MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Why is Newton's version of Kepler's third law so useful to astronomers?	
A) It tells us that more-distant planets orbit the Sun more slowly.B) It can be used to determine the masses of many distant objects.C) It allows us to calculate distances to distant objects.D) It explains why objects spin faster when they shrink in size.	
D) it explains why objects spin faster when they shifted in size.	
2) Which statement must be true in order for a rocket to travel from Earth to another planet? 2)	
A) It must have very large engines.B) It must attain escape velocity from Earth.	
C) It must be launched from space, rather than from the ground.	
D) It must carry a lot of extra fuel.	
3) Imagine another solar system, with a star of the same mass as the Sun. Suppose a planet with a 3)	
mass twice that of Earth ($2M_{Earth}$) orbits at a distance of 1 AU from the star. What is the orbital	
period of this planet?	
A) 2 years B) 6 months	
C) 1 year	
D) It cannot be determined from the information given.	
4) What is the difference between a <i>bound</i> orbit and an <i>unbound</i> orbit around the Sun? 4)	
A) A bound orbit is circular, while an unbound orbit is elliptical.	
B) An object on a bound orbit follows the same path around the Sun over and over, while an	
object on an unbound orbit approaches the Sun just once and then never returns. C) An object on a bound orbit has a gravitational attraction to the Sun, while an object on an	
unbound orbit does not.	
 D) A bound orbit is an orbit allowed by the universal law of gravitation, and an unbound orbit is not. 	
5) The allowed shapes for the orbits of objects responding only to the force of gravity are 5)	
A) ellipses only. B) ellipses, parabolas, and hyperbolas.	
C) circles and ellipses. D) ellipses, spirals, and parabolas.	
6) Two planets having equal masses are in circular orbit around a star. Planet A has a	
smaller orbital radius than planet B. Which statement is true?	
A) Planet A has more kinetic energy, less potential energy, and more mechanical energy (potential plus kinetic) than planet B.	
B) Planet A has more kinetic energy, more potential energy, and more mechanical	
energy (potential plus kinetic) than planet B.	
C) Planet A has more kinetic energy, less potential energy, and less mechanical	
energy (potential plus kinetic) than planet B.	
D) Planet A and planet B have the same amount of mechanical energy (potential plus kinetic).	

B) Orbital energy into space.C) Orbital energyD) Orbital energy	is the object's kine is the amount of e	etic energy as it movenergy required for e object's speed as in object's kinetic energet.	e (such as a planet, moves through its orbit. the object to leave of the moves through its gy and its gravitation	rbit and escape	7)
8) Imagine another solar same mass as Earth or (orbital period) compa A) The planet's yea B) The planet's yea C) The planet's yea D) An orbit at a dissum.	rbits at a distance are to Earth's year ar would be the sar would be short ar would be longe	of 1 AU from the st ? ame as Earth's. er than Earth's. er than Earth's.	• •	planet's year	8)
9) <i>Sputnik I</i> was launch approach to Earth, in furthest point from I its perigee? The mas A) 8230 m/s B) 11,000 m/s C) 13,400 m/s D) 7840 m/s E) 7180 m/s	neasured from E Earth's center) of	arth's center) of 6 f 7.53×10^6 m. W	$.81 \times 10^6$ m and an hat was its speed v	n apogee (the when it was at	9)
10) What is the period (surface? The mass of $G = 6.67 \times 10^{-11} \text{ N}$ A) 1.75 h	f Mars is 6.42 ×	•		•	10)
11) Jupiter completes or radius of the orbit results Jupiter has a mass of A) 1.04×10^7 m B) 3.41×10^8 m C) 1.60×10^8 m D) 7.45×10^8 m E) 2.26×10^9 m	equired for a sate	ellite to revolve ab	out Jupiter with th		11)
12) The moons of Mars, compared to Earth's respectively. What is A) 0.2528	Moon. Their orl	bital radii are 9,37	8 km and 23,459 km	ĸm	12)

- 13) Spaceman Speff orbits spherical asteroid X with his spaceship. To remain in a circular orbit at 421 km from the asteroid's center, he should maintain a speed of 80 m/s. What is the mass of planet X? ($G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)
- 13) _____

A) $4.0 \times 10^{16} \text{ kg}$

B) $5.1 \times 10^{17} \text{ kg}$

C) $4.0 \times 10^{19} \text{ kg}$

- D) $5.1 \times 10^{14} \text{ kg}$
- 14) Find the orbital speed of an ice cube in the rings of Saturn. The mass of Saturn is 5.68 \times 10²⁶ kg and the rings have an average radius of 100,000 km.
- 14) _____

- $(G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$
 - A) 1.95 km/s
- B) 13.8 km/s
- C) 19.5 km/s
- D) 27.5 km/s
- 15) Suppose we want a satellite to revolve around the earth 5 times a day. What should be the radius of its orbit? (The mass of the earth is 5.97×10^{24} kg,

15) _____

 $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$, and you can neglect the presence of the moon.)

A) 7.22×10^7 m

B) $0.690 \times 10^7 \text{ m}$

C) 2.11×10^7 m

- D) $1.44 \times 10^7 \text{ m}$
- 16) Ekapluto is an unknown planet that has two moons in circular orbits. The table summarizes the hypothetical data about the moons. ($G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)

16)	

	Mass	Radius	Orbital radius	Orbital period
Moon A	$4.0 \times 10^{20} \text{ kg}$		$2.0 \times 10^{8} \text{ m}$	$4.0 \times 10^6 \text{ s}$
Moon B	$1.5 \times 10^{20} \text{ kg}$	$2.0 \times 10^{5} \text{ m}$	$3.0 \times 10^{8} \text{ m}$	

The mass of Ekapluto is closest to

- A) 1.0×10^{22} kg.
- B) 1.0×10^{24} kg.
- C) 3.0×10^{23} kg.
- D) 3.0×10^{22} kg.
- E) 1.0×10^{23} kg.
- 17) A planet has two small satellites in circular orbits around the planet. The first satellite has a period 18.0 hours and an orbital radius 2.00×10^7 m. The second planet has an orbital radius 3.00×10^7 m. What is the period of the second satellite?
- 17) _____

- A) 33.1 h
- B) 27.0 h
- C) 60.8 h
- D) 9.80 h
- E) 12.0 h

18)	A planet has two small satellites in circular orbits around the planet. The first satellite
]	has a period 12.0 hours and an orbital radius 6.00×10^7 m. The second planet has a
1	period 16.0 hours. What is the orbital radius of the second satellite?

18)

- A) 7.27×10^7
- B) 4.50×10^7
- C) 8.00×10^7
- D) 9.24×10^7
- E) 3.90×10^{7}
- 19) Two moons orbit a planet in nearly circular orbits. Moon A has orbital radius r, and moon B has orbital radius 4r. Moon A takes 20 days to complete one orbit. How long does it take moon B to complete an orbit?

 - A) 160 d
- B) 20 d
- C) 80 d
- D) 40 d
- E) 320 d
- 20) Ekapluto is an unknown planet that has two moons in circular orbits. The table summarizes the hypothetical data about the moons.

20)	

19)

	Mass	Radius	Orbital Radius	Orbital period
Moon A	$4.0 \times 10^{20} \text{ kg}$		$2.0 \times 10^{8} \text{ m}$	$4.0 \times 10^6 \text{ s}$
Moon B	$1.5 \times 10^{20} \text{kg}$	$2.0 \times 10^{5} \text{ m}$	$3.0 \times 10^{8} \text{ m}$	

The orbital period of Moon B is closest to

- A) 5.6×10^6 s.
- B) 6.9×10^6 s.
- C) 6.0×10^6 s.
- D) 6.4×10^6 s.
- E) 7.3×10^6 s.