Equation assignment sequence for variable s

no	var	equ	quations	token
32	38	-	$K^{A,eta}{}_A::$ port variable	
31	18	_	$M^{A,\beta}_{N}$:: port variable	
30	37	-	$K^{A,\alpha}{}_A :: \text{port variable}$	
29	17	-	$M^{A,\alpha}_N$:: port variable	
28	40	-	$K^{B,\delta}{}_A::$ port variable	
27	20	-	$M^{B,\delta}_N$:: port variable	
26	39	_	$K^{B,\gamma}{}_A::$ port variable	
25	19	_	$M^{B,\gamma}_N$:: port variable	
24	8	_	$F_{N,A}$:: port variable	
23	36	_	$D_{N,A}$:: port variable	
22	3	_	# :: port variable	
21	1	_	t:: port variable	
20	43	37	$k^{A,\beta}{}_A := K^{A,\beta}{}_A$	
19	22	8	$\pi^{A,\beta}{}_N := M^{A,\beta}{}_N \cdot x_N$	
18	41	35	$k^{A,\alpha}{}_A := K^{A,\alpha}{}_A$	
17	21	7	$\pi^{A,\alpha}{}_N := M^{A,\alpha}{}_N \cdot x_N$	
16	44	38	$k^{B,\delta}{}_A := K^{B,\delta}{}_A$	
15	24	10	$\pi^{B,\delta}{}_N := M^{B,\delta}{}_N \cdot y_N$	
14	45	39	$k^{B,\gamma}{}_A := K^{B,\gamma}{}_A$	

Continued on next page

no	var	equ	quations	token
13	23	9	$\pi^{B,\gamma}{}_N := M^{B,\gamma}{}_N \cdot y_N$	
12	26	12	$\hat{x}^{A,\beta}{}_{N} := F_{N,A} \stackrel{A}{\star} \left(k^{A,\beta}{}_{A} \cdot D_{N,A} \stackrel{N}{\star} \pi^{A,\beta}{}_{N} \right)$	
11	25	11	$\hat{x}^{A,\alpha}{}_{N} := F_{N,A} \stackrel{A}{\star} (k^{A,\alpha}{}_{A} \cdot D_{N,A} \stackrel{N}{\star} \pi^{A,\alpha}{}_{N})$	
10	28	15	$\hat{y}^{B,\delta}{}_{N} := F_{N,A} \stackrel{A}{\star} \left(k^{B,\delta}{}_{A} \cdot D_{N,A} \stackrel{N}{\star} \pi^{B,\delta}{}_{N} \right)$	
9	27	14	$\hat{y}^{B,\gamma}{}_{N} := F_{N,A} \stackrel{A}{\star} \left(k^{B,\gamma}{}_{A} \cdot D_{N,A} \stackrel{N}{\star} \pi^{B,\gamma}{}_{N} \right)$	
8	29	16	$\dot{x}_N := \hat{x}^{A,\alpha}{}_N + \hat{x}^{A,\beta}{}_N$	
7	11	5	$x^o_N := \text{Instantiate}(x_N, \#)$	
6	7	4	$t_e := \text{Instantiate}(t, \#)$	
5	6	3	$t_o := \operatorname{Instantiate}(t, \#)$	
4	30	17	$\dot{y}_N := \hat{y}^{B,\gamma}{}_N + \hat{y}^{B,\delta}{}_N$	
3	12	6	$y^o_N := \text{Instantiate}(y_N, \#)$	
2	9	20	$x_N := \int_{t_o}^{t_e} \dot{x}_N \ dt + x^o_N$	
1	10	21	$y_N := \int_{t_o}^{t_e} \dot{y}_N \ dt + y^o{}_N$	
0	34	31	$s := \operatorname{MixedStack}(x_N, y_N)$	