<u>25 février 2022</u> CIR 1 et CNB 1

Quiz de Mathématiques

Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.
— Les questions peuvent présenter une ou plusieurs réponses correctes.
— Noircir les cases, ne pas faire des croix sur les cases.
— En cas d'erreur, utilisez du « blanco ».
— Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
BON COURAGE!
* * * * * * * * * * * * * * * * * * * *
1. On considère l'ensemble quotient $\mathbb{Z}/10\mathbb{Z}$.
$(1)\square \qquad (\mathbb{Z}/10\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}$ $(2)\square \qquad (\mathbb{Z}/10\mathbb{Z})^* = \varnothing$ $(3)\blacksquare \qquad \overline{5} \text{ est un diviseur de zéro.}$ $(4)\square \qquad \text{Cette ensemble n'a pas de diviseurs de zéro.}$ $(5)\square \qquad \text{aucune des réponses précédentes n'est correcte.}$
2. Quel est l'ensemble S des solutions de l'équation diophantienne $121x + 33y = 22$?
$\begin{array}{ll} (1) \square & S = \{(1-11k; -3+3k), k \in \mathbb{Z}\} \\ (2) \square & S = \{(-1-3k; 3+11k), k \in \mathbb{Z}\} \\ (3) \blacksquare & S = \{(1+3k; -3-11k), k \in \mathbb{Z}\} \\ (4) \blacksquare & S = \{(1-3k; -3+11k), k \in \mathbb{Z}\} \\ (5) \square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$
3. L'entier 4 est un inverse modulo 11 de?
$_{(1)}\Box$ 6 $_{(2)}\Box$ -6 $_{(3)}\blacksquare$ 3 $_{(4)}\Box$ -3 $_{(5)}\Box$ aucune des réponses précédentes n'est correct
4. Soient $P = 2X^5 + 3X^2 + X$ et $Q(X) = 3X^2 - 2X + 3$. Quelle(s) est(sont) la(les) assertion(s) vraie(s) pour le polynôme produit $P(X) \times Q(X)$?
Le coefficient dominant est 5 (2) Le coefficient du monôme X^3 est -3 (3) Le coefficient du terme constant est 3 (4) Le produit est la somme de 7 monômes ayant un coefficient non nuls aucune des réponses précédentes n'est correcte.
5. Soient $P(X)$ et $Q(X)$ deux polynômes unitaires de degré $n \ge 1$. Quelle(s) est(sont) la(les) assertion(s) vraie(s)?

P+Qest un polynôme de degré \boldsymbol{n}

P-Q est un polynôme de degré n $P\times Q$ est un polynôme de degré 2n

aucune des réponses précédentes n'est correcte.

P/Q est un polynôme de degré 0

(2)

 $_{(4)}\square$

(5)

6.	. Soit $P(X) = \sum_{k=0}^{n} a_k X^k$. On associe le polynôme dérivé : $P'(X) = \sum_{k=1}^{n} k a_k X^{k-1}$. Quelle(s) est(sont) la(les) assertion(s) vraie(s)?		
	$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \end{array} $	Si P est de degré $n \ge 1$ alors P' est de degré $n-1$ Si $P'(X) = nX^{n-1}$ alors $P(X) = X^n$ Si $P' = P$ alors $P = 0$ Si $P' - Q' = 0$ alors $P - Q = 0$ aucune des réponses précédentes n'est correcte.	
7.	7. Soient P, S deux polynômes, avec Q non nul. Soit $P = S \times Q + R$ la division euclidienne de P par S .		
	$(1) \blacksquare$ $(2) \blacksquare$ $(3) \blacksquare$ $(4) \blacksquare$ $(5) \square$	Un tel Q existe toujours S'il existe, R est unique On a toujours $\deg(Q) \leqslant \deg(P)$ On a toujours $\deg(R) < \deg(S)$ aucune des réponses précédentes n'est correcte.	
8.	Soient $P, Q \in \mathbb{R}[X]$, avec $P = (X-1)^2(X-3)^3(X^2+X+1)^3$ et $Q = (X-1)^2(X-2)(X-3)(X^2+X+1)^2$. Cocher la(les) affirmation(s) correcte(s).		
	$(1) \square$ $(2) \square$ $(3) \blacksquare$ $(4) \blacksquare$ $(5) \square$	$pgcd(P,Q) = (X-1)^2(X-3)(X^2+X+1)$ $ppcm(P,Q) = (X-1)^2(X-2)(X-3)^3(X^2+X+1)^2$ $P \wedge Q = (X-1)^2(X-3)(X^2+X+1)^2$ $P \vee Q = (X-1)^2(X-2)(X-3)^3(X^2+X+1)^3$ aucune des réponses précédentes n'est correcte.	
9.		$X^4 - X^2$ et $B(X) = X^2 + X - 2$. Soit D le pgcd de A et B dans $\mathbb{R}[X]$. es) affirmation(s) correcte(s).	
	$(1) \square$ $(2) \blacksquare$ $(3) \square$ $(4) \square$ $(5) \square$	$\begin{split} D(X) &= 1 \\ \text{Il existe } U, V \in \mathbb{R}[X] \text{ tels que } AU + BV = X - 1 \\ \text{Il existe } u, v \in \mathbb{R} \text{ tels que } Au + Bv = 1 \\ \text{Il existe un unique couple } U, V \in \mathbb{R}[X] \text{tels que } AU + BV = D \\ \text{aucune des réponses précédentes n'est correcte.} \end{split}$	
10.	Soit $P \in \mathbb{R}[$	X] un polynôme de degré 8. P admet	
	$(1) \square$ $(2) \square$ $(3) \blacksquare$ $(4) \square$ $(5) \square$	exactement 8 racines réelles comptées avec multiplicité. au moins une racine réelle. au plus 8 racines réelles comptées avec multiplicité. au moins 8 racines réelles comptées avec multiplicité. aucune des réponses précédentes n'est correcte.	
11. Cocher la(les) affirmation(s) correcte(s).			
	$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \end{array} $	$2X^2 + 3X + 1$ est irréductible sur \mathbb{R} $2X^2 - 3X + 2$ est irréductible sur \mathbb{R} $2X^2 - X + 3$ est irréductible sur \mathbb{C} $X^3 + X^2 + X + 4$ est irréductible sur \mathbb{R}	

 ${}_{(1)}\square \quad -1 \qquad {}_{(2)}\square \quad 0 \qquad {}_{(3)}\blacksquare \quad 1 \qquad {}_{(4)}\square \quad -2 \qquad {}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte}.$

12. Soit $P(X) = X^6 + 4X^5 + X^4 - 10X^3 - 4X^2 + 8X$. Cocher la(les) racine(s) double de P.

13.		X] un polynôme de degré $n \ge 1$. es) affirmation(s) correcte(s).
	$(1) \blacksquare$ $(2) \blacksquare$ $(3) \square$ $(4) \blacksquare$ $(5) \square$	α est racine de $P\Leftrightarrow X-\alpha$ divise P α est racine de P de multiplicité $\geqslant k\Leftrightarrow (X-\alpha)^k$ divise P α est racine de P de multiplicité $\geqslant k\Leftrightarrow P(\alpha)=0,P'(\alpha)=0,\ldots,P^{(k)}(\alpha)=0$ divise La somme des multiplicités des racines est $\leqslant n$ aucune des réponses précédentes n'est correcte.
14.	Le polynôm	e $2(X-1)(X+5)(X-3)$ est
	$(1) \blacksquare$ $(2) \blacksquare$ $(3) \blacksquare$ $(4) \blacksquare$ $(5) \square$	irréductible dans $\mathbb R$ irréductible dans $\mathbb C$ scindé sur $\mathbb R$ scindé sur $\mathbb C$ aucune des réponses précédentes n'est correcte.
15.	On considèr	re le polynôme $P(X) = X^6 - 1$. Cocher les affirmations correctes.
	$(1) \Box$ $(2) \Box$ $(3) \blacksquare$ $(4) \Box$ $(5) \Box$	P est irréductible sur \mathbb{R} P est irréductible sur \mathbb{C} La décomposition de P sur \mathbb{C} est $\prod_{k=0}^{5} (X - e^{\frac{ik\pi}{3}})$ La décomposition de P sur \mathbb{R} est $\prod_{k=0}^{6} (X - e^{\frac{ik\pi}{3}})$ aucune des réponses précédentes n'est correcte.
16.	Quelle(s) so $(1) \blacksquare$ $(2) \square$ $(3) \blacksquare$ $(4) \blacksquare$	nt la(les) affirmation(s) vraies? Les éléments simples sur $\mathbb C$ peuvent être de la forme $\frac{a}{X-\alpha}, a, \alpha \in \mathbb C$ Les éléments simples sur $\mathbb R$ peuvent être de la forme $\frac{aX+b}{X-\alpha}, a, b, \alpha \in \mathbb R$ Les éléments simples sur $\mathbb C$ peuvent être de la forme $\frac{a}{(X-\alpha)^k}, a, \alpha \in \mathbb R, k \in \mathbb N^*$ Les éléments simples sur $\mathbb R$ peuvent être de la forme $\frac{a}{(X-\alpha)^k}, a, \alpha \in \mathbb R, k \in \mathbb N^*$
	(5)□	aucune des réponses précédentes n'est correcte. $(X - \alpha)^{\kappa}$
17.	Soit $F(X)$ =	$= \frac{1}{(X^2 + 1)X^3}.$ Quelle(s) sont la(les) affirmation(s) vraies?
	(1)	$F \in R[X]$ (2) \blacksquare F est impaire (3) \square F est paire (4) \square F a degré 0 (5) \square aucune des réponses précédentes n'est correcte.
18.	Soit F la fra On écrit	action de la question précédente.
		$F(X) = \frac{a}{X} + \frac{b}{X^2} + \frac{c}{X^3} + \frac{dX + e}{X^2 + 1}$
	Quelle(s) so	nt la(les) affirmation(s) vraies?

P

3

 $(1) \blacksquare \quad c = 1 \qquad (2) \blacksquare \quad b = 0 \qquad (3) \square \quad d = 0 \qquad (4) \blacksquare \quad e = 0$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

- 19. Soient P(X)=X-1 et $Q(X)=(X+1)^2(X^2+X+1)$. On décompose en éléments simples la fraction $F=\frac{P}{Q}$ sur \mathbb{R} . Quelle(s) sont la(les) affirmation(s) vraies?
 - (1) La partie polynomiale est nulle.
 - (2)
 - (3)
 - Il peut y avoir un élément simple $\frac{a}{X-1}$ Il peut y avoir un élément simple $\frac{a}{X+1}$ mais pas $\frac{a}{(X+1)^2}$ Il peut y avoir un élément simple $\frac{aX+b}{X^2+X+1}$ mais pas $\frac{aX+b}{(X^2+X+1)^2}$ aucune des réponses précédentes n'est correcte.
 - (5)
- 20. Soit $\frac{P}{Q} = \frac{2X^2}{X^4 1}$. La décomposition de $\frac{P}{Q}$ dans ...
 - $\mathbb R$ a un seul élément simple.
 - (2) $\mathbb C$ admet 2 pour partie entière.
 - $\mathbb R$ contient les deux éléments simples $\frac{1}{X^2-1}$ et $\frac{1}{X^2+1}$ \square (3)
 - $\mathbb C$ contient quatre éléments simples. (4)
 - (5)aucune des réponses précédentes n'est correcte.