CPSC 340: Machine Learning and Data Mining

Generative Models

Admin

- Assignment 0 was due last Wednesday.
 - Because of late days, we have to wait 3 days to post solutions.
 - At that time you will also gain read access to your classmates' work.
 - We voted on this during the first lecture.
 - No one approached me privately with objections.
- Assignment 1 is out.
 - This is a representative assignment w.r.t. length/difficulty/format/style.
- Registration:
 - Keep checking your registration, it could change quickly.
 - As of last night, waitlist was down to 14 people.
- Probability:
 - If you are struggling with probability concepts towards the end of class today, check out the posted notes on probability.

Last Time: Training, Testing, and Validation

• Training step:

• Prediction step:

- What we are interested in is the test error:
 - Error made by prediction step on new data.
- Validation set or cross-validation can be used to estimate test error.

• Scenario 1:

- "I built a model based on the data you gave me."
- "It classified your data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably not:

- They are reporting training error.
- This might have nothing to do with test error.
- E.g., they could have fit a very deep decision tree.

Why 'probably'?

- If they only tried a few very simple models, the 98% might be reliable.
- E.g., they only considered decision stumps with simple 1-variable rules.

Scenario 2:

- "I built a model based on half of the data you gave me."
- "It classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the validation error once.
- This is an unbiased approximation of the test error.
- Trust them if you believe they didn't violate the golden rule.

Scenario 3:

- "I built 10 models based on half of the data you gave me."
- "One of them classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the validation error a small number of times.
- Maximizing over these errors is a biased approximation of test error.
- But they only maximized it over 10 models, so bias is probably small.
- They probably know about the golden rule.

Scenario 4:

- "I built 1 billion models based on half of the data you gave me."
- "One of them classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably not:

- They computed the validation error a huge number of times.
- Maximizing over these errors is a biased approximation of test error.
- They tried so many models, one of them is likely to work by chance.
 - This is the "multiple comparisons problem" in statistics

Why 'probably'?

- If the 1 billion models were all extremely-simple, 98% might be reliable.

• Scenario 5:

- "I built 1 billion models based on the first third of the data you gave me."
- "One of them classified the second third of the data with 98% accuracy."
- "It also classified the last third of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the first validation error a huge number of times.
- But they had a second validation set that they only looked at once.
- The second validation set gives unbiased test error approximation.
- This is ideal, as long as they didn't violate golden rule on second set.
- And assuming you are using IID data in the first place.

The 'Best' Machine Learning Model

- Decision trees are not always most accurate.
- What is the 'best' machine learning model?
- First we need to define generalization error:
 - Test error on new examples (excludes test examples seen during training).
- No free lunch theorem:
 - There is **no** 'best' model achieving the best generalization error for every problem.
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.
- This question is like asking which is 'best' among "rock", "paper", and "scissors".

The 'Best' Machine Learning Model

- Implications of the lack of a 'best' model:
 - We need to learn about and try out multiple models.
- So which ones to study in CPSC 340?
 - We'll usually motivate a method by a specific application.
 - But we'll focus on models that are effective in many applications.
- Caveat of no free lunch (NFL) theorem:
 - The world is very structured.
 - Some datasets are more likely than others.
 - Model A really could be better than model B on every real dataset in practice.
- Machine learning research:
 - Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering

Want a build a system that filters spam e-mails.

- We have a big collection of e-mails, labeled by users.
- Can we formulate as supervised learning?

First a bit more supervised learning notation

We have been using the notation 'X' and 'y' for supervised

learning:

- X is matrix of all features, y is vector of all labels.
- Need a way to refer to the features and label of specific object 'i'.
 - We use y_i for the label of object 'i' (element 'i' of 'y').
 - We use x_i for the features object 'i' (row 'i' of 'X').
 - We use x_{ij} for feature 'j' of object 'i'.

Feature Representation for Spam

- How do we make label 'y_i' of an individual e-mail?
 - $-(y_i = 1)$ means 'spam', $(y_i = 0)$ means 'not spam'.
- How do we construct features 'x_i' for an e-mail?
 - Use bag of words:
 - "hello", "vicodin", "\$".
 - "vicodin" feature is 1 if "vicodin" is in the message, and 0 otherwise.
 - Could add phrases:
 - "be your own boss", "you're a winner", "CPSC 340".
 - Could add regular expressions:
 - <recipient>, <sender domain == "mail.com">

Probabilistic Classifiers

- For years, best spam filtering methods used naïve Bayes.
 - Naïve Bayes is a probabilistic classifier based on Bayes rule.
 - It's "naïve" because it makes a strong conditional independence assumption.
 - But it tends to work well with bag of words.
- Probabilistic classifiers model the conditional probability, $p(y_i \mid x_i)$.
 - "If a message has words x_i , what is probability that message is spam?"
- If $p(y_i = 'spam' \mid x_i) > p(y_i = 'not spam' \mid x_i)$, classify as spam.

- Recall our spam filtering setup:
 - $-y_i$: whether or not the e-mail was spam.
 - $-x_i$: the set of words/phrases/expressions in the e-mail.
- To model conditional probability, naïve Bayes uses Bayes rule:

$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)}$$

- Easy part #1: $p(y_i = 'spam')$ is the probability that an e-mail is spam.
 - Count of number of times $(y_i = 'spam')$ divided by number of objects 'n'.

- Recall our spam filtering setup:
 - $-y_i$: whether or not the e-mail was spam.
 - $-x_i$: the set of words/phrases/expressions in the e-mail.
- To model conditional probability, naïve Bayes uses Bayes rule:

$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)}$$

Easy part #2: We don't need p(x_i).

To test
$$p(y_i = "span" | x_i)$$
 we just need to know if $p(y_i = "span" | x_i) > p(y_i = "not span" | x_i)$.

By Bayes rule this is equivalent to $p(x_i | y_i = "span")p(y_i = "span") > p(x_i | y_i = "not span")p(y_i = "n$

Generative Classifiers

- The hard part is estimating $p(x_i | y_i = 'spam')$:
 - the probability of seeing the words/expressions x_i if the e-mail is spam.
- Classifiers based on Bayes rule are called generative classifier:
 - It needs to know the probability of the features, given the class.
 - How to "generate" features.
 - You need a model that knows what spam messages look like.
 - And a second that knows what non-spam messages look like.
 - This work well with tons of features compared to number of objects.

Spam filtering methods based on generative models:

$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)}$$

What do these terms mean?

ALL E-MAILS

(including duplicates)

Spam filtering methods based on generative models:

$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)}$$

• $p(x_i)$ is probability that a random e-mail has features x_i .

ALL E-MAILS

(including duplicates)

Spam filtering methods based on generative models:

$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)}$$

• $p(x_i)$ is probability that a random e-mail has features x_i .

ALL E-MAILS (including duplicates)

$$p(x_i) = \frac{\text{# e-mails with features } x_i}{\text{# e-mails total}}$$

Spam filtering methods based on generative models:

$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)}$$

• $p(x_i)$ is probability that a random e-mail has features x_i .

Spam filtering methods based on generative models:

$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)}$$

• $p(x_i)$ is probability that a random e-mail has features x_i .

Spam filtering methods based on generative models:

$$\rho(y_i = "spam" \mid x_i) = \frac{\rho(x_i \mid y_i = "spam")\rho(y_i = "spam")}{\rho(x_i)}$$

• $p(y_i = 'spam')$ is probability that a random e-mail is spam.

NOTALL E-SPALKS SPANMoluding duplicates)

- Hard to compute exactly.
- But is easy to approximate from data:
 - Count (#spam in data)/(#messages)

Spam filtering methods based on generative models:

$$\rho(y_i = |spam'| x_i) = \frac{\rho(x_i | y_i = |spam'')\rho(y_i = |spam'')}{\rho(x_i)}$$

• $p(x_i | y_i = 'spam')$ is probability that spam has features x_i .

Spam filtering methods based on generative models:

$$p(y_i = |span| |x_i) = \frac{p(x_i | y_i = |span|)}{p(x_i)}$$

• $p(x_i | y_i = 'spam')$ is probability that spam has features x_i .

p(xi | yi = "spam") =

spam messages with features xi

spam messages

- Very hard to estimate:
 - Too many possible x_i.

Naïve Bayes

How the naïve Bayes model deals with the hard terms:

• Now only need easy quantities like $p('vicodin' = 1 | y_i = 'spam')$.

Naïve Bayes Models

p(vicodin = 1 | spam = 1) is probability of seeing 'vicodin' in spam.

- Easy to estimate:
 - #(spam w/ Vicodin)/#spam
- "Maximum likelihood estimate"
- In naïve Bayes: assume features are independent given label.
 - "Once you know it's spam, there is no dependency between features."
 - Not true, but sometimes a good approximation.

Naïve Bayes

Naïve Bayes more formally:

$$\rho(y_i|x_i) = \frac{\rho(x_i|y_i)\rho(y_i)}{\rho(x_i)}$$

$$\approx \rho(x_i|y_i)\rho(y_i)$$

$$\approx \frac{d}{d} \left[\rho(x_i|y_i)\rho(y_i)\right]\rho(y_i)$$

- Assumption: all x_i are conditionally independent given y_i .

Independence of Random Variables

- Events A and B are independent if p(A,B) = p(A)p(B).
 - Equivalently: p(A|B) = p(A).
 - "Knowing B happened tells you nothing about A".
 - We use the notation:

- Random variables are independent if p(x,y) = p(x)p(y) for all x and
 y.
 - Flipping two coins:

```
p(C_1 = \text{'heads'}, C_2 = \text{'heads'}) = p(C_1 = \text{'heads'})p(C_2 = \text{'heads'}).
p(C_1 = \text{'tails'}, C_2 = \text{'heads'}) = p(C_1 = \text{'tails'})p(C_2 = \text{'heads'}).
```

• • •

Conditional Independence

- Example: food poisoning
 - If food was bad, each person independently gets sick with probability 50%
 - Unconditionally, me getting and and you getting sick are NOT independent
 - If I got sick, that makes me think the food was bad, which makes it more likely that you will get sick also. So knowing my situation influences my beliefs about yours.
 - But, conditioned on knowing the food was bad (or not bad), my sickness and your sickness are independent.
- Definition: A and B are conditionally independent given C if p(A, B | C) = p(A | C)p(B | C).
 - Equivalently: $p(A \mid B, C) = p(A \mid C)$.
 - "Knowing C happened, also knowing B happened says nothing about A".
 - − We use the notation:

Naïve Bayes for any number of classes

- Let c be a class label in {c₁,c₂,...}
 - In the spam example, we only had 2 classes (spam and not spam)
- Let i be a training example's index, j a feature index, k a feature value

Training:
1. Set
$$n_c$$
 to the number of times $(y=c)$.
2. Estimate $p(y=c)$ as $\frac{n_c}{n}$.
3. Set n_{cjk} as the number of times $(y_i=c, X_{ij}=k)$
4. Estimate $p(x_i=k \mid y=c)=\frac{p(x_i=k, y=c)}{p(y=c)}$ as $\frac{n_{cjk}}{n_c}=\frac{n_{cjk}}{n_c}$

Naïve Bayes for any number of classes

Prediction:

Given a new example x_i we want to find the 'c' maximizing $p(x_i | y_i)$. Under the <u>naive Bayes</u> assumption we thus maximize $p(y=c | x_i) \propto \prod_{i=1}^{n} [p(x_{ij} | y=c)] p(y=c)$

• Note that these terms do not add up to 1 because we dropped the denominator $p(x_i)$.

Application: E-mail Spam Filtering

Want a build a system that filters spam e-mails:

- We formulated as supervised learning:
 - $-(y_i = 1)$ if e-mail 'i' is spam, $(y_i = 0)$ if e-mail is not spam.
 - (xij = 1) if word/phrase 'j' is in e-mail 'i', (xij = 0) if it is not.

\$	Hi	CPSC	340	Vicodin	Offer		Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0	•••	0
•••		•••	•••			•••	

Decision Trees vs. Naïve Bayes

Decision trees:

Naïve Bayes:

- 1. Sequence of rules based on 1 feature.
- 2. Training: 1 pass over data per depth.
- 3. Hard to find optimal tree.
- 4. Testing: just look at features in rules.
- 5. New data: might need to change tree.
- 6. Accuracy: good if simple rules work.

- 1. Simultaneously combine all features.
- 2. Training: 1 pass over data to count.
- 3. Easy to find optimal probabilities.
- 4. Testing: look at all features.
- 5. New data: just update counts.
- 6. Accuracy: good if features almost independent given label.

Naïve Bayes Issues

- 1. Do we need to store the full bag of words 0/1 variables?
 - No: only need list of non-zero features for each e-mail.
 - Could use a sparse matrix representation.
- 2. Problem with maximum likelihood estimate (MLE):
 - MLE of p('lactase' = 1| 'spam') is (#spam messages with 'lactase')/#spam.
 - If you have no spam messages with lactase:
 - p('lactase' | 'spam') = 0, and message automatically gets through filter.
 - Fix: imagine we saw/not-saw each word in spam/not-spam messages:
 - "Laplace smoothing": assume some "pseudo-counts" for each feature/label.
 - for binary features: replace n_{cjk}/n_c with $(n_{cjk} + 1)/(n_c + 2)$.
 - a generalization is $(n_{cik} + β)/(n_c + 2β)$ for some constant β.
 - If X_{ij} can take 'm' values, you would $(n_{cjk} + \beta)/(n_c + m\beta)$

Naïve Bayes Issues

3. During the prediction, the probability can underflow:

$$p(y=c|x_i) \propto \prod_{j=1}^{d} [p(x_{ij}|y=c)] ply=c)$$

All these are < 1 so the product gets very small.

- Standard fix is to (equivalently) maximize the logarithm of the probability:
 - Logarithm turns multiplication of small numbers into addition of small numbers.
 - Logarithm is monotonic, so it doesn't change location of the maximum (maximizer)
 - See CPSC 302/303 for more on underflow and floating point issues.

Decision Theory

- Spam classification example
 - Are we equally concerned about spam vs. not spam?
- True positives, false positives, false negatives, false negatives:

Predict / True	True 'spam'	True 'not spam'	
Predict 'spam'	True Positive	False Positive	
Predict 'not spam'	False Negative	True Negative	

- The costs mistakes might be different:
 - Letting a spam message through (false negative) is not a big deal.
 - Filtering a not spam (false positive) message will make users mad.

Decision Theory

We can give a cost to each scenario, such as:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	0	100
Predict 'not spam'	10	0

Instead of assigning to most likely classify, minimize expected cost:

$$E[C(\hat{y}_i = span)] = p(y_i = span|x_i)C(\hat{y}_i = span, y_i = span) + p(y_i = not span|x_i)C(\hat{y}_i = span, y_i = not span)$$

"cost of predicting spam when e-mail is not spam"

- Even if p(spam $|x_i|$) > p(not spam $|x_i|$),
 - Might still classify as "not spam", if E[C(yhat; = spam)] > E[C(yhat; = not spam)].

Decision Theory and Darts

- Post on decision theory in "darts":
 - http://www.datagenetics.com/blog/january12012/index.html

- If you are very accurate, aim for the high-scoring regions.
- If you are very inaccurate, aim for the middle.
- Decision theory gives you the best strategy for other accuracies.

Summary

- No free lunch theorem: there is no "best" ML model.
- Joint probability: probability of A and B happening.
- Conditional probability: probability of A if we know B happened.
- Generative classifiers: build a probability of seeing the features.
 - Naïve Bayes uses conditional independence assumptions to make estimation practical.
- Decision theory allows us to consider costs of predictions.

- Next time:
 - A "best" machine learning model as 'n' goes to ∞.

- All the remaining slides are "bonus".
- We may go through them briefly, if time permits.

Generative Classifiers

- But does it need to know language to model $p(x_i | y_i)$???
- To fit generative models, usually make BIG assumptions:
 - Gaussian discriminant analysis (GDA):
 - Assume that $p(x_i | y_i)$ follows a multivariate normal distribution.
 - Naïve Bayes (NB):
 - Assume that each variables in x_i is independent of the others in x_i given y_i .

Bonus Slide: Avoiding Underflow

• During the prediction, the probability can underflow:

$$p(y=c|x_i) \propto \prod_{j=1}^{d} [p(x_{ij}|y=c)] ply=c)$$

All these are < 1 so the product gets very small.

Standard fix is to (equivalently) maximize the logarithm of the probability: Rember that $\log(ab) = \log(a) + \log(b)$ so $\log(\pi a_i) = \sum_{i=1}^{n} \log(a_i)$

Since log is monotonic the 'c' maximizing
$$p(y=c|x_i)$$
 also muximizes $\log p(y_i=c|x_i) = \sum_{j=1}^{d} \left[p(x_{ij}|y=c) \right] + p(y=c) + constant$ which is the same for all 'c'

Bonus Slide: p(x_i) under naïve Bayes

- Generative models don't need p(x_i) to make decisions.
- However, it's easy to calculate under the naïve Bayes assumption:

$$p(x_{i}) = \sum_{c=1}^{K} p(x_{i}, y = c) \quad (maryinalization rule)$$

$$= \sum_{c=1}^{K} p(x_{i} | y = c) p(y = c) \quad (product rule)$$

$$= \sum_{c=1}^{K} p(x_{i} | y = c) p(y = c) \quad (naive Bayes assumption)$$

$$= \sum_{c=1}^{K} p(x_{i}, y = c) p(y = c) \quad (naive Bayes assumption)$$
These are the quantities we compute during training.

Bonus Slide: Less-Naïve Bayes

• Given features {x1,x2,x3,...,xd}, naïve Bayes approximates p(y|x) as:

$$\rho(y|x_1,y_2,...,x_d) \propto \rho(y)\rho(x_1,y_2,...,x_d|y) \qquad \int \rho(x_1|x_1,y_2,...,x_d) = \rho(y)\rho(x_1|y)\rho(x_2|x_1,y)\rho(x_3|x_2,x_1,y) \cdot ... \rho(x_d|x_1,x_2,...,x_{d-1},y) \\
\approx \rho(y)\rho(x_1|y)\rho(x_2|y)\rho(x_3|y) \cdot ... \rho(x_d|y) \quad (naive Buyes assumption)$$

- The assumption is very strong, and there are "less naïve" versions:
 - Assume independence of all variables except up to 'k' largest 'j' where j < i.
 - E.g., naïve Bayes has k=0 and with k=2 we would have:

$$\approx \rho(y) \rho(x, |y) \rho(x_2 |x_1, y) \rho(x_1 |x_2, x_1 | x_3) \rho(x_4 | x_3, x_2, y) \cdots \rho(x_d |x_{d-2}, x_{d-1}) \gamma)$$

- Fewer independence assumptions so more flexible, but hard to estimate for large 'k'.
- Another practical variation is "tree-augmented" naïve Bayes.