APPENDIX

A. DEGENERATION

In this appendix, we show that if the second-order transition probability is the same as the first-order transition probability, i.e., if $p_{i,j,k} = p_{j,k}$, each developed second-order measure degenerates to its original first-order form.

LEMMA 4. If $p_{i,j,k} = p_{j,k}$, we have that $\mathbf{M} = \mathbf{EH}$.

PROOF. Let u=(i,j) and v=(j,k). There is only one nonzero element in the row vector $[\mathbf{E}]_{u,:}$, i.e., $[\mathbf{E}]_{u,j}=1$. There is only one non-zero element in the column vector $[\mathbf{H}]_{:,v}$, i.e., $[\mathbf{H}]_{j,v}=p_{j,k}$. Thus, we have $p_{j,k}=[\mathbf{E}]_{u,j}\cdot[\mathbf{H}]_{j,v}=[\mathbf{E}]_{u,:}\cdot[\mathbf{H}]_{:,v}$. We also have that $p_{i,j,k}=[\mathbf{M}]_{u,v}$. Since $p_{i,j,k}=p_{j,k}$, we have that $[\mathbf{M}]_{u,v}=[\mathbf{E}]_{u,:}\cdot[\mathbf{H}]_{:,v}$ for any two edges u and v. Thus, we have that $\mathbf{M}=\mathbf{E}\mathbf{H}$. \square

Theorem 9. If $p_{i,j,k}=p_{j,k}$, the second-order random walk degenerates to the first-order random walk.

PROOF. In the first-order random walk, the recursive equation is

 $\mathbf{r} = \mathbf{P}^\mathsf{T} \mathbf{r} = \mathbf{E}^\mathsf{T} \mathbf{H}^\mathsf{T} \mathbf{r}$

Multiplying \mathbf{H}^{T} from left to both sides, we have that

$$\mathbf{H}^{\mathsf{T}}\mathbf{r} = \mathbf{H}^{\mathsf{T}}\mathbf{E}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}}\mathbf{r}$$

By Lemma 4, if $p_{i,j,k} = p_{j,k}$, we have that $\mathbf{M} = \mathbf{EH}$. Let $\mathbf{s} = \mathbf{H}^\mathsf{T} \mathbf{r}$. We have that

$$\mathbf{s} = \mathbf{H}^\mathsf{T} \mathbf{E}^\mathsf{T} \mathbf{s} = \mathbf{M}^\mathsf{T} \mathbf{s}$$
 and $\mathbf{r} = \mathbf{E}^\mathsf{T} \mathbf{H}^\mathsf{T} \mathbf{r} = \mathbf{E}^\mathsf{T} \mathbf{s}$

Thus, we get the equations for the second-order random walk. That is, the solution to the first-order random walk is also a solution to the second-order random walk. Since the solutions are unique, we can complete the proof. \Box

Theorem 10. If $p_{i,j,k} = p_{j,k}$, the second-order PageRank degenerates to the first-order PageRank.

Proof. In the first-order PageRank, the recursive equation is

$$\mathbf{r} = c\mathbf{P}^\mathsf{T}\mathbf{r} + (1-c)\mathbf{1}/n = c\mathbf{E}^\mathsf{T}\mathbf{H}^\mathsf{T}\mathbf{r} + (1-c)\mathbf{1}/n$$

Multiplying \mathbf{H}^{T} from left to both sides, we have that

$$\mathbf{H}^{\mathsf{T}}\mathbf{r} = c\mathbf{H}^{\mathsf{T}}\mathbf{E}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}}\mathbf{r} + (1-c)\mathbf{H}^{\mathsf{T}}\mathbf{1}/n$$

By Lemma 4, if $p_{i,j,k} = p_{j,k}$, we have that $\mathbf{M} = \mathbf{EH}$. Let $\mathbf{s} = \mathbf{H}^\mathsf{T} \mathbf{r}$. We have that

$$\mathbf{s} = c\mathbf{H}^\mathsf{T}\mathbf{E}^\mathsf{T}\mathbf{s} + (1-c)\mathbf{H}^\mathsf{T}\mathbf{1}/n = c\mathbf{M}^\mathsf{T}\mathbf{s} + (1-c)\mathbf{H}^\mathsf{T}\mathbf{1}/n$$

and
$$\mathbf{r} = c\mathbf{E}^\mathsf{T}\mathbf{H}^\mathsf{T}\mathbf{r} + (1-c)\mathbf{1}/n = c\mathbf{E}^\mathsf{T}\mathbf{s} + (1-c)\mathbf{1}/n$$

Thus, we get the equations for the second-order PageRank. That is, the solution to the first-order PageRank is also a solution to the second-order PageRank. Since the solutions are unique, we can complete the proof. \Box

Theorem 11. If $p_{i,j,k} = p_{j,k}$, the second-order random walk with restart degenerates to the first-order random walk with restart.

Proof. The proof is similar to that of Theorem 10. \Box

THEOREM 12. If $p_{i,j,k} = p_{j,k}$, the second-order SimRank degenerates to the first-order SimRank.

PROOF. In the first-order SimRank, we have that

$$r_{i,j} = (1-c) \sum_{t=0}^{\infty} c^t \mathbb{P}[\Phi_{i,j}^{t,2t}]$$

In the second-order SimRank, we have that

$$r_{i,j} = (1-c) \sum_{t=0}^{\infty} c^t \mathbb{M}[\Phi_{i,j}^{t,2t}]$$

By Lemma 3, if $p_{i,j,k} = p_{j,k}$, we have that $\mathbb{M}[\Phi_{i,j}^{t,2t}] = \mathbb{P}[\Phi_{i,j}^{t,2t}]$. This completes the proof. \square

THEOREM 13. If $p_{i,j,k} = p_{j,k}$, the second-order $SimRank^*$ degenerates to the first-order $SimRank^*$.

PROOF. In the first-order SimRank*, we have that

$$r_{i,j} = (1-c) \sum_{t=0}^{\infty} \frac{c^t}{2^t} \sum_{a=0}^{t} {t \choose a} \mathbb{P}[\Phi_{i,j}^{a,t}]$$

In the second-order SimRank*, we have that

$$r_{i,j} = (1-c) \sum_{t=0}^{\infty} \frac{c^t}{2^t} \sum_{a=0}^{t} {t \choose a} \mathbb{M}[\Phi_{i,j}^{a,t}]$$

By Lemma 3, if $p_{i,j,k} = p_{j,k}$, we have that $\mathbb{M}[\Phi_{i,j}^{a,t}] = \mathbb{P}[\Phi_{i,j}^{a,t}]$. This completes the proof. \square

B. VISITING PROBABILITY

The proof of Lemma 2 is as follows.

PROOF. We prove each of the four cases individually including 0=a=b, 0< a=b, 0=a< b, and 0< a< b.

In the first case, the lemma trivially holds. The probability of visiting a meeting path of length $\{0,0\}$ between nodes i and j is 1 if i=j and 0 if $i\neq j$, i.e., $\mathbb{M}[\Phi^{0,0}_{i,j}] = \mathbf{I}_{i,j}$.

In the second case, we have that 0 < a = b. We proceed by induction on a. If a = 1, we have that

$$[\mathbf{H}\mathbf{M}^{a-1}\mathbf{E}]_{x,j} = [\mathbf{H}\mathbf{E}]_{x,j} = [\mathbf{P}]_{x,j} = p_{x,j}$$

Since there is a unique path of length 1 from node x to j, which is the directed edge (x,j), we have that $\mathbb{M}[\Phi^{1,1}_{x,j}] = p_{x,j}$. Therefore, we have $\mathbb{M}[\Phi^{1,1}_{x,j}] = [\mathbf{HE}]_{x,j}$ thus the lemma holds for a=1. Now assume that the lemma holds for $a(a \ge 1)$. By the assumption, we have

$$\begin{split} \mathbb{M}[\Phi_{x,j}^{a,a}] \!=\! [\mathbf{H}\mathbf{M}^{a-1}\mathbf{E}]_{x,j} \!=\! \sum_{i \in I_j} [\mathbf{H}\mathbf{M}^{a-1}]_{x,(i,j)} \!\cdot\! [\mathbf{E}]_{(i,j),j} \\ =\! \sum_{i \in I_i} [\mathbf{H}\mathbf{M}^{a-1}]_{x,(i,j)} \end{split}$$

Each term $[\mathbf{H}\mathbf{M}^{a-1}]_{x,(i,j)}$ represents the sum of probabilities of visiting the paths of length a from node x to j whose last edge is (i,j). Next, we prove that the lemma holds for (a+1). Each term $[\mathbf{H}\mathbf{M}^a\mathbf{E}]_{x,k}$ can be expanded as

$$\begin{split} [\mathbf{H}\mathbf{M}^a\mathbf{E}]_{x,k} &= \sum_{j \in I_k} [\mathbf{H}\mathbf{M}^a]_{x,(j,k)} \cdot [\mathbf{E}]_{(j,k),k} \\ &= \sum_{j \in I_k} [\mathbf{H}\mathbf{M}^a]_{x,(j,k)} \\ &= \sum_{j \in I_k} \sum_{i \in I_j} [\mathbf{H}\mathbf{M}^{a-1}]_{x,(i,j)} \cdot [\mathbf{M}]_{(i,j),(j,k)} \\ &= \sum_{j \in I_k} \sum_{i \in I_j} [\mathbf{H}\mathbf{M}^{a-1}]_{x,(i,j)} \cdot p_{i,j,k} \end{split}$$

Consider a path ρ of length (a+1) from node x to k whose last two edges are (i,j) and (j,k). The path ρ consists of a path ρ' of length a from x to j whose last edge is (i,j), followed by the edge (j,k). The probability of visiting ρ equals the probability of visiting path ρ' times the transition probability $p_{i,j,k}$. It follows that $[\mathbf{H}\mathbf{M}^{a-1}]_{x,(i,j)} \cdot p_{i,j,k}$ equals the sum of probabilities of visiting the paths of length (a+1) from node x to k whose last two edges are (i,j) and (j,k). Thus, $\sum_{j\in I_k}\sum_{i\in I_j}[\mathbf{H}\mathbf{M}^{a-1}]_{x,(i,j)}\cdot p_{i,j,k}$ is the sum of probabilities of visiting all paths of length (a+1) from x to k. Therefore, we have that $\mathbb{M}[\Phi^{a+1}_{x,k}, a^{a+1}] = [\mathbf{H}\mathbf{M}^a\mathbf{E}]_{x,k}$. This completes the proof for the second case.

In the third case, we have that 0 = a < b. We proceed by induction on b. If b=1, we have that

$$[\mathbf{E}^\mathsf{T}(\mathbf{M}^\mathsf{T})^{b-1}\mathbf{H}^\mathsf{T}]_{j,y} = [\mathbf{E}^\mathsf{T}\mathbf{H}^\mathsf{T}]_{j,y} = [\mathbf{P}^\mathsf{T}]_{j,y} = p_{y,j}$$

Since there is a unique path of length 1 from node y to j, which is the directed edge (y,j), we have that $\mathbb{M}[\Phi_{j,y}^{0,1}] = p_{y,j}$. Therefore, we have $\mathbb{M}[\Phi_{j,y}^{0,1}] = [\mathbf{E}^\mathsf{T} \mathbf{H}^\mathsf{T}]_{j,y}$ thus the lemma holds for b=1. Now assume that the lemma holds for $b(b \ge 1)$. By the assumption, we have

$$\begin{split} \mathbb{M}[\boldsymbol{\Phi}_{j,y}^{0,b}] = & [\mathbf{E}^\mathsf{T}(\mathbf{M}^\mathsf{T})^{b-1}\mathbf{H}^\mathsf{T}]_{j,y} = \sum_{i \in I_j} [\mathbf{E}^\mathsf{T}]_{j,(i,j)} \cdot [(\mathbf{M}^\mathsf{T})^{b-1}\mathbf{H}^\mathsf{T}]_{(i,j),y} \\ &= \sum_{i \in I_i} [(\mathbf{M}^\mathsf{T})^{b-1}\mathbf{H}^\mathsf{T}]_{(i,j),y} \end{split}$$

Each term $[(\mathbf{M}^{\mathsf{T}})^{b-1}\mathbf{H}^{\mathsf{T}}]_{(i,j),y}$ represents the sum of probabilities of visiting the paths of length b from node y to j whose last edge is (i,j). Next, we prove that the lemma holds for (b+1). Each term $[\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^b\mathbf{H}^{\mathsf{T}}]_{k,y}$ can be expanded as

$$\begin{split} [\mathbf{E}^\mathsf{T}(\mathbf{M}^\mathsf{T})^b \mathbf{H}^\mathsf{T}]_{k,y} &= \sum_{j \in I_k} [\mathbf{E}^\mathsf{T}]_{k,(j,k)} \cdot [(\mathbf{M}^\mathsf{T})^b \mathbf{H}^\mathsf{T}]_{(j,k),y} \\ &= \sum_{j \in I_k} [(\mathbf{M}^\mathsf{T})^b \mathbf{H}^\mathsf{T}]_{(j,k),y} \\ &= \sum_{j \in I_k} \sum_{i \in I_j} [\mathbf{M}^\mathsf{T}]_{(j,k),(i,j)} \cdot [(\mathbf{M}^\mathsf{T})^{b-1} \mathbf{H}^\mathsf{T}]_{(i,j),y} \\ &= \sum_{j \in I_k} \sum_{i \in I_j} p_{i,j,k} \cdot [(\mathbf{M}^\mathsf{T})^{b-1} \mathbf{H}^\mathsf{T}]_{(i,j),y} \end{split}$$

Consider a path ρ of length (b+1) from node y to k whose last two edges are (i,j) and (j,k). The path ρ consists of a path ρ' of length b from y to j whose last edge is (i, j), followed by the edge (j,k). The probability of visiting ρ equals the probability of visiting path ρ' times the transition probability $p_{i,j,k}$. It follows that $p_{i,j,k} \cdot [(\mathbf{M}^{\mathsf{T}})^{b-1}\mathbf{H}^{\mathsf{T}}]_{(i,j),y}$ equals the sum of probabilities of visiting the paths of length (b+1) from node y to k whose last two edges are (i,j) and (j,k). Thus, $\sum_{j\in I_k}\sum_{i\in I_j}p_{i,j,k}\cdot[(\mathbf{M}^\mathsf{T})^{b-1}\mathbf{H}^\mathsf{T}]_{(i,j),y}$ is the sum of probabilities of visiting all paths of length (b+1) from y to k. Therefore, we have that $\mathbb{M}[\Phi_{k,y}^{0,b+1}] = [\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^b\mathbf{H}^{\mathsf{T}}]_{k,y}$. This completes the proof for the third case.

In the fourth case, we have that 0 < a < b. We proceed by induction on both a and b. If a=1 and b=2, we have that

$$\begin{split} &[\mathbf{H}\mathbf{M}^{a-1}\mathbf{E}\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^{b-a-1}\mathbf{H}^{\mathsf{T}}]_{x,y} \\ =&[\mathbf{H}\mathbf{E}\mathbf{E}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}}]_{x,y} =&[\mathbf{P}\mathbf{P}^{\mathsf{T}}]_{x,y} =&\sum_{i\in V}p_{x,i}\cdot p_{y,i} \end{split}$$

 $= [\mathbf{H}\mathbf{E}\mathbf{E}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}}]_{x,y} = [\mathbf{P}\mathbf{P}^{\mathsf{T}}]_{x,y} = \sum_{i \in V} p_{x,i} \cdot p_{y,i}$ Each term $(p_{x,i} \cdot p_{y,i})$ represents the probability of visiting the meeting path $x \to i \leftarrow y$. Thus, $\sum_{i \in V} p_{x,i} \cdot p_{y,i}$ represents the sum of probabilities of visiting the paths in $\Phi_{x,y}^{1,2}$. Therefore, we have that $\mathbb{M}[\Phi_{x,y}^{1,2}] = [\mathbf{H}\mathbf{E}\mathbf{E}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}}]_{x,y}$ thus the lemma holds for $\{a=1,b=2\}$. Now assume that the lemma holds for $\{a,b\}$ (0 < a < b). We will prove that the lemma holds for both $\{a+1,b+1\}$ and $\{a,b+1\}$. By the assumption, we have

$$\begin{split} & \mathbb{M}[\boldsymbol{\Phi}_{x,y}^{a,b}] \!=\! [\mathbf{H}\mathbf{M}^{a-1}\mathbf{E}\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^{b-a-1}\mathbf{H}^{\mathsf{T}}]_{x,y} \\ & = \! \sum_{j \in V} [\mathbf{H}\mathbf{M}^{a-1}\mathbf{E}]_{x,j} \cdot [\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^{b-a-1}\mathbf{H}^{\mathsf{T}}]_{j,y} \end{split}$$

We first prove that the lemma holds for $\{a+1,b+1\}$. As discussed in the second case, each term $[\mathbf{H}\mathbf{M}^{a-1}\mathbf{E}]_{x,j} =$ $\mathbb{M}[\Phi_{x,j}^{a,a}]$ represents the sum of probabilities of visiting the paths of length a from node x to j. Following the same discussion in the second case, we can prove that $[\mathbf{H}\mathbf{M}^a\mathbf{E}]_{x,j}$ = $\mathbb{M}[\Phi_{x,j}^{a+1,a+1}]$ represents the sum of probabilities of visiting the paths of length (a+1) from node x to j. Thus, we have that

$$\begin{split} & \sum_{j \in V} [\mathbf{H} \mathbf{M}^a \mathbf{E}]_{x,j} \cdot [\mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^{b-a-1} \mathbf{H}^\mathsf{T}]_{j,y} \\ = & [\mathbf{H} \mathbf{M}^a \mathbf{E} \mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^{b-a-1} \mathbf{H}^\mathsf{T}]_{x,y} = \mathbb{M}[\Phi_{x,y}^{a+1,b+1}] \end{split}$$

represents the sum of probabilities of visiting the meeting paths of length $\{a+1,b+1\}$ between nodes x and y. Thus, the lemma holds for $\{a+1,b+1\}$.

We then prove that the lemma holds for $\{a, b+1\}$. As discussed in the third case, each term $[\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^{b-a-1}\mathbf{H}^{\mathsf{T}}]_{i,y} =$ $\mathbb{M}[\Phi_{j,y}^{0,b-a}]$ represents the sum of probabilities of visiting the paths of length (b-a) from node y to j. Following the same discussion in the third case, we can prove that $[\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^{b-a}\mathbf{H}^{\mathsf{T}}]_{j,y}$ $=\mathbb{M}[\Phi_{j,y}^{0,b-a+1}]$ represents the sum of probabilities of visiting the paths of length (b-a+1) from node y to j. Thus, we have that

$$\begin{split} & \sum_{j \in V} [\mathbf{H} \mathbf{M}^{a-1} \mathbf{E}]_{x,j} \cdot [\mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^{b-a} \mathbf{H}^\mathsf{T}]_{j,y} \\ = & [\mathbf{H} \mathbf{M}^{a-1} \mathbf{E} \mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^{b-a} \mathbf{H}^\mathsf{T}]_{x,y} = \mathbb{M}[\Phi_{x,y}^{a,b+1}] \end{split}$$

represents the sum of probabilities of visiting the meeting paths of length $\{a,b+1\}$ between nodes x and y. Thus, the lemma holds for $\{a,b+1\}$. This completes the proof for the fourth case. \square

The proof of Lemma 3 is as follows.

PROOF. If 0=a=b, the lemma trivially holds, i.e., $\mathbb{M}[\Phi_{i,j}^{0,0}]$ $=\mathbb{P}[\Phi_{i,j}^{0,0}]=\mathbf{I}_{i,j}$. By Lemma 4, if $p_{i,j,k}=p_{j,k}$, we have that $\mathbf{M} = \mathbf{E}\mathbf{H}$. If 0 < a = b, we have that

$$\mathbb{M}[\Phi_{i,j}^{a,a}] = [\mathbf{H}\mathbf{M}^{a-1}\mathbf{E}]_{i,j} = [\mathbf{H}(\mathbf{E}\mathbf{H})^{a-1}\mathbf{E}]_{i,j}$$
$$= [(\mathbf{H}\mathbf{E})^a]_{i,j} = [\mathbf{P}^a]_{i,j} = \mathbb{P}[\Phi_{i,j}^{a,a}]$$

If 0 = a < b, we have that

$$\mathbb{M}[\Phi_{i,j}^{0,b}] = [\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^{b-1}\mathbf{H}^{\mathsf{T}}]_{i,j} = [\mathbf{E}^{\mathsf{T}}(\mathbf{H}^{\mathsf{T}}\mathbf{E}^{\mathsf{T}})^{b-1}\mathbf{H}^{\mathsf{T}}]_{i,j} \\
= [(\mathbf{E}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}})^{b}]_{i,j} = [(\mathbf{P}^{\mathsf{T}})^{b}]_{i,j} = \mathbb{P}[\Phi_{i,j}^{0,b}]$$

If 0 < a < b, we have that

$$\begin{split} \mathbb{M}[\Phi_{i,j}^{a,b}] &= [\mathbf{H}\mathbf{M}^{a-1}\mathbf{E}\mathbf{E}^\mathsf{T}(\mathbf{M}^\mathsf{T})^{b-a-1}\mathbf{H}^\mathsf{T}]_{i,j} \\ &= [\mathbf{H}(\mathbf{E}\mathbf{H})^{a-1}\mathbf{E}\mathbf{E}^\mathsf{T}(\mathbf{H}^\mathsf{T}\mathbf{E}^\mathsf{T})^{b-a-1}\mathbf{H}^\mathsf{T}]_{i,j} \\ &= [(\mathbf{H}\mathbf{E})^a(\mathbf{E}^\mathsf{T}\mathbf{H}^\mathsf{T})^{b-a}]_{i,j} = [\mathbf{P}^a(\mathbf{P}^\mathsf{T})^{b-a}]_{i,j} = \mathbb{P}[\Phi_{i,j}^{a,b}] \end{split}$$

This completes the proof. \Box

THE SECOND-ORDER SIMRANK

The proof of Theorem 2 is as follows.

PROOF. The second-order SimRank is defined as

$$r_{i,j} = (1-c) \sum_{t=0}^{\infty} c^t \mathbb{M}[\Phi_{i,j}^{t,2t}]$$

By Lemma 2, we have that $\mathbb{M}[\Phi_{i,j}^{0,0}] = \mathbf{I}_{i,j}$ and $\mathbb{M}[\Phi_{i,j}^{t,2t}] =$ $[\mathbf{H}\mathbf{M}^{t-1}\mathbf{E}\mathbf{E}^{\mathsf{T}}(\mathbf{M}^{\mathsf{T}})^{t-1}\mathbf{H}^{\mathsf{T}}]_{i,j}$ if t>0. Thus, the node proximity matrix \mathbf{R} can be expressed as

$$\begin{split} \mathbf{R} &= (1-c) \sum_{t=1}^{\infty} c^t \mathbf{H} \mathbf{M}^{t-1} \mathbf{E} \mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^{t-1} \mathbf{H}^\mathsf{T} + (1-c) \mathbf{I} \\ &= c \mathbf{H} \left((1-c) \sum_{t=1}^{\infty} c^{t-1} \mathbf{M}^{t-1} \mathbf{E} \mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^{t-1} \right) \mathbf{H}^\mathsf{T} + (1-c) \mathbf{I} \\ &= c \mathbf{H} \left((1-c) \sum_{t=0}^{\infty} c^t \mathbf{M}^t \mathbf{E} \mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^t \right) \mathbf{H}^\mathsf{T} + (1-c) \mathbf{I} \end{split}$$

Let $\mathbf{S} = (1 - c) \sum_{t=0}^{\infty} c^t \mathbf{M}^t \mathbf{E} \mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^t$. Thus, we have that $\mathbf{R} = c\mathbf{H}\mathbf{S}\mathbf{H}^{\mathsf{T}} + (1-c)\mathbf{I}$. Matrix **S** can be written as

$$c\mathbf{M}\mathbf{S}\mathbf{M}^\mathsf{T} + (1-c)\mathbf{E}\mathbf{E}^\mathsf{T}$$

$$= (1-c)\sum_{t=0}^{\infty} c^{t+1}\mathbf{M}^{t+1}\mathbf{E}\mathbf{E}^\mathsf{T}(\mathbf{M}^\mathsf{T})^{t+1} + (1-c)\mathbf{E}\mathbf{E}^\mathsf{T}$$

$$= (1-c)\sum_{t=0}^{\infty} c^t\mathbf{M}^t\mathbf{E}\mathbf{E}^\mathsf{T}(\mathbf{M}^\mathsf{T})^t + (1-c)\mathbf{E}\mathbf{E}^\mathsf{T}$$

$$= (1-c)\sum_{t=0}^{\infty} c^t\mathbf{M}^t\mathbf{E}\mathbf{E}^\mathsf{T}(\mathbf{M}^\mathsf{T})^t = \mathbf{S}$$

Lemma 5 is needed in the proof of Theorem 3.

 $\begin{array}{l} \text{Lemma 5. The gap between \mathbf{S} and $\mathbf{S}^{(\eta)}$ is bounded by } \\ \left\| \mathbf{S} \! - \! \mathbf{S}^{(\eta)} \right\|_{\max} \! \leq \! c^{\eta+1} \text{ for any } \eta \; (\eta \! \geq \! 0). \end{array}$

PROOF. For each $\eta = 0, 1, \dots$, we subtract $\mathbf{S}^{(\eta)}$ from \mathbf{S} , and then take $\|\cdot\|_{\max}$ norms on both sides to get

Table 5: The sample space when the length a is given

sample space		\mathbb{S}_i
bSuccess	node z_a	ω_i
successfully sample a path of length a	$z_a = i$	1
starting from node q (bSuccess = true)	$z_a \neq i$	0
fail to sample a path of length a starting from node q (bSuccess = false)	_	0
starting from flode q (bouccess = faise)		

$$\|\mathbf{S} - \mathbf{S}^{(\eta)}\|_{\max} \le (1 - c) \sum_{t=\eta+1}^{\infty} c^t \|\mathbf{M}^t \mathbf{E} \mathbf{E}^\mathsf{T} (\mathbf{M}^\mathsf{T})^t\|_{\max}$$

Note that matrix $\mathbf{E}\mathbf{E}^\mathsf{T}$ is binary. Each element $[\mathbf{E}\mathbf{E}^\mathsf{T}]_{u,v} = 1$ if edge u and v end at the same node and $[\mathbf{E}\mathbf{E}^\mathsf{T}]_{u,v} = 0$ otherwise. Thus, we have that $\|\mathbf{M}^t\mathbf{E}\mathbf{E}^\mathsf{T}(\mathbf{M}^\mathsf{T})^t\|_{\max} \leq 1$. Plugging this into the above inequality, we have that

$$\|\mathbf{S} - \mathbf{S}^{(\eta)}\|_{\max} \le (1 - c) \sum_{t=\eta+1}^{\infty} c^t = c^{\eta+1}$$

D. MONTE CARLO METHODS

Lemma 6 is needed in the proof of Theorem 4.

Lemma 6.
$$\mathbb{E}[\mathbb{S}_i] = r_i$$

PROOF. The set of all possible outcomes of the sampling process is called the sample space, which contains the following events.

- The algorithm generates a random number a and successfully samples a path of length a starting from the query node q.
- 2) The algorithm generates a random number a but fails to sample a path of length a starting from the query node q because some node has no out-neighbors.

Note that this sample space is different from the sample space of the random variable S_i , which is the set of two integers $\{0,1\}$.

The whole sample space can be partitioned based on the length a. By the law of total expectation, the expectation of \mathbb{S}_i can be written as

$$\mathbb{E}[\mathbb{S}_i] = \sum_{a=0}^{\infty} \mathbb{P}[\mathbb{A} = a] \cdot \mathbb{E}[\mathbb{S}_i | \mathbb{A} = a], \qquad (2)$$

where the random variable \mathbb{A} representing the length a follows the geometric distribution $\mathbb{P}[\mathbb{A}=a]=(1-c)\cdot c^a$. Next, we consider the conditional expectation $\mathbb{E}[\mathbb{S}_i|\mathbb{A}=a]$ of \mathbb{S}_i given the event $\mathbb{A}=a$.

Table 5 shows the sample space given the length a. Given the length a, if the algorithm successfully samples a path of length a from node q to i, the random variable $\mathbb{S}_i = 1$; otherwise, $\mathbb{S}_i = 0$. Let $\underline{\mathbb{M}}[\rho]$ represent the probability of successfully sampling a path ρ given the length a. Since $\mathbb{S}_i = 1$ if and only if the algorithm successfully samples a path ρ of length a from node q to i, the conditional expectation $\mathbb{E}[\mathbb{S}_i|\mathbb{A}=a]$ can be written as

$$\mathbb{E}[\mathbb{S}_i | \mathbb{A} = a] = \sum_{\rho \in \Phi_{a,i}^{a,a}} 1 \cdot \underline{\mathbb{M}}[\rho] = \sum_{\rho \in \Phi_{a,i}^{a,a}} \underline{\mathbb{M}}[\rho],$$

where $\Phi^{a,a}_{q,i}$ denotes the set of all paths of length a from node q to i.

Given the length a, the probability of successfully sampling a path $\rho: q=z_0 \to \cdots \to z_a$ is $\underline{\mathbb{M}}[\rho]=p_{z_0,z_1}\prod_{t=1}^{a-1}p_{z_{t-1},z_t,z_{t+1}}$. We can see that the probabilities of sampling and visiting a path ρ are equal, i.e., $\underline{\mathbb{M}}[\rho]=\mathbb{M}[\rho]$. Thus, we have that

$$\mathbb{E}[\mathbb{S}_i|\mathbb{A}=a] = \sum_{\rho \in \Phi_q^{a,a}} \mathbb{M}[\rho] = \mathbb{M}[\Phi_{q,i}^{a,a}]$$

Table 6: The sample space when the length \boldsymbol{a} is given

a sample space			\mathbb{R}_i
	bSuccess	node z_{2a}	ı.
$0 \le a \le \eta^{-\frac{s}{2}}$	successfully sample a path of length a	$z_{2a} = i$	1
	starting from node q (bSuccess = true)	$z_{2a} \neq i$	0
	fail to sample a path of length a starting from node q (bSuccess = false)	-	0
$\eta < a$	-	_	0

Plugging this into Equation (2), we have that

$$\mathbb{E}[\mathbb{S}_i] = (1-c) \sum_{a=0}^{\infty} c^a \mathbb{M}[\Phi_{q,i}^{a,a}] = r_i \qquad \Box$$

Lemma 7 and Theorem 14 are needed in the proofs of Theorems 7 and 8.

LEMMA 7.
$$\mathbb{E}[\mathbb{R}_i] = \hat{r}_i$$
 and $\mathbb{E}[\mathbb{R}_i^2] \leq nr_i$

PROOF. The set of all possible outcomes of the sampling process is called the sample space, which contains the following events.

- 1) The algorithm generates a random number $a (0 \le a \le \eta)$ and successfully samples a meeting path of length $\{a, 2a\}$ starting from the query node q.
- 2) The algorithm generates a random number $a (0 \le a \le \eta)$ but fails to sample a meeting path of length $\{a, 2a\}$ starting from the query node q because some node has no out-neighbors or in-neighbors.
- 3) The algorithm generates a random number $a(\eta < a)$ and does nothing.

Note that this sample space is different from the sample space of the random variable \mathbb{R}_i , which is the set of real values $\{\delta\}$.

The whole sample space can be partitioned based on the length a. By the law of total expectation, the expectation of \mathbb{R}_i can be written as

$$\mathbb{E}[\mathbb{R}_i] = \sum_{a=0}^{\infty} \mathbb{P}[\mathbb{A} = a] \cdot \mathbb{E}[\mathbb{R}_i | \mathbb{A} = a], \qquad (3)$$

where the random variable \mathbb{A} representing the length a follows the geometric distribution $\mathbb{P}[\mathbb{A}=a]=(1-c)\cdot c^a$. Next, we consider the conditional expectation $\mathbb{E}[\mathbb{R}_i|\mathbb{A}=a]$ of \mathbb{R}_i given the event $\mathbb{A}=a$.

Table 6 shows the sample space given the length a. Given the length a ($0 \le a \le \eta$), if the algorithm successfully samples a meeting path of length $\{a,2a\}$ between nodes q and i, the random variable $\mathbb{R}_i = \delta$; otherwise, $\mathbb{R}_i = 0$. Note that $\delta = [\mathbf{X}]_{z_a,a}/[\mathbf{X}]_{z_{2a},0}$ changes for different sampled meeting paths. Let $\mathbb{P}[\phi]$ represent the probability of successfully sampling a meeting path ϕ given the length a. Since $\mathbb{R}_i = \delta$ if and only if the algorithm successfully samples a meeting path ϕ of length $\{a,2a\}$ between nodes q and q, the conditional expectation $\mathbb{E}[\mathbb{R}_i|\mathbb{A}=a]$ can be written as

$$\mathbb{E}[\mathbb{R}_i | \mathbb{A} = a] = \sum_{\phi \in \Phi_{q,i}^{a,2a}} \delta \cdot \underline{\mathbb{P}}[\phi],$$

where $\Phi_{q,i}^{a,2a}$ denotes the set of all meeting paths of length $\{a,2a\}$ between nodes q and i.

Consider the probability of successfully sampling a meeting path $\phi: q = z_0 \to \cdots \to z_a \leftarrow \cdots \leftarrow z_{2a}$ given the length a. The probability of sampling the first half is $\mathbb{P}[\rho_1] = \prod_{t=1}^a p_{z_{t-1}, z_t}$ The probability of sampling the second half is

$$\underline{\mathbb{P}}[\rho_2] \! = \! \prod_{t=a+1}^{2a} \left(p_{z_t, z_{t-1}} \cdot \frac{[\mathbf{X}]_{z_t, 2a-t}}{[\mathbf{X}]_{z_{t-1}, 2a-t+1}} \right) \! = \! \frac{[\mathbf{X}]_{z_{2a}, 0}}{[\mathbf{X}]_{z_a, a}} \cdot \prod_{t=a+1}^{2a} p_{z_t, z_{t-1}}$$

The probability of sampling the meeting path ϕ then is $\underline{\mathbb{P}}[\phi] = \underline{\mathbb{P}}[\rho_1] \cdot \underline{\mathbb{P}}[\rho_2]$. Note that $\delta = [\mathbf{X}]_{z_a,a}/[\mathbf{X}]_{z_{2a},0}$. We can see that the probabilities of sampling and visiting a meeting path ϕ have a relationship, i.e., $\delta \cdot \underline{\mathbb{P}}[\phi] = \mathbb{P}[\phi]$. Thus, if $0 \le a \le \eta$, we have

$$\mathbb{E}[\mathbb{R}_i|\mathbb{A}=a]\!=\!\sum\nolimits_{\phi\in\Phi_q^{a,\frac{2a}{i}}}\mathbb{P}[\phi]\!=\!\mathbb{P}[\Phi_{q,i}^{a,2a}]$$

If $\eta < a$, we have $\mathbb{E}[\mathbb{R}_i | \mathbb{A} = a] = 0$. Plugging this into Equation (3), we have that

$$\mathbb{E}[\mathbb{R}_i] = (1-c) \sum_{a=0}^{\eta} c^a \mathbb{P}[\Phi_{q,i}^{a,2a}] = \hat{r}_i$$
,

where \hat{r}_i is the truncated SimRank proximity.

Next, we prove that $\mathbb{E}[\mathbb{R}_i^2] \leq nr_i$. By the law of total expectation, we have that

$$\mathbb{E}[\mathbb{R}_i^2] = \sum_{a=0}^{\infty} \mathbb{P}[\mathbb{A} = a] \cdot \mathbb{E}[\mathbb{R}_i^2 | \mathbb{A} = a]$$
 (4)

Since $[\mathbf{X}]_{z_a,a} \in [0,1]$ and $[\mathbf{X}]_{z_{2a},0} = \frac{1}{n}$, where n is the number of nodes in the graph, we have that $\delta = [\mathbf{X}]_{z_a,a}/[\mathbf{X}]_{z_{2a},0} \leq n$.

Thus, if $0 \le a \le \eta$, we have

$$\textstyle \mathbb{E}[\mathbb{R}_i^2|\mathbb{A}=a] \!=\! \sum_{\phi \in \Phi_{q,i}^{a,2a}} \! \delta^2 \, \underline{\mathbb{P}}[\phi] \!=\! \sum_{\phi \in \Phi_{q,i}^{a,2a}} \! \delta \, \mathbb{P}[\phi] \! \leq \! n \mathbb{P}[\Phi_{q,i}^{a,2a}]$$

If $\eta < a$, we have $\mathbb{E}[\mathbb{R}_i^2 | \mathbb{A} = a] = 0$. Plugging this into Equation (4), we have that

$$\mathbb{E}[\mathbb{R}_i^2] \leq (1-c) \sum_{a=0}^{\infty} c^a n \mathbb{P}[\Phi_{q,i}^{a,2a}] = n r_i \qquad \Box$$

Theorem 14 is based on Theorems 2.8 and 2.9 in [5].

Theorem 14. [Concentration Inequality] Let $\mathbb{U}_1, \dots, \mathbb{U}_{\pi}$ be independent random variables bounded by interval $[-\alpha, \beta]$, where α and β are non-negative constants, i.e., $-\alpha \leq \mathbb{U}_d \leq \beta$ for each $d=1,\dots,\pi$. Let $\mathbb{V}=\frac{1}{\pi}\sum_{d=1}^{\pi}\mathbb{U}_d$ and $\theta=\sum_{d=1}^{\pi}\mathbb{E}[\mathbb{U}_d^2]$. For any $\epsilon>0$, we have that

$$\left\{ \begin{array}{l} \mathbb{P}[\mathbb{V} - \mathbb{E}[\mathbb{V}] \leq -\epsilon] \leq \exp\Bigl(\frac{-\pi^2 \epsilon^2}{2\theta + 2\pi \alpha \epsilon/3}\Bigr) \\ \\ \mathbb{P}[\mathbb{V} - \mathbb{E}[\mathbb{V}] \geq \ \epsilon \] \leq \exp\Bigl(\frac{-\pi^2 \epsilon^2}{2\theta + 2\pi \beta \epsilon/3}\Bigr) \end{array} \right.$$