10/25/22, 9:11 AM DIV Contents

Impulse-train Sampling

One type of sampling that satisfies the Sampling Theorem is called impulse-train sampling. This type of sampling is achieved by the use of a periodic impulse train multiplied by a continuous time signal, x(t) | The periodic impulse train, p(t) | is referred to as the sampling function, the period, T|, is referred to as the sampling period, and the fundamental frequency of p(t)|,

$$\omega_{S}=\frac{2\pi}{T},$$

is the sampling frequency. We define $x_p(t)$ by the equation,

$$x_p(t) = x(t)p(t)$$
, where
$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

Graphically, this equation looks as follows,

$$x(t) \mid \cdots \rightarrow x \longrightarrow x_p(t) \mid$$

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT) \mid$$

By using linearity and the sifting property, $x_p(t)$ can be represented as follows,

$$x_{p}(t) = x(t)p(t)$$

$$= x(t)\sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$= \sum_{n=-\infty}^{\infty} x(t)\delta(t - nT)$$

$$= \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$$

Now, in the time domain, $x_p(t)$ looks like a group of shifted deltas with magnitude equal to the value of x(t) at that time, nT, in the original function. In the frequency domain, $X_p(\omega)$ looks like shifted copies of the original $X(\omega)$ that repeat every ω_s , except that the magnitude of the copies is 1/T of the magnitude of the original $X(\omega)$.

Why does $X_p(\omega)$ look like copies of the original $X(\omega)$?

This answer can be found simply by using the Fourier Transform of the $X_p(\omega)$

$$X_{p}(\omega) = F(x(t)p(t))$$

$$= \frac{1}{2\pi}X(\omega) * P(\omega) \mid$$

$$= \frac{1}{2\pi}X(\omega) * \sum_{k=-\infty}^{\infty} 2\pi a_{k}\delta(\omega - \omega_{s}), a_{k} = \frac{1}{T} \mid$$

$$= \sum_{k=-\infty}^{\infty} \frac{1}{T}X(\omega - k\omega_{s}) \mid$$

10/25/22, 9:11 AM DIV Contents

From the above equation, it is obvious that $X_p(\omega)$ is simply shifted copies of the original function (as can be seen by the $X(\omega - k\omega_s)$) that are divided by T (as can be seen by 1/T.

How to recover x(t)

In order to recover the original function, $x_p(t)$, we can simply low-pass filter $x_p(t)$ as long as the filter,

$$H(\omega) = \left\{ \begin{array}{ll} T, & |\omega| < \omega_c \\ 0, & else \end{array} \right.$$

with some ω_c | satisfying, $\omega_m < \omega_c < \omega_s - \omega_m$ | Also, the low-pass filter must have a gain of T| This can be represented graphically as shown below,

filter
$$x_p(t) | ----> H(\omega) | ----> x_r(t) |$$

where $x_r(t)$ represents the recovered original function.

Back to ECE301