Statistik 05. ANOVA

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Deutsche-Syntax

Inhalt

- Überblick
- Graphische Einführung

- Einfaktorielle ANOVA
- Zweifaktorielle ANOVA
- 2 Nächste Woche | Überblick

Übersicht

• Vergleiche von Mittelwerten zwischen mehr als zwei Gruppen

Übersicht

- Vergleiche von Mittelwerten zwischen mehr als zwei Gruppen
- Mittelwertvergleiche mit mehreren Unabhängigen

Übersicht

- Vergleiche von Mittelwerten zwischen mehr als zwei Gruppen
- Mittelwertvergleiche mit mehreren Unabhängigen
- Warum kann man über Varianzen Mittelwerte vergleichen?

Literatur

- Gravetter & Wallnau (2007)
- Bortz & Schuster (2010)
- indirekt: Maxwell & Delaney (2004)

• Einschränkung beim t-test: immer nur 2 Gruppen

- Einschränkung beim t-test: immer nur 2 Gruppen
- t-Test bei mehr als 2 Gruppen: komplizierte paarweise Vergleiche

- Einschränkung beim t-test: immer nur 2 Gruppen
- t-Test bei mehr als 2 Gruppen: komplizierte paarweise Vergleiche
- stattdessen ANOVA: ANalysis Of VAriance

- Einschränkung beim t-test: immer nur 2 Gruppen
- t-Test bei mehr als 2 Gruppen: komplizierte paarweise Vergleiche
- stattdessen ANOVA: ANalysis Of VAriance
- Vergleich von Varianzen zwischen beliebigen Gruppen

- Einschränkung beim t-test: immer nur 2 Gruppen
- t-Test bei mehr als 2 Gruppen: komplizierte paarweise Vergleiche
- stattdessen ANOVA: ANalysis Of VAriance
- Vergleich von Varianzen zwischen beliebigen Gruppen
- Schluss auf Mittelwerte nur indirekt über die Varianzen

- Einschränkung beim t-test: immer nur 2 Gruppen
- t-Test bei mehr als 2 Gruppen: komplizierte paarweise Vergleiche
- stattdessen ANOVA: ANalysis Of VAriance
- Vergleich von Varianzen zwischen beliebigen Gruppen
- Schluss auf Mittelwerte nur indirekt über die Varianzen
- bei zwei Gruppen: Konvergenz von t-Test und ANOVA

• ANOVA vergleicht immer mehrere Gruppen

- ANOVA vergleicht immer mehrere Gruppen
- Gruppen bei der einfaktoriellen ANOVA = den Ausprägungen einer unabhängigen Variable (z. B. Text-Register)

- ANOVA vergleicht immer mehrere Gruppen
- Gruppen bei der einfaktoriellen ANOVA = den Ausprägungen einer unabhängigen Variable (z. B. Text-Register)
- diese Variablen heißen hier Faktoren.

- ANOVA vergleicht immer mehrere Gruppen
- Gruppen bei der einfaktoriellen ANOVA = den Ausprägungen einer unabhängigen Variable (z. B. Text-Register)
- diese Variablen heißen hier Faktoren.
- Einfluss der Faktoren auf eine abhängige (z.B. Satzlänge, Lesezeit)

- ANOVA vergleicht immer mehrere Gruppen
- Gruppen bei der einfaktoriellen ANOVA = den Ausprägungen einer unabhängigen Variable (z. B. Text-Register)
- diese Variablen heißen hier Faktoren.
- Einfluss der Faktoren auf eine abhängige (z.B. Satzlänge, Lesezeit)
- bei mehreren Faktoren (z. B. Text-Register und Jahrhundert): mehrfaktorielle ANOVA.

Idee bei ANOVA (z. B. drei Gruppen)

• Ho:
$$\bar{x_1} = \bar{x_2} = \bar{x3}$$

Idee bei ANOVA (z. B. drei Gruppen)

- Ho: $\bar{x_1} = \bar{x_2} = \bar{x3}$
- aber: Es gibt keinen "Differenzwert" für drei Mittel (also sowas wie den t-Wert).

Idee bei ANOVA (z.B. drei Gruppen)

- Ho: $\bar{x_1} = \bar{x_2} = \bar{x3}$
- aber: Es gibt keinen "Differenzwert" für drei Mittel (also sowas wie den t-Wert).
- daher Varianzvergleich

Idee bei ANOVA (z. B. drei Gruppen)

- Ho: $\bar{x_1} = \bar{x_2} = \bar{x3}$
- aber: Es gibt keinen "Differenzwert" für drei Mittel (also sowas wie den t-Wert).
- daher Varianzvergleich
- F-Wert (Verteilung unter Ho bekannt) als Test-Statistik

Idee bei ANOVA (z. B. drei Gruppen)

- Ho: $\bar{x_1} = \bar{x_2} = \bar{x3}$
- aber: Es gibt keinen "Differenzwert" für drei Mittel (also sowas wie den t-Wert).
- daher Varianzvergleich
- F-Wert (Verteilung unter Ho bekannt) als Test-Statistik

Idee bei ANOVA (z.B. drei Gruppen)

- Ho: $\bar{x_1} = \bar{x_2} = \bar{x3}$
- aber: Es gibt keinen "Differenzwert" für drei Mittel (also sowas wie den t-Wert).
- daher Varianzvergleich
- F-Wert (Verteilung unter Ho bekannt) als Test-Statistik

$$F = \frac{\text{Varianz zwischen Stichprobenmitteln}}{\text{Varianz in den Stichproben}} = \frac{\text{Varianz zwischen Stichprobenmitteln}}{\text{Varianz per Zufall}}$$

Roland Schäfer (FSU Iena) Statistik os. ANOVA

Drei Stichproben

$$x_1 = [0, 1, 3, 1, 0]$$

 $x_2 = [4, 3, 6, 3, 4]$
 $x_3 = [1, 2, 2, 0, 0]$

Roland Schäfer (FSU Jena) Statistik 05. ANOVA 7/3

Komponenten der Varianz von x_1

Roland Schäfer (FSU Jena) Statistik 05. ANOVA

Roland Schäfer (FSU Jena) Statistik 05. ANOVA

Varianz in der zusammengefassten Stichprobe X

Varianz zwischen den drei Gruppen

 $s^2([\bar{x_1}, \bar{x_2}, \bar{x_3}]) = 1.33$

Achtung: Bei unterschiedlichen Stichprobengrößen

Roland Schäfer (FSU Jena) Statistik 05. ANOVA

Es gilt bezüglich der Varianzen

Graphische Verdeutlichung des F-Werts

Wenn man den Abstand zwischen den Mitteln verschiebt, **muss** die Gesamtvarianz größer werden!

Roland Schäfer (FSU Jena) Statistik 05. ANOVA

• Warum?

Roland Schäfer (FSU Jena) Statistik 05. ANOVA 15 / 37

- Warum?
- F = Unterschied durch Effekt+Unterschiede durch restliche Varianz
 Unterschied durch restliche Varianz

- Warum?
- F = Unterschied durch Effekt+Unterschiede durch restliche Varianz
 Unterschied durch restliche Varianz
- Unter Annahme der Ho gibt es keinen Effekt, ...

Wie funktioniert der F-Wert

•
$$F = \frac{\text{Varianz zwischen Stichprobenmitteln}}{\text{Varianz in den Stichproben}}$$

- Warum?
- F = Unterschied durch Effekt+Unterschiede durch restliche Varianz
 Unterschied durch restliche Varianz
- Unter Annahme der Ho gibt es keinen Effekt, ...
- also Unterschied durch Effekt = 0

Wie funktioniert der F-Wert

- Warum?
- F = Unterschied durch Effekt+Unterschiede durch restliche Varianz
 Unterschied durch restliche Varianz
- Unter Annahme der Ho gibt es keinen Effekt, ...
- also Unterschied durch Effekt = 0
- dann: $F = \frac{\text{o+Unterschiede durch restliche Varianz}}{\text{Unterschied durch restliche Varianz}} = 1$

• Anzahl der Gruppen x_i : k

- Anzahl der Gruppen x_i : k
- Größe der Gruppen: n_i

- Anzahl der Gruppen x;: k
- Größe der Gruppen: n;
- Größe der Gesamtstichprobe X: N

- Anzahl der Gruppen x;: k
- Größe der Gruppen: n_i
- Größe der Gesamtstichprobe X: N
- Summen der Gruppen: T_i

- Anzahl der Gruppen x;: k
- Größe der Gruppen: n_i
- Größe der Gesamtstichprobe X: N
- Summen der Gruppen: T_i
- Gesamtsumme: G

- Anzahl der Gruppen x;: k
- Größe der Gruppen: n;
- Größe der Gesamtstichprobe X: N
- Summen der Gruppen: T_i
- Gesamtsumme: G
- Mittel (anders als G&W): $\bar{x_i}$, \bar{X}

- Anzahl der Gruppen x_i : k
- Größe der Gruppen: n_i
- Größe der Gesamtstichprobe X: N
- Summen der Gruppen: T_i
- Gesamtsumme: G
- Mittel (anders als G&W): $\bar{x_i}$, \bar{X}
- Summe der Quadrate (=Zähler der Varianz): $SQ(x_i)$, SQ(X)

- Anzahl der Gruppen x_i : k
- Größe der Gruppen: n_i
- Größe der Gesamtstichprobe X: N
- Summen der Gruppen: T_i
- Gesamtsumme: G
- Mittel (anders als G&W): $\bar{x_i}$, \bar{X}
- Summe der Quadrate (=Zähler der Varianz): $SQ(x_i)$, SQ(X)

- Anzahl der Gruppen x_i : k
- Größe der Gruppen: n;
- Größe der Gesamtstichprobe X: N
- Summen der Gruppen: T_i
- Gesamtsumme: G
- Mittel (anders als G&W): \bar{x}_i , \bar{X}
- Summe der Quadrate (=Zähler der Varianz): $SQ(x_i)$, SQ(X)

Zur Erinnerung:
$$s^2(x) = \frac{\sum (x - \bar{x})}{n - 1} = \frac{SQ(x)}{df(x)}$$

$$F = \frac{\text{Varianz zwischen den Gruppen}}{\text{Varianz in den Gruppen}} = \frac{s_{\text{zwischen}}^2}{s_{\text{in}}^2} = \frac{\frac{s_{\text{Zwischen}}}{df_{\text{zwischen}}}}{\frac{sQ_{\text{in}}}{df_{\text{in}}}}$$

denn

$$s^2(x) = \frac{s_{Q(x)}}{df(x)}$$

Statistik Roland Schäfer (FSU Jena) o5. ANOVA

Berechnung der SQ

Am einfachsten unter Beachtung von:

$$SQ_{gesamt} = SQ_{zwischen} + SQ_{in}$$

Berechnung der SQ

Am einfachsten unter Beachtung von:

$$SQ_{gesamt} = SQ_{zwischen} + SQ_{in}$$

Es gilt:
$$SQ_{qesamt} = SQ(X) = \sum (X - \bar{X})$$

Am einfachsten unter Beachtung von:

$$SQ_{gesamt} = SQ_{zwischen} + SQ_{in}$$

Es gilt:
$$SQ_{aesamt} = SQ(X) = \sum (X - \bar{X})$$

Außerdem:
$$SQ_{in} = \sum SQ(x_i)$$

Am einfachsten unter Beachtung von:

$$SQ_{gesamt} = SQ_{zwischen} + SQ_{in}$$

Es gilt:
$$SQ_{gesamt} = SQ(X) = \sum (X - \bar{X})$$

Außerdem:
$$SQ_{in} = \sum SQ(x_i)$$

Damit:
$$SQ_{zwischen} = SQ_{gesamt} - SQ_{in}$$

 $SQ_{zwischen}$ kann man auch direkt ausrechnen:

$$SQ_{zwischen} = \sum_{i} \left(\frac{T_i^2}{n_i}\right) - \frac{G^2}{N}$$

$$x_1 = [0, 1, 3, 1, 0]$$

 $x_2 = [4, 3, 6, 3, 4]$
 $x_3 = [1, 2, 2, 0, 0]$

Bitte alle SQ ausrechnen, inkl. SQ_{zwischen} direkt.

Tipp: Sie brauchen als Vorwissen nur den Stoff der ersten Statistik-Sitzung:

- arithmetisches Mittel
- SQ

Es gilt auch hier, ähnlich wie bei den SQ:

$$df_{gesamt} = df_{zwischen} + df_{in}$$

$$df_{qesamt} = N - 1$$

$$df_{zwischen} = k - 1$$

$$df_{in} = \sum_{i=1}^{k} (n_i - 1) = (N - 1) - (k - 1)$$

$$F = \frac{s_{zwischen}^2}{s_{in}^2} = \frac{\frac{SQ_{zwischen}}{df_{zwischen}}}{\frac{SQ_{in}}{df_{in}}}$$

Bitte ausrechnen für o.g. Beispiel.

Roland Schäfer (FSU Jena) Statistik 05. ANOVA 22 / 37

F-Verteilung:

In R für $df_{zwischen}$ = 2 und df_{in} = 12 bei sig=0.05: > qf(0.95, 2, 12) \Rightarrow 3.885294

$$\eta^2 = \frac{SQ_{zwischen}}{SQ_{gesamt}}$$

(wieder ein r^2 -Maß)

• Problem: Welche Gruppen unterscheiden sich denn nun?

• Problem: Welche Gruppen unterscheiden sich denn nun?

• Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:

- Problem: Welche Gruppen unterscheiden sich denn nun?
- Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:
 - paarweise ANOVA

- Problem: Welche Gruppen unterscheiden sich denn nun?
- Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:
 - paarweise ANOVA
 - ▶ aber: k wird gesetzt wie bei ursprünglicher ANOVA

- Problem: Welche Gruppen unterscheiden sich denn nun?
- Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:
 - paarweise ANOVA
 - aber: k wird gesetzt wie bei ursprünglicher ANOVA
 - dadurch Vermeidung kumulierten Alpha-Fehlers (Vorteil ggü. paarweisen t-Tests)

- Problem: Welche Gruppen unterscheiden sich denn nun?
- Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:
 - paarweise ANOVA
 - aber: k wird gesetzt wie bei ursprünglicher ANOVA
 - dadurch Vermeidung kumulierten Alpha-Fehlers (Vorteil ggü. paarweisen t-Tests)
 - weiterer Vorteil: paarweise Post-Tests nur erforderlich, wenn Omnibus-ANOVA bereits Signifikanz gezeigt hat

- Problem: Welche Gruppen unterscheiden sich denn nun?
- Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:
 - paarweise ANOVA
 - aber: k wird gesetzt wie bei ursprünglicher ANOVA
 - dadurch Vermeidung kumulierten Alpha-Fehlers (Vorteil ggü. paarweisen t-Tests)
 - weiterer Vorteil: paarweise Post-Tests nur erforderlich, wenn Omnibus-ANOVA bereits Signifikanz gezeigt hat
 - und: Generalisierbarkeit zu mehrfaktorieller ANOVA (geht mi t-Test nicht)

- Problem: Welche Gruppen unterscheiden sich denn nun?
- Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:
 - paarweise ANOVA
 - aber: k wird gesetzt wie bei ursprünglicher ANOVA
 - dadurch Vermeidung kumulierten Alpha-Fehlers (Vorteil ggü. paarweisen t-Tests)
 - weiterer Vorteil: paarweise Post-Tests nur erforderlich, wenn Omnibus-ANOVA bereits Signifikanz gezeigt hat
 - und: Generalisierbarkeit zu mehrfaktorieller ANOVA (geht mi t-Test nicht)

- Problem: Welche Gruppen unterscheiden sich denn nun?
- Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:
 - paarweise ANOVA
 - aber: k wird gesetzt wie bei ursprünglicher ANOVA
 - dadurch Vermeidung kumulierten Alpha-Fehlers (Vorteil ggü. paarweisen t-Tests)
 - weiterer Vorteil: paarweise Post-Tests nur erforderlich, wenn Omnibus-ANOVA bereits Signifikanz gezeigt hat
 - und: Generalisierbarkeit zu mehrfaktorieller ANOVA (geht mi t-Test nicht)

Bitte ausrechnen für die oben gerechnete ANOVA.

Wozu mehrfaktorielle Designs

Oft vermutet man den Einfluss mehrerer Unabhängiger auf eine Abhängige. Beispiel: Satzlängen

		Textsorte		
		Fiktion	Zeitung	Wissenschaft
Jahrhundert	19	X ₁₁	X ₁₂	x ₁₃
	20	<i>X</i> ₂₁	x ₂₂	x ₂₃

Hier also: $2 \cdot 3 = 6$ Gruppen

erste ANOVA zwischen Zeilen

- erste ANOVA zwischen Zeilen
- zweite ANOVA zwischen Spalten

- erste ANOVA zwischen Zeilen
- zweite ANOVA zwischen Spalten
- 🔞 dritte ANOVA für Interaktionen zwischen Zeilen und Spalten

- erste ANOVA zwischen Zeilen
- zweite ANOVA zwischen Spalten
- 🔞 dritte ANOVA für Interaktionen zwischen Zeilen und Spalten
- Interaktion: Ungleichverteilung in Gruppen, die nicht durch die Spalten- und Zeileneffekte erklärt werden kann

Ablauf der zweifaktoriellen ANOVA

- erste ANOVA zwischen Zeilen
- zweite ANOVA zwischen Spalten
- g dritte ANOVA für Interaktionen zwischen Zeilen und Spalten
- Interaktion: Ungleichverteilung in Gruppen, die nicht durch die Spalten- und Zeileneffekte erklärt werden kann
- 5 Alle drei ANOVAs sind unabhängig voneinander!

Komponenten der zweifaktoriellen ANOVA

• Gesamtvarianz = Varianz zwischen Gruppen + Varianz in den Gruppen

Komponenten der zweifaktoriellen ANOVA

- Gesamtvarianz = Varianz zwischen Gruppen + Varianz in den Gruppen
- Varianz zwischen den Gruppen = Haupt-Faktoren-Varianz + Interaktions-Varianz

Komponenten der zweifaktoriellen ANOVA

- Gesamtvarianz = Varianz zwischen Gruppen + Varianz in den Gruppen
- Varianz zwischen den Gruppen = Haupt-Faktoren-Varianz + Interaktions-Varianz
- Haupt-Faktoren-Varianz =
 Varianz zwischen Faktor A-Gruppen +
 Varianz zwischen Faktor B-Gruppen

Schritt 1(1): SQ/df zwischen den Gruppen

Jede Zelle der Tabelle ist eine Gruppe.

$$SQ_{zwischen} = \sum_{i} (\frac{T_i^2}{n_i}) - \frac{G^2}{N}$$

 $df_{zwischen} = k - 1$ (k = Anzahl der Zellen/Gruppen)

Beachte: Keine Änderung verglichen mit einfaktorieller ANOVA!

Schritt 1(2): SQ/df in den Gruppen

Jede Zelle der Tabelle ist eine Gruppe.

$$SQ_{in} = \sum SQ(x_i)$$

 $df_{in} = \sum df(x_i)$

Beachte: Keine Änderung verglichen mit einfaktorieller ANOVA!

Roland Schäfer (FSU Jena) Statistik 05. ANOVA

Berechnung nach dem Schema für Zwischen-Gruppen-Varianz

		Textsorte			
		Fiktion	Zeitung	Wissenschaft	
Jahrhundert	19	X ₁₁	X ₁₂	x ₁₃	A ₁
	20	x ₂₁	X ₂₂	x ₂₃	A_2

Auch hier keine wesentliche Änderung:

$$SQ_A = \sum_i (\frac{T_{A_i}^2}{n_{A_i}}) - \frac{G^2}{N}$$

$$df_A = k_A - 1 \ (k_A = \text{Anzahl der Zeilen})$$

Berechnung nach dem Schema für Zwischen-Gruppen-Varianz

		Textsorte		
		Fiktion	Zeitung	Wissenschaft
Jahrhundert	19	X ₁₁	x ₂₁	x ₃₁
	20	X ₁₂	X ₂₂	X ₃₂
		B ₁	B ₂	B ₃

Auch hier keine Änderung:

$$SQ_{B} = \sum_{i} (\frac{T_{B_{i}}^{2}}{n_{B_{i}}}) - \frac{G^{2}}{N}$$

$$df_{B} = k_{B} - 1 \ (k_{B} = \text{hier Anzahl der Spalten})$$

Schritt 2(3): SQ/df für Interaktion $A \times B$

Die Varianz, die auf Kosten der Interaktion geht, ist die Zwischen-Gruppen-Varianz ohne die Einzelfaktor-Varianz.

$$\begin{aligned} SQ_{A\times B} &= SQ_{zwischen} - SQ_A - SQ_B \\ df_{A\times B} &= df_{zwischen} - df_A - df_B \end{aligned}$$

Die zweifaktorielle ANOVA erfordert wie gesagt drei Einzel-ANOVAs.

$$F_{A} = \frac{\frac{SQ_{A}}{df_{A}}}{\frac{SQ_{zwischen}}{df_{zwischen}}} = \frac{s_{A}^{2}}{s_{zwischen}^{2}}$$

$$F_{B} = \frac{\frac{SQ_{A}}{df_{B}}}{\frac{SQ_{zwischen}}{df_{zwischen}}} = \frac{s_{B}^{2}}{s_{zwischen}^{2}}$$

$$F_{A \times B} = \frac{\frac{3 \cdot A_{A \times B}}{d f_{A \times B}}}{\frac{SQ_{zwischen}}{d f_{zwischen}}} = \frac{s_{A \times B}^2}{s_{zwischen}^2}$$

Entsprechend sind drei η^2 auszurechnen:

$$\eta_A^2 = \frac{SQ_A}{SQ_{gesamt} - SQ_B - SQ_{A \times B}}$$

$$\eta_B^2 = \frac{SQ_B}{SQ_{gesamt} - SQ_A - SQ_{A \times B}}$$

 $\eta_{A\times B}^2 = \frac{SQ_{A\times B}}{SQ_{gesamt} - SQ_A - SQ_B}$ Wir fragen jeweils, welchen Anteil an der Varianz,

die die anderen beiden Faktoren nicht erklären, der jeweilige dritte Faktor hat.

Das jetzt alles zusammen

Bitte vollständige zweifaktorielle ANOVA bei sig=0.05 und sig=0.01 rechnen:

	B1	B2	В3
A1	1, 3, 1, 4	4, 3, 3, 6	8, 6, 8, 10
A2	8, 6, 6, 8	1, 6, 8, 1	1, 4, 1, 4

Einzelthemen

- Inferenz
- Deskriptive Statistik
- Nichtparametrische Verfahren
- z-Test und t-Test
- 5 ANOVA
- Freiheitsgrade und Effektstärken
- Power und Severity
- 8 Lineare Modelle
- Generalisierte Lineare Modelle
- o Gemischte Modelle

Literatur I

Bortz, Jürgen & Christof Schuster. 2010. Statistik für Human- und Sozialwissenschaftler. 7. Aufl. Berlin: Springer.

Gravetter, Frederick J. & Larry B. Wallnau. 2007. Statistics for the Behavioral Sciences. 7. Aufl. Belmont: Thomson.

Maxwell, Scott E. & Harold D. Delaney. 2004. Designing experiments and analyzing data: a model comparison perspective. Mahwa, New Jersey, London: Taylor & Francis.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Roland Schäfer (FSU Jena) Statistik 05. ANOVA 39 / 37

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.