Berechenbare Analysis SoSe 19

Benedikt Lüken-Winkels

June 17, 2019

Contents

1	Vorlesung 3			
2	Vorlesung2.1 Berechenbarkeit2.2 Entscheidbarkeit2.3 Berechenbare Reelle Zahlen	3		
3	Vorlesung 3.1 Binary Sequence	4 5		
4	Vorlesung	5		
5	Vorlesung $5.1 (2) \Rightarrow (1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5		
6	Vorlesung 6.1 DAG			
7	Vorlesung	6		
8	Vorlesung 8.1 Struktur berechenbarer Funktionen 8.1.1 Orakel-Turingmaschine OTM 8.1.2 Typ-2-Turingmaschinen 8.1.3 Zusammenhände OTM und Typ-2-TM	6 7		
a	Vorlesung	7		

10	Vorlesung 10.1 Cauchy-Darstellung	8
11	Vorlesung	8
12	Vorlesung 12.1 Metrischer Raum	8
13	Vorlesung 13.1 Mehrwertige Funktionen	9
14	General Stuff	9
15	1. Übung	10
16	3. Übung	11

1 Vorlesung

2 Vorlesung

2.1 Berechenbarkeit

Es gibt einen Algorithmus, der die Zahl angeben kann (es gibt nur eine abzählbar unendliche Anzahl an Algorithmen, aber überabzählbar viele reelle Zahlen)

Figure 1: g ist (ν_x, ν_y) berechenbar, wenn g von einer berchenbaren Funktion f realisiert wird

2.2 Entscheidbarkeit

Diagonalisierung Wären die Reellen Zahlen abzählbar, wäre die Diagonalzahl darin enthalten (!Widerspruch).

Table 1: Diagonialisierungsbeispiel: x_{∞} kann nicht in der Liste enthalten sein

x_0	0.500000
x_1	0.411110
x_2	0.312110
x_3	0.222220
x_4	0.233330

 $x_{\infty} \quad 0.067785....$

Definition Menge A Entscheidbar, wenn eine Funktion $f_A(x)$, die entscheidet, ob $x \in A$ berechenbar ist.

2.3 Berechenbare Reelle Zahlen

Konstruktive Mathematik Formulierung algorithmischen Rechnens: $zB \exists$ neu definiert als "es existiert ein Algorithmus". Nicht mehr für "klassische Mathematiker" lesbar

Definition Für $x \in \mathbb{R}$ sind die Bedingungen äquivalent (wenn eine Bedingung erfüllt ist, sind alle Erfüllt):

- 1. Eine TM erzeugt eine unendlich lange binäre Representation von x auf dem Ausgabeband
- 2. **Fehlerabschätzung** Es gibt eine TM, die Approximationen liefert. Formal: $q: \mathbb{N} \to \mathbb{Q}$ $(q_i)_{i \in \mathbb{N}}$ ist Folge rationaler Zahlen, die gegen x konvergiert. Bedeutet, dass alle q_i innerhalb eines bestimmten beliebig kleinen Bereichs um x liegen. Größter möglicher Fehler $2^0 = 1$
- 3. Intervalschachtelung Es gibt eine berechenbare Intervallschachtelung: Angabe zweier Folgen rationaler Zahlen mit der Aussage, dass x dazwischen liegt. Ziel: Abstände von linker und rechter Schranke soll gegen null gehen.
- 4. **Dedekindscher Schnitt**Menge $\{q \in \mathbb{Q} | q < x\}$ ist entscheidbar. Beispiel $\sqrt{2}$ ist berechenbar. $\{q|q < \sqrt{2}\} = \{q|q^2 < 2\}$. \Rightarrow Es gibt einen Test, ob die Zahl kleiner ist.
- 5. $z \in \mathbb{Z}$ $A \subseteq \mathbb{N}$, $x_A = \sum i \in A2^{-1} i$, $x = z + x_A$
- 6. Es exisitert eine Kettenbruchentwicklung

Folgerungen / Beispiele

- \bullet \Rightarrow Für Berechenbarkeit muss nur eine der Bedingungen bewiesen werden. Menge der berechenbaren reelen Zahlen $= \mathbb{R}_c$
- Nicht berechenbare reele Zahlen durch Diagonalisierung konstruierbar
- e berechenbar, weil die Fehlerabschätzung (2) existiert
- \bullet π (Notiert als alternierede Reihe) berechenbar, weil Intervalschachtelung existiert
- $\sqrt{2}$ berechenbar, weil Dedekindscher Schnitt existiert.

Implementierung Ziel: zB Berechnung von Differentialgleichungen

3 Vorlesung

Implementierung in C++ Ziel: shared pointer für temporäre Variablen verstecken (durch wrapper)

- (binary sequence) bs: ein Bit nach dem anderen wird ausgegeben. binseq gibt zur natürlichen Zahl n und liefert das n-te Bit der reellen Zahl (Vorzeichen, 0 oder 1).
- (rational approximations) ra: Fehler beliebiger Größe (Gnaze Zahlen). approx rationale Approximation mit einem beliebig großem Fehler. (Abänderung der Definition, weil ganze Zahlen zulässig)

- ni: Untere und obere Schranke. lower/upperbound gibt n-te Schranke
- (Dedekind cut) dc: Ist eine Zahl kleiner. smaller entscheidet, ob die angegebene Rationale Zahl kleiner ist.
- ds: decide ist das n-te Bit gesetzt oder nicht
- cf: cont-fraction n-tes Folgenglied

3.1 Binary Sequence

- make-node erzeugt den shared pointer auf das node Objekt
- DAG (directed acyclic graph) als Stuktur für Operatoren

4 Vorlesung

Programmierung

5 Vorlesung

$5.1 (2) \Rightarrow (1)$

Umsetung von Approximation zur Binärfolge für die gesuchte Zahl x:

- Bereich zwischen 2 ganzen Zahlen aproximieren (ist x eine 2er-Potenz, schlägt dieser Schritt fehl). Fallunterscheidung:
 - Ist die Zahl ein endlicher Binärbruch schreibe diesen auf
 - ,sonst appoximiere und schreibe dann den endlichen Binärbruch
- Binärsequenzen eignen sich nicht zum Rechnen

5.2 \mathbb{R}_c ist ein Körper

- \bullet Sind 2 Zahlen berechenbar, so auch das Ergebnis aus + * / \Rightarrow gilt für Intervallschachtelungen (Lemma 3.8)
 - + : untere/obere Grenze addieren
 - - : untere/obere Grenze subtrahieren
 - -*, /: min und max des Kreuzproduktes
- Ein Polynom mit berechenbaren Koeffizienten hat berechenbare Nullstellen

6 Vorlesung

6.1 DAG

Interne Datenstruktur der Zahlen

- Auswertung der Zahlenwerte nur bei Bedarf (lazy eval)
- Bei einer Berechnung wird ein neuer "Rechenknoten" mit Pointer auf die Variable erstellt
 - Ein Knoten pro Operation (sehr Speicherintensiv)
 - Lösung: Komplexere Rechenknoten

6.2 Berechenbare reelle Folgen

Berechenbarkeit einer Folge

- Berechenbare Folge berechenbarer Zahlen
- \bullet Das n-te Folgenglied der Folge kann mit Fehler 2^-i durch eine berechenbare Folge rationaler Zahlen approximiert werden
- Nicht alle reellen Zahlen können durch eine berechenbare reelle Folge berechnet werden
 - Wähle eine rationale Folge q_n , die x_n approximiert
 - Wähle x_n so, dass es außerhalb dem approximierten Bereich von q_n liegt (Diagonalisierung)

7 Vorlesung

NACHTRAGEN

8 Vorlesung

8.1 Struktur berechenbarer Funktionen

8.1.1 Orakel-Turingmaschine OTM

- Turingmaschine mit Zugriff auf eine Orakelfunktion ϕ
- \bullet Ein Zustand ist Orakelzustand s_O
- Ein Band ist Orakelband
- Geht die Maschine in den Zustand $s_O \Rightarrow$ (partielle) Orakelfunktion wird aufgerufen:
 - Eingabe auf Orakelband wird evaluiert = 'Anfrage an das Orakel'

- $-v \in Def(\phi)$: Orakelfunktion schreibt Antwort auf Orakelband in einem Schritt
- $-v \notin Def(\phi)$: Orakelfunktion endet mit Fehler
- Orakel kann zB benutzt werden, um das Halteproblem entscheiden. Das richtige Orakel, kann P=NP simulieren.
- f_M^{ϕ} Berechnete Funktion
- $T_M^{\phi}(w)$ Anzahl der Rechenschritte
- $A_M^{\phi}(w)$ Menge der Angfragen

Menge der von OTM berechenbaren Funktionen ist \mathbb{F} . Typ-2-Mengen zB \mathbb{R} $\mathbb{N}^{\mathbb{N}} \Rightarrow$ Überabzähbar. Typ-1-Mengen \Rightarrow abzählbar unendlich

8.1.2 Typ-2-Turingmaschinen

- spezielles Ein/Ausgabeband (Eingabe: read-only, Ausgabe: one-way = Ausgabe nicht mehr modifizierbar)
- Arbeitsweise wie eine normale TM
- Eingabe darf unendlich lang sein
- Ausgabe endlich, wenn die Maschine hält oder läuft unendlich
- $T_M(p)(n)$ Anzahl der Rechenschritte bis Ausgabe des Zeichens q_n
- $A_M(p)(n)$ Anfragenlänge zur Berechnung bis zum Zeichen von q_n

8.1.3 Zusammenhände OTM und Typ-2-TM

Unendliche Eingabe aus Typ-2-TM wird durch Orakel zu einer Näherung, um von OTM verarbeitet werden zu können. So kann eine OTM eine Typ-2-TM simulieren.

9 Vorlesung

NACHTRAGEN vom 24.05.

• Darstellung für unendl
 Folgen von Zeichen oder Wortfunktionen von Strings auf Strings

10 Vorlesung

10.1 Cauchy-Darstellung

 $M = [\mathbb{N} \to \mathbb{Q}]$

- Implementierung Folgen rationaler Zahlen mit gewissen Näherungen
- Cauchy-Folge: der Abstand zweier Folgeglieder ist kleiner, als ein Schwellenwert
- ρ sind die schnell konv rationalen Folgen
- Enthält unberechenbare Folgen
- Erfasst alle berechenbaren reelen Zahlen über berechenbare Namen

Beispiel Notation von f(x)=3x Die Typ-2-TM M kann einen der Namen für die Eingabe ausgeben. Namen für 1: 0.9999... und 1.0000... Fallunterscheidung:

- 1. Ab einem bestimmten Punkt ist p'=w999... und ergibt 1.00..2000
- 2. Ab einem bestimmten Punkt ist p'=w000... und ergibt 0.99..9000

 \Rightarrow Nicht berechenbar, wenn $\delta_{dez} \to \delta_{dez}$ Abgebildet wird. Berechenbarkeit kann nur durch andere Abbildungsmenge erreicht werden, wie Cauchy ($[\mathbb{N} \to \mathbb{Q}]$)

11 Vorlesung

NACHTRAGEN linksberechenbare/rechtsberechenbare Zahlen

12 Vorlesung

Stetig berechenbare Funktionen

12.1 Metrischer Raum

- d(x,y) Abstand zweier Punkte. Nahegelegene Punkte finden. Hilfreich für Cauchy-Darstellung um andere genäherte Zahlen zu finden, die sich auch innerhalb des Fehlers liegt.
- $B(x, \epsilon)$ Formale Kugel: Mittelpunkt, Radius: Gibt alle Punkte mit Abstand kleiner, als der Radius.
- B^n alle Formale Kugeln, wo Zentrum und Radius $\in \mathbb{Q}$. Zahl in 3 Komponenten als Kantorsche Zerlegung: (Zentrum, Radius)

Effektiv stetig $S \subseteq \mathbb{N}$ ist rekursiv aufzählbar. Eine Funktion ist genau dann berechenbar, wenn sie effektiv stetig ist. 07.06. NACHHÖREN für den Beweis

- 1. $\langle i, j \rangle \in S$ mit $f(B^n(x)) \subseteq B^1(j)$ erzeugt Rechtecke, durch die die Funktion laufen muss. Die Funktion liegt innerhalb der Schläuche.
- 2. für jedes $x \in Def(f)$ kann man ein $\langle i, j \rangle \in S$ finden. Die Schläuche werden beliebig fein.

Folgerungen Vorzeichenfunktion ist nicht stetig. $sign : \mathbb{R} \to \mathbb{R}$ ist nicht implementierbar (nicht berechenbar). Berechenbarkeit wird durch sign' erreicht, indem die Funktion partiell wird, indem sign' bei x = 0 in eine Endlosschleife läuft. \overline{sign} ist total und bb, wenn, wenn x um 0 liegt \overline{sign} 0 oder 1 ausgibt.

13 Vorlesung

13.1 Mehrwertige Funktionen

Mehrwertige Funktion $f :\subseteq X \rightrightarrows Y$ ist eine Funktion, die für ein x mehrere Werte für y haben kann. Ein Funktionswert eines x sind alle möglichen Werte aus Y.

Komposition von mehrwertigen Funktionen In allen Fällen, muss das Ergebnis definiert sein. Definitionsbereich der Komposition $f \cdot g$ sind die x und y, die in beiden Funktionen im Definitionsbereich liegen. Außerhalb des Definitionsbereichs dürfen die Funktionen 'machen was sie wollen'. Beispiele:

- In der Implementierung: Approx von 2 und $\sqrt{2} * \sqrt{2}$.
- \bullet Konversion von $\mathbb R$ in Dezimalzahlen. Rundung mit erlaubter Schwankung ergibt verschiedene Ausgaben. Eindeutige Umwandlung (Rundung) ist nicht berechenbar, aber mehrwertig bb.

Konstruierte Folgen $(x_n)_n$ nicht-bb Grenzwert, aber monoton wachsend. Nicht berechenbarer Konvergenzmodul.

Die Funktion f ist auf den b
b reellen Zahlen stetig, aber nicht b
b mit einer nicht-b
b kleinsten Nullstelle. Definitionsbereich von f ist $\{x_A\}$

14 General Stuff

- \bullet Abzählbar unendlich, wenn Bijektion zu $\mathbb{N} \Rightarrow$ So viele berechenbare reelle Zahlen, wie Programme
- Entscheidbar: Eine Funktion gibt aus, ob ein Element aus einer Menge ist.
- Rekursiv Aufzählbar: Es gibt eine TM, die anhält, wenn ein Element aus der Menge ist.

- Berechenbarkeit $(\rho, \rho) bb$ '(Approximation, Approximation)-bb'
 - Eine Funktion $f:\subseteq \mathbb{R}^n \to \mathbb{R}$ ist genau dann berechenbar, wenn sie effektiv stetig ist.
 - Aus Stetigkeit, Berechenbarkeit. Aus nicht Stetigkeit folgt nicht Berechenbarkeit
 - Um nicht-Berechenbarkeit zu zeigem, zeigt man nicht-Stetigkeit
 - Aus nicht-effektiver Stetigkeit folgt nicht-Berechenbarkeit. Bsp $f(x) = 1, x \ge 0; 0, x < 0$ ist nicht stetig und nicht berechenbar
- Konvergenzmodul
- Effektiv stetig
- Diagonialisierung
- Isomorphismus
- Homomorphismus
- Berechenbarkeits-Typen
- Cantorsche Zerlegung/Cantorsche Paarungsfunktion
- Aus effektiver Stetigkeit folgt Stetigkeit.
- Cauchy-Darstellung
- Warum kann nicht auf 0 geprüft werden.

15 1. Übung

Aufgabe 1

- Ziel: Finden des richtigen n für den Fehler
- Die Größe des Unterschieds zwischen x und y muss größer sein, als die Summe der Fehler
- Gleichheit testen geht nicht mit einer totalen Funktion

Aufgabe 2

- $(4) \Rightarrow (3)$
 - Menge der kleineren Zahlen ist entscheidbar
 - Durchtesten der Integers ob die Zahlen innerhalb oder außerhalb der Menge liegen

• Aus der Entscheidbarkeit der Menge werden die Folgen für die Schranken

$$(3) \Rightarrow (2)$$

- Differenz zwischen den Schranken ergibt Fehlergröße
- Folge q ist die die Folge, die sich aus der Mitte $\frac{a+b}{2}$

$$(2) \Rightarrow (3)$$

- Schranken a, b ergeben sich aus Folge +/- Fehler
- $a_k = max(q_k + 2^-k \frac{1}{k}, a_k 1)$
- $b_k = min(q_k 2^-k \frac{1}{k}, a_k 1)$

$$(2/3) \Rightarrow (4)$$

Zusätzlicher Test, wenn die Zahl rational ist, weil der Test auf Gleichheit eine Endlosschleife

Aufgabe 3

 $x_Abb \Rightarrow A_{entscheidbar}$ Tablemakers dilemma

16 3. Übung

1. Aufgabe

ldentität auf den reellen Zahlen ist nicht $(
ho,\delta'_{dez})$ -berechenbar

ldentität auf den reellen Zahlen ist (δ'_{dez}, ρ) -berechenbar Nimm eine Kommastelle nach der Anderen und Formuliere die Rationale Zahl

2.Aufgabe

max Problem bei Gleichheit