 323069 Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the united Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

, which these will be the first of the houseand resources, house sometimes the first of the second

Organic Compounds

The invention relates to the use of compounds (hereinafter: "COMPOUND") or a N-Oxide or a pharmaceutically acceptable salt thereof having an activity on protein kinases VEGFR-2, Tie-2, c-Src, c-Met, FGFR-1, Flt-1, HER-2, c-Abl, c-Raf, PDGFR-beta, c-Kit, or on a combination of the above enzymes, for the treatment and/or prevention of neurological and vascular disorders related to beta-amyloid generation and/or aggregation such as neurodegenerative diseases like Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis.

COMPOUND is preferably a compound of formula I

wherein

R₁ represents hydrogen, lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, carboxy-lower alkyl, lower alkoxycarbonyl-lower alkyl, or phenyl-lower alkyl;

 R_2 represents hydrogen, lower alkyl, optionally substituted by one or more identical or different radicals R_3 , cycloalkyl, benzcycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted;

and R₃ represents hydroxy, lower alkoxy, acyloxy, carboxy, lower alkoxycarbonyl, carbamoyl, N-mono- or N,N-disubstituted carbamoyl, amino, mono- or disubstituted amino, cycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted;

or wherein R₁ and R₂ together represent alkylene with four, five or six carbon atoms optionally mono- or disubstituted by lower alkyl, cycloalkyl, heterocyclyl, phenyl, hydroxy, lower alkoxy, amino, mono- or disubstituted amino, oxo, pyridyl, pyrazinyl or pyrimidinyl; benzalkylene with four or five carbon atoms; oxaalkylene with one oxygen and three or four carbon atoms; or azaalkylene with one nitrogen and three or four carbon atoms wherein nitrogen is unsubstituted or substituted by lower alkyl, phenyl-lower alkyl, lower alkoxycarbonyl-lower alkyl, carboxy-lower alkyl, carbamoyl-lower alkyl, N-mono- or N,N-disubstituted carbamoyl-lower alkyl, cycloalkyl, lower alkoxycarbonyl, carboxy, phenyl, substituted phenyl, pyridinyl, pyrimidinyl, or pyrazinyl;

R₄ represents hydrogen, lower alkyl, or halogen;

Or more preferably COMPOUND is a compound selected from

- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzanilide,
- 4-Methyl-N-(3-pyridinyl)-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- N-(4-Chlorophenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 2(R)- and 2(S)-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzoylamino]propanoic acid,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(8-quinolinyl)benzamide.
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(3-[trifluoromethoxy]phenyl)benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(2-pyrrolidinoethyl)benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(3-pyrrolidinophenyl)benzamide.
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(1-[2-pyrimidinyl]-4-piperidinyl)benzamide.
- *N*-(4-[1H-Imidazolyl]-3-trifluoromethylphenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- -l-Mathyl-3-[[]-(3-pyridinyl)-2-pyrimidinyl]amino]-M-(2-pyrrolidino-5-

and the companion which is a man of the community of the

- *N*-(3-Chloro-5-trifluoromethylphenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- N-(4-Dimethylaminobutyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-[4-(4-methyl-1-piperazinyl)-3-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(2,2,2-trifluoroethoxy)-3-trifluoromethylphenyl]benzamide,
- 4-Methyl-*N*-[4-(2-methyl-1H-imidazolyl)-3-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-(4-phenyl-3-trifluoromethylphenyl)-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-[4-(4-methyl-1H-imidazolyl)-3-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- Methyl 2(R)- and 2(S)-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzoylamio]-3-[4-hydroxyphenyl]propanoate,
- *N*-[2-(*N*-Cyclohexyl-*N*-methylaminomethyl)phenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- *N*-[3-[2-(1H-Imidazolyl)ethoxy]phenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-[3-morpholino-5-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-(4-pyrrolidino-3-trifluoromethylphenyl)benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-(4-piperidino-3-trifluoromethylphenyl)benzamide,
- 4-Methyl-*N*-[4-morpholino-3-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- *N*-(4-Ethylamino-3-trifluoromethylphenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-(3-trifluoromethoxyphenyl)benzamide, *N*-[4-(2-Hydroxypropylamino)-3-trifluoromethylphenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-

pyrimidiny[]amino]benzamide,

N-(4-Diethylamino-3-trifluoromethylphenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,

- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[3-(3-pyridinyl)-5-trifluorophenyl]benzamide,
- *N*-[3-[3-(1H-Imidazolyl)propoxy]phenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(3-pyridinyl)-3-trifluorophenyl]benzamide,
- 4-Methyl-*N*-[3-(4-methyl-1-piperazinyl)-5-trifluorophenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-[3-methylcarbamoyl-5-trifluorophenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-[3-methylcarbamoyl-5-morpholino]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide.

Further compounds which are even more particularly preferred are:

- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[3-[3-(1H-imidazol-1-yl)propoxy]-phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[3-[2-(1H-imidazol-1-yl)ethoxy]phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-(ethylamino)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(diethylamino)-3-(trifluoromethyl)phenyl]benzamide.
- (±)-4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-[(2-hydroxypropyl)amino]-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-[bis(2-methoxyethyl)amino]-3- (trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-(4-methyl-1-piperazinyl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-W-[4-(4-piparidinyl)-3-

and the second of the second o

• • • •

- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-phenyl-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[3-[4-(3-pyridinyl)-3-(trifluoromethyl)phenyl]methyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(2,4-dimethyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(4-methyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(2-methyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[3-(4-morpholinyl)-5-[(methylamino)carbonyl]phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[3-[(methylamino)carbonyl]-5-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[5-(3-pyridinyl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[5-(4-morpholinyl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[5-(2-methyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-N-[3-(4-methyl-imidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[5-(5-methyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[3-(4-methyl-1-piperazinyl)-5-(trifluoromethyl)phenyl]benzamide, and
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[2-(1-pyrrolidinyl)-5-(trifluoromethyl)phenyl]benzamide.
- or most preferably COMPOUND is 4-Methyl-N-[3-(4-methyl-imidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide having the formula I

Compounds of formula I and methods for the preparation of such compounds are in particular generically and specifically disclosed in the patents and patent application PCT/EP03/07198, in particular in the compound claims and the final products of the working examples, the subject-matter of the final products, the pharmaceutical preparations and the claims is hereby incorporated into the present application by reference to this publication.

The general terms used hereinbefore and hereinafter preferably have within the context of this disclosure the following meanings, unless otherwise indicated:

The prefix "lower" denotes a radical having up to and including a maximum of 7, especially up to and including a maximum of 4 carbon atoms, the radicals in question being either linear or branched with single or multiple branching.

Where the plural form is used for compounds, salts, and the like, this is taken to mean also a single-compound; salt; or the like.

Lower alkyl is preferably alkyl with from and including 1 up to and including 7, preferably from and including 1 to and including 4, and is linear or branched; preferably, lower alkyl is butyl, such as n-butyl, sec-butyl, isobutyl, tert-butyl, propyl, such as n-propyl or isopropyl, ethyl or methyl. Preferably lower alkyl is methyl, propyl or tert-butyl.

Lower acyl is preferably formyl or lower alkylcarbonyl, in particular acetyl.

An aryl group is an aromatic radical which is bound to the molecule via a bond located at an aromatic ring carbon atom of the radical. In a preferred embodiment, aryl is an aromatic radical having 6 to 14 carbon atoms, especially phenyl, naphthyl, tetrahydronaphthyl, fluorenyl or phenanthrenyl, and is unsubstituted or substituted by one or more, preferably up to three, especially one or two substituents, especially selected from amino, mono- or disubstituted amino, halogen, lower alkyl, substituted lower alkyl, lower alkenyl, lower alkynyl, phenyl, hydroxy, etherified or esterified hydroxy, nitro, cyano, carboxy, esterified carboxy, alkanoyl, benzoyl, carbamoyl, N-mono- or N,N-disubstituted carbamoyl, amidino, guanidino, ureido, mercapto, sulfo, lower alkylthio, phenylthio, phenyl-lower alkylthio, lower alkylphenylthio, lower alkylsulfinyl, phenylsulfinyl, phenyl-lower alkylsulfinyl, lower alkylphenylsulfinyl, lower alkylsulfonyl, phenylsulfonyl, phenyl-lower alkylsulfonyl, lower alkylphenylsulfonyl, halogen-lower alkylmercapto, halogen-lower alkylsulfonyl, such as especially trifluoromethanesulfonyl, dihydroxybora (-B(OH)₂), heterocyclyl, a mono- or bicyclic heteroaryl group and lower alkylene dioxy bound at adjacent C-atoms of the ring, such as methylene dioxy. Aryl is more preferably phenyl, naphthyl or tetrahydronaphthyl, which in each case is either unsubstituted or independently substituted by one or two substituents selected from the group comprising halogen, especially fluorine, chlorine, or bromine; hydroxy; hydroxy etherified by lower alkyl, e.g. by methyl, by halogen-lower alkyl, e.g. trifluoromethyl, or by phenyl; lower alkylene dioxy bound to two adjacent C-atoms, e.g. methylenedioxy, lower alkyl, e.g. methyl or propyl; halogen-lower alkyl, e.g. trifluoromethyl; hydroxy-lower alkyl, e.g. hydroxymethyl or 2-hydroxy-2-propyl; lower alkoxy-lower alkyl; e.g. methoxymethyl or 2-methoxyethyl; lower alkoxycarbonyl-lower alkyl, e.g. methoxycarbonylmethyl; lower alkynyl, such as 1-propynyl; esterified carboxy, especially lower alkoxycarbonyl, e.g. methoxycarbonyl, n-propoxy carbonyl or iso-propoxy carbonyl; N-monosubstituted carbamoyl, in particular carbamoyl monosubstituted by lower alkyl, e.g. methyl, n-propyl or iso-propyl; amino; lower alkylamino, e.g. methylamino; di-lower alkylamino, e.g.

dimethylamino or diethylamino; lower alkylene-amino, e.g. pyrrolidino or piperidino; lower oxaalkylene-amino, e.g. morpholino, lower azaalkylene-amino, e.g. piperazino, acylamino, e.g. acetylamino or benzoylamino; lower alkylsulfonyl, e.g. methylsulfonyl; sulfamoyl; or phenylsulfonyl.

A cycloalkyl group is preferably cyclopropyl, cyclopentyl, cyclohexyl or cycloheptyl, and may be unsubstituted or substituted by one or more, especially one or two, substitutents selected from the group defined above as substitutents for aryl, most preferably by lower alkyl, such as methyl, lower alkoxy, such as methoxy or ethoxy, or hydroxy, and further by oxo or fused to a benzo ring, such as in benzcyclopentyl or benzcyclohexyl.

Substituted alkyl is alkyl as last defined, especially lower alkyl, preferably methyl; where one or more, especially up to three, substituents may be present, primarily from the group selected from halogen, especially fluorine, amino, N-lower alkylamino, N,N-di-lower alkylamino, N-lower alkanoylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, and phenyl-lower alkoxycarbonyl. Trifluoromethyl is especially preferred.

Mono- or disubstituted amino is especially amino substituted by one or two radicals selected independently of one another from lower alkyl, such as methyl; hydroxy-lower alkyl, such as 2-hydroxyethyl; lower alkoxy lower alkyl, such as methoxy ethyl; phenyl-lower alkyl, such as benzyl or 2-phenylethyl; lower alkanoyl, such as acetyl; benzoyl; substituted benzoyl, wherein the phenyl radical is especially substituted by one or more, preferably one or two, substituents selected from nitro, amino, halogen, N-lower alkylamino, N,N-di-lower alkylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, and carbamoyl; and phenyl-lower alkoxycarbonyl, wherein the phenyl-radical is unsubstituted or especially substituted by one or more, preferably one or two, substituents selected from nitro, amino, halogen, N-lower alkylamino, N,N-di-lower alkylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, lower alkylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, and carbamoyl; and is preferably N-lower alkylamino, such as 1-methylamino, hydroxy-lower alkylamino, such as 2-hydroxy-thylamino or 2-

amino, or also by halogen, amino, N-lower alkylamino, N,N-di-lower alkylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, carbamoyl or aminocarbonylamino. Disubstituted amino is also lower alkylene-amino, e.g. pyrrolidino, 2-oxopyrrolidino or piperidino; lower oxaalkylene-amino, e.g. morpholino, or lower azaalkylene-amino, e.g. piperazino or N-substituted piperazino, such as N-methylpiperazino or N-methoxycarbonylpiperazino.

Halogen is especially fluorine, chlorine, bromine, or iodine, especially fluorine, chlorine, or bromine.

Etherified hydroxy is especially C₈-C₂₀alkyloxy, such as n-decyloxy, lower alkoxy (preferred), such as methoxy, ethoxy, isopropyloxy, or tert-butyloxy, phenyl-lower alkoxy, such as benzyloxy, phenyloxy, halogen-lower alkoxy, such as trifluoromethoxy, 2,2,2-trifluoroethoxy or 1,1,2,2-tetrafluoroethoxy, or lower alkoxy which is substituted by mono- or bicyclic heteroaryl comprising one or two nitrogen atoms, preferably lower alkoxy which is substituted by imidazolyl, such as 1H-imidazol-1-yl, pyrrolyl, benzimidazolyl, such as 1-benzimidazolyl, pyridyl, especially 2-, 3- or 4-pyridyl, pyrimidinyl, especially 2-pyrimidinyl, pyrazinyl, isoquinolinyl, especially 3-isoquinolinyl, quinolinyl, indolyl or thiazolyl.

Esterified hydroxy is especially lower alkanoyloxy, benzoyloxy, lower alkoxycarbonyloxy, such as tert-butoxycarbonyloxy, or phenyl-lower alkoxycarbonyloxy, such as benzyloxycarbonyloxy.

Esterified carboxy is especially lower alkoxycarbonyl, such as tert-butoxycarbonyl, iso-propoxycarbonyl, methoxycarbonyl or ethoxycarbonyl, phenyl-lower alkoxycarbonyl, or phenyloxycarbonyl.

Alkanoyl is primarily alkylcarbonyl, especially lower alkanoyl, e.g. acetyl.

N-Mono- or N,N-disubstituted carbamoyl is especially substituted by one or two substituents independently selected from lower alkyl, phenyl-lower alkyl and hydroxy-lower alkyl, or lower alkylene, oxa-lower alkylene or aza-lower alkylene optionally substituted at the terminal nitrogen atom.

A mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted, refers to a heterocyclic moiety that is unsaturated in the ring binding the heteroaryl radical to the rest of the molecule in formula I and is preferably a ring, where in the binding ring, but optionally also in any annealed ring, at least one carbon atom is replaced by a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; where the binding ring preferably has 5 to 12, more preferably 5 or 6 ring atoms; and which may be unsubstituted or substituted by one or more, especially one or two, substitutents selected from the group defined above as substitutents for aryl, most preferably by lower alkyl, such as methyl, lower alkoxy, such as methoxy or ethoxy, or hydroxy. Preferably the mono- or bicyclic heteroaryl group is selected from 2H-pyrrolyl, pyrrolyl, imidazolyl, benzimidazolyl, pyrazolyl, indazolyl, purinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalyl, quinazolinyl, quinnolinyl, pteridinyl, indolizinyl, 3H-indolyl, indolyl, isoindolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, tetrazolyl, furazanyl, benzo[d]pyrazolyl, thienyl and furanyl. More preferably the mono- or bicyclic heteroaryl group is selected from the group consisting of pyrrolyl, imidazolyl, such as 1H-imidazol-1-yl, benzimidazolyl, such as 1benzimidazolyl, indazolyl, especially 5-indazolyl, pyridyl, especially 2-, 3- or 4-pyridyl, pyrimidinyl, especially 2-pyrimidinyl, pyrazinyl, isoquinolinyl, especially 3-isoquinolinyl, quinolinyl, especially 4- or 8-quinolinyl, indolyl, especially 3-indolyl, thiazolyl, benzo[d]pyrazolyl, thienyl, and furanyl. In one preferred embodiment of the invention the pyridyl radical is substituted by hydroxy in ortho position to the nitrogen atom and hence exists at least partially in the form of the corresponding tautomer which is pyridin-(1H)2-one. In another preferred embodiment, the pyrimidinyl radical is substituted by hydroxy both in position 2 and 4 and hence exists in several tautomeric forms, e.g. as pyrimidine-(1H, ____ -3H)2,4-dione.

Heterocyclyl is especially a five, six or seven-membered heterocyclic system with one or two heterostoms selected from the group comprising nitrogen, oxygen, and autiur, which may be...

* PRESUMBLE CONTROL CO

Salts are especially the pharmaceutically acceptable salts of compounds of formula I.

Such salts are formed, for example, as acid addition salts, preferably with organic or inorganic acids, from compounds of formula I with a basic nitrogen atom, especially the pharmaceutically acceptable salts. Suitable inorganic acids are, for example, halogen acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid. Suitable organic acids are, for example, carboxylic, phosphonic, sulfonic or sulfamic acids, for example acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, glycolic acid, lactic acid, fumaric acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, malic acid, tartaric acid, citric acid, amino acids, such as glutamic acid or aspartic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, cyclohexanecarboxylic acid, adamantanecarboxylic acid, benzoic acid, salicylic acid, 4-aminosalicylic acid, phthalic acid, phenylacetic acid, mandelic acid, cinnamic acid, methane- or ethane-sulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 1,5-naphthalene-disulfonic acid, 2-, 3- or 4-methylbenzenesulfonic acid, methylsulfuric acid, ethylsulfuric acid, dodecylsulfuric acid, N-cyclohexylsulfamic acid, N-methyl-, N-ethyl- or N-propyl-sulfamic acid, or other organic protonic acids, such as ascorbic acid.

In the presence of negatively charged radicals, such as carboxy or sulfo, salts may also be formed with bases, e.g. metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, for example triethylamine or tri(2-hydroxyethyl)amine, or heterocyclic bases, for example N-ethyl-piperidine or N,N'-dimethylpiperazine.

When a basic group and an acid group are present in the same molecule, a compound of formula I may also form internal salts.

VEGFR is vascular endothelial growth factor receptor.

FGFR is fibroblast growth factor receptor.

PDGFR is platelet-derived growth factor receptor.

The invention further relates to the use of COMPOUND or a N-Oxide or a pharmaceutically acceptable salt thereof for the manufacture of medicament having an activity on protein kinases VEGFR-2, Tie-2, c-Src, c-Met, FGFR-1, Flt-1, HER-2, c-Abl, c-Raf, PDGFR-beta, c-Kit, or on a combination of the above enzymes, for the treatment and/or prevention of neurological and vascular disorders related to beta-amyloid generation and/or aggregation such as neurodegenerative diseases like Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis.

The invention also relates to a combination of COMPOUND or a pharmaceutically acceptable salt thereof with one or more drugs used for the treatment of neurological and vascular disorders related to beta-amyloid generation and/or aggregation such as neurodegenerative diseases like Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis to treat warm-blooded animals including mammals, especially humans.

It has now surprisingly been demonstrated that neurological and vascular disorders related to beta-amyloid generation and/or aggregation such as neurodegenerative diseases like Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis can be successfully treated with COMPOUND or pharmaceutically acceptable salt thereof.

The invention thus relates to the use of COMPOUND, to treat neurological and vascular disorders related to beta-amyloid generation and/or aggregation such as neurodegenerative diseases like Alzheimer's disease. Down's Syndrome, memory and cognitive impairment,

Depending on species, age, individual condition, mode of administration, and the clinical picture in question, effective doses, for example daily doses of about 10-1000 mg, preferably 10-50 mg or 50-200 or 200-400, especially 50-100 or 300-400 mg, are administered to warm-blooded animals of about 70 kg bodyweight. For adult patients with neurological and vascular disorders related to beta-amyloid generation and/or aggregation, especially neurodegenerative diseases like Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis.

The invention relates likewise to a process or a method for the treatment of neurological and vascular disorders related to beta-amyloid generation and/or aggregation, especially neurodegenerative diseases like Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis. The COMPOUNDS or N-oxides thereof can be administered as such or especially in the form of pharmaceutical compositions, prophylactically or therapeutically, preferably in an amount effective against the said diseases, to a warm-blooded animal, for example a human, requiring such treatment. In the case of an individual having a bodyweight of about 70 kg the daily dose administered is from approximately 0.01 g to approximately 5 g, preferably from approximately 0.25 g to approximately 1.5 g, more preferably 0.01g to 0.05g, even more preferably 0.025g to 0.1g most preferably 0.05g to 1g of a compound of the present invention.

The invention relates also to a method for administering to a human subject suffering from a neurological and vascular disorders related to beta-amyloid generation and/or aggregation, especially neurodegenerative diseases like Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis, COMPOUND or a pharmaceutically acceptable salt thereof, which comprises administering a pharmaceutically effective amount of COMPOUND or a pharmaceutically acceptable salt thereof to the human subject, preferably once daily for a period exceeding 3 months. The invention relates especially to such method wherein a daily dose of 200 to 800 mg, or 10mg to 200mg especially 400-600 mg or 10–100mg, preferably 400 mg or 10-50mg, of salt is administered.

The invention also relates in a combination which comprises (a) COMPOUND or a pharmaceutically acceptable salt thereof and (b) a therapeutic agent for the treatment of neurological and vascular disorders related to beta-amyloid generation and/or aggregation, most preferably a combination wherein the combination partners are present in synergistically effective amounts.

Surprisingly, it has been found a synergistic effect of a combination as defined herein has greater efficacy than the effects that can be achieved with either type of combination partner alone, i.e. greater than the effects of a monotherapy using only one of the combination partners as defined herein.

The effective dosage of each of the combination partners employed in the combination may vary depending on a variety of factors including the particular combination of the pharmaceutical compound partners, the route of administration, the severity of the disease, the renal and hepatic functions of the patient. The molar ratio (a)/(b) of the combination partners is about 0.1 to 10, most preferably 0.3 to 3 and the unit dosage form contains 20 to 200 mg, most preferably 50 to 150 mg of 4-Methyl-N-[3-(4-methyl-imidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide of the formula I.

Example 1:

Cell culture

HEK/APPswe cells are plated in microtiter plates precoated with 10 μg/ml poly-D-lysine at 12'000 cells/well in 100 μl/well DMEM medium supplemented with 10% FCS, 0.25 mg/ml - G418 sulfate, 1% penicillin streptomycin. The following day, supernatant is replaced with 90 μl/well of fresh medium and 10 μl/well of compound diluted in culture medium are added. Two types of control wells are used: cell culture medium without cells plus 10 μl/well of all compound dilutions (background signals) and cell culture medium from untreated cells mositive control. 23 hours later after compound addition, conditioned medium is cellscaed.

12. N. . . S.A. 12187777772 U. . 7 1212211 113

The same of the sa

monoclonal antibody B10E7 diluted 1:2750 for detection of A β_{42} . Wells are then emptied, washed three times with 350 μ l PBS and blocking is performed for 2 hours at room temperature with 200 μ l/well of 2 % BSA, 0.05% Tween20 in PBS. After washing the wells as described above, 10 μl of the conditioned media samples to be tested are added to wells containing 90 μ l of medium and 0.18 μ g/ml of biotinylated monoclonal β 1 antibody and incubated overnight at 4°C. Wells were washed as described above and 100 µl/well of alkaline phosphatase coupled to streptavidin diluted 1:5'000 in medium are added. After 1 hour incubation at room temperature wells are washed as described above and alkaline phosphatase activity is determined by adding 100 μl/well of diethanolamine buffer, pH 9.8 (100 mM diethanolamine, 1 mM MgCl₂, pH adjusted to 9.8 with 2 M HCl) containing the chemiluminescent CSPD substrate (25 mM stock solution diluted 1:416) and the enhancer Emerald II (diluted 1:10). After 15 minutes incubation at room temperature in the dark, plates are measured on the luminometer (Analyst AD; LJL Biosystems, USA $A\beta_{40}$). Values are given as % reduction of $A\tilde{\beta}$. The 100% reduction value is calculated from a series of wells containing only medium and extract and the 0% reduction value from conditioned medium only. Samples are measured in triplicate. A reference compound is included in all plates as control for assay performance.

MTS assay

To determine cytotoxicity, cells are tested by the MTS colorimetric kit performed essentially according to the manufacturer's specifications (Promega, #G5430X). After collecting the conditioned medium for the sandwich ELISA, the rest of the conditioned medium is removed completely and replaced with 100 µl/well culture medium containing one fifth of MTS solution prepared as recommended in the kit. After 3 hours incubation at 37°C, absorbance is read at an OD of 490 nm with a reference wavelength set to 630 nm. Values are given as % metabolic rate (n=6). The 0% value is calculated from wells which had no cells, 100% from wells with an untreated cell layer

Example 2:

4-Methyl-N-[3-(4-methyl-imidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2ylamino)-benzamide

This compound has the following activities in cell-free enzyme assays:

VEGFR-2	3.2 microM
Tie-2	4.6 microM
c-Src	4.6 microM
c-Met	4.7 microM
FGFR-1	6.7 microM
Flt-1	7.7 microM
HER-2	7.2 microM
c-Abl	295 nM
c-Raf-1	1.1 microM
PDGFR-beta	5.8 microM
c-Kit	7.8 microM

The compound of example 1 demonstrated a clear reduction of Abeta secretion in the medium of HEK/APPswe cell cultures at concentrations below 10 microM, without having any effect on cellular viability.

Claims:

1. Use of an inhibitor of one or more protein kinases VEGFR-2, Tie-2, c-Src, c-Met, FGFR-1, Fit-1, HER-2, c-Abl, c-Raf, PDGFR-beta and c-Kit, for the treatment and/or prevention of neurological and vascular disorders related to beta-amyloid generation and/or aggregation.

2. The use according to claim 1 wherein the inhibitor is a compound of formula I

wherein

R₁ represents hydrogen, lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, carboxylower alkyl, lower alkoxycarbonyl-lower alkyl, or phenyl-lower alkyl;

R₂ represents hydrogen, lower alkyl, optionally substituted by one or more identical or different radicals R₃, cycloalkyl, benzcycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted;

and R₃ represents hydroxy, lower alkoxy, acyloxy, carboxy, lower alkoxycarbonyl, carbamoyl, N-mono- or N,N-disubstituted carbamoyl, amino, mono- or disubstituted amino, cycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted;

or wherein R_1 and R_2 together represent alkylene with four, five or six carbon atoms optionally mono- or disubstituted by lower alkyl, cycloalkyl, heterocyclyl, phenyl, hydroxy, lower alkoxy, amino, mono- or disubstituted amino, oxo, pyridyl, pyrazinyl or pyrimidinyl; benzalkylene with four or five carbon atoms; oxaalkylene with one oxygen and three or four carbon atoms; or azaalkylene with one nitrogen and three or four carbon atoms wherein nitrogen is unsubstituted or substituted by lower alkyl, phenyl-lower alkyl, lower alkoxycarbonyl-lower alkyl, carboxy-lower alkyl, carbamoyl-lower alkyl, N-mono- or N,N-disubstituted carbamoyl-lower alkyl, cycloalkyl, lower alkoxycarbonyl, carboxy, phenyl, substituted phenyl, pyridinyl, pyrimidinyl, or pyrazinyl;

R₄ represents hydrogen, lower alkyl, or halogen; or a pharmaceutically acceptable salt thereof.

- 3. Use according to claim 1 wherein the inhibitor is a compound selected from,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzanilide,
- 4-Methyl-N-(3-pyridinyl)-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- N-(4-Chlorophenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 2(R)- and 2(S)-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzoylamino]propanoic acid,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(8-quinolinyl)benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(3-[trifluoromethoxy]phenyl)benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(2-pyrrolidinoethyl)benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(3-pyrrolidinophenyl)benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(1-[2-pyrimidinyl]-4-piperidinyl)benzamide,
- *N*-(4-Di-[2-methoxyethyl]amino-3-trifluoromethylphenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- N-(4-[1H-Imidazolyl]-3-trifluoromethylphenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-(2-pyrrolidino-5-trifluoromethylphenyl)benzamide,
- N-(3,4-difluorophenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-M-(3-influoromethylbanz/l)benzemide,

- 4-Methyl-N-[4-(4-methyl-1-piperazinyl)-3-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino] benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-(2,2,2-trifluoroethoxy)-3-trifluoromethylphenyl]benzamide,
- 4-Methyl-*N*-[4-(2-methyl-1H-imidazolyl)-3-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-(4-phenyl-3-trifluoromethylphenyl)-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-N-[4-(4-methyl-1H-imidazolyl)-3-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- Methyl 2(R)- and 2(S)-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzoylamio]-3-[4-hydroxyphenyl]propanoate,
- N-[2-(N-Cyclohexyl-N-methylaminomethyl)phenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- N-[3-[2-(1H-Imidazolyl)ethoxy]phenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-[3-morpholino-5-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(4-pyrrolidino-3-trifluoromethylphenyl)benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-(4-piperidino-3-trifluoromethylphenyl)benzamide,
- 4-Methyl-*N*-[4-morpholino-3-trifluoromethylphenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- N-(4-Ethylamino-3-trifluoromethylphenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-(3-trifluoromethoxyphenyl)benzamide, *N*-[4-(2-Hydroxypropylamino)-3-trifluoromethylphenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-

pyrimidinyl]amino]benzamide,

- N-(4-Diethylamino-3-trifluoromethylphenyl)-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[3-(3-pyridinyl)-5-trifluorophenyl]benzamide,

- *N*-[3-[3-(1H-Imidazolyl)propoxy]phenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(3-pyridinyl)-3-trifluorophenyl]benzamide,
- 4-Methyl-*N*-[3-(4-methyl-1-piperazinyl)-5-trifluorophenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-[3-methylcarbamoyl-5-trifluorophenyl]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide,
- 4-Methyl-*N*-[3-methylcarbamoyl-5-morpholino]-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzamide.
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[3-[3-(1H-imidazol-1-yl)propoxy]-phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[3-[2-(1H-imidazol-1-yl)ethoxy]phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(ethylamino)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(diethylamino)-3-(trifluoromethyl)phenyl]benzamide,
- (\pm)-4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-[(2-hydroxypropyl)amino]-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-[bis(2-methoxyethyl)amino]-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(4-methyl-1-piperazinyl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-(1-piperidinyl)-3- (trifluoromethyl)phenyl]benzamide,
 - 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[4-(1-pyrrolidinyl)-3-(trifluoromethyl)phenyl]benzamide,
 - 4-Methyl-2-[[4-(3-pyridihyl)-2-pyrimidihyl]emino]-FI-[4-(4-morpholinyl)-3-

- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-(1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-(2,4-dimethyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-(4-methyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[4-(2-methyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[3-(4-morpholinyl)-5-[(methylamino)carbonyl]phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[3-[(methylamino)carbonyl]-5-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[5-(3-pyridinyl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[5-(4-morpholinyl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[5-(2-methyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-N-[3-(4-methyl-imidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[5-(5-methyl-1H-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide,
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N-[3-(4-methyl-1-piperazinyl)-5-(trifluoromethyl)phenyl]benzamide, and
- 4-Methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-*N*-[2-(1-pyrrolidinyl)-5- (trifluoromethyl)phenyl]benzamide;
- or a pharmaceutically acceptable salt thereof.
- 4. Use according to claim 1 wherein the inhibitor is 4-Methyl-N-[3-(4-methyl-imidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide; or a pharmaceutically acceptable salt thereof.
- 5. Use according to any one of the claims 1-4 wherein a daily dose of 10 to 800 mg of a compound is administered to an adult human.

- 6. Use according to any one of claims 1 5 wherein the disease to be treated is selected from Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis.
- 7. Use according to any one of claims 1 5 wherein the disease to be treated is Alzheimer's disease.
- 8. A method of treating mammals suffering from neurological and vascular disorders related to beta-amyloid generation and/or aggregation which comprises administering to a said mammal in need of such treatment a-pharmaceutical composition comprising

 (a) a dose, effective against neurological and vascular disorders related to beta-amyloid generation and/or aggregation, of 4-Methyl-N-[3-(4-methyl-imidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide having the formula I

- 9. A combination according to claim 7 wherein the combination partners are present in synergistically effective amounts.
- 10. Use of an inhibitor according to any one of claims 1 4 or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment and/or prevention of neurological and vascular disorders related to beta-amyloid generation and/or aggregation.
- 11. A commercial package comprising a compound of formula l

wherein

R₁ represents hydrogen, lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, carboxy-lower alkyl, lower alkoxycarbonyl-lower alkyl, or phenyl-lower alkyl;

 R_2 represents hydrogen, lower alkyl, optionally substituted by one or more identical or different radicals R_3 , cycloalkyl, benzcycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted;

and R₃ represents hydroxy, lower alkoxy, acyloxy, carboxy, lower alkoxycarbonyl, carbamoyl, N-mono- or N,N-disubstituted carbamoyl, amino, mono- or disubstituted amino, cycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted;

or wherein R_1 and R_2 together represent alkylene with four, five or six carbon atoms optionally mono- or disubstituted by lower alkyl, cycloalkyl, heterocyclyl, phenyl, hydroxy,

lower alkoxy, amino, mono- or disubstituted amino, oxo, pyridyl, pyrazinyl or pyrimidinyl; benzalkylene with four or five carbon atoms; oxaalkylene with one oxygen and three or four carbon atoms; or azaalkylene with one nitrogen and three or four carbon atoms wherein nitrogen is unsubstituted or substituted by lower alkyl, phenyl-lower alkyl, lower alkoxycarbonyl-lower alkyl, carboxy-lower alkyl, carbamoyl-lower alkyl, N-mono- or N,N-disubstituted carbamoyl-lower alkyl, cycloalkyl, lower alkoxycarbonyl, carboxy, phenyl, substituted phenyl, pyridinyl, pyrimidinyl, or pyrazinyl;

R₄ represents hydrogen, lower alkyl, or halogen; or a pharmaceutically acceptable salt thereof in the treatment of neurological and vascular disorders related to beta-amyloid generation and/or aggregation, together with instructions for simultaneous, separate or sequential use thereof in the treatment of a proliferative disease.

Abstract

The invention relates to the use of an inhibitor of formula I

or a N-Oxide or a pharmaceutically acceptable salt thereof having an activity on protein kinases VEGFR-2, Tie-2, c-Src, c-Met, FGFR-1, Flt-1, HER-2, c-Abl, c-Raf, PDGFR-beta, c-Kit, or on a combination of the above enzymes, for the treatment and/or prevention of neurological and vascular disorders related to beta-amyloid generation and/or aggregation such as neurodegenerative diseases like Alzheimer's disease, Down's Syndrome, memory and cognitive impairment, dementia, amyloid neuropathies, brain inflammation, nerve and brain trauma, vascular amyloidosis, or cerebral hemorrhage with amyloidosis

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.