Tyler Gauch COMP 3770 01 1/11/2015

Prove the following: $1^k + 2^k + 3^k + ... + n^k = O(n^(k+1))$

- 1) This can be rewritten as:
 - a) $1^k + 2^k + 3^k + ... + n^k <= n^(k+1)$
- 2) Using the additive property for BigO, which is O(A) + O(B) = max(O(A), O(B)) we can simplify the left side of the equation to the following:
 - a) $O(1^k + 2^k + 3^k + ...) + O(n^k) = O(n^k)$
 - b) We can do this because the slower parts of the algorithm will always dominate the faster parts. We could also see this as a group of comparisons like the following:
 - i) $O(1^k) + O(2^k) = O(2^k)$
 - ii) $O(2^k) + O(3^k) = O(3^k)$
 - iii) ...
 - iv) $O((n-1)^k) + O(n^k) = O(n^k)$
- 3) So we can simplify to the following:
 - a) $n^k \le n^(k+1)$
 - b) can be rewritten as n^k <= n*n^k
- 4) $n^k \le n^*n^k$ is always true for all real numbers and therefore shows that $1^k + 2^k + 3^k + ... + n^k = O(n^k+1)$ is true.