Université Abdelmalek Essaâdi ENSAH Année Universitaire 2020/2021

AP-II, 2ème année, (S4)

TD.Probabilités et Statistiques Série 1

Exercice 1.

Une société de 498 employés procède à l'élection de 7 délégués du personnel. Chaque employé vote pour 7 candidats. On suppose qu'il n'y a ni vote nul, ni abstention. On considère 3 candidats A, B et C. 265 employés ont voté pour A, 160 pour A et B, 144 pour A et C, 108 pour A, B et C, 71 pour B et C mais pas pour A, 57 pour C mais pas pour A ni pour B, 114 pour B mais pas pour A.

- 1) Combien d'employés ont voté pour B?
- 2) Combien d'employés ont voté pour C?
- 3) Combien d'employés n'ont voté ni pour A, ni pour B, ni pour C?

Exercice 2

Le code confidentiel d'une carte bancaire est un nombre constitué de 4 chiffres tous non nuls.

- 1) Quel est le nombre de codes possibles?
- 2) Combien existe-t-il de codes:
 - a) de quatre chiffres différents?
 - b) comportant une seule fois le chiffre 1?
 - c) comportant deux fois le chiffre 1, les deux autres chiffres étant différents entre eux?
 - d) deux fois le chiffre 1 et deux fois le chiffre 2?
 - e) deux fois deux chiffres distincts?

Exercice 3_

- 1) À quelle condition sur $a \in \mathbf{R}$ la formule : $\mathbf{P}(\{\frac{1}{n}\}) = \frac{a}{3^n}$ définit-elle une probabilité sur N^* ?
- 2) À quelle condition sur $a \in \mathbf{R}$ la formule : $\mathbf{P}(\{\frac{1}{n}\}) = \frac{2^n a}{n!}$ définit-elle une probabilité sur N^* ?

Exercice 4

Soit (Ω, \mathcal{T}) un espace probabilisable.

- 1) a) Si A et B sont des événements négligeables, montrer que $A \cup B$ est encore négligeable.
 - b)Si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements négligeables, montrer que $\cup_{n\in\mathbb{N}}A_n$ est encore négligeable.
- 2) a) Si A et B sont des événements presque-sûrs, montrer que $A\cap B$ est presque-sûr.
 - b) Si $(B_n)_{n\in\mathbb{N}}$ est une suite d'événements presque-sûrs, montrer que $\cap_{n\in\mathbb{N}}B_n$ est presque-sûr.

Exercice 5.

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, A et B deux événements tels que $\mathbb{P}(A) = 0.4$ et $\mathbb{P}(B) = 0.5$. Calculer $\mathbb{P}(\overline{A} \cap B)$, $\mathbb{P}(A \cap B/A)$ et $\mathbb{P}(\overline{A}/B)$ dans les cas suivants :

- 1. A et B sont indépendants
- 2. A et B sont incompatibles
- 3. $\mathbb{P}(A \cup B) = 0.8$

Exercice 6

On lance une pièce équilibrée jusqu'à obtenir $\ll pile \gg$. n étant le nombre de lancers effectués, on remplit une urne avec 3^n boules dont une de couleur blanche et les autres de couleurs noire, et on procède à un tirage d'une boule dans cette urne

- 1) Quelle est la probabilité d'obtenir une boule blanche?
- 2) On obtient une boule blanche. Quelle est la probabilité que la pièce ait donnée « Pile » du premier coup?