

Kapitola 6: Regrese







#### Strojové učení



Úlohou strojového učení je na základě příkladů vstupů a výstupů nalézt funkci f, která pro nový vstup určí odpovídající výstup.

Příklady dvojic vstupů a výstupů nazýváme trénovací data.

V současnosti je to nejrozšířenější metoda umělé inteligence s největšími dopady.



# Strojové učení - příklady



klasifikace obrázků

hello 
$$\xrightarrow{f}$$
 ahoj

strojový překlad AJ -> ČJ



Predikce spotřeby auta podle průměrné rychlosti



90 km/h  $\xrightarrow{f}$ 

#### Regrese vs. klasifikace

Klasifikace - výstupem je nějaká kategorie (třída). Například barva, binární hodnota (ano, ne), den v týdnu, typ auta apod.

**Regrese** -výstupem je číselná hodnota. Například *cena*, *teplota*, *počet lidí v místnosti apod*.



### Regrese - příklad

#### Predikce ceny bytu

#### vstup

| plocha | patro | počet<br>místností |
|--------|-------|--------------------|
| 42     | 7     | 2                  |
| 105    | 3     | 3                  |
| 67     | 1     | 2                  |
| 224    | 3     | 4                  |

#### výstup

| cena (mil. Kč) |  |
|----------------|--|
| 3,2            |  |
| 6,8            |  |
| 4,1            |  |
| 13,9           |  |



## Lineární regrese





#### Lineární regrese

d<sub>1</sub>..d<sub>5</sub> - trénovací data f(x) - model e<sub>2</sub> - chyba predikce pro dům č. 2 MAE - průměrná absolutní chyba (Mean Absolute Error) MSE - průměrná kvadratická chyba (Mean Squared Error)

$$MSE = \frac{e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2}{5}$$

$$MAE = \frac{|e_1| + |e_2| + |e_3| + |e_4| + |e_5|}{5}$$





### Lineární regrese - trénování



Trénování modelu spočívá v hledání parametrů a, b tak, aby celková chyba MSE nebo MAE byla minimální.

MSE - průměrná kvadratická chyba

MAE - průměrná absolutní chyba



### Lineární regrese - více vstupních atributů

vstup

| výstup |
|--------|
|--------|

| plocha | patro | počet<br>místností |
|--------|-------|--------------------|
| 42     | 7     | 2                  |
| 105    | 3     | 3                  |
| 67     | 1     | 2                  |
| 224    | 3     | 4                  |

| cena (mil. Kč) |  |
|----------------|--|
| 3,2            |  |
| 6,8            |  |
| 4,1            |  |
| 13,9           |  |

f(plocha, patro, pocet\_mistnosti) =  $w_1$ .plocha +  $w_2$ .patro +  $w_3$ .pocet\_mistnosti +  $w_0$ 



## Lineární regrese - příklad

Příklad lineární regrese v knihovně ScikitLearn



#### Rozhodovací strom pro regresi



- Při trénování hledáme takový binární strom dané hloubky, který bude mít minimální chybu na trénovacích datech (MSE nebo MAE).
- V uzlech může být libovolná podmínka.
- Predikce je uložena v koncových uzlech (listech).



#### Více rozhodovacích stromů - les



- Náhodný les kombinuje více rozhodovacích stromů průměrováním jejich predikcí.
- Jednou z nejčastějších implementací je Random forest (náhodný les).
- U random forest je každý strom vytvořen z náhodně vybrané podmnožiny trénovacích dat, proto je každý strom jiný.



## <u>Čím</u> více stromů, tím hladší funkce





#### Problém přetrénování (overfitting)



Přetrénování model si "zapamatoval" trénovací data, ale nemá schopnost zobecnění.

Chyba testovacího data setu je výrazně vyšší než chyba trénovacího data setu.



## Základní techniky pro zabránění přetrénování



Použití větších trénovacích dat.

Snížení složitosti modelu (menší hloubka stromů u rozhodovacích stromů).



#### Volba vhodného modelu



- Různých modelů je celá řada (nejen lineární regrese a random forest).
- Je třeba zohlednit složitost problému, velikost dostupných dat, apod.
- Vždy je dobré vyzkoušet více modelů a začínat od jednodušších.

