NTNU, DEPARTMENT OF PHYSICS

FY2045 Problem set 3 fall 2023

Professor Ingjald Øverbø, updated by Henning G. Hugdal September 8, 2023

Problem 1 — Working with ket and bra vectors

Let $|1\rangle$, $|2\rangle$ and $|3\rangle$ be three orthonormalized vectors spanning a three-dimensional vector space (a subspace of "Hilbert" space).

- a) Write down relations expressing that the three vectors are normalized and orthogonal.
- **b)** Write down the completeness relation for this set of vectors, and use this relation to expand an arbitrary vector $|\psi\rangle$ (in the three-dimensional space) in terms of the basis set $|1\rangle$, $|2\rangle$ and $|3\rangle$.
- c) Show that when the operator $P_1 \equiv |1\rangle \langle 1|$ acts on $|\psi\rangle$, then it "projects out" the component of $|\psi\rangle$ in the " $|1\rangle$ -direction". Show also that $P_1^2 = P_1$ and that P_1 is Hermitian. (Consider the adjoint; see task \mathbf{f} below.) Operators of this type are generally called projection operators. Show that also

$$P_{12} \equiv |1\rangle \langle 1| + |2\rangle \langle 2| \tag{1}$$

is a projection operator, i.e., that P_{12} has the properties $P_{12}^2 = P_{12}$ and is Hermitian.

d) Set $|a\rangle = |1\rangle$ and $|b\rangle = (1+i)|1\rangle$. What are then $\langle b|, \langle a|b\rangle, \langle b|a\rangle$, and $\langle b|b\rangle$?

- e) Set $|\psi\rangle = 3^{-1/2} |1\rangle + c_1 |2\rangle$. Which condition must $|c_1|^2$ satisfy if $|\psi_1\rangle$ is to be normalized? Choose c_1 real and positive. Set $|\psi_2\rangle = c_2 |1\rangle + c_3 |2\rangle$. Choose c_3/c_2 such that $|\psi_2\rangle$ becomes orthogonal to $|\psi_1\rangle$, and choose c_2 real and positive such that $|\psi_2\rangle$ becomes normalized. Find a third linear combination of the three vectors $|1\rangle$, $|2\rangle$ and $|3\rangle$ which is orthogonal to both $|\psi_1\rangle$ and $|\psi_2\rangle$.
- f) Use the definition of the adjoint (or Hermitian conjugate)

$$\langle a | \hat{A}^{\dagger} | b \rangle = \langle b | \hat{A} | a \rangle^*,$$
 (2)

to show that

$$(|c\rangle\langle d|)^{\dagger} = |d\rangle\langle c|. \tag{3}$$

Problem 2

We have seen that there is a one-to-one correspondence between the abstract vectors of the Hilbert space and the good old wave functions:

$$\psi_a(x) \longleftrightarrow |\psi_a\rangle \equiv |a\rangle,$$

 $\psi_b(x) \longleftrightarrow |\psi_b\rangle \equiv |b\rangle, \text{ etc,}$

where we are free to choose whichever labels we wish to use. We have also seen that the new scalar products are identical to the old ones:

$$\langle \psi_a | \psi_b \rangle = \int d\tau \ \psi_a^* \psi_b. \tag{4}$$

a) In the good old position representation of quantum mechanics, the eigenvalue equation for the operator $\hat{x} = x$,

$$\hat{x}\psi_{x'}(x) = x'\psi_{x'}(x),\tag{5}$$

has the solution

$$\psi_{x'}(x) = \delta(x - x'). \tag{6}$$

To this wavefunction there corresponds a vector $|\psi_{x'}\rangle \equiv |x'\rangle$ in Hilbert space. You may also recall that the eigenvalue equation

$$\hat{p}_x \psi_p(x) = p \psi_p(x), \tag{7}$$

for the momentum operator has the solution

$$\psi_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}.$$
 (8)

To this momentum eigenfunction there corresponds a vector $|\psi_p\rangle \equiv |p\rangle$ in Hilbert space. What are $\langle x'|p\rangle$ and $\langle p|x'\rangle$?

b) The operator \hat{x} representing the observable x is in the Dirac formalism defined by the eigenvalue equation

$$\hat{x} | x' \rangle = x' | x' \rangle$$
, where $\hat{x}^{\dagger} = \hat{x}$, so that $\langle x' | \hat{x} = x' \langle x' |$.

What is then $\langle p | \hat{x} | x' \rangle$? And what is $\langle x' | \hat{x} | p \rangle$?

c) Consider a general state vector $|\psi\rangle$. Show that

$$|\psi\rangle = \int dx \ \psi(x) |x\rangle,$$
 (9)

and that a special case of this formula is

$$|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int dx \ e^{ipx/\hbar} |x\rangle.$$
 (10)

d) In a similar manner, find $|x\rangle$ expressed in terms of the $|p\rangle$ basis.

Problem 3

In the lectures we argued that the existence of the scalar product in Hilbert space was guaranteed by the Schwartz inequality. You will now prove this inequality.

The norm ||v|| of a vector |v| in Hilbert space is defined as

$$|| |v\rangle ||^2 = \langle v| v\rangle \ge 0.$$

For two arbitrary vectors $|\psi_1\rangle$ and $|\psi_2\rangle$ in Hilbert space, prove the Schwarz inequality:

$$|\langle \psi_1 | \psi_2 \rangle|^2 \le \langle \psi_1 | \psi_1 \rangle \langle \psi_2 | \psi_2 \rangle.$$

(The two vectors do not have to be normalized.) *Hint:* Consider the vector

$$|h\rangle = |\psi_1\rangle - |\psi_2\rangle \frac{\langle \psi_2| \ \psi_1\rangle}{\langle \psi_2| \ \psi_2\rangle}.$$

Note that the scalar product $\langle \psi_2 | \psi_2 \rangle$ is real and positive, while $\langle \psi_2 | \psi_1 \rangle$ is a complex number. Be aware to use the correct formula for $\langle h |$, and consider $\langle h | h \rangle \geq 0$.