

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

ОТЧЕТ по лабораторной работе № 6___

Дисциплина: <u>Технологии машинного обучения</u> **Тема:** «Анализ и прогнозирование временного ряда»

Студент	ИУ5Ц-82Б (Группа)	(Подпись, дата)	А.Н. Свинцов (И.О. Фамилия)
Преподаватель		(Подпись, дата)	Ю.Е. Гапанюк (И.О. Фамилия)
Преподаватель		(Подпись, дата)	А.Н. Нардид (И.О. Фамилия)

Лабораторная работа №6 : "Анализ и прогнозирование временного ряда"

Для работы используется датасет с информацией об изменеии числинности населения

```
import numpy as np
import pandas as pd
from matplotlib import pyplot
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal decompose
from sklearn.metrics import mean absolute error, mean squared error,
r2 score
from statsmodels.tsa.arima.model import ARIMA
from sklearn.model selection import GridSearchCV
from gplearn.genetic import SymbolicRegressor
from statsmodels.graphics.tsaplots import plot acf, plot pacf
data = pd.read csv('POP.csv')
data.head()
  realtime start
                     value
                                  date realtime end
0
      2019-12-06 156309.0 1952-01-01
                                         2019-12-06
      2019-12-06 156527.0 1952-02-01
1
                                         2019-12-06
      2019-12-06 156731.0 1952-03-01
2
                                         2019-12-06
3
                                         2019-12-06
      2019-12-06 156943.0 1952-04-01
     2019-12-06 157140.0 1952-05-01
4
                                         2019-12-06
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 816 entries, 0 to 815
Data columns (total 4 columns):
#
     Column
                     Non-Null Count
                                     Dtype
                     -----
- - -
     -----
                                     - - - - -
 0
     realtime start 816 non-null
                                     object
 1
                     816 non-null
                                     float64
     value
2
     date
                     816 non-null
                                     object
 3
     realtime end
                     816 non-null
                                     object
dtypes: float64(1), object(3)
memory usage: 25.6+ KB
#Проверка на пропуски
data.isnull().sum()
realtime start
value
                  0
                  0
date
```

```
realtime end
                 0
dtype: int64
Проигнорируем данные о реальном времени, поскольку мы
концентрируемся только на диапазоне дат, в котором меняется
население.
data = data.drop(['realtime start','realtime end'],axis=1)
# Преобразование столбца даты в объект datetime и установка его в
качестве индекса
data['date'] = pd.to datetime(data['date'])
data.set index('date',inplace=True)
data.head()
               value
date
1952-01-01 156309.0
1952-02-01 156527.0
1952-03-01 156731.0
1952-04-01 156943.0
1952-05-01 157140.0
data.describe()
               value
          816.000000
count
      243847.767826
mean
std
       50519.140567
min
      156309.000000
25%
      201725,250000
50%
      239557.500000
75%
      289364.250000
      330309.946000
max
Визуализация временного ряда
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row',
```

figsize=(10,5))

pyplot.show()

fig.suptitle('Временной ряд в виде графика')

data.plot(ax=ax, legend=False)

Временной ряд в виде графика


```
for i in range(1, 5):
    fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row',
figsize=(5,4))
    fig.suptitle(f'Лаг порядка {i}')
    pd.plotting.lag_plot(data, lag=i, ax=ax)
    pyplot.show()
```

Лаг порядка 1

Лаг порядка 2

Лаг порядка 3

Лаг порядка 4


```
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row',
figsize=(10,5))
fig.suptitle('Автокорреляционная диаграмма')
pd.plotting.autocorrelation_plot(data, ax=ax)
pyplot.show()
```

Автокорреляционная диаграмма

Автокорреляционная функция plot_acf(data, lags=100) plt.tight_layout()

Частичная автокорреляционная функция plot_pacf(data, lags=30)

plt.tight_layout()

Декомпозиция временного ряда

```
decomposed = seasonal_decompose(data['value'], model = 'add')
fig = decomposed.plot()
fig.set_size_inches((10, 8))
fig.tight_layout()
plt.show()
```


Наблюдается положительная динамика с 1952 по 2019 год.

```
Разделение временного ряда на обучающую и тестовую выборку data 2 = data.copy()
```

```
# Целочисленная метка шкалы времени
xnum = list(range(data_2.shape[0]))
# Разделение выборки на обучающую и тестовую
Y = data_2['value'].values
train_size = int(len(Y) * 0.7)
xnum_train, xnum_test = xnum[0:train_size], xnum[train_size:]
train, test = Y[0:train_size], Y[train_size:]
history_arima = [x for x in train]
```

Прогнозирование временного ряда авторегрессионным методом (ARIMA)

```
# Параметры модели (p,d,q)
arima_order = (2,1,0)
# Формирование предсказаний
predictions_arima = list()
for t in range(len(test)):
    model_arima = ARIMA(history_arima, order=arima_order)
    model_arima_fit = model_arima.fit()
    yhat_arima = model_arima_fit.forecast()[0]
```

```
predictions arima.append(yhat arima)
    history arima.append(test[t])
# Вычисление метрики RMSE
error arima = mean squared_error(test, predictions_arima,
squared=False)
# Ошибка прогноза
np.mean(Y), error arima
(243847.7678259804, 24.173499561405922)
# Записываем предсказания в DataFrame
data 2['predictions ARIMA'] = (train size * [np.NAN]) +
list(predictions arima)
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row',
figsize=(10,5)
fig.suptitle('Предсказания временного ряда')
data 2.plot(ax=ax, legend=True)
pyplot.show()
```

Предсказания временного ряда


```
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Предсказания временного ряда (тестовая выборка)') data_2[train_size:].plot(ax=ax, legend=True) pyplot.show()
```

Предсказания временного ряда (тестовая выборка)


```
Прогнозирование временного ряда методом символьной регресии
```

SR.fit(np.array(xnum train).reshape(-1, 1), train.reshape(-1, 1))

C:\Users\Артемий\AppData\Local\Programs\Python\Python311\Lib\sitepackages\sklearn\utils\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). y = column or 1d(y, warn=True)

	Populati	on Average		Best Individual	
Gen	Length	Fitness	Length	Fitness	00B
	ss Time Le		Length	TEHESS	OOD
0	263.65	2.43463e+63	23	7.14077e+09	
N/A	1.77m				
1	130.36	5.77055e+16	43	6.06688e+09	
N/A	35.50s				
2	53.10	4.58992e+15	34	3.54847e+09	
N/A	21.01s				
3	34.28	1.99853e+19	13	1.42699e+09	
N/A	18.09s				

4	35.05	2.10424e+16	38	1.04052e+09
N/A 5	17.51s 30.47	2.56729e+16	36	4.29436e+08
N/A	16.71s			
6 N/A	31.30	3.00498e+16	50	6.39791e+07
N/A 7	16.85s 38.37	8.59782e+15	35	1.51165e+07
N/A	16.84s			
8 N/A	43.37 16.39s	5.29474e+15	47	4.76034e+06
9	37.70	8.42452e+15	35	4.14545e+06
N/A	16.02s	F 60100 1F	22	2 65050 06
10	40.68	5.69103e+15	32	3.65059e+06
N/A 11	16.41s 45.38	5.71108e+15	29	3.65015e+06
N/A	16.88s	J./1100E+1J	29	2.030136+00
12	41.36	5.72894e+15	29	3.65015e+06
N/A	15.28s	31720340113	23	3.030130100
13	35.07	3.58233e+15	29	3.65015e+06
N/A	14.79s	31332333123		0.000=00
14	33.33	8.46569e+15	35	3.53261e+06
N/A	14.52s			
15	31.43	3.14997e+19	35	3.53261e+06
N/A	13.50s			
16	30.19	1.42657e+16	35	3.53261e+06
N/A	13.20s			
17	30.81	2.81228e+15	35	3.53261e+06
N/A	13.94s			
18	33.31	5.72757e+15	35	3.53261e+06
N/A	12.93s	1 26622 . 16	25	2 50205 06
19	33.71	1.26632e+16	35	3.50395e+06
N/A 20	12.50s 34.95	1.70198e+16	35	3.50395e+06
N/A	12.79s	1.701906+10	33	3.30393E+00
21	42.21	6.70957e+15	35	3.50395e+06
N/A	12.97s	0.703376113	33	3.303336100
22	54.68	6.78469e+15	35	3.50395e+06
N/A				
23		6.47928e+18	102	3.50387e+06
N/A	12.99s			
24	42.69	8.57551e+15	71	3.50376e+06
N/A	12.20s			
25	59.07	6.73374e+21	85	3.49756e+06
N/A	12.76s			
26	89.07	1.51918e+25	85	3.49756e+06
N/A	14.62s	2 000225.10	01	2 400565.06
27 N/A	100.70 15.42s	2.98833e+18	91	3.48956e+06
1N/A 28	120.58	7.92131e+23	91	3.48956e+06
N/A	16.57s	1.321316723	91	2.40320C±00
11/7	1010/3			

29	142.26	1.91023e+18	127	3.48498e+06
N/A 30	17.12s 116.37	6.9315e+21	54	3.46676e+06
N/A 31	15.17s 103.96	2.33782e+22	54	3.46676e+06
N/A 32	14.04s 107.16	2.82439e+18	54	3.46676e+06
N/A 33	14.03s 110.56	4.95099e+26	112	3.45858e+06
N/A 34	16.46s 94.20	1.96986e+18	114	3.45249e+06
N/A 35	12.10s 77.71	6.0703e+15	133	3.43034e+06
N/A 36	10.79s 111.25	5.62717e+15	79	3.42948e+06
N/A 37	12.14s 142.44	1.4552e+18	246	3.41658e+06
N/A 38	13.28s 171.28	3.11029e+19	187	3.36822e+06
N/A 39	15.01s 197.58	2.8446e+16	187	3.36419e+06
N/A 40	16.16s 213.08	1.12226e+16	212	3.35931e+06
N/A 41	15.76s 193.33	7.07447e+17	181	3.35563e+06
N/A 42	14.02s 200.58	9.48793e+19	308	3.25166e+06
N/A 43	13.96s 203.16	6.9535e+17	308	3.24914e+06
N/A 44	12.84s 271.65	2.48275e+15	434	3.17665e+06
N/A 45	14.93s 340.95	1.45248e+18	434	3.17665e+06
N/A 46	17.53s 407.23	2.9286e+14	874	3.13466e+06
N/A 47	18.52s 475.59	8.20919e+13	857	3.13086e+06
N/A 48	19.41s 698.39	6.58531e+17	1124	3.1245e+06
N/A 49	25.36s 871.75	5.67064e+14	1140	3.1232e+06
N/A 50	28.84s 1008.67	1.44739e+18	1126	3.11533e+06
N/A 51	31.04s 1040.20	8.00984e+13	1337	3.1087e+06
N/A 52	33.62s 1087.90	4.8939e+10	1352	3.10262e+06
N/A 53	31.57s 1212.74	6.88053e+18	1338	3.09244e+06
N/A	31.48s	-	_	

```
1332.59
                  9.76027e+14
                                 1324
                                          3.09015e+06
  54
N/A
       31.34s
  55
     1375.70
                  4.2908e+14
                                 1361
                                          3.08045e+06
       29.90s
N/A
                  4.21109e+14
                                 1622
                                          3.07579e+06
  56
     1400.24
N/A
       27.95s
     1485.49
                  3.56926e+14
                                 1361
                                           3.0712e+06
  57
       27.59s
N/A
  58
     1565.07
                  5.99454e+17
                                 1379
                                          3.06568e+06
N/A
       26.42s
  59
     1519.96
                  1.18494e+10
                                 1452
                                          3.05779e+06
N/A
       23.41s
     1441.96
                  3.61367e+14
                                          3.05779e+06
  60
                                 1452
       20.24s
N/A
  61
     1484.91
                  3.60553e+14
                                 1441
                                          3.04915e+06
N/A
       18.26s
     1502.33
                  8.71965e+13
                                 1441
                                          3.04637e+06
  62
N/A
       16.17s
     1499.87
                  5.11657e+12
                                 1470
                                          3.04262e+06
  63
       13.94s
N/A
                  3.97956e+14
                                          3.03789e+06
  64
     1457.59
                                 1453
N/A
       11.39s
  65
     1514.59
                  3.44098e+14
                                 1735
                                          3.03427e+06
N/A
        9.42s
     1597.79
                  6.70466e+14
                                 1728
                                          3.02874e+06
  66
        7.36s
N/A
     1652.89
  67
                  3.52673e+14
                                 1753
                                          3.02842e+06
        5.02s
N/A
     1696.85
                                          3.02504e+06
  68
                  3.44312e+14
                                 1728
N/A
        2.59s
                  5.96419e+17
                                          3.01702e+06
  69
     1756.59
                                 1817
        0.00s
N/A
SymbolicRegressor(const range=(-100, 100),
                 function set=['add', 'sub', 'mul', 'div', 'sin'],
                 generations=70, init depth=(4, 10), metric='mse',
                 population size=500, random state=0,
stopping criteria=0.01,
                 verbose=1)
print(SR. program)
sub(mul(sub(-36.019, -77.644), add(add(x0, 51.302),
add(add(x0, 55.353), mul(55.353, 65.255)), X0)),
X0), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))),
sin(mul(sub(sub(add(X0, X0), sin(mul(sub(-36.019, -77.644),
add(add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0,
```

```
51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))),
sin(mul(sub(-36.019, -77.644), add(add(X0, sub(mul(sub(-36.019, -77.644)), add(add(X0, sub(-36.019, -77.644)), add(Add(X
77.644), add(X0, X0)), sub(add(X0, X0), add(add(add(X0, X0), X0),
sin(X0)))), 51.302), add(X0, X0))))), add(add(add(Add(X0, 51.302),
add(add(X0, X0), X0)), sin(mul(sub(-36.019, -77.644),
add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)),
add(X0, X0))))), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(add(add(X0, 51.302), 51.302), add(add(X0, X0), X0)),
add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(x0, sub(mul(sub(-36.019, -77.644), add(x0, X0)),
sub(add(X0, X0), mul(55.353, mul(sub(-36.019, -77.644),
add(sub(sub(sub(sub(sub(sub(sub(sub(sub(add(X0, X0), sin(mul(sub(-
36.019, -77.644), add(add(add(x0, 51.302), add(add(x0, X0), X0)),
add(X0, X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644),
add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0,
sub(mul(sub(-36.019, -77.644), add(X0, X0)), sub(add(X0, X0))
add(add(X0, X0), X0), sin(X0))))), 51.302), add(X0, X0))))),
sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), <math>sin(mul(sub(-x))
36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)),
add(X0, X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644),
add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), mul(sub(-36.019, -
77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0,
(X0)), add(X0, X0))))), sin(Mul(Sub(-36.019, -77.644), add(add(add(X0, X0))))
sub(mul(sub(-36.019, -77.644), add(X0, X0)), sub(add(X0, X0))
add(add(x0, X0), X0), sin(X0)))), 51.302), add(X0, X0))))),
sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-
36.019, -77.644), add(add(add(x0, X0), add(add(x0, X0), X0)),
add(X0, X0)), add(X0, X0))))), sin(X0)))))), 51.302), add(X0, X0))))))
X0))))), sin(mul(sub(-36.019, -77.644), add(add(X0, sub(mul(sub(-
36.019, -77.644), add(X0, X0)), sub(add(X0, X0), mul(55.353, mul(sub(-
X0), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-xub))
36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)),
add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(x0, sub(mul(sub(-36.019, -77.644), add(x0, x0)),
sub(add(X0, X0), add(add(add(X0, X0), X0), sin(X0))))), 51.302),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0,
51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))),
sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-
36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)),
add(X0, X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644),
mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0,
X0), X0), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -
77.644), add(add(X0, sub(mul(sub(-36.019, -77.644), add(X0, X0)),
```

```
sub(add(X0, X0), add(add(add(X0, X0), X0), sin(X0)))), 51.302),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, ...))))))
51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))),
sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, X0), add(add(X0,
X0), X0), add(X0, X0)), add(X0, X0)))), \sin(X0))))), 51.302),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0,
51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))),
sin(mul(sub(-36.019, -77.644), add(add(sin(X0), add(X0, X0)), add(X0,
X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-
36.019, -77.644), add(add(add(X0, sub(mul(sub(-36.019, -77.644), sub(-
36.019, -77.644)), sub(add(X0, X0), mul(55.353, mul(sub(-36.019, -
77.644), add(add(x0, add(add(x0, X0), X0), X0)),
add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)),
add(X0, X0)), sin(X0))))))), 51.302), <math>add(X0, X0)))), sin(mul(sub(-
36.019, -77.644), add(add(add(x0, 51.302), add(add(x0, X0), X0)),
add(X0, X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644),
add(add(x0, sub(mul(add(add(x0, 51.302), add(add(x0, X0),
(X0)), add(X0, (X0)), add(X0, (X0)), sub(add(X0, (X0)), add(add(add((X0))
X0), X0), sin(X0))))), <math>51.302), add(X0, X0))))), <math>sin(mul(sub(-36.019, x0))))
-77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0,
X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644),
add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(sin(X0),
add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(add(x0, X0), add(X0, sub(mul(add(add(x0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)), sub(add(X0, X0))
add(add(x_0, x_0), x_0), sin(x_0))))), add(x_0, x_0)), add(x_0, x_0))))
sin(mul(sub(-36.019, -77.644), add(add(x0, sub(mul(sub(-36.019, -
77.644), add(X0, X0)), sub(add(X0, X0), add(add(add(X0, X0), X0),
sin(X0)))), 51.302), add(X0, X0)))), sin(mul(sub(-36.019, -77.644),
\operatorname{add}(\operatorname{add}(\operatorname{add}(X0, 51.302), \operatorname{add}(\operatorname{add}(X0, X0), X0)), \operatorname{add}(X0, X0)),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, ...))))))
51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))),
sin(mul(sub(-36.019, -77.644), add(add(add(x0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-
36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)),
add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(x0, sub(mul(sub(-36.019, -77.644), add(x0, X0)),
sub(add(X0, X0), mul(55.353, mul(sub(-36.019, -77.644),
add(add(x0, add(add(x0, x0), x0), x0)), x0), sin(x0)))))),
51.302), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(add(X0, X0), X0))
51.302), X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(X0, sub(mul(sub(-36.019, -77.644), add(X0, X0)),
sub(add(X0, X0), mul(55.353, mul(sub(-36.019, -77.644),
add(add(x0, add(add(x0, x0), x0), x0)), x0), sin(x0))))))
51.302), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(add(X0, X0), X0))
51.302), X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
```

```
add(add(sin(X0), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -
77.644), add(add(X0, X0), X0)))), sin(mul(sub(-36.019, -77.644),
add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0,
51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))),
sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-
36.019, -77.644), add(add(add(X0, sub(mul(sub(-36.019, -77.644),
sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), add(add(X0, X0),
X0)), sin(mul(sub(-36.019, -77.644), add(add(add(X0, sub(mul(sub(-
36.019, -77.644), add(X0, X0)), sub(add(X0, X0), add(add(add(X0, X0),
X0), sin(X0)))), 51.302), add(X0, X0)))), sin(mul(sub(-36.019, -
77.644), add(sub(-36.019, -77.644), add(X0, X0))))), sin(mul(sub(-
36.019, -77.644), add(add(add(x0, 51.302), add(add(x0, X0), X0)),
add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0,
51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))),
sin(mul(sub(-36.019, -77.644), add(add(X0, sub(mul(sub(-36.019, -
77.644), add(X0, X0)), sub(add(X0, X0), mul(55.353, mul(sub(-36.019, -
77.644), add(add(x0, add(add(x0, X0), X0), X0)),
add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)),
add(X0, X0))), sin(X0))))))), 51.302), add(X0, X0))))), sin(mul(sub(-
36.019, -77.644), add(sin(mul(sub(-36.019, -77.644),
add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)),
add(X0, X0)))), add(X0, X0))))), sin(mul(sub(-36.019, -77.644),
add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)),
add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(55.353,
51.302), add(X0, X0))))))), 51.302), add(X0, X0))))), sin(mul(sub(-
36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)),
add(sub(-36.019, -77.644), add(X0, X0))), add(X0, X0)))))
sin(mul(sub(-36.019, -77.644), add(add(add(x0, 51.302),
add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))), sin(mul(sub(-
36.019, -77.644), add(-36.019, add(X0, X0)))))), sub(add(add(X0, X0),
X0), mul(55.353, 65.255)))
# Предсказания
y sr = SR.predict(np.array(xnum test).reshape(-1, 1))
y sr[:10]
array([274891.75793852, 274817.36307349, 275068.42349884,
275594.91553188.
       275909.57465535, 276033.9204471 , 276192.3291504 ,
276368.95663777,
       276651.56236873, 276542.01774132])
# Записываем предсказания в DataFrame
data_2['predictions_GPLEARN'] = (train_size * [np.NAN]) + list(y_sr)
```

```
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Предсказания временного ряда (тестовая выборка)') data_2[train_size:].plot(ax=ax, legend=True) pyplot.show()
```

Предсказания временного ряда (тестовая выборка)


```
error_SR = mean_squared_error(test, y_sr, squared=False)
# Ошибка прогноза
np.mean(Y), error SR
(243847.7678259804, 6510.330169456957)
Качество прогноза моделей
def print_metrics(y_test, y_pred):
    print(f"R^2: {r2 score(y test, y pred)}")
    print(f"MSE: {mean squared_error(y_test, y_pred, squared=False)}")
    print(f"MAE: {mean absolute error(y test, y pred)}")
print("ARIMA")
print metrics(test, predictions arima)
print("\nGPLEARN")
print_metrics(test, y_sr)
ARIMA
R^2: 0.9999973075905816
MSE: 24.173499561405922
```

GPLEARN

MAE: 16.034435650864996

R^2: 0.8047153645391025 MSE: 6510.330169456957 MAE: 6443.710113418146

Вывод

Обе модели, ARIMA и GPLEARN, показали хороший результат. Лучшей по всем используемым метрикам оказалась модель ARIMA.