COSC 4820

Relational Algebra

Kim Buckner

University of Wyoming

Jan. 20, 2023

Algebraic Query Language

Consists of:

- Operators
- Atomic operands
- Can build complex expressions
- Use parentheses for disambiguation
- This gets us thinking in the right direction

Operands & Operations

- Variables that stand for relations
- Constants
- Operations
 - Set
 - Removal of part of a relation
 - Combine relations
 - Renaming

Set operations (1)

Some conditions on set operations are:

- Sets must have matching schema
 - Have the same number of attributes
 - Same types
- Columns must be ordered the same way

Set operations (2)

- UNION
 - Like 'normal' set Union
 - Result is "distinct" (no duplicates in result)
- INTERSECTION
 - Like 'normal' set Intersection
 - Result only contains elements that exist it both sets.

Set operations (3)

- DIFFERENCE
 - \bullet A-B
 - Result is all elements of A not contained in B

Remove parts (1)

- PROJECTION
 - Display a subset of columns from a relation
 - No change in the number of rows
- SELECTION
 - Display a subset of rows from a relation
 - No change in the number of columns
 - Selection based on a conditional expression

Remove parts (2)

- Conditional expressions
 - Standard operators: \geq , =, \leq , <, >, \cdots
 - Expressions combined using AND, OR, NOT

Combine operations (1)

CARTESIAN PRODUCT

- \bullet $A \times B$
- ullet Each tuple of A matched with each tuple of B
- The relations do **not** have to have to matching schema
- Common names have to be disambiguated.

Combine operations (2)

- NATURAL JOIN
 - \bullet $A \bowtie B$
 - Rows selected if attributes in common match
 - Matched rows sometimes called joined tuple
 - Unmatched rows are then DANGLING TUPLES

Combine operations (3)

- THETA JOIN
 - $A\bowtie_C B$
 - This is CARTESIAN PRODUCT with SELECTION
 - The C in the notation represents the condition
- A tutorial for joins.

Renaming, etc

- Can change the name of a relation
- Can change the name of some/all attributes
- Makes it easier to write complex expressions
- Renaming can be for the duration of the particular expression
- Or it can result in the creation of a 'temporary' table.

Constraints

- Every database has some constraints
- These support consistency
- Can be as simple as "the expression results in an empty set"
- Can be to support referential integrity

Referential integrity

- Referential integrity refers to the accuracy and consistency of data within a relationship.
- In relationships, data is linked between two or more tables.
- This is achieved by having the foreign key (in the associated table) reference a primary key value (in the primary - or parent table).

$(\mathsf{more}\;\ldots)$

- Because of this, we need to ensure that data on both sides of the relationship remain intact.
- So, referential integrity requires that, whenever a foreign key value is used it must reference a valid, existing primary key in the parent table.

This means

- Referential integrity will prevent users from:
 - Adding rows to a related table if there is no associated row in the primary table.
 - Changing values in a primary table that result in orphaned records in a related table.
 - Deleting rows from a primary table if there are matching related rows.

more . . .

Primary Table

Companyld	CompanyName
1	Apple
2	Samsung
$\overline{}$	

Related Table

Companyld	ProductId	ProductName
1	1	iPhone
15	2	Mustang

Associated Record

Assignment

 This is easy, just read all of Chapter 2 in the text if you have not already done so.