Concevoir la partie commande des systèmes asservis afin de valider leurs performances

Chapitre 1 - Correction des systèmes

Sciences
Industrielles de
l'Ingénieur

TD 6

La robotique au service du handicap

Centrale Supélec - PSI 2010

Savoirs et compétences :

- Res1.C4.SF1: Proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral
- 🔳 Con.C2 : Correction d'un système asservi

1

Présentation

On s'intéresse à la conception de la loi de commande d'un des moteurs d'une orthèse d'épaule permettant d'améliorer le rétablissement de patients en cours de rééducation.

Objectif • Temps de réponse à 5% pour un échelon de consigne de couple : $t \le 2 ms$.

- Erreur statique pour un couple de référence constant $C_{\text{ref }0}$: $|\varepsilon_0 \le 0,05C_{\text{ref }0}$.
- Couple maximal fourni sur l'axe de l'articulation $C_{\text{max}} = 50 \,\text{N}\,m$.

En pratique, le couple délivré par le moteur ne peut être mesuré directement, c'est pourquoi la grandeur asservie est le courant moteur. L'objet, dans cette phase de l'étude, est alors de déterminer une loi de commande pour la boucle d'asservissement et de valider les performances vis-à-vis du cahier des charges partiel.

On donne partiellement le schéma-blocs de la commande.

Le correcteur choisi est de type proportionnel-intégral (P.I.) de fonction de transfert : $C(p) = K\left(1 + \frac{1}{T_ip}\right)$. On adopte sans aucune justification que $T_i = 0.3\,\mathrm{ms}$. Le diagramme de Bode de la fonction de transfert en boucle ouverte non corrigée

$$H(p) = \frac{0,0326p\left(1 + \frac{2 \times 0,08}{463}p + \frac{p^2}{463^2}\right)}{\left(1 + \frac{p}{122}\right)\left(1 + \frac{2 \times 0,09}{464}p + \frac{p^2}{464^2}\right)\left(1 + \frac{p}{10^3}\right)\left(1 + \frac{p}{10^4}\right)}$$

est donné en fin de document. $i_{mes}(t)$ est la mesure du courant du moteur et u(t) la tension d'alimentation. Ce tracé pourra être utilisé sans aucune justification.

Syntèse du régulateur PI de la boucle de courant

Question 1 Compléter le diagramme de Bode par le tracé des diagrammes asymptotiques de la fonction H(p).

Question 2 En adoptant K = 1, tracer le diagramme de Bode (module et phase) de C(p): diagrammes asymptotiques et allures des tracés réels avec les valeurs prises aux points caractéristiques.

Question 3 En déduire les tracés asymptotiques et les allures des tracés réels du diagramme de Bode de la fonction de transfert en boucle ouverte corrigée (on différenciera les tracés par des couleurs différentes). Déterminer, sans calcul supplémentaire, la pulsation ω_1 telle que la phase de la fonction de transfert en boucle ouverte est égale $\grave{a}-135$ ° et la valeur numérique du gain statique.

Question 4 Déterminer alors la valeur du gain K permettant d'assurer une marge de phase de 45°.

On considère maintenant le système corrigé avec le correcteur C(p) qui vient d'être déterminé.

Question 5 Déterminer un ordre de grandeur de la marge de gain obtenue et conclure sur la stabilité du système en boucle fermée.

Question 6 Déterminer l'écart statique $\Delta i_0 = \lim_{t \to +\infty} (i_c(t) - i_{mes}(t))$ en boucle fermée en réponse à un échelon de consigne $i_c(t) = I_0\Gamma(t)$ d'amplitude I_0 et l'exprimer sous la forme $\Delta i_0 = k I_0$ en précisant la valeur numérique de k.

La figure 11 représente la structure de l'actionneur (la boucle de courant du moteur étant fermée) : i_c et i sont respectivement la consigne et le courant moteur, $C_{\rm ref}$ est le couple de référence souhaité, C_a est le couple appliqué par l'actionneur sur l'axe de l'articulation et G_{ic} est un gain pur correspondant à la relation entre le courant et le couple C_a . On suppose pour toute cette question que le couple de référence $C_{\rm ref}(t)$ est constant d'amplitude $C_{\rm ref} = C_{\rm ref0}$.

Question 7 Exprimer G_{ic} en fonction de K_c et de N.

Question 8 En supposant qu'en régime permanent l'erreur statique de la boucle d'asservissement de courant est nulle $\Delta i_0 = 0$, donner la valeur du gain G_0 permettant d'assurer l'égalité des couples de référence C_{ref0} et appliqué C_a .

Question 9 En remarquant que le gain statique du capteur de courant est de 1, montrer, en utilisant les résultats des questions précédentes, qu'en régime permanent l'erreur $\Delta C = C_{ref} - C_a$ entre le couple de référence et le couple

moteur exprimé sur l'axe de l'articulation est $\Delta C = k_1 C_{ref0}$. Déterminer k_1 en fonction de k.

Question 10 Vérifier alors si les différentes exigences 1 du cahier des charges de l'actionneur sont validées.

Concevoir la partie commande des systèmes asservis afin de valider leurs performances

Chapitre 1 - Correction des systèmes

Industrielles de

l'Ingénieur

TD 6 - Corrigé

La robotique au service du handicap

Centrale Supélec - PSI 2010

Savoirs et compétences :

- Res1.C4.SF1: Proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral
- □ Con.C2: Correction d'un système asservi

Présentation

On s'intéresse à la conception de la loi de commande d'un des moteurs d'une orthèse d'épaule permettant d'améliorer le rétablissement de patients en cours de rééducation.

Objectif • Temps de réponse à 5% pour un échelon de consigne de couple : $t \le 2 ms$.

- Erreur statique pour un couple de référence constant $C_{\text{ref }0}$: $|\varepsilon_0 \le 0,05C_{\text{ref }0}$.
- Couple maximal fourni sur l'axe de l'articulation $C_{\text{max}} = 50 \,\text{N}\,m$.

En pratique, le couple délivré par le moteur ne peut être mesuré directement, c'est pourquoi la grandeur asservie est le courant moteur. L'objet, dans cette phase de l'étude, est alors de déterminer une loi de commande pour la boucle d'asservissement et de valider les performances vis-à-vis du cahier des charges partiel.

On donne partiellement le schéma-blocs de la commande.

Le correcteur choisi est de type proportionnel-intégral (P.I.) de fonction de transfert : $C(p) = K\left(1 + \frac{1}{T_ip}\right)$. On adopte sans aucune justification que $T_i = 0.3$ ms. Le diagramme de Bode de la fonction de transfert en boucle ouverte non corrigée

$$H(p) = \frac{0,0326p\left(1 + \frac{2 \times 0,08}{463}p + \frac{p^2}{463^2}\right)}{\left(1 + \frac{p}{122}\right)\left(1 + \frac{2 \times 0,09}{464}p + \frac{p^2}{464^2}\right)\left(1 + \frac{p}{10^3}\right)\left(1 + \frac{p}{10^4}\right)}$$

est donné en fin de document. $i_{\rm mes}(t)$ est la mesure du courant du moteur et u(t) la tension d'alimentation. Ce tracé pourra être utilisé sans aucune justification.

Syntèse du régulateur PI de la boucle de courant

Question 1 Compléter le diagramme de Bode par le tracé des diagrammes asymptotiques de la fonction

H(p).

Correction

Question 2 En adoptant K = 1, tracer le diagramme de Bode (module et phase) de C(p): diagrammes asymptotiques et allures des tracés réels avec les valeurs prises aux points caractéristiques.

Correction

Question 3 En déduire les tracés asymptotiques et les allures des tracés réels du diagramme de Bode de la fonction de transfert en boucle ouverte corrigée (on différenciera les tracés par des couleurs différentes). Déterminer, sans calcul supplémentaire, la pulsation ω_1 telle que la phase de la fonction de transfert en boucle ouverte est égale $\grave{a}-135$ ° et la valeur numérique du gain statique.

Correction

Question 4 Déterminer alors la valeur du gain K permettant d'assurer une marge de phase de 45°.

Correction

On considère maintenant le système corrigé avec le correcteur C(p) qui vient d'être déterminé.

Question 5 Déterminer un ordre de grandeur de la marge de gain obtenue et conclure sur la stabilité du système en boucle fermée.

Correction

Question 6 Déterminer l'écart statique $\Delta i_0 = \lim_{t \to +\infty} (i_c(t) - i_{mes}(t))$ en boucle fermée en réponse à un échelon de consigne $i_c(t) = I_0\Gamma(t)$ d'amplitude I_0 et l'exprimer sous la forme $\Delta i_0 = kI_0$ en précisant la valeur numérique de k.

Correction

La figure 11 représente la structure de l'actionneur (la boucle de courant du moteur étant fermée) : i_c et i sont respectivement la consigne et le courant moteur, $C_{\rm ref}$ est le couple de référence souhaité, C_a est le couple appliqué par l'actionneur sur l'axe de l'articulation et G_{ic} est un gain pur correspondant à la relation entre le courant et le couple C_a . On suppose pour toute cette question que le couple de référence $C_{\rm ref}(t)$ est constant d'amplitude $C_{\rm ref} = C_{\rm ref0}$.

Question 7 Exprimer G_{ic} en fonction de K_c et de N.

Correction

Question 8 En supposant qu'en régime permanent l'erreur statique de la boucle d'asservissement de courant est nulle $\Delta i_0 = 0$, donner la valeur du gain G_0 permettant

d'assurer l'égalité des couples de référence C_{ref0} et appliqué C_a .

Correction

Question 9 En remarquant que le gain statique du capteur de courant est de 1, montrer, en utilisant les résultats des questions précédentes, qu'en régime permanent l'erreur $\Delta C = C_{ref} - C_a$ entre le couple de référence et le couple moteur exprimé sur l'axe de l'articulation est $\Delta C = k_1 C_{ref0}$. Déterminer k_1 en fonction de k.

Correction

Question 10 Vérifier alors si les différentes exigences 1 du cahier des charges de l'actionneur sont validées.

Correction

