Chapter 8 欧氏空间上的函数与极限

8.1 欧氏空间与解析几何

(这一节最终放到第六章中) 点列的极限

8.2 开集与闭集

补集、内点、外点、边界点、孤立点、聚点;聚点三个等价定义:点的任一邻域都有集合中无穷多个点;点的任一邻域都有集合中不同于这个点的点;集合中可以构造出一个点列(无穷多项不为零)收敛于这个点

开集、闭集(单点集为闭集); 开集之补为闭,闭集之补为开; 开集之并为开集,闭集之交为 闭集,开集之有限交为开集,闭集之有限并为闭集

8.3 完备性等价表述

- 1. 矩形套定理. 推广: Cantor 闭区域套定理
- 2. BW 定理, 有界点列必有收敛子列. 推广: 聚点原理: 有界无穷点集必有聚点
- 3. Cauchy 收敛准则,点列收敛 $\Leftrightarrow \forall \varepsilon > 0, \exists N \text{ s.t. } k, l > N \text{ 时 } |\vec{x_k} \vec{x_l}| < \varepsilon$
- 4. Heine-Borel 定理,紧集等价于有界闭集. 紧集:任意开覆盖必有有限子覆盖的集合

8.4 多元函数的极限与连续

多元函数,多元函数在某点的极限,多元函数的连续. 多元初等函数在定义域内连续. 连续的复合还是连续

- 存在极限(全面极限):不管怎么趋向都有极限且极限相同.
- 累次极限: 先 x 取极限后 y 取极限或者先 y 后 x.
- 关系:
 - 累次极限与全面极限无关,累次极限之间也无关.
 - 如果全面极限存在,累次极限中先取的极限也存在,则累次极限必存在,且等于全面极限.
 - 如果全面极限存在且两个累次极限都存在,则它们都相等
 - 函数在连续点上的累次极限与全面极限均存在且相等

8.5 向量值函数

向量值函数连续,等价于每一个分函数在这个点都连续

8.6 有界闭集上的连续函数

边界点的邻域: 邻域与集合相交的部分. 以此定义紧集上的连续. 以下"有界闭集上的连续函数"简称"闭连函数"

连续映射将紧集映射到紧集. 由此推出有界性定理(闭连函数必有界)、最值定理(闭连函数 的值域存在最大最小值).

连通集. 连通有界闭集才是闭区间的推广. 连续映射把连通集映射到连通集(特别地,连续函数将连通紧集集映射到闭区间). 由此推出介值定理.

一致连续:存在一个与点的选取无关的 ε . Cantor 定理:闭连必一致连

Chapter 9 多元函数微分学

分为五个副章节:

- 9.1~9.6 偏导与全微分:偏导,全微分,高阶偏导,高阶微分,向量值函数导数微分,复 合函数微分
- 9.7~9.8 多元中值定理:中值定理, Taylor 公式
- 9.9~9.10 隐函数: 隐函数存在定理, 逆映射存在定理
- 9.11~9.12 切线法平面、法线切平面
- 9.13~9.14 多元函数极值: 无条件极值,条件极值

9.1 偏导

偏导的定义,方向导数的定义. 注意方向导数要求除以的方向向量要是单位向量. 方向向量可以表示为 $(\cos \alpha, \cos \beta, \cos \gamma, \cdots)$. 当方向与坐标轴相同时等于偏导,相反时等于偏导的负数. 对多元函数而言,可导即是可偏导.

"可导必连续"不成立,原因:偏导只考虑导的那个方向的性质,而连续要所有方向的性质

9.2 全微分

定义: $\exists A, B \text{ s.t.}$ 某一点处 $\Delta f = A\Delta x + B\Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2})$,则 f 可微, $\mathrm{d}f = A\mathrm{d}x + B\mathrm{d}y$ 称为 f 在该点的全微分

可微是一个很强的条件:

- 可微 \Rightarrow 可导, $A=f_x(x_0,y_0)$, $B=f_y(x_0,y_0)$
- 可微 \Rightarrow 方向导数存在,且对于 $ec{v} = (\cos lpha, \cos eta, \cdots)$, $rac{\partial f}{\partial ec{v}} = f_x(x_0, y_0, \cdots) \cdot \cos lpha + f_y(x_0, y_0, \cdots) \cdot \cos eta + \cdots$
- 可微 ⇒ 连续
- 可导 💉 可微,可导都推不出连续了当然不可微
- 可导+连续+任一方向导数都存在 💉 可微
- 可微唯一充分条件:偏导均连续 ⇒ 可微

9.3 高阶偏导

两种表示方法: $\frac{\partial 2f}{\partial x \partial y}$, f_{xy} . 注意两个的顺序,第一种是先 y 后 x,第二种是先 x 后 y. 混合偏导之间不一定相等.

混合偏导连续 \Rightarrow 混合偏导相等. 若函数有 n 阶连续偏导,导的次数 \leqslant n,则混合偏导的顺序不影响结果. 注:混合偏导连续 \Longrightarrow 混合偏导相等

Leibniz 二项展开可以用

9.4 高阶微分

$$\mathrm{d}f = rac{\partial f}{\partial x}\mathrm{d}x + rac{\partial f}{\partial y}\mathrm{d}y$$
,若 f_x 、 f_y 可微、 f_{xy} 、 f_{yx} 连续,则可以再微分, $\mathrm{d}^2 f = (\mathrm{d}x \frac{\partial}{\partial x} + \mathrm{d}y \frac{\partial}{\partial y})^2 f$. 类推: $\mathrm{d}^k f = (\mathrm{d}x \frac{\partial}{\partial x} + \mathrm{d}y \frac{\partial}{\partial y})^k f$.

对
$$n$$
 元函数: $\mathrm{d}^k f = (\mathrm{d} x_1 \frac{\partial}{\partial x_1} + \mathrm{d} x_2 \frac{\partial}{\partial x_2} + \dots + \mathrm{d} x_n \frac{\partial}{\partial x_n})^k f.$

9.5 向量值函数的导数与微分

向量值函数:许多数量值函数的组合.

导数 $\vec{f}'(\vec{x_0})$ 为 Jacobi 矩阵,同一行为同一分函数,同一列为同一自变量.

若存在矩阵 $A ext{ s.t. } \Delta \vec{f} = \vec{f}(\vec{x_0} + \Delta \vec{x}) - f(\vec{x_0}) = A \Delta \vec{x} + o(\Delta \vec{x})$ 则称 $f \in \vec{x_0}$ 可微, $\operatorname{d} \vec{f} = A \operatorname{d} \vec{x}$.

若可微则 $A = \vec{f}'(\vec{x_0}) d\vec{x}$

可微等价于每个分函数都可微

9.6 复合函数微分

链式法则:外层导一下×内层导一下,中间的乘号是矩阵相乘. $z=f(u,v), \vec{g}= \begin{cases} u=u(x,y) \\ v=v(x,y) \end{cases}$,则 $\frac{\partial z}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}$, $\frac{\partial z}{\partial u}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}$

链式法则成立条件: 外层函数可微

一阶全微分有形式不变性:函数自变量不管是否是中间变量,其微分的公式是一样的.

高阶微分不具有形式不变性,除非中间变量是线性变量

9.7 中值定理

 $f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=f_x(x_0+\theta\Delta x,y_0+\theta\Delta y)\Delta x+f_y(x_0+\theta\Delta x,y_0+\theta\Delta y)\Delta y$, $0<\theta<1$,四个 θ 是一样的. 由这个式子可知,两个点的连线必须在集合内. 这里引出凸区域和星形域.

推论: 函数在区域上偏导恒为零,则函数为常函数

9.8 Taylor 公式

$$egin{aligned} f(x_0+\Delta x,y_0+\Delta y) &= f(x_0,y_0) \ &+ (\Delta x rac{\mathrm{d}}{\mathrm{d}x} + \Delta y rac{\mathrm{d}}{\mathrm{d}y}) f(x_0,y_0) \ &+ rac{1}{2!} (\Delta x rac{\mathrm{d}}{\mathrm{d}x} + \Delta y rac{\mathrm{d}}{\mathrm{d}y})^2 f(x_0,y_0) \ &+ \cdots \ &+ rac{1}{k!} (\Delta x rac{\mathrm{d}}{\mathrm{d}x} + \Delta y rac{\mathrm{d}}{\mathrm{d}y})^k f(x_0,y_0) \ &+ rac{1}{(k+1)!} (\Delta x rac{\mathrm{d}}{\mathrm{d}x} + \Delta y rac{\mathrm{d}}{\mathrm{d}y})^{k+1} f(x_0 + heta \Delta x, y_0 + heta \Delta y) \end{aligned}$$

经常展开到两次:

$$egin{aligned} f(x_0 + \Delta x, y_0 + \Delta y) &= f(x_0, y_0) \ + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y \ + f_{xx}(x, y) (\Delta x)^2 + 2 f_{xy}(x, y) (\Delta x \Delta y) + f_{yy}(x, y) (\Delta y)^2 \end{aligned}$$

其中 $(x,y) = (x_0 + \theta \Delta x, y_0 + \theta \Delta y)$

注意,用 Taylor 算高阶导数,<mark>除了要乘以 k!,还要除以 C_k^m (二项式系数)!!!</mark>

9.9 隐函数存在定理

- 1. 原方程(组)有零点
- 2. 各方程偏导连续
- 3. 对因变量求导不为零(Jacobi 行列式不为零)
- 则
 - 存在隐函数
 - 隐函数连续

例如
$$F(x_1,\cdots,x_n,y)=0$$
,若 $\dfrac{\partial F}{\partial y}
eq 0$,则 $\dfrac{\partial y}{\partial x_i}=-\dfrac{\dfrac{\partial F}{\partial x_i}}{\dfrac{\partial F}{\partial y}}$

例如
$$F_j(x_1,\cdots,x_n,y_1,\cdots,y_m)=0$$
,若 $\dfrac{\partial(F_1,\cdots,F_j,\cdots,F_m)}{\partial(y_1,\cdots,y_j,\cdots,y_m)}
eq 0$,则

$$rac{\partial y_j}{\partial x_i} = -rac{rac{\partial (F_1, \cdots, F_j, \cdots, F_m)}{\partial (y_1, \cdots, x_i, \cdots, y_m)}}{rac{\partial (F_1, \cdots, F_j, \cdots, F_m)}{\partial (y_1, \cdots, y_j, \cdots, y_m)}}$$

9.10 逆映射存在定理

 $ec{f}=egin{cases} u=u(x,y)\ v=v(x,y) \end{cases}$,把 $ec{f}$ 作为隐函数塞进方程组 $egin{cases} F(x,y,u,v)=u-u(x,y)=0\ G(x,y,u,v)=v-v(x,y)=0 \end{cases}$,当 $ec{f}$ 行列式不为零时 $\dfrac{\partial(F,G)}{\partial(x,y)}
eq 0$,唯一确定 $ec{g}=egin{cases} x=x(u,v)\ y=y(u,v) \end{cases}$,就是 $ec{f}$ 的逆映射, $ec{g}$ 有连续导数,导数矩阵是 $ec{f}$ 导数矩阵的逆矩阵

9.11 曲线的切线与法平面

曲线
$$egin{cases} x=x(t) \ y=y(t)$$
, $x_0=x(t_0)$,类推. 曲线在 $P_0(x_0,y_0,z_0)$ 处的切向量: $z=z(t)$

$$ec{ au} = (x'(t_0), y'(t_0), z'(t_0))$$

曲线
$$\left\{egin{aligned} F(x,y,z) &= 0 \ G(x,y,z) &= 0 \end{aligned}
ight.$$
 曲线在 $P_0(x_0,y_0,z_0)$ 处的切向量: $ec{ au} = \left(rac{\partial(F,G)}{\partial(y,z)},rac{\partial(F,G)}{\partial(z,x)},rac{\partial(F,G)}{\partial(x,y)}
ight)$

在 $P_0(x_0, y_0, z_0)$ 处的切向量 $\vec{\tau} = (a, b, c)$,则

- 切线 $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$,若分母是 0 则分子恒为 0 且这一项剥出连等式.
- 法平面 $(x-x_0)a + (y-y_0)b + (z-z_0)c = 0$

9.12 曲面的法线与切平面

曲面 F(x,y,z)=0. 曲面在 $P_0(x_0,y_0,z_0)$ 处的法向量: $\vec{n}=(F_x,F_y,F_z)\big|_{(x_0,y_0,z_0)}$

曲面 z=f(x,y),改写为 f(x,y)-z=0. 曲面在 $P_0(x_0,y_0,z_0)$ 处的法向量: $\vec{n}=(f_x,f_y,-1)ig|_{(x_0,y_0)}$

曲面
$$egin{cases} x = x(u,v) \ y = y(u,v)$$
. 曲面在 $P_0(x_0,y_0,z_0)$ 处的法向量: $\vec{n} = \left(rac{\partial(y,z)}{\partial(u,v)}, rac{\partial(z,x)}{\partial(u,v)}, rac{\partial(x,y)}{\partial(u,v)}
ight) ig|_{(u_0,v_0)}$

在 $P_0(x_0, y_0, z_0)$ 处的法向量 $\vec{n} = (a, b, c)$,则

- 法线 $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$,若分母是 0 则分子恒为 0 且这一项剥出连等式.
- 切平面 $(x-x_0)a+(y-y_0)b+(z-z_0)c=0$

9.13 无条件极值

极值点必要条件: 若可偏导则偏导必为零, 对每个自变量偏导都是零

极值判定定理:对某一点,泰之到二次,考虑二次项系数构成的二次型矩阵的定性,正定则为 该点极小值点,负定则该点为极大值点,不定则不是极值点.

注:正定:任意阶主子式行列式为正;负定:奇数阶主子式行列式为负,偶数阶主子式行列式为正.

二元情形具体化为: 令 $A=f_{xx}(x_0,y_0)$, $B=f_{xy}(x_0,y_0)$, $C=f_{yy}(x_0,y_0)$

- $AC-B^2>0$,A>0,则正定,为极小值点
- $AC B^2 > 0$,A < 0,则负定,为极大值点
- $AC-B^2<0$,不是极值点
- $AC B^2 = 0$,情况不定

9.14 条件极值

条件极值点必要条件:Lagrange 乘数法,即将条件塞进同一个函数(Lagrange 函数 $L(x_1,\dots,x_n,\lambda_1,\dots,\lambda_m)$)求这个函数的无条件极值

条件极值判定定理:对某一点,把 Lagrange 函数泰到二次,考虑只含x的二次项系数构成的二次型矩阵的定性(因为作为限制条件, λ 取值是固定的,在泰展中取值只能是本身,不存在变数),正定则为该点极小值点,负定则该点为极大值点,不定则情况不定(限制条件内可能恒正或恒负).

Chapter 10 重积分

10.1 重积分的概念与性质

平面点集的面积,二重积分的概念,多重积分的概念

性质:

- 闭连必可积(闭连:有界闭集上的连续函数)
- 可积必有界
- 可积之线性组合也可积,积分值也线性组合
- 可积相乘也可积,但积分值无关
- 可积则绝对可积, $|\int f dV| \leq \int |f| dV$
- 区域可加性
- 保序性 $(f \leq g \Rightarrow \int f dV \leq \int g dV)$
- 介值性 (inf $f \cdot V \leq \int f dV \leq \sup f \cdot V$)
- 典中典: f 闭连,非负,积分值为 0,则 $f \equiv 0$ (证明: 假设不恒为零,则存在保号区域,其上积分大于零,又非负故整个积分区域上积分值必大于零,矛盾)

10.2 累次积分

把重积分拆成多个定积分计算. 前提: 函数可重积分、对某一个变量可定积分.

交换次序: 先化成重积分,找出积分区域的表达式,再拆成累次

10.3 重积分换元法则

$$\iint_{T(D)} f(x,y) \mathrm{d}x \mathrm{d}y = \iint_{D} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \mathrm{d}u \mathrm{d}v, \ \ \ \sharp \pitchfork T : \begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}.$$

 $\left|rac{\partial(x,y)}{\partial(u,v)}
ight|$ 即为 T 的 Jacobi 行列式. Jacobi 行列式是变换前后面积微元变化的倍数,即 $\mathrm{d}u\mathrm{d}v$

作变换
$$T$$
 之后 $\mathrm{d}x\mathrm{d}y = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \mathrm{d}u\mathrm{d}v$

有时候已知的是 T^{-1} 的 Jacobi 行列式,这时候不用反解, $\frac{\partial(x,y)}{\partial(u,v)}\cdot\frac{\partial(u,v)}{\partial(x,y)}=1$,即 T 的 Jacobi 行列式就是 T^{-1} Jacobi 行列式的倒数.

(二重)极坐标变换
$$egin{cases} x = r\cos heta \ y = r\sin heta \end{cases}$$
,Jacobi $= r$

(二重)广义极坐标变换 $egin{pmatrix} x = ar\cos heta\ y = br\sin heta \end{pmatrix}$,Jacobi = abr

(三重) 柱坐标变换

$$\left\{ egin{aligned} x = r\cos heta\ y = r\sin heta \ , \ \mathsf{Jacobi} = r\ z = z \end{aligned}
ight.$$

(三重) 球坐标变换

$$egin{cases} x = r\sinarphi\cos heta \ y = r\sinarphi\sin heta , \;\; \mathsf{Jacobi} = r^2\sinarphi. \ z = r\cosarphi \end{cases}$$

其中 φ 是向径与 +z 的夹角, $0\leqslant \varphi\leqslant \pi$, $0\leqslant \theta<2\pi$. $(\frac{1}{2}\pi-\varphi)$ 才是仰角

(n 重) 球坐标变换

$$\begin{cases} x_1 = r\cos\varphi_1 \\ x_2 = r\sin\varphi_1\cos\varphi_2 \\ x_3 = r\sin\varphi_1\sin\varphi_2\cos\varphi_3 \\ x_4 = r\sin\varphi_1\sin\varphi_2\sin\varphi_3\cos\varphi_4 \\ \vdots \\ x_{n-1} = r\sin\varphi_1\sin\varphi_2\sin\varphi_3\cdots\sin\varphi_{n-2}\cos\varphi_{n-1} \\ x_n = r\sin\varphi_1\sin\varphi_2\sin\varphi_3\cdots\sin\varphi_{n-2}\sin\varphi_{n-1} \\ = r^{n-1}\sin^{n-2}\varphi_1\sin^{n-3}\varphi_2\cdots\sin\varphi_{n-2}. \end{cases} , \text{ Jacobi }$$

把三元球坐标变换的 z 提前,就和这个形式一样了. 各个角度的理解:要把 n 维空间想象成一个平面+ (n-2) 个竖直轴. φ_{n-1} 是平面指向角,相当于以前的 $\theta \in [0,2\pi)$,这个角是不出现在 Jacobi 里头的. 其他就是相对于各个竖直轴正向的夹角 $\in [0,\pi]$

Chapter 11 曲线积分与曲面积分

11.1 & 11.3 曲线积分

对于曲线
$$\begin{cases} x=x(t)\\y=y(t)\,,\ \text{记字母头上一点为对}\,t\, 求导,则由弧长公式 \\ z=z(t) \end{cases}$$
 $\widehat{s}=\int_a^b\sqrt{(\dot{x})^2+(\dot{y})^2+(\dot{z})^2}\mathrm{dt}$ 得到:

• 第一类曲线积分

•
$$ds = \sqrt{(\dot{x})^2 + (\dot{y})^2 + (\dot{z})^2} dt$$

• 第二类曲线积分

•
$$d\vec{s} = (\dot{x}, \dot{y}, \dot{z})dt$$

11.2 & 11.4 曲面积分

对于曲面
$$\begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases}$$

- 第一类曲面积分
 - ullet d $S=ertec{r_u} imesec{r_v}ert\mathrm{d}u\mathrm{d}v$

 - $\mathrm{d}S = \sqrt{EG F^2}\mathrm{d}u\mathrm{d}v$,其中 $E = \vec{r_u} \cdot \vec{r_u}$, $G = \vec{r_v} \cdot \vec{r_v}$, $F = \vec{r_u} \cdot \vec{r_v}$ $\mathrm{d}S = \sqrt{J_1^2 + J_2^2 + J_3^2}\mathrm{d}u\mathrm{d}v$,其中 $(J_1, J_2, J_3) = \left(\frac{\partial(y, z)}{\partial(u, v)}, \frac{\partial(z, x)}{\partial(u, v)}, \frac{\partial(x, y)}{\partial(u, v)}\right)$,与 \vec{n} 的方向一致.
- 第二类曲面积分
 - $d\vec{S} = (dydz, dzdx, dxdy)$
 - $\mathrm{d}\vec{S} = \frac{\vec{n}}{|\vec{n}|} \mathrm{d}S = (\cos\alpha, \cos\beta, \cos\gamma) \mathrm{d}S$,代入上面合适的 $\mathrm{d}S$ 计算公式即可. 特别地, 选择第三个公式时 $d\vec{S} = \left(\frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v)}\right) dudv$
 - 计算时,先用第一条把 $d\vec{S}$ 分出来,写成一个向量点乘形式($(P,Q,R)\cdot d\vec{S}$),再 用第二条把 $d\vec{S}$ 变成向量 $\cdot dS$,化成二重积分计算.

对于曲面 z = z(x,y), $\vec{r} = (x,y,z(z,y))$, 取自变量为 x 和 y:

$$ullet$$
 $ec{r_x}=(1,0,z_x)$, $ec{r_y}=(0,1,z_y)$, $\sqrt{EG-F^2}=\sqrt{1+z_x^2+z_y^2}$, $(J_1,J_2,J_3)=(-z_x,-z_y,1)$.

11.5 第二类积分与重积分的关系

诱导定向,"左边"

Green 公式:
$$\int_{\partial D} P \mathrm{d}x + Q \mathrm{d}y = \iint_D (Q_x - P_y) \mathrm{d}x \mathrm{d}y.$$

要求 D 为单连通区域,若有有限个洞可以割开算

Green 定理:下列四个命题等价

- 1. 对 D 内任一闭曲线 L, $\oint_I P dx + Q dy = 0$
- 2. $\int_{T} P dx + Q dy$ 与路径无关,只与起点终点有关
- 3. 存在 D 上可微函数 U(x,y) s.t. $\mathrm{d}U=P\mathrm{d}x+Q\mathrm{d}y$,即 1-形式 $P\mathrm{d}x+Q\mathrm{d}y$ 存在原函数
- $4. D \perp Q_x \equiv P_y$

循环常数:一条曲线包围了一个瑕点,包围区域内所有点除了瑕点都满足 $Q_x \equiv P_y$. 这时候找 一个逆时针闭合曲线围住瑕点,计算它上面的积分,其值称为循环常数. 则曲线上的积分值 = 环绕瑕点的圈数(带正负,逆时针为正,顺时针为负)×循环常数

Gauss 公式:
$$\iint_{\partial\Omega} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y = \iiint_{\Omega} (P_x + Q_y + R_z) \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

要求 Ω 为单连通区域,若有有限个洞可以割开算.

Stokes 公式:
$$\int_{\partial \Sigma} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z = \iint_{\Sigma} (R_y - Q_z) \mathrm{d}y \mathrm{d}z + (P_z - R_x) \mathrm{d}z \mathrm{d}x + (Q_x - P_y) \mathrm{d}x \mathrm{d}y$$

行列式形式:

$$\int_{\partial \Sigma}\! P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z = \iint_{\Sigma} egin{array}{c|c} \mathrm{d}y \mathrm{d}z & \mathrm{d}z \mathrm{d}x & \mathrm{d}x \mathrm{d}y \ rac{\partial}{\partial x} & rac{\partial}{\partial z} & rac{\partial}{\partial z} \ P & Q & R \end{array} egin{array}{c|c} \cos lpha & \cos eta & \cos \gamma \ rac{\partial}{\partial x} & rac{\partial}{\partial z} \ P & Q & R \end{array} \mathrm{d}S$$

Chapter 12 数项级数

12.1 级数收敛

级数收敛定义;几何级数 $\sum x^n$, $|x|\geqslant 1$ 时发散, |x|<1 时收敛, $\sum\limits_{n=1}^\infty x^n=\frac{x}{1-x}$; p-级数 $\sum \frac{1}{n^p}$, p>1 时收敛, $p\leqslant 1$ 时发散

级数收敛 ⇒ 通项趋于零,用于证明级数发散

收敛级数线性组合也收敛,收敛值也是线性组合

结合律,收敛 ⇒ 加括号收敛且和不变,加括号发散 ⇒ 发散

积化和差: $\forall x$, $\sum \sin nx$ 有界. $\sum \cos nx$, $x \neq 2k\pi$ 时有界, $x = 2k\pi$ 时发散.

12.2 正项级数敛散性判断

部分和判别法: 正项级数部分和有界则收敛,无界则发散

比较判别法: 正项级数,通项 $a_n \leqslant Ab_n$,则 $\sum b_n$ 敛则 $\sum a_n$ 敛, $\sum a_n$ 散则 $\sum b_n$ 散.

比较判别法极限形式: $\sum a_n$ 与 $\sum b_n$ 为正项级数. 记 $\lim_{n \to \infty} rac{a_n}{b_n} = l$ (未知比已知之极限为 l),则

- $0 < l < +\infty$ 时,分子分母同敛散
- l=0时,分母敛则分子敛
- $l = +\infty$ 时,分母散则分子散

比较判别法迫敛形式: $\sum a_n$ 、 $\sum b_n$ 收敛,若 $a_n \leqslant u_n \leqslant b_n$,则 $\sum u_n$ 收敛.

Cauchy 判别法: 正项级数, $\overline{\lim_{n \to \infty}}\sqrt[n]{x_n} = r$,则

- r < 1 时级数收敛
- r > 1 时级数发散
- r = 1 时不定

d'Alembert 判别法:正项级数, $\lim_{n o\infty}rac{a_{n+1}}{a_n}=r$,则

- r < 1 时级数收敛
- r > 1 时级数发散
- r=1时不定

Raabe 判别法:正项级数, $\lim_{n o\infty}n(rac{a_n}{a_{n+1}}-1)=r$,则

- r > 1 时级数收敛
- r < 1 时级数发散
- r=1 时不定

积分判别法: f(x) 在 $[a,+\infty)$ 非负单减,任意区间 [a,A] 可积,则 $\sum\limits_{n=N}^{\infty}f(n)$ 与 $\int_a^{+\infty}f(x)\mathrm{d}x$ 同 敛散

12.3 任意项级数敛散性判断

Cauchy 收敛原理: 部分和收敛的 Cauchy 收敛原理

Leibniz 判别法: 一正一负,绝对值单减趋零

Abel 变换: $\sum\limits_{n=1}^{p}a_{n}b_{n}=B_{p}a_{p}-\sum\limits_{n=1}^{p-1}B_{n}(a_{n+1}-a_{n})$,几何直观:

Abel 引理: $\{a_n\}$ 单调, $\{B_n\}$ 有界($|B_n|\leqslant M$),则 $|\sum\limits_{1}^{p}a_kb_k|\leqslant M(|a_1|+2|a_p|)$

A-D 判别法

- Abel 判别法: 单调有界 × 部分和收敛
- Dirichlet 判别法: 单调趋零 × 部分和有界

12.4 绝对收敛与条件收敛

绝对收敛 ⇒ 收敛

绝对发散 🐋 发散,但 Cauchy 判出来绝对发散或 d'Alembert 判出来绝对发散的,原级数必发散

正负部拆分:
$$x_n^+=\left\{egin{array}{l} x_n,\; x_n>0 \\ 0,\; x_n\leqslant 0 \end{array}
ight.,\;\; x_n^-=\left\{egin{array}{l} -x_n,\; x_n<0 \\ 0,\; x_n\geqslant 0 \end{array}
ight.$$
 有两个等式: $|x_n|=x_n^++x_n^-$, $x_n=x_n^+-x_n^-$

重排级数:

- 对绝对收敛的级数,任一重排级数都绝对收敛,收敛值不变
- 对条件收敛的级数,存在重排级数收敛于任意实数,或者发散到无穷

级数相乘

- 两个收敛级数 $\sum a_n = A$ 和 $\sum b_n = B$ 按正方形排列的乘积,收敛于 AB
- 两个绝对收敛级数 $\sum a_n = A$ 和 $\sum b_n = B$ 相乘,不论怎么排序都收敛且收敛于 AB
- Cauchy 乘积 $c_n=\sum\limits_{i+j=n+1}a_ib_j$,若 $\sum a_n$ 、 $\sum b_n$ 、 $\sum c_n$ 都收敛,那么 $\sum c_n=AB$ (这个的证明在 13.5)

12.5 无穷乘积

代换, $p_n=1+a_n$

 $\prod p_n$ 与 $\sum \ln p_n$ 同敛散

 a_n 不变号时 $\prod (1+a_n)$ 与 $\sum a_n$ 同敛散. 等价形式: p_n 不跨过 1 的分界线时 $\prod p_n$ 与 $\sum (p_n-1)$ 同敛散.

 $\sum a_n$ 收敛,则 $\sum a_n^2$ 与 $\prod (1+a_n)$ 同敛散

 $\prod p_n$ 绝对收敛,即 $\sum \ln p_n$ 绝对收敛. 绝对收敛的无穷乘积可以换序.

 $\prod (1+a_n)$ 绝对收敛、 $\prod (1+|a_n|)$ 收敛、 $\sum |a_n|$ 收敛,三者等价

Wallis 公式: $\frac{2}{\pi} = \frac{1 \cdot 1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot \cdots}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot \cdots}$

Viète 公式: $\frac{2}{\pi} = \cos \frac{\pi}{4} \cdot \cos \frac{\pi}{8} \cdot \cos \frac{\pi}{16} \cdot \cdots$

Stirling 公式: $n! \sim \sqrt{2\pi n} \cdot (\frac{n}{e})^n$, $n \to +\infty$. 这使得 n! 有了一个含 n 次方的等价逼近. 极限形式: $\lim_{n \to \infty} \frac{n! e^n}{n^{n+\frac{1}{2}}} = \sqrt{2\pi}$

Chapter 13 函数项级数

13.1 点态收敛

点态收敛,收敛域,部分和函数,和函数,对偶性

13.2 一致收敛

- 一致收敛,内闭一致收敛
- 一致收敛 \Leftrightarrow 部分和函数与和函数的距离趋于零,距离即 $\sup_{x\in D}|f(x)-g(x)|$

13.3 一致收敛判别法

想判断不一致收敛:证明 sup>0 且可被达到,这样 sup 不趋于零,不一致收敛

Cauchy 收敛原理: 部分和函数收敛的 Cauchy 收敛原理

Weierstrass 判别法/ M 判别法:若 $\forall x \in D$,成立 $|u_n(x)| \leq a_n$ 且 $\sum a_n$ 收敛,则 $\sum u_n(x)$ 在 D 上一致收敛,而且绝对一致收敛

A-D 判别法

- Abel 判别法: 单调一致有界 × 部分和函数一致收敛
- Dirichlet 判别法: 单调一致趋零 × 部分和函数一致有界
- 注:其中"单调"指的是对任意<mark>固定的 x_0 </mark>,数列 $\{a_n(x_0)\}$ <mark>随 n 单调</mark>;"一致有界"指的是对一切 n,函数值域有一个一致的界;"一致趋零"指的是随着 $n \to 0$,函数通项趋于 $f(x) \equiv 0$.
- 注: $\sum \cos kx$ 、 $\sum \sin kx$ 在 $(0, 2\pi)$ 内闭一致有界.

13.4一致收敛的性质

一致收敛的函数项级数,可逐项求极限、可逐项积分.

逐项求导定理: 若① $u_n(x)$ 导数连续、② $\sum u_n(x)$ 点态收敛、③ $\sum u_n'(x)$ 一致收敛,则可逐项求导. 条件③实际上可以推得 $\sum u_n(x)$ 一致收敛

可逐项推不出一致收敛.

Dini 定理:若①闭区间上 $u_n(x)$ 连续、② $\sum u_n(x)$ 点态收敛、③部分和函数对任意<mark>固定的 x_0 随 n 单调</mark>(对任意固定的 x_0 , $\sum u_n(x_0)$ 是定号级数,要么正项要么负项),则 $\sum u_n(x)$ 一致

13.5 幂级数及其性质

形式: $\sum a_n(x-x_0)^n$

收敛域:是以 x_0 为中心的区间(Abel 第一定理),<mark>端点收敛情况不一定,需要单独判断</mark>.区间长度的一半称为收敛半径,收敛半径 $R=+\infty$ 表示对一切x 幂级数都收敛,收敛半径 R=0 表示只有 x_0 点处幂级数收敛.

收敛半径计算公式: $R=rac{1}{A},\;A=0$ 时 $R=+\infty,\;A=+\infty$ 时 R=0

- Cauchy-Hadamard 公式: $A = \overline{\lim_{n o \infty}} \sqrt[n]{|a_n|}$
- d'Alembert 公式: $A = \lim_{n \to \infty} \left| rac{a_{n+1}}{a_n} \right|$

幂级数在收敛域的内闭区间上一致收敛(Abel 第二定理). 据此推出:

- 幂级数的和函数在收敛域上连续,端点开则开连,闭则闭连.
- 幂级数在收敛域的内闭区间上可逐项积分,积分后收敛半径不变. 注意积完之后求和从哪里开始. 一般可以由连续性将这一性质推广到开区间上.
- 幂级数在收敛域内可逐项求导,求导后收敛半径不变. 注意导完之后求和从哪里开始. 注意闭端点不是收敛域的内部.

13.6 函数的幂级数展开

说一个函数可以展开成级数,就是说级数一致收敛于这个函数,函数和级数之间可以画等号.

逻辑: (之后三角级数展开也是这个逻辑)

- 1. 假设某个函数可以被展开成幂级数,发现幂级数被函数唯一确定, $a_n=rac{f^{(n)}(x_0)}{n!}$
- 2. 据此,任意给一个函数,都按上面的规则构造出一个级数,称为这个函数的 Taylor 级数. 这个 Taylor 级数收不收敛、收敛的话收不收敛到 f(x)、是不是一致收敛,这都是后话. 所以这里函数和级数之间只能画波浪号而不能画等号.
- 3. 可以证明,当 f 在 x_0 处任意阶可导时,余项一致趋零,f 的 Taylor 级数一致收敛于 f,就是说 f 可以展开成幂级数,这时候 Taylor 级数就可以叫 Taylor 展开式了.

当 $x_0 = 0$ 时也称为 Maclaurin 级数

Taylor 级数的余项:Peano、Lagrange,补充一个积分形式余项, $r_n(x)=rac{1}{n!}\int_{x_0}^x f^{(n+1)}(t)(x-t)^n\mathrm{d}t.$

对于积分形式余项,运用积分第二中值定理(见 Chapter 14)

• 把
$$f^{(n+1)}(t)$$
 移出积分,得
$$r_n(x) = \frac{1}{n!} f^{(n+1)}(\xi) \int_{x_0}^x (x-t)^n \mathrm{d}t = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-x_0)^{n+1}$$
,即 Lagrange 余项.

• 把
$$f^{(n+1)}(t)(x-t)^n$$
 移出积分,得 $r_n(x)=\frac{1}{n!}f^{(n+1)}(\xi)(x-\xi)^n(x-x_0)$,令 $\xi=x_0+\theta(x-x_0)$ 得 $r_n(x)=\frac{1}{n!}f^{(n+1)}(\xi)(1-\theta)^n(x-x_0)^{n+1}$,称为 Cauchhy 余项.

初等函数 Taylor 表(在 $x_0=0$ 处展开,注意求和从哪里开始). $(1+x)^{\alpha}$ 收敛域, $\alpha>0$ 时两端闭 $\alpha<-1$ 时两端开, $-1<\alpha<0$ 时左开右闭)

	Taylor 展开式	收敛域
$rac{1}{1+x}$	$\sum_{n=0}^{\infty} (-1)^n x^n$	(-1,1)
e^x	$\sum\limits_{n=0}^{\infty}rac{x^{n}}{n!}$	\mathbb{R}
$\sin x$	$\sum_{n=0}^{\infty} rac{(-1)^n}{(2n+1)!} x^{2n+1}$	\mathbb{R}
$\cos x$	$\sum_{n=0}^{\infty}rac{(-1)^n}{(2n)!}x^{2n}$	\mathbb{R}
$\arctan x$	$\sum_{n=0}^{\infty} rac{(-1)^n}{2n+1} x^{2n+1}$	[-1,1]
$\ln(1+x)$	$\sum_{n=1}^{\infty}rac{(-1)^{n+1}}{n}x^n$	(-1,1]
$(1+x)^{lpha}$	$\sum\limits_{n=0}^{\infty}inom{n}{lpha}x^n$	(-1,1),开闭见上
$\arcsin x$	$\sum_{n=1}^{\infty} rac{(2n-1)!!}{(2n)!!} rac{x^{2n+1}}{2n+1}$	[-1,1]

求 Taylor 展开式的思路

- 思路一,对已知的展开式求导. 例如计算 $\frac{1}{x^2}$ 在 $x_0=1$ 的泰展, $\frac{1}{x}=\frac{1}{1+(x-1)}$ $=\sum_{n=0}^{\infty}(-1)^n(x-1)^n$,逐项求导即可
- 思路二,线性拆分. 例如计算 $\dfrac{1}{3+5x-2x^2}$ 在 $x_0=0$ 的泰展,原式 $=\dfrac{1}{7}(\dfrac{1}{3-x}+\dfrac{2}{1+2x})$,两个都有现成的公式
- 思路三,运用 Cauchy 乘积
 - 对于乘法,合并次数相同的项
 - 对于除法,设 $rac{f(x)}{g(x)}=\sum c_n(x-x_0)^n$,得 $\sum a_n(x-x_0)^n=(\sum b_n(x-x_0)^n)(\sum c_n(x-x_0)^n)$,待定系数解 c_n

• 思路四,整体代入. 例如计算 $\ln \frac{\sin x}{x}$ 在 $x_0=0$ 的泰展, $\frac{\sin x}{x}=1-(\frac{1}{6}x^2-\frac{1}{120}x^4+\cdots), \ \$ 令括号里面为 u,则 $\ln \frac{\sin x}{x}=\ln(1-u)=-(u-\frac{1}{2}u^2+\frac{1}{3}u^3-\cdots)$

Chapter 14 广义积分

(含参变量积分不考)

14.1 & 14.3 无穷积分/瑕积分

瑕点:无穷远点/函数值为无穷大的点.把被积区间划分成若干只含一个或不含瑕点的部分,每段单独看.

- 对于不含瑕点的,直接积分即可
- 对于无穷远瑕点,若 $\lim_{A\to\infty}\int_a^A f(x)\mathrm{d}x$ 存在则收敛. p-积分 $\int_1^{+\infty}\frac{1}{x^p}\mathrm{d}x$, p>1 收敛, $p\leqslant 1$ 发散.
- 对于无穷大瑕点,若 $\lim_{\eta \to 0^+} \int_{a+\eta}^b f(x) \mathrm{d}x$ 存在则收敛. p-瑕积分 $\int_a^b \frac{1}{(x-a)^p} \mathrm{d}x$, $0 收敛,<math>p \geqslant 1$ 发散. 这与 p-积分结论相反
- 如果两个端点都是瑕点,则两个极限过程都收敛整体才收敛,且极限过程都是独立的

14.2 无穷积分敛散性判断

Cauchy 收敛准则(假设瑕点是正无穷): $orall arepsilon > 0, \exists N ext{ s.t. } A, A' > N ext{ 时} \left| \int_A^{A'} f(x) \mathrm{d}x \right| < arepsilon$

比较判别法,要求函数非负. 结论与级数的比较判别法相同. 也有极限形式,是让 x 趋向瑕点(正无穷或负无穷)

Cauchy 判别法,本质是与 p-积分比较,不如直接用比较判别法

级数判别法(级数的积分判别法逆用)

A-D 判别法

- 积分第二中值定理:单调的提前,代入端点,代哪端积分靠哪侧. f、g 在 [a,b] 可积,f 在 [a,b] 单调,则 $\exists \xi \in [a,b]$ s.t. $\int_a^b f(x)g(x)\mathrm{d}x = f(a)\int_a^\xi g(x)\mathrm{d}x + f(b)\int_\xi^b g(x)\mathrm{d}x$
- Abel 判别法:单调有界(这回是关于 x 单调,注意与函数项级数区分 $) \times$ 无穷积分收敛

• Dirichlet 判别法: 单调趋零 times 无穷积分有界(指任给积分上界,积分值有界)

绝对收敛必收敛,积分绝对值 ≤ 绝对值积分. 同样有绝对可积和条件可积

14.4 瑕积分敛散性判断

Cauchy 收敛准则(假设瑕点是区间下界): $\forall \varepsilon>0, \exists \delta ext{ s.t. } 0<\eta<\eta'<\delta$ 时 $\left|\int_{a+\eta}^{a+\eta'}f(x)\mathrm{d}x\right|<arepsilon$

比较判别法,要求函数非负. 结论与级数的比较判别法相同. 也有极限形式,是让 x 趋向瑕点(上界或下界).

Cauchy 判别法,本质是与 p-瑕积分比较,不如直接用比较判别法

A-D 判别法(假设下界为瑕点)

- Abel 判别法:单调有界×瑕积分收敛
- Dirichlet 判别法: 单调趋零(当自变量趋于下界) × 瑕积分有界

化为无穷积分判别:设 a 为瑕点,作变量替换 $x=a+rac{1}{t}$,则

$$\int_a^b f(x)\mathrm{d}x = \int_{rac{1}{b-a}}^{+\infty} f(a+rac{1}{t})rac{1}{t^2}\mathrm{d}t$$

14.5 Cauchy 主值

Cauchy Principal Value

即对于某个瑕点,有两个极限过程(或是负无穷到正无穷积分),让这两个极限过程的趋向速度相同,若这样的极限存在,则称在 Cauchy 主值意义下收敛,Cauchy 主值即为极限值,记为 $({
m cpv})\int_a^b f(x){
m d}x$

cpv 意义下的瑕积分称为奇异积分

普通意义下收敛,则 cpv 意义下收敛,反过来不定

14.6 Euler 积分

 Γ 函数,aka 第二类 Euler 积分: $\Gamma(lpha)=\int_0^{+\infty}x^{lpha-1}e^{-x}\mathrm{d}x$

- 定义域(右边积分的收敛域): $(0,+\infty)$
- Γ(α) 连续

•
$$\Gamma(lpha)$$
 任意阶可导, $\Gamma^{(n)}(lpha)=\int_0^{+\infty}x^{lpha-1}e^{-x}(\ln x)^n\mathrm{d}x$

•
$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$
, $\alpha>0$, 取正整数得 $\Gamma(n+1)=n!$

•
$$\Gamma(\alpha)$$
 在 $(1,2)$ 取得唯一最小值, 0^+ 和 $+\infty$ 处函数趋于正无穷

• Legendre 公式:
$$\Gamma(s)\Gamma(s+rac{1}{2})=rac{\sqrt{\pi}}{2^{2s-1}}\Gamma(2s)$$
, $s>0$

• 余元公式:
$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin s\pi}$$
, $0 < s < 1$

• 引理:
$$\frac{\pi}{\sin s\pi} = \frac{1}{x} + \sum_{n=1}^{\infty} (-1)^n (\frac{1}{x+n} + \frac{1}{x-n})$$

B 函数,aka 第一类 Euler 积分: $\mathrm{B}(p,q)=\int_0^1 x^{p-1}(1-x)^{q-1}\mathrm{d}x$

- 定义在第一象限,连续,任意阶可导且导数连续
- 递归式

$$ullet \ \ \mathrm{B}(p,q) = rac{(q-1)}{p+(q-1)} \mathrm{B}(p,q-1), \ \ p>0, \ \ q>1$$

$$ullet \ \ \mathrm{B}(p,q) = rac{(p-1)}{(p-1)+q} \mathrm{B}(p-1,q), \ \ p>1, \ \ q>0$$

关系:

•
$$\mathrm{B}(p,q)=rac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$
, $p,q>0$,代入正整数得 $\mathrm{B}(m,n)=rac{(m-1)!(n-1)!}{(m+n-1)!}$

Chapter 15 Fourier 级数

(Fourier 积分不考)

15.1 & 15.2 三角级数与 Fourier 级数

三角级数:
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

逻辑: (和幂级数是一个逻辑)

- 1. 假设某个 $T=2\pi$ 的周期函数可以被展开成三角级数,发现三角级数被函数唯一确定, $a_n=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\mathrm{d}x$, $b_n=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\mathrm{d}x$
- 2. 据此,任意给一个函数,都按上面的规则构造出一个级数,称为这个函数的 Fourier 级数. 这个 Fourier 级数收不收敛、收敛的话收不收敛到 f(x)、是不是一致收敛,这都是后话. 所以这里函数和级数之间只能画波浪号而不能画等号.

- 3. 可以证明,当 f(x) 满足下面两个条件之一时, f(x) 的 Fourier 级数点态收敛于 $\sigma(x) = \frac{f(x^+) + f(x^-)}{2}$:
 - Dirichlet-Jordan 判别法: x 的邻域内分段单调且有界
 - Dini-Lipschitz 判别法:x 处满足 α -Holder 条件($\forall \varepsilon > 0$, $\exists L > 0$ 、 $\exists \alpha \in (0,1] \text{ s.t. } 0 < u < \delta$ 时, $|f(x\pm u) f(x^\pm)| < Lu^\alpha$, $\alpha = 1$ 时称为 Lipschitz 条件). α -Holder 条件中 α 越大条件越强. 可导一定收敛于 $\sigma(x) = f(x)$

对于
$$T=2l$$
 的,设辅助函数 $g(x)=f\left(rac{l}{\pi}t
ight)$,把 g 傅展后代入 $t=rac{\pi x}{l}$ 即可

偶延拓, 奇延拓, 周期延拓

偶函数的傅展只含 cos, 奇函数的傅展只含 sin.

15.3 Fourier 级数的性质

(针对 $T=2\pi$)

- 1. Fourier 系数趋于零
- 2. 可逐项积分
- 3. 逐项微分:周期内连续、周期头尾相接、导数处处存在或只有有限个点不存在、导数可积或绝对可积,四个条件推出导函数的 Fourier 级数为(函数的 Fourier 级数)的导数,并不知道收敛性
- 4. 是所有三角级数中的最佳均方逼近
- 5. Parseval 等式: $rac{1}{2}a_0^2+\sum(a_n^2+b_n^2)=rac{1}{\pi}\int_{-\pi}^{\pi}f^2(x)\mathrm{d}x$

(Bessel 不等式:上面等号改成 ≤)