

Agenda

- Design for manufacturing
- Understanding manufacturing costs
- Design for assembly

EBU5608

2

2

Design for X Topics

- Design for Manufacturing
- Design for Production
- Design for Assembly
- Design for Recycling/Disposal
- Design for Life Cycle
- Design for Environment

EBU5608

Design for Manufacturing (DFM)

- DFM is a **design strategy** that requires
 - the expertise of **multiple** team members
 - the use of basic design rules, guidelines, and cost models

EBU5608

4

Δ

Design for Manufacturing (DFM)

- o DFM often results in
 - significant cost reduction
 - improvement in product quality
 - the development of cross-functional expertise within the organisation

EBU5608

Focus on manufacturability

- Focussing on how a product can be manufactured helps the design team to find **solutions** to these design **issues**:
 - Detailed design decisions can have substantial impact on product quality and cost
 - Development teams face multiple, and often conflicting, goals

EBU5608

J

6

Manufacturing cost

- Manufacturing cost has a major effect on the economic success of a product
- An organisation wants to ensure it obtains the highest profit margin possible and therefore tries to identify the lowest manufacturing cost
- Economically successful design is about ensuring high product quality while minimising manufacturing cost

Price Cost

EBU5608

8

8

13

Design for Manufacturing (DFM) - the 5-step process

- Ulrich and Eppinger propose a DFM method with **five steps**
- plus interactions
- This is shown on the next slide

EBU5608

Unit manufacturing cost

- The 'unit manufacturing cost' is
 - the total manufacturing costs for a time period (usually a quarter or a year)
 - divided by
 - the number of units of the product manufactured during that period
- In other words 'how much it costs to make each unit'!

EBU5608 17

Manufacturing cost categories

- There are three categories of costs which make up manufacturing costs:
 - Component costs
 - Assembly costs
 - Overhead costs
 - These are shown in more detail on the next slide

EBU5608

18

18

©Dr N.Paltalidis 2024

Understanding manufacturing costs – assembly costs

- Assembly costs (labour, equipment & tooling)
 - Goods are generally assembled from parts
 - This process of assembly incurs labour and equipment/tooling costs

EBU5608

Understanding manufacturing costs

overhead costs

Overhead costs

- Overhead is the category used to cover all of the other costs
- There are two types of overhead cost
 - Support costs
 - 2. Indirect allocations

EBU5608 22

22

Understanding manufacturing costs

overhead costs (contd)

1. Support costs

- These are the costs associated with materials handling, quality assurance, purchasing, shipping, receiving, etc
- These are the support systems associated with manufacture of the product
 - these costs greatly depend on the **product design**

EBU5608

Understanding manufacturing costs

overhead costs (contd)

2. Indirect allocations

- The costs of manufacturing that cannot be directly linked to a particular product but which must be paid for to be in business
 - e.g. the salary of a security guard or the cost of building maintenance
- Indirect costs are not specifically linked to the design of the product
 - they are therefore are **not** relevant to **DFM** (although they do contribute to the cost of the product)

EBU5608 24

Estimating the costs of standard components

- This can be done in one of two ways:
 - Comparing each part to a substantially similar part the firm is already producing or purchasing in comparable volume
 - Asking for **price quotes** from vendors or suppliers

\$ \$\$ \$\$\$

EBU5608

26

26

Estimating the costs of custom parts

- When the custom component is a **single** part, we estimate its cost by adding up the costs of
 - raw materials
 - processing
 - tooling

EBU5608

28

28

Fixed Costs vs. Variable Costs

- Fixed Costs incurred in a predetermined amount, regardless of number of units produced (i.e. setting up the factory work area or cost of an injection mold)
- Variable Costs incurred in direct proportion to the number of units produced (i.e. cost of raw materials)

EBU5608 30

30

Estimating the cost of assembly

- Manual assembly costs can be estimated by
 - summing the estimated **time** of each assembly operation and
 - multiplying by a labour rate
- o An **example** can be seen in the next slide

EBU5608

Example of the calculation for cost of assembly

- This is the assembly of an **inlet system** which is part of a car engine
- o The system is **made** up of
 - a valve a metal casting that can block the inlet
 - O-rings to seal gaps
 - a spring to release the valve
 - a cover for the whole assembly
- Assembly time includes
 - Handling time e.g. picking up the components
 - **Insertion** time e.g. joining the components together

[4]

EBU5608

32

©Dr N.Paltalidis 2024

•		Queen Mary Example of the calculation for cost of assembly						
	Component	Quantity	Handling Time (sec)	Insertion Time (sec)	Total Time (sec)			
	Valve	1	1.50	1.50	3.00			
	O-rings	2	2.25	4.00	12.50			
	Spring	1	2.25	6.00	8.25			
	Cover	1	1.95	6.00	7.95			
	Total time (seconds)				31.70			
	Assembly \$0. Cost at \$45/hour \$45x(31.70/3600)				\$0.40			
		EBU5608			39			

Estimating the overhead costs

- This is a difficult aspect of cost estimation
- The aim is to **share** the **total** overhead costs of the company across **all** of the products made by that company
- Most firms assign overhead charges by using overhead rates

EBU5608

40

40

41

Estimating the overhead costs (cont.)

- Overhead rates are typically applied to one or two **cost drivers**
 - Cost drivers are parameters of the product which are directly measurable
- o Common cost drivers are
 - the cost of any purchased materials
 - the cost of assembly labour
 - the number of hours of equipment time the product consumes
- Overhead charges are added in **proportion** to the value of the drivers

EBU5608

Estimating the overhead costs - an example

- The overhead rate for purchased materials for a product is 10% (of the purchased cost)
- The overhead rate for assembly labour for the product is 80% of the labour costs
- A product containing \$100 of purchased components and \$10 of assembly labour

Item	Value	Overhead rate	Overhead cost
Component costs	\$100	10%	\$10
Labour costs	\$10	80%	\$8
Total overhea	\$18		

EBU5608 42

42

Step 2 – Reduce the costs of components

- For most highly engineered products, the cost of purchased components will be the most significant element of the manufacturing cost
- The aim is to minimise these costs as part of the design process
- There are 4 key aspects to consider:
 - 1. Understand the process constraints and cost drivers
 - 2. Redesign components to eliminate processing steps
 - 3. Choose the appropriate economic scale for the part process
 - 4. Standardise components and processes

EBU5608

44

1. Understand the process constraints and cost drivers

- Design decisions can **drive up** costs if they are **complicated** to achieve in production
- Designers should be aware of the process constraints and cost drivers early in the development process
- For example a designer may specify a very complex shape for a case (because it looks nice) without understanding how difficult and expensive it is to make

EBU5608

2. Redesign components to eliminate processing steps

- A reduction in the number of steps in the production of a product will reduce costs
- Designers should be encouraged to design products with components that can be **manufactured** in the minimum number of steps
- For example, does each component need to be painted - will it be seen by the customer in the end product? Not painting it will remove a step

EBU5608

3. Choose the appropriate economic scale for the part process

- Economies of scale can be achieved in production
- But the right process must be chosen for the quantities involved
- Some processes are best suited to small scale production
- Other processes are best suited to large scale production

EBU5608

48

4. Standardise components and processes

- Continual identification of **standardisation** is key to the reduction of production costs
- Standardised components lead to
 - the achievement of economies of scale
 - a lower cost per unit from suppliers
- They also allow an organisation to have a range of products available to the customer with minimal additional cost

EBU5608

©Dr N.Paltalidis 2024 25

Step 3 – Reduce the costs of assembly

- Design for Assembly' (DFA) places an emphasis on identifying ways in which assembly costs can be reduced
- o The key ideas of DFA are to:
 - Minimize parts count
 - Maximize the ease of handling parts
 - Maximize the ease of inserting parts

EBU5608

- o The benefits of DFA are:
 - Lower labour costs
 - Other indirect benefits

Design for Assembly rules

Example set of DFA guidelines from a computer manufacturer

- Minimize parts count
- 2. Encourage modular assembly
- 3. Eliminate adjustments
- 4. Eliminate cables
- 5. Use self-fastening parts
- 6. Use self-locating parts
- 7. Eliminate reorientation
- 8. Facilitate parts handling
- Specify standard parts

EBU5608

52

52

Design for Assembly

- oKey ideas of DFA:
 - Minimise parts count
 - Maximise the ease of handling parts
 - Maximise the ease of inserting parts
- OBenefits of DFA
 - Lower labor costs
 - Other indirect benefits
- Popular software developed by Boothroyd and Dewhurst.
 - http://www.dfma.com

EBU5608

Maximise Ease of Assembly

- Part is inserted from the top of the assembly
- Part is self-aligning
- Part does not need to be oriented
- Part requires only one hand for assembly
- Part requires no tools
- o Part is assembled in a single, linear motion
- o Part is secured immediately upon insertion

EBU5608 54

54

55

Consider Customer Assembly

- Customers will tolerate some assembly
- Design product so that customers can easily and assemble correctly
- Customers will likely ignore directions

EBU5608

Step 4 – Reduce the costs of supporting production

 As a result of reducing the costs of components and the costs of assembly, the team may also achieve reductions in the demands placed on the production support functions

EBU5608 57

Step 4 – Reduce the costs of supporting production

Examples

- 1. A reduction in the number of **parts** reduces the demands on **inventory management**
- 2. A reduction in assembly content reduces the number of workers required for production, and therefore reduces the cost of supervision and Human Resource Management
- Standardised components reduce the demands on engineering support and quality control

EBU5608 58

Queen Mary Step 5 - Consider the impact of DFM decisions on other factors

- Product development is not **only** focused on **cost** reductions
- DFM can have an impact on other **aspects of product** development in addition to cost reductions:
- The **balance** between **cost**, **quality** and market launch (e.g. timing) is continually being reassessed

EBU5608

60

©Dr N.Paltalidis 2024 30

61

Step 5 - Consider the impact of DFM decisions on other factors

- The impact of DFM on development time
 - DFM has a focus on cost reduction, which usually includes the design of individual components to reduce steps in production and therefore cost
 - However, if these design decisions would increase development time and delay the release, then the priorities of the organisation will have to be considered

EBU5608

Step 5 - Consider the impact of DFM decisions on other factors

- The impact of DFM on product quality
 - Will any decision stemming from DFM affect the product's quality?
 - The majority of improvements to the manufacturing process will usually result in an improvement to the quality of the product
 - In most cases a reduction in components that require subsequent integration and testing improves quality

 However, this is not always the case and decisions regarding trade-offs will need to be taken in line with the organisation's product strategies

EBU5608 62

Step 5 - Consider the impact of DFM decisions on other factors

- The impact of DFM on external factors
 - Component reuse
 - Life cycle costs

EBU5608

©Dr N.Paltalidis 2024

Reading

- Core Textbook (Ulrich & Eppinger, 7th Edition)
 - Chapter 13. Design for Manufacturing pages 261 - 283

EBU5608

67

67

©Dr N.Paltalidis 2024

References

- Product Design and Development, Karl T Ulrich and Steven D Eppinger, International Edition (3rd) McGraw-Hill, 2003, pg 213
- 2. .. Pg. 214
- 3. .. Pg. 218
- 4. .. Pg. 219
- 5. <u>http://www.tomshardware.com/news/apple-battery-patent-ipad-iphone,14155.html</u>
- 6. http://rainwillow.com/2012/04/integrated-versus-modular-architectures/

EBU5608 68