

**PRIORITY  
DOCUMENT**SUBMITTED OR TRANSMITTED IN  
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 19 MAR 2003

WIPO PCT

**Prioritätsbescheinigung über die Einreichung  
einer Patentanmeldung****Aktenzeichen:** 102 04 484.8**Anmeldetag:** 05. Februar 2002**Anmelder/Inhaber:** Koenig & Bauer Aktiengesellschaft, Würzburg/DE**Bezeichnung:** Verfahren und Vorrichtung zur Regelung der Bahnspannung**IPC:** B 65 H, B 41 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 26. Februar 2003  
Deutsches Patent- und Markenamt  
Der Präsident  
Im Auftrag

  
Waasmaier**Best Available Copy**

2002-01-31



## Beschreibung

### Verfahren und Vorrichtung zur Regelung der Bahnspannung

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Regelung der Bahnspannung gemäß dem Oberbegriff des Anspruchs 1 bzw. 12.

Durch die EP 08 37 825 B1 ist ein Verfahren zur Regelung der Bahnspannung offenbart, wobei zur Regelung neben den gemessenen Ist-Werten für die Bahnspannung weitere, den Maschinenzustand und verfahrensbedingte Eigenschaften charakteristische Größen herangezogen werden. Neben den aktuell gemessenen Spannungswerten fließen auch vorgebbare bahnspezifische Parameter in den Regelalgorithmus ein.

Die DE 198 34 725 A1 zeigt u. a. ein Verfahren zur Regelung einer Bahnspannung, wobei Bahnspannungs-Istwerte vor und/oder nach den Druckwerken einer Regeleinrichtung zugeführt wird, welche die Bahnspannung am Einzugswerk derart regelt, dass trotz Störgrößen wie z. B. einem variierenden Elastizitätsmodul der Bahn die Bahnspannung in einem für die Farb- und Schnittregister optimalen Bereich gehalten wird.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Regelung der Bahnspannung zu schaffen.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 bzw. 12 gelöst.

Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, dass mittels einer Vorregelung bzw. Vorsteuerung eine bei einer vorhersehbaren Störung, insbesondere einem Rollenwechsel, zu erwartende Auswirkung auf den Druckprozess verkleinerbar, und damit die anfallende Menge an Makulatur minimierbar ist. Die Regelung erfolgt zeitlich kurz vor oder mit Eintritt der Störung an einem betroffenen Aggregat und nicht

### Zusammenfassung

In einem Verfahren zur Regelung der Spannung einer Bearbeitungsmaschine durchlaufenden Bahn wird ein Sollwert für die Spannung um einen vorgebbaren Betrag verändert um einer die Spannung während der Produktion beeinflussende Störung im Vorfeld oder parallel zur Störung entgegenzuwirken.

nach einer negativen Auswirkung. Mittels dieses Verfahrens kann eine lange Einschwingzeit sowie die Gefahr eines Bahnisses verminder werden. Die Minderung bzw. Beseitigung einer Auswirkung auf eine zu erwartende Störung greift somit der Störung selbst vor, bzw. verläuft ohne auf rückwirkend ermittelte Messwerte angewiesen zu sein gleichzeitig zum Aufbau der Störung.

Insbesondere der Störung beim Wechsel von Bedruckstoffen bzw. deren Rollen ist mittels der Regelung entgegenzuwirken und die anfallende Mengen an Makulatur minimierbar. In vorteilhafter Ausführung wird dies dadurch erreicht, dass beim Ankleben, beim Abschnitt der „alten“ Bahn bzw. Eintritt des Anfanges einer neuen Bedruckstoffbahn in die Druckmaschine ein Vorregeln bzw. Vorsteuern von Antrieben bzw. Verstellelementen im Hinblick auf die zu erwartenden Änderungen der Bahnspannung erfolgt.

Durch das Vorsteuern bzw. Vorregeln werden die Ansprechzeiten der während der Produktion „rückschauend“ arbeitenden Regelung (Ursache – Wirkung – Gegenmaßnahme) und/oder die Zeit eines Einschwingens bzw. asymptotischen Annäherns an den Sollwert deutlich verkürzt. Eine aufwendige Farbregisterregelung zum Kompensieren einer negativen Auswirkung des Rollenwechsels kann entfallen. Die Spannung wird bevorzugt am Einzugswerk um einen vorgebbaren Wert abgesenkt.

Ist eine Bahnspannungsregelung für den laufenden Betrieb der Druckmaschine bereits vorhanden, so ist es vorteilhaft, einen Offset auf den Sollwert für die Bahnspannungsregelung am Einzugswerk aufzuschalten. Dieser Offset kann als einmaliger Betrag, als diskrete Stufen oder aber als stetige Funktion innerhalb eines Zeitintervalls dem Sollwert am Einzugswerk überlagert werden. Das Zeitintervall entspricht z. B. der Laufzeit der Klebestelle vom Rollenwechsler bis zum Trichtereinlauf.

Fehlt eine während der Produktion automatisch arbeitende Regelung, so können die Stellantriebe bzw. die Einzelantriebe dennoch, beispielsweise mittels eines

entsprechenden Stellbefehls, bereits mit Eintritt oder im Vorfeld des Eintritts der Störung, z. B. des neuen Bahnanfangs in die Druckmaschine, eine Korrektur erfahren, um so den zu erwartenden Fehler zu minimieren bzw. zu kompensieren.

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben.

Es zeigen:

Fig. 1 eine schematische Darstellung einer Rotationsdruckmaschine mit Regelung der Bahnspannung;

Fig. 2 eine schematische Darstellung des zeitlichen Verlaufs einer Spannung ohne Anwendung das Verfahren;

Fig. 3 eine schematische Darstellung des zeitlichen Verlaufs der Änderung eines Sollwertes für die Regelung der Spannung.

Eine Bearbeitungsmaschine, z. B. eine Rollenrotationsdruckmaschine, weist entlang einer Produktionsrichtung, d. h. entlang eines Weges einer Bahn 01, z. B. einer Bedruckstoffbahn 01, insbesondere einer Papierbahn 01, in Transportrichtung T mehrere Bearbeitungsstufen bzw. Aggregate auf.

Dies können für eine Rollenrotationsdruckmaschine wie in Fig. 1 schematisch dargestellt; z. B. ein Rollenwechsler 02; ein Einzugswerk 03, eine oder mehrere Druckeinheiten 04; 06, eine Zugwalze 07, ggf. eine Längsschneideeinrichtung 08, Wende- 09 und Registereinrichtungen 11, wie z. B. eine Längsregisterwalze 11, eine weitere Zugwalze 12, z. B. als sog. Trichtereinlaufwalze 12, sowie Falztrichter 13 und Falzwerk 14 mit nicht dargestellten Querschneideeinrichtungen sein. Zusätzlich können weitere nicht

dargestellte Bearbeitungsstufen, wie z. B. Lackierwerk, Trockner etc., angeordnet sein.

Jede Druckeinheit 04; 06 weist ein oder mehrere Druckwerke 16; 17; 18; 19, z. B. Doppeldruckwerke 16; 17; 18; 19 für den beidseitigen Druck, auf, wobei die Druckwerke 16; 17; 18; 19 nebeneinander oder auch übereinander angeordnet sein können. Sind mehrere Druckeinheiten 04; 06 vorhanden, so können auch diese nebeneinander oder übereinander, mit horizontalem oder vertikalem Verlauf der Bahn 01 sein.

Die Bahn 01 wird vom Rollenwechsler 02 abgewickelt und durchläuft die Druckwerke 16; 17; 18; 19, welche die Bahn 01 nacheinander z. B. auf der selben Seite vierfach bedrucken.

Um beim mehrfachen Bedrucken die Passerhaltigkeit, beim beidseitigen Bedrucken die Registerhaltigkeit und beim Zusammenführen mehrerer Bahnen 01; 01' bzw. Teilbahnen 01; 01' und dem Querschneiden das Schnittregister einzuhalten, kann an einer oder mehreren Stellen entlang des Weges der Bahn 01 die Passer- bzw. Registerhaltigkeit überprüft werden. Dies erfolgt für vollautomatische Druckmaschinen beispielsweise mittels der Messung der Lage von durch die Druckwerke 16; 17; 18; 19 aufgebrachten Marken oder Druckbildern mittels eines nicht dargestellten Sensors. Die Signale des Sensors werden in diesem Fall einer nicht dargestellten Regeleinheit zur Korrektur von registrierten Abweichungen im Passer und im Register zugeführt, worauf hin z. B. Stellmittel wie Längsregisterwalzen, Drehwinkellagen etc. gestellt werden.

Veränderungen von Bahnspannungen werden i. d. R. durch Messwalzen an einer oder mehreren Stellen auf Weg der Bahn 01, wie z. B. die exemplarisch dargestellte Messwalze 21 hinter dem letzten Druckwerk 19, oder in anderer geeigneter Weise ermittelt, in einer Regeleinheit 22 verarbeitet, und bei Abweichung von einem Sollwert oder einem zulässigen Bereich wieder auf diesen bzw. in diesen zurückgeführt. An der Messwalze 21 wird beispielsweise die Spannung S1 hinter dem letzten Druckwerk 19

ermittelt, in der Regeleinheit 22 verarbeitet und zur Einhaltung der gewünschten Spannung S1 ein Signal auf den Antrieb der Zugwalze 07 und/oder das Einzugswerk 03 gegeben. Insbesondere eine Spannung S0 vor dem ersten Druckwerk 16 legt das Niveau für sämtliche Spannungen auf dem Weg der Bahn 01 bis zum Trichtereinlauf fest und wird beispielsweise über das Einzugswerk 03 geregelt.

Ein in dieser Weise „rückschauend“ arbeitendes Regelungsprinzip führt bei einer gemessenen, bereits eingetretenen Abweichung eines Istwertes von einem Sollwert diesen durch Ansteuerung von Antrieben bzw. Stellantrieben auf den gewünschten Sollwert zurück. Ein derartiges Regelungsprinzip ist z. B. während des „normalen“ Fortdrückes, ohne starke Schwankungen in den Bedingungen, eingesetzt; es reagiert somit auf bereits eingetretenen und registrierten Veränderung.

Die Ursache für Störungen und daraus resultierende Veränderungen können vielfältig sein: z. B. Änderungen im Maschinenzustand wie Beschleunigungen, Änderungen von Größen aus dem Druckprozess wie Feuchtmittel- oder Farbzufuhr, Änderungen von Anpressdrücken, Änderungen in den Eigenschaften der Bahn 01 wie dem Spannungs-Dehnungsverhalten, der Dicke, der Feuchtigkeitsaufnahme etc.

Eine wesentliche, aber auch vorhersehbare Störung stellt ein Rollenwechsel und der damit verbundene Lauf einer Verbindung 26 zwischen einer alten und einer neuen Bahn 01, insbesondere einer Klebestelle 26 durch die Druckmaschine dar. Die Klebestelle 26 weist im Vergleich zur Stärke der einfachen Bahn 01 eine größere Stärke, ggf. zzgl. eines Klebebandes oder Klebstoffs, und von der Bahn 01 verschiedene elastische Eigenschaften auf.

Diese Störungen, insbesondere die letztgenannte, verursacht bei Eintritt in die Druckmaschine eine starke Änderung in der Spannung der Bahn 01 und damit verbundene Registerfehler. Die auf den Rollenwechsel zurückzuführenden Registerfehler

zwischen den Druckwerken 16; 17; 18; 19 sind mittels o. g. Registerregelung nicht oder nur mittels aufwendiger Technik kompensierbar.

Das vorliegende Verfahren zur Regelung sieht nun vor, der bevorstehenden Änderung in der Spannung S0; S1 in der Weise entgegenzuwirken, dass deren Sollwert S0-soll; S1-soll um einen gewissen Betrag  $\Delta S$ -soll gegenüber dem „normalen“ Sollwert S0-soll; S1-soll abgesenkt wird. Dies geschieht in bevorzugter Ausführung durch Absenkung des Sollwertes S0-soll der Spannung S0 vor dem erstem Druckwerk 16 mittels des Einzugswerkes 03.

Fig. 2 zeigt schematisch einen zeitlichen Verlauf der Spannung S1 ohne die Anwendung des beschriebenen Verfahrens. Sobald die Klebestelle 26 das Einzugswerk 03 passiert, setzt ein steiler Anstieg in der Spannung S1 ein, welcher sich bis zum Eintritt der Klebestelle 26 in den Trichtereinlauf fortsetzt. Gleiches gilt für den Verlauf der Spannung S0, jedoch zeitlich etwas nach „vorn“, d. h. in Fig. 2 nach links, versetzt. Danach befindet sich die Spannung S1 auf einem um einen Betrag  $\Delta S_1$  erhöhten Niveau und baut sich lediglich langsam ab. Das erhöhte Niveau in den Spannungen S0; S1 etc. verursacht durch Änderung der Dehnung Registerfehler zwischen den Druckwerken 16 bis 19.

Diese Registerfehler werden nun dadurch vermieden bzw. verringert, dass der Sollwert S0-soll für die Spannung S0 um den Betrag  $\Delta S$ -soll abgesenkt wird. Dieser Betrag  $\Delta S$ -soll entspricht einem mittleren Erfahrungswert für die zu erwartende, ohne entsprechende Absenkung eintretende Erhöhung der Spannung S0 um den Betrag  $\Delta S_0$ . Dieser Betrag  $\Delta S$ -soll kann z. B. in einer Speichereinheit 23 oder Recheneinheit 23 (Fig. 1) hinterlegt bzw. ermittelt werden. Er kann für den Fall dass die Veränderungen der Spannungen S0 und S1 gleich groß sind dem lediglich beispielhaft für die Spannung S1 in Fig. 2 dargestellten Betrag  $\Delta S_1$  entsprechen, oder aber auch über einen der Fig. 2 entsprechenden zeitlichen Verlauf der Spannung S0 oder in sonstiger Weise, z. B. durch Versuche, ermittelt werden.

In Fig. 3 ist schematisch, und parallel zur Spannung S0 oder S1 der Fig. 2, der zeitliche Verlauf des Sollwertes S0-soll aufgetragen. Beim Durchgang der Klebestelle 26 durch das Einzugswerk 03 oder kurz davor (z. B. bei Betätigung eines Abschlagmessers) wird der Sollwert S0-soll abgesenkt. Dies kann in einer einzigen Stufe, kontinuierlich oder in mehreren Stufen wie in Fig. 3 dargestellt erfolgen. In vorteilhafter Ausführung wird der Sollwert S0-soll nicht in einem Schritt, sondern in einem Zeitintervall  $\Delta t$  abgesenkt, welches aus den Erfahrungswerten zum einen und insbesondere durch die Laufzeit der Bahn 01 vom Einzugswerk 03 zur Trichtereinlaufwalze 12 ermittelbar ist. Der letztlich um den Betrag  $\Delta S$ -soll verringerte Sollwert S0-soll kann in einer Ausgestaltung um ein Zeitintervall  $\Delta t'$  aufrechterhalten werden, bevor der Sollwert S0-soll dann entweder in einem Schritt, kontinuierlich oder schrittweise wieder auf den für den Maschinenzustand gewünschten Sollwert S0-soll zurückgeführt wird. Die „normale“ Spannungsregelung übernimmt dann wieder alleine die Regelung der Spannungen S0; S1 etc, falls vorhanden.

In Fig. 1 ist ein Beispiel für einen möglichen Regelkreis für die Regelung der Spannung S0 schematisch integriert. Die Regeleinheit 22 sorgt in einem üblichen Regelkreis dafür, dass die Spannungen S0; S1 auf jeweils dem gewünschten Sollwert S0-soll; S1-soll gehalten werden. Dafür werden Istwerte S0-ist; S1-ist als Eingangswerte zugeführt, diese mit den Sollwerten S0-soll; S1-soll verglichen und mittels entsprechender Ausgangswerte entsprechende Antriebe gestellt. Die Sollwerte können beispielsweise aus einer Maschinensteuerung 24 zugeführt, oder aber aus der Regeleinheit 22 zugeführten, den Maschinenzustand charakterisierenden Größen g in der Regeleinheit 22 selbst gebildet werden.

Beim Rollenwechsel, z. B. zum Zeitpunkt des Verbindens oder des Abschlagens der „alten“ Bahn 01 oder beim Durchgang der Klebestelle 26 durch das Einzugswerk 03, wird ein aus der Speicher- oder Recheneinheit 23 zur Verfügung gestellter Betrag  $\Delta S$ -soll als

negativer „Offset“ z. B. als Stufenfunktion auf den Sollwert  $S_0\text{-soll}$  addiert, und nach Erreichen des Endwertes z. B. für das Zeitintervall  $\Delta t'$  aufrechterhalten. Ist die Störung beendet, d. h. die Klebestelle 26 am Falztrichter 13 bzw. das zusätzliche Zeitintervall  $\Delta t'$  verstrichen, so wird die Regelung wieder der „normalen“ Spannungsregelung mit den vorgegebenen Sollwerten  $S_0\text{-soll}$ ;  $S_1\text{-soll}$  etc. überlassen.

Der Speicher- bzw. Recheneinheit 23 werden in einer Weiterbildung der Erfindung neben der Information über das Material, z. B. die Papiersorte, und z. B. Bahnbreite zusätzlich die wesentlichen, die Eigenschaften bzw. das Verhalten der Bahn 01 beeinflussenden Größen  $g$  aus dem Druckprozess sowie dem Maschinenzustand und der Bahnführung, wie z. B. Feuchtmittel- oder Farbzufuhr, aktuelle Bahnspannungen, Anpressdrücke, Geschwindigkeit, Temperaturen, Beschleunigungen, Weg der Bahn 01 etc., zugeführt. Daraus lässt sich die geeignete vorübergehende Korrektur des Sollwertes  $S_0\text{-soll}$  um den Betrag  $\Delta S_0$  für die Spannung  $S_0$  auswählen bzw. berechnen.

Ebenfalls von Vorteil ist es, wenn in der Speicher- bzw. Recheneinheit 23 Daten für in der Vergangenheit ermittelte Beträge  $\Delta S_0$  und deren Umstände hinterlegt werden. Eine derartige Speicher- bzw. Recheneinheit 23 kann zusammen mit der Regeleinheit 22 in Weiterbildung dann als selbstlernendes System ausgebildet sein, und somit den auf den Rollenwechsel stattfindenden Regelungsprozess im Vorgriff bzw. gleichzeitig optimieren. Im Idealfall hat nach vollständiger Rücknahme des Betrages  $\Delta S_0$  keine Nachregelung der Spannungen  $S_0$ ;  $S_1$  zu erfolgen, so dass dies als ein Maß für die erreichte Güte bei der Korrektur heranziehbar ist.

Für das Auslösen der Absenkung des Sollwertes  $S_0\text{-soll}$  kann auch jede andere geeignete Methode Verwendung finden. So kann beispielsweise auch ein Erkennen der steilen Flanke einer der Spannungen  $S_0$ ;  $S_1$ , ein optisch erfasster Durchgang der Klebestelle 26 an einem gewissen Punkt, oder die Definition eines Zeitpunktes relativ zum Rollenwechsel im Rahmen eines Programms der Maschinensteuerung den Zeitpunkt

bestimmen. Wichtig ist es jedoch, dass, um der Störung entgegenzuwirken, der Sollwert für die Spannung gezielt zumindest vorübergehend verändert wird, und zwar nicht erst, nachdem das Ausmaß der negativen Störung ermittelt wurde.

**Bezugszeichenliste**

- 01 Bahn, Bedruckstoffbahn, Papierbahn, Teilbahn
- 02 Rollenwechsler
- 03 Einzugswerk
- 04 Druckeinheit
- 05 —
- 06 Druckeinheiten
- 07 Zugwalze
- 08 Längsschneideeinrichtung
- 09 Wendeeinrichtung
- 10 —
- 11 Registereinrichtungen, Längsregisterwalze
- 12 Zugwalze, Trichtereinlaufwalze
- 13 Falztrichter
- 14 Falzwerk
- 15 —
- 16 Druckwerk, Doppeldruckwerk
- 17 Druckwerk, Doppeldruckwerk
- 18 Druckwerk, Doppeldruckwerk
- 19 Druckwerk, Doppeldruckwerk
- 20 —
- 21 Messwalze
- 22 Regeleinheit
- 23 Speichereinheit, Recheneinheit
- 24 Maschinensteuerung
- 25 —
- 26 Verbindung, Klebestelle

01' Bahn, Teilbahn

T Transportrichtung

g Größe

S0 Spannung

S1 Spannung

S0-ist Istwert der Spannung

S1-ist Istwert der Spannung

S0-soll Sollwert der Spannung

S1-soll Sollwert der Spannung

$\Delta S_1$  Betrag, Erhöhung

$\Delta S$ -soll Betrag, Absenkung

$\Delta t$  Zeitintervall

$\Delta t'$  Zeitintervall

## Ansprüche

1. Verfahren zur Regelung einer Spannung ( $S_0; S_1$ ) einer Bearbeitungsmaschine durchlaufenden Bahn (01), wobei während der Produktion auftretende, die Spannung ( $S_0; S_1$ ) beeinflussende Störungen mittels einer Regeleinrichtung (22) kompensiert, und die Spannung ( $S_0; S_1$ ) auf einem Sollwert ( $S_{0-soll}; S_{1-soll}$ ) bzw. in einem erlaubten Bereich gehalten wird, dadurch gekennzeichnet, dass zumindest vorübergehend der Sollwert ( $S_{0-soll}; S_{1-soll}$ ) für die Spannung ( $S_0; S_1$ ) bzw. der erlaubte Bereich um einen vorgebbaren Betrag ( $\Delta S_{-soll}$ ) gegenüber einem aktuell bestehenden Sollwert ( $S_{0-soll}; S_{1-soll}$ ) abgesenkt wird.
2. Verfahren zur Regelung einer Spannung ( $S_0; S_1$ ) einer Bearbeitungsmaschine durchlaufenden Bahn (01), dadurch gekennzeichnet, dass einer die Spannung ( $S_0; S_1$ ) während der Produktion beeinflussende Störung entgegengewirkt wird indem ein Sollwert ( $S_{0-soll}; S_{1-soll}$ ) für die Spannung ( $S_0; S_1$ ) um einen vorgebbaren Betrag ( $\Delta S_{-soll}$ ) verändert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Spannung ( $S_0; S_1$ ) während der Produktion mittels einer Regeleinrichtung (22) auf einem Sollwert ( $S_{0-soll}; S_{1-soll}$ ) bzw. in einem erlaubten Bereich gehalten wird.
4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die Änderung des Sollwertes ( $S_{0-soll}; S_{1-soll}$ ) im Vorfeld oder während der Störung erfolgt.
5. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die Änderung des Sollwertes ( $S_{0-soll}; S_{1-soll}$ ) zur Kompensation einer durch einen Rollenwechsel verursachte Störung erfolgt.
6. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die Änderung des

- Sollwertes ( $S_0$ -soll;  $S_1$ -soll) zur Kompensation einer als Verbindung (26) einer neuen mit einer alten Bahn (01) ausgebildeten Störung erfolgt.
- 7. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die Änderung um den vorgebbaren Betrag ( $\Delta S$ -soll) in der Weise erfolgt, dass sie der zu erwähnenden Änderung der Spannung ( $S_0$ ;  $S_1$ ) entgegenwirkt.
- 8. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass der Sollwert ( $S_0$ -soll;  $S_1$ -soll) für die Spannung ( $S_0$ ;  $S_1$ ) vor einem in Transportrichtung (T) der Bahn (01) ersten Druckwerk (16) verändert wird.
- 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Änderung des Sollwertes am Einzugswerk (03) bewirkt wird.
- 10. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die Änderung des Sollwertes ( $S_0$ -soll;  $S_1$ -soll) frühestens mit einem Verbinden einer alten Bahn (01) mit einer heuen Bahn (01) erfolgt.
- 11. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Änderung des Sollwertes ( $S_0$ -soll;  $S_1$ -soll) spätestens mit dem Durchlaufen der Verbindung (26) durch eine letzte Klemmstelle vor einem in Transportrichtung (T) der Bahn (01) ersten Druckwerk (16) erfolgt.
- 12. Vorrichtung zur Regelung einer Spannung ( $S_0$ ;  $S_1$ ) einer eine Bearbeitungsmaschine durchlaufenden Bahn (01) mit einer Regeleinrichtung (22), mittels der während der Produktion die Spannung ( $S_0$ ;  $S_1$ ) auf einem Sollwert ( $S_0$ -soll;  $S_1$ -soll) bzw. in einem erlaubten Bereich gehalten ist, dadurch gekennzeichnet, dass der Sollwert ( $S_0$ -soll;  $S_1$ -soll) für die Spannung ( $S_0$ ;  $S_1$ ) bzw. der erlaubte Bereich um einen vorgebbaren Betrag ( $\Delta S$ -soll) gegenüber einem aktuell bestehenden Sollwert ( $S_0$ -soll;  $S_1$ -soll)

vorübergehend verringert ist um einer Störung entgegenzuwirken.

13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass eine Speichereinheit (23) vorgesehen ist, in welcher mindestens ein Wert für den Betrag ( $\Delta S$ -soll) der Änderung des Sollwertes ( $S_0$ -soll;  $S_1$ -soll) hinterlegt ist.

14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass eine Speicher- oder Recheneinheit (23) vorgesehen ist, in welcher mindestens ein Zusammenhang für die Ermittlung eines Betrages ( $\Delta S$ -soll) der Änderung des Sollwertes ( $S_0$ -soll;  $S_1$ -soll) hinterlegt ist.



Fig. 1

2/2



Fig. 2



Fig. 3

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**