Math 113, Fall 2019

Lecture 9, Thursday, 9/26/2019

1 Clicker Questions

- 1. Consider the following statements:
 - α The symmetric group S_{10} has 10 elements
 - β The symmetric group S_3 is cyclic
 - γ S_n is not cyclic for any n

Which of these are true?

It turns out, all cyclic groups are abelian, so none of the above is true.

2. Let G be a be a **finite** group.

Cayley's theorem constructs an isomorphism of G with a subgroup H of S_G . We have $H = S_G$ if and only if:

- (a) G is trivial
- **(b)** $|G| \le 2$
- (c) 0 = 1 (never)
- (d) $G \cong S_n$ (for some $n \in \mathbb{N}$)
- (e) None of the above

Vojta says this boils down to counting, and $|S_n| = n!$, so this is true precisely for n = 1, 2.

2 Permutation Groups

Theorem 2.1. Let A be a set. Then S_A (the set of permutations of A) is a group under composition of functions.

Proof. Composition is a well defined operation on S_A . Let $f,g \in S_A$. Then $f \circ g$ is a function from A to A, and it is bijective because it's a composition of bijections. Hence $f \circ g \in S_A$.

We check the three requirements (axioms). Associativity is proved already for composition of functions. The identity function $id_A : A \to A$ is bijective, so it's in S_A . Also,

$$id_A \circ f = f \circ id_A = f, \forall_{f \in S_A}.$$

Finally, to check the existence of the inverse element, consider that for all $f \in S_A$, because f is a bijection, it has a (unique) inverse function $f^{-1}A \to A$ characterized by

$$f \circ f^{-1} = f^{-1} \circ f = \mathrm{id}_{A},$$

so f^{-1} is an inverse **element** of f in S_A , the set of permutations (bijections).

Vojta reminds us that we've seen this in a Clicker question, but:

Definition: Permutation group $S_{\{1,2,...,n\}}$ -

For all $n \in \mathbb{N}$, S_n is the permutation group $S_{\{1,2,\ldots,n\}}$.

Notice that $|S_n| = n!$ for all $n \in \mathbb{N}$ because choosing $\sigma \in S_n$ involves n choices for $\sigma(1)$, n-1 choices for $\sigma(2)$, and so on until 2 choices for $\sigma(n-1)$, and 1 choice for $\sigma(n)$, where these can be in any order.

Example: One such example is to consider permutations (shuffling orders) of a deck of cards: S_{52} . So S_{52} is the set of possible rearrangements of a 52-card deck.

Example: A simpler example is S_3 , which we can write as:

$$S_3 = \{\rho_0, \rho_1, \rho_2, \sigma_1, \sigma_2, \sigma_3\},\,$$

where $\sigma_1 := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ and $\rho_1 := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Vojta reminds that there's a full group table on page 79 of our text.

From this table, we see that $\rho_i = \rho_1^i$, $\forall_{i=0,1,2}$ and $\mu_1 = \mu_1 \rho_{i-1}$ (where $\mu = \sigma$). Hence $S_3 = \langle \rho_1, \mu_1 \rangle$.

Permutations tell us something about all finite groups due to the following theorem:

Theorem 2.2. If the sets A and B have the same cardinality, then $S_A \cong S_B$.

Proof. Because they have the same cardinality, that means there exists some bijection $f: A \to B$. The idea for the rest of the proof is to use f to relabel the elements of A.

- 3 Orbits and Cycles
- 4 Even and Odd Permutations