

Chapter 10.3 Public-Key Cryptography and Message Authentication

Book Reading: Computer Security Principles and Practice (3ed), 2015, p.669-692

Public-Key Cryptography and Message Authentication

- now look at technical detail concerning:
 - secure hash functions and HMAC
 - RSA & Diffie-Hellman Public-Key Algorithms

Simple Hash Functions

- a one-way or secure hash function used in message authentication, digital signatures
- all hash functions process input a block at a time in an iterative fashion
- one of simplest hash functions is the bit-by-bit exclusive-OR (XOR) of each block

$$C_i = b_{i1} \ \ b_{i2} \ \ \dots \ \ b_{im}$$

- effective data integrity check on random data
- -less effective on more predictable data
- virtually useless for data security

SHA Secure Hash Functions

- SHA originally developed by NIST/NSA in 1993
- was revised in 1995 as SHA-1
 - US standard for use with DSA signature scheme
 - standard is FIPS 180-1 1995, also Internet RFC3174
 - produces 160-bit hash values
- NIST issued revised FIPS 180-2 in 2002
 - adds 3 additional versions of SHA
 - SHA-256, SHA-384, SHA-512
 - with 256/384/512-bit hash values
 - same basic structure as SHA-1 but greater security
- NIST intend to phase out SHA-1 use

SHA-512 Structure

^{+ =} word-by-word addition mod 264

SHA-512 Round

Other Secure Hash Functions

- most based on iterated hash function design
 - if compression function is collision resistant
 - so is resultant iterated hash function
- MD5 (RFC1321)
 - was a widely used hash developed by Ron Rivest
 - produces 128-bit hash, now too small
 - also have cryptanalytic concerns
- Whirlpool (NESSIE endorsed hash)
 - developed by Vincent Rijmen & Paulo Barreto
 - compression function is AES derived W block cipher
 - produces 512-bit hash

HMAC

- interest a MAC using a cryptographic hash
 - due to speed and code availability
- must incorporate key into use of hash alg
- HMAC (RFC2104) widely supported
 - used in IPsec, TLS & SET
- HMAC treats hash as "black box"
- HMAC proven secure if embedded hash function has reasonable cryptographic strength

Security of HMAC

- security based on underlying hash strength
- have prob given time and no msg-MAC's
- either attacker computes output even with random secret IV
 - —brute force key $O(2^n)$, or use birthday attack
- or attacker finds collisions in hash function even when IV is random and secret
 - —ie. find M and M' such that H(M) = H(M')
 - birthday attack O($2^{n/2}$)
 - MD5 secure in HMAC since only observe

RSA Public-Key Encryption

- by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key alg
- uses exponentiation of integers modulo a prime
- encrypt: $C = M^e \mod n$
- decrypt: $M = C^d \mod n = (M^e)^d \mod n = M$
- both sender and receiver know values of n and e
- only receiver knows value of d
- public-key encryption algorithm with
 - public key $PU = \{e, n\}$ & private key $PR = \{d, n\}$.

RSA Algorithm

Key Generation

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d = de \mod \phi(n) = 1$

Public key $KU = \{e, n\}$

Private key $KR = \{d, n\}$

Encryption

Plaintext: M < n

Ciphertext: $C = M^c \pmod{n}$

Decryption

Ciphertext: C

Plaintext: $M = C^d \pmod{n}$

RSA Example

Attacks on RSA

- brute force
 - trying all possible private keys
 - use larger key, but then slower
- mathematical attacks (factoring n)
 - see improving algorithms (QS, GNFS, SNFS)
 - currently 1024-2048-bit keys seem secure
- timing attacks (on implementation)
 - use constant time, random delays, blinding
- chosen ciphertext attacks (on RSA props)

Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie & Hellman in 1976 along with the exposition of public key concepts
 - note: now know that Williamson (UK CESG)
 secretly proposed the concept in 1970
- practical method to exchange a secret key
- used in a number of commercial products
- security relies on difficulty of computing discrete logarithms

Diffie-Hellman **Algorithm**

Global Public Elements

prime number

 $\alpha < q$ and α a primitive root of q

User A Key Generation

Select private X_A

$$X_A < q$$

Calculate public $Y_A = \alpha^{X_A} \mod q$

α

$$Y_A = \alpha^{X_A} \mod q$$

User B Key Generation

Select private X_R

$$X_R < q$$

Calculate public Y_R

$$Y_B = \alpha^{X_B} \mod q$$

Generation of Secret Key by User A

$$K = (Y_B)^{X_A} \mod q$$

Generation of Secret Key by User B

$$K = (Y_A)^{X_B} \bmod q$$

Diffie-Hellman Example

- have
 - prime number q = 353
 - primitive root \checkmark = 3
- A and B each compute their public keys
 - A computes $Y_A = 3^{97} \mod 353 = 40$
 - B computes $Y_B = 3^{233} \mod 353 = 248$
- then exchange and compute secret key:
 - for A: $K = (Y_B)^{XA} \mod 353 = 248^{97} \mod 353 = 160$
 - $for B: K = (Y_A)^{XB} \mod 353 = 40^{233} \mod 353 = 160$
- attacker must solve:
 - -3^{a} mod 353 = 40 which is hard
 - desired answer is 97, then compute key as B does

Key Exchange Protocols

Man-in-the-Middle Attack

attack is:

- 1. Darth generates private keys X_{D1} & X_{D2} , and their public keys Y_{D1} & Y_{D2}
- 2. Alice transmits Y_A to Bob
- 3. Darth intercepts Y_A and transmits Y_{D1} to Bob. Darth also calculates K2
- 4. Bob receives Y_{D1} and calculates K1
- 5. Bob transmits X_A to Alice
- 6. Darth intercepts X_A and transmits Y_{D2} to Alice. Darth calculates K1
- 7. Alice receives Y_{D2} and calculates K2
- all subsequent communications compromised

Other Public-Key Algorithms

- Digital Signature Standard (DSS)
 - FIPS PUB 186 from 1991, revised 1993 & 96
 - uses SHA-1 in a new digital signature alg
 - cannot be used for encryption
- elliptic curve cryptography (ECC)
 - equal security for smaller bit size than RSA
 - seen in standards such as IEEE P1363
 - still very new, but promising
 - based on a mathematical construct known as the elliptic curve (difficult to explain)

Summary

- discussed technical detail concerning:
 - secure hash functions and HMAC
 - RSA & Diffie-Hellman Public-Key Algorithms