Lecture 1

Kaldor facts and balanced growth

Mikhail Golosov

See Chapters 2 and 8 in Acemoglu

Neoclassical growth model

- The neoclassical growth model was developed to be a parsimonious model that has natural mapping into key macroeconomic time series and be consistent with several empirical patterns that showed remarkable consistency over long period of time
- Basic accounting definitions

$$C_t + I_t = Y_t$$
 $K_{t+1} = I_t + (1 - \delta) K_t$ $Y_t = ext{sum of factor income}$

- Further assumptions
 - Y_t is produced by CRS technology F_t (DRS is a CRS with a fixed factor, IRS is hard to model parsimoniously)
 - two factors: capital and labor

Fact 1: Historical growth rates

Sources: Historical Statistics of the U.S.; Economic Report of the President; and U.S. Census Bureau.

Fact 2: Historical capital-output ratios

NIPA (B.E.A. website).

Fact 3: Historical interest rates

Source: Siegel (1995)

Fact 3 (con'd): Historical interest rates II

Figure VI: US and UK Consol Yields.

Source: "Costs of Financing US Federal Debt Under a Gold Standard: 1791-1933" Payne et al (2024)

Yield on the 30 year U.S. Treasuries in 2024 is 4.18%

Fact 4: Historical factor shares

Figure: Capital and Labor Share in the U.S. GDP.

Kaldor facts

- Output per capital grows at a constant rate
- 2 Capital-output ratio is roughly constant
- Interest rate is roughly constant
- Oistribution of income between capital and labor is roughly constant

Technology

Aggregate production function for the unique final good is

$$Y\left(t
ight)= ilde{\mathcal{F}}\left(\mathcal{K}\left(t
ight)$$
 , $\mathcal{L}\left(t
ight)$, $ilde{X}\left(t
ight)$

$$\dot{K}(t) = Y(t) - C(t) - \delta K(t)$$

• \tilde{F} is CRS in K, L

Implications of growth

Assume constant growth

$$\dot{Y}(t)/Y(t) = g_Y > 0, \dot{K}(t)/K(t) = g_K > 0,$$

$$\dot{C}(t)/C(t) = g_C > 0, \dot{L}(t)/L(t) = n$$

Theorem

(Uzawa): Constant growth + CRS implies

- (1) Balanced growth: $g_Y = g_C = g_K \equiv g$
- (2) Labor augmenting technical change: \tilde{F} can be represented as

$$\tilde{F} = F\left(K\left(t\right), X\left(t\right)L\left(t\right)\right)$$
 for some CRS F with $\frac{\dot{X}\left(t\right)}{X\left(t\right)} = g - n$

Proof (preliminary)

• If any variable Z grows with rate g,

$$\frac{\dot{Z}\left(t\right)}{Z\left(t\right)} = g \iff Z\left(t\right) = e^{(t-\tau)g}Z\left(\tau\right) \text{ for all } t, \tau$$

Proof (1)

• Since $\dot{K}(t) = g_K K(t)$ we have

$$(g_K + \delta) K (t) = Y (t) - C (t)$$

or

$$\left(g_{K}+\delta\right)K\left(0\right)=e^{\left(g_{Y}-g_{K}\right)t}Y\left(0\right)-e^{\left(g_{C}-g_{K}\right)t}C\left(0\right)\tag{1}$$

Differentiate w.r.t. t

$$(g_{Y}-g_{K}) e^{(g_{Y}-g_{K})t} Y(0) = (g_{C}-g_{K}) e^{(g_{C}-g_{K})t} C(0)$$

Since it holds for all t we must have

$$g_Y - g_K = g_C - g_K$$

• But $g_Y - g_K = g_C - g_K \neq 0$ violates (1) \Longrightarrow

$$g_Y = g_C = g_K$$

Proof (2)

• For any $t \ge \tau$ we can write (given part 1)

$$e^{-g\left(t-\tau\right)}Y\left(t\right)=\tilde{F}\left[e^{-g\left(t-\tau\right)}K\left(t\right),e^{-n\left(t-\tau\right)}L\left(t\right),\tilde{X}\left(\tau\right)\right].$$

Equivalently, using CRS

$$Y\left(t\right) = \tilde{F}\left[K\left(t\right), e^{\left(g-n\right)t}L\left(t\right)e^{-\left(g-n\right) au}, \tilde{X}\left(au
ight)\right].$$

ullet Since this must hold for all au, there must exist CRS F such that

$$Y\left(t\right)=F\left[K\left(t\right),e^{\left(g-n\right)t}L\left(t\right)
ight]$$

• Let $X(t) \equiv e^{(g-n)t}$ (obviously $\dot{X}/X = g - n \equiv g_X$) to get

$$Y(t) = F[K(t), X(t)L(t)]$$

Discussion

- CRS implies that constant growth must be balanced (all variables grow at the same rate) and per capital growth is driven by technology.
- Technology must be
 - either purely labor augmenting
 - or elasticity of substitution between capital and labor much be 1:

$$Y(t) = (\tilde{X}_{K}(t)K(t))^{\alpha}(\tilde{X}_{L}(t)L(t))^{1-\alpha}$$
$$= K(t)^{\alpha}\left(\underbrace{\tilde{X}_{K}(t)^{\frac{\alpha}{1-\alpha}}\tilde{X}_{L}(t)}_{\equiv X(t)}L(t)\right)^{1-\alpha}$$

Constant factor shares

Theorem

Uzawa assumptions + constant factor shares imply that interest rate are constant, $R(t) = R^*$, and that wages grow with rate of technology, $\dot{w}/w = g_X$

Technology growth fully reflected in growth of wages

Proof

ullet Under perfect competition, capital income is $R\left(t
ight)K\left(t
ight)$ and so

Capital share
$$\alpha_{K}\left(t\right)\equiv\frac{R\left(t\right)K\left(t\right)}{Y\left(t\right)}\underbrace{\sum_{\textit{Uzawa p}.1}\textit{const}\cdot R\left(t\right)}$$

- Constant factor shares \iff constant interest rates R^*
- Similarly, with constant factor shares

$$w\left(t\right) \equiv \frac{Y\left(t\right) - R\left(t\right)K\left(t\right)}{L\left(t\right)} = \frac{Y\left(t\right)}{L\left(t\right)} \times \left(1 - \frac{K\left(t\right)}{Y\left(t\right)}R^{*}\right)$$

• By Uzawa, K/Y is constant, Y/L grows at rate $g - n = g_X$

Constant interest rates

Theorem

Constant interest rates and balanced growth implies that $U\left(C\right)$ must be, up to a linear tranformation,

$$U(C) = \frac{C^{1-\sigma}}{1-\sigma}$$

Proof

• Euler equation in CE

$$\frac{\dot{C}\left(t\right)}{C\left(t\right)} = \frac{1}{\sigma\left(C(t)\right)}\left[R\left(t\right) - \rho\right]$$

where

$$\sigma(C) \equiv -\frac{U''(C)C}{U'(C)}$$

- Constant interest rates + constant growth $\Longrightarrow \sigma\left(\mathcal{C}\right) = \sigma$ for all \mathcal{C}
- Solving an ode $\sigma U'(C) + U''(C)C = 0$ gives

$$U(C) = const_0 \frac{C^{1-\sigma}}{1-\sigma} + const_1$$

Neoclassical growth model

Infinitely lived representative household with preferences

$$\int_0^\infty e^{-\rho t} \frac{C(t)^{1-\sigma}}{1-\sigma} dt$$

and inelastic labor supply (for now)

Perfectly competitive firms with CRS technology

$$Y(t) = F(K(t), X(t)L(t))$$

Feasibility

$$C(t) + \dot{K}(t) = Y(t) - \delta K(t)$$

 $L(t) = 1$

Neoclassical growth model

• Re-normalize everything per unit of X:

$$\begin{split} k\left(t\right) & \equiv & \frac{K\left(t\right)}{X\left(t\right)}, c\left(t\right) \equiv \frac{C\left(t\right)}{X\left(t\right)}, \\ y\left(t\right) & \equiv & \frac{Y\left(t\right)}{X\left(t\right)} = F\left(k\left(t\right), 1\right), \quad \tilde{\rho} \equiv \rho - (1 - \sigma) \, g_X \end{split}$$

- This model is isomorphic to neoclassical growth model without growth and therefore we know that
 - · competitive equilibrium is efficient
 - ullet $k\left(t
 ight)$, $c\left(t
 ight)$, $y\left(t
 ight)$ converge to the steady state k^{ss} , c^{ss} , y^{ss}

Growth model and Kaldor facts

Theorem

Steady state of the neoclassical growth model is consistent with Kaldor facts

- **1** $y(t) = y^{ss}$ implies that Y(t) grows at rate g_X
- 2 Capital-output ratio is constant: $K(t)/Y(t) = k^{ss}/y^{ss}$
- Since consumption growth rate is constant, so are interest rates
- Factor shares are constant by labor-augmenting technical change + constant interest rate

Other observations I

- Let's endogenize labor supply
- In XXth century wages increased by a factor of 10
- Work hours decreased relatively little
 - lifetime work hours were 182,100 in 1880 and 122,400 in 1995 (Fogel 2000)
- Income and substitution effect must roughly cancel each other
- Balanced growth path preferences with labor supply

$$U(C, L) = \begin{cases} \frac{C^{1-\sigma}}{1-\sigma} v(L) & \text{if } \sigma \neq 1\\ \ln C + v(L) & \text{if } \sigma = 1 \end{cases}$$

Other observations II

- Balanced growth requires
 - either no technical progress for capital
 - or unit elasticity of substitution between capital and labor
- Prices of capital goods fell dramatically
 suggests some capital-augmenting technical change
- ullet Direct estimates of the elasticity of substitution suggests that it is less than 1
 - Chirinko 2008 surveys literature and argues for it to be around 0.4-0.6
 - However, long-run elasticity estimates are always controversial
- See "Balanced Growth Despite Uzawa" by Grossman, Helpman, Oberfield, Samson (AER, 2017) how to reconcile with human capital/schooling