## Решение задач «КПД. Цикл Карно»

## Вариант - 1

- 1. Идеальный газ совершает цикл Карно. Температура холодильника 300К. Полезная работа, совершенная за цикл равна 900кДж. Холодильник получил количество теплоты равное 1,8кДж. Определите температуру нагревателя.
- 2. В двух закрытых баллонах находится по одному молю идеального одноатомного газа. Внутренняя энергия газа в первом баллоне равна 8кДж, во втором 12кДж. Во сколько раз абсолютная температура газа во втором баллоне больше, чем в первом?
- 3. Тепловой двигатель работает по циклу Карно. Температура нагревателя 500К, холодильника 400К. Во сколько раз надо увеличить температуру нагревателя, чтобы КПД двигателя увеличился в 3 раза?
- 4. Тепловой двигатель работает по циклу Карно. Температура нагревателя 473К. Определите температуру холодильника, если за 1кДж теплоты, полученной от нагревателя, двигатель выполняет работу 0,32кДж.
- 5. С идеальным газом некоторой массы был произведен процесс, изображенный графически на рисунке. Начертите эту диаграмму в координатах (p;V).



- 6. Резиновый шар содержит  $2\pi$  воздуха, находящегося при температуре  $20^{\circ}$ С и атмосферном давлении  $1\cdot 10^{5}$ Па. Какой объем займет воздух, если шар будет опущен в воду на глубину 10м? Температура воды  $4^{\circ}$ С. Давлением, обусловленным кривизной поверхности, пренебречь.
- 7. На сколько отстанут за сутки маятниковые часы, если температура станет на  $20^{\circ}$ С выше той, при которой часы были сверены. Маятник часов железный. Коэффициент линейного расширения железа равен  $1,2 \cdot 10^{-5} \text{K}^{-1}$ .
- 8. Вертикальный цилиндр с тяжелым поршнем наполнен азотом, масса которого  $m_1$ =0,1кг. После увеличения температуры азота на  $\Delta T$ =100К поршень поднялся на высоту h=0,1м. Над поршнем все время сохраняется нормальное атмосферное давление  $p_0$ =1·10<sup>5</sup>Па. Площадь поршня S=0,02м². Определить массу поршня. Универсальная газовая постоянная R=8,31 $\frac{Дж}{моль\cdot K}$ . Молярная масса азота M=28·10<sup>-3</sup> $\frac{K\Gamma}{моль}$ .

- 9. В вертикальном цилиндре вместимостью  $2\pi$  под тяжелым поршнем находится газ при температуре T=300К. Масса поршня 50кг, его площадь S=0,5м². Температуру газа повысили на  $\Delta T=100$ К. Найти изменение внутренней энергии газа, если его теплоемкость  $C=5\frac{\mathcal{A}_{\mathcal{K}}}{K}$ . Атмосферное давление  $p_0=1\cdot 10^5\Pi a$ . Трение поршня о стенки не учитывать. Принять  $g=10\frac{M}{c^2}$ .
- 1. Идеальный газ совершает цикл Карно. Температура холодильника 100К. Полезная работа, совершенная за цикл равна 500кДж. Холодильник получил количество теплоты равное 1,2кДж. Определите температуру нагревателя.
- 2. В двух закрытых баллонах находится по одному молю идеального одноатомного газа. Внутренняя энергия газа в первом баллоне равна 6кДж, во втором 10кДж. Во сколько раз абсолютная температура газа во втором баллоне больше, чем в первом?
- 3. Тепловой двигатель работает по циклу Карно. Температура нагревателя 900К, холодильника 300К. Во сколько раз надо увеличить температуру нагревателя, чтобы КПД двигателя увеличился в 2 раза?
- 4. Тепловой двигатель работает по циклу Карно. Температура нагревателя 373К. Определите температуру холодильника, если за2кДж теплоты, полученной от нагревателя, двигатель выполняет работу 0,8кДж.
- 5. С идеальным газом некоторой массы был произведен процесс, изображенный графически на рисунке. Начертите эту диаграмму в координатах (p;V) и (V,T).



- 6. Резиновый шар содержит 1л воздуха, находящегося при температуре  $15^{\circ}$ С и атмосферном давлении  $1\cdot 10^{5}$ Па. Какой объем займет воздух, если шар будет опущен в воду на глубину 5м? Температура воды  $2^{\circ}$ С. Давлением, обусловленным кривизной поверхности, пренебречь.
- 7. На сколько отстанут за сутки маятниковые часы, если температура станет на  $40^{\circ}$ С выше той, при которой часы были сверены. Маятник часов железный. Коэффициент линейного расширения железа равен  $1,2 \cdot 10^{-5} \text{K}^{-1}$ .
- 8. Вертикальный цилиндр с тяжелым поршнем наполнен гелием, масса которого  $m_1$ =0,4кг. После увеличения температуры азота на  $\Delta T$ =150К

- поршень поднялся на высоту h=0,2м. Над поршнем все время сохраняется нормальное атмосферное давление  $p_0$ =1·  $10^5$ Па. Площадь поршня S=0,02м<sup>2</sup>. Определить массу поршня.
- 9. В вертикальном цилиндре вместимостью 3л под тяжелым поршнем находится газ при температуре  $T=400 \mathrm{K}$ . Масса поршня  $10 \mathrm{kr}$ , его площадь  $S=0,5 \mathrm{m}^2$ . Температуру газа повысили на  $\Delta T=120 \mathrm{K}$ . Найти изменение внутренней энергии газа, если его теплоемкость  $C=5\frac{\mathrm{Д} \mathrm{ж}}{\mathrm{K}}$ . Атмосферное давление  $p_0=1\cdot 10^5 \mathrm{\Pi a}$ . Трение поршня о стенки не учитывать. Принять  $g=10\frac{\mathrm{M}}{\mathrm{c}^2}$ .

## Вариант - 2

- 1. Идеальный газ совершает цикл Карно. Температура холодильника 100К. Полезная работа, совершенная за цикл равна 500кДж. Холодильник получил количество теплоты равное 1,2кДж. Определите температуру нагревателя.
- 2. В двух закрытых баллонах находится по одному молю идеального одноатомного газа. Внутренняя энергия газа в первом баллоне равна 6кДж, во втором 10кДж. Во сколько раз абсолютная температура газа во втором баллоне больше, чем в первом?
- 3. Тепловой двигатель работает по циклу Карно. Температура нагревателя 900К, холодильника 300К. Во сколько раз надо увеличить температуру нагревателя, чтобы КПД двигателя увеличился в 2 раза?
- 4. Тепловой двигатель работает по циклу Карно. Температура нагревателя 373К. Определите температуру холодильника, если за2кДж теплоты, полученной от нагревателя, двигатель выполняет работу 0,8кДж.
- 5. С идеальным газом некоторой массы был произведен процесс, изображенный графически на рисунке. Начертите эту диаграмму в координатах (p;V) и (V,T).



- 6. Резиновый шар содержит 1л воздуха, находящегося при температуре 15°С и атмосферном давлении 1·10<sup>5</sup>Па. Какой объем займет воздух, если шар будет опущен в воду на глубину 5м? Температура воды 2°С. Давлением, обусловленным кривизной поверхности, пренебречь.
- 7. На сколько отстанут за сутки маятниковые часы, если температура станет на 40°С выше той, при которой часы были сверены. Маятник

- часов железный. Коэффициент линейного расширения железа равен 1,2  $\cdot$  10<sup>-5</sup>  $\mathrm{K}^{-1}$ .
- 8. Вертикальный цилиндр с тяжелым поршнем наполнен гелием, масса которого  $m_1$ =0,4кг. После увеличения температуры азота на  $\Delta T$ =150К поршень поднялся на высоту h=0,2м. Над поршнем все время сохраняется нормальное атмосферное давление  $p_0$ =1·10<sup>5</sup>Па. Площадь поршня S=0,02м<sup>2</sup>. Определить массу поршня.
- 9. В вертикальном цилиндре вместимостью 3л под тяжелым поршнем находится газ при температуре  $T=400 \rm K$ . Масса поршня  $10 \rm kr$ , его площадь  $S=0,5 \rm m^2$ . Температуру газа повысили на  $\Delta T=120 \rm K$ . Найти изменение внутренней энергии газа, если его теплоемкость  $C=5\frac{\rm Дж}{\rm K}$ . Атмосферное давление  $p_0=1\cdot 10^5 \rm \Pi a$ . Трение поршня о стенки не учитывать. Принять  $g=10\frac{\rm m}{\rm c^2}$

## Условия задач

- 1. Идеальный газ совершает цикл Карно. Температура  $T_2$  охладителя равна 290 К. Во сколько раз увеличится к.п.д. цикла, если температура нагревателя повысится от  $T_1^t = 400$  К до  $T_1^{\pi} = 600$  К?
- 2. Тепловой двигатель работает по циклу Карно. Температура нагревателя 500К, холодильника 400К. Во сколько раз надо увеличить температуру нагревателя, чтобы КПД двигателя увеличился в 3 раза?
- 3. Идеальный газ совершает цикл Карно. Температура холодильника 300К. Полезная работа, совершенная за цикл равна 900кДж. Холодильник получил количество теплоты равное 1,8кДж. Определите температуру нагревателя.
- 4. Тепловой двигатель работает по циклу Карно. Температура нагревателя 473 К. Определите температуру холодильника, если за 1 кДж теплоты, полученной от нагревателя, двигатель выполняет работу 0,32 кДж.
- 5. Идеальный газ совершает цикл Карно. Температура  $T_1$  нагревателя в три раза выше температуры  $T_2$  охладителя. Нагреватель передал газу количество теплоты  $Q_1 = 42$  кДж. Какую работу A совершил газ?
- 6. Идеальный газ совершает цикл Карно. Температура  $T_1$  нагревателя равна 470 К, температура  $T_2$  охладителя равна 280 К. При изотермическом расширении газ совершает работу A = 100 Дж. Определить термический к.п.д.  $\eta$  цикла, а также количество теплоты  $Q_2$ , которое газ отдает охладителю при изотермическом сжатии.
- 7. Идеальный газ совершает цикл Карно. Температура  $T_1$  нагревателя в четыре раза выше температуры  $T_2$  охладителя. Какую долю  $\omega$  количества теплоты, получаемого за один цикл от нагревателя, газ отдает охладителю?

8. Идеальный газ, совершающий цикл Карно, получив от нагревателя количество теплоты  $Q_1 = 4,2$  кДж, совершил работу A = 590 Дж. Найти термический к.п.д.  $\eta$  этого цикла. Во сколько раз температура  $T_1$  нагревателя больше температуры  $T_2$  охладителя?