## Modeling and Design for Magnetoelectric Random-access Memory based Ternary Content Addressable Memory (ME-TCAM)

Georgia Center for Research into Tech Novel Computing Hierarchies

Siri Narla<sup>1</sup>, Azad Naeemi<sup>1</sup>

## School of Electrical and Computer Engineering, Georgia Institute of Technology

## **ME-TCAM Operation**

|             | WL       | SL              | SL'      | BL       | BL'      | Cell 1 | Cell 2 |
|-------------|----------|-----------------|----------|----------|----------|--------|--------|
| Writing '1' | $V_{dd}$ | V <sub>wr</sub> | 0        | $V_{wr}$ | 0        | HRS    | LRS    |
| Writing '0' | $V_{dd}$ | 0               | $V_{wr}$ | 0        | $V_{wr}$ | LRS    | HRS    |
| Writing 'X' | $V_{dd}$ | V <sub>wr</sub> | $V_{wr}$ | 0        | 0        | HRS    | HRS    |

- To store binary bits to a TCAM cell, complementary logic values are stored into the two MTJs by applying the required voltage across the BFO layer.
- To store a don't care bit, both MTJs are set to anti-parallel state.

|               | Cell1 data | Cell2 data | SL             | SĽ      | V <sub>fix</sub>    | ML   |
|---------------|------------|------------|----------------|---------|---------------------|------|
| Searching '1' | 1 (HRS)    | 0 (LRS)    | $V_{s}$        | 0       | kV <sub>s</sub>     | High |
|               | 0 (LRS)    | 1 (HRS)    | V <sub>s</sub> | 0       | (1-k)V <sub>s</sub> | Low  |
|               | X (HRS)    | X (HRS)    | V <sub>s</sub> | 0       | V <sub>s</sub> /2   | High |
| Searching '0' | 1 (HRS)    | 0 (LRS)    | 0              | $V_{s}$ | (1-k)V <sub>s</sub> | Low  |
|               | 0 (LRS)    | 1 (HRS)    | 0              | $V_{s}$ | kV <sub>s</sub>     | High |
|               | X (HRS)    | X (HRS)    | 0              | $V_{s}$ | V <sub>s</sub> /2   | High |
| Searching 'X' | 1 (HRS)    | 0 (LRS)    | 0              | 0       | 0                   | High |
|               | 0 (LRS)    | 1 (HRS)    | 0              | 0       | 0                   | High |
|               | X (HRS)    | X (HRS)    | 0              | 0       | 0                   | High |

$$k=R_o/(R_o+R_{ao})$$
,  $R_o=LRS$  and  $R_{ao}=HRS$ 

- To perform search, WL and BL/BL' are grounded and search voltages (V<sub>s</sub>) are applied to SL/SL' which gets divided between the two MTJs
- $V_{\text{fiv}}$  is used to control the gate of the discharge transistor (T3 in Figure).
- T3 discharges ML in case of a mismatch. ML stays high in case of a match.
- V<sub>s</sub>/2 is adequately lower than the threshold voltage of the transistor.

## **ME-TCAM Performance and Benchmarking**

- Our design is variation tolerant. We show search error rates lower than 0.01% using Monte-Carlo simulations.
- Previous MTJ based TCAM designs required complex designs to overcome the issue of variation that leads to high search error rates while using 'x' bits.
- Our design is much more compact in their comparison and uses only 3 transistors.
- · Possible due to the use of higher search voltages.
- In our case write and read paths are independent, hence higher  $V_s$  values can be used.
- Increasing voltages not an option for two terminal STT devices where larger voltages can lead to a read disturb.

|                   | ME-MRAM | PMA   | SRAM |  |
|-------------------|---------|-------|------|--|
| Search Delay(ps)  | 407     | 537   | 420  |  |
| Search Energy(fJ) | 563     | 680   | 723  |  |
| Search EDP(ns*fJ) | 22.9    | 36.5  | 30.3 |  |
| Cell area(um²)    | 0.131   | 0.159 | 0.21 |  |
| Write Energy(pJ)  | 0.66    | 10.3  | 1.59 |  |
| Write Delay(ns)   | 1.90    | 1.00  | 0.14 |  |

- We use SPICE simulations to model search performance using 14 nm PTM ASU MOSFET models.
- We consider TMR degradation due to bias voltage in our simulations.

