Tweets Sentiment Analysis

Kuo-Wei Ho¹, Hao-Chien Wang²

 $^{1}\mathsf{NTUEE}$

 $^2\mathsf{NTUPhys}$

Data Science Programing, July 2019

Instructor: 蔡芸琤

TA: 王冠人, 萬俊彥, 何承諭

Table of Contents

- Problem
- 2 Key tools
- Steps
- 4 Results
- 5 Difficulties encountered

Problem

Given a set of data containing 1,600,000 tweets and the sentiment of each tweets. Create a model that can analyze sentiment of new tweets.

Table: Data example

sentiment	Post ID	User ID	tweets
0	1467814192	Ljelli3166	blagh class at 8 tomorrow
0	1467821455	CiaraRenee	I need a hug
4	1677796507	FoodAllergyBuzz	Ootibml Thx for the tweet!
4	1677796519	lakido	SunshineI LOVE this weather!!!

0: Negative

4: Positive

Data: https://www.kaggle.com/kazanova/sentiment140

Github link: https://github.com/b07901135/2019dsp-summer-project

Key Tools

- Vectorizing text: GloVe (Global Vectors for Word Representation by Standford University.)
- Neural network: RNN (Recurrent Neural Network)

Steps: Overview

- Olean the data: remove non-UTF8 symbols, numbers and URLs.
- Combine all tweets into one string and tokenize.
- Feed the tokens to GloVe to generate word vectors.
- Tokenize all tweets and search each words in the vectors to transform it into a list of matrices.
- Train the RNN model with the list of metrices.

Steps: Overview

Steps: Data Cleaning and Vectorization

- Replace URLs as "url"
- Replace name tags (e.g. @allen1234) as "names"
- Remove other non-UTF8 characters (stri_enc_toutf8() doesn't help)
- Combine tweets into a string, tokenize and remove stopwords.
- Generate TCM, feed it to the neural network to fit the model.
- Generate word vectors (Dim = 200).

Table: Word vectors

"peanuts"	-0.55638	0.04843	-0.14483	-0.47563	
"permission"	0.15835	0.06962	0.04398	-0.27275	
"beast"	-0.20607	0.16818	-0.17708	-0.26557	
"eva"	0.32598	0.04554	-0.72075	-0.04571	
"pounding"	0.67231	0.00862	-0.07067	-0.15407	

Steps: Tweets Vectorization

- Discard data other than sentiment and tweets text
- Tokenize tweets and lookup the tokens in the word vectors.
- Discard tweets containing more than 30 tokens so that the matrices will not contain too much zeros.
- Due to the limitation of RAM size, we are only able to use 50,000 tweets data.

Table: Data manipulation

	sentiment	tweets				
	0 blagh class at 8 tomorrow					
	0 I need a hug				\Rightarrow	
	4 @otibml Thx for the tweet!					
	4 Sunshine! I LOVE this weather!!!					
sentiment	tweets			sentime	nt	tweets
0	blagh class at num tomorrow			0		${\bf A}_{30 \times 200}$
0	I need a hug		\Rightarrow	0		$\mathbf{B}_{30 \times 200}$
4	name Thx for the tweet			4		$C_{30 \times 200}$
4	Sunshine! I	LOVE this weather!!!		4		$D_{30 \times 200}$

8/12

Steps: RNN Fitting

Result

• The best result we got is a precision of 78.68% (5000 testing data).

Figure: Training process.

Difficulties Encountered

- Hardware limitations (Ram size, CPU/GPU speed): Kill X session, gc()/remove()
- Package problems (Tensorflow)
- Oarelessness on manipulating data, leading to incorrect results.
- Large data size causing difficulties checking results and big waste of time.

Dark Magic

- save()/load()
- pbapply
- gc()
- rm()
- abind()
- melt()