ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Cơ sở trí tuệ nhân tạo

Tìm kiếm mù

Nguyễn Ngọc Đức 2021

Nội dung

1 Breadth-first Search

2 Depth-first Search

3 Uniform-cost Search

Tìm kiếm mù

- Chiến lược tìm kiếm không dựa trên thông tin nào khác ngoài
 định nghĩa bài toán
- Các thuật toán tìm kiếm mù chỉ có khả năng sinh successor
 và phân biệt trạng thái đích
- Mỗi chiến lược tìm kiếm là một thể hiện (đồ thị/cây) của bài toán tìm kiếm tổng quát

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 3 / 20

- Breadth-first Search (tìm kiếm theo chiều rộng BFS) là chiến lược tìm kiếm đơn giản.
- Tất cả các nút ở một độ sâu nhất định phải được mở trước khi mở các nút ở độ sâu tiếp theo

Hình 1: Thuật toán BFS trên cây nhị phân

- Breadth-first Search (tìm kiếm theo chiều rộng BFS) là chiến lược tìm kiếm đơn giản.
- Tất cả các nút ở một độ sâu nhất định phải được mở trước khi mở các nút ở độ sâu tiếp theo

Hình 1: Thuật toán BFS trên cây nhị phân

- Breadth-first Search (tìm kiếm theo chiều rộng BFS) là chiến lược tìm kiếm đơn giản.
- Tất cả các nút ở một độ sâu nhất định phải được mở trước khi mở các nút ở độ sâu tiếp theo

Hình 1: Thuật toán BFS trên cây nhị phân

- Breadth-first Search (tìm kiếm theo chiều rộng BFS) là chiến lược tìm kiếm đơn giản.
- Tất cả các nút ở một độ sâu nhất định phải được mở trước khi mở các nút ở độ sâu tiếp theo

Hình 1: Thuật toán BFS trên cây nhị phân

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

■ Time: $1 + b + b^2 + b^3 + ... + b^d = O(b^d)$

■ Space: $O(b^{d-1})$ cho tập mở và $O(b^d)$ cho biên

■ Complete: có (nếu b hữu hạn)

■ Optimal: chi phí di chuyển như nhau

Depth	Nodes	Time	Memory
2	110	.11 ms	107 KB
4	11110	11 ms	10.6 MB
6	10^{6}	1.1 s	1 GB
8	10^{8}	2 mins	103 GB
10	$10^{1}0$	3 hrs	10 TB
12	$10^{1}2$	13 days	1 PB
14	$10^{1}4$	3.5 yrs	99 PB
16	$10^{1}6$	350 yrs	10 EB

Giả sử b = 10, tốc độ giải 1m nodes/s, lưu trữ 1000 bytes 1 node

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 7 / 20

Hình 2: DFS trên cây nhị phân

Hình 2: DFS trên cây nhị phân

Hình 2: DFS trên cây nhị phân

Hình 2: DFS trên cây nhi phân

Hình 2: DFS trên cây nhi phân

Hình 2: DFS trên cây nhị phân

Hình 2: DFS trên cây nhị phân

Hình 2: DFS trên cây nhị phân

Hình 2: DFS trên cây nhi phân

Hình 2: DFS trên cây nhị phân

Hình 2: DFS trên cây nhi phân

Hình 2: DFS trên cây nhị phân

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 2 & 0 & 7 \\ 0 & 0 & 2 & 0 & 5 \\ 0 & 5 & 0 & 6 & 2 \\ 9 & 3 & 0 & 0 & 6 \\ 0 & 4 & 9 & 0 & 0 \end{bmatrix}$$

■ Time: $O(b^m)$

■ **Space**: O(bm) kích thước không gian tuyến tính!

■ Complete: có (nếu không gian hữu hạn)

■ Optimal: lời giải "phải nhất".

- Time: $O(b^m)$
 - lacktriangle Tệ nếu m lớn hơn nhiều so với b
- **Space**: O(bm) kích thước không gian tuyến tính!
- Complete: có (nếu không gian hữu hạn)
- Optimal: lời giải "phải nhất".

Uniform-cost Search

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2021 11 / 20

Uniform-cost Search I

Uniform-cost search (UCS) mở nút n với chi phí đường đi thấp nhất g(n)

■ Tương tự với thuật toán Dijkstra

Nguyên lý Bellman

Gọi P là đường đi ngắn nhất từ đỉnh u đến đỉnh v và $t \in P$. Giả sử $P = P_1 \oplus P_2$ với P_1 là đường đi con của P từ u đến t và P_2 là đường đi con của P từ t đến v khi đó P_1 cũng là đường đi ngắn nhất từ u đến t

Uniform-cost Search II

Chứng minh. Giả sử tồn tại P'_1 là đường đi ngắn hơn P_1 ta có

$$g(P_1') < g(P_1) \Rightarrow g(P_1' \oplus P_2) < g(P_1 \oplus P_2) = g(P)$$

Vô lý vì P là đường đi ngắn nhất từ u đến v

Đỉnh bắt đầu 4 Đỉnh đích 3

$$\begin{bmatrix} 0 & 6 & 7 & 0 & 8 & 0 & 2 & 0 \\ 6 & 0 & 0 & 4 & 3 & 4 & 9 & 1 \\ 0 & 6 & 0 & 0 & 4 & 4 & 0 & 0 \\ 9 & 9 & 0 & 0 & 7 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 & 0 & 7 & 0 & 0 \\ 0 & 8 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 & 0 & 0 \\ 7 & 0 & 0 & 0 & 6 & 9 & 8 & 0 \end{bmatrix}$$

Queue: (5, 2, 4), (7, 5, 4)

Explored: 4: 4

Đỉnh bắt đầu 4 Đỉnh đích 3

Queue: (5, 2, 4), (7, 5, 4)

Explored: 4: 4

Đỉnh bắt đầu 4 Đỉnh đích 3

$$\begin{bmatrix} 0 & 6 & 7 & 0 & 8 & 0 & 2 & 0 \\ 6 & 0 & 0 & 4 & 3 & 4 & 9 & 1 \\ 0 & 6 & 0 & 0 & 4 & 4 & 0 & 0 \\ 9 & 9 & 0 & 0 & 7 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 & 0 & 7 & 0 & 0 \\ 0 & 8 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 & 0 & 0 \\ 7 & 0 & 0 & 0 & 6 & 9 & 8 & 0 \end{bmatrix}$$

Queue: (7, 5, 4), (9, 5, 2), (11, 1, 2)

Explored: 4: 4, 2: 4

Đỉnh bắt đầu 4 Đỉnh đích 3

$$\begin{bmatrix} 0 & 6 & 7 & 0 & 8 & 0 & 2 & 0 \\ 6 & 0 & 0 & 4 & 3 & 4 & 9 & 1 \\ 0 & 6 & 0 & 0 & 4 & 4 & 0 & 0 \\ 9 & 9 & 0 & 0 & 7 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 & 0 & 7 & 0 & 0 \\ 0 & 8 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 & 0 & 0 \\ 7 & 0 & 0 & 0 & 6 & 9 & 8 & 0 \end{bmatrix}$$

Queue: (7, 5, 4), (9, 5, 2), (11, 1, 2)

Explored: 4: 4, 2: 4

14 / 20

Đỉnh bắt đầu 4 Đỉnh đích 3

Queue: (9, 5, 2), (11, 1, 2), (15, 1, 5)

Đỉnh bắt đầu 4 Đỉnh đích 3

$$\begin{bmatrix} 0 & 6 & 7 & 0 & 8 & 0 & 2 & 0 \\ 6 & 0 & 0 & 4 & 3 & 4 & 9 & 1 \\ 0 & 6 & 0 & 0 & 4 & 4 & 0 & 0 \\ 9 & 9 & 0 & 0 & 7 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 & 0 & 7 & 0 & 0 \\ 0 & 8 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 & 0 & 0 \\ 7 & 0 & 0 & 0 & 6 & 9 & 8 & 0 \end{bmatrix}$$

Queue: (9, 5, 2), (11, 1, 2), (15, 1, 5)

Đỉnh bắt đầu 4 Đỉnh đích 3

$$\begin{bmatrix} 0 & 6 & 7 & 0 & 8 & 0 & 2 & 0 \\ 6 & 0 & 0 & 4 & 3 & 4 & 9 & 1 \\ 0 & 6 & 0 & 0 & 4 & 4 & 0 & 0 \\ 9 & 9 & 0 & 0 & 7 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 & 0 & 7 & 0 & 0 \\ 0 & 8 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 & 0 & 0 \\ 7 & 0 & 0 & 0 & 6 & 9 & 8 & 0 \end{bmatrix}$$

Queue: (15, 1, 5)

Đỉnh bắt đầu 4 Đỉnh đích 3

$$\begin{bmatrix} 0 & 6 & 7 & 0 & 8 & 0 & 2 & 0 \\ 6 & 0 & 0 & 4 & 3 & 4 & 9 & 1 \\ 0 & 6 & 0 & 0 & 4 & 4 & 0 & 0 \\ 9 & 9 & 0 & 0 & 7 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 & 0 & 7 & 0 & 0 \\ 0 & 8 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 & 0 & 0 \\ 7 & 0 & 0 & 0 & 6 & 9 & 8 & 0 \end{bmatrix}$$

Queue: (15, 1, 5)

Đỉnh bắt đầu 4 Đỉnh đích 3

2 2 2 7

Queue: (12, 7, 1), (15, 1, 5), (15, 3, 1),

(17, 0, 1), (20, 6, 1)

Explored: 4: 4, 2: 4, 5: 4, 1: 2

Đỉnh bắt đầu 4 Đỉnh đích 3

Queue: (12, 7, 1), (15, 1, 5), (15, 3, 1),

(17, 0, 1), (20, 6, 1)

Explored: 4: 4, 2: 4, 5: 4, 1: 2

Đỉnh bắt đầu 4 Đỉnh đích 3

Queue: (15, 3, 1), (17, 0, 1), (19, 0, 7),

(20, 6, 1), (20, 6, 7)

Explored: 4: 4, 2: 4, 5: 4, 1: 2, 7: 1

Đỉnh bắt đầu 4 Đỉnh đích 3

Queue: (15, 3, 1), (17, 0, 1), (19, 0, 7),

(20, 6, 1), (20, 6, 7)

Explored: 4: 4, 2: 4, 5: 4, 1: 2, 7: 1

Đỉnh bắt đầu 4 Đỉnh đích 3

$$\begin{bmatrix} 0 & 6 & 7 & 0 & 8 & 0 & 2 & 0 \\ 6 & 0 & 0 & 4 & 3 & 4 & 9 & 1 \\ 0 & 6 & 0 & 0 & 4 & 4 & 0 & 0 \\ 9 & 9 & 0 & 0 & 7 & 0 & 0 & 1 \\ 0 & 0 & 5 & 0 & 0 & 7 & 0 & 0 \\ 0 & 8 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 & 0 & 0 \\ 7 & 0 & 0 & 0 & 6 & 9 & 8 & 0 \end{bmatrix}$$

Queue: (19, 0, 7), (20, 6, 1), (20, 6, 7) Explored: 4: 4, 2: 4, 5: 4, 1: 2, 7: 1, 3: 1

Uniform-cost Search

Ta nên dừng khi ta enqueue hay dequeue đích?

Hình 3: Tìm đường đi từ S đến G

Đánh giá

■ Với chi phí di chuyển thấp nhất là ϵ , C^* là chi phí lời giải tối ưu

■ Time: $O\left(b^{1+\lfloor C^*/\epsilon\rfloor}\right)$

■ Space: $O\left(b^{1+\lfloor C^*/\epsilon\rfloor}\right)$

■ Complete: có

■ Optimal: có

Bài tập I

Bài tập II

Tổng kết

- Bài toán tìm kiếm
- Các thuật toán tìm kiếm mù: BFS, DFS, UCS

Tài liệu tham khảo

- [1] Bùi Tiến Lên, Bộ môn Khoa học máy tính
 - "Bài giảng môn Cơ sở trí tuệ nhân tạo"
- [2] Michael Negnevitsky
 - "Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition)"
- [3] Russell, S. and Norvig, P. (2021).
 - "Artificial intelligence: a modern approach."