Lista 1 de Teoria da Computação - 2021.01 (COS700/MAB703)

Data de entrega: 17/05/2021

Observação. A resolução de cada questão deve ser iniciada em uma nova folha de papel. Além disso, antes do início de cada questão, deve-se incluir o número da questão e o nome completo do aluno.

1. Seja w uma palavra em um alfabeto Σ . Definimos o reflexo de w recursivamente da seguinte maneira: $\epsilon^R = \epsilon$, e se $w = \sigma x$, então $w^R = x^R \sigma$ onde $\sigma \in \Sigma$. Sejam L_1 e L_2 linguagens sobre o alfabeto Σ . Determine as seguintes linguagens em função de L_1^R e L_2^R .

(i)
$$(L_1.L_2)^R$$

(i)
$$(L_1.L_2)^R$$
 (ii) $(L_1 \cup L_2)^R$ (iii) $\overline{L_1}^R$

(iii)
$$\overline{L_1}^R$$

(iv)
$$(L_1^*)^R$$

2. Considere o autômato finito determinístico sobre o alfabeto $\{a, b, c\}$, com estados $\{q_0, q_1, q_2, q_3, q_4\}$, estado inicial q_0 , estados finais $F = \{q_2\}$ e cuja função de transição é dada por:

δ	a	b	c
q_0	q_0	q_2	q_1
q_1	q_3	q_2	q_4
q_2	q_4	q_2	q_1
q_3	q_1	q_2	q_3
q_4	q_3	q_2	q_0

- (i) Esboce o diagrama de estados do autômato.
- (ii) Descreva a computação do autômato que tem início na configuração $(q_0, abccbaccaabb)$. Esta palavra é aceita pelo autômato?
- (iii) Descreva a computação do autômato que tem início na configuração (q₀, ccbbbaaaabbccba). Esta palavra é aceita pelo autômato?
- (iv) Descreva a linguagem aceita pelo autômato.
- 3. Construa autômatos finitos determinísticos que aceitem as seguintes linguagens, sobre o alfabeto $\{0,1\}$.
 - (i) O conjunto das palavras com três 0s consecutivos.
- (ii) O conjunto das palavras em que cada 0 está entre dois 1s.
- (iii) O conjunto das palavras com um número ímpar de 1s e que terminam com 0.
- 4. Desenhe o diagrama de estados de cada um dos seguintes autômatos finitos não determinísticos e construa o autômato finito determinístico equivalente a cada um deles. Em cada caso o estado inicial é q_1 .
 - (i) $F_1 = \{q_4\}$ e a função de transição é dada por:

$$\begin{array}{c|ccccc} \Delta_1 & a & b & c \\ \hline q_1 & \{q_1,q_2,q_3\} & \emptyset & \emptyset \\ q_2 & \emptyset & \{q_4\} & \emptyset \\ q_3 & \emptyset & \emptyset & \{q_4\} \\ q_4 & \emptyset & \emptyset & \emptyset \end{array}$$

(ii)
$$\Delta_2 = \Delta_1 \in F_2 = \{q_1, q_2, q_3\};$$

- 5. Seja A um autômato finito determinístico com um único estado final. Considere o autômato finito não determinístico A' obtido a partir pela inversão dos papéis dos estados incial e final e pela inversão da direção de cada aresta do digrama de estado. Descreva L(A') em função de L(A).
- 6. Mostre que todo autômato finito não-determinístico pode ser convertido em outro equivalente que possui um único estado final.