Rock Paper Scissors using PictoBlox & OpenML

About the Project

This project is an interactive **Rock Paper Scissors** game developed using **PictoBlox**, a block-based programming platform that integrates **machine learning** and **Al** concepts. The main objective of this project is to recognize real-time **hand gestures** (rock, paper, and scissors) through a **webcam** and use a trained ML model to play the game automatically.

By using the **OpenML environment** in PictoBlox, a custom image classification model was created and trained on images captured directly from the webcam. Once the model achieved satisfactory accuracy, it was **exported into block code** to enable real-time gesture detection and game logic implementation.

Machine Learning Workflow

1. Dataset Creation:

- Used the webcam to capture multiple images for each hand gesture:
 - Rock
 - Paper
 - Scissors
- Labeled the images accordingly in the OpenML environment.

2. Model Training:

- Trained the model using adjustable parameters such as:
 - **Epochs:** Number of times the model sees the entire dataset.
 - Batch Size: Number of samples processed before updating the model.
 - Learning Rate: Controls how much the model learns in each update.

 The model was trained and evaluated to achieve accurate gesture recognition.

3. Model Integration:

- Exported the trained model to **PictoBlox block code**.
- o Integrated it with logic blocks to detect the user's gesture in real time.

4. Game Implementation:

- The program randomly generates the computer's choice.
- The webcam detects the user's gesture using the trained model.
- The winner is decided based on standard Rock-Paper-Scissors rules.

Tools & Technologies

- **PictoBlox** for creating block-based Al applications.
- OpenML Environment for model training and testing.
- Webcam for capturing real-time hand poses.
- Machine Learning Model for gesture recognition.

How It Works

- 1. Launch PictoBlox and open the OpenML environment.
- 2. Capture and label images for rock, paper, and scissors gestures.
- 3. Train the model by setting epochs, batch size, and learning rate.
- 4. Test the model accuracy and export it to **block coding**.
- 5. Create game logic to compare your gesture with the computer's random choice.
- 6. Run the project show your hand to the camera and play in real time!

Results

- The model successfully recognized hand gestures with good accuracy.
- Real-time detection worked smoothly through the webcam.
- The game could identify and display the result of each round instantly.