Nome:

_ Turma: _____

Leis de kirchhoff

1. (1 Ponto) O esquema representa uma rede de distribuição de energia. Determine as intensidades das correntes elétricas em cada ramo do circuito.

- 2. (1 Ponto) Para o trecho de circuito da figura calcule a ddp:
 - (a) entre os pontos A e B $(V_A V_B)$;
 - (b) entre os pontos C e B $(V_C V_B)$.

3. (1 Ponto) Para o circuito da figura, determine as intensidades das correntes elétricas em todos os ramos.

4. (1 Ponto) No circuito dado, determine a diferença de potencial $V_A - V_B$ no ramo AB.

- 5. (1 Ponto) (Efei-MG) As duas baterias do circuito, associadas em paralelo, alimentam: o amperímetro A ideal, a lâmpada de incandescência de resistência R e o resistor de resistência 1 Ω , todos em série. Se o amperímetro registra 4 A, calcule:
 - (a) as intensidades de corrente i_1 e i_2 nas baterias;
 - (b) a resistência elétrica R da lâmpada.

6. (1 Ponto) (FEI-SP) No circuito da figura, a intensidade de corrente i_1 vale 0,2 A. Determine i_2 , i_3 e R.

- 7. (1 Ponto) Para o trecho de circuito dado abaixo, calcule a ddp entre os pontos:
 - (a) A e B $(V_A V_B)$
 - (b) C e B $(V_C V_B)$

8. (1 Ponto) No trecho de circuito da figura, sabe-se que a ddp entre os pontos A e B é nula. Calcule as intensidades das correntes i_2 e i_3 .

9. (1 Ponto) (UFPE) Calcule o potencial elétrico no ponto A, em volts, considerando que as baterias têm resistências internas desprezíveis e que o potencial no ponto B é igual a 15 volts.

