INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 487/04, A61K 31/53

(11) Internationale Veröffentlichungsnummer: **A1**

Veröffentlichungsdatum:

(43) Internationales

20. Mai 1999 (20.05.99)

WO 99/24433

(21) Internationales Aktenzeichen:

PCT/EP98/06910

(22) Internationales Anmeldedatum: 31. Oktober 1998 (31.10.98)

(30) Prioritätsdaten:

197 50 085.4 12. November 1997 (12.11.97) DE 198 12 462.7 23. März 1998 (23.03.98) DE 198 40 289.9 4. September 1998 (04.09.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): NIEWÖHNER, Ulrich [DE/DE]; Gartenstrasse 3, D-42929 Wermelskirchen (DE). ES-SAYED, Mazen [DE/DE]; Claudiusweg 3, D-42115 Wuppertal (DE). HANING, Helmut [DE/DE]; Claudiusweg D-42115 Wuppertal (DE). SCHENKE, Thomas [DE/DE]; Mühlenstrasse 113, D-51469 Bergisch Gladbach (DE). SCHLEMMER, Karl-Heinz [DE/DE]; Wildsteig 22a, D-42113 Wuppertal (DE). KELDENICH, Jörg [DE/DE]; Damaschkeweg 49, D-42113 Wuppertal (DE). BISCHOFF, Erwin [DE/DE]; Pahlkestrasse 73, D-42115 Wuppertal (DE). PERZBORN, Elisabeth [DE/DE]; Am Tescher Busch 13, D-42327 Wuppertal (DE). DEMBOWSKY, Klaus

[DE/DE]; Ziegeläckerweg 10, D-69198 Schriesheim (DE). SERNO, Peter [DE/DE]; Offenbachstrasse 12, D-51467 Bergisch Gladbach (DE). NOWAKOWSKI, Marc [DE/DE]; Pahlkestrasse 17, D-42115 Wuppertal (DE).

(74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: 2-PHENYL SUBSTITUTED IMIDAZOTRIAZINONES AS PHOSPHODIESTERASE INHIBITORS

(54) Bezeichnung: 2-PHENYL-SUBSTITUIERTE IMIDAZOTRIAZINONE ALS PHOSPHODIESTERASE INHIBITOREN

(57) Abstract

The invention relates to 2-phenyl substituted imidazotriazinones with short, unbranched alkyl radicals in position 9 in accordance with general formula (I). Said 2-phenyl substituted imidazotriazinones are produced from the corresponding 2-phenyl imdazotriazinones by chlorosulphonation and subsequent reaction with the amines. These compounds inhibit cGMP-metabolising phosphodiesterases and are suitable for use as the active agents in medicaments for treating cardiovascular and cerebrovascular diseases and/or diseases of the urogenital system, especially for treating erectile dysfunction.

(57) Zusammenfassung

Die 2-Phenyl-substituierten Imidazotriazinone mit kurzen, unverzweigten Alkylresten in der 9-Position gemäß der allgemeinen Formel (I) werden aus den entsprechenden 2-Phenyl-imidazotriazinonen durch Chlorsulfonierung und anschließender Umsetzung mit den Aminen hergestellt. Die Verbindungen hemmen cGMP-metabolisierende Phosphodiesterasen und eignen sich als Wirkstoffe in Arzneimitteln, zur Behandlung von cardiovaskulären und cerebrovaskulären Erkrankungen und/oder Erkrankungen des Urogenitalsystems, insbesondere zur Behandlung der erektilen Dysfunktion.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	$\mathbf{F}\mathbf{R}$	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
\mathbf{BG}	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	$\mathbf{z}\mathbf{w}$	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

2-PHENYL-SUBSTITUIERTE IMIDAZOTRIAZINONE ALS PHOSPHODIESTERASE INHIBITOREN

5

10

15

25

30

Die vorliegende Erfindung betrifft 2-Phenyl-substituierte Imidazotriazinone, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als Inhibitoren cGMP-metabolisierender Phosphodiesterasen.

In der Offenlegungsschrift DE 28 11 780 sind Imidazotriazine als Bronchodilatoren mit spasmolytischer Aktivität und Hemmaktivität gegen cyclisches Adenosinmonophosphat metabolisierende Phosphodiesterasen (cAMP-PDE's, Nomenklatur nach Beavo: PDE-III und PDE-IV) beschrieben. Eine Hemmwirkung gegen cyclisches Guanosin-monophosphat metabolisierende Phosphodiesterasen (cGMP-PDE's, Nomenklatur nach Beavo und Reifsnyder (Trends in Pharmacol. Sci. 11, 150-155, 1990) PDE-I, PDE-II und PDE-V) ist nicht beschrieben. Es werden keine Verbindungen beansprucht, die eine Sulfonamidgruppe im Arylrest in der 2-Position enthalten. Weiterhin werden Imidazotriazinone in FR 22 13 058, CH 59 46 71, DE 22 55 172, DE 23 64 076 und EP 000 9384 beschrieben, die in der 2-Position keinen substituierten Arylrest besitzen, und ebenfalls als Bronchodilatatoren mit cAMP-PDE inhibitorischer Wirkung beschrieben werden.

In WO 94/28902 werden Pyrazolopyrimidinone beschrieben, die sich für die Behandlung von Impotenz eignen.

Die erfindungsgemäßen Verbindungen sind potente Inhibitoren von entweder einer oder mehrerer der cyclisches Guanosin 3',5'-monophosphat metabolisierenden Phosphodiesterasen (cGMP-PDE's). Entsprechend der Nomenklatur von Beavo und Reifsnyder (Trends in Pharmacol. Sci. 11, 150-155, 1990) handelt es sich um die Phosphodiesterase Isoenzyme PDE-I, PDE-II und PDE-V.

Ein Anstieg der cGMP-Konzentration kann zu heilsamen, antiaggregatorischen, antithrombotischen, antiproliferativen, antivasospastischen, vasodilatierenden, natriuretischen und diuretischen Effekten führen. Es kann die Kurz- oder Langzeitmodulation

der vaskulären und kardialen Inotropie, den Herzrhythmus und die kardiale Erregungsleitung beeinflussen (J.C. Stoclet, T. Keravis, N. Komas and C. Kugnier, Exp. Opin. Invest. Drugs (1995), 4 (11), 1081-1100).

Die vorliegende Erfindung betrifft jetzt 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I)

in welcher

10

- R¹ für Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,
- R² für geradkettiges Alkyl mit bis zu 4 Kohlenstoffatomen steht,

15

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 8 Kohlenstoffatomen stehen, oder

20

25

für eine geradkettige oder verzweigte Alkylkette mit bis zu 10 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Trifluormethyl, Trifluormethoxy, Hydroxy, Halogen, Carboxyl, Benzyloxycarbonyl, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 6 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

und/oder

substituiert ist,

worin

5

10

15

20

a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

R⁷, R⁸ und R⁸ gleich oder verschieden sind und Wasserstoff bedeuten, oder

Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen, einen 5- bis 6-gliedrigen ungesättigten, partiell ungesättigten oder gesättigten, gegebenenfalls benzokondensierten Heterocyclus, mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Nitro, Trifluormethyl, Trifluormethoxy, Carboxyl, Halogen, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,

worin

c eine Zahl 0 oder 1 bedeutet,

5

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten,

oder

10

15

R⁷, R⁸ und R⁸ geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Hydroxy, Halogen, Aryl mit 6 bis 10 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,

20

worin

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

25

und

d eine Zahl 0 oder 1 bedeutet,

30

oder

R⁷ und R⁸ und/oder R⁷ und R⁸ gemeinsam mit dem Stickstoffatom einen 5bis 7-gliedrigen, gesättigten Heterocyclus bilden, der gegebenenfalls noch ein weiteres Heteroatom aus der Reihe S oder O oder einen Rest der Formel -NR¹⁶ enthalten kann,

5

worin

 R^{16}

stituiert ist,

10

Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl, einen 5- bis 7-gliedrigen aromatischen oder gesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, der gegebenenfalls durch Methyl substituiert ist, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy sub-

15

R⁹ Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

20

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

und/oder die oben unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclo-25 alkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder durch einen 5- bis 7-gliedrigen, partiell ungesättigten, gesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus, der bis zu 4 Heteroatome aus der Reihe S, N; O oder einen Rest der Formel -NR¹⁷ enthalten kann, substituiert ist,

30

worin

R¹⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,

oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, oder geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist,

PCT/EP98/06910

und wobei Aryl und der Heterocyclus gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Nitro, Halogen, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen, Hydroxy, Tri-fluormethyl, Trifluormethoxy und/oder durch einen Rest der Formel -SO₃NR¹⁸R¹⁹ substituiert sind,

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

und/oder

5

15

20

R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht,

25 worin

R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

30 und/oder

R³ oder R⁴ für Adamantyl stehen, oder

für Reste der Formeln

$$H_3C$$
 C_6H_5
 SO_2
 C_5O_2

5

oder für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder für einen 5- bis 7-gliedrigen partiell ungesättigten, gesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus stehen, der bis zu 4 Heteroatome aus der Reihe S, N; O oder einen Rest der Formel -NR²² enthalten kann,

10

worin

15

R²² die oben angegebene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder

Carboxyl, Formyl oder geradkettiges oder verzweigtes Acyl mit bis zu 5 Kohlenstoffatomen bedeutet,

20

und wobei Cycloalkyl, Aryl und/oder der Heterocyclus gegebenenfalls einbis mehrfach, gleich oder verschieden durch Halogen, Triazolyl, Trifluormethyl, Trifluormethoxy, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

worin

e eine Zahl 0 oder 1 bedeutet,

5 R²³ einen Rest der Formel

Cycloalkyl mit 3 bis 7 Kohlenstoffatomen bedeutet, oder

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, Benzyloxy, Tetrahydropyranyl, Tetrahydrofuranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Carboxyl, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, Hydroxy oder Halogen substituiert sein kann,

und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,

worin

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, oder

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen gesättigten Heterocyclus bilden, der gegebenenfalls ein weiteres Heteroatom aus der Reihe S oder O enthalten kann.

10

15

20

25

und

 R^{30} Phenyl oder Adamantyl bedeutet,

5

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind.

10

 R^{26} und R^{27} die oben angegebene Bedeutung von R^{10} und R^{11} haben und mit dieser gleich oder verschieden sind

und/oder Cycloalkyl, Aryl und/oder der Heterocyclus gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, durch einen 5- bis 7gliedrigen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist.

worin

20

25

30

15

- R^{31} Wasserstoff bedeutet oder die oben angegebene Bedeutung von R9 hat und mit dieser gleich oder verschieden ist,
- R^{32} und R^{33} die oben angegebene Bedeutung von R^{10} und R^{11} haben und mit dieser gleich oder verschieden sind,
 - R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist, oder

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen 5- bis 6-gliedrigen gesättigten Heterocyclus bilden, der ein weiteres Heteroatom aus der Reihe S oder O oder einen Rest der Formel -NR³⁶ enthalten kann.

5 worin

> R^{36} Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 7 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist.

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen, ungesättigten oder gesättigten oder partiell ungesättigten, gegebenenfalls benzo-15 kondensierten Heterocyclus bilden, der gegebenenfalls bis zu 3 Heteroatome aus der Reihe S, N, O oder einen Rest der Formel -NR³⁷ enthalten kann.

worin

 R^{37}

20

25

30

10

Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Trifluormethyl, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch Gruppen der Formel -(D), NR³⁸R³⁹, $-CO-(CH_2)_g-O-CO-R^{40}$, $-CO-(CH_2)_h-OR^{41}$ oder $-P(O)(OR^{42})(OR^{43})$ substituiert ist,

worin

g und h gleich oder verschieden sind und eine Zahl 1, 2, 3 oder 4 bedeuten,

5

und

f eine Zahl 0 oder 1 bedeutet,

10

- D eine Gruppe der Formel -CO oder -SO₂ bedeutet,
- R³⁸ und R³⁹ gleich oder verschieden sind und die oben angegebene Bedeutung von R⁷ und R⁸ haben,

15

- R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet,
- R⁴¹ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet,

20

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

25

oder

R³⁷ einen Rest der Formel -(CO)_i-E bedeutet,

worin

30

i eine Zahl 0 oder 1 bedeutet,

5

10

15

20

E Cycloalkyl mit 3 bis 7 Kohlenstoffatomen oder Benzyl bedeutet,

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 4 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Nitro, Halogen, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,

worin

R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

E Reste der Formeln

und der unter R³ und R⁴ aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls ein- bis mehrfach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl,

geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 6 Kohlenstoffatomen, Nitro und Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

substituiert ist,

5

10

15

20

25

worin

R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R⁴⁸ Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen bedeutet,

j eine Zahl 0 oder 1 bedeutet,

und

 R^{49} und R^{50} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{14} und R^{15} haben,

und/oder der unter R³ und R⁴ aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, das gegebenenfalls einbis mehrfach, gleich oder verschieden durch Hydroxy, Halogen, Carboxyl, Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 8 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch einen Rest der Formel -SO₃H, -NR⁵¹R⁵² oder P(O)OR⁵³OR⁵⁴ substituiert ist,

worin

5

R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

 R^{53} und R^{54} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{10} und R^{11} haben,

10

und/oder das Alkyl gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch Halogen, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen, oder durch eine Gruppe der Formel -NR⁵¹'R⁵²' substituiert sein kann,

worin

20

15

 R^{51} ' und R^{52} ' die oben angegebene Bedeutung von R^{51} und R^{52} haben und mit dieser gleich oder verschieden sind,

und/oder der unter R³ und R⁴ aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen oder durch einen 5- bis 7-gliedrigen, gesättigen, partiell ungesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteratomen aus der Reihe S, N und/oder O, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert ist, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen substituiert sein können,

30

25

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

$$H_3C$$
, $CH_2)_3-CH_3$, N^+

5

15

20

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen stehen,

und deren Salze, Hydrate, N-Oxide und isomere Formen.

Die erfindungsgemäßen Verbindungen können in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren als auch deren jeweilige Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

Die erfindungsgemäßen Stoffe können auch als Salze vorliegen. Im Rahmen der Erfindung sind physiologisch unbedenkliche Salze bevorzugt.

Physiologisch unbedenkliche Salze können Salze der erfindungsgemäßen Verbindungen mit anorganischen oder organischen Säuren sein. Bevorzugt werden Salze mit anorganischen Säuren wie beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure oder Schwefelsäure, oder Salze mit organischen Carbon- oder Sulfonsäuren wie beispielsweise Essigsäure, Maleinsäure, Fumarsäure, Äpfelsäure, Zitronensäure, Weinsäure, Milchsäure, Benzoesäure, oder Methansulfonsäure, Ethansulfonsäure, Phenylsulfonsäure, Toluolsulfonsäure oder Naphthalindisulfonsäure.

Physiologisch unbedenkliche Salze können ebenso Metall- oder Ammoniumsalze der erfindungsgemäßen Verbindungen sein. Besonders bevorzugt sind z.B. Natrium-, Kalium-, Magnesium- oder Calciumsalze, sowie Ammoniumsalze, die abgeleitet sind von Ammoniak oder organischen Aminen, wie beispielsweise Ethylamin, Dibzw. Triethylamin, Di- bzw. Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Arginin, Lysin, Ethylendiamin oder 2-Phenylethylamin.

15

20

25

30

10

5

Heterocyclus, gegebenenfalls benzokondensiert, steht im Rahmen der Erfindung im allgemeinen für einen gesättigten, partiell ungesättigten oder ungesättigten 5- bis 7-gliedrigen Heterocyclus, der bis zu 4 Heteroatome aus der Reihe S, N und/oder O enthalten kann. Beispielsweise seien genannt: Azepin, Diazepin, Indolyl, Isochinolyl, Chinolyl, Benzo[b]thiophen, Benzo[b]furanyl, Pyridyl, Thienyl, Tetrahydrofuranyl, Tetrahydropyranyl, Furyl, Pyrrolyl, Thiazolyl, Triazolyl, Tetrazolyl, Isoxazolyl, Imidazolyl, Morpholinyl, Thiomorpholinyl, Pyrrolidinyl, Piperazinyl, N-Methylpiperazinyl oder Piperidinyl. Bevorzugt sind Chinolyl, Furyl, Pyridyl, Thienyl, Piperidinyl, Pyrrolidinyl, Piperazinyl, Azepin, Diazepin, Thiazolyl, Triazolyl, Tetrazolyl, Tetrahydrofuranyl, Tetrahydropyranyl, Morpholinyl und Thiomorpholinyl.

Ein geradkettiger oder verzweigter Acylrest mit 1 bis 6 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Acetyl, Ethylcarbonyl, Propylcarbonyl, Isopropylcarbonyl, Butylcarbonyl, Isobutylcarbonyl, Pentylcarbonyl und Hexylcarbonyl. Bevorzugt ist ein geradkettiger oder verzweigter Acylrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt sind Acetyl und Ethylcarbonyl.

<u>Ein geradkettiger oder verzweigterAlkoxyrest</u> mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen steht im Rahmen der Erfindung für Methoxy, Ethoxy, n-Propoxy, Isopropoxy, tert.Butoxy, n-Pentoxy und n-Hexoxy. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 6, 1 bis 4 bzw. 1 bis 3 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 3 Kohlenstoffatomen.

5

10

30

Ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 6 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl und tert.Butoxycarbonyl. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 3 Kohlenstoffatomen.

Ein geradkettiger oder verzweigter Alkylrest mit 1 bis 4, 1 bis 6, 1 bis 8 und 1 - 10 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Methyl, Ethyl, n-Propyl, Isopropyl, tert.Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl und n-Decyl. Bevorzugt sind geradkettige oder verzweigte Alkylreste mit 1 bis 3, 1 bis 4 bzw. 1 bis 8 Kohlenstoffatomen. Besonders bevorzugt sind geradkettige oder verzweigte Alkylreste mit 1 bis 4 bzw. 1 bis 3 Kohlenstoffatomen.

Geradkettiges Alkyl mit bis zu 4 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Methyl, Ethyl, n-Propyl und n-Butyl.

25 $\underline{(C_6-C_{10})}$ -Aryl steht im allgemeinen für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.

Cycloalkyl mit 3 bis 8 bzw. 3 bis 7 Kohlenstoffatomen steht im Rahmen der Erfindung beispielsweise für Cyclopropyl, Cyclopentyl, Cyclobutyl, Cyclohexyl, Cyclohexyl, Oder Cyclooctyl. Bevorzugt seien genannt: Cyclopropyl, Cyclopentyl und Cyclohexyl.

Cycloalkyloxy mit 3 bis 8 Kohlenstoffatomen steht im Rahmen der Erfindung für Cyclopropyloxy, Cyclopentyloxy, Cyclobutyloxy, Cyclohexyloxy, Cyclohexyloxy oder Cyclooctyloxy. Bevorzugt seien genannt: Cyclopropyloxy, Cyclopentyloxy und Cyclohexyloxy.

5

<u>Halogen</u> steht im Rahmen der Erfindung im allgemeinen für Fluor, Chlor, Brom und Jod. Bevorzugt sind Fluor, Chlor und Brom. Besonders bevorzugt sind Fluor und Chlor.

Ein 5- bis 6-gliedriger bzw. 7-gliedriger gesättigter Heterocyclus, der ein weiteres Heteroatom aus der Reihe S, N und/oder O enthalten kann steht im Rahmen der Erfindung und in Abhängigkeit der oben aufgeführten Substituenten beispielsweise für Morpholinyl, Piperidinyl, Tetrahydropyranyl oder Tetrahydrofuranyl. Bevorzugt sind Morpholinyl, Tetrahydropyranyl, Piperidinyl und Piperazinyl.

15

Ein 5- bis 6-gliedriger aromatischer Heterocyclus mit bis zu 3 oder 4 Heteroatomen aus der Reihe S, O und/oder N steht im Rahmen der Erfindung beispielsweise für Pyridyl, Pyrimidyl, Pyridazinyl, Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl oder Imidazolyl. Bevorzugt sind Pyridyl, Pyrimidyl, Pyridazinyl, Furyl und Thiazolyl.

20

25

30

Ein 5- bis 6-gliedriger ungesättigter, partiell ungesättigter und gesättigter Heterocyclus, der bis zu 3 bzw. 4 Heteroatome aus der Reihe S, O und/oder N enthalten kann, steht im Rahmen der Erfindung beispielsweise für Pyridyl, Pyrimidyl, Pyridazinyl, Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl, Imidazolyl, Piperidinyl, Piperazinyl oder Morpholinyl. Bevorzugt sind Pyridyl, Pyrimidyl, Piperazinyl, Pyridazinyl, Morpholinyl, Furyl und Thiazolyl.

Die erfindungsgemäßen Verbindungen, insbesondere die Salze, können auch als Hydrate vorliegen. Im Rahmen der Erfindung werden unter <u>Hydraten</u> solche Verbindungen verstanden, die im Kristall Wasser enthalten. Solche Verbindungen können ein oder mehrere, typischerweise 1 bis 5, Äquivalente Wasser enthalten. Hydrate

lassen sich beispielsweise herstellen, indem man die betreffende Verbindung aus Wasser oder einem wasserhaltigen Lösungsmittel kristallisiert.

Bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I),

5

in welcher

 R^1 für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

10

- \mathbb{R}^2 für geradkettiges Alkyl mit bis zu 3 Kohlenstoffatomen steht,
- R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen stehen, oder

für eine geradkettige oder verzweigte Alkylkette mit bis zu 8 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Benzyloxycarbonyl, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)_b-R⁹, $-P(O)(OR^{10})(OR^{11}),$

20

15

substituiert ist,

worin

5

a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

10

15

R⁷, R⁷, R⁸ und R⁸ gleich oder verschieden sind und Wasserstoff bedeuten, oder

Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Piperidinyl und Pyridyl bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Nitro, Trifluormethyl, Trifluormethoxy, Carboxyl, Fluor, Chlor, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,

20

worin

c eine Zahl 0 oder 1 bedeutet,

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

5

10

15

20

25

30

oder

R⁷, R⁷, R⁸ und R⁸ geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 7 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Phenyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,

worin

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

und

d eine Zahl 0 oder 1 bedeutet,

oder

R⁷ und R⁸ und/oder R⁷ und R⁸ gemeinsam mit dem Stickstoffatom einen Pyrrolidinyl-, Morpholinyl-, Piperidinyl- oder Triazolylring oder Reste der Formeln

$$-N$$
 , N , $-N$ s

$$-N$$
 $N-R^{16}$ oder $N-R^{16}$

bilden,

worin

tuiert ist,

5

R¹⁶ Wasserstoff, Phenyl, Benzyl, Morpholinyl, Pyrrolidinyl, Piperidinyl, Piperazinyl oder N-Methylpiperazinyl bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substi-

10

R⁹ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

15

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

20

und/oder die unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Pyridyl, Chinolyl, Pyrrolidinyl, Pyrimidyl, Morpholinyl, Furyl, Piperidinyl, Tetrahydrofuranyl oder durch Reste der Formeln

substituiert ist,

worin

5

R¹⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis dreifach gleich oder verschieden durch Hydroxy, oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist,

10

15

und wobei Phenyl und die Heterocyclen gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, Hydroxy und/oder durch einen Rest der Formel -SO₂₋NR¹⁸R¹⁹ substituiert sind,

20

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

25

und/oder

R³ oder R⁴ für eine Gruppe der Formel -NR²0R²1 steht,

worin

R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

5

und/oder

R³ oder R⁴ für Adamantyl stehen, oder

für Reste der Formeln

$$H_3C$$
 C_6H_5 , SO_2 , SO_2

oder stehen,

10

oder für Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Morpholinyl, Oxazolyl, Thiazolyl, Chinolyl, Isoxazolyl, Pyridyl, Tetrahydrofuranyl, Tetrahydropyranyl oder für Reste der Formeln

$$-N$$
 $N-R^{22}$, $-N$,

$$N-R^{22}$$
 oder N stehen,

15

worin

R²² die oben angegbene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder

Carboxyl, Formyl oder geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen bedeutet,

5

10 -

und wobei Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls einbis dreifach, gleich oder verschieden durch Fluor, Chlor, Triazolyl, Trifluormethyl, Trifluormethoxy, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

worin

e

15

eine Zahl 0 oder 1 bedeutet,

R²³ eine

einen Rest der Formel

bedeutet, oder

20

Cyclopropyl, Cyclopentyl, Cyclobutyl, Cyclohexyl oder Cycloheptyl bedeutet,

25

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Benzyloxy, Tetrahydropyranyl, Tetrahydrofuranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen, Hydroxy, Fluor oder Chlor substituiert sein kann,

und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,

worin

5

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, oder

10

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinylring bilden,

und

15

R³⁰ Phenyl oder Adamantyl bedeutet,

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

20

R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind

25

und/oder Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, Pyridyl, Pyrimidyl, Pyrrolidinyl, Piperidinyl, Tetrahydrofuranyl, Triazolyl oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,

worin

5

10

15

20

R³¹ die oben angegebene Bedeutung von R⁹ hat und mit dieser gleich oder verschieden ist,

- 27 -

R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist, oder

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Triazolyl- oder Thiomorpholinylring oder einen Rest der Formel

worin

R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

oder

25 R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Thiomorpholinyl-, Pyrrolidinyl-, Piperidinylring oder einen einen Rest der Formel

worin

 R^{37}

5

Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Trifluormethyl, Carboxyl, geradkettiges oder

stoffatomen oder durch Gruppen der Formel - $(D)_f$ -NR³⁸R³⁹, -CO- $(CH_2)_g$ -O-CO-R⁴⁰, -CO- $(CH_2)_h$ -OR⁴¹ oder -P(O)(OR⁴²)(OR⁴³) substitu-

verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlen-

iert ist,

worin

15

g und h gleich oder verschieden sind und eine Zahl 1, 2 oder 3 bedeuten,

und

20

- f eine Zahl 0 oder 1 bedeutet,
- D eine Gruppe der Formel -CO oder -SO₂ bedeutet,

25

R³⁸ und R³⁹ gleich oder verschieden sind und die oben angegebene Bedeutung von R⁷ und R⁸ haben,

R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, R⁴¹ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

oder

R³⁷ einen Rest der Formel -(CO)_i-E bedeutet,

worin

i eine Zahl 0 oder 1 bedeutet,

15

20

10

5

E Cyclopentyl, Cyclohexyl, Cycloheptyl, Benzyl, Phenyl, Pyridyl, Pyrimidyl oder Furyl bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,

worin

25

R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

30 E Reste der Formeln

5

10

20

25

$$- \\ \\ N - \\ \\ CH_3 \qquad \text{oder} \qquad - \\ \\ N \qquad \\ O \qquad \text{bedeutet,}$$

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis dreifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 5 Kohlenstoffatomen, Nitro und Gruppen der Formeln -P(O)(OR⁴6)(OR⁴7),

$$= NR^{48} \quad \text{oder} \quad -(CO)_{j}NR^{49}R^{50}$$

substituiert sind,

worin

15 R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R⁴⁸ Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet,

j eine Zahl 0 oder 1 bedeutet,

und

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁴ und R¹⁵ haben,

und/oder die unter R³ und R⁴ aufgeführten gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4

Kohlenstoffatomen oder durch einen Rest der Formel -SO₂H, -NR⁵¹R⁵² oder

PCT/EP98/06910

P(O)OR⁵³OR⁵⁴ substituiert ist,

10 worin

5

15

20

25

30

R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

 R^{53} und R^{54} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{10} und R^{11} haben,

und/oder das Alkyl gegebenenfalls durch Phenyl substituiert ist, das seinerseits ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, oder durch eine Gruppe der Formel -NR⁵¹'R⁵²' substituiert sein kann,

worin

R⁵¹' und R⁵²' die oben angegebene Bedeutung von R⁵¹ und R⁵² haben und mit dieser gleich oder verschieden sind,

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch Phenyl, Pyridyl, Piperidinyl, Pyrrolidinyl oder Terazolyl, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert sind, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen substituiert sein können,

5 oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

$$H_3C$$
, CH_2)3- CH_3

oder bilden,

10

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen stehen,

und deren Salze, N-Oxide, Hydrate und isomere Formen.

15

20

Besonders bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I),

in welcher

R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R² für geradkettiges Alkyl mit bis zu 3 Kohlenstoffatomen steht,

5

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen stehen, oder

10

für eine geradkettige oder verzweigte Alkylkette mit bis zu 6 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 4 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷'R⁸', -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

15

substituiert ist,

worin

20

a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

R⁷, R⁷, R⁸ und R⁸ gleich oder verschieden sind und Wasserstoff bedeuten, oder

Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Piperidinyl und Pyridyl bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Nitro, Carboxyl, Fluor, Chlor, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,

10

5

worin

c eine Zahl 0 oder 1 bedeutet,

15

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

oder

20

25

 R^7 , $R^{7^{\circ}}$, R^8 und $R^{8^{\circ}}$ Methoxy bedeuten, oder

geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder zweifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Phenyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,

worin

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

und

5

d eine Zahl 0 oder 1 bedeutet,

oder

10

R⁷ und R⁸ und/oder R⁷ und R⁸ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Piperidinyl- oder Triazolylring oder Reste der Formeln

$$-N$$
 $N-R^{16}$ oder $N-R^{16}$

bilden,

15

worin

20

R¹⁶ Wasserstoff, Phenyl, Benzyl, Morpholinyl, Pyrrolidinyl, Piperidinyl, Piperazinyl oder N-Methylpiperazinyl bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substi-

R⁹ Methyl bedeutet,

tuiert ist,

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

5

und/oder die unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Morpholinyl, Furyl, Tetrahydrofuranyl oder durch Reste der Formeln

oder

substituiert ist,

10

worin

15

R¹⁷ Wasserstoff, Hydroxy, Formyl, Acetyl oder Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet,

oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach gleich oder verschieden durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist,

20

und wobei Phenyl und die Heterocyclen gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen, Hydroxy und/oder durch einen Rest der Formel -SO₂.NR¹⁸R¹⁹ substituiert sind,

25

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

und/oder

R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht,

5

worin

R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

10

und/oder

R³ oder R⁴ für Adamantyl stehen, oder

für Reste der Formeln

$$H_3C$$
 C_6H_5
 C_6H_5
 C_6H_5

15

oder für Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Morpholinyl, Oxazolyl, Thiazolyl, Chinolyl, Isoxazolyl, Pyridyl, Tetrahydrofuranyl, Tetrahydropyranyl oder für Reste der Formeln

$$-N$$
N $-R^{22}$, $-N$

worin

5 R²² die oben angegbene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder
Formyl oder Acetyl bedeutet,

und wobei Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls einbis zweifach, gleich oder verschieden durch Fluor, Chlor, Triazolyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

15 worin

10

20

e eine Zahl 0 oder 1 bedeutet,

R²³ einen Rest der Formel

Cyclopropyl, Cyclopentyl, Cyclobutyl oder Cyclohexyl bedeutet, Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cyclopropyl, Cyclohexyl, Benzyloxy, Tetrahydropyranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden durch Methoxy, Hydroxy, Fluor oder Chlor substituiert sein kann,

und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR 28 R 29 oder -CO-R 30 substituiert ist,

10 worin

5

15

20

25

30

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, oder

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinylring bilden,

und

R³⁰ Phenyl oder Adamantyl bedeutet,

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

 R^{26} und R^{27} die oben angegebene Bedeutung von R^{10} und R^{11} haben und mit dieser gleich oder verschieden sind

und/oder Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, Pyridyl, Pyrimi-

dyl, Pyrrolidinyl, Piperidinyl, Tetrahydrofuranyl, Triazolyl oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,

worin

5

R³¹ Methyl bedeutet,

R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

10

R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder Methoxy substituiert ist, oder

15

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Triazolyl- oder Thiomorpholinylring oder einen Rest der Formel

worin

20

R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 3 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

25

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Thiomorpholinyl-, Pyrrolidinyl-, Piperidinylring oder einen Rest der Formel

worin

5

R³⁷ Wasserstoff, Hydroxy, Formyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet,

10

oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Gruppen der Formel -(D)_f.NR³⁸R³⁹, -CO-(CH₂)_g-O-CO-R⁴⁰, -CO-(CH₂)_h-OR⁴¹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,

15

worin

g und h gleich oder verschieden sind und eine Zahl 1 oder 2 bedeuten,

und

20

- f eine Zahl 0 oder 1 bedeutet,
- D eine Gruppe der Formel -CO oder -SO₂ bedeutet,

25

- R^{38} und R^{39} gleich oder verschieden sind und die oben angegebene Bedeutung von R^7 und R^8 haben,
- R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoff- R^{41} atomen bedeutet, R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff, Methyl oder 5 Ethyl bedeuten, oder 10 R^{37} einen Rest der Formel -(CO);-E bedeutet, worin i eine Zahl 0 oder 1 bedeutet, 15 E Cyclopentyl, Benzyl, Phenyl, Pyridyl, Pyrimidyl oder Furyl bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Nitro. Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkoxy 20 mit bis zu 3 Kohlenstoffatomen, Hydroxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind, worin R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ 25 haben und mit dieser gleich oder verschieden sind, oder

E

Reste der Formeln

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom, gebildeten Heterocyclen, gegebenenfalls ein- bis dreifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 3 Kohlenstoffatomen oder Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

$$= NR^{48} \quad \text{oder} \quad -(CO)_{j}NR^{49}R^{50}$$

substituiert sind,

5

15

20

25

worin

R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R⁴⁸ Hydroxy oder Methoxy bedeutet,

j eine Zahl 0 oder 1 bedeutet,

und

 R^{49} und R^{50} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{14} und R^{15} haben,

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Cyclopropyl, Cycloheptyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch einen Rest der Formel -SO₃H, -NR⁵¹R⁵² oder P(O)OR⁵³OR⁵⁴ substituiert ist,

5

worin

10

R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,

 R^{53} und R^{54} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{10} und R^{11} haben,

15

und/oder das Alkyl gegebenenfalls durch Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden durch Fluor, Chlor, Hydroxy, Methoxy oder durch eine Gruppe der Formel -NR⁵¹'R⁵²' substituiert sein kann,

20

worin

R⁵¹' und R⁵²' die oben angegebene Bedeutung von R⁵¹ und R⁵² haben und mit dieser gleich oder verschieden sind,

25

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch Phenyl, Pyridyl, Piperidinyl, Pyrrolidinyl oder Tetrazolyl, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert sind, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein können,

30

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

$$H_3C$$
, $CH_2)_3-CH_3$
, N^+

oder
$$N_3^+$$
 bilden,

5

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen stehen,

und deren Salze, N-Oxide, Hydrate und isomere Formen.

Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I),

in welcher

15

- R¹ für Methyl oder Ethyl steht,
- R² für Ethyl oder Propyl steht,
- 20 R³ und R⁴ gleich oder verschieden sind und für eine geradkettige oder verzweigte Alkylkette mit bis zu 5 Kohlenstoffatomen stehen, die gegebenenfalls bis zu

zweifach gleich oder verschieden durch Hydroxy oder Methoxy substituiert ist,

oder

5

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Piperidinyl-, Morpholinyl-,
Thiomorpholinylring oder einen Rest der Formel

10 worin

Wasserstoff, Formyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Gruppen der Formeln -(D)_f.NR³⁸R³⁹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,

20

15

worin

- f eine Zahl 0 oder 1 bedeutet,
- D eine Gruppe der Formel -CO bedeutet,
 - R³⁸ und R³⁹ gleich oder verschieden sind und Wasserstoff oder Methyl bedeuten,

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

oder

5

10

25

30

R³⁷ Cyclopentyl bedeutet,

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis zweifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 3 Kohlenstoffatomen oder Gruppen der Formeln -P(O)(OR⁴6)(OR⁴7) oder -(CO)_iNR⁴9R⁵0 substituiert sind,

15 worin

 R^{46} und R^{47} gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

j eine Zahl 0 oder 1 bedeutet,

und

 R^{49} und R^{50} gleich oder verschieden sind und Wasserstoff oder Methyl bedeuten

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Carboxyl oder durch einen Rest der Formel P(O)OR⁵³OR⁵⁴ substituiert ist,

worin

R⁵³ und R⁵⁴ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch über N-verknüpftes Piperidinyl oder Pyrrolidinyl substituiert sind,

10

R⁵ für Wasserstoff steht,

und

15 R⁶ für Ethoxy oder Propoxy steht,

und deren Salze, Hydrate, N-Oxide und isomere Formen.

Ebenso sind solche erfindungsgemäßen Verbindungen der allgemeinen Formel (I) ganz besonders bevorzugt, in denen R⁵ für Wasserstoff steht und die Reste R⁶ und -SO₂NR³R⁴ in para-Position zueinander am Phenylring stehen.

Insbesonders bevorzugte Verbindungen sind in der Tabelle A aufgeführt.

Tabelle A:

PCT/EP98/06910

Struktur
H ₃ C HN N CH ₃ SO ₂ CH ₃ C ₂ H ₅
H ₃ C H _N N CH ₃ SO ₂ C ₂ H ₅ CH ₃
H ₃ C O HN N CH ₃

Struktur
H ₃ C HN N CH ₃ SO ₂ CH ₃
H ₃ C O HN N CH ₃ SO ₂ CH ₃ CH ₃
H ₃ C O HN N CH ₃ SO ₂ CH ₃ C ₂ H ₅ CH ₂ -OH

Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, daß man

5 zunächst Verbindungen der allgemeinen Formel (II)

$$R^2$$
 N OL (II)

in welcher

10 R¹ und R² die oben angegebene Bedeutung haben

und

15

L für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,

mit Verbindungen der allgemeinen Formel (III)

in welcher

R⁵ und R⁶ die oben angegebene Bedeutung haben,

5

in einer Zweistufenreaktion in den Systemen Ethanol und Phosphoroxytrichlorid / Dichlorethan in die Verbindungen der allgemeinen Formel (IV)

in welcher

R¹, R², R⁵ und R⁶ die oben angegebene Bedeutung haben,

überführt, in einem weiteren Schritt mit Chlorsulfonsäure zu den Verbindungen der allgemeinen Formel (V)

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

in welcher

R¹, R², R⁵ und R⁶ die oben angegebene Bedeutung haben,

umsetzt und abschließend mit Aminen der allgemeinen Formel (VI)

5

 HN^3R^4

(VI)

in welcher

10 R³ und R⁴ die oben angegebene Bedeutung haben,

in inerten Lösemitteln umsetzt.

Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft 15 erläutert werden:

5

Als Lösemittel für die einzelnen Schritte eignen sich die üblichen organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfrakionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethan, Trichlorethylen oder Chlorbenzol, oder Essigester, Dime-

thylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton, Dimethoxyethan oder Pyridin. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Besonders bevorzugt ist für den ersten Schritt Ethanol und für den zweiten Schritt Dichlorethan...

5

15

Die Reaktionstemperatur kann im allgemeinen in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man in einem Bereich von -20°C bis 200°C, bevorzugt von 0°C bis 70°C.

10 Die erfindungsgemäßen Verfahrensschritte werden im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, bei Überdruck oder bei Unterdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

Die Umsetzung zu den Verbindungen der allgemeinen Formel (V) erfolgt in einem Temperaturbereich von 0°C bis Raumtemperatur und Normaldruck.

Die Umsetzung mit den Aminen der allgemeinen Formel (VI) erfolgt in einem der oben aufgeführten chlorierten Kohlenwasserstoffe, vorzugsweise in Dichlormethan.

20 Die Reaktionstemperatur kann im allgemeinen in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man in einem Bereich von -20°C bis 200°C, bevorzugt von 0°C bis Raumtemperatur.

Die Umsetzung wird im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, bei Überdruck oder bei Unterdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

Die Verbindungen der allgemeinen Formel (II) sind teilweise bekannt oder neu und können dann hergestellt werden, indem man

30

25

Verbindungen der allgemeinen Formel (VII)

(VII)

in welcher

5

R² die oben angegebene Bedeutung hat

und

10 T für Halogen, vorzugsweise für Chlor steht,

zunächst durch Umsetzung mit Verbindungen der allgemeinen Formel (VIII)

$$HO_2C$$
 NH_2
(VIII)

in welcher

R¹ die oben angegebene Bedeutung hat

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base und Trimethylsilylchlorid in die Verbindungen der allgemeinen Formel (IX)

$$R^2$$
-CO-NH CO_2 H (IX)

in welcher

25

R¹ und R² die oben angegebene Bedeutung haben,

überführt und abschließend mit der Verbindung der Formel (X)

WO 99/24433 - 59 - PCT/EP98/06910

worin L die oben angegebene Bedeutung hat,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base umsetzt.

5

10

15

20

Als Lösemittel für die einzelnen Schritte des Verfahrens eignen sich die üblichen organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfrakionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethylen, Trichlorethylen oder Chlorbenzol, oder Essigester, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton, Dimethoxyethan oder Pyridin. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Besonders bevorzugt ist für den ersten Schritt Dichlormethan und für den zweiten Schritt ein Gemisch aus Tetrahydrofuran und Pyridin.

Als Basen eignen sich im allgemeinen Alkalihydride oder -alkoholate, wie beispielsweise Natriumhydrid oder Kalium-tert.butylat, oder cyclische Amine, wie beispielsweise Piperidin, Pyridin, Dimethylaminopyridin oder C₁-C₄-Alkylamine, wie beispielsweise Triethylamin. Bevorzugt sind Triethylamin, Pyridin und/oder Dimethylaminopyridin.

Die Base wird im allgemeinen in einer Menge von 1 mol bis 4 mol, bevorzugt von 1,2 mol bis 3 mol jeweils bezogen auf 1 mol der Verbindung der Formel (X) eingesetzt.

25

Die Reaktionstemperatur kann im allgemeinen in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man in einem Bereich von -20°C bis 200°C, bevorzugt von 0°C bis 100°C.

Die Verbindungen der allgemeinen Formeln (VII), (VIII), (IX) und (X) sind an sich bekannt oder nach üblichen Methoden herstellbar.

Die Verbindungen der allgemeinen Formel (III) können hergestellt werden, indem man

5

15

Verbindungen der allgemeinen Formel (XI)

$$R^{5}$$
 CN
 (XI)

in welcher

10 R⁵ und R⁶ die oben angegebene Bedeutung haben,

mit Ammoniumchlorid in Toluol und in Anwesenheit von Trimethylaluminium in Hexan in einem Temperaturbereich von -20°C bis Raumtemperatur, vorzugsweise bei 0°C und Normaldruck umsetzt und das entstehende Amidin, gegebenenfalls in situ, mit Hydrazin-hydrat umsetzt.

Die Verbindungen der allgemeinen Formel (XI) sind an sich bekannt oder nach üblichen Methoden herstellbar.

- Die Verbindungen der allgemeinen Formel (IV) sind teilweise bekannt oder neu und können dann nach bekannten Methoden [vgl. David R. Marshall, Chemistry and Industry, 2 May 1983, 331-335] hergestellt werden.
- Die Verbindungen der allgemeinen Formel (V) sind an sich neu, können aber aus den Verbindungen der allgemeinen Formel (IV) nach der Publikation Organikum, VEB Deutscher Verlag der Wissenschaften, Berlin 1974, Seite 338 339, hergestellt werden.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zeigen ein nicht vorhersehbares, wertvolles pharmakologisches Wirkspektrum.

Sie inhibieren entweder eine oder mehrere der c-GMP metabolisierenden Phosphodiesterasen (PDE I, PDE II und PDE V). Dies führt zu einem Anstieg von c-GMP. Die differenzierte Expression der Phosphodiesterasen in verschiedenen Zellen, Geweben und Organen, ebenso wie die differenzierte subzelluläre Lokalisation dieser Enzyme, ermöglichen in Verbindung mit den erfindungsgemäßen selektiven Inhibitoren, eine selektive Adressierung der verschiedenen von cGMP regulierten Vorgänge.

10

5

Außerdem verstärken die erfindungsgemäßen Verbindungen die Wirkung von Substanzen, wie beispielsweise EDRF (Endothelium derived relaxing factor), ANP (atrial natriuretic peptide), von Nitrovasodilatoren und allen anderen Substanzen, die auf eine andere Art als Phosphodiesterase-Inhibitoren die cGMP-Konzentration erhöhen.

15

20

25

Sie können daher in Arzneimitteln zur Behandlung von cardiovaskulären Erkrankungen wie beispielsweise zur Behandlung des Bluthochdrucks, neuronaler Hypertonie, stabiler und instabiler Angina, peripheren und kardialen Gefäßerkrankungen, von Arrhythmien, zur Behandlung von thromboembolischen Erkrankungen und Ischämien wie Myokardinfarkt, Hirnschlag, transistorischen und ischämischen Attacken, Angina pectoris, periphere Durchblutungsstörungen, Verhinderung von Restenosen nach Thrombolysetherapie, percutaner transluminaler Angioplastie (PTA), percutan transluminalen Koronarangioplastien (PTCA) und Bypass eingesetzt werden. Weiterhin können sie auch Bedeutung für cerebrovaskuläre Erkrankungen haben. Die relaxierende Wirkung auf glatte Muskulatur macht sie geeignet für die Behandlung von Erkrankungen des Urogenitalsystems wie Prostatahypertrophie, Inkontinenz sowie insbesondere zur Behandlung der erektilen Dysfunktion und der weiblichen sexuellen Dysfunktion.

Aktivität der Phosphordiesterasen (PDE's)

5

10

15

20

25

30

Die c-GMP stimulierbare PDE II, die c-GMP hemmbare PDE III und die cAMP spezifische PDE IV wurden entweder aus Schweine- oder Rinderherzmyokard isoliert. Die Ca²⁺-Calmodulin stimulierbare PDE I wurde aus Schweineaorta, Schweinehirn oder bevorzugt aus Rinderaorta isoliert. Die c-GMP spezifische PDE V wurde aus Schweinedünndarm, Schweineaorta, humanen Blutplättchen und bevorzugt aus Rinderaorta gewonnen. Die Reinigung erfolgte durch Anionenaustauschchromatographie an MonoQ^R Pharmacia im wesentlichen nach der Methode von M. Hoey and Miles D. Houslay, Biochemical Pharmacology, Vol. 40, 193-202 (1990) und C. Lugman et al. Biochemical Pharmacology Vol. 35 1743-1751 (1986).

Die Bestimmung der Enzymaktivität erfolgt in einem Testansatz von 100 µl in 20 mM Tris/HCl-Puffer pH 7,5 der 5 mM MgCl₂, 0,1 mg/ml Rinderserumalbumin und entweder 800 Bq 3HcAMP oder 3HcGMP enthält. Die Endkonzentration der entsprechenden Nucleotide ist 10⁻⁶ mol/l. Die Reaktion wird durch Zugabe des Enzyms gestartet, die Enzymmenge ist so bemessen, daß während der Inkubationszeit von 30 min ca 50% des Substrates umgesetzt werden. Um die cGMP stimulierbare PDE II zu testen, wird als Substrat 3HcAMP verwendet und dem Ansatz 10-6 mol/l nicht markiertes cGMP zugesetzt. Um die Ca²⁺-Calmodulinabhängige PDE I zu testen, werden dem Reaktionsansatz noch CaCl₂ 1 µM und Calmodulin 0,1 µM zugesetzt. Die Reaktion wird durch Zugabe von 100 µl Acetonitril, das 1 mM cAMP und 1 mM AMP enthält, gestoppt. 100 µl des Reaktionsansatzes werden auf der HPLC getrennt und die Spaltprodukte "Online" mit einem Durchflußscintillationszähler quantitativ bestimmt. Es wird die Substanzkonzentration gemessen, bei der die Reaktionsgeschwindigkeit um 50% vermindert ist. Zusätzlich wurde zur Testung der "Phosphodiesterase [³H] cAMP-SPA enzyme assay" und der "Phosphodiesterase [3H] cGMP-SPA enzyme assay" der Firma Amersham Life Science verwendet. Der Test wurde nach dem vom Hersteller angegebenen Versuchsprotokoll durchgeführt. Für die Aktivitätsbestimmung der PDEII wurde der [3H] cAMP SPA assay verwendet, wobei dem Reaktionsansatz 10-6 M cGMP zur Aktivierung des Enzyms zugegeben wurde. Für die Messung der PDEI

wurden Calmodulin 10⁻⁷ M und CaCl₂ 1µM zum Reaktionsansatz zugegeben. Die PDEV wurde mit dem [³H] cGMP SPA assay gemessen.

Inhibition der Phosphodiesterasen in vitro

BspNr.	PDE I IC ₅₀ [nM]	PDE II IC ₅₀ [nM]	PDE V IC ₅₀ [nM]
19	200	>1000	2
20	200	>1000	2
26	100	>1000	1
27	200	>1000	3
32	100	>1000	4
260	300	>1000	10
275	50	>1000	3
338	200	>1000	5

5

Grundsätzlich führt die Inhibition einer oder mehrerer Phosphodiesterasen dieses Typs zu einer Erhöhung der cGMP-Konzentration. Dadurch sind die Verbindungen interessant für alle Therapien, in denen eine Erhöhung der cGMP-Konzentration als heilsam angenommen werden kann.

10

Die Untersuchung der cardiovaskulären Wirkungen wurden an SH-Ratten und Hunden durchgeführt. Die Substanzen wurden intravenös oder oral appliziert.

15

Die Untersuchung auf erektionsauslösende Wirkung wurde am wachen Kaninchen durchgeführt [Naganuma H, Egashira T, Fuji J, Clinical and Experimental Pharmacology and Physiology 20, 177-183 (1993)]. Die Substanzen wurden intravenös, oral oder parenteral appliziert.

Die neuen Wirkstoffe sowie ihre physiologisch unbedenklichen Salze (z.Bsp. Hydrochloride, Maleinate oder Lactate) können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90-Gew.-% der Gesamtmischung vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise hergestellt durch Verstrecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

15

20

5

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal oder parenteral, z.Bsp.perlingual, buccal, intravenös, nasal, rektal oder inhalativ.

Für die Anwendung beim Menschen werden bei oraler Administration Dosierungen von 0,001 bis 50 mg/kg vorzugsweise 0,01 mg/kg - 20 mg/kg sinnvollerweise verabreicht. Bei parenteraler Administration, wie z.B. über Schleimhäute nasal, buccal, inhalativ, ist eine Dosierung von 0,001 mg/kg - 0,5 mg/kg sinnvoll.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von
dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchen die Verabreichung
erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der oben
genannten Mindestmenge auszukommen, während in anderen Fällen die genannte
obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen
kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Die erfindungsgemäßen Verbindungen sind auch zur Anwendung in der Tiermedizin geeignet. Für Anwendungen in der Tiermedizin können die Verbindungen oder ihre nicht toxischen Salze in einer geeigneten Formulierung in Übereinstimmung mit den allgemeinen tiermedizinischen Praxen verabreicht werden. Der Tierarzt kann die Art der Anwendung und die Dosierung nach Art des zu behandelnden Tieres festlegen.

5

Ausgangsverbindungen

Beispiel 1A

10

15

20

5 2-Butyrylaminopropionsäure

- 66 -

22,27 g (250 mmol) D,L-Alanin und 55,66g (550 mmol) Triethylamin werden in 250 ml Dichlormethan gelöst und die Lösung auf 0°C abgekühlt. 59,75 g (550 mmol) Trimethylsilylchlorid werden zugetropft und die Lösung 1 Stunde bei Raumtemperatur und eine Stunde bei 40°C gerührt. Nach dem Abkühlen auf -10°C werden 26,64 g (250 mmol) Buttersäurechlorid zugetropft und die resultierende Mischung 2 Stunden bei -10°C und eine Stunde bei Raumtemperatur gerührt.

Unter Eiskühlung werden 125 ml Wasser zugetropft und die Reaktionsmischung 15 Minuten bei Raumtemperatur gerührt. Die wäßrige Phase wird bis zur Trockene eingedampft, der Rückstand mit Aceton verrieben und die Mutterlauge abgesaugt. Nach dem Entfernen des Lösungsmittels wird der Rückstand chromatographiert . Das erhaltene Produkt wird in 3N Natronlauge gelöst und die resultierende Lösung bis zur Trockene eingedampft. Es wird mit konz. HCl aufgenommen und wieder bis zur Trockene eingedampft. Es wird mit Aceton verrührt, vom ausgefallenen Feststoff abgesaugt und das Lösungsmittel im Vakuum entfernt. Man erhält 28,2 g (71 %) eines zähen Öls, das nach einiger Zeit kristallisiert.

200 MHz ¹H-NMR (DMSO-d6): 0.84, t, 3H; 1.22, d, 3H; 1.50, hex, 2H; 2.07, t, 2H; 4.20, quin., 1H; 8.09, d, 1H.

Beispiel 2A

15

20

2-Butyrylamino-buttersäure

25,78 g 2-Aminobuttersäure (250 mmol) und 55,66 g (550 mmol) Triethylamin werden in 250 ml Dichlormethan gelöst und die Lösung auf 0°C abgekühlt. 59,75 g (550 mmol) Trimethylsilylchlorid werden zugetroft und die Lösung 1 Stunde bei Raumtemperatur und eine Stunde bei 40°C gerührt. Nach dem Abkühlen auf -10°C werden 26,64g (250 mmol) Buttersäurechlorid zugetropft und die resultierende Mischung 2 Stunden bei -10°C und eine Stunde bei Raumtemperatur gerührt.

Unter Eiskühlung werden 125 ml Wasser zugetropft und die Reaktionsmischung 15 Minuten bei Raumtemperatur gerührt. Die organische Phase wird mit Natronlauge versetzt und das organische Lösungsmittel im Vakuum entfernt. Nach dem Ansäuern wird der ausgefallene Feststoff 1 mal mit Wasser und 2 mal mit Petrolether verrührt und im Vakuum bei 45°C getrocknet. 29,1 g (67 %) farbloser Feststoff.

200 MHz ¹H-NMR (DMSO-d6):0.88, 2t, 6H; 1.51, quart., 2H, 1.65, m, 2H, 2.09, t, 2H, 4.10, m, 1H; 8.01, d, 1H; 12.25, s,m 1H.

Beispiel 3A

2-Ethoxybenzonitril

- 68 -

25 g (210 mmol) 2-Hydroxybenzonitril werden mit 87 g Kaliumcarbonat und 34,3 g (314,8 mmol) Ethylbromid in 500 ml Aceton über Nacht refluxiert. Es wird vom Feststoff abfiltriert, das Lösungsmittel im Vakuum entfernt und der Rückstand im Vakuum destilliert. Man erhält 30,0 g (97 %) einer farblosen Flüssigkeit.

10 200 MHz ¹H-NMR (DMSO-d6): 1.48, t, 3H; 4.15, quart., 2H; 6.99, dt, 2H; 7.51, dt, 2H.

Beispiel 4A

20

15 2-Ethoxybenzamidinhydrochlorid

21,4 g (400 mmol) Ammoniumchlorid werden in 375 ml Toluol suspendiert und die Suspension auf 0°C abgekühlt. 200 ml einer 2M Lösung von Trimethylaluminium in Hexan werden zugetropft und die Mischung bis zur beendeten Gasentwicklung bei Raumtemperatur gerührt. Nach Zugabe von 29,44 g (200 mmol) 2-Ethoxybenzonitril wird die Reaktionsmischung über Nacht bei 80°C (Bad) gerührt.

Die abgekühlte Reaktionsmischung wird unter Eiskühlung zu einer Suspension aus 100 g Kieselgel und 950 ml Chloroform gegeben und die Mischung 30 Minuten bei

Raumtemperatur gerührt. Es wird abgesaugt und mit der gleichen Menge Methanol nachgewaschen. Die Mutterlauge wird eingedampft, der erhaltene Rückstand mit einer Mischung aus Dichlormethan und Methanol (9:1) verrührt, der Feststoff abgesaugt und die Mutterlauge eingedampft. Man erhält 30,4 g (76 %) farblosen Feststoff.

200 MHz ¹H-NMR (DMSO-d6): 1.36, t, 3H; 4.12, quart., 2H; 7.10, t, 1H; 7.21, d, 1H; 7.52, m, 2H; 9.30, s, breit, 4H.

10 Beispiel 5A

5

15

20

2-Propoxybenzonitril

75 g (630 ml) 2-Hydroxybenzonitril werden mit 174 g (1,26 mol) Kaliumcarbonat und 232,2 g (1,89 mol) Ethylbromid in 1 l Aceton über Nacht refluxiert. Es wird vom Feststoff abfiltriert, das Lösemittel im Vakuum entfernt und der Rückstand im Vakuum destilliert.

Kp.: 89°C (0,7 mbar)

Ausbeute: 95,1 g (93,7%)

Beispiel 6A

2-Propoxybenzamidin-hydrochlorid

21,41 g (400 mmol) Ammoniumchlorid werden in 400 ml Toluol suspendiert und auf 0-5°C gekühlt. 200 ml einer 2 M Lösung von Triethylaluminium in Hexan werden zugetropft und die Mischung bis zur beendeten Gasentwicklung bei Raumtemperatur gerührt. Nach Zugabe von 32,2 g (200 mmol) 2-Propoxybenzonitril wird die Reaktionsmischung über Nacht bei 80°C (Bad) gerührt. Die abgekühlte Reaktionsmischung wird unter Eiskühlung zu einer Suspension aus 300 g Kieselgel und 2,85 l eisgekühltem Chloroform gegeben und 30 Minuten gerührt. Es wird abgesaugt und mit der gleichen Menge Methanol nachgewaschen. Das Lösemittel wird im Vakuum abdestilliert, der Rückstand in 500 ml einer Mischung aus Dichlormethan und Methanol (9:1) verrührt, der Feststoff abfiltriert und die Mutterlauge eingedampft. Der Rückstand wird mit Petrolether verrührt und abgesaugt. Man erhält 22,3 g (52 %) Produkt.

PCT/EP98/06910

¹H-NMR (200 MHz, CD₃OD): 1,05 (3H); 1,85 (sex, 2H); 4,1 (A, 2H); 7,0 - 7,2 (m, 2H); 7,5 - 7,65 (m, 2H).

Beispiel 7A

2-Ethoxy-4-methoxybenzonitril

20

25

5

10

15

30,0 g (201 mmol) 2-Hydroxy-4-methoxybenzonitril werden mit 83,4 g Kalium-carbonat (603 mmol) und 32,88 g (301 mmol) Bromethan 18 Stunden in 550 ml Aceton refluxiert. Nach Filtration wird das Lösungsmittel im Vakuum entfernt und der Rückstand durch Chromatographie an Kieselgel (Cyclohexan:Ethylacetat=10:1) gereinigt: 35,9 g Öl

R_f=0.37 (Cyclohexan:Ethylacetat=3:1)

200 MHz ¹H-NMR (CDCl₃): 1.48, t, 3H; 3.85, s, 3H; 4.12, quart., 2H; 6.46, m, 2H; 7.48, d, 1H.

Beispiel 8A

5

10

15

20

2-Ethoxy-4-methoxybenzamidinhydrochlorid

6,98 g (130 mmol) Ammoniumchlorid werden in 150 ml Toluol suspendiert und die Suspension auf 0°C abgekühlt. 70 ml einer 2M Lösung von Trimethylaluminium in Hexan werden zugetropft und die Mischung bis zur beendeten Gasentwicklung bei Raumtemperatur gerührt. Nach Zugabe von 11,56 g (65 mmol) 2-Ethoxy-4-methoxy-benzonitril wird die Reaktionsmischung über Nacht bei 80°C (Bad) gerührt.

Die abgekühlte Reaktionsmischung wird unter Eiskühlung zu einer Suspension aus 100 g Kieselgel und 950 ml Dichlormethan gegeben und die Mischung 30 Minuten bei Raumtemperatur gerührt. Es wird abgesaugt und mit der gleichen Menge Methanol nachgewaschen. Die Mutterlauge wird eingedampft, der erhaltene Rückstand mit einer Mischung aus Dichlormethan und Methanol (9:1) verrührt, der Feststoff abgesaugt und die Mutterlauge eingedampft. Der Rückstand wird mit Petrolether verrührt und abgesaugt. Man erhält 7,95 g (50 %) Feststoff.

200 MHz ¹H-NMR (DMSO-d6): 1.36, t, 3H; 3.84, s, 3H; 4.15, quart., 2H; 6.71, m, 2H; 7.53, d, 1H, 8.91, s, breit, 3H.

Beispiel 9A

15

20

25

2-(2-Ethoxyphenyl)-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

Man legt 24,4 g (0,186 mol) N-Acetyl-D,L-Alanin in 200 ml absolutem Tetrahydrofuran vor und setzt 45 ml absolutes Pyridin und 0,5 g 4-Dimethylaminopyridin hinzu.

Man erhitzt zum Rückfluß und tropft 51,85 g (0,372 mol) Oxalsäuremonoethylesterchlorid hinzu. Man erhitzt weitere 90 Minuten unter Rückfluß, kühlt ab, gießt
auf Eiswasser, extrahiert dreimal mit Essigsäureethylester. Man trocknet die organische Phase über Natriumsulfat, engt ein und nimmt in 62,5 ml Methanol auf. Man
setzt 9 g Natriumhydrogencarbonat hinzu, rührt 2,5 Stunden unter Rückfluß und
filtriert.

Zu einer Lösung von 38,26 g (190,65 mmol) 2-Ethoxy-4-methoxybenzamidinhydrochlorid in 250 ml Methanol tropft man unter Eiskühlung 9,54 g (190,65 mmol) Hydrazinhydrat zu und rührt die resultierende Suspension noch 30 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene methanolische Lösung und rührt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

Der Rückstand wird in 250 ml 1,2-Dichlorethan aufgenommen, 32,1 ml (348 mmol) Phosphoroxychlorid zugetropft und zwei Stunden unter Rückfluß erhitzt. Man kühlt ab, engt ein, nimmt in wenig Methylenchlorid auf, versetzt mit Diethylether und saugt den Feststoff ab. Man chromatografiert an Kieselgel (Methylenchlorid/Metha-

nol 95:5), engt die Lösung ein und verrührt den kristallinen Rückstand mit Diethylether.

Ausbeute: 8,1g (14,9% der Theorie)

5 200 MHz ¹H-NMR (CDCl₃): 1,58, t, 3H; 2,62, s, 3H; 2,68, s, 3H; 4,25, q, 2H; 7,04, d, 1H; 7,12, t, 1H; 7,5, dt, 1H; 8,19, dd, 1H; 10,02, s, 1H.

Beispiel 10A

15

10 2-(2-Ethoxy-phenyl)-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

7,16 g (45 mmol) 2-Butyrylamino-propionsäure werden mit 10,67 g Pyridin in 45 ml THF gelöst und nach Zugabe einer Spatelspitze DMAP zum Rückfluß erhitzt. 12,29 g (90 mmol) Oxalsäure-ethylesterchlorid werden langsam zugetropft und die Reaktionsmischung wird 3 Stunden refluxiert. Es wird auf Eiswasser gegossen, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird in 15 ml Ethanol aufgenommen und mit 2,15 g Natriumhydrogencarbonat 2,5 Stunden refluxiert. Die abgekühlte Lösung wird filtriert.

Zu einer Lösung von 9,03 g (45 mmol) 2-Ethoxybenzamidinhydrochlorid in 45 ml Ethanol tropft man unter Eiskühlung 2,25 g (45 mmol) Hydrazinhydrat zu und rührt die resultierende Suspension noch 10 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene ethanolische Lösung und rührt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

WO 99/24433 - 74 - PCT/EP98/06910

Dieser Rückstand wird in 60 ml 1,2-Dichlorethan gelöst und nach Zugabe von 7,5 ml Phosphoroxychlorid 2 Stunden refluxiert. Es wird mit Dichlormethan verdünnt und durch Zugabe von Natriumhydrogencarbonatlösung und festem Natriumhydrogencarbonat neutralisiert. Die organische Phase wird getrocknet und das Lösungsmittel im Vakuum entfernt. Chromatographie mit Ethylacetat und Kristallisation ergeben 4,00 g (28 %) farblosen Feststoff, R_f=0,42 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.56, t, 3H; 1.89, hex, 2H; 2.67, s, 3H; 3.00, t, 2H; 4.26, quart., 2H; 7.05, m, 2H; 7.50, dt, 1H; 8.17, dd, 1H; 10.00, s, 1H.

Beispiel 11A

2-(2-Propoxy-phenyl)-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

15

20

5

10

7,16 g (45 mmol) 2-Butyrylaminopropionsäure werden mit 10,67 g Pyridin in 45 ml Tetrahydrofuran gelöst und nach Zugabe einer Spatelspitze Dimethylaminopyridin zum Rückfluß erhitzt. 12,29 g (90 mmol) Oxalsäureethylesterchlorid werden langsam zugetropft und die Reaktionsmischung wird 3 Stunden refluxiert. Es wird auf Eiswasser gegossen, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird in 15 ml Ethanol aufgenommen und mit 2,15 g Natriumhydrogencarbonat 2,5 Stunden refluxiert. Die abgekühlte Lösung wird filtriert.

25

Zu einer Lösung von 9,66 g (45 mmol) 2-Propoxybenzamidinhydrochlorid in 45 ml Ethanol tropft man unter Eiskühlung 2,25 g (45 mmol) Hydrazinhydrat zu und rührt die resultierende Suspension noch 10 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene ethanolische Lösung und rührt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

Dieser Rückstand wird in 60 ml 1,2-Dichlorethan gelöst und nach Zugabe von 7,5 ml Phosphoroxychlorid 2 Stunden refluxiert. Es wird mit Dichlormethan verdünnt und durch Zugabe von Natriumhydrogencarbonatlösung und festem Natriumhydrogencarbonat neutralisiert. Die organische Phase wird getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ethylacetat ergeben 2,85 g (19,1 %) eines gelben Feststoffs, chromatographische Reinigung der Mutterlauge ergibt weitere 1,25 g (8,4 %) des Produktes. R_f=0,45 (Dichlormethan/Methanol=95:5)

15 200 MHz ¹H-NMR (CDCl₃): 1.03, t, 3H; 1.15, t, 3H; 1.92, m, 4H; 2.67, s, 3H; 3.01, t, 2H; 4.17, t., 2H; 7.09, m, 2H; 7.50, dt, 1H; 8.17, dd, 1H; 10.02, s, 1H.

Beispiel 12A

5

10

25

20 2-(2-Ethoxy-4-methoxyphenyl)-5-methyl-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on

5,50 g (34,8 mmol) 2-Butyrylaminopropionsäure werden mit 8,19 g Pyridin in 35 ml Tetrahydrofuran gelöst und nach Zugabe einer Spatelspitze Dimethylaminopyridin zum Rückfluß erhitzt. 9,43 g (69 mmol) Oxalsäureethylesterchlorid werden langsam zugetropft und die Reaktionsmischung wird 3 Stunden refluxiert. Es wird auf Eiswasser gegossen, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet

und einrotiert. Der Rückstand wird in 11 ml Methanol aufgenommen und mit 1,65 g Natriumhydrogencarbonat 2,5 Stunden refluxiert. Die abgekühlte Lösung wird filtriert.

Zu einer Lösung von 7,95 g (34,5 mmol) 2-Ethoxy-4-methoxybenzamidinhydrochlorid in 35 ml Ethanol tropft man unter Eiskühlung 1,73 g (34,5 mmol) Hydrazinhydrat zu und rührt die resultierende Suspension noch 30 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene methanolische Lösung und rührt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

Dieser Rückstand wird in 46 ml 1,2-Dichlorethan gelöst und nach Zugabe von 5,74 ml Phosphoroxychlorid 2 Stunden refluxiert. Es wird mit Dichlormethan verdünnt und durch Zugabe von Natriumhydrogencarbonatlösung und festem Natriumhydrogencarbonat neutralisiert. Die organische Phase wird getrocknet und das Lösungsmittel im Vakuum entfernt. Chromatographie (Dichlormethan:Methanol=50:1) ergibt 0,31 g (2,5 %) eines Feststoffs.

R_f=0,46 (Dichlormethan:Methanol=20:1)

15

20

200 MHz ¹H-NMR (CDCl₃): 1.03, t, 3H; 1.58, t, 3H; 1.88, m, 2H; 2.62, s, 3H; 2.98, t, 2H; 3.89, s, 3H; 4.25, quart., 2H; 6.54, d, 1H, 6.67, dd, 1H; 8.14, d, 1H; 9.54, s, 1H.

5

10

15

20

25

Beispiel 13A

 $2-(2-Ethoxyphenyl)-5-ethyl-7-propyl-3 \\ H-imidazo [5,1-f][1,2,4]triazin-4-on$

29,06 g (167,8 mmol) 2-Butyrylaminobuttersäure werden mit 39,76 g Pyridin in 170 ml Tetrahydrofuran gelöst und nach Zugabe einer Spatelspitze Dimethylaminopyridin zum Rückfluß erhitzt. 45,81 g (335,5 mmol) Oxalsäureethylesterchlorid werden langsam zugetropft und die Reaktionsmischung wird 3 Stunden refluxiert. Es wird auf Eiswasser gegossen, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird in 15 ml Methanol aufgenommen und die Hälfte der Lösung mit 7,96 g Natriumhydrogencarbonat 2,5 Stunden refluxiert. Die abgekühlte Lösung wird filtriert.

Zu einer Lösung von 16,83 g (83,9 mmol) 2-Ethoxybenzoesäureamidin Hydrochlorid in 85 ml Ethanol tropft man unter Eiskühlung 4,20 g (83,9 mmol) Hydrazinhydrat zu und rührt die resultierende Suspension noch 10 Minuten bei Raumtemperatur. Zu dieser Reaktionsmischung gibt man die oben beschriebene methanolische Lösung und rührt 4 Stunden bei 70°C Badtemperatur. Nach Filtration wird eingedampft, der Rückstand zwischen Dichlormethan und Wasser verteilt, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

Dieser Rückstand wird in 112 ml 1,2-Dichlorethan gelöst und nach Zugabe von 14 ml Phosphoroxychlorid 2 Stunden refluxiert. Es wird mit Dichlormethan verdünnt und durch Zugabe von Natriumhydrogencarbonatlösung und festem Natriumhydrogencarbonat neutralisiert. Die organische Phase wird getrocknet und das Lösungs-

mittel im Vakuum entfernt. Chromatographie (Dichlormethan:Methanol=50:1) ergibt 3,69 g (12,4 %) farblosen Feststoff, R_f=0,46 (Dichlormethan:Methanol=20:1)

200 MHz ¹H-NMR (CDCl₃): 1.32, t, 3H; 1.57, t, 3H; 1.94, m, 8H; 3.03, quart., 2H; 3.64, quin., 1H; 4.27, quart., 2H; 7.06, d, 1H; 7.12, t, 1H; 7.50, dt, 1H, 8.16, dd, 1H; 9.91, s, 1H.

Beispiel 14A

15

4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid

Man legt 7,25 g (25,5 mmol) 2-(2-Ethoxyphenyl)-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]-triazin-4-on vor und setzt unter Eiskühlung 26,74 g (0,23 mol) Chlorsulfonsäure hinzu. Man rührt über Nacht bei Raumtemperatur, gießt auf Eiswasser, saugt die Kristalle ab und trocknet sie im Vakuumexsikkator.

Ausbeute: 9,5 g (97 % der Theorie)

200 MHz ¹H-NMR (d⁶-DMSO): 1,32, t, 3H; 2,63, s, 3H; 2,73, s, 3H; 4,13, q, 2H; 7,15, d, 1H; 7,77, m, 2H; 12,5, s, 1H;

Beispiel 15A

4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid

5

10

2,00 g (6,4 mmol) 2-(2-Ethoxy-phenyl)-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]-triazin-4-on werden langsam zu 3,83 ml Chlorsulfonsäure bei 0°C gegeben. Die Reaktionsmischung wird bei Raumtemperatur über Nacht gerührt, auf Eiswasser gegossen und mit Dichlormethan extrahiert. Man erhält 2,40 g (91 %) farblosen Schaum.

200 MHz ¹H-NMR (CDCl₃): 1.03, t, 3H; 1.61, t, 2H; 1.92, hex, 2H; 2.67, s, 3H; 3.10, t, 2H; 4.42, quart., 2H; 7.27, t, 1H; 8.20, dd, 1H; 8.67, d, 1H; 10.18, s, 1H.

15 Beispiel 16A

4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid

20

2,80 g (8,6 mmol) 2-(2-Propoxy-phenyl)-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden langsam zu 5,13 ml Chlorsulfonsäure bei 0°C gegeben. Die Reaktionsmischung wird bei Raumtemperatur über Nacht gerührt, auf Eiswasser

gegossen und mit Dichlormethan extrahiert. Man erhält 3,50 g (96 %) farblosen Schaum.

R_f=0.49 (Dichlormethan/Methanol=95:5)

5 200 MHz ¹H-NMR (CDCl₃): 1.03, 2t, 6H; 1.95, m, 4H; 2.81, s, 3H; 3.22, t, 2H; 4.11, t., 2H; 7.09, m, 1H; 8.06, dd, 1H; 8.21 m, 1H; 12.0, s, 1H.

Beispiel 17A

15

4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid

0,31 g (0,9 mmol) 2-(2-Ethoxy-4-methoxyphenyl)-5-methyl-7-propyl-3*H*-imidazo-[5,1-*f*]-[1,2,4]triazin-4-on werden langsam zu 0,54 ml Chlorsulfonsäure bei 0°C gegeben. Die Reaktionsmischung wird bei Raumtemperatur über Nacht gerührt, auf Eiswasser gegossen und mit Dichlormethan extrahiert. Man erhält 0,355 g (89 %) farblosen Schaum.

R_c=0,50 (Dichlormethan/Methanol=20:1)

20 200 MHz ¹H-NMR (CDCl₃): 1.05, t, 3H; 1.66, t, 3H; 1.95, m, 2H; 2.61, s, 3H, 3.11, t, 2H; 4.15, s, 3H; 4.40, quart., 2H; 6.65, s, 1H, 8.72, s, 1H; 9.75, s, 1H.

Beispiel 18A

4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzol-sulfonsäurechlorid

5

1,70 g (5,21 mmol) 2-(2-Ethoxy-phenyl)-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]-triazin-4-on werden langsam zu 3,12 ml Chlorsulfonsäure bei 0°C gegeben. Die Reaktionsmischung wird bei Raumtemperatur über Nacht gerührt, auf Eiswasser gegossen und mit Dichlormethan extrahiert. Man erhält 2,10 g (94 %) farblosen Schaum.

400 MHz ¹H-NMR (CDCl₃): 1.03, t, 3H; 1.35, t, 3H; 1.62, t, 3H; 1.92, sex., 2H; 3.07, quart., 2H; 3.12, t, 2H; 4.42, quart., 2H; 7.38, d, 1H; 8.19, dd, 1H; 8.70, d, 1H; 10.08, s, breit, 1H.

15

10

Beispiel 19A

(4-Piperidinylmethyl)-phosphonsäurediethylester

20

Man legt 2,11 g (528 mmol) 60%iges Natriumhydrid in 50 ml absolutem Tetrahydrofuran vor und tropft 15,7 g (52,8 mmol) Methandiphosphonsäurediethylester hinzu. Man rührt noch 30 Minuten bei Raumtemperatur und tropft dann 10,1 g

(52,8 mmol) 1-Benzyl-4-piperidon hinzu. Man rührt eine Stunde bei Raumtemperatur und eine Stunde unter Rückfluß, engt ein, versetzt mit Wasser, extrahiert dreimal mit Dichlormethan, trocknet über Natriumsulfat und engt ein. Der Rückstand wird in 50 ml Ethanol an 1,7 g 10%iger Palladium-Aktivkohle bei Raumtemperatur und 3 bar hydriert. Man saugt den Katalysator ab und engt das Filtrat ein.

Ausbeute: 12,5 g (100% d.Th.)

400 MHz, ¹H-NMR (CDCl₃): 1,13, m, 2H; 1,32, t, 6H; 1,69, dd, 2H; 1,74 - 1,95, m, 4H; 2,62, dt, 2H; 3,05, m, 2H; 4,1, m, 4H.

10

5

Beispiel 20A

5-Methyl-4-furoxancarbaldehyd

40 g (571 mmol) Crotonaldehyd werden in 80 ml Essigsäure gelöst und bei 0°C mit einer Lösung von 137 g (1,99 mol) Natriumnitrit in 300 ml Wasser tropfenweise versetzt. Man rührt 2 Stunden bei Raumtemperatur. Es wird mit 800 ml Wasser verdünnt und 3 mal mit Dichlormethan extrahiert. Nach Trocknen der organischen Phase erhält man durch Chromatographie (Cyclohexan/Ethylacetat) 13,8 g (18,9 %) 5-Methyl-4-furoxancarbaldehyd.

200 MHz ¹H-NMR (CDCl₃):2.39, s, 3H; 10.10, s, 1H.

5

10

15

20

Beispiel 21A

5-Methyl-4-furoxancarbonsäurechlorid

13,5 g (105 mmol) 5-Methyl-4-furoxancarbaldehyd werden in 200 ml Aceton gelöst und bei 0°C tropfenweise mit einer Lösung von 16,86 g (168 mmol) Chromtrioxid in 120 ml einer 2.2M Schwefelsäure versetzt. Man rührt 2 Stunden bei 10-15°C und bei Raumtemperatur über Nacht. Unter Kühlung werden 100 ml Isopropanol zugetropft und nach 30 Minuten das Lösungsmittel im Vakuum entfernt. Die wäßrige Phase wird 3 mal mit Ether extrahiert, die organische Phase über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird in 1M Natriumhydroxidlösung gelöst und die Lösung 3 mal mit Ether extrahiert. Die wäßrige Phase wird sauer gestellt und 3 mal mit Ether extrahiert. Die organische Phase wird getrocknet und das Lösungmittel im Vakuum entfernt. Der Rückstand wird mit Petrolether verrührt und abgesaugt.

6,92 g des Rückstandes werden mit 10ml Thionylchlorid in 20 ml Dichlormethan 6 Stunden refluxiert. Es wird mit Toluol verdünnt, filtriert und einrotiert. Der Rückstand wird wiederum in Dichlormethan aufgenommen, mit 10 ml Thionylchlorid versetzt und 48 Stunden refluxiert. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand im Vakuum destilliert. Man erhält 2,00 g (25 %) farblose Kristalle.

200 MHz ¹H-NMR (CDCl₃): 2.41, s.

Beispiel 22A

1-(5-Methyl-4-furoxancarbonyl)-4-tert-butyl-oxycarbonyl-piperazin

- 84 -

5 2,75 g (14,7 mmol) Boc-Piperazin werden mit 1,49 g Triethylamin in 20 ml Dichlormethan gelöst und bei 0°C portionsweise mit 2,00 g (12,3 mmol) 5-Methyl-4-furoxancarbonsäurechlorid versetzt. Es wird 30 Minuten bei 0°C und 2 Stunden bei Raumtemperatur gerührt, mit Dichlormethan verdünnt und mit Wasser gewaschen. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand durch Chromatographie (Cyclohexan/Ethylacetat) gereinigt. Man erhält 3,33 g (87 %) 1-(5-Methyl-4-furoxancarbonyl)-4-tert-butyl-oxycarbonyl-piperazin.

200 MHz ¹H-NMR (CDCl₃): 1.50, s, 9H; 2.30, s, 3H; 3.55, m, 4H; 3.78, m, 2H; 3.87, m, 2H.

Beispiel 23A

15

25

1-(5-Methyl-4-furoxancarbonyl)-piperazin Trifluoracetat

3,12 g (10 mmol) 1-(5-Methyl-4-furoxancarbonyl)-4-tert-butyl-oxycarbonyl-piper-azin werden in 20 ml Dichlormethan gelöst und bei 0°C mit 2 ml Trifluoressigsäure versetzt. Man läßt auf Raumtemperatur aufwärmen und rührt 72 Stunden. Nach Zugabe von 10 ml Ether wird der Niederschlag abgesaugt und getrocknet. Man erhält 2,47 g (83 %) 1-(5-Methyl-4-furoxancarbonyl)-piperazin Trifluoracetat.

200 MHz ¹H-NMR (DMSO-d₆): 2.18, s, 3H; 3.18, m, 2H; 3.25, m, 2H; 3.83, m, 2H; 3.90, m, 2H; 8.89, s, breit, 2H.

Herstellungsbeispiele

Beispiel 1

10

15

5 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on

0,1 g (0,26 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid werden in 10 ml Dichlormethan gelöst und auf 0°C gekühlt. Nach Zugabe einer Spatelspitze DMAP werden 80 mg (0,784 mmol) N-Methylpiperazin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Ammoniumchloridlösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Man chromatografiert an Kieselgel (Dichlormethan/Methanol 9:1).

Ausbeute: 40 mg (34,5 % der Theorie)

Massenspektrum: 447 (M+H); 284; 256; 224;

2-[2-Ethoxy-5-(4-hydroxyethylpiperazine-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on

5

10

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 100 mg (0,784 mmol) 4-Hydroxypiperazin 45 mg (36,1 % der Theorie) 2-[2-Ethoxy-5-(4-hydroxy-ethylpiperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on.

Massenspektrum: 477 (M+H); 284; 256; 239.

2-[2-Ethoxy-5-(4-hydroxypiperidine-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on

5

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säure-chlorid und 80 mg (0,784 mmol) 4-Hydroxypiperidin 35 mg (29,8 % der Theorie) 2-[2-Ethoxy-5-(4-hydroxy-piperidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on.

10

200 MHz ¹H-NMR (CDCl₃): 1,61, t, 3H; 1,69, m, 2H; 1,94, m, 2H; 2,67, s, 3H; 2,70, s, 3H; 3,02, m, 2H; 3,30, m, 2H; 3,84, m, 1H; 4,37, q, 2H; 7,18, d, 1H; 7,90, dd, 1H; 8,52, d, 1H; 9,73, s, 1H.

15

2-[2-Ethoxy-5-(4-hydroxymethylpiperidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 90 mg (0,784 mmol) 4-Hydroxymethylpiperidin 22 mg (18 % der Theorie) 2-[2-Ethoxy-5-(4-hydroxy-methylpiperidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on.

10

200 MHz ¹H-NMR (CDCl₃):1,38, dt, 2H; 1,62, t, 3H; 1,82, dd, 2H; 2,35, dt, 2H; 2,78, s, 3H; 2,84, s, 3H; 3,5, d, 2H; 3,87, d, 2H; 4,39, q, 2H; 7,21, d, 1H; 7,95, dd, 1H; 8,51, d, 1H; 10,03, bs, 1H.

15

2-[2-Ethoxy-5-(3-hydroxypyrrolidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on

5

10

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 70 mg (0,784 mmol) 3-Hydroxypyrrolidin 13 mg (11,1 % der Theorie) 2-[2-Ethoxy-5-(3-hydroxy-pyrrolidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo-[5,1-f][1,2,4]triazin-4-on.

Massenspektrum: 434 (M+H)

Beispiel 6

4-Ethoxy-N-ethyl-N-(2-hydroxyethyl)-3-(5,7-dimethyl-4-oxo-3,4-dihydro-imid-azo[5,1-f]-[1,2,4]triazin-2-yl)benzolsulfonamid

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säure-chlorid und 70 mg (0,784 mmol) 2-(Ethylamino)-ethanol 23 mg (20,1 % der Theorie) 4-Ethoxy-N-ethyl-N-(2-hydroxyethyl)-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo-[5,1-f][1,2,4]triazin-2-yl)-benzol-sulfonamid.

200 MHz ¹H-NMR (CDCl₃): 1,2, t, 3H; 1,6, t, 3H; 2,17, bs, 1H; 2,69, s, 3H; 2,75, s, 3H; 3,33, m, 4H; 3,8, t, 2H; 4,36, q, 2H; 7,18, d, 1H; 7,99, dd, 1H; 8,6, d, 1H; 9,84, bs,1H.

10

5

Beispiel 7

N,N-Diethyl-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonamid

15

20

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 60 mg (0,784 mmol) Diethylamin 21 mg (18,6 % der Theorie) N,N-Diethyl-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonamid.

200 MHz ¹H-NMR (CDCl₃): 1,18, t, 6H; 1,61, t, 3H; 2,68, s, 3H; 2,72, s, 3H; 3,29, q, 4H; 4,35, q, 2H; 7,15, d, 1H; 7,95, dd, 1H; 8,58, d, 1H; 9,8, bs, 1H.

2-[2-Ethoxy-5-(4-(2-pyrimidinyl)-piperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo-[5,1-f][1,2,4]triazin-4-on

5

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 130 mg (0,784 mmol) 1-(2-Pyrimidinyl)-piperazin 38 mg (28,2% der Theorie) 2-[2-Ethoxy-5-(4-(2-pyrimidinyl)-piperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo-[5,1-f][1,2,4]triazin-4-on.

10

200 MHz ¹H-NMR (CDCl₃): 1,6, t, 3H; 2,68, s, 3H; 2,72, s, 3H; 3,12, t, 4H; 3,96, t, 4H; 4,34, q, 2H; 6,5, t, 1H; 7,18, d, 1H; 7,9, dd, 1H; 8,28, d, 2H; 8,51, d, 1H; 9,7, bs, 1H;

15

2-[2-Ethoxy-5-(morpholin-4-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säure-chlorid und 70 mg (0,784 mmol) Morpholin 28 mg (24,2% der Theorie) 2-[2-Ethoxy-5-(morpholin-4-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]-triazin-4-on.

10

200 MHz ¹H-NMR (CDCl₃): 1,53, t, 3H; 2,69, s, 3H; 2,72, s, 3H; 3,06, t, 4H; 3,77, t, 4H; 4,39, q, 2H; 7,2, d, 1H; 7,91, dd, 1H; 8,51, d, 1H; 9,78, bs, 1H.

2-[2-Ethoxy-5-(1,4-dioxa-6-azaspiro[4.4]nonan-6-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säure-chlorid und 100 mg (0,784 mmol) 1,4-Dioxa-6-azaspiro[4.4]nonan 45 mg (35,3% der Theorie) 2-[2-Ethoxy-5-(1,4-dioxa-6-azaspiro[4.4]nonan-6-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]tri-azin-4-on.

10

200 MHz ¹H-NMR (CDCl₃): 1,58, t, 3H; 2,02, t, 2H; 2,61, s, 3H; 2,65, s, 3H; 3,32, s, 2H; 3,41, t, 2H; 3,88, m, 4H; 4,34, q, 2H; 7,17, d, 1H; 7,92, dd, 1H; 8,51, d, 1H; 9,92, bs, 1H.

15

N,N-Bis-(2-Methoxyethyl)-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f]-[1,2,4]triazin-2-yl)-benzolsulfonamid

5

10

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 100 mg (0,784 mmol) Bis-(2-Methoxyethyl)-amin 37 mg (27,5% der Theorie) N,N-Bis-(2-Methoxy-ethyl)-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzol-sulfonamid.

200 MHz ¹H-NMR (CDCl₃):1,58, t, 3H; 2,61, s, 3H; 2,64, s, 3H; 3,3, s, 6H; 3,46, t, 4H; 3,56, t, 4H; 4,32, q, 2H; 7,12, d, 1H; 7,95, dd, 1H; 8,51, d, 1H; 9,9, bs, 1H.

15 Beispiel 12

N-(3-Isoxazolyl)-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonamid

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säure-chlorid und 70 mg (0,784 mmol) 3-Aminoisoxazol 20 mg (17,2 % der Theorie) N-(3-isoxazolyl)-4-ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)benzolsulfonamid.

200 MHz ¹H-NMR (CDCl₃): 1,6, t, 3H; 2,73, s, 3H; 2,81, s, 3H; 4,35, q, 2H; 6,6, d, 1H; 7,14, d, 1H; 8,05, dd, 1H; 8,27, d, 1H; 8,63, d, 1H; 9,61, bs, 1H.

10 Beispiel 13

5

2-[2-Ethoxy-5-(2-t-butoxycarbonylaminomethylmorpholin-4-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

- Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 170 mg (0,784 mmol) 2-t-Butoxycarbonylaminomethylmorpholin 64 mg (42,2 % der Theorie) 2-[2-Ethoxy-5-(2-t-butoxycarbonylaminomethylmorpholin-4-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on.
- 20 Massenspektrum: 563 (M+H)

2-[2-Ethoxy-5-(4-phenylpiperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on

5

15

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 130 mg (0,784 mmol) 1-Phenylpiperazin, 38 mg (28,3 % der Theorie) 2-[2-Ethoxy-5-(4-phenylpiperazin-1-sulfonyl)-phenyl]-5,7-dimethyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

10 imidazo

200 MHz ¹H-NMR (CDCl₃):1,62, t, 3H; 2,72, s, 3H; 2,77, s, 3H; 3,25, m, 8H; 4,38, q, 2H; 6,92, m, 2H; 7,02, d, 1H; 7,18-7,37, m, 3H; 7,94, dd, 1H; 8,55, m, 1H; 9,79, bs, 1H.

2-[2-Ethoxy-5-(3-hydroxy-3-methoxymethylpyrrolidin-1-sulfonyl)-phenyl]-5,7dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

Auf analoge Weise erhält man ausgehend von 100 mg (0,261 mmol) 4-Ethoxy-3-(5,7-dimethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 100 mg (0,784 mmol) 3-Hydroxy-3-methoxymethylpyrrolidin 30 mg (23,5 % der Theorie) 2-[2-Ethoxy-5-(3-hydroxy-3-methoxymethylpyrrolidin-1-sulfonyl)-phenyl]-5,7-dimethyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on. Massenspektrum: 478 (M+H)

2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

1,23 g (3 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f]-[1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid werden in 40 ml Dichlormethan gelöst und auf 0°C gekühlt. Nach Zugabe einer Spatelspitze DMAP werden 0,90 g (9,00 mmol) N-Methylpiperazin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ether ergibt 1,25 g (88 %) farblosen Feststoff.

15

10

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.59, t, 3H; 1.88, hex, 2H; 2.29, s, 3H; 2.51, m, 4H; 2.63, s, 3H; 3.00, t, 2H; 3.08, m, 4H; 4.33, quart., 2H, 7.17, d, ,1H; 7.88, dd, 1H; 8.44, d, 1H; 9.75, s, 1H.

2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Lactat

5

10

100 mg (0,211 mmol) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in 5 ml Ether suspendiert und mit 20 mg einer 85%igen Lösung von Milchsäure in Wasser versetzt. Man rührt 10 Minuten bei Raumtemperatur und dampft bis zur Trockene ein. Es wird mit Ether verrieben und abgesaugt. Man erhält 110 mg (92 %) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Lactat.

200 MHz ¹H-NMR (DMSO-d₆): 0.92, t, 3H; 1.22, d, 3H; 1.31, t, 3H; 1.74, m, 1H; 2.15, s, 3H; 2.38, m, 4H; 2.81, t, 2H; 2.91, m, 4H; 4.05, quart., 1H; 4.21, quart., 2H; 7.40, d, 1H; 7.85, m, 2H; 11.71, s, breit, 1H.

2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

5

100 mg (0,211 mmol) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in 5 ml Diethylether suspendiert, mit 0,23 ml einer 1M Lösung von HCl in Ether versetzt und 15 Minuten bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum entfernt. Man erhält 107 mg (97 %) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid.

10

15

200 MHz ¹H-NMR (DMSO-d₆): 0.93, t, 3H; 1.35, t, 3H; 1.75, sex., 2H; 2.72, s, 3H; 2.86, m, 4H; 3.15, m, 2H; 3.45, m, 2H; 3.81, m, 2H; 4.25, quart., 2H; 7.45, d, 1H; 7.95, m, 2H; 11.39, s, 1H; 11.90, s, 1H.

2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

470 mg (1,14 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid werden in 20 ml Dichlormethan gelöst und auf 0°C gekühlt. Es werden 390 mg (3,42 mmol) N-Ethylpiperazin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ether ergibt 370 mg (66 %) farblosen Feststoff.

15

10

400 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.59, t, 3H; 1.88, hex, 2H; 2.42, quart., 2H; 2.56, m, 4H; 2.63, s, 3H; 3.00, t, 2H; 3.10, m, 4H; 4.33, quart., 2H, 7.17, d, ,1H; 7.88, dd, 1H; 8.44, d, 1H; 9.75, s, 1H.

2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

5

0,35 g (0,712 mmol) 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in 8 ml Ether suspendiert und soviel Dichlormethan zugegeben, bis eine homogene Lösung entsteht. Man gibt 0,8 ml einer 1M Lösung von HCl in Ether zu, rührt 20 Minuten bei Raumtemperatur und saugt ab. Man erhält 372 mg (99 %) 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid.

10

15

200 MHz ¹H-NMR (DMSO-d₆):0.96, t, 3H; 1.22, t, 3H; 1.36, t, 3H; 1.82, sex., 2H; 2.61, s, 3H; 2.88, m, 2H; 3.08, m, 6H; 3.50, m, 2H; 3.70, m, 2H; 4.25, quart., 2H; 7.48, d, 1H; 7.95, m, 2H; 11.42, s, 1H; 12.45, s, 1H.

2-[2-Ethoxy-5-(4-methyl-1-amino-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

15

auf analoge Weise erhält man ausgehend von 0,04 g (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,03 g (0,29 mmol) 1-Amino-4-methylpiperazin 40 mg (83 %) 2-[2-Ethoxy-5-(4-methyl-1-amino-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

 $R_f=0.09$ (Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.59, t, 3H; 1.90, sex., 2H; 2.22, s, 3H; 2.40, m, 4H; 2.62, s, 3H; 2.71, m, 4H; 3.00, m, 2H; 4.32, quart., 2H; 7.14, d, 1H; 8.05, dd, 1H; 8.60, d, 1H.

2-[2-Ethoxy-5-(4-hydroxyethyl-1-amino-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

15

auf analoge Weise erhält man ausgehend von 0,04 g (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,04 g (0,29 mmol) 1-Amino-4-hydroxyethylpiperazin 46 mg (91 %) 2-[2-Ethoxy-5-(4-hydroxyethyl-1-amino-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on.

R_f=0.08 (Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.59, t, 3H; 1.90, sex., 2H; 2.49, m, 6H; 2.62, s, 3H; 2.71, m, 4H; 3.00, t, 2H; 3.55, t, 2H; 4.31, quart., 2H; 7.14, d, 1H; 8.05, dd, 1H; 8.60, d, 1H.

N,N-Bishydroxyethylaminoethyl-4-ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

5

10

15

auf analoge Weise erhält man ausgehend von 0,04 g (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,043 g (0,29 mmol) N,N-Bishydroxyethylamino-ethylamin 46 mg (91 %) N,N-Bishydroxyethylaminoethyl-4-ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid.

200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.53, t, 3H; 1.70, m, 2H; 1.86, sex., 2H; 2.9, m, 9H; 2.95, t, 2H; 3.09, t, 2H; 3.65, t, 4H; 4.28, quart., 2H; 7.14, d, 1H; 7.95, dd, 1H; 8.35, d, 1H.

2-[2-Ethoxy-5-(4-dimethoxyphosphorylmethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

auf analoge Weise erhält man ausgehend von 0,4 g (0,97 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid, 390 mg Triethylamin und 0,86 g (2,99 mmol) 4-Dimethoxyphosphorylmethyl-piperazin Trifluoracetat 321 mg (53 %) 2-[2-Ethoxy-5-(4-dimethoxyphosphorylmethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

R_f=0.4 (Dichlormethan/Methanol=20:1)

200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.60, t, 3H; 1.88, sex., 2H; 2.62, s, 3H; 2.75, m, 4H; 3.02, t, 2H; 3.11, m, 4H; 3.70, s, 3H; 3.75, s, 3H; 4.35, quart., 2H; 5.30, s, 2H; 7.18, d, 1H; 7.88, dd, 1H; 8.45, d, 1H; 9.71, s, 1H.

2-[2-Ethoxy-5-(4-diethoxyphosphorylmethyl-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

15

auf analoge Weise erhält man ausgehend von 0,4 g (0,97 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,86 g (3,7 mmol) 4-Diethoxyphosphorylmethyl-piperidin 366 mg (49 %) 2-[2-Ethoxy-5-(4-diethoxyphosphorylmethyl-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on R_f =0.4 (Dichlormethan/Methanol=20:1)

200 MHz ¹H-NMR (DMSO-d₆): 0.92, t, 3H; 1.20, t, 6H; 1.35, t, 3H; 1.75, m, 7H; 2.25, m, 2H; 2.82, t, 2H; 3.61, d, 2H; 3.95, quin., 4H; 4.21, quart., 2H; 7.38, d, 1H; 7.87, m, 2H; 11.70, s, 1H.

2-[2-Ethoxy-5-(4-hydroxy-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

auf analoge Weise erhält man ausgehend von 531 mg (1,29 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 393 mg (3,88 mmol) 4-Hydroxypiperidin 400 mg (64 %) 2-[2-Ethoxy-5-(4-hydroxy-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imid-azo[5,1-f][1,2,4]triazin-4-on

10

200 MHz ¹H-NMR (DMSO-d6): 0.941, t, 3H; 1.32, t, 3H; 1.45, m, 2H; 1.71, m, 4H; 2.48, s, 3H; 2.82, m, 4H; 3.11,m, 2H; 3.55, m, 1H; 4.20, quart., 2H; 4.72, d, 1H, 7.39, d,1H; 7.87, m, 2H; 11.70, s, 1H.

15

2-{2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

auf analoge Weise erhält man ausgehend von 411 mg (1 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid und 391 mg (3 mmol) 4-Hydroxyethylpiperazin 380 mg (75 %) 2-{2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-

10 3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

R_f=0.198 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.87, hex., 3H; 2.60, m, 7H; 3.00, t, 2H; 3.10, m, 4H; 3.60, t, 2H; 4.36, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

2-{2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

5

200 mg (0,39 mmol) 2-{2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in Ether suspendiert, mit 2 ml einer 1M Lösung von HCl in Ether versetzt und 20 Minuten bei Raumtemperatur gerührt. Nach Entfernen des Lösungsmittels erhält man 209 mg (100 %) 2-{2-Ethoxy-5-[4-(2-hydroxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid.

10

15

200 MHz ¹H-NMR (DMSO-d6): 0.96, t, 3H; 1.35, t, 3H; 1.70, sex., 2H; 2.59, s, 3H; 2.85, t, 2H; 2.99, t, 2H; 3.18, m, 4H; 3.59, d, 2H; 3.75, m, 4H; 4.25, quart., 2H; 7.49, d, 1H; 7.95, m, 2H; 10.62, s, 1H; 12.31, s, 1H.

2-{2-Ethoxy-5-[4-(3-hydroxy-propyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

auf analoge Weise erhält man ausgehend von 150 mg (0,37 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 158 mg (1,09 mmol) 4-(3-Hydroxypropyl)-piperazin 167 mg (83 %) 2-{2-Ethoxy-5-[4-(3-hydroxy-propyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on R_f =0.52 (Dichlormethan/Methanol=10:1)

10

15

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.70, m, 5; 2.62 m, 8H; 3.00, t, 2H; 3.10, m, 4H; 3.72, t, 2H; 4.36, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

N-Allyl-4-ethoxy-N-(2-hydroxy-ethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

5

10

auf analoge Weise erhält man ausgehend von 420 mg (1,02 mmol) (1 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 300 mg (3 mmol) Allylhydroxyethylamin 400 mg (82 %) N-Allyl-4-ethoxy-N-(2-hydroxy-ethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid R₌0.345 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.90, m, 2H; 2.22, s, breit, 1H; 2.62, s, 3H; 2.99, t, 2H; 3.31, t, 2H; 3.78, t, 2H; 3.92, d, 2H; 4.37, quart., 2H; 5.23, m, 2H; 5.71, m, 1H; 7.15, d, 1H; 7.98, dd, 1H; 8.56, d, 1H; 9.66, s, 1H.

N-Ethyl-4-ethoxy-N-(2-hydroxy-ethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

5

auf analoge Weise erhält man ausgehend von 411 mg (1,0 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 267 mg (3 mmol) Ethylhydroxyethylamin 325 mg (70 %) N-Ethyl-4-ethoxy-N-(2-hydroxy-ethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid R_f =0.29 (Dichlormethan/Methanol=95:5)

15

10

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.20, t, 3H; 1.61, t, 3H; 1.88, sex., 2H; 2.30, s, breit, 1H; 2.62, s, 3H; 2.99, t, 2H; 3.32, m, 4H; 3.78, t, 2H; 3.80, m, 2H; 4.37, quart., 2H; 7.15, d, 1H; 7.98, dd, 1H; 8.56, d, 1H; 9.70, s, 1H.

N,N-Diethyl-4-ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonamid

5

15

auf analoge Weise erhält man ausgehend von 400 mg (0,97 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 210 mg (2,92 mmol) Diethylamin 398 mg (89 %) N,N-Diethyl-4-ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-

10 yl)benzolsulfonamid

R_f=0.49 (Dichlormethan/Methanol=20:1)

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.20, t, 6H; 1.49, t, 1.61, t, 3H; 1.88, sex., 2H; 2.30, s, breit, 1H; 2.62, s, 3H; 2.99, t, 2H; 3.32, m, 4H; 3.78, t, 2H; 3.80, m, 2H; 4.37, quart., 2H; 7.15, d, 1H; 7.98, dd, 1H; 8.56, d, 1H; 9.70, s, 1H.

N-(2-methoxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

5

10

15

auf analoge Weise erhält man ausgehend von 1,23 g (3 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 680 mg (9 mmol) 2-Methoxyethylamin 900 mg (67 %) N-(2-methoxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

R_f=0.25 (Dichlormethan/Methanol=95:5)

400 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H, 1.58, t, 3H; 1.88, sex., 2H; 2.62, s, 3H; 3.01, t, 2H; 3.18, quart., 2H; 3.30, s, 3H; 3.45, t, 2H; 4.32, quart., 2H; 5.12, t, 1H; 7.13, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.82, s, 1H.

N-(2-N,N-dimethylethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

PCT/EP98/06910

5

auf analoge Weise erhält man ausgehend von 210 mg (0,49 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 130 mg (9 mmol) 2-N,N-Dimethylethylamin 150 mg (59 %) N-(2-N,N-dimethylethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

10

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H, 1.62, m, 4H; 1.88, sex., 2H; 2.11, s, 6H; 2.39, t, 2H; 2.63, s, 3H; 3.01, m, 3H; 4.38, quart., 2H; 7.13, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.82, s, 1H.

15

N-[3-(1-morpholino)propyl]-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

5

10

auf analoge Weise erhält man ausgehend von 1,23 g (3 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 1,3 g (9 mmol) 3-(1-Morpholino)-propylamin 1,38 g (88 %) N-[3-(1morpholino) propyl]-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

R_f=0.23 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H, 1.58, t, 3H; 1.72, m, 2H; 1.88, sex., 2H; 2.46, m, 6H; 2.62, s, 3H; 3.01, t, 2H; 3.15, t, 2H; 3.71, t, 4H; 4.32, quart., 2H; 7.13, 15 d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.79, s, 1H.

N-{3-[1-(4-methyl)piperazino]-propyl}-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid

5

10

15

auf analoge Weise erhält man ausgehend von 0,04 g (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 0,05 g (0,29 mmol) 3-[1-(4-Methyl-)piperazino]-propylamin 0,04 g (77 %) N-{3-[1-(4-methyl)piperazino]-propyl}-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzolsulfonsäureamid R_f =0.11 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H, 1.55, t, 3H;1.68, m, 2H; 1.88, sex., 2H; 2.27, s, 3H; 2.45, m, 8H; 2.62, s, 3H; 2.98, m, 3H; 3.10, t, 2H; 3.46, s, 1H; 4.30, quart., 2H; 7.13, d, 1H, 7.97, dd, 1H, 8.53, d, 1H.

2-{2-Ethoxy-5-[4-(2-methoxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

auf analoge Weise erhält man ausgehend von 40 mg (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 40 mg (0,29 mmol) 4-Methoxyethylpiperazin 50mg (99%) 2-{2-Ethoxy-5-[4-(2-methoxy-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

10

R_f=0.27 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.87, hex., 3H; 2.60, m, 9H; 2.97, t, 2H; 3.10, m, 4H; 3.60, s, 3H; 3.46, t, 2H; 4.36, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

2-{2-Ethoxy-5-[4-(2-N,N-dimethyl-ethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

auf analoge Weise erhält man ausgehend von 40 mg (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 50 mg (0,29 mmol) 4-(2-N,N-dimethyl)-ethylpiperazin 50 mg (99 %) 2-{2-Ethoxy-5-[4-(2-N,N-dimethyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on R_f =0.11 (Dichlormethan/Methanol=95:5)

10

15

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.87, hex., 3H; 2.20, s, 6H; 2.42, m, 4H; 2.58, m, 4H; 2.63, s, 3H; 2.99, m, 3H; 3.10, m, 4H; 4.36, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

2-{2-Ethoxy-5-[4-(3-N,N-dimethyl-propyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

15

auf analoge Weise erhält man ausgehend von 100 mg (0,243 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 130 mg (0,73 mmol) 4-(3-N,N-dimethyl)-propylpiperazin 72 mg (54 %) 2-{2-Ethoxy-5-[4-(3-N,N-dimethyl-propyl)-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on R_f=0.08 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.87, sex., 3H; 2.20, s, 6H; 2.25, m, 2H; 2.38, t, 2H; 2.52, m, 4H; 2.63, s, 3H; 2.99, m, 6H; 4.33, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

2-[2-Ethoxy-5-(4-dioxolano-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

auf analoge Weise erhält man ausgehend von 100 mg (0,243 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 100 mg (0,73 mmol) 4-Dioxolanopiperidin 111 mg (88 %) 2-[2-Ethoxy-5-(4-dioxolano-piperidin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imid-azo[5,1-f][1,2,4]triazin-4-on

10

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.80, m, 6H; 2.63, s, 3H; 2.99, t, 2H; 3.20, m, 4H; 3.90, s, 4H; 4.33, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

15

2-[2-Ethoxy-5-(4-(5-methyl-4-furoxancarbonyl)-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

410 mg (1,0 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid werden in 10 ml Dichlormethan gelöst und auf 0°C gekühlt. Es werden 590 mg (2,00 mmol) 1-(5-Methyl-4-furoxancarbonyl)-piperazin Trifluoracetat und 400 mg Triethylamin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Ammoniumchloridlösung, 1M Salzsäure und Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ether ergibt 448 mg (74 %) farblosen Feststoff.

15

10

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.59, t, 3H; 1.88, hex, 2H; 2.25, s, 3H; 2.63, s, 3H; 3.00, t, 2H; 3.20, m, 4H; 3.90, m, 2H; 4.02, m, 2H; 4.33, quart., 2H, 7.19, d, 1H; 7.89, dd, 1H; 8.48, d, 1H; 9.57, s, 1H.

 $2-\{2-\text{Ethoxy-5-[4-acetyl-piperazin-1-sulfonyl]-phenyl}\}-5-\text{methyl-7-propyl-}3H-\text{imidazo}[5,1-f][1,2,4]triazin-4-on$

5

auf analoge Weise erhält man ausgehend von 40 mg (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 40 mg (0,29 mmol) N-Acetylpiperazin 9 mg (18 %) 2-{2-Ethoxy-5-[4-acetyl-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]-triazin-4-on

triazin-4-on

R_c=0.34 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.87, sex., 3H; 2.05, s, 3H; 2.63, s, 3H; 3.00, m, 6H; 3.59, m, 2H; 3.72, m, 2H; 4.33, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H, 8.47, d, 1H, 9.71, s, 1H.

2-{2-Ethoxy-5-[4-formyl-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

15

auf analoge Weise erhält man ausgehend von 40 mg (0,097 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 30 mg (0,29 mmol) N-Formylpiperazin 35 mg (73 %) 2-{2-Ethoxy-5-[4-formyl-piperazin-1-sulfonyl]-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-

10 f][1,2,4]triazin-4-on

R_f=0.29 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.61, t, 3H; 1.87, sex., 3H; 2.05, s, 3H; 2.63, s, 3H; 3.00, m, 6H; 3.50, m, 2H; 3.69, m, 2H; 4.33, quart., 2H; 7.18, d, 1H, 7.89, dd, 1H; 8.00, s, 1H; 8.47, d, 1H, 9.71, s, 1H.

PCT/EP98/06910

Beispiel 44

2-[2-Ethoxy-5-(3-butylsydnonimin)-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3Himidazo[5,1-f][1,2,4]triazin-4-on

5

10

20

110 mg (0,6 mmol) 3-Butylsydnoniminhydrochorid werden in 2,5 ml Pyridin gelöst und auf 0°C gekühlt. Es werden 210 mg (0,5 mmol) 4-Ethoxy-3-(5-methyl-4-oxo-7propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid zugegeben und die Reaktionsmischung wird 2 Stunden bei 0°C und über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Durch Chromatographie (Dichlormethan/Methanol) erhält man 16 mg (6 %) 2-[2-Ethoxy-5-(3-butylsydnonimin)-1-sulfonyl)-phenyl]-5-methyl-7propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

R_f=0.41 (Dichlormethan/Methanol=95:5) 15

> 200 MHz ¹H-NMR (CDCl₃): 1.01, 2t, 6H; 1.47, sex., 2H; 1.55, t, 3H; 1.88, m, 2H; 2.04, quin., 2H; 2.62, s, 3H; 2.98, t, 2H; 4.29, quart., 2H; 4.41, t, 2H; 7.08, d, 1H; 7.56, s, 1H; 7.98, dd, 1H; 8.58, d, 1H; 9.79, s, breit, 1H.

5-Methyl-2-[5-(4-methyl-piperazin-1-sulfonyl)-2-propoxy-phenyl]-7-propyl-3 H-imidazo[5,1-f][1,2,4]triazin-4-on

5

0,85 g (2 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzolsulfonsäurechlorid werden in 20 ml Dichlormethan gelöst und auf 0°C gekühlt. Nach Zugabe einer Spatelspitze DMAP werden 0,60 g (6,00 mmol) N-Methylpiperazin zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Ammoniumchloridlösung gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Kristallisation aus Ether ergibt 0,80 g (77 %) farblosen Feststoff.

 R_f =0.233 (Dichlormethan/Methanol=95:5)

15

10

200 MHz ¹H-NMR (CDCl₃): 1.00, t, 3H; 1.15, t, 3H; 1.87, hex, 2H; 1.99, hex., 2H; 2.30, s, 3H; 2.52, m, 4H; 2.62, s, 3H; 2.99, t, 2H; 3.10, m, 4H; 4.21, t, 2H; 7.17, d, 1H; 7.87, dd, 1h, 8.48, d, 1H, 9.70, s, 1H.

5-Methyl-2-[5-(4-methyl-piperazin-1-sulfonyl)-2-propoxy-phenyl]-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

- 129 -

5

22 mg (0,045 mmol) 5-Methyl-2-[5-(4-methyl-piperazin-1-sulfonyl)-2-propoxy-phenyl]-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in 2 ml Ether und 1 ml Dichlormethan gelöst und mit 0,1 ml einer 1M Lösung von HCl in Ether versetzt. Der ausgefallene Niederschlag wird nach 20 Minuten abgesaugt und getrocknet.

10

200 MHz ¹H-NMR (CDCl₃): 0.95, t, 3H; 1.75, m, 2H; 2.56, s, 3H; 2.75, m, 4H; 2.97, t, 2H; 3.15, m, 2H; 3.44, m, 2H; 3.81, m, 2H; 4.15, t, 2H; 7.47, d, 1H; 7.95, m, 2H; 11.12, s, 1H; 12.22, s, 1H.

15

2-[5-(4-Hydroxypiperidin-1-sulfonyl)-2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

auf analoge Weise erhält man ausgehend von 850 mg (2 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 610 mg (6 mmol) 4-Hydroxypiperidin 736 mg (75 %) 2-[5-(4-Hydroxypiperidin-1-sulfonyl)-2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo-[5,1-f][1,2,4]triazin-4-on

R_f=0.07 (Dichlormethan/Methanol=95:5)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.16, t, 3H; 1.80, m, 9H; 2.65, s, 3H; 3.00, m, 4H; 3.32, m, 2H; 3.85,m, 1H; 4.22, t., 2H; 7.17, d,1H; 7.89, dd, 1H; 8.50, d, 1H; 11.70, s, 1H.

2-[5-(4-Hydroxymethylpiperidin-1-sulfonyl)-2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid und 35 mg (0,3 mmol) 4-Hydroxymethylpiperidin 41 mg (82 %) 2-[5-(4-Hydroxymethylpiperidin-1-sulfonyl)-2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

R_f=0.52 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.001, t, 3H; 1.16, t, 3H; 1.60, m, 4H; 1.82, m, 5H; 2.31, t, 2H, 2.62, s, 3H, 2.98, t, 2H, ; 3.48, d, 2H; 3.85, d, 2H; 4.21, t, 2H; 7.,17, d, 1H; 7.88, dd, 1H, 8.45, d, 1H; 9. 71, s, 1H.

2-{5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-2-propoxy-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid und 39 mg (0,3 mmol) 4-Hydroxyethylpiperazin 50 mg (96 %) 2-{5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-2-propoxy-phenyl}-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

10

15

R_f=0.43 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.15, t, 3H, 1.88, m, 2H, 2.00, m, 2H, 2.62, m, 9H, 3.00, t, 2H, 3.07, m, 4H, 3.58, t, 2H, 4.23, t, 2H; 7.19, d, 1H; 7.88, dd, 1H, 8.43, d, 1H, 9.85, s, 1H.

 $N-(1,1-Dioxotetrahydro-1\lambda^6-thiophen-3-yl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid$

5

10

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 41 mg (0,3 mmol) 2-Aminosulfolan 8 mg (14 %) N-(1,1-Dioxotetrahydro- $1\lambda^6$ -thiophen-3-yl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid R_f =0.49 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H, 1.15, t, 3H, 1.85, m, 2H; 1.99, m, 2H; 2.30, m, 1H; 2.50, m, 1H; 2.62, s, 3H; 2.95, m, 4H; 3.21, m, 1H; 4.20, m, 3H; 5.98, s, 1H; 7.18, d, 1H, 7.98, dd, 1H; 8.51,d, 1H, 9.71, s, 1H.

N-(2-Dimethylaminoethyl)-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

10

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 31 mg (0,3 mmol) 1,1,4-Trimethyldiaminoethan 39 mg (79 %) N-(2-Dimethylaminoethyl)-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid R_f =0.28 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H, 1.15, t, 3H, 1.88, m, 2H; 2.01, m, 2H; 2.25, s, 6H; 2.50, t, 2H; 2.62, s, 3H; 2.82, s, 3H; 3.01, t, 2H; 3.18, t, 2H; 4.21, t, 2H; 7.16, d, 1H, 7.91, dd, 1H, 8.50, d, 1H; 9.70, s, 1H.

3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-N-(3-morpholin-4-yl-propyl)-4-propoxy-benzolsulfonsäureamid

5

10

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 43 mg (0,3 mmol) 1-(3-Aminopropyl)-morpholin 52 mg (97 %) 3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-N-(3-morpholin-4-yl-propyl)-4-propoxy-benzol-sulfonsäureamid

R_e=0.33 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H, 1.15, t, 3H, 1.71, m, 2H; 1.93, m, 4H; 2.43, m, 6H; 2.62, s, 3H; 2.98, t, 2H; 3.12, t, 2H; 3.70, m, 4H; 4.21, t, 2H; 7.15, d, 1H; 7.96, dd, 1H; 8.55, d, 1H; 9.85, s, 1H.

N,N-Bis-(2-hydroxyethyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

10

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid und 32 mg (0,3 mmol) Bishydroxyethylamin 34 mg (69 %) N,N-Bis-(2-hydroxyethyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

 R_f =0.36 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.15, t, 3H; 1.85, m, 2H; 1.97, m, 2H; 2.60, s, 3H; 2.98, t, 2H; 3.33, t, 4H; 3.87, t, 4H; 4.20, t, 2H; 7.15, d, 1H; 7.92, dd, 1H; 8.49, d, 1H; 9.85, s, 1H.

N-(3-Hydroxybenzyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

10

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 37 mg (0,3 mmol) 3-Hydroxybenzylamin 4 mg (8 %) N-(3-Hydroxybenzyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

R_f=0.43 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃):1.01, t, 3H, 1.13, t, 3H; 1.83, m, 2H; 1.96, m, 2H; 2.59, s, 3H, 2.96, t, 2H, 4.16, m, 4H, 5.05, t, 1H; 6.52, s, 1H; 6.70, m, 2H; 7.06, m, 2H; 7.93, dd, 1H, 8.41, d, 1H, 9.77, s, 1H.

N-Ethyl-N-(2-hydroxyethyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

10

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 27 mg (0,3 mmol) Ethylhydroxyethylamin 18 mg (38 %) N-Ethyl-N-(2-hydroxyethyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-4-propoxy-benzolsulfonsäureamid R_f =0.48 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃):1.01, t, 3H; 1.15, 2t, 6H; 1.75, s, 2H; 1.85, m, 2H; 1.98, m, 2H; 2.40, s, 1H; 2.62, s, 3H; 2.99, t, 2H; 3.32, m, 4H; 3.90, quart., 2H, 4.21, quart., 2H; 7.15, d, 1H; 7.95, dd, 1H; 8.55, d, 1H, 9.73, s, 1H.

N-(3-Ethoxypropyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 31 mg (0,3 mmol) 3-Ethoxypropylamin 47 mg (96 %) N-(3-Ethoxypropyl)-3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid R_s =0.60 (Dichlormethan/Methanol=9:1)

15

10

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.15, m, 6H; 1.89, m, 7H; 2.62, s, 3H; 3.00, t, 2H; 3.12, quart., 2H; 3.46, m, 4H; 4.20, t, 2H; 5.52, m, 1H; 7.15, d, 1H; 7.98, dd, 1H; 8.55, d, 1H, 9.85, s, 1H.

2-[5(4-Hydroxypiperidin-1-sulfonyl)2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on

5

10

15

auf analoge Weise erhält man ausgehend von 212 mg (0,5 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 152 mg (1,5 mmol) 4-Hydroxypiperidin 125 mg (50 %) 2-[5(4-Hydroxypiperidin-1-sulfonyl)2-propoxy-phenyl]-5-methyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

R_f=0.07 (Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃): 1.05, t, 3H; 1.18, t, 3H, 1.98, m, 8H, 2.71, s, 3H; 3.10, m, 2H; 3.28, m, 4H; 3.88, m, 1H; 4.28, t, 2H; 7.21, d, 1H; 7.97, dd, 1H, 8.45, d, 1H. 10.45, s, 1H.

3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-N-pyridin-4-yl-benzolsulfonsäureamid

5

10

auf analoge Weise erhält man ausgehend von 85 mg (0,2 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 56 mg (0,6 mmol) 4-Aminopyridin nach 18 Stunden reflux in 1 ml THF 24 mg (25 %) 3-(5-Methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-4-propoxy-N-pyridin-4-yl-benzolsulfonsäureamid R_f =0.13 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃ + CD₃OD): 1.01, t, 3H; 1.09, t, 3H; 1.90, m, 4H; 2.60, s, 3H; 2.99, t, 2H; 4.16, t, 2H; 7.05, d, 2H; 7.15, d, 1H; 7.88, d, 2H; 8.05, dd, 1H; 8.41, d, 1H.

N,N-Diethyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 22 mg (0,6 mmol) Diethylamin 42 mg (92 %) N,N-Diethyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid.

10

R_f=0.64 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.18, 2t, 9H; 1.92, 2 hex., 4H; 2.62, s, 3H; 3.00, t, 2H, 3.29, quart., 4H; 4.21, t, 2H; 7.13, d, 1H; 7.93, dd, 1H, 8.51, d, 1H, 9.85, s, 1H.

1-[3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonyl]-piperidin-4-carbonsäure

5

10

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 14 mg (0,6 mmol) Piperidincarbonsäure in 1 ml eines Gemisches aus THF und Wasser (1:1) mit 26,5 mg Natriumcarbonat 21 mg (41 %) 1-[3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonyl]-piperidin-4-carbonsäure.

R_f=0.28 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 0.90, t, 3H; 1.04, t, 3H; 1.80, m, 4H; 2.21, m, 2H, 2.51, s, 3H, 2.85, m, 2H, 3.56, m, 6H; 4.10, t, 2H; 7.12, d, 1H, 7.71, dd, 1H, 8.10, d, 1H, 10.72, s, breit, 1H.

5-Methyl-2-[5-(morpholin-4-sulfonyl)-2-propoxy-phenyl]-7-propyl-3*H*-imidazo[5,1-*f*][1,2,4]triazin-4-on

5

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfon-säurechlorid und 26 mg (0,3 mmol) Morpholin 34 mg (71 %) 5-Methyl-2-[5-(morpholin-4-sulfonyl)-2-propoxy-phenyl]-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on.

10 4-on

R_c=0.64 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.16, t, 3H, 1.89, hex., 2H, 2.00, hex., 2H; 2.63, s, 3H; 3.02, m, 4H; 4.25, t, 2H, 7.19, d, 1H, 7.89, dd, 1H; 8.48, d, 1H; 9.78, s, 1H.

N-(2-Hydroxyethyl)-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

10

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 23 mg (0,63 mmol) Methylhydroxyethylamin 25 mg (54 %) N-(2-Hydroxyethyl)-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid.

R_f=0.53 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.15, t, 3H;1.82, m, 2H; 1.99, hex., 2H; 2.40, s, breit, 1H, 2.62, s, 3H, 2.89, s, 3H; 2.99, t, 2H; 3.21, t, 2H; 3.80, s, breit, 2H; 4.21, t, 2H, 7.16, d, 1H; 7.92, dd, 1H, 8.50, d, 1H, 9.79, s, 1H.

N-(2-Hydroxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-N-propyl-benzolsulfonsäureamid

5

10

15

auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 31 mg (0,6 mmol) Propylhydroxyethylamin 20 mg (40 %) N-(2-Hydroxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-N-propyl-benzolsulfonsäureamid.

R_f=0.52 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃): 0.90, t, ,3H; 1.01, t, 3H; 1.15, t, 3H; 1.52, m, 2H, 1.88, m, 2H, 2.00, m, 2H; 2.40, s, 1H; 2.63, s, 3H, 3.01, t, 2H, 3.22, m, 4H; 3.80, quart., 2H; 4.21, t, 2H, 7.15, d, 2H, 7.95, dd, 1H, 8.55, d, 1H; 9.75, s, 1H.

N-[2-(3,4-Dimethoxy-phenyl)ethyl]-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxy-benzolsulfonsäureamid

5

10

Auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 59 mg (0,3 mmol) N-Methyl-3,4-dimethoxyphenylethylamin 45 mg (78 %) N-[2-(3,4-Dimethoxyphenyl)-ethyl]-N-methyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonsäureamid.

 R_t =0.35 (Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃): 0.90, t, 3H; 1.07, t, 3H; 1.78, m, 2H; 1.92, m, 2H; 2.55, s, 3H; 2.73, s, 3H; 2.78, m, 2H; 2.89, t, 2H; 3.23, t, 2H, 3.80, s, 6H, 4.15, t, 2H, 6.65, m, 3H, 7.05, d, 1H, 7.75, dd, 1H, 8.41, d, 1H, 9.67, s, 1H.

PCT/EP98/06910

Beispiel 65

N-Allyl-N-(2-hydroxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonsäureamid

5

10

15

Auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-säurechlorid und 31 mg (0,3 mmol) Allylhydroxyethylamin 34 mg (70 %) N-Allyl-N-(2-hydroxyethyl)-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfon-säureamid.

R_f=0.52 (Dichlormethan/Methanol=9:1)

200 MHz ¹H-NMR (CDCl₃):1.01, t, 3H; 1.15, t, 3H; 1.85, m, 2H; 1.99, m, 2H; 2.38, s, breit, 1H, 2.63, s, 3H; 3.00, t, 2H, 3.32, t, 2H, 3.86, t, 2H, 3.90, d, 2H; 4.25, t, 2H, 5.21, m, 2H, 5.71, m, 1H; 7.15, d, 1h, 7.95, dd, 1H; 8.55, d, 1H, 9.77, s, 1H.

N-Allyl-N-cyclopentyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonsäureamid

- 149 -

5

10

15

Auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 38 mg (0,3 mmol) Allylcyclopentylamin 33 mg (64 %) N-Allyl-N-cyclopentyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonsäureamid.

R_f=0.43 (Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃):1.01, t, 3H;1.15, t, 3H; 1.53, m, 9H; 2.00, m, 4H, 2.63, s, 3H; 3.00, t, 2H; 3.80, m, 2H, 4.21, t, 2H, 5.20, m, 2H; 5.88, m, 1H, 7.12, d, 1H, 7.95, dd, 1H, 8.55, d, 1H, 9.75, s, 1H.

N-Allyl-N-ethyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonsäureamid

5

10

15

Auf analoge Weise erhält man ausgehend von 42 mg (0,1 mmol) 4-Propoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 26 mg (0,3 mmol) Allylethylamin 30 mg (64 %) N-Allyl-N-ethyl-3-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-propoxybenzolsulfonsäureamid.

R_f=0.44 (Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃):1.01, t, 3H;1.15, t, 6H;1.89, m, 2H, 2.01, m, 2H, 2.63, s, 3H, 3.00, t, 2H, 3.27, quart., 2H, 3.87, d, 2H, 4.23, t, 2H, 5.20, m, 2H, 5.72, m, 1H; 7.15, d, 1H, 7.95, dd, 1H, 8.55, d, 1H; 9.80, s, 1H.

2-[2-Ethoxy-4-methoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

$$H_3C$$
 O
 O
 CH_3
 N
 N
 CH_3
 CH_3

5

10

20 mg (0.045mmol) 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid werden in 0,5 ml Dichlormethan gelöst, mit einer Spatelspitze Dimethylaminopyridin und 14 mg (0,136 mmol) N-Methylpiperazin versetzt und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Nach Reinigung über Kieselgel erhält man 12,8 mg (55 %) 2-[2-Ethoxy-4-methoxy-5-(4-methylpiperazin-1-sulfonyl)phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

R_f=0.22 (Dichlormethan/Methanol=20:1).

200 MHz ¹H-NMR (CDCl₃): 0.94, t, 3H; 1.55, t, 3H; 1.80, m, 2H; 2.24, s, 3H; 2.42, t, 4H; 2.55, s, ,3H; 2.92, t, 2H; 3.19, t, 4H, 3.91, s, 3H; 4.25, quart., 2H; 6.48, s, 1H;

8.57, s, 1H; 9.54, s, 1H.

2-{2-Ethoxy-5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-4-methoxy-phenyl}-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

15

Auf analoge Weise erhält man ausgehend von 20 mg (0,045 mmol) 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 18 mg (0,14 mmol) 4-Hydroxyethylpiperazin 11 mg (46 %) 2-{2-Ethoxy-5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-4-methoxyphenyl}-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on.

R_f=0.34 (Dichlormethan/Methanol=15:1)

200 MHz ¹H-NMR (CDCl₃): 0.94, t, 3H; 1.55, t, 3H; 1.80, m, 3H; 2.52, m, 9H; 2.92, t, 2H; 3.20, t, 4H; 3.44, t, 2H; 3.92, s, 3H; 4.25, quart., 2H; 6.49, s, 1H; 8.56, s, 1H; 9.55, s, 1H.

4-Ethoxy-N-ethyl-N-(2-hydroxyethyl)-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäureamid

5

10

Auf analoge Weise erhält man ausgehend von 20 mg (0,045 mmol) 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 12 mg (0,14 mmol) Ethylhydroxyethylamin 8 mg (34 %) 4-Ethoxy-N-ethyl-N-(2-hydroxyethyl)-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäureamid. R_f =0.45 (Dichlormethan/Methanol=15:1)

200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.18, t, 3H; 1.61, t, 2H; 1.88, m, 2H; 2.39, s, breit, 1H; 2.65, s, 3H; 3.00, t, 2H; 3.38, quart., 2H; 3.45, t, 2H; 3.78, m, 2H; 4.01, s, 3H; 4.20, quart., 2H; 6.58, s, 1H; 8.67, s, 1H; 9.61, s, 1H.

4-Ethoxy-N-(4-ethoxyphenyl)-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäureamid

5

10

Auf analoge Weise erhält man ausgehend von 20 mg (0,045 mmol) 4-Ethoxy-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und 19 mg (0,14 mmol) 4-Ethoxyanilin 7 mg (34 %) 4-Ethoxy-N-(4-ethoxyphenyl)-2-methoxy-5-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzol-sulfonsäureamid.

R_f=0.36 (Dichlormethan/Methanol=20:1)

200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.33, t, 3H, 1.59, t, 3H, 1.86, hex., 2H, 2.62, s, 3H; 3.02, t, 2H; 3.92, quart., 2H; 4.11, s, 3H; 4.31, quart., 2H; 6.58, s, 1H, 6.72, d, 2H; 6.88, s, breit, 1H; 6.99, d, 2H, 8.50, s, 1H; 9.59, s, 1H.

4-Ethoxy-N-ethyl-N-(2-hydroxy-ethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)benzolsulfonsäureamid

5

0,64 g (1,5 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]tri-azin-2-yl)-benzolsulfonsäurechlorid werden in 20 ml Dichlormethan gelöst und auf 0°C gekühlt. Nach Zugabe einer Spatelspitze Dimethylaminopyridin werden 0,40 g (4,50 mmol) 2-(Ethylamino)-ethanol zugegeben und die Reaktionsmischung über Nacht bei Raumtemperatur gerührt. Es wird mit Dichlormethan verdünnt, die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Chromatographie (Dichlormethan/Methanol=95:5) ergibt 0,454 g (63 %) farblosen Feststoff.

15

10

200 MHz ¹H-NMR (CDCl₃):1.02, t, 3H; 1.20, t, 3H; 1.35, t, 3H; 1.61, t, 3H; 1.88, sex., 2H; 2.25, s, breit, 1H; 3.01, m, 4H; 3.32, m, 4H; 3.70, m, 2H; 3.80, m, 2H; 4.37, quart., 2H; 7.15, d, 1H; 7.98, dd, 1H; 8.56, d, 1H; 9.70, s, 1H.

N-(2-methoxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzolsulfonsäureamid

5

10

15

Auf analoge Weise erhält man ausgehend von 40 mg (0,094 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 21 mg (0,282 mmol) 2-Methoxyethylamin 15 mg (34 %) N-(2-methoxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzolsulfonsäureamid.

R_f=0.2 (Ethylacetat/Cyclohexan=2:1)

200 MHz ¹H-NMR (CDCl₃): 0.97, t, 3H;1.25, t, 3H; 1.53, t, 3H; 1.82, sex., 2H; 2.97, m, 4H; 3.11, m, 2H; 3.22, s, 3H; 3.39, t, 2H; 4.37, quart., 2H; 5.00, t, 1H; 7.17, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.82, s, 1H.

N,N-Bis-(2-Methoxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]tri-azin-2-yl)-4-ethoxybenzolsulfonsäureamid

5

10

15

Auf analoge Weise erhält man ausgehend von 40 mg (0,094 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 38 mg (0,28 mmol) Bismethoxyethylamin 17 mg (34 %) N,N-Bis-(2-Methoxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzolsulfonsäureamid.

R_f=0.34 (Ethylacetat/Cyclohexan=2:1)

200 MHz ¹H-NMR (CDCl₃): 0.97, t, 3H;1.27, t, 3H; 1.53, t, 3H; 1.80, sex., 2H; 2.95, m, 4H; 3.22, s, 6H; 3.39, m, 4H; 3.49, m, 4H; 4.27, quart., 2H; 7.17, d, 1H, 7.97, dd, 1H, 8.53, d, 1H; 9.82, s, 1H.

2-[5-(4-Hydroxypiperidin-1-sulfonyl)-2-ethoxyphenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-*f*]-[1,2,4]triazin-4-on

5

15

Auf analoge Weise erhält man ausgehend von 640 mg (1,5 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 460 mg (4,5 mmol) 4-Hydroxypiperidin 485 mg (66 %) 2-[5-(4-Hydroxypiperidin-1-sulfonyl)-2-ethoxyphenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-

10 f[1,2,4]triazin-4-on.

R_f=0.37 (Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃): 1.02, t, 3H; 1.32, t, 3H; 1.60, t, 3H; 1.80, m, 7H; 2.97, m, 6H; 3.30, m, 2H; 3.82, m, 1H; 4.34, quart., 2H; 7.17, d, 1H; 7.90, dd, 1H, 8.45, d, 1H. 9.75, s, 1H.

2-[5-(4-Hydroxymethylpiperidin-1-sulfonyl)-2-ethoxy-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f](1,2,4]triazin-4-on

5

10

15

Auf analoge Weise erhält man ausgehend von 40 mg (0,094 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 33 mg (0,28 mmol) 4-Hydroxymethylpiperidin 23 mg (48 %) 2-[5-(4-Hydroxymethylpiperidin-1-sulfonyl)-2-ethoxyphenyl]-5-ethyl-7-propyl-3*H*-imid-azo[5,1-f][1,2,4]triazin-4-on.

R_f=0.38 (Dichlormethan/Methanol=10:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.33, t, 3H; 1.60, t, 3H; 1.80, m, 8H; 2.41, m, 2H, 3.00, m, 4H; 3.56, m, 4H; 4.35, quart, 2H; 7.,17, d, 1H; 7.88, dd, 1H, 8.45, d, 1H; 9. 71, s, 1H.

2-{2-Ethoxy-5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-phenyl}-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on

5

10

Auf analoge Weise erhält man ausgehend von 40 mg (0,094 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 37 mg (0,28 mmol) 4-Hydroxyethylpiperazin 35 mg (71 %) 2-{2-Ethoxy-5-[4-(2-hydroxyethyl)-piperazin-1-sulfonyl]-phenyl}-5-ethyl-7-propyl-3*H*-imidazo[5,1-f](1,2,4]triazin-4-on.

R_f=0.65 (Dichlormethan/Methanol=10:1)

2-[2-Ethoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f]-[1,2,4]triazin-4-on

5

10

15

Auf analoge Weise erhält man ausgehend von 640 mg (1,50 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 450 mg (4,5 mmol) 4-Hydroxyethylpiperazin 495 mg (66 %) 2-[2-Ethoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on.

R_f=0.30(Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃):1.01, t, 3H; 1.35, t, 3H; 1.61, t, 3H; 1.89, sex., 2H; 2.31, s, 3H; 2.53, m, 4H; 3.05, m, 8H; 4.35, quart., 2H; 7.17, d, 1H; 7.89, dd, 1H; 8.48, d, 1H; 9.65, s, 1H.

2-[2-Ethoxy-5-(4-methylpiperazin-1-sulfonyl)-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on Hydrochlorid

5

300 mg (0,61 mmol) 2-[2-Ethoxy-5-(4-methyl-piperazin-1-sulfonyl)-phenyl]-5-ethyl-7-propyl-3*H*-imidazo[5,1-f][1,2,4]triazin-4-on werden in einer Mischung aus Ether und Dichlormethan gelöst und mit 2 ml einer 1M Lösung von HCl in Ether versetzt. Nach 20 Minuten wird der ausgefallene Feststoff abgesaugt und getrocknet.

10

200 MHz ¹H-NMR (DMSO-d₆): 0.95, t, 3H; 1.32, 2t, 6H; 1.80, sex., 2H; 2.76, m, 4H; 3.01, m, 4H; 3.15, m, 2H; 3.44, m, 2H; 3.81, m, 2H; 4.25, quart., 2H; 7.49, d, 1H; 7.95, m, 2H; 11.25, s, 1H; 12.30, s, 1H.

3-(5-Ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-N-(3morpholin-4-yl-propyl)-4-ethoxybenzolsulfonsäureamid

5

10

15

Auf analoge Weise erhält man ausgehend von 640 mg (1,5 mmol) 4-Ethoxy-3-(5ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 650 mg (4,5 mmol) 1-(3-Aminopropyl)-morpholin 476 mg (59 %) 3-(5-Ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-N-(3-morpholin-4-yl-propyl)-4-ethoxy-benzol-sulfonsäureamid.

R_c=0.18 (Dichlormethan/Methanol=19:1)

200 MHz ¹H-NMR (CDCl₃): 1.01, t, 3H; 1.32, t, 3H; 1.60, t, 3H; 1.70, m, 3H; 1.89, sex., 2H; 2.43, m, 7H; 3.01, m, 4H; 3.15, t, 2H; 3.70, m, 4H; 4.35, quart., 2H; 7.15, d, 1H; 7.95, dd, 1H; 8.55, d, 1H; 9.82, s, 1H.

N-(2-Hydroxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-N-propyl-benzolsulfonsäureamid

5

10

15

Auf analoge Weise erhält man ausgehend von 640 mg (1,5 mmol) 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und 464 mg (4,5 mmol) Propylhydroxyethylamin 600 mg (81 %) N-(2-Hydroxyethyl)-3-(5-ethyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-N-propylbenzolsulfonsäure-amid.

R_f=0.73 (Dichlormethan/Methanol=10:1)

200 MHz ¹H-NMR (CDCl₃): 0.91, t, ,3H; 1.01, t, 3H; 1.32, t, 3H; 1.62, m, 5H; 1.88, m, 2H; 2.32, s, 1H; 3.01, m, 4H; 3.22, m, 4H; 3.80, m, 2H; 4.35, t, 2H; 7.15, d, 2H, 7.95, dd, 1H, 8.55, d, 1H; 9.75, s, 1H.

Die in den folgenden Tabellen 1, 2, 3, 4 und 6 aufgeführten Sulfonamide wurden mittels automatisierter Parallelsynthese aus 4-Ethoxy-3-(5-methyl-4-oxo-7-propyl-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzolsulfonsäurechlorid und dem entsprechenden Amin nach einer der drei folgenden Standardvorschriften hergestellt.

20

Die in der Tabelle 5 aufgeführten Sulfonamide wurden in analoger Weise mittels automatisierter Parallelsynthese aus 4-Ethoxy-3-(5-ethyl-4-oxo-7-propyl-3,4-

dihydro-imidazo[5,1-δ][1,2,4]triazin-2-yl)-benzolsulfonsäure-chlorid und dem entspechenden Amin hergestellt.

Die Reinheit der Endprodukte wurde mittels HPLC bestimmt, ihre Charakterisierungen durch LC-MS Messung vorgenommen. Der Gehalt der gewünschten Verbindung nach HPLC-MS ist in den Tabellen in der Spalte "HPLC" in Prozent angegeben. Standardvorschrift A wurde angewendet bei Aminen mit aciden Funktionalitäten, Standardvorschrift B bei Aminen mit neutralen Funktionalitäten, Standardvorschrift C bei Aminen mit zusätzlichen basischen Funktionalitäten.

10

25

5

In den Strukturformeln der folgenden Tabellen 1, 2, 3, 4, 5 und 6 wurde gelegentlich auf die Abbildung der Wasserstoffatome verzichtet. Stickstoffatome mit einer freien Valenz sind daher als -NH-Rest zu verstehen.

Standardvorschrift A: Umsetzung von Aminen mit aciden Funktionalitäten
Zunächst werden 0,05 mmol Amin, 0,042 mmol Sulfonsäurechlorid und 0,10 mmol
Na₂CO₃ vorgelegt und 0,5 ml eines Gemisches aus THF/H₂O von Hand zupipettiert.
Nach 24 h bei RT wird mit 0,5 ml 1 M H₂SO₄-Lösung versetzt und über eine zweiphasige Kartusche filtrier (500 mg Extrelut (Oberphase) und 500 mg SiO₂, Laufmittel Essigester). Nach dem Einengen des Filtrates im Vakuum erhält man das Produkt.

Standardvorschrift B: Umsetzung von Aminen mit neutralen Funktionalitäten Zunächst werden 0,125 mmol Amin vorgelegt und vom Synthesizer 0,03 mmol Sulfonsäurechlorid als Lösung in 1,2-Dichlorethan zupipettiert. Nach 24 h wird das Gemisch mit 0,5 ml 1 M H₂SO₄ versetzt und über eine zweiphasige Kartusche (500 mg Extrelut (Oberphase) und 500 mg SiO₂, Laufmittel: Essigester) filtriert. Das Filtrat wird im Vakuum eingeengt.

Standardvorschrift C: Umsetzung von Aminen mit basischen Funktionalitäten Zunächst werden 0,05 mmol Amin vorgelegt und vom Synthesizer 0,038 mmol Sulfonsäurechlorid als Lösung in 1,2-Dichlorethan und 0,05 mmol Triethylamin als Lösung in 1,2-Dichlorethan zupipettiert. Nach 24 h wird zunächst mit 3 ml gesättigter NaHCO₃-Lösung versetzt und das Reaktionsgemisch über eine zweiphasige Kartusche filtriert. Nach dem Einengen des Filtrates im Vakuum erhält man das Produkt.

5

Alle Reaktionen werden dünnschichtehromatographisch verfolgt. Für den Fall, daß nach 24 h bei RT keine vollständige Umsetzung erfolgt ist, wird für weitere 12 h auf 60°C erhitzt und im Anschluß der Versuch beendet.

Tabelle	<u>:1:</u>			
BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
82	CH ₃ O N N CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	525,63147	83	526
83	CH ₃ O CH ₃ Chiral	525,63147	71	526
84	CH ₃ O CH ₃ CH ₃ O CH ₃ O CH ₃	555,65796	91	556

BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
85	CH ₃ O CH ₃	477,58687	76	478
86	CH ₃ CH ₃ CH ₃ CH ₃ HO H ₃ C H ₃	525,63147	81	526
87	CH ₃ CH ₃ CH ₃ CH ₃	463,55978	65	464

BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
88	CH ₃ O CH ₃ O CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	531,67929	83	532
89	CH ₃ C OH	463,55978	40	464
90	CH ₃ O N N CH ₃ O CH ₃ O CH ₃ O HO N	463,55978	44	464

BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
91	CH ₃ O CH ₃	581,6962	76	582
92	CH ₃ O N N CH ₃ O N CH ₃	475,5273	61	476
93	CH ₃ O CH ₃ O CH ₃ N N N CH ₃ C N CH ₃	421,47851	80	422

BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
94	CH ₃ O N CH ₃ O CH ₃ O CH ₃	475,57093	81	476
95	CH ₃ CH ₃ CH ₃ CH ₃	491,61396	97	492

BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
96	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	567,71274	80	568
97	CH ₃ O CH ₃ O CH ₃ N N N CH ₃ C N CH ₃	521,64045	94	522
98	CH ₃	477,58687	70	478

BspNr.	- 173 - Struktur	MG [g/mol]	HPLC	MS+H
99	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	535,62391	88	536
100	CH ₃ CH ₃ CH ₃ CH ₃	553,68565	88	554
101	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	529,61972	85	530

BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
102		539,65856	91	540
103	CH ₃ O C CH ₃ O C CH ₃ O C CH ₃ O C C CH ₃ O C C C C C C C C C C C C C C C C C C	520,61209	55	521
104	CH ₃ O CH ₃	502,64038	82	503

BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
105	CH ₃ O N N CH ₃ CH ₃ CH ₃	564,71207	86	565
106	CH ₃ O N CH ₃	524,64674	85	525
107	CH ₃ O N CH ₃ O N CH ₃	538,67383	85	539

BspNr.	Struktur	MG [g/mol]	HPLC	MS+H
108	CH ₃ O N N CH ₃ CH ₃ CH ₃	546,69396	84	547
109		504,61269	90	505

Tabelle 2:				
BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
110	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	507,6134	74	508
111	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	539,6586	75	540

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
112	HO O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	599,7115	83	600
113	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃	535,6675	60	536

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
114	CH ₃ O CH ₃ O S O CH ₃ O S O OH	521,6405	95	522
115	CH ₃ O CH ₃ O CH ₃ O CH ₃	569,6851	84	570
116	CH ₃ O CH ₃ N N CH ₃ CH ₃ CCH ₃	608,5486	85	608

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
117	CH ₃ O CH ₃ O N N CH ₃ CH ₃	569,6851	88	570
118	CH ₃ O CH ₃ O S O CH ₃ O CH ₃ O O CH ₃ O O O O O O O O O O O O O O O O O O O	463,5598	94	464
119	CH ₃ O CH ₃ O S O CH ₃ O CH ₃ O CH ₃	535,6675	93	536

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
120	CH ₃ O CH ₃ O CH ₃ O CH ₃	517,6522	71	518
121	H ₃ C O CH ₃	561,7058	92	562
122	CH ₃ O CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	539,6586	85	540

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
123	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	518,6834	87	519
124	CH.	588,1307	30	588
125	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	550,685	83	551

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
126	CH ₃ O CH ₃	542,7057	77	543
127	CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃	502,6404	91	503
128	CH ₃ O CH ₃ CH ₃ O CH ₃ CH ₃ O CH ₃	490,6292	45	491

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
129	CH ₃ O CH ₃ N CH ₃	568,7003	66	569
130	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	534,6828	86	535
131	CH ₃ O CH ₃ N N CH ₃ CH ₃ CH ₃	580,7551	95	581

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
132	CH ₃ O CH ₃ O CH ₃ N N N N CH ₃ O CH ₃	576,7205	87	577
133	CH ₃ CH ₃ CH ₃ CH ₃	598,7296	60	599

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
134	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	516,6675	95	517
135	CH ₃ O CH ₃	528,6786	80	529

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
136	CH ₃ O CH ₃	538,6738	85	539
137	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	533,6981	68	534
138	CH ₃ O CH ₃	516,6675	91	517

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
139	CH ₃ O CH ₃ O CH ₃ O CH ₃ O O CH ₃	489,598	85	490
140	CH ₃ CH ₃ CH ₃ CH ₃ N CH ₃	475,5709	83	476
141	CH ₃ O CH ₃ O CH ₃ O CH ₃ O O CH ₃	503,6251	85	504

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
142	CH ₃ O CH ₃ O CH ₃ O CH ₃	489,598	91	490
143	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	461,5438	78	462
144	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	539,6586	88	540

BspNr.	Struktur	MG [g/mol]	HPLC	MZ+H
145	CH ₃ O CH ₃ O S O CH ₃ O CH ₃ O O CH ₃ O O O O O O O O O O O O O O O O O O O	539,6586	58	538
146	CH ₃ O CH ₃ O CH ₃ O CH ₃	511,6044	80	512
147	CH ₃ O CH ₃ N N CH ₃ CH ₃ CH ₃	505,6411	90	506

Tabelle 3:	131-			
BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
148	CH ₃ OH ₃	565,70	38	566
149	CH ₃	643,77	85	644

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
150	CH ₃ O N N CH ₃ CH ₃ CH ₃ CH ₃	525,63	80	526
151	CH ₃ O CH ₃ O CH ₃ O O CH ₃	525,63	78	526

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
152	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	560,63	51	561
153	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	503,65	78	504

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
154	CH ₃ O CH ₃ O CH ₃ O CH ₃	522,63	82	523
155		502,60	84	503

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
156	CH ₃ O CH ₃ O CH ₃ N CH ₃ N CH ₃	488,57	83	489
157	CH ₃ CH ₃ CH ₃	536,66	82	537

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
158	CH ₃ O CH ₃ O S O CH ₃ CH ₃ CH ₃ CH ₃	490,63	90	491
159	H ³ O Z Z CH ³	537,65	83	538

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
160	CH ₃ O N CH ₃ CH ₃ CH ₃ CH ₃	504,66	91	505
161	CH ₃ O S O S O CH ₃ CH ₃ CH ₃	589,81	65	590

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
162	CH ₃ O N CH ₃ CH ₃ CH ₃	488,61	88	489
163	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	566,73	32	567

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
164	CH ₃ O CH ₃ CH ₃ CH ₃	501,61	75	502
165	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	491,61	91	492
166	CH ₃ O CH ₃ O CH ₃ N N CH ₃ N CH ₃	477,59	73	478

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
167	CH ₃ Chiral CH ₃ CH	525,63	81	526
168	CH ₃ O CH ₃ O S O CH ₃	488,57	70	489

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
169	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	511,60	76	512
170	CH ₃ OH OH OH N CH ₃ CH ₃ CH ₃	568,70	50	569
171	CH ₃ O CH ₃ O N N N CH ₃ OH O=S=O H ₃ C	554,67	63	555

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
172	CH ₃ OH CH ₃ N	582,73	50	583
173	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	637,76	30	638

BspNr.	Struktur	MG [g/mol]	HPLC	Mz + H
174	CH ₃ O N CH ₃ O N CH ₃ O O N CH ₃ O O O O O O O O O O O O O O O O O O O	554,67	70	555
175	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	568,70	44	569

Tabelle 4:				
BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
176	CH ₃ O N N CH ₃ O CH ₃ O CH ₃	477,59	82	478
177	CH ₃ O N N CH ₃ CH ₃ CH ₃ CH ₃	491,61	89	492
178	CH ₃ O CH ₃ O CH ₃ O CH ₃ CH ₃	505,64	88	506

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
179	CH ₃ O N CH ₃ O N CH ₃ O N CH ₃ O N CH ₃	513,62	47	514
180	CH ₃ O S O CH ₃ O CH ₃ O CH ₃ O CH ₃	504,66	83	505
181	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	552,70	83	553

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
182	CH ₃ O N N CH ₃ O N CH ₃ O O O O O O O O O O O O O O O O O O O	492,60	72	493
183		593,75	52	594

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
184	CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃	504,66	82	505
185		582,75	59	583

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
186	CH ₃ O N N CH ₃ O N CH ₃ O N N CH ₃ O N N CH ₃ O N N N CH ₃ O N N N N CH ₃ O N N N N N N N N N N N N N N N N N N	566,68	60	567
187	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃	579,73	30	580

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
188	CH ₃ CH ₃ CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	548,63	73	549
189	CH ₃ O N N CH ₃ CH ₃ CH ₃ CH ₃	548,63	72	549

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
190	CH ₃ O N O N O N O N O N O N O N O N O N O	559,67	54	560
191	CH ₃ O CH ₃ O CH ₃ O CH ₃	511,60	70	512

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
192	CH ₃ O CH ₃ N N CH ₃ CH ₃ CH ₃ CH ₃	580,76	68	581
193	CH ₃ O CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃	476,60	89	477
194	CH ₃ O CH ₃ O S O OH OH	583,71	80	584

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
195	CH ₃ O CH ₃ O S O CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	505,64	84	506
196	H ₃ C H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	518,68	40	519
197	CH ₃ O CH ₃ CH ₃ CH ₃	528,68	82 ?	529

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
198	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	566,68	63	567
199	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	553,69	87	554

BspNr.	Struktur	MG [g/mol]	HPLC	Mz+H
200	CH ₃ O CH ₃ O S O CH ₃ N N N CH ₃ O O O O O O O O O O O O O O O O O O O	491,61	84	492

Tabelle	5			
BspNr.		MW	HPLC	MZ+H
201	CH ₃ O N CH ₃	516,67	87	517
202	CH ₃ O N N CH ₃ O CH ₃	502,64	84	503

BspNr	Struktur	MW	HPLC	MZ+H
203	CH ₃ O N N CH ₃ CH ₃	516,67	87	517
204	CH ₃ O N CH ₃ CH ₃ CH ₃	538,67	91	539
205	CH ₃ O CH ₃ O CH ₃ O CH ₃ CH ₃ N CH ₃ N CH ₃	533,7	85	534

BspNr.	- 214 - Struktur	MW	HPLC	MZ+H
206	CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃	518,68	77	519
207	CH ₃ O N N CH ₃ CH ₃ CH ₃	566,73	92	567

BspNr.	Struktur	MW	HPLC	MZ+H
208	CH ₃ O N CH ₃ CH ₃ CH ₃	552,7	87	553
209	Hand the second of the second	506,63	52	507

BspNr.	Struktur	MW	HPLC	MZ+H
210	CH ₃ O CH ₃ CH ₃ CH ₃	560,72	62	561
211	CH ₃ O CH ₃ O CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	568,7	88	569
212	CH ₃ O CH ₃ CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	582,73	89	583

BspNr.	Struktur	MW	HPLC	MZ+H
213	CH ₃ O N CH ₃	580,71	83	581
214	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	518,64	89	519
215	CH ₃ O N N CH ₃ O CH ₃ O H ₃ C O O O O O O O O O O O O O O O O O O O	463,56	90	464

BspNr.	Struktur	MW	HPLC	MZ+H	
216	CH ₃ O CH ₃	548,71	78	549	-
217	CH ₃ O N N CH ₃ CH ₃ CH ₃	490,63	87	491	
218	CH ₃ O CH ₃ CH ₃ O CH ₃ CH ₃ CH ₃	532,71	93	533	

BspNr.	Struktur	MW	HPLC	MZ+H
219	CH ₃ O N CH ₃	564,71	91	565
220	CH ₃ O N N CH ₃ CH ₃	556,73	92	557

BspNr.	Struktur	MW	HPLC	MZ+H	[
221	CH ₃ O CH ₃ O CH ₃ O CH ₃ CH ₃	516,67	92	517	·
222	CH ₃ O CH ₃ CH ₃ O CH ₃ CH ₃ O CH ₃	504,66	83	505	
223	CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃	558,75	90	559	

BspNr.	Struktur	MW	HPLC	MZ+H
224	CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	532,71	86	533
225	CH ₃ O CH ₃ CH ₃ O CH ₃ CH ₃ O CH ₃	572,78	68	573
226	CH ₃ O N N N CH ₃ CH ₃ HO N CH ₃	582,73	87	583

BspNr.	Struktur	MW	HPLC	MZ+H
227	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	548,71	85	549
228	CH ₃ O CH ₃ N N CH ₃ H ₃ C N N N N N N N N N N N N N N N N N N N	594,78	97	595
229	CH ₃ O N CH ₃	590,75	90	591

BspNr.	Struktur	MW	HPLC	MZ+H
230	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	530,69	95	531
231	CH ₃ CH ₃ CH ₃ CH ₃	542,71	88	543
232	CH ₃ O CH ₃ O S O CH ₃ O CH ₃ O CH ₃	552,7	91	553

BspNr.	Struktur	MW	HPLC	MZ+H
233	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃	534,68	65	535
234	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	520,66	83	521
235	CH ₃ O N N CH ₃ O N CH ₃ O N CH ₃	530,69	89	531

BspNr.	Struktur	MW	HPLC	MZ+H
236	CH,	542,71	70	543
237	CH ₃	580,71	81	581

BspNr.	Struktur	MW	HPLC	MZ+H
238	CH ₃ O N CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	504,66	81	505
239	CH ₃ O CH ₃ CH ₃ CH ₃	551,67	86	552
240	CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃	518,68	85	519

- 230 -				
BspNr.	Struktur	MW	HPLC	MZ+H
241	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	502,64	85	503
242	H ₃ C H ₃ C	580,76	79	581

Tabelle 6	23.			
BspNr.	Struktur	MW	HPLC	MZ+H
243	CH ₃ O CH ₃ O CH ₃ O CH ₃	477,5869	86	478
244	CH ₃ O CH ₃ O CH ₃ O CH ₃	495,605	62	496
245	CH ₃ O N CH ₃ CH ₃ CH ₃	511,6044	50	512

BspNr.	Struktur	MW	HPLC	MZ+H
246	CH ₃ CH ₃ CH ₃	564,495	40	565
247	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	555,658	61	556
248	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	497,5773	60	498

BspNr.	Struktur	MW	HPLC	MZ+H
249	CH ₃ O=S=O CH ₃ CH ₃ CH ₃	581,6963	77	582
250	CH ₃	557,6303	76	558
251	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	539,615	74	540

BspNr.	- 234 - Struktur	MW	HPLC	MZ+H
252	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	515,5677	64	516
253	CH ₃ CH ₃ CH ₃ CH ₃	472,5266	38	473
254	CH ₃ O CH ₃ CH ₃ CH ₃	459,5715	88	460

BspNr.	Struktur	MW	HPLC	MZ+H
255	CH ₃	551,5486	78	552
256	CH ₃ CH ₃ CH ₃ O ₁ S _N CH ₂	574,6824	59	575
257	CH ₃ O CH ₃ O CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	497,5773	40	498

BspNr.	Struktur	MW	HPLC	MZ+H
258	CH ₃ O CH ₃ O S=O	459,5715	90	460
259	CH ₃ O CH ₃ CH ₃ CH ₃	473,5986	80	474
260	CH ₃ O CH ₃ O CH ₃ O CH ₃	461,5439	83	462

BspNr.	- 23 + - Struktur	MW	HPLC	MZ+H
261	CH ₃ O C CH ₃ O C CH ₃ O C C C C C C C C C C C C C C C C C C	503,6687	71	504
262	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	517,6086	71	518
263	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃	511,6044	76	512

BspNr.	- 238 - Struktur	MW	HPLC	MZ+H
264	CH ₃ CH ₃ CH ₃	518,5989	74	519
265	CH ₃ O N CH ₃ CH ₃ CH ₃ O N CH ₃	552,6573	91	553
266	CH ₃ O C CH ₃ O C CH ₃ O C C C C C C C C C C C C C C C C C C	566,6844	71	567

BspNr.	- Z39 - Struktur	MW	HPLC	MZ+H
267	CH ₃ O CH ₃ O CH ₃ O CH ₃	567,6692	48	568
268	CH ₃ O N N CH ₃ CH ₃ CH ₃	477,6084	90	478
269	CH ₃ O CH ₃ O CH ₃ O CH ₃ CH ₃ CH ₃	569,6851	73	570

BspNr.	Struktur	MW	HPLC	MZ+H
270	CH ₃ O S O S O O O O O O O O O O O O O O O	651,766	65	652
271	CH ₃ O CH ₃	541,6309	71	542
272	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	607,6133	39	608

BspNr.	Struktur	MW	HPLC	MZ+H
273	CH ₃ O CH ₄	511,6044	92	512
274	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	589,7164	>95	590
275	CH ₃ OH	477,5869	>95	478

BspNr.	Struktur	MW	HPLC	MZ+H
276	CH ₃ O CH ₃	463,5598	64	464
277	CH ₃ O CH ₃ N N CH ₃ N N CH ₃ N CH ₃	449,5327	>95	450
278	CH ₃ O CH ₃ O CH ₃ O CH ₃	507,6134	>95	508

BspNr.	Struktur	MW	HPLC	MZ+H
279	CH ₃	532,6232	>95	533
280	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	560,6775	89	561

	- 244 -			
BspNr.	Struktur	MW	HPLC	MZ+H
281	CH ₃ O CH ₃ O CH ₃ O CH ₃	636,8199	88	637
282	CH ₃ O CH ₃ O CH ₃	476,5585	50	477
283	CH ₃	489,5981	93	490

BspNr.	Struktur	MW	HPLC	MZ+H
284	CH ₃ O CH ₃ O CH ₃ O CH ₃	622,7928	68	623
285	CH ₃ O CH ₃ O CH ₃ O CH ₃	608,7657	>95	609
286	CH ₃ OH OH OH	583,6873	85	584

BspNr.	Struktur	MW	HPLC	MZ+H
287	CH ₃ O CH ₃ O S O CH ₃	511,6044	>95	512
288	CH ₃ O CH ₃ O CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	541,6309	>95	542
289	CH ₃ O CH ₃	541,6309	>95	542

BspNr.	Struktur	MW	HPLC	MZ+H
290	CH ₃ O N N N CH ₃ O HO H ₃ CH ₃	571,6574	73	572
291	H ₃ C CH ₃ H ₃ C CH ₃ H ₃ C CH ₃ H ₃ C CH ₃	569,6851	83	570
292	CH ₃ O CH ₃ O CH ₃ O CH ₃	597,7393	89	598

BspNr.	Struktur	MW	HPLC	MZ+H
293	CH ₃ CH ₃ CH ₃ CH ₃	581,6963	76	582
294		609,7504	83	610

BspNr.	Struktur	MW	HPLC	MZ+H
295	CH ₃ O CH ₃ CH ₃	609,7504	77	610
296	CH ₃ O CH ₃ O CH ₃ O CH ₃	583,7122	82	584
297	CH ₃ O CH ₃ O CH ₃ O CH ₃	611,7227	88	612

BspNr.	Struktur	MW	HPLC	MZ+H
298	CH ₃ O CH ₃ O CH ₃ O CH ₃	571,6574	89	572
299	CH ₃ O CH ₃ O CH ₃ O CH ₃	567,6692	81	568
300	CH ₃	627,7221	82	628

BspNr.	Struktur	MW	HPLC	MZ+H
301	CH ₃ O CH ₃ O CH ₃	661,7396	64	662
302	CH ₃ CH ₃ CH ₃	599,668	77	600
303	CH ₃ CH ₃ CH ₃ CH ₃	555,658	83	556

BspNr.	Struktur	MW	HPLC	MZ+H
304	CH ₃ O S O CH ₃ O CH ₃ O CH ₃	654,7916	60	655
305	CH3 CH3 CH3 CH3	626,7374	86	627
306	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	627,7221	82	628

BspNr.	Struktur	MW	HPLC	MZ+H
307	CH ₃ O CH ₃ O CH ₃	583,7122	81	584
308	CH ₃ O CH ₃ O CH ₃ O CH ₃	631,7568	29	632
309	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	569,6851	60	570

BspNr.	Struktur	MW	HPLC	MZ+H
310	CH ₃ CH ₃ CH ₃ O=S=O CH ₃ O=S=O CH ₃	597,7393	62	598
311	CH ₃ O CH ₃ O CH ₃	581,6963	87	582
312	CH ₃ CH ₃ CH ₃ CH ₃	609,7504	71	610

BspNr.	Struktur	MW	HPLC	MZ+H
313	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	633,7291	47	634
314	CH ₃ O CH ₃ O CH ₃ O CH ₃	570,629	59	571
315	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	633,7291	35	634

BspNr.	Struktur	MW	HPLC	MZ+H
316	CH ₃	583,7122	51	584
317	CH ₃ O CH ₃ O CH ₃ O CH ₃	611,7227	51	612
318	CH ₃ O CH ₃ O CH ₃	571,6574	75	572

BspNr.	Struktur	MW	HPLC	MZ+H
319	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	603,7026	64	604
320	CH ₃ O CH ₃ O CH ₃	567,6692	74	568
321	CH ₃ O CH ₃ O CH ₃	597,652	88	598

BspNr.	Struktur	MW	HPLC	MZ+H
322	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	627,7221	80	628
323	CH ₃ OCH ₃	647,7562	47	648
324	CH ₃ O CH ₃ O CH ₃ O CH ₃	555,658	43	556

BspNr.	Struktur	MW	HPLC	MZ+H
325	CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃	654,7916	54	655
326	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	624,7214	71	625
327	CH ₃ O S O CH ₃ O C C C CH ₃ O C C C C C C C C C C C C C C C C C C	689,8375	42	690

BspNr.	Struktur	MW	HPLC	MZ+H
328	CH ₃ O CH ₃ O CH ₃ O CH ₃	583,7122	40	584
329	CH ₃ O CH ₃ O CH ₃ O CH ₃	555,658	49	556
330	CH ₃ O CH ₃ Chiral	525,6315	83	526

BspNr.	Struktur	MW	HPLC	MZ+H
331	CH ₃ O CH ₃ Chiral	525,6315	71	526
332	CH ₃ O CH ₃ O CH ₃	555,658	91	556
333	CH ₃ O CH ₃ O CH ₃ CH ₃ O HO CH ₃	477,5869	76	478

BspNr.	Struktur	MW	HPLC	MZ+H
334	CH ₃ O N N CH ₃ O CH ₃ O CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	478,5745	62	479
335	CH ₃ CH ₃ CH ₃ CH ₃	490,6292	42	491

Beispiel 336

2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazol[5,1-f][1,2,4]triazin-4-on Hydrochlorid-Trihydrat

5

10

Kristallisiert man die freie Base aus Beispiel 19 aus einem Gemisch eines organischen Lösungsmittels und verdünnter wäßriger Salzsäure um, so erhält man ein Hydrochlorid Trihydrat.

Fp.: 218°C

Wassergehalt: 9,4 % (K. Fischer)

Chloridgehalt: 6,1 %

15 **Beispiel 337**

2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on Dihydrochlorid

0,35 g (0,712 mmol) 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on werden in 8 ml Ether suspendiert und soviel Dichlormethan zugegeben, bis eine homogene Lösung entsteht. Man gibt 2,4 ml einer 1M Lösung von HCl in Ether zu, rührt 20 Minuten bei Raumtemperatur und saugt ab. Man erhält 372 mg (99 %) 2-[2-Ethoxy-5-(4-ethyl-piperazin-1-sulfonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-on Dihydrochlorid.

200 Mhz ¹H-NMR (DMSO-d₆): 0,96, t, 3H; 1,22, t, 3H; 1,36, t, 3H; 1,82, sex., 2H; 2,61, s, 3H; 2,88, m, 2H; 3,08, m, 6H; 3,50, m, 2H; 3,70, m, 2H; 4,25, quart., 2H; 7,48, d, 1H; 7,95, m, 2H; 11,42, s, 1H; 12,45, s, 1H.

Patentansprüche

1. 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I)

5

in welcher

10

- R¹ für Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4
 Kohlenstoffatomen steht,
- R² für geradkettiges Alkyl mit bis zu 4 Kohlenstoffatomen steht,

15

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 8 Kohlenstoffatomen stehen, oder

20

für eine geradkettige oder verzweigte Alkylkette mit bis zu 10 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Trifluormethyl, Trifluormethoxy, Hydroxy, Halogen, Carboxyl, Benzyloxycarbonyl, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 6 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷R⁸, -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

PCT/EP98/06910

substituiert ist,

worin

WU

a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

R⁷, R⁷, R⁸ und R⁸ gleich oder verschieden sind und Wasserstoff bedeuten, oder

Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen, einen 5- bis 6-gliedrigen ungesättigten, partiell ungesättigten oder gesättigten, gegebenenfalls benzokondensierten Heterocyclus, mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Nitro, Trifluormethyl, Trifluormethoxy, Carboxyl, Halogen, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,

5

10

15

20

worin

c eine Zahl 0 oder 1 bedeutet,

5

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten,

10

oder

R⁷, R⁷, R⁸ und R⁸ geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Hydroxy, Halogen, Aryl mit 6 bis 10 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine

Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,

20

15

worin

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

25

und

d eine Zahl 0 oder 1 bedeutet,

30

oder

10

15

20

25

30

R⁷ und R⁸ und/oder R⁷ und R⁸ gemeinsam mit dem Stickstoffatom einen 5bis 7-gliedrigen, gesättigten Heterocyclus bilden, der gegebenenfalls noch ein weiteres Heteroatom aus der Reihe S oder O oder einen Rest der Formel -NR¹⁶ enthalten kann,

worin

R¹⁶ Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl, einen 5- bis 7-gliedrigen aromatischen oder gesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, der gegebenenfalls durch Methyl substituiert ist, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

R⁹ Aryl mit 6 bis 10 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

und/oder die oben unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder durch einen 5- bis 7-gliedrigen, partiell ungesättigten, gesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus, der bis zu 4 Heteroatome aus der Reihe S, N und O oder einen Rest der Formel -NR¹⁷ enthalten kann, substituiert ist,

10

15

20

25

30

worin

Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, oder geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert ist,

und wobei Aryl und der Heterocyclus gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Nitro, Halogen, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy und/oder durch einen Rest der Formel -SO₂-NR¹⁸R¹⁹ substituiert sind,

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

und/oder

R³ oder R⁴ für eine Gruppe der Formel -NR²0R²1 steht,

worin

R²⁰ und R²¹ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

und/oder

R³ oder R⁴ für Adamantyl stehen, oder für Reste der Formeln

5

$$H_3C$$
 C_6H_5
 C_6

10

oder für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder für einen 5- bis 7-gliedrigen partiell ungesättigten, gesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus stehen, der bis zu 4 Heteroatome aus der Reihe S, N, O oder einen Rest der Formel -NR²² enthalten kann,

worin

15

R²² die oben angegebene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder
 Carboxyl, Formyl oder geradkettiges oder verzweigtes Acyl mit bis zu
 5 Kohlenstoffatomen bedeutet,

20

und wobei Cycloalkyl, Aryl und/oder der Heterocyclus gegebenenfalls einbis mehrfach, gleich oder verschieden durch Halogen, Triazolyl, Trifluormethyl, Trifluormethoxy, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Nitro und/oder

durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

worin

5

eine Zahl 0 oder 1 bedeutet, e

 R^{23} einen Rest der Formel

bedeutet, oder

10

Cycloalkyl mit 3 bis 7 Kohlenstoffatomen bedeutet, oder

15

3 bis 7 Kohlenstoffatomen, Benzyloxy, Tetrahydropyranyl, Tetrahy-

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4

Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cycloalkyl mit

20

drofuranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy-

carbonyl mit jeweils bis zu 6 Kohlenstoffatomen, Carboxyl, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis

mehrfach, gleich oder verschieden durch geradkettiges oder verzweig-

tes Alkoxy mit bis zu 4 Kohlenstoffatomen, Hydroxy oder Halogen

substituiert sein kann,

und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,

25

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, oder

5

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen gen gesättigten Heterocyclus bilden, der gegebenenfalls ein weiteres Heteroatom aus der Reihe S oder O enthalten kann,

und

10

R³⁰ Phenyl oder Adamantyl bedeutet,

1

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

15

 R^{26} und R^{27} die oben angegebene Bedeutung von R^{10} und R^{11} haben und mit dieser gleich oder verschieden sind

20

und/oder Cycloalkyl, Aryl und/oder der Heterocyclus gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, durch einen 5- bis 7-gliedrigen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O, oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,

25

worin

R³¹ Wasserstoff bedeutet oder die oben angegebene Bedeutung von R⁹ hat und mit dieser gleich oder verschieden ist,

30

10

15

25

R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist, oder

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen 5- bis 6-gliedrigen gesättigten Heterocyclus bilden, der ein weiteres Heteroatom aus der Reihe S oder O oder einen Rest der Formel -NR³⁶ enthalten kann,

worin

R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 7 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

20 oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen, ungesättigten oder gesättigten oder partiell ungesättigten, gegebenenfalls benzokondensierten Heterocyclus bilden, der gegebenenfalls bis zu 3 Heteroatome aus der Reihe S, N, O, oder einen Rest der Formel -NR³7 enthalten kann,

		• •
	R^{37}	Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges
		oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit
		jeweils bis zu 4 Kohlenstoffatomen bedeutet,
		oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Koh-
5		lenstoffatomen bedeutet, das gegebenenfalls ein- bis mehrfach,
		gleich oder verschieden durch Hydroxy, Trifluormethyl, Carb-
		oxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxy-
		carbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch
		Gruppen der Formel -(D) $_{\rm f}$ NR 38 R 39 , -CO-(CH $_{\rm 2}$) $_{\rm g}$ -O-CO-R 40 ,
10		-CO-(CH ₂) _h -OR ⁴¹ oder -P(O)(OR ⁴²)(OR ⁴³) substituiert ist,
		worin
	g und	h gleich oder verschieden sind und eine Zahl 1, 2, 3 oder 4
15		bedeuten,
	und	
	f	eine Zahl 0 oder 1 bedeutet,
20		
	D	eine Gruppe der Formel -CO oder -SO ₂ bedeutet,
	R ³⁸ un	d R ³⁹ gleich oder verschieden sind und die oben angegebene
		Bedeutung von R ⁷ und R ⁸ haben,
25		
	R^{40}	geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlen-
		stoffatomen bedeutet,
	D41	11 (4) 11 (2) (2)
20	R ⁴¹	geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoff-
30		atomen bedeutet,

PCT/EP98/06910

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

5 oder

R³⁷ einen Rest der Formel -(CO)_i-E bedeutet,

worin

10

15

i eine Zahl 0 oder 1 bedeutet,

E Cycloalkyl mit 3 bis 7 Kohlenstoffatomen oder Benzyl bedeutet,

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 4 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Nitro, Halogen, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,

worin

25

20

R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

30

E Reste der Formeln

und der unter R³ und R⁴ aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls ein- bis mehrfach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 6 Kohlenstoffatomen, Nitro und Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

$$= NR^{48} \quad \text{oder} \quad --(CO)_j NR^{49} R^{50}$$

substituiert ist,

worin

15

5

10

R⁴⁶ und R⁴⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

R⁴⁸ Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4

Kohlenstoffatomen bedeutet,

j eine Zahl 0 oder 1 bedeutet,

und

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁴ und R¹⁵ haben,

5

und/oder der unter R³ und R⁴ aufgeführte, gemeinsam mit dem Stickstoffatom gebildete Heterocyclus, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Halogen, Carboxyl, Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 8 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch einen Rest der Formel -SO₃H, -NR⁵¹R⁵² oder P(O)OR⁵³OR⁵⁴ substituiert ist,

15

10

worin

20

R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

R⁵³ und R⁵⁴ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben,

25

und/oder das Alkyl gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch Halogen, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen, oder durch eine Gruppe der Formel -NR⁵¹'R⁵²' substituiert sein kann,

30

R⁵¹' und R⁵²' die oben angegebene Bedeutung von R⁵¹ und R⁵² haben und mit dieser gleich oder verschieden sind,

und/oder der unter R3 und R4 aufgeführte, gemeinsam mit dem Stick-

stoffatom gebildete Heterocyclus, gegebenenfalls durch Aryl mit 6 bis

10 Kohlenstoffatomen oder durch einen 5- bis 7-gliedrigen, gesättigen,

partiell ungesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteratomen aus der Reihe S, N und/oder O, gegebenenfalls auch

über eine N-Funktion verknüpft, substituiert ist, wobei die Ring-

systeme ihrerseits durch Hydroxy oder durch geradkettiges oder ver-

zweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen

5

10

ΙU

15 oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

substituiert sein können,

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen stehen,

5

und deren Salze, Hydrate, N-Oxide und isomere Formen.

2. 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I) gemäß Anspruch 1, in welcher

10

- R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,
- R² für geradkettiges Alkyl mit bis zu 3 Kohlenstoffatomen steht,

15

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen stehen, oder

20

für eine geradkettige oder verzweigte Alkylkette mit bis zu 8 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Benzyloxy-carbonyl, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷'R⁸, -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

25

substituiert ist,

5 worin

10

15

20

a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

R⁷, R⁷, R⁸ und R⁸ gleich oder verschieden sind und Wasserstoff bedeuten, oder

Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Piperidinyl und Pyridyl bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Nitro, Trifluormethyl, Trifluormethoxy, Carboxyl, Fluor, Chlor, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,

10

15

20

c eine Zahl 0 oder 1 bedeutet,

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

oder

R⁷, R⁸ und R⁸ geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeuten, oder geradkettiges oder verzweigtes Alkyl mit bis zu 7 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Phenyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,

worin

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

und

25

d eine Zahl 0 oder 1 bedeutet,

oder

R⁷ und R⁸ und/oder R^{7'} und R^{8'} gemeinsam mit dem Stickstoffatom einen Pyrrolidinyl-, Morpholinyl-, Piperidinyl- oder Triazolylring oder Reste der Formeln

$$-N$$
 $-N$ $-N$ $-N$ $-N$ $-N$

$$-N$$
 $N-R^{16}$ oder $N-R^{16}$

bilden,

worin

10

5

R¹⁶ Wasserstoff, Phenyl, Benzyl, Morpholinyl, Pyrrolidinyl, Piperidinyl, Piperazinyl oder N-Methylpiperazinyl bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

15

R⁹ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

20

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

und/oder die unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Pyridyl, Chinolyl, Pyrrolidinyl, Pyrimidyl, Morpholinyl, Furyl, Piperidinyl, Tetrahydrofuranyl oder durch Reste der Formeln

5

substituiert ist,

10

worin

 R^{17}

15

oder verzweigtes Acyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeutet,
oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis dreifach gleich oder verschieden durch Hydroxy, oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert ist,

Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges

20

und wobei Phenyl und die Heterocyclen gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, Hydroxy und/oder durch einen Rest der Formel -SO₂NR¹⁸R¹⁹ substituiert sind,

25

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

5 und/oder

 ${
m R}^{
m 3}$ oder ${
m R}^{
m 4}$ für eine Gruppe der Formel -NR $^{
m 20}$ R $^{
m 21}$ steht,

worin

10

 R^{20} und R^{21} die oben angegebene Bedeutung von R^{18} und R^{19} haben und mit dieser gleich oder verschieden sind,

und/oder

15

R³ oder R⁴ für Adamantyl stehen, oder für Reste der Formeln

$$H_3C$$
 C_6H_5
 SO_2
 C_6H_5

20

oder für Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Morpholinyl, Oxazolyl, Thiazolyl, Chinolyl, Isoxazolyl, Pyridyl, Tetrahydrofuranyl, Tetrahydropyranyl oder für Reste der Formeln

$$-N$$
N $-R^{22}$, $-N$

$$N-R^{22}$$
 oder N stehen,

worin

5 R^{22} die oben angegbene Bedeutung von R^{16} hat und mit dieser gleich oder verschieden ist, oder

Carboxyl, Formyl oder geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen bedeutet,

und wobei Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls einbis dreifach, gleich oder verschieden durch Fluor, Chlor, Triazolyl, Trifluormethyl, Trifluormethoxy, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 5 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

worin

10

15

20

e eine Zahl 0 oder 1 bedeutet,

R²³ einen Rest der Formel

10

15

20

Cyclopropyl, Cyclopentyl, Cyclobutyl, Cyclohexyl oder Cycloheptyl bedeutet,

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Benzyloxy, Tetrahydropyranyl, Tetrahydrofuranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis mehrfach, gleich oder verschieden durch geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen, Hydroxy, Fluor oder Chlor substituiert sein kann,

und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,

worin

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, oder

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinylring bilden,

und

R³⁰ Phenyl oder Adamantyl bedeutet,

25

R²⁴ und R²⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind

und/oder Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, Pyridyl, Pyrimidyl, Pyrrolidinyl, Piperidinyl, Tetrahydrofuranyl, Triazolyl oder durch Gruppen der Formel -SO₂-R³¹, -P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,

worin

15

10

5

R³¹ die oben angegebene Bedeutung von R⁹ hat und mit dieser gleich oder verschieden ist,

20

 R^{32} und R^{33} die oben angegebene Bedeutung von R^{10} und R^{11} haben und mit dieser gleich oder verschieden sind,

25

- R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist, oder
- R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Triazolyl- oder Thiomorpholinylring oder einen Rest der Formel

worin

5

R³⁶ Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 5 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

10

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Thiomorpholinyl-, Pyrrolidinyl-, Piperidinylring oder einen einen Rest der Formel

15

worin

20

R³⁷ Wasserstoff, Hydroxy, Formyl, Trifluormethyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Trifluormethyl, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder

durch Gruppen der Formel - $(D)_f NR^{38}R^{39}$, -CO- $(CH_2)_g$ -O-CO- R^{40} , -CO- $(CH_2)_h$ -OR⁴¹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,

worin

5

g und h gleich oder verschieden sind und eine Zahl 1, 2 oder 3 bedeuten,

und

10

- f eine Zahl 0 oder 1 bedeutet,
- D eine Gruppe der Formel -CO oder -SO₂ bedeutet,

15

 R^{38} und R^{39} gleich oder verschieden sind und die oben angegebene Bedeutung von R^7 und R^8 haben,

20

R⁴⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

R⁴¹ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

25

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

oder

30

R³⁷ einen Rest der Formel -(CO)_i-E bedeutet,

worin

E

i eine Zahl 0 oder 1 bedeutet,

5

Cyclopentyl, Cyclohexyl, Cycloheptyl, Benzyl, Phenyl, Pyridyl, Pyrimidyl oder Furyl bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,

10

worin

15

R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

20

25

E Reste der Formeln

$$-N$$
 $N-CH_3$

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis dreifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 5 Kohlenstoffatomen, Nitro und Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

5

$$\bigcirc \qquad = NR^{48} \quad \text{oder} \quad -(CO)_j NR^{49} R^{50}$$

substituiert sind,

10

worin

 R^{46} und R^{47} die oben angegebene Bedeutung von R^{10} und R^{11} haben und mit dieser gleich oder verschieden sind,

15

R⁴⁸ Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet,

j eine Zahl 0 oder 1 bedeutet,

20

und

 R^{49} und R^{50} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{14} und R^{15} haben,

25

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis mehrfach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Cyclopropyl,

Cyclopentyl, Cyclohexyl, Cycloheptyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch einen Rest der Formel -SO₃H, -NR⁵¹R⁵² -P(O)OR⁵³OR⁵⁴ substituiert ist,

5

worin

10

R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

R⁵³ und R⁵⁴ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben,

15

und/oder das Alkyl gegebenenfalls durch Phenyl substituiert ist, das seinerseits ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen, oder durch eine Gruppe der Formel -NR51'R52' substituiert sein kann,

20

worin

R⁵¹' und R⁵²' die oben angegebene Bedeutung von R⁵¹ und R⁵² haben und mit dieser gleich oder verschieden sind,

25

und/oder die unter R3 und R4 aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch Phenyl, Pyridyl, Piperidinyl, Pyrrolidinyl oder Tetrazolyl, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert sind, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder

verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen substituiert sein können,

oder

5

R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

10

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen stehen,

und deren Salze, Hydrate, N-Oxide und isomere Formen.

15

- 3. 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I) gemäß Anspruch 1, in welcher
- R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

5

10

15

20

R² für geradkettiges Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff oder für geradkettiges oder verzweigtes Alkenyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen stehen, oder

für eine geradkettige oder verzweigte Alkylkette mit bis zu 6 Kohlenstoffatomen stehen, die gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und die gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 4 Kohlenstoffatomen und/oder durch Reste der Formeln -SO₃H, -(A)_a-NR⁷R⁸, -O-CO-NR⁷'R⁸', -S(O)_b-R⁹, -P(O)(OR¹⁰)(OR¹¹),

substituiert ist,

worin

a und b gleich oder verschieden sind und eine Zahl 0 oder 1 bedeuten,

A einen Rest CO oder SO₂ bedeutet,

R⁷, R⁷, R⁸ und R⁸ gleich oder verschieden sind und Wasserstoff bedeuten, oder

Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Piperidinyl und Pyridyl bedeuten, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Nitro, Carboxyl, Fluor, Chlor, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -(SO₂)_c-NR¹²R¹³ substituiert sind,

worin

c eine Zahl 0 oder 1 bedeutet,

R¹² und R¹³ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

oder

20

5

10

15

 R^7 , R^{7° , R^8 und R^{8° Methoxy bedeuten, oder

geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls ein- oder zweifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Phenyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_d-NR¹⁴R¹⁵ substituiert ist,

worin

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

und

5

d eine Zahl 0 oder 1 bedeutet,

oder

10

R⁷ und R⁸ und/oder R⁷ und R⁸ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Piperidinyl- oder Triazolylring oder Reste der Formeln

$$-N$$
 $N-R^{16}$ oder $N-R^{16}$

15

bilden,

worin

tuiert ist,

20

R¹⁶ Wasserstoff, Phenyl, Benzyl, Morpholinyl, Pyrrolidinyl, Piperidinyl, Piperazinyl oder N-Methylpiperazinyl bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substi-

R⁹ Methyl bedeutet,

R¹⁰ und R¹¹ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

und/oder die unter R³/R⁴ aufgeführte Alkylkette gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Morpholinyl, Furyl, Tetrahydrofuranyl oder durch Reste der Formeln

o oder -N $N-R^{17}$

substituiert ist,

worin

R¹⁷ Wasserstoff, Hydroxy, Formyl, Acetyl oder Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach gleich oder verschieden durch Hydroxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen substituiert ist,

und wobei Phenyl und die Heterocyclen gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen, Hydroxy und/oder durch einen Rest der Formel -SO₂.NR¹⁸R¹⁹ substituiert sind,

10

5

15

20

5

10

15

20

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

und/oder

R³ oder R⁴ für eine Gruppe der Formel -NR²⁰R²¹ steht,

worin

 R^{20} und R^{21} die oben angegebene Bedeutung von R^{18} und R^{19} haben und mit dieser gleich oder verschieden sind,

und/oder

 ${\rm R}^3$ oder ${\rm R}^4$ für Adamantyl stehen, oder für Reste der Formeln

$$H_3C$$
 C_6H_5
 C_6

oder für Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Morpholinyl, Oxazolyl, Thiazolyl, Chinolyl, Isoxazolyl, Pyridyl, Tetrahydrofuranyl, Tetrahydropyranyl oder für Reste der Formeln

$$-N$$
 $N-R^{22}$ $-N$

$$N-R^{22}$$
 oder N stehen,

worin

R²² die oben angegebene Bedeutung von R¹⁶ hat und mit dieser gleich oder verschieden ist, oder Formyl oder Acetyl bedeutet,

und wobei Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Fluor, Chlor, Triazolyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen, Nitro und/oder durch Gruppen der Formeln -SO₃H, -OR²³, (SO₂)_eNR²⁴R²⁵, -P(O)(OR²⁶)(OR²⁷) substituiert sind,

worin

e eine Zahl 0 oder 1 bedeutet,

R²³ einen Rest der Formel

5

10

15

bedeutet, oder

Cyclopropyl, Cyclopentyl, Cyclobutyl oder Cyclohexyl bedeutet, Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Cyclopropyl, Cyclohexyl, Benzyloxy, Tetrahydropyranyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen, Benzyloxycarbonyl oder Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden durch Methoxy, Hydroxy, Fluor oder Chlor substituiert sein kann,

und/oder Alkyl gegebenenfalls durch Reste der Formeln -CO-NR²⁸R²⁹ oder -CO-R³⁰ substituiert ist,

worin

R²⁸ und R²⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, oder

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinylring bilden,

und

R³⁰ Phenyl oder Adamantyl bedeutet,

 R^{24} und R^{25} die oben angegebene Bedeutung von R^{18} und R^{19} haben und mit dieser gleich oder verschieden sind,

15

5

10

20

R²⁶ und R²⁷ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind

5

und/oder Cycloalkyl, Phenyl und/oder die Heterocyclen gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das gegebenenfalls durch Hydroxy, Carboxyl, Pyridyl, Pyrimidyl, Pyrrolidinyl, Piperidinyl, Tetrahydrofuranyl, Triazolyl oder durch Gruppen der Formel -SO₂-R³¹, P(O)(OR³²)(OR³³) oder -NR³⁴R³⁵ substituiert ist,

10

worin

15

R³¹ Methyl bedeutet,

R³² und R³³ die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben und mit dieser gleich oder verschieden sind,

20

R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Hydroxy oder Methoxy substituiert ist, oder

25

R³⁴ und R³⁵ gemeinsam mit dem Stickstoffatom einen Morpholinyl-,
Triazolyl- oder Thiomorpholinylring oder einen Rest der Formel

worin

 R^{36}

5

Wasserstoff, Hydroxy, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 3 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

oder

10

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Thiomorpholinyl-, Pyrrolidinyl-, Piperidinylring oder einen einen Rest der Formel

15

worin

20

R³⁷ Wasserstoff, Hydroxy, Formyl, geradkettiges oder verzweigtes Acyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Gruppen der Formel -(D)_{f-}NR³⁸R³⁹, -CO-(CH₂)_g-O-CO-R⁴⁰, -CO-(CH₂)_h-OR⁴¹ oder

-P(O)(OR⁴²)(OR⁴³) substituiert ist,

worin

g und h gleich oder verschieden sind und eine Zahl 1 oder 2 bedeuten, 5 und f eine Zahl 0 oder 1 bedeutet, eine Gruppe der Formel -CO oder -SO2 bedeutet, 10 D R³⁸ und R³⁹ gleich oder verschieden sind und die oben angegebene Bedeutung von R7 und R8 haben, R^{40} geradkettiges oder verzweigtes Alkyl mit bis zu 3 15 Kohlenstoffatomen bedeutet, R^{41} geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, 20 R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten, oder 25 R^{37} einen Rest der Formel -(CO);-E bedeutet,

worin

30

i eine Zahl 0 oder 1 bedeutet,

5

10

E Cyclopentyl, Benzyl, Phenyl, Pyridyl, Pyrimidyl oder Furyl bedeutet, wobei die oben aufgeführten Ringsysteme gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Nitro, Fluor, Chlor, -SO₃H, geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen, Hydroxy oder durch einen Rest der Formel -SO₂-NR⁴⁴R⁴⁵, substituiert sind,

worin

R⁴⁴ und R⁴⁵ die oben angegebene Bedeutung von R¹⁸ und R¹⁹ haben und mit dieser gleich oder verschieden sind,

oder

15 E Reste der Formeln

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis dreifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 3 Kohlenstoffatomen oder Gruppen der Formeln -P(O)(OR⁴⁶)(OR⁴⁷),

substituiert sind,

worin

5

10

15

20

25

 R^{46} und R^{47} die oben angegebene Bedeutung von R^{10} und R^{11} haben und mit dieser gleich oder verschieden sind,

R⁴⁸ Hydroxy oder Methoxy bedeutet,

j eine Zahl 0 oder 1 bedeutet,

und

 R^{49} und R^{50} gleich oder verschieden sind und die oben angegebene Bedeutung von R^{14} und R^{15} haben,

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Hydroxy, Fluor, Chlor, Carboxyl, Cyclopropyl, Cycloheptyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch einen Rest der Formel -SO₃H, -NR⁵¹R⁵² oder P(O)OR⁵³OR⁵⁴ substituiert ist,

worin

R⁵¹ und R⁵² gleich oder verschieden sind und Wasserstoff, Phenyl, Carboxyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,

5

R⁵³ und R⁵⁴ gleich oder verschieden sind und die oben angegebene Bedeutung von R¹⁰ und R¹¹ haben,

10

und/oder das Alkyl gegebenenfalls durch Phenyl substituiert ist, das seinerseits ein- bis zweifach, gleich oder verschieden durch Fluor, Chlor, Hydroxy, Methoxy oder durch eine Gruppe der Formel - NR⁵¹'R⁵²' substituiert sein kann,

worin

15

 $R^{51'}$ und $R^{52'}$ die oben angegebene Bedeutung von R^{51} und R^{52} haben und mit dieser gleich oder verschieden sind,

20

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch Phenyl, Pyridyl, Piperidinyl, Pyrrolidinyl oder Tetrazolyl, gegebenenfalls auch über eine N-Funktion verknüpft, substituiert sind, wobei die Ringsysteme ihrerseits durch Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein können,

25

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom Reste der Formeln

oder bilden,
$$H_3C$$
 CH_3

R⁵ und R⁶ gleich oder verschieden sind und für Wasserstoff, Hydroxy oder für geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen stehen,

und deren Salze, Hydrate, N-Oxide und isomere Formen.

- 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I) gemäß
 Anspruch 1, in welcher
 - R¹ für Methyl oder Ethyl steht,
 - R² für Ethyl oder Propyl steht,

R³ und R⁴ gleich oder verschieden sind und für eine geradkettige oder verzweigte Alkylkette mit bis zu 5 Kohlenstoffatomen stehen, die gegebenenfalls bis zu zweifach gleich oder verschieden durch Hydroxy oder Methoxy substituiert ist,

20

15

5

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom einen Piperidinyl-, Morpholinyl-, Thiomorpholinylring oder einen Rest der Formel

worin

R³⁷ Wasserstoff, Formyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Carboxyl, geradkettiges oder verzweigtes Alkoxy oder Alkoxycarbonyl mit jeweils

bis zu 3 Kohlenstoffatomen oder durch Gruppen der Formeln -(D)_{f.}NR³⁸R³⁹ oder -P(O)(OR⁴²)(OR⁴³) substituiert ist,

worin

20

25

5

10

15

- f eine Zahl 0 oder 1 bedeutet,
- D eine Gruppe der Formel -CO bedeutet,

R³⁸ und R³⁹ gleich oder verschieden sind und Wasserstoff oder Methyl bedeuten,

R⁴² und R⁴³ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten, oder

R³⁷ Cyclopentyl bedeutet,

5

und die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls ein- bis zweifach, gleich oder verschieden, gegebenenfalls auch geminal, durch Hydroxy, Formyl, Carboxyl, geradkettiges oder verzweigtes Acyl oder Alkoxycarbonyl mit bis jeweils zu 3 Kohlenstoffatomen oder Gruppen der Formeln -P(O)(OR⁴6)(OR⁴7) oder -(CO)_iNR⁴9R⁵0 substituiert sind,

worin

15

10

R⁴⁶ und R⁴⁷ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

j eine Zahl 0 oder 1 bedeutet,

20

und

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff oder Methyl bedeuten

25

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert sind, das gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Hydroxy, Carboxyl oder durch einen Rest der Formel P(O)OR⁵³OR⁵⁴ substituiert ist,

worin

R⁵³ und R⁵⁴ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

5

und/oder die unter R³ und R⁴ aufgeführten, gemeinsam mit dem Stickstoffatom gebildeten Heterocyclen, gegebenenfalls durch über Nverknüpftes Piperidinyl oder Pyrrolidinyl substituiert sind,

10

R⁵ für Wasserstoff steht,

und

R⁶ für Ethoxy oder Propoxy steht,

15

und deren Salze, Hydrate, N-Oxide und isomere Formen.

5. 2-Phenyl-substituierte Imidazotriazinone gemäß Ansprüchen 1 bis 4 mit folgenden Strukturen:

6. 2-Phenyl-substituierte Imidazotriazinone der allgemeinen Formel (I) gemäß Anspruch 1 zur Behandlung von Erkrankungen.

7. Verfahren zur Herstellung von 2-Phenyl-substituierten Imidazotriazinonen gemäß Anspruch 1, dadurch gekennzeichnet, daß man

zunächst Verbindungen der allgemeinen Formel (II)

5

$$\mathbb{R}^2$$
 \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N}

in welcher

10

R¹ und R² die oben angegebene Bedeutung haben

und

15

L für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,

mit Verbindungen der allgemeinen Formel (III)

20

in welcher

R⁵ und R⁶ die oben angegebene Bedeutung haben,

in einer Zweistufenreaktion in den Systemen Ethanol und Phosphoroxytrichlorid / Dichlorethan in die Verbindungen der allgemeinen Formel (IV)

5

in welcher

R¹, R², R⁵ und R⁶ die oben angegebene Bedeutung haben,

überführt, in einem weiteren Schritt mit Chlorsulfonsäure zu den Verbindungen der allgemeinen Formel (V)

15

in welcher

R¹, R², R⁵ und R⁶ die oben angegebene Bedeutung haben,

umsetzt und abschließend mit Aminen der allgemeinen Formel (VI)

20

 HN^3R^4

(VI)

10

15

in welcher

R³ und R⁴ die oben angegebene Bedeutung haben,

- 5 in inerten Lösemitteln umsetzt.
 - 8. Arzneimittel enthaltend mindestens ein 2-Phenyl-substituiertes Imidazotriazinon gemäß Anspruch 1 sowie pharmakologisch unbedenkliche Formulierungsmittel.
 - 9. Arzneimittel gemäß Anspruch 8 zur Behandlung von cardiovaskulären, cerebrovaskulären Erkrankungen und/oder Erkrankungen des Urogenitaltraktes.
 - 10. Arzneimittel gemäß Anspruch 9 zur Behandlung von erektiler Dysfunktion.
 - 11. Verwendung von 2-Phenyl-substituierten Imidazotriazinonen gemäß Anspruch 1 zur Herstellung von Arzneimitteln.

Int...ational Application No

PCT/EP 98/06910 CLASSIFICATION OF SUBJECT MATTER A. CLASS IPC 6 CO7D487/04 A61K31/53 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 5 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. χ DE 28 11 780 A (ALLEN & HANBURYS LTD) 1-11 28 September 1978 cited in the application see the whole document Υ CHARLES I ET AL: "BICYCLIC HETEROCYCLES 1 - 11WITH NITROGEN AT THE RING JUNCTION. PART 2.1 APPLICATION OF THE DAKIN-WEST REACTION TO THE SYNTHESIS OF IMIDAZO 5,1-F-1,2,4-TRIAZIN-4(3H)-ONES" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, no. 5, May 1980, pages 1139-1146, XP002027191 see the whole document -/--Х Further documents are listed in the continuation of box C. X Patent family members are listed in annex. ° Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 12/04/1999 25 March 1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

1

Stellmach, J

PCT/EP 98/06910

		FC1/E1 98/00910
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Calegory *	Citation of document, with indication, where appropriate, of the relevant passages	nelevant to claim No.
Υ	DE 23 64 076 A (ALLEN & HANBURYS LTD) 18 July 1974 cited in the application see the whole document	1-11
Y	DE 22 55 172 A (ALLEN & HANBURYS LTD) 24 May 1973 cited in the application see the whole document	1-11
Υ	WO 96 16657 A (PFIZER LTD ;PFIZER RES & DEV (IE); PFIZER (US); CAMPBELL SIMON FRA) 6 June 1996 see the whole document	1-11
Y	EP 0 463 756 A (PFIZER LTD ;PFIZER (US)) 2 January 1992 see the whole document	1-11
Y	WO 94 28902 A (PFIZER LTD ;PFIZER (US); PFIZER RES & DEV (IE); ELLIS PETER (GB);) 22 December 1994 see the whole document	1-11
Υ	WO 93 07149 A (PFIZER LTD ;PFIZER (US)) 15 April 1993 see the whole document	1-11
Y	WO 93 06104 A (PFIZER LTD ;PFIZER (US)) 1 April 1993 see the whole document	1-11
Υ	WO 94 00453 A (PFIZER LTD ;PFIZER (US); PFIZER RES & DEV (IE); TERRETT NICHOLAS K) 6 January 1994 see the whole document	1-11
Y	WO 94 05661 A (PFIZER LTD ;PFIZER (US); PFIZER RES & DEV (IE); BELL ANDREW SIMON) 17 March 1994 see the whole document	1-11
Y	WO 93 12095 A (PFIZER LTD ;PFIZER (US)) 24 June 1993 see the whole document	1-11
P , X	EP 0 812 845 A (PFIZER LTD ;PFIZER RES & DEV (IE)) 17 December 1997 see the whole document	1-11

Information on patent family members

International Application No
PCT/EP 98/06910

Patent document cited in search repor	t	Publication date		Patent family member(s)	Publication date
DE 2811780	A	28-09-1978	GB AT AU BE DK FI FR IP NL SE US ZA	1584461 A 363952 B 196378 A 516179 B 3431478 A 865125 A 109578 A 780828 A 2384773 A 46653 B 53119891 A 7803195 A 7803195 A 7803195 A	11-02-1981 10-09-1981 15-02-1981 21-05-1981 27-09-1979 21-09-1978 26-09-1978 20-10-1978 10-08-1983 19-10-1978 27-09-1978 26-09-1978 26-09-1978 14-07-1981 25-04-1979
DE 2364076	A	18-07-1974	GB AT AU BE CH FI FR IE JP LNL SE UZA	1457873 A 336029 B 2374 A 474078 B 6377473 A 809369 A 1005057 A 618170 A 57260 B 793137 A 2213058 A 38681 B 49095994 A 69099 A 7400095 A 408179 B 3941785 A 7309534 A	08-12-1976 12-04-1977 15-08-1976 15-07-1976 19-06-1975 03-07-1974 08-02-1977 15-07-1980 31-03-1980 10-10-1979 02-08-1974 10-05-1978 11-09-1974 02-04-1974 08-07-1974 21-05-1979 02-03-1976 27-11-1974
DE 2255172	A	24-05-1973	GB AT AU BE CA CH DK FR JP JP NL PH SE US ZA	1400999 A 321923 B 472127 B 4819172 A 791025 A 990292 A 594671 A 138691 B 2160407 A 37046 B 1059812 C 48057993 A 56003873 B 7215646 A 9669 A 402915 B 3840537 A 7207532 A	16-07-1975 25-04-1975 20-05-1976 16-05-1974 07-05-1973 01-06-1976 13-01-1978 16-10-1978 29-06-1973 27-04-1977 25-08-1981 14-08-1973 27-01-1981 22-05-1973 10-02-1976 24-07-1978 08-10-1974 25-07-1973
WO 9616657	Α	06-06-1996	CA EP JP	2203389 A 0793498 A 9512835 T	06-06-1996 10-09-1997 22-12-1997

Information on patent family members

International Application No
PCT/EP 98/06910

	tent document in search report		Publication date		Patent family member(s)	Publication date
EP	0463756	A	02-01-1992	ATU AU CCN CCS DE DE DE ESI HEL JP PRUS US US	121403 T 626757 B 7915591 A 2044748 A,C 1057464 A,B 9101876 A 1971 A 69108991 D 69108991 T 463756 T 19651 A 2071919 T 913017 A,B, 219496 A 66040 B 98482 A 2087736 C 6041133 A 7121945 B 9406628 B 178029 B 166490 B 98011 A,B 2047617 C 5346901 A 5719283 A 5250534 A	15-05-1995 06-08-1992 19-03-1992 21-12-1991 01-01-1992 15-04-1992 05-09-1997 24-05-1995 31-08-1995 25-09-1995 31-10-1995 21-12-1991 03-01-1997 13-12-1995 27-11-1995 02-09-1996 15-02-1994 25-12-1995 23-07-1994 02-10-1995 31-03-1995 31-03-1992 10-11-1995 13-09-1994 17-02-1998 05-10-1993
WO	9428902	A	22-12-1994	AT AU CA CN CZ DE DK EP ES FI GR IL JP NO NZ PL ZA	163852 T 676571 B 6797394 A 2163446 A,C 1124926 A 9503242 A 69408981 D 69408981 T 702555 T 0702555 A 2113656 T 955911 A 3026520 T 109873 A 121836 A 9503996 T 954757 A 266463 A 311948 A 9404018 A	15-03-1998 13-03-1997 03-01-1995 22-12-1994 19-06-1996 17-07-1998 02-07-1998 06-04-1998 27-03-1996 01-05-1998 27-12-1998 27-12-1998 27-12-1998 27-12-1998 27-12-1998 27-12-1998 27-12-1998 27-12-1998 27-12-1998
WO	9307149	Α	15-04-1993	PT	100915 A	29-10-1993
WO	9306104	A	01-04-1993	PT	100862 A	30-11-1993
WO	9400453	A	06-01-1994	AT CA DE DE DK	143961 T 2139109 A,C 69305344 D 69305344 T 647227 T	15-10-1996 06-01-1994 14-11-1996 20-02-1997 18-11-1996

Information on patent family members

In. ational Application No
PCT/EP 98/06910

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9400453 A	•	EP 0647227 A ES 2092316 T FI 946083 A GR 3021878 T JP 2544903 B JP 7504681 T US 5734053 A	12-04-1995 16-11-1996 23-12-1994 31-03-1997 16-10-1996 25-05-1995 31-03-1998
WO 9405661 A	17-03-1994	AT 148118 T CA 2138298 A,C DE 69307712 D DE 69307712 T DK 656898 T EP 0656898 A ES 2096936 T FI 950889 A GR 3022852 T JP 2660103 B JP 7506838 T US 5591742 A	15-02-1997 17-03-1994 06-03-1997 15-05-1997 18-08-1997 14-06-1995 16-03-1997 27-02-1995 30-06-1997 08-10-1997 27-07-1995 07-01-1997
WO 9312095 A	24-06-1993	AT 166052 T CA 2122360 A,C DE 69225500 D DE 69225500 T EP 0628032 A ES 2114952 T FI 942769 A JP 2525126 B JP 7502029 T US 5482941 A	15-05-1998 24-06-1993 18-06-1998 10-09-1998 14-12-1994 16-06-1998 10-06-1994 14-08-1996 02-03-1995 09-01-1996
EP 0812845 A	17-12-1997	AU 697684 B AU 2487897 A BG 101569 A BR 9703580 A CA 2207694 A CN 1168376 A CZ 9701811 A HR 970326 A HU 9701048 A JP 10081688 A NO 972481 A NO 985064 A NZ 328084 A PL 320555 A SG 50024 A SK 74397 A	15-10-1998 18-12-1997 30-01-1998 10-11-1998 14-12-1997 24-12-1997 18-03-1998 30-06-1998 28-12-1998 31-03-1998 15-12-1997 15-12-1997 26-08-1998 22-12-1997 15-06-1998 03-06-1998

In. ationales Aktenzeichen

PCT/EP 98/06910

A. KLASSI IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07D487/04 A61K31/53						
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK							
	RCHIERTE GEBIETE						
Recherchies IPK 6	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbol $C07D$	ole)					
Recherchie	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	oweit diese unter die recherchierten Gebiet	e fallen				
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	lame der Datenbank und evtl. verwendete	Suchbegriffe)				
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN						
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden Teile	Betr. Anspruch Nr.				
Х	DE 28 11 780 A (ALLEN & HANBURYS 28. September 1978 in der Anmeldung erwähnt siehe das ganze Dokument	1-11					
CHARLES I ET AL: "BICYCLIC HETEROCYCLES WITH NITROGEN AT THE RING JUNCTION. PART 2.1 APPLICATION OF THE DAKIN-WEST REACTION TO THE SYNTHESIS OF IMIDAZO - 5,1-F-1,2,4-TRIAZIN-4(3H)-ONES" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, Nr. 5, Mai 1980, Seiten 1139-1146, XP002027191 siehe das ganze Dokument -/							
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie					
 Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einen anderen im Recherchenbericht genannten Veröffentlichung beiegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht dem beanspruchten Prioritätsdatum veröffentlicht worden ist "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlich ungen die ser Kategorie in Verbindung gebracht wird ur diese Verbindung für einen Fachmann naheliegend ist "K" "Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum veröffentlich und mit der Anmelden Prioritätsdatum veröffentlich ungen der nach dem Prioritätsdatum veröffentlichung, die nach dem Prioritätsdatum weröffentlich der Gerinder veröffentlich worden ist und mit der Anmeldeng nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Prinzip							
Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts							
2	5. März 1999	12/04/1999					
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Stellmach, J							

In .ationales Aktenzeichen
PCT/EP 98/06910

zung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden T	eile Betr. Anspruch Nr.
DE 23 64 076 A (ALLEN & HANBURYS LTD) 18. Juli 1974 in der Anmeldung erwähnt siehe das ganze Dokument	1-11
DE 22 55 172 A (ALLEN & HANBURYS LTD) 24. Mai 1973 in der Anmeldung erwähnt siehe das ganze Dokument	1-11
WO 96 16657 A (PFIZER LTD ;PFIZER RES & DEV (IE); PFIZER (US); CAMPBELL SIMON FRA) 6. Juni 1996 siehe das ganze Dokument	1-11
EP 0 463 756 A (PFIZER LTD ;PFIZER (US)) 2. Januar 1992 siehe das ganze Dokument	1-11
WO 94 28902 A (PFIZER LTD ;PFIZER (US); PFIZER RES & DEV (IE); ELLIS PETER (GB);) 22. Dezember 1994 siehe das ganze Dokument	1-11
WO 93 07149 A (PFIZER LTD ;PFIZER (US)) 15. April 1993 siehe das ganze Dokument	1-11
WO 93 06104 A (PFIZER LTD ;PFIZER (US)) 1. April 1993 siehe das ganze Dokument	1-11
WO 94 00453 A (PFIZER LTD ;PFIZER (US); PFIZER RES & DEV (IE); TERRETT NICHOLAS K) 6. Januar 1994 siehe das ganze Dokument	1-11
WO 94 05661 A (PFIZER LTD ;PFIZER (US); PFIZER RES & DEV (IE); BELL ANDREW SIMON) 17. März 1994 siehe das ganze Dokument	1-11
WO 93 12095 A (PFIZER LTD ;PFIZER (US)) 24. Juni 1993 siehe das ganze Dokument	1-11
EP 0 812 845 A (PFIZER LTD ;PFIZER RES & DEV (IE)) 17. Dezember 1997 siehe das ganze Dokument	1-11
	DE 23 64 076 A (ALLEN & HANBURYS LTD) 18. Juli 1974 in der Anmeldung erwähnt siehe das ganze Dokument DE 22 55 172 A (ALLEN & HANBURYS LTD) 24. Mai 1973 in der Anmeldung erwähnt siehe das ganze Dokument WO 96 16657 A (PFIZER LTD ; PFIZER RES & DEV (IE); PFIZER (US); CAMPBELL SIMON FRA) 6. Juni 1996 siehe das ganze Dokument EP 0 463 756 A (PFIZER LTD ; PFIZER (US)) 2. Januar 1992 siehe das ganze Dokument WO 94 28902 A (PFIZER LTD ; PFIZER (US); PFIZER RES & DEV (IE); ELLIS PETER (GB);) 22. Dezember 1994 siehe das ganze Dokument WO 93 07149 A (PFIZER LTD ; PFIZER (US)) 15. April 1993 siehe das ganze Dokument WO 93 06104 A (PFIZER LTD ; PFIZER (US)) 1. April 1993 siehe das ganze Dokument WO 94 00453 A (PFIZER LTD ; PFIZER (US)) 1. April 1993 siehe das ganze Dokument WO 94 00453 A (PFIZER LTD ; PFIZER (US); PFIZER RES & DEV (IE); TERRETT NICHOLAS K) 6. Januar 1994 siehe das ganze Dokument WO 94 05661 A (PFIZER LTD ; PFIZER (US); PFIZER RES & DEV (IE); TERRETT NICHOLAS K) 6. Januar 1994 siehe das ganze Dokument WO 93 12095 A (PFIZER LTD ; PFIZER (US); PFIZER RES & DEV (IE); BELL ANDREW SIMON) 17. März 1994 siehe das ganze Dokument WO 93 12095 A (PFIZER LTD ; PFIZER (US)) 24. Juni 1993 siehe das ganze Dokument EP 0 812 845 A (PFIZER LTD ; PFIZER RES & DEV (IE)) 17. Dezember 1997

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int. tionales Aktenzeichen
PCT/EP 98/06910

Im Recherchenbericht ngeführtes Patentdokument	Datum der t Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 2811780 A	A 28-09-1978	GB 1584461 A AT 363952 B AT 196378 A AU 516179 B AU 3431478 A BE 865125 A DK 109578 A FI 780828 A FR 2384773 A IE 46653 B JP 53119891 A NL 7803195 A SE 7803195 A US 4278673 A ZA 7801458 A	11-02-1981 10-09-1981 15-02-1981 21-05-1981 27-09-1979 21-09-1978 26-09-1978 20-10-1978 10-08-1983 19-10-1978 27-09-1978 26-09-1978 26-09-1978 14-07-1981 25-04-1979
DE 2364076 A	18-07-1974	GB 1457873 A AT 336029 B AT 2374 A AU 474078 B AU 6377473 A BE 809369 A CA 1005057 A CH 618170 A FI 57260 B FI 793137 A FR 2213058 A IE 38681 B JP 49095994 A LU 69099 A NL 7400095 A SE 408179 B US 3941785 A ZA 7309534 A	08-12-1976 12-04-1977 15-08-1976 15-07-1976 19-06-1975 03-07-1974 08-02-1977 15-07-1980 31-03-1980 10-10-1979 02-08-1974 10-05-1978 11-09-1974 02-04-1974 08-07-1974 21-05-1979 02-03-1976 27-11-1974
DE 2255172 A	24-05-1973	GB 1400999 A AT 321923 B AU 472127 B AU 4819172 A BE 791025 A CA 990292 A CH 594671 A DK 138691 B FR 2160407 A IE 37046 B JP 1059812 C JP 48057993 A JP 56003873 B NL 7215646 A PH 9669 A SE 402915 B US 3840537 A ZA 7207532 A	16-07-1975 25-04-1975 20-05-1976 16-05-1974 07-05-1973 01-06-1976 13-01-1978 16-10-1978 29-06-1973 27-04-1977 25-08-1981 14-08-1973 27-01-1981 22-05-1973 10-02-1976 24-07-1978 08-10-1974 25-07-1973
WO 9616657 A	06-06-1996	CA 2203389 A EP 0793498 A JP 9512835 T	06-06-1996 10-09-1997 22-12-1997

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int. Intonales Aktenzeichen
PCT/EP 98/06910

Im Recherchenberich ngeführtes Patentdoku		Datum der Veröffentlichung		itglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0463756	A	02-01-1992	AT AU CA CS DE DE DE DE DE DE DE SES FI HE IL JP PR US US US	121403 T 626757 B 7915591 A 2044748 A,C 1057464 A,B 9101876 A 1971 A 69108991 D 69108991 T 463756 T 19651 A 2071919 T 913017 A,B, 219496 A 66040 B 98482 A 2087736 C 6041133 A 7121945 B 9406628 B 178029 B 166490 B 98011 A,B 2047617 C 5346901 A 5719283 A 5250534 A	15-05-1995 06-08-1992 19-03-1992 21-12-1991 01-01-1992 15-04-1992 05-09-1997 24-05-1995 31-08-1995 31-10-1995 31-10-1995 21-12-1991 03-01-1997 13-12-1995 27-11-1995 02-09-1996 15-02-1994 25-12-1995 23-07-1994 02-10-1995 31-05-1995 31-05-1995 13-09-1994 17-02-1998 05-10-1993
WO 9428902	A	22-12-1994	AT AU CA CN CZ DE DK EP ES FI GR IL JP NO NZ PL ZA	163852 T 676571 B 6797394 A 2163446 A,C 1124926 A 9503242 A 69408981 D 69408981 T 702555 T 0702555 A 2113656 T 955911 A 3026520 T 109873 A 121836 A 9503996 T 954757 A 266463 A 311948 A 9404018 A	15-03-1998 13-03-1997 03-01-1995 22-12-1994 19-06-1996 17-07-1996 16-04-1998 02-07-1998 06-04-1998 27-03-1996 01-05-1998 08-12-1995 31-07-1998 27-12-1998 27-12-1998 27-12-1998 27-12-1998 27-12-1998 24-03-1997 18-03-1996 08-12-1995
WO 9307149	Α	15-04-1993	PT	100915 A	29-10-1993
WO 9306104	Α	01-04-1993	PT	100862 A	30-11-1993
WO 9400453	Α	06-01-1994	AT CA DE DE DK	143961 T 2139109 A,C 69305344 D 69305344 T 647227 T	15-10-1996 06-01-1994 14-11-1996 20-02-1997 18-11-1996

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

In. ationales Aktenzeichen
PCT/EP 98/06910

lm Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9400453 A		EP 0647227 A ES 2092316 T FI 946083 A GR 3021878 T JP 2544903 B JP 7504681 T US 5734053 A	12-04-1995 16-11-1996 23-12-1994 31-03-1997 16-10-1996 25-05-1995 31-03-1998
WO 9405661 A	17-03-1994	AT 148118 T CA 2138298 A,C DE 69307712 D DE 69307712 T DK 656898 T EP 0656898 A ES 2096936 T FI 950889 A GR 3022852 T JP 2660103 B JP 7506838 T US 5591742 A	15-02-1997 17-03-1994 06-03-1997 15-05-1997 18-08-1997 14-06-1995 16-03-1997 27-02-1995 30-06-1997 08-10-1997 27-07-1995 07-01-1997
WO 9312095 A	24-06-1993	AT 166052 T CA 2122360 A,C DE 69225500 D DE 69225500 T EP 0628032 A ES 2114952 T FI 942769 A JP 2525126 B JP 7502029 T US 5482941 A	15-05-1998 24-06-1993 18-06-1998 10-09-1998 14-12-1994 16-06-1998 10-06-1994 14-08-1996 02-03-1995 09-01-1996
EP 0812845 A	17-12-1997	AU 697684 B AU 2487897 A BG 101569 A BR 9703580 A CA 2207694 A CN 1168376 A CZ 9701811 A HR 970326 A HU 9701048 A JP 10081688 A NO 972481 A NO 985064 A NZ 328084 A PL 320555 A SG 50024 A SK 74397 A	15-10-1998 18-12-1997 30-01-1998 10-11-1998 14-12-1997 24-12-1997 18-03-1998 30-06-1998 28-12-1998 31-03-1998 15-12-1997 15-12-1997 26-08-1998 22-12-1997 15-06-1998 03-06-1998