$12n_{0188} \ (K12n_{0188})$

Ideals for irreducible components² of X_{par}

$$I_1^v = \langle a, b + v + 2, v^3 + 3v^2 + 2v - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 1.52 \times 10^{40} u^{40} + 2.56 \times 10^{40} u^{39} + \dots + 1.06 \times 10^{41} b + 4.22 \times 10^{41}, \ 6.98 \times 10^{40} u^{40} + 1.95 \times 10^{41} u^{39} + \dots + 2.13 \times 10^{41} a - 9.28 \times 10^{40}, \ u^{41} + 3u^{40} + \dots - 8u - 8 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.328147u^{40} - 0.918618u^{39} + \dots - 19.5503u + 0.436213 \\ -0.142535u^{40} - 0.240806u^{39} + \dots + 7.40030u - 3.96576 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.328147u^{40} - 0.918618u^{39} + \dots - 19.5503u + 0.436213 \\ 0.0824090u^{40} + 0.163606u^{39} + \dots + 9.49889u - 4.49235 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.328147u^{40} - 0.918618u^{39} + \dots - 19.5503u + 0.436213 \\ 0.0824090u^{40} + 0.163606u^{39} + \dots + 9.49889u - 4.49235 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0838694u^{40} + 0.525518u^{39} + \dots + 23.3356u + 7.39263 \\ -0.124059u^{40} - 0.154000u^{39} + \dots + 5.97827u + 0.0223382 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.340779u^{40} - 1.11522u^{39} + \dots - 14.5840u - 9.80822 \\ 0.0747081u^{40} - 0.0614080u^{39} + \dots - 12.3801u + 1.21809 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.207928u^{40} + 0.679518u^{39} + \dots + 17.3573u + 7.37029 \\ -0.124059u^{40} - 0.154000u^{39} + \dots + 5.97827u + 0.0223382 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.401561u^{40} + 1.01803u^{39} + \dots + 5.97827u + 0.0223382 \\ -0.142281u^{40} - 0.206934u^{39} + \dots + 27.2274u + 2.78868 \\ -0.142281u^{40} - 0.206934u^{39} + \dots - 0.775735u + 2.43501 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.588415u^{40} 0.804243u^{39} + \cdots + 87.6228u 60.0034$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{41} + 26u^{40} + \dots + 206u + 1$
c_2, c_4	$u^{41} - 4u^{40} + \dots - 14u - 1$
c_{3}, c_{7}	$u^{41} + 2u^{40} + \dots + 8u - 1$
c_5, c_9, c_{10}	$u^{41} + 3u^{40} + \dots - 8u - 8$
c_6	$u^{41} - 9u^{40} + \dots + 10824u + 12200$
c_8, c_{12}	$u^{41} - 4u^{40} + \dots + 5u - 7$
c_{11}	$u^{41} - 12u^{40} + \dots + 1593u - 49$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{41} - 18y^{40} + \dots + 44086y - 1$
c_2, c_4	$y^{41} - 26y^{40} + \dots + 206y - 1$
c_3, c_7	$y^{41} + 6y^{40} + \dots + 54y - 1$
c_5, c_9, c_{10}	$y^{41} - 55y^{40} + \dots + 2752y - 64$
c_6	$y^{41} - 139y^{40} + \dots + 8334688576y - 148840000$
c_8, c_{12}	$y^{41} - 12y^{40} + \dots + 1593y - 49$
c_{11}	$y^{41} + 44y^{40} + \dots + 664281y - 2401$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.852625 + 0.482864I		
a = -0.372803 - 0.780038I	-0.75167 - 5.04176I	-5.33106 + 6.16840I
b = 0.771778 - 0.848460I		
u = 0.852625 - 0.482864I		
a = -0.372803 + 0.780038I	-0.75167 + 5.04176I	-5.33106 - 6.16840I
b = 0.771778 + 0.848460I		
u = -0.003882 + 1.032070I		
a = -0.244627 - 1.101450I	-1.61122 + 4.08215I	-8.92321 - 7.89693I
b = 0.500255 + 0.850150I		
u = -0.003882 - 1.032070I		
a = -0.244627 + 1.101450I	-1.61122 - 4.08215I	-8.92321 + 7.89693I
b = 0.500255 - 0.850150I		
u = -0.992946 + 0.343746I		
a = 1.196560 + 0.016956I	-4.56663 + 3.64468I	-10.21223 - 4.25500I
b = -0.60773 - 1.75136I		
u = -0.992946 - 0.343746I		
a = 1.196560 - 0.016956I	-4.56663 - 3.64468I	-10.21223 + 4.25500I
b = -0.60773 + 1.75136I		
u = 1.044990 + 0.164135I		
a = -1.029770 + 0.479582I	-4.59839 - 1.02943I	-11.04507 + 3.64044I
b = -0.335570 + 0.883151I		
u = 1.044990 - 0.164135I		
a = -1.029770 - 0.479582I	-4.59839 + 1.02943I	-11.04507 - 3.64044I
b = -0.335570 - 0.883151I		
u = -0.848129 + 0.093318I		
a = 0.256235 - 0.617893I	-1.53932 + 0.15416I	-7.41256 - 0.66382I
b = 0.429896 - 0.866899I		
u = -0.848129 - 0.093318I		
a = 0.256235 + 0.617893I	-1.53932 - 0.15416I	-7.41256 + 0.66382I
b = 0.429896 + 0.866899I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.960191 + 0.725231I		
a = 1.064690 - 0.333931I	-4.46221 - 9.77258I	-8.72581 + 8.02773I
b = -0.87449 + 1.44326I		
u = 0.960191 - 0.725231I		
a = 1.064690 + 0.333931I	-4.46221 + 9.77258I	-8.72581 - 8.02773I
b = -0.87449 - 1.44326I		
u = 0.754982 + 0.217030I		
a = 0.849726 - 0.921367I	3.10105 + 2.13666I	-4.09917 - 2.47051I
b = -0.523840 + 0.308432I		
u = 0.754982 - 0.217030I		
a = 0.849726 + 0.921367I	3.10105 - 2.13666I	-4.09917 + 2.47051I
b = -0.523840 - 0.308432I		
u = 1.39900		
a = -0.702767	-4.90374	-140.900
b = -12.5949		
u = 0.133621 + 0.570297I		
a = 0.730715 + 0.096398I	1.42682 + 1.35308I	0.34829 - 2.41862I
b = -0.904782 - 0.312265I		
u = 0.133621 - 0.570297I		
a = 0.730715 - 0.096398I	1.42682 - 1.35308I	0.34829 + 2.41862I
b = -0.904782 + 0.312265I		
u = -1.25091 + 0.70431I		_
a = -0.754563 - 0.312340I	-5.21609 + 2.28754I	0
b = 0.351245 + 0.928373I		
u = -1.25091 - 0.70431I	H 01000	_
a = -0.754563 + 0.312340I	-5.21609 - 2.28754I	0
b = 0.351245 - 0.928373I		
u = -1.45442		
a = 0.0474720	-3.37736	0
b = 1.21109		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = -1.45857 + 0.03382I	,	-	
a = -0.622583 - 0.555978I	-1.93777 - 2.95731I	0	
b = 0.018701 - 1.107830I			
u = -1.45857 - 0.03382I			
a = -0.622583 + 0.555978I	-1.93777 + 2.95731I	0	
b = 0.018701 + 1.107830I			
u = 0.056546 + 0.456890I			
a = -0.64877 + 2.24584I	-1.28446 - 0.76291I	-5.31890 - 1.67979I	
b = 0.904670 - 0.938053I			
u = 0.056546 - 0.456890I			
a = -0.64877 - 2.24584I	-1.28446 + 0.76291I	-5.31890 + 1.67979I	
b = 0.904670 + 0.938053I			
u = 0.383174 + 0.054663I			
a = 2.52375 + 1.73333I	4.29502 - 2.99232I	-13.6444 + 6.7796I	
b = 0.214376 + 0.665960I			
u = 0.383174 - 0.054663I			
a = 2.52375 - 1.73333I	4.29502 + 2.99232I	-13.6444 - 6.7796I	
b = 0.214376 - 0.665960I			
u = -0.330545			
a = 1.68251	-0.892017	-11.9900	
b = 0.579990			
u = -1.68875 + 0.14392I			
a = -0.003537 - 0.668461I	-9.61160 + 7.52378I	0	
b = -0.518040 - 1.262490I			
u = -1.68875 - 0.14392I		_	
a = -0.003537 + 0.668461I	-9.61160 - 7.52378I	0	
b = -0.518040 + 1.262490I			
u = 1.70883 + 0.02668I			
a = -0.117584 - 0.623199I	-10.81520 - 0.66337I	0	
b = -0.23211 - 1.39628I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.70883 - 0.02668I		
a = -0.117584 + 0.623199I	-10.81520 + 0.66337I	0
b = -0.23211 + 1.39628I		
u = -1.71449 + 0.22965I		
a = -0.820677 + 0.232700I	-13.5365 + 13.6208I	0
b = 0.88143 + 1.93236I		
u = -1.71449 - 0.22965I		
a = -0.820677 - 0.232700I	-13.5365 - 13.6208I	0
b = 0.88143 - 1.93236I		
u = 1.73059 + 0.09206I		
a = -0.776808 - 0.320765I	-14.2793 - 5.4313I	0
b = 0.52492 - 1.87002I		
u = 1.73059 - 0.09206I		
a = -0.776808 + 0.320765I	-14.2793 + 5.4313I	0
b = 0.52492 + 1.87002I		
u = -1.73927 + 0.03941I		
a = 0.823370 + 0.279136I	-14.6346 + 1.8508I	0
b = -0.408494 + 0.947607I		
u = -1.73927 - 0.03941I		
a = 0.823370 - 0.279136I	-14.6346 - 1.8508I	0
b = -0.408494 - 0.947607I		
u = -0.220223		
a = 3.89905	0.393691	-52.4600
b = -3.25550		
u = 1.79882 + 0.15440I		
a = 0.795536 + 0.161122I	-15.9531 - 5.8349I	0
b = -0.531853 + 1.253250I		
u = 1.79882 - 0.15440I		
a = 0.795536 - 0.161122I	-15.9531 + 5.8349I	0
b = -0.531853 - 1.253250I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.84865		
a = -0.623981	-6.53181	0
b = 0.738641		

II.
$$I_2^u = \langle -2a^2 - au + b - 2a - u - 1, 4a^3 + 2a^2u - u, u^2 - 2 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2a^{2} + au + 2a + u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2a^{2} + au + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a^{2}u + a - \frac{1}{2}u \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a^{2}u + a - \frac{1}{2}u - 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{2}u + a - \frac{1}{2}u - 1 \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a^{2}u + a - \frac{1}{2}u \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4au 8

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
<i>C</i> ₃	$(u^3 + u^2 + 2u + 1)^2$
<i>C</i> ₄	$(u^3 - u^2 + 1)^2$
c_5, c_6, c_9 c_{10}	$(u^2-2)^3$
<i>c</i> ₈	$(u-1)^6$
c_{11}, c_{12}	$(u+1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_5, c_6, c_9 c_{10}	$(y-2)^6$
c_8, c_{11}, c_{12}	$(y-1)^6$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.620443 + 0.526697I	-0.26574 + 2.82812I	-4.49024 - 2.97945I
b = 0.510969 + 0.491114I		
u = 1.41421		
a = -0.620443 - 0.526697I	-0.26574 - 2.82812I	-4.49024 + 2.97945I
b = 0.510969 - 0.491114I		
u = 1.41421		
a = 0.533779	-4.40332	-11.0200
b = 4.80649		
u = -1.41421		
a = 0.620443 + 0.526697I	-0.26574 - 2.82812I	-4.49024 + 2.97945I
b = 0.16431 + 1.61567I		
u = -1.41421		
a = 0.620443 - 0.526697I	-0.26574 + 2.82812I	-4.49024 - 2.97945I
b = 0.16431 - 1.61567I		
u = -1.41421		
a = -0.533779	-4.40332	-11.0200
b = -0.157054		

III.
$$I_1^v = \langle a, \ b+v+2, \ v^3+3v^2+2v-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -v - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} v^{2} + 2v - 1 \\ -v - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} v^{2} + 2v - 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2v^{2} - 2v + 1 \\ -v^{2} - 2v - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v^{2} + 2v \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -v^{2} - 2v + 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2v^2 + 6v + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^3 - u^2 + 2u - 1$
c_2	$u^3 + u^2 - 1$
c_4	$u^3 - u^2 + 1$
c_5, c_6, c_9 c_{10}	u^3
	$u^3 + u^2 + 2u + 1$
c_8,c_{11}	$(u+1)^3$
c_{12}	$(u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^3 + 3y^2 + 2y - 1$
c_2, c_4	$y^3 - y^2 + 2y - 1$
c_5, c_6, c_9 c_{10}	y^3
c_8, c_{11}, c_{12}	$(y-1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.324718		
a = 0	0.531480	12.1590
b = -2.32472		
v = -1.66236 + 0.56228I		
a = 0	4.66906 - 2.82812I	4.92040 - 0.36516I
b = -0.337641 - 0.562280I		
v = -1.66236 - 0.56228I		
a = 0	4.66906 + 2.82812I	4.92040 + 0.36516I
b = -0.337641 + 0.562280I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 - u^2 + 2u - 1)^3)(u^{41} + 26u^{40} + \dots + 206u + 1)$
c_2	$((u^3 + u^2 - 1)^3)(u^{41} - 4u^{40} + \dots - 14u - 1)$
<i>c</i> ₃	$(u^3 - u^2 + 2u - 1)(u^3 + u^2 + 2u + 1)^2(u^{41} + 2u^{40} + \dots + 8u - 1)$
C ₄	$((u^3 - u^2 + 1)^3)(u^{41} - 4u^{40} + \dots - 14u - 1)$
c_5, c_9, c_{10}	$u^{3}(u^{2}-2)^{3}(u^{41}+3u^{40}+\cdots-8u-8)$
<i>c</i> ₆	$u^{3}(u^{2}-2)^{3}(u^{41}-9u^{40}+\cdots+10824u+12200)$
C ₇	$((u^3 - u^2 + 2u - 1)^2)(u^3 + u^2 + 2u + 1)(u^{41} + 2u^{40} + \dots + 8u - 1)$
c ₈	$((u-1)^6)(u+1)^3(u^{41}-4u^{40}+\cdots+5u-7)$
c_{11}	$((u+1)^9)(u^{41}-12u^{40}+\cdots+1593u-49)$
c_{12}	$((u-1)^3)(u+1)^6(u^{41}-4u^{40}+\cdots+5u-7)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^3 + 3y^2 + 2y - 1)^3)(y^{41} - 18y^{40} + \dots + 44086y - 1)$
c_2, c_4	$((y^3 - y^2 + 2y - 1)^3)(y^{41} - 26y^{40} + \dots + 206y - 1)$
c_3, c_7	$((y^3 + 3y^2 + 2y - 1)^3)(y^{41} + 6y^{40} + \dots + 54y - 1)$
c_5, c_9, c_{10}	$y^{3}(y-2)^{6}(y^{41} - 55y^{40} + \dots + 2752y - 64)$
c_6	$y^{3}(y-2)^{6}(y^{41}-139y^{40}+\cdots+8.33469\times10^{9}y-1.48840\times10^{8})$
c_8, c_{12}	$((y-1)^9)(y^{41} - 12y^{40} + \dots + 1593y - 49)$
c_{11}	$((y-1)^9)(y^{41} + 44y^{40} + \dots + 664281y - 2401)$