Maximum Flow

26.1 Flow networks

Flow networks: a directed graph G=(V, E), in which each $(u,v) \in E$ has a capacity $c(u,v) \ge 0$. If $(u,v) \notin E$, we assume c(u,v)=0. There are a source vertex s and a sink vertex t in G. For every vertex v in G, there is a path $s \rightarrow v \rightarrow t$.

Flow: a real function $f: V \times V \rightarrow R$ satisfying the following three properties.

Capacity constraint: For all $u,v \in V$, $f(u,v) \le c(u,v)$ **Skew symmetry:** For all $u,v \in V$, f(u,v) = -f(v,u)**Flow conservation:** For all $u \in V - \{s, t\}$,

$$\sum_{v \in V} f(u, v) = 0.$$

- * **Positive net flow** entering (leaving) a vertex u: $\sum_{v \in V \text{ and } f(v,u) > 0} f(v,v) = \int_{v \in V \text{ and } f(u,v) > 0} f(u,v) =$
- * For all $u \in V \{s, t\}$, we have Positive net flow entering u= Positive net flow leaving u.
- * For all $u \in V \{s, t\}$, $\sum_{v \in V} f(v, u) = 0$. (Total flow into a vertex is 0.
- * f(u,v) is called the **net flow** from u to v. It can be positive or negative.
- * The value of a flow f is $|f| = \sum_{v \in V} f(s, v)$.
- * *Maximum-flow problem*: finding a flow of maximum value from s to t.

If $(u,v)\notin E$ and $(v,u)\notin E$, f(v,u)=f(u,v)=0.

- * Nonzero net flow from u to v implies $(u,v) \in E$ or $(v,u) \in E$.
- * Networks with multiple sources and sinks

* Let X and Y be sets of vertices. For simplicity, define

$$f(X, Y) = \sum_{x \in X} \sum_{y \in Y} f(x, y)$$
 and $c(X, Y) = \sum_{x \in X} \sum_{y \in Y} c(x, y)$.

26.2 The Ford-Fulkerson method

* We call it a method instead of algorithm, because it encompasses several implementations.

FORD-FULKERSON-METHOD (G, s, t)

- 1 initialize flow f to 0
- while there exists an augmenting path p
- 3 **do** augment flow f along p
- 4 return f

Example:

G and f

Residual network G_f with an augmenting path p

New f

New G_f

Residual networks G_f

- (1) residual capacity of (u, v) is given as $c_f(u, v) = c(u, v) f(u, v).$
- (2) $G_f = (V, E_f)$, where $E_f = \{(u, v) \in V \times V: c_f(u, v) > 0\}.$

Augmenting path: a simple path $s \rightarrow t$ in G_f .

Cut of a flow network: a partition of V into S and T=V-S such that $s \in S$ and $t \in T$.

Net flow across a cut: f(S, T).

Capacity of a cut: c(S, T).

Example: |f|=19, f(S, T)=19, and c(S, T)=26.

Lemma 26.5: For any cut (S, T), f(S, T)=|f|.

Corollary 26.6: For any f, $|f| \le c(S, T)$.

Theorem 26.7: (Maximum flow minimum cut) The following are equivalent:

- 1. f is a maximum flow
- 2. G_f contains no augmenting paths
- 3. |f|=c(S, T) for some cut (S, T) of G.

Proof: (1) \rightarrow (2) (By contraction) Suppose there is an augmenting path p. We have $|f+f_p|>|f|$, which contradicts to "f is a maximum flow."

(2) \rightarrow (3) Since (2), G_f contains no path from s to t. Define $S=\{v \mid \text{there is a } s \rightarrow v \text{ in } G_f\}$ and T=V-S. Note that $t \in T$. Thus, (S, T) is a cut.

For each pair $u \in S$ and $v \in T$, we have f(u,v) = c(u,v), since otherwise $(u,v) \in E_f$ and v is in S. By lemma 26.5, |f| = f(S, T) = c(S, T).

(3) \rightarrow (1): By corollary 26.6, $|f| \le c(S, T)$ for all cuts. The condition |f| = c(S, T) thus implies f is a maximum flow.

Q.E.D.

The basic algorithm

FORD-FULKERSON(G, s, t)1 **for** each edge $(u, v) \in E[G]$ 2 **do** $f[u, v] \leftarrow 0$ 3 $f[v, u] \leftarrow 0$ 4 **while** there exists a path p from s to t in G_f 5 **do** $c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}$ 6 **for** each edge (u, v) in p7 **do** $f[u, v] \leftarrow f[u, v] + c_f(p)$

 $f[v, u] \leftarrow -f[u, v]$

Analysis:

(1) |f| is increasing. But, if p is chosen poorly, the algorithm might not even terminate (while c(u,v)'s are irrational numbers).

- (2) If c(u,v)'s are integers, it performs in $O(E|f^*|)$ time, where f^* is the maximum flow.
- (3) If *p* is chosen by using breadth-first search, the algorithm is called the *Edmonds-Karp algorithm*. It performs in $O(VE^2)$ time. (We are not going to prove this.)

26.3 Maximum bipartite matching

A bipartite graph (undirected) $G=(V=L\cup R,E)$ and two matchings

Corresponding flow network: G'=(V,E'), where

$$V = V \cup \{s, t\},$$

 $E = \{(s,u): u \in L\}$

 $\cup \{(u,v): u \in L, v \in R, \text{ and } (u,v) \in E\}$

 \cup {(v,t): $v \in R$ }, and

each edge is assigned unit capacity.

Lemma 26.10: If M is a matching in G, then there is an integer-valued flow f in G' with |M|=|f|. Conversely, if f is an integer-valued flow f in G', then there is a matching M in G with |M|=|f|.

Theorem 26.11: If all c(u,v)'s are integer, all $f^*(u,v)$'s produced by Ford-Fulkerson method are integers. (by induction.)

Corollary 26.12: $|f^*|$ of G is equal to the cardinality of a maximum matching in G.

* The maximum bipartite matching problem can be solved in $O(Ef^*)=O(EV)$ time.

Homework: Ex. 26.2-6, 26.2-11, Pro. 26-1, 26-2.

Differences in the 3rd Edition

(Consider only positive flows)

Flow networks:

Assume that G contains no *antiparallel* edges. (If $(u, v) \in E$, then $(v, u) \notin E$.)

Handling antiparallel edges:

Converting a network with antiparallel edges into one with no antiparallel edges

Flow: a real function $f: V \times V \rightarrow R$ satisfying the following TWO properties:

Capacity constraint: For all $u,v \in V$, 0≤ $f(u,v) \le c(u,v)$.

Flow conservation: For all $u \in V - \{s, t\}$, $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v).$ (flow in equals flow out)

The residual capacity:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

The basic Ford-Fulkerson algorithm

FORD-FULKERSON(G, s, t)

- 1. **for** each edge $(u, v) \in E[G]$
- 2. **do** $f[u, v] \leftarrow 0$
- 3. while there exists a path p from s to t in G_f
- 4. **do** $c_t(p) \leftarrow \min\{c_t(u, v): (u, v) \text{ is in } p\}$
- 5. **for** each edge (u, v) in p **do**
- $\mathbf{if}(u,v) \in E[G]$
- 7. $\mathbf{then}\,f[u,\,v] \leftarrow f[u,\,v] + c_f(p)$
- 8. **else** $f[v, u] \leftarrow f[v, u] c_f(p)$