기계학습개론

02 Python 기본 문법, Numpy, Pandas 개요

> 컴퓨터공학과 이상금 N4-416 sangkeum@hanbat.ac.kr

1. 공지사항

한밭대학교 SW중심대학사업단 유튜브 구독

1. 공지사항

1. 강의계획

- 목표 데이터분석(NumPy, Pandas)과 기계학습(Scikit-Learn) 학습

- 참고문헌 (메인) 혼자 공부하는 머신러닝+딥러닝 데이터 과학을 위한 파이썬 머신러닝

- 평가방법

출석: 15%

과제 및 퀴즈: 15%

중간고사: 30% 기말고사: 40%

- 담당TA

함규식 석사과정

이메일: 30231218@edu.hanbat.ac.kr

한보연 석사과정

이메일: gksqhdus2@naver.com

*추후 점수 및 수업내용 변경 가능

주차	강의계획
1주차	머신러닝 개요 및 기본문법
2주차	Python 기본 문법, Numpy, Pandas 개요
3주차	머신러닝 프로젝트 처음부터 끝까지
4주차	머신러닝 프로젝트 처음부터 끝까지
5주차	분류
6주차	분류(2)
7주차	중간고사
8주차	모델훈련
9주차	모델훈련(2)
10주차	서포트벡터 머신
11주차	머신러닝 분야 실무 적용 사례
12주차	결정트리
13주차	랜덤포레스트
14주차	랜덤포레스트(2)
15주차	기말고사

1. 강의계획

- 설문조사 수업에서 바라는 점 or 저에게 한마디 익명으로 의견 작성 (10분), 휴대폰으로 QR코드 인식
- 피드백 진행

1. 강의계획

전통적인 프로그램


```
if fish_length >= 30:
print("도미")
```


도미 vs 빙어

2개의 클래스(class)

분류(classification)

이진 분류(binary classification)

도미 데이터


```
bream_length = [25.4, 26.3, 26.5, 29.0, 29.0, 29.7, 29.7, 30.0, 30.0, 30.7, 31.0, 31.0, 31.5, 32.0, 32.0, 32.0, 33.0, 33.0, 33.5, 33.5, 34.0, 34.0, 34.5, 35.0, 35.0, 35.0, 35.0, 36.0, 36.0, 37.0, 38.5, 38.5, 39.5, 41.0, 41.0]
bream_weight = [242.0, 290.0, 340.0, 363.0, 430.0, 450.0, 500.0, 390.0, 450.0, 500.0, 475.0, 500.0, 500.0, 340.0, 600.0, 600.0, 700.0, 700.0, 610.0, 650.0, 575.0, 685.0, 620.0, 680.0, 700.0, 725.0, 720.0, 714.0, 850.0, 1000.0, 920.0, 955.0, 925.0, 975.0, 950.0]
```


산점도(scatter plot)

```
import matplotlib.pyplot as plt

plt.scatter(bream_length, bream_weight)
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
```


빙어 데이터

```
smelt_length = [9.8, 10.5, 10.6, 11.0, 11.2, 11.3, 11.8, 11.8, 12.0, 12.2,
                12.4, 13.0, 14.3, 15.0]
smelt_weight = [6.7, 7.5, 7.0, 9.7, 9.8, 8.7, 10.0, 9.9, 9.8, 12.2, 13.4,
                12.2, 19.7, 19.9
plt.scatter(bream_length, bream_weight)
                                            1000
plt.scatter(smelt_length, smelt_weight)
plt.xlabel('length')
                                             800
plt.ylabel('weight')
plt.show()
                                           weight
                                             200
                                                                25
```

도미와 빙어 합치기

```
length = bream_length+smelt_length
weight = bream_weight+smelt_weight

사이킷런이 기대하는 데이터 형태
길이 무게

토미 35개의 길이 빙어 14개의 길이

[[25.4, 242.0],
[26.3, 290.0],
...

포미 35개의 무게 빙어 14개의 무게

weight = [242.0, 290.0, ..., 950.0, 6.7, ..., 19.9]
```


리스트 내포

```
fish_data = [[1, w] for 1, w in zip(length, weight)]
```

```
[[25.4, 242.0], [26.3, 290.0], [26.5, 340.0], [29.0, 363.0], [29.0, 430.0], [29.7, 450.0], [29.7, 500.0], [30.0, 390.0], [30.0, 450.0], [30.7, 500.0], [31.0, 475.0], [31.0, 500.0], [31.5, 500.0], [32.0, 340.0], [32.0, 600.0], [32.0, 600.0], [33.0, 700.0], [33.5, 610.0], [33.5, 650.0], [34.0, 575.0], [34.0, 685.0], [34.5, 620.0], [35.0, 680.0], [35.0, 700.0], [35.0, 725.0], [35.0, 720.0], [36.0, 714.0], [36.0, 850.0], [37.0, 1000.0], [38.5, 920.0], [38.5, 955.0], [39.5, 925.0], [41.0, 975.0], [41.0, 950.0], [9.8, 6.7], [10.5, 7.5], [10.6, 7.0], [11.0, 9.7], [11.2, 9.8], [11.3, 8.7], [11.8, 10.0], [11.8, 9.9], [12.0, 9.8], [12.2, 12.2], [12.4, 13.4], [13.0, 12.2], [14.3, 19.7], [15.0, 19.9]]
```


정답 준비

k-최근접 이웃

```
from sklearn.neighbors import KNeighborsClassifier
kn = KNeighborsClassifier()
kn.fit(fish_data, fish_target)
kn.score(fish_data, fish_target)
1.0
```


새로운 생선 예측


```
kn.predict([[30, 600]])
array([1])
```


무조건 도미

```
kn49 = KNeighborsClassifier(n_neighbors=49)
kn49.fit(fish_data, fish_target)
kn49.score(fish_data, fish_target)
0.7142857142857143
print(35/49)
0.7142857142857143
```


Q&A 감사합니다

