$$U = \begin{pmatrix} 2 & -3 & 5 \\ 0 & 1 & 6 \\ 0 & 0 & 2 \end{pmatrix} \qquad V = \begin{pmatrix} 1 & 5 \\ 0 & -2 \end{pmatrix}$$

$$L = \begin{pmatrix} 0 & 0 \\ 5 & 1 \end{pmatrix} \qquad M = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -5 & 4 & 0 & 0 \\ 6 & 1 & 2 & 0 \\ 3 & 0 & 1 & 5 \end{pmatrix}$$

Teorema 2.6.5

Sea A una matriz cuadrada. Entonces A se puede escribir como un producto de matrices elementales y una matriz triangular superior U. En el producto, las matrices elementales se encuentran a la izquierda y la matriz triangular superior a la derecha.

Demostración

La eliminación gaussiana para resolver el sistema $A\mathbf{x} = \mathbf{b}$ da como resultado una matriz triangular superior. Para que esto sea evidente, observe que la eliminación gaussiana terminará cuando la matriz esté en la forma escalonada por renglones y la forma escalonada por renglones de una matriz cuadrada sea triangular superior. Se denota mediante U a la forma escalonada por renglones de A. Entonces A se reduce a U a través de una serie de operaciones elementales por renglón, cada una de las cuales se puede obtener multiplicando por una matriz elemental. Así,

$$U = E_m E_{m-1} \cdot \cdot \cdot E_2 E_1 A$$

У

$$A = E_1^{-1} E_2^{-1} \cdots E_{m-1}^{-1} E_m^{-1} U$$

Como la inversa de una matriz elemental es una matriz elemental se ha escrito A como el producto de matrices elementales y U.

Cómo escribir una matriz como el producto de matrices elementales y una matriz triangular superior

Escriba la matriz

$$A = \begin{pmatrix} 3 & 6 & 9 \\ 2 & 5 & 1 \\ 1 & 1 & 8 \end{pmatrix}$$

como el producto de matrices elementales y una matriz triangular superior.

SOLUCIÓN Se reduce A por renglones para obtener la forma escalonada por renglones:

$$\begin{pmatrix} 3 & 6 & 9 \\ 2 & 5 & 1 \\ 1 & 1 & 8 \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{3}R_1} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 1 \\ 1 & 1 & 8 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -5 \\ 0 & -1 & 5 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -5 \\ 0 & 0 & 0 \end{pmatrix} = U$$