PAKET 5

PELATIHAN ONLINE

po.alcindonesia.co.id

2019 SMA

SMA FISIKA

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

PELATIHAN ONLINE 2019 FISIKA – PAKET 5

SOAL

Untuk nomor 1, 2, dan 3

Sebuah benda dengan kecepatan mula-mula v_0 mengalami perlambatan yang berbanding lurus dengan kecepatan kuadrat. Berikut persamaan fisikanya.

$$a = -kv^2$$

Dimana a merupakan percepatan, v merupakan kecepatan di suatu waktu dan k merupakan konstanta positif. Mula-mula, benda berasa pada titik 0.

1. Tentukan persamaan percepatan fungsi waktu.

a.
$$-kv_0^2(ktv_0+1)^{-2}$$

b.
$$kv_0^2(ktv_0 - 1)^2$$

c.
$$-kv_0^2(ktv_0+2)^{-1}$$

d.
$$-2kv_0^2(ktv_0+1)^{-1}$$

e.
$$kv_0^2(ktv_0-1)^{-2}$$

2. Tentukan persamaan kecepatan fungsi waktu.

a.
$$v_0\sqrt{ktv_0+1}$$

b.
$$v_0(ktv_0 + 1)^{-1}$$

c.
$$v_0 \sqrt[3]{ktv_0 + 1}$$

d.
$$v_0(ktv_0 + 1)^{-2}$$

e.
$$v_0 \frac{\sqrt{ktv_0+1}}{ktv_0+1}$$

3. Tentukan persamaan posisi fungsi waktu.

a.
$$\frac{2}{k}\ln(ktv_0+2)$$

b.
$$\frac{2}{k}\ln(ktv_0-1)$$

c.
$$-\frac{3}{2k}\ln(ktv_0+1)$$

d.
$$\frac{1}{k}\ln(ktv_0+1)$$

e.
$$\frac{3}{k}\ln\left(\frac{1}{2}ktv_0+1\right)$$

- 4. Tentukan turunan pertama terhadap x pada fungsi $y(x) = sin^3 4x \ tan^2 3x$
 - a. $6\cos^2 4x \tan 3x (\sin 4x \sec^2 3x \tan 3x \sin 4x)$
 - b. $6\cos^2 4x \tan 3x (\sin 4x \sec^2 3x 2 \tan 3x \sin 4x)$
 - c. $6sin^2 4x \tan 3x (\sin 4x \sec^2 3x + 2 \tan 3x \cos 4x)$
 - d. $6\sin^2 4x \tan 3x (4 \sin 4x \sec^2 3x + \tan 3x \sin 4x)$
 - e. $6\cos^2 4x \tan 3x (\sin 4x \sec^2 3x + \tan 3x \sin 4x)$

PELATIHAN ONLINE 2019 FISIKA – PAKET 5

- 5. Tentukan turunan pertama terhadap x pada fungsi $y(x) = e^{\sec x} sin^2 x$
 - a. $e^{\sec x}(\sin 2x + \sin x \tan^2 x)$
 - b. $e^{\sec x}(\cos 2x + \cos x \tan^2 x)$
 - c. $e^{\sec x \tan x} (2 \sin 2x + \sin x \tan^2 x)$
 - d. $e^{\sec x}(\sin 2x + \sin x \tan x)$
 - e. $e^{\sec x}(\cos 2x \sin x \tan^2 x)$

Sebuah objek dilempar dengan sudut elevasi θ terhadap horizontal dengan kecepatan awal v_0 dan membentuk kurva lintasan parabola.

- 6. Tentukan nilai θ agar vektor posisi bola terhadap titik awal semakin membesar.
 - a. $\theta < \arcsin \sqrt{\frac{8}{9}}$
 - b. $\theta < \arccos \sqrt{\frac{1}{3}}$
 - c. $\frac{\pi}{2} > \theta > \arcsin \sqrt{\frac{4}{9}}$
 - d. $\theta < \arccos \sqrt{\frac{1}{8}}$
 - e. $\frac{\pi}{2} > \theta > \arctan \sqrt{\frac{4}{9}}$
- 7. Dengan sudut berapakah agar panjang kurva lintasan maksimum?
 - a. $1 = \sin \theta \ln \left(\frac{1 + \sin \theta}{\cos \theta} \right)$
 - b. $1 = \sin \theta \ln(\tan \theta)$
 - c. $2 = \tan \theta \ln \left(\frac{1 + \cos \theta}{\cos \theta} \right)$
 - d. $3 = 2 \sin \theta \ln \left(\frac{1 + \tan \theta}{\cot \theta} \right)$
 - e. $3 = \ln\left(\frac{1-\cos\theta}{\sin\theta}\right)$
- 8. Tentukan panjang kurva lintasan
 - a. $L = \frac{v_0^2}{g} \left(\sec \theta + \tan^2 \theta \ln \left(\frac{1 + \sin^2 \theta}{\cos \theta} \right) \right)$
 - b. $L = \frac{v_0^2}{a}$
 - c. $L = \frac{v_0^2}{g} \ln \left(\frac{1 \cos \theta}{\sin \theta} \right)$
 - d. $L = \frac{v_0^2}{2a} \cos \theta \ln \left(\frac{1 \tan \theta}{\cot \theta} \right)$
 - e. $L = \frac{v_0^2}{a} \left(\sin \theta + \cos^2 \theta \ln \left(\frac{1 + \sin \theta}{\cos \theta} \right) \right)$
- 9. Tentukan hasil $\int \frac{x^2-14}{x^2+16} dx$

PELATIHAN ONLINE 2019 FISIKA – PAKET 5

- a. $3x + 14 \arcsin x + c$
- b. $x + 14 \operatorname{arccot} \frac{8x}{7} + c$
- c. $8x + 7 \arccos x + c$
- d. $x \frac{15}{2} \arctan \frac{x}{4} + c$
- e. $\frac{7}{2}x + 16 \arcsin \frac{x}{16} + c$

Untuk nomor 8 dan 9

Terdapat sebuah sistem yang terdiri dari 2 partikel. Partikel pertama akan berseluncur di bidang miring (tanpa adanya gesekan) dan partikel kedua akan bergerak parabola. Mulamula, sistem diam di posisinya masing-masing. Lalu, mereka berdua bergerak dan mencapai titik bawah bidang miring secara bersamaan dengan kecepatan yang sama pula.

10. Tentukan besar sudut θ .

a.
$$\theta = \arcsin\left(\sqrt{\frac{3+\sqrt{13}}{8}}\right)$$

b.
$$\theta = \arcsin\left(\sqrt{\frac{2}{3+\sqrt{13}}}\right)$$

c.
$$\theta = \arcsin\left(\sqrt{\frac{3}{2+\sqrt{14}}}\right)$$

d.
$$\theta = \arcsin\left(\frac{1}{3}\sqrt{\frac{3+\sqrt{3}}{7}}\right)$$

e.
$$\theta = \arcsin\left(\sqrt{\frac{9+\sqrt{17}}{17}}\right)$$

11. Tentukan besar sudut φ .

a.
$$\varphi = \arcsin\left(\sqrt{\frac{3+\sqrt{13}}{8}}\right)$$

b.
$$\varphi = \arcsin\left(\sqrt{\frac{2}{3+\sqrt{13}}}\right)$$

c.
$$\varphi = \arcsin\left(\sqrt{\frac{3}{2+\sqrt{14}}}\right)$$

d.
$$\varphi = \arcsin\left(\frac{1}{3}\sqrt{\frac{3+\sqrt{3}}{7}}\right)$$

e.
$$\varphi = \arcsin\left(\sqrt{\frac{9+\sqrt{17}}{17}}\right)$$

PELATIHAN ONLINE 2019 FISIKA - PAKET 5

12. Tentukan hasil $\int \log_7 3x \ dx$

a.
$$\frac{1}{\ln 7}(x\ln 3x - x) + c$$

b.
$$x \ln 7 + c$$

c.
$$\frac{1}{\ln 3x}(x \ln 7 + 3x) + c$$

d.
$$7 \ln 3x - x + c$$

e.
$$x + 7 \ln 3x + \ln 7 + c$$

Untuk nomor 11-13

Seekor kumbang ingin melompat di suatu tangga dengan kecepatan awal v_0 dengan suatu sudut elevasi tertentu sebesar γ . Tangga mempunyai panjang dan tinggi sebesar d.

13. Tentukan v_0 minimum agar kumbang bisa menyinggung di suatu sudut lantai.

a.
$$\sqrt{gd}$$

b.
$$\sqrt{2gd}$$

c.
$$\sqrt{gd(1+\sqrt{2})}$$

b.
$$\sqrt{2ga}$$

c. $\sqrt{gd(1+\sqrt{2})}$
d. $\sqrt{gd(2\sqrt{2}-1)}$

e.
$$2\sqrt{gd}$$

- 14. Tentukan γ yang memenuhi v_0 minimum.
 - a. arctan(1)
 - b. arctan(2)
 - c. $\arctan(1+2\sqrt{2})$
 - d. $\arctan(2\sqrt{2}-2)$
 - e. arctan(4)
- 15. Tentukan tinggi maksimum yang dapat dicapai kumbang diukur dari tanah.
 - a. 1,1 *d*
 - b. 1,02 *d*
 - c. 1,03 d
 - d. 1,04 *d*
 - e. 1,05 *d*