Solutions to  $\it The \ Art \ of \ Electronics \ 3rd \ Edition$ 

 $January\ 13,\ 2024$ 

# Contents

| 1 | Solutions for Chapter 3                                                     | <b>5</b> | 1.10 Exercise 3.10 <b>TODO: write solution</b> | 6 |
|---|-----------------------------------------------------------------------------|----------|------------------------------------------------|---|
|   | 1.1 Exercise 3.1                                                            | 5        | 1.11 Exercise 3.11 <b>TODO: write solution</b> | 6 |
|   | 1.2 Exercise 3.2                                                            | 5        | 1.12 Exercise 3.12 <b>TODO: write solution</b> | 6 |
|   | 1.3 Exercise 3.3                                                            | 6        | 1.13 Exercise 3.13 <b>TODO:</b> write solution | 6 |
|   | 1.4 Exercise 3.4 TODO: write solution                                       | 6        | 1.14 Exercise 3.14 <b>TODO:</b> write solution | 6 |
|   | 1.5 Exercise 3.5 TODO: write solution                                       | 6        | 1.15 Exercise 3.15 <b>TODO:</b> write solution | 6 |
|   | 1.6 Exercise 3.6 TODO: write solution 1.7 Exercise 3.7 TODO: write solution | 6<br>6   | 1.16 Exercise 3.16 TODO: write solution        | 6 |
|   | 1.8 Exercise 3.8 TODO: write solution                                       | 6        | 1.17 Exercise 3.17 <b>TODO:</b> write solution | 6 |
|   | 1.9 Exercise 3.9 TODO: write solution                                       | 6        | 1.18 Exercise 3.18 TODO: write solution        | 6 |

4 CONTENTS

# Solutions for Chapter 3

### Exercise 3.1

Figure 1.1: JFET current source



From Figure 3.21 of the book, one can see that a drain current equal to  $1\,\mathrm{mA}$  corresponds to a gate-source voltage of  $-0.6\,\mathrm{V}$ . Therefore:

$$R_{\rm S} = \frac{0.6\,\mathrm{V}}{1\,\mathrm{mA}} = 600\,\Omega$$

### Exercise 3.2

At  $V_{\text{GS}} = V_{\text{G0}}$ :

$$r_{\mathrm{GS}} = r_{\mathrm{G0}} = \frac{1}{2k \left( V_{\mathrm{G0}} - V_{\mathrm{th}} \right)}$$

The ratio between  $r_{\rm DS}$  and  $R_{\rm G0}$  returns:

$$\frac{r_{\rm DS}}{r_{\rm G0}} = \frac{2k (V_{\rm G0} - V_{\rm th})}{2k (V_{\rm GS} - V_{\rm th})}$$

#### Exercise 3.3

Being  $g_{\mathrm{m}}$  the differential conductance of the FET operated in aturation region, it can be expressed as:

$$g_{\rm m} = \frac{\partial I_{\rm D}}{\partial V_{\rm GS}} = \frac{\partial}{\partial V_{\rm GS}} k \left( V_{\rm GS} - V_{\rm th} \right)^2 = 2k \left( V_{\rm GS} - V_{\rm th} \right)$$

Therefore:

$$g_{\rm m} = \frac{1}{r_{\rm DS}}$$

Exercise 3.4 TODO: write solution

Exercise 3.5 TODO: write solution

Exercise 3.6 TODO: write solution

Exercise 3.7 TODO: write solution

Exercise 3.8 TODO: write solution

Exercise 3.9 TODO: write solution

Exercise 3.10 TODO: write solution

Exercise 3.11 TODO: write solution

Exercise 3.12 TODO: write solution

Exercise 3.13 TODO: write solution

Exercise 3.14 TODO: write solution

Exercise 3.15 TODO: write solution

Exercise 3.16 TODO: write solution

Exercise 3.17 TODO: write solution

Exercise 3.18 TODO: write solution