MATH 151A - Numerical Methods - Homework 4

Darren Tsang, Discussion 1B

Produced on Friday, Jul. 24 2020 @ 09:30:09 PM

Question 1

There are two different 3-point formulas:

$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0), \text{ where } \xi_0 \in [x_0, x_0 + 2h]$$
 (Endpoint)

$$f'(x_0) = \frac{1}{2h}[f(x_0+h) - f(x_0-h)] - \frac{h^2}{6}f^{(3)}(\xi_1), \text{ where } \xi_1 \in [x_0-h,x_0+h] \tag{Midpoint}$$

Part A

For x = -.3, we will use the endpoint formula:

$$f'(-.3) \approx \frac{1}{2(.1)}[-3f(-.3) + 4f(-.2) - f(-.1)] = \frac{1}{.2}[-3(-.27652) + 4(-.25074) - (-.16134)] = -.0603$$

For x = -.2, we will use the midpoint formula:

$$f'(-.2) \approx \frac{1}{2(.1)}[f(-.1) - f(-.3)] = \frac{1}{.2}[-.16134 - (-.27652)] = .5759$$

For x = -.1, we will use the midpoint formula:

$$f'(-.1) \approx \frac{1}{2(.1)}[f(0) - f(-.2)] = \frac{1}{.2}[0 - (-.25074)] = 1.2537$$

For x = 0, we will use the endpoint formula:

$$f'(0) \approx \frac{1}{2(-.1)}[-3f(0) + 4f(-.1) - f(-.2)] = \frac{1}{-.2}[-3(0) + 4(-.16134) - (-.25074)] = 1.9731$$

Part B

We note that:

$$f'(x) = 2(\sin(2x) + e^{2x})$$

We also note that:

$$f^{(3)} = -8(\sin(2x) - e^{2x})$$

is decreasing over the interval [-.3, 0].

At x = -.3, the actual value is:

$$f'(-.3) = 2(\sin(2(-.3)) + e^{2(-.3)}) = -.031662$$

This means that the actual error is:

$$Error = |-.0603 - (-.031662)| = .028638$$

The bound for the error is:

$$\mathrm{Error} \leq \frac{.1^2}{3} f^{(3)}(-.3) = .029692$$

At x = -.2, the actual value is:

$$f'(-.2) = 2(\sin(2(-.2)) + e^{2(-.2)}) = .561803$$

This means that the actual error is:

$$Error = |.5759 - .561803| = .014097$$

The bound for the error is:

Error
$$\leq \frac{.1^2}{6} f^{(3)}(-.3) = .014846$$

At $\mathbf{x} = -.1$, the actual value is:

$$f'(-.1) = 2(\sin(2(-.1)) + e^{2(-.1)}) = 1.240123$$

This means that the actual error is:

$$Error = |1.2537 - 1.240123| = .013577$$

The bound for the error is:

$$\mathrm{Error} \leq \frac{.1^2}{6} f^{(3)}(-.2) = .014130$$

At $\mathbf{x} = \mathbf{0}$, the actual value is:

$$f'(0) = 2(\sin(2(0)) + e^{2(0)}) = 2$$

This means that the actual error is:

$$Error = |1.9731 - 2| = .026900$$

The bound for the error is:

$$\mathrm{Error} \leq \frac{.1^2}{3} f^{(3)}(-.2) = .028260$$

Organized in a table:

x	Approximation of $f'(x)$	Actual Value of $f'(x)$	Actual Error	Error Bound
3	0603	031662	.028638	.029692
2	.5759	.561803	.014097	.014846
1	1.2537	1.240123	.013577	.014130
0	1.9731	2	.026900	.028260

As we can see from the table, the actual error is less than the error bound for all points, which is to be expected.

The second derivative midpoint formula is:

$$f''(x_0) = \frac{1}{h^2}[f(x_0-h) - 2f(x_0) + f(x_0+h)] - \frac{h^2}{12}f^{(4)}(\xi), \text{ where } x_0-h < \xi < x_0+h$$

Using h = .1:

$$f''(1.3) \approx \frac{1}{12}[f(1.2) - 2f(1.3) + f(1.4)] = \frac{1}{12}[11.59006 - 2(14.04276) + 16.86187] = 36.6410$$

Using h = .01:

$$f''(1.3) \approx \frac{1}{.01^2} [f(1.29) - 2f(1.3) + f(1.31)] = \frac{1}{.01^2} [13.78176 - 2(14.04276) + 14.30741] = 36.5000$$

The second derivative of $f(x) = 3xe^x - \cos(x)$ is:

$$f''(x) = \cos(x) + (3x+6)e^x$$

At x = 1.3:

$$f''(1.3) = \cos(1.3) + (3(1.3) + 6)e^{1.3} = 36.5935$$

Using h = .1, the absolute error is:

$$Error = |36.5935 - 36.6410| = .0475$$

Using h = .01, the absolute error is:

$$Error = |36.5935 - 36.5000| = .0935$$

We can see that when using the larger h, the approximation is closer to the actual value of f''(1.3), which is surprising.

Part A

We are given the following:

$$f'(x_0) = \frac{1}{h}[f(x_0 + h) - f(x_0)] - \frac{h}{2}f''(x_0) - \frac{h^2}{6}f'''(x_0) + O(h^3) \tag{1}$$

We set h = 2h in Equation (1):

$$f'(x_0) = \frac{1}{2h}[f(x_0 + 2h) - f(x_0)] - hf''(x_0) - \frac{2h^2}{3}f'''(x_0) + O(h^3) \tag{2}$$

Then, we do 2(1) - (2):

$$f'(x_0) = \frac{2}{h}[f(x_0+h) - f(x_0)] - \frac{h^2}{3}f'''(x_0) - \frac{1}{2h}[f(x_0+2h) - f(x_0)] + \frac{2h^2}{3}f'''(x_0) + O(h^3)$$

We can combine like terms:

$$f'(x_0) = \frac{2}{h}[f(x_0+h) - f(x_0)] + \frac{h^2}{3}f'''(x_0) - \frac{1}{2h}[f(x_0+2h) - f(x_0)] + O(h^3) \tag{3}$$

We set h = 2h in Equation (3):

$$f'(x_0) = \frac{1}{h} [f(x_0 + 2h) - f(x_0)] + \frac{4h^2}{3} f'''(x_0) - \frac{1}{4h} [f(x_0 + 4h) - f(x_0)] + O(h^3) \tag{4}$$

Then, we do 4(3) - (4):

$$3f'(x_0) = \frac{8}{h}[f(x_0+h)-f(x_0)] - \frac{2}{h}[f(x_0+2h)-f(x_0)] - \frac{1}{h}[f(x_0+2h)-f(x_0)] + \frac{1}{4h}[f(x_0+4h)-f(x_0)] + O(h^3)$$

Solving for $f'(x_0)$:

$$f'(x_0) = \frac{8}{3h}[f(x_0+h) - f(x_0)] - \frac{2}{3h}[f(x_0+2h) - f(x_0)] - \frac{1}{3h}[f(x_0+2h) - f(x_0)] + \frac{1}{12h}[f(x_0+4h) - f(x_0)] + O(h^3)$$

Part B

```
derivative_approximation <- function(func, x, h){
    first <- 8/(3*h) * (f(x + h) - f(x))
    second <- 2/(3*h) * (f(x + 2*h) - f(x))
    third <- (f(x + 2*h) - f(x))/(3*h)
    fourth <- (f(x + 4*h) - f(x))/(12*h)

first - second - third + fourth
}

f <- function(x){exp(2*x) - cos(2*x)}
derivative_approximation(f, -.2, .1)</pre>
```

[1] 0.5613143

The error is:

$$\mathrm{Error} = |f'(-.2) - .5613143| = |2(\sin(2*-.2) + e^{2*-.2}) - .5613143| = |.561803 - .561314| = .000489$$

We are given the following function:

$$f(x) = x^2 e^{-x}$$

We calculate the derivatives:

$$f'(x) = -(x-2)xe^{-x}, f''(x) = (x^2-4x+2)e^{-x}, f^{(3)} = -(x^2-6x+6)e^{-x}, f^{(4)} = (x^2-8x+12)e^{-x}$$

Note that the second and fourth order derivative is decreasing over the interval [0,1].

First, we find:

$$\int_0^1 x^2 e^{-x} dx = .160603$$

Using the **Trapezoidal Rule**:

$$\int_0^1 x^2 e^{-x} dx \approx \frac{h}{2} [f(x_0) + f(x_1)] = \frac{1}{2} [(0)^2 e^{-(0)} + (1)^2 e^{-1}] = .183940$$

The bound for the error:

$$\mathrm{Error} = \frac{h^3}{12} f''(\xi) \leq \frac{1^3}{12} (0^2 - 4(0) + 2) e^{-0} = .166667$$

The actual error is:

$$|.160603 - .183940| = .023337$$

Using Simpson's Rule:

$$\int_0^1 x^2 e^{-x} dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] = \frac{.5}{3} [0^2 e^{-0} + 4(.5^2) e^{-.5} + 1^2 e^{-1}] = .162402$$

The bound for the error:

$$\text{Error} = \frac{h^5}{90} f^{(4)}(\xi) \le \frac{.5^5}{90} (0^2 - 8(0) + 12) e^{-0} = .004167$$

The actual error is:

$$|.160603 - .162402| = .001799$$

Using the **Midpoint Rule**, where n = 0:

$$\int_0^1 x^2 e^{-x} dx \approx 2h f(x_0) = 2(.5).5^2 e^{-.5} = .151633$$

The bound for the error:

$$\mathrm{Error} = \frac{h^3}{3} f''(\xi) \leq \frac{.5^3}{3} (0^2 - 4(0) + 2) e^{-0} = .083333$$

The actual error is:

$$|.160603 - .151633| = .008997$$

From the Trapezoidal Rule:

$$\int_0^2 f(x)dx \approx \frac{2}{2}[f(0) + f(2)] = 4 \longrightarrow f(0) + f(2) = 4$$

From Simpson's Rule:

$$\int_0^2 f(x) dx \approx \frac{1}{3} [f(x_0) + 4f(x_1) + f(x_2)] = 2 \longrightarrow f(0) + 4f(1) + f(2) = 6$$

We plug in our equation from the Trapezoidal Rule into our equation from Simpson's Rule:

$$f(0) + 4f(1) + f(2) = f(0) + f(2) + 4f(1) = 4 + 4f(1) = 6 \longrightarrow f(1) = \frac{1}{2}$$