AMENDMENTS TO THE SPECIFICATION:

Please insert the following heading before the paragraph beginning on page 1, line 2:

Background Of The Invention

(1) Field of the Invention

Please insert the following heading before the paragraph beginning on page 1, line 10:

(2) Description of the Art

Please insert the following heading before the paragraph beginning on page 5, line 11:

Summary Of The Invention

Please insert the following heading before the paragraph beginning on page 6, line 26:

Description Of The Figures

Please insert the following heading before the paragraph beginning on page 7, line 23:

Detailed Description Of The Invention

Please amend the paragraph on page 15, beginning at line 25 as follows:

As before, two input signal vectors **A** and **B**, having respective amplitudes Va and Vb, at inputs 102a and 102b are split into signal fractions a1.**A**, a2.**A**, a3.**A** and b1.**B**, b2.**B**, b3.**B** by splitters 106a and 106b and fed to first and second inputs 1 and 2 of first, second and third hybrids 110 to 114: i.e. signals a[n]. **A** and b[n]. **B** a[n+1] **A** a[n+1] **B** are input to nth hybrid 110 + 2n, n = 0, 1 and 2. The splitting ratios are set so that a1 = b1, a2 = b2 and a3 = b3 in order to implement phase to power conversion in the hybrids 110 to 114.

Please amend Table 1 on page 16, beginning at line 18 as follows:

Table 1

Hybrid	Input	Fraction	Hybrid	Input	Fraction
1444	1	$c1.(a1.\mathbf{A} + b1.\mathbf{B})$	1447	1	e2.(a2.A + b2.B)
1444	2	$d1.(a3\underline{1}.A - b3\underline{1}.B)$	1447	2	f2.(a2. A - b2. B)
1445	1	c2.(a1.A + b1.B)	1448	1	g1.(a3.A + b3.B)
1445	2	$d2.(a3\underline{1}.A - b3\underline{1}.B)$	1448	2	h1.(a+3.A - b+3.B)
1446	1	e1.(a2.A + b2.B)	1449	1	g2.(a3.A + b3.B)
1446	2	fl.(a2. A – b2. B)	1449	2	h2.(a+3.A - b+3.B)

Please amend the paragraph on page 17, beginning at line 25 as follows:

Table 2 below shows output signals from the hybrids 144_4 to 144_9 . The splitter fractions c1 etc. are necessary scalar quantities, but terms in parenthesis in Table 2 column 4, e.g. (a1A + b1.B) and (a31.A - b31.B), are vector additions and subtractions. The phase difference is imposed between Va and Vb as described earlier with reference to Figure 3 or 4, and vectors are indicated by characters in bold type. Moreover, as previously described, resultants of vector additions (a1.A + b1.B), etc, between signals or equal magnitude are all in phase with one another, and differ in phase by 90 degrees to all vector subtractions (a31.A - b31.B) etc. The vector subtractions are therefore all automatically in quadrature with the vector additions.

Please amend the Table 2 on page 18 as follows:

Table 2

Antenna Element	Hybrid	Output	Output Signal
148U6	1444	Sum	c1.(a1.A + b1.B) + d1.(a31.A - b31.B)
148U5	1445	Sum	c2.(a1.A + b1.B) + d2.(a31.A - b31.B)
148U4	1446	Sum	e1.(a2.A + b2.B) + f1.(a1.A - b2.B)

148U3	1447	Sum	e2.(a2.A + b2.B) + f2.(a2.A - b2.B)
148U2	1448	Sum	$g1.(a3.A + b3.B) + h1.(a1\underline{3}.A - b1\underline{3}.B)$
148U1	1449	Sum	g2.(a2.A + b3.B) + h2.(a13.A - b13.B)
148L1	1449	Diff.	g2.(a3.A + b3.B) - h2.(a13.A - b13.B)
148L2	1448	Diff.	g1.(a3.A + b3.B) - h1.(a13.A - b13.B)
148L3	1447	Diff.	e2.(a2.A + b2.B) - f2.(a2.A - b2.B)
148L4	1446	Diff.	e1.(a2.A + b2.B) - f1.(a2.A - b2.B)
148L5	1445	Diff.	c2.(a1.A + b1.B) - d2.(a31.A - b31.B)
148L6	1444	Diff.	c1.(a1.A + b1.B) - d1.(a31.A - b31.B)

Please amend the paragraph on page 18, beginning at line 3 as follows:

The expressions in the fourth column of Table 2 are of the form P + Q, where Q is a vector in quadrature with a vector P. All P vectors are in phase with one another and all Q vectors are in phase with one another. They can therefore be written as P + jQ, where P and Q are scalar magnitudes of P and Q. E.g. for antenna element 148U6:

$$P = e2c1.(a1.A + b1.B)$$
 and $Q = d1.(a31.A - b31.B)$

Please amend the Table 3 on page 18 as follows:

Table 3

Splitter	Splitter Output	Split Ratio		
	a1	0.2500 <u>0.2286</u>	-9.5dB <u>-12.8dB</u>	
102a	a2	0.5000 <u>0.7873</u>	-7.20dB <u>-2.1B</u>	
	a3	1.0000 <u>0.5725</u>	-1.18dB -4.8dB	
	bl	0.2500 <u>0.5725</u>	-9.5dB <u>-4.8dB</u>	
102b	b2	0.5000 <u>0.7873</u>	-7.20dB <u>-2.1dB</u>	
	b3	1.0000 <u>0.2286</u>	-1.18dB -12.8dB	

	c1	1.0000 <u>0.3011</u>	-3.00dB -10.4dB
142c	c2	1.0000 <u>0.9536</u>	-3.00dB -0.4dB
	d1	1.0000 <u>0.7286</u>	- 0.97dB - <u>2.8dB</u>
142d	d2	0.5000 <u>0.6849</u>	- 7.00dB - <u>3.3dB</u>
	e1	1.0000 <u>0.6112</u>	-3.00dB -4.3dB
142e	e2	1.0000 <u>0.7915</u>	-3.00dB -2.0dB
	fl	1.0000 <u>0.6112</u>	- 0.97dB - <u>4.3dB</u>
142f	f2	0.5000 <u>0.7915</u>	-7.00dB -2.0dB
	g1	1.0000 <u>0.7286</u>	-3.00dB -2.8dB
142g	g2	1.0000 <u>0.6849</u>	-3.00dB -3.3dB
	h1	1.0000 <u>0.3011</u>	- 0.97dB - <u>10.4dB</u>
142h	h2	0.5000 <u>0.9536</u>	-7.00dB -0.4dB