Matemática IV-2022

TP6 - Estructuras Algebraicas - Teoría de Grupos

1. Determinar cuales de las siguientes operaciones están bien definidas sobre el conjunto A dado. Analizar las propiedades en los casos afirmativos

(a)
$$A = N, a * b = 3ab$$

(b)
$$A = Z$$
, $a * b = \frac{a+b}{3+ab}$

(c)
$$A = R, x * y = x + y - xy$$

(d)
$$A = N, a * b = mcd(a, b)$$

(e)
$$A = \{0, 1, 2, 3\},\$$

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	1	2	0	2
3	2	3	1	1

- 2. Demostrar que:
 - (a) Dado $M = \{m \in \mathbb{N} : m > 0\}, (M, +)$ es un semigrupo pero no es un monoide
 - (b) El conjunto de un solo elemento $M=\{e\}$ con la operación definida por e*e=e es un monoide
 - (c) Dado un conjunto no vacío A, el conjunto de las partes de AP(A) con la operación intersección de conjuntos es un monoide conmutativo
- 3. Mostrar que valen las siguientes propiedades en un semigrupo A:

$$\bullet \ a^m a^n = a^{m+n}$$

•
$$(a^m)^n = a^{m.n}$$

- 4. Demostrar que si para una operación asociativa * en A existe un elemento neutro e y un elemento del conjunto, a, tiene inverso entonces éste es único.
- 5. Sea R una relación de congruencia sobre un semigrupo (S,*) demostrar que $(S/R,\circledast)$ (el conjunto cociente y la operación inducida por * sobre las clases de equivalencia) es un semigrupo llamado Semigrupo Cociente

- 6. Analizar si las siguientes son estructuras de grupo:
 - (a) (Z, +), los enteros con la suma usual
 - (b) (Z, \cdot) , los enteros con el producto usual
 - (c) $(R^2, +)$, los pares ordenados de reales con la suma usual
 - (d) $(M_{2x2}, +)$ las matrices de 2x2 con la suma usual de matrices
 - (e) $(P(A), \cup)$, A cualquier conjunto y P(A) indica el conjunto de partes de A
 - (f) $(Z_4, +)$ enteros módulo 4 con la suma modular
 - (g) $(Z_4,.)$ enteros módulo 4 con el producto modular
 - (h) $(Z_3,.)$ enteros módulo 3 con el producto modular
- 7. Probar que en todo Grupo el único elemento idempotente es el neutro
- 8. Mostrar que en todo grupo vale la propiedad cancelativa
- 9. Dado un grupo (G,*), mostrar que valen los siguientes resultados para $a,b \in G$:
 - $(a^{-1})^{-1} = a$
 - $(a*b)^{-1} = b^{-1}*a^{-1}$
 - $(a^n)^{-1} = a^{-n}$
 - $a^n * a^{-n} = e$ (e el neutro de G)
- 10. Demostrar que si (G,*) es un grupo abeliano, entonces $(a*b)^n=a^n*b^n$ para todo n entero
- 11. Sea (G,*) un grupo tal que todo elemento es su propio inverso, probar que G es abeliano
- 12. Dados los Grupos (G,*) y (F,\diamondsuit) se define en el conjunto $G\times F$ la ley tal que $(x,y) \bullet (z,t) = (x*z,y\diamondsuit t)$. Probar que $(G\times F,\bullet)$ es Grupo $(\textbf{\textit{Grupo Producto}})$
- 13. Estudiar si son Subgrupos de los grupos indicados:
 - (a) Los enteros pares de (Z, +)
 - (b) Las matrices simétricas de 2x2
 - (c) Las clases pares de Z_4
- 14. Demostrar que si H y K son subgrupos de (G,*) entonces $H\cap K$ es un subgrupo de (G,*)

- 15. Sean $A_1 = \{\overline{0}, \overline{5}\}$ y $A_2 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ subconjuntos de Z_{10} .
 - Probar que A_1 y A_2 son subgrupos de Z_{10}
 - Mostrar que todo elemento de Z_{10} puede escribirse como suma de elementos de A_1 y A_2 (es decir, para todo x de Z_{10} , $x=x_1+x_2$ con $x_1\in A_1$ y $x_2\in A_2$
- 16. Dado un grupo (G, *) y sea $a \in G$, se considera el conjunto **normalizador** $N(a) = \{x \in G | \forall a \in G : a * x = x * a\}$. Probar que S es un Subgrupo de G.
- 17. Mostrar que $\overline{3}$ es un generador del grupo cíclico $(Z_8,+)$. Cuál es el orden del subgrupo cíclico generado por $\overline{2}$?
- 18. Probar que todo grupo cíclico es abeliano
- 19. Analizar si las siguientes funciones son homomorfismos entre las estructuras algebraicas indicadas y en caso afirmativo hallar núcleo e imagen.
 - (a) $f: G \to F$ dada por $f(x) = 2^x$ y siendo los grupos G = (R, +) los reales con la suma usual, $F = (R_0, \cdot)$ los reales sin el 0 con el producto usual
 - (b) $f: G \to F$ dada por f(x) = -x y siendo los grupos G = (Z, *) los enteros con la operación a*b = a+b+ab, $F = (Z, \circ)$ los enteros con la operación $a \circ b = a+b-ab$
 - (c) $f:(P(A), \cup) \to (P(A), \cap)$ dada por $f(X) = X^c$ (siendo A cualquier conjunto, P(A) indica el conjunto de partes de A y X^c el complemento de un conjunto)
- 20. Sea (G,*) un grupo. Demostrar que la función $f:G\longrightarrow G$ definida por $f(a)=a^2$ es un homomorfismo si y sólo si G es abeliano
- 21. Si $f:G_1\to G_2$ es un morfismo de grupos entonces es monomorfismo si y sólo si $Nu(f)=\{e_1\}$.
- 22. Sea (G, *) un grupo y sea $a \in G$. Demostrar que la función $f: G \longrightarrow G$ definida por $f(a) = a * x * a^{-1}$ es un iso— morfismo
- 23. Sea R una relación de congruencia sobre un semigrupo (S,*) y $(S/R, \circledast)$ el semigrupo cociente correspondiente. Demostrar que la función $f_R: S \longrightarrow S/R$ definida por $f_R(a) = \overline{a}$ es un homomorfismo.
- 24. Probar que hay un isomorfismo entre en grupo de las matrices 2x2 con la suma habitual de matrices y el grupo de cuaternas reales \mathbb{R}^4 con la suma usual

Ejercicios Adicionales

- 1. Determinar si a*b=mcm[a,b] está bien definida en A=N, y en caso afirmativo analizar las propiedades
- 2. Probar que $GL(n,K) = \{A \in K^{n \times n}; det(A) \neq 0, con K cuerpo\}$ (conjunto de las matrices de orden n invertibles) es un grupo con el producto usual
- 3. Dado un grupo (G,*), probar que G es abeliano si y sólo si para cualquier x,y en G vale que: $(x*y)^2=x^2*y^2$
- 4. Sea (G,*) un grupo, sea $a \in G$ y sea H un subgrupo de G. Demostrar que el conjunto $aHa^{+1} = \{a*h*a^{-1}: h \in H\}$ es un subgrupo de G.
- 5. Sea $f:G\longrightarrow H$ un homomorfismo de grupos. Demostrar que la imagen de f es un subgrupo de H
- 6. Sea (G,*) un grupo. Demostrar que la función $f:G\longrightarrow G$ definida por $f(a)=a^{-1}$ es un isomorfismo si y sólo si G es abeliano
- 7. Probar que todo grupo cíclico de orden m es isomorfo a $(Z_m,+)$