Graphics Systems and Models

2ND WEEK, 2022

Graphics System

Pixels and Frame Buffers (1)

- Raster graphics
 - Image produced as an array (the rester) of picture elements (pixels) in the (a part of memory where the pixels are stored)

Pixels

Pixels and Frame Buffers (2)

•

- The number of pixels in the frame buffer
- To determine the detail that you can see in the image

or _____ of the frame buffer

- The number of bits that are used for each pixel
- To determine how many colors can be represented
 - Ex) 8 bits per pixel: 28=256 colors 24 bits (true-color system), 12 or more bits (HDR High dynamic range)

The CPU and GPU

- _____(CPU)
 - Doing both the normal processing and the graphics processing
 - Rasterization or scan conversion
 - Conversion of geometric entities (such as lines, circles, and polygons) to pixel colors and locations in the frame buffer
- _____(GPU)
 - Custom-tailored to carry out specific graphics functions
 - High degree of parallelism

Output Devices

• Cathode-ray tube (CRT)

- Flat-panel monitors
 - Light-emitting diodes (LEDs), liquid-crystal displays (LCDs), and plasma panels
- Projection systems
 - Digital light projection (DLP)
- Hard-copy devices

Input Devices

- Most graphics systems provide a keyboard and at least one other input device
 - Pointing devices

Image Formation (1)

• There always has been analogous process how image are formed by

physical imaging systems

- Cameras
- Microscopes
- Telescopes
- Human visual system
 - Rods and cones are light sensors
 - Rods monochromatic, night vision
 - Cones color sensitive
 - Three types of cones
 - Only <u>values</u> (the tristimulus values) are sent to the brain

The Human Visual System

Image Formation (2)

- Elements of image formation
 - •
- Independent of any viewer and of any image-formation process
- _____(____)
 - To form the image of objects
- <u>sources</u>

Light and Images

- Interaction between light and the surfaces of the objects
 - → How much light enters the camera
- Visual Spectrum = visible light
 - Wavelengths in the range 350~780nm
 - Long wavelengths: reds
 - Short wavelengths: blues

The Electromagnetic Spectrum

Imaging Models

•

- Image formation techniques
- Following rays of light from a point source finding which rays enter the lens of the camera

•

Based on conservation of energy

Ray Interactions

Imaging Systems

- Pinhole Camera
 - Projection of point (x, y, z)

$$x_p = -\frac{x}{z/d}$$
 $y_p = -\frac{y}{z/d}$ $z_p = -d$

• Field of view (angle of view)

$$\theta = 2\tan^{-2}\frac{h}{2d}$$

at May bush

Synthetic-Camera Model (1)

- Conceptual foundation for three-dimensional computer graphics
- Line from the center of lens to a point on the object

- The center of the lens
- Projection plane
 - Virtual image plane that are moved in front of the lens

Synthetic-Camera Model (2)

Graphics Architecture

- Graphics pipeline
 - Geometry collection of primitive types and vertices

Geometric pipeline

- World and view transformation
- Projection

Clipping

Vertex Processing (1)

- Much of the work in the pipeline is in converting object representations from one coordinate system to another
 - Object coordinates
 - Camera (eye) coordinates
 - Screen coordinates
- Every change of coordinates is equivalent to a matrix transformation
- Vertex processor also computes vertex colors

Vertex Processing (2)

- Projection is the process that combines the 3D viewer with the 3D objects to produce the 2D image
 - Perspective projection: all projectors meet at the center of projection
 - Parallel projection: projectors are parallel, center of projection is replaced by a direction of projection

Primitive Assembly

- Vertices must be collected into geometric objects before clipping and rasterization can take place
 - Line segments
 - Polygons
 - Curves and surfaces

Clipping

- Just as a real camera cannot "see" the whole world, the virtual camera can only see part of the world or object space
 - Objects that are not within this volume are said to be clipped out of the scene

Rasterization

- If an object is not clipped out, the appropriate pixels in the frame buffer must be assigned colors
- Rasterizer produces a set of fragments for each object
- Fragments are "potential pixels"
 - Have a location in frame buffer
 - Color and depth attributes
- Vertex attributes are interpolated over objects by the rasterizer

Fragment Processing

- Fragments are processed to determine the color of the corresponding pixel in the frame buffer
- Colors can be determined by texture mapping or interpolation of vertex colors
- Fragments may be blocked by other fragments closer to the camera
 - Hidden-surface removal

Summary

- Graphis system
- *Pixels > raster > framebuffer
 - · Resolution, depth (precision)
 - CPU vs. GPU
 - Image formation
 - Synthetic-camera model
 - Graphics pipeline

