Calculus - Chapter 48 - Portrai Derivating.

Limits example:
$$\lim_{(x,y)\to(3,1)} \left(\frac{3xy^2+1}{7+y} + \frac{1}{2}xy\right) = \frac{3(3)(1)}{7+1} = \frac{1}{2}(3)(1) = 21/8.$$

Example with
$$\lim_{(\alpha,y)\to(0,0)} \frac{30cy^2}{2^2+y^2} = 0$$
 cont be as easy solved

Assume
$$\varepsilon > 0$$
, $\left| \frac{3 x y^2}{x^2 + y^2} - 0 \right| = \left| \frac{3 0 x y^2}{x^2 + y^2} \right| = 3 |x| \left| \frac{y^2}{x^2 + y^2} \right| \le 3 |x| \le 3 \sqrt{x^2 + y^2} < 3 \delta = e$

Example. Show that the following doesn't exist:

$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
, along x axis $\frac{x^2-y^2}{x^2+y^2} = \frac{x^2}{x^2} = 1$ if $y = 0$

and
$$\frac{x^2-y^2}{x^2+y^2} = -1$$
 if $x = 0$, hence no common limit.

Continuity: f is continuous at (a_1b) iff f is defined at (a_1b) $\lim_{(\alpha_1y_1)\to(\alpha_1b)} f(\alpha_1y_1) = f(\alpha_1b)$

Partial Perivative: Vim
$$f(x) + \Delta x = 0$$
 $f(x) = f(x) = 0$ $f(x) = 0$

Example:
$$f(\alpha, y) = \alpha^2 \sin y$$
, $\frac{\partial f}{\partial x} = 2 \cos h y$, $\frac{\partial f}{\partial y} = 3 \cos^2 \cos y$

Higher
$$\frac{\partial^2 f}{\partial x^2} = f x x (x,y) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial y \partial x} = f x y (x,y) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

Similarly,
$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right)$$
.

Example:
$$f(x,y) = x^2(\sin yx)$$
, $f(x,y) = \frac{\partial}{\partial x}(x^2\sin(yx))$

note
$$\frac{1}{2}\sin(yx) = y \cdot \cos(yx)$$
 = $\frac{1}{2}\cos(yx)y + 2\cos(yx)y + 2\sin(yx)$
= $\frac{1}{2}\cos(xy)\cos(yx) + 2\sin(yx)$.

like
$$\frac{d}{dx}(\sin(2x)) = 2\cos(2x)$$
.