RICH Mirror Alignment

20/06/2016

Paras Naik, Claire Prouve, Anatoly Solomin + more

Misalignment

Identify misalignment:

$$\Delta\theta_{C}(\Phi) = \theta_{meas.} - \theta_{exp.}$$

$$\Delta\theta_{C}(\Phi) = \Theta^{y}_{p,s} \cos(\Phi)$$

$$+ \Theta^{z}_{p,s} \sin(\Phi)$$
Misalignments
on detector plane

Overview of the procedure

Events from HLT1 line

database

Select high energy tracks and reconstruct them under the pion hypothesis.

Fill histograms with $\Delta\theta$ vs. Φ distribution of unambiguous photons

for each mirror combination.

Replace database and perform another iteration.

Alignment converged!

Produce new database and verify if the convergence criteria was met.

Fit misalignments on detector plane for each mirror combination and determine individual mirror misalignments.

Run I vs. Run II

Run I:

- Offline, after data taking
- with Ganga for the Brunel reconstruction
- Alignment applied at the end-of-year reprocessing

Run II:

- Online: after HLT1 and before HLT2
- HLT farm (~1700 nodes)
- Alignment runs automatically for each Fill in monitoring mode since end of May
- HLT1 lines for each RICH detector
 - → triggers on tracks that populate the outer mirrors

What's new in 2016?

Disentangling mirror-pairs

Each pair of **primary mirror p** and **secondary mirror s** has 2 equations:

$$\begin{array}{l} A_{p,s}^{y} | \alpha_{p}^{y} + B_{p,s}^{y} | \beta_{s}^{y} + a_{p,s}^{y} | \alpha_{p}^{z} + b_{p,s}^{y} | \beta_{s}^{z} = \Theta_{p,s}^{y} \\ A_{p,s}^{z} | \alpha_{p}^{z} + B_{p,s}^{z} | \beta_{s}^{z} + a_{p,s}^{z} | \alpha_{p}^{y} + b_{p,s}^{z} | \beta_{s}^{y} = \Theta_{p,s}^{z} \end{array}$$

Magnification factors

individual mirror tilts

Challenge: not enough information to fully constrain the solution

RICH1: 8 equations for 10 unknowns

Rotation of primary mirrors followed by according rotation of secondary mirrors yields same results

Need additional constraint

Disentangling – until 2016

RICH1:

fix primary
 mirrors,
 align secondary
 mirrors

RICH2:

• Left half:
system of
equations linking
all mirrors
starting from
primary mirror
12.

Disentangling – from 2016

L2 regularization (ridge regression):

Advantages:

- more stable than the previous method
- Stable w.r.t. small statistical fluctuations (unlike L1 regularization)
- → Fewer iterations needed to converge

Recent results

First alignment 2016

- In the global tag cond-20160517
- Started from completely unaligned mirrors

RICH1 Cherenkov angle resolution per iteration of first alignment 2016

RICH2 Cherenkov angle resolution per iteration of first alignment 2016

Stability of tilts — RICH1

Stability of tilts — RICH1

Stability of tilts – RICH2

Stability of Resolution

Resolutions from refractive index calibration (without HPD image correction).

More very new features

- Different convergence criteria for primary and secondary mirrors in y and z respectively
- Possibility to automatically compare output of alignment with another given alignment
 - during MagUP start from MagUP alignment (which is not in the database currently)
 - converge within few iterations
 - calculate the difference to alignment in the current Conditions Database

Iterations needed to converge

Current 'monitoring'

RICH alignment summaries

Use end date?

https://lbgroups.cern.ch/rich/alignmentview.php

- Tilts in y
- Tilts in z

RICH 1 alignments	RICH 2 alignments
20160616_170644	
20160616_174432	
20160616_180427	
20160616_182620	
20160616_185541	
20160616_191413	
20160616_192744	
20160616_195828	
20160616_203146	
20160616_205455	
20160617_162358	
	20160617_163833
20160618_202237	
	20160618_203859

20160619_103743

20160619_161042

20160619_185109

20160619_155907

20160619_183331

Date:

2016/06/16

Submit Query

End date: 2016/06/20

Backup

Resolution

New HLT Lines

- Trigger on tracks that will populate the hardest-to-populate mirror-pairs
- usually the very outer mirrors
- Other tracks in the events will populate the rest

RICH2 line:

p > 40 GeV **&&** χ^2 < 2 **&&** 2.65 < η < 2.80 (-2.59 < Φ < -2.49) || (-0.65 < Φ < -0.55) || (0.45 < Φ < 0.65) || (2.49 < Φ < 2.59)

RICH1 line:

p > 10 GeV **&&** χ^2 < 2 **&&** 1.6 < η < 2.04 (-2.65 < Φ < -2.3) || (-0.8 < Φ < -0.5) || (0.5 < Φ < 0.8) || (2.3 < Φ < 2.65)

Need to reconstruct ~10 times less events!

Magnification coefficients

Magnification coefficients: Translate the tilt on the detector plane into actual mirror tilts

Magnification coefficients are calculated new for each iteration:

- Introduce 8 rotations: primary and secondary mirrors rotated around ±y and ±z axis respectively
- Rotate about 0.3 mrad (half the resolution of RICH2)
- Reconstruct events for each rotation and evaluate the tilts on the detector plane

Need to reconstruct all events 9 times!

$$\Theta^y \approx 2.0 \,\alpha^y - 0.9 \,\beta^y$$
 and $\Theta^z \approx 1.8 \,\alpha^z + 0.6 \,\beta^z$.

Further improvements

Magnification coefficients:

- translate the misalignment-on-the-detector-plane into actual mirror tilts
- Previously calculated for every alignment for each iteration on data
- Tested using the same set for all alignments and all iterations
- No significant difference in resulting mirror tilts and procedure 9 times faster!!!

Improved method for fitting histograms:

- use same Gaussian width for each slice in phi
- → Same resulting mirror-tilts and 3 times faster

