			Owner o	Total		
			Owner	Tenant	Total	
Vote in 2007	Did vote	Count	938	119	1057	
election	Did not vote	Count	99	42	141	
Total		Count	1037	161	1198	
Total (%)			0.87%	0.13%	100%	

How likely is it that we obtained these numbers by chance?

That is: if there was no relationship between ownership and voting in the population, how likely is it we get numbers which are so far away from what we would expect (or more extreme)?

			Owner o	Total	Total (9/)	
			Owner Tenant		Total	Total (%)
Vote in 2007	Did vote	Count	Α	С	1057	88%
election	Did not vote	Count	В	D	141	12%
Total		Count	1037	161	1198	100%
Total (%)			0.87%	0.13%	100%	

• If ownership and vote were not related, how many respondents should we expect in cell A?

			Owner o	Total	Total (%)	
			Owner Te		iotai	iotai (%)
Vote in 2007	Did vote	Count	A = 88%*0.87%	C = 88%*0.13%	1057	88%
election	Did not vote	Count	B = 12%*0.87%	D = 12%*0.13%	141	12%
Total		Count	1037	161	1198	100%
Total (%)			0.87%	0.13%	100%	

- If ownership and vote were not related, how many respondents should we expect in cell A?
 - If among all voters, 88% did vote, we would expect that among owners, also 88% would vote.
 - If among all owners, 87% did vote, we would expect that among voters, also 87% would vote.

			Owner c	or tenant	Total	Total (9/)		
			Owner Tenant		Owner Tenant		Total	Total (%)
Vote in 2007	Did vote	Count	Α	С	1057	88%		
election	Did not vote	Count	В	D	141	12%		
Total		Count	1037	161	1198	100%		
Total (%)			0.87%	0.13%	100%			

- If ownership and vote were not related, how many respondents should we expect in cell A?
- Expected frequency (f_e) = row margin* $\frac{\text{column margin}}{\text{total}}$
- $f_e = 1037 * \frac{1057}{1198}$
- $f_e = 1037 * 0.88 = 914.9$

			Owner or tenant			
			Owner	Tenant	Total	
Vote in 2007	Did vote	Count	Α	С	1057	
election	Did not vote	Count	В	D	141	
Total		Count	1037	161	1198	

Expected frequency
$$(f_e) = \frac{\text{row margin} * \text{colum margin}}{\text{total}}$$

			Owner o	Total		
			Owner	Tenant	Total	
Vote in 2007	Did vote	Count	Α	С	1057	
election	Did not vote	Count	В	D	141	
Total		Count	1037	161	1198	

• B:
$$f_e = 1037 * 141 / 1198 = 122.1$$

• C:
$$f_e = 1057*161/1198 = 142.1$$

• D:
$$f_e = 141 * 161 / 1198 = 18.9$$

			Owner o	Total		
			Owner	Tenant	iotai	
Vote in 2007 election	Did vote	Count	914.9	142.1	1057	
	Did not vote	Count	122.1	18.9	141	
Total		Count	1037	161	1198	

			Owner o	Total	
			Owner	Tenant	Total
Vote in 2007	Did vote	Count	938	119	1057
election	Did not vote	Count	99	42	141
Total		Count	1037	161	1198

			Owner o	Total	
			Owner	Tenant	iotai
Vote in 2007	Did vote	Count	914.9	142.1	1057
election	Did not vote	Count	122.1	18.9	141
Total		Count	1037	161	1198

			Owner o	Total		
			Owner	Tenant	Total	
Vote in 2007	Did vote	Count	938	119	1057	
election	Did not vote	Count	99	42	141	
Total	VOLC	Count	1037	161	1198	

			Owner o	Total	
			Owner	Tenant	iotai
Vote in 2007	Did vote	Count	914.9	142.1	1057
election	Did not vote	Count	122.1	18.9	141
Total	VOLC	Count	1037	161	1198

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

Cell A:
$$\frac{(f_o - f_e)^2}{f_e} = \frac{(938 - 914.9)^2}{914.9} = \frac{533.61}{914.9} = 0.58$$

			Owner o	Total	
			Owner	Tenant	iotai
Vote in 2007	Did vote	Count	938	119	1057
election	Did not vote	Count	99	42	141
Total		Count	1037	161	1198

			Owner or tenant		Total
			Owner	Tenant	iotai
Vote in 2007 election	Did vote Did not vote	Count	914.9	142.1	1057
		Count	122.1	18.9	141
Total	1010	Count	1037	161	1198

Cell B:
$$\frac{(f_o - f_e)^2}{f_e} = \frac{(99 - 122.1)^2}{122.1} = \frac{533.61}{122.1} = 4.37$$

Cell C: $\frac{(f_o - f_e)^2}{f_e} = \frac{(119 - 142.1)^2}{142.1} = \frac{533.61}{142.1} = 3.76$

Cell D: $\frac{(f_o - f_e)^2}{f_e} = \frac{(42 - 18.9)^2}{18.9} = \frac{533.61}{18.9} = 28.23$

Chi squared

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

$$\chi^2 = .58 + 4.37 + 3.76 + 28.23 = 36.94$$

Interesting, but what does that mean?

Chi squared

 We need to compare the chi squared we obtained with the critical value for chi squared.

• If $\chi^2_{\text{obtained}} > \chi^2_{\text{critical}}$ we can conclude that it is unlikely that the relationship we found is just due to sampling error.

The cricical value

- First, we need to set a **confidence level**, normally 95%
- This corresponds to a *p* value of 0.05 (1 95/100).
- Second, we need to know the degrees of freedom: df = (c-1)(r-1)

The critical value

In our example:

- The degrees of freedom:
 - 2 rows
 - 2 columns
 - -df = (2-1) * (2-1) = 1 * 1 = 1
- The critical value corresponding df = 1 and p = 0.05 is found in Field, appendix A.4:

A.4. Critical values of the chi-square distribution

V p				
df	0.05	0.01	df	0.05
→ 1	3.84	6.63	25	37.65
2	5.99	9.21	26	38.89
3	7.81	11.34	27	40.11
4	9.49	13.28	28	41.34
5	11.07	15.09	29	42.56
6	12.59	16.81	30	43.77
7	14.07	18.48	35	49.80
	,	00.00	10	FF 70

Comparing obtained and critical value

- $\chi^2_{\text{obtained}} = 36.94$
- $\chi^2_{critical} = 3.84$

• As $\chi^2_{\text{obtained}} > \chi^2_{\text{critical}}$ we conclude that there is a statistically significant relationship.