EE103 Prof. S. Boyd

Mathematical Notation Versus Julia Syntax

In the tables below we show how to express some mathematical notation (as in the textbook *Vectors, Matrices, and Least Squares*) in the computer language Julia. Be careful to never confuse mathematical notation and Julia syntax!

In the tables below we use this font to denote things you'd type in to Julia.

Vectors

Basics

concept	mathematical notation	Julia syntax
n-vector	(x_1,\ldots,x_n) , or in column format,	Represented as 1-d array of length n. For example, a 3-vector can be written as
	$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ or $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.	[x_1, x_2, x_3] or
		[x_1; x_2; x_3].
		If you type x in interactive mode, it will be displayed as a column.
vector entries	x_i .	x[i].
vector size	n (x has n entries).	length(x).
vector slice	$x_{i:j} = (x_i, \dots, x_j).$	x[i:j].
stacking	$(x,y)=(x_1,\ldots,x_n,y_1,\ldots,y_m)$	[x; y].
equality	x = y.	<pre>x==y returns true or false. (x=y assigns x to the value of y.)</pre>
list of vectors	x_1,\ldots,x_k .	# list of vectors
	x_i : the <i>i</i> th vector.	list = $[x_1, x_2, x_3]$
	$(x_i)_j$: jth entry of x_i .	# first vector
		list[1]
		<pre># third entry of second vector list[2][3]</pre>

Specific vectors

concept	mathematical notation	Julia syntax
zero vector ones vector	0_n or (more commonly) just 0. 1_n or 1 .	zeros(n). ones(n).
unit vectors	$e_i = (0, \dots, 0, 1, 0, \dots, 0)$ (<i>i</i> th entry is one).	No built-in Julia syntax for unit vectors. The following code creates e_i : # create zero vector ei = zeros(n) # set i-th entry to 1 ei[i] = 1

Vector operations and functions

In the table below we give the native Julia syntax, and the syntax using a simple module called MMA, which contains Julia definitions of some common functions arising in the course.

concept	mathematical notation	Julia syntax
vector addition, difference	x+y, x-y.	x + y, x - y.
scalar-vector multiplication	ax (or xa), with a a number.	a*x or x*a.
vector sum	$1^T x$.	sum(x).
scalar-vector addition	x + a 1 .	x+a or a+x.
inner product	x^Ty .	dot(x, y).
vector norm	x .	norm(x).
RMS value	$\mathbf{rms}(x) = x /\sqrt{n}.$	<pre>norm(x)/sqrt(length(x)). Using MMA: rms(x).</pre>
distance	$\mathbf{dist}(x,y) = \ x - y\ .$	norm(x-y). Using MMA: dist(x, y).
average	$\mathbf{avg}(x) = (x_1 + \dots + x_n)/n.$	mean(x).

de-mean	$x - \mathbf{avg}(x)1.$	<pre>x - mean(x). Using MMA: demean(x).</pre>
standard deviation	$\mathbf{std}(x)$.	<pre>norm(x-mean(x))/sqrt(length(x)). Using MMA: std(x).</pre>
angle	$\angle(x,y).$	<pre>acos(dot(x,y)/(norm(x)*norm(y)). Using MMA: angle(x, y).</pre>
correlation coefficient	$\rho(x,y)$.	No built-in function for correla- tion coefficient. The following code computes it: # de-mean vectors xt = x-mean(x); yt = y-mean(y) rho = dot(xt,yt)/(norm(xt)*norm(yt)). Using MMA: corrcoef(x, y).
convolution	x * y	conv(x,y).

Matrices

Basics

concept	mathematical notation	Julia syntax
$m \times n$ matrix	$A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}.$	Represented as 2-d array of size $m \times n$. For example, a 2×3 matrix can be written as
		$A = [A_11, A_12, A_13; A_21, A_22, A_23]$
		Typing A in interactive mode displays the entries of A.
matrix entries	$A_{ij}.$	A[i,j].
matrix dimensions	$m \times n$.	<pre>m, n = size(A). To get row or column dimensions separately: m = size(A)[1] n = size(A)[2].</pre>
submatrices	$A_{p:q,r:s} = \begin{bmatrix} A_{pr} & A_{p,r+1} & \cdots & A_{ps} \\ A_{p+1,r} & A_{p+1,r+1} & \cdots & A_{p+1,s} \\ \vdots & \vdots & & \vdots \\ A_{qr} & A_{q,r+1} & \cdots & A_{qs} \end{bmatrix}.$	A[p:q, r:s].
block matrix	$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}.$	A = [B C; D E].
equality	A = B.	A==B returns true or false. (A = B assigns A to the value of B.)

Specific matrices

concept	mathematical notation	Julia syntax
zero matrix	$0_{m \times n}$ or, more commonly, 0.	zeros(m,n).
identity matrix	$I_{n\times n}$ or, more commonly, I .	eye(n)

Matrix operations and functions

concept	mathematical notation	Julia syntax
matrix transpose	A^T .	A' or transpose(A).
matrix-matrix sum, difference	A+B, A-B.	A + B, A - B.
column selection	jth column of A .	A[:,j].
row selection	jth row of A .	A[j,:].
scalar-matrix product	bA (or Ab), with b a number.	b*A or A*b.
matrix-vector product	$Ax (A \text{ an } m \times n \text{ matrix}, x \text{ an } n\text{-vector}).$	A*x.
matrix-matrix product	AB (A an $m \times n$ matrix, B an $n \times p$ matrix).	A*B.
matrix power	A^k (A square, k integer ≥ 1).	A^k.
matrix inverse	A^{-1} (A square, invertible).	inv(A).
matrix pseudo-inverse	$A^{\dagger}.$	pinv(A).
diagonal matrix	$\mathbf{diag}(d)$, with d a vector	diagm(d).

Linear equations and least squares

Concept Mathematical Institution	concept	mathematical notation	Julia syntax
----------------------------------	---------	-----------------------	--------------

solve equations	$x = A^{-1}b$ (A invertible)	$x=A\b.$
least squares	$x = (A^T A)^{-1} A^T b$ (A has independent columns)	x=A\b.
least-norm	$x = A^{T}(AA^{T})^{-1}b$ (A has independent rows)	x=A\b.