

CLAIMS

1. A method of preparing an amine stereoisomer, which comprises stereoselectively reducing a sulfinylimine that bears on the sulfinyl group a residue of an alcohol, thiol or 5 amine, or reacting a sulfinylimine stereoisomer that bears on the sulfinyl group a residue of an alcohol, thiol or amine with a source of a nucleophile, to afford a sulfinylamine stereoisomer, followed by contacting the sulfinylamine stereoisomer with a reagent suitable for the cleavage of a sulfur-nitrogen bond, to afford an amine stereoisomer.

- 10 2. A method as claimed in Claim 1, wherein the sulfinylimine is a sulfinylimine stereoisomer.

3. A method as claimed in Claim 1 or Claim 2, wherein the residue of the alcohol, thiol or amine is in stereoisomeric form.

- 15 4. A method as claimed in any one of Claims 1 to 3, wherein the residue of the alcohol, thiol or amine is a residue of an optionally N-substituted beta-amino alcohol, thiol or amine.

5. A method as claimed in Claim 4, wherein the optionally N-substituted beta-amino 20 alcohol, thiol or amine is a compound of the general formula

wherein A₁ is R₇N or (R_{7'})R_{7''}N, R₇ represents hydrogen or -L-R_{7a} in which -L- represents a bond, -CO-, -(CO)O-, -(CO)NR_{7b}-, -SO-, -SO₂-, or -(SO₂)O-, each of R_{7a} and R_{7b} independently represents substituted or unsubstituted alkyl, substituted or unsubstituted 25 aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, and R_{7'} and R_{7''} are as defined for R_{7a}, or R_{7'} and R_{7''} together with the nitrogen atom to which they are attached and, optionally R₈, form an unsubstituted or substituted heterocyclic group, or R_{7'} together with the nitrogen atom to which it is attached and the carbon atom to which the nitrogen atom is attached forms an 30 unsubstituted or substituted heterocyclic group; A₂ is O, S or NR_{7c} in which R_{7c} is substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted

heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl; and each of R₈, R₉, R₁₀ and R₁₁ is independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, or R₈ and R₁₁ together form a 5 substituted or unsubstituted alkylene or heteroalkylene chain.

6. A method as claimed in Claim 5, wherein A₂ is O.

7. A method as claimed in Claim 5 or Claim 6, wherein each of R₈ R₉, R₁₀ and R₁₁ is independently selected from hydrogen, (1-4C)alkyl and phenyl, or the alcohol is selected from (N-methylpyrrolidin-2-yl)diphenylmethanol, quinine, quinidine, hydroquinine, cinchonidine, cinchonine, hydrocinchonidine and ethyl hydrocupreine.

8. A method as claimed in Claim 7, wherein A₁ is R₇N wherein R₇ represents -SO₂-R_{7a} in which R_{7a} represents (1-6C)alkyl, (6-10C)aryl(1-4C)alkyl or (6-10C)aryl in which any aryl group is unsubstituted or substituted by one, two or three substituents selected independently from halogen, (1-4C)alkyl and (1-4C)alkoxy, or A_{1'} is (R_{7'})R_{7''}N wherein R_{7'} and R_{7''} each independently represents a (1-4C)alkyl group or together with the nitrogen to which they are attached represent a pyrrolidine group that may bear one or two methyl substituents, or the 15 alcohol is selected from (N-methylpyrrolidin-2-yl)diphenylmethanol, quinine, quinidine, hydroquinine, cinchonidine, cinchonine, hydrocinchonidine and ethyl hydrocupreine.

20

9. A method as claimed in Claim 7, wherein A_{1'} is R₇N and the residue of the alcohol, thiol or amine is a residue of an optionally N-substituted 2-amino-1-phenylpropanol, 2-amino-25 2-methyl-1-phenylpropanol, 1-amino-1-phenyl-2-propanol, 1-amino-1-phenyl-2-methyl-2- propanol, 1-amino-1-phenyl-2-ethyl-2-butanol, 1-amino-2-indanol, 2-aminoindan-1-ol, 1- amino-2-hydroxy-1,2,3,4-tetrahydronaphthalene or 2-amino-1-hydroxy-1,2,3,4- tetrahydronaphthalene, or A_{1'} is (R_{7'})R_{7''}N and the alcohol is selected from 2-N,N-dimethylamino-1-phenyl-2-propanol, 2-N,N-dibutylamino-1-phenylpropanol, 2-pyrrolidin-1-30 yl-1-phenylpropanol, 2-(2-methylpyrrolidin-1-yl)-1-phenylpropanol, 2-(2,5-dimethylpyrrolidin-1-yl)-1-phenylpropanol, 2- N,N-dimethylamino-2-methyl-1-phenylpropanol, (N-methylpyrrolidin-2-yl)diphenylmethanol, 1-pyrrolidin-1-ylindan-2-ol, 3-

benzyloxy-2-N,N-dimethylamino-1-phenylpropan-2-ol, quinine, quinidine, hydroquinine, cinchonidine, cinchonine, hydrocinchonidine and ethyl hydrocupreine.

10. A method as claimed in any one of Claims 4 to 9, wherein the sulfinylimine has been
5 prepared by contacting an iminometal with a 1,2,3-oxathiazolidine-S-oxide, a 1,2,3-
dithiazolidine-S-oxide or a 1,2,3-azathiazolidine-S-oxide.

11. A method as claimed Claim 10, wherein the 1,2,3-oxathiazolidine-S-oxide, a 1,2,3-
dithiazolidine-S-oxide or a 1,2,3-azathiazolidine-S-oxide is a compound of formula 3 or 3'

10

3 or 3'

wherein A₁ is R₇N or (R_{7'})R_{7''}N⁺ Q⁻ in which Q⁻ is an anion, R₇ represents hydrogen or -L-R_{7a} in which -L- represents a bond, -CO-, -(CO)O-, -(CO)NR_{7b}⁻, -SO-, -SO₂⁻, or -(SO₂)O-, each of R_{7a} and R_{7b} independently represents substituted or unsubstituted alkyl,
15 substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, and R_{7'} and R_{7''} are as defined for R_{7a}, or R_{7'} and R_{7''} together with the nitrogen atom to which they are attached and, optionally R₈, form an unsubstituted or substituted heterocyclic group, or R_{7'} together with the nitrogen atom to which it is attached and the carbon atom to which the nitrogen atom is
20 attached forms an unsubstituted or substituted heterocyclic group; A₂ is O, S or NR_{7c} in which R_{7c} is substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl; and each of R₈, R₉, R₁₀ and R₁₁ is independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, or R₈ and R₁₁ together form a substituted or unsubstituted alkylene or heteroalkylene chain;

the iminometal is a compound of formula 1'

1'

wherein M is CdZ, BaZ, Na, K, MgZ, ZnZ, Li, MnZ, CuZ, TiZ₃ or In and Z is an anion.

5 12. A method as claimed in Claim 11, wherein the 1,2,3-oxathiazolidine-S-oxide, a 1,2,3-dithiazolidine-S-oxide or a 1,2,3-azathiazolidine-S-oxide is a stereoisomer of formula

13. A method as claimed in Claim 11 or Claim 12, wherein the amine stereoisomer is a
10 compound of formula 5 or 5'

or a pharmaceutically acceptable salt, solvate, clathrate, hydrate or prodrug thereof, wherein
R₅ and R₆ are independently substituted or unsubstituted alkyl, substituted or unsubstituted
15 heteroalkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl or
substituted or unsubstituted heteroaryl, or R₅ and R₆ together with the carbon atom to which
they are attached form a substituted or unsubstituted cycloalkyl group, and R₁₂ and R₁₃
together with the nitrogen atom to which they are attached form a heterocycle, or each of R₁₂
20 and R₁₃ is independently hydrogen, substituted or unsubstituted alkyl, substituted or
unsubstituted aralkyl, or substituted or unsubstituted aryl;

and the sulfinylamine stereoisomer is a compound of formula 4 or 4'

wherein $A_{1'}$ represents R_7N or $(R_{7'})R_{7''}N$.

5 14. A method as claimed in Claim 13, wherein A_2 is O.

15. A method as claimed in Claim 14, wherein R_5 and R_6 are independently substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl; the 1,2,3-
10 oxathiazolidine-S-oxide is a compound of the formula 3 or 3'

in which R_7 represents hydrogen or $-L-R_{7a}$ in which L is a bond or SO_2 and R_{7a} is substituted
15 or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl; Z in the iminometal of formula 1' is Cl, Br or I; and the sulfinylamine stereoisomer is a compound of formula

16. A method as claimed in any one of Claims 12 to 15, wherein R₁₂ and R₁₃ are both
5 hydrogen.

17. A method as claimed in any one of Claims 4 to 16, wherein the 1,2,3-oxathiazolidine-S-oxide, 1,2,3-dithiazolidine-S-oxide or 1,2,3-azathiazolidine-S-oxide has been prepared by reacting an optionally N-substituted beta-amino alcohol, thiol or amine with a thionyl halide.

10

18. A method as claimed in any one of Claims 1 to 17, which further comprises the step of alkylating the amine stereoisomer.

19. A method as claimed in any one of Claims 1 to 18, wherein the amine stereoisomer is
15 a compound of formula

or a pharmaceutically acceptable salt, solvate, clathrate, hydrate or prodrug thereof, wherein
20 R₁₄ is substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aralkyl or substituted or unsubstituted aryl, and R₁₅ and R₁₆ together with the nitrogen to which they are attached form a heterocycle, or each of R₁₅ and R₁₆ is independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aralkyl or substituted or unsubstituted aryl.

20. A method as claimed in Claim 19, in which the amine stereoisomer is a compound of formula

5

21. A method as claimed in Claim 19 or Claim 20, wherein R₁₅ and R₁₆ are both hydrogen.

10 22. A method as claimed in Claim 21 wherein the metal imine is a compound of formula

that has been obtained by contacting a compound of formula

15

15 with a compound of formula i-BuMg-X wherein X is a halogen.

23. A method as claimed in any one of Claims 4 to 22, wherein the 1,2,3-oxathiazolidine-S-oxide is a compound of the formula

24. A method as claimed in any one of Claims 1 to 23, wherein the sulfinylimine is
5 reduced using a hydride reducing agent.

25. A method as claimed in Claim 24, wherein the hydride reducing agent is NaBH₄.

26. A method as claimed in any one of Claims 1 to 25, in which the reagent suitable for
10 the cleavage of a sulfur-nitrogen bond is an acid.

27. A method as claimed in Claim 26 wherein the acid is HCl.

28. A method as claimed in any one of Claims 4 to 27, in which reaction of the
15 sulfinylimine stereoisomer with the reagent suitable for the cleavage of a sulfur-nitrogen
bond also affords an optionally N-substituted beta-aminoalcohol, and this optionally N-
substituted beta-aminoalcohol is recovered, converted into 1,2,3-oxathiazolidine-S-oxide and
recycled.

20 29. A method as claimed in any one of Claims 1 to 28, wherein the stereoselective
reduction of the sulfinylimine is performed using a stereoselective reducing agent.

30. A method as claimed in any one of Claims 1 to 29 in which the amine stereoisomer is
selected from Alacepril, Benazepril, Benazeprilate, Ceronapril, Cilazapril, Cilazaprilat,

Delapril, Enalapril, Enalaprilat, Fasidotril, Fosinopril, Imidapril, Imidaprilat, Libenzapril,
 Lisinopril, Moexipril, Moexiprilat, Moveltipril, Pentopril, Perindopril, Quinapril, Quinaprilat,
 Ramipril, Sampatrilat, Spirapril, Spiraprilat, Temocapril, Temocaprilate, Trandolapril,
 Trandolaprilate, Utibapril, Utibaprilat, Zabicipril, Zabiciprilat, Bucillamine, Penicillamine,
 5 Thiamphenicol, Cefprozil, Cephalexin, Cephaloglycin, Cilastatin, Alafosfalin, Ethambutol,
 Sertraline, Tametraline, Acetylcysteine, Selegiline, Azaserine, Dorzolamide, Colchicine,
 Dilevalol, Enalapril, Methyldopa, Metaraminol, Acivicin, Melphalan, Ubenimex, Tmsulosin,
 Tirofiban, Dilevalol, N-dodecyl-N-methylephedrinium, Ofenaccine, Tinofedrine,
 Aceglutamide, 1-ephedrine, levopropylhexedrine, (+)-and (-)-Norephedrine,
 10 Phenylpropanolamine, Pseudoephedrine, d-farn, (R)-and (S)-Tamsulosin, Dimepheptanol,
 Lofentanil, Tilidine hydrochloride (+)-trans, Ciramadol, Enadoline, Lefetamine, Spiradoline,
 (+)-Etoxadrol, Levoxadrol, (R)-Amphetamine, Clobenzorex, Dexfenfluramine,
 Dextroamphetamine, Etilamfetamine, Fenfluramine, Levofenfluramine,
 Phenylpropanolamine, Cetirizine, (R)- and (S)-Baclofen, (R)- and (S)-Sibutramine, and
 15 pharmaceutically acceptable salts thereof.

31. A method as claimed in any one of Claims 1 to 23, wherein the sulfinylamine
 stereoisomer is reacted with a source of a nucleophile selected from a nitrile, a Grignard
 reagent and an organolithium.

20

32. A method as claimed in Claim 31, wherein the sulfinylamine stereoisomer is reacted
 with a nitrile, and the resultant amine stereoisomer bearing a nitrile group is hydrolyzed to
 afford an amino acid.

25 33. A compound of formula

wherein:

R₅ and R₆ are independently substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, or R₅ and R₆ together with the carbon atom to which they are attached form a substituted or unsubstituted cycloalkyl group;

A₁ is R₇N or (R_{7'})R_{7''}N;

R₇ represents hydrogen or -L-R_{7a} in which -L- represents a bond, -CO-, -(CO)O-, -(CO)NR_{7b}-, -SO-, -SO₂-, or -(SO₂)O-, each of R_{7a} and R_{7b} independently represents substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, and R_{7'} and R_{7''} are as defined for R_{7a}, or R_{7'} and R_{7''} together with the nitrogen atom to which they are attached and, optionally R₈, form an unsubstituted or substituted atom to which they are attached and, optionally R₈, form an unsubstituted or substituted heterocyclic group, or R_{7'} together with the nitrogen atom to which it is attached and the carbon atom to which the nitrogen atom is attached forms an unsubstituted or substituted heterocyclic group; A₂ is O, S or NR_{7c} in which R_{7c} is substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl; and each of R₈, R₉, R₁₀ and R₁₁ is independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, or R₈ and R₁₁ together form a substituted or unsubstituted alkylene or heteroalkylene chain;

A₂ is O, S or NR_{7c} in which R_{7c} is substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl; and each of R₈, R₉, R₁₀ and R₁₁ is independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, or R₈ and R₁₁ together form a substituted or unsubstituted alkylene or heteroalkylene chain,

or a salt thereof.

34. A compound as claimed in Claim 33, which is a stereoisomer of formula

35. A compound as claimed in Claim 34, wherein A₂ is O.

10 36. A compound as claimed in any one of Claims 33 to 35, wherein A₁ represents R₇N and R₇ represents R_{7a}SO₂ in which R_{7a} represents a (1-6C)alkyl, (6-10C)aryl(1-6C)alkyl or (6-15C) aryl group, in which the aryl group is unsubstituted or substituted by one, two or three substituents selected independently from a halogen atom, a (1-4C)alkyl group and a (1-4C)alkoxy group, or A₁ represents (R_{7'})R_{7''}N in which R_{7'} and R_{7''} each independently represents a (1-4C)alkyl group or together with the nitrogen to which they are attached represent a pyrrolidine group that may bear one or two methyl substituents, and each of R₈, R₉, R₁₀ and R₁₁ is independently selected from hydrogen, (1-4C)alkyl and phenyl, or the group

is selected from a residue of (N-methylpyrrolidin-2-yl)diphenylmethanol, 1-pyrrolidin-1-ylindan-2-ol, 3-benzyloxy-2-N,N-dimethylamino-1-phenylpropan-2-ol, quinine, quinidine, hydroquinine, cinchonidine, cinchonine, hydrocinchonidine and ethyl hydrocupreine.

37. A compound as claimed in any one of Claims 32 to 36, which is of the formula

38. A compound as claimed in any one of Claims 32 to 37, wherein $\text{A}_{1'}$ represents $\text{R}_{7a}\text{SO}_2\text{N}$ in which R_{7a} represents a (1-6C)alkyl, (6-10C)aryl(1-6C)alkyl or (6-10C) aryl group, in which the aryl group is unsubstituted or substituted by one, two or three substituents selected independently from a halogen atom, a (1-4C)alkyl group and a (1-4C)alkoxy group; or the group

is a residue of 2-N,N-dimethylamino-1-phenylpropanol, 2-N,N-dibutylamino-1-phenylpropanol, 2-pyrrolidin-1-yl-1-phenylpropanol, 2-(2-methylpyrrolidin-1-yl)-1-phenylpropanol, 2- N,N-dimethylamino-2-methyl-1-phenylpropanol, (N-methylpyrrolidin-2-yl)diphenylmethanol, 1-pyrrolidin-1-ylindan-2-ol, 3-benzyloxy-2-N,N-dimethylamino-1-phenylpropan-2-ol, quinine, quinidine, hydroquinine, cinchonidine, cinchonine, hydrocinchonidine or ethyl hydrocupreine.

15 39. A compound of formula

wherein A_1 is $(\text{R}_7)\text{R}_7'\text{N}^+$ Q^- in which Q^- is an anion and each of R_7 and R_7' independently represents substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted

heteroaryl, or two substituents R₇ together with the nitrogen atom to which they are attached and, optionally R₈, form an unsubstituted or substituted heterocyclic group, or one R₇ substituent together with the nitrogen atom to which it is attached and the carbon atom to which the nitrogen atom is attached form an unsubstituted or substituted heterocyclic group;

- 5 A₂ is O, S or NR_{7c} in which R_{7c} is substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl; and each of R₈, R₉, R₁₀ and R₁₁ is independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaryl, or R₈ and R₁₁ together form a substituted or unsubstituted alkylene or heteroalkylene chain, or a salt thereof.
- 10

40. A compound as claimed in Claim 39, wherein the compound is of the formula

- 15 41. A compound as claimed in Claim 39 or Claim 40, wherein A₂ is O.

- 42. A compound as claimed in Claim 41, wherein R₇ and R_{7c} each independently represents a (1-4C)alkyl group or together with the nitrogen to which they are attached represent a pyrrolidine group that may bear one or two methyl substituents, and each of R₈, R₉, R₁₀ and R₁₁ is independently selected from hydrogen, (1-4C)alkyl and phenyl, or the group
- 20

forms a divalent residue of (N-methylpyrrolidin-2-yl)diphenylmethanol, 1-pyrrolidin-1-ylindan-2-ol, 3-benzyloxy-2-N,N-dimethylamino-1-phenylpropan-2-ol, quinine, quinidine, hydroquinine, cinchonidine, cinchonine, hydrocinchonidine or ethyl hydrocupreine.

- 25

43. A method of preparing a sulfinylamine or sulfoxide stereoisomer, which comprises reacting a compound as claimed in any one of Claims 39 to 42 with a first organometallic reagent of formula R^1M to afford a compound of formula

5

and then either reacting this compound with a second organometallic reagent of formula R^2M to afford a sulfoxide stereoisomer of formula

in which R^1 and R^2 each independently represents an organic group, or with an alkali metal amide to afford a sulfinylamine stereoisomer.

44. A method as claimed in Claim 43, in which the first organometallic reagent is an organomagnesium halide.

15 45. A method as claimed in Claim 44, in which the first organomagnesium halide is an alkyl or arylmagnesium halide.

20