MA4002 Final Exam Answers, Spring 2004

1.(a)
$$v = 15 - 5e^{-0.2t}$$
. $s = (15t + 25e^{-0.2t})\Big|_{0}^{10} = 125 + 25e^{-2} \approx 128.38$.

(b)
$$3 \cdot 2^{1/3}$$
.

(c) The cross-sectional area:
$$\pi(\sqrt{\sin x})^2 = \pi \sin x$$
. $V = \pi \int_0^{\pi} \sin x \, dx = 2\pi$.

(d) Reduction formula:
$$I_n = -e^{-1} + nI_{n-1}$$
.

$$I_0 = \int_0^1 e^{-x} dx = 1 - e^{-1}. \quad I_1 = -e^{-1} + I_0 = 1 - 2e^{-1}, \quad I_2 = -e^{-1} + 2I_1 = 2 - 5e^{-1}.$$
(e) $f_x = ye^{xy}, \quad f_y = xe^{xy}, \quad f_{xx} = y^2e^{xy}, \quad f_{yy} = x^2e^{xy}, \quad f_{xy} = (1 + xy)e^{xy}.$

(e)
$$f_x = ye^{xy}$$
, $f_y = xe^{xy}$, $f_{xx} = y^2e^{xy}$, $f_{yy} = x^2e^{xy}$, $f_{xy} = (1+xy)e^{xy}$.

(f)
$$x_n = 0.4n$$
. Start with $y_0 = 1$. $y_{n+1} = y_n + 0.2(x_n y_n + x_{n+1} y_{n+1}^*)$, where $y_{n+1}^* = y_n + 0.4x_n y_n$. $y_1^* = 1$, $y(0.4) \approx y_1 = 1 + 0.2(0 + 0.4 \times 1) = 1.08$.

(g) Separable variables:
$$\frac{dy}{y} = \frac{2x \, dx}{1+x^2}$$
 implies that $y = C(1+x^2)$. Solution: $y = -(1+x^2)$.

$$(h) -11.$$

2.(a) Area:
$$\int_0^1 \frac{2x}{1+x^2} dx = \ln(1+x^2) \Big|_0^1 = \ln 2 \approx 0.69.$$

(b) Cylindrical shell area:
$$2\pi x \cos x$$
. $V = 2\pi \int_0^{\pi/2} x \cos x \, dx = 2\pi (\cos x + x \sin x) \Big|_0^{\pi/2} = 2\pi (\pi/2 - 1)$.

(c)
$$y'(x) = \frac{1}{2x} - \frac{x}{2}$$
. $\sqrt{1 + y'^2} = \frac{1 + x^2}{2x}$. Arc-length: $s = \int_1^e \frac{1 + x^2}{2x} dx = \left(\frac{\ln x}{2} + \frac{x^2}{4}\right)\Big|_1^e = \frac{e^2 + 1}{4}$.

(d)
$$\rho = \frac{1}{x+1} - \frac{1}{x+2}$$
, while $x\rho = \frac{2}{x+2} - \frac{1}{x+1}$. Mass: $m = \int_0^2 \rho \, dx = \ln 3 - \ln 2 \approx 0.405$.

Moment:
$$M = \int_0^2 x \rho \, dx = 2 \ln 2 - \ln 3 \approx 0.288$$
. Center of mass: $\bar{x} = M/m = \frac{2 \ln 2 - \ln 3}{\ln 3 - \ln 2} \approx 0.71$.

3.(a) (i)
$$y = C_1 e^{-x} + C_2 e^{-2x}$$
. (ii) $y = C_1 \sin(2x) + C_2 \cos(2x)$.

(b) Particular solution:
$$y_p = 2x^2 - 6x + 7$$
. General solution: $y = 2x^2 - 6x + 7 + C_1e^{-x} + C_2e^{-2x}$.

(c)
$$y = 2x^2 - 6x + 7 - 2e^{-x} - 3e^{-2x}$$

4.(a) Answer:
$$f(x,y) \approx 1 + y - x + x^2 + y^2/2$$
.

4.(a) Answer:
$$f(x,y) \approx 1 + y - x + x^2 + y^2/2$$
.
 $f_x = \left[\frac{y}{x+1} - \frac{1}{(x+1)^2}\right] e^{y+xy}, \qquad f_{xx} = \left[\frac{y^2}{x+1} - \frac{2y}{(x+1)^2} + \frac{2}{(x+1)^3}\right] e^{y+xy},$
 $f_y = e^{y+xy}, \qquad f_{xy} = y e^{y+xy}, \qquad f_{yy} = (x+1) e^{y+xy}.$

(b)
$$n = 5$$
, $\sum_{k=1}^{5} x_k = 5$, $\sum_{k=1}^{5} x_k^2 = 15$, $\sum_{k=1}^{5} y_k = 10$, $\sum_{k=1}^{5} x_k y_k = 22$. $a = \frac{n \cdot 22 - 5 \cdot 10}{n \cdot 15 - 5^2} = 1.2$, $b = \frac{10 - a \cdot 5}{n} = 0.8$. Answer: $y = 1.2x + 0.8$.

$$a = \frac{n \cdot 22 - 5 \cdot 10}{n \cdot 15 - 5^2} = 1.2, \quad b = \frac{10 - a \cdot 5}{n} = 0.8.$$
 Answer: $y = 1.2x + 0.8$

5.(a)
$$AA^T = \begin{bmatrix} 67 & -18 \\ -18 & 14 \end{bmatrix}$$
.

(b) (i)
$$x = [2, -3, 6]^T$$
. **(ii)** From $\begin{bmatrix} 1 & 0 & -4 & -22 \\ 0 & 1 & 2 & 9 \end{bmatrix}$ obtain $x = [-22 + 4t, 9 - 2t, t]^T$.

(c)
$$A^{-1} = \frac{1}{2} \begin{bmatrix} 19 & 25 & -11 \\ -5 & -7 & 3 \\ 3 & 3 & -1 \end{bmatrix}$$
.