Aluno: João Paulo Parreira Peixoto

Disciplina: Arquitetura e Organização de Computadores

Professor: Prof.Dr Hebert

1 – As principais vantagens é que o processador multiciclo quebra a execução de instruções em vários passos e cada passo é executado em um único ciclo de clock, além disso diferentes tipos de instruções poderão usar quantidades diferentes de ciclos de clock, ou sejá se adaptar a necessidade. Já o uniciclo, todas as suas instruções devem funcionar em um único ciclo de clock, e o mesmo deve ser ajustado para a instrução mais demorada, o que mostra ser sua desvantagem contra o multiciclo.

2 – Utilizar registradores de controle em cada passo do processador dedicada a uma etapa do pipelining e Analisar o tempo de execução de cada instrução no processador e organizar de modo paralelo, ou seja, utilizar cada ciclo de clock do processador para executar os conjuntos de instruções de modo quase simultâneo.

3 –																					
1	IF	ID	E X	M E M	W B																
2			IF	ST L	ST L	ID	E X	M E M	W B												
3						IF	ST L	ST L	ST L	ID	E X	M E M	W B								
4										IF	ST L	ST L	ID	E X	M E M	W B					
5													IF	ID	E X	M E M	W B				
6																ST L	IF	ID	E X	M E M	WB

Conflito de dados: Operação ID da linha 3 que depende do resultado da linha 1 e 2, ID linha 4 depende do resultado da linha 3, as instruções subi e lw, \$t2 percisa do dado armazenado no registrador e lw e add, \$t1 precisa do dado armazenado no registrador.

Conflito estrutural: MEM linha 3, STL linha 4 e MEM linha 5 e STL linha 6, não é possível acessar instruções da memória ao mesmo tempo, ID linha 4 e IF linha 6 terão que esperar 1 ciclo de clock.

Sem pipeline: $6 \times 8 = 48 \text{ns}$.

Com pipeline: 32ns.

Speedup: 48/32 = 1,5 vezes mais rápido com pipeline

Aluno: João Paulo Parreira Peixoto

Disciplina: Arquitetura e Organização de Computadores

Professor: Prof.Dr Hebert

4 –

1	IF	ID	EX	MEM	WB					
2		IF	ID	EX	MEM	WB				
3			IF	ID	EX	MEM	WB			
4				IF	ID	EX	MEM	WB		
5					IF	ID	EX	MEM	WB	
6						IF	ID	EX	MEM	WB

Os stall deixariam de existir, deixando o sistema mais rápido e o speedup seria de 18ns.

5 – na linha 2 de "sub.d" existe uma dependendia de RAW em relação a linha 1 pelo Reg F1, na linha 3 "s.d" existe risco de WAW, na linha 4 "add.d" existe relação de WAR devido na linha 2 se usar o Reg F5, na linha 5 "div.d" existe relação de RAW em relação a linha 4 pelo Reg F5, e RAR na linha 5 com a linha 4 o Reg F6 é lido novamente.