CEE 616: Probabilistic Machine Learning M3 Deep Neural Networks: Neural Networks for Structured Data I

Jimi Oke

UMassAmherst

College of Engineering

Thu, Oct 16, 2025

Outline

- Introduction
- Activation functions
- **3** ANN operations
- 4 Backpropagation
- **6** Summary

Neural networks

Introduction

Consider the linear model:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \tag{1}$$

We can increase the flexibility of the model via a basis function expansion (feature extractor) $\phi(x)$:

$$f(\mathbf{x};\boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b} \tag{2}$$

If further parameterize $\phi(\mathbf{x})$ by θ_2 for better fitting, we have:

$$f(\mathbf{x};\boldsymbol{\theta}) = \mathbf{W}\phi(\mathbf{x};\boldsymbol{\theta}_2) + \mathbf{b} \tag{3}$$

To even further increase complexity, we can recursively fit more feature extractors $f_{\ell}(\mathbf{x}; \theta_{\ell})$:

$$f(\mathbf{x};\boldsymbol{\theta}) = f_L(f_{L-1}(\cdots f_1(\mathbf{x};\boldsymbol{\theta}_1))\cdots)) \tag{4}$$

Each ℓ can be considered a layer in a **feedforward neural network** (FFNN) of L layers.

- Also known as a multilayer perception (MLP)
- When L is large, this is termed a **deep neural network** (DNN)

Activation functions ANN operations Backpropagation Summary 00000 000000 00000000000 0000

Biological neuron

Introduction

Figure: Biological neuron (Source: https://cs231n.github.io/neural-networks-1/)

- ~ 86 billion neurons are found in the human nervous system
- These neurons are connected by 10^{14} to 10^{15} synapses
- Each neuron receives input signals from its dendrites and outputs signals along a single axon
- The axon in turn connects to other neurons via synapses

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025

4 / 38

Artificial neural networks

[Artificial] Neural networks (ANNs) are modeled as connected layers of neuron in an acyclic graph (no loops).

- ANNs are organized into layers of neurons (or "units")
- Fully-connected layers are common
- The basic ANN architecture with multiple hidden layers is called the multilayer perceptron (MLP)
 - An ANN with only one hidden layer is called the single layer perceptron
 - *N*-layer neural network (number of hidden layers + output layer)
- The output neurons have no activation function. Instead, they perform a final transformation of outputs from the penultimate layer

Computational neuron model

Introduction

Jimi Oke (UMass Amherst)

Computational neuron model (cont.)

Introduction

- x_i: signals traveling along axons (inputs)
- w_i : measure of synaptic strength, which is learned;
 - $w_i > 0 \rightarrow$ excitory influence
 - $w_i < 0 \rightarrow \text{inhibitory influence}$
- Dendrites carry signals $w_i x_i$ to the cell body, where they are summed.
- If the final sum $w_i x_i + b > t$ where t is a threshold¹, the neuron sends a spike along its axon (i.e. fires)
- Computationally, the firing rate of a neuron is represented by an activation function f
- The output of a neuron is also called the activation

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu. Oct 16, 2025

¹intercept b is referred to as the "bias" in ML literature

 Activation functions
 ANN operations
 Backpropagation
 Summa

 00000
 0000000
 00000000000
 0000

Two-layer neural network (with bias neurons)

- Layers: 2 (input layer not counted); Hidden layers: 1
- **Neurons**: 7 (inputs not counted)
- Learnable parameters: $(4 \times 4) + (5 \times 2)$; total = 26

Introduction 000000 Activation functions ANN operations Backpropagation Summary 00000 000000 00000000000 0000

Three-layer neural network (with bias neurons)

- Layers: 3; Hidden layers: 2
- Neurons: 9

Introduction 000000

• Learnable parameters: $(4 \times 4) + (5 \times 3) + (4 \times 2) = 39$ weights; total = 39

Activation functions

In an ANN, the activation function f_ℓ modulates determines whether a certain neuron "fires" or passes information (hidden units \mathbf{z}_ℓ at layer ℓ) to the subsequent layer $\ell+1$.

$$\mathbf{z}_{\ell} = f_{\ell}(\mathbf{z}_{\ell-1}) = \varphi_{\ell}(\mathbf{b}_{\ell} + \mathbf{W}_{\ell}\mathbf{z}_{\ell-1})$$
 (5)

The input to the activation function b_ℓ + W_ℓz_{ℓ-1} is termed the pre-activations:

$$\mathbf{a}_{\ell} = \mathbf{b}_{\ell} + \mathbf{W}_{\ell} \mathbf{z}_{\ell-1} \tag{6}$$

Thus

$$\mathbf{z}_{\ell} = \varphi_{\ell}(\mathbf{a}_{\ell}) \tag{7}$$

- In the historic MLP, the activation function was the non-differentiable Heaviside function (difficult to train)
- Later on, the sigmoid was introduced (smooth, trainable/differentiable)

Activation functions 00000

Examples of activation functions

roduction Activation functions ANN operations Backpropagation Summary

Logistic sigmoid function

• The form of the logistic sigmoid function is given by:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{8}$$

It transforms a real-valued input in the interval [0, 1].

- Historically, it was used as it nicely represents the firing rate
- Recently, it has been superseded by the hyperbolic tangent due to its (a) gradient saturation and (b) non-zero-centeredness.

Jimi Oke (UMass Amherst)

duction Activation functions ANN operations Backpropagation Summary

Hyperbolic tangent (tanh)

• The hyperbolic tangent function is given by:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1 \tag{9}$$

• It transforms a real-valued input in the interval [-1,1].

Preferred to sigmoid activation function due to its zero-centeredness.

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 13/38

Rectified linear unit (ReLU)

The ReLU is given by

$$ReLU(x) = \max(0, x) \tag{10}$$

Performs a simple thresholding of input at 0.

- Demonstrates faster convergence than $\sigma(x)$ and $\tanh(x)$
- Popular for deep convolutional networks (several hidden layers)
- Neurons can be fragile, however, requiring care in selection of learning rate

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 14/38

Neural network notation

The sigmoid activation (output) of a neuron is denoted:

$$\varphi(w_0z_1 + w_1z_2 + \dots + w_{m-1}z_{m-1} + b) = \varphi\left(\sum w_iz_i + b\right) = \text{new neuron}$$
 (11)

Further, we denote each hidden unit as $z_{neuron}^{(layer)}$, e.g.

• $z_4^{(1)}$: fourth neuron in first layer (layers are counted from first hidden layer)

Weights are denoted as w_{to,from}, e.g.

- $w_{2,3}^2$: from the third neuron in the layer 1 to the second neuron in layer 2
- The superscript is not often used, as it is clear from the context which layer we are dealing with

Input Layer Hidden Layer

Activation functions ANN operations Backpropagation Summary 00000 0 0000000 00000000000 0000

Matrix operations in neural networks

Given the activation vector (*D* neurons) in the zeroth (input) layer:

$$\mathbf{x} \in \mathbb{R}^D = \mathbf{z}^{(0)} = \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix}$$
 (12)

Then the activations in the next layer (M neurons) are given by:

$$\mathbf{z}^{(1)} = \boldsymbol{\varphi} \left(\mathbf{W} \mathbf{z}^{(0)} + \boldsymbol{b} \right) = \boldsymbol{\varphi} \left(\begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,D} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ w_{M,1} & w_{M,2} & \cdots & w_{M,D} \end{bmatrix} \begin{bmatrix} z_1^0 \\ z_2^0 \\ \vdots \\ z_D^0 \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_M \end{bmatrix} \right)$$

$$(13)$$

Example: If Layer 1 had only two neurons, then the weight matrix \boldsymbol{W} would have only 2 rows.

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 16/38

Example: MLP with two outputs

This simple MLP has 2 layers (1 hidden, one outer), and

Jimi Oke (UMass Amherst) L3a: NNs for Structured Data Thu, Oct 16, 2025 17

Example: 2-layer regression MLP

Two-layer MLP for regression

Example: 2-layer regression MLP: scalar form equations

Given an observation x_{nd} with $d=1,\ldots,D$ features, these equations describe the output from a 2-layer network:

$$z_m^{(1)} = \varphi \left(\sum_{d=1}^D w_{1,d}^{(1)} x_{nd} + b_d^{(1)} \right)$$

$$y_i(x_i) = \sum_{m=1}^{M} w_{1,m}^{(2)} z_m^{(1)} + b^{(2)}$$

- *D* is number of input neurons
- M is number of hidden neurons
- Total number of learnable parameters: M(D+1) weights and (D+1) biases
- Linear/identity activation is used in output

Neural network loss function

Given K output neurons and N observations (where f_k is the output), we can compute the loss (cost) functions C as follows.

For regression:

$$\mathcal{L} = \sum_{k=1}^{K} \sum_{n=1}^{N} (y_{nk} - f_k(x_n))^2$$
 (14)

Thus, we can write, where K = 1 (univariate output):

$$\mathcal{L} = \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$
 (15)

For classification, we use the cross-entropy (deviance) given K classes:

$$\mathcal{L} = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} \log f_k(x_n)$$
 (16)

Training a neural network

- A neural network is trained or fitted by learning the optimal values of the weights (and biases).
- This learning is done via optimization (e.g. gradient descent)
- Gradient descent update:

$$w^{\mathsf{new}} = w^{\mathsf{old}} - \eta \frac{\partial \mathcal{L}}{\partial w^{\mathsf{old}}} \tag{17}$$

where:

- η is the learning rate
- \mathcal{L} is the cost function (e.g. residual sum of squares)
- w the weight
- In neural networks, the gradients are computed via backpropagation

Backpropagation overview

Training procedure

 Fix initial weights and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer / as:

$$\mathbf{z}_{\ell} = \varphi(\mathbf{W}_{\ell}\mathbf{z}_{\ell-1} + \mathbf{b}_{\ell}) \tag{18}$$

$$\mathbf{a}_{\ell} = \mathbf{W}_{\ell} \mathbf{z}_{\ell-1} + \mathbf{b}_{\ell} \tag{19}$$

$$\mathbf{z}_{\ell} = \varphi(\mathbf{a}_{\ell}) \tag{20}$$

- \bullet At the output layer, we compute the cost (loss) function ${\cal L}$ (what we want to minimize)
- Then, we backpropagate the errors through each layer in order to compute the gradients for the weight updates:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{L}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{L}} \frac{\partial \mathbf{z}_{L}}{\partial \mathbf{a}_{L}} \frac{\partial \mathbf{a}_{L}}{\partial \mathbf{W}_{L}}$$
(21)

where L is the last layer.

• Repeat the forward and backward passes until cost is sufficiently minimized

Equation summary: outer layer (regression case

At the outer layer L (without indexing by neuron):

$$a_L = \mathbf{w}_L^{\top} \mathbf{z}_{L-1} + b_L \tag{22}$$

$$o = a_L$$
 (linear activation or *no* activation) (23)

$$\mathcal{L} = (o - y)^2 \tag{24}$$

The gradient of the cost function with respect to \mathbf{w}_l is:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}_{L}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial a_{L}} \frac{\partial a_{L}}{\partial \mathbf{w}_{L}} = 2 (a_{L} - y) \mathbf{z}_{L-1}$$
(25)

Thus, we see that this gradient depends on the activation from the previous layer a_{L-1} . Also wrt to the bias:

$$\frac{\partial \mathcal{L}}{\partial b_L} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial a_L} \frac{\partial a_L}{\partial b_L} = 2(a_L - y)(1)$$
 (26)

Updating weights

We can then update the weights for the last layer for the next iteration t+1:

$$w_{L,t+1} = w_{L,t} - \rho \frac{\partial \mathcal{L}}{\partial w_L}$$

$$b_{L,t+1} = b_{L,t} - \rho \frac{\partial \mathcal{L}}{\partial b_L}$$
(27)

$$b_{L,t+1} = b_{L,t} - \rho \frac{\partial \mathcal{L}}{\partial b_L}$$
 (28)

where ρ is the learning rate. To update the weights for layer L-1, we need to find the gradients $\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_{t-1}}$, where $\boldsymbol{\theta} = (\boldsymbol{W}, \boldsymbol{b})$.

Using the chain rule again, we write:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_{L-1}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{L-1}} \frac{\partial \mathbf{z}_{L-1}}{\partial \mathbf{z}_{L-1}} \frac{\partial \mathbf{z}_{L-1}}{\partial \boldsymbol{\theta}_{L-1}}$$
(29)

Backward pass

But we recall that \mathcal{L} is not *explicitly* dependent on \mathbf{z}_{L-1} as $\mathcal{L} = (o-y)^2$. However, it is *implicitly* dependent, since

$$\mathcal{L} \propto o,$$
 (30)

$$o \propto a_L$$
 (31)

and

$$a_L \propto z_{L-1}$$
 (32)

So, we use the chain rule to expand $\frac{\partial \mathcal{L}}{\partial z_{i-1}}$ as follows:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}_{L-1}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_L} \frac{\partial \mathbf{z}_L}{\partial \mathbf{a}_L} \frac{\partial \mathbf{a}_L}{\partial \mathbf{z}_{L-1}}$$
(33)

Backward pass (cont.

We can then expand the cost function gradient wrt to weights for layer L-1 as:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_{L-1}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{z}_{L-1}} \frac{\partial \boldsymbol{z}_{L-1}}{\partial \boldsymbol{a}_{L-1}} \frac{\partial \boldsymbol{a}_{L-1}}{\partial \boldsymbol{\theta}_{L-1}}
= \frac{\partial \mathcal{L}}{\partial \boldsymbol{z}_{L}} \frac{\partial \boldsymbol{z}_{L}}{\partial \boldsymbol{a}_{L}} \frac{\partial \boldsymbol{a}_{L}}{\partial \boldsymbol{z}_{L-1}} \frac{\partial \boldsymbol{z}_{L-1}}{\partial \boldsymbol{a}_{L-1}} \frac{\partial \boldsymbol{a}_{L-1}}{\partial \boldsymbol{\theta}_{L-1}} (35)$$

Once these gradients are computed, we update the weights for the (t+1)th iteration using:

$$\theta_{L-1,t+1} = \theta_{L-1,t} - \rho \frac{\partial \mathcal{L}}{\partial \theta_{L-1}}$$
 (36)

(37)

Summary: forward pass

- **1** (t=0): Initialize weights and biases: θ
- 2 Perform forward pass to compute activations:

$$a_{\ell,0} = W_{\ell,0} \times z_{\ell-1,0} + b_{\ell,0}$$
 (38)

$$\mathbf{z}_{\ell} = \varphi(\mathbf{a}_{\ell,0}) \tag{39}$$

At output layer:

$$a_{L,0} = \boldsymbol{w}_{L,0}^{\top} \boldsymbol{Z}_{L-1,0} + b_{L,0}$$
 (40)

$$o = a_{L,0} (41)$$

$$\mathcal{L} = (o - y)^2 \tag{42}$$

Summary: backward pass—outer layer

- 3 Backward pass, outer layer L:
 - Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial b_L} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial a_L} \frac{\partial a_L}{\partial b_L} \tag{43}$$

6 Update weights:

$$\boldsymbol{\theta}_{L,1} = \boldsymbol{\theta}_{L,0} - \rho \frac{\partial \mathcal{L}_0}{\partial \boldsymbol{\theta}_L} \tag{44}$$

Summary: backward pass—last hidden layer

Recall:

$$\mathbf{z}_{L-1} = \varphi(\mathbf{a}_{L-1}) \tag{45}$$

$$\mathbf{a}_{L-1} = \mathbf{W}_{L-1}\mathbf{z}_{L-2} + \mathbf{b}_{L-1} \tag{46}$$

- 4 Backward pass, layer L-1:
 - a Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_{L-1}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{z}_{L}} \frac{\partial \boldsymbol{z}_{L}}{\partial \boldsymbol{a}_{L}} \frac{\partial \boldsymbol{a}_{L}}{\partial \boldsymbol{z}_{L-1}} \frac{\partial \boldsymbol{z}_{L-1}}{\partial \boldsymbol{a}_{L-1}} \frac{\partial \boldsymbol{a}_{L-1}}{\partial \boldsymbol{\theta}_{L-1}}$$
(47)

(48)

b Update weights:

$$\boldsymbol{\theta}_{L-1,1} = \boldsymbol{\theta}_{L-1,0} - \rho \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_{L-1}} \tag{49}$$

Summary: backward pass—second-to-last hidden layer

Recall

$$\mathbf{a}_{L-1} = \mathbf{W}_{L-1}\mathbf{z}_{L-2} + \mathbf{b}_{L-1} \tag{50}$$

$$\mathbf{z}_{L-2} = \varphi(\mathbf{a}_{L-2}) \tag{51}$$

$$\mathbf{a}_{L-2} = \mathbf{W}_{L-2}\mathbf{z}_{L-3} + \mathbf{b}_{L-2} \tag{52}$$

- **5** Backward pass, layer L-2:
 - Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial \theta_{L-2}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{L}} \frac{\partial \mathbf{z}_{L}}{\partial \mathbf{a}_{L}} \frac{\partial \mathbf{a}_{L}}{\partial \mathbf{z}_{L-1}} \frac{\partial \mathbf{z}_{L-1}}{\partial \mathbf{a}_{L-1}} \frac{\partial \mathbf{a}_{L-1}}{\partial \mathbf{z}_{L-2}} \frac{\partial \mathbf{z}_{L-2}}{\partial \mathbf{a}_{L-2}} \frac{\partial \mathbf{a}_{L-2}}{\partial \mathbf{e}_{L-2}}$$
(53)

b Update weights:

$$\boldsymbol{\theta}_{L-2,1} = \boldsymbol{\theta}_{L-2,0} - \rho \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_{L-2}} \tag{54}$$

(55)

Summary: backward pass—first hidden layer

Recall

$$\boldsymbol{a}_{\ell} = \boldsymbol{W}_{\ell} \boldsymbol{z}_{\ell-1} + \boldsymbol{b}_{\ell} \tag{56}$$

$$\mathbf{z}_{\ell} = \varphi(\mathbf{a}_{\ell}) \tag{57}$$

(58)

- **3** Backward pass, layer (1):
 - 6 Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial \theta_1} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_L} \frac{\partial \mathbf{z}_L}{\partial \mathbf{z}_L} \frac{\partial \mathbf{z}_L}{\partial \mathbf{z}_{L-1}} \frac{\partial \mathbf{z}_{L-1}}{\partial \mathbf{z}_{L-1}} \cdots \frac{\partial \mathbf{z}_2}{\partial \mathbf{z}_1} \frac{\partial \mathbf{z}_1}{\partial \mathbf{z}_1} \frac{\partial \mathbf{z}_1}{\partial \theta_1}$$
(59)

6 Update weights:

$$\boldsymbol{\theta}_{1,1} = \boldsymbol{\theta}_{1,0} - \rho \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_1} \tag{60}$$

(61)

Summary of backpropagation

1 Fix initial weights $\theta_{\ell,0}=(\textbf{\textit{W}}_{\ell,0},\ \textbf{\textit{b}}_{\ell,0})$ and perform a forward sweep/pass through the network computing the activations a (outputs) of each layer ℓ as:

$$\mathbf{a}_{\ell} = \sigma(\mathbf{W}_{\ell} \mathbf{a}_{l-1} + b_{\ell}) \tag{62}$$

- 2 At the output layer, we compute the loss/cost function $\mathcal L$ (what we want to minimize)
- **3** Then, we *backpropagate* the errors through each layer in order to compute the gradients $\frac{\partial \mathcal{L}}{\partial \theta_t}$ and weight updates $\theta_{\ell,t+1}$
- 4 Repeat the forward and backward passes until cost is sufficiently minimized

Example: backpropagation for 3-layer network

$$\frac{\partial \mathcal{L}}{\partial \theta_3} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_3} \frac{\partial \mathbf{z}_3}{\partial \mathbf{a}_3} \frac{\partial \mathbf{a}_3}{\partial \theta_3} \quad (\mathbf{z}_3 \equiv 0)$$
 (63)

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_2} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_3} \frac{\partial \mathbf{z}_3}{\partial \mathbf{a}_3} \frac{\partial \mathbf{a}_3}{\partial \mathbf{z}_2} \frac{\partial \mathbf{z}_2}{\partial \mathbf{a}_2} \frac{\partial \mathbf{a}_2}{\partial \boldsymbol{\theta}_2}$$
(64)

$$\frac{\partial \mathcal{L}}{\partial \theta_1} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_3} \frac{\partial \mathbf{z}_3}{\partial \mathbf{a}_3} \frac{\partial \mathbf{z}_2}{\partial \mathbf{z}_2} \frac{\partial \mathbf{z}_2}{\partial \mathbf{a}_2} \frac{\partial \mathbf{z}_1}{\partial \mathbf{z}_1} \frac{\partial \mathbf{z}_1}{\partial \mathbf{a}_1} \frac{\partial \mathbf{a}_1}{\partial \theta_1}$$
(65)

Jimi Oke (UMass Amherst)

Regression MLP architecture

Typical hyperparameter values are:

Hyperparameter	Value
# input neurons	1 per input feature
# hidden layers	Usually 1 – 5
# neurons per hidden layer	Usually 10 - 100
# output neurons	1 per prediction dimension
hidden layer activation	ReLU
output activation	None (if unbounded)
loss function	MSE or MAE/Huber

Classification MLP architecture

- For classification, input and hidden layers are chosen in similar fashion to the regression case
- However, the number of output neurons is given by the name of classes/labels
- The output layer activation is typically the softmax function:

$$softmax(z_k) = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$
 (66)

where z_k is the unnormalized log probability of each class k

• The loss function is taken as the cross entropy

Summary

Other types of neural networks

The standard ANN architecture (MLP) we have studied is also called the feed-forward network.

Other architectures have been shown to give better performance for various applications:

- Recurrent neural networks (RNNs): time-series forecasting
- Convolutional neural networks (CNNs): image classification
- Long short-term memory networks (LSTMs): time-series, pattern identification, etc.

Reading

We will discuss the CNN on Wednesday, along with examples in Python.

• **PMLI**: 13.1-3

• PML: 8.3, 9.4

• ESL: 11

• **DL**: 6-8, 11, 12

Experiment in this playground