

Groupe: ER ROUASSE Ayoub, KONE Shyli, MOREL Robin et THIAW Alioune

Présentation du projet

Service

Sommaire

- Apprentissage supervisé
 - Kppv (k plus proches voisins)
 - MLP (Perceptron multicouche)
 - Discrimination fonctionnelle
 - SVM (Machines à vecteurs de support)
- Apprentissage non supervisé
 - Kmeans
 - DBScan
 - Carte de Kohonen

Service

Home

Apprentissage Supervisé

K-Plus Proche Voisin (KNN)

Principe

- Classe données sur la distance des k voisins les plus proches
- Plusieurs types de distances :
 - Euclidienne

Home

- Manhattan
- Minkowski

Avantages

- Simple
- Efficace sur les petits échantillons

Inconvéniants

• Problème de performance sur les grands échantillons

Perceptron Multicouche (MLP)

Service

Principe

- Réseau de neurones artificiels sur plusieurs couches
- Transforme les données d'entrées
- Fonctions d'activation

Avantages

• Puissant pour modéliser des relations complexes

Inconvéniants

 Nécessite beaucoup de données et de puissance de calcul

Discrimination Fonctionnelle

Service

Principe

• Séparer des classes en trouvant une frontière optimale

Home

Avantages

• Efficace sur des données bien séparées linéairement

Inconvéniants

• Moins performant sur des structures complexes.

Machines à Vecteurs de Support (SVM)

Service

Principe

• Algorithme de classification trouvant une hyperplan optimal.

Home

- Maximisation de la marge entre classes.
- Utilisation de noyaux (linéaire, gaussien, polynomial, etc.).

Avantages

• + Efficace pour petites dimensions

Inconvéniants

• - Performant sur grands jeux de données avec chevauchement

Service

Apprentissage Non-Supervisé

Home

K-means

Principe

- Algorithme de clustering basé sur la minimisation de la variance intra-classe.
- Sélection aléatoire de k centres.
- Attribution des points au centre le plus proche.
- Mise à jour des centres.

Avantages

- Rapide
- Simple

Inconvéniants

- K à choisir manuellement (délicat)
- Valeurs extrêmes influencent l'algo

DBSCAN

DBScan

Principe

- Algorithme de clustering basé sur la densité.
- Définit des « noyaux » et regroupe les points densément connectés.
- Gère les valeurs extrêmes

Avantages

- efficace pour données bruitée
- eficace pour clusters de formes variées

Inconvéniants

• Sensible aux paramètres (epsilon, minPts).

Carte de Kohonen

Principe

- Réseau de neurones non supervisé pour la classification.
- Projection des données en espace réduit.
- Auto-organisation des neurones selon la proximité des données.

Avantages

• Visualisation intuitive

Inconvéniants

• Temps de calcul élevé

Home

CONCLUSION

