

Chapter 16~17.

Structured Probabilistic Models for Deep Learning & Monte Carlo Methods

2018-01-24

Jinwook Kim

Contents

- 16.1 The Challenge of Unstructured Modeling
- 16.2 Using Graphs to Describe Model Structure
- 16.3 Sampling from Graphical Models
- 16.4 Advantages of Structured Modeling
- 16.5 Learning about Dependencies
- 16.6 Inference and Approximate Inference
- 16.7 The Deep Learning Approach to Structured Probabilistic Models
- 17.1 Sampling and Monte Carlo Methods
- 17.2 Importance Sampling
- 17.3 Markov Chain Monte Carlo Methods
- 17.4 Gibbs Sampling
- 17.5 The Challenge of Mixing between Separated Modes

Structured Probabilistic Models

- Graphical expressions of the (conditional) dependence structure between random variables (RVs)
 - ➤ a.k.a. graphical models
- Graphs for describing random variables and their structures
 - > vertices: states of random variables
 - > edges: relationships of random variables

$$p(a,b,c) = p(a)p(b|a)p(c|a,b)$$

* $p(\cdot)$: probability distribution

*a, b, c: random variables

Structured Modeling for Deep Learning

- The goal of deep learning is to scale machine learning to solve real world problems (AI)
- Most require a complete understanding of the entire structure of the input
 - > density estimation
 - > denoising
 - missing value imputation
 - **>** sampling

A denoising example.

original training images

A sampling example.

The Challenge of Unstructured Modeling

- Naïve approach of representing a distribution over a random vector x, P(x)
 - $\triangleright x$ contains n discrete variables
 - \triangleright each variable takes on k values
 - $\triangleright P(x)$ requires to lookup k^n space
- Example: modeling CIFAR-10
 - \geqslant 32x32 RGB color images (n = 3072 pixels)
 - let, each pixel has a 0/1 binary value (k = 2)
 - \triangleright # possible binary images: 2^{3072} (> 10^{800})

32

32

Using Graphs to Describe Model Structure

- Formal framework for modeling only direct interactions between RVs
 - > fewer parameters
 - > reduced computational cost

Two categories of graphical models:

- ➤ directed acyclic graphs
- >undirected graphs

directed acyclic graph

undirected graph

Directed Models

Describe conditional probability distribution over one RV via another

Defined by a set of local conditional probability distributions

$$p(\mathbf{x}) = \prod_{i} p(x_i | Pa_{\mathcal{G}}(x_i))$$

- *G*: a directed acyclic graph
- $Pa_{\mathcal{G}}(x_i)$: parents of x_i in \mathcal{G}

Relay Race Example

- Modeling the finish times of a team in a relay race
 - ➤ three runners: Alice, Bob, and Carol
 - $\succ t_i$: finishing times of each runner (assume, each t_i can have 100 possible values)

$$p(t_A, t_B, t_C) = p(t_A)p(t_B|t_A)p(t_C|t_B)$$

lookup space for graphical model: $100 + 100^2 + 100^2 = 20,100$ (c.f., naïve & unstructured approach: $100^3 = 1,000,000$)

Undirected Models

- Describe probability distribution of RVs which have no intrinsic direction or operate both directions
 - > there is no conditional probability distribution between RVs

Defined by an unnormalized probability distribution

$$\tilde{p}(\mathbf{x}) = \prod_{\mathcal{C} \in \mathcal{G}} \phi(\mathcal{C})$$

- \triangleright a factor $\phi(\mathcal{C})$ measures the affinity of the variables in \mathcal{C} (non-negative)
 - G: an undirected graph
 - C: a clique in G
 - ϕ : a factor (or clique potential)

Health State Example

Modeling the states of health of you, roommate, and coworker

 $\triangleright h_i$: a state of health (1: good health, 0: with a cold)

$\phi(h_R,$	h_Y)
-------------	-------	---

\mathcal{C}_1	$h_Y=0$	$h_Y = 1$		
$h_R=0$	0.4	0.1		
$h_R = 1$	0.1	5		

$$\phi(h_Y, h_C)$$

\mathcal{C}_2	$h_Y=0$	$h_Y=1$		
$h_C=0$	0.2	0.1		
$h_C = 1$	0.1	5		

Unnormalized probability distributions of health state

$$\tilde{p}(\mathbf{x}) = \phi(h_R, h_Y)\phi(h_Y, h_C)$$

Partition Function

■ Unnormalized → normalized probability distribution:

$$p(\mathbf{x}) = \frac{1}{Z}\tilde{p}(\mathbf{x})$$

- $> \tilde{p}(x) > 0$, for all x
- $\triangleright Z$ is the value that results in the p(x) summing (or integrating) to 1

\blacksquare Partition function Z:

$$Z = \int \tilde{p}(\mathbf{x}) d\mathbf{x}$$

- \triangleright however, in the context of deep learning, Z is usually intractable
- riangleright approximation methods for Z will be introduced in Chapter 18

Probabilities for Health State

$$\mathbf{Z} =$$

	X	$\tilde{p}(x)$	
h_R	h_Y	h_C	$\phi(\mathcal{C}_1)\phi(\mathcal{C}_2)$
0	0	0	0.08
0	0	1	0.04
0	1	0	0.01
0	1	1	0.5
1	0	0	0.02
1	0	1	0.01
1	1	0	0.5
1	1	1	25
Z			26.16

$$\phi(h_R,h_Y)$$

\mathcal{C}_1	$h_Y=0$	$h_Y = 1$		
$h_R=0$	0.4	0.1		
$h_R = 1$	0.1	5		

$$\phi(h_Y, h_C)$$

\mathcal{C}_2	$h_Y=0$	$h_Y = 1$		
$h_C=0$	0.2	0.1		
$h_C = 1$	0.1	5		

All three people are in good health

$$p(1,1,1) = \frac{1}{26.16} \times 5 \times 5 = 0.9556$$

Roommate and you are coughing but coworker is fine

$$p(0,0,1) = \frac{1}{26.16} \times 0.4 \times 0.1 = 0.0015$$

Directed vs. Undirected Models

- Directed models are defined directly in terms of probability distributions
- Undirected models are defined more loosely by ϕ functions
 - $\triangleright \forall x, \ \tilde{p}(x) > 0$
 - $\triangleright \phi$ need to be converted into probability distributions

Sampling from Directed Models

The advantage of directed models is that a simple and efficient procedure of ancestral sampling

- 1. sort x_i 's in the graph into a topological ordering let, j > i, x_i is a parent of x_i
- 2. sample $x_i \sim P(x_i)$,
- 3. sample $x_i \sim P(x_i | Pa_G(x_i) = x_i)$, and so on ...

Pros and cons:

- + very fast and convenient
- only applies to directed graphical models
- does not support every conditional sampling operation
 (e.g., sampling from posterior distribution given observed variables)

Sampling from Undirected Models

Sampling from undirected models requires resolving cyclical dependencies

- right every variables interacts with every other variables
- there is no clear beginning point for sampling process

The conceptually simple approach is Gibbs sampling

- \triangleright for *n*-dimensional vector of RV x,
- \triangleright we interactively visit x_i and draw samples conditioned on all the other variables
- by repeating, asymptotically this process converges to sampling from the correct distribution

Energy-Based Models (EBM)

■ Undirected models depend on the assumption that $\forall x$, $\tilde{p}(x) > 0$

A convenient way to enforce this condition is to use a EBM

$$\tilde{p}(\mathbf{x}) = \exp(-E(\mathbf{x}))$$

- *E*: energy function
- $\exp(x)$: e^x ($e \approx 2.71818...$)
- EBM captures dependencies by associating a scalar energy to each configuration of the variables
 - riangleright energy function measures the goodness (or badness) of each possible configuration of variables

EBM for Health State

$$\phi_E(\mathcal{C}_i) = \exp(-\phi(\mathcal{C}_i))$$

$$E(\mathcal{C}_1, \dots, \mathcal{C}_n) = \sum_{i}^{n} \phi_E(\mathcal{C}_i)$$

- C_i : a clique in the health state graph
- ϕ : a clique potential for health state
- ϕ_E : a per-clique energy function
- E: an energy function

$$\widetilde{p}(\mathbf{x}) = \exp(E(\mathcal{C}_1, \mathcal{C}_2))
= \exp(\left(\phi_E(\mathcal{C}_1) + \phi_E(\mathcal{C}_2)\right))
= \exp(\exp(-\phi(\mathcal{C}_1)) + \exp(-\phi(\mathcal{C}_2)))
= \exp(\exp(-\phi(\mathcal{C}_1))) \exp(\exp(-\phi(\mathcal{C}_2)))$$

Probabilities for Health State on EBM

 $\mathbf{Z} =$

h_R	h_Y	h_C	$\phi_E(\mathcal{C}_1)$	$\phi_E(\mathcal{C}_2)$	$\widetilde{p}(x)$
0	0	0	-0.6703	-0.8187	0.2256
0	0	1	-0.6703	-0.9048	0.2070
0	1	0	-0.9048	-0.9048	0.1637
0	1	1	-0.9048	-0.0067	0.4019
1	0	0	-0.9048	-0.8187	0.1784
1	0	1	-0.9048	-0.9048	0.1637
1	1	0	-0.0067	-0.9048	0.4019
1	1	1	-0.0067	-0.0067	0.9866
		2.7288			

All three people are in good health

$$p(1,1,1) = \frac{1}{2.7288} \times 0.9866 = 0.3616$$

Roommate and you are coughing but coworker is fine

$$p(0,0,1) = \frac{1}{2.7288} \times 0.2070 = 0.0759$$

Restricted Boltzmann Machine (RBM)

- RBM (Smolensky 1986) is quintessential example of how graphical models are used for deep learning
- RBM is an undirected, generative energy-based model with an input layer and single hidden layer
 - connections only exist between the visible units of the input layer and the hidden units of the hidden layer
 - there are no visible-visible or hidden-hidden connections

Energy of a State (v, h)

b, c, W: learnable parameters

v: visible variablesh: latent variables

$$E(\boldsymbol{v},\boldsymbol{h}) = -\boldsymbol{b}^{\mathsf{T}}\boldsymbol{v} - \boldsymbol{c}^{\mathsf{T}}\boldsymbol{h} - \boldsymbol{v}^{\mathsf{T}}\boldsymbol{W}\boldsymbol{h}$$

- Weights → Energy → Probability
 - \triangleright each possible state (v, h) has an energy
 - > the energy is determined by the parameters
- The energy of a state determines its probability

$$p(\mathbf{v}, \mathbf{h}) \propto e^{-E(\mathbf{v}, \mathbf{h})}$$

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i} p(h_{i}|\mathbf{v})$$

$$p(\mathbf{v}|\mathbf{h}) = \prod_{i} p(v_{i}|\mathbf{h})$$

Training RBMs

■ Maximizing the product of probabilities assigned to some given training set *V*:

$$arg \max_{\boldsymbol{w}} \prod_{\boldsymbol{v} \in \boldsymbol{V}} p(\boldsymbol{v}; \boldsymbol{W})$$

equivalent to maximizing the log-likelihood

$$arg \max_{\mathbf{W}} \sum_{\mathbf{v} \in \mathbf{V}} \log p(\mathbf{v}; \mathbf{W})$$

Gradient descent method for training RBMs:

$$\frac{d \log(p(\boldsymbol{v}))}{d\boldsymbol{W}} = E_{P_{data}}[\boldsymbol{v}\boldsymbol{h}^{\top}] - E_{P_{model}}[\boldsymbol{v}\boldsymbol{h}^{\top}]$$

• E_p : expectation over given mini-batch

Contrastive Divergence (CD)

Positive step:

- \triangleright an input \mathbf{v} is clamped to the input layer
- $\triangleright v$ is propagated to the hidden layer (like NN)
- ➤ the result of the hidden layer activations is h

Negative step:

- \triangleright propagate h back to the visible layer with result v'
- \triangleright propagate v' back to the hidden layer with result h'

Weight update:

$$\boldsymbol{W}^{(t+1)} = \boldsymbol{W}^{(t)} + a(\boldsymbol{v}\boldsymbol{h}^{\mathsf{T}} - \boldsymbol{v}'\boldsymbol{h}'^{\mathsf{T}})$$

• *a*: learning rate

CD: Positive Step

- For given input data v,
 - \succ obtain the activations of the hidden layer h

CD: Negative Step (Backward)

- For given hidden data h,
 - ightharpoonup recreate the activation of visible layer v'

CD: Negative Step (Forward)

- \blacksquare Again, for given visible data v',
 - \triangleright obtain the activations of the hidden layer h'

CD: Weight Update

- Using the activations obtained in single CD iteration,
 - > update the weights:

$$W(t+1) = W(t) + a(vh^{T} - v'h'^{T})$$
 negative step

Goal of Contrastive Divergence

- **■** Positive phase reflects the network's internal representation of the real world data
- Negative phase represents an attempt to recreate the data based on this internal representation
- Main goal is for the generated data to be as close as possible to the real world
 - > this is reflected in the weight update formula

Training Binary-RBM with MNIST

Preparing an visible data, posV

An array of pixel values of the original data (pixel value: 0~255)

Image data converted into binary (0 or 1) lists

tth image

3	7	1	7	4	6	5	5	3	6
2	6	4	3	3	0	0	6	B	9
3	l	6	6	4	1	9	9	2	1
O	9	Ŧ	9	α	4	7	9	9	3
3	a	9	r	9	9	ſ	9	σ	4
0	5	3	0	5	3	4	5	3	4
7	/	8	5	5	7	4	Ó	3	4
9	5)	6	0	3	3	6	٩	7	5
1	3	1	6	5	3	λ	8	3	8
						6			

^{*} For ease of understanding, the detailed values in the lists are arbitrary numbers

Positive Phase


```
posPH < 1 \times nHid > 

biasH < 1 \times nHid > 

posV < 1 \times nVis > 

weights < nHid \times nVis >
```

Negative Phase


```
negPH < 1 \times nHid >
negH < 1 \times nHid >
biasV < 1 \times nVis >
posPH < 1 \times nHid >
posH < 1 \times nHid >
weights < nHid \times nVis >
```

Negative Phase


```
negPH < 1 \times nHid > biasH < 1 \times nHid > negV < 1 \times nVis > weights < nHid \times nVis >
```

Weight Update

Original Training Images

Training Result

Testing Result

Input: noised batch data

Output: noise suppressed data

Chapter 17. Monte Carlo Methods

Two Sorts of Randomized Algorithms

Las Vegas algorithms

- > always return precisely the correct answer
- consume a random amount of resources (memory or time)
- ≻e.g., quicksort

Monte Carlo algorithms

- return answers with a random amount of error
- > the amount of error can typically reduced by expending more

resources

➤ e.g., approximating PI

Basics of Monte Carlo Methods

To view the sum/integral as if it were an expectation under some distribution

$$s = \sum_{x} p(x)f(x) = E_p[f(x)]$$
$$s = \int p(x)f(x)dx = E_p[f(x)]$$

- To approximate the expectation by a corresponding average
 - rightharpoonup drawing n samples $x^{(1)}, ..., x^{(n)}$ from p
 - ➤ forming the empirical average:

$$\hat{s}_n = \frac{1}{n} \sum_{i=1}^n f(\boldsymbol{x}^{(i)})$$

 \triangleright by the law of large number, if the sample $x^{(i)}$ are i.i.d.,

$$\lim_{n\to\infty} \hat{s}_n = s$$

Markov Chain Monte Carlo (MCMC)

- Markov chain is a stochastic model describing a sequence of possible events
 - probability of each event depends only on the state attained in the previous event
 - ➤ Markov assumption: memorylessness

$$P(X_t|X_{t-1},X_{t-2}, ..., X_1) = P(X_t|X_{t-1})$$

- MCMC is the method for sampling from target probability distributions using Markov chains
 - ➤ the family of algorithm that use Markov chains to perform Monte Carlo estimates
- Advantages:
 - converge to a stationary (or equilibrium) distribution
 - ➤ not depend on the initial state

Gibbs Sampling (1984)

- Gibbs sampling is a MCMC algorithm for obtaining a sequence of observations
 - ➤ approximated from a specified multivariate probability distribution when direct sampling is difficult
- Gibbs sampling generates a Markov chain of samples
 - > each of which is correlated with **nearby** samples
 - represent the desired distribution

Gibbs Sampling Algorithm

- The point of Gibbs sampling is that given a multivariate distribution
- It is simpler to sample from a conditional distribution than to marginalize by integrating over a joint distribution
 - Let p(x): pdf of x, $x=(x_1,x_2,...,x_m)$, we want to obtain k samples init: $x^{(0)}$ with some value $for \ i=1:k$ $for \ j=1:m$ $draw \ x_j^{(i)} \ from \ p\left(x_j|x_1^{(i)},...x_{j-1}^{(i)},x_{j+1}^{(i-1)},x_m^{(i-1)}\right)$

Example: Drawing $x = (x_1, x_2)$

HONEYCAM

https://ratsgo.github.io/statistics/2017/05/31/gibbs/

Thank you

