Christian Dehnert, Sebastian Junges

Prof. Dr. Ir. Joost-Pieter Katoen

Exercise 1 (LTL Operators):

(2 points)

Let φ and ψ be LTL formulae. Consider the following new operators:

a) "At next" $\varphi AX \psi$:

$$A_1A_2 \ldots \models \varphi \text{ AX } \psi \iff \text{for all } i \geq 0 \text{ where } A_iA_{i+1} \ldots \models \psi,$$
 for which there exists no $0 \leq j < i$ where $A_jA_{j+1} \ldots \models \psi,$ $A_iA_{i+1} \ldots \models \varphi$ holds

b) "While" φ WH ψ :

$$A_1 A_2 \ldots \models \varphi \text{ WH } \psi \iff \text{for all } i \geq 0 \text{ where } A_j A_{j+1} \ldots \models \psi \text{ for all } 0 \leq j < i,$$

$$A_k A_{k+1} \ldots \models \varphi \text{ for all } 0 \leq k < i$$

c) "Before" $\varphi \, \mathsf{B} \, \psi$:

$$A_1A_2 \ldots \models \varphi \ \mathsf{B} \ \psi \iff \mathsf{for \ all} \ i \geq 0 \ \mathsf{where} \ A_iA_{i+1} \ldots \models \psi,$$
 there exists some $0 \leq j < i \ \mathsf{where} \ A_iA_{i+1} \ldots \models \varphi$

Show that these operators are LTL-definable by providing equivalent LTL formulae. You may use both the until and weak until operator.

Exercise 2 (LTL to Büchi):

(3 points)

Let $\varphi = (a \land \bigcirc a) \cup (a \land \neg \bigcirc a)$ be an LTL-formula over $AP = \{a\}$.

- 1. Compute all elementary sets with respect to φ .
- 2. Construct the GNBA \mathcal{G}_{φ} according to the algorithm from the lecture such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$.
- 3. Give an ω -regular expression E such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = \mathcal{L}_{\omega}(E)$.

Exercise 3 (CTL Equivalences):

(3 points)

Prove or disprove the following implications:

- (a) Let $\Phi_1 = \forall \Diamond a \lor \forall \Diamond b$ and $\Phi_2 = \forall \Diamond (a \lor b)$. Prove or disprove the following implications: $\Phi_1 \Longrightarrow \Phi_2$ and $\Phi_2 \Longrightarrow \Phi_1$.
- (b) Now consider $\Psi_1 = \exists (a U \exists (b U c))$ and $\Psi_2 = \exists (\exists (a U b) U c)$. Again, prove or disprove $\Psi_1 \Longrightarrow \Psi_2$ and $\Psi_2 \Longrightarrow \Psi_1$.

Exercise 4 (CTL Normal Forms):

(2 points)

Transform the CTL-formula $\Phi = \neg \forall \Diamond (\forall (\forall \Box b) \cup (\forall \bigcirc a))$ into an equivalent CTL-formula in

- (a) existential normal form and
- (b) positive normal form.