Laboratorium Podstaw Elektroniki				
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I	nie r	namy
Temat Laboratorium			<u> </u>	Numer lab.
Ćwiczenia wprowadzające			1	
Skład grupy ćwiczeniowej oraz numery indeks	sów			•
Piotr Więtczak(13	32339), Robert Cien	ıny(136693), Kamil	Basiukajc(136681)	
Uwagi			Ocena	

1 Ćwiczenia wprowadające

1.1 Rezystory

Cel

W tym ćwiczeniu należy odczytać wartość rezystancji na podstawie kodu paskowego rezystorów lub oznaczeń oraz dokonać pomiaru wartości rezystancji przy pomocy multimetru RIGOL DM3051, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 1

Wartości odczytów i wyniki pomiarów rezystancji

R	Barwa/oznaczenia	Odczyt	Pomiar
R_1	żółty - fioletowy - czewony - złoty	$4.7k\Omega$	$4.634k\Omega$
R_2	czerwony - czarny - zielony - złoty	$2M\Omega$	$2.009M\Omega$
R_3	czerwony - czerwony - czerwony - złoty	$2.2k\Omega$	$2.132k\Omega$
R_4	czerwony - czerwony - brązowy - złoty	220Ω	219.320Ω
R_5	brązowy - czarny - czerwony - złoty	$1k\Omega$	0.976Ω
R_6	10R	10Ω	10.71Ω

Tablica 1: Wartości odczytów i pomiarów rezystancji

1.2 Kondensatory

Cel

W tym ćwiczeniu należy odczytać wartość pojemności kondensatorów na podstawie ich oznaczeń oraz dokonać pomiaru wartości pojemności przy pomocy mostka pomiarowego, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 2.

Wartości odczytów i wyniki pomiarów pojemności

C	Oznaczenia	Odczyt	Pomiar
C_1	$47\mu F$ $35V$	47μF	44.31μF
C_2	$100\mu F$ 63V	100μF	99.14μF
C_3	$2.2\mu F$ 50V	2.2μF	2.131μF
C_4	22μF 25V	22μF	22.081μF
C_5	103 10nF	10 <i>nF</i>	9.22 <i>nF</i>
C ₆	102 1nF	1nF	0.912 <i>nF</i>

Tablica 2: Wartości odczytów i pomiarów pojemności

1.3 Cewki

Cel

W tym ćwiczeniu należy dokonać pomiaru indukcyjności wybranej cewki przy pomocy mostka pomiarowego, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 3.

Wynik pomiaru indukcyjności

$oxed{L}$	Pom	iar
L_1	30.8	μН

Tablica 3: Wartości odczytów i pomiarów indukcyjności

2 Obwody

2.1 Obliczanie rezystancji zastępczej

Cel

W tym ćwiczeniu należy obliczyć rezystancję zastępczą od strony zacisków AB dla schematu przedstawionego na rys. 1 oraz zapisać pełne wyprowadzenie wzoru rezystancji zastępczej

Rysunek 1: Obwód rezystancyjny

Wyprowadzenie wzoru i obliczenie rezystancji zastępczej

2.2 Budowanie obwodów rezystancyjnych

Cel

Celem tego ćwiczenia jest:

- Przy pomocy stykowej płytki prototypowej zbudować wszystkie obwody pokazane na rysunkach 2, 4, 6, 8, 10, 12.
- Przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji dokonać pomiaru rezystancji zastępczej od strony zacisków AB.
- Wyprowadzić wzory na poszczególne rezystancje zastępcze od strony zacisków AB.
- Napisać z czego wynikają różnice między pomiarem, a obliczeniami.

2.2.1 Obwód (a)

Rysunek 2: Obwód (a)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 3.

Rysunek 3: obwód (a)

Pomiar rezystancji

Dla obwodu z rysunku 2 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $0.808k\Omega$.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 2

$$R_{23} = R_2 + R_3$$

$$R_z = \frac{1}{\frac{1}{R_{23}} + \frac{1}{R_1}} = \frac{(R_2 + R_3)R_1}{R_1 + R_2 + R_3}$$

$$R_z = \frac{(2200\Omega + 2200\Omega)1000\Omega}{1000\Omega + 2200\Omega + 2200\Omega} = \frac{4400000\Omega}{5400\Omega} \approx 814.8148\Omega$$

2.2.2 Obwód (b)

Rysunek 4: Obwód (b)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 5.

Rysunek 5: obwód (b)

Pomiar rezystancji

Dla obwodu z rysunku 4 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $95.5k\Omega$.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 4

$$R_{12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{1235} = R_{12} + R_3 + R_5$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} + R_3 + R_5}$$

$$R_z = \frac{1}{\frac{1}{1000}} + \frac{1}{\frac{1}{10000} + \frac{1}{22000}} + 10000 + 10000 = \frac{14300}{151} \approx 94.70$$

2.2.3 Obwód (c)

Rysunek 6: Obwód (c)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 7.

Pomiar rezystancji

Dla obwodu z rysunku 6 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 2161.56Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 6

$$R_z = R_1$$
$$R_z = 2200\Omega$$

Rysunek 7: obwód (c)

2.2.4 Obwód (d)

Rysunek 8: Obwód (d)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 9.

fritzing

Rysunek 9: obwód (d)

Pomiar rezystancji

Dla obwodu z rysunku 8 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 739.36Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 8

$$R_{51} = R_5 + R_1$$

$$R_{152} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_{51}}}$$

$$R_{3152} = R_3 + R_{152}$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{R_{3152}}}$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{R_3 + \frac{1}{R_5 + R_1}}}$$

$$R_z = \frac{1}{\frac{1}{1000\Omega} + \frac{1}{2200\Omega + \frac{1}{1000\Omega + 1000\Omega}}} \approx 745.76\Omega$$

2.2.5 Obwód (e)

Rysunek 10: Obwód (e)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 11.

Rysunek 11: obwód (e)

Pomiar rezystancji

Dla obwodu z rysunku 10 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 69Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 10

$$R_{34} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_4}}$$

$$R_{234} = R_2 + R_{34}$$

$$R_z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_{234}}}$$

$$R_z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2 + \frac{1}{1}}}$$

$$R_z = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}}$$

$$R_z = \frac{1}{\frac{1}{2200\Omega} + \frac{1}{2200\Omega} + \frac{1}{1000\Omega}} \approx 1248.6486\Omega$$

2.2.6 Obwód (f)

Rysunek 12: Obwód (f)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 13.

Rysunek 13: obwód (e)

Pomiar rezystancji

Dla obwodu z rysunku 12 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 69Ω .

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 12

$$R_{12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{125} = R_{12} + R_5$$

$$R_{1245} = \frac{1}{\frac{1}{R_4} + \frac{1}{R_{125}}}$$

$$R_z = R_3 + R_{1245}$$

$$R_z = R_3 + \frac{1}{\frac{1}{R_4} + \frac{1}{\frac{1}{R_2}} + R_5}$$

$$R_z = 1000\Omega + \frac{1}{\frac{1}{2200\Omega} + \frac{1}{\frac{1}{100\Omega} + \frac{1}{2200\Omega}}} \approx 1731.39841$$

Wnioski na temat różnic miedzy pomiarami, a obliczeniami

3 Pomiary napięcia

3.1 Pomiar wartości napięć wyjściowych z zasilacza

Cel

W ćwiczeniu należy dokonać pomiaru napięcia z sekcji DC POWER SUPPLY zestawu laboratoryjnego DF 6911, oraz odpowiedzieć na pytanie, z czego mogą wynikać ewentualne różnice między wartościami odczytanymi, a zmierzonymi.

Tabela z wartościami odczytów i pomiarów

U[V]	Odczyt[V]	Pomiar[V]
1	1	1.107
3	3	3.172
4.5	4.5	4.635
11	11	11.226
13	13	13.183
25	25	25.344
28	28	28.306

Tablica 4: Wartości odczytów i pomiarów

Wnioski na temat różnic miedzy pomiarami, a odczytami

3.2 Dzielnik napięcia

Cel

W ćwiczeniu należy, przy pomocy praw Kirchhoffa, wyprowadzić wzory oraz zależności opisujące dzielnik napięcia pokazany na rusunku 3. Następnie należy zaprojektować dzielnik napięcia, dobierając odpowiednio rezystory i zbudować go na płycie prototypowej w taki sposób, aby na wyjściu V_{out} (spadek napięcia na rezystorze R_2) otrzymać kolejno napięcia: 2.5V, 3.22V, 1.66V, 4V, 4.54V. Przy realizacji każdego z dzielników należy dokonać pomiarów napięcia V_{out} i porównać z wartościami otrzymanymi z wyprowadzonego wzoru i dobranych rezystorów.

Rysunek 14: Rezystencjalny dzielnik napięcia

Wyprowadzenie wzoru na V_{out}

$$V_{in} - IR_1 - IR_2 = 0$$

$$IR_2 = V_{out}$$

$$I = \frac{V_{in}}{R_1 + R_2}$$

$$V_{out} = \frac{R_2 V_{in}}{R_1 + R_2}$$

3.2.1 Napięcie na wyjściu $V_{out} = 2.5V$

Projekt dzielnika napiecia w programie Fritzing

fritzing

Rysunek 15: Rezystencjalny podzielnik napięcia

Wyznaczenie stosunku między R₁ i R₂ przy użyciu wyprowadzonego wzoru

$$2.5V = \frac{5VR_2}{R_1 + R_2}$$

$$\frac{2.5V}{5V} = \frac{R_2}{R_1 + R_2}$$

$$\frac{1}{2} = \frac{R_2}{R_1 + R_2}$$

$$\frac{1}{2}R_1 + \frac{1}{2}R_2 = R_2$$

$$R_1 = R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=2.2k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{2200\Omega + 2200\Omega} = 2.5V$$

Pomiar napięcia V_{out}

Dla podzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 2.563V.

3.2.2 Napięcie na wyjściu $V_{out} = 3.22V$

Projekt dzielnika napiecia w programie Fritzing

Rysunek 16: Rezystencjalny podzielnik napięcia

Wyznaczenie stosunku między R_1 i R_2 przy użyciu wyprowadzonego wzoru

$$\frac{3.22V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{161}{250}R_1 + \frac{161}{250}R_2 = R_2$$
$$R_1 = \frac{89}{161}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=1.22k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{2200\Omega + 1220\Omega} \approx 3.216V$$

Pomiar napięcia V_{out}

Dla podzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 3.351V.

3.2.3 Napięcie na wyjściu $V_{out} = 1.66V$

Projekt dzielnika napiecia w programie Fritzing

Rysunek 17: Rezystencjalny podzielnik napięcia

Wyznaczenie stosunku między R₁ i R₂ przy użyciu wyprowadzonego wzoru

$$\frac{1.66V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{83}{250}R_1 + \frac{83}{250}R_2 = R_2$$
$$R_1 = \frac{167}{83}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=4.4k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{4400\Omega + 2200\Omega} \approx 1, (6)V$$

Pomiar napięcia V_{out}

Dla podzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 1.695V.

3.2.4 Napięcie na wyjściu $V_{out} = 4V$

Projekt dzielnika napiecia w programie Fritzing

Rysunek 18: Rezystencjalny podzielnik napięcia

Wyznaczenie stosunku między R_1 i R_2 przy użyciu wyprowadzonego wzoru

$$\frac{4V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{4}{5}R_1 + \frac{4}{5}R_2 = R_2$$
$$R_1 = \frac{1}{4}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=2.2k\Omega, R_2=8.8k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{8800\Omega \cdot 5V}{8800\Omega + 2200\Omega} = 4V$$

Pomiar napięcia V_{out}

Dla podzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 4.095V.

3.2.5 Napięcie na wyjściu $V_{out} = 4.54V$

Projekt dzielnika napiecia w programie Fritzing

Rysunek 19: Rezystencjalny podzielnik napięcia

Wyznaczenie stosunku między R₁ i R₂ przy użyciu wyprowadzonego wzoru

$$\frac{4.54V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{227}{250}R_1 + \frac{227}{250}R_2 = R_2$$
$$R_1 = \frac{23}{229}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=220\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{2200\Omega + 220\Omega} \approx 4.(54)V$$

Pomiar napięcia V_{out}

Dla podzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 4.613V.

4 Pomiary prądu stałego

4.1 Pomiary prądu w obwodzie

Cel

Przy użyciu stykowej płytki prototypowej należy zbudować obwód pokazany na rysunku 20 oraz dokonać pomiarów spadku napięcia na rezystorze R i natężenia prądu w obwodzie, pamiętając przy tym o zapisaniu jednostek.

Rysunek 20: Obwód do badania napięć i prądów

Wyniki pomiarów

Spadek napięcia	Natężenie prądu
2.144A	5.037V

Tablica 5: Tabela pomiarów spadku napięcia na rezystorze R i natężenia prądów w obwodzie

4.2 Pomiary pradów i napięć

Cel

Dla obwodu z rysunków 21, 22 należy sprawdzić prawa Kirchhoffa, dokonując stosownych pomiarów (spadki napięć na rezystorach oraz prądy w gałęziach) oraz obliczeń analitycznych, a następnie porównać otrzymane wartości ze sobą.

4.2.1 Obwód (a)

Rysunek 21: Obwód (a) do badania prądów i napięć w obwodzie

Wyniki pomiarów

Rezystor	Prądy w obwodzie	Napięcia w obwodzie
R_1	5.037V	
R_2	4.202V	
R_3	1.228V	
R_4	1.573 <i>V</i>	

Tablica 6: Tabela pomiarów spadków napięć na rezystorach oraz prądów na gałęziach

4.2.2 Obwód (b)

Rysunek 22: Obwód (b) do badania prądów i napięć w obwodzie

Wyniki pomiarów

Rezystor	Prądy w obwodzie	Napięcia w obwodzie
R_1	2.061V	
R_2	1.407V	
R_3	1.110V	
R_4	2.290V	

Tablica 7: Tabela pomiarów spadków napięć na rezystorach oraz prądów na gałęziach

Spis treści

1	Ćwi	czenia wprowadające				
	1.1	.1 Rezystory				
	1.2	Kondensatory	1			
	1.3	Cewki	2			
2	Obv	vody				
	2.1	Obliczanie rezystancji zastępczej	3			
	2.2	Budowanie obwodów rezystancyjnych	3			
		2.2.1 Obwód (a)	4			
		2.2.2 Obwód (b)	5			
		2.2.3 Obwód (c)	6			
		2.2.4 Obwód (d)	7			
		2.2.5 Obwód (e)	8			
		2.2.6 Obwód (f)	10			
3	Pon	miary napięcia				
	3.1	Pomiar wartości napięć wyjściowych z zasilacza	11			
	3.2	Dzielnik napięcia	12			
		3.2.1 Napięcie na wyjściu $V_{out} = 2.5V$	13			
		3.2.2 Napięcie na wyjściu $V_{out} = 3.22V$	14			
		3.2.3 Napięcie na wyjściu $V_{out} = 1.66V$	15			
		3.2.4 Napięcie na wyjściu $V_{out} = 4V$	16			
		3.2.5 Napięcie na wyjściu $V_{out} = 4.54V$	17			
4	Pon	niary prądu stałego				
	4.1	Pomiary prądu w obwodzie	18			
	4.2	Pomiary prądów i napięć	18			
		4.2.1 Obwód (a)	18			
		4.2.2 Obwód (b)	19			