

Master of Computer Applications MCAC 303: Automata Theory Unique Paper Code: 223401303

Semester III
December-2022
Year of admission: 2021

Time: Three Hours

Max. Marks: 70

Instructions:

1. All questions carry equal marks.

2. Notations have their usual meaning.

3. Assume $\Sigma \equiv \{a,b\}$ as the underlying alphabet unless mentioned otherwise.

Construct regular expression and the corresponding non-deterministic finite automaton (NFA) for the language $L = \{w \in \Sigma^* : w \text{ has } 3k + 1 \text{ } b's \text{ for } k \ge 0\}.$

Construct a minimum state finite automaton equivalent to the following finite automaton:

For languages L_1 and L_2 , described by the following finite automata (FA), construct the FA that defines $L_1 + L_2$.

- For languages, L₁ and L₂, described by the regular expressions $(ab^*)^*$ and $(b + ab)^*(a + \epsilon)$, respectively, construct the following:
 - a) DFA for L_1 and L_2
 - b) DFA that defines $L_1 \cap L_2$.

Find the regular expression for the following finite automaton using Arden's Theorem:

6. Construct a deterministic finite automaton for the following $NFA - \epsilon$:

n+m=k

Use pumping lemma to check whether the language $L:\{a^nb^m:n+m \text{ is prime}\}$ is regular or not. 2 n-i+m

Describe the language generated by the following context-free grammar (CFG):

$$S \to SS$$

$$S \to XXX$$

$$X \to aX \mid Xa \mid b$$

and all bish hard

Also, convert the CFG into Chomsky Normal Form (CNF).

9 Consider the following context-free grammar (CFG):

 $S \rightarrow aA \mid aBB$ $A \rightarrow aaA \mid \epsilon$ $B \rightarrow bB \mid bbC$

 $C \to B$

Eliminate all unit productions, useless productions, and null productions from CFG.

Use CYK algorithm to check whether the string w = aabbb is in the language generated by the following grammar:

$$S \rightarrow AB$$

$$A \rightarrow BB \mid a$$

$$B \rightarrow AB \mid b$$

Is the language $\{wcw^R : w \in \Sigma^*\}$ deterministic? If yes, construct the pushdown automaton (PDA).

Construct the Turing Machine (TM) that semi-decides the language $L: \{a^n b^n c^n : n \ge 0\}$

is second tapes and 13. Assuming first the of content $\triangleright \underline{\sqcup} ab$ and $\triangleright \underline{\sqcup}$, respectively, describe the operation of the following 2-tape TM:

14. Prove that recursive languages are closed under complementation.

abachha