

CHAPTER 6 DYNAMIC PROGRAMMING

Iris Hui-Ru Jiang Fall 2017

Department of Electrical Engineering National Taiwan University

Outline

Content:

- Weighted interval scheduling: a recursive procedure
- Principles of dynamic programming (DP)
 - Memoization or iteration over subproblems
- Example: maze routing
- Example: Fibonacci sequence
- Subset sums and Knapsacks: adding a variable
- Shortest paths in a graph
- Example: traveling salesman problem
- Reading:
 - Chapter 6

Recap Divide-and-Conquer (D&C)

- Divide and conquer:
 - (Divide) Break down a problem into two or more sub-problems of the same (or related) type
 - (Conquer) Recursively solve each sub-problems and solve them directly if simple enough
 - (Combine) Combine these solutions to the sub-problems to give a solution to the original problem
- Correctness: proved by mathematical induction
- Complexity: determined by solving recurrence relations

Dynamic Programming (DP)

- Dynamic "programming" came from the term "mathematical programming"
 - Typically on optimization problems (a problem with an objective)
 - Inventor: Richard E. Bellman, 1953
- Basic idea: One implicitly explores the space of all possible solutions by
 - Carefully decomposing things into a series of subproblems
 - Building up correct solutions to larger and larger subproblems
- Can you smell the D&C flavor? However, DP is another story!
 - DP does not exam all possible solutions explicitly
 - Be aware of the condition to apply DP!!

Weighted Interval Scheduling

Thinking in an inductive way

Weighted Interval Scheduling

- Given: A set of n intervals with start/finish times, weights
 - Interval i: (s_i, f_i) , v_i , $1 \le i \le n$
- Find: A subset S of mutually compatible intervals with maximum total weights (values)

Greedy?

- The greedy algorithm of unit-weighted (v_i = 1, 1 $\leq i \leq n$) intervals no longer works!
 - Sort intervals in ascending order of finish times
 - Pick up if compatible; otherwise, discard it

Q: What if variable weights (values)?

Designing a Recursive Algorithm (1/3)

- In the induction perspective, a recursive algorithm tries to compose the overall solution using the solutions of subproblems (problems of smaller sizes)
- First attempt: Induction on time?

Designing a Recursive Algorithm (2/3)

- Second attempt: Induction on interval index
 - First of all, sort intervals in ascending order of finish times
 - In fact, this is also a trick for DP
- p(j) is the largest index i < j s.t. intervals i and j are disjoint

Designing a Recursive Algorithm (3/3)

- O_i = the optimal solution for intervals 1, ..., j
- OPT(j) = the value of the optimal solution for intervals 1, ..., j
 - e.g., O_6 = ? Include interval 6 or not?
 - \Rightarrow $O_6 = \{6, O_3\}$ or O_5
 - OPT(6) = $\max\{\{v_6 + OPT(3)\}, OPT(5)\}$
 - OPT(j) = max{{ v_i +OPT(p(j))}, OPT(j-1)}

Direct Implementation OPT(j) = max{{v_j+OPT(p(j))}, OPT(j-1)}

```
// Preprocessing:
```

- // 1. Sort intervals by finish times: $f_1 \le f_2 \le ... \le f_n$
- // 2. Compute p(1), p(2), ..., p(n)

Compute-Opt(*i*)

- 1. if (j = 0) then return 0
- 2. **else return** max{ $\{v_i$ +Compute-Opt(p(j))}, Compute-Opt(j-1)}

Memoization: Top-Down

- The tree of calls widens very quickly due to recursive branching!
 - e.g., exponential running time when p(j) = j 2 for all j
- Q: What's wrong? A: Redundant calls!
- Q: How to eliminate this redundancy?

Iteration: Bottom-Up

• We can also compute the array M[j] by an iterative algorithm.

Summary: Memoization vs. Iteration

- Memoization
- Top-down
- An recursive algorithm
 - Compute only what we need

- Iteration
- Bottom-up
- An iterative algorithm
 - Construct solutions from the smallest subproblem to the largest one
 - Compute every small piece

Start with the recursive divide-and-conquer algorithm

The running time and memory requirement highly depend on the table size

Keys for Dynamic Programming

- DP typically is applied to optimization problems.
- Dynamic programming can be used if the problem satisfies the following properties:
 - There are only a polynomial number of subproblems
 - The solution to the original problem can be easily computed from the solutions to the subproblems
 - There is a natural ordering on subproblems from "smallest" to "largest," together with an easy-to-compute recurrence

Keys for Dynamic Programming

- DP works best on objects that are linearly ordered and cannot be rearranged
- Elements of DP
 - Optimal substructure: an optimal solution contains within its optimal solutions to subproblems.
 - Overlapping subproblem: a recursive algorithm revisits the same problem over and over again; typically, the total number of distinct subproblems is a polynomial in the input size.

Keys for Dynamic Programming

- Standard operation procedure for DP:
 - 1. Formulate the answer as a recurrence relation or recursive algorithm. (Start with defining subproblems)
 - 2. Show that the number of different instances of your recurrence is bounded by a polynomial.
 - 3. Specify an order of evaluation for the recurrence so you always have what you need. (Also check boundary conditions)

Algorithmic Paradigms

- Brute-force (Exhaustive): Examine the entire set of possible solutions explicitly
 - A victim to show the efficiencies of the following methods
- Greedy: Build up a solution incrementally, myopically optimizing some local criterion.
- Divide-and-conquer: Break up a problem into two or more sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.
- Dynamic programming: Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Fibonacci Sequence

- Recurrence relation: $F_n = F_{n-1} + F_{n-2}$, $F_0 = 0$, $F_1 = 1$
 - e.g., 0, 1, 1, 2, 3, 5, 8, ...
- Direct implementation:
 - Recursion!

fib(n)

- 1. if $n \le 1$ return n
- 2. **return** fib(n-1) + fib(n-2)

What's Wrong?

```
fib(n)
1. if n \le 1 return n
2. return fib(n - 1) + fib(n - 2)
```

- What if we call fib(5)?
 - fib(5)
 - fib(4) + fib(3)
 - (fib(3) + fib(2)) + (fib(2) + fib(1))
 - ((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
 - -(((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
 - A call tree that calls the function on the same value many different times
 - fib(2) was calculated three times from scratch
 - Impractical for large n

Too Many Redundant Calls!

Recursion

- True dependency
- How to remove redundancy?
 - Prevent repeated calculation

Dynamic Programming -- Memoization

- Store the values in a table
 - Check the table before a recursive call
 - Top-down!
 - The control flow is almost the same as the original one

fib(n)

- 1. Initialize *f*[0..*n*] with -1 // -1: unfilled
- 2. f[0] = 0; f[1] = 1
- 3. fibonacci(n, f)

fibonacci(n, f)

- 1. If f[n] == -1 then
- 2. f[n] = fibonacci(n 1, f) + fibonacci(n 2, f)
- 3. **return** f[n] // if f[n] already exists, directly return

Dynamic Programming -- Bottom-up?

- Store the values in a table
 - Bottom-up
 - Compute the values for small problems first
 - Pretty much like induction

fib(*n*)

- 1. initialize f[1..n] with -1 // -1: unfilled
- 2. f[0] = 0; f[1] = 1
- 3. for i=2 to n do
- 4. f[i] = f[i-1] + f[i-2]
- 5. **return** *f*[*n*]

Appendix: Maze Routing

Maze Routing Problem

- Restrictions: Two-pin nets on single-layer rectilinear routing
- Given:
 - A planar rectangular grid graph
 - Two points S and T on the graph
 - Obstacles modeled as blocked vertices
- Find:
 - The shortest path connecting S and T
- Applications: Routing in IC design

Lee's Algorithm (1/2)

- Idea:
 - Bottom up dynamic programming: Induction on path length
- Procedure:
 - 1. Wave propagation
 - 2. Retrace

C. Y. Lee, "An algorithm for path connection and its application," *IRE Trans. Electronic Computer*, vol. EC-10, no. 2, pp. 364-365, 1961.

Lee's Algorithm (2/2)

- Strengths
 - Guarantee to find connection between 2 terminals if it exists
 - Guarantee minimum path
- Weaknesses
 - Large memory for dense layout
 - Slow
- Running time
 - O(MN) for $M \times N$ grid

Subset Sums & Knapsacks

Adding a variable

Subset Sum

Given

- A set of *n* items and a knapsack
 - Item *i* weighs $w_i > 0$.
 - The knapsack has capacity of *W*.
- Goal:
 - Fill the knapsack so as to maximize total weight.
 - maximize $\Sigma_{i \in S} w_i$
- Greedy ≠ optimal
 - Largest w_i first: 7+2+1 = 10
 - Optimal: 5+6 = 11

Item	Weight
1	1
2	2
3	5
4	6
5	7

Karp's 21 NP-complete problems:

R. M. Karp, "Reducibility among combinatorial problems". *Complexity of Computer Computations*. pp. 85–103.

Dynamic Programming: False Start

- Optimization problem formulation
 - $-\left(\max \Sigma_{i \in S} \ W_i \right) \leftarrow \text{objective function}$ s.t. $\Sigma_{i \in S} \ W_i < W$, $S \subseteq \{1, ..., n\} \leftarrow \text{constraints}$
- OPT(i) = the total weight of optimal solution for items 1,..., i
 - OPT(i) = max_S $\Sigma_{i \in S}$ w_i , $S \subseteq \{1, ..., i\}$
- Consider OPT(n), i.e., the total weight of the final solution O
 - Case 1: $n \notin O$ (OPT(n) does not count w_n)
 - OPT(n) = OPT(n-1) (Optimal solution of {1, 2, ..., n-1})
 - Case 2: $n \in O$ (OPT(n) counts w_n)
 - \bullet OPT(n) = w_n + OPT(n-1)

Q: What's wrong? -

A: Accept item $n \Rightarrow$ For items $\{1, 2, ..., n-1\}$, we have less available weight, $W - w_p$

Adding a New Variable

Optimization problem formulation

```
-\left(\max \Sigma_{i \in S} w_i \atop \text{s.t. } \Sigma_{i \in S} w_i < W, S \subseteq \{1, ..., n\}\right)
```

- OPT(i) depends not only on items {1, ..., i} but also on W
- Consider OPT(n), i.e., the total weight of final solution O
 - Case 1: $n \notin O$ (OPT(n) does not count w_n)
 - Case 2: $n \in O$ (OPT(n) counts w_n)
- Recurrence relation:

DP: Iteration

```
OPT(i, w) = \begin{cases} 0 \\ OPT(i-1, w) \\ max \{OPT(i-1, w), w_i + OPT(i-1, w-w_i)\} \end{cases} otherwise
```



```
Subset-sum(n, w_1, ..., w_n, W)
1. for w = 0, 1, ..., W do
2. M[0, w] = 0
3. for i = 0, 1, ..., n do
4. M[i, 0] = 0
5. for i = 1, 2, ..., n do
6. for W = 1, 2, ..., W do
  if (w_i > w) then

M[i, w] = M[i-1, w]
       else
10.
            M[i, w] = \max \{M[i-1, w], w_i + M[i-1, w-w_i]\}
```

Example

Running time:

O(nW)

```
Subset-sum(n, w_1, ..., w_n, W)
```

- 1. **for** W = 0, 1, ..., W **do**
- 2. M[0, w] = 0
- 3. **for** i = 0, 1, ..., n **do**
- 4. M[i, 0] = 0
- 5. **for** i = 1, 2, ..., n **do**
- 6. **for** W = 1, 2, ..., W **do**
- 7. if $(w_i > w)$ then
- 8. M[i, w] = M[i-1, w]
- 9. else
- 10. $M[i, w] = \max\{M[i-1, w], w_i + M[i-1, w-w_i]\}$

W+1

Item	Weight
1	1
2	2
3	5
4	6
5	7

W = 11

		0	1	2	3	4	5	6	7	8	9	10	11
	Ø	0	0	0	0	0	0	0	0	0	0	0	0
	{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1
 	{ 1, 2 }	0	1	2	3	3	3	3	3	3	3	3	3
<i>n</i> + 1	{ 1, 2, 3 }	0	1	2	3	3	5	6	7	8	8	8	8
	{ 1, 2, 3, 4 }	0	1	2	3	3	5	6	7	8	9	9	11
\downarrow	{ 1, 2, 3, 4, 5 }	0	1	2	3	3	5	6	7	8	9	10	11

Pseudo-Polynomial Running Time

- Running time: O(nW)
 - W is not polynomial in input size
 - "Pseudo-polynomial"
 - In fact, the subset sum is a computationally hard problem!
 - r.f. Karp's 21 NP-complete problems:
 - R. M. Karp, "Reducibility among combinatorial problems". Complexity of Computer Computations. pp. 85--103.

The Knapsack Problem

Given

- A set of *n* items and a knapsack
- Item *i* weighs $w_i > 0$ and has value $v_i > 0$.
- The knapsack has capacity of W.

$$-\left\{\begin{array}{l} \max \Sigma_{i \in S} \ v_i \\ \text{s.t.} \ \Sigma_{i \in S} \ w_i < W, \ S \subseteq \{1, \ldots, n\} \end{array}\right.$$

Greedy ≠ optimal

- Largest v_i first: 28+6+1 = 35

- Optimal: 18+22 = 40

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Karp's 21 NP-complete problems:

R. M. Karp, "Reducibility among combinatorial problems". Complexity of Computer Computations. pp. 85–103.

Recurrence Relation

 We know the recurrence relation for the subset sum problem:

OPT(
$$i$$
, w) =
$$\begin{cases} 0 & \text{if } i, w = 0 \\ \text{OPT}(i-1, w) & \text{if } w_i > w \\ \text{max {OPT}(}i-1, w), w_i + \text{OPT}(}i-1, w-w_i) \end{cases}$$
 otherwise

- Q: How about the Knapsack problem?
- A:

$$\begin{array}{ll}
\mathsf{OPT}(i, w) = \begin{cases}
0 & \text{if } i, w = 0 \\
\mathsf{OPT}(i-1, w) & \text{if } w_i > w \\
\text{otherwise}
\end{array}$$

Shortest Path – Bellman-Ford

Richard E. Bellman Lester R. Ford, Jr.

R. E. Bellman 1920—1984 Inventor of DP, 1953

Recap: Dijkstra's Algorithm

- The shortest path problem:
- Given:
 - Directed graph G = (V, E), source s and destination t
 - cost c_{uv} = length of edge $(u, v) \in E$
- Goal:
 - Find the shortest path from s to t
 - Length of path P: $c(P) = \sum_{(u, v) \in P} c_{uv}$

Dijkstra(*G*,*c*)

// S: the set of explored nodes

// d(u): shortest path distance from s to u

- 1. initialize $S = \{s\}$, d(s) = 0
- 2. while $S \neq V do$
- 3. select node $v \notin S$ with at least one edge from S
- 4. $d'(v) = \min_{(u, v): u \in S} d(u) + c_{uv}$
- 5. add v to S and define d(v) = d'(v)
- Q: What if negative edge costs?

Q: What's wrong with s-a-b-t path?

Modifying Dijkstra's Algorithm?

- Observation: A path that starts on a cheap edge may cost more than a path that starts on an expensive edge, but then compensates with subsequent edges of negative cost.
- Reweighting: Increase the costs of all the edges by the same amount so that all costs become nonnegative.

• Q: What's wrong?!

Bellman-Ford Algorithm (1/2)

- Induction either on nodes or on edges works!
- If G has no negative cycles, then there is a shortest path from s to t that is simple (i.e., does not repeat nodes), and hence has at most n-1 edges.
- Pf:
 - Suppose the shortest path P from s to t repeat a node v.

- Since every cycle has nonnegative cost, we could remove the portion of P between consecutive visits to v resulting in a simple path Q of no greater cost and fewer edges.
 - $c(Q) = c(P) c(C) \le c(P)$

Bellman-Ford Algorithm (2/2)

- Induction on edges
- OPT(i, v) = length of shortest v-t path P with at most i edges
 - OPT(n-1, s) = length of shortest s-t path.
 - Case 1: P uses at most i-1 edges.
 - lacksquare OPT(i, v) = OPT(i-1, v)

- Case 2: P uses exactly i edges.

 - If (v, w) is the first edge, then P uses (v, w) and then selects the shortest w-t path using at most i-1 edges

$$\mathsf{OPT}(i, v) = \begin{cases} 0 & \text{if } i = 0, \ v = t \\ \infty & \text{if } i = 0, \ v \neq t \\ \mathsf{min}\{\mathsf{OPT}(i\text{-}1, \ v), \ \mathsf{min}_{(v, \ w) \in E}\{c_{vw} + \mathsf{OPT}(i\text{-}1, \ w)\}\} & \text{otherwise} \end{cases}$$

Implementation: Iteration

```
\begin{aligned}
\mathsf{OPT}(i, \ v) &= \begin{bmatrix} 0 & \text{if } i = 0, \ v = t \\
\infty & \text{if } i = 0, \ v \neq t \\
\min\{\mathsf{OPT}(i\text{-}1, \ v), \min_{(v, \ w) \in E} \{c_{vw} + \mathsf{OPT}(i\text{-}1, \ w)\}\} & \text{otherwise}
\end{aligned}

Bellman-Ford(G, s, t)
```

```
Bellman-Ford(G, s, t)

// n = \# of nodes in G

// M[0...n-1, V]: table recording optimal solutions of subproblems

1. M[0, t] = 0

2. foreach v \in V - \{t\} do

3. M[0, v] = \infty

4. for i = 1 to n-1 do

5. for v \in V in any order do

6. M[i, v] = \min\{M[i-1, v], \min_{(v, w) \in E}\{c_{vw} + M[i-1, w]\}\}
```

Example

Space: $O(n^2)$

Running time:

1. naïve:

 $O(n^3)$

2. detailed:

O(nm)

Bellman-Ford(G, s, t)

// n = # of nodes in G

// M[0.. n-1, V]: table recording optimal solutions of subproblems

- 1. M[0, t] = 0
- 2. foreach $v \in V \{t\}$ do
- 3. $M[0, v] = \infty$
- 4. **for** i = 1 **to** n-1 **do**
- 5. **for** $v \in V$ in any order **do**
- 6. $M[i, v]=\min\{M[i-1, v], \min_{(v, w)\in E}\{c_{vw}+M[i-1, w]\}\}$

		n					
		0	1	2	3	4	5
	t	0	0	0	0	0	0
	а	∞	-3	-3	-4	-6	-6
	b	∞	∞	0	-2	-2	-2
	С	∞	3	3	3	3	3
	d	∞	4	3	3	2	0
	е	∞	2	0	0	0	0

Q: How to find the shortest path?

A: Record "successor" for each entry

 $M[d, 2] = min\{M[d, 1], c_{da} + M[a, 1]\}$

Running Time

Bellman-Ford(G, s, t)

- 4. **for** i = 1 **to** n-1 **do**
- 5. **for** $v \in V$ in any order **do**
- 6. $M[i, v]=\min\{M[i-1, v], \min_{(v, w) \in E}\{c_{vw} + M[i-1, w]\}\}$

• Lines 5-6:

- Naïve: for each v, check v and others: $O(n^2)$
- Detailed: for each v, check v and its neighbors (out-going edges): $\sum_{v \in V} (\deg_{out}(v) + 1) = O(m)$
- Lines 4-6:
 - Naïve: $O(n^3)$
 - Detailed: O(nm)

Space Improvement

Computing Science is –and will always be– concerned with the interplay between mechanized and human symbol manipulation, which usually referred to as "computing" and "programming" respectively.

~ E. W. Dijkstra

- Maintain a 1D array instead:
 - M[v] = shortest v-t path length that we have found so far.
 - Iterator *i* is simply a counter
 - No need to check edges of the form (v, w) unless M[w] changed in previous iteration.
 - In each iteration, for each node v,
 M[v]=min{M[v], min_{w∈V} {c_{vw} + M[w]}}
- Observation: Throughout the algorithm, M[v] is the length of some v-t path, and after i rounds of updates, the value M[v] is no larger than the length of shortest v-t path using at most i edges.

Negative Cycles?

- If a s-t path in a general graph G passes through node v, and v belongs to a negative cycle C, Bellman-Ford algorithm fails to find the shortest s-t path.
 - Reduce cost over and over again using the negative cycle

Application: Currency Conversion (1/2)

- Q: Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?
 - The currency graph:
 - Node: currency; edge cost: exchange rate r_{uv} : $r_{uv} * r_{vu} < 1$
 - Arbitrage: a cycle on which product of edge costs >1
 - E.g., $\$1 \Rightarrow 1.3941$ Francs $\Rightarrow 0.9308$ Euros $\Rightarrow \$1.00084$

Application: Currency Conversion (2/2)

Arbitrage

- Product of edge costs on a cycle $C = v_1, v_2, ..., v_1$
 - $r_{v1v2} r_{v2v3} r_{vnv1}$
 - Arbitrage: $r_{v1v2} * r_{v2v3} * \dots * r_{vnv1} > 1$

Negative cycle

- Sum of edge costs on a cycle $C = v_1, v_2, ..., v_1$
 - $c_{v1v2} + c_{v2v3} + \dots + c_{vnv1}$
 - $-c_{uv} = \lg r_{uv}$

Negative Cycle Detection

- If OPT(n, v) = OPT(n-1, v) for all v, then no negative cycles.
 - Bellman-Ford: OPT(i, v) = OPT(n-1, v) for all v and $i \ge n$.

- If OPT(n, v) < OPT(n-1, v) for some v, then shortest path contains a negative cycle.
- Pf: by contradiction
 - Since OPT(n, v) < OPT(n-1, v), P has exactly n edges.
 - Every path using at most n-1 edges costs more than P.
 - (By pigeonhole principle,) P must contain a cycle C.
 - If C were not a negative cycle, deleting C yields a v-t path with < n edges and no greater cost. →

Detecting Negative Cycles by Bellman-Ford

- Augmented graph G' of G
 - 1. Add new node *t*
 - 2. Connect all nodes to t with 0-cost edge
- G has a negative cycle iff G'has a negative cycle reaching t

- Check if OPT(n, v) = OPT(n-1, v):
 - If yes, no negative cycles
 - If no, then extract cycle from shortest path from v to t

Procedure:

- Build the augmented graph G' for G
- Run Bellman-Ford on G' for n iterations (instead of n-1).
- Upon termination, Bellman-Ford successor variables trace a negative cycle if one exists.

Traveling Salesman Problem

Richard E. Bellman, 1962

R. Bellman, Dynamic programming treatment of the travelling salesman problem. *J. ACM* 9, 1, Jan. 1962, pp. 61-63.

Travelling Salesman Problem

- TSP: A salesman is required to visit once and only once each of n different cities starting from a base city, and returning to this city. What path minimizes the total distance travelled by the salesman?
 - The distance between each pair of cities is given
- TSP contest
 - http://www.tsp.gatech.edu
- Brute-Force
 - Try all permutations: O(n) mic programming

The Florida Sun-Sentinel, 20 Dec. 1998.

Dynamic Programming

- For each subset S of the cities with $|S| \ge 2$ and each u, $v \in S$, OPT(S, u, v) = the length of the shortest path that starts at u, ends at v, visits all cities in S
- Recurrence
 - Case 1: $S = \{u, v\}$
 - lacksquare OPT(S, u, v) = d(u, v)
 - Case 2: |S| > 2
 - Assume $w \in S \{u, v\}$ is visited first: OPT(S, u, v) = d(u, w) + OPT(S-u, w, v)
 - OPT(S, u, v) = $\min_{w \in S \{u, v\}} \{d(u, w) + OPT(S u, w, v)\}$
- Efficiency
 - Space: $O(2^n n^2)$
 - Running time: $O(2^n n^3)$
 - Although much better that O(n!), DP is suitable when the number of subproblems is polynomial.

Summary: Dynamic Programmin

- Smart recursion: In a nutshell, dynamic programming is recursion without repetition.
 - Dynamic programming is NOT about filling in tables; it's about smart recursion.
 - Dynamic programming algorithms store the solutions of intermediate subproblems often but not always in some kind of array or table.
 - A common mistake: focusing on the table (because tables are easy and familiar) instead of the much more important (and difficult) task of finding a correct recurrence.
- If the recurrence is wrong, or if we try to build up answers in the wrong order, the algorithm will NOT work!

Summary: Algorithmic Paradigms

- Brute-force (Exhaustive): Examine the entire set of possible solutions explicitly
 - A victim to show the efficiencies of the following methods
- Greedy: Build up a solution incrementally, myopically optimizing some local criterion.
 - Optimization problems that can be solved correctly by a greedy algorithm are very rare.
- Divide-and-conquer: Break up a problem into two subproblems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.
- Dynamic programming: Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.