Overview: Sequential Logic Design Principles

- * Introduction
- * Bistable Elements
- * Latches & Flip-Flops
- * Analysis Procedure
- * Design Procedure

Chapter 7 – "Digital Design: Principles and Practices" book

Analysis Procedure: What this is about

- Behavior of sequential circuits:
 - Determined from inputs, outputs, and the state of flip-flops.
- Outputs and next state are both a function of the inputs and the present state.
- Analysis consists of:
 - Obtaining a suitable description that demonstrates the time sequence of *inputs*, *outputs*, and *flip-flop states*.

Clocked Synchronoues State Machines: Operation

- Latches & Flip-Flops: basic building blocks of sequential circuits and can be formally analysed.
- Usually, sequential circuits may not just include latches & flip-flops;
 they may also include combinational circuits.
- Clocked Synchronous State Machines:
 - State Machine: general sequential circuit.
 - Clocked: their storage elements (i.e., flip-flops) use a clock input.
 - Synchronous: all the flip-flops use the same clock signal.
 - Its state changes <u>only</u> when a change occurs on the clock signal.

Moore Machines

- Moore model for a finite state machine (FSM)
- Outputs only depend on current state

Mealy Machines

- Mealy model for a finite state machine (FSM)
- Outputs depend on inputs and current state

State Register

One D-type flip-flop has how many states?

State Register

Two D-type flip-flops have how many states?

State Register

Two D-type flip-flops have how many states?

State register

A state register with n flipflops has 2n possible states

State Machines (1/2)

 A state machine (or a clocked synchronous state machine) consists of three components:

1. Next-State Logic:

- Combinational logic applied to the inputs before being put into the "state memory" (i.e., flip-flops).
- Expresses the input to the state memory as a boolean equation called either *Input Equation* or *Excitation* Equation.
 - It is a function of the input and the current state i.e.,
 Next State = F(Current State, Input).

State Machines (2/2)

2. State Memory:

- A set of flip-flops that store the current state.
- n flip-flops can store 2ⁿ distinct states.
- Output of the flip-flop is determined by the characteristic equation for the flip-flop type; also called the *Next-State Equation* or *Characteristic Equation*.

3. Output Logic:

- Determines the output of the state machine.
- Output Equation is a function of the input & current state.
 - Output = G(Current State, Input).

Example: State Machine Diagram

Characteristic Equations: Definition

- Describe the functional behaviour of a latch or flip-flop.
- Specify the flip-flop's next state as a function of its current state and inputs.
- Q* means
 "the next value of Q".

MS = Master/Slave ET = Edge-Triggered

Device Type	Characteristic Equation
S-R Latch MS S-R Flip-Flop	$Q^* = S + R'Q$
D Latch	Q* = D
JK Latch MS J-K Flip-Flop ET J-K Flip-Flop	Q* = JQ' + K'Q
ET D Flip-Flop	$Q^* = D$
D Flip-Flop w/ Enable	$Q^* = E_N D + E_N' Q$
T Flip-Flop	$Q^* = Q'$
T Flip-Flop w/ Enable	$Q^* = E_N Q' + E_N' Q$

Characteristic Equations: How they are Derived

- Can derive the characteristic equations by considering the behaviour of the flip-flop/latch, but these equations:
 - do not describe in detail the flip-flop/latch timing behaviour.
 - only describe the functional behaviour of the flip-flop/latch upon changes to the control inputs.

Examples:

- D (Data) flip-flop what goes in comes out. Thus, $Q^* = D$.
- T (Trigger) flip-flop the next Q is always the complement of the current Q. Thus, $Q^* = Q'$.

Analysis Procedure

- Logic diagram of a sequential circuit consists of flip-flops and combinational gates.
- Knowledge of the type of flip-flops and a list of Boolean functions for the combinational circuits provides all the information needed to draw the logic diagram of the sequential circuit.

Analysis Procedure: Steps

- 1. Obtain the *input* (or *excitation*) *equations*.
- 2. Obtain the *output equations*.
- 3. Obtain the *next state* (or *characteristic*) *equations*.
- 4. Substitute the *input equations* into the *next state equations* to obtain *transition equations*.
- 5. Develop a *transition table* from the *transition equations*.
- 6. Develop a **state table** that relates the possible states in terms of the *present* and *next state*.
- 7. Develop a **state/output table** that relates the possible states in terms of the *present* and *next state, together with the outputs.*
- 8. Draw the **state diagram**.

Input, Output & Next State Equations

What kind of flip-flop is used here?

Table Development Process in CSSMs

- Tables of Clocked Synchronous State Machines (CSSMs) have up to four sections:
 - Current state: shows state of the flip-flops at any given time t.
 - Input: gives the value of the inputs for each possible state.
 - Next state: shows the state of the flip-flops one clock period later, i.e., at (t+1).
 - Output: gives the system output values for each present state.

Table Development Process: Transition Table

State

- There are three types of tables to develop:
 - Transition Table
 - Expresses the next state as a function of the *current state* and the *input*.
 - Uses Next State Equations to determine entries.

Input A B 0 0 **Next** Current State **A*B***

X

Table Development Process: State Table

- There are three types of tables to develop (cont.):
 - State Table

• Expresses the *next state* as a function of the *current state* and the *input* using alphanumeric state names.

Current Alphanumeric

State

Next

State

Table Development Process: State/Output Table

There are three types of tables to develop (cont.):

Things to remember about tables ...

- Always correctly label your tables you will lose marks on your coursework/exam if this is not done!
- Always provide a key to your alphanumberic states e.g.:
 - If you have four states, each described by 2 bits, then your states could be labelled as, A = 00; B = 01; C = 10; D = 11.
- State/Output tables for *Moore Machines* (i.e., where the output depends only on the current state) are simpler than those of *Mealy Machines* (i.e., where the output depends both on the current state and the inputs):
 - Simpler output equation as it is not a function of the input(s).

Analysis Example: State Machine with D Flip-Flops

Analysis Example: Table Development Process

First, determine the input and output equations:

Input Equations: Output Equation:

$$D_A = AX + BX Y = (A + B)X'$$

$$D_B = A'X$$
 What is another name for the "Input Equations"?

- How do we determine what the output of the D flip-flops is or the Next State Equations?
 - Use the Characteristic Equation for a D flip-flop!
 - Q* = D: So what goes into a D flip-flop comes out again! Thus,

$$A^* = D_A = AX + BX$$
 (substituting in for D_A)

$$\mathbf{B}^* = \mathbf{D}_{\mathbf{B}} = \mathbf{A}'\mathbf{X}$$
 (substituting in for $\mathbf{D}_{\mathbf{B}}$)

Analysis Example: Transition Table

Analysis Example: State Table

Give each numerical state an alphanumeric name:

00 = M

01 = N

10 = 0

11 = P

Substitute into the **Transition Table** to form the **State Table**.

Analysis Example: State/Output Table

– Expand your State Table to include the output Y, to form the State/Output Table:

Determine Y using the Output Equation. For A=0, B=0, X=0:

$$Y = (A + B)X'$$

= $(0 + 0) 1$
= 0

Thus entry is 0.

Analysis Example: State Diagram Development Process (1/2)

Development Process:

- Develop the State Diagram from the State/Output Table.
- Represent the *Present States* by circles.
- Represent the transition between states by *directed lines*.
- Label the directed lines with input/output values.

Analysis Example: State Diagram Development Process (2/2)

Analysis with JK Flip-Flops

- The analysis example we just went through was only for D
 Flip-Flops with only one data input.
 - The Next State values could be obtained directly from the input equations!
- What about if there are 2 inputs, i.e., with JK Flip-Flops?
 - We need to use the appropriate Characteristic Equations!

Analysis Example: JK Flip-Flop

JK Flip-Flops Analysis Example: Obtain Input & Output Equations

Reading directly from the diagram:

Input Equations:
$$\begin{cases} J_A = XY + Y'B & K_A = Y'A + B' \\ J_B = Y & K_B = XA + Y \end{cases}$$

Output Equation: OUT = AB'

For Next State, use the Characteristic Equation for a JK flip-flop!

$$-Q^* = JQ' + K'Q$$

$$A^* = J_AA' + K_A'A$$

$$= (XY + Y'B)A' + (Y'A + B')'A = XYA' + Y'BA' + ABY$$

$$B^* = J_BB' + K_B'B$$

$$= YB' + (XA + Y)'B = YB' + X'Y'B + Y'A'B$$

JK Flip-Flops Analysis Example: Obtain Input & Output Equations

Proof of equations given on slide 32:

$$A^* = (XY + Y'B)A' + (Y'A + B')'A$$

Now:
$$(XY + Y'B)A' = XYA' + Y'BA'$$
 [T8']

And:
$$(Y'A + B')'A = ((Y'A)' \cdot B'')A$$
 [T13']
= $(Y'A)'BA$ [T4]
= $(Y''+A')BA$ [T13]
= $YBA+A'BA$ [T4, T8']

$$= YBA+0$$
 [T5']

So:
$$A^* = XYA' + Y'BA' + YBA$$

JK Flip-Flops Analysis Example: Obtain Input & Output Equations

Proof of equations given on slide 32:

$$B^* = YB' + (XA + Y)'B$$

Now:
$$(XA + Y)'B = ((XA)' . Y')B$$
 [T13']
 $= (XA)' Y'B$ [T7']
 $= (X'+A') . Y'B$ [T13]
 $= X'Y'B+A'Y'B$ [T8']

So:
$$B^* = YB' + X'Y'B + A'Y'B$$

JK Flip-Flops Analysis Example: Transition Table

Next State equations:

$$A^* = XYA' + Y'A'B + ABY$$

 $B^* = YB' + X'Y'B + Y'A'B$

1. List all possible states

For B*A*, plug in appropriate equations for each entry. For A=0, B=1, X=0, Y=0:

$$A^* = XYA' + Y'A'B + ABY$$

$$= 0 \cdot 0 \cdot 1 + 1 \cdot 1 \cdot 1 + 0 \cdot 1 \cdot 0$$

$$= 1$$

$$B^* = YB' + X'Y'B + Y'A'B$$

$$= 0 \cdot 0 + 1 \cdot 1 \cdot 1 + 0 \cdot 1$$

$$= 1$$

Thus entry is 11.

2. Determine Next State of BA for all permutations of the inputs

JK Flip-Flops Analysis Example: State Table

Give each numerical state an alphanumeric name:

$$00 = H$$
 $01 = I$

$$10 = J$$
 $11 = K$

Substitute into **Transition Table** to form the **State Table**:

	XY				
S	00	01	10	11	
H	Н	J	Н	K	
Ι	H	J	H	J	
J	K	H	K	I	
K	J	I	H	Ι	
-		S*			

JK Flip-Flops Analysis Example: State/Output Table

Expand your **State Table** to include the output **Out** to form the **State/Output Table**.

This is a Moore Machine – the outputs are *only* a function of the state. Thus, they *do not change* per input and can be listed in their own column.

	XY				
S	00	01	10	11	Out
H	Н	J	H	K	0
I	H	J	H	J	1
J	K	H	K	I	0
K	J	I	H	I	0
-	S*			- ر	

JK Flip-Flops Analysis Example: State Diagram Development Process (1/2)

 Development Process: Same as before with a Mealy Machine, but can put the *output* within the actual state circle.

JK Flip-Flops Analysis Example: State Diagram Development Process (2/2)

Complete the State Diagram, based on the information in the State/Output Table.

To be completed in class.

Time Delay & Maximum Clock Speed (1/3)

- Gate delay limits the speed of state machines...
- Feedback logic delay dictates highest clock frequency
- For circuit with max delay T_D , max clock frequency is:

$$F_{max} < \frac{1}{T_D}$$

• Attempt to clock > F_{max} and circuit will be unstable

Time Delay & Maximum Clock Speed (2/3)

Assume all gates have 7ns delay ...

Time Delay & Maximum Clock Speed (3/3)

Assume all gates have 7ns delay ...

Task 1

 Answer the questions about the sequential circuit on the right:

Derive the *input*,
 next state and
 output equations.

Derive the State
 Table and State
 Diagram.

What does the circuit do?

Answer: Task 1

To be completed in class ...

