Cpt S 422: Software Engineering Principles II

Black-box testing – Part 6: Exercises

Dr. Venera Arnaoudova

Equivalence Class Partitioning Testing

Equivalence Class Partitioning example

- □ Function f(c,t) is used to control traffic lights
 - c is a color: {RED, YELLOW, GREEN}
 - > t is time in seconds
 - > The maximum time for the same color is 2 minutes
 - ➤ If there is a problem with the parameters the function is expected to signal an error

□ Tasks

- Analyze the problem using the method Equivalence Class Partitioning
- Provide test frames and cases for the WECT (weak criterion)
- Provide test frames and cases for the SECT (strongcriterion)

Boundary Value Analysis Testing

Boundary Value Analysis Example

- \Box Consider again the function f(c,t) is used to control traffic lights
 - c is a color: {RED, YELLOW, GREEN}
 - > t is time in seconds
 - > The maximum time for the same color is 2 minutes
 - ➤ If there is a problem with the parameters the function is expected to signal an error

□ Tasks

- ➤ Consider the solution you provided for Equivalence Class Testing and reanalyze the problem adding the method Boundary Value Analysis
- How many test cases would you have now with WECT and SECT?

Category-Partition Testing

Category Partition - Tax Calculation Example

Rules

- Tax calculation
 - ✓ If salary <= \$15,000: no tax
 - ✓ If salary <= \$50,000: 25% tax
 - ✓ If salary > \$50,000: 45% tax
- > Tax discount
 - ✓ If 1 child: 2% tax discount
 - ✓ If 2 children: 5% tax discount
 - ✓ If 3 children: 7% tax discount
 - ✓ If 4 children: 10% tax discount
 - ✓ No discount if salary > \$80,000

□ Tasks:

- 1. Analyze the problem using the Category-Partition method
- 2. Provide test frames and cases that satisfy AC (All Combinations)
- 3. Provide test frames and cases that satisfy BC (Base Choice)

Logic Functions Testing - examples

Variable Negation Strategy - Boiler Example

 \Box Z = AB $^{\sim}$ C+AD

☐ Steps:

- 1. Identify unique true points
- 2. Identify near false points
- 3. Generate the variant set matrix and select test suite by covering all candidate sets
- Because one variant may belong to more than one candidate set, the number of tests required can be less than the number of candidate test sets