Demostración

∀ u :: Universo . ∀ o :: Objeto . elem o (objetos_en u) ⇒ elem (Right o) u

Hacemos inducción sobre el universo considerando type Universo = [Either Personaje Objeto]

Caso base

```
u :: Universo . u = [] (conjunto vacío)
```

Qvq

```
\forall o :: Objeto . elem o (objetos_en []) \Rightarrow elem (Right o) [] \equiv (por definición de objetos_en)
```

 \forall o :: Objeto . elem o [] \Rightarrow elem (Right o) [] \equiv (por definición de elem)

∀ o :: Objeto . False ⇒ False ≡ True ■

Caso inductivo

Hipótesis inductiva

 \forall o :: Objeto . elem o (objetos_en xs) \Rightarrow elem (Right o) xs

Qvq

 \forall x :: Either Personaje Objeto . \forall o :: Objeto . elem o (objetos_en x:xs) \Rightarrow elem (Right o) x:xs

Por extensionalidad para Either basta con ver los casos (x = Left a) y (x = Right b)

Subcaso Left

 \forall a :: Personaje . \forall o :: Objeto . elem o (objetos_en (Left a):xs) \Rightarrow elem (Right o) (Left a):xs \equiv (por definición de objetos_en)

 \forall a :: Personaje . \forall o :: Objeto . elem o (map (\((Right x) -> x)\) (filter es_un_objeto (Left a):xs)) \Rightarrow elem (Right o) (Left a):xs \equiv (por definición de filter)

 \forall a :: Personaje . \forall o :: Objeto . elem o (map (\((Right x)-> x)\) (if es_un_objeto (Left a) then (Left a):(filter es_un_objeto xs) else (filter es_un_objeto xs)) \Rightarrow elem (Right o) (Left a):xs \equiv (evaluando es_un_objeto (Left a) según la definición de es_un_objeto)

 \forall a :: Personaje . \forall o :: Objeto . elem o (map (\((Right x) -> x)\) (if False then (Left a):(filter es_un_objeto xs)) \Rightarrow elem (Right o) (Left a):xs \equiv

 \forall a :: Personaje . \forall o :: Objeto . elem o (map (\((Right x) -> x)\) (filter es_un_objeto xs) \Rightarrow elem (Right o) (Left a):xs \equiv (reemplazo sintáctico por la definición de objetos_en xs)

 \forall a :: Personaje . \forall o :: Objeto . elem o (objetos_en xs) \Rightarrow elem (Right o) (Left a):xs \equiv (por la definición de elem)

 \forall a :: Personaje . \forall o :: Objeto . elem o (objetos_en xs) \Rightarrow (Right o) = (Left a) || elem (Right o) xs \equiv (evaluando (Right o) = (Left a))

∀ a :: Personaje . ∀ o :: Objeto . elem o (objetos_en xs) ⇒ False || elem (Right o) xs ≡

 \forall o :: Objeto . elem o (objetos_en xs) \Rightarrow elem (Right o) xs

VÁLIDO POR HIPÓTESIS INDUCTIVA

Subcaso Right

 \forall b :: Objeto . \forall o :: Objeto . elem o (objetos_en (Right b):xs) \Rightarrow elem (Right o) (Right b):xs \equiv (por definición de objetos_en)

 \forall b :: Objeto . \forall o :: Objeto . elem o (map (\(Right x)-> x) (filter es_un_objeto (Right b):xs)) \Rightarrow elem (Right o) (Right b):xs \equiv (por definición de filter)

 \forall b :: Objeto . \forall o :: Objeto . elem o (map (\(Right x)-> x) (if es_un_objeto (Right b) then (Right b):(filter es_un_objeto xs) else filter es_un_objeto xs)) \Rightarrow elem (Right o) (Right b):xs \equiv (evaluando es_un_objeto (Right b) según la definición de es_un_objeto)

 \forall b :: Objeto . \forall o :: Objeto . elem o (map (\((Right x)-> x)\) (if True then (Right b):(filter es un objeto xs)) \Rightarrow elem (Right o) (Right b):xs =

 \forall b :: Objeto . \forall o :: Objeto . elem o (map (\((Right x)-> x) (Right b):(filter es_un_objeto xs)) \Rightarrow elem (Right o) (Right b):xs \equiv (por definición de map)

 \forall b :: Objeto . \forall o :: Objeto . elem o ((\(Right x)-> x) (Right b): (map (\(Right x)-> x) (filter es_un_objeto xs))) \Rightarrow elem (Right o) (Right b): $xs \equiv (e^{valuando} (((Right x)-> x) (Right x)) + (Right x) + (Right x$

 \forall b :: Objeto . \forall o :: Objeto . elem o (b:(objetos_en xs)) \Rightarrow elem (Right o) (Right b):xs \equiv (por definición de elem)

 \forall b :: Objeto . \forall o :: Objeto . o=b || elem o (objetos_en xs) \Rightarrow (Right o)=(Right b) || elem (Right o) xs

Veamos por casos:

o=b || elem o (objetos_en xs) = False
La implicación resulta verdadera, pues False ⇒ P es True ∀P

- o=b || elem o (objetos_en xs) = True
 - o =b = True o=b \Rightarrow (Right o)=(Right b) Luego, la implicación resulta verdadera
 - o elem o (objetos_en xs) = True

elem o (objetos_en xs) \Rightarrow elem (Right o) xs VÁLIDO POR HIPÓTESIS INDUCTIVA, Luego la implicación resulta verdadera \blacksquare

QED.