Step-1

To find the first column of 3×3 matrix, consider the following vector:

0

Project the vector $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ onto x-y plane, and get the vector $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Step-2

To find the second and third column of 3×3 matrix, consider the following vectors:

Project the vector $\begin{bmatrix} 0 \end{bmatrix}$ onto x-y plane, and get the vector $\begin{bmatrix} 0 \end{bmatrix}$

Now, project the vector $\begin{bmatrix} 1 \end{bmatrix}$ onto x-y plane, and get the vector $\begin{bmatrix} 0 \end{bmatrix}$

Step-3

Therefore, the matrix transformation by projecting every vector onto the x-y plane is given by

Step-4

(b)

To find the first column of 3×3 matrix, consider the following vector:

0

Reflect the vector $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ through the x-y plane, we get the vector $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Step-5

To find the second and third column of 3×3 matrix, consider the following vectors:

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}_{And} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Now, reflect the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ through the xy-plane, and get the vector $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

Step-6

Therefore, the matrix of transformation by reflecting every vector though the *x-y* plane is given by

Step-7

(c)

To find the first column of 3×3 matrix, consider the following vector:

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Rotate the vector
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 in the *x-y* plane by 90° , and get the vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

To find the second and third column of 3×3 matrix, consider the following vectors:

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}_{And} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Rotate the vector
$$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$$
 in the *x-y* plane by 90°, and get vector $\begin{bmatrix} -1\\0\\0 \end{bmatrix}$.

Rotate the vector
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 in the *x-y* plane by 90° , and get the vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Step-8

Therefore, the matrix of transformation by rotating the x-y plane through 90° , leaving the z-axis alone is given by

Step-9

(d)

To find the first column of 3×3 matrix, consider the following vector:

Rotate the vector $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ in the *x-y* plane by 90°, and get vector $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$.

Rotate the vector $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ in x-z plane by 90° , and get vector $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$.

Rotate the vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ in *y-z* plane by 90° , we get vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Step-10

To find the second column of 3×3 matrix, consider the following vectors:

 $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Rotate the vector $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ in the x-y plane by 90°, and get vector $\begin{bmatrix} 0\\-1\\0 \end{bmatrix}$.

Rotate the vector $\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ in x-z plane by 90°, and get vector $\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$.

Rotate the vector $\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$ in y-z plane by 90°, and get vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Step-11

To find the third column of 3×3 matrix, consider the following vector:

 $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Rotate the vector
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 in the *x-y* plane by 90°, and get vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Rotate the vector
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 in x-z plane by 90° , and get vector $\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$.

Rotate the vector
$$\begin{bmatrix} -1\\0\\0 \end{bmatrix}$$
 in v - z plane by 90° , and get vector $\begin{bmatrix} -1\\0\\0 \end{bmatrix}$

Therefore, the matrix transformation by rotating the x-y plane, then x-z plane and then y-z through 90° , is given by

Step-12

(e)

To find the first column of 3×3 matrix, consider the following vector:

0 0

Step-13

Rotate the vector $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ in the x-y plane by 180° , and get vector $\begin{bmatrix} -1\\0\\0 \end{bmatrix}$

Rotate the vector
$$\begin{bmatrix} -1\\0\\0 \end{bmatrix}$$
 in x-z plane by 180° , and get vector $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$

Rotate the vector
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 in y - z plane by 180° , and get vector $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Step-14

To find the second column of 3×3 matrix, consider the following vector:

 $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Rotate the vector $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ in the *x-y* plane by 180° , and get vector $\begin{bmatrix} 0\\-1\\0 \end{bmatrix}$.

Rotate the vector $\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ in x-z plane by 180° , and get vector $\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$

Rotate the vector $\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ in y-z plane by 180° , and get vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Step-15

To find the third column of $3\times3\,$ matrix, consider the following vector:

 $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Rotate the vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ in the *x-y* plane by 180° , and get vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Rotate the vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ in x-z plane by 180° , and get vector $\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$.

Rotate the vector $\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$ in y-z plane by 180° , and get vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Step-16

Therefore, the matrix of transformation by rotating the *x-y* plane, then *x-z* plane and then *y-z* by 180° , is given by 180° .