Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

FEBRUARY/MARCH/FEBRUARIE/MAART 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 17 pages./ Hierdie nasienriglyne bestaan uit 17 bladsye.

Mathematics/P1 2 DBE/November 2016 NSC – Memorandum

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

1.1.1	$x^2 - 6x - 16 = 0$		
	(x-8)(x+2)=0		✓ factors $\checkmark x = -2$
	x = -2 or x = 8		$\checkmark x = -2$ $\checkmark x = 8 \tag{3}$
1.1.2	$2x^2 + 7x - 1 = 0$		
	$x = \frac{-b \pm \sqrt{b^2 - 4aa}}{2a}$ $= \frac{-(7) \pm \sqrt{(7)^2 - 2a}}{2(2)}$ $= \frac{-7 \pm \sqrt{57}}{4}$ $x = 0.14 \text{or} x = 0$ \mathbf{OR}/\mathbf{OF}	4(2)(-1)	✓ subs into correct formula ✓ $\frac{-7 \pm \sqrt{57}}{4}$ ✓ $x = 0.14$ ✓ $x = -3.64$ OR/OF
	$x^{2} + \frac{7}{2}x + \frac{49}{16} = \frac{1}{2} + \frac{49}{16}$ $\left(x + \frac{7}{4}\right)^{2} = \frac{57}{16}$ $x + \frac{7}{4} = \pm \frac{\sqrt{57}}{4}$ $x = \frac{-7 \pm \sqrt{57}}{4}$	places is incorrect.	✓ for adding $\frac{49}{16}$ on both sides $ \sqrt{\frac{-7 \pm \sqrt{57}}{4}} $ ✓ $x = 0.14$ ✓ $x = -3.64$
	x = 0.14 or $x = 0.14$	= -3,64	$\begin{array}{c c} & x = -3,04 \\ & & (4) \end{array}$
1.2	$x^{2} - 25 < 0$ $(x - 5)(x + 5) < 0$ $+ $	+ - /+ -5 /5	√factors
	$-5 5$ $-5 < x < 5$ $x = \{ -4; -3; -2; -1; 0; 1; \}$	NOTE: Final answer only 2;3;4} VOTE: Final answer only 2/2	✓✓inequality ✓answer (4)
	, , , , , , , , , , , , , , , , , , , ,	2/2	

3 NSC – Memorandum DBE/November 2016

1.3	n – 2n 1	√ n = 2n 1
1.3	x = 2y - 1	✓ $x = 2y - 1$ ✓ substitution
	$(2y-1)^2 - 7 - y^2 = -y$	Substitution
	$4y^2 - 4y + 1 - 7 - y^2 = -y$	
	$3y^2 - 3y - 6 = 0$	✓ correct standard form
	$y^2 - y - 2 = 0$	correct standard form
	(y-2)(y+1)=0	✓ factors
	y = 2 or y = -1	✓ y – values
	x = 2(2)-1 or $x = 2(-1)-1$	
	x = 3 or $x = -3$	$\checkmark x$ – values
	OR/OF	OR/OF
	$y = \frac{x+1}{2}$	$\checkmark y = \frac{x+1}{2}$
	$x^{2} - 7 - y^{2} = -y$	2
	x - i - y = -y	
	$x^2 - 7 - \left(\frac{x+1}{2}\right)^2 = -\left(\frac{x+1}{2}\right)$	
		✓ substitution
	$x^2 - 7 - \left(\frac{x^2 + 2x + 1}{4}\right) = \frac{-x - 1}{2}$	
	$4x^2 - 28 - x^2 - 2x - 1 = -2x - 2$	
	$3x^2 - 27 = 0$	✓ correct standard form
	$x^2 - 9 = 0$	✓ factors
	(x-3)(x+3)=0	
	x = -3 or $x = 3$	$\checkmark x$ – values
	$y = \frac{-3+1}{2} \qquad \text{or} \qquad y = \frac{3+1}{2}$ $y = -1 \qquad \text{or} \qquad y = 2$	
	y = -1 or $y = 2$	$\checkmark y$ – values (6)
1.4	$3^{2018} + 3^{2016}$	
	3^{2017}	
	$=\frac{3^{2017}(3^1+3^{-1})}{3^{2017}}$	✓ common factor 3 ²⁰¹⁷
		- common factor 3
	$= 3 + \frac{1}{3}$ $= 3\frac{1}{3} \text{ or } \frac{10}{3}$	
	1 10	✓ answer
	$=3\frac{1}{3}$ or $\frac{1}{3}$	
	OR/OF	OR/OF

Mathematics/P1 4 DBE/November 2016

Mathematics/P1	4 NSC – Memorandum	DBE/November 2016
$\frac{3^{2018} + 3^{2016}}{3^{2017}}$ $= \frac{3^{2016}(3^2 + 1)}{3^{2017}}$ $= \frac{10}{3}$		✓ common factor 3 ²⁰¹⁶ ✓ answer
OR/OF		OR/OF
$\frac{3^{2018} + 3^{2016}}{3^{2017}}$ $= \frac{3^{2018}}{3^{2017}} + \frac{3^{2016}}{3^{2017}}$ $= 3 + \frac{1}{3}$		✓ dividing by 3 ²⁰¹⁷
$=3\frac{1}{3} \text{ or } \frac{10}{3}$		✓ answer (2)
1.5.1 $3x-5 \ge 0$ and $x \ne 3$ $x \ge \frac{5}{3}$ and $x \ne 3$		$ \begin{array}{c} \checkmark \ 3x - 5 \ge 0 \\ \checkmark \ x \ge \frac{5}{3} \\ \checkmark \ x \ne 3 \end{array} $ (3)
1.5.2 $\frac{\sqrt{3x-5}}{x-3} = 1$ $\sqrt{3x-5} = x-3$		$\checkmark \sqrt{3x-5} = x-3$
$3x-3 = x-3$ $3x-5 = (x-3)^{2}$ $3x-5 = x^{2}-6x+9$ $x^{2}-9x+14=0$	NOTE: If $x = 2$ is not rejected, then maximum $3 / 4$ marks	$\checkmark 3x - 5 = (x - 3)^2$
(x-7)(x-2) = 0 $x \neq 2$ or $x = 0$	7	✓ factors $\checkmark x = 7$
		(4) [26]

Mathematics/P1 5 DBE/November 2016 NSC – Memorandum

2.1.1	30 - 10 - 10	
2.1.1	$30; 10; \frac{10}{3}$	1
	$a = 30 \qquad r = \frac{1}{3}$	$\checkmark r = \frac{1}{3}$
	$T_n = ar^{n-1}$	
	$\frac{10}{729} = 30\left(\frac{1}{3}\right)^{n-1}$	
	$\left(\frac{729}{729} - \frac{30}{3}\right)$	✓ substitution into correct formula
	$\frac{1}{2187} = \left(\frac{1}{3}\right)^{n-1}$	
	1 2187	$\checkmark 3^{-7} = 3^{1-n}$ or
	$3^{-7} = 3^{1-n} \qquad OR/OF \qquad \left(\frac{1}{3}\right)^7 = \left(\frac{1}{3}\right)^{n-1}$ $-7 = 1 - n$	$\left(\frac{1}{3}\right)^7 = \left(\frac{1}{3}\right)^{n-1} \text{ or }$
	$ \begin{array}{c c} -7 &= 1 - n \\ n &= 8 \end{array} $ $7 = n - 1$	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$ use of logs
	n = 8	$\checkmark n=8$
	a	(4)
2.1.2	$S_{\infty} = \frac{a}{1-r}$	
	$=\frac{30}{1-\frac{1}{3}}$	✓ substitution into correct
	$1-\frac{1}{3}$	formula
	= 45	✓answer
2.2	$S_n = a + (a+d) + \dots + (a+(n-2)d) + (a+(n-1)d)$ (1)	\checkmark expanding S_n (2)
	$S_n = (a + (n-1)d) + (a + (n-2)d) + \dots + (a+d) + a (2)$	✓ reverse writing
	Adding both equations/ <i>Tel die twee vergelykings bymekaar:</i> $2S_n = 2a + (n-1)d + 2a + (n-1)d + 2a + (n-1)d + \dots$	reverse writing
	$2S_n = 2a + (n-1)a + 2a + (n-1)a + 2a + (n-1)a + \dots$ $= n[2a + (n-1)d]$	$\checkmark 2S_n = n[2a + (n-1)d]$
	$S_n = \frac{n}{2} [2a + (n-1)d]$	$\checkmark S_n = \frac{n}{2} [2a + (n-1)d]$
	$\int_{0}^{\infty} \frac{1}{2} \left[\frac{2u + (n-1)u}{2} \right]$	$ \begin{array}{c c} & 2 \\ & 2 \end{array} $ (4)
	OR/OF	, ,
	$S_n = a + (a+d) + \dots + (a+(n-2)d) + T_n $ (1)	\checkmark expanding S_n
	$S_n = T_n + (T_n - d) + (T_n - 2d) + \dots + a$ Adding both equations/Tel die twee vergelykings bymekaar:	✓reverse writing
	$2S_{n} = (a + T_{n}) + (a + T_{n}) + (a + T_{n}) + \dots + (a + T_{n})$	$\checkmark 2S_n = n(a + T_n)$
	$S_n = \frac{n}{2}(a + T_n)$	
	but $Tn = a + (n-1)d$	
	$S_n = \frac{n}{2} [2a + (n-1)d]$	$\checkmark S_n = \frac{n}{2} [2a + (n-1)d]$
	$\begin{bmatrix} & & & \\ & & & 2 \end{bmatrix}^{2\alpha} & (\alpha - 1)^{\alpha} \end{bmatrix}$	(4)
		[10]

Mathematics/P1 6 DBE/November 2016

NSC-Memorandum

DBE/November 2016

3.1	-1; 2;5	
	$T_n = -1 + (n-1)(3)$ = $3n - 4$	$\checkmark 3n$ $\checkmark -4$
		(2)
3.2	$T_{43} = 3(43) - 4$ OR/ OF $T_{43} = -1 + (43 - 1)(3)$ = 125 NOTE: Answer only 2 / 2	✓ subs of 43 ✓ answer (2)
3.3	$T_n = 3n - 4$	
3.3	$S_n = \sum_{k=1}^n T_k = -1 + 2 + 5 + \dots + 3n - 4$	$\checkmark S_n = \sum_{k=1}^n T_k$
	$S_n = \frac{n}{2} [-1 + 3n - 4]$ or $S_n = \frac{n}{2} [-2 + (n-1)3]$	✓ substitution into correct formula
	$=\frac{n}{2}[3n-5]$	
	$=\frac{3n^2-5n}{2}$	$\checkmark \frac{n}{2} [3n-5] \text{ or } \frac{3n^2 - 5n}{2}$
	OR/OF	OR/OF
	$T_n = 3n - 4$	
	$\sum_{k=1}^{n} T_k = 3(1) - 4 + 3(2) - 4 + 3(3) - 4 + \dots + 3n - 4$	\checkmark (1) - 4 + 3(2) - 4 + 3(3) - 4 + + 3n - 4
	= 3(1+2+3++n)-4n	$\checkmark 3(1+2+3++n)-4n$
	$= \frac{3n(n+1)}{2} - 4n$ $= \frac{3n^2 - 5n}{3}$	$\checkmark \frac{3n^2 - 5n}{2}$
	2	(3)

Need an amazing tutor? www.teachme2.com/matric

Mathematics/P1

8 NSC – Memorandum DBE/November 2016

3.4	$T_{11} = (T_{11} - T_{10}) + (T_{10} - T_{9}) + (T_{9} - T_{8})$	$+ \dots + (T_3 - T_2) + (T_2 - T_1) + T_2$	generating sum
	$125 = 29 + 26 + 23 + \dots 2 + T_1$		✓ 29+26+23+2
	$=\frac{10}{2}(29+2)+T_1$		$\checkmark \frac{10}{2}(29+2)$
	$= 155 + T_1$	NOTE:	✓ 155
	$T_1 = -30$	Answer only 1/6	✓ -30
	OR/OF	If they only use $3n - 4$ breakdown $0 / 6$	OR/OF
	$T_n = an^2 + bn + c$		
	$\therefore T_{11} = 121a + 11b + c = 125$		
	_	_	
	$T_n - T_{n-1} = an^2 + bn + c - [a(n-1)^2 - a(n-1)^2]$	+b(n-1)+c	
	$= an^2 + bn + c - an^2 + 2an - a - bn$	+ <i>b</i> – <i>c</i>	
	=2an+b-a		$\checkmark 121a+11b+c=125$
	T T 2 4		1210 120 10 120
	$T_n - T_{n-1} = 3n - 4$		\checkmark calculating $T_n - T_{n-1}$ in
	$2a = 3$ and $b - a = -4$ $a = \frac{3}{2}$ and $b = -\frac{5}{2}$		terms of a , b and c
	$a = \frac{1}{2}$ and $b = -\frac{1}{2}$		
	101 111 105		2
	121a + 11b + c = 125		$\checkmark a = \frac{3}{2}$
	$121\left(\frac{3}{2}\right) + 11\left(-\frac{5}{2}\right) + c = 125$		$\checkmark b = -\frac{5}{2}$
	c = -29		2
	$T_n = \frac{3}{2}n^2 - \frac{5}{2}n - 29$		✓ c = -29
	$\begin{bmatrix} z_n & 2 & 2 \\ 2 & 2 \end{bmatrix}$. 6 = 2)
	$T_1 = \frac{3}{2}(1)^2 - \frac{5}{2}(1) - 29$ $= -30$		
	=-30		✓ -30
			(6) [13]
			[13]

NSC – Memorandum

DBE/November 2016

4.1 $E(4; -9)$ $\checkmark x = 4$ $\checkmark y = -9$ 4.2 $f(x) = (x - 4)^2 - 9$	(2)
	(2)
4.2 $f(x) = (x-4)^2 - 9$	(2)
f(x) = (x-4) - 9	
$\left (x-4)^2 - 9 = 0 \right \qquad \qquad \bigvee y = 0$	
$(x-4)^2 = 9$	
$x-4=\pm 3$ $\checkmark x-4=\pm 3$	
x = 7 or x = 1	
$A(1;0) \qquad \qquad A(1;0)$	
OR/OF OR/OF	
$f(x) = (x-4)^2 - 9$	
$0 = x^2 - 8x + 16 - 9$ $\checkmark y = 0$	
$0 - r^2 - 8r + 7$	
(x-7)(x-1) = 0 $(x-7)(x-1)$	
y = 7 or $y = 1$	
$A(1;0) \qquad \qquad A(1;0)$	
	(3)
4.3 $C(0;7)$ NOTE: $\checkmark C(0;7)$	
M(8;7) Answer only $3/3$ $\checkmark x = 8$	
$\checkmark y = 7$	(3)
4.4 C(0;7)	(3)
(x, y)	
$m = \frac{7-0}{0-4}$ or $m = \frac{0-7}{4-0}$ or $0 = 4m+7$	
$m = -\frac{7}{4} \qquad m = -\frac{7}{4} \qquad m = -\frac{7}{4} \qquad \checkmark m = -\frac{7}{4}$	
$y - 0 = -\frac{7}{4}(x - 4)$	
$y = -\frac{7}{4}x + 7$ $y = -\frac{7}{4}x + 7$	
	(3)
$4.5 g: y = -\frac{7}{4}x + 7$	
	v
4 3 1 4	У
4x = -7y + 28 $7y = -4x + 28$ simplification	
I = I + I = I + I = I = I = I = I = I =	
$y = -\frac{4}{7}x + 4$ $y = -\frac{4}{7}x + 4$	
OR/OF OR/OF	

Mathematics/P1 10 DBE/November 2016
NSC – Memorandum

	NSC – Memorandum		
	g^{-1} is the straight line through (0; 4) and (7; 0) y = mx + 4 0 = 7m + 4 $y = -\frac{4}{7}x + 4$	✓ straight line through (0; 4) and (7; 0) ✓ substitution ✓ $y = -\frac{4}{7}x + 4$	
	,	(3)	
4.6	$x \cdot f(x) \le 0$ $\therefore x \le 0 \text{ or } 1 \le x \le 7$	$\checkmark \checkmark x \le 0$ $\checkmark \checkmark 1 \le x \le 7$	
		(4)	
		[18]	

5.1	$a^0 = 1$	$\checkmark x = 0$	
	T(0; 1)	$\checkmark y = 1$	(2)
5.2	$g(x) = a^{x}$	✓ substitution	
	$9 = a^2$		
	a=3 $a>0$	$\checkmark a = 3$	(2)
5.3	$y = \left(\frac{1}{3}\right)^x \text{or} y = 3^{-x}$	$\checkmark \checkmark y = \left(\frac{1}{3}\right)^x$	(2)
5.4	$3^0 < 3^{\log_3 x} < 3^1$,	
	1 < x < 3	$\checkmark 1 < x$ $\checkmark x < 3$	(2)
	OR	<i>x</i> (5	(2)
	$\uparrow y$		
	1 < x < 3	✓ 1 < <i>x</i> ✓ <i>x</i> < 3	(2) [8]

 $\begin{array}{c} 11\\ NSC-Memorandum \end{array}$

DBE/November 2016

6.1	q = 1	✓ q=1
		(1)
6.2	Subs $(0;0)$ $0 = \frac{a}{0+p} + 1$	$\checkmark 0 = \frac{a}{0+p} + 1$
	$\frac{a}{p} = -1$ $a = -p$	$\checkmark a = -p$
	Subs P:	
	$\sqrt{2} + 1 = \frac{a}{\sqrt{2} + 2 + p} + 1$ NOTE: Answer only 2 / 5	✓ substitution
	$\sqrt{2} = \frac{3}{\sqrt{2} + 2 + p}$	
	$2 + 2\sqrt{2} + \sqrt{2}p = a$	
	$2 + 2\sqrt{2} = a - p\sqrt{2} = a + a\sqrt{2}$	
	$2\left(1+\sqrt{2}\right) = a\left(1+\sqrt{2}\right)$	$ \checkmark a = 2 $ $ \checkmark p = -2 $
	$a = 2 \; ; \; p = -2$	
		(5)
6.3	Ty f	
		$\checkmark y = 1$
	y=1 x	$\checkmark y = 1$ $\checkmark x = 2$
	x = 2	✓shape
		√ (0;0)
	↓	(4) [10]

Mathematics/P1 12 DBE/November 2016 NSC – Memorandum

7.1	$F = \frac{x[(1+i)^n - 1]}{i}$ $= \frac{2500[(1+\frac{0.06}{12})^{60} - 1]}{\frac{0.06}{12}}$ $= R174 \ 425.08$	✓ $n = 60$ and $i = \frac{0.06}{12} / 0.005$ ✓ correct substitution into correct formula ✓ answer (3)
7.2.1	After eleven months, Genevieve will owe/ Na elf maande skuld Genevieve $A = 82 000 \left(1 + \frac{0,15}{12}\right)^{11}$ $= R 94006,79$	✓ n = 11 ✓ correct substitution into correct formula ✓ answer (3)
7.2.2	$P = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$ $94006,79 = \frac{3200 \left[1 - \left(1 + \frac{0,15}{12}\right)^{-n}\right]}{\frac{0,15}{12}}$ $\frac{94006,79}{3200} \times \frac{0,15}{12} = 1 - \left(1 + \frac{0,15}{12}\right)^{-n}$	✓ 94006,79 ✓ substitute into correct formula
	$\left(1 + \frac{0,15}{12}\right)^{-n} = 1 - 0,3672147$ $-n\log\left(1 + \frac{0,15}{12}\right) = \log 0,6327852$ $-n = -36,8382$ $n = 36,84$ Genevieve will have to pay 36 installments of R3 200	 ✓ correct use of logs (logs to be defined) ✓ n =36,84 ✓ 36 installments (5)

Mathematics/P1 13 DBE/November 2016 NSC – Memorandum

7.2.3 $P = \frac{x[1 - (1+i)^{-n}]}{x[1 - (1+i)^{-n}]}$

 $P = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$ $= \frac{3200 \left[1 - \left(1 + \frac{0,15}{12}\right)^{-0,83826912}\right]}{0,15}$

$$P = 2652$$

Outstanding balance after 36 installments is R2 652 Final payment will be:

$$A = 2652,00 \left(1 + \frac{0,15}{12} \right)^{1}$$
$$= R 2685,00$$

OR/OF

Balance: $94006,79 \left(1 + \frac{0,15}{12}\right)^{36} - \frac{3200 \left[\left(1 + \frac{0,15}{12}\right)^{36} - 1\right]}{\frac{0,15}{12}}$ = R2 651,72

Final payment will be:

$$A = 2651,72 \left(1 + \frac{0,15}{12}\right)^{1}$$
$$= R 2 685,00$$

$$\checkmark n = -083826912$$

✓ substitute into correct formula

✓answer

$$\checkmark 2652,00 \left(1 + \frac{0,15}{12}\right)^{1}$$

✓ answer

OR/OF

$$\sqrt{94006,79} \left(1 + \frac{0,15}{12}\right)^{36}$$

$$\sqrt{3200} \left[\left(1 + \frac{0,15}{12}\right)^{36} - 1 \right]$$

$$\sqrt{\frac{0,15}{12}}$$

$$\sqrt{2651,72}$$

✓ 2651,72
$$\left(1 + \frac{0,15}{12}\right)^{1}$$

✓ answer

(5) **[16]**

NSC – Memorandum

DBE/November 2016

0.1	() 2	1	
8.1	$f(x+h) = 4x^2$	$\checkmark A(x+h)^2$	
	$f(x+h)-f(x) = 4(x+h)^2 - 4x^2$	$\checkmark 4(x+h)^2$ $\checkmark 8xh + 4h^2$	
	$=4(x^2+2xh+h^2)-4x^2$		
	$= 4x^2 + 8xh + 4h^2 - 4x^2$	$\checkmark 8xh + 4h^2$	
	$=8xh+4h^2$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark \frac{f(x+h)-f(x)}{h}$	
	$=\lim_{h\to 0}\left \frac{8xh+4h^2}{h}\right $	$\checkmark \frac{h(8x+4h)}{h}$ $\checkmark 8x$	
	$=\lim_{h\to 0} \left\lceil \frac{h(8x+4h)}{h} \right\rceil$	$\checkmark \frac{h(8x+4h)}{1}$	
	$= \lim_{h \to 0} \left[\frac{1}{h} \right]$	$\bigvee 8x$	
	=8x		
	OR/OF	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark \frac{f(x+h)-f(x)}{}$	
	n -	h	
	$=\lim_{h\to 0}\left[\frac{4(x+h)^2-4x^2}{h}\right]$	$\checkmark \frac{f(x+h)-f(x)}{h}$ $\checkmark 4(x+h)^2$	
	$= \lim_{h \to 0} \left[\frac{4x^2 8xh + 4h^2 - 4x^2}{h} \right]$		
	$=\lim_{h\to 0} \left[\frac{8xh + 4h^2}{h} \right]$	$\checkmark 8xh + 4h^{2}$ $\checkmark \frac{h(8x + 4h)}{h}$ $\checkmark 8x$	
	$=\lim_{h\to 0}\left\lceil\frac{h(8x+4h)}{h}\right\rceil$	$\checkmark \frac{h(8x+4h)}{}$	
		h	(5)
	=8x	VOX	(5)
8.2.1	$D_{x} \left[\frac{x^2 - 2x - 3}{x - 1} \right]$		
		(x-3)(x+1)	
	$= D_x \left[\frac{(x-3)(x+1)}{x+1} \right]$	$\checkmark \frac{(x-3)(x+1)}{x+1}$ $\checkmark (x-3)$ $\checkmark 1$	
	$=D_x(x-3)$	$\checkmark(x-3)$	
	=1	√ 1	(3)
8.2.2	$f(x) = \int_{-\infty}^{\infty} \frac{1}{x^2}$	$\sqrt{r^2}$	
	$\int (x) = \sqrt{x} = x^2$	$\begin{bmatrix} \cdot & \lambda \\ 1 & -\frac{1}{2} \end{bmatrix}$	
	$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$	$\int \frac{1}{2}x^2$	
	$f(x) = \sqrt{x} = x^{\frac{1}{2}}$ $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$ $f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}$	$\sqrt{x^{\frac{1}{2}}} \\ \sqrt{\frac{1}{2}} x^{-\frac{1}{2}} \\ \sqrt{-\frac{1}{4}} x^{-\frac{3}{2}}$	
	4	,	(3)
			[11]

Mathematics/P1 15 DBE/November 2016 NSC – Memorandum

0.1		
9.1	f(x) = (x+2)(x-1)(x-4)	f(x) = (x+2)(x-1)(x-4)
	$=(x^2+x-2)(x-4)$	
	$= x^3 + x^2 - 2x - 4x^2 - 4x + 8$	✓ expansion
	$= x^3 - 3x^2 - 6x + 8$	$\sqrt{x^3 - 3x^2 - 6x + 8}$
	b = -3; $c = -6$; $d = 8$	(4)
9.2	$f(x) = x^3 - 3x^2 - 6x + 8$	
	$f^{\prime}(x)=0$	$\int f'(x) = 0$
	$3x^2 - 6x - 6 = 0$	$\checkmark f'(x) = 0$ $\checkmark 3x^2 - 6x - 6$
	$x^2 - 2x - 2 = 0$	$\checkmark 3x^2 - 6x - 6$
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$=\frac{2\pm\sqrt{(2)^2-4(1)(-2)}}{2(1)}$	/1
		✓ substitution into correct formula
	$=\frac{2\pm\sqrt{12}}{2}$	
	-	
	x = -0.73	$\checkmark x = -0.73 \tag{4}$
9.3	$f(x) = x^3 - 3x^2 - 6x + 8$, , , , , , , , , , , , , , , , , , ,
	$f(-1) = (-1)^3 - 3(-1)^2 - 6(-1) + 8$ or $f(-1) = (1)(-2)(-5)$	
	=10 =10	f(-1)=10
	$f'(-1) = 3(-1)^2 - 6(-1) - 6$	
	= 3	f'(-1) = 3
	y-10=3(x+1)	✓ substitution
	y = 3x + 13	$\checkmark y = 3x + 13 \tag{4}$
9.4	f''(x) = 6x - 6	$\checkmark f''(x) = 6x - 6$
	Ty /	
	f''	
	/ *	
	$x \rightarrow x$	$\checkmark x$ - intercept
	(1; 0)	✓ y- intercept
	(0; -6)	(3)
		<u> </u>

NSC - Memorandum

DBE/November 2016

9.5	f concave upwards			
	f''(x) > 0	NOTE:	$\checkmark f''(x) > 0$	
	6x - 6 > 0	Answer only 2 / 2		
	x > 1		$\checkmark x > 1$	(2)
				[17]

QUESTION/VRAAG 10

 $f(x) = -3x^3 + x$ $-9x^2 + 1 = 0$ $x = \frac{1}{3}$ or $x = -\frac{1}{3}$

Maximum of f will be at $x = \frac{1}{2}$

 $f\left(\frac{1}{3}\right) = -3\left(\frac{1}{3}\right)^3 + \left(\frac{1}{3}\right)$

Maximum of f(x)+q will also be at $x=\frac{1}{3}$

 $f\left(\frac{1}{3}\right) + q = \frac{8}{9}$ $\frac{2}{9} + q = \frac{8}{9}$

For f(x) + q to have a maximum of $\frac{8}{9}$ the value of qhas to be $\frac{2}{3}$.

 $\sqrt{-9x^2+1}=0$ $\checkmark x = \frac{1}{3}$ or $x = -\frac{1}{3}$

 \checkmark M aximum at $x = \frac{1}{3}$

 $\checkmark f\left(\frac{1}{3}\right) = \frac{2}{9}$

 $\checkmark \frac{2}{9} + q = \frac{8}{9}$ $\checkmark q = \frac{2}{3}$

[6]

Mathematics/P1 17 DBE/November 2016 NSC – Memorandum

QUESTION/VRAAG 11

-		,
11.1.1	Let the event Veli arrive late for school be V. Let the event Bongi arrive late for school be B. / Laat V die gebeurtenis wees dat Veli Laat B die gebeurtenis wees dat Bongi laatkom P(V or B) = 1 - 0,7 = 0,3	✓ answer (1)
11.1.2	P(V or B) = P(V) + P(B) - P(V and B)	\checkmark P(V or B) = P(V) +P(B)
	0.3 = 0.25 + P(B) - 0.15	–P(V and B)
	• • • • • • • • • • • • • • • • • • • •	✓substitution
	P(B) = 0.2	✓ 0,2
		(3)
11.1.3	$P(V) \times P(B) = 0.25 \times 0.2$	$\checkmark P(V) \times P(B) = 0.05$
	= 0,05	
	·	
	$P(V) \times P(B) \neq P(V \text{ and } B)$	$\checkmark P(V) \times P(B) \neq P(V \text{ and } B)$
	V and B are NOT independent/	✓ NOT independent
	V en B is NIE onafhanklik nie.	(3)
		(3)
11.2.1	6!=720	✓ 6! or 720
11.2.1	0:-720	
11 2 2	Number of among amonts	(2)
11.2.2	Number of arrangements	(21 21
	$=3!\times3!\times2$	✓ 3! × 3!
		✓ × 2
	= 72	✓ answer
		(3)
11.2.3	P(hearts next to each other) = $\frac{3! \times 4!}{1!}$	✓ ✓ 3!×4!
111210	6!	V V 3!×4!
	144	
	$={720}$	
	$=\frac{1}{5}$ or 0,2 or 20%	$\checkmark \frac{1}{5}$ or 0,2 or 20%
	5	5
	OR/OF	
		OR/OF
	$4\times3!\times3!$	
	P(hearts next to each other) = $\frac{4 \times 3! \times 3!}{6!}$	√ √
	$=\frac{144}{720}$	
	720	1
	$=\frac{1}{5}$ or 0,2 or 20%	$\checkmark \frac{1}{5}$ or 0,2 or 20%
	$= \frac{-}{5} \text{ or } 0,2 \text{ or } 20\%$	5
		(3)
		[15]

TOTAL/TOTAAL: 150