# Discussion forum on open source software for quantitative microanalysis

Hendrix Demers, Raynald Gauvin, Philippe Pinard and Silvia Richter

# Presentation of project



# Presentation of project

- community-driven
- open source
- centralize physical quantity databases and algorithms used for quantification
- encourage collaborative work
- provide the necessary building blocks for new projects in microanalysis

## **Justifications**

- If someone now wants to develop a new quantification routine, one must write code to
  - Handle different x-ray transitions
  - Read / calculate
    - Mass absorption coefficients
    - Ionization potential
    - Surface ionization
    - Backscatter factor
    - · Stopping power
    - Etc.
  - Iteration algorithm
  - Read / handle experimental data



Portoroz 2015 4

### **Justifications**

#### Scientific publishing

- Transparency
  - Published
  - Accessible by any research
- Quality
  - Peer reviewed
- Validation
  - Peer reviewed
  - Verifiable results

#### **Open source project**

- Transparency
  - Code is always accessible
  - Any modification is stored
- Quality
  - Report bugs
  - Controlled by maintainers
- Validation
  - Test for consistency
  - Test against known experimental values
  - Bug reporting mechanism

## Software

| Software       | Year | Author            | License                       | Model(s)                     |
|----------------|------|-------------------|-------------------------------|------------------------------|
| GMRFilm        | 1993 | Waldo             | Open source                   | PROZA, PAP                   |
| CITZAF GUI     | 1995 | Armstrong/Davis   | Free                          | CITZAF                       |
| MULTI          | 1999 | Trincavelli       | Free                          | PAP,PROZA,                   |
| Esprit         | 2015 | Bruker            | Commercial                    | ZAF, XPP                     |
| PeakSight      | 2015 | Cameca            | Commercial                    | XPHI?                        |
| TEAM           | 2015 | EDAX              | Commercial                    | ZAF?                         |
| PC-EPMA        | 2015 | JEOL              | Commercial                    | ZAF, PRZ?                    |
| Aztec          | 2015 | Oxford            | Commercial                    | XPP?                         |
| CalcZAF        | 2015 | Probe Software    | Free                          | ZAF, PAP, XPP, PROZA, CITZAF |
| Probe for EPMA | 2015 | Probe Software    | Commercial / source available | ZAF, PAP, XPP, PROZA, CITZAF |
| Xone           | 2015 | Quartz            | Commercial                    | ZAF?, PRZ?                   |
| DTSA-II        | 2015 | Ritchie / NIST    | Open source                   | ZAF, PAP, XPP, PROZA, CITZAF |
| IDFix          | 2015 | SAMx              | Commercial                    | ?                            |
| STRATAGem      | 2015 | SAMx              | Commercial                    | PAP, XPP                     |
| Noran          | 2015 | Thermo Scientific | Commercial                    | PROZA                        |
| Hyperspy       | 2015 | de la Peña et al. | Open source                   | Cliff-Lorimer                |

<sup>+</sup> all non-distributed personal / research group codes

# Requirements for open source projects

- Website
- Mailing list
- Version control
- Code proposal / personal fork
- Bug tracker
- Wiki / Documentation
- Continuous integration (testing)
  - Validation with experimental data
- Release system

Source: Fogel (2010) Producing Open Source Software

# Project organization

#### Members

- Maintainers: Organizing the project, managing bug reports
- Programmers: Writing code
- Contributors: Donate their own code to the project
- Experts: Review algorithms used, contribute equations and databases
- Users: Any scientist that may use or use a derivative product from this library

## Communication strategies

- Approval cycle for changes
- Decision of priorities
- Distribution of workload

#### Milestones

- Selection of programming language(s)
- Selection of license
- Setup of the source code hosting platform
- List of parameters required to implement
  - Fundamental parameters
  - Matrix correction algorithms
  - Quantification procedures
  - Spectrum analysis routines
- Possible sources of funding