Policy Iteration on Markov Decision Process

Bingran Li 122020087

March 28, 2025

1 Introduction

2 Background

Four open questions:

- 1. Is the policy iteration method strongly polynomial for the deterministic MDP?
- 2. Is there a polynomial time method for MGP (logarithmic dependence of $1/(1-\gamma)$, using IPM by the Leader)?
- 3. Is there a strongly-polynomial time method for the deterministic MGP (independent of γ , extension from PY 16)?
- 4. Is there a strongly polynomial-time algorithm for MDP regardless of the discount factor?

An infinite-horizon discounted MDP can be formulated as a Linear Program D'Epenoux, 1963.

$$\max \sum_{j \in \Omega_S} v_j$$
s.t. $v_j \le c_i^k + \gamma \sum_{j \in \Omega_S} p_{ij}^k v_j, \quad \forall i \in \Omega_S, \forall k \in \Omega_A$ (1)

2.1 Complexity Results for MDPs

Table 1 summarizes the complexity results for various types of Markov Decision Processes.

Table 1: Complexity Results for Markov Decision Processes

Problem Type	Algorithm	Complexity	Reference
Discounted (gen-	Simplex (most-	$O\left(\frac{mn}{1-\gamma}\log\frac{n}{1-\gamma}\right)$ iterations	[Ye11]
eral/stochastic) MDP	negative-reduced-		
	cost rule)		
Discounted MDP	Policy Iteration,	$O\left(\frac{m}{1-\gamma}\log\frac{n}{1-\gamma}\right)$ iterations	[HMZ13]
	Value Iteration		

Continued on next page

Table 1 – continued from previous page

Problem Type	Algorithm	Complexity	Reference
Two-player turn-	Strategy Iteration	$O\left(\frac{m}{1-\gamma}\log\frac{n}{1-\gamma}\right)$ iterations	[HMZ13]
based stochastic			
games			
Deterministic MDP	Simplex (highest-	$O(n^3m^2\log^2 n)$ iterations	[PY15]
(uniform discount)	gain pivot rule)		
Deterministic MDP	Simplex (highest-	$O(n^5 m^3 \log^2 n)$ iterations	[PY15]
(nonuniform dis-	gain pivot rule)		
counts)			
Deterministic MDP	Minimum Mean	O(mn) time	[MTZ10]
(uniform discount)	Cycle Algorithm		
General MDP	Specialized	Strongly polynomial in all	[Ye05]
	Interior-Point	parameters except discount	
	Method	factor	
General MDP	Policy Iteration	Exponential lower bound	[Fea10]
General MDP	Randomized sim-	Sub-exponential lower	[FHZ11]
	plex pivoting rules	bound	

Note: $n = \text{number of states}, m = \text{number of actions}, \gamma = \text{discount factor}, T = \text{time horizon}$

3 Summary and Discussion

References

- [Fea10] John Fearnley. Exponential lower bounds for policy iteration. In Automata, Languages and Programming: 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II 37, pages 551-562. Springer, 2010.
- [FHZ11] Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. Subexponential lower bounds for randomized pivoting rules for the simplex algorithm. In *Proceedings of the forty-third annual ACM symposium on Theory of computing*, pages 283–292, 2011.
- [HMZ13] Thomas Dueholm Hansen, Peter Bro Miltersen, and Uri Zwick. Strategy iteration is strongly polynomial for 2-player turn-based stochastic games with a constant discount factor. *Journal of the ACM (JACM)*, 60(1):1–16, 2013.
- [MTZ10] Omid Madani, Mikkel Thorup, and Uri Zwick. Discounted deterministic markov decision processes and discounted all-pairs shortest paths. *ACM Transactions on Algorithms* (TALG), 6(2):1–25, 2010.
- [PY15] Ian Post and Yinyu Ye. The simplex method is strongly polynomial for deterministic markov decision processes. *Mathematics of Operations Research*, 40(4):859–868, 2015.

- [Ye05] Yinyu Ye. A new complexity result on solving the markov decision problem. *Mathematics of Operations Research*, 30(3):733–749, 2005.
- [Ye11] Yinyu Ye. The simplex and policy-iteration methods are strongly polynomial for the markov decision problem with a fixed discount rate. *Mathematics of Operations Research*, 36(4):593–603, 2011.