بهینهسازی ترکیبیاتی (پاییز ۹۵-۹۴) تمرین سری پنجم

- 1. (آ) مترویدی مثال بزنید که گرافیک نباشد.
- (ب) دو گراف غیریکریخت مثال بزنید که مترویدهای متناظرشان یکریخت باشند.
- ۲. فرض کنید برای متروید $M=(S,\mathcal{I})$ الگوریتم چندجمله ی A وجود دارد که مجموعه ی $U\subseteq S$ را به عنوان ورودی می کنید که آیا $U\in S$ یا خیر. با استفاده از A، الگوریتم A را ارائه دهید که مجموعه ی $U\in \mathcal{I}$ را به عنوان ورودی بگیرد و تعیین کند که آیا $U\in \mathcal{I}$ که $U\in \mathcal{I}$ که $U=(S,\mathcal{I}^*)$ متروید دوگان $U=(S,\mathcal{I}^*)$ است.
 - $(M\setminus X)/Y=(M/Y)\setminus X$. نشان دهید $X,Y\subseteq \mathcal{I}$ یک متروید باشد و $M=(S,\mathcal{I})$. نشان دهید M
- را یک $Y = \{y_1, y_2, \dots, y_m\}$ را یک باشند. مجموعه کی X_1, X_2, \dots, X_n زیر مجموعه کی X_1, X_2, \dots, X_n و جود داشته باشند به طوری که $y_j \in X_{i_j}$ اگر اندیسهای متمایز i_1, \dots, i_m و جود داشته باشند به طوری که $j \in \{1, 2, \dots, m\}$ هر $j \in \{1, 2, \dots, m\}$
- فرض کنید \mathcal{I} شامل همه ی زیرمجموعه هایی از X باشد که یک ترانسورسال جزئی برای X_1 تا X_n هستند. ثابت کنید $M=(X,\mathcal{I})$
- ه. فرض کنید $B\subseteq 2^E$ مجموعه ی بایه های یک متروید را مشخص $B\subseteq 2^E$ مجموعه ی بایه های یک متروید را مشخص $x\in B_1\backslash B_2$ و برای هر $y\in B_2\backslash B_1$ و $y\in B_2\backslash B_1$ و به طوری که $x\in B_1\backslash B_2$ و برای هر $x\in B_1\backslash B_2$ و به طوری که $x\in B_1\backslash B_2$ و برای هر $x\in B_1\backslash B_2$ و به طوری که $x\in B_1\backslash B_2$ و برای هر $x\in B_1\backslash B_2$ و به طوری که $x\in B_1\backslash B_2$ و برای هر $x\in B_1\backslash B_2$ و به طوری که $x\in B_1\backslash B_2$ و برای هر $x\in B_1\backslash B_2$ و به طوری که و برای هر $x\in B_1\backslash B_2$ و برای هر $x\in B_1\backslash B_2$ و به طوری که و برای هر و برای هر
 - باشند. B_2 و B_2 دو یایه ی متمایز برای متروید M باشند.
- رآ) فرض کنید G یک گراف دوبخشی با دو بخش B_1 و B_2 باشد به طوری که در آن $e \in B_1$ با B_2 مجاور است B_1 فرض کنید B_2 یک تطابق کامل اگر و فقط اگر و فقط اگر $B_2 \cup \{e\} \setminus \{f\} \in \mathbf{B}$ یک تطابق کامل دارد.
- (ب) با استفاده از قسمت قبل ثابت کنید که یک تابع یکبهیک و پوشای $\pi: B_1 \to B_2$ وجود دارد به طوری که برای هر $B_1 \to B_2$ مجموعه $B_2 \setminus B_2 \setminus B_2$ یک پایه برای $B_2 \setminus B_2 \setminus B_2$ مجموعه و دارد به طوری که برای هر $B_2 \setminus B_2 \setminus B_2$ مجموعه و تابع برای هم برای است.
- ۷. یک خانواده ی \mathcal{F} از مجموعه ها را \mathcal{U} یه میگوییم اگر برای هر دو مجموعه ی $A,B\in\mathcal{F}$ ، یا $A\subseteq B$ یا $A\subseteq B$ یا $A\cap B=\emptyset$. فرض کنید که یک خانواده ی \mathcal{F} باز زیرمجموعه های $A\cap B=\emptyset$ مشخص شده است. نشان دهید که (E,\mathcal{I}) یک متروید را مشخص می کند که

$$\mathcal{I} = \{ X \subseteq E : |X \cap A| \le k(A), \ \forall A \in \mathcal{F} \}.$$

متروید $M = (S, \mathcal{I})$ و دوگان آن $M^* = (S, \mathcal{I}^*)$ را در نظر بگیرید. فرض کنید $M = (S, \mathcal{I})$ به ترتیب دورهایی در M . $|C \cap C^*| \neq 1$ باشند. ثابت کنید M^*

- 9. فرض کنید گراف همبند c(a) داده شده است. فرض کنید که به هر یال a از a یک رنگ c(a) نسبت داده شده است. ثابت کنید شرط لازم و کافی برای وجود زیردرخت فراگیری برای a که رنگ همهی یالهای آن متفاوت باشد این است که برای هر انتخاب a رنگ، اگر یالهای با این a رنگ را از گراف حذف کنیم، گراف حاصل حداکثر a مولفه داشته باشد. (راهنمایی: از قضیهی اشتراک مترویدها استفاده کنید.)
- ۱۰. فرض کنید که گراف G=(V,E)، و تابع Z_+ و تابع $k:V\to Z_+$ داده شده است. میخواهیم ببینیم آیا میتوان یالهای C را به گونهای جهت دهی کرد که در گراف جهت دار حاصل درجه ی ورودی هر رأس V حداکثر C باشد. ثابت کنید شرط لازم و کافی برای وجود چنین جهت دهی ای این است که

$$E[P] \le \sum_{v \in P} k(v), \ \forall P \subseteq V.$$

(راهنمایی: از قضیهی اشتراک مترویدها استفاده کنید.)

- ۱۱. فرض کنید G یک گراف دوبخشی با بخشهای S و Tباشد، و فرض کنید M یک متروید روی مجموعه S باشد. ثابت کنید که تطابقی در S با اندازه S با وجود دارد به طوری که رأسهای آلوده شده از S تشکیل یک مجموعه S مستقل برای کنید که تطابقی در S با اندازه S با وجود دارد به طوری که رأسهای S با اندازه S با اندازه S با اندازه S با اندازه S داشته باشیم S داشیم S داشیم
- ۱۲. سه متروید M_1 ، M_2 ، M_3 و M_3 روی یک مجموعه ی M_3 مثال بزنید که $P(M_1)\cap P(M_2)\cap P(M_3)$ با پوش محدب مجموعه های مستقل مشترک M_1 و M_2 و M_3 مساوی نباشد. $P(M_i)$ چندوجهی متروید M_i است).
 - ۱۳. قضیهی اشتراک مترویدها را از قضیهی چندوجهی اشتراک مترویدها نتیجه بگیرید.