## # Explanation of the Image: SR Latch using **NAND** Gate



## # Explanation of the Image: SR Latch using NOR Gate

This image represents an SR (Set-Reset) Latch built using NAND gates. Like the NOR-based SR latch, this circuit is a sequential logic circuit that stores one bit of information. It has two inputs:

- S (Set): Used to set the output Q = 1.
- R (Reset): Used to reset the output Q = 0.

## The circuit consists of two cross-coupled NAND gates, where:

- The output of each NAND gate is fed back into the other NAND gate as an input.
- The two outputs Q and Q' (Q complement) are always opposite to each other (Q' = NOT Q).

## Working of SR Latch using NAND Gates

## # Case 1: S = 1, R = 1 (No Change / Memory State)

- If both S and R are 1, the latch remains in its previous state. The stored value does not change.
- Q and Q' remain in their previous states.

# # Case 2: S = 0, R = 1 (Set State)

- The upper NAND gate has inputs S = 0 and Q', so it outputs Q = 1. • The lower NAND gate now has inputs R = 1, Q = 1, so it outputs Q' = 0.
- The latch is in the set state (Q = 1, Q' = 0).

# The lower NAND gate has inputs R = 0 and Q, so it outputs Q' = 1.

# Case 3: S = 1, R = 0 (Reset State)

- The upper NAND gate now has inputs S = 1, Q' = 1, so it outputs Q = 0.
- The latch is in the reset state (Q = 0, Q' = 1).

# Case 4: S = 0, R = 0 (Invalid / Undefined State)

 This state is not allowed because it makes Q and Q' equal, violating the principle of an SR latch.

Both NAND gates output 1, causing an invalid state.

Q' (Complement)

State

### S (Set) R (Reset) Q (Output)

Truth Table of SR Latch using NAND Gate

| ) | 1 | 1       | 0       | Set       |
|---|---|---------|---------|-----------|
| 1 | 0 | 0       | 1       | Reset     |
| 0 | 0 | Invalid | Invalid | Undefined |

Conclusion The SR Latch using NAND gates is another fundamental sequential circuit for storing one bit of data. It is commonly used in memory and

digital circuits. However, the S = 0, R = 0 state is invalid, similar to the

NOR-based SR latch, so additional logic (like a clocked SR latch) is

used in practical applications to prevent this issue.