

FCC/IC - TEST REPORT

Report Number	:	68.950.15.237.01	Date of Issue:	October 20, 2015
Model	:	NM112BU		
Product Type	:	Video Baby Monitor (Ba	by Unit)	
Applicant	<u>:</u>	Cvision (HK) Limited		
Address	:	Rm 902, Wilson House, Kong.	19-27 Wyndham	Street, Central, Hong
Production Facility	<u>:</u>	TATUNG COMPANY		
Address	<u>:</u>	22 Chungshan N. Rd. 3	^d Sec. Taipei 104	Taiwan.
Test Result	:	■ Positive □ Nega	ntive	
Total pages including Appendices	:	36		

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	Ta	able of Contents	2
2	De	etails about the Test Laboratory	3
3	De	escription of the Equipment Under Test	4
4	Sı	ummary of Test Standards	5
5	Sı	ummary of Test Results	6
6	G	eneral Remarks	7
7	Te	est Setups	8
8	Sy	ystems test configuration	9
9	Τe	echnical Requirement	10
9).1	Conducted Emission	10
9	9.2	Conducted peak output power	13
9	9.3	20 dB bandwidth	15
9).4	Carrier Frequency Separation	18
9	9.5	Number of hopping frequencies	21
9	9.6	Dwell Time	23
9).7	Spurious RF conducted emissions	25
9	8.6	Band edge testing	29
g	9.9	Spurious radiated emissions for transmitter	32
10		RF Exposure Evaluation	34
11		Test Equipment List	35
12		System Measurement Uncertainty	36

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

502708

No.:

IC Registration

10320A-1

No:

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Product: Video Baby Monitor (Baby unit)

Model no.: NM112BU

FCC ID: 2AC9F-112BU

IC ID: 12001A-112BU

Options and accessories: NIL

Rating: DC 5.0V/1000mA

Powered by external power supply:

Adaptor Input: 100-240VAC, 50/60Hz; 200mA

Adaptor Output: 5.0V, 1000mA

RF Transmission Frequency: 2402-2479MHz

No. of Operated Channel: 23

Modulation: GFSK

Antenna Type: Integral Antenna

Antenna Gain: 0dBi

Description of the EUT: The Equipment Under Test (EUT) is a Baby Monitor

operated at 2.4GHz

Channel List		
CH1=2402MHz	CH2=2404MHz	CH3=2406MHz
CH4=2408MHz	CH5=2410MHz	CH6=2415MHz
CH7=2420MHz	CH8=2425MHz	CH9=2430MHz
CH10=2435MHz	CH11=2440MHz	CH12=2445MHz
CH13=2450MHz	CH14=2455MHz	CH15=2460MHz
CH16=2465MHz	CH17=2467MHz	CH18=2469MHz
CH19=2471MHz	CH20=2473MHz	CH21=2475MHz
CH22=2477MHz	CH23=2479MHz	

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C 10-1-2014 Edition	PART 15 - RADIO FREQUENCY DEVICES Subpart C - Intentional Radiators
RSS-Gen Issue 4 November 2014	General Requirements for the Certification of Radio Apparatus
RSS-247 Issue 1 May 2015	RSS-247 —Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices
RSS-102 Issue 5 March 2015	Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure released by FCC on March 30, 2000 and C63.10 (2014).

5 Summary of Test Results

	Т	echnical Requirements					
	FCC Part 1	5 Subpart C, RSS-Gen,	RSS-247	7			
	Test Condition	า	Pages	Test		st Res	
§15.207	RSS-GEN A8.8	Conducted emission AC power port	10	Site 1	Pass 🖂	Fail	N/A
§15.247 (b) (1)	RSS-247 5.4(4)	Conducted peak output power	13	Site 1	\boxtimes		
§15.247(a)(1)	RSS-247 5.1(2)	20dB bandwidth	15	Site 1			
§15.247(a)(1)	RSS-247 5.1(2)	Carrier frequency separation	18	Site 1	\boxtimes		
§15.247(a)(1)(iii)	RSS-247 5.1(3)	Number of hopping frequencies	21	Site 1	\boxtimes		
§15.247(a)(1)(iii)	RSS-247 5.1(3)	Dwell Time	23	Site 1			
§15.247(a)(2)	RSS-247 5.2 (1)	6dB bandwidth					\boxtimes
§15.247(e)	RSS-247 5.2 (2)	Power spectral density					\boxtimes
§15.247(d)	RSS-247 5.5	Spurious RF conducted emissions	25	Site 1			
§15.247(d)	RSS-247 5.5	Band edge	29	Site 1	\boxtimes		
§15.247(d) & §15.209	RSS-247 5.5 & RSSGEN 6.13	Spurious radiated emissions for transmitter	32	Site 1			
	RSS-102 Section 2.2.5	RF Exposure Evaluation	34	Site 1			
§15.203	RSSGEN 8.3	Antenna requirement	See r	note 2			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an integral antenna, which gain is 0dBi. In accordance to §15.203 and § RSSGEN 8.3, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AC9F-112BU, IC: 12001A-112BU complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules, RSS-Gen, RSS-247 and RSS-102.

SUMMARY:

All tests according to the regulations cited on page 5 were

- - Performed
- ☐ Not Performed

The Equipment Under Test

- - **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: September 21, 2015

Testing Start Date: September 21, 2015

Testing End Date: October 19, 2015

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Reviewed by: Prepared by:

John Zhi EMC Project Manager

Johnshi

Alan Xiong EMC Project Engineer

Alem Xsong

7 Test Setups

7.1 Radiated test setups

7.2 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenovo	X240	

Test software which used to control the EUT in continues transmitting mode

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN A8.8, conducted emissions limit as below:

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
 0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Decreasing linearly with logarithm of the frequency

Product Type Video Baby Monitor (Baby Unit)

M/NNM112BU Operating Condition Test Specification **Transmitting**

Line

Comment AC 120V/60Hz

Frequency (MHz)	MaxPeak (dΒμV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.370000	38.57	58.50	19.93	L1	10.2
0.746000	36.31	56.00	19.69	L1	9.9
1.294000	35.98	56.00	20.02	L1	9.8

Product Type : Video Baby Monitor (Baby Unit)

M/N : NM112BU
Operating Condition : Transmitting
Test Specification : Neutral
Comment : AC 120V/60Hz

Frequency (MHz)	MaxPeak (dΒμV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.374000	40.95	58.41	17.46	N	10.1
0.654000	34.89	56.00	21.11	N	9.9
1.422000	33.89	56.00	22.11	N	9.8

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW,
 Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

According to §15.247 (b) (1) & RSS-247 5.4(4), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted peak output power

GFSK modulation Test Result

Frequency MHz	Conducted Peak Output Power dBm	Result
Low channel 2402MHz	17.69	Pass
Middle channel 2440MHz	18.06	Pass
High channel 2479MHz	17.76	Pass

9.3 20 dB bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

ı ır	n	ı	t

Limit [kHz]	
 N/A	

20 dB bandwidth

GFSK Modulation test result

Frequency	20 dB Bandwidth	Limit	Result
MHz	kHz	kHz	
2402	2120.1		Pass
2440	2199.7		Pass
2479	2221.4		Pass

20 dB bandwidth

9.4 Carrier Frequency Separation

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit
kHz
≥25KHz or 2/3 of the 20 dB bandwidth which is greater

GFSK Modulation Limit

Frequency	2/3 of 20 dB Bandwidth
 MHz	kHz
2402	1413.4
2440	1466.5
2479	1480.9

Carrier Frequency Separation

Test result: The measurement was performed with the typical configuration (normal hopping status), here GFSK modulation mode was used to show compliance.

GFSK Modulation test result

Carrier Frequency Separation	Result
kHz	
1973.2	Pass
5007.0	Pass
1997.1	Pass
	kHz 1973.2 5007.0

Carrier Frequency Separation

9.5 Number of hopping frequencies

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit
number
 ≥ 15

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status),. Here GFSK modulation mode was used to show compliance.

Number of hopping frequencies	Result
23	Pass

9.6 Dwell Time

Test Method

- Connect EUT antenna terminal to the spectrum analyzer with a low loss cable.
 Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

According to §15.247(a)(1)(iii) & RSS-210 A8.1(c) The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Dwell time

The maximum dwell time shall be 0,4 s.

We test all mode and worse case recorded in the report.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 22 [ch] = 8.8 [s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in 8.8s = 32*(8.8/4.4) = 64

Test Result

Modulation	Frequency	Reading (ms)	Total Hops	Test Result (ms)	Limit (ms)	Result
GFSK	2440MHz	0.167	64	10.69	< 400	Pass

GFSK Modulation

9.7 Spurious RF conducted emissions

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
 RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

2402MHz

Spurious RF conducted emissions

2440MHz

Spurious RF conducted emissions

2479MHz

9.8 Band edge testing

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

According to §15.247(d) & RSS-210 A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen7.2.2, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

Band edge testing

GFSK Modulation Test Result: Hopping on mode:

Band edge testing

Hopping off mode:

9.9 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

 Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak,

 Trace = max hold
- 4. Follow the guidelines in ANSI C63.4-2009 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Limit

According to part 15.247(d) & RSS-247 5.5, the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209 & RSSGEN 6.13.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, GFSK mode) test result is listed in the report.

Transmitting spurious emission test result as below:

GFSK Modulation 2402MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
175.99	31.16	Horizontal	43.50	QP	12.34	Pass
432.25	42.63	Horizontal	46.00	QP	3.27	Pass
464.01	43.14	Horizontal	46.00	QP	2.86	Pass
175.99	38.16	Vertical	43.50	QP	5.34	Pass
383.99	40.92	Vertical	46.00	QP	5.08	Pass
720.03	42.68	Vertical	46.00	QP	3.32	Pass
*4804	70.26	Horizontal	74	PK	3.74	Pass
*4804	53.02	Horizontal	54	AV	0.98	Pass
7206	62.31	Horizontal	74	PK	11.69	Pass
7206	48.93	Horizontal	54	AV	5.07	Pass
9608	66.01	Horizontal	74	PK	7.99	Pass
9608	50.25	Horizontal	54	AV	3.75	Pass
*12010	64.37	Horizontal	74	PK	9.63	Pass
*12010	50.02	Horizontal	54	AV	3.98	Pass
*4804	71.10	Vertical	74	PK	2.90	Pass
*4804	53.29	Vertical	54	AV	0.71	Pass
7206	64.21	Vertical	74	PK	9.79	Pass
7206	49.28	Vertical	54	AV	4.72	Pass
9608	65.34	Vertical	74	PK	8.66	Pass
9608	50.11	Vertical	54	AV	3.89	Pass
*12010	64.12	Vertical	74	PK	9.88	Pass
*12010	49.25	Vertical	54	AV	4.75	Pass

Remark:

- (1) AV Emission Level= PK Emission Level+20log(dutycycle)
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (3) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

10 RF Exposure Evaluation

For the purpose of the exemption clause of RSS-102 section 2.5.2, the TP is calculated according to the following equation given in RSS-Gen section 6.12:

TP= (FSxD)² ------

30xG

where FS : Field Strength in volts/metre

D : Distance between two antennas in metres

G : Antenna gain, 0 dBi

According to clause 9.2, the Max. Output Power is 0.064 W @ 2440MHz.

EIRP = the maximum output power+ antenna gain

= 18.06 dBm + 0 dBi

= 18.06 dBm

= 64 mW

Therefore, for the device operating at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834} W$ (adjusted for tune-up tolerance), where f is in MHz.

maximum e.i.r.p. $\leq 1.31 \times 10^{-2} f^{0.6834} W$

 $\leq 1.31 \times 10^{-2} \ 2440^{0.6834} W$

≤ 2.705 W

The power density at 20cm from the antenna : = EIRP / 4π R²

 $= 0.0127 \text{ mW} / \text{cm}^2$

11 Test Equipment List

List of Test Instruments

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2016-7-24
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2016-8-14
Horn Antenna	Rohde & Schwarz	HF907	102294	2016-7-24
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2016-7-24
3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29

12 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Uncertainty for Radiated Spurious Emission	Horizontal: 4.95dB;
25MHz-3000MHz	Vertical: 5.02dB;
Uncertainty for Radiated Spurious Emission	Horizontal: 4.89dB;
3000MHz-18000MHz	Vertical: 4.88dB;
Uncertainty for Radiated Spurious Emission	Horizontal: 4.93dB;
18000MHz-40000MHz	Vertical: 4.92dB;
Uncertainty for Conducted RF test	Power level test involved: 2.04dB
	Frequency test involved:1.1×10 ⁻⁷