CS 83: Computer Vision	Winter 2024
Quiz 6 — 02	/22/2024
Prof. Pediredla	Student: Amittai Siavava

Credit Statement

I discussed solution ideas with:

- 1. Ivy (Aiwei) Zhang
- 2. Angelic McPherson

However, all typed work is my own, with reference to class notes.

Problem 1.

A small Lambertian source dA is centered at P and emits radiance L. The orientation of this patch is the same as that of a plane containing two points, X_1 and X_2 . The point X_1 is the point on this plane that is closest to P, and the distance from P to X_1 is D as shown.

(i) Calculate the solid angle subtended by dA at points X_1 and X_2 .

The solid angle subtended by an area dA at a point x that is a distance r from dA is given by

$$d\omega = \frac{dA\cos\theta}{r^2},$$

where θ is the angle between the normal to dA and the line from \mathbf{x} to dA. In this case;

- 1. Since dA has the same orientation as the plane containing X_1 and X_2 , and we are given that X_1 is the point on this plane that is closest to P, then the normal at dA passes through P. Therefore, $\theta = 0$ and $\cos \theta = 1$. Therefore, $d\omega_{X_1} = \frac{dA}{D^2}$.
- **2.** As established in part **1.**, the normal at dA passes through P. Therefore, the angle between the normal to dA and the line from X_2 to dA is α as shown in the image. Let $D_2 = ||X_2 P||$; then:

$$\cos \alpha = \frac{D}{D_2}$$

$$\implies D_2 = \frac{D}{\cos \alpha}.$$

Therefore;

$$\mathrm{d}\omega_{X_2} = \frac{\mathrm{d}A\cos\alpha}{D_2^2}$$
$$= \frac{\mathrm{d}A\cos\alpha}{D^2/\cos^2\alpha}$$
$$= \frac{\mathrm{d}A\cos^3\alpha}{D^2}.$$

(ii) Calculate the irradiance E incident on the plane at points X_1 and X_2 , and calculate the ratio $E(X_1)/E(X_2)$.

The irradiance E incident on a point ${\bf x}$ is given by

- **1.** The irradiance $E(X_1)$ incident on X_1 is given by
- **2.** The irradiance $E(X_2)$ incident on X_2 is given by
- 3. The ratio $E(X_1)/E(X_2)$ is given by

Problem 2.

As we discussed in class, the Lambertian and the specular BRDF are the two most commonly used reflectance models in physics-based vision.

(i) For Lambertian surfaces, the BRDF is a constant function of the input and the output directions. For such a material, we often describe the reflectance in terms of its *albedo*, which is given the symbol ρ . For a Lambertian surface, the BRDF and the albedo are related by $f_r(\hat{\mathbf{v}}_i, \hat{\mathbf{v}}_r) = \rho/\pi$. Using conservation of energy, prove that $0 \le \rho \le 1$.

First, note that the albedo is a measure of the fraction of incident light that is reflected by the surface. Therefore, it cannot be negatie, so $0 \le \rho$. We shall show that $\rho \le 1$ by using the energy conservation principle in reflectance which stipulates that the energy reflected by a surface cannot exceed the energy incident on the surface. In other words, the integral of the BRDF over the hemisphere must be less than or equal to 1:

$$\int_{H^2} f_r(\hat{\mathbf{v}}_i, \hat{\mathbf{v}}_r) \cos \theta \, d\vec{\omega}_i \le 1.$$

Substituting in the known values gives:

$$\int_{H^2} \frac{\rho}{\pi} \cos \theta \, d\vec{\omega}_i \le 1$$

$$\frac{\rho}{\pi} \int_{H^2} \frac{dA \cos \theta}{r^2} \le 1 \qquad \left(\text{since } d\vec{\omega}_i = \frac{dA}{r^2} \right)$$

$$\frac{\rho}{\pi} \int_{H^2} \frac{r^2 \cos \theta \sin \theta \, d\theta \, d\varphi}{r^2} \le 1 \qquad \left(\text{since } dA = r^2 \sin \theta \, d\theta \, d\varphi \right)$$

$$\frac{\rho}{\pi} \int_{H^2} \cos \theta \sin \theta \, d\theta \, d\varphi \le 1$$

$$\frac{\rho}{\pi} \int_{0}^{2\pi} \int_{0}^{\pi/2} \cos \theta \sin \theta \, d\theta \, d\varphi \le 1$$

$$\frac{\rho}{\pi} \int_{0}^{2\pi} \left[\frac{\sin^2 \theta}{2} \right]_{0}^{\pi/2} \, d\varphi \le 1 \qquad \left(\text{since } \int \cos \theta \sin \theta \, d\theta = \frac{\sin^2 \theta}{2} \right)$$

$$\frac{\rho}{2\pi} \int_{0}^{2\pi} d\varphi \le 1$$

$$\frac{\rho}{2\pi} \cdot [\varphi]_{0}^{2\pi} \le 1 \qquad \left(\text{since } \int 1 \, d\varphi = \varphi \right)$$

$$\frac{\rho}{2\pi} \cdot 2\pi \le 1$$

$$\rho \le 1.$$

(ii) A specular surface perfectly reflects *radiance* in the *mirror direction*. Concretely, consider a (non-absorbing) specular surface patch with normal $\hat{\mathbf{n}}$. For any incident direction $\hat{\mathbf{v}}_i$, the mirror direction equals $\hat{\mathbf{v}}_s = 2(\hat{\mathbf{n}}^T\hat{\mathbf{v}}_i)\hat{\mathbf{n}} - \hat{\mathbf{v}}_i$, and $L(\hat{\mathbf{v}}_s) = L(\hat{\mathbf{v}}_i)$. Given this property, derive an expression for the specular BRDF.

The BRDF of an ideal specular reflection is a Dirac delta function as follows:

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = F_r(\vec{\omega}_i) \frac{\delta(\vec{\omega}_i - R(\vec{\omega}_r, \hat{\mathbf{n}}))}{\cos \theta_i}$$

$$= F_r(\vec{\omega}_i) \frac{\delta(\vec{\omega}_i - R(\vec{\omega}_r, \hat{\mathbf{n}}))}{\cos \theta_i}$$

$$= \frac{\delta(\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_s)}{\hat{\mathbf{v}}_i \cdot \hat{\mathbf{n}}}$$

$$= \frac{\delta(\hat{\mathbf{v}}_i - 2(\hat{\mathbf{n}}^{\mathsf{T}} \hat{\mathbf{v}}_i) \hat{\mathbf{n}} + \hat{\mathbf{v}}_i)}{\hat{\mathbf{v}}_i \cdot \hat{\mathbf{n}}}$$

$$= \frac{\delta(2\hat{\mathbf{v}}_i - 2(\hat{\mathbf{n}}^{\mathsf{T}} \hat{\mathbf{v}}_i) \hat{\mathbf{n}})}{\hat{\mathbf{v}}_i \cdot \hat{\mathbf{n}}}$$