

DECLARATION

I declare that this thesis entitled on "Enhancing Image Steganography for Secure Communication" is the result of my own research except as cited in the reference. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

DEDICATION

Dedications to ALLAH SWT

With blessings, love, and respect for those who helped us reach the level of excellence at which we are all now, we look forward to a bright future.

&

To our respected

PARENTS

&

respected

TEACHERS

For their unconditional support & encouragement & inspiration, that made us able

for this thesis work.

CERTIFICATE

This is to certify that Mr./ Miss	D/o, S/o	Roll No:	Finalyear student of Bachelor	
of Science Information Technology	y) has complete	d the Partial re	equirement of the Project / Thesis	
during session, 2023-24. The Title	of the project is	s "Enhancing I	mage Steganography for Secure	
Communication" and it is submitte	d to the Quaid-	e-Awam Univ	ersity of Engineering. Science &	
Technology Nawab Shah for the	Degree of B	achelor of Sc	ience, Information Technology	
Department.				
Supervisor			Chairman	
		_	·	
Dr. Saima Siraj Soomro		Pro	f. Dr. Mukhtiar Ahmed Memon	
Department of Information Technology		Dep	Department of Information Technology	
External Examiner				

ACKNOWLEDGEMENT

We are deeply grateful to our supervisor **Dr. Saima Siraj Soomro** for her continuous support in the selection of our project topic. Her guidance and encouragement helped us make decisions throughout our project idea selection and led us to a successful idea for our project. We thank our supervisor at Quaid-E-Awam University of Engineering, Science and Technology Nawab Shah for staying with us, helping us, and guiding us with our FYP. Also, we would like to thank our supervisor Dr. Saima Siraj Soomro for her support and guidance at various stages, from the research proposal to project idea selection.

Table of Contents

DECLARATION	(III)
DEDICATION	(IV)
CERTIFICATE	(V)
ACKNOWLEGMENT	(VI)
TABLE OF CONTENTS	(VII)
CHAPTERS	(VIII)
LIST OF TABLES	(XII)
LIST OF FIGURES	(XIII)
ABSTRACT	(XV)

CHA	PTER NO.01 INTRODUCTION	1
	1.1 INTRODUCTION TO IMAGE STEGANOGRAPHY	1
	1.2 Image Stenography Basics	7
	1.3 Encoding and Decoding Functions	8
	1.3.1 Image Selection	9
	1.3.2 Message Input	9
	1.3.3 Encoding Option	10
	1.3.4 Decoding Option	10
	1.4 Problem Statement	12
	1.5 Objective	12
	1.6 Structure of the Thesis	12
CHAI	PTER NO.02: LITERATURE REVIEW	14
	2.1 Introduction	14
	2.2 Historical Background	14
	2.3 Early Methods	14
	2.3.1 Ancient Greece and Rome	15
	2.3.2 Wooden Tablets and Wax	15
	2.3.3 Invisible Ink	16
	2.3.4 Cipher Codes	17
	2.4 Existing Stenography Technique	19
	2.4.1 Least Significant Bit (LSB	19
	2.4.2 Discrete Cosine Transform (DCT)	21
	2.4.3 Spread Spectrum	23

	2.4.4 Phase Coding	24
	2.5 Comparative Analysis- Strengths	26
	2.5.1 Least Significant Bit (LSB)	26
	2.5.2 Discrete Cosine Transform (DCT)	27
	2.5.3 Spread Spectrum	27
	2.5.4 Phase Coding	27
	2.6 Comparative Analysis	28
	2.7 Review of Significant Research Papers	29
	2.7.1 Enhancing Security with Compression and Encryption	29
	2.7.2 Watermarking in the Frequency Domain	29
	2.7.3 Detecting LSB Steganography	30
	2.7.4 Robustness of Spread Spectrum Techniques	30
	2.7.5 Use of Wavelet Transforms	30
СНА	PTER NO.03 RESEARCH METHODOLOGY	32
	3.1 Introduction	32
	3.2 Requirement Gathering and Analysis	34
	3.3 Design	34
	3.4 Overview of the Steganography Workflow	36
	3.4.1 Data Hiding Process	36
	3.4.1.1. User Authentication	36
	3.4.1.2 Data Encryption	36
	3.4.1.3 Cover Image Selection	37
	3.2.4.4 Steganography Algorithm Application	37

	3.2.4.5 Stego Image Creation	38
	3.4.2 Data Retrieving Process	38
	3.4.2.1 Stego Image Input	38
	3.4.2.2 Secret Key Utilization	38
	3.4.2.3 Data Extraction	39
	3.4.2.4 Decryption	39
	3.3 Development	40
	3.4 Testing	42
	3.5 Deployment	42
	3.6 User Feedback and Maintenance	43
	3.7 Proposed Algorithm	43
	3.8 Data Hiding Process	44
	3.9 Data Retrieval Process	44
	3.10 Security Features	44
СН	APTER NO.4 RESULTS AND DISCUSSIONS	46
	4.1 Encode Functionality	46
	4.1.1 Choose Image	47
	4.1.2 Select Secret Key	48
	4.1.3 Enter Message	49
	4.1.4 Encoding Process	50
	4.1.5 Output Image	51
	4.2 Decode	52
	4.2.1 User Interface Overview	52
	4.2.2 Choose Image	53

4.2.3 Input Secret Key	54
4.2.4 Decoding Process	55
4.2.5 Displaying the Hidden Message	55
4.3 Analysis and Discussion	55
4.3.1 Security Considerations	55
4.3.2 Usability and Performance	56
4.3.3 Limitation	56
4.4 Conclusion	56
CHAPTER NO.05 CONCLUSION AND FUTURE WORK	57
5.1 Conclusion	57
5.2 Future Work	58

LIST OF TABLES

Table No 1.1:	The Diff: Between Steganography And Cryptography	04
Table No 1.2:	Functionality For Encoding and Decoding	11
Table No 2.1 :	Methods of Stenography	18
Table No 2.2:	Existing Stenography Techniques	25
Table No 2.3:	Comparative Analysis Table	28
Table No 2.4 :	Review of significant research paper	31
Table No 3.1:	Proposed Algorithm	45

LIST OF FIGURES

Figure 1.1:	Image Steganography [31]	02
Figure 1.2:	Cryptography [32]	06
Figure 1.3:	Encoding and Decoding Functions [33]	08
Figure 1.4:	Encoding and Decoding Options [34]	10
Figure 2.1:	Invisible Ink [35]	16
Figure 2.2:	Cipher Codes [36]	17
Figure 2.3:	Least Significant Bit [37]	20
Figure 2.4:	Discrete Cosine Transform [38]	22
Figure 3.1:	Workflow of the Novel Steganography Algorithm [39]	33
Figure 3.2:	Algorithm for embedding data inside image [40]	35
Figure 3.3:	Algorithm for extracting data from stego image [41]	35
Figure 3.4	The main interface for SIS [42]	41
Figure 3.5	The secret key is required for SIS [43]	41
Figure 3.6	(a) Original image (b) Stego image [44]	42
Figure 3.7	(a) Original image (b) Stego image [45]	42
Figure 4.1:	Encode and Decode Functionality [46]	46
Figure 4.2:	Choose Image [47]	47

Figure 4.3:	Secret Key [48]	48
Figure 4.4:	Enter Message [49]	49
Figure 4.5:	Encoding Process [50]	50
Figure 4.6:	Decode Functionality [51]	52
Figure 4.7:	Choose Image [52]	53
Figure 4.8:	Decode Secret Key [53]	54

ABSTRACT

Steganography, the process of concealing a secret message within a larger, seemingly innocuous one, plays a critical role in information security by ensuring that the existence of the hidden message remains undetectable. Unlike encryption, which obscures the content of a message, steganography masks the very presence of communication. This thesis focuses on the application of steganography in digital images to unintended observers.

The research investigates the advantages of steganographic techniques, particularly their ability to provide a simple yet effective security mechanism. Since the hidden message is seamlessly integrated within an ordinary digital image. This characteristic makes steganography a valuable tool for secure communication, digital watermarking, and copyright protection.

This thesis provides a comprehensive analysis of current steganographic methods, comparing their effectiveness in terms of data embedding capacity, image quality preservation, and resistance to detection. Moreover, novel enhancements to existing algorithms are proposed, aiming to improve the robustness and efficiency of data concealment.