TABLE OF CONTENTS

01

MOTIVATION & OBJECTIVE

02

DATA

03

MODELS & RESULTS

04

LIMITATIONS & CONCLUSION

MOTIVATION

- Humans can determine sentiments and the logical flow in texts
- Inability to process large amounts of textual data
- A model that can understand logical flow can benefit multiple areas e.g. identifying fake news

OBJECTIVE

- To predict if a given hypothesis is related to its premise
- Obtain the most accurate model

Contradiction

Entailment

Neutral

HYPOTHESIS

Hypothesis 1: Attention Models like BERT will outperform bidirectional LSTM models

- Bidirectional LSTM models can account for either left-to-right or right-to-left context
- Attention Models like BERT can account for both simultaneously

HYPOTHESIS

Hypothesis 2: Split Input Model will perform better than a Concatenated Input Model

Method 1 produces sentence embeddings that are dependent on the other sentence.

DATA

- 12120 rows
- 6 columns
- Multiple Languages

Column	Description
ID	A unique identifier for the row.
Premise	A starter text, used as context for the hypothesis.
Hypothesis	A follow up text.
Lang_abv	Abbreviation for the language used in the text.
Language	Language used in the text.
Label	Classification of the relationship between the Premise and Hypothesis. (O for entailment, 1 for neutral, 2 for contradiction)

EXPLORATORY DATA ANALYSIS

56.7% of rows in English Language

Each label is well represented.

DATA CLEANING

- No missing observations
- Only kept rows in English Language

• 6870 rows left

OVERVIEW OF MODELS

1

Generic BiLSTM 2

ELMo

3

BERT

Generic BiLSTM (Architecture)

Flow

Input X > Layer A & Layer A' > Output Y

Generic BiLSTM (Tokenization)

Model

Tensorflow Keras Tokenizer

Generic BiLSTM (Embedding)

Model

Embedding Dimension = 32

Model: "sequential"				
Layer (type)	Output	Shape	Param #	
embedding (Embedding)	(None,	250, 32)	1600000	
bidirectional (Bidirectional	(None,	128)	49664	
dense (Dense)	(None,	3)	387 	
Total params: 1,650,051 Trainable params: 1,650,051 Non-trainable params: 0				

Generic BiLSTM (Results)

Loss & Model Accuracy

ELMo (Architecture)

Contextualized Word Embeddings

<u>Date</u> 显象 A measurement of time or a romantic engagement?

ELMo (Outputs)

Model Outputs	Output Description	Output Shape
"ELMo"	Word level embeddings	(batch_size, max_length, 1024)
"Default"	Sentence Level Embeddings	(batch_size, 1024)

Word Level Embeddings

- 1024 dimension embedding vector for each word
- max_length as the length of longest sentence in the batch

Sentence Level Embeddings

- 1024 dimension embedding vector for each sentence
- Vector generated as a fixedmean pooling of the vectors of each sentence

ELMo (Test Hypothesis 2)

A split input model will perform better than a concatenated input model.

ELMo (Concatenated Inputs)

ELMo (Concatenated Inputs)

Direct

0.46 train val 0.44 0.44 0.40 0.40 0.38 0.36 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 epoch

Dense(256)

~ 39% validation ~ 3 accuracy

~ 37% validation accuracy

1D Conv

~ 40% validation accuracy

BiLSTM

~ 37% validation accuracy

ELMo (Split Inputs)

ELMo (Split Inputs)

Direct

0.575 0.550 0.525 0.500 0.425 0.400 0.00

~ 46% validation

accuracy

Dense(256)

~ 45% validation accuracy

1D Conv

~ 49% validation accuracy

BiLSTM

~ 48% validation accuracy

BERT (Description)

Stands for Bidirectional Encoder Representations using Transformers

- Analyse the words in the sequence as a whole rather than individual
- For this project, we will be using the xlm-RoBERTa-large model

BERT (Tokenization and Padding)

Concatenation of sentences

Labelling and Separation of hypothesis and premise

Padding to ensure equal length

BERT (Model Building)

Layer (type)	Output Shape	Param #	Connected to
input_word_ids (InputLayer)	[(None, 245)]	0	[]
<pre>input_mask (InputLayer)</pre>	[(None, 245)]	0	[]
tfxlm_roberta_model (TFXLMRobertaModel)	TFBaseModelOutputWi thPoolingAndCrossAt tentions(last_hidde n_state=(None, 245, 1024), pooler_output=(Non e, 1024), past_key_values=No ne, hidden_states=N one, attentions=Non e, cross_attentions =None)	559890432	<pre>['input_word_ids[0][0]', 'input_mask[0][0]']</pre>
<pre>global_average_poolingld (Glob alAveragePoolinglD)</pre>	(None, 1024)	0	['tfxlm_roberta_model[0][0]']
dense (Dense)	(None, 3)	3075	['global_average_pooling1d[0][0]']
Total params: 559,893,507 Trainable params: 559,893,507 Non-trainable params: 0			

RESULTS

MODEL	VALIDATION ACCURACY
Bidirectional LSTM	0.389
ELMo	0.490
BERT	0.962

FINAL MODEL

- Pretrained on large amounts of datasets
- Accounts for word context
- Openly accessible to masses

LIMITATIONS - Generic BiLSTM

• Small embedding dimension chosen

LIMITATIONS - ELMo

- Lack of popularity
- Lack of support
- Lack of documentation and examples

LIMITATIONS - BERT

- Time Consuming
- Uses a lot of memory space
- Cannot handle large text sequences

LIMITATIONS - Other Issues

- Embedding memory usage
- Different operating systems (MacOS vs Windows)
- Size of dataset used too small
- Server update broke ELMo

CONCLUSION TO HYPOTHESIS 1

Hypothesis 1: Attention Models like BERT <u>did</u> outperform bidirectional LSTM models and ELMo

The BERT model we used is specially fine-tuned for Natural Language Inference tasks

CONCLUSION TO HYPOTHESIS 2

Hypothesis 2: Split Input Model <u>did</u> perform better than a Concatenated Input Model

Method 1 produces sentence embeddings that are dependent on the other sentence.

THANK YOU

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution