Introduction to DevOps

AGENDA

Agile Model Why DevOps? What is DevOps? DevOps Lifecycle DevOps Tools

AGILE MODEL

AGILE MODEL

To overcome the challenges faced in the Waterfall Model, we came up with the Agile Methodology

Agile Method believes in creating shorter development lifecycles

Shorter Development Lifecycles are achieved by not releasing all the features at once by following an incremental model of development

ADVANTAGES OF AGILE MODEL

- Customer Satisfaction is high
- Less Planning Required
- Requirements can be dynamic in nature
- Functionality can be created and tested quickly

DISADVANTAGES OF AGILE MODEL

Success of the project depends heavily on customer interaction

Although, the software quality was improved.

We still had a lack of efficiency among the development team. A typical software development team consists of Developers and Operations employees. Let us understand their job roles

A developer's job is to develop applications and pass his code to the operations team

Developer

The operations team job is to test the code, and provide feedback to developers in case of bugs. If all goes well, the operations team uploads the code to the build servers

Developer

The developer used to run the code on his system, and then forward it to operationsteam.

The operations when tried to run the code on their system, it did not run!

Developer

But, the code runs fine on the developer's system and hence he says "It is not my fault!"

The operations then marked this code as faulty, and used to forward this feedback to the developer

Developer

This led to a lot of back and forth between the developer and the operations team, hence impacted efficiency.

Developer

This problem was solved using Devops!

TRADITIONAL IT VS DEVOPS

Traditional IT	Devops
Less Productive	More Productive
Skill Centric Team	Team is divided into specializedsilos
More Time invested in planning	Smaller and Frequent releases lead to easy scheduling and less time in planning
Difficult to achieve target or goal	Frequent releases, with continuous feedback makes achieving targets easy

WHAT IS DEVOPS?

WHAT IS DEVOPS?

Devops is a software development methodology which improves the collaboration between developers and operations team using various automation tools. These automation tools are implemented using various stages which are a part of the Devops Lifecycle

DevOps Lifecycle

The Devops Lifecycle divides the SDLC lifecycle into the following stages:

Automated CI/CD Pipeline

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

This stage involves committing code to version control tools such as **Git** or **SVN** for maintaining the different versions of the code, and tools like **Ant**, **Maven**, **Gradle** for building/packaging the code into an executable file that can be forwarded to the QAs for testing.

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

The stage is a critical point in the whole Devops Lifecycle. It deals with integrating the different stages of the devops lifecycle, and is therefore the key in automating the whole Devops Process

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

In this stage the code is built, the environment or the application is containerized and is pushed on to the desired server. The key processes in this stage are Configuration Management, Virtualization and Containerization

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

The stage deals with automated testing of the application pushed by the developer. If there is an error, the message is sent back to the integration tool, this tool in turn notifies the developer of the error. If the test was a success, the message is sent to Integration tool which pushes the build on the production server

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

The stage continuously monitors the deployed application for bugs or crashes. It can also be setup to collect user feedback. The collected data is then sent to the developers to improve the application

We have discussed the Devops Methodology, but this methodology cannot be put into action without it's corresponding tools. Let us discuss the devops tools with their respective lifecycle stages

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

Git is a distributed version-control system for tracking changes in computer files and coordinating work on those files among multiple people. It is primarily used for source-code management in software development, but it can be used to keep track of changes in any set of files

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

Jenkins is an open source automation server written in Java. Jenkins helps to automate the non-human part of the software development process, with continuous integration and facilitating technical aspects of continuous delivery

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

Selenium is a portable software-testing framework used for web applications. It is an open source tool which is used for automating the tests carried out on web browsers (Web applications are tested using any webbrowser).

Continuous Development

Continuous Integration

Continuous Deployment

Continuous Testing

Continuous Monitoring

Nagios is an open-source devops tool which is used for monitoring systems, networks and infrastructure. It also offers monitoring and alerting services for any configurable event.

Nagios®

Thank you