CS/ECE 374 Spring 2017 Homework 3 Problem 3 Renheng Ruan (rruan2) Lanxiao Bai (lbai5)

Let $L = \{0^i 1^j 2^k \mid k = 2(i+j)\}.$

- (a) Prove that L is context free by describing a grammar for L.
- (b) Prove that your grammar is correct. You need to prove that if $L \subseteq L(G)$ and $L(G) \subseteq L$ where G is your grammar from the previous part.

Solution:

- (a) $S \to \varepsilon \mid SSS \mid 0S22 \mid 1S22 \mid 0S1S2222$
- (b) We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:

Claim 1. $L(G) \subseteq L$, that is, every string in L(G) has exactly twice as many 2s as the sum of 0s and 1s.

Proof: For any string u, let $\Delta(u) = \#(2, u) - 2(\#(0, u) + \#(1, u))$. We need to prove that $\Delta(w) = 0$ for every string $w \in L(G)$.

Let w be an arbitrary string in L(G). Assume that $\Delta(x) = 0$ for every string $x \in L(G)$ s. Consider the *shortest* derivation of w, and assume $\Delta(x) = 0$ for every string $x \in L(G)$ such that |x| < |w|. There are five cases to consider, depending on the first production in the derivation of w.

- If $w = \varepsilon$, then #(2, w) = 2(#(0, w) + #(1, w)) = 0 by definition, so $\Delta(w) = 0$.
- Suppose the derivation begins $S \rightsquigarrow SSS \rightsquigarrow^* w$. Then w = xyz for some strings $x, y, z \in L(G)$, each of which can be derived with fewer than k productions. The inductive hypothesis implies $\Delta(x) = \Delta(y) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \leadsto 0S22 \leadsto^* w$. Then w = 0x22 for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \rightsquigarrow 1S00 \rightsquigarrow^* w$. Then w = 1x22 for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x) = 0$. It immediately follows that $\Delta(w) = 0$.
- Suppose the derivation begins $S \leadsto 0S1S2222 \leadsto^* w$. Then w = 0x1y2222 for some strings $x, y \in L(G)$. The inductive hypothesis implies $\Delta(x) = \Delta(y) = 0$. It immediately follows that $\Delta(w) = 0$.

In all cases, we conclude that $\Delta(w) = 0$, as required.

¹Alternatively: Suppose the *shortest* derivation of w begins $S \leadsto SSS \leadsto^* w$. Then w = xy for some strings $x, y \in L(G)$. Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction hypothesis implies. . . . We need some way to deal with the decompositions $w = \varepsilon \cdot w$ and $w = w \cdot \varepsilon$, which are both consistent with the production $S \to SSS$, without falling into an infinite loop.

Claim 2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many 2s as the sum of Os and Os.

Proof: For any string u, let $\Delta(u) = 2\#(1,u) - (\#(2,u) - 2\#(0,u))$. For any string u and any integer $0 \le i \le |u|$, let u_i denote the ith symbol in u, and let $u_{\le i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 2s as the sum of 0s and 1s. Assume that G generates every binary string x that is shorter than w and has twice as many 2s as the sum of 0s and 1s. There are two cases to consider:

- If $w = \varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \to \varepsilon$.
- Suppose w is non-empty. To simplify notation, let $\Delta_i = \Delta(w_{\leq i})$ for every index i, and observe that $\Delta_0 = \Delta_{|w|} = 0$. There are several subcases to consider:
 - Suppose $\Delta_i = 0$ for some index 0 < i < |w|. Then we can write w = xyz, where x, y and z are non-empty strings with $\Delta(x) = \Delta(y) = \Delta(z) = 0$. The induction hypothesis implies that $x, y, z \in L(G)$, and thus the production rule $S \to SSS$ implies that $w \in L(G)$.
 - Suppose $\Delta_i > 0$ for all 0 < i < |w|. Then w must begin with 0, since otherwise $\Delta_1 = -2$ or $\Delta_2 = -1$, and the last two symbol in w must be 22, since otherwise $\Delta_{|w|-1} = -1$. Thus, we can write w = 0x22 for some binary string x. We easily observe that $\Delta(x) = 0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \to 0S22$ implies $w \in L(G)$.
 - Suppose $\Delta_i < 0$ for all 0 < i < |w|. A symmetric argument to the previous case implies $w = \mathbf{1}x\mathbf{22}$ for some binary string x with $\Delta(x) = 0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \to \mathbf{1}S\mathbf{22}$ implies $w \in L(G)$.
 - Finally, suppose none of the previous cases applies: $\Delta_i < 0$ and $\Delta_j > 0$ for some indices i and j, but $\Delta_i \neq 0$ for all 0 < i < |w|.

Let i be the smallest index such that $\Delta_i < 0$. Because Δ_j either increases by 1 or decreases by 2 when we increment j, for all indices 0 < j < |w|, we must have $\Delta_i > 0$ if j < i and $\Delta_i < 0$ if $j \ge i$.

In other words, there is a *unique* index i such that $\Delta_{i-1} > 0$ and $\Delta_i < 0$. In particular, we have $\Delta_1 > 0$ and $\Delta_{|w|-1} < 0$. Thus, we can write $w = 0x\mathbf{1}y\mathbf{2222}$ for some binary strings x and y, where $|\mathbf{1}y\mathbf{22}| = i$.

We easily observe that $\Delta(x) = \Delta(y) = 0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \to 0S1S2222$ implies $w \in L(G)$.

In all cases, we conclude that *G* generates *w*.

Idea comes from the question 4 and use its form.