数值代数大作业

高以恒

2200010851@stu.pku.edu.cn

cpu: M1 Pro

1 问题描述

考虑 Stokes 方程

$$\begin{cases}
-\Delta \vec{u} + \nabla p = \vec{F}, & (x, y) \in (0, 1) \times (0, 1) \\
\operatorname{div} \vec{u} = 0, & (x, y) \in (0, 1) \times (0, 1)
\end{cases}$$
(1)

边界条件为

$$\begin{aligned} \frac{\partial u}{\partial \vec{n}} &= b, \quad y = 0, & \frac{\partial u}{\partial \vec{n}} &= t, \quad y = 1, \\ \frac{\partial v}{\partial \vec{n}} &= l, \quad x = 0, & \frac{\partial v}{\partial \vec{n}} &= r, \quad x = 1, \\ u &= 0, \quad x = 0, 1, & v = 0, \quad y = 0, 1 \end{aligned}$$

其中 $\vec{u} = (u, v)$ 是速度场,p 是压力场, $\vec{F} = (f, g)$ 是外力场, \vec{n} 是单位外法向量。利用交错网格上的 MAC 格式离散方程 (1),可得如下线性方程组

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} U \\ P \end{pmatrix} = \begin{pmatrix} \vec{F} \\ 0 \end{pmatrix} \tag{2}$$

具体形式见附录。

在该例中,外力为

$$f(x,y) = -4\pi^2 (2\cos(2\pi x) - 1)\sin(2\pi y) + x^2,$$

$$g(x,y) = 4\pi^2 (2\cos(2\pi y) - 1)\sin(2\pi x).$$

Stokes 方程 (1) 的解析解为

$$u(x,y) = (1 - \cos(2\pi x))\sin(2\pi y),$$

$$v(x,y) = -(1 - \cos(2\pi y))\sin(2\pi x),$$

$$p(x,y) = \frac{x^3}{3} - \frac{1}{12}.$$

其中压力 p 的取值可能有任意常数的平移。

2 Task1

分别取 N = 64, 128, 256, 512, 1024, 2048, 以 DGS 为磨光子, 用基于 V-cycle 的多重 网格方法求解离散问题 (2), 停机标准为 $||r_h||_2/||r_0||_2 \le 10^{-8}$ 。对不同的 v1, v2, L,比较 V-cycle 的次数和 CPU 时间, 并计算误差

$$e_N = h \left(\sum_{j=1}^N \sum_{i=1}^N \left(u_{i,j-\frac{1}{2}} - u(x_i, y_{j-\frac{1}{2}}) \right)^2 + \sum_{j=1}^{N-1} \sum_{i=1}^{N-1} \left(v_{i-\frac{1}{2},j} - v(x_{i-\frac{1}{2}}, y_j) \right)^2 \right)^{\frac{1}{2}}$$

2.1 DGS 迭代法和 V-cycle 多重网格方法

给定初始值 $U_0, P_0 = p_0, f, g$,迭代格式如下: 1. 用 Gauss-Seidel 迭代法求解 $AU^{(k+1)} = F - B^T P^{(k)}$,得到 $U^{(k+1/2)}$; 2. 更新内部速度和压力:

$$U^{(k+1)} = U^{(k+1/2)} + B(B^T B)^{-1} (g - BU^{(k+1/2)}),$$

$$P^{(k+1)} = P^{(k)} - (g - BU^{(k+1/2)}).$$
(3)

Algorithm 1 V-cycle 多重网格方法

Require: $U_0, P_0, f, g, v1, v2, N, L$

Ensure: 解 U_h 和 P_h

1: 初始化残差 $r_h = f - A_h U_h$

2: while $||r_h||_2/||r_0||_2 > 10^{-8}$ do

3: 对 *U_h* 和 *P_h* 进行 *v*1 次 DGS 更新

4: **if** L == N **then**

5: return U_h, P_h

6: **else**

7: 将残差 r_h 限制到粗网格: $r_{2h} = R(r_h)$

8: 初始化粗网格解: $U_{2h} = 0$, $P_{2h} = 0$

10: 将粗网格解插值回细网格: $U_h = U_h + I(U_{2h}), P_h = P_h + I(P_{2h})$

11: **end if**

12: 对 *U_h* 和 *P_h* 进行 *v*2 次 DGS 更新

13: 更新残差: $r_h = f - A_h U_h$

14: end while

注: 在计算粗网格上的 A_{2h} , B_{2h} 时,按照课件上的方法, A_{2h} , B_{2h} 的形式如下:

$$\begin{pmatrix} A_{2h} & B_{2h} \\ B_{2h}^T & 0 \end{pmatrix} = I_h^{2h} \begin{pmatrix} A_h & B_h \\ B_h^T & 0 \end{pmatrix} I_{2h}^h$$

其中 I_h^{2h} 是限制算子, I_{2h}^h 是插值算子。但是这样做的计算代价比较大:一方面要进行矩阵乘法,另一方面得到的 A_{2h} , B_{2h} 的稀疏性比较差。因此,在具体实现中我们直接

用粗网格上的 MAC 格式离散得到的稀疏矩阵去近似,实际效果也是比较好的。如果想使用前一种方法,我也提供了选项,具体参见代码。

考虑到在粗网格上进行迭代的时间复杂度较低,在实际实现中我让 $v2 = v_{20} + log_2(N_0/N)$, 其中 v_{20} 是在初始网格上进行迭代的次数, N_0 是初始网格的大小。

2.2 并行加速

对 DGS,两部分更新都可以并行化,这里使用 OpenMP 对细网格 (N>8) 进行并行加速。对 Gaussian-Seidel 迭代法,使用红黑着色法,将网格分为红色和黑色两部分,分别更新。对压力和速度的更新,可以简单的分成 8 个部分,分别更新。

2.3 数值结果

对不同的迭代次数 v1, v2 和底层网格大小 N,得到的误差误差很小,因此只给出 v1=3, v2=1, N/L=2 时的结果。

N	64	128	256	512	1024	2048	4096
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8372e-6	1.4593e-6	3.6480e-7

对不同迭代次数和底层网格大小的运行时间和 V-cycle 迭代次数比较:

表 1: v1 = 1, v2 = 3, N/L = 2

			·			
N	N 64		128 256 5		1024	2048
迭代次数	6	6	6	6	6	6
CPU 时间	0.0378	0.0396	0.0845	0.2574	0.8284	3.4668

注:时间复杂度是 $O(N^2)$ 的,对于 4096 的网格,由于 16g 内存限制,部分数据需要存储在硬盘上,因此时间较长 (30s)。实测在 64g 内存的机器上,8192 的网格也可以在 80s 左右完成。

表 2: v1 = 1, v2 = 3, N/L = 4

N	64	128	256	512	1024	2048
迭代次数	6	6	6	6	6	6
CPU 时间	0.0345	0.0581	0.1125	0.3260	0.9912	3.6560

表 3: v1 = 1, v2 = 1, N/L = 2

N	N 64		128 256		1024	2048	
迭代次数	9	9	9	9	9	9	
CPU 时间	0.0399	0.0407	0.0945	0.3062	0.9557	4.1706	

表 4: v1 = 1, v2 = 1, N/L = 4

N	64	128	256	512	1024	2048
迭代次数	9	9	9	9	9	9
CPU 时间	0.0246	0.0429	0.0975	0.2850	1.0103	4.2779

表 5: v1 = 2, v2 = 2, N/L = 2

N	64	128 256		512	512 1024	
迭代次数	6	6	6	6	6	6
CPU 时间	0.0276	0.0375	0.0872	0.2694	0.8494	3.5884

表 6: v1 = 2, v2 = 2, N/L = 4

\overline{N}	64	128	256	512	1024	2048
迭代次数	6	6	6	6	6	6
CPU 时间	0.0345	0.0581	0.1125	0.3260	0.9912	3.6560

表 7: v1 = 3, v2 = 3, N/L = 2

N	64	128	256	512	1024	2048
迭代次数	6	6	6	6	6	6
CPU 时间	0.0374	0.0490	0.1167	0.3090	0.9741	4.0411

表 8: v1 = 3, v2 = 3, N/L = 4

N	N 64		128 256		1024	2048	
迭代次数	6	6	6	6	6	6	
CPU 时间	0.0465	0.0473	0.1063	0.3131	1.0737	4.3676	

更多结果见附录 5.3. 可以看到,v1,v2 的取值不需要太大,N/L 的取值则为 2 时效果最好,这也符合 V-cycle 多重网格方法的特点。理论上,算法的时间复杂度为 $O(N^2)$,误差阶为 $O(h^2)$,数值结果也符合这一点。

3 Task2

分别取 N = 64, 128, 256, 512, 以 Uzawa Iteration Method 求解离散问题 (2), 停机标准为 $||r_h||_2/||r_0||_2 \le 10^{-8}$ 。 计算误差 e_N 。

3.1 Uzawa 迭代法

Algorithm 2 Uzawa 迭代法

Require: U_0, P_0, f, N, α

Ensure: $\notin U_h \times h$

1: 初始化残差 $r_h = f - A_h U_h$

2: while $||r_h||_2/||r_0||_2 > 10^{-8}$ do

3: 利用 CG 方法求解 $AU_{k+1} = f - B^T P_k$

4: 更新压力: $P_{k+1} = P_k + \alpha B U_{k+1}$

5: 更新残差: $r_h = f - A_h U_h$

6: end while

关于 α 的选取,分析知 $B^TA^{-1}B$ 的特征值为 0 和 1,因此 α 的最佳取值为 1. (见附录 5.2)

3.2 数值结果

对 CG 算法的精确度要求为 10^{-9} , 对 Uzawa 迭代法的精确度要求为 10^{-8} 。

N	64	128	256	512
迭代次数	2	2	2	2
CPU 时间	0.0401	0.0958	0.8966	5.9550
误差	1.4951e-3	3.7363e-4	9.3399 e-5	2.3349e-5

4 Task3

分别取 N = 64, 128, 256, 512, 1024, 2048, 以 Inexact Uzawa Iteration Method 为迭代法求解离散问题 (2), 停机标准为 $||r_h||_2/||r_0||_2 \le 10^{-8}$ 。其中以 V-cycle 多重网格方法为预条件子,利用共轭梯度法求解每一步的子问题 $AU_{k+1} = F - B^T P_k$,对不同的 $\alpha, \tau, \nu_1, \nu_2, L$,比较外循环的迭代次数和 CPU 时间,并计算误差。

4.1 Inexact Uzawa 迭代法和 V-cycle-PCG 算法

定义 $\delta_k = A\hat{U}_{k+1} - f + B^T P_k$,若 $\|\delta_k\|_2 \le \tau \|B^T \hat{U}_{k+1}\|_2$,且 τ 充分小,则上述方法收敛。

Algorithm 3 Inexact Uzawa 迭代法

Require: $U_0, P_0, f, g, N, \alpha, \tau, \nu_1, \nu_2, L$

Ensure: $\not H U_h \not h P_h$

- 1: 初始化残差 $r_h = f A_h U_h$
- 2: while $||r_h||_2/||r_0||_2 > 10^{-8}$ do
- 3: 利用 V-cycle-PCG 方法求解 $AU_{k+1} = f B^T P_k$, 得到近似解 \hat{U}_{k+1} ,
- 4: 更新压力: $P_{k+1} = P_k + \alpha B \hat{U}_{k+1}$
- 5: 更新残差: $r_h = f A\hat{U}_{k+1}$
- 6: end while

Algorithm 4 V-cycle-PCG 算法

Require: : x

- 1: $k = 0, r = b Ax, \rho = r^T r$
- 2: while $(\|r\| > max(\epsilon \|b\|, \tau \|B^T \hat{U}_k\|) andk < K_m ax)$ do
- 3: k = k + 1
- 4: 以 GS 迭代法为磨光子, 利用 V-cycle 多重网格方法求解 Az = r
- 5: **if** k = 1 **then** p = z; $\rho = z^T r$
- 6: **else** $\rho_{old} = \rho; \rho = z^T r; \beta = \rho/\rho_{old}; p = z + \beta p$
- 7: end if
- 8: $w = Ap; \alpha = \rho/(p^T w); x = x + \alpha p; r = r \alpha w$
- 9: end while

该部分我尝试了对称 GS 迭代和红黑 GS 迭代,效果差不多,因此并行实现。V-cycle 多重网格算法停机标准为 $||r_h||_2/||r_0||_2 \le 10^{-3} andk \le 3$

4.2 数值结果

误差:

\overline{N}	64	128	256	512	1024	2048
误差	1.4951e-3	3.7363e-4	9.3399e-5	2.3349e-5	5.8372e-6	1.4593e-6

不同参数对运行时间和 V-cycle 迭代次数的影响见1。这里分别固定 $\alpha=1, \tau=10^{-3}$, $\nu1, \nu2$,改变另一组参数 (N/L=2, N=2048)

可以看到,参数对改变对误差影响不大,但是对迭代次数和时间影响较大。固定 $\nu1,\nu2$,改变 α,τ ,可以看到 $\alpha=1$ 时效果最好, τ 取值对结果影响不大。

图 1: 注: 左图是 cpu 时间关于 v1,v2 的图,右图是外循环迭代次数关于 α,τ 的图。左图点的大小与迭代次数成正比,颜色表示误差大小。

最后以下给出几组组参数下的结果,该算法时间复杂度为 $O(N^2)$,误差阶为 $O(h^2)$,数值结果也符合这一点。更多结果见附录。

$$\alpha=1, \tau=10^{-3}, \nu 1=1, \nu 2=1, N/L=2$$
 :

N	64	128	256	512	1024	2048
CPU 时间	0.0698	0.0579	0.1445	0.4214	1.2661	5.0848
Inexact Uzawa 迭代次数	3	4	4	4	3	3
PCG 迭代次数	$3\ 3\ 2$	$3\ 2\ 1\ 1$	$3\ 2\ 1\ 1$	$3\ 2\ 1\ 1$	3 2 1	$2\ 3\ 1$

$$\alpha=1, au=10^{-3},
u 1=1,
u 2=1,
N/L=4$$
 :

N	64	128	256	512	1024	2048
CPU 时间	0.1061	0.1597	0.3786	0.9168	2.7406	9.4641
Inexact Uzawa 迭代次数	4	4	4	4	4	4
PCG 迭代次数	$5\ 15\ 2\ 1$	$4\ 14\ 2\ 1$	$4\ 12\ 2\ 1$	3 11 2 1	3 9 2 1	$3\ 8\ 2\ 1$

$$\alpha=1, au=10^{-3},
u 1=2,
u 2=2,
onumber N/L=2$$
 :

N	64	128	256	512	1024	2048
CPU 时间	0.0657	0.0730	0.1736	0.4687	1.5007	4.3087
Inexact Uzawa 迭代次数	3	3	3	3	3	3
PCG 迭代次数	3 3 1	3 3 1	3 3 1	3 3 1	3 3 1	2 2 1

$$\alpha=1, \tau=10^{-3}, \nu 1=2, \nu 2=2, N/L=4\colon$$

N	64	128	256	512	1024	2048
CPU 时间	0.1016	0.1409	0.2515	0.8003	1.9337	7.8004
Inexact Uzawa 迭代次数	4	4	4	4	3	3
PCG 迭代次数	$3\ 8\ 2\ 1$	$3\ 6\ 2\ 1$	$3\; 5\; 1\; 1$	$3\ 3\ 2\ 1$	$3\ 4\ 1$	3 3 1

5 Appendix

5.1 交错网格上的 MAC 格式

方程组 (2) 的系数矩阵 A, B 的具体形式如下:

其中
$$A = \begin{pmatrix} A_u \\ A_v \end{pmatrix}, B = \begin{pmatrix} B_u \\ B_v \end{pmatrix}, A_u, A_v \in \mathbb{R}^{N(N-1) \times N(N-1)},$$

$$A_{u} = \begin{pmatrix} A_{1} & -\frac{1}{h^{2}}I & & & & \\ -\frac{1}{h^{2}}I & A_{2} & -\frac{1}{h^{2}}I & & & & \\ & -\frac{1}{h^{2}}I & A_{2} & -\frac{1}{h^{2}}I & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -\frac{1}{h^{2}}I & A_{2} & -\frac{1}{h^{2}}I \\ & & & & -\frac{1}{h^{2}}I & A_{2} & -\frac{1}{h^{2}}I \\ & & & & -\frac{1}{h^{2}}I & A_{1} \end{pmatrix}, A_{v} = \begin{pmatrix} A_{3} & -\frac{1}{h^{2}}I & & & \\ -\frac{1}{h^{2}}I & A_{3} & -\frac{1}{h^{2}}I & & & \\ & & & \ddots & \ddots & \ddots & \\ & & & & -\frac{1}{h^{2}}I & A_{3} & -\frac{1}{h^{2}}I \\ & & & & & -\frac{1}{h^{2}}I & A_{3} & -\frac{1}{h^{2}}I \\ & & & & & -\frac{1}{h^{2}}I & A_{3} \end{pmatrix}$$

$$A_1 = \begin{pmatrix} \frac{3}{h^2} & -\frac{1}{h^2} \\ -\frac{1}{h^2} & \frac{3}{h^2} & -\frac{1}{h^2} \\ & -\frac{1}{h^2} & \frac{3}{h^2} & -\frac{1}{h^2} \\ & & \ddots & \ddots & \ddots \\ & & & -\frac{1}{h^2} & \frac{3}{h^2} & -\frac{1}{h^2} \\ & & & & -\frac{1}{h^2} & \frac{3}{h^2} & -\frac{1}{h^2} \\ & & & & -\frac{1}{h^2} & \frac{3}{h^2} & -\frac{1}{h^2} \\ & & & & & -\frac{1}{h^2} & \frac{3}{h^2} & -\frac{1}{h^2} \\ & & & & & -\frac{1}{h^2} & \frac{3}{h^2} & -\frac{1}{h^2} \\ & & & & & -\frac{1}{h^2} & \frac{4}{h^2} & -\frac{1}{h^2} \\ & & & & & -\frac{1}{h^2} & \frac{4}{h^2} & -\frac{1}{h^2} \\ & & & & & -\frac{1}{h^2} & \frac{4}{h^2} & -\frac{1}{h^2} \\ & & & & & -\frac{1}{h^2} & \frac{4}{h^2} & -\frac{1}{h^2} \\ & & & & & -\frac{1}{h^2} & \frac{4}{h^2} & -\frac{1}{h^2} \\ \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} \frac{3}{h^{2}} & -\frac{1}{h^{2}} & & & & \\ -\frac{1}{h^{2}} & \frac{4}{h^{2}} & -\frac{1}{h^{2}} & & & & \\ & -\frac{1}{h^{2}} & \frac{4}{h^{2}} & -\frac{1}{h^{2}} & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -\frac{1}{h^{2}} & \frac{4}{h^{2}} & -\frac{1}{h^{2}} & \\ & & & & \ddots & \ddots & \\ & & & -\frac{1}{h^{2}} & \frac{4}{h^{2}} & -\frac{1}{h^{2}} & \\ & & & & & H \end{pmatrix}, B_{u} = \begin{pmatrix} H & & & \\ & H & & & \\ & & & \ddots & & \\ & & & & H \end{pmatrix},$$

$$B_{v} = \begin{pmatrix} -\frac{1}{h}I_{N\times N} & \frac{1}{h}I_{N\times N} & & & & \\ & -\frac{1}{h}I_{N\times N} & \frac{1}{h}I_{N\times N} & & & \\ & & \ddots & \ddots & & \\ & & & -\frac{1}{h}I_{N\times N} & \frac{1}{h}I_{N\times N} \end{pmatrix}, H = \begin{pmatrix} -\frac{1}{h} & \frac{1}{h} & & & \\ & -\frac{1}{h} & \frac{1}{h} & & \\ & & \ddots & \ddots & \\ & & & -\frac{1}{h} & \frac{1}{h}I_{N\times N} \end{pmatrix}.$$

5.2 $B^T A^{-1} B$ 的特征值

$$B_{N-1} = \begin{pmatrix} 2 & -1 & 0 & \cdots \\ -1 & 2 & -1 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \cdots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}_{N-1 \times N-1}, \quad R_N = \begin{pmatrix} 1 & -1 & 0 & \cdots \\ -1 & 2 & -1 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \cdots & -1 & 2 & -1 \\ \vdots & \cdots & \cdots & -1 & 1 \end{pmatrix}_{N \times N}$$

直接计算可得:

$$A = \begin{pmatrix} A_u & 0 \\ 0 & A_v \end{pmatrix}, \quad A_u = B_{N-1} \oplus R_N, \quad A_v = R_N \oplus B_{N-1}, \quad B^T B = R_N \oplus R_N$$

$$B = \begin{pmatrix} I \otimes H \\ H \otimes I \end{pmatrix}, \quad B_{N-1} = HH^T, \quad R_N = H^TH$$

其中 \oplus 为 Kronecker 直和, $A \oplus B = I \otimes A + B \otimes I$.

接下来通过 R_N, B_{N-1} 求 H 的 SVD 分解, 令

$$\lambda_k = 2sin(\frac{k\pi}{2N}) = \sqrt{2(1 - cos(\frac{k\pi}{N}))}, \quad k = 1, 2, \dots, N - 1$$

则容易验证 R_N 的特征值和特征向量为

$$\lambda_1^2, \cdots, \lambda_{N-1}^2, 0$$

$$v_k = \frac{\left(\cos\left(\frac{(j-1/2)k\pi}{N}\right)_{j=1:N}\right)^T}{\|\cdot\|}, k = 1:N-1, v_N = (1, 1, \dots, 1)^T$$

其中 $\|\cdot\|$ 表示分子上的向量的模长,同理可得 B_{N-1} 的特征值和特征向量为

$$\lambda_1^2,\cdots,\lambda_{N-1}^2$$

$$u_k = \frac{(\cos(\frac{jk\pi}{N})_{j=1:N-1})^T}{\|\cdot\|}, k = 1:N-1$$

故 $H = V\Sigma U^T$, 其中 $V = (v_1, \dots, v_{N-1}, v_N), U = (u_1, \dots, u_{N-1}), \Sigma = diag(\lambda_1, \dots, \lambda_{N-1}, 0)$. 考虑压力空间的一组基 $v_i \otimes v_j, i, j = 1, 2, \dots, N$, 若 $i \neq N, j \neq N$

N,则有

$$B^{T} A^{-1} B(v_i \otimes v_j) = B^{T} A^{-1} \begin{pmatrix} \lambda_j v_i \otimes u_j \\ \lambda_i u_i \otimes v_j \end{pmatrix}$$

$$\tag{4}$$

$$= B^T \begin{pmatrix} \frac{\lambda_j}{\lambda_i^2 + \lambda_j^2} v_i \otimes u_j \\ \frac{\lambda_i}{\lambda_i^2 + \lambda_j^2} u_i \otimes v_j \end{pmatrix}$$
 (5)

$$= \frac{\lambda_j^2}{\lambda_i^2 + \lambda_j^2} v_i \otimes v_j + \frac{\lambda_i^2}{\lambda_i^2 + \lambda_j^2} v_i \otimes v_j \tag{6}$$

$$=v_i\otimes v_j \tag{7}$$

类似的可以得到 i,j 有且只有一个等于 N 时, $B^TA^{-1}B(v_i\otimes v_j)=v_i\otimes v_j$,i,j 都等于 N 时, $B^TA^{-1}B(v_i\otimes v_j)=0$ 。故 $B^TA^{-1}B$ 的特征值为 1 和 0,特征向量为 $v_i\otimes v_j$, $i,j=1,2,\cdots,N$ 。

5.3 DGS 迭代法和 V-cycle 多重网格方法数值结果

表 9: $v1 = 4, v2 = 4, N/L = 2$									
N	64	128	256	512	1024	2048			
迭代次数	5	5	5	5	5	5			
CPU 时间	0.0569	0.0553	0.1227	0.3015	1.1306	4.2555			
	表 10: $v1 = 4, v2 = 4, N/L = 4$								
N	64	128	256	512	1024	2048			
迭代次数	5	5	5	5	5	5			
CPU 时间	0.0341	0.0464	0.1047	0.3519	1.0612	4.5749			
表 11: $v1 = 6, v2 = 6, N/L = 2$									
	表 1	1: $v1 = 6$	6, v2 = 6,	N/L = 2	}				
N	表 1 64	1: $v1 = 6$	6, v2 = 6, 256	$\frac{N/L = 2}{512}$	1024	2048			
N 			· · · · ·	,		2048			
	64	128	256 5	512	1024	5			
迭代次数	64 5 0.0548	128 5 0.0667	256 5 0.1355	512	1024 5 1.1734	5			
迭代次数	64 5 0.0548	128 5 0.0667	256 5 0.1355	512 5 0.4067	1024 5 1.1734	5			
迭代次数 CPU 时间 N	64 5 0.0548 表 1	$ \begin{array}{c} 128 \\ 5 \\ 0.0667 \\ 2: v1 = 6 \end{array} $	$ \begin{array}{c} 256 \\ 5 \\ 0.1355 \\ 6, v2 = 6, \\ \end{array} $	512 5 0.4067 $N/L = 4$	1024 5 1.1734	5 4.8236			

5.4 Inexact Uzawa 迭代法的参数选取

$$\alpha = 1, \tau = 10^{-3}, \nu 1 = 3, \nu 2 = 3, N/L = 2$$
:

N	64	128	256	512	1024	2048
CPU 时间	0.0653	0.0810	0.1847	0.5133	1.6055	5.7464
Inexact Uzawa 迭代次数	2	2	2	2	2	2
PCG 迭代次数	3 3	3 3	3 3	3 3	3 3	3 2

 $\alpha=1, \tau=10^{-3}, \nu 1=3, \nu 2=3, N/L=4$:

N	64	128	256	512	1024	2048
CPU 时间	0.0702	0.0807	0.1848	0.4922	1.3745	5.7537
Inexact Uzawa 迭代次数	3	2	2	2	2	2
PCG 迭代次数	$3\ 3\ 1$	3 3	3 3	3 3	3 2	3 2

 $\alpha=1, \tau=10^{-3}, \nu 1=4, \nu 2=4, N/L=2$:

N	64	128	256	512	1024	2048
CPU 时间	0.0620	0.1023	0.2237	0.6076	1.6756	7.4759
Inexact Uzawa 迭代次数	2	2	2	2	2	2
PCG 迭代次数	3 3	3 3	3 3	3 3	3 2	3 2

 $\alpha=1, \tau=10^{-3}, \nu 1=3, \nu 2=3, N/L=4$:

N	64	128	256	512	1024	2048
CPU 时间	0.0836	0.0977	0.2279	0.5739	1.8969	8.2079
Inexact Uzawa 迭代次数	2	2	2	2	2	2
PCG 迭代次数	3 3 1	3 3	3 3	3 3	3 3	3 3

Hu [2024]

References

Jun Hu. V-cycle, dec 2024.