Билет 65

Aвтор1, ..., AвторN

22 июня 2020 г.

Содержание

0.1	Билет 65: Теорема о дифференцировании равномер- но сходящейся последователь-	
	ности (ряда). Суще- ственность равномерности.	1

0.1. Билет 65: Теорема о дифференцировании равномер- но сходящейся последовательности (ряда). Суще- ственность равномерности.

Теорема 0.1.

 $f_n \in C^1[a,b], \ f_n(c) \to A$ и f'_n равномерно сходятся к g на [a,b].

Тогда $f_n \rightrightarrows f$ на $[a,b], f \in C^1[a,b]$ и f'=g.

В частности $\lim_{n\to\infty} f_n'(x) = (\lim_{n\to\infty} f_n(x))'$.

Доказательство.

$$\int_{c}^{x} g(t) dt = \lim_{n \to \infty} \int_{c}^{x} f'_{n}(t) dt = \lim_{n \to \infty} (f_{n}(x) - f_{n}(c)) = \lim_{n \to \infty} f_{n}(x) - A.$$

 $f_n(x) \rightrightarrows A + \int\limits_c^x g(t) \, dt =: f(x)$ мы проверили равномерную сходимость. И f(x) – дифференцируемая функция.

$$f'(x)=g(x)$$
 – непрерывная функция, т.к. $f'_n\rightrightarrows g$ и f_n непрерывние.

Следствие.

 $u_n \in C^1[a,b] \ c \in [a,b] \ \sum u_n'(x)$ равномерно сходится на [a,b] и $\sum u_n(c)$ сходится.

Тогда $\sum u_n(x)$ равномерно сходится к непрерывной дифференцируемной функции и $(\sum u_n(x))' = \sum u'_n(x)$

Доказательство.

$$S_n = \sum_{k=1}^n u_k \Rightarrow S'_n = \sum_{k=1}^n u'_k$$

По условию $\sum\limits_{k=1}^n u_k'
ightharpoonup g$ и $S_n(c)
ightharpoonup A.$

И тогда по прошлой теореме

$$S_n \rightrightarrows S, S \in C^1[a,b] \text{ if } S' = g \Rightarrow (\sum u_n(x))' = \sum u_n'(x).$$

Пример.

Равномерная сходимость ряда производной важна:

 $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ — равномерно сходится по признаку Вейерштрасса

$$(\sum\limits_{n=1}^{\infty}\frac{\sin nx}{n^2})'\stackrel{?}{=}\sum\limits_{n=1}^{\infty}(\frac{\sin nx}{n^2})'=\sum\limits_{n=1}^{\infty}\frac{\cos nx}{n}$$
 — расходится при $x=2\pi k$

Т.е. равенства нет.