$11n_{29} (K11n_{29})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{27} - u^{26} + \dots + b + 2u, \ u^{25} - u^{24} + \dots + a - 2, \ u^{29} - 2u^{28} + \dots + 3u - 1 \rangle$$

 $I_2^u = \langle b + 1, -u^2 + a - u, \ u^4 + u^3 + u^2 + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{27} - u^{26} + \dots + b + 2u, \ u^{25} - u^{24} + \dots + a - 2, \ u^{29} - 2u^{28} + \dots + 3u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{25} + u^{24} + \dots - 3u + 2\\ -u^{27} + u^{26} + \dots + 2u^{2} - 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{27} + u^{26} + \dots - 4u + 3\\ -u^{27} + u^{26} + \dots + u^{2} - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{7} - 2u^{3}\\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9} - u^{7} - 3u^{5} - 2u^{3} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{28} - 3u^{27} + \dots - 8u + 4\\ -u^{28} - u^{27} + \dots - 6u^{3} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3}\\ u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + u\\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + u\\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + u\\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{28} + 4u^{27} - 19u^{26} + 14u^{25} - 67u^{24} + 43u^{23} - 162u^{22} + 82u^{21} - 317u^{20} + 116u^{19} - 481u^{18} + 100u^{17} - 607u^{16} + 2u^{15} - 600u^{14} - 158u^{13} - 488u^{12} - 304u^{11} - 310u^{10} - 342u^9 - 172u^8 - 265u^7 - 92u^6 - 122u^5 - 65u^4 - 24u^3 - 29u^2 + 4u - 7u^2 - 20u^4 - 20u^4 - 20u^2 - 20u^2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{29} - 5u^{28} + \dots - 5u + 1$
c_2	$u^{29} + 9u^{28} + \dots + 13u + 1$
c_{3}, c_{6}	$u^{29} - u^{28} + \dots + 8u + 16$
c_5, c_9	$u^{29} + 2u^{28} + \dots + 3u + 1$
	$u^{29} + 2u^{28} + \dots + 3u + 1$
c_8, c_{10}, c_{11}	$u^{29} - 8u^{28} + \dots + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{29} - 9y^{28} + \dots + 13y - 1$
c_2	$y^{29} + 27y^{28} + \dots - 111y - 1$
c_3, c_6	$y^{29} + 27y^{28} + \dots - 2752y - 256$
c_5, c_9	$y^{29} + 8y^{28} + \dots + 3y - 1$
<i>C</i> ₇	$y^{29} - 32y^{28} + \dots + 3y - 1$
c_8, c_{10}, c_{11}	$y^{29} + 28y^{28} + \dots + 123y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.231265 + 1.046420I		
a = -1.57334 - 1.28254I	7.61033 - 0.10509I	1.75140 - 0.82130I
b = 0.858634 + 0.959440I		
u = -0.231265 - 1.046420I		
a = -1.57334 + 1.28254I	7.61033 + 0.10509I	1.75140 + 0.82130I
b = 0.858634 - 0.959440I		
u = -0.312663 + 1.045390I		
a = -0.10596 + 2.52791I	7.11886 + 6.67995I	0.53493 - 6.07824I
b = 1.014760 - 0.890779I		
u = -0.312663 - 1.045390I		
a = -0.10596 - 2.52791I	7.11886 - 6.67995I	0.53493 + 6.07824I
b = 1.014760 + 0.890779I		
u = 0.822501 + 0.730493I		
a = 0.512567 - 0.480050I	0.636180 - 0.689036I	-3.76307 + 1.94423I
b = 0.633017 + 0.915825I		
u = 0.822501 - 0.730493I		
a = 0.512567 + 0.480050I	0.636180 + 0.689036I	-3.76307 - 1.94423I
b = 0.633017 - 0.915825I		
u = 0.194951 + 0.848946I		
a = 0.90551 + 1.74398I	1.06975 - 1.85093I	1.30743 + 5.79968I
b = -0.405971 - 0.466803I		
u = 0.194951 - 0.848946I		
a = 0.90551 - 1.74398I	1.06975 + 1.85093I	1.30743 - 5.79968I
b = -0.405971 + 0.466803I		
u = 0.450225 + 0.741417I		
a = 0.877674 - 0.501097I	-0.03811 - 1.72919I	-0.45461 + 4.60784I
b = 0.282831 + 0.220896I		
u = 0.450225 - 0.741417I		
a = 0.877674 + 0.501097I	-0.03811 + 1.72919I	-0.45461 - 4.60784I
b = 0.282831 - 0.220896I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.788076 + 0.837379I		
a = 0.263911 + 0.556243I	-4.79824 + 0.50805I	-6.89911 - 0.01309I
b = -0.840182 - 0.602881I		
u = -0.788076 - 0.837379I		
a = 0.263911 - 0.556243I	-4.79824 - 0.50805I	-6.89911 + 0.01309I
b = -0.840182 + 0.602881I		
u = 0.882629 + 0.776302I		
a = 0.523074 + 0.300180I	-0.78075 + 5.57785I	-5.50657 - 2.77090I
b = 1.103310 - 0.772041I		
u = 0.882629 - 0.776302I		
a = 0.523074 - 0.300180I	-0.78075 - 5.57785I	-5.50657 + 2.77090I
b = 1.103310 + 0.772041I		
u = 0.784724 + 0.886082I		
a = -1.19979 + 1.01167I	-6.30586 - 2.95151I	-5.76823 + 2.64939I
b = -1.337190 - 0.029086I		
u = 0.784724 - 0.886082I		
a = -1.19979 - 1.01167I	-6.30586 + 2.95151I	-5.76823 - 2.64939I
b = -1.337190 + 0.029086I		
u = -0.767855 + 0.926785I		
a = -0.44228 - 1.68632I	-4.52351 + 5.35315I	-5.93805 - 5.66710I
b = -0.771267 + 0.660663I		
u = -0.767855 - 0.926785I		
a = -0.44228 + 1.68632I	-4.52351 - 5.35315I	-5.93805 + 5.66710I
b = -0.771267 - 0.660663I		
u = 0.750471 + 0.994480I		
a = -0.996828 + 0.026809I	1.43095 - 5.20261I	-2.56531 + 3.25116I
b = 0.648434 - 1.004480I		
u = 0.750471 - 0.994480I		
a = -0.996828 - 0.026809I	1.43095 + 5.20261I	-2.56531 - 3.25116I
b = 0.648434 + 1.004480I		

Solutions to I_1^u	$\sqrt{-1}$ (vo	$1 + \sqrt{-1}CS$	Cusp shape
u = -0.866458 + 0.910	6553I		
a = 0.906367 + 0.416	$6512I \mid -7.7374$	9 + 3.20954I	-0.41591 - 2.86957I
b = 0.675975 - 0.02	1605I		
u = -0.866458 - 0.910	6553I		
a = 0.906367 - 0.416	$6512I \mid -7.7374$	9 - 3.20954I	-0.41591 + 2.86957I
b = 0.675975 + 0.02	1605I		
u = -0.719374 + 0.076	0912 <i>I</i>		
a = 0.523981 - 0.368	9051I 3.9620	5 - 3.12839I	-4.70122 + 2.58517I
b = 0.914734 + 0.833	8366I		
u = -0.719374 - 0.076	0912 <i>I</i>		
a = 0.523981 + 0.368	9051I 3.9620	5 + 3.12839I	-4.70122 - 2.58517I
b = 0.914734 - 0.833	8366I		
u = 0.793942 + 1.004	4110 <i>I</i>		
a = 1.14222 - 1.8633	84I -0.06814	1 - 11.79740I	-4.44971 + 7.37898I
b = 1.130840 + 0.799	9307I		
u = 0.793942 - 1.004	4110 <i>I</i>		
a = 1.14222 + 1.8633	84I -0.06814	1 + 11.79740I	-4.44971 - 7.37898I
b = 1.130840 - 0.799	9307I		
u = -0.146225 + 0.649	9247 <i>I</i>		
a = 0.11069 - 2.173	75I -1.18170	0 + 0.773921I	-1.52981 + 2.72477I
b = -1.073810 + 0.144	2900I		
u = -0.146225 - 0.649	9247 <i>I</i>		
$a = 0.11069 + 2.173^{\circ}$	75I -1.18170	0 - 0.773921I	-1.52981 - 2.72477I
b = -1.073810 - 0.148	2900I		
u = 0.304949			
a = 1.10441	-1.0133	4	-10.2040
b = -0.668226			

II.
$$I_2^u = \langle b+1, -u^2+a-u, u^4+u^3+u^2+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + u \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + u + 1 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + u + 1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^2 + 6u 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4	$(u+1)^4$
c_3, c_6	u^4
<i>C</i> ₅	$u^4 + u^3 + u^2 + 1$
c_7, c_{10}, c_{11}	$u^4 - u^3 + 3u^2 - 2u + 1$
c_8	$u^4 + u^3 + 3u^2 + 2u + 1$
<i>c</i> ₉	$u^4 - u^3 + u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_6	y^4
c_5, c_9	$y^4 + y^3 + 3y^2 + 2y + 1$
c_7, c_8, c_{10} c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I		
a = -0.043315 + 1.227190I	-1.43393 - 1.41510I	-6.86477 + 6.85627I
b = -1.00000		
u = 0.351808 - 0.720342I		
a = -0.043315 - 1.227190I	-1.43393 + 1.41510I	-6.86477 - 6.85627I
b = -1.00000		
u = -0.851808 + 0.911292I		
a = -0.956685 - 0.641200I	-8.43568 + 3.16396I	-12.63523 - 2.29471I
b = -1.00000		
u = -0.851808 - 0.911292I		
a = -0.956685 + 0.641200I	-8.43568 - 3.16396I	-12.63523 + 2.29471I
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^{29} - 5u^{28} + \dots - 5u + 1)$
c_2	$((u+1)^4)(u^{29} + 9u^{28} + \dots + 13u + 1)$
c_3, c_6	$u^4(u^{29} - u^{28} + \dots + 8u + 16)$
c_4	$((u+1)^4)(u^{29} - 5u^{28} + \dots - 5u + 1)$
<i>C</i> ₅	$(u^4 + u^3 + u^2 + 1)(u^{29} + 2u^{28} + \dots + 3u + 1)$
	$(u^4 - u^3 + 3u^2 - 2u + 1)(u^{29} + 2u^{28} + \dots + 3u + 1)$
c ₈	$(u^4 + u^3 + 3u^2 + 2u + 1)(u^{29} - 8u^{28} + \dots + 3u + 1)$
<i>c</i> ₉	$(u^4 - u^3 + u^2 + 1)(u^{29} + 2u^{28} + \dots + 3u + 1)$
c_{10}, c_{11}	$(u^4 - u^3 + 3u^2 - 2u + 1)(u^{29} - 8u^{28} + \dots + 3u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^4)(y^{29} - 9y^{28} + \dots + 13y - 1)$
c_2	$((y-1)^4)(y^{29} + 27y^{28} + \dots - 111y - 1)$
c_3, c_6	$y^4(y^{29} + 27y^{28} + \dots - 2752y - 256)$
c_5,c_9	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{29} + 8y^{28} + \dots + 3y - 1)$
c ₇	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{29} - 32y^{28} + \dots + 3y - 1)$
c_8, c_{10}, c_{11}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{29} + 28y^{28} + \dots + 123y - 1)$