Inference in Simple Linear Regression

Keegan Korthauer

Department of Statistics

UW Madison

Recap – Correlation Coefficient

$$r = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \overline{x} \overline{y}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2} - n \overline{y}^{2}}}$$

- Measures the strength of linear relationship
- Unitless, always between -1 and 1
- Correlation does not imply causation
- If (X,Y) bivariate normal, have CI and HT for population correlation coefficient ρ

Recap -Simple Linear Regression

The simple linear regression model assumes:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

• The least-squares line is:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Where

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \overline{x} \overline{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}}, \ \hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1} \overline{x}$$

- Only applies when relationship is linear
- Be wary of extrapolation

Least-Squares Line Minimizes SSE

Sums of Squares

- Error Sum of Squares $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} y_i^2 \sum_{i=1}^{n} \hat{y}_i^2$
- Total Sum of Squares $SST = \sum_{i=1}^{n} (y_i \overline{y})^2 = \sum_{i=1}^{n} y_i^2 n\overline{y}^2$
- Regression Sum of Squares $SSR = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$

Analysis of Variance property: SST = SSR + SSE

Coefficient of Determination (Goodness-of-fit measure):

$$r^2 = \frac{\text{Regression sum of squares}}{\text{Total sum of squares}} = \frac{SSR}{SST}$$

Example - Finding Sums of Squares

For the housing data example, find SSE, SSR and SST using the following quantities:

$$\bar{x} = 19.3, \ \bar{y} = 259.9, \ n = 20$$

$$\sum_{i=1}^{n} x_i y_i = 119,156$$

$$\sum_{i=1}^{n} x_i^2 = 9036, \ \sum_{i=1}^{n} y_i^2 = 1,639,188, \ \sum_{i=1}^{n} \hat{y}_i^2 = 1,574,603$$

UNCERTAINTIES AND INFERENCE FOR THE LEAST-SQUARES COEFFICIENTS

ε_i - Error Term in the Simple Linear Model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Measurement errors and/or uncontrolled variation in experimental conditions

Unknown

Expect to be zero on average

Repeated Experimental Processes

- The errors ε_i will change from experiment to experiment, and so will the estimates of β_0 and β_1
- The errors ϵ_i create **uncertainty** in the estimates of β_0 and β_1
- Smaller errors are associated with smaller amount of uncertainty in the estimates
 - Likewise larger errors lead to larger uncertainty in the estimates

Assumptions for Errors in Linear Models

- 1. Errors ε_1 ,..., ε_n are **random** and **independent**. In particular, the magnitude of any error ε_i does not influence the value of the next error ε_{i+1}
- 2. Errors $\varepsilon_1,..., \varepsilon_n$ all have mean 0
- 3. Errors ϵ_1 ,..., ϵ_n all have the same variance denoted by σ^2
- 4. Errors ε_1 ,..., ε_n are normally distributed

Violations of Error Assumptions

- If the sample size is large, Assumption 4 (normality) is not very important
- Mild violations of Assumption 3 (constant variance)
 are OK, but severe violations are not
 - More on this (how to diagnose, correct) later

Estimation of Error Variance σ^2

- Assumption 3: all errors have variance σ^2
- To estimate uncertainty in estimates of β_0 and β_1 , must first estimate σ^2 with s^2 :

$$\hat{\sigma}^2 = s^2 = \frac{\sum_{i=1}^n e_i^2}{n-2} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

Equivalent formulae:

$$s^{2} = \frac{SSE}{n-2} = \frac{SST(1-r^{2})}{n-2}$$

Consequences of the Assumptions

• The errors ε_1 ,..., ε_n are independent normal random variables with mean zero and variance σ^2 :

$$e_i \sim N(0, \sigma^2)$$

• Since $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ the y_i are a linear combination of ε_i so they are also normally distributed:

$$y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

• We can now calculate the means and standard deviations of the estimates of β_0 and β_1

Uncertainties of Coefficients

Under assumptions 1-4, $\hat{\beta}_0$ and $\hat{\beta}_1$

- are normally distributed
- have mean β_0 and β_1 , respectively
- have standard deviations:

$$s_{\hat{\beta}_0} = s \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}} \text{ and } s_{\hat{\beta}_1} = \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}}$$

where
$$s = \hat{\sigma}$$

Housing Data Example

Estimate the standard deviations of the regression coefficients using the following quantities:

$$\overline{x} = 19.3, \ \overline{y} = 259.9, \ n = 20$$

$$\sum_{i=1}^{n} x_i y_i = 119,156$$

$$\sum_{i=1}^{n} x_i^2 = 9036, \sum_{i=1}^{n} y_i^2 = 1,639,188$$

Ways to Improve Accuracy

Improving accuracy = decreasing variation

Increase sample size

Increase range of x values

Inference on the Coefficients

• Now that we have their mean and standard deviations, we can get CIs/HTs about the true values β_0 and β_1 using the t distribution:

$$\frac{(\hat{\beta}_0 - \beta_0)}{s_{\hat{\beta}_0}} \sim t_{n-2} \text{ and } \frac{(\hat{\beta}_1 - \beta_1)}{s_{\hat{\beta}_1}} \sim t_{n-2}$$

• We can test a hypothesis for β_0 or β_1 using a t-test where the quantities above are the test statistics

Housing Data Example

Someone claims that for every additional 100 square feet, a home will sell for about \$10,000 more. To evaluate this claim on our dataset, perform a hypothesis test at the 0.05 level of

$$H_0$$
: $β_1$ = 10 versus H_1 : $β_1 ≠ 10$

Confidence Intervals for β_0 and β_1

From the previous results, we can obtain a $100(1-\alpha)$ % CI for β_0 or β_1 with the following:

$$\hat{\beta}_0 \pm t_{n-2, \alpha/2} s_{\hat{\beta}_0}$$

$$\hat{\beta}_1 \pm t_{n-2, \alpha/2} s_{\hat{\beta}_1}$$

Housing Data Example

Find 95% confidence intervals for the regression coefficients β_0 and β_1 :

Confidence Interval of Mean Response

What if we want an interval of plausible values for the mean value of y at a certain value of x?

A level $100(1-\alpha)\%$ confidence interval for the quantity $\beta_0 + \beta_1 x$ is given by

$$\widehat{\beta}_0 + \widehat{\beta}_1 x \pm t_{n-2,\alpha/2} \cdot s_{\widehat{y}} \tag{7.41}$$

where
$$s_{\widehat{y}} = s \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$
.

Prediction Interval for Future Observations

What if we want an interval of plausible values for y for a particular observation with a certain x value?

A level $100(1-\alpha)\%$ prediction interval for the quantity $\beta_0 + \beta_1 x$ is given by

$$\widehat{\beta}_0 + \widehat{\beta}_1 x \pm t_{n-2,\alpha/2} \cdot s_{\text{pred}} \tag{7.44}$$

where
$$s_{\text{pred}} = s \sqrt{1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$
.

Housing Data Example

Find:

- A 95% confidence interval for the mean cost of a home with 2500 square feet
- A 95% prediction interval for a 2500 square foot home that will be put on the market next week

INTERPRETING R OUTPUT

R: Summary of an SLR fit

test statistic and p-value

for the test of the null

hypothesis that the coefficient is equal to 0 > summary(lm(Price~Sqft)) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) $30.731\hat{\beta}_0$ $31.969^S\hat{\beta}_0$ 0.961 0.349 Sqft $11.874\hat{\beta}_1$ $1.504S\hat{\beta}_1$ 7.895 2.96e-07 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 59.9 on 18 degrees of freedom Multiple R-squared: 0.7759, Adjusted R-squared: 0.7635 F-statistic: 62.33 on 1 and 18 DF, p-value: 2.957e-07

Next

Exam 2 handed back Wednesday

How to Check Assumptions 1-4

- What to do when assumptions are violated
 - Transformation of Data
 - Addressing Outliers and Influential Points