### Real-time Game Physics

Practical Implementation: Numerical Simulation



## What is Numerical Simulation?

- Equations of frictionless collision response
  - They are "closed-form"
  - Valid and exact for constant applied force
  - Do not require time-stepping
    - Just determine current game time, t, using system timer
    - Plug t and  $t_{init}$  into the equations
    - Equations produce identical, repeatable, stable results,
       for any time, t, regardless of CPU speed and frame rate



#### What is Numerical Simulation?

- The above sounds perfect
- Why not use those equations always?
  - Constant forces aren't very interesting
    - Simple projectiles only
  - Closed-form solutions rarely exist for interesting (nonconstant) forces
- We need a way to deal when there is no closed-form solution...

**Numerical Simulation** represents a series of techniques for incrementally solving the equations of motion when forces applied to an object are not constant, or when otherwise there is no closed-form solution



### Finite Difference Methods

- What are They?
  - The most common family of numerical techniques for rigid-body dynamics simulation
  - Incremental "solution" to equations of motion
  - Derived using truncated Taylor Series expansions
- "Numerical Integrator"
  - This is what we generically call a finite difference equation that generates a "solution" over time



## Finite Difference Methods

The **Explicit Euler** Integrator:

$$\mathbf{S}(t) + \Delta t = \mathbf{S}(t) + \Delta t \frac{d}{\mathbf{g}t} \mathbf{S}(t)$$
new state prior state
state derivative

- Properties of object are stored in a state vector, S
- Use the above integrator equation to incrementally update S over time as game progresses
- Must keep track of prior value of S in order to compute the new
- For Explicit Euler, one choice of state and state derivative for particle:

$$\mathbf{S} = \langle m\mathbf{V}, \mathbf{p} \rangle \qquad d\mathbf{S}/dt = \langle \mathbf{F}, \mathbf{V} \rangle$$



### **Explicit Euler Integration**

 $V_{init} = 30 \text{ m/s}$ 

Launch angle,  $\phi$ : 75.2 deg (slow arrival)

Launch angle,  $\theta$ : 0 deg (motion in world xz plane)

Mass of projectile, *m*: 2.5 kg Target at <50, 0, 20> meters





### **Explicit Euler Integration**



Exact, Closed - form Solution

|   | =          | 19.2<br>0.0<br>67.5951<br>11.5362<br>0.0 |  | = | 19.2<br>0.0<br>72.0476<br>10.1536<br>0.0 | = | 19.2<br>0.0<br>72.2549<br>10.0768<br>0.0 |   |
|---|------------|------------------------------------------|--|---|------------------------------------------|---|------------------------------------------|---|
|   |            |                                          |  |   |                                          |   |                                          | 1 |
| Į | [ 7.6038 ] |                                          |  |   | 4.8510                                   |   | 2.2895                                   |   |



### A Tangent: Truncation Error

- The previous slide highlights values in the numerical solution that are different from the exact, closed-form solution
- This difference between the exact solution and the numerical solution is primarily truncation error
- Truncation error is equal and opposite to the value of terms that were removed from the Taylor Series expansion to produce the finite difference equation
- Truncation error, left unchecked, can accumulate to cause simulation to become unstable
  - This ultimately produces floating point overflow
  - Unstable simulations behave unpredictably



### A Tangent: Truncation Error

- Controlling Truncation Error
  - Under certain circumstances, truncation error can become zero, e.g., the finite difference equation produces the exact, correct result
    - For example, when zero force is applied
  - More often in practice, truncation error is nonzero
  - Approaches to control truncation error:
    - Reduce time step,  $\Delta t$
    - Select a different numerical integrator
  - See text for more background information and references



# Explicit Euler Integration – Truncation Error

#### **Lets Look at Truncation Error (position only)**

Truncation Error (
$$\Delta t = 0.2s$$
) =  $\begin{bmatrix} 11.5362 \\ 0.0 \\ 7.800 \end{bmatrix}_{\text{numerical}} - \begin{bmatrix} 11.5362 \\ 0.0 \\ 7.6038 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{numerical}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{numerical}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 11.5362 \\ 0.0 \end{bmatrix}_{\text{exact}} =$ 

Truncation Error (
$$\Delta t = 0.1s$$
) =  $\begin{bmatrix} 10.1536 \\ 0.0 \\ 4.9000 \end{bmatrix}_{\text{numerical}} - \begin{bmatrix} 10.1536 \\ 0.0 \\ 4.8510 \end{bmatrix}_{\text{exact}} =$ 

Truncation Error (
$$\Delta t = 0.01s$$
) =  $\begin{bmatrix} 10.0768 \\ 0.0 \\ 2.2900 \end{bmatrix}_{\text{numerical}} - \begin{bmatrix} 10.0768 \\ 0.0 \\ 2.2895 \end{bmatrix}_{\text{exact}} = \begin{bmatrix} 10.0768 \\ 0.0 \\ 0.0 \end{bmatrix}$ 

#### **Truncation Error**

| $\begin{bmatrix} 0.0 \end{bmatrix}$ |
|-------------------------------------|
| 0.0                                 |
| 0.1962                              |

$$\begin{bmatrix}
0.0 \\
0.0 \\
0.049
\end{bmatrix}$$

$$\begin{bmatrix} 0.0 \\ 0.0 \\ 0.0005 \end{bmatrix}$$



# Explicit Euler Integration – Truncation Error





# Explicit Euler Integration - Computing Solution Over Time

The solution proceeds step-by-step, each time integrating from the prior state

|       | Position (m) |            |         | Linear Momentum (kg-m/s) |        |        | Force (N)        |                  |         | Velocity (m/s)   |                  |         |
|-------|--------------|------------|---------|--------------------------|--------|--------|------------------|------------------|---------|------------------|------------------|---------|
| Time  | $p_{x}$      | $p_{ m y}$ | $p_{z}$ | $mV_x$                   | $mV_y$ | $mV_z$ | $F_{\mathrm{x}}$ | $F_{\mathrm{y}}$ | $F_{z}$ | $V_{\mathbf{x}}$ | $V_{\mathrm{y}}$ | $V_{z}$ |
| 5.00  | 10.00        | 0.00       | 2.00    | 19.20                    | 0.00   | 72.50  | 0.00             | 0.00             | -24.53  | 7.68             | 0.00             | 29.00   |
| 5.20  | 11.54        | 0.00       | 7.80    | 19.20                    | 0.00   | 67.60  | 0.00             | 0.00             | -24.53  | 7.68             | 0.00             | 27.04   |
| 5.40  | 13.07        | 0.00       | 13.21   | 19.20                    | 0.00   | 62.69  | 0.00             | 0.00             | -24.53  | 7.68             | 0.00             | 25.08   |
| 5.60  | 14.61        | 0.00       | 18.22   | 19.20                    | 0.00   | 57.79  | 0.00             | 0.00             | -24.53  | 7.68             | 0.00             | 23.11   |
| :     |              | :          |         |                          | :      |        |                  | :                |         |                  | :                |         |
| 10.40 | 51.48        | 0.00       | 20.87   | 19.20                    | 0.00   | -59.93 | 0.00             | 0.00             | -24.53  | 7.68             | 0.00             | -23.97  |



**Horizontal Position (m)**