MP Programme de colle n° 13

Chapitre 9

Séries entières

Cours: tout le chapitre

Les démos à connaître (en rouge les plus conséquentes ou délicates)

1.2

<u>Lemme d'Abel</u>: Soit $r \in \mathbb{R}_+^*$ tel que la suite $(a_n r^n)_{n \in \mathbb{N}}$ est bornée. Alors : pour tout $z \in B(0,r)\,,$ la série de fonctions $\sum a_{\scriptscriptstyle n} z^{\scriptscriptstyle n}$ converge absolument.

2.1

Théorème 1 : convergence de la série et continuité de sa somme

Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Alors :

- ① Pour tout $z \in \mathbb{C}$: si |z| < R, la série $\sum a_n z^n$ converge absolument si |z| > R, la série diverge grossièrement.
- ② Pour tout $r \in]0,R[$: la série de fonctions $\sum a_n z^n$ converge normalement donc uniformément sur $\mathcal{B}_{f}(0,r) = \{z \in \mathbb{C} \, / \, |z| \leqslant R \}$.
 - ③ La fonction somme $S:z \to \sum_{n=0}^{+\infty} a_n z^n$ est continue sur le disque ouvert de convergence.

3.4

Proposition : règle de D'Alembert pour les séries entières

Soient $\sum a_n z^n$ une série entière de rayon R.

Si la limite $\ell = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|$ existe dans $\mathbb{R} \cup \{+\infty\}$, alors $R = \frac{1}{\ell}$

4.1

Proposition 1 : Théorèmes de comparaison

Soient $\sum a_{\scriptscriptstyle n} z^{\scriptscriptstyle n}\,$ et $\sum b_{\scriptscriptstyle n} z^{\scriptscriptstyle n}\,$ de rayons respectifs $R_{\scriptscriptstyle a}$ et $R_{\scriptscriptstyle b}\,.$

- $\begin{array}{ll} \bullet & \mathrm{Si} \ \exists n_0 \in \mathbb{N} \, / \ n \geqslant n_0 \ \Rightarrow \boxed{\left[\left|a_n\right| \leqslant \left|b_n\right|\right]} \ \mathrm{ou} \ \mathrm{si} \ \boxed{a_n = o(b_n)} \ \mathrm{ou} \ \mathrm{si} \ \boxed{a_n = O(b_n)}, \\ & \mathrm{alors} \ \boxed{R_a \geqslant R_b} \\ \bullet & \mathrm{Si} \ \boxed{a_n \sim b_n} \ \mathrm{alors} \ \boxed{R_a = R_b} \quad . \end{array}$

<u>Proposition 2</u> : Somme, produit de Cauchy de deux séries entières

Soient $\sum a_n z^n$ et $\sum b_n z^n$ de rayons de convergence respectifs R_a et R_b .

Soient $\sum s_{\scriptscriptstyle n} z^{\scriptscriptstyle n}$ (resp. $\sum c_{\scriptscriptstyle n} z^{\scriptscriptstyle n}$) leur somme (resp. produit de Cauchy) de

rayons de convergence respectifs $\,R_{\!\scriptscriptstyle S}\,$ et $\,R_{\!\scriptscriptstyle P}\,.$ Alors :

$$\bullet R_{\scriptscriptstyle S} \geqslant Min(R_{\scriptscriptstyle a},R_{\scriptscriptstyle b}) \quad \text{et} \quad R_{\scriptscriptstyle P} \geqslant Min(R_{\scriptscriptstyle a},R_{\scriptscriptstyle b})$$

$$\mathbf{2}$$
 si $R_a \neq R_b$, alors $R_S = Min(R_a, R_b)$

et en tout point z où les séries convergent simultanément, on a :

4.4

Propriété: Série dérivée

$$Riggl(\sum a_n z^niggr) = Riggl(\sum_{n\geqslant 1} na_n z^{n-1}iggr).$$

5.4.a

Proposition 4:

Soit $\sum a_n t^n$ une série entière réelle de rayon de convergence R, de somme f.

Alors
$$\forall n \in \mathbb{N} \,:\, a_n = \frac{f^{(n)}(0)}{n!}$$
.