ÁLGEBRA (Ciencias) – año 2020

PRÁCTICA 2

Conjuntos. Parte I

- 1. Definir los siguientes conjuntos por extensión:
 - a) $\{x: x \text{ es un día de la semana}\}$
 - b) $\{k: k \in \mathbb{Z} \land -5 < k < 10\}$
- 2. Definir los siguientes conjuntos por comprensión:
 - a) El de los enteros impares.
 - b) El que tiene como elementos las siguientes letras: u, i, o, e, a.
- 3. Definir de distintas maneras los siguientes conjuntos:
 - $a) A = \{x : x \in \mathbb{R} \land x = 2x\}$
 - b) B = \emptyset
 - c) $C = \{0\}$
- 4. ¿Cuáles de los siguientes conjuntos es el conjunto vacío?
 - a) $A = \{x : x \in \mathbb{R} \land x^2 + 1 = 0\}$
 - $b) B = \{x: x = -x \land x \in \mathbb{R}\}\$
 - $c) C = \{\emptyset\}$
 - $d) D = \emptyset$
 - e) $E = \{x : x^2 = 9 \land 2x = 4 \land x \in \mathbb{R}\}\$
 - $f) F = \{y: y > 2 \land y < 2\}$
- 5. ¿Cuáles de los siguientes conjuntos son iguales?
 - a) $A = \{x : x \text{ es un dígito del número } 123123\}$
 - b) $B = \{x : x \in \mathbb{Z} \land 1 < x < 3\}$
 - $c) C = \{\emptyset\}$
 - $d) D = \emptyset$
 - $e) \to \{x: x \in \mathbb{Z} \land 1 \le x \le 3\}$
 - $f) F = \{x : x \in \mathbb{Q} \land 1 < x < 3\}$
 - $g) G = \{x: x-2 = 0 \land x \in \mathbb{R}\}\$

- 6. Sea $A = \{1, 2, \{3\}, \{1, 2\}, -1\}$, decir si son verdaderas o falsas las siguientes relaciones. Justifique.
 - a) $3 \in A$

- b) $\{1, 2\} \subseteq A$
- c) $\{1,2\} \in A$

d) $\{3\} \subseteq A$

- e) $\{\{3\}\}\subseteq A$
- f) $\emptyset \in A$

- g) $\{-1, 2\} \subseteq A$
- h) $\emptyset \subseteq A$

- i) $\{1, 2, -1\} \in A$
- 7. Determinar si $A \subseteq B$ en cada uno de los siguientes casos
 - a) $A = \{1, 2, 3\}$ $B = \{1, 2, -3, \{3\}\}$
 - b) $A = \{-2, -1, 0, 1, 2\}$ $B = \{x \in \mathbb{R} : |x+3| \le 1\}$
 - c) $A = \{\emptyset\}$ $B = \emptyset$
 - d) $A = \{x \in \mathbb{Z} : -1 \le x \le 1\}$ $B = \{x \in \mathbb{R} : x^3 x = 0\}$
- 8. Sean: $A = \{1, 3, \{2, -2\}\}; B = \{3, 4, 1^3, b\}; C = \{0, b, 2, 3\}.$ Hallar: $A \cup B, B \cup C, C \cup A, A \cup (C \cup B), A \cup (C \cup B),$ $(A \cup B) \cup C$, $A \cap B$, $B \cap C$, $(A \cap B) \cap C$ y $A \cap (B \cap C)$.
- 9. Sean $A = \{x \in \mathbb{Z} : x \text{ es múltiplo de 3}\}, B = \{x \in \mathbb{Z} : x \text{ es múltiplo de 7}\}$ y $C = \{x \in \mathbb{Z} : x \text{ es múltiplo de 21}\}.$ Probar que:
 - a) $C \subset A \vee A \neq C$
 - b) $C \subset B \vee B \neq C$
 - c) $C \subset A \cap B$.
- 10. Hallar la unión de los conjuntos A y B en los siguientes casos:
 - a) $A = \{x : x \in \mathbb{Z} \land -2 \le x \le 8\}; \quad B = \{x : x \in \mathbb{Z} \land -5 \le x \le 3\}$
 - b) $A = \{x : x \in \mathbb{N} \land 1 \le x < 8\}; \quad B = \{x : x \in \mathbb{N} \land 8 < x \le 12\}$
- 11. Hallar la intersección de los conjuntos A y B, en los siguientes casos:
 - a) $A = \{x: x \in \mathbb{R} \land 0 \le x \le 6\},$ $B = \{y: y \in \mathbb{N} \land 0 < y \le 10\}$

 - b) $A = \{x: -1 < x \le 1/4 \land x \in \mathbb{R}\},$ $B = \{z: -1 < z < 0 \lor 0 < z < 3, z \in \mathbb{R}\}$
- 12. Si A y B son conjuntos, probar:
 - $a) \emptyset \cup A = A.$
 - b) $A \subset A \cup B$.
 - c) $A \cap \emptyset = \emptyset$.
 - d) $A \cap B \subset A$
 - e) $A \cap A = A$
- 13. Probar (usando el contrarrecíproco):
 - a) Sea P el conjunto de los números enteros pares.

$$x^2 \in P \Longrightarrow x \in P$$
.

- b) $A \cup B = \emptyset \Longrightarrow (A = \emptyset \land B = \emptyset).$
- 14. Probar (usando el método de reducción al absurdo):
 - a) Sean $C=\{0\},\,a$ y b números reales.

$$a.b \in C \Longrightarrow (a \in C \lor b \in C).$$

- b) $A \cup B = \emptyset \Longrightarrow (A = \emptyset \land B = \emptyset).$
- 15. Probar (usando el método directo):

a) Sean
$$C = \{x \in \mathbb{R} | x^8 - x^2 = 0 \}$$
 y $D = \{x \in \mathbb{R} | x^4 - x = 0 \}$ $x \in C \Longrightarrow x^2 \in D$.

- b) $(A \neq \emptyset \lor B \neq \emptyset) \Longrightarrow A \cup B \neq \emptyset$.
- 16. Siendo A, B y C conjuntos, demostrar que:
 - a) Si $A \subset B$ y $B \subset C$ y $C \subset A$ entonces A = B = C.
 - b) Si $X \subset \emptyset$ entonces $X = \emptyset$.
 - $c) \ (C \subset A \land C \subset B) \Longrightarrow C \subset A \cap B.$