

Principal Component Analysis and Exploratory Factor Analysis

Module 4: Data Issues, Assumptions, and Assessing Reliability

Karen Grace-Martin

Workshop Outline

- 1. Assumptions of PCA & EFA
- 2. Data requirements and issues
 - Reverse coding
 - Sample sizes
 - Normality, ordinal, and binary variables
 - Factorability of the Correlation Matrix
 - Missing Data
- 3. Assessing Scale Reliability and Validity

1. Assumptions

Assumptions of

Principal Component Analysis

- The measured variables are themselves of interest
- 2. No measurement error
- 3. Variables appropriate for correlations
- Linear relationships between all variables
- 5. Adequate Sample Size

Exploratory Factor Analysis

- 1. There are latent variables that inform the measured variables
- Multivariate Normality (especially for ML extraction)
- 3. Variables appropriate for correlations
- Linear relationships between all variables
- 5. Adequate Sample Size

2.1 Reverse Coding

Reverse Coding

LifeOrientBestR = 5 - LifeOrientBest.2

The General Formula:

reversed score = (minimum score) + (maximum score) – actual score

Variable Values						
Value		Label				
LifeOrientBest.2: In uncertain times, I	1	agree a lot				
usually expect the best	2	agree a little				
asaany expect the sest	3	disagree a little				
	4	disagree a lot				
LifeOrientWrong.2: If something can go	1	disagree a lot				
wrong for me, it will	2	disagree a little				
	3	agree a little				
	4	agree a lot				
LifeOrientOpt.2 I am always optimistic	1	agree a lot				
about my future	2	agree a little				
,	3	disagree a little				
	4	disagree a lot				
LifeOrientMyWay. I am always optimistic	1	disagree a lot				
about my future I hardly ever expect	2	disagree a little				
	3	agree a little				
things to go my way	4	agree a lot				
LifeOrientCount.2 I rarely count on good	1	disagree a lot				
things happening to me	2	disagree a little				
anne rappening to me	3	agree a little				
	4	agree a lot				
LifeOrientGood.2 Overall, I expect more	1	agree a lot				
good things to happen to me than bad.		agree a little				
O mapped to me than badi	3	disagree a little				
	4	disagree a lot				

Reverse Coding

LifeOrientBestR = 5 - LifeOrientBest.2

The General Formula:

reversed score = (minimum score) + (maximum score) – actual score

Variable Values						
Value		Label				
LifeOrientBest.2: In uncertain times, I	1	agree a lot				
usually expect the best	2	agree a little				
asaan, expect the sest	3	disagree a little				
	4	disagree a lot				
LifeOrientBest.R: In uncertain times, I	1	disagree a lot				
usually expect the best	2	disagree a little				
asaany expect the sest	3	agree a little				
	4	agree a lot				
LifeOrientMyWay. I am always optimistic	1	disagree a lot				
about my future I hardly ever expect	2	disagree a little				
	3	agree a little				
things to go my way	4	agree a lot				

Correlations					
	LifeOrientBest.2	LifeOrientBestR			
LifeOrientMyWay.2	.374	374			

2.2 Sample Size

Overfitting

Overfitting

What is it, exactly?

Creating a model that is too complex for the amount of data.

- Loadings are too large
- Too many loadings are non-zero

It appears to predict well with the existing data set, but...

- it does not fit future observations
- it does not replicate

Minimum Sample Size Suggestions

Observations per Variable:

- 10-15 Observations per variable (Pett, Lackey, & Sullivan)
- 10 Observations per variable (Nunnally, 1978)
- 5 Observations per variable or 100 observations, whichever is larger (Hatcher, 1994)
- 2 Observations per variable (Kline, 1994)

Observations per Factor:

20 Observations per factor (Arrindel & van der Ende, 1985)

Absolute number of Observations:

- 100 Observations=sufficient if clear structure; more is better (Kline, 1994)
- 100 Observations=poor; 300=good; >1000=excellent (Comrey & Lee, 1992)
- 300 Observations, though fewer ok if high correlations (Tabachnik & Fidell, 2001)

Required Sample Size is affected by:

- Number of variables
- Number of factors
- Size and cleanliness of loadings onto factors
- Number of items per factor
- Missing data
- Measurement error

2.3 Normality, Ordinal, and Binary Variables

Pearson Correlation

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)S_X S_Y}$$

$$r_{tet} = \cos \frac{180^{\circ}}{1 + \sqrt{BC / AD}}$$

CrossTabulation						
Highway						
0 No 1 Yes						
Rural	0 No	7	13			
		\boldsymbol{A}	\boldsymbol{B}			
	1 Yes	28	18			
		\boldsymbol{C}	D			

Crosstabulation							
Counts							
Counts	LifeOrientOpt.2						
	1 agree a lot 2 agree a little 3 disagree a little 4 disagree a lot						
LifeOrientBest.2	1 agree a lot	89	63	10	0		
	2 agree a little	155	225	60	6		
	3 disagree a little	28	129	98	11		
	4 disagree a lot	4	21	33	18		

Pearson Correlations						
LifeOrientBest.2 LifeOrientOpt.2						
LifeOrientBest.2	1	.473				
LifeOrientOpt.2	.473	1				

Polychoric Correlations					
LifeOrientBest.2 LifeOrientOpt.2					
LifeOrientBest.2	1.000 .54				
LifeOrientOpt.2 .541 1.00					

R	Psych package, fa function with cor= "poly" option
Stata	 user-written command <i>polychoric</i> to calculate the correlation matrix Use as input for factor analysis
SAS	 Pre 9.4 1. Proc freq to calculate the polychoric correlation matrix 2. Use as input for factor analysis v. 9.4 Outplc= option in proc corr saves the matrix as data
SPSS	Install R HetCor Extension into SPSS 1. HetCor R extension to calculate the correlation matrix http://www-01.ibm.com/support/docview.wss?uid=swg21477550 2. Use as input for factor analysis Or Basto & Pereira's SPSS R-menu extension http://www.jstatsoft.org/v46/i04/paper

Pearson

	Pearson Correlations								
cHSRelief cHSAdmir cHSGetHelp cHSOwn cHSWorkO									
cHSRelief	1.000	.116	.635	.219	.056				
cHSAdmir	.116	1.000	.243	.484	.294				
cHSGetHelp	.635	.243	1.000	.444	.366				
cHSOwn	.219	.484	.444	1.000	.541				
cHSWorkOut	.056	.294	.366	.541	1.000				

Polychoric

Polychoric Correlations									
cHSRelief cHSAdmir cHSGetHelp cHSOwn cHSWorkOut									
cHSRelief	1.000	.137	.744	.242	.030				
cHSAdmir	.137	1.000	.315	.569	.319				
cHSGetHelp	.744	.315	1.000	.509	.368				
cHSOwn	.242	.569	.509	1.000	.609				
cHSWorkOut	.030	.319	.368	.609	1.000				

Input Polychoric Correlations

Factor

.435

.475 .715 .763 .556

Factor

.467

.532

.772

.818

.547

Factor Matrix^a

Pearson

	Total Variance Explained							trix ^a
	Initial Eigenvalues Extraction Sums of Squared Loadings						Fact	
Factor	Total	% of Variance	Cumulative %	Total	% of Variance		1	
1	2.399	47.973	47.973	1.818	36.354	36.354	cHSRelief	.4
2	1.194	23.877	71.850				cHSAdmir	.4
3	.725	14.500	86.351				cHSGetHelp	.7
4	.393	7.856	94.207				•	
5	.290	5.793	100.000				cHSOwn cHSWorkOut	.7 5.

Extraction Method: Principal Axis Factoring.a

Polychoric

Total Variance Explained							Factor Ma
	Initial Eigenvalues Extraction Sums of Squared Loadin				red Loadings		
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	2.584	51.685	51.685	2.064	41.270	41.270	cHSRelief
2	1.254	25.073	76.758				cHSAdmir
3	.690	13.791	90.549				cHSGetHelp
4	.294	5.885	96.434				•
5	.178	3.566	100.000				cHSOwn cHSWorkOut
							CHSWOIKOUL

Extraction Method: Principal Axis Factoring.a

THE ANALYSIS F A C T O R

2.4 Factorability of the Correlation Matrix

Pearson Correlations									
cHSRelief cHSAdmir cHSGetHelp cHSOwn cHSWorkOu									
cHSRelief	1.000	.116	.635	.219	.056				
cHSAdmir	.116	1.000	.243	.484	.294				
cHSGetHelp	.635	.243	1.000	.444	.366				
cHSOwn	.219	.484	.444	1.000	.541				
cHSWorkOut	.056	.294	.366	.541	1.000				

We need correlations:

- Not too low
- Not too high
- For variables that are not redundant

Factorability of the Correlation Matrix

Determinant > 0

- Matrix has an inverse
- They are important in calculating eigenvalues and eigenvectors

Positive Definite:

- The matrix contains as much information as is implied.
- The last eigenvalue will be positive
- Negative Eigenvalues: Possible in FA, not in PCA

Pearson Correlations								
cHSRelief cHSAdmir cHSGetHelp cHSOwn cHSWorkO								
cHSRelief	1.000	.116	.635	.219	.056			
cHSAdmir	.116	1.000	.243	.484	.294			
cHSGetHelp	.635	.243	1.000	.444	.366			
cHSOwn	.219	.484	.444	1.000	.541			
cHSWorkOut	.056	.294	.366	.541	1.000			

Determinant = .236

Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy

Bartlett's Test of Sphericity

Kaiser-Meyer-Olkin (KMO)

- Marvelous - - . 90s
- Meritorious - - .80s
- Middling - - . 70s
- Mediocre - - . 60s
- Miserable - - . 50s
- Unacceptable - below .50

Varies from 0 to 1

Indicates whether or not the variables are able to be grouped into a smaller set of underlying factors

Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measurement, 34(1), 111-117.

KMO and Bartlett's Test								
Kaiser-Meyer-Olkin Measure	.626							
Bartlett's Test of Sphericity	130.587							
	df	10						
	Sig.	.000						

- Marvelous - - .90s
- Meritorious - - .80s
- Middling - - . 70s
- Mediocre - - . 60s
- Miserable - - .50s
- Unacceptable - below .50

Anti-Image Correlations									
cHSRelief cHSAdmir cHSGetHelp cHSOwn cHSWorkO									
.504ª	.005	639	024	.230					
.005	.729ª	026	379	036					
639	026	.603ª	199	271					
024	379	199	.692ª	400					
.230	036	271	400	.643ª					
	.504 ^a .005 639 024	cHSRelief cHSAdmir .504a .005 .005 .729a 639 026 024 379	cHSRelief cHSAdmir cHSGetHelp .504a .005 639 .005 .729a 026 639 026 .603a 024 379 199	cHSRelief cHSAdmir cHSGetHelp cHSOwn .504a .005 639 024 .005 .729a 026 379 639 026 .603a 199 024 379 199 .692a					

a. Measures of Sampling Adequacy(MSA)

KMO and Bartlett's Test							
Kaiser-Meyer-Olkin Measure of Sampling Adequacy62							
Bartlett's Test of Sphericity	130.587						
	df	10					
	.000						

Null hypothesis: correlation matrix is an identity matrix.

Pearson Correlations									
cHSRelief cHSAdmir cHSGetHelp cHSOwn cHSWorkOu									
cHSRelief	1.000	.116	.635	.219	.056				
cHSAdmir	.116	1.000	.243	.484	.294				
cHSGetHelp	.635	.243	1.000	.444	.366				
cHSOwn	.219	.484	.444	1.000	.541				
cHSWorkOut	.056	.294	.366	.541	1.000				

Significant result indicates matrix is not an identity matrix.

What to do with an Ill-Conditioned Matrix

Check:

- correlations of items with each other
- for duplicate records in the data
- including item totals along with individual items
- for subjects with similar sets of responses
- that you have sufficient subjects per item

2.5 Missing Data

Missing Data

- Listwise Deletion
- Pairwise Deletion
- Base the Factor Analysis on EM Correlation Matrix
- Multiple Imputation

Don't use: mean imputation

Listwise Deletion:

Drop a case if any values are missing on any variable

Pairwise Deletion:

Drop a case from each correlation if any values are missing only on one of the two variables used in that specific correlation

Pearson Correlations ^a								
cHSRelief cHSAdmir cHSGetHelp cHSOwn cHSWorkOu								
cHSRelief	1.000	.116	.635	.219	.056			
cHSAdmir	.116	1.000	.243	.484	.294			
cHSGetHelp	.635	.243	1.000	.444	.366			
cHSOwn	.219	.484	.444	1.000	.541			
cHSWorkOut	.056	.294	.366	.541	1.000			

a. Listwise N=94

Pearson Correlations ^a										
cHSRelief cHSAdmir cHSGetHelp cHSOwn cHSWorkOut										
cHSRelief	Pearson Correlation	1		.108			.635		.206	.048
	N	96		96			95		96	95
cHSAdmir	Pearson Correlation	.108		1			.242		.486	.296
	N	96		96			95		96	95
cHSGetHelp	Pearson Correlation	.635		.242			1		.443	.366
	N	95		95			95		95	94
cHSOwn	Pearson Correlation	.206		.486			.443		1	.556
	N	96		96			95		96	95
cHSWorkOut	Pearson Correlation	.048		.296			.366		.556	1
	N	95		95			94		95	95

Missing Data

EM Algorithm: gives unbiased correlation estimates with MAR missing data (see Graham, 2009)
- in SPSS MVA

EM Correlations									
	cHSRelief	cHSAdmir	cHSGetHelp	cHSOwn	cHSWorkOut				
cHSRelief	1								
cHSAdmir	.108	1							
cHSGetHelp	.634	.243	1						
cHSOwn	.206	.486	.442	1					
cHSWorkOut	.047	.296	.365	.556	1				

3. Assessing Reliability and Validity

If we used the scale again, would it yield the same results?

Does the scale measure what we intend to?

	Reliability (Precision)		
Validity (Accuracy)		High	Low
	High		
	Low		

Common Types of:

Reliability

- Test Retest
- Alternate Form
- Split Half
- Parallel
- Inter-rater or Intra-rater Reliability
- Internal Consistency

Validity

- Face/content
- Response process
- Criterion
- Construct
- Convergent
- Discriminant

Measures of Internal Consistency

- Cronbach's alpha
- Variations on Cronbach's alpha
 - Split half correlation with Brown-Spearman adjustment
 - Kuder-Richardson 20
- Only used for composite measurements

Assessing Scale Reliability

Cronbach's α

$$\alpha = \left(\frac{N}{N-1}\right) \frac{S^2 - \Sigma s_i^2}{S^2}$$

Where S^2 = variance of summated scores and Σs_i^2 =sum of individual variances.

Assumptions:

- All items describe a single factor
- All items contribute equally

Criticisms of Cronbach's Alpha

- Not a substitute for other methods for assessing reliability
- Affected by number of items
- Not a measure of unidimensionality or validity
- Not useful for scale purification

Scale Purification

By convention:

Reliability Statistics			
Cronbach's Alpha	N of Items		
.719	5		

.80 good

.70 adequate

.60 lenient cutoff is common in exploratory research

Item-Total Statistics						
	Scale Mean if	Scale Variance if	Corrected Item-Total	Cronbach's Alpha i		
	Item Deleted	Item Deleted	Correlation	Item Deleted		
cHSRelief	10.89	8.999	.359	.720		
cHSAdmir	11.12	8.900	.384	.709		
cHSGetHelp	10.40	7.620	.625	.608		
cHSOwn	10.82	7.913	.610	.617		
cHSWorkOut	10.77	9.192	.433	.689		

Cronbach's Alpha Recommendations

- 1. Always try to get test-retest or inter-rater reliability
- 2. Use confirmatory factor analysis for
 - 1. Unidimensionality
 - 2. Scale purification
- 3. Put it in only if you are forced to

Reporting Reliability Results

A questionnaire was employed to measure different, underlying constructs. One construct, 'Attitude towards counseling', consisted of five questions. The scale had a moderate level of internal consistency, as determined by a Cronbach's alpha of 0.719.

122 Types of Validity

One Hundred and Twenty-Two Kinds of Validity for Measurement

Administrative				
Artifactual				
Behavior domain				
Cash				
Cluster domain				
Cognitive				
Common sense				
Concept				
Conceptual				
Concrete				
Concurrent				
Concurrent true				
Congruent				
Consensual				
Consequential				
Construct				
Constructor				
Content				
Context				
Contextual				
Convergent				
Correlational				
Criterion				
Cross-age				
Cross-cultural				
Cross-sectional				
Cultural				
Curricular				

Descriptive Design Diagnostic Differential Direct Discriminant Discriminative Domain Domain-selection Edumetric Elaborative Elemental **Empirical** Empirical-judgmental Etiological External test External Extratest Face Factorial Fiat Forecast true Formative Functional General Generalized Generic Higher-order Incremental Indirect Inferential

Instructional Rational Internal test Raw Internal Relational Interpretative Relevant Interpretive Representational Intrinsic Response Intrinsic content Intrinsic correlational Sampling Intrinsic rational Scientific Scoring Item Job component Judgmental Semantic Linguistic Local Site Logical Longitudinal Specific Lower-order Manifest Natural Nomological Symptom Occupational Synthetic Operational System Performance Systemic Practical Predictive Trait Predictor Procedural Prospective True Psychological and logical User Psychometric Washback

Retrospective Self-defining Single-group Newton, P. E., & Shaw, Situational S. D. (2013). Standards Structural Substantive for talking and Summative thinking about validity. Psychological Methods, 18(3), 301. Theoretical Translation Treatment

46

Decision

Definitional Derived

Types of Validity

Content-Related (appropriate content)	Criterion Related (relationship to other measures)
Face Validity:	Concurrent Validity:
Does the scale appear to measure what it aims to?	Does the measure relate to an existing similar measure?
Construct Validity:	Predictive Validity:
Does the measure relate to underlying theoretical concepts?	Does the measure predict later performance on related criterion?

Recommendations for next steps

- 1. Check validity
- 2. Check internal consistency, ideally via CFA
- 3. Check other forms of reliability
- If there are any changes to be made to the items, revise, collect a new sample and rerun EFA.

Repeat steps 1-3 until no further changes need to be made.

- 5. Collect a new sample and run a confirmatory factor analysis
- 6. Publish your scale, with results from the EFA and CFA