Compound Interest Formulas

Symbols in Eng. Economy	Equations	Symbols in Finance	Excel Functions
F = P(F/P, i, n)	$F = P(1+i)^n$	$FV_n = P_0(FVIF_{i,n})$	FV(rate, nper, pmt, pv, 0) FVSchedule(principal, schedule)
P = F(P/F, i, n)	$P = F \frac{1}{(1+i)^n}$	$PV_0 = FV_n(PVIF_{i,n})$	PV(rate, nper, pmt, fv, 0) NPV(rate, value1, value2,)
F = A(F/A, i, n)	$F = A \left[\frac{(1+i)^n - 1}{i} \right]$	$FVA_n = R(FVIFA_{i,n})$	FV(rate, nper, pmt, pv, 0)
P = A(P/A, i, n)	$P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$	$PVA_n = R(PVIFA_{i,n})$	PV(rate, nper, pmt, fv, 0) NPV(rate, value1, value2,)
$F = A_0(1+i)(F/A, i, n)$	$F = A_0(1+i) \left[\frac{(1+i)^n - 1}{i} \right]$	$FVAD_n = R(FVIFA_{i,n})(1+i)$	FV(rate, nper, pmt, pv, 1)
$P = A_0(1+i)(P/A, i, n)$	$P = A_0(1+i) \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$	$PVAD_n = R(PVIFA_{i,n})(1+i)$	PV(rate, nper, pmt, fv, 1)
A = F(A/F, i, n)	$A = F\left[\frac{i}{(1+i)^n - 1}\right]$	$R = \frac{FV}{FVIFA_{i,n}}$	PMT(rate, nper, pv , fv, type)
A = P(A/P, i, n)	$A = P\left[\frac{i(1+i)^n}{(1+i)^n - 1}\right]$	$R = \frac{PV}{PVIFA_{i,n}}$	PMT(rate, nper, pv , fv, type)
A = G(A/G, i, n)	$A = G\left[\frac{(1+i)^n - in - 1}{i(1+i)^n - 1}\right]$		
P = G(P/G, i, n)	$P = G\left[\frac{(1+i)^n - in - 1}{i^2(1+i)^n}\right]$		
Geometric Series	$P = A_1 \left[\frac{n}{(1+i)} \right] \text{ if } i = g$		
Geometric Series	$P = A_1 \left[\frac{1 - \frac{(1+g)^n}{(1+i)^n}}{i - g} \right]$		
$A_0 = Annuities due$	if $i \neq g$		

 A_0 = Annuities due A_1 = 1st cash flow in Geometric Series