Nama : Erdin Purwa Putra

NIM : A11.2022.14410

Mata Kuliah : Data Mining A11.4507

UTS Data Mining

1. Topik / Judul

"Analisis Prediktif Faktor-Faktor yang Mempengaruhi Tingkat Depresi Mahasiswa Menggunakan Model Machine Learning"

2. Deskripsi Singkat (Ringkasan BU/DU) Pemahaman Bisnis (BU): Kesehatan mental, khususnya depresi, kecemasan, dan isolasi, semakin menjadi perhatian utama dalam lingkungan akademis. Mahasiswa menghadapi segala macam tekanan akademis, sosial, dan finansial yang dapat memengaruhi kesehatan mental mereka. Analisis prediktif bertujuan untuk membantu lembaga pendidikan mengidentifikasi faktor-faktor yang secara signifikan memengaruhi tingkat depresi di kalangan mahasiswa.

Pemahaman Data (DU): Kumpulan data ini mencakup data survei untuk berbagai faktor yang terkait dengan kesehatan mental mahasiswa, termasuk faktor akademis, sosial, dan finansial, serta tingkat depresi, kecemasan, dan isolasi. Dengan memahami data ini, kita dapat mengetahui variabel mana yang paling berpengaruh dan membangun model prediktif untuk mengungkap faktor-faktor tersebut.

3. Masalah dan Tujuan yang ingin dicapai

Masalah:

- Mengidentifikasi tingkat depresi di kalangan mahasiswa dan faktor-faktor yang berkontribusi terhadap kesehatan mental yang buruk.
- Data Tidak Seimbang: Kemungkinan terdapat ketidakseimbangan dalam data (lebih sedikit mahasiswa dengan tingkat depresi tinggi dibandingkan yang rendah), hal ini dapat menyebabkan model bias atau menyimpang.
- Pemilihan Fitur: Tidak semua faktor berkontribusi secara signifikan terhadap prediksi depresi. Maka penting untuk memilih fitur yang paling relevan untuk model prediktif.
- Model Prediksi yang Optimal: Menemukan model machine learning yang dapat memprediksi tingkat depresi dengan akurasi tinggi dan dapat diandalkan untuk membantu dalam pengambilan keputusan atau intervensi.

Tujuan yang ingin dicapai:

- Identifikasi Faktor Risiko: Memahami faktor-faktor yang berkontribusi signifikan terhadap depresi di kalangan mahasiswa
- Prediksi Tingkat Depresi: Membangun model machine learning yang dapat secara akurat memprediksi tingkat depresi mahasiswa berdasarkan faktor-faktor yang ada.

- Mengatasi Ketidakseimbangan Data: Menggunakan teknik seperti SMOTE untuk menyeimbangkan data sehingga model dapat belajar dari semua kategori secara merata.
- Penyempurnaan Model: Menggunakan Grid Search untuk menemukan parameter terbaik untuk Random Forest, memastikan bahwa model seoptimal mungkin.
- Evaluasi dan Interpretasi Model: Mengukur kinerja model menggunakan metrik seperti akurasi dan laporan klasifikasi, serta menginterpretasikan fitur mana yang paling penting dalam prediksi depresi.
- 4. Penjelasan Datasets (Sumber data dan penjelasan atribut)
 Sumber Data: Data ini diperoleh dari kaggle "Student Mental Health Survey: Online Survey on the Mental Health of IT Students"

Penjelasan Atribut:

- **gender**: Jenis kelamin responden.
- age: Usia responden.
- **study_satisfaction**: Skor kepuasan mahasiswa terhadap proses belajar.
- academic_workload: Beban akademik yang dirasakan oleh mahasiswa.
- academic_pressure: Tekanan akademik yang dialami mahasiswa.
- **financial_concerns**: Tingkat kekhawatiran terhadap masalah finansial.
- **social_relationships**: Kualitas hubungan sosial yang dimiliki mahasiswa.
- **depression**: Skor tingkat depresi mahasiswa (variabel target).
- anxiety: Skor tingkat kecemasan mahasiswa.
- **isolation**: Skor tingkat isolasi sosial yang dialami mahasiswa.
- **future_insecurity**: Kekhawatiran mahasiswa terhadap masa depan.
- **stress_relief_activities**: Aktivitas yang dilakukan untuk meredakan stres.

Atribut yang memiliki kepentingan untuk memprediksi tingkat depresi yaitu;

- **Future Insecurity** (Ketidakpastian Masa Depan) adalah fitur yang paling penting dalam memprediksi tingkat depresi mahasiswa. Ini menunjukkan bahwa ketidakpastian tentang masa depan sangat memengaruhi kesehatan mental mereka.
- Financial Concerns (Kekhawatiran Finansial) dan Social Relationships (Hubungan Sosial) juga menempati posisi penting. Kekhawatiran finansial dapat menimbulkan tekanan tambahan, sedangkan kualitas hubungan sosial berperan besar dalam mendukung atau membebani kesehatan mental.
- Academic Pressure (Tekanan Akademik) juga merupakan faktor signifikan. Tekanan dari tugas-tugas dan tanggung jawab akademik dapat berkontribusi pada peningkatan tingkat stres dan depresi.
- **Study Satisfaction** (Kepuasan Studi), meskipun memiliki tingkat kepentingan yang lebih rendah dibandingkan faktor lainnya, tetap relevan. Hal ini menunjukkan bahwa kepuasan terhadap pengalaman akademik mereka memiliki pengaruh, meski tidak sebesar faktor-faktor lainnya.
- 5. Alur / Tahapan / Kerangka Eksperimen
 - Langkah 1: Pengumpulan dan Pemuatan Data
 Memuat dataset yang sebelumnya telah tersimpan di google drive

- Langkah 2: Praproses dan Pembersihan Data
 Bersihkan data dengan menghapus spasi pada nama kolom dan menangani ketidakseimbangan kelas menggunakan teknik SMOTE.
- Langkah 3: Analisis Data Eksploratori (EDA)
 Lakukan analisis awal untuk memahami distribusi data dan korelasi antar variabel. Ini termasuk memvisualisasikan distribusi skor depresi, kecemasan, dan isolasi, serta menghitung matriks korelasi untuk memahami hubungan antar factor
- Langkah 4: Pemilihan dan Rekayasa Fitur
 Gunakan teknik Recursive Feature Elimination (RFE) untuk memilih fitur yang paling relevan yang memengaruhi tingkat depresi.
- Langkah 5: Pembuatan Model dan Penyetelan Hiperparameter
 Buat model prediktif menggunakan Random Forest Classifier. Model-model ini
 kemudian disempurnakan dengan penyetelan hiperparameter dengan Pencarian
 Grid untuk mengetahui campuran parameter apa yang membentuk kombinasi
 terbaik.
- Langkah 6: Evaluasi Model
 Evaluasi performa model dengan metrik evaluasi dan validasi silang (akurasi dan laporan klasifikasi) untuk memastikan keandalan model.
- Langkah 7: Interpretasi dan Analisis Pentingnya Fitur
 Analisis fitur-fitur yang paling berpengaruh dari prakiraan depresi untuk menawarkan rekomendasi yang didasarkan pada data.

6. Timeline Eksperimen (hingga akhir semester)

Minggu	Kegiatan	Detail Kegiatan	Output
Minggu 8	Eksplorasi Data	- Lakukan analisis	Wawasan kausalitas
	Tambahan dan	statistik mendalam	antara faktor-faktor
	Analisis Kausalitas	terhadap data	kesehatan mental
		- Gunakan SEM untuk	mahasiswa
		analisis kausalitas	
		antara variabel-	
		variabel kunci	
Minggu 9	Eksperimen	- Gunakan VAEs atau	Dataset dengan
	Augmentasi Data	SMOTE-ENN untuk	variasi data yang
	dengan Synthetic	menghasilkan data	lebih luas untuk
	Data Generation	sintetik tambahan	pelatihan model
		yang bervariasi	
Minggu 10	Clustering	- Terapkan K-means	Klaster mahasiswa
	Mahasiswa	atau Hierarchical	dengan risiko
	Berdasarkan Profil	Clustering untuk	kesehatan mental
	Kesehatan Mental	mengelompokkan	yang berbeda
		mahasiswa	

		berdasarkan profil	
		risiko	
Minggu 11	Eksperimen Feature	- Buat fitur baru dari	Fitur baru yang dapat
	Engineering dengan	kombinasi atau	meningkatkan
	Fitur Kombinasi	interaksi antar	akurasi model
		variabel	
		- Evaluasi apakah	
		fitur ini	
		meningkatkan	
		performa model	
Minggu 12	Implementasi Model	- Implementasikan	Model yang lebih
	Neural Network dan	Multilayer	kuat dengan
	Ensemble Learning	Perceptron (MLP)	peningkatan akurasi
		- Gunakan Voting	melalui ensemble
		Classifier atau	
		Stacking untuk	
		ensemble learning	
Minggu 13	Validasi Lanjutan	- Lakukan cross-	Validasi menyeluruh
	dengan Cross-	validation dengan	dengan metrik
	Validation dan ROC-	metrik tambahan	tambahan untuk
	AUC	(ROC-AUC dan	keandalan model
		Precision-Recall	
		Curve)	
Minggu 14	Dokumentasi dan	- Susun laporan akhir	Laporan akhir proyek
	Penyelesaian	dengan hasil	UTS
	Laporan Akhir	eksperimen yang	
		paling signifikan	