NUMERICAL DIFFERENTIATION

The derivative of f(x) at x_0 is:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

An approximation to this is:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$
 for small values of h .

Forward Difference
Formula

Let $f(x) = \ln x$ and $x_0 = 1.8$

Find an approximate value for f'(1.8)

h	f(1.8)	f(1.8+h)	$\frac{f(1.8+h)-f(1.8)}{h}$
0.1	0.5877867	0.6418539	0.5406720
0.01	0.5877867	0.5933268	0.5540100
0.001	0.5877867	0.5883421	0.5554000

The exact value of $f'(1.8) = 0.55\overline{5}$

Assume that a function goes through three points:

$$(x_0, f(x_0)), (x_1, f(x_1))$$
and $(x_2, f(x_2)).$

$$f(x) \approx P(x)$$

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

Lagrange Interpolating Polynomial

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$P(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0)$$

$$+ \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1)$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

$$f'(x) \approx P'(x)$$

$$P'(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} f(x_0)$$

$$+ \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} f(x_1)$$

$$+ \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

If the points are equally spaced, i.e.,

$$x_1 = x_0 + h$$
 and $x_2 = x_0 + 2h$

$$P'(x_0) = \frac{2x_0 - (x_0 + h) - (x_0 + 2h)}{\{x_0 - (x_0 + h)\}\{x_0 - (x_0 + 2h)\}} f(x_0)$$

$$+ \frac{2x_0 - x_0 - (x_0 + 2h)}{\{(x_0 + h) - x_0\}\{(x_0 + h) - (x_0 + 2h)\}} f(x_1)$$

$$+ \frac{2x_0 - x_0 - (x_0 + h)}{\{(x_0 + 2h) - x_0\}\{(x_0 + 2h) - (x_0 + h)\}} f(x_2)$$

$$P'(x_0) = \frac{-3h}{2h^2} f(x_0) + \frac{-2h}{-h^2} f(x_1) + \frac{-h}{2h^2} f(x_2)$$

$$P'(x_0) = \frac{1}{2h} \left\{ -3f(x_0) + 4f(x_1) - f(x_2) \right\}$$

Three-point formula:

$$f'(x_0) \approx \frac{1}{2h} \{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)\}$$

If the points are equally spaced with x_0 in the middle:

$$x_{1} = x_{0} - h \text{ and } x_{2} = x_{0} + h$$

$$P'(x_{0}) = \frac{2x_{0} - (x_{0} - h) - (x_{0} + h)}{\{x_{0} - (x_{0} - h)\}\{(x_{0} - (x_{0} + h))\}} f(x_{0})$$

$$+ \frac{2x_{0} - x_{0} - (x_{0} + h)}{\{(x_{0} - h) - x_{0}\}\{(x_{0} - h) - (x_{0} + h)\}} f(x_{1})$$

$$+ \frac{2x_{0} - x_{0} - (x_{0} - h)}{\{(x_{0} + h) - x_{0}\}\{(x_{0} + h) - (x_{0} - h)\}} f(x_{2})$$

$$P'(x_0) = \frac{0}{-h^2} f(x_0) + \frac{-h}{2h^2} f(x_1) + \frac{h}{2h^2} f(x_2)$$

Another Three-point formula:

$$f'(x_0) \approx \frac{1}{2h} \{ f(x_0 + h) - f(x_0 - h) \}$$

Alternate approach (Error estimate)

Take Taylor series expansion of f(x+h) about x:

$$f(x+h)=f(x)+hf'(x)+\frac{h^2}{2}f^{(2)}(x)+\frac{h^3}{3!}f^{(3)}(x)+\cdots$$

$$f(x+h)-f(x)=hf'(x)+\frac{h^2}{2}f^{(2)}(x)+\frac{h^3}{3!}f^{(3)}(x)+\cdots$$

$$\frac{f(x+h)-f(x)}{h}=f'(x)+\frac{h}{2}f^{(2)}(x)+\frac{h^2}{3!}f^{(3)}(x)+\cdots$$
.....(1)

$$\frac{f(x+h)-f(x)}{h}=f'(x)+O(h)$$

$$f'(x) = \frac{f(x+h)-f(x)}{h} - O(h)$$

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
 Formula Formula

$$O(h) = \frac{h}{2} f^{(2)}(x) + \frac{h^2}{3!} f^{(3)}(x) + \cdots$$

$$f(x+2h)=f(x)+2hf'(x)+\frac{4h^2}{2}f^{(2)}(x)+\frac{8h^3}{3!}f^{(3)}(x)+\cdots$$

$$f(x+2h)-f(x)=2hf'(x)+\frac{4h^2}{2}f^{(2)}(x)+\frac{8h^3}{3!}f^{(3)}(x)+\cdots$$

$$\frac{f(x+2h)-f(x)}{2h}=f'(x)+\frac{2h}{2}f^{(2)}(x)+\frac{4h^2}{3!}f^{(3)}(x)+\cdots$$
.....(2)

$$\frac{f(x+h)-f(x)}{h}=f'(x)+\frac{h}{2}f^{(2)}(x)+\frac{h^2}{3!}f^{(3)}(x)+\cdots$$
.....(1)

$$\frac{f(x+2h)-f(x)}{2h}=f'(x)+\frac{2h}{2}f^{(2)}(x)+\frac{4h^2}{3!}f^{(3)}(x)+\cdots$$
.....(2)

 $2 \times Eqn. (1) - Eqn. (2)$

$$2\frac{f(x+h)-f(x)}{h} - \frac{f(x+2h)-f(x)}{2h}$$

$$= f'(x) - \frac{2h^2}{3!} f^{(3)}(x) - \frac{6h^3}{4!} f^{(4)}(x) - \cdots$$

$$- \frac{f(x+2h)+4f(x+h)-3f(x)}{2h}$$

$$= f'(x) - \frac{2h^2}{3!} f^{(3)}(x) - \frac{6h^3}{4!} f^{(4)}(x) - \cdots$$

$$= f'(x) + O(h^2)$$

$$\frac{-f(x+2h)+4f(x+h)-3f(x)}{2h}=f'(x)+O(h^2)$$

$$f'(x) = \frac{-f(x+2h)+4f(x+h)-3f(x)}{2h}-O(h^2)$$

$$f'(x) \approx \frac{-f(x+2h)+4f(x+h)-3f(x)}{2h}$$
Three-point Formula

$$O(h^2) = -\frac{2h^2}{3!} f^{(3)}(x) - \frac{6h^3}{4!} f^{(4)}(x) - \cdots$$

The Second Three-point Formula

Take Taylor series expansion of f(x+h) about x:

$$f(x+h)=f(x)+hf'(x)+\frac{h^2}{2}f^{(2)}(x)+\frac{h^3}{3!}f^{(3)}(x)+\cdots$$

Take Taylor series expansion of f(x-h) about x:

$$f(x-h)=f(x)-hf'(x)+\frac{h^2}{2}f^{(2)}(x)-\frac{h^3}{3!}f^{(3)}(x)+\cdots$$

Subtract one expression from another

$$f(x+h)-f(x-h)=2hf'(x)+\frac{2h^3}{3!}f^{(3)}(x)+\frac{2h^6}{6!}f^{(6)}(x)+\cdots$$

$$f(x+h)-f(x-h)=2hf'(x)+\frac{2h^3}{3!}f^{(3)}(x)+\frac{2h^6}{6!}f^{(6)}(x)+\cdots$$

$$\frac{f(x+h)-f(x-h)}{2h}=f'(x)+\frac{h^2}{3!}f^{(3)}(x)+\frac{h^5}{6!}f^{(6)}(x)+\cdots$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{3!} f^{(3)}(x) - \frac{h^5}{6!} f^{(6)}(x) - \cdots$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

$$O(h^2) = -\frac{h^2}{3!} f^{(3)}(x) - \frac{h^5}{6!} f^{(6)}(x) - \cdots$$

$$f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$$

Second Three-point Formula

Summary of Errors

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
 Formula

Error term
$$O(h) = \frac{h}{2} f^{(2)}(x) + \frac{h^2}{3!} f^{(3)}(x) + \cdots$$

Summary of Errors continued

First Three-point Formula

$$f'(x) \approx \frac{-f(x+2h)+4f(x+h)-3f(x)}{2h}$$

Error term
$$O(h^2) = -\frac{2h^2}{3!} f^{(3)}(x) - \frac{6h^3}{4!} f^{(4)}(x) - \cdots$$

Summary of Errors continued

Second Three-point Formula
$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Error term
$$O(h^2) = -\frac{h^2}{3!} f^{(3)}(x) - \frac{h^5}{6!} f^{(6)}(x) - \cdots$$

Example:

$$f(x) = xe^x$$

Find the approximate value of f'(2) with h = 0.1

X	f(x)
1.9	12.703199
2.0	14.778112
2.1	17.148957
2.2	19.855030

Using the Forward Difference formula:

$$f'(x_0) \approx \frac{1}{h} \{ f(x_0 + h) - f(x_0) \}$$

$$f'(2) \approx \frac{1}{0.1} \{ f(2.1) - f(2) \}$$

$$= \frac{1}{0.1} \{ 17.148957 - 14.778112 \}$$

$$= 23.708450$$

Using the 1st Three-point formula:

$$f'(x_0) \approx \frac{1}{2h} \{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)\}$$

$$f'(2) \approx \frac{1}{2 \times 0.1} \left[-3f(2) + 4f(2.1) - f(2.2) \right]$$

$$= \frac{1}{0.2} \left[-3 \times 14.778112 + 4 \times 17.148957 - 19.855030 \right]$$

$$= 22.032310$$

Using the 2nd Three-point formula:

$$f'(x_0) \approx \frac{1}{2h} \{ f(x_0 + h) - f(x_0 - h) \}$$

$$f'(2) \approx \frac{1}{2 \times 0.1} [f(2.1) - f(1.9)]$$

$$= \frac{1}{0.2} [17.148957 - 12.703199]$$

$$= 22.228790$$

The exact value of f'(2) is: 22.167168

Comparison of the results with h = 0.1

The exact value of f'(2) is 22.167168

Formula	f'(2)	Error	
Forward Difference	23.708450	1.541282	
1st Three-point	22.032310	0.134858	
2nd Three-point	22.228790	0.061622	

Second-order Derivative

$$f(x+h)=f(x)+hf'(x)+\frac{h^2}{2}f^{(2)}(x)+\frac{h^3}{3!}f^{(3)}(x)+\cdots$$

$$f(x-h)=f(x)-hf'(x)+\frac{h^2}{2}f^{(2)}(x)-\frac{h^3}{3!}f^{(3)}(x)+\cdots$$

Add these two equations.

$$f(x+h)+f(x-h)=2f(x)+\frac{2h^2}{2}f^{(2)}(x)+\frac{2h^4}{4!}f^{(4)}(x)+\cdots$$

$$f(x+h)-2f(x)+f(x-h)=\frac{2h^2}{2}f^{(2)}(x)+\frac{2h^4}{4!}f^{(4)}(x)+\cdots$$

$$\frac{f(x+h)-2f(x)+f(x-h)}{h^2}=f^{(2)}(x)+\frac{2h^2}{4!}f^{(4)}(x)+\cdots$$

$$f^{(2)}(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2} - \frac{2h^2}{4!}f^{(4)}(x) + \cdots$$

$$f^{(2)}(x) \approx \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$$

Newton Forward difference Polynomial

$$P_n(x)$$

$$= f_0 + s\nabla f_0 + \frac{s(s-1)}{2!}\nabla^2 f_0 + \cdots$$

$$+ \frac{s(s-1)(s-2)\dots(s-n+1)}{n!}\nabla^n f_0$$

$$x = x_0 + sh \implies s = \frac{x - x_0}{h}$$

$$\frac{dP_n(x)}{dx} = \frac{dP_n(x)}{ds} \frac{ds}{dx}$$

$$\frac{dP_n(x)}{ds} = \Delta f_0 + \frac{2s-1}{2}\Delta^2 f_0 + \frac{3s^2 - 6s + 2}{6}\Delta^3 f_0 + \dots$$

$$\frac{dx}{ds} = h$$

$$\frac{dP_n(x)}{dx} = \frac{1}{h} \begin{bmatrix} \Delta f_0 + \frac{2s-1}{2} \Delta^2 f_0 + \frac{3s^2 - 6s + 2}{6} \Delta^3 f_0 + \frac{4s^3 - 18s^2 + 22s - 6}{24} \Delta^4 f_0 + \dots \end{bmatrix}$$

Newton backward difference Polynomial

$$P_b(x) = f_0 + s\nabla f_0 + \frac{s(s+1)}{2!}\nabla^2 f_0 + \cdots + \frac{s(s+1)\dots(s+n-1)}{n!}\nabla^n f_0$$

$$\frac{dP_b(x)}{dx} = \frac{1}{h} \begin{bmatrix} \Delta f_0 + \frac{2s+1}{2} \Delta^2 f_0 + \frac{3s^2 + 6s + 2}{6} \Delta^3 f_0 + \frac{4s^3 + 18s^2 + 22s + 6}{24} \Delta^4 f + \dots \end{bmatrix}$$

Compute f'(0.2) from the following tabular data.

x	0.0	0.2	0.4	0.6	0.8	1.0	
f(x)	1.00	1.16	3.56	13.96	41.96	101.00	

Compute f'(0.2) from the following tabular data.

x	0.0	0.2	0.4	0.6	0.8	1.0	
f(x)	1.00	1.16	3.56	13.96	41.96	101.00	

x	y=f(x)	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
0.0	1.00					
0.2	1.16	0.16	2.24			
0.4	3.56	2.40	8.00	5.76	3.84	
0.6	13.96	10.40	17.60	9.60	3.84	0.00
0.8	41.96	28.00	31.04	13.44		
1.0	101.00	59.04				

x	y=f(x)	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
0.0	1.00					
0.2	1.16	0.16	2.24			
0.4	3.56	2.40	8.00	5.76	3.84	
0.6	13.96	10.40	17.60	9.60	3.84	0.00
0.8	41.96	28.00	31.04	13.44		
1.0	101.00	59.04				

$$\frac{dP_n(x)}{dx} = \frac{1}{h} \begin{bmatrix} \Delta f_0 + \frac{2s-1}{2} \Delta^2 f_0 + \frac{3s^2 - 6s + 2}{6} \Delta^3 f_0 + \frac{4s^3 - 18s^2 + 22s - 6}{24} \Delta^4 f_0 + \dots \end{bmatrix}$$

x	y=f(x)	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$
0.0	1.00					
0.2	1.16	0.16	2.24			
0.4	3.56	2.40	8.00	5.76	3.84	
0.6	13.96	10.40	17.60	9.60	3.84	0.00
0.8	41.96	28.00	31.04	13.44		
1.0	101.00	59.04				

$$S = \frac{(0.2 - 0.0)}{0.2} = 1$$

$$\frac{d}{dx}f(x)\Big|_{x=0.2} = \frac{1}{0.2} \left[0.16 + \frac{2 \times 1 - 1}{2!} \left[2.24 \right] + \frac{3 \times 1^2 - 6 \times 1 + 2}{3!} \left[5.76 \right] + \frac{4 \times 1^3 - 18 \times 1^2 + 22 \times 1 - 6}{24} \left[3.84 \right] \right]$$

$$= 3.2$$

NUMERICAL INTEGRATION

$$\int_{a}^{b} f(x)dx = \text{area under the curve } f(x) \text{ between}$$

$$x = a \text{ to } x = b.$$

In many cases a mathematical expression for f(x) is unknown and in some cases even if f(x) is known its complex form makes it difficult to perform the integration.

Area of the trapezoid

The length of the two parallel sides of the trapezoid are: f(a) and f(b)

The height is b-a

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a)+f(b)]$$
$$= \frac{h}{2} [f(a)+f(b)]$$

$$\int_{x_{i}}^{x_{n}} f(x)dx = \sum_{i=1}^{n} \frac{(f_{i} + f_{i+1})}{2} h = h(\frac{f_{1}}{2} + f_{2} + f_{3} + \dots + \frac{f_{n+1}}{2})$$

Trapezoidal rule for integration

X	Angle(radian)	Sinx
x1	0.25	0.2474
x2	0.26	0.2571
х3	0.27	0.2667
x4	0.28	0.2764
x5	0.29	0.2860

$$\int_{0.25}^{0.29} \sin x dx = \left(\frac{0.2474}{2} + 0.2571 + 0.2667 + 0.2764 + \frac{0.2860}{2}\right) \times 0.01$$

$$= 0.010669$$

Using Trapezoidal rule solve the integral,

$$\int_{0}^{1} \frac{1}{x^2 + 6x + 10} dx$$

with four subintervals.

Using Trapezoidal rule solve the integral,

$$\int_{0}^{1} \frac{1}{x^2 + 6x + 10} dx$$

with four subintervals.

$$\int_{0}^{1} \frac{1}{x^{2} + 6x + 10} dx = \frac{0.25}{2} [0.10 + 2 \times 0.08649 + 2 \times 0.07547 + 2 \times 0.06639 + 0.05882]$$
$$= 0.07694.$$

Simpson's 1/3 Rule (quadratic interpolating polynomial)

$$\int_{x_0}^{x_2} f(x) dx \approx \int_{x_0}^{x_2} P(x) dx$$

$$x_1 = x_0 + h$$
 and $x_2 = x_0 + 2h$

$$\int_{x_0}^{x_2} P(x) dx = \int_{x_0}^{x_2} \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) dx$$

$$+ \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) dx$$

$$+ \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) dx$$

$$\int_{x_0}^{x_2} f(x) dx \approx \int_{x_0}^{x_2} P(x) dx$$

$$= \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

$$\int_{x_0}^{x_n} P(x) dx = \frac{h}{3} [f_1 + 4f_2 + 2f_3 + 4f_4 + \dots + f_{n+1}]$$

$$f(x) = 5x^3 - 3x^2 + 2x + 1$$

Integrate the above function from x=-1 to x=1 using Simpson's rule with h=1

$$\int_{-1}^{1} P(x)dx = \frac{1}{3} [f_{-1} + 4f_0 + f_1] = 0$$

Compute the integral $I = \sqrt{\frac{2}{\pi}} \int_0^1 e^{-x^2/2} dx$ using Simpson's 1/3 rule, taking h = 0.125.

Compute the integral $I = \sqrt{\frac{2}{\pi}} \int_0^1 e^{-x^2/2} dx$ using Simpson's 1/3 rule, taking h = 0.125.

j	x_j	$f_j = f(x_j) = \sqrt{\frac{2}{\pi}} e^{-x_j^2/2}$		
0	0.000	0.7979		
1	0.125		0.7917	
2	0.250			0.7733
3	0.375		0.7437	
4	0.500			0.7041
5	0.625		0.6563	
6	0.750			0.6023
7	0.875		0.5441	
8	1.000	0.4839		
Sums		s ₀ =1.2818	s ₁ =2.7358	s ₂ =2.0797

j	x_j	$f_j = f(x_j) = \sqrt{\frac{2}{\pi}} e^{-x_j^2/2}$		
0	0.000	0.7979		
1	0.125		0.7917	
2	0.250			0.7733
3	0.375		0.7437	
4	0.500			0.7041
5	0.625		0.6563	
6	0.750			0.6023
7	0.875		0.5441	
8	1.000	0.4839		
Sums		s ₀ =1.2818	s ₁ =2.7358	s ₂ =2.0797

$$I = \sqrt{\frac{2}{\pi}} \int_0^1 e^{-x^2/2} dx = \frac{0.125}{3} [1.2818 + 4(2.7358) + 2(2.0797)]$$
$$= 0.6827$$

Simpson's 3/8 Rule (cubic interpolating polynomial)

$$\int_{x_0}^{x_3} f(x) dx \approx \frac{3}{8} h \left(f_0 + 3f_1 + 3f_2 + f_3 \right)$$

$$x_1 = x_0 + h$$
 and $x_2 = x_0 + 2h$
 $x_3 = x_0 + 3h$