

(1) TPR, FPR の計算

- 全陽性サンプル数: $P_{total}=5$
- ・ 全陰性サンプル数: $N_{total}=5$
- $TPR = TP/P_{total}$, $FPR = FP/N_{total}$

k	TP	FP	FPR (x)	TPR (y)
0	0	0	0.0	0.0
1/4	2	2	0.4	0.4
1/2	3	2	0.4	0.6
3/4	4	3	0.6	0.8
1	5	5	1.0	1.0

はい、承知いたしました。ご提示の簡潔な解答を、数学記号を中心に日本語へ翻訳します。

(2) ROC曲線

ROC曲線の頂点 (FPR, TPR):

$$(0,0) o (0.4,0.4) o (0.4,0.6) o (0.6,0.8) o (1,1)$$

(3) ランダムアルゴリズム

- P(予測 = P) = r とする。
- $egin{aligned} ullet & TPR = rac{E[TP]^{'}}{P_{total}} = rac{r \cdot P_{total}}{P_{total}} = r \ ullet & FPR = rac{E[FP]}{N_{total}} = rac{r \cdot N_{total}}{N_{total}} = r \end{aligned}$
- ・ 結論: TPR = FPR。 グラフは対角線 y = x となる。

(4) 性能の考察

- ・ アルゴリズム(3) (ランダム): ROC曲線は y=x、AUC = 0.5。
- ・ アルゴリズム(1): ROC曲線は常に $y \geq x$ を満たす (対角線上またはその左上)。
- ・ 面積の計算:

$$AUC_{(1)} = \frac{1}{2}(0.4)(0.4) + \frac{1}{2}(0.6 + 0.8)(0.2) + \frac{1}{2}(0.8 + 1.0)(0.4)$$

$$= 0.08 + 0.14 + 0.36 = 0.58$$

· 結論:

$$AUC_{(1)} = 0.58 > AUC_{(3)} = 0.5$$

したがって、アルゴリズム(1)の方が性能が優れている。