Cours

La numération

TABLE DES MATIERES :

1	INTRODUCTION.	3
1.1	LA BASE.	3
2	LES SYSTEMES DE NUMERATION	
2.1	LE SYSTEME DECIMAL	3
2.2	CONVERSION BINAIRE, OCTAL, HEXADECIMAL ⇒ DECIMAL	
2.2.1		
2.2.2		
2.2.3		
2.3	LA BASE BINAIRE	
2.4	LA BASE OCTAL.	5
2.5	LA BASE HEXADECIMAL.	5
2.6	LE SYSTEME BCD :BINARY CODED DECIMAL / DECIMAL CODE BINAIRE	6
3	CONVERSION DES SYSTEMES.	7
3.1	Conversion decimal ⇒ binaire	7
3.2	CONVERSION DECIMAL ⇒ OCTAL	
3.3	CONVERSION DECIMAL ⇒ HEXADECIMAL	8
3.3.1		
3.3.2	2 ^{ème} méthode	
3.4	CONVERSION BINAIRE ⇒ HEXADECIMAL	8
3.5	Conversion Hexadecimal \Rightarrow BINAIRE	8
4	RECAPITULATIF	9
5	EXERCICES D'APPLICATIONS	10

1 INTRODUCTION.

La nécessité de quantifier, notamment les échanges commerciaux, s'est faite dès la structuration de la vie sociale. Les tentatives de représentation symbolique de quantités furent nombreuses (bâtons, chiffres romains, etc...) avant que ne s'impose la numération arabe, universellement adoptée étant donné sa bonne capacité à traiter les calculs courants.

L'emploi quotidien de ce système, nous fait oublier la structure et les règles qui régissent l'écriture des nombres, notamment la notion de base.

De nombreux systèmes de numérations sont utilisés en technologie numérique. Les 2 plus courants sont les systèmes binaire et hexadécimal. Il existe aussi les systèmes décimal, octal et BCD.

Dans tous les cas, quelque soit le système de numération utilisé, il faudra que les valeurs soient converties en valeurs binaires pour être introduites dans le circuit numérique.

Pour exemple: lorsque vous composez un nombre (décimal) sur votre calculatrice ou clavier d'ordinateur, les circuits convertissent ce nombre en valeurs binaires pour être exploité.

1.1 LA BASE.

La 'base' d'un système de numération est le nombre de caractères différents qu'utilise ce système pour représenter les nombres.

Ainsi le système décimal est dit système à base 10 car les chiffres qui le composent sont les chiffres: 0 1 2 3 4 5 6 7 8 9

Le système binaire utilise donc ..2.. caractères qui sont : 0 et 1

Le système octal utilise ...8... caractères qui sont : 0, 1, 2, 3, 4, 5, 6 et 7

Le système hexadécimal utilise \dots 16... caractères qui sont : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Lorsque l'on est amené à manipuler des nombres dans des bases différentes, il convient de préciser cette base afin d'éviter les confusions.

Exemple:

- ➤ Le nombre décimal 7264 doit être représenté de la manière suivante : (7264)₁₀. L'indice 10 représentant la base dans laquelle est exprimé le nombre.
- Le nombre binaire 1011 doit être représenté de la manière suivante : (1011)₂.

Il est important de remarquer qu'un chiffre se construit de la manière suivante :

$$(7264)_{10} = 7*10^3 + 2*10^2 + 6*10^1 + 4*10^0$$

$$(1011)_2 = 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0$$

2 <u>LES SYSTEMES DE NUMERATION.</u>

2.1 LE SYSTEME DECIMAL

Le système décimal est le système universellement utilisé. C'est la base de référence, ce qui signifie qu'un nombre est de manière implicite décimal dés lors qu'il est écrit sans précision de sa base.

2.2 CONVERSION BINAIRE, OCTAL, HEXADECIMAL ⇒ **DECIMAL**

La conversion d'un nombre dans un système de numération vers le système décimal est toujours la même. Pour retrouver le nombre décimal, il suffit d'additionner les monômes représentés chacun par le chiffre appartenant au système de numération multiplié par la puissance de la base correspondant au rang de ce chiffre.

Voici l'illustration:

2.2.1 Conversion binaire ⇒ décimal.

$$100101_{(2)} = 1*2^5 + 0*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 32 + 0 + 0 + 4 + 0 + 1 = 37_{(10)}$$

2.2.2 Conversion octal ⇒ décimal.

$$7036_{(8)} = 7*8^3 + 0*8^2 + 3*8^1 + 6*8^0 = 3584 + 0 + 24 + 6 = 3614_{(10)}$$

2.2.3 Conversion hexadécimal ⇒ décimal.

$$2C5A_{(16)} = 2*16^3 + 12_{(10)}*16^2 + 5*16^1 + 10_{(10)}*16^0 = 8192 + 3072 + 80 + 10 \\ = 11354_{(10)}$$

2.3 LA BASE BINAIRE

C'est la base de numération couramment utilisé en électronique. C'est un système à base ...2.... qui est donc composé des caractères0 et 1...... Chacun de ces chiffres est appelé 'Bit', contraction des mots Binary Unit ou Binary Digit.

En binaire on compte donc de la manière suivante :

<u>Remarque</u>: les nombres binaires les plus souvent manipulés en électronique et informatique sont composés soit :

- d'un bit (représentatif de l'état actif ou inactif d'une variable
- de 4 bits appelé Quartet
- de 8 bits appelé Octet (Byte en anglais)
- de 16 bits appelé Word (Intel), Double Byte (Motorola)
- de 32 bits
- de 64 bits

LA BASE OCTAL. 2.4

Ce système à base ..8.. s'est imposé en électronique numérique pendant de nombreuses années, mais la base hexadécimal a pris le pas, et la base octal est donc en voie d'extinction, cependant on peut le retrouver sur de très vieux systèmes informatiques.

En octal on compte de la manière suivante :

2.5

Ce système à base ..16... est le plus utilisé en électronique numérique car il permet une manipulation de quartets en représentation compacte. Ce qui, dans les systèmes actuels à grande capacité mémoire par exemple, est un avantage non négligeable. La base 16 est une forme contractée de la base 2.

*Un quartet est un mot binaire formé de 4 bits: 1011

En hexadécimal on compte de la manière suivante :

En Hexadécimal on compte de la manière suivante:

Base 10	Base 16			
0	00			
1	01			
2	02	2 B C 5 (16)	=	$11\ 205$ (10)
3	03	* * * * *		
4	04		=	2*4096+
5	05			
6	06			11*256+
7	07	16^3		
8	08	4096		12*16+
9	09			5 * 1
10	0A	16^2		5*1 ₍₁₀₎
11	0B	256		
12	0C	16^1		
13	0D	16		
14	0E	'		
15	0F	16^{0}		
16	10	Retenue 1		
17	11			
18	12			

2.6 LE SYSTEME BCD :BINARY CODED DECIMAL / DECIMAL CODE BINAIRE

Ce code conserve les avantages du système binaire naturel et du système décimal. Chaque chiffre du code décimal est représenté par un quartet binaire, mais on compte en base 10, ce qui veut dire que la valeur la plus élevée dans un quartet est $9_{(10)}$ = $1001_{(2)}$.

Le chiffre 857 sera donc représenté par :

Attention: $10_{(10)} = 1010_{(2)} = 0001 \ 0000_{(BCD)}$

3 CONVERSION DES SYSTEMES.

3.1 CONVERSION DECIMAL ⇒ **BINAIRE**

On a vu dans le paragraphe précédent que l'on pouvait passer sans problème du système binaire au système décimal. Mais le cas inverse est un peu plus délicat. La méthode consiste en une série de divisions successives par 2 jusqu'à ce que l'on obtiennent un résultat de 1 ou 0 comme présenté dans l'exemple qui suit :

Nous voulons convertir en binaire le nombre décimal 857

Ce qui donne 857₍₁₀₎=11 0101 1001₍₂₎

Remarque : on essaie toujours de regrouper les bits par quartet.

3.2 CONVERSION DECIMAL \Rightarrow **OCTAL**

Le principe est le même que celui vu précédemment, c'est à dire que l'on divise le nombre décimal par la base 8 , jusqu'à ce que l'on obtienne un résultat inférieur à la base. :

3.3 CONVERSION DECIMAL ⇒ **HEXADECIMAL**

3.3.1 1^{ère} méthode.

Le principe est le même que celui vu précédemment, c'est à dire que l'on divise le nombre décimal par la base 16, jusqu'à ce que l'on obtienne un résultat inférieur à la base. :

Conversion du nombre 3418.

Remarque: $13_{(10)} = D_{(16)}$

Le résultat est donc 3418₍₁₀₎= D5A₍₁₆₎

3.3.2 2^{ème} méthode.

Plus couramment utilisée du fait que les nombres sont déjà écrit en binaire dans les systèmes numériques, consiste à effectuer une conversion en base 2 (binaire) du nombre, puis de convertir chaque quartet obtenu en hexadécimal :

$$3418_{(10)} = \underbrace{\begin{bmatrix} 1101 & 0101 & 1010 \\ 100 & 101 & 1010 \end{bmatrix}}_{(16)} = D5A_{(16)}$$

$$D_{(16)} \quad 5_{(16)}$$

$$A_{(16)}$$

3.4 CONVERSION BINAIRE ⇒ **HEXADECIMAL**

Il suffit de regrouper les bits par quartet et trouver l'équivalent hexadécimal de chaque quartet.

3.5 CONVERSION HEXADECIMAL ⇒ **BINAIRE**

Il suffit de remplacer chaque symbole hexadécimal du nombre par son équivalent binaire.

Exemple:
$$BA_{(16)} =$$

4 <u>RECAPITULATIF</u>

Base 10 (Décimal)	Base 2 (Binaire)	Base 8 (Octal)	Base 16 (Hexadécimal)	BCD ou DCB Décimal Codé Binaire
0	0 0000	00	00	0000 0000
1	0 0001	01	01	0000 0001
2	0 0010	02	02	0000 0010
3	0 0011	03	03	0000 0011
4	0 0100	04	04	0000 0100
5	0 0101	05	05	0000 0101
6	0 0110	06	06	0000 0110
7	0 0111	07	07	0000 0111
8	0 1000	10	08	0000 1000
9	0 1001	11	09	0000 1001
10	0 1010	12	0A	0001 0000
11	0 1011	13	0B	0001 0001
12	0 1100	14	0C	0001 0010
13	0 1101	15	0D	0001 0011
14	0 1110	16	0E	0001 0100
15	0 1111	17	0F	0001 0101
16	1 0000	20	10	0001 0110
17	1 0001	21	11	0001 0111
18	1 0010	22	12	0001 1000
19	1 0011	23	13	0001 1001
20	1 0100	24	14	0010 0000

5 <u>EXERCICES D'APPLICATIONS.</u>

1. Convertir 128₍₁₀₎ dans les 4 systèmes vus précédemment.

$$128 = \%10000000 = \$80 = 200(8) = 00010010\ 1000\ (bcd)$$

2. Convertir 517₍₁₀₎ dans les 4 systèmes vus précédemment.

$$517 = \% \ 1000000101 = \$ \ 205 = 1005(8) = 0101 \ 0001 \ 0111 \ (bcd)$$

3. Convertir 1100 0101 1101₍₂₎ en décimal et en hexadécimal.

$$3165 = C5D$$

- 4. Convertir $571_{(10)}$ en base 16 = \$23B
- 5. Convertir en décimal 37FD₍₁₆₎ et 2CO₍₁₆₎

$$37FD_{(16)} = 14333 ; 2CO_{(16)} = 704$$

- 6. Effectuer l'addition $1110\ 1001_{(2)} + 11\ 1001_{(2)} = \%1\ 0010\ 0010$
- 7. Effectuer l'addition 1111 $1111_{(2)} + 1_{(2)} = \%1\ 0000\ 0000$
- 8. Effectuer l'addition $1110_{(2)} + 1010_{(2)} = \%1\ 1000$
- 9. Effectuer l'addition $4AF_{(16)} + B25_{(16)} = $FD4$
- 10. Effectuer l'addition $FF_{(16)} + FF_{(16)} =$ \$ 1FE
- 11. Effectuer l'addition $2E_{(16)} + 1101_{(2)} = $3B$
- 12. Convertir $221_{(3)}$ en décimal. = 18 + 6 + 1 = 25
- 13. 280, 281, ..., 289, 28A,..., 28F, 290, 291,, 299, 29A, ..., 29F, 2A0
- 14. A quelle(s) base(s) (parmi celles vue précédemment) peuvent appartenir les chiffres suivant :

781 : (10), (BCD)

432: (8), (10), (16)

3CA: (16)

- 15. Avec 8 bits: $1111 \ 1111_{(2)} = 255$; avec 16 bits = $1111 \ 1111 \ 1111 \ 1111_{(2)} = 65535$.
- 16. a) $FFFF_{(16)} 0000_{(16)} + 1 = 10000_{(16)} = 65536$ b) $4096 = 1000_{(16)}$ donc de $000_{(16)}$ à $FFF_{(16)}$.