# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Кафедра «Инфокогнитивные технологии»

Практические и лабораторные занятия по дисциплине «Проектирование интеллектуальных систем»

Лабораторная работа № 3

## «Распознавание изображений на базе НС обратного распространения»

Группа 224-322

Студент Леонов Владислав Денисович

Преподаватель Кружалов Алексей Сергеевич

#### Цель

Изучить принципы работы и алгоритм обучения многослойных нейронных сетей (НС) на примере сетей обратного распространения.

#### Краткое описание

Распознавание серии изображений с помощью многослойной нейронной сети (сети обратного распространения).

#### Требования к функциональности компьютерной программы

- В программе должна быть реализована возможность задания обучающей выборки из внешних файлов изображений.
- Программа должна иметь два режима работы: обучения и распознавания.
  - Обучение должно производиться по стандартному алгоритму обучения обучения сети обратного распространения.
  - Количество слоев в НС должно быть не менее двух (2+).
  - В программе должны задаваться следующие настройки:
  - правильные варианты элементов обучающей выборки,
  - размер ошибки, при котором обучение НС завершается (опционально),
  - коэффициент скорости обучения (опционально)
  - На экранной форме режима обучения должны отображаться:
  - элементы обучающей выборки (изображения),
  - настройки алгоритма обучения,
  - текущие (итоговые) веса нейронов для всех слоев,
- протоколы результатов обучения (значения весов для каждой итерации).
  - На экранной форме режима распознавания должны отображаться:
- распознаваемое изображение (должно выбираться из всего множества),
  - результат распознавания,

- веса выходных (опционально промежуточных) нейронов,
- значения выходов всех (3+) нейронов последнего слоя.

#### Содержание отчета

- Название и цель работы.
- Задание, краткое описание предметной области и выбранной задачи.
- Описание обучающей выборки
- Блок-схема алгоритмов обучения и распознавания.
- Протоколы проведенных экспериментов (10+), представленные в графиков (допускаются скриншоты в случае программной реализации функциональности).
- Выводы и рекомендации по использованию НС для решения задач распознавания.

#### Выполнение работы

1. В программе должна быть реализована возможность задания обучающей выборки из внешних файлов изображений. Выполнение данного пункта показано на рисунке 1.



Рисунок 1 – Возможность задания обучающей выборки из внешних файлов

2. Изображения должны быть черно-белыми (bitmap) и размером не менее 9 (3х3) пикселей. Исходные изображения хранятся в архиве формата \*.gz в формате изображений 28х28 пикселей. Выполнение данного пункта показано на рисунке 2.



Рисунок 2 – Загруженные изображения в программу

3. Программа должна иметь два режима работы: обучения и распознавания. Режим распознавания будет работать после обучений перцептрона. Выполнение данного пункта показано на рисунке 3.



Рисунок 3 – Окна обучения и распознавания

4. Обучение должно производиться по стандартному алгоритму обучения перцептрона с использованием дельта-правила. Выполнение данного пункта показано на рисунке 4.



Рисунок 4 – Приложение после обучения перцептрона

5. После обучения в приложении разблокируется возможность распознать изображение в вкладке «Перцептрон (распознавание)». Распознавание изображения показано на рисунке 5.



Рисунок 5 – Распознавание и ответ сети

#### Блок-схема алгоритма обучения



#### Блок-схема алгоритма распознавания



### Эксперименты и их результаты

Результаты экспериментов приведены в таблице 1. Подчёркнутые значения являются измененными в таблице, чтобы легче было найти изменяющиеся данные.

Таблица 1 – Результаты экспериментов

| № | Скорость      | Кол- | Кол-во           | Результат        |     |      |     |     |           |                     |             |      |       |             |      |        |
|---|---------------|------|------------------|------------------|-----|------|-----|-----|-----------|---------------------|-------------|------|-------|-------------|------|--------|
|   | обучения      | во   | изображений в    |                  |     |      |     |     |           |                     |             |      |       |             |      |        |
|   |               | эпох | обучении/функция |                  |     |      |     |     |           |                     |             |      |       |             |      |        |
|   |               |      | активации        |                  |     |      |     |     |           |                     |             |      |       |             |      |        |
| 1 | 0,0011        | 1    | 10000            | Точность: 34.69% |     |      |     |     |           |                     |             |      |       |             |      |        |
|   |               |      | Sigmoid          |                  |     | 総    | D3  |     | g 2       |                     | 950         | 35   | 10.73 | 施           |      |        |
|   |               |      |                  |                  | 建   |      |     |     | 88        |                     |             |      |       |             |      | 影響     |
|   |               |      |                  |                  |     | Œ.   |     |     | 質量        | II.                 |             |      | 20    |             |      |        |
|   |               |      |                  | 8.8              | 45  | 300  | CO  | 46  | 調素        | 47<br><b>5500</b> 0 |             | 508  | 48    | <b>300%</b> | 2200 | 49     |
|   |               |      |                  | 凝                | 3   |      |     |     | 通道        |                     |             |      |       |             |      |        |
|   |               |      |                  |                  |     |      |     |     | 88        |                     |             | 3    |       |             | 際    |        |
|   |               |      |                  | 200              | 0   |      |     | 1   | 44        | 2                   |             |      | 3     |             |      | 4      |
|   |               |      |                  | 48               | 7   | 6    | æ   |     | - 1       | н                   | а           |      | *     | *           | m    |        |
|   |               |      |                  |                  |     |      |     |     |           |                     |             |      |       |             |      |        |
|   |               |      |                  |                  | 5   |      |     | 6   |           | 7                   |             |      | 8     |             | -    | 9      |
|   |               |      |                  | 80               | Ю   | 8    | W   | Ж   | 88        |                     |             | В    | Ю     | ø           | 8    | 200    |
|   |               |      |                  | 0                | 624 | 2    | 50  | 111 | 46        | 142                 | 50          | 9    | 120   | 16          |      | - 1000 |
|   |               |      |                  | 1                | 45  | 1109 | 664 | 421 | 192       | 270                 | 159         | 240  | 533   | 196         |      | - 1000 |
|   |               |      |                  | 2                | 14  | 1    | 17  | 4   | 2         | 2                   | 7           | 1    | 2     | 2           |      | - 800  |
|   |               |      |                  | 3                | 5   | 2    | 38  | 158 | 21        | 96                  | 9           | 10   | 44    | 22          |      |        |
|   |               |      |                  | 4                | 8   | 0    | 8   | 2   | 108       | 7                   | 15          | 6    | 2     | 87          |      | - 600  |
|   |               |      |                  | 2                | 3   | 0    | 0   | 2   | 0         | 4                   | 0           | 0    | 1     | 1           |      |        |
|   |               |      |                  | 9                | 195 | 9    | 122 | 60  | 224       | 195                 | 653         | 17   | 99    | 120         |      | - 400  |
|   |               |      |                  | 7                | 85  | 8    | 128 | 243 | 365       | 172                 | 57          | 737  | 163   | 510         |      | - 200  |
|   |               |      |                  | 8                | 0   | 0    | 0   | 5   | 1         | 2                   | 0           | 0    | 7     | 3           |      | 200    |
|   |               |      |                  | 6                | 1   | 4    | 5   | 4   | 23        | 2                   | 8           | 8    | 3     | 52          |      | - 0    |
| 2 | <u>0,1111</u> | 1    | 10000            |                  | 0   | 1    | 2   | 3   | 4<br>Гопи | 5<br>OCT            | 6<br>: 89.′ | 78%  | 8     | 9           |      |        |
|   | 0,1111        | 1    | Sigmoid          |                  |     |      |     |     | 1 04H     | OC I B              | . 07.       | 1070 |       |             |      |        |
|   |               |      | Sigiliolu        |                  |     |      |     |     |           |                     |             |      |       |             |      |        |



|   |        |           | Sigmoid        | 0   | 959 | 0    | 10  | 4   | 1                   | 12   | 7         | 3   | 9   | 5   |        |
|---|--------|-----------|----------------|-----|-----|------|-----|-----|---------------------|------|-----------|-----|-----|-----|--------|
|   |        |           |                | -   | 0   | 1096 | 2   | 0   | 2                   | 1    | 3         | 13  | 2   | 8   | - 1000 |
|   |        |           |                | 2   | 4   | 4    | 953 | 22  | 8                   | 2    | 9         | 29  | 3   | 0   | - 800  |
|   |        |           |                | 3   | 1   | 0    | 1   | 904 | 0                   | 20   | 0         | 6   | 5   | 6   | - 800  |
|   |        |           |                | 4   | 2   | 0    | 8   | 1   | 916                 | 2    | 33        | 8   | 6   | 29  | - 600  |
|   |        |           |                | 2   | 2   | 2    | 1   | 22  | 1                   | 788  | 9         | 4   | 4   | 5   |        |
|   |        |           |                | 9   | 2   | 3    | 5   | 0   | 6                   | 5    | 859       | 0   | 0   | 1   | - 400  |
|   |        |           |                | 7   | 2   | 0    | 6   | 4   | 3                   | 2    | 0         | 909 | 4   | 6   |        |
|   |        |           |                | 00  | 8   | 30   | 44  | 45  | 17                  | 50   | 38        | 26  | 937 | 37  | - 200  |
|   |        |           |                | 6   | 0   | 0    | 2   | 8   | 28                  | 10   | 0         | 30  | 4   | 912 | - 0    |
|   |        |           |                |     | 0   | 1    | 2   | 3   | 4                   | 5    | 6         | 7   | 8   | 9   | - 0    |
| 4 | 0,1111 | 5         | <u>60000</u>   |     |     |      |     | 7   | Гочн                | OCTL | . 96      | 11% |     |     |        |
|   | 0,1111 | 3         | Sigmoid        | 0   | 963 | 0    | 9   | 1   | 1                   | 3    | 9         | 2   | 3   | 4   |        |
|   |        |           | Sigmord        | _   | 1   | 1118 | 4   | 0   | 0                   | 1    | 3         | 6   | 4   | 4   | - 1000 |
|   |        |           |                | 2   | 0   | 5    | 969 | 6   | 3                   | 0    | 0         | 12  | 3   | 0   | 000    |
|   |        |           |                | 3   | 1   | 1    | 8   | 958 | 0                   | 11   | 0         | 0   | 5   | 5   | - 800  |
|   |        |           |                | 4   | 3   | 0    | 10  | 1   | 965                 | 2    | 5         | 2   | 10  | 22  | - 600  |
|   |        |           |                | 2   | 3   | 1    | 1   | 18  | 0                   | 857  | 9         | 0   | 7   | 6   |        |
|   |        |           |                | 9   | 2   | 4    | 5   | 0   | 4                   | 6    | 925       | 0   | 6   | 3   | - 400  |
|   |        |           |                | 7   | 4   | 1    | 12  | 11  | 1                   | 5    | 1         | 995 | 8   | 13  |        |
|   |        |           |                | œ   | 2   | 5    | 14  | 5   | 2                   | 5    | 6         | 4   | 923 | 4   | - 200  |
|   |        |           |                | 6   | 1   | 0    | 0   | 10  | 16                  | 2    | 0         | 7   | 5   | 948 | - 0    |
|   |        |           |                |     | 0   | 1    | 2   | 3   | 4                   | 5    | 6         | 7   | 8   | 9   | - 0    |
| 5 | 0,25   | <u>10</u> | 10000          |     |     |      |     |     | Гочн                |      |           | 79% |     |     |        |
|   |        |           | Sigmoid        | 0   | 951 | 0    | 24  | 10  | 1                   | 20   | 20        | 0   | 11  | 5   | - 1000 |
|   |        |           |                | ~   | 0   | 1113 | 1   | 4   | 3                   | 2    | 3         | 21  | 3   | 11  |        |
|   |        |           |                | 2   | 1   | 4    | 906 | 24  | 2                   | 1    | 2         | 19  | 16  | 0   | - 800  |
|   |        |           |                | 3   | 0   | 0    | 2   | 891 | 0                   | 20   | 0         | 7   | 4   | 6   |        |
|   |        |           |                | 4   | 4   | 2    | 16  | 5   | 937                 | 12   | 18        | 13  | 12  | 35  | - 600  |
|   |        |           |                | 5 5 | 4   | 1    | 2   | 32  | 0                   | 771  | 12<br>898 | 0   | 13  | 6   | - 400  |
|   |        |           |                | 9 , | 9   | 5    | 10  | 1   | 6                   | 20   | 0         | 930 | 8   | 10  | 400    |
|   |        |           |                | 8 7 | 6   | 9    | 26  | 16  | 2                   | 24   | 5         | 2   | 858 | 10  | - 200  |
|   |        |           |                | 6   | 2   | 1    | 16  | 16  | 29                  | 14   | 0         | 34  | 40  | 924 |        |
|   |        |           |                | 0,  | 0   | 1    | 2   | 3   | 4                   | 5    | 6         | 7   | 8   | 9   | - 0    |
| 6 | 0,25   | 10        | 10000          |     | J   | - 1  |     |     | <del></del><br>Гочн |      |           |     | J   | J   |        |
|   |        |           | <u>Softmax</u> |     |     |      |     |     |                     |      |           |     |     |     |        |
|   |        |           | L              | 1   |     |      |     |     |                     |      |           |     |     |     |        |

|   |               |          |         | Г            |     |      |     |     |      |      |      |     |     |     |        |
|---|---------------|----------|---------|--------------|-----|------|-----|-----|------|------|------|-----|-----|-----|--------|
|   |               |          |         | 0            | 940 | 0    | 16  | 21  | 2    | 35   | 25   | 8   | 25  | 15  | - 1000 |
|   |               |          |         | ~            | 1   | 1084 | 24  | 17  | 4    | 6    | 3    | 16  | 34  | 14  |        |
|   |               |          |         | 2            | 3   | 19   | 832 | 56  | 3    | 0    | 4    | 22  | 21  | 6   | - 800  |
|   |               |          |         | 3            | 0   | 2    | 8   | 842 | 0    | 78   | 0    | 2   | 38  | 11  |        |
|   |               |          |         | 4            | 10  | 16   | 50  | 15  | 954  | 36   | 87   | 79  | 168 | 826 | - 600  |
|   |               |          |         | 2            | 11  | 2    | 3   | 28  | 0    | 694  | 6    | 10  | 109 | 12  |        |
|   |               |          |         | 9            | 14  | 12   | 53  | 13  | 18   | 38   | 832  | 0   | 98  | 3   | - 400  |
|   |               |          |         | 7            | 1   | 0    | 21  | 11  | 0    | 2    | 0    | 871 | 7   | 19  | 200    |
|   |               |          |         | œ            | 0   | 0    | 23  | 1   | 0    | 0    | 0    | 0   | 417 | 0   | - 200  |
|   |               |          |         | 6            | 0   | 0    | 2   | 6   | 1    | 3    | 1    | 20  | 57  | 103 | - 0    |
|   |               |          |         |              | 0   | 1    | 2   | 3   | 4    | 5    | 6    | 7   | 8   | 9   | U      |
| 7 | <u>0,1111</u> | <u>1</u> | 10000   |              |     |      |     | 7   | Гочн | ость | 87.0 | 09% |     |     | _      |
|   |               |          | Softmax | 0            | 970 | 0    | 34  | 47  | 7    | 84   | 31   | 65  | 37  | 49  | - 1000 |
|   |               |          |         | ~            | 0   | 1094 | 2   | 0   | 4    | 1    | 2    | 24  | 5   | 7   |        |
|   |               |          |         | 2            | 3   | 6    | 915 | 61  | 6    | 5    | 2    | 53  | 20  | 6   | - 800  |
|   |               |          |         | 3            | 0   | 5    | 1   | 829 | 0    | 22   | 0    | 15  | 4   | 7   |        |
|   |               |          |         | 4            | 0   | 1    | 7   | 1   | 803  | 1    | 3    | 8   | 4   | 15  | - 600  |
|   |               |          |         | 5            | 2   | 12   | 3   | 29  | 20   | 743  | 45   | 10  | 40  | 20  |        |
|   |               |          |         | 9            | 3   | 5    | 19  | 5   | 32   | 9    | 855  | 3   | 13  | 15  | - 400  |
|   |               |          |         | 7            | 0   | 0    | 3   | 4   | 0    | 0    | 1    | 801 | 4   | 2   | 000    |
|   |               |          |         | 00           | 2   | 10   | 45  | 25  | 28   | 21   | 19   | 16  | 841 | 30  | - 200  |
|   |               |          |         | 6            | 0   | 2    | 3   | 9   | 82   | 6    | 0    | 33  | 6   | 858 | - 0    |
|   |               |          |         |              | 0   | 1    | 2   | 3   | 4    | 5    | 6    | 7   | 8   | 9   | O      |
| 8 | 0,0450        | 1        | 10000   |              |     |      |     | ]   | Гочн | ость | 89.8 | 85% |     |     | _      |
|   |               |          | Softmax | 0            | 956 | 0    | 14  | 4   | 3    | 17   | 19   | 9   | 7   | 10  | - 1000 |
|   |               |          |         | _            | 0   | 1096 | 5   | 0   | 5    | 3    | 5    | 24  | 4   | 8   |        |
|   |               |          |         | 2            | 0   | 4    | 924 | 22  | 7    | 5    | 12   | 62  | 12  | 10  | - 800  |
|   |               |          |         | 3            | 4   | 5    | 17  | 908 | 1    | 27   | 0    | 12  | 34  | 12  |        |
|   |               |          |         | 4            | 0   | 1    | 9   | 1   | 909  | 7    | 9    | 15  | 9   | 111 | - 600  |
|   |               |          |         | 2            | 7   | 3    | 3   | 43  | 0    | 795  | 24   | 0   | 28  | 22  |        |
|   |               |          |         | 9            | 8   | 4    | 18  | 2   | 14   | 8    | 869  | 0   | 6   | 7   | - 400  |
|   |               |          |         | 7            | 1   | 0    | 6   | 3   | 2    | 3    | 0    | 871 | 4   | 16  |        |
|   |               |          |         | <sub>∞</sub> | 4   | 22   | 36  | 21  | 20   | 21   | 20   | 6   | 866 | 22  | - 200  |
|   |               |          |         | 6            | 0   | 0    | 0   | 6   | 21   | 6    | 0    | 29  | 4   | 791 |        |
|   |               |          |         |              | 0   | 1    | 2   | 3   | 4    | 5    | 6    | 7   | 8   | 9   | - 0    |
| 9 | 0,0450        | <u>5</u> | 60000   |              |     |      |     | 7   | Гочн | ость | 96.  | 13% |     |     |        |
|   |               |          | Softmax |              |     |      |     |     |      |      |      |     |     |     |        |
|   |               |          |         | <u> </u>     |     |      |     |     |      |      |      |     |     |     |        |



#### Вывод:

Многослойный перцептрон с обратным распространением ошибки подходит для задач мультиклассовой классификации, при скорости обучения больше 0,1, количестве эпох 5 и количестве картинок в обучающей выборке 60000 значение точности предсказаний может быть больше 96%. Наименьший результат достигается при оптимальных параметрах для однослойного персептрона, где скорость обучения 0,0011, эпох 1, изображений 10000, результат распознавания на тестовые выборки около 34%. Также при использовании функции Softmax необходимо ставить скорость обучения меньше, чем для функции Sigmoid.