

UNIVERSITÀ "SAPIENZA" DI ROMA FACOLTÀ DI INFORMATICA

Basi di Dati

Appunti integrati con il libro "Principles of Database & Knowledge-Base Systems - Vol. 1", J. D. Ullman

Author Simone Bianco

Indice

0	Intr	roduzione	1
1	Dat	abase e DBMS	2
	1.1	Database come sistema informativo	2
	1.2	Modellazione dei dati	3
	1.3	Linguaggi, Integrità e Transazioni	4
2	Mo	dello relazionale	6
	2.1	Da relazioni a tabelle	8
	2.2	Riferimenti e Valori nulli	10
	2.3	Vincoli di integrità	11
		2.3.1 Chiavi primarie	13
		2.3.2 Chiavi esterne	14
3	Alg	ebra relazionale	16
	3.1	Proiezione e Selezione	16
	3.2	Unione, Intersezione e Differenza	19
	3.3	Ridenominazione e Prodotto Cartesiano	23
	3.4	Join Naturale e Theta Join	25
	3.5	Quantificazione universale	30
4	Teo	ria della normalizzazione	32
	4.1	Dipendenze funzionali	32
		4.1.1 Chiusura di F	34
	4.2	Assiomi di Armstrong	36
		4.2.1 Chiusura di X	38
		$4.2.2 F^+ = F^A \dots \dots \dots \dots \dots \dots \dots \dots \dots $	39
	4.3	Terza Forma Normale (3NF)	41
	4.4	Calcolare X^+	46
		4.4.1 Trovare le chiavi di uno schema	49
	4.5	Decomposizione di uno schema	54
		4.5.1 Preservazione di F	56
		4.5.2 Join senza perdita	62

Capitolo 0

Introduzione

Il seguente corso mira all'apprendimento dei principali argomenti teorici dietro allo sviluppo di un database ottimale:

- Introduzione ai sistemi di gestione di basi di dati: cenni storici, aspetti caratterizzanti dei sistemi di gestione di basi di dati, evoluzione di modelli e sistemi
- Modello relazionale: dominio, attributo, relazione, n-upla, schema, linguaggi di interrogazione, algebra relazionale, chiave di una relazione
- Teoria della normalizzazione: dipendenze funzionali, Terza Forma Normale (3NF), assiomi di Armstrong, chiusura di un insieme di dipendenze, chiusura di un insieme di attributi, copertura minimale di un insieme di dipendenze, scomposizioni che hanno un join senza perdita, scomposizioni che preservano le dipendenze.
- Organizzazione fisica dei dati: memoria secondaria, record fisici e record logici, puntatori, blocchi, file heap, file hash, file con indice (indici densi e indici sparsi), B-tree

Capitolo 1

Database e DBMS

1.1 Database come sistema informativo

Nei dispositivi elettronici, l'informazione può essere registrata sottoforma di dati strutturati, ossia oggetti rappresentati da piccole stringhe di simboli e numeri, oppure sottoforma di dadi de-strutturati, ossia testi scritti in linguaggio naturale descriventi qualcosa.

Tali informazioni vengono immagazzinate in **sistemi informativi**, ad esempio un grande archivio, cartaceo o digitale che sia, utilizzato per acquisire, processare e condividere informazioni all'interno di un'organizzazione.

Agli albori dell'era digitale, ogni software registrava informazioni all'interno di **file** strettamente associato al software stesso. Quest'ultimo veniva per tanto scritto tramite un linguaggio di programmazione basato sulla gestione dei file, in modo da poter ottimizzare l'accesso ai dati richiesti. Ovviamente, tale soluzione presenta degli svantaggi, tra cui:

- Ridondanza: se due applicazioni usano gli stessi dati, essi devono essere replicati su entrambi i file
- Inconsistenza: l'aggiornamento di un dato potrebbe avvenire su una sola copia del dato condiviso
- Dipendenza dei dati: ogni applicazione organizza i dati in base alle proprie necessità, senza seguire uno standard

Nel corso degli anni, venne sviluppato il concetto di **Database** (**DB**), ossia un insieme di file interconnessi tra loro, dove i dati sono organizzati in differenti strutture dati che ne facilitano l'utilizzo e ne ottimizzano la gestione.

Per facilitare maggiormente l'uso di tali DB, vennero sviluppati dei software chiamati **Database Management System (DBMS)** in grado di gestire di grandi quantità di dati fornendo all'utente una visione astratta dei dati, svolgendo le operazioni richieste dall'utente senza che quest'ultimo si preoccupi di interrogare direttamente il DB.

La struttura dell'informazione dipende dai suoi usi ed è soggetta a cambiamenti nel corso del tempo. Ad esempio, i dati di una persona (nome, cognome, data di nascita, codice fiscale, ...) possono cambiare nel tempo.

L'obiettivo è quindi quello di semplificare l'elaborazione dei dati strutturati sfruttandone le proprietà:

- Gli accessi individuali agli elementi della struttura vengono realizzati tramite delle query (o interrogazioni)
- Le relazioni tra dati individuali vengono rappresentate tramite un **record** strutturato

In un'organizzazione, ogni componente di essa è interessato ad accedere ad una porzione del sistema informativo, richiedendo quindi che esso venga **condiviso**, riducendo la ridondanza dei dati. La condivisione di tale accesso ai dati deve essere **regolamentata**, richiedendo che ogni componente possa accedere solo ai dati di sua competenza. Tuttavia, la condivisione dei dati stessi può generare problemi di **concorrenza**, dovuta all'accesso simultaneo al sistema da parte di più componenti.

1.2 Modellazione dei dati

I dati vengono quindi organizzati concettualmente in **aggregati di informazioni omogenee** che costituiscono i componenti del sistema informativo. Ogni operazione di aggiornamento dei dati è mirata ad singolo insieme aggregato, mentre una query potrebbe coinvolgere più di un insieme aggregato. Nel caso particolare dei database, gli aggregati di informazioni omogenee vengono costituiti da file, i quali vengono indicizzati da **indici**, ossia ulteriori file che permettono di accedere rapidamente alle informazioni contenute nei file "principali".

A seconda dell'ambito, quindi, i dati assumono due modelli diversi:

- Modelli logici: indipendenti dalla struttura fisica dei dati e gestiti dal DBMS stesso. Il modello logico che verrà approfondito dettagliatamente in questo corso è il modello relazionale, basato sul concetto di relazione matematica. Altri modelli logici utilizzati sono il modello gerarchico, ad oggetti o a rete.
- Modelli concettuali: indipendenti dalle modalità di realizzazione. Hanno lo scopo di rappresentare le entità del mondo reale e le relazioni tra di essi. Il modello concettuale legato al modello logico relazionale è il modello di entità-relazione (E-R).

Possiamo riassumere i concetti descritti attraverso un'astrazione a tre livelli:

- Schema esterno: descrizione di una porzione del database in un modello logico attraverso "viste" parziali ed un'organizzazione dei dati diversa o coincidente da quella dello schema logico. Tale schema non dipende dallo schema fisico e gli accessi al database possono essere effettuati solo attraverso esso.
- Schema logico: descrizione dell'intero database nel principale modello logico del DBMS, ad esempio la struttura delle tabelle. Non dipende dallo schema esterno e da quello fisico.
- Schema fisico: rappresentazione dello schema logico attraverso il salvataggio in strutture fisiche, ad esempio in file.

In ogni database vengono definiti uno **schema**, descrivente la struttura dei dati salvati al suo interno e le **istanze** di tale schema, ossia i valori correnti, i quali possono cambiare anche molto velocemente.

Nelle sezioni successive vedremo meglio come all'interno del **modello relazionale** lo schema e le istanze vengano definiti tramite **tabelle**, dove la loro intestazione corrisponde allo schema e il loro contenuto corrisponde alle istanze di tale schema. Ad esempio, nella tabella sottostante lo schema corrisponde a (NAME, SURNAME, BIRTH, TOWN), mentre le righe della tabella corrispondono alle istanze:

NAME	SURNAME	BIRTH	TOWN
Piero	Naples	22-10-63	Bari
Marco	Bianchi	01-05-54	Rome
Maria	Rossi	09-02-68	Milan
Maria	Bianchi	07-12-70	Bari
Paolo	Sossi	15-03-75	Palermo

1.3 Linguaggi, Integrità e Transazioni

Per la gestione e la descrizione di un database, vengono impiegati dei linguaggi specifici:

- Data definition language (DDL), per la definizione degli schemi
- Data manipulation language (DML), per le interrogazioni e gli aggiornamenti dei dati
- Structured Query Language (SQL), un linguaggio standardizzato che racchiude DDL e DML, basato sul modello relazionale.

Tramite tali linguaggi è possibile definire quelli che vengono chiamati **vincoli di inte- grità**, ossia delle imposizioni che essi devono rispettare a seconda del contesto. Alcuni esempi sono:

- Dipendenze funzionali: uno studente può risiedere in una sola città
- Vincoli di chiave: il numero di matricola identifica univocamente uno studente
- Vincoli di dominio: un voto può essere solo un numero intero tra 18 e 30
- Vincoli di dinamicità: il salario di un impiegato non può diminuire

Fondamentale nell'ambito dei database è il concetto di **transazione**, ossia una sequenza di singole operazioni che possono avere solo due esiti possibili: eseguita completamente (**commited**) oppure annullata (**rolled back**). Ad esempio, la transazione corrispondente a "Trasferisci 1000€ dall'account C100 all'account C200" sarà:

- 1. Cerca C100
- 2. Sottrai 1000€ al bilancio di C100
- 3. Cerca C200
- 4. Aggiungi 1000€ al bilancio di C200

Nel caso in cui l'account C200 non venga trovato, è necessario effettuare un **rollback della transazione**, annullando le due operazioni precedentemente effettuate. Affinché ciò sia possibile, è necessario un **transaction log**, contenente i valori precedenti e successivi alle modifiche effettuate.

Oltre alla possibilità di annullare le operazioni svolte tramite le transazioni, è necessario che all'interno di un database venga gestita la **competizione** tra le varie transazioni.

Ad esempio, immaginiamo vengano eseguite in contemporanea le seguenti query:

- Transazione 1: "Accredita 1000€ al conto C1"
- Transazione 2: "Accredita 500€ al conto C1"

Transazione 1	Tempo	Transazione 2
Ricerca C1	T1	
	T2	Ricerca C1
Cambia bilancio in: Bilancio+1000	Т3	
	T4	Cambia bilancio in: Bilancio+500

In tal caso, dato un bilancio iniziale pari a 2500, per via della **competizione** il bilancio finale sarà 3000 e non 4000.

Capitolo 2

Modello relazionale

Il modello relazionale, proposto per la prima volta da E. F. Codd nel 1970, è un modello di database basato sul concetto matematico di **relazione**, le quali vengono tradotte in tabelle memorizzate all'interno del database. In particolare, i dati e le relazioni (o associazioni) tra essi e dati di insiemi esterni vengono rappresentati come valori.

Prima di procedere, è necessario introdurre alcune definizioni:

Definition 1. Dominio

Definiamo come **dominio** un insieme (possibilmente finito) di valori utilizzabili. Ad esempio, l'insieme dei numeri interi e l'insieme di tutte le stringhe contenenti 20 caratteri sono due domini.

Definition 2. Prodotto cartesiano

Siano $D_1, D_2, ..., D_k$ dei domini non necessariamente distinti tra loro. Il **prodotto cartesiano** di tali domini corrisponde all'insieme delle liste ordinate dei valori appartenenti ai vari domini:

$$D_1 \times D_2 \times ... \times D_k : \{(v_1, v_2, ..., v_k) \mid v_1 \in D_1, v_2 \in D_2, ..., v_k \in D_k\}$$

Definition 3. Relazione

Definiamo come relazione un qualsiasi sottoinsieme di un prodotto cartesiano.

$$r \subseteq D_1 \times \ldots \times D_k$$

Se P è il prodotto cartesiano di k domini, allora $r \subseteq P$ viene detta **relazione di** grado k.

Definition 4. Tuple di una relazione

Data una relazione r e un elemento $t \in r$, tale elemento viene detto **tupla**. La cardinalità di una relazione |r|, quindi, corrisponde al numero di tuple appartenenti ad essa.

Se r è una relazione di grado k, allora ogni tupla $t \in r$ possiede k valori al suo interno.

Observation 1

Poiché $r \subseteq P$, dove P è un prodotto cartesiano, per definizione matematica di sottoinsieme si ha che le tuple di una relazione sono **distinte tra di loro di almeno un valore**.

Esempio:

- Siano D_1 : {white, black}, D_2 : {0,1,2}. Il loro prodotto cartesiano sarà: $D_1 \times D_2$: {(white,0), (white,1), (white,2), (black,0), (black,1), (black,2)}
- La seguente relazione

$$r_1 \subseteq D_1 \times D_2 : \{(\mathsf{white}, 1), (\mathsf{black}, 0), (\mathsf{black}, 1)\}$$

è una relazione di grado 2 e cardinalità 3

• La seguente relazione

$$r_2 \subseteq D_1 \times D_2 : \{(\mathsf{black}, 0), (\mathsf{black}, 2)\}$$

è una relazione di grado 2 e cardinalità 2

• Per comodità, vengono utilizzati domini già presenti all'interno della maggior parte dei linguaggi di programmazione. Ad esempio, la seguente relazione è un sottoinsieme del prodotto cartesiano tra i domini String × String × Integer × Real:

$$r: \{(Paolo, Rossi, 2, 26.5), (Mario, Bianchi, 10, 28.7), \}$$

Come già accennato, le relazioni possono essere tradotte in **tabelle** di un database, dove ogni riga rappresenta una tupla:

Paolo	Rossi	2	26.5
Mario	Bianchi	10	28.7

Introduciamo quindi la seguente notazione:

Definition 5. Elemento di una tupla

Data una relazione $r \subseteq D_1 \times ... \times D_k$ di grado k e data una tupla $t \in r$, indichiamo il suo **i-esimo elemento** come t[i], dove $i \in [1, k]$

Esempio:

• Se $r: \{(0,a),(0,c),(1,b)\}\ e\ t\in r: (0,a),\ allora\ t[1]=0,\ t[2]=a\ e\ t[1,2]=(0,a)$

2.1 Da relazioni a tabelle

Abbiamo già visto come una relazione possa essere rappresentata sottoforma di tabella.

Tuttavia, rimane un problema da risolvere: come facciamo ad interpretare i dati contenuti in una tabella? Ci basta assegnare un nome ad ogni colonna della tabella, trasformando tali dati in informazione.

Introduciamo quindi ulteriori definizioni:

Definition 6. Attributo

Definiamo come **attributo** la coppia (A, dom(A)), dove A corrisponde al nome dell'attributo e dom(A) corrisponde al dominio ad esso associato.

Definition 7. Schema relazionale

Definiamo come schema relazionale, indicato come R, l'insieme di tutti gli attributi $A \in R$ descriventi la relazione associata allo schema stesso, indicato come:

$$R(A_1, A_2, ..., A_k)$$

Lo schema descrivente la struttura di una relazione è invariante nel tempo.

Definition 8. Istanza di una relazione

Sia R uno schema relazionale. Definiamo come **istanza di una relazione** R(X), dove $X \subseteq R$ è un sottoinsieme di attributi, un **insieme di tuple** r su X dove $\forall t \in r$ gli attributi di t corrispondono a X.

Un'istanza di una relazione contiene i valori attualmente memorizzati, i quali possono anche cambiare rapidamente.

Ogni tupla t definita su R può essere quindi vista come una funzione $t: R \to dom(A): A \mapsto t(A)$ che associa ad ogni attributo $A \in R$ l'elemento $t(a) \in dom(A)$.

Esempio:

• Le seguenti due tabelle r_1 ed r_2 sono due istanze del seguente schema R:

 $R = \{(Nome, String), (Cognome, String), (Esami sostenuti, Integer), (Media, Real)\}$

Nome	Cognome	Esami sostenuti	Media
Paolo	Rossi	2	26.5
Mario	Bianchi	10	28.7

Nome	Cognome	Esami sostenuti	Media
Giada	Verdi	3	24.3
Luigi	Neri	14	29.8

Observation 2

Una **relazione** può essere quindi vista come una tabella in cui ogni riga corrisponde ad una tupla distinta ed ogni colonna corrisponde ad un componente con valori omogenei, ossia provenienti dallo stesso dominio.

Definition 9. Schema di un database e Database relazionale

Definiamo come schema di un database un insieme di relazioni distinte

$$(R_1, R_2, ..., R_n)$$

Definiamo come **database relazionale** uno schema di un database $(R_1, R_2, ..., R_n)$ su cui sono definite le istanze $(r_1, r_2, ..., r_n)$, dove $\forall i \in [1, n]$ si ha che r_i è un'istanza di R_i .

Esempio:

- Schema relazione: Info_City(City, Region, Population)
- Istanza relazione:

City	Region	Population
Rome	Lazio	3000000
Milan	Lombardy	1500000
Genoa	Liguria	800000
Pisa	Tuscany	150000

Observation 3

Rispetto all'uso dell'indice relativo alla loro posizione all'interno di una tupla, nell'ambito del modello relazionale gli elementi di una tupla $t \in r$, dove r è istanza di R, vengono indicati tramite il nome dell'attributo ad essi associato.

Esempio:

• Considerando la tabella dell'esempio precedente, se $t_1 \in r$ è la prima tupla dell'istanza e $t_2 \in r$ è la seconda tupla dell'istanza, allora:

$$t_1[\mathtt{City}] = t_1[1] = \mathsf{Rome}$$

$$t_2[\mathsf{Region}] = t_2[2] = \mathsf{Lombardy}$$

Definition 10. Restrizione di una tupla

Sia $Y \subseteq X$ un sottoinsieme di attributi dello schema X e sia r un'istanza di X.

Indichiamo come t[Y] la **restrizione di** $t \in r$, ossia il sottoinsieme di valori di t corrispondenti agli attributi in Y.

• Considerando ancora la tabella dell'esempio precedente, se $t \in r$ è la seconda tupla dell'istanza e $Y = \{\text{City, Population}\}$, allora:

$$t[Y] = (Milan, 1500000)$$

2.2 Riferimenti e Valori nulli

Nel modello relazionale, i riferimenti reciproci tra dati presenti all'interno di diverse relazioni viene effettuato tramite valori.

Consideriamo le seguenti relazioni:

Students			
Matricola	Surname	Name	Date of birth
6554	Rossi	Mario	05/12/1978
8765	Neri	Paolo	03/11/1976
9283	Greens	Luisa	12/11/1979
3456	Rossi	Maria	01/02/1978

Exams		
Student	Grade	Course
3456	30	04
3456	24	02
9283	28	01

	Courses		
Code	Title	Lecture	
01	Chemistry	Mario	
02	Math	Bruni	
04	Chemistry	Verdi	

- Notiamo come le tre tabelle possiedono dei valori che fanno **riferimento ad altre tuple di altre tabelle**.
- Ad esempio, la prima tupla t della tabella Exams contiene due riferimenti: t[Student] fa riferimento al campo Matricola dell'ultima tupla della tabella Students, mentre t[Course] fa riferimento all'ultima tupla della tabella Courses.
- Considerando i due riferimenti, quindi, riusciamo a **ricostruire l'informazione completa**: la studentessa Maria Rossi, nata il 01/02/1978 e avente matricola 3456, ha ottenuto un voto pari a 30 all'esame di Chimica, tenuto dal docente Verdi

Spesso può capitare di non avere ancora tutte le informazioni relative ad una determinata tupla. Immaginiamo di avere una tabella Students, i cui attributi comprendono anche un campo Phone number. Potrebbe verificarsi una delle seguenti tre situazioni:

- Lo studente non ha un numero di telefono
- Non sappiamo se lo studente abbia un numero di telefono
- Lo studente ha un numero di telefono, ma non sappiamo quale sia

Poiché la tupla deve aderire allo schema della relazione imposto, non possiamo non inserire un valore all'interno di tale campo. Dunque, inseriamo un valore di default, chiamato Null.

È necessario sottolineare alcuni aspetti riguardo al valore Null:

- Il valore Null non corrisponde ad uno zero
- Non dovrebbe mai essere utilizzato per campi fondamentali, ad esempio una matricola
- È un valore *polimorfo*, ossia non appartiene ad alcun dominio ma può rimpiazzare un valore di qualsiasi dominio
- Due valori Null, anche se sullo stesso dominio, vengono considerati diversi l'uno dall'altro
- Utilizzare troppi valori Null viene considerata una pessima abitudine

2.3 Vincoli di integrità

Consideriamo il seguente database:

	Employees				
Code	Surname	Name	Role	Hiring	Department
COD1	Rossi	Mario	Analyst	1795	01
COD2	Bianchi	Luigi	Analyst	1990	05
COD2	Neri	Paolo	Admin	1985	01

Departments	
Number	Name
01	Management
02	Administration

Nonostante tale database risulti essere sintatticamente corretto, risultano alcune **incoerenze** nella tabella Employees:

- La prima tupla contiene il valore 1795 nell'attributo Hiring indicante l'anno di assunzione del dipendente, il che non ha senso logico
- La seconda tupla fa riferimento al dipartimento numero 05, il quale non esiste nella tabella Departments

• La seconda e la terza tupla contengono lo stesso valore nell'attributo Code, il quale invece dovrebbe rappresentare in modo univoco un dipendente

Per evitare errori di questo tipo, imponiamo sul database dei vincoli di integrità

Definition 11. Vincolo di integrità

Definiamo come **vincolo di integrità** delle proprietà che devono essere soddisfatte da ogni istanza di un database. Un database viene detto **corretto** se soddisfa tutti i vincoli di integrità associati al suo schema.

I vincoli di integrità possono essere di due tipologie:

- Intrarelazionale, ossia definiti su una singola relazione, in particolare sugli attributi del suo schema o tra le tuple della sua istanza.
- Interrelazionale, ossia definiti tra più relazioni.

Proposition 1

In particolare, individuiamo i seguenti vincoli di integrità:

- Vincoli di dominio, ossia delle restrizioni imposte sul dominio di un attributo della relazione
- Vincoli di tupla, ossia delle proprietà che devono essere rispettate da ogni tupla appartenente ad un'istanza di una relazione
- Vincoli di unicità, ossia l'impossibilità di avere due tuple con lo stesso valore per un determinato attributo
- Vincoli di esistenza del valore, ossia l'impossibilità per un attributo di una tupla di poter essere impostato su Null

Esempio:

- Considerando il database dell'esempio precedente, possiamo imporre i seguenti vincoli di integrità:
 - Hiring > 1980 (vincolo di dominio)
 - Name, Surname Not Null (vincolo di esistenza del valore)
 - Unique Employees.Code (vincolo di unicità)

2.3.1 Chiavi primarie

Definition 12. Chiave relazionale

Un **insieme** X di attributi appartenenti ad una relazione R sono una chiave di R se:

1. Per ogni istanza r di R, si ha che:

$$\forall i \neq j, \nexists t_i, t_j \in r \mid t_i[X] = t_j[X]$$

ossia non esistono tuple distinte aventi gli stessi valori per tutti gli attributi di X (vincolo di unicità)

2. Non esiste un sottoinsieme $Y \subseteq X$ che soddisfa la prima condizione

All'interno di una relazione possono essere definite più chiavi alternative.

Definition 13. Chiave primaria

Data una relazione R, definiamo come **chiave primaria** la chiave più utilizzata (o consistente di un minor numero di attributi).

Una chiave primaria, oltre al vincolo di unicità, deve rispettare anche il vincolo di esistenza del valore (vincolo di chiave primaria)

Observation 4

Poiché non possono esserci tuple identiche in una relazione, vi è sempre almeno una chiave all'interno di ogni istanza.

Esempio:

• Consideriamo la seguente relazione:

Employees						
Tax Code	Code	Surname	Name	Role	Hiring	Department
RSS	COD1	Rossi	Mario	Analyst	1795	01
BNC	COD2	Bianchi	Luigi	Analyst	1990	05
NRI	COD3	Neri	Paolo	Admin	1985	01

- Cerchiamo di individuare alcune possibili chiavi all'interno di essa:
 - L'attributo Tax Code non è una chiave poiché, nonostante sia raro, potrebbe accadere che più dipendenti abbiano lo stesso codice fiscale
 - L'insieme (Surname, Name, Role, Hiring) può essere una chiave
 - L'insieme (Surname, Role, Hiring, Department) può essere una chiave
 - L'attributo Code può essere una chiave, implicando che qualsiasi insieme di attributi X comprendente anche Code non possa essere chiave, poiché non soddisferebbe la seconda condizione.

 Siccome Code è la chiave più piccola individuata, allora essa sarà la chiave primaria di tale relazione.

2.3.2 Chiavi esterne

Definition 14. Vincolo di chiave esterna (o di riferimento)

Siano R_1, R_2 due relazioni, dove $X \in R_1$ è una chiave primaria di R_1 . Definiamo come **vincolo di chiave esterna** (o di riferimento) l'obbligo per un insieme di attributi $Y \in R_2$ di assumere valori presenti all'interno di X.

In altre parole, se r_1 ed r_2 sono rispettivamente un'istanza di R_1 ed R_2 si ha che:

$$\forall t_2 \in r_2, \exists t_1 \in r_1 \mid t_2[Y] = t_1[X]$$

Esempio:

• Consideriamo le seguenti relazioni:

Road Violations					
Code	Date	Officer	Prov	Plate	
34321	1/2/95	3987	MI	39548K	
53524	4/3/95	3295	ТО	E39548	
64521	5/4/96	3295	PR	839548	
73321	5/2/98	9345	PR	839548	

Officers				
ID	Surname	Name		
3987	Bianchi	Luca		
3295	Gialli	Piero		
9345	Rossi	Mario		
7543	Verdi	Luigi		

Cars					
Prov	Plate	Surname	Name		
MI	39548K	Perini	Paolo		
ТО	E39548	Ascani	Marco		
RM	M2931D	Rossi	Mario		

- Individuiamo le seguenti chiavi primarie:
 - Code è chiave primaria di Road Violations
 - Id è chiave primaria di Officers
 - (Prov, Plate) è chiave primaria di Cars

- Applichiamo quindi i seguenti vincoli di chiave secondaria:
 - Road_Violations.Officer References Officers.ID
 - Road_Violations.(Prov, Plate) References Cars.(Prov, Plate)
- Una volta applicati tali vincoli, notiamo come alcune tuple di Road Violations siano invalide:
 - Se r è l'istanza di Road Violations, c è l'istanza di Cars e t_3, t_4 sono rispettivamente la terza e la quarta tupla di r, allora si ha che:

$$\exists t \in c \mid t_3[\mathsf{Prov}, \; \mathsf{Plate}] = t[\mathsf{Prov}, \; \mathsf{Plate}]$$
 $\exists t \in c \mid t_4[\mathsf{Prov}, \; \mathsf{Plate}] = t[\mathsf{Prov}, \; \mathsf{Plate}]$

In altre parole, non esiste una tupla nell'istanza di Cars avente (PR, 839548)
 come valori di (Prov, Plate)

Capitolo 3

Algebra relazionale

Definition 15. Algebra relazionale

Definiamo come **algebra relazionale** una notazione algebrica specifica utilizzata per realizzare query su un database relazionale, composta da un insieme di operatori unari e binari che, se applicati rispettivamente ad una o due istanze di relazioni, generano una nuova istanza.

In particolare, individuiamo i seguenti quattro tipi di operatore:

- 1. Rimozione di specifiche parti di una relazione (**Proiezione** e **Selezione**)
- 2. Operazioni insiemistiche (Unione, Intersezione e Differenza)
- 3. Combinazione delle tuple di due relazioni (Prodotto cartesiano e Join)
- 4. Ridenominazione di attributi

L'algebra relazionale è un linguaggio procedurale, ossia descrive l'esatto ordine con cui gli operatori devono essere applicati.

3.1 Proiezione e Selezione

Definition 16. Proiezione

Sia R una relazione con istanza r e sia A_1, \ldots, A_k un insieme di attributi. Una **proiezione** su R è un operatore unario che effettua una restrizione con A_1, \ldots, A_k su tutte le tuple di R:

$$\pi_{A_1,\ldots,A_k}(R):=\{t[A_1,\ldots,A_k]\mid t\in r\}$$

In altre parole, una proiezione effettua un "taglio verticale" su una relazione, selezionando solo le colonne A_1, \ldots, A_k

Esempio:

• Supponiamo di voler ottenere una lista di tutti i clienti presenti in questa relazione:

Customers				
Name	C #	Town		
Rossi	C1	Roma		
Rossi	C2	Milano		
Rossi	C3	Milano		
Bianchi	C4	Roma		
Verdi	C5	Roma		

• Proviamo ad effettuare una proiezione $\pi_{Name}(Customers)$, il cui output sarà:

$\pi_{\mathrm{Name}}(\mathrm{Customers})$
Name
Rossi
Bianchi
Verdi

- La nuova relazione generata dalla proiezione segue comunque le regole dell'insiemistica, dunque non possono esserci tuple uguali. Difatti, notiamo come nell'output sia presente una sola tupla contente il nome "Rossi", nonostante nella relazione iniziale ve ne fossero tre.
- Per prevenire tale perdita di informazione, proviamo ad effettuare la proiezione $\pi_{\text{Name. Town}}(\text{Customers})$, il cui output sarà:

$\pi_{\mathrm{Name, Town}}(\mathrm{Customers})$			
Name Town			
Rossi	Roma		
Rossi	Milano		
Bianchi	Roma		
Verdi	Roma		

- La situazione è migliorata rispetto alla prima proiezione, tuttavia vi è stata comunque una perdita di informazione.
- Per prevenire totalmente la perdita di informazione, quindi, sfruttiamo l'unicità della chiave C#, effettuando la proiezione $\pi_{Name, C\#}(Customers)$, il cui output sarà:

$\pi_{\mathrm{Name, C\#}}(\mathrm{Customers})$		
Name	$\mathbf{C}\#$	
Rossi	C1	
Rossi	C2	
Rossi	C3	
Bianchi	C4	
Verdi	C5	

• Abbiamo quindi ottenuto una lista completa dei nostri clienti senza alcuna perdita di informazioni

Definition 17. Selezione

Data una relazione R con istanza r e schema R(X), una **selezione** su R è un operatore unario che data una proposizione logica φ seleziona tutte le tuple di R per cui φ è rispettata:

$$\sigma_{\varphi}(R) := \{ t \in r \mid \varphi \text{ è valida} \}$$

Le proposizioni logiche associate ad una selezione corrispondono ad un composto di espressioni Booleane (dunque utilizzando operatori come $\land, \lor e \neg$) i cui termini appaiono nelle forme $A\theta B$ o $A\theta a$, dove:

- $A, B \in R(X) \mid dom(A) = dom(B)$
- $A \in R(X), a \in dom(A)$
- θ è un operatore di comparazione $(<, \leq, =, \geq, >)$

In altre parole, una selezione effettua un "taglio orizzontale" su una relazione, selezionando solo alcune tuple di essa.

Esempio:

• Supponiamo di voler ottenere tutte le informazioni riguardo i clienti provenienti da Roma presenti in questa relazione:

Customers				
Name	C #	Town		
Rossi	C1	Roma		
Rossi	C2	Milano		
Rossi	C3	Milano		
Bianchi	C4	Roma		
Verdi	C5	Roma		

• Possiamo effettuare una selezione $\sigma_{\mathsf{Town='Roma'}}(\mathsf{Customers})$ per ottenere le tuple richieste:

$\sigma_{Town='Roma'}(Customers)$				
Name	C #	Town		
Rossi	C1	Roma		
Bianchi	C4	Roma		
Verdi	C5	Roma		

• Vogliamo ora ottenere tutte le informazioni riguardo i clienti chiamati "Rossi" provenienti da Roma. Possiamo effettuare una selezione $\sigma_{Nome='Rossi', \Lambda Town='Roma'}$ (Customers) per ottenere le tuple richieste:

$\sigma_{Nome='Rossi' \land Town='Roma'}(Customers)$			
Name		Town	
Rossi	C1	Roma	

3.2 Unione, Intersezione e Differenza

Definition 18. Compatibilità in unione

Data una relazione R_1 con schema $R_1(A_1, \ldots, A_k)$ ed una relazione R_2 con schema $R_2(a_1, \ldots, A_k)$, tali relazioni vengono dette **compatibili in unione** se e solo se:

- k = h, ossia hanno lo stesso numero di attributi
- $\forall i \in [1, k], dom(R_1.A_i) = dom(R_2.A_i)$, ossia ogni attributo corrispondente ha lo stesso dominio

Definition 19. Unione

Date due relazioni **compatibili in unione** R_1 e R_2 con rispettive istanze r_1 e r_2 , l'**unione** tra R_1 e R_2 è un operatore binario che restituisce una nuova relazione contenente tutte le tuple presenti in almeno una relazione tra R_1 e R_2 .

$$R_1 \cup R_2 := \{t \mid t \in r_1 \lor t \in r_2\}$$

Observation 5

Affinché sia possibile utilizzare l'operatore di unione, non è necessario che gli attributi corrispondenti delle due relazioni abbiano lo stesso nome, ma solo lo stesso dominio (nonostante spesso non abbia alcun senso unire due relazioni aventi attributi con nomi diversi)

Esempi:

1. • Consideriamo le seguenti due relazioni, descriventi gli insegnanti e i responsabili di vari dipartimenti di una scuola:

Teachers				
Name	\mathbf{Code}	Department		
Rossi	C1	Math		
Rossi	C2	Italian		
Bianchi	C3	Math		
Verdi	C4	English		

Admins			
Name	AdminCode	Department	
Esposito	C1	English	
Riccio	C2	Math	
Pierro	C3	Italian	
Verdi	C4	English	
Bianchi	C5	English	

• Effettuando l'unione tra Teachers e Admins, otteniamo una nuova relazione contenente tutti i membri dello staff:

$\textbf{Teachers} \cup \textbf{Admins}$			
Name	Code	Department	
Rossi	C1	Math	
Rossi	C2	Italian	
Bianchi	С3	Math	
Verdi	C4	English	
Esposito	C1	English	
Riccio	C2	Math	
Pierro	С3	Italian	
Bianchi	C5	English	

2. • Consideriamo le seguenti due relazioni:

Teachers		
Name	Code	Department
Rossi	C1	Math
Rossi	C2	Italian
Bianchi	С3	Math
Verdi	C4	English

Admins			
Name Code Department Salary			
Esposito	C1	English	1250
Riccio	C2	Math	2000
Pierro	С3	Italian	1000

- È impossibile applicare l'operatore unione tra le due relazioni Teachers e Admins, poiché non possiedono lo stesso numero di attributi
- Per risolvere il problema, possiamo effettuare prima una proiezione su Admins, per poi effettuare l'unione con Teachers:

Teachers $\cup \pi_{\texttt{Name}, \ \texttt{AdminCode}, \ \texttt{Department}}(\texttt{Admins})$		
Name	Code	Department
Rossi	C1	Math
Rossi	C2	Italian
Bianchi	С3	Math
Verdi	C4	English
Esposito	C1	English
Riccio	C2	Math
Pierro	С3	Italian

3. • Consideriamo ora le seguenti due relazioni:

Teachers			
Name	Code	Department	
Rossi	C1	Math	
Rossi	C2	Italian	
Bianchi	С3	Math	
Verdi	C4	English	

Admins			
Name Code ServiceYears			
Esposito	C1	3	
Riccio	C2	13	
Pierro	С3	7	

• È impossibile applicare l'operatore unione tra le due relazioni Teachers e Admins, poiché $dom(\text{Teachers.Department}) \neq dom(\text{Admins.ServiceYears})$. Tuttavia, possiamo effettuare una proiezione su entrambe le relazioni, per poi unirle:

$\pi_{ extsf{Name}}$, Code	$\pi_{Name, Code}(Teachers) \cup \pi_{Name, Code}(Admins)$		
Name	Code		
Rossi	C1		
Rossi	C2		
Bianchi	C3		
Verdi	C4		
Esposito	C1		
Riccio	C2		
Pierro	C3		

Definition 20. Intersezione

Date due relazioni **compatibili in unione** R_1 e R_2 con rispettive istanze r_1 e r_2 , l'**intersezione** tra R_1 e R_2 è un operatore binario che restituisce una nuova relazione contenente tutte le tuple presenti sia in R_1 sia in R_2 .

$$R_1 \cap R_2 := \{t \mid t \in r_1 \land t \in r_2\}$$

Definition 21. Differenza

Date due relazioni **compatibili in unione** R_1 e R_2 con rispettive istanze r_1 e r_2 , la **differenza** tra R_1 e R_2 è un operatore binario che restituisce una nuova relazione contenente tutte le tuple presenti in R_1 ma non in R_2 .

$$R_1 - R_2 := \{t \mid t \in r_1 \land t \notin r_2\}$$

Observation 6

Contrariamente da unione e intersezione, l'operatore di differenza **non è commuta**tivo

Esempio:

• Consideriamo le seguenti due relazioni, descriventi gli insegnanti e i responsabili di vari dipartimenti di una scuola:

Teachers			
Name	Code	Department	
Rossi	C1	Math	
Rossi	C2	Italian	
Verdi	С3	English	
Bianchi	C4	English	

Admins			
Name	AdminCode	Department	
Esposito	C1	English	
Riccio	C2	Math	
Verdi	C3	English	
Bianchi	C4	English	

• Effettuando l'intersezione tra Teachers e Admins, otteniamo una nuova relazione contenente tutti gli insegnanti che sono anche responsabili:

$\textbf{Teachers} \cap \textbf{Admins}$			
Name Code Department			
Verdi	C4	English	
Bianchi	C5	English	

• Effettuando la differenza tra Teachers e Admins, otteniamo una nuova relazione contenente tutti gli insegnanti che non sono responsabili:

Teachers – Admins		
Name Code Department		
Rossi	C1	Math
Rossi	C2	Italian

• Analogamente, effettuando la differenza tra Admins e Teachers, otteniamo una nuova relazione contenente tutti i responsabili che non sono insegnanti:

Admins – Teachers					
Name	Department				
Esposito	C1	English			
Riccio	C2	Math			

3.3 Ridenominazione e Prodotto Cartesiano

Definition 22. Ridenominazione

Sia R una relazione con istanza r e schema $R(A_1, \ldots, A_k)$. Una **ridenominazione** su R è un operatore unario che restituisce una nuova relazione R' con istanza r' e schema $R'(B_1, \ldots, B_k)$, dove le tuple di r' sono identiche alle tuple di r:

$$\rho_{B_1,\dots,B_k \leftarrow A_1,\dots,A_k}(R) := \{t' \mid t'[B_i] = t[A_i], t \in r, \forall i \in [1,k]\}$$

In altre parole, una ridenominazione modifica il nome di un attributo della relazione.

Definition 23. Prodotto Cartesiano

Siano R_1 ed R_2 due relazioni con rispettive istanze r_1 e r_2 . Il **prodotto cartesiano** di R_1 e R_2 è un operatore binario che restituisce una relazione contenente tutte le possibili combinazioni tra le tuple di r_1 e le tuple di r_2 :

$$R_1 \times R_2 := \{(t_1, t_2) \mid t_1 \in r_1, t_2 \in r_2\}$$

Esempio:

• Consideriamo le seguenti relazioni:

Customers						
Name	Town					
Rossi	C1	Roma				
Rossi	C2	Milano				
Bianchi	С3	Roma				
Verdi	C4	Roma				

Orders							
Ο#	C #	A #	Qnty				
O1	C1	A1	100				
O2	C2	A2	200				
О3	С3	A2	150				
O4	C4	A3	200				
O1	C1	A2	200				
O1	C1	A3	100				

- Vogliamo ottenere l'elenco di tutti i clienti e gli ordini da loro effettuati.
- Prima di poter effettuare il prodotto cartesiano tra le due relazioni, è necessario ridenominare uno dei due attributi C# presenti in entrambe le relazioni.

$$\mathsf{OrsersR} = \rho_{\mathsf{C\#\leftarrow CC\#}}(\mathsf{Orders})$$

 \bullet Successivamente, effettuando il prodotto cartesiano Customers \times OrdersR, otteniamo:

	Customers $ imes$ OrdersR								
Name	C #	Town	O#	CC#	A #	Qnty			
Rossi	C1	Roma	O1	C1	A1	100			
Rossi	C1	Roma	O2	C2	A2	200			
Rossi	C1	Roma	О3	С3	A2	150			
Rossi	C1	Roma	O4	C4	A3	200			
Rossi	C1	Roma	O1	C1	A2	200			
Rossi	C2	Milano	O1	C1	A1	100			
Rossi	C2	Milano	O2	C2	A2	200			
:	:	:	•	:	:	:			
:	:	:	:	:	:	:			
Verdi	C4	Roma	O4	C4	A3	200			
Verdi	C4	Roma	O1	C1	A2	200			

- A questo punto, però, notiamo la presenza di alcune incorrettezze. Ad esempio, il cliente "Rossi", avente codice C1, non ha mai effettuato l'ordine "(02, C2, 200)", il quale invece è stato effettuato dal cliente avente codice C2.
- Possiamo risolvere tale problema effettuando una selezione dopo aver effettuato il prodotto cartesiano:

$\sigma_{C\#=CC\#}(extsf{Customers} imes extsf{OrdersR})$								
Name	C #	Town	Ο#	CC#	A #	Qnty		
Rossi	C1	Roma	O1	C1	A1	100		
Rossi	C1	Roma	O1	C1	A2	200		
Rossi	C1	Roma	O1	C1	A3	100		
Rossi	C2	Milano	O2	C2	A2	200		
Bianchi	С3	Roma	О3	С3	A2	150		
Verdi	C4	Roma	O4	C4	A3	200		

• Infine, per via del select svolto, le colonne C# e CC# risultano essere uguali, dunque potremmo rimuovere una delle due effettuando una proiezione.

La query finale, quindi risulta essere:

$$OrdersR = \rho_{C\#\leftarrow CC\#}(Orders)$$

 $\texttt{CustomerOrders} = \pi_{\texttt{Name, C\#, Town, O\#, A\#, Qnty}}(\sigma_{C\# = CC\#}(\texttt{Customers} \times \texttt{OrdersR}))$

CustomerOrders							
Name	C #	Town	Ο#	A #	Qnty		
Rossi	C1	Roma	O1	A1	100		
Rossi	C1	Roma	O1	A2	200		
Rossi	C1	Roma	O1	A3	100		
Rossi	C2	Milano	O2	A2	200		
Bianchi	С3	Roma	О3	A2	150		
Verdi	C4	Roma	O4	A3	200		

3.4 Join Naturale e Theta Join

Definition 24. Join Naturale

Siano R_1 e R_2 due relazioni con rispettive istanze r_1 e r_2 e rispettivi schemi $R_1(X)$ e $R_2(Y)$. Il **join naturale** tra R_1 e R_2 è un operatore binario equivalente a:

$$R_1 \bowtie R_2 = \pi_{X,(Y-X)}(\sigma_{\varphi}(R_1 \times R_2))$$

dove dato un insieme di attributi $A_1, \ldots, A_k \mid \forall i \in [1, k], A_i \in X \cap Y$ si ha che:

$$\varphi := R_1.A_1 = R_2.A_1 \wedge \ldots \wedge R_1.A_k = R_2.A_k$$

In altre parole, il join naturale tra R_1 ed R_2 restituisce l'insieme di tutte le combinazioni tra tuple di r_1 ed r_2 che sono uguali per i loro attributi in comune.

Esempi:

1. • Riprendiamo l'esempio visto per il prodotto cartesiano: date le seguenti due relazioni, vogliamo ottenere un elenco di tutti i clienti e gli ordini da loro effettuati

Customers						
Name	C #	Town				
Rossi	C1	Roma				
Rossi	C2	Milano				
Bianchi	С3	Roma				
Verdi	C4	Roma				

\mathbf{Orders}						
Ο#	C #	A #	Qnty			
O1	C1	A1	100			
O2	C2	A2	200			
O3	С3	A2	150			
O4	C4	A3	200			
O1	C1	A2	200			
O1	C1	A3	100			

• Notiamo come la soluzione già vista sia equivalente ad un join naturale tra le due relazioni:

Customers ⋈ Orders							
Name	C #	Town	Ο#	A #	Qnty		
Rossi	C1	Roma	O1	A1	100		
Rossi	C1	Roma	O1	A2	200		
Rossi	C1	Roma	O1	A3	100		
Rossi	C2	Milano	O2	A2	200		
Bianchi	C3	Roma	О3	A2	150		
Verdi	C4	Roma	O4	A3	200		

2. • Oltre alle due precedenti relazioni, consideriamo anche la seguente relazione:

Articles					
A# Label Price					
A1	Plate	3			
A2	Glass	2			
A3	Mug	4			

• Vogliamo ottenere una lista dei nomi e delle città dei clienti che hanno ordinato più di 100 pezzi di articoli che costano più di due euro.

• Prima di tutto, effettuiamo un join naturale tra le tre relazioni:

 $\texttt{CustOrdArt} \ = \ (\texttt{Customers} \ \bowtie \ \texttt{Orders}) \ \bowtie \ \texttt{Articles}$

CustOrdArt								
Name	C #	Town	Ο#	A #	Qnty	Label	Price	
Rossi	C1	Roma	O1	A1	100	Plate	3	
Rossi	C1	Roma	O1	A2	200	Glass	2	
Rossi	C1	Roma	O1	A3	100	Mug	4	
Rossi	C2	Milano	O2	A2	200	Glass	2	
Bianchi	C3	Roma	О3	A2	150	Glass	2	
Verdi	C4	Roma	O4	A3	200	Mug	4	

• Successivamente, selezioniamo le tuple che rispettano le condizioni che ci interessano:

$\sigma_{ t Qnty>100 \land t Price>2}(t CustOrdArt)$							
$oxed{ Name C\# Town O\# A\# Qnty Label Price} $					Price		
Verdi	C4	Roma	O4	A3	200	Mug	4

• Infine, effettuiamo una proiezione sul nome e la città delle tuple ottenute:

$\pi_{\texttt{Name, Town}}(\sigma_{\texttt{Qnty}>100 \land \texttt{Price}>2}(\texttt{CustOrdArt}))$				
Name	Town			
Verdi	Roma			

3. • Oltre alla soluzione appena vista, possiamo ottenere lo stesso risultato selezionando prima le tuple che rispettano le condizioni e i dati che ci interessano, per poi effettuare il join tra loro, rendendo così la query più efficiente, poiché la mole di dati su cui vengono applicati gli operatori è minore:

$$\pi_{\texttt{Name},\texttt{Town}}((\texttt{Customer}\bowtie\sigma_{\texttt{Qnty}>\texttt{100}}(\texttt{Order}))\bowtie\sigma_{\texttt{Price}>\texttt{2}}(\pi_{\texttt{A\#},\texttt{Price}}(\texttt{Article})))$$

Proposition 2. Casi speciali del join naturale

Siano R_1 e R_2 due relazioni con rispettivi schemi $R_1(X)$ e $R_2(Y)$.

1. Se R_1 ed R_2 hanno un insieme di attributi in comune ma nessun valore in comune per tali attributi, allora il risultato sarà un insieme vuoto:

$$Z \subseteq X \cap Y, \nexists t_1 \in R_1 \land t_2 \in R_2 \mid t_1[Z] = t_2[Z] \implies R_1 \bowtie R_2 = \emptyset$$

2. Se R_1 ed R_2 non hanno degli attributi in comune, allora il join naturale degenererà in un prodotto cartesiano:

$$X \cap Y = \emptyset \implies R_1 \bowtie R_2 = R_1 \times R_2$$

Definition 25. Theta Join

Siano R_1 e R_2 due relazioni con rispettive istanze r_1 e r_2 e rispettivi schemi $R_1(X)$ e $R_2(Y)$. Il **join naturale** tra R_1 e R_2 è un operatore binario equivalente a:

$$R_1 \bowtie_{A\theta B} R_2 = \sigma_{A\theta B}(R_1 \times R_2)$$

dove:

- $A \in R_1(X), B \in R_2(Y)$
- dom(A) = dom(B)
- θ è un operatore di confronto $(<, \leq, =, \geq, >)$

In altre parole, un theta join tra R_1 ed R_2 restituisce tutte le combinazioni tra le tuple di r_1 e r_2 che rispettano una condizione su un attributo in comune

Observation 7

In alcuni casi può essere necessario effettuare il **join tra una relazione e se stessa** (**self join**), in modo da ottenere combinazioni di tuple della stessa relazione.

Esempio:

• Data la seguente relazione, vogliamo ottenere una lista dei codici e dei nomi dei dipendenti aventi un salario maggiore dei loro supervisori

	Employees					
Name	C #	Section	Salary	${\bf Supervisor} \#$		
Rossi	C1	В	100	C3		
Pirlo	C2	A	200	C3		
Bianchi	С3	A	500	NULL		
Verdi	C4	В	200	C2		
Neri	C5	В	150	C1		
Tosi	C6	В	100	C1		

- In tal caso, la soluzione migliore risulta essere una selezione effettuata su self join di Employees, in modo da poter accoppiare ogni dipendente al suo supervisore. Possiamo ottenere un self join eseguendo una delle seguenti query:
 - Creiamo una copia della relazione per poi effettuare un theta join tra il codice dei dipendenti e il codice dei loro supervisori, specificando la relazione di appartenenza di ognuno dei due attributi confrontati:

$$EmployeesC = Employees$$

 $\mathsf{EmpSup}_1 = \mathsf{EmplyeesC} \bowtie_{\mathsf{EmployeesC.Supervisor\# = Employees.C\#}} \mathsf{Employees}$

- Effettuiamo un theta join tra la relazione ed una sua copia rinominata, senza dover specificare la relazione di appartenenza degli attributi confrontati:

$$X = \{ \text{Name, C\#, Section, Salary, Supervisor\#} \}$$

$$Y = \{ \text{CName, CC\#, CSec, CSal, CSup\#} \}$$

$$\mathsf{EmpSup}_2 = \mathsf{Emplyees} \bowtie_{\mathsf{Supervisor\#} \ = \ \mathsf{C\#}} \rho_{X \leftarrow Y}(\mathsf{Employees})$$

- Attenzione: utilizzare il join naturale al posto del theta join in una delle tre soluzioni genererebbe una relazione identica a Employees, poiché ogni tupla verrebbe joinata con se stessa scartando automaticamente gli attributi doppioni
- Successivamente, eseguiamo la selezione richiesta, mantenendo solo le tuple dove il salario del dipendente è maggiore del salario del suo supervisore:

$$\sigma_{\texttt{Employees.Salary}} > {}_{\texttt{EmployeesC.Salary}}(\texttt{EmpSup}_1)$$

oppure

$$\sigma_{\text{Salary}} > _{\text{CSalary}}(\text{EmpSup}_2)$$

	$\sigma_{\mathtt{Salary}} > \mathtt{cSal}(\mathtt{EmpSup}_2)$								
Name	C #	Section	Salary	${\bf Supervisor} \#$	CName	CC#	CSec	CSal	CSup#
Verdi	C4	В	200	C2	Pirlo	C2	A	200	С3
Neri	C5	В	150	C1	Rossi	C1	В	100	C3
Tosi	C6	В	100	C1	Rossi	C1	В	100	С3

• Infine, effettuiamo una proiezione sul nome e il codice del dipendente:

$$\pi_{\texttt{Employees.Name, Employees.C\#}}(\sigma_{\texttt{Employees.Salary}} > \texttt{EmployeesC.Salary}(\texttt{EmpSup}_1))$$

oppure

$$\pi_{\text{Name, C#}}(\sigma_{\text{Salary}} > c_{\text{Sal}}(\text{EmpSup}_2))$$

$\pi_{Name, C\#}(\sigma_{Salary} > CSal(EmpSup_2))$				
Name	C #			
Verdi	C4			
Neri	C5			
Tosi	C6			

3.5 Quantificazione universale

Fino ad ora, abbiamo visto solo query inerenti la **quantificazione esistenziale** (indicata col simbolo \exists), ossia la selezione di oggetti che soddisfino **almeno una volta** una determinata condizione.

Tuttavia, utilizzando solo gli operatori visti precedentemente, non abbiamo un modo per poter effettuare query inerenti alla **quantificazione universale** (indicata col simbolo \forall), ossia la selezione di oggetti che soddisfino **sempre** una determinata condizione.

Observation 8

Nella logica del primo ordine, la negazione di "Per ogni oggetto x la condizione φ è vera" non corrisponde a "Per ogni oggetto x la condizione φ è falsa", bensì corrisponde a "Esiste almeno un oggetto x per cui la condizione φ è falsa".

In simboli, diremmo che:

$$\neg(\forall x, \varphi(x)) \neq \forall x, \neg\varphi(x)$$

ma bensì:

$$\neg(\forall x, \varphi(x)) = \exists x, \neg\varphi(x)$$

Per selezionare tutte le tuple di una relazione per cui una determinata condizione φ è sempre valida, quindi, ci basta scartare tutte le tuple per cui almeno una volta la condizione non è valida.

Esempi:

 Data la seguente relazione, vogliamo ottenere un elenco di tutti i nomi e la città di provenienza dei clienti che hanno sempre effettuato un ordine di più di 100 pezzi.

Customers				
Name	C #	Town		
Rossi	C1	Roma		
Rossi	C2	Milano		
Bianchi	С3	Roma		
Verdi	C4	Roma		

Orders					
Ο#	C #	A #	Qnty		
O1	C1	A1	100		
O2	C2	A2	200		
О3	С3	A2	150		
O4	C4	A3	200		
O1	C1	A2	200		
O1	C1	A3	100		

• Per ottenere l'elenco richiesto, ci basta scartare l'elenco dei nomi e delle città che almeno una volta non hanno acquistato più di 100 pezzi dall'elenco totale dei nomi e delle città:

$$\label{eq:lencoNonValidi} \begin{split} & \mathsf{ElencoNonValidi} = \pi_{\mathsf{Name, Town}}(\sigma_{\neg(\mathsf{Qnty}>100)}(\mathsf{Customers}\bowtie \mathsf{Orders})) \\ & R = \pi_{\mathsf{Name, Town}}(\mathsf{Customers}\bowtie \mathsf{Orders}) - \mathsf{ElencoNonValidi} \end{split}$$

oppure, direttamente:

$$R = \pi_{\mathsf{Name, Town}}(\mathsf{Customers} \bowtie \mathsf{Orders}) - \pi_{\mathsf{Name, Town}}(\sigma_{\neg(\mathsf{Qnty} > 100)}(\mathsf{Customers} \bowtie \mathsf{Orders}))$$

R				
Name	Town			
Bianchi	Roma			
Verdi	Roma			

2. • Data la seguente relazione, vogliamo ottenere una lista dei codici e dei nomi dei supervisori aventi un salario maggiore di tutti i loro dipendenti

Employees					
Name	C #	Section	Salary	${\bf Supervisor} \#$	
Rossi	C1	В	100	C3	
Pirlo	C2	A	200	C3	
Bianchi	С3	A	500	NULL	
Verdi	C4	В	200	C2	
Neri	C5	В	150	C1	
Tosi	C6	В	100	C1	

• Anche in questo caso, per ottenere l'elenco richiesto ci basta scartare i supervisori aventi il salario minore di almeno un dipendente:

$$EmployeesC = Employees$$

$${\sf EmpSup} = {\sf EmplyeesC} \bowtie_{{\sf EmployeesC.Supervisor\#} \ = \ {\sf Employees.C\#}} \ {\sf Employees}$$

$$\begin{split} \text{Invalid} &= \pi_{\text{Name, C#}}(\sigma_{\neg(\text{Employees.Salary} < \text{EmployeesC.Salary})}(\text{EmpSup})) \\ &R = \pi_{\text{Name, C#}}(\text{EmpSup}) - \text{Invalid} \end{split}$$

${f R}$			
Name	C #		
Bianchi	СЗ		

Capitolo 4

Teoria della normalizzazione

4.1 Dipendenze funzionali

Definition 26. Dipendenza funzionale

Sia R uno schema con istanza r e siano $X, Y \subseteq R$.

Definiamo come **dipendenza funzionale** tra X e Y, indicata come $X \to Y$ e letta "X determina Y", un vincolo di integrità che impone ad ogni coppia di tuple in r aventi valori uguali su X di avere valori uguali anche su Y:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Attenzione: notiamo come nella condizione non vi sia un "se e solo se", bensì solo un "se". Dunque, $X \to Y$ non implica che ogni coppia di tuple in r aventi valori uguali su Y debba avere valori uguali anche su X:

Esempi:

- 1. Supponiamo di avere il seguente schema Flights(Code, Day, Pilot, Time)
 - Viene naturale considerare i seguenti vincoli:
 - Un volo con un certo codice partità sempre allo stesso orario
 - C'è un solo volo con un certo pilota ad un certo orario in un certo giorno
 - C'è un solo pilota di un certo volo in un certo giorno
 - Dunque, imponiamo le seguenti dipendenze funzionali sullo schema:
 - Code o Time
 - (Day, Pilot, Time) \rightarrow Code
 - (Code, Day) \rightarrow Pilot

Definition 27. Istanza legale

Dato uno schema R e un insieme F di dipendenze funzionali definite su R, diciamo che un'istanza di R è **legale su F** se soddisfa tutte le dipendenze funzionali in F

Esempi:

1. • Consideriamo la seguente relazione su cui sono definite le seguenti dipendenze funzionali:

$$F = \{A \to B\}$$

A	В	C	D
a_1	b_1	c_1	d_1
a_1	b_1	c_2	d_2
a_2	b_2	c_1	d_3

- Tale istanza è legale su F, poiché soddisfa le dipendenze funzionali in F: tutte le tuple aventi $t[A] = a_1$ hanno anche $t[B] = b_1$, così come tutte le tuple (nonostante sia solo una in questo caso) aventi $t[A] = a_2$ hanno anche $t[B] = b_2$
- Consideriamo la seguente relazione su cui sono definite le seguenti dipendenze funzionali:

$$F = \{A \to B\}$$

A	В	C	D
a_1	b_1	c_1	d_1
a_2	b_1	c_2	d_2
a_2	b_2	c_1	d_3

• Tale istanza è illegale su F, poiché non soddisfa le dipendenze funzionali in F: la seconda e la terza tupla hanno lo stesso valore in A ma non lo stesso valore in B

4.1.1 Chiusura di F

Definition 28. Chiusura di un insieme di dipendenze funzionali

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Definiamo come **chiusura di F**, indicata con F^+ , l'insieme di **tutte** le dipendenze funzionali, incluse quelle non in F, soddisfatte da **ogni istanza** di R legale su F.

$$F^{+} = \bigcap_{r \in L} \{ f \text{ dipendenza funzionale } \mid r \text{ soddisfa } f \}$$

dove $L = \{r \text{ istanza di } R \mid r \text{ legale su } F\}.$

In generale, quindi, si ha che $F \subseteq F^+$.

Esempio:

• Consideriamo la seguente relazione su cui sono definite le seguenti dipendenze funzionali:

$$F = \{A \to B, B \to C\}$$

A	В	\mathbf{C}	D
a_1	b_1	c_1	d_1
a_1	b_1	c_1	d_2
a_2	b_2	c_1	d_3

• Tale istanza è legale su F, poiché soddisfa tutte le dipendenze funzionali in F. Inoltre, è soddisfatta anche la dipendenza funzionale $A \to C$, che tuttavia non è in F. Dunque, si ha che $A \to B, B \to C, A \to C \in F^+$

Observation 9

Dato uno schema R e un insieme F di dipendenze funzionali definite su R, si ha che:

$$Y \subseteq X \subseteq R \implies X \to Y \in F^+$$

Tali dipendenze funzionali vengono dette **ovvie**, poiché soddisfatte da ogni istanza di R.

Proposition 3

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Dati $X, Y \subseteq R$, si ha che:

$$X \to Y \in F^+ \iff \forall A \in Y, X \to A \in F^+$$

Dimostrazione:

- Siano $X, Y \subseteq R$, dove $Y = \{A_1, \dots, A_k\}$.
- \bullet Data r una qualsiasi istanza di R, si ha che:

$$\forall A_i \in Y, X \to A \in F^+ \iff \begin{cases} \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[A_1] = t_2[A_1] \\ \vdots \\ \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[A_k] = t_2[A_k] \end{cases} \iff \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[\{A_1, \dots, A_k\}] = t_2[\{A_1, \dots, A_k\}] \\ \iff \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y] \iff X \to Y \in F^+ \end{cases}$$

Esempio:

• Consideriamo la seguente istanza di uno schema $R = \{A, B, C\}$:

A	В	\mathbf{C}
a_1	b_1	c_1
a_1	b_1	c_1
a_2	b_2	c_1

- Dato F un insieme di dipendenze funzionali definite su R, notiamo facilmente, che tutte le tuple di tale istanza soddisfano la dipendenza $ABC \to ABC \in F^+$.
- Notiamo inoltre che tutte le tuple di tale istanza in cui A e B sono uguali anche A è uguale, dunque $AB \to A \in F^+$.
- Procedendo analogamente, in definitiva si ha che:

$$\left. \begin{array}{l} ABC \rightarrow ABC, ABC \rightarrow AB, ABC \rightarrow AC, \\ ABC \rightarrow BC, ABC \rightarrow A, ABC \rightarrow B, ABC \rightarrow C, \\ AB \rightarrow AB, AB \rightarrow A, AC \rightarrow A, AC \rightarrow C, \\ BC \rightarrow A, BC \rightarrow C, A \rightarrow A, B \rightarrow B, C \rightarrow C \end{array} \right\} \in F^+$$

4.2 Assiomi di Armstrong

Definition 29. Assiomi di Armstrong

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Definiamo come F^A l'insieme di tutte le dipendenze funzionali ottenibili partendo da F applicando i seguenti **assiomi di Armstrong**:

• Inclusione iniziale $(F \subseteq F^A)$:

$$X \to Y \in F \implies X \to Y \in F^A$$

• Assioma di riflessività:

$$Y \subseteq X \subseteq R \implies X \to Y \in F^A$$

• Assioma di aumento:

$$Z \subseteq R, X \to Y \in F^A \implies XZ \to YZ \in F^A$$

• Assioma di transitività:

$$X \to Y \in F^A \land Y \to Z \in F^A \implies X \to Z \in F^A$$

Proposition 4. Regole secondarie di Armstrong

Dato uno schema R e un insieme F di dipendenze funzionali definite su R, tramite gli assiomi di Armstrong è possibile ricavare le seguenti regole aggiuntive:

• Regola dell'unione:

$$X \to Y \in F^A \land X \to Z \in F^A \implies X \to YZ \in F^A$$

• Regola della decomposizione:

$$Z \subseteq Y, X \to Y \in F^A \implies X \to Z \in F^A$$

• Regola della pseudo-trasitività:

$$X \to Y \in F^A \land WY \to Z \in F^A \implies WX \to Z \in F^A$$

Dimostrazione:

• Regola dell'unione:

- Siano $X \to Y, X \to Z \in F^A$.
- Per assioma di aumento, si ha che:

$$X \subseteq R, X \to Y \in F^A \implies XX \to XY = X \to XY \in F^A$$

- Analogamente, si ha che:

$$Y \subseteq R, X \to Z \in F^A \implies XY \to ZY = XY \to YZ \in F^A$$

- Infine, per assioma di transitività si ha che:

$$X \to XY \in F^A \land XY \to YZ \in F^A \implies X \to YZ \in F^A$$

• Regola della decomposizione:

- $\operatorname{Sia} Z \subseteq Y \subseteq R \text{ e sia } X \to Y \in F^A.$
- Per assioma di riflessività, si ha che:

$$Z \subseteq Y \subseteq R \implies Y \to Z \in F^A$$

- Infine, per assioma di transitività si ha che:

$$X \to Y \in F^A \land Y \to Z \in F^A \implies X \to Z \in F^A$$

• Regola della pseudo-transitività:

- $\operatorname{Sia} X \to Y, YW \to Z \in F^A$
- Per assioma di aumento, si ha che:

$$W \subseteq R, X \to Y \in F^A \implies XW \to YW \in F^A$$

- Infine, per assioma di transitività si ha che:

$$XW \to YW \in F^A \land YW \to Z \in F^A \implies XW \to Z \in F^A$$

Proposition 5

Dato uno schema R e un insieme F di dipendenze funzionali definite su R, si ha che:

$$X \to Y \in F^A \iff \forall A \in Y, X \to A \in F^A$$

Dimostrazione:

- Siano $X, Y \subseteq R$, dove $Y = \{A_1, \dots, A_k\}$.
- Per la regola dell'unione, si ha che:

$$\forall A_i \in Y, X \to A \in F^A \implies X \to \{A_1, \dots, A_k\} = Y \in F^A$$

• Per la regola della decomposizione, invece si ha che:

$$X \to Y \in F^A \implies \forall A \in Y, X \to A \in F^A$$

4.2.1 Chiusura di X

Definition 30. Chiusura di un insieme di attributi

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Dato $X \subseteq R$, definiamo come **chiusura di X rispetto a F**, indicata con X_F^+ (o solo X^+ se F è l'unico insieme di dipendenze su R), il seguente insieme:

$$X_F^+ = \{ A \in R \mid X \to A \in F^A \}$$

dove $A \in R$ implica che A sia un singolo attributo di R

Lemma 6

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Dato $X, Y \subseteq R$, si ha che:

$$X \to Y \in F^A \iff Y \subseteq X^+$$

Dimostrazione:

• Dato $Y = \{A_1, ..., A_k\}$, si ha che:

$$X \to Y \in F^A \iff \forall A_i \in Y, X \to A_i \in F^A \iff Y = \{A_1, \dots, A_k\} \subseteq X^+$$

Corollary 1

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Dato $X \subseteq R$, si ha che $X \to X \in F^A$. Dunque, ne segue che:

$$X \to X \in F^A \iff X \subseteq X^+$$

In altre parole, ogni insieme di attributi è un elemento della sua chiusura.

4.2.2 $F^+ = F^A$

Theorem 7. $F^+ = F^A$

Dato uno schema R e un insieme F di dipendenze funzionali definite su R, si ha che:

$$F^+ = F^A$$

Dimostrazione:

- Dimostriamo che $F^A \subseteq F^+$:
 - Caso base (n = 0): se $X \to Y \in F^A$ senza aver applicato alcun assioma di Armstrong, allora l'unica possibilità è che:

$$X \to Y \in F^A \iff X \to Y \in F$$

Siccome $X \to Y \in F$, allora

$$X \to Y \in F \implies X \to Y \in F^+$$

- Ipotesi induttiva forte: ogni dipendenza funzionale in F^A ottenuta da F applicando $k \leq n$ assiomi di Armstrong è anche in F^+

$$X \to Y \in F^A$$
 tramite $k \le n$ assiomi $\implies X \to Y \in F^+$

- **Passo induttivo** (n > 0): è necessario dimostrare che se $X \to Y \in F^A$ dopo aver applicato n + 1 assiomi di Armstrong, allora $X \to Y \in F^+$.

È possibile ritrovarsi in uno dei seguenti tre casi:

1. Se l'(n+1)-esimo assioma applicato è l'assioma di riflessività, allora l'unica possibilità è che:

$$X \to Y \in F^A \iff Y \subseteq X \subseteq R$$

Ma se $Y \subseteq X \subseteq R$, allora $\forall r$ istanza legale di R si ha che:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_1[Y]$$

da cui ne segue automaticamente che $X \to Y \in F^+$:

- 2. Se l'(n + 1)-esimo assioma applicato è l'assioma di aumento, allora è obbligatoriamente necessario che:
 - * $\exists V, W \subseteq R \mid \exists V \to W \in F^A$, ottenuta applicando $j \leq n$ assiomi di Armstrong

$$* \ \exists Z \subseteq R \mid X := VZ, Y := WZ$$

affinché si abbia che:

$$Z \subseteq R, V \to W \implies VZ \to WZ = X \to Y \in F^A$$

Siccome per ipotesi induttiva si ha $V \to W \in F^A \implies V \to W \in F^+$ e siccome $Z \subseteq Z \implies Z \to Z \in F^+$, si vede facilmente che:

$$\begin{cases} V \to W \in F^+ \\ Z \to Z \in F^+ \end{cases} \Longrightarrow \begin{cases} \forall t_1, t_2 \in r, t_1[V] = t_2[V] \implies t_1[W] = t_2[W] \\ \forall t_1, t_2 \in r, t_1[Z] = t_2[Z] \implies t_1[Z] = t_2[Z] \end{cases} \Longrightarrow$$

$$\Longrightarrow \forall t_1, t_2 \in r, t_1[VZ] = t_2[VZ] \implies t_1[WZ] = t_2[WZ]$$

$$\Longrightarrow VZ \to WZ = X \to Y \in F^+$$

3. Se l'(n + 1)-esimo assioma applicato è l'assioma di transitività, allora è obbligatoriamente necessario che $\exists X \to Z, Z \to Y \in F^A$, ottenute con $k \leq n$ assiomi di Armstrong, affinché si abbia che:

$$X \to Z \in F^A \land Z \to Y \in F^A \implies X \to Y \in F^A$$

Siccome per ipotesi induttiva $X \to Z \in F^A \implies X \to Z \in F^+$ e $Z \to Y \in F^A \implies Z \to Y \in F^+$, si vede facilmente che:

$$\begin{cases} X \to Z \in F^+ \\ Z \to Y \in F^+ \end{cases} \Longrightarrow$$

$$\Longrightarrow \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Z] = t_2[Z] \implies t_1[Y] = t_2[Y] \implies$$

$$\Longrightarrow X \to Y \in F^+$$

- Dimostriamo che $F^+ \subseteq F^A$:
 - Sia $X \subseteq R$ e sia r istanza di $R(X^+, R X^+)$ tale che

X^+		$R-X^+$			
A_1	• • •	A_i	A_j	• • •	A_n
1		1	1		1
1		1	0		0

dunque tale che $\forall t_1, t_2 \in r$ si ha:

*
$$t_1[X^+] = (1, \dots, 1) = t_2[X^+]$$

*
$$t_1[R-X^+] = (1,\ldots,1) \neq (0,\ldots,0) = t_2[R-X^+]$$

- Notiamo che $\forall V, W \subseteq R \mid V \to W \in F$ si ha che:
 - * Se $V \cap R X^+ \neq \emptyset$ (dunque anche se $V \subseteq R X^+$) allora $t_1[V] \neq t_2[V]$, dunque r soddisfa $V \to W \in F$
 - * Se invece $V\subseteq X^+$, per il lemma precedentemente visto si ha che

$$V \subseteq X^+ \iff X \to V \in F^A$$

Siccome $V \to W \in F \implies V \to W \in F^A$, per transitività si ha che

$$X \to V \in F^A \land V \to W \in F^A \implies X \to W \in F^A \iff W \subseteq X^+$$

Dunque, siccome $V, W \subseteq X^+$, in definitiva si ha che

$$\forall t_1, t_2 \in r, t_1[V] = (1, \dots, 1) = t_2[V] \land t_1[W] = (1, \dots, 1) = t_2[W]$$

e quindi r soddisfa ogni $V \to W \in F$

- Siccome in entrambi i casi r soddisfa $V \to W \in F$, allora r è legale, implicando che qualsiasi $X \to Y \in F^+$ è soddisfatta da r.
- Inoltre, siccome $X \subseteq X^+$ per il lemma precedentemente visto e siccome abbiamo mostrato che (in questo caso considerando V = X e W = Y) per costruzione di r si ha che

$$X \subseteq X^+, X \to Y \implies Y \subseteq X^+$$

e dunque otteniamo che $Y \subseteq X^+ \iff X \to Y \in F^A$

Observation 10

Poiché $F^+ = F^A$, per calcolare F^+ ci basta applicare gli assiomi di Armstrong sulle dipendenze in F in modo da trovare F^A .

Tuttavia, calcolare $F^+ = F^A$ richiede **tempo esponenziale**, quindi $O(2^{nk})$: considerando anche solo l'assioma di riflessività, siccome ogni possibile sottoinsieme di R genera una dipendenza e siccome i sottoinsiemi possibili di R sono $2^{|R|}$, allora ne segue che $|F^+| >> 2^{|R|}$

4.3 Terza Forma Normale (3NF)

A questo punto, possiamo sfruttare la definizione di dipendenza funzionale per dare una definizione più rigorosa di chiave:

Definition 31. Chiave e Primo

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Definiamo il sottoinsieme di attributi $K \subseteq R$ come **chiave** di R se:

- $K \to R \in F^+$
- $\sharp K' \subset K \mid K' \to R \in F^+$

Se K è una chiave di R, ogni attributo $A \in K$ viene detto **primo**.

Esempio:

• Consideriamo lo schema Student(Matr, LastName, FirstName, BirthD)

• In questo caso, è ovvio imporre la seguente dipendenza funzionale in F:

$$\mathsf{Matr} \to \{\mathsf{LastName, FirstName, BirthD}\} \in F \subseteq F^+$$

poiché ogni tupla avente matricola uguale deve anche avere informazioni dello studente uguali.

• Siccome Matr \subseteq Matr⁺ \iff Matr \to Matr \in F^+ , per la regola dell'unione si ha che:

$$Matr \rightarrow \{Matr, LastName, FirstName, BirthD\} \in F^+$$

dunque Matr è superchiave di Student poiché determina tutto il suo schema

• Siccome non esiste alcun sottoinsieme di Matr, allora possiamo concludere che Matr sia chiave di Student

Definition 32. Superchiave

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Definiamo il sottoinsieme di attributi $K \subseteq R$ come **superchiave** di R se:

- $\bullet \ K \to R \in F^+$
- $\exists K' \subseteq K \mid K' \to R \in F^+ \land \nexists K'' \subset K' \mid K'' \to R \in F^+$ (ossia contiene una chiave)

Observation 11

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Se $X \subseteq R$ è chiave di R, allora essa è anche superchiave, poiché $\exists X \subseteq X$ tale che X chiave di R

X chiave di $R \implies X$ superchiave di R

Definition 33. Terza Forma Normale (3NF)

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Lo schema R viene detto in **terza forma normale (3NF)** se $\forall A \in R, X \subseteq R \mid X \rightarrow A \in F^+$ dove $A \notin X$, si ha che esiste una chiave $K \subseteq R$ tale che $K \subseteq X \lor A \in K$.

$$\forall X \to A \in F^+, A \notin X, \exists K \subseteq R \text{ chiave } \mid K \subseteq X \lor A \in K$$

In altre parole, uno schema viene detto in terza forma normale se per ogni dipendenza funzionale non banale $X \to A \in F^+$, il determinante X è superchiave o il determinato A è primo.

Esempio:

- 1. Sia R = ABCD uno schema e sia $F = \{A \rightarrow B, B \rightarrow CD\}$ un insieme di dipendenze funzionali su R
 - Applicando gli assiomi di Armstrong, si ha che:
 - Per riflessività:

$$A \subseteq A \implies A \to A \in F^A$$

- Per transitività:

$$A \to B, B \to CD \in F^A \implies A \to CD \in F^A$$

- Per unione:

$$A \to A, A \to B, A \to CD \in F^A \implies A \to ABCD = R \in F^A$$

- Dunque, siccome $A \to R \in F^A = F^+$ e siccome A non ha sottoinsiemi, allora A è chiave di R (in particolare, A è l'unica chiave di R)
- Verifichiamo quindi se R sia in 3NF:
 - $-A \rightarrow B \in F^+$ rispetta la definizione di 3NF, poiché il determinante A è chiave (e quindi anche una superchiave di se stessa)
 - $B\to CD\in F^+$ non è una dipendenza da controllare, poiché CD sono un sottoinsieme di attributi e non un singolo attributo
 - Tuttavia, per decomposizione abbiamo che $B \to CD \in F^A = F^+ \implies B \to C, B \to D \in F^A = F^+$
 - Per entrambe si ha che B non è superchiave, poiché $A \not\subseteq B$, mentre C e D non sono primi, poichè $C, D \notin A$, dunque concludiamo che R non sia in 3NF
- 2. Sia R = ABCD e sia $F = \{AC \rightarrow B, B \rightarrow AD\}$ un insieme di dipendenze funzionali su R.
 - Applicando gli assiomi di Armstrong, si ha che:
 - Per riflessività:

$$A, C, AC \subseteq AC \implies AC \to A, AC \to C, AC \to AC \in F^A$$

 $B, C, BC \subseteq BC \implies BC \to B, BC \to C, BC \to BC \in F^A$

Per transitività:

$$AC \to B, B \to AD \in F^A \implies AC \to AD \in F^A$$

 $BC \to B, B \to AD \in F^A \implies BC \to AD \in F^A$

- Per unione:

$$AC \to C, AC \to B, AC \to AD \in F^A \implies AC \to ABCD = R \in F^A$$

 $BC \to B, BC \to AD \in F^A \implies BC \to ABD \in F^A$

- Per aumento:

$$BC \to ABD \in F^A \implies BCC = BC \implies ABCD = R \in F^A$$
 $AC \to ABCD = R \in F^A \implies ABC \to ABBCD = ABCD = R \in F^A$

- Deduciamo quindi che AC e BC siano chiave di R, mentre ABC è una superchiave di R
- Verifichiamo quindi se R sia in 3NF:
 - $-AC \rightarrow B \in F^A = F^+$ rispetta la definizione di 3NF, poiché AC è chiave
 - $-\ B\to AD\in F^A=F^+$ non va controllato, ma per decomposizione si ha che $B\to A, B\to D\in F^A=F^+$
 - $-B \to A \in F^+$ rispetta la definizione di 3NF, poiché $A \in AC$ e dunque primo, mentre $B \to D \in F^+$ non rispetta la definizione di 3NF, poiché né B è superchiave né D è primo, dunque concludiamo che R non sia in 3NF
- 3. Sia R = ABCD uno schema e sia $F = \{AB \to CD, BC \to A, D \to AC\}$ un insieme di dipendenze funzionali su R
 - Applicando gli assiomi di Armstrong, si ha che AB,BC e BD sono chiavi di R
 - Verifichiamo quindi se R sia in 3NF:
 - $-AB \rightarrow CD \in F^+$ rispetta la definizione di 3NF, poiché AB è chiave
 - $BC \to A \in F^+$ rispetta la definizione di 3NF, poiché BC è chiave e A è primo
 - $-D \to AC \in F^+ \implies D \to A, D \to C \in F^+$, i quali rispettano entrambi la definizione di 3NF, poiché A e C sono entrambi primi
 - Dunque, concludiamo che R sia in 3NF

Definition 34. Dipendenza parziale

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Definiamo $X \to A \in F^+$, dove $A \notin X$, come **dipendenza parziale** su R se A non è primo e se $X \subset K$ (quindi in particolare $X \neq K$), dove K è una chiave

 $A \notin X, X \to A \in F^+$ dip. parziale $\iff A \in K, K$ chiave di $R \land X \subset K$

Definition 35. Dipendenza transitiva

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Definiamo $X \to A \in F^+$, dove $A \notin X$, come **dipendenza transitiva** su R se:

- A non è primo
- $\forall K \subseteq R$ chiave di R si ha che $X \subset K$ (quindi in particolare $X \neq K$) e $K X \neq \emptyset$

Corollary 2. Definizione alternativa di 3NF

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Lo schema R viene detto in **terza forma normale (3NF)** se non esistono dipendenze parziali o transitive in F.

$$\nexists X \to Y \in F \mid X \to Y$$
 dip. parziale o transitiva

Definition 36. Forma Normale di Boyce-Codd

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Lo schema R viene detto in forma normale di Boyce-Codd (BCNF) se

$$\forall X \to Y \in F \implies X$$
 superchiave

Observation 12

Uno schema in forma normale di Boyce-Codd è anche uno schema in terza forma normale, poiché la BCNF è una versione più restrittiva della 3NF, tuttavia, a differenza della 3NF, non è sempre possibile decomporre uno schema in BCNF in più sottoschemi.

4.4 Calcolare X^+

Method 1. Algoritmo per la chiusura di un insieme di attributi

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Dato un qualsiasi insieme di attributi $X \subseteq R$, è possibile calcolare tutti gli elementi appartenenti a X_F^+ tramite il seguente algoritmo:

```
def closureX(R: schema, F: set of dependencies, X: subset of R): Z := X S := \{ A \mid \exists \ Y \rightarrow V \in F, \ A \in V \subseteq R, \ Y \subseteq Z \} while S \not\subseteq Z \text{ do:} Z := X \cup S S := \{ A \mid \exists \ Y \rightarrow V \in F, \ A \in V \subseteq R, \ Y \subseteq Z \} X^+ := Z
```

Tale algoritmo viene eseguito in tempo polinomiale, ossia $O(n^k)$

Esempio:

return X⁺

- Dato lo schema R = ABCDEHL e l'insieme di dipendenze funzionali $F = \{AB \rightarrow C, B \rightarrow D, AD \rightarrow E, CE \rightarrow H\}$ definite su R, vogliamo calcolare AB^+ .
- Utilizzando l'algoritmo, ad ogni iterazione si ha che:
 - 1. Inizialmente si ha che Z := AB e S := CD, poiché:

$$-AB \subseteq AB \land AB \to C \implies C \in S$$

$$-B \subseteq AB \land B \to D \implies D \in S$$

Notiamo come tramite l'algoritmo stiamo implicitamente utilizzando gli assiomi di Armstrong per aggiungere C e D a Z=AB:

$$-A, B \in AB, AB \to A, AB \to B \in F^{A}$$

$$-AB \to C, B \to D \in F \implies AB \to C, B \to D \in F^{A}$$

$$-B \subseteq AB \implies AB \to B \in F^{A}$$

$$-AB \to B, B \to D \in F^{A} \implies AB \to D \in F^{A}$$

$$-AB \to A, AB \to B, AB \to C, AB \to D \in F^{A} \iff A, B, C, D \in AB^{+}$$

2. Siccome $C,D\in S\wedge C,D\notin Z\implies S\not\subseteq Z$, procediamo ponendo $Z:=Z\cup S=ABCD$ e S:=CDE, poiché:

$$-AB \subseteq ABCD \land AB \rightarrow C \implies C \in S$$

$$-B \subseteq ABCD \land B \rightarrow D \implies D \in S$$

$$-AD \subseteq ABCD \land AD \rightarrow E \implies E \in S$$

Anche in questo caso, stiamo implicitamente utilizzando gli assiomi di Armstrong per aggiungere E a Z=ABCD:

$$-B \to D \in F^A \implies AB \to AD \in F^A$$

$$-AD \rightarrow E \in F \implies AD \rightarrow E \in F^A$$

$$-AB \rightarrow AD, AD \rightarrow E \in F^A \implies AB \rightarrow E \in F^A \iff E \in AB^+$$

3. Siccome $E \in S \land E \notin Z \implies S \not\subseteq Z$, procediamo ponendo $Z := Z \cup S = ABCDE$ e S := CDEH, poiché:

$$-AB \subseteq ABCDE \land AB \rightarrow C \implies C \in S$$

$$-B \subseteq ABCDE \land B \rightarrow D \implies D \in S$$

$$-AD \subseteq ABCDE \land AD \rightarrow E \implies E \in S$$

$$-CE \subseteq ABCDE \land Ce \rightarrow H \implies H \in S$$

Anche in questo caso, stiamo implicitamente utilizzando gli assiomi di Armstrong per aggiungere H a Z = ADCDE:

$$-AB \rightarrow C, AB \rightarrow E \in F^A \implies AB \rightarrow CE \in F^A$$

$$-CE \rightarrow H \in F \implies CE \rightarrow H \in F^A$$

$$-AB \rightarrow CE, CE \rightarrow H \in F^A \implies AB \rightarrow H \in F^A \iff H \in AB^+$$

4. Siccome $H \in S \land H \notin Z \implies S \nsubseteq Z$, procediamo ponendo $Z := Z \cup S = ABCDEH$ e S := CDEH, poiché:

$$-AB \subseteq ABCDEH \land AB \rightarrow C \implies C \in S$$

$$-B \subset ABCDEH \land B \rightarrow D \implies D \in S$$

$$-AD \subseteq ABCDEH \land AD \rightarrow E \implies E \in S$$

$$-CE \subseteq ABCDEH \land Ce \rightarrow H \implies H \in S$$

In questo caso, quindi, S rimane inalterato

5. Infine, siccome $S \subseteq Z$, l'output dell'algoritmo sarà $AB^+ = ABCDEH$

Theorem 8. Correttezza dell'algoritmo closureX

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Dato un qualsiasi insieme di attributi $X\subseteq R$, l'algoritmo closureX(R,F,X) restituisce X_F^+

Dimostrazione:

- Siano $Z_0, Z_1, \ldots, Z_i, \ldots$ e $S_0, S_1, \ldots, S_i, \ldots$ gli insiemi calcolati ad ogni iterazione del ciclo while dell'algoritmo
- Osserviamo che $Z_i \subseteq Z_{i+1} \forall i \in \mathbb{N}$, dunque $Z_0, Z_1, \ldots, Z_i, \ldots$ è una sequenza monotona limitata da R, implicando che $\exists f \in \mathbb{N} \mid Z_f = Z_{f+1}$
- Siccome ciò può accadere solo se $S_f \subseteq Z_f$, ossia quando l'algoritmo termina, si ha che Z_f è l'output dell'algoritmo
- Dimostriamo quindi per induzione che $Z_f \subseteq X^+$:
 - Caso base (i = 0): Alla 0-esima iterazione del while (ossia prima di esso) si ha $Z_0 = X \subseteq X^+$
 - **Ipotesi induttiva**: Per ogni $i \in \mathbb{N}$ si ha che $Z_i \subseteq X^+$
 - Passo induttivo (i > 0): Dato $A \in Z_{i+1} := Z_i \cup S_i$, si ha che $A \in Z_i \vee A \in S_i$. Dunque, si possono verificare due casi:
 - * Se $A \in Z_i$, allora per ipotesi si avrebbe che $A \in Z_i \subseteq X^+$
 - * Se $A \in S^i$, allora $\exists Y \to V \in F \mid A \in V \subseteq R, Y \subseteq Z_i$.

Siccome per ipotesi si ha $Z_i \subseteq X^+$ e siccome $Y \subseteq Z_i$, allora $Y \subseteq Z_i \subseteq X^+ \iff X \to Y \in F^A$ e siccome $Y \to V \in F \implies Y \to V \in F^A$, allora per transitività si ha che

$$X \to Y, Y \to V \in F^A \implies X \to V \in F^A \iff V \subseteq X^+$$

Dunque, avrebbe che $A \in V \subseteq X^+$

- * Siccome in entrambi i casi $A \in Z_{i+1} \implies A \in X^+$, allora concludiamo che $Z_{i+1} \subseteq X^+$
- Dimostriamo ora che $X^+ \subseteq Z_f$:
 - Sia $X \subseteq R$ e sia r istanza di $R(Z_f, R Z_f)$ tale che

Z_f		$R-Z_f$			
A_1		A_i	A_j		A_n
1		1	1		1
1		1	0		0

dunque tale che $\forall t_1, t_2 \in r$ si ha:

$$* t_1[Z_f] = (1, \ldots, 1) = t_2[Z_f]$$

*
$$t_1[R-Z_f] = (1,\ldots,1) \neq (0,\ldots,0) = t_2[R-Z_f]$$

- Notiamo che $\forall V, W \subseteq R \mid V \to W \in F$ si ha che:
 - * Se $V \cap R Z_f \neq \emptyset$ (dunque anche se $V \subseteq R Z_f$) allora $t_1[V] \neq t_2[V]$, dunque r soddisfa $V \to W \in F$
 - * Se invece $V \subseteq Z_f$, allora $W \subseteq S_f$, poiché, per come viene calcolato S_f , si ha che:

$$V \to W \in F, V \subseteq Z_f, B \in W \subseteq R \implies B \in S_f \implies W \subseteq S_f$$

e dunque, siccome $S_f \subseteq Z_f$ è la condizione che termina l'algoritmo, allora $W \subseteq S_f \subseteq Z_f$

* Siccome $V, W \subseteq Z_f$, in definitiva si ha che

$$\forall t_1, t_2 \in r, t_1[V] = (1, \dots, 1) = t_2[V] \land t_1[W] = (1, \dots, 1) = t_2[W]$$

e quindi r soddisfa ogni $V \to W \in F$

- Siccome in entrambi i casi r soddisfa $V \to W \in F$, allora r è legale.
- Dato $A \in X^+$ si ha che $X \to A \in F^A = F^+$, dunque deve essere soddisfatta da qualsiasi istanza legale, inclusa r, dunque si ha che

$$\forall t_1, t_2 \in r, t_1[X^+] = t_2[X^+] \implies t_1[A] = t_2[A]$$

– Tuttavia, per costruzione di r si ha che $t_1[A]=t_2[A]\iff A\in Z_f$, dunque concludiamo che $X^+\subseteq Z_f$

4.4.1 Trovare le chiavi di uno schema

Proposition 9

Dato uno schema R e dato un insieme F di dipendenze funzionali definite su R, si ha che:

$$X \subseteq R$$
 superchiave di $R \iff X^+ = R$

Dimostrazione:

• Sia $R = \{A_1, \ldots, A_k\}$ e sia $X \subseteq R$. Per le regole della decomposizione e dell'unione e per , si ha che:

$$X \to R \in F^+ \iff \forall i \in [1, k], X \to A_i \in F^+ = F^A \iff \forall i \in [1, k], A_i \in X^+ \iff X^+ = \{A_i, \dots, A_k\} = R$$

- Se $X \to R \in F^+$, le uniche possibilità sono:
 - $-\exists Y\subseteq X\mid Y$ chiave di $R\implies X$ superchiave di R

$$-\not\exists Y\subset X\mid Y\to R\in F^+\implies X$$
chiave di $R\implies X$ superchiave di R

• Dunque, possiamo concludere che:

$$X \subseteq R$$
 superchiave di $R \iff X^+ = R$

Corollary 3

Dato uno schema R e dato un insieme F di dipendenze funzionali definite su R, si ha che:

$$X \subseteq R$$
 chiave di $R \iff X^+ = R \land \nexists Y \subset R \mid Y^+ = R$

Proposition 10

Dato uno schema R e dato un insieme F di dipendenze funzionali definite su R, si ha che:

$$\nexists X \to Y \in F \mid A \in Y \implies A \in K \subseteq R \mid K$$
 chiave di R

In altre parole, se A non è determinato da nessuna dipendenza funzionale in F, allora A apparterrà ad ogni chiave di R

Dimostrazione:

- Sia $R = A_1, \dots, A_j, \dots A_k$ e sia F in insieme di dipendenze funzionali su R dove $\nexists X \to Y \in F \mid A \in Y$.
- Se K=R fosse chiave di R, allora necessariamente si avrebbe che $A \in K=R$
- Supponiamo quindi per assurdo che $\exists K \subset R \mid K$ chiave di $R, A \notin K$
- Siccome K è chiave di R, allora $K^+ = R = A_1, \ldots, A_j, \ldots A_k$, implicando necessariamente $K \to A_j \in F^A$.
- Tuttavia, si verifica che:
 - $-K\to A_j\in F^A$ non può essere ottenuta tramite l'inclusione di F, poiché $K\to A_j\notin F,$ siccome A_j non è determinato da alcuna dipendenza in F
 - $-K \to A_j \in F^A$ non può essere ottenuta tramite riflessività, poiché implicherebbe necessariamente che $A_i \in K$
 - $-K\to A_j\in F^A$ non può essere ottenuta tramite aumento, poiché implicherebbe necessariamente che $A_j\in K$
 - L'unica possibilità, quindi, è che $K \to A_j \in F^A$ sia ottenuta tramite transitività, implicando l'esistenza di $Y \subseteq R$ tale che

$$K \to Y, Y \to A_i \in F^A \implies K \to A_i \in F^A$$

• Affinché $Y \to A_j \in F^A$, si ha necessariamente che $\exists V \to W \in F \mid A_j \in V \lor A_j \in W$, poiché altrimenti non sarebbe possibile ricavare $Y \to A_j \in F^A$ applicando gli assiomi di Armstrong, contraddicendo l'ipotesi per cui A non appartiene a nessun determinante e nessun determinato di ogni dipendenza funzionale in F

Esempi:

- 1. Dato lo schema R = ABCDEH e l'insieme di dipendenze funzionali $F = \{AB \to CD, C \to E, AB \to E, ABC \to D\}$, vogliamo trovare le chiavi del seguente schema
 - Siccome non esistono dipendenze funzionali in F per cui A,B ed H appaiono come determinato, necessariamente per ogni K chiave di R si ha che $A,B,H\in K$
 - Proviamo quindi a calcolare ABH^+ utilizzando l'algoritmo visto precedentemente:
 - Inizializziamo Z = ABH e S = CDE
 - Alla prima iterazione abbiamo Z = ABCDEH e S = CDE
 - Poiché alla seconda iterazione si avrebbe $S \subseteq Z$, allora $ABC^+ = ABCDEH$
 - Difatti, otteniamo che $ABH^+ = ABCDEH = R$, implicando che ABH sia superchiave di R. Tuttavia, siccome per ogni K chiave di R si ha che $A, B, H \in K$, non possono esistere sottoinsiemi di ABH che siano chiave, implicando quindi che ABH sia chiave di R
 - Inoltre, siccome A, B, H sono in ogni chiave di R, ogni altro possibile insieme di attributi $X \subseteq R \mid X^+ = R$ corrisponderebbe ad una superchiave contenente ABH, dunque ABH è l'unica chiave di R
- 2. Dato lo schema R = ABCDEGH e il seguente insieme di dipendenze funzionali $F = \{AB \to D, G \to A, G \to B, H \to E, H \to G, D \to H\}$
 - Siccome C non è determinato da alcuna dipendenza, allora esso sarà in ogni chiave di R. Tuttavia, si ha che $C^+ = \emptyset \neq R$, dunque C non è chiave di R
 - Applichiamo quindi l'algoritmo per calcolare le chiusure di ogni insieme di attributi costituiti da C e da un determinato di una dipendenza funzionale in F:
 - $-ABC^{+}=R$
 - $GC^+ = R$
 - $-DC^{+}=R$
 - $-HC^{+}=R$
 - ullet Siccome gli unici sottoinsiemi di GC,DC,HC contenenti anche C sono loro stessi, allora tutti e tre sono chiavi di R
 - Quanto ad ABC, è necessario applicare l'algoritmo sui sottoinsiemi AC e BC, ottenendo che $AC^+ = AC$ e che $BC^+ = BC$, implicando quindi che ABC sia chiave di R

Theorem 11. Test dell'unicità

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R.

Posto:

$$X := \bigcap_{V \to W \in F} R - (W - V)$$

Si ha che:

- $X^+ = R \implies X$ è l'unica chiave di R
- $X^+ \neq R \implies$ esistono più chiavi in R e X non è superchiave di R

(dimostrazione omessa)

Esempi:

- 1. Dato lo schema R = ABCDEH e l'insieme di dipendenze funzionali $F = \{AB \to CD, C \to E, AB \to E, ABC \to D\}$, vogliamo determinare se R sia in 3NF
 - Utilizziamo il test dell'unicità determinare la quantità di chiavi in R:
 - Siccome $AB \to CD \in F$, allora consideriamo l'insieme di attributi R (CD AB) = R CD + AB = ABEH
 - Siccome $C \to E \in F$, allora consideriamo l'insieme di attributi R (E C) = R E + C = ABCDH
 - Siccome $AB \to E \in F$, allora consideriamo l'insieme di attributi R (E AB) = R E + AB = ABCDH
 - Siccome $ABC \to D \in F$, allora consideriamo l'insieme di attributi R-(D-ABC)=R-D+ABC=ABCEH
 - A questo punto, consideriamo l'intersezione degli insiemi di attributi determinati:

$$\bigcap_{V \to W \in F} R - (W - V) = ABEH \cap ABCDH \cap ABCDH \cap ABCEH = ABH$$

- Siccome $ABH^+ = R$, allora ABH è l'unica chiave di R
- Per verificare che R sia in 3NF, ci basta vedere che:

$$AB \to CD \in F \implies AB \to CD \in F^A \implies AB \to C, AB \to D \in F^A = F^+$$

• Siccome $AB \to C, AB \to D \in F^+$ sono dipendenze parziali, allora R non è in 3NF

- 2. Dato lo schema R = ABCDEGH e l'insieme di dipendenze funzionali $F = \{AB \to CD, EH \to D, D \to H\}$, vogliamo determinare se R sia in 3NF
 - Utilizziamo il test dell'unicità determinare la quantità di chiavi in R:

$$\bigcap_{V \to W \in F} R - (W - V) = ABEGH \cap ABCEGH \cap ABCDEG = ABEG$$

- Siccome $ABEG^+ = R$, allora ABEG è l'unica chiave di R, implicando che R non sia in 3NF (basta considerare la dipendenza $AB \to CD \in F$)
- 3. Dato lo schema R = ABCDE e l'insieme di dipendenze funzionali $F = \{AB \rightarrow C, AC \rightarrow B, B \rightarrow E\}$, vogliamo determinare se R sia in 3NF
 - Utilizziamo il test dell'unicità determinare la quantità di chiavi in R:

$$\bigcap_{V \to W \in F} R - (W - V) = ABDE \cap ACDE \cap ABCD = AD$$

- Siccome $AD^+ = AD \neq R$, allora esistono più chiavi in R e AD non è superchiave di R.
- Siccome A e D non sono determinati da alcuna dipendenza in F, allora sappiamo che essi devono appartenere ad ogni chiave di R.
- Osservando i determinanti delle dipendenze in F, notiamo che aggiungendo B all'insieme di attributi AD potremmo raggiungere anche C ed E tramite l'algoritmo conosciuto. Difatti, si ha che $ABD^+=R$, implicando che ABD sia chiave di R, poiché l'unico sottoinsieme di ABD contenente anche AD è AD stesso, il quale sappiamo non essere superchiave.
- Analogamente, osserviamo che aggiungendo C all'insieme di attributi AD potremmo raggiungere B ed E. Difatti, si ha che $ACD^+ = R$, implicando che anche ACD sia chiave di R
- Siccome $B \to E \in F$ è una dipendenza parziale, allora R non è in 3NF

4.5 Decomposizione di uno schema

Definition 37. Decomposizione di uno schema

Sia R uno schema. Definiamo come **decomposizione di** R l'insieme di sottoschemi $\rho = R_1, \ldots, R_k$ che **coprono** R, ossia tali che:

$$R = \bigcup_{i=0}^{k} R_i$$

In altre parole, R_1, \ldots, R_k sono un insieme di schemi tramite cui è possibile ricostruire R effettuando un join naturale tra essi

Observation 13

Decomporre uno schema R in più sottoschemi R_1, \ldots, R_k risulta utile nel caso in cui:

- \bullet R non sia in 3NF, poiché è più probabile che i suoi sottoschemi siano in 3NF
- Si vuole ottenere un'efficienza maggiore, poiché in alcuni casi potrebbe essere necessaria solo una parte dell'informazione totale, rendendo quindi necessario effettuare una query solo tra alcuni sottoschemi invece che su tutto R. Inoltre, essendo le tuple dei sottoschemi più piccole rispetto a quelle di R, possiamo caricarne di più in memoria.

Esempio:

- Consideriamo lo schema R = ABC e l'insieme di dipendenze funzionali $F = \{A \rightarrow B, B \rightarrow C\}$
- In questo caso, notiamo facilmente che A è l'unica chiave di R, implicando che R non sia in 3NF.
- Possiamo quindi provare a decomporre R in due modi:
 - Decomponiamo R in $R_1 = AB$ con $F_1 = \{A \to B\}$ e $R_2 = BC$ con $F_2 = \{B \to C\}$, i quali risultano essere entrambi in 3NF
 - Decomponiamo R in $R_1' = AB$ con $F_1' = \{A \to B\}$ e $R_2' = AC$ con $F_2' = \{A \to C\}$, i quali risultano essere entrambi in 3NF
- Entrambi gli schemi, quindi, sono in 3NF. Tuttavia, la seconda soluzione non è corretta:
 - Consideriamo due istanze legali dei due sottoschemi ottenuti:

R_1		
A	В	
a_1	b_1	
a_2	b_1	

	R_2		
_	A	C	
(a_1	c_1	
0	a_2	c_2	

- Effettuando il join naturale tra R_1 ed R_2 , otteniamo che:

R =	$R = R_1 \bowtie R_2$		
A	В	С	
a_1	b_1	c_1	
a_2	b_1	c_2	

- Considerando l'insieme iniziale di dipendenze funzionali $F = \{A \to B, B \to C\}$, notiamo come $B \to C$ non **preservata dalla decomposizione**, ossia non sia più soddisfatta da tale istanza di R, rendendola quindi illegale.
- Dunque, l'unica decomposizione che preserva le dipendenze di F è la prima

Definition 38. Buona decomposizione di uno schema

Sia R uno schema con decomposizione $\rho = R_1, \ldots, R_k$ e sia F un insieme di dipendenze funzionali su R.

Definiamo ρ come una **buona decomposizione di** R se:

- Ogni sottoschema $R_1, \ldots, R_k \in \rho$ è in **Terza Forma Normale**
- ρ permette di ricostruire preservando F, ossia mantenendo soddisfatta ogni dipendenza in F, per ogni istanza legale r di R ricostruita attraverso un join naturale tra tutte le istanze r_1, \ldots, r_k rispettivamente di R_1, \ldots, R_k (**preservazione** di F)
- ρ permette di ricostruire senza perdita di informazioni nelle tuple di ogni istanza legale r di R ricostruita attraverso un join naturale tra tutte le istanze r_1, \ldots, r_k rispettivamente di R_1, \ldots, R_k (**join senza perdita**)

Observation 14

Dato uno schema R con decomposizione $\rho = R_1, \ldots, R_k$ ed istanza r, ogni istanza r_1, \ldots, r_k rispettivamente di R_1, \ldots, R_k corrisponde ad una proiezione di r sugli attributi di R_i :

$$r_k = \pi_{R_i}(r_1)$$

dove $i \in [1, k]$.

Di conseguenza, le singole proiezioni hanno l'effetto di eliminare i duplicati che potrebbero essere generati da due tuple distinte aventi una porzione comune che ricade nello stesso sottoschema, riducendo la memoria necessaria a conservare le informazioni.

4.5.1 Preservazione di F

Definition 39. Equivalenza tra insiemi di dipendenze

Sia R uno schema e siano F e G due insiemi di dipendenze funzionali su R.

Tali insiemi vengono detti **equivalenti**, indicato come $F \equiv G$, se $F^+ = G^+$

Lemma 12. Inclusione delle chiusure

Dato uno schema R e due insiemi F e G di dipendenze funzionali su R, si ha che:

$$F \subseteq G^+ \iff G \xrightarrow{A} F \iff F^+ \subseteq G^+$$

Dove $G \xrightarrow{A} F$ indica che F è ottenibile da G utilizzando assiomi di Armstrong

Dimostrazione:

• Ricordando che $G^+ = G^A$, dunque è l'insieme di tutte le dipendenze funzionali ottenibile applicando assiomi di Armstrong su G, allora:

$$G \xrightarrow{A} F \implies \forall X \to Y \in F, X \to Y \in G^A = G^+ \implies F \subseteq G^+$$

• Analogamente, se $F \subseteq G^+ = G^A$, allora F sarà una parte di tutte le dipendenze funzionali ottenibili applicando assiomi di Armstrong su G, dunque si ha che:

$$F \subseteq G^+ \implies G \xrightarrow{A} F$$

dunque concludiamo che:

$$G \xrightarrow{A} F \iff F \subseteq G^+$$

• Siccome $F \subseteq G^+ \iff G \xrightarrow{A} F$ e siccome per definizione di F^+ si ha sempre che $F \xrightarrow{A} F^+$, allora concludiamo che

$$F \subset G^+ \iff G \xrightarrow{A} F \xrightarrow{A} F^+ \iff F^+ \subset G^+$$

poiché
$$G \xrightarrow{A} F^+ \iff F^+ \subseteq G^+$$

Definition 40

Sia R uno schema con decomposizione $\rho = R_1, \ldots, R_k$ e sia F un insieme di dipendenze funzionali su R.

Dato un sottoschema $R_i \in \rho$, definiamo come **proiezione di** F **su** R_i l'insieme di tutte le dipendenze di $X \to Y \in F$ tali che X ed Y sono insiemi di attributi di R_i :

$$\pi_{R_i}(F) = \{X \to Y \in F^+ \mid X, Y \subseteq R_i\}$$

Theorem 13. Preservazione di F

Sia R uno schema con decomposizione $\rho = R_1, \dots, R_k$ e sia F un insieme di dipendenze funzionali su R.

Si ha che ρ preserva F se:

$$F \equiv G := \bigcup_{i=0}^{k} \pi_{R_i}(F)$$

Corollary 4

Dato uno schema R con decomposizione $\rho = R_1, \ldots, R_k$, dato un insieme F di dipendenze funzionali su R e posto:

$$G := \bigcup_{i=0}^k \pi_{R_i}(F)$$

si ha che ρ preserva F se $F \subseteq G^+$, poiché:

$$F \subseteq G^+ \implies F \equiv G$$

Dimostrazione:

- Per definizione stessa di G, si ha sempre che $G \subseteq F^+$.
- Siccome $G \subseteq F^+ \iff G^+ \subseteq F^+$ e siccome $F \equiv G \iff F^+ = G^+$, allora è sufficiente verificare se $F \subseteq G^+$ affinché $F^+ \subseteq G^+ \implies F^+ = G^+ \implies F \equiv G$

Method 2. Verifica di $F \subseteq G^+$

Dato uno schema R e dati due insiemi F e G di dipendenze funzionali su R, il seguente algoritmo determina se $F \subseteq G^+$:

def $F_{in}G^{+}(R: schema, F: set of dependencies, G: set of dependencies):$

for $X \rightarrow Y \in F$:

if
$$Y \not\subseteq X_G^+$$
:

return False

return True

Tale algoritmo viene eseguito in $O(k \cdot T(X_G^+))$, dove |F| = k e dove $T(X_G^+)$ è il costo computazionale del calcolo di X_G^+

Dimostrazione:

• Dato $X \to Y \in F$, se $Y \subseteq X_G^+ \iff X \to Y \in G^A = G^+$, allora $X \to Y \in F, Y \subseteq X_G^+ \implies X \to Y \in G^+ \implies F \subseteq G^+$

Observation 15

Per applicare tale algoritmo è necessario calcolare F^+ , in modo da poter calcolare G ed ogni $X_G^+ \mid X \to Y \in F$ richiesto dall'algoritmo.

Tuttavia, siccome il calcolo di F^+ richiede tempo esponenziale, allora è necessario calcolare i vari X_G^+ tramite un metodo alternativo.

Method 3. Calcolo di X_G^+ tramite F

Dato uno schema R con decomposizione $\rho = R_1, \ldots, R_k$, dato un insieme F di dipendenze funzionali su R e posto:

$$G := \bigcup_{i=0}^{k} \pi_{R_i}(F)$$

preso $X \subseteq R$, il seguente algoritmo calcola X_G^+ tramite F:

Tale algoritmo viene eseguito in tempo polinomiale, ossia $O(n^k)$,

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

Esempi:

- 1. Dato lo schema R = ABC e l'insieme di dipendenze funzionali $F = \{A \rightarrow B, B \rightarrow C\}$, vogliamo vedere se la decomposizione $\rho = \{AB, AC\}$ preserva F.
 - Per il corollario precedentemente visto, sappiamo che è sufficiente utilizzare l'algoritmo di verifica se $F\subseteq G^+$, richiamante a sua volta l'algoritmo del calcolo di X_G^+ tramite F

- Verifichiamo quindi se $A \to B \in F$ sia anche in G^+ :
 - Inizializzando l'algoritmo, dunque ponendo Z := A otteniamo che:
 - * $S_1 = S_0 \cup ((A \cap AB)_F^+ \cap AB) = \emptyset \cup (A_F^+ \cap AB) = \emptyset \cup (R \cap AB) = AB$
 - * $S_2 = S_1 \cup ((A \cap AC)_F^+ \cap AC) = AB \cup (A_F^+ \cap AC) = AB \cup (R \cap AC) = ABC = R$
 - Siccome $S_2 = R \not\subseteq AB = Z$, allora entriamo nel ciclo while ponendo $Z := Z \cup S_2 = R$. A questo punto, all'iterazione successiva avremmo che:
 - $* S_3 = S_2 \cup ((R \cap AB)_F^+ \cap AB) = R \cup (AB_F^+ \cap AB) = R$
 - $* S_4 = S_3 \cup ((R \cap AC)_F^+ \cap AC) = R \cup (AC_F^+ \cap AC) = R$
 - Siccome $S_4 = R \subseteq R = Z$, allora l'algoritmo termina con $A_G^+ = Z = R$, implicando a sua volta che $B \subseteq A_G^+ = R \iff A \to B \in G^+$
- Verifichiamo quindi se $B \to C \in F$ sia anche in G^+ :
 - Inizializzando l'algoritmo, dunque ponendo Z := B otteniamo che:
 - * $S_1 = S_0 \cup ((B \cap AB)_F^+ \cap AB) = \emptyset \cup (B_F^+ \cap AB) = \emptyset \cup (B \cap AB) = B$
 - $* S_2 = S_1 \cup ((B \cap AC)_F^+ \cap AC) = B \cup ((\emptyset)_F^+ \cap AC) = B$
 - Siccome $S_2 = B \subseteq B = Z$, allora l'algoritmo termina con $B_G^+ = Z = B$, implicando a sua volta che $B \nsubseteq A_G^+ = R \iff A \to B \notin G^+$
- \bullet Dunque, concludiamo che $F \not\subseteq G^+$ e dunque che la decomposizione non preserva F
- 2. Dato lo schema R = ABCD e l'insieme di dipendenze funzionali $F = \{AB \rightarrow C, D \rightarrow C, D \rightarrow B, D \rightarrow A, C \rightarrow B\}$, vogliamo vedere se la decomposizione $\rho = \{ABC, ABD\}$ preserva F.
 - Siccome $AB \subseteq ABC$ e $AB \subseteq ABD$, ne segue che la dipendenza $AB \to C \in F$ venga proiettata su entrambi i sottoschemi, dunque essa sarà ovviamente preservata.
 - Difatti, provando a verificare se $AB \to C \in F$ sia anche in G^+ , ossia verificando se $C \subseteq AB_G^+$, abbiamo che:
 - Inizializzando l'algoritmo, dunque ponendo Z := AB otteniamo che:
 - * $S_1 = S_0 \cup ((AB \cap ABC)_F^+ \cap ABC) = \emptyset \cup (AB_F^+ \cap ABC) = \emptyset \cup (ABC \cap ABC) = ABC$
 - * $S_2 = S_1 \cup ((AB \cap ABD)_F^+ \cap ABD) = AB \cup (AB_F^+ \cap ABD) = ABC \cup (ABC \cap ABD) = ABC$
 - Siccome $S_2 = ABC \not\subseteq AB = Z$, allora entriamo nel ciclo while ponendo $Z := Z \cup S_2 = ABC$ e ripetendo il procedimento:
 - * $S_3 = S_2 \cup ((ABC \cap ABC)_F^+ \cap ABC) = ABC \cup (ABC_F^+ \cap ABC) = ABC \cup (ABC \cap ABC) = ABC$

*
$$S_4 = S_3 \cup ((ABC \cap ABD)_F^+ \cap ABD) = ABC \cup (AB_F^+ \cap ABD) = AB \cup (ABC \cap ABD) = ABC$$

- Siccome $S_4 = ABC \subseteq ABC = Z$, allora l'algoritmo termina con $AB_G^+ = Z = ABC$, implicando a sua volta che $C \subseteq AB_G^+ = ABC \iff AB \to C \in G^+$
- Procediamo quindi verificando se $D \to A, D \to B, D \to C \in F$ siano anche in G^+ , ossia verificando se $A, B, C \subseteq D_G^+$. Calcoliamo quindi D_G^+ :
 - Inizializzando l'algoritmo, dunque ponendo Z := D otteniamo che:
 - * $S_1 = S_0 \cup ((D \cap ABC)_F^+ \cap ABC) = \emptyset \cup ((\emptyset)_F^+ \cap ABC) = \emptyset$
 - * $S_2 = S_1 \cup ((D \cap ABD)_F^+ \cap ABD) = \emptyset \cup (D_F^+ \cap ABC) = \emptyset \cup (ABCD \cap ABD) = ABD$
 - Siccome $S_2 = ABD \not\subseteq D$, allora entriamo nel ciclo while ponendo $Z := Z \cup S_2 = ABD$ e ripetendo il procedimento:
 - * $S_3 = S_2 \cup ((ABD \cap ABC)_F^+ \cap ABC) = ABD \cup (AB_F^+ \cap ABC) = ABD \cup (ABC \cap ABC) = ABCD$
 - * $S_4 = S_3 \cup ((ABD \cap ABD)_F^+ \cap ABD) = ABCD \cup (ABD_F^+ \cap ABD) = ABCD \cup (ABCD \cap ABD) = ABCD$
 - Siccome $S_4 = ABCD \not\subseteq ABD$, allora poniamo $Z := Z \cup S_4 = ABCD$ e ripetiamo il procedimento:
 - * $S_5 = S_4 \cup ((ABCD \cap ABC)_F^+ \cap ABC) = ABCD \cup (ABC_F^+ \cap ABC) = ABD \cup (ABC \cap ABC) = ABCD$
 - * $S_6 = S_5 \cup ((ABCD \cap ABD)_F^+ \cap ABD) = ABCD \cup (ABD_F^+ \cap ABD) = ABCD \cup (ABCD \cap ABD) = ABCD$
 - Siccome $S_6 = ABCD \subseteq ABCD = Z$, allora l'algoritmo termina con $D_G^+ = Z = ABCD$, implicando a sua volta che $A, B, C \subseteq D_G^+ = ABCD \iff D \to A, D \to B, D \to C \in G^+$
- Infine, verifichiamo se $C \to D \in F$ sia anche in G^+ , ossia verificando se $B \subseteq C_G^+$. Calcoliamo quindi D_G^+ :
 - Inizializzando l'algoritmo, dunque ponendo Z := C otteniamo che:
 - * $S_1 = S_0 \cup ((C \cap ABC)_F^+ \cap ABC) = \emptyset \cup (C_F^+ \cap ABC) = \emptyset \cup (BC \cap ABC) = BC$
 - * $S_2 = S_1 \cup ((C \cap ABD)_F^+ \cap ABD) = BC \cup ((\emptyset)_F^+ \cap ABC) = BC$
 - Siccome $S_2 = BC \not\subseteq C$, allora entriamo nel ciclo while ponendo $Z := Z \cup S_2 = BC$ e ripetendo il procedimento:
 - * $S_3 = S_2 \cup ((BC \cap ABC)_F^+ \cap ABC) = BC \cup (BC_F^+ \cap ABC) = \emptyset \cup (BC \cap ABC) = BC$
 - * $S_4 = S_3 \cup ((BC \cap ABD)_F^+ \cap ABD) = BC \cup (B_F^+ \cap ABC) = BC \cup (B \cap ABC) = BC$

- Siccome $S_4=BC\subseteq BC=Z$, allora l'algoritmo termina con $C_G^+=Z=BC$, implicando a sua volta che $B\subseteq C_G^+=BC\iff C\to B\in G^+$
- Dunque, siccome tutte le dipendenze di F sono in G^+ , l'algoritmo terminerà concludendo che $F \subseteq G^+$, implicando che $F \equiv G$ e quindi F venga preservato

Theorem 14. Correttezza dell'algoritmo X_G^+ with_F

Sia R uno schema con decomposizione $\rho = R_1, \ldots, R_k$ e sia F un insieme di dipendenze funzionali definite su R.

Posto:

$$G := \bigcup_{i=0}^{k} \pi_{R_i}(F)$$

e dato un qualsiasi insieme di attributi $X\subseteq R$, l'algoritmo X_G^+ -with_F(R,F,X) restituisce X_G^+

Dimostrazione (solo un'implicazione):

- Siano $Z_0, Z_1, \ldots, Z_i, \ldots$ e $S_0, S_1, \ldots, S_i, \ldots$ gli insiemi calcolati ad ogni iterazione del ciclo while dell'algoritmo
- Osserviamo che $Z_i \subseteq Z_{i+1} \forall i \in \mathbb{N}$, dunque $Z_0, Z_1, \ldots, Z_i, \ldots$ è una sequenza monotona limitata da R, implicando che $\exists f \in \mathbb{N} \mid Z_f = Z_{f+1}$
- Siccome ciò può accadere solo se $S_f \subseteq Z_f$, ossia quando l'algoritmo termina, si ha che Z_f è l'output dell'algoritmo
- Dimostriamo quindi per induzione che $Z_f \subseteq X_G^+$:
 - Caso base (i = 0): Alla 0-esima iterazione del while (ossia prima di esso) si ha $Z_0 = X \subseteq X_G^+$
 - **Ipotesi induttiva**: Per ogni $i \in \mathbb{N}$ si ha che $Z_i \subseteq X_G^+$
 - Passo induttivo (i > 0): Dato $A \in Z_{i+1} := Z_i \cup S_i$, si ha che $A \in Z_i \vee A \in S_i$. Dunque, si possono verificare due casi:
 - * Se $A \in Z_i$, allora per ipotesi si avrebbe che $A \in Z_i \subseteq X_G^+$
 - * Se $A \in S^i$, allora per definizione stessa di S_i si ha che $\exists j \leq k \mid A \in ((Z_i \cap R_j)_F^+ \cap R_j)$

A questo punto, si ha che:

$$A \in ((Z_i \cap R_j)_F^+ \cap R_j) \iff A \in (Z_i \cap R_j)_F^+ \wedge A \in R_j$$

da cui otteniamo che $A \in (Z_i \cap R_j)_F^+ \iff (Z_i \cap R_j) \to A \in F^A = F^+$ Dunque, siccome $(Z_i \cap R_j) \subseteq R_j$ e siccome $A \in R_j$, allora si ha che

$$(Z_i \cap R_i) \to A \in \pi_{R_i}(F) = \{X \to Y \in F^+ \mid X, Y \in R_i\}$$

Quindi, per definizione stessa si ha che $(Z_i \cap R_j) \to A \in \pi_{R_j}(F) \subseteq G \subseteq G^+ = G^A$

Inoltre, siccome $(Z_i \cap R_j) \subseteq Z_i$ e siccome per ipotesi induttiva $Z_i \subseteq X_G^+$, allora $(Z_i \cap R_J) \subseteq Z_i \subseteq X_G^+$, implicando quindi che $X \to (Z_i \cap R_j) \in G^A$

Infine, per transitività otteniamo che:

$$X \to (Z_i \cap R_j), (Z_i \cap R_j) \to A \in G^A \implies X \to A \in G^A \iff A \in X_G^+$$

– Dunque, siccome in entrambi i casi si ha che $A \in X_G^+ \implies Z_i \subseteq X_G^+$

4.5.2 Join senza perdita

Theorem 15. Join senza perdita

Sia R uno schema con decomposizione $\rho = R_1, \ldots, R_k$ e sia F un insieme di dipendenze funzionali su R.

Si verifica che ρ presenta un join senza perdita se per ogni istanza legale r di R si ha che:

$$r = m_{\rho}(r) := \pi_{R_1}(r) \bowtie \dots \pi_{R_k}(r)$$

Proposition 16

Sia R uno schema con decomposizione $\rho = R_1, \ldots, R_k$ e sia F un insieme di dipendenze funzionali su R.

Posto $m_{\rho}(r) := \pi_{R_1}(r) \bowtie \dots \pi_{R_k}(r)$, per ogni istanza legale r di R si ha che:

- 1. $r \subseteq m_{\rho}(r)$
- 2. $\forall i \in [1, k] \pi_{R_i}(m_{\rho}(r)) = \pi_{R_i}(r)$
- 3. $m_{\rho}(m_{\rho}(r)) = m_{\rho}(r)$

Dimostrazioni:

1. Data una qualsiasi tupla $t \in r$, si ha che:

$$t \in r \implies t \in \{t[R_1]\} \bowtie \dots \{t[R_k]\} \subseteq \pi_{R_1}(r) \bowtie \dots \bowtie \pi_{R_k}(r) = m_{\rho}(r)$$

dunque $r \subseteq m_{\rho}(r)$

2. Poiché $r \subseteq m_{\rho}(r)$, allora effettuando una proiezione con $R_i \in \rho$ su entrambe, ne segue che

$$r \subseteq m_{\rho}(r) \implies \pi_{R_i}(r) \subseteq \pi_{R_i}(m_{\rho}(r))$$

Inoltre, per definizione di proiezione si ha che:

$$t_{R_i} \in \pi_{R_1}(m_{\rho}(r)) \implies \exists t' \in m_{\rho}(r) \mid t_{R_i} = t'[R_i]$$

e di conseguenza che:

$$t' \in m_{\rho}(r) \implies \exists t_1, \dots, t_k \in r \mid \forall R_i \in \rho, t_i[R_i] = t'[R_i]$$

In particolare, quindi, otteniamo che:

$$t_{R_i} \in \pi_{R_1}(m_{\{\rho\}}(r)) \implies t_{R_i} = t'[R_i] = t_i[R_i] \in \pi_{R_i}(r) \implies \pi_{R_1}(m_{\{\rho\}}(r)) \subseteq \pi_{R_i}(r)$$

da cui concludiamo che $\pi_{R_i}(r) = \pi_{R_1}(m_{\rho}(r))$

3. Siccome $\pi_{R_i}(r) = \pi_{R_1}(m_{\rho}(r))$, allora si ha che:

$$m_{\rho}(m_{\rho}(r)) = \pi_{R_1}(m_{\rho}(r)) \bowtie \dots \pi_{R_k}(m_{\rho}(r)) = \pi_{R_1}(r) \bowtie \dots \pi_{R_k}(r) = m_{\rho}(r)$$

Method 4. Controllo presenza del join senza perdita

Dato uno schema $R = A_1, \ldots, A_n$ con decomposizione $\rho = R_1, \ldots, R_k$ e un insieme F di dipendenze funzionali su R, presa l'istanza legale di $r = \{(r_{1,1}, \ldots, r_{1,n}), \ldots, (r_{k,1}, \ldots, r_{k,n})\}$ di R, dove $\forall i \in [1, k], \forall j \in [1, n]$ si ha:

$$r_{i,j} = \begin{cases} "a_j" & \text{se } A_j \in R_i \\ "b_{i,j}" & \text{se } A_j \notin R_i \end{cases}$$

il seguente algoritmo determina se ρ presenta un join senza perdita:

def has_lossless_join(R: schema, F: set of dependencies, ρ : decomposition):

```
\begin{array}{l} r := \mathsf{costruisci\_r}(\mathsf{R}, \rho) \\ \\ \mathsf{unchanged} := \mathsf{True} \\ \\ \mathsf{for} \ \mathsf{X} \to \mathsf{Y} \in \mathsf{F} : \\ \\ \mathsf{for} \ \mathsf{t}_1 \ \mathsf{in} \ \mathsf{r} : \\ \\ \mathsf{for} \ \mathsf{t}_2 \ \mathsf{in} \ \mathsf{r} : \\ \\ \mathsf{if} \ \mathsf{t}_1[\mathsf{X}] := \mathsf{t}_2[\mathsf{X}] \ \&\& \ \mathsf{t}_1[\mathsf{Y}] \ != \mathsf{t}_2[\mathsf{Y}] : \\ \\ \mathsf{unchanged} = \mathsf{False} \\ \\ \mathsf{for} \ \mathsf{A}_j \in \mathsf{Y} : \\ \\ \mathsf{if} \ \mathsf{t}_1[\mathsf{A}_j] := \mathsf{a}_j : \\ \\ \\ \mathsf{t}_2[\mathsf{A}_j] := \mathsf{t}_1[\mathsf{A}_j] \\ \\ \mathsf{else} : \\ \\ \\ \mathsf{t}_1[\mathsf{A}_j] := \mathsf{t}_2[\mathsf{A}_j] \\ \\ \mathsf{if} \ \mathsf{d} \ \mathsf{t} \in \mathsf{r} \ | \ \mathsf{t}[\mathsf{A}_1] := \ldots := \mathsf{t}[\mathsf{A}_n] := "a" : \ \mathsf{return} \ \mathsf{True} \\ \end{array}
```

else: return False