

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2010-2

[Cod: CM131 Curso: Cálculo Diferencial]

[Tema: Lógica, reglas de inferencia.]

[Pref: L. La Rosa O., J. Sulca., R. Acuña.]

Práctica Calificada Nº 1

- 1. Sean $A = \{1, 2, \dots, 20\}$ y $B = \{x \in A/x < 5 \leftrightarrow x \ge 7\}$. Indique el valor de verdad de:
 - a) $\exists X \subseteq A \land \exists Y \subseteq B/X \cap Y = \emptyset$.
 - b) $\forall x \in A, \exists y \in B/x + y \leq 26. \quad \forall$
 - c) $\exists x \in A/\forall y \in B, x-y=14.$
- 2. Si la formula $(p \lor r) \to (q \lor p)$ es falsa. Cálcular el valor de verdad de las siguientes fórmulas:
 - a) $[(\sim p \land r) \rightarrow q) \leftrightarrow (p \land q)] \lor r$.
 - b) $(((\sim p \lor r) \to r) \land q) \to (p \to q)$.
- 3. Se sabe que

$$p \star q \equiv (p \to \sim q)$$

$$p \!\!\! \stackrel{>}{\sim} q \equiv \sim p \wedge \sim q$$

Evaluar el esquema:

$$(p \rightarrow r) \delta(q \times r).$$

- 4. Verificar que para probar la equivalencia de las proposiciones p, q, r, s es suficiente demostrar las siguientes implicancias lógicas $p \Rightarrow q, q \Rightarrow r, r \Rightarrow s, s \Rightarrow p$.
- 5. Resuelva:
 - c) Demostrar q si:
 - * p V q
 - a $q \leftrightarrow s$
 - $= \sim p \vee q$
 - b) Demostrar f si: V
 - $g \rightarrow h$
 - $\circ \sim g \rightarrow \sim \sim f$
 - ~h

3 de Setiembre del 2010

[&]quot;Hecho en LATEX