Теория конечных графов

Ориентированные графы

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Харари Ф. «Теория графов», М.: КомКнига, 2006. 296 с.
- 3. Судоплатов С.В., Овчинникова Е.В. «Элементы дискретной математики». Учебник. М.: Инфра-М; Новосибирск: НГТУ, 2003. 280 с.
- 4. Шапорев С.Д. «Дискретная математика. Курс лекций и практических занятий». СПб.: БХВ-Петербург, 2007. 400 с.: ил.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Ориентированный граф

Во многих случаях ребрам графа необходимо задать ориентацию или направление. Отличие орграфов от неорграфов в том, что у неорграфов граничные точки ребра образуют неупорядоченную пару, а в случае орграфа граничные точки дуги образуют упорядоченную пару.

Ориентированным графом (или орграфом) называется пара $G = \langle \mathbf{V}, \mathbf{E} \rangle$, где \mathbf{V} — непустое множество вершин, а $\mathbf{E} \subseteq \mathbf{V}^2 = \mathbf{V} \times \mathbf{V}$ — множество дуг.

Начальная и конечная вершины в орграфе

Если дуга $e = \langle V_1, V_2 \rangle \in \mathbf{E}$, то говорят, что вершина V_1 (начальная вершина) смежна с V_2 (конечной вершиной), а дуга e положительно инцидентна вершине V_1 и отрицательно инцидентна вершине V_2 .

Смежность и инцидентность

Пример 1. Определите смежность вершин, положительную и отрицательную инцидентность для трех ориентированных графов

Ответ для примера 1

Для графа G_1 вершина V_1 смежна с вершиной V_2 , при этом вершина V_2 не смежна с вершиной V_1 , дуга e отрицательно инцидентна вершине V_2 и положительно инцидентна вершине V_3 .

Для графа G_2 вершина V_2 смежна с вершиной V_1 , но вершина V_1 не смежна с вершиной V_2 , дуга e отрицательно инцидентна вершине V_2 и положительно инцидентна вершине V_3 .

Для графа G_3 дуга e_1 отрицательно инцидентна вершине V_1 и положительно инцидентна вершине V_2 , а дуга e_2 отрицательно инцидентна вершине V_2 и положительно инцидентна вершине V_1 , при этом обе вершины являются смежными друг с другом.

Изоморфизм орграфов

Рассмотрим графы $G = \langle \mathbf{V}, \mathbf{E} \rangle$ и $G^* = \langle \mathbf{V}^*, \mathbf{E}^* \rangle$ и пусть \exists биекция $\varphi \colon \mathbf{V} \to \mathbf{V}^*$.

Если для любых вершин V_1 и V_2 графа G образ $\varphi(V_1)$ смежен с образом $\varphi(V_2)$ в G^* , тогда и только тогда, когда вершина V_1 смежна вершине V_2 в графе G, то эта биекция называется изоморфизмом графа G на граф G^* . Если такой изоморфизм существует, то граф G изоморфен графу G^* .

Упражнение: доказать изоморфизм орграфов

Как выглядит биекция $\varphi: \mathbf{V} \to \mathbf{V}^*$ для данных графов?

Упражнение: доказательство

Биекция $\varphi: \mathbf{V} \to \mathbf{V}^*$ для данных графов выглядит следующим

образом:

$$V_1 \rightarrow V_3^*$$
 $\varphi: V_2 \rightarrow V_4^*$
 $V_3 \rightarrow V_2^*$
 $V_4 \rightarrow V_1^*$

Петля в орграфе

Петлей называется дуга $e = \langle V_1, V_2 \rangle$, где $V_1 = V_2 = V$. Обозначение $e = \langle V, V \rangle$. (В этом случае вершина V смежна сама с собой.)

Пример 3.

Строгая и нестрогая параллельность дуг в орграфах

Если даны дуги $e_1 = \langle V_1, V_2 \rangle$ и $e_2 = \langle V_1, V_2 \rangle$, где V_1 — начальная вершина и V_2 — конечная вершина для обеих дуг e_1 и e_2 одновременно, то дуги e_3 и e_{2} называются строго параллельными.

Если даны дуги $e_1 = \langle V_1, V_2 \rangle$ и $e_2 = \langle V_2, V_1 \rangle$, то есть $V_{_{1}}$ — начальная вершина и $V_{_{2}}$ — конечная вершина для дуги e_1 и, наоборот, V_2 — начальная вершина и V_1 – конечная вершина для дуги e_2 , то дуги e_1 и e_2 называются нестрого параллельными. 11

Строгая и нестрогая параллельность дуг в орграфах

Пример 4. Найти пары строго параллельных дуг, пары нестрого параллельных дуг. Обосновать свои суждения

Ответ для примера 4

Дуги $e_{_1}$ и $e_{_2}$ нестрого параллельные, так как $V_{_1}$ — начальная вершина, $V_{_2}$ — конечная вершина для дуги $e_{_2}$ и $V_{_2}$ — начальная вершина, $V_{_1}$ — конечная вершина для дуги $e_{_1}$.

Аналогично докажите, что дуги e_3 и e_4 – строго параллельные.

Смежность дуг в орграфе

Дуга e_1 смежна с дугой e_2 , если конечная вершина дуги e_1 совпадает с начальной вершиной дуги e_2

Пример 5. Найти пары смежных дуг. Обосновать свои суждения.

Смежность дуг в орграфе

Дуга e_1 смежна с дугой e_2 , а так же дуга e_3 смежна с дугой e_4 . Слушателю курса предлагается найти остальные пары смежных дуг.

Степень вершины в орграфе

Число дуг, положительно инцидентных вершине V, называется положительной степенью вершины V, обозначается $\delta^+(V)$, а число дуг, отрицательно инцидентных вершине V, называется отрицательной степенью вершины V, обозначается $\delta^-(V)$.

Степенью вершины V ориентированного графа, называется сумма положительной и отрицательной степеней вершины:

$$\delta(V) = \delta^{+}(V) + \delta^{-}(V).$$

Пример 6. Определить положительную, отрицательную степень вершин орграфа.

Степень вершины в орграфе

$$\delta^{+}(V_{1}) = 2; \ \delta^{-}(V_{1}) = 0; \ \delta(V_{1}) = 2;$$
 $\delta^{+}(V_{2}) = 0; \ \delta^{-}(V_{2}) = 1; \ \delta(V_{2}) = 1;$
 $\delta^{+}(V_{3}) = 0; \ \delta^{-}(V_{3}) = 1; \ \delta(V_{3}) = 1;$
 $\delta^{+}(V_{4}) = 1; \ \delta^{-}(V_{4}) = 1; \ \delta(V_{4}) = 2.$

Сумма степеней вершин графа

Утверждение.
$$\sum_{V \in \mathbf{V}} \delta^+(V) = \sum_{V \in \mathbf{V}} \delta^-(V) = |\mathbf{E}|$$
, где $|\mathbf{E}|$ — число дуг графа $G = <\mathbf{V}, \mathbf{E}>$.

Теорема о числе вершин нечетной степени в орграфе:

В орграфе число вершин нечетной степени четно.

С доказательством можно ознакомится в предыдущей теме.

Подграф орграфа

Граф $G_1 = <\mathbf{V_1}, \mathbf{E_1}>$ называется подграфом $G = <\mathbf{V}, \mathbf{E}>$ при выполнении следующих двух условий:

- 1) $\mathbf{V}_{1} \subseteq \mathbf{V}, \mathbf{E}_{1} \subseteq \mathbf{E}.$
- 2) Если дуга $e \in \mathbf{E}_1$ положительно инцидентна вершине $V_1 \in \mathbf{V}_1$ и отрицательно инцидентна вершине $V_2 \in \mathbf{V}_1$, то и дуга $e \in \mathbf{E}$ также положительно инцидентна вершине $V_1 \in \mathbf{V}$ и отрицательно инцидентна вершине $V_2 \in \mathbf{V}$.

Пример 7. Пример ориентированного графа G_1 и его подграфа G_2 .

Граф G_2 является подграфом графа G_1 . Для $G_1 = <\mathbf{V_1}, \mathbf{E_1}>:$ $\mathbf{V_1} = \left\{V_1, V_2, V_3, V_4, V_5\right\}$ и $\mathbf{E_1} = \left\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\right\}$; для $G_2 = <\mathbf{V_2}, \mathbf{E_2}>:$ $\mathbf{V_2} = \left\{V_1, V_2, V_3, V_4\right\}$ и $\mathbf{E_2} = \left\{e_1, e_2, e_4, e_5, e_6\right\}$. $\mathbf{V_2} \subseteq \mathbf{V_1}, \ \mathbf{E_2} \subseteq \mathbf{E_1}$ и свойства положительной и отрицательной инцидентности выполняются.

Ормаршруты, пути, контуры

Ориентированным маршрутом (или ормаршрутом) длины n называется последовательность (не обязательно различных) дуг $e_1, e_2, ..., e_n$ таких, что для соответствующей последовательности n+1 вершин $V_0, V_1, ..., V_n$ выполняется условие $e_i = \langle V_{i-1}, V_i \rangle$, $i = \overline{1,n}$. (Заметим, что нумерация говорит о последовательности дуг и вершин в ормаршруте, а не о нумерации в орграфе).

Ормаршрут замкнут, если $V_{_0} = V_{_n}$ (начальная вершина совпадает с последней вершиной). Также замкнутый ормаршрут называется циклическим ормаршрутом.

Ормаршрут в котором нет повторяющихся дуг, называется путем; и простым путем, если все его вершины различны.

Замкнутый путь называется контуром. Замкнутый простой путь называется простым контуром

Ормаршруты, пути, контуры

Пример 8. Привести пример ормаршрута, направленного из V_1 в V_5 , привести пример циклического ормаршрута из V_1 , привести пример пути и контура.

Ормаршруты, пути, контуры

Ормаршрут из V_1 в V_5 : e_1, e_2, e_6, e_7 , последовательность вершин: V_1, V_2, V_3, V_4, V_5 .

Циклический ормаршрут e_3, e_6, e_7, e_8, e_5 из V_1 в V_1 , последовательностью вершин: $V_1, V_3, V_4, V_5, V_4, V_1$.

Ормаршрут e_1, e_2, e_6, e_7 является путем, но не является контуром, так как он не замкнут.

Ормаршрут e_3, e_6, e_7, e_8, e_5 является и путем и контуром, так как замкнут, но этот ормаршрут не является простым путем и простым контуром, так как проходит через вершину V_4 два раза.

Сильная связность

Орграф называется сильно связным, если для каждой пары различных вершин V_i и V_j существует путь из V_i в V_j и из V_i в V_i .

Орграф называется сильно k — связным, если для каждой пары различных вершин V_i и V_j существует по крайней мере k путей из V_i и V_j , и из V_j в V_i , которые не имеют общих вершин (а, следовательно, и дуг) за исключением V_i в V_i .

Сильная связность

Пример 9.

Этот орграф является сильно связным, так как для вершин, существует путь из V_1 в V_2 и из V_2 в V_1 . Так как путей минимум по 3, этот орграф называется 3-связным.

Сильная связность

Пример 10. Определить, являются ли графы сильносвязными?

Ориентированные деревья

Орграф является ориентированным деревом, растущим из корня $V_{\scriptscriptstyle 0}$, если:

- 1) он образует дерево в неориентированном смысле;
- 2) единственная цепь между $V_{_0}$ и любой другой вершиной V является путем из $V_{_0}$ в V .

Пример 11.

Какую дугу нужно убрать из графа для того, чтобы получить ориентированное дерево?

Сколько решений возможно?

Тема следующей лекции:

«Метрические характеристики. Матричное представление графов».