Тренировочная работа №3 по ИНФОРМАТИКЕ 11 класс

6 февраля 2024 года Вариант ИН2310302

Выполнена: ФИО кл	тасс
-------------------	------

Инструкция по выполнению работы

Тренировочная работа по информатике состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

На выполнение тренировочной работы отводится 3 часа 55 минут (235 минут).

Тренировочная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения испытания в компьютерной форме. При выполнении заданий Вам будут доступны на протяжении всей работы текстовый редактор, редактор электронных таблиц, системы программирования. Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.

На протяжении выполнения тренировочной работы доступ к сети Интернет запрещён.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

В заданиях используются следующие соглашения.

- 1. Обозначения для логических связок (операций):
- а) отрицание (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);
- b) конъюнкция (логическое умножение, логическое И) обозначается \land (например, $A \land B$) либо & (например, A & B);
- с) дизъюнкция (логическое сложение, логическое ИЛИ) обозначается \lor (например, $A \lor B$) либо | (например, $A \mid B$);
- d) следование (импликация) обозначается \rightarrow (например, A \rightarrow B);
- е) *тождество* обозначается \equiv (например, $A \equiv B$); выражение $A \equiv B$ истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);
- f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 для обозначения лжи (ложного высказывания).
- 2. Два логических выражения, содержащие переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения $A \to B$ и $(\neg A) \lor B$ равносильны, а $A \lor B$ и $A \land B$ неравносильны (значения выражений разные, например, при A = 1, B = 0).
- 3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, $\neg A \land B \lor C \land D$ означает то же, что и (($\neg A$) \land B) \lor (C \land D).
- Возможна запись $A \land B \land C$ вместо $(A \land B) \land C$. То же относится и к дизъюнкции: возможна запись $A \lor B \lor C$ вместо $(A \lor B) \lor C$.
- 4. Обозначения Мбайт и Кбайт используются в традиционном для информатики смысле как обозначения единиц измерения, чьё соотношение с единицей «байт» выражается степенью двойки.

На рисунке схема дорог изображена в виде графа, в таблице звёздочками обозначено наличие дороги между населёнными пунктами. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Выпишите последовательно без пробелов и знаков препинания указанные на графе буквенные обозначения пунктов от П1 до П9: сначала букву, соответствующую П1, затем букву, соответствующую П2, и т. д.

	П1	П2	П3	П4	П5	П6	П7	П8	П9
П1			*	*		*	*	*	
П2			*			*			
П3	*	*				*	*		
П4	*				*	*			*
П5				*				*	
П6	*	*	*	*					*
П7	*		*					*	
П8	*				*		*		
П9				*		*			

Ответ:				

2 Логическая функция F задаётся выражением:

$$((x \equiv z) \to (\neg y \lor w)) \equiv \neg((w \to z) \lor (x \to y))$$

Дан частично заполненный фрагмент, содержащий **неповторяющиеся** строки таблицы истинности функции F.

???	???	???	???	F
	1		0	1
0		1		1
0		0	0	1

Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть заданы выражение $x \to y$, зависящее от двух переменных x и y, и фрагмент таблицы истинности.

???	???	$\boldsymbol{\mathit{F}}$
0	1	0

Тогда первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе нужно написать: yx.

Ответ:	
Olbel.	•

Ответ:

Ответ:

Задание выполняется с использованием прилагаемых файлов.

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблии.

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите количество магазинов, в которых выручка от продажи кофе молотого за месяц превысила 150 тысяч рублей.

4	Все заглавные буквы русского алфавита закодированы неравномерным
_	двоичным кодом, в котором никакое кодовое слово не является началом
	другого кодового слова. Это условие обеспечивает возможность однозначной
	расшифровки закодированных сообщений. Кодовые слова для некоторых
	букв известны: $И - 010$, $M - 1101$, $Y - 011$, $III - 10$. Известно также, что код
	слова УМЕНЬШЕНИЕ содержит 29 двоичных знаков. Укажите возможный
	код минимальной длины для буквы Н. Если таких кодов несколько, укажите
	тот из них, который имеет минимальное числовое значение.
	, 1

- **5** Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом:
 - 1. Строится двоичная запись числа N.
 - 2. В конец двоичной записи добавляется двоичный код остатка от деления числа N на 4.
 - 3. Результатом работы алгоритма становится десятичная запись полученного числа R.

Пример 1. Дано число N = 13. Алгоритм работает следующим образом.

- 1. Строим двоичную запись: $13_{10} = 1101_2$.
- 2. Остаток от деления 13 на 4 равен 1, добавляем к двоичной записи цифру 1, получаем $11011_2 = 27_{10}$.
- 3. Результат работы алгоритма R = 27.

Пример 2. Дано число N = 14. Алгоритм работает следующим образом.

- 1. Строим двоичную запись: $14_{10} = 1110_2$.
- 2. Остаток от деления 14 на 4 равен 2, добавляем к двоичной записи цифры $10 (10_2 = 2_{10})$, получаем $111010_2 = 58_{10}$.
- 3. Результат работы алгоритма R = 58.

Назовём доступными числа, которые могут получиться в результате работы этого алгоритма. Например, числа 27 и 58 – доступные.

Определите количество доступных чисел, принадлежащих отрезку [1 100 000 000; 1 987 653 210].

Ответ:

8

Исполнитель Черепаха передвигается по плоскости и оставляет след в виде линии. Черепаха может выполнять две команды: **Вперёд** n (n — число) и **Направо** m (m — число). По команде **Вперёд** n Черепаха перемещается вперёд на n единиц. По команде **Направо** m Черепаха поворачивается на месте на m градусов по часовой стрелке, при этом соответственно меняется направление дальнейшего движения.

В начальный момент Черепаха находится в начале координат и направлена вверх (вдоль положительного направления оси ординат).

Запись **Повтори** k [Команда1 Команда2 ... КомандаS] означает, что заданная последовательность из S команд повторится k раз.

Черепаха выполнила следующую программу:

Повтори 4 [Повтори 4 [Вперёд 8 Направо 90] Вперёд 13 Направо 90 Вперёд 4]

Определите количество различных точек с целочисленными координатами, в которых при выполнении этой программы Черепаха побывала более одного раза.

	
7	Запись о документе в информационной системе содержит его текст
	и отсканированную копию, полученную сканированием с разрешением
	200 dpi и сжатием полученного изображения на 40 %. При этом текст
	документа занимает 50 % всего объёма записи. Сколько процентов объёма
	записи будет занимать текст документа, если заменить отсканированную
	копию на новую, сделанную с разрешением 300 dpi и сжатием изображения
	на 60 %?
	В ответе запишите только число (количество процентов), без знака %.

Ответ:			•

- Назовём ряд из двух цифр подходящим, если выполняется любое из двух условий:
 - 1) сумма цифр чётна и вторая цифра больше первой;
 - 2) сумма цифр нечётна и вторая цифра меньше первой.

Назовём многозначное число подходящим, если любые две соседние цифры в его записи образуют подходящий ряд.

Примеры подходящих чисел: 26, 63, 30, 2630, 26308.

Пример неподходящего числа: 2638. Это число нельзя считать подходящим, так как соседние цифры 3 и 8 в его записи образуют неподходящий ряд.

Сколько существует подходящих 11-значных 9-ричных чисел?

Ответ:			

9	Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Назовём ячейку таблицы интересной, если выполняются следующие условия: — число в данной ячейке больше не встречается в данной строке; — число в данной ячейке встречается в данном столбце, включая данную ячейку, меньше 170 раз. Определите количество строк таблицы, содержащих не менее 4 интересных ячеек.
	Ответ:
	Задание выполняется с использованием прилагаемых файлов.
10	Повесть братьев Стругацких «Понедельник начинается в субботу» состоит из трёх историй. Определите, сколько раз в третьей истории, включая заголовки, эпиграфы и сноски, встречается слово «вы» или «Вы». Учитывать следует только эту форму слова, другие формы («вам», «вас» и т.д.) включать в подсчёт не нужно.
	Ответ:
11	В информационной системе хранится информация об объектах определённой структуры. Каждый объект описывается как последовательность блоков. Для каждого блока указываются его код и тип. Код блока состоит из 11 символов, каждый из которых может быть заглавной или строчной латинской буквой. Каждый символ кода кодируется минимально возможным количеством битов. Тип блока — это целое число от 1 до 8 000, которое кодируется минимально возможным количеством битов. Блок в целом кодируется минимально возможным целым количеством байтов. Для хранения описания каждого объекта выделяется одинаковое для всех объектов количество байтов, при этом для хранения информации о 640 объектах потребовалось 325 Кбайт. Какое наибольшее количество блоков может быть в записи об одном объекте?
	Ответ: .

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

A) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды **заменить** (v, w) не меняет эту строку.

Б) нашлось (*v*).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Дана программа для Редактора:

НАЧАЛО

ПОКА НЕ нашлось (00) заменить (033, 1302) заменить (03, 120) заменить (023, 203) заменить (02, 20) КОНЕЦ ПОКА

КОНЕЦ

Известно, что в исходной строке A было ровно два нуля — на первом и на последнем месте, а после выполнения данной программы получилась строка B, содержащая 340 единиц, 849 двоек и 151 тройку. Какое *наибольшее* количество двоек могло быть в строке A?

Ответ:	
JIBCI.	

В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.

Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Узлы с IP-адресами 202.3.20.24 и 202.3.27.11 находятся в одной сети. Укажите наименьшее возможное количество принадлежащих этой сети IP-адресов, в двоичной записи которых чётное число единиц.

14	В	системе	счисления	c	основанием	p	выполняется	равенство
							значены некото	
	ИЗ а	алфавита с	истемы счисл	ения	с основанием	м р. (Эпределите зна	чение числа
	xyz	w_p и запиш	ите это значе	ние і	в десятичной с	систе	ме счисления.	

Ответ:	
OIBCI.	

Обозначим через m & n поразрядную конъюнкцию неотрицательных целых чисел m и n.

Например, $14 \& 5 = 1110_2 \& 0101_2 = 0100_2 = 4$.

Для какого наименьшего неотрицательного целого числа A формула

$$x\&21074 \neq 0 \rightarrow (x\&12369 = 0 \rightarrow x\&A \neq 0)$$

тождественно истинна (т. е. принимает значение 1 при любом неотрицательном целом значении переменной x)?

Обозначим через a%b остаток от деления натурального числа a на натуральное число b, а через a//b — целую часть от деления a на b.

Функция F(n), где n — неотрицательное целое число, задана следующими соотношениями:

$$F(n) = 1$$
, если $n = 0$;

 $F(n) = (n\%10) \cdot F(n//100)$, если n нечётно;

F(n) = F(n/100), если n > 0 и n чётно.

Определите количество таких целых k, что $10^7 \le k \le 9 \cdot 10^7$ и F(k) = 25.

Ответ:		

[©] СтатГрад 2023–2024 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

- Файл содержит последовательность натуральных чисел, не превышающих 100 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек, для которых выполняются следующие условия:
 - в тройке есть четырёхзначные числа, но не все числа в тройке четырёхзначные;
 - в тройке больше чисел, кратных 5, чем чисел, кратных 3;
 - сумма элементов тройки больше максимального элемента последовательности, запись которого заканчивается на 832. (Гарантируется, что в последовательности есть хотя бы один элемент, запись которого заканчивается на 832.)

В ответе запишите два числа: сначала количество найденных троек, затем максимальную величину суммы элементов этих троек.

Ответ:		
--------	--	--

18

Задание выполняется с использованием прилагаемых файлов.

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число –1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.

За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Клетка, из которой робот не может сделать допустимого хода (справа и сверху находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке. В дальнейшем расход энергии на шаг из одной клетки в другую равен максимальному из двух чисел, записанных в этих клетках.

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ:		
--------	--	--

19 Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. В игре разрешено делать следующие ходы: – убрать из кучи один камень; – если количество камней в куче чётно, убрать половину имеющегося количества; - если количество камней в куче кратно трём, убрать треть имеющегося количества. Например, если в куче 4 камня, то за один ход можно получить 2 или 3 камня, а если в куче 6 камней, то за один ход можно получить 3, 4 или 5 камней. Игра завершается, когда количество камней в куче становится меньше 12. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет меньше 12 камней. В начале игры в куче было S камней, $S \ge 12$. Укажите максимальное значение S, при котором Петя не может выиграть первым ходом, но при любом первом ходе Пети Ваня может выиграть своим первым ходом. Ответ: 20 Для игры, описанной в задании 19, найдите два **наибольших** значения *S*, при которых Петя не может выиграть первым ходом, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Вани. В ответе запишите найденные значения в порядке возрастания. Ответ:

Для игры, описанной в задании 19, найдите **наименьшее** значение S, при котором у Вани есть стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, но у Вани нет стратегии, которая

позволила бы ему гарантированно выиграть первым ходом.

Ответ: _____

22	В компьютерной системе необходимо выполнить некоторое количество
	вычислительных процессов, которые могут выполняться параллельно или
	последовательно. Для запуска некоторых процессов необходимы данные,
	которые получаются как результаты выполнения одного или нескольких
	других процессов – поставщиков данных. Если зависимый процесс получает
	данные от других процессов (поставщиков данных), то выполнение
	зависимого процесса не может начаться раньше завершения всех процессов-
	поставщиков. Количество одновременно выполняемых процессов может
	быть любым, длительность процесса не зависит от других параллельно
	выполняемых процессов.

В таблице представлены идентификатор (ID) каждого процесса, его длительность и ID поставщиков данных для зависимых процессов. Для независимых процессов в качестве ID поставщика данных указан 0.

Определите максимальную длительность отрезка времени (в мс), в течение которого возможно одновременное выполнение пяти процессов, при условии, что в эту пятёрку не входит процесс с ID = 6.

Ответ:	
OIBCI.	•

23 Исполнитель преобразует число на экране.

У исполнителя есть три команды, которые обозначены буквами:

- А. Вычесть 1
- В. Прибавить 3
- С. Умножить на 2

Программа для исполнителя — это последовательность команд. Например, программа **BAC** при исходном числе 2 последовательно получит числа 5, 4, 8. Сколько существует программ, которые преобразуют исходное число 4 в число 14 и при этом не содержат двух команд **A** подряд?

Задание выполняется с использованием прилагаемых файлов.

24	Текстовый файл содержит только заглавные буквы латинского алфавита
	(ABCZ). Определите максимальное количество идущих подряд символов
	среди которых каждая из букв ABCDEF встречается не более ста раз.

Маска числа — это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе пустую) последовательность цифр.

Например, маске 123*4?5 соответствуют числа 123405 и 12376415.

Найдите все натуральные числа, не превышающие 10^{10} , которые соответствуют маске 1*4182?7 и при этом без остатка делятся на 1991.

В ответе запишите все найденные числа в порядке возрастания.

Ответ:	

Задание выполняется с использованием прилагаемых файлов.

26

В отделении банка работают шесть окон для обслуживания клиентов. Каждое окно оказывает услуги определённого вида. Клиент входит в отделение и встаёт в очередь к тому окну, которое оказывает необходимую ему услугу. Если после 30 минут ожидания в очереди окно не освободилось, клиент уходит. Если окно освободилось ровно через 30 минут ожидания, клиент не уходит и получает услугу.

Если момент завершения обслуживания одного или нескольких клиентов совпадает с моментом прихода нового клиента, то можно считать, что новый клиент пришёл после того, как обслуживание ранее пришедшего клиента завершилось и очередь сократилась.

Входные данные

Первая строка входного файла содержит целое число N ($N \le 1000$) — общее количество клиентов, пришедших в отделение за один рабочий день. Каждая из следующих N строк описывает одного клиента и содержит 3 целых числа: время прихода клиента в отделение (количество минут с начала рабочего дня), время (количество минут), необходимое для обслуживания данного клиента, и номер окна, в которое ему необходимо обратиться. Гарантируется, что никакие два клиента не приходят в одно и то же время.

Определите наименьшее количество клиентов, обслуженных в течение дня в одном окне, и количество клиентов, которые покинут отделение из-за слишком долгого ожидания.

В ответе запишите два целых числа: сначала наименьшее количество клиентов, обслуженных в одном окне, затем количество необслуженных клиентов.

Ответ:		
--------	--	--

Дана последовательность натуральных чисел. Необходимо выбрать из последовательности три числа так, чтобы их сумма делилась на 105 и при этом была максимально возможной.

В ответе запишите найденную сумму.

Входные данные

Первая строка входного файла содержит целое число N – общее количество чисел в наборе. Каждая из следующих N строк содержит одно натуральное число, не превышающее 10^8

Вам даны два входных файла (А и В), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала требуемую сумму для файла А, затем – для файла В.

Ответ:		
--------	--	--