UVOD U TEORIJU BROJEVA

Treće predavanje - 17.10.2011.

Kongruencije

Teoriju kongruencija (i oznaku za kongruenciju) uveo je **Carl Friedrich Gauss** (1777-1855) - jedan od najvećih matematičara svih vremena.

Definicija 2.1. Ako cijeli broj $m \neq 0$ dijeli razliku a - b, kažemo da je a kongruentan b modulo m i pišemo $a \equiv b \pmod{m}$. U protivnom, kažemo da a nije kongruentan b modulo m i pišemo $a \not\equiv b \pmod{m}$.

Primijetimo da je a-b djeljivo sm ako i samo ako je djeljivo s-m pa, bez smanjenja općenitosti, možemo uzeti da je modul m prirodan broj.

Kongruencije imaju mnoga svojstva zajednička s jednakostima. Neka svojstva kongruencija dana su u narednim propozicijama.

Propozicija 2.1. Relacija "biti kongruentan modulo m" je relacija ekvivalencije na skupu \mathbb{Z} .

Dokaz: Na vježbama.

Propozicija 2.2. Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, tada je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, tada je $a \equiv b \pmod{d}$.
- (3) Ako je $a \equiv b \pmod{m}$, tada je $ac \equiv bc \pmod{mc}$ za svaki $c \neq 0$.

Dokaz:

- (1) Vrijedi a-b=mk i c-d=ml, gdje su $k,l\in\mathbb{Z}$. Sada je (a+c)-(b+d)=m(k+l) i (a-c)-(b-d)=m(k-l). Dakle, vrijedi $a+c\equiv b+d$ (mod m) i $a-c\equiv b-d$ (mod m). Jednostavnom transformacijom dobivamo ac-bd=a(c-d)+d(a-b)=m(al+dk) pa slijedi da je $ac\equiv bd$ (mod m). (2) Kako d|m, slijedi da postoji cijeli broj e takav da je m=de. Sada, iz a-b=mk, dobivamo $a-b=d\cdot(ek)$ pa zaključujemo da vrijedi $a\equiv b$ (mod d).
- (3) Iz a b = mk, množenjem s proizvoljnim nenul cijelim brojem c dobi-

vamo $ac - bc = (mc) \cdot k$. Dakle, vrijedi $ac \equiv bc \pmod{mc}$.

Propozicija 2.3. Neka je f polinom s cjelobrojnim koeficijentima. Ako je $a \equiv b \pmod{m}$, tada je $f(a) \equiv f(b) \pmod{m}$.

Dokaz: Na vježbama.

Slijedi nekoliko važnijih teorema o kongruencijama.

Teorem 2.4. Vrijedi $ax \equiv ay \pmod{m}$ ako i samo ako $x \equiv y \pmod{\frac{m}{(a,m)}}$. Posebno, ako je $ax \equiv ay \pmod{m}$ i (a,m) = 1, tada je $x \equiv y \pmod{m}$.

Dokaz:

Ako je $ax \equiv ay \pmod{m}$, tada postoji $z \in \mathbb{Z}$ takav da je ax - ay = mz. Podijelimo li tu jednakost s(a,m), dobivamo $\frac{a}{(a,m)}(x-y) = \frac{m}{(a,m)}z$. Dakle, $\frac{m}{(a,m)}$ dijeli $\frac{a}{(a,m)}(x-y)$. Primijetimo da $\frac{a}{(a,m)}$ i $\frac{m}{(a,m)}$ nemaju zajedničkih djelitelja, odnosno da su relativno prosti. Dakle, $\frac{m}{(a,m)}$ dijeli x-y. Drugim riječima, $x \equiv y \pmod{\frac{m}{(a,m)}}$.

Obratno, neka je $x \equiv y \pmod{\frac{m}{(a,m)}}$. Po Propoziciji 2.2. (3), vrijedi $ax \equiv ay \pmod{\frac{am}{(a,m)}}$. Jasno je da $(a,m) \mid a$. Uzmimo da je a = (a,m)d, gdje je $d \in \mathbb{Z} \setminus \{0\}$. Sada imamo $ax \equiv ay \pmod{md}$ pa je, po Propoziciji 2.2. (2), $ax \equiv ay \pmod{m}$.

Definicija 2.2. Skup $\{x_1, ..., x_m\}$ nazivamo **potpuni sustav ostataka modulo** m ako za svaki $y \in \mathbb{Z}$ postoji točno jedan $x_j, j \in \{1, ..., m\}$, takav da je $y \equiv x_j \pmod{m}$. Drugim riječima, potpuni sustav ostataka dobivamo tako da iz svake klase ekvivalencije modulo m uzmemo po jedan član. (Klasu ekvivalencije modulo m čine svi cijeli brojevi koji su kongruentni modulo m istom cijelom broju.)

Postoji beskonačno mnogo potpunih sustava ostataka modulo m. Jedan od njih je tzv. sustav najmanjih nenegativnih ostataka

$$\{0, 1, ..., m-1\}.$$

Koji god $y \in \mathbb{Z}$ uzmemo, broj y-x je djeljiv sm za točno jedan $x \in \{0,1,...,m-1\}.$

Teorem 2.5. Neka je $\{x_1, ..., x_m\}$ potpuni sustav ostataka modulo m i neka je (a, m) = 1. Tada je i $\{ax_1, ..., ax_m\}$ potpuni sustav ostataka modulo m.

Dokaz:

Kako je $\{x_1, ..., x_m\}$ potpuni sustav ostataka modulo m, slijedi da je svaki x_i , i = 1, ..., m, predstavnik po jedne klase ekvivalencije modulo m. Nikoja dva od njih nisu iz iste klase ekvivalencije modulo m. Moramo pokazati da isto vrijedi i za skup $\{ax_1, ..., ax_m\}$, gdje je (a, m) = 1.

Ako bi neki ax_k i ax_l , gdje je $k \neq l$ i $k, l \in \{1, ..., m\}$, bili iz iste klase ekvivalencije modulo m, vrijedilo bi $ax_k \equiv ax_l \pmod{m}$. Kako je (a, m) = 1, Teorem 2.4. povlači da je $x_k \equiv x_l \pmod{m}$, odnosno k = l, što je kontradikcija.

Neka je f(x) polinom s cjelobrojnim koeficijentima. Rješenje kongruencije $f(x) \equiv 0 \pmod{m}$ je svaki cijeli broj x za koji ta kongruencija vrijedi.

Uzmimo da je x_1 rješenje ove kongruencije te neka je $x_2 \equiv x_1 \pmod{m}$. Propozicija 2.3. povlači da je i $f(x_2) \equiv f(x_1) \pmod{m}$ pa zaključujemo da je i x_2 rješenje polazne kongruencije.

Dva rješenja x i x' smatramo ekvivalentnim ako je $x \equiv x' \pmod{m}$. Broj rješenja kongruencije je broj neekvivalentnih rješenja.

Teorem 2.6. Neka su a i m prirodni, a b cijeli broj. Kongruencija $ax \equiv b \pmod{m}$ ima rješenja ako i samo ako (a, m)|b. Ako ovaj uvijet vrijedi, onda gornja kongruencija ima točno (a, m) rješenja modulo m.

Dokaz:

Ako kongruencija $ax \equiv b \pmod{m}$ ima rješenja, tada postoji $y \in \mathbb{Z}$ takav da je ax - b = my. Neka je d = (a, m). Iz jednakosti ax - b = my slijedi da d|b (jer d|a i d|m).

Krenimo sada od toga da d|b. Uzmimo da je a=da', b=db' i m=dm'. Riješimo najprije kongruenciju $a'x\equiv b'\pmod{m'}$. Ta kongruencija ima točno jedno rješenje modulo m'. Obrazložimo. Kako je (a',m')=1, slijedi da postoje cijeli brojevi u i v takvi da je a'u+m'v=1. Pomnožimo li tu jednakost s b', dobivamo a'ub'+m'vb'=b'. Dakle,

$$a'(ub') - b' = -m'(vb'),$$

iz čega vidimo da je $a'(ub') \equiv b' \pmod{m'}$. Prema tome, jedno rješenje kongruencije $a'x \equiv b' \pmod{m'}$ je x = ub'. Neka su x_1 i x_2 bilo koja dva rješenja te kongruencije. Iz $a'x_1 \equiv b' \pmod{m'}$, $a'x_2 \equiv b' \pmod{m'}$ i Propozicije 2.2. (1) slijedi da je $a'x_1 \equiv a'x_2 \pmod{m'}$. Kako je (a', m') = 1, iz Teorema 2.4. slijedi da je $x_1 \equiv x_2 \pmod{m'}$. Dakle, sva ostala rješenja su ekvivalentna prvom rješenju.

Ako je x' rješenje jednadžbe $ax \equiv b \pmod{m}$, tada vrijedi ax' - b = lm, za neki cijeli broj l. Podijelimo li tu jednakost sd dobivamo a'x' - b' = lm'. Dakle, x' je ujedno i rješenje jednadžbe $a'x \equiv b' \pmod{m'}$ (množenjem sd analogno se dokaže i obrat pa tako zaključujemo da polazna kongruencija ima rješenja), a sva rješenja te jednadžbe u cijelim brojevima dana su sx = x' + nm', gdje je n cijeli broj. (Odnosno, sva rješenja su međusobno kongruentna modulo m'.) Sva međusobno neekvivalentna rješenja polazne jednadžbe (ona koja nisu međusobno kongruentna modulo m) dobivamo za n = 0, 1, ..., d - 1. Dakle, ako d|b, onda kongruencija $ax \equiv b \pmod{m}$ ima točno d rješenja modulo m.

Iz Teorema 2.6. slijedi da ako je p prost broj i a nije djeljiv s p, tada kongruencija $ax \equiv b \pmod{p}$ uvijek ima rješenje i to rješenje je jedinstveno. Iz toga slijedi da skup ostataka $\{0, 1, ..., p-1\}$ pri dijeljenju s p, uz zbrajanje i množenje modulo p, čini polje. Ono se obično označava sa \mathbb{Z}_p ili sa \mathbb{F}_p .

Jedno zanimljivo pitanje je kako riješiti kongruenciju $a'x \equiv b' \pmod{m'}$, gdje je (a',m')=1. Kako je (a',m')=1, to postoje cijeli brojevi u i v takvi da je a'u+m'v=1, koji se mogu odrediti pomoću Euklidovog algoritma. U dokazu Teorema 2.6. pokazali smo da je jedno rješenje kongruencije $a'x \equiv b' \pmod{m'}$ dano sx=ub', a sva ostala rješenja su ekvivalentna x.

Primjer: Riješite kongruenciju $555x \equiv 15 \pmod{5005}$.

Rješenje:

Primijetimo da je (555,5005) = 5 i da 5|15. Dakle, zadana će kongruencija imati 5 rješenja modulo 5005. Nakon dijeljenja s 5, dobivamo kongruenciju

$$111x \equiv 3 \pmod{1001}$$
,

koju ćemo najprije riješiti. Njezino jedno rješenje je x = 3u, gdje je 111u + 1001v = 1. Da bi odredili u, koristimo Euklidov algoritam:

$$1001 = 111 \cdot 9 + 2$$
$$111 = 2 \cdot 55 + 1$$
$$2 = 1 \cdot 2$$

Vrijedi $r_2 = 1 = (1001, 111)$ pa moramo odrediti y_2 po rekurzivnoj formuli opisanoj u prethodnim predavanjima. Imamo $q_1 = 9$, $q_2 = 55$. Zatim $y_{-1} = 1$

0, $y_0=1,\ y_1=-9,\ y_2=496.$ Dakle, u=496 pa je x=1488. Vrijedi $1488\equiv487\pmod{1001}$ pa možemo reći da su rješenja kongruencije $111x\equiv3\pmod{1001}$ dana s $x\equiv487\pmod{1001}.$ Kako je d=5, rješenja polazne kongruencije dana su s

$$x \equiv 487, 1488, 2489, 3490, 4491 \pmod{5005}$$

jer je $487 = 487 + 0 \cdot 1001$, $1488 = 487 + 1 \cdot 1001$, $2489 = 487 + 2 \cdot 1001$, $3490 = 487 + 3 \cdot 1001$, $4491 = 487 + 4 \cdot 1001$ (vidjeti dokaz Teorema 2.6.).

Teorem 2.7. (Kineski teorem o ostacima) Neka su $m_1, m_2, ..., m_r$ u parovima relativno prosti prirodni brojevi te neka su $a_1, a_2, ..., a_r$ cijeli brojevi. Tada sustav kongruencija

$$x \equiv a_1 \pmod{m_1},$$

 $x \equiv a_2 \pmod{m_2}, ...,$
 $x \equiv a_r \pmod{m_r}$

ima rješenja. Ako je x_0 jedno rješenje, onda su sva rješenja tog sustava dana s $x \equiv x_0 \pmod{m_1 m_2 \cdots m_r}$.

Dokaz:

Neka je $m=m_1m_2\cdots m_r$ te neka je $n_j=\frac{m}{m_j}$ za j=1,...,r. Tada je $(m_j,n_j)=1$ pa postoji cijeli broj x_j takav da je $n_jx_j\equiv a_j\pmod{m_j}$. (Naime, postoje cijeli brojevi u i v, takvi da je $m_ju+n_jv=1$. Pomožimo li ovu jednakost s a_j , slijedi navedeni zaključak.) Promotrimo broj

$$x_0 = n_1 x_1 + \dots + n_r x_r.$$

Svi pribrojnici ovoga zbroja djeljivi su s m_j osim možda $n_j x_j$ pa je $x_0 \equiv n_j x_j$ (mod m_j). Dakle, $x_0 \equiv a_j \pmod{m_j}$ pa je x_0 rješenje zadanog sustava kongruencija.

Ako su x i y dva rješenja zadanog sustava kongruencija, koristeći Propoziciju 2.2. (1), dobivamo $x \equiv y \pmod{m_j}$ za j = 1, ..., r. Dakle, vrijedi $x - y = k_j m_j$, gdje su k_j cijeli brojevi, za j = 1, ..., m. Korištenjem činjenice da su $m_1, ..., m_r$ u parovima relativno prosti, dobivamo da je $x \equiv y \pmod{m}$.

Primjer: Riješite sustav kongruencija $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$, $x \equiv 4 \pmod{11}$.

Rješenje:

Koristimo oznake iz Teorema 2.7. Imamo $m=5\cdot 7\cdot 11=385$. Zatim $n_1=\frac{385}{5}=77,\ n_2=\frac{385}{7}=55,\ n_3=\frac{385}{11}=35$ te $x_0=77x_1+55x_2+35x_3,$ gdje je $77x_1\equiv 2\ (\mathrm{mod}\ 5),\ 55x_2\equiv 3\ (\mathrm{mod}\ 7)$ i $35x_3\equiv 4\ (\mathrm{mod}\ 11)$.

Prethodne tri kongruencije se mogu malo "pojednostn
vniti" pa imamo $2x_1 \equiv 2 \pmod{5}$, $6x_2 \equiv 3 \pmod{7}$ i $2x_3 \equiv 4 \pmod{11}$. Sada je lako vidljivo da možemo uzeti $x_1 = 1$, $x_2 = 4$ i $x_3 = 2$ pa je $x_0 = 367$. Konačno, sva rješenja zadanog sustava dana su sa $x \equiv 367 \pmod{385}$.