Towards Better Healthcare: Amalgamation of Time Series, Viome and Image Data

Dhruv Patel, Haikoo Khandor, Nishant Basu

Texas A&M University, College Station Team Name: Model Mavericks

December 6, 2024

Introduction

- Novel deep learning approach for predicting lunch calorie intake
- Integration of multiple data modalities:
 - Continuous Glucose Monitoring (CGM)
 - Viome data
 - Food images
- Specialized neural network model with multimodal attention fusion

Methodology

- Data Preprocessing and Encoding
- Model Architecture:
 - ► CGM Encoder (LSTM)
 - ► Image Encoder (CNN)
 - Demo Encoder (MLP)
- Multimodal Attention Fusion
- Prediction Layer

Data Preprocessing

- CGM Data:
 - Feature extraction (mean, std dev, etc.)
 - Scaling and tensor conversion
- ▶ Viome Data:
 - Encoding categorical variables
 - Scaling numerical variables
 - PCA for microbiome data
- Food Images:
 - Resizing and normalization
 - Gaussian blurring and color conversion

Model Architecture

- CGM Encoder:
 - LSTM network (input size: 1, hidden size: 64, 2 layers)
 - ► Fully connected layer for fixed-size encoding
- Image Encoder:
 - CNN with multiple convolutional layers
 - ReLU activation, batch normalization, max-pooling
- Demo Encoder:
 - MLP with linear layers, ReLU activations, batch normalization

Model Architecture

Multimodal Attention Fusion

- Attention Mechanism:
 - Modality-specific embedding layers
 - Multi-head attention layer
- ► Fusion Process:
 - Layer normalization
 - ► Feed-forward neural network
- Prediction Layer:
 - Linear predictor for lunch calorie intake

Training Process

- Loss Function: Root Mean Square Relative Error (RMSRE)
- Optimizer: Adam with learning rate scheduling
- ► Gradient clipping for stable convergence
- Early stopping to prevent overfitting

Dataset Description

- Collected over 10 days for 40+ participants
- Components:
 - Demographic and Viome Data
 - Continuous Glucose Monitoring Data
 - Meal Images
 - Nutritional Labels

Results

- Training Performance:
 - ▶ Initial Training Loss: 1.0285
 - ► Final Training Loss: 0.7162
 - Initial Validation Loss: 1.1354
 - ► Final Validation Loss: 0.7876
- Early stopping after 14 epochs
- Rapid initial improvement (17.5% for training, 32.7% for validation)

Conclusion and Future Work

- Successful integration of CGM, food images, and viome data
- Rapid convergence and consistent performance
- Future work:
 - Refine model architecture
 - Expand dataset
 - Conduct extensive real-world testing
- Potential for improving prediction accuracy and generalizability