Defn: Set

A set is a collection of objects.

 $\{x, S = \{1, 2, 3\}$

N = {1,2,3,4,...} "natural numbers"

Q = { m/n: m, n are integers and n ≠ 0}

Defn: Set Membership

We say that "x is in S" clensted

7 E S

if S contains X as an element.

Ex. 5 eN

2/3 € Ø

2/3 & N _ read: not in

Defu! Containment

We say "A is a subset of B" denoted

We say "A is a subset of B" denoted
ACB if x \in A implies x \in B.
Ex. S1,2,33 CN QCR renuser
N \$ 51,2,3) not a subset
Defu: Set Equality
We say "A is egual to B" if ACB and BCA
We write $A = B$.
Set Operations
Defn: Union
The union of A and B denoted
AUB

is defined as

$$\{X, A = N, B = \{-1, -2, -3, ...\}$$

$$A \cup B = \{\pm 1, \pm 2, \pm 3, ...\}$$

$$\mathcal{E}(x)$$
, $\mathcal{Q} \cup \mathcal{R} = \mathcal{R}$
 $\mathcal{Y}_{\mathcal{C}} = \mathcal{Q} \subset \mathcal{R}$

Fact! If ACB then AUB = B.

Fact! AUA = A

Defu: Intersection

The intersection of A and B cheroted

AnB or AB

is defined as

is defined as AB = {X | X = A and X = B} (AB $B = \{-1, -2, -3, ---\}$ then AB = Ø Enpty set Ex. ON = IN b/c MCQ Fact: If ACB then AB = A. Fact: AA = A Defn: Set Difference

Defn! Set Difference

We say the difference between A and B

denoted

A B

is defined as

A B

X X E A and X \neq B}

$$\frac{E_{X}}{B} = \{3, 4, 5\}$$

Wer $A \setminus B = \{1, 23\}$, $B \setminus A = \{4, 5\}$

Defn: Complement

Want:

$$A^{c} = \{\chi | \chi \notin A\}$$

Need: universe set S

ther
$$A^{c} = \{x \in S \mid x \notin A\} = S \setminus A$$

$$\xi_{X}$$
, $A = \S_{1,2}$, $S = N$
Nen $A = \S_{3,4,5,6,...}$

Basic Theorems

$$(2)(AB)^{C} = A^{C} U B^{C}$$

Countably Infinite Set Operations

let A, Az, Az, ... be subsets of S

Defu! Countable Union

$$ex$$
, let $S = (0, 1]$
and let $A_i = [1/i, 1]$
 $A_i = [1/i, 1]$
 $A_1 = [1/i, 1]$

$$\bigcup_{i=1}^{\infty} A_i = (0, 1]$$

Defu: Cantable Interscetion

$$\bigcap_{i=1}^{\infty} A_i = \frac{3}{3} \times eS \times A_i + i$$

$$\mathcal{E}_{X}$$
, continue from above \bigcirc

$$\bigcirc A_{i} = \{1\}$$

we say A and B are disjoint if AB = Ø

Defu: Partition

 \wedge

Defu: Yartition We say a seg (Ai) where Ai CB are a partition of B

The Ai are disjoint

(2) UAi = B

The permer set of a set A is the Collection of all subsets of A.

notation: (P(A) or 2

$$2^{A} = \{ 13 \mid 13 \in A \}$$

Ex, A = \$1,23 then

$$2^{A} = \{\{13, 923, A, \emptyset\}$$

	Fact: $ 2^A = 2^{ A }$
<u> </u>	