Moonlight User Manual

2023-03-19

Inhalt

- Einführung
- Moonlight Command Overview
- Ardumower Control Program amcp
- Ardumower Command Line Tool amcmd
- Maps

Moonlight Firmware

- Moonlight ist der Name meiner modifizierten Sunray firmware (fork von Sunray-Version V168)
- Moonlight Features:
 - verbessertes Ausgabeformat für Logging
 - kann Kommandos über UDP verarbeiten
 - unterstützt Logging über UDP
 - enthält einen Simulationsmodus der mit einem Arduino Due + SD Card
 + ESP8266 + RTC arbeitet (für Software-Tests ohne Ardumower)
 - unterstützt zusätzliche Kommandos
 - unterstützt RTC (Logging Timestamp & SD Card File Date)
 - Unterstützt SD-Card Filesystem Kommandos (ls, rm, cat, cp)
 - Unterstützt Remote Control via UDP (#-Kommando)

Moonlight Command Overview (Sunray Commands)

GUI	Moonlight Command ⁽¹⁾	Short Description
	AT+M, fLinear, fAngular	Set Motor Linear & Angular Speed
i,m,	AT+C, bEnableMowMotor, iOperationType ⁽²⁾ , fSpeed, iFixTimeout, bFinishAndRestart,	Mower Control
d,a ⁽⁴⁾	fMowingPointPercent, bSkipNextMowingPoint, bEnableSonar	
	AT+W, iIndex, fX, fY	Set Waypoint
	AT+N, iWayPerimeter, iWayExclusion, iWayDock, iWayMow, iWayFree	Set Waypoints Count
	AT+X, 0[, iExclusionLength0[, 1, iExclusionLength1[,]]]	ExclusionCounts
	AT+P, bAbsolutePosSource, fLongitude, fLatitude	Set Position
	AT+S	Print Summary
V	AT+V	Print Version Number
S	AT+T	Print Statistics
	AT+L	Clear Statistics
	AT+E	Motor Test
	AT+O	Trigger Obstacle
	AT+F	Sensor Test
	AT+G	Toggle GPS.Solution ⁽³⁾
	AT+K	Kidnapping Test
	AT+Z	Stress Test
	AT+Y	Trigger Watchdog Test
	AT+Y2	GNSS Reboot

Notes:

- (1) Parameter naming convention: fName=float, iName=int, bName=bool (0 or 1)
- (2) OperationType = OP_IDLE, OP_MOW, OP_CHARGE, OP_ERROR, OP_DOCK
- (3) GPS.Solution = SOL_INVALID=0, SOL_FLOAT=1, SOL_FIXED=2
- (4) i=Idle, m=start mowing, d=start docking, a=start undocking

Moonlight Command Overview (Moonlight Extensions)

GUI	Moonlight Command ⁽¹⁾	Short Description
	AT+A,iMinElev, iNumSV, iMinCNO	Upload GPS Config Filter
	AT+U,CurrentMapIndex	Start Upload Map (informs Moonlight about CurrentMapIndex and initializes map file)
	AT+R, <i>MapIndex</i>	Read map from SD Card. The file name is "MAP <mapindex>.TXT". MapIndex = 110</mapindex>
	AT+D[,[yy] <i>yy,mo,dd,hh,mi,ss,w</i>]	Get/set RTC date and time (w=weekday 0-6; 0=Sunday)
0	AT+Y3	Switch Off Robot
	AT+Y4	Trigger Raspi Shutdown
b	AT+Y5	Toggle Bluetooth Logging
	AT+Y6	Ping (no operation, just reset auto power off counter)
	AT+YR	GNSS Hardware Reset
	AT+YS	Toggle SMOOTH_CURVES
р	AT+YP	Toggle UseGPSfloatForPosEstimation
	AT+YD	Toggle UseGPSfloatForDeltaEstimation
	AT+YG	Toggle GPS Logging
	AT+\$L[,fileName]	Filesystem: Is fileName ('*' can be used at end of filename as wildcard)
	AT+\$C,fileName	Filesystem: cat fileName ('*' can be used at end of filename as wildcard)
	AT+\$T	Filesystem: Is –R (list all files in folder tree; output to Serial only)
	AT+\$R,fileName	Filesystem: rm fileName ('*' can be used at end of filename as wildcard)
	AT+#,iLinear, iAngular	Remote control: Set linear and angular speed (range -2048 to 2048) – no response

Notes:

- (1) Parameter naming convention: fName=float, iName=int, bName=bool (0 or 1)
- (2) OperationType = OP IDLE, OP MOW, OP CHARGE, OP ERROR, OP DOCK
- (3) GPS.Solution = SOL INVALID, SOL FLOAT, SOL FIXED

amcp – ArduMower Control Program

- Moonlight wird über das Python-Programm amcp gesteuert
- Aufruf im WinPython Cmd-Window: amcp.bat
- amcp kann entweder über Tastatur-Kürzel oder über Menü gesteuert werden
- Das Menü wird mit ESC ein- und ausgeschaltet.
- Die Tastatur-Kürzel sind nur verfügbar, wenn das Menü ausgeschaltet ist

amcp – Main Menu

amcp - Configuration Menu

amcmd – Ardumower Command Line Tool

```
Ardumower Command Line Tool
Usage: amcmd ls [<file pattern>]
                                     # list files to stdout
      amcmd dir [<file pattern>]
                                   # list files to dir.txt
                                     # list files including sub folders (Serial only)
      amcmd tree
      amcmd rm [<file pattern>]
                                     # remove files
      amcmd cat <file name>
                                     # output file to stdout
      amcmd cp <file name>
                                     # copy file to current directory
      amcmd log
                                     # display logging output(stop with Ctrl-C)
                                     # GetSummarv
      amcmd qs
                                     # SyncRtc
       amcmd srtc
      amcmd grtc
                                     # GetRtcDateTime
      amcmd csum
                                     # ComputeMapChecksum
                                     # GetVersionNumber
       amcmd ver
                                     # ToggleBluetoothLogging
      amcmd tb
      amcmd tf
                                     # ToggleUseGPSfloatForDeltaEstimation
      amcmd tp
                                     # ToggleUseGPSfloatForPosEstimation
                                     # StartMowing
      amcmd start
                                     # StopMowing (IDLE mode)
      amcmd stop
                                     # Go to docking station
       amcmd dock
      amcmd undock
                                     # Undock from docking station
      amcmd off
                                     # SwitchOffRobot
                                     # PrintStatistics
      amcmd ps
                                     # ClearStatistics
      amcmd cs
      amcmd umap <mapId>
                                     # UploadMap(<mapId>)
      amcmd rmap <mapId>
                                     # ReadMapFromSdCard(<mapId>)
(file pattern> can include the wild card * at the end
```

Fix Mode

- **No fix**: either there is not enough data to compute a navigation solution, or the computed solution is outside of the acceptable error criteria
- **3D**: a position solution has been achieved with at least four satellites as compared with a 2D solution with only 3 satellites and altitude/vertical metrics locked to a preset value.
- **DGNSS**: corrections are provided from a source that measures the differences between what pseudorange (signal time-of-flight approximately indicates distance using speed of light through a medium) values for each satellite should be at the precisely surveyed reference station compared to what is reported by its navigation computation. The differences are generally caused by time-varying ionospheric perturbations in the path from satellite to the reference station and the nearby rover. If the rover and reference are too far apart, the separate signal paths may have different perturbations and the correction data are less effective.
- **Float and fixed**: in precise navigation, the receiver tries to lock on to carrier phase (within the 19 cm wavelength) to resolve the exact number of wavelengths and fractions to each satellite. If this exactitude is achieved, the status is "fixed" since phase markers can be locked. if precise wavelengths and fraction are not resolved, ambiguity persists, and the status is "float" since the carrier phase markers are not locked but "floating around" in the mathematical computation. The difference is mm of position accuracy with fixed compared with cm of accuracy with float.

Main Program Loop

- always
 - robotDriver.run()
 - buzzer.run()
 - stopButton.run()
 - battery.run()
 - batteryDriver.run()
 - motorDriver.run()
 - motor.run()
 - sonar.run()
 - maps.run()
 - rcmodel.run()
 - fixDisplay.run()
 - gps.run()
 - calcStats()
 - processComm()
 - outputConsole()
 - watchdogReset()

- every 60 sec
 - temperature & humidity
- every 5 sec
 - saveState()
- every 150 ms
 - IMU handling
- every 20 ms
 - computeRobotState()
 - trackline()
 - battery & charging
 - on/off button

```
while (true) {
2
         robotDriver.run();
3
         buzzer.run();
4
         stopButton.run();
5
         battery.run();
 6
         batteryDriver.run();
7
         motorDriver.run();
8
         motor.run();
9
         sonar.run();
10
         maps.run();
11
         rcmodel.run();
12
         fixDisplay.run();
13
14
         if (millis() >= nextSaveTime) { nextSaveTime = millis() + 5000; saveState(); }
15
         if (millis() > nextTempTime) { nextTempTime = millis() + 60000; handleTemp(); }
16
         if (millis() > nextImuTime) { nextImuTime = millis() + 150;
                                                                           handleIMU(); }
17
18
         gps.run();
19
         calcStats();
20
21
         if (millis() >= nextControlTime) {
22
            nextControlTime = millis() + 20;
23
            computeRobotState();
24
            handleChargerAndDockingStation();
25
26
            if (!imuIsCalibrating) {
27
               if (stateOp == OP UNDOCK) handleUndocking();
28
               else if ((stateOp == OP MOW) || (stateOp == OP DOCK)) {
29
                  if (driveReverseStopTime > 0) HandleDriveReverseAfterObstacleDetection();
30
                  else HandleLineTracking();
31
                  HandleBattery();
32
                  HandleStopButton();
33
                  battery.resetIdle();
34
35
               else if (stateOp == OP CHARGE) HandleCharging();
36
            } // !imuIsCalibrating
37
            if (stopButton.LongKevPress()) HandleSwitchoff();
38
39
         processComm();
40
         outputConsole();
41
         watchdogReset();
42
```