Opinions in Interactions: New Annotations of the SEMAINE Database

Valentin Barriere¹, Slim Essid², Chloé Clavel²

¹European Commission's Joint Research Center - Ispra, ²Télécom Paris

Overview

- ► We present the process to collect new annotations of opinion over the multimodal corpus SEMAINE database composed of dyadic interactions [1]
 - ▶ Using interactional context by seeing and annotation the whole conversation
 - Using multimodal context by reading the text and listening to the audio recording at the same time
- ► We propose a baseline for the detection of opinions in interactions, reaching a F1 of 0.72.

SEMAINE Database

- ➤ 79 sessions, composed of 5,627 speech turns and 74k words, corresponding to 6h20 of dyadic interactions
- ► Between an user and an operator playing the role of a virtual agent
- Emotionally colored conversations annotated in a continuous way in Valence, Arousal, Power and Expectancy

Figure 1:Examples of *Arousal*, *Expectancy*, *Power* et *Valence* from [2]

Annotation Platform: integrate interactional/multimodal context

Figure 2:Screenshot of the online annotation platform

- ► Homemade php annotation platform
- ▶ Dialogic context: Conversational history and a contextual Adjacency Pair (pair of speech turns)
- ► Multimodal context: Audio and Text were aligned using [3] in order to use both the modalities to annotate

Annotation Platform: minimize the cognitive load

- Preliminary phase to annotate a dummy conversation
- Incrementally complex questions in order to reduce the cognitive load
- Special attention on mixed opinions cases to increase inter-annotator agreement opinions

Figure 3:Annotation schema

Contact Information

- ► Email: valentin.barriere@ec.europa.eu
- ► Phone: +39 033278-3859

Annotations – Inter Annotator Agreement & Aggregation

- ➤ Given the low inter-annotator agreement using 4 classes, unreliable to use *Mixed* label as a fourth class
- ► Using the prominent opinion allows to reach higher IAA.

Speaker	lpha 3 classes						
Speaker	μ	σ^2	min	max	med	Total	
Agent	60.4	16.1	34.0	100	60.5	Ø	
User	54.9	15.0	13.3	85.9	56.0	Ø	
All	60.9	11.0	39.1	90.6	58.1	66.3	

Table 1:Krippendorff's lpha per discussion using the Prominent label

Speaker	# Opi	nions by Disc.	Opinions by ST (%)			
	μ	σ^2	Neg. Pos.	Oth.		
Agent	15.22	7.71	22.84 21.14	56.02		
User	17.90	8.98	18.47 33.75	47.78		
All	33.12	15.14	20,66 27.42	51.92		

Table 2:Opinion per speech turn obtained after aggregation using majority vote

Correlations between labels

Emotion	Neg.	$\mu \ (\sigma^2)$ Pos.	Oth.	Pearson Corr
Valence	-3.6 (7.0)	18.7 (4.3)	11.9 (5.9)	28.9
Arousal	-11.5 (6.4)	-6.1 (5.8)	-7.9 (5.5)	7.4
Dominance	39.0 (5.2)	46.7 (3.2)	39.0 (5.2)	12.4
Surprise	33.8 (0.9)	31.4 (0.9)	32.7 (1.1)	-8.7

Table 3: Statistics between the emotion-related and the opinion annotation

- ► There is a correlation between Valence and Opinion.
- Positive opinions are more likely to have high valence and high arousal
- Negative opinions are more likely to have low valence and low arousal
- Positive opinions are more dominant than neutral and negative ones.

Baseline

- ► We provide a multimodal baseline, enhancing SEMAINE's state-of-the-art DialogueRNN model [4] using:
 - ▶ RoBERTa [5] speech turn embeddings as textual features
 - ComparE feature set [6] as audio feature

Method	Valence		Arousal		Opinion	
	MAE	r	MAE	r	F1	Acc
DialogueRNN	0.171	0.37	0.164	0.60	49.56	51.31
Our model	0.132	0.76	0.154	0.71	72.08	72.20

Table 4:Baseline results on different tasks

Conclusion & Future Work

- ► Collected opinion annotations per speech turns on SEMAINE
- ► Rich in opinions: 48.08% of the speech turns
- ► Can be used with continuous emotional annotations of the AVEC-2012 challenge of [6]

References

- [1] Gary McKeown, Michel Valstar, Roddy Cowie, Maja Pantic, and Marc Schröder.

 The SEMAINE database: Annotated multimodal records of emotionally colored conversations between a person and a limited agent.

 IEEE Transactions on Affective Computing, 3(1):5–17, 2012.
- [2] Martin Wöllmer, Moritz Kaiser, Florian Eyben, Björn Schuller, and Gerhard Rigoll. LSTM-modeling of continuous emotions in an audiovisual affect recognition framework. *Image and Vision Computing*, 31(2):153–163, 2013.
- [3] R M Ochshorn and M Hawkins. Gentle forced aligner, 2017.
- [4] Navonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gelbukh, and Erik Cambria. DialogueRNN: An Attentive RNN for Emotion Detection in Conversations.
- [5] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
- [6] Björn Schuller, Michel Valstar, Florian Eyben, Roddy Cowie, and Maja Pantic. AVEC 2012 - The continuous audio/visual emotion challenge. In ICMI'12 - Proceedings of the ACM International Conference on Multimodal Interaction, pages 449–456, 2012.