Chapter 3 of Number Theory with Computer Applications by Kumanduri and Romero;

University of Windsor 62-322 Course notes by M. Hlynka and W.L. Yee.

MODULAR ARITHMETIC

3.1 Congurences:

Definition 3.1.1: If a, b, m are integers, we say that a is congruent to b modulo m (written as $a \equiv b \mod m$) if m | (a - b). (I.e. a and b leave the same remainder when you divide by m.) Otherwise we write $a \not\equiv b \mod m$.

Example:

 $23 \equiv 8 \mod 5$ because $5 \mid (23 - 8)$

 $5^7 \equiv 2 \mod 3$ because 78125 = 3(26041) + 2 so 3(78125 - 2).

If a = qm + r, then $a \equiv r \pmod{m}$.

Proposition 3.1.3: (p. 61)

- (a) $a \equiv a \mod m$
- (b) $a \equiv b \mod m$ iff $b \equiv a \mod m$.
- (c) $a \equiv b \mod m$ and $b \equiv c \mod m$ imply $a \equiv c \mod m$.

So congruence modulo m is an equivalence relation and divides the integers into equivalence classes depending on the remainder upon division by m.

Proposition 3.1.5 If a, b, c, d are integers, then

(a)
$$a \equiv b \pmod{m}$$
 implies $ac \equiv bc \pmod{m}$

- (b) $a \equiv b \pmod{m}$ implies $a \pm c \equiv b \pm c \pmod{m}$
- (c) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ imply $ac \equiv bd \pmod{m}$
- (d) $a \equiv b \pmod{m}$ implies $a^k \equiv b^k \pmod{m}$ for positive integers k.

Proof.

- (a) $a \equiv b \pmod{m}$ implies m|(a-b) implies m|c(a-b)=ca-cb so $ca \equiv cb \pmod{m}$
- (b) exercise
- (c) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ imply $ac \equiv bc \pmod{m}$ and $bc \equiv bd \pmod{m}$. Thus, by Proposition 3.1.3.(c), we have $ac \equiv bd \pmod{m}$
- (d) $a \equiv b \pmod{m}$ implies (by (c)) that $a^2 \equiv b^2 \pmod{m}$. We can continue to multiply both sides in the same way so the result follows.

Example What is the remainder when 2^{1234} is divided by 7. SOLUTION: $2^{1234} \mod(7) \equiv ?$ Note that $2^1 \equiv 2 \pmod{7}$; $2^2 \equiv 4 \pmod{7}$; $2^3 \equiv 8 \equiv 1 \pmod{7}$. Thus $2^{1234} \equiv 2^{3(411)+1} \equiv (2^3)^{411} 2^1 \equiv 1^{411} 2 \equiv 2 \pmod{7}$.

Example Is the sum of 3 consecutive cubes always divisible by 9? SOLUTION 1: Let $S = n^3 + (n+1)^3 + (n+2)^3$.

There are 9 cases. All can be checked so the sum is divisible by 9.

If
$$n \equiv 0 \pmod{9}$$
 then $S \equiv 0^3 + 1^3 + 2^3 \equiv 1 + 8 \equiv 0 \pmod{9}$.

If
$$n \equiv 1 \pmod{9}$$
 then $S \equiv 1^3 + 2^3 + 3^3 \equiv 1 + 8 + 0 \equiv 0 \pmod{9}$.

If
$$n \equiv 2 \pmod{9}$$
 then $S \equiv 2^3 + 3^3 + 4^3 \equiv 8 + 0 + 1 \equiv 0 \pmod{9}$.

If
$$n \equiv 3 \pmod{9}$$
 then $S \equiv 3^3 + 4^3 + 5^3 \equiv 0 + 1 + 8 \equiv 0 \pmod{9}$.
etc.

SOLUTION 2: Let

$$S = (n-1)^3 + n^3 + (n+1)^3$$

$$= (n^3 - 3n^2 + 3n - 3) + n^3 + (n^3 + 3n^2 + 3n + 1)$$

$$= 3n^3 + 6n = 3n(n^2 + 2).$$

If we can show that $T = n(n^2 + 2)$ is divisible by 3, we are done.

If $n \equiv 0 \pmod{3}$ then $T \equiv 0(0^2 + 2) \equiv 0 \pmod{3}$.

If $n \equiv 1 \pmod{3}$ then $T \equiv 1(1^2 + 2) \equiv 0 \pmod{3}$.

If $n \equiv 2 \pmod{3}$ then $T \equiv 2(2^2 + 2) \equiv 0 \pmod{3}$.

So $T \equiv 0 \pmod{3}$ and so the sum of 3 consecutive cubes is divisible by 9.

Example AAF 104 Number Theory Problems, Example 1.21) Find all primes p and q such that $p+q=(p-q)^3$.

 $(p-q)^3 = p+q \neq 0$, so p and q are distinct and thus relatively prime.

Since $p-q \equiv p-q+p+q \equiv 2p \pmod{p+q}$, taking the given equation modulo p+q gives $0 \equiv 8p^3 \pmod{p+q}$. Because p and q are relatively prime, so are p and p+q. Therefore $0 \equiv 8 \pmod{p+q}$ so that p+q divides 8. Therefore the only solution is p=5, q=3.

Divisibility Rules: See exercise 17, p. 68

A positive integer is divisible by 2 if it is even.

A positive integer is divisible by 5 if it ends in 0 or 5.

Divisibility by 3 or 9: Any positive integer can be written as $n = a_m 10^m + a_{m-1} 10^{m-1} + \cdots + a_0$.

Since $10 \equiv 1 \pmod{3}$ and $10 \equiv 1 \pmod{9}$, it follows that

$$n \equiv a_m(1)^m + a_{m-1}(1)^{m-1} + \dots + a_0 \equiv a_m + \dots + a_0 \pmod{3}$$
 or (mod 9).

So we can check for divisibility (mod 9) by just adding the digits.

Example: Is 123456789 divisible by 9?

Yes, since the sum of the digits is divisible by 9.

Example: What is the remainder of 2017 when divided by 9? $2017 \equiv 2 + 0 + 1 + 7 \equiv 10 \equiv 1 + 0 \equiv 1 \pmod{9}$ so the remainder is 1.

Example: 1994 ARML individual question #5. In the addition below, each letter represents a different digit. Compute the digit that J represents.

ABC

DEF

+GHI

1J32

The digits A to J are a permutation of 0 to 9. Modulo 9, we have $A+B+C+D+E+F+G+H+I\equiv 1+J+3+2\pmod 9$ so $45-J\equiv 6+J\pmod 9$ so $45-6\equiv 39\equiv 12\equiv 2J\pmod 9$ so J=6.

 ${\rm (Some\ questions\ from\ Engel,\ Problem-Solving\ Strategies,\ others\ from\ de\ Koninck,\ 1001\ Problems\ in\ Classical\ Number\ Theory.)}$

#7, p.67. If n is odd, then $n^2 \equiv 1 \pmod{8}$ and $n^2 \equiv 1 \pmod{4}$.

$n \pmod{8}$	$n^2 \pmod{8}$
1	1
3	$9 \equiv 1$
5	$25 \equiv 1$
7	$49 \equiv 1$

If $n^2 \equiv 1 \pmod{8}$, then $n^2 \equiv 1 \pmod{4}$ for odd n.

MH3.1.1. If $a \equiv b \equiv 1 \pmod{2}$, show that $a^2 + b^2$ is not a square.

We have the following table:

$$egin{array}{c|cccc} n \pmod{4} & n^2 \pmod{4} \\ \hline 0 & 0 & & & \\ 1 & 1 & & & \\ 2 & 0 & & & \\ 3 & & 1 & & & \\ \hline \end{array}$$

 $a^2 + b^2 \equiv 1 + 1 \equiv 2 \pmod{4}$. Therefore since $a^2 + b^2 \equiv 2 \pmod{4}$, $a^2 + b^2$ can't be a perfect square.

MH3.1.2 Show that 6|n(n+1)(2n+1) for any positive integer n.

$n \pmod{2}$	$n(n+1) \pmod{2}$
0	0
1	$1(2) \equiv 0$

Therefore n(n+1) is always even.

$n \pmod{3}$	$n(n+1)(2n+1) \pmod{3}$
0	0
1	$1(2)(3) \equiv 0$
2	$2(3)(5) \equiv 0$

Therefore n(n+1)(2n+1) is always divisible by 3.

Therefore n(n+1)(2n+1) is always divisible by 6.

MH3.1.3 Show that the product of 4 consecutive positive integers is

divisible by 24.

$n \pmod{8}$	$n(n+1)(n+2)(n+3) \pmod{8}$
0	0
1	$1 \cdot 2 \cdot 3 \cdot 4 \equiv 0$ $2 \cdot 3 \cdot 4 \cdot 5 \equiv 0$ $3 \cdot 4 \cdot 5 \cdot 6 \equiv 360 \equiv 0$
2	$2 \cdot 3 \cdot 4 \cdot 5 \equiv 0$
3	$3 \cdot 4 \cdot 5 \cdot 6 \equiv 360 \equiv 0$
4	$4 \cdot 5 \cdot 6 \cdot 7 \equiv 840 \equiv 0$
5	$5 \cdot 6 \cdot 7 \cdot 8 \equiv 0$ $6 \cdot 7 \cdot 8 \cdot 9 \equiv 0$
6	$6 \cdot 7 \cdot 8 \cdot 9 \equiv 0$
7	$7 \cdot 8 \cdot 9 \cdot 10 \equiv 0$

Proposition 3.1.7:

- (a) If $a \equiv b \pmod{m}$ and d|m, then $a \equiv b \pmod{d}$.
- (b) If $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{m/(c, m)}$.
- (c) If $ac \equiv bc \pmod{m}$, and if (c, m) = 1, then $a \equiv b \pmod{m}$.

Proof. (a) is clear.

- (b) Let d = (c, m). Then c = dc' and m = dm' where (c', m') = 1. Thus $adc' \equiv bdc' \pmod{dm'}$. Thus dm'|adc' bdc'. Hence m'|ac' bc' = (a b)c'. Since (c', m') = 1, it follows that m'|(a b). Since m' = m/d = m/(m, c), we get $a \equiv b \pmod{m/(c, m)}$.
- (c) follows from (b).

Example: $15 \equiv 45 \pmod{10}$ so $3(5) \equiv 9(5) \pmod{10}$. However $3 \not\equiv 9 \pmod{10}$. The best we can say is $3 \equiv 9 \pmod{\frac{10}{(10,5)}}$ or $3 \equiv 9 \pmod{2}$.

Propostion 3.1.10 If (m, n) = 1, then $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$ iff $a \equiv b \pmod{mn}$

Proof. $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$ iff $m \mid (a - b)$ and $n \mid (a - b)$ iff $mn \mid (a - b)$ iff $a \equiv b \pmod{mn}$.

Proposition 3.1.3: (Repeat)

- (a) $a \equiv a \mod m$
- (b) $a \equiv b \mod m$ iff $b \equiv a \mod m$.
- (c) $a \equiv b \mod m$ and $b \equiv c \mod m$ imply $a \equiv c \mod m$.

So congruence is an equivalence relation and divides the integers into equivalence classes.

Note: $a \equiv b \mod m$ iff a and b give the same remainder when divided by m.

Example

List the set S_0 of integers $\equiv 0 \mod 7$.

Solution: $S_0 = \{\dots, -7, 0, 7, 14, 21, 28, \dots\}.$

List the set S_1 of integers $\equiv 1 \mod 7$.

Solution: $S_1 = \{\dots, -6, 1, 8, 15, 22, \dots\}.$

List the set S_2 of integers $\equiv 2 \mod 7$.

Solution: $S_2 = \{\ldots, -5, 2, 9, 16, 23, \ldots\}.$

There are 7 such classes S_0, \ldots, S_6 . These are denoted $\mathbb{Z}/7\mathbb{Z}$.

Definition 3.1.14 A complete residue system modulo m is a set S of integers which contains exactly one member of each equivalence class, i.e. exactly one value congruent to each of $\{0, 1, 2, ..., m-1\}$. **Example** $\{0, 1, 2, 3, 4\}$ is a complete residue system mod 5. Also $\{0, 6, 12, 3, 9\}$ is a complete residue system mod 5.

EXERCISES p. 67

3.1.1, 2ac, 4, 5, 9, 11,14, 17cd, 20.

Exercise p. 67 # 1) Determine if the following assertions are true:

a) $-2 \equiv 31 \pmod{11}$.

 $-2 \equiv 31 \pmod{11} \iff 0 \equiv 33 \pmod{11} \iff 11|33 \text{ which is true.}$

b) $77 \equiv 5 \pmod{12}$

 $77 \equiv 5 \pmod{12} \iff 72 \equiv 0 \pmod{12} \iff 12|72 \text{ which is true,}$

c) $1111 \equiv 11 \pmod{111}$

 $1111 \equiv 11 \pmod{111} \iff 1100 \equiv 0 \pmod{111} \iff 111|1100$ which is false. Therefore $1111 \not\equiv 11 \pmod{111}$.

Exercise p. 67 #2) Compute: a) $2^{83} \pmod{17}$.

 $2^4 \equiv 16 \equiv -1 \pmod{17}$, so $2^8 \equiv 1 \pmod{17}$.

 $2^{83} \equiv (2^8)^{10} 2^3 \equiv 1^{10} \cdot 8 \equiv 8 \pmod{17}$.

c) $9^{99} \pmod{100}$

Note: Useful technique: We can use the binary decomposition of 99 to compute 9^{99} quickly instead of multiplying and reducing 9 99

times.	
n	$n \pmod{100}$
9^{1}	9
9^{2}	$9 \cdot 9 \equiv 81$
9^{4}	$81 \cdot 81 \equiv 6561 \equiv 61$
9^{8}	$61 \cdot 61 \equiv 3721 \equiv 21$
9^{16}	$21 \cdot 21 \equiv 441 \equiv 41$
9^{32}	$41 \cdot 41 \equiv 1681 \equiv 81$
9^{64}	$81 \cdot 81 \equiv 61$

We use the binary representation of 99.

$$9^{99} \equiv 9^{64+32+2+1} \equiv 61 \cdot 81 \cdot 81 \cdot 9 \equiv 89 \pmod{100}.$$

Exercise p. 67 # 4) Find complete residue systems modulo 11 using only even numbers or only odd numbers.

$$\{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$$

Why? If gcd(a, m) = 1, then $0, a, 2a, \dots, (m-1)a$ form a complete residue system modulo m. The m numbers are distinct modulo m since $ai \equiv aj \pmod{m} \Rightarrow m|a(i-j) \Rightarrow m|(i-j) \Rightarrow i=j$.

Odd numbers: $\{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21\}$ Just add 1 from each number of the complete residue system of even numbers.

Exercise p. 67 # 5) Prove or disprove:

$$a \equiv b \pmod{m} \Rightarrow a^2 \equiv b^2 \pmod{m^2}.$$

Counterexample: $1 \equiv 4 \pmod{3}$ but $1^2 \equiv 1 \not\equiv 16 \equiv 7 \pmod{9}$. Exercise p. 67 # 9) Show that $3^{2n+5} + 2^{4n+1}$ is divisible by 7 for every integer $n \geq 1$.

$$3^{2n+5} + 2^{4n+1} \equiv (3^2)^n \times 3^5 + (16)^n \times 2 \pmod{7}$$
$$\equiv 2^n \times 243 + 2^n \times 2 \pmod{7}$$
$$\equiv 2^n \times 5 + 2^n \times 2 \equiv 2^n (5+2) \equiv 0 \pmod{7}$$

Therefore $3^{2n+5} + 2^{4n+1}$ is divisible by 7 for every integer $n \ge 1$. Exercise p. 67 # 11) Is the sum of three consecutive cubes always divisible by 9?

$n \pmod{9}$	$n^3 + (n+1)^3 + (n+2)^3 \pmod{9}$
0	$0+1+8 \equiv 0$
1	$1 + 8 + 27 \equiv 0$
2	$8 + 27 + 64 \equiv 0$
3	$27 + 64 + 125 \equiv 0$
4	$64 + 125 + 216 \equiv 0$
5	$(-4)^3 + (-3)^3 + (-2)^3 \equiv 0$
6	$(-3)^3 + (-2)^3 + (-1)^3 \equiv 0$
7	$(-2)^3 + (-1)^3 + 0^3 \equiv 0$
8	$(-1)^3 + 0^3 + 1^3 \equiv 0$

Therefore the sum of three consecutive cubes is always divisible by 9.

Exercise p. 68 # 17) Let $n = a_m 10^m + a_{m-1} 10^{m-1} + \cdots + a_1 10 + a_0$ be the decimal representation of n.

a) Prove that n is divisible by 2^k if and only if the number formed by the last k digits is divisible by 2^k .

$$n \equiv 10^{k} (a_{m} 10^{m-k} + a_{m-1} 10^{m-1-k} + \dots + a_{k}) + a_{k-1} 10^{k-1} + a_{k-2} 10^{k-2} + \dots + 10a_{1} + a_{0} \pmod{2^{k}}$$

$$\equiv 2^{k} \times 5^{k} (a_{m} 10^{m-k} + a_{m-1} 10^{m-1-k} + \dots + a_{k}) + a_{k-1} 10^{k-1} + a_{k-2} 10^{k-2} + \dots + 10a_{1} + a_{0} \pmod{2^{k}}$$

$$\equiv a_{k-1} 10^{k-1} + a_{k-2} 10^{k-2} + \dots + 10a_{1} + a_{0} \pmod{2^{k}}$$

c) Show that n is divisible by 11 if and only if

$$a_0 + a_2 + a_4 + \dots \equiv a_1 + a_3 + a_5 + \dots \pmod{11}$$
.

We use the fact that $10 \equiv -1 \pmod{11}$.

$$n \equiv 0 \pmod{11} \iff a_m 10^m + a_{m-1} 10^{m-1} + \dots + a_1 10 + a_0 \equiv 0 \pmod{11}$$

$$\iff a_m (-1)^m + a_{m-1} (-1)^{m-1} + \dots + a_1 (-1) + a_0 \equiv 0 \pmod{11}$$

$$\iff a_0 + a_2 + a_4 + \dots \equiv a_1 + a_3 + a_5 + \dots \pmod{11}.$$

3.2 Inverses mod m

Definition 3.2.1. A number a' is an *inverse of a* mod m if $aa' \equiv a'a \equiv 1 \mod m$. If a has an inverse, then we say that a is *invertible* mod m.

Examples

An inverse of 2 mod 7 is 4 since $2(4) \equiv 1 \mod 7$.

There is no inverse of 4 mod 6 since multiples of 4 mod 6 by 0,1,2,3,4,5 are 0,4,2,0,4,2, mod 6.

The inverse of 5 mod 6 is 5 mod 6 since $5^2 \equiv 1 \mod 6$.

Proposition 3.2.3

- (a) An integer a is invertible mod m iff (a, m) = 1.
- (b) If a has an inverse, then it is unique mod m.

Proof. (a) If (a, m) = 1, there exist integers u, v such that au + mv = 1. Thus $au \equiv 1 \mod m$ so a is invertible.

Conversely, if a is invertible, then $aa' \equiv 1 \mod m$. Thus aa' - 1 is divisible by m so mk = aa' - 1. Thus any divisor of a and m must divide 1. Hence (a, m) = 1.

(b) Suppose (a, m) = 1 and a has two inverses b and b'. Then $ab \equiv ab' \mod m$. So m divides ab - ab' = a(b - b'). But (a, m) = 1 so m | (b - b') and thus $b \equiv b' \mod m$.

Note: The proof above indicates that we can use the Euclidean algorithm to find an inverse mod m.

Example: Find the inverse of 11 modulo 31.

$$31 = 11(2) + 9$$

$$11 = 9(1) + 2$$

$$9 = 2(4) + 1$$

$$2 = 1(2)$$

$$1 = 9 - 2(4)$$

$$= 9 - (11 - 9(1))(4) = (-4)11 + (5)9$$

$$= (-4)11 + (5)(31 - 11(2)) = (5)31 - (14)11$$

so 1 = (5)31 - (14)11. Thus $(-14)11 \equiv 1 \pmod{31}$ so -14 is an inverse of 11 modulo 31.

Corollary If a has an inverse $a' \mod m$, then the linear congruence $ax \equiv b \mod m$ has a solution for all b.

Proof. $a'a \equiv 1 \mod m$. So $ax \equiv b \mod m$ implies $a'ax \equiv a'b \mod m$ so $x \equiv a'b \mod m$, and this gives the solution. \blacksquare

Corollary: If p is prime, then a has an inverse mod p for all $a \not\equiv 0$ mod p.

Note: The integers mod p form a finite field.

Example: Solve $5x \equiv 12 \mod 17$.

SOLUTION: Since 17 is prime, 5 has an inverse mod 17.

$$17 = 5 \times 3 + 2$$

$$5 = 2 \times 2 + 1$$

$$2 = 1 \times 2$$

$$1 = 5 - 2 \times 2$$
$$= 5 - (17 - 5 \times 3) \times 2 = -2 \times 17 + 7 \times 5$$

Therefore $7 \times 5 \equiv 1 \pmod{17}$, therefore 7 is the inverse of 5 modulo 17. Hence

 $5x \equiv 12 \mod 17$ implies $7(5)x \equiv 7(12) \mod 17$ or $x \equiv 84 \mod 17$ or $x \equiv 16 \mod 17$.

Proposition 3.2.7

- (a) The linear congruence $ax \equiv b \mod m$ has exactly d = (a, m) solutions if d|b and no solutions if $d \nmid b$.
- (b) If $ax_0 \equiv b \mod m$ for some x_0 then the other distinct solutions mod m are $x_0 + (m/d)i$ for i = 0, 1, ..., d 1.

Omit proof.

Example Solve $4x \equiv 6 \mod 10$.

SOLUTION: (4, 10) = 2 = d. Since d|6, there are exactly d = 2 distinct solutions. Look at multiples of 4. They are 4(1)=4,4(2)=8, $4(3) = 12 \equiv 2 \mod 10$, $4(4) = 16 \equiv 6 \mod 10$. Thus $x_0 = 4$. The other solution is $x_0 + (m/d)1 = 4 + (10/2)(1) \equiv 9 \mod 10$.

Wilson's Theorem

If p is prime then $(p-1)! \equiv -1 \mod p$.

Proof. We try to pair every number in $\{1, 2, ..., p-2, p-1\}$ with its inverse mod p. Clearly $1^2 \equiv 1 \mod p$ and $(p-1)^2 \equiv 1 \mod p$ so 1 pairs with 1 and (p-1) pairs with p-1.

Next consider values n such that $2 \le n \le p-2$. If $n^2 \equiv 1 \mod p$ then $n^2-1=(n-1)(n+1)$ is divisible by p. So p|n-1 or p|n+1. But this is impossible since $2 \le n \le p-2$. So each of these values pairs with a distinct other value. Hence $(p-1)! \equiv 1(1) \dots (1)(p-1) \equiv -1 \mod p$.

Exercises p. 72. #1, 2, 4, 5, 7, 8

Exercise p. 72 # 1) Determine the invertible elements modulo 15, 17, and 32.

 $\{0 \le a \le 14 | gcd(a, 15) = 1\} = \{1, 2, 4, 7, 8, 11, 13, 14\}$ are the invertible elements modulo 15.

17 is prime, so the invertible elements modulo 17 are $\{a|1 \le a \le 16\}$.

$$\{0 \le a \le 31 | gcd(a, 32) = 1\} = \{1, 3, 5, 7, \dots, 31\}.$$

Exercise p. 72 # 2) Determine the inverse of 67 modulo 119.

We use the Euclidean algorithm.

$$119 = 67(1) + 52$$

$$67 = 52(1) + 15$$

$$52 = 15(3) + 7$$

$$15 = 7(2) + 1$$

$$7 = 1(7)$$

$$1 = 15 - 7(2)$$

$$= 15 - (2)(52 - 15(3)) = -(2)52 + (7)15$$

$$= -(2)52 + (7)(67 - 52(1)) = (7)67 - (9)52$$

$$= (7)67 - (9)(119 - 67(1)) = -(9)119 + (16)67$$

1 = -(9)119 + (16)67, therefore $(16)(67) \equiv 1 \pmod{119}$ so the inverse of 67 modulo 119 is 16.

Exercise p. 72 # 4) Solve the following linear congruences.

a) $11x \equiv 28 \pmod{37}$.

11 and 37 are prime, so (11, 37) = 1. Therefore there is one solution modulo 37.

We use the Euclidean algorithm to find 11^{-1} modulo 37. Then $x=11^{-1}\times 28$.

$$37 = 11(3) + 4$$

$$11 = 4(2) + 3$$

$$4 = 3(1) + 1$$

$$3 = 1(3)$$

$$1 = 4 - (1)3$$

$$= 4 - (1)(11 - 4(2)) = -(1)11 + (3)4$$

$$= -(1)11 + (3)(37 - 11(3)) = (3)37 - (10)11$$

1 = (3)37 - (10)11, therefore $(-10)(11) \equiv 1 \pmod{37}$. Therefore $-10 \equiv 27 \pmod{37}$ is the inverse of 11 modulo 37. Therefore $x \equiv 27 \times 28 \equiv 16 \pmod{37}$.

b) $42x \equiv 90 \pmod{156}$.

 $gcd(42,156) = gcd(2 \cdot 3 \cdot 7, 2^2 \cdot 3 \cdot 13) = 6$ and 6|90. Therefore there are 6 solutions modulo 156.

We use the Euclidean algorithm to find a such that $42a \equiv 6 \pmod{156}$. Then $42(15a) \equiv 90 \pmod{156}$. Then the solutions are x = 15a + 156/6i for i = 0, 1, ..., 5.

Euclidean algorithm:

$$156 = 42(3) + 30$$

$$42 = 30(1) + 12$$

$$30 = 12(2) + 6$$

$$12 = 6(2)$$

$$6 = 30 - 12(2)$$

$$= 30 - (2)(42 - 30(1)) = -(2)42 + (3)30$$

$$= -(2)42 + (3)(156 - 42(3)) = (3)156 - 11(42)$$

6 = (3)156 - 11(42), so $6 \equiv (-11)42 \pmod{156}$.

 $15(-11) \equiv 147 \pmod{156}$. Thus the solutions are: $147, 147 + 26, 147 + 52, 147 + 78, 147 + 104, 147 + 130 \equiv 147, 17, 43, 69, 95, 121 (mod 156).$

Exercise p. 72 # 5) Prove that if a^{-1} is the inverse of a modulo m and b^{-1} is the inverse of b modulo m, then $a^{-1}b^{-1}$ is the inverse of ab modulo m.

 $ab(a^{-1}b^{-1}) \equiv aa^{-1}bb^{-1} \equiv 1 \cdot 1 \equiv 1 \pmod{m}$. Therefore $a^{-1}b^{-1}$ is the inverse of $ab \mod m$.

Exercise p. 72 # 7) If m is composite, what is the value (m-1)! \pmod{m} in the standard residue system? Conclude that $(m-1)! \equiv -1 \pmod{m}$ implies that m is prime.

If m is composite, then m may be factored as $m = d \cdot \frac{m}{d}$ where d and $\frac{m}{d}$ are integers between 2 and m-1. Then d and $\frac{m}{d}$ are terms in the product (m-1)! so $(m-1)! \equiv 0 \pmod{m}$. Thus $(m-1)! \equiv -1 \pmod{m}$ implies that m is prime.

Exercise p. 72 # 8)

a) Determine 65! (mod 67).

Note that 67 is prime. By Wilson's Theorem, $66! \equiv -1 \pmod{67}$.

 $66 \equiv -1 \pmod{67}$ and $66! = 66 \cdot (65!)$. Therefore $65! \equiv 1 \pmod{67}$.

b) If p is a prime number, what is $(p-2)! \pmod{p}$?

By Wilson's Theorem, $(p-1)! \equiv -1 \pmod{p}$. Also, $p-1 \equiv -1 \pmod{p}$. $(p-1)! = (p-1) \cdot ((p-2)!)$. Therefore $(p-2)! \equiv 1 \pmod{p}$.

3.3 CHINESE REMAINDER THEOREM:

CHINESE REMAINDER THEOREM p. 75

Let m_1, m_2, \ldots, m_r be pairwise relatively prime. Then

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$

$$\cdots$$

$$x \equiv a_r \pmod{m_r}$$
(*)

has a unique solution mod $(m_1 \cdots m_r)$.

Proof. Let $M = m_1 \cdots m_r$. Let $M_i = M/m_i$ for $i = 1, \dots, r$.

Because the m_i are pairwise relatively prime, we have $(M_i, m_i) = 1$.

Thus $M_i x \equiv 1 \pmod{m_i}$ has a solution. Call it x_i .

Let
$$x \equiv a_1 M_1 x_1 + \dots + a_r M_r x_r \pmod{M}$$
.

This will be a solution to (*) because

$$a_1 M_1 x_1 + \dots + a_r M_r x_r \equiv 0 + \dots + a_i M_i x_i + 0 + \dots \pmod{m_i}$$
$$\equiv a_i(1) \equiv a_i \pmod{m_i}.$$

Next assume that there are two solutions x and y mod M. Then $x \equiv y \pmod{m_i}$ $\forall i$, i.e. $m_i | (x - y)$. Since the m_i are pairwise relatively prime, we have $m_1 \cdots m_r | (x - y)$ or $x \equiv y \pmod{m_1 \cdots m_r}$.

EXAMPLE Solve the following system of equations.

$$x \equiv 2 \pmod{3}$$

$$x \equiv 1 \pmod{5}$$

$$x \equiv 6 \pmod{8}$$
.

SOLUTION: M = 3(5)(8) = 120. Also 3,5,8 are pairwise relatively prime.

First find M_1, M_2, M_3 . These are 5(8), 3(8), 3(5) or 40, 24, 15.

Next solve $M_i x \equiv 1 \pmod{m_i}$. i.e.

$$40x_1 \equiv 1 \pmod{3}$$

$$24x_2 \equiv 1 \, (mod \, 5)$$

$$15x_3 \equiv 1 \pmod{8}.$$

These reduce to

$$1x_1 \equiv 1 \pmod{3}$$
$$4x_2 \equiv -x_2 \equiv 1 \pmod{5}$$
$$7x_3 \equiv -x_3 \equiv 1 \pmod{8}.$$

We find $x_1 \equiv 1 \pmod{3}$, $x_2 \equiv 4 \pmod{5}$, $x_3 \equiv 7 \pmod{8}$. Next compute

$$a_1 M_1 x_1 + a_2 M_2 x_2 + a_3 M_3 x_3$$

 $\equiv 2(40)(1) + 1(24)(4) + 6(15)(7) \equiv 80 + 96 + 630 \mod 120$
 $\equiv 806 \equiv 86 \mod 120$

It is easy to check that 86 satisfies the 3 equations in (*).

EXAMPLE Solve

$$x \equiv 4 \mod 9$$
$$x \equiv 6 \mod 12$$

SOLUTION: Here 9 and 12 are not relatively prime. So the Chinese Remainder theorem does not work. Note that $x \equiv 6 \mod 12$ means $x \equiv 6 \mod 4$ and $x \equiv 6 \mod 3$. Now we have $x \equiv 4 \mod 9$ and $x \equiv 6 \mod 3$ so $x \equiv 1 \mod 3$ and $x \equiv 0 \mod 3$. This is impossible so there is no solution.

EXAMPLE Solve

$$x \equiv 4 \mod 9$$

$$x \equiv 7 \mod 12$$

SOLUTION: The Chinese Reminder Theorem does not apply, since $(9,12) \neq 1$. Note that $x \equiv 7 \mod 12$ means $x \equiv 7 \equiv 3 \mod 4$ and $x \equiv 7 \equiv 1 \mod 3$. Since $x \equiv 1 \equiv 4 \mod 3$ and $x \equiv 4 \mod 9$, the intersection of these two sets is $x \equiv 4 \mod 9$.

Now we can apply the Chinese remainder theorem to

$$x \equiv 4 \mod 9$$

$$x \equiv 3 \mod 4$$

Take M = 9(4) = 36, $M_1 = 4$, $M_2 = 9$.

Solve $M_1x_1 \equiv 1 \mod m_1$ and $M_2x_2 \equiv 1 \mod m_2$ or $4x_1 \equiv 1 \mod 9$ and $9x_2 \equiv 1 \mod 4$. We solve these by trying each possible value to get $x_1 \equiv 7 \pmod 9$ and $x_2 \equiv 1 \pmod 4$. (Recall for large numbers, you can use the Euclidean algorithm.) Finally compute

$$a_1M_1x_1 + a_2M_2x_2 \equiv 4(4)(7) + 3(9)(1) \equiv 112 + 27 \equiv 139 \equiv 31 \mod 36.$$

Exercise(Niven and Zuckerman) Find all integers that give remainders 1,2,3 when divided by 3,4,5.

$$x \equiv 1 \pmod{3}$$

$$x \equiv 2 \pmod{4}$$

$$x \equiv 3 \pmod{5}$$

$$M_1 = 20$$
, $M_2 = 15$, and $M_3 = 12$.

$$20x_1 \equiv 1 \pmod{3} \iff 2x_1 \equiv 1 \pmod{3} \Rightarrow x_1 \equiv 2 \pmod{3}$$

$$15x_2 \equiv 1 \pmod{4} \iff 3x_2 \equiv 1 \pmod{4} \Rightarrow x_2 \equiv 3 \pmod{4}$$

$$12x_3 \equiv 1 \pmod{5} \iff 2x_3 \equiv 1 \pmod{5} \Rightarrow x_3 \equiv 3 \pmod{5}$$

$$x \equiv a_1 M_1 x_1 + a_2 M_2 x_2 + a_3 M_3 x_3 \equiv 1 \cdot 20 \cdot 2 + 2 \cdot 15 \cdot 3 + 3 \cdot 12 \cdot 3 \equiv 238 \equiv 58 \pmod{60}$$
.

All integers of the form 58+60k give remainders 1, 2, 3 when divided by 3, 4, 5.

The following theorem generalizes the Chinese Remainder Theorem.

Theorem 3.3.4: Let m_1, \ldots, m_r be integers. Then the system of congruences $x \equiv a_i \mod m_i \ (i = 1, \ldots, r)$ has a solution iff $(m_i, m_j)|a_i - a_j$. The solution is unique mod $lcm[m_1, \ldots, m_r]$.

Proof: See text p. 78.

EXAMPLE The system

$$x \equiv 4 \mod 9$$
$$x \equiv 7 \mod 12$$

has a unique solution (mod 3^22^2) because (9,12)|(7-4).

Exercises: p. 80 #1ab, 2ab, 4, 5,

Exercise p. 80 # 1)

a)

$$x \equiv 1 \pmod{2}$$

 $x \equiv 2 \pmod{3}$
 $x \equiv 4 \pmod{5}$
 $x \equiv 2 \pmod{7}$

$$M_1 = 105, M_2 = 70, M_3 = 42, M_4 = 30.$$

$$M_1x_1 \equiv 1 \pmod{m_1} \iff 105x_1 \equiv 1 \pmod{2} \iff x_1 \equiv 1 \pmod{2}$$
 $M_2x_2 \equiv 1 \pmod{m_2} \iff 70x_2 \equiv 1 \pmod{3} \iff x_2 \equiv 1 \pmod{3}$
 $M_3x_3 \equiv 1 \pmod{m_3} \iff 42x_3 \equiv 1 \pmod{5} \iff 2x_3 \equiv 1 \pmod{5}$
 $\iff x_3 \equiv 3 \pmod{5}$
 $M_4x_4 \equiv 1 \pmod{m_4} \iff 30x_4 \equiv 1 \pmod{7} \iff 2x_4 \equiv 1 \pmod{7}$
 $\iff x_4 \equiv 4 \pmod{7}$

$$x \equiv a_1 M_1 x_1 + a_2 M_2 x_2 + a_3 M_3 x_3 + a_4 M_4 x_4$$

$$\equiv 1 \cdot 105 \cdot 1 + 2 \cdot 70 \cdot 1 + 4 \cdot 42 \cdot 3 + 2 \cdot 30 \cdot 4 \equiv 989 \equiv 149 \pmod{210}$$

so $x \equiv 149 \pmod{210}$.

Exercise p. 80 # 2) Determine if the following simultaneous congruences have a solution, and find the smallest positive solution if it exists.

a)

$$x \equiv 3 \pmod{8}$$

 $x \equiv 7 \pmod{12}$
 $x \equiv 4 \pmod{15}$

$$4 = (8, 12)|(3 - 7)$$
$$3 = (12, 15)|(7 - 4)$$
$$1 = (8, 15)|(3 - 4)$$

Therefore the system has a solution that is unique modulo $lcm(8, 12, 15) = lcm(2^3, 2^2 \cdot 3, 3 \cdot 5) = 2^3 \cdot 3 \cdot 5 = 120.$

We look at prime powers:

$$x \equiv 3 \pmod{8} \tag{1}$$

$$x \equiv 7 \pmod{4} \tag{2}$$

$$x \equiv 7 \pmod{3} \tag{3}$$

$$x \equiv 4 \pmod{3} \tag{4}$$

$$x \equiv 4 \pmod{5} \tag{5}$$

(1) implies (2) and (3) and (4) are equivalent. Thus we are reduced to solving the system:

$$x \equiv 3 \pmod{8}$$

$$x \equiv 1 \pmod{3}$$

$$x \equiv 4 \pmod{5}$$

$$M_1 = 15, M_2 = 40, M_3 = 24$$

$$M_1 x_1 \equiv 1 \pmod{m_1} \iff 15x_1 \equiv 1 \pmod{8} \iff -x_1 \equiv 1 \pmod{8}$$

 $\iff x_1 \equiv 7 \pmod{8}$

$$M_2x_2 \equiv 1 \pmod{m_2} \iff 40x_2 \equiv 1 \pmod{3} \iff x_2 \equiv 1 \pmod{3}$$

$$M_3x_3 \equiv 1 \pmod{m_3} \iff 24x_3 \equiv 1 \pmod{5} \iff -x_2 \equiv 1 \pmod{5}$$

 $\iff x_2 \equiv 4 \pmod{5}$

$$x \equiv a_1 M_1 x_1 + a_2 M_2 x_2 + a_3 M_3 x_3$$

$$\equiv 3 \cdot 15 \cdot 7 + 1 \cdot 40 \cdot 1 + 4 \cdot 24 \cdot 4 \equiv 739 \equiv 19 \pmod{120}$$

The smallest positive solution is x = 19.

b)

$$x \equiv 4 \pmod{6}$$

 $x \equiv 8 \pmod{12}$
 $x \equiv 12 \pmod{18}$

 $(6,12) = 6 \nmid (12-4) = 8$, so there is no solution.

3.4 POLYNOMIAL CONGRUENCES p.81

Example: $x^3 - 9x^2 + 23x - 15 \equiv 0 \pmod{503}$ is an example of a polynomial congruence of degree greater than 1.

A solution or root of a polynomial congruence $f(x) \equiv 0 \pmod{m}$ is an integer r such that $f(r) \equiv 0 \pmod{m}$.

The roots r are to be considered mod m.

Example A solution of $x^2 + 2x \equiv 4 \mod 5$ is $r \equiv 4 \mod 5$.

Note: Let $m = p_1^{a_1} \cdots p_k^{a_k}$ be the prime factorization of m. Then $f(x) \equiv 0 \mod m$ is equivalent to $f(x) \equiv 0 \mod p_1^{a_i}$ for all $i = 1, \ldots, k$. These systems can be solved with the help of the Chinese Remainder Theorem.

Example: Solve $x^2 \equiv 4 \mod 117$.

SOLUTION: $117 = 3^213^1$. So we solve $x^2 \equiv 4 \mod 9$ and $x^2 \equiv 4 \mod 13$. We can solve these by listing all cases $0,1,2,3,4,5,6,7,8 \mod 9$ and $0,1,2,3,4,5,6,7,8,9,10,11,12 \mod 13$. The solutions are

 $r \equiv 2,7 \mod 9$ and $r \equiv 2,11 \mod 13$. This gives 4 pairs

$$r\equiv 2mod\,9$$
 $r\equiv 2mod\,9$ $r\equiv 7mod\,9$ $r\equiv 7mod\,9$ $r\equiv 2mod\,13$ $r\equiv 11\,mod\,13$ $r\equiv 2mod\,13$ $r\equiv 11mod\,13$

The solution to the first pair is clearly $r \equiv 2 \mod 9(13)$.

The solutions to the other pairs require the Chinese remainder theorem.

 $r \equiv 2 \mod 9$ and $r \equiv 11 \mod 13$ give $r \equiv a_1 M_1 x_1 + a_2 M_2 x_2 \equiv 2(13)x_1 + 11(9)x_2 \mod 117$ where $13x_1 \equiv 1 \pmod{9}$ and $9x_2 \equiv 1 \pmod{13}$. We find $x_1 \equiv 7 \mod 9$ and $x_2 \equiv 3 \mod 13$, by trying all possiblities (or you can use the Euclidean algorithm).

So our solution is $r \equiv 2(13)(7) + 11(9)(3) \equiv 182 + 297 \equiv 479 \equiv 11 \mod 117$.

The other two cases give $r \equiv 106$ and $r \equiv 115 \mod 117$.

So the four solutions are $r \equiv 2, 11, 106, 115 \mod 117$.

Reduction in Exponent Technique.

Example Solve (*) $x^2 + 3x \equiv 19 \mod 49 (=7^2)$.

SOLUTION:

$$x^2 + 3x \equiv 19 \mod 49 (=7^2) \Rightarrow x^2 + 3x \equiv 19 \mod 7$$

so $x^2 + 3x \equiv 5 \mod 7$. Try $x \equiv 0, 1, 2, 3, 4, 5, 6 \mod 7$. The solutions are 5,6 mod 7.

So $x \equiv 7a + 5 \mod 49$ or $x \equiv 7b + 6 \mod 49$.

CASE 1:
$$x \equiv 7a + 5 \mod 49$$
. Then (*) gives

$$19 \equiv x^2 + 3x \equiv (7a + 5)^2 + 3(7a + 5) = 49a^2 + 70a + 25 + 21a + 15$$
 mod 49. So

 $91a + 21 \equiv 0 \mod 49$ so $7(13a + 3) \equiv 0 \mod 49$ so $13a + 3 \equiv 0 \mod 7$ so $6a + 3 \equiv 0 \mod 7$

so $2a+1\equiv 0 \mod 7$. Try $a\equiv 0,1,2,3,4,5,6 \mod 7$. The solution is $a\equiv 3 \mod 7$.

So a = 7c + 3. Then $x \equiv 7a + 5 \equiv 7(7c + 3) + 5 \equiv 49c + 26 \equiv 26 \mod 49$.

CASE 2: $x \equiv 7b + 6 \mod 49$. Then (*) gives

 $19 \equiv x^2 + 3x \equiv (7b+6)^2 + 3(7b+6) = 49b^2 + 84b + 36 + 21b + 18$ mod 49. So

 $105b+35\equiv 0 \mod 49$ so $7(15b+5)\equiv 0 \mod 49$ so $15b+5\equiv 0 \mod 7$ so $3b+1\equiv 0 \mod 7$

so $3b + 1 \equiv 0 \mod 7$. Try $b \equiv 0, 1, 2, 3, 4, 5, 6 \mod 7$. The solution is $b \equiv 2 \mod 7$.

So b = 7d + 2. Then $x \equiv 7b + 6 \equiv 7(7d + 2) + 6 \equiv 49d + 20 \equiv 20 \mod 49$.

FINAL SOLUTION: $x \equiv 26 \text{ or } 20 \text{ mod } 49.$

Programming in R:

> x=1:49

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[20] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

[39] 39 40 41 42 43 44 45 46 47 48 49

 $> y=x^2+3*x$

> z=y-49*floor(y/49)

> z

[1] 4 10 18 28 40 5 21 39 10 32 7 33 12 42 25 10 46 35 26

[20] 19 14 11 10 11 14 19 26 35 46 10 25 42 12 33 7 32 10 39

[39] 21 5 40 28 18 10 4 0 47 47 0

> x[z==19]

[1] 20 26

Lemma 3.4.a: If f(x) is a polynomial, then $f(x + y) = f(x) + yf'(x) + y^2g(x, y)$.

Proof.: By Taylor's theorem,

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots$$

Replace x by x + y and x_0 by x to get

$$f(x+y) = f(x) + \frac{f'(x)}{1!}y + \frac{f^{(2)}(x)}{2!}y^2 + \dots$$
$$= f(x) + \frac{f'(x)}{1!}y + y^2g(x,y).$$

Lemma 3.4.b: If f(x) is a polynomial with integer coefficients, and p is prime, then

$$f(x_0 + kp) \equiv f(x_0) + kpf'(x_0) \pmod{p^2}$$
.

Proof: Apply lemma 3.4.a with $x = x_0$ and y = kp. \square

Property: If x_0 is a solution to $f(x) \equiv 0 \mod p$, then solutions to

 $f(x) \equiv 0 \mod p^2$ (if they exist) are of the form $x_0 + kp$ where

$$kf'(x_0) \equiv -f(x_0)/p \mod p.$$

Proof. If $f(x) \equiv 0 \mod p^2$ then $f(x) \equiv 0 \mod p$. Since $f(x_0) \equiv 0 \mod p$ and $f(x_0 + kp) \equiv 0 \mod p^2$, lemma 3.4.b gives

$$0 \equiv f(x_0 + kp) \equiv f(x_0) + kpf'(x_0) \pmod{p^2}$$
.

Divide by p to get $0 \equiv f(x_0)/p + kf'(x_0)$. When we solve for k, we have all solutions mod p^2 .

Example p.85

Find all solutions to $4x^2 + 4x - 3 \equiv 0 \mod 49$ (=7²).

SOLUTION:

First solve $4x^2 + 4x - 3 \equiv 0 \mod 7$. Try $x \equiv 0, 1, 2, 3, 4, 5, 6$. The two solutions are $x_0 \equiv 2, 4 \mod 7$.

Case 1: $x_0 \equiv 2 \mod 7$. Then a solution to the original polynomial congruence has form $x_0 + k(7)$ where $kf'(x_0) \equiv -f(x_0)/p \mod p$. But $f'(x_0) = 8x_0 + 4|_{x_0=2} \equiv 20 \pmod{49}$ and $f(x_0) \equiv 4(2^2) + 4(2) - 3 \equiv 21 \mod{49}$. So $kf'(x_0) \equiv -f(x_0)/p \mod p$, i.e. $20k \equiv -21/7 \mod 7$ so $6k \equiv -3 \mod 7$ or $2k \equiv -1 \mod 7$. Try k = 0, 1, 2, 3, 4, 5, 6. We see that k = 3 is the only solution. So $x_0 + kp \equiv 2 + 3(7) \equiv 23 \mod 49$.

Case 2: $x_0 \equiv 4 \mod 7$. Then a solution to the original polynomial congruence has form $x_0 + k(7)$ where $kf'(x_0) \equiv -f(x_0)/p \mod p$. But $f'(x_0) = 8x_0 + 4|_{x_0=4} \equiv 36 \pmod{49}$ and $f(x_0) \equiv 4(4^2) + 4(4) - 3 \equiv 77 \equiv 28 \mod 49$. So $kf'(x_0) \equiv -f(x_0)/p \mod p$, i.e. $36k \equiv -28/7 \mod 7$ so $k \equiv -4 \equiv 3 \mod 7$. Clearly k = 3 is the only solution. So $x_0 + kp \equiv 4 + 3(7) \equiv 25 \mod 49$.

Check using R

> x=1:49

> x

- [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
- [20] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
- [39] 39 40 41 42 43 44 45 46 47 48 49
- $y=4*x^2+4*x-3$
- > z=y-49*floor(y/49)

> z

- $\begin{bmatrix} 1 \end{bmatrix} \quad 5 \quad 21 \quad 45 \quad 28 \quad 19 \quad 18 \quad 25 \quad 40 \quad 14 \quad 45 \quad 35 \quad 33 \quad 39 \quad 4 \quad 26 \quad 7 \quad 45 \quad 42 \quad 47$
- [20] 11 32 12 0 45 0 12 32 11 47 42 45 7 26 4 39 33 35 45
- [39] 14 40 25 18 19 28 45 21 5 46 46
- > x[z==0]
- [1] 23 25

Theorem 3.4.6 (p. 84)

Let f(x) be a polynomial with integer coefficients and let f'(x) be its derivative. Let x_0 be a solution of $f(x) \equiv 0 \mod p^k$.

(a) If $p \nmid f'(x_0)$, then there is a unique solution $x \equiv x_0 + p^k t$ to $f(x) \equiv 0 \pmod{p^{k+1}}$, where t is the unique solution to

$$p^k t f'(x_0) \equiv -f(x_0) \pmod{p^{k+1}}.$$

(b) If $p|f'(x_0)$ and $p^{k+1}|f(x_0)$, then $f(x) \equiv 0 \pmod{p^{k+1}}$ has p

incongurent solutions given by $x \equiv x_0 + p^k t \pmod{p^{k+1}}$ for any value of $t \mod p$.

(c) If $p|f'(x_0)$ and $p^{k+1} \nmid f(x_0)$, then there is no solution x to $f(x) \equiv 0 \pmod{p^{k+1}}$ such that $x \equiv x_0 \pmod{p^k}$.

Proof: see text.

Exercises: (p. 86) 1b,1c, 2a, 3, 5, 8.

Exercise p. 86 # 1) Find all solutions to the following equations.

b)
$$x^2 + 4x + 10 \equiv 0 \pmod{11^2}$$
.

First solve $x^2 + 4x + 10 \equiv 0 \pmod{11}$.

This has solutions $x_0 \equiv 2 \pmod{11}$ and $x_0 \equiv 5 \pmod{11}$.

Case 1: $x_0 = 2$.

 $f'(2) = 2 \cdot 2 + 4 = 8$ and $11 \nmid 8$, so there is a unique solution $x = x_0 + pt$ to $f(x) \equiv 0 \pmod{11^2}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{p^{k+1}}$$

$$11tf'(2) \equiv -f(2) \pmod{11^2}$$

$$11t \cdot 8 \equiv -22 \pmod{11^2}$$

$$8t \equiv -2 \equiv 9 \pmod{11}$$

$$t \equiv 8 \pmod{11}$$

Therefore $x \equiv x_0 + p^k t \equiv 2 + 11 \cdot 8 \equiv 90 \pmod{11^2}$ is a solution to $f(x) \equiv 0 \pmod{11^2}$.

Case 2: $x_0 = 5$.

 $f'(5) = 2 \cdot 5 + 4 = 14$ and $11 \nmid 14$, so there is a unique solution

$$x = x_0 + pt \text{ to } f(x) \equiv 0 \pmod{11^2}.$$

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{p^{k+1}}$$

$$11tf'(5) \equiv -f(5) \pmod{11^2}$$

$$11t \cdot 14 \equiv -55 \pmod{11^2}$$

$$14t \equiv -5 \pmod{11}$$

$$3t \equiv 6 \pmod{11}$$

$$t \equiv 2 \pmod{11}$$

Therefore $x \equiv x_0 + p^k t \equiv 5 + 11 \cdot 2 \equiv 27 \pmod{11^2}$ is a solution to $f(x) \equiv 0 \pmod{11^2}$.

Therefore the solutions are $x \equiv 90 \pmod{11^2}$ and $x \equiv 27 \pmod{11^2}$. c) $x^3 + 5x^2 + 2x - 1 \equiv 0 \pmod{7^2}$.

First solve $x^3 + 5x^2 + 2x - 1 \equiv 0 \pmod{7}$.

Trying 0 to 6, we see that $x_0 \equiv 1 \pmod{7}$, $x_0 \equiv 3 \pmod{7}$, and $x_0 \equiv 5 \pmod{7}$ are solutions.

Case 1: $x_0 = 1$

f'(1) = 3 + 10 + 2 = 15 and $7 \nmid 15$, so there is a unique solution $x = x_0 + pt$ to $f(x) \equiv 0 \pmod{7^2}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{7^2}$$

$$7tf'(1) \equiv -f(1) \pmod{7^2}$$

$$7t \cdot 15 \equiv -7 \pmod{7^2}$$

$$15t \equiv -1 \pmod{7}$$

$$t \equiv 6 \pmod{7}$$

Therefore $x \equiv x_0 + p^k t \equiv 1 + 7 \cdot 6 \equiv 43 \pmod{7^2}$ is a solution to $f(x) \equiv 0 \pmod{7^2}$.

Case 2: $x_0 = 3$

 $f'(3) = 3 \cdot 3^2 + 10 \cdot 3 + 2 = 59$ and $7 \nmid 59$, so there is a unique solution $x = x_0 + pt$ to $f(x) \equiv 0 \pmod{7^2}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{7^2}$$

$$7tf'(3) \equiv -f(3) \pmod{7^2}$$

$$7t \cdot 59 \equiv -77 \pmod{7^2}$$

$$59t \equiv -11 \pmod{7}$$

$$3t \equiv 3 \pmod{7}$$

$$t \equiv 1 \pmod{7}$$

Therefore $x \equiv x_0 + p^k t \equiv 3 + 7 \cdot 1 = 10 \pmod{7^2}$ is a solution to $f(x) \equiv 0 \pmod{7^2}$.

Case 3: $x_0 = 5$:

 $f'(5) = 3 \cdot 5^2 + 10 \cdot 5 + 2 = 127$ and $7 \nmid 127$, so there is a unique solution $x = x_0 + pt$ to $f(x) \equiv 0 \pmod{7^2}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{7^2}$$

$$7tf'(5) \equiv -f(5) \pmod{7^2}$$

$$7t \cdot 127 \equiv -259 \pmod{7^2}$$

$$127t \equiv -37 \pmod{7}$$

$$t \equiv 5 \pmod{7}$$

Therefore $x \equiv x_0 + p^k t \equiv 5 + 7 \cdot 5 = 40 \pmod{7^2}$ is a solution to

$$f(x) \equiv 0 \pmod{7^2}$$
.

Therefore the solutions to $f(x) \equiv 0 \pmod{7^2}$ are $x \equiv 43, 10, 40 \pmod{49}$.

Exercise p. 87 # 2a) Solve $x^2 + 12x - 17 \equiv 0 \pmod{143}$.

This is equivalent to the system

$$x^{2} + 12x - 17 \equiv 0 \pmod{11}$$

 $x^{2} + 12x - 17 \equiv 0 \pmod{13}$

The first equation has solutions $x \equiv 2 \pmod{11}$ and $x \equiv 8 \pmod{11}$. The second equation has solutions $x \equiv 6 \pmod{13}$ and $x \equiv 8 \pmod{13}$.

Case 1:

$$x \equiv 2 \pmod{11}$$
$$x \equiv 6 \pmod{13}$$

$$M_1 = 13, M_2 = 11$$

$$13x_1 \equiv 1 \pmod{11} \iff 2x_1 \equiv 1 \pmod{11} \iff x_1 \equiv 6 \pmod{11}$$

 $11x_2 \equiv 1 \pmod{13} \iff -2x_2 \equiv 1 \pmod{13} \iff x_2 \equiv -7 \pmod{13}$
 $\iff x_2 \equiv 6 \pmod{13}$

$$x \equiv a_1 M_1 x_1 + a_2 M_2 x_2$$

 $\equiv 2 \cdot 13 \cdot 6 + 6 \cdot 11 \cdot 6 \equiv 552 \equiv 123 \pmod{143}$

Case 2:

$$x \equiv 2 \pmod{11}$$
$$x \equiv 8 \pmod{13}$$

$$x \equiv a_1 M_1 x_1 + a_2 M_2 x_2$$

 $\equiv 2 \cdot 13 \cdot 6 + 8 \cdot 11 \cdot 6 \equiv 684 \equiv 112 \pmod{143}$

Case 3:

$$x \equiv 8 \pmod{11}$$
$$x \equiv 6 \pmod{13}$$

$$x \equiv a_1 M_1 x_1 + a_2 M_2 x_2$$

 $\equiv 8 \cdot 13 \cdot 6 + 6 \cdot 11 \cdot 6 \equiv 1020 \equiv 19 \pmod{143}$

Case 4:

$$x \equiv 8 \pmod{11}$$
$$x \equiv 8 \pmod{13}$$

Then $x \equiv 8 \pmod{143}$.

Therefore the solutions are: $x \equiv 123, 112, 19, 8 \pmod{143}$.

Exercise p. 87 # 3) Without using a computer, determine all integers x such that the last three digits of x^3 are the same as those of x.

 $x^3 \equiv x \pmod{1000} \iff x^3 - x \equiv 0 \pmod{1000}$. This is equivalent to the system of simultaneous equation:

$$x^3 - x \equiv 0 \pmod{8}$$
$$x^3 - x \equiv 0 \pmod{125}$$

 $x^3-x=x(x-1)(x+1)$. Therefore the solutions to the first equation are: $x\equiv 0,1,3,5,7\pmod 8$.

The solutions to the second equation are $x \equiv 0, 1, 124 \pmod{125}$.

We also illustrate how to find the solutions to the second equation using reduction in exponent.

First, solve $x^3 - x \equiv 0 \pmod{5}$. The solutions are $x_0 \equiv 0, 1, 4 \pmod{5}$.

Case 1: $x_0 \equiv 0 \pmod{5}$:

f'(0) = -1 and $5 \nmid -1$, so there is a unique solution $x = x_0 + pt$ to $f(x) \equiv 0 \pmod{5^2}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{5^2}$$
$$5t(-1) \equiv 0 \pmod{5^2}$$
$$t \equiv 0 \pmod{5}$$

Therefore $x \equiv x_0 + p^k t \equiv 0 \pmod{5^2}$ is a solution to $f(x) \equiv 0 \pmod{5^2}$.

Again, $5 \nmid f'(0)$, so there is a unique solution $x = x_0 + p^2 t$ to $f(x) \equiv 0$

 $\pmod{5^3}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{5^3}$$

$$5^2 t(-1) \equiv 0 \pmod{5}$$

$$t \equiv 0 \pmod{5}$$

Therefore $x \equiv x_0 + p^k t \equiv 0 \pmod{5^3}$ is a solution to $f(x) \equiv 0 \pmod{5^3}$.

Case 2: $x_0 \equiv 1 \pmod{5}$

f'(1) = 3 - 1 = 2 and $5 \nmid 2$, so there is a unique solution $x = x_0 + pt$ to $f(x) \equiv 0 \pmod{5^2}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{5^2}$$
$$5t(2) \equiv 0 \pmod{5^2}$$
$$2t \equiv 0 \pmod{5}$$
$$t \equiv 0 \pmod{5}$$

Therefore $x \equiv x_0 + p^k t \equiv 1 \pmod{5^2}$ is a solution to $f(x) \equiv 0 \pmod{5^2}$.

Again, $5 \nmid f'(0)$, so there is a unique solution $x = x_0 + p^2 t$ to $f(x) \equiv 0 \pmod{5^3}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{5^3}$$
$$5^2 t(2) \equiv 0 \pmod{5^3}$$
$$t \equiv 0 \pmod{5}$$

Therefore $x \equiv x_0 + p^k t \equiv 1 \pmod{5^3}$ is a solution to $f(x) \equiv 0$

 $\pmod{5^3}$.

Case 3: $x_0 \equiv 4 \pmod{5}$

 $f'(4) = 3 \cdot 4^2 - 1 = 47$ and $5 \nmid 47$, so there is a unique solution $x = x_0 + pt$ to $f(x) \equiv 0 \pmod{5^2}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{5^2}$$

$$5t(47) \equiv -60 \pmod{5^2}$$

$$47t \equiv -12 \pmod{5}$$

$$2t \equiv 3 \pmod{5}$$

$$t \equiv 4 \pmod{5}$$

Therefore $x \equiv x_0 + pt \equiv 4 + 20 \equiv 24 \pmod{25}$ is a solution to $f(x) \equiv 0 \pmod{5^2}$.

f'(24) = 1727 and $5 \nmid 1727$, so there is a unique solution $x = x_0 + pt$ to $f(x) \equiv 0 \pmod{5^3}$.

$$tp^k f'(x_0) \equiv -f(x_0) \pmod{5^3}$$

$$25t(1727) \equiv -13800 \pmod{5^3}$$

$$1727t \equiv -552 \pmod{5}$$

$$2t \equiv -2 \pmod{5}$$

$$t \equiv -1 \equiv 4 \pmod{5}$$

Therefore $x \equiv x_0 + p^k t \equiv 24 + 25 \cdot 4 \equiv 124 \pmod{5^3}$ is a solution to $f(x) \equiv 0 \pmod{5^3}$.

Therefore the solutions to $x^3 - x \equiv 0 \pmod{125}$ are $x \equiv 0, 1, 124 \pmod{125}$.

We now use the Chinese Remainder Theorem to find the solutions modulo 1000.

$$M_1 = 125, M_2 = 8.$$

$$125x_1 \equiv 1 \pmod{8}$$
$$5x_1 \equiv 1 \pmod{8}$$
$$x_1 \equiv 5 \pmod{8}$$

$$8x_2 \equiv 1 \pmod{125}$$

$$x_2 \equiv 47 \pmod{125} \quad \text{by the Euclidean Algorithm}$$

a_1	a_2	$x \equiv a_1 M_1 x_1 + a_2 M_2 x_2$
0	0	0
0	1	$0 + 1 \cdot 8 \cdot 47 \equiv 376$
0	124	$0 + 124 \cdot 8 \cdot 47 \equiv 624$
1	0	$1 \cdot 125 \cdot 5 \equiv 625$
1	1	1
1	124	$1 \cdot 125 \cdot 5 + 124 \cdot 8 \cdot 47 \equiv 249$
3	0	$3 \cdot 125 \cdot 5 \equiv 875$
3	1	$3 \cdot 125 \cdot 5 + 1 \cdot 8 \cdot 47 \equiv 251$
3	124	$3 \cdot 125 \cdot 5 + 124 \cdot 8 \cdot 47 \equiv 499$
5	0	$5 \cdot 125 \cdot 5 \equiv 125$
5	1	$5 \cdot 125 \cdot 5 + 1 \cdot 8 \cdot 47 \equiv 501$
5	124	$5 \cdot 125 \cdot 5 + 124 \cdot 8 \cdot 47 \equiv 749$
7	0	$7 \cdot 125 \cdot 5 \equiv 375$
7	1	$7 \cdot 125 \cdot 5 + 1 \cdot 8 \cdot 47 \equiv 751$
7	124	$7 \cdot 125 \cdot 5 + 124 \cdot 8 \cdot 47 \equiv 999$

Therefore the integers x such that the last three digits of x^3 are the same as those of x are those ending in the digits: 000, 376, 624, 625, 001, 249, 875, 251, 499, 125, 501, 749, 375, 751, 999.