Класи суміжності

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

5 жовтня 2022

FACULTY OF MECHANICS AND MATHEMATICS

1/9

Класи суміжності

$$G$$
 — група, $H < G$.

Для довільного $g \in G$ множина

$$gH = \{gh \mid h \in H\}$$

називається *лівим класом суміжності* групи G за підгрупою H.

Множина

$$Hg = \{hg \mid h \in H\}$$

правим класом суміжності групи G за підгрупою H.

2/9

Довільні два ліві (праві) класи суміжності або не перетинаються, або збігаються.

Доведення.

Нехай g_1H , g_2H — два ліві класи суміжності.

Припустимо, що $g_1H \cap g_2H \neq \emptyset$. Нехай $\alpha \in g_1H \cap g_2H$. Тоді існують $h_1, h_2 \in H$:

$$a = g_1 h_1 = g_2 h_2.$$

Тоді $\forall g_2h \in g_2H$:

$$g_2h = g_1h_1h_2^{-1}h \in g_1H \quad \Rightarrow \quad g_2H \subset g_1H.$$

Аналогічно доводиться $g_1H \subset g_2H$. Отже, $g_1H = g_2H$.

Ліві (праві) класи суміжності утворюють *розбиття* групи *G*, тобто

$$G = H \sqcup g_1 H \sqcup g_2 H \sqcup \dots$$
 (для лівих).

Позначається

$$G = H + g_1H + g_2H + \dots$$

Аналогічно для правих класів.

Нехай H < G. Тоді

- 2 $Ha = Hb \Leftrightarrow ba^{-1} \in H \Leftrightarrow ab^{-1} \in H$.

Доведення.

$$(\Rightarrow) \alpha H = bH \Rightarrow \exists h \in H : b = \alpha h \Rightarrow \alpha^{-1}b \in H.$$

$$(\Leftarrow) a^{-1}b \in H : \exists h \in H : h = a^{-1}b.$$

Тоді
$$b = ah \Rightarrow aH \cap bH \neq \emptyset$$
, бо $b \in aH \cap bH$. Отже, $aH = bH$.

Приклади

- $G = S_3$, $H = \{\varepsilon, (12)\}$. Ліві класи суміжності: $\varepsilon H = H$, $(13)H = \{(13), (132)\}$, $(23)H = \{(23), (123)\}$. Праві класи суміжності: $H = H\varepsilon$, $H(13) = \{(13), (123)\}$, $H(23) = \{(23), (132)\}$.
- ② $G = S_3, H = \mathcal{A}_3.$ Ліві класи суміжності: H, $(12)H = \{(12), (13), (23))\}.$ Праві класи суміжності: H, $H(12) = \{(12), (13), (23))\}.$
- ③ $G = \mathbb{Z}$, $H = n\mathbb{Z}$. Ліві = праві класи суміжності: $a + n\mathbb{Z} = b + n\mathbb{Z} \Leftrightarrow a - b \in n\mathbb{Z}$:

$$n\mathbb{Z}$$
, $1 + n\mathbb{Z}$, ..., $(n-1) + n\mathbb{Z}$.

 $G = GL_n(\mathbb{R}), H = SL_n(\mathbb{R}).$ Ліві класи суміжності: $AH = BH \Rightarrow A^{-1}B \in H \Leftrightarrow \det(A^{-1}B) = 1 \Leftrightarrow \det A = \det B.$ Праві аналогічно.

Всі класи суміжності групи G за підгрупою H рівнопотужні.

Доведення.

Відображення

$$H \rightarrow gH: h \mapsto gh$$

є бієкцією.

Отже,
$$|H| = |gH| \ \forall g \in H$$
.

Відображення

$$gH \mapsto Hg^{-1}$$

є бієкцією між множинами правих та лівих класів суміжності.

Доведення.

Коректність. $g_1H = g_2H \Rightarrow g_1^{-1}g_2 \in H \Rightarrow g_1^{-1}(g_2^{-1})^{-1} \in H \Rightarrow Hg_1^{-1} = Hg_2^{-1}$. Ін'єктивність. $g_1H \neq g_2H \Rightarrow g_1^{-1}g_2 = g_1^{-1}(g_2^{-1})^{-1} \notin H \Rightarrow Hg_1^{-1} \neq Hg_2^{-1}$. Сюр'єктивність. g^{-1} пробігає всі елементи $G \Rightarrow$ довільний клас Hg є образом класу $g^{-1}H$.

Індекс підгрупи

Означення

Кількість правих (або лівих) класів суміжності групи G за підгрупою H називається *індексом* підгрупи H у групі G.

Позначаться |G:H|.