AFFINE CONNECTIONS, CURVATURE, AND TORSION

J. Mensah

October 27, 2025

1. Torsion

Theorem 1.1. Let ∇ be an affine connection on \mathbb{R}^n , and

Proposition 1.2. Let M be a smooth manifold with affine connection ∇ . If γ is a piecewise-smooth path, then

$$\tau_{\nabla}(\overline{\gamma}) = -\Gamma(\gamma)\tau_{\nabla}(\gamma). \tag{1.1}$$

Proof. The accumulated torsion of the reverse path γ is given by

$$\tau_{\nabla}(\overline{\gamma}) = \int_{0}^{t(\overline{\gamma})} \Gamma(\overline{\gamma})_{t}^{0} \left[\overline{\gamma}'(t) \right] dt = -\int_{0}^{t(\gamma)} \Gamma(\overline{\gamma})_{t(\overline{\gamma})}^{0} \Gamma(\overline{\gamma})_{t}^{t(\overline{\gamma})} \left[\gamma'(t(\gamma) - t) \right] dt. \tag{1.2}$$

Performing the substitution $t'=t(\gamma)-t$ and applying Proposition ?? yields

$$\tau_{\nabla}(\overline{\gamma}) = -\Gamma(\gamma) \int_{0}^{t(\gamma)} \Gamma(\gamma)_{t'}^{0} \left[\gamma'(t') \right] dt'. \tag{1.3}$$

The conclusion follows.

Proposition 1.3. Let M be a smooth manifold with affine connection ∇ . If $\alpha \colon y \rightsquigarrow z$ and $\beta \colon x \rightsquigarrow y$ are smooth paths, then

$$\tau_{\nabla}(\alpha\beta) = \Gamma(\overline{\beta})[\tau_{\nabla}(\alpha)] + \tau_{\nabla}(\beta). \tag{1.4}$$

Proof. The endpoint of the development of $\alpha\beta$ is given by

$$\tau_{\nabla}(\alpha\beta) = \int_{t(\beta)}^{t(\alpha)+t(\beta)} \Gamma(\alpha\beta)_t^0 \left[(\alpha\beta)'(t) \right] dt + \int_0^{t(\beta)} \Gamma(\alpha\beta)_t^0 \left[(\alpha\beta)'(t) \right] dt. \tag{1.5}$$

J. Mensah

Applying Proposition ?? yields

$$\tau_{\nabla}(\alpha\beta) = \int_{0}^{t(\alpha)} \Gamma(\overline{\beta}) \Gamma(\alpha)_{t}^{0} \left[\alpha'(t)\right] dt + \int_{0}^{t(\beta)} \Gamma(\beta)_{t}^{0} \left[\beta'(t)\right] dt$$
 (1.6)

$$= \Gamma(\overline{\beta}) \int_0^{t(\alpha)} \Gamma(\alpha)_t^0 \left[\alpha'(t) \right] dt + \int_0^{t(\beta)} \Gamma(\beta)_t^0 \left[\beta'(t) \right] dt.$$
 (1.7)

The conclusion follows.

Note that this implies a kind of "right cancellation" law for τ_{∇} : $\tau_{\nabla}(\alpha\beta) = \tau_{\nabla}(\alpha'\beta)$ if and only if $\tau_{\nabla}(\alpha) = \tau_{\nabla}(\alpha')$. Left cancellation does not immediately hold, due to the prescence of the parallel transport term. However, if β is a loop such that $\Gamma(\beta)$ is the identity, then the torsion satisfies $\tau_{\nabla}(\alpha\beta) = \tau_{\nabla}(\alpha) + \tau_{\nabla}(\beta)$. In this sense, the accumulated torsion around loops is "additive" when a connection has trivial holonomy. In fact, this additivity also holds for the grafted product, as we now show.

Proposition 1.4. Let M be a smooth manifold with affine connection ∇ . If $\beta \colon x \rightsquigarrow x$ is a loop which factors through a point y, and $\alpha \colon y \rightsquigarrow y$ is a loop with trivial holonomy, then

$$\tau_{\nabla}(\alpha \star_{y} \beta) = \tau_{\nabla}(\alpha) + \tau_{\nabla}(\beta). \tag{1.8}$$

Proposition 1.5. Let M be a smooth manifold with affine connection ∇ . If $\alpha_1, \alpha_2 \colon x \rightsquigarrow y$ are piecewise smooth paths and $\gamma \colon x \rightsquigarrow y$ is another such path, then

$$\tau_{\nabla}(\overline{\alpha}_2\alpha_1) = \tau_{\nabla}(\overline{\alpha}_2\gamma\cdot\overline{\gamma}\alpha_1). \tag{1.9}$$

Proof. By Proposition ??, it suffies to show that $\tau_{\nabla}(\overline{\alpha}_2) = \tau_{\nabla}(\overline{\alpha}_2 \cdot \gamma \overline{\gamma})$. But $\gamma \overline{\gamma}$ has trivial parallel transport, so by Proposition ?? again we have

$$\tau_{\nabla}(\overline{\alpha}_2 \cdot \gamma \overline{\gamma}) = \tau_{\nabla}(\overline{\alpha}_2) + \tau_{\nabla}(\gamma \overline{\gamma}). \tag{1.10}$$

Finally, by Proposition ?? and ??, we have

$$\tau_\nabla(\gamma\overline{\gamma}) = \Gamma(\gamma)\big[\tau_\nabla(\gamma)\big] + \tau_\nabla(\overline{\gamma}) = \Gamma(\gamma)\big[\tau_\nabla(\gamma)\big] - \Gamma(\gamma)\big[\tau_\nabla(\gamma)\big] = 0.$$

The conclusion follows.

By using the laws we have just established, we may express the accumulated torsion over a contractible loop in terms of an integral of the infinitesimal torsion within the region bounded by the loop.

J. Mensah

Theorem 1.6. Let M be a smooth manifold with affine connection ∇ . If $\gamma \colon x \rightsquigarrow x$ is contractible via the homotopy $H \colon [0,1] \times [0,t(\gamma)] \to M$ with $H_1 = \gamma$, then

$$\tau_{\nabla}(\gamma) = \iint_{[0,1] \times [0,t(\gamma)]} \mathrm{d}s \,\mathrm{d}t \tag{1.11}$$

Proof. We adopt the following notation to describe paths in an interval $I \subseteq \mathbb{R}$: given $a, b \in I$, define $a \to b$ to be the straight-line path

$$[a \to b] \colon a \rightsquigarrow b; \qquad [a \to b](t) = (1 - t) \cdot a + t \cdot b \tag{1.12}$$

from a to b. Given $s \in [0,1]$ or $t \in [0,t(\gamma)]$, we also view the maps H(s,-) and H(-,t) as functors between path categories; when applied to straight-line paths in their respective domains, these yield "vertical" or "horizontal" paths in M.

For an integer n > 0, we divide the rectangle $[0,1] \times [0,t(\gamma)]$ into $n \times n$ subrectangles. By Proposition ??, the fact that the homotopy fixes endpoints, and Proposition ??, the torsion accumulated over $\gamma = H_1$ is equal to

$$\tau_{\nabla}(H(1,0\to 1)) = \tau_{\nabla}\left[\prod_{k=0}^{n-1} H(1,\frac{k}{n}\to \frac{k+1}{n})\right]$$
(1.13)

$$= \tau_{\nabla} \left[\prod_{k=0}^{n-1} H\left(1 \to 0, \frac{k+1}{n}\right) \cdot H\left(1, \frac{k}{n} \to \frac{k+1}{n}\right) \cdot H\left(0 \to 1, \frac{k}{n}\right) \right]$$
(1.14)

$$=\sum_{k=0}^{n-1}\tau_{\nabla}\left[H\left(1\to 0,\frac{k+1}{n}\right)\cdot H\left(1,\frac{k}{n}\to \frac{k+1}{n}\right)\cdot H\left(0\to 1,\frac{k}{n}\right)\right]. \tag{1.15}$$

Each "wedge" in the sum ?? may be broken into individual rectangular units as follows. For integers $j \in [\![1,n]\!]$ and $k \in [\![0,n-1]\!]$, define "subwedges" $\omega_{j,k} \colon x \rightsquigarrow x$ by

$$\omega_{j,k} = H\left(\frac{j}{n} \to 0, \frac{k+1}{n}\right) \cdot H\left(\frac{j}{n}, \frac{k}{n} \to \frac{k+1}{n}\right) \cdot H\left(0 \to \frac{j}{n}, \frac{k}{n}\right),\tag{1.16}$$

and "cells" $\rho_{j,k}$ by

$$\rho_{j,k} = H\left(\frac{j-1}{n}, \frac{k+1}{n} \to \frac{k}{n}\right) \cdot H\left(\frac{j}{n} \to \frac{j-1}{n}, \frac{k+1}{n}\right) \cdot H\left(\frac{j}{n}, \frac{k}{n} \to \frac{k+1}{n}\right) \cdot H\left(\frac{j-1}{n} \to \frac{j}{n}, \frac{k}{n}\right). \tag{1.17}$$

Then we may decompose each subwedge as

$$\omega_{j,k} = H\left(\frac{j-1}{n}, \frac{k}{n} \to \frac{k+1}{n}\right) \cdot \rho_{j,k} \cdot H\left(0 \to \frac{j-1}{n}, \frac{k}{n}\right) \tag{1.18}$$

¹ooga booga