

Fakultät für Informatik (Lösung)	
Prüfung: Embedded Systems (ESy)	
	(Name, Vorname)
	(Matrikelnummer)
Erreichte Punktzahl und Gesamtnote:	
Cocominato	(Erstkorrektor)
Gesamtnote:	
	(Zweitkorrektor)
	,

Name[.]

Seite 2

Punkte:

Aufgabe 1: Digitale Ausgabe, LEDs

Name:

Seite 3

Punkte:

Aufgabe 2: Interrupts

a)


```
volatile unsigned long timeOfPreviousRisingEdge = 0; // used for debouncing
void setup()
       Serial.begin(9600);
       EIMSK |= (1 << INT2);</pre>
                                            // turn on INT2
       EICRA = (1 << ISC20) | (1 << ISC21);// trigger an any rising edge (
       sei();
                                            // globally activate interrupts
}
void loop()
{
}
ISR (INT2_vect)
       if (millis() - timeOfPreviousRisingEdge > 100) {
             Serial.println("Hallo");
       timeOfPreviousRisingEdge = millis();
}
```

Prüfung	Embedded	Systems
---------	----------	---------

Sommersemester xxx

Name:			
-------	--	--	--

Seite 4

Punkte:

Aufgabe 3: Timer

a) Man rechnet sich am besten aus, welche Auslösung man mit den verschiedenen Prescaler er-

Zeit für 1 Tick: $\frac{1}{2MHz} \cdot x$, falls x der Prescaler-Wert ist.

				•	
P	re	÷	S		

Prescaler	1	8	64	256	1024
Auflösung	500 ns	4 us	32 us	128 us	512 us

Man erkennt, dass man sogar einen 1024 Prescaler verwenden darf, da die Auflösung passt. Da dauert es auch am längsten bis ein Overflow eintritt.

Es dauert $\frac{256}{\frac{2}{1024}MHz}$ = 131 ms bis ein Overflow eingetreten ist.

- b) Input Capture: Bei Eintreten eines bestimmten Ereignisses wird der aktuelle Wert des Timers in einem Register festgehalten, z.B. Messen von Zeitintervallen.
 - Output Compare: Bei einem bestimmten Zählerwert wird automatisch durch Hardware ein bestimmtes Ereignis ausgelöst (z.B. Toggle einer Leitung)

Aufgabe 4: A/D Umsetzung

- a) Man muss als Referenzspannung AREF den Wert 5V wählen. Der Grund ist, dass die maximale Ausgangsspannung bei 100%RH bereits 3,94 V ist und die Referenzspannung immer größer sein muss, als der maximale Wert.
- b) Es gilt die Formel $ADC = \frac{V_{In} \cdot 1024}{V_{ref}}$

Damit ergibt sich:

- Bei 0%RH: 0
- Bei 100%RH: 807
- c) Man nutzt den linearen Zusammenhang aus. y = mx + t (wobei y %RH und x der Integerwert) für Ansatz lineare Interpolation

Da bei 0%RH der Wert von result gleich 0 ist, weiß man sofort, dass t = 0.

Es gilt also: y = mx

}

```
Einsetzen von y = 100 %RH und x = 807 ergibt: 100 %RH = m * 807 -> m = 0,124 %RH]
```

Der Zusammenhang lautet also: y = 0,124 * x

```
d)
void setup()
{
       // activate serial console
       Serial.begin(9600);
       // enable ADC functionality
       ADCSRA |= (1 << ADEN);
       // use /128 prescaler (ADC requires 50 kHz to 200 kHz, see manual p271, but system
clock is 16 MHz)
       ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);
       // select ADC0 as input pin;
       ADMUX = (1 << MUX0);
       // use reference voltage 5V (Note: AVCC is AREF), manual, p281
       ADMUX |= (1 << REFS0);
}
void loop()
{
       // trigger ADC conversion
       ADCSRA |= (1 << ADSC);
       // wait until conversion is finished, see manual p286
       while (ADCSRA & (1 << ADSC));</pre>
       // read analog value, first LOW then HIGH register
       unsigned int read = ADCL + 256 * ADCH;
       double result = 0.12 * read;
       Serial.print(result);
       Serial.println(" Volt");
```

Name:

Seite 6

Punkte:

Aufgabe 5: Kommunikationsschnittstellen, SPI

a)

	asynchron/synchron?	Single-ended /	
		differential	
I2C	Synchron	Single-ended	
SPI	Synchron	Single-ended	
UART	Asynchron	Single-ended	

```
b)
void setup()
 {
       Serial.begin(9600);
       // MOSI and SCK to output, all others as input
       DDRB = (1<<DDB2) | (1<<DDB1); //alternative command</pre>
       // Enable SPI, set as master, set clock rate to fck/128
       SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR0) | (1 << SPR1);
 }
 // send and receive data
  für Anpassung des Rückgabetyps)
  unsigned char spi_transceive(unsigned char data) {
        // load data to be sent into buffer
        SPDR = data;
        // wait until transmission completes
        while(!(SPSR & (1<<SPIF)));</pre>
        // return received data
        return(SPDR);
 }
 void loop()
 {
       char text[] = "Hallo Slave!";
       for (int i = 0; i < sizeof(text); i++) {</pre>
              char received = spi_transceive(text[i]);
              Serial.print(received);
       }
       delay(1000);
 }
```

Seite 7

Punkte:

Aufgabe 6: Pulsweitenmodulation, Bootloader

a)

- b) Folgendes könnte in Antwort enthalten sein:
 - SW Download
 - über serielle Schnittstelle
 - Bootloader in getrenntem, geschützten Speicherbereich
 - Bootloader wird z.B. immer nach Reset ausgeführt
 - Falls dann keine Dateien kommen, Übergabe an Anwendung
- c) Man muss In-System Programming z.B. über SPI verwenden.