Semi-normed Rings and Modules

1 Semi-normed algebraic structures

Definition 1. Let M be an abelian group. A *semi-norm* on M is a function $\|\cdot\|: M \to \mathbb{R}_+$ such that

- ||0|| = 0;
- $\forall x, y \in M, ||x + y|| \le ||x|| + ||y||$.

If we further have $||x|| = 0 \iff x = 0$, then we say $||\cdot||$ is a norm. A semi-normed abelian group (resp. normed abelian group) is an abelian group equipped with a semi-norm (resp. norm).

Definition 2. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two semi-norms on an abelian group M. We say $\|\cdot\|_1$ is bounded by $\|\cdot\|_2$ if there exists a constant C > 0 such that $\forall x \in M, \|x\|_1 \leq C\|x\|_2$.

Remark 3. If two semi-norms (resp. norms) on an abelian group M are bounded by each other, then they induce the same topology on M.

Definition 4. Let M be a semi-normed abelian group and $N \subseteq M$ be a subgroup. The *residue* semi-norm on the quotient group M/N is defined as

$$\|x+N\|_{M/N} = \inf_{y \in N} \|x+y\|_{M}.$$

Remark 5. The residue semi-norm is a norm if and only if N is closed in M.

Definition 6. Let M and N be two semi-normed abelian groups. A group homomorphism $f: M \to N$ is called bounded if there exists a constant C > 0 such that $\forall x \in M, \|f(x)\|_N \le C\|x\|_M$. A bounded homomorphism $f: M \to N$ is called admissible if the induced isomorphism $M/\ker f \to \operatorname{Im} f$ is an isometry, i.e., $\forall x \in M, \|f(x)\|_N = \inf_{y \in \ker f} \|x + y\|_M$.

Definition 7. Let R be a ring (commutative with unity). A *semi-norm* on R is a semi-norm $\|\cdot\|$ on the underlying abelian group of R such that $\forall x, y \in R, \|xy\| \le \|x\| \|y\|$ and $\|1\| = 1$. A *semi-normed ring* is a ring equipped with a semi-norm.

Definition 8. A semi-norm $\|\cdot\|$ on a ring R is called *multiplicative* if $\forall x, y \in R, \|xy\| = \|x\| \|y\|$. It is called *power-multiplicative* if $\forall x \in R, \|x^n\| = \|x\|^n$ for all integers $n \ge 1$. A power-multiplicative semi-norm is also called *uniform*.

Remark 9. Let **k** be a field. Recall that a valuation on **k** is a function $v: \mathbf{k} \to \mathbb{R} \cup \{\infty\}$ such that

- (non-degeneracy) $v(x) = \infty \iff x = 0$;
- (normalization) v(1) = 0;

Date: October 23, 2025, Author: Tianle Yang, My Homepage

- (additivity) $\forall x, y \in \mathbf{k}, v(xy) = v(x) + v(y)$;
- (triangle inequality) $\forall x, y \in \mathbf{k}, v(x+y) \ge \min\{v(x), v(y)\}.$

Yang: To be checked.

Definition 10. Let $(R, \|\cdot\|_R)$ be a normed ring. A *semi-normed R-module* is a pair $(M, \|\cdot\|_M)$ where M is an R-module and $\|\cdot\|_M$ is a semi-norm on the underlying abelian group of M such that there exists C > 0 with $\forall a \in R, x \in M, \|ax\|_M \le C \|a\|_R \|x\|_M$.

Yang: To be continued...

2 Banach rings

Definition 11. A semi-norm (resp. norm) on an abelian group M induces a pseudo-metric (resp. metric) d(x,y) = ||x-y|| on M. A semi-normed (resp. normed) abelian group M is called *complete* if it is complete as a pseudo-metric (resp. metric) space.

Let R be a normed ring and M,N be semi-normed R-modules. There is a natural semi-norm on the tensor product $M \otimes_R N$ defined as

$$\|z\|_{M\otimes_{R}N} = \inf\left\{\sum_{i} \|x_{i}\|_{M} \|y_{i}\|_{N} \ : \ z = \sum_{i} x_{i} \otimes y_{i}, x_{i} \in M, y_{i} \in N\right\}.$$

Definition 12. Let R be a complete normed ring and M, N complete semi-normed R-modules. The complete tensor product $M \widehat{\otimes}_R N$ is defined as the completion of the semi-normed R-module $M \otimes_R N$.

Definition 13. A Banach ring is a complete normed ring.

Definition 14. Let $(A, \|\cdot\|_A)$ be a normed algebraic structure (e.g., a normed vector space, a normed ring, etc.). The *completion* of A is the smallest complete normed algebraic structure A^c such that A is isometrically embedded in A^c . Yang: To be continued.

Definition 15. Let R be a Banach ring. For each $f \in R$, the spectral radius of f is defined as

$$\rho(f) = \lim_{n \to \infty} ||f^n||^{1/n}.$$

Proposition 16. Let R be a Banach ring. The spectral radius $\rho(\cdot)$ defines a power-multiplicative semi-norm on R that is bounded by the given norm on R.

Definition 17. Let R be a Banach ring. The *uniformization* of R is the Banach ring with the universal property among all bounded morphisms from R to uniform Banach rings. Yang: To be continued.

Proposition 18. Let R be a Banach ring. The completion of R with respect to the spectral radius $\rho(\cdot)$ is the uniformization of R.

Yang: To be continued...

3 Examples

Example 19. Let R be arbitrary ring. The *trivial norm* on R is defined as ||x|| = 0 if x = 0 and ||x|| = 1 if $x \neq 0$. The ring R equipped with the trivial norm is a normed ring.

Example 20. The fields \mathbb{C} and \mathbb{R} equipped with the usual absolute value are complete fields.

Example 21. The field \mathbb{Q}_p of p-adic numbers equipped with the p-adic norm is a complete non-Archimedean field.

Example 22. Let \mathbf{k} be a complete field. The ring of formal power series

Yang: To be completed.

Yang: To be continued...

Appendix

