Synthetic controls and general panel data methods

EC420 MSU

Justin Kirkpatrick Last updated April 06, 2021

Last class(es)

Difference-in-differences

- ullet Control for unobserved heterogeneity in i and And for overall time trends in t
- ullet Develop a counterfactual: $E[Y_0|D=1]$
- Constructed with treatment and control groups
- Regression specification to get "DiD Estimtor"
- Parallel trends assumption

Today

- Past the parallel trends assumption
- Synthetic Counterfactual Method (SCM)

Recall that DiD's identifying assumption is that:

In the absence of treatment, the trends in both groups would have been the same.

And recall that we can't directly test this

- We can look at pre-treatment trends
- ullet But we would need to see the actual $E[Y_0|D=1]$ in order to ensure that it follows the same trend as $E[Y_0|D=0]$, the untreated group.

We saw examples where that seemed like a pretty safe assumption:

FIGURE 5.4
An MLDA effect in states with parallel trends

And some where it didn't necessarily hold

FIGURE 5.5 A spurious MLDA effect in states where trends are not parallel

What are we really after?

ullet We want a good $E[Y_0|D=1]$, the counterfactual for the treated group.

DiD gets us this by making that link between $E[Y_0|D=0]$ and $E[Y_0|D=1]$

So what if we are a little more flexible on how that link is made...?

Let's start with a DiD specification, but with i individual fixed effects:

$$y_{it} = eta_0 + \phi_i + eta_2 POST_t + eta_3 TREAT_i * POST_t + u_{it}$$

Our assumption here is that, once we condition on the ϕ_i - that is, once we let each i have its own intercept, the *trends* are going to be the same.

But what drives those trends...? What moves all i together? And what if there were things that moved, say, 1/2 of the i's?

Let's say we're looking at city-level unemployment rates over different cities across the US

We want to know the effect of worker safety regulations on unemployment.

Let's pretend there is one observed thing and one unobserved thing that drives the trends:

- **Observed**: national unemployment rate.
- **Unobserved**: Price of canned tomatos.

Why price of canned tomatoes?

- Some *i* have tomato processing facilities in them, and some don't!
- We don't observe this.
- Treatment may be correlated (tomato processing is particularly dangerous for workers?)

Would you agree that:

- If the price of tomatoes is very high, there will likely be more employment in tomato-processing facilities?
- And thus, unemployment would be lower (better) in those cities with tomatoprocessing facilities?

And would you agree that:

- If our treatment is somehow correlated with the presence of tomatoprocessing facilities, we could be in trouble with our "parallel trends" assumption?
- Treatment may be endogenous (more worker safety rules when more dangerous employment)
- The effect may just be confounded by changes in tomato prices

What would "tomato prices" do as a confounder?

- ullet If tomato prices go up, **some** i's (the ones with unobserved tomato processing facilities) will have lower unemployment
- So the *parallel trends* assumption is broken:
 - In the absence of treatment, a tomato-processing city would **not** follow the same trend as an untreated non-tomato-processing city.

A "factor loading" model:

- ullet Let $\lambda_i^{tomato}=1 (ext{has tomato facility})$
- ullet Let p_t^{tomato} be the national price of tomatos.

$$y_{it} = eta_0 + eta_1(\lambda_i^{tomato} * p_t^{tomato}) + eta_2 D_{it} + \phi_i + \delta_t + u_{it}$$

This is just a model of unemployment y as a function of i specific traits, t specific trends in national unemployment rates, and the effect of tomato prices on unemployment in tomato-processing cities.

If $\lambda_i^{tomato}=0$, then price of tomatos has no effect. If $\lambda_i^{tomato}=1$, then the price of tomatos does have an effect (β_1) .

A "factor loading" model:

$$y_{it} = eta_0 + eta_1(\lambda_i^{tomato} * p_t^{tomato}) + eta_2 D_{it} + \phi_i + \delta_t + u_{it}$$

Parallel trends will not hold between a $\lambda_i^{tomato}=1$ city and a $\lambda_i^{tomato}=0$ city.

If we observed λ_i^{tomato} , we'd be fine

We would just control for it (include it in our X's)

But...we don't.

The Synthetic Counterfactual does its best to account for these unobserved factors

- Even without observing tomato processing facilities or the price of tomatos, we
 would expect that pre-treatment unemployment in tomato processing cities
 would look like other tomato processing cities.
- That is, since the tomato processing cities are subject to the same price of tomatos, then all of them will be a little higher on unemployment when tomato prices are low.
- ullet The Synthetic Counterfactual Method looks for similarity in the pre-treatment trend and develops the counterfactual for i using all j's that have similar pretreatment "paths".

The intuition is that parallel trends assumption is best met by choosing a control pool that...follows parallel trends!

All the SCM does is find the controls that

- Are not treated
- But have similar pre-treatment trends

Since it's straightforward to have parallel trends for **one** treatment unit and some selection of potential controls, the SCM only handles one single treatment unit

- Great for comparative policy analysis
- Some methods for combining results from many SCM's

Synthetic Control

Implementation

- Usually with a pre-packaged routine in R synth
- Requires panel data

User specifies:

- **One** treatment unit
- Many potential control units (untreated)
- A treatment start time

Synthetic Control

The Synthetic is estimated by finding weights w that are used to combine all of the un-treated units in the control group.

Implementation

- ullet R makes a guess at w, weights on each of the control units
 - \circ Let's say the guess is that the weights are $(.5,.5,0,\cdots,0)$
 - \circ That is, the first two untreated i's are weighted at .5 and .5, the rest are 0.
- ullet The pre-treatment "synthetic" outcome at any pre-treatment time t is:

$$egin{aligned} \circ \ y_t^{synth} = .5 imes y_{1,t} + .5 imes y_{2,t} + 0 imes y_{3,t} + \cdots \end{aligned}$$

Implementation con't.

ullet The distance between y_t^{synth} and y_t^{actual} is checked. Much like OLS, synth sums the squared difference:

$$(y_t^{synth}-y_t^{actual})^2+(y_{t-1}^{synth}-y_{t-1}^{actual})^2+\cdots)$$
 over the pre-treatment period

- o Obviously, post-treatment, we think there will be a difference. Comparing pre-treatment lets us match up tomato-processing cities!
- R guesses at the weights over and over again until the smalled squared sum of errors is found. Observed covariates can be included as well.
- Those weights define the Synthetic Counterfactual in both the pre-treatment period *and* in the post-treatment.

Synthetic Control

If we get a very good match between y_t^{synth} and y_t^{actual} for all t in the pretreatment, we would naturally think we have controlled for the unobserved factors (the tomato plants, etc.).

• If we have controlled for these confounders, even the unobserved ones, then we can claim that treatment is "as good as exogenous".

$$\circ \ (Y_{0it},Y_{1it})\perp D$$

- ullet Thus, the difference between Y_t^{synth} and Y_t^{actual} in the post-treatment periods is the ATE
 - $\circ \ E[Y_0|D=1]=E[Y_0^{synth}]$, and the latter is observed.

Let's pull up the Kirkpatrick and Bennear paper and look at the synth implementation there.

We'll focus on the intuition of the method - how do we claim that we are identifying a *causal* effect of PACE?