Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Judeţeană şi a Municipiului Bucureşti, 13 Martie 2010 CLASA a XI-a

Problema 1. Arătați că orice funcție continuă $f: \mathbb{R} \to \mathbb{R}$ de forma

$$f(x) = \begin{cases} a_1 x + b_1, & \text{pentru } x \le 1\\ a_2 x + b_2, & \text{pentru } x > 1 \end{cases}$$

unde $a_1, a_2, b_1, b_2 \in \mathbb{R}$, poate fi scrisă sub forma

$$f(x) = m_1 x + n_1 + \varepsilon |m_2 x + n_2|$$
, pentru $x \in \mathbb{R}$,

unde $m_1, m_2, n_1, n_2 \in \mathbb{R}$, iar $\varepsilon \in \{-1, +1\}$.

Problema 2. Se consideră matricele $A, B \in \mathcal{M}_3(\mathbb{C})$ cu $A = -^t A$, $B = {}^t B$. Arătați că dacă funcția polinomială definită prin

$$f(x) = \det(A + xB)$$

are o rădăcină multiplă, atunci $\det(A+B) = \det B$.

 $Prin \, {}^tX$ s-a notat transpusa matricei X.

Problema 3. Fie $f: \mathbb{R} \to \mathbb{R}$ strict crescătoare astfel încât $f \circ f$ este continuă. Arătați că f este continuă.

Gazeta Matematică

Problema 4. Demonstrați că există șiruri $(a_n)_{n\geq 0}$ cu $a_n\in\{-1,+1\}$ pentru orice $n\in\mathbb{N}$, astfel încât

$$\lim_{n \to \infty} \left(\sqrt{n + a_1} + \sqrt{n + a_2} + \dots + \sqrt{n + a_n} - n\sqrt{n + a_0} \right) = \frac{1}{2}.$$

Timp de lucru 3 ore. Se acordă în plus 30 de minute pentru întrebări. Fiecare problemă este notată cu 7 puncte.