Makine Öğrenmesi

Sınıflandırma ve Ağaçlar

İlker Birbil ve Utku Karaca

Erasmus Üniversitesi Rotterdam

İstanbul'da Makine Öğrenmesi

27 Ocak – 2 Şubat, 2020

eğitim verisi $\{(x_i,y_i):1,\ldots,n\}$

Lojistik Bağlanım (Logistic Regression)

 X_1 : toplam harcama (bakiye)

 X_2 : yıllık gelir

 X_3 : öğrenci (1), öğrenci değil (0)

$$Y = \begin{cases} \text{kart borcu kalan (borçlu)}, & 1; \\ \text{kart borcu kalmayan (borçsuz)}, & 0. \end{cases}$$

$$p(X) = \mathbb{P}(Y = 1|X)$$
 ?

$$p(X) = \mathbb{P}(Y = 1|X) > \tau$$

eşik değer (threshold)

$$p(X) = \mathbb{P}(Y = 1|X)$$
 ?

$$p=1$$

$$p(X) = \beta_0 + \beta_1 X \longrightarrow (-\infty, +\infty)$$

$$p(X) = \sigma(\beta_0 + \beta_1 X) \longrightarrow [0, 1]$$

Sigmoid Fonksiyonu

$$\sigma(y) = \frac{e^y}{1 + e^y}$$

Lojistik Fonksiyonu

$$p(X) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}} \longrightarrow [0, 1]$$

$$p(X) = \mathbb{P}(Y = 1|X) ?$$

$$p(X) = \beta_0 + \beta_1 X \longrightarrow (-\infty, +\infty) \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \longrightarrow [0, 1]$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

göreceli olasılıklar (odds)

p > 1

$$p(X) = \sigma(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)$$

Lojistik Fonksiyonu

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

$$eta_0,eta_1,\ldots,eta_p?$$
 \downarrow
eğitim verisi
 $\{(x_i,y_i):1,\ldots,n\}$

$$1-p(x_2)$$
 $1-p(x_5)$ $1-p(x_5)$ $1-\mathbb{P}(Y=1|X=x_5)$ $1-\mathbb{P}(Y=1|X=x_5)$ $(x_1,1), (x_2,0), (x_3,1), (x_4,1), (x_5,0)$ $\mathbb{P}(Y=1|X=x_4)$ $p(x_1)$ $p(x_3)$ $p(x_4)$

$$p(x_1)p(x_3)p(x_4)(1-p(x_2))(1-p(x_5))$$

Olabilirlik (Likelihood) Fonksiyonu

$$\ell(\beta_0,\ldots,\beta_p) = \prod_{i:y_i=1} p(x_i) \prod_{j:y_j=0} (1-p(x_j))$$

En Büyük (Maximum) Olabilirlik

$$\ell(\beta_0, \dots, \beta_p) = \prod_{i: y_i = 1} p(x_i) \prod_{j: y_j = 0} (1 - p(x_j))$$

$$\max_{eta_0,...,eta_p} \ell(eta_0,\ldots,eta_p)$$
 \downarrow
 $\max_{eta_0,...,eta_p} \log(\ell(eta_0,\ldots,eta_p))$
 \downarrow
 $\max_{eta_0,...,eta_p} \sum_{i:y_i=1} p(x_i) + \sum_{j:y_j=0} (1-p(x_j))$
 \downarrow
 \hat{I} çbükey Fonksiyon
 \downarrow
 $\hat{eta}_0,\ldots,\hat{eta}_p$

$$p = 1$$

	Katsayı	St. Hata	Z istatistiği	p değeri
Kesme nok.	-3,5041	0,0707	-49,55	< 0,0001
Öğrenci (1)	0,4049	0,1150	3,52	0,0004

p > 1

	Katsayı	St. Hata	Z istatistiği	p değeri
Kesme nok.	-10,8690	0,4923	-22,08	< 0,0001
Harcama	0,0057	0,0002	24,74	< 0,0001
Gelir	0,0030	0,0082	0,37	0,7115
Öğrenci (1)	-0,6468	0,2362	-2,74	0,0062

Tahmin Yapma

	Katsayı	St. Hata	Z istatistiği	p değeri
Kesme nok.	-10,8690	0,4923	-22,08	< 0,0001
Harcama	0,0057	0,0002	24,74	< 0,0001
Gelir	0,0030	0,0082	0,37	0,7115
Öğrenci (1)	-0,6468	0,2362	-2,74	0,0062

$$X = \left[\begin{array}{c} 1.500 \\ 40.000 \\ 1 \end{array} \right]$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

$$\hat{p}(X) = \frac{e^{-10,869 + 0,0057 \times 1.500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10,869 + 0,0057 \times 1.500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058$$

Doğrusal Ayrımlayıcı Çözümleme (Linear Discriminant Analysis - LDA)

$$\mathbb{P}(Y = k | X = x) \iff \mathbb{P}(X = x | Y = k)$$
Bayes Kuramı

$$\mathbb{P}(Y=k|X=x) = \frac{\mathbb{P}(Y=k)\mathbb{P}(X=x|Y=k)}{\sum_{l=1}^{K}\mathbb{P}(Y=l)\mathbb{P}(X=x|Y=l)}$$

Ardıl Olasılık (Posterior Probability)

$$p_k(x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

$$\pi_k$$
? $f_k(x)$?

$$f_k(x)$$
 ?

$$p = 1$$

$$p_k(x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

Kabul 1: $X \sim N(\mu, \sigma)$

$$f_k(x) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

Kabul 2: $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_K^2 = \sigma^2$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} \left(x - \mu_k\right)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} \left(x - \mu_l\right)^2\right)}$$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}$$

$$\log(p_k(x)) = \log\left(\frac{\pi_k \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}\right)$$

$$\vdots$$

$$= \underbrace{x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k) \left(-C\right)}_{\delta_k(x)}$$

$$k' \text{den bağımsız}$$

sabit terim

$$\delta_k(x) = x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i \qquad \hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2 \qquad \hat{\pi}_k = \frac{n_k}{n}$$

$$\hat{\delta}_k(x) = x \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

$$X = x$$

$$\hat{\delta}_k(x) \uparrow \uparrow$$

$$Y = k$$

$$p > 1 \qquad X = (X_1, X_2, \dots, X_p)$$

Kabul 1: $X \sim N(\mu, \Sigma)$

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^{\mathsf{T}} \Sigma_k^{-1} (x - \mu_k)\right)$$

Kabul 2:
$$\Sigma_1 = \Sigma_2 = \cdots = \Sigma_K = \Sigma$$

$$\delta_k(x) = x^{\mathsf{T}} \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^{\mathsf{T}} \Sigma^{-1} \mu_k + \log(\pi_k)$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i \qquad \qquad \hat{\pi}_k = \frac{n_k}{n}$$

$$\hat{\Sigma} = \frac{1}{n - K} \sum_{k=1}^{K} \sum_{i: u_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^{\mathsf{T}}$$

$$\hat{\delta}_k(x) = x^\mathsf{T} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}_k - \frac{1}{2} \hat{\boldsymbol{\mu}}_k^\mathsf{T} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}_k + \log(\hat{\boldsymbol{\pi}}_k)$$

$$X = x$$

$$\hat{\delta}_k(x) \uparrow \uparrow$$

Y = k

$$p(X) = \mathbb{P}(Y = 1|X) > \tau$$

$\tau = 0.5$		Gerçek		
		Borçsuz	Borçlu	Toplam
	Borçsuz	9.644	252	9.896
Tahmin	Borçlu	23	81	104
	Toplam	9.667	333	10.000

au = 0.2		Gerçek		
		Borçsuz	Borçlu	Toplam
	Borçsuz	9.432	138	9.570
Tahmin	Borçlu	235	195	430
	Toplam	9.667	333	10.000

ROC* Grafiği (Karar Değerlendirme Grafiği)

^{*} Receiver Operating Characteristics

Hata Matrisi (Confusion Matrix)

		Tahmin Edilen Sınıf		Sınıf
		-	+	Toplam
	-	Gerçek Negatif (GN)	Yanlış Pozitif (YP)	N
Gerçek Sınıf	+	Yanlış Negatif (YN)	Gerçek Pozitif (GP)	Р
	Toplam	N*	P*	

		Tahmin Edilen Sınıf		Sınıf
		-	+	Toplam
Gerçek Sınıf	-	GN	YP	N
	+	YN	GP	P
	Toplam	N*	P*	

İsim	Hesap	Eş Anlam
Yanlış Bulma Oranı ^a	YP/N	birinci tip hata (type I error), 1 – özgüllük (specifity)
Doğru Bulma Oranı ^b	GP/P	1 – ikinci tip hata (type II error), üs, duyarlılık (sensitivity), doğruluk (recall)
Pozitif Tahmin Değeri ^c	GP/P*	kesinlik (precision), 1 – yanlış keşif oranı (false discovery proportion)
Negatif Tahmin Değeri ^d	GN/N*	

^a False Positive Rate

^b True Positive Rate

^c Positive Predictive Value

^d Negative Predictive Value

Karar Ağaçları (Decision Trees)

Amaç: Değişkenler uzayını basit alt bölgelere ayırmak

Bağlanım Ağaçları Sınıflandırma Ağaçları

Örnek Ağaç

Bir beyzbol oyuncusunun maaşının yaptığı vuruş ve oynadığı toplam yıla göre tahmin edilmesi

Bağlanım Ağaçları

$$X_1, X_2, \dots, X_p$$
 Çakışmayan bölgeler R_1, R_2, \dots, R_J

Tahmin: R_i bölgesindeki eğitim verisinin çıktı değerlerinin (y_i) ortalaması

$$R_1, R_2, \ldots, R_J$$
 ?

Amaç: KKT değerinin en küçük olduğu bölgelerin bulunması

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

 \hat{y}_{R_j} : R_i bölgesindeki çıktıların ortalaması

Bağlanım Ağaçları

Özyinelemeli İkili Ayırma (Recursive Binary Splitting)

$$R_1(j,s) = \{X | X_j < s\}$$
 $R_2(j,s) = \{X | X_j \ge s\}$

Aşağıdaki ifadeyi en küçükleyen j ve s değerlerini bul

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Terminal düğümde çok az veri noktası kalınca dur!

Bağlanım Ağaçları

Ağaç Budama (Tree Pruning)

Amaç: Ağacın tamamı ya da büyük kısmı oluşunca ortaya çıkan aşırı öğrenmenin önüne geçmek (düşük *test* hatası)

$$\sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

 $T \subset T_0$: alt ağaç (subtree)

|T|: T ağacındaki terminal düğüm sayısı

 R_m : m. terminal düğüme karşılık gelen bölge

 α : sabit parametre

 α parametresini bulmak için k-katlı çapraz geçerlilik sınaması yapılır

Sınıflandırma Ağaçları

Bağlanım ağaçlarına çok benzer şekilde ilerlenir ancak alt bölgenin *saflık* derecesine bağlı bir hata ölçüsü kullanılır

 $\hat{p}_{mk}:m$. bölgedeki eğitim verisindeki k. sınıftan olanların oranı

Sınıflandırma Hata Oranı

$$E = 1 - \max_{k} \{\hat{p}_{mk}\}$$

Ca < 0.5

Torbalama

Amaç: Varyansı düşürmek için zorlama tekniğini kullanarak birkaç tane büyük ağaç oluşturulur ve onların tahminlerinin ortalaması (bağlanım) ya da çoğunlukta olan sınıf (sınıflandırma) hesaplanır.

Bağlanım

B: farklı eğitim kümesi sayısı

$$\hat{f}^{*b}(x)$$
: b. eğitim kümesi ile elde edilen tahmin

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

Rasgele Ormanlar

Amaç: Ağaçlar arasındaki korelasyonu azaltmak için dalları ayırırken tüm değişkenler yerine sadece rassal sayıda değişkeni kullanmak

^{*}Applied Predictive Modeling, M. Kuhn, K. Johnson., Springer, 2013, sf. 195.

Takviye

Fikir: Fazla etkin olmayan sınıflandırıcıları, ağırlıklı veri örnekleme tekniğini kullanarak bir araya getirerek daha etkin bir sınıflandırıcı elde etmek

Güncelleme Kuralı: Yanlış sınıflandırılan veri noktalarının ağırlıklarını artır

Ensemble Methods

AdaBoost – İkili Sınıflandırma {+1, -1}

Her bir veri satırı başlangıçta aynı ağırlığa sahip: (1/n)

for
$$k=1$$
 to K do

ağırlıklı verileri kullanarak d dallı bir ağaç eğit ve and yanlış sınıflandırma hatasını hesapla (ϵ_k)

Ağırlık değerini hesapla
$$\ln \frac{1-\epsilon_k}{\epsilon_k}$$

Ağırlıklı verileri güncelle – yanlış sınıflandırılan verilere daha fazla ağırlık ver

end

Her bir veri için k. aşamadaki değer ile k. model tahminini çarparak takviyeli sınıflandırıcının tahminlerini hesapla ve bu miktarları k'ye ekle. Eğer toplam pozitif ise veriyi +1 olarak sınıflandır, değilse -1.

Kitaptaki Algoritma 8.2 bağlanım ağaçları için takviye örneği veriyor.

AdaBoost – İkili Sınıflandırma {+1, -1}

Algoritma 1: AdaBoost

- 1 Başlangıç ağırlıklarını belirle: $w_i^1 = \frac{1}{n}, \quad i = 1, \dots, n$
- **2** for k = 1, ..., K do
- $\mathbf{y}_k(x)$ sınıflandırıcısını şu ağırlıklı sınıflandırma hata fonksiyonu ile eğit:

$$\sum_{i=1}^{n} w_i^k I(y_k(x_i) \neq y_i)$$

Yanlış sınıflandırılan veri noktalarının oransal ağırlığını hesapla:

$$\varepsilon^k = \frac{\sum_{i=1}^n w_i^k I(y_k(x_i) \neq y_i)}{\sum_{i=1}^n w_i^k}$$

- Güncelleme parametresini belirle: $\alpha_k = \ln \frac{1-\varepsilon_k}{\varepsilon_k}$
- 6 Çıktı: $\sum_{k=1}^{K} \alpha_k y_k(x)$ değerinin işareti (+1 ya da -1)

- Takviye ve torbalama yöntemleri başka yöntemler ile de uygulanabilirler
- Torbalama yöntemi paralel uygulama için son derece uygun olmasına rağmen takviye yöntemi sıralı yapısı nedeniyle paralelleştirmeye uygun değildir
- Topluluk yöntemleri ile elde edilen modeli yorumlamak güçtür
- Değişken önemini (variable importance) gösteren grafikler kullanılabilir

Bir **değişkenin önemi** Gini indeksinde ya da entropide elde ettiği ortalama azaltmaya göre belirlenir. Daha sonra değişkenler bu önem sırasına göre oranlanarak sıralanır.

Pratikte

ABC.fit(X, y)

ABC.score(X,y)

ABC = AdaBoostClassifier(n estimators=100, random state=0)

```
from sklearn.tree import DecisionTreeClassifier
 from sklearn.datasets import make_classification
                                                            paketler ve fonksiyonlar
from sklearn.ensemble import BaggingClassifier
 rom sklearn.ensemble import RandomForestClassifier
     sklearn.ensemble import AdaBoostClassifier
X, y = make classification(n samples=1000,
                           n features=4,
                           n informative=2,
                                                            verinin yaratılması
                           n redundant=0,
                           random state=0,
                           shuffle=False)
DTClassifier = DecisionTreeClassifier(criterion = 'gini',
                                      splitter = 'best',
                                                            karar ağacı uydurumu ve
                                      max depth = None,
                                                            performansının raporlanması
                                      min samples leaf = 5
DTClassifier.fit(X, y)
DTClassifier.score(X, y)
                                                            topluluk yöntemleri
bagging = BaggingClassifier(DTClassifier,
                            n_{estimators} = 20,
                                                            torbalama yöntemi kullanımı
                            max samples = 1.0,
                            bootstrap = True,
                                                            ve performansının
                            bootstrap features = False)
                                                                                          [DTClassifier.score(X, y),
bagging.fit(X, y)
                                                            raporlanması
                                                                                           bagging.score(X, y),
bagging.score(X, y)
                                                                                           RF.score(X,y),
                                                                                           ABC.score(X,y)]
                                                                                          [0.97, 0.973, 0.975, 0.983]
RF = RandomForestClassifier(criterion = 'gini',
                            n estimators=10,
                                                            rastgele ormanlar yöntemi
                            max depth=None,
                            min samples leaf = 5,
                                                            kullanımı ve performansının
                            random state=0)
RF.fit(X,y)
                                                            raporlanması
RF.score(X,y)
                                                            AdaBoost yönteminin kullanımı ve
```

performansının raporlanması

Destek Vektör Makineleri - DVM (Support Vector Machines - SVM)

$$(x_i, y_i), \quad i = 1, 2, \dots, n$$

$$x_i \in \mathbb{R}^p \qquad y_i \in \{-1, +1\}$$

Fikir: Bir düzlem (hyperplane) yardımıyla veri noktalarını iki sınıfa ayırmak

Düzlem

$$\{X \in \mathbb{R}^p : \beta^{\mathsf{T}}X + \beta_0 = 0, \ \beta \in \mathbb{R}^p, \beta_0 \in \mathbb{R}\}$$

Amaç: β ve Δ parametrelerini,

$$\beta^{\mathsf{T}}X + \beta_0 - \Delta = 0$$
 ve $\beta^{\mathsf{T}}X + \beta_0 + \Delta = 0$

ile gösterilen iki düzlem arasındaki mesafe en fazla olacak şekilde seçmek

Eşitliklerin her iki tarafı Δ değerine bölünüp, $\Delta = 1$ olarak alınabilir

$$(x_i, y_i) < y_i = 1 \qquad \beta^{\mathsf{T}} x_i + \beta_0 - 1 \ge 0$$

$$y_i = -1 \qquad \beta^{\mathsf{T}} x_i + \beta_0 + 1 \le 0$$

$$y_i (\beta^{\mathsf{T}} x_i + \beta_0) \ge 1$$

Amaç: β ve Δ parametrelerini,

$$\beta^{\mathsf{T}}X + \beta_0 - \Delta = 0$$
 ve $\beta^{\mathsf{T}}X + \beta_0 + \Delta = 0$

ile gösterilen iki düzlem arasındaki mesafe en fazla olacak şekilde seçmek

 β : alt uzaya dik doğrultu

$$\beta^{\mathsf{T}}x = 0$$

Ayrıca β vektörü

$$\beta^{\mathsf{T}}x + \beta_0 = 1$$

ve

$$\beta^{\mathsf{T}}x + \beta_0 = -1$$

düzlemlerine de dik

$$\beta = (\beta_1, \beta_2)^{\mathsf{T}}$$

Amaç: β ve Δ parametrelerini,

$$\beta^{\mathsf{T}}X + \beta_0 - \Delta = 0$$
 ve $\beta^{\mathsf{T}}X + \beta_0 + \Delta = 0$

ile gösterilen iki düzlem arasındaki mesafe en fazla olacak şekilde seçmek

İki düzlem arasındaki mesafe:

$$\frac{1 - \beta_0}{\|\beta\|} - \frac{-1 - \beta_0}{\|\beta\|} = \frac{2}{\|\beta\|}$$

Amaç: β ve Δ parametrelerini,

$$\beta^{\mathsf{T}}X + \beta_0 - \Delta = 0$$
 ve $\beta^{\mathsf{T}}X + \beta_0 + \Delta = 0$

ile gösterilen iki düzlem arasındaki mesafe en fazla olacak şekilde seçmek

enbüyükle
$$\frac{2}{\|\beta\|}$$
 öyle ki $y_i(\beta^{\intercal}x_i + \beta_0) \ge 1, \quad i = 1, \dots, n$

$$\equiv \begin{array}{ll} \text{enküçükle} & \frac{1}{2} \|\beta\| \\ \text{öyle ki} & y_i(\beta^{\intercal} x_i + \beta_0) \ge 1, \quad i = 1, \dots, n \end{array}$$

$$\equiv \begin{array}{ll} \text{enküçükle} & \frac{1}{2}\beta^{\mathsf{T}}\beta \\ \text{öyle ki} & y_i(\beta^{\mathsf{T}}x_i + \beta_0) \geq 1, \quad i = 1, \dots, n \end{array}$$

Bu matematiksel model, karesel ve dışbükey amaç fonksiyonu ile doğrusal kısıtlardan oluşuyor. Bu yapıdaki modellere *karesel programlama* (quadratic programming) modelleri denir.

$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad \varepsilon = 0$$
$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad 0 < \varepsilon < 1$$
$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad \varepsilon \ge 1$$

enküçükle
$$\frac{1}{2}\beta^{\mathsf{T}}\beta + c\sum_{i=1}^{n} \varepsilon_{i}^{d}$$
 öyle ki
$$y_{i}(\beta^{\mathsf{T}}x_{i} + \beta_{0}) \geq 1 - \varepsilon_{i}, \quad i = 1, \dots, n$$

$$\varepsilon_{i} \geq 0, \quad i = 1, \dots, n$$

Burada c parametresi çapraz geçerlilik sınaması ile belirlenebilir (uygulamalarda d = 1 ve d = 2 değerleri sık kullanılır)

Çekirdekler (Kernels)

enküçükle $\frac{1}{2}\beta$ T β öyle ki $y_i(\beta^\intercal x_i + \beta_0) \ge 1, \quad i = 1, \dots, n$

Lagrange Fonksiyonu

Lagrange çarpanları
$$\mathcal{L}(\beta,\beta_0;\alpha) = \frac{1}{2}\beta^{\mathsf{T}}\beta - \sum_{i\in\mathcal{A}}\alpha_i\left(y_i(\beta^{\mathsf{T}}x_i+\beta_0)-1\right)$$
 aktif kısıtlar kümesi

Optimallik Şartları
$$\begin{cases} \nabla_{\beta} \mathcal{L}(\beta, \beta_0; \alpha) = \beta - \sum_{i \in \mathcal{A}} \alpha_i y_i x_i = 0 \implies \beta = \sum_{i \in \mathcal{A}} \alpha_i y_i x_i \\ \frac{\partial \mathcal{L}(\beta, \beta_0; \alpha)}{\partial \beta_0} = -\sum_{i \in \mathcal{A}} \alpha_i y_i = 0 \implies \sum_{i \in \mathcal{A}} \alpha_i y_i = 0 \end{cases}$$

$$\mathcal{L}(\beta, \beta_0; \alpha) = \frac{1}{2} \left(\sum_{i \in \mathcal{A}} \alpha_i y_i x_i \right)^{\intercal} \left(\sum_{j \in \mathcal{A}} \alpha_j y_j x_j \right) - \left(\sum_{i \in \mathcal{A}} \alpha_i y_i \left(\sum_{j \in \mathcal{A}} \alpha_j y_j x_j \right)^{\intercal} x_i \right)$$

$$- \sum_{i \in \mathcal{A}} \alpha_i y_i \beta_0 + \sum_{i \in \mathcal{A}} \alpha_i$$

$$= \sum_{i \in \mathcal{A}} \alpha_i - \frac{1}{2} \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{A}} \alpha_i \alpha_j y_i y_j x_i^{\intercal} x_j$$

$$\mathcal{L}(\beta,\beta_0;\alpha) = \sum_{i \in \mathcal{A}} \alpha_i - \frac{1}{2} \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{A}} \alpha_i \alpha_j y_i y_j \overline{x_i^\mathsf{T} x_j}^*$$
tek yapmamız gereken bu iç çarpımları hesaplamak

Fikir: İç çarpım hesabını daha yüksek boyutlu uzayda iki veri arasındaki benzerliği ölçen bir çekirdek ile değiştirmek

Doğrusal Çekirdek
$*$
 $K(x_i,x_j)=x_i^\intercal x_j$
Polinom Çekirdek $K(x_i,x_j)=(1+x_i^\intercal x_j)^d$
Radyal Çekirdek $K(x_i,x_j)=e^{-\gamma\|x_i-x_j\|^2},\ \gamma>0$

$$\varphi: \mathbb{R}^p \to \mathbb{R}^q$$

$$K(x_i, x_j) = \varphi(x_i)^{\mathsf{T}} \varphi(x_j)$$

Polinom çekirdek: $K(x_i, x_j) = (1 + x_i^{\mathsf{T}} x_j)^d$

$$x_i, x_j \in \mathbb{R}^2$$
$$d = 2$$

$$K(x_i, x_j) = (1 + x_i^{\mathsf{T}} x_j)^2 = 1 + x_{i1}^2 x_{j1}^2 + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2} + 2x_{i1} x_{i2} x_{j1} x_{j2}$$

$$\varphi:\mathbb{R}^2\to\mathbb{R}^6$$

$$\varphi(x_i) = (1, x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}, \sqrt{2}x_{i1}x_{i2})^{\mathsf{T}}$$
$$K(x_i, x_j) = \varphi(x_i)^{\mathsf{T}}\varphi(x_j) = (1 + x_i^{\mathsf{T}}x_j)^2$$

Çoklu Sınıf

 $\begin{pmatrix} K \\ 2 \end{pmatrix}$ DVM $\begin{pmatrix} k \\ 2 \end{pmatrix}$... $\begin{pmatrix} k-1 \\ k+1 \end{pmatrix}$... $\begin{pmatrix} \kappa \\ \kappa \end{pmatrix}$

Tüm Çiftler

 x_0 en sık atandığı sınıfta kabul edilir

Özet

- Lojistik Bağlanım
- Doğrusal Ayrımlayıcı Çözümleme
- Sonuçların değerlendirilmesi
- Karar Ağaçları
- Bağlanım ve Sınıflandırma Ağaçları
- Topluluk yöntemleri
- Destek Vektör Makineleri