(a) The present value of the lump-sum taxes is $T_1 + [T_2/(1+r)]$. The present value of the tax on interest (a) The present value of the nump-sum taxes is $1_1 + [1_2/(1+1)]$. The present value of one can be income in [r/(1+r)] $\tau(Y_1 - C_1^{\circ})$, where τ is the tax rate on interest income. The government must choose T_1 and T2 so that these two quantities are equal, or

(1)
$$T_1 + \frac{T_2}{1+r} = \frac{r}{1+r} \tau (Y_1 - C_1^0)$$
.

- (b) Suppose the new taxes satisfy condition (1). This means that at the point where the individual consumes C_1° , she pays the same with the new lump-sum tax as she did with the old tax on interest income. That is, right at C_1° , the individual's after-tax lifetime income is the same under both tax schemes. Thus at C_1° , the individual has just enough to consume C_1° in the second period under both tax schemes. This means that the new budget line must go through (C_1°, C_2°) just as the old one did. Since (C_1°, C_2°) lies must on the new budget line it is just affordable. right on the new budget line, it is just affordable.
- (c) First-period consumption must fall. Consider the figure at right. Point E represents the endowment, (Y_1, Y_2) . The budget line under the tax on interest ancorns has slope $-[1 + (1 - \tau)r]$ for $C_1 \le Y_1$; for C1 > Y1 there is no positive saving and therefore no tax on interest income so that the slope equals - (1 + 1).

As explained in part (b), the budget line with revenue-neutral, lump-sum taxes goes through the initial optimum consumption bundle, (C1°, C2°). It has slope equal to • (1+r). With saving no longer taxed, then for any C1 < Y1, giving up one unit of period-one consumption yields more units

