BayesExam

Christophoros Spyretos

2022-10-18

Problem 1

Task d

Posterior Distribution of theta

Task e

Posterior Distribution of theta

The posterior approximation is not that accurate, the exact posterior is skewed to the right.

Problem 2

```
source("ExamData.R")
```

Task a

```
set.seed(12345)
mu_0 <- as.vector(rep(0,3))
Sigma2_0 <- 100*diag(3)
nIter <- 20000

PostDraws <- BayesLogitReg(y, X, mu_0, Sigma2_0, nIter)

Betas <- PostDraws$betaSample
intervalB1 <- quantile(Betas[,2], probs = c(0.025,0.975))

intervalB1 <- data.frame(lower_bound = intervalB1[1], upper_bound = intervalB1[2])
colnames(intervalB1) <- c("Lower Bound", "Upper Bound")
rownames(intervalB1) <- c("95% Equal Tail Credible Interval")
knitr::kable(intervalB1)</pre>
```

	Lower Bound	Upper Bound
95% Equal Tail Credible Interval	0.0146446	0.1813111

The 95% posterior probability that β_1 is on this interval.

Task b

```
prob2b <- mean(Betas[,2]>0 & Betas[,3]>0)
```

The joint posterior probability that both $\beta_1 > 0$ and $\beta_2 > 0$ is approximately 0.92.

Task c

Posterior distribution of (1-pi)/pi

The ratio represents the odds that a bridge does not need repair within the next five years. The plot seems reasonable, because it is a 5 year old and it should not need repair. The reliability of results for such bridges should be question because it is a very new bridge.

Task d

```
x1Grid <- seq(min(X[,2]), max(X[,2]), 0.1)
intervals <- matrix(0,length( x1Grid), 2)

for (i in 1:length(x1Grid)){</pre>
```

95 % equal tail posterior probability intervals for pi on a grid of values of x1

Task e

Posterior distribution of pi

The posterior probability that $p_i > 0.5$ is approximately 0.16

Problem 3

$Task\ c$

```
buy <- 80*(19/30) - 20
nobuy <- 420*(19/30) - 240
```

The bank should buy the option.