

Web databases

Prepared by Raymond Wong Presented by Raymond Wong raywong@cse

Web Databases

Advertising Programs - About Google - Go to Google.com

©2008 - Privacy

COMP5331

RAYMONDWONG.COM

www.raymondwong.com/ - 1k - Cached - Similar pages

Raymond Wong Studio

www.raymondwongstudio.com/ - 2k - Cached - Similar pages

Raymond Wong Studio

酒類. 其他. 包裝. 快餐. O. I. D. U. T. S. G. N. O. W. D. N. O. M. Y. A. R. 食品. 冰淇淋. 人像. 菜 單與食譜. 酒類. 其他. 包裝. 快餐. RAYMOND WONG STUDIO. 關於.

www.raymondwongstudio.com/ch/main.html - 2k - Cached - Similar pages More results from www.raymondwongstudio.com »

Video results for Raymond Wong

AGDS Raymond Wong.mp4 50 min video.google.com

Raymond Wong at PMI HK Chapter 10th Anniv ... 1 min 53 sec www.youtube.com

How to rank the webpages?

Raymond Wong - Wikipedia, the free encyclopedia

26 Nov 2008 ... Raymond Wong may refer to: Raymond Wong Yuk Man, radio host and political commentator; Raymond Wong Hung Chiu, - Permanent Secretary for ... en.wikipedia.org/wiki/Raymond Wong - 17k - Cached - Similar pages

Raymond Wong Ho-Yin

Raymond Wong in Love Undercover (2002), Raymong Wong in Needing You (2000), Raymond Wong in Sealed with a Kiss (1999), Raymond Wong in The Irresistible ... www.lovehkfilm.com/people/wong_raymond2.htm - 32k - Cached - Similar pages

Raymond Chi-Wing Wong (Raymond Wong), HKUST CSE

Raymond Chi-Wing Wong is an Assistant Professor in Computer Science and Raymond Wong, Raymond C.-W. Wong, Raymond C. W. Wong, Raymond C. Wong, ... www.cse.ust.hk/~raywong/ - 43k - Cached - Similar pages

Raymond Wong - DramaWiki

7 Oct 2008 ... From DramaWiki. Raymond Wong ... Name: 黃浩然 / Wong Ho Yin (Huang Hao Ran); English name: Raymond Wong; Profession: Actor ... wiki.d-addicts.com/Raymond Wong - 15k - Cached - Similar pages

Ranking Methods

- HITS Algorithm
- PageRank Algorithm

HITS is a ranking algorithm which ranks "hubs" and "authorities".

Authority

Hub

Each page has two weights

- 1. Authority weight a(v)
- 2. Hub weight h(v)

A good hub has many outgoing edges to good authorities

- Each vertex has two weights
 - Authority weight
 - Hub weight

A good authority has many edges from good hubs

Authority Weight

Hub Weight

$$h(v) = \sum_{v \to u} a(u)$$

- HITS involves two major steps.
 - Step 1: Sampling Step >
 - Step 2: Iteration Step

Step 1 – Sampling Step

- Given a user query with several terms
 - Collect a set of pages that are very relevant called the
 base set
- How to find base set?
 - We retrieve all webpages that contain the query terms. The set of webpages is called the root set.
 - Next, find the link pages, which are either pages with a hyperlink to some page in the root set or some page in the root set has hyperlink to these pages
 - All pages found form the base set.

- HITS involves two major steps.
 - Step 1: Sampling Step
 - Step 2: Iteration Step

COMP5331

 Goal: to find the base pages that are good hubs and good authorities

COMP5331

Step 2 – Iteration Step 3 – Ite

Adjacency matrix M

N: Netscape

MS: Microsoft

A: Amazon.com

$$h(N) = a(N) + a(MS) + a(A)$$

$$h(MS) = a(A)$$

$$h(A) = a(N) + a(MS)$$

$$\begin{pmatrix} h(N) \\ h(MS) \\ h(A) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} a(N) \\ a(MS) \\ a(A) \end{pmatrix}$$

$$\vec{h} = M\vec{a}$$

$$\vec{h} = \begin{pmatrix} h(N) \\ h(MS) \\ h(A) \end{pmatrix} \vec{a} = \begin{pmatrix} a(N) \\ a(MS) \\ a(A) \end{pmatrix}_{12}$$

Adjacency matrix M

$$= MS \begin{pmatrix} N & MS & A \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

N: Netscape MS: Microsoft

A: Amazon.com

$$a(N) = h(N) + h(A)$$

$$a(MS) = h(N) + h(A)$$

$$a(A) = h(N) + h(MS)$$

$$a(N) = h(N) + h(MS)$$

$$\begin{array}{c} \textbf{a(N)} \\ \textbf{a(MS)} \\ \textbf{a(A)} \end{array} = \begin{array}{c} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} \textbf{h(N)} \\ \textbf{h(MS)} \\ \textbf{h(A)} \end{pmatrix}$$

$$\vec{h} = \begin{pmatrix} h(N) \\ h(MS) \\ h(A) \end{pmatrix} \vec{a} = \begin{pmatrix} a(N) \\ a(MS) \\ a(A) \end{pmatrix}_{13}$$

We have

$$\vec{h} = M\vec{a}$$

$$\vec{a} = M^T \vec{h}$$

We derive

$$\vec{h} = MM^T \vec{h}$$

$$\vec{a} = M^T M \vec{a}$$

$$M = MS \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\vec{\hat{h}} = MM^T \vec{h}$$

Hub (non-normalized)

Iteration No.	1	2	3	4	5	6	7
(N)	1	6	7	7.071	7.091	7.096	7.098
MS	1	2	2	1.929	1.909	1.904	1.902
(A)	1	4	5	5.143	5.182	5.192	5.195

Hub (normalized)

The sum of all elements in the vector = 3

Iteration No.	1	2	3	4	5	6	7
(N MS	1 1	1.5 0.5	1.5 0.429	1.5 0.409	1.5 0.404	1.5 0.402	1.5 0.402
(A)	1	1	1.071	1.091	1.096	1.098	1.098

Hub

$$\begin{pmatrix}
N \\
MS \\
A
\end{pmatrix} = \begin{pmatrix}
1.5 \\
0.402 \\
1.098
\end{pmatrix}$$

$$\vec{a} = M^T M \vec{a}$$

$\overline{(N)}$	1	(1.098)
MS	=	1.098
(A)		0.804

Authority (non-normalized)

Iteration No.	1	2	3	4	5	6	7
(N)	1	5	5.143	5.182	5.192	5.195	5.196
MS	1	5	5.143	5.182	5.192	5.195	5.196
(A)	1	4	3.857	3.818	3.808	3.805	3.804
`							

Authority (normalized)

The sum of all elements in the vector = 3

Iteration No.	1	2	3	4	5	6	7
(N	1	1.071	1.091	1.096	1.098	1.098	1.098
MS	1	1.071	1.091	1.096	1.098	1.098	1.098
A	1	0.857	0.818	0.808	0.805	0.804	0.804

How to Rank

- Many ways
 - Rank in descending order of hub only
 - Rank in descending order of authority only
 - Rank in descending order of the value computed from both hub and authority (e.g., the sum of the hub value and the authority value)

Ranking Methods

- HITS Algorithm
- PageRank Algorithm

COMP5331

- Disadvantage of HITS:
 - Since there are two concepts, namely hubs and authorities, we do not know which concept is more important for ranking.
- Advantage of PageRank:
 - PageRank involves only one concept for ranking

 PageRank Algorithm makes use of Stochastic approach to rank the pages

COMP5331

Stochastic matrix M

 N: Netscape

MS: Microsoft

A: Amazon.com

MS A

$$\vec{r} = M\vec{r}$$

$$M = MS \begin{pmatrix} 0.5 & 0 & 0.5 \\ 0 & 0 & 0.5 \\ 0.5 & 1 & 0 \end{pmatrix}$$

Page Rank

Iteration No.	1	2	3	4	5	••	33
(N)	1	1	1.25	1.125	1.156	***	1.20
MS	1	0.5	0.75	0.5	0.531		0.60
(A)	1	1.5	1	1.375	1.313		1.20

Microsoft (MS) is quite upset with this result. Microsoft decides to link only to itself from now on.

Stochastic matrix M

Stochastic matrix M

$$\vec{r} = M\vec{r}$$

$$M = MS \begin{pmatrix} 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0.5 \\ 0.5 & 0 & 0 \end{pmatrix}$$

Page Rank

Iteration No.	1	2	3	4	5	••	40
(N)	1	1	0.75	0.625	0.5		0
MS	1	1.5	1.75	2	2.188		3
$A \cup A$	1	0.5	0.5	0.375	0.313		0

Microsoft (MS) is happy. It is the most important now. Others is not happy.

Spider trap: a group of one or more pages that have no links out of the group will eventually accumulate all the importance of the web.

How to solve it?

Microsoft has become a spider trap.

MS A

$$\vec{r} = 0.8 \times M\vec{r} + \vec{c} \qquad \vec{c} = \begin{bmatrix} 0.2 \\ 0.2 \\ 0.2 \end{bmatrix}$$

$$\vec{r} = 0.8 \times M\vec{r} + \vec{c}$$
 N $(0.5 \quad 0.5)$

$$\vec{r} = 0.8 \times M\vec{r} + \vec{c}$$

$$M = MS \begin{vmatrix} 0.0 & 0.05 \\ 0.0 & 1.0.5 \end{vmatrix}$$

A
$$0.5 \ 0 \ 0$$

MS A

Page Rank

Iteration No.	1	2	3	4	5	 20
(N)	1	1	0.84	0.776	0.725	 0.636
MS	1	1.4	1.56	1.688	1.765	 1.909
A	1	0.6	0.6	0.536	0.510	 0.455

We have a more reasonable distribution of importance than before.