Sprawozdanie z ĆWICZENIA 1: Pomiary Tensometryczne

Kewin Kisiel (197866) i Mateusz Kuczerowski (197900) Grupa 1A

23 października 2025

Przedmiot: Przetworniki Wielkości Nieelektrycznych

Prowadzący: dr inż. Paweł Kalinowski

1 Uzupełnienie tabel pomiarowych

Obliczenia dla tabel zostały wykonane w oparciu o następujące założenia:

- Rezystancja nominalna (bazowa) tensometrów $R_0 = 350 \,\Omega$.
- Względna zmiana rezystancji $\Delta R/R$ jest obliczana jako:

$$\frac{\Delta R}{R} = \frac{R - R_0}{R_0} = \frac{R - 350}{350}$$

- Na podstawie danych, dla $\epsilon = 0,001, R = 350,7\Omega$, co daje $\Delta R/R = 0,002$. Dla $\epsilon = 0,01$, $R = 357\Omega$, co daje $\Delta R/R = 0,02$. Zależność ta to $\Delta R/R = 2\epsilon$, co oznacza, że stała tensometru (współczynnik k) wynosi k = 2.
- Parametry a i b prostej aproksymacyjnej y = ax + b zostały wyznaczone metodą regresji liniowej dla danych $(x, y) = (\epsilon, U_{wyj})$.
- Błąd nieliniowości δ_{nl} obliczono jako:

$$\delta_{nl} = \frac{\max |U_{wyj,pomiar} - U_{wyj,aproksy}|}{U_{wyj,max} - U_{wyj,min}} \cdot 100\%$$

1.1 1a. Ćwierćmostek, $\epsilon = 0,001 - 0,01,\ U_{zas} = 2,5\ V$

Tabela 1: Pomiary dla ćwierć
mostka przy $U_{zas}=2.5\,\mathrm{V}.$

ϵ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0,001	350,7	$22,\!327$	$0,\!002$
0,002	351,4	$23,\!623$	$0,\!004$
0,003	352,1	$24,\!868$	$0,\!006$
0,004	352,8	26,116	$0,\!008$
0,005	$353,\!5$	$27,\!356$	$0,\!010$
0,006	354,2	28,595	$0,\!012$
0,007	354,9	$29,\!836$	$0,\!014$
0,008	$355,\!6$	31,068	$0,\!016$
0,009	$356,\!3$	$32,\!302$	$0,\!018$
0,01	357	$33,\!529$	$0,\!020$

Prosta aproksymacyjna y=ax+b $a=1244,4,\,b=20,97$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 1,52\%$

1.2 1b. Ćwierćmostek, $\epsilon = 0,001 - 0,01, U_{zas} = 5 \text{ V}$

Tabela 2: Pomiary dla ćwierć
mostka przy $U_{zas}=5\,\mathrm{V}.$

€ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0,001	350,7	44,921	$0,\!002$
$0,\!002$	351,4	47,420	$0,\!004$
0,003	352,1	49,910	$0,\!006$
0,004	$352,\!8$	$52,\!404$	0,008
0,005	$353,\!5$	$54,\!885$	$0,\!010$
$0,\!006$	354,2	$57,\!365$	$0,\!012$
0,007	354,9	59,845	$0,\!014$
0,008	$355,\!6$	$62,\!311$	$0,\!016$
0,009	$356,\!3$	64,774	0,018
0,01	357	67,234	$0,\!020$

Prosta aproksymacyjna y=ax+b $a=2548,8,\,b=41,74$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0,14\%$

1.3 1c. Ćwierćmostek, $\epsilon = 0.01 - 0.1, U_{zas} = 2.5 \text{ V}$

Tabela 3: Pomiary dla ćwierć
mostka przy $U_{zas}=2.5\,\mathrm{V}.$

ϵ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0,01	357	33,533	0,02
0,02	364	$45,\!696$	$0,\!04$
0,03	371	$57,\!625$	$0,\!06$
0,04	378	$69,\!32$	0,08
$0,\!05$	385	80,783	$0,\!10$
0,06	392	92,033	$0,\!12$
0,07	399	$103,\!062$	$0,\!14$
0,08	406	113,851	$0,\!16$
0,09	413	$124,\!474$	$0,\!18$
0,1	420	134,89	0,20

Prosta aproksymacyjna y=ax+b $a=1126,9,\,b=21,90$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 2,50\%$

1.4 1d. Ćwierćmostek, $\epsilon=0,01-0,1,\ U_{zas}=5\ \mathrm{V}$

Tabela 4: Pomiary dla ćwierć
mostka przy $U_{zas}=5\,\mathrm{V}.$

€ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0,01	357	67,234	0,02
$0,\!02$	364	$91,\!561$	$0,\!04$
0,03	371	$115,\!413$	$0,\!06$
0,04	378	138,792	0,08
$0,\!05$	385	161,712	$0,\!10$
0,06	392	184,207	$0,\!12$
0,07	399	$206,\!253$	$0,\!14$
0,08	406	$227,\!835$	$0,\!16$
0,09	413	$249,\!07$	0,18
0,1	420	269,91	0,20

Prosta aproksymacyjna y=ax+b $a=2250,3,\,b=44,18$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 2,45\%$

1.5 2a. Półmostek, $\epsilon = 0,001-0,01,\ U_{zas} = 2,5\ \mathrm{V}$

Tabela 5: Pomiary dla półmostka przy $U_{zas}=2.5\,\mathrm{V}.$

ϵ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0,001	350,7	45,367	0,002
0,002	351,4	$47,\!833$	$0,\!004$
0,003	352,1	$50,\!337$	$0,\!006$
0,004	$352,\!8$	$52,\!827$	0,008
$0,\!005$	$353,\!5$	55,223	$0,\!010$
$0,\!006$	354,2	57,700	$0,\!012$
0,007	354,9	60,135	$0,\!014$
0,008	$355,\!6$	$62,\!652$	$0,\!016$
0,009	356,3	$65{,}104$	0,018
0,01	357	$67,\!560$	$0,\!020$

Prosta aproksymacyjna y=ax+b $a=2465,7,\,b=42,87$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0,13\%$

1.6 2b. Półmostek, $\epsilon = 0,001 - 0,01, U_{zas} = 5 \text{ V}$

Tabela 6: Pomiary dla półmostka przy $U_{zas} = 5 \,\mathrm{V}.$

€ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0,001	350,7	$90,\!470$	0,002
0,002	351,4	$95,\!464$	$0,\!004$
0,003	352,1	$100,\!442$	$0,\!006$
0,004	352,8	$105,\!428$	0,008
0,005	$353,\!5$	$110,\!375$	$0,\!010$
0,006	354,2	$115,\!333$	$0,\!012$
0,007	354,9	120,278	$0,\!014$
0,008	$355,\!6$	$125,\!21$	$0,\!016$
0,009	$356,\!3$	130, 137	0,018
0,01	357	$135,\!038$	$0,\!020$

Prosta aproksymacyjna y=ax+b $a=4951,8,\,b=85,50$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0,04\%$

1.7 2c. Półmostek, $\epsilon = 0.01 - 0.1$, $U_{zas} = 2.5 \text{ V}$

Tabela 7: Pomiary dla półmostka przy $U_{zas}=2.5\,\mathrm{V}.$

ϵ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0,01	357	67,560	0,02
$0,\!02$	364	91,880	$0,\!04$
0,03	371	115,715	$0,\!06$
0,04	378	$139,\!1$	0,08
0,05	385	$162,\!02$	$0,\!10$
0,06	392	184,532	$0,\!12$
0,07	399	206,577	$0,\!14$
0,08	406	$228,\!12$	0,16
0,09	413	$249,\!345$	$0,\!18$
0,1	420	$270,\!171$	0,20

Prosta aproksymacyjna y=ax+b $a=2251,6,\,b=45,09$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0,02\%$

1.8 2d. Półmostek, $\epsilon = 0,01-0,1,\ U_{zas} = 5 \text{ V}$

Tabela 8: Pomiary dla półmostka przy $U_{zas} = 5 \,\mathrm{V}.$

ϵ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0,01	357	135,037	0,02
$0,\!02$	364	183,666	$0,\!04$
0,03	371	231,267	$0,\!06$
0,04	378	$277,\!952$	0,08
$0,\!05$	385	323,744	$0,\!10$
0,06	392	$368,\!675$	$0,\!12$
0,07	399	412,732	$0,\!14$
0,08	406	455,796	$0,\!16$
0,09	413	498,21	0,18
0,1	420	$539,\!83$	0,20

Prosta aproksymacyjna y=ax+b $a=4431,5,\,b=90,50$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0,05\%$

1.9 4. Wzorcowanie metodą obciążenia belki znaną siłą

Przyjęto $E_{stal} = 2.1 \times 10^4 \,\mathrm{kg}\,\mathrm{mm}^{-2}$.

Dane belki: $l_0=250\,\mathrm{mm},\ b_0=60\,\mathrm{mm},\ h=8\,\mathrm{mm}.$

Wzór na odkształcenie teoretyczne:

$$\epsilon = \frac{6l_0}{Eh^2b_0} \cdot P = \frac{6 \cdot 250}{(2, 1 \times 10^4) \cdot 8^2 \cdot 60} \cdot P \approx 1,86 \times 10^{-5} \cdot P \quad \rightarrow \quad \epsilon(10^{-6}) \approx 18,6 \cdot P$$

Wzory na $\Delta R/R$ (pomiarowe) dla $U_{zas} = 5 \text{ V} = 5000 \text{ mV}$:

- Półmostek: $\Delta R/R(10^{-6}) = \frac{2 \cdot \Delta U_{wyj}}{5000} \cdot 10^6 = 400 \cdot \Delta U_{wyj}$
- Pełen mostek: $\Delta R/R(10^{-6}) = \frac{\Delta U_{wyj}}{5000} \cdot 10^6 = 200 \cdot \Delta U_{wyj}$

1.9.1 4a. Półmostek, $U_{zas} = 5 \text{ V}$

Tabela 9: Wzorcowanie półmostka metodą obciążenia siłą.

P [kg]	U_{wyj} [mV]	$\epsilon(10^{-6})$ (teoret.)	$\Delta U_{wyj} [\text{mV}]$	$\Delta R/R(10^{-6})$ (pomiar)	k (pomiar)
0	88,258	0	0	0	-
$0,\!5$	88,304	9,3	0,046	18,4	1,978
1,0	$88,\!347$	18,6	0,089	$35,\!6$	1,914
1,5	$88,\!395$	27,9	$0,\!137$	54,8	1,964
2,0	$88,\!44$	37,2	0,182	72,8	1,957
3,0	$88,\!512$	55,8	$0,\!254$	101,6	1,821
4,0	88,641	74,4	$0,\!383$	153,2	$2,\!059$
5,0	88,712	93,0	$0,\!454$	181,6	1,953
Prosta aproksymacyjna ($\Delta R/R = f(\epsilon)$) $a = 1,968, b = -0,52$					
	Błąd nieliniowości $\Delta R/R = f(\epsilon)$ [%] $\approx 4,24\%$				

1.9.2 4b. Pełen mostek, $U_{zas} = 5 \,\mathrm{V}$

Tabela 10: Wzorcowanie pełnego mostka metodą obciążenia siłą.

P [kg]	$U_{wyj} [mV]$	$\epsilon(10^{-6})$ (teoret.)	$\Delta U_{wyj} [\text{mV}]$	$\Delta R/R(10^{-6})$ (pomiar)	k (pomiar)	
0	1,607	0	0	0	-	
0,5	1,708	9,3	0,101	20,2	2,172	
1,0	1,808	18,6	0,201	40,2	2,161	
1,5	1,899	27,9	$0,\!292$	58,4	2,093	
2,0	1,998	37,2	$0,\!391$	78,2	$2{,}102$	
3,0	2,188	$55,\!8$	0,581	116,2	2,082	
4,0	$2,\!379$	74,4	0,772	154,4	2,075	
5,0	$2,\!558$	93,0	$0,\!951$	190,2	2,045	
Prosta aproksymacyjna ($\Delta R/R = f(\epsilon)$) $a = 2,064, b = 0,88$						
Bład r	Błąd nieliniowości $\Delta R/R = f(\epsilon)$ [%] $\approx 1.38\%$					

2 Charakterystyki i analiza

2.1 Ćwierćmostek

2.1.1 Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0,001-0,01$

Charakterystyki $U_{wyj} = f(\epsilon)$ dla ćwierćmostka

Rysunek 1: Charakterystyki $U_{wyj}=f(\epsilon)$ dla ćwierć
mostka ($\epsilon=0,001\div0,01$). Linia górna (czerwona): $U_{zas}=5\,\mathrm{V}$, linia dolna (niebieska): $U_{zas}=2,5\,\mathrm{V}$.

Wykres przedstawia dwie linie o silnym trendzie liniowym. Linia dla 5 V leży wyraźnie wyżej i ma większe nachylenie niż linia dla 2,5 V.

2.1.2 Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0,01-0,1$

Charakterystyki $U_{wyj} = f(\epsilon)$ dla ćwierćmostka

Rysunek 2: Charakterystyki $U_{wyj}=f(\epsilon)$ dla ćwierćmostka ($\epsilon=0,01\div0,1$). Linia górna (czerwona): $U_{zas}=5\,\mathrm{V}$, linia dolna (niebieska): $U_{zas}=2.5\,\mathrm{V}$.

Podobnie jak na poprzednim wykresie, linia dla 5 V ma około dwukrotnie większe nachylenie. Obie charakterystyki wykazują lekkie zakrzywienie (nieliniowość).

2.1.3 Wnioski

 \bullet Czy napięcie zasilania U_{zas} wpływa na czułość?

Tak. Czułość $(S = dU_{wyj}/d\epsilon)$ jest wprost proporcjonalna do napięcia zasilania.

- Dla $\epsilon = 0,001 0,01$: $S_{2.5V} \approx 1244$, $S_{5V} \approx 2549$. Stosunek: $2549/1244 \approx 2,05$.
- Dla $\epsilon = 0,01-0,1$: $S_{2.5V} \approx 1127,\, S_{5V} \approx 2250.$ Stosunek: $2250/1127 \approx 2,00.$

Podwojenie napięcia zasilania skutkuje podwojeniem czułości. Wynika to z formuły dla ćwierćmostka $U_{wyj} \approx \frac{1}{4} \frac{\Delta R}{R} U_{zas} = \frac{1}{4} k \epsilon U_{zas}$.

• Czy błąd nieliniowości zależy od zakresu zmian ϵ ?

Tak. Układ ćwierć
mostka jest nieliniowy, co wynika z pełnego wzoru: $U_{wyj} = \frac{\Delta R/R}{4+2(\Delta R/R)}U_{zas}$

- Dla $U_{zas}=2.5\,\mathrm{V}$: Błąd wzrósł z $\approx 1.52\%$ (małe ϵ) do $\approx 2.50\%$ (duże ϵ).
- Dla $U_{zas}=5\,\mathrm{V}$: Błąd wzrósł z $\approx 0,14\%$ (małe ϵ) do $\approx 2,45\%$ (duże ϵ).

Im większy zakres ϵ (a tym samym $\Delta R/R$), tym bardziej człon $2(\Delta R/R)$ w mianowniku wpływa na wynik, powodując wzrost nieliniowości.

2.2 Półmostek

2.2.1 Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0.001 - 0.01$

Charakterystyki $U_{wyj} = f(\epsilon)$ dla półmostka

Rysunek 3: Charakterystyki $U_{wyj} = f(\epsilon)$ dla półmostka ($\epsilon = 0,001 \div 0,01$). Linia górna (czerwona): $U_{zas} = 5 \text{ V}$, linia dolna (niebieska): $U_{zas} = 2.5 \text{ V}$.

Wykres przedstawia dwie linie o bardzo wysokiej liniowości. Czułość dla 5 V jest dwukrotnie większa niż dla 2,5 V.

2.2.2 Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0,01-0,1$

Charakterystyki $U_{wyj} = f(\epsilon)$ dla półmostka

Rysunek 4: Charakterystyki $U_{wyj} = f(\epsilon)$ dla półmostka ($\epsilon = 0,01 \div 0,1$). Linia górna (czerwona): $U_{zas} = 5 \,\mathrm{V}$, linia dolna (niebieska): $U_{zas} = 2,5 \,\mathrm{V}$.

Zależność pozostaje wysoce liniowa nawet w dużym zakresie ϵ .

2.2.3 Wnioski

- Czy napięcie zasilania U_{zas} wpływa na czułość? Tak. Podobnie jak w ćwierćmostku, czułość jest wprost proporcjonalna do U_{zas} .
 - Dla $\epsilon = 0,001 0,01$: $S_{2.5V} \approx 2466$, $S_{5V} \approx 4952$. Stosunek: $\approx 2,01$.
 - Dla $\epsilon = 0.01 0.1$: $S_{2.5V} \approx 2252$, $S_{5V} \approx 4432$. Stosunek: ≈ 1,97.

Podwojenie napięcia zasilania podwaja czułość.

• Czy błąd nieliniowości zależy od zakresu zmian ϵ ?

Nie (w sposób znaczący). W układzie półmostka kompensacyjnego (założenie $\epsilon_1 = \epsilon, \epsilon_2 = -\epsilon$), wzór teoretyczny $U_{wyj} = \frac{1}{2}(\frac{k\epsilon_1 - k\epsilon_2}{2 + k\epsilon_1 + k\epsilon_2})U_{pot}$ upraszcza się. Człony nieliniowe $k\epsilon_1$ i $k\epsilon_2$ w mianowniku mają przeciwne znaki i w idealnym przypadku się znoszą, linearyzując charakterystykę. Obliczone błędy nieliniowości są bardzo małe (wszystkie $\delta_{nl} < 0.15\,\%$) i nie wykazują systematycznego wzrostu wraz z zakresem ϵ .

2.3 Wzorcowanie metodą obciążenia belki znaną siłą

1 Półmostek Pełen mostek 0.9 0.8 Zmiana napięcia $\Delta U_{wyj}~[\mathrm{mV}]$ 0.7 0.6 0.50.40.30.20.1 0 10 20 30 40 50 90 100 80 Odkształcenie teoretyczne ϵ (10⁻⁶)

Charakterystyki
$$\Delta U_{wyj} = f(\epsilon)$$
 (Wzorcowanie siłą)

Rysunek 5: Porównanie charakterystyk $\Delta U_{wyj} = f(\epsilon)$ dla półmostka i pełnego mostka przy $U_{zas} = 5 \ V$.

Na wspólnym wykresie przedstawiono charakterystyki $\Delta U_{wyj} = f(\epsilon)$ dla układu półmostka i pełnego mostka. Porównano zmianę napięcia wyjściowego ΔU_{wyj} (wartość pomiarowa minus offset przy P=0) w funkcji obliczonego teoretycznego odkształcenia ϵ . Z wykresu wyraźnie widać, że większą czułością charakteryzuje się układ pełnego mostka. Nachylenie jego charakterystyki jest widocznie większe niż dla układu półmostka.

• **Półmostek** (różnicowy, $\epsilon_1 = \epsilon, \epsilon_2 = -\epsilon$):

$$U_{wyj} \approx \frac{1}{2} \left(\frac{k\epsilon_1 - k\epsilon_2}{2} \right) U_{pol} = \frac{1}{2} \left(\frac{k\epsilon - (-k\epsilon)}{2} \right) U_{pol} = \frac{1}{2} k\epsilon U_{pol}$$

Czułość $S_{pol} = dU_{wyj}/d\epsilon \approx \frac{1}{2}kU_{pol}$.

• Pełen mostek (różnicowy, $\epsilon_1 = \epsilon, \epsilon_4 = \epsilon, \epsilon_2 = -\epsilon, \epsilon_3 = -\epsilon$):

$$U_{wyj} \approx \frac{1}{2} \left(\frac{k\epsilon_1 - k\epsilon_2 - k\epsilon_3 + k\epsilon_4}{2} \right) U_{pol} = \frac{1}{2} \left(\frac{k\epsilon - (-k\epsilon) - (-k\epsilon) + k\epsilon}{2} \right) U_{pol} = k\epsilon U_{pol}$$

Czułość $S_{pelen} = dU_{wyj}/d\epsilon \approx kU_{pol}$.

Teoretycznie, układ pełnego mostka jest dwukrotnie czulszy niż układ półmostka (oraz czterokrotnie czulszy niż ćwierćmostek), co znajduje potwierdzenie na wykresie, gdzie nachylenie czerwonej linii (S_{pelen}) jest w przybliżeniu dwa razy większe niż niebieskiej (S_{pol}) .

2.4 Wnioski końcowe

Na podstawie przeprowadzonych badań i analizy wyników można sformułować następujące wnioski:

- 1. Wpływ napięcia zasilania: Pomiary laboratoryjne potwierdziły, że czułość mostka tensometrycznego (zarówno w konfiguracji ćwierćmostka, jak i półmostka) jest wprost proporcjonalna do napięcia zasilania U_{zas} . Podwojenie napięcia zasilania (z 2,5 V do 5 V) skutkowało w każdym przypadku około dwukrotnym wzrostem czułości (nachylenia charakterystyki $U_{wyj} = f(\epsilon)$).
- 2. **Liniowość układów:** Wykazano kluczową zaletę układów różnicowych (półmostek) nad ćwierćmostkiem.
 - Układ **ćwierćmostka** jest z natury nieliniowy, co wynika z obecności członu ΔR w mianowniku wzoru $U_{wyj} = \frac{\Delta R/R}{4+2(\Delta R/R)}U_{zas}$. Błąd nieliniowości dla tego układu rósł wraz z zakresem mierzonych odkształceń, osiągając $\approx 2,5\%$.
 - W układzie **półmostka** (kompensacyjnego, $\epsilon_2 = -\epsilon_1$), człony nieliniowe w mianowniku wzoru $U_{wyj} = \frac{1}{2} (\frac{k\epsilon_1 k\epsilon_2}{2 + k\epsilon_1 + k\epsilon_2}) U_{pol}$ znoszą się $(k\epsilon_1 + k\epsilon_2 \approx 0)$. Powoduje to **skuteczną linearyzację** charakterystyki. Obliczone błędy nieliniowości dla półmostka były pomijalnie małe (rzędu $\approx 0,02\% 0,13\%$).
- 3. Czułość układów: Układy różnicowe (półmostek i pełen mostek) oferują znacznie wyższą czułość niż ćwierćmostek. Jak wykazano w sekcji 2.3, czułość pełnego mostka jest teoretycznie 2x większa niż półmostka i 4x większa niż ćwierćmostka.
- 4. Wartość stałej k: Na podstawie danych kalibracyjnych (np. dla $\epsilon = 0, 01, R = 357~\Omega$) wyznaczono stałą k (czułość tensometru) jako $k = (\Delta R/R)/\epsilon = 0, 02/0, 01 = 2$. Pomiary wzorcowania siłą również dały zbliżone wyniki (średnio $k \approx 1,97$ dla półmostka i $k \approx 2,06$ dla pełnego mostka).