

Groundwater - a key resource!

Groundwater level controlled by:

- + precipitation
- surface runoff
- evaporation (soil)
- transpiration (plants)
- human extraction

Groundwater - a key resource!

Groundwater level controlled by:

- + precipitation
- surface runoff
- evaporation (soil)
- transpiration (plants)
- human extraction

Effect of changing climate?

Study area between MA and DA

- Learning algorithm: HistGradientBoostingRegressor
- Train-test-split by stations including cross-validation
- Training parameters:
 - Initial groundwater station properties
 - Encoded station location data
 - Meteorological data over time
- Predicted label: Water depth below surface

Final prediction with trained model on all stations using past and future weather!

Result for one station

Residuals = measured - predicted

Temperature and precipitation for previous year

Temperature and precipitation for previous 7 days

Predicting past groundwater levels

- Model predictions are usually precise (low residuals for most stations)
- Some problems with extreme events
- few stations not working well

Predicting future groundwater levels

Use future climate projections to create "synthetic" future weather!

Reference scenario: 1971-2000

Extreme scenario: 2071-2100

- Temp. increase by 4°C
- Precip. decrease by 10%

other scenarios are possible...

Predicting future groundwater levels

Anomaly = future prediction - reference
positive: deeper future groundwater levels
negative: shallower future groundwater levels

Model predicts complex change patterns in groundwater levels...

... but better future weather models are needed!

Predicting future groundwater levels

