Line search. Matrix calculus.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

♥ റ ഉ

Theory recap. Differential

• Differential $df(x)[\cdot]: U \to V$ in point $x \in U$ for $f(\cdot): U \to V$:

$$f(x+h) - f(x) = \underbrace{d\!f(x)[h]}_{\text{differential}} + \overline{o}(||h||)$$

$U \to V$	\mathbb{R}	\mathbb{R}^n	$\mathbb{R}^{n \times m}$
\mathbb{R}	f'(x)dx	$\nabla f(x)dx$	$\nabla f(x)dx$
\mathbb{R}^n	$\nabla f(x)^T dx$ $tr(\nabla f(X)^T dX)$	J(x)dx	_
$\mathbb{R}^{n imes m}$	$tr(\nabla f(X)^T dX)$	_	_

Theory recap. Differential

• Differential $df(x)[\cdot]:U\to V$ in point $x\in U$ for $f(\cdot):U\to V$:

$$f(x+h) - f(x) = \underbrace{df(x)[h]}_{\text{differential}} + \overline{o}(||h||)$$

Canonical form of the differential:

U o V	\mathbb{R}	\mathbb{R}^n	$\mathbb{R}^{n imes m}$
\mathbb{R}	f'(x)dx	$\nabla f(x)dx$	$\nabla f(x)dx$
\mathbb{R}^n	$\nabla f(x)^T dx$	J(x)dx	_
$\mathbb{R}^{n imes m}$	$tr(\nabla f(X)^T dX)$	_	_

♥ ೧ ⊘

Theory recap. Differentiation Rules

• Useful differentiation rules and standard derivatives:

Differentiation Rules	Standard Derivatives
dA = 0	$d(\langle A, X \rangle) = \langle A, dX \rangle$
$d(\alpha X) = \alpha(dX)$	$d(\langle Ax, x \rangle) = \langle (A + A^T)x, dx \rangle$
d(AXB) = A(dX)B	$d(Det(X)) = Det(X)\langle X^{-T}, dX \rangle$
d(X+Y) = dX + dY	$d(X^{-1}) = -X^{-1}(dX)X^{-1}$
$d(X^T) = (dX)^T$	
d(XY) = (dX)Y + X(dY)	
$d(\langle X, Y \rangle) = \langle dX, Y \rangle + \langle X, dY \rangle$	
$d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^2}$	

Lecture reminder

Find $\nabla f(x)$, if $f(x) = \frac{1}{2}x^TAx + b^Tx + c$.

Find $\nabla f(X)$, if $f(X) = tr(AX^{-1}B)$

• $h(x) = f(g(x)) \Rightarrow dh(x_0)[dx] = df(g(x_0))[dg(x_0)[dx]]$

i Example

Find the gradient $\nabla f(x)$ and hessian $\nabla^2 f(x)$, if $f(x) = \frac{1}{3} \|x\|_2^3$

• $d^2f(x)[h_1,\,h_2]=d\left(df(x)[\underbrace{h_1}_{ ext{fixed when take outer }d(\cdot)}]\right)[h_2]$

i Example

Find the gradient $\nabla f(x)$ and hessian $\nabla^2 f(x)$, if $f(x) = \frac{1}{2} ||x||_2^3$

- $d^2f(x)[h_1, h_2] = d\left(df(x)[\underbrace{h_1}_{\text{fixed when take outer }d(\cdot)}]\right)[h_2]$ Canonic form for $f: \mathbb{R}^n \to \mathbb{R}$: $d^2f(x)[h_1, h_2] = h_1^T \underbrace{\nabla^2 f(x)}_{} h_2$