Лекции курса «Алгебра», лектор Р. С. Авдеев

ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2015/2016 учебный год

Лекция 6

Три действия группы на себе. Теорема Кэли. Классы сопряжённости. Кольца. Делители нуля, обратимые элементы, нильпотенты. Поля и алгебры. Идеалы.

Пусть G — произвольная группа. Рассмотрим три действия G на самой себе, т. е. положим X=G:

- 1) действие умножениями слева (левыми сдвигами): $(g,h) \mapsto gh;$
- 2) действие умножениями справа (правыми сдвигами): $(g,h) \mapsto hg^{-1}$;
- 3) действие $conpяжениями: (g,h) \mapsto ghg^{-1}$.

Замечание 1. Для действий левыми и правыми сдвигами есть ровно одна орбита (сама G) и стабилизатор любой точки тривиален, то есть $St(x) = \{0\}$.

Определение 1. Орбитой действия сопряжениями называются классами сопряженности

 $\Pi pumep 1.$ В любой группе G есть класс сопряженности $\{e\}.$

Также, если G коммутативна, то $\{x\}$ является классом сопряженности для всех x из G.

Теорема Кэли. Всякая конечная группа G порядка n изоморфна подгруппе симметрической группы S_n .

Доказательство. Рассмотрим действие группы G на себе левыми сдвигами. Как мы знаем, это действие свободно, поэтому соответствующий гомоморфизм $a\colon G\to S(G)\simeq S_n$ инъективен, т.е. $\mathrm{Ker}\, a=\{e\}.$ Учитывая, что $G/\{e\}\cong G$, по теореме о гомоморфизме получаем $G\cong\mathrm{Im}\, a.$

Теперь приступим к изучению колец.

Определение 2. *Кольцом* называется множество R с двумя бинарными операциями «+» (сложение) и « \times » (умножение), обладающими следующими свойствами:

- 1) (R, +) является абелевой группой (называемой аддитивной группой кольца R);
- 2) выполнены левая и правая дистрибутивности, т.е.

$$a(b+c)=ab+ac$$
 и $(b+c)a=ba+ca$ для всех $a,b,c\in R$.

В этом курсе мы рассматриваем только ассоциативные кольца с единицей, поэтому дополнительно считаем, что выполнены ещё два свойства:

- 3) a(bc) = (ab)c для всех $a, b, c \in R$ (ассоциативность умножения);
- 4) существует такой элемент $1 \in R$ (называемый единицей), что

$$a1 = 1a = a$$
 для всякого $a \in R$.

 $\it Замечание 2.~$ В произвольном кольце $\it R$ выполнены равенства

$$a0 = 0a = 0$$
 для всякого $a \in R$.

В самом деле, имеем a0 = a(0+0) = a0+a0, откуда 0 = a0. Аналогично устанавливается равенство 0a = 0.

Замечание 3. Если кольцо R содержит более одного элемента, то $0 \neq 1$. Это следует из соотношений (1) и (2).

Примеры колец:

- (1) числовые кольца \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
- (2) кольцо \mathbb{Z}_n вычетов по модулю n;
- (3) кольцо $\mathrm{Mat}(n \times n, \mathbb{R})$ матриц с коэффициентами из \mathbb{R} ;
- (4) кольцо $\mathbb{R}[x]$ многочленов от переменной x с коэффициентами из \mathbb{R} ;
- (5) кольцо $\mathbb{R}[[x]]$ формальных степенных рядов от переменной x с коэффициентами из \mathbb{R} :

$$\mathbb{R}[[x]] := \{ \sum_{i=0}^{\infty} a_i x^i \mid a_i \in \mathbb{R} \};$$

(6) кольцо $\mathcal{F}(M,\mathbb{R})$ всех функций из множества M во множество \mathbb{R} с операциями поточечного сложения и умножения:

$$(f_1+f_2)(m):=f_1(m)+f_2(m); \quad (f_1f_2)(m):=f_1(m)f_2(m)$$
 для всех $f_1,f_2\in\mathcal{F}(M,\mathbb{R}), m\in M.$

3амечание 4. В примерах (3)–(6) вместо $\mathbb R$ можно брать любое кольцо, в частности $\mathbb Z$, $\mathbb Q$, $\mathbb C$, $\mathbb Z_n$.

Замечание 5. Обобщая пример (4), можно рассматривать кольцо $\mathbb{R}[x_1, \dots, x_n]$ многочленов от нескольких переменных x_1, \dots, x_n с коэффициентами из \mathbb{R} .

Определение 3. Кольцо R называется коммутативным, если ab = ba для всех $a, b \in R$.

Все перечисленные в примерах (1)–(6) кольца, кроме $\mathrm{Mat}(n \times n, \mathbb{R})$ при $n \geqslant 2$, коммутативны.

Пусть R — кольцо.

Определение 4. Элемент $a \in R$ называется *обратимым*, если найдётся такой $b \in R$, что ab = ba = 1. Такой элемент b обозначается классическим образом как a^{-1} .

3амечание 6. Все обратимые элементы кольца R образуют группу относительно операции умножения.

Определение 5. Элемент $a \in R$ называется левым (соответственно правым) делителем нуля, если $a \neq 0$ и найдётся такой $b \in R$, $b \neq 0$, что ab = 0 (соответственно ba = 0).

Замечание 7. В случае коммутативных колец понятия левого и правого делителей нуля совпадают, поэтому говорят просто о делителях нуля.

Замечание 8. Все делители нуля в R необратимы: если $ab=0, a\neq 0, b\neq 0$ и существует a^{-1} , то получаем $a^{-1}ab=a^{-1}0$, откуда b=0 — противоречие.

Определение 6. Элемент $a \in R$ называется *нильпотентом*, если $a \neq 0$ и найдётся такое $m \in \mathbb{N}$, что $a^m = 0$.

Замечание 9. Всякий нильпотент в R является делителем нуля: если $a \neq 0$, $a^m = 0$ и число m наименьшее с таким свойством, то $m \geqslant 2$ и $a^{m-1} \neq 0$, откуда $aa^{m-1} = a^{m-1}a = 0$.

Определение 7. *Полем* называется коммутативное ассоциативное кольцо K с единицей, в котором всякий ненулевой элемент обратим.

Замечание 10. Тривиальное кольцо $\{0\}$ полем не считается, поэтому $0 \neq 1$ в любом поле.

Примеры полей: \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_2 .

Предложение 1. Кольцо вычетов \mathbb{Z}_n является полем тогда и только тогда, когда n- простое число.

 $\underline{\mathcal{A}}$ оказательство. Если число n составное, то n=mk, где 1< m,k< n. Тогда $\overline{m}\overline{k}=\overline{n}=\overline{0}$. Следовательно, \overline{k} и \overline{m} — делители нуля в \mathbb{Z}_n , ввиду чего не все ненулевые элементы там обратимы.

Если n=p — простое число, то возьмём произвольный ненулевой вычет $\overline{a}\in\mathbb{Z}_p$ и покажем, что он обратим. Рассмотрим вычеты

$$\overline{1}\overline{a}, \overline{2}\overline{a}, \dots, \overline{(p-1)}\overline{a}.$$

Если $\overline{ra}=\overline{sa}$ при $1\leqslant r,s\leqslant p-1$, то число (r-s)a делится на p. В силу взаимной простоты чисел a и p получаем, что число r-s делится на p. Тогда из условия $|r-s|\leqslant p-2$ следует, что r=s. Это рассуждение показывает, что все вычеты (3) попарно различны. Поскольку все они отличны от нуля, среди них должна найтись единица: существует такое $b\in\{1,\ldots,p-1\}$, что $\overline{ba}=\overline{1}$. Это и означает, что вычет \overline{a} обратим. \square

Определение 8. Алгеброй над полем K (или кратко K-алгеброй) называется множество A с операциями сложения, умножения и умножения на элементы поля K, обладающими следующими свойствами:

- 1) относительно сложения и умножения A есть кольцо;
- 2) относительно сложения и умножения на элементы из K множество A есть векторное пространство;
- $3 (\lambda a)b = a(\lambda b) = \lambda(ab)$ для любых $\lambda \in K$ и $a, b \in A$.

Pазмерностью алгебры A называется её размерность как векторного пространства над K. (Обозначение: $\dim_K A$.)

Примеры.

- 1) Алгебра матриц $Mat(n \times n, K)$ над произвольным полем K. Её размерность равна n^2 .
- 2) Алгебра K[x] многочленов от переменной x над произвольным полем K. Её размерность равна ∞ .
- 3) K, F поля, $K \subset F, F$ алгебра над K.

Если это $\mathbb{R} \subset \mathbb{C}$, то $\dim_{\mathbb{R}} \mathbb{C} = 2$.

Если это $\mathbb{Q} \subset \mathbb{R}$, то $\dim_{\mathbb{Q}} \mathbb{R} = \infty$.

Определение 9. Π одкольцом кольца R называется всякое подмножество $R' \subseteq R$, замкнутое относительно операций сложения и умножения (т. е. $a+b \in R'$ и $ab \in R'$ для всех $a,b \in R'$) и являющееся кольцом относительно этих операций. Π одполем называется всякое подкольцо, являющееся полем.

Например, \mathbb{Z} является подкольцом в \mathbb{Q} , а скалярные матрицы образуют подполе в кольце $\mathrm{Mat}(n\times n,\mathbb{R})$.

Замечание 11. Если K — подполе поля F, то F является алгеброй над K. Так, поле $\mathbb C$ является бесконечномерной алгеброй над $\mathbb Q$, тогда как над $\mathbb R$ имеет размерность 2.

Определение 10. *Подалгеброй* алгебры A (над полем K) называется всякое подмножество $A' \subseteq A$, замкнутое относительно всех трёх имеющихся в A операций (сложения, умножения и умножения на элементы из K) и являющееся алгеброй (над K) относительно этих операций.

Легко видеть, что подмножество $A' \subseteq A$ является алгеброй тогда и только тогда, когда оно является одновременно подкольцом и векторным подпространством в A.

Гомоморфизмы колец, алгебр определяются естественным образом как отображения, сохраняющие все операции.

Упраженение 1. Сформулируйте точные определения гомоморфизма колец и гомоморфизма алгебр.

Определение 11. *Изоморфизмом* колец, алгебр называется всякий гомоморфизм, являющийся биекцией.

В теории групп нормальные подгруппы обладают тем свойством, что по ним можно «факторизовать». В этом смысле аналогами нормальных подгрупп в теории колец служат идеалы.

Определение 12. Подмножество I кольца R называется (двусторонним) идеалом, если оно является подгруппой по сложению и $ra \in I$, $ar \in I$ для любых $a \in I$, $r \in R$.

Замечание 12. В некоммутативных кольцах рассматривают также левые и правые идеалы.

В каждом кольце R есть *несобственные* идеалы I=0 и I=R. Все остальные идеалы называются собственными.

Упраженение 2. Пусть R — коммутативное кольцо. С каждым элементом $a \in R$ связан идеал $(a) := \{ra \mid r \in R\}$.

Определение 13. Идеал I называется *главным*, если существует такой элемент $a \in R$, что I = (a). (В этой ситуации говорят, что I порождён элементом a.)

Пример. В кольце \mathbb{Z} подмножество $k\mathbb{Z}$ ($k \in \mathbb{Z}$) является главным идеалом, порождённым элементом k. Более того, все идеалы в \mathbb{Z} являются главными.

3амечание 13. Главный идеал (a) является несобственным тогда и только тогда, когда a=0 или a обратим.

Более общо, с каждым подмножеством $S\subseteq R$ связан идеал

$$(S) := \{ r_1 a_1 + \ldots + r_k a_k \mid a_i \in S, r_i \in R, k \in \mathbb{N} \}.$$

(Проверьте, что это действительно идеал!) Это наименьший по включению идеал в R, содержащий подмножество S. В этой ситуации говорят, что идеал I = (S) порождён подмножеством S.

Список литературы

- [1] Э. Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 1, $\S 3,4,6,8,9$ и глава 9, $\S 2$)
- [2] А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994 (глава 4, § 3)
- [3] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 4, § 1,4)
- [4] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 14, § 63-64)