

Lab 2 线性方程组求解

姓名:_____高茂航_____

学号:_____PB22061161_____

日期: 2024.3.28

1 Algorithm Description

已知 $y_0 = 0, y_{100} = 1$,解线性方程组 **Ay** = **b**,其中

$$\mathbf{A}_{99\times 99} = \begin{bmatrix} -(2\epsilon + h) & \epsilon + h & 0 & \cdots & 0 \\ \epsilon & -(2\epsilon + h) & \epsilon + h & \cdots & 0 \\ 0 & \epsilon & -(2\epsilon + h) & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \epsilon & -(2\epsilon + h) \end{bmatrix}$$

$$\mathbf{y} = egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_{99} \end{bmatrix} \qquad \mathbf{b} = egin{bmatrix} ah^2 \ ah^2 \ dots \ ah^2 \ ah^2 \ ah^2 - \epsilon - h \end{bmatrix}$$

设相对误差 $\operatorname{err} = \frac{1}{99} \sum_{i=1}^{99} |y_i - \operatorname{Precise}_i|$ 。

1.1 列主元消元法

记录当前所处的位置 A[col][col], 在第 col 行到最后一行中找到绝对值最大的元素,将该元素所在的行与第 col 行交换,然后将第 col 行下的所有行的第 col 列元素变为 0。重复这个过程,直到 col=n-1,将矩阵化为上三角矩阵,再通过回代求解线性方程组。

1.2 Gauss-Seidel 迭代法

$$\mathbf{X}^{(k+1)} = -(\mathbf{D} + \mathbf{L})^{-1}\mathbf{U}\mathbf{X}^{(k)} + (\mathbf{D} + \mathbf{L})^{-1}\mathbf{b}$$

令

$$\mathbf{S} = -(\mathbf{D} + \mathbf{L})^{-1}\mathbf{U}$$

$$= \begin{bmatrix} 0 & \frac{\epsilon+h}{2\epsilon+h} & 0 & \cdots & 0\\ 0 & \frac{\epsilon(\epsilon+h)}{(2\epsilon+h)^2} & \frac{\epsilon+h}{2\epsilon+h} & \cdots & 0\\ 0 & \frac{\epsilon^2(\epsilon+h)}{(2\epsilon+h)^3} & \frac{\epsilon(\epsilon+h)}{(2\epsilon+h)^2} & \ddots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & \frac{\epsilon^{n-1}(\epsilon+h)}{(2\epsilon+h)^n} & 0 & \cdots & \frac{\epsilon(\epsilon+h)}{(2\epsilon+h)^2} \end{bmatrix}$$

$$\begin{aligned} & \mathbf{Inv} = (\mathbf{D} + \mathbf{L})^{-1} \\ & = \begin{bmatrix} -\frac{1}{2\epsilon + h} & 0 & 0 & \cdots & 0\\ -\frac{\epsilon}{(2\epsilon + h)^2} & -\frac{1}{2\epsilon + h} & 0 & \cdots & 0\\ -\frac{\epsilon^2}{(2\epsilon + h)^3} & -\frac{\epsilon}{(2\epsilon + h)^2} & -\frac{1}{2\epsilon + h} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -\frac{\epsilon^{n-1}}{(2\epsilon + h)^n} & -\frac{\epsilon^{n-2}}{(2\epsilon + h)^{n-1}} & \cdots & -\frac{\epsilon}{(2\epsilon + h)^2} & -\frac{1}{2\epsilon + h} \end{bmatrix} \end{aligned}$$

在 $\|\mathbf{X}^{(\mathbf{k}+\mathbf{1})} - \mathbf{X}^{(\mathbf{k})}\|_{\infty} \le 10^{-6}$ 时结束迭代。

2 Results

eps1.in=1出身,列土丁河市江太川野73、6.0128543 6.0256349 6.0383495 6.0569548 6.0659615 6.079948 8.0883349 6.1007 6.112993 6.125155 6.137245 6.137245 6.137245 6.137245 6.137245 6.137245 6.137245 6.137245 6.138248 6.38725 6.37632 6 6 6.387039 6.387655 6.226865 6.2268545 6.22685

epsilon=0.lbf,列主元谱元法的解为: 0.0504578 0.06967832 0.139352 0.178505 0.214553 0.247779 0.278439 0.306766 0.332972 0.357251 0.379777 0.400709 0.420194 0.43836 1 0.455332 0.471214 0.486187 0.5021 0.513276 0.525709 0.537466 0.548690 0.559193 0.56927 0.578885 0.580881 0.596895 0.605362 0.613514 0.62138 0.628985 0.636353 0.643506 0.650444 0.657243 0.663861 0.670331 0.676668 0.682883 0.688988 0.694992 0.709095 0.578859 0.588081 0.596895 0.67230 0.72396 0.72396 0.72395 0.74853 0.748277 0.751164 0.756516 0.761386 0.761127 0.772391 0.777632 0.78285 0.788049 0.79323 0.798394 0.803543 0.808679 0.813802 0.813802 0.8138915 0.820417 0.820190 0.834194 0.83927 0.844 4 0.840408 0.854461 0.859513 0.864561 0.859519 0.846466 0.86976 0.884711 0.889741 0.889741 0.894768 0.999792 0.994896 0.994995 0.954951 0.959959 0.964966 0.696972 0.974978 0.979983 0.984988 0.989992 0.994999 0.994999 0.954961 0.459979 0.854616 0.859670 0.854710 0.18327 0.718362 0.212438 0.242785 0.778224 0.306533 0.332723 0.356988 0.379503 0.460426 0.419993 0.438064 0.45593 0.47091 0.485801 0.499794 0.51297 0.525404 0.537164 0.548309 0.558897 0.568978 0.578598 0.587799 0.596619 0.605093 0.613251 0.621124 0.628736 0.63111 0.643271 0.659236 0.657022 0.663647 0.670125 0.676469 0.682692 0.688804 0.694815 0.706736 0.712334 0.718027 0.723657 0.72325 0.734596 0.834796 0.978152 0.978157 0.978157 0.879482 0.998161 0.899915 0.761244 0.761245 0.78528 0.785215 0.756219 0.761344 0.767011 0.7723 0.777545 0.782759 0.793157 0.979315 0.89325 0.80479 0.808918 0.813765 0.818861 0.823966 0.834796 0.834499 0.834967 0.854482 0.84852 0.869577 0.874619 0.879656 0.884691 0.889725 0.89475 0.899776 0.9048 0.909821 0.914841 0.919859 0.924875 0.9298

epsilon—0.01时,列生元消元法的解为: 0.255 0.385 0.4525 0.48875 0.599375 0.522187 0.531084 0.538047 0.540823 0.549931 0.554756 0.559878 0.564939 0.569999 0.569999 0.574086 0.579992 0.584999 0.599999 0.599999 0.599999 0.594996 0.579982 0.584996 0.589998 0.599999 0.509999 0.655 0.62 0.625 0.63 0.635 0.64 0.645 0.655 0.656 0.655 0.66 0.656 0.67 0.675 0.68 0.685 0.69 0.695 0.7 0.775 0.776 0.775 0.776 0.775 0.78 0.786 0.788 0.789 0.795 0.8 0.895 0.81 0.815 0.82 0.825 0.83 0.835 0.84 0.845 0.85 0.85 0.89 0.895 0.9 0.995 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 0.951 0.960 0.965 0.97 0.975 0.98 0.985 0.99 0.995 0.951 0.960 0.965 0.97 0.975 0.98 0.985 0.99 0.995 0.951 0.960 0.965 0.97 0.975 0.98 0.985 0.99 0.995 0.951 0.960 0.965 0.97 0.975 0.98 0.985 0.99 0.995 0.951 0.960 0.965 0.97 0.975 0.98 0.985 0.99 0.995 0.951 0.960 0.965 0.97 0.975 0.98 0.985 0.99 0.995 0.951 0.995 0

3 Conclusion

从结果可看出,列主元消元法和 Gauss-Seidel 迭代法的结果基本一致,且相对误差均在 10^{-4} 量级内,说明两种方法都能较好地解决线性方程组问题。但列主元消元法的精度相对更高,且耗时更短。

本实验提高精度的主要措施:

- 1. 使用 long double 类型;
- 2. 提前计算好 S 和 Inv 的形式,再代入数值,以避免用代码求逆矩阵和进行矩阵乘法时产生的误差。

但由于本题矩阵阶数较大,而且矩阵元素的分子分母次数较高,同时消元、迭代等运算需要大量进行,因此在计算过程中误差会逐渐积累,导致最终结果的精度难以把握,只能控制在一定范围内。