Note: this lab is completed with Tharun 1003379

Host-Interfaces and IP Addresses

Host-Interface	IP Addresses
h11-eth0	11.0.1.1
h12-eth0	11.0.2.1
h13-eth0	11.0.3.1
h21-eth0	12.0.1.1
h22-eth0	12.0.2.1
h23-eth0	12.0.3.1
h31-eth0	13.0.1.1
h32-eth0	13.0.2.1
h33-eth0	13.0.3.1
h41-eth0	13.0.1.1
h42-eth0	13.0.2.1
h43-eth0	13.0.3.1
R1-eth1	11.0.1.254
R1-eth2	11.0.2.254
R1-eth3	11.0.3.254
R1-eth4	9.0.0.1
R1-eth5	9.0.4.1
R2-eth1	12.0.1.254
R2-eth2	12.0.2.254
R2-eth3	12.0.3.254
R2-eth4	9.0.0.2
R2-eth5	9.0.1.1
R3-eth1	13.0.1.254
R3-eth2	13.0.2.254
R3-eth3	13.0.3.254
R3-eth4	9.0.1.2
R4-eth1	?
R4-eth2	7
R4-eth3	7
R4-eth4	9.0.4.2 (discovered after running BGP attack)

Announced Network

AS	Network			
AS1	11.0.0.0/8			
AS2	12.0.0.0/8			
AS3	13.0.0.0/8			
AS4	?			

BGP Re-Establishment Traffic

We performed Wireshark capture on R1, listening on eth4, the interface device connected with R2. The screenshots depict the traffic after we ran the command "clear bgp external" on R1. The communication starts with a new TCP connection establishment between the two routers before they start exchanging any message. After the TCP handshake, router R2 first sends a BGP OPEN message to R1 (No57). The OPEN message contains information about the BGP Protocol used such as the version, AS number, Hold Time, BGP Identifier, and some other

optional parameters. We noticed a NOTIFICATION message is sent from R1 which could be caused by one of the following errors occurring with the BGP session: hold timer expiring, neighbor capabilities change, or a BGP session reset is requested. After that, R1 sends its own OPEN message with its respective details together with a KEEPALIVE message (No65). R2 subsequently responded with two KEEPALIVE messages(No69). We believe the second KEEPALIVE message is a response to the NOTIFICATION Message from R1. The BGP connection between R1 and R2 is now established, and KEEPALIVE messages are repeatedly exchanged according to the agreed Hold Time.

After connection establishment, R2 sent 2 UPDATE messages together with one of

the KEEPALIVE message(No72). UPDATE messages contain information used to notify peers about path changes and network layer reachability. From the screenshot, we can see R2 was notifying R1 about 2 paths: one to itself (12.0.0.0/8) and another to AS3(13.0.0.0/8). R1 also responds with an UPDATE message that contains path information to itself(11.0.0.0/8) (No73).

Reaching h31 (13.0.1.1) from h11

We are able to reach h31 from h11 through ping.

Reaching h31 (13.0.1.1) from R1

We are unable to reach h31 from R3

The reason behind this is because R3's routing table contains an entry that instructs it to send packets from h1* host whose IP address matches 11.0.0.0/8 mask but does not contains an entry about routing on R1's IP address (9.0.0.1).

```
mininet> R3 route -n
Kernel IP routing table
                             Genmask
Destination Gateway
                                            Flags Metric Ref
                                                               Use Iface
                             255.255.255.0 U 0
                                                       0
9.0.1.0
              0.0.0.0
                                                                 0 R3-eth4
11.0.0.0
              9.0.1.1
                             255.0.0.0
                                            UG
                                                  0
                                                        0
                                                                 0 R3-eth4
12.0.0.0
              9.0.1.1
                             255.0.0.0
                                            UG 0
                                                       0
                                                                0 R3-eth4
                             255.255.255.0 U 0
255.255.255.0 U 0
13.0.1.0
              0.0.0.0
                                                        0
                                                                0 R3-eth1
13.0.2.0
              0.0.0.0
                                                        0
                                                                 0 R3-eth2
13.0.3.0
              0.0.0.0
                             255.255.255.0
                                                  0
                                                        0
                                                                 0 R3-eth3
mininet>
```

We used the command: "ip route add [network/subnetmask] via [gateway] dev [interface]" to add R1 routing into R3's routing table in order to resolve the issue

```
mininet> R3 ip route add 9.0.0.0/24 via 9.0.1.1 dev R3-eth4
mininet> R3 route -n
Kernel IP routing table
Destination
                                              Flags Metric Ref
                                                                  Use Iface
               Gateway
                               Genmask
                               255.255.255.0
9.0.0.0
               9.0.1.1
                                              UG
                                                    0
                                                           0
                                                                    0 R3-eth4
9.0.1.0
               0.0.0.0
                               255.255.255.0
                                              U
                                                    0
                                                           0
                                                                    0 R3-eth4
11.0.0.0
               9.0.1.1
                               255.0.0.0
                                              UG
                                                   0
                                                          0
                                                                    0 R3-eth4
                                              UG
                                                 0
                                                           0
12.0.0.0
               9.0.1.1
                               255.0.0.0
                                                                    0 R3-eth4
                                                    0
                                                           0
13.0.1.0
               0.0.0.0
                               255.255.255.0
                                              U
                                                                    0 R3-eth1
                                                                    0 R3-eth2
13.0.2.0
               0.0.0.0
                               255.255.255.0
                                              U
                                                    0
                                                           0
13.0.3.0
                               255.255.255.0
                                              U
                                                           0
               0.0.0.0
                                                    0
                                                                    0 R3-eth3
```

After that, we were able to ping h31 from R1.

BGP Attack!

To launch to attack, we modified the network field of the bgpd-R4.conf as below.

```
File: bgpd-R4.conf
  GNU nano 2.2.6
                                                                                                                                          Modified
  -*- bgp -*-
  BGPd sample configuratin file
  $Id: bgpd.conf.sample,v 1.1 2002/12/13 20:15:29 paul Exp $
hostname bgpd-R4
password zebra
enable password zebra
router bgp 4
  bgp router-id 9.0.4.2
  change the following line to mount the BGP attack
 network 14.0.0.0/8
  network 13.0.0.0/8
 neighbor 9.0.4.1 remote-as 1
neighbor 9.0.4.1 ebgp-multihop
neighbor 9.0.4.1 next-hop-self
neighbor 9.0.4.1 timers 5 5
log file /tmp/R4-bgpd.log
debug bgp as4
debug bgp events
                                                  ^R Read File
^G Get Help
^X Exit
                                                                           ^Y Prev Page
^V Next Page
                         ^O WriteOut
                                                                                                    ^K Cut Text
^U UnCut Tex
                                                                                                                             ^C Cur Pos
^T To Spel
                            Justify
                                                     Where Is
                                                                                                        UnCut Text
                                                                                                                                 To Spell
```

Essentially what we did is to let R4 announce to the network that it has paths that route packets from 13.0.0.0/8.

	2723 136.310014058	13.0.1.1	9.0.0.1	TCP	70 80 → 40367	[PSH, AC
	2724 136.310015332	9.0.0.1	13.0.1.1	TCP	68 40367 → 80	[ACK] Se
	2725 136.310027039	13.0.1.1	9.0.0.1	HTTP	96 Continuation	n
	2726 136.310028266	9.0.0.1	13.0.1.1	TCP	68 40367 → 80	
	2727 136.310056897		9.0.0.1	TCP	68 80 → 40367	
	2728 136.310203364		13.0.1.1	TCP	68 40367 → 80	
	2729 136.310227695		9.0.0.1	TCP	68 80 → 40367	[ACK] Se
	2730 137.076275556		9.0.0.1	BGP	87 KEEPALIVE M	essage
	2731 137.076304832		9.0.0.2	TCP	68 179 → 35882	
	2732 137.159796667		9.0.0.2	BGP	87 KEEPALIVE M	
	2733 137.159844066		9.0.0.1	TCP	68 35882 → 179	
	2734 137.545379652			ARP	44 Who has 9.0	
	2735 137.545402989			ARP	44 9.0.4.1 is	
100.0	2736 137.545408513		9.0.4.1	TCP	76 46880 → 1 79	
	2737 137.545429557		9.0.4.2	TCP	76 1 79 → 46880	
	2738 137.545442981		9.0.4.1	TCP	68 46880 → 179	
	2739 137.545563224	TAND PARTIES	9.0.4.1	BGP	121 OPEN Message	
	2740 137.545569455		9.0.4.2	TCP	68 179 → 46880	
	2741 137.545973574		9.0.4.2	BGP	140 OPEN Message	
	2742 137.545986725		9.0.4.1	TCP	68 46880 → 179	
	2743 137.546229993		9.0.4.1	BGP	106 KEEPALIVE M	
	2744 137.546357190		9.0.4.2	BGP	87 KEEPALIVE M	
	2745 137.587847177		9.0.4.1	TCP	68 46880 → 179	
	27/6 127 6/7282502	9 8 8 1	12 0 1 1	TCD	76 40360 - 80	LOS LINAS

Before the attack, we can see the HTTP request was responded to by source 9.0.0.1.

When the attack starts, a new BGP session was initiated between R1 and R4 similar to the one between R1 and R2 described above.

After the UPDATE Message exchange between R1 and R4. We can see the source port changed to 9.0.4.1, indicating that 13.0.1.1 is now the malicious host.

Original packet size is 28 bytes from source 9.0.0.1

The malicious packet size is 37 bytes from source 9.0.4.1

