学籍番号: 公衆衛生学

疫学演習 (2019) 回答用紙

氏名:

- 1 問題1:両群間計量データの平均値を比較する
 - 1. 帰無仮説を「遺伝子変異ありと変異なし両群の間で、COGの平均値は等しい」とする.上記のデータ及 び適切な方法を使って検定し、検定の結果を分かりやすく説明せよ.なお、分散が等しいと仮定できる 場合、以下の式で両群の共通標準偏差が計算できる:

$$S = \sqrt{\frac{(n_A - 1)S_A^2 + (n_B - 1)S_B^2}{n_A + n_B - 2}}$$
 (1)

・ S_A : A群の標準偏差; ・ n_A : A群の人数;

・ S_B : B群の標準偏差;

・ n_B: B群の人数;

・ S: A群及びB群の共通標準偏差;

・ $n_A + n_B - 2$: 分散が等しい時の自由度.

2. 遺伝子変異ありとなしの群の間の脳萎縮度 (atrophy) を比較する場合, 1. と同じ検定方法を用いてよいか? それを判断するにはどの検定方法を使えばよいかを説明し,実際にこの検定方法を実施せよ.

-2-

3. 2.の結果を踏まえて,帰無仮説「両群の脳萎縮度の平均値が等しい」を検定せよ.なお,両群の分散が等しいという前提が満たされていない時に,自由度(df)の計算式は以下となる:

$$\mathbf{df} = \frac{(S_A^2/n_A + S_B^2/n_B)^2}{(S_A^2/n_A)^2/(n_A - 1) + (S_B^2/n_B)^2/(n_B - 1)}$$
(2)

2 問題2:線形回帰モデル

2.3 年齢,体重それぞれの平均値,分散を求めよ;また,年齢と体重の相関係数を算出せよ.なお,EZRで計量データの平均値を計算するには,コマンド mean(変数名)を使う;共分散を計算したい時には,コマンド cov(変数1, 変数2)を利用する.

以下のコードをRスクリプトに入力して、実行をクリックしてください.(結果を下の余白に記入すること)

年齢の平均値

mean(Dataset\$age)

年齢の分散

var(Dataset\$age)

体重の平均値

mean(Dataset\$wt)

体重の分散

var(Dataset\$wt)

体重と年齢の共分散 covariance

cov(Dataset\$wt, Dataset\$age)

2.4 年齢を説明変数,体重を目的変数とする場合,年齢の傾き(回帰係数),と切片を求めよ.なお,分散と共分散の定義は以下とする, \bar{X} は X の平均値を示す:

· 分散 variance:

$$\mathbf{Var}(X) = \frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2}{n - 1}$$
$$= \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}$$

· 共分散 covariance:

$$\mathbf{Cov}(X,Y) = \frac{(X_1 - \bar{X})(Y_1 - \bar{Y}) + (X_2 - \bar{X})(Y_2 - \bar{Y}) + \dots + (X_n - \bar{X})(Y_n - \bar{Y})}{n - 1}$$
$$= \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n - 1}$$

以下のコードをRスクリプトに入力して、実行をクリックしてください.(結果を下の余白に記入すること)

```
# 傾き (slope)
```

beta <- cov(Dataset\$wt, Dataset\$age) / var(Dataset\$age)
beta</pre>

切片 (intercept)

alpha <- mean(Dataset\$wt) - mean(Dataset\$age)*beta
alpha</pre>

2.6 今まで計算した傾きと切片の数字を用いて,年齢と体重の関係を線形と考える場合の計算式を記入せよ.傾きと切片の計算結果の意味をそれぞれ記述せよ.
2.8 重回帰線形モデルの計算結果を用いて,体重の平均値を年齢と性別の線形モデルで表示せよ.各回帰係数の意味を説明せよ.
2.9 上記の重回帰線形モデルを用いて,年齢が34ヶ月の女の子の体重の予測値を計算せよ.

- 3 問題 $3:\chi^2$ 検定,オッズ比,ロジスティック回帰モデル
- 3.1 もし,視覚障害と対象者の死亡リスクに関連がない場合,下の表(各セルの期待値の人数)を答えよ:

死亡	視力正常	視覚障害	合計
0			4161 (96.81%)
1			137 (3.19%)
合計	3971 (100%)	327 (100%)	4298 (100%)

3.1.2 上記の2つの表の数字を使って χ^2 統計量を計算せよ

3.1.42×2の分割表では,自由度は _____

3.1.5 視覚障害と死亡の関係を示すテーブルのデータをもとに,下表を完成せよ:

	視力正常	視覚障害	合計
リスク (risk)			0.0319
オッズ (odds)			0.0329
対数オッズ (log-odds)			-3.414

視覚障害と死亡の関連を示すオッズ比を算出せよ:

$$OR =$$

このオッズ比の対数を取った値 log(OR) は:

$$\mathbf{log}(\mathbf{OR}) =$$

3.2 年齢の影響を考慮する

	視覚障害 (0 = no, 1 = yes)									
死亡	0	1	0	1	0	1	0	1	0	1
1 = yes	29	2	38	10	15	11	15	17	97	40
0 = no	2301	22	1271	124	212	69	90	72	3874	287
n										
年齢	15-3	34	35-	54	55-	64	65	+	Tot	al

上記のデータをよく見ると、視覚障害のオッズは年齢と共に上昇している (年齢が15-34歳群の(2 + 22)/(29 + 2301) = 0.010から年齢が65歳以上群の(17 + 72)/(15 + 90) = 0.848に上がっている).しかし、年齢の上昇と共に、死亡のオッズも上がる、年齢はここで、交絡因子 (confounder) と定義される.

3.2.1 以上のデータと解説をよく理解した上で,下表を完成せよ:

	オッズ		
年齢	視力正常	視覚障害	オッズ比
15-34	29/2301 = 0.01260		
35-54	0.02990		
55-64	0.07075		
65+	0.16667		

各年齢層では視覚障害と死亡との関連はどう変化しているか?

3.2.2.3 単変量ロジスティック回帰モデルで評価した粗オッズ比 (crude odds ratio) と比べ,年齢調整オッズ比はどう変わったかを説明せよ.

3.2.2.4 答え

- 4 問題4:生存分析
 - ・ 単変量ハザード比,及び信頼区間の意味を説明せよ.

・ 年齢調整ハザード比,及び信頼区間の意味を説明せよ.