Spec.							
Differential Amplifier with Resistive Load							
DC Gain	$\geq 0 \text{ dB}$	IREF	10 uA				
BW	≥ 15 GHz	CMRR	≥ 40 dB				
Linear Range	≥ 300 mVpp	Cap Load	100 fF				
Power Consumption	≤ 2.5 mW	Max current mirroring	20				

- Steps

Sizing of M1,2

01 |
$$P_{cons} = V_{DD} I_D \le 2.5 \text{ mW} \rightarrow I_{SS} \le 2 \text{ mA}$$

$$02 \mid \qquad LR = 2\sqrt{2} \; V_{ov} \geq 300 \; mV_{pp} \rightarrow V_{ov} \geq 106 \rightarrow Replace \; V_{ov} \; with \; V^* \rightarrow V^* \geq 106 \; mV \rightarrow \frac{g_m}{I_D} < 18.9 \; W_{ov} \geq 100 \; mV_{ov} \geq 1$$

$$03~|~~GBW = \frac{g_m}{2\pi C_{out}} \geq 15~GHz \rightarrow g_m \geq 9.5~mS \rightarrow g_m = 14~mS \rightarrow \frac{g_m}{I_D} = 14 \rightarrow I_D = 1~mA \rightarrow I_{SS} = 2~mA \rightarrow I_{SS} = 14~mS \rightarrow I_{S$$

04 |
$$A_v = g_m R_{out} \ge 1 \rightarrow R_{out} \ge 75 \Omega \rightarrow R_D = 90 \Omega \rightarrow r_o \ge 425 \rightarrow g_m r_o \ge 6$$

05 |
$$V_{out} = 1.2 - I_D R_D = 1.1 \text{ V} \rightarrow \text{Assume V}_{DS1} = 600 \text{ mV} \rightarrow V_p = 500 \text{ mV}$$

Fig. Sizing of M1,2

Sizing of M3,4

06 | As $I_{ref} = 10$ uA, we will mirror the current with two stage 10 uA to 100 uA and 100 uA to 2 mA

$$07 \mid V_p = V_3^* + V_4^* \le 500 \text{ mV} \rightarrow \text{Assume } V_3^* = V_4^* = 200 \text{ mV} \rightarrow \left(\frac{g_m}{I_D}\right)_3 = \left(\frac{g_m}{I_D}\right)_4 = 10$$

08 | Assume L4 = 3 × Lmin = 180 nm
$$\rightarrow$$
 r_{o4} = 600 Ω

$$09 \mid \qquad : \mathsf{CMRR} = 2 \times \mathsf{g}_{\mathsf{m}} \mathsf{R}_{\mathsf{SS}} \geq 40 \; \mathsf{dB} \rightarrow \mathsf{R}_{\mathsf{SS}} \geq 3.5 \; \mathsf{k}\Omega \rightarrow \mathsf{R}_{\mathsf{SS}} = \mathsf{r}_{\mathsf{o}\mathsf{4}} \times \mathsf{g}_{\mathsf{m}\mathsf{3}} \mathsf{r}_{\mathsf{o}\mathsf{3}} \rightarrow \mathsf{g}_{\mathsf{m}\mathsf{3}} \mathsf{r}_{\mathsf{o}\mathsf{3}} \geq 5.85$$

 \square

10 | $\because V_{GS5} = V_{GS3} + V_4^* = 711.8 \text{ mV} \rightarrow V_{GS5} = 750 \text{mV} \text{ a littel deeper into saturation and JD} = 57.51 \text{ mV}$

11 | Sweeping L_5 that gives the same JD @ same $W_3 \rightarrow L_5 = 680 \text{ nm}$

$12 \mid V_{\text{GS1,2}} + V_3^* + V_4^* \leq \text{CMIR} < V_{\text{GS1,2}} - V_{1,2}^* - V_{\text{RD}} + V_{\text{DD}} \rightarrow 0.8772 \leq \text{CMIR} < 1.44 \rightarrow \text{CMIR} = 1.1 \text{ V}$

Sizing Summary							
M	M1	M2	M3	M4	M5		
Rule	Input pair	Input pair	Cascode device	Mirroring device	Magic battery		
L	60 nm	60 nm	70 nm	180 nm	680 nm		
W	28.66 um	28.66 um	34.8 um	68.3 um	175 nm		
Gmoverid	14	14	10	10	4.147		

- Results

1. TB and DC Operating Point

2. Differential Small Signal Analysis

3. Common Mode Small Signal Analysis

4. Differential Large Signal Analysis

5. Common Mode Large Signal Analysis

