$12n_{0817} (K12n_{0817})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -139u^{18} + 1059u^{17} + \dots + 4b - 764, \ -87u^{18} + 677u^{17} + \dots + 8a - 508, \ u^{19} - 9u^{18} + \dots + 12u - 8 \rangle \\ I_2^u &= \langle 2u^{12} + 2u^{11} - 15u^{10} - 12u^9 + 43u^8 + 27u^7 - 53u^6 - 26u^5 + 20u^4 + 10u^3 + 6u^2 + b - 4u - 2, \\ u^{10} + u^9 - 7u^8 - 6u^7 + 18u^6 + 13u^5 - 18u^4 - 10u^3 + 2u^2 + a + 4, \\ u^{13} + 2u^{12} - 7u^{11} - 14u^{10} + 19u^9 + 38u^8 - 22u^7 - 46u^6 + 6u^5 + 20u^4 + 7u^3 + u^2 - 5u - 1 \rangle \\ I_3^u &= \langle 5a^5u^2 - 7a^4u^2 + \dots - 11a + 26, \ 2a^5u^2 + a^4u^2 + \dots + 95a + 46, \ u^3 + u^2 - 2u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -139u^{18} + 1059u^{17} + \dots + 4b - 764, \ -87u^{18} + 677u^{17} + \dots + 8a - 508, \ u^{19} - 9u^{18} + \dots + 12u - 8 \rangle$$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^3 + 2u \\ -u^3 + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^4 - 2u^2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 10.8750u^{18} - 84.6250u^{17} + \dots - 51.7500u + 63.5000 \\ \frac{139}{4}u^{18} - \frac{1059}{4}u^{17} + \dots - 159u + 191 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 10.8750u^{18} - 84.6250u^{17} + \dots - 51.7500u + 63.5000 \\ \frac{87}{4}u^{18} - \frac{611}{4}u^{17} + \dots - 87u + 85 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{63}{8}u^{18} + \frac{465}{8}u^{17} + \dots + \frac{135}{4}u - 38 \\ -\frac{1}{4}u^{18} + \frac{7}{4}u^{17} + \dots + \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 32.6250u^{18} - 237.375u^{17} + \dots - 138.750u + 148.500 \\ \frac{87}{4}u^{18} - \frac{611}{4}u^{17} + \dots - 87u + 85 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{169}{8}u^{18} - \frac{1229}{8}u^{17} + \dots - \frac{181}{2}u + 96 \\ 6u^{18} - \frac{85}{2}u^{17} + \dots - \frac{47}{2}u + 25 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{8}u^{18} - \frac{7}{8}u^{17} + \dots + \frac{3}{4}u + 1 \\ \frac{1}{4}u^{18} - \frac{7}{4}u^{17} + \dots - \frac{12}{2}u + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -25u^{18} + 174u^{17} - 365u^{16} - 25u^{15} + 771u^{14} + 163u^{13} - 1928u^{12} + 630u^{11} + 1143u^{10} + 293u^9 - 304u^8 - 532u^7 - 1600u^6 + 1277u^5 + 1032u^4 - 324u^3 - 389u^2 + 90u - 94$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{19} + u^{18} + \dots + 12u + 1$
c_2, c_6	$u^{19} - 8u^{18} + \dots - 52u + 8$
c_3, c_5, c_9 c_{10}	$u^{19} - u^{18} + \dots - 2u - 1$
c_7, c_{11}, c_{12}	$u^{19} - 9u^{18} + \dots + 12u - 8$
c ₈	$u^{19} + 27u^{18} + \dots + 27116u + 3512$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{19} + 35y^{18} + \dots + 42y - 1$
c_2, c_6	$y^{19} + 16y^{18} + \dots - 48y - 64$
c_3, c_5, c_9 c_{10}	$y^{19} - 11y^{18} + \dots + 10y - 1$
c_7, c_{11}, c_{12}	$y^{19} - 23y^{18} + \dots - 432y - 64$
c ₈	$y^{19} - 43y^{18} + \dots + 4640976y - 12334144$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.091188 + 0.966333I		
a = 0.733877 - 0.319784I	-6.48169 + 2.66282I	-2.52143 - 2.56509I
b = 0.211486 - 0.489342I		
u = -0.091188 - 0.966333I		
a = 0.733877 + 0.319784I	-6.48169 - 2.66282I	-2.52143 + 2.56509I
b = 0.211486 + 0.489342I		
u = -0.904144 + 0.517931I		
a = 0.706601 - 1.068440I	2.53064 - 4.01875I	1.69485 + 6.55873I
b = 0.218968 - 0.639966I		
u = -0.904144 - 0.517931I		
a = 0.706601 + 1.068440I	2.53064 + 4.01875I	1.69485 - 6.55873I
b = 0.218968 + 0.639966I		
u = 1.19835		
a = 0.103232	2.53576	4.52770
b = 0.623676		
u = -0.634175 + 0.351711I		
a = -1.29575 + 1.15797I	0.91268 + 1.32361I	-5.06829 + 3.42198I
b = -0.392189 + 0.643839I		
u = -0.634175 - 0.351711I		
a = -1.29575 - 1.15797I	0.91268 - 1.32361I	-5.06829 - 3.42198I
b = -0.392189 - 0.643839I		
u = -1.060850 + 0.713165I		
a = -0.549004 + 0.898836I	-3.53037 - 8.31890I	-1.40883 + 6.39242I
b = -0.176307 + 0.591660I		
u = -1.060850 - 0.713165I		
a = -0.549004 - 0.898836I	-3.53037 + 8.31890I	-1.40883 - 6.39242I
b = -0.176307 - 0.591660I		
u = 1.289480 + 0.424662I		
a = 0.114699 - 0.319331I	-2.23583 + 2.25035I	-0.46692 - 2.77886I
b = -0.272999 - 0.853707I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u:	= 1.289480 - 0.424662I		
a =	= 0.114699 + 0.319331I	-2.23583 - 2.25035I	-0.46692 + 2.77886I
b :	= -0.272999 + 0.853707I		
\overline{u}	= 0.103961 + 0.369644I		
a =	= -0.936993 - 0.305312I	-0.056986 + 0.926042I	-1.11794 - 7.21094I
b :	= -0.163488 + 0.354518I		
u:	= 0.103961 - 0.369644I		
a :	= -0.936993 + 0.305312I	-0.056986 - 0.926042I	-1.11794 + 7.21094I
b =	= -0.163488 - 0.354518I		
\overline{u} :	= 1.67359 + 0.17987I		
a :	= 0.094930 + 1.113270I	9.08712 + 1.06966I	-0.590577 - 0.693151I
b =	= 0.63844 + 2.62086I		
\overline{u} :	= 1.67359 - 0.17987I		
a :	= 0.094930 - 1.113270I	9.08712 - 1.06966I	-0.590577 + 0.693151I
b :	= 0.63844 - 2.62086I		
u:	= 1.73838 + 0.18173I		
a :	= 0.101477 - 1.233980I	11.82410 + 7.02626I	2.32832 - 4.17154I
b :	= -0.15677 - 2.84161I		
\overline{u} :	= 1.73838 - 0.18173I		
a :	= 0.101477 + 1.233980I	11.82410 - 7.02626I	2.32832 + 4.17154I
b :	= -0.15677 + 2.84161I		
\overline{u} :			
a :	= -0.271457 + 1.238060I	6.42171 + 12.16180I	-0.61302 - 5.43087I
b :	= -0.21898 + 2.80030I		
\overline{u} :	= 1.78576 - 0.20016I		
a :	= -0.271457 - 1.238060I	6.42171 - 12.16180I	-0.61302 + 5.43087I
b =	= -0.21898 - 2.80030I		
		·	·

$$I_2^u = \langle 2u^{12} + 2u^{11} + \dots + b - 2, \ u^{10} + u^9 + \dots + a + 4, \ u^{13} + 2u^{12} + \dots - 5u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{10} - u^{9} + 7u^{8} + 6u^{7} - 18u^{6} - 13u^{5} + 18u^{4} + 10u^{3} - 2u^{2} - 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{10} - u^{9} + 7u^{8} + 6u^{7} - 18u^{6} - 13u^{5} + 18u^{4} + 10u^{3} - 2u^{2} - 4 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{10} - u^{9} + 7u^{8} + 6u^{7} - 18u^{6} - 13u^{5} + 18u^{4} + 10u^{3} - 2u^{2} - 4 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{10} - u^{9} + 7u^{8} + 6u^{7} - 18u^{6} - 13u^{5} + 18u^{4} + 10u^{3} - 2u^{2} - 4 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{10} - u^{9} + 7u^{8} + 6u^{7} - 18u^{6} - 14u^{5} + 18u^{4} + 14u^{3} - 3u^{2} - 4u - 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{10} - u^{9} + 7u^{8} + 6u^{7} - 18u^{6} - 14u^{5} + 18u^{4} + 14u^{3} - 3u^{2} - 4u - 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{12} - u^{11} + 7u^{10} + 5u^{9} - 18u^{8} - 8u^{7} + 17u^{6} + 3u^{5} - 4u^{2} + 4u - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{12} - u^{11} + 7u^{10} + 7u^{9} + 5u^{8} - 18u^{7} - 8u^{6} + 17u^{5} + 2u^{4} + 4u^{2} - 5u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{12} - 2u^{11} + \dots + 2u + 5 \\ -u^{3} + 2u - 1 \end{pmatrix}$$

(ii) Obstruction class = 1

$$= -3u^{11} - 7u^{10} + 17u^9 + 43u^8 - 33u^7 - 95u^6 + 13u^5 + 73u^4 + 23u^3 + 6u^2 - 14u - 14u^2 + 15u^3 + 15u^4 +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1, c_4	$u^{13} + u^{12} + \dots + 3u^2 - 1$	
c_2	$u^{13} - u^{12} + \dots + 2u + 1$	
c_3, c_9	$u^{13} + u^{12} - 4u^{11} - 4u^{10} + 6u^9 + 5u^8 - 2u^7 + 4u^6 - 2u^5 - 14u^4 + 7u^2$	+1
c_5, c_{10}	$u^{13} - u^{12} - 4u^{11} + 4u^{10} + 6u^9 - 5u^8 - 2u^7 - 4u^6 - 2u^5 + 14u^4 - 7u^2$	- 1
c_6	$u^{13} + u^{12} + \dots + 2u - 1$	
c_7	$u^{13} - 2u^{12} + \dots - 5u + 1$	
C ₈	$u^{13} + 6u^{12} + \dots + u + 1$	
c_{11}, c_{12}	$u^{13} + 2u^{12} + \dots - 5u - 1$	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{13} + 5y^{12} + \dots + 6y - 1$
c_{2}, c_{6}	$y^{13} + 13y^{12} + \dots + 18y - 1$
c_3, c_5, c_9 c_{10}	$y^{13} - 9y^{12} + \dots - 14y - 1$
c_7, c_{11}, c_{12}	$y^{13} - 18y^{12} + \dots + 27y - 1$
<i>c</i> ₈	$y^{13} - 26y^{12} + \dots + 43y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.820152 + 0.104400I		
a = 0.753200 + 1.119880I	1.34031 - 1.84544I	2.80039 + 5.64574I
b = 0.305571 + 0.530288I		
u = 0.820152 - 0.104400I		
a = 0.753200 - 1.119880I	1.34031 + 1.84544I	2.80039 - 5.64574I
b = 0.305571 - 0.530288I		
u = -1.26705		
a = -0.390134	-0.232440	0.645970
b = -1.85106		
u = -1.300200 + 0.250560I		
a = 0.343272 - 0.374017I	-4.74439 - 5.27325I	-1.78132 + 3.84852I
b = 1.63014 - 0.54583I		
u = -1.300200 - 0.250560I		
a = 0.343272 + 0.374017I	-4.74439 + 5.27325I	-1.78132 - 3.84852I
b = 1.63014 + 0.54583I		
u = 1.35503		
a = 0.699592	1.54960	-4.46630
b = 0.402528		
u = -0.162080 + 0.555123I		
a = -0.32922 + 1.58092I	-8.52981 + 2.40351I	-9.03747 - 0.70595I
b = -0.924848 + 0.088801I		
u = -0.162080 - 0.555123I		
a = -0.32922 - 1.58092I	-8.52981 - 2.40351I	-9.03747 + 0.70595I
b = -0.924848 - 0.088801I		
u = 1.48038 + 0.34329I		
a = -0.744111 + 0.018385I	-2.98672 + 1.03297I	-3.12657 + 1.51158I
b = -0.450757 - 0.029628I		
u = 1.48038 - 0.34329I		
a = -0.744111 - 0.018385I	-2.98672 - 1.03297I	-3.12657 - 1.51158I
b = -0.450757 + 0.029628I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.78337 + 0.04448I		
a = -0.115269 + 1.138540I	11.19350 + 0.95284I	1.091372 - 0.413941I
b = -0.34421 + 2.57894I		
u = -1.78337 - 0.04448I		
a = -0.115269 - 1.138540I	11.19350 - 0.95284I	1.091372 + 0.413941I
b = -0.34421 - 2.57894I		
u = -0.197734		
a = -4.12519	-3.73260	-11.0720
b = 1.01673		

III.
$$I_3^u = \langle 5a^5u^2 - 7a^4u^2 + \dots - 11a + 26, \ 2a^5u^2 + a^4u^2 + \dots + 95a + 46, \ u^3 + u^2 - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} - 1 \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.178571a^{5}u^{2} + 0.250000a^{4}u^{2} + \dots + 0.392857a - 0.928571 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.178571a^{5}u^{2} + 0.250000a^{4}u^{2} + \dots + 0.392857a - 0.928571 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.214286a^{5}u^{2} - 0.250000a^{4}u^{2} + \dots + 0.0714286a + 1.28571 \\ \frac{15}{28}a^{5}u^{2} + \frac{1}{2}a^{4}u^{2} + \dots + \frac{1}{14}a + \frac{2}{7} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.178571a^{5}u^{2} + 0.250000a^{4}u^{2} + \dots + 1.39286a - 0.928571 \\ -0.178571a^{5}u^{2} + 0.250000a^{4}u^{2} + \dots + 1.39286a - 0.928571 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0357143a^{5}u^{2} - 0.500000a^{4}u^{2} + \dots + 0.392857a - 0.928571 \\ \frac{1}{14}a^{5}u^{2} - \frac{1}{4}a^{4}u^{2} + \dots - \frac{5}{14}a + \frac{4}{7} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.535714a^{5}u^{2} + 0.500000a^{4}u^{2} + \dots - \frac{1}{14}a - \frac{9}{7} \\ 0.535714a^{5}u^{2} + 0.500000a^{4}u^{2} + \dots + 0.0714286a - 1.71429 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{10}{7}a^5u^2 - \frac{16}{7}a^5u + a^4u^2 - \frac{5}{7}a^5 + 3a^4u - \frac{3}{7}a^3u^2 + a^4 + \frac{33}{7}a^3u - \frac{11}{7}a^2u^2 + \frac{16}{7}a^3 - \frac{5}{7}a^2u - \frac{5}{7}u^2a + \frac{5}{7}a^2 + \frac{13}{7}au - \frac{6}{7}u^2 - \frac{13}{7}a + \frac{10}{7}u + \frac{32}{7}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{18} - u^{17} + \dots - 16u - 8$
c_2, c_6	$(u^3 + u^2 + 2u + 1)^6$
c_3, c_5, c_9 c_{10}	$u^{18} - u^{17} + \dots + 64u - 8$
c_7, c_{11}, c_{12}	$(u^3 + u^2 - 2u - 1)^6$
<i>C</i> 8	$(u^3 - 3u^2 - 4u - 1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{18} + 19y^{17} + \dots - 3424y + 64$
c_2, c_6	$(y^3 + 3y^2 + 2y - 1)^6$
c_3, c_5, c_9 c_{10}	$y^{18} - 5y^{17} + \dots - 2784y + 64$
c_7, c_{11}, c_{12}	$(y^3 - 5y^2 + 6y - 1)^6$
<i>c</i> ₈	$(y^3 - 17y^2 + 10y - 1)^6$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24698		
a = -0.922052 + 0.388981I	-1.61418 + 2.82812I	-1.50976 - 2.97945I
b = -1.215350 - 0.381464I		
u = 1.24698		
a = -0.922052 - 0.388981I	-1.61418 - 2.82812I	-1.50976 + 2.97945I
b = -1.215350 + 0.381464I		
u = 1.24698		
a = 0.608898 + 0.654820I	-1.61418 - 2.82812I	-1.50976 + 2.97945I
b = -0.365738 + 0.960730I		
u = 1.24698		
a = 0.608898 - 0.654820I	-1.61418 + 2.82812I	-1.50976 - 2.97945I
b = -0.365738 - 0.960730I		
u = 1.24698		
a = 0.445706	2.52340	5.01950
b = 0.852713		
u = 1.24698		
a = -0.176294	2.52340	5.01950
b = 0.507529		
u = -0.445042		
a = -0.405582	-3.11638	5.01950
b = -1.37094		
u = -0.445042		
a = 0.43074 + 1.96960I	-7.25396 + 2.82812I	-1.50976 - 2.97945I
b = 1.62616 + 0.09419I		
u = -0.445042		
a = 0.43074 - 1.96960I	-7.25396 - 2.82812I	-1.50976 + 2.97945I
b = 1.62616 - 0.09419I		
u = -0.445042		
a = -2.65086	-3.11638	5.01950
b = 0.429626		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.445042		
a = 3.12194 + 1.04628I	-7.25396 + 2.82812I	-1.50976 - 2.97945I
b = -0.532013 + 0.834636I		
u = -0.445042		
a = 3.12194 - 1.04628I	-7.25396 - 2.82812I	-1.50976 + 2.97945I
b = -0.532013 - 0.834636I		
u = -1.80194		
a = -0.411551 + 0.882060I	9.66536 + 2.82812I	-1.50976 - 2.97945I
b = -0.43781 + 2.39534I		
u = -1.80194		
a = -0.411551 - 0.882060I	9.66536 - 2.82812I	-1.50976 + 2.97945I
b = -0.43781 - 2.39534I		
u = -1.80194		
a = 0.261196 + 1.163730I	13.8029	5.01951 + 0.I
b = 0.16798 + 2.61487I		
u = -1.80194		
a = 0.261196 - 1.163730I	13.8029	5.01951 + 0.I
b = 0.16798 - 2.61487I		
u = -1.80194		
a = -0.195655 + 1.397520I	9.66536 - 2.82812I	-1.50976 + 2.97945I
b = 0.04731 + 2.72683I		
u = -1.80194		
a = -0.195655 - 1.397520I	9.66536 + 2.82812I	-1.50976 - 2.97945I
b = 0.04731 - 2.72683I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_4	$(u^{13} + u^{12} + \dots + 3u^2 - 1)(u^{18} - u^{17} + \dots - 16u - 8)$ $\cdot (u^{19} + u^{18} + \dots + 12u + 1)$	
c_2	$((u^3 + u^2 + 2u + 1)^6)(u^{13} - u^{12} + \dots + 2u + 1)$ $\cdot (u^{19} - 8u^{18} + \dots - 52u + 8)$	
c_3, c_9	$(u^{13} + u^{12} - 4u^{11} - 4u^{10} + 6u^{9} + 5u^{8} - 2u^{7} + 4u^{6} - 2u^{5} - 14u^{4} + 7u^{7} + (u^{18} - u^{17} + \dots + 64u - 8)(u^{19} - u^{18} + \dots - 2u - 1)$	
c_5,c_{10}	$(u^{13} - u^{12} - 4u^{11} + 4u^{10} + 6u^9 - 5u^8 - 2u^7 - 4u^6 - 2u^5 + 14u^4 - 7u^5 + (u^{18} - u^{17} + \dots + 64u - 8)(u^{19} - u^{18} + \dots - 2u - 1)$	
c_6	$((u^3 + u^2 + 2u + 1)^6)(u^{13} + u^{12} + \dots + 2u - 1)$ $\cdot (u^{19} - 8u^{18} + \dots - 52u + 8)$	
c_7	$((u^3 + u^2 - 2u - 1)^6)(u^{13} - 2u^{12} + \dots - 5u + 1)$ $\cdot (u^{19} - 9u^{18} + \dots + 12u - 8)$	
<i>c</i> ₈	$((u^3 - 3u^2 - 4u - 1)^6)(u^{13} + 6u^{12} + \dots + u + 1)$ $\cdot (u^{19} + 27u^{18} + \dots + 27116u + 3512)$	
c_{11}, c_{12}	$((u^{3} + u^{2} - 2u - 1)^{6})(u^{13} + 2u^{12} + \dots - 5u - 1)$ $\cdot (u^{19} - 9u^{18} + \dots + 12u - 8)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^{13} + 5y^{12} + \dots + 6y - 1)(y^{18} + 19y^{17} + \dots - 3424y + 64)$ $\cdot (y^{19} + 35y^{18} + \dots + 42y - 1)$
c_2, c_6	$((y^3 + 3y^2 + 2y - 1)^6)(y^{13} + 13y^{12} + \dots + 18y - 1)$ $\cdot (y^{19} + 16y^{18} + \dots - 48y - 64)$
$c_3, c_5, c_9 \ c_{10}$	$(y^{13} - 9y^{12} + \dots - 14y - 1)(y^{18} - 5y^{17} + \dots - 2784y + 64)$ $\cdot (y^{19} - 11y^{18} + \dots + 10y - 1)$
c_7, c_{11}, c_{12}	$((y^3 - 5y^2 + 6y - 1)^6)(y^{13} - 18y^{12} + \dots + 27y - 1)$ $\cdot (y^{19} - 23y^{18} + \dots - 432y - 64)$
c_8	$((y^3 - 17y^2 + 10y - 1)^6)(y^{13} - 26y^{12} + \dots + 43y - 1)$ $\cdot (y^{19} - 43y^{18} + \dots + 4640976y - 12334144)$