1.

- Pour obtenir A, il suffit de prendre les éléments de S comportant un F et un nombre pair :
 A = {F2, F4, F6}.
 Pour obtenir B, on prend les éléments de S comportant un nombre premier : B = {F2, F3, F5, P2, P3, P5}.
- (ii) (a) $A \text{ ou } B = A \cup B = \{F2, F4, F6, F3, F5, P2, P3, P5\}$
 - (b) $B \text{ et } C = B \cap C = \{P3, P5\}$
 - (c) On prend les éléments de B qui ne sont ni dans A, ni dans $C: B \cap CA \cap CC = \{F3, F5, P2\}$.

Pour obtenir C, on prend les éléments de S comportant un P et un nombre impair : $C = \{P1, P3, P5\}$.

- (iii) A et C s'excluent mutuellement puisque $A \cap C = \emptyset$.
- 2. Posons p = P(1) = P(3) = P(5), donc P(2) = P(4) = P(6) = 2p. $1 = P(\{1, 2, 3, 4, 5, 6\}) = 9p$ et par suite p = 1/9. d'où 1) 2/3, 2) 4/9, 3) 1/3, 4) 2/9.

3.

L'événement peut se réaliser de 3 façons (un 2, un 4 ou un 6) parmi 6 cas équiprobables ; par conséquent $p = \frac{3}{6} = \frac{1}{2}$.

Si l'on considère les pièces séparément, il y a 8 cas équiprobables : FFF, FFP, FPF, FPF, PFF, PFP, PFF, PPP. Seul le premier cas est contraire à l'événement considéré ; par conséquent p=7/8.

If y a 4 + 3 + 5 = 12 billes, dont 4 sont blanches; par suite $p = \frac{4}{12} = \frac{1}{3}$.

4.

Il y a $\binom{15}{3}$ = 455 possibilités de choisir 3 ampoules parmi les 15 ampoules données.

- (i) Puisqu'il y a 15 5 = 10 ampoules non défectueuses, il y a $\binom{10}{2}$ = 120 possibilités de choisir 3 ampoules non défectueuses. D'où $p = \frac{120}{455} = \frac{24}{91}$.
- (ii) Il y a 5 ampoules défectueuses et $\binom{10}{2}$ = 45 couples différents d'ampoules non défectueuses ; par conséquent il y a 5 · 45 = 225 possibilités de choisir 3 ampoules dont l'une soit défectueuse. D'où $p = \frac{225}{455} = \frac{45}{91}$.
- (iii) L'éventualité pour qu'au moins une ampoule soit défectueuse est le complémentaire de l'événement caractérisé par l'absence totale d'ampoule défectueuse, qui d'après (i), a une probabilité de $\frac{24}{91}$. Par conséquent $p = 1 \frac{24}{91} = \frac{67}{91}$.
- 5. 1) $P(FUA) = P(F) + P(A) P(F \cap A) = 3/4, 2) = P(\overline{F} \cap \overline{A}) = 1 P(F \cup A) = 1/4$
- 6. La fréquence relative = $\frac{nombre\ de\ succès}{nombre\ total\ de\ jets}$, 1) 7/50, 2) 24/50, 3) 26/50
- 7. Probabilité conditionnelle

La somme est paire si les deux chiffres sont tous les deux pairs ou impairs. Il y a 4 chiffres pairs (2, 4, 6, 8); il y a donc $\binom{4}{2}$ = 6 cas où l'on peut tirer deux chiffres pairs. Il y a 5 nombres impairs (1, 3, 5, 7, 9); il y a donc $\binom{5}{2}$ = 10 cas où l'on peut tirer deux chiffres impairs. En conclusion, il y a 6 + 10 = 16 cas où l'on peut tirer deux chiffres tels que leur somme soit paire; comme 10 de ces cas correspondent à deux chiffres impairs, $p = \frac{10}{16} = \frac{5}{8}$.

Soit $M = \{\text{\'el\`eves ayant\'echou\'e en math\'ematiques}\}$ et $C = \{\text{\'el\`eves ayant\'echou\'e en chimie}\}$; il vient alon $P(M) = 0.25, \ P(C) = 0.15, \ P(M \cap C) = 0.10$

(i) La probabilité pour qu'un élève échoue en mathématiques, après avoir échoué en chimie est

$$P(M \mid C) = \frac{P(M \cap C)}{P(C)} = \frac{0.10}{0.15} = \frac{2}{3}$$

(ii) La probabilité pour qu'un élève échoue en chimie après avoir échoué en mathématiques est

$$P(C \mid M) = \frac{P(C \cap M)}{P(M)} = \frac{0.10}{0.25} = \frac{2}{5}$$
(iii)
$$P(M \cup C) = P(M) + P(C) - P(M \cap C) = 0.25 + 0.15 - 0.10 = 0.30 = \frac{3}{10}$$

9.

- (i) La probabilité de choisir une pièce non défectueuse est $\frac{5}{8}$ pour la boîte A, et $\frac{3}{5}$ pour la boîte B. Comme les événements sont indépendants, $p = \frac{5}{8} \cdot \frac{3}{5} = \frac{3}{8}$.
- (ii) Méthode 1. La probabilité p de choisir deux pièces détachées défectueuses est $\frac{3}{8} \cdot \frac{2}{5} = \frac{3}{20}$. D'après (i) la probabilité pour que les deux pièces ne soient pas défectueuses est $\frac{3}{8}$. D'où $p = 1 \frac{3}{8} \frac{3}{20} = \frac{19}{40}$. Méthode 2. La probabilité p_1 de choisir une pièce détachée défectueuse dans A et une pièce non défectueuse dans B est $\frac{3}{8} \cdot \frac{3}{5} = \frac{9}{40}$. La probabilité p_2 de choisir une pièce détachée non défectueuse dans A une pièce défectueuse dans B est $\frac{5}{8} \cdot \frac{2}{5} = \frac{1}{4}$. D'où $p = p_1 + p_2 = \frac{9}{40} + \frac{1}{4} = \frac{19}{40}$.
- (iii) Considérons les événements $X = \{\text{pièce détachée de } A \text{ défectueuse}\}\$ et $Y = \{\text{une pièce détachée est défectueuse et l'autre ne l'est pas}\}\$. On cherche à calculer P(X/Y). D'après (ii) $P(X \cap Y) = p_1 = \frac{9}{40}$ et $P(Y) = \frac{19}{40}$. D'où $P(X \cap Y) = \frac{9}{40} = 9$

 $p = P(X \mid Y) = \frac{P(X \cap Y)}{P(Y)} = \frac{\frac{9}{40}}{\frac{19}{40}} = \frac{9}{19}$

- **10.** Soit A l'évènement : « le type A de bactéries vive encore 1 heure » et B l'évènement : «le type B de bactéries vive encore 1 heure ». On a P(A) = 1/4, et P(B) = 1/3.
 - (i) On cherche $P(A \cap B)$. Comme A et B sont indépendants, $P(A \cap B) = P(A) P(B) = \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12}$.
 - (ii) On cherche $P(A \cup B)$. $P(A \cup B) = P(A) + P(B) P(A \cap B) = \frac{1}{4} + \frac{1}{3} \frac{1}{12} = \frac{1}{2}$.
 - (iii) On cherche $P(CA \cap CB)$. Or $P(CA) = 1 P(A) = 1 \frac{1}{4} = \frac{3}{4}$ et $P(CB) = 1 P(B) = 1 \frac{1}{3} = \frac{2}{3}$. D'autre part, comme CA et CB sont indépendants, $P(CA \cap CB) = P(CA) P(CB) = \frac{3}{4} \cdot \frac{2}{3} = \frac{1}{2}$.

Ou encore, puisque $C(A \cup B) = CA \cap CB$, $P(CA \cap CB) = P(C(A \cup B)) = 1 - P(A \cup B) = 1 - \frac{1}{2} = \frac{1}{2}$.

(iv) On cherche $P(CA \cap B)$. Comme $P(CA) = 1 - P(A) = \frac{3}{4}$ et que CA et B sont indépendants $P(CA \cap B) = P(CA) P(B) = \frac{1}{4}$.

11. épreuves indépendantes ou répétés

(i) A se compose de tous les triplets ordonnés comportant au moins 2V et aucun D. Ainsi

$$A = \{V V V, V V N, V N V, N V V\}$$
D'autre part,
$$P(A) = P(V V V) + P(V V N) + P(V N V) + P(N V V)$$

$$= (0,6) (0,6) (0,6) + (0,6) (0,6) (0,1) + (0,6) (0,1) (0,6) + (0,1) (0,6) (0,6)$$

$$= 0,216 + 0,036 + 0,036 + 0,036 = 0,324$$

(ii) Ici, $B = \{V D N, V N D, D V N, D N V, N V D, N D V\}$. Comme chaque élément de B a pour probabilité (0,6) (0,3) (0,1), on a P(B) = 6(0,018) = 0,108.

Exercices supplémentaires:

12. Dans un échantillon de 900 individus nous avons la distribution suivante :

Yeux	Verts	Bleus	Noirs	Somme
Cheveux	_			
Clairs	140	80	50	270
Foncés	60	40	100	200
Noirs	50	30	350	430
Somme	250	150	500	900

- 1/ Une cellule est l'intersection entre deux modalités. Elle représente l'effectif qui possède la modalité de la variable 1 et la modalité de la variable 2, exp : 100 : est le nombre d'individus ayant à la fois des yeux noirs et des cheveux foncés. 2/ La ligne somme désigne les effectifs pour la variable : couleur des cheveux et la colonne somme désigne les effectifs pour la variable : couleur des yeux.
- Probabilité assimilée à la fréquence relative: a/ 250/900=0.277; b/ 200/900=0.222; c/ (270+430)/900=0.777;

d/80/900=0.088; e/80/270=0.296

13. 1/ On désigne par M l'évènement « milieu pollué au cours d'une journée » ; M= B1∪B2. (B1 et B2 sont indépendants). $P(M) = P(B1 \cup B2) = P(B1) + P(B2) - P(B1 \cap B2) = P(B1) + P(B2) - P(B1) \cdot P(B2) = 0.1168$ 2/ Désignons par E₂ l'évènement « milieu pollué au bout de 2 journées » et par M₁ l'évènement « milieu pollué au cours du 1^{er} jour » et par M₂ l'évènement « milieu pollué au cours du 2^{ème} $P(M)=P(M_1)=P(M_2)=0.1168$

On a alors :
$$P(E_2) = P(M_1 \cup (\overline{M_1} \cap M_2)) = P(M_1) + P(\overline{M_1} \cap M_2) - P(M_1 \cap (\overline{M_1} \cap M_2))$$

 $P(E_2) = P(M_1) + P(\overline{M_1}) \cdot P(M_2) - P(\emptyset) = 0.1168 + (0.8832 * 0.1168) = 0.22$

3/ On désigne par E_n l'évènement « milieu pollué au bout de n jours » ; $P(E_n) = 1 - P(\overline{E_n}) = 1 - P(\overline{E_1} \cap \overline{E_2} \cap ... \cap \overline{E_n}) = 1 - P(\overline{E_1}) * P(\overline{E_2}) * ... \cap P(\overline{E_n}) = 1 - (0.8832)^n \text{ car}$ les évènements E_i sont indépendants.

$$4/P(E_n) \ge 0.5 \iff 1 - (0.8832)^n \ge 0.5 \implies n = 6$$

14. Trois machines A, B et C produisent respectivement 60%, 30% et 10% de la production d'un produit. La machine A (respectivement B & C) produit 2% (respectivement 3% et 4%) d'objets défectueux. La machine A (respectivement B & C) produit 8% (respectivement 5% et 9%) d'objets de moyenne qualité. 1.

machine qualité	A	В	С	Somme
Bonne	0.9*600=540	0.92*300=276	0.87*100=87	903
Moyenne	0.08*600=48	0.05*300=15	0.09*100=9	72
Défectueuse	0.02*600=12	0.03*300=9	0.04*100=4	25
Somme	1000*.06=600	1000*.3=300	1000*01=100	N=1000

- 2. Soit D: « la pièce tirée est défectueuse » $P(D) = \frac{cardD}{N} = \frac{25}{1000} 0.025$, B: « la pièce tirée est de bonne qualité » $P(B) = \frac{cardB}{N} = \frac{903}{1000} 0.903$ $P(B/C) = \frac{P(B \cap C)}{P(C)} = \frac{NbreB \cap C}{NbreC} = \frac{87}{100}$; $P((M/A) \cup (M/C)) = \frac{P(M \cap A)}{P(A)} + \frac{P(M \cap C)}{P(C)} P((M/A) \cap (M/C)) = \frac{card(M \cap A)}{cardA} + \frac{card(M \cap C)}{cardC} \frac{card(M \cap A)}{cardA} * \frac{card(M \cap C)}{cardC}$ $P((D/A)\cup(D/C)$
- 15. On sait qu'à une date donnée, 3% d'une population est atteinte d'hépatite. On dispose de tests de dépistage de la maladie:
 - Si la personne est malade, alors le test est positif avec une probabilité de 95%.

- Si la personne est saine, alors le test est positif avec une probabilité de 10%.
- 1. Quelle est la probabilité pour une personne d'être malade si son test est positif?
- 2. Quelle est la probabilité pour une personne d'être saine si son test est positif?
- 3. Quelle est la probabilité pour une personne d'être malade si son test est négatif?
- 4. Quelle est la probabilité pour une personne d'être saine si son test est négatif?
- 1. La probabilité pour une personne d'être malade si son test est positif est $P(M/T^+) = P(T^+/M)P(M)/P(T^+)$ or $P(T^+) = P(T^+/M)P(M) + P(T^+/S)P(S) = 0.95 \cdot 0.03 + 0.1 \cdot 0.97 = 0.1255$. D'où : $P(M/T^+) = 23.7\%$.
- 2. La probabilité pour une personne d'être saine si son test est positif est $P(S/T^+) = 1 P(M/T^+) = 76.3\%$.
- 3. La probabilité pour une personne d'être malade si son test est négatif est $P(M/T^-) = 0.0017$.
- 4. La probabilité pour une personne d'être saine si son test est négatif est $1 P(M/T^-) = 0.998 = 99.8\%$.