

Genesys Logic, Inc.

GL852G

USB 2.0 MTT Hub Controller

Datasheet

Copyright

Copyright © 2015 Genesys Logic, Inc. All rights reserved. No part of the materials shall be reproduced in any form or by any means without prior written consent of Genesys Logic, Inc.

Ownership and Title

Genesys Logic, Inc. owns and retains of its right, title and interest in and to all materials provided herein. Genesys Logic, Inc. reserves all rights, including, but not limited to, all patent rights, trademarks, copyrights and any other propriety rights. No license is granted hereunder.

Disclaimer

All Materials are provided "as is". Genesys Logic, Inc. makes no warranties, express, implied or otherwise, regarding their accuracy, merchantability, fitness for any particular purpose, and non-infringement of intellectual property. In no event shall Genesys Logic, Inc. be liable for any damages, including, without limitation, any direct, indirect, consequential, or incidental damages. The materials may contain errors or omissions. Genesys Logic, Inc. may make changes to the materials or to the products described herein at anytime without notice.

Genesys Logic, Inc.

12F., No. 205, Sec. 3, Beixin Rd., Xindian Dist. 231,

New Taipei City, Taiwan Tel: (886-2) 8913-1888 Fax: (886-2) 6629-6168 http://www.genesyslogic.com

Revision History

Revision	Date	Description						
1.00	05/26/2009	First formal release						
1.01	06/18/2009	Add On-chip power regulator spec, Ch6.6, p.28						
1.02	09/01/2009	Update 3.3 pin description,p.14 Update table-6.2 operating ranges, p.24 Update table-6.3 power dissipation, p.25 Update Ch8 order information, p.32						
1.03	10/23/2009	Modify table 5.3 – port number configuration, p.23						
1.04	11/04/2009	Update Table 6.6 – DC Supply Current, p.26						
1.05	05/17/2010	Update Table 6.6 – DC Supply Current for GL852G-1x version, p.26						
1.06	06/04/2010	Update Table 5.3 – port number configuration for GL852G-1x version, p.24						
1.07	12/27/2010	Add SSOP28 package information, p.8, 9, 12~15, 26 Modify Ch2 features, p.9 Modify 5.2.5 EEPROM Setting, p.24 Modify 6.6 On-Chip Power Regulator, p.31						
1.08	03/22/2011	Modify SSOP28 pinout, p.12~15 Update table-6.3 DC characteristics except USB signals, p.27						
1.09	04/21/2011	Add LQFN 46 package information, p8, 9, 13, 15~17, 26, 27, 37, 38						
1.10	05/11/2011	Modify SSOP28 package dimension information, p.36						
1.20	07/15/2011	Update Table 3.3 pin description, RREF I/O type, p.16						
1.21	07/15/2011	Update Table 3.1, 3.2, 3.3, 3.4, 3.5 RREF I/O type, p.14~16						
1.22	08/26/2011	Update Table-6.3 DC characteristics except USB signals (R _{DN} , R _{UP}), p.29						
1.23	11/21/2011	Update Table 3.5 Pin Description, p.17						
1.24	12/22/2011	Updated Table 6.2 Operating Ranges, p.28						
1.25	01/03/2012	Updated Table 3.5 Pin Descriptions, p.17						
1.26	05/16/2012	Modified CH8 Ordering Information, p.38						
1.27	08/31/2012	Updated Table 6.6 - GL852G Power Consumption, p. 30						
1.28	12/28/2012	Modified Typo, p. 38						
1.29	05/17/2013	Updated CH1 General Description, p. 8						
1.30	05/30/2013	Updated CH5.2.8 Non-removable Port Configuration, p. 28						
1.31	03/03/2014	Updated Reset Timing Information, p. 24, 25						
1.32	03/31/2015	Removed LQFN46 Package Information.						

Table of Contents

CHAPTER 1 GENERAL DESCRIPTION	8
CHAPTER 2 FEATURES	9
CHAPTER 3 PIN ASSIGNMENT	10
3.1 Pinouts	10
3.2 Pin List	13
3.3 Pin Descriptions	14
CHAPTER 4 BLOCK DIAGRAM	17
CHAPTER 5 FUNCTION DESCRIPTION	18
5.1 General Description	18
5.1.1 USPORT Transceiver	18
5.1.2 PLL (Phase Lock Loop)	18
5.1.3 FRTIMER	18
5.1.4 μC	18
5.1.5 UTMI (USB 2.0 Transceiver Microcell Interface)	18
5.1.6 USPORT Logic	18
5.1.7 SIE (Serial Interface Engine)	18
5.1.8 Control/Status Register	18
5.1.9 REPEATER	19
5.1.10 TT (Transaction Translator)	19
5.1.11 REPEATER/TT Routing Logic	19
5.1.12 DSPORT Logic	20
5.1.13 DSPORT Transceiver	20
5.2 Configuration and I/O Settings	21
5.2.1 RESET Setting	21
5.2.2 PGANG Setting	22
5.2.3 SELF/BUS Power Setting	23
5.2.4 LED Connections	23
5.2.5 EEPROM Setting	24
5.2.6 Power Switch Enable Polarity (Only Available for LQFP48 Package)24
5.2.7 Port Number Configuration (Only Available for LQFP48 Package).	24
5.2.8 Non-removable Port Configuration (Only Available for LQFP48 Package	ge) 25
5.2.9 Reference Clock Configuration (Only Available for LQFP48 Packag	ge)25

CHAPTER 6 ELECTRICAL CHARACTERISTICS	26
6.1 Maximum Ratings	26
6.2 Operating Ranges	26
6.3 DC Characteristics	26
6.4 Power Consumption	27
6.5 AC Characteristics	28
6.5.1 93C46 EEPROM IF	28
6.5.2 24C02 EEPROM Interface	29
6.6 On-Chip Power Regulator	30
CHAPTER 7 PACKAGE DIMENSION	31
CHAPTER 8 ORDERING INFORMATION	34

List of Figures

Figure 3.1 - GL852G 48 Pin LQFP Pinout Diagram	10
Figure 3.2 - GL852G 28 Pin QFN Pinout Diagram	11
Figure 3.3 - GL852G SSOP 28 Pin Pinout Diagram	12
Figure 4.1 - GL852G Block Diagram (Multiple TT)	17
Figure 5.1 - Operating in USB 1.1 Schemes	19
Figure 5.2 - Operating in USB 2.0 Schemes	20
Figure 5.3 - Power on Reset Diagram	21
Figure 5.4 - Power on Sequence of GL852G	21
Figure 5.5 - Timing of PGANG Strapping	22
Figure 5.6 - GANG Mode Setting	22
Figure 5.7 - SELF/BUS Power Setting	23
Figure 5.8 - LED Connection	23
Figure 5.9 - Schematics between GL852G and 93C46	
Figure 6.1 - Vin(V5) vs Vout(V33)*	
Figure 7.1 - GL852G 48 Pin LQFP Package	
Figure 7.2 - GL852G 28 Pin QFN Package	
Figure 7.3 - GL852G 28 Pin SSOP Package	
6	

List of Tables

Table 3.1 - GL852G LQFP 48 Pin List	13
Table 3.2 - GL852G QFN 28 Pin List	13
Table 3.3 - GL852G SSOP 28 Pin List	13
Table 3.5 - Pin Descriptions	14
Table 5.1 - Reset Timing	22
Table 5.2 - Configuration by Power Switch Type	24
Table 5.3 - Port Number Configuration	24
Table 5.4 - Ref. Clock Configuration	25
Table 6.1 - Maximum Ratings	26
Table 6.2 - Operating Ranges	26
Table 6.3 - DC Characteristics except USB Signals	26
Table 6.4 - DC Characteristics of USB Signals under FS/LS Mode	
Table 6.5 - DC Characteristics of USB Signals under HS Mode	
Table 6.6 - GL852G power consumption	
Table 6.7 - AC Characteristics of EEPROM Interface (93C46)	
Table 6.8 - AC Characteristics of EEPROM Interface (24C02)	
Table 8.1 - Ordering Information	

CHAPTER 1 GENERAL DESCRIPTION

GL852G is Genesys Logic's premium 4-port hub solution which fully complies with Universal Serial Bus Specification Revision 2.0. GL852G implements multiple TT* (*Note1*) architecture that provide dedicated TT* to each downstream (DS) ports, which guarantee Full-Speed(FS) data passing bandwidth when multiple FS device perform heavy loading operations. The controller inherits Genesys Logic's cutting edge technology on cost and power efficient serial interface design. GL852G has proven compatibility, lower power consumption figure and better cost structure above all USB2.0 hub solutions worldwide.

GL852G implements multiple hub configuration features onto internal mask ROM, which traditionally requires one external EEPROM. The microprocessor detects general purpose I/O (GPIO) status during the initial stage to configure hub settings such as (1) number of DSport, (2) declare of compound device (3) gang/individual mode selection...etc. External EEPROM can be removed if no vendor specified PID/VID or product string is required for the application.

GL852G supports three package types, summarized as below table. LQFP48 package provides full hub features such as (1) two-color (green/amber) status LEDs for each DS ports, (2) Individual/Gang mode power management scheme that indicates DS port over-current events. (3) Number of DS ports setting configured by GPIO setting (4) non-removable declaration configured by GPIO setting (5) Support both 93C46 and 24C02 EEPROM (6) power switch polarity selections...etc. QFN28/SSOP28 package support only partial hub features but provide smaller footprint that targets space limited PCB layout environments such as embedded system or UMPC/MID applications.

Package Type	# of DS Ports	Port # Config.	Non-removable Declaration	Power Mgmt.	LED Support	EEPROM
LQFP 48	4	EEPROM/ GPIO	EEPROM/ GPIO	Individual/Gang	Green/Amber	93C46/ 24C02
QFN 28	4	EEPROM	EEPROM	Individual/Gang	N/A	24C02
SSOP 28	4	EEPROM	EEPROM	Gang	N/A	24C02

GL852G Package – Feature Summary

^{*}Note 1: TT (transaction translator) is the main traffic control engine in an USB 2.0 hub to handle the unbalanced traffic speed between the upstream port and the downstream ports.

CHAPTER 2 FEATURES

- Compliant to USB specification Revision 2.0
 - 4 downstream ports
 - Upstream port supports both high-speed (HS) and full-speed (FS) traffic
 - Downstream ports support HS, FS, and low-speed (LS) traffic
 - 1 control pipe (endpoint 0, 64-byte data payload) and 1 interrupt pipe (endpoint 1, 1-byte data payload)
 - Backward compatible to USB specification Revision 1.1
- On-chip 8-bit micro-processor
 - RISC-like architecture
 - USB optimized instruction set
 - Dual cycle instruction execution
 - Performance: 6 MIPS @ 12MHz
 - With 64-byte RAM and 9K internal ROM
 - Support customized PID, VID by reading external EEPROM
 - Support downstream port configuration by reading external EEPROM
- Multiple Transaction translator (MTT)
 - MTT provides respective TT control logics for each downstream port.
- Each downstream port supports two-color status indicator, with automatic and manual modes compliant to USB specification Revision 2.0
- Built-in upstream port 1.5K Ω pull-up and downstream port 15K Ω pull-down resistors
- Support both individual and gang modes of power management and over-current detection for downstream ports
- Conform to bus power requirements of USB 2.0 specification
- Automatic switching between self-powered and bus-powered modes
- Integrate USB 2.0 transceiver
- Embedded PLL support external 12 MHz crystal / Oscillator clock input
- Optional 27/48 MHz Oscillator clock input (Only available in LQFP48 package)
- Support compound-device (non-removable in downstream ports) by I/O pin configuration (Only available in LQFP48 package)
- Number of Downstream port can be configured by GPIO without external EEPROM (Only available in LQFP48 package)
- Built-in 5V to 3.3V regulator
- Improve output drivers with slew-rate control for EMI reduction
- Internal power-fail detection for ESD recovery
- Available package types: 48 pin LQFP, 28 pin QFN and 28 pin SSOP
- Applications:
 - Stand-alone USB hub / USB docking
 - UMPC/MID, motherboard on-board applications
 - Consumer electronics built-in hub application
 - Monitor built-in hub
 - Embedded systems
 - Compound device to support USB hub function such as keyboard hub applications

CHAPTER 3 PIN ASSIGNMENT

3.1 Pinouts

Figure 3.1 - GL852G 48 Pin LQFP Pinout Diagram

Figure 3.2 - GL852G 28 Pin QFN Pinout Diagram

Figure 3.3 - GL852G SSOP 28 Pin Pinout Diagram

3.2 Pin List

Table 3.1 - GL852G LQFP 48 Pin List

Pin#	Pin Name	Type	Pin#	Pin Name	Type	Pin#	Pin Name	Type	Pin#	Pin Name	Type
1	AVDD	P	13	GND	P	25	SEL48#	I	37	PSELF	I
2	GND	P	14	X1	I	26	RESET#	I	38	DVDD	P
3	DM0	В	15	X2	О	27	TEST / SCL	В	39	PGANG	В
4	DP0	В	16	AVDD	P	28	OVCUR4#	I	40	OVCUR2#	I
5	DM1	В	17	DM3	В	29	PWREN4#	О	41	PWREN2#	О
6	DP1	В	18	DP3	В	30	OVCUR3#	I	42	OVCUR1#	I
7	AVDD	P	19	AVDD	P	31	PWREN3#	О	43	PWREN1#/ SDA	В
8	GND	P	20	GND	P	32	GREEN3	О	44	SEL27#	I
9	DM2	В	21	DM4	В	33	AMBER3	О	45	GREEN1/EE_SK	О
10	DP2	В	22	DP4	В	34	DVDD	P	46	AMBER1/EE_CS	О
11	RREF	A	23	GREEN4	О	35	GREEN2/ EE_DO	О	47	V5	I/P
12	AVDD	P	24	AMBER4	О	36	AMBER2/ EE_DI	О	48	V33	O/P

Table 3.2 - GL852G QFN 28 Pin List

Pin#	Pin Name	Type									
1	DM0	В	8	RREF	Α	15	DM4	В	22	PSELF	I_5V
2	DP0	В	9	AVDD	P	16	DP4	В	23	PGANG	В
3	DM1	В	10	X1	I	17	RESET#	I_5V	24	OVCUR2#	I_5V
4	DP1	В	11	X2	I	18	TEST/SCL	I/B	25	OVCUR1#	I_5V
5	AVDD	P	12	DM3	В	19	OVCUR4#	I_5V	26	SDA	О
6	DM2	В	13	DP3	В	20	OVCUR3#	I_5V	27	V5	I/P
7	DP2	В	14	AVDD	P	21	DVDD	P	28	V33	O/P

Table 3.3 - GL852G SSOP 28 Pin List

Pin#	Pin Name	Type									
1	AVDD	P	8	DM3	В	15	GND	P	22	PWREN1#	О
2	DM2	В	9	DP3	В	16	DVDD	P	23	V5	P
3	DP2	В	10	AVDD	P	17	PSELF	I_5V	24	V33	P
4	RREF	A	11	DM4	В	18	PGANG	В	25	DM0	В
5	AVDD	P	12	DP4	В	19	OVCUR2#	I_5V	26	DP0	В
6	X1	I	13	RESET#	I	20	PWREN2#*	О	27	DM1	В
7	X2	О	14	TEST/SCL	I/B	21	OVCUR1#*	I_5V	28	DP1	В

3.3 Pin Descriptions

Table 3.5 - Pin Descriptions

	USB Interface												
	GL852G		I/O										
Pin Name	LQFP 48 Pin	QFN 28 Pin	SSOP 28 Pin	Type	Description								
DM0,DP0	3,4	1,2	25,26	В	USB signals for USPORT								
DM1,DP1	5,6	3,4	27,28	В	USB signals for DSPORT1								
DM2,DP2	9,10	6,7	2,3	В	USB signals for DSPORT2								
DM3,DP3	17,18	12,13	8,9	В	USB signals for DSPORT3								
DM4,DP4	21,22	15,16	11,12	В	USB signals for DSPORT4								
RREF	11	8	4	A	A 680Ω resister must be connected between RREF and analog ground (AGND).								

Note: USB signals must be carefully handled in PCB routing. Please refer to **USB 2.0 Hub Design Guide** for detailed information.

	Hub Interface										
		GL852G		I/O							
Pin Name	LQFP 48 Pin	QFN 28 Pin	SSOP 28 Pin	Type	Description						
OVCUR1#~4	42,40, 30,28	25,24, 20,19	21,19	I (pu)	Active low. Over current indicator for DSPORT1~4 OVCUR1# is the only over current flag for GANG mode.						
PWREN1#~4	43,41, 31,29	-	22,20	О	Active low. Power enable output for DSPORT1~4 PWREN1# is the only power-enable output for GANG mode.						
GREEN1~4	45,35, 32,23	-	-	1,3,4: O 2: B (pd)	Green LED indicator for DSPORT1~4 *GREEN[1~2] are also used to access the external EEPROM For detailed information, please refer to Chapter 5.						
AMBER1~4	46,36, 33,24	-	-	O (pd)	Amber LED indicator for DSPORT1~4 *Amber [1~2] are also used to access the external EEPROM						
PSELF	37	22	17	I	0: GL852G is bus-powered. 1: GL852G is self-powered.						
PGANG	39	23	18	В	This pin is default put in input mode after power-or reset. Individual/gang mode is strapped during this period. After the strapping period, this pin will be sto output mode, and then output high for normal mode. When GL852G is suspended, this pin will output low. *For detailed explanation, please see Chapter 5 Gang input:1, output: 0@normal, 1@suspe Individual input:0, output: 1@normal, 0@suspe						

	Clock and Reset Interface											
	GL852G			I/O								
Pin Name	LQFP 48 Pin	QFN 28 Pin	SSOP 28 Pin	Type	Description							
X1	14	10	6	I	Crystal / OSC clock input							
X2	15	11	7	О	Crystal clock output.							
RESET#	26	17	13	I	Active low. External reset input, default pull high $10K\Omega$. When RESET# = low, whole chip is reset to the initial state.							
SEL48#/ SEL27#	25,44			I	SEL48#/SEL27#: 0 1: 48MHz OSC-in 1 0: 27MHz OSC-in 1 1: 12MHz X'tal/OSC-in							

	System Interface							
	GL852G			I/O				
Pin Name	LQFP 48 Pin	QFN 28 Pin	SSOP 28 Pin	Type	Description			
TEST/SCL	27	18	14	(pd)	TEST: 0: Normal operation. 1: Chip will be put in test mode. I2C: clock output pin			
SDA		26		В	I2C data pin			

	Power / Ground							
		GL852G		I/O				
Pin Name	LQFP 48 Pin	QFN 28 Pin	SSOP 28 Pin	Type	Description			
AVDD	1,7,12, 16,19	5,9,14	1,5,10	P	3.3V analog power input for analog circuits.			
DVDD	34,38	21	16	P	3.3V digital power input for digital circuits			
GND	2,8, 13,20	-	15	P	Ground Exposed pad is connected to GND (QFN28)			
V5	47	27	23	P/I	5V Power input. It need be NC if using external regulator			
V33	48	28	24	P/O	5V-to-3.3V regulator Vout (LQFP48) 5V-to-3.3V regulator Vout & 3.3 input (QFN28/SSOP28) It can be NC or connect to 3.3V power if using external regulator (LQFP48 only)			

Note: Analog circuits are quite sensitive to power and ground noise. PCB layout must take care the power routing and the ground plane. Please refer to **USB 2.0 Hub Design Guide** for detailed information.

Notation:

Type	O	Output
	I	Input
	В	Bi-directional
	B/I	Bi-directional, default input
	B/O	Bi-directional, default output
	P	Power / Ground
	A	Analog
	SO	Automatic output low when suspend
	pu	Internal pull up
	pd	Internal pull down
	odpu	Open drain with internal pull up

CHAPTER 4 BLOCK DIAGRAM

Figure 4.1 - GL852G Block Diagram (Multiple TT)

CHAPTER 5 FUNCTION DESCRIPTION

5.1 General Description

5.1.1 USPORT Transceiver

USPORT (upstream port) transceiver is the analog circuit that supports both full-speed and high-speed electrical characteristics defined in chapter 7 of USB specification Revision 2.0. USPORT transceiver will operate in full-speed electrical signaling when GL852G is plugged into a 1.1 host/hub. USPORT transceiver will operate in high-speed electrical signaling when GL852G is plugged into a 2.0 host/hub.

5.1.2 PLL (Phase Lock Loop)

GL852G contains a 40x PLL. PLL generates the clock sources for the whole chip. The generated clocks are proven quite accurate that help in generating high speed signal without jitter.

5.1.3 FRTIMER

This module implements hub (micro)frame timer. The (micro)frame timer is derived from the hub's local clock and is synchronized to the host (micro)frame period by the host generated Start of (micro)frame (SOF). FRTIMER keeps tracking the host's SOF such that GL852G is always safely synchronized to the host. The functionality of FRTIMER is described in section 11.2 of USB Specification Revision 2.0.

5.1.4 μC

 μ C is the micro-processor unit of GL852G. It is an 8-bit RISC processor with 9K ROM and 64 bytes RAM. It operates at 6MIPS of 12 MHz clock to decode the USB command issued from host and then prepares the data to respond to the host. In addition, μ C can handle GPIO (general purpose I/O) settings and reading content of EEPROM to support high flexibility for customers of different configurations of hub. These configurations include self/bus power mode setting, individual/gang mode setting, downstream port number setting, device removable/non-removable setting, and PID/VID setting.

5.1.5 UTMI (USB 2.0 Transceiver Microcell Interface)

UTMI handles the low level USB protocol and signaling. It's designed based on the Intel's UTMI specification 1.01. The major functions of UTMI logic are to handle the data and clock recovery, NRZI encoding/decoding, Bit stuffing /de-stuffing, supporting USB 2.0 test modes, and serial/parallel conversion.

5.1.6 USPORT Logic

USPORT implements the upstream port logic defined in section 11.6 of USB specification Revision 2.0. It mainly manipulates traffics in the upstream direction. The main functions include the state machines of Receiver and Transmitter, interfaces between UTMI and SIE, and traffic control to/from the REPEATER and TT.

5.1.7 SIE (Serial Interface Engine)

SIE handles the USB protocol defined in chapter 8 of USB specification Revision 2.0. It co-works with μ C to play the role of the hub kernel. The main functions of SIE include the state machine of USB protocol flow, CRC check, PID error check, and timeout check. Unlike USB 1.1, bit stuffing/de-stuffing is implemented in UTMI, not in SIE.

5.1.8 Control/Status Register

Control/Status register is the interface register between hardware and firmware. This register contains the information necessary to control endpoint0 and endpoint1 pipelines. Through the firmware based architecture, GL852G possesses higher flexibility to control the USB protocol easily and correctly.

5.1.9 REPEATER

Repeater logic implements the control logic defined in section 11.4 and section 11.7 of USB specification Revision 2.0. REPEATER controls the traffic flow when upstream port and downstream port are signaling in the same speed. In addition, REPEATER will generate internal resume signal whenever a wakeup event is issued under the situation that hub is globally suspended.

5.1.10 TT (Transaction Translator)

TT implements the control logic defined in section 11.14 ~ 11.22 of USB specification Revision 2.0. TT basically handles the unbalanced traffic speed between the USPORT (operating in HS) and DSPORTS (operating in FS/LS) of hub. GL852G adopts multiple TT architecture to provide the most performance effective solution. Multiple TT provides control logics for each downstream port respectively.

5.1.11 REPEATER/TT Routing Logic

REPEATER and TT are the major traffic control machines in the USB 2.0 hub. Under situation that USPORT and DSPORT are signaling in the same speed, REPEATER/TT routing logic switches the traffic channel to the REPEATER. Under situation that USPORT is in the high speed signaling and DSPORT is in the full/low speed signaling, REPEATER/TT routing logic switches the traffic channel to the TT.

5.1.11.1 Connected to 1.1 Host/Hub

If an USB 2.0 hub is connected to the downstream port of an USB 1.1 host/hub, it will operate in USB 1.1 mode. For an USB 1.1 hub, both upstream direction traffic and downstream direction traffic are passing through REPEATER. That is, the REPEATER/TT routing logic will route the traffic channel to the REPEATER.

Figure 5.1 - Operating in USB 1.1 Schemes

5.1.11.2 Connected to USB 2.0 Host/Hub

If an USB 2.0 hub is connected to an USB 2.0 host/hub, it will operate in USB 2.0 mode. The upstream port signaling is in high speed with bandwidth of 480 Mbps under this environment. The traffic channel will then be routed to the REPEATER when the device connected to the downstream port is signaling also in high speed. On the other hand, the traffic channel will then be routed to TT when the device connected to the downstream port is signaling in full/low speed.

Figure 5.2 - Operating in USB 2.0 Schemes

5.1.12 DSPORT Logic

DSPORT (downstream port) logic implements the control logic defined in section 11.5 of USB specification Revision 2.0. It mainly manipulates the state machine, the connection/disconnection detection, over current detection and power enable control, and the status LED control of the downstream port. Besides, it also output the control signals to the DSPORT transceiver.

5.1.13 DSPORT Transceiver

DSPORT transceiver is the analog circuit that supports high-speed, full-speed, and low-speed electrical characteristics defined in chapter 7 of USB specification Revision 2.0. In addition, each DSPORT transceiver accurately controls its own squelch level to detect the detachment and attachment of devices.

5.2 Configuration and I/O Settings

5.2.1 RESET Setting

GL852G's power on reset can either be triggered by external reset or internal power good reset circuit. The external reset pin, RESETJ, is connected to upstream port Vbus (5V) to sense the USB plug / unplug or 5V voltage drop. The reset trigger voltage can be set by adjusting the value of resistor R1 and R2 (Suggested value refers to schematics) GL852G's internal reset is designed to monitor silicon's internal core power (3.3V) and initiate reset when unstable power event occurs. The power on sequence will start after the power good voltage has been met, and the reset will be released after approximately 2.7 μ S after power good. GL852G's reset circuit as depicted in the picture

Figure 5.3 - Power on Reset Diagram

To fully control the reset process of GL852G, we suggest the reset time applied in the external reset circuit should longer than that of the internal reset circuit. Timing of POR is illustrated as below figure.

Figure 5.4 - Power on Sequence of GL852G

Table 5.1 - Reset Timing
Danamatan

Symbol	Parameter	Min.	Max.	Unit
T_{PG}	VDD power up to internal reset (power good) assert (12MHz)	-	2.7	μs
T1	VDD power up to external reset (RESETJ) assert	3	-	μs
T2	RESET assert to respond USB command ready	70	-	ms

5.2.2 PGANG Setting

To save pin count, GL852G uses the same pin to decide individual/gang mode as well as to output the suspend flag. The individual/gang mode is decided within 20us after power on reset. Then, about 50ms later, this pin is changed to output mode. GL852G outputs the suspend flag once it is globally suspended. For individual mode, a pull low resister greater than $100 \mathrm{K}\Omega$ should be placed. For gang mode, a pull high resister which greater than $100K\Omega$ should be placed. In figure 5.6, we also depict the suspend LED indicator schematics. It should be noticed that the polarity of LED must be followed, otherwise the suspend current will be over spec limitation (2.5mA).

Figure 5.5 - Timing of PGANG Strapping

Figure 5.6 - GANG Mode Setting

5.2.3 SELF/BUS Power Setting

GL852G can operate under bus power and conform to the power consumption limitation completely (suspend current < 2.5 mA, normal operation current < 100 mA). By setting PSELF, GL852G can be configured as a bus-power or a self-power hub.

Figure 5.7 - SELF/BUS Power Setting

5.2.4 LED Connections

GL852G controls the LED lighting according to the flow defined in section 11.5.3 of Universal Serial Bus Specification Revision2.0. Both manual mode and Automatic mode are supported in GL852G. When GL852G is globally suspended, GL852G will turn off the LED to save power.

Figure 5.8 - LED Connection

5.2.5 EEPROM Setting

GL852G replies to host commands by the default settings in the internal ROM. GL852G also offers the ability to reply to the host according to the settings in the external EEPROM (LQFP48 supports both 93C46 and 24C02; QFN28 only supports 24C02). And to prevent the content of EEPROM from being over-written, amber LED will be disabled when EEPROM exists. Please refer to the **USB 2.0 Hub AP Note_EEPROM Info** for detailed information.

The schematics between GL852G and 93C46 are depicted in the following figures:

Figure 5.9 - Schematics between GL852G and 93C46

GL852G firstly verifies the check sum after power on reset. If the check sum is correct, GL852G will take the configuration of 93C46 as part of the descriptor contents. To prevent the content of 93C46 from being over-written, amber LED will be disabled when 93C46 exists.

5.2.6 Power Switch Enable Polarity (Only Available for LQFP48 Package)

Both low/high-enabled power switches are supported. It is determined by jumper setting, based on the state of pin AMBER2, as the following table:

AMBER2	Power Switch Enable Polarity					
0	Low-active					

High-active

Table 5.2 - Configuration by Power Switch Type

5.2.7 Port Number Configuration (Only Available for LQFP48 Package)

Number of downstream port can be configured as 2/3/4 ports by pin strapping in addition to EEPROM, based on the state of pin AMBER 3, AMBER 4, as the following table:

AMBER 3	AMBER 4	# of DP Declaration					
1	1	1 (Port1)					
1	0	2 (Port1/2)					
0	1	3 (Port1/2/3)					
0	0	4 (Port1/2/3/4)					

Table 5.3 - Port Number Configuration

5.2.8 Non-removable Port Configuration (Only Available for LQFP48 Package)

For compound application or embedded system, downstream ports that always connected inside the system can be set as non-removable based on the state of corresponding status LED, pin GREEN 1~4. If the pin is pulled high in the initial stage, the corresponding port will be set as non-removable.

5.2.9 Reference Clock Configuration (Only Available for LQFP48 Package)

GL852G can support optional 27/48MHz clock source, which is selectable through GPIO configurations. For some on-board design that 27/48MHz clock source is available, such as motherboard or Monitor built-in applications, system integrator can leverage this feature to further reduce BOM cost by removing external crystal.

Table 5.4 - Ref. Clock Configuration

SEL48	SEL27 Clock Source	
0	1	48MHz OSC-in
1	0	27MHz OSC-in
1	1	12MHz X'tal/OSC-in

CHAPTER 6 ELECTRICAL CHARACTERISTICS

6.1 Maximum Ratings

Table 6.1 - Maximum Ratings

Symbol	Parameter Min. Max.			
V_5	5V Power Supply	-0.5	+6.0	V
V_{DD}	3.3V Power Supply	-0.5	+3.6	V
$V_{\rm IN}$	3.3V Input Voltage for digital I/O(EE_DO) pins	-0.5	+3.6	V
V_{INOD}	Open-Drain Input (Ovcur1-4,Pself,Reset)	-0.5	+5.5	V
V _{INUSB}	Input Voltage for USB signal (DP, DM) pins	-0.5	+3.6	V
T_{S}	Storage Temperature under bias	-60	+100	°C
Fosc	Frequency	12 MHz ± 500ppm		

6.2 Operating Ranges

Table 6.2 - Operating Ranges

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_5	5V Power Supply	4.5	5.0	5.5	V
V_{DD}	3.3V Power Supply	3.0	3.3	3.6	V
V_{IND}	Input Voltage for digital I/O pins	-0.5	3.3	3.6	V
V _{INUSB}	Input Voltage for USB signal (DP, DM) pins	0.5	3.3	3.6	V
T_A	Ambient Temperature	0	-	70	°C
T_{J}	Absolute maximum junction temperature	0	-	125	°C
	Thermal Characteristics LQFP 48	-	78.7	-	°C/W
θ ја	Thermal Characteristics QFN 28	-	33.3	-	°C/W
	Thermal Characteristics SSOP 28	-	61.6	-	°C/W

6.3 DC Characteristics

Table 6.3 - DC Characteristics except USB Signals

Symbol	Parameter	Min.	Тур.	Max.	Unit
P_{D}	Power Dissipation	-	-	431.5	mW
$V_{\rm IL}$	LOW level input voltage	-	-	0.8	V
V_{IH}	HIGH level input voltage	2.0	-	-	V
V_{TLH}	LOW to HIGH threshold voltage	1.4	1.5	1.6	V
V_{THL}	HIGH to LOW threshold voltage	0.87	0.94	0.99	V
V_{OL}	LOW level output voltage when I _{OL} =8mA	-	-	0.4	V
V _{OH}	HIGH level output voltage when I _{OH} =8mA	2.4	-	-	V
I _{OLK}	Leakage current for pads with internal pull up or pull down resistor	-	-	30	μΑ
R_{DN}	Pad internal pull down resister	29K	59K	135K	Ω
R_{UP}	Pad internal pull up resister	80K	108K	140K	Ω

Table 6.4 - DC Characteristics of USB Signals under FS/LS Mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{OL}	DPF/DMF static output LOW(R_L of 1.5K to 3.6V)	0	-	0.3	V
V_{OH}	DPF/DMF static output HIGH (R_L of 15K to GND)	2.8	-	3.6	V
V_{DI}	Differential input sensitivity	0.2	-	-	V
V_{CM}	Differential common mode range	0.8	-	2.5	V
V _{SE}	Single-ended receiver threshold	0.2	-	-	V
C_{IN}	Transceiver capacitance	-	-	20	pF
I_{LO}	Hi-Z state data line leakage	-10	-	+10	μΑ
Z_{DRV}	Driver output resistance	28	-	44	Ω

Table 6.5 - DC Characteristics of USB Signals under HS Mode

Symbol	Parameter		Тур.	Max.	Unit
V_{OL}	DPH/DMH static output LOW(R _L of 1.5K to 3.6V)		-	0.1	V
C_{IN}	Transceiver capacitance	4	4.5	5	pF
I_{LO}	Hi-Z state data line leakage		0	+5	μΑ
Z_{DRV}	Driver output resistance for USB 2.0 HS	48	45	42	Ω

6.4 Power Consumption

Table 6.6 - GL852G power consumption

Symbol	Condition			Current	TT24
	Active ports	Host	Device	Current	Unit
I_{SUSP}	Suspend			473	uA
I _{CC}	4	H^{*1}	Н	76	mA
	3	Н	Н	66	mA
	2	Н	Н	58	mA
	1	Н	Н	50	mA
	No Active	Н	N/A	41.7	mA

^{*:}H: High-Speed

Note:

Test result represents silicon level operating current, without considering additional power consumption contributed by external over-current protection circuit such as power switch or polyfuse.

6.5 AC Characteristics

GL852G LQFP 48 pin package can support both 93C46 & 24C02 type EEPROM for customized VID/PID. GL852G QFN28/SSOP28 pin package can only support 24C02 type EEPROM. AC characteristics of these two types of EEPROM summarized as below figures and tables.

6.5.1 93C46 EEPROM IF

Table 6.7 - AC Characteristics of EEPROM Interface (93C46)

Symbol	Parameter	Min.	Тур.	Max.	Units
t _{CSS}	CS Setup Time	3.0			
t _{CSH}	CS Hold Time	3.0			
t _{SKH}	t _{SKH} SK High Time				
t _{SKL}	SK Low Time	2.2			***
t _{DIS}	DI Setup Time				us
t _{DIH}	t _{DIH} DI Hold Time				
t _{PD1}	t _{PD1} Output Delay to "1"			1.8	
t _{PD0}	Output Delay to "0"			1.8	

6.5.2 24C02 EEPROM Interface

Bus Timing

Write Cycle Timing

Table 6.8 - AC Characteristics of EEPROM Interface (24C02)

			1.8V-5.5V			2.5V-5.5V	
Symbol	Parameter	Test Conditions	MIn.	Max.	MIn.	Max.	Unit
fscL	SCL Clock Frequency		0	100	0	400	KHz
T	Noise Suppression Time ⁽¹⁾		_	100	_	50	ns
tLow	Clock LOW Period		4.7	_	1.2	_	μs
thigh	Clock HIGH Period		4	_	0.6	_	μs
tBUF	Bus Free Time Before New	/ Transmission ⁽¹⁾	4.7	_	1.2	_	μs
tsu:sta	Start Condition Setup Time)	4.7	_	0.6	_	μs
tsu:sto	Stop Condition Setup Time)	4.7	_	0.6	_	μs
thd:STA	Start Condition Hold Time		4	_	0.6	_	μs
tнр:sto	Stop Condition Hold Time		4	_	0.6	_	μs
tsu:DAT	Data In Setup Time		200	_	100	_	ns
thd:dat	Data In Hold Time		0	_	0	_	ns
ton	Data Out Hold Time	SCL LOW to SDA Data Out Change	100	_	50	_	ns
taa	Clock to Output	SCL LOW to SDA Data Out Valid	0.1	4.5	0.1	0.9	μs
tr	SCL and SDA Rise Time(1)		_	1000	_	300	ns
tF	SCL and SDA Fall Time(1)		_	300	_	300	ns
twn	Write Cycle Time		_	10	_	5	ms

Note:
1. This parameter is characterized but not 100% tested.

6.6 On-Chip Power Regulator

GL852G requires 3.3V source power for normal operation of internal core logic and USB physical layer (PHY). The integrated low-drop power regulator converts 5V power input from USB cable (Vbus) to 3.3V voltage for silicon power source. The 3.3V power output is guaranteed by an internal voltage reference circuit to prevent unstable 5V power compromise USB data integrity. The regulator's maximum current loading is 200mA, which provides enough tolerance for normal GL852G operation (below 100mA).

On-chip Power Regulator Features:

- 5V to 3.3V low-drop power regulator
- 200mA maximum output driving capability
- Provide stable 3.3V output when $Vin = 3.4V \sim 5.5V$
- Max. suspend current:190uA; typical suspend current 164uA

Figure 6.1 - Vin(V5) vs Vout(V33)*

*Note: Measured environment: Ambient temperature = 25°C / Current Loading = 200mA

CHAPTER 7 PACKAGE DIMENSION

Figure 7.1 - GL852G 48 Pin LQFP Package

SYMBOL	DIMENSION MM (MIL)			
	MIN.	N□M.	MAX.	
Α	0.70 (27.6)	0.75 (29.5)	0.80 (31.5)	
A1		(8.0) 20.0	0.05 (2.0)	
А3	0.203 (8.0) REF			
b	0.18 (7.1)	0.25 (9.8)	0.30 (11.8)	
D		5.00 (196.9) BS	C	
D2	3.40 (133.9)	3.55 (139.8)	3.70 (145.7)	
Ε	5.00 (196.9) BSC			
ES	3.40 (133.9)	3.55 (139.8)	3.70 (145.7)	
е	0.50 (19.7) BSC			
L	0.30 (11.8)	0.40 (15.7)	0.50 (19.7)	

NOTE: 1. REFER TO JEDEC STD. MO-220
2. ALL DIMENSIONS IN MILLIMETERS.

Figure 7.2 - GL852G 28 Pin QFN Package

SYMBOL	DIMENSION MM (MIL)				
3111000	MIN.	N□M.	MAX.		
A			2.00 (78.7)		
A1	0.05 (2.0)		0.21 (8.3)		
SA	1.65 (65.0)	1.75 (68.9)	1.85 (72.8)		
b	0.22 (8.7)		0.38 (15.0)		
b1	0.22 (8.7)	0.30 (11.8)	0.33 (13.0)		
С	0.09 (3.5)		0.25 (9.8)		
c1	0.09 (3.5)		0.21 (8.3)		
D	10.20 (401.6) BSC				
6	0.65 (25.6) BSC				
E	7.80 (307.1) BSC				
E1	5.	30 (208.7) BS0	0		
L	0.55 (21.7)	0.75 (29.5)	0.95 (37.4)		
L1	1.	25 (49.2) REF			
R1	0.15 (5.9)	0.20 (7.9)	0.25 (9.8)		
R2	0.15 (5.9)	0.20 (7.9)	0.25 (9.8)		
У			0.08 (3.1)		
θ	0,	4*	8*		
θ 1	0.				
92	7° TYP				
03	7* TYP				

NOTE: 1. REFER TO JEDEC MO-150

2. ALL DIMENSIONS IN MILLIMETERS.

Figure 7.3 - GL852G 28 Pin SSOP Package

CHAPTER 8 ORDERING INFORMATION

Table 8.1 - Ordering Information

Part Number	Package	Green/Wire Material	Version	Status
GL852G-MNYXX	LQFP 48	Green Package	XX	Available
GL852G-OHYXX	QFN 28	Green Package	XX	Available
GL852G-HHYXX	SSOP 28	Green Package	XX	Available

Note: The marking of "OHY" will not be shown on the IC due to QFN28 package size limitation.