PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION international Bureau

	HED (UNDER THE PATENT COOPERATION TREATY (PCT)			
(51) International Patent Classification ⁶ : C12N 15/82, 15/54		(11) International Publication Number: WO 98/46776			
		(43) International Publication Date: 22 October 1998 (22.10.98			
(21) International Application Number: PCT/US (22) International Filing Date: 9 April 1998 ((81) Designated States: AU, BR, CA, JP, KR, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).				
(30) Priority Data: 60/041,815 11 April 1997 (11.04.97)	ι	Published Without international search report and to be republished upon receipt of that report.			
(71) Applicant (for all designated States except US): CLLC [US/US]; 1920 Fifth Street, Davis, CA 9561					
(72) Inventor; and (75) Inventor/Applicant (for US only): DEHESH, [US/US]; 521 Crownpointe Circle, Vacaville, C (US).					
(74) Agent: SCHWEDLER, Carl, J.; Calgene LLC, 19 Street, Davis, CA 95616 (US).	920 Fi	th			
(54) Title: PLANT FATTY ACID SYNTHASES AND I	USE IN	IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIR			
(57) Abstract					
		to β -ketoacyl-ACP synthase of special interest are synthases obtainable protein factors are provided, as well as methods to utilize such sequence			

in constructs for production of genetically engineered plants having altered fatty acid compositions. Of particular interest is the expression of synthase protein factors in conjunction with expression of plant medium—chain acyl—ACP thioesterases for production of increased levels and/or modified ratios of medium—chain fatty acids in oils of transgenic plant seeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

L	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
M	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IÈ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

.

WO 98/46776 PCT/US98/07114

PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN FATTY ACIDS

5

INTRODUCTION

Field of Invention

The present invention is directed to genes encoding

10 plant fatty acid synthase enzymes relevant to fatty acid

synthesis in plants, and to methods of using such genes in

combination with genes encoding plant medium-chain

preferring thioesterase proteins. Such uses provide a

method to increase the levels of medium-chain fatty acids

15 that may be produced in seed oils of transgenic plants.

Background

20

25

Higher plants synthesize fatty acids via a common metabolic pathway. In developing seeds, where fatty acids attached to triglycerides are stored as a source of energy for further germination, the fatty acid synthesis pathway is located in the plastids. The first step is the formation of acetyl-ACP (acyl carrier protein) from acetyl-CoA and ACP catalyzed by a short chain preferring condensing enzyme, ß-ketoacyl-ACP synthase (KAS) III. Elongation of acetyl-ACP to 16- and 18- carbon fatty acids involves the cyclical action of the following sequence of reactions: condensation with a two-carbon unit from malonyl-ACP to form a longer ß-ketoacyl-ACP (ß-ketoacyl-ACP synthase), reduction of the

15

20

25

keto-function to an alcohol (ß-ketoacyl-ACP reductase), dehydration to form an enoyl-ACP (ß-hydroxyacyl-ACP dehydrase), and finally reduction of the enoyl-ACP to form the elongated saturated acyl-ACP (enoyl-ACP reductase). ß-ketoacyl-ACP synthase I (KAS I), is primarily responsible for elongation up to palmitoyl-ACP (C16:0), whereas ß-ketoacyl-ACP synthase II (KAS II) is predominantly responsible for the final elongation to stearoyl-ACP (C18:0).

Genes encoding peptide components of ß-ketoacyl-ACP synthases I and II have been cloned from a number of higher plant species, including castor (Ricinus communis) and Brassica species (USPN 5,510,255). KAS I activity was associated with a single synthase protein factor having an approximate molecular weight of 50 kD (synthase factor B) and KAS II activity was associated with a combination of two synthase protein factors, the 50 kD synthase factor B and a 46 kd protein designated synthase factor A. Cloning and sequence of a plant gene encoding a KAS III protein has been reported by Tai and Jaworski (Plant Physiol. (1993) 103:1361-1367).

The end products of plant fatty acid synthetase activities are usually 16- and 18-carbon fatty acids. There are, however, several plant families that store large amounts of 8- to 14-carbon (medium-chain) fatty acids in their oilseeds. Recent studies with Umbellularia californica (California bay), a plant that produces seed oil rich in lauric acid (12:0), have demonstrated the existence of a medium-chain-specific isozyme of acyl-ACP thioesterase

in the seed plastids. Subsequent purification of the 12:0-ACP thioesterase from Umbellularia californica led to the cloning of a thioesterase cDNA which was expressed in seeds of Arabidopsis and Brassica resulting in a substantial accumulation of lauric acid in the triglyceride pools of these transgenic seeds (USPN 5,512,482). These results and subsequent studies with medium-chain thioesterases from other plant species have confirmed the chain-length-determining role of acyl-ACP thioesterases during de novo fatty acid biosynthesis (T. Voelker (1996) Genetic Engineering, Ed. J. K. Setlow, Vol. 18, pgs. 111-133).

DESCRIPTION OF THE FIGURES

Figure 1. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor B clone chKAS B-2 are provided. 15 Figure 2. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor B clone chKAS B-31-7 are provided. Figure 3. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor A clone chKAS A-2-7 are provided. Figure 4. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor A clone chKAS A-1-6 are provided. Figure 5. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor B clone cpuKAS B/7-8 are provided. Figure 6. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor B clone cpuKAS B/8-7A are provided. Figure 7. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor A clone cpuKAS A/p7-6A are provided. Figure 8. Preliminary DNA sequence of Cuphea pullcherrima KAS factor A clone cpuKAS A/p8-9A is provided.

- Figure 9. DNA and translated amino acid sequence of Cuphea hookeriana KASIII clone chKASIII-27 are provided.
- Figure 10. The activity profile for purified cpuKAS B/8-7A using various acyl-ACP substrates is provided.
- Figure 11. The activity profile for purified chKAS A-2-7 and chKAS A-1-6 using various acyl-ACP substrates is provided.
 - Figure 12. The activity profile for purified castor KAS factor A using various acyl-ACP substrates is provided.
- 10 Figure 13. The activity profile for purified castor KAS factor B using various acyl-ACP substrates is provided.

 Figure 14. A graph showing the number of plants arranged according to C8:0 content for transgenic plants containing CpFatB1 versus transgenic plants containing CpFatB1 + chKAS

A-2-7 is provided.

15

- Figure 15. Graphs showing the %C10/%C8 ratios in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.
- 20 Figure 16. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.
- Figure 17. Graphs showing the %C10/%C8 ratios in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.
 - Figure 18. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in

plants resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.

Figure 19. Graphs showing the %C12:0 in transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 20. Graph showing the relative proportions of C12:0 and C14:0 fatty acids in the seeds of transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 21. Graphs showing the %C18:0 in transgenic plants containing Garm FatB1 (5266) and in seeds of plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 22. The activity profile of Ch KAS A in protein extracts from transgenic plants containing Ch KAS A-2-7. Extracts were preptreated with the indicated concentrations of cerulenin.

20

SUMMARY OF THE INVENTION

By this invention, compositions and methods of use related to ß-ketoacyl-ACP synthase (KAS) are provided. Also of interest are methods and compositions of amino acid and nucleic acid sequences related to biologically active plant synthase(s).

In particular, genes encoding KAS protein factors A and B from Cuphea species are provided. The KAS genes are of interest for use in a variety of applications, and may be

20

25

used to provide synthase I and/or synthase II activities in transformed host cells, including bacterial cells, such as E. coli, and plant cells. Synthase activities are distinguished by the preferential activity towards longer and shorter acyl-ACPs as well as by the sensitivity towards the KAS specific inhibitor, cerulenin. Synthase protein preparations having preferential activity towards medium chain length acyl-ACPs are synthase I-type or KAS I. KAS I class is sensitive to inhibition by cerulenin at concentrations as low as 1 µM. Synthases having preferential activity towards longer chain length acyl-ACPs are synthase II-type or KAS II. The KAS enzymes of the II-type are also sensitive to cerulenin, but at higher concentrations $(50\mu\text{M})$. Synthase III-type enzymes have preferential activity towards short chain length acyl-ACPs and are insensitive to cerulenin inhibition.

Nucleic acid sequences encoding a synthase protein may be employed in nucleic acid constructs to modulate the amount of synthase activity present in the host cell, especially the relative amounts of synthase I-type, synthase II-type and synthase III-type activity when the host cell is a plant host cell. In addition, nucleic acid constructs may be designed to decrease expression of endogenous synthase in a plant cell as well. One example is the use of an antisense synthase sequence under the control of a promoter capable of expression in at least those plant cells which normally produce the enzyme.

Of particular interest in the present invention is the coordinate expression of a synthase protein with the

expression of thioesterase proteins. For example, coordinated expression of synthase factor A and a medium-chain thioesterase provides a method for increasing the level of medium-chain fatty acids which may be harvested from transgenic plant seeds. Furthermore, coordinated expression of a synthase factor A gene with plant medium-chain thioesterase proteins also provides a method by which the ratios of various medium-chain fatty acids produced in a transgenic plant may be modified. For example, by expression of a synthase factor A, it is possible to increase the ratio of C10/C8 fatty acids which are produced in plant seed oils as the result of expression of a thioesterase having activity on C8 and C10 fatty acids.

15 DETAILED DESCRIPTION OF THE INVENTION

A plant synthase factor protein of this invention includes a sequence of amino acids or polypeptide which is required for catalyzation of a condensation reaction between an acyl-ACP having a chain length of C2 to C16 and malonyl-ACP in a plant host cell. A particular plant synthase factor protein may be capable of catalyzing a synthase reaction in a plant host cell (for example as a monomer or homodimer) or may be one component of a multiple peptide enzyme which is capable of catalyzing a synthase reaction in a plant host cell, i.e. one peptide of a heterodimer.

Synthase I (KAS I) demonstrates preferential activity towards acyl-ACPs having shorter carbon chains, C_2 - C_{14} and is sensitive to inhibition by cerulenin at concentrations of 1 μ M. Synthase II (KAS II) demonstrates preferential

activity towards acyl-ACPs having longer carbon chains, C_{14} - C_{16} , and is inhibited by concentrations of cerulenin (50 μ M). Synthase III demonstrates preferential activity towards acyl-CoAs having very short carbon chains, C_{2} to C_{6} , and is insensitive to inhibition by cerulenin.

Synthase factors A and B, and synthase III proteins obtained from medium-chain fatty acid producing plant species of the genus Cuphea are described herein. described in the following Examples, synthase A from C. hookeriana is naturally expressed at a high level and only 10 in the seeds. C. hookeriana synthase B is expressed at low levels in all tissues examined. Expression of synthase A and synthase B factors in E. coli and purification of the resulting proteins is employed to determine activity of the 15 various synthase factors. Results of these analyses indicate that synthase factor A from Cuphea hookeriana has the greatest activity on 6:0-ACP substrates, whereas synthase factor B from Cuphea pullcherrima has greatest activity on 14:0-ACP. Similar studies with synthase factors A and B from castor demonstrate similar activity profiles 20 between the factor B synthase proteins from Cuphea and The synthase A clone from castor, however, demonstrates a preference for 14:0-ACP substrate.

Expression of a Cuphea hookeriana KAS A protein in

transgenic plant seeds which normally do not produce mediumchain fatty acids does not result in any detectable
modification of the fatty acid types and contents produced
in such seeds. However, when Cuphea hookeriana KAS A
protein is expressed in conjunction with expression of a

medium-chain acyl-ACP thioesterase capable of providing for production of C8 and C10 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain thioesterase alone are observed. In addition, where significant amounts of C8 and C10 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a Cuphea KAS A protein also results in an alteration of the proportion of the C8 and C10 fatty acids that are obtained. For example, an increased proportion of C10 fatty acids may be obtained by co-expression of Cuphea hookeriana ChFatB2 thioesterase and a chKAS A synthase factor proteins.

10

15

20

25

Furthermore, when Cuphea hookeriana KAS A protein is expressed in conjunction with expression of a medium-chain acyl-ACP thioesterase capable of providing for production of C12 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain thioesterase alone are also observed. In addition, where significant amounts of C12 and C14 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a Cuphea KAS A protein also results in an alteration of the proportion of the C12 and C14 fatty acids that are obtained. For example, an increased proportion of C12 fatty acids may be obtained by co-expression of UC FatB1 thioesterase and a chKAS A synthase factor proteins.

However, when Cuphea hookeriana KAS A protein is expressed in conjunction with the expression of a long-chain

acyl-ACP thioesterase capable of providing for production of C18 and C18:1 fatty acids in plant seed oils, no effect on the production of long chain fatty acids was observed. Furthermore, when plants transformed to express a long chain acyl-ACP thioesterase from mangosteen (GarmFatAl, U.S. Patent Application No. 08/440,845), which preferentially hydrolyzes C18:0 and C18:1 fatty acyl-ACPs, are crossed with nontransformed control plants, a significant reduction in the levels of C18:0 is obtained. Similar reductions are also observed in the levels of C18:0 in the seeds of plants resulting from crosses between plants transformed to express the GarmFatAl and plants expressing the Cuphea hookeriana KAS A protein.

Thus, the instant invention provides methods of 15 increasing and/or altering the medium-chain fatty acid compositions in transgenic plant seed oils by co-expression of medium-chain acyl-ACP thioesterases with synthase factor proteins. Furthermore, various combinations of synthase factors and medium-chain thioesterases may be achieved 20 depending upon the particular fatty acids desired. For example, for increased production of C14 fatty acids, synthase protein factors may be expressed in combination with a C14 thioesterase, for example from Cuphea palustris or nutmeg may be employed (WO 96/23892). In addition, thioesterase expression may be combined with a number of different synthase factor proteins for additional effects on medium-chain fatty acid composition.

Synthases of use in the present invention include modified amino acid sequences, such as sequences which have

been mutated, truncated, increased and the like, as well as such sequences which are partially or wholly artificially synthesized. The synthase protein encoding sequences provided herein may be employed in probes for further 5 screening or used in genetic engineering constructs for transcription or transcription and translation in host cells, especially plant host cells. One skilled in the art will readily recognize that antibody preparations, nucleic acid probes (DNA and RNA) and the like may be prepared and used to screen and recover synthases and/or synthase nucleic acid sequences from other sources. Typically, a homologously related nucleic acid sequence will show at least about 60% homology, and more preferably at least about 70% homology, between the R. communis synthase and the given plant synthase of interest, excluding any deletions which may be present. Homology is determined upon comparison of sequence information, nucleic acid or amino acid, or through hybridization reactions.

10

15

Recombinant constructs containing a nucleic acid 20 sequence encoding a synthase protein factor or nucleic acid sequences encoding a synthase protein factor and a mediumchain acyl-ACP thioesterase may be prepared by methods well known in the art. Constructs may be designed to produce synthase in either prokaryotic or eukaryotic cells. increased expression of a synthase in a plant cell, particularly in conjunction with expression of medium-chain thioesterases, or decreasing the amount of endogenous synthase observed in plant cells are of special interest.

Synthase protein factors may be used, alone or in combination, to catalyze the elongating condensation reactions of fatty acid synthesis depending upon the desired result. For example, rate influencing synthase activity may reside in synthase I-type, synthase II-type, synthase III-type or in a combination of these enzymes. Furthermore, synthase activities may rely on a combination of the various synthase factors described herein.

Constructs which contain elements to provide the transcription and translation of a nucleic acid sequence of 10 interest in a host cell are "expression cassettes". Depending upon the host, the regulatory regions will vary, including regions from structural genes from viruses, plasmid or chromosomal genes, or the like. For expression in prokaryotic or eukaryotic microorganisms, particularly unicellular hosts, a wide variety of constitutive or regulatable promoters may be employed. Among transcriptional initiation regions which have been described are regions from bacterial and yeast hosts, such as E. coli, B. subtilis, Saccharomyces cerevisiae, including genes such 20 as ß-galactosidase, T7 polymerase, trp-lac (tac), trp E and the like.

An expression cassette for expression of synthase in a plant cell will include, in the 5' to 3' direction of transcription, a transcription and translation initiation control regulatory region (also known as a "promoter") functional in a plant cell, a nucleic acid sequence encoding a synthase, and a transcription termination region.

Numerous transcription initiation regions are available

which provide for a wide variety of constitutive or regulatable, e.g., inducible, transcription of the desaturase structural gene. Among transcriptional initiation regions used for plants are such regions associated with cauliflower mosaic viruses (35S, 19S), and structural genes such as for nopaline synthase or mannopine synthase or napin and ACP promoters, etc. The transcription/ translation initiation regions corresponding to such structural genes are found immediately 5' upstream to the respective start codons. Thus, depending upon the intended use, different promoters may be desired.

10

15

20

Of special interest in this invention are the use of promoters which are capable of preferentially expressing the synthase in seed tissue, in particular, at early stages of seed oil formation. Examples of such seed-specific promoters include the region immediately 5' upstream of a napin or seed ACP genes such as described in USPN 5,420,034, desaturase genes such as described in Thompson et al (Proc. Nat. Acad. Sci. (1991) 88:2578-2582), or a Bce-4 gene such as described in USPN 5,530,194. Alternatively, the use of the 5' regulatory region associated with the plant synthase structural gene, i.e., the region immediately 5' upstream to a plant synthase structural gene and/or the transcription termination regions found immediately 3' downstream to the plant synthase structural gene, may often be desired. general, promoters will be selected based upon their expression profile which may change given the particular application.

In addition, one may choose to provide for the transcription or transcription and translation of one or more other sequences of interest in concert with the expression or anti-sense of the synthase sequence, particularly medium-chain plant thioesterases such as described in USPN 5,512,482, to affect alterations in the amounts and/or composition of plant oils.

When one wishes to provide a plant transformed for the combined effect of more than one nucleic acid sequence of interest, a separate nucleic acid construct may be provided for each or the constructs may both be present on the same plant transformation construct. The constructs may be introduced into the host cells by the same or different methods, including the introduction of such a trait by crossing transgenic plants via traditional plant breeding methods, so long as the resulting product is a plant having both characteristics integrated into its genome.

10

15

20

25

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for expression in a host and providing for selection of transformed cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of different host species into which the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

The manner in which the DNA construct is introduced into the plant host is not critical to this invention. Any method which provides for efficient transformation may be employed. Various methods for plant cell transformation include the use of Ti- or Ri-plasmids, microinjection, electroporation, liposome fusion, DNA bombardment or the like. In many instances, it will be desirable to have the construct bordered on one or both sides by T-DNA, particularly having the left and right borders, more particularly the right border. This is particularly useful when the construct uses A. tumefaciens or A. rhizogenes as a mode for transformation, although the T-DNA borders may find use with other modes of transformation.

10

The expression constructs may be employed with a wide

15 variety of plant life, particularly plant life involved in
the production of vegetable oils. These plants include, but
are not limited to rapeseed, peanut, sunflower, safflower,
cotton, soybean, corn and oilseed palm.

explants may be combined and incubated with the transformed Agrobacterium for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be grown to seed and the seed used to establish repetitive generations and for isolation of vegetable oils.

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

5

EXAMPLES

Example 1 Cuphea KAS Factor A and B Gene Cloning

Total RNA isolated from developing seeds of Cuphea 10 hookeriana and Cuphea pullcherrima was used for cDNA synthesis in commercial 1-based cloning vectors. For cloning each type of KAS gene, approximately 400,000-500,000 unamplified recombinant phage were plated and the plaques transferred to nitrocellulose. For KAS factor B cloning 15 from C. hookeriana, a mixed probe containing Brassica napus KAS factor B and Ricinus communis (Castor) KAS factor B radiolabeled cDNA's was used. Similarly, a mixed probe containing Brassica napus KAS factor A and Ricinus communis KAS factor A cDNA clones was used to obtain C. hookeriana 20 KAS factor A genes. For KASIII, a spinach KASIII cDNA clone obtained from Dr. Jan Jaworski was radiolabeled and used as a probe to isolate a KASIII clone from C. hookeriana. For KAS B and KAS A cloning from C. pullcherrima, C. hookeriana KAS B and KAS A genes chKAS B-2 and chKAS A-2-7 (see below) were radiolabeled and used as 25 probes.

DNA sequence and translated amino acid sequence for Cuphea KAS clones are provided in Figures 1-9. Cuphea hookeriana KAS factor B clones chKAS B-2 and chKAS B-31-7

are provided in Figures 1 and 2. Neither of the clones is full length. Cuphea hookeriana KAS Factor A clones chKAS A-2-7 and chKAS A-1-6 are provided in Figures 3 and 4. chKAS A-2-7 contains the entire encoding sequence for the KAS factor protein. Based on comparison with other plant synthase proteins, the transit peptide is believed to be represented in the amino acids encoded by nucleotides 125-466. chKAS A-1-6 is not a full length clone although some transit peptide encoding sequence is present. Nucleotides 1-180 represent transit peptide encoding sequence, and the mature protein encoding sequence is believed to begin at nucleotide 181.

Cuphea pullcherrima KAS factor B clones cpuKAS B/7-8 and cpuKAS B/8-7A are provided in Figures 5 and 6. Both of the clones contain the entire encoding sequences for the KAS factor B proteins. The first 35 amino acids of cpuKAS B/7-8are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide The first 39 amino acids of cpuKAS B/8-7A are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide 209. Cuphea pullcherrima KAS factor A clones cpuKAS A/p7-6A and cpuKAS A-p8-9A are provided in Figures 7 and 8. Both of the clones contain the entire encoding sequences for the KAS factor A proteins. Translated amino acid sequence of cpuKAS A/p7-6A is provided. The mature protein is believed to begin at the lysine residue encoded 595-597, and the first 126 amino acids are believed to represent the transit peptide. DNA sequence of KAS A clone cpuKAS A-p8-9A is preliminary.

15

20

25

Further analysis will be conducted to determine final DNA sequence and reveal the amino acid sequence encoded by this gene.

DNA and translated amino acid sequence of Cuphea hookeriana KASIII clone chKASIII-27 is provided in Figure 9. The encoding sequence from nucleotides 37-144 of chKASIII-27 are believed to encode a transit peptide, and the presumed mature protein encoding sequence is from nucleotides 145-1233.

10 Deduced amino acid sequence of the C. hookeriana KAS factor B and KAS factor A cDNA's reveals strong homology to the Brassica napus and Ricinus communis clones previously reported. The C. hookeriana KAS factor B clone is more homologous to the Ricinus and Brassica KAS factor B clones 15 (94% and 91% respectively) than it is to the Ricinus and Brassica KAS factor A clones (60% for both). Furthermore, the C. hookeriana KAS factor A clone is more homologous to the Ricinus and Brassica KAS factor A clones (85% and 82% respectively) than it is the Ricinus and Brassica KAS factor 20 B clone (60% for both). The C. hookeriana KAS factor B cDNAs designated as chKAS B-2 and chKAS B-31-7 are 96% identical within the mature portion of the polypeptide. Similarly, the deduced amino acid sequence of the mature protein regions of the C. hookeriana KAS factor A clones chKAS A-2-7 and chKAS A-1-6 are 96% identical. pullcherrima KAS clones also demonstrate homology to the R. communis and Brassica napus KAS clones. The mature protein portion of all of the KAS factor A family members in the different Cuphea species are 95% identical. Similarly the

mature protein portion of the KAS factor B genes in Cuphea are also 95-97% identical with each other. However there is only approximately 60% sequence identity between KAS factor B and KAS factor A clones either within the same or different species of Cuphea.

Example 2 Levels and Patterns of Expression

To examine tissue specificity of KAS expression in Cuphea hookeriana, Northern blot analysis was conducted using total RNA isolated from seed, root, leaf and flower 10 tissue. Two separate but identical blots were hybridized with either chKAS B-31-7 or chKAS A-2-7 coding region probes. The data from this RNA blot analysis indicate that KAS B is expressed at a similar level in all tissues examined, whereas KAS A expression is detected only in the 15 These results also demonstrate a different level of expression for each of the synthases. KAS A is an abundant message, whereas KAS B is expressed at low levels. Furthermore, even under highly stringent hybridization conditions (65_C, 0.1 X SSC, 0.5% SDS), the KAS A probe 20 hybridizes equally well with two seed transcripts of 2.3 and 1.9 kb. The larger hybridizing band is likely the transcript of the KAS A-2-7 gene since the size of its cDNA is 2046bp, and the number of clones obtained from cDNA 25 screening corresponds well with the apparent mobility of the mRNA and its abundance on the blot.

Example 3 Expression of Plant KAS Genes in E.coli

DNA fragments encoding the mature polypeptide of the Cuphea hookeriana KAS A cDNAs and the Cuphea pullcherrima

KAS B cDNAs were obtained by PCR and cloned into a

QIAexpress expression vector (Qiagene). Experimental

conditions for maximum level of expression were determined

for all of these clones and the parameters for highest level

of soluble fraction were identified. Cells are grown in

ECLB media containing 1M sorbitol and 2.5 mM betaine

overnight and subcultured as a 1:4 dilution in the same

medium. Cells are then grown for 2 hours (to approximately

.6-.8 O.D.) and induced with 0.4 mM IPTG and allowed to grow

for 5 more hours.

Enzyme activity of the affinity purified recombinant enzymes obtained from over-expression of the chKAS A-2-7 and cpuKAS B/8-7A clones was measured using a wide range of acyl-ACP substrates (6:0- to 16:1-ACP). The activity profile for cpuKAS B/8-7A is provided in Fig.10. The data demonstrate that the enzyme is active with all acyl-ACP substrates examined, although activity on 6:0 to 14:0-ACP substrates is substantially greater than the activity on 16:0 and 16:1 substrates.

15

20

The activity profile of the *C. hookeriana* KAS A clones chKAS A-2-7 and chKAS A-1-6 is provided in Figure 11. The *C. hookeriana* KAS A clones are most active with C:6, and have the least activity with C:16:0 substrates. However, the activity of this clone on even the preferred C6:0 substrate

is 50 fold lower than the activity of the *C. pullcherrima* KAS B clones.

A fragment containing the mature protein encoding portion of a R. communis KAS factor A clone was also cloned into a QIAexpress expression vector, expressed in E. coli and the enzyme affinity purified as described above. The activity profile for castor KAS A is provided in Figure 12. Highest activity is observed with C14:0 substrates, although some activity is also seen with C6:0 and C16:1. 10 comparison, the activity profile obtained from purified R. communis KAS factor B also using the QIAexpress expression system is provided in Figure 13. The KAS B clone demonstrates substantially higher levels of activity (10 fold and higher) than the R. communis KAS A clone. preference of the KAS factor B for 6:0- to 14:0-ACP 15 substrates is consistent with the previous observations that this protein provides KAS I activity.

Example 4 KAS and TE Expression in Transgenic Seed

Dehesh et al. (1996) Plant Physiol. 110:203-210) and the chKAS A-2-7 were PCR amplified, sequenced, and cloned into a napin expression cassette. The napin/cp FatB1 and the napin/KAS A-2-7 fusions were ligated separately into the binary vector pCGN1558 (McBride and Summerfelt (Pl.Mol.Biol. (1990) 14:269-276) and transformed into A. tumefaciens, EHA101. The resulting CpFatB1 binary construct is pCGN5400 and the chKAS A-2-7 construct is pCGN5401. Agrobacterium mediated transformation of a Brassica napus canola variety

was carried out as described by Radke et al. (Theor. Appl. Genet. (1988) 75:685-694; Plant Cell Reports (1992) 11:499-505). Several transgenic events were produced for each of the pCGN5400 and pCGN5401 constructs.

5

10

15

20

25

A double gene construct containing a napin/cpFatB1 expression construct in combination with a napin/chKAS A-2-7 expression construct was also assembled, ligated into a binary vector and used for co-cultivation of a canola Brassica variety. The binary construct containing the chFatB1 and chKAS A-2-7 expression constructs is pCGN5413.

Fatty acid analysis of 26 transgenic lines containing chKAS A-2-7 (5401 lines) showed no significant changes in the oil content or profile as compared to similar analyses of wild type canola seeds of the transformed variety.

Fatty acid analysis of 36 transgenic lines containing cpFatB1 (5400 lines) showed increased levels of C:8 and C:10 in transgenic seeds. The highest level of C:8 observed in a pool seed sample was 4.2 mol%. The C:10 levels were between 30 and 35% of the C:8 content. Fatty acid analysis of 25 transgenic lines containing the TE/KAS A tandem (5413 lines) demonstrated an overall increase in both C:8 and C:10 levels relative to those observed with TE containing lines (5400) alone. In lines containing the cpFatB1 construct alone, the average level of C:8 average were 1.5 mol%, whereas the C:8 average levels in TE/KAS A tandem containing lines was 2.37 mol%. The ratio of C:8 to C:10 remained constant in both populations. The number of transgenic events relative to the C:8 content are presented in Figure 14. These data show that the transgenic events with tandem TE/KAS A construct

yield more lines with higher levels of C:8 than those events with single TE construct. For example, several lines containing nearly 7 mole% C8 were obtained with the TE/KAS A pCGN5413 construct, whereas the highest C8 containing line from the pCGN5400 TE alone transformation contained 4.2 mole% C8.

Half seed analysis of the T3 generation of transgenic canola plants expressing a ChFatB2 (*C. hookeriana* thioesterase; Dehesh et al. (1996) The Plant Journal 9:167-172) indicate that these plant can accumulate up to 22 weight% (33 mol%) of 8:0 and 10:0 fatty acids (4804-22-357). Segregation analysis shows that these transformants contain two loci and that they are now homozygous. Selected plants grown from these half seeds were transferred into the greenhouse and later crossed with T1 transformants that had been transformed with either Cuphea hookeriana KAS A (5401) alone or KAS A/CpFatB1 double constructs (5413).

Fatty acid analysis of several events resulting from the crosses between transgenic lines containing ChFatB2 (4804-22-357) and chKAS A-2-7 (5401-9), reveal an increase in the ratio of C:10/C:8 levels (Figure 15). This C:10/C:8 ratio in nearly all of the transgenic events containing ChFatB2 TE alone fluctuates between 3 and 6, whereas in the F1 generation of transgenic containing both the TE and the KAS A-2-7, the ratio can be as high as 22. This increase in C:10 levels is accompanied by an increase in the total C:8 and C:10 content (Figure 16). The sum of the C:8 and C:10 fatty acids in the heterozygous F1 lines is as high as those in the homozygous parent line (4804-22-357), whereas the

heterozygous lines usually contain substantially less C:8 and C:10 than the homozygous lines.

Similar results were observed in F1 generation seeds resulting from crosses performed between 4804-22-357 (ChFatB2) and the 5413-17 event (CpFatB1 and chKAS A-2-7 5 tandem). Levels of C:8 and C:10 in the 5413-17 line were 6.3 and 2.8 mol% respectively. Data presented in Figure 17 show that there is shift towards C:10 fatty acids as was observed with the 4804-22-357 (ChFatB2) x 5401-9 (chKAS A-2-7) crosses. Furthermore, Figure 18 indicates the presence 10 of two separate populations of heterozygotes. containing approximately 9-11 weight percent C:10 + C:8 are believed to represent offspring containing a single copy of the ChFatBl TE gene and no copies of the CpFatBl and chKAS A 15 genes from 5413. Those plants containing approximately 15-20 weight percent C:10 + C:8 are believed to represent the heterozygotes containing a single ChFatB1 TE gene as well as the CpFatB1 and chKAS A genes from 5413. Thus, the level of the C:10 + C:8 fatty acids does not decrease to 50% of that detected in parent lines when a copy of the ChKAS A gene is 20 present.

To further characterize the chain length specificity of the Cuphea hookeriana KAS A enzyme, crosses between transgenic Brassica napus lines containing a California Bay (Umbellularia californica) 12:0 specific thioesterase, Uc FatB1 (USPN 5,344,771) and chKAS A-2-7 (5401-9) were made. Half seed analysis of transgenic plants containing Uc fatB1 have previuosly indicated that these plants can accumulate up to 52 mol% C12:0 in the seed oil of homozygous dihaploid

25

lines (LA86DH186). Crosses between the line LA86DH186 and untransformed control *Brassica* demonstrated a decrease in the C12:0 levels.

However, crosses between LA86DH186 and the 5401-9 hemizygous line led to an accumulation of up to 57 mol% C12:0 in the seed oil of F1 progeny (Figure 19). Interestingly, in crosses with LA86DH186 x untransformed control line and LA86DH186 x 5401-9, levels of C14:0 in the seeds of the F1 progeny decreased to 50% of the levels obtained in homozygous LA86DH186 lines (Figure 20). 10 Furthermore, increases in the proportion of C12:0 fatty acid resulted in a substantial decline in the proportions of all the long-chain fatty acyl groups (C16:0, C18:0, C18:2, and C18:3). These results indicate that the ChKAS A-2-7 is an enzyme with substrate specificity ranging from C6:0 to C10:0-ACP, and that its over-expression ultimately reduces the longer chain acyl-ACP pools.

Further evidence is obtained in support of the chain length specificity of the ChKAS A-2-7 in crosses of the 5401-9 line with a transgenic line (5266) expressing an 18:1/18:0 TE from Garcinia mangostana (GarmFatA1, US patent application No. 08/440,845). Transgenic Brassica line 5266 has been shown to accumulate up to 24 mol% C18:0 in the seed oil of homozygous lines (Figure 21). However, in the seed oil of F1 progeny of crosses between 5266 and 5401-9 levels of C18:0 were reduced to approximately 12 mol%. Furthermore, levels of C16:0 generated from these crosses was similar to the levels obtained from the seed oil of nontransgenic control plants.

Example 5 In vitro Analysis of Plant KAS Enzymes

Seed extracts were prepared from developing seeds of nontransgenic controls or transgenic Brassica expressing chKAS A-2-7 as described in Slabaugh et al. (Plant Journal, 1998 in press) and Leonard et al. (Plant Journal, 1998, in press). In vitro fatty acid synthesis assays were performed as described by Post-Beittenmiller (J. Biol. Chem. (1991), 266:1858-1865). Extracts were concentrated by ammonium sulfate precipitation and desalting using P-6 columns (Bio-Rad, Hercules, CA). Reactions (65µl) contained 0.1M Tris/HCl (pH 8.0), 1 mM dithiothreitol, 25 mM recombinant spinach ACP1, 1 mM NADH, 2 mM NADPH, 50 µM malonyl-CoA, 10 μM [1-14C]acetyl-CoA (50 mCi/mmol), 1mg/ml BSA, and 0.25 mg/ml seed protein. Selected seed extracts were preincubated with cerulenin at 23°C for 10 min. Reaction products were separated on an 18% acrlamide gel containing 2.25M urea, electroblotted onto to nitrocellulose and quntitated by phosporimaging using Image QuaNT software (Molecular Dynamics, Sunnyvale, CA). Authentic acyl-ACPs were run in parallel, immunoblotted and finally detected by anti-ACP serum to confirm fatty acid chain lengths.

The results (Figure 22) indicate that the fatty acid synthesis capabilities of transgenic Brasica (5401-9) seed extracts was greater than that obtained from in the nontransgenic controls as measured by the relative abundance of C8:0- and C10:0-ACP at all time points tested. In addition, pretreatment of the extracts with cerulenin, markedly reduced the synthesis of longer chain fatty acids in both the transgenic and nontransgenic control seed

extracts. However, the extension of the spinach-ACP was much less inhibited in the seed extracts from the transgenic lines than in the seed extracts of nontransgenic control Brassica.

These data further support that Ch KAS A-2-7 is a condensing enzyme active on medium chain acyl-ACPs, and that expression of this enzyme in plants results in enlarged substrate pools to be hydrolyzed by medium-chain specific thioesterases. Furthermore, these data suggest that chKAS A-2-7 also is a cerulenin-resistant condensing enzyme.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains.

- 15 All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claim.

MISSING UPON TIME OF PUBLICATION

- 13. The construct of Claim 5 wherein said encoding sequence is cpuKAS A/p8-9A.
- 14. The construct of Claim 5 wherein said encoding sequence is chKASIII-27.
- 15. An improved method for producing medium-chain fatty acids in transgenic plant seeds by expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant,

factor protein heterologous to said transgenic plant in conjunction with expression of said plant medium-chain thioesterase, whereby the percentage of medium-chain fatty acids produced in seeds expressing both a plant synthase factor protein and a plant medium-chain thioesterase protein is

15 increased as compared to the percentage of medium-chain fatty acids produced in seeds expressing only said plant medium-chain thioesterase protein.

- 16. The method of Claim 15 wherein said medium-chain thioesterase protein is a ChFatB2 protein.
- 20 17. The method of Claim 15 wherein said medium-chain thioesterase protein is a CpFatBl protein.
 - 18. The method of Claim 15 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.
- 19. The method of Claim 15 wherein said plant synthase factor protein is expressed from a construct according to Claim 1.
 - 20. The method of Claim 19 wherein said synthase factor A protein is from a Cuphea species.

WO 98/46776 30

5

15

25

21. The method of Claim 20 wherein said Cuphea species is C. hookeriana or C. pullcherrima.

22. A method of altering the medium-chain fatty acid composition in plant seeds expressing a heterologous plant medium-chain preferring thioesterase, wherein said method comprises

providing for expression of a plant synthase factor protein heterologous to said transgenic plant in conjunction with expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant, whereby the composition of medium-chain fatty acids produced in said seeds is modified as compared to the composition of medium-chain fatty acids produced in seeds expressing said plant medium-chain thioesterase protein in the absence of expression of said plant synthase factor protein.

- 23. The method of Claim 22 wherein said medium-chain thioesterase protein is a ChFatB2 protein.
- 24. The method of Claim 22 wherein said medium-chain thioesterase protein is a CpFatB1 protein.
- 25. The method of Claim 22 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.
 - 26. The method of Claim 22 wherein said plant synthase factor protein is expressed from a construct according to Claim 1.
 - 27. The method of Claim 26 wherein said synthase factor A protein is from a *Cuphea* species.
 - 28. The method of Claim 27 wherein said Cuphea species is C. hookeriana or C. pullcherrima.

- 29. The method of Claim 22 wherein said fatty acid composition is enriched for C10 fatty acids.
- 30. The method of Claim 22 wherein said fatty acid composition is enriched for C12 fatty acids.
- 31. The method of Claim 22 wherein said fatty acid composition is enriched for at least one medium chain fatty acid and at least one other medium chain fatty acid is decreased.
- 32. The method of Claim 31 wherein said enriched fatty acid is C12 and said decreased fatty acid is C14.

48	96	144	192	240	288	336	384
66C	AAG	GGT	CAC	666	TCA	GCT	ACT
61y	Lys	Gly	His	61y	Ser	Ala	Thr
CCG	TCC	GGT	сст	ATG	TAT	GCC	GGC
Pro	Ser	Gly	с1у	Met	Tyr	Ala	G1y
CCC	CTC	ATG	AAG	AAC	AAC	GCT	GGA
Pro		Met	Lys	Asn	Asn	Ala	G1y
GAT	CGC	GGA	GAG	ACA	CCA	CAT	GCT
Asp	Arg	Gly	Glu	Thr	Pro	His	Ala
GTG	gac	ACA	ATC	ATT	GGC	TTC	ATT
Val	Asp	Thr	Ile	Ile	Gly	Phe	
CTA	GCC	GGA	CTT	GCC	ATG	TGC	ATG
	Ala	Gly	Leu	Ala	Met	Cys	Met
GAA Glu	GGT Gly	GTC Val	TCT Ser	TAT Tyr	CTC	TAC	CTT Leu
CTA	CTC	CTG	CAG Gln	CCC Pro	GGT G1y	AAC Asn	GAT Asp
GCT	GAT	GTG	GTT	ATC	TTT	TCC	GCT
Ala	Asp	Val	Val	Ile	Phe	Ser	Ala
GCC Ala	GCC Ala	GGA Gly	666	TTC	GAA Glu	ACT Thr	GAG Glu
GCG	CGA	GCC	GAC	TTC	ATC	GCC	$_{\rm GGT}^{\rm GGT}$
Ala	Arg	Ala	Asp	Phe	Ile	Ala	
GTG	GCA	AGA	TCT	CCT	GCT	TGT	CGT
Val	Ala	Arg	Ser	Pro	Ala	Cys	Arg
GCG	TCG	GAG	TTC	ACC	CTC	GCA	CGC
Ala	Ser	Glu	Phe	Thr		Ala	Arg
ACC	AAT	AAG	GTC	ATC	CTG	ACT	ATC
Thr	Asn	Lys	Val	Ile	Leu	Thr	Ile
TCC	AGG	GAC	ACT	AAA	GCC	TCC	CAT
	Arg	Asp	Thr	Lys	Ala	Ser	His
AGC	TGC	ATC	CTG	CGG	TCT	ATT	AAT
Ser	Cys	Ile	Leu	Arg	Ser	Ile	Asn

FIGURE 1 1 OF 4

432	480	528	576	624	672	720	768
GTG GCT TGC AGG	TCT AGG CCC TGG	GCT GGA GTG TTG	GCA CCG ATT ATT	TAT CAC ATG ACT	ATT GAG AGT AGC	TAC ATA AAT GCT	ATA AAT GCC ATC
Val Ala Cys Arg	Ser Arg Pro Trp	Ala Gly Val Leu	Ala Pro Ile Ile	Tyr His Met Thr	Ile Glu Ser Ser	Tyr Ile Asn Ala	Ile Asn Ala Ile
GGA GGC TTT G	CAG ACT GCC TV Gln Thr Ala Sv	GGT GAA GGT G Gly Glu Gly A	AGA CGA GGA GG Arg Arg Gly A	TGT GAT GCT TA	TCT TCT TGC Al Ser Ser Cys Il	GAG GTC AAT TA Glu Val Asn Ty	GCC GAG Ala Glu
ATT GGG TTG C Ile Gly Leu C	GAT GAC CCG (Asp Asp Pro (TTT GTG ATG C	CAT GCA ATG P His Ala Met A	GCA ATC AAC T Ala Ile Asn C	CTT GGT GTC T Leu Gly Val S	TCA CCT GAA G Ser Pro Glu G	GCT GGG GAT CTC Ala Gly Asp Leu FIGURE 1
ATC ATT CCA I	CAA AGG AAC (CGT GAT GGT 1	AGC TTG GAA C	TTG GGA GGT G	GCT GAT GGT C	GCT GGC GTC T	TCT ACT CTA G
	Gln Arg Asn <i>1</i>	Arg Asp Gly 1	Ser Leu Glu F	Leu Gly Gly A	Ala Asp Gly L	Ala Gly Val S	Ser Thr Leu A
GAG GCC GCA	GCT TTG TCT	GAT AAA GAC	GTG ATG GAG	GCA GAG TAT	GAT CCA AGG (CTT GAA GAT C	CAT GCG ACT 1
Glu Ala Ala	Ala Leu Ser	Asp Lys Asp	Val Met Glu	Ala Glu Tyr	Asp Pro Arg A	Leu Glu Asp A	His Ala Thr 9

10	€¶	0	0	æ	9	y y
816	864	912	096	1008	1056	1116
T AAG Ir Lys	T ATA a Ile	T AAT e Asn	nc AAG in Lys	GGA TTT Gly Phe	TGATTA	CCCATTTCAC AAGGTACTTG TCATTGAGAA TACGGATTAT GGACTTGCAG AGTAATTTCC CCATGTTTGT CGGAAGAGCA TATTACCACG GTTGTCCGTC AAACCCATTT AGGATACTGT
A ACT a Thr	A GCT 1 Ala	c ATT	C AAC a Asn			AGT
GCA	GAA	AGC	GCC	TTC Phe	CCA Pro	CAG
AAT Asn	CTT	CCC	GTT Val	TCA	AAG Lys	CTTG
ATT Ile	GGT Gly	CAT His	ACT Thr	AAT Asn	TTC	GGA
AAA Lys	GGA Gly	CTT Leu	GAC Asp	TCG	GCT Ala	FTAT
ATC Ile	TCT Ser	TGG Trp	TTC	ATC Ile	TCG	CGGAC
GAT	GCA Ala	GGC G1y	GAG	GCG	TTC	A TA(
AAG Lys	GGA Gly	ACC Thr	GTG Val	GTT Val	GCT Ala	AAGGTACTTG TCATTGAGAA TACGGATTAT GGACTTGCAG CGGAAGAGCA TATTACCACG GTTGTCCGTC AAACCCATTT
ACA Thr	CTT Leu	AAC Asn	TCG Ser	AAC Asn	GTG Val	CATT(ATTA(
AAC Asn	TGT Cys	ATA Ile	CCA	GTT Val	GTC Val	rg TC
AAG Lys	CAC His	GGA G1Y	GAG	GAA Glu	TCA	ract' agago
TTC	GGA Gly	AAG Lys	CCT	CAC His	AAC Asn	AAGG'
GTT Val	ATC Ile	ATT Ile	AAT Asn	CAA Gln	CAC	CAC A
AAG Lys	ATG Met	ACT Thr	TTC	CAG Gln	66C G1y	CCCATTTCAC
AAG Lys	TCA	GCG Ala	CAA Gln	AAG Lys	GGA Gly	CCC

FIGURE 1 3 OF 4

FIGURE 1 4 OF 4

1348	AA	CTTTTGTTT GTATTGGAAA GGAAGTGCCG TCTCAAAAAA AAAAAAAA AA	TCTCAAAAAA	GGAAGTGCCG	GTATTGGAAA	CTTTTGTTT
1296	GAAATTATA TTTATTTTAT CTTAGAAAGG TCAAATAAGA TTTTGTTTTA CCTCTGTAAA	TTTTGTTTTA	TCAAATAAGA	CTTAGAAAGG	TTTATTTTAT	SAAATTATA
1236	cialgiaai aaaaciaagg afiafiaaff icccffffaa iccfgfcfcc agfffgagca 1236		TCCCTTTTAA	ATTATTAATT	AAAACTAAGG	LIAIGIAAI

Sequence Range: 1 to 1704

0											
40 GTG Val>		GCA Ala>		TCT Ser>	190	GAC Asp>	240	cGG Arg>	CTC Leu>		GAA Glu>
GNG		TCG	140	GAC Asp	15	ATC Ile		ATC Ile	AGG Arg		CTC
ACC Thr	90	AAT Asn	•	GTC Val		TTA Leu		CAG Gln	0 AGG Arg	330	GCT CTC Ala Leu
30 TCC Ser		AGG Arg		GAC		AGC	230	GGC Gly	280 GAC AGG ASP Arg		AAG Lys
AGC		TGC Cys	0	TCC	180	ATC Ile	0	GGC	AAC Asn		AAG Lys
TGG	80	GGC Gly	130	GGC Gly		$_{\rm GGG}$		TTC Phe	AAG Lys	320	$_{\rm GGG}$
20 AGC Ser		CCG		TTC		AGC	0	AGG Arg	270 GGG Gly	m	GCC
AAA Lys		CCC		GTA Val	170	GAG Glu	220	ACC	GAC Asp		GTC Val
AAC Asn	70	GAT Asp	120	TCC		GGC Gly		CCC	ATC Ile	0	ATT Ile
10 AAA GGG . Lys Gly .		GTG Val		GTC Val		TCC		TTC	260 TAC	310	TGC Cys
AAA		CTA Leu		CTC	160	CTC	210	AAG Lys	2 GGA G1y		TAC
ACT Thr		GAA Glu	110	$_{\rm GGC}$	16	CTC		TCC	ACG Thr		CGC
CTC	60	CTA Leu	\	ATG Met		AAG Lys		GCT	50 GCG Ala	300	CTC
ACC Thr		GCT Ala		GGC Gly		GAA Glu	200	GAC	250 AAC GCO Asn Ala		TGC Cys
TTA Leu		GCC Ala	100	GCC	150	TAC Tyr	(1)	TTC	TTC		GAT Asp
AAA Lys	20	GCG Ala	1(CGA Arg		TAT Tyr		CGC Arg	GGA Gly	90	GAC

TIGURE 2

	AGA Arg>	430	TCT Ser>	480	CCG Pro>	GCC Ala>		TGT Cys>		CGA Arg>	0	ATC ATT Ile Ile>
380	GAG Glu	4	TTC		TCC	CTT Leu		GCA Ala	620	CGC	670	ATC Ile
	AAG Lys		GTC Val		ATC Ile	20 CTG Leu	570	ACT Thr	v	ATC Ile		GCA Ala
	GAT		ACC Thr	470	aag Lys	520 GCT CTC Ala Leu		TCA		CAT His		GCT Ala
370	ATT Ile	420	CTA	•	CGG Arg	TCT Ser		ATT Ile	610	AAT Asn	* 099	GAG Glu
'n	AAG Lys		66C 61y		CAC His	GGG G1y	260	TCG	61	GCC		ACT
	TCC		$_{\rm G1y}^{\rm GGT}$	460	GGT Gly	510 ATG Met	α,	TAT Tyr		GCT Ala		GGA Gly
	CTC	410	ATG Met	4	AAA Lys	AAC Asn		AAC Asn		GCC	029	GCT GGA Ala Gly
360	AGC		$_{\rm G1y}^{\rm GGT}$		GAG Glu	ACA Thr	550	CCA	009	TAT Tyr	Ψ.	GCT
	GAA Glu		ACT Thr		ATC Ile	500 ATT Ile	5.	${ m GGC}$		TTT Phe		ATT Ile
	GGT G1y	400	GGA Gly	450	CIC	GCC		ATG Met		TGC	640	CTC ATG
350	66C 61y	4	GTT Val		AAT Asn	TAT Tyr		CTG Leu	290	TAC Tyr	64	CTC
	CTC		CTA		CAG Gln	90 CCC Pro	540	$_{\rm G1y}^{\rm GGT}$	٠,	AAC Asn		GAC Asp
	GAT Asp		GTG Val	440	GTT Val	490 ATT CC		TTG		TCC		GCT Ala
340	TCC	390	GGA G1y	٠	666 61y	TTC		GAT Asp	280	ACT Thr	630	GAG Glu
m	AAT Asn		GCT		GAC	TTT Phe	30	ATC Ile	2	GCT Ala		66C G1y

FIGURE 2 2/5

720	AGG Arg>	GAT Asp>		TTG Leu>		GGA Gly>	0.	GAT Asp>	096 *	GGG G1y>	ACT Thr>
	CAA Gln	CGT Arg		AGC	860	TTG Leu	910	GCT Ala		GCT Ala	TCC
	TCT	760 AAG GAC Lys Asp	810	GAG Glu	w	TAT Tyr		AGG Arg		GAT Asp	O ACT Thr
710	TTA			ATG Met		GAA Glu		CCA Pro	950	GAA Glu	1000 GCG ACT Ala Thr
•	GCT Ala	GAT ASP		GTT Val	850	GCA Ala	900	GAT Asp	01	CTG	CAT
	AGG Arg	TGG Trp	800	TTG	88	ATT Ile		ACT Thr		AGT Ser	GCT
700	TGC	750 CCG Pro	•	GTA Val		ATT Ile		CAT ATG His Met	940	AGC	990 AAT Asn
7	GCC	AGG Arg		GGA G1y		CCG	890	CAT His	6	GAG Glu	ATA Ile
	GTT Val	TCA	190	GCT Ala	840	GCG Ala	~	TAT Tyr		ATT Ile	\mathtt{TAC}
	TTC	740 GCC	7	$^{\rm GGG}_{\rm G1y}$		GGA Gly		GCT Ala		TGC Cys	980 AAT Asn
069	GGA Gly	ACT		GAA Glu		CGA Arg	880	GAT Asp	930	TCT Ser	GTC Val
	GGA G1y	CAG Gln		GGC	830	AAA Lys	88	TGT		TCC	GAG
	TTA Leu	730 GAC CCT ASP Pro	780	ATG Met	~	ATG Met		AAT Asn		GTC Val	970 CCT GAA Pro Glu
089	666 61y			GTG Val		GCA Ala		GTC Val	920	$_{\rm GGT}$	97 CCT Pro
	ATT Ile	GAT Asp		TTT Phe	820	CAT His	870	GCA Ala	01	CTT Leu	TCA Ser
	CCA	AAT Asn	70	${\tt GGT} \\ {\tt G1y}$	8	GAA Glu		GGT Gly		$_{\rm GGG}$	GTC Val

FIGURE 2 3/5

8/66

	ς λ 01 (1)		$\mathcal{L}_{\mathcal{L}}$		- ^	~ *	cn A	~ ^		^		
	AAG Lys>		CAC His>	20	GGA Gly>	1200	GAG Glu>	GAA Glu>		TCA Ser>		GCA
	TTC Phe	1100	GGA Gly	1150	AAG Lys		CCC	CAT His		AAC Asn	1340	AAT
1050	GTT Val	11	ATC Ile		ATT Ile		AAT Asn	10 CAA Gln	1290	CAC	13	TCA
•	AAG Lys		ATG Met		ACA Thr	1190	TTC Phe	1240 CAG CAA Gln Gln	П	GGC		GGT
	AAG Lys	0.6	TCG	1140	GCG Ala	H	CAA Gln	AAG Lys		GGA Gly	0	CTC
1040	ATC Ile	1090	AAG Lys	П	ATT Ile		AAC Asn	AAG Lys	1280	TTC	133(TTA
1(GCC		ACT Thr		GCC Ala	30	ATA Ile	1230 AAC Asn	12	GGA Gly		TGA
	AAT Asn		GCA Ala	1130	GAA Glu	1180	AGC	1 GCC Ala		TTC Phe		CCA
30	ATA Ile	1080	AAT Asn	1	CTT Leu		CCC	GTT Val	0,	TCA	1320	AAG Lys
1030	GAG Glu	•	ATC Ile		GGT Gly		CAT His	1220 GAC ACA Asp Thr	1270	AAT Asn	П	TTC
	GCC		ACA Thr	20	GGG Gly	1170	CTT Leu			TCA		GCC
	CTT	1070	ATC Ile	1120	TCA	• •	TGG Trp	TTC		GCT ATC Ala Ile	1310	TCA
1020	GAT Asp	1	GAA Glu		GCA		GGC G1y	1210 GTG GAA Val Glu	1260	GCT Ala	13	TTC
	GGG G1y		AAG Lys		GGA Gly	1160	ACC Thr	1210 GTG GZ Val G	(GTT Val		GCT
	GCT Ala	. 09	ACC	1110	CTT Leu	11	ACC Thr	TCA Ser		AAT Asn	0	GTA Val
10	CTT	1060	AAC Asn	T-1	TGT		ATA Ile	CCA	20	GTG Val	1300	GTT Val

SUBSTITUTE SHEET (RULE 26)

FIGURE 2 5/5

AATCGAAGAT TATTTCCATT CTAATCCAGT CTCCGNCGAG TTTGAGAATC TATCTGTTTG CCCTTGTCAA TGGCATTTAA GATAAGCTTA TAAAAAAAA AAAAAAAA AAAACTCGAG AATTTGTTGC TGAGACAGTG AGCTTCAACT TGCAGAGCAA TTTTTTACAT GCCTTGTCGT CGGAAGAGCG TAATACCGGG ATAGTTCCTT GATAGTTCAT TTAGGATGTT TTACTGCAAT TATTAGAAAG AACGAGGCAA GATTTTGTTT CATGTTTGTG TTTGTATTAC TTTCTTTTTG GGGGGCCCG GTACCCAATT CGCCCTATAG TGAGTCGTAT GACAATTCAC TGTCCGTCGG

09	ACTAGTGGAT	120	GCTCAGGTGT	r ACG TGG s Thr Trp		CGT TCC Arg Ser	260	CTC TCC Leu Ser	310	CCT TGC Pro Cys	360	TTC GGA Phe Gly
50	CCGCTCTAGA	110	GGTCGGCTCA	160 CCT TTC TGT Pro Phe Cys	210	AAC GAC CCA Asn Asp Pro	2(CGG AGG ACT Arg Arg Thr		TGC CTC GAT Cys Leu Asp	350	GCT TCC CTC Ala Ser Leu
40		100	TTCTTACTTG GO	.50 GCG TCC Ala Ser	200	TCC GAC Ser Asp	250	CGT CGC CC Arg Arg Ar	300	TTC CAA TGC Phe Gln Cys		GGA TTC GCT Gly Phe Ala
30	TCCACC GCG	06	GGCACGAGTT TTC	140 TCT TGC ATG GTT Ser Cys Met Val	0	ACT TCA Thr Ser	240	CTC TCC Leu Ser	290	TCC ACC Ser Thr	340	GAT AAC Asp Asn
20	AGCTG GAGO	80	AATTC GGCA	GCT	190	TGC ATG CCC Cys Met Pro	0	CGG CTC CGC Arg Leu Arg	280	CTC CGC GGA Leu Arg Gly	330	TTC CTC GGG Phe Leu Gly
10	ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG	70	CCCCCGGGCT GCAGGAATTC	130 ATG GCG ACC Met Ala Thr	180	GTA GCT GCA Val Ala Ala	230	TCC CAC AAG Ser His Lys		TGC TCC Cys Ser	320	CAA CGC Gln Arg
	ACTAA		CCCCC	TCCA 7	170	CTC G1 Leu Va	220	CTT TC Leu Se	270	TCC CAT Ser His		AAC CAG Asn Gln

IGURE 3 1/6

V)
Ľ	
C	١
۲,	7
Ā	1
Δ	
Ξ)
C	2
Ĭ	

ACT Thr		GAA Glu		GTG Val		TAC	009	AAC	TCT		GAC
CGC Arg		CAG Gln	200	GTT Val	550	GAT GTT A	9	GAG Glu	AAG Lys		ATG
GGC G1y	450	GCA Ala	2(CGA GTA GTT Arg Val Val		GAT Asp		ATA Ile	ATC Ile	069	GAG AGG Glu Arg
400 CTC Leu	,	CCT Pro		-		CCC Pro	290	GAG Glu	640 GAG Glu	v	
AGG Arg		CAA Gln		AGG	540	CAT GAC CCC His Asp Pro	5,0	AGT Ser	GGA Gly		TCC
CTG	440	ATG Met	490	CAA Gln	u ,			ATA Ile	GCC Ala	089	AAG TTC Lys Phe
390 GGC CAC Gly His	4	GCT Ala		AAG Lys		GGC Gly		GGC Gly	630 ATT Ile	89	AAG Lys
GGC Gly		GTG Val		ACC Thr	530	CTA Leu	580	AGT	6 AGA Arg		CCA
CGC		ATG GCT Met Ala	480	CCT GCT Pro Ala	5	CCT		ATA Ile	ACG Thr		GCC
380 TCA AAT Ser Asn	430		٧.			ACT Thr		GGA	620 TTT CCC Phe Pro	019	GTG Val
		GTC Val		AAT AAG AAA Asn Lys Lys		GTG GTG Val Val	570	GAC	620 TTT C(Phe P)		TGG Trp
CGT		GAG Glu	470	AAG Lys	520	GTG Val	u,	CTA Leu	CAG Gln		GGC G1y
CTT Leu	420	$_{\rm GGG}$	4.7			GGC Gly		CTC	TCT Ser	* 099	GAT Asp
370 CCT Pro	•	TCC		ACA Thr		ATG Met	260	AAT Asn	610 TGC Cys	U	ACA Thr
AAG Lys		CAT His		TCC	510	GGT Gly	26	AAC Asn	GAC		TCC
TCC	410	TCC	460	GTC Val	u ,	ACA Thr		TAC	TTC Phe	650	TTT Phe

_	GAT Asp		TGT Cys	840	GAT Asp	TGT Cys		GAC Asp		ACA Thr		GAA Glu
740	GCA Ala	790	AAG Lys	ω	AGC	TTT Phe		ATG Met	980	GCA Ala	1030	GGC
	TTA Leu		AGA Arg		TTC Phe	CCC Pro	930	GCA Ala	99	TGT	H	AAA Lys
	GCA Ala		AAA Lys	830	GTA Val	880 AGT Ser	Oi	CTT Leu		GCC Ala		ATC Ile
730	AAA Lys	780	AAT Asn	83	AAG Lys	ATC Ile		ATT Ile		ACT Thr	1020	
	AAG Lys		CTC		ATG Met	AAG Lys	0	GCT	970	TCA	10	CAC ATA His Ile
	66C 61y		GAG Glu		$_{\rm GGT}^{\rm GGT}$	870 TAT AAG Tyr Lys	920	TCC		ATA Ile		AAC Asn
720	GCA Ala	770	AAA Lys	820	66C 61y	8 TAT Tyr		GGA Gly		TCG Ser	0	GCG
7.	ACT	7.7	ATG Met		TTG	TCA		ATG Met	096	TAT Tyr	1010	GCT GCG Ala Ala
	CTG Leu		GCG Ala		GGA Gly	860 G ACT g Thr	910	AAT Asn	o,	AAC Asn		AAT Asn
0	* ATG Met		GAT Asp	810	TCC	86 AGG Arg		ACA Thr		CCT		CTG
710	TAC Tyr	760	GAA Glu	w	GGC Gly	CTG		ACC Thr	0	GGC Gly	1000	ATA Ile
	CTT Leu		ACT Thr		ATT Ile	GCT	* 006	TCT Ser	950	ATG Met	П	TGT Cys
	ATG Met		ATC Ile	800	CTC	850 GAA Glu	O1	TTT Phe		TGG Trp		TTC Phe
200	TTC Phe	750	GGA Gly	8	GTT Val	ATT Ile		CCT Pro		GGA Gly	066	AAC Asn
•	AAG Lys		GGT Gly		GGA Gly	TCC	068	GTA Val	940	TTG	o.	AGT Ser

FIGURE 3 3 OF 6

1080	GTT Val	AAT Asn		TTT Phe		CAT His		AGT Ser	1320	GCT Ala	TCG
Ä	CCT	AAT Asn		GGA Gly	02	GAG Glu	1270	${\tt GGG} \\ {\tt G1y}$	13	GGA Gly	GTC Val
	TTA Leu	AGG Arg	1170	GAT Asp	1220	TTA Leu	н	$_{\rm GGT}$		GAA Glu	GGA G1y
70	GTT Val	1120 CAG	Ä	CGT Arg		GAG Glu		CTA Leu	0.	CCT	1360 TCC
1070	GCC	TCA Ser		AAT Asn		GAG Glu	1260	TTT Phe	1310	CAC His	cAG Gln
	GCG Ala	TTG	20	GAC AGT Asp Ser	1210	CTT	12	GAA Glu		CCT Pro	GCT
	GAT Asp	1110 CGA GCT Arg Ala	1160	GAC	• •	CTT		GCG		GAG Glu	1350 GCC TTG Ala Leu
1060	TCG	-		TGG		TTA	0.9	\mathtt{TAT}	1300	ACC Thr	13 GCC Ala
	66C 61y	TGC	•	CCA	1200	GTT Val	1250	ATT Ile	.	ATG Met	AAG Lys
	GGT Gly	00 GCA Ala	1150	AGA Arg	17	GGA Gly		ACC Thr		CAC His	10 GAG Glu
1050	TGT Cys	1100 GTA G(Val A		TCG		GCT Ala		GCA	1290	TAC	1340 ATA G2 Ile GJ
1	CTT	TTC		GCT Ala	06	GAA GGA Glu Gly	1240	$_{\rm G1y}^{\rm GGT}$	13	GCC	TGC
	ATG Met	GGT G1y	1140	AAA Lys	1190		•	AGA Arg		GAC Asp	CTC
1040	* GAC ATG ASP Met	1090 GGA G1Y	H	ACC Thr		GGA Gly		AAA Lys	30	TGC	1330 ; ATC
10		1 TTG Leu		CCT		ATG Met	1230	AAG Lys	1280	ACT Thr	1 GTG Val
	GCA Ala	GGT G1Y	1130	GAC	1180	GTG Val	13	GCA		TTC	GGT

FIGURE 3 4 OF 6

	GCT		AAC Asn		CTT	1560	AGG	GGC G1y		GTC Val		TCC
	CCT	09	CAA Gln	1510	CTT Leu	15	ATA Ile	GAA Glu		AAG Lys	0	TCA
1410	ACT Thr	1460	GGC	• •	CAC His		GCA Ala	GAC Asp	1650	CTG	1700	AAC Asn
П	TCC		TTC		GGT Gly	20	CAG Gln	1600 CCG Pro	, ,	AAA Lys		CAT
	ACT		TGT Cys	1500	ATC Ile	1550	GTT Val	1 GAC Asp		GAG Glu		GGC GGC Gly Gly
1400	GCA	1450	CAC	ਜ	ATG Met		GTA Val	GAA Glu	40	AAG Lys	1690	GGC G1y
14	CAT		GCC Ala		TCG		GCA Ala	1590 T TTG n Leu	1640	AAG	-	TTC Phe
	GCG		CTC	1490	AAA Lys	1540	GTT Val	A.A. A.s		CCT Pro		GGG G1y
	AAT	1440	GCT	14	ACC		GCA Ala	ATT Ile		GGC Gly	1680	TCA TTT Ser Phe
1390	ATA Ile	-	CAA		TCC		GAA Glu	1580 CCA AAT Pro Asn	1630	CTC GTC Leu Val	1	
	TAC		TAC		AAT Asn	1530	GTA Val		•			AAT Asn
	AAT	1430	AAG GAA Lys Glu	1480	GTG	Н	$_{\rm GLY}^{\rm GGC}$	CAT		CTG	70	TTG TCC Leu Ser
1380	GTA	14	AAG		AGA		GGT Gly	ATC Ile	1620	GCA AAA Ala Lys	1670	
Н	GAC		ATC		CTG	1520	GCT Ala	1570 TGG Trp	ਜ			${\tt GGT}\\ {\tt G1y}$
	GAA Glu		GAT Asp	1470	GAG Glu	15	GGA Gly	GGA G1y		GAT ASP		GTC Val
1370	AGG Arg	1420	GGA Gly	Н	AGT		GGA G1y	ACA Thr	1610	GTG Val	1660	AAG Lys

FIGURE 3 5 OF 6

١	c
£	I
Ī	_
7	c
`	_
c	•
	•
Ĺ	Ľ
C	Y
•	_
Ė	z
ζ	3
۲	7

	AAAAA	AAAAAAAA	AAACCACATC TCAGTATGCA AAATAAAAA AAAAAAAAA AAAAAA	TCAGTATGCA	AAACCACATC
		2040	2030	2020	2010
ATATTTTGAA		TCTAAGATCA	ACATGITCGI TATCGGATCA ATGIGITTCI TCIAAGATCA ITTGIAATGC	TATCGGATCA	ACATGTTCGT
2000	1990	1980	1970	1960	1950
CTTTTCGAAT	TATTTCGAG	GAGGTAGTCG	TATTTTCTTC TTCTTTTGAG AGCTTTAACC GAGGTAGTCG TATTTTCGAG CTTTTCGAAT	TTCTTTTGAG	TATTTTT
1940	1930	1920	1910	1900	1890
TTGTCCCTTT	AGATCACTGC	TGGTGTTAAG	GGGGATGCCA AAGATACTCC TTGCCGGTAT TGGTGTTAAG AGATCACTGC TTGTCCCTTT	AAGATACTCC	GGGGATGCCA
1880	1870	1860	1850	1840	1830
GGCTACTCGA	GAGATAGACC	CTCTGAAACC	GAACTCATGC ACGTTAGTAG CTTCTTATGC CTCTGAAACC GAGATAGACC GGCTACTCGA	ACGTTAGTAG	GAACTCATGC
1820	1810	1800	1790	1780	1770
TAG A AAAGAGTCTG TGGAAGCCGA GAGTCTTTGA ***	FGGAAGCCGA	AAAGAGTCTC	AAC Asn	GCC CCC Ala Pro	ATA CTA TTT Ile Leu Phe
1760	1750	1740	1730	1720	1710

Sequence Range: 1 to 1921

09	GCCATGACTA CTACACCTCC	120	GGCACCGGAG GCTCAATCGA	180	CTGCACAGGA AGTTACCACA	ATG Met>		AAT Asn>		TGT Cys>	370	ACA Thr>
	CTAC		CTC		AGTT	GGA Gly		AAT Asn	320	GAT Asp	3,7	TCC
20	CTA	110	3AG	170	3GA	220 GTG ACT Val Thr	270	TAC Tyr	,	TTT Phe		TTC Phe
	ATGA		ACCG		CACA			TTC		ACC		TCT
						GTT Val		GTT Val	310	ATA GAG Ile Glu	360	AAG Lys
40	TTCGAGCCCT	100	ACCACCCGCA	160	GCTCTGCAAC	210 CGA GTA Arg Val	260	CCT GAT GTT Pro Asp Val	31			ATC Ile
	CGAG		CACC		rcTG(210 CGA Arg	•	CCT		GAG Glu		GAG Glu
0		0		0		CGG Arg		GAC Asp		AGT	350	GCT GGA Ala Gly
30	CTG(90	rccg	150	TGT	CAG Gln	250	CAT His	300	ATA Ile	(*)	GCT
	CCTCGCCTGC		GCCCATCCGC		AATGGCTGTG	200 ATC AAA CAG Ile Lys Gln	25	GGC CAT Gly His		GGC Gly		ATT Ile
20	IA C	80		140				CTA Leu		AGT Ser	01	AGA Arg
	CTCT		ATCC.	ř	3GAG(AGT		CCT Pro	290	ACG Thr	340	ACG Thr
	TCACCTCTTA		TCGGATCCAG		CCGGGGAGGC	190 AAG CCA Lys Pro	240	ACT Thr	(1	GGA G1y		CCT
10		70		130	CTT (GTG Val		GAT Asp		TTT Phe
	CGGCACGAGG		GCATCCTTGT	••	GCTTCCCCTT	AAG Lys		GTG Val	30	CTT Leu	330	CAA Gln
) CCC		GCA		GCT	AAG Lys	230	$_{\rm GLy}^{\rm GGT}$	280	CTG		GCT

FIGURE 4

420	ATG Met>	ATC Ile>		CTC Leu>		GAA Glu>	610	TTC Phe>	099	TGG Trp>	rrr Phe>
	TTC	GGA Gly		GTT Val	260	ATT Ile	61	CCT Pro		GGA Gly	AAC Asn
	AAG Lys	460 AAT GGT Asn Gly	510	GGA Gly	υ,	GCC		GTA Val		TTG	AGT Ser
410	GAC Asp			TGC		GAT Asp		TGT Cys	650	GAC Asp	700 ACG AGT Thr Ser
•	ATG Met	ACA Thr		AAA Lys	550	AAT Asn	* 009	TTT Phe	Ψ	ATG Met	GCA Ala
	AGG Arg	TTA Leu	200	AGA Arg	5.5	TTC Phe		CCC Pro		GCA Ala	TGT Cys
400	AAG Lys	450 GCA Ala	υ,	AAA Lys		GTA Val		ATG AAT Met Asn	01	ATG CTT Met Leu	690 GCT Ala
4	TCC	AAA Lys		GAT Asp		AAG Lys	290	ATG Met	640	ATG Met	ACT Thr
	AAG CTC Lys Leu	AAG Lys	490	CTA Leu	540	ATG Met	u,	AAG Lys		GCT Ala	rcr Ser
	AAG Lys	440 GGC Gly	4	GAG Glu		$_{\rm GLy}^{\rm GGA}$		AAG Lys		TCA	680 TCG ATA Ser Ile
390	CCG	GCC		AAA Lys		${\tt GGT}\\ {\tt G1y}$	280	\mathtt{TAT}	630	$_{\rm GGA}$	TCG Ser
	GCC Ala	ACT Thr		ATG Met	530	ATG Met	28	TCA		ATG Met	IJН
	GTG Val	430 ATG CTG Met Leu	480	GTG Val		GCA Ala		ATT Ile		AAT Asn	670 CCC AAC TA Pro Asn TY
380	TGG			GAT Asp		TCA		AGG Arg	620	ACA Thr	67 CCC Pro
••	$_{\rm GLY}^{\rm GGT}$	TAC		GAA Glu	520	GGC Gly	570	CTA Leu	v	ACC Thr	GGC
	GAT Asp	CTT	470	ACC	52	ATT Ile		GCC Ala		GCT Ala	ATG Met

FIGURE 4 2/6

			20		* 006				TGC Cys>		ATT Ile>
GAT Asp	300	ATG Met	8			ATG Met	AAG Lys		ACT Thr	040	GTG Val
	w	$_{\rm GGT}$				GTT Val	io GCA Ala	066	TTC Phe	10	GGA G1y
GAA Glu				GCC Ala	390		94 CAT His		AGT		GCT
GGC Gly	90		840	AAT Asn	w	GGA Gly	GAG Glu		GGA Gly	0	GAT GGA Asp Gly
AGA Arg	7.5					GAT Asp		086	$_{\rm GGT}$	103	GAT Asp
ATC Ile		ATC Ile		CAG Gln	20	CGT Arg	930 GA G Glu	01	CTA		CCT
		GTA Val	330	TCA	88	AAT Asn	GAG Glu		TTT Phe		CAC His
CAC His	780	GCG Ala	w			AGT Ser	CTA Leu	0,	GAA Glu	1020	CCT
AAC Asn						GAC	220 CTA Leu	9.	GCA Ala	-	GAG Glu
		TCA	30	CGA Arg	870	TGG Trp	CTA Leu		TAC Tyr		ACC Thr
GCT Ala	170	GGC Gly	8			CCA	GTG Val		ATT Ile	110	CAC ATG His Met
	•	666		GCA Ala		AGA Arg	10 GGA Gly	960	ACT Thr	10	CAC His
		TGC		GTT Val	960	TCA	91 GCT Ala		GCG Ala		TAC
ATC Ile	20	CTT Leu	810	TTT Phe	w	GCT Ala	GGA Gly		GGT Gly	00	GCC
TGT Cys	7(ATG Met		GGT Gly		AAA Lys	GAA Glu	950	AGA Arg	100	GAT ASP
	ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT Ile Leu Asn Ala Asn His Ile Ile Arg Gly Glu Ala Asp	ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT Ile Leu Asn Ala Asn His Ile Ile Arg Gly Glu Ala Asp 770 780 780 800	ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT Ile Leu Asn Ala Asn His Ile Ile Arg Gly Glu Ala Asp 50 770 * 780 790 800 800 CTT TGC GGG GGC TCA GAT GCG GTA ATC ATA CCT ATT GGT ATG Leu Cys Gly Gly Ser Asp Ala Val Ile Ile Pro Ile Gly Met	ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT ASP Ile Leu Asn Ala Asn His Ile Ile Arg Gly Glu Ala Asp 50 770 780 790 800 CTT TGC GGG GGC TCA GAT GCG GTA ATC ATA CCT ATT GGT ATG Leu Cys Gly Gly Ser Asp Ala Val Ile Ile Pro Ile Gly Met 810 820 830 830 840 840 85	ATC CTG AAT GCG AAC CAC ATA ATC AGG GAA GGA GCA GAA GAA GAA GAA GAA GCA GAA GAA GAA GAA GAA GAA ASD 50 TTT TGC GTA ATC ATA ATA ATA GAA ATG ATG	ATC CTG AAT GCG AAA His Ile Ile AGA GGA GGA GAA GGA GAA GGA GAA ATC ATA ATA <td>ATC CTG AAT GCG AAA His IIe IIe AIG GIA GGA GAA GGA GAA GGA GAA AAA AAAA AAAA AAAA AAAA AAAA AAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</td> <td>ATC CTG AAA CAC ATA ATC AGA GGC GAA GCA GAA GCA GCA<td>T ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT S IIe Ieu Asn Ala Asn His Ile Ile Arg Gly Glu Ala Asp 760 760 770 780 780 780 780 780</td><td>T ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT ASP TO AS TO A</td><td> Name</td></td>	ATC CTG AAT GCG AAA His IIe IIe AIG GIA GGA GAA GGA GAA GGA GAA AAA AAAA AAAA AAAA AAAA AAAA AAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ATC CTG AAA CAC ATA ATC AGA GGC GAA GCA GAA GCA GCA <td>T ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT S IIe Ieu Asn Ala Asn His Ile Ile Arg Gly Glu Ala Asp 760 760 770 780 780 780 780 780</td> <td>T ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT ASP TO AS TO A</td> <td> Name</td>	T ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT S IIe Ieu Asn Ala Asn His Ile Ile Arg Gly Glu Ala Asp 760 760 770 780 780 780 780 780	T ATC CTG AAT GCT GCG AAC CAC ATA ATC AGA GGC GAA GCA GAT ASP TO AS TO A	Name

FIGURE 4

06	GAC Asp>	1140	ATC Ile>	TTA Leu>		GCC Ala>		TGG Trp>	0	ACC Thr>	1380	GGT Gly>
1090	GAA Glu	• •	GAT Asp	GAG Glu		GCA Ala	1280	GGG Gly	1330	GAT Asp		GTC Val
	AGG Arg		GGA Gly	1180 AAC AAC Asn Asn	1230	GGA Gly	12	ACT Thr		GTG Val		AAG
	TCT	1130	GCT		V-1	CTC		AGG Arg		GGC Gly	1370	ATT Ile
1080	GGA GTC GGIY Val	Ä	CCA Pro	CAA Gln		CTT Leu	0,	GCA ATA Ala Ile	1320	GAA Glu	13	AAC Asn
	GGA Gly		ACT Thr	66C 61y	1220	CAC His	1270		-	gat Asp		CTG
	CAG TCA Gln Ser	50	ACA TCC Thr Ser	1170 TGT TTC (Cys Phe (12	$_{\rm G1y}^{\rm GGT}$		CAG Gln		CCA Pro	0	AGA Arg
1070	CAG Gln	1120	ACA Thr	1 TGT Cys		ATT Ile		GTT Val	1310	AAC Asn	1360	GAG Glu
₩	GCT		GCC Ala	CAC His	01	ATG Met	1260	TCA GTA GTT Ser Val Val	13	GAA Glu		AAG Lys
	TTG		CAT His	1160 T ATC	1210	TCA	-	TCA		TTG		AAG Lys
09	GCT	1110	GCA Ala	CTT CET		AAA Lys		GCA GTT Ala Val	0	ATT AAT Ile Asn	1350	CCT Pro
1060	AAG Lys	, ,	AAT Asn	GCT		ACC Thr	1250	GCA Ala	1300	ATT Ile	П	GGC Gly
	GAG Glu		ATA Ile	50 CAA Gln	1200	TCT	12	GAA Glu		AAT Asn		GTG Val
	ATA Ile	1100	TAC	1150 TAC C2 TYF G	'	AAT Asn		GTG Val		CCG Pro	1340	CTC
1050	TGC	H	AAT Asn	GAG Glu		GTG Val	0.1	GGT Gly	1290	CAT His	13	TTG
•	CTC		GTA Val	AAA Lys	1190	AAA Lys	1240	$_{\rm GGT}$	П	ATC Ile		AAA Lys

FIGURE 4

			0	Ö	0	と り	0	F	0	a !	0	ניז	0	רח
TTC Phe>			1540	CAT	1600	ACA(1660	TTTCTGAAAT	1720	AAC	1780	TTTATCGCCG	1840	GGA
CTC 1	1480	4AA		rgcc		gac		rcīg		AGAG		PATC		ATT
4 0 5 1	Ť	ATC/		CA		99				GA.				ATC
ATA Ile		TCT	1530	AGA	1590	CAT	1650	TTT	1710	GAA	1770	TAT	1830	ΓTG
1420 TCC Ser	0	A A	H	TCL		ACT	Н	ATT	\vdash	AGT	∺	CTC	ï	CTC
1410 1420 GGG CAC AAC TCG TCC Gly His Asn Ser Ser	1470	CATGTGGA ATTCTACTCA ATCTATCAAA		TGAGGACTCC AGCATGTTGG TAGCTCCTTA CGTCTCTAGA CATGCCCATG		AGTTTTGTGT CGGGAGCTGT AGTCGGAACC ATGACGGATT GAGTACTCAT GGCGACACAG		TCCCATTTT		CTCCCTCCTT ACGGTAGTTG TACTTTCGAG CGTTTCATCG AGTCAGTGAA GAAGAGAACA		AAGCTAACTC GGGCACGTAG TAACCATTTG CCCTTTGTTT TGCTCTCTAT		TTTTCTCTTG ATCATTGGAG
AAC Asn		rtct	1520	ľŦĀ	1580	TT	1640		1700	်ဥင္ပ	1760	. J.J.	1820	
AC 1	0	A A	Ħ	īčcī	H	7990	16	ıcaı	17	ICA1	17	rtgi	18	3GTT
1410 GGG CAC Gly His	1460	TGG		'AGC		TGA		TGTTAGAGCA CTATTCATTA		GTT		CCT		AAAACTAGAC GACTGGTTTG
567 44		rgto	01	33.1	0.0	ည	000	ZA C	0.0	S C	0.0	<u>ည</u>	0	S C
GGT		CA	1510	GTT(1570	GAA(1630	GAG(1690	ľCG2	1750	ATT	1810	rag?
1400 GGG TTT Gly Phe	1450	TTT		CAT		TCG		TTA		CTT.		ACC		AAC
1400 GGG Gly	-	၁၁၅	~ *	AG Y	~ *	r AG	<u> </u>		~ "	TA	- -	TA		Y. A.
TTC (Phe (TAG GGCGTTT ***>	1500	CTC	1560	CTG	1620	SAAT	1680	3TTC	1740	3TAG	1800	rTGI
TCA T Ser P	<u>o</u> *			GGA		GAG		TTGCTAGAAT		GTA(CAC		TTTTGTGGGT TAAAATTTGT
r TC	1440	AAC Asn				CGG				ACG		999		TAA
1390 TCT AAT Ser Asn		CCT TAC Pro Tyr	1490	GCTGAAGTTT	1550	IGT	1610	GATATACTCC	1670	CTT	1730	CTC	1790	3GT
1 TCT Ser		CCT	H	AAG	Н	TTG'	Ä	TAC'	Ĥ	CTC	H	TAA(ij	GTG
TTG	0.	GCC		CTG		GTT		ATA		TCC		AGC		TTT
r. H	1430	0 ~		J		7		Ü		J		4		L

FIGURE 4 5/6

1900	AAAAAAAAA	
1890	AAAAAAAAA	
1880	ATAAAAAAA	
1870	TTCATTGATG	
1860	ATATTTGCCT	1920
1850	ATGTATGGCC ATATTTGCCT TTCATTGATG ATAAAAAAA AAAAAAAAA AAAAAAAAA	1910

AAAAAAAA AAAAAAAA A

FIGURE 4 6/6

09	120	169	217	265	313	361	409	457	505
CTGGTACGCC TGCAGGTACC GGTCCGGAAT TCCCGGGTCG ACCCACGCGT CCGTCTTCCC	ACTCCGATCG TTCTTCTTCC ACCGCATCTC TTCTCTTCTC	CGCCGCC ATG CAT TCC CTC CAG TCA CCC TCC CTT CGG GCC TCC CCG CTC Met His Ser Leu Gln Ser Pro Ser Leu Arg Ala Ser Pro Leu 1	GAC CCC TTC CGC CCC AAA TCA TCC ACC GTC CGC CCC CTC CAC CGA GCA Asp Pro Phe Arg Pro Lys Ser Ser Thr Val Arg Pro Leu His Arg Ala 15	TCA ATT CCC AAC GTC CGG GCC GCT TCC CCC ACC GTC TCC GCT CCC AAG Ser Ile Pro Asn Val Arg Ala Ala Ser Pro Thr Val Ser Ala Pro Lys 35	CGC GAG ACC GAC CCC AAG AAG CGC GTC GTG ATC ACC GGA ATG GGC CTT Arg Glu Thr Asp Pro Lys Lys Arg Val Val Ile Thr Gly Met Gly Leu 50	GTC TCC GTT TTC GGC TCC GAC GTC GAT GCG TAC TAC GAC AAG CTC CTG Val Ser Val Phe Gly Ser Asp Val Asp Ala Tyr Tyr Asp Lys Leu Leu 65	TCA GGC GAG AGC GGG ATC GGC CCA ATC GAC CGC TTC GAC GCC TCC AAG Ser Gly Glu Ser Gly Ile Gly Pro Ile Asp Arg Phe Asp Ala Ser Lys 80	TTC CCC ACC AGG TTC GGC GGC CAG ATT CGT GGC TTC AAC TCC ATG GGA Phe Pro Thr Arg Phe Gly Gly Gln Ile Arg Gly Phe Asn Ser Met Gly 95	TAC ATT GAC GGC AAA AAC GAC AGG CGG CTT GAT GAT TGC CTT CGC TAC Tyr lle Asp Gly Lys Asn Asp Arg Arg Leu Asp Asp Cys Leu Arg Tyr 120

FIGURE 5

553	601	649	697	745	793	841	888
GCC	666 G1y	CTT Leu	GCC Ala 190	ATG Met	TGC Cys	ATG Met	GGC Gly
GGT Gly	GTT Val	TCT Ser	TAT Tyr	CTG Leu 205	TAC Tyr	CTT Leu	GGA Gly
CTC Leu 140	CTG	CAA Gln	CCC Pro	GGT Gly	AAC Asn 220	GAT Asp	TTG
GAT Asp	GTG Val 155	GTT Val	ATC Ile	CTC	TCC Ser	GCT Ala 235	GGG G1y
GCC Ala	GGA Gly	GGG G1y 170	TTC Phe	GAA Glu	ACT Thr	GAG Glu	ATT Ile 250
GAC Asp	GCC Ala	GAC	TTC Phe 185	ATT Ile	GCC Ala	GGT Gly	CCA Pro
GAG Glu	AGA Arg	TCT Ser	CCT	GCT Ala 200	TGT Cys	CGT Arg	ATT Ile
CTT Leu 135	GAG Glu	TTC Phe	ACC Thr	CTC	GCA Ala 215	CGC	ATC Ile
TCT Ser	AAG Lys 150	GTC Val	ATC Ile	CTG Leu	ACT Thr	ATC Ile 230	GCA
AAG Lys	GAC Asp	ACT Thr 165	AAA Lys	GCC Ala	TCC	CAT His	GCC Ala 245
AAG Lys	ATC Ile	CTG	CGG Arg 180	TCT Ser	ATT Ile	AAT Asn	GAG Glu
GGG G 1y	AAG Lys	$_{\rm G1Y}^{\rm GGT}$	CAC His	GGG G1Y 195	TCA	GCT Ala	ACT
GCC Ala 130	TCC Ser	GGT Gly	GGT G1y	ATG Met	TAT TY 210	GCT Ala	GGC G1y
GTC Val	CTC Leu 145	ATG Met	AAG Lys	AAC Asn	AAC Asn	GCT Ala 225	GGA Gly
ATT Ile	CGC Arg	GGA G1y 160	GAG Glu	ACA Thr	CCA Pro	CAT His	GCT Ala 240
TGC Cys	GAC Asp	ACA Thr	ATC Ile 175	ATT Ile	GGC Gly	TTC	ATT Ile

FIGURE 5

937	985	1033	1081	1129	1176	1224	1272
ACT Thr 270	GAA Glu	CGA Arg	GAT	TCT Ser	GTC Val 350	GCC Ala	AAA Lys
CAG Gln	GGT G1y 285	AAA Lys	TGT Cys	TCC	GAG Glu	CTC Leu 365	ATC Ile
CCT	ATG Met	ATG Met 300	AAC Asn	GTC Val	GAA Glu	GAT Asp	GAT ASP 380
GAC Asp	GTG Val	GCA Ala	ATC Ile 315	GGT G1y	CCT	666 61y	AAG Lys
GAT Asp	TTT Phe	CAT His	GCA Ala	CTC Leu 330	TCA Ser	GCT Ala	ACA Thr
AAC Asn 265	GGT G1y	GAA Glu	GGT Gly	$_{\rm G1y}^{\rm GGT}$	GTC Val 345	CTA Leu	AAC Asn
AGG Arg	GAT Asp 280	TTG Leu	GGA G1y	GAT Asp	66C 61y	ACT Thr 360	AAG Lys
CAA Gln	CGT Arg	AGC Ser 295	TTG	GCT Ala	GCT Ala	TCT Ser	TTC Phe 375
TCT Ser	GAC	GAG Glu	TAT TYT 310	AGG Arg	GAT Asp	ACT Thr	GTT Val
CTG	AAA Lys	CTG	GAG Glu	CCA Pro 325	GAA Glu	GCG Ala	AAG Lys
GCT Ala 260	GAT Asp	GTG Val	GCA Ala	GAC Asp	CTT Leu 340	CAT His	AAG Lys
AGG Arg	TGG Trp 275	TTG	ATT Ile	ACT Thr	AGC Ser	GCT Ala 355	ATC Ile
TGC Cys	CCC	GTG Val 290	ATT Ile	ATG Met	AGT Ser	AAT Asn	GCC Ala 370
GCT	AGG Arg	GGA Gly	CCT Pro 305	CAC His	GAG Glu	ATA Ile	AAT Asn
GTG Val	TCT Ser	GCT Ala	GCA Ala	TAT TYr 320	ATT Ile	TAC	ATA Ile
TTT Phe 255	GCC	GGT Gly	GGA Gly	GCT	TGC Cys 335	AAT Asn	GAG Glu

FIGURE 5

FIGURE 5

1802
ï
to
7
Range:
Sequence

	09 *	ប្ត	TCC Ser									
	0	TTATCTCCGC			TCC	210	CGT Arg		CGG		GTC	CTA
		LTAT (110 TCC CCT Ser Pro	160	TCC	(4	ATC Ile		AAG Lys		GAC	350 ATC AGC Ile Ser
	20		CAC His		CCC		GTC Val		CCC AAG Pro Lys	300	GGC TCC GAC Gly Ser Asp	35 ATC Ile
		CTTTCCGACC ACATTTCATT TCTTGCCTCG	CTC		TCC	200	CCC	250		,		GGC Gly
		TCT	100 TCC Ser	150	AAT Asn	2	CTC		GAC		TTC	AGC
	40	CATT	CAA Gln		CTC		AGC		TCC	290	TCC GTC Ser Val	340 GAG Glu
		ATTT	ATG Met		CGC		GCC	240	CGC GAG Arg Glu	7	TCC	GGC Gly
	30	C AC	Ö	140	TTC	190	CGC Arg				GTC	TCC
	М	CGAC	ລຄລວຄລວຄລວ 06	-	CCC		CGT Arg		AAG Lys		GGC CTC Gly Leu	330 CTC
		TTTC	သဘာ		GAG		CTC	230	CCC	280	GGC	CTG
	20	၁ ၁၅			CTC	180	CCC	7	GCC Ala		ATG Met	AAG Lys
		GGTCGACCCA CGCGTCCGGG	80 CCGTCGTTCG	130	CCT		CGC		TCC		ATC ACC GGC Ile Thr Gly	320 TAC GAC Tyr Asp
1		ວວວວ	CCGI		Ser		CTC		GCC Ala	270	ACC	
) 	10	CCA			CCC	170	GCT	220	ACC Thr		ATC Ile	TAC
i		CGAC	70 CGCTCCTCCG	120	CGC	1	GCC		GCC		GTC Val	GCC
)		GGT	090		CTC		GCC		GCT	260	GTC Val	310 GAC ASP
,												

FIGURE 6 1/5

	CAG Gln	450	CGG Arg		GCT Ala		AAG Lys	GTC Val		ATC Ile	069	CTG
400	GGC Gly	7	GAC		AAG Lys		GAT Asp	ACT Thr	640	AAG Lys	w	GCG Ala
	GCC Ala		AAC Asn		AAG Lys	540	ATT Ile	590 CTA A(Leu T		CGG Arg		TCT Ser
	TTC Phe	440	AAG Lys	490	GGC Gly	u,	AAG Lys	GGC Gly		CAC His	089	GGG Gly
390	AGG Arg	4	GGC Gly		GCC		TCC	GGT Gly	630	$_{\rm GGT}^{\rm GGT}$	99	ATG Met
, ,	ACC		GAC		GTC Val	530	CTC	580 ATG Met	Ψ	AAA Lys		AAC Asn
	CCC		ATC Ile	480	TGC ATT Cys Ile	5.	TCC	GGT Gly		GAG Glu		ACA Thr
380	TTC	430	TAC	•			CAA Gln	ACC Thr	620	ATC Ile	670	ATT Ile
m	AAA Lys		GGC		TAC		GGC Gly	570 GGA G1y	.9	CTC		GCC Ala
	TCC		ACG	470	CGC Arg	520	GCC Ala	GTT Val		AAT Asn		TAT Tyr
	GCT Ala	420	GCG Ala	4	CTC		CTC	CTA		CAG Gln	099 *	ATT CCA Ile Pro
370	GAC ASP	•	AAC Asn		TGC		GAT Asp	560 GGA GTG Gly Val	610	GTT Val	v	ATT Ile
	TTC Phe		TTC Phe		GAT Asp	510	GCC Ala			${\tt GGG}$		TTC Phe
	CGC Arg	410	GGC G1y	460	GAC	-,	GAC	GCC		GAC	0.0	TTT Phe
360	GAC Asp	4	CGT Arg		CTC		GAA Glu	AGG Arg	009	TCT Ser	65	CCG
	ATC Ile		ATC Ile		CGG Arg	200	CTC	550 GAG Glu	-	TTC		TCC

FIGURE 6 2/5

FIGURE 6 3/5

AAC TAT TCG ATT TCA ACT ASS TS T	
TAT TCG ATT TCA Tyr Ser 11e Ser 780 780 6CC GCC AAT CAT Ala Ala Asn His 830 6GA ACT GAG GCT Gly Thr Glu Ala 870 780 780 780 780 780 780 780	
TAT TCG Tyr Ser Tyr Ser GCC GCC Ala Ala GGA ACT GIY Thr 370 TGC AGG Cys Arg 920 CCG TGG Pro Trp 970 GTA TTG Val Leu 10	
TAT TYF TYF GCC Ala G1y G1y CCG CYS CCG PFO	Ala
TA TIGG GG GG GI GG GG GG GG GG GG GG GG GG	Ile
Sn S	Ile
	Pro
720 CC * 0 Pr. 73 All TC Vari	
AT AT AT THE THE THE THE THE THE THE THE THE TH	
	Lys
GGT GGT GST ASD	Met
TTG Leu Leu JO GCT Ala ASD GGT GAT ASD	Ala
GAT ASP 750 ACT Thr RATT Ile GAT ASP TTT Phe Phe 7aT	His
ATC Ile Ile GCT AAT ASD 940 GGC GIY	Glu
GGC CG	Leu
CTT Leu 740 GCA Ala 790 CGC Arg GTC Val CAA Gln Gln Arg	Ser

SUBSTITUTE SHEET (RULE 26)

AGG Arg		GAT Asp	1170	ACT Thr		GTT Val		ATC Ile	ATT Ile		AAT Asn
1070 GAT CCA ASP Pro	1120	GAA GAT Glu Asp	11	GCG Ala		AAA Lys		ATG	.0 ACC Thr	1360	TTT Phe
1070 GAT CCA ASP Pro	•	CTC		CAT His		AAG Lys	1260	AAG TCA Lys Ser	1310 GCA ACC Ala Thr	П	CAA Gln
ACT Thr		AGT	20	GCT	1210	ATT Ile	12		ATC Ile		AAT Asn
ATG Met	1110	AGC	1160	AAT Asn	V-1	GCC		ACT Thr	GCC	1350	ATT Ile
1060 CAT /	i	GAG Glu		ATA Ile		AAT Asn	20	AAT GCA Asn Ala	1300 CTT GAA Leu Glu	ä	AGC
TAT		ATT Ile		TAC	1200	ATA Ile	1250				CCC
GCT	00	TCG TGC Ser Cys	1150	AAT	Ä	GAG Glu		GAA ATC AAA ATC Glu Ile Lys Ile	GGT Gly	40	CAT His
1050 TGT GAT	1100	TCG		GTC Val		GCC Ala		AAA Lys	1290 TCA GGA Ser Gly	1340	CTT
10 TGT Cys		TCC		GAG Glu	06	GAT CTT Asp Leu	1240	ATC Ile			TGG Trp
AAC Asn		GGT GTC Gly Val	1140	CCT GAA Pro Glu	1190				GCA Ala		GGC Gly
1040 GCA GTC Ala Val	1090	$_{\rm GGT}^{\rm GGT}$	H			$_{\rm GGG}$		AAC ACC AAG Asn Thr Lys	1280 CTT GGA Leu Gly	1330	ACC ACC Thr Thr
1040 GCA G Ala V		CTT		TCA		GCT Ala	1230	ACC Thr	1280 CTT G	•	ACC Thr
GGT Gly		666 Gly	30	GTC Val	1180	CTT	ij		TGT Cys		ATA Ile
GGA G1y	1080	GAT Asp	113($^{\rm GGG}_{\rm G1y}$		ACT Thr		AAG Lys	CAC	1320	${\tt GGA} \\ {\tt G1y}$
1030 TTG Leu	Ţ	GCT		GCC Ala	·	TCT Ser	1220	TTC Phe	1270 GGA G1Y	H	AAG Lys

FIGURE 6

1410	G CAG CAA s Gln Gln		A GGG CAC 7 Gly His	1510	ACTTGGTTCA	1570	TAAATGCCTT	1630	AGCCATTTAG	1690	CTCTGATTTA	1750	GTTATTTAAG		CT
1400	AAC AAA AAG Asn Lys Lys	1450	GGA TTT GGA Gly Phe Gly	1500	TGA ATTCT ***	1560	AGCAATTTT	1620	AGTTCCTCGA	1680	TAAATCTAGT	1740	TGTTGTCAAT	1800	ATCCAGCTTA
1390	AAC ACT GTT GCC Asn Thr Val Ala	1440	AAT TCT TTT Asn Ser Phe	1490	TTC AAG CCA Phe Lys Pro	1550	CAACTTGCAG AGCAATTTTT	1610	GTCCTTTGAT	1670	ATTCCCATTT	1730	GTCATGTTTG	1790	GCTCTAGAGG
	TTC Phe	1430	GCT ATC TCG A	1480	TTC TCA GCT 1 Phe Ser Ala 1	1540	CAGTIGCTGA GATAGGGCTT	1600	GAATAGGTCG	1660	ATCGAAGATG	1720	AAGATTTTGT	1780	AAGGGCGGCC
1380	TCG GTG Ser Val		AAC GTC Asn Val	1470	GTG GCA Val Ala	1530	CAGTTGCTGA	1590	CGTAATACCG	1650	GATGATGTTT TACTGTAATA ATCGAAGATG ATTCCCATTT TAAATCTAGT	1710	TGTATTAGAA AGACCAATGA	1770	ATAAAGCAAA AAAAAAAAA AAGGGCGGCC GCTCTAGAGG ATCCAGCTTA CT
1370	CCC GAG CCA Pro Glu Pro	1420	CAT GAA GTG His Glu Val	1460	AAC TCG GTT Asn Ser Val	1520	AAATGCACAC	1580	GTCGGAAGAG	1640	GATGATGTTT	1700	TGTATTAGAA	1760	ATAAAGCAAA

FIGURE 6 5/5

Sequence Range: 1 to 2369

09	CATAAAAGAG	120	TTACCATACC	180	ATCCTTTTCT	230 GCC TCT TCC Ala Ser Ser>	280	ATG TCT Met Ser>	330	TCT CCT Ser Pro>		CCA CTA Pro Leu>
50	CACGCGTCCG	110	CTTCGATTCA	170	GGTCTTTCAT CCCAAAGGGT ATCCTTTTCT	GCC Ala	270	GCC GCC TGC Ala Ala Cys	320	TCC ATC TCC Ser Ile Ser	370	CAA TGC GCC Gln Cys Ala
40	CCGGAATTCC CGGGTCGACC	100	CTCCTTTCAT	160	GGTCTTTCAT	220 CCTCCA ATG CCT Met Pro	0.	TGG CTC CTT Trp Leu Leu	310	CTT CCG CCT Leu Pro Pro	360	ATT CTC TCC Ile Leu Ser
30	CCGGAATTCC	06	TGCGGCCACC	150	GCCTTTTCCG	210 CAGTCAGTTC	260	TGT ACG Cys Thr	o *	GAC CCT Asp Pro	350	CGC CGG Arg Arg
20	GTACGCCTGC AGGTACCGGT	80	AGAGAGAGG ATCCATCGAA TGCGGCCACC CTCCTTTCAT	140	ATTCCGCTGA TCCATTTTCC GCCTTTTCCG	200 CTCAAAGGGT	250	TCC CCT CTC Ser Pro Leu	300	CAC CCC His Pro	340	CTC TCC Leu Ser
10	GTACGCCTGC	70	AGAGAGAGGG	130	ATTCCGCTGA	190 ATCCTATCTT	240	CTG CTC GCT Leu Leu Ala	290	ACC TCC TTC Thr Ser Phe	Ŕ	CGC CGA CGC Arg Arg Arg

FIGURE 7

1

	GTC Val>	TCC Ser>	520	CGG Arg>	570	CTG Leu>		CAG Gln>		CAT His>	ATA Ile>
	CTC	470 ACA Thr	52	CAC His		GCT		AAA Lys		GGC Gly	710 AGT GGC Ser Gly
420	ACC Thr	TAT Tyr		AGG Arg		GTG Val	610	ATC Ile	* 099	CTA Leu	
	CAT His	TAC		CGC Arg	260	GCC Ala	6]	AGT Ser		CCT Pro	ACG Thr
	TTC	60 GAC ASP	510	ACC Thr	.	ATG Met		CCA Pro		ACT Thr	700 GAT GGA ASP G1y
410	AGT	46 CAT His		ACC Thr		GCA Ala		AAG Lys	029	GTG Val	70 GAT ASP
4	TCC	TGC Cys		CGC Arg	550	GAG Glu	009	AAG Lys	w	GTG Val	CTT
	GGA Gly	CCC	200	CCC ATT Pro Ile	5.	AGG Arg		AAG Lys		$_{\rm GGT}^{\rm GGT}$	CTG
400	CGC Arg	450 GAG Glu	σ,			TCC		ACA Thr	640	ATG Met	690 AAT Asn
4	CTC	TTC		AGA Arg		CCT Pro	290	ACC Thr	9	$_{\rm GGA}$	AAT Asn
	GCC	TGC Cys	490	TCC	540 *	TCC	u,	GTT Val		ACT Thr	TAC
	TCC	440 GCC Ala	45	GGA Gly		GCT Ala		GAA Glu		GTG Val	680 TTC Phe
390	TCC	CTC Leu		TTC Phe		CGA Arg	580	CAG Gln	630	GTT Val	GTT Val
	GCT	TAC		TTG	530	AAT Asn	28	GAA Glu		GTA Val	GAT Asp
	TCT Ser	430 C TCT r Ser	480	TCC	ъ,	CTC		CCT Pro		CGA Arg	70 CCT Pro
380	CCT	43 ACC Thr		GCA Ala		AGG Arg		CAA Gln	620	CGG Arg	670 GAC CCT ASP Pro

FIGURE 7

760	GCT Ala>	810	CTC Leu>		AAG Lys>		CTA Leu>	ATG Met>	0.0	AAG Lys>	1050	GCT Ala>
7	ATT Ile		AAG Lys		$_{\rm GGC}$		GAG Glu	950 GGA G1y	1000	AAG Lys	П	TCA
	AGA Arg		CCG Pro	850	GCT Ala	900	AAA Lys	GGT G1y		\mathtt{TAT}		GGA Gly
	ACG Thr	800	GCC Ala	80	ACC Thr		ATG Met	ATG Met		TCA Ser	1040	ATG Met
750	CCT	w	GTG Val		CTG		GTG Val	940 TCA GCA Ser Ala	990	ATT Ile	10	ACA AAT Thr Asn 1
	TTT Phe		TGG Trp		ATG Met	890	GAT Asp	94 TCA Ser		AGG Arg		ACA
	CAA Gln	790	$_{\rm GGT}^{\rm GGT}$	840	TAC	ω	GAA Glu	GGC Gly		CTA Leu	0	ACC Thr
740	GCT	7.5	GAT Asp		CTA Leu		ACC Thr	ATT Ile	086	GCC Ala	1030	GCT
• '	TGT		ACA Thr		ATG Met	880	ATC Ile	930 CTC Leu	o	GAA Glu		TTC Phe
	GAT Asp		TCC	830	TTC Phe	88	GGA Gly	GTT Val		ATT Ile		CCT
730	TTT Phe	780	TTC	w	AAG Lys		GGT Gly	GGA Gly	970	GCC Ala	1020	GTA Val
7.	ACC		TCT		GAC		GAT Asp	920 TGC Cys	97	GAT Asp	~	TGT Cys
	GAG Glu		AAG Lys	820	ATG Met	870	ACA Thr	AAA Lys		AAT Asn		TTT Phe
	ATA Ile	170	ATC Ile	88	AGG Arg		TTA	AGA Arg		TTC Phe	1010	CCC Pro
720	GAG Glu		GAG Glu		AAG Lys		GCA Ala	LO AAA Lys	960	GTA Val	10	AAT CCC Asn Pro
	AGC		GGA Gly		TCT Ser	860	AAA Lys	910 GAT AZ ASP LY		AAG Lys		ATG Met

160KE / 3/7

	G ATA TCT r Ile Ser>	0 *	G AAC CAT a Asn His>	1190 TCA GAT GCG Ser Asp Ala>	1240	A GCT TTG g Ala Leu>	1290	G GAC AGT p Asp Ser>		A CTA CTA u Leu Leu>	0 *	C GCA GAA r Ala Glu>
1090	C TAC TCG	1140	r GCT GCG n Ala Ala	GGC Gly	C	A TGC CGA a Cys Arg	1280	AGA CCA TGG Arg Pro Trp	1330	A GTG CTA y Val Leu	1380	r ATT TAC r Ile Tyr
	CCC AAC Pro Asn	1130	ATG AAT Met Asn	1180 TGC GGG Cys Gly	1230	GTT GCA Val Ala	•	TCA		GCT GGA Ala Gly	1370	GCG ACT Ala Thr
1080	ATG GGG Met Gly	₩	TGT ATA Cys Ile	ATG CTT Met Leu	1220	GGT TTT Gly Phe	1270	AAA GCT Lys Ala	1320	GAA GGA Glu Gly	H	AGA GGT Arg Gly
1070	GGA TGG Gly Trp	1120	AAC TTT Asn Phe	1170 GAT GTG Asp Val	12	ATG GGA Met Gly		CCT ACT Pro Thr	1310	ATG GGG Met Gly	1360	AAG AAA Lys Lys
10	GAC TTG Asp Leu		ACG AGT Thr Ser	GCA Ala	1210	ATT GGT Ile Gly	1260	TCC GAC CCT Ser Asp Pro	13	TTT GTT Phe Val		CAT GCA His Ala
1060	GCA ATG (Ala Met A	1110	TGT GCA A	1160 AGA GGC GAA Arg Gly Glu		ATA CCT I	0	AGA AAT Arg Asn	1300	GAT GGA 3 Asp Gly 1	1350	TTG GAG (Leu Glu F
	CTT		GCT	0 ATC Ile	1200	ATC Ile	1250	CAG Gln		CGT Arg		GAG Glu
	ATG Met	1100	ACT	115 ATA Ile		GTA Val		TCC		AAT Asn	1340	GAG Glu

FIGURE 7

CCT		30	GCT Ala>	1530	GCC Ala>		CAC His>		ATG Met>	GTA Val>	50	GAA Glu>
1430 CC GAG	Glu	1480	TTG	(-1	CAT His		ATC Ile		TCA Ser	1670 T TCA	1720	TTG Leu
ACC (GCT Ala		GCC Ala	0,	CTT Leu	1620	AAA Lys	GT S		AAT Asn
ATG	Met		AAG Lys	1520	AAT Asn	1570	GCT Ala		ACC Thr	GCA Ala		ATT Ile
20 CAC	Tyr His	1470	GAG Glu		ATA Ile		CAA Gln		TCA Ser	50 GAA Glu	1710	AAT Asn
1420 TAC CA	Tyr	П	ATA Ile		TAC Tyr		TAC Tyr	1610	AAT Asn	1660 GTG GA Val Gl	(-1	CCG
ည	Ala		TGC	0	GTA AAT Val Asn	1560	AAA GAG 1 Lys Glu 3	16	GTT Val	$_{\rm GGT}$		CAT
GAT	Asp	1460	CTC	1510	GTA Val	П	AAA Lys		AAA Lys	GGT Gly	1700	TGG ATC Trp Ile
1410 TGC	Thr Cys 1	14	ATT Ile		GAC		ATC Ile	00	GAG TTA Glu Leu	1650 GCC	17	
ACT 1	Thr		GTG Val		GAA Glu	1550	GAT	1600	GAG Glu	GCA Ala		$_{\rm GGG}$
TTC	Phe	0.0	GGA Gly	1500	AGG Arg	7	GGA Gly		AGA Arg	GGA G1Y	0	ACT Thr
1400 G AGT	Ser	1450	GCT Ala	1	TCT		GCT		AAC Asn	.40 CTC Leu	169	AGG
14	Gly Ser		GGA Gly		GTC Val	0.	CCG	1590		1640 CTT CTC Leu Leu		ATA Ile
T.	G1y		GAT	1490	GGA G1y	1540	ACT Thr	П	GGC Gly	CAC		GCA Ala
00 4 H O	Leu	1440	CCT	14	TCA		TCC		TTC Phe	10 GGT G1Y	1680	CAG Gln
1390	Phe	1	CAC His		CAG Gln		ACA Thr	1580	TGT Cys	1630 ATT GGT Ile GlY	1	GTT Val

FIGURE 7 5/7

1770	AAG AAG Lys Lys>		TTT GGT Phe Gly>	1870	GTTTCCGTGT	1930	GTTGGTAGCT	1990	GAACCATGAC	2050	GTAGAGCAAT	2110	GTTGTACTTT	2170	CACGTAGTAA
1760	GTG GGT CCT Val Gly Pro	1810	TCA TTT GGG Ser Phe Gly	1860	ATC TAG GAC Ile ***>	1920	GTGGAATTCT ACTCAACATA TCAAAGCTGA AGTTTTGAGG ACTCCAGCAT	1980	GCTTTAGTCG	2040	AGAATTGTTG	2100	CCTTGCAATA	2160	TTAACTCGGG
1750	AAA TTG CTC Lys Leu Leu	1800	TTG TCT AAT Leu Ser Asn	1850	GCC CCT TAC Ala Pro Tyr	1910	AGTTTTGAGG	1970	TGTGTCCGGA	2030	ACTCCTTGCT	2090	TTTTTCTCTG AAATCTCCCT	2150	AACAAAGCTG
0.*	GAT ACA Asp Thr	1790	GTC GGT Val Gly	1840	CTC TTC Leu Phe	1900	TCAAAGCTGA	1960	CCATGAGTTT	2020	CACTTGATAT	2080	TTTTTCTCTG	2140	TGAAGAAGAG
1740	GAA GGC GTG Glu Gly Val	80	AAC GTT AAG Asn Val Lys	1830	TCG TCC ATA Ser Ser Ile	1890	ACTCAACATA	1950	CTAGACATGC	2010	CTCATGGCGA	2070	TCATATTTTT	2130	ATCGAGTCAG
1730	AAC CCA GAT Asn Pro Asp	1780	GAG AGA CTG Glu Arg Leu	320	GGG CAC AAC Gly His Asn	1880	GTGGAATTCT	1940	CCTTACGTCT	2000	GGATTGAGTA	2060	ATTCATTATC	2120	CGAGCTTTTC ATCGAGTCAG TGAAGAAGAG AACAAAGCTG

FIGURE 7

				CTCTAGAGG	2360 AGGGCGCCG CTCTAGAGG
AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	TGGAAATAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA	AAAAAAAAA	TGGAAATAAA
2350	2340	2330	2320	2310	2300
ATGTATGTTT	TAATTGGGGR	TTCTCATTGA	AACTAGAAGA CTGGTTTAGA TTGGTTTGTT TTCTCATTGA TAATTGGGGR ATGTATGTTT	CTGGTTTAGA	AACTAGAAGA
2290	2280	2270	2260	2250	2240
AAATTTGTAA	TGTGGTTTTA	ATCACCGTTT	CCATITICCC TITGITITIGC ICTCTATITIC ATCACCGITT IGTGGITTITA AAAITIGTAA	TTTGTTTTGC	CCATTTGCCC
7730	0 <i>777</i>	2210	2200	2190	2180

FIGURE 7

Sequence Range: 1 to 2374

09	CACACCAAAC	120	ACAGACAGAC	180	TCTTCGATTC	240	TCCCAAAGGG	300	CCTGCCGCCT	360	TCTACCTCCT	420	CTCTCCCGCC	480	CGCGGATCCA
50	CGGAATTCCC GGGTCGACCC ACGCGTCCGC GACGCCAACC CACACCAAAC	110	TCTCTTCTCA AGACGGACGC CATTGGCAGC AGACAGACAG ACAGACAGAC	170	CCATAAAAGA GAGAGAGG GATCCATCGA ATGCGGCCAC CCTCCTTTCA	230	GGGTCTTTCA	290	TATCCTATCT TCTCAAAGGG TCAGTCAGTT CCCTCCAATG CCTGCCGCCT	350	CGCCTGCATG	410	TCGCCGACGC	470	GCCGGATTCT CTCCCAATGC GCCCCACTAC CTTCTGCTTC CTCCGCCCTC CGCGGATCCA
40	ACGCGTCCGC	100	CATTGGCAGC	160	ATGCGGCCAC	220	CGCCTTTTCC	280	TCAGTCAGTT	340	GGCTCCTTGC	400	CCGCCTTCCA TCTCCTCTCC	460	CTTCTGCTTC
30	GGGTCGACCC	06	AGACGGACGC	150	GATCCATCGA	210	ATCCATTTTC	270	TCTCAAAGGG	330	CTCTGTACGT	390		450	GCCCCACTAC
20	CGGAATTCCC	80	TCTCTTCTCA	140	GAGAGAGAGG	200	CATTCCGCTG	260	TATCCTATCT	320	CTTCCCTGCT CGCTTCCCCT CTCTGTACGT GGCTCCTTGC	380	CGACCCTCTT	440	CTCCCAATGC
10	-A-CNTGGTC	70	TTCCTCAGCT	130	CCATAAAAGA	190	ATTACCATAC	250	TATCCTTTTC	310	CTTCCCTGCT	370	TCCACCCCTC	430	GCCGGATTCT

FIGURE 8 1/5

CAGCAATGGG	CTCATTGGCT	ATGCGGAGTT	ATAAAAGAAA	AGATGTGATG AAAGAGCTAG ATAAAAGAAA ATGCGGAGTT CTCATTGGCT CAGCAATGGG	AGATGTGATG
1020	1010	1000	066	980	970
GAATCACCGA	ACAGATGGTG	CTGCTGGCAA GAAAGCATTA ACAGATGGTG		GTTCATGCTA TACATGCTGA	GTTCATGCTA
1 1 1 1 1 1 1 1 1 1	950	940	930	920	910
GGATGGACAA	CTCTCTAAGA	GGCCCCGAAG	ATGGTTGGGT	TTCTCCACAG	GATCAAGTCT
*	068	880	870	860	850
TTGCTGGAGA	CCTACGAGAA	TGCTCAATTT	CCTTTGATTG	gagatagaga	TGGCATAAGC
840	830	820	810	800	190
ATGGAACGAG	TTTCTACAAT AATCTGCTTG		TAGGCCATGA ACCTGATGTT		GTGACTCCTC
780	770	160	750	740	730
AATGGGTGTG	TTGTGACTGG	CGGCGAGTAG	TATCAAACAG	ACCACAAAGA AGAAGCCAAG TATCAAACAG CGGCGAGTAG TTGTGACTGG AATGGGTGTG	ACCACAAAGA
720	710	700	069	089	019
ACAGGAAGTT	TGCAACCTGA	GCCGTGGCTC	GGAGGCAATG	ATCGAGCTTC CCCTTCCAGG GGAGGCAATG GCCGTGGCTC TGCAACCTGA ACAGGAAGTT	ATCGAGCTTC
* * * * * * * * * * * * * * * * * * * *	650	640	630	620	610
CGGAGGCTCA	CCGCAGGCAC	TCCAGACCCA TTCGCACCAC		CTTGTTCGGA	CATCCGCATC
* 009	290	580	570	260	550
GACTACTATA	GCCCTGCCAT	CCTGCTTCGA GCCCTGCCAT GACTACTATA	CCTCGTCACC TCTTACCTCG		GTTTCCATAC
540	530	520	510	200	490

FIGURE 8

ACCACATGAC	TGCGATGCCT	GAGTTTCACT	TGCGACTATT TACGCAGAAT TTCTAGGTGG GAGTTTCACT TGCGATGCCT ACCACATGAC	TACGCAGAAT	TGCGACTATT
1500	1490	1480	1470	1460	1450
AGAAAAGAGG	GAGCATGCAA	AGAGGAGTTG	TATGGGGGAA GGAGCTGGAG TGCTACTACT AGAGGAGTTG	GGAGCTGGAG	TATGGGGGAA
1440	1430	1420	1410	1400	1390
ATGGATTTGT	AGTAATCGTG	ACCATGGGAC	GAGAAATTCC GACCCTACTA AAGCTTCAAG ACCATGGGAC AGTAATCGTG	GACCCTACTA	GAGAAATTCC
1380	1370	1360	1350	1340	1330
CTTTGTCCCA	GCATGCCGAG	AGGTTTTGTT	AGATGCGGTA ATCATACCTA TIGGTATGGG AGGTTTTGTT GCATGCCGAG CTTTGTCCCA	ATCATACCTA	AGATGCGGTA
1320	1310	1300	1290	1280	1270
GCGGGGGCTC	GTGATGCTTT GCGGGGGCTC	CGAAGCAGAT	GCGAACCATA TAATCAGAGG	GCGAACCATA	AATGAATGCT
1260	1250	1240	1230	1220	1210
ACTTTTGTAT	TACTGCTTGT GCAACGAGTA ACTTTTGTAT		GGGATGGATG GGGCCCAACT ACTCGATATC	GGGCCCAACT	GGGATGGATG
1200	1190	1180	1170	1160	1150
CAATGGACTT	GCTATGCTTG	TATGGGATCA	TCCCTTTTGT GTACCTTTCG CTACCACAAA TATGGGATCA GCTATGCTTG	GTACCTTTCG	TCCCTTTTGT
1140	1130	1120	1110	1100	1090
AGAAGATGAA	ATTTCATATA	AGCCCTAAGG	TGGAATGAAG GTATTCAATG ATGCCATTGA AGCCCTAAGG ATTTCATATA AGAAGATGAA	GTATTCAATG	TGGAATGAAG
1080	1070	1060	1050	1040	1030

FIGURE 8 3/5

1560	TGGCTCAGTC	1620	CICCGGCIGG	1680	AGTTAAAAGT	1740	TGGAAGCAGT	1800	TGGAAAACCC	1860	TGAACGTTAA	1920	TCTTCGCCCC	1980	GAAGTTTTGA	2040	CTCTAGACAT GCCCATGAGT TTTGTGTCCG
1550	GAGAAGGCTT	1610	GCCACATCCA	1670	CAAAACAGAG	1730	сссестеете	1790	AATATTAATT	1850	AAGGAGAGAC	1910	TCGTCCATAC	1970	TATCAAAGCT	2030	GCCCATGAGT
1540	TCTCTGCATA GAGAAGGCTT	1600	AAATGCCCAT	1660	CTGTTTCGGC	1720	TCTCGGAGCA GCCGGTGGTG	1780	GATCCATCCG	1840	GGGTCCTAAG	1900	TGGGCACAAC	1960	CTACTCAACA	2020	CTCTAGACAT
1530	CTGGAGTGAT	1590	TAAATTACAT	1650	CTCTTATCCA CTGTTTCGGC CAAAACAGAG AGTTAAAAGT	1710	AAATCAATGA TTGGTCACCT	1770	CAGGCAATAA GGACTGGGTG	1830	AATTGCTCGT	1890	TTGGGTTTGG	1950	GTGTGGAATT	2010	CTCCTTACGT
1520	CGAGCCTCAC CCTGATGGAG	1580	AGGAGTCTCT AGGGAAGACG TAAATTACAT AAATGCCCAT GCCACATCCA CTCCGGCTGG	1640	AGATATCAAA GAGTACCAAG	1700	AAATCAATGA	1760	CAGGCAATAA	1820	GTGGATACAA AATTGCTCGT	1880	TCTAATTCAT	1940	TTACATCTAG GACGTTTCGT GTGTGGAATT CTACTCAACA TATCAAAGCT GAAGTTTTGA	2000	ATGTTGGTAG
1510	CGAGCCTCAC	1570	AGGAGTCTCT	1630	AGATATCAAA	1690	TAATTCAACC	1750	TTCAGTAGTT	1810	AGATGAAGGC	1870	GGTCGGTTTG	1930	TTACATCTAG	1990	GGACTCCAGC

FIGURE 8 4/5

		ATCC	2370 GCTCTAGAGG	2350 2360 2370	2350 AAAAAAAAA
TTTTCTCAAA	TTTGTGGTTT TAAAATTTGT AAAACTAGAA GACTGGTTTA GATTGGTTTG	GACTGGTTTA	AAAACTAGAA	TAAAATTTGT	TTTGTGGTTT
2340	2330	2320	2310	2300	2290
TCATCACCGT	TGTTAACTCG GGCACGTAGT AACCATTTGC CCTTTGTTTT GCTCTCTATT TCATCACCGT	CCTTTGTTTT	AACCATTTGC	GGCACGTAGT	TGTTAACTCG
2280	2270	2260	2250	2240	2230
AGAACAAAGC	CTCCTTGCAA TAGTTGTACT TTCGAGCTTT TCATCGAGTC AGTGAAGAAG AGAACAAAGC	TCATCGAGTC	TTCGAGCTTT	TAGTTGTACT	CTCCTTGCAA
2220	2210	2200	2190	2180	2170
TGAAATCTCC	TGGTAGAGCA ATATTCATTA TCTCATATTT TTTTTTTCTC TGAAATCTCC	TCTCATATTT	ATATTCATTA		CTAGAATTGT
2160	2150	2140	2130	2120	2110
ATACTCCTTG	GAGCTTTAGT CGGAACCATG ACGGATTGAG TACTCATGGC GACACTTGAT ATACTCCTTG	TACTCATGGC	ACGGATTGAG	CGGAACCATG	GAGCTTTAGT
2100	2090	2080	2070	2060	2050

FIGURE 8 5/5

Sequence Range: 1 to 1580

GGG G1y>	100	TCG Ser>	150	GTG Val>		GAT Asp>		TCT Ser>	AAA Lys>	340	CGC Arg>
50 TCT Ser	1(CAT His		AGG Arg		GGT Gly		GGA Gly	290 GCT Ala	34	ATC Ile
GCA Ala		CAG Gln		AAA Lys	190	TTG	240	ATT Ile	CTT Leu		GGG G1y
AAT Asn		ACT Thr	140	TCC	1.9	TCT		TTA Leu	GAT Asp		ACG Thr
40 ATG GCG Met Ala	90	GCA	П	GTC Val		CAG Gln		AAA Lys	30 GAT ASP	330	CGA Arg
		AGG Arg		rrr Phe		AGG Arg	230	TGC Cys	280 AAT GAT Asn Asp		GTC Val
10 20 30 CCTGAATCGG ATTCAAGAGA GAGTTTCGTT GCTGGG		AGA Arg	130	GAG Glu	180	GAC	(4	GGA Gly	TCA		ACT Thr
r GC	80	CTG Leu	Ä	TCG		TCT		AGA Arg	GTC Val	320	ATT Ile
30 rcgtt		GCC Ala		TCC		GAT Asp	220	AGT Ser	270 CAA Gln	(F)	TGG
AGTT ∵		CCT Pro		TCT Ser	170	CAG Gln	22	GTG Val	CTT Leu		GAA Glu
20 GA G	7.0	GTT Val	120	GGA Gly	* 1	GTT Val		CTT Leu	GCT Ala	0.	GAT Asp
; 4AGA(TCA		CGT Arg		GCC		AGG Arg	260 CCA Pro	310	AAT Asn
ATTC		TCT Ser		TCT	160	AGT Ser	210	CCG Pro	2 ATA Ile		ACC Thr
10 366 <i>1</i>		$_{\rm GGT}$	110	TCG	16	TGT Cys		TCG Ser	GCT		GAC
3AAT(9	CTG	-	TCA		TGC Cys		CGC Arg	TCT Ser	300	GTC Val
CCT		TTT Phe		ATT Ile		TTT Phe	200	TCT	250 GGT TC Gly Se		ATT Ile

FIGURE 9 1/5

390	TCA Ser>		GAT Asp>		GGC Gly>	TTG Leu>	580	GTC Val>	630	GTG Val>		GGA Gly>
	GCA Ala		AAT Asn		TTC Phe	530 CCT Pro	28	TTA		CTA Leu		CGG Arg
	TTA	0	GCA Ala	480	CTT Leu	5 AAT Asn		$_{\rm GLY}^{\rm GGT}$		ATT Ile	0	GAT Asp
380	AAT Asn	430	GAC		GAC	AAG Lys		TTG	620	AAT Asn	670	ACC Thr
(*)	ACA Thr		GTA Val			20 AAA Lys	570	GTG Val	9	AAC Asn		TGG Trp
	CTT Leu		CAG Gln	470	CCT GAG Pro Glu	520 TGC <i>Al</i> Cys Ly		TTT Phe		TTT Phe		GAC Asp
0	AGT	420	GCA Ala	4	ACC	GGC G1y		GGA G1y	0	$_{\rm GGT}^{\rm GGT}$	* 099	GTT Val
370	GAT Asp		ATG Met		TCT Ser	CTT	260	AGT Ser	610	GGG		TAT Tyr
	AAA Lys		GAG Glu	0.0	ACT Thr	510 GCA Ala	Ŋ	TGC		$_{\rm GGT}$		CGG Arg
	$_{\rm GLy}^{\rm GGT}$	410	CTA Leu	460	TGT Cys	AAA Lys		GCA Ala		AGA Arg	650	TCT Ser
360	TCA	4	GCT Ala		ATG Met	TCG	0	GCT Ala	* 009	ATT Ile	9	CTT Leu
	CTC		AAA Lys		TTG Leu	500 ATA Ile	550	ACC		CAC		TCT
	AGG GTT Arg Val	400	AGG Arg	450	GTT Val	CAG Gln		ATT Ile		TGC	0	GCT GAT Ala Asp
350		40	GCA Ala		ATG Met	CCT		GAC	069	GCT Ala	640	GCT
(-)	CGA Arg		GCA Ala		GAT	0 GCT Ala	540	TAC	Ŋ	GCT Ala		$_{\rm GGT}$
	AAC Asn		GAG Glu	440	GTG Val	490 AGT G(Ser A)		TCT		TCA		ATT Ile

FIGURE 9 2/5

	TCA Ser>	GAT Asp>	820	GTT Val>	870	AGG Arg>		CGC Arg>		AAG Lys>	GCA Ala>
	CAG Gln	770 AGC Ser	80	GAA Glu		CCA		TTC		GGA Gly	CAG CAG Gln
720	GTG Val	CAT		GAT Asp		CCA	910	GTA Val	096	CTT Leu	1010 CAT CAG His Gln
	GTG Val	TTG		GAA Glu	860	TTT Phe	91	GAG Glu		GCA	CTT Leu
	GTA Val	760 TTT GAT Phe Asp	810	AAA Lys	ω	GAT Asp		AAA Lys		TCA	o CTG Leu
710	GCT Ala	760 TTT GA Phe As		ATC Ile		AGA Arg		$_{\rm GLY}^{\rm GGT}$	950	GAA Glu	1000 TTG CTG Leu Leu
	GGA Gly	GCT		GCA Ala	0	ATC Ile	006	AAC	9)	ATC Ile	TGG Trp
	GCT Ala	TTT Phe	800	GCT Ala	850	TCC		ATG		TCA	GAC Asp
700	GCT Ala	750 CTC Leu	ω	AAA Lys		$_{\rm GGG}$		CAA Gln	0	CAG Gln	990 ATC Ile
7(GAT Asp	666 G1y		CTA Leu		AAT Asn	068	ATC Ile	940	CCT	AAC Asn
	GGA G1y	GAT Asp	790	CAT His	840	CAT His	ω	TGC		GTG Val	TCC
	TTT Phe	740 GAA Glu	75	AGG Arg		GGA Gly		TCT Ser		TCT Ser	80 GGA G1y
069	CTC	7 GAG Glu		CAA Gln		CTG	0	TAC Tyr	930	CGC Arg	9 AAT Asn
	ATT Ile	GCT		GGG	830	GCC Ala	880	TCA		TGC Cys	CTT
	TGT Cys	30 GAT ASP	780	GAT Asp	ω	AAA Lys		TCT		GCT	'0 GGT Gly
089	ACA Thr	730 TGT GAT Cys Asp		GGA Gly		GAT Asp		CGT Arg	920	TTT	970 GCC GGT Ala Gly

FIGURE 9 3/5

46/66

	•		A		•			0.*	Ę	0 *	J G	0×	£.
20	CAA Gln>	1110	GCA Ala>		AAG Lys>		TGG Trp>	1260	CACTGCAGCT	1320	AAGAAGTCAG	1380	AGCAAGCAAC ACGACACGAT CTTCATCACA TTGCCCTTTT TCGTTCCCCT
1060	CCT	•	GCG Ala		GTG Val		ACA Thr		PACTO		ABBA		rcgti
	CTA GAG GTT Leu Glu Val		AGT	20	GGA AAT Gly Asn	1200	GGA CTC Gly Leu	1250		1310		1370	rtt 1
	GAG Glu	1100	ACT Thr	1150		(-1		17	GCCGAGCCAG	H	CCANAAAAAG	Ħ	CCT
1050		÷	AAC Asn		AGT		GCC Ala		ညည				TTG
, ,	CGT Arg		$_{\rm GGG}$		AGG Arg	1190	TTT GGC Phe Gly	1240	GGA TAA GACTGAA Gly ***>	1300	GCTTCCATGA	1360	CACA
	GCA GTA GCA ACA Ala Val Ala Thr	06	TAC Tyr	1140	GTG Val	H		1-1	GACT		TCCZ	-	CATC
1040	GCA	1090	AAT Asn	, ,	GCT		GGA Gly		TAA * * *	_		_	CTI
11(GTA Val		GCA Ala		GAA Glu	30	ACC GCA Thr Ala	1230	GGA Gly	1290	ACGAAATTTT	1350	CGAT
	GCA		TTG	1130	GAC	1180			TGG Trp		GAAZ		GACZ
30	GAT Asp	1080	AAC Asn	H	CTA Leu		GCA Ala		AGG Arg	30		01	C AC
1030	ATT Ile	γ-1	TCA Ser		GCA Ala		ATT Ile	1220	ATC Ile	1280	GTTJ	1340	GCA.
	ATC Ile		ATC Ile	0.2	TTG	1170	CAC GTG His Val	13	ATT ATC I		CCGATGTTTC		AGCA.
	CAG AGG Gln Arg	1070	CGA ATT Arg Ile	1120	CCC				GCT Ala	1270		1330	16G 1
1020	CAG	1(ATT Ile		$_{\rm GLY}^{\rm GGT}$	01	GGT TCT GCT Gly Ser Ala	17	TCCTCTCAAA	ਜ	TCTTTTATGG
• •	AAT Asn		GAA Glu		TCC	1160	CCG	1210	GGT G1y		TCCI		TCT

FIGURE 9

	TTTCCATTAG TTTGATGATT TTGCTGACAA TACAATACCC ATAGTTTCTT TTGTCCCCAA	1460	TAAGTTATTT GTTTCTTGTT TAATTGTTCA GCTTTTACTT CATTTTGTCT CGGGACATTG	1520 1530 1540 1550 1560	GAGATGACAG CATAAACATC ATGTTTATAT TTTGCTAAAA AAAAAAAAA AAAAAAAAA	1580 2000 2000 2000 2000 2000 2000 2000 20
	rttgatgatt ttgctg		STTTCTTGTT TAATTGI		CATAAACATC ATGTTTA	1580
1	TTTCCATTAG 1	1450	TAAGTTATTT (1510	GAGATGACAG C	1570 1580

FIGURE 9 5/5

48/66

FIGURE 10

FIGURE 11

FIGURE 12

E328013-28

FIGURE 13

FIGURE 15 1/2

FIGURE 15 2/2

SUBSTITUTE SHEET (RULE 26)

FIGURE 17 1/2

FIGURE 17

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

12:0 levels (w%)

FIGURE 19

SUBSTITUTE SHEET (RULE 26)

FIGURE 19 3/3 SUBSTITUTE SHEET (RULE 26)

Number of independent events

FIGURE 19 2/3

SUBSTITUTE SHEET (RULE 26)

FIGURE 20

18:0 levels (w%)

FIGURE -21.

18:0 levels (w%)

FIGURE 21

SUBSTITUTE SHEET (RULE 26)

Number of independent events

FIGURE 21 3/3

FIGURE 22

WORLD INTELLECTUAL PROPERTY ORGANIZATION laternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 98/46776
C12N 15/82, 15/54	A3	(43) International Publication Date: 22 October 1998 (22.10.98)
(21) International Application Number: PCT/US (22) International Filing Date: 9 April 1998 (patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
(30) Priority Data: 60/041,815 11 April 1997 (11.04.97)	τ	Published With international search report.
(71) Applicant (for all designated States except US): C. LLC [US/US]; 1920 Fifth Street, Davis, CA 9561		
(72) Inventor; and (75) Inventor/Applicant (for US only): DEHESH, [US/US]; 521 Crownpointe Circle, Vacaville, C (US).		
(74) Agent: SCHWEDLER, Carl, J.; Calgene LLC, 1 Street, Davis, CA 95616 (US).	920 Fi	fth
(54) Title: PLANT FATTY ACID SYNTHASES AND	USE IN	I IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN

FATTY ACIDS

(57) Abstract

By this invention, compositions and methods of use related to β -ketoacyl-ACP synthase of special interest are synthases obtainable from Cuphea species. Amino acid and nucleic acid for synthase protein factors are provided, as well as methods to utilize such sequences in constructs for production of genetically engineered plants having altered fatty acid compositions. Of particular interest is the expression of synthase protein factors in conjunction with expression of plant medium-chain acyl-ACP thioesterases for production of increased levels and/or modified ratios of medium-chain fatty acids in oils of transgenic plant seeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

inte. ..ional Application No PCT/US 98/07114

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/82 C12N15/54		
According to	o International Patent Classification(IPC) or to both national classi	fication and IPC	,
B. FIELDS	SEARCHED		
Minimum do IPC 6	ocumentation searched (classification system followed by classific C 1 2 N	ation symbols)	
Documental	tion searched other than minimum documentation to the extent tha	it such documents are included in th	ne fields searched
Electronic d	lata base consulted during the international search (name of data	base and, where practical, search t	lerms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	WO 95 06740 A (MAX PLANCK GESEL;TOEPFER REINHARD (DE); MARTINI (D) 9 March 1995 see page 16, paragraph 1; claim	NORBERT	15,22
P,X	LEONARD, J.M., ET AL.: "A Cuph beta-ketoacyl-ACP synthase shif synthesis of fatty acids toward chains in Arabidopsis seeds exp Cuphea FatB thioesterases" THE PLANT JOURNAL, vol. 13, no. 5, March 1998, pag XP002081429 see the whole document	its the is shorter pressing	15,22, 29-32
		-/	
X Furt	ther documents are listed in the continuation of box C.	X Patent family member	s are listed in annex.
"A" docum consis "E" earlier filing of "L" docum which citatio "O" docum other "P" docum later t	ategories of cited documents: and defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but than the pnority date claimed	cited to understand the prinvention "X" document of particular relecannot be considered now involve an inventive step "Y" document of particular relecannot be considered to indocument is combined with	conflict with the application but inciple or theory underlying the wance; the claimed invention rel or cannot be considered to when the document is taken alone wance; the claimed invention motive an inventive step when the th one or more other such docubeing obvious to a person skilled same patent family
ļ	20 October 1998	02/11/1998	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer Maddox . A	

1

inte. .ional Application No PCT/US 98/07114

		PCT/US 98/07114	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	DEHESH, K., ET AL.: "Production of hgh levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase from Cuphea hookeriana" THE PLANT JOURNAL, vol. 9, no. 2, 1996, pages 167-172, XP002081430 see page 170, column 2, paragraph 2	15,22	-
A	DEHESH K ET AL: "TWO NOVEL THIOESTERASES ARE KEY DETERMINANTS OF THE BIMODAL DISTRIBUTION OF ACYL CHAIN LENGTH OF CUPHEA PALUSTRIS SEED OIL" PLANT PHYSIOLOGY, vol. 110, 1996, pages 203-210, XP002014020 see page 209, column 2, paragraph 2	15,22	
Α	SLABAUGH, M.B., ET AL.: "Cuphea wrightii beta-ketoacyl-ACP synthase II (CwKASIII) mRNA complete cds." EMBL SEQUENCE ACCESSION NO. U67317, 13 December 1996, XP002081431 see the whole document	15,22	
A	FUHRMANN, J., ET AL.: "Factors controlling medium-chain fatty acid synthesis in plastids from maturing Cuphea embryos" Z. NATURFORSCH., vol. 48c, 1993, pages 616-622, XP002081432 see the whole document	15,22	
A	SCHUCH, R., ET AL.,: "Medium-chain acyl-ACP thioesterase is not the exclusive enzyme responsible for early chain-length termination in medium-chain fatty acid synthesis" GRASAS Y ACEITES, vol. 44, 1993, pages 126-128, XP002081433 see the whole document	15,22	
A	TOEPFER R ET AL: "MODIFICATION OF PLANT LIPID SYNTHESIS" SCIENCE, vol. 268, 5 May 1995, pages 681-685, XP002014017 see page 684, column 3, paragraph 2	15,22	
A	MARTINI N ET AL: "MODIFICATION OF FATTY ACID COMPOSITION IN THE STORAGE OIL OF TRANSGENIC RAPESEED" BIOLOGICAL CHEMISTRY HOPPE-SEYLER, vol. 376, September 1995, page S55 XP002014021	15,22	

inte dional Application No
PCT/US 98/07114

· P	CT/US 98/07114
ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages -	Relevant to claim No.
WO 94 10189 A (CALGENE INC) 11 May 1994 see page 5, line 34 - line 36	15,22
WO 92 03564 A (CALGENE INC) 5 March 1992 see page 22, line 19 - line 23	15,22
WO 96 23892 A (CALGENE INC ;DEHESH KATAYOON (US); VOELKER TONI ALOIS (US); HAWKIN) 8 August 1996 see the whole document	15,22 -
WO 95 13390 A (CALGENE INC ;VOELKER TONI ALOIS (US); YUAN LING (US); KRIDL JEAN () 18 May 1995 see the whole document	15,22
WO 94 10288 A (CALGENE INC ; VOELKER TONI ALOIS (US); DAVIES HUW MAELOR (US); KNUT) 11 May 1994 see the whole document	15,22
WO 92 20236 A (CALGENE INC) 26 November 1992 see the whole document	15,22
VOELKER, T.A., ET AL.: "Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed." THE PLANT JOURNAL, vol. 9, no. 2, 1996, pages 229-241, XP002081434 see the whole document	15,22
WO 93 10240 A (DU PONT) 27 May 1993 see the whole document	15,22
WO 95 15387 A (CALGENE INC ;METZ JAMES GEORGE (US); LARDIZABAL KATHRYN DENNIS (US) 8 June 1995 see the whole document	15,22
DEHESH, K., ET AL.: "KAS IV: a 3-ketoacyl-ACP synthase form Cuphea sp. is a medium chain specific condensing enzyme" THE PLANT JOURNAL, vol. 15, no. 3, August 1998, pages 383-390, XP002081435 see the whole document	15,22, 29-32
	Citation of Gocument, with indication, where appropriate, of the relevant passages WO 94 10189 A (CALGENE INC) 11 May 1994 see page 5, line 34 - line 36 WO 92 03564 A (CALGENE INC) 5 March 1992 see page 22, line 19 - line 23 WO 96 23892 A (CALGENE INC; DEHESH KATAYCON (US); VOELKER TONI ALOIS (US); HAWKIN) 8 August 1996 see the whole document WO 95 13390 A (CALGENE INC; VOELKER TONI ALOIS (US); YUAN LING (US); KRIDL JEAN () 18 May 1995 see the whole document WO 94 10288 A (CALGENE INC; VOELKER TONI ALOIS (US); DAVIES HUW MAELOR (US); KNUT) 11 May 1994 see the whole document WO 92 20236 A (CALGENE INC) 26 November 1992 see the whole document VOELKER, T.A., ET AL.: "Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed." THE PLANT JOURNAL, vol. 9, no. 2, 1996, pages 229-241, XPO02081434 see the whole document WO 93 10240 A (DU PONT) 27 May 1993 see the whole document WO 95 15387 A (CALGENE INC; METZ JAMES GEORGE (US); LARDIZABAL KATHRYN DENNIS (US) 8 June 1995 see the whole document DEHESH, K., ET AL.: "KAS IV: a 3-ketoacyl-ACP synthase form Cuphea sp. is a medium chain specific condensing enzyme" THE PLANT JOURNAL, vol. 15, no. 3, August 1998, pages 383-390, XPO02081435

1

International application No.

PCT/US 98/07114

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
· -
2. X Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of Invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

	International Application No. PCT/ US 98 / 071
[FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210
ſ	Claims Nos.: 1-14,19,20,21,26,27,28
,	Remark: Claims 1-14 were not provided to the ISA at the time of search and hence the subject matter of these claims and the dependent claims 19,20, 21,26,27,28, could not be defined.
i	
· .	
`	
`\	
:	

Information on patent family members

Inte. Jonal Application No PCT/US 98/07114

					···
Patent document cited in search repo		Publication date		atent family nember(s) -	Publication date
WO 9506740	A	09-03-1995	AU	688377 B	12-03-1998
WU 9500/40	М	03-03-1333	AU	7739894 A	22-03-1995
				2169094 A	09-03-1995
			CA		19-06-1996
			EP	0716708 A	19-00-1990
WO 9410189	 A	11-05-1994	CA	2148358 A	11-05-1994
			EP	0666865 A	16-08-1995
			JP	85 02891 T	02-04-1996
WO 9203564	 А	05-03-1992	US	5475099 A	12-12-1995
WU 9203504	Α	05.03.1992	CA	2087 9 77 A	16-02-1992
			EP	0495096 A	22-07-1992
			JP	6500234 T	13-01-1994
				5510255 A	23-04-1996
			US 	5510255 A	25-04-1990
WO 9623892	Α	08-08-1996	US	5654495 A	05-08-1997
			CA	2212003 A	08-08-1996
			EP	08 07182 A	19-11-1997
WO 9513390	A	18-05-1995	CA	2176137 A	18-05-1995
WO 3313330	^	10 03 1333	EP	0728212 A	28-08-1996
			JP	9505470 T	03-06-1997
			US	5723761 A	03-03-1998
			US	5654495 A	05-08-1997
WO 9410288	Α	11-05-1994	US	5455167 A	03-10-1995
			CA	2147617 A	11-05-1994
			EP	0670903 A	13-09-1995
			JP	8502892 T	02-04-1996
			US	5654495 A	05-08-1997
			ÜS	5667997 A	16-09-1997
WO 9220236	A	26-11-1992	US	5512482 A	30-04-1996
WU 9220230	М	20-11-1992	CA	2109580 A	26-11-1992
			EP	0557469 A	01-09-1993
			US	5639790 A	17-06-1997
				5455167 A	03-10-1995
			US	•	02-03-1995
			JP	7501924 T 	UZ UJ 1995
WO 9310240	Α	27-05-1993	AU	3073592 A	15-06-1993
NO 2010E40					

Information on patent family members

Inte. Jonal Application No PCT/US 98/07114

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9310240	Α		CA EP JP MX US	2123495 A 0667906 A 7501446 T 9206540 A 5500361 A	27-05-1993 23-08-1995 16-02-1995 01-05-1993 19-03-1996
WO 9515387	Α	08-06-1995	US CA EP JP	5679881 A 2177598 A 0731840 A 9505739 T	21-10-1997 08-06-1995- 18-09-1996 10-06-1997

2 😉