

Lesson 7:

Partial Derivatives and Gradients

Introduction

METIS

Lecture Overview:

Goals of the lecture:

1. Understand partial derivatives and gradients

Partial Derivatives and Gradients

METIS

Partial Derivatives

$$f(x,y) = x^2 - xy$$

$$\frac{\partial}{\partial x}f(x,y) = 2x - y$$

$$\frac{\partial}{\partial y}f(x,y) = -x$$

Gradient

$$f(x,y) = x^2 - xy$$

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix}$$

$$\nabla f(x,y) = \begin{bmatrix} 2x - y \\ -x \end{bmatrix}$$

Summary

Operator

Symbol

Example

$$\frac{d}{dx}$$

$$\frac{d}{dx}x^3 = 3x^2$$

$$\frac{\partial}{\partial x}$$

$$\frac{\partial}{\partial x}x^3y = 3x^2y$$

$$\nabla$$

$$\nabla x^3 y = \begin{bmatrix} 3x^2 y \\ x^3 \end{bmatrix}$$

Problem 1:

Problem 1: Calculate the gradient.

$$f(x_1 \times x_2) = X_1 | n(x_2) + \sin(x_1)$$

Problem 1:

Problem 1: Calculate the gradient.

$$f(x_0 x_1) = X_1 | n(x_2) + \sin(x_1)$$

$$\frac{\partial f}{\partial x_1}$$
: 1. $\ln(x_2) + \cos(x_1)$ $\frac{\partial f}{\partial x_2}$: $\frac{x_1}{x_2}$

$$\nabla f : \begin{bmatrix} \ln(x_2) + \cos(x_1) \\ x_1/x_2 \end{bmatrix}$$

QUESTIONS?