主成分分析

基本的な考え方

村田 昇

講義の内容

・第1日:主成分分析の考え方

• 第2日: 分析の評価と視覚化

主成分分析の例

県毎の生活環境の違いの分析

Figure 1: 県別の生活環境 (教育・労働などに関連する項目)

主成分分析の考え方

主成分分析

- 多数の変量のもつ情報の分析・視覚化
 - 変量を効率的に縮約して少数の特徴量を構成する
 - 特徴量に関与する変量間の関係を明らかにする
- PCA (Principal Component Analysis)
 - 構成する特徴量: **主成分** (princial component)

Figure 2: 県別の生活環境 (教育・労働などに関連する項目)

Figure 3: 県別の生活環境 (教育・労働などに関連する項目)

県名	年少人口比	老年人口比	婚姻率	離婚率	高校数/面積	交通事故	犯罪件数	食料費	住居費	貯蓄率
北海道	11.7	26.0	4.86	2.12	1.34	274.2	8.98	22.5	5.9	19.4
青森県	12.1	27.0	4.33	1.78	2.63	386.7	6.12	24.6	5.4	16.2
岩手県	12.4	27.9	4.32	1.52	2.19	261.6	4.83	24.7	7.1	19.1
宮城県	13.0	22.9	5.30	1.70	3.18	447.7	8.85	23.7	5.0	9.5
秋田県	11.1	30.7	3.78	1.41	1.85	266.2	4.12	22.9	7.9	15.2
山形県	12.6	28.3	4.24	1.46	2.24	614.9	5.54	22.2	6.0	5.1
福島県	12.9	26.1	4.73	1.64	2.65	498.9	8.13	22.7	5.7	25.1
茨城県	13.2	23.8	4.92	1.79	3.09	500.6	13.00	21.9	6.8	20.0
栃木県	13.2	23.2	5.13	1.85	2.68	404.3	11.53	20.4	6.9	17.4
群馬県	13.4	24.9	4.64	1.77	3.56	925.2	10.49	23.9	4.4	1.6
埼玉県	13.0	22.0	5.10	1.86	7.81	493.6	13.91	23.0	7.0	21.6
千葉県	12.8	23.2	5.19	1.86	5.24	370.2	13.36	26.2	5.2	8.9
東京都	11.3	21.3	6.75	1.91	31.03	358.5	14.13	25.1	7.7	18.0
神奈川県	13.0	21.5	5.68	1.85	16.09	408.6	9.46	24.5	7.4	15.9
新潟県	12.5	27.2	4.35	1.37	2.35	357.2	8.71	23.5	5.7	13.0
富山県	12.7	27.6	4.50	1.43	2.86	459.6	6.14	22.7	7.2	36.1
石川県	13.4	25.0	4.91	1.52	4.03	443.3	6.93	23.3	4.6	22.3
福井県	13.7	26.0	4.55	1.55	3.72	394.0	7.07	24.1	4.7	29.2
山梨県	12.9	25.6	4.60	1.87	4.62	706.0	8.61	25.1	5.7	16.7
長野県	13.5	27.4	4.67	1.66	3.14	487.9	8.27	21.4	8.2	16.0
岐阜県	13.7	25.2	4.62	1.60	3.68	502.3	12.18	24.0	5.1	25.5
静岡県	13.4	24.9	5.17	1.84	5.23	989.2	9.58	23.8	5.6	10.7
愛知県	14.2	21.4	5.75	1.82	7.39	668.5	16.04	27.2	5.7	27.1
三重県	13.5	25.3	4.89	1.76	3.52	551.9	12.03	22.0	4.9	6.7
滋賀県	14.8	21.6	5.22	1.66	4.47	570.4	9.73	25.8	4.6	18.7
京都府	12.6	24.7	5.02	1.77	8.83	471.3	14.37	26.9	6.7	18.8
大阪府	13.0	23.7	5.43	2.12	19.77	544.4	17.52	25.4	7.8	15.1
八 兵庫県		24.3	5.43	1.84	7.67	611.3	17.32		7.8 7.2	6.5
奈良県	13.5							25.7		
	12.9	25.5	4.48	1.72	6.22	395.6	9.55	22.5	6.7	11.8
和歌山県	12.5	28.4	4.72	1.98	4.65	547.6	11.01	25.8	4.4	22.9
鳥取県	13.2	27.2	4.74	1.83	3.40	238.7	8.45	23.7	6.3	10.8
島根県	12.7	30.0	4.40	1.43	3.88	244.0	6.27	23.4	7.8	22.6
岡山県	13.5	26.2	4.94	1.82	4.04	775.9	12.30	22.7	8.4	21.1
広島県	13.5	25.3	5.15	1.78	5.63	521.4	9.08	23.6	7.3	23.2
山口県	12.6	29.2	4.58	1.67	4.95	501.5	7.94	21.3	7.5	16.3
徳島県	12.2	28.0	4.34	1.62	3.81	645.9	8.32	21.3	7.2	15.0
香川県	13.2	27.1	4.84	1.91	4.19	1075.5	9.27	21.2	5.9	23.6
愛媛県	12.8	27.8	4.51	1.79	4.02	502.3	11.35	23.1	9.0	20.6
高知県	11.9	30.1	4.33	1.87	4.05	435.6	10.56	22.6	6.9	20.0
福岡県	13.5	23.3	5.50	2.07	5.94	849.1	14.46	22.4	7.4	11.9
佐賀県	14.4	25.3	4.75	1.74	3.38	1078.3	9.62	21.6	6.6	20.6
長崎県	13.4	27.0	4.50	1.74	4.83	499.4	5.99	22.8	6.7	8.3
熊本県	13.7	26.5	4.96	1.87	3.00	543.3	7.75	21.4	7.5	13.2
大分県	12.9	27.6	4.77	1.85	3.67	511.3	6.88	20.6	6.4	17.1
宮崎県	13.8	26.7	5.03	2.15	2.93	957.3	8.39	22.6	6.7	8.0
鹿児島県	13.6	27.0	4.78	1.84	2.81	565.3	6.24	20.8	7.6	13.7
沖縄県	17.6	17.7	6.28	2.58	5.48	475.3	8.85	24.3	10.4	24.6

分析の枠組み

• x₁,...,x_p:変数

• z₁,...,z_d:特徴量(d≤p)

・ 変数と特徴量の関係 (線形結合)

$$z_k = a_{1k}x_1 + \dots + a_{pk}x_p \quad (k = 1, \dots, d)$$

- 特徴量は定数倍の任意性があるので以下を仮定

$$\|\boldsymbol{a}_k\|^2 = \sum_{j=1}^p a_{jk}^2 = 1$$

主成分分析の用語

- 特徴量 z_k
 - 第 k 主成分得点 (principal component score)
 - 第 k **主成分**

Figure 4: 県別の生活環境の主成分分析

- 係数ベクトル a_k
 - 第 k 主成分負荷量 (principal component loading)
 - 第 k 主成分方向 (principal component direction)

分析の目的

目的

主成分得点 z_1,\ldots,z_d が変数 x_1,\ldots,x_p の情報を効率よく反映するように主成分負荷量 a_1,\ldots,a_d を観測データから決定する

- 分析の方針 (以下は同値)
 - データの情報を最も保持する変量の線形結合を構成
 - データの情報を最も反映する 座標軸を探索
- 教師なし学習の代表的手法の1つ
 - 特徴抽出:情報処理に重要な特性を変数に凝集
 - 次元縮約:入力をできるだけ少ない変数で表現

第1主成分の計算

記号の準備

- 変数: $x_1, ..., x_p$ (p 次元)
- 観測データ:n 個の $(x_1,...,x_p)$ の組

$$\{(x_{i1},\ldots,x_{ip})\}_{i=1}^n$$

- ベクトル表現
 - $-x_i = (x_{i1}, ..., x_{ip})^{\mathsf{T}} : i$ 番目の観測データ (p 次元空間内の 1 点)
 - $a = (a_1, ..., a_p)^\mathsf{T}$: 長さ1の p 次元ベクトル

係数ベクトルによる射影

• データ x_i のa方向成分の長さ

$$a^{\mathsf{T}}x_i$$
 (スカラー)

• 方向ベクトル a をもつ直線上への点 x_i の直交射影

$$(a^{\mathsf{T}}x_i)a$$
 $(\lambda h j - \chi \wedge (j + h))$

幾何学的描像

Figure 5: 観測データの直交射影 (p = 2, n = 2) の場合)

ベクトル a の選択の指針

• 射影による特徴量の構成

ベクトル a を **うまく** 選んで観測データ x_1, \dots, x_n の情報を最も保持する 1 変量データ z_1, \dots, z_n を構成

$$z_1 = a^{\mathsf{T}} x_1, z_2 = a^{\mathsf{T}} x_2, \dots, z_n = a^{\mathsf{T}} x_n$$

• 特徴量のばらつきの最大化

観測データの **ばらつき**を最も反映するベクトル a を選択

$$\arg\max_{\boldsymbol{a}} \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}, \quad \bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i},$$

ベクトル a の最適化

• 最適化問題

制約条件 $\|a\| = 1$ の下で以下の関数を最大化せよ

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_i - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^2$$

- この最大化問題は必ず解をもつ
 - f(a) は連続関数
 - 集合 $\{a \in \mathbb{R}^p : \|a\| = 1\}$ はコンパクト (有界閉集合)

演習

問題

- 以下の間に答えなさい
 - 評価関数 f(a) を以下の中心化したデータ行列で表しなさい

$$X = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \\ \vdots \\ \boldsymbol{x}_n^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} - \bar{x}_1 & \cdots & x_{1p} - \bar{x}_p \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_1 & \cdots & x_{np} - \bar{x}_p \end{pmatrix}$$

- 上の結果を用いて次の最適化問題の解の条件を求めなさい

maximize
$$f(a)$$
 s.t. $a^{\mathsf{T}}a = 1$

解答例

• 定義どおりに計算する

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}$$
$$= \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}}) (\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{a} - \bar{\boldsymbol{x}} \boldsymbol{a}^{\mathsf{T}})$$
$$= \boldsymbol{a}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{a}$$

- 回帰分析の Gram 行列を参照
- 制約付き最適化なので未定係数法を用いればよい

$$L(\boldsymbol{a}, \lambda) = f(\boldsymbol{a}) + \lambda(1 - \boldsymbol{a}^{\mathsf{T}}\boldsymbol{a})$$

の鞍点

$$\frac{\partial}{\partial \boldsymbol{a}} L(\boldsymbol{a}, \lambda) = 0$$

を求めればよいので

$$2X^{\mathsf{T}}Xa - 2\lambda a = 0$$

$$X^{\mathsf{T}}Xa = \lambda a \quad \text{(固有值問題)}$$

第1主成分の解

ベクトル a の解

• 最適化問題

maximize
$$f(\mathbf{a}) = \mathbf{a}^{\mathsf{T}} X^{\mathsf{T}} X \mathbf{a}$$
 s.t. $\mathbf{a}^{\mathsf{T}} \mathbf{a} = 1$

• 固有值問題

$$f(a)$$
 の極大値を与える a は $X^\mathsf{T} X$ の固有ベクトルとなる

$$X^{\mathsf{T}}Xa = \lambda a$$

第1主成分

• 固有ベクトル a に対する f(a) は行列 X^TX の固有値

$$f(a) = a^{\mathsf{T}} X^{\mathsf{T}} X a = a^{\mathsf{T}} \lambda a = \lambda$$

- 求める a は行列 X^TX の最大固有ベクトル (長さ 1)
- 第1主成分負荷量: 最大(第一) 固有ベクトル a
- 第1主成分得点

$$z_{i1} = a_1 x_{i1} + \dots + a_p x_{ip} = \boldsymbol{a}^\mathsf{T} \boldsymbol{x}_i, \quad (i = 1, \dots, n)$$

Gram 行列の性質

Gram 行列の固有値

- X^TX は非負定値対称行列
- X^TX の固有値は 0 以上の実数
 - 固有値を重複を許して降順に並べる

$$\lambda_1 \ge \dots \ge \lambda_p \quad (\ge 0)$$

- 固有値 λ_k に対する固有ベクトルを a_k (長さ 1) とする

$$\|a_k\| = 1, \quad (k = 1, \dots, p)$$

Gram 行列のスペクトル分解

• a_1, \ldots, a_p は **互いに直交** するようとることができる

$$j \neq k \implies \boldsymbol{a}_{j}^{\mathsf{T}} \boldsymbol{a}_{k} = 0$$

• 行列 X^TX (非負定値対称行列) のスペクトル分解

$$X^{\mathsf{T}}X = \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} + \lambda_2 \boldsymbol{a}_2 \boldsymbol{a}_2^{\mathsf{T}} + \dots + \lambda_p \boldsymbol{a}_p \boldsymbol{a}_p^{\mathsf{T}}$$
$$= \sum_{k=1}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}}$$

- 固有値と固有ベクトルによる行列の表現

演習

問題

- 以下の間に答えなさい
 - Gram 行列のスペクトル分解において λ_j と a_j が固有値・固有ベクトルとなることを確かめなさい

$$X^{\mathsf{T}}X = \sum_{k=1}^{p} \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}}$$

- 以下の行列を用いて Gram 行列のスペクトル分解を書き直しなさい

$$A = \begin{pmatrix} \boldsymbol{a}_1^\mathsf{T} \\ \vdots \\ \boldsymbol{a}_p^\mathsf{T} \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_p \end{pmatrix}$$

解答例

• 固有ベクトルの直交性に注意する

$$X^{\mathsf{T}}Xa_{j} = \sum_{k=1}^{p} \lambda_{k}a_{k}a_{k}^{\mathsf{T}}a_{j}$$
 (直交性)
$$= \lambda_{j}a_{j}a_{j}^{\mathsf{T}}a_{j}$$
 (単位ベクトル)
$$= \lambda_{i}a_{i}$$

• 転置に注意して計算する

$$X^{\mathsf{T}}X = A^{\mathsf{T}}\Lambda A$$

第2主成分以降の計算

第2主成分の考え方

- 第1主成分
 - 主成分負荷量: ベクトル a₁
 - 主成分得点: $a_1^T x_i$ (i = 1, ..., n)
- 第1主成分負荷量に関してデータが有する情報

$$(\boldsymbol{a}_1^\mathsf{T}\boldsymbol{x}_i)\,\boldsymbol{a}_1 \quad (i=1,\ldots,n)$$

・ 第1主成分を取り除いた観測データ(分析対象)

$$\tilde{\mathbf{x}}_i = \mathbf{x}_i - (\mathbf{a}_1^\mathsf{T} \mathbf{x}_i) \mathbf{a}_1 \quad (i = 1, \dots, n)$$

第2主成分の最適化

• 最適化問題

制約条件 $\|a\| = 1$ の下で以下の関数を最大化せよ

$$\tilde{f}(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \tilde{\boldsymbol{x}}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\tilde{\boldsymbol{x}}})^{2} \quad \text{trt.} \quad \bar{\tilde{\boldsymbol{x}}} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\boldsymbol{x}}_{i}$$

演習

問題

- 以下の間に答えなさい
 - 以下の中心化したデータ行列をXと a_1 で表しなさい

$$\tilde{X} = \begin{pmatrix} \tilde{x}_1^\mathsf{T} - \bar{\tilde{x}}^\mathsf{T} \\ \vdots \\ \tilde{x}_n^\mathsf{T} - \bar{\tilde{x}}^\mathsf{T} \end{pmatrix}$$

- 上の結果を用いて次の最適化問題の解を求めなさい

maximize
$$\tilde{f}(a)$$
 s.t. $a^{\mathsf{T}}a = 1$

解答例

• 定義どおりに計算する

$$\tilde{X} = \begin{pmatrix} \tilde{\boldsymbol{x}}_{1}^{\mathsf{T}} - \bar{\tilde{\boldsymbol{x}}}^{\mathsf{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{n}^{\mathsf{T}} - \bar{\tilde{\boldsymbol{x}}}^{\mathsf{T}} \end{pmatrix} = X - X\boldsymbol{a}_{1}\boldsymbol{a}_{1}^{\mathsf{T}}$$

• Gram 行列 $\tilde{X}^{\mathsf{T}}\tilde{X}$ を計算する

$$\begin{split} \tilde{X}^{\mathsf{T}} \tilde{X} &= (X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}})^{\mathsf{T}} (X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}}) \\ &= X^{\mathsf{T}} X - X^{\mathsf{T}} X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} - \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} X^{\mathsf{T}} X + \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= X^{\mathsf{T}} X - \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= \sum_{k=2}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}} \end{split}$$

元の Gram 行列 $X^\mathsf{T} X$ の固有ベクトル \mathbf{a}_1 の固有値が 0 となっていると考えることができる

第2主成分以降の解

第2主成分

• Gram 行列 $\tilde{X}^T \tilde{X}$ の固有ベクトル a_1 の固有値は 0

$$\tilde{X}^{\mathsf{T}}\tilde{X}\boldsymbol{a}_{1}=0$$

- Gram 行列 $\tilde{X}^{\mathsf{T}}\tilde{X}$ の最大固有値は λ_2
- 解は第2固有値 λ_2 に対応する固有ベクトル a_2
- 以下同様に第 k 主成分負荷量は $X^\mathsf{T} X$ の第 k 固有値 λ_k に対応する固有ベクトル \boldsymbol{a}_k

解析の事例

データセットについて

- ・ 総務省統計局より取得した都道府県別の社会生活統計指標 (自然環境・経済基盤) の一部
 - 総務省 https://www.e-stat.go.jp/SG1/estat/List.do?bid=000001083999&cycode=0
 - データ https://noboru-murata.github.io/multivariate-analysis/data/japan_social.csv
 - * Pref: 都道府県名
 - * Forest: 森林面積割合(%) 2014年
 - * Agri: 就業者 1 人当たり農業産出額(販売農家)(万円)2014年
 - * Ratio: 全国総人口に占める人口割合(%) 2015年
 - * Land: 土地生産性(耕地面積 I ヘクタール当たり)(万円) 2014 年
 - * Goods: 商業年間商品販売額 [卸売業+小売業] (事業所当たり) (百万円) 2013 年
 - * Area: 地方区分

社会生活統計指標の分析

- データ (の一部) の内容
- データの散布図

Figure 6: 散布図

• データの箱ひげ図

Pref	Forest	Agri	Ratio	Land	Goods	Area
Hokkaido	67.9	1150.6	4.23	96.8	283.3	Hokkaido
Aomori	63.8	444.7	1.03	186.0	183.0	Tohoku
Iwate	74.9	334.3	1.01	155.2	179.4	Tohoku
Miyagi	55.9	299.9	1.84	125.3	365.9	Tohoku
Akita	70.5	268.7	0.81	98.5	153.3	Tohoku
Yamagata	68.7	396.3	0.88	174.1	157.5	Tohoku
Fukushima	67.9	236.4	1.51	127.1	184.5	Tohoku
Ibaraki	31.0	479.0	2.30	249.1	204.9	Kanto
Tochigi	53.2	402.6	1.55	199.6	204.3	Kanto
Gumma	63.8	530.6	1.55	321.6	270.0	Kanto
Saitama	31.9	324.7	5.72	247.0	244.7	Kanto
Chiba	30.4	565.5	4.90	326.1	219.7	Kanto
Tokyo	34.8	268.5	10.63	404.7	1062.6	Kanto
Kanagawa	38.8	322.8	7.18	396.4	246.1	Kanto
Niigata	63.5	308.6	1.81	141.9	205.5	Chubu
Toyama	56.6	276.1	0.84	98.5	192.4	Chubu
Ishikawa	66.0	271.3	0.91	112.0	222.9	Chubu
Fukui	73.9	216.1	0.62	98.5	167.3	Chubu
Yamanashi	77.8	287.4	0.66	325.3	156.2	Chubu
Nagano	75.5	280.0	1.65	211.3	194.4	Chubu
Gifu	79.0	283.7	1.60	192.1	167.9	Chubu
Shizuoka	63.1	375.8	2.91	314.5	211.4	Chubu
Aichi	42.2	472.3	5.89	388.9	446.9	Chubu
Mie	64.3	310.6	1.43	174.3	170.1	Kansai
Shiga	50.5	222.8	1.11	104.9	170.7	Kansai
Kyoto	74.2	267.8	2.05	212.5	196.7	Kansai
Osaka	30.1	216.3	6.96	238.8	451.2	Kansai
Hyogo	66.7	261.2	4.35	197.7	212.5	Kansai
Nara	76.8	207.0	1.07	182.7	147.0	Kansai
Wakayama	76.4	251.1	0.76	278.4	136.4	Kansai
Tottori	73.3	249.9	0.45	187.6	162.2	Chugoku
Shimane	77.5	214.1	0.55	140.8	141.1	Chugoku
Okayama	68.0	254.8	1.51	184.9	207.8	Chugoku
Hiroshima	71.8	286.2	2.24	192.2	304.6	Chugoku
Yamaguchi	71.6	216.9	1.11	125.8	158.9	Chugoku
Tokushima	75.2	315.4	0.59	313.5	134.5	Shikoku
Kagawa	46.4	249.5	0.77	242.9	232.9	Shikoku
Ehime	70.3	288.5	1.09	231.6	179.4	Shikoku
Kochi	83.3	354.2	0.57	339.9	137.9	Shikoku
Fukuoka	44.5	381.0	4.01	255.6	295.7	Kyushu
Saga	45.2	468.7	0.66	230.3	137.9	Kyushu
Nagasaki	58.4	428.9	1.08	296.0	154.0	Kyushu
Kumamoto	60.4	456.6	1.41	285.5	172.5	Kyushu
Oita	70.7	360.1	0.92	222.8	148.3	Kyushu
Miyazaki	75.8	739.1	0.87	487.7	170.6	Kyushu
Kagoshima	63.4	736.5	1.30	351.2	169.4	Kyushu
Okinawa	46.1	452.4	1.13	232.8	145.4	Kyushu

- 標準化したデータ (の一部)
- 標準化したデータの箱ひげ図
- 主成分負荷量を計算 (標準化後)
- 主成分方向から読み取れること
 - 第1:人の多さに関する成分(正の向きほど人が多い)
 - 第2:農業生産力に関する成分(正の向きほど高い)
- 主成分得点の表示

11

Figure 7: 箱ひげ図

Figure 8: 箱ひげ図 (データを標準化)

Pref	Forest	Agri	Ratio	Land	Goods	Area
Hokkaido	0.4250	4.6300	0.9790	-1.4000	0.42100	Hokkaido
Aomori	0.1510	0.4890	-0.5120	-0.4460	-0.27400	Tohoku
Iwate	0.8920	-0.1590	-0.5210	-0.7760	-0.29900	Tohoku
Miyagi	-0.3760	-0.3610	-0.1340	-1.1000	0.99300	Tohoku
Akita	0.5990	-0.5440	-0.6140	-1.3800	-0.48000	Tohoku
Yamagata	0.4790	0.2050	-0.5810	-0.5740	-0.45100	Tohoku
Fukushima	0.4250	-0.7340	-0.2880	-1.0800	-0.26400	Tohoku
Ibaraki	-2.0400	0.6910	0.0801	0.2290	-0.12300	Kanto
Tochigi	-0.5560	0.2420	-0.2690	-0.3010	-0.12700	Kanto
Gumma	0.1510	0.9940	-0.2690	1.0100	0.32900	Kanto
Saitama	-1.9800	-0.2150	1.6700	0.2070	0.15300	Kanto
Chiba	-2.0800	1.2000	1.2900	1.0500	-0.02000	Kanto
Tokyo	-1.7800	-0.5460	3.9600	1.9000	5.82000	Kanto
Kanagawa	-1.5200	-0.2270	2.3500	1.8100	0.16300	Kanto
Niigata	0.1310	-0.3100	-0.1480	-0.9180	-0.11800	Chubu
Toyama	-0.3290	-0.5010	-0.6000	-1.3800	-0.20900	Chubu
Ishikawa	0.2980	-0.5290	-0.5670	-1.2400	0.00214	Chubu
Fukui	0.8260	-0.8530	-0.7030	-1.3800	-0.38300	Chubu
Yamanashi	1.0900	-0.4350	-0.6840	1.0500	-0.46000	Chubu
Nagano	0.9330	-0.4780	-0.2230	-0.1750	-0.19500	Chubu
Gifu	1.1700	-0.4560	-0.2460	-0.3810	-0.37900	Chubu
Shizuoka	0.1050	0.0846	0.3640	0.9300	-0.07760	Chubu
Aichi	-1.2900	0.6510	1.7500	1.7300	1.56000	Chubu
Mie	0.1850	-0.2980	-0.3250	-0.5720	-0.36400	Kansai
Shiga	-0.7370	-0.8140	-0.4740	-1.3100	-0.36000	Kansai
Kyoto	0.8460	-0.5500	-0.0364	-0.1630	-0.17900	Kansai
Osaka	-2.1000	-0.8520	2.2500	0.1190	1.58000	Kansai
Hyogo	0.3450	-0.5880	1.0400	-0.3210	-0.07000	Kansai
Nara	1.0200	-0.9070	-0.4930	-0.4820	-0.52400	Kansai
Wakayama	0.9930	-0.6480	-0.6370	0.5430	-0.59800	Kansai
Tottori	0.7860	-0.6550	-0.7820	-0.4290	-0.41900	Chugoku
Shimane	1.0700	-0.8650	-0.7350	-0.9300	-0.56500	Chugoku
Okayama	0.4320	-0.6260	-0.2880	-0.4580	-0.10300	Chugoku
Hiroshima	0.6860	-0.4420	0.0521	-0.3800	0.56900	Chugoku
Yamaguchi	0.6720	-0.8490	-0.4740	-1.0900	-0.44200	Chugoku
Tokushima	0.9130	-0.2700	-0.7170	0.9190	-0.61100	Shikoku
Kagawa	-1.0100	-0.6570	-0.6330	0.1630	0.07150	Shikoku
Ehime	0.5850	-0.4280	-0.4840	0.0420	-0.29900	Shikoku
Kochi	1.4500	-0.0422	-0.7260	1.2000	-0.58700	Shikoku
Fukuoka	-1.1400	0.1150	0.8770	0.2990	0.50700	Kyushu
Saga	-1.0900	0.6300	-0.6840	0.0281	-0.58700	Kyushu
Nagasaki	-0.2090	0.3960	-0.4880	0.7320	-0.47600	Kyushu
Kumamoto	-0.0756	0.5590	-0.3350	0.6190	-0.34700	Kyushu
Oita	0.6120	-0.0076	-0.5630	-0.0522	-0.51500	Kyushu
Miyazaki	0.9530	2.2200	-0.5860	2.7800	-0.36000	Kyushu
Kagoshima	0.1250	2.2000	-0.3860	1.3200	-0.36900	Kyushu
Okinawa	-1.0300	0.5340	-0.4650	0.0548	-0.53500	Kyushu
	PC1	PC2		PC3	PC4	PC5
Forest	-0.4871	0.1046		-0.4575	0.6860	-0.2682
Agri	0.1339	0.8115		0.4791	0.3045	0.0348
Ratio	0.5851	-0.1511		0.0447	0.1641	-0.7784
Land	0.3631	0.1311		0.0447	0.1041	0.7704

	PC1	PC2	PC3	PC4	PC5
Forest	-0.4871	0.1046	-0.4575	0.6860	-0.2682
Agri	0.1339	0.8115	0.4791	0.3045	0.0348
Ratio	0.5851	-0.1511	0.0447	0.1641	-0.7784
Land	0.3548	0.4851	-0.7417	-0.2897	0.0689
Goods	0.5258	-0.2689	-0.0952	0.5708	0.5624

[•] データの標準化を行わない場合

⁻ ばらつきの大きな変数に第1主成分は重みが偏る

Figure 9: 主成分得点による散布図

	PC1	PC2	PC3	PC4	PC5
Forest	-0.0142	0.0482	-0.0004	-0.9975	-0.0495
Agri	0.9729	0.1208	-0.1971	-0.0080	0.0004
Ratio	0.0022	-0.0116	0.0000	0.0489	-0.9987
Land	0.2217	-0.2467	0.9433	-0.0155	0.0026
Goods	0.0647	-0.9602	-0.2672	-0.0476	0.0090

次回の予定

・ 第1日: 主成分分析の考え方

・第2日:分析の評価と視覚化