REST ZIN

10/525770 PCT/JP03/10677

JAPAN PATENT OFFICE

REC'D WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

4 日 3月 2003年

番 願 Application Number: 特願2003-057748

[ST. 10/C]:

[JP2003-057748]

人 出 Applicant(s):

松下電器産業株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office

9月26日 2003年

BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

2016150025

【提出日】

平成15年 3月 4日

【あて先】

特許庁長官殿

【国際特許分類】

E03D 9/08

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

松本 朋秀

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

古林 満之

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

桶田 岳見

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

白井 滋

【特許出願人】

【識別番号】

000005821

【氏名又は名称】

松下電器産業株式会社

【代理人】

【識別番号】

100098305

【弁理士】

【氏名又は名称】

福島 祥人

【電話番号】

06-6330-5625

【手数料の表示】

【予納台帳番号】 032920

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0006013

【プルーフの要否】

要

【書類名】明細書

【発明の名称】 衛生洗浄装置

【特許請求の範囲】

【請求項1】 給水源から供給される洗浄水を人体に噴出する衛生洗浄装置であって、

前記洗浄水を人体に噴出する人体洗浄ノズル装置と、

前記人体洗浄ノズル装置を洗浄するノズル洗浄装置と、

前記衛生洗浄装置の使用状態を検知する状態検知手段と、

前記状態検知手段により前記衛生洗浄装置が未使用であることが検知された場合に前記ノズル洗浄装置による人体洗浄ノズル装置の洗浄を許可する制御手段と を備えたことを特徴とする衛生洗浄装置。

【請求項2】 前記ノズル洗浄装置は、前記人体洗浄ノズル装置を蒸気で洗 浄することを特徴とする請求項1記載の衛生洗浄装置。

【請求項3】 前記ノズル洗浄装置は、前記人体洗浄ノズル装置を加熱された洗浄水で洗浄することを特徴とする請求項1または2記載の衛生洗浄装置。

【請求項4】 前記ノズル洗浄装置は、前記人体洗浄ノズル装置を蒸気また は加熱された洗浄水および非加熱の洗浄水で洗浄することを特徴とする請求項1 ~3のいずれかに記載の衛生洗浄装置。

【請求項5】 前記ノズル洗浄装置は、

洗浄水を加熱する加熱装置と、

前記加熱装置により加熱された洗浄水または蒸気を前記人体洗浄ノズル装置に 噴出する噴出装置とを含むことを特徴とする請求項1~4のいずれかに記載の衛 生洗浄装置。

【請求項6】 前記ノズル洗浄装置は、

前記加熱装置に供給する洗浄水の流量を調整する流量調整手段をさらに備え、 前記流量調整手段は、洗浄水の流量の調整により前記噴出装置から洗浄水を気 体状態および/または液体状態で噴出させることを特徴とする請求項5記載の衛 生洗浄装置。

【請求項7】 前記人体が着座するための便座をさらに備え、

ー 前記状態検知手段は、前記便座上への人体の着座の有無を検知する着座検知手

段を含むことを特徴とする請求項1~6のいずれかに記載の衛生洗浄装置。 【請求項8】 前記着座検知手段は、前記便座上の人体の有無を光学的に検 知する光学的検知手段を含むことを特徴とする請求項7記載の衛生洗浄装置。

【請求項9】 前記着座検知手段は、前記便座上の人体の有無を前記便座への荷重により検知する荷重検出手段を含むことを特徴とする請求項7または8記載の衛生洗浄装置。

【請求項10】 便蓋をさらに備え、

前記状態検知手段は、

前記便蓋の開閉を検知する便蓋開閉検知手段を含むことを特徴とする請求項1 ~9のいずれかに記載の衛生洗浄装置。

【請求項11】 前記ノズル洗浄装置の洗浄動作の開始を指示するための洗 浄指示手段と、

前記人体洗浄ノズル装置の洗浄動作を制御する制御手段とをさらに備え、

前記制御手段は、前記洗浄指示手段からの洗浄動作の開始の指示に応答して前記人体洗浄ノズル装置を動作させることを特徴とする請求項1~10のいずれかに記載の衛生洗浄装置。

【請求項12】 前記洗浄指示手段は、

遠隔操作方式により前記洗浄動作の開始を前記制御手段に指示する遠隔操作装置を含むことを特徴とする請求項11記載の衛生洗浄装置。

【請求項13】 前記洗浄指示手段を無効にするための無効化手段をさらに備え、

前記洗浄指示手段は、前記無効化手段の操作により前記ノズル洗浄装置の洗浄 動作の開始の指示が無効となることを特徴とする請求項11または12記載の衛 生洗浄装置。

【請求項14】 前記ノズル洗浄装置による洗浄動作の終了後に洗浄動作が終了したこと報知する報知手段をさらに備えたことを特徴とする請求項1~13のいずれかに衛生洗浄装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、人体の局部を洗浄する衛生洗浄装置に関する。

[0002]

【従来の技術】

人体の局部を洗浄する衛生洗浄装置においては、衛生洗浄装置自体の衛生状態 を確保するため、各種機能が案出されてきた。例えば、人体の局部を洗浄する洗 浄ノズル(以下、人体洗浄ノズルと呼ぶ。)をさらに洗浄する機能等である。

[0003]

人体洗浄ノズルを洗浄する機能によれば、人体の局部の洗浄により人体洗浄ノズル自体に付着する汚れが洗浄される(特許文献 1 参照)。これにより、使用者は、清潔な人体洗浄ノズルから噴出される洗浄水で局部を洗浄することができる

[0004]

【特許文献1】

特開平8-93034号公報

[0005]

【発明が解決しようとする課題】

しかしながら、上記の衛生洗浄装置では、人体の局部の洗浄の前後に人体洗浄 ノズルの洗浄を行う。この場合、人体洗浄ノズルの洗浄時に使用する洗浄水が便 座に着座している使用者の被洗浄部に付着する可能性があるため、衛生上好まし くない。

[0006]

本発明の目的は、人体の衛生状態を確保しつつ人体洗浄ノズル装置を清潔に保つことができる衛生洗浄装置を提供することである。

[0007]

【課題を解決するための手段】

前記従来の課題を解決するために、本発明の衛生洗浄装置は、状態検知手段により衛生洗浄装置が未使用であることが検知された場合にノズル洗浄装置による

[0008]

これによって、状態検知手段により衛生洗浄装置の使用状態が検知され、衛生洗浄装置が未使用であることが検知された場合に制御手段によりノズル洗浄装置による人体洗浄ノズルの洗浄が許可される。

[0009]

【発明の実施の形態】

請求項1に記載の発明は、給水源から供給される洗浄水を人体に噴出する衛生 洗浄装置であって、洗浄水を人体に噴出する人体洗浄ノズル装置と、人体洗浄ノ ズル装置を洗浄するノズル洗浄装置と、衛生洗浄装置の使用状態を検知する状態 検知手段と、状態検知手段により衛生洗浄装置が未使用であることが検知された 場合にノズル洗浄装置による人体洗浄ノズル装置の洗浄を許可する制御手段とを 備えたものである。

[0010]

本発明に係る衛生洗浄装置においては、洗浄水が人体洗浄ノズル装置により人体に噴出される。また、ノズル洗浄装置により人体洗浄ノズル装置が洗浄される。そして、状態検知手段により衛生洗浄装置の使用状態が検知され、衛生洗浄装置が未使用であることが検知された場合に制御手段によりノズル洗浄装置による人体洗浄ノズルの洗浄が許可される。

[0011]

この場合、衛生洗浄装置が未使用であることが検知された場合にノズル洗浄装置による人体洗浄ノズル装置の洗浄が許可されるので、衛生洗浄装置の使用時に、ノズル洗浄装置による洗浄水が人体に付着することが防止される。それにより、人体の衛生状態を確保しつつ人体洗浄ノズル装置を清潔に保つことができる。

[0012]

請求項2に記載の発明は、請求項1記載の衛生洗浄装置の構成において、ノズル洗浄装置は、人体洗浄ノズル装置を蒸気で洗浄するものである。

[0013]

この場合、人体洗浄ノズル装置が高温の蒸気に晒されることにより、人体洗浄

[0014]

衛生洗浄装置の使用時には、蒸気による人体洗浄ノズル装置の高温での洗浄動作が許可されないので、衛生洗浄装置の使用時に、高温の蒸気が人体に付着することが防止される。それにより、安全性を確保しつつ人体洗浄ノズル装置を清潔に保つことができる。

[0015]

請求項3に記載の発明は、請求項1または2記載の衛生洗浄装置の構成において、ノズル洗浄装置は、人体洗浄ノズル装置を加熱された洗浄水で洗浄するものである。

[0016]

この場合、人体洗浄ノズル装置が加熱された洗浄水で洗い流されることにより、人体洗浄ノズル装置に付着した汚れが容易に除去されるとともに、除菌効果が得られる。また、衛生洗浄装置の使用時には、加熱された洗浄水による人体洗浄ノズル装置の高温での洗浄動作が許可されないので、衛生洗浄装置の使用時に、高温の洗浄水が人体に付着することが防止される。それにより、安全性を確保しつつ人体洗浄ノズルを清潔に保つことができる。

[0017]

請求項4に記載の発明は、請求項1~3のいずれかに記載の衛生洗浄装置の構成において、ノズル洗浄装置は、人体洗浄ノズル装置を蒸気または加熱された洗浄水および非加熱の洗浄水で洗浄するものである。

[0018]

この場合、人体洗浄ノズル装置が蒸気または加熱された洗浄水で洗い流された 後、非加熱の洗浄水で洗浄されることにより、蒸気または加熱された洗浄水によ り除菌された人体洗浄ノズル装置の温度を低下させることができるため、使用者 に、高温の洗浄水が噴出されることを防止することができる。また、雑菌の繁殖 を抑制することができる。

[0019]

請求項5に記載の発明は、請求項1~4のいずれかに記載の衛生洗浄装置の構 成において、ノズル洗浄装置は、洗浄水を加熱する加熱装置と、加熱装置により 加熱された洗浄水または蒸気を人体洗浄ノズル装置に噴出する噴出装置とを含む ものである。

[0020]

この場合、加熱装置により瞬間的に洗浄水が加熱されることにより、加熱され た洗浄水または蒸気が発生され、噴出装置から人体洗浄ノズル装置に噴出される 。それにより、人体洗浄ノズル装置が高温の洗浄水または蒸気により洗浄される

[0021]

請求項6に記載の発明は、請求項5記載の衛生洗浄装置の構成において、ノズ ル洗浄装置は、加熱装置に供給する洗浄水の流量を調整する流量調整手段をさら に備え、流量調整手段は、洗浄水の流量の調整により噴出装置から洗浄水を気体 状態および/または液体状態で噴出させるものである。

[0022]

この場合、加熱装置に供給する洗浄水の流量が調整されることにより、噴出装 置から洗浄水が気体状態および/または液体状態で噴出される。したがって、洗 浄水の流量の調整により容易に物性の異なる洗浄水で人体洗浄ノズル装置を洗浄 することができる。

[0023]

請求項7に記載の発明は、請求項1~6のいずれかに記載の衛生洗浄装置の構 成において、人体が着座するための便座をさらに備え、状態検知手段は、便座上 への人体の着座の有無を検知する着座検知手段を含むものである。

[0024]

この場合、着座検知手段により便座上への人体の着座の有無が検知される。そ れにより、人体が便座に着座していない場合にノズル洗浄装置から人体洗浄ノズ ル装置に加熱された洗浄水または蒸気を噴出することができる。したがって、安 全性を確保することができる。

[0025]

請求項8に記載の発明は、請求項7記載の衛生洗浄装置の構成において、着座 検知手段は、便座上の人体の有無を光学的に検知する光学的検知手段を含むもの である。

[0026]

この場合、光学的検出手段により便座上の人体の有無を光学的に検知できる。 したがって、人体が便座に着座していない場合にノズル洗浄装置から人体洗浄ノ ズル装置に加熱された洗浄水または蒸気を噴出することができる。

[0027]

請求項9に記載の発明は、請求項7記載の衛生洗浄装置の構成において、着座 検知手段は、便座上の人体の有無を便座への荷重により検知する荷重検出手段を 含むものである。

[0028]

この場合、荷重検出手段により便座上の人体の有無が検知される。それにより 、人体が便座に着座していない場合にノズル洗浄装置より加熱された洗浄水また は蒸気が噴出される。

[0029]

請求項10に記載の発明は、請求項1~9のいずれかに記載の衛生洗浄装置の 構成において、便蓋をさらに備え、状態検知手段は、便蓋の開閉を検知する便蓋 開閉検知手段を含むものである。

[0030]

この場合、便蓋開閉検知手段により便蓋の開閉が検知される。それにより、便 蓋が閉じている場合にノズル洗浄装置から人体洗浄ノズル装置に加熱された洗浄 水または蒸気を噴出することができる。したがって、安全性を確保することがで きる。

[0031]

請求項11に記載の発明は、請求項1~10のいずれかに記載の衛生洗浄装置 の構成において、ノズル洗浄装置の洗浄動作の開始を指示するための洗浄指示手 段と、人体洗浄ノズル装置の洗浄動作を制御する制御手段とをさらに備え、制御 手段は、洗浄指示手段からの洗浄動作の開始の指示に応答して人体洗浄ノズル装

[0032]

この場合、使用者は、洗浄指示手段の操作により任意の時期に人体洗浄ノズル 装置を洗浄することができる。

[0033]

請求項12に記載の発明は、請求項11記載の衛生洗浄装置の構成において、 洗浄指示手段は、遠隔操作方式により洗浄動作の開始を制御手段に指示する遠隔 操作装置を含むものである。

[0034]

この場合、使用者は、遠隔操作装置の操作により任意の時期に人体洗浄ノズル 装置を洗浄することができるとともに操作性が向上する。

[0035]

請求項13に記載の発明は、請求項11または12記載の衛生洗浄装置の構成において、洗浄指示手段を無効にするための無効化手段をさらに備え、洗浄指示手段は、無効化手段の操作によりノズル洗浄装置の洗浄動作の開始の指示が無効となるものである。

[0036]

この場合、無効化手段の操作によりノズル洗浄装置の洗浄動作の開始の指示が無効となることにより、子供によるいたずら防止および誤操作防止が可能となる

[0037]

請求項14に記載の発明は、請求項1~13のいずれかに記載の衛生洗浄装置の構成において、ノズル洗浄装置による洗浄動作の終了後に洗浄動作が終了したこと報知する報知手段をさらに備えたものである。

[0038]

この場合、ノズル洗浄装置による洗浄動作が終了した後に洗浄動作の終了が報知されるので、使用者は、洗浄動作の終了が報知されるまで、洗浄動作が継続していることを認識することができる。それにより、洗浄動作の継続中に、使用者が誤って人体洗浄ノズル装置から洗浄水を噴出させることおよび誤って人体洗浄

[0039]

【実施例】

以下、本発明の実施例の衛生浄装置について図1~図16に基づき説明する。

[0040]

図1は本発明の一実施例の衛生洗浄装置を便器に装着した状態を示す斜視図である。

[0041]

図1に示すように、便器600上に衛生洗浄装置100が装着される。タンク 700は、水道配管に接続されており、便器600内に洗浄水を供給する。

[0042]

衛生洗浄装置100は、本体部200、遠隔操作装置300、便座部400および蓋部500により構成される。

[0043]

本体部200には、便座部400および蓋部500が開閉自在に取り付けられる。さらに、本体部200には、ノズル部30を含む洗浄水供給機構、着座センサ51、後述する自動開閉便座システムが設けられるとともに、制御部が内蔵されている。着座センサ51は、赤外線を用いて便座部400上に使用者の有無を検知する。また、自動開閉便座システムのホールICは、ホール効果を用いて便座部400上に使用者の有無を検知する。さらに、便座部400下面には、荷重により便座部400上に使用者の有無を検知する便座スイッチ55が設けられる。

[0044]

本実施例では、後述するように、制御部がホールICを用いて衛生洗浄装置100の使用状態を検知する。なお、制御部が着座センサ51または便座スイッチ55を用いて衛生洗浄装置100の使用状態を検知してもよい。

[0045]

本体部200の制御部は、後述するホールIC、便座スイッチ55、着座セン

サ51からの信号および後述する遠隔操作装置300により送信される信号に基づいて、洗浄水供給機構を制御する。さらに、本体部200の制御部は、便座部400に内蔵されたヒータ(図示せず)、本体部200に設けられた脱臭装置(図示せず)および温風供給装置(図示せず)等の制御も行う。

[0046]

図2は、図1の遠隔操作装置の一例を示す模式的平面図である。遠隔操作装置300は、表示パネル301、調整スイッチ302、おしりスイッチ303、停止スイッチ305、ビデスイッチ306、乾燥スイッチ307、ノズル洗浄スイッチ309、スピーカ310、報知ランプ311およびチャイルドロックスイッチ312を備える。

[0047]

使用者により調整スイッチ302、おしりスイッチ303、停止スイッチ305、ビデスイッチ306、乾燥スイッチ307、ノズル洗浄スイッチ309およびチャイルドロックスイッチ312が押下操作される。それにより、遠隔操作装置300は、後述する衛生洗浄装置100の本体部200に設けられた制御部に所定の信号を無線送信する。本体部200の制御部は、遠隔操作装置300より無線送信される所定の信号を受信し、洗浄水供給機構等を制御する。

[0048]

例えば、使用者が、おしりスイッチ303またはビデスイッチ306を押下操作することにより図1の本体部200のノズル部30が移動して洗浄水が噴出する。停止スイッチ305を押下操作することによりノズル部30からの洗浄水の噴出が停止する。

[0049]

また、チャイルドロックスイッチ312を押下操作することにより、遠隔操作装置300から後述の制御部に送信される所定の信号が無効とされる。一度チャイルドロックスイッチ312が押下操作された場合、所定の操作を行うことにより後述の制御部に送信される所定の信号が有効とされる。この所定の操作とは、例えば、チャイルドロックスイッチ312を3秒以上押下操作すること、またはチャイルドロックスイッチ312と他のスイッチを同時に押下操作する場合等が

[0050]

さらに、ノズル洗浄スイッチ309を押下操作することにより、後述するノズル部30のおしりノズルおよびビデノズルが洗浄される(以下、ノズル洗浄と呼ぶ)。ノズル洗浄動作の詳細については後述する。乾燥スイッチ307を押下操作することにより人体の局部に対して衛生洗浄装置100の温風供給装置(図示せず)より温風が噴出される。

[0051]

調整スイッチ302は水勢調整スイッチ302a,302bを含む。使用者が、水勢調整スイッチ302a,302bを押下操作することにより、ノズル部30より噴出される洗浄水の圧力が変化する。また、水勢調整スイッチ302a,302bの押下操作に伴って表示パネル301の棒グラフ状の点灯表示が変化する。

[0052]

以下、本発明の一実施例の衛生洗浄装置100の本体部200について説明を 行う。図3は本発明の一実施例の衛生洗浄装置100の本体部200の構成を示 す模式図である。

[0053]

図3に示す本体部200は、制御部4、分岐水栓5、ストレーナ6、逆止弁7、定流量弁8、止水電磁升9、流量センサ10、熱交換器11、温度センサ12 a, 12b, 12c、着座センサ51、便座スイッチ55、ホールIC513 a, 513b、ポンプ13、切替弁14、瞬間加熱装置33およびノズル部30を含む。また、ノズル部30は、おしりノズル1、ビデノズル2およびノズル洗浄用ノズル3を含み、瞬間加熱装置33は、サーミスタ33a、サーミスタ33b および温度ヒューズ(図示せず)を備える。

[0054]

図3に示すように、水道配管201に分岐水栓5が介挿される。また、分岐水栓5と熱交換器11との間に接続される配管202に、ストレーナ6、逆止弁7、定流量弁8、止水電磁弁9、流量センサ10および温度センサ12aが順に介

[0055]

まず、水道配管 201を流れる浄水が、洗浄水として分岐水栓 5によりストレーナ6に供給される。ストレーナ6により洗浄水に含まれるごみや不純物等が除去される。次に、逆止弁7により配管 202内における洗浄水の逆流が防止される。そして、定流量弁8により配管 202内を流れる洗浄水の流量が一定に維持される。

[0056]

また、ポンプ13と切替弁14との間にはリリーフ管204が接続され、止水電磁弁9と流量センサ10との間には、逃がし水配管205が接続されている。リリーフ配管204には、リリーフ弁206が介挿されている。リリーフ弁206は、配管203の特にポンプ13の下流側の圧力が所定値を超えると開成し、異常時の機器の破損、ホースの外れ等の不具合を防止する。

[0057]

一方、定流量弁8によって流量が調節され供給される洗浄水のうちポンプ13 で吸引されない洗浄水を逃がし水配管205から放出する。これにより、水道供 給圧に左右されることなくポンプ13には所定の背圧が作用することになる。

[0058]

次いで、流量センサ10は、配管202内を流れる洗浄水の流量を測定し、制御部4に測定流量値を与える。また、温度センサ12aは、配管202内を流れる洗浄水の温度を測定し、制御部4に温度測定値を与える。

[0059]

続いて、熱交換器11は、制御部4により与えられる制御信号に基づいて、配管202を通して供給された洗浄水を所定の温度に加熱する。温度センサ12b は、熱交換器11により所定の温度に加熱された洗浄水の温度を測定し、制御部4に温度測定値を与える。温度センサ12cは、瞬間加熱装置33を介してノズル洗浄用ノズル3に供給された洗浄水の温度を測定し、制御部4に温度測定値を与える。

[0060]

ポンプ13は、熱交換器11により加熱された洗浄水を制御部4により与えられる制御信号に基づいて、切替弁14に圧送する。切替弁14は、制御部4により与えられる制御信号に基づいて、ノズル部30のおしりノズル1、ビデノズル2および瞬間加熱装置33のいずれか1つに洗浄水を供給する。

[0061]

ノズル部30のおしりノズル1またはビデノズル2に洗浄水が供給された場合、おしりノズル1またはビデノズル2より洗浄水が噴出される。一方、瞬間加熱装置33に洗浄水が供給された場合、瞬間加熱装置33により洗浄水が加熱され、加熱された洗浄水または加熱により発生した蒸気がノズル洗浄用ノズル3に供給される。

[0062]

以下、瞬間加熱装置33により加熱された洗浄水をノズル洗浄用高温水と呼び 、瞬間加熱装置33の加熱により発生する蒸気をノズル洗浄用蒸気と呼ぶ。

[0063]

ノズル洗浄用ノズル3からノズル洗浄用高温水またはノズル洗浄用蒸気がおし りノズル1またはビデノズル2に噴出される。なお、瞬間加熱装置33において は、サーミスタ33a、サーモスタット33bおよび温度ヒューズにより洗浄水 の過熱が防止される。

[0064]

おしりノズル1およびビデノズル2より噴出される洗浄水の流量ならびにノズル洗浄用ノズル3より噴出されるノズル洗浄用高温水およびノズル洗浄用蒸気の流量は、切替弁14により調整される。

[0065]

制御部4は、図1の遠隔操作装置300から無線送信される信号、流量センサ10から与えられる測定流量値および温度センサ12a,12b,12cから与えられる温度測定値に基づき止水電磁弁9、熱交換器11、ポンプ13、切替弁14および瞬間加熱装置33に対して制御信号を与える。

[0066]

図4に示す切替弁14は、モータ141、内筒142および外筒143により 構成される。

[0068]

外筒143内に内筒142が挿入され、モータ141の回転軸が内筒142に 取り付けられている。モータ141は、制御部4により与えられる制御信号に基 づいて回転動作を行う。モータ141が回転することにより内筒142が回転す る。

[0069]

図4(a),(b),(c),(d)に示すように、外筒143の一端には、 洗浄水入口143aが設けられ、側部の対向する位置に洗浄水出口143b,1 43 c が設けられ、側部の洗浄水出口143b, 143 c と異なる位置に洗浄水 出口143dが設けられ、側部の洗浄水出口143b, 143c, 143dと異 なる位置に洗浄水出口143eが設けられている。内筒142の互いに異なる位 置に孔142e, 142f, 142gが設けられている。孔142e, 142f の周辺には、図4(b),(c)に示すように、曲線および直線で構成される面 取り部が形成され、孔142gの周辺には、図4(d)に示すように、直線で構 成される面取り部が形成されている。

[0070]

内筒142の回転により、孔142eが外筒143の洗浄水出口143bまた は143cと対向可能になっており、孔142fが外筒143の洗浄水出口14 3 dと対向可能になっており、孔142gが外筒143の洗浄水出口143eと 対向可能になっている。

[0071]

洗浄水入口143aには、図3の配管203が接続され、洗浄水出口143b には、ビデノズル2が接続され、洗浄水出口143cには、おしりノズル1の第

[0072]

図5は図4の切替弁14の動作を示す断面図である。

図5 (a) ~ (f) は切替弁14のモータ141がそれぞれ0度、90度、1 35度、180度、225度および270度回転した状態を示す。

[0073]

まず、図5 (a) に示すように、モータ141を回転させない (0度) 場合に は、内筒142の孔142eの周囲の面取り部が外筒143の洗浄水出口143 bに対向する。したがって、洗浄水が洗浄水入口143aより内筒142の内部 を通過して、矢印W1で示すように洗浄水出口143bから流出する。

[0074]

次に、図5 (b) に示すように、モータ141が内筒142を90度回転させ た場合には、内筒142の孔142gの周囲の面取り部が外筒143の洗浄水出 口143eに対向する。したがって、洗浄水が洗浄水入口143aより内筒14 2の内部を通過して、矢印W2で示すように洗浄水出口143eから流出する。

[0075]

次いで、図5 (c) に示すように、モータ141が内筒142を135度回転 させた場合には、内筒142の孔142gの周囲の面取り部の一部が外筒143 の洗浄水出口143 e に対向するとともに、内筒142の孔142 e の周囲の面 取り部の一部が外筒143の洗浄水出口143cに対向する。したがって、少量 の洗浄水が洗浄水入口143aより内筒142の内部を通過して、矢印W2およ び矢印W3で示すように洗浄水出口143c, 143eから流出する。

[0076]

次に、図5 (d) に示すように、モータ141が内筒142を180度回転さ せた場合には、内筒142の孔142eの周囲の面取り部が外筒143の洗浄水 出口143cに対向する。したがって、洗浄水が洗浄水入口143aより内筒1 42の内部を通過して、矢印W3で示すように洗浄水出口143cから流出する

[0077]

次に、図5 (e)に示すように、モータ141が内筒142を225度回転させた場合には、内筒142の孔142eの周囲の面取り部の一部が外筒143の洗浄水出口143cに対向するとともに、内筒142の孔142fの周囲の面取り部の一部が外筒143の洗浄水出口143dに対向する。したがって、少量の洗浄水が洗浄水入口143aより内筒142の内部を通過して、矢印W3および矢印W4で示すように洗浄水出口143c,143dから流出する。

[0078]

また、図5 (f)に示すように、モータ141が内筒142を270度回転させた場合には、内筒142の孔142fの周囲の面取り部が外筒143の洗浄水出口143dに対向する。したがって、洗浄水が洗浄水入口143aより内筒142の内部を通過して、矢印W4で示すように洗浄水出口143dから流出する

[0079]

以上のように、制御部 4 からの制御信号に基づいてモータ 141が回転することにより内筒 142の孔 142 e , 142 f , 142 g のいずれかが外筒 143 の洗浄水出口 143 b \sim 143 e に対向し、洗浄水入口 143 a から流入した洗浄水が洗浄水出口 143 b \sim 143 e のいずれかから流出する。

[0080]

図6は図5の切替弁14の洗浄水出口143c,143dからおしりノズル1に流出する洗浄水の流量、洗浄水出口143bからビデノズル2に流出する洗浄水の流量および洗浄水出口143eからノズル洗浄用ノズル3に流出する洗浄水の流量を示す図である。

[0081]

図6の横軸はモータ141の回転角度を示し、縦軸は洗浄水出口143b~143eから流出する洗浄水の流量を示す。また、実線Q1が洗浄水出口143cからおしりノズル1に流出する洗浄水の流量の変化を示し、一点鎖線Q2が洗浄水出口143dからおしりノズル1に流出する洗浄水の流量の変化を示し、二点鎖線Q3が洗浄水出口143bからビデノズル2に流出する洗浄水の流量の変化

[0082]

例えば、図6に示すように、モータ141が回転しない場合(0度)、洗浄水出口143bからビデノズル2に流出する洗浄水の流量Q3は最大値を示す。そして、モータ141の回転角度が大きくなるとともに洗浄水出口143bからビデノズル2に流出する洗浄水の流量Q3が減少し、洗浄水出口143eからノズル洗浄用ノズル3に流出する洗浄水の流量Q4が増加する。

[0083]

次いで、モータ141が90度回転した場合、洗浄水出口143eからノズル洗浄用ノズル3に流出する洗浄水の流量Q4は最大値を示す。そして、モータ141の回転角度がさらに大きくなるとともに洗浄水出口143eからノズル洗浄用ノズル3に流出する洗浄水の流量Q4が減少し、洗浄水出口143cからおしりノズル1に流出する洗浄水の流量Q1が増加する。

[0084]

続いて、モータ141が180度回転した場合、洗浄水出口143cからおしりノズル1に流出する洗浄水の流量Q1は最大値を示す。そして、モータ141の回転角度がさらに大きくなるとともに洗浄水出口143cからおしりノズル1に流出する洗浄水の流量Q1が減少し、洗浄水出口143dからおしりノズル1に流出する洗浄水の流量Q2が増加する。

[0085]

続いて、モータ141が270度回転した場合、洗浄水出口143dからおしりノズル1に流出する洗浄水の流量Q2は最大値を示す。そして、モータ141の回転角度がさらに大きくなるとともに洗浄水出口143dからおしりノズル1に流出する洗浄水の流量Q2が減少し、洗浄水出口143bからビデノズル2に流出する洗浄水の流量Q3が増加する。

[0086]

以上のように、制御部4が切替弁14のモータ141の回転角度を制御することにより洗浄水出口143b~143eから流出する洗浄水の流量を制御するこ

とができる。さらに、切替弁14のモータ141の回転角度がいかなる場合でも 、洗浄水出口142e,142f,142gのいずれかまたはそれらの周囲の面 取り部(凹部)が洗浄水出口143b~143eのいずれかに対向するので、洗 浄水の流路が閉塞されず、洗浄水入口143aから供給された洗浄水は、洗浄水 出口143b~143eのいずれかから流出される。

[0087]

図7は、瞬間加熱装置33の構造を示す一部切り欠き断面図である。図7にお いて、瞬間加熱装置33は、ケーシング504、シーズヒータ505、熱伝導体 506、配管510、サーミスタ33a、サーモスタット33bおよび温度ヒュ ーズ33cを含む。

[0088]

ケーシング504は略直方体形状を有する。ケーシング504内には配管51 0とシーズヒータ505とが長手方向に延びるように所定の間隔をおいて併設さ れており、各々の両端部はケーシング504の両端面から外部へ突出している。

[0089]

ケーシング504内において、配管510およびシーズヒータ505は熱伝導 体506に覆われている。シーズヒータ505は電熱線を内蔵し、電力が供給さ れることにより発熱する。

[0090]

上述のノズル洗浄時においては、図4の切替弁14の洗浄水出口143eから 供給される洗浄水が給水口511から配管510内へ導入される。

[0091]

シーズヒータ505に電力が供給されると、シーズヒータ505により発生す る熱が熱伝導体506を通じて配管510に伝達される。これにより、配管51 0内に導入された洗浄水が加熱され、ノズル洗浄用高温水またはノズル洗浄用蒸 気が排出口512から排出される。

[0092]

ここで、図7において配管510の給水口511側を瞬間加熱装置33の上流 側とし、排出口512側を瞬間加熱装置33の下流側とすると、サーミスタ33

[0093]

なお、本実施の形態において、サーミスタ33a、サーモスタット33bおよ び温度ヒューズ33cは、各々動作基準温度が異なる。それにより、3段階の過 熱防止の調整を行うことができる。さらに、サーミスタ33a、サーモスタット 33bおよび温度ヒューズ33cの、いずれか1つが故障しても、残りの2つに より過熱が防止される。

[0094]

サーミスタ33aは、シーズヒータ505に取り付けられ、シーズヒータ50 5の温度を検知する。制御部4は、サーミスタ33aから与えられるシーズヒー タ505の温度を判定し、過熱状態にある場合、シーズヒータ505の温度を低 下させるように制御を行う。

[0095]

サーモスタット33bは、配管510内を流通する洗浄水の温度を検知可能に 取り付けられる。配管510内を流通する洗浄水の温度がサーモスタット33b の動作基準温度を超過した場合、サーモスタット33bは、シーズヒータ505 の電力供給を遮断するように動作する。

[0096]

最後に、温度ヒューズ33cは、ケーシング504に密着固定されている。ケ ーシング504の温度が温度ヒューズ33cの動作基準温度を超過した場合、温 度ヒューズ33cが溶断することによりシーズヒータ505への電力供給が遮断 される。

[0097]

以上のサーミスタ33a、サーモスタット33bおよび温度ヒューズ33cの 働きにより、シーズヒータ505による洗浄水の過熱およびシーズヒータ505 自体の過熱が防止される。

[0098]

なお、本実施例の瞬間加熱装置33においては、洗浄水の加熱手段としてシー

ズヒータ505を用いるが、これに限らず、マイカヒータ、セラミックヒータ、 またはプリントヒータ等を用いてもよい。

[0099]

さらに、サーミスタ33a、サーモスタット33bおよび温度ヒューズ33c の各々が瞬間加熱装置33の過熱を防止しているが、サーミスタ33aまたはサーモスタット33bを制御部4と接続することにより、制御部4がサーミスタ33aまたはサーモスタット33bの温度測定値に基づいてシーズヒータ505の温度をフィードバック制御またはフィードフォワード制御してもよい。

[0100]

図8は、ノズル部30の一部を示す外観斜視図である。図8においては、円筒 形状を有するおしりノズル1とビデノズル2とが隣接するように平行に設けられ ており、おしりノズル1およびビデノズル2の先端上部を覆うようにノズル洗浄 用ノズル3が取り付けられている。

[0101]

ノズル洗浄用ノズル3の後端にはチューブ3 t が接続されており、チューブ3 t は瞬間加熱装置33の排出口512に接続される。これにより、瞬間加熱装置33からノズル洗浄用高温水またはノズル洗浄用蒸気がチューブ3 t を通じてノズル洗浄用ノズル3に供給される。

[0102]

図9はおしりノズルから人体の被洗浄面に向けて洗浄水が噴出される場合のノズル部の模式的断面図であり、図10はノズル洗浄用ノズルからノズル洗浄用高温水またはノズル洗浄用蒸気が噴出される場合のノズル部の模式的断面図である

[0103]

図9および図10において、ノズル部30は、その全体または一部が本体部200のケーシング内に収容されている。

[0104]

以下、おしりノズル1による人体の局部の洗浄をおしり洗浄と呼ぶ。 おしりノズル1は、ピストン20、シリンダ21およびスプリング23から構

[0105]

おしり洗浄の開始時にシリンダ21の洗浄水入口24bから洗浄水が供給される。これにより、図9に示すように、シリンダ21内に設けられたピストン20 がスプリング23の弾性力に抗して本体部200のケーシング外部へ突出する。

[0106]

その後、シリンダ21の洗浄水入口24a,24bから洗浄水が供給される。これにより、洗浄水入口24aから供給された洗浄水がピストン20の第1の流路20aへ導入され、回転力が与えられつつ噴出孔25より噴出される。また、洗浄水入口24bから供給された洗浄水がピストン20の第2の流路20bへ導入され、噴出孔25より噴出される。

[0107]

このように、第1の流路20aから噴出孔25へ送られる洗浄水には回転力が与えられるので、噴出孔25から人体の被洗浄面に向けて噴出される洗浄水は広がり角度を有する。上述の切替弁14を用いて第1の流路20a内の洗浄水の流量と第2の流路20b内の洗浄水の流量との比を調整することにより、噴出孔25から噴出される洗浄水の広がり角度を調整することができる。

[0108]

おしり洗浄の終了時においては、シリンダ21の洗浄水入口24a,24bへの洗浄水の供給が停止される。それにより、図10に示すように、ピストン20がスプリング23の弾性力によりシリンダ21内に収納される。この場合、ピストン20は、スプリング23の弾性力によりシリンダ21内に収納された状態で保持されるので本体部200から突出しない。

[0109]

ノズル洗浄用ノズル3の後端面には洗浄水入口24cが設けられ、おしりノズル1の噴出孔25および上述のビデノズル2の噴出孔と対向するようにノズル洗

[0110]

ノズル洗浄時においては、瞬間加熱装置33からノズル洗浄用ノズル3の洗浄 水入口24cにノズル洗浄用高温水またはノズル洗浄用蒸気が供給される。それ により、図10に示すようにノズル洗浄用高温水またはノズル洗浄用蒸気が、流 路24eを通じてノズル洗浄孔24dから矢印J1の方向に噴出される。

[0111]

ノズル洗浄用ノズル3のノズル洗浄孔24 dから噴出されるノズル洗浄用高温 水またはノズル洗浄用蒸気は、おしりノズル1の噴出孔25およびビデノズル2 の噴出孔の周辺に噴出される。それにより、おしりノズル1の噴出孔25または ビデノズル2の噴出孔の周囲に付着した汚れがノズル洗浄用高温水またはノズル 洗浄用蒸気により剥離され、便器600内に流される。その結果、おしりノズル 1の噴出孔25およびビデノズル2の噴出孔の周辺の洗浄および除菌が行われる

[0112]

図11は、図1の衛生洗浄装置の本体部200に設けられた自動開閉便座シス テムの模式的断面図であり、図12は、図11の自動開閉便座システムのD-D 線断面図である。

[0113]

図11および図12に示すように、本体部200内には内ケース450が設け られている。内ケース450内には、自動便座開閉装置460および自動便蓋開 閉装置560が設けられている。自動便座開閉装置460は便座開閉センサ40 1を有し、自動便蓋開閉装置560は便蓋開閉センサ501を有する。

[0114]

自動便蓋開閉装置560は、モータM5およびギア507,509を含む。モ ータM5の回転軸506が矢印R500の方向に回転し、ギア507を介してギ

[0115]

自動便蓋開閉装置560のギア509には、永久磁石511a, 511bがほ ぼ90度の角度をなすように取り付けられている。便蓋500が閉じた状態で永 久磁石511a, 511bに対向する位置にホールIC513a, 513bが設 けられている。ここで、ホールIC513a,513bとは、ホール効果を利用 した磁気センサである。

[0116]

自動便座開閉装置460は、モータM4およびギア407,409を含む。モ ータM4の回転軸406が矢印R400の方向に回転し、ギア407を介してギ ア409を回転させる。また、ギア409の回転軸408には、便座部400が 取り付けられている。それにより、ギア409が回転するとともに便座部400 の開閉動作が行われる。

[0117]

自動便座開閉装置460のギア409には、永久磁石409a,409bが9 0度の角度をなすように取り付けられている。便座部400が閉じた状態で永久 磁石409a,409bに対向する位置にホールIC420a,420bが設け られている。

[0118]

次に、図13は、便蓋500の自動開閉便蓋装置560の動作を説明する図で あり、図14は、図13の自動開閉便蓋装置560の動作によりホールIC51 3 a, 5 1 3 b から制御部 4 に送信される信号を示す図である。

[0119]

図13 (a) は便蓋500が閉じている状態(便蓋回動角度=0度)を示し、 図13(b)は便蓋500が開いている状態(便蓋回動角度=90度)を示す。 [0120]

図13に示すように、自動便蓋開閉装置560のギア509には、永久磁石5

[0121]

なお、永久磁石511a, 511bがなす角度は、便蓋500の開閉角度と等 しくなるとように設計されている。

[0122]

したがって、図13(a)に示すように、便蓋500が閉じている場合、すな わち便蓋回動角度が0度の場合、永久磁石511aはホールIC513aと対向 し、永久磁石511bはホールIC513bと対向する。

[0123]

その結果、図14に示すように、便蓋回動角度が0度の場合、ホールIC51 3a,513bは、永久磁石511a,511bにより発生される磁気を検知し て論理ハイ(H)の信号を制御部4に送信する。それにより、制御部4は、ホー ルIC513a,513bからの信号に基づいて便蓋の開閉状態が閉であること を認識する。

[0124]

一方、自動便蓋開閉装置560により便蓋500が開く場合には、自動便蓋開 閉装置560のギア509が図13の矢印Xの方向に回転する。それにより、ギ ア509に取り付けられた永久磁石511a,511bも矢印Xの方向に回動す る。

[0125]

図13 (b) に示すように、便蓋500が開いている場合、すなわち便蓋回動 角度が90度の場合、永久磁石511aはホールIC513bと対向するが、永 久磁石511bはホールIC513aと対向しない。

[0126]

その結果、図14に示すように便蓋回動角度が90度の場合、ホールIC51 3 bは、永久磁石 5 1 1 a により発生される磁気を検知して論理ハイ(H)の信 号を制御部4に送信し、ホールIC513aは、永久磁石511a,511bか らの磁気を検知できず論理ロー (L) の信号を制御部4に送信する。それにより 、制御部4は、ホールIC513a,513bからの信号に基づいて便蓋の開閉

[0127]

次に、制御部4の動作について説明する。図15および図16は、制御部4の 動作を示すフローチャートである。

[0128]

図15に示すように、まず、制御部4は、遠隔操作装置300よりノズル洗浄 動作信号を受信したか否かを判定する(ステップS10)。ここで、ノズル洗浄 動作信号とは、ノズル洗浄スイッチ309が押下操作されることにより制御部4 に送信される所定の信号である。

[0129]

制御部4は遠隔操作装置300よりノズル洗浄動作信号を受信していない場合 、他の信号を受信していないか否かを判定する(ステップS11)。他の信号を 受信した場合、制御部4はその他の信号に基づいて所定の動作を行う (ステップ S12)。例えば、制御部4は遠隔操作装置300よりおしりスイッチ303が 押下された信号を受信した場合、おしりノズル1から洗浄水を噴出させるように 制御する。一方、ステップS11において他の信号を受信していない場合、制御 部4はステップS10に戻る。

[0130]

次に、ステップS10において遠隔操作装置300よりノズル洗浄動作信号を 受信した場合、制御部4は、ホールIC513a、513bの出力信号を受信す る (ステップS13)。

[0131]

制御部4は、ホールIC513a、513bの出力信号に基づいて便蓋の開閉 を判定する(ステップS14)。便蓋が閉じていると判定した場合、制御部4は ステップS13に戻る。

[0132]

なお、本実施例においては、ホールIC513a, 513bの出力信号に基づ いて便蓋の開閉を判定することとしたが、これに限定されず、赤外線を用いて便 座部400上に使用者の有無を検知する着座センサ51を用いてもよい。

[0133]

一方、便蓋が開いていると判定した場合、制御部4は瞬間加熱装置33に加熱 指示を送信する(ステップS15)。それにより、シーズヒータ505から発生 される熱量が増加する。

[0134]

さらに、制御部4は、流量調整弁14の回転角度を指示する(ステップS16)。例えば、制御部4は、図6に示す流量調整弁14の回転角度を90度に設定するようモータ141に指示する。それにより、モータ141が回転し、瞬間加熱装置33の配管510に流量Q4の洗浄水が供給される。そして、瞬間加熱装置33の働きにより加熱されたノズル洗浄用高温水が、ノズル洗浄用ノズル3からおしりノズル1の噴出孔25またはビデノズル2の噴出孔の周囲に噴出される

[0135]

それにより、おしりノズル1の噴出孔25またはビデノズル2の噴出孔の周囲 に付着していた汚れが浮き上がり除去される。

[0136]

その後、制御部4は、所定時間経過したか否かを判定する(ステップS17)。ステップS17における所定時間とは、ノズル洗浄用高温水をおしりノズル1の噴出孔25またはビデノズル2の噴出孔の周囲に噴出して洗浄を行うために必要な時間である。所定時間経過していない場合には、制御部4はステップS17に戻り、所定時間が経過するまで待機する。

[0137]

一方、所定時間経過した場合、制御部4は瞬間加熱装置33に加熱温度の上昇を指示する(ステップS18)。それにより、シーズヒータ505から発生される熱量が増加する。

[0138]

さらに、制御部4は、流量調整弁14の回転角度を指示する(ステップS19)。例えば、図6の流量調整弁14の回転角度を約110度に設定するようモータ141に指示する。それにより、モータ141が回転し、瞬間加熱装置33の

[0139]

その結果、高温のノズル洗浄用蒸気が、ノズル洗浄用ノズル3からおしりノズ ル1の噴出孔25またはビデノズル2の噴出孔の周囲に噴出される。したがって 、おしりノズル1の噴出孔25またはビデノズル2の噴出孔の周囲に固着してい た雑菌や汚れが除去されるとともに除菌される。なお、本実施例におけるノズル 部30は、ノズル洗浄用蒸気またはノズル洗浄用高温水の噴出にも変形しない耐 熱性の高い樹脂で形成されている。

[0140]

その後、制御部4は、所定時間経過したか否かを判定する(ステップS20) 。ステップS20における所定時間とは、ノズル洗浄用蒸気をおしりノズル1の 噴出孔25またはビデノズル2の噴出孔の周囲に噴出して洗浄および除菌を行う ために必要な時間である。所定時間経過していない場合には、制御部4はステッ プS20に戻り、所定の時間が経過するまで待機する。

[0141]

一方、所定時間経過した場合、制御部4は瞬間加熱装置33に加熱停止の指示 を送信する(ステップS21)。それにより、瞬間加熱装置33のシーズヒータ 505への電力供給が停止される。

[0142]

続いて、制御部4は、所定時間経過したか否かを判定する(ステップS22) 。ステップS22における所定時間とは、おしりノズル1の噴出孔25またはビ デノズル2の噴出孔の周囲の温度が低下するまでに要する時間である。なお、こ の所定時間は外気温度に依存するため、季節等に応じて可変に設定してもよい。 例えば、夏季においては4秒から6秒に設定し、冬季においては1秒から3秒に 設定してもよい。

[0143]

所定時間経過していない場合、所定時間が経過するまで待機する。それにより 、瞬間加熱装置33により加熱されていたノズル洗浄用蒸気の温度が徐々に低下

[0144]

その結果、おしりノズル1の噴出孔25の周辺の温度が徐々に低下する。それにより、除菌後のノズル部30の温度を低下させることができるので、雑菌の繁殖を抑制することができる。

[0145]

一方、所定時間経過した場合、流量調整弁14の回転角度を指示する(ステップS23)。例えば、図6の流量調整弁14の回転角度を約135度に設定するようモータ141に指示する。それにより、モータ141が回転し、瞬間加熱装置33の配管510に供給される洗浄水が停止する。それにより、ノズル洗浄用ノズル3から噴出される洗浄水が停止する。

[0146]

続いて、制御部4は、遠隔操作装置300の報知ランプ311の点灯を制御するためのランプ点灯制御信号を送信する(ステップS24)。例えば、報知ランプ311に論理ハイ(H)と論理ロー(L)からなるパルス状のランプ点灯制御信号を送信する。報知ランプ311は、ランプ点灯制御信号に基づいて論理ハイの場合に点灯し、論理ローの場合に消灯する。それにより、報知ランプ311が点滅する。

[0147]

また、制御部4は、遠隔操作装置300のスピーカ310に、スピーカ310から音の出力を制御する音出力制御信号を送信する(ステップS25)。それにより、遠隔操作装置300に設けられたスピーカ310より音が出力される。例えば、制御部4によりスピーカ310から「ノズル洗浄終了いたしました。安心してお使いください。」と音声が繰り返し出力されたり、「ピーピーピー」と音が繰り返し出力される。

[0148]

続いて、制御部4は所定時間経過したか否かを判定する(ステップS26)。

[0149]

一方、所定時間経過した場合、制御部4は、報知ランプ311に報知ランプ3 11の消灯を制御するためのランプ消灯制御信号を送信する(ステップS27) とともに、遠隔操作装置300のスピーカ310から音の出力を停止するように 制御する音停止制御信号を送信する(ステップS28)。それにより、報知ラン プ311が消灯され、スピーカ310から音の出力が停止される。

[0150]

本発明に係る衛生洗浄装置100においては、衛生洗浄装置100が未使用で あることが着座センサ51、ホールIC513a, 513b、便座スイッチ55 により検知された場合にノズル洗浄用ノズル3によるおしりノズル1およびビデ ノズル2の洗浄が許可されるので、衛生洗浄装置の使用時に、ノズル洗浄用ノズ ル3による洗浄水が人体に付着することが防止される。それにより、使用者に十 分な安心感を与えるとともに安全性を確保しつつおしりノズル1およびビデノズ ル2を清潔に保つことができる。さらに、おしりノズル1およびビデノズル2が 高温の蒸気に晒されることにより、おしりノズル1およびビデノズル2に付着し た汚れが容易に除去されるとともに、除菌効果が得られる。また、蒸気の拡散性 により高温での除菌範囲が拡大する。

[0151]

また、おしりノズル1およびビデノズル2が蒸気または加熱された洗浄水で洗 い流された後、非加熱の洗浄水で洗浄されることにより、蒸気または加熱された 洗浄水により除菌されたおしりノズル1およびビデノズル2の温度を低下させる ことができるため、使用者に、高温の洗浄水が噴出されることを防止することが できる。また、雑菌の繁殖を抑制することもできる。

[0152]

また、瞬間加熱装置33により瞬間的に洗浄水が加熱されることにより、加熱 された洗浄水または蒸気が発生され、ノズル洗浄用ノズル3からおしりノズル1 およびビデノズル2に噴出される。それにより、おしりノズル1およびビデノズル2が高温の洗浄水または蒸気により洗浄される。さらに、瞬間加熱装置33に供給する洗浄水の流量が調整されることにより、ノズル洗浄用ノズル3から蒸気および加熱された洗浄水が噴出される。したがって、洗浄水の流量の調整により容易に蒸気または加熱された洗浄水でおしりノズル1およびビデノズル2を洗浄することができる。

[0153]

また、本実施例における遠隔操作装置300においては、遠隔操作装置300のノズル洗浄スイッチ309の操作により任意の時期におしりノズル1およびビデノズル2を洗浄することができるとともに操作性が向上し、チャイルドロックスイッチ312の操作によりノズル洗浄用ノズル3の洗浄動作の開始の指示が無効となることにより、子供によるいたずら防止および誤操作防止が可能となる。さらに、ノズル洗浄用ノズル3による洗浄動作が終了した後に洗浄動作の終了が報知されるので、使用者は、洗浄動作の終了が報知されるまで、洗浄動作が継続していることを認識することができる。それにより、洗浄動作の継続中に、使用者が誤っておしりノズル1およびビデノズル2から洗浄水を噴出させることおよび誤っておしりノズル1およびビデノズル2から噴出された洗浄水触れることが防止される。したがって、安全性を確保しつつおしりノズル1およびビデノズル2を清潔に保つことができる。

[0154]

次に、図17は、図1の遠隔操作装置の他の例を示す模式的平面図である。 図17の遠隔操作装置300aが図2の瞬間加熱装置300と異なるのは以下 の点である。図17に示すように、遠隔操作装置300aは、遠隔操作装置30 0のスピーカ310および報知ランプ311の代わりに液晶表示部313を備え る。

[0155]

それにより、液晶表示部313に文字、記号、図形等を用いて情報を表示させることができる。例えば、液晶表示部313に文字を用いて「ノズル除菌完了」と表示させることができる。その結果、使用者は、ノズル洗浄が終了し、衛生洗

[0156]

次に、図18は、本発明に係る衛生洗浄装置に用いる瞬間加熱装置の他の例を 示す一部切り欠き断面図である。

[0157]

図18の瞬間加熱装置33aが図7の瞬間加熱装置33と異なるのは以下の点である。

[0158]

図18に示す瞬間加熱装置33aのケーシング504aは、略長筒形状を有する。ケーシング504a内にシーズヒータ505が設けられており、シーズヒータ505の両端部はケーシング504aの両端面から外部へ突出している。ケーシング504aとシーズヒータ505との間に形成された円筒状の空間510aが図7の配管510の役割を担う。

[0159]

上述したノズル洗浄時においては、図4の切替弁14の洗浄水出口143eから供給される洗浄水が給水口511aから筒状の空間510a内へ導入される。

[0160]

シーズヒータ505に電力が供給されると、シーズヒータ505により発生する熱によって筒状の空間510aを流通する洗浄水が加熱され、ノズル洗浄用高温水またはノズル洗浄用蒸気が排出口512aから排出される。

[0161]

この場合、瞬間加熱装置33aにおいては、瞬間加熱装置33のように配管510を形成する必要がないため、コスト低減を図ることができる。また、シーズヒータ505と洗浄水とが直接熱交換を行うので、熱交換率を高くすることができる。

[0162]

なお、本実施例においては、ノズル洗浄時にノズル洗浄用ノズル3からノズル 洗浄用高温水、ノズル洗浄用蒸気および洗浄水の順序でおしりノズル1およびビ デノズル2に噴出させることとしたが、これに限定されず、ノズル洗浄用蒸気、 ノズル洗浄用高温水および洗浄水を任意の順序でおしりノズル1およびビデノズル2に噴出させてもよい。例えば、ノズル洗浄用ノズル3からノズル洗浄用高温水、ノズル洗浄用蒸気、ノズル洗浄用高温水、洗浄水の順序でおしりノズル1およびビデノズル2に噴出させてもよい。

[0163]

さらに、本実施例においては、ホールIC513a,513bを用いて便蓋500の開閉に基づいて衛生洗浄装置100の使用状態を検知しているが、これに限定されず、便座部400の静電容量の変化に基づいて人体の有無を検知して衛生洗浄装置100の使用状態を検知する方法、超音波を用いて人体の有無を検知して衛生洗浄装置100の使用状態を検知する方法、トイレの扉の開閉に基づいて使用者の入室および退室を検知して衛生洗浄装置100の使用状態を検知する方法、もしくはトイレ内の照明のオンオフに基づいて衛生洗浄装置100の使用状態を検知する方法、もしくはトイレ内の照明のオンオフに基づいて衛生洗浄装置100の使用状態を検知する方法を利用してもよい。

[0 1 6 4]

本実施例の衛生洗浄装置においては、おしりノズル1およびビデノズル2が人体洗浄ノズル装置に相当し、ノズル洗浄用ノズル3がノズル洗浄装置に相当し、着座センサ51またはホールIC153a,153dが状態検知手段または着座検知手段に相当し、制御部4が制御手段に相当し、瞬間加熱装置33が加熱装置に相当し、ノズル洗浄用ノズル3が噴出装置に相当し、切替弁14が流量調整手段に相当し、便座部400が便座に相当し、着座センサ51が光学的検知手段に相当し、便座スイッチ55が荷重検出手段に相当し、ホールIC153a,153dが便蓋開閉検知手段に相当し、ノズル洗浄スイッチ309が洗浄指示手段に相当し、遠隔操作装置300,300aが遠隔操作装置に相当し、チャイルドロックスイッチ312が無効化手段に相当し、スピーカ310、報知ランプ311または液晶表示部313が報知手段に相当する。

[0165]

【発明の効果】

本発明によれば、衛生洗浄装置が未使用であることが検知された場合にノズル 洗浄装置による人体洗浄ノズル装置の洗浄が許可されるので、衛生洗浄装置の使 用時に、ノズル洗浄装置による洗浄水が人体に付着することが防止される。それにより、人体の衛生状態を確保しつつ人体洗浄ノズル装置を清潔に保つことができる。

【図面の簡単な説明】

【図1】

本発明の一実施例の衛生洗浄装置を便器に装着した状態を示す斜視図

【図2】

図1の遠隔操作装置の一例を示す模式的平面図

【図3】

本発明の一実施例の衛生洗浄装置の本体部の構成を示す模式図

【図4】

(a) は切替弁の縦断面図であり、(b) は (a) の切替弁のA-A線断面図であり、(c) は (a) の切替弁のB-B線断面図であり、(d) は (a) の切替弁のC-C線断面図

【図5】

図4の切替弁の動作を示す断面図

【図6】

図5の切替弁の洗浄水出口からおしりノズルに流出する洗浄水の流量、洗浄水 出口からビデノズルに流出する洗浄水の流量および洗浄水出口からノズル洗浄用 ノズルに流出する洗浄水の流量を示す図

【図7】

瞬間加熱装置の構造を示す一部切り欠き断面図

[図8]

ノズル部の一部を示す外観斜視図

[図9]

おしりノズルから人体の被洗浄面に向けて洗浄水が噴出される場合のノズル部 の模式的断面図

【図10】

ノズル洗浄用ノズルからノズル洗浄用高温水またはノズル洗浄用蒸気が噴出さ

れる場合のノズル部の模式的断面図

【図11】

図1の衛生洗浄装置の本体部に設けられた自動開閉便座システムの模式的断面 図

【図12】

図11の自動開閉便座システムのD-D線断面図

【図13】

便蓋の自動開閉便蓋装置の動作を説明する図

【図14】

図13の自動開閉便蓋装置の動作によりホールICから制御部に送信される信 号を示す図

【図15】

制御部の動作を示すフローチャート

【図16】

制御部の動作を示すフローチャート

【図17】

図1の遠隔操作装置の他の例を示す模式的平面図

【図18】

本発明に係る衛生洗浄装置に用いる瞬間加熱装置の他の例を示す一部切り欠き 断面図

【符号の説明】

- 1 おしりノズル
- 2 ビデノズル
- 3 ノズル洗浄用ノズル
- 4 制御部
- 14 切替弁
- 33 瞬間加熱装置
- 51 着座センサ
- 55 便座スイッチ

- 153a, 153d ホールIC
- 300,300a 遠隔操作装置
- 310 スピーカ
- 3 1 1 報知ランプ
- 312 チャイルドロックスイッチ
- 313 液晶表示部
- 400 便座部

【書類名】

図面

【図1】

【図4】

【図11】

【図13】

【図14】

【図15】

【図18】

【書類名】

要約書

【要約】

【課題】 人体の衛生状態を確保しつつ人体洗浄ノズル装置を清潔に保つことができる衛生洗浄装置を提供することである。

【解決手段】 人体洗浄時には洗浄水がおしりノズルおよびビデノズルより人体の被洗浄面に噴出される。一方、自動開閉便蓋装置560に取り付けられたホールIC513a,513bにより衛生洗浄装置の使用状態が検知され、衛生洗浄装置が未使用であることが検知された場合に制御部によりノズル洗浄用ノズルによるおしりノズルおよびビデノズルの洗浄が許可される。また、ノズル洗浄用ノズルによりおしりノズルおよびビデノズルが、高温水および蒸気を用いて洗浄される。

【選択図】

図11

特願2003-057748

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府門真市大字門真1006番地

氏 名 松下電器産業株式会社