Sistema de Monitoreo de Salud de Nodos WSN Alimentados a Energía Solar

Carrera de Especialización en Sistemas Embebidos

Facultad de Ingeniería - Universidad de Buenos Aires

Esp. Ing. Juan Montilla

Organización de la presentación

- 1 Introducción
 - Grupo de trabajo IEEE 802
 - IEEE 802.15.4 LR-WPAN
- 2 LR-WPAN
 - Tipos de Dispositivos
 - Topología de la red
 - Arquitectura del estándar
 - Modelo de Transferencia de datos
 - CSMA/CA
 - Estructura de las Tramas
 - Modulación
- 3 Mote LSE
 - Mote
 - TI CC2520
- 4 Referencias

Introducción IEEE 802 IEEE 802.15.

Dispositivos Topología Arquitectura Transferencia de

Modulación Mote LSE

Referenci

Grupos de trabajo IEEE

Introducción
IEEE 802

LR-WPAN

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA Tramas

Mote LSE Mote TI CC2520

- IEEE 802: Desarrollar estándares para redes de área local y metropolitana (LAN y MAN)
 - IEEE 802.3: Ethernet
 - IEEE 802.11: Wi-fi
 - ...
- IEEE 802.15: Redes inalámbricas de área personal (WPAN)
 - IEEE 802.15.1: Bluetooth
 - IEEE 802.15.3: WPANs de alta tasa de transferencia de datos (HR-WPAN)
 - IEEE 802.15.4: WPANs de baja tasa de transferencia de datos (LR-WPAN)

IEEE 802.15.4 I R-WPAN

IEEE 802.15.4

- Versiones: 802.15.4:2003, 802.15.4:2006 y 802.15.4:2011
- Define:
 - Nivel físico (PHY)
 - Control de acceso al medio (MAC)
- Características:
 - Comunicaciones simples de bajo costo.
 - Bajas tasas de transferencia (throughput).
 - Para aplicaciones con limitaciones de potencia.
 - Confiabilidad en la transferencia de datos.
 - Opera en una banda de frecuencia sin licencia.

IEEE 802.15.4

- Uso doméstico e industrial.
- Dispositivos con fuente de alimentación autónoma.
 - Batería.
 - Panel solar.
- Extremadamente bajo consumo de potencia (Ciclo de Trabajo).
- Principales áreas:
 - Domótica y seguridad.
 - Productos electrónicos de consumo.
 - Cuidado de la salud.
 - Control y monitoreo de vehículos.
 - Agricultura.

IEEE 802.15.4

- Area de operación: 10m
- Tasa de transferencia: 250kbs
- Adecuación a aplicaciones de tiempo real: Guaranteed Time Slots (GTSs)
- Mecanismo para evitar colisiones: Carrier Sense Multiple-Access / Collision Avoidance (CSMA/CA)
- Control de consumo de energía:
 - Link Quality Indicator (LQI)
 - Energy Detection (ED)

Componentes Tipos de dispositivos

Dispositivos

- Full-function device (FFD): Capaz de ser PAN coordinator o coordinator.
- Reduced-function device (RFD): Sólo puede comunicarse con un FFD. Requerimientos mínimos de recursos.

Topología de la Red

Introducción IEEE 802 IEEE 802.15.4

LR-WPAN
Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA
Tramas

Mote LSE Mote TI CC2520

Referencias

■ Estrella (Star)

- PAN coordinator.
- Comunicaciones centralizadas.
- Ej: Automatización del hogar, Periféricos de PC, Juegos,...
- Punto a punto (Peer-to-Peer)
 - PAN coorditator.
 - Permite redes más complejas.
 - Multi-Hop routing.
 - Ej: Control industrial, WSNs, Tracking de inventario,...

Topología Punto a punto Árbol de Cluster

IEEE 802 IEEE 802.15.4

LR-WPAN
Dispositivos
Topología
Arquitectura
Transferencia de datos

Mote LSE

Mote
TI CC2520

- Mayoría de FFDs.
- 1 overall PAN coordinator.
- RFDs al final de una rama.
- Aumenta el área de covertura.
- Aumenta la latencia de la red.

Arquitectura

Arquitectura del estándar

MAC Sublayer

- Beacon management
- Channel access
- GTSs management
- Frame validation, ACKs
- Asociación y desasociación de dispositivos

Physical Layer (PHY):

- Activación/Desactivación de RF
- ED, LQI, Clear Channel Assessment (CCA)
- Channel selection
- Tx y Rx de paquetes a través del medio físico

MAC: Beacons, Supertramas y GTSs

- 16 time slots.
- Contention Access Period (CAP)con CSMA/CA.
- Contention Free Period (CFP) para los GTSs, sin CSMA/CA.
- Los GTSs son opcionales y reducen el CAP.
- Tiempo inactivo → modo bajo consumo.

Introducción IEEE 802 IEEE 802.15.4

Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA

Mote LSE Mote TI CC2520

Referen

Transferencia de Datos

Con beacon

Introducción IEEE 802 IEEE 802.15.4

LR-WF

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA

Tramas Modulación

Mote TI CC2520

Referencias

 $\mathsf{Coordinator} \to \mathsf{Device}$

Transferencia de Datos

Sin beacon

Introducción IEEE 802 IEEE 802.15.4

Disposit

Dispositivos Topología Arquitectura **Transferencia de datos** CSMA/CA Tramas

Mote LSE Mote TI CC2520

Referencias

 $Device \rightarrow Coordinator$

 $\mathsf{Coordinator} \to \mathsf{Device}$

Carrier Sense multiple Access with Collision Avoidance

IEEE 802 IEEE 802.15.4

LR-WP.

Dispositivos Topología Arquitectura

datos

Tramas Modulació

Mote LSL

Referencias

Slotted CSMA/CA vs Unslotted CSMA/CA

Estructura de las Tramas

Se definen 4 tipos de trama MAC:

- Beacon
- Data
- Acknowledgement
- MAC Command

	MAC header (MHR)	MAC payload		MAC footer (MFR)			
Synchronization head (SHR)		PHY header (PHR)		PHY payload (PSDU)			

Introducción IEEE 802 IEEE 802.15.4

LR-WPAN
Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA
Tramas

Mote LSE

Tipo de Frame: Beacon

IEEE 802 IEEE 802.15.4

LR-WP

Dispositivos Topología Arquitectura Transferencia datos CSMA/CA

Tramas Modulación

Mote TI CC2520

Tipo de Frame: Data

IEEE 802 IEEE 802.15.4

Dispositivos Topología

Arquitectura
Transferencia de datos
CSMA/CA

Tramas Modulació

Mote LSE Mote TI CC2520

			Octets:	2	1	4 to 20	0, 5, 6, 10 or 14	n	2
MAC sublayer				Frame Control	Sequence Number	Addressing Fields	Auxiliary Security Header	Data Payload	FCS
-						MHR		MAC Payload	MFR
Octets:		ependent :lause 6)	1	5 + (4 to 34) + n					
PHY layer	Preamble Sequence	Start of Frame Delimiter	Frame Length / Reserved	PSDU					
	S	HR	PHR	PHY Payload					
	(see clause 6) + 6 + (4 to 34) + n								

Tipo de Frame: **Acknowledgement** (Ack)

IEEE 802 IEEE 802.15.4

Diamonia

Dispositivos
Topología
Arquitectura
Transferencia d
datos

CSMA/CA Tramas

Mote LSE

Referencias

Octets: 2 MAC Frame Sequence **FCS** Control Number sublayer MHR MFR PHY dependent 5 Octets: (see clause 6) Start of Frame PHY Preamble Frame Length / **PSDU** Sequence layer Delimiter Reserved SHR PHR PHY Payload (see clause 6) + 6

Tipo de Frame: MAC Command

IEEE 802 IEEE 802.15.4

LR-WP

Dispositivos Topología Arquitectura Transferencia datos

Tramas Modulaciói

Mote TI CC2520

Frame Control Field

Bits: 0-2	3	4	5	6	7-9	10-11	12-13	14-15
Frame Type	Security Enabled	Frame Pending	Acknowledge request	Intra PAN	Reserved	Destination addressing mode	Reserved	Source addressing mode

Format of the Frame Control Field (FCF)

Frame type value b ₂ b ₁ b ₀	Description				
000	Beacon				
001	Data				
010	Acknowledgment				
011	MAC command				
100-111	Reserved				

Addressing mode value $\mathbf{b_1} \ \mathbf{b_0}$	Description
00	PAN identifier and address fields are not present.
01	Reserved.
10	Address field contains a 16-bit short address.
11	Address field contains a 64-bit extended address.

Introducción IEEE 802 IEEE 802.15.4

LR-WPAN
Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA
Tramas

Mote LSE

Modulación

IEEE 802 IEEE 802.15.4

LR-WPAI

Dispositivos Topología Arquitectura Transferencia de datos

CSMA/CA Tramas

Modulación

Mote TI CC2520

PHY (MHz)	Frequency band (MHz)	Spreading	parameters	Data parameters			
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols	
780	779–787	1000	O-QPSK	250	62.5	16-ary orthogonal	
780	779–787	1000	MPSK	250	62.5	16-ary orthogonal	
040,014	868-868.6	300	BPSK	20	20	Binary	
868/915	902-928	600	BPSK	40	40	Binary	
868/915	868-868.6	400	ASK	250	12.5	20-bit PSSS	
(optional)	902-928	1600	ASK	250	50	5-bit PSSS	
868/915	868-868.6	400	O-QPSK	100	25	16-ary orthogonal	
(optional)	902-928	1000	O-QPSK	250	62.5	16-ary orthogonal	
950	950-956	-	GFSK	100	100	Binary	
950	950-956	300	BPSK	20	20	Binary	
2450 DSSS	2400-2483.5	2000	O-QPSK	250	62.5	16-ary orthogonal	
UWB sub-gigahertz (optional)	250-750	As defined in 14.4.1					
2450 CSS (optional)	2400-2483.5	As defined in 13.2		250	167 (as defined in 13.4.2)		
		As defined in 13.2		1000	167 (as defined in 13.4.2)		
UWB low band (optional)	3244-4742	As defined in 14.4.1					
UWB high band (optional)	5944-10 234	As defined in 14.4.1					

Nodo Mote LSE-FIUBA

Mote

Nodo Mote desarrollado en el LSF-FIUBA

- LPC1343 ARM Cortex-M3 @72MHz
- Transceptor TI-2520
- Extensor de rango TI-2591
- 3 Pulsadores
- 3 leds
- Antena y balun en microstrip

Nodo Mote LSE-FIUBA

Circuito Esquemático

Introducción IEEE 802 IEEE 802.15.4

LR-WP

Dispositivos
Topología
Arquitectura
Transferencia datos

datos CSMA/CA Tramas

Mote LSI

Mote TI CC2520

Transceptor DSSS TI CC2520

- **2394-2507 MHz**
- Muy bajo consumo de corriente

RX: 18.5 - 22.3 mA.

TX: 25.8 - 33.6 mA.

- Interfaz de usuario
 - SPI
 - 6 GPIOs
 - Respuestas automáticas a diferentes eventos
 - Modo de Packet Sniffer embebido

Soporte por Hardware a 802.15.4 MAC

- Generador automático de preámbulo
- Inserción y detección de palabra de sincronización
- CRC-16 en el MAC payload
- Frame Filtering
- Ack automático
- Clear Channel Assessment (CCA)
- Energy Detection (ED)
- Link Quality Indication (LQI)

Circuito de Aplicación Típico

Introducció IEEE 802

Dispositivos Topología Arquitectura

datos CSMA/CA

Tramas Modulaciór

Mote LSE

TI CC2520

Diagrama Funcional

Introducció IEEE 802

IEEE 802.15.

Dispositivos Topología

Transferencia datos

CSMA/CA Framas

Modulació

Mote

Procesamiento de tramas: Tx

Introducción IEEE 802

I D M/DAN

Topología
Arquitectura

iatos CSMA/CA

Tramas Modulaciói

Mote LSE Mote

11 CC2520

Procesamiento de tramas: Rx filtering

Introducción IEEE 802

Dispositivos
Topología
Arquitectura

latos ISMA/CA

Modulació

Лote LSE Mote

Procesamiento de tramas: Rx matching

Introducción IEEE 802

I R-WPAI

Topología Arquitectura Transferencia d

SMA/CA

Modulació

Mote LSE Mote

11 002520

Referencias

- Estándar IEEE 802.15.4:2011
- IEEE 802.15 Task Group 4 Home Page
- IEEE Get Program
- I PC1343 Datasheet
- I PC1343 User Manual
- Texas Instrument CC2520 Technical Documents
- Texas Instrument Design Note 2.4 GHz Inverted F Antenna

Protocolos de Comunicación en Sistemas Embebidos 802.15.4 LR-WPAN

Carrera de Especialización en Sistemas Embebidos - FIUBA

Esp. Ing. Juan V. Montilla C.

versión: 2016-06-01 rev 1.0