

빅데이터와 인공지능의 이해

08.딥러닝 알고리즘

조창제

강의자료

2025.03.

목차

CONTENTS

인공신경망의 배경과 기초 레이어

개요

인공신경망의 기초부터

인공신경망

합성곱신경망의 <mark>기초 레이어</mark>

목차

CONTENTS

순환신경망의 기초 레이어

순환신경망

자료의 압축과 복원

모델구조

- 1) 퍼셉트론(Perceptron, 1958)
 - ① 인간의 신경전달을 담당하는 매개체인 뉴런의 신경 전달 원리를 모방하여 설계된 모델
 - ② 활성화함수: 뉴런의 역치(특정 수치 이상에서만 반응)를 모방한 함수
 - ③ XOR 문제
 - XOR 문제를 해결하지 못해 침체기가 발생
 - XOR문제는 아래 그림에서 검은 점과 흰 점을 구분하는 선을 찾는 문제

- 2) 다층 퍼셉트론(Multi layer perceptron, 1986)
 - ① XOR문제 해결
 - 은닉층을 2개 이상 쌓음으로써 XOR문제를 해결
- 3) 다양한 머신러닝 기법 등장
 - ① SVM(1990), 의사결정나무, 랜덤 포레스트 및 앙상블 기법들 제시
 - ② 하드웨어 한계가 존재

- 4) 합성곱 신경망(CNN, 2012~)
 - ① AlexNet(2012)
 - 이미지 처리 문제에서 딥러닝 방법을 적용
- 5) GAN(2014)
 - ① 이미지 생성 모델 개발
 - ② 초해상화 및 도메인 전환 연구 활용
- 6) RCNN(2014), YOLO(2016~)
 - ① AI만으로 객체를 인식하는 모델 제시

- 7) Attention, Transformer(2017)
 - ① 자연어 처리 및 생성 모델의 발전
- 8) Diffusion(2022)
 - ① 이미지 생성 모델의 발전
- 9) Whisper(2022)
 - ① OPENAI사의 음성 인식 모델이 제시됨

인공신경밍

01.개요

- 1) 인공신경망(Artificial neural network)
 - ① 인간의 뇌에서 영감을 받아 만들어진 모델
 - 입력층, 은닉층, 출력층으로 구성
 - 딥러닝: ANN 중 은닉층이 여러 개로 구성된 것을 의미
 - 은닉층은 Dense, CNN, RNN과 같은 레이어를 의미하며, 가중치를 포함하고 있음
 - Y = XW + b의 형태
 - 가중치는 X의 shape이 3이고, Y의 shape이 64이면 W의 shape은 (3, 64)이고 행렬곱을 통해 계산
- 2) MLP(Multi Layer Perceptron)
 - ① 완전연결층(Fully connected layer, FC layer)로 구성된 신경망

인공신경밍

02.레이어

- 1) 드롭아웃(Dropout)
 - ① 훈련 중에 매 배치마다 뉴런을 무작위로 비활성화하여 과적합을 방지하는 기법

Figure 1: Dropout Neural Net Model. **Left**: A standard neural net with 2 hidden layers. **Right**: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

인공신경밍

03.활성화함수

- 1) 활성화함수(Activation function)
 - ① 뉴런이 활성화 될지 말지를 결정
 - ② 레이어 중간에서는 주로 ReLU나 Leaky ReLU를 사용
 - ③ 최종 레이어 결정
 - 이진분류 문제: Sigmoid
 - 다지분류 문제: Softmax
 - 회귀문제: Linear

합성곱신경밍

01.레이어

- 1) 합성곱 층(Convolutional layer)
 - ① 필터(kernel)을 사용하여 입력 데이터를 슬라이딩하면서 합성곱 연산을 수행하는 레이어
 - ② 합성곱 연산: 커널값과 커널크기의 입력값을 곱한 후 더하는 연산
 - kernel size: 풀링에서 이동하는 윈도우 크기
 - stride: 윈도우가 움직일 때 이동하는 간격
 - padding: 입력 데이터의 경계에 추가적인 영역을 생성해주는 방법
 - dilation: 커널 간의 간격을 의미

1	0	1	0	1	0		1	0	1		1	2	3		31		
0	1	1	0	1	1		0	1	1	*	4	5	6	-			
1	0	1	0	1	0		1	0	1		7	8	9				
1	0	1	1	1	0		atch) 		Kern		•					
0	1	1	0	1	1	(Loc	al re	ecept	ive f	ield)	(filte	r)			Out	tpu
1	0	1	0	1	0												•

합성곱신경밍

01.레이어

- 1) 합성곱 층(Convolutional layer)
 - kernel size: 풀링에서 이동하는 윈도우 크기
 - stride: 윈도우가 움직일 때 이동하는 간격
 - padding: 입력 데이터의 경계에 추가적인 영역을 생성해주는 방법
 - dilation: 커널 간의 간격을 의미

합성곱신경밍

01.레이어

1.정의

2) Depthwise separable convolutional layer

- 1 Depthwise convolutional layer
 - 체널별로 연산을 따로 수행
 - 계산의 효율성을 높이기 위해 사용
 - Conv2d기준: (K, K, C_in) = C_out * C_in * K * K 개 파라미터
 - Depthwise기준: (K, K, 1) = C_in * K * K 개 파라미터
- 2 Pointwise convolutional layer
 - kernel 크기가 1x1인 Conv layer를 의미
 - Pointwise 기준: (1, 1, C_in) = C_out * 1 * 1 개 파라미터
- ③ 두 레이어 합계
 - C_in * K * K + C_out
 - Conv2d 대비 약 K * K 배 만큼 감소

Conventional Convolution

Depthwise Convolution

Depthwise Convolutional Filters

Pointwise Convolutional Filters

Ш

합성곱신경밍

01.레이어

- 3) 풀링(Pooling)
 - ① 이미지 분석에서 주로 사용하는 레이어
 - ② 이미지에서 특징을 요약하는 역할
 - pool size: 풀링에서 이동하는 윈도우 크기
 - stride: 윈도우가 움직일 때 이동하는 간격
- 4) GAP(Global average pooling)
 - ① 각 채널별 평균 값을 제시
 - 7x7x1024 크기였으면, 1024를 반환

순환신경밍

01.레이어

- 1) RNN(Recurrent neural network)
 - ① 순차적인 데이터를 다룰 때 사용하는 레이어
 - ② $Y_t = f(Wx_t + UY_{t-1} + b)$ 의 형태(U는 이전 시점의 가중치, f는 활성화함수)
 - ③ return_sequences 옵션
 - False:마지막 시점의 Y_t 제공
 - True: Y_t(t=0~t까지 제공)

순환신경밍

01.레이어

- 2) LSTM(Long short term memory)
 - ① 편의상 k 에 대한 $f(Wx_t + UY_{t-1} + b)$ 를 f_k 라 하겠음
 - $c_t = f_f c_{t-1} + f_i f_c$
 - $Y_t = f_o \cdot \tanh(c_t)$
 - \blacksquare f_i 는 입력 게이트, f_f 는 망각 게이트, f_o 는 출력 게이트, f_c 는 셀 상태 후보를 의미
 - ullet f_c 는 현재 시점에서 업데이트 될 정보

순환신경밍

01.레이어

- 3) GRU(Gated recurrent unit)
 - ① 편의상 k 에 대한 $f(Wx_t + UY_{t-1} + b)$ 를 f_k 라 하겠음
 - $h_t = \tanh(Wx_t + Uf_rh_{t-1} + b)$
 - $Y_t = (1 f_z)Y_{t-1} + f_z \cdot h_t$
 - f_z 는 업데이트 게이트, f_r 은 리셋 게이트, h_t 는 후보 은닉 상태를 의미
 - LSTM의 셀 상태를 사용하지 않고 은닉 상태만을 업데이트

순환신경밍

01.레이어

1.정의

- 4) 어텐션(Attention)
 - ① 입력데이터에서 중요한 부분에 가중치를 더 주어 모델이 더욱 효과적으로 학습할 수 있도록 하는 기법
 - ② 기존 RNN과 LSTM과 같은 순환신경망에서의 장기 의존성 문제가 완화
 - ③ 장기의존성문제: 시퀀스의 길이가 너무 길어지면 초기 데이터에 대한 영향이 소실되는 현상
 - ④ 어텐션 과정
 - Query: 현재 처리하고 있는 출력의 일부
 - Key: 입력의 각 부분의 대응값
 - Value: Key의 대응하는 입력부분
 - 가중치 계산
 - 출력값 계산

Key: 검색 결과

Value: 검색 결과의 관련 내용

V

모델구조

01.모델구조

- 1) 인코더-디코더(Encoder-Decoder)
 - ① 입력 데이터를 압축한 후, 다시 출력 데이터의 형태로 복원하는 형태의 신경망 구조
 - ② 중요한 정보를 요약해서 표현하는 벡터를 모델에 따라 다양하게 부름
 - AutoEncoder, GAN: Latent space
 - Unet구조: Bottleneck
 - Seq2Seq: Context Vector
 - ③ 인코더-디코더 구조를 다중으로 쌓는 경우도 존재
 - Stacked Hour Glass Network

Thank You

Email: qkdrk777777@naver.com