FLOOD-IT

THE COLOURFUL GAME OF BOARD DOMINATION

Bristol Algorithms Day, 15–16 Feb 2009

David Arthur, Raphaël Clifford, Markus Jalsenius, Ashley Montanaro and Benjamin Sach

Department of Computer Science

Greedy

Greedy

Greedy

- 1. a a b a c d c
- 2. c a b b a
- 3. b a d d d c a
- **4.** *a d d c a b*
- **5.** *b a d c c d a a*
- 6. d c a a b d c
- 7. *c a b a d*
- 8. b c d a a b c

- 1. a a b a c d c
- 2. c a b b a
- 3. *b a d d d c a*
- **4.** *a d d c a b*
- 5. b a d c c d a a
- 6. d c a a b d c
- 7. *c a b a d*
- 8. b c d a a b c

- 1. a a b a c d c
- 2. c a b b a
- **3.** *b a d d d c a*
- 4. a d d c a b
- **5.** *b a d c c d a a*
- 6. d c a a b d c
- 7. *c a b a d*

- 1. a a b a c d c
- 2. c a b b a
- NP-hard, even with a binary alphabet,
- no polynomial-time constant factor approximation algorithm, unless P = NP.
 - **0.** *a c a a b a c*
 - 7. *c a b a d*

a	b	b	a	a	b

Is there a common supersequence of length at most 4?

3 Colours

3 Colours

3 Colours

Flooding sequence:

Flooding sequence:

Shuffle

Flooding sequence:

Shuffle

Flooding sequence:

• • •

Randomised (2c/3)-approximation

Shuffle

Bad Boards

Bad Boards

Bad Boards

m moves to flood the board

m moves to flood the board

We derive an upper bound on the probability that an arbitrary non-touching path from the top left to the bottom right tile has at most k colours changes. The bound depends on k, number of colours c and the length of the path.

We derive an upper bound on the probability that an arbitrary non-touching path from the top left to the bottom right tile has at most k colours changes. The bound depends on k, number of colours c and the length of the path.

The probability that there exists any non-touching path from the top left to the bottom right tile with at most k colour changes is upper bounded by the union bound over all non-touching paths from the top left to the bottom right tile.

We derive an upper bound on the probability that an arbitrary non-touching path from the top left to the bottom right tile has at most k colours changes. The bound depends on k, number of colours c and the length of the path.

The probability that there exists any non-touching path from the top left to the bottom right tile with at most k colour changes is upper bounded by the union bound over all non-touching paths from the top left to the bottom right tile.

This union bound is an upper bound on the probability that the board is flooded within k moves.

We derive an upper bound on the probability that an arbitrary non-touching path from the top left to the bottom right tile has at most k colours changes. The bound depends on k, number of colours c and the length of the path. k is order n

The probability that there exists any non-touching path from the top left to the bottom right tile with at most k colour changes is upper bounded by the union bound over all non-touching paths from the top left to the bottom right tile.

This union bound is an upper bound on the probability that the board is flooded within k moves.

We derive an upper bound on the probability that an arbitrary non-touching path from the top left to the bottom right tile has at most k colours changes. The bound depends on k, number of colours c and the length of the path. k is order n

The probability that there exists any non-touching path from the top left to the bottom right tile with at most k colour changes is upper bounded by the union bound over all non-touching paths from the top left to the bottom right tile. Probability less than $e^{-\Omega(n)}$

This union bound is an upper bound on the probability that the board is flooded within k moves.

(for 3 or more colours)

We derive an upper bound on the probability that an arbitrary non-touching path from the top left to the bottom right tile has at most k colours changes. The

Conclusion

The number of moves required to flood a random board is $\Omega(n)$ with high probability.

the bottom right tile.

Probability less than $e^{-\Omega(n)}$ (for 3 or more colours)

This union bound is an upper bound on the probability that the board is flooded within k moves.

Thank You!

Don't forget our website:

http://floodit.cs.bris.ac.uk/

Move: 10 Par: 18

