# A FIRST COURSE

IN

# **NUMERICAL ANALYSIS**

# A FIRST COURSE

IN

# **NUMERICAL ANALYSIS**

# **MAT4001 Notebook**

Prof. Yutian Li

The Chinese University of Hongkong, Shenzhen

# Contents

| Ackn  | owledgments                        | vii |
|-------|------------------------------------|-----|
| Notat | tions                              | ix  |
| 1     | Week1                              | 1   |
| 1.1   | Wednesday                          | 1   |
| 1.1.1 | Introduction to Imaginary System   | 1   |
| 1.1.2 | Algebraic and geometric properties | 3   |
| 1.1.3 | Polar and exponential forms        | 5   |
| 1.2   | Powers and Roots                   | 9   |
| 2     | Week2                              | 13  |
| 2.1   | Error                              | 13  |
| 2.1.1 | Bisection                          | 14  |
| 3     | Week3                              | 23  |
| 3.1   | Tuesday                            | 23  |
| 3 1 1 | Reviewing                          | 24  |

# Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

# Notations and Conventions

 $\mathbb{R}^n$ *n*-dimensional real space  $\mathbb{C}^n$ *n*-dimensional complex space  $\mathbb{R}^{m \times n}$ set of all  $m \times n$  real-valued matrices  $\mathbb{C}^{m \times n}$ set of all  $m \times n$  complex-valued matrices *i*th entry of column vector  $\boldsymbol{x}$  $x_i$ (i,j)th entry of matrix  $\boldsymbol{A}$  $a_{ij}$ *i*th column of matrix *A*  $\boldsymbol{a}_i$  $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all  $n \times n$  real symmetric matrices, i.e.,  $\mathbf{A} \in \mathbb{R}^{n \times n}$  and  $a_{ij} = a_{ji}$  $\mathbb{S}^n$ for all *i*, *j*  $\mathbb{H}^n$ set of all  $n \times n$  complex Hermitian matrices, i.e.,  $\mathbf{A} \in \mathbb{C}^{n \times n}$  and  $\bar{a}_{ij} = a_{ji}$  for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of  $\boldsymbol{A}$ , i.e,  $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$  means  $b_{ji} = a_{ij}$  for all i,jHermitian transpose of  $\boldsymbol{A}$ , i.e,  $\boldsymbol{B} = \boldsymbol{A}^{H}$  means  $b_{ji} = \bar{a}_{ij}$  for all i,j $A^{\mathrm{H}}$ trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry  $e_i$ C(A)the column space of  $\boldsymbol{A}$  $\mathcal{R}(\boldsymbol{A})$ the row space of  $\boldsymbol{A}$  $\mathcal{N}(\boldsymbol{A})$ the null space of  $\boldsymbol{A}$ 

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$  the projection of  $\mathbf{A}$  onto the set  $\mathcal{M}$ 

# **Chapter 3**

## Week3

## 3.1. Tuesday

**Theorem 3.1** — Optimality Condition.

- primal feasible:  $Ax = b, x \ge 0$
- Dual feasible:  $\mathbf{A}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}$
- Complementarity:  $\mathbf{x} \circ \mathbf{s} = \mathbf{0}$ , i.e.,  $x_i \cdot (c_i \mathbf{A}_i^T \mathbf{y}) = \mathbf{0}$  for each i.

### (Primal) Simplex method:

- 1. Always keep primal feasibility:
- 2. Always keep complementarity:

Define  $\pmb{y}=(\pmb{A}_B^{-1})^{\rm T}\pmb{c}_B$  as the dual solution. The reduced costs vector is  $\pmb{c}^{\rm T}-\pmb{c}_B^{\rm T}\pmb{A}_B^{-1}\pmb{A}=\pmb{c}-\pmb{y}^{\rm T}\pmb{A}$ 

3. Not necessarily keep dual feasible until get the optimal solution, i.e., it will seeks solution that is dual feasible.

**Dual Simplex method**. Dual Simplex method remains both dual feasibility and complementarity conditions in each iteration but seeks primal feasibility.

Cases for applying dual simplex method:

- There is a dual BFS available but no primal BFS available.
- **b** is changed by a large amount or a constraint isadded, i.e., lose the primal feasible solution.

Interior Point Method. Consider the relaxed version of optimality condition:

$$m{A}m{x} = m{b}, m{x} \geq 0$$
  $m{A}^{ ext{T}}m{y} + m{s} = m{c}, m{s} \geq 0$   $x_i \cdot s_i = \mu, \quad orall i, ext{small } \mu_i > 0$ 

Keep decreasing  $\mu$  and finally get the solution to LP.



- The optimal solution output from interior point method may not necessarily BFS. If the optimal solution is unique, it is BFS.
- Initial solution for the interior point method can be found by solving the auxiliary problem.
- The complexity for interior point method is  $O(n^{3.5})$
- The interior point method gives stable running time compared with simplex method.
- Interior point method always find the optimal solution with maximum possible number of non-zeros.
- Interior point method finds high-rank solution (the center of all optimal solutions); but the simplex method finds the low-rank solution.

### 3.1.1. Reviewing

Linear optimization formulation. Standard Form LP Transformation

min 
$$c^{\mathrm{T}}x$$
 such that  $Ax = b$   $x \ge 0$ 

Maximin / minimax objective

Absolute values in objective function or constraints.

**Theorem 3.2** The BFS for standard LP is equivalent to extreme point.

**Theorem 3.3** If there is a feasible solution, then there is a basic feasible solution; If there is a optimal solution, then there is a basic feasible optimal solution.

### Care about corollary

### Simplex method.

- 1. Understand how simplex method works, and cases for unbounded, infeasible
- 2. Apply simplex method to solve small LPs
- 3. Read and interpret simplex tableau (make use of it to avoid inverse calculation)
- 4. Apply two-phase method

#### Duality Theory.

- 1. Be able to constrauct the dual for any LP.
- 2. Know the (strong/weak) duality theorems and apply them in different situations.
- 3. Be able to write down the complentarity conditions and apply them

### Sensitivity Analysis. Related to duality theory;

### Complexity Theory and interior method. Complexity of LP:

- 1. No guarntee of simplex method to achieve polynomial time
- 2. Interior point can achieve polynomial time

Properties of simplex method