(19) 世界知的所有権機関 国際事務局

K KANAN BANCALA IN BANKA NASA BANKA KANAN ALIKA BANKA KANAN KANAN BANKA BANKA KANAN BANKA KANAN KANAN KANAN KA

(43) 国際公開日 2005年4月21日(21.04.2005)

PCT

(10) 国際公開番号

(51) 国際特許分類7:

WO 2005/036680 A1

H01M 4/58, 4/02, 10/40

(21) 国際出願番号:

PCT/JP2004/015093

(22) 国際出願日:

2004年10月6日(06.10.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-348728

2003年10月7日(07.10.2003) JP

- (71) 出願人(米国を除く全ての指定国について): 日本電 池株式会社 (JAPAN STORAGE BATTERY CO., LTD.) [JP/JP]; 〒6018520 京都府京都市南区吉祥院西ノ庄猪 之馬場町 1 番地 Kyoto (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 佐々木 丈 (SASAKI, Takeshi).

- (74) 代理人: 宮越 典明 (MIYAKOSHI, Noriaki); 〒1076012 東京都港区赤坂一丁目12番32号アーク森ビル 1 2 階 信栄特許事務所 Tokyo (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が可 能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,

/続葉有/

- (54) Title: NON-AQUEOUS ELECTROLYTE SECONDARY CELL
- (54) 発明の名称: 非水電解質二次電池

 $\leq 0.27, 0.03 \leq z \leq 0.1, 0 \leq b \leq 0.1, M$ is at least one selected from among the metal elements except Ni, Co and Al, and in a bond energy of the oxygen 1s spectrum in the XPS measurement of the particle, there exists the combination of L1 and L2 satisfying $(\alpha_{L2}-\alpha_{L1})/\alpha_{L2} \le 0.1$, L1 ≤ 100 , and L2 ≥ 500 , wherein D is the area of the peak appearing at 529 eV and E is the area of the peak appearing at 531 eV, an oxygen concentration ratio is D/(D+E), and α_{L1} and α_{L2} are the oxygen concentration ratios at the depths from the surface of the particle of L1 nm and L2 nm.

TD, TG).

IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

添付公開書類:

一 国際調査報告書

面積をD、531eVに現れるピークの面積をE、酸素濃度比をD/(D+E)、粒子表面からの深さL1 nm およびL2 n mにおける酸素濃度比をそれぞれ α _1および α _2とした場合に、 $(\alpha_{L2}-\alpha_{L1})$ $/\alpha_{L2} \le 0$. 1、 L1≦100、L2≧500となるL1およびL2の組み合わせが存在する。

1

明細書

非水電解質二次電池

技術分野

本発明は、リチウム含有層状ニッケル酸化物粒子を含む正極を備えた非水電解質二次電池に関するものである。

背景技術

電子機器の急激な小型軽量化に伴い、その電源である電池に対して、小型で軽量かつ高エネルギー密度、更に繰り返し充放電が可能な二次電池開発への要求が高まっている。また、大気汚染や二酸化炭素の増加等の環境問題により、電気自動車の早期実用化が望まれており、高効率、高出力、高エネルギー密度、軽量等の特徴を有する、優れた二次電池の開発が要望されている。

これらの要求を満たす二次電池として、非水電解質を使用した二次電池が実用化されている。この電池は、従来の水溶液電解質を使用した電池の数倍のエネルギー密度を有している。その例として、非水電解質二次電池の正極にリチウム含有層状コパルト酸化物(以下Co系化合物)、リチウム含有層状ニッケル酸化物(以下Ni系化合物)又はスピネル型リチウムマンガン複合酸化物(以下Mn系化合物)を用い、負極にリチウムが吸流・放出可能な炭素材料などを用いた長寿命な4V級非水電解質二次電池が実用化されている。

中でもNi系化合物は、非水電解質二次電池内で実際に使用される電位範囲内(3.0~4.3 V v s. Li/Li⁺)において挿入脱離可能なリチウム量がCo系化合物やMn系化合物以上である特長があり、資源も豊富であることから高容量かつ低コストな電池の開発を目指して多くの開発がなされてきた。

日本の特許文献である特開平10-092429号公報にも示されているように、現在までに広く採用されてきたCo系化合物と比較して、Ni系化合物はもともと合成が難しく、結晶構造が均質なものを大量に製造することは困難であったが、その後の改良により、Journal of Power Sources 119-121 (2003) 859-864、865-869に示されるように、最近では実電池に搭載されて優れた性能を発揮する事例も報告されるようになった。

発明の開示

しかしながら、改良が進んだ現在においても、Ni系化合物を正極活物質に用いた電池は従来の電池と比較して、性能にばらつきが出やすく、品質や信頼性に不安が残るため、実際には商品化しにくいという問題があった。

このような問題の原因を探るべく、Ni系化合物を様々な角度から調査した結果、組成モル比、比表面積、pH、かさ密度、タップ密度、粒度分布、不純物量、粒子形状、結晶構造、など一般的な品質管理項目では捉えきれない表面性状のわずかな差によって、電池性能が大きく異なることが明らかになった。

3

そこで、本発明の目的とするところは、電池性能に大きな影響をおよばすNi系化合物粒子の表面性状を規定して、表面状態がその規定範囲にある化合物を非水電解質二次電池の正極活物質に使用することにより、放電容量が大きく、充放電サイクル特性に優れた非水電解質二次電池を提供することにある。

上述の目的を達成するために、本発明に係る非水電解質二次電池は、一般式Li。Ni、Co,Al。 M_b O₂で示されるリチウム含有層状ニッケル酸化物の粒子を含む正極を備えた非水電解質二次電池であって、0.3 \le a \le 1.05、0.7 \le x \le 0.87、0.1 \le y \le 0.27、0.03 \le z \le 0.1、0 \le b \le 0.1、MはNi、Co、およびAlを除く金属元素から選択される少なくとも一つであり、前記粒子をXPS測定した際の酸素1sスペクトルの結合エネルギーにおいて、529eVに現れるピークの面積をD、531eVに現れるピークの面積をD、531eVに現れるピークの面積をE、酸素濃度比をD/(D+E)、粒子表面からでさL1 nmおよびL2 nmにおける酸素濃度比をそれぞれ α L 1 および α L 2 とした場合に、(α L 2 = α L 1)/ α L α L 1 および α L 2 とした場合に、(α L 2 = α L 1)/ α L α L 1 および α L 2 α L 1 α L 2 α L 2 α L 1 α L 2 α L 2 α L 3 α L 3 α L 2 α L 3 α L 3 α L 4 α L 4 α L 5 α L 6 α L 6 α L 7 α L 2 α L 1 α L 2 α L 2 α L 1 α L 1 α L 1 α L 1 α L 2 α L 1 α L 2 α L 1 α L 2 α L 1 α L 2 α L 1 α L 1 α L 2 α L 2 α L 1 α L 2 α L 1 α L 2 α L 1 α L 2 α L 1 α L 1 α L 1 α L 2 α D 2 α L 1 α L 1

本発明によれば、Ni系化合物粒子全体の組成を規定して、 従来までの発明で提案されてきた改善効果を得るとともに、粒 子表面近傍の酸素の化学結合状態が所定の水準にある化合物を 非水電解質二次電池の正極活物質として使用することにより、 電解質とNi系化合物粒子との界面抵抗が小さく、充放電の繰 り返しにより抵抗が増加しにくいため、良好な電池性能が長期間得られ、従来のCo系化合物を用いた電池よりも放電容量や 寿命特性に優れる非水電解質二次電池を安定して供給でき、そ の工業的価値は高い。

図面の簡単な説明

第1図は、XPSスペクトルにおける、粒子表面からの深さ L(nm)と酸素1sスペクトルの関係を示す図である。

第 2 図は、 X P S における、粒子の表面 (L = 1 n m) における酸素 1 s スペクトルを示す図である。

第3図は、XPSにおける、表面からの深さLが500nm における酸素1sスペクトルを示す図である。

第4図は、本発明の正極活物質に用いるリチウム含有層状ニッケル酸化物粒子の、XPSの酸素1sスペクトルの例を示す図である。

第 5 図は、本発明の正極活物質に用いるリチウム含有層状ニッケル酸化物粒子における、 L と (α 。 - α _L) / α 。との関係を示す図である。

第6図は、長円筒形非水電解質二次電池の外観を示す斜視図である。

第7図は、長円筒形非水電解質二次電池に収納された電極群の構成を示す斜視図である。

発明を実施するための好ましい形態

5

一般式Li。Nix Соу Аlҳ МьО₂ (0.3 \leq a \leq 1 . 0 5、0.7 \leq x \leq 0.8 7、0.1 \leq y \leq 0.2 7、0.0 3 \leq z \leq 0.1、0 \leq b \leq 0.1、MはNi、СоおよびAlを除く金属元素から選択される少なくとも一つ)で示されるリチウム含有層状ニッケル酸化物粒子を正極活物質に用いた非水電解質二次電池は、製造ロットごとに放電容量や出力性能、保存性能などにばらつきが生じることが多かった。本発明者は、この原因を詳しく調査した結果、化合物全体の平均組成が上記一般式で規定される範囲内にある場合でも、化合物表面近傍の元素の化学結合状態は乱れている場合が多く、理由は定かではないが、特に酸素の結合状態のばらつきが顕著であり、このばらつきが電池性能のばらつきに符合していることを明らかにした。

そこで、本発明者は、過去に同一の条件で試作した全てのNi系化合物の表面分析をおこない、表面部分での酸素の濃度プロファイルが所定の範囲に収まる化合物を選定して、高容量かつ長寿命である非水電解質二次電池を得た。以下、本発明にかかる非水電解質二次電池の具体的な実施の形態について説明する。

本発明において、正極活物質として用いるリチウム含有層状ニッケル酸化物粒子全体の組成は、一般式Li。Ni、Co,Al、M_bO₂ (0.3 \leq a \leq 1.05、0.7 \leq x \leq 0.8 7、0.1 \leq y \leq 0.27、0.03 \leq z \leq 0.1、0 \leq b \leq 0.1、MはNi、CoおよびAlを除く金属元素から選択さ

6

れる少なくとも一つ)で表される。このリチウム含有層状ニッケル酸化物粒子においては、ニッケルの一部がコバルトによって置換されるため、充放電にともなう結晶構造の変化が抑制される。また、3価で安定なアルミを添加することにより、結晶構造はさらに安定化する。ここでMはNi、Co、およびA1を除く金属元素から選択される少なくとも一つであり、複数の金属元素を組み合わせて用いてもよい。

また、 a < 0 . 3 の領域まで充電すると c 軸長の大きな変化を伴い、結晶構造の崩壊と極板抵抗の増加が加速されるため、そのような領域まで充電しないことが好ましい。また、同様の理由で放電は a ≤ 1 . 0 5 の範囲内におさめることが好ましい

さらに、 x が 0 . 7を下回ると C o 系化合物を正極活物質に用いた従来の非水電解質電池と放電容量が同等にまで低下し、0 . 87を上回ると熱安定性が極度に低下するため、 x は 0 . 7~0 . 87の範囲が好ましい。また、 y が 0 . 1を下回ると結晶構造が不安定化し、逆に 0 . 27を上回っても結晶構造の安定化は頭打ちであり、 放電容量の低下をまねくだけであるため、 y は 0 . 1~0 . 27の範囲が好ましい。 z が 0 . 03を下回ると結晶構造の安定性が低下し、 さらに充電時の熱安定性も低下する。しかし、 z が 0 . 1を上回ると放電容量が著しく低下するため、 Z は 0 . 03~0 . 1の範囲が望ましい。 らに本発明においては、 0 . 98≦x+y+z+b≦1. 01であることが好ましい。また、 M は N i および C o を除く遷移金

7

属元素であることが好ましい。ここでいう遷移金属元素とは、 複数の種類の遷移金属を組み合わせて使用したものであっても よい。

リチウム含有層状ニッケル酸化物粒子の表面近傍の酸素の濃度プロファイルがばらつく原因は定かではないが、原料の混合が不十分であったり原料の粒径が大きくて、焼成後の化合物表面に未反応の原料残渣(水酸化リチウムなど)が付着することや、焼成後に化合物が水分や炭酸ガスを吸収してリチウム化合物を生成すること、さらに電池作製時に溶剤中の水分を吸収してリチウム化合物を生成することの他に、焼成温度が適正温度(組成によって異なるが、一般的には650~750℃)からはずれたり、焼成時間が短すぎることによって生じると予測される。これらの原因は、Ni系化合物の合成がもともと難しいことや、結晶構造自体が不安定であることにあると予測される。

このようにNi系化合物の合成が難しく、結晶構造が比較的不安定であることを十分に理解した上で、化合物の製造方法や保管方法を管理し、さらに完成品についても既述のような品質管理をおこなった場合でも、製造ロットごとに表面性状は微妙に異なり、化合物の表面から内部にかけて酸素の化学結合状態が変化してしまうことが多い。このような現実を理解せずに、表面性状が規定値からはずれた化合物を正極活物質として使用すると、予想外に放電容量や寿命性能が低い電池を製造してしまうことになる。

このような事態を防ぐために、本発明は、非水電解質二次電 池において、一般式Li Ni x Co y Al x M b O 2 (0. $3 \le a \le 1$. 0.5, $0.7 \le x \le 0$. 8.7, $0.1 \le y \le 0$. 2.7 , $0.03 \le z \le 0.1$, $0 \le b \le 0.1$, M th N i , C o および A 1 を除く金属元素から選択される少なくとも一つ) で示されるリチウム含有層状ニッケル酸化物粒子を含む正極を 備えるものである。そしてこのリチウム含有層状ニッケル酸化 物粒子をXPS測定した際の酸素1sスペクトルの結合エネル ギーにおいて、529eVに現れるピークの面積をD、531 eVに現れるピークの面積をE、酸素濃度比をD/(D+E) 、粒子表面からの深さL1 nmおよびL2 nmにおける酸素 濃度比をそれぞれα、、およびαι2とした場合に、(αι2 $-\alpha_{L,1}$) $/\alpha_{L,2} \leq 0$. 1, L 1 \leq 1 0 0, L 2 \geq 5 0 0 \leq なるL1およびL2の組み合わせが存在するようにしたもので ある。このようなリチウム含有層状ニッケル酸化物粒子を使用 するには、原料、焼成方法、取り扱い方法などに十分な配慮を 払うことは当然であるが、その上でオージェ電子分光やX線光 電子分光(XPS)、飛行時間形二次イオン質量分析などによ る化合物表面の検査を含めた品質管理が必要となる。なお、本 発明におけるリチウム含有層状ニッケル酸化物粒子においては 、 (α μ 2 - α μ 1) / α μ 2 の値は 0 未満となるような L 1 とL2との組み合わせが存在する場合であってもよく、特に一 0. 1以上となるようなL1とL2との組み合わせが存在する ことが好ましい。ただし、(α」2 - α」1) / α」2 の値が

9

0以上0.1以下となるようなL1とL2との組み合わせが存在する場合がとくに好ましい。

従来のリチウム含有層状ニッケル酸化物粒子の、XPSの酸素1sスペクトルの例を第1図~第3図に示す。第1図は、粒子を一定時間アルゴンエッチングした後、XPSスペクトルを測定することを繰り返した場合の、粒子表面からの深さL(nm)と酸素1sスペクトルの関係を示したものである。また、第2図は、粒子の表面(L=1nm)における酸素1sスペクトル、第3図は表面からの深さLが500nmにおける酸素1sスペクトルを示したものである。なお、第1図では岩略しているが、L=500nmから粒子中心部までの酸素1sスペクトルは変化がなかった。なお、リチウム含有層状ニッケル酸化物粒子の表面にはガスや不純物がわずかに吸着しているため、ここでは最表面から1nmエッチングした後のスペクトルを真の表面のスペクトルと定義した。

なお、文献(K. Kanamura et al. J. Electroanal. Chemistry 419 (1996) 77-84) に示されているように、ピーク d は層状構造

10

をもつLiCoO₂の結晶中に含まれる酸素すなわち結晶中の O² - イオン、ピークeは電極表面に吸着した酸素を示す。し たがって、第1図~第3図に示した従来のリチウム含有層状ニ ッケル酸化物粒子XPSスペクトルにおいても、ピーク d およ びピークeは同じことを意味し、そして、ピーク d の面積 D お よびピークeの面積 E は、それぞれの酸素 濃度を表すことは明 らかである。

第2図に示した粒子の表面(L=1nm)における酸素1s スペクトルはD<Eとなっており、結晶中に含まれる酸素濃度 よりも吸着した酸素濃度の方が大きいことを示しており、第3 図の表面からL=500nmの深さにおける酸素1sスペクト ルはD>Eとなっており、吸着した酸素濃度よりも結晶中に含 まれる酸素濃度の方が大きいことを示している。

11

0、L2≥500となるL1およびL2の組み合わせが存在す。
る。

本発明の正極活物質に用いるリチウム含有層状ニッケル酸化物粒子の、XPSの酸素1sスペクトルの例を第4図に示す。第4図では、表面(L=1nm)における酸素1sスペクトルも、表面から L=500nmの深さにおける酸素1sスペクトルも、共にD>Eとなっており、表面からの深さに関係なく、粒子のあらゆる場所で吸着した酸素濃度よりも結晶中に含まれる酸素濃度の方が大きいことを示している。

本発明の正極活物質に用いるリチウム含有層状ニッケル酸化物粒子における、Lと(aoーaェ)/aoとの関係を第5図に示す。ここで、aoは、粒子の表面から500mm以上の任意の深さにおけるaェである。図の例では、表面からの深さが500mmを越える部分におけるaュはすべてaoに等しくなっている。この場合、本発明の正極活物質に用いられるリチウム含有層状ニッケル酸化物粒子は、表面からの深さが100mm以下において(aoーaェ)/ao≦0.1となるLが存在するものであり、第5図の曲線スのリチウム含有層状ニッケル酸化物粒子は、100~1となるしが存在はいので、本発明には含まれない。なお、第5図では、1005における(aoーaェ)/aoらが、本発明と従来例との関係はこのような場合に限られるものではない。一般的には、本発明にお

12

けるリチウム含有層状ニッケル酸化物粒子では、従来例と対比 して、L=0 における(α $_{0}$ $-\alpha$ $_{L}$) / α $_{0}$ の値は小さくなる

本発明の正極活物質に用いるリチウム含有層状ニッケル酸化物粒子のLと(α。ーα」)/α。との関係は、リチウム含有層状ニッケル酸化物粒子の前駆体を作製した後の、前駆体の焼成温度や時間、さらに保存時の雰囲気や時間によって変化させることができる。

本発明の正極活物質に用いるリチウム含有層状ニッケル酸化物粒子の平均粒径 D_5 0は4~20 μ mが好ましく、とくに9~10 μ mが好ましい。さらに、その粒子の粒径範囲は2~30 μ mが好ましい。さらに、その粒子のBET比表面積は、0.1~1 m^2 /gが好ましく、とくに0.3~0.4 m^2 /gが好ましい。なお、平均粒径と粒径範囲はレーザー回折・散乱法にて、BET比表面積は窒素ガス吸着法で測定した。

本発明の非水電解質二次電池は、第6図および第7図に示されるように、上述のような化合物を正極活物質として用いた正極と負極とがセパレータを介して円形状または長円形状に捲回されてなる電極群を電池容器に収納し、電極群に非水電解質を含浸して構成されている。

第6図は長円筒形非水電解質二次電池の外観を示す斜視図であり、第7図は長円筒形非水電解質二次電池に収納された電極群の構成を示す斜視図である。第6図および第7図において、1は非水電解質二次電池、2は発電要素、2 a は正極、2 b は

13

負極、2 c はセパレータ、3 は電池ケース、3 a は電池ケースのケース部、3 b は電池ケースの蓋部、4 は正極端子、5 は負極端子、6 は安全弁、7 は電解液注入口である。

この非水電解質二次電池に用いられる負極、セパレータおよび電解質などは、特に従来用いられてきたものと異なるところなく、通常用いられているものが使用できる。すなわち、本発明の非水電解質二次電池に用いる負極材料としては、リチウムイオンを吸蔵・放出可能な種々の炭素材料、または金属リチウムやリチウム合金が使用できる。また、遷移金属酸化物や窒化物を使用してもよい。

また、本発明の非水電解質二次電池に用いるセパレータとしては、ポリエチレン等のポリオレフィン樹脂からなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであってもよい。

本発明の非水電解質二次電池に用いる電解液の有機溶媒には、特に制限はなく、例えばエーテル類、ケトン類、ラクーン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類等を用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系化合物が好ましい。これらの例としては、テトスルホラン系化合物が好ましい。これらの例としては、テト

ラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジ オキサン、アニソール、モノグライム、4-メチルー2-ペン タノン、酢酸エチル、酢酸メチル、プロピオン酸メチル、プロ ピオン酸エチル、1,2-ジクロロエタン、γーブチロラクト ン、ジメトキシエタン、メチルフォルメイト、ジメチルカーボ ネート、メチルエチルカーボネート、ジエチルカーボネート、 プロピレンカーボネート、エチレンカーボネート、ビニレンカ ーボネート、ジメチルホルムアミド、ジメチルスルホキシド、 ジメチルチオホルムアミド、スルホラン、3-メチルースルホ ラン、リン酸トリメチル、リン酸トリエチルおよびこれらの混 合溶媒等を挙げることができるが、必ずしもこれらに限定され るものではない。好ましくは環状カーボネート類および環状エ ステル類である。もっとも好ましくは、エチレンカーボネート 、プロピレンカーボネート、メチルエチルカーボネート、およ びジエチルカーボネートのうち、1種または2種以上した混合 物の有機溶媒である。

また、本発明の非水電解質二次電池に用いる電解質塩としては、特に制限はないが、LiClO₄、LiBF₄、LiAsF6、CF3SO3Li、LiPF6、LiN(CF3SO2)2、LiN(CF3SO2)2、LiI、LiA1Cl4等およびそれらの混合物が挙げられる。好ましくは、LiBF4、LiPF6のうち、1種または2種以上を混合したリチウム塩がよい。

また、上記電解質には補助的に固体のイオン導伝性ポリマー

電解質を用いることもできる。この場合、非水電解質二次電池 の構成としては、正極、負極およびセパレータと有機または無 機の固体電解質と上記非水電解液との組み合わせ、または正極 、負極およびセパレータとしての有機または無機の固体電解質 膜と上記非水電解液との組み合わせがあげられる。ポリマー 解質膜がポリエチレンオキシド、ポリアクリロニトリルまたは ポリエチレングリコールおよびこれらの変成体などの場合には 、軽量で柔軟性があり、巻回極板に使用する場合に有利である 。さらに、ポリマー電解質以外にも、無機固体電解質あるいは 有機ポリマー電解質と無機固体電解質との混合材料などを使用 することができる。

その他の電池の構成要素として、集電体、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いて差し支えない。

実 施 例

以下に、本発明の実施例1~4および比較例1~3について 説明する。

「実施例1]

[リチウム含有層状ニッケル酸化物粒子の作製]

硫酸ニッケル、硫酸コバルトを所定の配合比で溶解し、さらに十分に攪拌させながら水酸化ナトリウム溶液を加えてニッケル-コバルト複合共沈水酸化物を得た。生成した共沈物を水洗、乾燥し、水酸化アルミニウムと十分に混合した後に水酸化リ

16

チウムー水和塩を加え、リチウムとニッケル+コバルト+アルミニウムのモル比が1.05:1となるように調整して前駆体を作製した。

次に、この前駆体を酸素雰囲気中、700℃で20時間焼成し、室温まで冷却した後に乾燥アルゴンガス中で取り出して粉砕し、組成式Li1.。3 Ni。.85 C o。.12 A l o.。3 O 2 で表されるリチウム含有層状ニッケル酸化物粒子を得た。なお、得られたリチウム含有層状ニッケル酸化物粒子はデシケーター中で、0.1 a t m の大気中に3 か月保管した。得られたリチウム含有層状ニッケル酸化物粒子の平均組成は、ICP発光分光法で分析して求めた。また、粉末X線回折では、未反応の水酸化物やアルミン酸リチウム等の不純物のピークは認められなかった。

また、得られたリチウム含有層状ニッケル酸化物粒子の、レーザー回折・散乱法にて求めた平均粒径 D_5 。は 9.5μ m、粒径範囲は 1.5μ m であり、窒素ガス吸着法で測定した B E T 比表面積は $0.35m^2$ / g であった。

次に、得られたリチウム含有層状ニッケル酸化物粒子の表面性状を検査するため、アルゴンイオンエッチングを併用した X線光電子分光法 (XPS) で化合物表面から内部にかけて深さ方向の定性分析をおこなった。

分析は以下の手順でおこなった。まず、露点-50℃以下のドライルーム中で、 X 線光電子分光法用のサンプルステージ上によりつけた導電性カーボンテープ上にリチウム含有層状ニッ

17

ケル酸化物粒子をまぶし、その上に清浄の表面を有するステン レス板を載せて油圧プレス器で適度に圧追し、目視上、平らで 密なサンプルを作製した。

次に、上記サンプルを、トランスファーベッセルを用いて大気に触れないように X 線光電子分光装置内に装着した。 X 線光電子分光法の分析範囲径は 1 0 0 μ m φ としたため、得られるスペクトルは数十個の化合物粒子のからの平均値となるが、同一の化合物を用いて分析サンプルの準備から X 線光電子分光測定までの作業を数十回繰り返しても、得られる情報に誤差は生じなかった。

なお、リチウム含有層状ニッケル酸化物粒子の最表面にはガスや不純物がわずかに吸着しているため、ここでは最表面から 1 n m エッチングした後のスペクトルを真のリチウム含有層状ニッケル酸化物粒子表面のスペクトルと定義した。深さは単結晶Si換算の厚さで算定した。

なお、一連のリチウム含有層状ニッケル酸化物粒子についての表面分析は、上記のように粉体を凝集圧迫した平板についておこなったが、リチウム含有層状ニッケル酸化物粒子をアセンプラック、ポリフッ化ビニリデンと混合して平板上に塗布し、圧迫成形した極板について同様の分析をおこなっても含まれない。つまり、極板についても同様の分析が可能である。

得られたリチウム含有層状ニッケル酸化物粒子の酸素1sスペクトルを第4図に示す。第4図から、表面(L=1 n m)における酸素1sスペクトルも、表面からL=500nmの深さにおける酸素1sスペクトルも、共にD>Eとなっており、表面からの深さに関係なく、粒子のあらゆる場所で吸着した酸素濃度よりも結晶中に含まれる酸素濃度の方が大きいことを示している。なお、500nmより内部では酸素濃度比の変動は見られなかった。

[試験電池の作製]

正極は、上記リチウム含有層状ニッケル酸化物粒子87重量%、アセチレンブラック5重量%、ポリフッ化ビニリデン(PVdF)8重量%を混合し、これに含水量50ppm以下のNーメチルー2ーピロリドン(以下「NMP」とする)を加えてペースト状とし、さらにアルミニウム箔上に塗布、乾燥してエを合材層を形成させて作製した。 負極は、炭素材料(グラファイト)とPVdFとを混合し、これにNMPを加えてペースト状とし、さらに銅箔上に塗布、乾燥して負極合材層を形成させて作製した。

このようにして作製した帯状の正極と負極とを第2図に示すように、セパレータを介して長円形状に捲回して電極群を構成した後、この電極群を長円筒形の有底アルミニウム容器に挿入し、さらに、電極群の巻芯部に充填物をつめた後、電解液を注入し、レーザー溶接にて容器と蓋とを封口溶接した。なお、ペースト作製から電極加工、電池組立に至る全ての工程は露点5

19

0℃以下の乾燥環境下でおこなった。

[特性試験]

この試験電池を、1 C A の電流で4. 2 V の電圧まで充電した後、1 C A の電流で3. 0 V の電圧まで放電したときの放電容量を測定し、正極活物質1 g 当たりの初期放電容量を算定した。

次に、この試験電池を同じ充放電条件で300サイクル充放電した後の放電容量を求め、サイクル後容量保持率を算定した。なお、ここで「サイクル後容量保持率(%)」とは、300サイクル後の放電容量を初期放電容量で除した値とした。

さらに、充放電サイクル試験に供した電池と同時に作製した別の電池で保存特性を比較した。1CAの電流で4.2Vの電圧まで充電した後、1CAの電流で3.0Vまで放電する方放電を初期に3回繰り返し、3回目の放電容量を初期放電容量とした。次に、1CAの電流で4.2Vの電圧まで再度充電した後、電池を60℃の環境下で10日間保存し、保存後も初期を保存後放電容量とし、保存後容量保持率を算定した。なお、ここで「保存後容量保持率(%)」とは、保存後放電容量を初期放電容量で除した値とした。

[実施例2]

実施例1と同様にして前駆体を作製し、この前駆体を、酸素 雰囲気中、700℃で20時間焼成し、室温まで冷却した後に 乾燥アルゴンガス中で取り出して粉砕し、組成式Li_{1.03} Nio.85 Coo.12 Alo.03 O2で表されるリチウム含有層状ニッケル酸化物粒子を得た。得られたリチウム含有層状ニッケル酸化物粒子はデシケーター中で、真空中に1か月保管した。そして、実施例1と同様にして、XPS測定や電池特性測定を行った。

[実 施 例 3]

WO 2005/036680

前駆体を、酸素雰囲気中、700℃で5時間焼成したこと以外は実施例2と同様にして、組成式Li_{1.0} Nio.ss Соо. 12 Alo.os O2 で表されるリチウム含有層状ニッケル酸化物粒子を得た。そして、実施例1と同様の条件で、保管とXPS測定や電池特性測定を行った。

[実施例4]

前駆体を、酸素雰囲気中、650℃で20時間焼成したこと以外は実施例2と同様にして、組成式Li_{1.03}Ni_{0.8} 5 C o _{0 . 1 2} Al_{0 . 0 3} O ₂ で表されるリチウム含有層状ニッケル酸化物粒子を得た。そして、実施例1と同様の条件で、保管と X P S 測定や電池特性測定を行った。

[比較例1]

前駆体を、実施例2と同じ条件で焼成および粉砕して、組成式Li1.03Ni0.85Co0.12Alo.03O2で表されるリチウム含有層状ニッケル酸化物粒子を得た。そして、デシケーター中で、真空中に12か月保管した後に、実施例1と同様の条件でXPS測定や電池特性測定を行った。

[比較例2]

21

実施例1と同様にして前駆体を作製し、この前駆体を、酸素雰囲気中、700℃で20時間焼成し、室温まで冷却した後に乾燥アルゴンガス中で取り出し、その後乾燥空気中て粉砕し、組成式Li1.03Nio.85Coo.12Alo.03O2で表されるリチウム含有層状ニッケル酸化物粒子を得た。得られたリチウム含有層状ニッケル酸化物粒子はデシケーター中で、真空中に1か月保管した。そして、実施例1と同様にして、XPS測定や電池特性測定を行った。

[比較例3]

実施例1と同じ前駆体を実施例2と同じ条件で焼成および粉砕して、組成式Li¹.。。Nio.ssCoo.12Al。.。。O2で表されるリチウム含有層状ニッケル酸化物粒子を得た。そして、1atmの大気中で1か月保存し、実施例1と同様の条件で、保管とXPS測定や電池特性測定を行った。

実施例1~4および比較例1~3に用いたリチウム含有層状ニッケル酸化物粒子の、ΧΡS測定結果から得られた、表面からの深さL(nm)における酸素濃度比α」の値を表1に、表面からの深さL(nm)における(α。-α」)/α。の値を表2に示した。なお、いずれの実施例および比較例においても、表面からの深さが500nm以上の範囲においては、α」の値に変化はなかった。したがって、L=500nmにおけるαև値をα。とした。また、電池の特性測定結果を表3に示した

表 1

	粒子表面からの深さL(n m)におけるα μの値		るα」の値	
	L=10	L=50	L=100	5 0 0
実施例1	4 9	6 8	7 4	8 0
実施例2	4 9	7 0	7 7	8 1
実施例3	4 7	6 9	7 5	8 1
実施例4	4 8	6 8	7 4	8 0
比較例1	4 1	6 2	7 0	8 1
比較例2	3 8	5 5	6 4	8 0 .
比較例3	3 5	4 9	6 0	8 1

表 2

	粒子表面からの深さL(n m)における (α ₀ – α _L)/α ₀ の値			
	1 0	5 0	1 0 0	5 0 0
実施例1	0.388	0.135	0.075	0
実施例2	0.395	0.136	0.049	0
実施例3	0.420	0.148	0.074	0
実施例4	0.400	0.150	0.075	0
比較例1	0.494	0.235	0.136	0
比較例2	0.525	0.313	0.200	0
比較例3	0.568	0.395	0.259	0

表 3

	初期 放電 容量 A h	サイクル後容量保 持率 %	保存後容量保持率%
実施例1	1 9 2	8 0	8 9
実施例2	1 9 1	8 1	9 0
実施例3	1 9 0	8 1	9 0
実施例4	1 8 8	8 2	9 1
比較例1	1 8 8	7 8	8 8
比較例2	1 8 8	7 7	8 6
比較例3	1 8 7	7 7	8 7

表 1 ~表 3 に示された結果より、組成が一般式 L i a N i x C o y A l z O 2 (0 . 3 ≦ a ≦ 1 . 0 5 、 0 . 7 ≦ x ≦ 0 . 8 7 、 0 . 1 ≦ y ≦ 0 . 2 7 、 0 . 0 3 ≦ z ≦ 0 . 1 (この場

23

一方、(α_L 2 $-\alpha_L$ 1) $/\alpha_L$ 2 \leq 0 . 1、L 1 \leq 1 0 0 、L 2 \geq 5 0 0 となるL 1 およびL 2 の組み合わせが存在しない比較例 1 \sim 3 においては、サイクル後容量保持率および保存後容量保持率とも劣っていた。

このように、Ni系化合物を正極活物質に用いた電池の性能は、化合物表面の性状に敏感に対応することから、期待通りの良好な電池性能を得るには、表面部分の品質管理が必須であり、それは酸素の化学結合状態が規定範囲にあるか否かで判断できることがわかった。

本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範囲を逸脱することなく様々な変更や修正を加 えることができることは当業者にとって明らかである。

本出願は、2003年10月7日出願の日本特許出願(特願2003-348728)に基づくものであり、その内容はここに参照として取り込まれる。

産業上の利用可能性

以上述べたように、本発明によって非水電解質二次電池のサイクル後容量保持率および保存後容量保持率が向上することから、本発明は産業上の利用可能性を十分に備えるものである。

請 求 の 範 囲

- 1. 一般式Li。Ni、Co,Al、MbO2で示されるリチウム含有層状ニッケル酸化物の粒子を含む正極を備えた非水電解質二次電池において、
- $0.3 \le a \le 1.05$ 、 $0.7 \le x \le 0.87$ 、 $0.1 \le y \le 0.27$ 、 $0.03 \le z \le 0.1$ 、 $0 \le b \le 0.1$ 、Mは Ni、CoおよびAlを除く金属元素から選択される少なくとも一つであり、

- 2. 請求項1に記載の非水電解質二次電池において、前記 粒子が、アルゴンガス雰囲気中で粉砕されたものである。
- 3. 請求項1に記載の非水電解質二次電池において、前記 粒子の平均粒径 D 5 o が 4 ~ 2 0 μ m である。
- 4. 請求項3に記載の非水電解質二次電池において、前記粒子の平均粒径D₅₀が9~10μmである。
- 5. 請求項1に記載の非水電解質二次電池において、前記粒子のBET比表面積が0.1~1 m²/gである。

26

- 6. 請求項 5 に記載の非水電解質二次電池において、前記粒子のBET比表面積が 0.3~0.4 m²/gである。
 - 7. 請求項1に記載の非水電解質二次電池において、
- $-0.1 \le (\alpha_{L2} \alpha_{L1}) / \alpha_{L2} \le 0.1$ 、L $1 \le 100$ 、L $2 \ge 500$ となるL 1 およびL 2 の組み合わせが存在する。
 - 8. 請求項7に記載の非水電解質二次電池において、
- $0 \le (\alpha_{L}_2 \alpha_{L}_1) / \alpha_{L}_2 \le 0.1$ 、 $L 1 \le 1 0 0$ 、 $L 2 \ge 5 0 0$ となるL 1およびL 2の組み合わせが存在する
 - 9. 請求項1に記載の非水電解質二次電池において、
 - $0.98 \le x + y + z + b \le 1.01$ rbs.
 - 10. 請求項1に記載の非水電解質二次電池において、MはNiおよびCoを除く遷移金属元素である。

1/5

第1図

2/5

第2図

第3図

3 / 5

第4図

4 / 5

第5図

5 / 5

第6図

第7図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/015093

	ATION OF SUBJECT MATTER H01M4/58, H01M4/02, H01M10/40	1	
According to Inte	ernational Patent Classification (IPC) or to both national	classification and IPC	
B. FIELDS SEA			
Int.Cl ⁷	entation searched (classification system followed by cla H01M4/58, H01M4/02, H01M10/40)	
Jitsuyo Kokai Ji	tsuyo Shinan Koho 1971-2004 Ji	roku Jitsuyo Shinan Koho tsuyo Shinan Toroku Koho	1994-2004 1996-2004
Electronic data b	ase consulted during the international search (name of d	tata base and, where practicable, search te	rms used)
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	·	Relevant to claim No.
X Y A	JP 2001-216965 A (Toyota Center Development Laboratories, Inc. 10 August, 2001 (10.08.01), Claim 1; Par. Nos. [0021], [0 (Family: none)	:.),	1,3,5-10 4 2
X Y A	JP 2001-266876 A (Sony Corp. 28 September, 2001 (28.09.01) Claim 1; Par. No. [0024] (Family: none)		1,3,5,7-10 4,6 2
X Y A	JP 2002-222648 A (Toshiba Co 09 August, 2002 (09.08.02), Claim 1; Par. No. [0039] (Family: none)	rp.),	1,7-10 3-6 2
× Further do	currents are listed in the continuation of Box C.	See patent family annex.	<u> </u>
* Special categ "A" document de	gories of cited documents: efining the general state of the art which is not considered icular relevance	"T" later document published after the inte date and not in conflict with the applic the principle or theory underlying the in	ation but cited to understand
	cation or patent but published on or after the international	"X" document of particular relevance; the considered novel or cannot be considered.	claimed invention cannot be dered to involve an inventive
"L" document w	which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other on (as specified)	"Y" document of particular relevance; the considered to involve an inventive	laimed invention cannot be
"O" document re "P" document pu	in (as specified) ferring to an oral disclosure, use, exhibition or other means ublished prior to the international filing date but later than date claimed	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the "&" document member of the same patent if	documents, such combination e art
24 Nove	d completion of the international search ember, 2004 (24.11.04)	Date of mailing of the international sear 14 December, 2004	ch report (14.12.04)
	ng address of the ISA/ se Patent Office	Authorized officer	
		Telephone No.	
Facsimile No.	() (cecond cheet) (Ignuam; 2004)	1 diophono ivo.	

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/015093

··). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X Y A	JP 10-321224 A (NIKKI CHEMICAL CO., LTD.), 04 December, 1998 (04.12.98), Par. Nos. [0016] to [0023] (Family: none)	1,7-10 3-6 2
X Y	JP 2003-17055 A (Toyota Central Research And Development Laboratories, Inc.),	1,7-10 3-6
A	17 January, 2003 (17.01.03), Claim 3; Par. Nos. [0054] to [0063] (Family: none)	2
Y	JP 2002-313420 A (Mitsubishi Chemical Corp.), 25 October, 2002 (25.10.02), Par. No. [0073] (Family: none)	3-6
Y	JP 2003-7345 A (Mitsubishi Chemical Corp.), 10 January, 2003 (10.01.03), Par. No. [0144] & EP 1381106 A1 & US 2004/76883 A1	3-6
E,X E,A	JP 2004-327246 A (Sumitomo Metal Mining Co., Ltd.), 18 November, 2004 (18.11.04), Claim 1; Par. Nos. [0071] to [0081] (Family: none)	1,3,4,7-10