KOSTAT-UNFPA Summer Seminar on Population

Workshop 1: **Demography in R**Projection

Instructor: Tim Riffe

Assistant: Dr. Da eun Kwan

Workshop plan, July 24-28, 2023

1: Monday Intro concepts, and R setup

2: Tuesday Mortality and fertility

3: Wednesday Structure

4: Thursday Growth

5: Friday Projection

Review of session 4

- Geometric and exponential growth
- Stationary and stable structure
- Stable structure in periods; stationary structure in cohorts
- Stable populations don't happen; change is constant
- Period perspective justifiable for life expectancy, but net reproductivity results are not.
- colorspace for good palettes.
- Pyramid tips
- cross_join()

Projection

- Predict the past/present to predict the future
- Simplify
- Extrapolate

% Variance (of log rates) explained

Parameters	
1 (simple intercept)	Total var = 276
2 (line)	66.4 %
3 (simple plane)	72.9 %
4 (plane with tilt)	75.0 %
200 (each year has own line)	75.2 %
111 (age intercepts)	76.5 %

Lee Carter method

$$ln(m_x(t)) = \alpha_x + \beta_x \kappa(t) + \epsilon_x(t)$$

Alpha

Calculating beta and kappa

SVD - singular value decomposition

Factorize a matrix **M** into pieces **d**, **U**, **V**, such that:

 $M = U \operatorname{diag}(d) V^*$

beta(x) (age slopes) derived from **U** (scale first column to 1)

kappa(t) (secular change) derived from **V** (scale first column of **V** to sum to first element of **d**

Kappa(t) the trend to extrapolate

% Variance (of log rates) explained

Parameters	
1 (simple intercept)	Total var = 2 7 6
2 (line)	66.4 %
3 (simple plane)	72.9 %
4 (plane with tilt)	75.0 %
200 (each year has own line)	75.2 %
111 (age intercepts)	76.5 %
222 (each age has own line)	02 0 %

Modeling and Forecasting U. S. Mortality

Ronald D. Lee; Lawrence R. Carter

Journal of the American Statistical Association, Vol. 87, No. 419 (Sep., 1992), 659-671.

Stable URL:

http://links.jstor.org/sici?sici=0162-1459%28199209%2987%3A419%3C659%3AMAFUSM%3E2.0.CO%3B2-T

Journal of the American Statistical Association is currently published by American Statistical Association.

$$ln(m_x(t)) = \alpha_x + \beta_x \kappa(t) + \epsilon_x(t)$$