Theoretische Informatik Kapitel 10 – Entscheidbarkeit und Aufzählbarkeit

Sommersemester 2024

Dozentin: Mareike Mutz im Wechsel mit Prof. Dr. M. Leuschel Prof. Dr. J. Rothe

Vorbereitungen

- Es sei eine Gödelisierung $\varphi_0, \varphi_1, \varphi_2, \ldots$ der Klasse ${\mathbb P}$ fixiert.
- Diese erhält man etwa durch eine Erweiterung der Gödelisierung
 ψ₀, ψ₁, ψ₂, . . . der Klasse Pr um den μ-Operator.
- Dazu äquivalent kann man eine Gödelisierung

$$M_0, M_1, M_2, \ldots$$

aller Turingmaschinen angeben, wobei M_i die Funktion φ_i berechnet.

• Für jedes $k \ge 0$ bezeichne

$$\varphi_0^{(k)}, \varphi_1^{(k)}, \varphi_2^{(k)}, \dots$$

eine Gödelisierung aller k-stelligen Funktionen in \mathbb{P} .

Aufzählbarkeitssatz; Satz von der universellen Funktion

Theorem

Es gibt eine zweistellige Funktion $u \in \mathbb{P}$ (die so genannte "universelle Funktion"), so dass für alle $i, x \in \mathbb{N}$: $u(i, x) = \varphi_i^{(1)}(x)$.

Beweis: Setze $u(i,x) = \varphi_i^{(1)}(x)$. Ist u berechenbar? Ja, nämlich mit dem folgenden Algorithmus: Bei Eingabe von i und x

- **o** berechne das Programm (d.h. die Turingmaschine M_i) von φ_i ,
- wende es auf die Eingabe x an und
- **3** gib den Funktionswert $\varphi_i^{(1)}(x) = u(i, x)$ aus.

Es folgt, dass $u \in \mathbb{P}$.

Theorem

Für alle $m, n \in \mathbb{N}$ gibt es eine (m+1)-stellige Funktion $s \in \mathbb{R}$, so dass für alle $i, x_1, \ldots, x_n, y_1, \ldots, y_m \in \mathbb{N}$:

$$\varphi_i^{(m+n)}(x_1,\ldots,x_n,y_1,\ldots,y_m)=\varphi_{s(i,y_1,\ldots,y_m)}^{(n)}(x_1,\ldots,x_n).$$

(Hierbei fasst man die x_i als echte Variablen und die y_j als fixierte Parameter auf.)

Beweis: Seien $i \in \mathbb{N}$ und $y_1, \dots, y_m \in \mathbb{N}$ gegeben. Betrachte

$$f(x_1,\ldots,x_n)=\varphi_i^{(m+n)}(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

als Funktion von x_1, \ldots, x_n . Dann gibt es eine TM M, die f berechnet (und in deren Programm die Werte i und y_1, \ldots, y_m hart codiert sind).

$$\varphi_i^{(m+n)}(x_1,\ldots,x_n,y_1,\ldots,y_m)=\varphi_{s(i,y_1,\ldots,y_m)}^{(n)}(x_1,\ldots,x_n)$$

M arbeitet bei Eingabe x_1, \ldots, x_n so:

- **1** berechne das Programm (d.h. die Turingmaschine M_i) von φ_i ,
- 3 simuliere $M_i(x_1,\ldots,x_n,y_1,\ldots,y_m)$.

M hat natürlich das Ergebnis $\varphi_i^{(m+n)}(x_1,\ldots,x_n,y_1,\ldots,y_m)$.

Ist zum Beispiel $f(x_1, ..., x_n)$ nicht definiert, so hält M nie an. Es folgt $f \in \mathbb{P}$.

M hat selbst eine Gödelnummer, sagen wir j, die von i und y_1, \ldots, y_m abhängt.

Für gegebenes i und y_1, \ldots, y_m kann diese Nummer j algorithmisch bestimmt werden.

Setzen wir

$$s(i, y_1, \ldots, y_m) = j,$$

so gibt es also ein algorithmisches Verfahren zur Berechnung von s, d.h., $s \in \mathbb{R}$, und es gilt:

$$f \equiv \varphi_j^{(n)} \equiv \varphi_{s(i,y_1,\ldots,y_m)}^{(n)}.$$

Der Satz ist bewiesen.

Theorem

Ist $h \in \mathbb{R}$, *so existiert ein Fixpunkt a* $\in \mathbb{N}$ *mit*

$$(\forall x \in \mathbb{N}) [\varphi_{h(a)}(x) = \varphi_{a}(x)].$$

Beweis: Sei $h \in \mathbb{R}$.

Da h somit auch in IP ist, gibt es eine Gödelnummer für h, etwa

$$h = \varphi_i$$
.

• Wir wenden den Iterationssatz auf zweistellige Funktionen in \mathbb{P} an. Demnach existiert eine Funktion $\sigma \in \mathbb{R}$ mit

$$\varphi_k(x,y) = \varphi_{\sigma(k,x)}(y). \tag{1}$$

$$(\forall x \in \mathbb{N}) [\varphi_{h(a)}(x) = \varphi_{a}(x)]$$

$$\varphi_k(x,y) = \varphi_{\sigma(k,x)}(y)$$

Kleenescher Fixpunktsatz: Der Trick

Der Trick ist der folgende:

$$\varphi_{h(\sigma(x,x))}(y) = v(i,x,y)$$

$$= \varphi_{m}(i,x,y)$$

$$= \varphi_{g(m,i)}(x,y)$$

$$= \varphi_{s(i)}(x, y)$$

$$= \varphi_{\sigma(s(i),x)}(y)$$

$$\mathsf{mit}\ v \in \mathbb{P}\ \mathsf{und}\ v = \varphi_m$$

 $\mathsf{mit}\ g \in \mathbb{R}\ \mathsf{nach}\ \mathsf{dem}$ $\mathsf{Iterationssatz}$

denn m ist ja fest, $s \in \mathbb{R}$

nach (1) mit k = s(i).

Kleenescher Fixpunktsatz - Trick

Fixpunkt für $\sigma(s(i), s(i))$, d.h., x = s(i):

Also existieren Funktionen $s, \sigma \in \mathbb{R}$, so dass für alle $x \in \mathbb{N}$ gilt:

$$\varphi_{h(\sigma(x,x))} \equiv \varphi_{\sigma(s(i),x)}. \tag{2}$$

Setze

$$a = \sigma(s(i), s(i)).$$

Da $s, \sigma \in \mathbb{R}$, existiert dieser Fixpunkt a stets.

Aus (2) folgt mit x = s(i):

$$\varphi_{h(a)} \equiv \varphi_{h(\sigma(s(i),s(i)))} \equiv \varphi_{\sigma(s(i),s(i))} \equiv \varphi_{a}$$

Der Satz ist bewiesen.

Entscheidbarkeit

Definition

Es sei $A \subseteq \Sigma^*$ eine Menge (analog für $A \subseteq \mathbb{N}$). Die *charakteristische* Funktion von A ist definiert durch:

$$\chi_A(x) = \begin{cases} 1 & \text{falls } x \in A \\ 0 & \text{falls } x \notin A. \end{cases}$$

A heißt *entscheidbar*, falls $\chi_A : \Sigma^* \to \{0,1\}$ berechenbar ist.

REC bezeichne die Klasse aller entscheidbaren Mengen.

Bemerkung: Das heißt, eine Sprache A ist entscheidbar, falls es eine DTM gibt, die für jedes $x \in \Sigma^*$ entscheidet, ob $x \in A$ oder $x \notin A$.

Semi-Entscheidbarkeit

Definition

Es sei $A \subseteq \Sigma^*$ eine Menge (analog für $A \subseteq \mathbb{N}$). Die *partielle charakteristische Funktion von A* ist definiert durch:

$$\chi'_{A}(x) = \begin{cases} 1 & \text{falls } x \in A \\ \text{nicht definiert} & \text{falls } x \notin A \end{cases}$$

A heißt semi-entscheidbar, falls χ'_{Δ} berechenbar ist.

Semi-Entscheidbarkeit

Bemerkung: Das heißt, eine Sprache A ist semi-entscheidbar, falls es eine DTM M gibt, die A akzeptiert, d.h., L(M) = A.

- Für x ∈ A stoppt die Maschine nach endlich vielen Schritten in einem Endzustand.
- Für x ∉ A braucht die Maschine nicht zu stoppen jedenfalls nicht in einem Endzustand.
- Hat die Maschine noch nicht gestoppt, so ist unklar, ob die Maschine noch stoppen wird $(x \in A)$ oder nicht $(x \notin A)$.

Entscheidbarkeit und Semi-Entscheidbarkeit

Beispiel: Die folgenden Mengen sind entscheidbar (und damit natürlich auch semi-entscheidbar), da sich leicht Algorithmen zur Berechnung ihrer charakteristischen Funktion angeben lassen:

- **1** die Menge der Quadratzahlen: $A_1 = \{n^2 \mid n \in \mathbb{N}\} \in \text{REC}$,
- ② die Menge der Zweierpotenzen: $A_2 = \{2^n \mid n \in \mathbb{N}\} \in REC$,
- **3** die Menge der Primzahlen: $A_3 = \{p \mid p \text{ Primzahl}\} \in \text{REC}.$

Entscheidbarkeit und Semi-Entscheidbarkeit

Theorem

A ist entscheidbar \iff A und $\overline{A} = \Sigma^* - A$ sind semi-entscheidbar.

Beweis:

- (⇒) Eine Turingmaschine, die *A* entscheidet, kann leicht zu einer Turingmaschine modifiziert werden, die *A* bzw. \overline{A} akzeptiert.
- (\Leftarrow) Nach Voraussetzung gibt es zwei Turingmaschinen M_A und $M_{\overline{A}}$, die die Sprachen A bzw. \overline{A} akzeptieren.

Entscheidbarkeit und Semi-Entscheidbarkeit

Diese beiden Maschinen können wie folgt zu einer Maschine kombiniert werden, die für jedes $x \in \Sigma^*$ entscheidet, ob

- $x \in A$ oder
- x ∉ A.

END

```
INPUT(x);

FOR i = 1, 2, 3, ... DO

IF M_A hält bei Eingabe von x nach i Schritten THEN OUTPUT(1);

IF M_{\overline{A}} hält bei Eingabe von x nach i Schritten THEN OUTPUT(0);
```

Abschlusseigenschaften von REC

Theorem

REC ist abgeschlossen unter

- Schnitt,
- Vereinigung
- Komplement,
- Konkatenation und
- Iteration.

Abschlusseigenschaften von REC

Beweis:

Schnitt:

$$\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\} = \chi_A(x) \cdot \chi_B(x).$$

Vereinigung:

$$\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\}.$$

Somplement:

$$\chi_{\overline{A}}(x)=1-\chi_A(x).$$

4 Konkatenation:

$$\chi_{AB}(x) = \max_{x \in \Sigma^*, x = x_1 x_2} \chi_A(x_1) \cdot \chi_B(x_2).$$

Iteration:

$$\chi_{\mathcal{A}^n}(x) = \max_{x \in \Sigma^*, x = x_1 \cdots x_n} \chi_{\mathcal{A}}(x_1) \cdot \ldots \cdot \chi_{\mathcal{A}}(x_n).$$

Wiederholung: Chomsky-Hierarchie

Definition

- Eine Sprache $A \subseteq \Sigma^*$ ist genau dann vom Typ $i \in \{0, 1, 2, 3\}$, wenn es eine Typ-i-Grammatik G gibt mit L(G) = A.
- Die *Chomsky-Hierarchie* besteht aus den vier Sprachklassen:

$$\mathfrak{L}_i = \{ L(G) \mid G \text{ ist Typ-}i\text{-Grammatik} \},$$

wobei $i \in \{0, 1, 2, 3\}$. Übliche Bezeichnungen:

- £₀ ist die Klasse aller Sprachen, die durch eine Grammatik erzeugt werden können;
- $\mathfrak{L}_1 = CS$ ist die *Klasse der kontextsensitiven Sprachen*;
- $\mathfrak{L}_2 = \text{CF}$ ist die *Klasse der kontextfreien Sprachen*;
- $\mathfrak{L}_3 = \text{REG}$ ist die *Klasse der regulären Sprachen*.

Theorem

$$CS \subset REC \subset \mathfrak{L}_0$$
.

Beweis:

REC
$$\subseteq \mathfrak{L}_0$$
.

Es sei L entscheidbar. Dann gibt es eine Turingmaschine M, die χ_L berechnet und somit entscheidet, ob $x \in L$ oder $x \notin L$ gilt.

Also ist

$$L \in \{L(M) \mid M \text{ ist eine Turingmaschine}\} = \mathfrak{L}_0.$$

$CS \subseteq REC$.

Sei $L \in CS$, und sei $G = (\Sigma, N, S, P)$ eine Grammatik für L mit nur nichtverkürzenden Regeln. Sei $x \in \Sigma^*$ ein gegebenes Wort mit |x| = n.

<u>ldee:</u>

Die "Zwischenergebnisse" x_i in einer beliebigen Ableitung

$$S \vdash_G x_1 \vdash_G x_2 \vdash_G \cdots \vdash_G x_k = x$$

haben alle die Länge $|x_i| \le n$.

- Da es in $(\Sigma \cup N)^*$ nur endlich viele Wörter der Länge $\leq n$ gibt, kann man durch systematisches Durchprobieren entscheiden, ob $x \in L$ oder $x \notin L$ gilt, d.h., L ist entscheidbar.
- (Somit ist das Wortproblem f
 ür Typ-1 Sprachen entscheidbar.)

Formal: Wir geben einen Algorithmus an, der diese Entscheidung trifft.

Dieser kann z.B. durch eine TM oder sonstwie implementiert werden.

Definiere für $m, n \in \mathbb{N}$ die Mengen

$$T_m^n = \{ w \in (\Sigma \cup N)^* \mid |w| \le n \text{ und } S \vdash_G^{m'} w \text{ mit } m' \le m \}.$$

Diese lassen sich, für festes $n \ge 1$, wie folgt induktiv über m definieren:

$$T_0^n = \{S\}$$

 $T_{m+1}^n = \operatorname{Abl}^n(T_m^n),$

wobei für ein beliebiges X der Hüllenoperator Abl^n definiert ist durch

$$\mathsf{Abl}^n(X) = X \cup \left\{ w \in (\Sigma \cup N)^* \,\middle|\, egin{aligned} |w| \leq n \text{ und es existiert ein} \\ v \in X \text{ mit } v \vdash_G w \end{aligned}
ight\}.$$

Dies:

$$\mathsf{Abl}^n(X) = X \cup \left\{ w \in (\Sigma \cup N)^* \,\middle|\, \begin{aligned} |w| \leq n \text{ und es existiert ein} \\ v \in X \text{ mit } v \vdash_G w \end{aligned} \right\}.$$

ist nur für Typ-1-Grammatiken korrekt. Bei Typ-0-Grammatiken könnte ein w mit $|w| \le n$ aus v mit |v| > n ableitbar sein.)

Der folgende Algorithmus liefert die Entscheidung des Wortproblems für Typ-1-Grammatiken. Offenbar läuft dieser Algorithmus in Exponentialzeit.

```
Algorithmus-Typ-1(G, x) {  // G \text{ ist Typ-1-Grammatik und } x \in \Sigma^* \text{ ein Wort mit } |x| = n   T := \{S\}; \quad T_1 := \emptyset;  while (x \not\in T \text{ und } T \neq T_1) \; \{T_1 := T; \; T := \text{Abl}^n(T_1); \; \}  if (x \in T) return x \in L^* else return x \notin L^*
```

Abbildung: Algorithmus zur Entscheidung des Typ-1-Wortproblems

- Da es in (Σ ∪ N)* nur endlich viele Wörter der Länge ≤ n gibt, folgt für jedes n, dass ∪_{m≥0} Tⁿ_m eine endliche Menge ist (nämlich mit 2^{c·n} Elementen für ein von G abhängiges c).
- Folglich existiert ein m₀ mit

$$T_{m_0}^n = T_{m_0+1}^n = T_{m_0+2}^n = \cdots = \bigcup_{m>0} T_m^n.$$

- Ist $x \in L$, so ist $x \in \bigcup_{m>0} T_m^n = T_{m_0}^n$.
- Ist jedoch $x \notin L$, so ist $x \notin T_{m_0}^n$.

 $CS \neq REC$.

Sei $\Sigma = \{a, b\}$. Wie definieren eine Sprache $L \subseteq \Sigma^*$ mit

- $L \in REC$, aber
- $L \notin CS$.

Dazu brauchen wir eine

Gödelisierung aller Typ-1-Grammatiken mit $\Sigma = \{a, b\}$:

Die Nichtterminale seien durchnummeriert:

$$X_0, X_1, X_2, \ldots,$$

wobei das Nichtterminal X_i dargestellt werde als $X \underbrace{|| \cdots |}_{i \text{ mol}}$.

X₀ sei das Startsymbol.

Regeln der Form

$$p_1 \rightarrow q_1, \qquad p_2 \rightarrow q_2, \qquad \cdots, \qquad p_n \rightarrow q_n$$

können durch das Wort

$$p_1 \rightarrow q_1 \# p_2 \rightarrow q_2 \# \cdots \# p_n \rightarrow q_n$$

über dem Alphabet $\Gamma = \{X, |, a, b, →, \#\}$ dargestellt werden.

• Die Grammatik beschreibt Wörter über $\{a,b\}$; für den Beweis müssen wir die Gödelisierung auch als Wort über $\{a,b\}$ darstellen

- Die Grammatik beschreibt Wörter über {a, b}; für den Beweis müssen wir die Gödelisierung über Γ = {X, |, a, b, →, #} auch als Wort über {a, b} darstellen
- Nun codieren wir Wörter, die solche Typ-1-Grammatiken beschreiben, durch den Homomorphismus φ : Γ* → Σ*:

$$\varphi(\lambda) = \lambda \qquad \qquad \varphi(\rightarrow) = ba^3b$$
 $\varphi(a) = bab \qquad \qquad \varphi(\#) = ba^4b$
 $\varphi(b) = ba^2b \qquad \qquad \varphi(X||\cdots|) = ba^{5+i}b.$

• Beispiel: $\{X_0 \to a, X_0 \to b\}$ Gödelisierung über $\Gamma: X \to a\# X \to b$ Gödelisierung über $\Sigma: ba^5bba^3bbabba^4bba^5bba^3bba^2b$

Zur Erinnerung: Ein Homomorphismus ist eine Abbildung
 h: Γ* → Σ* mit

$$h(xy) = h(x)h(y),$$

 $h(\lambda) = \lambda.$

Sind etwa die Regeln der Grammatik gegeben durch

$$X_0 \rightarrow \lambda, \qquad X_0 \rightarrow X_1 X_2, \qquad X_2 \rightarrow a, \qquad X_1 X_2 \rightarrow b X_2,$$

so wird sie codiert durch das Wort

ba⁵ bba³ bba⁴ bba⁵ bba³ bba⁶ bba⁷ bba⁴ bba⁷ b ba³ bbabba⁴ bba⁶ bba⁷ bba³ bba² bba⁷ b.

 Eine Ordnung auf Σ (z.B. a < b) induziert eine quasilexikographische Ordnung w₀, w₁, w₂,... auf Σ*, wobei w_i mit i ∈ N das i-te Wort ist:

$$\Sigma^*$$
 λ a b aa ab ba bb aaa \cdots i -tes Wort w_0 w_1 w_2 w_3 w_4 w_5 w_6 w_7 \cdots

 Entfernen wir nun alle Wörter, die keine syntaktisch korrekte Typ-1-Grammatik codieren, so erhalten wir die gesuchte Gödelisierung von CS: G₀, G₁, G₂,... und die entsprechenden Codierungen als Wörter über {a, b}: w₀, w₁, w₂,...

Es ist dabei möglich, dass $G_i = G_j$ für $i \neq j$, da eine Permutation der Regeln verschiedene Wörter w_i und w_i induziert.

Wie bei jeder Gödelisierung gilt:

- Jeder Typ-1-Grammatik G entspricht ein Wort $w_G \in \Sigma^*$.
- Für jedes Wort $w \in \Sigma^*$ können wir algorithmisch entscheiden,
 - ob es eine (syntaktisch korrekte) Typ-1-Grammatik codiert,
 - und wenn ja, welche.

Nun definieren wir die Sprache $L \subseteq \Sigma^*$ durch

$$L = \{ w_i \mid i \in \mathbb{N} \text{ und } w_i \not\in L(G_i) \}.$$

Beispielsweise ist $\lambda \notin L$, denn $w_0 = \lambda$, aber G_0 ist gegeben durch die eine Regel $X_0 \to \lambda$, so dass $\lambda \in L(G_0)$ gilt.

Dass $L \in \text{REC}$ gilt, folgt unmittelbar aus der oben gezeigten Inklusion $\text{CS} \subseteq \text{REC}$. Für gegebenes $x \in \Sigma^*$:

- berechne das i mit $x = w_i$;
- berechne die Grammatik G_i durch den Aufbau der Gödelisierung bis zur Nr. i;
- entscheide mit dem Algorithmus aus der obigen Abbildung, ob $x = w_i \notin L(G_i)$.

Um zu zeigen, dass $L \notin CS$, nehmen wir für einen Widerspruch an, dass $L \in CS$. Dann existiert ein $j \in \mathbb{N}$ mit $L = L(G_j)$. Daraus folgt

$$w_j \in L \iff w_j \not\in L(G_j) = L,$$

ein Widerspruch.

 $REC \neq \mathcal{L}_0$. Diese Aussage zeigen wir später.

$CS \subseteq REC$.

Wie ordnet sich REC in die Chomsky-Hierarchie ein?

Aus dem letzten Satz folgt insbesondere die Echtheit der letzten (hier noch nicht betrachteten) Inklusion aus dem Fakt:

REG
$$\subset$$
 CF \subset CS $\subset \mathfrak{L}_0$.

Rekursive Aufzählbarkeit

Definition

- Eine Menge A heißt rekursiv aufzählbar (kurz: A ist r.e., nach dem englischen recursively enumerable), falls
 - entweder $A = \emptyset$
 - oder $A = W_f$ für ein $f \in \mathbb{R}$.

Dabei bezeichnet W_f den Wertebereich von f, und f heißt Aufzählfunktion von A.

• RE bezeichne die Klasse aller rekursiv aufzählbaren Mengen.

Rekursive Aufzählbarkeit

Bemerkung:

 Eine Aufzählfunktion f für eine Menge A ∈ RE schöpft also den ganzen Wertebereich A aus, d.h.,

$$A = \{ f(i) \mid i \in \mathbb{N} \}.$$

- Rekursive Aufzählbarkeit darf nicht verwechselt werden mit dem Begriff der Abzählbarkeit. Diese verlangt keine effektive (algorithmische) Machbarkeit.
- Umgekehrt verlangt die rekursive Aufzählbarkeit keine 1-1-Zuordnung. Es ist möglich, dass f(i) = f(j) für $i \neq j$.

Rekursive Aufzählbarkeit

Bemerkung:

• Jede endliche Menge ist rekursiv aufzählbar. Eine Aufzählfunktion von $A = \{a_0, \dots, a_n\}$ ist gegeben durch

$$f(i) = \begin{cases} a_i & \text{falls } 0 \le i \le n \\ a_n & \text{falls } i > n. \end{cases}$$

- Jede Teilmenge einer abzählbaren Menge ist abzählbar.
- Jedoch ist nicht jede Teilmenge einer rekursiv aufzählbaren Menge auch rekursiv aufzählbar.

REC versus RE: Überblick/Wiederholung

- $A \in REC$ (A entscheidbar): χ_A berechenbar, d.h. $\chi_A \in \mathbb{R}$
- A semi-entscheidbar:
 χ'_A berechenbar, d.h. χ'_A ∈ IP
- $A \in RE$ (A rekursiv aufzählbar): $A = \emptyset \lor A = W_f$ für ein $f \in \mathbb{R}$

Theorem

 $REC \subseteq RE$.

Beweis: Sei $A \in REC$. Ist $A = \emptyset$, so ist $A \in RE$ bereits gezeigt.

Ist $A \neq \emptyset$, so wählen wir ein festes $a \in A$ und konstruieren die Aufzählfunktion f für A so:

$$f(i) = \begin{cases} i & \text{falls } \chi_A(i) = 1 \text{ (d.h., } i \in A) \\ a & \text{sonst.} \end{cases}$$

Offenbar ist f total und berechenbar:

Da $A \in REC$, ist $\chi_A \in \mathbb{R}$ und somit auch $f \in \mathbb{R}$.

Zwischenbeispiel:

- $A = \{0, 2, 4, 6, \ldots\} = \{2i \mid i \in \mathbb{N}\}$
- $\chi_A = \{0 \mapsto 1, 1 \mapsto 0, 2 \mapsto 1, 3 \mapsto 0, 4 \mapsto 1, \ldots\}$
- $f = \{0 \mapsto 0, 1 \mapsto 100, 2 \mapsto 2, 3 \mapsto 100, 4 \mapsto 4, \ldots\}$ mit $a = 100 \in A$

REC versus RE (Rest vom Beweis)

Es gilt

$$A = W_f$$

denn:

- $A \subseteq W_f$: Ist $j \in A$, so ist $\chi_A(j) = 1$, also f(j) = j, woraus $j \in W_f$ folgt.
- $W_f \subseteq A$: Ist $j \in W_f$, so ist
 - entweder $\chi_A(j) = 1$, also $j \in A$,
 - oder $\chi_A(j) = 0$, also $j = a \in A$.

Der Satz ist bewiesen.

Theorem

$$A \in REC \iff (A \in RE \land \overline{A} \in RE).$$

Beweis: (\Rightarrow)

- Sei $A \in REC$.
- Nach dem vorigen Satz ist $A \in RE$.
- Da REC unter Komplement abgeschlossen ist, ist $\overline{A} \in REC$.
- Wieder nach dem vorigen Satz ist $\overline{A} \in RE$.

- (⇐) Seien A und \overline{A} in RE.
 - Ist $A = \emptyset$ oder $\overline{A} = \emptyset$ (d.h., $A = \Sigma^*$), so ist $A \in REC$ (χ_A ist eine konstante Funktion, damit berechenbar)
 - Sei also $\emptyset \neq A \neq \Sigma^*$, und seien $f, g \in \mathbb{R}$ Aufzählfunktionen mit

$$A = W_f$$
 und $\overline{A} = W_g$.

Der folgende Algorithmus berechnet χ_A bei Eingabe x:

Berechne

$$f(0), g(0), f(1), g(1), f(2), \dots$$

solange, bis $x = f(i)$ oder $x = g(i)$ für ein i gilt.

(Alle diese Berechnungen terminieren wegen $f,g\in {\rm I\!R}.$)

- Gilt x = f(i) für ein i, so gib 1 aus;
- gilt x = g(i) für ein i, so gib 0 aus.

- Da
 - entweder $x \in A = W_f$
 - oder $x \in \overline{A} = W_a$,

kann sich *x* nicht beliebig lange vor dieser Entscheidung drücken, sondern muss sich irgendwann "outen".

• Folglich terminiert diese Prozedur in endlicher Zeit, und es gilt

$$\chi_A \in \mathbb{R}$$
.

• Es folgt $A \in REC$.

Abschlusseigenschaften von RE

Theorem

RE ist abgeschlossen unter Schnitt und Vereinigung. ohne Beweis

Bemerkung: Wir werden später sehen, dass RE *nicht* komplementabgeschlossen ist.

Theorem

 $A \in RE \iff A \text{ ist semi-entscheidbar.}$

ohne Beweis

Beweisidee: $\Rightarrow \chi'_A(x) = 1$ falls i existiert so dass f(i) = x, $\Leftrightarrow \chi'_A$ kontrolliert länger und länger ausführen um Kandidaten für W_f zu finden, wie im folgenden Beweis. (da $D_{\chi'_A} = A$ folgt die Richtung \Leftarrow aus folgendem Theorem.)

Theorem

Sei $\varphi_0, \varphi_1, \varphi_2, \ldots$ eine fixierte Gödelisierung der Klasse \mathbb{P} , und $D_i = D_{\varphi_i}$ bzw. $W_i = W_{\varphi_i}$ bezeichne den Definitions- bzw. den Wertebereich der i-ten Funktion $\varphi_i \in \mathbb{P}$. Dann gilt:

$$RE = \{D_i \mid i \in \mathbb{N}\} = \{W_i \mid i \in \mathbb{N}\}.$$

Beweis: 1. Sei $A \in RE$. Wir zeigen nun $A = D_i = D_{\varphi_i}$ und

 $A = W_j = W_{\varphi_j}$ für geeignete $i, j \in \mathbb{N}$.

Da $A \in RE$, gilt $\chi'_A \in \mathbb{P}$ nach dem vorigen Satz, oder genauer:

- **Fall 1:** $\mathbf{A} = \emptyset$. Dann ist χ_A' die nirgends definierte Funktion, die natürlich in \mathbb{P} liegt.
- **Fall 2:** $A \neq \emptyset$. Dann gibt es (per Def. von r.e.) ein $f \in \mathbb{R}$ mit $W_f = A$. Der folgende Algorithmus berechnet χ'_A bei Eingabe x:
 - Berechne f(0), f(1), f(2),... (also die Aufzählung von A) solange, bis x = f(i) für ein i gilt.
 (Alle diese Berechnungen terminieren wegen f ∈ ℝ.)
 - Gilt x = f(i) für ein i, so gib 1 aus.

Falls x nie vorkommt, weil $x \notin A$, so terminiert der obige Algorithmus nie.

Da $\chi'_{\mathcal{A}} \in \mathbb{P}$, existiert eine Nr. i mit $\chi'_{\mathcal{A}} = \varphi_i$. Somit ist schon gezeigt:

$$A = D_{\chi'_A} = D_i$$
.

Um eine Funktion mit A als Wertebereich zu finden definiere

$$g(x) = x \cdot \chi'_{A}(x).$$

Es gilt:

- g(x) = x, falls $x \in A$, und
- g(x) ist nicht definiert, falls $x \notin A$.

Da $\chi'_A \in \mathbb{P}$, ist auch $g \in \mathbb{P}$, und es gibt ein j mit $\varphi_j = g$.

Somit gilt

$$A = W_g = W_i$$
.

Wir haben also gezeigt, dass

$$A \in \{D_i \mid i \in \mathbb{N}\}$$
 und $A \in \{W_i \mid i \in \mathbb{N}\}$

gilt. Somit:

$$RE \subseteq \{D_i \mid i \in \mathbb{N}\} \quad \text{ und } \quad RE \subseteq \{W_i \mid i \in \mathbb{N}\}.$$

Anders: jede Menge in RE kann als Definitionsbereich einer partiell rekursiven Funktion oder als Wertebereich einer partiell rekursiven Funktion dargestellt werden.

2. Wir zeigen $D_i \in RE$ für jedes $i \in \mathbb{N}$; der Fall $W_i \in RE$ wird analog bewiesen.

Ist $D_i = \emptyset$, so gilt trivialerweise $D_i \in RE$.

Sei also $D_i \neq \emptyset$. Wähle ein festes $a \in D_i$.

Definiere eine injektive Paarungsfunktion $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ mit den folgenden Eigenschaften:

- π ist berechenbar.
- Die Umkehrfunktionen $\pi_1, \pi_2 : \mathbb{N} \to \mathbb{N}$, die für $\pi(x, y) = n$ definiert sind durch $\pi_1(n) = x$ und $\pi_2(n) = y$, sind ebenfalls berechenbar.
- $W_{\pi} \in REC$.

Ein solches π kann so definiert werden:

$$\pi(x,y)=2^{x+y}+x.$$

Anschaulich bedeutet dies:

	Χ	0	1	2	3	4	
У							
0		$2^0 = 1$	3	6	11	20	
1		$2^1 = 2$	5	10	19	٠	٠
2		$2^2 = 4$	9	18	٠	٠.	٠.
3		$2^3 = 8$	17	٠	٠	٠.	٠.
4		$2^4 = 16$	٠.	٠.	٠.	٠.	٠
:		:	٠.	٠.	٠.	٠	٠

Klar ist, dass $\pi \in \mathbb{R}$ und $W_{\pi} \in REC$, denn es gilt

$$n \in W_{\pi} \iff 2^k + k \ge n$$

wobei k die größte Zahl in \mathbb{N} mit $2^k \leq n$ ist.

Wir zeigen $\pi_1, \pi_2 \in \mathbb{P}$:

- Für $n \in W_{\pi}$ sei $\pi(x, y) = n$.
- Bestimme das größte $k \in \mathbb{N}$ mit $2^k \le n$ und berechne

$$x = n - 2^k$$
 und $y = k - x$.

Wir suchen nun ein $f \in \mathbb{R}$ mit $W_f = D_i$. Dieses f werde durch den folgenden Algorithmus bei Eingabe $n \in \mathbb{N}$ berechnet:

- Berechne $x = \pi_1(n)$ und $y = \pi_2(n)$, falls $n \in W_{\pi}$. Andernfalls setze x = y = 0.
- Berechne aus der fixierten Nr. i das Programm der i-ten TM M_i in der fixierten Gödelisierung von IP.
- Simuliere die Berechnung von M_i auf Eingabe x für y Takte.
- Terminiert die Simulation, so gib x aus, sonst das fest gewählte Element $a \in D_i$.

Da der Algorithmus nur Elemente von D_i ausgibt, gilt

$$W_f \subseteq D_i$$
.

Umgekehrt gilt auch

$$D_i \subseteq W_f$$
,

denn wenn $j \in D_i$, so ist $\varphi_i(j)$ definiert und $M_i(j)$ hält nach t Takten an, für ein geeignetes t.

Setze $n = \pi(j, t)$. Dann ist f(n) = j für ein geeignetes n, also $j \in W_f$.

Somit gilt $W_f = D_i$ für $f \in \mathbb{R}$.

Es folgt $D_i \in RE$.

Theorem

 $A \in \mathfrak{L}_0 \iff A \text{ ist semi-entscheidbar.}$

ohne Beweis

Folgerung: Die folgenden Aussagen sind paarweise äquivalent.

- \bullet $A \in RE$.
- A ist semi-entscheidbar.
- **3** A ist vom Typ 0, d.h., $A \in \mathfrak{L}_0$.
- **5** A = L(M) für eine deterministische TM M.
- **1** A = L(M) für eine nichtdeterministische TM M.
- \bigcirc $A = D_f$ für ein $f \in \mathbb{P}$.
- **3** $A = W_f$ für ein $f \in \mathbb{P}$.

ohne Beweis

Das Halteproblem

- Wir wissen: REC \subseteq RE.
- Um zu zeigen, dass diese Inklusion echt ist, definieren wir nun das Halteproblem.
- Bei diesem Problem kommen Turingmaschinen als Eingaben vor.
- Dazu erläutern wir zunächst, wie man Turingmaschinen

$$M = (\Sigma, \Gamma, Z, \delta, z_0, \Box, F)$$

als ein Wort über dem Alphabet $\{0,1\}$ schreiben kann (Gödelisierung).

Anmerkungen:

- wir nehmen an, dass Endzustände von DTMs keine ausgehenden Kanten haben. Dies ist auch sinnvoll für Def. 7.1 (Turing-Berechenbarkeit) aus dem Skript.
- für die Entscheidung ob eine DTM auf einer Eingabe hält ist die Menge F nicht relevant und muss nicht in der Gödelisierung dargestellt werden.
- wir betrachten hier DTMs die Funktionen mit einem Argument darstellen.

Wir nummerieren zunächst die Elemente aus Z und Γ , also

$$Z = \{z_0, z_1, z_2, \dots, z_n\}$$

 $\Gamma = \{a_0, a_1, a_2, \dots, a_k\}.$

Jeder δ -Regel

$$\delta(\mathbf{z}_i,\mathbf{a}_j)=(\mathbf{z}_{i'},\mathbf{a}_{j'},r)$$

ordnen wir ein Wort $w_{i,i,i',i',r}$ zu, wobei

$$w_{i,j,i',j',r} = \#\# bin(i)\# bin(j)\# bin(i')\# bin(j')\# bin(r)$$

$$r = \begin{cases} 0 & \text{falls } r = L \\ 1 & \text{falls } r = R \\ 2 & \text{falls } r = N. \end{cases}$$

Für alle Regeln aus δ schreiben wir diese Wörter in beliebiger Reihenfolge hintereinander und erhalten so eine Codierung von M über dem Alphabet $\{0, 1, \#\}$.

Um M über dem Alphabet $\{0,1\}$ zu codieren, nehmen wir die folgende Ersetzung vor:

$$\begin{array}{ccc}
0 & \mapsto & 00 \\
1 & \mapsto & 01 \\
\# & \mapsto & 11
\end{array}$$

Das so erhaltene Wort zu Turingmaschine M bezeichnen wir mit

code(M).

Beispiel: Wir geben eine Codierung der Turingmaschine

$$\textit{M} = (\{0,1\}, \{0,1,\square\}, \{z_0,z_1,z_2,z_e\}, \delta, z_0,\square, \{z_e\})$$

für die Nachfolgerfunktion $f: \mathbb{N} \to \mathbb{N}$ mit

$$f: n \rightarrow n+1$$

aus einem früheren Beispiel an:

$$(z_0,0)\mapsto (z_0,0,R) \hspace{0.2cm} (z_1,0)\mapsto (z_2,1,L) \hspace{0.2cm} (z_2,0)\mapsto (z_2,0,L) \ (z_0,1)\mapsto (z_0,1,R) \hspace{0.2cm} (z_1,1)\mapsto (z_1,0,L) \hspace{0.2cm} (z_2,1)\mapsto (z_2,1,L) \ (z_0,\square)\mapsto (z_1,\square,L) \hspace{0.2cm} (z_1,\square)\mapsto (z_e,1,N) \hspace{0.2cm} (z_2,\square)\mapsto (z_e,\square,R)$$

Tabelle: Liste δ der Turingbefehle von M für die Funktion f(n) = n + 1

Nummerierung der Zustände

und des Arbeitsalphabets

$$\begin{array}{c|ccc} 0 & 1 & \square \\ \hline a_0 & a_1 & a_2 \end{array}$$

ergibt die folgende Codierung der Funktion δ :

$$\begin{array}{lll} \delta(z_i, a_j) = (z_{i'}, a_{j'}, r) & w_{i,j,i',j',r} \\ \hline \delta(z_0, 0) = (z_0, 0, R) & \#\#0\#0\#0\#0\#1 \\ \delta(z_0, 1) = (z_0, 1, R) & \#\#0\#1\#0\#1\#1 \\ \delta(z_0, \square) = (z_1, \square, L) & \#\#0\#10\#1\#10\#0 \\ \delta(z_1, 0) = (z_2, 1, L) & \#\#1\#0\#10\#1\#0 \\ \delta(z_1, 1) = (z_1, 0, L) & \#\#1\#1\#1\#0\#0 \\ \delta(z_1, \square) = (z_e, 1, N) & \#\#1\#10\#11\#1\#10 \\ \delta(z_2, 0) = (z_2, 0, L) & \#\#10\#0\#10\#0\#0 \\ \delta(z_2, 1) = (z_e, \square, R) & \#\#10\#10\#11\#10\#1 \\ \hline \delta(z_2, \square) = (z_e, \square, R) & \#\#10\#10\#11\#10\#1 \\ \hline \end{array}$$

Dies ergibt die Codierung:

Mit der Ersetzung

$$\begin{array}{ccc} 0 & \mapsto & 00 \\ 1 & \mapsto & 01 \\ \# & \mapsto & 11 \end{array}$$

erhalten wir $code(M) = 111100110011001101101 \cdots$.

- Offensichtlich ist nicht jedes Wort über dem Alphabet {0, 1} eine so definierte Codierung einer Turingmaschine.
- Um die Umkehrabbildung der obigen Codierung anzugeben, sei M₀ eine beliebige feste Turingmaschine.

Dann ist für jedes Wort $w \in \{0,1\}^*$ eine Turingmaschine M_w definiert durch:

$$w \in \{0,1\}^* \mapsto M_w = \left\{ egin{array}{ll} M & ext{falls } w = \operatorname{code}(M) \ M_0 & ext{sonst} \end{array}
ight.$$

Definition

Die Sprache

$$K = \{w \in \{0,1\}^* \mid M_w(w) \text{ hält nach endlich vielen Schritten}\}$$

= $\{i \in \mathbb{N} \mid i \in D_i\}$

wird als das *spezielle Halteproblem* bezeichnet.

Theorem

Das spezielle Halteproblem ist rekursiv aufzählbar, aber nicht entscheidbar, d.h.,

 $K \in RE$ und $K \notin REC$.

Beweis: Der Beweis von $K \in RE$ ist analog zum Beweis von

$$RE = \{D_i \mid i \in \mathbb{N}\} = \{W_i \mid i \in \mathbb{N}\}.$$

Um zu zeigen, dass $K \notin REC$, nehmen wir für einen Widerspruch $K \in REC$ an.

Dann ist die charakteristische Funktion χ_K berechenbar mittels einer Turingmaschine M.

Wir modifizieren M wie folgt zu einer TM M':

Abbildung: Zum Beweis von $K \notin REC$

- M' hält, falls M eine 0 ausgibt, und
- M' geht in eine Endlosschleife, falls M eine 1 ausgibt, siehe die obige Abbildung.

Gödelisierung für das spezielle Halteproblem

Es sei nun $w' \in \{0,1\}^*$ mit $M_{w'} = M'$, d.h., w' sei das Codewort der Turingmaschine M'. Dann gilt:

M' angesetzt auf w' hält

- \Leftrightarrow M angesetzt auf w' gibt 0 aus (nach Def. von M')
- $\Leftrightarrow \chi_K(w') = 0$ (nach Def. von M)
- $\Leftrightarrow w' \notin K$ (nach Def. von χ_K)
- \Leftrightarrow $M_{w'}$ angesetzt auf w' hält nicht (nach Def. von K)
- \Leftrightarrow M' angesetzt auf w' hält nicht (nach Def. von $M_{w'}$).

Das spezielle Halteproblem

Damit haben wir die Aussage

M' angesetzt auf w' hält $\Leftrightarrow M'$ angesetzt auf w' hält nicht

hergeleitet, die offenbar einen Widerspruch darstellt.

Damit ist die Annahme, dass *K* entscheidbar ist, falsch.

Folgerung: REC ist echt in RE enthalten. Insgesamt haben wir damit gezeigt, dass

$$REG \subset DCF \subset CF \subset CS \subset REC \subset RE$$

und die Chomsky-Hierarchie echt ist:

$$\mathfrak{L}_3 \subset \mathfrak{L}_2 \subset \mathfrak{L}_1 \subset \mathfrak{L}_0$$
.

Das spezielle Halteproblem

Folgerung: RE ist nicht komplementabgeschlossen.

Beweis: Nach dem obigen Satz ist $K \in RE$, aber $\overline{K} \notin RE$, denn sonst wäre $K \in REC$.

Behauptung: Es gibt Funktionen in IP, die nicht zu Funktionen in IR fortgesetzt werden können. **ohne Beweis**

Anstatt Turing Maschinen kann man den Beweis genauso mit einstelligen Java Programmen führen.

- Annahme: einstellige Java Programme lesen Eingabe auf StdIn und schreiben am Ende eine Ausgabe auf StdOut
- J_w ist das durch den Quelltext w beschriebene einstellige Java
 Programm falls valide, "return 0" sonst
- $K_{Java} = \{ w \in \Sigma^* \mid J_w \text{ hält nach endlich vielen Schritten mit } w \text{ als } Eingabe \}.$

Ist dieses Programm ein Element von K_{Java} ?

```
import java.io.InputStreamReader;
import java.io.IOException;
public class Kgoedel 1 {
    public static void main(String args[]) throws IOException {
        int ch:
        int count = 0;
        while ((ch = System.in.read()) != -1) {
            if (ch != '\n' && ch != '\r')
             count = count + 1;
        System.out.println(count);
```

Ja, das Programm ist valide und ist ein Element von K_{Java} : es terminiert mit seinem eigenen Quellcode als Eingabe:

```
$ javac Kgoedel_1.java
$ java Kgoedel_1 <Kgoedel_1.java
396</pre>
```

Ist dieses Programm ein Element von K_{Java} ?

```
import java.io.InputStreamReader;
import java.io.IOException;
public class Kgoedel_2 {
    public static void main(String args[])
        throws IOException {
        int ch; int count = 0;
        while ((ch = System.in.read()) != -1) {
            if (ch != '\n' && ch != '\r')
                count = count + 1;
        if (count != 473)
           System.out.println(count);
        else
           while (true) {count = 0;};
```

Nein, das Programm ist zwar valide und aber ist kein Element von K_{Java} : es terminiert nicht mit seinem eigenen Quellcode als Eingabe:

```
$ javac Kgoedel_2.java
$ java Kgoedel_2 <Kgoedel_1.java
396
$ java Kgoedel_2 <Kgoedel_2.java
^C</pre>
```


Der Projektionssatz

Definition

Seien $A \subseteq \mathbb{N}$ und $B \subseteq \mathbb{N} \times \mathbb{N}$ Mengen.

A ist *Projektion von B*, falls für alle $x \in \mathbb{N}$ gilt:

$$x \in A \iff (\exists y \in \mathbb{N}) [(x, y) \in B].$$

Theorem (Projektionssatz)

 $A \in RE \iff A \text{ ist Projektion einer Menge } B \in REC.$

ohne Beweis

Anwendung des Projektionssatzes

Nachweis der rekursiven Aufzählbarkeit, z.B.:

$$i \in K \iff \varphi_i(i) \text{ ist definiert}$$
 $\iff (\exists t) [M_i(i) \text{ hält nach } t \text{ Takten}]$
 $\iff (\exists t) [(i, t) \in B],$

wobei die Menge $B \in REC$ so definiert ist:

$$B = \{(i, t) \mid M_i(i) \text{ hält nach } t \text{ Takten}\}.$$

Anwendung des Projektionssatzes

2 $X = \{i \in \mathbb{N} \mid D_i \neq \emptyset\}$ ist in RE:

$$i \in X \iff \mathsf{D}_i \neq \emptyset$$
 $\iff (\exists j) [j \in \mathsf{D}_i]$
 $\iff (\exists j) [\varphi_i(j) \text{ ist definiert}]$
 $\iff (\exists j) (\exists t) [M_i(j) \text{ hält nach } t \text{ Takten}]$
 $\iff (\exists z) [(i, z) \in B],$

wobei die Menge $B \in REC$ so definiert ist:

$$B = \{(i, z) \mid z = \pi(j, t) \text{ und } M_i(j) \text{ hält nach } t \text{ Takten}\}.$$

Anwendung des Projektionssatzes

- 3 $Y = \{i \in \mathbb{N} \mid 17 \in W_i\}$ ist ebenso in RE.
- 4 ...

REC und RE in der Chomsky-Hierarchie

Abbildung: Einordnung von REC und RE in die Chomsky-Hierarchie