Dehn-Invariante

Jannis Klingler

20. November 2019

Inhaltsverzeichnis

1	Zerlegungsgleichheit und Ergänzungsgleichheit von Polytopen	2
	1.1Polytope	
	Zerlegungsgleichheit von Polyedern; Dehn-Invariante	6

1 Zerlegungsgleichheit und Ergänzungsgleichheit von Polytopen

1.1 Polytope

Wiederholung (Dual-Raum). Der Dualraum V^* eines k-Vektorraums V ist die Menge aller linearen Abbildungen von V in den Körper k.

Definition 1.1 (Halbraum). Ein Halbraum in einem reellen Vektorraum ist eine Teilmenge der Form

$$H = \{ v \in V \mid \alpha(v) \le r \},\$$

wobei $\alpha \in V^* \setminus \{0\}$ und $r \in \mathbb{R}$.

Definition 1.2 (konvexes Polytop). Ein konvexes d-Polytop P in einem d-dimensionalen reellen Vektorraum V ist der Schnitt endlich vieler Halbräume. P ist beschränkt, falls für jedes $\alpha \in V^* \setminus \{0\}$ ein $r \in \mathbb{R}$ existiert, sd. $\alpha(x) \leq r$ für alle $x \in P$ gilt.

Für d=0 ist P eine Ecke, für d=1 ist P eine Strecke, für d=2 ist P ein Polytop und für d=3 ist P ein Polyeder.

Wir werden im Folgenden immer beschränkte konvexe d-Polytope betrachten.

Definition 1.3 (Kongruenz). Wir nennen zwei Polytope P und Q kongruent, wenn es eine Isometrie g gibt, sd. g(P) = Q. Eine Isometrie ist hierbei eine Abbildung, die die Abstände zweier beliebiger Punkte erhält. Wir schreiben dann $P \cong Q$.

Im Folgenden meinen wir mit $P_1 + \ldots + P_n$ die bis auf (d-1)-Facetten disjunkte Vereinigung. Wobei eine (d-1)-Facette beispielsweise für d=2, also eine Fläche, eine Kante ist und für d=1, also eine Strecke, ein Eckpunkt.

Definition 1.4 (Zerlegungsgleichheit). Zwei d-Polytope P und Q heißen zerlegungsgleich, wenn es endlich viele d-Polytope $P_1, \ldots, P_n, Q_1, \ldots, Q_n$ mit $P = P_1 + \ldots + P_n, Q = Q_1 + \ldots + Q_n$ gibt, sd.

$$P_i \cong Q_i$$

für alle $i \in \{1, ..., n\}$. Wir schreiben $P \sim Q$.

Definition 1.5 (Ergänzungsgleich). Zwei d-Polytope P und Q heißen ergänzungsgleich, wenn es endlich viele d-Polytope $P_1, \ldots, P_n, Q_1, \ldots, Q_n$ gibt, wobei gilt $P_i \cong Q_i$ für alle $i \in \{1, \ldots, n\}$, sd. die Polytope

$$P' = P + P_1 + \ldots + P_n, \qquad Q' = Q + Q_1 + \ldots + Q_n$$

zerlegungsgleich sind.

Man sieht leicht, dass folgendes gilt:

Proposition 1.6. Zerlegungsgleiche Polytope sind ergänzungsgleich.

Beweis. Klar. \Box

1.2 Bolyai-Gerwien Theorem

Im Folgenden setzen wir d=2 und betrachten also Polygone.

Lemma 1.7. Seien P, Q und R Polygone und es gilt $P \sim Q$ und $Q \sim R$. Dann folgt $P \sim R$.

Beweis. Seien die Zerlegungen der Polygone wie folgt gegeben

$$P = P_1 + \ldots + P_n$$

 $Q = Q_1 + \ldots + Q_n = Q'_1 + \ldots + Q'_m$
 $R = R_1 + \ldots + R_m$

wobei $P_i \cong Q_i$ für alle $i \in \{1, \ldots, n\}$ und $Q'_j \cong R_j$ für alle $j \in \{1, \ldots, m\}$. Seien f_1, \ldots, f_n die Isometrien, die alle Q_i in P_i überführen (d. h. $f_i(Q_i) = P_i$) und g_1, \ldots, g_m die Isometrien, die alle R_j in Q'_j überführen (d. h. $g_j(R_j) = Q'_j$). Wir definieren

$$F_{ij} := Q_i \cap Q'_j$$

für $i \in \{1, \ldots, n\}$ und $j \in \{1, \ldots, m\}$ (Beachte, dass F_{ij} leer sein kann). Zwei verschiedene F_{ij} sind disjunkt, denn für $i_1, i_2 \in \{1, \ldots, n\}$ mit $i_1 \neq i_2$ gilt $F_{i_1j} \subset Q_{i_1}$, $F_{i_2j} \subset Q_{i_2}$ und da Q_{i_1} und Q_{i_2} disjunkt sind folgt, dass F_{i_1j} und F_{i_2j} disjunkt sind. Außerdem gilt

$$\bigcup_{j=1}^{m} F_{ij} = \bigcup_{j=1}^{m} \left(Q_i \cap Q_j' \right) = Q_i \cap \left(\bigcup_{j=1}^{m} Q_j' \right) = Q_i \cap Q = Q_i. \tag{1}$$

Also lassen sich P und R folgendermaßen darstellen

$$P = \bigcup_{i=1}^{n} P_i = \bigcup_{i=1}^{n} f_i(Q_i) \stackrel{1}{=} \bigcup_{i=1}^{n} f_i \left(\bigcup_{j=1}^{m} F_{ij} \right) = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} f_i(F_{ij}),$$

und

$$R = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} g_j(F_{ij}).$$

Als letztes überlegen wir uns, dass gilt $f_i(F_{ij}) \cong g_j(F_{ij})$. Betrachte hierzu die Isometrie $g_j \circ f_i^{-1}$, dann gilt $g_j(f_i^{-1}(f_i(F_{ij}))) = g_j(F_{ij})$. Also finden wir für P und R jeweils eine Zerlegung aus kongruenten Polygonen und damit sind auch P und R zerlegungsgleich bzw. $P \sim R$.

Lemma 1.8. Sei P ein beliebiges Polygon, dann lässt sich P in eine endliche Anzahl von Dreiecken zerlegen.

Beweis. Kommt noch. \Box

Lemma 1.9. Sei P ein Dreieck, dann gibt es ein Rechteck Q, sd. $P \sim Q$.

Beweis. Sei P das Dreieck mit den Ecken a, b, c und sei o.B.d.A \overline{ab} die längste Seite. Wir zeichnen nun die Lotstrecke auf der Strecke \overline{ab} durch den Punkt c ein und nennen den Lotsfußpunkt d. Der Punkt d liegt auf der Strecke ab, da sonst ab nicht die längste Seite war. Nun halbieren wir die Lotstrecke cd und zeichnen die Lotgerade durch die Punkte m und n auf dem Mittelpunkt eder Strecke cd ein (m und n sind hierbei die Schnittpunkte dieser Lotgeraden mit dem Dreieck P). Da \overline{cd} senkrecht auf \overline{ab} und die Lotgerade durch die Punkte m und n senkrecht auf \overline{cd} ist, sind ab und die Lotgerade parallel. Wir bilden erneut die Lotgeraden auf ab durch die Punkte a und b und nennen den Schnittpunkt der Lotgerade durch a mit der Lotgerade, die durch mund n verläuft, f und den Schnittpunkt der Lotgerade durch b mit der Lotgerade, die durch m und n verläuft, g. Dadurch erhalten wir ein Rechteck Q mit den Eckpunkten a, b, g, f. Wir stellen fest, dass die Dreiecke mit den Eckpunkten m, e, c und a, m, f, welche in Abbildung 1 grau hinterlegt sind, kongruent sind, da mit dem Strahlensatz der Winkel an dem Punkt min den beiden Dreiecken gleich ist und somit beiden Dreiecke gleiche Basis und Höhe haben. Weiterhin sind mit dem gleichen Argument die Dreiecke mit den Eckpunkten e, n, c und b, q, n, welche weiß hinterlegt sind, kongruent. Damit lassen sich P und Q in die beiden kongruenten Dreiecke und den schraffierten Trapezoid, mit den Eckpunkten a, b, n, m, zerlegen und sind somit zerlegungsgleich.

Abbildung 1: Zerlegung eines Dreiecks in ein Rechteck

Lemma 1.10. Zwei beliebige Rechtecke mit dem gleichen Flächeninhalt, sind zerlegungsgleich.

Beweis. Seien P und Q zwei Rechtecke mit dem gleichen Flächeninhalt, d. h. falls h_P die Höhe und b_P die Breite des Rechtecks P und h_Q die Höhe und b_Q die Breite des Rechtecks Q sind, dann soll gelten $h_P \cdot b_P = h_Q \cdot b_Q$ also auch

$$\frac{b_P}{h_Q} = \frac{b_Q}{h_P}. (2)$$

Seien o, a, b, c die Eckpunkte des Dreiecks P und o, m, n, p die Eckpunkte des Dreiecks Q, siehe

Abbildung 2: Zerlegung zweier Rechtecke

Abbildung 2. Wir verschieben hier Q so auf auf P, dass beide eine gemeinsame Ecke o mit rechtem Winkel haben. Dies ändert nichts am Resultat. Die Höhe h_P soll also der Länge der Strecken \overline{co} und \overline{ab} entsprechen. Die Breite b_P soll der Länge der Strecken \overline{oa} und \overline{bc} entsprechen. Analog soll h_Q der Länge der Strecken \overline{po} und \overline{mn} und b_Q der Länge der Strecken \overline{om} und \overline{np} entsprechen. Wegen 2 sehen wir also, dass die Strecken \overline{mc} und \overline{ap} parallel sind. Außerdem stellen wir fest, dass gilt

$$(b_P - b_Q)h_P = b_P h_P - b_Q h_P = h_Q b_Q - b_Q h_P = b_Q (h_Q - h_P)$$

also auch

$$\frac{b_P - b_Q}{h_Q - h_P} = \frac{b_Q}{h_P}.$$

Damit folgt, dass die Dreiecke oap und dbn ähnlich sind und folglich sind die Strecken \overline{ap} und \overline{nb} parallel. Hierbei sei d der Schnittpunkt der Strecken \overline{mn} und \overline{bc} . Also sind die drei Strecken \overline{mc} , \overline{ap} und \overline{nb} parallel. Nun unterscheiden wir zwei Fälle

1. Fall: Die Verbindungsstrecke \overline{ap} der Eckpunkte schneidet das Rechteck omdc in den Punkten e, mit der Seite \overline{dc} und f, mit der Seite \overline{md} , siehe Abbildung 2. Es gilt $2b_Q \geq b_P$. Also sind die beiden in der Abbildung grau hinterlegten Dreiecke maf und cep und die beiden in der Abbildung hellgrau hinterlegten Dreiecke abe und fnp kongruent. Mit dem übrig gebliebenen in der Abbildung schraffierten Fünfeck omfec ist unsere Zerlegung komplett.

2. Fall: Die Verbindungsstrecke \overline{ap} der Eckpunkte schneidet das Rechteck omdc nicht, siehe Abbildung 3. Es gilt also $2b_Q < b_P$. Sei nun e hierbei der Mittelpunkt der Strecke \overline{oa} und k die kleinste natürliche Zahl, wie oft man die Strecke \overline{om} entlang der Strecke \overline{oa} legen muss, sd. wir einen Punkt t erhalten der nicht mehr auf der Strecke \overline{oe} liegt sondern auf der Strecke \overline{ea} . Nun zerlegen wir das Rechteck Q in k Rechtecke, deren Basis parallel ist zur Strecke \overline{om} , die wir nun entlang der neu enstandenen Strecke \overline{ot} legen. Wir erhalten, somit das zu Q zerlegungsgleiche Rechteck otuv. Sei die Breite dieses Rechtecks nun b', die offensichtlich die Bedingung

$$2b' > b_P$$

erfüllt. Damit können wir nach dem ersten Fall sagen, dass die Rechtecke P und otuv zerlegungsgleich sind. Nach Lemma 1.7 sind also auch P und Q zerlegungsgleich.

Damit sind P und Q zerlegungsgleich.

Abbildung 3: Zerlegung zweier Rechtecke

Satz 1.11 (Bolyai-Gerwien Theorem). Zwei beliebige Polygone mit dem gleichen Flächeninhalt sind zerlegungsgleich.

Beweis. Sei P ein Polygon. Dann kann P in endlich viele disjunkte Dreiecke zerlegt werden und jedes dieser Dreiecke ist nach Lemma 1.9 zerlegungsgleich zu einem Rechteck. Wir finden also für P die Darstellung

$$P \sim P_1 + \ldots + P_n$$

wobei P_1, \ldots, P_n Rechtecke sind. Nun nehmen wir eine beliebige Kante $\overline{a_0b_0}$ und stellen die Lotgeraden auf den Eckpunkten a_0 und b_0 durch die Strecke $\overline{a_0b_0}$ auf. Anschließend ziehen wir n parallele Strecken zu $\overline{a_0b_0}$, sd. der Flächeninhalt des Recheckts $a_{i-1}b_{i-1}b_ia_i$, welches wir R_i nennen, dem Flächeninhalt des Rechtecks P_i entspricht, wobei $i=1,\ldots,n$. Nach Lemma 1.10 gilt also $P_i \sim R_i$ für alle i und damit

$$P_1 + \ldots + P_n \sim R_1 + \ldots + R_n$$
.

Da $P \sim P_1 + \ldots + P_n$ gilt also mit Lemma 1.7

$$P \sim R_1 + \ldots + R_n$$

und damit zum Rechteck $a_0b_0b_na_n$. Damit ist jedes Polygon zerlegungsgleich zu einem Rechteck. Seien nun P und Q zwei Polygone mit gleichem Flächeninhalt, dann finden wir wie oben gezeigt Rechtecke R_1 und R_2 , sd.

$$P \sim R_1$$
, $Q \sim R_2$.

Nach Lemma 1.10 gilt also nun auch $R_1 \sim R_2$ und damit folgt mit Lemma 1.7 $P \sim Q$.

Wir haben also nun gesehen, dass sich jedes beliebige Polygon in Dreiecke zerlegen lässt. Diese Dreiecke sind nach Lemma 1.9 zerlegungsgleich zu Rechtecken mit gleichem Flächeninhalt. Zuletzt können wir mit Satz 1.11 die Rechtecke zerlegen zu Rechtecken mit gleicher Grundseite. Dieses Verfahren können wir nun auf beliebige Polygone mit gleichem Flächeninhalt anwenden. Da diese Rechtecke nach Lemma 1.10 zerlegungsgleich sind folgt mit der Transitivität der Zerlegungsgleichheit aus Lemma 1.7 die Zerlegungsgleichheit der Polygone und mit Proposition 1.6 auch die Ergänzungsgleichheit. Dies führt uns zu der Frage, ob das gleiche auch für dreidimensionale Polytope, also Polyeder, möglich ist.

Motivation: Als Hilbert 1900 diese Frage auf dem internationalen Mathematikerkongress in Paris als sein drittes von 23 Problemen stellte, vermutete er wohl schon, dass die Antwort 'Nein' ist. Im Folgenden wollen wir uns zwei Beweise anschauen, die zeigen, dass es Polyeder gibt, die nicht zerlegungs- und ergänzungsgleich sind. Der erste bezieht sich auf die Arbeit Max Dehn's, ein Schüler Hilberts, der ein Jahr später in seiner Habitilationsarbeit die Aussage mithilfe der von ihm erfundenen Dehn-Invariante widerlegte. Der zweite Beweis...

2 Zerlegungsgleichheit von Polyedern; Dehn-Invariante

Im Folgenden setzen wir d=3 und betrachten Polyeder.

Wir müssen uns zunächst überlegen, was mit den Kanten eines Polyeders P passiert, wenn wir diesen in zwei Polyeder P_1 und P_2 zerlegen. Sei k also eine Kante des Polyeders P. Diese Kante hat die Länge $\ell(k)=l$. Außerdem ist die Kante k die Schnittmenge der zwei anliegenden Seitenflächen. Den Winkel zweier solcher Flächen nennt man Diederwinkel. Sei also $w(k)=\varphi$ der zu k gehörige Diederwinkel. Dann können beim zerschneiden folgende Fälle eintreten

- 1. Wir schneiden durch die Kante: Also enstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , deren Kantenlängen sich zu der von k addieren lassen und deren Winkel gleich dem von k bleibt. D. h. für $\ell(k_1) = l_1$ und $\ell(k_2) = l_2$ gilt $l = l_1 + l_2$.
- 2. Wir schneiden entlang der Kante: Also entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , deren Kantenlänge gleich der von k ist und deren Winkel sich zu dem von k addieren lassen. D. h. für $w(k_1) = \varphi_1$ und $w(k_2) = \varphi_2$ gilt $\varphi = \varphi_1 + \varphi_2$.
- 3. Wir schneiden nicht durch die Kante: Die Kante k lässt sich also entweder in P_1 oder P_2 wiederfinden und sowohl Kantenlänge, als auch Diederwinkel bleiben gleich.
- 4. Bleibt nur noch der Sonderfall, wenn wir durch eine der Flächen von P schneiden. Hierbei entstehen aus dem nichts zwei neue Kanten k_1 von P_1 und k_2 von P_2 , deren Länge der Länge des Schnitts entsprechen und deren Winkel sich zu π addieren lässt. D. h. für $w(k_1) = \varphi_1$ und $w(k_2) = \varphi_2$ gilt $\varphi_1 + \varphi_2 = \pi$.

Wir wollen also eine Operation, die in beiden Argumenten, sowohl in Länge als auch Diederwinkel, linear ist und bei der wir einen Diederwinkel π mit 0 identifizieren. Dies führt uns auf das Tensorprodukt.

2.1 Tensoren

Wir kennen Tensoren bereits aus der linearen Algebra. Deshalb wiederholen wir noch einmal die universelle Eigenschaft dieser.

Proposition 2.1 (Universelle Eigenschaft). Sei R ein kommutativer Ring mit Eins und seien M und N zwei R-Moduln. Dann ist das Tensorprodukt $M \otimes_R N$ genau derjenige R-Modul zu dem es eine bilineare Abbildung $\otimes : M \times N \to M \otimes_R N$ gibt, die die folgende universelle Eigenschaft erfüllt:

Sei L ein weiterer R-Modul und $\phi: M \times N \to L$ eine bilineare Abbildung. Dann existiert genau eine lineare Abbildung $\eta: M \otimes_R N \to L$, sd. das folgende Diagramm kommutiert:

$$\begin{array}{c|c} M\times N & \xrightarrow{\phi} L \\ \otimes & \\ M\otimes N \end{array}$$

Gibt ein solches R-Modul $M \otimes_R N$, dann ist dieses bis auf Isomorphie eindeutig bestimmt.

Beweis. Für den Beweis sei auf Proposition 2.12 in Atiyah verwiesen.

Also wissen wir nun, dass das Tensorprodukt folgende Eigenschaften erfüllt. Sei R ein kommutitativer Ring mit Eins und R-Moduln M und N, dann gilt für alle $m, m' \in M$, $n, n' \in N$ und $r, r' \in R$

$$(mr + m'r' \otimes n) = (m \otimes n) \cdot r + (m' \otimes n) \cdot r'$$

$$(m \otimes nr + n'r') = (m \otimes n) \cdot r + (m \otimes n') \cdot r'.$$

Damit ist der bilineare Operator gefunden. Wir wollen für unser Problem den Spezialfall $\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z}$ betrachen. Hierbei identifizieren wir die Länge einer Kante mit dem ersten Argument und tensorieren dies mit einem Winkel, wobei wir den Winkel π mit 0 identifizieren.

Definition 2.2 (Dehn-Invariante). Sei P ein dreidimensionaler beschränkter Polyeder mit den Kanten k_1, \ldots, k_n . Dann definieren wir die *Dehn-Invariante* $D(P) \in \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z}$ durch

$$\sum_{i=1}^{n} \ell(k_i) \otimes [w(k_i)].$$

Bemerkung 2.3. Wir stellen fest, dass für alle $x \in \mathbb{R}$ und $y \in \mathbb{R}/\pi\mathbb{Z}$ gilt

$$x \otimes_{\mathbb{Z}} \pi y = 0 \quad \Leftrightarrow \quad x = 0 \ \lor \ y \in \mathbb{Q},$$

denn für $x \in \mathbb{R}$ mit $x \neq 0$ und $y = \frac{p}{q} \in \mathbb{Q}$, wobei $p \in \mathbb{Z}$ und $q \in \mathbb{N}$, gilt

$$x \otimes_{\mathbb{Z}} \pi y = x \otimes_{\mathbb{Z}} \pi \frac{p}{q} = xp \otimes_{\mathbb{Z}} \frac{\pi}{q} = q \frac{xp}{q} \otimes_{\mathbb{Z}} \frac{\pi}{q} = \frac{xp}{q} \otimes_{\mathbb{Z}} \pi = \frac{xp}{q} \otimes_{\mathbb{Z}} 0 = 0.$$

Dabei haben wir $x \in \mathbb{Z}$ zuerst nach links und danach $y \in \mathbb{N}$ nach rechts bewegt. Folglich ist die Dehn-Invariante eines Polyeders 0, falls dessen Diederwinkel alle in $\pi \mathbb{Q}$ liegen. Zusätzlich können wir folgern, dass für alle $x \in \mathbb{R}$ und $y \in \mathbb{R}/\pi \mathbb{Z}$ gilt

$$x \otimes_{\mathbb{Z}} y \neq 0 \quad \Leftrightarrow \quad x \neq 0 \quad \land \quad y \notin \pi \mathbb{Q}$$

Wir müssen nun zeigen, dass die Dehn-Invariante sich beim Zerschneiden eines Polyeders sich nicht verändert und somit eine Invariante ist.

Proposition 2.4 (Invarianz). Die Dehn-Invariante verändert sich beim Zerschneiden oder Zusammensetzen eines Polyeders nicht. Sie ist invariant unter euklidischen Isometrien.

Beweis. Sei P ein beschränkter Polyeder, den wir in zwei Polyeder P_1 und P_2 zerschneiden. Dann reicht es die Fälle zu betrachten, die wir am Anfang des Kapitels erwähnt haben.

• Zu 1: Beim schneiden durch eine Kante k von P entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , wobei die Längen sich addieren und der Winkel gleich bleibt. Es gilt

$$\ell(k_1) \otimes_{\mathbb{Z}} w(k) + \ell(k_2) \otimes_{\mathbb{Z}} w(k) = (\ell(k_1) + \ell(k_2)) \otimes_{\mathbb{Z}} w(k) = \ell(k) \otimes_{\mathbb{Z}} w(k).$$

Also verändert sich die Dehn-Invariante nicht.

• Zu 2: Beim schneiden entlang einer Kante k von P entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , wobei die Längen gleich bleiben und die Winkel sich addieren. Es gilt

$$\ell(k) \otimes_{\mathbb{Z}} w(k_1) + \ell(k) \otimes_{\mathbb{Z}} w(k_2) = \ell(k) \otimes_{\mathbb{Z}} (w(k_1) + w(k_2)) = \ell(k) \otimes_{\mathbb{Z}} w(k).$$

Also verändert sich auch hier die Dehn-Invariante nicht.

- Zu 3: Wir schneiden nicht durch die Kante k von P, also ändert sich auch der Summand nicht und damit die Dehn-Invariante.
- Zu 4: Beim Schneiden durch eine Fläche entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , deren Länge gleich ist und Winkel sich zu π addieren lässt. Es gilt

$$\ell(k_1) \otimes_{\mathbb{Z}} w(k_1) + \ell(k_1) \otimes_{\mathbb{Z}} w(k_2) = \ell(k_1) \otimes_{\mathbb{Z}} (w(k_1) + w(k_2)) = \ell(k_1) \otimes_{\mathbb{Z}} \pi = \ell(k_1) \otimes_{\mathbb{Z}} 0 = 0.$$

Also ändert auch dies nichts an der Dehn-Invariante.

Im Beweis haben wir lediglich die Bilinearität des Tensorprodukts ausgenutzt. \Box

Wir können nun die Dehn-Invarianten einiger Polyeder berechnen.

Beispiel 2.5 (Quader). Sei P ein dreidimensionaler Quader. Dann gilt für alle Kanten k von P, dass $w(k) = \frac{\pi}{2}$. Also gilt $w(k) \in \pi \mathbb{Q}$ für alle Kanten k und nach Bemerkung 2.3 folgt

$$D(P) = 0.$$

Beispiel 2.6 (regulärer Tetraeder). Sei P ein dreidimensionaler regulärer Tetraeder, also haben alle Kanten von P die gleiche Länge l und den gleichen Diederwinkel α . Seien A, B, C, D die Ecken von P wie in Abbildung 4. Sei F der Mittelpunkt der Strecke \overline{BC} , also $|BF| = \frac{l}{2}$ und damit ist nach Pythagoras $|AF| = \frac{\sqrt{3}}{2}l = |DF|$. Der Mittelpunkt E des Dreiecks ABC hat gerade den Abstand $\frac{\sqrt{3}}{3\cdot 2}l = \frac{l}{2\sqrt{3}}$ zu F und schließlich gilt mit Pythagoras

$$\cos(\alpha) = \frac{\frac{l}{2\sqrt{3}}}{\frac{\sqrt{3}}{2}l} = \frac{1}{3}$$
 also $\alpha = \arccos\left(\frac{1}{3}\right)$.

Damit können wir die Dehn-Invariante berechnen. Es gibt sechs Kanten der Länge l, die alle den Diederwinkel $\arccos\left(\frac{1}{3}\right)$ haben, also

$$D(P) = \sum_{i=1}^{6} l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right) = 6l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right).$$

Proposition 2.7. Für alle ungeraden $n \in \mathbb{N}$ mit $n \geq 3$ gilt, $\frac{1}{\pi} \arccos\left(\frac{1}{\sqrt{n}}\right)$ ist irrational.

Beweis. Zuerst stellen wir fest, dass mit dem Additionstheorem

$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

für $\alpha = (k+1)\varphi$ und $\beta = (k-1)\varphi$ gilt

$$\cos((k+1)\varphi) + \cos((k-1)\varphi) = 2\cos\left(\frac{(k+1)\varphi + (k-1)\varphi}{2}\right)\cos\left(\frac{(k+1)\varphi - (k-1)\varphi}{2}\right)$$
$$= 2\cos(k\varphi)\cos(\varphi)$$

Abbildung 4: Ein regulärer Tetraeder

und damit folgt

$$\cos((k+1)\varphi) = 2\cos(k\varphi)\cos(\varphi) - \cos((k-1)\varphi). \tag{3}$$

Wir definieren uns nun $\varphi_n = \arccos(\frac{1}{\sqrt{n}})$ für n = 2l + 1 mit $l \in \mathbb{N}$. Dann ist $\cos(\varphi_n) = \frac{1}{\sqrt{n}}$ und $0 \le \varphi_n \le \pi$.

Mit Induktion über $k \in \mathbb{N}_0$ zeigen wir, dass gilt

$$\cos(k\varphi_n) = \frac{A_k}{\sqrt{n^k}},\tag{4}$$

wobei A_k eine ganze Zahl ist, die nicht durch n teilbar ist. Wir beginnen und stellen fest, dass

für
$$k = 0$$

$$1 = \cos(0 \cdot \varphi_n) = \frac{A_0}{\sqrt{n^0}} = A_0$$
 für $k = 1$
$$\frac{1}{\sqrt{n}} = \cos(1 \cdot \varphi_n) = \frac{A_1}{\sqrt{n^1}} = \frac{A_0}{\sqrt{n}}$$

und damit $A_0 = A_1 = 1$ ist. Weiterhin gilt mit 3

$$\cos((k+1)\varphi_n) = 2\cos(k\varphi_n)\cos(\varphi_n) - \cos((k-1)\varphi_n)$$

$$= 2\frac{A_k}{\sqrt{n^k}} \cdot \frac{1}{\sqrt{n}} - \frac{A_{k-1}}{\sqrt{n^{k-1}}}$$

$$= \underbrace{\frac{2A_{k-1}}{\sqrt{n^{k+1}}}}_{=\frac{2A_{k-1}}{\sqrt{n^{k+1}}}}.$$

Da A_k nicht durch n teilbar ist und $n \ge 3$ ungerade, ist die Zahl $2A_k$ auch nicht durch n teilbar und damit auch nicht $A_{k+1} := 2A_k - nA_{k-1}$. Wir haben also eine konkrete Darstellung für A_{k+1} gefunden und sind mit der Induktion fertig.

Nun kommen wir zum eigentlichen Beweis. Angenommen $\frac{1}{\pi}\varphi_n$ ist rational mit

$$\frac{1}{\pi}\varphi_n = \frac{m}{k}$$

für $m\in\mathbb{Z}$ und $k\in\mathbb{N}.$ Dann gilt mit $k\varphi_n=m\pi$ und 4

$$\pm 1 = \cos(m\pi) = \cos(k\varphi_n) = \frac{A_k}{\sqrt{n^k}}.$$

Also auch $\sqrt{n}^k = \pm A_k$ und da A_k eine ganze Zahl ist, ist \sqrt{n}^k auch eine und somit $k \ge 2$. Damit ist jedoch n ein Teiler von \sqrt{n}^k und da $\sqrt{n}^k | A_k$, teilt n auch A_k , was ein Widerspruch ist. \square

Damit folgt also für n=9, dass $\arccos\left(\frac{1}{3}\right)$ nicht in $\pi\mathbb{Q}$ liegt. Wir erhalten unser folgendes Resultat.

Folgerung 2.8 (Dehns Lösung). Sei Q ein Quader und T ein regulärer Tetraeder mit gleichem Volumen und Kantenlänge l. Dann gilt nach Beispiel 2.5 D(Q) = 0 und nach Beispiel 2.6

$$D(T) = 6l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right).$$

Da nach Proposition 2.7 $\frac{1}{\pi} \arccos\left(\frac{1}{3}\right)$ irrational ist, liegt $\arccos\left(\frac{1}{3}\right)$ nicht in $\pi\mathbb{Q}$ und damit ist nach Bemerkung 2.3 mit $l \neq 0$ auch $6l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right) \neq 0$. Also gilt

$$D(Q) = 0 \neq 6l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right) = D(T).$$

Also sind Q und T nicht zerlegungsgleich.