Nash equilibrium (NE)

2.1Examples

Prisoner's dilemma.

P2Share Steal Share 5, 50, 10P1 Steal 10, 00.1, 0.1 Let 5x = (steal, steal)

P1: u,(s*) = 0.1 $U_1(share, S_{-1}^*) = 0 < U_1(S^*).$ P1 switch to P2 remains Street P2: $U_2(S^*J=0.1)$ $U_1(share, S_{-2}^*)=0 < U_2(S^*)$

So St is a Nach equilibrium.

Bach or Stravinsky.

		P2		
		Bach	Stravinsky	
P1	Bach	2,1	0,0	
	Stravinsky	0,0	1,2	

Both (B,B) and (S,S) are NES.

Rock paper scissors.

For any strategy profile, one player with utility 0 or -1 can get higher utility by switching to a winning gesture. No NE ... (sort of a lie, to be resolved (atter)

2/3 average game. 3 players. Each player simultaneously pick from $\{1, \ldots, 10\}$. A \$1 prize is split among all players closest to 2/3 of the average of the 3 numbers, other players get \$0.

$$S=(6,4,1)$$
 average $\frac{11}{3}$. $\frac{2}{3}$ average $\frac{2}{3}$. $\frac{11}{3}=2.4...$ $u_3(s)=1$, $u_1(s)=u_2(s)=0$. P1: $u_1(1,s_{-1})=0.5>u_1(s)$. Not a NE. $(1,1,1)$ is the only NE (needs proof)

Best response function

Definition: best response function.

Player is best response function (BRF) for
$$S_{-i} \in S_{-i}$$
 is

 $B_{i}(8_{-i}) = \{S_{i}^{i} \in S_{i} : U_{i}(S_{i}^{i}, S_{-i}^{i}) \geq U_{i}(S_{i}^{i}, S_{-i}^{i}) \forall S_{i} \in S_{i} \}$

utility of a best utility of all possible responses

Examples. Prisoner's dilemma.

2/3 average game.

Saverage game.

$$S_{-1} = (5,5)$$
 (P2, P3 p(ay 5). $U_{1}(x,5,5) = \begin{cases} 0 & x \ge 6 \\ 1/3 & x = 5 \end{cases}$

Lemma 1.

A strategy profile s* ES is a Nash equilibrium if and only if for each player i, st & B; (st).

[No incentive for any player to switch, since each player played they losse response already. I Examples.

	\mathbf{F}	\mathbf{E}	D		
NEC: (B,D), (C,F).	① 0	2 1	1,2	A	
•	0,0	0,1	21	В	P1
best responses to each ot	1)21	0,0	0, 1	\mathbf{C}	

P2

2.3 Cournot's oligopoly model

Firms $N = \{1, ..., n\}$ are producing a single type of goods sold on the common market.

- Each firm i decides the number of units of goods q_i to produce.
- Production cost for firm i is $C_i(q_i)$ where C_i is a given increasing function.
- Given a strategy profile $q = (q_1, \ldots, q_n)$, a unit of the goods sell for the price of P(q), where P is a given non-increasing function on $\sum_i q_i$.
- The utility of firm i is $u_i(q) = q_i P(q) C_i(q_i)$.

Szidarovszky and Yakowitz proved that a NE exists under some continuity and differentiability assumptions on P. C.

Special case: linear costs and prices

Assume
$$C_{i}(g_{i}) = cg_{i}$$
 $\forall i \in N$, fixed c , $0 < c < \alpha$. $P(g) = \max \{0, \alpha - \sum_{j=0}^{n} \}$ fixed α . Utility is $U_{i}(g) = g_{i}P(g) - C_{i}(g_{i}) = \begin{cases} g_{i}(\alpha - \sum_{j=0}^{n} - c) & \alpha - \sum_{j=0}^{n} < 0 \\ -cg_{i} & \alpha - \sum_{j=0}^{n} < 0 \end{cases}$

Find BRF for firm i: If $\alpha - \sum_{j \neq i} g_j \leq 0$, then BR is 0 (price is 0, no need to produce).

When
$$\alpha = \sum_{j=1}^{\infty} g_{j} - c > 0$$
, we make a profit. Take g_{i} out of the sum. $\alpha = c - g_{i} - \sum_{j\neq i} g_{j} > 0$. The utility is $g_{i}(\alpha - c - g_{i} - \sum_{j\neq i} g_{j})$.

Given fixed &j j=c, we want qi that maximizes utility (BR).

This is maximized on $g_i = (x - C - \sum_{j \neq i} g_j)/2$. (Using calculus?)

$$B_{i}(8_{i}) = \begin{cases} \{(x-c-\xi_{i}, \theta_{i})/2\} & x-c-\xi_{i}, \theta_{i}>0 \end{cases}$$