Condense the following expression and change it into an assigned base.

1. (change to base 3)	2. (change to base 4)
$\log_{\frac{1}{\sqrt{3}}}\left(\sqrt{x-3}\right) + \log_9\left(x^2 + 3x - 18\right)$	$\log_2 \sqrt{(x-2)^3} + \log_{\frac{1}{4}} \left(x^2 - 4x + 4 \right)$
$=\log_3\sqrt{\frac{x+6}{x-3}}$	$=\log_4(x-2)$
3. (change to base 3)	4 (change to base 1)
$\log_3(x^2-16)-\log_9(x^2+8x+16)$	4. (change to base $\frac{1}{7}$)
	$\log_{7}(2x^2-x-3)-\log_{\sqrt{7}}(x+1)$
$=\log_3(x-4)$	· ·
	$=\log_{\frac{1}{7}}\left(\frac{x+1}{2x-3}\right)$
5. (change to base 8)	6. (change to common log)
$\frac{1}{2}\log_{64}(x-3) - \log_{2\sqrt{2}}\left(\frac{1}{\sqrt{x+3}}\right)$	$\log_5(x+3) + \log_{20}(x+3)$
	$= (\log 4) \log(x+3)$
$=\log_8\left((x+3)\sqrt[4]{x-3}\right)$	$= \frac{(\log 4) \log(x+3)}{1 - (\log 2)^2}$
7. (change to natural log)	8. (change to base 2)
$\log_{\sqrt{3}}(x^2 - 4) - \log_{\sqrt{3}}(x + 2)$	$\log_{\sqrt{2}}(x-2) + 2\log_{\frac{1}{2}}(x^2 - 4)$
$=\frac{\ln(x+2)}{\ln\sqrt{3}}$	$=2\log_2\left(\frac{1}{x+2}\right)$