Mémoire de Stage de M2

Phase Géométrique de Signal Multivarié ... et puis c'est déjà pas mal

Grégoire Doat

Encadré par Nicolas Le Bihan, Pierre-Olivier Amblard, Julien Flamant & Michel Berthier

Master Mix – Université de La Rochelle 2024-2025

Tables des Matrières

	Partie I — Aspects Géométriques d'une Phase Éponyme	3
	— Cadre d'étude	3
	1.1 \mathbb{PC}^n vue comme variété différentielle	
	1.1.1 Rappels de géométrie différentielle et notations	
	1.1.2 \mathbb{PC}^n , une variété complexe	
	1.2 S^{2n+1} comme fibré principal	
	1.2.1 Définition générale	
	1.2.2 Le fibré $\mathbb{S}^n(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n)$	
II	— Interprétation des phases dynamique et géométrique	9
	2.1 Notion de connexion sur une VFP	9
	2.1.1 Notion de connexion sur une VFP	
	2.1.2 Choix de connexion sur $\mathbb{S}^n(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n)$	12
	2.1.3 Fréquence instantanée et phase dynamique	
	2.2 Phase géométrique	14
	2.2.1 du point de vue de la connexion	
	$2.2.2 * \dots du$ point de vue de la métrique	
	2.2.3 * dans le cas le plus générale	16
	— Annexes	$\frac{}{17}$
A	Annexes de la partie I	
A	Annexes de la partie I	17
A		17
A	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 17
A	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 17 18
A	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 17 18 21
A	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 17 18 21 21
A	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 17 18 21 21 22
A	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 18 21 21 22 22
A	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 18 21 21 22 22 22
A	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 18 21 21 22 22 22 23
	Annexe A — Compléments sur l'analyse temps-fréquence	17 17 18 21 21 22 22 22 23 25
	Annexe A — Compléments sur l'analyse temps-fréquence	177 177 188 211 211 222 222 233 25
	Annexe A — Compléments sur l'analyse temps-fréquence	177 177 177 188 211 212 222 222 233 255 266
	Annexe A — Compléments sur l'analyse temps-fréquence	177 177 188 211 221 222 222 233 255 266 27
	Annexe A — Compléments sur l'analyse temps-fréquence	177 177 188 211 212 222 233 255 266 277 277
	Annexe A — Compléments sur l'analyse temps-fréquence	177 177 188 211 221 222 222 233 255 266 277 278
	Annexe A — Compléments sur l'analyse temps-fréquence	177 177 188 211 212 222 223 25 266 277 288 299
	Annexe A — Compléments sur l'analyse temps-fréquence	177 177 188 211 212 222 223 255 266 277 278 289 300

Table des figures & réfé	rences	 	 32

- * : PARTIELLEMENT TERMINÉE
- * : AU STADE DE NOTE

Tout les textes en rouges sont des notes

LES FIGURES AVEC LEUR CAPTION SONT POUR LA PLUS PART À FAIRE (MISE EN PAGE COMPRISE).

Bonne Lecture! (Oui, y'a pas mal à lire)

Introduction

La phase géométrique fait partie de ces concepts qui apparaissent régulièrement en physique, mais qui nécessite beaucoup de contexte pour être mis en évidence. Pour l'introduire rapidement, la phase géométrique à l'instant t d'un signal multivarié complexe (i.e. à valeurs dans \mathbb{C}^n) \boldsymbol{x} est donnée par :

$$\Phi_{\text{geo}}(\boldsymbol{x}, t_0, t) = \arg \left\langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \right\rangle - \Im m \int_{t_0}^t \frac{\left\langle \dot{\boldsymbol{x}}(s), \boldsymbol{x}(s) \right\rangle}{\|\boldsymbol{x}(s)\|^2} ds$$

Ce qui rend cette phase si intéressante c'est qu'elle est invariante par transformation de jauge, c'est-à-dire invariante par toute transformation du type :

$$\boldsymbol{x}(t) \rightsquigarrow \boldsymbol{x}'(t) = e^{i\alpha(t)}\boldsymbol{x}(t)$$

Elle est également invariante par reparamétrisation et pour ces raisons, c'est une mesure qui est intrinsèquement liée à la trajectoire du signal dans l'espace, à sa géométrie.

La phase géométrique est un phénomène qui apparaît dans de nombreuses circonstances, en fonction desquelles elle peut changer de nom et de forme : phase de Pancharatnam, de Berry, d'Aharonov-Anandan, d'Aharonov-Bohm, angle de Hannay, etc.

L'article [6] de Cohen et al. en présente quelques unes et le livre "Geometric Phases in Classical and Quantum Mechanics" [5] de Chruściński & Jamiołkowski en fait une description plus qu'extensive.

Du point de vue du traitement du signal en revanche, rien n'a été fait et ce n'est que récemment que Le Bihan, Flamant & Amblard s'y sont intéressés [11, 12]. L'objectif de ce mémoire est donc de décrire la phase géométrique dans le cadre du traitement du signal et de discuter de ses applications :

- Dans un premier temps (??), cette phase sera mise en évidence à travers des concepts d'analyse tempsfréquence, notamment la notion de fréquence instantanée qui sera présente tout au long de l'écrit. Suite à quoi elle sera explicitement calculée dans un cas particulier de signaux, déjà étudié par Le Bihan et al. [12]: les signaux AM-FM-PM. Cela permettra de mieux comprendre son comportement et permettra de motiver une description des signaux multivariés complexes dans l'esprit de l'analyse temps-fréquence.
- Cela mènera à travailler dans une variété dite fibrée principale, $S^{2n-1}(U(1), \mathbb{PC}^{n-1})$, et la seconde partie de ce mémoire sera dédiée à son formalisme. Contrairement à l'état de l'art, les résultats seront présenté d'un point de vue de mathématicien plus que de physicien et, entre autre, l'accent sera mis sur l'intuition géométrique derrière les concepts abordés. Des résultats, connus par ailleurs, sur la phase géométrique seront redémontrés avec ce formalisme et avec, les notions de fréquences instantanées et de phase géométrique seront reformulée et réinterprétée.
- Enfin, dans une troisième partie, sera présenté un moyen de calculer la phase géométrique en pratique via l'invariant de Bargmann, tiré de [16] et déjà repris par Le Bihan et al. [12]. Seront ensuite discutées diverses applications et là ça dépend d'à quel point j'ai le temps.

* Préambule

Juste des notes, même pas sur qu'il y ait vraiment besoin de garder ce préambule

Généralités :

- Les références sont en fin de mémoire est en .bib sur le GitHub
- Idem pour les codes et un mot sur pygeomphase
- On va parler de géo diff et pour éviter de réécrire un livre, on va admettre beaucoup de résultats, on renvoi vers [10, 7] pour les bases et [14, 15, 2] pour toute ce qui est variété fibrée principales et variétés complexes.

Notations math:

- Convention sur le produit hermitien (congué à droite)
- les vecteurs seront en gras, leur dérivée en temps notée par un point (ex. : $\dot{\boldsymbol{x}}(t)$) et celle des scalaires seront noté par un prime (ex. : a'(t))

ASPECTS GÉOMÉTRIQUES D'UNE PHASE ÉPONYME

Dans cette seconde partie, l'objectif est de décrire la phase géométrique dans son environnement naturel, les variétés fibrées principales. Cela se fera en deux temps.

D'abord, S^{2n-1} sera proprement décrite comme une variété fibrée. Ce faisant, les outils mise en jeu seront exposés avec détail, dans le but de simplifier la généralisation des résultats au cas non commutatif. Lequel sera abordé à la fin de ce mémoire.

Ensuite, des résultats sur la phase géométrique, déjà bien connus dans des cadres spécifiques¹ [3, 4, 13, 5] seront redémontrés dans un cadre plus général : celui de chemins quelconques de S^{2n-1} . Cela permettra de donner une nouvelle interprétation des outils géométrique en terme de signal.

Enfin, par souci de comidité, on se placera dans \mathbb{C}^{n+1} et l'on notera la sphère unité de se dernier $\mathbb{S}^n := S^{2n+1}$.

I — Cadre d'étude

Pour proprement poser le cadre, il nous faudra trois ingrédients :

- 1. D'abord, faire quelques rappels de géométrie différentielle, ne serait-ce que pour fixer les notations $(ss\text{-}sec.\ 1.1.1)$, avec comme exemple le cas $P\mathbb{C}^n$ $(ss\text{-}sec.\ 1.1.2)$, qui sera utile plus loin.
- 2. Ensuite, seront définies les variétés fibrées principales, avec les outils de bases qui leurs sont associés $(ss\text{-}sec.\ 1.2.1)$, puis $\mathrm{U}(1)\times\mathrm{P}\mathbb{C}^n$ sera écrit comme telle $(ss\text{-}sec.\ 1.2.2)$.
- 3. Enfin, il nous faudra définir une connexion sur ces fibrés, connexion qui sera, d'abord, définie de façon générale (ss-sec. 2.1.1), puis explicitée et interprétée dans le cas qui nous intéresse (ss-sec. 2.1.2).

1.1 \mathbb{PC}^n vue comme variété différentielle

1.1.1 Rappels de géométrie différentielle et notations

Une variété différentielle se définie comme suit :

DÉFINITION 1 (VARIÉTÉ DIFFÉRENTIELLE) — une variété différentielle de classe C^k de dimension n est un espace topologique $\mathcal M$ munie d'un $atlas \left\{ (\phi_i, U_i) \right\}_{i \in I}$, c'est-à-dire un ensemble finie de paires d'ouverts $U_i \subset \mathcal M$ et d'applications $\phi_i : U_i \longrightarrow \mathbb R^n$ telle que :

- les U_i forme un recouvrement de la variété : $\bigcup_{i \in I} U_i = \mathcal{M}$
- les ϕ_i sont des homéomorphismes sur leurs images respectives $\phi_i(U_i) \subset \mathbb{R}^n$.

¹ Généralement des systèmes quantiques soumis à l'équation de Schrödinger.

• si l'intersection $U_i \cap U_j$ est non vide, alors $\phi_j \circ {\phi_i}^{-1}|_{\phi_i(U_i \cap U_j)}$ est un C^k difféomorphisme sur son image.

A travers ϕ_i , à tout point $x \in U_i$ sont associées des coordonnées locales $(x^{\mu})_{1 \leqslant \mu \leqslant n}$, c'est-à-dire les coefficient de $\phi_i(x)$ dans une base $(e_{\mu})_{1 \leqslant \mu \leqslant n}$ de \mathbb{R}^n . Ces coordonnées sont dites locales car dépendantes du choix de la paire (U_i, ϕ_i) et la composée $\phi_j \circ {\phi_i}^{-1}|_{\phi_i(U_i \cap U_j)}$ est vue comme un changement de coordonnées.

Dans toute la suite, toutes les objets propre au cartes seront indexés via l'alphabet latin (i, j, k) et les indices associés aux coordonnées locales par des lettres grecs (μ, ν, α) .

fig. 1.1 — La première figure de tout bon livre de géométrie différentielle : représentation de deux cartes avec l'application de changement de coordonnées. On y voit qu'à un point x peut être associé différentes coordonnées locales et que $\phi_j \circ {\phi_i}^{-1}$ permet de passer d'un repère à l'autre, i.e.d'un système de coordonnées à l'autre.

Ensuite, les espaces tangents de $\mathcal M$ et son fibré tangent seront respectivement notés :

$$\forall x \in \mathcal{M}, T_x \mathcal{M}$$
 et $T\mathcal{M} = \bigsqcup_{x \in \mathcal{M}} T_x \mathcal{M}$ (1.1)

Pour le dire rapidement, les vecteurs tangents agissent comme une dérivation en cela que, pour une chemin $\gamma: \mathbb{R} \longrightarrow \mathcal{M}$, la différentielle au point $x = \gamma(0)$ est définie par l'application :

$$\dot{\gamma}_{x} : f \longmapsto \frac{d}{dt} f \circ \gamma(t) \Big|_{t=0} := \frac{d(f \circ \gamma)}{dt}(0)$$
(1.2)

Aussi, le système de coordonnées locales en $x \in \mathcal{M}$ induit une base sur $T_x \mathcal{M}$, qui sera noté $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$. notation qui est justifiée en cela que, intuitivement, ∂_{μ} dérive toute fonction test $f \in \mathcal{C}^k(\mathcal{M}, \mathbb{R})$ dans le long de la μ^{eme} coordonnée (locale) de x.

Plus généralement, si \mathcal{M} et \mathcal{N} sont deux variétés différentielles et $f: \mathcal{M} \longrightarrow \mathcal{N}$ une application différentiable avec $\{\tilde{\boldsymbol{\partial}}_{\nu}\}_{\nu}$ une base de $T\mathcal{N}$, sa différentielle (ou application tangente ou push forward) au point x est l'application linéaire qui, avec les conventions de sommation d'Einstein, s'écrit en coordonnées locales :

$$f_*(\boldsymbol{v}) = f_*(\boldsymbol{v}^\mu \boldsymbol{\partial}_\mu) = \boldsymbol{\partial}_\mu \big(f^\nu \big) \boldsymbol{v}^\mu \tilde{\boldsymbol{\partial}}_\nu \qquad \text{ ou encore } \qquad (f_*)_\mu^\nu = \boldsymbol{\partial}_\mu \big(f^\nu \big)$$

A partir de f_* est définie l'image réciproque ou pull back de f, qui correspond intuitivement à la transposée de f_* (dans ce cas, $T^*\mathcal{M}$ est identifié à $T\mathcal{M}$). Formellement elle est définie par dualité :

$$f^* : \begin{matrix} T^*\mathcal{N} & \longrightarrow & T^*\mathcal{M} \\ g & \longmapsto & g \circ f_* \end{matrix}$$

fig. 1.2 — Diagramme de passage de f à f_* et f^* .

1.1.2 \mathbb{PC}^n , une variété complexe

Si l'espace projectif complexe à été présenté comme le quotient $\mathbb{S}^n/\mathbb{U}(1)$, il peut aussi être vu comme :

$$P\mathbb{C}^n \cong \mathbb{C}^{n+1^*}/\mathbb{C}^*$$

C'est-à-dire l'ensemble des classes de $\mathbb{C}^{n+1*} = \mathbb{C}^{n+1} \setminus \{0_{\mathbb{C}^{n+1}}\}$ par la relation d'équivalence :

$$x \sim y \iff \exists \lambda \in \mathbb{C}^* \mid x = \lambda y$$

En isolant la norme des vecteurs, \mathbb{C}^{n+1} peut être vu comme le produit $\mathbb{R}^{+*} \times \mathbb{S}^n$, et de même pour \mathbb{C}^* avec le module :

$$\mathbb{C}^{n+1^*} \cong \mathbb{R}^{+_*} \times \mathbb{S}^n \qquad \qquad \mathbb{C}^* \cong \mathbb{R}^{+_*} \times \mathrm{U}(1)$$

Ainsi, le quotient par \mathbb{C}^* revient à regarder les vecteurs de \mathbb{C}^{n+1} modulo leur norme, puis modulo l'action de U(1). Or, ignorer la norme des vecteurs est équivalent à ne regarder que les vecteurs normés, donc appartenant à \mathbb{S}^n . De façon informelle, on pourrait alors écrire²:

$$\mathbb{C}^{n+1^*}/\mathbb{C}^* \cong \mathbb{C}^{n+1^*}/(\mathbb{R}^* \times \mathrm{U}(1))$$
$$\cong (\mathbb{C}^{n+1^*}/\mathbb{R}^*)/\mathrm{U}(1)$$
$$\cong \mathbb{S}^n/\mathrm{U}(1) = \mathbb{P}\mathbb{C}^n$$

L'intérêt de cette écriture et que \mathbb{C}^{n+1} est un espace vectoriel, ce qui permet de décrire $P\mathbb{C}^n$ en terme de carte [10, lemme 2.17, p. 64], [2, chap. 2], ce qui se fait comme suit. La classe de $P\mathbb{C}^n$ de représentant $z = (z^i)_{0 \le i \le n} \in \mathbb{C}^{n+1*}$ est noté [z] et on pose, $\forall i \in [0, n]$:

$$U_{i} = \left\{ [z] \in \mathbb{PC}^{n} \mid z \in \mathbb{C}^{n+1}, \ z^{i} \neq 0 \right\} \qquad \phi_{i} : \begin{bmatrix} U_{i} \longrightarrow \mathbb{C}^{i} \times \{1\} \times \mathbb{C}^{n-i} \cong \mathbb{C}^{n} \\ [z] \longmapsto \frac{1}{z^{i}} z = \left(z^{0}/z^{i}, \cdots, 1, \cdots, z^{n}/z^{i}\right) \end{bmatrix}$$
(1.3)

Si l'ensemble d'arrivée $\phi_i(U_i)$ est équivalent à un ouvert de \mathbb{C}^n (l'une des composantes est constante), il est plus commode de travailler dans \mathbb{C}^{n+1} puisque cela évite de devoir enlever et rajouter des coefficients dans les formules de changement de cartes :

$$\forall z \in \mathbb{C}^{n+1} \mid z^{i,j} \neq 0 \quad (i.e. \ [z] \in U_i \cap U_j), \qquad \phi_i \circ \phi_j^{-1}(z) = \frac{z^j}{z^i} z$$

Les (U_i, ϕ_i) forment un atlas sur l'espace projectif complexe, faisant de ce dernier une variété de dimension dim = 2n. Les $\phi_i \circ \phi_j^{-1}$ étant holomorphes, \mathbb{PC}^n est plus précisément une variété complexe de dimension complexe n et il est utile d'écrire ses coordonnées locales sous la forme $(w^{\mu}, \overline{w}^{\mu})_{1 \leq \mu \leq n}$, où :

$$\forall w \in U_i, \ \forall \mu \neq i, \quad w^{\mu} = \frac{z^{\mu}}{z^i}, \quad \text{où} \quad [z] = w$$

En annexe A se trouvent plus de détails sur les variétés différentielles complexes. Pour aller à l'essentiel, même si la notation prête à confusion, il faut considérer les coordonnées w^{μ} et \overline{w}^{μ} comme complètement indépendantes. Par exemple, :

$$\begin{split} \boldsymbol{\partial}_{\mu}(w^{\mu}) &= \frac{\partial}{\partial w^{\mu}} w^{\mu} = 1 \\ \boldsymbol{\partial}_{\mu}(\overline{w}^{\mu}) &= \frac{\partial}{\partial \overline{w}^{\mu}} \overline{w}^{\mu} = 0 \\ \boldsymbol{\partial}_{\mu}(\overline{w}^{\mu}) &= \frac{\partial}{\partial \overline{w}^{\mu}} \overline{w}^{\mu} = 0 \\ \end{split}$$

$$\boldsymbol{\partial}_{\mu}(\overline{w}^{\mu}) &= \frac{\partial}{\partial \overline{w}^{\mu}} \overline{w}^{\mu} = 1$$

$$\mathbb{C}^{n+1^*}/\mathbb{C}^* \cong (\mathbb{C}^{n+1^*}/\mathbb{R}^{+*})/(\mathbb{C}^*/\mathbb{R}^{+*}) \cong \mathbb{S}^n/\mathrm{U}(1) = \mathrm{P}\mathbb{C}^n$$

 $^{^2}Ce\ qui\ s$ 'écrit plus justement avec le troisième théorème d'isomorphisme :

Ce qui fait que $(w^{\mu}, \overline{w}^{\mu})_{1 \leqslant \mu \leqslant n}$ est bien une base de dimension réelle $\dim_{\mathbb{R}} P\mathbb{C}^n = 2n$. Par exemple, avec ces "notations" (cf. annexe A), le fait qu'une fonction $f: P\mathbb{C}^n \longrightarrow \mathbb{C}$ soit holomorphe s'exprime via l'égalité :

$$\forall \mu \in [1, n], \qquad (f_*)_{\overline{\mu}} = \frac{\partial}{\partial \overline{w}^{\mu}} f = 0$$

Pour ce qui est des espaces tangents, $(\partial_{\mu}, \partial_{\overline{\mu}})_{\mu}$ forme une base de $TP\mathbb{C}^n$ et $(dw^{\mu}, d\overline{w}^{\mu})_{\mu}$ une base de $T^*P\mathbb{C}^n$. Dans ce contexte, un champs de forme bilinéaire g (tenseur de type (0,2)) a quatre types de composantes :

$$g_{\mu\nu} = g(\partial_{\mu}, \partial_{\nu})$$

$$g_{\overline{\mu}\overline{\nu}} = g(\partial_{\mu}, \partial_{\overline{\nu}})$$

$$g_{\overline{\mu}\overline{\nu}} = g(\partial_{\mu}, \partial_{\overline{\nu}})$$

$$g_{\overline{\mu}\overline{\nu}} = g(\partial_{\mu}, \partial_{\overline{\nu}})$$

L'espace projectif complexe, en particulier, admet un produit hermitien, la *métrique de Fubini-Study*, qui est donnée par [14, sec. 8.5], [2, chap. 4]:

$$\forall w \in P\mathbb{C}^{n}, \forall \boldsymbol{u}, \boldsymbol{v} \in T_{w}P\mathbb{C}^{n}, \qquad g_{w}(\boldsymbol{u}, \boldsymbol{v}) = g_{\mu\overline{\nu}}u^{\mu}\overline{v}^{\nu} = \frac{(1 + w^{\alpha}\overline{w}_{\alpha})\delta_{\mu\nu} - w_{\mu}\overline{w}_{\nu}}{(1 + w^{\alpha}\overline{w}_{\alpha})^{2}}u^{\mu}\overline{v}^{\nu}$$

$$= \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}}u^{\mu}\overline{v}_{\mu} - \frac{w_{\mu}\overline{w}_{\nu}}{(1 + w^{\alpha}\overline{w}_{\alpha})^{2}}u^{\mu}\overline{v}^{\nu}$$

$$(1.4)$$

À noter que seul les coefficients $g_{\mu\overline{\nu}}$ apparaissent. Cela est dû à la symétrie hermitienne de g, ce qui impose $g_{\mu\nu} = g_{\overline{\mu}\overline{\nu}} = 0$ et $g_{\overline{\mu}\nu} = \overline{g_{\mu\overline{\nu}}}$.

Enfin, et ce sera important pour la suite, g induit sur \mathbb{PC}^n une forme symplectique – dite de Kähler – qui s'interprète comme l'élément d'aire sur la variété induite par g et qui s'écrit :

$$\Omega = \Omega_{\mu\overline{\nu}} \, dw^{\mu} \wedge d\overline{w}^{\nu} = ig_{\mu\overline{\nu}} \, dw^{\mu} \wedge d\overline{w}^{\nu}$$

1.2 S^{2n+1} comme fibré principal

1.2.1 Définition générale

Pour le dire simplement, les variétés fibrés sont des variétés qui ressemblent localement à des espaces produits. Le ruban de Möbius en est un exemple typique : il ne peut pas s'écrire comme le produit d'un cercle avec un segment $S^1 \times [0,1]$ à cause de la façon dont il est construit. Mais localement, une tranche du ruban est tout à fait comparable (*i.e.* difféomorphe) à un tel produit (*cf. fig. 1.3*).

fig. 1.3 — Représentation du ruban de Möbius en tant que fibré. Les notations sont reprises de la définition 2.

Il existe tout un bestiaire de variétés fibrées en fonction de leurs propriétés. Parmi elles, celles qui vont nous intéresser sont dites principales³ :

³ Même si ce ne sera pas précisé, il sera toujours sous-entendu que les différentes variétés et cartes doivent avoir les mêmes niveaux de régularités pour que le tout reste cohérent.

DÉFINITION 2 (VARIÉTÉ FIBRÉE PRINCIPALE) — Une variété fibrée principale (VFP), ou fibré principal est constituée de deux variétés différentielles P et B telles que :

 \bullet Il existe un groupe de Lie G opérant à droite (ou à gauche) sur P via l'application différentiable :

$$R : \begin{array}{ccc} P \times G & \longrightarrow & P \\ (p,g) & \longmapsto & R_g(p) := p \cdot g = pg \end{array} \tag{1.5}$$

• Il existe une surjection différentiable $\pi: P \longrightarrow B$ telle que :

$$\forall p \in P, \quad \pi^{-1}(\pi(p)) = pG \tag{1.6}$$

• P est munie d'un ensemble de paires (U_i, h_i) tel que les U_i forment un recouvrement de B et tel que les $h_i: G \times U_i \longrightarrow \pi^{-1}(U_i) \subset P$ soient des difféomorphismes vérifiant :

$$\forall a, b \in G, \ \forall x \in B, \qquad h_i(ab, x) = h_i(a, x) \cdot b \qquad \text{et} \qquad \pi \circ h_i(a, x) = x$$

La variété B est appelée la base de la VFP, G son groupe structural et pG la fibre de P passant par p et au dessus de $\pi(p) \in B$. Le tout est notée $P(R, G, \pi, B)$ ou plus simplement P(G, B).

Les fibres pG sont toutes difféomorphes à G et B est difféomorphe à P/G. Le diagramme commutatif ci-contre résume la situation (pr_i est la projection canonique sur la i-ème composante).

L'ensemble $\{(U_i \times G, {h_i}^{-1})\}_i$ est l'équivalent d'un atlas pour les variétés différentielles classiques mais adapté pour tenir compte de l'aspect fibrée de P et de l'action de G. Expliciter les changements de cartes dans P, ce fait comme suit.

D'abord, P étant localement difféomorphe à un produit $G \times U_i$, on peut y tracer des graphes appelés sections locales, comme sur les figures 1.4 et 1.5 ci-dessous. Formellement, une section locale au dessus de $U_i \subset B$ est une application $\sigma: U_i \longrightarrow P$ vérifiant :

$$\pi \circ \sigma = id|U_i$$

fig. 1.4 — Représentation d'une section locale σ au dessus de $U_i \subset B$ de dimension 2. Comme P n'est pas un produit à proprement parlé, σ est représenté dans $G \times U_i$ à travers h_i .

Ensuite, les hypothèses sur P(G, B) sont telles que G agit transitivement et librement (ou sans point fixe) sur P. C'est-à-dire que, sur une même fibre, tout point peut être atteint par n'importe quel autre via l'action

de G (transitivité) :

$$\forall x \in B, \quad \forall p, q \in P_x, \ \exists t(p,q) \in G \mid p = q \cdot t(p,q)$$

et que la seule façon de la isser les points invariants par cette même action est de passer par l'élément neutre e (libre) :

$$\forall (p,g) \in P \times G, \quad p = p \cdot g \implies g = e$$

De la transitivité de G, découle le fait que toutes les sections locales σ au dessus de U_i peuvent s'écrire à partir d'une même section σ_i via la formule :

$$\forall x \in B, \qquad \sigma(x) = \sigma_i(x) \cdot t(\sigma_i(x), \sigma(x))$$

Son caractère libre, lui assure l'unicité d'un choix canonique de section σ_i sur U_i :

$$h_i(x, e) = \sigma_i(x)$$

fig. 1.5 — Représentation de deux sections canoniques $\sigma_{i,j} = h_{i,j}(e,\cdot)$ au dessus de deux cartes U_i et U_j avec la fonction de transition φ_{ij} (def. 3). Est également représentée une section σ quelconque avec les translations $g_{i,j}$ telles que $\sigma(x) = \sigma_i(x) \cdot g_i(x) = \sigma_j(x) \cdot g_j(x)$.

Cela mène à la définition :

DÉFINITION 3 (FONCTIONS DE TRANSITIONS) — À l'intersection entre deux cartes $U_{ij} := U_i \cap U_j$, le passage d'une section locale canonique à une autre se fait via :

$$\forall x \in U_{ij}, \qquad \sigma_i(x) = \sigma_i(x) \cdot t(\sigma_i(x), \sigma_i(x))$$

L'élément de G, $t(\sigma_i, \sigma_j)$, qui permet de faire le changement, est alors appelé fonction de transition et sera noté φ_{ij} . Elle fait effectivement la transition entre les cartes h_i et h_j en cela que :

$$\forall (g,x) \in G \times U_{ij}, \qquad {h_i}^{-1} \circ h_j(g,x) = (\varphi_{ij}(x)g,x)$$

1.2.2 Le fibré $\mathbb{S}^n(\mathrm{U}(1), \mathbb{P}\mathbb{C}^n)$

Dans ce travail, \mathbb{S}^n fait office d'espace total avec pour base \mathbb{PC}^n et pour groupe structural U(1). Pour obtenir la projection de \mathbb{S}^n sur \mathbb{PC}^n , il suffit de prendre la restriction de π à \mathbb{S}^n . En tenant compte de la normalisation, les coordonnées locales sur \mathbb{PC}^n se réécrivent, $\forall w \in U_i$:

$$w^{\mu} = \frac{z^{\mu}}{z^{i}} = \frac{z^{\mu}}{|z^{i}|e^{i\arg(z^{i})}} = \frac{z^{\mu}}{\sqrt{1 - \sum_{\nu \neq i} |z^{\nu}|^{2}}} e^{-i\arg(z^{i})} \qquad \text{car} \qquad \sum |z^{\nu}|^{2} = ||z||^{2} = 1$$

On constate bien que w^{μ} n'est défini par rapport à z^{μ} qu'à un choix de phase $e^{-i \arg z^i} \in \mathrm{U}(1)$ près. À l'inverse, un représentant z_i dans \mathbb{S}^n de $w \in U_i$ aura pour coefficient :

$$\forall \mu \neq i, \quad z_i{}^\mu = \frac{w^\mu}{\|w\|} e^{i\theta} \qquad \qquad z_i{}^i = \frac{1}{\|w\|} e^{i\theta}$$

La norme de w étant à comprendre au sens des coordonnées locales sur U_i^4 :

$$||w||^{2} = ||(w^{\mu})_{1 \leqslant \mu \leqslant n}||^{2} = \frac{1}{|z_{i}^{i}|^{2}} \sum_{\nu \neq i} |z_{i}^{\nu}|^{2} = \frac{1 - |z_{i}^{i}|^{2}}{|z_{i}^{i}|^{2}} \iff |z_{i}^{i}|^{2} ||w||^{2} = 1 - |z_{i}^{i}|^{2}$$

$$\iff |z_{i}^{i}|^{2} = \frac{1}{1 + ||w||^{2}}$$

$$\iff |z_{i}^{i}| = \frac{1}{\sqrt{1 + w^{\nu}\overline{w}_{\nu}}}$$

D'où l'expression des coefficients de $z_i \in \mathbb{S}^n$:

$$\forall \mu \neq i, \quad z_i^{\mu} = \frac{w^{\mu}}{\sqrt{1 + w^{\nu} \overline{w_{\nu}}}} e^{i\theta} \qquad \qquad z_i^{i} = \frac{1}{\sqrt{1 + w^{\nu} \overline{w_{\nu}}}} e^{i\theta}$$

Tout ce la permet d'écrire \mathbb{S}^n comme une variété fibrée principale :

PROPOSITION 1 — La (2n+1)-sphère \mathbb{S}^n , vue comme variété plongée dans \mathbb{C}^n est une VFP de base \mathbb{PC}^n et de fibre type U(1). L'action de U(1) sur \mathbb{S}^n est induite par la multiplication par un scalaire complexe et où :

• La fibration π est la projection canonique de \mathbb{S}^n sur \mathbb{PC}^n :

$$\pi : \begin{array}{c} \mathbb{S}^n & \longrightarrow & \mathbb{PC}^n \\ z & \longmapsto & [z] \end{array}$$
 (1.7)

• Les cartes locales h_i s'écrivent :

$$\forall w \in U_i, \ \forall e^{i\theta} \in U(1), \ h_i(w, e^{i\theta}) = \frac{(w^0, \dots, 1, \dots, w^n)}{\sqrt{1 + w^\nu \overline{w}_\nu}} e^{i\theta} \in \mathbb{S}^n$$
 (1.8)

 \bullet Les sections canoniques σ_i au dessus des $U_i,$ elles, sont définies par :

$$\forall w \in U_i, \ \sigma_i(w) = h_i(w, 1) = \frac{1}{\sqrt{1 + w^{\nu} \overline{w}_{ii}}} (w^0, \dots, 1, \dots, w^n)$$
 (1.9)

 \bullet Les fonctions de transitions entre deux cartes U_i et U_j s'écrivent :

$$\varphi_{ij}(w) = e^{-i\arg(z_i^i)} e^{i\arg(z_j^j)} \qquad \text{où} \qquad z_{i,j} = \phi_{i,j}(w)$$
 (1.10)

II — Interprétation des phases dynamique et géométrique

2.1 Notion de connexion sur une VFP

Le cadre étant posé, pour retrouver la notion de fréquence instantanée, il est nécessaire de munir $\mathbb{S}^n(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n)$ d'une connexion. Cette dernière est introduite comme suit.

⁴ C'est un abus de notation, w n'a pas de norme en ce sens là puisqu'elle dépend du choix de carte U_i . Mais ici tout le raisonnement est purement local, donc ce n'est pas un problème.

2.1.1 Notion de connexion sur une VFP

Comme P ressemble localement à un produit $G \times U_i$, il est utile de séparer ses espaces tangents T_pP comme une somme directe d'espaces tangents respectivement aux fibres et à la base. Conformément aux représentations précédentes (fig. 1.3 à 1.5), les premiers sont appelées espaces tangents verticaux, les seconds horizontaux et l'on note :

$$\forall p \in P, \qquad T_p P = V_p P \oplus H_p P$$

Les tangents verticaux V_pP se définissent canoniquement via π , en tant que noyau de sa différentielle :

$$V_p P := \text{Ker}(T_p \pi) = \{ v \in T_p P \mid T_p \pi(v) = 0 \}$$

Ce n'est en revanche pas le cas des espaces horizontaux. Il faut donc faire un choix pour les H_pP et c'est ce choix qui est appelé connexion (elle connecte les espaces tangents entre eux). Comme pour les verticaux, ces sous-espaces peuvent être caractérisés par une 1-forme différentiable ω sur P à valeur dans VP, auquel cas :

$$\forall p \in P, \quad H_p P = \operatorname{Ker}(\omega_p)$$

Dans le cas des VFP, une connexion doit en plus avoir de bonnes propriétés au regard de l'action de G sur P, aboutissant à la définition :

DÉFINITION 4 (CONNEXION SUR VFP) — Une connexion sur une VFP P(G, B) est la donnée d'un sous-espace tangent, $H_pP \subset T_pP$, en tout point de $p \in P$ tel que :

- HP dépend différentiellement de p ("dépendre différentiellement" à un sens précis pour les sousespaces mais qui ne sera pas utile pour la suite).
- H_pP est supplémentaire à V_pP dans T_pP :

$$T_p P = V_p P \oplus H_p P \tag{1.11}$$

• l'assignation des H_pP est invariante par l'action de G au sens où :

$$\forall (p,g) \in P \times G, \quad H_{R_g(p)}P = R_{g*}(H_pP) = \{ R_{g*}(v) \mid v \in H_pP \}$$
 (1.12)

Que l'on notera plus simplement :

$$\forall (p,g) \in P \times G, \quad H_{p \cdot g}P = H_p P \cdot g = \left\{ \boldsymbol{v} \cdot g \mid \boldsymbol{v} \in H_p P \right\}$$
(1.13)

Au delà d'assurer une compatibilité entre H et G, l'équation (1.12) permet de n'avoir à définir la connexion qu'en un seul point de chaque fibre, les autres se déduisant par cette formule. Concrètement, pour tout point de la base $x \in U_i$, il suffit de la définir en $\sigma_i(x) = h_i(e, x)$, de sorte que l'espace horizontal en tout autre point $p = h_i(g, x) = \sigma_i(x) \cdot g$ au dessus de x sera donné par :

$$H_p P = H_{\sigma_i(x)} P \cdot g$$

Aussi, le fait que G soit un groupe de Lie permet de lier son algèbre $\mathfrak{g} \cong T_eG$ aux tangents verticaux via l'application #:

$$\forall (p,A) \in P \times \mathfrak{g}, \ \forall f \in \mathscr{C}(P,\mathbb{R}), \quad A^{\#}(p) = \frac{d}{dt} p \cdot \exp(tA) \Big|_{t=0} \in V_p P$$
(1.14)

Sachant cela, toujours dans le cas des VFP, la 1-forme de connexion est à valeur dans $\mathfrak g$:

$$A^{\#}(p): f \longmapsto \frac{d}{dt} f(p \cdot \exp(tA))\Big|_{t=0}$$

 $^{^{5}}$ Les vecteurs tangents étant des formes linéaires, $A^{\#}(p)$ est plus précisément définie par l'application :

DÉFINITION 5 (1-FORME DE CONNEXION) — La 1-forme de connexion ω d'une VFP P(G,B) est définie comme la 1-forme différentiable sur P à valeur dans \mathfrak{g} (i.e. en tout point $p \in P$, ω_p est à valeur de T_pP dans \mathfrak{g}), telle que $\forall p \in P$:

$$\forall A \in \mathfrak{g}, \ \omega_p(A^{\#}(p)) = A \qquad H_p P = \operatorname{Ker}(\omega_p) \tag{1.15}$$

$$\forall \mathbf{v} \in T_p P, \quad \omega_{p \cdot g}(\mathbf{v} \cdot g) := \omega_{p \cdot g}(R_{g *}(\mathbf{v})) = g^{-1} \omega_p(\mathbf{v}) g$$
(1.16)

Tout comme les H[p]P, la troisième égalité assure que ω n'a besoin d'être définie que sur un point de chaque fibre. Cela permet de définir ω localement non pas sur $U_i \times G$, mais seulement sur $U_i \cong U_i \times \{e\}$. Ainsi, ω induit une 1-forme sur les cartes U_i par l'image réciproque des sections canoniques σ_i . Elles sont notées $\mathcal{A}_i := \sigma_i^* \omega$ et sur le chevauchement $U_i \cap U_j$, elles vérifient :

$$A_j = \varphi_{ij}^{-1} A_i \varphi_{ij} + \varphi_{ij}^{-1} d\varphi_{ij}$$
(1.17)

Munir P(G,B) d'une connexion permet, entre autre de définir la notion de relèvement horizontal :

DÉFINITION 6 (RELÈVEMENT HORIZONTAL) — Étant donné une trajectoire $\rho: \mathbb{R} \longrightarrow B$ sur la base et un point $\gamma_0 \in \rho(0)G$ au dessus de $\rho(0)$, il existe un unique relèvement γ de ρ dont les vecteurs tangents sont tous horizontaux. *i.e.* tel que $\forall t \in \mathbb{R}$:

$$\pi \circ \gamma(t) = \rho(t) \qquad \qquad \dot{\gamma}(t) \in H_{\gamma(t)}P \qquad \qquad \gamma(0) = \gamma_0 \qquad \qquad (1.18)$$

On parle de relèvement horizontal (horizontal lift, ou transport parallèle de γ_0 le long de ρ) puisque γ n'a pas de déplacement vertical au sens de la connexion. Du point de vue de la 1-forme ω , si γ s'écrit localement $\gamma_i = \sigma_i(\rho)g_i$, alors g_i vérifie l'équation (d'où vient l'unicité du relèvement):

$$\frac{d}{dt}g_i(t) = -\mathcal{A}_i\rho(t) \cdot g_i(t) \tag{1.19}$$

Si maintenant γ est une trajectoire de P, on dira, par abus de langage, que $\tilde{\gamma}$ est le relèvement horizontal de γ si c'est le relèvement horizontal de sa projection $\pi \circ \gamma$ avec la condition initiale $\tilde{\gamma}(0) = \gamma(0)$.

Pour la suite, il sera utile d'avoir l'expression d'une trajectoire $\gamma: \mathbb{R} \longrightarrow P$ par rapport à son relèvement horizontale $\tilde{\gamma}$. Pour l'obtenir, on note $\gamma = \tilde{\gamma} \cdot g$, de sorte que sa dérivée s'écrive :

$$\dot{\gamma} = \dot{\tilde{\gamma}} \cdot q + \tilde{\gamma} \cdot dq = \dot{\tilde{\gamma}} \cdot q + \gamma \cdot q^{-1} dq$$

Ce à quoi on applique ω , donnant :

$$\omega_{\gamma}(\dot{\gamma}) = \omega_{\gamma}(\dot{\tilde{\gamma}} \cdot g) + \omega_{\gamma}(\gamma \cdot g^{-1}dg)$$

$$= g^{-1}\omega_{\tilde{\gamma}}(\dot{\tilde{\gamma}})g + \omega_{\gamma}(\gamma \cdot g^{-1}dg) \qquad \text{d'après (1.16)}$$

$$= \omega_{\gamma}(\gamma \cdot g^{-1}dg) \qquad \text{car } \tilde{\gamma} \text{ est horizontale}$$

Le terme $g^{-1}dg$ restant étant un vecteur de $g^{-1}T_gG \cong T_eG \cong \mathfrak{g}$ et :

$$\omega_{\gamma}(\dot{\gamma}) = \omega_{\gamma}(\gamma \cdot g^{-1}dg) = \omega_{\gamma}((g^{-1}dg)^{\#}(p)) = g^{-1}dg$$

D'où $\gamma = \tilde{\gamma} \cdot g$ avec g est solution de :

$$\frac{d}{dt}g(t) = g(t)\omega_{\gamma(t)}(\dot{\gamma}(t)) \tag{1.20}$$

2.1.2 Choix de connexion sur $\mathbb{S}^n(U(1), \mathbb{PC}^n)$

Dans le cas de $\mathbb{S}^n(U(1), \mathbb{P}\mathbb{C}^n)$, la métrique sur \mathbb{S}^n induit naturellement un choix de connexion car la projection π est une submersion dite riemannienne [9]. Formellement, c'est dire que la projection de \mathbb{S}^n sur $\mathbb{P}\mathbb{C}^n$ est telle que :

$$\forall p \in \pi^{-1}(w), \ \forall \boldsymbol{u}, \boldsymbol{v} \in T_p \mathbb{S}^n, \quad g_{\pi(p)}(\pi_* \boldsymbol{u}, \pi_* \boldsymbol{v}) = \langle \boldsymbol{u}_H, \boldsymbol{v}_H \rangle$$
(1.21)

où g est la partie réelle⁶ hermitienne de la métrique de Fubini-Study. Plus concrètement, les espaces tangents de \mathbb{S}^n s'écrivent :

$$T_p \mathbb{S}^n = \operatorname{Vec}\{p\}^{\perp} := \{ \boldsymbol{v} \in \mathbb{C}^{n+1} \mid \Re e\langle \boldsymbol{v}, p \rangle = 0 \}$$

et sachant que $ip \in \text{Vec}\{p\}^{\perp}$, ils se séparent en deux composantes orthogonales :

$$T_p \mathbb{S}^n = \operatorname{Vec}\{p\}^{\perp} = \operatorname{Vec}\{ip\} \oplus \operatorname{Vec}\{ip\}^{\perp}$$

Ainsi, la nature de π (1.21) est telle que le premier membre est l'espace tangent vertical à p et le second invariant par l'action de U(1) :

$$\forall e^{i\theta} \in \mathrm{U}(1), \quad \mathrm{Vec}\{i(e^{i\theta}p)\}^{\perp} = \mathrm{Vec}\{ip\}^{\perp}$$

Ce qui permet de poser $H_p\mathbb{S}^n := \operatorname{Vec}\{ip\}^{\perp}$ et donne directement la 1-forme associée :

$$\begin{split} H_p \mathbb{S}^n &= \left\{ \boldsymbol{v} \in T_p \mathbb{S}^n \mid \Re e \langle \boldsymbol{v}, ip \rangle = 0 \right\} \\ &= \left\{ \boldsymbol{v} \in T_p \mathbb{S}^n \mid \Im m \langle \boldsymbol{v}, p \rangle = 0 \right\} \end{split} \iff \omega_p(\boldsymbol{v}) = \Im m \langle \boldsymbol{v}, p \rangle \end{split}$$

Enfin, comme l'algèbre de Lie de U(1) est $\mathfrak{u}(1) \cong i\mathbb{R}$, il convient de de poser :

$$\forall p \in \mathbb{S}^n, \ \forall \mathbf{v} \in T_p \mathbb{S}^n, \qquad \omega_p(\mathbf{v}) := i \Im(\mathbf{v}, p)$$

$$\tag{1.22}$$

Un tel choix de connexion n'est pas anodin d'un point de vue signal puisque ω donne la fréquence instantanée telle que définie dans la ?? précédente et c'est la première chose qui sera justifié dans la partie suivante.

2.1.3 Fréquence instantanée et phase dynamique

Résumons la situation. Pour étudier le comportement fréquentiel d'un signal multivarié complexe, il est utile de voir l'espace de tel signaux, \mathbb{C}^{n+1} , comme le produit :

$$\mathbb{C}^{n+1} \cong \mathbb{R}^{+_*} \times \mathbb{S}^n \stackrel{\text{ish}}{\cong} \mathbb{R}^{+_*} \times \mathrm{U}(1) \times \mathrm{P}\mathbb{C}^n$$

Cette égalité n'étant valable que localement, l'établir proprement nécessite de passer par le formalisme des fibrés, qui plus et principaux.

Dans ce cadre, la VFP $\mathbb{S}^n(U(1), \mathbb{PC}^n)$ est naturellement – par sa métrique – munie d'une connexion qui, par ailleurs, n'est pas sans rappeler à la formule de la fréquence instantanée (??) vue en première partie.

Reste alors à clairement établir ce lien et comprendre comment émerge la phase géométrique dans ce contexte, chose qui sera fait dans cette partie.

Pour comprendre pourquoi le choix de connexion (1.22) est justifié du point de vue signal, on se propose de prendre le problème par l'autre bout : comment définir la notion de fréquence instantanée d'un signal dans le fibré $\mathbb{S}^n(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n)$?

Comme, à chaque instant t, un signal γ sur \mathbb{S}^n est représenté par une paire $(e^{i\alpha(t)}, \rho(t)) \in U(1) \times \mathbb{PC}^n$ à travers les h_i , l'un serait tenté de voir $\alpha(t)$ comme la fréquence du signal et $\rho(t)$ comme son état de polarisation.

 $^{^6}$ Cette métrique induite ne peut pas être hermitienne car \mathbb{S}^n n'est pas une variété complexe.

Le problème de cette représentation est qu'elle dépend du choix de carte U_i , ainsi sur l'intersection U_{ij} , γ aurait (au moins) deux notions de fréquence instantanée.

C'est là qu'intervient la connexion. D'une part, la 1-forme ω associée est définie globalement sur le fibré, autrement dit, elle est indépendante des représentations locales de γ .

D'autre part, le relèvement horizontal $\tilde{\gamma}$ d'une courbe $\rho \subset \mathbb{PC}^n$, par définition, n'a pas de variation verticale. Dans notre contexte, cela signifie que $\tilde{\gamma}$ n'a pas de variation dans la direction de U(1), donc son état de polarisation (composante sur \mathbb{PC}^n) varie mais pas ses "fréquences".

Ainsi, le relèvement horizontale $\tilde{\gamma}$ d'un signal γ s'interprète comme une version de ce dernier dénuée de toute fréquence instantanée. L'action α permettant de passer de $\tilde{\gamma}(t)$ à $\gamma(t)$ (i.e. $(t) = e^{i\alpha(t)}\tilde{\gamma}(t)$) peut alors être comprise comme l'ajout d'une fréquence instantanée (voir fig. 1.6 et ?? ci-dessous)

Un signal qui n'aurait pas de fréquence instantanée mais une polarisation instantanée n'a pas vraiment de sens. Cela renvoi à notre discussion de première partie : la fréquence instantanée d'un signal univarié devait contenir les hautes fréquences et son amplitude les basses. Ici le problème est le même, mais avec l'état de polarisation en lieu de l'amplitude. Pour s'en convaincre, il est utile de retourner sur le cas bivarié.

La projection sur $P\mathbb{C}^2$ de γ représente l'ellipse de polarisation instantanée. Mais si γ n'as pas de fréquence instantanée, alors $\gamma(t)$ n'est plus représenté que par le sommet de l'ellipse paramétrée par ρ_{γ} . L'on pourrait alors argumenter que tout signal peut être décrit par la seule variation de son état de polarisation, ce qui est parfaitement inintéressant.

Cette vision du relèvement horizontal est donc purement formelle et, si elle à bien un sens géométrique, elle ne correspond du point de vue du signal.

fig. 1.6 — Fréquence instantanée d'un signal x vu comme variation vertical de x par rapport à son relèvement horizontale \tilde{x} associé. À noter que \tilde{x} ne dépend pas des cartes mais dépend de la trajectoir ρ_x de x sur $\mathbb{P}\mathbb{C}^n$.

En admettant l'interprétation de la 1-forme de connexion comme fréquence instantanée, les discussions de première partie (??) suggèrent de choisir là encore :

$$\forall p \in \mathbb{S}^n, \ \forall \mathbf{v} \in T_x \mathbb{S}^n, \quad \omega_p(\mathbf{v}) = i \Im(\mathbf{v}, p)$$
(1.23)

La phase dynamique, s'interprète alors comme la déviation du signal par rapport à son relèvement horizontal. Ainsi, $g = e^{i\Phi_{\text{dyn}}(\gamma)}$ est solution de (1.20), qui se réécrit alors :

$$\forall t \in \mathbb{R}, \quad \begin{cases} g'(t) = g(t) \, i \Im m \langle \dot{\gamma}(t), \gamma(t) \rangle \\ g(t_0) = 1 \end{cases} \iff g(t) = e^{i \int_{t_0}^t \Im m \langle \dot{\gamma}(s), \gamma(s) \rangle ds}$$

Ce qui redonne la formule :

$$\Phi_{\operatorname{dyn}\gamma}(t_0,t) = \int_{t_0}^t \Im m \langle \dot{\gamma}(s), \gamma(s) \rangle ds \tag{1.24}$$

Chose importante tout de même : si cette définition de la phase dynamique est bien indépendante du choix de carte, elle dépend en revanche du relèvement horizontale de γ et, a fortiori, de la trajectoire de la projection $\pi(\gamma)$ de γ sur \mathbb{PC}^n . C'est de là que va émerger la phase géométrique,.

2.2 Phase géométrique

Notamment dans le cadre quantique, la phase géométrique est connue pour avoir deux interprétations géométriques [4, 5, 8]: soit comme conséquence d'un transport parallèle sur \mathbb{S}^n soit comme une mesure de l'aire de la surface entourée par le signal projeté sur $\mathbb{P}\mathbb{C}^n$. Ces résultats sont redémontrés dans cette section (avec les détails en annexes) dans notre cadre – plus général — et réinterpréter en terme de signal.

Pour se faire, sera d'abord traité le cas particulier des signaux cycliques (ss-sec. 2.2.1 et 2.2.2) et il sera ensuite montré que, du cas général, il est toujours possible de s'y ramener (ss-sec. 2.2.3).

2.2.1 ... du point de vue de la connexion

Dans toute la suite un signal γ de \mathbb{S}^n sera dit *cyclique* si entre les instants t_0 et t, γ retourne dans la même fibre :

$$\exists \alpha \in \mathbb{R} \mid \gamma(t) = e^{i\alpha} \gamma(t_0) \tag{1.25}$$

Dit autrement, la projection de γ , $\rho_{\gamma} := \pi \circ \gamma$ forme un lacet sur \mathbb{PC}^n . Cette hypothèse est très restrictive puisqu'elle ne peut arriver que certain instant, sans quoi γ n'aurait qu'un mouvement vertical, ce qui n'est d'autant plus contraignant.

Cela étant dit, elle a le bon goût d'énormément simplifier les choses puisque, comme tout ce passe dans la même fibre, il est très simple calculer et d'annuler individuellement les phases de γ . Suivant les travaux de Aharonov & Anandan [1] et les explications de Bohm [4], la première remarque est que, comme $\gamma(t_0)$ et $\gamma(t)$ sont dans une même fibre, la phase totale est donné par le paramètre α de (1.25):

$$e^{i\Phi_{\text{tot}}} = e^{i\alpha} = t(\gamma(t_0), \gamma(t)) \tag{1.26}$$

La phase dynamique, conformément à ce qui a été dit plutôt, donne la déviation au relèvement horizontale $\tilde{\gamma}$:

$$e^{i\Phi_{\rm dyn}} = t(\tilde{\gamma}(t), \gamma(t)) \tag{1.27}$$

La phase géométrique s'écrit alors :

$$e^{i\Phi_{\text{geo}}} = e^{i\Phi_{\text{tot}}} e^{-i\Phi_{\text{dyn}}} = t(\gamma(t_0), \gamma(t)) t(\tilde{\gamma}(t), \gamma(t))^{-1}$$

$$= t(\gamma(t_0), \gamma(t)) t(\gamma(t), \tilde{\gamma}(t))$$

$$= t(\tilde{\gamma}(t_0), \tilde{\gamma}(t))$$

$$\operatorname{car} \gamma(t_0) = \tilde{\gamma}(t_0)$$

$$(1.28)$$

Elle correspond donc au déplacement vertical dû à la trajectoire de $\tilde{\gamma}$. Dit autrement, elle mesure la déviation du au transport parallèle le long de γ . Les trois dernières formules, eqs. (1.26), (1.27) et (1.28), sont représentées dans la figure 1.7 ci-dessous :

Vu ainsi, il est clair que Φ_{geo} est complètement indépendante du relèvement γ par rapport à ρ_{γ} , dit autrement, qu'elle est invariante par transformation de jauge. De même, elle ne dépend que de $\gamma(t_0)$ et $\tilde{\gamma}(t)$, ce qui montre qu'elle est invariante par reparamétrisation de γ .

Cette description de $e^{i\Phi_{\text{geo}}}$ est plus connue sous le nom d'holonomie du lacet ρ_{γ} . De façon généralement, le groupe d'holonomie du point $p \in P$ associé à la (1-forme de) connexion ω sur P(B,G), est l'ensemble des points de pG qui peuvent être atteint par une relèvement horizontale partant de p:

$$\operatorname{Hol}_{p}(\omega) := \left\{ g \in G \mid \exists \gamma, \tilde{\gamma}(0) = p \text{ et } p \cdot g = \tilde{\gamma}(1) \right\}$$

$$(1.29)$$

Cette formulation, si elle est très élégante, n'est en revanche que très peu instructive. En effet, en fonction des propriétés de l'espace totale et de la base du fibré, Hol peut avoir diverses propriétés.

fig. 1.7 — Représentation des trois phases de γ dans le cas pseudo-cyclique.

Dans notre cas, $\operatorname{Hol}_p(\omega)$ est un sous-groupe de Lie connexe non trivial du groupe structural. Concrètement, cela signifie dans notre cas que $\operatorname{Hol}_p(\omega) = \operatorname{U}(1)^7$, *i.e.* $\Phi_{\operatorname{geo}}$ peut prendre absolument n'importe quelle valeur (alors même que l'on est toujours dans le cas particulier des signaux cycliques). Ceci n'est donc pas très instructif en pratique.

2.2.2 * ... du point de vue de la métrique

Cela dit, la phase géométrique étant invariante par transformation de jauge, elle doit s'écrire uniquement dans $P\mathbb{C}^n$. Pour cela l'on suppose, sans perte de généralité⁸, que γ reste au dessus de la carte U_i , de sorte que :

$$\gamma = h_i(w, e^{i\theta}) = \sigma_i(w)e^{i\theta}$$

Avec, toujours sous l'hypothèse que γ est cyclique, $\Phi_{\rm geo}$ se réécrit (cf. annexe B.1.) :

$$\Phi_{\text{geo}}(\gamma) = \Phi_{\text{tot}}(\gamma) - \Phi_{\text{dyn}}(\sigma_i(w)e^{i\theta})
= \theta(t) - \theta(t_0) - \left(\frac{1}{i}\int_{t_0}^t \mathcal{A}_i(\rho(s))ds + \theta(t) - \theta(t_0)\right)
= i\int_{t_0}^t \mathcal{A}_i(\rho(s))ds$$

Or, ρ forme un lacet sur \mathbb{PC}^n , ainsi Φ_{geo} est l'intégrale d'une forme linéaire le long d'un lacet, ce à quoi le théorème de Stokes s'applique et donne :

$$\Phi_{\rm geo}(\gamma) = i \oint_{\rho} \mathcal{A}_i = i \iint_{\Sigma} d\mathcal{A}_i$$

Où Σ est surface de bord ρ et où la dérivée extérieure de ω n'est autre que la forme de Kähler de \mathbb{PC}^n (cf. annexe B.3. pour une démonstration):

$$\Phi_{\rm geo}(\gamma) = -i \iint_{\Sigma} g_{\mu\overline{\nu}} dw^{\mu} \wedge d\overline{w}^{\nu} = \iint_{\Sigma} \Omega_{\mu\overline{\nu}} dw^{\mu} \wedge d\overline{w}^{\nu}$$
 (1.30)

Ainsi, la phase géométrique de toute courbe cyclique γ est donnée par l'aire⁹ de la surface entourée par sa projection $\pi(\gamma)$ sur \mathbb{PC}^n .

 $^{{}^7\}mathrm{Hol}_p(\omega)$ est toujours un sous-groupe de Lie. Ici connexe car $\mathrm{P}\mathbb{C}^n$ est simplement connexe, et non trivial car la connexion sur \mathbb{S}^n n'est pas plate. Or, le seul sous-groupe de Lie de $\mathrm{U}(1)$ ayant c'est propriété est lui-même. Ces informations sont tirées de Wikipédia, voir également [14, sec. 8.5.3] pour plus d'information sur le cas particulier des $\mathrm{P}\mathbb{C}^n$.

⁸Les propriétés de changement de cartes assure qu'elle n'est pas un problème.

 $^{^9}$ Oui c'est sensé être la demi-aire mais j'ai pas de facteur 1/2 qui apparaît dans les calculs... cf. annexe B

2.2.3 * ... dans le cas le plus générale

- Si maintenant γ est qu'elle conque, pour retrouver les interprétation précédente, le plus simple est encore de se ramener au cas cyclique.
- Cela demande de refermer γ de sorte à ne pas engendré plus de phase géométrique. En somme, on veut savoir qu'elles sont les trajectoire de \mathbb{S}^n qui n'engendre pas de phase géométrique.
- \bullet Les géodésiques de ρ marche bien... enfin presque :
- \bullet Si γ est une relèvement horizontal de $\rho,$ alors elle vérifie :

$$\gamma(t) = \gamma(t_0)\cos(t - t_0) + \dot{\gamma}(t_0)\sin(t - t_0)$$

• Comme elle est horizontale, on a (démo en annexe C):

$$\begin{split} \Phi_{\text{geo}}(\rho) &= \Phi_{\text{tot}}(\gamma) \\ &= \operatorname{arg} \left\langle \gamma(t_0) \cos(t - t_0) + \dot{\gamma}(t_0) \sin(t - t_0), \gamma(t_0) \right\rangle \\ &= \operatorname{arg} \left(\cos(t - t_0) \left\langle \gamma(t_0), \gamma(t_0) \right\rangle \right) \end{split}$$

• donc soit 0 soit π selon le signe du cos.... comme on avait en première partie!

ANNEXES

Annexes de la partie I

Annexe A — Compléments sur l'analyse temps-fréquence

C'est un copier collé du premier jet du mémoire, c'est pas très cohérent avec le reste là tout de suite. Je la retoucherai plus tard.

A.1. * Formalisme derrière la transformée en SA ou le problème de signaux réels et comment le résoudre

D'abord, du point de vue de l'analyse temps-fréquence, les signaux réels sont problématiques car leur spectre sont à symétrie hermitienne et leur densité spectrale symétrique :

$$\forall t \in \mathbb{R}, \ x(t) \in \mathbb{R} \quad \Longrightarrow \quad \forall \nu \in \mathbb{R}, \ \hat{x}(-\nu) = \overline{\hat{x}(\nu)}$$
$$\Longrightarrow \quad \forall \nu \in \mathbb{R}, \ \rho(-\nu) = \rho(\nu)$$

Comme mentionné plus haut, cela implique que la fréquence moyenne de tout signal réel est nulle (intégrale d'une fonction impaire). Ce qui, en plus de ne pas être très instructif, n'est pas cohérent avec l'interprétation physique qu'on voudrait faire cette moyenne. Par exemple, si ϱ prend la forme ci-dessous (fig. 1.8), alors il serait plus naturelle de demander à ce que la fréquence moyenne se trouve autour de 1,4. De même, la largeur de bande spectrale ne correspond plus à l'étalement de chaque gaussienne, mais plutôt à leur espacement.

fig. 1.8 — Exemple de densité spectrale d'un signal réel ESP A 1,4

Même problème avec la covariance : sachant l'égalité des deux notions de fréquences moyenne (??, ??), on

peut définir la covariance temps-fréquence d'un signal x par :

$$Cov(x) := Cov(t, \phi'(t)) = \mathbb{E}_{\rho} [t\phi'(t)] - \mathbb{E}_{\rho} [t] \mathbb{E}_{\rho} [\phi'(t)]$$
$$= \mathbb{E}_{\rho} [t\phi'(t)] - \mathbb{E}_{\rho} [t] \mathbb{E}_{\rho} [\nu]$$

Ce coefficient est sensé mesurer une corrélation entre l'évolution d'un signal au cours du temps avec ses fréquences. S'il est réel, alors Cov(x) sera toujours nulle ; de là à en conclure que la fréquence instantanée de n'importe quel signal (réel) est toujours décorrélée du temps serait, pour le moins, insatisfaisant.

Pour résoudre le problème, une méthode consiste à construire un nouveau signal $\mathcal{A}[x]$ en supprimant les fréquences négatives de x:

$$\mathcal{F}[\mathcal{A}[x]] = 2\mathbb{1}_{\mathbb{R}^+}\hat{x}$$

où $\mathbbm{1}_E$ est la fonction indicatrice sur l'ensemble E et où le facteur 2 assure la conservation de l'énergie du signal. Cela mène à la définition :

DÉFINITION 7 (TRANSFORMÉE DE HILBERT ET EN SA) — On appelle transformé de Hilbert de c, l'application :

$$\mathbb{R} \longrightarrow \mathbb{C}
\mathcal{H}[x] : t \longmapsto \frac{1}{\pi} \int_{\mathbb{R}} \frac{x(s)}{t-s} ds$$
(1.31)

où l'intégrale barré représente la valeur principale de Cauchy (voir ?? pour plus de détail) :

$$\int_{\mathbb{R}} \frac{x(s)}{t-s} ds := \lim_{\varepsilon \to 0^+} \int_{-\infty}^{-\varepsilon} \frac{\varphi(t)}{t} dt + \int_{+\varepsilon}^{+\infty} \frac{\varphi(t)}{t} dt$$

Avec, on définit la transformée en signal analytique (SA) de tout signal x comme l'unique application $\mathcal{A}[x]$ telle que $\mathcal{F}[\mathcal{A}[x]] = 2\mathbbm{1}_{\mathbb{R}^+}\hat{x}$. Elle est donnée par la formule :

$$\mathcal{A}[x]: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & x(t) + i\mathcal{H}[x](t) \end{array}$$
 (1.32)

Plus généralement, tout signal dont le spectre est à support dans \mathbb{R}^+ sera dit analytique.

Pour mieux comprendre ce que fait la transformation en signal analytique, revenons sur la notion de fréquence instantanée pour les signaux réels.

A.2. * Interprétabilité de la transformée en SA ou le lien avec le théorème de Bedrosian

Pour définir l'amplitude et la phase instantanée d'un signaux réel, on par a nouveau du cas le plus simple. Si x est un signal pur, il va s'écrire :

$$x(t) = a\cos(2\pi\nu t + \varphi), \qquad a, \nu, \varphi \in \mathbb{R}$$

Pour généraliser cette écriture, il suffit donc de poser les amplitude et phase instantanée a et ϕ telles que :

$$x(t) = a(t)\cos(\phi(t))$$

Contrairement au cas complexe, ici la pair (a, ϕ) n'est pas unique et pour contraindre ce choix, on s'appuie sur la transformée $\mathcal{A}[x]$. Sachant que, dans le cas $x(t) \in \mathbb{R}$, la transformée de Hilbert est à valeur dans \mathbb{R} (intégrale d'une fonction réelle), on a :

$$\mathcal{A}[x](t) = a(t)e^{i\phi(t)} \implies \begin{cases} x(t) = \Re e\mathcal{A}[x] = a(t)\cos\phi(t) \\ \mathcal{H}[x](t) = \Im m\mathcal{A}[x] = a(t)\sin\phi(t) \end{cases}$$

D'où la définition :

DÉFINITION 8 (AMPLITUDE ET PHASE INSTANTANÉE) — L'amplitude instantanée a_x et la phase instantanée ϕ_x de tout signal x réel sont définies comme étant respectivement l'amplitude et la phase de $\mathcal{A}[x]$:

$$a_x = |\mathcal{A}[x]|$$
 $\phi_x = \arg(\mathcal{A}[x])$ (1.33)

De même, les impulsion et fréquence instantanée sont données par ϕ_x' et $^1/2\pi\phi_x'$.

Si un signal est présenté sous la forme $x = a \cos \phi$, rien n'implique que a et ϕ correspondent bel et bien à l'amplitude et la phase instantanée. Si ce n'est pas le cas, c'est que cette décomposition n'est "pas la bonne", en cela qu'elles ne s'interprètent pas comme l'on aimerait.

Aussi, quand bien même x peut toujours être écrit comme partie réel de sa transformé en SA, cette écriture n'est nécessairement toujours satisfaisante. Pour le comprendre, détaillons le cas où x s'écrit comme produit de deux signaux pures (fig. 1.9):

$$x_1(t) = \cos(2\pi\nu_1 t)\cos(2\pi\nu_2 t)$$

fig. 1.9 — Représentation graphique du signal x (rouge) avec $\nu_1 = 3$ et $\nu_2 = 0.1$. Sur l'image de gauche, avec signaux de fréquences pures (bleu et vert). Sur l'image de droite, avec son amplitude (bleu) et sa phase instantanée (vert). Les discontinuités de la phase sont dû à l'arrondi à 2π près de l'argument de $\mathcal{A}[x_1]$ et à la façon dont il est calculé lorsque le signal s'annule (mise à 0). Voir ici pour un graphique dynamique.

On montre sans mal 10 que si $\nu_1 \geqslant \nu_2$, alors la transformée en SA de x_1 s'écrit :

$$\mathcal{A}[x_1] = \cos(2\pi\nu_2 t) e^{2i\pi\nu_1 t}$$

Le signal $\mathcal{A}[x_1]$ n'est ici pas sous forme exponentielle à proprement parler puisque le cosinus peut être négatif (pour s'y ramener, il suffit de passer le cos en valeur absolue et d'ajouter π à l'argument lorsque nécessaire) mais l'avantage de cette forme est qu'elle fait clairement apparaître les fréquences $\nu_{1,2}$. En particulier, la fréquence instantanée du signal est la plus grandes des deux fréquences ν_1 et ν_2 . La plus petite, elle, se retrouve dans l'amplitude.

Ce résultat est rassurant en cela qu'il est plus naturel de voir le cosinus de basse fréquence comme modulant celui de haute fréquence que l'inverse comme on le voit sur la première image de la figure 1.9.

Aussi, en mettant les hautes fréquences du signal dans la fréquence instantanée, on s'assure de limiter les variations de l'amplitude. Cela apporte bien plus de contrainte en terme de décomposition (a_{x_1}, ϕ_{x_1}) , en cela qui si l'inverse étant vrai, alors toute les fréquences pourrait être envoyé dans l'amplitude, ce qui laisserait la phase invariante.

Cela étant dit, lorsque l'on fait varier ν_1 et ν_2 , le résultat n'est pas toujours si intuitif. C'est notamment le cas lorsque les deux deviennent de plus en plus proche :

Pour comprendre pourquoi l'amplitude ne fait pas ce qu'on attendrait d'elle, est introduit le théorème de Bedrosian :

Théorème de Bedrosian (1) — Dans sa formulation la plus générale, le théorème de Bedrosian énonce que si deux fonctions $f, g \in L^2(\mathbb{R})$ sont telles l'une des trois assertions suivantes est vraie :

•
$$\exists \lambda \in \mathbb{R}^+ \mid \operatorname{supp} \hat{f} \subset [-\lambda, +\infty[, \operatorname{supp} \hat{g} \subset [\lambda, +\infty[$$

 $^{10\}hat{x}_1$ est donné par 4 Diracs, en ne gardant que ce non nul sur \mathbb{R}^+ on obtient le spectre de $\mathcal{A}[x_1]$ et il reste plus qu'à inverser la transformée de Fourier.

fig. 1.10 — Idem que pour la figure 1.9 précédente, avec cette fois $\nu_1 = 1.5$ et $\nu_2 = 1.3$.

- $\exists \lambda \in \mathbb{R}^+ \mid \operatorname{supp} \hat{f} \subset]-\infty, \lambda], \operatorname{supp} \hat{g} \subset]-\infty, -\lambda]$
- $\exists (\lambda_1, \lambda_2) \in \mathbb{R}^+ \times \mathbb{R}^+ \setminus \{(0, 0)\} \mid \operatorname{supp} \hat{f} \subset [-\lambda_1, \lambda_2], \operatorname{supp} \hat{g} \subset \mathbb{R} \setminus [-\lambda_2, \lambda_1]$

alors la transformée de Hilbert de leur produit s'écrit (voir [17] pour une démonstration) :

$$\mathcal{H}\left[fg\right] = f\mathcal{H}\left[g\right] \tag{1.34}$$

Dans le cas d'un signal réel, suivant la définition 8 on peut écrire $x = a_x \cos \phi_x$. Comme a_x et $\cos \phi_x$ sont réelles, seule la troisième condition du théorème de Bedrosian peut être satisfaite pour peu que $\lambda_1 = \lambda_2$. Ainsi :

COROLLAIRE 1.1 — Toujours avec les même notations, si $a_x \in L^2(\mathbb{R})$, $\cos \phi_x \in L^2(\mathbb{R})$ et qu'il existe $\lambda \in \mathbb{R}^{+_*}$ tel que :

$$\operatorname{supp} \mathcal{F}[a_x] \subset [-\lambda, \lambda], \quad \operatorname{supp} \mathcal{F}[\cos \phi_x] \subset \mathbb{R} \setminus [-\lambda, \lambda]$$
(1.35)

Alors on a

$$\mathcal{H}[x] = a_x \mathcal{H}[\cos \phi_x] \qquad \text{et si } a_x(t) \neq 0, \qquad \mathcal{H}[\cos \phi_x](t) = \sin \phi_x(t) \qquad (1.36)$$

Pour interpréter ce corollaire, prenons un autre exemple : $x_2(t) = a(t)\cos(2\pi\nu_0 t)$. Sa transformé de Fourier est donnée par :

$$\hat{x}_2(\nu) = \hat{a}(\nu) * \frac{1}{2} \Big(\delta(\nu - \nu_0) + \delta(\nu + \nu_0) \Big)$$
$$= \frac{1}{2} \Big(\hat{a}(\nu + \nu_0) + \hat{a}(\nu - \nu_0) \Big)$$

Graphiquement, la transformé de Fourier de x_2 duplique le graphe de \hat{a} en $\pm \nu_0$ et somme les deux. La condition (1.35) du corollaire 1.1 demande alors que ν_0 soit choisie de telle sorte que :

$$\operatorname{supp} \mathcal{F}[a] \subset [-\nu_0, \nu_0]$$

C'est-à-dire qu'il n'y ait pas de chevauchement entre les deux courbes $\Gamma_{\pm}: \nu \longmapsto \hat{a}(\nu \mp \nu_0)$ (voir fig. 1.11 ci-dessous). Moralement, cela assure qu'en ne prenant que la partie positive du spectre de x_2 , l'on ne ramène pas avec une partie de $\hat{a}(\nu + \nu_0)$. Quant bien même cette explication est simpliste puisqu'ici ϕ est linaire, on peut voir que le phénomène est finalement très proche de celui d'aliasing.

Pour revenir sur l'exemple x_1 précédent, dans la seconde figure 1.10, l'amplitude ne colle plus à l'interprétation que l'on voudrait justement parce que la condition de Bedrosian n'est plus respecter (à savoir $\nu_1 \ge 2\nu_2$).

fig. 1.11 — Sur les deux graphiques sont représentés en vert \hat{a} et en violet \hat{x}_2 . Dans le premier cas l'hypothèse de Bedrosian et respectée mais pas dans le second.

Annexe B — Démonstrations de la ??

B.1. Formule de la phase totale (??)

On note
$$\mathcal{V} = \begin{pmatrix} \cos \chi \\ -i \sin \chi \end{pmatrix}$$
 et on a :

$$\Phi_{\text{tot}} \boldsymbol{x} = \left\langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \right\rangle = \left\langle a(t) e^{i\varphi(t)} R_{\theta(t)} \mathcal{V}(t), a(t_0) e^{i\varphi(t_0)} R_{\theta(t_0)} \mathcal{V}(t_0) \right\rangle$$

$$= a(t) e^{i\varphi(t)} a(t_0) e^{-i\varphi(t_0)} \left\langle R_{\theta(t)} \mathcal{V}(t), R_{\theta(t_0)} \mathcal{V}(t_0) \right\rangle$$

$$= a(t_0) a(t) e^{i(\varphi(t) - \varphi(t_0))} \left\langle R_{\theta(t) - \theta(t_0)} \mathcal{V}(t), \mathcal{V}(t_0) \right\rangle$$

Pour alléger les notations, on note $\Delta y = y(t) - y(t_0)$, $y_1 = y(t_0)$ et $y_2 = (t)$ pour $y = \varphi, \theta, \chi$. Le produit hermitien à droite s'écrit alors :

$$\left\langle R_{\Delta\theta} \mathcal{V}(t), \mathcal{V}(t_0) \right\rangle = \left(\cos \Delta\theta \cos \chi_2 + i \sin \Delta\theta \sin \chi_2 \right) \sin \Delta\theta \cos \chi_2 - i \cos \Delta\theta \sin \chi_2 \right) \left(\begin{matrix} \cos \chi_1 \\ i \sin \chi_1 \end{matrix} \right)$$

$$= \cos \chi_1 \left(\cos \Delta\theta \cos \chi_2 + i \sin \Delta\theta \sin \chi_2 \right) + i \sin \chi_1 \left(\sin \Delta\theta \cos \chi_2 - i \cos \Delta\theta \sin \chi_2 \right)$$

$$= \cos \Delta\theta \left(\cos \chi_1 \cos \chi_2 + \sin \chi_1 \sin \chi_2 \right) + i \sin \Delta\theta \left(\cos \chi_1 \sin \chi_2 + \sin \chi_1 \cos \chi_2 \right)$$

$$= \cos \Delta\theta \cos \Delta\chi + i \sin \Delta\theta \sin(\chi_1 + \chi_2)$$

D'où la phase totale:

$$\Phi_{\text{tot}}(\boldsymbol{x}) = \arg \left\langle \boldsymbol{x}(t), \boldsymbol{x}(t_0) \right\rangle = \arg \left(a(t_0)a(t)e^{i(\varphi(t)-\varphi(t_0))} \left(\cos \Delta \theta \cos \Delta \chi + i \sin \Delta \theta \sin(\chi_1 + \chi_2) \right) \right)$$
$$= \varphi(t) - \varphi(t_0) + \arg \left(\cos \Delta \theta \cos \Delta \chi + i \sin \Delta \theta \sin(\chi_1 + \chi_2) \right)$$

et l'argument restant s'écrit comme une arctangente, donnant :

$$\Phi_{\text{tot}}(\boldsymbol{x}) = \varphi(t) - \varphi(t_0) + \arctan \frac{\sin \Delta \theta \sin(\chi_1 + \chi_2)}{\cos \Delta \theta \cos \Delta \chi}$$
$$= \varphi(t) - \varphi(t_0) + \arctan \left(\tan \Delta \theta \frac{\sin(\chi_1 + \chi_2)}{\cos \Delta \chi}\right)$$

B.2. Formule de la phase dynamique (??)

Par souci de lisibilité, on note $\mathcal{U} = R_{\theta} \begin{pmatrix} \cos \chi \\ -i \sin \chi \end{pmatrix} = \begin{pmatrix} \cos \theta(t) \cos \chi(t) + i \sin \theta(t) \sin \chi(t) \\ \sin \theta(t) \cos \chi(t) - i \cos \theta(t) \sin \chi(t) \end{pmatrix}$, de sorte que la dérivée de $\mathbf{x} = ae^{i\varphi}\mathcal{U}$ s'écrive :

$$\dot{\boldsymbol{x}} = a'e^{i\varphi}\mathcal{U} + ia\varphi'e^{i\varphi}\mathcal{U} + ae^{i\varphi}\theta'\begin{pmatrix} -\sin\theta\cos\chi + i\cos\theta\sin\chi \\ \cos\theta\cos\chi + i\sin\theta\sin\chi \end{pmatrix} + ae^{i\varphi}\chi'\begin{pmatrix} -\cos\theta\sin\chi + i\sin\theta\cos\chi \\ -\sin\theta\sin\chi - i\cos\theta\cos\chi \end{pmatrix}$$

Les vecteurs des deux derniers membres s'expriment en fonction des composantes $U_{1,2}$ de U:

$$\begin{pmatrix} -\sin\theta\cos\chi + i\cos\theta\sin\chi \\ \cos\theta\cos\chi + i\sin\theta\sin\chi \end{pmatrix} = \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix} \qquad \begin{pmatrix} -\cos\theta\sin\chi + i\sin\theta\cos\chi \\ -\sin\theta\sin\chi - i\cos\theta\cos\chi \end{pmatrix} = i\begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}$$

Le produit hermitien $\langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle$ s'écrit alors :

$$\begin{split} \langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle &= \left\langle a' e^{i\varphi} \mathcal{U} + i a \varphi' e^{i\varphi} \mathcal{U} + a e^{i\varphi} \theta' \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix} + i a e^{i\varphi} \chi' \begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}, a e^{i\varphi} \mathcal{U} \right\rangle \\ &= \left\langle a' \mathcal{U} + i a \varphi' \mathcal{U} + a \theta' \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix} + i a \chi' \begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}, a \mathcal{U} \right\rangle \\ &= a a' \langle \mathcal{U}, \mathcal{U} \rangle + i a^2 \varphi' \langle \mathcal{U}, \mathcal{U} \rangle + a^2 \theta' \left\langle \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix}, \mathcal{U} \right\rangle + i a^2 \chi' \left\langle \begin{pmatrix} \overline{\mathcal{U}}_2 \\ -\overline{\mathcal{U}}_1 \end{pmatrix}, \mathcal{U} \right\rangle \end{split}$$

où les deux derniers termes donnent :

$$\left\langle \begin{pmatrix} -\mathcal{U}_2 \\ \mathcal{U}_1 \end{pmatrix}, \mathcal{U} \right\rangle = -\mathcal{U}_2 \overline{\mathcal{U}}_1 + \mathcal{U}_1 \overline{\mathcal{U}}_2$$

$$= 2i \Im m \left(\mathcal{U}_1 \overline{\mathcal{U}}_2 \right)$$

$$= 2i \Im m \left(\left(\cos \theta \cos \chi + i \sin \theta \sin \chi \right) \left(\sin \theta \cos \chi + i \cos \theta \sin \chi \right) \right)$$

$$= 2i \left(\cos^2 \theta \cos \chi \sin \chi + \sin^2 \theta \sin \chi \cos \chi \right)$$

$$= 2i \cos \chi \sin \chi$$

$$= i \sin 2\chi$$

$$\left\langle \left(\overline{\mathcal{U}}_2 \atop -\overline{\mathcal{U}}_1 \right), \mathcal{U} \right\rangle = \overline{\mathcal{U}}_2 \overline{\mathcal{U}}_1 - \overline{\mathcal{U}}_1 \overline{\mathcal{U}}_2 = 0$$

D'où, sachant que $\|x\|^2 = a^2$ et $\|\mathcal{U}\| = 1$, la formule :

$$\begin{split} \frac{\Im m \langle \dot{\boldsymbol{x}}, \boldsymbol{x} \rangle}{\|\boldsymbol{x}\|^2} &= \frac{1}{a^2} \Im m \Big(a a' \langle \mathcal{U}, \mathcal{U} \rangle + i a^2 \varphi' \langle \mathcal{U}, \mathcal{U} \rangle + i a^2 \theta' \sin 2\chi \Big) \\ &= \frac{1}{a^2} \Big(a^2 \varphi' \|\mathcal{U}\|^2 + a^2 \theta' \sin 2\chi \Big) \\ &= \varphi' + \theta' \sin 2\chi \end{split}$$

Annexe C * Lien entre Poincaré et Bloch (EN VRAC)

Un paquet de calculs, comme pour l'annexe A, il faudra que je le remette en forme , remette du contexte et que j'enlève des choses.

C.1. * Lien entre les deux types de signaux

Soit le signal:

$$\boldsymbol{x}_B(\varphi,\theta,\chi) = e^{i\varphi} \begin{pmatrix} \cos\chi/2 \\ e^{i\theta}\sin\chi/2 \end{pmatrix}$$

Pour le réécrire en terme de vecteur AM-FM-PM, il faut faire apparaître une matrice de rotation, matrice qui est diagonalisable dans $\mathbb{C}^{n\times n}$ via la relation :

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} = 2 \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

Cela permet d'écrire :

$$\begin{aligned} \boldsymbol{x}_{B}(\varphi,\theta,\chi) &= e^{i\varphi} e^{i\theta/2} \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix} \begin{pmatrix} \cos\chi/2 \\ \sin\chi/2 \end{pmatrix} \\ &= \frac{1}{2} e^{i\varphi} e^{i\theta/2} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} \begin{pmatrix} \cos\theta/2 & -\sin\theta/2 \\ \sin\theta/2 & \cos\theta/2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} \cos\chi/2 \\ \sin\chi/2 \end{pmatrix} \\ &= \frac{\sqrt{2}}{2} e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \cos\chi/2 - \sin\chi/2 \\ i(\cos\chi/2 + \sin\chi/2) \end{pmatrix} & \text{où} \quad U = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} \in \mathrm{U}(2) \end{aligned}$$

Ensuite, pour réduire les sommes dans le vecteur de droite, on a rappel les formules :

$$\cos\left(\frac{\pi}{2} \pm \alpha\right) = \frac{\sqrt{2}}{2} \left(\cos\alpha \mp \sin\alpha\right) \qquad \qquad \sin\left(\frac{\pi}{2} \pm \alpha\right) = \frac{\sqrt{2}}{2} \left(\cos\alpha \pm \sin\alpha\right)$$

On a donc deux choix pour chaque composante du vecteur mais celle avec un signe moins son préférable sachant que :

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$$
 $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$

On choisi donc la seconde formule pour la première composante et la premier pour la seconde composante, donnant :

$$\begin{split} \boldsymbol{x}_{B}(\varphi,\theta,\chi) &= \frac{\sqrt{2}}{2} e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \cos\chi/2 - \sin\chi/2 \\ i \left(\cos\chi/2 + \sin\chi/2\right) \end{pmatrix} \\ &= e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \sin\left(\frac{\pi}{2} - \chi/2\right) \\ i\cos\left(\frac{\pi}{2} - \chi/2\right) \end{pmatrix} \\ &= e^{i(\varphi+\theta/2)} U R_{\theta/2} \begin{pmatrix} \cos\chi/2 \\ i\sin\chi/2 \end{pmatrix} \end{split}$$

Ne reste alors plus qu'à ajuster les signes pour obtenir une écriture de signal x_P AM-FM-PM :

$$\mathbf{x}_{B}(\varphi, \theta, \chi) = e^{i(\varphi + \theta/2)} U R_{\theta/2} \begin{pmatrix} \cos \chi/2 \\ i \sin \chi/2 \end{pmatrix}$$
$$= U e^{i(\varphi + \theta/2)} R_{\theta/2} \begin{pmatrix} \cos(-\chi/2) \\ -i \sin(-\chi/2) \end{pmatrix}$$

En somme:

$$\boldsymbol{x}_{B}(\psi,\alpha,\beta) = U\boldsymbol{x}_{P}(\psi+\alpha/2,\alpha/2,-\beta/2) \qquad \boldsymbol{x}_{P}(\varphi,\theta,\chi) = U^{\dagger}\boldsymbol{x}_{B}(\varphi-\theta,2\theta,-2\chi)$$
(1.37)

C.2. * Lien entre les projections

Avec la formule (1.37) ci-dessus, on a:

$$\rho_B(\alpha, \beta) = U \rho_P(\alpha/2, -\beta/2) U^{\dagger} \qquad \qquad \rho_P(\theta, \chi) = U^{\dagger} \rho_B(2\theta, -2\chi) U \tag{1.38}$$

Mais on a aussi, dans la base Pauli:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

les expressions:

$$\rho_P(\theta, \chi) = \frac{1}{2} \Big(id + \sin(2\theta)\cos(2\chi)\sigma_1 - \sin(2\chi)\sigma_2 + \cos(2\theta)\cos(2\chi)\sigma_3 \Big)$$

$$\rho_B(\alpha, \beta) = \frac{1}{2} \Big(id + \cos(\alpha)\sin(\beta)\sigma_1 + \sin(\alpha)\sin(\beta)\sigma_2 + \cos(\beta)\sigma_3 \Big)$$

Pour les lier, on pose $2\theta = \pi/2 - \alpha$ et $2\chi = \pi/2 - \beta$, donnant :

$$\rho_P(\theta, \chi) - id = \sin(\pi/2 - \alpha)\cos(\pi/2 - \beta)\sigma_1 - \sin(\pi/2 - \beta)\sigma_2 + \cos(\pi/2 - \alpha)\cos(\pi/2 - \beta)\sigma_3$$
$$= \cos(\alpha)\sin(\beta)\sigma_1 - \cos(\beta)\sigma_2 + \sin(\alpha)\sin(\beta)\sigma_3$$

Ce qui sous forme matricielle se réécrit :

$$\begin{pmatrix} \sin(2\theta)\cos(2\chi) \\ -\sin(2\chi) \\ \cos(2\theta)\cos(2\chi) \end{pmatrix} = \begin{pmatrix} \cos(\alpha)\sin(\beta) \\ -\cos(\beta) \\ \sin(\alpha)\sin(\beta) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\alpha)\sin(\beta) \\ \sin(\alpha)\sin(\beta) \\ \cos(\beta) \end{pmatrix}$$

Donc la passage de ρ_B à ρ_S se fait via un changement et d'angle et une rotation de $\pi/2$ autour de σ_1 .

Même calcul, cette fois, en partant de (1.37) :

$$\begin{aligned} 2\rho_P(\theta,\chi) &= 2U^{\dagger}\rho_B(2\theta,-2\chi)U \\ &= U^{\dagger}\Big(id + \cos(2\theta)\sin(-2\chi)\sigma_1 + \sin(2\theta)\sin(-2\chi)\sigma_2 + \cos(-2\chi)\sigma_3\Big)U \\ &= id - \cos(2\theta)\sin(2\chi)U^{\dagger}\sigma_1U - \sin(2\theta)\sin(2\chi)U^{\dagger}\sigma_2U + \cos(2\chi)U^{\dagger}\sigma_3U \end{aligned}$$

avec:

$$U^{\dagger} \sigma_{1} U = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} = -\sigma_{3}$$

$$U^{\dagger} \sigma_{2} U = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} = -\sigma_{1}$$

$$U^{\dagger} \sigma_{3} U = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & -2i \\ 2i & 0 \end{pmatrix} = \sigma_{2}$$

Qui donne:

$$\begin{aligned} 2\rho_P(\theta,\chi) &= id - \cos(2\theta)\sin(2\chi)U^{\dagger}\sigma_1 U - \sin(2\theta)\sin(2\chi)U^{\dagger}\sigma_2 U + \cos(2\chi)U^{\dagger}\sigma_3 U \\ &= id + \cos(2\theta)\sin(-2\chi)\sigma_3 + \sin(2\theta)\sin(-2\chi)\sigma_1 + \cos(-2\chi)\sigma_2 \\ &= id + \sin(2\theta)\sin(2\chi)\sigma_1 + \cos(2\chi)\sigma_2 + \cos(2\theta)\sin(2\chi)\sigma_3 \end{aligned}$$

Le tout reste cohérent et avec les notations :

$$w_P(\theta, \chi) = \begin{pmatrix} \sin(\theta)\cos(\chi) \\ -\sin(\chi) \\ \cos(\theta)\cos(\chi) \end{pmatrix} \qquad w_B(\alpha, \beta) = \begin{pmatrix} \cos(\alpha)\sin(\beta) \\ \sin(\alpha)\sin(\beta) \\ \cos(\beta) \end{pmatrix}$$

Cela devient :

$$w_P(2\theta, 2\chi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} w_B((\pi/2 - \theta), (\pi/2 - \chi))$$

C.3. * Transformation de phases

Première chose, le produit hermitien est invariant par $U \in U(2)$ (si si). Ainsi :

$$\langle U \boldsymbol{x}(t_0), U \boldsymbol{x}(t) \rangle = \langle \boldsymbol{x}(t_0), \boldsymbol{x}(t) \rangle$$

 $\langle (U \boldsymbol{x})', U \boldsymbol{x} \rangle = \langle U \boldsymbol{x}', U \boldsymbol{x} \rangle = \langle \boldsymbol{x}', \boldsymbol{x} \rangle$

Ainsi, en utilisant les formules (??) et (1.37), on a :

$$\Phi_{\text{tot}}(\boldsymbol{x}_{B}(\psi,\alpha,\beta)) = \Phi_{\text{tot}}(\boldsymbol{x}_{P}(\psi+\alpha/2,\alpha/2,-\beta/2))
= (\psi+\alpha/2)(t) - (\psi+\alpha/2)(t_{0}) - \arctan\left(\tan\frac{\Delta\theta}{2}\frac{\tan 2\beta(t_{0}) + \tan 2\chi(t)}{1 + \tan 2\beta(t_{0})\tan 2\beta(t)}\right)$$

Mais avec un calcul immédiat, on a aussi :

aoerina qrqobne

Avec la formule de la phase dynamique dans Poincaré (??), on a :

$$\Phi_{\text{dyn}}\left(\boldsymbol{x}_{B}(\psi,\alpha,\beta)\right) = \Im m \int_{t_{0}}^{t} \left\langle \frac{d}{ds} \boldsymbol{x}_{B}(\psi,\alpha,\beta), \boldsymbol{x}_{B}(\psi,\alpha,\beta) \right\rangle ds$$

$$= \Im m \int_{t_{0}}^{t} \left\langle \frac{d}{ds} \boldsymbol{x}_{P}(\psi + \alpha/2, \alpha/2, -\beta/2), \boldsymbol{x}_{P}(\psi + \alpha/2, \alpha/2, -\beta/2) \right\rangle ds$$

$$= \Phi_{\text{dyn}}\left(\boldsymbol{x}_{P}(\psi + \alpha/2, \alpha/2, -\beta/2)\right)$$

$$= \psi(t) + \alpha(t)/2 - \left(\psi(t_{0}) + \alpha(t_{0})/2\right) - \int_{t_{0}}^{t} \frac{\alpha'(s)}{2} \sin\left(-2\beta(s)/2\right) ds$$

$$= \psi(t) - \psi(t_{0}) + \frac{\alpha(t) - \alpha(t_{0})}{2} + \frac{1}{2} \int_{t_{0}}^{t} \alpha'(s) \sin\beta(s) ds$$

Mais dans le même temps, si on calcul la phase dynamique de \boldsymbol{x}_B , on tombe cette fois sur :

$$\Phi_{\text{dyn}}\left(\boldsymbol{x}_{B}(\psi,\alpha,\beta)\right) = \psi(t) - \psi(t_{0}) + \int_{t_{0}}^{t} \alpha'(s) \frac{1 - \cos\beta(s)}{2} ds$$
$$= \psi(t) - \psi(t_{0}) + \frac{\alpha(t) - \alpha(t_{0})}{2} - \frac{1}{2} \int_{t_{0}}^{t} \alpha'(s) \cos\beta(s) ds$$

Auquel cas:

$$\Phi_{\text{dyn}}\left(\boldsymbol{x}_{S}(\varphi,\theta,\chi)\right) = \Phi_{\text{dyn}}\left(\boldsymbol{x}_{B}(\varphi-\theta,2\theta,-2\chi)\right)
= \varphi(t) - \theta(t) - \left(\varphi(t_{0}) - \theta(t_{0})\right) + \frac{1}{2} \int_{t_{0}}^{t} 2\theta'(1-\cos 2\chi)ds
= \varphi(t) - \varphi(t_{0}) - \left(\theta(t) - \theta(t_{0})\right) + \int_{t_{0}}^{t} \theta'(1-\cos 2\chi)ds
= \varphi(t) - \varphi(t_{0}) - \left(\theta(t) - \theta(t_{0})\right) + \left(\theta(t) - \theta(t_{0})\right) - \int_{t_{0}}^{t} \theta'\cos 2\chi ds
= \varphi(t) - \varphi(t_{0}) - \int_{t_{0}}^{t} \theta'\cos 2\chi ds$$

Ce qui voudrait dire que :

$$\Phi_{\text{dyn}}\left(\boldsymbol{x}_{S}(\varphi,\theta,\chi)\right) = \varphi(t) - \varphi(t_{0}) + \int_{t_{0}}^{t} \theta' \sin 2\chi ds = \varphi(t) - \varphi(t_{0}) - \int_{t_{0}}^{t} \theta' \cos 2\chi ds$$

... bizarre

Annexes de la partie II

Annexe A — * Variété différentielle complexe

Pas sur que je la garde cette annexe, c'est beaucoup de math pour pas grande chose... enfin c'est plus rigoureux mais pas sur que ca serve le propos vraiment.

Pour plus de détails, voir [14, 2].

 \mathcal{M} sera une variété différentielle complexe si elle satisfait les propriétés ci-dessus où \mathbb{R}^n est remplacé par \mathbb{C}^n et où la condition de difféomorphisme est remplacée par la condition d'holomorphisme.

Une application $f:\mathbb{C}^n\longrightarrow\mathbb{C}^n$ étant holomorphe si chacune de ses composantes vérifie l'équation de Cauchy-Riemann :

$$\forall x, y \in \mathbb{R}^n, \ \forall \mu, \qquad \frac{\partial f}{\partial y^{\mu}}(x+iy) = i \frac{\partial f}{\partial x^{\mu}}(x+iy)$$

Les fonctions holomorphes étant automatiquement C^{∞} , les variétés différentielles complexes sont toujours lisse, c'est-à-dire C^{∞} . Aussi, \mathcal{M} est dite de dimension complexe n et dimension (réel) 2n, notés :

$$\dim_{\mathbb{C}}(\mathcal{M}) := n \qquad \qquad \dim_{\mathbb{R}}(\mathcal{M}) := \dim(\mathcal{M}) = 2n \qquad (1.39)$$

Ensuite, pour le dire rapidement, la structure complexe de \mathcal{M} permet de séparer les espaces tangents en deux sous espaces. Pour ce faire, on commence par noter qu'en tout point $p \in \mathcal{M}$ de coordonnée $z^{\nu} = x^{\nu} + iy^{\nu}$, l'espace tangent $T_{\nu}\mathcal{M}$, vu comme variété réelle, admet une base :

$$T_p \mathcal{M} = \operatorname{Vec} \left\{ \frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial y^n} \right\}$$
 (1.40)

Plus tôt que de se basé sur les x^{μ} et y^{μ} pour séparer les $T_p \mathcal{M}$, on définit sur ces derniers un tenseur J_p de type (1,1) tel que :

$$J_{p}\frac{\partial}{\partial x^{\mu}} = \frac{\partial}{\partial y^{\mu}} \qquad \qquad J_{p}\frac{\partial}{\partial y^{\mu}} = -\frac{\partial}{\partial x^{\mu}} \qquad (1.41)$$

Ce tenseur est l'équivalent de la multiplication par $\pm i$ et le fait que \mathcal{M} soit complexe assure qu'il soit défini globalement, *i.e.* sur $T\mathcal{M}$. Il est diagonaliseable dans la base :

$$\partial_{\mu} = \frac{\partial}{\partial z^{\mu}} := \frac{1}{2} \left(\frac{\partial}{\partial x^{\mu}} - i \frac{\partial}{\partial y^{\mu}} \right) \qquad \qquad \partial_{\bar{\mu}} = \frac{\partial}{\partial \bar{z}^{\mu}} := \frac{1}{2} \left(\frac{\partial}{\partial x^{\mu}} + i \frac{\partial}{\partial y^{\mu}} \right)$$
(1.42)

Ainsi en fonction de la base ((1.39) ou (1.42)), J_p va s'écrire :

$$J_p = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \qquad J_p = \begin{pmatrix} iI_n & 0 \\ 0 & -iI_n \end{pmatrix}$$
 (1.43)

Finalement, $T\mathcal{M}$ peut être séparé en deux sous-espaces engendré respectivement par les ∂_{μ} et $\partial_{\bar{\nu}}$. On parle de vecteur holomorphe et anti-holomorphe et on note :

$$T_{p}\mathcal{M}^{+} = \operatorname{Vec}\left\{\partial_{\mu} \mid 1 \leqslant \mu \leqslant n\right\} \qquad T_{p}\mathcal{M}^{-} = \operatorname{Vec}\left\{\partial_{\bar{\mu}} \mid 1 \leqslant \mu \leqslant n\right\}$$
 (1.44)

forme kahlerienne:

$$\Omega = g_{\mu \overline{\alpha}} J^{\overline{\alpha}}_{\overline{\nu}} dw^{\mu} \wedge d\overline{w}^{\nu} \tag{1.45}$$

sur $P\mathbb{C}^n$:

$$\Omega(w) = i \frac{(1 + w^{\alpha} \overline{w}_{\alpha}) \delta_{\mu\nu} - w_{\mu} \overline{w}_{\nu}}{(1 + w^{\alpha} \overline{w}_{\alpha})^{2}} dw^{\mu} \wedge d\overline{w}^{\nu}$$

Annexe B — Démonstration des résultats sous-section 2.2.2

B.1. Formule pour Φ_{geo} sur \mathbb{PC}^n

Ici γ est supposé cyclique et au dessus d'une unique carte U_i (par commodité), avec :

$$\gamma = h_i(\rho, e^{i\theta}) = \sigma_i(\rho)e^{i\theta}$$

Avec ces notations, la phase totale de γ va s'écrire :

$$\Phi_{\text{tot}}(\gamma, t_0, t) = t(\gamma(t), \gamma(t_0)) = \theta(t) - \theta(t_0)$$

Pour ce qui est de la phase dynamique, on comment par calculer la connexion le long de γ , ce qui nécessite d'écrire :

$$\dot{\gamma} = \frac{d}{dt} \Big(\sigma_i(\rho) e^{i\theta} \Big) = \sigma_{i*}(\dot{\rho}) e^{i\theta} + i\theta' \sigma_i(\rho) e^{i\theta}$$

$$= \sigma_{i*}(\dot{\rho}) e^{i\theta} + (i\theta')^{\#} \Big(\sigma_i(\rho) e^{i\theta} \Big) \qquad \text{par d\'efinition de } \#, \ eq. \ (1.14)$$

Avec, et sachant les propriétés de ω (eqs. (1.15) et (1.16), def. 5), on a :

$$i\omega_{\gamma}(\dot{\gamma}) = i\omega_{\sigma_{i}(\rho)e^{i\theta}} \Big(\sigma_{i*}(\dot{\rho})e^{i\theta} + (i\theta')^{\#} \Big(\sigma_{i}(\rho)e^{i\theta} \Big) \Big)$$
$$= \omega_{\sigma_{i}(\rho)e^{i\theta}} \Big(\sigma_{i*}(\dot{\rho})e^{i\theta} \Big) + \omega_{\sigma_{i}(\rho)e^{i\theta}} \Big((i\theta')^{\#} \Big(\sigma_{i}(\rho)e^{i\theta} \Big) \Big)$$
$$= e^{-i\theta} \omega_{\sigma_{i}(\rho)} \Big(\sigma_{i*}(\dot{\rho}) \Big) e^{i\theta} + i\theta'$$

D'où la phase dynamique (eq. (1.24)):

$$\Phi_{\rm dyn}(\gamma) = \frac{1}{i} \int_{t_0}^t \omega_{\gamma(s)}(\dot{\gamma}(s)) ds = \frac{1}{i} \int_{t_0}^t \left(\mathcal{A}_{i\,\rho(s)}(\dot{\rho}(s)) + i\theta'(s) \right) ds$$
$$= -i \oint \mathcal{A}_{i\,\rho}(\dot{\rho}) + \theta(t) - \theta(t_0)$$

et par conséquent la phase géométrique :

$$\begin{split} \Phi_{\text{geo}}(\gamma) &= \Phi_{\text{tot}}(\gamma) - \Phi_{\text{dyn}}(\gamma) \\ &= \theta(t) - \theta(t_0) - \left(-i \oint \mathcal{A}_{i\rho}(\dot{\rho}) + \theta(t) - \theta(t_0) \right) \\ &= i \oint \mathcal{A}_{i\rho}(\dot{\rho}) \end{split}$$

Maintenant, pour pouvoir appliquer le théorème de Stokes, il faut s'assurer que la variété étudiée est orientable, ce qui est le cas de toute les variétés complexes [14, sec. 8.4.2] (y compris $P\mathbb{C}^n$). Pour vu que ρ soit suffisamment régulière, le théorème s'applique et :

$$\oint \mathcal{A}_i = \iint_{\Sigma} d\mathcal{A}_i$$

avec Σ une surface de $\mathbb{P}\mathbb{C}^n$ de bord ρ .

B.2. Dérivation de Φ_{geo} en tant qu'aire de \mathbb{PC}^n

Par définition, sur l'ouvert U_i , la 1-forme de connexion local est définie par :

$$\mathcal{A}_i = \sigma_i^* \omega = \omega \circ \sigma_{i*}$$

Soit, $\forall w \in U_i, \ \forall \boldsymbol{v} \in T_w \mathbf{P} \mathbb{C}^n$:

$$\mathcal{A}_i(w)\mathbf{v} = i\Im m\langle \sigma_{i*}(\mathbf{v}), \sigma_i(w)\rangle$$

où les σ_{i*} s'écrivent, $\forall \mu$:

$$\mu \neq i: \qquad \sigma_i(w)^{\mu} = \frac{w^{\mu}}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} \quad \Longrightarrow \quad \sigma_{i*}(w)^{\mu} = \frac{dw^{\mu}}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} - \frac{w^{\mu}}{2(1 + w^{\alpha}\overline{w}_{\alpha})^{3/2}} 2\Re e(w^{\alpha}d\overline{w}_{\alpha})$$
$$= \frac{1}{\sqrt{1 + w^{\alpha}\overline{w}_{\alpha}}} \left(dw^{\mu} - w^{\mu} \frac{\Re e(w^{\alpha}d\overline{w}_{\alpha})}{1 + w^{\alpha}\overline{w}_{\alpha}} \right)$$

$$\mu = i:$$
 $\sigma_i(w)^{\mu} = \frac{1}{\sqrt{1 + w^{\alpha} \overline{w_{\alpha}}}} \implies \sigma_{i*}(w)^{\mu} = -\frac{\Re e(w^{\alpha} d\overline{w_{\alpha}})}{(1 + w^{\alpha} \overline{w_{\alpha}})^{3/2}}$

Ce qui donne 11 :

$$\begin{split} \mathcal{A}_{i}(w) &= i \Im m \left\langle \sigma_{i*}(w), \sigma_{i}(w) \right\rangle \\ &= i \Im m \left\langle \frac{1}{\sqrt{1 + w^{\alpha} \overline{w}_{\alpha}}} \left((dw^{0}, \cdots, 0, \cdots, dw^{n}) - (w^{0}, \cdots, 1, \cdots, w^{n}) \frac{\Re e(w^{\alpha} d\overline{w}_{\alpha})}{1 + w^{\alpha} \overline{w}_{\alpha}} \right), \frac{(w^{0}, \cdots, 1, \cdots, w^{n})}{\sqrt{1 + w^{\alpha} \overline{w}_{\alpha}}} \right\rangle \\ &= \frac{1}{1 + w^{\alpha} \overline{w}_{\alpha}} i \Im m \left(\left\langle (dw^{0}, \cdots, 0, \cdots, dw^{n}), (w^{0}, \cdots, 1, \cdots, w^{n}) \right\rangle \right. \\ &\left. - \frac{\Re e(w^{\alpha} d\overline{w}_{\alpha})}{1 + w^{\alpha} \overline{w}_{\alpha}} \left\langle (w^{0}, \cdots, 1, \cdots, w^{n}), (w^{0}, \cdots, 1, \cdots, w^{n}) \right\rangle \right) \\ &= \frac{1}{1 + w^{\alpha} \overline{w}_{\alpha}} i \Im m \left(dw^{\mu} \overline{w}_{\mu} - \frac{\Re e(w^{\alpha} d\overline{w}_{\alpha})}{1 + w^{\alpha} \overline{w}_{\alpha}} (w^{\nu} \overline{w}_{\nu} + 1) \right) \end{split}$$

Enfin, sachant que le second membre dans la partie imaginaire est réel, il vient :

$$\mathcal{A}_{i}(w) = \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}} i\Im\left(dw^{\mu}\overline{w}_{\mu} - \frac{\Re\left(w^{\alpha}d\overline{w}_{\alpha}\right)}{1 + w^{\alpha}\overline{w}_{\alpha}}\left(w^{\nu}\overline{w}_{\nu} + 1\right)\right) = \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}} i\Im\left(dw^{\mu}\overline{w}_{\mu}\right)$$

$$= \frac{1}{1 + w^{\alpha}\overline{w}_{\alpha}} \frac{dw^{\mu}\overline{w}_{\mu} - d\overline{w}^{\nu}w_{\nu}}{2}$$

Maintenant, pour avoir les coefficients de dA_i , il faut calculer respectivement :

$$\partial_{\lambda} \mathcal{A}_{i \,\mu} = \partial_{\lambda} \frac{\overline{w}_{\mu}}{2(1 + w^{\alpha} \overline{w}_{\alpha})}$$

$$= \frac{\overline{w}_{\mu} \overline{w}_{\lambda}}{2(1 + w^{\alpha} \overline{w}_{\alpha})^{2}}$$

$$= \frac{1}{2(1 + w^{\alpha} \overline{w}_{\alpha})} \left(\delta_{\lambda \mu} - \frac{\overline{w}_{\mu} w_{\lambda}}{1 + w^{\alpha} \overline{w}_{\alpha}} \right)$$

$$= \frac{1}{2} g_{\mu \overline{\lambda}}$$

$$\begin{split} \partial_{\lambda} \mathcal{A}_{i\,\overline{\nu}} &= \partial_{\lambda} \frac{-w_{\nu}}{2(1+w^{\alpha}\overline{w}_{\alpha})} \\ &= \frac{-1}{2(1+w^{\alpha}w_{\alpha})} \left(\delta_{\lambda\nu} - \frac{w_{\nu}\overline{w}_{\lambda}}{1+w^{\alpha}\overline{w}_{\alpha}}\right) \\ &= -\frac{1}{2}g_{\lambda\overline{\nu}} \end{split}$$

$$\partial_{\overline{\lambda}} \mathcal{A}_{i\,\overline{\nu}} &= \partial_{\overline{\lambda}} \frac{-w_{\nu}}{2(1+w^{\alpha}\overline{w}_{\alpha})} \\ &= -\frac{w_{\nu}w_{\lambda}}{2(1+w^{\alpha}\overline{w}_{\alpha})^{2}} \end{split}$$

¹¹Dans le formule ci-dessous, les 0 et 1 sont placés à la i^{eme} coordonnées.

On remarque alors les coefficient $dA_{i\lambda\mu}$ et $dA_{i\overline{\lambda\mu}}$ sont symétriques, ce qui fait qu'avec le produit extérieur il s'annule. Par exemple :

$$(d\mathcal{A}_i)_{\lambda\mu} dw^{\lambda} \wedge dw^{\mu} = \frac{\overline{w}_{\mu} \overline{w}_{\lambda}}{2(1 + w^{\alpha} \overline{w}_{\alpha})^2} dw^{\lambda} \otimes dw^{\mu} - \frac{\overline{w}_{\mu} \overline{w}_{\lambda}}{2(1 + w^{\alpha} \overline{w}_{\alpha})^2} dw^{\mu} \otimes dw^{\lambda} = 0$$

Ce qui mène finalement à :

$$\begin{split} d\mathcal{A}_i &= \frac{1}{2} g_{\mu\overline{\lambda}} d\overline{w}^\lambda \wedge dw^\mu - \frac{1}{2} g_{\lambda\overline{\nu}} dw^\lambda \wedge d\overline{w}^\nu \\ &= -\frac{1}{2} g_{\mu\overline{\nu}} dw^\mu \wedge d\overline{w}^\nu - \frac{1}{2} g_{\mu\overline{\nu}} dw^\mu \wedge d\overline{w}^\nu \qquad \text{par anti-symétrie du produit extérieur} \\ &= -g_{\mu\overline{\nu}} dw^\mu \wedge d\overline{w}^\nu \\ &= i\Omega_{\mu\overline{\nu}} dw^\mu \wedge d\overline{w}^\nu \end{split}$$

B.3. * Idem que B.2. depuis \mathbb{S}^n (plus simple, mais j'arrive à finir le calcul)

Cela étant dit, plutôt que de faire le calcul dans $P\mathbb{C}^n$, qui demanderait de calculer les $\mathcal{A}_i = \sigma_i^* \omega$, le plus simple est encore de se ramener dans \mathbb{S}^n :

$$\oint \mathcal{A}_{i\,\rho}(\dot{\rho}) = \oint \omega_{\sigma_i(\rho)} \left(\sigma_{i*}(\dot{\rho})\right)$$

Où, en notant $z=\sigma_i(\rho)^\mu$ et $dz=\sigma_{i*}(\dot{\rho})$, ω s'écrit en coordonnées locales :

$$\omega_z(dz) = i\Im m\langle dz, z\rangle = \frac{1}{2} \Big(\langle dz, z\rangle - \langle z, dz\rangle \Big)$$
$$= \frac{1}{2} \Big(\delta_{\mu\nu} \overline{z}^{\nu} dz^{\mu} - \delta_{\mu\nu} z^{\mu} d\overline{z}^{\nu} \Big)$$
$$= \frac{1}{2} \Big(\overline{z}_{\nu} dz^{\mu} - z_{\nu} d\overline{z}^{\nu} \Big)$$

Donc ω à pour coefficient :

$$\omega_{\mu} = \frac{1}{2}\overline{z}_{\mu} \qquad \qquad \omega_{\overline{\nu}} = -\frac{1}{2}z_{\nu} = -\overline{\omega_{\nu}} \qquad (1.46)$$

Ce qui donne pour dérivée extérieure :

$$d\omega = \partial_{\lambda}\omega_{\mu} dz^{\lambda} \wedge dz^{\mu} + \partial_{\lambda}\omega_{\overline{\nu}} dz^{\lambda} \wedge d\overline{z}^{\nu} + \partial_{\overline{\lambda}}\omega_{\mu} d\overline{z}^{\lambda} \wedge dz^{\mu} + \partial_{\overline{\lambda}}\omega_{\overline{\nu}} d\overline{z}^{\lambda} \wedge d\overline{z}^{\nu}$$

avec:

$$\begin{split} \partial_{\lambda}\omega_{\mu} &= \frac{1}{2}\partial_{\lambda}\overline{z}_{\mu} = 0 \\ \partial_{\overline{\lambda}}\omega_{\mu} &= \frac{1}{2}\partial_{\overline{\lambda}}\overline{z}_{\mu} = \delta_{\lambda\mu} \end{split} \qquad \qquad \partial_{\lambda}\omega_{\overline{\nu}} &= -\frac{1}{2}\partial_{\lambda}z_{\nu} = -\delta_{\lambda\nu} \\ \partial_{\overline{\lambda}}\omega_{\mu} &= \frac{1}{2}\partial_{\overline{\lambda}}\overline{z}_{\mu} = \delta_{\lambda\mu} \end{split}$$

D'où le résultat :

$$\begin{split} d\omega &= \partial_{\lambda}\omega_{\mu}\,dz^{\lambda}\wedge dz^{\mu} + \partial_{\lambda}\omega_{\overline{\nu}}\,dz^{\lambda}\wedge d\overline{z}^{\nu} + \partial_{\overline{\lambda}}\omega_{\mu}\,d\overline{z}^{\lambda}\wedge dz^{\mu} + \partial_{\overline{\lambda}}\omega_{\overline{\nu}}\,d\overline{z}^{\lambda}\wedge d\overline{z}^{\nu} \\ &= -\frac{1}{2}\delta_{\lambda\nu}\,dz^{\lambda}\wedge d\overline{z}^{\nu} + \frac{1}{2}\delta_{\lambda\mu}\,d\overline{z}^{\lambda}\wedge dz^{\mu} \\ &= -\frac{1}{2}\Big(\delta_{\lambda\nu}\,dz^{\lambda}\wedge d\overline{z}^{\nu} + \delta_{\mu\lambda}\,dz^{\mu}\wedge d\overline{z}^{\lambda}\Big) & \text{par anti-symétrique de } \wedge \\ &= -\delta_{\mu\nu}\,dz^{\mu}\wedge d\overline{z}^{\nu} & \text{par simple changement de notations} \end{split}$$

Enfin, comme π est une submersion riemannienne, l'on retombe sur :

$$d\mathcal{A}_i(w) = d\sigma_{i*}\omega_w = -\delta_{\mu\nu}\,dz^{\mu}\wedge d\overline{z}^{\nu} = -g_{\mu\overline{\nu}}(w)dw^{\mu}\wedge d\overline{w}^{\nu} = i\Omega(w)$$

Annexe C — Géodésique de \mathbb{PC}^n

C.1. Métrique relevée dans les espaces horizontaux

D'abord les vecteurs tangent de \mathbb{S}^n sont séparés en composantes verticale et horizontale :

$$\forall \boldsymbol{v} \in T_p \mathbb{S}^n, \quad \boldsymbol{v} = \boldsymbol{v}_H + \omega_p(\boldsymbol{v})^{\#} = \boldsymbol{v}_H + \frac{d}{dt} p \cdot \exp\left(it\Im(\boldsymbol{v}, p)\right)\Big|_{t=0}$$
(1.47)

$$= \mathbf{v}_H + i\Im m \langle \mathbf{v}, p \rangle p \tag{1.48}$$

Ainsi, $\forall \boldsymbol{u}, \boldsymbol{v} \in T_p \mathbb{S}^n$:

$$g_{\pi(p)}(\pi_* \boldsymbol{u}, \pi_* \boldsymbol{v}) = \langle \boldsymbol{u}_H, \boldsymbol{v}_H \rangle = \langle \boldsymbol{u} - \omega_p(\boldsymbol{u})^\#, \boldsymbol{v} - \omega_p(\boldsymbol{v})^\# \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \langle \boldsymbol{u}, \omega_p(\boldsymbol{v})^\# \rangle - \langle \omega_p(\boldsymbol{u})^\#, \boldsymbol{v} \rangle + \langle \omega_p(\boldsymbol{u})^\#, \omega_p(\boldsymbol{v})^\# \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \langle \boldsymbol{u}, i \Im m \langle \boldsymbol{v}, p \rangle p \rangle - \langle i \Im m \langle \boldsymbol{u}, p \rangle p, \boldsymbol{v} \rangle + \langle i \Im m \langle \boldsymbol{u}, p \rangle p, i \Im m \langle \boldsymbol{v}, p \rangle p \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle + i \Im m \langle \boldsymbol{v}, p \rangle \langle \boldsymbol{u}, p \rangle - i \Im m \langle \boldsymbol{u}, p \rangle \langle p, \boldsymbol{v} \rangle - i \Im m \langle \boldsymbol{u}, p \rangle i \Im m \langle \boldsymbol{v}, p \rangle \langle p, p \rangle$$

Sachant que ||p|| = 1 et $\Re e\langle \mathbf{v}, p \rangle = 0$, il vient :

$$g_{\pi(p)}(\pi_* \boldsymbol{u}, \pi_* \boldsymbol{v}) = \langle \boldsymbol{u}, \boldsymbol{v} \rangle + i \Im m \langle \boldsymbol{v}, p \rangle \langle \boldsymbol{u}, p \rangle - i \Im m \langle \boldsymbol{u}, p \rangle \langle p, \boldsymbol{v} \rangle - i \Im m \langle \boldsymbol{u}, p \rangle i \Im m \langle \boldsymbol{v}, p \rangle \langle p, p \rangle$$
$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \Im m \langle \boldsymbol{v}, p \rangle \Im m \langle \boldsymbol{u}, p \rangle + \Im m \langle \boldsymbol{u}, p \rangle \Im m \langle p, \boldsymbol{v} \rangle - \langle \boldsymbol{u}, p \rangle \langle \boldsymbol{v}, p \rangle$$
$$= \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \langle \boldsymbol{u}, p \rangle \langle \boldsymbol{v}, p \rangle$$

Ce qui donne en coordonnées locales sur \mathbb{S}^n :

$$g = \delta_{\mu\nu} dz^{\mu} d\overline{z}^{\nu} - \delta_{\mu\beta} z^{\mu} d\overline{z}^{\beta} \delta_{\alpha\nu} dz^{\alpha} \overline{z}^{\nu} = (\delta_{\mu\nu} - z_{\nu} \overline{z}_{\mu}) dz^{\mu} d\overline{z}^{\nu}$$

C.2. Ecriture des géodésiques

Les calculs de cette section reprenne en partie les calculs de Mukunda & Simon [13, sec. 4, p. 219].

Etant donnée, sur une variété \mathcal{M} , une métrique g de symbole de Christoffel associé Γ , une géodésique γ de \mathcal{M} vérifie [7] :

$$\forall \sigma, \quad \ddot{\gamma}^{\sigma} + \Gamma^{\sigma}_{\mu\nu}\dot{\gamma}^{\mu}\dot{\gamma}^{\nu} = 0 \tag{1.49}$$

Pour une variété complexe, les contraintes apportés par les composantes holomorphe et anti-holomorphe sont les mêmes. Le système reste donc le même à la différence près que cette fois les symboles de Christoffel vont s'écrire¹²:

$$\Gamma^{\sigma}_{\mu\alpha} = g^{\sigma\overline{\beta}} \partial_{\mu}(g_{\alpha\overline{\beta}}) \qquad \qquad \Gamma^{\overline{\sigma}}_{\nu\beta} = g^{\alpha\overline{\sigma}} \partial_{\overline{\nu}}(g_{\alpha\overline{\beta}}) \qquad (1.50)$$

Le système d'EDP (1.49) s'écrit alors :

$$\begin{split} \ddot{\gamma}^{\sigma} + \Gamma^{\sigma}_{\mu\alpha} \, \dot{\gamma}^{\mu} \, \dot{\gamma}^{\alpha} &= 0 &\iff \quad \ddot{\gamma}^{\sigma} + g^{\sigma\overline{\beta}} \partial_{\mu}(g_{\alpha\overline{\beta}}) \, \dot{\gamma}^{\mu} \, \dot{\gamma}^{\alpha} &= 0 \\ &\iff \quad g_{\sigma\overline{\beta}} \, \ddot{\gamma}^{\sigma} + g_{\sigma\overline{\beta}} \, g^{\sigma\overline{\beta}} \partial_{\mu}(g_{\alpha\overline{\beta}}) \, \dot{\gamma}^{\mu} \, \dot{\gamma}^{\alpha} &= 0 \\ &\iff \quad g_{\sigma\overline{\beta}} \, \ddot{\gamma}^{\sigma} + \partial_{\mu}(g_{\alpha\overline{\beta}}) \, \dot{\gamma}^{\mu} \, \dot{\gamma}^{\alpha} &= 0 \end{split}$$

Dans le cas de $\mathbb{S}^n\big(\mathrm{U}(1),\mathrm{P}\mathbb{C}^n\big),$ les $\partial g_{\alpha\overline{\beta}}$ s'écrivent :

$$\partial_{\mu}(g_{\alpha\overline{\beta}}) = \partial_{\mu} \left(\delta_{\alpha\beta} - \overline{z}_{\alpha} z_{\beta} \right) = -\delta_{\mu\beta} \overline{z}_{\alpha} \qquad \qquad \partial_{\overline{\nu}}(g_{\alpha\overline{\beta}}) = \partial_{\overline{\nu}} \left(\delta_{\alpha\beta} - \overline{z}_{\alpha} z_{\beta} \right) = -\delta_{\nu\alpha} z_{\beta}$$

¹² Les symétries imposées à g par la forme symplectique J annule la majorité des composantes de g et a fortiori, de Γ . Voir [14, sec. 8.4.3]

Donnant les équations :

$$0 = g_{\sigma\overline{\beta}} \ddot{\gamma}^{\sigma} + \partial_{\mu} (g_{\alpha\overline{\beta}}) \dot{\gamma}^{\mu} \dot{\gamma}^{\alpha}$$

$$\forall \beta, \qquad = (\delta_{\sigma\beta} - \overline{\gamma}_{\sigma} \gamma_{\beta}) \ddot{\gamma}^{\sigma} - \delta_{\mu\beta} \overline{\gamma}_{\alpha} \dot{\gamma}^{\mu} \dot{\gamma}^{\alpha} \qquad \Longleftrightarrow \qquad 0 = \ddot{\gamma} - \langle \ddot{\gamma}, \gamma \rangle \gamma - \langle \dot{\gamma}, \gamma \rangle \dot{\gamma}$$

$$= \ddot{\gamma}_{\beta} - \gamma_{\beta} \langle \ddot{\gamma}, \gamma \rangle - \dot{\gamma}_{\beta} \langle \dot{\gamma}, \gamma \rangle$$

Où l'équivalence est justifiée par le fait que les composantes anti-holomorphes des $\gamma, \dot{\gamma}, \ddot{\gamma}$ suivent les mêmes contraintes (à conjugaison près) celles holomorphes.

Pour résoudre ce système, le produit hermitien de ce dernier avec γ est calculé :

On retrouve alors le fait que $\dot{\gamma}$ est horizontale et $\ddot{\gamma} = \gamma \langle \ddot{\gamma}, \gamma \rangle$. En appliquant à nouveau le produit hermitien mais de l'autre côté, cette fois :

$$\ddot{\gamma} = \gamma \langle \ddot{\gamma}, \gamma \rangle \quad \Longrightarrow \quad \langle \gamma, \ddot{\gamma} \rangle = \langle \gamma, \gamma \rangle \langle \ddot{\gamma}, \gamma \rangle = \langle \ddot{\gamma}, \gamma \rangle$$

Sachant que $\gamma \in \mathbb{S}^n$, on a alors :

$$\begin{split} \|\gamma\| &= 1 \implies \langle \gamma, \dot{\gamma} \rangle + \langle \dot{\gamma}, \gamma \rangle = 0 \\ &\implies \langle \gamma, \ddot{\gamma} \rangle + 2 \langle \dot{\gamma}, \dot{\gamma} \rangle + \langle \ddot{\gamma}, \gamma \rangle = 0 \\ &\implies \langle \gamma, \ddot{\gamma} \rangle = -\langle \dot{\gamma}, \dot{\gamma} \rangle \end{split}$$

Finalement l'EDP devient :

$$\ddot{\gamma} = -\langle \dot{\gamma}, \dot{\gamma} \rangle \gamma$$

Or, il existe une paramétrisation de γ telle que $||\gamma||=1$. D'où les solutions :

$$\gamma(t) = \gamma(t_0)\cos(t - t_0) + \dot{\gamma}(t_0)\sin(t - t_0)$$

TABLE DES FIGURES

1.1	DONE La première figure de tout bon livre de géométrie différentielle	4				
1.2	Diagramme de passage de f à f_* et f^*	4				
	DONE Ruban de Möbius comme variété fibrée					
1.4	DONE Représentation d'une section local	7				
$1.\overline{5}$	DONE Représentation de la section canonique	8				
	Interprétation géométrique de la fréquence instantanée	13				
	Représentation des trois phases de γ dans le cas pseudo-cyclique \dots 1					
1.8	Exemple de densité spectrale d'un signal réel ESP A 1,4	17				
1.9	Représentation graphique du signal x (rouge) avec $\nu_1=3$ et $\nu_2=0.1$. Sur l'image de gauche, avec signaux de fréquences pures (bleu et vert). Sur l'image de droite, avec son amplitude					
	(bleu) et sa phase instantanée (vert). Les discontinuités de la phase sont dû à l'arrondi à 2π					
	près de l'argument de $\mathcal{A}[x_1]$ et à la façon dont il est calculé lorsque le signal s'annule (mise à					
	0). Voir ici pour un graphique dynamique	19				
1.10	Idem que pour la figure 1.9 précédente, avec cette fois $\nu_1 = 1.5$ et $\nu_2 = 1.3$	2(
1.11	Sur les deux graphiques sont représentés en vert \hat{a} et en violet \hat{x}_2 . Dans le premier cas					
	l'hypothèse de Bedrosian et respectée mais pas dans le second	21				

TABLE DES CODES

RÉFÉRENCES

- [1] Y. Aharonov and J. Anandan, *Phase change during a cyclic quantum evolution*, Physical Review Letters, 58 (1987), pp. 1593–1596.
- [2] W. Ballmann, Lectures on Kähler Manifolds, vol. 2 of ESI Lectures in Mathematics and Physics, EMS Press, 1 ed., July 2006.
- [3] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392 (1997), pp. 45–57. Publisher: Royal Society.
- [4] A. BOHM, A. MOSTAFAZADEH, H. KOIZUMI, Q. NIU, AND J. ZWANZIGER, *The Geometric Phase in Quantum Systems*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
- [5] D. Chruściński and A. Jamiołkowski, Geometric Phases in Classical and Quantum Mechanics, Birkhäuser Boston, Boston, MA, 2004.
- [6] E. COHEN, H. LAROCQUE, F. BOUCHARD, F. NEJADSATTARI, Y. GEFEN, AND E. KARIMI, Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond, Nature Reviews Physics, 1 (2019), pp. 437–449.
- [7] M. DO CARMO, Riemannian Geometry, Mathematics (Boston, Mass.), Birkhäuser, 1992.
- [8] F. FAURE, Introduction à la géométrie et la topologie des espaces fibrés en physique, (2022).
- [9] N. Kayban, Riemannian Immersions and Submersions.
- [10] J. LAFONTAINE, An Introduction to Differential Manifolds, Springer International Publishing, Cham, 2015.
- [11] N. LE BIHAN, J. FLAMANT, AND P.-O. AMBLARD, Modèles physiques à deux états pour les signaux bivariés: modulation de polarisation et phase géométrique, in GRETSI 2023 XXIXème Colloque Francophone de Traitement du Signal et des Images, Grenoble, France, Aug. 2023, GRETSI Groupe de Recherche en Traitement du Signal et des Images.
- [12] ——, The Geometric Phase of Bivariate Signals, in 2024 32nd European Signal Processing Conference (EUSIPCO), Lyon, France, Aug. 2024, IEEE, pp. 2562–2566.
- [13] N. Mukunda and R. Simon, Quantum Kinematic Approach to the Geometric Phase. II. The Case of Unitary Group Representations, Annals of Physics, 228 (1993), pp. 269–340.
- [14] M. NAKAHARA, Geometry, Topology and Physics, Second Edition, Taylor & Dy, Francis, June 2003.
- [15] Pham Mâu Quân, Introduction à la géométrie des variétés différentiables, Monographies universitaires de mathématiques, Dunod, Paris, 1969.
- [16] E. M. Rabei, Arvind, N. Mukunda, and R. Simon, Bargmann invariants and geometric phases: A generalized connection, Physical Review A, 60 (1999), pp. 3397–3409.
- [17] S. Wang, Simple proofs of the Bedrosian equality for the Hilbert transform, Science in China Series A: Mathematics, 52 (2009), pp. 507–510.