Теорвер. ДЗ 7.

ПРОХОРОВ ЮРИЙ, 776

1 Характеристические функции

Опр. Z = X + i Y называется *комплекснозначной* случайной величиной, если X и $Y - {\rm c.b.}$ Ее матожиданием называется

$$\mathbb{E}Z = \mathbb{E}X + i\mathbb{E}Y$$

Опр. Xарактеристической функцией с.в. ξ называется функция

$$\varphi_{\xi}(t) = \mathbb{E}\left[e^{it\xi}\right]$$

Если ξ — дискретная случайная величина, а η — непрерывная случайная величина, то

$$\varphi_{\xi}(t) = \sum_{k=1}^{\infty} p_k e^{itx_k}, \qquad \varphi_{\eta}(t) = \int_{-\infty}^{+\infty} f_{\eta}(x) e^{itx} dx$$

На характеристическую функцию непрерывной с.в. можно смотреть как на обратное преобразование Фурье.

Характеристическая функция непрерывной случайной величины стремится к нулю на $\pm \infty$. Это следует из леммы Римана-Лебега: если $f \in \mathbb{L}_1(\mathbb{R})$, то $\lim_{\lambda \to \infty} \int_{\mathbb{R}} f(x) \sin \lambda x \, dx = 0$.

Свойства:

30иства:
1. Если
$$X_1, \dots, X_n$$
 — независимые с.в., а $S = X_1 + \dots + X_n$, то $\varphi_S(t) = \prod_{i=1}^n \varphi_{X_j}(t)$;

2. При линейном преобразовании с.в.: $\varphi_{a\xi+b}(t)=e^{itb}\varphi_{\xi}(at);$

3.
$$\varphi_{\xi}(0)=1, \qquad \varphi_{\xi}^{(k)}(0)=i^k\mathbb{E}\xi^k$$
 (если k -ый момент ξ конечен);

4. $\varphi_{\varepsilon}(t)$ равномерно непрерывна на \mathbb{R} ;

5.
$$|\varphi_{\xi}(t)| \le 1 \quad \forall t \in \mathbb{R};$$
 6. $\varphi(t) = \overline{\varphi(t)}.$

Теорема единственности. Между функциями распределения и характеристическими функциями есть взаимно однозначное соответствие.

Более строго в книге "Теория вероятностей", Боровков А.А., глава 7, §2, теорема 1.

Характеристические функции конкретных случайных величин:

$$\xi \sim \operatorname{Be}(p) \qquad \varphi_{\xi}(t) = 1 - p + pe^{it} \qquad \qquad \xi \sim \operatorname{Bin}(n, p) \qquad \varphi_{\xi}(t) = \left(1 - p + pe^{it}\right)^{n}$$

$$\xi \sim \mathcal{N}(0, 1) \qquad \varphi_{\xi}(t) = e^{-t^{2}/2} \qquad \qquad \xi \sim \mathcal{U}[-a, a] \qquad \varphi_{\xi}(t) = \frac{\sin(at)}{at}$$

$$\xi \sim \operatorname{Cauchy}(0, 1) \qquad \varphi_{\xi}(t) = e^{-|t|} \qquad \qquad \xi \sim \operatorname{Pois}(\lambda) \qquad \varphi_{\xi}(t) = e^{\lambda(e^{it} - 1)}$$

Для случайного вектора ${\bf X}$ аналогичные определения и свойства:

$$\varphi_{\mathbf{X}}(\mathbf{t}) = \mathbb{E}\left[e^{i\langle \mathbf{t}, \mathbf{X} \rangle}\right]$$

$$\frac{\partial \varphi_{\mathbf{X}}}{\partial t_{j}}(\mathbf{0}) = i\mathbb{E}[X_{j}], \qquad \frac{\partial^{2} \varphi_{\mathbf{X}}}{\partial t_{j} \partial t_{k}}(\mathbf{0}) = i^{2}\mathbb{E}[X_{j} X_{k}], \qquad \varphi_{A\mathbf{X} + \mathbf{b}}(\mathbf{t}) = e^{i\langle \mathbf{t}, \mathbf{m} \rangle} \varphi_{\mathbf{X}}(A^{T} \mathbf{t})$$

$$\mathbf{X} \sim \mathcal{N}(\mathbf{m}, \Sigma) \iff \varphi_{\mathbf{X}}(\mathbf{t}) = \exp\left(i\mathbf{t}^{T} \mathbf{m} - \frac{1}{2}\mathbf{t}^{T} \Sigma \mathbf{t}\right)$$

Теорема Бохнера-Хинчина. Пусть $\varphi(t)$ — непрерывная на \mathbb{R} функция и $\varphi(0) = 1$. Тогда $\varphi(t)$ — характеристическая функция (какой-то с.в.) $\iff \varphi(t)$ положительно определена:

$$\forall m \in \mathbb{N} \quad \forall t_1, \dots, t_m \in \mathbb{R} \quad \forall z_1, \dots, z_m \in \mathbb{C} \quad \to \quad \sum_{i,j=1}^m \varphi(t_i - t_j) z_i \overline{z_j} \ge 0$$

Подробнее про характеристические функции в книге "Вероятность-1", Ширяев, стр. 352.

Задача 1

Будем говорить, что случайная величина ξ имеет *решетчатое распределение*, если $\exists \ a,h \in \mathbb{R},\ h>0$, такие что ξ почти наверное принимает значения из множества $\{a+kh\}_{k\in\mathbb{Z}}$, т.е.

$$\sum_{k \in \mathbb{Z}} \mathbb{P}\{\xi = a + kh\} = 1$$

Доказать, что с.в. ξ имеет решетчатое распределение тогда и только тогда, когда $\left|\varphi_{\xi}\left(\frac{2\pi}{h}\right)\right|=1$ для некоторого h>0.

Решение:

1. (\Longrightarrow) Пусть ξ имеет решетчатое распределение. Так как характеристическая функция, будучи матожиданием, не зависит от значений ξ на множестве меры нуль, то будем считать ξ дискретной с.в. Тогда

$$\varphi_{\xi}(t) = \sum_{k \in \mathbb{Z}} p_k e^{it(a+kh)} = e^{ita} \sum_{k \in \mathbb{Z}} p_k e^{itkh}$$

$$\left| \varphi_{\xi} \left(\frac{2\pi}{h} \right) \right| = \left| \sum_{k \in \mathbb{Z}} p_k e^{i2\pi k} \right| = \sum_{k \in \mathbb{Z}} p_k = 1$$

2. \iff Пусть $\exists h > 0$, такое что $\left| \varphi_{\xi} \left(\frac{2\pi}{h} \right) \right| = 1$.

Значит, $\exists a \in \mathbb{R}$, такое что $\varphi_{\xi}\left(\frac{2\pi}{h}\right) = e^{ita}$. Обозначим с.в. $\eta = \frac{\xi}{h} - a$, и тогда $\varphi_{\eta}(2\pi) = 1$.

Покажем, что $\mathbb{P}\{\eta \in \mathbb{Z}\} = 1$. Отсюда будет следовать, что ξ имеет решетчатое распределение.

По определению,

$$1 = \varphi_{\eta}(2\pi) = \mathbb{E}\left[e^{i2\pi\eta}\right] = \int_{\mathbb{R}} e^{i2\pi x} d\mathbb{P}_{\eta}(x) = \int_{\mathbb{R}} \cos(2\pi x) d\mathbb{P}_{\eta}(x) + i \int_{\mathbb{R}} \sin(2\pi x) d\mathbb{P}_{\eta}(x)$$

Значит, мнимый интеграл равен нулю, а действительный — единице. Представим его в следующем виде:

$$\int\limits_{\mathbb{Z}} \cos(2\pi x) d\mathbb{P}_{\eta}(x) + \int\limits_{\mathbb{P} \setminus \mathbb{Z}} \cos(2\pi x) d\mathbb{P}_{\eta}(x) = 1$$

Так как $\cos(2\pi x) = 1$ при $x \in \mathbb{Z}$, то первый интеграл равен $\mathbb{P}_n(\mathbb{Z})$. Отсюда

$$\int_{\mathbb{R}\backslash\mathbb{Z}} \cos(2\pi x) d\mathbb{P}_{\eta}(x) = 1 - \mathbb{P}_{\eta}(\mathbb{Z}) = \mathbb{P}_{\eta}(\mathbb{R}\setminus\mathbb{Z}) = \int_{\mathbb{R}\backslash\mathbb{Z}} 1 \cdot d\mathbb{P}_{\eta}(x)$$

$$\int_{\mathbb{R}\backslash\mathbb{Z}} (1 - \cos(2\pi x)) d\mathbb{P}_{\eta}(x) = 0$$
(*)

Допустим, что $\mathbb{P}_{\eta}\{\mathbb{R}\setminus\mathbb{Z}\} > 0$. Подынтегральная функция в равенстве (*) строго положительна. Тогда значение интеграла (*) строго больше 0 (этот факт я доказывал в одном из прошлых ДЗ). Это противоречие.

Значит,
$$\mathbb{P}_{\eta}\{\mathbb{R}\setminus\mathbb{Z}\}=0$$
 \Longrightarrow $\mathbb{P}_{\eta}\{\mathbb{Z}\}=\mathbb{P}\{\eta\in\mathbb{Z}\}=\mathbb{P}\Big\{\xi\in\{a+kh\}_{k\in\mathbb{Z}}\Big\}=1.$

Задача 2

(a) Может ли функция $\varphi(t)$ быть характеристической функцией некоторой случайной величины?

$$\varphi(t) = \begin{cases} 1, & x \in [-T, T] \\ 0, & x \notin [-T, T] \end{cases}$$

(b) Изменится ли ответ, если сгладить разрывы φ в точках -T и T?

Решение:

(а) Нет, т.к. характеристическая функция любой случайной величины равномерно непрерывна на ℝ.

Для такой функции выполнен критерий "решетчатости" из задачи 1. Действительно, $\exists h = \frac{4\pi}{T} > 0$:

$$\varphi\left(\frac{2\pi}{h}\right) = \varphi\left(\frac{T}{2}\right) = 1$$

Допустим, что φ — характеристическая функция с.в. ξ . Значит, ξ имеет решетчатое распределение. Тогда, аналогично задаче 1, φ имеет вид

$$\varphi(t) = e^{ita} \sum_{k \in \mathbb{Z}} p_k e^{itkh}, \quad a \in \mathbb{R}$$

Подставляя $t_0 = \frac{16\pi}{h} = 2T$, получаем

$$\varphi(t_0) = e^{it_0 a} \sum_{k \in \mathbb{Z}} p_k \cdot 1 = e^{it_0 h} \neq 0$$

Это противоречие, так как $\varphi(2T)=0$. Значит, даже сглаженная функция φ не может являться характеристической функцией.

Задача 3

Пусть ξ и η — iid, $\varphi(t)$ — их характеристическая функция. Найти характеристическую функцию с.в. $\xi - \eta$.

Решение:

Характеристическая функция $-\eta$: $\varphi_1(t) = \varphi(-t)$. Так как ξ и η независимы, то ξ и $-\eta$ независимы, поэтому характеристическая функция их суммы:

$$\psi(t) = \varphi(t)\varphi_1(t) = \varphi(t)\varphi(-t) = |\varphi(t)|^2$$

Задача 4

На вероятностном пространстве $([0,1], \mathcal{B}(\mathbb{R}), \mu)$, где μ — мера Лебега, задана случайная величина ξ . Найти ее характеристическую функцию, если

(a)
$$\xi(w) = \begin{cases} 2w, & 0 \le w \le \frac{1}{2} \\ 2w - 1, & \frac{1}{2} < w \le 1 \end{cases}$$
 (b) $\xi(w) = \begin{cases} 0, & w = 0 \\ \ln w, & w > 0 \end{cases}$

(c)
$$\xi(w) = \begin{cases} 1, & 0 \le w \le \frac{1}{3} \\ 0, & \frac{1}{3} < w < \frac{2}{3} \\ 1, & \frac{2}{3} \le w \le 1 \end{cases}$$

Решение:

(a) Найдем функцию распределения ξ :

$$F_{\xi}(x)=0$$
 при $x\leq 0,$ $F_{\xi}(x)=1$ при $x\geq 1$

При $x \in (0,1)$:

$$F_{\xi}(x) = \mu\{w \mid \xi(w) \in [0, x)\} = \mu\left(\left[0, \frac{x}{2}\right) \cup \left[\frac{1}{2}, \frac{1+x}{2}\right)\right) = \frac{x}{2} + \frac{x}{2} = x$$

Значит, $\xi \sim \mathcal{U}[0,1]$. Тогда характеристическая функция:

$$\varphi_{\xi}(t) = \int_{-\infty}^{+\infty} e^{itx} f_{\xi}(x) dx = \int_{0}^{1} e^{itx} dx = \frac{e^{it} - 1}{it}$$

(b) Найдем функцию распределения ξ :

$$F_{\xi}(x) = 1$$
 при $x \ge 0$

При x < 0:

$$F_{\xi}(x) = \mu\{w \mid \ln w < x\} = \mu(0, e^x) = e^x$$

Плотность распределения такой случайной величины $f_{\xi}=rac{d}{dx}F_{\xi}$:

$$f_{\xi}(x) = \begin{cases} e^x, & x < 0 \\ 0, & x \ge 0 \end{cases} \Longrightarrow -\xi \sim \text{Exp}(1)$$

Характеристическая функция:

$$\varphi_{\xi}(t) = \int_{-\infty}^{+\infty} e^{itx} f_{\xi}(x) dx = \int_{-\infty}^{0} e^{(it+1)x} dx = \frac{1}{it+1}$$

(c) ξ принимает только 2 значения (0 и 1), значит $\xi \sim \mathrm{Be}(p)$, где $p=\frac{2}{3}$. Тогда ее характеристическая функция:

$$\varphi_{\xi}(t) = 1 - p + pe^{it} = \frac{1 + 2e^{it}}{3}$$