Archisman Panigrahi

5th Year · UG · Physics Major

Indian Institute of Science, Bangalore, India

□ (+91) 7980591664 | ■ archismanp@iisc.ac.in

Education

Master of Science in Physics

Bangalore, India

Indian Institute of Science

Aug. 2021 - May 2022 (expected)

· Ongoing

Bachelor of Science (Research) in Physics

Secondary Examination (X^{th} standard)

Higher Secondary Examination (XII^{th} standard)

Bangalore, India

Indian Institute of Science

Aug. 2017 - Jun. 2021

• C.G.P.A - 9.8/10

West Bengal Council of Higher

Secondary Education, India

2015 - 2017

HOOGHLY COLLEGIATE SCHOOL

West Bengal Board of Secondary

- Obtained $\mathbf{1}^{\mathrm{st}}$ rank in Board

Education , India

2005 - 2015

HOOGHLY COLLEGIATE SCHOOL

- Obtained 2^{nd} rank in Board

Achievements

2017-21	C.G.P.A 9.8/10 in B.S. (Research), highest GPA in batch	IISc, Bangalore
2017	1st rank (99.2 %) in Board in Higher Secondary Examination	West Bengal, India
2017	10th rank in National Entrance Screening Test (NEST)	India
2017	Qualified for JEE Mains (All India Rank - 381) - an all India Engineering entrance	
2017	Qualified for JEE Advanced examination (All India Rank- 543), Entrance examination of Indian Institute(s) of	
	Technology (IIT)	
2017	Qualified for Indian Statistical Institute, Kolkata and Chennai Mathematical Institute	
2015	Qualified for K.V.P.Y (All India Rank - 128)	
2015	2nd rank (97.57 %) in Board in Secondary Examination	West Bengal, India

Research Articles

PREPRINT(S)

- A. Panigrahi, R. Moessner, B. Roy; Non-Hermitian dislocation modes: Stability and melting across exceptional points (2021) arXiv:2105.05244
- A. Panigrahi, S. Mukerjee; Energy magnetization and transport in systems with a non-zero Berry curvature in a magnetic field (2021) arXiv:2111.08026

MANUSCRIPTS IN PREPARATION

· A. Panigrahi, V. Juričić, B. Roy; Emergence of topological properties of parent crystals in Fibonacci quasicrystals

Talks

Dislocation as a bulk probe of non-Hermitian topology

MPIPKS, Dresden, Germany (remotely)

Presentation Download Link

July 6, 2021

Research Interests

Broadly interested in theoretical Condensed Matter Physics

- Topological phases of matter and Quantum Phase transitions
- Thermo-electric transport
- · Brownian motion
- · Thermalization of quantum systems and Many body localization

Skills

Mathematical skills Integral Calculus, Linear Algebra, Trigonometry, Differential Equations

Comfortable with performing long algebraic calculations in pen and paper

Programming skills MATLAB/Octave, Mathematica, Data structures in C

Advanced Physics Courses Condensed Matter Physics II, Advanced Statistical Physics, Quantum Field Theory I, Relativistic Q.M. (ongoing)

Languages Fluent in English, Bengali, Hindi

Ongoing Research Projects _____

Many body localization and thermalization of quantum systems

IISc, Bangalore, India (Bachelor's thesis) September 2021 - Present

WITH PROF. SUBROTO MUKERJEE

Research Experience_

Topological phases in Quasicrystals

MPIPKS, Dresden, Germany

June 2021 - September 2021

(remotely)

JOINTLY WITH PROF. BITAN ROY AND PROF. VLADIMIR JURIČIĆ

- · Numerically studied how topological properties of parent systems emerge in projected Fibonacci quasicrystals
- Verified the existence of dislocation modes, Weyl points, and Landau levels in quasicrystals

Berry curvature effects on thermoelectric transport

IISc, Bangalore, India (Bachelor's thesis)

WITH PROF. SUBROTO MUKERJEE

October 2020 - June 2021

Studied how Berry curvature can alter thermoelectric transport, leading to anomalous Hall and anomalous Nernst effects

- Studied the Boltzmann transport formalism
- Studied how the existence of the Onsager relation can be demonstrated from microscopic theories for a system with Berry curvature in reciprocal space
- Found a condition on the energy magnetization such that the Einstein relation holds for the transport energy current in the above type of systems
- · Found a physical interpretation of this condition, and obtained a closed expression for energy magnetization using this condition
- Analytically solved the Boltzmann transport equation (including Berry curvature effects) for two-dimensional systems

Non-Hermitian Topological Insulators and Dislocations

MPIPKS, Dresden, Germany

May 2020 - September 2020

(remotely)

• Studied and numerically implemented SSH Model, Chern Insulators, Quantum Spin Hall Insulators

- Studied effects of dislocation in Hermitian and Non-Hermitian Chern Insulators
- Noticed similarity between plot of a quantity I analytically calculated, and a phase diagram in a paper (in a different context), from which I found a new interpretation of that phase transformation
- Proposed how dislocations can be used to probe topological phases in non-Hermitian systems, where the non-Hermitian skin effect disturbs the traditional bulk-boundary correspondence

Nano Heat Engines IISc, Bangalore, India

WITH PROF. H. R. KRISHNAMURTHY

WITH PROF. BITAN ROY

May 2019 - July 2019

- Studied how harmonic oscillators and two state systems can be used as efficient heat engines
- · Read Articles claiming they surpassed Carnot efficiency with "squeezing", and figured out the sense in which Carnot efficiency is surpassed
- Studied how one can produce such a squeezed state of a harmonic oscillator using "squeezed thermal bath"
- Studied about Brownian Motion and Langevin equation
- · Solved the Langevin equation for a special kind of random force, for which a classical harmonic oscillator behaves like a squeezed state
- Created a computer simulation to verify the nature of this solution

LAST UPDATED NOVEMBER 17, 2021

ARCHISMAN PANIGRAHI · CURRICULUM VITAE