Projet 5 : Segmentez des clients d'un site e-commerce

Raphaël GIRAUDOT

Sommaire

- 1. Contexte et objectifs de la mission
- 2. Exploration des données à disposition
- 3. Préparation des données pour la modélisation
- 4. Pistes de modélisation & Méthodologie
- 5. Présentation des algorithmes de clustering
 - a. K-Means
 - b. DBScan
 - c. Performances des modèles
- 6. Modélisation : Exemple 1er fichier
 - a. K-Means
 - b. DBScan
 - c. Comparaison des performances et des clusters
- 7. Fréquence de mise à jour
- 8. Mode d'emploi du Clustering
 - a. Interprétation du clustering
 - b. Ajout de nouveaux clients
- 9. Conclusion & Pistes d'Amélioration

1. Contexte et objectifs de la mission

- 1. Réaliser une segmentation des clients de Olist à partir de la base de données des clients.
- 2. Présenter la segmentation à l'équipe marketing pour une utilisation optimale.
- 3. Proposer un contrat de maintenance pour les mise à jour de la segmentation.

2. Exploration des données à disposition

Relations entre les fichiers

2. Exploration des données à disposition

Statistiques Générales

- 96 096 clients
- 32 951 produits / 71 catégories de produits différentes
- 3 095 vendeurs

Note de satisfaction

Période couverte:

- 04/09/2016
- 17/10/2018
- +/- 2ans

Top 5 Villes

Préparation des données pour la modélisation

Fichier des travail

customer_unique_id	feature_1	feature_2	feature_n
client_1			
client_2			
client_x			

Features: Générales

"RFM":

Montant : Montant des achats

Périodes considérées:

Base: 01/01/2017 -> 31/12/2017

Décalage: +1 & +3 Mois

3. Préparation des données pour la modélisation

Feature Engineering

Variables Générales:

- **nb_orders**: nombre de commandes
- mean_review_score : moyenne de notes des avis de satisfaction
- most_freq_payment_type : moyen de paiement le plus fréquent
- **nb_voucher** : nombre de bons d'achats utilisés
- **voucher_value** : montant des bons d'achats utilisés
- mean_payment_installments: nombre moyen de paiement en plusieurs fois

Variables "RFM":

- <u>Récence</u>
 - **nb_days_last_order** : nombre de jour depuis la dernière commande
- <u>Fréquence</u>
 - most_freq_cat_name : catégorie de produit les plus commandés
- <u>Montant</u>
 - payment_value : valeurs de tous les paiements
 - average_basket : montant moyen du panier
 - **min_basket**: panier minimum
 - max_basket : panier maximum
 - mean_fdp: frais de ports moyen par commandes

4. Pistes de modélisation & Méthodologie

5. Présentation des algorithmes de clustering

a. K-Means: Fonctionnement

Paramètres : nombre de clusters

Initialisation K-Means: k-means++

1. Sélection aléatoire du 1^{er} centroïde & calcul des distances aux individus

Étapes K-Means:

 Association des individus au centroïde du cluster le plus proche

2. Re-Calcul des centroïdes : barycentre des individus

3. Itérer sur 1 & 3 jusqu'à convergence

5. Présentation des algorithmes de clustering

b. DBScan: Fonctionnement

Paramètres:

- epsilon: rayon du voisinage du point
- min_samples : nb minimum de points dans le voisinage pour l'intégrer dans un cluster

Fonctionnement:

- Classifier les points, individus, en fonctions des paramètres fixés
- Associer clusters

exemple: min_samples = 3

5. Présentation des algorithmes de clustering

c. Performances des modèles

Bon clustering = Individus dans des groupes distincts & éloignés

Minimiser a
Maximiser b

Score Silhouette, [-1:1]:

- a : distance d'un point au centroïde de son groupe
- b: distance d'un point au groupe le plus proche

Modélisation : Exemple 1er fichier

K-Means

Choix du nombre de cluster:

0.94

0.93

0.89

0.88

Changement de pente significatif

Maximiser le score de silhouette

Minimiser l'inertie pondérée Source

5 clusters

6. Modélisation : Exemple 1er fichier

a. K-Means

Performance:

- Silhouette Score: 0.27
- Adjusted Rand Score (5 itérations) : 0.85

Répartition des clusters :

Stabilité du clustering

6. Modélisation : Exemple 1er fichier

b. DBScan

Recherche des paramètres optimaux :

- Epsilon
- Min_samples
- 1. Itération sur plusieurs valeurs pour chaques paramètres
- 2. Recherche du couple de paramètres maximisant le silhouette_score tout en ayant un nombre de clusters et un % de bruit raisonnable

	epsilon	n_samples	n_clusters	n_noise	noise_percent	silhouette_score
15	5.0	50.0	3.0	151.0	0.346259	0.431713
14	5.0	40.0	3.0	144.0	0.330207	0.431701
11	4.5	50.0	3.0	180.0	0.412759	0.430589
5	4.0	20.0	3.0	183.0	0.419638	0.430478

Performance:

- Silhouette Score: 0.43

Répartition des clusters :

6. Modélisation : Exemple 1er fichier

c. Comparaison des performances et des clusters

7. Fréquence de mise à jour

Comparaison des clusterings : Features numériques

7. Fréquence de mise à jour

Comparaison des clusterings : Stabilité au fil du temps

a. Interprétation du clustering

Catégories de produits les plus commandés

a. Interprétation du clustering

8/12 catégories

Cluster le +

hétérogène

Unique cluster

avec Telephony

most freq cat name bed bath table sports_leisure 50 health_beauty furniture_decor computers_accessories 40 housewares toys telephony **4** 30 computers watches gifts auto 20 cool stuff 10 cluster 6/12 catégories 4/12 catégories 6/12 catégories 7/12 catégories Unique cluster Maison & Corps Gadgets & Maison & Corps avec Auto & Maison Computers

a. Interprétation du clustering

Moyen de paiement le plus fréquent

- 0. Tous moyens de paiements
- 1. 20% Billets, 80% CB
- 2. 20% Billets, 75% CB, <5% Debit Card
- Utilisation de bons d'achats (+/-40%)
- 4. Utilisation de CB (+/- 90%)

b. Ajout des nouveaux clients

k_means.predict(df_nouveaux_clients)

Vérification de la stabilité sur de nouvelles données :

```
# silhouette score sur le train set
silhouette_score(train, k_means['kmeans'].labels_)

0.2049283130016531

# silhouette score sur le test set
silhouette_score(test, k_means.predict(test))

0.19841880312355437
```

9. Conclusion & Pistes d'Amélioration

Bons résultats mais comment augmenter les performances?

Features Engineering:

- Changer la période d'observation : trimestre, semestre, mensuel, etc...
- Regrouper les catégories de produits pour réduire le nombre de modalités
- Avis du "métier" pour le choix des variables