STREET C

LEVEL OF

TEST

MODEL

USER'S GUIDE

1 April 1976

Prepared by

G. Gauld ESA-8321

keviewed by:

ESA-8322

DISTRIBUTION STATEMENT

Approved for public release; Distribution Unlimited

Approved by

U.S. NAVAL WEAPONS ENGINEERING SUPPORT ACTIVITY Washington Navy Yard Washington, D.C. 20374

Table of Contents

		* * * *	Page
MODEL APPLIC	CATION		1
USING THE PR	ROGRAM		2-14
MATHEMATI CAI	MODEL		15-29
COMPUTER PRO	OGRAM		30-33
	Tables		
TABLE 1	Information Required		5-6
TABLE 2	Computer Program		34-44
TABLE 3	Example Results 1		45-67
TABLE 4	Example Results 2.		68-90
TABLE 5	Example Results 3		91-114
TABLE 6	Example Results 4		115-119
TABLE 7	Example Results 5		120-124
	Figures		
FIGURE 1	Data Deck Arrangement		9
FIGURE 2	Testing Scheme		16
FIGURE 3	Flow Chart for Computer	Program	31

MODEL APPLICATION

The model selects the lowest cost combination of test equipment configurations and test periods which will result in the desired probability that the item tested will operate properly when used. It is particularly applicable to items, such as missiles, which can not be tried to see if they work. The model will be most useful when used early in a program so that it can influence test equipment design. Nevertheless, if the test equipment has already been purchased, the model can be used to determine the least costly test periods.

The model can be used to simulate up to three echelons of test. These might be a built in test, an intermediate test, and a depot test. The model automatically indicates if the highest echelon of test is unnecessary.

The model can be used to evaluate the advantages of one location of a particular test echelon over another. For example, the model can be used to decide which is the best economic choice, shipboard test or test at a weapons station.

USING THE PROGRAM

Input Information

To determine the lowest cost test scheme one must start with certain information. Table 1 lists this information

It has been divided into three blocks. Each block has its own input format which will be discussed below. Some explanation of the terms may be of value.

The cost of packing and shipping to the ith echelon tester (Items 3 and 4 of Block 1) is the round trip cost of packing and shipping from wherever the item is normally used to the first echelon for i=1, from first to second echelon for i=2, and from second to third for i=3. The units are dollars.

The phrase "functions tested" (Items 7 and 8 of Block 1) refers to the tests which might be performed on the item to ascertain if it is in good operating condition. For example, we might test the timing, compression, fuel pressure, battery charge, spark plug gap, and breaker point gaps of an internal combustion engine. Each of these would be a function. The cost of the equipment for testing the compression, for example, would be the cost of a compression gauge. The time required to repair this equipment would be the time needed to repair

the compression gauge. The failure rate of the equipment to test the compression would be the failure rate of compression gauges. The time required to test the compression would be the time to unscrew the spark plugs, insert the gauge and read the pressure, and reinstall the plugs. The failure rate of the compression would be the number of compression failures per use cycle. We might choose one hour as a use cycle or we might pick some more convenient period depending on the application of the engine.

These functions must be ordered according to increasing values of the ratio of the cost of the equipment needed to test the function to the failure rate of the function tested. This will result in detecting the greatest number of failures per test set dollar at first echelon. Usually there are more first echelon testers than second echelon and third echelon testers. Therefore, this procedure will result in least test equipment cost. The order number of a function is referred to as m.

In many cases one will have some idea what tests should be performed at each echelon. If so, limits can be set on the range of the m's which define what tests are performed. The variation of total costs as the m's change within the range can be studied. The initial and final values of the index, m, of functions tested and also the increment by which the index is to be increased each loop are specified under Items 7 and 8 of Block 1.

The number of functions tested (Item 1 of Block 2) is the total number of functions of the item which it is proposed to test. It is possible that the analysis will show that it is not economically desirable to test all of these. The value of item 1 of Block 2 must not exceed 20.

The fraction of items in use which are not defective (Item 2 of Block 2) is the fraction of the time that when an item is used it will operate properly. This is sometimes called the operational ready rate. It is the major constraint in minimizing testing costs.

The repair material rate (Item 3 of Block 2) is the ratio of the average cost of the materials to make one repair, to the item cost.

The other input quantities are self explanatory. To simulate two test echelons, the first two values of Item 8, Block 1 are set equal to the total number of functions which can be tested and the third value is set equal to one. The number of testers at third echelon is set equal to zero.

TABLE 1

INPUT DATA BLOCKS

CARD NUMBER

Time required to test ith function in order from 1 to m followed by

the test set up time.

2

Input Format

The input data format is different for each of the three blocks. The first is an 11 x 3 matrix, the second a 6 x 1 matrix, the third a 5 x the total number of missile functions being tested plus one.

BLOCK 1 - consists of 11 cards of data, 3 items per card.

Data are punched in successive 10 column fields
beginning in column 21. The format of a block 1
data card is given below.

BLOCK 2 - consists of six cards consisting of one data item each, punched in a 10 column field beginning in column 21. The format of a block 2 data card is given below.

BLOCK 3 - consists of 5 rows of data each of which contains

m items (m≤21). The m data items are punched 4

items per card in successive 15 column fields beginning in column 21. The format of a block 3 data card is given below.

COMMENT CONSIDERATION CONTRACTOR CONTRACTOR

Since m may equal 21, up to five cards of data may be required for each row of block 3 data. When punching data cards always use the decimal points in each data item.

Figure 1 shows how the deck is arranged. In the figure a delta indicates blank. The punching for all cards except the data deck begins in column 1. The region value on the second card may be changed to accommodate a large number of cases of n_1 , n_2 , m_1 , and m_2 .

FIGURE 1
DATA DECK ARRANGEMENT

Interpreting Results

Table 3 shows the results of a sample run. The far right hand column in Test Cost Summary is the cost of testing using the equipment indicated by the numbers in the first two columns and the test schedule from the next three. An I in the fifth column indicates that the third echelon test was not necessary to obtain the required probability, U, that the item is unfailed when needed. A star in the fifth column indicates that for some reason the program was unable to calculate a value for n3. The reason is also given. The most common cause of an inability to calculate is that the third echelon test must be performed more frequently than the second echelon test in order to obtain the required value of U. Frequently, this condition can be detected by looking at the preceeding values of n_3 for the same values of m_1 , m_2 , and n_1 . If n_3 was getting close to one, it is likely that it would have to be less than one and there would not be a solution. In either of these two cases no action is necessary.

The sixth, seventh, and eighth columns are the probabilities that failed items will be detected at, or before, the test level. The ninth, tenth, and eleventh columns are the cost of performing a single test at the test level, or echelon. The twelfth column is the cost per use cycle of testing all of the items. It does not include the cost of the test equipment.

Occasionally, a solution is not found on the first try and it is not obvious that the reason is either of those given above. Possible reaction to the error messages are:

- 1. NO CONVERGENCE WITHIN___ITERATIONS. A solution may not be obtained because more iterations are needed to produce the desired accuracy. The situation can be corrected by increasing the input quantity "maximum number of iterations for Newton-Raphson method".
- 2. AT SOME ITERATION STEP DERIVATIVE IS ZERO. If a zero is encountered in the denominator of an expression, the Newton-Raphson method terminates.
- NEW STARTING VALUE. Because the expression being solved contains exponentials it is possible that a value too large to be handled by the computer will be encountered. This difficulty can be eliminated be selecting another initial value for Item 5 of Block 2.

The range of n_2 should be expanded if the service life cost does not pass through a minimum for every combination of m_1 , m_2 , and n_1 . An exception to this rule is if the third echelon test would have to be performed more frequently than the second echelon test as discussed above.

Once there is a minimum service life cost of testing for every combination of m_1 , m_2 , and n_1 ; check to see if there is also a minimum of these minimums for every combination of

 m_1 and m_2 . If there is not, increase the range of n_1 until a minimum is obtained. The minimum of this minimum of the minimums is the least cost testing scheme. That is, the first m_1 functions should be tested at the first echelon, the next m_2 - m_1 functions should be tested at second echelon, the remaining functions should be tested at third echelon, first echelon tests should be performed every n_1 times the item is used, second echelon tests should be performed every n_2 times a first echelon test is performed, and third echelon tests should be performed every n_3 times the second echelon test is performed. Naturally, third echelon tests will not be necessary if an I appears under n_3 .

Table 3 is a sample run. It will be seen that as n_2 is varied, holding m_1 , m_2 , and n_1 constant, a minimum was not always reached. For example, when m_1 is 1, m_2 is 2, and n_1 is 1 the total cost is still decreasing. One might guess that it will never get as low as the \$14,356,321 which is reached for m_1 =4, m_2 =10, and n_1 =5 but, to be sure, the range of n_2 should be increased until a minimum is found.

In the case of $m_1=1$, $m_2=2$, and $n_1=5$, n_3 does become less than 1. In cases like this, the lowest cost scheme for which n_3 is not less than 1 will be the minimum.

In the case of $m_1=2$, $m_2=10$, and $n_1=1$; $n_3=1$ indicating that third echelon testing is not necessary. The service life cost is calculated assuming no third echelon test equipment is purchased. For these cases, the range of n_2 must be expanded until a minimum is reached. The case $m_1=2$, $m_2=10$, and n=3 illustrates what may happen. In this case n_3 becomes finite, and then becomes less than 1. It turned out, in this case, that a minimum was reached first.

We must also be able to find a minimum of the minimums for every set of m_1 and m_2 . In at least two cases, not only is this minimum of minimums not found within the range of n_2 , but it seems very likely that the minimum cost may be less than the lowest cost found in this run. These cases are m_1 =1 and m_2 =4 and 6. There may be others. Consequently, another run, with increased n_1 range, is necessary. This second run is given in table 4. It will be seen that the range of n_1 is still not great enough. Therefore, the run of table 5 was made.

In preparing table 5 , the indices were incremented by 1 because it was expected that this would be the final run and it was necessary to consider all possible test equipment configurations and test intervals. The range of n_1 was extended to complement the previous results. The range of n_2 was contracted based on the results of table 4 .

In every case but m₁=10, m₂=11 a minimum is found or at least it is obvious that the values of the service life costs have leveled off. For the exception it can be argued that this case could not be the least cost since the values have been increasing with m₁. It will be seen that the cheapest combination of test equipment configurations and test periods is for testing every 14 use cycles at first echelon with a tester which tests the first 5 functions, testing every 14X3=42 use cycles with a tester which tests the next 11-5=6 functions, and testing every 14X3X6=252 use cycles with a tester that test the last 12-11=1 function. We have not considered the possibility of performing all tests at first and second echelon and none at third. It is possible that a lower cost might be found if this were done.

Table δ is a run for two echelons of test. It will be seen that a minimum as a function of n_1 is not found in this run and it was necessary to increase the range of n_1 as shown in table 7. In this table it is seen that the minimum cost of testing using only two echelons is greater than for using three echelons. Therefore, the minimum cost test equipment configurations and test periods are those cited above.

MATHEMATICAL MODEL

The mathematical model is based on the testing scheme which is diagramed in figure 2. The first echelon test is performed every \mathbf{n}_1 times the item is used. The second echelon test is performed every \mathbf{n}_2 times the first echelon test is performed. The third echelon test is performed every \mathbf{n}_3 times the second echelon test is performed. When an item fails a test it is repaired or replaced and introduced as a new item. After the testing scheme has been in operation for some time an equilibrium condition will obtain in which the probability that an item which is selected at random will be unfailed is constant. We wish to know the relation between this constant and the parameters of the test arrangements.

Since we start each use cycle with some number, M, of good units, the number of good units which have been used x times is given by the expression

where U_0 is the fraction of new units which are good, M is the number of new units introduced each use cycle, and a is the failure rate per use cycle of the item. At the beginning of each use cycle, some units have not been used, some have been used once, some twice, and so on up to $(n_1n_2n_3-1)$. Items

Figure ?
TESTING SCHEME

that have been used $n_1 n_2 n_3$ times are removed from service and tested on the third echelon tester. If they pass this test they will be returned to service. If they do not pass this test they will be replaced with units which are new or reworked. The new or reworked units will have been tested on the third echelon tester. If the probability that a unit which passes this test will really be good is U_0 then the number of units which are in service which are good will be given by

$$U = U_{0} M + U_{0} M e^{-a} + U_{0} M e^{-2a} + ... + U_{0} M e^{-a(n_{1}n_{2}n_{3}-1)}$$

$$= \sum_{0}^{n_{1}n_{1}n_{3}-1} U_{0} M e^{-ax} = U_{0} M \frac{1-e^{-an_{1}n_{2}n_{3}}}{1-e^{-a}} EQ1$$

Now, M is the number of new units, or units which have passed the third echelon test, which are introduced each use cycle. It is the sum of the number of units which fail the first and second echelon tests each use cycle plus the number of units which are tested on the third echelon test each use cycle. The number of units tested on the first echelon tester each use cycle is

where N is the total number of units.

Of these

$$\frac{N}{n_i} \left[1 - e^{-a(1-FA_i) \cdot n_i} \right]$$

fail the test. FA₁ is the fraction of failed items which pass the first echelon test. The number of units which survive to be tested on the second echelon test the first time is

Of these

fail the test. FA_2 is the fraction of failed items which pass the second echelon test. The number which do not fail will be

Of these

survive to be tested on the second echelon tester the second time. Of these

fail and

survive. Extending this reasoning, one finds that the total number of items rejected each use cycle by the second echelon test is

$$= M e^{-a(1-FA_1)h_1h_2} \frac{-a(1-FA_2)h_1h_2h_3}{1-e} \left[1 - e^{-a(FA_1-FA_2)h_1h_2}\right]$$

The number of items which survive to be tested on the third echelon tester is

Therefore, the number of new units introduced each use cycle will be

$$H = \frac{N}{n_{1}} \left[1 - e^{-\alpha(i-FA_{1})n_{1}} \right]$$

$$+ Me^{-\alpha(i-FA_{1})n_{1}n_{2}} \frac{1-e^{-\alpha(i-FA_{2})n_{1}n_{2}} n_{2}}{1-e^{-\alpha(i-FA_{2})n_{1}n_{2}}} \left[1 - e^{-\alpha(i-FA_{2})n_{1}n_{2}} \right]$$

$$+ Me^{-\alpha(i-FA_{2})n_{1}n_{2}n_{3}}$$

$$+ Me^{-\alpha(i-FA_{2})n_{1}n_{2}n_{3}}$$

$$+ Me^{-\alpha(i-FA_{2})n_{1}n_{2}n_{3}} \left[1 - e^{-\alpha(i-FA_{2})n_{1}n_{2}} \right]$$

$$= \frac{N}{n_{1}} \left[1 - e^{-\alpha(i-FA_{2})n_{1}n_{2}} \right] \left[1 - e^{-\alpha(i-FA_{2})n_{1}n_{2}} \right]$$

$$= \frac{N}{1 - e^{-\alpha(i-FA_{2})n_{1}n_{2}}} \left[1 - e^{-\alpha(i-FA_{2})n_{1}n_{2}} \right]$$

By substitution we get the fraction of the items which are good at any time:

$$U = \frac{U_0 M}{N} \frac{1 - e}{1 - e}$$

$$U = \frac{U_0 \left[\frac{-a n_1 n_2 n_3}{1-e} \right] \left[\frac{-a (1-FA_1) n_1}{1-e} \right] \left[\frac{-a (1-FA_2) n_1 n_2}{1-e} \right]}{n_1 \left[\frac{-a (1-FA_2) n_1 n_2 n_3}{1-e} \right] \left[\frac{-a}{1-e} \right] \left[\frac{-a (1-FA_1) n_1 n_2}{1-e} \right]} EQ.2$$

Normally, a test scheme will be designed to provide a U which is greater than or equal to some specified value.

Obtaining greater values of U increases costs. Decreasing the false acceptance rates increases U and adds to the cost of the test equipment. Decreasing the values of the n's increases U and increases labor, shipping, and spares costs.

There is a selection of false acceptance rates and of test intervals, n's, which provides the required U at minimum cost. We must find this selection.

The number of tests which will be performed at each echelon each use cycle depends on the values of n_1 , n_2 , and n_3 and on the false acceptance rates. The number of items which will be tested at the first echelon each use cycle is

N h

The number of units which will be tested at the second echelon for the first time is

and for the second time is

The total number of units tested at the second echelon will be

$$-a(1-FA_1)n_1n_2$$
 $-a(1-FA_2)n_1n_2$
 $-a(1-FA_2)n_1n_3$
 $1-e$

each use cycle. Now since

$$M = \frac{N \left[1 - e^{-a(1-FA_1)N_1} \right] \left[1 - e^{-a(1-FA_2)N_1N_2} \right]}{\left[1 - e^{-a(1-FA_1)N_1N_2} \right] \left[1 - e^{-a(1-FA_1)N_1N_2} \right]}$$

this becomes
$$\frac{1}{N} = \frac{-a(1-FA_1)n_1n_2\left[1-e^{-a(1-FA_1)n_1}\right]}{1-e^{-a(1-FA_1)n_1n_2}}$$

The number of items tested each use cycle at the third echelon will be

$$Me^{-\alpha(1-FA_2)N_1N_2N_3}$$

$$= \frac{N e^{-\alpha(1-FA_2)N_1N_2N_3\left[\frac{-\alpha(1-FA_2)N_1}{1-e}\right]\left[\frac{-\alpha(1-FA_2)N_1N_2}{1-e}\right]}$$

$$= \frac{N e^{-\alpha(1-FA_2)N_1N_2N_3\left[\frac{-\alpha(1-FA_1)N_1N_2}{1-e}\right]}$$

Now, let K_1 be the costs associated with performing tests on each unit at the first echelon, K_2 the cost at the second echelon, and K_3 the cost at the third echelon. The cost, K, of testing incurred each use cycle will be

$$K = K_{1} \frac{N}{n_{1}} + K_{2} \frac{N}{n_{1}} \frac{e^{-\alpha(1-FA_{1})n_{1}n_{2}} \left[\frac{-\alpha(1-FA_{1})n_{1}n_{1}}{1-e^{-\alpha(1-FA_{1})n_{1}n_{2}}} \right]}{1-e^{-\alpha(1-FA_{1})n_{1}n_{2}}} + K_{3} \frac{e^{-\alpha(1-FA_{1})n_{1}n_{2}n_{3}} \left[\frac{-\alpha(1-FA_{1})n_{1}n_{2}}{1-e^{-\alpha(1-FA_{1})n_{1}n_{2}}} \right]}{1-e^{-\alpha(1-FA_{1})n_{1}n_{2}n_{3}} \left[\frac{-\alpha(1-FA_{1})n_{1}n_{2}}{1-e^{-\alpha(1-FA_{1})n_{1}n_{2}}} \right]}$$

This quantity times the total number of use cycles in the service life, when added to the cost of the test equipment, will be the total service life cost.

The cost of a test set to achieve the required false acceptance rate is determined as follows. A test set is required

which will detect all but FA of the failed items tested. We can choose the functions to be tested to minimize the cost. Let a_i be the failure rate of the ith function which the item performs. Let C_i be the cost of the equipment to test each of the m functions.

If there are a total of m_f functions which might be tested and if it costs C_m for the equipment to detect the failure of the mth function, the cost per fraction of failures detected will be

$$\frac{C_m}{1-FA_m} = \frac{C_m}{a_m} \sum_{i=1}^{m_e} a_i = \frac{C_m a}{a_m}$$

where FA_m is the fraction of the failed items which will pass the test if the mth function is not tested and is given by

$$FA_{m}=1-\frac{a_{m}}{\sum_{i=1}^{m_{f}}}=1-\frac{a_{m}}{a}$$

where a is the failure rate of the item.

If the functions are ordered according to increasing value of

they will be in the order in which they should be chosen to obtain the required test set. The false acceptance rates of the first and second echelon testers are given by

and

$$FA_2 = 1 - \frac{\sum_{m=1}^{m} a_m}{a}$$

where \mathbf{m}_1 is the highest index of the functions tested at first echelon and \mathbf{m}_2 is the highest index for second echelon.

The false acceptance rate of the third echelon tester is

$$1-U_0=1-\frac{\sum_{m=1}^{m}a_m}{a}$$

The cost of the first echelon tester will be

$$(Tester Cost)_i = C_o + \sum_{m=1}^{m_i} C_m$$

the cost of the second echelon tester will be

$$(TesterCost)_2 = C_0 + \sum_{m_1+1}^{m_2} C_m$$

and the cost of the third echelon tester will be

$$(TestenCost)_3 = C_0 + \sum_{m=m_1+1}^{m_2} C_m$$

where C_0 is the cost of the basic tester.

The cost of performing each test is the cost of the labor, the shipping to the test site, packing for shipping, the spares to replace the items while they are away for test, the test set maintenance, and the consumables associated with the test. These costs are given by

where the subscript, i, indicates the echelon of the test.

Some of the quantities which depend on the echelon of test depend on what tests are performed and, through this dependence, on the false acceptance rate. These quantities are the test time, the test sets MTBR and MTBF, and the average

materials cost for repairing the test set. These quantities can be related to the functions which the test set tests.

For example, it will take a particular time to test a particular function. Consequently, the quantities can be found as follows.

The test time is the sum of the test times for all of the functions tested at the particular echelon. If the test times for each function, T_{m} , have subscripts which are ordered according to increasing

$$\frac{c_n a}{a_m}$$

the test time for the first echelon test will be given by

$$\left(\text{Test Time}\right)_1 = \sum_{m=0}^{m_1} T_m + T_0$$

where \mathbf{m}_1 is the highest cost function tested by the first echelon and \mathbf{T}_{01} is the time necessary for getting the item on and off the tester. The second echelon test time will be

$$(T_{est} T_{ime})_1 = \sum_{m=m_1+1}^{m_L} T_{mt} T_{o}$$

and the third echelon test time will be

where m_2 , m_3 , T_{02} and T_{03} have meanings corresponding to the meanings of m_1 and T_{01} . The indicies follow the same rules for second and third echelon tests as for the test times.

If the A_{m} are the failure rates of the part of the tester that tests the mth function, the failure rate of the first echelon tester will be

$$(MTBF TESTER) = \frac{1}{A_0 + \sum_{m=1}^{m_1} A_m}$$

the failure rate of the second echelon tester will be

$$(MTBFTester)_2 = \frac{1}{A_0 + \sum_{m \neq 1}^{m} A_m}$$

and the failure rate of the third echelon tester will be

where A_0 is the failure rate of the basic test equipment comprising blowers, cables, racks, and any other equipment which is shared by the rest of the tester equipment.

If the $\mathbf{A}_{\mathbf{m}}$ are the failure rates of the part of the tester which tests the mth function and the $\mathbf{R}_{\mathbf{m}}$ are the repair times for each of these parts, the average time to repair the first echelon tester will be

$$\left(\text{RepairTime Of Tester}\right)_{i} = \frac{A_{o}R_{c} + \sum_{m=1}^{m_{i}} A_{m}R_{m}}{\sum_{m=1}^{m_{i}} A_{m}}$$

the average time to repair the second echelon tester ♥ill be

and the average time to repair the third echelon tester will be

where A is the failure rate of the basic test equipment of and \mathbf{R}_0 is its repair time.

COMPUTER PROGRAM

The program consists of a main program and five subroutines.

The purpose of each is:

- MAIN controls program and reads input data
- INPUTS prints out the description and value of each data element.
- COSTS calculates, for each echelon, the costs of the test equipment and of performing a test on the item
- CALC calculates the total cost of testing the item over its service life.
- XRTNI solves equations used in subroutine CALC. XRTNI solves equations by using the Newton-Raphson iterative technique.
- FCT calculates values used by subroutine XRTNI

 Table 1 gives the computer program. The program is in IBM

 FORTRAN IV (Extended).

Operation of the Model

Figure 3 is a flow chart of the program. Testing at either two or three echelons of test can be simulated. The program consists basically of four loops which are executed repeatedly. The first two loops allow the number of item functions tested by the first and second echelon testers to vary over their prescribed range. The remaining two loops allow the intervals between tests at the first and second echelons to vary over their prescribed range.

FIGURE S
FLOW CHART FOR COMPUTER PROGRAM

Intervals between tests are measured in use cycles which is the number of times that the end item has been "used". For instance, a mission in which an aircraft takes off and lands with a particular missile constitutes one use cycle of that missile.

The purpose of subroutine COSTS is to calculate the cost of testing at the ith echelon (i=1,2, or 3) and to calculate the cost of the test equipment. Each cost depends only on the number of functions tested at that level. For example, suppose 15 functions are to be analyzed: the first 5 at echelon 1, the next 6 at echelon 2, and the remaining 4 at echelon 3. Subroutine COSTS would assign the cost of testing functions 1 through 5 to echelon 1, of testing function, 6 through 11 to echelon 2, and of testing functions 11 through 15 to echelon 3. It does this by calculating the costs associated with testing at each of the three levels. Note that the cost of testing a function is charged to one level only.

Subroutine CALC calculates the number of use cycles that elapse between tests using EQ.2. This equation contains n_1 (number of cycles between first echelon tests), n_2 (number of n_1 cycles between second echelon tests), and n_3 (Number of n_2 cycles between third echelon tests), as variables. If only 2 testers are used the equation contains only n_1 and n_2 .

For example if $n_1=10$, $n_2=5$, and $n_3=2$ first echelon tests are performed every $n_1=10$ cycles, second echelon tests every $n_1^{Xn_2}=10X5=50$ cycles, and third echelon tests every $n_1^{Xn_2}=10X5X2=100$ cycles.

Due to the complexity of the expression (Eq.2) it is solved for one unknown value at a time. That is, given n_1 and n_2 (or n_1 only), CALC will solve the expression for n_3 (or n_2). The equation is solved by using the Newton-Raphson method, which makes successively better approximations. Given a rough approximation to the true solution of the equation the Newton-Raphson method, after a number of iterations, finds a solution which is arbitrarily close to the true solution. This procedure is carried out in routines XRTNI and FCT.

After the value of n_3 (n_2 for the two echelon case) has been calculated, the total cost of testing at all echelons over the service life of the item is calculated by CALC. The results are printed. These results are printed for all values of n_1 , n_2 , m_1 , and m_2 which lie in the ranges specified by the inputs. It is a simple matter to scan these results to find the combination which will give the lowest cost for the testing.

MEMBER NAME CALC

	SUBROUTINE CALC (YRPLC, COST, XNTSTR, TRCOST, USECYC, XST, IEND.	00001690
	* XNFUNC.XNFUN1.XNFUN2.K.L)	00002000
C		00003000
C	PURPOSE: TO CALCULATE THE COSTICTEST) OF TESTING ALL THE	00004000
C	FUNCTIONS OF A GIVEN ITEM AND THE TOTAL COST (TLCOST) OF	00005000
C	TESTING THE ITEM OVER ITS LIFE CYCLE. SUBROUTINE CALC CALLS	00006000
C	SUBROUTINE XRTNI AND IS CALLED BY MAIN.	00007000
C	SOUND THE ARTHUR AND IS CALLED BY MAIN	00008000
C	CTEST-COST OF TESTING ITEM ONE TIME	00009000
C	FNDEF-FRACTION OF ITEMS IN USE WHICH ARE NOT DEFECTIVE	00010000
C	TLCOST-TOTAL COST OF TESTING ITEM OVER ITEM LIFE CYCLE	0001000
	XIEND-MAXIMUM NUMBER OF ITERATIONS NEWTON-RAPHSON METHOD	00012000
C		00012000
C	ALLOWED TO GO THROUGH	
C	XIMTBF-ITEM FAILURE RATE	00014000
C	XNTSTR(I) - NUMBER OF TESTERS AT ITH ECHELON	00015000
С	XST-INITIAL VALUE USED BY NEWTON-RAPHSON METHOD	00016000
C	A D. W. A. V. V. V. A. D. L.	00017000
	COMMON/X/B(B)	00018000
	DIMENSION TRCOST(3) , XNTSTR(3) , COST(3)	00019000
	EQUIVALENCE (XIMTBF.B(1)), (XN1,B(2)), (XN2,B(3)), (FDEFF1,B(4)),	00020000
	*(FDEFF2.B(5)),(FDEFF3.B(6)),(FNDEF.B(7)),(XNITEM.B(8))	00021000
	EXTERNAL FCT	00055000
	IFLAG = 2	00022500
	AFUN1 = K	00023000
	AFUN2 = L	00024000
	IF (XNFUN2 .NE. XNFUNC) GO TO 4	00025000
C		00025050
C	INTERMEDIATE VALUES-TWO TESTER CASE	00025100
	Z = XIMTBF * XN1	00056000
	$C = 1 \cdot 0$	00027000
	E = 1.0	00088000
	FDEFF3 = FDEFF2	00029000
	60 10 5	00030000
C		00030500
C	INTERMEDIATE VALUES-THREE TESTER CASE	00030600
	4 Z = XIMTBF* XN1 * XN2	00031000
	C = 1.0 - EXP(Z * (-1.0) * FDEFF1)	00032000
	E = 1.0 - EXP(Z * (-1.0) * FDEFF2)	00033000
	5 F = 1.0 - EXP(XIMTBF* (-1.0))	00034000
	$D = 1 \cdot 0 - EXP(XIMTBF* (-1 \cdot 0) * XNI * FDEFFI)$	00035000
C		00035050
C	CONST MUST BE >= 1, OTHERWISE THE VALUE RETURNED BY ROUTINE	00035100
C	XRTNI WILL BE NEGATIVE. NEGATIVE XNZ OR XN3 VALUES HAVE NO	00035200
C	MEANINGFUL INTERPRETATION.	00035300
	CONST = FNDEF * (XN1/ FDEFF3) * F * C / (D * E)	00036000
	IF (CONST .GE. 1.0) GO TO 20	00037000
	IF (XNFUN2 .EQ. XNFUNC) GO TO 21	00038000
	TEMP1 = COST(3)	00039000
	COST(3) = 0.0	00040000
	TEMP2 = TRCOST(3)	00041000
	TRCOST(3) = 0.0	00042000
	IFLAG = 1	00043000
	GO TO 35	00044000
	21 TEMP1 = COST(2)	00045000
	COST(2) = 0.0	00046000
	34 00 10 0000 000	1 1
		11 //

34 Double page count from here,

```
PAGE 002
                                                                     18 MAR 1976
                          LISTING OF ESA.LOR.MISSILE.SRCE1
MEMBER NAME CALC (CONT)
                                                                          00047000
      TEMP2 = TRCOST(2)
      TRCOST(2) = 0.0
                                                                          00048000
      IFI AG = 1
                                                                          00049000
      GO TO 35
                                                                          00049500
                                                                          00050000
   20 EPS = .001
                                                                          00051000
      CALL XRTNI(X,F,DERF,FCT,XST,EPS,IEND,IER,Z),CONST,Z2,
                                                                          00052000
     # XNFUNC • XNFUN2)
                                                                          00053000
                                                                          00053050
C
      BRANCH TO APPROPRIATE MESSAGE IF NO VALUE RETURNED BY XR*NI
                                                                          00053100
   25 GO TO (100,200), IER
                                                                          00054000
      IF (Z1 .LT. 174. .AND. ZZ .LT. 174.) GO TO 35
                                                                          00055000
      IF (XNFUNZ .EQ. XNFUNC) GO TO 26
                                                                          00056000
      WRITE(6.33) AFUN1, AFUN2, XN1, XN2, X
                                                                          00057000
   33 FORMAT(/,2X,F4.0,1X,F4.0,1X,F4.0,1X,F4.0,1X,+ ... **,4X,
                                                                          00058000
     **INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
                                                                          00059000
     *VALUE .5X, F10.1)
                                                                          00060000
      GO TO 41
                                                                          00061000
   26 WRITE(6,34) AFUN1, AFUN2, XN1, X
                                                                          00062000
   34 FORMAT(/,2x,F4.0,1x,F4.0,1x,F4.0,1x, *1,9x, INITIAL X VALUE WIL00063000
     *L CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE. *,5X.F10.1)
                                                                          00064000
   41 RETURN
                                                                          00065000
                                                                          00066000
   35 T = XIMTBF * FDEFF1 * XN1
                                                                          00067000
      IF (XNFUN2 .NE. XNFUNC) GO TO 45
                                                                          00068000
                                                                          00068050
      INTERMEDIATE QUANTITIES-TWO TESTER CASE
                                                                          00068100
      S = 0.0
                                                                          00069000
      TRCOST(3) = 0.0
                                                                          00070000
      FDEFF3 = 0.0
                                                                          00071000
      X = 0.0
                                                                          00072000
      GO TO (44,47) , IFLAG
                                                                          00073000
                                                                          00073100
        U= 0.0
         w = 0.0
                                                                          00073200
         GO TO 48
                                                                          00073400
   47 U = XIMTBF * FDEFF2 * XN1 * XN2
                                                                          00074000
      W = EXP((-1.0) * T * XN2)
                                                                          00075000
      GO TO 48
                                                                          00076000
                                                                          00076050
     INTERMEDIATE QUANTITIES-THREE TESTER CASE
                                                                          00076100
   45 U = XIMTBF * FDEFF2 * XN1 * XN2
                                                                          00077000
      W = EXP((-1.0) + T + XN2)
                                                                          00078000
      GO TO (46,43), IFLAG
                                                                          00078100
         5 = 0.0
                                                                          00078200
         GO TO 48
                                                                          00078400
   43 S = EXP((-1.0) # U # X)
                                                                          00079000
   48 \ V = 1.0 - EXP((-1.0) + T)
                                                                          00080000
      Z = 1.0 - EXP((-1.0) * U)
                                                                          00081000
      Y = XNITEM / XN1
                                                                          00088000
                                                                          02028000
      CALCULATE COST OF COMPLETELY TESTING ITEM ONE TIME
                                                                          000082030
      CTEST = Y*(COST(1) + COST(2) * V* W /(1.0-W)) + (COST(3)/(1.0-W))00083000
         * 5 * V * Y * Z / (1.0 - S)
                                                                          00084000
                                                                          00084050
      CALCULATE COST OF TESTING ITEM OVER ITS LIFECYCLE
                                                                          00084100
```

SUBROUTINE COSTS (K.L. FDEFF1, FDEFF2, FDEFF3, COST, XNFUNC, 00001000 * RPMATR , TRCOST) 00002000 00003000 C PURPOSE: TO CALCULATE THE COST OF PERFORMING A TEST ON THE 00004000 C ITEM AT THE ITH ECHELON(I=1,2,0R3). THE TEST COST AT A GIVEN 00005000 C ECHELON DEPENDS ON THE NUMBER OF FUNCTIONS OF THE ITEM C 00006000 C THAT ARE CHECKED AT THAT ECHELON. 00007000 C 000080000 CITEM-COST OF ITEM C 00009000 COST(I)-COST OF PERFORMING TEST AT ITH ECHELON(I=1.2.3) 00010000 C CPACK(I) - COST OF PACKING TO SHIP ITEM TO ITH ECHELON 00011000 C CSHIP(I) - COST OF SHIPPING ITEM TO ITH ECHELON 00012000 C ECOSTS(I) - COST OF EQUIPMENT TO REPAIR ITH FUNCTION 00013000 C EFAILR(I)-FAILURE RATE OF EQUIPMENT TO REPAIR ITH FUNCTION 00014000 C FDEFFI-PER CENT OF DEFECTIVE ITEMS FAILING FIRST ECHELON TEST 00015000 C FDEFF2-PER CENT OF DEFECTIVE ITEMS FAILING SECOND ECHELON TEST 00016000 C FDEFF3-PER CENT OF DEFECTIVE ITEMS FAILING THIRD ECHELON TEST 00017000 C PAYR(I)-PAY RATE AT ITH ECHELON(I=1,2,3) 00018000 C C RPMATR-REPAIR MATERIAL RATIO 00019000 RTIMES(I)-TIME REQD TO REPAIR EQUIP. TESTING ITH FUNCTION C 000020000 TREOST-COST OF ITH ECHELON TESTER 00021000 C TTIMES(I) -TIME REQ'D TO TEST THE ITH FUNCTION OF ITEM 00052000 C TURNT(I) - TURNAROUND TIME FOR ITEM AT ITH ECHELON 00053000 C USECYC-NUMBER OF USE CYCLES 00024000 C YRPLC-YEARS PER ITEM LIFECYCLE 00025000 C XIFAIR(I) - FAILURE RATE OF ITH FUNCTION OF ITEM C 00056000 XMEN(I)-MEN REQ D TO OPERATE ITH ECHELON TESTER C 00027000 00088000 C COMMON/M/A(3,11),B(21,5) 00029000 DIMENSION PAYR(3), XNMEN(3), CSHIP(3), CPACK(3), TURNT(3), XNTSTR(3) 00030000 DIMENSION TESTT (3) , XREPRT (3) , TRCOST (3) , XTRMTB (3) , TRMTBF (3) , 00031000 *REPRT(3),COST(3),SUM(3) 00032000 DIMENSION RTIMES(21), ECOSTS(21), EFAILR(21), XIFAIR(21), TTIMES(21) 00033000 EQUIVALENCE (PAYR(1),A(1,1)),(XNMEN(1),A(1,2)),(CSHIP(1),A(1,3)), 00034000 *(CPACK(1),A(1,4)),(TURNT(1),A(1,5)),(XNTSTR(1),A(1,6)), 00035000 00036000 (CITEM.A(1,11)), (YRPLC,A(2,11)) EQUIVALENCE (RTIMES(1) .B(1.1)) . (ECOSTS(1) .B(1.2)) . 00037000 (EFAILR(1),B(1,3)),(XIFAIR(1),B(1,4)), 00038000 (TTIMES(1),B(1,5)) 00039000 N1 = XNFUNC 00040000 00041000 KK = K [=] 00042000 00043000 M=1N = XNFUNC + 1.000044000 00045000 C C SUM.TESTT.XREPRT.TRCOST.XTRMTB ACCUMULATE TOTALS FOR EACH 00046000 ECHELON TESTER DEPENDING ON THE NUMBER OF FUNCTIONS TESTED C 00047000 C AT THAT LEVEL. COST(I), I=1,2,3 IS THEN COMPUTED USING THESE 00048000 C 00049000 QUANTITIES. 00050000 C 40 SUM(1)=0.0 00051000 TESTT(I) = TTIMES(N)00052000 XREPRT(I) = EFAILR(N) * RTIMES(N)00053000 TRCOST(I) = ECOSTS(N)00054000 00055000 XTRMTB(I) = EFAILR(N)100

RETURN

END

ME	MREI	R NAME FOT	MAR	19	10
1.1.		, Halle FCT			
		SUBROUTINE FCT(TOL, F, DERF, Z1, CONST, Z2, XNFUNC, XNFUNZ)	000	010	00
C			000	020	00
C		PURPOSE: TO CALCULATE VALUES USED BY SUBROUTINE XRTNI.	000	030	00
C		THE EQUATIONS WHICH ARE USED DEPEND ON THE NUMBER (2 OR 3)	000	040	00
C		OF ECHELON LEVELS AT WHICH TESTING OCCURS. FCT IS CALLED	000	050	00
C		BY SUBROUTINE XRTNI.	000	060	00
C		SPECIFICALLY FCT EVALUATES THE FUNCTION AND ITS DERIVATIVE	000	070	00
С		SINCE BOTH IF THESE VALUES ARE REQUIRED FOR EACH ITERATION OF	000		
C		THE NEWTON-RAPHSON METHOD IN SUBROUTINE XRINI	000	072	00
C			000	073	00
		COMMON/X/A(8)	000		
		EQUIVALENCE (ALPHA, A(1)), (XN1, A(2)), (XN2, A(3)), (FDEFF1, A(4)),	000	090	00
		*(FDEFF2,A(5)), (FDEFF3,A(6)), (FNDEF,A(7)), (XNITEM,A(8))	000		
		IF (XNFUN2 .EQ. XNFUNC) GO TO 5	000		
		60 10 6	000		
С			000		
Č.		TWO TESTER CASE-CHECK SIZE OF EXPONENTS OCCURING IN EQUATIONS.	000		
C		IF X>174. EXP(X) WILL CAUSE OVERFLOW AND ERROR MESSAGE.	000		
	5	Z = ALPHA * XN1	000		
		Z1 = Z * (-1.0) * TOL	000	-	
		72 = Z1 * (FDEFF1 + FDEFF2)	000		
		GO TO 7	000		
С			000		
C		THREE TESTER CASE-EXPONENT CHECK SIMILIAR TO TWO TESTER CASE	000	-	
-	6	Z = ALPHA * XN1 * XN2	000		
	0	Z1 = Z * (-1.0) * TOL	000		
		Z2 = Z1 * (1.0 + FDEFF2)	000		
	7	IF (Z1 .LT. 174AND. Z2 .LT. 174.) GO TO 10	000		
		RETURN	000		
	10	T = EXP(Z * (-1.0) * TOL)	000		
	• 0	IF (XNFUNZ .EQ. XNFUNC) GO TO 23	000		
_		IT TANK SIZE FLAT AND SICE OF TO ES	000		
C		EVALUATE DERIVATIVE OF FUNCTION F-THREE TESTER CASE	000		
-		S = 1.0 - EXP(Z * (-1.0) * FDEFF2 * TOL)	000		
	20	R = 1.0 - EXP(Z * (-1.0) * TOL)	000		
	L.U	DERF = (Z*T*S - R*Z*FDEFF2*T**FDEFF2) / (S*S)	000		-
		GO TO 25	000		
C		30 10 23	000		
Č		EVALUATE DERIVATIVE OF FUNCTION F-TWO TESTER CASE	000		
C	23	R = 1.0 - EXP(Z * (-1.0) * FDEFF2 * TOL)	000		
	2.5	S = 1.0 - EXP(Z * (-1.0) * FDEFF1 * TOL)	000		
	-	DERF = (S * Z * FDEFF2 * T ** FDEFF2 - R * Z * FDEFF1*T ** FDEFF1)			
		* /(S * S)	000		
•		113 " 31	000		
C		EVALUATE FUNCTION F	000		
C	25	F = (R/S) - CONST	000		
	23	RETURN	000		
			000		
		END	000	740	00

ME	ABER NAME INPUTS	
	CURROUTINE INDUTCANEUNG FAREF REMATE HERCYC VOT VIENDA	00001000
-	SUBROUTINE INPUTS (XNFUNC, FNDEF, RPMATR, USECYC, XST, XIEND)	00001000
C		00002000
C	PURPOSE: TO DESCRIBE EACH INPUT DATA ELEMENT	00003000
C		00004000
	COMMON/M/A(3,11),B(21,5)	00005000
	WRITE(6+10)	00006000
	10 FORMAT(////•50X• INPUT DATA DESCRIPTION•//)	00007000
	WRITE(6,20)((A(I,J),I=1,3),J=1,11)	00008000
	20 FORMAT(10X, PAY RATE(\$/HR) AT TESTER, 20X, 3(F6.2, 11X),/,	00009000
	* 10X, 'NO. MEN TO OPERATE TESTER', 19X, 3(F6.2, 11X),/,	00010000
	* 10X'COST OF SHIPPING TO TESTER', 16X, 3(F8, 2, 9X),/,	00011000
	* 10x, COST OF PACKING TO SHIP TO TESTER, 9x, 3(F8.2, 9x),/,	00015000
	* 10X, TURNAROUND TIME (YRS) TO TEST ITEM , 11X, 3 (F6.2, 11X), /,	00013000
	* 10X, NUMBER OF TESTERS', 27X, 3(F6, 2, 11X), ///,	00014000
	* 10X, NO. TESTER1 FUNCTIONS(INTTIAL VALUE, 10X, 3(F3.0, 14X),	00015000
	* /.13X, FINAL VALUE, INCREMENT)	00016000
	* 10X, NO. TESTER2 FUNCTIONS (INITIAL VALUE , 10X, 3 (F3.0, 14X),	00017000
	* /.13X, FINAL VALUE, INCREMENT) ',//,	00018000
	* 10x, 'NO. CYCLES BETWEEN FIRST ECHELON TESTS', 7X,	00019000
	* 3(F3.0,14x),/,13x, (INITIAL VALUE, FINAL VALUE, INCREMENT),	000020000
	* //,10X, 'NO. X(CYCLES BETWEEN FIRST ECHELON TESTS) ',4X,	00021000
	* 3(F3.0,14x),/,13x, CYCLES BETWEEN SECOND ECHELON TESTS',/,	00022000
	* 13X, (INITIAL VALUE, FINAL VALUE, INCREMENT) ,//,	00023000
	* 10X, ITEM COST, ITEM LIFECYCLE, NO. OF ITEMS , 4X, F9.0.12X,	00024000
	* F3.0,14X,F4.0,//)	00025000
	WRITE (6,22) XNFUNC, FNDEF, RPMATR, USECYC, XST, XIEND	00026000
	22 FORMAT(10X, 'NO. ITEM FUNCTIONS TESTED', 20X, F3.0, //,	00027000
	* 10x, FRACTION OF ITEMS IN USE NOT DEFECTIVE , 8x, F4, 2, //,	00028000
	* 10x, REPAIR MATERIAL RATIO, 24x, F5.2,//,	00029000
	* 10X, •NO. USE CYCLES •, 29X, F5.0, //,	00030000
	* 10X. INITIAL VALVE FOR NEWTON-RAPHSON METHOD . 6X. F3.0.//,	00031000
	* 10x, MAXIMUM NO. ITERATIONS FOR N-R METHOD , 8x, F3.0.////	00032000
	NN=XNFUNC + 1.0	00033000
	30 WRITE(6+31) (B(I+1)+I=1+NN)	00034000
	31 FORMAT(10X, TIME REQD TO REPAIR EQUIP. WHICH TESTS ITH FUNCTION.	00035000
	* 6(T57,4(F15.6,3X)/))	00036000
	40 WRITE(6,41) (B(I,2),I=1,NN)	00037000
	41 FORMAT(10x, COST OF EQUIPMENT TO TEST ITH FUNCTION.	00038000
	* 6(T57,4(F15,6,3X)/))	00039000
	50 WRITE(6,51) (8(1,3),I=1,NN)	00040000
	51 FORMAT (10X, FAILURE RATE OF EQUIP. TO TEST ITH FUNCTION'.	00041000
	* 6(T57,4(F15,6,3X)/))	00042000
	60 WRITE(6.61) (B(I.4), I=1,NN)	00043000
	61 FORMAT(10X, FAILURE RATE OF ITH FUNCTION OF ITEM.,	00044000
	* 6(T57,4(F15,6,3X)/))	00045000
	70 WRITE(6.71) (8(1.5).I=1.NN)	00046000
	71 FORMAT (10x, TIME REQD TO TEST ITH FUNCTION.	00047000
	* 6(T57,4(F15.6,3X)/))	00048000
	RETURN	00049000
	END	00050000

-	Line Land See	, HALL PAIN	
(PURPOSE: READ INPUT DATA AND CONTROL PROGRAM. THE FOLLOWING	00001000
(0	PROGRAM CALCULATES THE LIFE CYCLE COST OF PERIODICALLY	0002000
(TESTING SPECIFIC MISSILE FUNCTIONS. TESTING IS ASSUMED TO	00003000
(0	OCCUR AT EITHER 2 OR 3 ECHELON LEVELS. THE PROGRAM ESSENTIALLY	00004000
-	2	CONSISTS OF FOUR LOOPS-THE FIRST 2 ALLOW THE NUMBER OF	00005000
	0	FUNCTIONS TESTED TO VARY OVER A PRESCRIBED RANGE AND THE	00006000
		REMAINING 2 ALLOW THE TIME INTERVAL BETWEEN TESTS TO VARY OVER	00007000
	0	A PRESCRIBED RANGE.	00008000
			00009000
		F1STEP-STEPSIZE FOR XNFUN1	00010000
		F2STEP-STEPSIZE FOR XNFUN2	00011000
		STEP1-XN1 STEPSIZE	00012000
		STEP2-XN2 STEPSIZE	00013000
		XHVAL1-FINAL XNFUN1 VALUE	00014000
	Č	XHVALZ-FINAL XNFUNZ VALUE	00015000
		XN1-NO. CYCLES BETWEEN FIRST ECHELON TESTS	00016000
		XNIF-FINAL XN1 VALUE	00017000
		XN2-NO. XN1 CYCLES BETWEEN SECOND ECHELON TESTS	00018000
		XNZF-FINAL XNZ VALUE	00019000
		XNFUNI-NO. FUNCTIONS TESTED BY FIRST ECHELON(INITIAL VALUE)	00020000
		XNFUN2-NO. FUNCTIONS TESTED BY SECOND ECHELON(INITIAL)	00021000
	Ċ	XNFUNC-NO. OF ITEM FUNCTIONS TESTED	00022000
	2	ANTONO TO THE TONOTIONS TESTED	00023000
	•		00024000
		COMMON/M/A(3,11),B(21,5)	00025000
		COMMON/X/C(8)	00025000
		DIMENSION COST (3) .XNTSTR(3) .TRCOST(3)	00027000
		EQUIVALENCE (XNFUN1, A(1,7)), (XHVAL1, A(2,7)), (F1STEP, A(3,7)),	00028000
		(XNFUN2.A(1.8)). (XHVAL2.A(2.8)). (F2STEP.A(3.8)).	00029000
		(XN1,A(1,9)),(XN1F,A(2,9)),(STEP1,A(3,9)),	00030000
		(XN2,A(1,10)),(XN2F,A(2,10)),(STEP2,A(3,10)).	00031000
		(XNITEM, A(3,11)), (XNTSTR(1), Δ(1,6)), (YRPLC, A(2,11))	00032000
		WRITE (6,1)	00033000
	1	FORMAT(LIST OF INPUT DATA 1/)	00034000
		FORMAT (T21, 3F10.2)	00035000
		FORMAT(T21,3(F10,2,1X))	00036000
		FORMAT (T21,F10.2)	00037000
,	C	READ AND WRITE INPUT DATA	00038000
,	•	DO 5 J=1.11	00039000
		READ($5 \cdot 10$) (A($I \cdot J$) $\cdot I = 1 \cdot 3$)	00040000
		WRITE(6.11) (A(I.J).I=1.3)	00041000
	6	CONTINUE	00042000
	9	READ (5,15) XNFUNC, FNDEF, RPMATR, USECYC, XST, XIEND	00042000
		WRITE (6,15) XNFUNC, FNDEF, RPMATH, USECYC, XST, XIEND	00045000
		IEND = XIEND	00045000
		NN=ANFUNC + 1.0	00045000
		DO 40 J=1.5	00047000
-		READ(5,100,END=250) (B(I,J),I=1,NN)	00047000
		WRITE (6.100) (B(I,J),I=1,NN)	00049000
	4.0		00050000
		CONTINUE FORMAT (131 - 4515 - 6)	
	100	FORMAT (T21,4F15.6) CALL INPUTS (XNFUNC, FNDEF, RPMATR, USECYC, XST, XIEND)	00051000
			00052000
-		C(1) = B(NN,4)	00053000
		C(7) = FNDEF	
		C(8) = XNITEM	00055000

LISTING OF ESA.LOR.MISSILE.SRCE1

PAGE 010 18 MAR 1976

MEMBER NAME MAIN (CONT)

END

		SUBROUTINE XRTNI (X,F,DERF,FCT, XST, EPS, IEND, IER, Z1, CONST, Z2,	00001000
	4	XNFUNC • XNFUN2)	00002000
С			00003000
C		PURPOSE: TO CALCULATE THE VALUE OF X USING THE NEWTON-	00004000
C .		RAPHSON TECHNIQUE. WHEN TESTING IS PERFORMED AT TWO	00005000
C		ECHELONS ONLY. X REPRESENTS THE NUMBER OF XN1 CYCLES	00006000
Č		BETWEEN SECOND ECHELON TESTS. WHEN THREE TYPES OF TESTERS	00007000
C		ARE USED, X REPRESENTS THE NUMBER OF XNZ CYCLES BETWEEN	00008000
C		THIRD ECHELON TESTS. XRTNI CALLS SUBROUTINE FCT. THERE ARE	
C		THREE CASES IN WHICH AN X VALUE IS NOT RETURNED.	00010000
C		1) IER=1. NO CONVERGENCE IN IEND ITERATION STEPS.	00011000
C	-	2) IER=2. DIVISION BY ZERO.	00012000
C		3) INITIAL VALUE CAUSES OVERFLOW IN CALCULATIONS INVOLVING	00013000
		EXPONENTIALS.	00014000
C		XRTNI CALLS FCT AND IS CALLED BY SUBROUTINE CALC.	00015000
		ARTNI CALLS FOT AND IS CALLED BY SUBRUCTINE CALC.	
C		DOED DE TIEDATION	00016000
C		PREPARE ITERATION	00017000
		IER = 0	00018000
	-	X = XST	00019000
		10L = X	00020000
		CALL FCT(TOL, F, DERF, Z1, CONST, Z2, XNFUNC, XNFUNZ)	00021000
		TOLF = 100. * EPS	00055000
C		START ITERATION LOOP	00023000
		00 6 I=1, IEND	00024000
		IF(F)1,7,1	00025000
C		EQUATION IS NOT SATISFIED BY X	00026000
		IF (DERF) 2.8.2	00027000
		IF(ABS(DERF) - 16.0 ** (-60.0))8,22,22	00088000
С		ITERATION IS POSSIBLE	00029000
		DX = F / DERF	00030000
		X = X - DX	00031000
		TOL = X	00032000
		IF (ABS(TOL) •GT• •1) 60 TO 12	00033000
		$X = 1 \cdot 0$	00034000
		RETURN	00035000
		CALL FCT(TOL +F +DERF + Z1 + CONST + Z2 + XNFUNC + XNFUN2)	00036900
C		TEST ON SATISFACTORY ACCURACY	00037000
		IF (Z1 .LT. 174AND. ZZ .LT. 174.) GO TO 10	00038000
		RETURN	00039000
	10	TOL = EPS	00040000
		A = ABS(X)	00041000
		IF(A - 1.)4.4.3	00042000
	3	TOL = TOL * A	00043000
	4	IF(ABS(DX) - TOL)5,5,6	00044000
	5	IF(ABS(F) - TOLF)7,7,6	00045000
		CONTINUE	00046000
C		END OF ITERATION LOOP	00047000
C		NO CONVERGENCE AFTER IEND ITERATION STEPS. ERROR RETURN.	00048000
		IER = 1	00049000
	7	RETURN	00050000
C		ERROR RETURN IN CASE OF ZERO DIVISOR	00051000
	8	IER = 2	00052000
		RETURN	00053000
		END	00054000

					TABLE 3
LIST OF INPUT DATA				EX	AMPLE RESULTS 1
	7.00	12.00	15.50		
	2.00	2.00	2.00		
	10.00	500.00	1000.00		
	0.0	10.00	10.00		
	0.01	0.10	0.75		
	20.00	2.00	1.00		
	1.00	10.00	1.00		
	2.00	11.00	2.00		
	1.00	5.00	2.00		
	2.00	18.00	2.00		
	50000.00	10.00	500.00		
	12.00				
	0.70				
	0.15				
	20.00				
	7.00				
	20.00				
	1.000000)	1.000000	1.500000	1.500000
	1.500000)	1.500000	1.500000	1.500000
	2.000000)	2.000000	2.000000	2.000000
	1.000000)			
	20000.000000	2000	0.000000	28000.000000	40000.000000
	40000.000000	8940	0.000000	40000.000000	80000.000000
	100000.000000	60000	0.000000	100000.000000	100000.000000
	20000.000000				
	0.001020)	0.000660	0.000550	0.001060
	0.000500)	0.000280	0.000210	0.000450
	0.000120		0.000120	0.000010	0.000130
	0.001000)			
	0.001000		0.000900	0.001180	0.001260
	0.000700		0.001540	0.000670	0.000120
	0.001470		0.008570	0.001390	0.001350
	0.020150				
	0.300000		0.300000	0.300000	0.300000
	0.500000		0.300000	0.300000	0.300000
	0.300000		1.000000	1.000000	2.000000
	0.200000				

INPUT DATA DESCRIPTION

PAY RATE (\$/HR) AT TESTER NO. MEN TO OPERATE TESTER COST OF SHIPPING TO TESTER COST OF PACKING TO SHIP TO TESTER	7.00 2.00 10.00 0.0	12.00 2.00 500.00 10.00	15.50 2.00 1000.00 10.00
TURNAROUND TIME (YRS) TO TEST ITEM NUMBER OF TESTERS	0:01	0.10 2.00	0.75 1.00
NO. TESTER1 FUNCTIONS (INITIAL VALUE FINAL VALUE , INCREMENT)	1.	10.	1.
NO. TESTER2 FUNCTIONS (INITIAL VALUE FINAL VALUE, INCREMENT)	2.	11.	2.
NO. CYCLES BETWEEN FIRST ECHELON TESTS (INITIAL VALUE.FINAL VALUE.INCREMENT)	1;	5.	2.

40847888.	+084	193653.	10307.	1027.	73.	1.00	0.09	0.05	•	12.	-	~
42514608.	4251	201986.	10307.	1027.	73.	1.00	0.09	0.05		10.	:	~
45037008.	4503	214598.	10307.	1027.	73.	1.00	0.09	0.05	5.	9.	:	~
9270512.	4927	235766.	10307.	1027.	73.	1.00	0.09	0.05	7.	6.	:	2
7781280.	5778	278320.	10307.	1027.	73.	1.00	0.09	0.05	:	•	:	2
83400592.	8340	406416.	10307.	1027.	73.	1.00	0.09	0.05	22.	2	:	2.
		X	X	*	7							
ST CYCLE	COST COST	COMPLETE TEST COST	TEST3 COST	16S12	TEST1	FAILING TEST3	TEST2	DEFECTIVE TEST1	3	CYCLES	Z	MI MZ
	A			SUMMARY	TEST COST							
2.00000	00000	1.0	1.000000	200000	0 0							
0.300000	0.300000	000	0.300000	300000	00		NOI	ITH FUNCTION	TEST	REOD TO	IME R	4
0.00135	01390	0.0	0.008570	001470	00							
0.0001260	0.001180	0.0	0.001540	001000	0.0	3	N OF ITEM	ITH FUNCTION	9	ERATE	AILURE	7
0.00013	01000	0.0	0.000120	000100	•••							
0.001060	0.000210	0.0	0.000660	000500	•••	ITH FUNCTION	TEST ITH	EQUIP. TO T	9	ERATE	AILURE	71
100000.000000	00000	100000.0	600000.000000	000000	200000							
40000.000000	00000	28000.000000	20000.000000	000000	200000	ION	ITH FUNCTION	TO TEST I	EQUIPMENT		0ST 0F	c
2.000000	00000	2.0	2.000000	000000	2.000000							
1.50000	500000		1.000000	000000		STS ITH FUN	WHICH TE	IR EQUIP.	REPAIR	REGO TO	IME R	_
20)												
0 10					20:	100	N-R METHOD	FOR	ITERATIONS	NO.	MAXIMUM	3
24000					7:	METHOD		NEWTON-RAPHSON	E FOR	L VALVE	INITIAL	_
000,00					20.				ES.	E CYCLE	NO. USE	z
201600					0.15			RATIO	TERIAL R	Y	REPAIR	20
~ 1					0.70	IVE	T DEFECTIVE	IN USE NOT	ITEMS	0	RACTION	71
0					12.			S TESTED	FUNCTIONS		NO. ITEM	z
of		500.		10.	50000.		. OF ITEMS	FECYCLE.NO.	EM LIF	COST.ITEM	ITEM CO	_
						TESTS CREMENT)	VALUE INCREMENT)	VALUE FINAL VAL	AL VALUE	CYCLES BE	CYC	

7	25294912.	115548.	7862.	1095.	73.	1.00	0.22	0.05	ω •	6.	3.	4
1.5	27954368.	128845.	7862.	1095.	73.	1.00	0.22	0.05	4.	4	ω	4.
	36705152.	172599.	7862.	1095.	73.	1.00	0.22	0.05	8	2.	3.	
* · · ·	30132960.	139738.	7862.	1095.	73.	1.00	0.22	0.05	3	18.	:	
	30765840.	142902.	7862.	1095.	73.	1.00	0.22	0.05	3.	16.	-	
	31617920.	147163.	7862.	1095.	73.	1.00	0.22	0.05	3.	14.		
	32797712.	153062.	7862.	1095.	73.	1.00	0.22	0.05		12.	:	
	34500688.	161577.	7862.	1095.	73.	1.00	0.22	0.05	5•	10.	:	*
	37117360.	174660.	7862.	1095.	73.	1.00	0.22	0.05	6.	00	:	
	41559792.	196872.	7862.	1095.	73.	1.00	0.22	0.05	8	•	:	
	50563088.	241889.	7862.	1095.	73.	1.00	0.22	0.05	13.		:	*
	77805072.	378098.	7862.	1095.	73.	1.00	0.22	0.05	26.	2	:	
					ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV		18.	5	2.
					ITERATIONS	WITHIN 20	CONVERGENCE	NO CONV		16.	5	2
					ITERATIONS	WITHIN 20	CONVERGENCE	NO CONV		14.	5.	2.
					ITERATIONS	WITHIN 20	CONVERGENCE	NO CONV		12.	5	2
					ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV		10.	5.	2.
17.4	29751184	138169.	10307.	1027.	73.	1.00	0.09	0.05	:	œ •	5.	2
	30370928.	141268.	10307.	1027.	73.	1.00	0.09	0.05	:	•	5	2.
	31849424.	148660.	10307.	1027.	73.	1.00	0.09	0.05	2.		5	2
	36747040.	173148.	10307.	1027.	73.	1.00	0.09	0.05		2.	5.	2
					ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV		18.	ω	2
	30437280.	141600.	10307.	1027.	73.	1.00	0.09	0.05	:	16.	u.	2.
2	30046320.	139645.	10307.	1027.	73.	1.00	0.09	0.05	:	14.	.	2.
	30866320.	143745.	10307.	1027.	73.	1.00	0.09	0.05	:	12.	ω	2.
	31297168.	145899.	10307.	1027.	73.	1.00	0.09	0.05	:	10.	ω	~
	32014400.	149485.	10307.	1027.	73.	1.00	0.09	0.05	۰.	8	u.	2
	33303088.	155929.	10307.	1027.	73.	1.00	0.09	0.05	۰.	•	.	2
	36017728.	169502.	10307.	1027.	73.	1.00	0.09	0.05		•	<u>.</u>	2.
	44430912.	211568.	10307.	1027.	73.	1.00	0.09	0.05	7.	2	3	2.
7 2 4	38129488	180061.	10307.	1027.	73.	1.00	0.09	0.05	2	18.	:	~
	38797744.	183402.	10307.	1027.	73.	1.00	0.09	0.05	ω	16,	:	2
	39669984.	187763.	10307.	1027.	73.	1.00	0.09	0.05	•		:	0

1 × 1											
20790864.	92380.	6542.	1330.	73.	1.00	0.33	0.05	:	16.	3.	6.
20339616. 48	90124.	6542.	1330.	73.	1.00	0.33	0.05	:	14.	ω •	6.
20111024.	88981.	6542.	1330.	73.	1.00	0.33	0.05	:	12.	3	6.
20169632.	89274.	6542.	1330.	73.	1.00	0.33	0.05	2.	10.	ω	6.
20661696.	91735.	6542.	1330.	73.	1.00	0.33	0.05	2.	3 0	ω •	6.
21946736.	98160.	6542.	1330.	73.	1.00	0.33	0.05	ω •	6.	.	6.
25123520.	114044.	6542.	1330.	73.	1.00	0.33	0.05	5	4.	3	6.
35718128.	167017.	6542.	1330.	73.	1.00	0.33	0.05	10.	2	ω •	6
26792720 h. A	122390.	6542.	1330.	73.	1.00	0.33	0.05	3	18.	:	•
27541328.	126133.	6542.	1330.	73.	1.00	0.33	0.05	3	16.	:	6.
28558640.	131219.	6542.	1330.	73.	1.00	0.33	0.05		14.	:	6
29976240.	138307.	6542.	1330.	73.	1.00	0.33	0.05	5.	12.	:	6.
32031360.	148583.	6542.	1330.	73.	1.00	0.33	0.05	•	10.	:	6
35198336.	164418.	6542.	1330.	73.	1.00	0.33	0.05	7.	œ •	:	6.
40584656.	191349.	6542.	1330.	73.	1.00	0.33	0.05	10.	6.	:	•
51512912.	245991.	6542.	1330.	73.	1.00	0.33	0.05	15.	4	:	6.
84596960.	411411.	6542.	1330.	73.	1.00	0.33	0.05	31.	2.	:	•
-84.6	STARTING VALUE	NE	VERFLOW. NEED	SE EXPONENT OVERFLOW.	INITIAL X VALUE WILL CAUSE	. X VALUE	INITIAL	٠	18.	5	4
				ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV	*	16.	5	
				ITERATIONS	WITHIN 20	CONVERGENCE	NO CONV	*	14.	5.	•
				ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV		12.	5.	4
18720064.	82673.	7862.	1095.	73.	1.00	0.22	0.05	:	10.	5	
23135792.	104752.	7862.	1095.	73.	1.00	0.22	0.05	:	8	5.	•
30528352.	141715.	7862.	1095.	73.	1.00	0.22	0.05	:	6.	5.	•
23877600.	108461.	7862.	1095.	73.	1.00	0.22	0.05	2.		5	4
28705888.	132603.	7862.	1095.	73.	1.00	0.22	0.05	5	٥.	5.	:
				ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV		18.	<u>ن</u>	4
23718848.	107667	7862.	1095.	73.	1.00	0.22	0.05	:	16.	ω •	•
23548912.	106818.	7862.	1095.	73.	1.00	0.22	0.05	:	14.	<u>ن</u>	
23515344.	106650.	7862.	1095.	73.	1.00	0.22	0.05	:	12.	ω.	
31529328.	146720.	7862.	1095.	73.	1.00	0.22	0.05	:	10.	ω •	•
24113488.	109941.	7862.	1095.	13.	1.00	22.0	0.05		0.		

0.0					0 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	•	10.	5.	8	•
1 2.0	18490672.	80279.	5757.	1701.	73.	1.00	0.37	0.05	:	8	5	8	:
	18666912.	81161.	5757.	1701.	73.	1.00	0.37	0.05	2.	6.	5	8	:
	20481040.	90231.	5757.	1701.	73.	1.00	0.37	0.05	3.		5	8	:
	28116816.	128410.	5757.	1701.	73.	1.00	0.37	0.05	6.	2.	5	00	:
					0 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	18.	3	80	:
					0 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	16.	3	00	:
	19501056.	85331.	5757.	1701.	73.	1.00	0.37	0.05	:	14.	ω •	8	:
, ,	19372960.	84691.	5757.	1701.	73.	1.00	0.37	0.05	:	12.	ω	œ •	:
	19610816.	85880.	5757.	1701.	73.	1.00	0.37	0.05	2.	10.	ω	œ •	:
	20399440.	89823.	5757.	1701.	73.	1.00	0.37	0.05		80	ω.	8	:
	22197424.	98813.	5757.	1701.	73.	1.00	0.37	0.05	ω •	6.	ω	80	-
	26409920.	119876.	5757.	1701.	73.	1.00	0.37	0.05	5.		ω •	80	:
	40107360.	188363.	5757.	1701.	73.	1.00	0.37	0.05	11.	2.	ω •	8	:
* ×	27049552.	123074.	5757.	1701.	73.	1.00	0.37	0.05	3.	18.	:	œ •	:
	28057072.	128111.	5757.	1701.	73.	1.00	0.37	0.05	:	16.	:	8	:
	29407696.	134865.	5757.	1701.	73.	1.00	0.37	0.05		14.	:	80	:
	31269856.	144175.	5757.	1701.	73.	1.00	0.37	0.05	ა	12.	:	8	-
	33946960.	157561.	5757.	1701.	73.	1.00	0.37	0.05	6.	10.	:	8	:
	38046048.	178056.	5757.	1701.	73.	1.00	0.37	0.05	8	8	:	8	:
	44984160.	212747.	5757.	1701.	73.	1.00	0.37	0.05	11.	6.	:	80	:
	59012640.	282889.	5757.	1701.	73.	1.00	0.37	0.05	16.		:	8	:
	101389472.	494773.	5757.	1701.	73.	1.00	0.37	0.05	33.	2.	:	8	:
	-166.6	ING VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	WILL	L X VALUE	INITIAL	*	18.	5	•	:
	-108.5	ING VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	E WILL CAUSE	L X VALUE	INITIAL	*	16.	5.	•	:
					20 ITERATIONS	WITHIN	NO CONVERGENCE	NO CON	*	14.	5.	•	:
					0 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	12.	5	•	:
- n. 4 m/60	15991862.	68385.	6542.	1330.	73.	1.00	0.33	0.05	:	10.	5	•	:
	19307168.	84962.	6542.	1330.	73.	1.00	0.33	0.05	:	8	5	•	:
	19230688.	84580.	6542.	1330.	73.	1.00	0.33	0.05	2.	•	5	6.	:
000	20442512.	90639.	6542.	1330.	73.	1.00	0.33	0.05	ω •	•	5	6.	:

	42001504	201781	7862	1057	2	- 00	0	0 00	D	. (
50	51616544.	245356.	7862.	1057.	91.	1.00	0.22	0.09	13.	4.	:	4	
	77929248.	376919.	7862.	1057.	91.	1.00	0.22	0.09	26.	2)	:	4	
	-24356.5	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	18.	5	10.	:
	-7077.1	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	•	16.	5	10.	:
	-2039.5	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	14.	5	10.	:
	-574.5	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	٠	12.	5	10.	:
	-150.6	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	10.	5	10.	:
	19432832.	81490.	4980.	4085.	73.	1.00	0.86	0.05	:	8	ა	10.	:
V .	18269136.	75672.	4980.	4085.	73.	1.00	0.86	0.05	6.	6.	5	10.	:
	24547408.	108163.	0.	4085.	73.	1.00	0.86	0.05	-		5.	10.	:
	44921312.	210033.	0.	4085.	73.	1.00	0.86	0.05	-	2.	5	10.	:
	-259.7	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	18.	.	10.	:
	-112.0	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	16.	ω	10.	:
	22554336.	97098.	4980.	4085.	73.	1.00	0.86	0.05	:	14.	3	10.	:
5	18666736.	77660.	4980.	4085.	73.	1.00	0.86	0.05	2	12.	ω	10.	:
	19234640.	80499.	4980.	4085.	73.	1.00	0.86	0.05	6.	10.	ω •	10.	:
	22142800.	96140.	0.	4085.	73.	1.00	0.86	0.05	-	8	ω •	10.	:
	27807728.	124465.	0.	4085.	73.	1.00	0.86	0.05	-	6.	ω •	10.	•
	39137840.	181115.	0.	4085.	73.	1.00	0.86	0.05	н		.	10.	:
	73128208.	351067.	0.	4085.	73.	1.00	0.86	0.05	-		ω •	10.	:
*	32702112.	148937.	0.	4085.	73.	1.00	0.86	0.05	-	18.	:	10.	:
	35537520.	163114.	0.	4085.	73.	1.00	0.86	0.05	1	16.	:	10.	:
	39182992.	181341.	0.	4085.	73.	1.00	0.86	0.05	-	14.	:	10.	:
	44043696.	205645.	0.	4085.	73.	1.00	0.86	0.05	-	12.	:	10.	:
	50848608.	239669.	0.	4085.	73.	1.00	0.86	0.05	-	10.	:	10.	:
	61056192.	290707.	0.	4085.	73.	1.00	0.86	0.05	-	8	:	10.	:
	78068560.	375769.	0.	4085.	73.	1.00	0.86	0.05	-	6.	:	10.	:
	112093520.	545894.	••	4085.	73.	1.00	0.86	0.05	-		:	10.	:
	214168592.	1056269.	0.	4085.	73.	1.00	0.86	0.05	-	2.	:	10.	:
	-219.8	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	•	18.	5	8	:
	-135.8	NG VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	16.	5.	8	:

	126767	6543	1225.	91.	1.00	0.33	0.09	ω •	8.	7	•
28734320.	130298.	6542.	1225.	91.	1.00	0.33	0.09	.	16.	:	6.
29690448.	135078.	6542.	1225.	91.	1.00	0.33	0.09		14.	:	•
31013952.	141696.	6542.	1225.	91.	1.00	0.33	0.09	5	12.	:	6.
32923456.	151243.	6542.	1225.	91.	1.00	0.33	0.09	6.	10.	:	6.
35855920.	165906.	6542.	1225.	91.	1.00	0.33	0.09	7.	8	:	6.
40831440.	190783.	6542.	1225.	91.	1.00	0.33	0.09	10.	6.	:	6
50910560.	241179.	6542.	1225.	91.	1.00	0.33	0.09	15.		:	6.
81396096.	393607.	6542.	1225.	91.	1.00	0.33	0.09	31.	2.	:	•
-79.9	STARTING VALUE	Z M	VERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	INITIAL X VALUE	INITIAL	*	18.	5	4
				ITERATIONS	WITHIN 20	CONVERGENCE	NO CON	*	16.	5.	*
				ITERATIONS	WITHIN 20	CONVERGENCE	NO CON	*	14.	5	*
				ITERATIONS	WITHIN 20	CONVERGENCE	NO CON	*	12.	5	
				ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	10.	5	
22427552.	99411.	7862.	1057.	91.	1.00	0.22	0.09	:	œ •	5.	4
22799104.	101269.	7862.	1057.	91.	1.00	0.22	0.09	۶.	6.	5	4
24076224.	107654.	7862.	1057.	91.	1.00	0.22	0.09	٠.	•	5.	
28886224.	131704.	7862.	1057.	91.	1.00	0.22	0.09	5	2	5.	4
				ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON		18.	.	4
21534464.	94945.	7862.	1057.	91.	1.00	0.22	0.09	:	16.	ω	*
24157200.	108059.	7862.	1057.	91.	1.00	0.22	0.09	:	14.	ω	4
23644880.	105498.	7862.	1057.	91.	1.00	0.22	0.09	:	12.	ω •	
23934432.	106945.	7862.	1057.	91.	1.00	0.22	0.09	2	10.	<u>ى</u> •	4
24526944.	109908.	7862.	1057.	91.	1.00	0.22	0.09	2.	80	ω	•
25714752.	115847.	7862.	1057.	91.	1.00	0.22	0.09	ω	6	ω	•
28375280.	129150.	7862.	1057.	91.	1.00	0.22	0.09		*	ω.	•
36899200.	171769.	7862.	1057.	91.	1.00	0.22	0.09	8	2.	<u>.</u>	
31689488.	145721.	7862.	1057.	91.	1.00	0.22	0.09	ω.	18.	:	
32333744.	148942.	7862.	1057.	91.	1.00	0.22	0.09	ω •	16.	:	
33188464.	153215.	7862.	1057.	91.	1.00	0.22	0.09	ω •	14.	:	4
34358304.	159065.	7862.	1057.	91.	1.00	0.22	0.09		12.	:	
36032080.	167434.	7862.	1057.	91.	1.00	0.22	0.09	.	10.	:	4
3000001											

8. 3. 12. 1. 0.09 0.37 1.00	10. 2. 0.09 0.37	2. 8. 3. 8. 2. 0.09 0.37 1.00	2. 8. 3. 6. 3. 0.09 0.37 1.00	2. 8. 3. 4. 5. 0.09 0.37 1.00	2. 8. 3. 2. 11. 0.09 0.37 1.00	2. 8. 1. 18. 3. 0.09 0.37 1.00	2. 8. 1. 16. 4. 0.09 0.37 1.00	2. 8. 1. 14. 4. 0.09 0.37 1.00	2. 8. 1. 12. 5. 0.09 0.37 1.00	2. 8. 1. 10. 6. 0.09 0.37 1.00	2. 8. 1. 8. 8. 0.09 0.37 1.00	2. 8. 1. 6. 11. 0.09 0.37 1.00	2. 8. 1. 4. 16. 0.09 0.37 1.00	2. 8. 1. 2. 33. 0.09 0.37 1.00	2. 6. 5. 18. * INITIAL X VALUE WILL CAUSE	2. 6. 5. 16. * INITIAL X VALUE WILL CAUSE	2. 6. 5. 14. * NO CONVERGENCE WITHIN 20	2. 6. 5. 12. * NO CONVERGENCE WITHIN 20	2. 6. 5. 10. * NO CONVERGENCE WITHIN 20 :	2. 6. 5. 8. 1. 0.09 0.33 1.00	2. 6. 5. 6. 2. 0.09 0.33 1.00	2. 6. 5. 4. 1. 0.09 0.33 1.00	2. 6. 5. 2. 6. 0.09 0.33 1.00	2. 6. 3. 18. * NO CONVERGENCE WITHIN 20 1	2. 6. 3. 16. 1. 0.09 0.33 1.00	2. 6. 3. 14. 1. 0.09 0.33 1.00	6. 3. 12. 1. 0.09 0.33 1.00	2. 6. 3. 10. 2. 0.09 0.33 1.00	2. 6. 3. 8. 2. 0.09 0.33 1.00	
91. 1514.		91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	91. 1514.	EXPONENT OVERFLOW.	EXPONENT OVERFLOW.	ITERATIONS	ITERATIONS	ITERATIONS	91. 1225.	91. 1225.	91. 1225.	91. 1225.	ITERATIONS	91. 1225.	91. 1225.	91. 1225.	91. 1225.	91. 1225.	4
5757. 98609.	57.	5757. 87036.	5757. 95231.	5757. 114092.	5757. 175047.	5757. 125225.	5757. 129763.	5757. 135821.	5757. 144148.	5757. 156093.	5757. 174357.	5757. 205240.	5757. 267649.	5757. 456113.	NEED NEW STARTING VALUE	NEED NEW STARTING VALUE				6542. 81542.	6542. 82133.	6542. 184389.	6542. 115342.		6542. 88667.	6542. 90346.	6542. 105445.	6542. 87852.	6542. 90547.	
22516672.	19444032. 52	20202032.	21841024.	25613232.	37804208.	27839712.	28747392.	29958928.	31624288.	34013376.	37666160.	43842848.	56324656.	94017408.	-156.4	-102.4				18983136.	19101344.	39552528•	25743248.		20408272 h.	20743936.	23763760.	20245200.	20784112.	

1	16442393. ← h.	64738.	4980.	3431.	91.	1.00	0.86	0.09	9.	6.	5	10.	2.
53	21005680.	92804.	0.	3431.	91.	1.00	0.86	0.09	н		5.	10.	2.
3	38907456.	178163.	0.	3431.	91.	1.00	0.86	0.09	-	2.	5	10.	2.
	-224.6	TING VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL	L X VALUE	INITIAL	*	18.	3.	10.	2.
	33087408.	147963.	4980.	3431.	91.	1.00	0.86	0.09	•	16.	3.	10.	2.
	18634384.	75698.	4980.	3431.	91.	1.00	0.86	0.09	:	14.	3.	10.	2.
2,	16901536 h	67034.	4980.	3431.	91.	1.00	0.86	0.09	.	12.	3.	10.	2.
	17641184.	70732.	4980.	3431.	91.	1.00	0.86	0.09	10.	10.	ω	10.	2.
	20223936.	84746.	0.	3431.	91.	1.00	0.86	0.09	-	œ	3.	10.	2.
	24974752.	108500.	0.	3431.	91.	1.00	0.86	0.09	-	6.	3.	10.	2.
	34477088.	156012.	0.	3431.	91.	1.00	0.86	0.09	-		3.	10.	2.
	62985200•	298552.	0.	3431.	91.	1.00	0.86	0.09	н	2.	.	10.	2.
*	31044672.	138849.	0.	3431.	91.	1.00	0.86	0.09	-	18.	:	10.	2.
	33424688.	150750.	0.	3431.	91.	1.00	0.86	0.09		16.	:	10.	2.
	36484800.	166050.	0.	3431.	91.	1.00	0.86	0.09	н	14.	:	10.	2.
	40564960.	186451.	0.	3431.	91.	1.00	0.86	0.09	-	12.	:	10.	2.
	46277200.	215012.	0.	3431.	91.	1.00	0.86	0.09	1	10.	:	10.	2.
	54845808.	257855.	0.	3431.	91.	1.00	0.86	0.09	1	8	:	10.	2.
	69126880•	329260.	•	3431.	91.	1.00	0.86	0.09	1	6.	:	10.	2.
	97689488.	472074.	0.	3431.	91.	1.00	0.86	0.09	-		:	10.	2.
	183377712.	900515.	0.	3431.	91.	1.00	0.86	0.09	-	2.	:	10.	2.
	-205.8	TING VALUE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.	₩ILL	L X VALUE	INITIAL	*	18.	5	œ •	2.
	-127.8	TING VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	#1LL	L X VALUE	INITIAL	*	16.	5	œ	2.
					20 ITERATIONS	WITHIN 2	CONVERGENCE	NO CON		14.	5	30	2.
					1 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON		12.	5	80	2
					20 ITERATIONS	WITHIN 2	NO CONVERGENCE	NO CON	*	10.	5	œ.	2.
2,	17994992.	76001.	5757.	1514.	91.	1.00	0.37	0.09	:	œ	5.	8	~
	18291584.	77484.	5757.	1514.	91.	1.00	0.37	0.09	۶.	•	5.	8	2
	19983600.	85944.	5757.	1514.	91.	1.00	0.37	0.09	.		5.	8	2.
	26807408.	120063.	5757.	1514.	91.	1.00	0.37	0.09	•	۰	5.	8	2
					20 ITERATIONS	WITHIN 2	NO CONVERGENCE	NO CON	٠	18.	<u>.</u>	œ	2.
W. 2	17600656.	74029.	5757.	1514.	91.	1.00	0.37	0.09	:	16.	ω		2.
1	19699760.	84525.	5757.	1514.	91.	1.00	0.37	0.09	:	14.	ω •	œ .	2.

10. 5. 10. 6. INITIAL X ALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -1276. 10. 5. 14. 7. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -536.1 10. 5. 16. 8. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -5313.* 10. 5. 16. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -5213.* 10. 5. 16. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -21752.7 10. 5. 16. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -221752.7 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.												
5. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 6. 21. 0.15 0.22 1.00 122. 1031. 7862. 257413. 54531944. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 103483. 41745926. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 103483. 41745926. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10466. 39544466. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10466. 37544466. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 114893. 26747964. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 114893. 26747964. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 114893. 26747964. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 114893. 2746560. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 2746560. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 2746560. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 2746560. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 2746560. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 2746560. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 2746560. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 2746560. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 22466760. 7. 10. 0.15 0.22 1.00 122. 1031. 7862. 10493. 22466760. 7. 10. 0.15 0.22 1.00 122. 10493. 22466760. 7. 10. 0.15 0.22	54	053			ITERATIONS	20	VERGEN		*	16.	5	
5. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 6. 20. 115 0.222 1.00 122. 1031. 7662. 257413. 4593466. 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. • INITIAL X VALUE WILL CAUSE WILL CAUSE WILL CAUSE WILL CAUSE WILL CAUSE WILL WILL CAUSE WILL WILL CAUSE WILL CAUSE WILL CAUSE WILL CAUSE WILL WILL CAUSE WILL WILL CAUSE WILL WILL CAUSE WILL CAUSE WILL CAUSE WILL WILL CAUS					ITERATIONS	20	VERGEN		٠	14.	5	•
10. 5. 10. 10. 10. 11. 11. 11. 11. 12. 12. 10. 12. 1					ITERATIONS	20	VERGEN	NO CON	٠	12.	5.	
10. 5. 10.	1	96355.	7862.	1031.	122.	0	0.22	0.15	:	10.	5.	4
10. 5. 10.	22592736.	97717.	7862.	1031.	122.	0	0.22	0.15	:	æ •	5	4
10. 5. 10.	23211264.	100809.	7862.	1031.	122.	0	0.22	0.15	2.	6.	5	
10. 5. 10.	24687600.	108191.	7862.	1031.	122.	ō	0.22	0.15	2.	:	5	4
5. 10. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.122.8 5. 12. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.1912.8 5. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.233.4 5. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.232.72. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.232.72. 19. 0.15 0.22 1.00 122. 1031. 7862. 385914. 84533984. 19. 0.15 0.22 1.00 122. 1031. 7862. 214721. 24593483. 19. 0.15 0.22 1.00 122. 1031. 7862. 214721. 24593483. 19. 0.15 0.22 1.00 122. 1031. 7862. 127460. 37541408. 19. 10. 0.15 0.22 1.00 122. 1031. 7862. 127460. 37541408. 19. 10. 0.15 0.22 1.00 122. 1031. 7862. 128640. 3558880. 19. 10. 0.15 0.22 1.00 122. 1031. 7862. 128640. 3558880. 19. 10. 0.15 0.22 1.00 122. 1031. 7862. 128640. 3558880. 19. 10. 0.15 0.22 1.00 122. 1031. 7862. 12862. 356846. 20. 10. 0.15 0.22 1.00 122. 1031. 7862. 12862. 356846. 20. 10. 0.15 0.22 1.00 122. 1031. 7862. 12862. 356846. 20. 10. 0.15 0.22 1.00 122. 1031. 7862. 12862. 36646. 356866. 20. 0.15 0.22 1.00 122. 1031. 7862. 12862. 36646. 3666666. 3666666. 3666666. 3666666. 3666666. 3666666. 3666666. 3666666. 3666666. 3666666. 3666666. 3666666. 36666666. 3666666. 3666666. 3666666. 3666666. 3666666. 3666666. 366666666	29580160.	132654.	7862.	1031.	122.	ō	0.22	0.15	5	2.	5	4
10. 5. 10. 0.					ITERATIONS	20	VERGEN	NO CON		18.	ω	
10. 5. 10. 6. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE — 129.5 10. 5. 12. 8. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE — 506.1 10. 5. 14. 8. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE — 508.1 10. 5. 18. 8. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE — 6313.4 10. 5. 18. 8. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE — 6313.4 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	23871392.	104110.	7862.	1031.	122.	0	0.22	0.15	:	16.	ω •	
10. 5. 10.	24035824.	104932.	7862.	1031.	122.	0	0.22	0.15	:	14.	.	:
10. 5. 10. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —129.5 10. 5. 12. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —506.1 10. 5. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-6313.4 10. 5. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-6313.4 10. 5. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-6313.4 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	29467248.	132089.	7862.	1031.	122.	0	0.22	0.15	:	12.	ω •	4
10. 5. 10. 4. INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —506.1 10. 5. 12. 4. INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —506.1 10. 5. 14. 5. INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —6913.4 10. 5. 18. 6. INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —6913.4 10. 5. 18. 7. INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —6913.4 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	1	108436.	7862.	1031.	122.	0	0.22	0.15	2	10.	ن	
10. 5. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —506.1 10. 5. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —506.1 10. 5. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —6313.4 10. 5. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —6313.4 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —21752.7 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —21752.7 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —21752.7 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —21752.7 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —21752.7 10. 10. 10. 10. 12. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	41729360.	193400.	7862.	1031.	122.	õ	0.22	0.15	:	80	.	
10. 5. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -596.1 10. 5. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -596.1 10. 5. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -5933.4 10. 5. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -6313.4 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -6313.4 10. 6. 18. 0.15 0.22 1.00 122. 1031. 7862. 257413. 54531984. 4. 11. 6. 8. 0.15 0.22 1.00 122. 1031. 7862. 257413. 54531984. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 193483. 41745920. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 193483. 41745920. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 193483. 3538880. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 156548. 3538880. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 156548. 3538880. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 158810. 3481392. 4180826. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 158810. 3481392. 4180826. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 158810. 3481392. 4180826. 4. 11. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 158810. 3481392. 4180826.	26747904.	118493.	7862.	1031.	122.	0	0.22	0.15	3.	•	ω.	
10. 5. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -129.5 10. 5. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -506.1 10. 5. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -6313.4 10. 5. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -6313.4 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -21752.7 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -21752.7 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	29466960.	132088.	7862.	1031.	122.	0	0.22	0.15		:	<u>د</u>	
10. 5. 10. 6. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -129.5 10. 5. 12. 6. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -596.1 10. 5. 14. 7. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -6313.4 10. 5. 18. 7. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -6313.4 10. 5. 18. 7. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -21752.7 10. 5. 18. 7. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -21752.7 10. 5. 18. 7. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -21752.7 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	37890720.	174207.	7862.	1031.	122.	0	0.22	0.15		2	<u>د</u>	*
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 6. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 6. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	1	158810.	7862.	1031.	122.	ō	0.22	0.15	ω •	18.	:	
10. 5. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	35482848.	162167.	7862.	1031.	122.	0	0.22	0.15	ω •	16.	:	
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 6. 10. 15. 0.22 1.00 122. 1031. 7862. 257413. 54 4. 1. 8. 6. 0.15 0.22 1.00 122. 1031. 7862. 214721. 45 4. 1. 10. 5. 0.15 0.22 1.00 122. 1031. 7862. 193483. 41 4. 1. 10. 5. 0.15 0.22 1.00 122. 1031. 7862. 39483. 41 4. 1. 12. 4. 0.15 0.22 1.00 122. 1031. 7862. 39483. 41	36358880.	166548.	7862.	1031.	122.	0	0.22	0.15	:	14.	:	
10. 5. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 6. 10. 15. 0.22 1.00 122. 1031. 7862. 287413. 54 4. 1. 6. 8. 0.15 0.22 1.00 122. 1031. 7862. 214721. 45 4. 1. 10. 5. 0.15 0.22 1.00 122. 1031. 7862. 399483. 41	37541408.	172460.	7862.	1031.	122.	ō	0.22	0.15		12.	:	
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 6. 10. 10. 10. 122. 1.00 122. 1031. 7862. 257413. 54 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	39214544.	180826.	7862.	1031.	122.	ō	0.22	0.15	5•	10.	:	
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW	41745920.	193483.	7862.	1031.	122.	ō	0.22	0.15	•	œ.	:	
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERF	45993648.	214721.	7862.	1031.	122.	0	0.22	0.15	œ •	•	:	
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 4. 1. 2. 26. 0.15 0.22 1.00 122. 1031. 7862. 385914. 80	54531984.	257413.	7862.	1031.	122.	0	0.22	0.15	13.	:	:	*
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	80232272.	385914.	7862.	1031.	122.	ŏ	0.22	0.15	26.	2	:	
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-21752.7				EXPONENT		×	INITIA	•	18.	5	10.
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 5. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-6313.4		NE		EXPONENT		×	INITIA	٠	16.	5	10.
10. 5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-1812.8		Z E		EXPONENT		×	INITIA		14.	5	10.
5. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-506.1		Z E		EXPONENT		×	INITIA		12.	5	10.
	-129.5				EXPONENT		×	INITIA	٠	10.	5	10.

	33835408.	152683.	5757.	1364.	122.	1.00	0.37	0.15	5	12.	-	œ	•
35	36005792.	163535.	5757.	1364.	122.	1.00	0.37	0.15	6.	10.	:	8	•
;	39313232.	180072.	5757.	1364.	122.	1.00	0.37	0.15	œ.	8	:	8	•
	44892912.	207971.	5757.	1364.	122.	1.00	0.37	0.15	11.	6.	:	8	3.
	56150432.	264258.	5757.	1364.	122.	1.00	0.37	0.15	16.	4	:	8	3.
	90114032.	434076.	5757.	1364.	122.	1.00	0.37	0.15	33.	2.	:	8	3.
	-143.8	TING VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	WILL	L X VALUE	INITIAL	*	.81	5.	•	•
	-94.7	TING VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	*ILL	L X VALUE	INITIAL	*	16.	•	6	3.
					20 ITERATIONS	WITHIN 2	NO CONVERGENCE	NO CON	*	14.	5.	6.	3.
					0 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON		12.	U 1	6.	•
7	17810608.	73159.	6542.	1146.	122.	1.00	0.33	0.15	:	10.	5	6.	3.
	21554704.	.08816	6542.	1146.	122.	1.00	0.33	0.15	:	8	•	6.	•
	19389760.	81055.	6542.	1146.	122.	1.00	0.33	0.15	2.	•	5.	•	•
	20737920.	87796.	6542.	1146.	122.	1.00	0.33	0.15	ω.	4	5	6.	•
	25919552.	113704.	6542.	1146.	122.	1.00	0.33	0.15	6.	2.	5	6.	•
					0 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	18.	3	6	•
	20592160.	87067.	6542.	1146.	122.	1.00	0.33	0.15	:	16.	3	•	.
5,	20549008.	86851.	6542.	1146.	122.	1.00	0.33	0.15	:	14.	3.	6	•
	20638912.	87301.	6542.	1146.	122.	1.00	0.33	0.15	:	12.	ω	6.	3.
	20928096.	88747.	6542.	1146.	122.	1.00	0.33	0.15		10.	u.	6.	•
	21550976.	1981.	6542.	1146.	122.	1.00	0.33	0.15	2.	8	ω.	6	•
	22823200.	98222.	6542.	1146.	122.	1.00	0.33	0.15	.	6.	u.	•	•
	25694256.	112577.	6542.	1146.	122.	1.00	0.33	0.15	5.	4	3.	6.	•
	34916896.	158691.	6542.	1146.	122.	1.00	0.33	0.15	10.	2.	ω •	6.	•
*	30907072.	138641.	6542.	1146.	122.	1.00	0.33	0.15	·	18.	:	•	3.
	31602592.	142119.	6542.	1146.	122.	1.00	0.33	0.15		16.	:	•	3.
	32526720.	146740.	6542.	1146.	122.	1.00	0.33	0.15		14.	:	•	•
	33792848.	153070.	6542.	1146.	122.	1.00	0.33	0.15	•	12.	:	6.	•
	35605392.	162133.	6542.	1146.	122.	1.00	0.33	0.15	6.	10.	:	6.	•
	38373008.	175971.	6542.	1146.	122.	1.00	0.33	0.15	7.	8	:	6.	•
	43049296.	199353.	6542.	1146.	122.	1.00	0.33	0.15	10.	6	:	•	•
	52495312.	246583.	6542.	1146.	122.	1.00	0.33	0.15	15.		:	•	•

	23448560.	98349.	0.	2899.	122.	1.00	0.86	0.15	-	6.	ω •	10.
56	31463248.	138422.	0.	2899.	122.	1.00	0.86	0.15	н		3	10.
	55510160.	258657.	0.	2899.	122.	1.00	0.86	0.15	-	2.	ω	10.
A ZZ A	31652448.	139368.	•	2899.	122.	1.00	0.86	0.15	н	18.	:	10.
	33662192.	149417.	0.	2899.	122.	1.00	0.86	0.15	-	16.	:	10.
	36246256.	162337.	0•	2899.	122.	1.00	0.86	0.15	-	14.	:	10.
	39691840.	179565.	0.	2899.	122.	1.00	0.86	0.15	-	12.	:	10.
	44515808.	203685.	0.	2899.	122.	1.00	0.86	0.15	-	10.	:	10.
	51752016.	239866.	•	2899.	122.	1.00	0.86	0.15	-	8	:	10.
	63812752.	300170.	0•	2899.	122.	1.00	0.86	0.15	-	6	:	10.
	87934512.	420779.	0•	2899.	122.	1.00	0.86	0.15	н	:	:	10.
	160300640.	782609.	0•	2899.	122.	1.00	0.86	0.15	-	2.	:	10.
	-188.5	ING VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	. X VALUE	INITIAL		18.	5	8
	-117.8	ING VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL		16.	5.	80
					ITERATIONS	WITHIN 20	CONVERGENCE	NO CONV		14.	5.	8
					ITERATIONS	WITHIN 20	CONVERGENCE	NO CONV		12.	5.	œ.
					ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV		10.	5.	œ
	20230320•	84658.	5757.	1364.	122.	1.00	0.37	0.15	:	8	5	8
N'ZI	18389632.	75454.	5757.	1364.	122.	1.00	0.37	0.15		•	5	
	20051024.	83761.	5757.	1364.	122.	1.00	0.37	0.15	.	:	5.	80
	26283008.	114921.	5757.	1364.	122.	1.00	0.37	0.15	•	2.	5.	8
					ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV	•	18.	ω •	8
12,	19018112.	78597.	5757.	1364.	122.	1.00	0.37	0.15	:	16.	3	80
	19436896.	80691.	5757.	1364.	122.	1.00	0.37	0.15	:	14.	.	80
	19567600.	81344.	5757.	1364.	122.	1.00	0.37	0.15	:	12.	ů.	œ
	19940432.	83208.	5757.	1364.	122.	1.00	0.37	0.15		10.	ω •	8
	20714304.	87078.	5757.	1364.	122.	1.00	0.37	0.15	۲.	œ.	3	8
	22264192.	94827.	5757.	1364.	122.	1.00	0.37	0.15	•	•	œ.	8
	25719616.	112104.	5757.	1364.	122.	1.00	0.37	0.15	5	:	ω •	œ.
	36737552.	167194.	5757.	1364.	122.	1.00	0.37	0.15	:	۰.	٠.	8
A is I	30363088.	135322.	5757.	1364.	122.	1.00	0.37	0.15	<u>.</u>	18.	:	œ
	31203168.	139522.	5757.	1364.	122.	1.00	0.37	0.15	:	16.	:	8
	· nnactese		.1010		156.	1.00	10.0	٥٠٢٠	:		•	0

									1	,					
57	720. 4 5	22508720.	93050.	6542.	1074.		195.	1.00	0.33		0.22		3. 16.	6.	
	296.	22619296	93603.	6542.	1074.	•	195	1.00	0.33		. 0.22	:	3. 14.	6.	
	396.	22840896.	94711.	6542.	1074.		195.	1.00	0.33		. 0.22	2. 1.	3. 12.	•	
	736.	23236736.	96690.	6542.	1074.		195.	1.00	0.33		. 0.22	0. 2.	3. 10.	6.	
	112.	23933712.	100175.	6542.	1074.		195.	1.00	0.33		. 0.22	8. 2.	3. 8	6.	
	152.	25227952.	106646.	6542.	1074.		195.	1.00	0.33		. 0.22	6. 3.	3. 6	6.	
	528.	28008528	120549.	6542.	1074.		195.	1.00	0.33		. 0.22	4. 5.	3.	6.	
)56.	36721056.	164111.	6542.	1074.		195.	1.00	0.33		. 0.22	2. 10.	3. 2	6.	
X	15	38129888.	171156.	6542.	1074.		195.	1.00	0.33		. 0.22	3.	1. 18.	6.	
	356.	38813856.	174575.	6542.	1074.		195.	1.00	0.33		. 0.22	5. 4.	1. 16.	6.	
	776.	39710976.	179061.	6542.	1074.		195.	1.00	0.33		. 0.22		1. 14.	6.	
	20.	40927520.	185144.	6542.	1074.		195.	1.00	0.33		. 0.22	5.	1. 12.	6.	
	720.	42654720	193780.	6542.	1074.		195	1.00	0.33		. 0.22	6.	. 10.	6.	
	360.	45275360.	206883.	6542.	1074.		195.	1.00	0.33		. 0.22	8.	1. 8	6.	
	80.	49682480.	228918.	6542.	1074.		195.	1.00	0.33		. 0.22	6. 10.	1. 6	6.	
	52.	58555152.	273282.	6542.	1074.		195.	1.00	0.33		. 0.22	4. 15.	1. 4	6.	
	112.	85288512.	406949.	6542.	1074.		195.	1.00	0.33		0.22	2. 31.	1. 2	6.	
	16.7	-18536.7	G VALUE	NEW STARTING	OVERFLOW. NEED		CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		•	5. 18.	10. 5	_
	33.8	-5363.8	G VALUE	NEW STARTING	OVERFLOW. NEED		CAUSE EXPONENT	WILL C	X VALUE	INITIAL		•	. 16.	10. 5	_
	1.6	-1529.1	G VALUE	NEW STARTING	OVERFLOW. NEED		CAUSE EXPONENT	WILL CA	X VALUE	INITIAL			5. 14.	10. 5	_
	-419.8	-41	G VALUE	NEW STARTING	OVERFLOW. NEED		CAUSE EXPONENT	WILL CA	X VALUE	INITIAL X			5. 12.	10. 5	_
	-102.6	-10	G VALUE	NEW STARTING	OVERFLOW. NEED		CAUSE EXPONENT	MILL C	X VALUE	INITIAL		•	5. 10.	10. 5	_
W	و22. حالم	14839222.	54202.	4980.	2899.		122.	1.00	0.86		. 0.15	8. 2.	5. 8	10. 5	_
	31.	15379131.	58002.	0.	2899.		122	1.00	0.86		0.15	6. 1	•	10. 5	_
	***	20171744.	81965.	0.	2899.		122.	1.00	0.86		0.15	4.	5.	10. 5	_
	76.	34554176.	153877.	•	2899.		122.	1.00	0.86		0.15	2. 1	5. 2	10. 5	_
	-180.3	-18	G VALUE	NEW STARTING	OVERFLOW. NEED !		CAUSE EXPONENT	WILL C	X VALUE	INITIAL		•	3. 18.	10. 3	_
	152.	20297952.	81496.	4980.	2899.		122.	1.00	0.86		. 0.15	. 1.	3. 16.	10. 3	_
	35.	16702135.	63517.	4980.	2899.		122.	1.00	0.86		. 0.15	. 2.	3. 14.	10. 3	_
	520 h	16188520.	60949.	4980.	2899.		122.	1.00	0.86		. 0.15	•	3. 12.	10. 3	_
	*8.	17038448.	66298.	•	28.9.		122.	1.00	0.86		0.15		3. 10.	10. 3	_
117	88.	19441888.	78316.	0.	2844.	•	122.	1.00	0.00		0.10				,

18793648.	73874.	5757.	1206.	195.	1.00	0.37	0.22	:	10.	5	8	
18946848.	74640.	5757.	1206.	195.	1.00	0.37	0.22	:	8	5	8	
27872208.	119267.	5757.	1206.	195.	1.00	0.37	0.22	:	6.	5	œ	4.
21125104.	85532.	5757.	1206.	195.	1.00	0.37	0.22	3	:	5	80	
26724688.	113530.	5757.	1206.	195.	1.00	0.37	0.22	•		5	8.	
				20 ITERATIONS	WITHIN 2	NO CONVERGENCE	NO CONV		18.	3.	8	
21271456. Ch	86263.	5757.	1206.	195.	1.00	0.37	0.22	:	16.	<u>ه</u>	8	
21369280.	86752.	5757.	1206.	195.	1.00	0.37	0.22	:	14.	.	8	
21595920.	87886.	5757.	1206.	195.	1.00	0.37	0.22	2.	12.	.	8	
22022064.	90016.	5757.	1206.	195.	1.00	0.37	0.22	2.	10.	ω	8	
22789872.	93855.	5757.	1206.	195.	1.00	0.37	0.22	2.		3	œ •	
24231648.	101064.	5757.	1206.	195.	1.00	0.37	0.22	3	6.	.	80	
27345696.	116635.	5757.	1206.	195.	1.00	0.37	0.22	5		ω •		
37125008.	165531.	5757.	1206.	195.	1.00	0.37	0.22	11.	.2	3.	œ •	
37151888.	165666.	5757.	1206.	195.	1.00	0.37	0.22	3	18.	:		:
37916896.	169491.	5757.	1206.	195.	1.00	0.37	0.22		16.	:		•
38921552.	174514.	5757.	1206.	195.	1.00	0.37	0.22		14.	:		
40285248.	181332.	5757.	1206.	195.	1.00	0.37	0.22	5.	12.	:		
42222832.	191020.	5757.	1206.	195.	1.00	0.37	0.22	6.	10.	:		•
45164208.	205727.	5757.	1206.	195.	1.00	0.37	0.22	•		:		•
50112416.	230468.	5757.	1206.	195.	1.00	0.37	0.22	=	•	:		
60076560.	280289.	5757.	1206.	195.	1.00	0.37	0.22	16.	:	:		
90102096.	430417.	5757.	1206.	195.	1.00	0.37	0.22	33.	۶.	:		
-131.2	ING VALUE	NEED NEW STARTING	OVERFLOW. NE	CAUSE EXPONENT	FILL	. X VALUE	INITIAL		18.	5	•	
-87.0	ING VALUE	NEED NEW STARTING	OVERFLOW. NE	CAUSE EXPONENT	*ILL	INITIAL X VALUE	INITIAL	•	16.	5	6.	
				20 ITERATIONS	WITHIN 2	NO CONVERGENCE	NO CONV		14.	5.	•	
				20 ITERATIONS	WITHIN 2	NO CONVERGENCE	NO CONV	•	12.	5.	•	
20061728. ← 5 €	80815.	6542.	1074.	195.	1.00	0.33	0.22	:	10.	5.	•	
20210080.	81556.	6542.	1074.	195.	1.00	0.33	0.22	:		5	6.	•
20756048.	84286.	6542.	1074.	195.	1.00	0.33	0.22	2	•	5.	•	•
22201168.	91512.	6542.	1074.	195.	1.00	0.33	0.22	3.		5.	•	•
27200448.	116508.	6542.	1074.	195.	1.00	0.33	0.22	6.	:	•	•	

61742560.	285619.	6542.	1033.	316.	0	0.33 1.00	0.25 0	10.	6.	:	6.
70286000.	328336.	6542.	1033.	316.	0	0.33 1.00	0.25 0	15.	•	:	6.
95995472.	456883.	6542.	1033.	316.	ŏ	0.33 1.00	0.25 0	31.		:	•
-15333,3	6 VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	L CAUSE	VALUE WILL	INITIAL X	٠	18.	5.	10.
-4410.5	6 VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	L CAUSE	VALUE WILL	INITIAL X	*	16.	5	10.
-1242.0	6 VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	L CAUSE	VALUE WILL	INITIAL X	٠	14.	5	10.
-331.9	G VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	L CAUSE	VALUE WILL	INITIAL X	٠	12.	5	10.
17033136.	61572.	4980.	2210.	195.	0	0.86 1.00	0.22 0	:	10.	5	10.
14,356,321.	48188.	4980.	2210.	195.	0	0.86 1.00	0.22 0	•	æ .	5.	10.
15221362•	53613.	0.	2210.	195.	0	0.86 1.00	0.22 0		6.	5.	10.
18861456.	71813.	0.	2210.	195.	0	0.86 1.00	0.22 0	-		5	10.
29788592.	126449.	•	2210.	195.	0	0.86 1.00	0.22 0	1	2.	5	10.
-134.9	6 VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	L CAUSE	X VALUE WILL	INITIAL X	*	18.	ω	10.
20283360.	77823.	4980.	2210.	195.	0	0.86 1.00	0.22 0	:	16.	.	10.
16958384.	61198.	4980.	2210.	195.	0	0.86 1.00	0.22 0	ω	14.	ω	10.
16934048 h	61076.	4980.	2210.	195.	0	0.86 1.00	0.22 0	7.	12.	ω •	10.
17850672.	66759.	0.	2210.	195.	0	0.86 1.00	0.22 0	-	10.	ω	10.
19678272.	75897.	0.	2210.	195.	ō	0.86 1.00	0.22 0	-	œ •	3	10.
22725648.	91134.	0.	2210.	195.	0	0.86 1.00	0.22 0	-	6.	ω	10.
28822480.	121618.	•	2210.	195.	0	0.86 1.00	0.22 0	1	:	3	10.
47117040.	213091.	0.	2210.	195.	0	0.86 1.00	0.22 0	1	2.	ω	10.
35775216.	156382.	•	2210.	195.	ŏ	0.86 1.00	0.22 0	-	18.	:	10.
37305888.	164036.	0•	2210.	195.	0	0.86 1.00	0.22 0	-	16.	:	10.
39274048.	173876.	•	2210.	195.	ŏ	0.86 1.00	0.22 0	-	14.	:	10.
41898512.	186999.	0.	2210.	195.	6	0.86 1.00	0.22 0	-	12.	:	10.
45573008.	205371.	0.	2210.	195.	6	0.86 1.00	0.22 0	-	10.	:	10.
51085152.	232932.	•	2210.	195.	6	0.86 1.00	0.22 0	-	œ •	:	10.
60272512.	278869.	•	2210.	195.	ŏ	0.86 1.00	0.22 0	-	6.	:	10.
78647808.	370745.	•	2210.	195.	6	0.86 1.00	0.22 0	-		:	10.
133775360.	646383.	0.	2210.	195.	8	0.86 1.00	0 22 0	-	٥.	:	10.
-171.2	6 VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	L CAUSE	VALUE WILL	INITIAL X		18.	5	œ •
-107.8	G VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	L CAUSE	VALUE WILL	INITIAL X		16.	ა	•
				ITERATIONS	20	CONVERGENCE WITHIN	NO CONVER	¢	14.	5	a

												Proceeditories	
0	49284960. EM	222731.	5757.	1110.	316.	1.00	0.37	0.25	3.	18.	:	œ •	5.
	50000736.	226310.	5757.	1110.	316.	1.00	0.37	0.25		16.	:		5.
0	50936640.	230989.	5757.	1110.	316.	1.00	0.37	0.25	5.	14.	፦		5.
0	52202400.	237318.	5757.	.0111	316.	1.00	0.37	0.25	5	12.	፦		5.
	53995696.	246285.	5757.	1110.	316.	1.00	0.37	0.25	6.	10.	:	80	5.
0	56712032.	259866.	5757.	1110.	316.	1.00	0.37	0.25	8	8	:	œ •	5.
	61273792.	282675.	5757.	1110.	316.	1.00	0.37	0.25	:	6.	:	8	5.
	70448880.	328550.	5757.	1110.	316.	1.00	0.37	0.25	17.		:	80	5.
	98076288.	466688.	5757.	1110.	316.	1.00	0.37	0.25	33.	2	:	8	5.
	-124.6	ING VALUE	NEED NEW STARTING	OVERFLOW. 1	CAUSE EXPONENT	#ILL	AL X VALUE	INITIAL		18.	5	•	5.
1 1	-83.0	ING VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	AILL	AL X VALUE	INITIAL	*	16.	5	•	5.
					20 ITERATIONS	WITHIN	NO CONVERGENCE	NO CO	*	14.	5	•	5.
					20 ITERATIONS	WITHIN	NO CONVERGENCE	NO CO	*	12.	5.	•	5.
× 3	22555520.	89684.	6542.	1033.	316.	1.00	0.33	0.25	:	10.	5	6.	5.
	22840896.	91111.	6542.	1033.	316.	1.00	0.33	0.25	:	80	5.	6.	5.
	33133216.	142572.	6542.	1033.	316.	1.00	0.33	0.25	:	6.	5.	6.	5.
	24954000.	101676.	6542.	1033.	316.	1.00	0.33	0.25	ω	•	5.	6.	5.
	29840560.	126109.	6542.	1033.	316.	1.00	0.33	0.25	6.	2.	5	6.	5.
0					20 ITERATIONS	WITHIN	NO CONVERGENCE	NO COM	*	18.	<u>.</u>	6.	5.
	26660208.	110207.	6542.	1033.	316.	1.00	0.33	0.25	:	16.	3 .	6.	5.
	26834288.	111078.	6542.	1033.	316.	1.00	0.33	0.25	:	14.	3	6.	5.
	27111520.	112464.	6542.	1033.	316.	1.00	0.33	0.25	2.	12.	ω.	6.	5
1 2	27552832.	114670.	6542.	1033.	316.	1.00	0.33	0.25	2.	10.	ω.	6.	5.
	28280320.	118308.	6542.	1033.	316.	1.00	0.33	0.25	2.	80	ω.	6.	5.
	29578496.	124799.	6542.	1033.	316.	1.00	0.33	0.25	ω	6.	3.	6.	5.
2 8	32301456.	138413.	6542.	1033.	316.	1.00	0.33	0.25	5.	•	ω.	6.	5.
	40718976.	180501.	6542.	1033.	316.	1.00	0.33	0.25	10.	2	ω •	•	5.
0	50538512h. A	229599.	6542.	1033.	316.	1.00	0.33	0.25	ω •	18.	:	6.	5.
	51213408.	232973.	6542.	1033.	316.	1.00	0.33	0.25		16.	:	•	5.
	52092816.	237370.	6542.	1033.	316.	1.00	0.33	0.25		14.	:	•	5.
0	53278976.	243301.	6542.	1033.	316.	1.00	0.33	0.25	5	12.	:	6.	5.
	54955648.	251684.	6542.	1033.	316.	1.00	0.33	0.25	6.	10.	:	•	5.
,	57490800.	264360.	6542.	1033.	316.	1.00	0.33	0.25	æ	œ	:	6.	5.
			The second secon									1	

20272176.	75267.	0.	1797.	316.	1.00	0.86	0.25	-	12.	ω.	10.	•
21260816.	80210.	0.	1797.	316.	1.00	0.86	0.25	-	10.	3.	10.	5.
22744912.	87631.	0.	1797.	316.	1.00	0.86	0.25	-	8	3.	10.	5
25219904.	100006.	0.	1797.	316.	1.00	0.86	0.25	-	6.	3.	10.	•
30172160.	124767.	0.	1797.	316.	1.00	0.86	0.25	-		3.	10.	•
45033440.	199073.	0.	1797.	316.	1.00	0.86	0.25	-	2.	.	10.	5
46337136. Chi	205592.	0.	1797.	316.	1.00	0.86	0.25	-	18.	:	10.	5.
47581248.	211812.	0.	1797.	316.	1.00	0.86	0.25	-	16.	:	10.	
49181056.	219811.	0.	1797.	316.	1.00	0.86	0.25	-	14.	:	10.	•
51314352.	230478.	0.	1797.	316.	1.00	0.86	0.25	-	12.	:	10.	•
54301296.	245413.	0.	1797.	316.	1.00	0.86	0.25	-	10.	:	10.	5
58782096.	267817.	0.	1797.	316.	1.00	0.86	0.25	н	8	:	10.	
66250560.	305159.	0.	1797.	316.	1.00	0.86	0.25	-	6.	:	10.	5.
81188352.	379848.	0.	1797.	316.	1.00	0.86	0.25	-		:	10.	•
126003280.	603922.	0.	1797.	316.	1.00	0.86	0.25	-	2.	:	10.	5
-162.2	ING VALUE	D NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL		18.	5	8	•
-102.5	ING VALUE	D NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE	INITIAL		16.	5		•
				ITERATIONS	20	NO CONVERGENCE WITHIN	NO CONV		14.	5	8	•
				ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV	*	12.	5	80	•
21245664 4, 6	82534.	5757.	1110.	316.	1.00	0.37	0.25	:	10.	5		•
21481040.	83711.	5757.	1110.	316.	1.00	0.37	0.25	:	00	5.	œ •	5
22094240.	86777.	5757.	1110.	316.	1.00	0.37	0.25	N	6.	5	8	•
23632672.	94469.	5757.	1110.	316.	1.00	0.37	0.25	ω •		5	œ •	•
28835616.	120484.	5757.	1110.	316.	1.00	0.37	0.25	•	۰.	5	œ •	5.
				ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV		18.	ن	œ •	5
25349472.	103053.	5757.	1110.	316.	1.00	0.37	0.25	:	16.	ω.	8	
25495312.	103783.	5757.	1110.	316.	1.00	0.37	0.25	:	14.	ω	œ •	5.
31374400.	133178.	5757.	1110.	316.	1.00	0.37	0.25	:	12.	۳	œ •	•
26193056.	107271.	5757.	1110.	316.	1.00	0.37	0.25		10.	.		
26941456.	111013.	5757.	1110.	316.	1.00	0.37	0.25	3	8	ω		5
28305648.	117834.	5757.	1110.	316.	1.00	0.37	0.25	ω •	6.	ω •	8	•
31203552.	132324.	5757.	1110.	316.	1.00	0.37	0.25	5	:	ن		5.
40224720.	1//430.	5/5/.										

5.3)			,
28734560.	111933.	5757.	1057.	522.	1.00	0.37	0.33	.		5.	œ •
33841296.	137467.	5757.	1057.	522.	1.00	0.37	0.33	6.	2.	5	80
				ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CONV		18.	3.	8
32765136. ~ M	132086.	5757.	1057.	522.	1.00	0.37	0.33	:	16.	3.	8
33023616.	133378.	5757.	1057.	522.	1.00	0.37	0.33	:	14.	ω	00
33385632.	135188.	5757.	1057.	522.	1.00	0.37	0.33	2.	12.	ω.	8
33913648.	137828.	5757.	1057.	522.	1.00	0.37	0.33	2.	10.	ω •	80
34732288.	141922.	5757.	1057.	522.	1.00	0.37	0.33	•	80	3 .	8
36132288.	148922.	5757.	1057.	522.	1.00	0.37	0.33		6.	.	8
38985968.	163190.	5757.	1057.	522.	1.00	0.37	0.33	5		ω	8
47654912.	206535.	5757.	1057.	522.	1.00	0.37	0.33	11.	2.	ω	
70793168.	322226.	5757.	1057.	522.	1.00	0.37	0.33		18.	:	œ •
71507456.	325797.	5757.	1057.	522.	1.00	0.37	0.33		16.	:	8
72430752.	330414.	5757.	1057.	522.	1.00	0.37	0.33	•	14.	:	8
73667632•	336598.	5757.	1057.	522.	1.00	0.37	0.33	5.	12.	:	8
75406256.	345291.	5757.	1057.	522.	1.00	0.37	0.33	7.	10.	:	8
78022928•	358375.	5757.	1057.	522.	1.00	0.37	0.33		8	:	80
82395648.	380238.	5757.	1057.	522.	1.00	0.37	0.33	11.	•	:	80
91158640.	424053.	5757.	1057.	522.	1.00	0.37	0.33	17.		:	8
117482656.	555673.	5757.	1057.	522.	1.00	0.37	0.33	33.	۶.	:	
-13649.6	VALUE	D NEW STARTING	OVERFLOW. NEED	SE EXPONENT	WILL CAUSE	_ X VALUE	INITIAL		18.	5.	10.
-3906.3	VALUE	D NEW STARTING	OVERFLOW. NEED	SE EXPONENT	WILL CAUSE	- X VALUE	INITIAL		16.	5.	10.
-1089.2	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	- X VALUE	INITIAL	•	14.	5.	10.
-284.8	VALUE	ED NEW STARTING	OVERFLOW. NEED	SE EXPONENT	WILL CAUSE	L X VALUE	INITIAL	*	12.	5•	10.
17752096.	61567.	4980.	1797.	316.	1.00	0.86	0.25	:	10.	5	10.
16156988 - ١٠ ١٦	53591.	4980.	1797.	316.	1.00	0.86	0.25		8	5	10.
17019312.	59003.	0.	1797.	316.	1.00	0.86	0.25		6.	5•	10.
19973376.	73773.	0.	1797.	316.	1.00	0.86	0.25	-		5.	10.
28943056.	118121.	0.	1797.	316.	1.00	0.86	0.25	н	2.	5.	10.
-110.6	VALUE	D NEW STARTING	OVERFLOW. NEED	SE EXPONENT	WILL CAUSE	- X VALUE	INITIAL	*	18.	ω •	10.
21067216.	78142.	4980.	1797.	316.	1.00	0.86	0.25	۶.	16.	ω •	10.

7.9.	-10170.3	G VALUE	NEED NEW STABLING	OVERE OF A	1	TTI CALLER	Y VAI 115	TNITTAL	٠	5	,	5	
63	-2857.4	6 VALUE	NEED NEW STAPTING	OVERFLOW. N	EXPONENT	WILL CAUSE	X VALUE W	INITIAL	٠	16.	5.	10.	6.
	-769.2	G VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	WILL CAUSE	X VALUE W	INITIAL		14.	5.	10.	6.
	-185.5	G VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	WILL CAUSE	X VALUE W	INITIAL	•	12.	5.	10.	6.
	21055568.	70038.	4980.	1563.	522.	1.00	0.86 1	0.33		10.	5	10.	6.
7.	20620272.	68961.	•	1563.	522.	1.00	0.86 1	0.33	1	œ •	5.	10.	•
	21896272.	75341.	0.	1563.	522.	1.00	0.86 1	0.33	-	•	5.	10.	6
	24453792.	88129.	0.	1563.	522.	1.00	0.86 1	0.33	-	•	5.	10.	6.
	32137408.	126547.	0.	1563.	522.	1.00	0.86 1	0.33	-	2	5 1	10.	6
	28261120.	106066.	4980.	1563.	522.	1.00	0.86 1	0.33		18.	ω	10.	6.
	27659248.	103056.	4980.	1563.	522.	1.00	0.86 1	0.33	.	16.	3.	10.	•
2,	27413520.	102928.	0.	1563.	522.	1.00	0.86 1	0.33	-	14.	3.	10.	6.
	28024432.	105982.	0.	1563.	522.	1.00	0.86 1	0.33	-	12.	3.	10.	•
	28881056.	110265.	0•	1563.	522.	1.00	0.86 1	0.33	-	10.	3.	10.	6.
	30167680.	116698.	0.	1563.	522.	1.00	0.86 1	0.33	н	œ •	3.	10.	6.
	32314240.	127431.	0.	1563.	522.	1.00	0.86 1	0.33	н	6	ن	10.	6.
	36610720.	148914.	0•	1563.	522.	1.00	0.86 1	0.33	-	4	ω	10.	•
	49506848.	213394.	•	1563.	522.	1.00	0.86 1	0.33	I	2	.	10.	6.
A 's	67139200.	301556.	0.	1563.	522.	1.00	0.86 1	0.33	I	18.	:	10.	•
	68220096.	306961.	0.	1563.	522.	1.00	0.86 1	0.33	-	16.	:	10.	•
	69610192.	313911.	0.	1563.	522.	1.00	0.86 1	0.33	-	14.	:	10.	•
	71463952.	323180.	0.	1563.	522.	1.00	0.86 1	0.33	-	12.	:	10.	•
	74059760.	336159.	•	1563.	522.	1.00	0.86 1	0.33	-	10.	:	10.	•
	77953936.	355630.	0.	1563.	522.	1.00	0.86 1	0.33	1	œ •	:	10.	•
	84444992.	388085.	0.	1563.	522.	1.00	0.86 1	0.33	-	6.	:	10.	•
	97428320.	453002.	•	1563.	522.	1.00	0.86 1	0.33	-		:	10.	•
	136380592.	647763.	0.	1563.	522.	1.00	0.86 1	0.33	-	2	:	10.	•
	-143.4	6 VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	WILL CAUSE	X VALUE W	INITIAL	٠	18.	5.		6.
	-91.5	6 VALUE	NEED NEW STARTING	OVERFLOW. N	EXPONENT	WILL CAUSE	X VALUE W	INITIAL		16.	5	80	6.
					ITERATIONS	WITHIN 20		NO CONVERGENCE		14.	5	8	•
					ITERATIONS	WITHIN 20		NO CONVERGENCE	٠	12.	5	00	•
して、「は、	25890896.	97715.	5757.	1057.	522.	1.00	0.37 1	0.33	:	10.	5	œ •	6
1	.03541000												

114339. 7. 111887. STARTING VALUE STARTING VALUE 0. 692747. 0. 516100.	5757. 5757. STED NEW ST NEED NEW ST NEED NEW ST	1033. 1033. OVERFLOW. OVERFLOW. 1418. 1418.	684. 684. 20 ITERATIONS CAUSE EXPONENT CAUSE EXPONENT 684. 684.		0.36 0.37 1.00 0.36 0.37 1.00 NO CONVERGENCE WITHIN NO CONVERGENCE WITHIN INITIAL X VALUE WILL INITIAL X VALUE WILL 0.36 0.86 1.00 0.36 0.86 1.00	0.36 0.36 NO CONVE INITIAL INITIAL 0.36 0.36 0.36	H H H + + + + P N	110. 8.	8. 5. 5. 5. 110. 11. 11. 11. 11. 11. 11. 11. 11. 1	7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 10.
	5757。 5757。 5757。	1033.	ITER	1.00 1.00	NO CONVERGENCE 0.36 0.37 0.36 0.37 0.36 0.37	0.36 0.36	ν ω σ *	_		
167577. 163371. 160583. 158605. 157134.	5757. 5757. 5757. 5757.	1033. 1033. 1033. 1033.	68 68 68 68 68 68 68 68 68 68 68 68 68 6	1.00	0.37 0.37 0.37 0.37 0.37	0.36 0.36 0.36 0.36	- 2 2 3.	10. 8.	ω ω ω ω	7. 8. 8. 7. 8. 8. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.
405580. 402023. 231281. 188761. 174622.	5757. 5757. 5757. 5757. 5757.	1033. 1033. 1033. 1033.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.00	0.37 0.37 0.37 0.37 0.37	0.36 0.36 0.36	4 4 1 7 4	6 4 2 16 6	ω ω ω	7. 8. 7. 8. 7. 8.
630592. 501963. 459098. 437674. 424826. 416267. 410158.	5757. 5757. 5757. 5757. 5757. 5757.	1033. 1033. 1033. 1033. 1033.	6 6 6 6 6 6 8 8 8 6 6 6 6 6 6 6 6 6 6 6	1.00	0.37 0.37 0.37 0.37 0.37 0.37	0.36 0.36 0.36 0.36	33. 117. 111. 8. 7.	1 1 8 6 4 8		7. 8. 7. 8. 7. 8. 7. 8. 8. 7. 8. 8. 7. 8. 8. 7. 8. 8. 7. 8. 8. 7. 8. 8. 7. 8. 8. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.

00	48982688	199974.	0		1247	1008	00	0.86 1.00		0.37			u	10.
S	52405280.	217086.	0.		1247.	1008.	00	0.86 1.00		0.37		4	3.	10.
	62679696.	268459.	•		1247.	1008.	00	0.86 1.00		0.37		2.	3.	10.
1 50 **	116204592.	536083.	•		1247.	1008.	00	0.86 1.00		0.37	_	18.	:	10.
	117066256.	540391.	0.		1247.	1008.	00	0.86 1.00		0.37		16.	:	10.
	118174448.	545932.	•		1247.	1008.	00	0.86 1.00		0.37	_	14.	:	10.
	119652416.	553322.	•		1247.	1008.	00	0.86 1.00		0.37	_	12.	:	10.
	121722000.	563670.	•		1247.	1008.	00	0.86 1.00		0.37	-	10.	:	10.
	124826960.	579195.	•		1247.	1008.	00	0.86 1.00		0.37		8	-	10.
	130002592.	605073.	•		1247.	1008.	00	0.86 1.00		0.37	_	6		10.
	140355072.	656835.	•		1247.	1008.	00	0.86 1.00		0.37	_	4	-	10.
	171414656.	812133.	•		1247.	1008.	00	0.86 1.00		0.37		2	:	10.
	-8747.0	NG VALUE	NEW STARTING	NEED !	OVERFLOW.	E EXPONENT	LL CAUSE	X VALUE WILL	INITIAL X	* IN		18.	. 5	10.
	-2425.4	NG VALUE	NEW STARTING	NEED 1	OVERFLOW.	EXPONENT	LL CAUSE	VALUE WILL	INITIAL X			16.	5.	10.
	-636.4	NG VALUE	NEW STARTING	NEED !	OVERFLOW.	EXPONENT	LL CAUSE	VALUE WILL	INITIAL X			14.	5.	10.
	-144.0	NG VALUE	NEW STARTING	NEED !	OVERFLOW.	EXPONENT	LL CAUSE	X VALUE WILL	INITIAL X	* IN		12.	5	10.
	24274416.	82532.	4980.		1418.	684.	00	0.86 1.00		0.36	ω.	10.	5.	10.
一九 百	24229632.	83408.	0.		1418.	684.	00	0.86 1.00	0.36 0	0.		80	5	10.
,	25384336.	89182.	•		1418.	684.	00	0.86 1.00		0.36	_	6	5	10.
	27699840.	100759.	•		1418.	684.	00	0.86 1.00		0.36		4	5 1	10.
	34658512.	135553.	•		1418.	684.	00	0.86 1.00		0.36		2.	5.	10.
	33478272.	128551.	4980.		1418.	684.	00	0.86 1.00		. 0.36	2	18.	ω	10.
1 2	33,168,800.	127004.	4980.		1418.	684.	00	0.86 1.00		. 0.36	5	16.	3.	10.
	33205440.	128287.	•		1418.	684.	00	0.86 1.00		0.36	_	14.	3	10.
	33758512.	131053.	•		1418.	684.	00	0.86 1.00		0.36	-	12.	3.	10.
	34534320.	134932.	0.		1418.	684.	00	0.86 1.00		0.36	Y	10.	3.	10.
	35699840.	140759.	•		1418.	684.	00	0.86 1.00		0.36	_	۵	3.	10.
	37644816.	150484.	•		1418.	684.	00	0.86 1.00		0.36	_	•	3.	10.
	41538448.	169952.	•		1418.	684.	00	0.86 1.00	0.36 0	0.	_	4	u.	10.
	53226752.	228394.	0.		1418.	684.	00	0.86 1.00		0.36	_	2	ω.	10.
本され	83297248.	378746.	0.		1418.	684.	00	0.86 1.00	0.36 0	0.		18.	:	10.
3.0	84277408.	383647.	0.		1418.	684.	00	0.86 1.00	0.36 0	0.	_	16.	:	10.
	00000000	20,,,,,												

50188012	242005.	0	1164.	1402.	1.00	0.86 1		I 0	8	ω.	10.
59450368.	243312.	0.	1164.	1402.	1.00	0.86 1	0.44	I 0	16.	3	10.
59787792. 66	244999.	•	1164.	1402.	1.00	0.86 1	0.44 (I 0	14.	•	10.
60239136.	247256.	•	1164.	1402.	1.00	0.86 1	0.44	I 0	12.	ω	10.
60872816.	250424.	0.	1164.	1402.	1.00	0.86 1	0.44 (0	10.	<u>د</u>	10.
61825552.	255188.	0.	1164.	1402.	1.00	0.86 1	0.44	0		.	10.
63416432.	263142.	0.	1164.	1402.	1.00	0.86 1	0.44 (I 0	6.	3.	10.
66602656.	279073.	0.	1164.	1402.	1.00	0.86 1	0.44 (I 0	4	3.	10.
76170336.	326912.	0.	1164.	1402.	1.00	0.86 1	0.44 (I 0	2	ω	10.
156,951,088.	730816.	0.	1164.	1402.	1.00	0.86 1	0.44 (I 0	18.	:	10.
157754336.	734832.	0.	1164.	1402.	1.00	0.86 1	0.44 (I 0	16.	:	10.
158787488.	739998.	0.	1164.	1402.	1.00	0.86 1	0.44 (I 0	14.	:	10.
160165552.	746888.	0.	1164.	1402.	1.00	0.86 1	0.44	0 I	12.	:	10.
162095408.	756537.	0.	1164.	1402.	1.00	0.86 1	0.44	I 0	10.	:	10.
164990992.	771015.	0.	1164.	1402.	1.00		0.44	0 1	•	;	10.
169817936.	795150.	0.	1164.	1402.	1.00	0.86 1	0.44 (1 0	•	:	10.
179473360.	843427.	0.	1164.	1402.	1.00	0.86 1	0.44 0	0 1		:	10.
208442576.	988273.	0•	1164.	1402.	1.00	0.86 1	0.44 0	I 0	2.	:	10.
-8497.6	G VALUE	D NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE W	INITIAL X	*	18.	5	10.
-2349.5	G VALUE	D NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	*	16.	5.	10.
-613.1	6 VALUE	D NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE W	INITIAL X	*	14.	5	10.
-136.7	G VALUE	D NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE W	INITIAL	*	12.	5.	10.
31832352.	113122.	4980.	1247.	1008.	1.00	0.86 1	0.37 (3. 0	10.	5.	10.
31772128. ~ ME	113921.	0,	1247.	1008.	1.00	0.86 1	0.37 (1 0		5.	10.
32786896.	118995.	0.	1247.	1008.	1.00	0.86 1	0.37 (0	6.	5	10.
34821888.	129170.	0.	1247.	1008.	1.00	0.86 1	0.37 (I 0		5	10.
40937952.	159750.	0.	1247.	1008.	1.00	0.86 1	0.37 (0		5	10.
45348800.	180704.	4980.	1247.	1008.	1.00	0.86 1	0.37 (3. 0	18.	.	10.
45048352. ~ ~ ~ ~ ~	179202.	4980.	1247.	1008.	1.00	0.86 1	0.37	5. 0	16.	ω •	10.
45080720.	180464.	0.	1247.	1008.	1.00	0.86 1	0.37 (1 0	14.	ω •	10.
45566800.	182894.	0.	1247.	1008.	1.00	0.86 1	0.37 (I 0	12.	3	10.
46248656.	186303.	•	1247.	1008.	1.00	0.86 1	0.37 (0 1	10.	ω •	10.
47273072.	191425.	0.	1247.	1008.	1.00	0.86	0.37	-			

0	9.	9 .	9.	9.	9.	9.	9.	9. 10.	9. 10.
03	10.	10.	10.	10.	10.	10.	10.	•	•
00	5•	5	•	•	5	•	•	5	•
(2)	18.	16.	14.	12.	10.		•		۰.
111	*	•		ω	-	-	-	-	-
11	INITIAL	INITIAL	INITIAL	0.44	0.44	0.44	0.44	0.44	0.44
	X VALUE	X VALUE	X VALUE	0.86	0.86	0.86	0.86	0.86	0.86
1	WILL CAL	WILL CAL	WILL CAL	1.00	1.00	1.00	1.00	1.00	1.00
· I	JSE EXPONENT	JSE EXPONENT	JSE EXPONENT	1402.	1402.	1402.	1402.	1402.	1402.
2000 00	OVERFLOW.	OVERFLOW.	OVERFLOW.	1164.	1164.	1164.	1164.	1164.	1164.
The same of the sa	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	4980.	0.	0.	0.	0.	0.
1	TING VALUE	TING VALUE	TING VALUE	149937.	149278.	152088.	156795.	166247.	194675.
10 + 11	-5572.2	-1455,3	-336.4	40995296.	40643648.	41205600.	42147056.	44037328.	49722976.
'					40643648.				

### PROPERTY OF THE PROPERTY OF TAXABLE PROPERTY SETTING TO STAND AND ADDRESS OF TAXABLE PROPERTY OF TAXAB		1000 1000 1000 1000	11.	ċ		η.
TABLE 1.00 12.00 15.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00		1000 1000 1000	2.00	u		
TABLE 4: NAMPLE RESULTS 2 10.00 15.50 2.00		1000 1000 1000	2.00			H.
NAUT DATA		1000 1000 1000	2.00			
TABLE 4 TAB		100 N	0 10	20.00		NUMBER OF TESTERS
TABLE 4 TABLE 5 TABLE 4 TABLE 5 TABLE 4 TABLE 5 TAB		10000	10.00		- 0	TURNABOUND TIME (YRS) TO TES
TABLE 4 TOUT DATA 7.00 12.00 15.50 2.00 500.00 100.00 2.00 10.00 100.00 2.00 10.00 10.00 2.00 10.00 10.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 2.00 2.00 2.00 1.50000 2.00000 2.00000 1.50000 2.00		N 15	500.00	10.00	n .	COST OF SHIPPING TO TESTER
TABLE 4 TABLE 1 TAB			2.00	7.00 2.00		NO. MEN TO OPERATE TESTER
TABLE 4 TABLE 1 TAB		350 000 000				
TABLE 4 TABLE 1 TAB		350 350 000	T L CV	POT DATA DESC	2	
TABLE 4 T.00 12.00 2.00 2.00 2.00 0.01 10.00 1000.00 0.01 10.00 1000.00 1.00 10.00 1000.00 1.00 10.00 10.00 2.00 11.00 2.00 2.00 11.00 2.00 2.00 11.00 2.00 2.00 11.00 2.00 1.00 10.00 500.00 1.00 10.00 500.00 1.00 10.00 500.00 1.00 10.00 500.00 1.00 10.00 500.00 1.00 10.00 1.500.00 1.500.00 1.500.00 2.00 1.500.00 2.00 1.500.0		350 000 000		7	•	
TABLE 4 T.ON 12.00 2.00 2.00 2.00 0.0 10.00 500.00 1000.00 0.0 10.00 10.00 1.0 0 10.00 2.0 0 10.00 2.0 0 10.00 2.0 0 10.00 7.0 0 11.00 2.00 7.0 0 11.00 2.00 7.0 0 11.00 2.00 7.0 0 10.00 500.00 1.0 0.00 7.0 0 11.00 2.00 7.0 0 10.00 7.0 0		350 350 000				
TABLE 4 TOPUT DATA 7.00 12.00 15.50 2.00 2.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 2.00 10.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 2.00 10.00 2.00 2.00 2.00 10.00 2.00 2.00 2.00 10.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00		350 350 000				
TABLE 4 7.00 12.00 2.00 2.00 2.00 10.00 500.00 1000.00 10.00 500.00 10.00 10.00 10.00 10.00 10.00 2.00 11.00 2.00 2.00 11.00 2.00		350		1.00000	1.00000	0.00000
TABLE 4 2.00 2.00 15.50 2.00 2.00 10.00 10.00 500.00 10.00 1.00 10.00 10.00 2.00 10.00 10.00 2.00 10.00 10.00 2.00 10.00 10.00 2.00 10.00 2.00 2.00 10.00 2.00 2.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 13.00 10.00 500.00 14.000.00 15.000.00 10.00 20.000.000.00 20.000.000.00 20.000.00		350		0.300000	0.300000	0.50000
TABLE 4 7.00 12.00 15.50 2.00 2.00 10.00 500.00 10.00 10.00 2		260 120 350		0.300000	0.300000	0.300000
TABLE 4 7.00 12.00 15.50 2.00 2.00 10.00 10.00 10.00 500.00 10.00 0.01 0.10 0.75 20.00 10.00 10.00 1.00 10.00 10.00 2.00 11.00 2.00 7.00 11.00 2.00 500.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 10.00 12.00 10.00 10.00 12.00 10.00 10.00 12.00 10.00 10.00 12.00 10.00 10.00 12.00 10.00 10.00 12.00 10.00 10.00 12		350 260 260				0.020150
TABLE 4 T.00 12.00 15.50 2.00 2.00 10.00 500.00 1000.00 0.01 0.10 0.75 20.00 11.00 2.00 1.00 10.00 10.00 2.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 1.000 7.00 11.00 2.00 1.000 7.00 11.00 2.00 1.000		260		0.001390	0.008570	0.001470
TABLE 4 TODO 12.00 15.50 2.00 2.00 10.00 10.00 0.0 10.00 10.00 0.01 0.10 0.75 2.00 11.00 2.00 1.00 10.00 10.00 2.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 10.00 12.00 10.00 10.00 12.00 10.00 10.00 12.00 10.00 10.00 12.00 10.00 12.00 10.00 13.00 14.00 2.00 15.00 1				0.000670	0.001540	0.00700
TABLE 4 TOPUT DATA 7.00 12.00 15.50 2.00 2.00 2.00 10.00 0.0 10.00						0.001000
TABLE 4 TODATA 7.00 12.00 15.50 2.00 2.00 0.01 10.00 10.00 0.01 10.00 10.00 0.01 10.00 10.00 0.01 10.00 10.00 0.01 10.00 10.00 0.01 10.00 2.00 2.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 0.15 0.15 0.01 7.00 7.00 7.00 7.00 7.00 7.00 7.00		130		0.000010	0.000120	0.000120
TABLE 4 TODATA 7.00 12.00 15.50 2.00 2.00 10.00 10.00 0.01 10.00 10.00 0.01 0.10 0.75 20.00 10.00 0.01 0.10 0.75 20.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00 1.2.00 7.00 1.500000 1.500000 1.500000 7.00		450		0.000210	0.000280	0.000500
TABLE 4 TODATA 7.00 12.00 15.50 2.00 2.00 2.00 10.00 1000.00 10.00 1000.00 10.00 1000.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 2.00 11.00 2.00 2.00 11.00 2.00 2.00 11.00 2.00 2.00 11.00 2.00 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00000 1.500000 1.500000 11.000000 28000.000000 80000.000000 11.000000 28000.000000 80000.000000		060		0 000550	0-000660	X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TABLE 4 TOPUT DATA 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 1000.00 10.00 500.00 1000.00 10.00 10.00 10.00 10.00 10.00 1.00 2.00 11.00 2.00 2.00 11.00 2.00 2.00 16.00 500.00 12.00 16.00 500.00 12.00 16.00 500.00 12.00 16.00 500.00 1.500000 1.500000 1.500000 1.500000 2.000000 2.000000 1.500000 2.0000000 2.00000000 2.00000000 2.0000000 2.0000000 2.0000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.00000000 2.0000000 2.00000000 2.0000000 2.0000000 2.00000000 2.00000000 2.000		000		100000.000000	00000.000000	100000.000000
TABLE 4 TINDUT DATA 7.00 12.00 15.50 2.00 2.00 2.00 0.0 10.00 10.00 0.0 10.00 10.00 0.0 10.00 10.00 0.0 10.00 1.00 0.0 10.00 1.00 0.0 10.00 2.00 0.0 11.00 2.00 0.70 11.00 2.00 0.70 12.00 0.15 0.015 0.015 0.016 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.000 0.15 0.0000 0.15 0.0000 0.15 0.0000 0.15 0.0000 0.15 0.0000 0.15 0.0000 0.15 0.0000 0.15 0.00000 0.15 0.00000 0.15 0.00000 0.1500000 0.1500000 0.1500000 0.1500000 0.1500000 0.1500000 0.15000000 0.15000000 0.15000000 0.15000000 0.15000000 0.15000000 0.10000000 0.10000000 0.10000000 0.100000000		000		40000.000000	89400.000000	40000.000000
TABLE 4 T.00		000		28000.000000		20000.00000
TABLE 4 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 1000.00 0.0 10.00 10.00 0.01 0.10 0.75 20.00 2.00 1.00 1.00 10.00 2.00 7.00 11.00 2.00 50000.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 12.00 10.00 500.00 13.00 10.00 500.00 14.00 500.00 15.00000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000						1 - 200000
TABLE 4 TABLE 4 TABLE 4 TABLE 1 TAB		900		1.50000	2 00000	3 00000
TABLE 4 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 1000.00 0.0 10.00 10.00 0.01 0.10 0.75 20.00 2.00 1.00 1.00 10.00 1.00 2.00 11.00 2.00 50000.00 16.00 2.00 50000.00 10.00 500.00 12.00 10.00 500.00 7.00 10.00 500.00	medicaption of making the contraction and defended on the contraction of the contraction	000		1.500000	1.000000	1.00000
TABLE 4 TABLE 4 TABLE 4 TABLE 4 TABLE 4 TABLE 6 TAB						20.00
TABLE 4 TABLE 4 TABLE 4 TABLE 1 TABLE 1 TABLE 1 TABLE 2 TABLE 2 TABLE 3 TABLE 4 TABLE 3 TABLE 4 TABLE 3 TABLE 4 TABLE 3 TABLE 4 TABLE 5 TAB						-
TABLE 4 TABLE 4 TABLE 4 TABLE 4 TABLE 4 TABLE 6 TAB						20.00
TABLE 4 TABLE 6 TABLE 6 TABLE 4 TABLE 6 TAB						0.15
TABLE 4 TABLE 4 TABLE 4 TABLE 6 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 10.00 0.01 0.10 0.75 20.00 2.00 1.00 1.00 10.00 1.00 2.00 11.00 2.00 7.00 11.00 2.00 50000.00 10.00 500.00						0.70
TABLE 4 TABLE 5 TABLE 4 TABLE 5 TAB					50	00.00
TABLE 4 TABLE 4 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 10.00 0.01 10.00 10.00 0.01 0.10 0.75 20.00 2.00 1.00 1.00 10.00 2.00 7.00 11.00 2.00 7.00 11.00 2.00					J	2.00
TABLE 4 TABLE 4 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 1000.00 0.01 10.00 10.00 0.01 0.10 0.75 20.00 2.00 1.00 1.00 10.00 1.00 2.00 11.00 2.00					•	00
TABLE 4 TABLE 4 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 1000.00 0.01 10.00 10.00 0.01 0.10 0.75 20.00 2.00 1.00 1.00 10.00 1.00					_	00
TABLE 4 TABLE 4 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 1000.00 0.01 10.00 10.00 0.01 0.10 0.75 20.00 2.00 1.00						00
TABLE 4 7.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 1000.00 0.0 10.00 10.00						00
TABLE 4 1.00 12.00 15.50 2.00 2.00 2.00 10.00 500.00 1000.00						
TABLE 4 1.00 12.00 15.50 2.00 2.00 2.00					0 100	.00
INPUT DATA 7.00 12.00 15.50 EXAMPLE RESULTS						.00
INPUT DATA EXAMPLE RESULTS					_	.00
TABLE		TS	EXAMPLE RI			NPUT DATA
		4	TABLE			

					¥ C																						
1. 2.	1. 2.	1. 2.			MI M2							F		F			0			3		. 2	D	71	z	_	
7.	7.	7.	7.	7.	Z				TIME REOD			ATLURE		A I L URF			COST OF		TIME DE	MAXIMUM	INITIAL	NO. USE	A I B	ACTIO	NO. ITEM	TEM CO.	CYCL
10.	8	5.		٠.	CYCLES N				10			RATE C		RATE C			FOUIPMENT		REOD TO REPAIR EQUIP.		<	CYCLES	MATERIAL	9	M FUNCTIONS	ITEM COST.ITEM LIFECYCLE.NO.	TIAL VA
•	*	-	•	ω •	23				TEST IT			OF 17H		OF EQUIP			ENT TO		EPAIR	ITERATIONS	FOR NE		L RATIO	S		LIFEC	LUE . FI
NO CON	NO CON	0.05	0.05	0.05	DEFECTIVE TEST1				ITH FUNCTION			ITH FUNCTION OF		. 10			TEST		EQUIP.	NS FOR			0	IN USE N	TESTED	YCLE .N	NAL VA
CONVERGENCE	CONVERGENCE	0.09	0.09	0.09	VE ITEMS				TION					TEST I			ITH FUN		WHICH	Z 1	APHSON			NOT DEFE		9	CHELON
NIHLIM	WITHIN	1.00	1.00	1.00	AS FAILING							ITEM		ITH FUNCTION			FUNCTION		TESTS ITH FUN	METHOD	METHOD			DEFECTIVE		ITEMS	CYCLES RETWEEN SECOND ECHELON TESTS
20 ITERATIONS	20 ITERATIONS	73.	73.	73.	TEST1 COST	TEST COST	•	0		0	00	0			20000	40000	20000	2 -		20.	1.	20.	0.15	0.70	12.	50000.	
•		1027.	1027.	1027.	TEST2	SUMMARY	200000	300000	0.300000	0.020150	0.000700	001000	0.000120	0.001020	000000	40000.000000	0.000000	2.000000	1.000000							10.	
		10307.	10307.	10307.	TEST3 COST			1.000000	0.300000		0.001540	0.000900	0.000120	0.000660	000000	89400.000000	20000.000000	2.000000	1.000000								
70		132431.	140413.	157088.	COMPLETE TEST COST											40000.000000										500.	
		28603	30199888.	33535008.	COST COST			000000	0.300000		0.000670	001180	0.000010	0.000550	00000	000000	000000	2.000000	500000								
-69		8603584.	888.	8008.	ST			2				0	0.0		100000	80000.000000	40000.000000	21	_								
70		-	11.2					00000	0.300000		0.0001350	00126	0.000130	00106		.00000	00000	2.000000	50000								

22024176.	99194.	7862.	1095.	73.	1.00	0.05 0.22	:	4	4. 9.	-
23771520.	107931.	7862. 1	1095.	73.	1.00	0.05 0.22	ω.	۰.	4. 9.	•
-227.6 470	VALUE	NEED NEW STARTING VALUE	OVERFLOW. N	CAUSE EXPONENT	WILL	INITIAL X VALUE	*	18.	4. 7.	-
-156.0	VALUE	NEED NEW STARTING VALUE	OVERFLOW. N	CAUSE EXPONENT	WILL	INTTIAL X VALUE	*	16.	4. 7.	-
-106.2	VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	MILL	INITIAL X VALUE	*	14.	4. 7.	Ī
				20 ITERATIONS	WITHIN	NO CONVERGENCE	*	12.	4. 7.	-
				20 ITERATIONS	WITHIN	NO CONVERGENCE	*	10.	4. 7.	-
				20 ITERATIONS	WITHIN	NO CONVERGENCE	*	œ •	4. 7.	-
22252160.	100334.	7862. 1	1095.	73.	1.00	0.05 0.22	-	5	4. 7.	Ī
22486400.	101505.	7862 1	1095.	73.	1.00	0.05 0.22	۰.	4.	4. 7.	-
25445104.	116299.	7862. 1	1095.	73.	1.00	0.05 0.22	ω	2	4. 7.	-
-215.1	VALUE	NEED NEW STARTING VALUE		CAUSE EXPONENT OVERFLOW.	WILL	INITIAL X VALUE		18.	2. 11.	-
-167.2	VALUE	NEED NEW STARTING VALUE	OVERFLOW. N	CAUSE EXPONENT	WILL	INTTIAL X VALUE	*	16.	2. 11.	-
-128.7	VALUE	NEED NEW STARTING VALUE	OVERFLOW. N	CAUSE EXPONENT	WILL	INITIAL X VALUE	•	14.	2. 11.	-
-97.5	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	CAUSE EXPONENT	VALUE WILL	INITIAL X VALU	*	12.	2. 11.	Ī
-71.8	VALUE	NEED NEW STARTING VALUE	OVERFLOW. N	CAUSE EXPONENT	MILL	INITIAL X VALUE	*	10.	2. 11.	•
				20 ITERATIONS	WITHIN	NO CONVERGENCE	٠	œ	2. 11.	•
				20 ITERATIONS	WITHIN	NO CONVERGENCE	*	5	2. 11.	-
28973008	134278.	10307. 1	1027.	73.	1.00	0.05 0.09	:		2. 11.	-
30772880.	143278.	10307. 1	1027.	73.	1.00	0.05 0.09	2	۰,	2. 11.	-
-141.6	VALUE	NEED NEW STARTING VALUE		WILL CAUSE EXPONENT OVERFLOW.	E WILL	INITIAL X VALUE	*	18	2. 9.	-
-113.6	VALUE	NEED NEW STARTING	OVERFLOW. !	CAUSE EXPONENT	WILL	INITIAL X VALUE	•	16.	2. 9.	-
-89.9	VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL	INITIAL X VALUE		14.	2. 9.	-
				20 ITERATIONS	WITHIN	NO CONVERGENCE	*	12.	2. 9	Ī
				20 ITERATIONS	WITHIN	NO CONVERGENCE	•	10.	2. 9.	-
				20 ITERATIONS	WITHIN	NO CONVERGENCE	*	20	2. 9.	-
				20 ITERATIONS	WITHIN	NO CONVERGENCE		6	2. 9.	-
29393280.	136380.	10307. 1	1027.	73.	1.00	0.05 0.09			2. 9.	-
31814544.	148486.	10307. 1	1027.	73.	1.00	0.05 0.09	٧.	٧	2. 9.	-
-89.8	VALUE	NEED NEW STARTING VALUE	OVERFLOW.	X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED	E WILL	INITIAL X VALU	٠	18.	2. 7	-
-73.7	VALUE	NEED NEW STARTING VALUE	OVERFLOW.	CAUSE EXPONENT	MILL	INITIAL X VALUE	*	16.	2. 7.	7

-765.4 -1648.6	VALUE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.	* I L L	INITIAL X VALUE	* *	9 . 14.	6. 6.
-357.7	VALUE	NE E				*	*	9. 12.	
-167.2	VALUE	NEED NEW STARTING	OVERFLOW. N	20 ITERATIONS	WILL O	NO CONVERGENCE	* *	10 8	0 0
				20 ITERATIONS	NITHIN	NO CONVERGENCE	*		6. 9.
18611824.	81485.	6542.	1330.	73.	1.00	0.05 0.33	:	•	6. 9.
20399696.	90425.	6542.	1330.	73.	1.00	0.05 0.33	3.	. 2.	6. 9.
-764.2	VALUE	EED NEW STARTING VALUE	OVERFLOW. N	X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED	WILL C	INTTIAL X VALUE	*	7. 18.	6. 7
-422.7	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. N	CAUSE EXPONENT	WILL	INITIAL X VALUE	*	. 16.	6. 7.
-234.2	VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	אורר	INITIAL X VALUE	*	7. 14.	6. 7
-129.2	VALUE	NEED NEW STARTING	OVERFLOW. N	AUSE EXPONENT	WILL CAUSE	INTTIAL X VALUE	٠	12.	6. 7.
				20 ITERATIONS	NITHIN	NO CONVERGENCE		7. 10.	6. 7
				20 ITERATIONS	NITTIN	NO CONVERGENCE	*	7. 8.	6. 7
19042912.	83641.	6542.	1330.	73.	1.00	0.05 0.33	:	•	6. 7
27661360.	126733.	6542. 1	1330.	73.	1.00	0.05 0.33	:	7. 4.	6. 7
22359344.	100223.	6542.	1330.	73.	1.00	0.05 0.33	4.		6. 7.
-1592,6	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW. N	CAUSE EXPONENT	₩ורר	INITIAL X VALUE	*	18.	£ 11.
-874.4	VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	WILL	INITIAL X VALUE	٠	. 16.	4. 11.
-483.2	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. N	CAUSE EXPONENT	#ILL	INITIAL X VALUE	•	. 14.	4. 11.
-268.0	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. N		אזרר כ	INITIAL X VALUE WILL CAUSE	•	. 12.	4. 11.
-148,2	VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	MILL	INITIAL X VALUE	*	. 10.	4. 11.
				WITHIN 20 ITERATIONS	WITHIN	NO CONVERGENCE	٠		4. 11.
				20 ITERATIONS	NIHLIR	NO CONVERGENCE		6.	11.
22017312.	99160.	7862.	1095.	73.	1.00	0.05 0.22	:	4.	4. 111
22826352.	103205.	7862.	1095.	73.	1.00	0.05 0.22			4. 11.
-598.3	VALUE	NEED NEW STARTING VALUE	OVERFLOW. N	CAUSE EXPONENT	MILL	INITIAL X VALUE			4. 9.
-369.1	VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	WILL	INITIAL X VALUE		16.	4. 9.
-227.9	VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	¥111	INITIAL X VALUE	٠	9. 14.	•
-140.1	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. N	CAUSE EXPONENT	WILL	INITIAL X VALUE	*	12.	4. 9.
-84.8	VALUE	NEED NEW STARTING	OVERFLOW. N	CAUSE EXPONENT	WILL	INITIAL X VALUE	*	9. 10.	4. 9

	-1658.1	VALUE	STARTING	NEED NEW		CALISE EXPONENT OVERELOW.	E 1 - CA	X VALUE W	TUTTOLX	*	2	-	α	
357	-575.0	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE W	INITIAL X	* 12	10.	11. 1		
	-200.7	VALUE	STARTING	NEED NEW		WILL CAUSE EXPONENT OVERFLOW.	ILL CA	X VALUE W	INITIAL X	* 12	•	-	D •	
1						NO CONVERGENCE WITHIN 20 ITERATIONS	THIN 2	SENCE WI	CONVER	* NO	6.	=	3	
-72	18026480.	77958.	5757.	51	1701.	73.	1.00	0.37 1		1. 0.05	4. 1			
	19171728.	83685.	5757.	51	1701.	73.	1.00	0.37 1		2. 0.05	2. 2	-		
	-7164.1	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE W	INITIAL X	* IN	18.	9.		
	-2966.1	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE W	INTTIAL X	* IN	16.	9. 1	œ •	
	-1238.6	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.	WILL CA	VALUE	INITIAL X	* IN	14.	•		
	-521.6	VALUE	STARTING	NEED NEW		WILL CAUSE EXPONENT OVERFLOW.	ILL CA		INITIAL X VALUE	# IN	12.	9. 1		
	-220.5	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE W	INITIAL X	* IN	10.	9. 1		
	-92.2	VALUE	STARTING	NEED NEW		WILL CAUSE EXPONENT OVERFLOW.	ILL CA	X VALUE W	INITIAL X	* IN	•	•		
						NO CONVERGENCE WITHIN 20 ITERATIONS	2 NIHI	SENCE WI	CONVERG	* NO	6.	•	30	
- mi(1)0	17860528.	77129.	5757.	57	1701.	73.	1.00	0.37 1		1. 0.05	4. 1	•	æ	
	20631984.	90986.	5757.	57	1701.	73.	1.00	0.37 1		3. 0.05	2. 3	9.	•	
	-1236.7	VALUE	STARTING VALUE	NEED NEW	OVERFLOW.	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW	ILL CA	VALUE W	TTIAL X	• IN		7. 1		
	-630.7	VALUE	STARTING	NEED NEW	OVERFLOW.	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW	ILL CA	VALUE W	ITIAL X	* IZ	16.	7. 1		
	-322.8	3 VALUE	STARTING	NEED NEW		WILL CAUSE EXPONENT OVERFLOW.	ILL CA		INITIAL X VALUE	* IN	14.	7. 1		
	-165.0	VALUE	STARTING	NEED NEW		USE EXPONENT OVERFLOW.	ILL CA	X VALUE WILL CAUSE	INITIAL X	* IN		7.		
						NO CONVERGENCE WITHIN 20 ITERATIONS	THIN 2	SENCE WI	CONVER	* NO	10.	7. 1	8	
						20 ITERATIONS	WITHIN 2		NO CONVERGENCE	* NO		7.		
	18197200.	78812.	5757.	51	1701.	73.	1.00	0.37 1		1. 0.05	6. 1	7.		
	18464240.	80147.	5757.	51	1701.	73.	1.00	0.37 1		. 0.05	4. 2.	7.		
	23188224.	103767.	5757.	51	1701.	73.	1.00	0.37 1		4. 0.05	2. 4	7.		
	-17260.4	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE W	INITIAL X	* IN	18.	11. 1	6	
	-6584.2	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE W	INITIAL X	* IN	16.	11. 1	6.	
	-2537.2	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.	WILL CA		INITIAL X VALUE	* IN	14.	11. 1	5	
	-989.1	VALUE	STARTING	NEED NEW		USE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE W	INITIAL X	* IN	12.	11. 1	6.	
	-389.7	VALUE	STARTING	NEED NEW		USE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE W	INITIAL X	# IN	10.	11.	•	
	-153.8	VALUE	STARTING	NEED NEW		X VALUE WILL CAUSE EXPONENT OVERFLOW.	ILL CA	VALUE .	INITIAL X	* IN		11.	•	
•						NO CONVERGENCE WITHIN 20 ITERATIONS	THIN 2	SENCE WI	CONVER	* NO	6.	-	•	
	18896592.	82909.	42.	65	1330.	73.	1.00	0.33 1		0.05	4. 1	-	•	

21071632.	11.10	7862.	1057.	97.	. 00			0.00	
22505984.	99803.	7862.	1057.	91.	1.00	0.22		0.09	2. 0.0
25597200.	115259.	7862.	1057.	91.	1.00	0.22		0.09	3. 0.
****	16 VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	7	• IN
****	16 VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	=	
****	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		*
-4320305.0	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	_	۰
-288379.3	16 VALUE	ED NEW STARTING	EXPONENT OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		
-19199.5	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		•
-1249.6	IG VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		٠
28550288	127078.	4980.	4085.	73.	1.00	0.86	0.05		0.
21843264.	94642.	0.	4085.	73.	1.00	0.86	0.05		-
***	IG VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL		
	16 VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		۰
-2060703.0	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INTITAL		
-224914.1	16 VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		٠
-24498.8	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		
-2638.5	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		٠
-264.4	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		٠
17200496.	70329.	4980.	4085.	73.	1.00	0.86	0.05		
26116688.	116010.	0.	4085.	73.	1.00	0.86	0.05		-
-2056307.0	IG VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		•
-367116.3	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		٠
-65485.7	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		٠
-11646.3	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		٠
-2047.5	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		
-342.9	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		•
21684288.	92748.	4980.	4085.	73.	1.00	0.86	0.05		=
18549088.	77072.	4980.	4085.	73.	1.00	0.86	0.05		=
32832432.	149588.	0.	4085.	73.	1.00	0.86	0.05		-
-42759.0	IG VALUE	ED NEW STARTING VALUE	EXPONENT OVERFLOW. NEED	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		٠
-14320.8	IG VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		

VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW
EW STARTING VALUE

	-207.2	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	USE EXPONENT	WILL CAUSE	VL X VALUE	INITIAL		10.	я. 9.	2.
75					20 ITERATIONS		NO CONVERGENCE WITHIN	NO CO		,	9	
					WITHIN 20 ITERATIONS	WITHIN	NO CONVERGENCE	NO CO		•	9.	
	20410336.	88078.	5757.	1514.	91.	1.00	0.37	0.09	:		9.	
	19941600.	85734.	5757.	1514.	91.	1.00	0.37	0.09	ω •		9.	
	-1137.7	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	AUSE EXPONENT	WILL CAUSE	AL X VALUE	INITIAL		18.	8. 7.	
	-584.6	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	AL X VALUE	INITIAL	٠	. 16.	8. 7.	
	-301.5	VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.		AL X VALUE	INITIAL		. 14.	8. 7.	2.
	~155.3	VALUE	NEED NEW STARTING	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL C	INITIAL X VALUE	INITI		. 12.	8. 7.	
					20 ITERATIONS	WITHIN	CONVERGENCE	NO CO		10.	8. 7.	
					20 ITERATIONS	WITHIN	NO CONVERGENCE	NO CO			8. 7.	
1	17922960.	75641.	5757.	1514.	91.	1.00	0.37	0.09	:		8. 7.	
	18011696.	76085.	5757.	1514.	91.	1.00	0.37	0.09	۶.		8. 7.	
	22287376.	97463.	5757.	1514.	91.	1.00	0.37	0.09		2	A. 7.	2.
	-15395.9	VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT OVERFLOW.	MILL	AL X VALUE	INITIAL		18.	6. 11.	٠.
	-5937.2	VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL	AL X VALUE	INITIAL		. 16.	6. 11.	
	-2313.7	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL	AL X VALUE	INITIAL	٠	. 14.	6. 11.	2
	-912.4	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL C	INTTIAL X VALUE WILL CAUSE	INITI		. 12.	6. 11.	2.
	-363.7	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	AL X VALUE	INITIAL	*	10.	6. 11.	2.
	-145.2	VALUE	NEED NEW STARTING	OVERFLOW.	VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL C		INITIAL X	•	20	6. 11.	2.
					WITHIN 20 ITERATIONS		NO CONVERGENCE	NO CO	*	•	6. 11.	٠.
	18368160.	78467.	6542.	1225.	91.	1.00	0.33	0.09	:	•	6. 11.	2.
	19116256.	82207.	6542.	1225.	91.	1.00	0.33	0.09	?	٠,	6. 11.	
	-3245.8	VALUE	NEED NEW STARTING	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL C	AL X VALUE	INITIAL	*	18.	6. 9.	2.
	-1509.0	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL	AL X VALUE	INITIAL	*	. 16.	6. 9.	
	-707.2	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL	AL X VALUE	INITIAL		. 14.	6. 9.	
	-333.6	VALUE	NEED NEW STARTING	OVERFLOW.	AUSE EXPONENT	WILL CAUSE	AL X VALUE	INITIAL	•	. 12.	٠. ٠.	
	-157.4	VALUE	NEED NEW STARTING	OVERFLOW.	AUSE EXPONENT	WILL CAUSE	AL X VALUE	INITIAL		. 10.	6. 9.	
					20 ITERATIONS	WITHIN	NO CONVERGENCE WITHIN	NO CO	•	Э	6. 9.	
					20 ITERATIONS	MITHIN	NO CONVERGENCE	NO CO	•	•	· •	·
1	18288304.	78068.	6542.	1225.	91.	1.00	0.33	0.09	:	•	6. 9.	
(100)	20167952.	87466.	6542.	1225.	91.	1.00	0.33	0.09	3	٠,	· · ·	٠

A CONTRACTOR OF THE PERSON OF	-11/3.0	VALUE	NAME OF THE PARTY	OVERTOW. NEED NEED	TATOUT	E I CALLYT	X VALUE		•	7.	1	10.	,
		V			TABOUENT	,			:		:	;	,
1175	20206672.	83559.	4980.	3431.	91.	1.00	0.86 1	0.09	7	4.	=	10.	2
1	19210160.	79677.	0.	3431.	91.	1.00	0.86 1	0.09	-	۶.	=:	10.	2
76	****	VALUE	NEED NEW STARTING	OVERFLOW.	E EXPONENT	WILL CAUSE	X VALUE W	INITIAL	٠	18.		10	2
	****	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	X VALUE W	INITIAL	٠	16.	9.	. 10.	2
	-1840604.0	VALUE	NEED NEW STARTING	OVERFLOW.	EXPONENT	WILL CAUSE	X VALUE W	INITIAL		14.	9.	10.	2
	-201661.5	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	X VALUE W	INITIAL	٠	12.	٥	10	~
	-22012.6	VALUE	NEED NEW STARTING	OVERFLOW.	EXPONENT	WILL CAUSE	X VALUE W	INITIAL	*	10.	9.	10	2
	-2366.5	VALUE	NEED NEW STARTING	OVERFLOW.	EXPONENT	WILL CAUSE	X VALUE W	INITIAL	*	æ •	9.	10	2.
	-233.4	VALUE	NEED NEW STARTING	OVERFLOW.	E EXPONENT	WILL CAUSE	X VALUE W	INITIAL	*	5.	9.	10	2
1 6	15101382.	58033.	4980.	3431.	91.	1.00	0.86 1	0.09	3.	4	9.	10	N
(610)	22857232.	97912.	0.	3431.	91.	1.00	0.86 1	0.09	-	۰.	9	10.	2
	-1832658.0	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	X VALUE W	INITIAL		18.	7.	1.0	2
	-328123.0	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	X VALUE W	INITIAL	*	16.	7.	10	2
	-58640.2	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	X VALUE W	INITIAL		14.	7.	10	ν
	-10430.7	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		ILL CAUSE	X VALUE WILL	INITIAL	*	12.	7.	10	~
	-1827.6	VALUE	NEED NEW STARTING	OVERFLOW.	E EXPONENT	WILL CAUSE	X VALUE W	INITIAL		10.	7.	10	2
	-301.9	VALUE	NEED NEW STARTING	OVERFLOW.	E EXPONENT	WILL CAUSE	X VALUE W	INITIAL	*	39	7.	10	~
	17405840.	69555.	4980.	3431.	91.	1.00	0.86 1	0.09	:	•	7.	10	~
	16418775.	65720.	0.	3431.	91.	1.00	0.86 1	0.09	-		7.	10.	2
	28589088.	126572.	0.	3431.	91.	1.00	0.86 1	0.09	-		7.	10	N
	-38037.8	VALUE	NEED NEW STARTING VALUE	OVERFLOW.	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	ILL CAUS	X VALUE W	INITIAL		14.	=	30	N
	-12877.1	VALUE	NEED NEW STARTING	OVERFLOW.	E EXPONENT	WILL CAUSE	X VALUE W	INITIAL		16.	=	20	~
	-4404.1	VALUE	NEED NEW STARTING	OVERFLOW.	EXPONENT	WILL CAUSE	X VALUE W	INITIAL		14.	11.	30	2
	-1525.1	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	X VALUE W	INITIAL	*	12.	111.	20	N
	-535.2	VALUE	NEED NEW STARTING	OVERFLOW.	E EXPONENT	WILL CAUSE	X VALUE W	INITIAL		10.	11.	20	2
	-189.1	VALUE	NEED NEW STARTING	OVERFLOW.	E EXPONENT	WILL CAUSE	X VALUE W	INITIAL	*	œ •	=	35	2
					20 ITERATIONS		NO CONVERGENCE WITHIN	NO CONVE	*	•	=	20	N
1	16641300.	69233.	5757.	1514.	91.	1.00	0.37 1	0.09	:	•	=	20	N
(2,5)	18598752.	79020.	5757.	1514.	91.	1.00	0.37 1	0.09	۰.	۶.	==	מ	N
2	-6478.0	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		ILL CAUSE	X VALUE WILL	INITIAL			٥	D	N
4.0	-2707.0	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	X VALUE W	INITIAL		16.	9.	8	2
(u)	-1141.3	VALUE	NEED NEW STARTING	OVERFLOW.	EXPONENT	WILL CAUSE	X VALUE W	INITIAL	*	14.	9	20	v
	70000	*******	ACTO ACA ALMINIA IN	*****	T 100 0 40 41	* CC 0200	a support a	7017 134 Y					1

-702.9	4. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-398.1	4. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-226.3 -77	4. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-128.2	4. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
	4. 11. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS
	3. 4. 11. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS
21478752.	3. 4. 11. 4. 1. 0.15 0.22 1.00 122. 1031. 7862. 92147.
23242064.	4. 11. 2. 2. 0.15 0.22 1.00 122. 1031. 7862. 100963.
-487.1	4. 9. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-306.5	4. 9. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-193.1	3. 4. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-121.1	3. 4. 9. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
	3. 4. 9. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS
	4. 9. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS
	4. 9. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS
21921824.	4. 9. 4. 1. 0.15 0.22 1.00 122. 1031. 7862. 94362.
24317920.	3. 4. 9. 2. 3. 0.15 0.22 1.00 122. 1031. 7862. 106343.
-192.3	3. 4. 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-133.9	4. 7. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-92.5	3. 4. 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
	4. 7. 12. * NO CONVERGENCE WITHIN 20 ITERATIONS
	3. 4. 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS
	4. 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS
21935344.	4. 7. 6. 1. 0.15 0.22 1.00 122. 1031. 7862. 94430.
22816064.	4. 7. 4. 2. 0.15 0.22 1.00 122. 1031. 7862. 98833.
26136112.	4. 7. 2. 3. 0.15 0.22 1.00 122. 1031. 7862. 115434.
******	10. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
*****	10. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
****	10. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-3861183.0	10. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-259107.1	2. 10. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE
-17305.3	10. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE

NEED NEW STARTING

13689803.	13689	48455.	80.	498	2899.	122.	0	1.00	0.86	0.15	4. 0	4. 4	•	10.
20587024. 79	2058	84041.	0.		2899.	122.	0	1.00	0.86	0.15	0	٥.	•	10.
794.0	-1562794.0	6 VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	L CAUSE	JE WIL	X VALUE WILL	INITIAL	*	18.	7. 1	
-280631,6	-280	G VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	L CAUSE	JE WILL	X VALUE	INITIAL	•	16.	7. 1	10.
-50224.7	-502	6 VALUE	STARTING	NEED NEW		SE EXPONENT OVERFLOW.	L CAUSE	JE WILL	X VALUE	INITIAL	*	14.	7. 1	10.
-8922.2	-85	6 VALUE	STARTING	NEED NEW		SE EXPONENT OVERFLOW.	L CAUSE	JE WILL	X VALUE	INITIAL	•	12.	7.	10.
-1552.1	-16	G VALUE	STARTING	NEED NEW		SE EXPONENT OVERFLOW.	L CAUSE	JE WILL	X VALUE	INITIAL	* I	10.	7. 1	10.
-250.1		G VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	WILL CAUSE		X VALUE	INITIAL	*	8.	7.	10.
14778500.	14771	53899.	80.	498	2899.	122.	0	1.00	0.86	0.15	2. 0	6.	7.	10.
15334412.	1533	57778.	0.		2899.	122.	0	1.00	0.86	0.15	1 0	4.	7.	10.
4480.	25574480.	108978.	•		2899.	122.	0	1.00	0.86	0.15	0	٠,	7.	10.
-32595.7	-325	STARTING VALUE	STARTIN	NEED NEW		SE EXPONENT OVERFLOW.	L CAUSE	JE WIL	X VALUE WILL	INITIAL	*	18.	11. 1	•
-11189.1	-111	G VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	L CAUSE	JE WILL	X VALUE	INITIAL	*	16.	11. 1	æ •
-3882.8	-38	6 VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	L CAUSE	JE WILL	X VALUE	INITIAL	*	14.	11. 1	
-1365.1	-	6 VALUE	STARTING	NEED NEW		SE EXPONENT OVERFLOW.	L CAUS	JE WIL	X VALUE WILL CAUSE	INITIAL	*	12.	11.	
-486.6		G VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	WILL CAUSE		X VALUE	INITIAL	* 1	10.	111.	3 0
-174.6		6 VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	L CAUS	JE WIL	X VALUE WILL CAUSE	INITIAL	* 1		7	œ •
						WITHIN 20 ITERATIONS	1N 20		RGENCE	NO CONVERGENCE	*	•		
16897536.	1689	67994.	57.	575	1364.	122.	0	1.00	0.37	0.15	1. 0	4.	11.	œ •
18424464.	18424	75628.	57.	575	1364.	122.	0	1.00	0.37	0.15	2. 0		=	3 0
5669.1	-50	6 VALUE	STARTING	ED NEW	VERFLOW. NE	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW	L-CAU!	JE WIL	X VALL	NITIAL	*		•	
-2397.9	-2:	G VALUE	STARTING	NEED NEW		SE EXPONENT OVERFLOW.	L CAUSE	JE WILL	X VALUE	INITIAL	* 1	16.	•	.
-1023.7	-1	G VALUE	STARTING	MAN GA	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	L CAUSE	JE WILL	X VALUE	INITIAL	*	14.	•	
-440.9		G VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	L CAUSE	JE WIL	X VALUE WILL	INITIAL	*	12.	•	, •
-190.6		G VALUE	STARTING	NEED NEW		SE EXPONENT OVERFLOW.	WILL CAUSE		X VALL	INITIAL X VALUE	*	10.	9	æ
						WITHIN 20 ITERATIONS	IN 20	WITH	RGENCE	NO CONVERGENCE	* 2		٠	æ
						20 ITERATIONS		WITHIN	RGENCE	NO CONVERGENCE	* *	6.	•	
17126272.	17120	69137.	57.	575	1364.	122.	0	1.00	0.37	0.15	1. 0	•	•	
19725376.	1972	82133.	57.	575	1364.	122.	0	1.00	0.37	0.15	3. 0		•	
-1018.3	-1	G VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	L CAUSE	JE WIL	X VALUE WILL	INITIAL	*		7.	
-528.5		6 VALUE	STARTING	NEED NEW	OVERFLOW. NE	EXPONENT	L CAUSE	JE WILL	X VALUE	INITIAL	*	3.	7. 1	x
3,613.														

9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. MEED NEW STARTING VALUE -12226.1 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -123240.5 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -12340.5 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -1374803.0 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -1374803.0 111. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -24031.1 111. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223363.4 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223363.4 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223363.4 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223363.4 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223363.4 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223363.4 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223363.4 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223363.4 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -223667. 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -323667. 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -3264.7 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -3264.7 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -3264.7 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -3264.7 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -3264.7 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -3210.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OMERFLOW. NEED NEW STARTING VALUE -3210.0 1	-2481.6	V)	NEW STARTING	29 P	OVERE OF .	CAUSE EXPONENT	E 7 - 7 A	X VAT (IF E	INTTIM	٥	18.	0	,
9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2026.1 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE15936.0 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE159465.3 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE159465.0 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE159465.0 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2031.1 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2033.1 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2033.1 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE20336.1 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE20336.1 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE20336.1 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE20336.1 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE20366720. 11. • IN OCCONVERGENCE WITHIN 20 ITERATIONS 10. • IN OCCONVERGENCE WITHIN 20 ITERATIONS 10. • IN OCCONVERGENCE WITHIN 20 ITERATIONS 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-1183.1	ALUE	STARTING			EXPONENT		VALUE		*	16.	9.	
10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		/ALUE	STARTING			EXPONENT		VALUE		*	14.	9.	
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1933.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173249.5 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173263.0 13. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173263.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -187383.0 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1873817. 2. I O.15 O.86 1.00 122. 2899. 4980. 58595. 18777817. 4. II. O.15 O.86 1.00 122. 2899. 6980. 68177. 11414128. 4. II. O.15 O.86 1.00 122. 2899. 6980. 68177. 11414128. 4. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 11. O. PARTINAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.6 13. • NO CONVERGENCE WITHIN 20 ITERATIONS 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -2336678.0 15. • NO CONVERGENCE WITHIN 20 ITERATIONS 16. • NO CONVERGENCE WITHIN 20 ITERATIONS 17. • NO CONVERGENCE WITHIN 20 ITERATIONS 18. • NO CONVERGENCE WITHIN 20 ITERATIONS 19. • NO CONVERGENC		/ALUE	STARTING				ILL CAI			*	12.	٥	6.
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE1938.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE17346.5.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE17346.5.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE17346.5.0 12. 2899. • ASSOCIATION OF THE PROPERTY OVERFLOW, NEED NEW STARTING VALUE66.7 13. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE66.7 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23365.4 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23365.4 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23365.6 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23365.6 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23366.7 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23366.7 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23366.7 17. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23366.7 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23366.7 19. • NO CONVERGENCE WITHIN 20 ITERATIONS 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23566.7 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE23566.7 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE	-133.3	/ALUE	STARTING			EXPONENT		VALUE		*	10.	9.	0
10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18938.0 12. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -172240.5 14. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574663.0 15. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574663.0 16. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574663.0 17. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574663.0 18. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.7 19. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.7 19. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -26336.4 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -26336.4 11. 0.72 0.33 1.00 195. 1074. 6542. 80247. 19048224. 12. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -22366720. 18. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -22366720. 19. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -22366720. 19. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 19. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -182.8 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NE										*	8		
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -19338.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173240.5 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173240.5 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173240.5 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574663.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574663.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574617. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -14998.1 13. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223563.4 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223563.4 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2236672.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2236672.0 17. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2336672.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2336672.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2336672.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2336672.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2336672.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -109464. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -10946222109664. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -10946222109664. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -109467. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -109467. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -22109664. 10. • INITIAL X VALU											6.	9.	2
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1938.0 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -963.7 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1698.1 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2236678.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2336678.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23266720. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3266720. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3266720. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3266720. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -321.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -321.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -321.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	8898160.		42.		1074.	195.	00			:	•	9.	2
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -19338.0 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.1 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2693.7 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3208678.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3208678.0 17. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3208678.0 18. • OCCUPACEMBERICE WITHIN 20 ITERATIONS 19. • OCCUPACEMBERICE WITHIN 20 ITERATIONS 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -320664. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -321709664. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -32366720. 11. • OCCUPACEMBERICE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -32366720. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -32366720. 13. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -32366720. 14. • INITIAL X VALUE WILL CAUS	1202848.		12.		1074.	195.	00			3.		.9	2
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -19338.0 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 17. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.1 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2693.7 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 13. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 17. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 19948224. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 19948224. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3286672.0 19948224. • INITIAL X VALUE WILL CAUSE EX	-564.7	ALUE	STARTING			JSE EXPONENT		X VALUE WI		*	8.	7.	2
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1938.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -197249.5 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1974863.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1974863.0 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1974863.0 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1974863.0 13. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1963.7 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18958.1 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 17. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19948224. • 100.22 0.33 1.00 19948224.	-321.0	/ALUE	STARTING			EXPONENT		VALUE		*	16.	7.	2
R. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1938.0 10. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1938.0 11. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1938.0 11. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1938.0 11. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1938.0 11. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1938.1 12. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -963.7 13. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 14. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -22366720. 4. O INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19. O OONVERGENCE WITHIN 20 ITERATIONS 10. O OONVERGENCE WITHIN 20 ITERATIONS	-182.8	/ALUE	STARTING			EXPONENT		VALUE		*	14.	7.	6
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -18938.0 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173249.5 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173249.5 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1574863.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173249.5 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -963.7 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -28353.4 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 17. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23308678.0 10. • INITIAL X VAL	-103.5	ALUE	STARTING				LL CAI			*	12.	7.	5
10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE18938.0 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE173249.5 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE173249.5 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE1574863.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE174463.0 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE963.7 19. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE28363.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE233663.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE233663.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE233663.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE233663.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE233663.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE233663.4 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE233663.4 13. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE233663.4 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE2336678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE2336678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE2336678.0 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE2336678.0 15. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE2336678.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE2336678.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE2336678.0 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE2336678.0 17. • INITIAL X VA						ITERATIONS	HIN 20	RGENCE WIT	NO CONVE	*	10.	7.	6
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -2026.1 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1574863.0 17. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1574863.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -263.7 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -2336678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -2336678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23366720. 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23366720. 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -23366720. 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED N										*		7.	6.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173249,5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -173249,5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1574863.0 17. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -963.7 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -223363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 15. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 17. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -3308678.0 10. * INITIAL X VALUE WILL CAUSE	1709664		42.		1074.	195.	00			:	•	7.	
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —963.7 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —14958.1 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —223363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 17. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 20. * * * * * * * * * * * * * * * * * * *	9948224.		42.		1074.	195.	00			2.	4	7.	6
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 2. I 0.15 0.86 1.00 122. 2899. 0. 68177. 17414128. 4. 1. 0.15 0.86 1.00 122. 2899. 4980. 58595. 15717817. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -963.7 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 17. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 19. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0	3266720.		12.		1074.	195.	00			4.	2	7.	5
R. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18938.0 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ********************* 2. I 0.15 0.86 1.00 122. 2899. 0. 68177. 17414128. 4. 1. 0.15 0.86 1.00 122. 2899. 4980. 58595. 15717817. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.7 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23363.4 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -23363.4 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 17. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3308678.0	***		STARTING							*	18.	:	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ******************** 2. I 0.15 0.86 1.00 122. 2899. 0. 68177. 17414128. 4. 1. 0.15 0.86 1.00 122. 2899. 4980. 58595. 15717817. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —14958.1 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —223363.4 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —3308678.0	****		STARTING			EXPONENT		VALUE		*	16.	:	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ********* 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ********* 4. 1. 0.15 0.86 1.00 122. 2899. 0. 68177. 17414128. 4. 1. 0.15 0.86 1.00 122. 2899. 4980. 58595. 15717817. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -963.7 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -14958.1 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4 110. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -223363.4	****		STARTING					VALUE		*	14.	:	5
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ********** 4. 1. 0.15 0.86 1.00 122. 2899. 0. 68177. 17414128. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —963.7 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —14958.1 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —14958.1	308678.0		STARTING			EXPONENT				*	12.	11.	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE ************************************	223363.4		STARTING					VALUE		*	10.	=	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************	-14958.1		STARTING							*	œ •	:	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************	-963.7	ALUE	STARTING					VALUE			5	=	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —173249.5 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1574863.0 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************			80.		2899.	122.	00			:	•	=	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************	7414128.				2899.	122.	00			-	۰.	=:	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1574863.0 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************	***		STARTING			EXPONENT				٥	18.	۰	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —173249.5 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —173249.5			STARTING			EXPONENT		VALUE		*	16.	9.	10.
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -18938.0 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -173249.5	574863.0		STARTING			EXPONENT		VALUE		•	14.	٠	0
10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2026.1	173249.5		STARTING			EXPONENT		VALUE		•	12.	•	10.
A. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE			STARTING			EXPONENT		VALUE		*	10.	9.	10.
	-2026.1	/ALUE	STARTING			EXPONENT		VALUE		*	,	9.	0

4. 6. 11. 2. 2. 0.22 0.33 1.00 194. 1571. 0552. 8044. 199560. 4. 6. 11. 7. 7. 0.22 0.33 1.00 194. 1571. 0552. 8044. 199560. 4. 6. 11. 7. 7. 0.20 0.33 1.00 194. 1571. 852. 72565. 1811792. 4. 6. 11. 1. 1. 10 10 10 11711. X VALUE 41L CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.0 4. 6. 11. 12. 1 10 11711. X VALUE 41L CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.4 4. 6. 11. 12. 1 10 10 10 11711. X VALUE 41L CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.4 4. 6. 11. 12. 1 10 10 10 11711. X VALUE 41L CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.4 4. 6. 11. 12. 1 10 10 10 11711. X VALUE 41L CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.4 4. 6. 11. 12. 1 10 10 10 11711. X VALUE 41L CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.4 4. 6. 7. 12. 1 10 10 10 10 10 10 10 10 10 10 10 10 1		*1515 5	781 18F	NEW CIVELLING	2 9 7	ONEDE! OM.	CVICE EXDUNENT	WT1 - 72	11 IV	TNITTAL	*	12	1	D	•
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 8048. 1999560. 6. 11. 4. 1. 0.22 0.13 1.00 195. 1074. 6542. 72565. 1811792. 6. 11. 4. 1. 0.22 0.13 1.00 195. 1074. 6542. 72565. 1811792. 6. 11. 14. 0. 100000000000000000000000000	1	******				OVERFLOW.	EXPONENT		VALUE		•	10.	:	3	4
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 6084. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 6084. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 6084. 19995600. 6. 11. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.7 6. 11. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.8 6. 11. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.8 6. 11. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.8 6. 11. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.9 6. 11. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.9 6. 11. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.9 6. 7. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.9 6. 7. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 7. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 7. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 7. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.4 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.5 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -470.5 6. 0. 10. 0 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING		-165.2				OVERFLOW.					٠		=		
6. 11. 2. 2. 2. 0.22 0.33 1.00 195. 1074. 6522. 8084. 1999600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6522. 8084. 1999600. 6. 11. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.7 6. 11. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -770.8 6. 11. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -770.8 6. 11. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -770.8 6. 11. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -770.8 6. 11. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -770.8 6. 11. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -770.8 6. 11. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -770.8 6. 7. 10. 0. 0. 0.00VERBERGE WITHIN 20 ITERATIONS 6. 7. 10. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 7. 10. 0. 101111. × VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -770.4 6. 11. 10. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 0. 0. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 00 CONVERBERGE WITHIN 20 ITERATIONS 6. 00 CO							1 TERATIONS			NO CONVER	•	•	=-		
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995600. 6. 11. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -230.7 6. 11. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1730.8 6. 11. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 10. 10.022 0.37 1.00 195. 1206. 5757. 9396. 6. 7. 10. 10.022 0.37 1.00 195. 1206. 5757. 9396. 1871936. 6. 7. 10. 10.022 0.37 1.00 195. 1206. 5757. 9396. 1871936. 6. 7. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 7. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 7. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 0. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 6. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.6 6. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.6 6. 10. 10. 101710L X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -	P	17118128.	65497.	5757.		1206.	195.	1.00			:		11.		
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 18411792. 6. 11. 1. 0. 10 101174. VALUE 41LL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 0 101174. VALUE 41LL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -230.7 6. 11. 10. 0 101174. VALUE 41LL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -779.8 6. 11. 14. 0 101174. VALUE 41LL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -779.8 6. 11. 14. 0 101174. VALUE 41LL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11269.4 6. 11. 14. 0 10174. VALUE 41LL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11269.4 6. 11. 14. 0 1022 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 10. 0.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 10. 0.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 10. 0. 0.00000000000000000000000000		18817904.	73996.	5757.		1206.	195.	1.00			3.	٠.	=	œ •	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995860. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1274. 6542. 72565. 18411792. 6. 11. 0. 22 0.33 1.00 195. 1274. 6542. 72565. 18411792. 6. 11. 11. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —123.9 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —230.7 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —279.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —4472.9 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —4472.9 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —4472.9 6. 11. 10. 0.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 14. 0.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 14. 0. 0.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 9. 7. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —4172.9 6. 7. 14. 0. 10.1111AL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —473.4 8. 7. 12. 9 INITIAL X VALUE WILL CAUSE EXPONENT DVERFLOW. NEED NEW STARTING VALUE —473.4 8. 9. 10. 9. 22 0.37 1.00 195. 1206. 5757. 990.5 99		-4905.0				OVERFLOW.			VALUE		*		9.		
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 18411792. 6. 11. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11260. 44.72.9 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11260. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		-2102.0			NEED	OVERFLOW.	EXPONENT		VALUE		0	16.	9	90	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995500. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 18411792. 6. 111. 6. 9 10 CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -120.8 6. 7. 4. 0.22 0.37 1.00 195. 1206. 5757. 73504. 18712504. 6. 7. 4. 0.22 0.37 1.00 195. 1206. 5757. 73504. 18712504. 6. 7. 10. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 7. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 6. 7. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 6. 7. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 6. 9. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 6. 9. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 6. 9. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 10. 0 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0 CON		-909.6				OVERFLOW.	EXPONENT		VALUE		*	14.	•	æ	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995500. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 1841792. 6. 11. 6. 3 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 0 INITIAL X VALUE FILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -230.7 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -750.8 6. 11. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -750.8 6. 11. 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -11266.4 7. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -11266.4 8. 7. 2. 0.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 8. 7. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -130.9 8. 7. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -209.2 8. 7. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -290.2 8. 0. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -209.2 8. 0. 0. 0. 0 OCONVERGENCE WITHIN 20 ITERATIONS 8. 0. 0. 0. 0 OCONVERGENCE WITHIN 20 ITERATIONS 8. 0. 0. 0. 0 OCONVERGENCE WITHIN 20 ITERATIONS 8. 0. 0. 0. 0 OCONVERGENCE WITHIN 20 ITERATIONS 8. 0. 0. 0 OCONVERGENCE WITHIN 20 ITERATIONS 8. 0. 0. 0 OCONVERGENCE WITHIN 20 ITERATIONS 8. 0. 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -473.4 9. 0. 0. 0 OCONVERGENCE WITHIN 20 ITERATIONS 9. 0. 0 OCONVERGENCE WITHIN 20 ITERATIONS 9. 0. 10 OCONVERGENCE WITHIN 20 ITERATIONS 9. 0. 10 OCONVERGENCE WITHIN 20 ITERATIONS 9. 0 O		-397.2				OVERFLOW.	EXPONENT	WILL CA		INITIAL X	*	12.	•	30	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 1841792. 6. 11. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -123.9 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -1796.4 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -1796.4 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -1796.4 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -1796.4 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -1796.4 7. 10. 0.22 0.37 1.00 195. 1206. 5757. 69416. 17901966. 8. 7. 10. 0.22 0.37 1.00 195. 1206. 5757. 69416. 17901966. 8. 7. 10. 0.22 0.37 1.00 195. 1206. 5757. 69416. 17901966. 8. 7. 10. 0.10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -20.37 8. 7. 10. 0.10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -20.37 8. 7. 10. 0.10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE -20.37 8. 0. 0. 0.37 1.00 195. 1206. 5757. 69416. 17901966. 9. 0. 0. 0.22 0.37 1.00 195. 1206. 5757. 69416. 1201.9909. 9. 0. 0. 0.22 0.37 1.00 195. 1206. 5757. 67963. 17611360.		-174.1				OVERFLOW.	EXPONENT			INITIAL X	*	10.	•	æ •	4
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 11. 0.22 0.33 1.00 195. 1074. 6542. 72565. 18411792. 6. 11. 6. 0. NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-123.9 6. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-730.8 6. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 14. 0. O.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 16. 1. 0.22 0.37 1.00 195. 1206. 5757. 69416. 18719536. 8. 7. 16. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-130.9 8. 7. 16. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-130.9 8. 7. 16. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-249.2 8. 7. 16. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-330.9 8. 7. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-330.9 8. 7. 18. 0. O.22 0.37 1.00 195. 1206. 5757. 80655. 20149808. 8. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.										NO CONVER	*	œ.	•	30	4
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80464. 1996600. 6. 11. 4. 11. 0.22 0.33 1.00 195. 1074. 0542. 7265. 18411722. 6. 11. 6. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -230.7 6. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 12. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 7. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.6 6. 7. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.6 6. 7. 13. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.9 6. 7. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 6. 7. 18. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 73.4 75. 18. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -473.4 76. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -473.4 77. 18. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -473.4 78. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -473.4 790.5 790.5 790.5 790.5 790.6 790.7 790.6 790.7 790.6 790.7 790.6 790.7 7		P					0 ITERATIONS			NO CONVER	*	6.	•		
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -230.7 6. 11. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 14. 0 0.22 0.37 1.00 195. 1206. 5757. 73504. 18719536. 7. 10. 0 0.22 0.37 1.00 195. 1206. 5757. 69416. 17901968. 7. 11. 0 0.22 0.37 1.00 195. 1206. 5757. 69416. 17901968. 7. 11. 0 0.00 CONVERGENCE WITHIN 20 ITERATIONS 7. 12. 0 0.00 CONVERGENC		17611360.	67963.	5757.		1206.	195.	1.00			:		٠		
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 18411792. 6. 11. 6. 3 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 3 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 3 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1790.8 6. 11. 14. 3 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 14. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 14. 5 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 14. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 14. 7. 14. 7. 1.00 195. 1206. 5757. 91992. 22417200. 7. 10. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -130.9 7. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 18. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 7. 18. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2		20149808.	80655.	5757.		1206.	195.	1.00			.	٠.			
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 18411792. 6. 11. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -300.7 6. 11. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11266.4 7. 2. 4. 0.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 8. 0 CONVERGENCE WITHIN 20 ITERATIONS 8. 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 8. 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -130.9 8. 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -130.9 8. 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 9. 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 9. 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 9. 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2 9. 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -249.2		-902.5	VALUE		NEED	OVERFLOW.					*	18.	7.	3	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 1. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-123.9 6. 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-730.8 6. 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 10. 0 0.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 8. 7. 4. 2. 0.22 0.37 1.00 195. 1206. 5757. 73504. 18719536. 8. 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 8. 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 9. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10		-473.4			NEED	OVERFLOW.	EXPONENT		VALUE		*	16.	7.	30	4
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 6. 3 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 3 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —123.9 6. 11. 12. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —730.8 6. 11. 14. 5 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 14. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 14. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 14. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		-249.2				OVERFLOW.			VALUE		*	14.	7.		4
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —123.9 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —230.7 6. 11. 12. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLO		-130.9				OVERFLOW.	EXPONENT	WILL CA	VALUE	INITIAL X	*	12.	7.	æ	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11289.4 6. 11. 19. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1123.9 6. 11. 10. 9 INITIAL X VALUE WILL CAUSE EXPONEN							O ITERATIONS			NO CONVER	*	10.	7.		4
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 1995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 18411792. 6. 11. 6. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-123.9 6. 11. 12. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-730.8 6. 11. 14. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-730.8 6. 11. 16. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 18. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 19. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-1796.4 6. 11. 19. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-11268.4 6. 11. 19. 9.22 0.37 1.00 195. 1206. 5757. 91992. 22417200. 7. 4. 2. 0.22 0.37 1.00 195. 1206. 5757. 69416. 17901968.										NO CONVER	¢	æ	7.	3 0	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 6. 3 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 8. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 10. 5 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 5 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -7796.4 6. 11. 16. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -4472.9 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -4472.9 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -11268.4 6. 11. 18. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		17901968.	69416.	5757.		1206.	195.	1.00			•	•	7.	æ	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 6542. 72565. 18411792. 6. 11. 6. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 12. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -300.7 6. 11. 14. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 16. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 16. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 18. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -4472.9 6. 11. 19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10		18719536.	73504.	5757.		1206.	195.	1.00			۶.		7.	.	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 6. 3 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —123.9 6. 11. 12. 5 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —730.8 6. 11. 14. 5 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 16. 5 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —1796.4 6. 11. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —11268.4		22417200.	91992.	5757.		1206.	195.	1.00			•	•	7.		
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 6. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 8. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9 6. 11. 12. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -730.8 6. 11. 14. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4 6. 11. 16. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1796.4		-11268.4	VALUE		NEED	OVERFLOW.	EXPONENT	WILL CA			•	18.	Ξ.	•	
6. 11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 6. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. 6. 11. 6. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 6. 11. 10. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —123.9 6. 11. 12. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —730.8 6. 11. 14. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —730.8		-4472.9				OVERFLOW.	EXPONENT		VALUE		*	14.	11.	,	
11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. ← 11. 6. ** NO CONVERGENCE WITHIN 20 ITERATIONS 11. 8. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —123.9 11. 10. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —300.7 11. 12. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —730.8		-1796.4				OVERFLOW.			VALUE		*	14.	=	•	4
11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. — 11. 6. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 11. 8. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —123.9 11. 10. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —300.7		-730.8				OVERFLOW.	EXPONENT				*	12.	=	•	
11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. ← 11. 6. 3 NO CONVERGENCE WITHIN 20 ITERATIONS 11. 8. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -123.9		-300.7				OVERFLOW.	EXPONENT	WILL CA	VALUE	INITIAL X	*	10.	:	•	
11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792. ← 11. 6. ** NO CONVERGENCE WITHIN 20 ITERATIONS		-123,9				OVERFLOW.		MILL CA			*	œ •	=	•	
11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484. 19995600. 11. 4. 1. 0.22 0.33 1.00 195. 1074. 8542. 72565. 18411792.	*						O ITERATIONS			NO CONVER	¢	•	=	•	
11. 2. 2. 0.22 0.33 1.00 195. 1074. 6542. 80484.	A.	18411792. ←	72565.	8542.		1074.	195.	1.00			:		=	5	
		19995600.	80484.	6542.		1074.	195.	1.00				۶.	=	•	

1	21106160	75.758		1033	316		ר גני	0 0 0 0		,	7	
186	21996944.	86891.	6542.	1033.	316.	1.00	0.33 1.	0.25 0	٧.	4.	7.	
	25312224.	103467.	6542. 1	1033.	316.	1.00	0.33 1.	0.25 0	4.	۰.	7.	
-82	****	VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE WI	INITIAL X	٠	18.	11.	
	* * * * * * * *	VALUE	NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	*	16.	11.	10.
	****	VALUE	NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	•	14.	11.	10.
	-2774555.0	VALUE	ED NEW STARTING	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	VALUE	INITIAL X	*	12.	:	10.
	-188224.5	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	*	10.	11.	10.
	-12611.0	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	•		17.	10.
	-801.7	VALUE	NEED NEW STARTING		SE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE WI	INITIAL X	٠	•	=	10.
1	13446567. <	43639.	4980.	2210.	195.	1.00	0.86 1.	0.22 0			-	10.
	15619620.	55604.	0.	2210.	195.	1.00	0.86 1.	0.22 0	-	2.	17.	10.
	****	VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE WI	INITIAL X	٠	18.		10.
	*****	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	*	16.	9	10.
	-1316980.0	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	•	14.		10.
	-145295.6	VALUE	ED NEW STARTING	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE WI	INITIAL X	*	12.	۰	10.
	-15870.6	VALUE	NEW STARTING	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	VALUE	INITIAL X	*	10.	9	10.
	-1681.7	VALUE	NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	•	80	9	10.
	-153.7	VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	EXPONENT	WILL CAUSE	X VALUE WI	INITIAL X	•	5.	٠	10.
1	12788787.	40350.	4980.	2210.	195.	1.00	0.86 1.	0.22 0	·		9.	10.
	18241728.	68715.	0.	2210.	195.	1.00	0.86 1.	0 - 22 0	-	٠.	۰	10.
	-1301114.0	VALUE	ED NEW STARTING	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE WI	INITIAL X	•	18.	7.	10.
	-234087.5	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	*	16.	7.	10.
	-41887.7	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	*	14.	7.	10.
	-7411.5	VALUE	ED NEW STARTING	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	VALUE	INITIAL X	*	12.	7.	10.
	-1273.2	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	٠	10.	7.	10.
	-197.0	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	•		7.	10.
1	13567410.	44243.	4980.	2210.	195.	1.00	0.86 1.	0.22 0		•	7.	10.
	14595362.	50483.	0.	2210.	195.	1.00	0.86 1.	0.22 0	-	4	7.	10.
	22364480.	89328.	0.	2210.	195.	1.00	0.86 1.	0.22 0	-	٠.	7.	10.
	-27586.2	VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	SE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE WI	INITIAL X	*	18.	=	8
	-9610.1	VALUE	NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	*	16.	:	œ •
980	-3387.1	VALUE	ED NEW STARTING	OVERFLOW. NEED	EXPONENT	WILL CAUSE	VALUE	INITIAL X	٠	14.	Ξ.	æ
		******	Co. Life Chair take	O.F	The state of the s	the unit	THE STREET	* 13 1 1 1 1 1 1			:	

-444.9		VALUE	STARTING	NEW	FLOW. NEED	T OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	VALUE	V Y	INITIAL	•	16.	7.	
-235,6	•	VALUE	STARTING	NE W	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	VALUE	×	INITIAL		14.	7.	30
-124.5		VALUE	STARTING	Z M	FLOW. NEED	T OVER	E EXPONENT OVERFLOW.	CAUS	WILL	INITIAL X VALUE WILL CAUSE	AL X	INIT	•	12.	7.	30
!						S	ITERATIONS	20	WITHIN		CONVERGENCE	NO CO		10.	7.	8
						S	ITERATIONS	20	MITHIN		CONVERGENCE	NO CO	•	,D	7.	3 0
19741072.		75011	7.	5757	1110.		316.		1.00	0.37	0	. 0.25	:	•	7.	œ •
20606640.		79339.	7.	5757	1110.		316.		1.00	0.37	0	0.25		4	7.	æ
24093024.		96771.	7.	5757	1110.		316.		1.00	0.37	0	0.25	4.	2	7.	œ •
10291.4		VALUE	STARTING	ED NEW S	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	X VALUE		INITIAL			7	•
-4119.0		VALUE	STARTING	ZE E	OVERFLOW. NEED		EEXPONENT	CAUSE	WILL	VALUE	[AL X	INITIAL		16.	Ξ.	6.
-1668.7		VALUE	STARTING	ZE E	OVERFLOW. NEED		EEXPONENT	CAUSE	WILL	VALUE	×	INITIAL		14.	=	•
-685.0	П	VALUE	STARTING	ZE E	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	VALUE	INITIAL X	INIT		12.	=	•
-284.5	•	VALUE	STARTING	NE E	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	VALUE	×	INITIAL		10.	=:	3
-118.3	(FI	VALUE	STARTING	ZE	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUS	WILL	X VALUE WILL CAUSE	[VF X	INITIAL		3	=	5
						15	NO CONVERGENCE WITHIN 20 ITERATIONS	2 20	HITHI	SENCE	NVER	NO CO		6.	:	•
19714384.		75478.		6542	1033.		316.		1.00	0.33	0	0.25	:		=	5
21471616.		84264.	2.	6542	1033.		316.		1.00	0.33	0	0.25	۶.	٧.	=	•
-2294.6	ľ	VALU	STARTING VALUE	NE	FLOW. NEED	IT OVER	X VALUE WILL CAUSE EXPONENT OVERFLOW.	CAUS	WILL	VALUE		INITIAL		18.	•	•
-1101.9		VALU	STARTING VALUE	N M	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	X VALUE		INITIAL	*	16.	9	5
-533,8	•	VALUE	STARTING	NE W	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	X VALUE		INITIAL	٠	14.	•	•
-260.4		VALUE	STARTING	NE	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	INITIAL X VALUE	V X	INIT		12.	•	•
-127.0	E .	VALUE	STARTING	NE	FLOW. NEED	IT OVER	EXPONENT OVERFLOW.	WILL CAUSE		X VALUE		INITIAL	•	10.	۰	•
						S	20 ITERATIONS	200	IHIIM	NO CONVERGENCE WITHIN	NVERO	NO CO		æ	•	•
						S	20 ITERATIONS		NIHIIN	ENCE	NO CONVERGENCE	NO CO		6.	۰	•
20515024.		79481.		6542	1033.		316.		1.00	0.33	0	0.25	:	4	•	5
22906704.		91440.	2.	6542	1033.		316.		1.00	0.33	0	0.25	ω •	۰.	٠	•
-529,1	•	VALUE	STARTING	ED NEW S	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	X VALUE		INITIAL	•		7.	
-302,6	-	VALUE	STARTING	NE E	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	X VALUE		INITIAL		16.	7.	•
-173.3		VALUE	STARTING	NE E	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUSE	WILL	VALUE	×	INITIAL	٠	14.	7.	•
-98.7	6	VALUE	STARTING	ED NEW	FLOW. NEED	IT OVER	E EXPONENT OVERFLOW.	CAUS	WILL	INITIAL X VALUE WILL CAUSE	[AL X	INIT		12.	7.	5
						S	ITERATIONS	20	MITHIN		CONVERGENCE	NO CO	*	10.	7.	5
						S	ITERATIONS	0	NITTIN		CONVERGENCE	NO CO	٠	3	7.	•
			:													

	-130749.4	A11 112	STARTING	NEED NEE	OVEDEL ON N	FYDONENT	CALISE	VALUE WILL	*	INITIAL	2	10	0	-
2003	-14256.8	VALUE	STARTING	NEED NEW	OVERFLOW. N	EXPONENT	L CAUSE	VALUE WILL	×	INITIAL	*	10.	9.	5. 10.
	-1498.4	VALUE	STARTING	NEED NEW	OVERFLOW. N	EXPONENT	L CAUSE	VALUE WILL	×	INITIAL	*	20	9.	5. 10.
-84	-132.0	VALUE	STARTING	NEED NEW		EXPONENT OVERFLOW.	L CAUSE	X VALUE WILL		INITIAL		•	9.	10
V	13549568.	40554.	4980.	49	1797.	316.	0	5 1.00	0.86	0.25	6.		9.	5. 10.
1	18055392.	64183.	•		1797.	316.	00	5 1.00	0.86	0.25	-	2.	9.	5. 10.
	-1166492.0	VALUE	STARTING	NEED NEW		EXPONENT OVERFLOW.	L CAUSE	VALUE WILL	×	INITIAL	*	18	7.	5. 10.
	-209939.0	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT (L CAUSE	VALUE WILL	×	INITIAL	٠	16.	7.	5. 10.
	-37525,3	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT (L CAUSE	VALUE WILL	×	INITIAL		14.	7.	5. 10.
	-6614.2	VALUE	STARTING	NEED NEW		EXPONENT OVERFLOW.	L CAUSE	X VALUE WILL	AL X V	INTITIAL	٠	12.	7.	5. 10.
	-1124.7	VALUE	STARTING	NEED NEW	OVERFLOW. N	EXPONENT (L CAUSE	VALUE WILL	×	INITIAL	*	10.). 7.	5. 10.
	-168.5	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT (L CAUSE	VALUE WILL	×	INITIAL	*	30	7.	5. 10.
	14587896.	45745.	4980.	49	1797.	316.	00	5 1.00	0.86	0.25	ω •	6	7.	5. 10.
	15605651.	51934.	•		1797.	316.	0	5 1.00	0.86	0.25	-	4	7.	5. 10.
	21906896.	83441.	•		1797.	316.	0	5 1.00	0.86	0.25	-). 7.	5. 10.
	-25112,3	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.		X VALUE WILL		INITIAL		18.	8. 11.	5.
	-8820.4	VALUE	STARTING	NEED NEW	OVERFLOW. N	EXPONENT (L CAUSE	VALUE WILL	×	INITIAL	*	. 16.	8. 11.	5.
	-3136.0	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT (L CAUSE	VALUE WILL	×	INITIAL	*	14.	8. 11.	5.
	-1131.1	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT	L CAUSE	VALUE WILL	×	INITIAL	*	. 12.	8. 11.	5.
	-413.9	VALUE	STARTING	NEED NEW		EXPONENT OVERFLOW.	L CAUSE	VALUE WILL	×	INITIAL	*	10.	8. 11.	
	-152.5	VALUE	STARTING	NEED NEW	OVERFLOW. N	X VALUE WILL CAUSE EXPONENT (L CAUSE	THE MI		INITIAL	•	20	8. 11.	5.
						20 ITERATIONS	1 02 NI	NO CONVERGENCE WITHIN	NVERGE	NO CO	٠	6.	8. 11.	
1	18333712. <	67975.	5757.	57	1110.	316.	0	1.00	. 0.37	0.25	:		8. 11.	5
	20071552.	76664.	5757.	57	1110.	316.	00	7 1.00	0.37	0.25	ω •	2	8. 11.	5.
	-4520.0	VALUE	STARTING	NEED NEW		CAUSE EXPONENT OVERFLOW.		X VALUE WILL		INITIAL		18.	8. 9.	
	-1951.3	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT	L CAUSE	VALUE WILL	×	INITIAL	*	16.	8. 9.	5
	-850.8	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT	L CAUSE	VALUE WILL	×	INITIAL		14.	8. 9.	5
	-374.4	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT (L CAUSE	VALUE WILL	×	INITIAL	*	12.	8. 9.	5
	-165.4	VALUE	STARTING	NEED NEW	OVERFLOW. NI	EXPONENT	L CAUSE	X VALUE WILL		INITIAL		10.	8. 9.	5.
						20 ITERATIONS		NO CONVERGENCE WITHIN	NVERGE	NO CO		20	8. 9.	
						ITERATIONS	20	NCE WITHIN	NO CONVERGENCE	NO CO		5.	8. 9.	•
185	19113344.	71873.	5757.	57	1110.	316.	00	1.00	0.37	0.25		4	B. 9.	

\$. 10. 0. 11. 0.	U IB	20902128.	72771.	5757.	1057.	522.	1.00	0.33 0.37 1.00	:		==	6.
10. 0. 14. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		22994944.	83235.		1057.	522.	1.00		.			
10. 0. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-85	-3759.9	VALUE							18.		
10. 0. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STARTING VALUE		-1650.4	VALUE	Z E				×		16.		
10. 0. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STARTING VALUE		-732.2	VALUE					×		14.		
10. 9. 14. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		-328.0	VALUE				WILL			12.	. 9.	
10. 0.14. 0.1111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		-147.5	VALUE	NE E			MILL			10.	•	
10. 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE							NIHIIN	CONVERGENCE		•		
10. 9. 14. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE							NITTIN			•		
10. 0. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.194235.0 10. 0. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.1960032. 10. 11. 12. 1 0.25 0.86 1.00 316. 1797. 0.51936. 15060032. 10. 11. 14. 2. 1 0.25 0.86 1.00 316. 1797. 4980. 41017. 13642100. 10. 11. 14. 4. 2. 0.25 0.86 1.00 316. 1797. 4980. 41017. 13642100. 10. 11. 10. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.19595.3 10. 11. 10. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2500444.0 10. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2500444.0 10. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2500444.0 10. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2500444.0 10. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2500444.0 10. 11. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2500444.0 10. 11. 14. 0. 0.33 0.37 1.00 522. 1057. 5757. 90661. 248032952. 10. 17. 18. 0. 0.033 0.37 1.00 522. 1057. 5757. 90661. 248032952. 10. 17. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2035952. 10. 17. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2035952. 10. 17. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2035952. 10. 17. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2035952. 10. 17. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 0.2035952. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		22232048.	79420.		1057.	522.	1.00		۶.			
10. 0. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		24905264.	92786.		1057.	522.	1.00		ω •	۶.		
10. 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1184235.0 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		-722.7	VALUE			CAUSE EXPONENT			٠	18.	. 7.	•
10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		-386.7	VALUE	NEW STARTING				×		16.		
10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE ************************************		-207.6	VALUE	NEW STARTING			WILL	×		14.		
10. 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		-111.2	VALUE			EXPONENT	WILL		*	12.		
10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************							NITHIN	CONVERGENCE	*	10.		
10. 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE							NITHIN	CONVERGENCE	*	30	. 7.	
10. 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		23383600.	85178.		1057.	522.	1.00		:	6.	7.	•
. 10. 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 9. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 2. 1 0.25 0.86 1.00 316. 1797. 0. 51936. 15606032 10. 11. 4. 2. 0.25 0.86 1.00 316. 1797. 4980. 41017. 13642100 10. 11. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 12. • INITIAL X VALUE		24480224.	90661.		1057.	522.	1.00					
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		28035952.	08440.		1057.	522.	1.00			٧٠	. 7.	
. 10. 9. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		*****	VALUE			EXPONENT			*	18.		
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		****	VALUE	NEW STARTING				×	*	16.	- 11.	
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		*****	VALUE						*	14.		•
INC. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		-2500444.0	VALUE						٠	12.		•
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		-169950.3	VALUE					×		10.		•
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		-11373.9	VALUE	NEW STARTING		EXPONENT						1
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ************************************		-775-1	VALUE	NEW STARTING				X VALUE		5.		1
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 9. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 9. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 11. 2. T 0.25 0.86 1.00 316. 1797. 0. 51936.			41017.		1797.	316.	1.00		۶.		•	1
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 9. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE . 10. 9. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		15606032.	51936.		1797.	316.	1.00		-	۰,		•
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		******	VALUE							18.		. 10
. 10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		*****	VALUE	NE				×		16.		•
		-1184235.0	VALUE	ZE W		EXPONENT		×		14.		•

6. 8. 11. 10. 8. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -353.2 6. 8. 11. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2537.5 6. 8. 11. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2737.1 6. 10. 7. 2. 10 0.33 0.66 1.00 \$27. 1553. 0. 639.5. 2469707. 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2733.1 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2733.1 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2733.1 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -1033.1 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -1033.1 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -1033.2 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -1033.2 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -10373.2 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -10373.2 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -10373.2 6. 10. 7. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -10373.2 6. 10. 0. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -10373.2 6. 10. 0. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -103732.6 6. 10. 0. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -103732.6 6. 10. 0. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -103732.6 6. 10. 10. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -103732.6 6. 10. 10. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -203636.3 6. 10. 10. 10. • 1017101. × VALUE VILL CAUSE EXPONENT OVERFLON. N		
8. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -363.2 8. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2637.5 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2637.5 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2637.5 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2637.5 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2637.5 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2637.5 10. 7. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -108.1 10. 7. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -108.2 10. 7. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2655.2 10. 7. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -2655.3 10. 7. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -26552.2 10. 7. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -100732.6 10. 7. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -100732.6 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -100732.6 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -100732.6 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -100732.6 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -100732.6 10. 11. 4. 3. 0.33 0.86 1.00 S22. 1563. 0. 68692. 22764400. 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -101009.3 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -101009.3 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLON. NEED NEW STARTING VALUE -227744.0 10. 11. 14. 3. 0.33 0.86 1.00 S22. 156	******	. 10. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 18. 8. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE953.2 8. 11. 12. 8. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE953.2 8. 11. 14. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637.5 8. 11. 14. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637.5 8. 11. 14. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637.5 8. 11. 14. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637.1 9. 7. 6. 5. 9.33 0.86 1.00 522. 1563. 980. 5386. 9. 7. 10. 9. 30. 9.86 1.00 522. 1563. 980. 5386. 9. 7. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE108.1 9. 7. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE108.1 9. 7. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE108.1 9. 7. 18. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE108.1 9. 7. 18. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.3.4 9. 6. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.3.4 9. 6. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.3.4 9. 0. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.3.4 9. 10. 9. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.3.4 9. 10. 9. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.3.4 9. 10. 9. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.6.3 9. 10. 9. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.6.3 9. 10. 9. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.6.3 9. 10. 9. 10. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE109.6.3 9. 10. 9. 10. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.		. 10. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 111. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE363, 8. 111. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637, 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637, 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637, 8. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637, 8. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637, 9. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637, 9. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2637, 9. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2638, 10. 7. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2658, 10. 7. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2658, 10. 7. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2658, 10. 7. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2658, 10. 7. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE2656, 10. 7. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE160732, 6. 10. 7. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE10356, 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE10356, 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE10356, 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE10356, 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE10356, 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE10356, 10. 9. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE10356, 10. 9. 16. • INITIAL X VALU	,	11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —353,2 8. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —271,2 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —273,1 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —273,1 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —273,1 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —2733,1 10. 7. 4. 1 0.33 0.86 1.00 522. 1563. 0. 89345. 24697072, 10. 7. 4. 1 0.33 0.86 1.00 522. 1563. 4980. 5386. 1782516, 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —100,1 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —2853,2 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —2853,2 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —2853,2 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —2853,2 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —2853,2 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10073,6 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10073,6 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10016,8 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10016,8 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10016,8 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10016,8 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10010,3 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10010,3 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, WEED NEW STARTING VALUE —10010,3 10. 10. 10. 10.	-132615.5	10. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -363.2. 8. 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -271.2. 8. 11. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2737.5. 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2737.1. 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2737.1. 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2737.1. 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2737.1. 10. 7. 4. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 19249304. 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -180732.6. 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2858.2. 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2858.2. 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2858.2. 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -28582.2. 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -28582.2. 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -28582.2. 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -28582.2. 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -100732.6. 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -29564400. 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -100763.3. 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -100763.3. 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -100763.3. 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -20605.3. 10. 9. 10. • INI	-8808.	10. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 111. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -356.2 8. 111. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2637.5 8. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -7274.1 8. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -7274.1 8. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -7274.1 8. 111. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -72032.1 10. 7. 4. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 19249304. 110. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 0. 62102. 19249304. 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -78552.2 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -78552.2 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -78552.2 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -78552.2 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -78552.2 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -78552.2 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -78552.2 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -7856400.2 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -786.0 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -786.0 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -786.0 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -786.0 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -786.0 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -786.0 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -	-532.8	11. 6. * INTTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 199 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		. 10. 11. 4. 3. 0.33 0.86 1.00 522. 1563. 4980.
8. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 89345. 246 110. 7. 4. 1 0.33 0.86 1.00 522. 1563. 4980. 5986. 178 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 10. • INIT	17940112.	10. 11. 2. 1 0.33 0.86 1.00 522. 1563. 0.
B. 11. B. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 12. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 12. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 14. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X VALUE WITL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE B. 11. 18. INITIAL X V	****	9. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. 1 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. 2 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. 3 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. 4 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 4 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 5 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 6 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 6 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 7 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 7 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 7 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 7 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 7 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. 7 INTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 10. 7. 18. 8 INTITAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 10. 7. 18. 9 INTITAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 10. 7. 18. 9 INTITAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 10. 9. 1	-8227744.0	10. 9. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 7. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 7. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 7. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 10. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 10. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 9. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	-916056.3	10. 9. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 9. 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 7. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 7. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 110. 9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTIN	-101009,3	. 9. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 18. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 4980. 178 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 9. 4. 1 0.33 0.86 1.00 522. 1563. 0. 47660. 163 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 47660. 163 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 47660. 163 110. 9. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 47660. 163	-10916.8	. 9. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 89345. 246 10. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 4980. 52102. 192 10. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 10. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 1563. 16692. 205	-1114.4	10. 9. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 13. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 15. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 17. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. **ORTHORISM OF CONTRACTION OF CON	-86.0	9. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. I 0.33 0.86 1.00 522. 1563. 0. 89345. 246 10. 7. 4. I 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 110. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 110. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 110. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 110. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 110. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 110. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 110. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 110. 7. 110.	16359920.	10. 9. 4. I 0.33 0.86 1.00 522. 1563. 0.
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. I 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 4. I 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 112	20566400.	10. 9. 2. 1 0.33 0.86 1.00 522. 1563. 0.
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 4980. 53886, 178 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 10. 7. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 10. 7. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 10. 7. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 10. 7. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -2 10. 7. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -2 -2 -3 -4 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7	-894693.4	. 10. 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. I 0.33 0.86 1.00 522. 1563. 0. 89345. 246 10. 7. 4. I 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. * INITIAL X VALUE WILL CAUSE EX	-160732.6	10. 7. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 89345. 246 10. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 4980. 53886. 178 10. 7. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-28552.2	10. 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 89345, 246 11. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 4980. 53886. 178 10. 7. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-4958.4	. 10. 7. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 4980. 53886. 178 10. 7. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 4980. 53886. 178	-813,3	10. 7. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 192 10. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 4980. 53886. 178	-108.1	10. 7. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 62102. 192	17825216.	. 7. 6. 5. 0.33 0.86 1.00 522. 1563. 4980.
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0. 89345. 246	19248304.	10. 7. 4. 1 0.33 0.86 1.00 522. 1563. 0.
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 14. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 16. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 16. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 16. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 16. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 17. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE WILL CAUSE EXPONENT OVERFLOW.	24697072.	10. 7. 2. 1 0.33 0.86 1.00 522. 1563. 0.
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -	-20332.1	8. 11. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -	-7274.1	8. 11. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-2637.5	. 8. 11. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-971.2	. 8. 11. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-363.2	8. 11. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING
	-136.7	8. 11. 8. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING

7. 2. 4. 0.36 0.37 1.00 644. 1033. 5757. 18716. 3081110. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 10857. 2723456. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 10857. 2723456. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 10857. 26065144. 7. 14. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -106.7 7. 14. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -574.6 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 10550. 27365886. 9. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -584.2 9. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -106.7 9. 14. 2. 10.75 0.37 1.00 684. 1033. 5757. 86867. 24443312. 9. 14. 3. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -106.1 9. 15. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -1591.2 9. 16. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -584.7 9. 17. 2. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -1591.4 9. 18. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -1591.4 9. 18. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -1591.4 9. 18. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -1591.4 9. 18. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -242.6 111. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -242.6 111. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -243.6 111. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -257952. 111. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -2579.5 111. 10. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -2579.5 111. 10. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -2579.5 111. 10. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED WE STARTING VALUE -257952. 111. 10. 10. 101716.1 X VALUE WILL CAUSE EXPONENT OVERFLO	-4277 0	NA 115	CTADTING	יייי איני	011010E	CALLSE EXPONENT OVERELOW NEED NEED	-	\ <u>\ \ </u>	TNITT Y	*	10		5
7. 2. 4. 0.36 0.37 1.00 644. 1033. 5757. 18913. 3991120. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 18957. 2729456. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 2729456. 7. 10. 0.00 CONVERGENCE WITHIN 20 ITERATIONS 9. 0. 0. 0.37 L.00 GONA 0.37 L.00 GONA 0.00 WEED NEW STARTING VALUE504.7 9. 11. 0. 10 WITHAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE300.2 11. 0. 10 WITHAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE302.2 11. 10. 0. 10 WITHAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE302.2 11. 10. 0. 10 WITHAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE302.2 11. 10. 0. 10 WITHAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE302.2 11. 10. 0. 10 WITHAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE302.2 11. 10. 0. 0.00 GONA 0.00 GO										•	10.	7.	10.
7. 2. 4. 0.36 0.37 1.00 644. 1033. 5757. 18916. 3991120. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 10857. 2723456. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 10857. 2723456. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 10857. 2723456. 7. 10. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -106.2 7. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -253.2 7. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -574.6 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -574.6 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -574.6 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.2 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.2 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.2 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.2 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.2 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.2 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.2 9. 10. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2009.2 9. 11. 0. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2009.2 9. 11. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 11. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 11. 0. 10171AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 0. 0.00 0.00 0.00 0.00 0.00 0.00	-82.8 87									*		7.	10.
7. 2. 4. 0.16 0.37 1.00 684. 1033. 5757. 18916. 30911120. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 10857. 27239456. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 10857. 27239456. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 108657. 27239456. 7. 10. 0 00 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0 10 CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 0 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -105.7 7. 14. 0 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 14. 0 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 14. 0 10 CONVERGENCE WITHIN 20 ITERATIONS 9. 14. 2 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185889. 9. 4. 2 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185889. 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.1312. 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.1312. 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.2 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.2 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.2 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.2 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.2 111. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.2 111. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.1 111. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.2 111. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.5 111. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.6 111. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.1.5 111. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -284.1.5 111. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NE	R	62941.	•		1418.	684.	1.00			1	•	7.	10.
7. 2. 4. 0.16 0.37 1.00 684. 1033. 5577. 18916. 30911120. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 27239456. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 27239456. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 94986. 26065104. 7. 10. 00 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 00 CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -105.7 7. 14. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 14. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 14. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 16. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -27185889. 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 9. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 11. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 11. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 11. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 11. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 11. 10. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -200.2 110. 01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW S	21774080.	71130.	•		1418.	684.	1.00				4.	7.	10.
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 108716. 3061120. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 27239456. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 27239456. 7. 10. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -106.7 7. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 16. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -574.6 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185888. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185888. 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -260.2 9. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 9. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 9. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 9. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 9. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 9. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 9. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -290.2 9. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -330.2 11. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -332.6 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -332.6 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -332.6 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -332.6 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -332.6 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -332.6 11. 14. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -332.6 11. 14. 0 INITIAL X	26704768.	95784.	•		1418.	684.	1.00				٠.	7.	10.
7. 2. 4. 0.36 0.37 1.00 644. 1033. 5757. 118716. 30811120. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 2723446. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 2723446. 7. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 2723446. 7. 8. 0 10 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0 10 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0 10 CONVERGENCE WITHIN 20 ITERATIONS 7. 110. 0 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -105.7 7. 114. 0 11011AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 116. 0 10011AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 117. 0 10 10 10 10 10 10 10 10 10 10 10 10 1	-18501.6	NG VALUE		EED NEW		SE EXPONENT		VALUE		•	18.	:	
7. 2. 4. 0.36 0.37 1.00 644. 1033. 5757. 118716. 30811120. 7. 4. 2. 0.56 0.37 1.00 644. 1033. 5757. 10057. 27239456. 7. 4. 2. 0.56 0.37 1.00 644. 1033. 5757. 27239456. 7. 8. 0. 0.20 MURERGENE HITHIN 20 ITERATIONS 7. 10. 0. 10.20 MURITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -105.7 7. 114. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -363.2 7. 118. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -674.6 0. 2. 3. 0.36 0.37 1.00 664. 1033. 5757. 100590. 27185888. 9. 4. 2. 0.36 0.37 1.00 664. 1033. 5757. 86867. 2441312. 269. 101711	-6674.1	NG VALUE					WILL C	VALUE		•	16.	:	30
7. 2. 4. 0.36 0.37 1.00 694. 1033. 5757. 118716. 20811120. 7. 4. 2. 0.36 0.37 1.00 694. 1033. 5757. 100857. 2729456. 7. 4. 2. 0.36 0.37 1.00 694. 1033. 5757. 94986. 26965104. 7. 8. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -196.2 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -363.2 7. 11. 0 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185888. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185888. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185888. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185888. 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -369.2 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -399.2 9. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -389.2 9. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -389.2 9. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -389.2 11. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6 11. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 78350. 22737952. 11. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 78350. 22737952. 11. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 78350. 22737952. 11. 5. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6 11. 0. 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6 11. 0. 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6 11. 0. 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6 11. 0. 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6 11. 0. 0. 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6 11. 0. 0. 10 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6	-2441.5					NUSE EXPONENT			INITIAL X	*	14.	:	30
7. 2. 4. 0.36 0.37 1.00 694. 1033. 5757. 118716. 20811120. 7. 4. 2. 0.36 0.37 1.00 694. 1033. 5757. 100857. 27239456. 7. 4. 2. 0.36 0.37 1.00 694. 1033. 5757. 100857. 27239456. 7. 8. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 9. 10. 0.36 0.37 1.00 684. 1033. 5757. 10590. 27185888. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 10590. 27185888. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 106867. 2441312. 9. 6. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -369.2 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -584.7 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -584.7 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -584.7 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -5852322. 11. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 89426. 24953232. 11. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 78350. 22737952. 11. 6. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -3462.6 11. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 78350. 22737952. 11. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 78350. 22737952. 11. 4. 1. 0.36 0.37 1.00 684. 1033. 5757. 78350. 22737952.	. 207.5			EED NEW		AUSE EXPONENT			INITIAL X	٠	12.	=	œ •
7. 2. 4. 0.36 0.37 1.00 664. 1033. 5757. 118716. 30811120. 7. 4. 2. 0.36 0.37 1.00 664. 1033. 5757. 10857. 2723956. 7. 6. 1. 0.36 0.37 1.00 664. 1033. 5757. 10857. 2723956. 7. 6. 1. 0.36 0.37 1.00 664. 1033. 5757. 94966. 26065104. 2 7. 10. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0. NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -105.7 7. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -664.6 9. 2. 3. 0.36 0.37 1.00 664. 1033. 5757. 100590. 27185888. 9. 4. 2. 0.36 0.37 1.00 664. 1033. 5757. 86867. 2441312. 2 9. 10. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -369.2 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -364.7 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -364.7 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -364.7 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -364.7 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -364.7 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -365.6 11. 0. 36 0.37 1.00 664. 1033. 5757. 89426. 24953232.	-342.6					AUSE EXPONENT				*	10.	=:	30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 30811120. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 2723956. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 2723956. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 2723956. 7. 10. 0. 0CONVERGECE WITHIN 20 ITERATIONS 7. 10. 0. NO CONVERGE WITHIN 20 ITERATIONS 7. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——105.7 7. 12. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——263.2 7. 14. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——363.2 7. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——363.2 7. 18. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——363.2 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100590. 27185886. 9. 10. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——364.1312. ——362.6 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——309.2 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——309.2 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——364.7 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——366.7 9. 11. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——366.7 9. 12. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE ——366.7 9. 13. 0.36 0.37 1.00 664. 1033. 5757. 89426. 24953232. 11. 0. 0.36 0.37 1.00 664. 1033. 5757. 76350. 22737952. —	-130.2			EED NEW		AUSE EXPONENT	WILL C	VALUE	INITIAL X	*	35	:	80
7. 2. 4. 0.36 0.37 1.00 664. 1033. 5757. 18716. 30611120. 7. 4. 2. 0.36 0.37 1.00 664. 1033. 5757. 100857. 27239456. 7. 6. 1. 0.36 0.37 1.00 664. 1033. 5757. 100857. 27239456. 7. 10. 0. 0. CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -196.2 7. 11. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -263.2 7. 11. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -363.2 7. 11. 0. 10.36 0.37 1.00 664. 1033. 5757. 100590. 27185886. 9. 4. 2. 0.36 0.37 1.00 664. 1033. 5757. 86867. 24441312. 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 10111AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -309.2 9. 10. 0. 1011AL X VALUE WILL CAUSE EXPONENT OVERFLO						0 ITERATIONS	ITHIN	GENCE W	NO CONVER	•	6.	11.	
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 18716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 8. 0 CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 11. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 11. 0 O.37 1.00 684. 1033. 5757. 86867. 9. 10. 0 O.36 0.37 1.00 684. 1033. 5757. 86867. 9. 10. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 12. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11.01 INITIAL X	1	78350.	57.	51	1033.	684.	1.00					11.	30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986. 7. 8. NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. NO INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. NO INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 100590. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100590. 9. 6. NO CONVERGENCE WITHIN 20 ITERATIONS 9. 10. NO CONVERGENCE WITHIN 20 ITERATIONS 9. 10. NO INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 12. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 119. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	24953232.	89426.	57.	51	1033.	684.	1.00				2.	11.	œ •
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986. 7. 8. NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 100590. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 86867. 9. 6. NO CONVERGENCE WITHIN 20 ITERATIONS 9. 10. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 12. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-3462.6			FED NEW		AUSE EXPONENT	WILL C		INITIAL X	*	18.	9.	30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986. 7. 10. *** NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. *** NO CONVERGENCE WITHIN 20 ITERATIONS 7. 12. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 100590. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 86867. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 86867. 9. 10. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 10. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 12. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 11. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 114. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 114. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-1531.4									*	16.	•	30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 10. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 12. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 100590. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 86867. 9. 6. 6 NO CONVERGENCE WITHIN 20 ITERATIONS 9. 8. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 9. 10. 5757. 100590. 9. 10. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 12. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-684.7						MILL C	VALUE	INITIAL X	*	14.	•	30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 19. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100590. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 86867. 9. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 9. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 10. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-309.2			EED NE		AUSE EXPONENT	WILL C	VALUE	INITIAL X	٠	12.	9.	3 0
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 100590. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 86867. 9. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 9. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS	-140.1						WILL C		INITIAL >	*	10.	9.	30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 8. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 7. 11. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 100590. 9. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 86867. 9. 6. 4 NO CONVERGENCE WITHIN 20 ITERATIONS						20 ITERATIONS	ITHIN	GENCE W		*	30	9.	3 0
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 86867.						20 ITERATIONS	ITHIN	GENCE W	NO CONVER	٠	•	9.	3 0
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 308 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 272 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 272 7. 8. ** NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. ** NO CONVERGENCE WITHIN 20 ITERATIONS 7. 112. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 8. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 9. 2. 3. 0.36 0.37 1.00 684. 1033. 5757. 100590. 271	24441312.	86867.	57.	51	1033.	684.	1.00					•	œ •
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 308 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 272 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 100857. 272 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 18. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	27185888.	100590.	57.	51	1033.	684.	1.00				٧.		30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 308 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 272 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986. 260 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-674.6	NG VALUE		EED NEW	OVERFLOW. N	AUSE EXPONENT	WILL C	VALUE	INITIAL X	٠	18.	7.	
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986. 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 7. 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-363.2									*	16.	7.	œ •
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986. 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 12. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-196.2						WILL C			*	14.	7.	œ •
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986. 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS 7. 10. * NO CONVERGENCE WITHIN 20 ITERATIONS	-105.7					AUSE EXPONENT	WILL C	VALUE	INITIAL X	•		7.	30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986. 7. 8. * NO CONVERGENCE WITHIN 20 ITERATIONS						20 ITERATIONS	ITHIN	GENCE W	NO CONVER	¢	10.	7.	æ
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857. 7. 6. 1. 0.36 0.37 1.00 684. 1033. 5757. 94986.						20 ITERATIONS		GENCE W	NO CONVER	*		7.	æ
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716. 7. 4. 2. 0.36 0.37 1.00 684. 1033. 5757. 100857.	26065104.	94986.	57.	51	1033.	684.	1.00			:	•	7.	30
7. 2. 4. 0.36 0.37 1.00 684. 1033. 5757. 118716.	27239456.	100857.	57.	51	1033.	684.	1.00					7.	œ •
	30811120.	118716.	57.	51	1033.	684.	1.00					7.	3 0

	2381152.	73066	4980.	400	1247.		1000		1.00	0.86	0.37	0	,	٥	5
1	23110336.	70612.	•		1247.		1008.		1.00	0.86	0.37	0.	4. 1	•	10.
90	26452064.	87320.	•		1247.		1008.		1.00	0.86	0.37 (2. 1	•	10.
88	-767157.2	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	WILL	X VALUE	INITIAL	•	18.	7. 1	10.
	-137422.2	VALUE	STARTING	D NEW	OVERFLOW. NEED		EXPONENT	CAUSE	WILL	X VALUE	INITIAL	*	16.	7. 1	10.
	-24259.8	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	WILL	X VALUE	INITIAL >	*	14.	7. 1	10.
	-4158.5	VALUE	STARTING	DNEW	OVERFLOW. NEED	T OVER	EXPONENT	CAUSE	WILL	X VALUE	INITIAL	* I	12.	7. 1	10.
	-661.4	VALUE	STARTING	D NEW	OVERFLOW. NEED		EXPONENT	CAUSE	WILL	X VALUE	INITIAL	* []	10.	7. 1	10.
	26980400.	88862.		4980.	1247.		1008.		1.00	0.86	0.37	2. 0.	8.	7.	10.
1	25851536.	84318.	0.		1247.		1008.		1.00	0.86	0.37		٠. ١	7.	10.
	27290768.	91514.	0.		1247.		1008.		1.00	0.86	0.37		1	7.	10.
	31623760.	113179.	0. 1		1247.		1008.		1.00	0.86	0.37		2. 1	7.	10.
	******	VALUE	STARTING	D NEW	RFLOW. NEED	TOVER	CAUSE EXPONENT OVERFLOW.		MILL	X VALUE	INITIAL X VALUE	* I		-	10.
	*****	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	WILL	X VALUE	INITIAL	* 11	16.	11. 1	10.
	******	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	MILL	X VALUE	INITIAL	* 11	14.	11. 1	10.
	-:728422.0	VALUE	STARTING	D NEW	OVERFLOW. NEED	TOVER	EXPONENT	CAUSE	WILL	X VALUE	INITIAL	*	12.	11. 1	10.
	-117516.8	VALUE	STARTING	DNEW	FLOW. NEED	T OVER	EXPONENT OVERFLOW.	CAUSE	WILL	X VALUE	INITIAL	*	10.	11. 1	10.
	-7755.5	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	MILL	X VALUE	INITIAL	* I		11.	10.
	-456.8	VALUE	STARTING VALUE	D NEW	FLOW. NEED	T OVER	EXPONENT OVERFLOW.	CAUSE	MILL	X VALUE	INITIAL	* [6.		10.
3	17047456.	46397.	80.	498	1418.		684.		1.00	0.86	0.36	4. 0.	4. 4	-	10.
	19481728.	59669.	••		1418.		684.		1.00	0.86	0.36	0.	2. 1	=-	10.
	******	VALUE	STARTING	D NEW	FLOW. NEED	TOVER	EXPONENT OVERFLOW.	CAUSE	WILL	X VALUE	INITIAL	*	18.	9. 1	10.
	-7265342.0	VALUE	STARTING	D NEW	OVERFLOW. NEED		EXPONENT	CAUSE	MILL	X VALUE	INITIAL	*	16.	9. 1	10.
	-808789.9	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	MILL	X VALUE	INITIAL	*	14.	9. 1	10.
	-88974.0	VALUE	STARTING	DNEW	RFLOW. NEED	T OVER	EXPONENT OVERFLOW.	CAUSE	¥1LL	X VALUE	INITIAL	* 1	12.	9. 1	10.
	-9548.9	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	MILL	X VALUE	INITIAL	*	10.	9.	10.
	-955.2	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	WILL	X VALUE	INITIAL	*		•	10.
1	19178080.	57050.	80.	498	1418.		684.		1.00	0.86	0.36	2. 0	••	•	10.
V	18485872.	54689.	•		1418.		684.		1.00	0.86	0.36	0	•	•	10.
	22289136.	73706.	•		1418.		684.		1.00	0.86	0.36	0	2. 1	•	10.
	-786043.8	VALUE	STARTING VALUE	NEW O	RELOW. NEED	TOVER	EXPONENT OVERFLOW.	CAUSE	WILL	X VALUE	INITIAL	*		7. 1	10.
	-140883.4	VALUE	STARTING	D NEW	OVERFLOW. NEED		EXPONENT	CAUSE	MILL	X VALUE	INITIAL	* 1		7. 1	10.
	-24898.9	VALUE	STARTING	DNEW	OVERFLOW. NEED		EXPONENT	CAUSE	MILL	X VALUE	INITIAL	•		7. 1	10.
	-4511.67	100	O	1		י מארט	C 20 C 4F 14	64001		******	31111				* ^ *

	-5187921.0	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	MILL	VALUE	INITIAL X	*	16.		10.
BRG	-574683,3	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X	٠	14.	٠	10.
89	-62406.4	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X	٠	12.	٠	10.
	-6493.6	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INTTIAL X	•	10.	•	10.
	-595.3	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	₩ILL	VALUE	INITIAL X	•		•	10.
1	28656672.	88243.	4980.		1164.	1402.		1.00	0.86	0.44 0	٠	5.		10.
	290080000	91100.	••		1164.	1402.		1.00	0.86	0.44 0	-	4.	٠	10.
	32102848.	106574.	0.		1164.	1402.		1.00	0.86	0.44 0	•		٠	10.
	-549059.8	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT	CAUSE	WILL	X VALUE	INITIAL X	*	18.	7.	10.
	-97206.6	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X	•	16.	7.	10.
	-16787.4	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X	٠	14.	7.	10.
	-2753.0	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT		VALUE WILL CAUSE		INITIAL X	*	12.	7.	10.
	-391.9	VALUE	NEW STARTING VALUE	NEED NE	OVERFLOW.	EXPONENT	CAUSE	WILL	X VALUE	INITIAL X	*	10.	7.	10.
	32992752.	109924.	4980. 1		1164.	1402.		1.00	0.86	0.44 0	•	3 0	7.	10.
	33039200.	111256.	0.		1164.	1402.		1.00	0.86	0.44 0	-	•	7.	10.
	34372608.	117923.	0.		1164.	1402.		1.00	0.86	0.44 0	-	4	7.	10.
	38393328.	138027.	0.		1164.	1402.		1.00	0.86	0.44 0	-	۰.	7.	10.
	*****	VALUE	NEW STARTING VALUE	NEED	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X		18.	=-	10.
	* * * * * *	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT	WILL CAUSE		X VALUE	INITIAL X	•		=:	10.
	****	VALUE	W STARTING	NEED NEW	OVERFLOW.	EXPONENT	CAUSE	WILL	X VALUE	INITIAL X	•	14.	11.	10.
	-1690208.0	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	WILL	X VALUE	INITIAL X	•	12.	=	10.
	-114881.4	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X	*	10.	11.	10.
	-7570.8	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT	CAUSE		VALUE WILL	INITIAL X		Þ	11.	10.
	-443.4	VALUE	NEW STARTING VALUE	NEED NE	EXPONENT OVERFLOW.	EXPONENT	CAUSE		X VALUE WILL	INITIAL X			==	10.
	26590240.	86911.	4980.	4	1247.	1008.		1.00	0.86	0.37 0	:		=	10.
,	23163264.	70876.	0.		1247.	1008.		1.5	0.86	0.37 0	-	٠.	=	10.
	******	VALUE	NEW STARTING	NEED	EXPONENT OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X VALUE WILL	٠	18.	9	10.
	-7098681.0	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X	*	16.	•	10.
	-790138.7	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT	CAUSE	WILL	VALUE	INITIAL X	*	14.	٠	10.
	-86872.7	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT	CAUSE	MILL	VALUE	INITIAL X	•	12.	•	10.
	-9309.1	VALUE	NEW STARTING	NEED NE	OVERFLOW.	EXPONENT	CAUSE	MILL	VALUE	INITIAL X	*	10.	٠	10.
	-927.2	VALUE	NEW STARTING	NEED NE	EXPONENT OVERFLOW.	EXPONENT	CAUSE	WILL	X VALUE	INITIAL X	•		٠	A. 10.

9. 10. 11. 18.	9. 10. 11. 16.	9. 10. 11. 14.	9. 10. 11. 12.	9. 10. 11. 10.	9. 10. 11. 8.	9. 10. 11. 6.	9. 10. 11. 4. 1	9. 10. 11. 2. 1
0. 1	0. 1	0. 1	-	0. 1	0. 1	0. 1	. 1	0. 1
		-		:	-	-	-	-
	6.	4.	2	0.		•	•	•
٠	•	•	٠	٠	•	٠	-	-
INITIAL	INTTIAL	INITIAL	INITIAL	INITIAL	INITIAL	INITIAL	0.44 0.86 1.00	0.44
X VAL	X VAL	X VAL	X VAL	X VAL	X VAL	X VAL	0.86	0.86
NE MIL	UE WIL	JIM 30	TIM 30	UE WIL	DE WIL	JIM 30	1.0	1.00
L CAUS	L CAUS	L CAUS	L CAUS	L CAUS	L CAUS	L CAUS	0	0
E EXPONEN	E EXPONEN	E EXPONEN	E EXPONENT	E EXPONEN	EEXPONENT	E EXPONEN	1402.	1402.
INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING	1164.	1164.
NEE!	. NEEL	. NEE	İ	i				
NEW	NEW	NEW	NEW	NEW	NEW	NEW		
STARTING	STARTING	STARTING	STARTING	STARTING	STARTING	STARTING	•	0.
VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	VALUE	74049.	86574.
*********	*******	*******	-1249656.0	-84210.1	-5399,5	-284.3	25597872.	28,102,848.
							1	
	0	0	1 1	0	0		0	0

0 0 0 0

15.50 2.00 1000.00 10.00 0.75 1.00	0.000450 0.000130 0.001260 0.0001260 0.300000 2.000000 2.0000000 12.00 500.00 10.00 11.	0.00010 0.001180 0.000670 0.001390 0.300000 0.300000 1.000000 1.000000 2.000	000280 000120 001540 008570 0300000 0400000 000000000000000000000	PAY RATE(\$/HR) AT TESTER NO. MEN TO OPERATE TESTER COST OF SHIPPING TO TESTER TURNAROUND TIME(YRS) TO TEST ITEM NUMBER OF TESTERS NO. TESTER1 FUNCTIONS(INITIAL VALUE FINAL VALUE,INCREMENT) NO. TESTER2 FUNCTIONS(INITIAL VALUE FINAL VALUE,INCREMENT)
15.50 2.00 1000.00 10.00 0.75 1.00	0.00450 0.00130 0.001260 0.00130 0.300000 2.000000 2.000000 12.00 500.00 10.00 10.00	0.00010 0.0001180 0.00670 0.001390 0.300000 1.000000 1.000000 1.000000 1.000000 1.000000	.000280 .000120 .001540 .008570 .300000 .000000	D.001000 0.001700 0.001700 0.001470 0.000150 0.3000000 0.3000000 0.3000000 0.3000000 0.3000000 0.300000000
15.50 2.00 1000.00 10.00 0.75	0.000450 0.000130 0.001260 0.000120 0.001350 0.300000 2.000000 2.000000 12.00 500.00 10.00 2.000	0.00010 0.0001180 0.00670 0.00670 0.300000 1.000000 1.000000 7.00 2.00 10.00 0.01	.000280 .000120 .001540 .008570 .300000 .00000	0.001000 0.001700 0.001700 0.001470 0.020150 0.3000000 0.300000 0.3000000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.3000000 0.3000000 0.3000000 0.300000000
15.50 2.00 1000.00	0.000450 0.000130 0.001260 0.000120 0.0001350 0.300000 2.0000000 2.0000000 2.0000000	0.00011 0.00011 0.001390 0.00670 0.300000 1.000000 1.000000 7.00 10.00	.000280 .000120 .001540 .001540 .008570 .300000 .300000	DAY RATE (\$/HR) AT TESTER NO. MEN TO OPERATE TO TESTER COST OF SHIPPING TO TESTER
15.50	0.000450 0.000130 0.001260 0.001270 0.001350 0.300000 2.000000 2.000000	0.0001180 0.0001180 0.00670 0.300000 0.300000 1.000000 1.000000	.000120 .000120 .001540 .008570 .300000 .300000	0.001000 0.001000 0.001470 0.020150 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000 0.300000
15.50	0.000450 0.000130 0.0001260 0.000120 0.001350 0.300000 2.000000 2.000000	0.00011 0.0001180 0.00670 0.001390 0.300000 1.000000 1.000000	.000120 .000120 .001540 .001570 .008570 .300000 .300000	0.001000 0.001700 0.001470 0.020150 0.300000 0.500000 0.300000 0.300000 0.200000 0.200000
	0.000450 0.000130 0.001260 0.000120 0.001350 0.300000 2.000000	0.0001180 0.0001180 0.00670 0.300000 1.000000	.000120 .000120 .001540 .008570 .300000 .300000	0.000700 0.001470 0.000000 0.300000 0.300000 0.300000 0.300000
		0.00011 0.001180 0.00670 0.300000 0.300000	0.000280 0.000120 0.000500 0.008570 0.300000 1.000000	0.00000 0.001470 0.020150 0.300000 0.300000 0.200000
		0.00000.0 0.000000.0 0.000000.0 0.001300000 0.001300000 0.001300000	0.000280 0.000120 0.000900 0.001540 0.008570 0.300000 1.000000	0.00000 0.00000 0.001470 0.020150 0.300000 0.300000 0.300000
		0.0000000000000000000000000000000000000	0.000280 0.000120 0.001540 0.008570 0.300000	0.00000 0.00000 0.00000 0.00000 0.30000 0.500000
		0.000010 0.001390 0.001390 0.001390	0.000280 0.000120 0.000900 0.001540 0.008570	0.00000 0.00150 0.00000 0.00160
		0.00000.0 0.00000.0 0.00000.0 0.10000.0	0.000280 0.000120 0.000900 0.001540 0.008570	0.001000 0.000700 0.001470
		0.000010	0.000280 0.000120 0.001540	0.00700
		0.0000.0	0.000280	0.001000
		0.000010	0.000120	0.001000
		0.000210	0.000280	0.000120
			The state of the s	0.000500
		0.000550	0.000660	0.001020
		100000000000000000000000000000000000000	- 1	
	_	40000.000000	89400.000000	
		28000.000000		
		C. 000000	2.00000	1 000000
		1.500000	1.500000	1.500000
	-	1.500000	1.000000	1.000000
				20.00
				20.00
				0.70
				12.00
			7-00 1-00	12.00
				.00
			2.00 1.00	20.00
				0
			12.00 15.50	7.00 1 2.00
	EXAMPLE RESULTS 3	EXA		OF INPUT DATA
	TABLE 5			

					0 ITERATIONS	WITHIN 2	CONVERGENCE	* NO	ភ	12.	3.
1608.	25398608	114466.	9317.	1028.	91.	1.00	9 0.15	0.09	4. 1.	12.	3.
944.	25758944	116268.	9317.	1028.	•16	1.00	9 0.15	0.09	3	12.	3
200.	26835200.	121649.	9317.	1028.	91.	1.00	9 0.15	. 0.09	2. 2	12.	3
520.	30743520	141191	9317.	1028.	91.	1.00	9 0.15	0.09	1. 4	12.	ω •
YCLE	LIFE CYCLE	COMPLETE	TEST3 COST	TEST2 COST	TEST1 COST	FAILING TEST3	DEFECTIVE ITEMS TEST1 TEST2	31 3130	STES N3	NT NZ	MI MZ
				SUMMARY	TEST COST						
				200000	0.						
2.001	1.000000		1.000000	0.300000	0.						
0.300000	0.300000		0.300000	0.500000	0.						
0.300	0.300000		0.30000	300000	00		UNCTION	IO TEST THE FUNCTION		WE REDD	TIME
0.001	001390		0.008570	001470	0.						
0.000120	0.000670		0.001540	000700	0.					- 13	
0.00	001180		0 00000	000100	0.	\$	FINCTION OF ITE	111 5 11	DATE OF	11 105 0	ŋ
0.000130	0.000000		0.000120	021000	0.						
0.000450	0.12000.0		0.000280	000500	0.				1		
0.001060	000550		0-000660	000000	20000	FINCTION	10 IESI 11H	FOIIP.	PATE OF	TI LIBE B	FI >
100000.000000	00000	1	600000.000000	000000	100000				-		
40000.000000	000000			000000	20000.000000	ION	TEST ITH FUNCTION	10	EQUIPMENT	0F	COST
2.000	00000		2.00000	000000							
1.500000	1.500000		1.500000	1.500000							
1.500000	1.500000		000000	000000	FUN 1.	STS ITH FUN	IP. WHICH TESTS	ainga aiva) TO REPAIR	ME REGO	3×11
					20.	100	FOR N-R METHOD	TERATIONS	NO. ITE	MAXIMUM	3
					7.	METHOD	NEWTON-RAPHSON ME	OR NEWTO	ALVE F	ITIAL V	INIT
					20.				CYCLES	. USE C	NO.
					0 \$ 15			RATIO	MATERIAL	REPAIR MA	REP
					0.70	JAI	E NOT DEFECTIVE	MS IN USE	OF ITEMS	RACTION	FR,
					12.		ED	ONS TESTED	FUNCTIONS	. ITEM	NO.
		500.		10.	50000.	SW	E.NO. OF ITEMS	TIEM COST*ITEM TIEECACTE*NO*	TIEM.	EM COST	111
						ON TESTS	F0	EN SECON	BET	-0	
				7.		1FS1S)	RST ECHELON TESTS	BEIMEEN FIRST		XICYCLES	NO

2. 3. 12. 7. 8 NO CONVENIENCE ATTIMA DATEMATIONS 2. 3. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		16125787.	67702.	7050.	1119.	91.	1.00	0.25	0.09	1	4.	13	7
3. 12. 7. 0 NO CONVENSENCE ATTINIS ON TENATIONS 3. 12. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	250	19739984.	85773.	7050.	1119.	91.	1.00	0.25	0.09	-	3.	13.	5
3. 12. 7. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 2551812. 3. 13. 4. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 13. 4. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 13. 5. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 13. 7. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 13. 7. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 13. 7. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 13. 7. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 14. 5. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25318064. 3. 14. 5. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 14. 5. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25318064. 3. 16. 7. * NO CONVENGENCE *ITHIN ZO ITENATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25318164. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25318164. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25318164. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25318164. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25318164. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 116080. 25441312. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 116080. 25441312. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 116080. 25441312. 3. 15. 1. 0.09 0.25 1.00 91. 1119. 7050. 86089. 25461312. 5. 12. 2. 0.19 0.25 1.00 91. 1119. 7050. 86089. 19803184. 5. 12. 3. 1. 0.09 0.25 1.00 91. 1119. 7050. 86089. 19803184. 5. 12. 5. NO CONVENENCE *ITHIN ZO ITENATIONS 5. 12. 6. NO CONVENENCE *ITHIN ZO ITENAT	93	20351168.	88829.	7050.	11119.	91.	1.00	0.25	0.09	2	2	13.	5
3. 12. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 13. 12. 2. 0.099 0.15 1.00 91. 1028. 9317. 120215. 2554988. 3. 13. 4. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 13. 5. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 13. 6. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 13. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 13. 14. 2. 2. 0.099 0.15 1.00 91. 1028. 9317. 115024. 25519044. 3. 14. 3. 1. 0.099 0.15 1.00 91. 1028. 9317. 115024. 25510044. 3. 14. 4. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 15. 4. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 16. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 17. 10.099 0.15 1.00 91. 1028. 9317. 118039. 25510944. 3. 18. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONVENGENCE *ITHIN 20 ITEMATIONS 3. 19. 7. * NO CONV		23876944.	106458.	7050.	1119.	•16	1.00	0.25	0.09	4.	+	13.	5
3. 12. 7. 0 NO CONVERGUES AITHIN 20 ITEMATIONS 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 120215. 2554364. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25514112. 3. 13. 4. 0 NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 13. 5. 0 NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 13. 5. 0 NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 13. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2955352. 3. 14. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 5. 1 NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 14. 7. 0 NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 14. 7. 0 NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 7. 0 NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25910944. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25910944. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25910944. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25910944. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 2591252. 3. 15. 1. 0. NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 15. 1. 0. NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 15. 1. 0. NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 15. 1. 0. NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 15. 0. NO CONVERG								VERGENCE		*	7.	12.	5
3. 12. 7. * NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 13. 1. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 120215. 2654384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 2561412. 3. 13. 5. NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 13. 6. NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 13. 7. NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 13. 7. NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 14. 1. 0.09 0.15 1.00 91. 1028. 9317. 113024. 2553352. 3. 14. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 113024. 25510944. 3. 14. 4. NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 14. 5. NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 14. 7. NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 113024. 25510944. 3. 14. 7. NO CONVERGENCE #1THIN 20 ITEMATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 113293. 2593522. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 113293. 25932512. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 113293. 25932512. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 113293. 25932512. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 113293. 25932512. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 113293. 25932512. 3. 15. 3. 1. 0.09 0.25 1.00 91. 1028. 9317. 109909. 25541312. 5. 12. 3. 1. 0.09 0.25 1.00 91. 1119. 7050. 86089. 1090354. 5. 12. 4. 1. 0.09 0.25 1.00 91. 1119. 7050. 86089. 1980354. 5. 12. 5. 10. 0.09 0.25 1.00 91. 1119. 7050. 86089. 1980354.								VERGENCE	NO CON	0	6.		5
3. 12. 7. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 13. 1. 3. 0.99 0.15 1.00 91. 1028. 9317. 120215. 2654838. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 2654838. 3. 13. 4. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 13. 7. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 13. 7. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 13. 7. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 14. 1. 3. 0.99 0.15 1.00 91. 1028. 9317. 135241. 2953552. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 11903. 26318064. 3. 14. 4. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 14. 5. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 14. 5. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 14. 7. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 22510944. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 122936. 22902512. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 118139. 26133104. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 1182936. 22902512. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 1182936. 22902512. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 11809. 26133104. 3. 15. 1. 0.09 0.25 1.00 91. 1184710NS 3. 15. 2. 1. 0.09 0.25 1.00 91. 11848. 9317. 11809. 26433104. 3. 15. 7. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 15. 7. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 15. 0. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 15. 0. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 15. 0. *** NO CONVENGENCE AITHIN 20 ITEMATIONS 3. 15. 1. 0.09 0.25 1.00 91. 11849. 2664312. 3. 15. 1. 0.09 0.25 1.00 91. 1189. 7090. 90151. 264552. 5. 12. 0. 0.09 0.25 1.00 91. 1119. 7090. 90151. 264552. 5. 12. 0. 0.09 0.25 1.00 91. 1119. 7090. 90151. 2645552.								VERGENCE	NO CON	۵	Jī	12.	5
3. 12. 7. *** NO CONVENGENCE AITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26545381. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26545381. 3. 13. 4. *** NO CONVENGENCE AITHIN 20 ITERATIONS 3. 13. 5. *** NO CONVENGENCE AITHIN 20 ITERATIONS 3. 13. 7. *** NO CONVENGENCE AITHIN 20 ITERATIONS 3. 13. 7. *** NO CONVENGENCE AITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2953582. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 11903. 26318064. 3. 14. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 11903. 26318064. 3. 14. 7. *** NO CONVERGENCE AITHIN 20 ITERATIONS 3. 14. 7. *** NO CONVERGENCE AITHIN 20 ITERATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25519944. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 11903. 26318064. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 2952512. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 2952512. 3. 15. 4. *** NO CONVERGENCE AITHIN 20 ITERATIONS 3. 15. 5. *** NO CONVERGENCE AITHIN 20 ITERATIONS 3. 15. 6. *** NO CONVERGENCE AITHIN 20 ITERATIONS 3. 15. 7. *** INITIAL X VALUE AILC CAUSE EXPONENT OVERFLOW. NEED VEH STARTING VALUE — 82.9 5. 12. 1. 4. 0.09 0.25 1.00 91. 1119. 7050. 90151. 2615552. 5. 12. 3. 1. 0.09 0.25 1.00 91. 1119. 7050. 90151. 2615552.		19836752.	86257.	7050.	1119.	•16	1.00	0.25	0.09	-	4.	12.	5
3. 12. 7. ** 40 CONVERGENCE #ITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 13544. 2561412. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 13544. 2561412. 3. 13. 4. ** NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 13. 5. ** NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 13. 7. ** NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2955352. 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 119053. 26318064. 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 4. ** NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. **		19803184.	86089.	7050.	1119.	91.	1.00	0.25	0.09	:	3	12.	5
3. 12. 7. • NO CONVENGENCE AITHIN 20 LIERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 1. 0.99 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 1. 0.99 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 1. 0.99 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 2551914. 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 5. • NO CONVERGENCE AITHIN 20 LIERATIONS 3. 14. 7. • NO CONVERGENCE AITHIN 20 LIERATIONS 3. 15. 7. • NO CONVERGENCE AITHIN 20 LIERATIONS 3. 16. 8. 9317. 113693. 26533104. 3. 17. 9317. 113693. 26533104. 3. 18. 9317. 113693. 26533104. 3. 19. 9317. 113693. 26533104. 3. 19. 9317. 113693. 26533104. 3. 19. 9317. 113693. 26533104. 3. 19. 9317. 113693. 26533104. 3. 19. 9317. 113693. 26533104. 3. 19. 9317. 113693. 2		20615552.	90151.	7050.	1119.	•16	1.00	0.25	0.09	2	2	12.	5
3. 12. 7. • NO CONVENGENCE #ITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25514112. 3. 13. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25514112. 3. 13. 1. 0.09 0.15 1.00 91. 1028. 9317. 11564. 25514112. 3. 13. 5. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 13. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115023. 25518064. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 115023. 25518944. 3. 14. 5. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 14. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 14. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115023. 25518944. 3. 14. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 115023. 25518944. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 115023. 25518944. 3. 15. 5. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 6. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 6. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 6. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 6. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 6. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 15. 7. • NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 16. 8. NO CONVERGENCE #ITHIN 20 ITERATIONS 3. 17. 10.0000000000000000000000000000000		24567248.	109909.	7050.	1119.	• 16	1.00	0.25	0.09	4.	:	12.	J.
3. 12. 7. ° NO CONVERGENCE AITHIN 20 ITEMATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30997088. 3. 13. 1. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 14. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 15. 0.009 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 14. 0.009 0.15 1.00 91. 1028. 9317. 135241. 22553552. 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 136241. 22551984. 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 136241. 22551984. 3. 14. 0. 0.00 CONVERGENCE WITHIN 20 ITEMATIONS 3. 14. 0. 0.00 0.15 1.00 91. 1028. 9317. 13624. 25510984. 3. 14. 15. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 13628. 25510984. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 13639. 29092512. 3. 15. 1. 0.09 0.15 1.00 91. 1028. 9317. 13630. 2541312. 3. 15. 5. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS 3. 15. 6. 0. NO CONVERGENCE WITHIN 20 ITEMATIONS		-82.9	ING VALUE	Z		SE EXPONENT (WILL CAU	L X VALUE	INITIA	*	7.		3
3. 12. 7. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 13. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 3097088. 3. 13. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25548384. 3. 13. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 13. 4. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 13. 14. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 13. 7. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 13. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 29553552. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 135241. 29553552. 3. 14. 4. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 14. 5. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 14. 5. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 14. 7. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 15. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25510944. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25510944. 3. 15. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25510944. 3. 15. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 29092512. 3. 15. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 2541312. 3. 15. 5. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 15. 5. *** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 15. 5. **** NO CONVERGENCE MITHIN 20 ITEMATIONS 3. 15. 5. *******************************						LIERATIONS	WITHIN 20	VERGENCE	NO CON	*	6.	15.	u
3. 12. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 13. 5. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 13. 7. ** HO CONVERGENCE MITHIN 20 ITERATIONS 3. 13. 7. ** HO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2953552. 3. 14. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 5. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 15. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 15. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 15. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 116028. 25510944.							WITHIN 20		NO CON	*	5	15.	3
3. 12. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26549384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2953552. 3. 14. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 15. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25510944. 3. 15. 2. 1. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25909512. 3. 15. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 118139. 26013104.								VERGENCE	NO CON	٠	4		3
3. 12. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 120215. 2654834. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 2654834. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 255352. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 15. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 15. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25510944. 3. 15. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25510944. 3. 15. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 132936. 25510944.		25441312.	114680.	9317.	1028.	91.	1.00	0.15	0.09	-	u	15.	La La
3. 12. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 13. 6. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 13. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 29553552. 3. 14. 2. 0.09 0.15 1.00 91. 1028. 9317. 135241. 29553552. 3. 14. 4. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 14. 7. ** NO CONVERGENCE MITHIN 20 ITERATIONS 3. 15. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 132936. 29992512.		26133104.	118139.	9317.	1028.	91.	1.00	0.15	0.09	:	2	15.	3
3. 12. 7. • NO CONVERGENCE WITHIN 20 LIFERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 5. • NO CONVERGENCE WITHIN 20 LITERATIONS 3. 13. 7. • NO CONVERGENCE WITHIN 20 LITERATIONS 3. 13. 7. • NO CONVERGENCE WITHIN 20 LITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2953552. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 119063. 26318064. 3. 14. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 119063. 26318064. 3. 14. 5. • NO CONVERGENCE WITHIN 20 LITERATIONS 3. 14. 7. • NO CONVERGENCE WITHIN 20 LITERATIONS 3. 14. 7. • NO CONVERGENCE WITHIN 20 LITERATIONS 3. 14. 7. • NO CONVERGENCE WITHIN 20 LITERATIONS 3. 14. 7. • NO CONVERGENCE WITHIN 20 LITERATIONS 3. 14. 7. • NO CONVERGENCE WITHIN 20 LITERATIONS		29092512.	132936.	9317.	1028.	91.	1.00	0.15	0.09	ω	:		
3. 12. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2953552. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 119063. 26318064. 3. 14. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 6. ** NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS								VERGENCE	NO CON	*	7.		u
3. 12. 7. • NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. • NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. • NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. • NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2953552. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 119063. 26318064. 3. 14. 5. • NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 5. • NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 5. • NO CONVERGENCE WITHIN 20 ITERATIONS								VERGENCE	NO CON	*	6.	14.	u
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 2955352. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 115028. 25510944. 3. 14. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS							WIHIN	VERGENCE	NO CON	*	5		ω
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 29553552. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 135241. 29553552. 3. 14. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 119063. 26318064.								VERGENCE	NO CON	*	4	14.	4
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 3097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 135241. 29553552. 3. 14. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 119063. 26318064.		25510944.	115028.	9317.	1028.	91.	1.00	0.15	0.09	:	w		w
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 14. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 135241. 29553552.		26318064.	119063.	9317.	1028.	91.	1.00	0.15	0.09	2.	2.		
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 12544. 25614112. 3. 13. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS		29553552.	135241.	9317.	1028.	91.	1.00	0.15	0.09	ω •	-	1	a a
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 120215. 25614112. 3. 13. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS								VERGENCE	NO CON	*	7.		u
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS								VERGENCE	NO CON	*	•		
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112. 3. 13. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS								VERGENCE	NO CON	*	5	13.	w
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088. 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384. 3. 13. 3. 1. 0.09 0.15 1.00 91. 1028. 9317. 115544. 25614112.								VERGENCE	NO CON	*	4.		w
. 3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS . 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088 3. 13. 2. 2. 0.09 0.15 1.00 91. 1028. 9317. 120215. 26548384.		25614112.	115544.	9317.	1028.	91.	1.00	0.15	0.09	:	3.		
3. 12. 7. * NO CONVERGENCE WITHIN 20 ITERATIONS 3. 13. 1. 3. 0.09 0.15 1.00 91. 1028. 9317. 137959. 30097088.		26548384.	120215.	9317.	1028.	91.	1.00	0.15	0.09	2.	2		w
3. 12. 7. * NO CONVERGENCE WITHIN 20	tru t	30097088.	137959.	9317.	1028.	91.	1.00	0.15	0.09	3	:	13.	u
								VERGENCE	NO CON	‡	7.	12.	u

	. 678T6	6227.	1320.	•16	1.00	0.09 0.36	4. 0.		14.	7.
-209.3	G VALUE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.	WILL CA	141	*	7.	13.	7.
-113.9	6 VALUE	D NEW STARTING	OVERFLOW. NEED	USE EXPONENT OVERFLOW.	WILL CAUSE	INITIAL X VALUE	*	6.	13.	7
				20 ITERATIONS	WITHIN 2	CONVERGENCE	* NO	5	13.	7.
				0 LIERATIONS	WITHIN 20	NO CONVERGENCE	* NC	•	13.	7.
18963760.	81245.	6227.	1320.	91.	1.00	0.09 0.36	0.	3	13.	-
17826336.	75558.	6227.	1320.	91.	1.00	0.09 0.36	2. 0.	2	13.	7
21750304.	95178.	6227.	1320.	91.	1.00	0.09 0.36	4. 0.	-	13.	7.
-150-8	6 VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	‡ IP	7.	12.	7
				0 ITERATIONS	ITHIN 2	NO CONVERGENCE WITHIN 20 ITERATIONS	* NC	6.	12.	7.
				WITHIN 20 LIERATIONS	ITHIN 2	NO CONVERGENCE .	* NC	5.	12.	7.
17978400.	76318.	6227.	1320.	91.	1.00	0.09 0.36	1. 0.	4.	12.	7
17451824.	73685.	6227.	1320.	91.	1.00	0.09 0.36	1. 0.	ω •	12.	7.
18093136.	76892.	6227.	1320.	91.	1.00	0.09 0.36	2. 0.	~	12.	7.
22551184.	99182.	6227.	1320.	91.	1.00	0.09 0.36	5. 0.	-	12.	-
-157.8	6 VALUE	D NEW STARTING VALUE	OVERFLOW. NEED	USE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE WILL CAUSE	* In	7.	15.	5
-98.1	6 VALUE	D NEW STARTING	OVERFLOW. NEED	USE EXPONENT OVERFLOW.	WILL CAUSE	INITIAL X VALUE	*	6.	15.	5
				0 ITERATIONS	S WIHII	NO_CONVERGENCE_#ITHIN_20_ITERATIONS	* 20	51	15.	5
				0 ITERATIONS	WITHIN 20	NO CONVERGENCE	* 20	•	15.	5
19756272.	85854.	7050.	1119.	91.	1.00	0.09 0.25	1. 0.	3.	15.	ر. ن
19999616.	87071.	7050.	11119	91.	1.00	0.09 0.25	0	N	15	5
22809952.	101123.	7050.	1119.	•16	1.00	0.09 0.25	3. 0.	:	15.	رن ن
-126.4	G VALUE	D NEW STARTING VALUE	OVERFLOW. NEED	X VALUE WILL CAUSE EXPONENT	WILL CA	INITIAL X VALUE	*	7.	14.	5
				20 ITERATIONS		NO CONVERGENCE WITHIN	* NC	6.	14.	5
				20 ITERATIONS	WITHIN 2	CONVERGENCE	* NO	.		5
				20 ITERATIONS	WITHIN 2	NO CONVERGENCE	* 20	•	14.	5
19727136.	85709.	7050.	1119.	91.	1.00	0.09 0.25	0	3.	•	5
20149840.	87822.	7050.	1119.	91.	1.00	0.09 0.25	2. 0.	2	14.	ن
23298544.	103566.	7050.	1119.	•16	1.00	0.09 0.25	3. 0.	:	14.	5
0.101-	6 VALUE	D NEW STARTING	OVERFLOW. NEED	X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	* 17	7.	13.	51
				0 ITERATIONS	ITHIN 20	NO CONVERGENCE WITHIN	* NC	6.	13.	5
						CONVERGENCE			1	U

	-577.3	VAI UF	NEED NEW STARTING	EXPONENT OVERELOW. NO	CALISE EXPONENT	20 1113	TNITIAL X VALUE	2. 9. 14. 7. *
	-256.5	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE	CAUSE EXPONENT	WILL CA	INITIAL X VALUE	2. 9. 14. 6. *
1994	-113.4	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NO		WILL CAUSE	INITIAL X VALUE	2. 9. 14. 5. #
95					WITHIN 20 LIERATIONS	MIHIL	NO CONVERGENCE .	2. 9. 14. 4. #
	16868912.	69871.	5542.	1754.	91.	1.00	0.09 0.44	2. 9. 14. 3. 1.
	17044608.	70749.	5542.	1754.	91.	1.00	0.09 0.44	2. 9. 14. 2. 2.
	21842272.	94737.	5542.	1754.	116	1.00	0.09 0.44	2, 9, 14, 1, 5,
	-384.1	VALUE	NEED NEW STARTING VALUE		USE EXPONENT	MILL C	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	2. 9. 13. 7. #
	-180.7	VALUE	NEED NEW STARTING		USE EXPONENT	WILL C	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	2. 9. 13. 6. #
					O ITERATIONS	NIHII	NO CONVERGENCE WITHIN 20 ITERATIONS	2, 9, 13, 5, *
					20 ITERATIONS	NIHIL	NO CONVERGENCE WITHIN 20 ITERATIONS	2. 9. 13. 4. *
	16736087.	69206.	5542.	1754.	91.	1.00	0.09 0.44	2, 9, 13, 3, 1,
	17322256.	72137.	5542.	1754.	•16	1.00	0.09 0.44	2, 9, 13, 2, 2,
	22746608.	99259.	5542.	1754.	•16	1.00	0.09 0.44	2. 9. 13. 1. 5.
	-255.6	VALUE	NEED NEW STARTING VALUE		USE EXPONENT	WILL C	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	2. 9. 12. 7. *
	-127.0	VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.	WILL CH	INITIAL X VALUE	2. 9. 12. 6. 8
					O ITERATIONS	NIHIL	NO CONVERGENCE WITHIN 20 ITERATIONS	2, 9, 12, 5, *
	14913247.	60092.	5542.	1754.	91.	1.00	0.09 0.44	2. 9. 12. 4. 1.
	19757680.	84314.	5542.	1754.	•16	1.00	0.09 0.44	2. 9. 12. 3. 1.
	17700784.	74030.	5542.	1754.	91.	1.00	0.09 0.44	2. 9. 12. 2. 2.
	23822448.	104638.	5542. 1	1754.	91•	1.00	0.09 0.44	2. 9. 12. 1. 5.
	-402.1	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. N	CAUSE EXPONENT	WILL C	INITIAL X VALUE	2, 7, 15, 7, *
	-200.5	VALUE	NEED NEW STARTING	OVERFLOW. N	X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	2. 7. 15. 6. *
	-99.1	VALUE	NEED NEW STARTING		USE EXPONENT	WILL CA	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	2. 7. 15. 5. *
					1 ITERATIONS	VIHIL	NO CONVERGENCE WITHIN 20	2. 7. 15. 4. *
	16359250.	68222.	6227.	1320.	91.	1.00	0.09 0.36	2. 7. 15. 3. 1.
	17509936.	73976.	6227.	1320.	91.	1.00	0.09 0.36	2. 7. 15. 2. 2.
	20516256.	89007.	6227.	1320.	•16	1.00	0.09 0.36	2. 7. 15. 1. 4.
	-290.2	VALUE	ED NEW STARTING VALUE	OVERFLOW. NE	USE EXPONENT	WILL CA	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED N	2. 7. 14. 7. *
	-151.3	VALUE	NEED NEW STARTING		USE EXPONENT	WILL CA	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	2. 7. 14. 6. *
000					O LIERATIONS	NIHIL	NO CONVERGENCE WITHIN 20 ITERATIONS	2. 7. 14. 5. *
11					0 ITERATIONS	NIHIL	NO CONVERGENCE WITHIN 20 ITERATIONS	2. 7. 14. 4. 4

9. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 9904. 210586. 9. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 9904. 2107860. 9. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 11017. 17098272. 9. 15. 9. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10											
15. 1. 0.09 0.44 1.00 91. 1754. 5542. 90904. 2175800. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 71017. 1685100. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 17092722. 15. 4. 9. 1011714. 211114 211114 211114 211114 21114 21114 21114 21114 21114 21114 2114	-1130.6								*	15. 4.	=
1754. 5542. 9094. 21075880.		73294.	4873.	4420.	91.	00			-	ı	11.
15. 1. 4. 0.09 0.44 1.00 91. 1754. 552. 9994. 21075880. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 552. 9994. 21075880. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 552. 69781. 1695100. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 552. 69781. 1695100. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 552. 171017. 1709272. 15. 4. ** VOCCONVERGENCE *ITHIN 20 ITERATIONS 15. 5. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE50.8 15. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE504.3 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 62410. 1595825. 12. 4. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE5917.1 12. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE5917.1 12. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE5917.1 12. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE5917.1 12. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE29607.6 13. 1. 0.09 0.93 1.00 91. 4420. 0. 4873. 63363. 1663740. 13. 2. 1 0.09 0.93 1.00 91. 4420. MEED NEW STANTING VALUE2700.7 13. 5. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 13. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 13. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 14. 3. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 14. 4. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 14. 4. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 14. 4. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 14. 4. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 14. 4. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 14. 4. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. MEED NEW STANTING VALUE2700.7 150-75. 14. 4. ** INITIAL X VAL	1	73589.	0.	4420.	91.	00			1	1	=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 552. 99904. 21075800. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 552. 69781. 16851000. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 552. 69781. 16851000. 15. 4. 9 NO CONVENEURE #1111 ZO ITEMATIOUS 15. 5. 9 INITIAL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —152.3 15. 6. 9 INITIAL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —283.5 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 40229808. 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 40229808. 12. 3. 1 0.09 0.93 1.00 91. 4420. 0. 853781. 19358256. 12. 3. 1 0.09 0.93 1.00 91. 4420. NEED NEW STANTING VALUE —110.2 12. 4. 9 INITIAL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —5907.6 12. 4. 9 INITIAL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —5907.6 13. 4. 9 INITIAL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —29007.6 13. 4. 9 INITIAL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —3333940. 13. 5. 9 INITIAL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —27007.6 13. 1. 0.09 0.93 1.00 91. 4420. 0. 85378. 3333940. 14. 1. 1 0.09 0.93 1.00 91. 4420. NEED NEW STANTING VALUE —27007.6 15. 1. 0.09 0.93 1.00 91. 4420. NEED NEW STANTING VALUE —27007.6 16. 1. 10111AL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —2700. 16. 2. 1 0.09 0.93 1.00 91. 4420. NEED NEW STANTING VALUE —331.3 16. 9 INITIAL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —38270.0 17. 0. 10111AL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —38262080. 16. 0. 10111AL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —38262080. 16. 0. 10111AL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —38262080. 16. 0. 10111AL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —38262080. 16. 0. 10111AL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —38262080. 16. 0. 10111AL X VALUE #111 CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —38262080. 16. 0. 10111AL X VALUE #111 CAUSE EXPONENT OVE		146202.	0.	4420.	91.	00			-	15. 1.	=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 552. 99904. 21075800. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 552. 69781. 16851000. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 552. 69781. 16851000. 15. 4. 4. 40 CONVENENCE #11110 20 ITEMATIONS 15. 5. 4. 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #152. 1. 1. 0.09 0.93 1.00 91. 4420. 0. 18375. 40228808. 15. 6. 6 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #152. 2202256. 17. 8 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #152. 3. 1. 0.09 0.93 1.00 91. 4420. 0. 18375. 40228808. 17. 9 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #150. 1995825. 17. 9 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #150. 1995825. 18. 1. 0.09 0.93 1.00 91. 4420. 0. 85383. 373394.01. 19. 2. 1 0.09 0.93 1.00 91. 4420. 0. 85373. 373394.01. 19. 3. 3. 0.09 0.93 1.00 91. 4420. 0. 85373. 373394.01. 19. 3. 3. 0.09 0.93 1.00 91. 4420. 0. 85373. 373394.01. 19. 3. 1. 0.09 0.93 1.00 91. 4420. 0. 85373. 373394.01. 19. 4. 0 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #200. 10. 85373. 373394.01. 19. 5. 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #200. 10. 85373. 373394.01. 19. 6. 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #200. 10. 85373. 373394.01. 19. 7. 101110 X VALUE #111 CANDE EXPONENT OVERFLOW. NEED NEW STARTING VALUE #200. 10. 10. 10. 10. 10. 10. 10. 10. 10.	-189486.6					LL CAUS	VALUE WI		*	14. 7.	F
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 21075680. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 1085000. 15. 3. 1. 0.39 0.44 1.00 91. 1754. 5542. 71017. 17098272. 15. 4. 9 NO CONVERSENCE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STANTING VALUE -363.5 15. 6. 9 INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STANTING VALUE -263.5 12. 1. 0.09 0.93 1.00 91. 4420. 0. 62410. 1595685. 12. 3. 1 0.09 0.93 1.00 91. 4420. 0. 62410. 1595685. 12. 4. 9 INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STANTING VALUE -164.3 12. 6. 9 INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STANTING VALUE -260.2656. 12. 1. 0.09 0.93 1.00 91. 4420. 0. 62410. 1595685. 12. 1. 0.09 0.93 1.00 91. 4420. 0. 62410. 1595685. 12. 1. 0.09 0.93 1.00 91. 4420. 0. 62410. 1595685. 13. 1. 0.09 0.93 1.00 91. 4420. 0. 62510. 62510. 1595686. 13. 1. 0.09 0.93 1.00 91. 4420. 0. 62510. 1595664. 15956866. 1595686. 1595686. 1595686. 1595686. 1595686. 1595686. 15956866. 1595686. 1595686. 1595686. 1595686. 1595686. 1595686. 15956866. 1595686. 1	-29810.8				EXPONENT	LL CAUS	1	INTITAL	•	14. 6.	1
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 99904. 21075680. 15. 2. 2. 0.09 0.44 1.00 91. 1755. 5542. 6978. 1098272. 15. 3. 1. 0.09 0.44 1.00 91. 1755. 5542. 71017. 1709272. 15. 4. 4. 0.09 0.44 1.00 91. 1755. 5542. 71017. 1709272. 15. 5. 4. 101174. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE 953.8 15. 5. 4. 101174. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE 9863.8 15. 7. 101174. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE 9863.8 16. 101174. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE 956825. 17. 101174. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE 956825. 18. 10.09 0.93 1.00 91. 4420. 0. 82747. 22022286. 19. 10.09 0.93 1.00 91. 4420. 0. 8EED NEW STANTING VALUE 956825. 19. 10.09 0.93 1.00 91. 4420. 0. 8EED NEW STANTING VALUE 956825. 19. 10.09 0.93 1.00 91. 4420. 0. 8EED NEW STANTING VALUE 956825. 19. 10.09 0.93 1.00 91. 4420. 0. 8EED NEW STANTING VALUE 956826. 19. 10.09 0.93 1.00 91. 4420. 4673. 89363. 10267403. 19. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93734.0 19. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93734.0 19. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93734.0 19. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93734.0 19. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93734.0 10. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93734.0 11. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 8EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 18EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 18EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 18EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 18EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 18EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 18EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 18EED NEW STANTING VALUE 93844.0 11. 10.09 0.93 1.00 91. 4420. 18EED NEW STANT	-4546.0		D NEW STARTIN		EXPONENT		VALUE		*	•	F
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 99904. 21075680. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 1895100. 15. 3. 1. 0.09 0.44 1.00 91. 1755. 5542. 71017. 17098272. 15. 4. 9 NO CONVERIGINE WITHIN 20 ITEMATIONS 15. 5. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -152.3 15. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -260.5 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -360.5 17. 10.09 0.93 1.00 91. 4420. 0. 92747. 22024256. 18. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -164.3 18. 10.09 0.93 1.00 91. 4420. 0. 92747. 22024256. 19. 10.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -29071. 19. 10.09 0.93 1.00 91. 4420. 0. 85378. 63363. 10267403. 19. 10.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -29071. 19. 10.09 0.93 1.00 91. 4420. 0. 85378. 63363. 10267403. 19. 10.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -2907.6 19. 10.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -2907.6 19. 10.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -2907.6 19. 10.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -2907.6 19. 10.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -331.3 19. 10.009 0.93 1.00 91. 4420.	-623,5		D NEW STARTIN			TT CAUS			*	14. 4.	11.
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 21075800. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 90781. 15851040. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 69781. 15851040. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 69781. 15851040. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 17088772. 15. 4. 0. NO CONVERGENCE *ITTIN 20 ITERATIONS 15. 5. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -383.8 15. 7. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -886.5 12. 1. 1. 0.09 0.93 1.00 91. 4420. 0. 92747. 22024256. 12. 2. 1. 0.09 0.93 1.00 91. 4420. 0. 92747. 22024256. 12. 3. 1. 0.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -110.2 12. 4. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -29607.6 13. 1. 1. 0.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -29607.6 13. 2. 11 0.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -29607.6 13. 3. 0.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -29607.6 13. 4. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -29607.6 13. 1. 0. 0.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE -29607.6 13. 1. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -29607.6 13. 1. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -29607.6 13. 1. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -22670.0 13. 7. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -22670.0 13. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -22670.0 13. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -22670.0 13. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -22670.0 13. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -22670.0 13. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -22670.0 13. 0. 0. INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -22670.0 13. 0. 0. 0. 0	19774752.	80900.	4873.	4420.	91.	00			+		=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. 0.00 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. 0.00 0.44 1.00 91. 1754. 5542. 71017. 170 15. 5. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 18375. 402 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 18375. 402 12. 3. 1 0.09 0.93 1.00 91. 4420. 0. 18375. 402 12. 7. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 3. 3. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 3. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 3. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0. 0.09 0.93 1.00 91. 4420. 0. 85370. 205 13. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		79063.	0.	4420.	91.	0.0			-		=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 4. 9 NO CONVERGENCE MITHIN ZO LIERATIONS 15. 5. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 3. 1 0.09 0.93 1.00 91. 4420. 0. 62410. 139 12. 4. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 1. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 236 13. 2. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 236 13. 3. 0.09 0.93 1.00 91. 4420. 0. 85378. 236 13. 5. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 7. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 7. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	34862080.	156936.	0.	4420.	91.	00			-	14. 1.	=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 188 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. 8 NO CONVENGENCE WITHIN 20 ITERATIONS 15. 5. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 92747. 220 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 92747. 220 12. 3. 1 0.09 0.93 1.00 91. 4420. 0. 92747. 220 12. 4. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 1. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205 13. 2. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205 13. 3. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205 13. 5. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 6. 8 INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING 13. 10.00000000000000000000000000	-75087.2				EXPONENT		VALUE		•	13. 7.	+
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 4. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 1. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205 13. 2. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205 13. 5. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 5. 0 INITIAL X VALUE WILL CAUSE EXPONEN	-13344.0										=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 188 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. 8 NO CONVERGENCE MITHIN 20 ITERATIONS 15. 5. 8 INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 6. 8 INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 8 INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 92747. 220 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 62410. 159 12. 5. 8 INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 9 INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 8 INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 8 INITIAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 9. 91. 4420. 0. 93 1.00 91. 4420. 0. 169323. 373 13. 3. 0.09 0.93 1.00 91. 4420. 0. 85378. 205 13. 1. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205 13. 1. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205	-2270.0		D NEW STARTIN		E EXPONENT	LL CAUS	VALUE WI	INITIAL			=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. 8 NO CONVERGENCE MITHIN 20 ITERATIONS 15. 5. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 62410. 159 12. 4. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 5. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 1. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205 13. 3. 1. 0.09 0.93 1.00 91. 4420. 4873. 63363. 162	-331,3					LL CAUS		INITIAL	•		11.
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 11017. 170 15. 4. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 92747. 220 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 92747. 220 12. 3. 1 0.09 0.93 1.00 91. 4420. NEED NEW STARTING VALUE 12. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 1. 1 0.09 0.93 1.00 91. 4420. 0. 85378. 205	16267403.	63363.	4873.	4420.	91.	00			ω		11.
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 92747. 220 12. 4. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. 1. 1 0.09 0.93 1.00 91. 4420. 91. 44	20550464.	85378.	0.	4420.	91.	0.0			-		11.
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. * NO CONVERGENCE MITHIN 20 ITERATIONS 15. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 4. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 13. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 14. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	37339440.	169323.	0.	4420.	•16	00	ŀ		+	13. 1.	=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 2. 1 0.09 0.93 1.00 91. 4420. 0. 62410. 159 12. 4. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-29607.6	G VALUE			EXPONENT				٠	12. 7.	=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 4. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 4. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-5917-1					LL CAUS	VALUE WI		*		11.
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 69781. 170 15. 4. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 12. 3. 1 0.09 0.93 1.00 91. 4420. 0. 62410. 159 12. 4. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-1110-2				E EXPONENT	LL CAUS					#
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 16. 17. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402 17. 18. 1 0.09 0.93 1.00 91. 4420. 0. 62410. 159	-164.3	6 VALUE				LL CAUS				12. 4.	111.
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 12. 1. I 0.09 0.93 1.00 91. 4420. 0. 183775. 402	15956825.	62410.	0.	4420.	91.	00			-		=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 1. 1 0.09 0.93 1.00 91. 4420. 0. 183775. 402	22024256.	92747.	0.	4420.	91.	00			+	1	=
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	40229808.	183775.	0.	4420.	91.	00			-	Ī	11.
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-868.5	G VALUE		OVERFLOW. NEE		TT CAUS	VALUE WI		•		9
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 210 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 168 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 170 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	-363.8					LL CAUS	VALUE WI			1	c
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS	-152.3					LL CAUS	VALUE WI	INITIAL	*	İ	9
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 69781. 15. 3. 1. 0.09 0.44 1.00 91. 1754. 5542. 71017.					LIERATIONS			NO CONVEH	٠		9
15. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904. 15. 2. 2. 0.09 0.44 1.00 91. 1754. 5542. 69781.	17098272.	71017.	5542.	1754.	91.	00			-	15. 3.	
. 1. 4. 0.09 0.44 1.00 91. 1754. 5542. 90904.	16851040.	69781.	5542.	1754.	91.	00			2		9
	21075680.	90904.	5542.	1754.	91.	00	.44	0.09	•	15. 1.	9

	17794864.	70 480	6227.	1316	100	1 00	0 46	,		u	10	7	w
	18107472.	74443.	6227.	1216.	122.	1.00	0.36	0.15	2.	2.	12.	7.	3
760	22338688.	95600.	6227.	1216.	122.	1.00	0.36	0.15	5	:	12.	7.	w
	-146.0	VALUE	D NEW STARTING	OVERFLOW. NEED	X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CAL		INITIAL		7.	15.	5.	W
	-91.7	9 VALUE	D NEW STARTING VALUE	OVERFLOW. NEED	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CAL	L X VALUE	INITIA	*	6.	15.	5	w
					20 ITERATIONS		NO CONVERGENCE WITHIN	NO CON	*	5	15.	5	3
					20 ITERATIONS	MITHIN 20	NO CONVERGENCE	NO COM			15	5	W
	19530752.	82207.	7050.	1072.	122.	1.00	0.25	0.15	:	ū	15.	5	w
	20134832.	85227.	7050.	1072.	122.	1.00	0.25	0.15	2.	~	15.	5	w
	23103152.	100069.	7050.	1072.	122.	1.00	0.25	0.15	3	+	15.	5	w
	-117-4	S VALUE	D NEW STARTING VALUE	OVERFLOW. NEED	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CAL	L X VALUE	INITIA	٠	7.	14.	5	w
					NO CONVERGENCE WITHIN 20 ITERATIONS	WITHIN 20	VERGENCE	NO CON	¢	6.	14.	5	w
					LIERATIONS	WITHIN 20	NO CONVERGENCE	NO CON		5	14.	5.	-
					ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	•	14.	5	w
	19581280.	82460.	7050.	1072.	122.	1.00	0.25	0.15	:	3.	14.	5	w
	20318416.	86145.	7050.	1072.	122.	1.00	0.25	0.15	2	2	14.	5	W
	23584480.	102476.	7050.	1072.	122.	1.00	0.25	0.15	3.	:	14.	5	w
	-94.1	G VALUE	D NEW STARTING VALUE	EXPONENT OVERFLOW. NEED		X VALUE WILL CAUSE		INITIAL	٠	7.	13.	5	w
					20 ITERATIONS	WITHIN 20	NO CONVERGENCE WITHIN	NO CON	*	6.	13.	5	w
					WITHIN 20 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	5	13.	G	w
					20 ITERATIONS	WITHIN 20	NO CONVERGENCE WITHIN	NO COM	*	4	13.	5	w
	19671312.	82910	7050.	1072.	122.	1.00	0.25	0.15	+	4	13.	5	W
	20552656.	87316.	7050.	1072.	122.	1.00	0.25	0.15	2	2.	13.	5	w
	24154544.	105326.	7050.	1072.	122.	1.00	0.25	0.15	•	-	13.	5	w
					LIEKALIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	7.	12.	5	-
					ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	6.	12.	u	ω
					LIERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	*	5	12.	u	w.
	19522368.	82165.	7050.	1072.	122.	1.00	0.25	0.15	-	4	12.	5	W
	19809296.	83600.	7050.	1072.	122.	1.00	0.25	0.15	:	ω.	12.	5	w
	34845808.	158782.	7050.	1072.	122.	1.00	0.25	0.15	:	2.	12.	us .	w
960	24835184.	108729.	7050.	1072.	122.	1.00	0.25	0.15	4	+	12.	5	W
0.7	-476722.7	G VALUE	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	OVERFLOW. NEE	JSE EXPONENT	WILL CAL	L X VALUE	INITIA	*	7.	15.	F	2
	-00200-												

-118.0		EU NEW STARTING	OVERFLOW. NEED	HOSE EXPONENT	E WILL C		# INI	7.	9. 12.
-118-0	VALUE			Y VALUE WILL CAUSE EXPONENT OVERELOW.		INITIAL X VALU			
	VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	E WILL C	TIAL X VALU	* INI	6.	9. 12.
				WITHIN 20 ITERATIONS		NO CONVERGENCE	* NO	5.	9. 12.
15340466.	59708.	5542.	1552.	122.	1.00	5 0.44	1. 0.15		9. 12.
16277178.	64392.	5542.	1552.	122.	1.00	5 0.44	1. 0.15	3.	9. 12.
17312272.	69567.	5542.	1552.	122.	1.00	5 0.44	2. 0.15	2	9. 12.
22767152.	96842.	5542.	1552.	122.	1.00	5 0.44	5. 0.15	;	9. 12.
-368.7	VALUE	ED NEW STARTING	OVERFLOW. NEED	X VALUE WILL CAUSE EXPONENT OVERFLOW.	E WILL C	INITIAL X VALU	INI *	7.	7. 15.
-185.8	VALUE	ED NEW STARTING	OVERFLOW. NEED	CAUSE EXPONENT	#ILL	INITIAL X VALUE	INI	•	7. 15.
-92.9	VALUE	ED NEW STARTING	EXPONENT OVERFLOW. NEED		E WILL C	INITIAL X VALUE WILL CAUSE	INI	5.	7. 15.
				NO CONVERGENCE WITHIN 20 ITERATIONS	WITHIN	CONVERGENCE	* 40		7. 15.
17334960.	70581.	6227.	1216.	122,	1.00	5 0.36	1. 0.15	٠	7. 15.
17465600.	71234.	6227.	1216.	122.	1.00	5 0.36	2. 0.15	2.	7. 15.
20424112.	86027.	6227.	1216.	122.	1.00	5 0.36	4. 0.15	+	7. 15.
-267.1	VALUE	ED NEW STARTING	OVERFLOW. NEED	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	E WILL C	TIAL X VALU	‡ INI	7.	7. 14.
-140.7	VALUE	ED NEW STARTING VALUE	OVERFLOW. NEED	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	E WILL C	TIAL X VALU	# INI	6.	7. 14.
				NO CONVERGENCE WITHIN 20 ITERATIONS	WITHIN	CONVERGENCE	* NO	5	7. 14.
				20 ITERATIONS	MITHIN	NO CONVERGENCE	* NO		7. 14.
17264736.	70230.	6227.	1216.	122.	1.00	5 0.36	1. 0.15	3.	7. 14.
17615280.	71982.	6227.	1216.	122.	1.00	5 0.36	2. 0.15	~	7. 14.
20954000.	88676.	6227,	1216.	122,	1.00	5 0.36	4. 0.15	+	7. 14.
-193.5	VALUE	ED NEW STARTING	OVERFLOW. NEED	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	E WILL C	TIAL X VALU	* INI	7.	7. 13.
-106.2	VALUE	ED NEW STARTING	EXPONENT OVERFLOW. NEED	AUSE EXPONENT	VALUE WILL CAUSE	INITIAL X VALU	4 INI	6	7. 13.
				WITHIN 20 ITERATIONS		NO CONVERGENCE	* NO	5	7. 13.
				20 ITERATIONS	MIHIN	NO CONVERGENCE	* NO		7. 13.
17248576.	70149.	6227.	1216.	122.	1.00	5 0.36	1. 0.15	မ	7. 13.
17824880.	73030.	6227.	1216.	122,	1.00	5 0.36	2. 0.15	2	7. 13.
21584032.	91826.	6227.	1216.	122.	1.00	5 0.36	4. 0.15	:	7. 13.
-139.9	VALUE	ED NEW STARTING	EXPONENT OVERFLOW. NEED		E WILL C	INITIAL X VALUE WILL CAUSE	* INI	7.	7. 12.
				NO CONVERGENCE WITHIN 20 ITERATIONS	MIHIN	CONVERGENCE	* NO	6.	7. 12.
				20 ITERATIONS	MIHIN	NO CONVERGENCE	¢ NO	ڻ •	7. 12.
17437504.	71094.	6227.	1216.	122.	1:00	5 0.36	1. 0.15		7. 12.

	-11166											
	-1907.9	NG VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE		WILL CAUSE	VALUE	INITIAL X	*	5.	11. 13.	3
099	-262.2	NG VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE		WILL CAUSE	X VALUE	INITIAL >	*	4.	11. 13	3
	14099763.	50005.	4873.	3732.	122.	1.00	0.93	0.15	5.	3.	11. 13	1
	18434688.	72280.	0.	3732.	122.	1.00	0.93	0.15	-	3. 2.	11. 13	•
	32501632.	142614.	0.	3732.	122.	1.00	0.93	0.15 (-	11. 13.	3.
	-25319-6	NG VALUE	NEED NEW STARTING	OVERFLOW. NE	ISE EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	7.	11. 12	3
	-5010-9	NG VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL X	*	6.	11. 12	3
	-915.4	NG VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE		WILL CAUSE	X VALUE	INITIAL		5	11. 12	3.
	-121-5	NG VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE		WILL CAUSE	X VALUE	INITIAL			11. 12	•
	14622198.	53217.	6.	3732.	122.	1.00	0.93	0.15 (-	3.	11 12	3.
	19707584.	78644.	0.	3732.	122.	1.00	0.93	0.15	-	2.	11. 12.	3.
	34970720.	154960.	0.	3732.	122.	1.00	0.93	0.15		-	11 12	4
	-790.3	NG VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW. NE		WILL CAUSE	X VALUE	INITIAL		7.	9. 15	w
	-334.8	NG VALUE	NEED NEW STARTING VALUE		X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CAL	VALUE	INITIAL		6.	9. 15	•
	8-191-	NG VALUE	NEED NEW STARTING	1	CAUSE EXPONENT OVERFLOW	WILL CAL	X VALUE	INITIAL	¢	5	9. 15	1
) ITERATIONS	WITHIN 20		NO CONVERGENCE		4	9. 15	3
	16400760.	•2010•	5542.	1552.	122.	1.00	0.44	0.15 (-	3	9. 15	3.
	16484143.	65427	5542.	1552,	122.	1.00	0.44	0.15 (2	2.	9. 15	3
	20305504.	84534.	5542.	1552.	122.	1.00	0.44	0.15		•	9. 15	ω.
	-527.5	NG VALUE	NEED NEW STARTING VALUE		CAUSE EXPONENT OVERFLOW.	WILL CAL	X VALUE	INITIAL	*	7.	9. 14	3
	-236,9	NG VALUE	NEED NEW STARTING	I	CAUSE EXPONENT OVERFLOW.	WILL CAL	X VALUE	INITIAL		•	9. 14	4
	-105-8	NG VALUE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.	WILL CAL	X VALUE	INITIAL	*	5	9. 14	ω.
					LIERATIONS	WITHIN 20		NO CONVERGENCE		•	9. 14	ω.
	16280156.	64407.	5542.	1552,	122.	1.00	0.44	0.15	-	3	9. 14	w w
	16678912.	66401.	5542.	1552.	122.	1.00	0.44	0.15 (2	2	9. 14	۳
	20990576.	87959.	5542.	1552.	122.	1.00	0.44	0.15	5	-	9. 14	ω
	-352-4	AND VALUE	NEED NEW STARTING VALUE	1	WILL CAUSE EXPONENT OVERFLOW.	WILL CAL	X VALUE	INITIAL		7.	9. 13.	w
	-167.4	NG VALUE	NEED NEW STARTING	OVERFLOW. NE	JSE EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	6.	9. 13.	•
					ITERATIONS	WITHIN 20		NO CONVERGENCE	*	3. 5.	9. 13	•
					SNOTTERATIONS	WITHIN 20	1	NO CONVERGENCE	¢		9. 13.	3
	16236171.	64187.	5542.	1552.	122.	1.00	0.44	0.15 (3.	9. 13	3.

31108624.				105	1.00	0.25	0.22	3. 1.	5. 14.
24451920.	136496.	7050.	1036.	195.	1.00	0.25	0.22	2. 1.	5. 14.
-0110	103213.	7050.	1036.	195.	1.00	0.25	0.22	1. 3.	5. 14.
-67 2	ING VALUE	D NEW STARTING VALUE	OVERFLOW. NEED	WILL CAUSE EXPONENT C		L X VALUE	INITIAL	7. *	5. 13.
				WITHIN 20 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	6.	5. 13.
				WITHIN 20 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	5. *	5. 13.
				WITHIN 20 ITERATIONS	WITHIN 20	NO CONVERGENCE	NO CON	4.	5. 13.
20185152.	81879.	7050.	1036.	195.	1.00	0.25	0.22	3. 1.	5. 13.
21321280.	87560.	7050.	1036,	195,	1.00	0.25	0.22	2. 2.	5. 13.
25041568.	106161.	7050.	1036.	195.	1.00	0.25	0.22	1. 4.	5. 13.
				20 ITERATIONS	WITHIN 20	NO CONVERGENCE WITHIN	NO COM	7. *	5. 12.
				20 ITERATIONS		NO CONVERGENCE WITHIN	NO CON	6	5. 12.
				WITHIN 20 ITERATIONS	#ITHIN 20	NO CONVERGENCE	NO CON	5.	5. 12.
19774064.	79823.	7050.	1036.	195.	1.00	0.25	0.22	÷ :	5. 12.
20418464	83045,	7050	1036.	195.	1.00	0.25	0.22	3	5. 12.
36133008.	161618.	7050.	1036.	195.	1.00	0.25	0.22	2. 1.	5. 12.
25745104.	109679.	7050.	1036.	195.	1.00	0.25	0.22	1. 4.	5. 12.
-411797.0	ING VALUE	O NEW STARTING	DVERFLOW. NEED	E EXPONENT OVERFLOW.	WILL CAUSE	T X VALUE	INITIAL	7. #	11. 15.
-57170-1	ING VALUE	D NEW STARTING	DVERFLOW. NEED	E EXPONENT OVERFLOW.	WILL CAUSE	L X VALUE	INITIAL	6. *	11. 15.
-7714.6	ING VALUE	D NEW STARTING VALUE	DVERFLOW. NEED	X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CAUS	IL X VALUE	INITIAL	5.	11. 15.
-947.5	ING VALUE	D NEW STARTING	DVERFLOW. NEED	E EXPONENT OVERFLOW.	WILL CAUSE	IL X VALUE WILL	INITIAL	4	15.
20627728.	82645.	4873.	3732.	122.	1.00	0.93	0.15	3. 1.	11. 15.
16398757.	62100.	0.	3732.	122.	1.00	0.93	0.15	2. 1	11. 15.
28551792.	122865.	0.	3732.	122.	1.00	0.93	0.15	+	11. 15.
-163366.6	ING VALUE	D NEW STARTING VALUE	WERFLOW. NEED	WILL CAUSE EXPONENT OVERFLOW.	WILL CAUS	T X VALUE	INITIAL	7. *	11. 14.
-25635.1	ING VALUE	D NEW STARTING VALUE	DVERFLOW. NEED	E EXPONENT OVERFLOW.	WILL CAUSE	IL X VALUE	INITIAL	6.	11. 14.
-3868.6	ING VALUE	D NEW STARTING	DVERFLOW. NEED	E EXPONENT OVERFLOW.	WILL CAUSE	L X VALUE	INITIAL	5	11. 14.
-511.4	ING VALUE	D NEW STARTING VALUE	OVERFLOW. NEED	EXPONENT	WILL CAUSE	L X VALUE	INITIAL	*	11. 14.
15039507.	54704.	4873.	3732.	122.	1.00	0.93	0.15	3. 2.	11. 14.
17343888.	66826.	0.	3732.	122.	1.00	0.93	0.15	2	11. 14.
30385536.	132034.	0.	3732.	122.	1.00	0.93	0.15		11. 14.

5. 14. 5. • NO CONVENENCE STITIN AD LIBRATIONS 5. 14. 7. • NO CONVENENCE STATING ADJECT OFFICIAL NEED NEW STARTING VALUE -108.* 5. 15. 1. 3. 0.22 0.25 1.00 195. 1035. 7050. 100722. 2995860. 5. 15. 1. 3. 0.22 0.25 1.00 195. 1035. 7050. 100722. 2995860. 5. 15. 1. 1. 0.22 0.25 1.00 195. 1035. 7050. 80266. 1982656. 5. 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 1982656. 5. 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 1982656. 5. 15. 1. 1. 0.22 0.25 1.00 195. 1038. 7050. 80266. 1982656. 5. 15. 1. 1. 0.22 0.25 1.00 195. 1038. 7050. 80266. 1982656. 5. 15. 1. 1. 0.22 0.25 1.00 195. 1159. 8227. 9250. 5. 15. 1. 1. 0.22 0.35 1.00 195. 1159. 8227. 9257. 2271288. 5. 15. 2. 2. 0.22 0.35 1.00 195. 1115. 8227. 89973. 1773872. 7. 12. 1. 1. 0.22 0.36 1.00 195. 1115. 8227. 89973. 1773872. 7. 12. 1. 1. 0.22 0.35 1.00 195. 1115. 8227. 89973. 1773872. 7. 12. 1. 1. 1. 2. 2. 0.32 0.35 1.00 195. 1115. 8227. 89973. 1773872. 7. 12. 1. 1. 1. 2. 2. 0.35 1.00 195. 1115. 8227. 89973. 1773872. 7. 12. 1. 1. 1. 2. 2. 0.35 1.00 195. 1115. 8227. 89973. 1773872. 7. 12. 1. 1. 1. 2. 2. 0.35 1.00 195. 1115. 8227. 89973. 1773872. 7. 13. 2. 2. 0.35 1.00 195. 1115. 8227. 89973. 1773872. 7. 13. 2. 2. 0.35 1.00 195. 1115. 8227. 89973. 1773872. 7. 13. 4. 9 10 CONVERGENCE STITIN 20 ITERATIONS 7. 14. 1. 1. 4. 0.22 0.35 1.00 195. 1115. 8227. 89014. 21975488. 7. 14. 1. 1. 4. 0.22 0.35 1.00 195. 1115. 8227. 72160. 11377548. 7. 14. 1. 1. 4. 0.22 0.35 1.00 195. 1115. 8227. 72160. 11377548. 7. 14. 1. 1. 4. 0.22 0.35 1.00 195. 1115. 8227. 89014. 21977548. 7. 14. 1. 1. 4. 0.22 0.35 1.00 195. 1115. 8227. 89014. 21977548. 7. 14. 1. 1. 4. 0.22 0.35 1.00 195. 1115. 8227. 89014. 21977548. 7. 14. 1. 1. 4. 0.22 0.35 1.00 195. 1115. 8227. 89014. 21977548. 7. 14. 1. 1. 4. 0.22 0.35 1.00 195. 1158. 1159. 8227. 89014. 21977548. 7. 14. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	17929248.	60052.	6227.	1115.	105.	1.00	76.0	0.00	v	0	, n	7.
14. 5. * NO CONVENENCE STITHIN 20 ITERATIONS 14. 7. * INTITAL X VALUE STILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 80266. 1986266. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 4. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 4. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 4. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 4. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 4. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 4. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 93972. 22713248. 12. 1. 5. 0.22 0.35 1.00 195. 1115. 6227. 63573. 1733472. 12. 2. 0.22 0.35 1.00 195. 1115. 6227. 63573. 1733472. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 63573. 17371466. 12. 5. 0. NO CONVENENCE WITHIN 20 ITERATIONS 12. 7. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —128.9 13. 4. 0.022 0.35 1.00 195. 1115. 6227. 6356. 17371984. 13. 5. 0. NO CONVENENCE WITHIN 20 ITERATIONS 13. 4. 0.022 0.35 1.00 195. 1115. 6227. 6366. 17371984. 13. 5. 0. NO CONVENENCE WITHIN 20 ITERATIONS 13. 4. 0. NO CONVENENCE WITHIN 20 ITERATIONS 14. 4. 0.22 0.35 1.00 195. 1115. 6227. 73607. 18120406. 15. 0. WITHIN A WALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE —1177.6 16. 0. WITHIN A WALUE WITHIN 20 ITERATIONS 16. 0. WITHIN A WALUE WITHIN 20 ITERATIONS 17. 0. WITHIN A WALUE WITHIN 20 ITERA		84548.	6227.	1115.	195.	1.00	0.36	0.22	4	-	15.	7
14. 5. ** NO CONVERGENCE MITHIN 20 ITERATIONS 14. 6. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 8918. 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 89266. 19862566. 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 89266. 19862566. 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 89266. 19862566. 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 89266. 19862566. 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 89266. 19862566. 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 89266. 19862566. 15. 1. 1. 0.22 0.35 1.00 195. 1036. 7050. 89266. 19862566. 15. 1. 1. 0.22 0.35 1.00 195. 1115. 8227. 7377. 18696672. 12. 1. 5. 0.22 0.35 1.00 195. 1115. 8227. 7377. 18696672. 12. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 7377. 18696672. 12. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 7377. 18696672. 12. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 7377. 18696672. 12. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 727646. 13. 1. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 12. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 12. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 12. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 12. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 13. 1. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 13. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 13. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 13. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 13. 1. 0. 0.22 0.35 1.00 195. 1115. 8227. 72160. 18370722. 13. 1. 0. 0.00WERGENCE WITHIN 20 ITERATIONS 13. 0. 0. 00WERGENCE WITHIN 20 ITERATIONS 13. 0. 0. 00WERGENCE WITHIN 20 ITERATIONS 14. 0. 0. 00WERGENCE WITHIN 20 ITERATIONS 15. 0. 0. 00WERGENCE WITHIN 20 ITERATIONS 16. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 16. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 17. 0. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 18. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 19. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 19. 0. 00 CONVERGENCE WITHIN 20 ITERATIONS 19. 0. 00 CONVERGENCE WIT		VG VALUE	ED NEW STARTIN			WILL CAU		INITI	*	7.	14.	7
14. 5. ** NO CONVENENCE MITTIN 20 ITERATIONS 14. 5. ** NO CONVENENCE MITTIN 20 ITERATIONS 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 88918. 20792860. 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 88918. 20792860. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 88918. 20792860. 15. 4. ** NO CONVENENCE MITTIN 20 ITERATIONS 15. 5. ** NO CONVENENCE MITTIN 20 ITERATIONS 15. 5. ** NO CONVENENCE MITTIN 20 ITERATIONS 15. 7. ** INVITAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE13.3 12. 1. 5. 0.22 0.35 1.00 195. 1115. 6227. 73779. 18694672. 12. 2. 2. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773972. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773972. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773972. 12. 4. 0. 0. CONVENENCE MITTIN 20 ITERATIONS 12. 7. ** INVITAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE128.9 13. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 73779. 18694672. 12. 7. ** INVITAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE128.9 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 1837052. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 1837052. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 1837052. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 1837052. 13. 2. 0.22 0.35 1.00 195. 1115. 6227. 72160. 1837052. 13. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 1337052. 13. 4. ** NO CONVENGENCE MITTIN 20 ITERATIONS 13. 5. ** NO CONVENGENCE MITTIN 20 ITERATIONS 13. 6. ** INVITAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE28.5 13. 7. ** INVITAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE28.9 13. 7. ** INVITAL X VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE28.5 13. 7. ** NO CONVENGENCE MITTIN 20 ITERATIONS 13. 8. ** NO CONVENGENCE MITTIN 20 ITERATIONS 13. 9. ** NO CONVENGENCE MITTIN 20 ITERATIONS 13. 0. ** NO CONVENGENCE MITTIN 20 ITERATIONS 1	-130.0	- 1	ED NEW STARTIN			WILL CAU		IIIINI		5.	14.	7
14. 5. * NO CONVENENCE MITHIN 20 ITERATIONS 14. 5. * INTIGAL X VALUE MITHIN 20 ITERATIONS 14. 7. * INTIGAL X VALUE MITHIN 20 ITERATIONS 15. 1. 1. 0.22 0.25 1.00 195. 1036. 7050. 80786. 1985266. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 80266. 1986266. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 1986266. 15. 4. * NO CONVENGENCE MITHIN 20 ITERATIONS 15. 5. * NO CONVENGENCE MITHIN 20 ITERATIONS 15. 5. * NO CONVENGENCE MITHIN 20 ITERATIONS 15. 5. * NO CONVENGENCE MITHIN 20 ITERATIONS 15. 6. * INTIGAL X VALUE MITHIN 20 ITERATIONS 15. 7. * INTIGAL X VALUE MITHIN 20 ITERATIONS 15. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 12. 2. 2. 0.32 0.35 1.00 195. 1115. 6227. 68166. 17571984. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 12. 5. * NO CONVENIENCE MITHIN 20 ITERATIONS 12. 6. * INTIGAL X VALUE MITHIN 20 ITERATIONS 12. 7. * INTIGAL X VALUE MITHIN 20 ITERATIONS 12. 1. * O.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 1370752. 14. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.					LIERATIONS	WITHIN 20	NVERGENCE	NO CO	*	5	14.	7
14. 5. * NO CONVERGENCE *ITHIN 0 ITEMATIONS 14. 7. * INITIAL VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE \$23953680. 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862666. 15. 4. * NO CONVERGENCE *ITHIN 20 ITEMATIONS 15. 5. * INITIAL VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE \$1862656. 15. 5. * INITIAL VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE \$196.2 15. 7. * INITIAL VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE \$195. 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 93872. 22712848. 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 68973. 17733472. 12. 4. 1. 0.22 0.36 1.00 195. 1115. 6227. 68973. 17733472. 12. 4. 1. 0.22 0.36 1.00 195. 1115. 6227. 68973. 17733472. 12. 5. * NO CONVERGENCE MITHIN 20 ITEMATIONS 12. 6. * NO CONVERGENCE MITHIN 20 ITEMATIONS 12. 7. * INITIAL VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE \$1773488. 12. 6. * NO CONVERGENCE MITHIN 20 ITEMATIONS 12. 7. * INITIAL VALUE MILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE \$18579884. 13. 1. * * O.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. * * O.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. * * O.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. * * O.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 887871NG VALUE \$1870752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 887871NG VALUE \$1870752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 887871NG VALUE \$1870752. 13. 1. * O.22 0.35 1.00 195. 1115. 6227. 887871NG VALUE \$1870752. 14. 1. * O.22 0.35 1.00 195. 1115. 6227. 887871NG VALUE \$1870752. 15. * O.22 0.35 1.00 195. 1115. 6227. 18370752. 18370752. 15. * O.22 0.35 1.00 195. 1115. 6227. 18370752. 18370752. 16. * O.22 0.35 1.00 195. 1115. 6227. 18370752. 18370752. 17. * O. MILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE \$1870. 18370752. 18. * O.22 0.35 1.00 195. 1115. 6227. 1					LIERATIONS			NO CO	*			7
14. 5. * NO CONVERGENCE *ITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -138.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 73779. 186966. 12. 4. 11. 0.22 0.35 1.00 195. 1115. 6227. 68166. 1753188. 12. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 12. 4. 11. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17531881. 12. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 12. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 12. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -128.9 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17531881. 12. 2. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17531881. 13. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17531884. 13. 4. 0.22 0.35 1.00 195. 1115. 6227. 6827. 128.9 13. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -128.9 13. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2197668. 13. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -98.5 13. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1176. 14. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 6927. 12592256. 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1176. 14. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 69267. 12592256. 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -1176. 15. 117. 6227 0.35 1.00 195. 1115. 6227. 6927. 125907. 1259076.	17511136.	67862.	6227.	1115.	195.	1.00	0.36	0.22	+			7
14. 5. 9 NO CONVENSENCE MITHIN 20 ITEMATIONS 14. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4. 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 80726. 23953680. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80726. 19862656. 15. 4. 9 NO CONVENGENCE WITHIN 20 ITEMATIONS 15. 5. 0. 0.00 CONVENGENCE WITHIN 20 ITEMATIONS 15. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.35 1.00 195. 1115. 6227. 73779. 1886672. 12. 2. 0.22 0.35 1.00 195. 1115. 6227. 73779. 1886672. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68126. 17571984. 12. 5. 9 NO CONVENGENCE WITHIN 20 ITEMATIONS 12. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 73779. 1886672. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 73779. 1886672. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68126. 17571984. 12. 5. 9 NO CONVENGENCE WITHIN 20 ITEMATIONS 12. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 72160. 11571984. 13. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 72160. 118370752. 13. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 118370752. 13. 4. 9. 0.22 0.35 1.00 195. 1115. 6227. 72160. 118370752. 13. 1. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 68267. 17592256. 13. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68267. 17592256. 13. 4. 9. 0.22 0.35 1.00 195. 1115. 6227. 68267. 17592256. 13. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —128.9 13. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —128.9 13. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —128.9 13. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —128.9 14. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 68267. 17592256. 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —128.9 15. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —177.6	18120160.	70907.	6227.	1115.	195.	1.00	0.36	0.22	2.	2	14.	7
14. 5. 9 NO CONVENGENCE MITHIN 20 ITEMATIONS 14. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 80786. 19862656. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80786. 19862656. 15. 4. 9 NO CONVENGENCE WITHIN 20 ITEMATIONS 15. 5. 9 NO CONVENGENCE WITHIN 20 ITEMATIONS 15. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —85.2 15. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.35 1.00 195. 1115. 6227. 73779. 18696622. 12. 2. 2. 0.22 0.35 1.00 195. 1115. 6227. 73779. 18696622. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68106. 17571984. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 73779. 1879468. 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —128.9 12. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 72160. 1277648. 12. 2. 0.22 0.35 1.00 195. 1115. 6227. 72160. 1289.9 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0. 0.22 0.35 1.00 195. 1115. 6227. 72160. 9394. 939	21364016.	87126.	6227.	1115.	195.	1.00	0.36	0.22	+	-		7
14. 5. ** NO CONVERGENCE MITHIN 20 ITERATIONS 14. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.** 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 93872. 22713248. 12. 2. 2. 0.32 0.36 1.00 195. 1115. 6227. 93872. 22713248. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —128.9 13. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 73774. 18694672. 12. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —128.9 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.022 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.022 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.022 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.022 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 0. 0. 0.00 CONVERGENCE WITHIN 20 ITERATIONS 13. 0. 0.00 CONVERGENCE WITHIN 20 ITERATIONS 14. 0. 0.00 CONVERGENCE WITHIN 20 ITERATIONS 15. 0. 0.00 CONVERGENCE WITHIN 20 ITERATIONS 16. 0. 0.00 CONVERGENCE WITHIN 20 ITERATIONS 17. 0. 0.00 CONVERGENCE WITHIN 20	-177-6		Z			WILL CAU		INITI	¢	7.	13.	7
14. 5. ** NO CONVENGENCE WITHIN 20 ITERATIONS 14. 7. ** INITIAL X ALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -85.2 15. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -134.3 12. 1. 5. 0.22 0.35 1.00 195. 1115. 6227. 73779. 18694672. 12. 2. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 12. 6. ** NO CONVERGENCE WITHIN 20 ITERATIONS 12. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -128.9 13. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. ** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 1. 0.22 0.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	-98.5	16 VALUE					AL X VALUE	INITI	*			7
14. 5. ** NO CONVENGENCE WITHIN 20 ITERATIONS 14. 7. ** INTITAL X VALUE WITH N 20 ITERATIONS 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 10722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 88918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 88918. 20792960. 15. 4. ** NO CONVENGENCE WITHIN 20 ITERATIONS 15. 5. ** NO CONVENGENCE WITHIN 20 ITERATIONS 15. 6. ** INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -85.2 15. 7. ** INITIAL X VALUE WITH CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -134.3 12. 1. 5. 0.22 0.35 1.00 195. 1115. 6227. 93872. 22713248. 12. 2. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 7. ** INITIAL X VALUE WITHIN 20 ITERATIONS 12. 7. ** NO CONVENIENCE WITHIN 20 ITERATIONS 12. 7. ** NO CONVENIENCE WITHIN 20 ITERATIONS 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 1751994. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 68267. 1752256.					LIERATIONS	WITHIN 20	NVERGENCE	NO CO	*		13.	7
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INVITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.* 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INVITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 15. 7. * INVITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.35 1.00 195. 1115. 6227. 73774. 18694672. 12. 2. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 3. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 1773472. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 12. 7. * INVITIAL X VALUE WILLI CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 0. 0. 0.0 CONVERGENCE WITHIN 20 ITERATIONS 12. 0. 0. NO CONVERGENCE WITHIN 20 ITERATIONS 12. 0. 0. NO CONVERGENCE WITHIN 20 ITERATIONS 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752. 13. 1. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752.					LIERATIONS		NVERGENCE	NO CO	*	4	13.	1
14. 5. 9 NO CONVERGENCE WITHIN 20 LIERATIONS 14. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 23953680. 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 80918. 20792960. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. 9 NO CONVENGENCE WITHIN 20 LITERATIONS 15. 5. 9 NO CONVENGENCE WITHIN 20 LITERATIONS 15. 6. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -85.2 15. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -134.3 12. 1. 0.22 0.36 1.00 195. 1115. 6227. 93872. 22713248. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 17733472. 12. 5. 9 NO CONVERGENCE WITHIN 20 LITERATIONS 12. 6. 9 NO CONVERGENCE WITHIN 20 LITERATIONS 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -134.3 12. 1. 0.22 0.35 1.00 195. 1115. 6227. 68973. 17733472. 12. 5. 9 NO CONVERGENCE WITHIN 20 LITERATIONS 12. 6. 9 NO CONVERGENCE WITHIN 20 LITERATIONS 12. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -128.9 13. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 72160. 128.9 13. 1. 4. 0.22 0.35 1.00 195. 1115. 6227. 72160. 18370752.	17592256.	68267.	6227.	1115.	195.	1.00	0.36	0.22	:		13.	7
14. 5. * NO CONVERGENCE WITHIN 20 LIERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 93872. 22713248. 12. 2. 0.22 0.35 1.00 195. 1115. 6227. 68973. 17733472. 12. 4. 1. 0.22 0.35 1.00 195. 1115. 6227. 68166. 17571984. 12. 5. * NO CONVERGENCE WITHIN 20 LITERATIONS 12. 7. * INITIAL X VALUE WITHIN 20 LITERATIONS 12. 7. * NO CONVERGENCE WITHIN 20 LITERATIONS 12. * NO CONVERGENCE WITHIN 20 LITERATIONS 13. * NO CONVERGENCE WITHIN 20 LITERATIONS 14. * NO CONVERGENCE WITHIN 20 LITERATIONS 15. * NO CONVERGENCE W	18370752.	72160.	6227.	1115.	195.	1.00	0.36	0.22	2.	2.	13.	7
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE134.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 73774. 18694672. 12. 2. 2. 0.22 0.36 1.00 195. 1115. 6227. 68973. 1773472. 12. 4. 1. 0.22 0.36 1.00 195. 1115. 6227. 68973. 1773472. 12. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 12. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 12. 7. * INITIAL X VALUE WITHIN 20 ITERATIONS 12. 1. 0.22 0.36 1.00 195. 1115. 6227. 68973. 1773472. 12. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 12. 7. * INITIAL X VALUE WITHIN 20 ITERATIONS 12. 7. * INITIAL X VALUE WITHIN 20 ITERATIONS	21977648.	90194	6227.	1115.	195.	1.00	0.36	0.22		-	13.	7
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. ** NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 2. 2. 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. ** NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —85.2 15. 7. ** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 73779. 18694672. 12. 2. 2. 0.22 0.35 1.00 195. 1115. 6227. 68973. 17733472. 12. 4. 1. 0.22 0.36 1.00 195. 1115. 6227. 68973. 17733472. 12. 5. ** NO CONVERGENCE WITHIN 20 ITERATIONS 12. 6. ** NO CONVERGENCE WITHIN 20 ITERATIONS 12. 6. ** NO CONVERGENCE WITHIN 20 ITERATIONS	-128.9		NE	•	SE EXPONENT C	WILL CAU	AL X VALUE	IIIII	*	7.	12.	7
14. 5. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 73779. 18694672. 12. 2. 2. 0.35 1.00 195. 1115. 6227. 68973. 17733472. 12. 4. 1. 0.22 0.36 1.00 195. 1115. 6227. 68973. 17733472. 12. 5. 9 NO CONVERGENCE WITHIN 20 ITERATIONS					LIERATIONS	WITHIN 20	NVERGENCE	NO CO	٠	6.	12.	7
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.* 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 10722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —85.2 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 93872. 22713248. 12. 2. 0.22 0.36 1.00 195. 1115. 6227. 68973. 17733472. 12. 4. 1. 0.22 0.36 1.00 195. 1115. 6227. 68973. 17733472.								NO CO	*	5	12.	7
14. 5. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -85.2 15. 7. 9 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -134.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 93872. 22713248. 12. 3. 1. 0.22 0.36 1.00 195. 1115. 6227. 68973. 17733472.	17571984.	68166.	6227.	1115.	195.	1.00	0.36	0.22		4		7
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	17733472.	68973.	6227.	1115.	195.	1.00	0.36	0.22	-	u •	12.	7
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —85.2 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —134.3 12. 1. 5. 0.22 0.36 1.00 195. 1115. 6227. 93872. 22713248.	18694672.	73779.	6227.	1115.	195.	1.00	0.36	0.22	2	2	12.	7
14. 5. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. 9 NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. 4 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —85.2 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —134.3	22713248.	93872.	6227.	1115.	195.	1.00	0.36	0.22	5	-		7
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —85.2	-134.3					WILL CAU	AL X VALUE	INITI	*	7.		5
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 4. * NO CONVERGENCE WITHIN 20 LIERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 LIERATIONS	-85.2	1	NE	•	SE EXPONENT C	WILL CAU	AL X VALUE	ILINI	*	6.		5
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 3. 1. 0.22 0.25 1.00 195. 1036. 7050. 80266. 19862656. 15. 4. * NO CONVERGENCE WITHIN 20 LIERATIONS					LIERATIONS	WITHIN 20	NVERGENCE	NO CO	*	5		ر. ت
14. 5. # NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. # NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. # INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960.								NO CO	•	4		5
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680. 15. 2. 2. 0.22 0.25 1.00 195. 1036. 7050. 84918. 20792960.	19862656.	80266.	7050.	1036.	195.	1.00	0.25	0.22	-	3	15.	5
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —108.4 15. 1. 3. 0.22 0.25 1.00 195. 1036. 7050. 100722. 23953680.	20792960.	84918.	7050.	1036.	195.	1.00	0.25	0.22	2.	2.		5
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 6. * NO CONVERGENCE WITHIN 20 ITERATIONS 14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -108.4	23953680.	100722.	7050.	1036.	195.	1.00	0.25	0.22	3.	-		U)
14. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS		1		-1	SE EXPONENT C			IIIINI	*	7.	14.	U
. S. * NO CONVERGENCE WITHIN 20						WITHIN 20	NVERGENCE	NO CO		6.		u
						WITHIN 20		NO CO	*	5	14.	S

	-713 0	NO NAT HE	NEED NEW STARTING	טענסנו טיי	VIICE EXDONENT	MTII CA	JULIAN A	TNITTIA	*	1,0	• 0.	
0	-305.8		NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL CA	L X VALUE	INITIAL	•	15. 6	4. 9.	
102	-131.1	NG VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	•	15. 5	4. 9.	
					WITHIN 20 ITERATIONS	ITHIN 2	NO CONVERGENCE W	NO CON	•	15.	4. 9.	
0	16817424.	63493.	5542.	1325.	195.	1.00	0.44	0.22	•	15.	4. 9.	
	16562602.	62219.	5542.	1325.	195.	1.00	0.44	0.22	2. 2.	15. 2	4. 9.	
2 2	19908048.	78946.	5542.	1325.	195.	1.00	0.44	0.22	•	15.	4. 9.	
	-477.9	NG VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	*	14.	4. 9.	
	-217.1	NG VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.		WILL CA	INITIAL X VALUE WILL CAUSE	INITIA	*	14. 6	4. 9.	
0 8	-98.0	NG VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	*	14.	4. 9.	
0					20 ITERATIONS	WITHIN 2	NO CONVERGENCE W	NO CON	•	14.	4. 9.	
0	16233135.	60572.	5542.	1325.	195.	1.00	0.44	0.22	3. 1.	14. 3	4. 9.	
4 8	16770075.	63256.	5542.	1325.	195.	1.00	0.44	0.22	2. 2.	14.	* •••	
	20519232.	82002.	5542.	1325.	195.	1.00	0.44	0.22	1. 5.	14.	4. 9.	
* ×	-320.6	NG VALUE	NEED NEW STARTING	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL CA	L X VALUE	INITIAL	7. #	13.	4. 9.	
8 4	-153,9	NG VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL CA	L X VALUE	INITIAL	6.	13.	••	
					WITHIN 20 ITERATIONS	ITHIN 2	NO CONVERGENCE W	NO CON	*	13. 5	4. 9.	
					WITHIN 20 ITERATIONS	ITHIN 2	NO CONVERGENCE W	NO CON	*	13. 4	4. 9.	
# N	16277402.	60793.	5542.	1325.	195,	1.00	0.44	0.22	1.	13.	4. 9.	
	17047968.	64646.	5542.	1325.	195.	1.00	0.44	0.22	2. 2.	13. 2	4. 9.	
x x	21244400.	85628.	5542.	1325.	195.	1.00	0.44	0.22	5.	13. 1	4. 9.	
8 8	-215,1	NG VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	*1-1-	X VALUE	INITIAL	7	12.	4. 9.	
3 8	-108-9	NG VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.		WILL CA	L X VALUE WILL CAUSE	INITIAL	*	12. 6	4. 9.	
					20 ITERATIONS	WITHIN 2	NO CONVERGENCE W	NO CON	*	12. 5	4. 9.	
3 *	16316150.	60987.	5542.	1325,	195,	1.00	0.44	0.22	+	12.		
**	16396343.	61388.	5542.	1325.	195.	1.00	0.44	0.22	3. 1.	12.	4. 9.	
	17411616.	66464.	5542.	1325.	195.	1.00	0.44	0.22	2. 2.	12.	4. 9.	
	22111312.	89963.	5542.	1325.	195.	1.00	0.44	0.22	5	12.		
0	-335.7	NG VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	7. *	15. 7	4. 7.	
.0	-171-2	NG VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	6.	15. 6	4. 7.	
	-86,5	NG VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	5	15.	4. 7.	
					20 ITERATIONS	WITHIN 2	NO CONVERGENCE W	NO CON	*	15. 4	4. 7.	
- 6	17480272.	67707.	6227.	1115.	195.	1.00	0.36	0.22		15.	4. 7.	
					* * * * *		0.00				,	

	18704272.	70227.	6227.	1056.	316.	1.00	0.36	0.25	-	12. 4.	7. 1
103	18995376.	71683.	6227.	1056.	316.	1.00	0.36	0.25		12. 3	7. 1
	-82581002	76799.	6227.	1056.	316.	1.00	0.36	0.25	2.	12. 2	7. 1
7	23907056.	96241.	6227.	1056.	316.	1.00	0.36	0.25	5.	12. 1	7. 1
4.11	-347631.6	6 VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	15. 7.	11. 1
	-48137.0	G VALUE	NEED NEW STARTING	OVERFLOW. NE	JSE EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	5. 6	11.
	-6425.6	G VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL		5	11. 15
	-760.1	G VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	15. 4.	11. 1
	13925766.	45535.	4873.	2787.	195.	1.00	0.93	0.22	2	15, 3,	#
	14419110.	48602.	0.	2787.	195.	1.00	0.93	0.22	-	15. 2	11. 1
	23405952.	93536.	0.	2787.	195.	1.00	0.93	0.22	1	15. 1.	11. 1
	-137422-1	G VALUE	NEED NEW STARTING	OVERFLOW. NE	CAUSE EXPONENT	WILL CAL	X VALUE	INITIAL		14. 7	11.
	-21442-2	6 VALUE	NEED NEW STARTING	OVERFLOW. NE	JSE EXPONENT	WILL CAUSE	X VALUE	INITIAL		4. 6.	11. 14
	-3180-9	6 VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE		WILL CAUSE	X VALUE	INITIAL	•	4. 5	11. 14
	-396.3	6 VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	*	11. 14
11	12532728. 4	38570.	4873.	2787.	195.	1.00	0.93	0.22	3.	4. 3.	11. 14
	15172960.	52371.	0.	2787.	195.	1.00	0.93	0.22		4. 2	11. 14
	24823296.	100623.	0.	2787.	195.	1.00	0.93	0.22	-	4.	11. 14
	-53996.0	G VALUE	NEED NEW STARTING VALUE	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	13. 7.	11. 1
	-9448.7	G VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL	•	3. 6	11. 13
	-1539.0	G VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL	•	13, 5	=======================================
	-191-2	G VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE		WILL CAUSE	X VALUE	INITIAL	•	13. 4.	11.
	12574873.	39380.	0.	2787.	195.	1.00	0.93	0.22	-	13. 3.	11. 1
	16043163.	56722.	0.	2787.	195.	1.00	0.93	0.22	+	3. 2	11.
	26459072.	108801.	0.	2787.	195.	1.00	0.93	0.22	-	13. 1	11. 1
	-21016.9	G VALUE	NEED NEW STARTING	OVERFLOW. NE	JSE EXPONENT	WILL CAUSE	X VALUE	INITIAL		12. 7.	11. 1
	-4093.0	6 VALUE	NEED NEW STARTING	OVERFLOW. NE	JSE EXPONENT	WILL CAUSE	X VALUE	INITIAL		12. 6	111- 1
	-716.2	G VALUE	NEED NEW STARTING	OVERFLOW. NE	EXPONENT	WILL CAUSE	X VALUE	INITIAL		12. 5.	11. 1
	15976887.	55790.	4873.	2787.	195.	1.00	0.93	0.22		12. 4.	11. 1
	13292522.	42969.	0.	2787.	195.	1.00	0.93	0.22	-	12. 3	11.
10	17058800.	61800.	0.	2787.	195.	1.00	0.93	0.22		12. 2	11.

-163.5 -318.5 -22661664, 18433072, 17464016, 17368736, 17368736, -204,4 21806528, 18022480,	69040. 69040. 69114. 63126. 63126. 63126. 64839.	NEEE E E E E E E E E E E E E E E E E E	316. 1056. 316. 1056. FERATIONS EXPONENT OVERFLOW. EXPONENT OVERFLOW. 316. 1186. 316. 1186. 316. 1186. EXPONENT OVERFLOW. EXPONENT OVERFLOW. EXPONENT OVERFLOW. 1186. 316. 1186.	38 55 +	1.00	0.44	0.25	2. 5.	•	9.
	71987. 69040. 69040. 67971. 62650. VALUE	N N N N N N N N N N N N N N N N N N N	1056. S T OVERFLOW. T OVERFLOW. 1186. 1186. 1186. 1186. 1186. 1186. 1186.	38 4	1.00	0.44	0.25	5		
-163.5 -318.5 -2661664. 18433072. 117464016. 17368736.	ANTHE AN	N M M M M M M M M M M M M M M M M M M M	1056. S S TOVERFLOW. TOVERFLOW. 1186. 1186. 1186.	SE C	41FF				13. 1	9
-163.5 -318.5 -22661664, 18433072. 17464016.	71987. 69040. 69114. 63126. 63126.	N N N N N N N N N N N N N N N N N N N	1056. S TOVERFLOW. TOVERFLOW. 1186. 1186.	35		AL X VALUE	INITIAL		12. 7	•
-163.5 -318.5 22661664, 18433072, 17464016,		N E E	1056. S S T OVERFLOW. T OVERFLOW. 1186. 1186.	316. 20 ITERATION	UE WILL CAUSE	AL X VALUE	INITIAL		12. 6.	9.
-163.5 -318.5 -22661664. 18433072. 17464016.		N N N N N N N N N N N N N N N N N N N	1056. S S TOVERFLOW. TOVERFLOW. 1186. 1186.	316.	E WITHIN 20	CONVERGENCE	NO CO	*	12. 5	9
-163.5 -318.5 -22661664. 18433072.		N Z E E O	1056. S T OVERFLOW. 1186. 1186.		1.00	0.44	0.25	-	12. 4	
-163.5 -318.5 22661664.		N N N N N N N N N N N N N N N N N N N	1056. S S T OVERFLOW. 1186.	316.	1.00	0.44	0.25	3. 2.	12. 3	9
-163.5 -318.5		N E E O	1056. S S TOVERFLOW. TOVERFLOW.	316.	1.00	0.44	0.25	2. 3.	12. 2	
-163,5		NEED	1056. S S TOVERFLOW.	316.	1.00	0.44	0.25	1. 5.	12. 1	
-163,5	71987, 69040,	Z M E C	1056. 1056. S	X VALUE WILL CAUSE EXPONENT OVERFLOW.	DE MILL (INITIAL	7. *	15. 7	7
					UE WILL CAUSE	AL X VALUE	INITIAL	*	15. 6.	7.
				WITHIN 20 LIERATIONS		NO CONVERGENCE	NO CO	*	15. 5	1
			1056.	20 ITERATIONS	EWITHIN	NO CONVERGENCE WITHIN 20	NO CO	*	15. 4	7.
18466832.			1056.	316.	1.00	0.36	0.25	-	15. 3	7
19056112,				316.	1.00	0.36	0.25	2. 2.	15, 2	7
21939184.		6227	1056.	316.	1.00	0.36	0.25	1. 4.	15. 1	7.
-232.2	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		UE WILL CAUSE	AL X VALUE	INITIAL	7. *	14. 7	7.
-124.4	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		VALUE WILL CAUSE	×	INITIAL		14. 6.	7.
			S	NO CONVERGENCE WITHIN 20 ITERATIONS	E WITHIN	NVERGENC	NO CO	*	14. 5	7.
			S	20 ITERATIONS	WITHIN	NO CONVERGENCE	NO CO		14. 4	7.
20809648.	80754.	6227.	1056.	316.	1.00	0.36	0.25	-	14. 3	7
19306160.	73237.	6227.	1056.	316.	1.00	0.36	0.25	2. 2.	14. 2	7.
22484224.	89127.	6227.	1056.	316.	1.00	0.36	0.25	1. 4.	14. 1	7.
-169.3	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONEN	*ILL	AL X VALUE	INITIAL		13. 7	1
-94.4	VALUE	NEED NEW STARTING VALUE	T OVERFLOW.	CAUSE EXPONENT	X VALUE WILL CAUSE		INITIAL		13. 6	7.
			S	20 ITERATIONS	WITHIN	NO CONVERGENCE	NO CO	5 *	13. 5	7.
17846688.	65940.	6227.	1056.	316.	1.00	0.36	0.25	-	13. 4	7.
22291840.	88165.	6227.	1056.	316.	1.00	0.36	0.25	3. 1.	13. 3	7.
19621872.	74815.	6227.	1056.	316.	1.00	0.36	0.25	2. 2.	13. 2	7.
23131776.	92365.	6227.	1056.	316.	1.00	0.36	0.25	4	13. 1	7
-123.1	VALUE	NEED NEW STARTING VALUE	T OVERFLOW.	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	DE MILL (AL X VAL	INITI	7. *	12. 7	7.

######################################	100					OVERT LON.							
DAVERGENCE WITHIN 20 ITERATIONS 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW	100	-48448.8		W STARTING		OVEDE OF			X VALUE	IIII	7. *	13.	5. 11.
DAVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.0. 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 64312. 17701200. 1.1. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.1. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.1. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.1. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.1. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.1. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.1. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.1. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 1.2. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED	105	-8410.6	VALUE	W STARTING		OVERFLOW.			×		6.	13.	5. 11.
DAVERGENCE MITTIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE		-1341-6	VALUE	STARTING		OVERFLOW.		WILL CAUS	X VALUE	INI	5. *	13.	5. 11.
DAVERGENCE WITHIN 20 ITERATIONS INAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE		-152.8	VALUE	W STARTING		OVERFLOW.				INII	*	13.	5. 11.
DONVERGENCE WITHIN 20 LIFERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — 304.0 1.44 1.00 316. 1186. 5542. 81264. 21091488. 0.44 1.00 316. 1186. 5542. 72286. 19296032. 0.44 1.00 316. 1186. 5542. 72286. 19296032. O.44 1.00 316. 1186. 5542. 72286. 19296032. O.44 1.00 316. 1186. 5542. 72286. 19296032. IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — 93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — 452.0 0.44 1.00 316. 1186. 5542. 78252. 2089136. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 251772432. O.44 1.00 316. 1186. 5542. 101694. 251772432. O.46 1.00 316. 1186. 5542. 101694. 251772432. O.47 1.00 316. 1186. 5542. 101694. 251772432. O.48 1.00 316. 1186. 5542. 101694. 251772432. O.49 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 316. 1186. 5542. 101694. 251772432. O.40 1.00 1187777777777777777777777777777777777	8		37328.	0.		2242.	316.	1.00		0.25	3. 1	. 13.	5. 11.
DIVERGENCE WITHIN 20 LIERATIONS (1) 10.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. 10.44 1.00 316. 1186. 5542. 72286. 19296032. 10.44 1.00 316. 1186. 5542. 72286. 19296032. 10.44 1.00 316. 1186. 5542. 72286. 19296032. 10.44 1.00 316. 1186. 5542. 72286. 19296032. 10.44 1.00 316. 1186. 5542. 72286. 19296032. 116. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -206.7 116. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -557284. 11701200. 316. 1186. 5542. 78252. 2089136. 1180. 316. 1180. 5542. 101694. 25177584. 1181. X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -2089136. 1182. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.5 1182. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -209.5 1182. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -25035824. 1183. 2242. 0. 40721. 13562008. 1184. VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -609.3 1185. 2242. 4873. 44622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 557881. 46622. 1463155. 1186. 55422. 6888 5787106 VALUE -609.3 1186. 55422.	1		51206.	0.		2242.	316.	1.00	0.93	0.25	2. 1	13.	5. 11.
### STARTING VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — 146.8 10.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 1929632. 0.44 1.00 316. 1186. 5542. 72286. 1929632. 10.44 1.00 316. 1186. 5542. 72286. 1929632. 10.44 1.00 316. 1186. 5542. 72286. 1929632. 10.44 1.00 316. 1186. 5542. 72286. 1929632. 10.44 1.00 316. 1186. 5542. 72286. 1929632. 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -339. 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -206.7 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -2088136. 110.4 1.00 316. 1186. 5542. 10694. 25177584. 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.5 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.5 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.5 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.5 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.5 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.5 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.5 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.5 110.4 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.5 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.6 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.6 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.7 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.7 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.7 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.7 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.7 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.7 VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — -20.7 110.7 VALUE WILL CAUSE E		23999072.	92901.	0.		2242.	316.	1.00	0.93	0.25	:	. 13.	5. 11.
DONVERGENCE WITHIN 20 ITERATIONS 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — 304.8 11AL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — 304.0 11A6.		-18742.5	VALUE	W STARTING		OVERFLOW.	E EXPONENT			INI	7. *	. 12.	5. 11.
DONVERGENCE WITHIN 20 ITERATIONS ITAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 1.00 316. 1180. 1180. 316. 1180. 5542. 64312. 1701200. 0.44 1.00 316. 1180. 1180. 5542. 64312. 1701200. 170		-3604.2	VALUE	W STARTING		OVERFLOW.		WILL CAUS	TAL X VALUE	IIIII	•	12.	5-11-
DONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-106.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-304.0 0.44 1.00 316. 1186. 5542. 64312. 11701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-452.0 0.44 1.00 316. 1186. 5542. 101694. 22177584. 0.44 1.00 316. 1186. 5542. 101694. 22177584. IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-55177584. IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.0 0.44 1.00 316. 1186. 5542. 101694. 25177584. IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-226.7 106.7 107.7 108		-609.3	VALUE	W STARTING					X VALUE	INI	ن •	. 12.	5. 11.
DONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —452.0 0.44 1.00 316. 1186. 5542. 78252. 20489136. 0.44 1.00 316. 1186. 5542. 78252. 20489136. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 2242. 0. 10185. 1578381. 0.93 1.00 316. 2242. 0. 10185. 1558381.		14463155.	44622.	873.		2242.	316.	1.00		0.25	4. 2.	12.	5. 11.
DONVERGENCE WITHIN 20 ITERATIONS ITAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —452.0 0.44 1.00 316. 1186. 5542. 78252. 20489136. 0.44 1.00 316. 1186. 5542. 78252. 20489136. 0.44 1.00 316. 1186. 5542. 61169. 17072432. ONVERBENCE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-206.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-572.6 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-206.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-209.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —-290.5	Total Control of the	13562908.	40721.	0.		2242.	316.	1.00	0.93	0.25	3	12.	5. 11
DONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -304.0 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -520.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -5277584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.49 1.00 316. 1186. 5542. 101694. 25177584. 0.40 1.00 316. 1186. 5542. 101694. 25177584. 0.40 1.00 316. 1186. 5542. 101694. 25177584. 0.40 1.00 316. 1186. 5542. 101694. 25177584. 0.40 1.00 316. 1186. 5542. 101694. 25177584. 0.40 1.00 316. 1186. 5542. 101694. 25177584. 0.40 1.00 316. 1186. 5542. 101694. 25177584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 2517584. 0.40 1.00 316. 1186. 5542. 101694. 0.40 1.00 316. 101694. 2517584. 0.40 1.00 316. 101694. 2517584. 0.40 1.00 316. 101694. 2517584. 0.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00		16578381.	55798.	0.		2242.	316.	1.00		0.25	2. 1	. 12.	5. 11.
DOWNERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -304.0 1.00 316. 1186. 5542. 81264. 21091488. 0.44 1.00 316. 1186. 5542. 72286. 19296032. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -206.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -520.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -5277584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584.		25635824.	101085.			2242.	316.	1.00	0.93	0.25	1 .1	12.	5. 11.
DOWERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 10.44 1.00 316. 1186. 5542. 81264. 21091488. 0.44 1.00 316. 1186. 5542. 72286. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —206.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —452.0 0.44 1.00 316. 1186. 5542. 78252. 20489136. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584. 0.44 1.00 316. 1186. 5542. 101694. 25177584.	5	-672.6		W STARTING		OVERFLOW.		1	×	INII	7. #	15.	5 9
DAVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 0.44 1.00 316. 1186. 5542. 81264. 21091488. 0.44 1.00 316. 1186. 5542. 72286. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —206.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —452.0 0.44 1.00 316. 1186. 5542. 78252. 20489136. 0.44 1.00 316. 1186. 5542. 61168. 17072432. DAVERGENCE WITHIN 20 ITERATIONS 0.44 1.00 316. 1186. 5542. 61168. 17072432.		-290.5	VALUE	W STARTING	NEED	OVERFLOW.		WILL CAUS	AL X VALUE	INII	6.	15.	5. 9.
ONVERGENCE WITHIN 20 ITERATIONS ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE — 304.0 0.44		-125.4				OVERFLOW.		WILL CAUS	AL X VALUE	INII	5.	15.	5. 9
ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 10.44 1.00 316. 1186. 5542. 81264. 21091488. 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —206.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —452.0 0.44 1.00 316. 1186. 5542. 78252. 20489136. 0.44 1.00 316. 1186. 5542. 61168. 17072432.							LIERATIONS			NO C	4.	15.	5. 9.
ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 10.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 17701200. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —206.7 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —452.0 0.44 1.00 316. 1186. 5542. 78252. 20489136. 0.44 1.00 316. 1186. 5542. 101694. 25177584.		17072432.	61168.	542.	LD.	1186.	316.	1.00		0.25	3. 1.	15.	5. 9.
ONVERGENCE WITHIN 20 ITERATIONS INL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -146,8 INL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -304,0 10.44 1.00 316, 1186, 5542, 81264, 21091488, 0.44 1.00 316, 1186, 5542, 64312, 17701200, ONVERGENCE WITHIN 20 ITERATIONS INL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -293,9 INL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -206,7 INL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -452,0 10.444 1.00 316, 1186, 5542, 78252, 20489136,		25177584.	101694.			1186.	316.	1.00	0.44	0.25	2. 1.	. 15.	5. 9.
ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -304.0 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -206.7		20489136.	78252.	542		1186.	316.	1.00	0.44	0.25	1.	15.	5
ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 64312. 17701200. ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.9 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —206.7		-452.0	VALUE	W STARTING		OVERFLOW.		WILL CAUS	X VALUE	INIT	7. *	. 14.	5. 9.
ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 0.44 1.00 316. 1186. 5542. 81264. 21091488. 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032. ONVERGENCE WITHIN 20 ITERATIONS		-206.7	VALUE	W STARTING		OVERFLOW.		WILL CAUS			6.	. 14.	5. 9.
ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 0.44 1.00 316. 1186. 5542. 81264. 21091488. 0.44 1.00 316. 1186. 5542. 64312. 17701200. 0.44 1.00 316. 1186. 5542. 72286. 19296032.		-93.9	VALUE	W STARTING		OVERFLOW.		1	X VALUE	INII	5	14.	5 9
ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —304.0 0.44 1.00 316. 1186. 5542. 81264. 21091488. 0.44 1.00 316. 1186. 5542. 64312. 17701200.							ITERATIONS	ITHIN 20		NO CO	4.	14.	5. 9.
DONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -146.8 IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -304.0 0.44 1.00 316. 1186. 5542. 81264. 21091488.		19296032.	72286.	5542.		1186.	316.	1.00		0.25	3. 1.	. 14.	5. 9
ONVERGENCE WITHIN 20 ITERATIONS IAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -146.8 10.44 1.00 316. 1186. 5542. 81264. 21091488.		17701200.	64312.	5542.		1186.	316.	1.00	0.44	0.25	2. 2.	14.	5 9
WITHIN 20 ITERATIONS E WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -146.8 -304.0		21091488.	81264.	5542.		1186.	316.	1.00	0.44	0.25	1. 5.	14.	5. 9.
WITHIN 20 ITERATIONS WITHIN 20 ITERATIONS -146.8		-304.0		W STARTING	NEED NE	OVERFLOW.			X VALUE	INI	7. *	. 13.	5. 9.
WITHIN 20 LIERATIONS		-146.8	VALUE	W STARTING		OVERFLOW.			X VALUE	INI	•	13.	5. 9
	100						LIEKATIONS	ITHIN 20	NVERGENCE W	NO CO	5.	13.	5. 9
							ITERATIONS	ITHIN 20	NO CONVERGENCE W	NO C	4.	13.	5. 9

				******	EITHIN	NO CONVERGENCE WITHIN 20 ITERATIONS	* 40 00	n	7. 14.
OOT				20 ITERATIONS	WITHIN 2	NO CONVERGENCE	* NO CC		7. 14.
	72808.	6227.	1027.	522.	1.00	0.36	1. 0.33	3.	7. 14.
21859872.	77959.	6227.	1027.	522.	1.00	0.36	2. 0.33	~	7. 14.
25226096.	94791.	6227.	1027.	522.	1.00	0.36	4. 0.33	:	7. 14.
-152.0	VALUE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.		AL X VALUE WILL	* INITIAL	7	7. 13.
-85.8	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	USE EXPONENT	E WILL CA	INITIAL X VALUE WILL CAUSE	# INITI	6.	7. 13.
				NO CONVERGENCE WITHIN 20 ITERATIONS	WITHIN 2	NVERGENCE	* NO CG	5.	7. 13.
				O ITERATIONS	MITHIN 20	NO CONVERGENCE	* NO CC	•	7. 13.
21173648.	74528.	6227.	1027.	522.	1.00	0.36	1. 0.33	٠.	7. 13.
34435456.	140837.	6227.	1027.	522.	1.00	0.36	1. 0.33	~	7. 13.
25970128.	98511.	6227.	1027.	522.	1.00	0.36	4. 0.33	:	7. 13.
-111.1	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	CAUSE EXPONENT	E WILL CA	INITIAL X VALUE WILL	* INITI	7.	7. 12.
				NO CONVERGENCE WITHIN 20 ITERATIONS	WITHIN 2	NVERGENCE	* NO CC	6.	7. 12.
				WITHIN 20 ITERATIONS	WITHIN 2	NO CONVERGENCE	* NO CC	5.	7. 12.
21027168.	73796.	6227.	1027.	522.	1.00	0.36	1. 0.33		7. 12.
21599536.	76658.	6227.	1027.	522.	1.00	0.36	2. 0.33	ω	7. 12.
22857008.	82945.	6227.	1027.	522.	1.00	0.36	2. 0.33	2.	7. 12.
26858048.	102950.	6227.	1027.	522.	1.00	0.36	5. 0.33	:	7. 12.
-314120.0 S	VALUE	NEED NEW STARTING VALUE	OVERFLOW.	CAUSE EXPONENT		AL X VALUE WILL	* INITIAL	7.	11. 15.
-43375,6	VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT	*11.	AL X VALUE	* INITIAL	•	11. 15.
-5739.8	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL	AL X VALUE	* INITIAL	ۍ.	11. 15.
-659.5	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.		E WILL CAUSE	AL X VALUE	* INITIAL	4.	11. 15.
13098871.	37800.	4873.	2242.	316.	1.00	0.93	2. 0.25	ų.	11. 15.
14191802.	43865.	0.	2242.	316.	1.00	0.93	1 0.25	N	11. 15.
21381328.	79813.	0.	2242.	316.	1.00	0.93	1 0.25		11. 15.
-123818.0	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT		AL X VALUE WILL	* INITIAL	7.	11. 14.
-19224.4	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL	AL X VALUE	* INITIAL	3	11. 14.
-2813.9	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL	AL X VALUE	* INITIAL	51	11. 14.
-334,4	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL	AL X VALUE	# INITIAL		11. 14.
12486797.	34740.	4873.	2242.	316.	1.00	0.93	6. 0.25	ω.	11. 14.
14873305.	47273.	0.	2242.	316.	1.00	0.93	1 0.25	2	11. 14.
1	****			C + C +		V * * * W			

11. 7. 8 INTITAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 71420. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 15. 4. 9 NO CONVENGENCE WITHIN 20 ITERATIONS 15. 5. 4. NO CONVENGENCE WITHIN 20 ITERATIONS 15. 6. 9 INTITAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE 15. 7. 10171		. 96.026.06.7	.17069	*2466	1107	•226	1.00	0.44	0.33	-		9. 15.	
14. 7. 0 INITIAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —2075. 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 71401. 214882727. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71400. 20551886. 15. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 15. 5. 1 NOTITAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —283.1 15. 5. 1 NOTITAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —283.1 16. 1 STARTING VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —283.1 17. 0 INITIAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —396.2 18. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 73250. 21098032. 18. 6. 0 INITIAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —398.4 18. 6. 0 INITIAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —398.4 18. 6. 0 INITIAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —182.1 18. 6. 0 INITIAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —1927. 20551424. 18. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65645. 1957772. 18. 2. 2. 0.33 0.44 1.00 522. 1107. 8582. 65645. 1957772. 18. 3. 1. 0.33 0.44 1.00 522. 1107. 8582. 65645. 1957772. 18. 4. 0 NO CONVENCENCE WITHIN 20 ITERATIONS 18. 6. 0 INITIAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —131.9 18. 4. 0 NO CONVENCENCE WITHIN 20 ITERATIONS 18. 6. 0 INITIAL X VALUE WILL CAUSE EARONENT OVERFLOW. REED NEW STARTING VALUE —131.9 18. 1. 0 0.33 0.44 1.00 522. 1107. 5582. 66518. 22486256. 18. 2. 2. 0.33 0.44 1.00 522. 1107. 8582. 66518. 22496256. 18. 3. 0 NO CONVENCENCE WITHIN 20 ITERATIONS 19. 4. 0 NO CONVENCENCE WITHIN 20 ITERATIONS 19. 5. 0 NO CONVENCENCE WITHIN 20 ITERATIONS 19. 0 NO CONVENCENCE WITHIN 20 I	101	10053006	12021	5543	1107	500	1 00	0	0				
14. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE 15. 1. 4. 0.33 0.36 1.00 527. 1027. 6227. 71420. 20551888. 15. 2. 2. 0.33 0.36 1.00 527. 1027. 6227. 71420. 20551888. 15. 3. 1. 0.33 0.36 1.00 527. 1027. 6227. 71420. 20551888. 15. 4. • NO CONVENGENCE WITHIN 20 LITERATIONS 15. 5. • NO CONVENGENCE WITHIN 20 LITERATIONS 15. 6. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -283.1 12. 2. 3. 0.33 0.44 1.00 527. 1107. 5542. 73250. 21098032. 12. 2. 3. 0.33 0.44 1.00 527. 1107. 5542. 73250. 21098032. 12. 3. 2. 0.33 0.44 1.00 527. 1107. 5542. 73250. 21098032. 12. 4. 1. 0.33 0.44 1.00 527. 1107. 5542. 73250. 21098032. 12. 5. NO CONVENGENCE WITHIN 20 LITERATIONS 12. 6. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE -328.1 12. 7. WO CONVENGENCE WITHIN 20 LITERATIONS 13. 4. O CONVENGENCE WITHIN 20 LITERATIONS 14. 5. 0.33 0.44 1.00 527. 1107. 5542. 6518. 2348725. 15. 0. O CONVENGENCE WITHIN 20 LITERATIONS 14. 0. O LITERATIONS 14. 0. O CONVENGENCE WITHIN 20 LITERATIONS 14. 0. O CONVENGENCE WITHIN 20 LITERATIONS 14. 0. O CONVENGENCE WITHIN 20 LITERATIONS 14. 0. O CONVENGENCE WITHIN 20 LITERATIONS 14. 0. O CONVENGENCE WITHIN 20 LITERATIONS 14. 0. O LITERATIONS 15. 0. O LITERATIONS 16. 0. O LITERATIONS 16. 0. O LITERATIONS 17. 0 LITERATIONS 18. 0. O LITERATIONS 18. 0. O LITERATIONS 19. 0. O CONVENGENCE WITHIN 20 LITERATIONS 19. 0. O CONVENGENCE WITHIN 20 LITERATIONS 19. 0. O CONVENGENCE WITHIN 20 LITERATIONS 19. 0. O CONVENGENCE WITHIN 20 LITERATIONS 19. 0. O CONVENGENCE WITHIN 20 LITERATIONS 19. 0. O CONVENGENCE WITHIN 20 LITERATIONS 19. 0. O CONVENGENCE WITHIN 20 LITERAT	107	19752912.	66525.	5542.	1107.	522.	1.00	0.44	0.33	2.	•		
14. 7. • INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW, NEED NEW STARTING VALUE -207.5 15. 1. 0.33 0.36 1.00 527. 1027. 6227. 71420. 20551888. 15. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 1. 0.33 0.44 1.00 522. 1107. 5542. 73250. 2198032. 15. 1. 0.33 0.44 1.00 522. 1107. 5542. 73250. 2198032. 16. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 17. • INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 12. 1. 5. 0.00 CONVENGENCE WITHIN 20 ITERATIONS 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 12. 2. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 12. 2. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 12. 2. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 12. 2. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 12. 2. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 12. 2. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 12. 2. 0.33 0.44 1.00 522. 1107. 5542. 65881. 1986176. 12. 2. 0.33 0.44 1.00 522. 1107. 5542. 65881. 19877672. 13. 4. 0. 00 CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 14. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 14. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 14. 2. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 15. 0. 0.33 0.44 1.00 522. 1107. 5542. 65845. 19877672. 16. 0. 1011161 X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -131.9 19877672. 16. 0. 101164 X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -131.9 19877672. 16. 0. 101164 X VALUE WILL CAUSE EAPONENT O		22822560.	81873.	5542.	1107.	522.	1.00	0.44	0.33	4.	•		
14. 7. © INITIAL X VALUE WILL CAUSE EMPONENT OMERFLOW. NEED NEW STARTING VALUE 2597566. 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 71420. 2551886. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551886. 15. 4. 0. VO CONVENGENCE WITHIN 20 ITERATIONS 15. 5. 4. 0. VO CONVENGENCE WITHIN 20 ITERATIONS 15. 6. 0. 1NITIAL X VALUE WILL CAUSE EMPONENT OMERFLOW. NEED NEW STARTING VALUE -147.4 15. 7. 1NITIAL X VALUE WILL CAUSE EMPONENT OMERFLOW. NEED NEW STARTING VALUE -2520186. 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 73250. 21098032. 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65661. 1998326. 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 65661. 1998326. 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 65661. 1998326. 12. 1. 0. 0.33 0.44 1.00 522. 1107. 5542. 65661. 1998326. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65661. 1998327. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65661. 1998327. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65665. 1997722. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65665. 1997722. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 14. 2. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 15. 0. 0.0 CONVENGENCE WITHIN 20 ITERATIONS 14. 0. 0.0 CONVENGENCE WITHIN 20 ITERATIONS 15. 0. 0.0 CONVENGENCE WITHIN 20 ITERATIONS 16. 0. INITIAL X VALUE WITHIN 20 ITERATIONS 18. 0. 0. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 19. 0. 0. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 19. 0. 0. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 19. 0. 0. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 19. 0. 0. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 19. 0. 0. 0.33 0.44 1.00 522. 1107. 5542. 65665. 19977072. 19. 0. 0. 0.0000000000000000000000000000		-398.4	VALUE	Z		USE EXPONENT			INITIA	*			
14. 7. © INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE 24597566. 15. 1. 0.33 0.36 1.00 527. 1027. 6227. 71420. 2259866. 15. 2. 2. 0.33 0.36 1.00 527. 1027. 6227. 71420. 2259866. 15. 3. 1. 0.33 0.36 1.00 527. 1027. 6227. 71420. 2259866. 15. 4. 0. VO CONVENGENCE WITHIN 20 ITERATIONS 15. 6. 0 INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 15. 7. 0 INITIAL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 12. 1. 5. 0.33 0.44 1.00 527. 1107. 5542. 65661. 1956936. 12. 2. 3. 0.33 0.44 1.00 527. 1107. 5542. 65661. 1956936. 12. 3. 1. 0.33 0.44 1.00 527. 1107. 5542. 65661. 1956936. 12. 1. 5. 0.33 0.44 1.00 527. 1107. 5542. 65661. 1956936. 12. 1. 5. 0.33 0.44 1.00 527. 1107. 5542. 65665. 1957672. 13. 4. 0. NO CONVENGENCE WITHIN 20 ITERATIONS 14. 0. NO CONVENGENCE WITHIN 20 ITERATIONS 15. 0. 33 0.44 1.00 527. 1107. 5542. 65645. 19577072. 16. 0. 10111AL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -289.4 16. 0. 1020 CONVENGENCE WITHIN 20 ITERATIONS 17. 0. 10111AL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -289.4 18. 0. 0. 33 0.44 1.00 527. 1107. 5542. 65645. 19577072. 18. 0. 10111AL X VALUE WILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -289.4 18. 0. 0. 0.33 0.44 1.00 527. 1107. 5542. 65645. 19577072. 18. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		-184.9		z		USE EXPONENT		L X VALUE	INITIA	*		İ	
14. 7. © INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -207,5 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 22551886. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 22551886. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 22551886. 15. 5. 0. 0.00 CONVENGENCE WITHIN 20 ITERATIONS 15. 6. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -147.4 15. 7. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 6750. 21080322. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 6750. 19963936. 12. 7. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -93.8 12. 7. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -183.1 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65645, 19577072. 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 14. 4. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 15. 0.33 0.44 1.000 522. 1107. 5542. 66545, 19577072. 16. 0.33 0.44 1.000 522. 1107. 5542. 66545. 19577072. 17. 0 WINTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -289.4 16. 0. 0.33 0.44 1.000 522. 1107. 5542. 66545. 19577072. 17. 0 WINTIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -289.4 16. 0. 0.33 0.44 1.000 522. 110						O LIEKATIONS			NO CON		1	1	
14. 7. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STANTING VALUE -207,5 15. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 1. 0.33 0.36 1.100 522. 1027. 6227. 71420. 20551888. 15. 1. 0. 0.33 0.36 1.100 522. 1027. 5542. 65681. 1980328. 15. 1. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1980328. 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19858476. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19858476. 12. 3. 2. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19858476. 12. 1. 5. 0.13110.X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STANTING VALUE -283.1 12. 1. 5. 0.10110.X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STANTING VALUE -33.8 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19858476. 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19858476. 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19858476. 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19858476. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19858476. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 14. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 15. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 16. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 17. 0. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. WEED NEW STANTING VALUE -131.0 18. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 19. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 19. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 10. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424. 10. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 2055424.									NO CON	*			
14. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE 24597568. 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 71420. 22551888. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 22551888. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 22551888. 15. 4. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 67580. 19963926. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19963936. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19963936. 12. 5. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 12. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -182.1 13. 1. 9. 33 0.44 1.00 522. 1107. 5542. 65661. 19963936. 14. 0. 33 0.44 1.00 522. 1107. 5542. 65661. 19963936. 15. 9. NO CONVERGENCE WITHIN 20 ITERATIONS 15. 9. NO CONVERGENCE WITHIN 20 ITERATIONS 15. 0. 33 0.44 1.00 522. 1107. 5542. 65665. 19963936. 16. 19963999. 24267872. 17. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -182.1 17. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -192.1 17. 9. INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -193.8 18. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 19577072. 19. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 19. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 19. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 19. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 19. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 10. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 10. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 10. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 10. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 10. 10. 33 0.44 1.00 522. 1107. 5542. 65645. 2267872. 10. 10. 34 0.44 1.00 522. 1107. 5542. 65645. 2267872.		19278432.	64152.	5542.	1107.	522.	1.00	0.44	0.33	:			
14. 7. © INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -207,5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 0227. 91048. 24597568. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 0227. 71420. 2051888. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 0227. 71420. 2051888. 15. 4. NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 6. NO INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -147,4 15. 7. 0. 1NITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283,1 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 73250. 21098032. 12. 3. 2. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1986936. 12. 5. 0 NO CONVENGENCE WITHIN 20 ITERATIONS 12. 6. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -93,8 12. 7. 0 WITHIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -93,8 12. 7. 0 WITHIAL X VALUE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 5. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. 0 INITIAL X VALUE WITH 20 ITERATIONS 13. 7. 0 WITHIAL X VALUE WITHIN 20 ITERATIONS 13. 6. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 7. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 1. 0 NO CONVERGENCE WITHIN 20 ITERATIONS 13. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		20111504.	68318.	5542.	1107.	522.	1.00	0.44	0.33	2.	1	1	
14. 7. ° INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -207,5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. 4. 0. CONVENGENCE WITHIN 20 LIFERATIONS 15. 5. 4. 40 CONVENGENCE WITHIN 20 LIFERATIONS 15. 6. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 15. 7. 6 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 73250. 21098032. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1986336. 12. 6. 0 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -93.8 12. 7. 0 WO CONVENGENCE WITHIN 20 LITERATIONS 12. 7. 0 WITHIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -93.8 12. 7. 0 WO CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1986376. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1986476. 13. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1986476. 13. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1986476. 13. 0. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 13. 0. 0.00 CONVENGENCE WITHIN 20 LITERATIONS 198777877		23484256.	85181.	5542.	1107.	522.	1.00	0.44	0.33	5.			
14. 7. ° INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 70401. 24597566. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. *** NO CONVENGENCE WITHIN 20 ITERATIONS 15. 5. 4. *** NO CONVENGENCE WITHIN 20 ITERATIONS 15. 7. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —147.4 15. 7. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1963936. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1963936. 12. 5. *** NO CONVENGENCE WITHIN 20 ITERATIONS 12. 7. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —93.8 12. 7. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —182.1 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65645. 1957072. 13. 4. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 4. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 5. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —182.1 13. 6. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —19577072. 13. 6. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —19577072. 13. 6. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. *** NO CONVERGENCE WITHIN 20 ITERATIONS 13. 6. *** INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —131.9		-269.4	VALUE	ED NEW STARTING		USE EXPONENT	WILL CA		INITIA	۰			
14. 7. * INITIAL X VALUE MILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -207.5 15. 11. 4. 0.33 0.35 1.00 522. 1027. 6227. 71420. 24597568. 15. 2. 2. 0.33 0.35 1.00 522. 1027. 6227. 71420. 20551888. 15. 3. 1. 0.33 0.35 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 7. * INITIAL X VALUE MILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 15. 7. * INITIAL X VALUE MILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 2520168. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 12. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 12. 7. * INITIAL X VALUE MILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -93.8 12. 7. * INITIAL X VALUE MILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -93.8 12. 7. * INITIAL X VALUE MILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -93.8 12. 7. * INITIAL X VALUE MILL CAUSE EAPONENT OVERFLOW. NEED NEW STARTING VALUE -93.8 12. 0. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1956372. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1956372. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65685. 1957072. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65685. 1957072. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65685. 1957072. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65685. 19577072.		-131.9		ED NEW STARTING		USE EXPONENT	WILL CA		VILINI			1	
14. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 71420. 22551888. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. • NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —147.4 15. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 67580. 19983936. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19983936. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19983936. 12. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —93.8 12. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8 12. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8 12. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8 12. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19587072. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65645. 19577072. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65645. 19577072.						0 ITERATIONS	VITHIN 2	VERGENCE I	NO CON				
14. 7. S INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 4 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 73250. 21098032. 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65661. 1963936. 12. 7. 8 INITIAL X VALUE WITHIN 20 ITERATIONS 12. 6. 8 INITIAL X VALUE WITHIN 20 ITERATIONS 12. 1. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19584176. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19584176. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19584176. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19584176. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19584176. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19584176. 13. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19584176. 13. 1. 0.33 0.44 1.00 522. 1107. 5542. 65661. 19584176.						0 ITERATIONS			NO CON				
14. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. • NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. • NO CONVERGENCE WITHIN 20 ITERATIONS 15. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —147.4. 15. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —263.1. 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 9376. 25203168. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 67580. 1996332. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 67580. 1996336. 12. 5. • NO CONVERGENCE WITHIN 20 ITERATIONS 12. 6. SINITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8. 12. 7. • INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8. 12. 13. 14. 5. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19584176. 13. 15. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19584176. 14. 10. 33 0.44 1.00 522. 1107. 5542. 65681. 19584176. 15. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19584176. 16. SINITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8. 17. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19583424.		19577072.	65645.	5542.	1107.	522.	1.00	0.44	0.33	+		1	
14. 7. © INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 71401. 24597568. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. © NO CONVERGENCE WITHIN 20 LITERATIONS 15. 5. © NO CONVERGENCE WITHIN 20 LITERATIONS 15. 7. © INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 25203168. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 12. 5. © NO CONVERGENCE WITHIN 20 LITERATIONS 12. 6. © INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8 12. 12. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 12. 5. © NO CONVERGENCE WITHIN 20 LITERATIONS 12. 6. © INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —93.8 12. 13. 14. 5. 0.33 0.44 1.00 522. 1107. 9542. 65681. 19963936.		20553424+	70527.	5542.	1107.	522.	1.00	0.44	0.33	2.			
14. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —207,5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 77420. 20551886. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 77420. 20551886. 15. 4. 8 NO CONVERGENCE WITHIN 20 LITERATIONS 15. 5. 0. NO CONVERGENCE WITHIN 20 LITERATIONS 15. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —147.4 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —283,1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 25203168. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 67580. 1996032. 12. 3. 2. 0.33 0.44 1.00 522. 1107. 5542. 67580. 19963936. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 12. 5. 8 NO CONVERGENCE WITHIN 20 LITERATIONS 12. 6. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —93.8 12. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —93.8 12. 12. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —93.8 12. 12. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14		24267872.	89099.	5542.	1107.	522.	1.00	0.44	0.33	ن.			
14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 25203168. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 67580. 1996332. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 1996336. 12. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 12. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —293.8 12. 6. * INITIAL X VALUE WITHIN 20 ITERATIONS 13. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 14. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936. 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 16. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —93.8		-182-1	VALUE	Z		USE EXPONENT	WILL CA		VILINI	•	7.	1	
14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 25203168. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 67580. 19963936. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 67580. 19963936. 12. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS		-93.8	VALUE	Z		USE EXPONENT	WILL CA	L X VALUE	INITIA	*			
14. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. 8 NO CONVERGENCE WITHIN 20 ITERATIONS 15. 7. 8 INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —147.4 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 25203168. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 67580. 19963936. 12. 4. 1. 0.33 0.44 1.00 522. 1107. 5542. 65681. 19963936.						0 LIERATIONS			NO CON				
14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 2051888. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 25203168. 12. 3. 2. 0.33 0.44 1.00 522. 1107. 5542. 67580. 19963936.		19584176.	65681	5542.	1107.	522.	1.00	0.44	0.33	+		1	
14. 7. # INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. # NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. # NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. # INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —263.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 25203168. 12. 2. 3. 0.33 0.44 1.00 522. 1107. 5542. 73250. 21098032.		19963936.	67580.	5542.	1107.	522.	1.00	0.44	0.33	2.	İ		
14. 7. # INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 91648. 24597568. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. # NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. # NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. # INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —147.4 15. 7. # INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —283.1 12. 1. 5. 0.33 0.44 1.00 522. 1107. 5542. 93776. 25203168.		21098032.	73250.	5542.	1107.	522.	1.00	0.44	0.33	u •			
14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 91648. 24597568. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. * NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -147.4 15. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -283.1		25203168.	93776.	5542.	1107.	522.	1.00	0.44	0.33	5.	-	12	
14. 7. # INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 24597568. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. # NO CONVERGENCE WITHIN 20 ITERATIONS 15. 5. # NO CONVERGENCE WITHIN 20 ITERATIONS 15. 6. # INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —147.4		-283-1	VALUE	ED NEW STARTING		USE EXPONENT	WILL CA		INITIA		1	7. 15	
14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS		-147.4				USE EXPONENT	WILL CA	L X VALUE	INITIA		i	. 15	
14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888. 15. 4. * NO CONVERGENCE WITHIN 20 ITERATIONS						0 ITERATIONS	F NIHII	VERGENCE	NO CON			1. 15	
14. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW, NEED NEW STARTING VALUE —207.5 15. 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 91648. 24597568. 15. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272. 15. 3. 1. 0.33 0.36 1.00 522. 1027. 6227. 71420. 20551888.						0 ITERATIONS			NO CON			. 15	
7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -207.5 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 91648. 24597568. 2. 2. 0.33 0.36 1.00 522. 1027. 6227. 76101. 21488272.		20551888.	71420.	6227.	1027.	522.	1.00	0.36	0.33	:			
7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE -207.5 1. 4. 0.33 0.36 1.00 522. 1027. 6227. 91648. 24597568.	300 5	21488272.	76101.	6227.	1027.	522.	1.00	0.36	0.33	~		1.5	
. 7. * INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED NEW STARTING VALUE	F 111	24597568.	91648.	6227.	1027.	522.	1.00	0.36	0.33		-	. 15	
		-207.5	VALUE	ED NEW STAKITAG									

	26902608.	98673.	5542.	1067.	684.	1.00	0.44	0.36	5.	1	9. 12.	•
108	-245338.4	VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.	MILL CI	X VALUE	INITIAL	*	7.	11. 15	6.
	-33502.8	VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT OVERFLOW.	#ILL C	X VALUE	INITIAL	*		11. 15	•
	-4303.0	VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.	MILL CA	X VALUE	INITIAL	*	5	11. 15	
	-446.4	VALUE	NEED NEW STARTING VALUE		WILL CAUSE EXPONENT OVERFLOW.	MILL CA	X VALUE	INITIAL	*	4	11. 15	6.
	14124485.	34882.	4873.	1919.	522.	1.00	0.93	0.33		3	11. 15.	•
	16016165.	44941.	0.	1919.	522.	1.00	0.93	0.33	-	2	11. 15.	6
	22098832.	75354.	0.	1919.	522.	1.00	0.93	0.33	-	1	11. 15	6
	-95772.4	VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT OVERFLOW.	#ILL C	X VALUE	INITIAL		7.	11.	•
	-14608.5	VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.	MILL C	INITIAL X VALUE	INITIAL	*	6	11. 14.	•
	-2042.8	VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.	MILL C	X VALUE	INITIAL	*	5	11. 14	6.
	-202.9	VALUE	NEED NEW STARTING VALUE	OVERFLOW.	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	MILL CA	X VALUE	INITIAL	•	•	11. 14	•
	14543940.	37580.	0.	1919.	522.	1.00	0.93	0.33	-	ω.	11. 14.	6.
	16717673.	48448.	0.	1919.	522.	1.00	0.93	0.33	-	2.	11. 14.	6.
	23257328.	81147.	0.	1919.	522.	1.00	0.93	0.33	-	-	11. 14.	•
	-36962.1	VALUE	NEED NEW STARTING VALUE	OVERFLOW.	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED	WILL CA	X VALUE	INITIAL	*	3. 7.	11. 13.	6.
	-6241.8	VALUE	NEED NEW STARTING VALUE		WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	INITIAL	*	3. 6.	11. 13.	6.
	-925,4	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL C	INITIAL X VALUE	INITIA		5	11. 13.	•
	15932366.	43922.	4873.	1919.	522.	1.00	0.93	0.33	2.	• •	11. 13.	6.
	15177775.	40749.	0.	1919.	522.	1.00	0.93	0.33	-	3.	11. 13.	6.
	17527680.	52498.	0.	1919.	522.	1.00	0.93	0.33	+	2	11. 13.	1
	24594640.	87833.	0.	1919.	522.	1.00	0.93	0.33	-	-	11. 13.	•
	-14011-9	VALUE	NEED NEW STARTING VALUE		WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL	•	7.	11. 12	6.
	-2578,9	VALUE	NEED NEW STARTING	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL	•	6	11. 12	•
	-383.2	VALUE	NEED NEW STARTING VALUE		CAUSE EXPONENT OVERFLOW.	WILL C	X VALUE	INITIAL	*	5	11. 12.	6.
	14923416.	38877.	4873.	1919.	522.	1.00	0.93	0.33		4	11. 12.	6.
	15917940.	44450.	0.	1919.	522.	1.00	0.93	0.33	+	3	11. 12.	•
	18473328.	57227.	0.	1919.	522.	1.00	0.93	0.33	-	2	11. 12.	6.
	26155456.	95637.	0.	1919.	522.	1.00	0.93	0.33	-	1	11. 12.	6
	-589.7	VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INTITAL		7	9. 15	•
	-258.9	VALUE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.	MILL CA	X VALUE WILL	INITIAL	*	6.	9. 15.	•

EnT	-2153.4	VALUE	NEW STARTING	NEED	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL CAL	X VALUE	INITIAL	٠	6.	11. 12.	_
100	-288-6	VALUE	NEW STARTING	NEED	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL CAL		INITIAL X VALUE	۰	5.	11. 12.	_
	16317188.	42846.	0.		1720.	684.	1.00	0.93	0.36	+	+	11. 12.	
	17452512.	48523.	0.		1720.	684.	1.00	0.93	0.36	-	u •	11. 12.	7. 1
	19731760.	59919.	•		1720.	684.	1.00	0.93	0.36	-	2.	11. 12.	7. 1
	26586768.	94194	0.		1720.	684.	1.00	0.93	0.36	-	+	11. 12.	1
	-556.1	VALUE	NEW STARTING VALUE	NEED	OVERFLOW.	X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL		7.	9. 15.	1
	-245.9	VALUE	NEW STARTING VALUE	NEED	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL	۰	6.	9. 15.	7.
	-108-6	VALUE	NEW STARTING	NEED NE	OVERFLOW.	JSE EXPONENT OVERFLOW.	WILL CAUSE	X VALUE	INITIAL		5	9. 15.	1
						WITHIN 20 ITERATIONS	ITHIN 2		NO CONVERGENCE	*		9. 15.	1.
	20452832.	66424.	5542.	5	1067.	684.	1.00	0.44	0.36	-	u •	9. 15.	•
	21258800.	70454	5542.	5	1067.	684.	1.00	0.44	0.36	2	2	9. 15.	1
	24319152.	85756.	5542.	5	1067.	684.	1.00	0.44	0.36	•		9. 15.	1.
	-376.6	VALUE	NEW STARTING	NEED	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL	٠	7.	9. 14.	7.
	-175,9	VALUE	NEW STARTING	NEED	EXPONENT OVERFLOW.		WILL CAUSE	X VALUE	INITIAL	•	6	9. 14.	1
						WITHIN 20 ITERATIONS	ITHIN 2	RGENCE W	NO CONVERGENCE	٠	5	9. 14.	
						1 ITERATIONS	WITHIN 20		NO CONVERGENCE	•	4	9. 14.	7.
	20778224.	68051.	5542.	5	1067.	684.	1.00	0.44	0.36	+	3	9. 14.	1
	21697488.	72648.	5542.		1067.	684.	1.00	0.44	0.36	2.	2.	9. 14.	7.
	25038752.	89354.	5542.	5	1067.	684.	1.00	0.44	0.36	5		9. 14.	7.
	-255.2	VALUE	NEW STARTING	NEED	EXPONENT OVERFLOW.	1	WILL CAUSE	X VALUE	INITIAL	*	7.	9. 13.	1
	-125.7	VALUE	NEW STARTING	NEED	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL	٠	6.	9. 13.	•
						NO CONVERGENCE WITHIN 20 ITERATIONS	ITHIN 2	RGENCE W	NO CONVE	٠	5 1	9. 13.	7.
						20 ITERATIONS	WITHIN 2		NO CONVERGENCE	*	4.	9. 13.	1
	21185040.	70085.	5542.	5	1067.	684.	1.00	0.44	0.36	2.	3	9. 13.	7.
	22229200.	75306.	5542.	5	1067.	684.	1.00	0.44	0.36	2.	2.	9. 13.	7.
	25889248.	93606.	5542.	5	1067.	684.	1.00	0.44	0.36	5.	+	9. 13.	7
	-172.9	VALUE	NEW STARTING VALUE	NEED	OVERFLOW.	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL	*	7.	9. 12.	7.
	-89.6	VALUE	W STARTING	NEED NEW	OVERFLOW.	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL		•	9. 12.	1.
						WITHIN 20 ITERATIONS	ITHIN 2		NO CONVERGENCE	•	51	9. 12.	1
16	23212960.	80225.	5542.	5	1067.	684.	1.00	0.44	0.36		4	9. 12.	7.

					20 ITERATIONS	MITIN C		NO CONVERGENCE		4	9. 13.	œ
110	24993264.	81926.	5542.	1032.	1008.	1.00	0.44	0.37	~	3	9. 13.	
	26014960.	87035.	5542.	1032.	1008.	1.00	0.44	0.37	2.	2	9. 13.	•
	29563936.	104780.	5542. 1	1032.	1008.	1.00	0.44	0.37	Gi	:	9. 13.	•
	-171.3	VALUE	ED NEW STARTING VALUE	OVERFLOW. NE	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW. NEED	WILL CA	X VALUE	INITIAL		7.	9. 12.	
	-88.8	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE	CAUSE EXPONENT		INITIAL X VALUE WILL	INITIAL		0.	9. 12.	•
					WITHIN 20 ITERATIONS	ITHIN		NO CONVERGENCE	٠	5	9. 12.	
	25237696.	83149.	5542.	1032.	1008.	1.00	0.44	0.37	:		9. 12.	
	25704560.	85483.	5542.	1032.	1008.	1.00	0.44	0.37		3	9. 12.	•
	26860112.	91261.	5542.	1032.	1008.	1.00	0.44	0.37	ů.	2	9. 12.	•
	30762448.	110772.	5542. 1	1032.	1008.	1.00	0.44	0.37	5	-	9. 12.	•
	-217394.5	VALUE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.	#ILL C	* VALUE	INITIAL	•	7.	11. 15.	7
	-29451.4	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE		WILL CAUSE	X VALUE	INITIAL		6.	11. 15.	7. 1
	-3707.3	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW. NE		WILL CA	INITIAL X VALUE WILL CAUSE	INITIAL		5.	11. 15.	7. 1
	-357.1	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW. NE		WILL CA	INITIAL X VALUE WILL CAUSE	INITIAL	+		11. 15.	
	15370898.	38114.	0.	1720.	684.	1.00	0.93	0.36	-	3.	11. 15.	_
	17171056.	47115.	0.	1720.	684.	1.00	0.93	0.36	-	2.	11. 15.	7. 1
	22592864.	74224.	0.	1720.	684.	1.00	0.93	0.36	+	:	11. 15.	7.
	-84329.4	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW. NE	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	•	7.	11. 14.	7. 1
	-12707.4	VALUE	NEW STARTING	EXPONENT OVERFLOW. NEED		WILL CAUSE	X VALUE	INITIAL X VALUE		6.	11. 14.	7. 1
	-1722.1	VALUE	ED NEW STARTING	EXPONENT OVERFLOW. NEED	CAUSE EXPONENT	#ILL CA	X VALUE	INITIAL		5.	11. 14.	1
	-147.7	VALUE	NEED NEW STARTING VALUE		INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	X VALUE	INITIAL			11. 14.	7.
	15965010.	41085.	0.	1720.	684.	1.00	0.93	0.36	-	3	11. 14.	1
	17902112.	50771.	0.	1720.	684.	1.00	0.93	0.36	+	N	-	1
	23733392.	79927.	0.	1720.	684.	1.00	0.93	0.36	-	:	11. 14.	7. 1
	-32254.3	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW. NE		WILL CAUSE	X VALUE	INITIAL	*	7.	11. 13.	7. 1
	-5345.1	VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW. NE		אזרר כי	INITIAL X VALUE WILL CAUSE	INITIAL		•	11. 13.	1
	-751.8	VALUE	NEED NEW STARTING	OVERFLOW. NE	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	*	5	11. 13.	7.
	16423495.	42777.	4873.	1720.	684.	1.00	0.93	0.36			11. 13.	7.
	16651207.	44516.	0.	1720.	684.	1.00	0.93	0.36	-	a	11. 13.	1
	18746256.	54991.	0.	1720.	684.	1.00	0.93	0.36	-	2	11. 13.	7.
	25050016.	40104	•	11200	0040							,

:	20829456.	58207.	0.	1455.	1008	1.00	0.93	0.37	-	2.	. 14.	==
111	25756672.	82843.	0.	1455.	1008.	1.00	0.93	0.37	-	-	14.	=
	-31429.0	G VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	MILL CA	X VALUE	INITIAL		7.	13.	F
	-5187.3	G VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL	٠	6.	. 13.	11.
	-721.2	G VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	MILL CA	X VALUE	INITIAL	•	5	. 13.	=
	19807152.	52496.	4873.	1455.	1008.	1.00	0.93	0.37	3		13.	F
	20008864.	54104.	0.	1455.	1008	1.00	0.93	0.37	-	u.	. 13.	8. 11.
	21779040.	62955.	0.	1455.	1008.	1.00	0.93	0.37	-	2.	. 13.	=
	27105840.	89589.	0.	1455.	1008	1.00	0.93	0.37	-	-	13	11.
	-11722.6	6 VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.		WILL CA	L X VALUE WILL CAUSE	INITIAL		7.	. 12.	8. 11.
	-2078.5	6 VALUE	NEED NEW STARTING VALUE		WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	INITIAL		6.	12.	8. 11.
	-271.9	6 VALUE	NEED NEW STARTING	1	WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	INITIAL		5	12.	#
	20002272.	54071.	0.	1455.	1008.	1.00	0.93	0.37	-		. 12.	8. 11.
	20961504.	58868.	0.	1455.	1008	1.00	0.93	0.37	-	3.	. 12.	11.
	22887472.	68497.	0.	1455.	1008	1.00	0.93	0.37	+		12.	=
	28680464.	97462.	0.	1455.	1008.	1.00	0.93	0.37	-	-	12.	Ξ
	-550.2	G VALUE	NEED NEW STARTING VALUE		X VALUE WILL CAUSE EXPONENT OVERFLOW.	MILL CA	X VALUE	INITIAL		7.	9. 15.	
	-243.6	G VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL CA	X VALUE	INITIAL		6.	9- 15-	
	-107.7	G VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	USE EXPONENT	WILL CAUSE	X VALUE	INITIAL	*	5	9. 15.	
					WITHIN 20 ITERATIONS	ITHII 2	NO CONVERGENCE W	NO CON			9. 15.	
	23931856.	76619.	5542.	1032.	1008.	1.00	0.44	0.37	+	4	15.	
	24726272.	80591.	5542.	1032.	1008.	1.00	0.44	0.37	2.	2	9. 15.	
	27697584.	95448.	5542.	1032.	1008.	1.00	0.44	0.37		-	9. 15.	
	-372.8	G VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	MILL CI	X VALUE	INITIAL		1	14.	
	-174.4	6 VALUE	NEED NEW STARTING VALUE	EXPONENT OVERFLOW.	USE EXPONENT	WILL CAUSE	X VALUE	INITIAL		6.	9. 14.	
					NO CONVERGENCE WITHIN 20 ITERATIONS	TIHIN 2	VERGENCE W	NO CON	۰	5	9. 14.	
	4				WITHIN 20 ITERATIONS	IIHIN .	NO CONVERGENCE W	NO CON			1	
	24410528.	79013.	5542.	1032.	1008.	1.00	0.44	0.37	:	3.	9. 14.	
	25312928.	83525.	5542.	1032.	1008.	1.00	0.44	0.37	2.	2.	9. 14.	
	28554736.	99734.	5542.	1032.	1008.	1.00	0.44	0.37	5	-	9. 14.	
110	-252.7	G VALUE	NEED NEW STARTING VALUE	OVERFLOW.	WILL CAUSE EXPONENT OVERFLOW.	*ILL C	X VALUE	INITIAL		7.	9. 13.	

	28111008	45615		1332	1403	1 .00	0.44 0.93	-	-	,,
	-58866-6	VALUE	NEED NEW STARTING	OVERFLOW.	X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	*	. 7.	11. 14.
***	-8437.5	VALUE	NEED NEW STARTING	OVERFLOW.	X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	*	6.	11. 14
119	-995.0	MALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL CA	INTITAL X VALUE		5	11. 14
	23073856.	59829.	4873.	1332.	1402.	1.00	0.44 0.93	3.	•	11. 14
	23466640.	62393.	0.	1332.	1402.	1.00	0.44 0.93	-	· ·	11. 14.
	24946320.	69792.	0.	1332.	1402.	1.00	0.44 0.93	+	2	11. 14
	29408048.	92100.	0.	1332.	1402.	1.00	0.44 0.93	-	-	11. 14.
	-21734.1	VALUE	NEED NEW STARTING VALUE		X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	¢	7.	11. 13.
	-3323.6	VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	•	•	11. 13.
	-356.9	VALUE	NEED NEW STARTING VALUE	OVERFLOW.	JSE EXPONENT	WILL CA	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.		5	11. 13.
	23679952.	63460.	0.	1332.	1402.	1.00	0.44 0.93	I		11. 13.
	24475728.	67439.	0.	1332.	1402.	1.00	0.44 0.93	+	a.	11. 13.
	26077840.	75449.	0.	1332.	1402.	1.00	0.44 0.93	-	~	11. 13.
	30905328.	99587.	0.	1332.	1402.	1.00	0.44 0.93	-	:	11. 13.
	-7693.9	VALUE	NEED NEW STARTING		JSE EXPONENT	WILL CA	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	٠	7	11. 12
	-1190.6	VALUE	NEED NEW STARTING VALUE		JSE EXPONENT	WILL CA	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.			11. 12.
	24907680.	68998.	4873.	1332.	1402.	1.00	0.44 0.93	2	5	11. 12.
	24786304.	68992	0.	1332.	1402.	1.00	0.44 0.93	+	1	11. 12
	25653840.	73329,	0.	1332.	1402.	1.00	0.44 0.93	-	· ·	11. 12.
	27398704.	82054.	0.	1332.	1402.	1.00	0.44 0.93	-	№	11. 12.
	32652928.	108325.	0.	1332.	1402.	1.00	0.44 0.93	+	-	111 12
	-212511.5	VALUE	NEED NEW STARTING		JSE EXPONENT	WILL CA	INITIAL X VALUE WILL CAUSE EXPONENT OVERFLOW.	٠	7	11. 15.
	-28740.8	VALUE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	¢		11. 15.
	-3602.5	ANTHE	NEED NEW STARTING		CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE		91	11. 15
	-341.3	VALUE	NEED NEW STARTING		WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	*	•	11. 15.
	18486176.	46491.	0.	1455.	1008.	1.00	0.37 0.93	1	ω	11. 15
	20006944.	54095.	0.	1455.	1008.	1.00	0.37 0.93	-	~	11. 15
	24587872.	76999.	0.	1455.	1008.	1.00	0.37 0.93	-	-	11. 15.
	-82325.9	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL CA	INITIAL X VALUE	*	7.	11. 14.
	-12373.4	VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.	CAUSE EXPONENT	WILL CA	INITIAL X VALUE	*	•	11. 14.
	-1665.5	VALUE	NEED NEW STARTING	OVERFLOW.	X VALUE WILL CAUSE EXPONENT OVERFLOW.	WILL CA	INITIAL X VALUE	۰	5	11. 14.

The second secon	49373008.	137925.	0.	1062.	4073.	1.00	0.02	0.06	1	15 7	10 11.
TTO CTT	49548688.	138804.	0.	1062.	4073.	1.00	0.93	0.86	-	15. 5.	10. 11.
5 8	49827200.	140196.	0.	1062.	4073.	1.00	0.93	0.86	-	15. 4.	10. 11.
2 1	50312512.	142623,	0.	1062.	4073.	1.00	0.93	0.86	-	15. 3.	10. 11.
n n	51316432.	147642.	0.	1062.	4073.	1.00	0.93	0.86	-	15. 2.	10. 11.
5 4	54397120.	163046.	0.	1062.	4073.	1.00	0.93	0.86	-	15. 1.	10. 11.
2 8	51247568.	147298,	0.	1062.	4073.	1.00	0.93	0.86	-	14. 7.	10. 11.
4 8	51378352.	147952.	0.	1062.	4073.	1.00	0.93	0.86	-	14. 6.	10. 11.
5.4	51572240.	148921.	0.	1062.	4073.	1.00	0.93	0.86	-	14. 5.	10. 11.
	51877456.	150447.	0.	1062.	4073.	1.00	0.93	0.86	-	14. 4.	10. 11.
3 1	52406352.	153092.	0.	1062.	4073.	1.00	0.93	0.86	-	14. 3.	10. 11.
	53495728.	158539.	0.	1062.	4073.	1.00	0.93	0.86	-	14. 2.	10. 11.
	56828928.	175205.	0.	1062.	4073.	1.00	0.93	0.86	1	14. 1.	10. 11.
	53548592.	158803.	0.	1062.	4073.	1.00	0.93	0.86	-	13. 7.	10. 11.
# *	53694592.	159533.	0.	1062.	4073.	1.00	0.93	0.86	-	13. 6.	10. 11.
# ¥	53909376.	160607.	0.	1062.	4073.	1.00	0.93	0.86	-	13. 5.	10. 11.
8 8	54245280.	162286.	0.	1062.	4073.	1.00	0.93	0.86	-	13. 4.	10. 11.
2 8	54824288.	165182.	0.	1062.	4073.	1.00	0.93	0.86	-	13. 3.	10. 11.
8 9	56012160.	171121.	0.	1062.	4073.	1.00	0.93	0.86	1	13. 2.	10. 11.
22 K	59636848.	189244.	0.	1062.	4073.	1.00	0.93	0.86	-	13. 1.	10. 11.
3 2	56235952.	172240.	0.	1062.	4073.	1.00	0.93	0.86	-	12. 7.	10. 11.
n n	56399600.	173058.	0.	1062.	4073.	1.00	0.93	0.86	+	12. 6.	10. 11.
9 8	56638592.	174253.	0.	1062.	4073.	1.00	0.93	0.86	-	12. 5.	10. 11.
	57010176.	176111.	0.	1062.	4073.	1.00	0.93	0.86	-	12. 4.	10. 11.
2 #	57647472.	179297.	0.	1062.	4073.	1.00	0.93	0.86	-	12. 3.	10. 11.
	58950096.	185811.	0.	1062.	4073.	1.00	0.93	0.86	-	12. 2.	10. 11.
0 5	62914896.	205635.	0.	1062.	4073.	1.00	0.93	0.86	-	12. 1.	10. 11.
10	-155484.1	ARTING VALUE	NEED NEW STARTING	OVERFLOW.	CAUSE EXPONENT OVERFLOW.	WILL CA	T X VALUE WILL	INITIAL	*	15. 7.	9. 11.
	-20386.4	ARTING VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CA	INITIAL X VALUE WILL CAUSE	INITIA	*	15. 6.	9. 111.
4 *	-2361.0	ARTING VALUE	NEED NEW STARTING	EXPONENT OVERFLOW.		WILL CAUSE	INITIAL X VALUE WILL	INITIA	*	15. 5.	9. 11.
	-153,2	STARTING VALUE	NEED NEW ST	OVERFLOW.	CAUSE EXPONENT	MILL	L X VALUE	INITIAL	*	15. 4.	• 11.
	22592752.	58024.	0.	1332.	1402.	1.00	0.93	0.44	-	15. 3.	9. 11.
	23966272.	64891.	0.	1332.	1402.	1.00	0.93	0.44	-	15. 2.	9. 11.
			• •			* * * *	2000	0.00			

0	
0	114
0	
	M 2
0	
0	
0	A 5
0	
0	
0	
	E CONTRACTOR DE
0	
0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	EN CONTRACTOR OF THE CONTRACTO
0	X X X
0	
	· u
0	Y S
0	
0	CARDS FROM MAIN FOR THIS JOB = NONE
	04
0	DDNAME = SYSMSG PRINTED ON RM010PR1. LINES = 000088 DDNAME = ASPOA001 PRINTED ON RM010PR1. LINES = 001516
0	ELAPSED TIME ON MAIN = M91 = 000.52. START TIME = 14.15.11
0	
(//WWQDMISP JOB (134733WD+C+U+N)+*LOR W D DUDZIK*+RD=R LOR
)	
0	ASP JOB NO. = 0762 DATE = 76.036
0	10. 11. 15. 7. 1 0.86 0.93 1.00 4073. 1062. 0. 137337. 49255472.
1	

0	:	20.	10.	UE . INCREMENT)	NO. CYCLES BETWEEN FIRST ECHELON TESTS
5.5					FINAL VALUE INCREMENT
115	-	12.	12.	AL VALUE	NO. TESTERS FUNCTIONS (INITIAL
0	:	10.	2.	AL VALUE	NO. TESTERI FUNCTIONS (INITIAL FINAL VALUE • INCREMENT)
x :	1.00	2.00	20.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUMBER OF TESTERS
	10.00	10.00	0.0	TESTER	COST OF PACKING TO SHIP TO
Ö	1000.00	500.00	10.00		COST OF SHIPPING TO TESTER
8 6	2.00	2.00	7.00 2.00		PAY RATE(\$/HR) AT TESTER NO. MEN TO OPERATE TESTER
0		PTION	INPUT DATA DESCRIPTION	Iz	
1 5					
					000005*0
		2.000000	1.000000	1.000000	0.300000
		0.300000	0.300000	0.300000	0.500000
8					0.020150
		0.001350	0.000390	0.008570	0.001470
* * *		0.001260	0.001180	0.000900	000100
. 0					0.001000
8		0.000130	0.000010	0.000120	0.000120
		0.000450	0.000210	0.000280	0.000500
· · ·		0.001050	0.000550	0.000650	20000.000000
, a		100000.000000			100000.000000
0		80000.000000	40000.000000	89400.000000	40000,000000
* 2		40000.000000			200000000000000000000000000000000000000
× ()		2.000000	2.000000	2.000000	2.000000
и		1.500000	1.500000	1.500000	1.500000
п		1.500000	1.500000	1.000000	1.000000
					20.00
					20.00
					0.15
					0.70
					50000.00
*					
a C					
* (
				00.00 10.00	0.0
0.					
				2.00	7,000 1
		EXAMPLE RESULTS 4	XX		LIST OF INPUT DATA
44		TABLE 6			

9082704. 9082704. 9055072. 9036032.	95061											
		76806.	0.	6511.	91.	0.0	1.00	0.09	3. 0.	4.	2. 1	
912.	19055072.	76901.	0.	6511.	91.	0.0	1.00	0.09	3. 0.	3.	2. 1	2. 1
912.	19082704.	77040.	0.	0511.	91.	0.0	1.00	0.09	0.	2. 4	2. 1	2. 1
	19120912.	77231.	0.	6511.	91.	0.0	1.00	0.09	0	1. 4	2.	2. 1
1008.	19173008.	77491.	0.	6511.	91.	0.0	1.00	0.09	. 0.	10. 4	2.	2. 1
YCLE	LIFE CYCLE	COMPLETE TEST COST	TEST3 COST	1ES12 COST	COST	S FAILING PEST3	IVE ITEMS	DEFECTIVE TEST1	ES N	CYCLE		FUNCTIONS
				SUMMARY	TEST COST							
2.000000	.000000	1.1	1.000000		0.3							
0.300000	0.300000	0.	0.		0.5						- 1	
0.300000	00000	0.	0.300000	00000	0.		UNCTION	4 H11 1	T0 TES	NE SO	TIME	
0.001350	0.001390	0.0	0.008570	01470	0.001470							
0.00120	0.000670	0	0.001540	00700	0.0	3	9	TIN FONCITOR	15 01	TEONE NA	10	
0.001360	201180		0 00000	00000	0.0	154	05 1	1 .	1			
0.000130	0.000000	0.	0.000120	02100	0.0							
0.001000	00000		0.000000	00500	0.0	FONCITON	1631	EMOTE. 10	10	ורטאב אה	D	
0.001060	200550		0 000660		200000	n	1551 11	0110	16 05			
100000.000000	00000	100000.	00000.000000		1.000001							
80000.000000	00000	40000.000000	89400.000000		40000.0							
40000.000000	00000	28000-	20000-000000		200002	UNCTION	ITH F	1 10 1EST	INTENTION	OF F	0051	
2.000000	2.000000	2.	2.000000	2.000000	2.0							
1.500000	00000		1.500000	1.500000	1.5	LESIS TILL	MUTCH	ALK ENGLY.	TO ACTUAL	MEMO	- IME	
5.00												
					20.	TH00	OR N-R ME	TIONS F	. ITERA	AXIMUM NO.	MAXI	
					7.	METHOD	NEWTON-RAPHSON	OR NEWTON-	ALVE FO	MITIAL VA	INI	
					20.				YCLES	USE C	0	
					0:15			HA110	MATERIAL	1	REPAIR	
					0.70	DEFECTIVE	NOT DEFE	S IN USE	OF ITEMS	RACTION (FRAC	
					• 21			NS TESTED	FUNCTIONS	ITEM F	0	
		500.	16	10.	50000.	ITEMS	.NO. OF I	IFECYCLE	L Mall	1 COST.	MATT	
						REMENT	FINAL VALUE . INCREMENT)	E.FINAL	T VALUE	(IIII)		
		:		7.		(ESIS)	ECHELON T	WEEN SECOND F		CYCLES HET	NO.	

13450262	39157.	0.	3262	3)6-	•	1.00		0		5	•
13560456.	39708.	0.	3262.	316.	0.0	1.00	0.25	0.	• ω	14	~
13694342.	40378.	0.	3262.	316.	0.0	1.00	0.25	0.	•	. 13	N
13857705.	41195.	0.	3262.	316.	0.0	1.00	0.25	0.	4.	. 12.	12
14058420.	42198.	0.	3262.	316.	0.0	1.00	0.25	0.	5 1	2. 11	-
14307522.	43444	0.	3262.	316.	0.0	1.00	0.25	0.	5.	. 10	12
13708678.	44049.	0.	4070.	195.	0.0	1.00	0.22	0.	. 2.	. 20	12
13713743.	44075.	0.	4070.	195.	0.0	1.00	0.22	0.	2	. 19	12
26896512.	109989.	0.	4070.	195.	0.0	1.00	0.22	-	·	. 18	12
13743688.	44224.	0.	4070.	195.	0.0	1.00	0.22	40.	3.	. 17.	12
13770775.	44360.	0.	4070.	195.	0.0	1.00	0.22	0.	3.	2. 16	_
13807913.	44546.	0.	4070.	195.	0.0	1.00	0.22	3.0.	. 3.	2. 15	-
13857205.	44792.	0.	4070.	195.	0.0	1.00	0.22	0.	3.	12. 14	-
13921245.	45112.	0.	4070.	195.	0.0	1.00	0.22	0.	•	2. 13	_
14003655.	45524.	0.	4070.	195.	0.0	1.00	0.22	0.	4.	2. 12	-
14109268.	46052.	0.	4070.	195.	0.0	1.00	0.22	0.	. 4.	12. 11.	4. 1
14244926.	46731.	0.	4070.	195.	0.0	1.00	0.22	0.	5	2. 10	4. 1
16463838.	61425.	0.	5523.	122.	0.0	1.00	0.15	0.	2	2. 20	3. 1
16451963.	61366.	0.	5523.	122.	0.0	1.00	0.15	0.	2.	. 19	3. 12
16444082.	61326.	0.	5523.	122.	0.0	1.00	0.15	0.	2.	2. 18	3. 1
16440732.	61310.	0.	5523.	122.	0.0	1.00	0.15	0.	3.	. 17	3. 12
16442790.	61320.	0.	5523.	122.	0.0	1.00	0.15	0.	3.	12. 16	3. 1
16451151.	61362.	0.	5523.	122.	0.0	1.00	0.15	0.	3.	2. 15	3. 1
16467156.	61442.	0.	5523.	122.	0.0	1.00	0.15	0.		2. 14	3. 1
16492510.	61569.	0.	5523.	122.	0.0	1.00	0.15	0.	3.	2. 13.	3. 1
16529357.	61753.	0.	5523.	122.	0.0	1.00	0.15	0.	4.	2. 12	3. 1
16580781.	62010.	0.	5523.	122.	0.0	1.00	0.15	0.		2. 11	3. 1
16651135.	62362.	0.	5523.	122.	0.0	1.00	0.15	0.	5	. 10	3. 12
19029104.	76772.	0.	6511.	•16	0.0	1.00	0.09	0.	2.	2. 20	-
19021360.	76733.	0.	6511.	91.	0.0	1.00	0.09	0.	2	2. 19	_
19016368.	76708.	0.	6511.	91.	0.0	1.00	0.09	0.	2.	12. 18	_
19014704.	76700.	0.	6511.	91.	0.0	1.00	0.09	0.	N	2. 17.	_

18808656.	47103.	0.	1975.	1008.	0.0	1.00	0.37	0.	4.	15.	12.
19254048.	49330.	0.	1975.	1008.	0.0	1.00	0.37	0.	4.	14.	12.
19773920.	51930.	0.	1975.	1008.	0.0	1.00	0.37	0.	4	13.	12.
20386736.	54994.	0.	1975.	1008.	0.0	1.00	0.37	0.	5.	12.	12
21117600.	58648.	0.	1975.	1008.	0.0	1.00	0.37	0.	5.	11.	12
22001776.	63069.	0.	1975.	1008.	0.0	1.00	0.37	0.	•	10.	12
21934656.	69933.	0.	2443.	684.	0.0	1.00	0.36	0.	1.	20.	12
15117016.	35845.	0.	2443.	684.	0.0	1.00	0.36	0.	3.	19.	12.
15271502.	36618.	0.	2443.	684.	0.0	1.00	0.36	0.	3.	18.	12.
15450428.	37512.	0.	2443.	684.	0.0	1.00	0.36	0.	3.	17.	12
15658193.	38551.	0.	2443.	684.	0.0	1.00	0.36	0.	ω	16.	12
15900361.	39762.	0.	2443.	684.	0.0	1.00	0.36	•	4.	15.	12
16184075.	41180.	0.	2443.	684.	0.0	1.00	0.36	0.	4.	14.	12.
16518705.	42854.	0.	2443.	684.	0.0	1.00	0.36	0.		13.	12.
16916752.	44844.	0.	2443.	684.	0.0	1.00	0.36	0.	5.	12.	12.
17395280.	47236.	0.	2443.	684.	0.0	1.00	0.36	0.	5	11.	12.
17978192.	50151.	0.	2443.	684.	0.0	1.00	0.36	0.	6.	. 10.	12
14200231.	34861.	0.	2756.	522.	0.0	1.00	0.33	0.	2.	. 20.	12
14289778.	35309.	0.	2756.	522.	0.0	1.00	0.33	0.	a	19.	12.
14395475.	35837.	0.	2756.	522.	0.0	1.00	0.33	0	ω	18.	12.
14519957.	36460.	0.	2756.	522.	0.0	1.00	0.33	0.	3.	. 17.	12
14666591.	37193.	0.	2756.	522.	0.0	1.00	0.33	0.	3.	16.	12.
14839586.	38058.	0.	2756.	522.	0.0	1.00	0.33	0.	4.	15.	12
15044428.	39082.	0.	2756.	522.	0.0	1.00	0.33	0.		. 14.	12
15288237.	40301.	0.	2756.	522.	0.0	1.00	0.33	0.	4.	13.	12.
15580532.	41763.	0.	2756.	522.	0.0	1.00	0.33	0.	5.	12.	12
15934357.	43532.	0.	2756.	522.	0.0	1.00	0.33	0.	ن •	. 11.	12
16367898.	45699.	0.	2756.	522.	0.0	1.00	0.33	0	6.	10.	12
13133563.	37574.	0.	3262.	316.	0.0	1.00	0.25	0.	2.	20.	12
13173538.	37774.	0.	3262.	316.	0.0	1.00	0.25	0.	N .	. 19.	12
13223375.	38023.	0.	3262.	316.	0.0	1.00	0.25	0.	3	18.	12.
13284652.	38329.	0.	3262.	316.	0.0	1.00	0.25	0.	з •	17.	12

41914896.	101835.	0.	0.	4073.	0.0	1.00	0.86	0.		20.	12.
42986816.	107194.	0.	0.	4073.	0.0	1.00	0.86	0.	I	19.	12.
44177856.	113149.	0.	0.	4073.	0.0	1.00	0.86	0.	-	18.	12.
45509040.	119805.	0.	0.	4073.	0.0	1.00	0.86	0.	-	17.	12.
47006608.	127293.	0.	0.	4073.	0.0	1.00	0.86	0.	-	16.	12.
48703856.	135779.	0.	0.	4073.	0.0	1.00	0.86	0.	I	15.	12.
50643552.	145478.	0.	0.	4073.	0.0	1.00	0.86	0.	-	14.	12.
52881680.	156668.	0.	0.	4073.	0.0	1.00	0.86	0.	-	13.	12.
55492816.	169724.	0.	0.	4073.	0.0	1.00	0.86	0.	-	12.	12.
58578720.	185154	0.	0.	4073.	0.0	1.00	0.86	0.	-	11.	12.
62281792.	203669.	0.	0.	4073.	0.0	1.00	0.86	0.	-	10.	10. 12.
20365472.	45887.	0.	1762.	1402.	0.0	1.00	0.44	0.	3.	20.	9. 12.
20694240.	47531.	0.	1762.	1402.	0.0	1.00	0.44	0.	3	19.	12.
21065056.	49385.	0.	1762.	1402.	0.0	1.00	0.44	0.	.	18.	12.
21485088.	51485.	0.	1762.	1402.	0.0	1.00	0.44	0.	4.	17.	9. 12.
21963360.	53877.	0.	1762.	1402.	0.0	1.00	0.44	0.	4.	16.	12.
22511280.	56616.	0.	1762.	1402.	0.0	1.00	0.44	0.	+	15.	12.
23143552.	59778.	0.	1762.	1402.	0.0	1.00	0.44	0.	5	14.	12.
23879376.	63457.	0.	1762.	1402.	0.0	1.00	0.44	0.	5.	13.	12.
24744400.	67782.	0.	1762.	1402.	0.0	1.00	0.44	0.	ហ •	12.	9. 12.
25773664.	72928.	0.	1762.	1402.	0.0	1.00	0.44	0.	<i>o</i>	11.	9. 12.
27016112.	79141.	0.	1762.	1402.	0.0	1.00	0.44	0.	7.	10.	12.
22949088.	67806.	0.	1975.	1008.	0.0	1.00	0.37	0.	:	20.	12.
17539408.	40757.	0.	1975.	1008.	0.0	1.00	0.37	0.	ω •	19.	12.
17796672.	42043.	0.	1975.	1008.	0.0 .	1.00	0.37	0.	3.	18.	12.
18089360.	43507.	0.	1975.	1008.	0.0	1.00	0.37	0.	3	17.	8. 12.
101637360											

0 0

1.000		0	-	SAS DE SETTEMENT FORT COURT ON TESTS
1 00 1	12.	12.	AL VALUE	NO. TESTER2 FUNCTIONS(INITIAL FINAL VALUE.INCREMENT)
1001	11.	•	AL VALUE	NO. TESTER! FUNCTIONS (INITIAL FINAL VALUE + INCREMENT)
100 101	2.00	20.00	3	NUMBER OF TESTERS
000	00.01	0.0	TESTER	COST OF PACKING TO SHIP TO
	2.00	2.00		COST OF SHIPPING TO TESTER
The second control of the second control of				DAK DATE (S. LEDY AT TECTOR
	DESCRIPTION	INPUT DATA DESC	I	
				0.20000
1000		1.000000	1.0000000	0.300000
000	0.300000	0.300000	0.300000	0.300000
		0 0 0 1 0 0		0.020150
350	0-000120	0.000670	0.001540	0.000700
260		0.001180	0.000900	0.001000
130		0.000010	-00012	0.000120
1450	0.001060	0.000210	0.000660	0.000000
				20000.000000
0000	100000.000	100000.00000		100000.000000
00	40000.000	28000.000000	20000.000000	00000.00000
		1	,	1.000000
0000	0 2.500000	2.000000	2.000000	2.000000
1000		1.500000	1.000000	1.000000
				000
				20.00
				0.15
			15	
			7.00 1.00	1.00
			10.00 10.00	
			2.00	.00
		•		
EXCETS 5	EXAMPLE RESULT			INPUT DATA
•	IABLE			

7. 121	The second secon											
	13736827.	44190.	0.	4070.	195.	0.0	1.00	0.22	0.	24. 2.	12.	
0.	13723600.	44124.	0.	4070.	195.	0.0	1.00	0.22	0.	23. 2.	12.	4.
3.	13714203.	44077.	0.	4070.	195.	0.0	1.00	0.22	0.	22. 2.	12.	4
8.	13709038.	44051.	0.	4070.	195.	0.0	1.00	0.22	0.	21. 2.	12.	
. ^	13708670.	44049.	0.	4070.	195.	0.0	1.00	0.22	0	20. 2.	12.	
E	LIFE CYCLE	COMPLETE TEST COST	TEST3 COST	TEST2 COST	TEST1 COST	FAILING TEST3	VE ITEMS	DEFECTIVE TEST1	S N3	NT NZ	MI MZ	MICT
				SUMMARY	TEST COST							
				200000	0.							
2.000000	0.300000	0.3	1.000000	300000								
0.300000	0000	0.30	0.300000	0.300000	0.0		NOIT	ITH FUNCTION	0 1681	E REDO TO	TIME	
0.001350	0.001390	0.0	0.008570	001470	0.0							
0.001260	01180	0.0	0.000900	001000	0.	3	ON OF ITE	ITH FUNCTION	0	AILURE RATE	FAI	
0,000.00	00010	0.0		000000	0.							
0.000450	0.000210	0.0	0.000280	000500								
0.001060	0.000550	0.00	•	001020	0.	FUNCTION	TEST ITH	QUIP. TO	0F E	ILURE HATE	FAI	
100000.00000		100000 • 000000	600000.000000	000000	200000							
80000.000000		40000.000000		000000	40000.							
40000.000000		28000.01	20000.000000	0.000000	200000	ION	ITH FUNCTION	10 1EST	QUIPMENT	1 OF E	COS	
2.000000	0000	2.0	2.000000	2.000000	2.							
1.500000	1.500000	1.5	1.000000	1.000000	FUN	SIS ITH	WHICH TE	IR EQUIP.	OREPAIR	E REOD TO	Z.E.	
					20.	Тнои	Z I R	TERATIONS FOR	1 TERA	XIMUM NO.	3 4	
					:	METHOD		NEWTON-RAPHSON	VE FOR	INITIAL VALVE	INI	
					20.				LES	USE CYCLES	20.	
					0:15			HATIO		REPAIR MATERIAL	REP	
					0.70	CTIVE	NOT DEFECT	IN USE	ITEMS	RACTION OF	FRA	
					12.			S TESTED	FUNCTIONS	11EM	NO.	
		500.	(r	10.	50000.	MS	O. OF ITEMS	LIFECYCLE.NO.		ITEM COST-ITEM	311	
						MENTO	CYCLES BEIMEEN SECOND ECHELON TESTS	FINAL VA	A V F F F F	CYCLES A		
				7.		165151	FCHELON	TEN THRU	0 .0.0	VICACLE	NO.	

	14547493.	32997.	0.	2443.	684.	0.0	1.00	0.36	0	N	25.	12.	7.
122	14609687.	33308.	0.	2443.	684.	0.0	1.00	0.36	0.	2.	24.	12.	7.
	14682937.	33675.	0.	2443.	684.	0.0	1.00	0.36	0.	2.	23.	12.	7.
	14768565.	34103.	0.	2443.	684.	0.0	1.00	0.36	0.	2.	22.	12.	7.
	14868118.	34601.	0.	2443.	684.	0.0	1.00	0.36	0.	2.	21.	12.	7.
	14983503.	35178.	0.	2443.	684.	0.0	1.00	0.36	0.	3.	20.	12.	7.
	13863246.	33176.	0.	2756.	522.	0.0	1.00	0.33	0.	-	30.	12.	6
about selentus	13864938.	33185.	0.	2756.	522.	0.0	1.00	0.33	0.	~	29.	12.	0
	13872120.	33221.	0.	2756.	522.	0.0	1.00	0.33	0.	2.	28.	12.	0
	13885243.	33286.	0.	2756.	522.	0.0	1.00	0.33	0.	2.	27.	12.	0
	13904803.	33384.	0.	2756.	522.	0.0	1.00	0.33	0.	2.	26.	12.	0
	13931425.	33517.	0.	2756.	522.	0.0	1.00	0.33	0.	N .	25.	12.	6
	13965787.	33689.	0.	2756.	522.	0.0	1.00	0.33	0.	2.	24.	12.	0
	14008756.	33904.	0.	2756.	522.	0.0	1.00	0.33	0.	2.	23.	12.	6
	14061312.	34167.	0.	2756.	522.	0.0	1.00	0.33	0.	2.	22.	12.	0
	14124653.	34483.	0.	2756.	522.	0.0	1.00	0.33	0.	2.	21.	12.	0
	14200228.	34861.	0.	2756.	522.	0.0	1.00	0.33	0.	2	20.	12.	6
	16020745.	52010.	0.	3262.	316.	0.0	1.00	0.25	0.	:	30.	12.	5
	13061307.	37213.	0.	3262.	316.	0.0	1.00	0.25	0.	1.	29.	12.	S
	13050958.	37161.	0.	3262.	316.	0.0	1.00	0.25	0.	2.	28.	12.	5
	13044233.	37127.	0.	3262.	316.	0.0	1.00	0.25	0.	2.	27.	12.	S
	13041418.	37113.	0.	3262.	316.	0.0	1.00	0.25	0.	2.	26.	12.	5
	13042957.	37121.	0.	3262.	316.	0.0	1.00	0.25	0.	2	25.	12.	5
	13049221.	37152.	0.	3262.	316.	0.0	1.00	0.25	0.	2.	24.	12.	51
	13060743.	37210.	0.	3262.	316.	0.0	1.00	0.25	0.	2	23.	12.	5
	13078132.	37297.	0.	3262.	316.	0.0	1.00	0.25	0.	~	22.	12.	S
	13102103.	37417.	0.	3262.	316.	0.0	1.00	0.25	0.	~	21.	12.	S
	13133566.	37574.	0.	3262.	316.	0.0	1.00	0.25	0.	2	20.	12.	5
	17460624.	62809.	0.	4070.	195.	0.0	1.00	0.22	0.	:	30.	12.	
	13848833.	44750.	0.	4070.	195.	0.0	1.00	0.22	0.	:	29.	12.	
	13821148.	44612.	0.	4070.	195.	0.0	1.00	0.22	0.	2	28.	12.	4
	13795900.	44486.	0.	4070.	195.	0.0	1.00	0.22	0.	~	27.	12.	4
,													

	37841504.	81468.	0.	0.	4073.	0.0	1.00	0.86	0	-	o n	12	10.
123	38520400.	84862.	0.	0.	4073.	0.0	1.00	0.86	0.	1	24.	12.	10.
	39258336.	88552.	0.	0.	4073.	0.0	1.00	0.86	0.	-	23.	12.	10.
	40063344.	92577.	0.	0.	4073.	0.0	1.00	0.86	0.	1	22.	12.	10.
	40945024.	96985.	0.	0.	4073.	0.0	1.00	0.80	0.	-	21.	12.	10.
	41914896.	101835.	0.	0.	4073.	0.0	1.00	0.86	0.	1	20.	. 12.	10.
	18499808.	36559.	0.	1762.	1402.	0.0	1.00	0.44	0.	2	30.	12.	9
	18607232.	37096.	0.	1762.	1402.	0.0	1.00	0.44	0.	2.	29.	12.	
	18727840.	37699.	0.	1762.	1402.	0.0	1.00	0.44	0.	2.	28.	12.	9
	18862816.	38374.	0.	1762.	1402.	0.0	1.00	0.44	0.	2.	27.	12.	9
	19013568.	39128.	0.	1762.	1402.	0.0	1.00	0.44	0.	2.	26.	12.	9.
	19181744.	39969.	0.	1762.	1402.	0.0	1.00	0.44	0.	2.	25.	12.	9
	19369248.	40906.	0.	1762.	1402.	0.0	1.00	0.44	0.	2.	24.	12.	
	19578384.	41952.	0.	1762.	1402.	0.0	1.00	0.44	0.	2.	23.	12.	
	19811872.	43119.	0.	1762.	1402.	0.0	1.00	0.44	0.	u •	22.	12.	9
	20072928.	44425.	0.	1762.	1402.	0.0	1.00	0.44	0.	3.	21.	12.	9
	20365472.	45887.	0.	1762.	1402.	0.0	1.00	0.44	0.	3.	20.	12.	9
	16065957.	33390.	0.	1975.	1008.	0.0	1.00	0.37	0	N .	30.	12.	æ
	16133756.	33729.	0.	1975.	1008.	0.0	1.00	0.37	0.	2.	29.	12.	00
	16210975.	34115.	0.	1975.	1008.	0.0	1.00	0.37	0.	~	28.	12.	8
	16298513.	34553.	0.	1975.	1008.	0.0	1.00	0.37	0.	2.	27.	12.	8
	16397376.	35047.	0.	1975.	1008.	0.0	1.00	0.37	0.	2.	26.	12.	00
	16598766.	35604.	0.	1975.	1008.	0.0	1.00	0.37	0.	2	25.	. 12.	0
	16634056.	36230.	0.	1975.	1008.	0.0	1.00	0.37	0.	2.	24.	. 12.	00
	16774917.	36935.	0.	1975.	1006.	0.0	1.00	0.37	0.	2.	23.	12.	0
	16933296.	37726.	0.	1975.	1008.	0.0	1.00	0.37	0.	~	22.	12.	0
	17111520.	38618.	0.	1975.	1008.	0.0	1.00	0.37	0.	2.	21.	. 12.	œ
	17312432.	39622.	0.	1975.	1008.	0.0	1.00	0.37	0.	3.	20.	. 12.	00
	14369253.	32106.	0.	2443.	684.	0.0	1.00	0.36	0.	:	30.	12.	7.
	14389673.	32208.	0.	2443.	684.	0.0	1.00	0.36	0.	2.	29.	12.	7.
	14417081.	32345.	0.	2443.	584.	0.0	1.00	0.30	0.	2.	28.	12.	7.
	14452065.	32520.	0.	2443.	684.	0.0	1.00	0.36	0.	2.	27.	12.	7.

6													
0													
2 *													
2 5 0													
x •													
•													
124													
* 5													
* *													
0													
0	41941184.	91966.	0.	0.	5518.	0.0	1.00	0.93	0.	-	30.	12.	11.
	42575440.	95137.	0.	0.	5518.	0.0	1.00	0.93	0.	-	29.	12.	11.
× × ×	43254976.	98535.	0.	0.	5518.	0.0	1.00	0.93	0.	1	28.	12.	11.
0	43984864.	102184.	0.	0.	5518.	0.0	1.00	0.93	0.	н	27.	12.	11.
i c	44770896.	106115.	0.	0.	5518.	0.0	1.00	0.93	0.	-	26.	12.	11.
N a	45619808.	110359.	0.	0.	5518.	0.0	1.00	0.93	0.	_	25.	12.	11.
0	46539472.	114957.	0.	0.	5518.	0.0	1.00	0.93	0.	-	24.	12.	11.
C	47539088.	119956.	0.	0.	5518.	0.0	1.00	0.93	0.	-	23.	12.	11.
2 2	48629616.	125408.	0.	0.	5518.	0.0	1.00	0.93	0.	-	22.	12.	11.
0	49823968.	131380.	0.	0.	5518.	0.0	1.00	0.93	0.		21.	12.	11.
	51137792.	137949.	0.	0.	5518.	0.0	1.00	0.93	0.	-	20.	12.	11.
	35716560.	68643.	0.	1208.	4073.	0.0	1.00	0.86	0.	5.	30.	12.	10.
0	36131248.	70716.	0.	1208.	4073.	0.0	1.00	0.86	0.	6.	29.	12.	10.
	36588512.	73003.	0.	1208.	4073.	0.0	1.00	0.86	0.	7.	28.	12.	10.
)	37091824.	75519.	0.	1208.	4073.	0.0	1.00	0.86	0.	10.	27.	12.	10.
10.5	37214832.	78334.	0.	0.	4073.	0.0	1.00	0.86	0.	1	26.	12.	10.