Propédeutique 1

Exercice 1.

1.) La suite $(f_n)_{n=1}^{\infty}$ définie par $f_n(x) = \sin(nx), x \in [0, 2\pi]$ ne converge pas ponctuellement et donc pas uniformément.

En effet, si $x = \frac{\pi}{2}$, on a

$$f_1(\frac{\pi}{2}) = 1, f_2(\frac{\pi}{2}) = 0, f_3(\frac{\pi}{2}) = -1, f_4(\frac{\pi}{2}) = 0,$$

et donc $(f_{2n+1})_{n=0}^{\infty} \subset (f_n)_{n=1}^{\infty}$ est une sous-suite telle que $f_{2n+1}(\frac{\pi}{2}) = (-1)^n$ et qui diverge. Ainsi la suite $(f_n(\frac{\pi}{2}))_{n=1}^{\infty}$ diverge.

2.) Si $f_n(x) = \frac{1}{n}\sin(\frac{1}{x}), x \neq 0, f_n(0) = 0$, alors

 $\lim_{n\to\infty} f_n = 0 \quad \text{uniformément (donc ponctuellement)}.$

En effet, si $\epsilon > 0$ est donné et $N > \frac{1}{\epsilon}$, alors pour $n \geq N$, on a

$$|f_n(x)| = \frac{1}{n} |\sin(\frac{1}{x})| \le \frac{1}{n} \le \frac{1}{N} < \epsilon, \quad \forall x \in]0, 2\pi]$$

et puisque $f_n(0) = 0$, alors $|f_n(x)| < \epsilon$, $\forall n \ge N$, $\forall x \in [0, 2\pi]$.

3.) $f_n(x) = \sin(\frac{1}{nx}), x \neq 0, f_n(0) = 0$: On a

 $\lim_{n\to\infty} f_n = 0 \quad \text{ponctuellement mais non uniformément.}$

En effet, si $x \in]0, 2\pi]$, on a

$$\lim_{n\to\infty} f_n(x) = 0 \quad \text{car} \quad \lim_{n\to\infty} \frac{1}{nx} = 0 \quad \text{et sin est continue}.$$

Par contre on n'a pas $\lim_{n\to\infty} f_n=0$ uniformément car si $x_n=\frac{1}{n}$, alors on a $\lim_{n\to\infty} x_n=0$ et $\lim_{n\to\infty} \sin 1=\sin 1$ qui n'est pas nul.

Exercice 2.

Calculons

$$\lim_{x \to 0} \frac{\ln(\cos^2 x) + x^2}{x^4}.$$

Puisque $\cos 0 = 1$, on développe $\ln y$ autour de y = 1:

$$\ln y = (y-1) - \frac{1}{2}(y-1)^2 + \frac{1}{3}(y-1)^3 + \mathcal{O}(|y-1|^4) \text{ si } y \to 1.$$

On a $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(|x|^6)$ et donc

$$y = \cos^2 x = 1 + \frac{x^4}{4} - x^2 + \frac{x^4}{12} + \mathcal{O}(|x|^6) \text{ si } x \to 0.$$

Ainsi

$$\ln\left(\cos^2 x\right) = \ln y = \left(-x^2 + \frac{x^4}{3} + \mathcal{O}(|x|^6)\right) - \frac{1}{2}\left(-x^2 + \frac{x^4}{3} + \mathcal{O}(|x|^6)\right)^2 + \frac{1}{3}\left(-x^2 + \frac{x^4}{3} + \mathcal{O}(|x|^6)\right)^3 \text{ si } x \to 0$$

$$= -x^2 + \frac{x^4}{3} - \frac{x^4}{2} + \mathcal{O}(|x|^6) \text{ si } x \to 0$$

et donc

$$\ln(\cos^2 x) + x^2 = -\frac{x^4}{6} + \mathcal{O}(|x|^6) \text{ si } x \to 0$$

 et

$$\frac{\ln(\cos^2 x) + x^2}{x^4} = -\frac{1}{6} + \mathcal{O}(|x|^2) \text{ si } x \to 0$$

ainsi

$$\lim_{\substack{x \to 0 \\ \neq 0}} \frac{\ln(\cos^2 x) + x^2}{x^4} = -\frac{1}{6}.$$

Exercice 3.

Soit $I \subset \mathbb{R}$ un intervalle non vide et soit $f: I \to \mathbb{R}$ une fonction que l'on suppose **uniformément continue** sur I.

- 1.) Donner la définition de l'uniforme continuité de f sur I avec des ϵ et des δ : $\forall \epsilon > 0$, il existe $\delta > 0$ tel que $\forall x, y \in I$ avec $|x y| \le \delta$ on a $|f(x) f(y)| \le \epsilon$.
- 2.) Démontrer à partir de cette définition que si $(a_n)_{n=0}^{\infty} \subset I$ est une suite convergente vers $a \in \mathbb{R}$, alors la suite $(f(a_n))_{n=0}^{\infty}$ est aussi convergente: Soit $(a_n)_{n=0}^{\infty} \subset I$ une suite convergente vers $a \in \mathbb{R}$ (a n'est pas nécessairement dans I!). Alors $(a_n)_{n=0}^{\infty}$ est une suite de Cauchy. Ainsi, $\exists N > 0$ tq $|a_n - a_m| \leq \delta, \forall m, n \geq N$. On obtient ainsi $|f(a_n) - f(a_m)| \leq \epsilon, \forall m, n \geq N$, ce qui montre que $(f(a_n))_{n=0}^{\infty}$ est une suite de Cauchy, donc convergente.
- 3.) Démontrer que si I =]a,b[avec a < b, alors f peut être prolongée en une fonction continue définie sur [a,b]:
 Soit (a_n)_{n=0}[∞] ⊂ I telle que lim_{n→∞} a_n = a. Par ce qui précède (part. 2), ∃ℓ₁ ∈ ℝ tel que lim_{n→∞} f(a_n) = ℓ₁.
 Cette valeur ℓ₁ est indépendante de la suite (a_n)_{n=0}[∞] choisie. De même, si (b_n)_{n=0}[∞] ⊂ I est telle que lim_{n→∞} b_n = b, alors ∃ℓ₂ ∈ ℝ tel que lim_{n→∞} f(b_n) = ℓ₂ et ℓ₂ est indépendante de la suite (b_n)_{n=0}[∞] choisie. On vérifie aisément que le prolongement g : ℝ → ℝ définie par g(a) = ℓ₁, g(b) = ℓ₂, g(x) = f(x), ∀x ∈ I est une fonction continue.
- 4.) Démontrer que si I =]0,1[et $f(x) = \frac{1-x}{\ln x}$, alors f est bien uniformément continue sur I. Comment peut-on définir f(0) et f(1) en prolongeant f en zéro et en un?: Le dénominateur de f s'annule et vaut " $-\infty$ " pour x = 1 et x = 0.
 - a) Si on développe ln au point x = 1, on obtient:

$$\ln x = (x-1) + \mathcal{O}(|x-1|^2) \text{ si } x \to 1.$$

Alors
$$\lim_{\substack{x \to 1 \ < >}} \frac{\ln x}{1-x} = -1$$
 et donc $\lim_{\substack{x \to 1 \ < >}} \frac{1-x}{\ln x} = -1$.

b) Si x tend vers 0, on a:

$$\lim_{x \to 0} \frac{1-x}{\ln x} = 0.$$

Ainsi, $g: \mathbb{R} \to \mathbb{R}$ définie par g(0) = 0, g(1) = -1 et $g(x) = \frac{1-x}{\ln x}$ si $x \in]0,1[$ est un prolongement continu de f sur [0,1]. La fonction g est continue sur le compact [0,1], donc g est uniformément continue et ainsi f et uniformément continue aussi!

Exercice 4.

Soit $(a_n)_{n=0}^{\infty} \subset \mathbb{R}$ une **suite** numérique **bornée**.

- 1.) Donner la définition de $\limsup_{n\to\infty} a_n$.
- 2.) Donner la définition de $\liminf_{n\to\infty} a_n$.
- 3.) Si $(a_n)_{n=0}^{\infty} \subset \mathbb{R}$ est définie par:

$$a_{2n} = 1 + \frac{1}{1+n}$$
, $a_{2n+1} = \ln\left(1 + \frac{1}{1+n}\right)$, pour $n \in \mathbb{N}$.

calculer $\limsup_{n\to\infty} a_n$ et $\liminf_{n\to\infty} a_n$ en utilisant les définitions 1.) et 2.).

Soit $y_n = \sup\{a_n, a_{n+1}, a_{n+2}, \ldots\}$ et $z_n = \inf\{a_n, a_{n+1}, a_{n+2}, \ldots\}$. (On remarque que $\{a_n, a_{n+1}, a_{n+2}, \ldots\}$ est borné et que ces sup et inf existent).

- 1.) $\limsup_{n\to\infty} a_n = \lim_{n\to\infty} y_n$. (existe car $(y_n)_{n=0}^{\infty}$ décroit et est une suite bornée)
- 2.) $\liminf_{n\to\infty} a_n = \lim_{n\to\infty} z_n$. (existe car $(z_n)_{n=0}^\infty$ croit et est une suite bornée)
- 3.) Pour $x \in \mathbb{R}_+^*$, on a $\ln x < x$, et donc $a_{2n+1} < a_{2n}$.

Ainsi, $y_n = 1 + \frac{1}{1+n/2}$ si n est pair, $y_n = 1 + \frac{1}{1+(n+1)/2}$ si n est impair.

Dans tous les cas on a $\lim_{n\to\infty} y_n = 1$ et donc $\limsup_{n\to\infty} a_n = 1$.

De même, on aura $z_n=0, \forall n\in\mathbb{N}$ et donc $\liminf_{n\to\infty}a_n=0.$

Exercice 5.

Soit $a \in \mathbb{R}$, soit $f : [a, \infty[\to \mathbb{R}$ une fonction que l'on suppose continue sur $[a, +\infty[$ et dérivable sur $]a, +\infty[$.

1.) Démontrer que si $\lim_{\substack{x\to a\\>}} f'(x)$ existe, alors il existe une dérivée de f à droite de a notée $f'_d(a)$ et on a

$$f'_d(a) = \lim_{x \to a} f'(x).$$

Si $x \in]a, \infty[$, le théorème des accroissements finis implique qu'il existe $c = c(x) \in]a, x[$ tel que

$$f(x) = f(a) + f'(c(x))(x - a).$$

Ainsi, on a
$$\frac{f(x)-f(a)}{x-a}=f'\left(c(x)\right)$$
 et, puisque $\lim_{\substack{x\to a\\ >a}}f'(x)$ existe, on a $\lim_{\substack{x\to a\\ >a}}\frac{f(x)-f(x)}{x-a}=\lim_{\substack{x\to a\\ >a}}f'\left(c(x)\right)=\lim_{\substack{x\to a\\ >a}}f'(x).$

2.) Que penser de la réciproque, c'est-à-dire: si $f'_d(a)$ existe, alors $\lim_{\substack{x \to a \\ >}} f'(x)$ existe et on a $f'_d(a) = \lim_{\substack{x \to a \\ >}} f'(x)$?

La réciproque est fausse car, si $a = 0, f(x) = x^2 \sin\left(\frac{1}{x}\right)$, pour x > 0, et f(0) = 0, on a $f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$ qui n'a pas de limite si $x \to 0$. Par contre, $f'_d(0) = \lim_{\substack{x \to a \\ >}} x \sin\left(\frac{1}{x}\right) = 0$.

Exercice 6.

Montrer le résultat suivant:

Théorème: Soit $(x_n)_{n=0}^{\infty}$ une suite croissante et $(y_n)_{n=0}^{\infty}$ une suite décroissante qui sont telles que $\lim_{n\to\infty}(x_n-y_n)=0.$

Alors, on a:

1.)
$$x_0 \le x_1 \le x_2 \le \dots x_n \le y_n \le y_{n-1} \le y_{n-2} \le \dots y_0$$
.

$$2.) \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n.$$

Puisque $\lim_{n\to\infty}(x_n-y_n)=0$, alors $\forall \epsilon>0$ il existe N tel que $|x_n-y_n|\leq \epsilon, \forall n\geq N$. Ainsi, si $n\geq N$, on a $x_n=x_n-y_n+y_n\leq x_n-y_n+y_0\leq y_0+|x_n-y_n|\leq y_0+\epsilon$.

- La suite $(x_n)_{n=0}^{\infty}$ est majorée, croissante et donc convergente; on a $\lim_{n\to\infty} x_n = \overline{x}$.
- De même la suite $(y_n)_{n=0}^{\infty}$ est minorée, décroissante et donc convergente; on a $\lim_{n\to\infty} y_n = \overline{y}$.
- Par l'absurde, supposons maintenant qu'il existe $p \in N$ tel que $x_p > y_p$. Puisque $(x_n)_{n=0}^{\infty}$ est croissante et $(y_n)_{n=0}^{\infty}$ est décroissante alors

$$x_n \ge x_p > y_p \ge y_n, \, \forall n \ge p$$

et donc $\overline{x} > \overline{y}$.

Mais on a $|\overline{x} - \overline{y}| \le |\overline{x} - x_n| + |x_n - y_n| + |y_n - \overline{y}|$ et donc en prenant la limite $n \to \infty$ on obtient $\overline{x} = \overline{y}$ ce qui est une contradiction.

Ainsi $x_n \leq y_n, \forall n \in N \text{ et } \overline{x} = \overline{y}.$