- Loan Prediction

The aim of this project is to predict real-estate prices using the machine learning algorithms: Logistic Regression, Decision tree, Random Forest.

This file is the EDA and its purpose is to go through the sevarl steps of working with data - data gathering, data understanding, data preparation. Visualization of the information is made for better understanding.

Loading the data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from google.colab import files
from datetime import datetime
import seaborn as sns
%matplotlib inline
import io
```

Using two files which later will be integrated into one dataframe.

```
# Load the data
local_file = files.upload()
train_data = io.BytesIO(local_file['train1.csv'])
train_data2 = io.BytesIO(local_file['train.csv'])
df1 = pd.read_csv(train_data)
df2 = pd.read_csv(train_data2)
```

```
Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving train1.csv to train (2).csv

Saving train1.csv to train1 (2).csv
```

Data integration

dt1.into()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 367 entries, 0 to 366
Data columns (total 12 columns):
                        Non-Null Count Dtype
     Column
    -----
- - -
 0
     Loan ID
                        367 non-null
                                         object
     Gender
                                         object
 1
                        356 non-null
 2
     Married
                        367 non-null
                                         object
 3
     Dependents
                        357 non-null
                                         object
 4
     Education
                        367 non-null
                                         object
 5
     Self Employed
                        344 non-null
                                         object
 6
     ApplicantIncome
                        367 non-null
                                         int64
 7
     CoapplicantIncome 367 non-null
                                         int64
 8
     LoanAmount
                        362 non-null
                                         float64
 9
     Loan Amount Term
                        361 non-null
                                         float64
 10
    Credit History
                        338 non-null
                                         float64
 11 Property Area
                        367 non-null
                                         object
```

dtypes: float64(3), int64(2), object(7)

memory usage: 34.5+ KB

It can be seen that there are some numeric values and also categorical ones. Later, the categorical will have to be converted into either float or int in order to be plotted and then used for the training of the models. There are also missing values in the dataset.

df2.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
     Column
                        Non-Null Count Dtype
                        -----
    ----
---
     Loan_ID
 0
                        614 non-null
                                        object
 1
     Gender
                                        object
                        601 non-null
 2
     Married
                                        object
                        611 non-null
 3
     Dependents
                        599 non-null
                                        object
     Education
                                        object
 4
                        614 non-null
 5
     Self Employed
                        582 non-null
                                        object
     ApplicantIncome
                                        int64
 6
                        614 non-null
 7
     CoapplicantIncome 614 non-null
                                        float64
 8
     LoanAmount
                        592 non-null
                                        float64
 9
     Loan Amount Term
                        600 non-null
                                        float64
 10
    Credit History
                        564 non-null
                                        float64
 11
    Property Area
                        614 non-null
                                        object
    Loan Status
                        614 non-null
                                        object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
```

It can be seen that there are some numeric values and also categorical ones. Later, the categorical will have to be converted into either float or int in order to be plotted and then used for the training of the models. There are also missing values in the dataset.

Creating one dataframe out of the two dataframes from the csv files.

```
frames = [df1, df2]

df = pd.concat(frames)
df
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
0	LP001015	Male	Yes	0	Graduate	No	5720
1	LP001022	Male	Yes	1	Graduate	No	3076
2	LP001031	Male	Yes	2	Graduate	No	5000
3	LP001035	Male	Yes	2	Graduate	No	2340
4	LP001051	Male	No	0	Not Graduate	No	3276
609	LP002978	Female	No	0	Graduate	No	2900
610	LP002979	Male	Yes	3+	Graduate	No	4106
611	LP002983	Male	Yes	1	Graduate	No	8072
612	LP002984	Male	Yes	2	Graduate	No	7583
613	LP002990	Female	No	0	Graduate	Yes	4583
004	40						

981 rows × 13 columns

Data storage solution:

An essential part of Machine Learning is the data storage solution for the selected data and machine learning model. In order to accomplish the most efficient manner of working with data during this project, the following tools were used:

- Git Version Control
- Data Version Control (DVC)

Git Version Control: Git has been a popular tool among programmers and it is so for a reason. It allows tracking changes in any set of files, usually used for coordinating work among programmers collaboratively developing source code during software development.

Data Version Control (DVC): Data Version Control is a new type of data versioning, workflow, and experiment management software that builds upon Git (although it can work stand-alone). Using Git and DVC, machine learning teams can version experiments, manage large datasets, and make projects reproducible. By utilizing DVC data will be tracked and stored in an effective and efficient way because the data is accessible from everywhere via internet connection for every contributor.

Summary:

- DVC will create reference files to data versions
- · Git will store the DVC files

At the current stage, the dataset has been loaded after integrating it. Changes were made to like

Data analysis:

Checking the dimension of the dataset and the features.

Take a look at the summary of the numerical fields.

df.describe()

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	981.000000	981.000000	954.000000	961.000000	902.000000
mean	5179.795107	1601.916330	142.511530	342.201873	0.835920
std	5695.104533	2718.772806	77.421743	65.100602	0.370553
min	0.000000	0.000000	9.000000	6.000000	0.000000
25%	2875.000000	0.000000	100.000000	360.000000	1.000000
50%	3800.000000	1110.000000	126.000000	360.000000	1.000000
75%	5516.000000	2365.000000	162.000000	360.000000	1.000000
max	81000.000000	41667.000000	700.000000	480.000000	1.000000

df.shape

(981, 13)

Here it can be seen the shape of our data with the .shape. Here are the the rows and columns(981, 13).

To view what data that is stored the columns should be explored. This will return the columns of the data.

df.columns

After reviewing all the columns, in the next cell is outlined only the quantitive columns.

```
quantitative = [f for f in df.columns if df.dtypes[f] != 'object']
print(quantitative)
```

```
['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term', 'Credit_Histo
```

To look at the data I'll use the .head() method from pandas. This will show the first 5 items in the dataframe.

```
#First 5 rows of our dataset
df.head()
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Со
0	LP001015	Male	Yes	0	Graduate	No	5720	
1	LP001022	Male	Yes	1	Graduate	No	3076	
2	LP001031	Male	Yes	2	Graduate	No	5000	
3	LP001035	Male	Yes	2	Graduate	No	2340	
4	LP001051	Male	No	0	Not Graduate	No	3276	

To look at the data I'll use the .tail() method from pandas. This will show us the last 5 items in the #Last 5 rows of our dataset df.tail()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 981 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	981 non-null	object
1	Gender	957 non-null	object
2	Married	978 non-null	object
3	Dependents	956 non-null	object
4	Education	981 non-null	object
5	Self_Employed	926 non-null	object
6	ApplicantIncome	981 non-null	int64
7	CoapplicantIncome	981 non-null	float64
8	LoanAmount	954 non-null	float64
9	Loan_Amount_Term	961 non-null	float64
10	Credit_History	902 non-null	float64
11	Property_Area	981 non-null	object
12	Loan_Status	614 non-null	object

dtypes: float64(4), int64(1), object(8)

memory usage: 107.3+ KB

It can be seen that there are features that are numeric and also objects. Later, the ones that are not numeric will have to be converted into either float or int in order to be plotted and then used for the training of the models. There are also missing values in the dataset, which will be handled later.

Sorting the data by Loan_Status and showing 50 elements.

df.sort_values('Loan_Status', ascending = True)[:50]

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
613	LP002990	Female	No	0	Graduate	Yes	4583
489	LP002556	Male	No	0	Graduate	No	2435
186	LP001641	Male	Yes	1	Graduate	Yes	2178
487	LP002547	Male	Yes	1	Graduate	No	18333
486	LP002545	Male	No	2	Graduate	No	3547
191	LP001656	Male	No	0	Graduate	No	12000
192	LP001657	Male	Yes	0	Not Graduate	No	6033
195	LP001665	Male	Yes	1	Graduate	No	3125
199	LP001673	Male	No	0	Graduate	Yes	11000
479	LP002533	Male	Yes	2	Graduate	No	2947
202	LP001682	Male	Yes	3+	Not Graduate	No	3992
477	LP002530	NaN	Yes	2	Graduate	No	2873
209	LP001702	Male	No	0	Graduate	No	3418
210	LP001708	Female	No	0	Graduate	No	10000
211	LP001711	Male	Yes	3+	Graduate	No	3430
471	LP002517	Male	Yes	1	Not Graduate	No	2653
469	LP002505	Male	Yes	0	Graduate	No	4333
216	LP001722	Male	Yes	0	Graduate	No	150
218	LP001732	Male	Yes	2	Graduate	NaN	5000
466	LP002500	Male	Yes	3+	Not Graduate	No	2947
220	LP001736	Male	Yes	0	Graduate	No	2221
464	LP002493	Male	No	0	Graduate	No	4166
225	LP001751	Male	Yes	0	Graduate	No	3250
226	LP001754	Male	Yes	NaN	Not Graduate	Yes	4735
459	LP002473	Male	Yes	0	Graduate	No	8334
457	LP002467	Male	Yes	0	Graduate	No	3708
236	LP001786	Male	Yes	0	Graduate	NaN	5746
452	LP002448	Male	Yes	O -Hv2Kd\/Va4Edf#s	Graduate	No IVYI B&printMode=true	3948 7/2

				-		• • •	
183	LP001637	Male	Yes	1	Graduate	No	33846
450	LP002446	Male	Yes	2	Not Graduate	No	2309
181	LP001634	Male	No	0	Graduate	No	1916
179	LP001630	Male	No	0	Not Graduate	No	2333
524	LP002697	Male	No	0	Graduate	No	4680
135	LP001488	Male	Yes	3+	Graduate	No	4000
136	LP001489	Female	Yes	0	Graduate	No	4583
519	LP002684	Female	No	0	Not Graduate	No	3400
138	LP001492	Male	No	0	Graduate	No	14999
139	LP001493	Male	Yes	2	Not Graduate	No	4200
140	LP001497	Male	Yes	2	Graduate	No	5042
518	LP002683	Male	No	0	Graduate	No	4683
517	LP002682	Male	Yes	NaN	Not Graduate	No	3074
514	LP002652	Male	No	0	Graduate	No	5815
513	LP002648	Male	Yes	0	Graduate	No	2130
148	LP001519	Female	No	0	Graduate	No	10000
150	LP001528	Male	No	0	Graduate	No	6277
510	LP002637	Male	No	0	Not Graduate	No	3598
152	LP001531	Male	No	0	Graduate	No	9166
153	LP001532	Male	Yes	2	Not Graduate	No	2281
507	LP002625	NaN	No	0	Graduate	No	3583
503	LP002618	Male	Yes	1	Not Graduate	No	4050

Sorting the data by ${\tt Education}$ and showing 50 elements.

df.sort_values('Education')[:50]

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome
0	LP001015	Male	Yes	0	Graduate	No	5720
234	LP001778	Male	Yes	1	Graduate	No	3155
235	LP001784	Male	Yes	1	Graduate	No	5500
236	LP001786	Male	Yes	0	Graduate	NaN	5746
237	LP001788	Female	No	0	Graduate	Yes	3463
238	LP001790	Female	No	1	Graduate	No	3812
239	LP001792	Male	Yes	1	Graduate	No	3315
240	LP001798	Male	Yes	2	Graduate	No	5819
242	LP001806	Male	No	0	Graduate	No	2965
243	LP001807	Male	Yes	2	Graduate	Yes	6250
245	LP001813	Male	No	0	Graduate	Yes	6050
233	LP001776	Female	No	0	Graduate	No	8333
246	LP001814	Male	Yes	2	Graduate	No	9703
249	LP001825	Male	Yes	0	Graduate	No	1809
251	LP001836	Female	No	2	Graduate	No	3427
254	LP001844	Male	No	0	Graduate	Yes	16250
255	LP001846	Female	No	3+	Graduate	No	3083
257	LP001854	Male	Yes	3+	Graduate	No	5250
258	LP001859	Male	Yes	0	Graduate	No	14683
260	LP001865	Male	Yes	1	Graduate	No	6083
261	LP001868	Male	No	0	Graduate	No	2060
262	LP001870	Female	No	1	Graduate	No	3481
263	LP001871	Female	No	0	Graduate	No	7200
248	LP001824	Male	Yes	1	Graduate	No	2882
231	LP001768	Male	Yes	0	Graduate	NaN	3716
230	LP001765	Male	Yes	1	Graduate	No	2491
229	LP001761	Male	No	0	Graduate	Yes	6400
196	LP001666	Male	No	0	Graduate	No	8333
198	LP001671	Female	Yes	0	Graduate	No	3416
199	LP001673	Male	No	0	Graduate	Yes	11000
				_	<u> </u>		1000

			Loan	_Predictor_EDA_f	final.ipynb - Colabo	oratory	
201	LP001677	Male	No	2	Graduate	No	4923
206	LP001693	Female	No	0	Graduate	No	3244
208	LP001699	Male	No	0	Graduate	No	2479
209	LP001702	Male	No	0	Graduate	No	3418
210	LP001708	Female	No	0	Graduate	No	10000
211	LP001711	Male	Yes	3+	Graduate	No	3430
212	LP001713	Male	Yes	1	Graduate	Yes	7787
214	LP001716	Male	Yes	0	Graduate	No	3173
216	LP001722	Male	Yes	0	Graduate	No	150
217	LP001726	Male	Yes	0	Graduate	No	3727
218	LP001732	Male	Yes	2	Graduate	NaN	5000
219	LP001734	Female	Yes	2	Graduate	No	4283
220	LP001736	Male	Yes	0	Graduate	No	2221
221	LP001743	Male	Yes	2	Graduate	No	4009
222	LP001744	Male	No	0	Graduate	No	2971
223	LP001749	Male	Yes	0	Graduate	No	7578
224	LP001750	Male	Yes	0	Graduate	No	6250
225	LP001751	Male	Yes	0	Graduate	No	3250
227	LP001758	Male	Yes	2	Graduate	No	6250
220	I D001760	Mala	Maki	NaN	Craduata	No	1750

This is a representation of one row content, which helps by showing what to look for and what to expect to be in each other row.

df.iloc[0]

Loan_ID	LP001015
Gender	Male
Married	Yes
Dependents	0
Education	Graduate
Self_Employed	No
ApplicantIncome	5720
CoapplicantIncome	0
LoanAmount	110
Loan_Amount_Term	360
Credit_History	1
Property_Area	Urban
Loan_Status	NaN
Name: 0, dtvpe: obie	ct

Get the unique values and their frequency of variable. (Checking how many times the certain value occurs.)

```
df['Loan_Status'].value_counts()
     Υ
          422
     Ν
          192
     Name: Loan_Status, dtype: int64
df['ApplicantIncome'].value_counts()
     2500
              13
     5000
              11
     3333
              10
     3500
               9
     2600
               8
     5391
               1
     15000
               1
     14999
               1
     7830
               1
     1811
               1
     Name: ApplicantIncome, Length: 752, dtype: int64
df['Gender'].value_counts()
     Male
               775
     Female
               182
     Name: Gender, dtype: int64
df['Married'].value_counts()
     Yes
            631
            347
     No
     Name: Married, dtype: int64
df['CoapplicantIncome'].value_counts()
     0.0
               429
     2500.0
                  6
     1666.0
                  5
                  5
     2000.0
                  5
     2083.0
     6250.0
                  1
     1742.0
                  1
     189.0
                  1
     1868.0
                  1
     4266.0
                  1
     Name: CoapplicantIncome, Length: 437, dtype: int64
```

```
df['Dependents'].value counts()
     0
            545
     2
            160
     1
            160
     3+
             91
     Name: Dependents, dtype: int64
df['Education'].value_counts()
     Graduate
                       763
     Not Graduate
                       218
     Name: Education, dtype: int64
df['Self Employed'].value counts()
     No
             807
     Yes
             119
     Name: Self Employed, dtype: int64
df['Loan Status'].unique()
     array([nan, 'Y', 'N'], dtype=object)
df['ApplicantIncome'].unique()
              JÖDJ,
                      40Z8,
                              4010,
                                                             300/,
                                     3/19,
                                             ۷۵۵۵,
                                                     3833,
                                                                     TODE,
                                                                             2/92,
                              2995,
              2982, 18840,
                                      3579,
                                              3835,
                                                     3854,
                                                             3508,
                                                                     1635, 24797,
              2773,
                      5769,
                              3634, 29167,
                                              5530,
                                                     9000,
                                                             8750,
                                                                     1972,
                                                                             4983,
                              3166,
                      3667,
                                              2241,
                                                             2666,
              8333,
                                      3271,
                                                     1792,
                                                                     6478,
                                                                             3808,
                      4120,
              3729,
                              6300, 14987,
                                               570,
                                                     2600,
                                                             2733,
                                                                     3859,
                                                                             6825,
              3708,
                      5314,
                              2366,
                                      2066,
                                             3767,
                                                     7859,
                                                             4283,
                                                                     1700,
                                                                             4768,
              3083,
                      2667,
                              1647,
                                      3400, 16000,
                                                     2875,
                                                             5041,
                                                                     6958,
                                                                             5509,
              9699,
                      3621,
                              4709,
                                      3015,
                                              2292,
                                                     2360,
                                                             2623,
                                                                     3972,
                                                                             3522,
                              2868,
              6858,
                      8334,
                                      3418,
                                             8667,
                                                     2283,
                                                             5817,
                                                                     5119,
                                                                             5316,
                              3132,
                                             2269,
              7603,
                      3791,
                                      8550,
                                                     4009,
                                                             4158,
                                                                     9200,
                                                                             5849,
                      2583,
                                                     4006, 12841,
              3000,
                              6000,
                                      5417,
                                             3036,
                                                                     3200,
                                                                             1853,
              1299,
                      4950,
                              3596,
                                             7660,
                                                     5955,
                                      4887,
                                                             3365,
                                                                     3717,
                                                                             9560,
              2799,
                      4226,
                              1442,
                                      3750,
                                              3167,
                                                     4692,
                                                             2275,
                                                                     1828,
                                                                             3748,
              3600,
                      1800,
                              3941,
                                     4695,
                                              3410,
                                                     5649,
                                                             5821,
                                                                     2645,
                                                                             1928,
              3086,
                      4230,
                              4616, 11500,
                                             2132,
                                                     3366,
                                                             8080,
                                                                     3357,
                                                                             3029,
              2609,
                      4945,
                              5726, 10750,
                                              7100,
                                                             3208,
                                                     4300,
                                                                     1875,
                                                                             4755,
                              3846,
              5266,
                      1000,
                                      2395,
                                             1378,
                                                     3988,
                                                             8566,
                                                                     5695,
                                                                             2958,
                                     2484,
              3273,
                      4133,
                              6782,
                                             1977,
                                                     4188,
                                                             1759,
                                                                     4288,
                                                                             4843,
             13650,
                      4652,
                              3816,
                                      3052, 11417,
                                                     7333,
                                                             3800,
                                                                     2071,
                                                                             2929,
              3572,
                              5050, 14583,
                      7451,
                                             2214,
                                                     5568, 10408,
                                                                     2137,
                                                                             2957,
              3692, 23803,
                              3865, 10513,
                                             6080, 20166,
                                                             2718,
                                                                     3459,
                                                                             4895,
              3316, 14999,
                              4200,
                                              6950,
                                                     2698, 11757,
                                      5042,
                                                                     2330, 14866,
                                                             3254, 39999,
              1538,
                      4860,
                              6277,
                                      2577,
                                             9166,
                                                     2281,
                                                                             9538,
              2980,
                      1863,
                              7933,
                                      9323,
                                             3707,
                                                     2439,
                                                             2237,
                                                                     1820, 51763,
              4344,
                      3497,
                              2045,
                                      5516,
                                             6400,
                                                     1916,
                                                             4600, 33846,
                                                                             3625,
             39147,
                      2178,
                              2383.
                                       674.
                                              9328,
                                                     4885, 12000,
                                                                     6033.
                                                                             3858.
              4191
                                              4923
                                                      3992
                                                             3917
                      1907
                              3416
                                    11000
                                                                     4408
                                                                             3244
```

```
テエンエゥ
         エンしょ 5
                                  マンムンり
                                          ンノンとり
                                                  و ۱ ـ د ر ر
                 ンマエしり
 3975,
         2479,
                 3430,
                         7787,
                                  5703,
                                          3173,
                                                  3850,
                                                            150,
                                                                   3727,
 2221,
                 7578,
                         4735,
                                                                   5500,
         2971,
                                  4758,
                                          2491,
                                                  3716,
                                                           3155,
 5746,
         3463,
                 3812,
                         3315,
                                  5819,
                                          2510,
                                                  2965,
                                                           3406,
                                                                   6050,
                 2882,
 9703,
         6608,
                         1809,
                                  1668,
                                          3427,
                                                  2661, 16250,
                                                                   6045,
                                                                   4095,
 5250, 14683,
                 4931,
                         6083,
                                  2060,
                                          3481,
                                                  7200,
                                                           5166,
 4708,
         2876,
                 3237,
                        11146,
                                  2833,
                                          2620,
                                                  3993,
                                                          3103,
                                                                   4100,
 4053,
         3927,
                 2301,
                                20667,
                                          3158,
                                                  3704,
                                                                   9508,
                         1811,
                                                          4124,
                 3153,
 3075,
         4400,
                         4416,
                                  6875,
                                          1625,
                                                  3762, 20233,
                                                                   7667,
 2927,
         2507,
                 2473,
                         3399,
                                  2058,
                                          3541,
                                                  4342,
                                                           3601, 15000,
 8666,
         4917,
                 5818,
                         4384,
                                  2935, 63337,
                                                  9833,
                                                           5503,
                                                                   1830,
                 2378,
 4160,
         2647,
                         4554,
                                  2499,
                                          3523,
                                                  6333,
                                                          2625,
                                                                   9083,
 2423,
         3813,
                 3875,
                         5167,
                                  4723,
                                                  6822,
                                                                   5124,
                                          3013,
                                                          6216,
 6325, 19730, 15759,
                         5185,
                                  3062,
                                          2764,
                                                  4817,
                                                          4310,
                                                                   3069,
                 7167,
                                                  5488,
 5391,
         5941,
                         4566,
                                  2346,
                                          3010,
                                                          9504,
                                                                   1993,
 3100,
         3033,
                 3902,
                         1500,
                                  2889,
                                          2755,
                                                  1963,
                                                          7441,
                                                                   4547,
 2167,
         2213,
                 8300, 81000,
                                  3867,
                                          6256,
                                                  6096,
                                                          2253,
                                                                   2149,
 1600,
         1025,
                 3246,
                         5829,
                                  2720,
                                          7250, 14880,
                                                                   5935,
                                                          4606,
 2920,
         2717,
                 8624, 12876,
                                  2425, 10047,
                                                  1926, 10416,
                                                                   7142,
 3660,
         7901,
                 4707, 37719,
                                  3466,
                                          3539,
                                                  3340,
                                                                   2309,
                                                          2769,
 1958,
                 2483,
         3948,
                         7085,
                                  4301,
                                          4354,
                                                  7740,
                                                          5191,
                                                                   2947,
16692,
          210,
                 3450,
                         2653,
                                  4691,
                                          5532, 16525,
                                                          6700,
                                                                   2873,
                 3095, 10833,
                                  3547, 18333,
16667,
         4350,
                                                  2435,
                                                           2699,
                                                                   3691,
                 3326,
                                  2895,
17263,
         3597,
                         4625,
                                          6283,
                                                   645,
                                                          4865,
                                                                   4050,
                                                          5815,
 3814, 20833, 13262,
                         3598,
                                  6065,
                                          3283,
                                                  2130,
                                                                   2031,
                                                  3775,
 4683,
         2192,
                 5677,
                         7948,
                                  4680, 17500,
                                                                   2679,
                                                           5285,
 6783,
         4281,
                 3588, 11250, 18165,
                                          2550,
                                                  6133,
                                                          3617,
                                                                   6417,
 4608,
         2138,
                 3652,
                         2239,
                                  2768,
                                          3358,
                                                  2526,
                                                           2785,
                                                                   6633,
         2454,
                 3593,
                         5468, 10139,
                                                  3675, 19484,
 2492,
                                          4180,
                                                                   5923,
 5800,
         8799,
                 4467,
                         5116, 16666,
                                          6125,
                                                  6406,
                                                           3087,
                                                                   3229,
 1782,
         3182,
                 6540,
                         1836,
                                  1880,
                                          2787,
                                                  2297,
                                                          2726,
                                                                   9357,
16120,
                 2987,
                         9963,
                                  5780,
                                                  2894,
                                                                   3987,
         6383,
                                           416,
                                                          3676,
 3232,
         2900,
                 4106,
                         8072,
                                  75831)
```

sns.countplot(y = 'Gender', hue = 'Loan Status', data = df)

The diagram shows on one hand that there are more male applicants than female

The percentage of males who applied for a loan is greater than the one of females.

According to the pie chart, there are more approved loans that disapproved.

Distribution Analysis

```
grid=sns.FacetGrid(df, row='Gender', col='Married', size=2.2, aspect=1.6)
grid.map(plt.hist, 'ApplicantIncome', alpha=.5, bins=10)
grid.add_legend()
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:316: UserWarning: The `size`
warnings.warn(msg, UserWarning)
<seaborn.axisgrid.FacetGrid at 0x7f6d7545e550>

Males have the highest income according to the data. Males that are married have greater income than unmarried male. And the same goes for females.

```
grid=sns.FacetGrid(df, row='Gender', col='Education', size=2.2, aspect=1.6)
grid.map(plt.hist, 'ApplicantIncome', alpha=.5, bins=10)
grid.add_legend()
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:316: UserWarning: The `size` warnings.warn(msg, UserWarning)

<seaborn.axisgrid.FacetGrid at 0x7f6d75226850>

A graduate who is a male has more income than a one whithout and the same goes for females.

200]

Here I am exploring the distribution of the numerical variables mainly the Applicant income and the Loan amount.

What can be noticed are quite a few outliers.

```
sns.distplot(df.ApplicantIncome,kde=False)
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `diwarnings.warn(msg, FutureWarning)

People with better education should normally have a higher income, we can check that by plotting the education level against the income.

```
df.boxplot(column='ApplicantIncome')
plt.show()
```


df.boxplot(column='ApplicantIncome', by = 'Education')
plt.show()

/usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarr return array(a, dtype, copy=False, order=order)

We can conclude that there is no substantial different between the mean income of graduate and non-graduates. However, there are a higher number of graduates with very high incomes, which are appearing to be the outliers.

sns.boxplot(x='Education',y='ApplicantIncome',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f6d7502fb10>

The distributions shows that the graduates have more outliers which means that the people with huge income are most likely to be educated.

Education

Examining the data distributions of the features. I will start with the target variable, Loan Amount, to make sure it's normally distributed.

This is important because most machine learning algorithms make the assumption that the data is normally distributed. When data fits a normal distribution, statements about the price using analytical techniques will be made.

Transforming the Loan Amount into normal distribution.

```
df['LoanAmount_log'] = np.log(df['LoanAmount'])
df['LoanAmount_log'].hist(bins=20)
```


It can be seen that the Loan Amount distribution is not skewed after the transformation, but normally distributed.

The transformed data will be used in in the dataframe and remove the skewed distribution: **Normally distributed** means that the data is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean.

Sometimes loan will be also given based on the co applicant income. Some people might have a low income, but strong CoappliantIncome, so a good idea would be to combine them in a TotalIncome column.

```
df['LoanAmount_log']=np.log(df['LoanAmount'])
df['TotalIncome']= df['ApplicantIncome'] + df['CoapplicantIncome']
df['TotalIncome_log']=np.log(df['TotalIncome'])
sns.distplot(df.TotalIncome,kde=False)
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `di

Probability of getting a loan

```
250 ]
```

Checking the credit history from the dataset because it is a vital part of the decision whether a person is proper for a loan.

```
temp_credit = df['Credit_History'].value_counts(ascending=True)
print ('Frequency Table for Credit History:')
print (temp_credit)
```

```
Frequency Table for Credit History:
0.0 148
1.0 754
Name: Credit_History, dtype: int64
```

```
temp3 = pd.crosstab(df['Credit_History'], df['Loan_Status'])
temp3.plot(kind='bar', stacked=True, color=['blue','green'], grid=False)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f6d74cdd850>

This shows that the chances of getting a loan are higher if the applicant has a valid credit history.

Data cleaning & Data processing

Converting all categorical variables into numeric ones to use them in the training of the models.

One-Hot Encoding: This process takes categorical variables and converts them to a numerical representation without an arbitrary ordering. What computers know is numbers and for machine learning it is vital to accommodate the feautures into numeric values.

```
numeric_gender = {'Female': 1, 'Male': 2}
df ['Gender'] = df['Gender'].map(numeric_gender)
numeric_married = {'Yes': 1, 'No': 2}
df ['Married'] = df['Married'].map(numeric_married)
numeric_edu = {'Graduate': 1, 'Not Graduate': 2}
df ['Education'] = df['Education'].map(numeric_edu)
numeric_self = {'Yes': 1, 'No': 2}
df ['Self_Employed'] = df['Self_Employed'].map(numeric_self)
numeric_loan = {'Y': 1, 'N': 2}
df ['Loan_Status'] = df['Loan_Status'].map(numeric_loan)
numeric_property = {'Rural': 1, 'Urban': 2, 'Semiurban': 3}
df ['Property_Area'] = df['Property_Area'].map(numeric_property)
numeric_d = {'3+': 3}
df ['Dependents'] = df['Dependents'].map(numeric_d)
```

Checking if there are any null values and if so, which.

```
df.isnull().sum()
```

Loan_ID	0
Gender	24
Married	3
Dependents	890
Education	0
Self_Employed	55
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	27
Loan_Amount_Term	20
Credit_History	79
Property_Area	0
Loan_Status	367
LoanAmount_log	27
TotalIncome	0
TotalIncome_log	0
dtype: int64	

Checking if the percentage of missing values of each value and which as to be dropped if any.

```
# Find columns with missing values and their percent missing

df.isnull().sum()

miss_val = df.isnull().sum().sort_values(ascending=False)

miss val = pd.DataFrame(data=df.isnull().sum().sort values(ascending=False), columns=['Missva
```

```
# Add a new column to the dataframe and fill it with the percentage of missing values
miss_val['Percent'] = miss_val.MissvalCount.apply(lambda x : '{:.2f}'.format(float(x)/df.shap)
miss val = miss val[miss val.MissvalCount > 0].style.background gradient(cmap='Reds')
miss_val
```

	MissvalCount	Percent
Dependents	890	90.72
Loan_Status	367	37.41
Credit_History	79	8.05
Self_Employed	55	5.61
LoanAmount_log	27	2.75
LoanAmount	27	2.75
Gender	24	2.45
Loan_Amount_Term	20	2.04
Married	3	0.31

The light red color shows the small amount of NaN values. If the features were with a high than 50% of missing values, they would have to be removed. Yet, in this case, they have relatively low percentage so they can be used in future. Then, the NaN values will be replaced.

Filling up the null values in order to train the model.

Filling the missing values, for categorical we can fill them with the mode (the value with the highest frequency). The best practice is to use mode with data points such as salary field or any other kind of money.

```
df['Gender'] = df['Gender'].fillna(
df['Gender'].dropna().mode().values[0] )
df['Married'] = df['Married'].fillna(
df['Married'].dropna().mode().values[0] )
df['Dependents'] = df['Dependents'].fillna(
df['Dependents'].dropna().mode().values[0] )
df['Self Employed'] = df['Self Employed'].fillna(
df['Self Employed'].dropna().mode().values[0] )
df['LoanAmount'] = df['LoanAmount'].fillna(
df['LoanAmount'].dropna().median() )
df['Loan Amount Term'] = df['Loan Amount Term'].fillna(
df['Loan_Amount_Term'].dropna().mode().values[0] )
df['LoanAmount log'] = df['LoanAmount log'].fillna(
df['LoanAmount log'].dropna().mode().values[0] )
df['Credit_History'] = df['Credit_History'].fillna(
df['Credit_History'].dropna().mode().values[0] )
df['Loan_Status'] = df['Loan_Status'].fillna(
df['Loan Status'].dropna().mode().values[0] )
```

```
df['TotalIncome_log'] = df['TotalIncome_log'].fillna(
df['TotalIncome_log'].dropna().mode().values[0] )
```

Checking if there are still any empty values after the filling.

```
df.isnull().sum()
```

Loan_ID	0
Gender	0
Married	0
Dependents	0
Education	0
Self_Employed	0
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	0
Loan_Amount_Term	0
Credit_History	0
Property_Area	0
Loan_Status	0
LoanAmount_log	0
TotalIncome	0
TotalIncome_log	0
dtype: int64	

Saving the results to a csv file so that the cleaned and processed data can be used in the modelling part of the project.

```
df.to_csv('results.csv')
```

Conclusion

From Data Analysis:

- 1. There are features that are numeric and also objects. Later, the ones that are not numeric were converted into either float or int in order to be plotted and then used for the training of the models.
- 2. There were also missing values in the dataset, which will be handled later.
- 3. The shape of the data with the shape. Here are the the rows and columns (981, 13).
- 4. One diagram shows on one hand that there are more male applicants than female and on other hand, there are more approved loans than disapproved.

From Distribution Analysis

- 1. The amount of male applicants seems to be greater than the female ones and they tend to live in the semi suburban areas.
- 2. There are more positive than negative loan statuses more approvals.
- 3. The distributions show that the graduates have more outliers which means that the people with huge income are most likely to be educated.
- 4. Males have the highest income according to the data. Males that are married have greater income that unmarried male. And the same goes for female. Therefore, there is a greater chance for educated and married people to receive a loan than applicant who are not.

From Data Cleaning:

- 1. There was a variety of values both categorical and numeric. The categorical values had to be concerted to numeric in order to be used in the modelling part of the project.
- 2. After the data integration, NaN values occurred so they had to be handled in order to work with the data in the models. The values showed how much they are missing in percentage:

Dependents - 90.72

Loan_Status - 37.41

Credit_History - 8.05

Self_Employed - 5.61

LoanAmount_log - 2.75

LoanAmount - 2.75

Gender - 2.45

Loan_Amount_Term - 2.04

Married - 0.31

×