

PH451, PH551 February 20, 2025

Announcements

- Hackathon #1 due tomorrow
- Hands-on #5 due next Thu.

Dimensionality Reduction

Why?

- Better ML algorithm performance
- Visualization
- Data Compression
- Remove Noise

Dimensionality Reduction

Goal:

 Find the smallest subspace of the N-D space that keeps the most information about the original data

- Projection
- Manifold Learning

Projection

Lower dimensional subspace projection

What about this case?

PCA

Principal Components

- Linear Method, Pearson/Hotelling 1901/1933
- Find the hyperplane closest to data and project into it
 - Minimize the squared distance between original data and projection
 - Orthogonal axes that maximize remaining variance (principal components)
 - Find with Singular Value Decomposition (SVD)
 - Ignore components of lesser significance

PCA

Principal Components

Maximize variance (purple)

Minimize mean squared distance between data points and projections (sum of blue lines)

Locally Linear Embedding

- Learn the manifold
 - Low-dimensional representation that best preserves local relationships between data
 - Minimize squared distance between instance and linear (weighted) function of its neighbors

t-SNE

t-Distributed Stochastic Neighbor Embedding

- Van der Maatens and Hinton (2008)
- Reduce dimensionality
 - keep similar instances close and different instances apart
 - Measure similarity between points in high-dimensional space (Gaussian) and low-dimensional space (Student t-distribution) and minimize Kullback-Liebler (KL) divergence cost function
 - Recall that KL measures the difference of probability distributions
- Great for visualization (2D)

Neural Networks

Perceptron

Frank Rosenblatt, 1957

Perceptron Learning

Perceptrons

- Threshold Logic Unit/Step Function
 - Linear combination of inputs
 - Classify above threshold
- Hebbian Learning Rule:
 - "Fire together, wire together"
- Linear decision boundary
 - XoR Classification Problem Minsky and Papert 1969
- Stack into MultiLayer Perceptrons (MLPs)

Graphical Representation

Artificial Neuron

Identity: $\sigma(X) = X$

ReLU: $\sigma(X) = \max(0, x)$

Sigmoidal: $\sigma(X) = [1 + \exp(-x)]^{-1}$, $\sigma(X) = \tanh x$

Activation Functions

Adjustable Weights

Compute network weights with

Error gradients

Inputs forward Errors go backward

Rumelhart, Hinton and Williams 1986

Backpropagation

Forward pass

- Outputs of all neurons from layer to layer
- Use Loss Function to measure error

Backward pass

- Compute gradient of error w.r.t. every weight and bias term until you reach input layer
- Use Chain Rule

Gradient Descent

 Update weights with error gradients

What we can learn

Binary Classification

$$\log(1 + \exp(-yy_n))$$

Multiclass Classification (softmax)

$$\log \sum_{y'} \exp(y_n[y']) - y_n[y]$$

Regression

$$\frac{1}{2} \left\| y - y_n \right\|^2$$

Can Choose

- Number of hidden layers
- Number of neurons per layer
- Batch Size
 - Especially relevant for GPUs
- Activation Function
- Loss Function
- Learning Rate
- Optimizers
- Regularization

Sigmoids

- Very popular because of biological systems
- Saturates for large positive or negative value
 - Zero derivatives vanishing gradients
 - Poor choice for deep networks
- Still very useful for output nodes

Vanishing Gradients

Problem with sigmoid: saturation

