

南开大学

网络空间安全学院

网络技术与应用课程报告

IPv6 组网与 NAT 的配置

学号: 2011897

姓名: 任薏霖

年级: 2020级

专业: 物联网工程

2022年11月26日

第1节 实验内容说明

1. 仿真环境下的 NAT 服务器配置

在仿真环境下完成 NAT 服务器的配置实验,要求如下:

- (1) 学习路由器的 NAT 配置过程;
- (2) 组建由 NAT 连接的内网和外网;
- (3) 测试网络的连通性,观察网络地址映射表;
- (4) 在仿真环境的"模拟"方式中观察 IP 数据报在互联网中的传递过程,并对 IP 数据报的地址进行分析。
- 2. 在仿真环境下完成如下实验

将内部网络中放置一台 Web 服务器,请设置 NAT 服务器,使外部主机能够顺利使用该 Web 服务。

第2节 实验准备

1. NAT 概念

1. 1. NAT

NAT (Network Address Translation) 又称为网络地址转换,用于实现私有网络和公有网络之间的互访。

1.2. NAT 的工作原理

NAT 用来将内网地址和端口号转换成合法的公网地址和端口号,建立一个会话,与公网主机进行通信。NAT 外部的主机无法主动跟位于 NAT 内部的主机通信,NAT 内部主机想要通信,必须主动和公网的一个 IP 通信,路由器负责建立一个映射关系,从而实现数据的转发。

1.3. 路由器的作用

路由器的三个表:

表	作用		
路由表	数据包通过目的 IP 查路由表转发		
ACL 访问控制列表	过滤数据包,拒绝,放行		
NAT 转换表	内网到外网转换源 IP 地址,外网到内网转换目的 IP 地址		

表 1

第3节 实验过程

1. 实验一: 仿真环境下的 NAT 服务器配置

1.1 主机 IP 地址和默认网关配置

本次实验所需配置的网络拓扑图如图 1 所示。该网络组建由 NAT 连接的内网和外网,具体配置如下:

主机 PCO --- IP 地址为: 10.0.0.2;

主机 PC1 --- IP 地址为: 10.0.0.3;

主机 PC2 --- IP 地址为: 202.113.25.101;

内网 Web 服务器 --- 10.0.0.4/202.113.25.2;

外网 Web 服务器 --- 202.113.25.100;

路由器 RO --- IP 地址为: 10.0.0.1/202.113.25.1;

图 1 网络拓扑图

1.2 路由器 IP 地址及 NAT 配置

1.2.1 IP 地址配置

配置路由器 IP 地址,可以在配置界面中选择 CLI,首先使用 enable 命令进入路由器的特权执行模式,而后通过 config terminal 进入全局配置模式。需要注意,路由器通常具有两个或多个网络接口,地址属于某个特定接口。

在为接口配置 IP 地址之前,首先使用"interface 接口名"进入接口的配置模式,并使用 no shutdown 命令激活接口。

具体指令如下:

Router#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface gig0/0
Router(config-if)#ip address 10.0.0.1 255.0.0.0
Router(config-if)#no shutdown

Router(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up

Router(config-if)#exit
Router(config)#interface gig0/1

1.2.2 NAT 配置

Router (config-if) #no shutdown

对路由器进行 NAT 配置首先应定义 NAT 池,命名为 myNATPool,并定义允许哪些主机使用地址池,使用一个 ACL 进行匹配,并配置作为外部和内部的正确接口。为了方便展示 NAT 转换表,可以采用 show ip nat translations 进行查看。

Router (config-if) #ip address 202.113.25.1 255.255.255.0

具体指令如下:

```
Router (config) #ip nat pool myNATPool 202.113.25.1 202.113.25.100 netmask 255.255.255.0 Router (config) #access-list 6 permit 10.0.0.0 0.255.255.255 Router (config) #ip nat inside source list 6 pool myNATPool overload Router (config) # Router (config) #interface gig0/0 Router (config-if) #ip nat inside Router (config-if) #exit Router (config-if) #ip nat outside Router (config-if) #ip nat outside Router (config-if) #ip nat outside Router (config-if) #exit
```

NAT 转换表如下:

Router>show ip nat translations				
Pro	Inside global	Inside local	Outside local	Outside global
	202.113.25.102	10.0.0.5	\$ 2.75.25	777
	202.113.25.103	10.0.0.4		
	202.113.25.2	10.0.0.4	<u> </u>	<u> 1212-12</u>
tcp	202.113.25.103:80	10.0.0.4:80	222	
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1025202.113.25.101:1025	
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	.026202.113.25.101:1026
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	.027202.113.25.101:1027
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	.028202.113.25.101:1028
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	.029202.113.25.101:1029
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	.030202.113.25.101:1030
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	.031202.113.25.101:1031
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	.032202.113.25.101:1032
tcp	202.113.25.2:80	10.0.0.4:80	202.113.25.101:1	.033202.113.25.101:1033

图 2 NAT 转换表

1.3 实验结果验证

1.3.1 查看网络连通性

使用 PC1 ping PC2,并进行模拟验证。结果如下图:

```
C:\>ping 202.113.25.101

Pinging 202.113.25.101 with 32 bytes of data:

Reply from 202.113.25.101: bytes=32 time<1ms TTL=127
Reply from 202.113.25.101: bytes=32 time<1ms TTL=127
Reply from 202.113.25.101: bytes=32 time=4ms TTL=127
Reply from 202.113.25.101: bytes=32 time<1ms TTL=127
Ping statistics for 202.113.25.101:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 4ms, Average = 1ms</pre>
```

图 3 内网 PC1 ping 外网 PC2

通过"模拟"方式分析, 其发送过程如下:

图 4 数据包发送

其接收过程如下:

图 5 数据包接收

主要分析数据包到达路由器时的信息,具体如下:

当数据包从内部网络转到外部网络时,设备查找其 NAT 表以进行必要的转换。当该数据包与内部源列表匹配,则对源本地 IP 地址进行转换,从而实现内外主机的连接。

图 6 PDU Information at Device Router0

2. 实验二

2.1 实验方案和方法的选择

实验方案主要参考《网络技术与应用》中的内容。实验要求与书中方案唯一的不同在实验方案要求WEB服务器在内网,主机在外网,书中方案反之。其拓扑图如下:

图 7 网络拓扑图

采用在路由器中添加静态 NAT 的方法解决问题。命令为:

ip nat inside source static tcp 10.0.0.4 80 202.113.25.2 80

在路由器 Router 0 中配置完静态 NAT 表项之后,使用主机浏览器检测是否配置成功。(检测方法: 在浏览器地址栏输入主机网关(即路由器 Router 0 在网络 202.113.0.0 中的 IP 地址)。

2.2 实验验证

2.2.1 访问服务器

使用主机 PC2 来访问 web 服务器 Server4。实验结果如下图所示,说明正确配置成功。

图 8 外网主机访问内网服务器

2.2.2 "模拟"方式分析

下面简单分析整个通话过程,并忽略网络中的初始化问题,例如通过 ARP 获取 MAC 地址的过程,交换机 STP 服务的过程等;

- 主机和服务器之间经过三次握手后成功建立连接;
- 主机和服务器之间通过 HTTP 协议进行通信;
- 主机和服务器之间经过四次挥手结束连接。

图 9 仿真实验通话过程