

Задача классификации

Есть множество объектов разделенных некоторым образом на классы, задача определить к какому классу принадлежит тот или иной объект, исходя из особенностей выборки.

Каждый объект формирует конечное пространство признаков, исследование которого позволяет построить алгоритм, определяющий класс объекта из новой, незнакомой выборки.

Этапы построения классификатора:

- выделение характерных признаков
- обучение выбранного классификатора на тренировочной выборке
- проверка классификатора на тестируемой выборке

Выделение характерных признаков, является важным этапом в классификации временных рядов, ввиду присутствия временной составляющей, с которой сложнее работать.

Основные методы выделения характерных признаков временных рядов:

- методы сглаживания (МА, ЕМА)
- порождающие модели (AR, ARMA, ARIMA, HMM)
- выделение частотных характеристик (FFT, Wavelets)

Классификаторы:

- метрические алгоритмы (kNN)
- нейронные сети (MLP)
- деревья решений (CART)
- SVM

Нейронные сети

Универсальный инструмент для классификации статических данных.

Будучи биологически инспирированными, такие сети, аналогично мозгу, справляются с задачами классификации.

Тем не менее, их довольно сложно применять в динамическом контексте, хотя, казалось бы, это естественная задача, которую решает мозг любого живого существа каждый день.

Углубление уровня биологической подобности может принести хорошие плоды и это имеет смысл проверить.

Спайковые нейронные сети

Относительно новый класс нейронных сетей.

- Каждый нейрон динамическая система преобразовывающая входные спайки в выходные.
- Данные внутри сети представляются в виде спайков или иначе говоря "тычков" и каждый нейрон производит их некоторое количество в течении симуляции
- Нейроны соединяются в рекуррентную сеть
- Биологическая детальность реализации осуществлена в пределах необходимых для воспроизведения особенностей обработки информации мозгом.

Помимо исследования полезных свойств таких сетей в применении к реальным задачам, исследование спайковых сетей вносит вклад в решение такой общей проблемы, стоящей перед научным сообществом, как особенности функциональности мозга.

Спайковый нейрон

В основе спайкового нейрона лежит взвешенная сумма потенциалов с синапсов:

$$u_i(t) = \sum_j w_{ij} \epsilon(t - t_j^f)$$

где динамика синапса характеризуется угасающей экспонентой:

Важную часть биологической подобности вносят такая часть, как вероятностный подход к генерации спайка.

Плотность вероятности генерации спайка нелинейно зависит от мембраны (u) нейрона и имеет все свойства Пуассоновской плотности. Например, вероятность спайка в момент времени At:

$$P(Y|X) = p(u(t))\Delta t$$

p(u) - Hz:

Обучение без учителя

Вероятностная модель спайкового нейрона, позволяет вывести функцию правдоподобия:

$$L = I - \gamma D - \lambda \Psi$$

Максимизация такой функции относительно весов, увеличивает совместную информацию между входом и выходом нейрона и минимизирует гомеостатический и регуляризационный параметры.

Максимизация только информационной составляющей ведет себя аналогично правилу Хэбба — веса начинают расти бесконечно.

Toyoizumi 2005, 2007

Этапы построение классификатора на основе спайковых нейронных сетей:

1) Преобразование входного временного ряда в спайковые последовательности:

2) Обучение без учителя. Формирование чувствительных полей: \$\$ здесь рисунок с весами обученных нейронов \$\$ Page 10 3) Получение ответной спайковой последовательности:

\$\$ рисунок с ответом \$\$

4) Постобработка ответов

\$\$ рисунок с гистограммой \$\$

5) Классификация обычными методами (kNN, MLP)

