

Mathematics for Computer Science MIT 6.042J/18.062J

Truth and Proof

Math vs. Reality **Propositional Logic Proof by Cases**

Evidence vs. Proof

Let
$$p(n) := n^2 + n + 41$$
.

Claim:

 $\forall n \in \mathbb{N}$ p(n) is a prime number

Only Prime Numbers?

Evidence:

$$p(0) = 41$$
 prime

$$p(1) = 43$$
 prime

$$p(2) = 47$$
 prime

$$p(3) = 53$$
 prime

p(20) = 461 prime looking good!

p(39) = 1601 prime enough already!

Only Prime Numbers?

$$\forall n \in \mathbb{N}$$
 $p(n) := n^2 + n + 41$

is a prime number

This can't be a coincidence.

The hypothesis must be true.

BUT IT'S NOT:

$$p(40) = 1681$$
 is NOT PRIME.

Only Prime Numbers?

Quickie:

Prove that 1601 is prime, and 1681 is not prime.

Evidence vs. Proof: Deep Example

EULER'S CONJECTURE (1769)

$$a^4 + b^4 + c^4 = d^4$$

has no solution for a, b, c, d positive integers:

$$\forall a \in \mathbb{Z}^+ \forall b \in \mathbb{Z}^+ \forall c \in \mathbb{Z}^+ \forall d \in \mathbb{Z}^+$$

$$a^4 + b^4 + c^4 \neq d^4$$

Evidence vs. Proof: Deep Example

Counterexample: 218 years later by Noam Elkies at Liberal Arts school up Mass Ave:

Further Extreme Example

Hypothesis:

$$313 \cdot (x^3 + y^3) = z^3$$

has no positive integer solution.

False. But smallest counterexample has MORE THAN 1000 digits!

pyright © Albert R. Meyer, 2002.

Evidence vs. Proof

Claim: All odd numbers greater than 1 are prime.

MATHEMATICIAN: 3 is prime, 5 is prime, 7 is prime, but $9 = 3 \times 3$ is not prime, so the proposition is false!

opyright © Albert R. Meyer, 2002

L1-2.9

Evidence vs. Proof

Claim: All odd numbers greater than 1 are prime.

PHYSICIST: 3 is prime, 5 is prime, 7 is prime, 9 is *not* prime, but 11 is prime, 13 is prime. So 9 must be experimental error; the proposition is true!

opyright © Albert R. Meyer, 2002.

L1-2.10

Evidence vs. Proof

Claim: All odd numbers greater than 1 are prime.

LAWYER: Ladies and Gentleman of the jury, it is beyond all reasonable doubt that odd numbers are prime. The evidence is clear: 3 is prime, 5 is prime, 7 is prime, 9 is prime, 11 is prime, and so on.

Copyright © Albert R. Meyer, 2002.

Math

Sets

Numbers $\sqrt{7}, \pi, i+1$

T, F

Booleans

Strings " $a \wedge b$ "

 $f(x) = x^2 + 2$

Functions

Relations $a \le b$

 $\vec{F} = m \cdot \vec{a}$

Vectors

Copyright © Albert R. Meyer, 200

L1-2.1

Not Math: Cogito ergo sum

René Descartes'

MEDITATIONS

on First Philosophy in which the Existence of God and the Distinction Between Mind and Body are Demonstrated.

opyright © Albert R. Meyer, 2002

L1-2.17

Proposition is either **True** or **False**

Examples: 2+2=4 True

 $1 \times 1 = 4$ False

Non-examples: Wake up!

Where am I?

Meyer, 2002. L1-2.18

Operators

 $\wedge ::= AND$

 $\vee := OR$

 $\neg ::= NOT$

 $\rightarrow ::= IMPLIES$

 $\leftrightarrow ::= IFF$ (if and only if)

Convright © Albert R. Meyer. 20

1.1-2.19

Proof by calculation: Truth Tables

DeMorgan's law

 $\neg (p \lor q)$ is equivalent to $\overline{p} \land \overline{q}$

p	q	$\neg (p \lor q)$
Т	T	F T
Т	F	F : T
F	T	F T
F	F	TF

\overline{p}	\overline{q}	$\overline{p} \wedge \overline{q}$
F	F	F
F	Т	F
Т	F	F
Т	T	Ť

nyright © Albert R. Meyer. 2002

1122

Proof by Deductions

A student is trying to prove that propositions P, Q, and R are all true. She proceeds as follows.

First, she proves three facts:

- P implies Q
- Q implies R
- R implies P.

Then she concludes,

"Thus P, Q, and R are obviously all true."

opyright © Albert R. Meyer, 200

L1-2.2

Deductions

From: P implies Q, Q implies R, R implies P

Conclude: P, Q, and R are true.

Antecedents

 $\frac{(P \to Q), \ (Q \to R), \ (R \to P)}{P \land Q \land R}$ $\underbrace{P \land Q \land R}_{Conclusion}$

opyright © Albert R. Meyer, 2002

L1-2.22

Good (Sound) Rule

The conclusion is true whenever all the antecedents are true. Could check with Truth Table:

p	q	r
T	T	Т
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

$p \rightarrow q$	$q \rightarrow r$	$r \rightarrow p$
T	T	T
T	F	T
F	T	T
F	T	T
T	T	F
T	F	T
T	T	F
T	T	T

$p \land q \land r$	sound?
T	
F	
F	
F	
F	
F	
F	
F	

L1-2.23

Good (Sound) Rule

The conclusion is true whenever all the antecedents are true. Could check with Truth Table:

p	q	r
T	Т	Т
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

$p \rightarrow q$	$q \rightarrow r$	$r \rightarrow p$
T	T	T
T	F	T
F	T	T
F	T	T
T	T	F
T	F	T
T	T	F
T	T	T

$p \land q \land r$	sound?
T	
F	
F	
F	
F	
F	
F	
F	

Copyright © Albert R. Meyer, 2002.

L1-2.2

Good (Sound) Rule

The conclusion is true whenever all the antecedents are true. Could check with Truth Table:

p	q	r
T	T	T
T	Т	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

$p \rightarrow q$	$q \rightarrow r$	$r \rightarrow p$
T	T	T
T	F	T
F	T	T
F	T	T
T	T	F
T	F	T
T	T	F
T	T	T

$p \land q \land r$	sound?
T	
F	OK
F	

Convright © Albert R. Meyer. 200

L1-2.25

Good (Sound) Rule

The conclusion is true whenever all the antecedents are true. Could check with Truth Table:

p	q	r
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

$p \rightarrow q$	$q \rightarrow r$	$r \rightarrow p$
T	T	T
T	F	T
F	T	T
F	T	T
T	T	F
T	F	T
T	T	F
T	T	T

$p \land q \land r$	sound?
T	OK
F	

oright © Albert R. Meyer. 2002

* 1 2 26

Good (Sound) Rule

The conclusion is true whenever all the antecedents are true. Could check with Truth Table:

p	q	r
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

$p \rightarrow q$	$q \rightarrow r$	$r \rightarrow p$
T	T	T
T	F	T
F	T	T
F	T	T
T	T	F
T	F	T
T	T	F
T	T	T

$p \land q \land r$	sound?
T	OK
F	

ert R. Meyer, 2002.

Good (Sound) Rule

The conclusion is true whenever all the antecedents are true. Could check with Truth Table:

p	q	r
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

$p \rightarrow q$	$q \rightarrow r$	$r \rightarrow p$
T	T	T
T	F	T
F	T	T
F	T	T
T	T	F
T	F	T
T	T	F
T	T	T

$p \land q \land r$	sound?
T	OK
F	NOT OK!

syright © Albert R. Meyer, 2002.

L1-2.28

Problems

Class Problem 1

Goldbach Conjecture

Every even integer greater than 2 is the sum of two primes.

Evidence:

$$4 = 2 + 2$$

$$6 = 3 + 3$$

$$8 = 5 + 3$$

:

$$20 = ? 13 + 7$$

Copyright © Albert R. Meyer, 2002.

L1-2.

Copyright © Albert R. Meyer, 20

Goldbach Conjecture

True for all even numbers with up to 13 digits! (Rosen,

It remains an OPEN problem: no counterexample, no proof.

UNTIL NOW!...

Convright © Albert R. Meyer. 200

L1-2 31

Goldbach Conjecture

The answer is on my desk!
(Proof by Cases)

'onvright © Albert R. Meyer. 2002.

11222

Quicker by Cases

$$\frac{P \to Q, \ Q \to R, \ R \to P}{P \land Q \land R}$$

Case 1: P is true. Now, if antecedents are true, then Q must be true (because P implies Q). Then R must be true (because Q implies R). So the conclusion $P \wedge Q \wedge R$ is true. This case is OK.

Copyright © Albert R. Meyer, 2002

L1-2.3

Quicker by Cases

$$\frac{P \to Q, \ Q \to R, \ R \to P}{P \land Q \land R}$$

Case 2: P is false. To make antecedents true, R must be false (because R implies P), so Q must be false (because Q implies R). This assignment does make the antecedents true, but the conclusion $P \wedge Q \wedge R$ is (very) False. This case is not OK.

yright © Albert R. Meyer, 2002.

.

Problems

Class Problem 2

Copyright © Albert R. Meyer, 2002.