On integration and asymptotic domination

January 4, 2017

1 Original problem statement

Supposons une fonction $f:R^+\to R$ continue telle que f(x)=a+o(1) avec a réel

Peut-on affirmer que F(x)/x, avec F primitive de f, tend vers a quand x tend vers +inf?

(je n'ai pas la réponse, mais mon intuition est que oui) — (@LHomme_Qui_Rit)

In other words

Proposition 1.1

Let $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ be a continuous function such that $f \xrightarrow[+\infty]{} a \in \mathbb{R}$ and F a primitive of f.

Then

$$\frac{F(x)}{x} \xrightarrow[x \to +\infty]{} a$$

2 Proof of the original conjecture

Let us begin by proving the following corollary, which is the particular case for a = 0.

Corollary 2.1

Let $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ be a continuous function, such that $f \xrightarrow[+\infty]{} 0$ and F a primitive of f.

Then

$$\frac{F(x)}{x} \xrightarrow[x \to +\infty]{} 0$$

Proof of corollary 2.1

Let $x \in \mathbb{R}^+_*$ (since we only care about the limit in $+\infty$ anyway), then

On integration and asymptotic domination

$$\frac{F(x)}{x} = \frac{1}{x} \int_{\alpha}^{x} f(t) dt$$

for some $\alpha \in \mathbb{R}$.

Let $\varepsilon > 0$, since $f \xrightarrow{+\infty} 0$ there exists $A \in \mathbb{R}$ (for convenience, let us take it positive, too) such that for all $x \geqslant A$, $|f(x)| \leqslant \varepsilon$. Thus

$$\left| \frac{F(x)}{x} \right| \leq \frac{1}{x} \int_{\alpha}^{x} |f(t)| dt$$

$$\leq \frac{1}{x} \underbrace{\int_{\alpha}^{A} |f(t)| dt}_{\leq |A-\alpha| \sup_{[\alpha,A]} |f|} + \underbrace{\int_{A}^{x} |f(t)| dt}_{\leq \varepsilon} dt$$

$$\leq \underbrace{\frac{|A-\alpha| \sup_{[\alpha,A]} |f|}{x}}_{x \to +\infty} + \underbrace{\frac{|x-A|}{x} \varepsilon}_{x \to +\infty} \varepsilon$$

Thus, for all $\varepsilon > 0$, $\lim_{x \to +\infty} \left| \frac{F(x)}{x} \right| \le \varepsilon$, and so

$$\frac{F(x)}{x} \xrightarrow[x \to +\infty]{} 0$$

We can then easily prove proposition 1.1

Proof of proposition 1.1

Let f=a+w, with $w:\mathbb{R}^+\longrightarrow\mathbb{R}$ and $\lim_{+\infty}w=0$. If F is a primitive of f, we then have for all x

$$F(x) = ax + W(x) + C$$

with $W(x) = \int_0^x w(t) dt$ and $C \in \mathbb{R}$.

So, by corollary 2.1

$$\frac{F(x)}{x} = a + \underbrace{\frac{W(x)}{x}}_{x \to \infty} + \frac{C}{x}$$

$$\xrightarrow{x \to +\infty} a$$

3 Further results

The previous section proved the original conjecture in its restated form. But let us recall the original statement (emphasis mine) "Supposons une fonction $f:R^+->R$ continue telle que f(x)=a+o(1) avec a réel". Indeed, if we keep this formulation, corollary 2.1 becomes

Corollary 3.1

Let
$$f = \int_{+\infty}^{\infty} (1)$$
 and F a primitive of f . Then $F = \int_{+\infty}^{\infty} (x)$.

Which begs the question : "What of f = o(x)?".