Wprowadzenie do wykorzystania pakietów nnet i caret

Michał Ramsza

Sieć neuronowa / struktura

- Niech dany będzie graf skierowany G = (V, E), gdzie V jest zbiorem wierzchołków a E jest zbiorem krawędzi.
- Zakładamy, że w grafie nie ma cykli.
- W zbiorze wierzchołków V wyróżniamy pozbiór I
 (wejścia) oraz podzbiór O (wyjścia). Te wierzchołki nie
 realizują żadnych funkcji.
- □ Pozostałe wierzchołki tworzą podzbiór *N*.
- □ Dla dowolnego n ∈ N przez pre(n) oznaczamy zbiór wierzchołków v ∈ V spełniających (v, n) ∈ E.

Sieć neuronowa / struktura

- Niech dany będzie graf skierowany G = (V, E), gdzie V jest zbiorem wierzchołków a E jest zbiorem krawędzi.
- Zakładamy, że w grafie nie ma cykli.
- W zbiorze wierzchołków V wyróżniamy pozbiór I
 (wejścia) oraz podzbiór O (wyjścia). Te wierzchołki nie
 realizują żadnych funkcji.
- □ Pozostałe wierzchołki tworzą podzbiór *N*.
- □ Dla dowolnego n ∈ N przez pre(n) oznaczamy zbiór wierzchołków v ∈ V spełniających (v, n) ∈ E.

Sieć neuronowa / obliczenia

□ Wszystkie wierzchołki n ∈ N realizują funkcje postaci

$$f_n(x_n) = \theta_n(u_n(x_n)),$$

- gdzie θ to funkcja aktywacji a u_n to funkcja agregacji. Wektor $x_n = (..., x_{nk}, ...)$ dla dowolnego $k \in \text{pre}(n)$ spełnia $x_{nk} = f_k(x_k)$.
- □ Dla dowolnego n ∈ N funkcje f_n są parametryzowane wektorem parametrów w_n. Wszystkie parametry w sieci tworzą wektor w.

Sieć neuronowa / obliczenia / typowe funkcje

- Typowe funkcje agregujące są proporcjonalne do iloczynów skalarnych i metryk.
- Typowe funkcje aktywacji to np. funkcja Heaviside'a czy funkcja logistyczna.

Sieć neuronowa / uczenie

- □ Zakładamy, że dana jest próba $\{(x_j, y_j)\}_{j=1}^J$, gdzie x_j to dane wejściowe a y_j to odpowiedź sieci.
- □ Dla dowolnych danych wejściowych x_j sieć oblicza wartości wyjściowe \overline{y}_j . Na wektorach y i \overline{y} zdefiniowana jest funkcja kosztów C, której wartość przy ustalonej próbie zależy jedynie od wektor parametrów w, C(w).
- Zadanie uczenia sieci neuronowej to zadanie minimalizacji kosztu
 min C(w).
- Typowe funkcje kosztu to koszt średniokwadratowy czy entropia krzyżowa.
- W celu zwalczania przeuczenia, do funkcji kosztu dodaje się czasami składnik regularyzujący. W najprostszej wersji może to być następujący składni

$$C(w) + \lambda \langle w \mid w \rangle$$
,

gdzie parametr λ odpowiada za siłę regularyzacji.