CIR₂ 2018-2019

QUIZZ 4 Séries entières

Durée 30 minutes

Pas de document, ni calculatrice, ni téléphone portable Inscrire les réponses sur la feuille-réponse jointe (il peut y avoir plusieurs réponses correctes, ou aucune)

Soit f une fonction de \mathbb{R} dans \mathbb{R} développable en série entière : $f(x) = \sum_{n=0}^{\infty} a_n x^n$ avec un rayon de convergence R.

$$\sum_{n=1}^{\infty} \frac{a_n x^n}{n}$$

$$\sum_{n=1}^{\infty} \frac{a_n x^{n+1}}{n}$$

2. Le rayon de convergence du développement en série de f' est :

1	
0	

2	
∞	

f ' a comme développement en série entière :

$$\sum_{n=1}^{\infty} (n-1)a_{n-1}x^n$$

4.

_1		
égal	à	-1

5. Le développement en série entière de ln(1+x) est

$$\sum_{n=0}^{\infty} (-1)^n x^n$$

$$-\sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$\sum_{n=1}^{\infty} n \, x^n$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!}$$

Le rayon de convergence de la série $\sum_{n=0}^{\infty} (3^n + (-2)^n) z^n$ est 6.

	1	
	1	
-	$-\frac{1}{2}$	

2	
1	
3	

3	
0	

4	
1	
3	

5	
1	
$\frac{-}{2}$	

Le rayon de convergence de la série $\sum_{n=0}^{\infty} \frac{n^n z^n}{n!}$ est

1
0

5
exp(-1)

	∞
Soit g une fonction développable en série entière :	$g(z) = \sum a_n z^n$ avec un rayon de convergence R.
	n=0

8. g(-3z) a comme développement en série entière :

	1
\sum_{∞} (-	$-1)^n a_n z^n$
$\sum_{n=0}^{\infty}$	$\overline{3}^n$

$$\sum_{n=0}^{\infty} (-1)^n 3^n a_n z^n$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n z^n}{3^n}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n a_n}{3^n}$$

autre chose

9. Le rayon de convergence de la série de g(-3z) est :

1
R

2
-R

3
3 <i>R</i>

$$-\frac{R}{3}$$

10. $g(z^2)$ a comme développement en série entière :

4

 $\frac{R}{2}$

autre chose

11. Le rayon de convergence de la série de $g\left(z^2\right)$ est :

1
R

2 2R

3	
R^2	

12. Le développement en série entière de $\frac{1}{2x^2 + 5}$

est égal à
$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n 5^n x^{2n}}{2^n}$$

est égal à
$$\sum_{n=0}^{\infty} (2x^2 + 5)^n$$

a un rayon de convergence $\frac{5}{2}$

a un rayon de convergence $\frac{2}{5}$