Obliczenia inżynierskie w środowisku MATLAB Numeryczne rozwiązywanie równań różniczkowych i zadania linearyzacji

Paweł Wachel

Zaimplementowane na poprzednich zajęciach techniki numerycznego rozwiązywania równań różniczkowych zastosujemy obecnie w problemie modelowania tzw. wahadła matematycznego. Uzyskane rozwiązania numeryczne porównamy następnie z wynikami analitycznymi.

Rysunek 1: Wahadło matematyczne

Wahadłem matematycznym nazywamy układ przedstawiony na rysunku powyżej, dla którego zakładamy, że: (1) masa m jest punktem materialnym poruszającym się w przestrzeni dwuwymiarowej, (2) nić o długości l jest nierozciągliwa i nie posiada masy, (3) układ umieszczony jest w jednorodnym polu grawitacyjnym, (4) nie występują siły tarcia i oporu powietrza (są pomijalne).

Zgodnie z drugą zasadą dynamiki Newtona, wypadkowa siła F działająca na punkt materialny jest równa ma, gdzie a jest przyspieszeniem punktu. W rozważanym przypadku na punkt m działa siła ciężkości równa mg (gdzie $g\approx 9.81m/s^2$ to przyspieszenie ziemskie). Zawieszenie wahadła sprawia jednak, że istotny jest jedynie ten składnik wektora siły, który jest styczny do trajektorii ruchu. Łatwo zauważyć, że jest to wektor o długości $mg\sin\theta\left(t\right)$ (por. rysunek). Dla danego kąta $\theta\left(t\right)$ droga przebyta przez punkt (od punktu równowagi) jest równa $s=\theta\left(t\right)l$. Zatem $v=\frac{ds}{dt}=\frac{d\theta\left(t\right)}{dt}l$ i wobec tego $a=\frac{dv}{dt}=\frac{d^2\theta\left(t\right)}{dt^2}l$. Łącząc powyższe wielkości zgodnie z zależnością F=ma otrzymujemy

$$-mg\sin\theta(t) = ml\frac{d^{2}\theta(t)}{dt^{2}}.$$
(1)

Zauważamy, że wartość masy m może być wyrugowana z równania i w rezultacie

$$\frac{d^2\theta(t)}{dt^2} + \frac{g}{l}\sin\theta(t) = 0.$$
 (2)

Powyższe równanie jest **nieliniowym** równaniem różniczkowym drugiego rzędu, a jego przybliżone analityczne rozwiązanie łatwo znajdujemy ograniczając rozważania do małych kątów θ . Istotnie, zauważając, że dla małych wartości θ dobrym przybliżeniem funkcji $\sin \theta(t)$ jest $\theta(t)$ dokonujemy **linearyzacji** równania. W rezultacie otrzymujemy

$$\frac{d^2\theta(t)}{dt^2} \approx -\frac{g}{l}\theta(t). \tag{3}$$

Nie trudno sprawdzić, że rozwiązaniem powyższego równania jest funkcja

$$\theta(t) = \theta_0 \cos(\omega t), \tag{4}$$

gdzie θ_0 to amplituda drgań, a pulsacja $\omega = \sqrt{g/l}$ (warunki początkowe to $\theta(0) = \theta_0$ oraz $\frac{d\theta}{dt}(0) = 0$).

WNIOSEK: Dla małych wartości wychyleń $\theta(t)$ okres drgań jest równy $2\pi/\omega = 2\pi/\sqrt{g/l}$, a więc *nie zależy* od amplitudy A (oraz oczywiście nie zależy również od masy m).

Zadania do wykonania:

- 1. Posługując się metodą Eulera (lub inną samodzielnie zaimplementowaną techniką opartą na przybliżaniu ilorazu różnicowego) rozwiązać numerycznie równanie nieliniowe (2) przyjmując małe wartości amplitudy początkowej θ_0 (mniej niż $6^{\circ} \approx 0.1 \text{rad}$). Wykreślić rozwiązanie numeryczne wraz z przybliżonym rozwiązaniem analitycznym (4).
- 2. Badanie powtórzyć dla większych wartości amplitudy początkowej θ_0 i porównać z rozwiązaniem analitycznym (4). Który z otrzymanych przebiegów lepiej obrazuje zachowanie układu?
- 3. Posługując się zlinearyzowanym rozwiązaniem analitycznym (ozn. $\theta^{lin}(t)$) oraz przybliżeniem numerycznym (ozn. $\theta^{num}(t)$) rozwiązania równania nieliniowego przedstawić na wspólnym wykresie $\theta^{lin}(t)$ i $\theta^{num}(t)$ w zależności od czasu t. Badanie powtórzyć dla różnych warunków początkowych kąta θ_0 i przedyskutować uzyskne rezultaty.
- 4. Zadanie dodatkowe: Posługując się zlinearyzowanym rozwiązaniem analitycznym oraz przybliżeniem numerycznym rozwiązania równania nieliniowego, skonstruować animację poklatkową w środowisku MATLAB, obrazującą oba typy ruchu. Symulacje wykonać dla małych oraz dużych wartości amplitudy θ_0 .