(a)
$$(r_3(SO_4)_3(aq) + 3(NH_4)_2(O_3(aq) \rightarrow Cr_3((O_3)_3(s) + 3(NH_4)_2SO_4(aq))$$

 $2C_7^{3+}(aq) + 3SO_4(aq) + 6NH_4(aq) + 3(O_3^{2-} \rightarrow Cr_3((O_3)_3(s) + 6NH_4(aq) + 3SO_4(aq))$
Net ionic equations: $2(r_3^{3+}(aq) + 3(O_3^{2-}(aq) \rightarrow Cr_3(CO_3)_3(s))$
Spectator ions: SO_4^{2-} , NH_4^{+}

(b)
$$Ba(NO_3)_{\pm}(aq) + K_2SO_4(aq) \longrightarrow BaSO_4(s) + 2KNO_3(aq)$$
 $Ba^{2+}(aq) + 2NO_3(aq) + 2K^{+}(aq) + 9O_4^{2-}(aq) \longrightarrow BaSO_4(s) + 2K^{+}(aq) + 2NO_3(aq)$

Net ionic equation: $Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$

spectator ions: NO_3^{-} , K^{+}

(c)
$$Fe(NO_3)_2$$
 (aq) + 2 KOH (aq) \rightarrow $Fe(OH)_2$ (5) + 2 KNO₃ (aq)

 Fe^{24} (aq) + 2 NO₃ (aq) + 2 K⁺ (aq) + 2 OH (aq) \rightarrow $Fe(OH)_2$ (5) + 2 K⁺ (aq) + 2 NO₃ (aq)

net ionic equation: Fe^{24} (aq) + 2 OH (aq) \rightarrow $Fe(OH)_2$ (5)

spectator ions: NO_3 , K⁺

ocetic acid barium hydroxide

(a) 2 CH₃ COOH (ag) + Ba(OH) 2 (ag) -> Ba(CH₃(00)), (ag) +2H₂O(0)

belonced equation:

weak acid

ionic equation: 2CH₃(00H (ag) + Ba(ag) + 20H (ag) -> Ba(ag) + 2(H₃(00 (aq) + 2H₂O(0))

balanced molecular equation:

net ion's equation;

4,51

(a)
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

humber: 0 0 -3 11

His oxidized, N is reduced

Fe reduced from +2 to 0, Al oxidized from 0 to +3

oxidation
$$\frac{C_0}{c}$$
 (ag) + $2N_0\underline{I}$ (ag) $\rightarrow \underline{I}_2$ (ag) + $2N_0\underline{C}$ (ag) number

C) reduced from 0 to -1, I oxidized from -1 to 0

i. I is exidized, (1 is reduced

(d)
$$PbS(s) + 4H_2O_2(aq) \rightarrow PbSO_4(s) + 4H_2O_{(q)}$$

endation $+2$ -2 $+1$ -1 $+2$ $+6$ -2 $+1$ -2

I oxidized from = 2 to +6, 0 reduced from -1 to -2

:. S is oxidized, O is reduced

4.72

Not cap -> Not cap + OH cap moles of Not & OH is some as NoOH . 42,0 ml + 31.6 ml = 0.0196L

$$kCl(aq) \rightarrow k^{+}(aq) + (l^{-}(aq))$$
 moles $k^{+} = 0.0088$ mol moles $k^{+} = 0.0088$ mol moles $k^{+} = 0.0038$ moles $k^{+} = 0.0038$

concentration
$$N_{ef} = \frac{0.0088mol}{0.069 L} = 0.13 M$$

wheretration
$$K^{\dagger}$$
 & $Cl^{-} = 0.064 M$

$$\frac{0.069L}{0.069L} = 0.054M$$

4,82

Ba (OH) 2 (ag) +2HCd (ag) -> 2H2O(P) + Backe (ag) Inol BaloHb needs 2mol HCd

(c) usles
$$Na_2SO_4 = \frac{0.152g}{142.04g} = 0.00529 \text{ mal}$$

$$Na_2SO_4 \text{ malar mass}$$

Balls lags + NasSO4 (eq) \rightarrow BaSO4(c) + 2Nacleag; Inul Balls need Inul NasSO4 M Balls = 0.00529 not \times Int Balls \times 1 0.0558L = 0.0948 M

(d) males
$$H(I) = 42.0 \text{ mL} \times \frac{1L}{1000 \text{ mL}} \times \frac{0.208 \text{ mol}}{1L} = 0.00888 \text{ mol}$$

 $2H(I)(ag) + Ca(OH)_2(ag) \rightarrow CaCl_2(ag) + 2H_2O(g) \quad Imd Ca(OH)_1 \text{ need 2mol} H_2O$
gram $Ca(OH)_2 = 0.00888 \text{ mol} \times \frac{1 \text{ mol} (a(OH)_2)}{2 \text{ mol} H(I)} \times \frac{74.0939}{1 \text{ mol}} = 0.3299$