Программа зачета по электронной оптике

1. Движение электронов в электрическом и магнитном статических полях.

Уравнения движения в электромагнитном поле. Случаи однородных электрического и магнитного полей. Интеграл энергии. Движение в слабонеоднородных полях (дрейфовая теория). Поперечный адиабатический инвариант. Дрейфовые уравнения Уравнения Лагранжа. Теорема Буша. Критический режим магнетрона. Инвариант Пуанкаре. Адиабатическая теория магнетронно-инжекторной пушки гиротрона. Вариационные принципы динамики заряженных частиц. Электронно-оптический коэффициент преломления.

2. Электронно-оптические свойства полей с аксиальной симметрией.Электронные линзы.

Дифференциальные уравнения траекторий заряженных частиц в аксиально-симметричных полях. Уравнения параксиальных траекторий. Изображающие свойства параксиальных пучков (стигматичность и подобие изображений). Классификация электростатических линз. Особенности электростатических линз с ограниченной областью поля. Иммерсионные линзы. Построение изображения в тонкой и толстой линзах. Линзы-диафрагмы. Иммерсионный объектив.

Классификация магнитных линз. Электронно-оптические свойства короткой (слабой) и длинной магнитных линз. Сильные магнитные линзы. Аберрации электронных линз. Электронные зеркала. Квадрупольные линзы. Отклоняющие системы.

3. Электронно-оптические системы.

Прожекторы электронно-лучевых трубок. Электронно-лучевые технологические установки. Электронные микроскопы (эмиссионный, просвечивающий, отражательный, растровый, автоэлектронный и автоионный, проекционные микроскопы). Разрешающая сила электронных микроскопов просвечивающего типа. Системы фокусировки протяженных интенсивных электронных пучков (магнитная, периодическая, электростатическая, центробежная). Системы рекуперации энергии электронов в мощных электронных приборах.

4. Интенсивные электронные пучки.

Система самосогласованных уравнений пучка в статических полях. Режимы температурного ограничения эмиссии и ограничения тока пространственным зарядом в электронных диодах. Теория идеализированного плоского диода (закон "трех вторых"). Предельный ток транспортировки электронного пучка в пространстве дрейфа. Формирование ленточных электронных пучков. Пушки Пирса.

к зачету по электронике (электронная оптика)

- 1. Вывести формулу для замедления в релятивистском приближении. Получить приближенную формулу путем разложения в ряд по параметру ξ_0^{-1} , где $\xi_0 = \frac{C}{\sqrt{2\eta U}}$.
- 2. Исследовать в релятивистском приближении движение электрона в однородном электрическом поле.
- **3.** Показать, что вращение электрона в магнитном поле происходит против часовой стрелки, если смотреть со стороны B.

Через точку A на оси металлической трубки радиуса R=8 см пролетает электрон под углом ϕ =45° к оси. Трубка помещена в однородное магнитное поле B=300 Гс, направленное вдоль её оси. Определить потенциал стенки трубки относительно катода, при котором электроны попадают на стенку.

5. Электрон вращается в магнитном поле $B=2 \bullet 10^5~\Gamma c$ по окружности радиуса R=2~cm. Найти частоту вращения и энергию (в кэВ) электрона.

Электрон с радиусом R_0 вбрасывается вдоль силовой линии магнитного поля в однородное поле B_1 и затем попадает в однородное поле $B_2 > B_1$. Найти положение ведущего центра и скорость вращения электрона в поле B_2 . Рассмотреть два случая:

- а) на участке от B_1 до B_2 поле меняется адиабатически:
 - б) поле меняется скачком от B_1 до B_2 .
- Показать эквивалентность условий сохранения поперечного адиабатического инварианта, потока магнитной индукции через ларморовскую окружность и магнитного момента элементарного кругового тока, образованного электроном, вращающимся по ларморовской окружности.

Металлическую трубку из задачи 4 предполагается сузить до радиуса R_1 , а для исключения попадания электрона на трубку - увеличить в суженной части магнитное поле. Вычислить B_2 $_{min}$ Z_1 для Z_1 Z_2 Z_1 Z_2 Z_3 Z_4 Z_4 Z_4 Z_4 Z_5 Z_4 Z_5 Z_6 Z_6 Z

Каковы условия, при которых электрон движется прямолинейно в скрещенных полях внутри плоского промежутка. Вычислить расстояние х от траектории до нижней пластины. (U_1 =250 B, U_2 =4200 B, d=3,5 см,B=50 Гс).

 Получить из уравнений Лагранжа векторные релятивистские уравнения движения заряженной частицы в произвольном электромагнитном поле.

Ток накала цилиндрического диода создает магнитное поле , отклоняющее электроны. Найти величину тока накала, достаточную для отсечки анодного тока. (U_a =80 B, R_a =3,5 см, R_k =1,8 мм).

12. Рассчитать, не пользуясь теоремой Буша, параболу критического режима плоского магнетрона.

Электрон через отверстие в магнитном экране влетает в магнитное поле, однородное на достаточном удалении от экрана. Слева от экрана магнитное поле отсутствует. Определить угловую скорость электрона в области однородного магнитного поля справа от экрана.

 Показать, что эквипотенциальные поверхности вблизи седловой точки, расположенной на оси, в аксиально- симметричных системах имеют вид конусов с углом при вершине 109°30′.
системах имеют вид конусов с углом при вершине 109°30′.

система симметричная Аксиальнокатол K. плоский содержит вспомогательную плоскую ускорительную сетку С и камеру Р, вход в которую выполнен в виде круглой диафрагмы. Потенциал камеры относительно катода потенциал Определить $U_{\kappa} = 300B.$ ускорительной сетки, необходимый для дне камеры. фокусировки пучка на Расстояния L₁ и L₂ равны соответственно 3.5 см и 8.5 см.

- 2.0. Определить фокусное расстояние магнитной линзы, образованной круглым витком проволоки, по которому течет ток 250A, диаметр витка 15 см, энергия электронов 3000 эВ.
- 17. Доказать, пользуясь основным уравнением параксиальных траекторий, что для любой линзы с ограниченной областью поля $fa/fb=Ua^{1/2}/Ub^{1/2}$.

18.

Вычислить чувствительность электростатической отклоняющей системы (отношение отклонения луча на экране в мм к отклоняющему напряжению в В). Энергия электронов на оси системы равна ${\rm eU}_0$.

19.

Вычислить чувствительность магнитной отклоняющей системы (отношение отклонения луча на экране в мм к индукции отклоняющего магнитного поля в Гс). Отклоняющее магнитного поле полагается однородным и направленным перпендикулярно плоскости рисунка.

20. Вывести релятивистскую теорему Буша из инварианта Пуанкаре.