Tarea 2 Nahuel Almeira

_

1 Ecuación de onda

En esta práctica resolvemos la ecuación de onda en dimensión D=1

$$\frac{\partial^2 \phi}{\partial t^2} = v^2 \frac{\partial^2 \phi}{\partial x^2}.\tag{1}$$

La misma pued reducirse a un sistema de dos ecuaciones desacopladas con derivadas de primer orden. Definimos para ello $W \equiv (w_1, w_2)^T$, donde

$$w_1 = \phi_x \tag{2}$$

$$w_2 = \phi_t. (3)$$

Así, la ecuación se puede expresar como

$$\begin{pmatrix} \partial_t w_1 \\ \partial_t w_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ v^2 & 0 \end{pmatrix} \cdot \begin{pmatrix} \partial_x w_1 \\ \partial_x w_2 \end{pmatrix}. \tag{4}$$

Es decir,

$$\partial_t W = A \cdot \partial_x W, \quad A = \begin{pmatrix} 0 & 1 \\ v^2 & 0 \end{pmatrix}.$$
 (5)

Para resolver este sistema, debemos diagonalizar la matriz A. Para ello, definimos

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} v^{-1} & -v^{-1} \\ 1 & 1 \end{pmatrix} \quad \text{y} \quad S^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} v & 1 \\ -v & 1 \end{pmatrix}. \tag{6}$$

Notemos que la matriz A se puede expresar como una matriz diagonal mediante la transformación

$$S^{-1}AS = \Lambda = \begin{pmatrix} v & 0\\ 0 & -v \end{pmatrix} \tag{7}$$

Multiplicando 5 por S^{-1} ,

$$S^{-1}\partial_t W = S^{-1}A\partial_x W$$

$$\partial_t (S^{-1}W) = S^{-1}ASS^{-1}\partial_x W$$

$$\partial_t (S^{-1}W) = \Lambda \partial_x (S^{-1}W),$$

donde

$$(S^{-1}W) = \frac{1}{\sqrt{2}} \begin{pmatrix} vw_1 + w_2 \\ -vw_1 + w_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} v\phi_x + \phi_t \\ -v\phi_x + \phi_t \end{pmatrix}.$$
(8)

Definiendo U y V tal que $(U,V)^T=(S^{-1}W)$, obtenemos el sistema diagonal

$$\begin{pmatrix} V_t \\ U_t \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & -v \end{pmatrix} \cdot \begin{pmatrix} V_x \\ U_x \end{pmatrix} \tag{9}$$

Resolveremos el sistema con la condición inicial V(t=0)=0, lo cual implica que V(t,x)=0. Es decir, resolveremos la ecuación de advección

$$U_t = -vU_x. (10)$$

Además, simplificaremos el problema definiendo v=1. Utilizaremos condiciones de contorno periódicas en el dominio $x \in [0,1]$ y dos datos iniciales U(t=0). Los datos iniciales son los siguientes:

• Simple Bump:

$$U(x,t=0) = (0.25)^8(x-0.25)^4(x-0.75)^4.$$
(11)

• Square Bump:

$$U(x,t=0) = \begin{cases} 0 & x < 0.25, \\ (0.05)^8(x - 0.25)^4(x - 0.35)^4 & 0.25 \le x \le 0.3, \\ 1 & 0.3 < x < 0.6, \\ (0.05)^8(x - 0.65)^4(x - 0.75)^4 & 0.6 \le x \le 0.75, \\ 0 & 0.75 < x. \end{cases}$$
(12)

2 Solución exacta

A continuación utilizamos la teoría de Fourier para hallar la solución exacta del problema

$$U_t = vU_x, \quad x \in (0,1), \quad t > 0$$

 $U(x, t = 0) = f(x)$
 $U(0,t) = U(1,t).$

El dato inicial f(x) es también 1-periódico, es decir, f(x+1) = f(x). Luego, podemos utilizar su expansión en serie de Fourier

$$U(x,t=0) = f(x) = \sum_{-\infty}^{\infty} e^{2\pi i \omega x} \hat{f}(\omega).$$
 (13)

Aplicando separación de variables, proponemos el ansatz

$$U(x,t) = \sum_{-\infty}^{\infty} e^{2\pi i \omega x} \hat{U}(\omega,t). \tag{14}$$

Derivando respecto a x,

$$U_x(x,t) = \sum_{-\infty}^{\infty} 2\pi i \omega x e^{2\pi i \omega x} \hat{U}(\omega,t).$$
 (15)

Por otro lado, derivando respecto a t,

$$U_t(x,t) = \sum_{-\infty}^{\infty} e^{2\pi i \omega x} \hat{U}_t(\omega,t). \tag{16}$$

Reemplazando en 10,

$$\sum_{-\infty}^{\infty} e^{2\pi i \omega x} \hat{U}_t(\omega, t) = \sum_{-\infty}^{\infty} 2\pi i \omega x e^{2\pi i \omega x} \hat{U}(\omega, t). \tag{17}$$

Teniendo en cuenta la ortogonalidad de las funciones exponenciales, la ecuación anterior implica que

$$\hat{U}_t(\omega, t) = 2\pi i \omega x \hat{U}(\omega, t), \ \forall \omega. \tag{18}$$

Teniendo en cuenta el dato inicial, la ecuación anterior tiene como solución

$$\hat{U}(\omega, t) = e^{-2\pi i \omega v t} \hat{f}(\omega). \tag{19}$$

Por lo tanto, la solución al problema es

$$U(x,t) = \sum_{-\infty}^{\infty} e^{2\pi i \omega(x-vt)} \hat{f}(\omega).$$
 (20)

Es decir, la solución es una onda viajera que conserva la forma inicial, pero que se desplaza con velocidad constante v.

3 Conservación de la energía

3.1 Caso analítico

La energía se define como

$$E(t) = \int_0^1 U^2(x, t) \, dx. \tag{21}$$

Derivando respecto al tiempo,

$$\dot{E}(t) = 2 \int_0^1 U U_t \, dx = -2 \int_0^1 U U_x \, dx, \tag{22}$$

donde utilizamos la ecuación 10. Integrando por partes, obtenemos

$$\dot{E}(t) = -2U(x,t)\big|_{x=0}^{x=1} + 2\int_0^1 U_x U \, dx.$$
 (23)

Por las condiciones de contorno, U(1,t)=U(0,t). Luego, de 21 y 22 tenemos que $\dot{E}(t)=0$, por lo que la energía es constante y, por lo tanto, una cantidad conservada.

3.2 Caso numérico

Definimos el producto interno euclídeo (y su respectiva norma) para funciones de grilla como

$$(u,v)_{\ell,m} \equiv h \sum_{j=l}^{m} u_j w_j \tag{24}$$

$$||u||_{\ell m}^2 \equiv (u, u)_{\ell, m}.$$
 (25)

Utilizando el método del trapecio para integrar, la energía del sistema puede escribirse como

$$E(t) = h \sum_{j=1}^{N-1} U_j^2 + \frac{h}{2} (U_0 + U_N).$$
 (26)

Utilizando la periodicidad, tenemos que $U_0=U_N$, por lo que podemos simplificar la expresión anterior como

$$E(t) \simeq h \sum_{j=0}^{N-1} U_j^2 = (U, U)_{0, N-1}.$$
 (27)

Consideremos, por simplicidad, la derivada espacial discreta de orden 2

$$D_0 = \frac{D_+ + D_-}{2},\tag{28}$$

y veamos que la energía se conserva (lo mismo puede hacerse para derivadas centradas de órdenes superiores). Siguiendo la referencia [1], tenemos que

$$(u, D_0 v)_{l,m} + (D_0 u, v)_{l,m} = \frac{h}{2} \left[u_j v_{j+1} + u_{j+1} v_j \right]_{l=1}^m.$$
 (29)

Derivando la energía,

$$\dot{E}(t) \simeq 2h \sum_{j=0}^{N-1} U_j \partial_t U_j = -2h \sum_{j=0}^{N-1} U_j D_0 U_j = -2(D_0 U, U)_{0, N-1}.$$
(30)

De acuerdo con 28, tenemos que

$$\dot{E}(t) \simeq -\frac{h}{2} \left[U_j U_{j+1} + U_{j+1} U_j \right] \Big|_{-1}^{N-1}$$
(31)

$$\simeq -h \left[U_j U_{j+1} \right] \Big|_{N=1}^{N-1} = 0.$$
 (32)

References

[1] Introduction to Numerical Methods for Time Dependent Differential Equations, H. Kreiss and O. Ortiz, (2014).