Show

Home > Product Information > Actuator > Dynamixel X > XL Series > XL320

ROBOTIS e-Manual v1.29.00

XL-320

Part Photo

- CRC calculator
- Instruction_status packet

[XL-320]

* XL-320 is a different product from the OLLO Geared and Servo Motor.

H/W Specification

• Weight: 16.7g

• Dimension : 24mm *36mm * 27mm

Resolution: 0.29°Motor: Cored

Gear Reduction Ratio: 238:1Stall Torque: 0.39 N.m (at 7.4V, 1.1A)

No load speed: 114 rpm (at 7.4V, 0.18A)

· Running Degree

§ 0° ~ 300° § Endless Turn

• Running Temperature : -5°C ~ +70°C

• Voltage: 6 ~ 8.4V (Recommended Voltage 7.4V)

• Command Signal : Digital Packet

• Protocol Type: Half duplex Asynchronous Serial Communication (8bit,1stop,No Parity)

• Link (Physical): TTL Level Multi Drop (daisy chain type Connector)

• ID: 253 ID (0~252)

• Communication Speed: 7343bps ~ 1 Mbps

• Feedback : Position, Temperature, Load, Input Voltage, etc.

· Material: Engineering Plastic

Stall torque is the maximum instantaneous and static torque
Stable motions are possible with robots designed for loads with 1/5 or less of the stall torque

Control Table

Control Table consists of data regarding the current status and operation, which exists inside of Dynamixel. The user can control Dynamixel by changing data of Control Table via Instruction Packet.

EEPROM and RAM

Data in RAM area is reset to the initial value whenever the power is turned on while data in EEPROM area is kept once the value is set even if the power is turned off.

Address

It represents the location of data. To read from or write data to Control Table, the user should assign the correct address in the Instruction Packet.

Access

Dynamixel has two kinds of data: Read-only data, which is mainly used for sensing, and Read-and-Write data, which is used for driving.

Initial Value

In case of data in the EEPROM Area, the initial values on the right side of the below Control Table are the factory default settings. In case of data in the RAM Area, the initial values on the right side of the above Control Tables are the ones when the power is turned on.

Highest/Lowest Byte

In the Control table, some data share the same name, but they are attached with (L) or (H) at the end of each name to distinguish the address. This data requires 16bit, but it is divided into 8bit each for the addresses (low) and (high). These two addresses should be written with one Instruction Packet at the same time.

Area	Address (Hexadecimal)	Size(byet)	Name	Description	Access	Inital Value	Min	Max
	0	2	Model Number	Model number	R	350	-	-
	2	1	Version of Firmware	Information on the version of firmware	R	-	-	-
	3	1	ID	ID of Dynamixel	RW	1	0	252
	4	1	Baud Rate	Baud Rate of Dynamixel	RW	3	0	3
E E P	5	1	Return Delay Time	Return Delay Time	RW	250	0	254
	6	2	CW Angle Limit	clockwise Angle Limit	RW	0	0	1023
	8	2	CCW Angle Limit	counterclockwise Angle Limit	RW	1023	0	1023
R O	11	1	Control Mode	Control Mode	RW	2	1	2
М	12	1	Limit Temperature	Internal Limit Temperature	RW	65	0	150
	13	1	lower Limit Voltage	Lowest Limit Voltage	RW	60	50	250
	14	1	Upper Limit Voltage	Upper Limit Voltage	RW	90	50	250
	15	2	Max Torque	Lowest byte of Max. Torque	RW	1023	0	1023
	17	1	Return Level	Return Level	RW	2	0	2
	18	1	Alarm Shutdown	Shutdown for Alarm	RW	3	0	7
R7	24	1	Torque Enable	Torque On/Off	RW	0	0	1
Α	25	1	LED	LED On/Off	RW	0	0	7
М	27	1	D Gain	D Gain	RW	0	0	254
	28	1	I Gain	l Gain	RW	0	0	254
								2/1

29	1	P Gain	P Gain	RW	32	0	254
30	2	Goal Position	Goal Position	RW	-	0	1023
32	2	Moving Speed	Goal Speed	RW	=	0	2047
35	2	Torque Limit	Goal Torque	RW	-	0	1023
37	2	Present Position	Current Position	R	=	-	-
39	2	Present Speed	Current Speed	R	-	-	-
41	2	Present Load	Current Load	R	-	-	-
45	1	Present Voltage	Current Voltage	R	-	-	-
46	1	Present Temperature	Present temperature	R	=	-	-
47	1	Registered Instruction	Registered Instruction	R	0	-	-
49	1	Moving	Moving	R	0	-	-
50	1	Hardware Error Status	Hardware error status	R	0	-	-
51	2	Punch	Punch	RW	32	0	1023

Address Function Help

EEPROM Area

Model Number

It represents the Model Number.

Firmware Version

It represents the firmware version.

ID

It is a unique number to identify Dynamixel.

The range from 0 to 252 (0xFC) can be used, and, especially, 254(0xFE) is used as the Broadcast ID.

If the Broadcast ID is used to transmit Instruction Packet, we can command to all Dynamixels.

Please be cautious not to have the same IDs for the connected dynamixels. You may face communication issues or may not be able to search when IDs overlap.

Baud Rate

It represents the communication speed.

0: 9600, 1:57600, 2:115200, 3:1Mbps

Note: Maximum Baud Rate error of 3% is within the tolerance of UART communication.

Return Delay Time

It is the delay time per data value that takes from the transmission of Instruction Packet until the return of Status Packet.

0 to 254 (0xFE) can be used, and the delay time per data value is 2 usec.

That is to say, if the data value is 10, 20 usec is delayed. The initial value is 250 (0xFA) (i.e., 0.5 msec).

CW/CCW Angle Limit

The angle limit allows the motion to be restrained.

The range and the unit of the value is the same as Goal Position(Address 30, 31).

- CW Angle Limit: the minimum value of Goal Position(Address 30, 31)
- CCW Angle Limit: the maximum value of Goal Position(Address 30, 31)

CONTROL MODE

Value	Return of Status Packet
1	Wheel Mode
2	Join Mode

The wheel mode can be used to wheel-type operation robots since motors of the robots spin infinitely.

The joint mode can be used to multi-joints robot since the robots can be controlled with specific angles.

The Highest Limit Temperature

Caution: Do not set the temperature lower/higher than the default value.

When the temperature alarm shutdown occurs, wait 20 minutes to cool the temperature before re-use.

Using the product when the temperature is high may and can cause damage.

The Lowest (Highest) Limit Voltage

It is the operation range of voltage.

50 to 250 (0x32 \sim 0x96) can be used. The unit is 0.1V.

For example, if the value is 80, it is 8V.

If Present Voltage (Address42) is out of the range, Voltage Range Error Bit (Bit0) of Status Packet is returned as '1' and Alarm is triggered as set in the addresses 17 and 18.

Max Torque

It is the torque value of maximum output. 0 to 1023 (0x3FF) can be used, and the unit is about 0.1%.

For example, Data 1023 (0x3FF) means that Dynamixel will use 100% of the maximum torque it can produce while Data 512 (0x200) means that Dynamixel will use 50% of the maximum torque. When the power is turned on, Torque Limit (Addresses 34 and 35) uses the value as the initial value.

Status Return Level

It decides how to return Status Packet. There are three ways like the below table.

Value Return of Status Packet				
0	No return against all commands (Except PING Command)			
1	Return only for the READ command			
2	Return for all commands			

When Instruction Packet is Broadcast ID, Status Packet is not returned regardless of Status Return Level.

Alarm LED

Alarm Shutdown

Dynamixel can protect itself by detecting errors occur during the operation.

The errors can be set are as the table below.

it	Name	Contents
bit7	-	-
bit6	-	-
bit5	-	-
bit4	-	-

bit3	-	-
bit2	ERROR_INPUT_VALTAGE	Voltage is out of operational voatage range
bit1	ERROR_OVER_HEATING	Temperature is out of operational temperature range
bit0		Motor cannot output max load due to load being applied continouosly

It is possible to make duplicate set since the function of each bit is run by the logic of 'OR'. That is, if 0X05 (binary 00000101) is set, both Input Voltage Error and Overheating Error can be detected.

If errors occur, in case of Alarm LED, the LED blinks; in case of Alarm Shutdown, the motor output becomes 0 % by making the value of Torque Limit(Address 34, 35) as 0.

RAM Area

Torque Enable

Value Meaning					
0	Keeps Torque from generating by interrupting the power of motor.				
1	Generates Torque by impressing the power to the motor.				

LED

Bit		00
bit0+bit1+bit2	WHITE LED	When the bit is set the white LED turns on
bit0+bit2	PINK LED	When the bit is set the pink LED turns on
bit1+bit2	BLUE-GREEN LED	

5/11/2018		XL-320
		When the bit is set the blue-green LED
		turns on
bit0+bit1	YELLOW LED	When the bit is set the yellow LED turns on
bit2	BLUE LED	When the bit is set the blue LED turns on
bit1	GREEN LED	When the bit is set the green LED turns on
bit0	RED LED	

PID Gain

XL series will use the PID controller as a main control method.

P gain refers to the value of proportional band.

I gain refers to the value of integral action.

D Gain refers to the value of derivative action.

Gains values are in between 0~254.

When the bit is set the red LED turns on

 $K_p = P Gain / 8$

K_i = I Gain * 1000 / 2048

 $K_d = D Gain * 4 / 1000$

* The relationship between Compliance Slope and PID

Slope	P Gain
8	128
16	64
32	32
64	16
128	8

The less the P gain, The larger the back lash, and the weaker the amount of output near goal position.

At some extent, it is like a combined concept of margine and slope.

It does not exactly match the previous concept of compliance. So it is obvious if you see the difference in terms of motion.

* Explanation for PID required.

For the brief explanation about general PID, please refer to the website(link) below.

http://en.wikipedia.org/wiki/PID_controller

FYI, PID control theory is not only limited to the control of motor(actuator) but is a generic theory that can be applied to all kinds of control.

Goal Position

It is a position value of destination.

0 to 1023 (0x3FF) is available. The unit is 0.29 degree.

If Goal Position is out of the range, Angle Limit Error Bit (Bit1) of Status Packet is returned as '1' and Alarm is triggered as set in Alarm LED/Shutdown.

<The picture above is based on the front of relevant model>

If it is set to Wheel Mode, this value is not used.

Moving Speed

It is a moving speed to Goal Position.

The range and the unit of the value may vary depending on the operation mode.

• Join Mode

0~1023 (0X3FF) can be used, and the unit is about 0.111rpm.

If it is set to 0, it means the maximum rpm of the motor is used without controlling the speed.

If it is 1023, it is about 114rpm.

For example, if it is set to 300, it is about 33.3 rpm.

Notes: Please check the maximum rpm of relevant model in Joint Mode. Even if the motor is set to more than maximum rpm, it cannot generate the torque more than the maximum rpm.

· Wheel Mode

 $0\sim2047(0X7FF)$ can be used, the unit is about 0.1%.

If a value in the range of 0~1023 is used, it is stopped by setting to 0 while rotating to CCW direction.

If a value in the range of 1024~2047 is used, it is stopped by setting to 1024 while rotating to CW direction.

That is, the 10th bit becomes the direction bit to control the direction.

In Wheel Mode, only the output control is possible, not speed.

For example, if it is set to 512, it means the output is controlled by 50% of the maximum output.

Torque Limit

It is the value of the maximum torque limit.

0 to 1023 (0x3FF) is available, and the unit is about 0.1%.

For example, if the value is 512, it is about 50%; that means only 50% of the maximum torque will be used.

If the power is turned on, the value of Max Torque is used as the initial value.

Notes: If the function of Alarm Shutdown is triggered, the motor loses its torque because the value becomes 0. Once error conditions are resolved and this value is changed to the value other than 0, the motor can be operated again.

Present Position

It is the current position value of Dynamixel.

The range of the value is $0\sim1023$ (0x3FF), and the unit is 0.29 degree.

<The picture above is based on the front of relevant model>

Caution: If it is set to Wheel Mode, the value cannot be used to measure the moving distance and the rotation frequency.

Present Speed

It is the current moving speed.

0~2047 (0X7FF) can be used.

If a value is in the rage of $0\sim1023$, it means that the motor rotates to the CCW direction.

If a value is in the rage of 1024~2047, it means that the motor rotates to the CW direction.

That is, the 10th bit becomes the direction bit to control the direction, and 0 and 1024 are equal.

The unit of this value varies depending on operation mode.

· Joint Mode

The unit is about 0.111rpm.

For example, if it is set to 300, it means that the motor is moving to the CCW direction at a rate of about 33.3rpm.

• Wheel Mode

The unit is about 0.1%.

For example, if it is set to 512, it means that the torque is controlled by 50% of the maximum torque to the CCW direction.

Present Load

It means currently applied load.

The range of the value is $0\sim2047$, and the unit is about 0.1%.

If the value is 0~1023, it means the load works to the CCW direction.

If the value is 1024~2047, it means the load works to the CW direction.

That is, the 10th bit becomes the direction bit to control the direction, and 1024 is equal to 0.

For example, the value is 512, it means the load is detected in the direction of CCW about 50% of the maximum torque.

BIT	15~11	10	9	8	7	6	5	4	3	2	1	0
Value	0	Load Direction				Data	a (Lo	ad R	atio)			

Load Direction = 0 : CCW Load, Load Direction = 1: CW Load

Notes: Present load is an inferred value based on the internal output value; not a measured value using torque sensor, etc. Therefore, it may be inaccurate for measuring weight or torque. It is recommended to use it for predicting the direction and size of the force being applied to the joint.

Present Voltage

It is the size of the current voltage supplied.

This value is 10 times larger than the actual voltage. For example, when 10V is supplied, the data value is 100 (0x64)

Present Temperature

It is the internal temperature of Dynamixel in Celsius.

Data value is identical to the actual temperature in Celsius. For example, if the data value is 85 (0x55), the current internal temperature is 85°C.

Registered Instruction

Value	Meaning						
0	There are no commands transmitted by REG_WRITE						
1	There are commands transmitted by REG_WRITE.						

Notes: If ACTION command is executed, the value is changed into 0.

Moving

Value	Meaning
0	Goal position command execution is completed.
1	Goal position command execution is in progress.

HARDWARE ERROR STATUS

Current hardware error staus

Alarm shudown error value

Punch

Current to drive motor is at minimum.

Can choose vales from 0x20 to 0x3FF.

Dimension

Error Report

Copyrights (c) 2010 ROBOTIS All rights reserved.