Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously presented): A compound of Formula I:

$$(R^3)_k$$
 R^{10}
 $(CR^1R^2)_p$
 $(CR^8R^9)_q$
 Q

I

wherein:

Z is CH or CR³; wherein k is 0-4;

p is 0-8;

n is 2-8;

q is 0 or 1;

Q is C_3 - C_8 cycloalkyl or phenyl; wherein said C_3 - C_8 cycloalkyl, or phenyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- CO_2R^{11} , $-C_0$ - C_6 alkyl- $C(O)SR^{11}$, $-C_0$ - C_6 alkyl- $CONR^{12}R^{13}$, $-C_0$ - C_6 alkyl- COR^{14} , $-C_0$ - C_0 alkyl- COR^{14} , where said C_1 - C_0 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

 W^1 and W^2 are each independently $C_3\text{-}C_8$ cycloalkyl or aryl;

each R^1 and R^2 is independently selected from H, C_1 - C_6 alkyl, -OH, -O- C_1 - C_6 alkyl, -SH, and -S- C_1 - C_6 alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl-Ar, $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl, $-C_0$ - C_6 alkyl- C_0 - C_0 - C_0 alkyl- C_0 - C_0 -C

each R⁴ and R⁵ is independently H or C₁-C₄ alkyl;

 R^6 and R^7 are each independently H or C_1 - C_4 alkyl;

R⁸ and R⁹ are each independently H or C₁-C₄ alkyl;

 R^{10} is H, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

 R^{11} is H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl;

each R^{12} and each R^{13} are independently selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkyl-Ar, and $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl; and

. Alla Cappeles

 R^{14} is C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl;

provided that R¹⁰ is not H or methyl when p is 1 and R¹ and R² are each H, k is 0, n is 3 and each R⁴ and R⁵ are H, q is 1 and R⁸ and R⁹ are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R⁶ and R⁷ are each H, W¹ is unsubstituted phenyl and W² is unsubstituted phenyl or unsubstituted cyclohexyl; or a pharmaceutically acceptable salt thereof.

- 2. (Original): The compound according to claim 1, wherein p is 0 or 1.
- 3. (Previously presented): The compound according to claim 1, wherein R^1 and R^2 are each H, or one of R^1 or R^2 is H and the other of R^1 or R^2 is C_1 - C_4 alkyl or both R^1 and R^2 are C_1 - C_3 alkyl.

- 4. (Previously presented): The compound according to claim 1, wherein R^1 and R^2 are each H, or one of R^1 or R^2 is H and the other of R^1 or R^2 is methyl, ethyl, propyl, butyl, or sec-butyl, or R^1 and R^2 are both methyl or ethyl.
- 5. (Previously presented): The compound according to claim 1, wherein R^{10} is H or C_1 - C_4 alkyl.
 - 6. (Previously presented): The compound according to claim 1, wherein Z is CH.
 - 7. (Previously presented): The compound according to claim 1, wherein k is 0 or 1.
- 8. (Previously presented): The compound according to claim 1, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
 - 9. (Previously presented): The compound according to claim 1, wherein n is 2-4.
 - 10. (Previously presented): The compound according to claim 1, wherein n is 3.

- 11. (Previously presented): The compound according to claim 1, wherein q is 1.
- 12. (Previously presented): The compound according to claim 1, wherein R^6 , R^7 , R^8 and R^9 are each H.
- 13. (Previously presented): The compound according to claim 1, wherein Q is a substituted phenyl group having one, two, or three substituents independently selected from halo, C_1 - C_4 alkoxy and C_1 - C_4 alkyl.
- 14. (Previously presented): The compound according to claim 1, wherein Q is a substituted phenyl group having two substituents independently selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂.

- 15. (Previously presented): The compound according to claim 1, wherein Q is a 2-chloro-3-(trifluoromethyl)phenyl group.
- 16. (Previously presented): The compound according to claim 1, wherein W^1 and W^2 are each aryl or one of W^1 or W^2 is aryl and the other of W^1 or W^2 is cyclopentyl.
- 17. (Previously presented): The compound according to claim 1, wherein W¹ and W² are each independently selected from unsubstituted cyclopentyl, unsubstituted phenyl and mono-substituted phenyl, where the phenyl is substituted by halo.
- 18. (Previously presented): The compound according to claim 1, wherein W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both fluoro-substituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chloro-substituted phenyl.
 - 19. (Previously presented): A compound of Formula II:

$$R^{10}$$
 O $(CR^{1}R^{2})_{p}$ Z O $(CR^{4}R^{5})_{n}$ O $(CR^{8}R^{9})_{q}$ Q II

wherein:

Z is CH;

Q is phenyl; wherein said phenyl is optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_4 alkyl- $-C_0$ - $-C_4$ alk

where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents,

p is 0-4;

k is 0, 1 or 2;

n is 2-4;

q is 0 or 1;

W¹ and W² are each independently C₃-C₆ cycloalkyl or aryl;

each R^1 and R^2 is independently selected from H, C_1 - C_4 alkyl, -OH, -O- C_1 - C_4 alkyl, -SH, and -S- C_1 - C_4 alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{12}R^{13}$, $-C_0$ - C_4 alkyl- OR^{11} , $-C_0$ - C_4 alkyl- $SO_2NR^{12}R^{13}$, and $-C_0$ - C_4 alkyl- CO_2H , wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R⁴ and R⁵ is independently H or C₁-C₄ alkyl;

R⁶ and R⁷ are each independently H or C₁-C₄ alkyl;

 R^8 and R^9 are each independently H or C_1 - C_4 alkyl;

 R^{10} is H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, or $-C_0$ - C_4 alkyl- C_3 - C_6 cycloalkyl;

 R^{11} is H, $C_1\text{-}C_6$ alkyl, $\text{-}C_0\text{-}C_4$ alkyl-Ar, or $\text{-}C_0\text{-}C_4$ alkyl- $C_3\text{-}C_7$ cycloalkyl;

each R¹² and each R¹³ are independently selected from H, C₁-C₆ alkyl,

-C0-C4 alkyl-Ar, and -C0-C4 alkyl-C3-C7 cycloalkyl; and

 R^{14} is $C_1\text{-}C_6$ alkyl, $\text{-}C_0\text{-}C_4$ alkyl-Ar, or $\text{-}C_0\text{-}C_4$ alkyl- $C_3\text{-}C_7$ cycloalkyl;

provided that R^{10} is not H or methyl when p is 1 and R^1 and R^2 are each H, k is 0, n is 3 and each R^4 and R^5 are H, q is 1 and R^8 and R^9 are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R^6 and R^7 are each H, W^1 is unsubstituted phenyl and W^2 is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt thereof.

20. (Previously presented): The compound according to claim 1, wherein R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are each H; at least one of R^1 or R^2 is methyl, ethyl, propyl butyl or sec-butyl or both of R^1 and R^2 are methyl or ethyl; R^{10} is H or methyl; Q is 2-chloro-3-(trifluoromethyl)phenyl; W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both fluoro-

substituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chloro-substituted phenyl; Z is CH; p is 0, 1 or 2; n is 3; q is 1; k is 0 or 1 and R^3 is Cl, Br or methyl; or a pharmaceutically acceptable salt thereof.

21. (Previously presented): The compound according to claim 1, wherein R^6 , R^7 , R^8 and R^9 are each H; R^1 and R^2 are each independently H or methyl; at least one R^4 or R^5 is methyl; R^{10} is H or methyl; Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂; W^1 and W^2 are unsubstituted phenyl; Z is CH; p is 1; n is 3; q is 1; and k is 0; or a pharmaceutically acceptable salt thereof.

Claim 22 (Canceled).

23. (Previously presented): A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier or diluent.

Claims 24-55. (Canceled).

56. (Withdrawn): A compound according to claim 1 wherein at least one of R^4 , R^5 , R^6 , R^7 , R^8 or R^9 is defined as follows:

wherein at least one R^4 or R^5 is C_1 - C_4 alkyl; or at least one of R^6 of R^7 is C_1 - C_4 alkyl; or both of R^8 or R^9 are independently C_1 - C_4 alkyl.

- 57. (Withdrawn): A compound according to claim 1 wherein at least one R⁴ or R⁵ is methyl.
 - 58. (Previously presented, Withdrawn): A compound according to claim 1 wherein: any one of R^4 or R^5 is not H or any one of R^6 or R^7 is not H or R^8 and R^9 are each C_1 - C_4 alkyl when Z is CH or CR^3 and k is 0-4;

p is 0-8;

n is 2-8;

q is 0 or 1;

Q is optionally unsubstituted or substituted C₃-C₈ cycloalkyl or phenyl;

 W^1 and W^2 are each independently optionally unsubstituted or substituted $C_3\text{-}C_8$ cycloalkyl or aryl;

each R^1 and R^2 is independently selected from H, C_1 - C_6 alkyl, -OH, -O- C_1 - C_6 alkyl, -SH, and -S- C_1 - C_6 alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, nitro, $-\text{CONR}^{12}R^{13}$, $-\text{COR}^{14}$, $-\text{SR}^{11}$, $-\text{SO}_2R^{11}$, $-\text{SO}_2R^{14}$, $-\text{OCOR}^{14}$ and optionally unsubstituted or substituted C_1 - C_6 alkyl, C_3 - C_6 alkenyl, $-C_0$ - C_6 alkyl- $-C_0$ - $-C_6$ alkyl- $-C_0$ - $-C_6$ alkyl- $-C_0$ - $-C_$

- 59. (Previously presented): A compound according to claim 1, selected from:
- (*R*)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid methyl ester,
- (*R*)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid hydrochloride salt,
- (S)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid hydrochloride salt,
- (*R*)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid methyl ester,
- (*R*)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid hydrochloride salt,
- (S)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid hydrochloride salt,
- (*R*)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid hydrochloride salt,
- (S)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid hydrochloride salt, and
- 3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-propoxy}-4-methyl-benzoic acid hydrochloride salt.

- 60. (Previously presented): A compound according to claim 1, selected from:
- (*R*)-2-(3-{3-[[2-fluoro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[3-(trifluoromethyl)-4-fluoro-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2,4-dimethoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-fluoro-4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-fluoro-4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}phenyl)acetic acid;
 - (*R*)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
 - (*R*)-2-(3-{3-[[3-trifluoromethylbenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
 - (R)-2-(3-{3-[[2-fluoro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
 - (*R*)-2-(3-{3-[[3-(trifluoromethyl)-4-fluoro-benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
 - (*R*)-2-(3-{3-[[3-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
 - (R)-2-(3-{3-[[2-chlorobenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
 - (*R*)-2-(3-{3-[[3-trifluoromethylbenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;

- (*R*)-2-(3-{3-[[2-fluoro-(3-trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[3-trifluoromethyl-4-fluoro-benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-[3-[[4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-chloro-3,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[3-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (3-{(R)-[(2,2-diphenyl-ethyl)-(4-isopropyl-benzyl)-amino]-methyl-propoxy}-phenyl)-acetic acid;
- (3-{3-[[2,2-(bis-(4-fluoro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- (3-{3-[[2,2-(bis-(3-fluoro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- *rac*-(3-{3-[[2-phenyl-2-(*o*-chloro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-butyric acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-pentanoic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-hexanoic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-4-methyl-pentanoic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-ethyl-butyric acid methyl ester;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-ethyl-butyric acid;

2-(3-{(R)-3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-butoxy}-phenyl)-2-methyl-propionic acid;

N-(2-phenyl-2-cyclopentylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxy)propylamine;

N-(2,2-diphenylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-2,2-dimethyl-3-(3-aminopropoxy)phenylpropionic acid; and

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-methyl-propionic acid;

or a pharmaceutically acceptable salt thereof.

Berger and the second of the s