

1

Plan Du Cours

Partie 1

Chap 1: Produit - processus - système de production
Chap 2: Elaboration d'un avant projet d'études de fabrication
Chap 3: Conception d'un système informatique de pilotage
Test
Test
Test
Chap 4: Implantation d'un atelier de type Job shop
Chap 5: Implantation d'un atelier de type flow shop - Equilibrage des lignes de production
Chap 6: Mesure de Travail
Examen

3 4

Indicateurs ?

Indicateur RTF ou REP : Ratio de Tension des flux (Ration d'efficacité du processus)

RTF = REP = \frac{\int_{VA}}{\text{Lead Time}}

Le RPF (ratio de performance du flux) est un indicateur ne prenant en compte que les distances

RPF = E longueurs des P.T.
Longueurs des foliux

9

Constitution d'îlots
Algorithme de Kusiak – Algorithme de King ...

Étape 1: On sélectionne la première ligne et les colonnes attachées à cette ligne.
Étape 2: On sélectionne les lignes attachées aux colonnes sélectionnées. Pour séparer des îlots éventuellement rattachés entre eux par une machine, on ne prend dans un îlot que les pièces qui ont au moins 50 % des machines déjà rattachées à celui-ci.
Étape 3: On recommence l'étape 1 en sélectionnant les colonnes attachées à l'îlot.
Étape 4: On arrête lorsque la ligne (ou la colonne) ne comporte plus d'éléments.
Étape 5: On retranche les pièces et les machines déjà regroupées. En réitérant le même processus que précédemment

	64	32	کمار	8	4	2	٨	
	ع	32 2<1,	یاح	-8 ³	2 1	2	2	
Machines Pièces	M1	M2	МЗ	M4	M5	M6	M7] _
P1		1			1			32+4 = 1 8+2 = 1
P2				1		1		8+2=1
Р3			1	1	1			16+9+4=
P4	1						1	64+1=
P5		1			12			32+4=
P6				1		1		8 + 2 =
P7		1	1					32 16 =

15 16

A	lgorithn	ne de	Kin	g (Ra	nk C	order	Clu	string)	place to the and an artist of the annual control of the annual con
		Mr	Mr	MS	My	Kr	MC	WT	
64 = et	P4	Λ						Λ	
32 _ L	PŢ		Λ	Λ		Α	-		
76 = 5h	< PA		Λ.			Λ			
₹ = ₹	l 9<		Λ	-	Λ	Λ			
4 = 9 2	P3 P2			Λ	1	/ /	Λ		
00	2 91				1		$\overline{\Lambda}$		
1 - 2	Ε,	64	56	36	7	20	3	66	
		(3)	(3)	(4)	(6)	\bigcirc	3	(1)	

Mise en ligne d'un îlot Méthode des antériorités – Méthodes des rangs moyens...

19 20

21 22

P1 3 1 2 4 5 P2 1 5 3 2 4 6 P3 1 3 2 4 5 P4 1 5 3 2 4 6
P3 1 3 2 4 5
P4 1 5 3 2 4 6
17 1 3 3 4 7 9

25	Quand est ce que la mise en ligne ne marche pas ?										
		MON	405	H03	Moy	Mor					
	Pon	λ	٤	3	Ц	<					
	POL	(Л	2	3	Ч					
	Poz	4	<	Λ	2	3					
	Po4	3	4	<	λ	2					
	Po<	e	3	Ч	<	Λ					
	Méthode des antériorités		MON MOS MOY MOC	401 407 407	407 407 401	Mos Mos Mosy					

26	Quand est ce que la mise en ligne ne marche pas ?										
		Non	402	H03	Moy	Mor					
	PoA	λ	ع	3	Ų	<					
	POL	(Л	2	3	Ч					
	Poz	4	<	Λ	2	3					
Méthode	Po4	3	Ч	<	λ	2					
505 D.m.05	Po<	e	3	Ч	<	1					
Rungs Hovens	Total dosp	15	N	15	N	K					
1,2	Nb des R	5	5	(5	5					
	Rang Hoyan	3	13	3	26	3					

27 28

29	Matrice d'intensité des trafics												
١,	de												
./		CO2	CU2	CU4	CU5"	CU6	TCN2	TR2	TR3				
V	CO2												
	CU2												
	CU4												
vers	CU5"								-				
	CU6						× .						
	TCN2												
	TR2												
	TR3												
						2	9						

Attention: Plusieurs variantes de la méthode des chaînons

There variantes:

Asec Matrice d'intensité qui tient en compte la direction du flux. (me)

A vec un raisonnement sur le N

de chaînons

Avec une Matrice trianquelaire

Avec une Matrice trianquelaire

Avec la colcul sur la diag des trafics

E et S ...

Méthodes des chaînons

Objectifs

La distance entre les portes ayant un plur important.

Les uroisements de flux

33

Méthodes des chaînons

Objectifs

La distance entre les portes ayant un

plux important.

Ils noisements de flux

Données

- Gammes (ou Matrice des rang)

- Lot du transfert, Interesté du trafic

- Implantation actuelle (ds le cas d'une

reimplantodion)

36

39 40

44	Méthodes des chaînons													
1		мто	MFS1	MFS2	MPE1	MPE2	MPE ₃	MPE4	MEB Nombre					
	MEB	0	0	0	2	1	3	٨	47 Plignes +					
	MPE4	D	0	0	0	0	1	2/2	3 Colonne					
	MPE ₃	0	0	0	0	4	3/8	(5)9	(sef du					
	MPE2	0	D	3	ବ	4/10	<u>S</u>	•	Blux					
	MPE1	٨	2	Λ	5/8	D	1		Lignes +					
	MFS2	3	1	48	(3 0				colonnes					
	MFS1	3	3/6	3	-									
	мто	3/7	<u> </u>	7					44					

	Méthodes des chaînons													
	мто	MFS1	MFS2	MPE1	MPE2	MPE ₃	MPE4	MEB			des			
MEB	0	0	0	2	1	3	٨	47	(TO	Lien	hains es +	246		
MPE4	D	0	0	0	0	7	2/2	3		{ { { { { { } } } } }	es t	حو،		
MPE ₃	0	0	0	0	4	3/8	(5)9	•		(9	ef d	,		
MPE2	0	0	3	೭	4/10	<u> </u>				в	lux			
MPE1	٨	2	Λ	5/8	D	1				Lign	· e s +			
MFS2	3	1	4 8	(3 0)					(0)	onne	•		
MFS1	3	3/6	3											
МТО	3/4	5 9	MP	EN - Mi	PEL-1	TFS2.	_MEB	_ 1196	3-M	TO-1	IFSA.MF	·E4		

45 46

48

