## 4 Applications of Fraction Rings

Throughout this assignment, R will denote a *commutative* ring.

2/1: **4.1.** Let R be a ring, and let  $f \in R$  be an element which is not a zero divisor. Recall that we defined  $R_f = D^{-1}R$  for  $D = \{1, f, f^2, \dots\}$ . Prove that

$$R_f \cong R[X]/(fX-1)$$

using the universal property of the ring of fractions.

*Proof.* Herein, let  $\bar{g}$  denote g + (fX - 1) for any  $g \in R[X]$ , and let S denote R[X]/(fX - 1).

To prove that  $R_f \cong R[X]/(fX-1)$ , i.e., that  $D^{-1}R \cong S$ , it will suffice to construct an isomorphism  $\tilde{\varphi}: D^{-1}R \to S$ . Per Lecture 2.2, we may define a canonical injection  $i: R \to R[X]$  and a canonical surjection  $\pi: R[X] \to S$ .

We now prove that the restriction  $\pi|_R$  of  $\pi$  to  $R \cong i(R) \subset R[X]$  is injective. Suppose  $\pi|_R(a) = \pi|_R(b)$  for  $a, b \in R$ . Then  $\bar{a} = \bar{b}$ , so  $a \in \bar{b}$ . But since  $\deg(a) = 0$  and b is the only element of  $\bar{b}$  of degree 0, we must have a = b, as desired.

It follows that we may define an injective ring homomorphism  $\varphi: R \to S$  by  $\varphi = \pi|_R \circ i$ . More explicitly, for any  $a \in R$ , we have that

$$\varphi(a) = (\pi|_R \circ i)(a) = \pi(i(a)) = \pi(a) = \bar{a}$$

We now wish to demonstrate that  $\varphi(D) \subset S^{\times}$ . We divide into two cases  $(1 \in D \text{ and } f^n \in D)$ . Naturally  $1 \in D$ , which maps to  $\bar{1} \in S$  since  $\varphi$  is a ring homomorphism, is a unit. To prove that every  $f^n$  maps to a unit in  $S^{\times}$ , we induct on n. For the base case n = 1, we have that

$$\overline{fX - 1} = \overline{0}$$

$$\overline{fX} - \overline{1} = \overline{0}$$

$$\overline{fX} = \overline{1}$$

$$\varphi(f) \cdot \overline{X} = \overline{1}$$

Thus,  $\varphi(f) \in S^{\times}$  by definition, as desired. Now suppose inductively that  $\varphi(f^{n-1}) \in S^{\times}$ ; we wish to demonstrate that  $\varphi(f^n) \in S^{\times}$ . By the induction hypothesis, there exists  $\bar{b} \in S$  such that  $\varphi(f^{n-1}) \cdot \bar{b} = \bar{1}$ . Therefore,

$$\varphi(f^n) \cdot \overline{bX} = \varphi(f)\varphi(f^{n-1})\overline{b}\overline{X}$$

$$= \varphi(f)\overline{1}\overline{X}$$

$$= \varphi(f)\overline{X}$$

$$= \overline{1}$$

as desired, where we use the base case to get from the next-to-last line to the last line above.

At this point, we have proven that  $\varphi: R \to S$  is an injective ring homomorphism such that  $\phi(D) \subset S^{\times}$ . Thus, we have by the universal property of rings of fractions that there exists a unique injective ring homomorphism  $\tilde{\varphi}: D^{-1}R \to S$  such that  $\tilde{\varphi} \circ \iota = \varphi$ .

To verify that  $\tilde{\varphi}$  is surjective, let  $\bar{g} \in S$  be arbitrary, where  $g \in R[X]$ . Since R is a subring of  $D^{-1}R$ , we may consider  $g \in D^{-1}R[X]$ . In particular, we will be interested in  $(1/f)g \in D^{-1}R[X]$  and  $X - 1/f \in D^{-1}R[X]$ . Applying the Euclidean algorithm to the latter monic polynomial generates  $q, r \in D^{-1}R[X]$  such that (1/f)g = q(X-1/f)+r and, since  $\deg(r) < \deg(X-1/f) = 1$ ,  $r \in D^{-1}R$ . It follows that g = q(fX - 1) + rf, so  $\tilde{\varphi}(rf) = \overline{rf} = \overline{g}$  for  $rf \in D^{-1}R$ .

Let d be the denominator of rf. Then  $drf \in R$ . It follows that  $\tilde{\varphi}(drf) = \tilde{\varphi}(\iota(drf)) = \varphi(drf) = \overline{drf}$  so

$$\begin{split} \bar{d} \cdot \overline{rf} &= \tilde{\varphi}(d) \tilde{\varphi}(rf) \\ &= \varphi(d) \tilde{\varphi}(rf) \\ &= \bar{d} \tilde{\varphi}(rf) \\ \overline{rf} &= \tilde{\varphi}(rf) \\ \tilde{\varphi}(rf) &= \bar{g} \end{split}$$

as desired.  $\Box$ 

**4.2.** Let  $\mathbb{Z}[i] = \mathbb{Z}[X]/(X^2+1)$  denote the ring of **Gaussian integers**. Recall from class that  $\mathbb{Z}[i]$  is a Euclidean domain with norm  $N: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$  defined by  $N(a+bi) = a^2 + b^2$ .

(a) Let R be a Euclidean domain with norm N which satisfies N(xy) = N(x)N(y) for all  $x, y \in R$ . Prove that  $a \in R$  is a unit iff N(a) = 1. (Hint: Start by computing N(1).)

*Proof.* Taking the hint, we will begin by computing N(1). Since  $1 \neq 0$  and N is a positive norm by assumption, N(1) > 0. Additionally, since  $\mathbb{Z}$  is an integral domain, we can use the cancellation law between the following equations.

$$N(1 \cdot 1) = N(1)$$

$$N(1)N(1) = N(1) \cdot 1$$

$$N(1) = 1$$

Having computed N(1), we now begin the argument in earnest.

Suppose first that  $a \in R$  is a unit. Then there exists  $b \in R$  such that ab = 1. It follows that

$$N(ab) = N(1)$$
$$N(a)N(b) = 1$$

Thus,  $N(a) = \pm 1$ , but since  $N(a) \in \mathbb{Z}_{>0}$ , we must have

$$N(a) = 1$$

as desired.

Now suppose that N(a) = 1. Since R is an ED and  $a \neq 0$ , we know that there exist  $q, r \in R$  such that 1 = qa + r and N(a) > N(r). But since N(1) = 1, we must have N(r) = 0 or r = 0. Therefore, 1 = qa, so a is a unit, as desired.

(b) Using part (a), find the units in  $\mathbb{Z}[i]$ .

*Proof.* Let  $a + bi \in \mathbb{Z}[i]$  be a unit. Then  $1 = N(a + bi) = a^2 + b^2$ . The four possible solutions over  $\mathbb{Z}$  are  $(a, b) = (\pm 1, 0)$  and  $(a, b) = (0, \pm 1)$ . Therefore, the units of  $\mathbb{Z}[i]$  are

$$\pm 1, \pm i$$

(c) Prove that  $\operatorname{Frac}(\mathbb{Z}[i]) = \mathbb{Q}[i]$ .

*Proof.* To prove that  $\operatorname{Frac}(\mathbb{Z}[i]) = \mathbb{Q}[i]$ , it will suffice to use a bidirectional inclusion argument. Suppose first that

$$\frac{a+bi}{c+di} \in \operatorname{Frac}(\mathbb{Z}[i])$$

Labalme 2

Then by the laws of multiplication on the field of fractions and on  $\mathbb{Z}[i]$ , we have that

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

Since  $a + bi, c + di \in \mathbb{Z}[i] = \{\alpha + \beta i \mid \alpha, \beta \in \mathbb{Z}\}$  by the definition of  $\operatorname{Frac}(\mathbb{Z}[i])$ , we know that  $a, b, c, d \in \mathbb{Z}$ . Thus,

$$\frac{ac+bd}{c^2+d^2}, \frac{bc-ad}{c^2+d^2} \in \mathbb{Q}$$

and hence

$$\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i \in \{\alpha+\beta i \mid \alpha,\beta\in\mathbb{Q}\} = \mathbb{Q}[i]$$

as desired.

Now suppose that

$$\frac{a}{b} + \frac{c}{d}i \in \mathbb{Q}[i]$$

Then by the laws of addition and multiplication on  $\mathbb{Q}[i]$  and on  $\mathbb{Z}[i]$ , we have that

$$\frac{a}{b} + \frac{c}{d}i = \frac{a}{b} + \frac{c}{d}\frac{i}{1} = \frac{a}{b} + \frac{ci}{d1} = \frac{a}{b} + \frac{ci}{d} = \frac{ad + bci}{bd} = \frac{ad + bci}{bd + 0i}$$

Since  $a/b, c/d \in \mathbb{Q}$ ,  $a, b, c, d \in \mathbb{Z}$ . Thus,  $ad, bc, bd, 0 \in \mathbb{Z}$  so  $ad + bci, bd + 0i \in \mathbb{Z}[i]$ . Additionally, since  $b, d \in \mathbb{Z} \setminus \{0\}$  by hypothesis,  $bd + 0i \neq 0$  as well. Therefore,

$$\frac{a}{b} + \frac{c}{d}i = \frac{ad + bci}{bd + 0i} \in \operatorname{Frac}(\mathbb{Z}[i])$$

as desired.  $\Box$ 

**4.3.** (a) For  $a, b \in \mathbb{Z}$ , prove that  $a^2 - 2b^2 = 0$  iff a = b = 0.

*Proof.* For the forward direction, let that  $a, b \in \mathbb{Z}$  satisfy  $a^2 - 2b^2 = 0$ . Suppose for the sake of contradiction that either a or b is nonzero. It follows by the derived equality  $a^2 = 2b^2$  that they are both nonzero. Thus, a/b is a well-defined element of  $\mathbb{Q}$ . However, we have that

$$a^{2} - 2b^{2} = 0$$

$$a^{2} = 2b^{2}$$

$$\frac{a^{2}}{b^{2}} = 2$$

$$\frac{a}{b} = \sqrt{2}$$

i.e., that a rational number equals an irrational number, a contradiction. Therefore, a=b=0. For the reverse direction, let a=b=0. Then

$$a^2 - 2b^2 = 0^2 - 2 \cdot 0^2 = 0$$

as desired.  $\Box$ 

(b) Prove that  $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}[X]/(X^2 - 2)$  is a field.

*Proof.* To prove that  $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}[X]/(X^2 - 2)$  is a field, it will suffice to show that its additive and multiplicative identities are distinct and that every element is a unit. Let's begin.  $\mathbb{Q}[X]/(X^2 - 2)$  inherits addition and multiplication from  $\mathbb{Q}[X]$ , except now modulo  $X^2 - 1$ .

Thus, the additive and multiplicative identities of  $\mathbb{Q}[X]/(X^2-2)$  are the (distinct) images of those in  $\mathbb{Q}[X]$  under the relevant canonical surjection.

Now let  $a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$  be arbitrary and nonzero. Then a or b is nonzero. It follows by part (a) that  $a^2 - 2b^2 \neq 0$ , and hence

$$\frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2} \sqrt{2} \in \mathbb{Q}[\sqrt{2}]$$

is well-defined. By the law of multiplication in  $\mathbb{Q}[\sqrt{2}]$ , it follows that

$$\left(a+b\sqrt{2}\right)\left(\frac{a}{a^2-2b^2}-\frac{b}{a^2-2b^2}\sqrt{2}\right)=\frac{\left(a+b\sqrt{2}\right)\left(a-b\sqrt{2}\right)}{a^2-2b^2}=\frac{a^2-b^2\sqrt{2}^2}{a^2-2b^2}=\frac{a^2-2b^2}{a^2-2b^2}=1$$

as desired. Note that as in Q4.1, we can prove that  $\sqrt{2}$  is the solution to  $X^2 - 2 = 0$ , i.e., an object X such that  $X^2 = 2$ . This is what rigorously allows us to simplify the above equation, not any intuitive or notationally implied notion of  $\sqrt{2}$ .

- **4.4.** Let D be a multiplicative subset of an integral domain R. Now R is a subring of  $D^{-1}R$ . Let J be an ideal of  $D^{-1}R$ . Put  $I = R \cap J$ .
  - (a) Is I an ideal of R?

*Proof.* Yes I is an ideal of R.

Since R, J are both additive subgroups of  $D^{-1}R$ ,  $R \cap J$  is an additive subgroup of  $D^{-1}R$ . Additionally, since  $R \cap J \subset R$ ,  $R \cap J$  must be an additive subgroup of R.

Now let  $x \in I$  and  $r \in R$  be arbitrary. Since  $x \in I$ ,  $x \in R$  and  $x \in J$ . It follows from the former statement and the fact that R is an ideal of R that  $rx \in R$ . It follows from the latter statement and the fact that I is an ideal of I that I that I that I is an ideal of I that I that I is an ideal of I. Therefore, I is a desired.

(b) Prove that if  $I \neq R$ , then  $I \cap D = \emptyset$ .

*Proof.* Suppose for the sake of contradiction that there exists  $x \in I \cap D$ . Then  $x \in I$  and  $x \in D$ . It follows from the latter statement that  $1/x \in D^{-1}R$ . It follows from the former statement that  $x \in R$  and  $x \in J$ . Since J is an ideal of  $D^{-1}R$  (hence is closed under multiplication by elements of  $D^{-1}R$ ) and  $x \in J$ , we have in particular that

$$\frac{1}{x} \cdot x = \frac{x}{x} = 1 \in J$$

It follows that  $J=D^{-1}R$ . Consequently, since  $R\subset D^{-1}R$ , we have that  $I=R\cap D^{-1}R=R$ . This contradicts the hypothesis that  $I\neq R$ .

(c) Let  $b \in J$ . Is it true that  $b = d^{-1}a$  for some  $d \in D$  and  $a \in I$ ?

Proof. Yes it is true.

Since  $b \in J$ , we know that  $b \in D^{-1}R$ . It follows that we may write b = a/d for some  $a \in R$  and  $d \in D$ . Since J is an ideal and  $d \in D \subset R \subset D^{-1}R$ , we know that  $a = db \in J$ . Combining the facts that  $a \in R$  and  $a \in J$ , we can determine that  $a \in R \cap J = I$ , as desired.

(d) Prove that if I is an ideal in R, then  $I^e = \{s^{-1}x \in D^{-1}R \mid s \in D, x \in I\}$  is an ideal in  $D^{-1}R$ .

*Proof.* To prove that  $I^e$  is an ideal, it will suffice to show that  $(I^e, +) \leq (D^{-1}R, +)$  and  $a/b \cdot x/s \in I^e$  for all  $a/b \in D^{-1}R$  and  $x/s \in I^e$ .

First, we will show that  $(I^e, +)$  is a subgroup. By definition, it is a subset of  $D^{-1}R$ . Since  $0 \in I$  and D is nonempty, the identity  $0/d \in I^e$ . Associativity follows from the containing group. And closure follows from that of I (under multiplication by elements of R and addition) and that of D (under multiplication by elements of R): If  $x_1/s_1, x_2/s_2 \in I^e$ , then

$$\frac{x_1}{s_1} + \frac{x_2}{s_2} = \frac{x_1 s_2 + x_2 s_1}{s_1 s_2} \in I^e$$

as desired.

Now we show closure under multiplication. Let  $x/s \in I^e$  and  $a/b \in D^{-1}R$  be arbitrary. Since  $x \in I$  and  $a \in R$ ,  $xa \in I$ . Since  $s, b \in D$ ,  $sb \in D$ . Therefore,

$$\frac{x}{s} \cdot \frac{a}{b} = \frac{xa}{sb} \in I^e$$

as desired.  $\Box$ 

(e) Using part (c), prove that if J is an ideal of  $D^{-1}R$ , then  $J = (R \cap J)^e$ . Therefore, we have a surjective map of sets

$${ Ideals in } R \rightarrow { Ideals in } D^{-1}R$$

given by  $I \mapsto I^e$ . Note that the right inverse is given by  $J \mapsto R \cap J$ . Is this map a bijection?

*Proof.* To prove that  $J = (R \cap J)^e$ , we will use a bidirectional inclusion proof. Suppose first that  $b \in J$ . Then by part (c),  $b = d^{-1}a$  for some  $d \in D$  and  $a \in I$ . Therefore, by the definition of  $(R \cap J)^e$ ,  $b \in (R \cap J)^e$ . Now suppose that  $d^{-1}a \in (R \cap J)^e$  Then  $a \in R \cap J$ , so  $a \in J$ . It follows since J is an ideal of  $D^{-1}R$  and  $1/d \in D^{-1}R$  that  $a/d = d^{-1}a \in J$ , as desired.

No this map is not a bijection. Counterexample: Let R, D be defined as in Q5. Consider (3). Since  $3 \in D$ ,  $1 = 3/3 \in (3)^e$ . Thus,  $(3)^e = D^{-1}R$ . It follows that  $\mathbb{Z}^e = (3)^e$  even though  $\mathbb{Z} \neq (3)$ .

(f) If R is a PID, is  $D^{-1}R$  a PID?

Proof. Yes.

Let  $J \in D^{-1}R$  be an arbitrary ideal. Per part (e), there exists an ideal  $I \subset R$  such that  $J = I^e$ . Since R is a PID, I = Ra for some  $a \in I$ . Additionally, as per the definition of the extension map,  $a = a/1 \in I^e = J$ . We will now prove that  $I^e = D^{-1}Ra$ . By definition,  $D^{-1}Ra \subset I^e$ . In the other direction, let  $x/s \in I^e$  be arbitrary. Since  $x \in I$ , x = ab for some  $b \in R$ . Moreover,  $b/s \in D^{-1}R$ , so  $x/s = (b/s) \cdot a \in D^{-1}Ra$ , as desired.

**4.5.** (a) Let  $D = \{n \in \mathbb{Z} : 2 \nmid n\}$ . Recall that we defined

$$\mathbb{Z}_{(2)} = D^{-1}R = \{a/b \in \mathbb{Q} : 2 \nmid b\}$$

Write down all of the ideals in  $\mathbb{Z}_{(2)}$ . You can use the fact that the ideals in  $\mathbb{Z}$  are  $(n) = n\mathbb{Z}$  for  $n \in \mathbb{Z}$ , and the previous question. Which of these ideals are maximal? For each maximal ideal  $M \in \mathbb{Z}_{(2)}$ , what is the field  $\mathbb{Z}_{(2)}/M$ ?

*Proof.* Since the ideals in  $\mathbb{Z}$  are  $(n) = n\mathbb{Z}$  for all  $n \in \mathbb{Z}$ , Q4.4e implies that the set of ideals of  $\mathbb{Z}_{(2)}$  is the image of  $\{(n) \mid n \in \mathbb{Z}\}$  under  $I \mapsto I^e$ . However, many of these are equivalent. In particular, if n is divisible by any numbers other than 2, you will be able to multiply n by the product of those numbers to reduce the magnitude of the generator down to a power of 2. Therefore, the set of all ideals in  $\mathbb{Z}_{(2)}$  is

$$\{(2^n)^e \mid n \in \mathbb{Z}_{\geq 0}\} \cup \{0\}$$

Among these ideals,

Only 
$$(2)^e$$
 is maximal.

To prove this, we will show that every ideal  $(n)^e \in \mathbb{Z}_{(2)}$  is either equal to  $\mathbb{Z}_{(2)}$  or is contained in  $(2)^e$ . Let's begin. Let  $(n)^e \subset \mathbb{Z}_{(2)}$  be arbitrary. We divide into two cases  $(2 \nmid n \text{ and } 2 \mid n)$ . If  $2 \nmid n$ , then  $n \in D$ . It follows by its definition that  $1 = n/n \in (n)^e$ . Therefore,  $(n)^e = R$ . If  $2 \mid n$ , then  $n = 2^m \cdot r$  for some  $m \geq 1$  and r coprime to 2. Let  $a/d \in (n)^e$  be arbitrary. Then  $a \in (n)$  and  $d \in D$ . It follows that  $n \mid a$ , i.e., that  $2 \mid a$ . Thus,  $a = 2b \in (2)$ . Therefore,  $a/d \in (2)^e$ , so  $(n)^e \subset (2)^e$ , as desired.

Finally, we will prove that

$$\mathbb{Z}_{(2)}/(2)^e \cong \mathbb{Z}/2\mathbb{Z}$$

To do so, it will suffice to show that for any  $a/d \in \mathbb{Z}_{(2)}$ , we either have

$$\frac{a}{d} + (2)^e = 0 + (2)^e \qquad \qquad \frac{a}{d} + (2)^e = 1 + (2)^e$$

Since  $\mathbb{Z}$  is an ED and  $2 \neq 0$ , we know that there exist  $b, c \in \mathbb{Z}$  such that a = 2b + c and |c| < |2| = 2 (i.e.,  $c \in \{0, \pm 1\}$ ). We now divide into three cases. If c = 0, then a = 2b and hence

$$\frac{a}{d} = \frac{2b}{d} \in (2)^e$$

so  $a/d + (2)^e = 0 + (2)^e$ . If c = 1, then

$$\frac{a}{d} = \frac{1}{d} + \frac{2b}{d}$$

so  $a/d \in 1/d + (2)^e$ . Additinally, since  $2 \nmid d$  by hypothesis,  $2 \mid d-1$  and hence  $\pm (d-1)/d \in (2)^e$ . It follows that

$$\frac{1}{d} = \frac{1}{d} + \frac{d-1}{d} - \frac{d-1}{d} = 1 + -\frac{d-1}{d} \in 1 + (2)^e$$

Therefore,  $a/d \in 1 + (2)^e$ , as desired. The case c = -1 is analogous to the case c = 1.

(b) Let  $D = \{2^n \mid n \in \mathbb{Z}_{\geq 0}\}$  and let  $R = D^{-1}\mathbb{Z}$ . Write down the ideals in R. Which of these ideals are maximal?

*Proof.* The set of all ideals in R is

$$\{(n):(n,2)\leq 1\}$$

By definition, (n) is an ideal in R. Now suppose that I is an arbitrary ideal in R. By Q4.4e and the fact that the ideals of  $\mathbb{Z}$  are of the form (n) for some  $n \in \mathbb{Z}$ ,  $I = (n)^e$ . To verify that  $(n)^e = D^{-1}\mathbb{Z}n = (n)$ , first let  $a/2^m \in (n)^e$ . Then since  $1/2^m \in R$ ,  $a/2^m = a \cdot (1/2^m) \in (n)$ . Now let  $na/2^m \in (n)$ . Then since  $na \in (n)$ ,  $na/2^m \in (n)^e$ . Now suppose (n,2) > 1. Then  $2 \mid n$  and hence  $(n/2)/1 \in (n)$ , contradicting the assumption that the generator n is the smallest element of (n).

The maximal ideals in R are the subset of the above consisting of all prime ideals, i.e.,

$$\{(n): n \text{ is prime}\}$$

We know that every maximal ideal is prime. In the other direction, suppose (n) is a prime ideal. Now suppose for the sake of contradiction that  $(n) \subsetneq (m) \subsetneq R$ . It follows that  $n \in (m)$ . Thus, n = (a/b)m for some  $a/b \in R$ . Consequently, since (n) is a prime ideal,  $m \in (n)$  or  $a/b \in (n)$ . We now divide into two cases. If  $m \in (n)$ , then  $(m) \subset (n)$ , a contradiction. If  $a/b \in (n)$ , then  $a/b = n \cdot (c/d)$ . Combining this with the result that n = (a/b)m, we have that

$$n = \frac{a}{b} \cdot m$$
$$= \frac{nc}{d} \cdot m$$
$$1 = \frac{c}{d} \cdot m$$

But then  $1 \in (m)$ , and hence (m) = R, a contradiction.

## **4.6.** (a) Define $M_2$ : {commutative rings} $\rightarrow$ {sets} by

$$M_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in R \right\}$$

Show that for any R, there is a natural bijection between the set  $M_2(R)$  and the set  $S_1$  of ring homomorphisms between  $\mathbb{Z}[X,Y,Z,W]$  and R. Note that notationally,

$$S_1 = \operatorname{Hom}_{\operatorname{ring}}(\mathbb{Z}[X, Y, Z, W], R)$$

One sometimes says that  $\mathbb{Z}[X,Y,Z,W]$  represents the function  $M_2$ .

*Proof.* Define  $\psi: M_2(R) \to S_1$  by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \operatorname{ev}_{(a,b,c,d)}$$

We know from class that every evaluation function is a ring homomorphism. Thus,  $ev_{(a,b,c,d)}$  does lie in the correct set.

Injectivity: Suppose

$$\psi \begin{bmatrix} \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \end{bmatrix} = \psi \begin{bmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \end{bmatrix}$$

Then  $ev_{(a_1,b_1,c_1,d_1)} = ev_{(a_2,b_2,c_2,d_2)}$ . It follows that

$$a_1 = \operatorname{ev}_{(a_1,b_1,c_1,d_1)}(X) = \operatorname{ev}_{(a_2,b_2,c_2,d_2)}(X) = a_2$$

Similar statements hold for b, c, d. Thus, since  $x_1 = x_2$  ( $x \in \{a, b, c, d\}$ ), we have that

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$$

as desired.

Surjectivity: Let  $\varphi \in S_1$  be arbitrary. Suppose  $\varphi(X) = a$ ,  $\varphi(Y) = b$ ,  $\varphi(Z) = c$ , and  $\varphi(W) = d$ . Since any polynomial in  $\mathbb{Z}[X,Y,Z,W]$  is a  $\mathbb{Z}$ -linear combination of X,Y,Z,W and  $\varphi$  respects these addition and multiplication operations, we have that for any  $f \in \mathbb{Z}[X,Y,Z,W]$ ,

$$\varphi(f) = f(a, b, c, d) = \operatorname{ev}_{(a, b, c, d)}(f)$$

Therefore,

$$\psi \left[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right] = \operatorname{ev}_{(a,b,c,d)} = \varphi$$

as desired.

## (b) (You do not need to turn in part (b), but you are encouraged to think about it.)

Actually,  $M_2(R)$  can be naturally given a ring structure: Addition and multiplication are defined using the same procedure as  $M_2(\mathbb{R})$  (or with any other field you may have seen). Hence, it makes sense to talk about the units of  $M_2(R)$ .

Define the set  $GL_2(R)$  to be the units of  $M_2(R)$ , i.e.,

$$GL_2(R) = M_2(R)^{\times}$$

Show that for any R, there is a natural bijection between  $GL_2(R)$  and the set  $S_2$  defined by

$$S_2 = \operatorname{Hom}_{\operatorname{ring}}(\mathbb{Z}[X, Y, Z, W]_{XW-YZ}, R)$$

Note that  $\mathbb{Z}[X,Y,Z,W]_{XW-YZ}$  denotes the **localization** of  $\mathbb{Z}[X,Y,Z,W]$  by the multiplicative set generated by XW-YZ (that is, the multiplicative set  $(1,XW-YZ,(XW-YZ)^2,\dots))$ . (Hint: Use the universal property.)

One sometimes says  $\mathbb{Z}[X,Y,Z,W]_{XW-YZ}$  represents the function  $GL_2$ .

**4.7.** Let  $\mathbb{Q}(X)$  denote the field of fractions of  $\mathbb{Q}[X]$ . By the universal property of a polynomial ring, we know that giving a ring homomorphism  $\varphi:\mathbb{Q}[X]\to\mathbb{R}$  is equivalent to choosing an element  $r\in\mathbb{R}$  and setting  $\varphi(X)=r$ . Which ring homomorphisms  $\varphi:\mathbb{Q}[X]\to\mathbb{R}$  extend to ring homomorphisms  $\tilde{\varphi}:\mathbb{Q}(X)\to\mathbb{R}$ ? These ring homomorphisms should satisfy the following commutative diagram.

$$\mathbb{Q}[X] \xrightarrow{\varphi} \mathbb{R}$$

$$X \mapsto X/1 \bigg|_{\tilde{\varphi}}$$

$$\mathbb{Q}(X)$$

*Proof.* We can prove that the set of ring homomorphisms  $\varphi$  which extend to the field of rational functions over  $\mathbb{Q}$  is equal to

$$\{\varphi: \varphi(X) \text{ is a real transcendental number}\}$$

Let  $\varphi$  be an element of the above set. Since  $\varphi(X) = r$  is transcendental,  $\varphi(f) = \operatorname{ev}_r(f) \neq 0$  for any  $f \in \mathbb{Q}[X]$ . (Note that a similar argument to the surjectivity one used in Q4.6a can justify that  $\varphi = \operatorname{ev}_r$ .) It follows that if we extend  $\varphi$  to  $\mathbb{Q}(X)$  by keeping the evaluation definition (recall that evaluation is always a ring homomorphism), then for any rational function  $f/g \in \mathbb{Q}(X)$ ,

$$\tilde{\varphi}\left(\frac{f}{g}\right) = \left(\frac{f}{g}\right)(r) = \frac{f(r)}{g(r)}$$

where, as established, g(r) is nonzero and hence  $\tilde{\varphi}(f/g)$  is well-defined.

Now suppose that  $\varphi: \mathbb{Q}[X] \to \mathbb{R}$  is a ring homomorphism that extends to a ring homomorphism  $\tilde{\varphi}: \mathbb{Q}(X) \to \mathbb{R}$ . Let  $\tilde{\varphi}(X) = \varphi(X) = r$ . Then as per Q4.6a,  $\tilde{\varphi} = \operatorname{ev}_r$ . Since  $\tilde{\varphi}$  is a ring homomorphism,  $\tilde{\varphi}(f/g)$  is well-defined for every  $f \in \mathbb{Q}[X]$  and  $g \in \mathbb{Q}[X] - \{0\}$ . In particular, we must have  $0 \neq \tilde{\varphi}(g) = \operatorname{ev}_r(g) = g(r)$  for all such g. It follows by definition that r is a real transcendental number.

- **4.8.** F is a field. Let R be the smallest subring of F[X] such that (a)  $F \subset R$  and (b) both  $X^2$  and  $X^3$  belong to R.
  - (a) Use the identity  $(X^2)^3 = (X^3)^2$  to deduce that R is not a UFD.

*Proof.* Suppose for the sake of contradiction that  $X^2$  is reducible. Then  $X^2 = ab$  where  $a, b \notin R^{\times} = F^{\times}$ . It follows since they aren't units that  $\deg(a), \deg(b) \geq 1$ . But since  $\deg(a) + \deg(b) = \deg(ab) = 2$ , it must be that  $\deg(a) = \deg(b) = 1$ . Thus,  $a = c_1X + d_1$  and  $b = c_2X + d_2$ . It follows that

$$X^{2} = ab$$

$$1X^{2} + 0X + 0 = c_{1}c_{2}X^{2} + (c_{1}d_{2} + c_{2}d_{1})X + d_{1}d_{2}$$

SO

$$c_1 c_2 = 1 d_1 d_2 = 0$$

Then  $c_1, c_2 \in R^{\times} = F^{\times}$  and  $d_1 = d_2 = 0$ . It follows that  $X = c_1 c_2 X \in R$ , and hence R = F[X] by the construction from Lecture 1.2. However, this contradicts the hypothesis that R is the smallest subring of F[X] containing  $F, X^2, X^3$  since  $F + (X^2, X^3)$  is an example of a smaller subring of F[X] containing  $F, X^2, X^3$ . Therefore,  $X^2$  is irreducible in R.

A similar argument can show that  $X^3$  is irreducible in R.

It follows that two factorizations of  $X^6$  are  $(X^2)^3$  and  $(X^3)^2$ . But since these factorizations have different lengths, they are not equivalent. Therefore, R is not a UFD, as desired.

(b) Exhibit an ideal I of R that is not a principal ideal.

Proof. Take

$$I = (X^2, X^3)$$

Since both generators are irreducible by part (a), their greatest common divisor is necessarily a unit. Thus, since  $(X^2, X^3)$  only consists of polynomials of degree greater than or equal to 2 (i.e., objects that are not units), no element of it can generate both extant generators. Therefore, (2, X) is not principal.

**4.9.** Mimic Euclid's proof of the infinitude of primes in  $\mathbb{Z}$  to show that F[X] has infinitely many primes for every field F.

Proof. Suppose for the sake of contradiction that  $\{f_1,\ldots,f_r\}$  is the set of all primes in F[X]. Since F[X] is an ED, it is a PID. Thus, the primes and irreducibles coincide. Likewise, F[X] being an ED makes it a UFD. Thus, the element  $f_1\cdots f_r+1$  (for example) has a unique factorization in terms of  $f_1,\ldots,f_r$ . In particular, since each  $f_i$  irreducible and hence not a unit,  $\deg(f_i) \geq 1$   $(i=1,\ldots,r)$ . This means that  $\deg(f_1\cdots f_r+1) \geq r$  so  $f_1\cdots f_r+1$  is not a unit. It follows that there exists at least one  $f_i$  such that  $f_i \mid f_1\cdots f_r+1$ . Additionally,  $f_i \mid f_1\cdots f_r$ . Thus,  $f_i \mid f_1\cdots f_r+1-f_1\cdots f_r=1$ . Therefore,  $f_i$  is a unit, a contradiction.

**4.10.** Let R be an integral domain and let d be the degree of a nonzero  $f \in R[X]$ . Prove that  $\{a \in R \mid f(a) = 0\}$  is finite. Hint: Case 1 — first prove this when R is a field. Case 2 — reduce to case 1 by looking at the fraction field of R.

Proof. Let  $A = \{a \in R \mid f(a) = 0\}$ . We induct on d. For the base case d = 0, let  $f \in R[X]$  be an arbitrary nonzero polynomial having  $\deg(f) = d = 0$ . It follows that f(X) = a for some nonzero  $a \in R$ . Thus, since  $f(X) \neq 0$  for any X, |A| = 0 and we have the desired result. Now suppose inductively that we have proven the claim for d - 1; we now wish to prove it for degree d. Once again, let  $f \in R[X]$  be an arbitrary nonzero polynomial having  $\deg(f) = d$ . If f has no roots, then we are done. Otherwise, pick  $a \in A$ . By the Euclidean algorithm,  $f(X) = q(X) \cdot (X - a) + r$  for some  $q, r \in R[X]$  with  $\deg r < \deg(X - a)$ . It follows from the latter constraint that  $r \in R$  is a constant. In particular,

$$r = f(a) - g(a) \cdot (a - a) = 0 - g(a) \cdot 0 = 0$$

Thus,  $f = q \cdot (X - a)$ . It follows that

$$\deg(f) = \deg(q) + \deg(X - a)$$
$$d = \deg(q) + 1$$
$$\deg(q) = d - 1$$

Thus, by the induction hypothesis, q has finitely many roots. This combined with the fact that X-a has only one root (additive inverses are unique in rings, so only a+(-a)=0) implies that f has at most one more root than q, i.e., f has finitely many roots, as desired.