Accessing the Suffix Array via ϕ^{-1} -Forest

Christina Boucher

 $^{1}\mathrm{Herbert}$ Wertheim College of Engineering, University of Florida, USA

 2 M&D Data Science Center, Tokyo Medical and Dental University, Japan

Herman Perera 1

Massimiliano Rossi 1

extended talk on https://youtu.be/ SjAX1Ru2_gE

what's it all about?

goal given the r-index, can we practically speed up the time for retrieving a suffix array (SA) entry?

why interesting?

- ightharpoonup r-index is a version of the FM-index with refined SA samples
- while using less space than the FM-index on repetitive texts, the sparse SA samples make random accesses to SA[i] slow

example

index sequences

- GATTACAT
- GATACAT
- GATTAGATA

for that:

- concatenate with \$, and
- use # as terminal symbol
- input becomes T = GATTACAT\$GATAGATA#

	SA	rotation matrix B	WT
	27	#GATTACAT\$GATACAT\$GATTAGAT	Α
	9	\$GATACAT\$GATTAGATA#GATTACA	Т
3	17	\$GATTAGATA#GATTACAT\$GATACA	Т
4	26	A#GATTACAT\$GATACAT\$GATTAGA	Т
	5	ACAT\$GATACAT\$GATTAGATA#GAT	Т
6	13	ACAT\$GATTAGATA#GATTACAT\$GA	Т
	22	AGATA#GATTACAT\$GATACAT\$GAT	Т
8		AT\$GATACAT\$GATTAGATA#GATTA	C
9	15	AT\$GATTAGATA#GATTACAT\$GATA	C
10	24	ATA#GATTACAT\$GATACAT\$GATTA	
11	11	ATACAT\$GATTAGATA#GATTACAT\$	
12		ATTACAT\$GATACAT\$GATTAGATA#	
13	19	ATTAGATA#GATTACAT\$GATACAT\$	
14	6	${\tt CAT\$GATACAT\$GATTAGATA\#GATT}$	Α
15	14	CAT\$GATTAGATA#GATTACAT\$GAT	Α
16	23	GATA#GATTACAT\$GATACAT\$GATT	Α
17	10	${\tt GATACAT\$GATTAGATA\#GATTACAT}$	\$
18		GATTACAT\$GATACAT\$GATTAGATA	
19	18	GATTAGATA#GATTACAT\$GATACAT	\$
20	8	${\tt T\$GATACAT\$GATTAGATA\#GATTAC}$	Α
21	16	$\verb"T\$GATTAGATA#GATTACAT\$GATAC"$	Α
22	25	TA#GATTACAT\$GATACAT\$GATTAG	Α
23	4	TACAT\$GATACAT\$GATTAGATA#GA	Т
24	12	${\tt TACAT\$GATTAGATA\#GATTACAT\$G}$	Α
25	21	TAGATA#GATTACAT\$GATACAT\$GA	Т
26		${\tt TTACAT\$GATACAT\$GATA\#G}$	Α
27	20	TTACATA#CATTACAT®CATACAT®C	Λ

FM-index for text T := GATTACAT\$GATACAT\$GATTAGATA#

- uses BWT and a wavelet tree for pattern matching
- counting pattern occurrences works out of the box
- lacktriangle for locating the pattern occurrences, we need SA
- FM index samples SA by text position distance

	SA	rotation matrix I	3
	27	#GATTACAT\$GATACAT\$GATTAGAT	
	9	\$GATACAT\$GATTAGATA#GATTACA	ľ
3	17	\$GATTAGATA#GATTACAT\$GATACA	
4	26	A#GATTACAT\$GATACAT\$GATTAGA	
	5	ACAT\$GATACAT\$GATTAGATA#GAT	
6	13	ACAT\$GATTAGATA#GATTACAT\$GA	
	22	AGATA#GATTACAT\$GATACAT\$GAT	
8	7	AT\$GATACAT\$GATTAGATA#GATTA	
9	15	AT\$GATTAGATA#GATTACAT\$GATA	
10	24	ATA#GATTACAT\$GATACAT\$GATTA	
11	11	ATACAT\$GATTAGATA#GATTACAT\$	
12		ATTACAT\$GATACAT\$GATTAGATA#	
13	19	ATTAGATA#GATTACAT\$GATACAT\$	
14	6	CAT\$GATACAT\$GATTAGATA#GATT	
15	14	CAT\$GATTAGATA#GATTACAT\$GAT	
16	23	GATA#GATTACAT\$GATACAT\$GATT	
17	10	GATACAT\$GATTAGATA#GATTACAT	
18	1	GATTACAT\$GATACAT\$GATTAGATA	
19	18	GATTAGATA#GATTACAT\$GATACAT	
20	8	T\$GATACAT\$GATTAGATA#GATTAC	
0.4		TECATTA CATA UCATTA CATECATA C	

25 TA#GATTACAT\$GATACAT\$GATTAG A

1 TACAT\$GATACAT\$GATTAGATA#GA T

12 TACAT\$GATTAGATA#GATTACAT\$G A

21 TAGATA#GATTACAT\$GATACAT\$GA T

3 ITACAT\$GATACAT\$GATACAT\$GATACAT\$GA T

20 ITACATA#GATTACAT\$GATACAT\$G

FM-index for text T := GATTACAT\$GATACAT\$GATACAT\$GATTAGATA#

- uses BWT and a wavelet tree for pattern matching
- counting pattern occurrences works out of the box
- lacktriangle for locating the pattern occurrences, we need SA
- FM index samples SA by text position distance

r-index

only stores SA samples at run boundaries

```
i SA
             rotation matrix
                               RWT
1 27 #GATTACAT$GATACAT$GATTAGAT A
   9 $GATACAT$GATTAGATA#GATTACA T
3 17 $GATTAGATA#GATTACAT$GATACA T
4 26 A#GATTACAT$GATACAT$GATTAGA T
   5 ACAT$GATACAT$GATTAGATA#GAT T
6 13 ACAT$GATTAGATA#GATTACAT$GA T
7 22 AGATA#GATTACAT$GATACAT$GAT T
   7 AT$GATACAT$GATTAGATA#GATTA C
9 15 AT$GATTAGATA#GATTACAT$GATA C
10 24 ATA#GATTACAT$GATACAT$GATTA G
11 11 ATACAT$GATTAGATA#GATTACAT$ G
   2 ATTACAT$GATACAT$GATTAGATA# G
13 19 ATTAGATA#GATTACAT$GATACAT$ G
   6 CAT$GATACAT$GATTAGATA#GATT A
   14 CAT$GATTAGATA#GATTACAT$GAT A
16 23 GATA#GATTACAT$GATACAT$GATT A
  10 GATACAT$GATTAGATA#GATTACAT $
    1 GATTACAT$GATACAT$GATTAGATA #
   18 GATTAGATA#GATTACAT$GATACAT $
   8 T$GATACAT$GATTAGATA#GATTAC A
21 16 T$GATTAGATA#GATTACAT$GATAC A
22 25 TA#GATTACAT$GATACAT$GATTAG A
   4 TACAT$GATACAT$GATTAGATA#GA T
24 12 TACAT$GATTAGATA#GATTACAT$G A
25 21 TAGATA#GATTACAT$GATACAT$GA T
   3 TTACAT$GATACAT$GATTAGATA#G A
27 20 TTAGATA#GATTACAT$GATACAT$G A
```

SA access how do we get SA[i] with the r-index?

Toehold Lemma, Gagie+'18 BWT[i] = BWT[i + 1] \Rightarrow SA[i + 1] - SA[i] = SA[j + 1] - SA[j] for SA[j] := SA[i] - 1

Example

- \blacksquare SA[2] = 9, SA[20] = 8
- \blacksquare BWT[2] = BWT[3] = T
- A SA[3] SA[2] = SA[21] SA[20].

```
i SA
             rotation matrix
                                RWT
1 27 #GATTACAT$GATACAT$GATTAGAT A
   9 $GATACAT$GATTAGATA#GATTACA T
3 17 $GATTAGATA#GATTACAT$GATACA T
4 26 A#GATTACAT$GATACAT$GATTAGA T
   5 ACAT$GATACAT$GATTAGATA#GAT T
6 13 ACAT$GATTAGATA#GATTACAT$GA T
  22 AGATA#GATTACAT$GATACAT$GAT T
   7 AT$GATACAT$GATTAGATA#GATTA C
  15 AT$GATTAGATA#GATTACAT$GATA C
  24 ATA#GATTACAT$GATACAT$GATTA G
  11 ATACAT SGATTAGATA#GATTACAT SG
   2 ATTACAT$GATACAT$GATTAGATA# G
  19 ATTAGATA#GATTACAT$GATACAT$ G
   6 CAT$GATACAT$GATTAGATA#GATT A
  14 CAT$GATTAGATA#GATTACAT$GAT A
16 23 GATA#GATTACAT$GATACAT$GATT A
  10 GATACAT$GATTAGATA#GATTACAT $
   1 GATTACAT$GATACAT$GATTAGATA #
   18 GATTAGATA#GATTACAT$GATACAT $
   8 T$GATACAT$GATTAGATA#GATTAC A
  16 T$GATTAGATA#GATTACAT$GATAC A
  25 TA#GATTACAT$GATACAT$GATTAG A
   4 TACAT$GATACAT$GATTAGATA#GA T
  12 TACAT$GATTAGATA#GATTACAT$G A
  21 TAGATA#GATTACAT$GATACAT$GA T
   3 TTACAT$GATACAT$GATTAGATA#G A
```

Corollary

- let $k \ge 0$ be largest value such that $\mathrm{BWT}[i'] = \mathrm{BWT}[i'+1]$ for all i' with $\mathrm{SA}[i'] \in [\mathrm{SA}[i]-k+1..\mathrm{SA}[i]]$
- \blacksquare let SA[j] := SA[i] k

- $BWT[j] \neq BWT[j+1]$ but still
- SA[i+1] SA[i] = SA[j+1] SA[j].

```
i SA
             rotation matrix
1 27 #GATTACAT$GATACAT$GATTAGAT A
   9 $GATACAT$GATTAGATA#GATTACA T
3 17 $GATTAGATA#GATTACAT$GATACA T
4 26 A#GATTACAT$GATACAT$GATTAGA T
   5 ACAT$GATACAT$GATTAGATA#GAT T
6 13 ACAT$GATTAGATA#GATTACAT$GA T
  22 AGATA#GATTACAT$GATACAT$GAT T
   7 AT$GATACAT$GATTAGATA#GATTA C
  15 AT$GATTAGATA#GATTACAT$GATA C
  24 ATA#GATTACAT$GATACAT$GATTA G
  11 ATACAT SGATTAGATA#GATTACAT SG
   2 ATTACAT$GATACAT$GATTAGATA# G
  19 ATTAGATA#GATTACAT$GATACAT$ G
   6 CAT$GATACAT$GATTAGATA#GATT A
  14 CAT$GATTAGATA#GATTACAT$GAT A
16 23 GATA#GATTACAT$GATACAT$GATT A
  10 GATACAT$GATTAGATA#GATTACAT $
   1 GATTACAT$GATACAT$GATTAGATA #
   18 GATTAGATA#GATTACAT$GATACAT $
   8 T$GATACAT$GATTAGATA#GATTAC A
21 16 T$GATTAGATA#GATTACAT$GATAC A
  25 TA#GATTACAT$GATACAT$GATTAG A
   4 TACAT$GATACAT$GATTAGATA#GA T
  12 TACAT$GATTAGATA#GATTACAT$G A
  21 TAGATA#GATTACAT$GATACAT$GA T
   3 TTACAT$GATACAT$GATTAGATA#G A
```

Corollary

- let $k \ge 0$ be largest value such that $\mathrm{BWT}[i'] = \mathrm{BWT}[i'+1]$ for all i' with $\mathrm{SA}[i'] \in [\mathrm{SA}[i]-k+1..\mathrm{SA}[i]]$
- \blacksquare let SA[j] := SA[i] k

- $BWT[j] \neq BWT[j+1]$ but still
- SA[i+1] SA[i] = SA[j+1] SA[j].

```
i SA
             rotation matrix
                                RWT
1 27 #GATTACAT$GATACAT$GATTAGAT A
   9 $GATACAT$GATTAGATA#GATTACA T
3 17 $GATTAGATA#GATTACAT$GATACA T
4 26 A#GATTACAT$GATACAT$GATTAGA T
   5 ACAT$GATACAT$GATTAGATA#GAT T
6 13 ACAT$GATTAGATA#GATTACAT$GA T
  22 AGATA#GATTACAT$GATACAT$GAT T
   7 AT$GATACAT$GATTAGATA#GATTA C
9 15 AT$GATTAGATA#GATTACAT$GATA C
10 24 ATA#GATTACAT$GATACAT$GATTA G
  11 ATACAT SGATTAGATA#GATTACAT SG
   2 ATTACAT$GATACAT$GATTAGATA# G
  19 ATTAGATA#GATTACAT$GATACAT$ G
   6 CAT$GATACAT$GATTAGATA#GATT A
  14 CAT$GATTAGATA#GATTACAT$GAT A
  23 GATA#GATTACAT$GATACAT$GATT A
  10 GATACAT$GATTAGATA#GATTACAT $
   1 GATTACAT$GATACAT$GATTAGATA #
   18 GATTAGATA#GATTACAT$GATACAT $
   8 T$GATACAT$GATTAGATA#GATTAC A
21 16 T$GATTAGATA#GATTACAT$GATAC A
  25 TA#GATTACAT$GATACAT$GATTAG A
   4 TACAT$GATACAT$GATTAGATA#GA T
  12 TACAT$GATTAGATA#GATTACAT$G A
  21 TAGATA#GATTACAT$GATACAT$GA T
   3 TTACAT$GATACAT$GATTAGATA#G A
```

Corollary

- let $k \ge 0$ be largest value such that $\mathrm{BWT}[i'] = \mathrm{BWT}[i'+1]$ for all i' with $\mathrm{SA}[i'] \in [\mathrm{SA}[i]-k+1..\mathrm{SA}[i]]$
- \blacksquare let SA[j] := SA[i] k

- $BWT[j] \neq BWT[j+1]$ but still
- SA[i+1] SA[i] = SA[j+1] SA[j].

```
i SA
             rotation matrix
1 27 #GATTACAT$GATACAT$GATTAGAT A
   9 $GATACAT$GATTAGATA#GATTACA T
3 17 $GATTAGATA#GATTACAT$GATACA T
4 26 A#GATTACAT$GATACAT$GATTAGA T
   5 ACAT$GATACAT$GATTAGATA#GAT T
  13 ACAT$GATTAGATA#GATTACAT$GA T
  22 AGATA#GATTACAT$GATACAT$GAT T
   7 AT$GATACAT$GATTAGATA#GATTA C
9 15 AT$GATTAGATA#GATTACAT$GATA C
10 24 ATA#GATTACAT$GATACAT$GATTA G
  11 ATACAT SGATTAGATA#GATTACAT SG
   2 ATTACAT$GATACAT$GATTAGATA# G
  19 ATTAGATA#GATTACAT$GATACAT$ G
   6 CAT$GATACAT$GATTAGATA#GATT A
15 14 CAT$GATTAGATA#GATTACAT$GAT A
16 23 GATA#GATTACAT$GATACAT$GATT A
   10 GATACAT $GATTAGATA#GATTACAT $
   1 GATTACAT$GATACAT$GATTAGATA #
   18 GATTAGATA#GATTACAT$GATACAT $
   8 T$GATACAT$GATTAGATA#GATTAC A
21 16 T$GATTAGATA#GATTACAT$GATAC A
  25 TA#GATTACAT$GATACAT$GATTAG A
   4 TACAT$GATACAT$GATTAGATA#GA T
  12 TACAT$GATTAGATA#GATTACAT$G A
  21 TAGATA#GATTACAT$GATACAT$GA T
   3 TTACAT$GATACAT$GATTAGATA#G A
```

Corollary

- let $k \ge 0$ be largest value such that $\mathrm{BWT}[i'] = \mathrm{BWT}[i'+1]$ for all i' with $\mathrm{SA}[i'] \in [\mathrm{SA}[i]-k+1..\mathrm{SA}[i]]$
- \blacksquare let SA[j] := SA[i] k

- BWT[j] \neq BWT[j + 1] but still
- SA[i+1] SA[i] = SA[j+1] SA[j].

```
i SA
             rotation matrix
                                RWT
1 27 #GATTACAT$GATACAT$GATTAGAT A
   9 $GATACAT$GATTAGATA#GATTACA T
3 17 $GATTAGATA#GATTACAT$GATACA T
4 26 A#GATTACAT$GATACAT$GATTAGA T
   5 ACAT$GATACAT$GATTAGATA#GAT T
6 13 ACAT$GATTAGATA#GATTACAT$GA T
  22 AGATA#GATTACAT$GATACAT$GAT T
   7 AT$GATACAT$GATTAGATA#GATTA C
9 15 AT$GATTAGATA#GATTACAT$GATA C
10 24 ATA#GATTACAT$GATACAT$GATTA G
  11 ATACAT SGATTAGATA#GATTACAT SG
   2 ATTACAT$GATACAT$GATTAGATA# G
  19 ATTAGATA#GATTACAT$GATACAT$ G
   6 CAT$GATACAT$GATTAGATA#GATT A
15 14 CAT$GATTAGATA#GATTACAT$GAT A
16 23 GATA#GATTACAT$GATACAT$GATT A
   10 GATACAT $GATTAGATA#GATTACAT $
   1 GATTACAT$GATACAT$GATTAGATA #
   18 GATTAGATA#GATTACAT$GATACAT $
   8 T$GATACAT$GATTAGATA#GATTAC A
21 16 T$GATTAGATA#GATTACAT$GATAC A
  25 TA#GATTACAT$GATACAT$GATTAG A
   4 TACAT$GATACAT$GATTAGATA#GA T
  12 TACAT$GATTAGATA#GATTACAT$G A
  21 TAGATA#GATTACAT$GATACAT$GA T
   3 TTACAT$GATACAT$GATTAGATA#G A
```

Corollary

- let $k \ge 0$ be largest value such that $\mathrm{BWT}[i'] = \mathrm{BWT}[i'+1]$ for all i' with $\mathrm{SA}[i'] \in [\mathrm{SA}[i]-k+1..\mathrm{SA}[i]]$
- \blacksquare let SA[j] := SA[i] k

- BWT[j] \neq BWT[j + 1] but still
- \blacksquare SA[i+1] SA[i] = SA[j+1] SA[j].

```
i SA
             rotation matrix
                                RWT
1 27 #GATTACAT$GATACAT$GATTAGAT A
   9 $GATACAT$GATTAGATA#GATTACA T
3 17 $GATTAGATA#GATTACAT$GATACA T
4 26 A#GATTACAT$GATACAT$GATTAGA T
    5 ACAT$GATACAT$GATTAGATA#GAT T
6 13 ACAT$GATTAGATA#GATTACAT$GA T
  22 AGATA#GATTACAT$GATACAT$GAT T
   7 AT$GATACAT$GATTAGATA#GATTA C
9 15 AT$GATTAGATA#GATTACAT$GATA C
10 24 ATA#GATTACAT$GATACAT$GATTA G
   11 ATACAT SGATTAGATA#GATTACAT SG
    2 ATTACAT$GATACAT$GATTAGATA# G
   19 ATTAGATA#GATTACAT$GATACAT$ G
   6 CAT$GATACAT$GATTAGATA#GATT A
15 14 CAT$GATTAGATA#GATTACAT$GAT A
16 23 GATA#GATTACAT$GATACAT$GATT A
   10 GATACAT $GATTAGATA#GATTACAT $
    1 GATTACAT$GATACAT$GATTAGATA #
   18 GATTAGATA#GATTACAT$GATACAT $
   8 T$GATACAT$GATTAGATA#GATTAC A
21 16 T$GATTAGATA#GATTACAT$GATAC A
22 25 TA#GATTACAT$GATACAT$GATTAG A
    4 TACAT$GATACAT$GATTAGATA#GA T
   12 TACAT$GATTAGATA#GATTACAT$G A
   21 TAGATA#GATTACAT$GATACAT$GA T
    3 TTACAT$GATACAT$GATTAGATA#G A
27 20 TTAGATA#GATTACAT$GATACAT$G A
```

Corollary

- let $k \ge 0$ be largest value such that $\mathrm{BWT}[i'] = \mathrm{BWT}[i'+1]$ for all i' with $\mathrm{SA}[i'] \in [\mathrm{SA}[i]-k+1..\mathrm{SA}[i]]$
- \blacksquare let SA[j] := SA[i] k

Then:

- BWT[j] \neq BWT[j + 1] but still
- SA[i+1] SA[i] = SA[j+1] SA[j].

why it works:

for each backward step, we move to the preceding character pair in the text

```
$GATTAGATA#GATTACAT$GATACA T
     A#GATTACAT$GATACAT$GATTAGA T
4
5
     ACAT$GATACAT$GATTAGATA#GAT T
6
     ACAT$GATTAGATA#GATTACAT$GA T
     AGATA#GATTACAT$GATACAT$GAT T
     AT$GATACAT$GATTAGATA#GATTA C
     AT$GATTAGATA#GATTACAT$GATA C
   24 ATA#GATTACAT$GATACAT$GATTA G
     ATACAT SGATTAGATA#GATTACAT S G
12
     ATTACAT$GATACAT$GATTAGATA# G
     ATTAGATA#GATTACAT$GATACAT$ G
   6 CATSGATACATSGATTAGATA#GATT A
     CAT$GATTAGATA#GATTACAT$GAT A
     GATA#GATTACAT$GATACAT$GATT A
   10 GATACAT$GATTAGATA#GATTACAT $
   GATTACAT$GATACAT$GATTAGATA #
   18 GATTAGATA#GATTACAT$GATACAT $
   8 T$GATACAT$GATTAGATA#GATTAC A
     T$GATTAGATA#GATTACAT$GATAC A
21
     TA#GATTACAT$GATACAT$GATTAG A
   TACAT$GATACAT$GATTAGATA#GA T
24 12 TACAT$GATTAGATA#GATTACAT$G A
   21 TAGATA#GATTACAT$GATACAT$GA T
   3 TTACAT$GATACAT$GATTAGATA#G A
     TTAGATA#GATTACAT$GATACAT$G A
```

rotation matrix

#GATTACAT\$GATACAT\$GATTAGAT A \$GATACAT\$GATTAGATA#GATTACA T

i SA

r-index in $\mathcal{O}(r)$ space store

- lacksquare $\mathcal{S}[x]$: sample at start of x-th run
- $\mathcal{E}[x]$: sample at end of x-th run

where $x \in [1..r]$, and r is the number of character runs in BWT.

interested in following queries on \mathcal{E} :

- \blacksquare $\mathcal{E}.\mathrm{pred}(p): \max\{q \in \mathcal{E}: q \leq p\}$
- \blacksquare $\mathcal{E}.\operatorname{succ}(p): \min\{q \in \mathcal{E}: q > p\}$

for that: build predecessor and successor data structure on ${\mathcal E}$

E.pred(
$$S[x + 1]$$
)

 $x = S[x] \ \mathcal{E}[x]$

1 27 27 27

2 4 \leftarrow 9 22

3 4 7 15

4 23 24 19

5 4 6 23

6 10 10 10

7 1 1 1

8 18 18 18

9 4 8 25

• each entry of \mathcal{E} is a node

10 4 4 4

• create an arc from $\mathcal{E}[x]$ to $\mathcal{E}[y]$ if

11 12 12 12

12 21 21 21

(sorted $\mathcal{E} = [1, 4, 10, 12, 15, 18, 19, 20, 21, 22, 23, 25, 27]) 8 / 18$

to compute SA[i + 1]22 from SA[i]1. start node is $p := \mathcal{E}.\operatorname{pred}(\operatorname{SA}[i])$ 19 2. initial cost c_0 is SA[i] - p3. stop if accumulated cost c is above 25 15 -1, 3+(23 -0, 2+(limit of arc 4. add cost of arc to example

5. report SA value

node v

 \blacksquare arc (27, 4) has limit $1 > c \Rightarrow$ move to 4 \blacksquare add cost 5 of arc (27, 4) to $c \leftarrow c_0 + 5 = 5$

$$\Rightarrow$$
 SA[2] = 9 is node label 4 plus cost 5

■ $SA[1] = 27, p = 27, c \leftarrow c_0 = 0$

to compute SA[i+1] from SA[i]

- 1. start node is $p := \mathcal{E}.\operatorname{pred}(\operatorname{SA}[i])$
- 2. initial cost c_0 is SA[i] p
- 3. stop if accumulated cost *c* is above limit of arc
- 4. add cost of arc to c and move to next node v
- 5. report SA value v + c
- 6. goto 3.

- lacktriangle are at node 4 with accumulated cost c=5
- \blacksquare arc (4,12) has limit $6 > c \Rightarrow$ move to 12
- ightharpoonup SA[3] = 17 is node label 12 plus cost 5

to compute SA[i+1]from SA[i]

- 1. start node is $p := \mathcal{E}.\operatorname{pred}(\operatorname{SA}[i])$
- 2. initial cost c_0 is SA[i] - p3. stop if accumulated
- cost c is above limit of arc 4. add cost of arc to
 - c and move to next node v
- 5. report SA value v + c

6. goto 3.

- \blacksquare are at node 12 with accumulated cost c=5arc (12, 21) has limit $3 < c \Rightarrow \text{stop}$
- continue with SA[3] = 17
- $p = \mathcal{E}.\text{pred}(17) = 15, c_0 = 2.$

to compute SA[i+1] from SA[i]

- 1. start node is $p := \mathcal{E}.\operatorname{pred}(\operatorname{SA}[i])$
- initial cost c₀ is SA[i] p
 stop if accumulated
- cost *c* is above limit of arc

 4. add cost of arc to
 - c and move to next node v
 - 5. report SA value v + c

6. goto 3.

$$p = \mathcal{E}.pred(17) = 15, c \leftarrow c_0 = 2$$

- \blacksquare arc (15, 23) has limit $3 > c \Rightarrow$ continue
- lacktriangle add cost 1 of arc (15,23) to $c \leftarrow c_0 + 1 = 3$
- ightharpoonup SA[4] = 26 is node label 23 plus cost 3

to compute SA[i+1] from SA[i]

- 1. start node is $p := \mathcal{E}.\operatorname{pred}(\operatorname{SA}[i])$
- initial cost c₀ is SA[i] p
 stop if accumulated
 - cost c is above limit of arc
- 4. add cost of arc to c and move to next node v
- 5. report SA value v + c
- 6. goto 3.

further speedup

- lacktriangle for each traversed arc, we can omit a predecessor query on $\mathcal E$
- if such traversable paths are long, we add shortcuts
- \Rightarrow build ϕ^{-1} trees on long paths

identify label of out-going arc with node itself

- identify label of out-going arc with node itself
- fill up path with dummy arcs having label 0, −1 (=untraversable)

- identify label of out-going arc with node itself
- fill up path with dummy arcs having label 0, −1 (=untraversable)
- build perfect binary tree on path by partitioning it

- identify label of out-going arc with node itself
- fill up path with dummy arcs having label 0, -1 (=untraversable)
- build perfect binary tree on path by partitioning it
- label of internal node is based on the label of its children as below:

$$\overbrace{\begin{bmatrix}c_1+c_2, \min(\ell_1,\ell_2-c_1)\\\hline c_1,\ell_1\end{bmatrix}}^{} \overbrace{\begin{bmatrix}c_2,\ell_2\end{bmatrix}}^{}$$

querying ϕ^{-1} tree

- 1. climb up until exceeding the limit at a node
- 2. climb down to leaf at which we exceed the limit the first time

querying ϕ^{-1} tree

- 1. climb up until exceeding the limit at a node
- climb down to leaf at which we exceed the limit the first time

- 1. start at 27 with cost 0
- 2. climb up to 7, -4 with limit -4 < 0
- 3. take cost of left child and descend to 0, 3
- 4. return 12 with cost 5, having skipped 4

experiments

dataset

- Chromosome 19 sequences from the 1000 Genomes Project machine
 - AMD EPYC 75F3 32-core processor
 - 512 GB of RAM
 - 64-bit Linux

alternative solutions

- standard r-index, Gagie+'18
- sr-index, Cobas+'21
- RLCSA, Mäkinen+'10

 ϕ^{-1} forest has no clear advantage

conclusion

introduced ϕ^{-1} forest

- \bigcirc $\mathcal{O}(r)$ space data structure on top of r-index
- provides random access to SA
- query time depends on
 - □ length of a run
 - □ values of costs and limits

open problems

- only trivial bound known
 - $\supset \mathcal{O}(\log r)$ time per ϕ^{-1} tree traversal
 - $\supset \mathcal{O}(\log \log_w(n/r))$ time for a predecessor query
- need theoretical analysis of number of predecessor calls

Thank you for listening. Any questions are welcome!

i SA rotation matrix #GATTACAT\$GATACAT\$GATTAGAT A \$GATACAT\$GATTAGATA#GATTACA T \$GATTAGATA#GATTACAT\$GATACA T A#GATTACAT\$GATACAT\$GATTAGA T 4 5 ACAT\$GATACAT\$GATTAGATA#GAT T ACAT\$GATTAGATA#GATTACAT\$GA T AGATA#GATTACAT\$GATACAT\$GAT T AT\$GATACAT\$GATTAGATA#GATTA C AT\$GATTAGATA#GATTACAT\$GATA C 24 ATA#GATTACAT\$GATACAT\$GATTA G ATACAT SGATTAGATA#GATTACAT S G 12 ATTACAT\$GATACAT\$GATTAGATA# G ATTAGATA#GATTACAT\$GATACAT\$ G 6 CATSGATACATSGATTAGATA#GATT A CAT\$GATTAGATA#GATTACAT\$GAT A GATA#GATTACAT\$GATACAT\$GATT A 10 GATACAT\$GATTAGATA#GATTACAT \$ GATTACAT\$GATACAT\$GATTAGATA # 18 GATTAGATA#GATTACAT\$GATACAT \$ 8 T\$GATACAT\$GATTAGATA#GATTAC A T\$GATTAGATA#GATTACAT\$GATAC A 21 TA#GATTACAT\$GATACAT\$GATTAG A TACAT\$GATACAT\$GATTAGATA#GA T 24 12 TACAT\$GATTAGATA#GATTACAT\$G A

21 TAGATA#GATTACAT\$GATACAT\$GA T 3 TTACAT\$GATACAT\$GATTAGATA#G A TTAGATA#GATTACAT\$GATACAT\$G A how to compute SA[i + 1] from SA[i] with the *r*-index:

- \blacksquare if $SA[i] = \mathcal{E}[x]$ for an $x \in [1..r]$
- $\Rightarrow SA[i+1] = S[x+1]$
- ightharpoonup otherwise, take $p = \mathcal{E}.\operatorname{pred}(SA[i])$, and let i be such that SA[i] = p
- apply toehold lemma:
- A SA[i+1] SA[i] = SA[i+1] SA[i]
- ightharpoonup we obtain SA[j+1] from the above case $(SA[i] \in \mathcal{E})$

 ϕ^{-1}

computing $\mathrm{SA}[i+1]$ from $\mathrm{SA}[i]$ is actually an application of

$$\phi^{-1}[\mathrm{SA}[i]] := egin{cases} 1 & ext{if } i=n, \ \mathrm{SA}[i+1] & ext{otherwise} \end{cases}$$

then:

■ take
$$p = \mathcal{E}.\operatorname{pred}(\operatorname{SA}[i])$$
, and let j be such that $\operatorname{SA}[j] = p$

$$lacktriangle$$
 rewrite $\mathrm{SA}[i+1] = \mathrm{SA}[j+1] + \mathrm{SA}[i] - \mathrm{SA}[j]$ as

$$\phi^{-1}(SA[i]) = SA[i+1] = \phi^{-1}(p) + SA[i] - p$$

```
i SA
            rotation matrix
1 27 #GATTACAT$GATACAT$GATTAGAT A
  9 $GATACAT$GATTAGATA#GATTACA T
    $GATTAGATA#GATTACAT$GATACA T
    A#GATTACAT$GATACAT$GATTAGA T
4
    ACAT$GATACAT$GATTAGATA#GAT T
    ACAT$GATTAGATA#GATTACAT$GA T
    AGATA#GATTACAT$GATACAT$GAT T
  7 AT$GATACAT$GATTAGATA#GATTA C
    AT$GATTAGATA#GATTACAT$GATA C
```

10 24 ATA#GATTACAT\$GATACAT\$GATTA G ATACAT\$GATTAGATA#GATTACAT\$ G ATTACAT\$GATACAT\$GATTAGATA# G

19 ATTAGATA#GATTACAT\$GATACAT\$ G 6 CAT\$GATACAT\$GATTAGATA#GATT A

CAT\$GATTAGATA#GATTACAT\$GAT A GATA#GATTACAT\$GATACAT\$GATT A

17 10 GATACAT\$GATTAGATA#GATTACAT \$ GATTACAT\$GATACAT\$GATTAGATA # 19 18 GATTAGATA#GATTACAT\$GATACAT \$

> 8 T\$GATACAT\$GATTAGATA#GATTAC A T\$GATTAGATA#GATTACAT\$GATAC A

TA#GATTACAT\$GATACAT\$GATTAG A

3 TTACAT\$GATACAT\$GATTAGATA#G A 20 TTAGATA#GATTACAT\$GATACAT\$G A

from SA[i] to SA[i+1]

 $\Phi^{-1}(\mathcal{E}[x]) = \mathcal{S}[x+1]$

 $\Rightarrow SA[3] = 12 + 9 - 4 = 17$

 \blacksquare take $p = \mathcal{E}.\operatorname{pred}(SA[i])$, and let i be such that SA[i] = p

 $\phi^{-1}(SA[i]) = \phi^{-1}(p) + SA[i] - p$

example

$$i = 2$$
, SA[2] = 9 is known

$$\blacksquare$$
 4 = \mathcal{E} .pred(9)

$$\phi^{-1}(4) = 12$$

 $\mathcal{E} = [1, 4, 10, 12, 15, 18, 19, 20, 21, 22, 23, 25, 27])$

4 TACAT\$GATACAT\$GATTAGATA#GA T (sorted $\phi^{-1}(4) \rightarrow 24$ 12 TACAT \$GATTAGATA#GATTACAT \$G A 25 21 TAGATA#GATTACAT\$GATACAT\$GA T

```
i SA
                      rotation matrix
         1 27 #GATTACAT$GATACAT$GATTAGAT A
           9 $GATACAT$GATTAGATA#GATTACA T
           17 $GATTAGATA#GATTACAT$GATACA T
             A#GATTACAT$GATACAT$GATTAGA T
             ACAT$GATACAT$GATTAGATA#GAT T
             ACAT$GATTAGATA#GATTACAT$GA T
             AGATA#GATTACAT$GATACAT$GAT T
            7 AT$GATACAT$GATTAGATA#GATTA C
             AT$GATTAGATA#GATTACAT$GATA C
\phi^{-1}(15) \rightarrow 10 24 ATA#GATTACAT$GATACAT$GATTA G
             ATACAT$GATTAGATA#GATTACAT$ G
             ATTACAT$GATACAT$GATTAGATA# G
           19 ATTAGATA#GATTACAT$GATACAT$ G
            6 CAT$GATACAT$GATTAGATA#GATT A
```

15 CAT\$GATTAGATA#GATTACAT\$GAT A
16 23 GATA#GATTACAT\$GATA A
17 10 GATACAT\$GATTAGATA#GATTACAT \$

> 8 T\$GATACAT\$GATTAGATA#GATTAC A T\$GATTAGATA#GATTACAT\$GATAC A

25 TA#GATTACAT\$GATACAT\$GATTAG A

4 TACAT\$GATACAT\$GATTAGATA#GA T

24 12 TACAT\$GATTAGATA#GATTACAT\$G A

25 21 TAGATA#GATTACAT\$GATACAT\$GA T 26 3 TTACAT\$GATACAT\$GATTAGATA#G A 27 20 TTAGATA#GATTACAT\$GATACAT\$G A from SA[i] to SA[i+1]

lacktriangledown $\phi^{-1}(\mathcal{E}[x]) = \mathcal{S}[x+1]$

■ take $p = \mathcal{E}.\operatorname{pred}(\operatorname{SA}[i])$, and let j be such that $\operatorname{SA}[j] = p$

 $\Phi^{-1}(\mathrm{SA}[i]) = \phi^{-1}(p) + \mathrm{SA}[i] - p$

example

$$i = 3$$
, SA[3] = 17 is known

 $15 = \mathcal{E}.\mathrm{pred}(17)$

$$\phi^{-1}(15) = 24$$

 $\Rightarrow SA[4] = 24 + 17 - 15 = 26$

(sorted

(sorted $\mathcal{E} = [1, 4, 10, 12, 15, 18, 19, 20, 21, 22, 23, 25, 27])$

	SA	rotation matrix	3WT	
1	27	#GATTACAT\$GATACAT\$GATTAGAT	Α	
2	9	\$GATACAT\$GATTAGATA#GATTACA	Τ.	
3	17	\$GATTAGATA#GATTACAT\$GATACA	Τ.	
4		A#GATTACAT\$GATACAT\$GATTAGA	Τ.	
5		ACAT\$GATACAT\$GATTAGATA#GAT	Т	
6		ACAT\$GATTAGATA#GATTACAT\$GA	Τ.	
7	22	AGATA#GATTACAT\$GATACAT\$GAT	Т	
В	7	AT\$GATACAT\$GATTAGATA#GATTA	. C	
9	15	AT\$GATTAGATA#GATTACAT\$GATA	. C	\mathcal{C}
0	24	ATA#GATTACAT\$GATACAT\$GATTA	G	
1		ATACAT\$GATTAGATA#GATTACAT\$		
2		ATTACAT\$GATACAT\$GATTAGATA#	G	
3	19	ATTAGATA#GATTACAT\$GATACAT\$		
4	6	CAT\$GATACAT\$GATTAGATA#GATT	Α	
5		CAT\$GATTAGATA#GATTACAT\$GAT	Α	
6	23	GATA#GATTACAT\$GATACAT\$GATT	Α	
7	10	GATACAT\$GATTAGATA#GATTACAT	\$	
8	1	GATTACAT\$GATACAT\$GATTAGATA		
9	18	GATTAGATA#GATTACAT\$GATACAT	\$	
0	8	T\$GATACAT\$GATTAGATA#GATTAC	Α	
1		T\$GATTAGATA#GATTACAT\$GATAC	Α	
2	25	TA#GATTACAT\$GATACAT\$GATTAG	Α	
3	4	TACAT\$GATACAT\$GATTAGATA#GA	T	
4	12	TACAT\$GATTAGATA#GATTACAT\$G	Α	
5	21	TAGATA#GATTACAT\$GATACAT\$GA	Т.	
6	3	TTACAT\$GATACAT\$GATTAGATA#G	Λ	

Observation

- # predecessor queries is bounded by length of run
- \Rightarrow practically slow for long runs

Can we compute m iterations of ϕ^{-1} faster?

```
rotation matrix
                                BWT
  27 #GATTACAT$GATACAT$GATTAGAT A
   9 $GATACAT$GATTAGATA#GATTACA T
   17 $GATTAGATA#GATTACAT$GATACA T
     A#GATTACAT$GATACAT$GATTAGA T
     ACAT$GATACAT$GATTAGATA#GAT T
     ACAT$GATTAGATA#GATTACAT$GA T
     AGATA#GATTACAT$GATACAT$GAT T
   7 AT$GATACAT$GATTAGATA#GATTA C
     AT$GATTAGATA#GATTACAT$GATA C
10 24 ATA#GATTACAT$GATACAT$GATTA G
     ATACAT$GATTAGATA#GATTACAT$ G
     ATTACAT$GATACAT$GATTAGATA# G
   19 ATTAGATA#GATTACAT$GATACAT$ G
   6 CAT$GATACAT$GATTAGATA#GATT A
     CAT$GATTAGATA#GATTACAT$GAT A
15
```

GATA#GATTACAT\$GATACAT\$GATT A

TA#GATTACAT\$GATACAT\$GATTAG A 4 TACAT\$GATACAT\$GATTAGATA#GA T

17 10 GATACAT\$GATTAGATA#GATTACAT \$ GATTACAT\$GATACAT\$GATTAGATA #

19 18 GATTAGATA#GATTACAT\$GATACAT \$ 8 T\$GATACAT\$GATTAGATA#GATTAC A T\$GATTAGATA#GATTACAT\$GATAC A

24 12 TACAT\$GATTAGATA#GATTACAT\$G A 25 21 TAGATA#GATTACAT\$GATACAT\$GA T

3 TTACAT\$GATACAT\$GATTAGATA#G A 20 TTAGATA#GATTACAT\$GATACAT\$G A \triangleright $\mathcal{E}[x] := \mathcal{E}.\mathrm{pred}(\mathrm{SA}[i])$ \triangleright $\mathcal{E}[v] := \mathcal{E}.\operatorname{pred}(\operatorname{SA}[i+1])$

suppose $SA[i] = \mathcal{E}[x]$, and let

then: $\phi^{-1}(SA[i]) = SA[i+1] = S[x+1]$ $= \mathcal{E}[v] + \mathcal{S}[x+1] - \mathcal{E}[v]$ $= \mathcal{E}[v] + c_{\mathsf{v}}$

where $c_x := \mathcal{S}[x+1] - \mathcal{E}.\operatorname{pred}(\mathcal{S}[x+1])$ is the cost of x-th run.

example

i = 1, $SA[i] = \mathcal{E}[1] = 27$. $\mathcal{S}[2] = 9$, $\mathcal{E}[v] = \mathcal{E}$. pred $(\mathcal{S}[2]) = 4$

 $c_1 = S[2] - \mathcal{E}[y] = 5; \ \phi^{-1}(27) = 4 + 5 = 9$

suppose $SA[i+1] \notin \mathcal{E}$. Then:

Then:

$$\phi^{-1}(\mathrm{SA}[i+1]) = \phi^{-1}(\phi^{-1}(\mathrm{SA}[i]))$$

$$= \phi^{-1}(\mathcal{S}[x+1])$$

$$= \phi^{-1}(\mathcal{E}[y] + c_{\vee})$$

$$T = \underbrace{c_{y}} c_{y}$$

$$c_{x}$$

$$\mathcal{S}[x+1]$$

 $\mathcal{E}[y]$

$$lacktriangle$$
 apply toehold lemma for $\mathcal{E}.\mathrm{pred}(\mathcal{S}[x+1]) = \mathcal{E}[y]$:

$$\Rightarrow \phi^{-1}(\mathcal{E}[y] + c_{\scriptscriptstyle X}) = \phi^{-1}(\mathcal{E}[y]) + c_{\scriptscriptstyle X}$$

finally,
$$\phi^{-1}(\mathcal{E}[y]) = \mathcal{E}[y+1] = \mathcal{E}[z] + c_y$$
, where $\mathcal{E}[z] := \mathcal{E}.\operatorname{pred}(\mathcal{E}[v+1])$

total:
$$\phi^{-1}(SA[i+1]) = \mathcal{E}[z] + c_x + c_y$$

given $\mathcal{E}[w] := \mathcal{E}.\operatorname{succ}(\mathcal{E}[y])$, we assumed that

$$c_x = \mathcal{E}[x+1] - \mathcal{E}[y] < \mathcal{E}[w] - \mathcal{E}[y] = \ell_y,$$
 where $\ell_y := \mathcal{E}.\operatorname{succ}(\mathcal{E}[y]) - \mathcal{E}[y]$ is the limit of the y-th run

recursive application

- lacksquare given $\mathrm{SA}[i]$ with $\mathcal{E}.\mathrm{pred}(\mathrm{SA}[i]) = \mathcal{E}[x_1]$,
- lacksquare let $c_0 := \mathrm{SA}[i] \mathcal{E}[x_1]$ and
- $\mathbf{x}_1, x_2, \dots, x_m$ be the indices of the runs we visit, such that $\mathcal{E}.\operatorname{pred}(\mathcal{E}[x_j] + \sum_{k=1}^{j-1} c_{x_k} + c_0) = \mathcal{E}[x_{j+1}]$ for all $j \in [2..m-1]$

then:

$$\phi^{-m}(SA[i]) = S[x_m + 1] = \mathcal{E}[x_m] + \sum_{k=1}^{n} c_{x_k} + c_0$$

conclusion:

- \blacksquare just need to sum up $\sum_k c_{x_k}$
- but check that sum does not exceed the limit
- can translate this to a path problem on a directed labeled graph

