Exercice 1.

- 1. Les coefficients sont : 1 4 6
- **2.** On a :

$$(1+2i)^4 = 1 \times 1^4 (2i)^0 + 4 \times 1^3 (2i)^1 + 6 \times 1^2 (2i)^2 + 4 \times 1^1 (2i)^3 + 1 \times 1^0 (2i)^4$$

= 1+8i-24-32i+16
= -7-24i

Exercice 2.

1. $2z^2 + 2z + 5 = 0$ $\Delta = 2^2 - 4 \times 2 \times 5 = -36 = (6i)^2$.

 $\Delta < 0$: l'équation a donc deux solutions complexes conjuguées : $z_1 = \frac{-2-6i}{4} = -\frac{1}{2} - \frac{3}{2}i$ et $z_2 = \overline{z_1} = -\frac{1}{2} + \frac{3}{2}i \text{ donc } \mathscr{S}_{\mathbb{C}} = \left\{ -\frac{1}{2} - \frac{3}{2}i; -\frac{1}{2} + \frac{3}{2}i \right\}.$

2. $iz = \sqrt{3}z^2 \iff z(i - \sqrt{3}z) = 0.$

Or $z(i - \sqrt{3}z) = 0 \iff z = 0$ ou $z = \frac{\sqrt{3}}{3}i$ donc $\mathscr{S}_{\mathbb{C}} = \left\{0; \frac{\sqrt{3}}{3}i\right\}$

3. $16z^2 + 25 = 0 \iff z^2 = -\frac{25}{16} = \left(\frac{5}{4}i\right)^2$.

$$z^{2} = \left(\frac{5}{4}i\right)^{2} \iff z = \pm \frac{5}{4}i \text{ donc } \mathscr{S}_{\mathbb{C}} = \left\{-\frac{5}{4}i; \frac{5}{4}i\right\}.$$

Exercice 3.

On considère le polynôme défini sur \mathbb{C} par $P(z) = z^3 + 4z^2 + 2z - 28$.

- 1. P(2) = 0 donc 2 est racine de P.
- **2.** On trouve $P(z) = (z-2)(z^2+6z+14)$.
- **3.** a. On résout les équations z-2=0 et $z^2+6z+14=0$. On obtient $\mathscr{S}_{\mathbb{C}}=\left\{2\,;\, -3-\sqrt{5}\mathrm{i}\,;\, -3+\sqrt{5}\mathrm{i}\right\}$
 - **b.** Pour tout complexe z, $P(z) = (z-2)(z+3+\sqrt{5}i)(z+3-\sqrt{5}i)$

Exercice 4.

À tout nombre complexe z, on associe le nombre complexe $z' = \frac{2i - z^2}{\sqrt{z} + 1}$.

1. Pour tout complexe
$$z$$
, z' réel $\iff \overline{z'} = z'$.
$$\overline{z'} = z' \iff \frac{-2i - \overline{z}^2}{\overline{z}z + 1} = \frac{2i - z^2}{z\overline{z} + 1} \iff -2i - \overline{z}^2 = 2i - z^2 \iff z^2 - \overline{z}^2 = 4i \iff (z - \overline{z})(\overline{z} + z) = 4i.$$

2. On pose z = x + iy avec $(x; y) \in \mathbb{R}^2$.

$$(z - \overline{z})(\overline{z} + z) = 4i \iff 2iy \times 2x = 4i \iff xy = 1 \iff y = \frac{1}{x} \text{ et } x \neq 0.$$

On en déduit que z' est réel si et seulement si le point M appartient à l'hyperbole d'équation $y = \frac{1}{x}$.

Exercice 5.

- 1. $(1-3i)^2 = -8-6i$.
- **2.** $z^2 4iz = (z 2i)^2 + 4$.

$$z^{2} - 4iz + 4 + 6i = 0 \iff (z - 2i)^{2} + 8 + 6i = 0 \iff (z - 2i)^{2} - (1 - 3i)^{2} = 0 \iff (z + 1 - 5i)(z - 1 + i) = 0$$
$$\iff z = -1 + 5i \quad \text{ou} \quad z = 1 - i \text{ donc } \mathscr{S}_{\mathbb{C}} = \{-1 + 5i \ ; \ 1 - i\}.$$