1 QUANTIFICATION

- When to user Performance Measurement Models
 - When it's difficult to test by using real users
 - Interface design ⇔ Analytical Approach ⇔ comparative evaluation of different systems
 - Develop predictive model of performance
 - Solve problems such as the best placement and size of the object ⇔ Fitt's law
 - Assumptions about users
 - Users have appropriate cognitive skill
 - They are expert users
 - The Performance Measurement Models are based on
 - Hierarchical Task Analysis (HTA)
 - 1. Breaks down the tasks into sub-components.
 - GOMS
 - 1. A set of Goals ⇔ what the users wish to achieve
 - 2. A set of Operators ⇔Cognitive actions and processes that must be performed in order to satisfy the goal
 - 3. A set of Method for achieving the goals ⇔ method is the sequence of steps required to reach the goal
 - 4. A set of <u>Selections rules</u> ⇔ determine which method to choose when there is an alternative
 - Natural GOMS Language = NGOMSL
 - Based on cognitive psychology theories
 - Cognitive Perceptual Motor GOMS = CPM-GOMS
 - Represents dependencies of operators like a PERT chart

Models used in measuring performance

- Descriptive: Key-Action Model
 - o 帮助设计有效的快捷键和 command
 - Looks at how users interact with the interface using keyboard and what shortcut keys are used in software
 - Keyboard buttons can be categorized into:
 - Symbol Keys the buttons help to form sentences
 - Executive Key
 - Modifier Keys
- Predictive: Keystroke-Level Model (KLM)
 - 相当于是一个 GOMS 和 HTA 的结合⇔步骤多的 method 有可能会使用较少的时间, 可以测试手机程序
 - o A practical design tool to predict the time to accomplish task using computer software
 - o A quick and easy to use system design tool
 - No deep knowledge of psychology is required to use it
 - Task times can be predict without building a prototype/testing on users ⇔ save time and money 4
 - o <u>How to use Keystroke Level Model</u> (steps):
 - Define a task (Hierarchical Task Analysis)
 - Selecting a method for performing the task (GOMS select method)
 - Knowing the command language/ skill parameters of users/ responsive time of the system
 - Calculating the execution time by sum the time spent on each operators in the method
- Predictive: Fitt's Law
 - Predicts the time required to move to a target area ⇔use the Shannon Formulation to predict the time
 - How to decrease the duration to move to target button?
 - Decrease the distance & Increase the button size ⇔ same result
 - Using right clicks & pop-up menus 右键和双击快捷菜单
 - Limit the Objects Area ⇔ Less options in one area, faster to choose/select 苹果的菜单和 windows 的菜单

2 INPUT, OUTPUT AND INTERACTION

- Virtual Reality Instead of viewing a screen user are able to interact with a 3D world, it has different usages like simulations or games
- Augmented Reality

 Users are able to interact with virtual content in real world, and are able to distinguish between them
 - o Benefits
 - Solving the issues with the use of mouse
 - Feeling the materials we are touching ⇔ Haptic feedback gloves (better interaction with object in AR)
 - Seeing information everywhere
 - Seeing an object in its future location

Special User Interface Design Principles for VR/AR:

- Discovery \Leftrightarrow Giving user enough freedom to discover what all they can do with the platform
 - o Give hints and guideline to inform user what they can do
- **Scalability** ⇔ how well gestural interactions work on objects with different sizes

Difference between VR and AR:

- Both VR and AR are similar in the goal of engaging users in virtual world
- AR users continue to be in touch with the real world while interacting with virtual object around them
- VR user is isolated from the real world while covered in a world which is completely fabricated

Selecting an appropriate input and output method

- 1. What input method is appropriate for the target user? consider their needs and limitation
- 2. Is the selected input method appropriate for the task?
- 3. Is the selected input method appropriate for the environment?
- 4. What are the **user experience goals**?

The **transformable** input

- Speech/Face recognition
- Eye tracking
- Handwriting to text
- Text to speech
- Brain signal to command

Game based designs:

- Games inspired design a <u>user interface</u> that has game's artwork style
- Serious Game Similar to normal games but they are developed with the purpose of training a concept to a specific group of users
 - Teaching Games
 - Simulators
 - Meaningful/purposeful games
- **Gamification (not a game)** use of video game mechanics in *non-game context* to <u>encourage and engage users</u> in the context by making sense of playfulness and fun
 - o Data collection, online community, software popularity
 - o E-learning
 - o Health care and sport
 - o Human resources