Der sanfte Einstieg in's Speedcubing

Marcus Autenrieth

2. Mai 2024

Hi! Du wolltest schon immer mal einen Rubik's Würfel lösen und brauchst etwas, das Du ausdrucken und in der Tasche dabei haben kannst? Hast Du das Ziel den Würfel in unter zwei Minuten zu lösen und suchst nach dem optimalen Einstieg um sowohl erste Erfolge zu feiern, als auch später immer schneller zu werden? Du bist hier richtig!

3 Fortgeschrittene Techniken

R ||↑ U ≜ U ≜

 $(R \varinjlim R \varinjlim U' \underrightarrow{\cong}) \ (R \varinjlim R \varinjlim U' \underrightarrow{\cong})$

 $R \text{ II} \uparrow R \text{ II} \uparrow U \stackrel{\textstyle \leftarrow}{=} U \stackrel{\textstyle \leftarrow}{=} R \text{ II} \uparrow$

Training Scramble:

ible: U2 F U2 F2 L2 F' L2 U2 F U2 L2 U' B2 U F2 U' B2 L2 U L2 U L2

F

 $(\mathsf{Rw'} \boxplus \mathsf{F} \bigcirc \mathsf{R} \boxplus \mathsf{F'} \bigcirc)$

Training Scramble: UFDB2D'FU2B2UB2UR2UB2F2

RIM RIM D 等 (R'IU U 管 U 管 R IM)

, ∏ $(R' \boxtimes U \stackrel{\square}{=} U \stackrel{\square}{=} R' \boxtimes)$

Training Scramble: U L U'F2 U F2 U L U2 F2 D R2 B2 U B2 D'R2 F2 U L L2

Inhaltsverzeichnis

_	Ein	Einleitung	5
a	CFO	CFOP für Anfänger	7
	2.1	Begriffe	\sim
		2.1.1 Steine	\sim
		2.1.2 Rotationen	∞
	2.2	Überblick über die Anfängermethode 1	10
	2.3	Das Gänseblümchen	12
	2.4	Das weiße Kreuz	13
	2.5	Die weiße Ebene vervollständigen	14
		2.5.1 Ein Sonderfall	16
		2.5.2 Noch ein Sonderfall 1	16
	5.6	Die zweite Ebene fertig stellen	17
		2.6.1 Bewegen nach Rechts	17
		2.6.2 Bewegen nach Links	17
		2.6.3 Sonderfälle 1	18
	2.7	Das gelbe Kreuz	19
	2.8	Orientierung der gelben Ecken	20
	2.9	Positionierung der gelben Ecksteine	21
	2.10	Positionierung der gelben Kantensteine 2	23
	2.11	Wie jetzt weiter?	24
	2.12	Tips und Tricks zum Auswendig lernen 2	24

က	Fort	3 Fortgeschrittene Techniken	27
	3.1	3.1 Noch mehr Rotationen	28
	3.2	3.2 Eine Abkürzung für das gelbe Kreuz	29
	3.3	3.3 Die gelbe Ebene in einem Schritt fertig ausrichten	30
		3.3.1 Muster und Algorithmen	32

Training Scramble:

U' L' D' R D L' D' R U R2 U' L2 F2 U' L2 B2 L2 F2 R2

 $(\mathsf{R} \, ||\!|\!| \, \mathsf{U} \, \underline{\, \, \, \, \, \, } \, \, \mathsf{R'} \, ||\!|\!|\!| \, \mathsf{U} \, \underline{\, \, \, \, \, \, \, } \, |)$

Training Scramble: U',

U' L B L' B2 R B' R B2 L2 F2 U2 B2 D' B2 U L2 B2 D' B2

 $(\mathsf{F} \bigcap \mathsf{R'} \, || \downarrow \downarrow \mathsf{F'} \, \bigcap \mathsf{Rw} \, || \uparrow \uparrow \uparrow)$

Training Scramble:

U L U' F2 U F2 U L R2 U' L2 U' L2 U2 L2 F2 U F2 U R2 $\,$

nicht auswendig gelernt, greif einfach auf die Anfängermethode zurück, die ist voll kompatibel! Mit welchem Muster Du anfangen willst, das ist Dir überlassen.

Damit Du einen Algorithmus auch effektiv üben kannst, musst Du immer wieder das passende Muster herstellen. Dafür haben wir Dir zusätzlich immer noch einen sogenannten "Training Scramble" unter dem Algorithmus abgedruckt. Nimm dazu einen gelösten Würfel und halte ihn mit der gelben Ebene nach oben. Führe dann die Drehungen aus dem "Training Scramble" aus, um das gesuchte Muster zum Üben herzustellen.

Wenn Du bei einer gelben Fläche anfängst und einen Algorithmus zwei bis drei Mal wiederholst wirst Du auch wieder bei der gelben Fläche ankommen. Damit kann man auch ohne einen "Training Scramble" einen Algorithmus wiederholen, bis man ihn sicher beherrscht. Am besten ist es zudem, wenn so ein Algorithmus im Muskelgedächtnis verankert ist. Dann muss man kaum bewusst darüber nachdenken, denn die Finger wissen quasi schon selber was sie zu tun haben.

TODO: ersetze Training-Scramble durch mehrfaches wiederholen (zyklische Muster) - Gib ein Beispiel an.

3.3.1 Muster und Algorithmen

 $(R \text{ III} \text{ U} \stackrel{\textstyle \frown}{=} \text{ R'} \text{ IIU} \text{ U} \stackrel{\textstyle \frown}{=})$

(R || ↑ ∪ ≦ ∪ ≦ R' || ↓

Training Scramble:

32

Up, Bp, Up, B, Up, Bp, U2, B, Up, B2, R2, L, U, L, Up L2, D, L2, Dp, R2, B2

1 Einleitung

Diese Anleitung zielt darauf ab, es jedem Anfänger zu ermöglichen überhaupt einen Rubik's Würfel zu lösen. Dabei wollen wir aber auch gleichzeitig die bestmöglichen Grundlagen legen, um später immer schneller darin zu werden. Deshalb orientieren wir uns direkt an den Schritten und Zwischenergebnissen einer beliebten Speedcubing Methode: CFOP.

Damit Du Dir am Anfang nur ganz wenig merken musst, werden wir mit einer stark abgespeckten Variante dieser Methode anfangen.

Mit zunehmender Sicherheit wirst Du dann anfangen schneller zu werden und an die Grenzen der Anfängermethode stoßen. Mit der Übung werden Dir Abläufe als Umständlich erscheinen und Du wirst Dir wünschen, mehrere Schritte in einem zu erledigen. Hier wollen wir Dir mit diesem Leitfaden die Möglichkeite geben, Stück für Stück neue Techniken dazu zu nehmen, bis Du CFOP vollständig beherrschst.

Die CFOP-Methode basiert auf der Idee, dass sich jedes Problem einfach und wiederholbar lösen lässt, indem man es in Teilprobleme zerlegt, welche man dann einzeln löst. Der Begriff CFOP leitet sich von den vier Teilprobleme ab, in die sich das Lösen des Würfels zerlegen lässt. Es ist ein Akronym für Cross, F2L (First 2 Layers), OLL (Orientation of the Last Layer) und PLL (Permutation of the Last Layer):

Cross (Kreuz): Zuerst wird ein Kreuz auf einer der Würfelseiten erstellt, wobei die Kantensteine der Farbe des Kreuzes mit den Mittelsteinen der angrenzenden Seiten ausgerichtet werden.

Ŋ

F2L – First 2 Layers (die ersten 2 Ebenen): In diesem Schritt werden die ersten zwei Ebenen des Würfels gleichzeitig gelöst, indem Ecken und Kanten gepaart und an ihren Platz gebracht werden.

OLL – Orientation of the Last Layer (Ausrichtung der letzten Schicht): Hier werden alle Steine der letzten Ebene so gedreht, dass die Oberseite eine einheitliche Farbe hat, ohne dabei die bereits gelösten Ebenen zu stören.

PLL – Permutation of the Last Layer (Positionierung der letzten Schicht): Im letzten Schritt werden die Steine der letzten Ebene in ihre endgültige Position gebracht, wodurch der Würfel vollständig gelöst wird.

Für den Anfang werden wir jedes dieser Teilprobleme noch zusätzlich zerlegen, sodass wir den Würfel in insgesamt acht Phasen lösen. Das ermöglicht es uns, mit nur einem kleinen Satz an Algorithmen für die Lösung der acht Teilprobleme auszukommen.

Ich spreche hier immer von 'wir' obwohl ich das Buch gerade alleine schreibe. Das liegt daran, dass ich gerade Ideen und Algorithmen von ganz vielen Menschen aufnehme und entlang meiner eigenen Lernerfahrungen aufschreibe.

Viele Personen waren an der Entwicklung von CFOP beteiligt. Vollständig dokumentiert wurde die Methode als erstes von Anneke Treep und Kurt Dockhorn im Jahr 1981. Weiter systematisiert und popularisiert wurde CFOP von der tschechischen Speedcuberin Jessica Fridrich. Bis heute benutzen viele berühmte Speedcuber wie Feliks Zemdegs oder Max Park diese Methoden, bzw. eine Weiterentwicklung davon.

Eins für den Fall, dass alle gelben Ecken korrekt ausgerichtet sind:

In der Anfängermethode sind uns die Muster bereits begegnet, wir haben sie nur nicht bewusst wahrgenommen. Und wir haben in der Anfängermethode bereits den Fall gelernt, um aus dem Fisch-Muster die fertige gelbe Fläche zu machen. Zusätzlich nutzen wir aber auch diesen Algorithmus, um die anderen Muster Schritt für Schritt in das Fisch-Muster zu überführen:

Hier können wir jetzt immer mehr Abkürzungen einbauen. Denn es gibt für jedes der sechs übrigen Muster einen Algorithmus, mit denen man aus ihnen die gelbe Fläche machen kann. Diese kannst Du jetzt sukzessive lernen. Hast Du für ein Muster den Algorithmus noch

$$\left(\mathsf{Fw} igotimes_{\mathsf{II}} \mathsf{R} igotimes_{\mathsf{II}} \mathsf{U} igotimes_{\mathsf{II}} \mathsf{U}' oxedimes_{\mathsf{IV}} \mathsf{Ew'} igotimes_{\mathsf{I}} \right)$$

Das ist quasi der selbe Algorithmus wie aus der Anfängermethode, nur dass die beiden Drehungen der Front breiter sind. Damit kann man gleich Zeit sparen ohne sich viel merken zu müssen. Ist doch Super!

3.3 Die gelbe Ebene in einem Schritt fertig ausrichten

Beim gelben Kreuz haben wir fürs Erste alles Optimiert was geht. Aber jetzt, auf dem Weg zur gelben Ebene, können wir einiges Optimieren.

Hat man jetzt das gelbe Kreuz fertig, können sich acht mögliche Muster ergeben.

Zwei für den Fall, dass keine gelbe Ecke korrekt ausgerichtet ist¹:

Zwei für den Fall, dass eine gelbe Ecke korrekt ausgerichtet ist:

Drei für den Fall, dass zwei gelbe Ecken korrekt ausgerichtet sind:

30

2 CFOP für Anfänger

Als Erstes zeigen wir Dir, wie man überhaupt den Würfel lösen kann. Wir werden so viel wie möglich mit anschaulichen Bildern erläutern um möglichen Missverständnissen, Fehlern bei der Umsetzung und damit Frustration vorzubeugen.

2.1 Begriffe

Damit Du alle Anleitungen und Hinweise in dieser Anleitung auch gut verstehen kannst, erklären wir Dir erst einmal ein paar Begriffe. Dazu gehört die grundlegende Struktur des Würfels, wie die Seiten in dem Würfel benannt werden und wie man die weiter unten vorgestellten Algorithmen liest.

In der Speedcubing Szene ist ein Algorithmus eine Abfolge von Drehungen um ein bestimmtes Ergebnis zu erzielen. Algorithmen bestehen oft aus vier bis neun Zügen.

Schau gerne nach jedem der folgenden Abschnitte einmal nach, ob Du das Vorgestellte am Würfel nachvollziehen kannst.

2.1.1 Steine

Ein Rubik's Würfel wird aus drei Arten von Steinen zusammen gesetzt.

Mittelsteine

Das besondere an den Mittelsteinen ist, dass sie niemals ihre Position verlassen können. Im gelösten Zustand haben alle Flächen einer Seite die gleiche Farbe wie der Mittelstein. Jeder der Seiten dreht sich um ihren Mittelstein.

^

¹Ist manchmal zufällig der Fall!

Kantensteine

Die Kantensteine bestehen aus 2 Farben.

Ecksteine

Die Ecksteine bestehen aus 3 Farben.

2.1.2 Rotationen

einen Algorithmus, um es zu lösen. der oben erwähnten vier bis acht Teilproblemen gibt es mindestens denen wir jetzt schrittweise den Würfel lösen, Algorithmen. Zu jedem Wie bereits in der Einleitung erwähnt, nennen wir die Techniken, mit

hungen, welche wir mit Buchstaben beschreiben werden. Jeder Algorithmus ist im Endeffekt eine Reihe von spezifischen Dre-

Augen hast zeigen wir Dir hier einmal den teilweise aufgefalteten Würfel aus den Beispielen: ihre Bezeichnung einmal vorstellen. Damit Du ein besseres Bild vor Wir werden jetzt alle für den Anfang notwendigen Drehungen und

und die rote Farbe hinten! Wie man sieht, ist die gelbe Farbe auf der Unterseite, die blaue links

Uhrzeigersinn drehen Die Rückseite im

Die Rückseite gegen den Uhrzeigersinn drehen

3.2 Eine Abkürzung für das gelbe Kreuz

geläufig: Die vier Fälle auf dem Weg zum gelben Kreuz sind Dir jetzt bestimmt

genden Algorithmus anwenden: Fall 4 kommen indem wir den Würfel wie folgt halten und dann fol-Wir können mit dem Folgenden Algorithmus von Fall 2 direkt zu

Rechte Seite gegen den

Rechte Seite im Uhrzeigersinn

Uhrzeigersinn

3.1 Noch mehr Rotationen

Willkommen zurück. Für die nächsten Techniken brauchen wir ein paar Rotationen die es in der Anfängermethode so noch nicht gab.

Die vertikale Mitte zwischen L und R im Uhrzeigersinn

Obere Seite gegen den

Obere Seite im Uhrzeigersinn

Linke Seite gegen den

Linke Seite im Uhrzeigersinn

Uhrzeigersinn

gegen den Uhrzeigersinn Die breite rechte Seite drehen

> Die breite rechte Seite im Uhrzeigersinn drehen

Die breite Front gegen den

Uhrzeigersinn drehen

Uhrzeigersinn drehen

Die breite Front im

Uhrzeigersinn Vorne im Uhrzeigersinn Nimm Dir jetzt auch ruhig einmal Deinen Würfel zur Hand und probier ein wenig aus. Das hilft Dir ein Gefühl für die Drehungen zu entwickeln und Dich später nicht zu verhaspeln.

2.2 Überblick über die Anfängermethode

Um es zu Anfang einfacher zu haben, zerlegen wir die vier Phasen von CFOP jeweils nochmal in zwei Teilphasen. Wir stellen Dir jetzt diese acht Teilschritte samt Ergebnist einmal kurz vor.

Ein Hinweis dabei: bei Flächen die auf unseren Beispielen grau gefärbt sind ist uns die Farbe in dem Zwischenschritt egal. Das ermöglichet es uns, Dir die wesentlichen Aspekte der jeweiligen Phase zu zeigen.

Cross (Kreuz):

Das Gänseblümchen: Mit diesem Zwischenschritt macht man das Bilden des Kreuzes einfacher.

Das weiße Kreuz: Jetzt machen wir daraus das Kreuz auf der weißen Seite, wobei die Kantensteine der Farbe des Kreuzes mit den Mittelsteinen der angrenzenden Seiten ausgerichtet werden

F2L - First 2 Layers (die ersten 2 Ebenen):

Die erste Ebene fertig stellen: Nachdem das Kreuz fertig ist bringen wir die Ecksteine an ihre korrekte Stelle und richten sie aus.

Die zweite Ebene fertig stellen: Jetzt lösen wir die zweite Ebene indem wir die passenden Kantensteine an ihren Platz bringen.

3 Fortgeschrittene Techniken

Die folgenden Techniken und Algorithmen sind für alle jenen, die eine Rubik's Würfel auswendig nach der oben beschriebenen Methode lösen können. Wir werden im folgenden weitere Algorithmen vorstellen, die Abkürzungen für Schritte aus der Anfängermethode darstellen.

Die Anfängermethode ist dabei ein wichtiger Ausgangspunkt für alles folgende, und man sollte sie sicher anwenden können. Als Daumenregel sollte man ca. 20 bis 50 Würfel auswendig (und ohne zu spicken) gelöst haben bevor man hier weiter macht.

Du bist noch nicht so weit? Kein Problem! Leg los und löse ein paar Würfel! Wenn Du etwas Ansporn brauchst, dann stoppe dabei die Zeit und versuche schneller zu werden. Jetzt ist auch ein guter Zeitpunkt, um Dir ein paar Videos bezüglich Handhaltung und Fingertricks anzuschauen. Damit machen die fortgeschrittenen Techniken auch gleich mehr Spass.

Wir warten hier auf Dich! Versprochen!

OLL - Orientation of the Last Layer (Ausrichtung der letzten Schicht):

Das gelbe Kreuz: Als Erstes erzeugen wir ein gelbes Kreuz in der letzten Ebene

Die gelbe Fläche: Dann Vervollständigen wir die gelbe Fläche.

PLL – Permutation of the Last Layer (Positionierung der letzten Schicht):

Die Ecksteine an ihre Position bringen: Hier sorgen wir erst für die korrekte Positionierung der Ecksteine der letzten Ebene.

Die Kantensteine an ihre Position bringen: Dann sorgen wir erst für die korrekte Positionierung der Kantensteine der letzten Ebene und damit ist der Würfel dann fertig gelöst.

Jetzt da Du einen groben Überblick hast, erläutern wir Dir jede dieser acht Phasen im Detail:

2.3 Das Gänseblümchen

Um das weißte Kreuz einfacher erzeugen zu können, bilden wir im ersten Schritte ein Gänseblümchen auf der Seite mit dem gelben Mittelstein. Dein Ziel ist es, die vier weißen Kantensteine nach oben zu verschieben, sodass sie den gelben Mittelstein umgeben, wie rechts abgebildet gezeigt:

Die ersten drei Kantensteine sind relativ einfach nach oben zu bekommen. Hier musst Du einfach etwas experimentieren. Das schaffst Du, da sind wir uns ganz sicher!

Der letzte Kantenstein kann jedoch etwas kniffliger sein. Im Folgenden zeigen wir dir drei mögliche Fälle und wie man sie löst. *Bedenke bitte:* es sind nur Lösungsvorschläge; es gibt auch andere Möglichkeiten. Da noch kaum etwas vom Würfel gelöst ist, kann man nicht viel kaputt machen. Entsprechend gibt es viel Spielraum für das verschrieben von Steinen.

 Wenn Du einen Schritt fertig hast, kannst Du oft den selben Algortihmus verwenden um nur den Schritt wieder rückgängig zu machen. Das hilft Dir Dich auf den Algorithmus zu konzentrieren.

Jetzt wo Du diese Schritte und Algorithmen auswenig kannst, gehörst Du zu den 3% der Weltbevölkerung die Rubik's Würfel ohne Hilfe lösen können! Herzlichen Glückwunsch und willkommen im Club!

Fall 2

Kein Kantenstein ist richtig. Hier wenden wir wieder den Algorithmus aus Fall1 an und schauen dann erneut.

Alle vier Kanten sind richtig. Herzlichen Glückwunsch, der Würfel ist gelöst.

2.11 Wie jetzt weiter?

Möglicherweise liest Du das hier, nachdem Du zum allerersten Mal den Würfel mit Hilfe der Anleitung gelöst hast. Wenn Dich das Thema weiter interessiert, dann empfehlen wir Dir, diese Schritte jetzt erst einmal auswendig zu lernen.

Keine Sorge: alle vorgestellten Algorithmen werden auch später relevant bleiben.

2.12 Tips und Tricks zum Auswendig lernen

- Lerne die Algortihmen der Reihenfolge der Schritte nach.
- Konzentrier Dich auf einen Algorithmus und mache erst weiter wenn Du ihn kannst.

2.4 Das weiße Kreuz

2.4 Das weiße Kreuz

In diesem Schritt bilden wir, wie rechts abgebildet, das weiße Kreuz. Wenn wir das getan haben, haben wir das "C" von CFOP abgehakt. Dazu platzieren wir die vier weißen Kantensteine um den weißen Mittelstein herum.

Wie in der Illustration eben gezeigt, geht es dabei auch darum, dass die weißen Kantensteine des Kreuzes farblich zu den Mittelsteinen der vier angrenzenden Flächen passen. Also weiß-rot zu rot, weißblau zu blau, weiß-grün zu grün, weiß-orange zu orange.

Dies bewerkstelligen wir jetzt in zwei Schritten:

- 1. Wir drehen die Oberseite, mit dem gelben Mittelstein, des Würfels, bis der weiße Kantenstein mit seiner anderen Farbe zum angrenzenden Mittelstein einer Seite passt.
- 2. Dann drehen wir diese Seite um 180°, sodass diser Kantenstein in der unteren Ebene, mit dem weißen Mittelstein, positioniert ist.

Im folgenden Beispiel zeigen wir das einmal für die grüne Seite. Erst drehen wir den grün-weißen Kantenstein über den grünen Mittelstein, und dann drehen wir ihn "runter" auf die weiße Ebene:

Damit hast Du den ersten Stein im weißen Kreuz gelöst.

Wiederhole dies für die anderen 3 Steine, um das komplette weiße Kreuz auf dem Würfel zu erzielen. Am Ende soll der Würfel dann so aussehen:

Jetzt haben wir das "C" der CFOP Methode abgehakt und kümmern uns nacheinander um die Fertigstellung der ersten und danach der zweiten Schicht.

2.5 Die weiße Ebene vervollständigen

Wir vervollständigen jetzt die weiße Ebene, indem wir die Ecksteine um das Kreuz herum an ihre korrekte Position bringen. Dabei werden wir auch darauf achten, das die Ecksteine richtig ausgerichtet sind. Es soll nach diesem Schritt wie rechts abgebildet aussehen.

Aber: Wir werden die weiße Ebene "auf den Kopf gestellt" lösen. Das heißt: Du musst den Würfel so halten, dass die gelbe Seite oben ist.

Dieses "auf dem Kopf gestellt lösen" fühlt sich wahrscheinlich erst einmal umständlich an. Aber probier es bitte aus. Du wirst feststellen, dass Du auch durch ein leichtes Kippen des Würfels überprüfen kannst, ob Du gerade die weiße Ebene korrekt löst.

Zudem hat diese Vorgehensweise mehrere Vorteile: Sie ist der Einstieg in eine sehr geläufige Bewegung, die in viele Algorithmen vorkommt. Und sie trainiert jetzt schon Dein intuitives Gefühl, um später die ersten zwei Ebenen in einer Phase zu lösen. Und dadurch dass Du jetzt alle Phasen mit der gelben Ebene nach oben ausführst, sparst Du Dir auch das Umdrehen des Würfels. Das ist jetzt vielleicht nicht so gravierend, spart Dir später aber ein bis zwei wertvolle Sekunden.

Es sind gar keine Scheinwerfer vorhanden. Wir wenden den selben Algorithmus wie in Fall 2 an und schauen erneut:

- (R [||↑ U ≦ R' ||↓ U' ≧) (R' ||↓ F ◯ R ||↑)

2.10 Positionierung der gelben Kantensteine

Dies ist die zweite Stufe des "P" Schrittes in CFOP. Der Würfel müsste jetzt ungefähr so aussehen:

Nur noch die gelben Kantensteine sind möglicherweise an der Falschen Position. Hier haben wir wieder mehrere Fälle zu beachten:

Ī.

Ein *einziger* Kantenstein ist richtig. Wir halten jetzt den Würfel so, dass die richtige Kante hinten liegt und wenden dann den folgenden Algorithmus an:

 $(R' \parallel \downarrow U' \stackrel{\cong}{\equiv} R \parallel \uparrow R \parallel \uparrow \uparrow)$

2 CFOP für Anfänger

Form einen "Scheinwerfer". Welche Farbe diese beiden Seiten dabei haben ist egal.

Im folgenden Beispiel sieht man zwei rote "Scheinwerfer" die sich auch zufällig auf der roten Seite befinden:

Mit dieser Form lassen sich die folgenden Fälle beshreiben:

Hier sind Scheinwerfer sind auf allen vier Seiten. Wir drehen jetzt die obere Schicht so lange bis die Scheinwerfer mit den Farben der Seite übereinstimmen und gehen dann zum nächsten Schrift.

Scheinwerfer sind auf *einer einzigen* Seite. Hier drehen wir die Scheinwerfer zunächst so, dass sie nach links zeigen und wenden dann den folgenden Algorithmus an:

Mit der gelben Seite nach oben, soll der Würfel nach dieser Phase dann so aussehen:

Hinweis: die Balken unter dem Würfel zeigen die Farbe der verdeckten unteren Seite der vorderen Steine.

Um die Platzierung der Ecksteine zu bestimmen, schaue dir die zwei Mittelsteine um die zu lösende Ecke an:

In diesem Beispiel werden die Ecksteine die Farben Rot, Grün und Weiß haben.

Bringe die Ecke über die Position, an die der Stein gelangen soll. Dazu drehst Du einfach die oberste (gelbe) Ebene. Es sollte dann so aussehen wie in einem der 3 folgend dargestellten Fälle:

Um diese Fälle zu lösen widerhole den Algorithmus

bis die Ecke an der richtigen Stelle ist und die Farben auch richtig ausgerichtet sind.

Gehe dann zu nächsten Ecke des weißen Kreuzes und bringe durch Drehen der obersten Ebene wieder eine passende Ecke darüber und wiederhole den Algorithmus.

2.5.1 Ein Sonderfall

Es kann vorkommen, dass sich die zu lösende Ecke bereits auf der untersten Ebene befindet, aber nicht korrekt ausgerichtet (d.h. verdreht) ist. Auch in diesem Fall wenden wir den oben beschriebenen Algorithmus an und wiederholen ihn, bis die Ecke korrekt gelöst ist:

Hier zwei Beispiele für diesen Sonderfall:

2.5.2 Noch ein Sonderfall

Es kann vorkommen, dass eine Ecke sich auf der untersten (weißen) Ebene, aber an der falschen Ecke befindet:

Dieses Problem lösen wir wieder mit dem oben bereits beschriebenen Algorithmus:

Diesmal wenden wir ihn einmal an, um den Ecksteine auf die oberste Ebene zu bekommen. Dann verschieben wir ihn über seine Ziel-Ecke und wenden wieder den gewohnten Algorithmus an, um ihn dort korrekt zu platzieren.

Fall 3 Beispiel:

Genau Zwei Ecken sind richtig orientiert. Dabei ist es unwichtig welches Muster sie konkret ergeben. In diesem Fall dreht man den Würfel so, dass eine falsche Ecke vorne links liegt und mit der gelben Seite zu einem zeigt. Dann wendet man wieder den Algorithmus aus Fall 2 an:

Dann schaut man erneut welcher Fall nun vorliegt.

Keine Ecke ist richtig orientiert. Such Dir eine falsche Ecke und dreh den Würfel so, dass sie vorne links liegt und mit ihrer gelben Seite nach links zeit. Wende wieder den Algorithmus aus Fall 2 an:

Anschließend schaut man wieder welcher Fall vorliegt.

Sobald wir in Fall 1 angekommen sind haben wir das "O" von CF-OP fertig und können in die letzte Phase gehen.

2.9 Positionierung der gelben Ecksteine

Jetzt sind wir in der "P" Phase von CFOP angekommen, und müssen die gelben Steine so auf der obersten Schicht hin und her "schieben", dass alle Farben ringsherum korrekt sind.

Zunächst etwas Begriffsklärung: wenn zwei Ecksteine der letzten Ebene auf einer Seite die gleiche Farbe haben, dann nennt man diese

2.8 Orientierung der gelben Ecken

In diesem Schrift komplettieren wir das "O" von CFOP indem wir die Ecken um das Kreuz herum so orientieren, sodass sich eine gelbe Fläche ergibt. Ob die anderen Farben stimmen ist jetzt noch nicht wichtig. Darum kümmern wir uns später.

Folgende Fälle sind möglich:

Alle Ecken sind bereits richtig orientiert. Hier sind wir direkt fertig.

Eine Ecke ist richtig orientiert. Hier dreht man den Würfel so, dass diese Ecke vorne links liegt und führt dann den folgenden Algorithmus aus:

Danach schaut man wieder welcher Fall nun vorliegt.

20

2.6 Die zweite Ebene fertig stellen

In diesem Schritt geht es darum, die richtigen Kantensteine in die mittlere Ebene zu bekommen. Nach diesem Schritt hast Du die beiden ersten Ebenen von des Würfels gelöst. Das sieht dann so aus wie rechts abgebildet:

Halte den Würfel so, dass die weiße Seite unten ist. Suche dann einen Kantenstein auf der oberen Ebene, der keine gelbe Seite hat. In diesem Beispiel haben wir einen Kantenstein mit den Farben Rot und Grün gefunden.

Wenn Du einen Kantenstein gefunden hast, der nicht gelb ist, drehe die obere Ebene so lange, bis du auf einer Seite des Würfels ein umgedrehtes "T" siehst. Auf dem Bild oben ist es ein rotes T, aber es hätte auch ein blaues, orangefarbenes oder grünes sein können. Die Seite mit dem T sollte Dir zugewandt sein.

2.6.1 Bewegen nach Rechts

In diesem Fall soll die Kante nach **rechts** bewegt werden, da die andere Farbe des Kantensteins grün ist. Um den Kantenstein rechts von der mittleren Ebene nach unten zu bekommen, führe den folgenden Algorithmus aus:

Hinweis: die Klammerung dient hierbei nur der Übersichtlichkeit und haben sonst keine Bedeutung.

2.6.2 Bewegen nach Links

Nachdem du ein T gebildet hast, wirst du feststellen, dass in einigen Fällen das zu lösende Kantenstück auf die linke Seite und nicht auf die rechte Seite muss.

In diesem Beispiel soll ein Kantenstein mit den Farben Rot und Blau links von der mittleren Ebene platziert werden. Um dieses Problem zu lösen, führe den Algorithmus in umgekehrter Reihenfolge aus, wie wir ihn in diesem Schritt vorgestellt haben. Der Algorithmus sieht dann folgendermaßen aus:

2.6.3 Sonderfälle

Situation 1 Der Kantenstein ist an der richtigen Position aber spiegelverkert ausgerichtet.

Situation 2 Der Kantenstein ist an der falschen Stelle innerhalb der mittleren Ebene.

Um diese Sonderfälle zu lösen, suche Dir zunächst einen Kantenstein mit einer gelben Seite und bringe ihn so in Position als würdest Du ihn gerne nach links oder nach rechts an die Stelle bringen wo jetzt der unpassende Kantenstein ist. Führe den passenden Algorithmus aus, um den gelben Kantenstein an diese Position zu bringen. Damit ist dann der andere Stein in der oberen Ebene und kann wie oben dargestellt mit einem der beiden Algorithmen eingebaut werden.

Jetzt haben wir die ersten zwei Ebenen fertig und damit das "F" der CFOP Methode abgehakt.

2.7 Das gelbe Kreuz

Als Nächstes geht es uns darum, die letzte, gelbe Ebene so auszurichten, dass alle gelben Flächen in die richtige Richtung zeigen. Wie angekündigt machen wir das in zwei Schritten. Der erste Schritt hat das Ziel, ein gelbes Kreuz zu bilden. Mit anderen Worten: Alle vier gelben Kantensteine sollen mit ihrer gelben Seite nach oben zeigen.

Sobald die ersten zwei Ebenen des Würfels gelöst sind, kann man auf einen der vier folgenden Fälle stoßen:

Der vierte Fall ist das gesuchte gelbe Kreuz. Manchmal ist man ohne etwas tun zu müssen in dieser Situation und ist direkt fertig. Für die anderen drei Fälle wendest Du den folgen Algorithmus an:

Wie durch die Pfeile in der Abbildung gezeigt bringt dies den Würfel von einer der Situationen zur nächsten. Zwischendurch musst Du den Würfel immer wieder so drehen, dass er passend zu Dir ausgerichtet ist. Die obige Abbildung zeigt Dir die korrekte Ausrichtung für jeden der drei Fälle.