ESERCIZI TUTORATO ALGEBRA 2 25 OTTOBRE 2019 - LEZIONE 3 SOLUZIONI

MARCO ABBADINI

Di seguito si trovano le soluzioni degli esercizi svolti in classe. Non sono soluzioni complete, ma solo dei veloci riassunti.

Esercizio 1. Stabilire se i gruppi \mathbb{Z} e $2\mathbb{Z}$ (l'operazione da considerare è la classica somma) sono isomorfi.

Soluzione. Sì. Infatti si consideri la funzione

$$\varphi \colon \mathbb{Z} \longrightarrow 2\mathbb{Z}$$
$$n \longmapsto 2n.$$

La funzione φ è un isomorfismo.

Esercizio 2. (a) Si mostri che due qualsiasi gruppi di ordine 3 sono isomorfi.

- (b) É vero che, dati G ed H due gruppi aventi la stessa cardinalità, G ed H sono isomorfi?
- **Soluzione.** (a) Ogni gruppo di ordine un numero primo è ciclico, e due gruppi ciclici della stessa cardinalità sono isomorfi. (Ricordiamo perchè vale quest'ultimo fatto: sia g un generatore di un gruppo ciclico G di ordine n. si consideri la mappa $\varphi \colon \mathbb{Z} \to G$; $g \mapsto g^n$. Questa è un omomorfismo suriettivo il cui nucleo è $n\mathbb{Z}$. Perciò G è isomorfo a $\mathbb{Z}/n\mathbb{Z}$, per il teorema di isomorfismo.)
- (b) No, si consideri ad esempio \mathbb{Z}_6 e S_3 . Uno è abeliano, l'altro no. (Oppure: uno è ciclico, l'altro no.)

Esercizio 3. Sia $V := \{ \text{Id}, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \}$ il sottoinsieme di S_4 costituito dall'identità Id (=l'elemento neutro di S_4) e dai doppi scambi.

- (a) Si provi che V è un sottogruppo normale sia di S_4 che di A_4 , si determinino gli indici $|S_4:V|$ e $|A_4:V|$, e si trovino i laterali di V in A_4 .
- (b) Si scriva la tavola di moltiplicazione del gruppo quoziente A_4/V , e si stabilisca se A_4/V è abeliano.
- (c) Si stabilisca se S_4/V è ciclico.

Soluzione. (a) V è chiuso per coniugio. $|S_4:V|=|S_4|/|V|=24/4=6$. $|A_4:V|=|A_4|/|V|=12/4=3$.

(b) Siano 1, a, b gli elementi di A_4/V , dove 1 è la classe di Id. Si scriva l'unica tavola di moltiplicazione compatibile con il fatto che 1 deve essere l'elemento neutro, e ogni riga e ogni colonna contiene ogni elemento esattamente una volta. A_4/V è abeliano perchè ciclico perchè ha ordine un primo.

Ultimo aggiornamento: 6 novembre 2019. Non esitate a segnalare eventuali errori a marco.abbadini@unimi.it.

 $^{^1}V$ è detto gruppo di Klein. Una cosa che rende V speciale è che V è l'unico caso di sottoruppo normale di un gruppo alterno A_n che non sia nè il gruppo banale (cioè con un solo elemento) nè il gruppo alterno A_n stesso. Difatti A_4 non è semplice "a causa di V", mentre A_n lo è per ogni $n \neq 4$. V è isomorfo al prodotto diretto $\mathbb{Z}_2 \times \mathbb{Z}_2$ (nel prodotto diretto l'operazione di gruppo è definita coordinata per coordinata).

(c) S_4/V non è ciclico, perchè altrimenti, dato che il quoziente $\pi\colon S_4\to S_4/V$ è un omomorfismo, in S_4 dovrebbe esserci un elemento di ordine un multiplo di 6, ma non esiste un tale elemento.

Esercizio 4. (a) Elencare i sottogruppi di S_3 e stabilire quali di essi sono normali.

- (b) Sia C_2 un gruppo di ordine 2 e sia C_3 un gruppo di ordine 3. Si determinino tutti i possibili omomorfismi iniettivi da C_2 a C_3 .
- (c) Si determinino tutti i possibili omomorfismi da S_3 a \mathbb{Z}_3 .
- (d) Siano C_2 e \widetilde{C}_2 due gruppi di ordine 2. Si determinino tutti i possibili omomorfismi iniettivi da C_2 a \widetilde{C}_2 .
- (e) Determinare tutti i possibili omomorfismi da S_3 a \mathbb{Z}_2 .
- **Soluzione.** (a) Si ricordi che essere normali è equivalente a essere chiusi per coniugio. {Id} (normale), {Id, $(1\ 2)$ } (non normale), {Id, $(1\ 3)$ } (non normale), {Id, $(1\ 3)$ } (non normale), {Id, $(1\ 3\ 3)$ } (normale), $(1\ 3\ 3)$) (normale).
- (b) Non esiste un tale omomorfismo, perchè C_3 non ha sottogruppi di ordine 2 (per Lagrange).
- (c) Per il teorema di isomorfismo, cercare gli omomorfismi da S_3 a \mathbb{Z}_3 è equivalente a cercare gli omomorfismi iniettivi dai possibili quozienti di S_3 (quozienti per sottogruppi normali, si intende) a \mathbb{Z}_3 . Non c'è alcun omomorfismo con kernel {Id} perchè altrimenti sarebbe iniettivo e ciò non è possibile per questione di cardinalità. Non c'è alcun omomorfismo con kernel {Id, (1 2 3), (1 3 2)} per il punto precedente. C'è esattamente un omomorfismo con kernel S_3 , l'omomorfismo banale. Conclusione: c'è solo l'omomorfismo banale.
- (d) C'è un solo omomorfismo iniettivo, quello che manda elemento neutro in elemento neutro, e generatore in generatore.
- (e) Procedendo analogamente a (c), si ottiene che ci sono due omomorfismi: quello banale (che manda tutto nell'elemento neutro), e l'omomorfismo che manda le permutazioni pari in 0 e le permutazioni dispari in 1.

Esercizio 5. Per $a \in b$ numeri reali, con $a \neq 0$, si definisca la mappa $f_{a,b} : \mathbb{R} \to \mathbb{R}$ tale che $f_{a,b}(x) = ax + b$ per ogni $x \in \mathbb{R}$. (Nota che $f_{a,b} = f_{c,d}$ se e solo se a = c e b = d).

- (a) Provare che $G = \{f_{a,b} : a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}\}$ è un gruppo rispetto alla composizione di mappe da sinistra a destra $(f_{a,b}f_{c,d})$ è la funzione ottenuta applicando prima $f_{a,b}$ poi $f_{c,d}$).
- (b) Provare che $K = \{f_{1,b} : b \in \mathbb{R}\}$ è un sottogruppo normale di G e che $H = \{f_{a,0} : a \in \mathbb{R} \setminus \{0\}\}$ è un sottogruppo non normale di G.
- (c) Dimostrare che G/K è isomorfo a \mathbb{R}^{\times} , dove con \mathbb{R}^{\times} si intende il gruppo moltiplicativo $(\mathbb{R} \setminus \{0\}, \cdot)$ dei reali non nulli.

Soluzione. (a) Dimostra che è un sottogruppo di $Sym(\mathbb{R})$: è contenuto in esso, è non vuoto, chiuso per composizione, chiuso per inversi.

- (b) Provare che K è sottogruppo, e che è chiuso per coniugio. Provare che H è un sottogruppo, e non è chiuso per coniugio rispetto a $f_{1,-1}$.
- (c) Definiamo

$$\varphi\colon G\longrightarrow \mathbb{R}^{\times}$$

$$f_{a,b} \longmapsto a$$
.

La funzione φ è un omomorfismo di gruppi suriettivo, con kernel K. Per il teorema di isomorfismo, G/K è isomorfo a \mathbb{R}^{\times} .

Nota aggiuntiva. In classe è sorta la domanda: il gruppo additivo \mathbb{R} è isomorfo al gruppo additivo \mathbb{C} ? La risposta è affermativa: \mathbb{R} e \mathbb{C} sono isomorfi. Tuttavia in classe ho fatto un'affermazione sbagliata a riguardo: ho detto che entrambi sono isomorfi al prodotto di una quantità continua di copie di \mathbb{Q} : $\mathbb{R} \cong \mathbb{C} \cong \prod_{i \in I} \mathbb{Q}$, con $|I|=|\mathbb{R}|$. Questo è falso (già per una questione di cardinalità). Invece, è vero che sia \mathbb{R} che \mathbb{C} sono isomorfi alla somma diretta di una quantità continua di copie di \mathbb{Q} , in simboli $\mathbb{R} \cong \mathbb{C} \cong \bigoplus_{i \in I} \mathbb{Q}$, con $|I| = |\mathbb{R}|$, dove la somma diretta è il sottogruppo del prodotto diretto costituito dagli elementi le cui coordinate sono tutte 0 ad eccezione di un numero finito di esse. Infatti, nel libro Algebra, A Graduate Course di I. M. Isaacs, a pagina 85, viene data la seguente motivazione del fatto che \mathbb{R} è isomorfo a $\mathbb{R} \oplus \mathbb{R}$ (ovvero il nostro \mathbb{C}):

Ciascuno di questi oggetti può essere visto come uno spazio vettoriale su Q, e in entrambi i casi la dimensione è uguale alla cardinalità del continuo. Una qualsiasi biezione tra le basi di questi spazi si estende a una trasformazione lineare che è un isomorfismo di spazi vettoriali e perciò un isomorfismo di gruppi abeliani.

Da notare che il fatto che ogni spazio vettoriale ha una base è dimostrato con il noncostruttivo lemma di Zorn (/assioma della scelta), e questo è un indicatore del fatto che, probabilmente, non è possibile esibire "esplicitamente" un isomorfismo tra \mathbb{R} e \mathbb{C} .

1. Cosa ricordare

- Un gruppo di ordine un primo è ciclico. (Esercizio 2.)
- Due gruppi ciclici dello stesso ordine sono isomorfi. (Esercizio 2.)
- Gruppi isomorfi hanno essenzialmente le stesse proprietà (uno è abeliano se e solo se l'altro lo è, uno è ciclico se e solo se l'altro lo è, etc...) (Esercizio 2.)
- |G:H| = |G|/|H| ogni volta che questo ha senso, cioè se G è finito. (Esercizio 3.)
- ullet Probabilmente la condizione più facile per verificare/smentire che un sottogruppo H di G è normale è

$$\forall h \in H \ \forall g \in G \ g^{-1}hg \in H.$$

(Esercizio 3.)

- Ogni gruppo ciclico è abeliano. (Esercizio 3.)
- Dato un omomorfismo $\phi \colon G \to H$, e dato $g \in G$, il periodo di $\phi(g)$ divide il periodo di g. (Esercizio 3.)
- Il quoziente $\pi\colon G\to G/N$ è un omomorfismo. (Esercizio 4.)
- I sottogruppi normali sono esattamente i kernel degli omomorfismi. (Esercizio 4.)
- \bullet Per dimostrare che un certo quoziente G/K è isomorfo ad un gruppo L, si mostri un omomorismo da G ad L suriettivo con kernel K. (Esercizio 5.)