

CHAPTER 27

Introduction to Information Retrieval and Web Search

27.1 Information Retrieval (IR) Concepts

- Information retrieval
 - Process of retrieving documents from a collection in response to a query (search request)
 - Deals mainly with unstructured data
 - Example: homebuying contract documents
- Unstructured information
 - Does not have a well-defined formal model
 - Based on an understanding of natural language
 - Stored in a wide variety of standard formats

Information Retrieval (IR) Concepts (cont'd.)

- Information retrieval field predates database field
 - Academic programs in Library and Information Science
- RDBMS vendors providing new capabilities to support various data types
 - Extended RDBMSs or object-relational database management systems
- User's information need expressed as free-form search request
 - Keyword search query

Information Retrieval (IR) Concepts (cont'd.)

- Characterizing an IR system
 - Types of users
 - Expert
 - Layperson
 - Types of data
 - Domain-specific
 - Types of information needs
 - Navigational search
 - Informational search
 - Transactional search

Information Retrieval (IR) Concepts (cont'd.)

- Enterprise search systems
 - Limited to an intranet
- Desktop search engines
 - Searches an individual computer system
- Databases have fixed schemas
 - IR system has no fixed data model

Comparing Databases and IR Systems

Databases

- Structured data
- Schema driven
- Relational (or object, hierarchical, and network) model is predominant
- Structured query model
- Rich metadata operations
- Query returns data
- Results are based on exact matching (always correct)

IR Systems

- Unstructured data
- No fixed schema; various data models (e.g., vector space model)
- Free-form query models
- Rich data operations
- Search request returns list or pointers to documents
- Results are based on approximate matching and measures of effectiveness (may be imprecise and ranked)

Table 27.1 A comparison of databases and IR systems

A Brief History of IR

- Stone tablets and papyrus scrolls
- Printing press
- Public libraries
- Computers and automated storage systems
 - Inverted file organization based on keywords and their weights as indexing method
- Search engine
- Crawler
- Challenge: provide high quality, pertinent, timely information

Modes of Interactions in IR Systems

- Primary modes of interaction
 - Retrieval
 - Extract relevant information from document repository
 - Browsing
 - Exploratory activity based on user's assessment of relevance
- Web search combines both interaction modes
 - Rank of a web page measures its relevance to query that generated the result set

Generic IR Pipeline

- Statistical approach
 - Documents analyzed and broken down into chunks of text
 - Each word or phrase is counted, weighted, and measured for relevance or importance
- Types of statistical approaches
 - Boolean
 - Vector space
 - Probabilistic

Generic IR Pipeline (cont'd.)

- Semantic approaches
 - Use knowledge-based retrieval techniques
 - Rely on syntactic, lexical, sentential, discoursebased, and pragmatic levels of knowledge understanding
 - Also apply some form of statistical analysis

Legend: Dashed lines indicate next iteration

Figure 27.1 Generic IR framework

Figure 27.2 Simplified IR process pipeline

27.2 Retrieval Models

- Boolean model
 - One of earliest and simplest IR models
 - Documents represented as a set of terms
 - Queries formulated using AND, OR, and NOT
 - Retrieved documents are an exact match
 - No notion of ranking of documents
 - Easy to associate metadata information and write queries that match contents of documents

- Vector space model
 - Weighting, ranking, and determining relevance are possible
 - Uses individual terms as dimensions
 - Each document represented by an n-dimensional vector of values
 - Features
 - Subset of terms in a document set that are deemed most relevant to an IR search for the document set

- Vector space model (cont'd.)
 - Different similarity assessment functions can be used
- Term frequency-inverse document frequency (TF-IDF)
 - Statistical weight measure used to evaluate the importance of a document word in a collection of documents
 - A discriminating term must occur in only a few documents in the general population

- Probabilistic model
 - Involves ranking documents by their estimated probability of relevance with respect to the query and the document
 - IR system must decide whether a document belongs to the relevant set or nonrelevant set for a query
 - Calculate probability that document belongs to the relevant set
 - BM25: a popular ranking algorithm

- Semantic model
 - Morphological analysis
 - Analyze roots and affixes to determine parts of speech of search words
 - Syntactic analysis
 - Parse and analyze complete phrases in documents
 - Semantic analysis
 - Resolve word ambiguities and generate relevant synonyms based on semantic relationships
 - Uses techniques from artificial intelligence and expert systems

27.3 Types of Queries in IR Systems

- Keyword queries
 - Simplest and most commonly used
 - Keyword terms implicitly connected by logical AND
- Boolean queries
 - Allow use of AND, OR, NOT, and other operators
 - Exact matches returned
 - No ranking possible

Types of Queries in IR Systems (cont'd.)

Phrase queries

- Sequence of words that make up a phrase
- Phrase enclosed in double quotes
- Each retrieved document must contain at least one instance of the exact phrase

Proximity queries

- How close within a record multiple search terms are to each other
- Phrase search is most commonly used proximity query

Types of Queries in IR Systems (cont'd.)

- Proximity queries (cont'd.)
 - Specify order of search terms
 - NEAR, ADJ (adjacent), or AFTER operators
 - Sequence of words with maximum allowed distance between them
 - Computationally expensive
 - Suitable for smaller document collections rather than the Web

Types of Queries in IR Systems (cont'd.)

- Wildcard queries
 - Supports regular expressions and pattern-based matching
 - Example 'data*' would retrieve data, database, dataset, etc.
 - Not generally implemented by Web search engines
- Natural language queries
 - Definitions of textual terms or common facts
 - Semantic models can support

27.4 Text Preprocessing

- Stopword removal must be performed before indexing
- Stopwords
 - Words that are expected to occur in 80% or more of the documents of a collection
 - Examples: the, of, to, a, and, said, for, that
 - Do not contribute much to relevance
- Queries preprocessed for stopword removal before retrieval process
 - Many search engines do not remove stopwords

Text Preprocessing (cont'd.)

- Stemming
 - Trims suffix and prefix
 - Reduces the different forms of the word to a common stem
 - Martin Porter's stemming algorithm
- Utilizing a thesaurus
 - Important concepts and main words that describe each concept for a particular knowledge domain
 - Collection of synonyms
 - UMLS

Figure 27.3 A portion of the UMLS Semantic Network: "Biologic Function" Hierarchy Source: UMLS Reference Manual, National Library of Medicine

Text Preprocessing (cont'd.)

- Other preprocessing steps
 - Digits
 - May or may not be removed during preprocessing
 - Hyphens and punctuation marks
 - Handled in different ways
 - Cases
 - Most search engines use case-insensitive search
- Information extraction tasks
 - Identifying noun phrases, facts, events, people, places, and relationships

27.5 Inverted Indexing

- Inverted index structure
 - Vocabulary information
 - Set of distinct query terms in the document set
 - Document information
 - Data structure that attaches distinct terms with a list of all documents that contain the term

Inverted Indexing (cont'd.)

- Construction of an inverted index
 - Break documents into vocabulary terms
 - Tokenizing, cleansing, removing stopwords, stemming, and/or using a thesaurus
 - Collect document statistics
 - Store statistics in document lookup table
 - Invert the document-term stream into a termdocument stream
 - Add additional information such as term frequencies, term positions, and term weights

Document 1

This example shows an example of an inverted index.

Document 2

Inverted index is a data structure for associating terms to documents.

Document 3

Stock market index is used for capturing the sentiments of the financial market.

ID	Term	Document: position	
1.	example	1:2, 1:5	
2.	inverted	1:8, 2:1	
3.	index	1:9, 2:2, 3:3	
4.	market	3:2, 3:13	

Figure 27.4 Example of an inverted index

Inverted Indexing (cont'd.)

- Searching for relevant documents from an inverted index
 - Vocabulary search
 - Document information retrieval
 - Manipulation of retrieved information

Introduction to Lucene

- Lucene: open source indexing/search engine
 - Indexing is primary focus
- Document composed of set of fields
 - Chunks of untokenized text
 - Series of processed lexical units called token streams
 - Created by tokenization and filtering algorithms
- Highly-configurable search API
- Ease of indexing large, unstructured document collections

27.6 Evaluation Measures of Search Relevance

- Topical relevance
 - Measures result topic match to query topic
- User relevance
 - Describes 'goodness' of retrieved result with regard to user's information need
- Web information retrieval
 - No binary classification made for relevance or nonrelevance
 - Ranking of documents

Evaluation Measures of Search Relevance (cont'd.)

Recall

 Number of relevant documents retrieved by a search divided by the total number of actually relevant documents existing in the database

Precision

 Number of relevant documents retrieved by a search divided by total number of documents retrieved by that search

Retrieved Versus Relevant Search Results

- TP: true positive
- FP: false positive
- TN: true negative
- FN: false negative

Figure 27.5 Retrieved versus relevant search results

Evaluation Measures of Search Relevance (cont'd.)

- Recall can be increased by presenting more results to the user
 - May decrease the precision

Doc. No.	Rank Position i	Relevant	Precision(i)	Recall(i)
10	1	Yes	1/1 = 100%	1/10 = 10%
2	2	Yes	2/2 = 100%	2/10 = 20%
3	3	Yes	3/3 = 100%	3/10 = 30%
5	4	No	3/4 = 75%	3/10 = 30%
17	5	No	3/5 = 60%	3/10 = 30%
34	6	No	3/6 = 50%	3/10 = 30%
215	7	Yes	4/7 = 57.1%	4/10 = 40%
33	8	Yes	5/8 = 62.5%	5/10 = 50%
45	9	No	5/9 = 55.5%	5/10 = 50%
16	10	Yes	6/10 = 60%	6/10 = 60%

Table 27.2 Precision and recall for ranked retrieval

Evaluation Measures of Search Relevance (cont'd.)

- Average precision
 - Computed based on the precision at each relevant document in the ranking
- Recall/precision curve
 - Based on the recall and precision values at each rank position
 - x-axis is recall and y-axis is precision
- F-score
 - Harmonic mean of the precision (p) and recall (r) values

27.7 Web Search and Analysis

- Search engines must crawl and index Web sites and document collections
 - Regularly update indexes
 - Link analysis used to identify page importance
- Vertical search engines
 - Customized topic-specific search engines that crawl and index a specific collection of documents on the Web

- Metasearch engines
 - Query different search engines simultaneously and aggregate information
- Digital libraries
 - Collections of electronic resources and services for the delivery of materials in a variety of formats
- Web analysis
 - Applies data analysis techniques to discover and analyze useful information from the Web

- Goals of Web analysis
 - Finding relevant information
 - Personalization of the information
 - Finding information of social value
- Categories of Web analysis
 - Web structure analysis
 - Web content analysis
 - Web usage analysis

- Web structure analysis
 - Hyperlink
 - Destination page
 - Anchor text
 - Hub
 - Authority
- PageRank ranking algorithm
 - Used by Google
 - Analyzes forward links and backlinks
 - Highly linked pages are more important

- Web content analysis tasks
 - Structured data extraction
 - Wrapper
 - Web information integration
 - Web query interface integration
 - Schema matching
 - Ontology-based information integration
 - Building concept hierarchies
 - Segmenting web pages and detecting noise

- Approaches to Web content analysis
 - Agent-based
 - Intelligent Web agents
 - Personalized Web agents
 - Information filtering/categorization
 - Database-based
 - Attempts to organize a Web site as a database
 - Object Exchange Model
 - Multilevel database
 - Web query system

- Web usage analysis attempts to discover usage patterns from Web data
 - Preprocessing
 - Usage, content, structure
 - Pattern discovery
 - Statistical analysis, association rules, clustering, classification, sequential patterns, dependency modeling
 - Pattern analysis
 - Filter out patterns not of interest

- Practical applications of Web analysis
 - Web analytics
 - Understand and optimize the performance of Web usage
 - Web spamming
 - Deliberate activity to promote a page by manipulating search engine results
 - Web security
 - Allow design of more robust Web sites
 - Web crawlers

27.8 Trends in Information Retrieval

- Faceted search
 - Classifying content
- Social search
 - Collaborative social search
- Conversational information access
 - Intelligent agents perform intent extraction to provide information relevant to a conversation
- Probabilistic topic modeling
 - Automatically organize large collections of documents into relevant themes

Trends in Information Retrieval (cont'd.)

Figure 27.6 A document D and its topic proportions

Trends in Information Retrieval (cont'd.)

- Question-answering systems
 - Factoid questions
 - List questions
 - Definition questions
 - Opinion questions
 - Composed of question analysis, query generation, search, candidate answer generation, and answer scoring

27.9 Summary

- Information retrieval mainly targeted at unstructured data
- Query and browsing modes of interaction
- Retrieval models
 - Boolean, vector space, probabilistic, and semantic
- Text preprocessing
- Web search
- Web ranking
- Trends