CS646: Information Retrieval

Evaluation

Hamed Zamani

University of Massachusetts Amherst

Why Evaluation is Important?

- Without a proper evaluation methodology ...
 - we cannot compare two IR models.
 - we cannot improve an IR system.
 - we cannot advance the state of the art.
 - we cannot measure how useful an IR system is.

What to measure?

- The ability of the system to present all relevant documents
- The ability of the system to withhold non-relevant documents
- The interval between the demand being made and the answer being given (response time)
- The physical form of the output (presentation)
- The effort, intellectual or physical, demanded of the user (user's effort).

And many more ...

Evaluation Methodologies

• Offline:

- Mostly using test collections
 - IR collections with relevance judgments
 - The data collection from users' explicit feedback
 - The data collection from users' implicit feedback

• Online:

User interactions with the system (explicit or implicit)

1950s -1960s

Cyril W. Cleverdon established the test collection evaluation methodology.

Cyril W. Cleverdon (SIGIR Salton Award, 1991)

1950s -1960s 1970s early 1990s

Pre-TREC period:

Initial development of test collections, mostly catalogue information about academic papers, later news articles.

Evaluation metrics primarily focused on recall.

1950s - 1970s - 1990s - early 1990s early 2000s

TREC ad hoc period:

Focusing on ad-hoc retrieval of news articles.

Measures primarily focused on recall.

Introducing some tasks beyond the standard ad-hoc retrieval (e.g., filtering tracks)

1950s -1960s

1970s early 1990s 1990s early 2000s 2000s current

Post TREC ad hoc period:

Beyond news articles (e.g., web pages, blog posts, social media posts)

Beyond single query (e.g., session search, conversational search)

Diverse set of measures

Fair ranking

TREC: Text Retrieval Conference

- The major IR evaluation campaign established in 1992
- DARPA Funded NIST in 1990 to build a test collection.
- NIST proposed to distribute the dataset through TREC in 1991 (leader: Donna Harman)
- November 1992: The first TREC meeting
- URL: http://trec.nist.gov/
- Every participated team can submit a report describing their approach. Reports are published in the TREC proceedings without peer-review.

TREC General Format

- November: Tracks approved by TREC (each year's program consists of multiple tracks)
- Spring: The track materials (e.g., collection and query set) are released.
- August: Submission due for participants
- Fall: Evaluation done by NIST
- November: TREC annual meeting (conference)

Other Evaluation Campaigns

- **CLEF**: Conference and Labs of the Evaluation Forum (aka, the European version of TREC)
 - Before 2010: Cross Language Evaluation Forum
- FIRE: Forum for Information Retrieval Evaluation
- NTCIR: NII Testbeds and Community for Information access Research
- INEX: Initiative for the Evaluation of XML Retrieval

 Useful shared-tasks occasionally defined by WSDM Cup, CIKM Cup, RecSys Challenge, and KDD Cup.

TREC Ad hoc Retrieval Track

- Simulate an information analyst (high recall)
- Multi-field topic description (title, description, and narrative)
- News articles + Government documents
- Relevance criteria: "a document is judged relevant if any piece of it is relevant (regardless of how small the piece is in relation to the rest of the document)"
- Each submitted run returns 1000 documents for evaluation with various measures

Cranfield's Evaluation Methodology

- Specify a retrieval task
- Create a collection of documents
- Create a set of topics/queries appropriate for the retrieval task
- Create a set of relevance judgments (i.e., judgments about which document is relevant to which query)
- Define a set of measures
- Apply a method to the collection

Statistics of Some IR Collections

	Cranfield 2	TREC2	GOV2	ClueWeb 09
year	1962	1991	2004	2009
type	Scientific articles	News articles	.gov crawl	Common web crawl
# documents	1,400	742,611	25,205,179	1,040,809,705
size	1.6 MB	2,162 MB	426 GB	25 TB
# queries	225	100	150	200

Relevance Judgments

Many types of relevance judgments:

- System or algorithmic relevance
- Topical or subject relevance
 - Aboutness
- Cognitive relevance or pertinence
 - Informativeness, novelty, information quality, ...
- Situational relevance or utility
 - Usefulness in decision making, reduction of uncertainty, ... (SIGIR Salton Award, 1997)
- Motivational or affective relevance
 - Satisfaction, success, accomplishment, ...

Tefko Saracevic

Relevance Judgments: Cost vs. Completeness

- To have accurate judgments, complete relevance judgments (for all query-document pairs) are required.
- Complete judgment for large-scale collections is almost impossible.
- Solutions:
 - Search-based
 - Pooling
 - Sampling

Relevance Judgments: Cost vs. Completeness

- Search-based:
 - Rather than read all documents, use manually guided search
 - Read retrieved documents until convinced that all relevant documents found.
- Pooling (Spark-Jones and Rijsbergen, 1975):
 - The most common technique used by TREC
 - Retrieve documents for each query by different retrieval techniques
 - Judge the union of the top n documents retrieved by each technique
- Sampling:
 - Possible to estimate size of true relevant set by sampling
- All of these approaches provide incomplete relevance judgments.
- How should unjudged documents be treated?

Assessor Consistency

- Relevance judgments are subjective
 - Is inconsistency of assessors a concern?
- Studies mostly concluded that the inconsistency didn't affect relative ranking of systems
 - Lesk & Salton (1968): assessors mostly disagree on documents at lower ranks, but measures are more affected by top-ranked documents
 - Cleverdon (1970), Burgin (1992): similar conclusions
 - Harman (1994): 80% agreement between TREC assessors
 - Schultz (1967): Judgments on relative ranking of documents are more consistent

Want to Learn More?

Foundations and Trends[®] In Information Retrieval 4:4 (2010)

Test Collection Based Evaluation of Information Retrieval Systems

Mark Sanderson

the essence of knowledge

IR Evaluation Metrics

Precision

$$precision = \frac{|relevant \cap retrieved|}{|retrieved|} = \frac{\# \text{ of relevant retrieved documents}}{\# \text{ of retrieved documents}}$$

All relevant documents:

Retrieval list:

Precision = 0.40

Recall

$$recall = \frac{|relevant \cap retrieved|}{|relevant|} = \frac{\# \text{ of relevant retrieved documents}}{\# \text{ of relevant documents}}$$

All relevant documents:

Retrieval list:

Recall = 0.80

Precision and Recall

The precision-recall trade-off:

 Going to a deeper rank generally reduces precision and increases recall.

Which one is more important?

F-measure

The harmonic mean of precision (P) and recall (R).

$$F - \text{measure} = \frac{1}{\beta\left(\frac{1}{P}\right) + (1 - \beta)\left(\frac{1}{R}\right)}, \qquad F1 = \frac{1}{\frac{1}{2}\left(\frac{1}{P}\right) + \frac{1}{2}\left(\frac{1}{R}\right)} = \frac{2PR}{P + R}$$

F1 =
$$\frac{1}{\frac{1}{2}(\frac{1}{P}) + \frac{1}{2}(\frac{1}{R})} = \frac{2PR}{P + R}$$

All relevant documents:

Retrieval list:

$$F1 = \frac{2*0.4*0.8}{0.4+0.8} = 0.53$$

Precision-Recall Curve

- Compute precision at every recall point
- Plot the precision-recall (PR) curve

Average Precision (AP)

The most common metric in TREC.

$$AP = \frac{1}{|R|} \sum_{i=1}^{n} \text{Prec}(i)$$
. Relevance(i)

|R|: Total number of relevant documents

n: Length of the rank list

Prec(i): Precision of the top i documents

Relevance(i): 1 if document i is relevant, otherwise 0.

Average Precision (AP)

All relevant documents:

Retrieval list:

$$AP = 1/5 (1+2/3+3/6+4/7) = 0.5476$$

Reciprocal Rank (RR)

$$RR = \frac{1}{r}$$

where r is the rank of the first relevant retrieved document.

• If no relevant document retrieved, then RR=0.

- Only considered the rank of the first relevant answer
- Suitable for some applications, such as:
 - Web search (why?)
 - Email search (why?)

Normalized Discounted Cumulative Gain (nDCG)

- Useful for graded relevance judgments
- Cumulative Gain at rank n:
 - Let the relevance labels for the top n documents be R_1, R_2, \dots, R_n
 - $CG = g(R_1) + g(R_2) + \dots + g(R_n)$
 - $g(R_i) = R_i$ or $g(R_i) = 2^{R_i} 1$
- Discounted Cumulative Gain at rank n:

•
$$DCG = \frac{g(R_1)}{\log_2(2)} + \frac{g(R_2)}{\log_2(3)} + \frac{g(R_3)}{\log_2(4)} + \dots + \frac{g(R_n)}{\log_2(n+1)}$$

- Normalized Discounted Cumulative Gain at rank n:
 - Dividing DCG by the ideal DCG

nDCG Example

All relevant documents: 3 3 2

Retrieval list: 3 0 2 0 0 1 3 0 0 0

Aggregation over Queries

- Arithmetic mean is a common technique to summarize the retrieval performance for a set of queries
- precision, recall, AP, RR, nDCG -> precision, recall, MAP, MRR, nDCG

Interpolation for precision-recall curve

- Alternative:
 - Geometric mean for AP: gMAP
- Information loss?

Limitations

- Aggregation over queries hides many information.
- Most metrics only consider binary relevance judgments.
- Redundancy, novelty, and diversity are not considered.
- User-independent

User Browsing Models (UBMs)

UBM for Reciprocal Rank

Examine next doc Ν Rel? stop

RR is an effort-based metric

UBM for Modeling Patient and Impatient Users

• Larger p can be associated to more patient users.

A Simple Expected Utility Function

Expected Utility =
$$\frac{1}{N} \sum_{k=1}^{\infty} P(E_k = 1) \cdot R_k$$

- *N*: Expected number of examined documents
- $P(E_k=1)$: examination probability of the k^{th} document in the ranked list by the user
- R_k : relevance label

UBM for Modeling Patient and Impatient Users

Examine first Examine next doc Expected Utility = $\frac{1}{N} \sum_{k=1}^{\infty} P(E_k = 1) \cdot R_k$ p $=\frac{1}{N}\sum_{k=1}^{N}p^{k-1}.R_{k}$

$$N = \sum_{k=1}^{\infty} k. p^{k-1}. (1-p) = \frac{1}{1-p}$$

Ranked-biased Precision: $(1-p)\sum_{k=1}^{\infty}p^{k-1}.R_k$

Alistair Moffat and Justin Zobel. "Rank-biased precision for measurement of retrieval effectiveness." TOIS 2008.

1-p

UBM for Expected Reciprocal Rank

- Reciprocal Rank does not support graded relevance.
- Metrics like NDCG and RBP are utility based (not effort based)

Expected Reciprocal Rank:

$$\sum_{k=1}^{\infty} \frac{1}{k} \prod_{i=1}^{k-1} (1 - r_i) r_k$$

$$r_i = \frac{2^{g_i} - 1}{2^{G-1}}, \qquad g_i \in \{0, 1, \dots, G - 1\}$$

A/B Testing

High-Level Overview of A/B Testing

What to measure?

Summary

- Definition of Relevance
- Evaluation Methodologies in IR
- Test Collection Creation
- IR Metrics
 - P@k, R@k, F1, RR, AP, NDCG, ...
- User Browsing Models
- A/B Testing

Questions?