Función Inversa

IRM – Grupo 3 – Teórica 3

Función

Repasamos la definición de función.

Definición: Dados dos conjuntos A y B, una función f de A en B es una ley o regla de correspondencia que asocia a a cada elemento x del conjunto A uno y sólo un elemento del conjunto B.

Condición de existencia: Para cada elemento de A existe algún elemento que le corresponde en B.

Es decir, no hay elementos de A que no tengan su correspondiente en B a través de f.

Condición de unicidad: A cada elemento de A le corresponde un único elemento de B a través de f.

SÍ son funciones

NO son funciones

Nos preguntamos ahora, dado un elemento de un función ¿será posible determinar el elemento del dominio al que le corresponde esta imagen?

Ejemplo: Consideremos la función $f: \mathbb{R} \to \mathbb{R} / f(x) = -2x + 1$ e intentemos resolver la ecuación f(x) = -2x + 1 respecto de x. Para esto, llamando y = f(x), operamos de la siguiente forma:

$$y = -2x + 1 \rightarrow y - 1 = -2 \Rightarrow x = \frac{y-1}{-2}$$
.

en esta expresión aparece x relacionada con y, si esta es una relación funcional diremos x = g(y)

En este caso podemos observar que a cada valor real de y le corresponde un única valor real de x, quedando definida la función:

$$g: \mathbb{R} \to \mathbb{R} / g(y) = \frac{y-1}{-2} \longrightarrow g: \mathbb{R} \to \mathbb{R} / g(x) = \frac{x-1}{-2}$$

Esta función g se llama función inversa de f y la denotamos con el símbolo f^{-1} .

Entonces, para hallar la inversa de un función f(x):

- 1. Sustituir f(x) por y.
- 2. Despejar x.
- 3. Intercambiar las y por x de la expresión obtenida en 2. Esto se hace como convención de que x representa la variable independiente.
- 4. Sustituir $f^{-1}(x)$ por y en la expresión.

Ejemplo: f(x) = 2x 1. y = 2x

$$1. y = 2x$$

2.
$$\frac{y}{2} = \frac{2x}{2}$$

$$\frac{y}{2} = x$$

$$3. \quad y = \frac{x}{2}$$

4.
$$\int f^{-1}(x) = \frac{x}{2}$$

No todas las funciones poseen inversa, otros ejemplos nos guiarán a la definición formal de la *inversa de una función*.

Ejemplo: Consideremos la función $f: \mathbb{R} \to \mathbb{R} / f(x) = 2x^2$.

$$Dom(f) = \mathbb{R}$$
 $Im(f) = \mathbb{R}_{\geq 0} = [0, +\infty).$

¿Todo elemento de la imagen proviene de, a lo sumo, un elemento del dominio?

Procedemos como antes, e intentamos despejar x:

$$y = 2x^2 \longrightarrow \frac{y}{2} = x^2 \longrightarrow \sqrt{\frac{y}{2}} = \sqrt{x^2}$$

$$\sqrt{\frac{y}{2}} = \sqrt{x^2}$$

Definición del módulo

$$|x| = \sqrt{\frac{y}{2}} \to \begin{cases} x = \sqrt{\frac{y}{2}}, x \ge 0\\ x = -\sqrt{\frac{y}{2}}, x < 0 \end{cases}$$

Para cada y > 0 de la imagen siempre hay dos valores de x cuyo cuadrado es el valor γ

Entonces f no tiene función inversa.

SÍ son funciones

NO son funciones

¿En cuál de estas situaciones estamos?

Una condición necesaria para que una función tenga función inversa es que f sea inyectiva.

Definición: Se dice que una función f es *inyectiva* o *uno* a *uno* cuando para valores de x_1 y x_2 del dominio se cumple que:

si
$$x_1 \neq x_2$$
 entonces $f(x_1) \neq f(x_2)$

De forma equivalente, f es *inyectiva* o *uno* a *uno* cuando: si $x_1 = x_2$ entonces $f(x_1) = f(x_2)$.

Para reconocer si una función es *inyectiva* o *uno a uno* podemos usar un criterio geométrico sencillo.

Prueba de la recta horizontal

Una función es *inyectiva* si <u>ninguna recta horizontal</u> interseca su gráfico en más de un punto.

Para reconocer si una función es *inyectiva* o *uno a uno* podemos resolverlo analíticamente.

Ejemplo 1: Decidir si las siguientes funciones son inyectivas.

(i)
$$f: \mathbb{R} \to \mathbb{R} / f(x) = -\frac{1}{2}x + 2$$

(ii)
$$f: \mathbb{R} \to \mathbb{R} / f(x) = 2x^2 + 1$$

(i) ¿pueden dos elementos tener la misma imagen?

$$-\frac{1}{2}x_1 + 2 = -\frac{1}{2}x_2 + 2$$

$$-\frac{1}{2}x_1 + 2 - 2 = -\frac{1}{2}x_2 + 2 - 2$$

$$-\frac{1}{2}x_1 = -\frac{1}{2}x_2$$

$$-2(-\frac{1}{2}x_1) = -2(-\frac{1}{2}x_2)$$

$$x_1 = x_2$$

Sólo si
$$x_1 = x_2 \rightarrow f(x_1) = f(x_2)$$
, por tanto es inyectiva.

(ii) ¿pueden dos elementos tener la misma imagen?

$$2x_1^2 + 1 = 2x_2^2 + 1$$

$$2x_1^2 + 1 - 1 = 2x_2^2 + 1 - 1$$

$$2x_1^2 = 2x_2^2$$

$$\frac{2x_1^2}{2} = \frac{2x_2^2}{2}$$

$$x_1^2 = x_2^2$$

$$|x_1| = |x_2|$$

No es inyectiva, ya que puede haber más de un valor de x que tenga la misma imagen.

Si f es una función <u>estrictamente creciente</u> o <u>estrictamente decreciente</u> en un intervalo I, entonces f es *inyectiva* o uno a uno en I.

Esto no es suficiente para asegurar la existencia de la función inversa.

$$x \xrightarrow{f} f(x) \xrightarrow{f^{-1}} f^{-1}(f(x)) = x$$

$$y \xrightarrow{f^{-1}} f^{-1}(y) \xrightarrow{f} f(f^{-1}(y)) = y$$

La composición de la función y la inversa me devuelve al inicio.

Definición: Dadas las funciones $f: A \to B$ y $f^{-1}: B \to A$, se dice que f^{-1} es la *función inversa* de f cuando

$$f^{-1}(f(x)) = x \quad \forall x \in A$$

$$f(f^{-1}(y)) = y \qquad \forall y \in B$$

Ejemplo: Sea $f:[0,+\infty) \to \mathbb{R} / f(x) = x^2 + 2$, hallar la inversa.

Se observa del gráfico que esta función es inyectiva porque cumple con la prueba de la recta horizontal.

Para hallar la inversa, despejo x:

$$y=x^2+2$$
 $y-2=x^2+2-2$
 $y-2=x^2$

$$\sqrt{y-2}=\sqrt{x^2}$$

En este caso no por el dominio de la función!!!
$$\sqrt{y-2}=x$$

Ejemplo:
$$f: [0, +\infty) \to \mathbb{R} / f(x) = x^2 + 2$$

$$x = \sqrt{y-2}$$

Peroooo...... requiere que $y \ge 2$

Esta nueva función
$$g:[2,+\infty)\to\mathbb{R}$$
 / $g(y)=\sqrt{y-2}$

NO ES LA INVERSA de f ya que su dominio $[2, +\infty)$ **NO ES** $\mathbb R$

(el codominio de f)

Entonces la inyectividad no alcanza para asegurar la existencia de su *función inversa*, falta una condición, **que f sea suryectiva** (sobreyectiva).

Definición: Se dice que una función f es survectiva cuando su **conjunto imagen coincide con su codominio**, es decir, $I_f = C_f$.

Una función *biyectiva* es *inyectiva* **y** *suryectiva*.

Toda función f biyectiva tiene una función inversa f^{-1} que también es biyectiva.

Ejemplo:
$$f:[0,+\infty) \to \mathbb{R} / f(x) = x^2 + 2$$

$$x = \sqrt{y-2}$$

Es posible redefinir la función del ejemplo de manera que admita función inversa, trabajando con $x \in [0, +\infty)$, el valor $f(x) = x^2 + 2$ resultará en el intervalo $[2, +\infty)$.

Entonces $f:[0,+\infty) \to [2,+\infty)$ / $f(x)=x^2+2$ es una función *biyectiva* pues es *inyectiva* y su codominio coincide con su conjunto imagen.

Su función inversa es la función: f^{-1} : $[2, +\infty) \rightarrow [0, +\infty) / f^{-1}(y) = \sqrt{y-2}$

Podemos verificar que:

$$f^{-1}$$
: $[2, +\infty) \to [0, +\infty) / f^{-1}(x) = \sqrt{x-2}$

$$f^{-1}(f(x)) = \sqrt{x^2 + 2 - 2} = \sqrt{x^2} = |x| = x \quad \forall x \in [0, +\infty)$$

$$f(f^{-1}(x)) = (\sqrt{x-2})^2 + 2 = x - 2 + 2 = x \quad \forall x \in [2, +\infty)$$

Representación gráfica

La gráfica de f es el conjunto: $Graf(f) = \{(x, y) \mid x \in D_f \land y = f(x)\} = \{(x, f(x) \mid x \in D_f\}\}$

La gráfica de f^{-1} es el conjunto: $Graf(f^{-1}) = \{(y,x) \ / \ x \in D_{f^{-1}} \land x = f(y)\} = \{(y,f^{-1}\ (y) \ / \ y \in D_{f^{-1}}\}$

Esto significa que el par ordenado (x, y) está en la gráfica de f si y sólo si el par (y, x) está en la gráfica de f^{-1} , es decir, que la gráfica de f^{-1} está formada por todos los pares que resultan de invertir el orden de los elementos en los pares que forman la gráfica de f.

Ejemplo: Representar la gráfica dada por $f: \mathbb{R} \to \mathbb{R} / f(x) = -2x + 4$ y su inversa.

Calculamos la inversa (despejamos x):

$$y = -2x + 4$$

$$y - 4 = -2x + 4 - 4$$

$$y - 4 = -2x$$

$$\frac{y - 4}{-2} = \frac{-2x}{-2} = x$$

$$x = \frac{4 - y}{2} \longrightarrow y = \frac{4 - x}{2}$$

Ejemplo: Representar la gráfica dada por $f: \mathbb{R} \to \mathbb{R} / f(x) = -2x + 4$.

Ejemplo: Dada la función $f(x) = [1, +\infty) \rightarrow [0, +\infty)/f(x) = \sqrt{x-1}$, hallar la inversa y graficarla.

$$D_f = \mathbb{R} \ge 1 = [1, +\infty)$$

Antes de calcular la inversa, debo saber si la función es biyectiva (inyectiva + suryectiva).

Al mirar el gráfico, compruebo por la prueba de la recta horizontal que es inyectiva.

Para determinar si es suryectiva, debo verificar que la imagen de f sea su codominio.

En este caso, lo es, lo comprobamos mirando la definición de f y el gráfico.

Al haber comprobado que la función es biyectiva sabemos que tiene inversa.

Para hallar la inversa, despejamos
$$x$$
: $y = \sqrt{x-1}$ $y \ge 0$ $y^2 = x-1$

$$y^2 + 1 = x - 1 + 1$$

$$y^2 + 1 = x$$

Reemplazo y por x y viceversa:

$$y = x^2 + 1 \longrightarrow f^{-1}(x) = x^2 + 1$$

$$f^{-1}(x) = [0, +\infty) \rightarrow [1, +\infty)/f^{-1}(x) = x^2 + 1$$

