LECTURE: CHAPTER 7 REVIEW

Section 7.1 - Integration by Parts

Example 1: Evaluate the following integrals.

(a)
$$\int x \cos(2x) dx$$

(b)
$$\int \frac{\ln x}{x^3} dx$$

(c)
$$\int \arctan(3x)dx$$

Section 7.2 - Trigonometric Integrals

Example 2: Evaluate the following integrals.

(a)
$$\int_0^{\pi/2} \sin^5 \theta d\theta$$

(b)
$$\int \sin^4(5x) dx$$

Example 3: Evaluate the following integrals.

(a)
$$\int \tan^5 \theta \sec^3 \theta d\theta$$

(b)
$$\int \tan^2 \theta \sec^4 \theta d\theta$$

Section 7.3 - Trigonometric Substitution

Example 4: Evaluate
$$\int \frac{x^2}{(4-x^2)^{3/2}} dx$$

Example 5: Evaluate
$$\int \frac{1}{(x^2+1)^2} dx$$

Section 7.4 - Integration by Parts

Example 6: Give the partial fraction decomposition for the following.

(a)
$$\frac{x^2+4}{x(x^2-4)}$$

(b)
$$\frac{x^2+4}{x^2(x-4)}$$

(c)
$$\frac{x^2+1}{x(x^2+4)}$$

Example 7: Evaluate
$$\int \frac{3x^2 - 2}{x^2 - 2x - 8} dx$$

Example 8: Evaluate
$$\int \frac{5x^2 + 3x - 2}{x^3 + 2x^2} dx$$

Section 7.7 - Approximate Integration

Example 11: Approximate $\int_0^4 \sqrt{x} \cos x dx$ using n = 4 and the:

- (a) Trapezoid Rule
- (b) Midpoint Rule
- (c) Simpson's Rule

Section 7.8 - Improper Integrals

Example 12: Evaluate the integral or show that it is divergent.

(a)
$$\int_{1}^{\infty} x^3 e^{-x^4} dx$$

(b)
$$\int_0^1 \frac{x-1}{\sqrt{x}}$$