

Implementierung von Non-Fungible Tokens in bestehende Fahrzeugstrukturen zur Individualisierung von Fahrzeuginnenräumen

Praxisbericht

Studiengang Elektrotechnik

Studienrichtung Fahrzeugelektronik

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

von

Alexander Köhn

Abgabedatum: 12. September 2022 Bearbeitungszeitraum: 04.04.2022 - 12.09.2022

Matrikelnummer: 216 5691 Kurs: TFE20-2

Ausbildungsfirma: Mercedes Benz Group AG

Betreuer der Ausbildungsfirma: Dipl.-Ing. Jan Junge

Gutachter der Dualen Hochschule: Prof. Dr.-Ing. Thomas Kibler

Sperrvermerk

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 25.07.2018:

Der Inhalt dieser Arbeit darf weder als Ganzes noch in Auszügen Personen außerhalb des Prüfungsprozesses und des Evaluationsverfahrens zugänglich gemacht werden, sofern keine anders lautende Genehmigung vom Dualen Partner vorliegt.

Stuttgart, den 12. September 2022

ALEXANDER KÖHN

Erklärung

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 25.07.2018.

Ich versichere hiermit, dass ich meine Projektarbeit mit dem Thema:

Implementierung von Non-Fungible Tokens in bestehende Fahrzeugstrukturen zur Individualisierung von Fahrzeuginnenräumen -

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Stuttgart, den 12. September 2022

ALEXANDER KÖHN

Kurzfassung

Inhaltsverzeichnis

1	Einl	eitung	1
2	Gru	ndlagen	2
3	Kon	zeptentwurf	3
4	Ums	setzung	4
5	Veri	fikation und Diskussion	5
6	Zusa	ammenfassung	6
Lit	teratı	ır	7
Sa	chwo	ortverzeichnis	7
Αŀ	bildı	ıngsverzeichnis	8
Ta	belle	nverzeichnis	9
Ar	nhang	g A	10
	A.1	Details zu bestimmten theoretischen Grundlagen	10
	A.2	Weitere Details, welche im Hauptteil den Lesefluss behindern	10
Ar	nhang	g B	11
	B.1	Versuchsanordnung	11
	B.2	Liste der verwendeten Messgeräte	11
	B.3	Übersicht der Messergebnisse	11

In halts verzeichn is

B.4	Schaltplan und Bild der Prototypenplatine	11
Anhang	С	13
C.1	Struktogramm des Programmentwurfs	13
C.2	Wichtige Teile des Quellcodes	13
Anhang	D	14
D.1	Einbinden von PDF-Seiten aus anderen Dokumenten	14
Anhang	E	18
E.1	$\label{thm:wichtige lambda} \begin{tabular}{ll} Wichtige I Lambda T E X - Befehle$	18
E.2	Vorlagen für l⁴TEXUmgebungen	19
	E.2.1 Listen und Aufzählungen	19
	E.2.2 Bilder und Grafiken	20
	E.2.3 Tabellen	25
	E.2.4 Formeln	26

1 Einleitung

... Text Einleitung ...

Am Ende der Einleitung: Die Arbeit ist wie folgt gegliedert: \dots

2 Grundlagen

... Theoretische Grundlagen (vielleicht auch zitiert aus Standardwerken, wie z.B. aus [Tip+19]), Rechercheergebnisse, Stand der Technik (ggf. zitiert aus Hochschulschriften, welche Online verfügbar sind, wie z.B. [Zie17]), etc.

3 Konzeptentwurf

 \dots Text Konzeptentwurf: Gegenüberstellung verschiedener Lösungsansätze und Lösungsgenerierung, etc.

4 Umsetzung

 \dots Text Umsetzung: Beschreibung der Umsetzung und eigener Untersuchungen \dots

5 Verifikation und Diskussion

... Verifikation, Auswertung, Lösungsbewertung, Diskussion der Ergebnisse

6 Zusammenfassung

... Text Zusammenfassung und Ausblick: In der Zusammenfassung unbedingt klare Aussagen zum Ergebnis der Arbeit nennen, im Optimalfall quantitative Angaben. Die Inhalte müssen sich auf die Fragestellung aus der Einleitung beziehen. ...

Literatur

- [Tip+19] Paul Allen Tipler u. a., Hrsg. *Physik: Für Studierende der Naturwissenschaften und Technik.* 8., korrigierte und erweiterte Auflage. Lehrbuch. Berlin: Springer Spektrum, 2019. ISBN: 9783662582800.
- [Zie17] Julius Ziegler. "Optimale Trajektorienplanung für Automobile". Dissertation. Karlsruhe: KIT Scientific Publishing und Karlsruher Institut für Technologie, 2017. URL: http://dx.doi.org/10.5445/KSP/1000056530.

Abbildungsverzeichnis

E.1	Beispiel für die Einbindung eines Bildes	20
E.2	Mit Tikz programmierte Grafik	21
E.3	Mit Tikz programmierte Grafik, welche bereits vorgefertigte Bibliotheken	
	für Symbole aus der Digitaltechnik nutzt	21
E.4	Diagramm, erstellt mit dem pgfplot-Befehlssatz	22
E.5	Diagramm mit zwei unterschiedlichen y-Achsen	24

Tabellenverzeichnis

E.1	Liste der verwendeten	Messgeräte											2!	5

Anhang A

- A.1 Details zu bestimmten theoretischen Grundlagen
- A.2 Weitere Details, welche im Hauptteil den Lesefluss behindern

Anhang B

- **B.1** Versuchsanordnung
- B.2 Liste der verwendeten Messgeräte
- B.3 Übersicht der Messergebnisse
- B.4 Schaltplan und Bild der Prototypenplatine

$Anhang\ B$

Diese Seite wurde eingefügt, um zu zeigen, wie sich der Inhalt der Kopfzeile automatisch füllt.

Anhang C

- C.1 Struktogramm des Programmentwurfs
- C.2 Wichtige Teile des Quellcodes

Anhang D

D.1 Einbinden von PDF-Seiten aus anderen Dokumenten

Auf den folgenden Seiten wird eine Möglichkeit gezeigt, wie aus einem anderen PDF-Dokument komplette Seiten übernommen werden können. Der Nachteil dieser Methode besteht darin, dass sämtliche Formateinstellungen (Kopfzeilen, Seitenzahlen, Ränder, etc.) auf diesen Seiten nicht angezeigt werden. Die Methode wird deshalb eher selten gewählt. Immerhin sorgt das Package "pdfpages" für eine korrekte Seitenzahleinstellung auf den im Anschluss folgenden "nativen" LATEX-Seiten.

Eine bessere Alternative ist, einzelne Seiten mit "\includegraphics" einzubinden. Z.B. wenn Inhalte von Datenblättern wiedergegeben werden sollen.

Anhang E

E.1 Wichtige LATEX-Befehle

 $\label{} \$ Definition eines Labels, auf welches referenziert werden kann

z.B.: $\label{fig:MyImage}$

\ref{} Setzen einer Referenz zu einem Label

 $\parbox{$\langle$ pageref$}$ Gibt die Seitenzahl zu einer Referenz zurück

z.B.: Tabelle $^{\sim}$ \ref{tab:messdaten} fasst die Messergebnisse zusammen.

 $\cite{}$ Literaturreferenz einfügen

 $\langle cite[S. x] \{ \}$ Literaturreferenz mit Angabe einer Seitenzahl "x" einfügen

 $\fint footnote{}$ Fußnote einfügen

Einfügen eines geschützten Leerzeichens

\$Formel \$ Eingabe einer Formel im Text

\nomenclature{a.}{ab}\underschaften Abkürzung "a." für "ab" in das Abkürzungsverzeichnis.

\\ index{Obst!Birne}\ Aufnahme des Begriffs "Birne" in den Index unter "Obst".\\ \text{Clearpage}\ Ausgabe aller Gleitobjekte und Umbruch auf neue Seite

E.2 Vorlagen für LATEXUmgebungen

c) Das sollte an Beispielen zunächst einmal genügen.

E.2.1 Listen und Aufzählungen

Es gibt folgende Listentypen. Die wichtigsten:

E.2.2 Bilder und Grafiken

Bilder können als PDF-, JPG-, und PNG-Bilder in LATEXeingebunden werden. Damit eine Grafik in hoher Qualität dargestellt wird, sollte das Dateiformat der Grafik vektorbasiert sein, d.h. als PDF-Datei vorliegen. Viele Zeichenprogramme unterstützen einen PDF-Export (z.B. GIMP, Adobe Illustrator, etc.). Für Grafiken aus PowerPoint sei folgende Vorgehensweise beim Export empfohlen:

- 1. Die gewünschte Grafik in PowerPoint zeichnen.
- 2. Gewünschten Bildbereich markieren, rechte Maustaste klicken und "Als Grafik speichern …" wählen.
- 3. Grafik im Format EMF abspeichern. Das EMF-Format ist vektorbasiert. 1
- 4. Mit dem Programm XnView die Grafik im EMF-Format in PDF wandeln und abspeichern.
- 5. Die so erzeugte PDF-Datei enthält eine vektorbasierte Grafik und kann in L^AT_EX eingebunden werden.

Abbildung E.1 zeigt ein Beispielbild einer Grafik, welche aus PowerPoint exportiert wurde.

Abbildung E.1: Beispiel für die Einbindung eines Bildes (PDF-, JPG-, und PNG-Bilder können eingebunden werden).

Der Quellcode des Beispielbildes aus Abbildung E.1 ist in Listing E.1 zu sehen.

¹Mit dem Mac kann in PowerPoint die Grafik direkt im PDF-Format exportiert werden. Die weiteren Schritte entfallen daher.

Listing E.1: Quellcode der Abbildung E.1.

Grafiken können auch mithilfe des Packages Tikz gezeichnet, bzw. programmiert werden. Grafiken mit Tikz werden mit dem *input*-Befehl in die *figure*-Umgebung geladen, wie nachfolgendes Beispiel in Abbildung E.2 zeigt:

Abbildung E.2: Mit Tikz programmierte Grafik.

Ein etwas umfangreicheres Beispiel zur Digitaltechnik ist in Abbildung E.3 dargestellt:

Abbildung E.3: Mit Tikz programmierte Grafik, welche bereits vorgefertigte Bibliotheken für Symbole aus der Digitaltechnik nutzt.

In der Tikz-Umgebung können auch Diagramme mit dem *pgfplot*-Befehlssatz erzeugt werden. In Abbildung E.4 sehen Sie ein Beispiel.

Abbildung E.4: Ein Diagramm, erstellt in der *tikzpicture*-Umgebung mit dem *pgfplot*-Befehlssatz. Das Diagramm stellt Messdaten, deren Fehlerbalken und eine Regressionskurve dar. Die Messdaten werden von einer separaten Datei eingelesen und die Regressionskurve wurde mit *pgfplot* berechnet und erstellt.

Auch hierzu der Quellcode in Listing E.2.

Listing E.2: Quellcode der Abbildung E.4.

```
1 \begin{figure}[hbt]
2 \centering
3 \input{pgfplot/mess_fehlerbalken.tex}
4 \caption[Diagramm, erstellt mit dem \textit{pgfplot}-Befehlssatz.]{Ein
    Diagramm, erstellt in der \textit{tikzpicture}-Umgebung mit dem \textit
    {pgfplot}-Befehlssatz. Das Diagramm stellt Messdaten, deren
    Fehlerbalken und eine Regressionskurve dar. Die Messdaten werden von
    einer separaten Datei eingelesen und die Regressionskurve wurde mit \
    textit{pgfplot} berechnet und erstellt.}
5 \label{fig:pgfplot}
6 \end{figure}
```

In Listing E.3 ist der Quellcode der Datei mess fehlerbalken.tex dargestellt.

Listing E.3: Quellcode der Datei mess_fehlerbalken.tex.

```
1 \begin{tikzpicture}
  _{2} \setminus begin\{axis\}[scale=1.3, legend entries=\{Messwerte mit Fehlerbalken, 
  4 \pgfmathprintnumber[print sign]{\pgfplotstableregressionb}$}, legend style
                         = \{ \text{draw=none} \}, \text{legend style} = \{ \text{at} = \{ (0.01, 0.98) \}, \text{anchor=north west} \}, \text{xlabel} = \{ \text{draw=none} \}, \text{there is a style} = \{ \text{draw=none} \}, \text{th
                         Stromstärke $I \; \mathrm{\lbrack mA \rbrack}$, ylabel=Spannung $U \; \
                        mathrm{ \lbrack V \rbrack \}$]
  5 \addlegendimage{mark=*,blue}
  6 \addlegendimage {no markers, red}
  7 \addplot+[error bars/.cd, y dir=both,y explicit]
  8 table [x=x,y=y,y error=errory]
  9 { pgfplot/messdaten mitfehler.dat };
10 \addplot table [mark=none, y={create col/linear regression={y=y}}]
11 {pgfplot/messdaten_mitfehler.dat};
12 \end{axis}
13 \end{tikzpicture}
```

In Abbildung E.5 wird ein weiters Beispiel für ein Diagramm gezeigt. Oftmals wird eine zweite y-Achse verwendet, um verschiedene Skalen darstellen zu können.

Abbildung E.5: Diagramm mit zwei unterschiedlichen y-Achsen.

E.2.3 Tabellen

Tabelle E.1: Liste der verwendeten Messgeräte. Die Genauigkeitsangaben beziehen sich auf die Standardabweichung $1 \cdot \sigma$.

Messgerät	Hersteller	Typ	Verwendung	Genauigkeit
Spannungs- versorgung	Voltmaker	HV2000	Spannungs- versorgung der Platine	$\Delta U = \pm 5 \text{ mV}$
Strommessgerät	Currentcount	Hotamp 16	Strommessung am Versorgungspin des µC	$\Delta I = \pm 0.1 \text{ A}$

Der Quellcode der Beispieltabelle E.1 ist in Listing E.4 zu sehen.

Listing E.4: Quellcode der Tabelle E.1.

```
1 \begin { table } [hbt ]
2 \centering
3 \renewcommand{\arraystretch}{1.5} % Skaliert die Zeilenhöhe der Tabelle
4 \captionabove [Liste der verwendeten Messgeräte] { Liste der verwendeten
      Messgeräte. Die Genauigkeitsangaben beziehen sich auf die
      Standardabweichung $1\cdot \sigma$.}
5 \setminus label\{tab:bsp\}
6 \begin{tabular}{cccc}
7 \textbf{Messgerät} & \textbf{Hersteller} & \textbf{Typ} & \textbf{
      Verwendung \& \textbf{Genauigkeit}\\
8 \hline
9 \hline
10 \operatorname{parbox}[t]{0.2\operatorname{linewidth}}{\operatorname{centering}} Spannungs-\versorgung} & Voltmaker &
       HV2000 \& \operatorname{parbox}[t] \{0.2 \setminus \text{linewidth}\} \{\setminus \text{centering Spannungs} - \setminus \text{versorgung} \}
      der \setminus Platine  & $\Delta U = \pm 5 $\cdot^mV \\ % Der parbox-Befehl ist
      erforderlich, damit ein Zeilenumbruch erzeugt werden kann. c-Spalten (
      zentriert) erlauben nicht automatisch einen Zeilenumpruch. Linksbündig
      gesetzte p-Spalten erlauben automatisch den Zeilenumbruch.
11 Strommessgerät & Currentcount & Hotamp 16 & \parbox[t] \{0.2 \linewidth\} \{
      centering Strommessung\\ am Versorgungspin\\ des \textmu C} & $\Delta I
       = \mathbf{pm} \ 0.1\$^A \setminus
12 \hline
13 \end{tabular}
14 \end{table}
```

E.2.4 Formeln

Formeln lassen sich in LATEX ganz einfach schreiben. Es gibt unterschiedliche Umgebungen zum Schreiben von Formeln. Z.B. direkt im Text v = s/t oder abgesetzt

$$F = m \cdot a$$

oder auch, wie in wissenschaftlichen Dokumenten üblich, nummeriert

$$P = \frac{U^2}{R} \quad . \tag{E.1}$$

Mit einem Label in Formel E.1 lassen sich natürlich auch Formeln im Text referenzieren. LATEX verwendet im Formelmodus einen eigenen Schriftsatz, welcher entsprechend der gängigen Konventionen kursive Zeichen verwendet. Sollen im Formelmodus Einheiten in normaler Schriftart eingefügt werden, dann kann dies über den Befehl $\mbox{\it mathrm}\{\}$ erwirkt werden, wie im Quellcode von Formel E.2 zu sehen ist.

$$P = \frac{U^2}{R} = \frac{(100 \text{ V})^2}{100 \Omega} = 100 \text{ W}$$
 (E.2)

Zum direkten Vergleich sind die Einheiten in Formel E.3 falsch dargestellt:

$$P = \frac{U^2}{R} = \frac{(100 \ V)^2}{100 \ \Omega} = 100 \ W \tag{E.3}$$

Zur einfachen Eingabe von Einheiten kann auch das Package $\$ verwendet werden:

$$P = 100 \text{ W} = 100 \text{ J s}^{-1}$$
 (E.4)

Das sind nur ein paar wenige Beispiele und es gibt sehr viele Packages, um Besonderheiten in Formeln realisieren zu können, z.B. mehrzeilige Formeln mit vertikaler Ausrichtung. Nennen Sie Formeln nur, wenn diese zum besseren Verständnis auch wirklich nützlich sind.

Folgende Befehle sind innerhalb von Formel-Umgebungen nützlich:

Abschließend nochmals ein kleines Beispiel:

$$\sum_{n=1}^{\infty} f(x_n) \cdot \Delta x = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{\mathrm{d}f}{\mathrm{d}x} = \dot{f}(x)$$
 (E.5)