- History and Expectation
- Technical Features
- > The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

History and Expectation

Typical example for LIN in automobiles (1)

Typical example for LIN in automobiles (2)

Roof:

(high amount of wiring)

Rain Sensor, Light Sensor, Light Control,

Sun Roof ...

(Rain Sensor needs to be interrogated every 10-20ms)

Steering Wheel:

(very many controls are going to be positioned on the steering wheel)

Cruise Control, Wiper,

Turning Light, ...

Optional: Climate Control,

Radio, Telephone, etc.

·Door:

Mirror, Central ECU, Mirror Switch, Window

Lift,

Seat Control Switch,

Door Lock, etc.

Climate:

many Small Motors Control Panel

Seat:

many Seat Position Motors, Occupancy Sensor, Control Panel

Engine:

Sensors Small Motors

Automotive Bus Systems

- History and Expectation
- Technical Features
- > The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

Technical Features(1)

- Sub-Bus as a extension to CAN to provide connection to local network clusters
- ➤ Low cost single-wire implementation (cheaper than CAN but does not have the same reliability level as CAN)
- Low cost silicon implementation based on common UART/SCI interface hardware (almost any microcontroller has necessary hardware on chip)
- Single Master / Multiple Slave concept

(no Arbitration is necessary)

Technical Features(2)

> Self synchronization without quartz or ceramics resonators in slave node

(significant cost reduction of hardware platform)

Speed up to 20kbit/s

limited by the EMI of single wire transmission. Recommended Bit Rates:

Slow: 2400 bit/sec

Medium: 9600bit/sec

Fast: 19200 bit/sec

- Guarantee of latency times for signal transmission
- Hot plug-in / plug-out

- History and Expectation
- Technical Features
- > The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

The ISO/OSI reference model and LIN (1)

7	Application Layer	AII
6	Presentation Layer	People
5	Session Layer	Seem
4	Transport Layer	То
3	Network Layer	Need
2	Data Link Layer	Data
1	Physical Layer	Processing

7	Application Layer	ightharpoonup	Applications, operating system
6	Presentation Layer		Conversion of data formats
5	Session Layer	\Rightarrow	Task synchronization, buffers, connection setup and monitoring, access rights control
4	Transport Layer		Address conversion, routing, segmentation
3	Network Layer		Setup of logical connection, transport protocol
2	Data Link Layer		Transmission security, frame setup, error management
1	Physical Layer		Electrical / mechanical characteristics: Transmission medium, wiring, connectors, encoding, signals

The ISO/OSI reference model and LIN (3)

2 Data Link Layer

LLC- Logical Link Control

is concerning with Message Filtering and Recovery Management

MAC - Medium Access
Control

is supervised by a management entity called Fault Confinement

 \Rightarrow

Acceptance Filtering, Recovery Management, Time Base Synchronization, Message Validation

Data Encapsulation/Decapsulation, Error Detection, Error Signaling, Serialization/Deserialization

Physical Layer

Bit Timing, Bit synchronization, Line Driver/Receiver

- History and Expectation
- > Technical Features
- > The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

Frames (1)

- > Frame: "Envelope" for transmission data
- > 3 different frame types :
 - → Message Frames: used for regular data transmission
 - → Command Frames: used for software updates, network configuration, and diagnostic purposes
 - → Extended Frames: are reserved to allow the embedding of user-defined message formats and future LIN formats into the current LIN protocol without violating the current LIN specification

Frames (2)

> Frame: Formats

> Byte Fields Formats: transmission with LSB first

- History and Expectation
- > Technical Features
- The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

Message Frames: Header(1)

- Synchronization break field
 - bidentify the beginning of a message frame
 - **⇔consists of 2 parts:**
 - "dominant" bus value with a minimum duration of T_{SYNBRK} (13 bits)
 - "recessive" bus value with a minimum duration of T_{SYNDEL} (1bit)

Message Frames: Header(2)

> Synchronization field

\$\times\$ contains the information for clock synchronization

⇔consists of pattern: "0x55"

Message Frames: Header(3)

➤ Identifier field: contains the content and length of message

Message Frames: Header(4)

ID0 - ID5 IDENTIFIER \Rightarrow 64 (26) identifiers divided in four subsets of 16 identifiers with 2, 4, 8 data fields.

ID5	ID4	N _{DATA} (number of data fields) [byte]
0	0	2
0	1	2
1	0	4
1	1	8

> PO - P1 are the parity check bits of identifier

P0 = $ID0 \oplus ID1 \otimes ID2 \oplus ID4$ (even parity)

 $P1 = \overline{ID1 \oplus ID3 \otimes ID4 \oplus ID5}$ (odd parity)

Message Frames: Response Fields

- > Contains the data field and the checksum
 - **♥ DATA field consists of BYTE fields**
 - **♦ CHECKSUM** field contains the inverted modulo-256 sum over all data bytes calculated by "add with carry"

- **≻**History and Expectation
- > Technical Features
- > The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

Communication Concept of LIN(1)

Communication Concept of LIN(2) Master Task

> Has control the whole Bus and Protocol:

\$sends the header of a message

monitors data bytes and check sum byte and evaluates them on consistency

∜receives WakeUpBreak from a slave node when the bus is inactive and they request some action

\$serves as a reference with it's clock base
(stable clock necessary)

Communication Concept of LIN(3) Slave Task

➤ Is one of 2-16 members on a bus and receives or transmits data when the appropriate ID is sent by the master:

waits for Synch Break

synchronize on Synch Byte

⋄ snoops for ID. According to ID slave determine what to do: receive data, transmit data or do nothing

when transmitting sends 2, 4, or 8 data bytes and the checksum byte

- History and Expectation
- > Technical Features
- > The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

Command and Extended Frames: Command Frames

- > are used to broadcast general command requests for service purposes from the master to all bus participants:
 - **♦ ID = 0x3C(0x3C)** "Master request frame" to send commands and data from the master to the slave node
 - ⇔ ID = 0x3D(0x7D) "Slave response frame" that triggers one node to send data to the master node
- First data byte of a command frame containing the values from 0x00 to 0x7F are reserved:
 - **♦ SLEEP MODE command used to broadcast the sleep mode to all bus nodes: ID = 0x3C and DATA(0)=0x00**

Command and Extended Frames: Extended Frames

➤ are reserved to allow the embedding of user-defined message formats and future LIN formats into LIN protocol without violating the current LIN specification:

 \Rightarrow ID = 0x3E(0xFE) user defined extended frame

 \circlearrowleft ID = 0x3F(0xBF) future LIN extension

➤ the identifier can be followed by an arbitrary number of LIN bytes fieldc

Transport protocol -Diagnostic communication on LIN

TP-Protocol Control Information

Figure 3.2: PDUs supported by the LIN transport layer.

TP-Protocol Control Information

Type	PCI type			Additional information				
	B7	B6	B 5	B4	B3	B2	B1	B0
SF	0	0	0	0	Length			
FF	0	0	0	1	Length/256			
CF	0	0	1	0	Frame counter			

Table 3.1: Structure of the PCI byte.

TP-Protocol Control Information

- **≻**History and Expectation
- > Technical Features
- The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

Network management

- → Refers to:
 - Wake-up
 - Go to sleep
- → Slave communication state diagram:

Network management

→ Wake up:

- Force the bus to dominant state for 250 us 5ms
- Can be sent by any LIN node

• More wake up can be requested

Network management

• After 3 failing wake up requests: minimum 1.5s wait time

→ Go to sleep:

- Done by:
 - Master request frame

• Bus idle 4-10 seconds

- History and Expectation
- > Technical Features
- > The ISO/OSI reference model and LIN
- > Frames
- Message Frames
- Communication concept of LIN
- Command and Extended Frames
- Sleep mode and wake-up signal
- Error and Exception handling

Error and exception handling

- Possible error types:
 - **⇔** Bit Error
 - **♦ Checksum Error**
 - **∜ Identifier Parity Error**
 - **♦ Slave Not Responding Error**

Error and exception handling(1) Bit Errors

Error description

The bit actually appearing on the bus is different that the one transmitted

Method of detection

Sending unit monitors the bus while transmitting. A BIT_ERROR has to be detected at that bit time.

> Fault Confinement

This error is detected by - master task in master

- slave task in slave

while reading back its own transmission

Error and exception handling(2) Checksum Errors

> Error description

The inverted modulo-256 sum over all received data bytes does not match with the receive checksum byte

> Method of detection

The sum of the inverted modulo-256 sum over all received data bytes and the checksum byte does not result in 0xFF

> Fault Confinement

This error is detected by:

- slave task in master when expecting or reading data from the bus
- -slave task in slave while reading from the bus

Error and exception handling(3) Identifier-Parity Errors

> Error description

The parity identifier bits does not match with the correct calculated values

Method of detection

Typical LIN slave application do not distinguish between an unknown but valid identifier and a corrupted identifier

> Fault Confinement

This error is detected by - master task in master while reading back its own transmission

slave task in slave while reading

from the bus

Error and exception handling(4) Slave-Not-Responding Errors

> Error description

The message frame is not fully completed within maximum length

Method of detection

A slave task waits the entire message upon transmission of the new header

> Fault Confinement

This error is detected by - slave task in master when expecting or reading data from the bus

- slave task in slave while reading from the bus only when a slave expects a message from another slave

Error and exception handling(5)

Inconsistent-Synch-Field Errors

> Error description

Synch field is different than the pattern 0x55

> Method of detection

Slave task detects edges of Synch field outside the given tolerance

> Fault Confinement

This error is detected only by slave task in slave

Error and exception handling(6) Causes for message errors

- > Local Disturbance of Ground Potential
- Local Disturbance of Supply Voltage
- Global Electric Disturbance of the Bus Signal
- > Unsynchronized Time Base