→ 1. Keras -- MLPs on MNIST Assignment

▼ 1.1 Importing required Libraries

```
# if you keras is not using tensorflow as backend set "KERAS_BACKEND=tensorflow" u
import tensorflow as tf
from keras.utils import np_utils
from keras.datasets import mnist
import seaborn as sns
from keras.initializers import RandomNormal
from keras.layers.normalization import BatchNormalization
from keras.layers.normalization import BatchNormalization
from keras.layers import Dropout
```

The default version of TensorFlow in Colab will soon switch to TensorFlow 2.x.

We recommend you <u>upgrade</u> now or ensure your notebook will continue to use TensorFlow 1.x via the %t 1.x magic: <u>more info</u>.

Using TensorFlow backend.

▼ 1.2 Function to plot a dynamic plot

```
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import time
# https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
# https://stackoverflow.com/a/14434334
# this function is used to update the plots for each epoch and error def plt_dynamic(x, vy, ty, ax, colors=['b']):
    ax.plot(x, vy, 'b', label="Validation Loss")
    ax.plot(x, ty, 'r', label="Train Loss")
    plt.legend()
    plt.grid()
    fig.canvas.draw()
```

1.3 High level overview of data set

```
print("Number of training examples :", X_test.shape[0], "and each image is of shap
Number of training examples: 60000 and each image is of shape (28, 28)
    Number of training examples: 10000 and each image is of shape (28, 28)
# if you observe the input shape its 2 dimensional vector
# for each image we have a (28*28) vector
# we will convert the (28*28) vector into single dimensional vector of 1*784
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2])
X test = X test.reshape(X test.shape[0], X test.shape[1]*X test.shape[2])
# after converting the input images from 3d to 2d vectors
print("Number of training examples :", X train.shape[0], "and each image is of sha
print("Number of training examples :", X test.shape[0], "and each image is of shap
   Number of training examples: 60000 and each image is of shape (784)
    Number of training examples: 10000 and each image is of shape (784)
# An example data point
print(X train[0])
С→
```

```
0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                                    0
                                                          0
                                                                          0
                                                                                0
                                                                                     0
                                                                                           0
                                                                                                0
                                                                     0
        0
             0
                                                                                                 0
  0
                   0
                              0
                                   0
                                         0
                                               0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                     0
  0
        0
             0
                              0
                                   0
                                         0
                                                                                                 0
                   0
                                               0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                     0
                                                    0
  0
        0
             0
                   0
                              0
                                         0
                                               0
                                                          0
                                                                          0
                                                                                                 0
                        0
  0
        0
             0
                   0
                              0
                                         0
                                                          0
                                                                          0
                                                                                     0
                                                                                                 0
                                               0
  0
             0
                   0
                        0
                              0
                                         0
                                              0
                                                    0
                                                          0
                                                               0
                                                                          0
                                                                                     0
                                                                                           0
  0
        0
             0
                                         0
                                                          0
                                                               0
                   0
                              0
                                   0
                                              0
                                                    0
                                                                     0
                                                                          0
                                                                                     0
  0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                                                                                           0
                                                                                                 0
        0
             0
                              0
                                   0
                                         0
                                               3
                                                   18
                                                              18 126 136
  0
                   0
                                                        18
                                                                             175
                                                                                    26
                                                                                        166 255
247 127
             0
                              0
                                   0
                                         0
                                               0
                                                    0
                                                          0
                                                               0
                                                                          0
                                                                              30
                                                                                    36
                                                                                         94
                                                                                              154
                   0
                        0
                                                                     0
170
     253
          253 253
                     253
                           253
                                225
                                      172 253
                                                 242
                                                      195
                                                              64
                                                                     0
                                                                          0
                                                                                     0
                                                                                           0
  0
        0
             0
                             49
                                238
                                      253
                                            253
                                                 253
                                                       253
                                                            253
                                                                  253 253
                                                                             253
                                                                                  251
                                                                                         93
                                                                                               82
                   0
                        0
 82
      56
            39
                        0
                              0
                                   0
                                         0
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                    18
                                                                                        219 253
                                      241
253 253
          253 253
                     198 182 247
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                     0
                                                                                0
                                                                                           0
                                                                                                 0
             0
                   0
                              0
                                   0
                                         0
                                             80
                                                 156
                                                       107
                                                            253
                                                                  253 205
                                                                              11
                                                                                     0
                                                                                         43
                                                                                              154
                        0
  0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                                0
                                                                                     0
                                                                                                 0
  0
      14
             1 154
                     253
                             90
                                   0
                                         0
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                     0
                                                                                                 0
                                                                             253
                                                                                           2
  0
        0
             0
                              0
                                   0
                                         0
                                                          0
                                                               0
                                                                     0
                                                                       139
                                                                                  190
                                                                                                0
                   0
                                               0
                                                    0
  0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                                                                                           0
                                                                                                 0
  0
        0
             0
                             11 190 253
                                             70
                                                          0
                                                               0
                                                                          0
                                                                                           0
                                                                                                 0
                   0
                        0
                                                    0
                                                                     0
                                                                                0
                                                                                     0
  0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                                                                                         35 241
225 160 108
                   1
                        0
                              0
                                   0
                                         0
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                              0
                                                   81
                                                      240
                                                            253
                                                                  253 119
                                                                              25
                                                                                     0
                                                                                           0
                                                                                                 0
  0
  0
        0
             0
                              0
                                         0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                                 0
                                       27
            45 186
                     253 253 150
  0
        0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                                                                                                 0
                                               0
                                                    0
  0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                         16
                                                                              93
                                                                                  252
                                                                                        253
                                                                                              187
  0
        0
             0
                              0
                                   0
                                         0
                                                          0
                                                               0
                                                                     0
                                                                                                 0
                   0
                        0
                                               0
                                                    0
                                                                          0
                                                                                0
                                                                                     0
                                                                                           0
  0
             0
                              0
                                   0
                                      249 253 249
                                                        64
                                                               0
                                                                     0
                                                                          0
                                                                                     0
                   0
                        0
                                                                                0
  0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                              46
                                                                                  130 183
253 207
             2
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                       39 148 229 253 253 253
  0
        0
             0
                   0
                                                       250
                                                            182
                                                                     0
                                                                          0
                                                                                      0
                                                                                                 0
  0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                    0
                                                          0
                                                               0
                                                                   24 114
                                                                            221
                                                                                  253 253
                                                                                             253
253 201
            78
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                                 0
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                    0
  0
        0
            23
                 66 213 253
                                253 253 253 198
                                                        81
                                                               2
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                                                                                           0
                                                                                                 0
        0
                                                            171 219 253
  0
             0
                   0
                        0
                              0
                                   0
                                         0
                                               0
                                                        18
                                                                             253
                                                                                  253
 80
        9
             0
                              0
                                   0
                                         0
                                                               0
                                                                          0
                   0
                        0
                                               0
                                                    0
                                                          0
                                                                     0
                                                                                0
                                                                                     0
 55 172
          226
                253
                     253
                           253
                                253
                                      244
                                            133
                                                   11
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                                                                                                 0
                                                       136 253 253 253
                                                                                  135 132
                                   0
                                         0
                                                                            212
                                                                                               16
  0
        0
             0
                   0
                        0
                              0
                                               0
                                                    0
        0
             0
                                         0
  0
                   0
                        0
                              0
                                   0
                                               0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                                0
  0
        0
             0
                              0
                                   0
                                         0
                                                               0
                                                                          0
                                                                                                0
                   0
                        0
                                               0
                                                    0
                                                          0
                                                                     0
                                                                                0
                                                                                     0
  0
        0
             0
                   0
                        0
                              0
                                   0
                                         0
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                                                                                           0
                                                                                                0
  0
                              0
                                         0
        0
             0
                   0
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                0
                                                                                     0
                                                                                           0
                                                                                                0
  0
        0
             0
                   0
                              0
                                   0
                                         0
                                              0
                                                    0
                                                          0
                                                               0
                                                                     0
                                                                          0
                                                                                     0
                                                                                           0
                                                                                                 0
                        0
  0
        0
             0
                   0
                              0
                                   0
                                         0
                                               0
                                                    01
```

▼ 1.4 Normalizing the train and test sets

```
# if we observe the above matrix each cell is having a value between 0-255
# before we move to apply machine learning algorithms lets try to normalize the da
# X => (X - Xmin)/(Xmax-Xmin) = X/255

X_train = X_train/255
X_test = X_test/255
```

example data point after normlizing
print(X train[0])

₽

0 58823520	0.10588235	<u> </u>	0.	0.	0.
0.	0.10300233	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.0627451	0.36470588	0.98823529	0.99215686	0.73333333
0.	0.	0.		0.	0.
0.	0.	0.	0.	0.	0.
0.	0.		0.	0.	0.
0.	0.	0.	0.	0.	0.
0. 0.	0.97647059	0.99215080	0.97647059 0.	0.25098039	0.
0.	0.	0. 0.	0. 0	0. 0	0.
0. 0.	0.	0.	0. 0.	0.	0.
0.	0.	0.18039216	0.50980392	0.71764706	
0.99215686	0.81176471	0.00784314	0.		0.
0.			0.	0.	0.
0.		0.	0.	0.	0.
0.	Θ.		0.		
					0.71372549
0.			0.	0.	0.
0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0.09411765			0.99215686	0.99215686	
		0.30588235			0.
Θ	0	0	0	0	0
0.	0.	0.	0.	0.	0.
0.	0.	0.09019608	0. 0.25882353	0.83529412	0.99215686
0.99215686	0.99215686	0.99215686	0.77647059	0.31764706	0.00784314
0.		0.		0.	0.
0.	0.		0.		0.
0. 0.05000055	0.	0.	0. 0.99215686	0.07058824	0.0/058824
	0.03529412		0.99213080	0.99213080	0.70470388
0.31372343	0.03323412	0.	0.	0.	0.
				0.	0.
0.21568627	0.6745098	0.88627451	0.99215686	0.99215686	0.99215686
0.99215686	0.95686275	0.52156863	0.04313725	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.		0.53333333	
0.99215086	0.99215080	0.83137255	0.52941176 0.	0.51/64/06	0.002/451
0.	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	J	

▼ 1.5 One-Hot Encoding the class label

```
# here we are having a class number for each image
print("Class label of first image :", y_train[0])

# lets convert this into a 10 dimensional vector
# ex: consider an image is 5 convert it into 5 => [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
# this conversion needed for MLPs

Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)

print("After converting the output into a vector : ",Y_train[0])

Class label of first image : 5
    After converting the output into a vector : [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
```

▼ 1.6 A simple 2 layer model with Softmax classifier

```
# https://keras.io/getting-started/sequential-model-guide/
# The Sequential model is a linear stack of layers.
# you can create a Sequential model by passing a list of layer instances to the co
# model = Sequential([
#
      Dense(32, input_shape=(784,)),
#
      Activation('relu'),
#
      Dense(10),
      Activation('softmax'),
# ])
# You can also simply add layers via the .add() method:
# model = Sequential()
# model.add(Dense(32, input dim=784))
# model.add(Activation('relu'))
###
# https://keras.io/layers/core/
```

```
# keras.layers.Dense(units, activation=None, use bias=True, kernel initializer='gl
# bias_initializer='zeros', kernel_regularizer=None, bias regularizer=None, activi
# kernel constraint=None, bias constraint=None)
# Dense implements the operation: output = activation(dot(input, kernel) + bias) w
# activation is the element-wise activation function passed as the activation argu
# kernel is a weights matrix created by the layer, and
# bias is a bias vector created by the layer (only applicable if use_bias is True)
# output = activation(dot(input, kernel) + bias) => y = activation(WT. X + b)
####
# https://keras.io/activations/
# Activations can either be used through an Activation layer, or through the activ
# from keras.layers import Activation, Dense
# model.add(Dense(64))
# model.add(Activation('tanh'))
# This is equivalent to:
# model.add(Dense(64, activation='tanh'))
# there are many activation functions ar available ex: tanh, relu, softmax
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import BatchNormalization
from tensorflow.python.keras import Sequential
# some model parameters
output dim = 10
input_dim = X_train.shape[1]
batch_size = 256
nb epoch = 20
# start building a model
model = Sequential()
# The model needs to know what input shape it should expect.
# For this reason, the first layer in a Sequential model
# (and only the first, because following layers can do automatic shape inference)
# needs to receive information about its input shape.
# you can use input_shape and input_dim to pass the shape of input
# output dim represent the number of nodes need in that layer
# here we have 10 nodes
model.add(Dense(output dim, input dim=input dim, activation='softmax'))
```

- WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_cor
 Instructions for updating:
 If using Keras pass *_constraint arguments to layers.
- # Before training a model, you need to configure the learning process, which is do
- # It receives three arguments:
- # An optimizer. This could be the string identifier of an existing optimizer , <a href="https://htt.ncbi.nlm.nc
- # A list of metrics. For any classification problem you will want to set this to m
- # Note: when using the categorical_crossentropy loss, your targets should be in ca
 # (e.g. if you have 10 classes, the target for each sample should be a 10-dimensio
 # for a 1 at the index corresponding to the class of the sample).
- # that is why we converted out labels into vectors
- model.compile(optimizer='sgd', loss='categorical crossentropy', metrics=['accuracy
- # Keras models are trained on Numpy arrays of input data and labels.
- # For training a model, you will typically use the fit function
- # fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None,
- # validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initi
- # validation steps=None)
- # fit() function Trains the model for a fixed number of epochs (iterations on a da
- # it returns A History object. Its History.history attribute is a record of traini
 # metrics values at successive epochs, as well as validation loss values and valid
- # https://github.com/openai/baselines/issues/20

history = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verb

C→

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
Epoch 2/20
60000/60000 [============== ] - 1s 13us/sample - loss: 0.9672
Epoch 3/20
60000/60000 [===========] - 1s 13us/sample - loss: 0.7665
Epoch 4/20
60000/60000 [============== ] - 1s 13us/sample - loss: 0.6677
Epoch 5/20
Epoch 6/20
Epoch 7/20
60000/60000 [============== ] - 1s 14us/sample - loss: 0.5367
Epoch 8/20
Epoch 9/20
60000/60000 [============== ] - 1s 13us/sample - loss: 0.4952
Epoch 10/20
Epoch 11/20
60000/60000 [============] - 1s 14us/sample - loss: 0.4672
Epoch 12/20
Epoch 13/20
Epoch 14/20
60000/60000 [============] - 1s 13us/sample - loss: 0.4384
Epoch 15/20
60000/60000 [============] - 1s 13us/sample - loss: 0.4310
Epoch 16/20
60000/60000 [============= ] - 1s 13us/sample - loss: 0.4244
Epoch 17/20
Epoch 18/20
60000/60000 [===========] - 1s 13us/sample - loss: 0.4130
Epoch 19/20
Epoch 20/20
```

```
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch'); ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model drop.fit(X train, Y train, batch size=batch size, epochs=nb epoc
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number
vy = history.history['val loss']
ty = history.history['loss']
plt dynamic(x, vy, ty, ax)
```

Test score: 0.38070512788295746

2 Model A: 2 Hidden Layes.

▼ 2.1 MLP + ReLU activation + Adam Optimizer

```
# Multilayer perceptron

model_relu = Sequential()
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dense(128, activation='relu'))
model_relu.add(Dense(output_dim, activation='softmax'))
model_relu.summary()
```

By Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 256)	200960
dense_2 (Dense)	(None, 128)	32896
dense_3 (Dense)	(None, 10)	1290

Total params: 235,146 Trainable params: 235,146 Non-trainable params: 0

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============== ] - 1s 17us/sample - loss: 0.3368
Epoch 2/20
60000/60000 [============== ] - 1s 15us/sample - loss: 0.1285
Epoch 3/20
60000/60000 [===========] - 1s 16us/sample - loss: 0.0840
Epoch 4/20
60000/60000 [============== ] - 1s 16us/sample - loss: 0.0615
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
60000/60000 [============== ] - 1s 15us/sample - loss: 0.0154
Epoch 10/20
Epoch 11/20
60000/60000 [===========] - 1s 15us/sample - loss: 0.0095
Epoch 12/20
60000/60000 [============= ] - 1s 16us/sample - loss: 0.0095
Epoch 13/20
Epoch 14/20
60000/60000 [============] - 1s 16us/sample - loss: 0.0064
Epoch 15/20
60000/60000 [============] - 1s 15us/sample - loss: 0.0054
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

fig,ax = plt.subplots(1,1)

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.08297917389905415 Test accuracy: 0.9815


```
w_after = model_relu.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```

```
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


▼ 2.2 MLP + ReLU activation + Adam Optimizer (Batch Normalization)

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/

```
Model: "sequential 2"
```

Layer (type)	Output	Shape	Param #
dense_4 (Dense)	(None,	256)	200960
batch normalization (BatchNo	(None,	256)	1024

pile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

l relu.fit(X train, Y train, batch size=batch size, epochs=nb epoch, verbose=1, va

```
□→ Train on 60000 samples, validate on 10000 samples
 Epoch 1/20
 Epoch 2/20
 Epoch 3/20
 60000/60000 [============== ] - 1s 24us/sample - loss: 0.0590
 Epoch 4/20
 60000/60000 [============] - 1s 24us/sample - loss: 0.0401
 Epoch 5/20
 Epoch 6/20
 60000/60000 [============== ] - 1s 23us/sample - loss: 0.0192
 Epoch 7/20
 Epoch 8/20
 60000/60000 [============] - 1s 23us/sample - loss: 0.0111
 Epoch 9/20
 60000/60000 [============== ] - 1s 24us/sample - loss: 0.0090
 Epoch 10/20
 Epoch 11/20
 60000/60000 [===========] - 1s 23us/sample - loss: 0.0096
 Epoch 12/20
 Epoch 13/20
 Epoch 14/20
 Epoch 15/20
 60000/60000 [============== ] - 1s 23us/sample - loss: 0.0062
 Epoch 16/20
 60000/60000 [============== ] - 1s 23us/sample - loss: 0.0062
 Epoch 17/20
 Epoch 18/20
 Epoch 19/20
 Epoch 20/20
 60000/60000 [============= ] - 1s 23us/sample - loss: 0.0034
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(1,1)
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model drop.fit(X train, Y train, batch size=batch size, epochs=nb epoc
# we will get val loss and val acc only when you pass the paramter validation_data
# val loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number
vy = history.history['val loss']
ty = history.history['loss']
plt dynamic(x, vy, ty, ax)
```

Test score: 0.0921328787419421 Test accuracy: 0.9782


```
w_after = model_relu.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
```

```
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```



```
from tensorflow.keras.layers import Dense, Dropout
model_relu = Sequential()
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(128, activation='relu'))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(output_dim, activation='softmax'))

model_relu.summary()
```

Model: "sequential 3"

```
Layer (type)
                           Output Shape
                                                 Param #
model relu.compile(optimizer='adam', loss='categorical crossentropy', metrics=['ac
history = model relu.fit(X train, Y train, batch size=batch size, epochs=nb epoch,
r⇒ validate on 10000 samples
   ========] - 1s 16us/sample - loss: 0.6157 - acc: 0.8078 - val_loss:
   ========] - 1s 14us/sample - loss: 0.2708 - acc: 0.9227 - val loss:
     ========] - 1s 14us/sample - loss: 0.1786 - acc: 0.9478 - val_loss:
   ========= ] - 1s 14us/sample - loss: 0.1581 - acc: 0.9539 - val loss:
   ========] - 1s 14us/sample - loss: 0.1410 - acc: 0.9586 - val loss:
   ========= ] - 1s 14us/sample - loss: 0.1271 - acc: 0.9635 - val loss:
   ========] - 1s 15us/sample - loss: 0.1178 - acc: 0.9646 - val loss:
   =========] - 1s 15us/sample - loss: 0.1107 - acc: 0.9669 - val loss:
      :=========] - 1s 14us/sample - loss: 0.1069 - acc: 0.9681 - val loss:
   ========] - 1s 14us/sample - loss: 0.1029 - acc: 0.9698 - val loss:
   ========] - 1s 14us/sample - loss: 0.0941 - acc: 0.9719 - val_loss:
   ========] - 1s 15us/sample - loss: 0.0919 - acc: 0.9721 - val_loss:
   ========] - 1s 15us/sample - loss: 0.0861 - acc: 0.9743 - val loss:
   ========] - 1s 14us/sample - loss: 0.0822 - acc: 0.9754 - val_loss:
   ========= ] - 1s 15us/sample - loss: 0.0807 - acc: 0.9754 - val_loss:
   ========= ] - 1s 14us/sample - loss: 0.0792 - acc: 0.9753 - val loss:
   ========= ] - 1s 14us/sample - loss: 0.0754 - acc: 0.9769 - val_loss:
   ========] - 1s 14us/sample - loss: 0.0697 - acc: 0.9780 - val_loss:
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

fig,ax = plt.subplots(1,1)

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc)

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06762538701674711 Test accuracy: 0.9807


```
w_after = model_relu.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```

```
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


▼ 2.4 MLP + ReLU activation + Adam Optimizer (Batch Normalization)

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalizat
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.layers import BatchNormalization

model_relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_init
model_relu.add(BatchNormalization())
model_relu.add(Dropout(0.5))
model_relu.add(Dense(256, activation='relu', kernel_initializer=RandomNormal(mean=
model_relu.add(Dropout(0.5))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(output_dim, activation='softmax'))

Dropout
```

Model: "sequential_11"

Layer (type)	Output Sh	паре	Param #
dense_25 (Dense)	(None, 51	12)	401920
batch_normalization_12 (Batc	(None, 51	12)	2048
dropout_8 (Dropout)	(None, 51	12)	0
dense_26 (Dense)	(None, 25	56)	131328
batch_normalization_13 (Batc	(None, 25	56)	1024
dropout_9 (Dropout)	(None, 25	56)	0
dense_27 (Dense)	(None, 10	9) =======	2570

Total params: 538,890 Trainable params: 537,354 Non-trainable params: 1,536

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
Epoch 2/20
60000/60000 [============== ] - 1s 24us/sample - loss: 0.2434
Epoch 3/20
60000/60000 [===========] - 1s 22us/sample - loss: 0.1902
Epoch 4/20
Epoch 5/20
Epoch 6/20
Epoch 7/20
60000/60000 [============= ] - 1s 22us/sample - loss: 0.1193
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
60000/60000 [===========] - 2s 26us/sample - loss: 0.0905
Epoch 12/20
60000/60000 [============= ] - 1s 22us/sample - loss: 0.0856
Epoch 13/20
Epoch 14/20
60000/60000 [===========] - 1s 22us/sample - loss: 0.0776
Epoch 15/20
60000/60000 [============] - 1s 23us/sample - loss: 0.0751
Epoch 16/20
60000/60000 [============== ] - 2s 25us/sample - loss: 0.0719
Epoch 17/20
Epoch 18/20
Epoch 19/20
60000/60000 [============== ] - 1s 21us/sample - loss: 0.0633
Epoch 20/20
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(1,1)
```

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc)

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06247625293707533 Test accuracy: 0.9828


```
w_after = model_relu.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```

```
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


→ 3 Model B: 3 Hidden Layers

→ 3.1 MLP + ReLU activation + Adam Optimizer

```
# Multilayer perceptron

model_relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dense(256, activation='relu'))
model_relu.add(Dense(128, activation='relu'))
model_relu.add(Dense(output_dim, activation='softmax'))

model_relu.summary()
```

Model: "sequential 4"

```
Layer (type)
                            Output Shape
                                                 Param #
   danca 10 (Danca)
model relu.compile(optimizer='adam', loss='categorical crossentropy', metrics=['ac
history = model_relu.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch,
r→ validate on 10000 samples
   ========] - 1s 20us/sample - loss: 0.2768 - acc: 0.9198 - val_loss:
     ==========] - 1s 18us/sample - loss: 0.0959 - acc: 0.9713 - val loss:
   =========] - 1s 18us/sample - loss: 0.0398 - acc: 0.9880 - val loss:
   =========] - 1s 17us/sample - loss: 0.0306 - acc: 0.9901 - val loss:
   ========] - 1s 18us/sample - loss: 0.0218 - acc: 0.9931 - val loss:
     ==========] - 1s 18us/sample - loss: 0.0158 - acc: 0.9949 - val loss:
   ========] - 1s 18us/sample - loss: 0.0148 - acc: 0.9952 - val loss:
      =========] - 1s 18us/sample - loss: 0.0163 - acc: 0.9944 - val loss:
     ==========] - 1s 18us/sample - loss: 0.0141 - acc: 0.9954 - val loss:
        =========] - 1s 18us/sample - loss: 0.0118 - acc: 0.9959 - val loss:
     ========] - 1s 18us/sample - loss: 0.0115 - acc: 0.9962 - val_loss:
   =========] - 1s 18us/sample - loss: 0.0084 - acc: 0.9975 - val_loss:
      =========] - 1s 18us/sample - loss: 0.0092 - acc: 0.9969 - val loss:
   =========] - 1s 18us/sample - loss: 0.0083 - acc: 0.9972 - val_loss:
   ========] - 1s 18us/sample - loss: 0.0075 - acc: 0.9973 - val_loss:
   ========] - 1s 18us/sample - loss: 0.0079 - acc: 0.9972 - val loss:
   ========] - 1s 18us/sample - loss: 0.0119 - acc: 0.9962 - val_loss:
```

==========] - 1s 18us/sample - loss: 0.0096 - acc: 0.9965 - val_loss:

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

fig,ax = plt.subplots(1,1)

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc)

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.08133461526854412 Test accuracy: 0.9824


```
w_after = model_relu.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```

```
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


▼ 3.2 MLP + ReLU activation + Adam Optimizer (Batch Normalization)

```
model_relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_init
model_relu.add(BatchNormalization())

model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_init
model_relu.add(BatchNormalization())

model_relu.add(Dense(128, activation='relu', kernel_initializer=RandomNormal(mean=
model_relu.add(BatchNormalization())

model_relu.add(Dense(output_dim, activation='softmax'))

model_relu.summary()
```

Model: "sequential_5"

Layer (type)	Output Shap	e l	Param #
dense_14 (Dense)	(None, 512)		401920
batch_normalization_2 (Batch	(None, 512)		2048
dense_15 (Dense)	(None, 256)		131328
batch_normalization_3 (Batch	(None, 256)		1024
dense_16 (Dense)	(None, 128)		32896
batch_normalization_4 (Batch	(None, 128)	!	512
dense_17 (Dense)	(None, 10)		1290

Total params: 571,018 Trainable params: 569,226 Non-trainable params: 1,792

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
Epoch 2/20
60000/60000 [============== ] - 2s 29us/sample - loss: 0.0636
Epoch 3/20
60000/60000 [===========] - 2s 27us/sample - loss: 0.0386
Epoch 4/20
60000/60000 [============== ] - 2s 28us/sample - loss: 0.0245
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
60000/60000 [===========] - 2s 28us/sample - loss: 0.0078
Epoch 12/20
Epoch 13/20
Epoch 14/20
60000/60000 [============== ] - 2s 29us/sample - loss: 0.0090
Epoch 15/20
60000/60000 [===========] - 2s 29us/sample - loss: 0.0090
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(1,1)
```

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.07600605861382428 Test accuracy: 0.9801


```
w_after = model_relu.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```

```
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


→ 3.3 MLP + ReLU activation + Adam Optimizer (Dropout)

```
from tensorflow.keras.layers import Dense, Dropout
model_relu = Sequential()
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(128, activation='relu'))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(output_dim, activation='softmax'))

### Dropout

### D
```

Model: "sequential 7"

Layer (type)	Output Shape	Param #
dense_22 (Dense)	(None, 512)	401920
dropout_5 (Dropout)	(None, 512)	0
dense_23 (Dense)	(None, 256)	131328

adam', loss='categorical_crossentropy', metrics=['accuracy'])

In, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, validation_data=(X_size=batch_size)

```
========] - 1s 25us/sample - loss: 0.6499 - acc: 0.7962 - val loss:
========] - 1s 19us/sample - loss: 0.1562 - acc: 0.9573 - val_loss:
========] - 1s 19us/sample - loss: 0.1335 - acc: 0.9629 - val loss:
========] - 1s 20us/sample - loss: 0.1023 - acc: 0.9716 - val loss:
========] - 1s 19us/sample - loss: 0.0833 - acc: 0.9755 - val loss:
========] - 1s 19us/sample - loss: 0.0764 - acc: 0.9781 - val_loss:
========= ] - 1s 19us/sample - loss: 0.0708 - acc: 0.9792 - val_loss:
========= ] - 1s 19us/sample - loss: 0.0686 - acc: 0.9798 - val_loss:
========= ] - 1s 19us/sample - loss: 0.0648 - acc: 0.9811 - val_loss:
========= ] - 1s 19us/sample - loss: 0.0609 - acc: 0.9823 - val_loss:
========= ] - 1s 19us/sample - loss: 0.0594 - acc: 0.9825 - val_loss:
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
```

```
print('lest accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict keys(['val loss', 'val acc', 'loss', 'acc'])
# history = model drop.fit(X train, Y train, batch size=batch size, epochs=nb epoc
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number
vy = history.history['val loss']
ty = history.history['loss']
plt dynamic(x, vy, ty, ax)
```

Test score: 0.06959878407377218 Test accuracy: 0.9819


```
w_after = model_relu.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
```

```
plt.Subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


→ 3.4 MLP + ReLU activation + Adam Optimizer (Batch Normalization)

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalizat
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.layers import BatchNormalization
model relu = Sequential()
model relu.add(Dense(512, activation='relu', input shape=(input dim,), kernel init
model relu.add(BatchNormalization())
model relu.add(Dropout(0.5))
model relu.add(Dense(256, activation='relu', input shape=(input dim,), kernel init
model relu.add(BatchNormalization())
model_relu.add(Dropout(0.5))
model relu.add(Dense(128, activation='relu', kernel initializer=RandomNormal(mean=
model relu.add(BatchNormalization())
model relu.add(Dropout(0.5))
model_relu.add(Dense(output_dim, activation='softmax'))
model relu.summary()
С→
```

Model: "sequential_8"

Layer (type)	0utput	Shape	Param #
dense_26 (Dense)	(None,	512)	401920
batch_normalization_5 (Batch	(None,	512)	2048
dropout_8 (Dropout)	(None,	512)	0
dense_27 (Dense)	(None,	256)	131328
batch_normalization_6 (Batch	(None,	256)	1024
dropout_9 (Dropout)	(None,	256)	0
dense_28 (Dense)	(None,	128)	32896
batch_normalization_7 (Batch	(None,	128)	512
dropout_10 (Dropout)	(None,	128)	0
dense_29 (Dense)	(None,	10)	1290

Total params: 571,018 Trainable params: 569,226 Non-trainable params: 1,792

validate on 10000 samples

```
=======] - 2s 39us/sample - loss: 0.6492 - acc: 0.8044 - val_loss:
=========] - 2s 29us/sample - loss: 0.2083 - acc: 0.9402 - val loss:
========= ] - 2s 31us/sample - loss: 0.1338 - acc: 0.9602 - val loss:
========== ] - 2s 32us/sample - loss: 0.1101 - acc: 0.9674 - val_loss:
========] - 2s 29us/sample - loss: 0.0997 - acc: 0.9694 - val loss:
=========] - 2s 31us/sample - loss: 0.0960 - acc: 0.9713 - val loss:
========] - 2s 30us/sample - loss: 0.0943 - acc: 0.9716 - val loss:
=========] - 2s 29us/sample - loss: 0.0846 - acc: 0.9743 - val loss:
========] - 2s 29us/sample - loss: 0.0812 - acc: 0.9750 - val loss:
 =========] - 2s 31us/sample - loss: 0.0780 - acc: 0.9760 - val loss:
========] - 2s 30us/sample - loss: 0.0752 - acc: 0.9771 - val loss:
========] - 2s 28us/sample - loss: 0.0665 - acc: 0.9796 - val loss:
=======] - 2s 30us/sample - loss: 0.0618 - acc: 0.9811 - val_loss:
========= ] - 2s 29us/sample - loss: 0.0600 - acc: 0.9815 - val_loss:
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(1,1)
```

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc)

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06073868394402962 Test accuracy: 0.9836


```
w_after = model_relu.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```

```
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


→ 4 Model C: 5 Hidden Layers

▼ 4.1 MLP + ReLU activation + Adam Optimizer

```
# Multilayer perceptron

model_relu = Sequential()
model_relu.add(Dense(1024, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dense(512, activation='relu'))
model_relu.add(Dense(256, activation='relu'))
model_relu.add(Dense(128, activation='relu'))
model_relu.add(Dense(64, activation='relu'))
model_relu.add(Dense(output_dim, activation='softmax'))

model_relu.summary()
```

Model: "sequential 11"

Layer (type)	Output Shape	Param #
dense_41 (Dense)	(None, 1024)	803840
dense_42 (Dense)	(None, 512)	524800
dense_43 (Dense)	(None, 256)	131328
dense 44 (Dense)	(None. 128)	32896

model_relu.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['ac
history = model relu.fit(X train, Y train, batch size=batch size, epochs=nb epoch,

```
□→ Train on 60000 samples, validate on 10000 samples
Epoch 1/20
Epoch 2/20
Epoch 3/20
Epoch 4/20
60000/60000 [===========] - 1s 22us/sample - loss: 0.0409
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
60000/60000 [============= ] - 1s 22us/sample - loss: 0.0205
Epoch 9/20
Epoch 10/20
Epoch 11/20
Epoch 12/20
60000/60000 [============= ] - 1s 22us/sample - loss: 0.0123
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
```

```
print('lest score:', score[0])
print('Test accuracy:', score[1])
fig,ax = plt.subplots(1,1)
ax.set xlabel('epoch') ; ax.set ylabel('Categorical Crossentropy Loss')
# list of epoch numbers
x = list(range(1, nb epoch+1))
# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc
# we will get val loss and val acc only when you pass the paramter validation data
# val loss : validation loss
# val_acc : validation accuracy
# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number
vy = history.history['val loss']
ty = history.history['loss']
plt dynamic(x, vy, ty, ax)
```

Test score: 0.10951780684681689 Test accuracy: 0.9812


```
w_after = model_relu.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')
```

```
plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2 w, color='r')
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```

Hidden Layer 1

4.2 MLP + ReLU activation + Adam Optimizer (Batch Normalization)

Output Layer

```
model relu = Sequential()
model relu.add(Dense(1024, activation='relu', input_shape=(input_dim,), kernel_ini
model relu.add(BatchNormalization())
model relu.add(Dense(512, activation='relu', input shape=(input dim,), kernel init
model relu.add(BatchNormalization())
model relu.add(Dense(256, activation='relu', input shape=(input dim,), kernel init
model relu.add(BatchNormalization())
model_relu.add(Dense(128, activation='relu', input_shape=(input_dim,), kernel_init
model relu.add(BatchNormalization())
model_relu.add(Dense(64, activation='relu', kernel_initializer=RandomNormal(mean=0)
model relu.add(BatchNormalization())
model_relu.add(Dense(output_dim, activation='softmax'))
model_relu.summary()
С→
```

Model: "sequential_13"

Layer (type)	Output	Shape	Param #
dense_53 (Dense)	(None,	1024)	803840
batch_normalization_13 (Batc	(None,	1024)	4096
dense_54 (Dense)	(None,	512)	524800
batch_normalization_14 (Batc	(None,	512)	2048
dense_55 (Dense)	(None,	256)	131328
batch_normalization_15 (Batc	(None,	256)	1024
dense_56 (Dense)	(None,	128)	32896
batch_normalization_16 (Batc	(None,	128)	512
dense_57 (Dense)	(None,	64)	8256
batch_normalization_17 (Batc	(None,	64)	256
dense_58 (Dense)	(None,	10)	650

Total params: 1,509,706 Trainable params: 1,505,738 Non-trainable params: 3,968

·

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
Epoch 2/20
60000/60000 [============== ] - 2s 36us/sample - loss: 0.0679
Epoch 3/20
60000/60000 [===========] - 2s 38us/sample - loss: 0.0450
Epoch 4/20
60000/60000 [============== ] - 2s 40us/sample - loss: 0.0334
Epoch 5/20
Epoch 6/20
Epoch 7/20
60000/60000 [============== ] - 2s 38us/sample - loss: 0.0206
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
60000/60000 [===========] - 2s 38us/sample - loss: 0.0163
Epoch 12/20
60000/60000 [============== ] - 2s 38us/sample - loss: 0.0140
Epoch 13/20
Epoch 14/20
60000/60000 [============] - 2s 36us/sample - loss: 0.0100
Epoch 15/20
60000/60000 [============] - 2s 37us/sample - loss: 0.0121
Epoch 16/20
60000/60000 [============== ] - 2s 39us/sample - loss: 0.0147
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(1,1)
```

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.07663915940060397


```
w_after = model_relu.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```

```
plt.xlabel('Hidden Layer 2 ')

plt.subplot(1, 3, 3)

plt.title("Trained model Weights")

ax = sns.violinplot(y=out_w,color='y')

plt.xlabel('Output Layer ')

plt.show()
```


4.3 MLP + ReLU activation + Adam Optimizer (Dropout)

```
from tensorflow.keras.layers import Dense, Dropout
model_relu = Sequential()
model_relu.add(Dense(1024, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(128, activation='relu', input_shape=(input_dim,)))
model_relu.add(Dropout(0.5))
model_relu.add(Dropout(0.5))
model_relu.add(Dropout(0.5))
model_relu.add(Dense(output_dim, activation='softmax'))
```

Model: "sequential_14"

Layer (type)	Output Shape	Param #
dense_59 (Dense)	(None, 1024)	803840
dropout_11 (Dropout)	(None, 1024)	0
dense_60 (Dense)	(None, 512)	524800
dropout_12 (Dropout)	(None, 512)	0
dense_61 (Dense)	(None, 256)	131328
dropout_13 (Dropout)	(None, 256)	0
dense_62 (Dense)	(None, 128)	32896
dropout_14 (Dropout)	(None, 128)	0
dense_63 (Dense)	(None, 64)	8256
dropout_15 (Dropout)	(None, 64)	0
dense_64 (Dense)	(None, 10)	650

Total params: 1,501,770 Trainable params: 1,501,770 Non-trainable params: 0

validate on 10000 samples

```
========] - 2s 35us/sample - loss: 1.0954 - acc: 0.6175 - val_loss:
========] - 1s 24us/sample - loss: 0.2637 - acc: 0.9396 - val loss:
========= ] - 1s 23us/sample - loss: 0.1701 - acc: 0.9613 - val loss:
========] - 1s 23us/sample - loss: 0.1421 - acc: 0.9680 - val_loss:
========= ] - 1s 24us/sample - loss: 0.1342 - acc: 0.9695 - val loss:
=========] - 1s 24us/sample - loss: 0.1263 - acc: 0.9712 - val loss:
========= ] - 1s 24us/sample - loss: 0.1143 - acc: 0.9741 - val loss:
=========] - 1s 23us/sample - loss: 0.1100 - acc: 0.9744 - val loss:
========] - 1s 23us/sample - loss: 0.1024 - acc: 0.9773 - val loss:
 ==========] - 1s 23us/sample - loss: 0.0975 - acc: 0.9770 - val_loss:
========] - 1s 23us/sample - loss: 0.0977 - acc: 0.9772 - val loss:
========= ] - 1s 24us/sample - loss: 0.0841 - acc: 0.9800 - val loss:
=======] - 1s 23us/sample - loss: 0.0829 - acc: 0.9807 - val_loss:
========= ] - 1s 24us/sample - loss: 0.0793 - acc: 0.9816 - val_loss:
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(1,1)
```

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc)

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.09344992985821433 Test accuracy: 0.9832


```
w_after = model_relu.get_weights()
h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```

```
plt.xlabel('Hidden Layer 2 ')
plt.subplot(1, 3, 3)
plt.title("Trained model Weights")
ax = sns.violinplot(y=out_w,color='y')
plt.xlabel('Output Layer ')
plt.show()
```


▼ 4.4 MLP + ReLU activation + Adam Optimizer (Batch Normalization)

```
# https://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalizat
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.layers import BatchNormalization
model relu = Sequential()
model_relu.add(Dense(1024, activation='relu', input_shape=(input_dim,), kernel_ini
model_relu.add(BatchNormalization())
model relu.add(Dropout(0.5))
model_relu.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_init
model_relu.add(BatchNormalization())
model relu.add(Dropout(0.5))
model relu.add(Dense(256, activation='relu', input shape=(input dim,), kernel init
model relu.add(BatchNormalization())
model_relu.add(Dropout(0.5))
model relu.add(Dense(128, activation='relu', kernel initializer=RandomNormal(mean=
model relu.add(BatchNormalization())
model_relu.add(Dropout(0.5))
model_relu.add(Dense(64, activation='relu', input_shape=(input_dim,), kernel_initi
model relu.add(BatchNormalization())
model_relu.add(Dropout(0.5))
model relu.add(Dense(output dim, activation='softmax'))
model_relu.summary()
```

□ Model: "sequential_15"

Layer (type)	Output	Shape	Param #
dense_65 (Dense)	(None,	1024)	803840
batch_normalization_18 (Ba	itc (None,	1024)	4096
dropout_16 (Dropout)	(None,	1024)	0
dense_66 (Dense)	(None,	512)	524800
batch_normalization_19 (Ba	ntc (None,	512)	2048
dropout_17 (Dropout)	(None,	512)	0
dense_67 (Dense)	(None,	256)	131328
batch_normalization_20 (Ba	ntc (None,	256)	1024
dropout_18 (Dropout)	(None,	256)	0
dense_68 (Dense)	(None,	128)	32896
batch_normalization_21 (Ba	ntc (None,	128)	512
dropout_19 (Dropout)	(None,	128)	0
dense_69 (Dense)	(None,	64)	8256
batch_normalization_22 (Ba	itc (None,	64)	256
dropout_20 (Dropout)	(None,	64)	0
dense_70 (Dense)	(None,	10)	650
T . 1			

Total params: 1,509,706 Trainable params: 1,505,738 Non-trainable params: 3,968

idam', loss='categorical_crossentropy', metrics=['accuracy'])
In, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, validation_data=(X_
□

validate on 10000 samples

```
========] - 3s 57us/sample - loss: 0.9945 - acc: 0.6910 - val_loss:
========] - 2s 40us/sample - loss: 0.2403 - acc: 0.9369 - val loss:
========= ] - 2s 41us/sample - loss: 0.1533 - acc: 0.9606 - val loss:
========== ] - 2s 39us/sample - loss: 0.1267 - acc: 0.9661 - val_loss:
========] - 2s 40us/sample - loss: 0.1183 - acc: 0.9694 - val loss:
=========] - 2s 41us/sample - loss: 0.1125 - acc: 0.9707 - val loss:
========= ] - 2s 41us/sample - loss: 0.1001 - acc: 0.9740 - val loss:
=========] - 2s 40us/sample - loss: 0.0952 - acc: 0.9755 - val loss:
========] - 2s 40us/sample - loss: 0.0937 - acc: 0.9750 - val loss:
 =========] - 2s 42us/sample - loss: 0.0884 - acc: 0.9761 - val_loss:
========] - 2s 40us/sample - loss: 0.0856 - acc: 0.9776 - val loss:
========] - 3s 43us/sample - loss: 0.0773 - acc: 0.9801 - val loss:
=======] - 2s 41us/sample - loss: 0.0740 - acc: 0.9804 - val_loss:
========= ] - 2s 41us/sample - loss: 0.0699 - acc: 0.9814 - val_loss:
```

```
score = model_relu.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```

```
fig,ax = plt.subplots(1,1)
```

```
ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')

# list of epoch numbers
x = list(range(1,nb_epoch+1))

# print(history.history.keys())
# dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
# history = model_drop.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoc

# we will get val_loss and val_acc only when you pass the paramter validation_data
# val_loss : validation loss
# val_acc : validation accuracy

# loss : training loss
# acc : train accuracy
# for each key in histrory.histrory we will have a list of length equal to number

vy = history.history['val_loss']
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06646238846067572 Test accuracy: 0.9837


```
w_after = model_relu.get_weights()

h1_w = w_after[0].flatten().reshape(-1,1)
h2_w = w_after[2].flatten().reshape(-1,1)
out_w = w_after[4].flatten().reshape(-1,1)

fig = plt.figure()
plt.title("Weight matrices after model trained")
plt.subplot(1, 3, 1)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h1_w,color='b')
plt.xlabel('Hidden Layer 1')

plt.subplot(1, 3, 2)
plt.title("Trained model Weights")
ax = sns.violinplot(y=h2_w, color='r')
```