Problem Statement : Predictive study using the breast cancer diagnostic data set

Data Collection

In [1]:	<pre>import pandas as pd from matplotlib import pyplot as plt %matplotlib inline</pre>									
In [2]:	df=po	d.read_csv(r"C:\Users	s\91903\Down	loads\Breast	CancerPredic	tion.csv")			
	0	842302	М	17.99	10.38	122.80	1001.0	•		
	1	842517	М	20.57	17.77	132.90	1326.0			
	2	84300903	М	19.69	21.25	130.00	1203.0			
	3	84348301	М	11.42	20.38	77.58	386.1			
	4	84358402	М	20.29	14.34	135.10	1297.0			
			•••				•••			
	564	926424	М	21.56	22.39	142.00	1479.0			
	565	926682	М	20.13	28.25	131.20	1261.0			
	566	926954	М	16.60	28.08	108.30	858.1			
	567	927241	М	20.60	29.33	140.10	1265.0			
	568	92751	В	7.76	24.54	47.92	181.0			
	569 r	ows x 32 colu	ımns					•		

Data Cleaning and preprocessing

In [3]: df.head()

Out[3]:

hness_mean	compactness_mean	concavity_mean	concave points_mean	 radius_worst	texture_worst	ı
0.11840	0.27760	0.3001	0.14710	 25.38	17.33	
0.08474	0.07864	0.0869	0.07017	 24.99	23.41	
0.10960	0.15990	0.1974	0.12790	 23.57	25.53	
0.14250	0.28390	0.2414	0.10520	 14.91	26.50	
0.10030	0.13280	0.1980	0.10430	 22.54	16.67	

In [4]: df.tail()

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_rr
564	926424	М	21.56	22.39	142.00	1479.0	0.1
565	926682	М	20.13	28.25	131.20	1261.0	0.09
566	926954	М	16.60	28.08	108.30	858.1	30.0
567	927241	М	20.60	29.33	140.10	1265.0	0.1′
568	92751	В	7.76	24.54	47.92	181.0	0.0

5 rows × 32 columns

```
In [5]: plt.scatter(df["radius_mean"],df["texture_mean"])
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[5]: Text(0, 0.5, 'texture_mean')

K Means Clustering

KMeans()

```
In [7]: y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

```
Out[7]: array([5, 6, 6, 1, 6, 5, 6, 3, 4, 4, 3, 3, 7, 3, 4, 0, 3, 3, 6, 5, 5, 2,
               5, 7, 3, 5, 3, 6, 4, 5, 7, 1, 7, 7, 3, 3, 3, 1, 4, 3, 4, 4, 7, 3,
               4, 6, 1, 1, 2, 4, 4, 5, 1, 6, 3, 1, 6, 3, 1, 2, 2, 1, 4, 2, 4, 4,
               1, 1, 1, 5, 6, 2, 7, 5, 1, 3, 2, 5, 7, 1, 4, 5, 7, 7, 2, 6, 3, 7,
               4, 5, 4, 3, 5, 1, 3, 7, 1, 1, 2, 3, 4, 2, 1, 1, 1, 5, 1,
               1, 4, 3, 1, 2, 4, 2, 5, 3, 3, 2, 6, 6, 5, 5, 5, 4, 6, 5, 7, 2, 3,
               3, 5, 6, 4, 1, 2, 5, 2, 2, 3, 1, 5, 2, 2, 1, 3, 5, 1, 4, 1,
               5, 1, 3, 3, 2, 2, 1, 6, 6, 4, 6, 3, 2, 3, 7, 5, 2, 1, 5, 2, 2, 2,
               1, 3, 4, 2, 6, 7, 3, 2, 3, 2, 6, 1, 1, 5, 4, 4, 1, 0, 4, 5, 4, 3,
                           7, 4, 1, 5, 1, 3, 4, 5, 6, 1, 6, 7, 4, 5, 1, 1,
               5, 5, 1, 3, 5, 5, 2, 5, 4, 4, 3, 0, 0, 7, 2, 3, 7, 6, 0, 0, 5, 2,
               1, 4, 7, 1, 1, 5, 4, 2, 7, 1, 6, 5, 6, 5, 7, 5, 3, 0, 7,
               3, 7, 1, 4, 5, 1, 5, 2, 6, 2, 7, 1, 2, 6, 1, 5, 7, 2, 6, 3, 5, 1,
               4, 2, 1, 1, 3, 3, 5, 1, 2, 5, 2, 1, 1, 4, 6, 1, 7, 1, 1, 4, 5, 2,
                           2, 2, 1, 1, 2, 6, 1, 1, 2, 6, 2, 6, 2, 1, 5, 1,
               5, 1, 1, 2, 1, 3, 5, 6, 1, 7, 5, 1, 2, 6, 2, 2, 1, 5, 2, 2, 1, 3,
               6, 4, 2, 1, 1, 5, 2, 1, 1, 4, 1, 3, 5, 6, 7, 1, 6, 6, 3, 5, 6, 6,
               5, 5, 1, 0, 5, 1, 2, 2, 4, 1, 5, 4, 2, 5, 2, 7, 2, 1, 3, 6, 1, 5,
                           3, 2, 1, 5, 2, 1,
                                             5, 4, 3, 1, 1, 1, 4, 3, 0, 4, 4, 3,
               2, 4, 1, 5, 2, 1, 1, 4, 2, 4, 1, 1, 3, 1, 6, 6, 5, 3, 1, 5, 3, 5,
               1, 7, 5, 1, 6, 4, 7, 5, 3, 6, 4, 7, 0, 5, 1, 0, 0, 4, 4, 0, 7, 7,
               0, 1, 1, 1, 4, 1, 3, 1, 1, 0, 5, 0, 2, 5, 3, 5, 2, 3, 1, 3, 5, 1,
               5, 5, 5, 6, 2, 3, 4, 5, 3, 2, 4, 3, 1, 1, 6, 6, 5, 4, 5, 6, 2, 2,
               1, 1, 5, 4, 2, 5, 3, 5, 3, 1, 6, 6, 1, 5, 2, 6, 1, 1, 2, 2, 1, 2,
               5, 2, 1, 1, 5, 6, 1, 6, 4, 4, 4, 4, 2, 4, 4, 0, 3, 4, 2, 1, 1, 4,
               4, 4, 0, 4, 0, 0, 1, 0, 4, 4, 0, 0, 0, 7, 6, 7, 0, 7, 4])
```

```
In [8]: df["cluster"]=y_predicted
    df.head()
```

Out[8]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_rr
0	842302	М	17.99	10.38	122.80	1001.0	0.1′
1	842517	М	20.57	17.77	132.90	1326.0	30.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.10
3	84348301	М	11.42	20.38	77.58	386.1	0.14
4	84358402	М	20.29	14.34	135.10	1297.0	0.10

5 rows × 33 columns

```
In [9]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[9]: Text(0, 0.5, 'texture_mean')

Out[10]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_n
0	842302	М	17.99	0.022658	122.80	1001.0	0.1
1	842517	М	20.57	0.272574	132.90	1326.0	30.0
2	84300903	М	19.69	0.390260	130.00	1203.0	0.10
3	84348301	М	11.42	0.360839	77.58	386.1	0.14
4	84358402	М	20.29	0.156578	135.10	1297.0	0.10

5 rows × 33 columns

In [11]: scaler.fit(df[["radius_mean"]])
 df["radius_mean"]=scaler.transform(df[["radius_mean"]])
 df.head()

Out[11]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
0	842302	М	0.521037	0.022658	122.80	1001.0	0.1′
1	842517	М	0.643144	0.272574	132.90	1326.0	30.0
2	84300903	М	0.601496	0.390260	130.00	1203.0	0.10
3	84348301	М	0.210090	0.360839	77.58	386.1	0.14
4	84358402	М	0.629893	0.156578	135.10	1297.0	0.10

5 rows × 33 columns

```
In [12]: y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
 warnings.warn(

```
Out[12]: array([2, 6, 6, 5, 6, 2, 6, 1, 1, 4, 1, 2, 7, 1, 1, 4, 1, 1, 6, 2, 2, 3,
                2, 0, 1, 6, 1, 6, 1, 6, 7, 5, 7, 7, 2, 1, 1, 5, 1, 1, 1, 5, 7, 1,
                1, 6, 3, 5, 3, 1, 5, 2, 5, 6, 1, 5, 6, 1, 5, 3, 3, 5, 1, 3, 4, 1,
                5, 5, 5, 2, 6, 3, 7, 2, 5, 1, 2, 6, 7, 5, 5, 2, 0, 7, 3, 6, 1, 7,
                1, 2, 1, 1, 2, 5, 1, 7, 5, 5, 3, 1, 4, 3, 5, 5, 5, 2, 5, 5, 0, 5,
                3, 5, 1, 5, 3, 5, 3, 2, 1, 6, 3, 6, 0, 2, 2, 2, 4, 6, 2,
                1, 2, 6, 1, 5, 3, 2, 3, 3, 2, 5, 2, 3, 3, 5, 1, 2, 2, 1, 5, 3, 3,
                2, 5, 6, 6, 3, 3, 5, 6, 6, 1, 0, 1, 3, 6, 7, 2, 3, 1, 2, 3, 3, 3,
                5, 1, 1, 2, 0, 7, 1, 3, 1, 3, 6, 5, 5, 2, 1, 1, 5, 4, 1, 2, 1, 6,
                6, 1, 5, 6, 0, 1, 5, 2, 5, 6, 1, 2, 6, 5, 0, 7, 1, 2, 5, 5, 6, 7,
                2, 2, 5, 1, 2, 2, 3, 2, 4, 1, 6, 4, 4, 7, 3, 1, 0, 6, 4,
                5, 1, 7, 5, 2, 2, 4, 3, 7, 5, 6, 6, 6, 2, 7, 2, 1, 4, 7, 7, 6, 1,
                6, 7, 5, 1, 2, 5, 2, 3, 0, 3, 7, 5, 3, 6, 2, 2, 7, 3, 6, 6,
                5, 2, 5, 5, 1, 1, 2, 5, 2, 2, 3, 5, 2, 5, 6, 5, 7, 5, 5, 4,
                2, 2, 5, 2, 2, 3, 5, 5, 3, 6, 5, 5, 3, 6, 2, 6, 3, 5, 2,
                            5, 6, 2, 6, 5, 0, 2, 3, 3, 6, 3, 3, 5, 2, 3, 3,
                0, 4, 3, 5, 5, 2, 3, 5, 5, 1, 5, 6, 2, 6, 7, 5, 6, 0, 1, 2, 6, 6,
                2, 2, 5, 4, 2, 5, 3, 3, 1, 5, 2, 1, 3, 2, 3, 7, 3, 3, 1,
                5, 5, 3, 5, 6, 3, 5, 2, 3, 5, 2, 1, 6, 5, 5, 5, 5, 1,
                3, 5, 5, 2, 3, 1, 5, 5, 3, 5, 5, 5, 1, 5, 6, 6, 2, 1,
                5, 7, 2, 5, 6, 4, 7, 2, 1, 6, 5, 7, 4, 2, 5, 4, 4, 4, 4, 4,
                4, 5, 5, 1, 1, 5, 7, 5, 5, 4, 2, 4, 3, 2, 1, 2, 3, 1, 5, 1,
                2, 2, 2, 6, 3, 6, 1, 2, 6, 3, 1, 1, 5, 5, 6, 6, 2, 1, 2, 0,
                5, 5, 2, 1, 3, 2, 1, 2, 1, 5, 6, 6, 5, 2, 3, 0, 5, 1, 3, 3, 5, 3,
                2, 3, 5, 5, 2, 6, 5, 6, 1, 4, 4, 4, 3, 1, 4, 4, 1, 1, 3, 3, 5, 4,
                5, 5, 4, 5, 4, 4, 5, 4, 1, 4, 4, 4, 4, 7, 0, 7, 7, 7, 4])
```

```
In [13]: df["New Cluster"]=y_predicted
df.head()
```

Out[13]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_rr
0	842302	М	0.521037	0.022658	122.80	1001.0	0.1′
1	842517	М	0.643144	0.272574	132.90	1326.0	30.0
2	84300903	М	0.601496	0.390260	130.00	1203.0	0.10
3	84348301	М	0.210090	0.360839	77.58	386.1	0.14
4	84358402	М	0.629893	0.156578	135.10	1297.0	0.10

5 rows × 34 columns

→

Out[14]: Text(0, 0.5, 'texture_mean')


```
In [16]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",m
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[16]: Text(0, 0.5, 'texture_mean')


```
In [17]: k_rng=range(1,10)
sse=[]
```

```
In [18]: for k in k rng:
             km=KMeans(n clusters=k)
             km.fit(df[["radius_mean","texture_mean"]])
             sse.append(km.inertia )
         #km.inertia_ will give you the value of sum of square error
         print(sse)
         plt.plot(k rng,sse)
         plt.xlabel("K")
         plt.ylabel("Sum of Squared Error")
         C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
         [27.817507595043075, 14.872296449956036, 10.252751496105198, 8.48459193556418
         8, 7.0434235336341064, 6.0360159475616415, 5.117629404113856, 4.4800639959361
         47, 4.021641907033482]
```

C:\Users\91903\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
 warnings.warn(

Out[18]: Text(0, 0.5, 'Sum of Squared Error')

Conclusion:

for the given dataset we can use multiple models, for that models we get different types of accuracies but that accuracies is not good so, that's why we will take it as a clustering and done with K-Means Clustering

In []: