Deep Q-Learning in a nutshell

Bar Hilleli

barhilleli5@gmail.com

May 23, 2019

Reinforcement Learning - background (0)

Reinforcement Learning - background (1)

- Reinforcement Learning (RL) describes a set of learning problems where an **agent interacts with an environment**.
- RL algorithms seek to find a policy, π , that **maximize the reward** received over time from the environment.

Motivation

Videos

Alpha Go trailer

David Silver

Markov Decision Process - MDP

Definition

The MDP framework consists of four elements: (S, A, R, P)

- ullet \mathcal{S} is a discrete set of states
- ullet \mathcal{A} is a discrete set of actions
- \mathcal{R} is a reward model $\mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
- $\mathcal{P}: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ is a transition probability matrix $\mathcal{P}^a_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$

Policy

Definition

A **policy** gives the probability of taking action a when in state s:

$$\pi: \mathcal{S} imes \mathcal{A}
ightarrow [0,1] \ \pi(\mathsf{a}|\mathsf{s}) = \mathbb{P}(\mathsf{a}_t = \mathsf{a}|\mathsf{s}_t = \mathsf{s})$$

Grid World Example

- The agent's actions do not always go as planned
- Small "living" reward of 0.1 each step
- Big rewards come at the end
- Following a policy produces sample trajectories: s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

Objective

Given an MDP (S, A, P, R) we wish to find optimal policy π^* so as to maximize the expected sum of rewards. Formally,

$$\pi^{\star} = \operatorname*{argmax}_{\pi} \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} r_{t} \mid \pi\right] \quad ext{with } a_{t} \sim \pi(\cdot | s_{t}), \ \ s_{t+1} \sim p(\cdot | s_{t}, a_{t})$$

where γ is called the *discount factor* in range [0,1]

State-Value Function

Definition

The state value function for policy π , denoted by $V^{\pi}(s)$, is the expected return when starting in state s and following policy π thereafter, and is formally defined as,

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, \pi
ight]$$

Action-Value Function

Definition

Similarly, The state-action value function for policy π , denoted by $Q^{\pi}(s,a)$, is the expected reward of taking action a in state s and following policy π thereafter, and is formally defined as,

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a, \pi
ight]$$

Main Idea behind Q-Learning

The main idea behind Q-learning is that if we have a function

$$Q^{\pi}: \mathcal{S} imes \mathcal{A} o \mathit{Total} \ \mathit{Reward}$$

that could tell us what our return would be, if we were to take an action in a given state, then we could easily construct an improved policy that maximizes our rewards (considering the deterministic case):

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} Q^{\pi}(s, a)$$

v^{π} Backup Diagram

Bellman Expectation Equation for v^{π}

A fundamental property of value functions used throughout reinforcement learning is that they satisfy particular **recursive relationships**, which is also known as the **Bellman expectation equation for** v^{π} :

$$\begin{split} V^{\pi}(s) &= \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s, \pi\right] \\ &= \mathbb{E}\left[r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s, \pi\right] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t+1} = s', \pi\right]\right] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s')\right] \\ &= \mathbb{E}_{a_{t}, s_{t+1}}\left[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_{t} = s\right] \end{split}$$

Bellman Expectation Equation for Q^{π}

In the same way we can write the **Bellman expectation equation** for Q^{π} :

$$Q^{\pi}(s,a) = \mathbb{E}_{s_{t+1}}[r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_t = s, a_t = a]$$

Optimal Policy

Considering finite MDPs, an **optimal policy**, π^* , is better than all other policies in the sense that its expected return is greater than or equal to that of all other policies for all states. Meaning,

$$V^{\pi^{\star}}(s) \geq V^{\pi}(s)$$

for all $s \in \mathcal{S}, \pi \in \Pi$.

Optimal State-Value Function

Definition

The value functions of π^* is called **optimal state-value function**, denoted by V^* and defined as,

$$V^{\star}(s) = \max_{\pi} V^{\pi}(s)$$

for all $s \in \mathcal{S}$.

Optimal Action-Value Function

Definition

Similarly the **optimal action-value function**, denoted Q^* , is defined as

$$Q^{\star}(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$.

Q^* in terms of V^*

 $Q^*(s, a)$ gives the expected return taking action a in state s and thereafter following π^* , therefore we can write,

$$Q^{\star}(s, a) = \mathbb{E}_{s_{t+1}}[r_{t+1} + \gamma V^{\star}(s_{t+1}) \mid s_t = s, a_t = a]$$

Bellman Optimality Equation for Q^*

Since the value of a state s under π^* must be **equal to the expected return of the best action** from that state we have that,

$$V^{\star}(s) = \max_{a \in A} Q^{\star}(s, a)$$

Therefore, we can write the **Bellman optimality equation** for Q^* ,

$$Q^{\star}(s, a) = \mathbb{E}_{s_{t+1}} \left[r_{t+1} + \gamma \max_{a'} \ Q^{\star}(s_{t+1}, a') | s_t = s, a_t = a
ight]$$

Q-Learning

- The Q-learning algorithm aims to find the optimal action-value function.
- The **Q-learning update** is:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$$

Q-Learning Algorithm

Q-learning: An off-policy TD control algorithm

Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

Very Cool Online Demos

Demos

Demo 1

Demo 2 (karpathy)

Q-Learning Properties

- Model-Free: no knowledge of MDP
- TD(0): bootstrapping updates a guess towards a guess
- Off-Policy: learn about optimal policy while following exploratory policy

Theorem

Q-learning control converges to the optimal action-value function, $Q(s,a) o Q^\star(s,a)$

Approximating $Q^*(s, a)$ using a Neural Network

 Dealing with a very large state space of images, we approximate the optimal action-value function using a deep Q-network (DQN) with parameters θ:

$$Q_{\theta}(s,a) \approx Q^{\star}(s,a).$$

 A deep Q-network is a neural network that for a given state outputs a vector of action values.

DQN Algorithm

The **DQN** algorithm:

- Take action a_t according to ε-greedy policy.
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{B} .
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{B} .
- ullet Compute Q-learning targets w.r.t. old, fixed parameters $ilde{ heta}$.
- Optimize MSE between Q-network and Q-learning targets

$$L(\theta) = \mathbb{E}_{s,a,r,s' \sim \mathcal{B}} \left[\left(r + \gamma \max_{a'} Q_{\tilde{\theta}}(s', a') - Q_{\theta}(s, a) \right)^{2} \right]$$

Using variant of stochastic gradient descent.

Toward Deep Reinforcement Learning without a Simulator: An Autonomous Steering Example

Video Link

Toward Deep Reinforcement Learning without a Simulator: An Autonomous Steering Example

Recommended Reading/Viewing Material

Excellent book

Reinforcement Learning: An Introduction (Richard S. Sutton and Andrew G. Barto)

Excellent video course

RL Course by David Silver

Thank you