

1. Nuclear Force-Solutions

Practice Set 1 Solutions

1. The range of the nuclear force between two nucleons due to the exchange of pions is 1.40fm. If the mass of pion is 140MeV/c^2 and the mass of the rho-meson is 770MeV/c^2 , then the range of the force due to exchange of rho-mesons is

[NET JUNE 2017]

A. 1.40fm

C. 0.25fm 7 JOUND. 0.18fm 7 C

Solution: Range for nuclear force between nucleon will be $R = c\Delta t = \frac{\hbar c}{mc^2}$ and $\hbar c = 199 \text{MeVfm}$ $\Rightarrow R = \frac{199 \text{MeV fm}}{770 \frac{\text{MeV}}{.2} \times c^2} \approx 0.25 \text{fm}$

2. The reaction ${}_{1}^{2}D + {}_{1}^{2}D \rightarrow {}_{2}^{4}He + \pi^{0}$ cannot proceed via strong interactions because it violates the conserva-

[NET/JRF (JUNE-2015)]

a. Angular momentum

b. Electric charge

c. Baryon number

d. Isospin

Solution:

$$_1D^2 + _1D^2 \rightarrow {}_2\mathrm{He}^4 + \pi^0$$
 (Not conserved)
 $I: 0 \longrightarrow 0 \rightarrow 1$

This isopin is not conserved in above reaction.

3. A deuteron d captures a charged pion π^- in the l=1 state, and subsequently decays into a pair of neutrons (n) via strong interaction. Given that the intrinsic parities of π^- , d and n are -1, +1 and +1 respectively, the spin wavefunction of the final state neutrons is

[NET/JRF (JUNE-2018)]

a. Linear combination of a singlet and a triplet

b. Singlet

c. Triplet

d. Doublet

Solution:

Parity must conserve intersections

$$\pi + d \rightarrow n + n$$

The parity of the initial state is

$$(-1)^{l}P_{\pi}P_{d} = (-1)^{1}(-1)(+1) = +1$$

The parity of the final state is

$$(-1)^l P_n P_n = (-1)^l (+1)(+1) = (-1)^l = 1$$
 : $l = 0, 2, \dots$

word or phrase

So the correct answer is **Option** (b)

- 4. The strong nuclear force between a neutron and a proton in a zero orbital angular momentum state is denoted by $F_{np}(r)$, where r is the separation between them. Similarly, $F_{nn}(r)$ and $F_{pp}(r)$ denote the forces between a pair of neutrons and protons, respectively, in zero orbital momentum state. Which of the following is true on average if the inter-nucleon distance is 0.2 fm < r < 2 fm?
 - **a.** F_{np} is attractive for triplet spin state, and F_{nn} , F_{pp} are always repulsive
 - **b.** F_{nn} and F_{np} are always attractive and F_{pp} is repulsive in the triplet spin state
 - **c.** F_{pp} and F_{np} are always attractive and F_{nn} is always repulsive
 - d. All three forces are always attractive

Solution: Inside the nucleus the interaction between neutron neutron and newtran-proton is always attractive due to nuclear force whereas between proton-proton it is repulsive due to coulombic interaction: Thus F_{nn} and F_{np} are always attractive and F_{pp} is repulsive So the correct answer is **Option (b)**

Answer key				
Q.No.	Answer	Q.No.	Answer	
1	0.25	2		
3	b	4	b	
5		6		

Practice Set-2 Solutions

1. The ground state wavefunction of deuteron is in a superposition of *s* and *d* states. Which of the following is NOT true as a consequence?

[GATE 2010]

- A. It has a non-zero quadruple moment
- **B.** The neutron-proton potential is non-central
- **C.** The orbital wavefunction is not spherically symmetric
- **D.** The Hamiltonian does not conserve the total angular momentum

Solution: So the correct answer is Option (d)

2. Deuteron has only one bound state with spin parity 1⁺, isospin 0 and electric quadrupole moment 0.286efm². These data suggest that the nuclear forces are having

[GATE 2012]

- A. Only spin and isospin dependence
- **B.** No spin dependence and no tensor components
- C. Spin dependence but no tensor components
- **D.** Spin dependence along with tensor components

Solution: So the correct answer is **Option** (d)

3. Which of the following statements is NOT correct?

[GATE 2016]

- **A.** A deuteron can be disintegrated by irradiating it with gamma rays of energy 4MeV.
- **B.** A deuteron has no excited states.
- **C.** A deuteron has no electric quadrupole moment.
- **D.** The ${}^{1}S_{0}$ state of deuteron cannot be formed.

Solution: So the correct answer is **Option** (c)

Answer key				
Q.No.	Answer	Q.No.	Answer	
1	d	2	d	
3	С	4		
5		6		

