U.PORTO

FEUP FACULDADE DE ENGENHARIA

Curso MIEIC

Data ____/___/____/

Disciplina CMAT

Ano Semestre

Nome

Espaço reservado para o avaliador

AULA 7 : Ex°s Tratados + Fiche 2 : 34, 38 a) d) e) i), 41,39

Ex°s Proporto - Fiche 2: 37, 38 b) c) f) h) k), 40

34)
$$Z = f(Y, x, v, u)$$
 en fu

$$f(y,x,v,u) = x + \ln(u) + (y+v)^2$$

$$y(u,v) = \omega s(u) + seu(v)$$

Consider-re o diagrame de arvore

Sabe-ce que:

$$\frac{\partial f}{\partial x} = 1$$
 , $\frac{\partial f}{\partial y} = 2(y+v)$, $\frac{\partial f}{\partial v} = 2(y+v)$, $\frac{\partial f}{\partial u} = \frac{1}{u}$

$$\frac{\partial x}{\partial v} = 3$$
, $\frac{\partial x}{\partial u} = 2$, $\frac{\partial y}{\partial v} = \cos(v)$, $\frac{\partial y}{\partial u} = -\sin(u)$

MM

Entzs:
95 - 9t 9h 9t 9x 9t
$\frac{\partial z}{\partial u} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial u} = \frac{\partial f}{\partial x}$
(2) 22 - 2 (Y+0) (- Sen(W) + (1)(2) + 1
$(=) \frac{\partial t}{\partial u} = 2(y+v)(-sen(u)) + (1)(2) + \frac{1}{u} = $
$(=) \frac{\partial Z}{\partial u} = -2 \operatorname{seu}(u) \left(n + \cos(u) + \sin(v) \right) + 2 + \frac{1}{u}$
du
$\frac{9N}{95} = \frac{9\lambda}{9t} \frac{9N}{9t} + \frac{9N}{9t} \frac{9N}{9t} \stackrel{(a)}{=}$
DN DY DN DX DN DN
$(=) \frac{\partial z}{\partial z} = 2(y+vr) \cos(vr) + (1)(3) + 2(y+vr) (=)$
DN
$\frac{\partial^2}{\partial x^2} = 2(4+n)(1+\cos(n)) + 3 = 0$
(=) $\frac{\partial z}{\partial n^{2}} = 2(y+n)(1+\cos(n)) + 3$ (=)
$= \frac{\partial^2}{\partial x^2} = 2(1 + \cos(\pi))(N + \cos(\pi) + \sin(\pi)) + 3$
3N
EXTREMOS LOCAIS - RESUMO
Seja f(x,y) uma funces real a duas variáveis.
Pontos Críticos - pontos onde:
i) $\nabla f(x,y) = 0$ ii) $\nabla f(x,y)$ nais existe
Neste ceso a clessificação
Ponto Estacionários de ponto crítico tem de ser feit estadado o
Neste caro a classificação é comportamento de funços
feit recorrendo as teste das ne vizinhence desse ponto.
derivades parciais de Segunde
orden Minp

U. PORTO FEUP FACULDADE DE ENGENHARIA
Curso Data//
Disciplina Ano Semestre
Nome
Espaço reservado para o avaliador
No caso presente apenas nos centraremos no problema da
classificação de un ponto estacionério. Existem três situações que
podern ocurer: minimo local, méximo local e ponto de sela (ponto
onde a funças nos tem um comportemento uniforme ao lougo de
todes as direcções que passam nesse ponto).
Se (xo, yo) é un ponto estacionério, o teste des derividas
parciais de segunda ordern envolve o célanto de determinante:
$\Delta(x_0, y_0) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} (x_0, y_0) & \frac{\partial^2 f}{\partial y^2} (x_0, y_0) \\ \frac{\partial^2 f}{\partial x^2} (x_0, y_0) & \frac{\partial^2 f}{\partial y^2} (x_0, y_0) \end{vmatrix} = AC - B^2$
2.6
onde se admitin pur $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = B$
Entas;
i) $\Delta < 0$, (x0, y0) é un ponto de sela;
1i) Δ>0 e A>0, f(x,y) þmui um húmins local em (xo,yo)
iii) D>0 e A<0, f(x,y) possui un méximo local em (xo, yo);
iv) $\Delta = 0$, o teste é inconclusivo; a classificação é
feita analisando o comportamento de função
ne vizinhence de (Xo, Yo)

38) a)
$$f(x,y) = x^2 + y^2$$
 $\nabla f(x,y) = (2x,2y) = (0,0) \Leftrightarrow x=y=0$

Pento Estacionacióo: $0 = (0,0)$

Subendo por 2f = 2x a 2f = 2y entat

 $A = \frac{3^2f}{3x^2} = 2$, $C = \frac{3^2f}{3y^2} = 2$, $B = \frac{3^2f}{3x^2} = \frac{3^2f}{3x^3} = 0$

No pento $0 = (0,0)$:

 $0 = AC - B^2 = 4 > 0$ a $A > 0$

A funça tem um nomino local (nest case, a' um mínimo absorbat) em $0 = (0,0)$ tendo o volan $f(0,0) = 0$.

NOTA: A injuntica $z = f(x,y) = x^2 + y^2$ e' um paratelocal virado para cinac (na direcest do temicino porrito do ze) pula pura o pento $0 = (0,0)$ correspondi, de fecto, a um paratelocal (absorbat) en $f(x,y)$ permi um mínimo local (absorbat).

38) d) $f(x,y) = x^4 + y^4 - 4xy$
 $\nabla f(x,y) = (4x^3 - 4y, 4y^3 - 4x) = (0,0)$ (a)

 $\int_0^2 x^2 - y = 0$ (b) $\int_0^2 y^2 - 0$ (c) $\int_0^2 (y^3 - 1) = 0$ (c) $\int_0^2 y^3 - x = 0$ (d) $\int_0^2 y^3 - x = 0$ (e) $\int_0^2 y^3 - x = 0$ (f) $\int_0^2 y^3 - x = 0$ (f) $\int_0^2 y^3 - x = 0$ (g) \int_0

U.	PORTO
FEUP	FACULDADE DE ENGENHARI UNIVERSIDADE DO PORTO

Curso		Data//	
	1.4		

Espaço reservado para o avaliador

$$A = \frac{\partial^2 f}{\partial x^2} = 12x^2, \quad C = \frac{\partial^2 f}{\partial y^2} = 12y^2, \quad \beta_2 \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = -4$$

$$\Delta = AC - B^2 = 0 - (-4)^2 = -16 < 0$$

$$\Delta = 12(12) - (-4)^2 = 128 > 0$$
 & $A = 12 > 0$

A funció tem um unimo local em
$$P_1 = (1,1)$$
 tendo o valor $f(1,1) = -2$.

$$\Delta = 12(12) - (-4)^2 = 128 > 0 + A = 12 > 0$$

A funcos tem um mínimo local em
$$l_2 = (-1,-1)$$
 tendo o valor $f(-1,-1) = -2$.

MmY

38) e)
$$f(x,y) = 1 - (x-1)^2 - y^2 = -x^2 - y^2 + 2x$$

$$\nabla f(x,y) = (-2x+2, -2y) = (0,0) \quad \text{en}$$

(e) $\begin{cases} -x+1=0 \\ -y=0 \end{cases}$

$$\begin{cases} -x+1=0 \\ -y=0 \end{cases} \quad \begin{cases} x=1 \\ y=0 \end{cases}$$

Purious Estacionacinio: $f=(1,0)$

Subunha fina $\frac{2f}{0x} = -2x+2 = \frac{2f}{0y} = -2y = 0$

A = $\frac{2^3f}{0x^2} = -2$, $\frac{2^3f}{0y^2} = -2$, $\frac{2^3f}{0x^2} = \frac{2^3f}{0x^2} = 0$

No penho $f=(1,0)$:

$$\Delta = AC - B^2 = (-2)(-2) = 0 = 4 + 0 = A < 0$$

A funcant term um maxima local (nestectio, a' um maxima absolute) em $f=(1,0)$ tende o rectant $f(1,0) = 1$.

38) i) $f(x,y) = x^3 + y^3 - 6xy$

$$\nabla f(x,y) = (3x^2 - 6y, 3y^2 - 6x) = (0,0) \quad \text{en}$$

$$\sqrt{2^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{2^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2x} = 0 \qquad \sqrt{3^2 - 8y} = 0 \quad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^2 - 2y} = 0 \qquad \sqrt{3^2 - 8y} = 0$$

$$\sqrt{3^$$

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Curso ______ Data __/_/_

Disciplina ______ Ano ____ Semestre _____

Nome _____

Espaço reservado para o avaliador

$$A = \frac{\partial^2 f}{\partial x^2} = 6x$$
, $C = \frac{\partial^2 f}{\partial y^2} = 6y$, $B = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = -6$

No proto 0 = (0,0):

$$\Delta = AC - B^2 = 0 - (-6)^2 = -36 < 0$$

A funcas tem um ponto de sela em 0=(0,0).

No ponto P= (2,2)

$$\Delta = 12(12) - (-6)^2 = 108 > 0 \quad e \quad A = 12 > 0$$

A funças tem um mínimo lord (neste ceso, é um mínimo abrelato) em P=(2,2) tendo valor f(2,2) = -8.

41)

Volume

Custo de base de caixa: 0,3 ab

Custo des faces laterais da caixa: 2(0,1) bc + 2(0,1) ac = 0,2 b $\frac{96}{ab}$ + 0,2 $\frac{96}{ab}$ = 19,2 $\frac{a^{1}}{a^{1}}$ + 19,2 $\frac{b^{-1}}{ab}$

funças pu define o custo de caixa: $f(a,b) = 0.3 ab + 19.2 a^{1} + 19.2 b^{-1}$ Pretende-se encontrar o "ponto" (a, b) onde a funços pomui um mínimo local (absoluto). $\nabla f(a_1b) = \left(\frac{\partial f}{\partial a}, \frac{\partial f}{\partial b}\right) = \left(0,3b - \frac{19,2}{a^2}, 0,3a - \frac{19,2}{b^2}\right) = (0,0) = 0$ $\begin{cases} a^{2}b = 64 \\ ab^{2} = a^{2}b \end{cases} = 64$ $\begin{cases} a^{2}b = 64 \\ b^{2} - ab = 0 \end{cases} b(b-a) = 0$ (b +0) a=4 pelo pre c = 96 = 6 e $f(4,4) = 0,3(16) + \frac{19,2}{4} + \frac{19,2}{4} = 4,8 + 2(4,8) = 14,4 \in$ Confirmemen fu a=b=4 corresponde a un ménimo local (absoluto) de funças: $A = \frac{\partial^2 f}{\partial x^2} = \frac{38.4}{38.4}$, $C = \frac{\partial^2 f}{\partial x^2} = \frac{38.4}{38.4}$, $B = \frac{\partial^2 f}{\partial x^2} =$ No ponto (4,4) venfice-le: $\Delta = AC - B^{2} = \frac{(38,4)^{2}}{2(64)^{2}} - (0,3)^{2} = 0,09 > 0 \quad e \quad A = \frac{38,4}{64} = 0,6 > 0$ Efectivemente, a funças dem um unínimo local (absoluto) em (4,4),

U. PORTO

FEUP FACULDADE DE ENGENHARIA

UNIVERSIDADE DO PORTO

Curso _____ Data __/_ /

Disciplina Ano Semestre

Nome _____

Espaço reservado para o avaliador

Volume do prisma:

A funçai pue défine o volume de prisme é:

$$f(x,y) = xy(1-x-y) = xy - x^2y - xy^2$$

Pretende-se encontrar o "ponto" (x, y) unde a funça pimei um méximo local (absoluto).

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(y - 2xy - y^2, x - x^2 - 2xy\right) = \left(0,0\right) \in$$

(=)
$$\begin{cases} y - 2xy - y^2 = 0 \\ x - x^2 - 2xy = 0 \end{cases}$$
(=)
$$\begin{cases} 2xy = y - y^2 \\ x - x^2 - 2xy = 0 \end{cases}$$
(=)

(x +0 1 y +0)

$$\begin{cases} 2x = 1 - y & y = 1 - 2x \\ 1 - x - 2y = 0 & 1 - x - 2(1 - 2x) = 0 \end{cases}$$
 (=)
$$\begin{cases} y = 1 - 2x \\ 1 - x - 2y = 0 \end{cases}$$
 (=)

(=)
$$\chi = 1/3$$
 $y = 1/3$

Mir

pelo pu = 1 - 1/3 - 1/2 = 1/3 e $f(1/3, 1/3) = \frac{1}{9} - \frac{1}{27} - \frac{1}{27} = \frac{1}{27}$ (volume) Confirments pu x = y = 1/3 corresponde a un méximo local (absolute) de funços: $A = \frac{\partial^2 f}{\partial x^2} = -2y$, $C = \frac{\partial^2 f}{\partial y^2} = -2x$, $B = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 1 - 2x - 2y$ No "ponto" (1/3, 1/3) verifice-se: $\Delta = \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right) - \left(\frac{1}{3}\right)^2 = \frac{1}{3} > 0 \quad \text{e} \quad A = -\frac{2}{3} < 0$ Efectivemente, a função tem um méximo local (absoluto) len (1/3, 1/3).

Wir