Correction de l'épreuve CCP 2001 PSI – Maths 2

PREMIÈRE PARTIE

I-1.1. Soit t au voisinage de 0, $t \neq 0$. Alors $\frac{\varphi(t)}{t^s} = \frac{\varphi(t)}{(\rho t)^s} \cdot \rho^s$.

Par hypothèse, la fonction $\frac{\varphi(t)}{(\rho t)^s}$ est lorsque $t \longrightarrow 0$, il en est donc de même de $\frac{\varphi(t)}{(\rho t)^s} \cdot \rho^s$ car ρ^s est une constante.

Conclusion : $\varphi(t) = O(t^s)$ lorsque $t \longrightarrow 0$.

- I-1.2. Soit t au voisinage de 0, $t \neq 0$. Alors $\frac{\varphi(t)}{t^{k-1}} = \frac{\varphi(t)}{t^k} \cdot t$. C'est le produit d'une fonction bornée au voisinage de 0 par une fonction tendant vers 0, et par conséquent : $\lim_{t \to 0} \frac{\varphi(t)}{t^{k-1}} = 0.$
- **I-2.1.** Par hypothèse, pour $t \longrightarrow 0$, on a $A(t) = a_0 + a_1 t + \dots + a_k t^k + t^{k+1} \varphi(t)$ avec φ une fonction bornée au voisinage de 0. Par suite, il vient $\lim_{t \to 0} t^{k+1} \varphi(t) = 0$, et donc $\lim_{t \to 0} A(t) = a_0$.
- **I-2.2.** Soit t au voisinage de 0. Alors :

$$A_1(t) = \frac{rA_0(t) - A_0(rt)}{r - 1} = \frac{r(a_0 + a_1t + a_2t^2 + \dots + O(t^{k+1})) - (a_0 + a_1rt + a_2r^2t^2 + \dots + O((rt)^{k+1}))}{r - 1}$$
$$= a_0 + \frac{r - r^2}{r - 1}a_2t^2 + O(t^{k+1})$$

car d'après **I-1.1**, $O((rt)^{k+1}) = O(t^{k+1})$.

On en déduit :
$$A_1(t) = a_0 - ra_2t^2 + \dots + O(t^{k+1})$$
.

En posant $a_{1,2} = -ra_2$, on a donc le résultat souhaité.

- **I-2.3.** Soit $\mathfrak{P}(n)$ la propriété pour $n \in \{1, \dots, k\}$: « pour $t \longrightarrow 0$, $A_n(t) = a_0 + a_{n,n+1}t^{n+1} + a_{n,n+2}t^{n+2} + \dots + O(t^{k+1})$ »
 - P(1) est vraie d'après la question précédente.
 - Supposons $\mathcal{P}(n)$ vraie pour $n \in \{1, \dots, k-1\}$ fixé.

Alors pour $t \longrightarrow 0$

$$\begin{split} A_{n+1}(t) &= \frac{r^{n+1}A_n(t) - A_n(rt)}{r^{n+1} - 1} \\ &= \frac{r^{n+1}\left(a_0 + a_{n,n+1}t^{n+1} + a_{n,n+2}t^{n+2} + \dots + O(t^{k+1})\right) - \left(a_0 + a_{n,n+1}r^{n+1}t^{n+1} + a_{n,n+2}r^{n+2}t^{n+2} + \dots + O((rt)^{k+1})\right)}{r^{n+1} - 1} \end{split}$$

On observe que le terme en t^{n+1} s'élimine, et qu'il restera une expression de la forme $a_0 + a_{n+1,n+2}t^{n+2} + \cdots + O(t^{k+1})$, donc $\mathcal{P}(n+1)$ est vraie.

Conclusion:

le développement limité de A_n à l'ordre k au voisinage de 0 est de la forme $A_n(t) = a_0 + a_{n,n+1}t^{n+1} + \cdots + O(t^k)$.

I-2.4. On a : $\lim_{m \to +\infty} r^{-m} t_0 = 0 \text{ car } r > 1.$

Vu que $\lim_{t\to 0} A(t) = a_0$, par composition de limites on a donc $\lim_{m\to +\infty} A(r^{-m}t_0) = a_0$.

I-3.1. Soit $p \in \mathbb{N}$. Alors $A_{p,0} = A(r^{-p}t_0)$.

Or, pour t au voisinage de 0, le développement limité de A_0 à l'ordre 0 est $A(t) = a_0 + O(t)$.

Par suite, vu que $\lim_{n \to +\infty} r^{-p} t_0 = 0$, on a $A(r^{-p} t_0) = a_0 + O(r^{-p} t_0)$.

D'après **I-1.1**, t_0 étant une constante, on a bien $A_{p,0} = a_0 + O(r^{-p})$.

I-3.2. Soit $q \in \mathbb{N}$. Alors d'après **I-2.3**, pour $t \longrightarrow 0$, $A_q(t) = a_0 + O(t^{q+1})$.

Par suite, pour
$$p \longrightarrow +\infty$$
 et $q \in \{0, ..., p\}$, $A_{p,q} = A_q(r^{-p}t_0) = a_0 + O(r^{-p(q+1)}t_0^{q+1})$, d'où $A_{p,q} = a_0 + O(r^{-p(q+1)})$.

On obtient donc $\alpha(p,q) = p(q+1)$.

I-3.3. Soit $p \in \mathbb{N}^*$.

Alors
$$A_{p,1} = A_1(r^{-p}t_0) = \frac{rA(r^{-p}t_0) - A(r \cdot r^{-p}t_0)}{r - 1} = \frac{rA(r^{-p}t_0) - A(r^{-(p-1)}t_0)}{r - 1}$$

On a donc bien
$$A_{p,1} = \frac{rA_{p,0} - A_{p-1,0}}{r-1}$$
.

I-3.4. Soit $p \in \mathbb{N}^*$, soit $q \in \{1, ..., p\}$.

Alors
$$A_{p,q} = A_q(r^{-p}t_0) = \frac{r^q A_{q-1}(r^{-p}t_0) - A_{q-1}(r \cdot r^{-p}t_0)}{r^q - 1} = \frac{r^q A_{p,q-1} - A_{p-1,q-1}}{r^q - 1}$$
.

De plus,
$$\frac{r^q A_{p,q-1} - A_{p-1,q-1}}{r^q - 1} = \frac{(r^q - 1 + 1)A_{p,q-1} - A_{p-1,q-1}}{r^q - 1} = A_{p,q-1} + \frac{1}{r^q - 1}(A_{p,q-1} - A_{p-1,q-1}).$$

On obtient donc bien
$$A_{p,q} = \frac{r^q A_{p,q-1} - A_{p-1,q-1}}{r^q - 1} = A_{p,q-1} + \frac{1}{r^q - 1} (A_{p,q-1} - A_{p-1,q-1}).$$

I-4. Pour $0 \leqslant q \leqslant p \leqslant m$, on a vu que $\alpha(p,q) = p(q+1)$, donc $\alpha(p,q)$ est maximum pour q=p=m et minimum pour p = q = 0.

La plus grande valeur de $\alpha(p,q)$ est m(m+1), la plus petite valeur est 0.

D'après I-1.2, plus la puissance de t est grande dans $O(t^k)$, plus ce terme est petit quand $t \longrightarrow 0$.

On peut donc attendre à priori la meilleure approximation de a_0 par $A_{p,q}$ lorsque $A_{p,q} = a_0 + O(r^{-\alpha(p,q)})$ sera tel que $\alpha(p,q)$ soit le plus grand possible, donc il s'agit de la valeur $A_{m,m}$, avec $A_{m,m} = a_0 + O(r^{-\sigma(m)})$, et $\sigma(m) = m(m+1)$.

I-5.1. D'après la formule de Taylor-Young, et par unicité des coefficients d'un développement limité, on a :

$$\forall p \in \{0, \dots, 2k\}, c_p = \frac{g^{(p)}(\alpha)}{p!}.$$

I-5.2. • Soit
$$h \in \mathbb{R}^*$$
. Alors $G(-h) = \frac{g(\alpha - h) - g(\alpha + h)}{-2h} = \frac{g(\alpha + h) - g(\alpha - h)}{2h} = G(h)$.

G est donc paire.

• D'après Taylor-Young, on a pour $h \longrightarrow 0$: $g(\alpha + h) = g(\alpha) + hg'(\alpha)$

On en déduit, pour
$$h \longrightarrow 0$$
: $G(h) = \frac{\left[g(\alpha) + hg'(\alpha) + o(h)\right] - \left[g(\alpha) - hg'(\alpha) + o(h)\right]}{2h} = g'(\alpha) + o(1)$
Par suite, $\lim_{h \to 0} G(h) = g'(\alpha)$, donc G est prolongeable par continuité en 0 par la valeur $g'(\alpha)$.

I-5.3. Soit h au voisinage de 0. Alors :

$$\begin{split} \widetilde{G}(h) &= \frac{g(\alpha+h) - g(\alpha-h)}{2h} \\ &= \frac{\left[c_0 + c_1 h + c_2 h^2 + \dots + c_{2k-1} h^{2k-1} + c_{2k} h^{2k} + O(h^{2k+1})\right] - \left[c_0 - c_1 h + c_2 h^2 + \dots - c_{2k-1} h^{2k-1} + c_{2k} h^{2k} + O(h^{2k+1})\right]}{2h} \end{split}$$

On obtient donc: $\widetilde{G}(h) = c_1 + c_3 h^2 + c_5 h^4 + \dots + c_{2k-1} h^{2k-2} + O(h^{2k})$

I-6.1. Posons
$$r = 4$$
 et $t_0 = h^2$. Alors on a $r > 1$, et pour $p \in \{0, ..., m\}$, $A(r^{-p}t_0) = A(4^{-p}h^2) = \widetilde{G}(\sqrt{4^{-p}h^2}) = G\left(\frac{h}{2^p}\right)$.

Le choix r = 4 et $t_0 = h^2$ répond donc à la question

I-6.2. Pour t au voisinage de 0^+ , on a $A(t) = \widetilde{G}(\sqrt{t}) = c_1 + c_3 t + c_5 t^2 + \dots + c_{2k-1} t^{k-1} + O(t^k)$ d'après **I-5.3**. D'après **I-3.1**, on a $\lim_{p \to +\infty} A_{p,0} = c_1$.

D'après **I-5.2**, on a finalement $\lim_{p\to+\infty} A_{p,0} = \ell = g'(\alpha)$.

I-7.1. Pour
$$t > 0$$
, on a ici $A(t) = \frac{\ln(3 + \sqrt{t}) - \ln(3 - \sqrt{t})}{2\sqrt{t}}$

On trouve alors : $A_{0,0} \sim 0.3415898164800$, $A_{1,0} \sim 0.3353299832433$, $A_{2,0} \sim 0.3338284815613$, $A_{3,0} \sim 0.3334568724934$. On obtient ensuite le tableau:

$A_{0,0} \sim 0.3415898164800$			
$A_{1,0} \sim 0.3353299832433$	$A_{1,1} \sim 0.3332433721645$		
$A_{2,0} \sim 0.3338284815613$	$A_{2,1} \sim 0.3333279810006$	$A_{2,2} \sim 0.3333336215897$	
$A_{3,0} \sim 0.3334568724934$	$A_{3,1} \sim 0.3333330028040$	$A_{3,2} \sim 0.3333333375909$	$A_{3,3} \sim 0.33333333333333333333333333333333333$

Remarque : le programme MAPLE utilisé pour obtenir ce résultat est le suivant :

```
# Initialisations
G:=t->(ln(3+t)-ln(3-t))/2/t; h:=0.8;
for p from 0 to 3 do A[p,0]:=G(h/2^p); od;
# Calcul des termes
for p from 1 to 3 do
  for q from 1 to p do
    A[p,q] := (r^q * A[p,q-1] - A[p-1,q-1]) / (r^q-1);
od;
# Affichage
for p from 0 to 3 do
  for q from 0 to p do
    printf('0.15%f ',A[p,q]);
  od;
  printf('\n');
od;
```

I-7.2. On a $\ell = g'(\alpha)$, donc dans l'exemple étudié on trouve $\ell = \frac{1}{3}$

On voit clairement dans le tableau que la meilleure approximation est obtenue pour $A_{3,3}$, ce qui correspond bien à la valeur trouvée au I-4.

DEUXIÈME PARTIE

II-1.1. •
$$B_1$$
 est tel que $B_1' = B_0$, d'où $B_1 = X + c$ $(c \in \mathbb{R})$, et $\int_0^1 B_1(t) dt = \int_0^1 (t+c) dt = \left[\frac{t^2}{2} + ct\right]_0^1 = \frac{1}{2} + c$, d'où $c = -\frac{1}{2}$.

On a donc $B_1 = X - \frac{1}{2}$.

• De même,
$$B_2' = 2B_1 = 2X - 1$$
, d'où $B_2 = X^2 - X + c$ $(c \in \mathbb{R})$, et $\int_0^1 B_2(t) dt = \left[\frac{t^3}{3} - \frac{t^2}{2} + ct\right]_0^1 = -\frac{1}{6} + c$, d'où $c = \frac{1}{6}$.

On a donc
$$B_2 = X^2 - X + \frac{1}{6}$$
.

• Enfin,
$$B_3' = 3B_2 = 3X^2 - 3X + \frac{1}{2}$$
, d'où $B_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X + c$ $(c \in \mathbb{R})$, et $\int_0^1 B_3(t) dt = \left[\frac{t^4}{4} - \frac{1}{2}t^3 + \frac{1}{4}t^2 + ct\right]_0^1 = c$, d'où $c = 0$. On a donc $B_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X$.

II-1.2. On trouve à partir des expressions précédentes :
$$b_0 = 1$$
, $b_1 = -\frac{1}{2}$, $b_2 = \frac{1}{6}$ et $b_3 = 0$.

De même,
$$B_0(1) = 1$$
, $B_1(1) = \frac{1}{2}$, $B_2(1) = \frac{1}{6}$ et $B_3(1) = 0$.

On observe donc que $b_p = B_p(1)$ pour $p \in \{0, 2, 3\}$.

II-1.3. Soit
$$p \in \mathbb{N}$$
, $p \geqslant 2$. Alors $\int_0^1 B_{p-1}(t) dt = 0$, donc $\int_0^1 \frac{B_p'(t)}{p} dt = 0$, d'où $\left[\frac{B_p(t)}{p}\right]_0^1 = \frac{B_p(1) - B_p(0)}{p} = 0$, et donc $b_p = B_p(1)$.

II-2.1.

- Soit $t \in \mathbb{R}$, alors $\widetilde{B}_0(t) = (-1)^0 B_0(1) = 1$ donc $(\widetilde{B}_p)_{p \in \mathbb{N}}$ vérifie (i).
- Soit $p \in \mathbb{N}^*$, soit $t \in \mathbb{R}$. Alors $\widetilde{B}_p'(t) = (-1)^p \cdot \left(-B_p'(1-t)\right) = (-1)^{p-1}pB_{p-1}(1-t) = p\widetilde{B}_{p-1}(t)$.

De plus, $\int_0^1 \widetilde{B}_p(t) dt = (-1)^p \int_0^1 B_p(1-t) dt = (-1)^p \int_1^0 B_p(u)(-du)$ en effectuant le changement de variable u = 1 - t.

On en déduit $\int_0^1 \widetilde{B}_p(t) dt = 0$, et donc $(\widetilde{B}_p)_{p \in \mathbb{N}}$ vérifie (ii).

Les relations (i) et (ii) définissant clairement de manière unique la suite $(B_p)_{p\in\mathbb{N}}$, on a donc : $\forall p\in\mathbb{N},\ \widetilde{B}p=B_p$.

II-2.2. Soit $p \in \mathbb{N}^*$. Alors $b_{2p+1} = B_{2p+1}(0) = -\widetilde{B}_{2p+1}(1)$.

D'après **I-1.3**, on a de plus $b_{2p+1} = B_{2p+1}(1)$ d'où d'après **I-2.1** : $b_{2p+1} = \widetilde{B}_{2p+1}(1)$.

On obtient donc clairement : $\forall p \in \mathbb{N}^*, \ b_{2p+1} = 0.$

II-3.1. On a
$$\int_0^1 f(t) dt = \int_0^1 B_0(t) f(t) dt = \int_0^1 B_1'(t) f(t) dt$$
 par définition de B_0 et B_1 .

En intégrant par parties, on obtient donc : $\int_0^1 f(t) dt = \left[B_1(t) f(t) \right]_0^1 - \int_0^1 B_1(t) f'(t) dt.$

Vu que $B_1 = X - \frac{1}{2}$, on obtient : $\int_0^1 f(t) dt = \int_0^1 B_0(t) f(t) dt = \frac{1}{2} (f(0) + f(1)) - \int_0^1 B_1(t) f'(t) dt.$

- II-3.2. La démonstration précédente prouve que la formule est vraie pour n=1.
 - Supposons la formule établie pour $n \in \mathbb{N}^*$ fixé. Alors :

$$\frac{1}{2} (f(0) + f(1)) = \int_0^1 f(t) dt + \sum_{p=2}^n (-1)^p \frac{b_p}{p!} (f^{(p-1)}(1) - f^{(p-1)}(0)) + (-1)^{n+1} \int_0^1 \frac{B_n(t)}{n!} f^{(n)}(t) dt$$

$$= \int_0^1 f(t) dt + \sum_{p=2}^n (-1)^p \frac{b_p}{p!} (f^{(p-1)}(1) - f^{(p-1)}(0)) + (-1)^{n+1} \int_0^1 \frac{B'_{n+1}(t)}{(n+1) \cdot n!} f^{(n)}(t) dt$$

On intègre par partie l'intégrale située à droite de la formule :

$$\int_0^1 \frac{B'_{n+1}(t)}{(n+1) \cdot n!} f^{(n)}(t) dt = \left[\frac{B_{n+1}(t)}{(n+1)!} f^{(n)}(t) \right]_0^1 - \int_0^1 \frac{B_{n+1}(t)}{(n+1)!} f^{(n+1)}(t) dt$$
$$= \frac{b_{n+1}}{(n+1)!} \left(f^{(n)}(1) - f^{(n)}(0) \right) - \int_0^1 \frac{B_{n+1}(t)}{(n+1)!} f^{(n+1)}(t) dt$$

car $b_{n+1} = B_{n+1}(1) = B_{n+1}(0)$ d'après **I-1.2**.

En reportant cette expression dans la formule précédente, on obtient la formule demandée au rang n+1, d'où :

$$\forall n \geqslant 2, \frac{1}{2} (f(0) + f(1)) = \int_0^1 f(t) dt + \sum_{p=2}^n (-1)^p \frac{b_p}{p!} (f^{(p-1)}(1) - f^{(p-1)}(0)) + (-1)^{n+1} \int_0^1 \frac{B_n(t)}{n!} f^{(n)}(t) dt.$$

II-3.3. Soit $n \ge 2$, de la forme n = 2k, $k \in \mathbb{N}^*$.

D'après II-2.2, tous les termes de la somme correspondant à un indice p impair sont nuls, il reste donc en réindexant

la somme :
$$\frac{1}{2} (f(0) + f(1)) = \int_0^1 f(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(1) - f^{(2p-1)}(0)) - \int_0^1 \frac{B_{2k}(t)}{(2k)!} f^{(2k)}(t) dt.$$

- **II-4.1.** Soit $t \in \mathbb{R}$, notons n = E(t). Alors $n \le t < n+1$, d'où $n+1 \le t < n+2$ et donc E(t+1) = n+1. Par suite, $\mathcal{D}_p(t+1) = B_p(t+1-n-1) = B_p(t-n) = \mathcal{D}_p(t)$ et donc $\boxed{\mathcal{D}_p \text{ est périodique de période 1.}}$
 - Soit $(a,b) \in \mathbb{R}^2$ tel que a < b. Considérons la subdivision $(x_i)_{0 \leqslant i \leqslant n}$ de [a,b] telle que $[a,b] \cap \mathbb{N} = \{x_1,\ldots,x_{n-1}\}$.

Alors pour $i \in \{0, \ldots, n-1\}, \forall t \in]x_i, x_{i+1}[, f_{\mid [x_i, x_i+1]}(t) = B_p(t-x_i)$ par définition.

L'application $f_{\mid]x_i,x_i+1[}$ est donc clairement prolongeable à $[x_i,x_{i+1}]$ en une fonction de classe \mathbb{C}^{∞} sur $[x_i,x_{i+1}]$, qui n'est autre que $t\longmapsto B_p(t-x_i)$, et par suite $\boxed{\mathcal{D}_p}$ est de classe \mathbb{C}^{∞} par morceaux sur R.

- II-4.2. Soit $q \in \{1, ..., N\}$. Alors f_q est de classe \mathbb{C}^{∞} sur [0, 1] comme composée de telles applications.
 - Soit $m \in \mathbb{N}$. On a clairement $\forall t \in [0,1], f_1(t) = f(t), d$ 'où $f_1^{(m)}(0) = f^{(m)}(0)$.
 - Soit $m \in \mathbb{N}$, soit $q \in \{2, ..., N\}$. Alors clairement $\forall t \in [0, 1], f_q^{(m)}(t) = f^{(m)}(t + q - 1), \text{ d'où } f_q^{(m)}(0) = f^{(m)}(q - 1) = f^{(m)}(1 + q - 1 + 1) \text{ et donc}$ $\boxed{f_q^{(m)}(0) = f_{q-1}^{(m)}(1).}$
 - De même, pour $m \in \mathbb{N}$, $f_N^{(m)}(1) = f^{(m)}(1 + N 1)$ et donc $f_N^{(m)}(1) = f^{(m)}(N)$.
- **II-4.3.** Soit $q \in \{1, ..., N\}$. Alors la formule (1) appliquée à f_q fournit :

$$\frac{1}{2} \left(f_q(0) + f_q(1) \right) = \int_0^1 f_q(t) \, \mathrm{d}t + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} \left(f_q^{(2p-1)}(1) - f_q^{(2p-1)}(0) \right) - \int_0^1 \frac{B_{2k}(t)}{(2k)!} f_q^{(2k)}(t) \, \mathrm{d}t.$$

Compte tenu de la définition de f_q et de II-4.2, on obtient donc :

$$\frac{1}{2} \left(f(q-1) + f(q) \right) = \int_{q-1}^{q} f(u) \, \mathrm{d}u + \sum_{n=1}^{k} \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(q) - f^{(2p-1)}(q-1) \right) - \int_{q-1}^{q} \frac{B_{2k}(u-q+1)}{(2k)!} f^{(2k)}(u) \, \mathrm{d}u.$$

(on a effectué le changement de variable u=t+q-1 dans chacune des deux intégrales)

Pour tout $t \in [q-1, q[$, on a de plus E(t) = q-1, d'où $\forall t \in [q-1, q[$, $B_{2k}(t-q+1) = \mathcal{D}_{2k}(t)$.

Écrivons alors chacune de ces formules pour $1 \leq q \leq N$:

$$\frac{1}{2} (f(0) + f(1)) = \int_0^1 f(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(1) - f^{(2p-1)}(0)) - \int_0^1 \frac{\mathcal{D}_{2k}(t)}{(2k)!} f^{(2k)}(t) dt$$

$$\frac{1}{2}(f(1) + f(2)) = \int_{1}^{2} f(t) dt + \sum_{p=1}^{k} \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(2) - f^{(2p-1)}(1)) - \int_{1}^{2} \frac{\mathcal{D}_{2k}(t)}{(2k)!} f^{(2k)}(t) dt$$

i i i i

$$\frac{1}{2} \left(f(N-1) + f(N) \right) = \int_{N-1}^{N} f(t) dt + \sum_{p=1}^{k} \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(N) - f^{(2p-1)}(N-1) \right) - \int_{N-1}^{N} \frac{\mathcal{D}_{2k}(t)}{(2k)!} f^{(2k)}(t) dt$$

En additionnant toutes ces relations, et en utilisant la relation de Chasles, on obtient bien:

$$\frac{1}{2}f(0) + \sum_{q=1}^{N-1} f(q) + \frac{1}{2}f(N) = \int_0^N f(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(N) - f^{(2p-1)}(0) \right) - \int_0^N \frac{\mathcal{D}_{2k}(t)}{(2k)!} f^{(2k)}(t) dt.$$

TROISIÈME PARTIE

III-1. g est clairement de classe \mathcal{C}^{∞} sur [0,N] comme composée de telles fonctions. De plus, par récurrence immédiate, on a :

$$\forall m \in \mathbb{N}, \forall t \in [0, N], g^{(m)}(t) = h^m f^{(m)}(a + th).$$

Appliquons alors la formule (2) à g:

$$\frac{1}{2}g(0) + \sum_{q=1}^{N-1}g(q) + \frac{1}{2}g(N) = \int_0^N g(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} \left(g^{(2p-1)}(N) - g^{(2p-1)}(0)\right) - \int_0^N \frac{\mathcal{D}_{2k}(t)}{(2k)!} g^{(2k)}(t) dt.$$

On exploite alors la formule donnant les dérivées successives de g, et on multiplie le tout par h:

$$h\left[\frac{1}{2}f(a) + \sum_{q=1}^{N-1} f(a+qh) + \frac{1}{2}f(b)\right] = h\int_0^N f(a+th) dt + h\sum_{p=1}^k h^{2p-1} \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(b) - f^{(2p-1)}(a)\right) - h\int_0^N \frac{\mathcal{D}_{2k}(t)}{(2k)!} h^{2k} f^{(2k)}(a+ht) dt$$

On reconnaît dans le membre de gauche le terme $T_f(h)$, et on effectue dans chaque intégrale du membre de droite le changement de variable u = a + th, du = h dt, on obtient bien ainsi :

$$T_f(h) = \int_a^b f(u) \, \mathrm{d}u + \sum_{p=1}^k h^{2p} \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(b) - f^{(2p-1)}(a) \right) - h^{2k} \int_a^b \frac{\mathcal{D}_{2k} \left(\frac{u-a}{h} \right)}{(2k)!} f^{(2k)}(u) \, \mathrm{d}u$$

III-2. L'application B_{2k} est continue sur [0,1] qui est compact, donc est bornée sur [0,1].

Par suite, $\exists M \in \mathbb{R}^+$ tel que $\forall t \in [0,1], |B_{2k}(t)| \leq M$.

Or, pour tout $t \in \mathbb{R}$, $t - E(t) \in [0, 1]$, donc $\forall t \in \mathbb{R}$, $|\mathcal{D}_{2k}(t)| \leq M$.

On en déduit
$$\left| \int_a^b \frac{\mathcal{D}_{2k}\left(\frac{u-a}{h}\right)}{(2k)!} f^{(2k)}(u) \, \mathrm{d}u \right| \leqslant \int_a^b \frac{\left| \mathcal{D}_{2k}\left(\frac{u-a}{h}\right) \right|}{(2k)!} \cdot \left| f^{(2k)}(u) \right| \, \mathrm{d}u \leqslant \underbrace{\frac{M}{(2k)!} \int_a^b \left| f^{(2k)}(u) \right| \, \mathrm{d}u}_{\text{constante indépendante de }h}.$$

On a donc
$$h^{2k} \int_a^b \frac{\mathcal{D}_{2k} \left(\frac{u-a}{h} \right)}{(2k)!} f^{(2k)}(u) du = O(h^{2k}).$$

En posant, pour $p \in \{1, \dots, k\}$, $d_p = \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(b) - f^{(2p-1)}(a))$, on obtient donc bien :

$$T_f(h) = \int_a^b f(t) dt + \sum_{p=1}^{k-1} d_p h^{2p} + O(h^{2k}).$$

III-3.1. D'après III-2 et I-2.1, on a clairement $\lim_{t\to 0} A(t) = \int_a^b f(t) dt$.

III-3.2. On est dans un cas similaire à celui étudié au I-6.1, la fonction T_f jouant le rôle de \widetilde{G} . On obtient donc de la même façon r=4 et r=4

III-4.1. Pour $p \in \mathbb{N}$, on a d'après ce qui précède : $A_{p,0} = A(r^{-p}t_0) = T_f\left(\frac{h}{2^p}\right)$ et donc $A_{p,0} = T_f(h_p)$.

On obtient donc, pour $p \in \mathbb{N}^*$, $A_{p-1,0} = T_f(h_{p-1}) = T_f(2h_p)$.

III-4.2. Soit $p \in \mathbb{N}^*$. Alors $A_{p,0} = T_f(h_p) = h_p \left[\frac{1}{2} f(a) + \sum_{q=1}^{2^p - 1} f(a + qh_p) + \frac{1}{2} f(b) \right]$.

On décompose la somme en deux : d'un côté les indices q pairs $(q = 2r \text{ avec } 1 \le r \le 2^{p-1} - 1)$, de l'autre les indices q impairs $(q = 2r + 1 \text{ avec } 0 \le r \le 2^{p-1} - 1)$:

$$A_{p,0} = h_p \left[\frac{1}{2} f(a) + \sum_{r=1}^{2^{p-1}-1} f(a+2rh_p) + \sum_{r=0}^{2^{p-1}-1} f(a+(2r+1)h_p) + \frac{1}{2} f(b) \right].$$

On remarque que, dans la première somme, chaque terme $f(a+2rh_p)$ est égal à $f(a+rh_{p-1})$, et de plus la deuxième somme est égale à $\frac{A'_{p,0}}{h^p}$.

On a donc finalement :
$$A_{p,0} = \frac{1}{2}A_{p-1,0} + A'_{p,0}.$$

L'intérêt de cette formule est de permettre le calcul de $A_{p,0}$ en réutilisant la valeur de $A_{p-1,0}$, donc en économisant une partie des calculs. Plus précisément, l'application directe ⁽¹⁾ de la formule initiale donnant $A_{p,0}$ oblige à calculer $2^p - 1$ termes de la forme $f(a + qh_p)$, alors que $A'_{p,0}$ ne fournit que 2^{p-1} tels termes. Le nombre de termes à calculer est donc divisé par deux. ⁽²⁾

III-5.1. Soit $t \in \mathbb{R}^*$. La formule de Taylor, reste intégral fournit pour la fonction $x \longmapsto \sin x$ sur l'intervalle [0,t]:

$$\sin t = t \int_0^1 \cos(tx) \, \mathrm{d}x$$

Par suite, on a $\forall t \in \mathbb{R}^*$, $f(t) = \int_0^1 \cos(tx) \, dx$, et on remarque que cette formule reste valable pour t = 0.

L'application $[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ étant clairement de classe \mathbb{C}^{∞} sur $[0,1] \times \mathbb{R}$, d'après le théorème relatif à la $(x,t) \longmapsto \cos(xt)$

dérivation des intégrales dépendant d'un paramètre, on en déduit que $f \in \mathcal{C}^{\infty}([0,1],\mathbb{R})$.

III-5.2. On calcule les sept valeurs dans l'ordre suivant : $A_{0,0}$, $A'_{1,0}$, $A_{1,0}$, $A'_{2,0}$, $A_{2,0}$, $A'_{3,0}$ et $A_{3,0}$.

En effet, la formule du III-4.2 $(A_{p,0} = \frac{1}{2}A_{p-1,0} + A'_{p,0})$ permet d'accélérer les calculs.

On obtient ainsi :
$$A_{0,0} \sim 1.570 \; ; \; A_{1,0} \sim 1,785 \; ; \; A_{2,1} \sim 1,835 \; ; \; A_{3,0} \sim 1,847 \; \text{et} \; A_{1,0}' = 1 \; ; \; A_{2,0}' \sim 0,942 \; ; \; A_{3,0}' \sim 0.930$$

III-5.3. On obtient les valeurs suivantes :

$A_{0,0} \sim 1,570796327$			
$A_{1,0} \sim 1,785398163$	$A_{1,1} \sim 1,856932109$		
$A_{2,0} \sim 1,835508123$	$A_{2,1} \sim 1,852211443$	$A_{2,2} \sim 1,851896732$	
$A_{3,0} \sim 1,847842307$	$A_{3,1} \sim 1,851953701$	$A_{3,2} \sim 1,851936518$	$A_{3,3} \sim 1,85193715$

De même qu'au **I-7.2**, la meilleure approximation est à priori $A_{3,3}$.

III-6. Si la fonction f est périodique de période b-a, alors il en est de même de chacune de ses dérivées successives, et donc la formule (4) s'écrit : $T_f(h) = \int_a^b f(t) \, \mathrm{d}t + O(h^{2k})$. Le procédé d'extrapolation de Richardson ayant pour but de « supprimer » les termes de la forme $a_p h^p$ apparaissant dans le développement limité, il est donc inutile de l'appliquer ici. Plus précisément, on obtiendra, pour $1 \le q \le p$: $A_{p,q} = A_{p,0}$. En bref, la méthode est dans ce cas un moyen assez sophistiqué de consommer de la mémoire et du temps de calcul informatique... (4)

⁽¹⁾ Meuh!

⁽²⁾ Cette formule sera donc particulièrement intéressante dans un contexte informatique.

⁽³⁾ Maple trouve l'approximation : 1,851937052. Nous avons donc 6 décimales justes, ce qui n'est pas mal.

⁽⁴⁾ Mais dans le style, Windows NT fait beaucoup mieux!