

Graphs

L

- ▶ A graph is a triplet $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$, which includes vertices \mathcal{V} , edges \mathcal{E} , and weights \mathcal{W}
 - \Rightarrow Vertices or nodes are a set of n labels. Typical labels are $\mathcal{V} = \{1, \dots, n\}$
 - \Rightarrow Edges are ordered pairs of labels (i,j). We interpret $(i,j) \in \mathcal{E}$ as "i can be influenced by j."
 - \Rightarrow Weights $w_{ij} \in \mathbb{R}$ are numbers associated to edges (i,j). "Strength of the influence of j on i."

- ▶ Edge (i,j) is represented by an arrow pointing from j into i. Influence of node j on node i
 - \Rightarrow This is the opposite of the standard notation used in graph theory
- ▶ Edge (i,j) is different from edge (j,i) ⇒ It is possible to have $(i,j) \in \mathcal{E}$ and $(j,i) \notin \mathcal{E}$
- ▶ If both edges are in the edge set, the weights can be different \Rightarrow It is possible to have $w_{ij} \neq w_{ji}$

- A graph is symmetric or undirected if both, the edge set and the weight are symmetric
 - \Rightarrow Edges come in pairs \Rightarrow We have $(i,j) \in \mathcal{E}$ if and only if $(j,i) \in \mathcal{E}$
 - \Rightarrow Weights are symmetric \Rightarrow We must have $w_{ij}=w_{ji}$ for all $(i,j)\in\mathcal{E}$

- ► A graph is unweighted if it doesn't have weights
 - \Rightarrow Equivalently, we can say that all weights are units $\Rightarrow w_{ij} = 1$ for all $(i, j) \in \mathcal{E}$
- ▶ Unweighted graphs could be directed or symmetric

- ► A graph is unweighted if it doesn't have weights
 - \Rightarrow Equivalently, we can say that all weights are units $\Rightarrow w_{ij} = 1$ for all $(i, j) \in \mathcal{E}$
- ► Unweighted graphs could be directed or symmetric

- ▶ Graphs can be directed or symmetric. Separately, they can be weighted or unweighted.
- ▶ Most of the graphs we encounter in practical situations are symmetric and weighted

Graph Shift Operators

► Graphs have matrix representations. Which in this course, we call graph shift operators (GSOs)

7

lacktriangle The adjacency matrix of graph $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathcal{W})$ is the sparse matrix f A with nonzero entries

$$A_{ij} = w_{ij}$$
, for all $(i, j) \in \mathcal{E}$

▶ If the graph is symmetric, the adjacency matrix is symmetric $\Rightarrow \mathbf{A} = \mathbf{A}^T$. As in the example

$$\mathbf{A} = \begin{bmatrix} 0 & w_{12} & w_{13} & 0 & 0 \\ w_{21} & 0 & w_{23} & w_{24} & 0 \\ w_{31} & w_{32} & 0 & 0 & w_{35} \\ 0 & w_{42} & 0 & 0 & w_{45} \\ 0 & 0 & w_{53} & w_{54} & 0 \end{bmatrix}.$$

For the particular case in which the graph is unweighted. Weights interpreted as units

$$A_{ij}=1, \qquad ext{ for all } \quad (i,j) \in \mathcal{E}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}.$$

- ▶ The neighborhood of node *i* is the set of nodes that influence $i \Rightarrow n(i) := \{j : (i,j) \in \mathcal{E}\}$
- ▶ Degree d_i of node i is the sum of the weights of its incident edges $\Rightarrow d_i = \sum_{j \in n(i)} w_{ij} = \sum_{j:(i,j) \in \mathcal{E}} w_{ij}$

- Node 1 neighborhood $\Rightarrow n(1) = \{2, 3\}$
- ► Node 1 degree $\Rightarrow n(1) = w_{12} + w_{13}$

- ▶ The degree matrix is a diagonal matrix **D** with degrees as diagonal entries $\Rightarrow D_{ii} = d_i$
- ▶ Write in terms of adjacency matrix as D = diag(A1). Because $(A1)_i = \sum_i w_{ij} = d_i$

$$\mathbf{D} = \begin{bmatrix} \mathbf{2} & 0 & 0 & 0 & 0 \\ 0 & \mathbf{3} & 0 & 0 & 0 \\ 0 & 0 & \mathbf{3} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{2} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{2} \end{bmatrix}$$

- ▶ The Laplacian matrix of a graph with adjacency matrix **A** is \Rightarrow L = D A = diag(A1) A
- ightharpoonup Can also be written explicitly in terms of graph weights $A_{ij} = w_{ij}$
 - \Rightarrow Off diagonal entries $\Rightarrow L_{ij} = -A_{ij} = -w_{ij}$
 - \Rightarrow Diagonal entries $\Rightarrow L_{ii} = d_i = \sum_{j \in n(i)} w_{ij}$

$$\mathbf{L} = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 \\ -1 & -1 & 3 & 0 & -1 \\ 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix}$$

Normalized Matrix Representations: Adjacencies

Normalized adjacency and Laplacian matrices express weights relative to the nodes' degrees

► Normalized adjacency matrix $\Rightarrow \bar{\mathbf{A}} := \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \Rightarrow \text{Results in entries } (\bar{\mathbf{A}})_{ij} = \frac{w_{ij}}{\sqrt{d_i d_j}}$

lacktriangle The normalized adjacency is symmetric if the graph is symmetric $\Rightarrow ar{\mathbf{A}}^T = ar{\mathbf{A}}$.

▶ Normalized Laplacian matrix $\Rightarrow \bar{\mathbf{L}} := \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2}$. Same normalization of adjacency matrix

- lacktriangle Given definitions normalized representations $\Rightarrow ar{f L} = {f D}^{-1/2} \Big({f D} {f A} \Big) {f D}^{-1/2} = {f I} ar{f A}$
 - ⇒ The normalized Laplacian and adjacency are essentially the same linear transformation.

Normalized operators are more homogeneous. The entries in the vector A1 tend to be similar.

► The Graph Shift Operator **S** is a stand in for any of the matrix representations of the graph

Adjacency Matrix	Laplacian Matrix	Normalized Adjacency	Normalized Laplacian
$\mathbf{S}=\mathbf{A}$	S=L	$\mathbf{S}=\mathbf{\bar{A}}$	$\mathbf{S}=\bar{\mathbf{L}}$

▶ If the graph is symmetric, the shift operator **S** is symmetric \Rightarrow **S** = **S**^T

▶ The specific choice matters in practice but most of results and analysis hold for any choice of S

Graph Signals

▶ Graph Signals are supported on a graph. They are the objets we process in Graph Signal Processing

- ightharpoonup Consider a given graph $\mathcal G$ with n nodes and shift operator $\mathbf S$
- ▶ A graph signal is a vector $\mathbf{x} \in \mathbb{R}^n$ in which component x_i is associated with node i
- ▶ To emphasize that the graph is intrinsic to the signal we may write the signal as a pair \Rightarrow (S,x)

The graph is an expectation of proximity or similarity between components of the signal x

- ▶ Multiplication by the graph shift operator implements diffusion of the signal over the graph
- ▶ Define diffused signal $\mathbf{y} = \mathbf{S}\mathbf{x} \Rightarrow \mathbf{Components}$ are $\mathbf{y}_i = \sum_{j \in n(i)} \mathbf{w}_{ij} x_j = \sum_j \mathbf{w}_{ij} x_j$
 - ⇒ Stronger weights contribute more to the diffusion output
 - ⇒ Codifies a local operation where components are mixed with components of neighboring nodes.

► Compose the diffusion operator to produce diffusion sequence ⇒ defined recursively as

$$\mathbf{x}^{(k+1)} = \mathbf{S}\mathbf{x}^{(k)}$$
, with $\mathbf{x}^{(0)} = \mathbf{x}$

► Can unroll the recursion and write the diffusion sequence as the power sequence $\Rightarrow \mathbf{x}^{(k)} = \mathbf{S}^k \mathbf{x}$

$$x^{(0)} = x = S^0 x$$

$$\mathbf{x}^{(1)} = \mathbf{S}\mathbf{x}^{(0)} = \mathbf{S}^{1}\mathbf{x}$$

$$\mathbf{x}^{(2)} = \mathbf{S}\mathbf{x}^{(1)} = \mathbf{S}^2\mathbf{x}$$

$$x^{(3)} = Sx^{(2)} = S^3x$$

- ▶ The kth element of the diffusion sequence $x^{(k)}$ diffuses information to k-hop neighborhoods
 - ⇒ One reason why we use the diffusion sequence to define graph convolutions
- ▶ We have two definitions. One recursive. The other one using powers of S
 - ⇒ Always implement the recursive version. The power version is good for analysis

$$\mathbf{x}^{(1)} = \mathbf{S}\mathbf{x}^{(0)} = \mathbf{S}^1\mathbf{x}$$

$$x^{(2)} = Sx^{(1)} = S^2x$$

$$x^{(3)} = Sx^{(2)} = S^3x$$

Graph Convolutional Filters

► Graph convolutional filters are the tool of choice for the linear processing of graph signals

▶ Given graph shift operator **S** and coefficients h_k , a graph filter is a polynomial (series) on **S**

$$\mathsf{H}(\mathsf{S}) = \sum_{k=0}^{\infty} h_k \mathsf{S}^k$$

 \triangleright The result of applying the filter H(S) to the signal x is the signal

$$\mathbf{y} = \mathbf{H}(\mathbf{S})\mathbf{x} = \sum_{k=0}^{\infty} h_k \mathbf{S}^k \mathbf{x}$$

• We say that $\mathbf{y} = \mathbf{h} \star_{\mathbf{S}} \mathbf{x}$ is the graph convolution of the filter $\mathbf{h} = \{h_k\}_{k=0}^{\infty}$ with the signal \mathbf{x}

- ► Graph convolutions aggregate information growing from local to global neighborhoods
- ▶ Consider a signal **x** supported on a graph with shift operator **S**. Along with filter $\mathbf{h} = \{h_k\}_{k=0}^{K-1}$

► Graph convolution output \Rightarrow $\mathbf{y} = \mathbf{h} \star_{\mathbf{S}} \mathbf{x} = h_0 \mathbf{S}^0 \mathbf{x} + h_1 \mathbf{S}^1 \mathbf{x} + h_2 \mathbf{S}^2 \mathbf{x} + h_3 \mathbf{S}^3 \mathbf{x} + \ldots = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$

▶ The same filter $\mathbf{h} = \{h_k\}_{k=0}^{\infty}$ can be executed in multiple graphs \Rightarrow We can transfer the filter

Graph Filter on a Graph

Same Graph Filter on Another Graph

- ► Graph convolution output \Rightarrow $\mathbf{y} = \mathbf{h} \star_{\mathbf{S}} \mathbf{x} = h_0 \mathbf{S}^0 \mathbf{x} + h_1 \mathbf{S}^1 \mathbf{x} + h_2 \mathbf{S}^2 \mathbf{x} + h_3 \mathbf{S}^3 \mathbf{x} + \ldots = \sum_{k=0}^{\infty} h_k \mathbf{S}^k \mathbf{x}$
- ▶ Output depends on the filter coefficients h, the graph shift operator S and the signal x

Graph Convolutional Filters as Diffusion Operators

- ▶ A graph convolution is a weighted linear combination of the elements of the diffusion sequence
- ► Can represent graph convolutions with a shift register ⇒ Convolution ≡ Shift. Scale. Sum

Time Convolutions as a Particular Case of Graph Convolutions

► Convolutional filters process signals in time by leveraging the time shift operator

► The time convolution is a linear combination of time shifted inputs $\Rightarrow y_n = \sum_{k=0}^{K-1} h_k x_{n-k}$

▶ Time signals are representable as graph signals supported on a line graph $S \Rightarrow The pair (S,x)$

► Time shift is reinterpreted as multiplication by the adjacency matrix **S** of the line graph

$$\mathbf{S}^{3}\mathbf{x} = \mathbf{S}\left[\mathbf{S}^{2}\mathbf{x}\right] = \mathbf{S}\left[\mathbf{S}\left(\mathbf{S}\mathbf{x}\right)\right] = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ \vdots & \ddots & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ x_{-3} \\ x_{-2} \\ x_{0} \\ \vdots \\ x_{0} \end{bmatrix}$$

- Components of the shift sequence are powers of the adjacency matrix applied to the original signal
 - ⇒ We can rewrite convolutional filters as polynomials on S, the adjacency of the line graph

The Convolution as a Polynomial on the Line Adjacency

- ▶ The convolution operation is a linear combination of shifted versions of the input signal
- ▶ But we now know that time shifts are multiplications with the adjacency matrix S of line graph

▶ Time convolution is a polynomial on adjacency matrix of line graph \Rightarrow $\mathbf{y} = \mathbf{h} * \mathbf{x} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$

The Convolution as a Polynomial on the Line Adjacency

- ▶ The convolution operation is a linear combination of shifted versions of the input signal
- ▶ But we now know that time shifts are multiplications with the adjacency matrix S of line graph

► Time convolution is a polynomial on adjacency matrix of line graph \Rightarrow $\mathbf{y} = \mathbf{h} \star \mathbf{x} = \sum_{k=1}^{K-1} h_k \mathbf{S}^k \mathbf{x}$

▶ If we let **S** be the shift operator of an arbitrary graph we recover the graph convolution

Graph Fourier Transform

▶ The Graph Fourier Transform (GFT) is a tool for analyzing graph information processing systems

Eigenvectors and Eigenvalues of Shift Operator

► We work with symmetric graph shift operators \Rightarrow **S** = **S**^H

- ▶ Introduce eigenvectors \mathbf{v}_i and eigenvalues λ_i of graph shift operator $\mathbf{S} \Rightarrow \mathbf{S}\mathbf{v}_i = \lambda_i \mathbf{v}_i$
 - \Rightarrow For symmetric **S** eigenvalues are real. We have ordered them $\Rightarrow \lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_n$

- ▶ Define eigenvector matrix $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ and eigenvalue matrix $\mathbf{\Lambda} = \operatorname{diag}([\lambda_1; \dots; \lambda_n])$
 - \Rightarrow Eigenvector decomposition of Graph Shift Operator \Rightarrow $S = V\Lambda V^H$. With $V^H V = I$

Graph Fourier Transform

Given a graph shift operator $S = V\Lambda V^H$, the graph Fourier transform (GFT) of graph signal x is

$$\tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$$

- ▶ The GFT is a projection on the eigenspace of the graph shift operator.
- ightharpoonup We say $\tilde{\mathbf{x}}$ is a graph frequency representation of \mathbf{x} . A representation in the graph frequency domain

Inverse Graph Fourier Transform

Given a graph shift operator $S = V \Lambda V^H$, the inverse graph Fourier transform (iGFT) of GFT $\tilde{\mathbf{x}}$ is

$$\tilde{\tilde{\mathbf{x}}} = \mathbf{V}\tilde{\mathbf{x}}$$

▶ Given that $V^HV = I$, the iGFT of the GFT of signal x recovers the signal x

$$\tilde{x} = V \tilde{x} = V (V^H x) = Ix = x$$

Graph Frequency Response of Graph Filters

► Graph filters admit a pointwise representation when projected into the shift operator's eigenspace

Theorem (Graph frequency representation of graph filters)

Consider graph filter **h** with coefficients h_k , graph signal **x** and the filtered signal $y = \sum_{k=0}^{\infty} h_k S^k x$.

The GFTs $\tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$ and $\tilde{\mathbf{y}} = \mathbf{V}^H \mathbf{y}$ are related by

$$\tilde{\mathbf{y}} = \sum_{k=0}^{\infty} h_k \mathbf{\Lambda}^k \tilde{\mathbf{x}}$$

► The same polynomial but on different variables. One on S. The other on eigenvalue matrix Λ

Proof: Since $S = V\Lambda V^H$, can write shift operator powers as $S^k = V\Lambda^k V^H$. Therefore filter output is

$$y = \sum_{k=0}^{\infty} h_k S^k x = \sum_{k=0}^{\infty} h_k V \Lambda^k V^H x$$

- ► Multiply both sides by \mathbf{V}^H on the left $\Rightarrow \mathbf{V}^H \mathbf{y} = \mathbf{V}^H \sum_{k=0}^{\infty} h_k \mathbf{V} \mathbf{\Lambda}^k \mathbf{V}^H \mathbf{x}$
- ▶ Copy and identify terms. Output GFT $V^H y = \tilde{y}$. Input GFT $V^H x = \tilde{x}$. Cancel out $V^H V$

$$\mathbf{V}^H \mathbf{y} = \mathbf{V}^H \sum_{k=0}^{\infty} h_k \mathbf{V} \mathbf{\Lambda}^k \mathbf{V}^H \mathbf{x} \qquad \Rightarrow \qquad \tilde{\mathbf{y}} = \sum_{k=0}^{\infty} h_k \mathbf{\Lambda}^k \tilde{\mathbf{x}}$$

- ▶ In the graph frequency domain graph filters are a diagonal matrices $\Rightarrow \tilde{y} = \sum_{k=0}^{\infty} h_k \Lambda^k \tilde{x}$
- Thus, graph convolutions are pointwise in the GFT domain $\Rightarrow \tilde{y}_i = \sum_{k=0}^{\infty} h_k \lambda_i^k \tilde{x}_i = \tilde{h}(\lambda_i) \tilde{x}_i$

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients $\mathbf{h} = \{h_k\}_{k=1}^{\infty}$, the graph frequency response is the polynomial

$$\tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$$

Definition (Frequency Response of a Graph Filter)

Given a graph filter with coefficients $\mathbf{h} = \{h_k\}_{k=1}^{\infty}$, the graph frequency response is the polynomial

$$ilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$$

- lacktriangle Frequency response is the same polynomial that defines the graph filter \Rightarrow but on scalar variable λ
- ► Frequency response is independent of the graph ⇒ Depends only on filter coefficients
- ▶ The role of the graph is to determine the eigenvalues on which the response is instantiated

- Graph filter frequency response is a polynomial on a scalar variable $\lambda \Rightarrow \tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$
- lacktriangle Completely determined by the filter coefficients lacktriangle lacktriangle lacktriangle The Graph has nothing to do with it

- ightharpoonup A given (another) graph instantiates the response on its given (different) specific eigenvalues λ_i
- ▶ Eigenvectors do not appear in the frequency response. They determine the meaning of frequencies.

