MAL 230 (NUMERICAL METHODS AND COMPUTATION) MINOR TEST-II 2013-2014 SECOND SEMESTER INDIAN INSTITUTE OF TECHNOLOGY DELHI DEPARTMENT OF MATHEMATICS

Time: 1 hour

Max. Marks: 25

1a. If A= tridiag $\{1,4,1\}$, find an upper bound for $||A^{-1}||_{\infty}$.

1**b**. Consider the linear system Ax = b where

Suppose and b =

 $||x||_{\infty}$

Find a bound for the estimate

Find the optimal relaxation factor ω_{opt} if the following linear system is solved by Relaxation

(5)

4 22 0y5y4x 0x

3. Using Given's method transform the matrix

(4)

Also find the number of eigenvalues lying in the interval (-2,2) and in the interval (5,6) using Sturm theorem. to the tridiagonal form. Hence write the Strum sequence.

4a. True or false justify the statement:

The interpolating polynomial for $f(x)=x^{n+1}$ interpolating at the points x_0,x_1,\ldots,x_n is given by $x^{n+1} - (x - x_0)(x - x_1) \dots (x - x_n)$.

 $y_1', \quad p(x_2) = y_2$ with $x_0 \neq x_2$ and $\{y_0, y_1', y_2\}$ the given data. Assuming that the nodes x_0, x_1, x_2 are real, what conditions must be satisfied for such a p(x) to exist and be unique? (3) **4b.** Consider the problem of finding a quadratic polynomial p(x) for which $p(x_0) = y_0$, $p'(x_1) = y_0$

4c. Let $f \in C^4[a,b]$. Let x=a and x=b be the nodes and H(x) be Hermite interpolating polynomial of f. Then prove or disprove

$$||f - H||_{\infty} \le \frac{(b - a)^4}{384} ||f^{(4)}||_{\infty}.$$