

 $M^1$ 



are identical or different and are a hydrogen atom, R<sup>1</sup> and R<sup>2</sup> a  $C_1-C_{10}$ -alkyl group, a  $C_1-C_{10}$ -alkoxy group, a  $C_6-C_{10}$ aryl group, a  $C_6$ - $C_{10}$ -aryloxy group, a  $C_2$ - $C_{10}$ -alkenyl group, a  $|C_7-C_{40}$ -arylalkyl group, a  $C_7-C_{40}$ -alkylaryl group, a  $c_8$ - $c_{40}$ -arylalkenyl group or a halogen atom, R3 and R4 are identical or different and are a hydrogen atom, a halogen atom, a halogen atom, a  $C_1$ - $C_{10}$ -alkyl group, which is optionally halogenated, a  $C_6$ - $C_{10}$ -aryl group, an  $-NR_2^{15}$ ,  $-SR_2^{15}$ ,  $-OSiR_3^{15}$ ,  $-SiR_3^{15}$  or  $-PR_2^{15}$ 

r cal in which  $R^{15}$  is a halo atom, a  $C_1-C_{10}$ -alkyl group or a  $C_6-C_{10}$ -aryl group,

 $R^5$  and  $R^6$  are identical or different and are as defined for  $R^3$  and  $R^4$ , with the proviso that  $R^5$  and  $R^6$  are not hydrogen,

 $R^7$  is

=BR<sup>11</sup>, =A1R<sup>11</sup>, -Ge<sup>-</sup>, -Sp<sup>-</sup>, -O<sup>-</sup>, -S<sup>-</sup>, =SO, =SO<sub>2</sub>, =NR<sup>11</sup>, =CO, =PR<sup>11</sup> or =P(O)R<sup>11</sup>,

where

 $R^{11}$ ,  $R^{12}$  and  $R^{13}$  are identical or different and are a hydrogen atom, a halogen atom, a  $C_1$ - $C_{10}$ -alkyl group, a  $C_1$ - $C_{10}$ -fluoroalkyl group, a  $C_6$ - $C_{10}$ -aryl group, a  $C_7$ - $C_{10}$ -alkoxy group, a  $C_7$ - $C_{10}$ -alkenyl group, a  $C_7$ - $C_{40}$ -arylalkyl group, a  $C_8$ - $C_{40}$ -arylalkenyl group or a  $C_7$ - $C_{40}$ -alkylaryl group, or a pair of substituents  $R^{11}$  and  $R^{12}$  or  $R^{11}$  and  $R^{13}$  in each case with the atoms connecting them, form a ring, is silicon, germanium or tin,

 $M^2$ 

 $R^8$  and  $R^9$  are identical or different and are as defined for  $R^{11}$ 

m and n a identical or different are zero, 1 or 2, m plus n being zero, 1 or 2, [and] the radicals R<sup>10</sup> are identical or different and are as defined

for  $R^{11}$ ,  $R^{12}$  and  $R^{13}$ 

rings A are saturated or aromatic.

p is 8, when rings A are saturated, and

is 4, when rings A are aromatic.



M¹ is a metal from group IVb. Vb or VIb of the Periodic Table,

R¹ and R² are identical or different and are a hydrogen atom,

a C₁-C₁₀-alkyl group, a C₁-C₁₀-alkoxy group, a C₀-C₁₀-aryl group,

a C₀-C₁₀-aryloxy group, a C₂-C₁₀-alkenyl group, a C₁-C₄₀-arylalkyl

group, a C₁-C₄₀-alkylaryl group, a C₁-C₄₀-arylalkenyl group or a

halogen atom,

 $R^3$  and  $R^4$  are identical or different and are a hydrogen atom, a halogen atom a  $C_1$ - $C_{10}$ -alkyl group, which is optionally halogenated, a  $C_6$ - $C_{10}$ -aryl group, an  $-NR_2^{15}$ ,  $-SR^{15}$ ,  $-OSiR_3^{15}$ ,  $-SiR_3^{15}$  or  $PR_2^{15}$  radical in which  $R^{15}$  is a halogen atom, a  $C_1$ - $C_{10}$ -alkyl group or a  $C_6$ - $C_{10}$ -aryl group.

R5 and R6 are identical or diff rent and are as defined for R3

and R4, with the proviso that R5 and R e not both hydrogen,

 $=BR^{11}$ ,  $=A1R^{11}$ ,  $-Ge^{-}$ ,  $-Sn^{-}$ ,  $-O^{-}$ ,  $-S^{-}$ ,  $=SO_{2}$ ,  $=NR^{11}$ ,  $=CO_{1}$ ,  $=PR^{11}$ or  $=P(O)R^{11}$ ,

where

 $R^{11}$ ,  $R^{12}$  and  $R^{13}$  are identical or different and are a hydrogen atom, a halogen atom, a  $C_1$ - $C_{10}$ -alkyl group, a  $C_1$ - $C_{10}$ -fluoroalkyl group, a  $C_6$ - $C_{10}$ -aryl group, a  $C_7$ - $C_{10}$ -alkenyl group, a  $C_7$ - $C_{40}$ -arylalkyl group, a  $C_9$ - $C_{40}$ -arylalkenyl group or a  $C_7$ - $C_{40}$ -alkylaryl group, or a pair of substituents  $R^{11}$  and  $R^{12}$  or  $R^{11}$  and  $R^{13}$ , in each case with the atoms connecting them, form a ring,

M<sup>2</sup> is silicon, germanium or tin.

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2,

the radicals R<sup>10</sup> are the same or different and are as defined for R<sup>11</sup>, R<sup>12</sup> and R<sup>13</sup>.

M' is titanium, zirconium, harnium, vanadium, niobium, or tantalum,

R' and R' are identical or different and are methyl or halogen,

R' and R' are hydrogen,

R' and R' are identical or different and are methyl, ethyl, or

R' is a radical of the formula

trifluoromethyl,

R<sup>11</sup> | R<sup>11</sup> | Or -M"-

where M" is silicon or germanium, and

R<sup>8</sup> and R<sup>9</sup> are identical or different and are hydrogen or C<sub>1</sub>-C<sub>10</sub>-alkyl.

4

1

18. A compound of the formula I



in which

M¹ is a metal from group IVb, Vb or VIb of the Periodic Table,  $R^1$  and  $R^2$  are identical or different and are a hydrogen atom, a  $C_1$ - $C_{10}$ -alkyl group, a  $C_1$ - $C_{10}$ -alkoxy group, a  $C_4$ - $C_{10}$ -aryl group, a  $C_5$ - $C_{10}$ -aryloxy group, a  $C_7$ - $C_{40}$ -alkenyl group, a  $C_7$ - $C_{40}$ -alkylaryl group, a  $C_7$ - $C_{40}$ -arylalkenyl group or a halogen atom,

 $R^3$  and  $R^4$  are identical or different and are a hydrogen atom, a halogen atom, a  $C_1$ - $C_{10}$ -alkyl group, which is optionally halogenated, a  $C_6$ - $C_{10}$ -aryl group, an  $-NR_2^{15}$ ,  $-SR^{15}$ ,  $-OSiR_3^{15}$ ,  $-SiR_3^{15}$  or  $PR_2^{15}$  radical in which  $R^{15}$  is a halogen atom, a  $C_1$ - $C_{10}$ -alkyl group or a  $C_6$ - $C_{10}$ -aryl group,

R<sup>5</sup> and R<sup>6</sup> ar dentical or different a re as defined for R<sup>3</sup> and R<sup>4</sup>, with the proviso that R<sup>5</sup> and R<sup>6</sup> are not both hydrogen,

R<sup>7</sup> is

R<sup>11</sup> R<sup>11</sup> R<sup>11</sup> R<sup>11</sup> R<sup>12</sup> R<sup>12</sup> R<sup>12</sup> R<sup>12</sup>

R<sup>11</sup> R<sup>11</sup> R<sup>11</sup> R<sup>12</sup> R<sup>12</sup> R<sup>12</sup> R<sup>12</sup>

 $=BR^{11}, =A1R^{11}, \qquad e^{-}, -Sn^{-}, -O^{-}, -S^{-}, =SO, \qquad O_{2}, =NR^{11}, =CO, =PR^{11}, \\ or =P(O)R^{11}, \qquad e^{-}, -Sn^{-}, -O^{-}, -S^{-}, =SO, \qquad O_{2}, =NR^{11}, =CO, =PR^{11}, \\ or =P(O)R^{11}, \qquad e^{-}, -Sn^{-}, -O^{-}, -S^{-}, =SO, \qquad O_{2}, =NR^{11}, =CO, =PR^{11}, \\ or =P(O)R^{11}, \qquad e^{-}, -Sn^{-}, -O^{-}, -S^{-}, =SO, \qquad O_{2}, =NR^{11}, =CO, =PR^{11}, \\ or =P(O)R^{11}, \qquad e^{-}, -Sn^{-}, -O^{-}, -S^{-}, =SO, \qquad O_{2}, =NR^{11}, =CO, =PR^{11}, \\ or =P(O)R^{11}, \qquad e^{-}, -Sn^{-}, -S^{-}, =SO, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \\ or =P(O)R^{11}, \qquad e^{-}, -Sn^{-}, -S^{-}, =SO, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \\ or =P(O)R^{11}, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \\ or =P(O)R^{11}, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \\ or =P(O)R^{11}, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \qquad O_{2}, =SO, \\ or =P(O)R^{11}, \qquad O_{2}, =SO, \\ or =P(O)R^{11}, \qquad O_{2}, =SO, \\ or =P(O)R^{11}, \qquad O_{2}, =SO, \qquad O_{2},$ 

## <u>where</u>

 $R^{11}$ ,  $R^{12}$  and  $R^{13}$  are identical or different and are a hydrogen atom, a halogen atom, a  $C_1$ - $C_0$ -alkyl group, a  $C_1$ - $C_{10}$ -fluoroalkyl group, a  $C_6$ - $C_{10}$ -aryl group, a  $C_7$ - $C_{10}$ -alkenyl group, a  $C_7$ - $C_{40}$ -arylalkyl group, a  $C_8$ - $C_{40}$ -arylalkenyl group or a  $C_7$ - $C_{40}$ -alkylaryl group, or a pair of substituents  $R^{11}$  and  $R^{12}$  or  $R^{11}$  and  $R^{13}$ , in each case with the atoms connecting them, form a ring,

M2 is silicon, germanium or tin,

R<sup>8</sup> and R<sup>9</sup> are identical or different and are as defined for R<sup>11</sup>, m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2.

p is a number from 1 to 4, and

the radicals  $R^{10}$  are the same or different and are a halogen atom, a  $C_1$ - $C_{10}$ -alkyl group, a  $C_1$ - $C_{10}$ -fluoroalkyl group, a  $C_6$ - $C_{10}$ -aryl group, a  $C_7$ - $C_{10}$ -alkenyl group, a  $C_7$ - $C_{40}$ -arylalkyl group, a  $C_8$ - $C_{40}$ -arylalkenyl group or a  $C_7$ - $C_{40}$ -alkylaryl group, or a pair of substituents  $R^{10}$ , with the atoms connecting them, form a ring.

92497

Add 4