УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Лабораторная работа №2.3

Дисциплина «Информационная безопасность»

Вариант 13

Выполнил: студент группы Р34131

Кузнецов Максим Александрович

Преподаватель:

Маркина Татьяна Анатольевна

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством метода бесключевого чтения.

Задание

		Экспоненты		Блоки зашифрованного текста	
Вариант	Модуль, N				
		e_1	e_2	C_1	C_2
				373852443734	22286870422
				447989059513	343015689591
				140756140384	281801228231
				207791711792	360270382562
				252160015422	264253306719
				151272799305	128520421967
13	518587807081	293177	1209781	431450717984	399665129411
				252882800366	448878989738
				112417596471	70913527757
				301753741810 480461056512	295285211952 247990966487
				334158277030	202711954425
				368394150653	201121363025

Ход работы

- 1. Решаем уравнение $e_1 * r e_2 * s = \pm 1$
- 2. Построчно производим дешифрацию: возводим c_1 в степень r, а c_2 в степень s по модулю N.
- 3. Перемножаем полученные числа и берем модуль по N.
- 4. Преобразуем результат в текст.
- 5. Повторяем шаги 2–4 для каждой строки и получаем итоговый текст.

Для решения задачи была разработана программа на Python.

Листинг разработанной программы

```
import math
N = 518587807081
e1 = 293177
e2 = 1209781
C1 = '''
373852443734
447989059513
140756140384
207791711792
252160015422
431450717984
252882800366
112417596471
480461056512
334158277030
368394150653
C2 = '''
22286870422
343015689591
281801228231
360270382562
264253306719
128520421967
399665129411
448878989738
295285211952
247990966487
202711954425
201121363025
def gcd extended(num1, num2):
```

```
div, x, y = gcd_extended(num2 % num1, num1)
    return div, y - (num2 // num1) * x, x
c 1 = list(map(int, C1.split()))
c 2 = list(map(int, C2.split()))
a, r, s = gcd extended(e1, e2)
print(f"1. Шаг первый: r = {r}, s = {s}")
output = ""
for i in range(len(c 1)):
       c 1 pow r = pow(c 1[i], r, N)
        c 2 pow s = pow(c 2[i], s, N)
       print(f"2. Шаг второй: c_1_pow_r = {c_1_pow_r}, c_2_pow_s =
{c_2_pow_s}")
        res = (c 1 pow r * c 2 pow s) % N
        print(f"3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = {res}")
        msg = res.to bytes(4, byteorder='big').decode('cp1251')
        print(f"4. Шаг четвертый: text(part) = {msg}")
        output += msg
print(f"5. Шаг пятый: итоговый текст -->{output}")
```

Результат работы программы:

```
1. Шаг первый: r = 559972, s = -135703
2. Шаг второй: c_1_pow_r = 182329854436, c_2_pow_s = 69595587711
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 3488671776
4. Шаг четвертый: text(part) = При
2. IIIar второй: c 1 pow r = 377770072921, c 2 pow s = 190293051609
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 4058965988
4. Шаг четвертый: text(part) = созд
2. IIIar BTOPOH: c 1 pow r = 432156597280, c 2 pow s = 385846773469
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 3773688040
4. Шаг четвертый: text(part) = ании
2. Шаг второй: с 1 pow r = 438370720662, с 2 pow s = 203901545441
3. Шаг третий: (c_1 pow * c_2 pow s) mod N = 552726245
4. Шаг четвертый: text(part) = coe
2. Шаг второй: c_1_pow_r = 187538453050, c_2_pow_s = 235946809363
3. Шаг третий: (c_1 pow * c_2 pow_s) mod N = 3840470501
4. Шаг четвертый: text(part) = дине
2. Шаг второй: c_1_pow_r = 486184940203, c_2_pow_s = 222117792391
3. Шаг третий: (с 1 pow * c 2 pow s) mod N = 3991469856
4. Шаг четвертый: text(part) = ния
2. Шаг второй: c_1_pow_r = 473555064772, c_2_pow_s = 375710700894
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 4059229936
4. Шаг четвертый: text(part) = стор
2. Шаг второй: c_1_pow_r = 221036696750, c_2_pow_s = 7032409519
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 4008573728
4. Шаг четвертый: text(part) = оны
2. Шаг второй: c_1_pow_r = 180661034032, c_2_pow_s = 218945970929
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 4007783653
4. Шаг четвертый: text(part) = обме
2. Шаг второй: c_1 pow_r = 49881527346, c_2 pow_s = 193573491959
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 3991462624
4. Шаг четвертый: text(part) = нива
2. Шаг второй: c_1_pow_r = 343264156798, c_2_pow_s = 44234210562
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 4277334527
4. Шаг четвертый: text(part) = ются
2. IIIar \texttt{BTOPOH}: c 1 pow r = 97511061110, c 2 pow s = 288865829588
3. Шаг третий: (c_1_pow * c_2_pow_s) mod N = 552461809
4. Шаг четвертый: text(part) = нес
2. IIIar второй: c 1 pow r = 453498220685, c 2 pow s = 369887064049
3. Шаг третий: (с 1 pow * c 2 pow s) mod N = 3941474336
4. Шаг четвертый: text(part) = ко
5. Шаг пятый: итоговый текст -->При создании соединения стороны обмениваются неско
```

Итоговый текст: При создании соединения стороны обмениваются неско

Вывод

В ходе выполнения данной лабораторной работы я:

- ознакомился с методом бесключевого чтения для атаки на алгоритм шифрования RSA
- Реализовал данный метод на языке Python.