

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

Bookmarks

Unit 0: Overview

- ▶ Entrance Survey
- ▶ Unit 1: Probability models and axioms
- ▶ Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- Exam 1
- Unit 5: Continuous random variables
- Unit 6: Further topics on random variables
- ▶ Unit 7: Bayesian inference

Unit 8: Limit theorems and classical statistics > Lec. 18: Inequalities, convergence, and the Weak Law of Large Numbers > Lec 18 Inequalities convergence and the Weak Law of Large Numbers vertical3

■ Bookmark

Exercise: Sample mean bounds

(2/2 points)

By the argument in the last video, if the X_i are i.i.d. with mean μ and variance σ^2 , and if $M_n = (X_1 + \cdots + X_n)/n$, then we have an inequality of the form

$$\mathbf{P}\big(|M_n-\mu|\geq\epsilon\big)\leq\frac{a\sigma^2}{n},$$

for a suitable value of a.

a) If $\epsilon=0.1$, then the value of a is:

100

Answer: 100

b) If we change $\epsilon=0.1$ to $\epsilon=0.1/k$, for $k\geq 1$ (i.e., if we are interested in $m{k}$ times higher accuracy), how should we change $m{n}$ so that the value of the upper bound does not change from the value calculated in part (a)?

n should

- stay the same
- increase by a factor of $m{k}$
- increase by a factor of k^2
- decrease by a factor of $m{k}$
- none of the above

Answer:

- Exam 2
- ▼ Unit 8: Limit theorems and classical statistics

Unit overview

Lec. 18: Inequalities, convergence, and the Weak Law of **Large Numbers**

Exercises 18 due Apr 27, 2016 at 23:59 UT 🗗

Lec. 19: The **Central Limit** Theorem (CLT)

Exercises 19 due Apr 27, 2016 at 23:59 UT 🗗

Lec. 20: An introduction to classical statistics

Exercises 20 due Apr 27, 2016 at 23:59 UT

Solved problems

Additional theoretical material

Problem Set 8 Problem Set 8 due Apr 27, 2016 at 23:59 UT 🗗

Unit summary

a) Chebyshev's inequality yields

$$\mathbf{P}ig(|M_n-\mu|\geq\epsilonig)\leqrac{\sigma^2}{n\epsilon^2},$$

so that $a=1/\epsilon^2=1/0.1^2=100$.

b) In order to keep the same upper bound, the term $n\epsilon^2$ in the denominator needs to stay constant. If we reduce ϵ by a factor of k, then ϵ^2 gets reduced by a factor of k^2 . Thus, n will have to be increased by a factor of k^2 .

You have used 1 of 2 submissions

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

