

SCHOOL OF ENGINEERING

DATA MODELLING AND **SIMULATION**

Lecture 10: Optimisation-II

Ву, Dr Mithun Poozhiyil

Recap

Maxima,
$$\frac{dy}{dx} =$$

- Minima,
- Stationary points,

Saddle points,

- $\frac{d^2y}{dx^2} = positive/negative$
- Function of two variables
- Objective function
- Constraints
- Optimisation of unconstrained functions
 Taylor's theorem
- Hessian Matrix

local maximum

local minimum

saddle point (transition state)

f(x,y)

These generate a set of rules and conditions that can be summarised as follows,

 A necessary condition for the function f(x, y) to have a stationary value at (a, b) is that

$$\frac{\partial f}{\partial x} = 0$$
 and $\frac{\partial f}{\partial y} = 0$ at (a, b)

2) If
$$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 > 0$$
 and $\frac{\partial^2 f}{\partial x^2}$ or $\frac{\partial^2 f}{\partial y^2} < 0$ at (a, b)

then the stationary point is a local maximum.

3) If
$$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 > 0$$
 and $\frac{\partial^2 f}{\partial x^2}$ or $\frac{\partial^2 f}{\partial y^2} > 0$ at (a, b)

then the stationary point is a local minimum

4) If
$$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 < 0$$
 then the stationary point is a saddle point.

5) If
$$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 = 0$$
 then we cannot draw a conclusion as to whether the point is a maximum, minimum or saddle point and further investigation is required.

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

|H| > 0 and $\frac{\partial^2 f}{\partial x^2} > 0$ then the point is a MINIMUM.

$$|H|>0$$
 and $\frac{\partial^2 f}{\partial x^2}<0$ then the point is a MAXIMUM.

|H| < 0 then the point is a SADDLE POINT.

|H| < 0 then the point is a SADDLE POINT.

Optimisation of Constrained Functions

Find the stationary points of f(x,y) that is subject to one or more constraint condition

Substitution Approach

For example

1. Substitution Approach Constraints

Composite Function

Example 1. Solve the following optimisation problem using the substitution approach, min $f(x,y) = x^2 + 5xy + y^2$, subject to g(x,y) = x - y - 5 = 0 (x,y)

Our objective function is $f(x,y) = x^2 + 5xy + y^2$ Our constraint is g(x,y) = x - y - 5 = 0

Rearrange the constraint ---

$$x = y + 5$$

Substitute into obj. function

$$f(y) = (y+5)^2 + 5y(y+5) + y^2$$

$$=7y^2+35y+25$$

Differentiate and equate to zero

$$f(y) = 7y^2 + 35y + 25$$

$$\frac{df}{dv} = 14y + 35 = 0$$

Solving gives,

$$Y^* = -2.5$$
 and therefore, $X^* = 2.5$

We can use the second derivative test in order to determine whether this is a minimum or a maximum stationary point. This gives,

$$\frac{d^2f}{dy^2}$$
 = 14 , which is positive and hence a MINIMUM

2. Total Differential Approach

Objective function Differentiate Partial differentiation Constraints

Example 2. Solve the following optimisation problem using the total differential approach,

min
$$f(x,y) = x^2 + 5xy + y^2$$
, subject to $g(x,y) = x - y - 5 = 0$
(x,y)

Our objective function is $f(x,y) = x^2 + 5xy + y^2$ Our constraint is g(x, y) = x - y - 5 = 0

Partial differentiation

$$\frac{\partial f}{\partial x} = 2x + 5y$$
 and $\frac{\partial f}{\partial y} = 5x + 2$

$$\frac{\partial g}{\partial x} = 1$$
 and $\frac{\partial g}{\partial y} = -1$

---- Rearrange

$$\frac{\partial f}{\partial x} = 2x + 5y \quad \text{and} \quad \frac{\partial f}{\partial y} = 5x + 2y \qquad \partial f = (2x + 5y)\partial x \quad \text{and} \quad \partial f = (5x + 2y)\partial y \qquad \frac{(2x + 5y)}{(5x + 2y)} = -1$$
$$(2x + 5y)\partial x = (5x + 2y)\partial y$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{(\mathbf{2x} + \mathbf{5y})}{(\mathbf{5x} + \mathbf{2y})}$$

$$\partial g = 1\partial x$$
 and $\partial g = -1\partial y$
 $\partial \mathbf{x} = -\partial \mathbf{y}$
 $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = -1$

$$\frac{(2\mathbf{x} + 5\mathbf{y})}{(5\mathbf{x} + 2\mathbf{y})} = -1$$

Rearranging gives

$$-(5x+2y)=1(2x+5y)$$

$$-5x-2y=2x+5y$$

$$-7x = 7y$$

$$x = -y$$

Equating the results — Substituting this into the constraint

$$g(x, y) = x - y - 5 = 0$$

$$g(y) = -y - y - 5 = 0$$

$$-2y = 5$$

$$Y* = -2.5$$

Therefore.

$$X^* = 2.5$$

3. Lagrange Multiplier

Introduce a new variable Lagrange Multiplier Greek letter lambda, λ .

$$L(x, y, \lambda) = f(x, y) + \lambda [c - g(x, y)]$$

Example 3. Solve the following optimisation problem using the Lagrange Multiplier approach,

min
$$f(x,y) = x^2 + 5xy + y^2$$
, subject to $g(x,y) = x - y - 5 = 0$
(x,y)

Our objective function is $f(x, y) = x^2 + 5xy + y^2$

Our constraint is g(x,y) = x - y - 5 = 0

Lagrangian

rearrange the constraint to equal zero then c = 0

$$L(x, y, \lambda) = f(x, y) - \lambda [g(x, y)]$$

$$L(x, y, \lambda) = x^2 + 5xy + y^2 - \lambda[x - y - 5]$$

$$L(x, y, \lambda) = x^{2} + 5xy + y^{2} - \lambda x + \lambda y + 5\lambda$$

Partial derivative with respect to each of the variables and equate them to zero

$$\frac{\partial L}{\partial x} = 2x + 5y - \lambda = 0$$

$$\frac{\partial L}{\partial y} = 5x + 2y + \lambda = 0 \qquad \text{Solve}$$

$$\frac{\partial L}{\partial \lambda} = -x + y + 5 = 0$$

solve
$$\begin{pmatrix} 2 & 5 & -1 \\ 5 & 2 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -5 \end{pmatrix} X^* = 2.5, Y^* = -2.5$$

Using the inverse matrix method, Cramer's rule or Gaussian elimination or matlab

Example 4. Solve the following optimisation problem using the Lagrange Multiplier approach,

approach,
$$f(x,y,z) = x^2 + y^2 + z^2$$
 Subject to two constraints:

 $z^2 = x^2 + y^2$

x + y - z + 1 = 0

 $L = f(x, y, z) + \lambda_1 [c - g(x, y, z)] + \lambda_2 [c - h(x, y, z)]$

Subject to two constraints:

set up the problem using the definition of the Lagrangian,

$$L(x, y, z, \lambda_1, \lambda_2) = x^2 + y^2 + z^2 - \lambda_1 x^2 - \lambda_1 y^2 + \lambda_1 z^2 - \lambda_2 x - \lambda_2 y + \lambda_2 z - \lambda_2$$

Now we find the partial derivative with respect to each of the variables and equate them to zero.

$$\frac{\partial L}{\partial x} = 2x - 2\lambda_1 x - \lambda_2 = 0$$
 (eq.1)

$$\frac{\partial L}{\partial y} = 2y - 2\lambda_1 y - \lambda_2 = 0$$
 (eq.2)

$$\frac{\partial L}{\partial z} = 2z + 2\lambda_1 z + \lambda_2 = 0$$
 (eq.3)

$$\frac{\partial L}{\partial x} = -x^2 - y^2 + z^2 = 0$$
 (eq.4)

$$\frac{\partial L}{\partial \lambda_2} = -x - y + z - 1 = 0$$
 (eq.5)

From Eq 3:

$$\lambda_2 = -2z - 2\lambda_1 z$$

Sub into Eq. 1 and Eq. 2:

$$2x - 2\lambda_{1}x + 2z + 2\lambda_{1}z = 0$$

$$2y - 2\lambda_{1}y + 2z + 2\lambda_{1}z = 0$$

Rearrange both for λ_1 :

$$\lambda_1 = \frac{2x + 2z}{2x - 2z}$$
$$\lambda_1 = \frac{2y + 2z}{2y - 2z}$$

Therefore,

 $\frac{2x+2z}{2x-2z} = \frac{2y+2z}{2y-2z}$ 2yz-2xz=0 2z(y-x)=0If z=0, $x^2+y^2=0$, y=0 x=0which does not satisfy the second (h) constraint.

If y = x will reduce the number of equations to three:

$$y = x$$

$$z2 = x2 + y2$$

$$x + y - z + 1 = 0$$

Substitute the first eq into the second one:

$$z^2 = 2x^2$$

Substitute the first eq into the third one:

$$z = 2x + 1$$

We get:

$$(2x+1)^2 = 2x^2$$
$$2x^2 + 4x + 1 = 0$$

Use the quadratic formula to find x:

$$x = -1 \pm \frac{\sqrt{2}}{2}$$

Therefore.

$$y = -1 \pm \frac{\sqrt{2}}{2}$$
$$z = -1 + \sqrt{2}$$

There two solutions:

$$\left(-1+\frac{\sqrt{2}}{2},-1+\frac{\sqrt{2}}{2},-1+\sqrt{2}\right),\left(-1-\frac{\sqrt{2}}{2},-1-\frac{\sqrt{2}}{2},-1-\sqrt{2}\right)$$

Substituting both into $f(x, y, z) = x^2 + y^2 + z^2$ we get:

$$f\left(-1 + \frac{\sqrt{2}}{2}, -1 + \frac{\sqrt{2}}{2}, -1 + \sqrt{2}\right) = 6 - 4\sqrt{2}$$
 MINIMUM

$$f\left(-1 - \frac{\sqrt{2}}{2}, -1 - \frac{\sqrt{2}}{2}, -1 - \sqrt{2}\right) = 6 + 4\sqrt{2}$$
 MAXIMUM

Practice Problems

 Find the stationary values of the following constrained function using the substitution, total differential and Lagrange Multiplier approaches.

a)
$$f(x,y) = 2x^2 + 3y^2$$
 subject to $g(x,y) = 2x + y = 50$

b)
$$f(x,y) = 3x^2 + xy - 2y^2 + 10$$
 subject to $g(x,y) = x - y = 50$

2) Find the optimum of $f = x^2 + xy + y^2$ subject to constraint x + y = 1 using the substitution, total differential and Lagrange Multiplier approaches.