装 线 内 题 效

**

线

**

装

课程代码:

座位号:

新疆大学 2018 — 2019 学年度第一学期期末考试

《线性代数》试卷(18周汉本)

学号: 专业:

2019 年 1月

题号	_	=	Ξ	四	五	总分
得分						

得分	评卷人

一、单项选择题(本大题共5小题, 每题只有一个正 确答案, 答对一题得2分, 共10分)

- | 3 4 6 | 1、 行列式 | 2 5 7 | 中元素 x 的余子式和代数余子式值分别为 【 】
 - A. -9, -9 B. -9, 9 C. 9, -9 D. 9, 9

- 2、设 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$, 若AB = BA, 则必有

- A. $b_{11} = b_{22}$ B. $b_{12} = b_{21}$ C. $b_{12} = 0$ D. $b_{11} + b_{22} = 0$
- 3、向量组α,β,γ线性相关的充要条件是
- []

- Α. α, β, γ中有一个零向量
- Β. α, β, γ中任意两个向量分量成比例
- C. α, β, γ中有一个向量是其余向量的线性组合
- D. α, β, γ中任意一个向量都是其余向量的线性组合
- 4、二次型的标准形为 $f = y_1^2 y_1^2 + 3y_1^2$,则二次型的正惯性指数为【
 - A. 2
- B. -1 C. 1 D. 3

扫描全能王创建

线性代数 试题 第 1页 (共 6 页)

、设三阶矩阵 A 的特征值为 2, 1, 1, 则 A^{-1} 的特征值为

- A. 4, 1, 1 B. 2, 1, 1 C. 4, 2, 2 D. $\frac{1}{2}$, 1, 1

得分	评卷人

二、判断题(本大题共 5 小题, 每题 2 分, 共 10 分, 答 A 表示说法正确. 答 B 表示说法不正确, 本题只需指出正确与错误, 不需要修改)

- 3、克拉默法则可用于解任意的线性方程组.
- 7、对任意矩阵A, $A^{T}A$ 是对称矩阵.
- 8、基础解系中解向量的个数等于系数矩阵的秩.
- 9、若 $k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=0$,则 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性相关.
- 10、二次型 $f(x_1,x_2,x_3) = x_1^2 4x_1x_2 + 2x_1x_3 2x_2^2 + 6x_3^2$ 的秋等于 2.

得分	评卷人

三、填空题(本大题共10小题, 每题2分,共20分)

- 11、五阶行列式的项 a₁₃a₂₂a₃₅a₄₁a₅₄的符号为______
- 12、四阶行列式 D中第 3 列元素依次为 -1, 2, 0, 1, 它们的代数余子式的值依次 为 5, 3, -7, 4, 则 *D* =____。
- 13、如果矩阵 $A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$,则 A'' =_______。
- 14、n阶方阵A满足 $A^2-3A+2E=0$,则 $A^{-1}=$ _____。
- 15、如果向量 $\beta = (1,0,k,2)$ 能由向量组 $\alpha_1 = (1,3,0,5)$, $\alpha_2 = (1,2,1,4)$, $\alpha_3 = (1,1,2,3)$ 线性表

示,则 k =____。

16、设齐次线性方程组
$$Ax = 0$$
 有非零解, $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & t & 1 \\ -1 & 3 & 2 \\ -2 & 1 & -1 \end{pmatrix}$,则 $t =$ _______。

线性代数 试题 第 2页 (共 6 页)

17、设 3($\alpha_1 - \alpha$) + 2($\alpha_2 + \alpha$) = 5($\alpha_3 + \alpha$), 其中 α_1 = (2,5,1,3), α_2 = (10,1,5,10), α_3 = (4,1,-1,1), 图 α_2 = (10,1,5,10),

18、设向量 $\alpha = (2, -1, \frac{1}{2}, 1)$,则 α 的长度为_____。

 C_0 、三知矩阵A与对角矩阵A=0 C_0 C_0

装订线内答思无效

**

* *

**

线

**

工是 本大题共5小题, 每题 10分,共50分)

三点,是行列式中元素 a,, 的代数余子式).

线性代数 试题 第 3页(共 6 页)

22、已知矩阵
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
, 且 $AB = A + 2B$, 求矩阵 B .

$$\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_2 - x_3 - x_4 = 1 \end{cases}$$
 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 - x_4 = 1 \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 - x_4 = 1 \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 - x_4 = 1 \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 - x_4 = 1 \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 - x_4 = 1 \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 - x_4 = 1 \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 + 3x_4 = a \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 + 3x_4 = a \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 + 3x_4 = a \end{cases}$ 有解, $\begin{cases} x_1 + 2x_2 - 2x_3 + 2x_4 = 2 \\ x_1 - x_2 - x_3 + 3x_4 = a \end{cases}$

当方程组有解时,求出方程组的通解.

线性代数 试题 第 4页 (共 6 页)

订

线

- 茙

**

- (1) 求而量担日七.
 - (2) 内国量量的一一最大无关组,并将其中国量可该最大无关组线性表示

$$\exists f : \exists A = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

- (I)京起降A的特征值与特征向量;
- (2) x一个正交矩阵 P 使得 $P^{-1}AP$ 为对角矩阵;
- (3)写出矩阵A所对应的二次型,并求正交变换x=Py化该二次型为 标准形.

线性代数 试题 第5页(共6页)

得分	评卷人

五、证明题(本大题共1小题,共10分)

26、设 $\beta_1=\alpha_1,\beta_2=\alpha_1+\alpha_2,\cdots,\beta_r=\alpha_1+\alpha_2+\cdots+\alpha_r$,且向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性无关,证明:向量组 $\beta_1,\beta_2,\cdots,\beta_r$ 线性无关。

线性代数 试题 第 6页 (共 6 页)