МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине

"Системы на кристалле"

Вариант №3

Студент:

Чернова Анна Ивановна

Миху Вадим Дмитриевич

Группа Р34301

Преподаватель:

Леонид

г. Санкт-Петербург

Цель работы:

Получить базовые навыки использования средств высокоуровневого синтеза в процессе проектирования СнК.

Вариант 3:

- 1. Спроектировать и описать функциональность аппаратного ускорителя для алгоритма из лабораторной работы №1 на языках С/С++, пригодную для синтеза в аппаратный блок.
- 2. Провести синтез аппаратного ускорителя.
- 3. Разработать тестовое окружение для проверки функциональности синтезированного аппаратного ускорителя.
- 4. Оценить следующие характеристики:
- (а)Время выполнения алгоритма при частоте тактового сигнала в 100МГц.
- (b) Число занимаемых ресурсов ПЛИС(XC7A100T-1CSG324C).
- (с) Время и занимаемые ресурсы ПЛИС с использованием следующих оптимизаций: раскрутка циклов, конвейеризация циклов

Выполнение:

Сравнение времени работы

	baseline	unroll	pipeline
10	2,2	2,16	1,77
9	2,12	2,09	1,69
8	2,08	2,05	1,6
7	2,04	2,02	1,51
6	1,96	1,94	1,42
5	1,92	1,89	1,35
4	1,84	1,83	1,3
3	1,8	1,8	1,27

Используемые ресурсы на ПЛИС

Baseline

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	3	0	86	-
FIFO	-	-	-	-	-
Instance	2	-	192	238	-
Memory	0	-	64	5	0
Multiplexer	-	-	-	116	-
Register	-	-	209	-	-
Total	2	3	465	445	0
Available	270	240	126800	63400	0
Utilization (%)	~0	1	~0	~0	0

Unroll

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	3	0	86	-
FIFO	-	-	-	-	-
Instance	2	-	192	238	-
Memory	0	-	64	5	0
Multiplexer	-	-	-	116	-
Register	-	-	209	-	-
Total	2	3	465	445	0
Available	270	240	126800	63400	0
Utilization (%)	~0	1	~0	~0	0

Pipeline

■ Summary

•					
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	30	0	509	-
FIFO	-	-	-	-	-
Instance	2	-	192	238	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	118	-
Register	-	-	844	-	-
Total	2	30	1036	865	0
Available	270	240	126800	63400	0
Utilization (%)	~0	12	~0	1	0

Расчет максимальной частоты

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.470	1.25

Изначально период был выставлен в 10 наносекунд, после синтеза видим, что оценка периода меньше, чем установленный период, значит можем уменьшать его.

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	8.47	6.860	1.06

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	6.86	5.690	0.86

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.69	4.895	0.71

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	4.89	4.505	0.61

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	4.51	4.505	0.56

Вывод:

Мы научились использовать базовые оптимизации в высокоуровневом синтезе.