Course Code: CSE 331L / EEE 332L / EEE453L / ETE332L **Course Name:** Microprocessor Interfacing & Embedded System

Lab N0:01

What is Assembly Language?

- ➤ A low-level programming language
- ➤ Converted to machine code using an **assembler**
- ➤ Important to low-level embedded system designs
- > Designed for specific processor

Registers of MPU 8086

> Total number of registers: 14

➤ Each register size: 16 bits

General Purpose Registers AH AL Accumulator AX BX ВН BL Base Count CX CH CL Data DX DH DL Pointer and Index Registers SP Stack Pointer BP Base Pointer SI Source Index Destination Index DI IP Instruction Pointer Segment Registers CS Code Segment DS Data Segment SS Stack Segment ES Extra Segment Flags

General Purpose Registers (4 registers):

- Each GPR has two separate parts: Higher order byte and Lower order byte (each with 8 bits size). Data on each part can be separately manipulated
- ➤ Can perform 16 bits and 8 bits data read/write operations

	АН	AL
AX: 0011 0000 0011 1001 b	0011 0000 b	0011 1001 b
AX: 1111 0100 1010 0001 b	1111 0100 b	1010 0001 b
AX: F4A1 h	F4 h	A1 h
0AX: 4 h	?	?

AX (Accumulator Register): Used in arithmetic, logic and data transfer operations

BX (Base Register): used as an address register

CX (Count Register): used for program loop count

DX (Data Register): used in arithmetic and I/O operations

Segment Registers (4 registers):

- ➤ Program code, data and stack are loaded into different memory segments.
- > Stack segment: used for temporary storage of addresses and data
- ➤ Code segment: program instructions are loaded in this segment.
- > Data segment: variables are declared in this segment
- > Extra segment: another data segment in the memory

Pointer and Index Registers (5 registers):

- ➤ Points to memory locations
- ➤ Unlike segment registers, they can be used for general arithmetic operations
- ➤ IP register: contains the offset of the next instruction in the code segment

Flag Register:

➤ Indicates the status of the microprocessor

Structure of Assembly Language Programming for MPU 8086

Label: OperationToPerform operand1 operand2;

Label: OperationToPerform Destination Source;

Label: - symbolic name for memory location

OperationToPerform - instruction name

Operand - direct data, register, memory address

; - comments

Operands: REG, MEMORY, Immediate

> **REG:** Any valid register

➤ **Memory:** Referring to a memory location in RAM

➤ **Immediate:** Using direct values (can never be a destination)

Instruction	Algorithm (= is assignment)
MOV	MOV Destination, Source Algorithm: destination = source
ADD	ADD Destination, Source Algorithm: destination = destination + source
SUB	SUB Destination, Source Algorithm: destination = destination - source
INC	INC Destination Algorithm: destination = destination + 1
DEC	DEC Destination Algorithm: destination = destination - 1
** source remain	ins unchanged

