26.04.2016

Remark (Final remark). Entropy, relative entropy and so on can also be considered for RVs with (infinite???) values in countable sets, or for probability "vectors" $p = (p_1, p_2, p_3, ...)$, but one has to require absolute convergence of

$$H(p_1, p_2, \dots) = \sum_{n=1}^{\infty} p_n(-\log_2 p_n)$$

Same for

$$D(p||q) = \sum_{n=1}^{\infty} p_n \log_2 \frac{p_n}{q_n}$$

Example. If $\sum_{n=1}^{\infty} np_n < \infty$, then $H(p) < \infty$. Use:

• $x \mapsto -x \log_2 x$ increasing on $[0, \frac{1}{e}]$.

add pic

• $-p_n \log_2 p_n \le \max\{n, -\log_2 p_n\} p_n$

3) Asymptotic entropy

Definition. (a) A stochastic process in discrete time is a sequence $(X_n)_{n\geq 1}$ of random variables.

(b) Suppose that the X_n are discrete and take values in a finite (or countable) set \mathcal{X} . Then the asymptotic entropy (entropy rate) of the stochastic process is

$$h = \lim_{n \to \infty} \frac{H(X_1, \dots, X_n)}{n},$$

if the limit exists.

Question: For which types of stochastic processes does the limit exist? For which types of stochastic processes is there a formula for h?

Simplest case: $(X_n)_{n\in\mathbb{N}}$ are iid

$$H(X_1,...,X_n) = H(X_1) + \cdots + H(X_n) = nH(X_1)$$

 $h = H(X_1)$

Recall chain rule:

$$H(X_1,...,X_n) = \sum_{k=1}^n H(X_k|X_{k-1},...,X_1)$$

And recall from Analysis 1: If (a_n) is a sequence of real numbers such that $\lim_{n\to\infty} a_n = a$ exists, then $\lim_{n\to\infty} \frac{1}{n}(a_1 + \cdots + a_n)$ exists and

$$\lim_{n \to \infty} \frac{1}{n} (a_1 + \dots + a_n) = a$$

Consequence: If $h' = \lim_{n \to \infty} H(X_n | H_{n-1}, \dots, X_1)$ exists, then h exists and h = h'.

Definition. The process $(X_n)_{n\geq 1}$ is called stationary, if for all $n,l\in\mathbb{N}$:

$$p_{X_1,...,X_n} = p_{X_{l+1},...,X_{l+n}}$$

Recall: for all $x_1, \ldots, x_n \in \mathcal{X}$: $\mathbb{P}[X_1 = x_1, \ldots, X_n = x_n] = \mathbb{P}[X_{l+1} = x_{l+1}, \ldots, X_{l+n} = x_{l+n}]$

Lemma 0.1. If (X_n) is stationary, then h'(=h) exists.

Proof.

$$C \le H(X_n|X_{n-1},\ldots,H_2,H_1) \le H(X_n|X_{n-1},\ldots,H_2) = H(X_{n-1}|H_{n-2},\ldots,H_1)$$

Definition. An \mathcal{X} -valued stochastic process $(X_n)_{n\in\mathbb{N}_0}$ is called a (time-homogeneous) Markov chain if for all $x_0, x_1, \ldots, x_{n-1}, x, y \in \mathcal{X}$

П

$$\mathbb{P}[X_{n+1} = y | X_n = x, X_{n-1} = x_{n-1}, \dots, X_0 = x_0] = \mathbb{P}[X_{n+1} = y | X_n = x]$$
$$= p(y|x) = p_{x,y}$$

whenever $\mathbb{P}[X_{n+1} = y | X_n = x, X_{n-1} = x_{n-1}, \dots, X_0 = x_0] > 0$. We call p(y|x) transition probability form x to y. Transition matrix:

$$P = (p(y|x))_{x,y \in \mathcal{X}}$$

where x denotes the row and y denotes the column. So we can also write $P_{x,y}$.

Remark. Avoid in future courses: p(x,y)!

Consider $\mathcal{X},P)$ as a directed graph. The vertex set is \mathcal{X} and the edges are $x \overset{p(y|x)>0}{\longrightarrow} y$

Example (Weather in the land OZ). Weather evolves as follows: there are 3 types: bright (b), rainy (r), snowy (s) The rules are:

- If one day is bright, then the next day it will always turn bad, r and s with equal probability
- If one day is bad (r or s), in 50% of all cases, it will stay as it is, and only in 25% of cases it will turn bright.

$$\mathcal{X} = \{b, r, s\}$$

$$P = \begin{cases} b & r & s \\ b & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ s & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{cases}$$

We also need the initial distribution

$$\mu(x) = \mu_x = \mathbb{P}[X_0 = x]$$

$$\nu(x) = \nu_x$$
 (special)

 \mathbb{P}_{μ} is the distribution, when initial distribution is μ .

$$\mathbb{P}_{\mu}[X_{0} = x_{0}, X_{1} = x_{1}, \dots, X_{n} = x_{n}]
= \mathbb{P}_{\mu}[X_{0} = x_{0}, \dots, X_{n-1} = x_{n-1}] \mathbb{P}[X_{n} = x_{n} | X_{n-1} = x_{n-1}, \dots, X_{0} = x_{0}]
= \mathbb{P}[X_{0} = x_{0}] \underbrace{p_{x_{0}, x_{1}}}_{\mu_{X_{0}}} \dots \underbrace{p_{x_{n-1}, x_{n}}}_{p(x_{n} | x_{n-1})}$$

$$\begin{split} \mathbb{P}[X_2 = y | X_0 = x] &= \sum_{w \in \mathcal{X}} \mathbb{P}[X_2 = y, X_1 = w | X_0 = x] \\ &= \sum_{w \in \mathcal{X}} \underbrace{\mathbb{P}[X_1 = w | X_0 = x]}_{p_{x,w}} \underbrace{\mathbb{P}[X_2 = y | X_1 = w, X_0 = x]}_{p_{w,y}} \\ &= \sum_{w \in \mathcal{X}} p_{x,w} p_{w,y} \end{split}$$

Lemma 0.2. $\mathbb{P}[X_{l+n} = y | X_l = x] = p_{x,y}^{(n)} = p^{(n)}(y|x)$ where $P^n = (p_{x,y}^{(n)})_{x,y \in \mathcal{X}}$ The (unconditional) distribution of X_n is

$$\mu P^n$$

(row vectors matrix)

$$\begin{split} \mathbb{P}_{\mu}[X_n = y] &= \sum_{x \in \mathcal{X}} \mathbb{P}_{\mu}[X_n = y, X_0 = x] \\ &= \sum_{x \in \mathcal{X}} \mathbb{P}_{\mu}[X_0 = x] \, \mathbb{P}_{\mu}[X_n = y | X_0 = x] \\ &= \sum_{x \in \mathcal{X}} \mu_x p_{x,y}^{(n)} \end{split}$$