土木工程材料

作者名称:玩原神导致的

2025年6月14日

前言标题

这是一个基于IATEX的模板,用于撰写学习笔记。

模板旨在提供一个简单、易用的框架,以便你能够专注于内容,而不是排版细节,如不 是专业者,不建议使用者在模板细节上花费太多时间,而是直接使用模板进行笔记撰写。遇 到问题,再进行调整解决。

前言页显示日期: 2025年6月14日

目录

第零章	配合比计算	1
0.1	配合比计算的基本原理	1
	0.1.1 一些参数说明	3
0.2	体积法与查表细节	3
0.3	课本计算案例	6

第零章 配合比计算

0.1 配合比计算的基本原理

配合比计算是土木工程中非常重要的一环,主要用于确定混凝土或砂浆等材料的组成比例,以满足工程设计要求。配合比计算的基本原理包括以下几个方面:

- 和易性要求(和易性包括流动性、粘聚性和保水性)
- 强度等级要求
- 耐久性要求
- 经济原则

Corollary 0.1.1. 强度等级要求和耐久性指标是给水胶比 $(\frac{W}{B})$ 设置了一个最大值限制,因为加水可以提高流动性,但是会降低强度和耐久性

和易性要求(或者更直接一点是和易性中流动性)是给单位用水量设置了一个最小值限制,因为水泥浆的流动性和粘聚性与单位用水量密切相关。

细骨料和粗骨料也会影响流动性和粘聚性,在满足粘聚性和保水性基础上,尽量选 择较小的砂率。

	T	·
参数名称	含义	备注
$f_{cu,k}$	混凝土强度的工厂生产参考值	
$f_{ce,k}$	水泥强度等级标准值	
f_{ce}	28天标准养护下的胶砂抗压强度	$f_{ce} = \gamma_f \gamma_s \gamma_{cfce,k}$
γ_f	与粉煤灰相关的富余系数	一般不用
γ_s	与矿渣掺合物相关的富余系数	一般不用
γ_c	与等级相关的强度富余系数	
$f_{cu,0}$	混凝土强度的保证数	$f_{cu,0} = f_{cu,k} + 1.645\sigma$
W	用水量	
В	胶凝材料用量	
S	细骨料	
G	粗骨料	

表 1: 参数说明

Remark.

$$f_{cu,0} = \begin{cases} f_{cu,k} + 1.645\sigma & (f_{cu,k} < C60) \\ 1.15f_{cu,k} & (f_{cu,k} \ge C60) \end{cases}$$

$$\frac{W}{B} = \frac{\alpha_a f_{ce}}{f_{cu,0} + \alpha_a \alpha_b f_{ce}}$$

$$\mathcal{W} \stackrel{\text{\neq}}{=} \frac{m_S}{m_S + m_G}$$

 α_a 、 α_b — 与粗骨料有关的回归系数,可通过历史资料统计得到,若无统计资料,可采用《普通混凝土配合比设计规程》(JGJ 55—2011)提供的经验值:采用碎石时 $\alpha_a=0.53$, $\alpha_b=0.20$;采用卵石时 $\alpha_a=0.49$, $\alpha_b=0.13$

下标参数名称	含义	备注
се	cementitious materials	是指胶凝材料
k	characteristic value	特征值,等级值
cu	cube	混凝土立方体

表 2: 下标参数说明

0.1.1 一些参数说明

水泥强度等级 fock/MPa	32.5	32.5		52.5
富余系数 γ。	1.12	1.16		1.10
表 4-25	粉煤灰影响系数 γ _r 系	口矿渣微粉影响系数 γ。	RESIDE	0 11 1 2
掺量/%	粉煤灰岩	影响系数 yr	粒化高炉矿渣微粉影响系数 7	
0	1	1,00	1.00	
10	0.90	0~0.95	1,00	
20	0.80	~0.85	0.95~1.00	
30	0.70	0~0.75	0.90~1.00	
40	0.60	0~0.65	P. L. ST. O. C.	0.80~0.90
50 Mary 100	Line Berternante	- Playing Little Area	dest con	0.70~0.85

图 1: 强度富余系数的查表

表 4-36	混凝土的	σ取值表	
混凝土强度等级	€C20	C25~C45	C50~C55
标准差 σ/MPa	4.0	5.0	6.0

图 2: 标准差参数

0.2 体积法与查表细节

$$\frac{m_{co}}{p_c} + \frac{m_{go}}{p_g} + \frac{m_{so}}{p_s} + \frac{m_{wo}}{p_w} + 0.01\alpha = 1$$

砂率 = $\frac{m_s}{m_s + m_{go}} \times 100\%$

正如下表的伪代码所给出的计算流程一样,我们在计算中需要根据上文提到几个计算要求(强度、耐久性、和易性)来进行检验,以便满足要求。

以下有先后顺序:

- 1. 根据环境对水胶比检验
- 2. 根据粒径对砂率的检验
- 3. 根据粒径和坍落度对最大用水量的检验
- 4. 根据水胶比对胶凝材料最小用量检验

环境类别	条件	最大水胶比	最低 强度 等级	最大 Cl ⁻ 含量/%	最大 碱含量/ (kg/m³)
	室内干燥环境;无侵蚀性静水浸没环境	0.60	C20	0.30	无限制
二 a	室内潮湿环境;非严寒和非寒冷地区的露天环境;非严寒和非寒 冷地区与无侵蚀性的水或土壤直接接触的环境;严寒和寒冷地区的 冰冻线以下与无侵蚀性的水或土壤直接接触的环境	0.55	C25	0.20	
ΞЬ	干湿交替环境;水位频繁变动环境;严寒和寒冷地区的露天环境; 严寒和寒冷地区冰冻线以上与无侵蚀性的水或土壤直接接触的 环境	0.50 (0.55)	C30 (C25)	0.15	3.0
Ξa	严寒和寒冷地区冬季水位变动区环境;受除冰盐影响环境;海风 环境	0.45	C35 (C30)	0.15	
ΞЬ	盐渍土环境;受除冰盐作用环境;海岸环境	0.40	C40	0.10	
四	海水环境		IF A TK	-	
五.	受人为或自然的侵蚀性物质影响的环境	_		_	

图 3: 水胶比检验

表 4-23		混凝土砂率	送用表(JGJ 55-	-2011)		(单位:%		
水胶比 (W/B)	卵石最大粒径/mm				碎石最大粒径/mm			
	10	20	40	16	20	40		
0.40	26~32	25~31	24~30	30~35	29~34	27~32		
0.50	30~35	29~34	28~33	33~38	32~37	30~35		
0.60	33~38	32~37	31~36	36~41	35~40	33~38		
0.70	36~41	35~40	34~39	39~44	38~43	36~41		

图 4: 砂率的检验

拌和物稠度		物稠度 卵石最大粒径/mm			碎石最大粒径/mm				
项目	指标	10	20	31.5	40	16	20	31.5	40
	10~30	190	170	160	150	200	185	175	165
射落度/	35~50	200	180	170	160	210	195	185	175
mm	55~70	210	190	180	170	220	205	195	185
	75~90	215	195	185	175	230	215	205	195

图 5: 最大用水量的查表(上)

									续表
拌和物稠度			卵石最大粒径/mm				碎石最大	粒径/mm	
A Marie C	16~20	175	160		145	180	170	BBETT	155
维勃稠度/	11~15	180	165	-	150	185	175		160
S	5~10	185	170	_	155	190	180	-	165

图 6: 最大用水量的查表(下)

Remark. 注意:这里坍落度大于90,还得增加用水量,比如说200-90=110 kg/m^3 ,此时需要增加 $5 \times \frac{110}{20} = 27.5kg/m^3$

最大水胶比	最小胶凝材料用量/(kg/m³)					
取入小胶比	素混凝土	钢筋混凝土	预应力混凝土			
0.60	250	280	300			
0.55	280	300	300			
0.50	(中での)代別的導入量度	320	nfille y . a garage of to			
≤0.45	22 N. S. H. W. L. L. B. K.	330				

图 7: 最大用水量的说明

最大水胶比	最小胶凝材料用量/(kg/m²)					
取人小欣比	素混凝土	钢筋混凝土	预应力混凝土			
0.60	250	280	300			
0.55	280	300	300			
0.50	19:51气剂的基人量位	320	计模块法,更被执行			
≤0.45	Parkets I was a second	330	11/4/11			

图 8: 胶凝材料用量的检验(上)

	The second		最大掺量	1%			
矿物掺和料种类	水胶比	钢筋混	钢筋混凝土结构		预应力钢筋混凝土结构		
		硅酸盐水泥	普通硅酸盐水泥	硅酸盐水泥	普通硅酸盐水泥		
粒化高炉矿渣粉	≤0.40	65	55	55	45		
	>0.40	55	45	45	35		
钢渣粉		30	20	20	10		
磷渣粉	-	30	20	20	= 10		
硅灰	_	10	10	10	10		
	≤0.40	65	55	55	45		
复合掺和料	>0.40	55	45	45	35		

图 9: 胶凝材料用量的检验(下)

Algorithm 1 混凝土配合比计算流程伪代码

- 1: 输入: $f_{ce,k}$, $f_{cu,k}$
- 2: $f_{ce} \leftarrow \gamma_f \gamma_s \gamma_c f_{ce,k}$
- 3: $f_{cu,0} \leftarrow f_{cu,k} + 1.645\sigma$

▷ 95%置信度, 由经验公式

4: 根据经验公式:

$$\frac{W}{B} = \frac{\alpha_a f_{ce}}{f_{cu,0} + \alpha_a \alpha_b f_{ce}}$$

- 5: 查表,根据环境确定水胶比,取小值为水胶比(需要考虑强度等级和耐久性条件)
- 6: 计算水胶比 W/B
- 7: if 掺杂减水剂 then
- 8: $m_{w0} = m_{wL} \times (1 \beta), \beta$ 为减水率, m_{wL} 为掺杂减水剂前的用水量
- 9: end if
- 10: if 给出W then
- 11: 计算胶凝材料用量 B: $B = \frac{W}{W/B}$
- 12: 根据粒径查出砂率
- 13: 检查胶凝材料使用量是否满足耐久性条件,取最大值为胶凝材料用量
- 14: 使用体积法或表观密度法计算 S_0, G_0
- 15: 计算配比
- 16: **else**
- 17: 给了粒径,查出最大用水量(用水越多经济性越好23333)
- 18: 检查胶凝材料使用量是否满足耐久性条件,取最大值为胶凝材料用量
- 19: 求得W,B
- 20: 使用体积法或表观密度法计算 S_0 , G_0
- 21: 计算配比
- 22: **end if**

0.3 课本计算案例

Example 0.3.1. 室内框架结构普通钢筋混凝土梁,混凝土设计强度等级为C35,采用钢筋送法施工,施工要求的坍落度为135~150mm,采用机械搅拌和机械振动成型。原材料条件为:强度等级为42.5的普通硅酸盐水泥;级配合格的中砂(细度模数为2.3);级配合格的

碎石,最大粒径为20mm;饮用减水剂为树脂系高效减水剂,减水剂溶液浓度为30%,最佳掺量为1.5%,减水率为20%。试计算混凝土的初步配合比。

(1)计算 f_{cu_0} 和 f_{ce} ,查表1和2,得到:

$$f_{cu_0} = f_{cu,k} + 1.645\sigma = 35 + 1.645 \times 5 = 43,2$$
MPa

$$f_{ce} = \gamma_c \gamma_f \gamma_s f_{ce,k} = 1.16 \times 1.0 \times 1.0 \times 42.5 = 49.3 \text{MPa}$$

(2)初步计算水胶比(还得根据环境进行检验):

$$\frac{W}{B} = \frac{\alpha_a f_{ce}}{f_{cu,0} + \alpha_a \alpha_b f_{ce}} = \frac{0.5 \times 49.3}{43.2 + 0.53 \times 0.2 \times 49.3} = 0.54$$

这里由于没说环境, 所以跳过环境检验部分

- (3)这里没给用水量,根据粒径和坍落度查表5,得到最大用水量为 $215 + \frac{150-90}{20} \times 5 = 230 \text{kg/m}^3$ 。
 - (4)由于有减水剂,进行减水剂的矫正

$$m_{w0} = m_{wL} \times (1 - \beta) = 230 \times (1 - 0.2) = 184 \text{kg/m}^3$$

(5)计算胶凝材料用量

$$B = \frac{W}{W/B} = \frac{184}{0.54} = 340.74 \text{kg/m}^3$$

(6)计算减水剂掺量,注意,减水剂是按水泥重量的百分比来计算的,所以需要先计算水泥用量。

$$m_J = m_C \times J = 340.74 \times 0.015 = 5.11 \text{kg/m}^3$$

(7)同时减水剂里也含有一定水分,进行减水剂的矫正

$$m_{wJ} = m_{w0} - m_J \times (1 - 0.3) = 184 - 5.11 \times 0.7 = 180 \text{kg/m}^3$$

- (8)根据最大粒径和水胶比确定砂率,查表4,得到砂率为40%。
- (9)根据体积法计算细骨料和粗骨料的用量,确定最终配合比

计算砂用量 m_{00} 和石用量 m_{70}

用质量法计算,假定混凝土湿表观密度为 2400kg/m³,则有:

$$\begin{cases} 341 + 180 + 5.12 + m_{\text{Fb}} + m_{\text{Fi}} = 2400 \\ \beta_s = \frac{m_{\text{Fb}}}{m_{\text{Fb}} + m_{\text{Fi}}} \times 100\% = 40\% \end{cases}$$

求解该方程组,即得 $m_{\overline{\psi}} = 750 \mathrm{kg}$, $m_{\overline{\pi}} = 1124 \mathrm{kg}$ 。

由此得混凝土初步配合比为 C:W:S:G:J=341:180:750:1124:5.12=1:0.53:2.20:3.30:0.015。