MAEG 5710

Computer-Aided Design and Manufacturing

Assignment

Give answers to the followings questions and submit your work in pdf, or as a scanned copy of your work. State clearly your steps in the calculations.

Submission deadline: 9 Dec 2019

- 1. A graphics workstation supporting a resolution of 1024x768 is capable of displaying 512 colours simultaneously.
 - (a) State the total number of bit planes used, and the number of bit planes for each primary colour. (6 marks)
 - (b) State the total memory (in bytes) required for the frame buffer. (2 marks)
 - (c) If an 8-bit wide lookup table is used for each primary colour, state the total number of choices of colours available. (4 marks)
- 2. State a transformation matrix for each of the following transforms.

(a) (6 marks)

(6 marks)

3. An object S lying on a plane L is to be rotated 90° to S' such that it lies on the circumference of a circle centered at (1, 1, 1) lying on L as shown below. This is performed with a list of basic transforms (i.e. translations and rotations about the x, y and z axes). State the vector **n** normal to L and the sequence of transformations required, and the transformation matrices for each of the transforms. (15 marks)

- 4. A parametric cubic curve $\mathbf{p}(t)$, $0 \le t \le 1$, is defined with the end points $\mathbf{p}_0 = [-1, 0, 0, 1]$, $\mathbf{p}_1 =$ [0, 1, 0, 1], and end point tangents $\mathbf{p}_0' = [0, 1, 0, 0]$, $\mathbf{p}_1' = [1, 0, 0, 0]$. A Bezier curve $\mathbf{b}(s)$, $0 \le s$ $s \le 1$, is constructed with control points \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 such that $\mathbf{p}_1 = \mathbf{b}_0$. (a) Determine the curve point p(0.5). (6 marks) (b) Determine the location of \mathbf{b}_1 if $\mathbf{p}(t)$ and $\mathbf{b}(s)$ are connected with C^1 continuity.
 - (4 marks)
- 5. An order 3 open uniform B-spline curve $\mathbf{p}(t)$ is constructed with the control points $\mathbf{p}_0 = (-2, 0, 0)$ 0), $\mathbf{p}_1 = (-1, 1, 0)$, $\mathbf{p}_2 = (0, 0, 0)$, $\mathbf{p}_3 = (1, -1, 0)$, $\mathbf{p}_4 = (2, 0, 0)$. (a) State the knot vector for the curve. (2 marks) (b) State the parametric range of the curve segments composing the B-spline curve. (3 marks) (c) Determine the Blending functions $N_{0,3}(t)$, $N_{1,3}(t)$, $N_{2,3}(t)$, $N_{3,3}(t)$, $N_{4,3}(t)$ for the first segment. (8 marks) (d) Sketch the shape of $\mathbf{p}(t)$. (3 marks) (e) If \mathbf{p}_2 is moved to (-1, 1, 0), sketch the shape of $\mathbf{p}(t)$.
- 6. A sweep surface s(u, v), $0 \le u, v \le 1$, is created by transforming a Bezier curve p(u) defined with the control points $\mathbf{b}_0 = (-1, 0, 0)$, $\mathbf{b}_1 = (0, 1, 0)$, and $\mathbf{b}_2 = (1, 0, 0)$ along the z-axis for a distance of 10 unit while rotating $\mathbf{p}(u)$ about the z-axis for an angle π .

(3 marks)

(a) State in terms of b_0 , b_1 , b_2 an expression for p(u). (2 marks) (b) State the sweep transformation matrix required. (3 marks) (c) Determine the surface point s(0.5, 0.5). (5 marks)

7. A ruled surface $\mathbf{s}(u, v)$, $0 \le u, v \le 1$, is constructed between a Bezier curve $\mathbf{b}(u)$ and a straight line $\mathbf{p}(u)$. The Bezier curve is constructed with the control points \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{b}_2 , and the straight line is defined with the points p_0 , p_1 . Derive expressions in terms of b_0 , b_1 , b_2 , p_0 , and p_1 for the following:

(a) the ruled surface s(u, v). (4 marks) (b) the iso-u tangent of s(u, v) at u = 0.5, v = 0.5. (4 marks) (c) the iso-v tangent of s(u, v) at u = 0.5, v = 0.5. (4 marks) (d) the twist vector of s(u, v) at u = 0.5, v = 0.5. (4 marks)

****** End ******