丰台区 2018 年初三毕业及统一练习

数学试卷

2018. 05

考

- 1. 本试卷共 8 页, 共三道大题, 28 道小题, 满分 100 分。考试时间 120 分钟。
- 2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

- 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
- 5. 考试结束,将本试卷、答题卡一并交回。
- 一、选择题(本题共16分,每小题2分)

第1-8题均有四个选项,符合题意的选项只有一个.

- 1. 如图所示, $\triangle ABC$ 中 AB 边上的高线是
 - (A) 线段 AG

(B) 线段 BD

(C) 线段 BE

- (D) 线段 CF
- 2. 如果代数式 $\sqrt{x-4}$ 有意义,那么实数 x 的取值范围是
 - $(A) x \ge 0$

(B) $x \neq 4$

(C) $x \ge 4$

- (D) x > 4
- 3. 右图是某个几何体的三视图,该几何体是
 - (A) 正三棱柱

(B) 正三棱锥

(C) 圆柱

(D) 圆锥

- 5. 如图, 直线 a//b, 直线 c 与直线 a, b 分别交于点 A, 点 B, $AC \perp AB$ 于点 A, 交直线 b 于点 C. 如果 $\angle 1 = 34^{\circ}$ 那么 Z2 的度数为
 - (A) 34°

 $(B) 56^{\circ}$

(C) 66°

- (D) 146°
- 6. 如图,在平面直角坐标系xOy中,点A的坐标为(2, 1), 如果将线段 OA 绕点 O 逆时针方向旋转 90° , 那么点 A 的 对应点的坐标为
 - (A) (-1, 2)
- (B) (-2, 1)

- (C) (1, -2)(D) (2, -1)
- 7. 太阳能是来自太阳的辐射能量. 对于地球上的人类来说, 太阳能是对环境无任何 污染的可再生能源,因此许多国家都在大力发展太阳能.下图是 2013-2017 年我 国光伏发电装机容量统计图. 根据统计图提供的信息, 判断下列说法不合理的是
 - (A) 截至 2017 年底, 我国光伏发电累计装机容量为 13 078 万千瓦
 - (B) 2013-2017年, 我国光伏发电新增装机容量逐年增加
 - (C) 2013-2017年,我国光伏发电新增装机容量的平均值约为 2 500 万千瓦
 - (D) 2017 年我国光伏发电新增装机容量大约占当年累计装机容量的 40%

8. 如图 1, 荧光屏上的甲、乙两个光斑(可看作点)分别从相距 8cm 的 A, B 两点同 时开始沿线段 AB 运动,运动过程中甲光斑与点 A 的距离 S_1 (cm)与时间 t (s)的函数 关系图象如图 2, 乙光斑与点 B 的距离 $S_2(cm)$ 与时间 t(s)的函数关系图象如图 3, 已知甲光斑全程的平均速度为 1.5cm/s, 且两图象中 $\triangle P_1O_1Q_1 \cong \triangle P_2Q_2O_2$. 下列叙 述正确的是

- (A) 甲光斑从点 A 到点 B 的运动速度是从点 B 到点 A 的运动速度的 A 倍
- (B) 乙光斑从点A到B的运动速度小于1.5cm/s
- (C) 甲乙两光斑全程的平均速度一样
- (D) 甲乙两光斑在运动过程中共相遇 3 次

初三数学 第1页(共8页)

二、填空题 (本题共16分,每小题2分)

- 9. 在某一时刻,测得身高为 1.8m 的小明的影长为 3m,同时测得一建筑物的影长为 10m,那么这个建筑物的高度为 m.
- 10. 写出一个函数的表达式,使它满足: ①图象经过点(1, 1); ②在第一象限内函数 y 随自变量 x 的增大而减少,则这个函数的表达式为 .
- 11. 在数学家吴文俊主编的《"九章算术"与刘徽》一书中,小宇同学看到一道有趣的数学问题:古代数学家刘徽使用"出入相补"原理,即割补法,把筝形转化为与之面积相等的矩形,从而得到"筝形的面积等于其对角线乘积之半".

(说明:一条对角线垂直平分另一条对角线的四边形是筝形)

请根据右图完成这个数学问题的证明过程.

证明:
$$S_{\$\#ABCD} = S_{\triangle AOB} + S_{\triangle AOD} + S_{\triangle COB} + S_{\triangle COD}$$
. 易知, $S_{\triangle AOD} = S_{\triangle BEA}$, $S_{\triangle COD} = S_{\triangle BFC}$. 由等量代换可得:

$$S$$
 等形 $ABCD = S \triangle AOB + ____ + S \triangle COB + ____$

$$= S$$
 矩形 $EFCA$

$$= AE \cdot AC$$

$$= \frac{1}{2} \cdot ___.$$

- 12. 如果代数式 $m^2 + 2m = 1$, 那么 $\frac{m^2 + 4m + 4}{m} \div \frac{m + 2}{m^2}$ 的值为____
- 13. 如图,AB 是 $\odot O$ 的直径,弦 $CD \perp AB$ 于点 E. 如果 $\angle A = 15^{\circ}$,弦 CD = 4,那么 AB 的长是_____.

14. 营养学家在初中学生中做了一项实验研究: 甲组同学每天正常进餐, 乙组同学每天除正常进餐外, 每人还增加 600ml 牛奶. 一年后营养学家统计发现: 乙组同学平均身高的增长值比甲组同学平均身高的增长值多 2.01cm, 甲组同学平均身高的增长值比乙组同学平均身高的增长值的 75%少 0.34cm. 设甲、乙两组同学平均身高的增长值分别为 x cm、y cm, 依题意,可列方程组为______.

- 15. "明天的降水概率为80%"的含义有以下四种不同的解释:
 - ① 明天 80%的地区会下雨;
 - ② 80%的人认为明天会下雨;
 - ③ 明天下雨的可能性比较大;
 - ④ 在 100 次类似于明天的天气条件下,历史纪录告诉我们,大约有 80 天会下雨. 你认为其中合理的解释是 . (写出序号即可)
- 16. 下面是"作一个角等于已知角"的尺规作图过程.

已知: ∠A.

求作:一个角,使它等于 $\angle A$.

作法:如图,

- (1) 以点 A 为圆心,任意长为半径作 $\bigcirc A$, 交 $\angle A$ 的两边于 B,C 两点;
- (2) 以点 C 为圆心,BC 长为半径作弧,与 $\bigcirc A$ 交于点 D,作射线 AD. 所以 $\angle CAD$ 就是所求作的角.

请回答:该尺规作图的依据是

- 三、解答题 (本题共68分, 第17-24题, 每小题5分, 第25题6分, 第26, 27题, 每小题7分, 第28题8分)
- 17. 计算: $\sqrt{8} 2\cos 45^\circ + (3-\pi)^0 + |1-\sqrt{2}|$.
- 18. 解不等式组: $\begin{cases} 3x \ge 4x 1, \\ \frac{5x 1}{2} > x 2. \end{cases}$
- 19. 如图,在 $\triangle ABC$ 中,AB = AC,D是 BC 边上的中点, $DE \perp AB$ 于点 E, $DF \perp AC$ 于点 F. 求证: DE = DF.

- 20. 已知: 关于 x 的一元二次方程 $x^2 4x + 2m = 0$ 有两个不相等的实数根.
 - (1) 求 *m* 的取值范围;
 - (2) 如果 m 为非负整数,且该方程的根都是整数,求 m 的值.

- 21. 已知: 如图, 菱形 *ABCD*, 分别延长 *AB*, *CB* 到点 *F*, *E*, 使得 *BF* = *BA*, *BE* = *BC*, 连接 *AE*, *EF*, *FC*, *CA*.
 - (1) 求证: 四边形 AEFC 为矩形;
 - (2) 连接 DE 交 AB 于点 O,如果 $DE \perp AB$,AB = 4,求 DE 的长.

- 22. 在平面直角坐标系 xOy 中,反比例函数 $y = \frac{2}{x}$ 的图象与一次函数 y = kx + b 的图象的交点分别为 P(m, 2) , Q(-2, n).
 - (1) 求一次函数的表达式;
 - (2) 过点 Q 作平行于 y 轴的直线,点 M 为此直线上的一点,当 MQ = PQ 时,直接写出点 M 的坐标.

- 23. 如图, A, B, C三点在 $\odot O$ 上,直径 BD 平分 $\angle ABC$,过点 D 作 DE/// AB 交弦 BC 于点 E, 过点 D 作 $\odot O$ 的切线交 BC 的延长线于点 F.
 - (1) 求证: *EF=ED*;
 - (2) 如果半径为 5, $\cos \angle ABC = \frac{3}{5}$, 求 DF 的长.

24. 第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行, 北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市. 某区举办了一次冬奥知识网上答题竞赛, 甲、乙两校各有400名学生参加活动, 为了解这两所学校的成绩情况, 进行了抽样调查, 过程如下, 请补充完整.

【收集数据】

从甲、乙两校各随机抽取 20 名学生,在这次竞赛中他们的成绩如下:

甲	30	60 60	70 60	80 30	90	100	60
	60	100 80	60 70	60 60	90	60	60
Z	80	90 40	60 80	80 90	40	80	50
	80	70 70	70 70	60 80	50	80	80

【整理、描述数据】按如下分数段整理、描述这两组样本数据:

人数绩学校	30≤x≤50	50< <i>x</i> ≤80	80< <i>x</i> ≤100
甲	2	14	4
乙	4	14	2

(说明: 优秀成绩为 $80 < x \le 100$, 良好成绩为 $50 < x \le 80$, 合格成绩为 $30 \le x \le 50$.)

【分析数据】两组样本数据的平均分、中位数、众数如下表所示:

学校	平均分	中位数	众数
甲	67	60	60
乙	70	75	а

其中 a =

【得出结论】

- (1) 小明同学说:"这次竞赛我得了70分,在我们学校排名属中游略偏上!"由表中数据可知小明是______校的学生;(填"甲"或"乙")
- (2) 张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩 为优秀的概率为_____;
- (3) 根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由. (至少从两个不同的角度说明推断的合理性)

25. 如图, Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, 点 D 为 AB 边上的动点(点 D 不与点 A, 点 B重合), 过点 D 作 $ED \perp CD$ 交直线 AC 于点 E. 已知 $\angle A = 30^{\circ}$, AB = 4cm, 在点 D 由点 A 到点 B 运动的 过程中,设AD = xcm,AE = ycm.

小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.

下面是小东的探究过程,请补充完整:

(1) 通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:

x/cm	:	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	$\frac{7}{2}$	
y/cm	•••	0.4	0.8	1.0		1.0	0	4.0	

(说明: 补全表格时相关数值保留一位小数)

(2) 在下面的平面直角坐标系 xOy 中,描出以补全后的表中各对对应值为坐标 的点, 画出该函数的图象;

(3)结合画出的函数图象,解决问题: $\exists AE = \frac{1}{2}AD$ 时, AD 的长度约为___

- 26. 在平面直角坐标系 xOy 中,抛物线 $y = ax^2 4ax + 3a$ 的最高点的纵坐标是 2.
 - (1) 求抛物线的对称轴及抛物线的表达式;
 - (2) 将抛物线在 $1 \le x \le 4$ 之间的部分记为图象 G_1 ,将图象 G_1 沿直线 x = 1 翻折, 翻折后的图象记为 G_2 ,图象 G_1 和 G_2 组成图象 G. 过(0, b)作与 y 轴垂 直的直线 l,当直线 l 和图象 G 只有两个公共点时,将这两个公共点分别记 为 $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, 求b的取值范围和 $x_1 + x_2$ 的值.

- 27. 如图, Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, CA = CB, 过点 C 在 $\triangle ABC$ 外作射线 CE, 且 $\angle BCE = \alpha$, 点 B 关于 CE 的对称点为点 D, 连接 AD, BD, CD, 其中 AD, BD 分别交射线 CE 于点 M, N.
 - (1) 依题意补全图形;
 - (2) 当 $\alpha = 30^{\circ}$ 时,直接写出 $\angle CMA$ 的度数;
 - (3) 当 $0^{\circ} < \alpha < 45^{\circ}$ 时,用等式表示线段 AM,CN 之间的数量关系,并证明.

28. 对于平面直角坐标系 xOy 中的点 M 和图形 W_1 , W_2 给出如下定义: 点 P 为图形 W_1 上一点,点 Q 为图形 W_2 上一点,当点 M 是线段 PQ 的中点时,称点 M 是图形 W_1 , W_2 的 "中立点"。如果点 $P(x_1, y_1)$, $Q(x_2, y_2)$,那么"中立点" M 的坐标为 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$.

已知, 点 A(-3, 0), B(0, 4), C(4, 0).

- (1) 连接 BC, 在点 $D(\frac{1}{2}, 0)$, E(0, 1), $F(0, \frac{1}{2})$ 中,可以成为点 A 和线段 BC 的 "中立点"的是_____;
- (2) 已知点 G(3, 0), $\odot G$ 的半径为 2. 如果直线 y = -x + 1 上存在点 K 可以成为点 A 和 $\odot G$ 的 "中立点",求点 K 的坐标;
- (3) 以点 C 为圆心,半径为 2 作圆. 点 N 为直线 y = 2x + 4 上的一点,如果存在点 N,使得 y 轴上的一点可以成为点 N 与 \odot C 的 "中立点",直接写出点 N 的横坐标的取值范围.

丰台区 2018 年初三毕业及统一练习

初三数学参考答案

一、选择题(本题共16分, 每小题2分)

题号	1	2	3	4	5	6	7	8
答案	D	С	Α	В	В	Α	В	С

二、填空题(本题共16分,每小题2分)

- 10. $y = \overset{\mathsf{I}}{-}$ 等,答案不唯一; 11. $S_{\triangle BEA}$, $S_{\triangle BFC}$, $AC \cdot BD$; 9. 6: 12. 1:
- **15.** (3), (4): 13. 8:
- 16. 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么它们所对应 的其余各组量都分别相等. 或: 同圆半径相等, 三条边对应相等的两个三角形全等, 全等三角形的对应角相等.
- 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7 分,第28题8分)
- 17. $\text{M}: \sqrt{8} 2\cos 45^\circ + (3-\pi)^0 + |1-\sqrt{2}|$

解不等式②,得x > -1......4 分

- ∴原不等式组的解集是 $-1 < x \le 1$5 分
- 19. 证明: 连接 AD.
 - :AB=BC, D 是 BC 边上的中点,
 - $\therefore \angle BAD = \angle CAD$.
 - ∵DE⊥AB 于点 E, DF⊥AC 于点 F,
 - \therefore DE=DF. (其他证法相应给分)

20. 解:(1):方程有两个不相等的实数根 ∴∆>0.

- $\therefore \Delta = (-4)^2 4 \cdot 2m = 16 8m > 0$.
- $\therefore m < 2$.

- (2) **∵** *m* < 2,且 *m* 为非负整数,
 - ∴ *m*=0或1.

- 当 m=0 时,方程为 $x^2-4x=0$,解得方程的根为 $x_1=0$, $x_2=4$,符合题

意:

- 当 m=1 时,方程为 $x^2-4x+2=0$ 它的根不是整数,不合题意,舍去. 综上所述, m=0.
- 21. (1) 证明: ∵*BF=BA*, *BE=BC*,
 - :.四边形 AEFC 为平行四边形.
 - :四边形 ABCD 为菱形,
 - ∴BA=BC.
 - ∴BE=BF.
 - ∴BA + BF = BC + BE, 即 AF=EC.
 - :.四边形 AEFC 为矩形.

由 (1) 知, AD//EB, 目, AD=EB.

- ∴四边形 AEBD 为平行四边形
- $:DE \perp AB$,
- ∴四边形 AEBD 为菱形.
-4 分 $\therefore AE = EB$, AB = 2AG, ED = 2EG.
- ∵矩形 ABCD 中,EB=AB,AB=4,
- $\therefore AG=2$, AE=4.
- $\therefore \text{Rt} \triangle AEG \Rightarrow EG = 2\sqrt{3}$.
- $\therefore ED = 4\sqrt{3}$.

- (其他证法相应给分)
- 22. (1) 解: :反比例函数 $v = \frac{1}{2}$ 的图象经过点 P(m,2) , Q(-2, n) ,
 - $\therefore m=1$, n=-1.
 - ∴点 P, Q 的坐标分别为(1, 2), (-2, -1).2 分
 - ::一次函数 y = kx + b 的图象经过点 P(1, 2), Q(-2, -1),

∴
$$\begin{cases} k+b=2, \\ -2k+b=-1. \end{cases}$$
 解得 $\begin{cases} k=1, \\ b=1. \end{cases}$

:一次函数的表达式为 y = x + 1.

- (2) 点 M 的坐标为(-2, -1+3 $\sqrt{2}$)或(-2, -1-3 $\sqrt{2}$)......5 分
- 23. (1) 证明: ∵*BD* 平分∠*ABC*, ∴∠1=∠2.

 $\therefore DE//AB$, $\therefore \angle 2 = \angle 3$. $\therefore \angle 1 = \angle 3$.

∵BC 是⊙*O* 的切线, ∴ ∠*BDF*=90°.

 \therefore $\angle 1+ \angle F = 90^{\circ}, \ \angle 3+ \angle EDF = 90^{\circ}.$

 $\therefore \angle F = \angle EDF \therefore EF = DE$.

(2)解:连接 CD.

∵BD 为⊙**0** 的直径, ∴∠BCD=90°.

 \therefore DE//AB, \therefore \angle DEF= \angle ABC.

 \because cos∠ABC= $\frac{3}{5}$, ∴ \triangle Rt△ECD \Rightarrow , cos∠DEC= $\frac{CE}{DE}$ = $\frac{3}{5}$.

设 *CE*=3x,则 *DE*=5x.

由(1)可知, BE= EF=5x.∴BF=10x, CF=2x.

在 Rt \wedge CFD 中,由勾股定理得 DF= $2\sqrt{5}x$.

- **∵**半径为 5, ∴ BD = 10.
- $:BF \times DC = FD \times BD$,
- ∴ 10xg4x = 10g $\sqrt{5}x$, 解得 $x = \frac{\sqrt{5}}{2}$.
- $\therefore DF = 2\sqrt{5}x = 5.$

(其他证法或解法相应给分.)

24. 解: *a*=80:

(1) 甲:

(2) $\frac{1}{10}$;

(3) 答案不唯一,理由需支持推断结论.

如: 乙校竞赛成绩较好, 因为乙校的平均分高于甲校的平均分说明平均水平高, 乙校的中位数 75 高于甲校的中位数 65,说明乙校分数不低于 70 分的学生比甲校

多.5分

25. 解:

(1) 1.2:

- (2) 如右图:
-4 分 (3) 2.4 或 3.3

\解:\((1): 抛物线 $y = ax^2 - 4ax + 3a = a(x-2)^2 - a$,

∴对称轴为 *x*= 2.

: 抛物线最高点的纵坐标是 2,

 $\therefore a = -2$.

(2) 由图象可知,b=2 或-6 \leq b<0.6分 由图象的对称性可得: $x_1+x_2=2$.

- 27. 解: (1) 如图:
 - (2) 45°:

- (3) 结论: $AM = \sqrt{2} CN$.

证明:作 $AG \perp EC$ 的延长线于点 G.

- ∵点 B 与点 D 关于 CE 对称,
- ∴CE 是 BD 的垂直平分线.
- ∴CB=CD.
- $\therefore \angle 1 = \angle 2 = \alpha$.
- $:: CA = CB, :: CA = CD. :: \angle 3 = \angle CAD.$
- ∵∠4=90°,
- $\therefore \angle 3 = \frac{1}{2} (180^{\circ} \angle ACD) = \frac{1}{2} (180^{\circ} 90^{\circ} \alpha \alpha) = 45^{\circ} \alpha.$
- ∴ \angle 5= \angle 2+ \angle 3= α +45° - α =45°5 分
- **∵**∠4=90°, CE 是 BD 的垂直平分线,
- ∴ ∠1+∠7=90°, ∠1+∠6=90°.

初三数学 第14页(共8页)

∴∠6=∠7.

 $:AG \perp EC$

∴∠*G*=90° =∠8.

∴在△BCN 和△CAG 中,

BC=CA,

 $\triangle BCN \cong \triangle CAG$.

 \therefore CN=AG.

∴Rt \triangle AMG \oplus , \angle G=90 $^{\circ}$, \angle 5=45 $^{\circ}$,

 \therefore AM= $\sqrt{2}$ AG.

 \therefore AM= $\sqrt{2}$ CN.

.....**7** ½

(其他证法相应给分.)

- 28. 解: (1) 点 A 和线段 BC 的"中立点"的是点 D, 点 F;2 分

(3) (说明:点N与⊙C的"中立点"在以线段NC的中点P为圆心、半径为1的圆上运动.圆P与y轴相切时,符合题意.) 所以点N的横坐标的取值范围为-6≤ x_N ≤-2.8分

