Week 3

Intro to Ring Types

3.1 Intro to Chapters 8-9

1/18:

- Moving onto Chapter 8 today.
- Friday: Rings of fractions (more than what's in the book; under lesser hypotheses).
 - Def get notes!
- The Chinese Remainder Theorem is at least partially in HW3.
- Today: A leisurely introduction to Chapter 8, as well as Spring Quarter content (which is the most interesting part of the Honors Algebra sequence).
- For the next three weeks or more, all rings will be assumed to be commutative.
 - Excepting matrix rings, which may still appear in exercises.
- At this point, we define $\deg(f) = -\infty$ where f is the zero polynomial.
 - We do this so that deg(fg) = deg(f) + deg(g) still holds.
- Euclidean algorithm for monic polynomials: Let $f \in R[X]$ be a monic polynomial of degree $d \ge 0$, and let $h \in R[X]$. Then there exists a unique pair $q, r \in R[X]$ such that...
 - 1. h = qf + r;
 - 2. $\deg(r) < \deg(f)$.

Proof. We tackle uniqueness first, and then existence.

Uniqueness: Suppose $h = q_1 f + r_1 = q_2 f + r_2$, where $\deg(r_i) < d$ (i = 1, 2). We have that

$$(q_1 - q_2)f = q_1f - q_2f = r_2 - r_1$$

Now suppose for the sake of contradiction that $q_1 - q_2 \neq 0$. We know that

$$\deg(r_2 - r_1) = \deg[(q_1 - q_2)f] = \deg(q_1 - q_2) + d \ge d$$

But since $deg(r_i) < d$ (i = 1, 2), we have that $deg(r_2 - r_1) < d$, a contradiction. Thus, $q_1 - q_2 = 0$. It follows easily that $0 = r_2 - r_1$. Therefore, $(q_1, r_1) = (q_2, r_2)$, as desired.

Existence: If deg(h) < d, then put q = 0 and r = h. We now induct on deg(h), starting from d. Our base case is already taken care of via the statement on deg(h) < d. Now suppose using strong induction that we have proven the claim for all nonnegative integers n < deg(h). Let

$$h(X) = a_0 + \dots + a_e X^e$$

where $a_e \neq 0$ and $e \geq d$ by hypothesis. Let

$$f(X) = b_0 + \dots + b_{d-1}X^{d-1} + X^d$$

Define g(X) by

$$g = h - a_e X^{e-d} f$$

It follows that deg(g) < e, so we may apply the induction hypothesis at this point. We learn from it that there exist q, r such that q = qf + r with deg(r) < d. Therefore, we can deduce that

$$h = (a_e X^{e-d} + q)f + r$$

as desired. \Box

- Notes on the Euclidean algorithm.
 - Think long polynomial division from high school.
- Example.
 - Let $a \in R$ and f = X a be a monic polynomial. Let $h \in R[X]$ be arbitrary. Then applying the theorem,

$$h(X) = q(X)(X - a) + r$$

- $-\deg(r) < 1 = \deg(f)$ implies that r is a constant, and hence $r \in R$.
- Moreover,

$$h(a) = q(a)(a-a) + r$$
$$r = h(a)$$

implying that

$$h(X) - h(a) = q(X)(X - a)$$

for arbitrary polynomials h.

- Corollary: Let $a \in R$. $\{h \in R[X] \mid h(a) = 0\}$ is the **principal ideal generated by X a**.
- Ideal generated by $b \in B$. Denoted by Bb, (b).
- Corollary: Let $f \in R[X]$ be monic of degree d. Then

$$\{q \in R[X] \mid \deg(q) < d\} \hookrightarrow R[X] \twoheadrightarrow R[X]/(f)$$

and, in particular,

$$\{g \in R[X] \mid \deg(g) < d\} \cong R[X]/(f)$$

as groups (in particular, not as rings).

Proof. The existence of the first two maps is obvious (they are just instances of the canonical injection and surjection, respectively).

We now verify that the last two sets are in bijective correspondence. Define a map φ between them via the canonical surjection (note that since the domain of φ is not R[X], we will still have to verify surjectivity here). As established previously, φ is well defined.

To prove that φ is injective, it will suffice to show that $\ker \varphi = 0$. Let h be an arbitrary polynomial in R[X] with $\deg(h) < d$. Suppose $\varphi(h) = 0 = 0 + (f) = (f)$. Then $h \in (f)$. It follows that either h = 0 or $\deg(h) \ge \deg(f) = d$. But as an element of the domain $\deg(h) < d$ by hypothesis. Therefore, h = 0, as desired.

To prove that φ is surjective, it will suffice to show that for every $h+(f)\in R[X]/(f)$, there exists $r\in R[X]$ with $\deg(r)< d$ such that $\varphi(r)=h+(f)$. Let $h+(f)\in R[X]/(f)$ be arbitrary. By the Euclidean algorithm, h=qf+r for some $q,r\in R[X]$ where $\deg(r)<\deg(f)=d$. Moreover, since $r=h+(-q)f, r\in h+(f)$ and hence h+(f)=r+(f). Therefore, since r is in the domain of φ (as it has degree less than d), $\varphi(r)=r+(f)=h+(f)$, as desired.

- R[X] is also a vector space with $1, X, X^2, \ldots$ as the basis.
- We have that

$$\{g \in R[X] \mid \deg(g) < d\} = \{a_0 + \dots + a_{d-1}X^{d-1} \mid a_0, \dots, a_{d-1} \in R\}$$

- As an abelian group (ignoring multiplication), this set is group isomorphic to $(R^d, +)$.
- Revisiting the creation of \mathbb{C} from \mathbb{R} .
 - We can use quotient rings to solve $X^2 + 1 = 0$.
 - In particular, the equation $X^2 + 1 = 0$ does not have a solution in $\mathbb{R}[X]$. However, it does have a solution in $\mathbb{R}[X]/(X^2 + 1)$, as we will see presently.
 - Consider the function described in the above corollary, sending $\mathbb{R} \hookrightarrow \mathbb{R}[X] \twoheadrightarrow \mathbb{R}[X]/(X^2+1)$. Let $\bar{X} := X + (X^2+1) \in \mathbb{R}[X]/(X^2+1)$ denote the image of X in $\mathbb{R}[X]/(X^2+1)$ under the second map. It follows that in this new ring,

$$\bar{X}^2 + 1 = [X + (X^2 + 1)] \cdot [X + (X^2 + 1)] + [1 + (X^2 + 1)]$$

$$= [X^2 + 1] + (X^2 + 1)$$

$$= 0 + (X^2 + 1)$$

$$= 0$$

as desired.

- Additionally, the elements of this ring are of the form $a_0 + a_1 \bar{X}$ $(a_0, a_1 \in \mathbb{R})$ by the above corollary. As per the rules of addition and multiplication in quotient rings, our addition and multiplication in this ring are

$$(a_0 + a_1 \bar{X}) + (b_0 + b_1 \bar{X}) = (a_0 + b_0) + (a_1 + b_1) \bar{X}$$

$$(a_0 + a_1 \bar{X}) \cdot (b_0 + b_1 \bar{X}) = (a_0 b_0 - a_1 b_1) + (a_0 b_1 + a_1 b_0) \bar{X}$$

- For addition, we expect componentwise.
- For multiplication, we apply the distributive law, and then reduce our final element mod $X^2 + 1$ using the fact that $\bar{X}^2 = -1$ so $a_1b_1\bar{X}^2 = -a_1b_1$.
- Thus, since they have isomorphic sets of elements and identical operations,

$$\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$$

- Note that $\mathbb{R}[X]/(X^2+1) \cong \mathbb{R}[i]$, where $i=\sqrt{-1}$. In other words, we can look at the elements of $\mathbb{R}[X]/(X^2+1)$ as complex numbers, or as polynomials in i. The two concepts are equivalent since any polynomial in i reduces to a complex number via the i-cycle as follows.

$$\sum_{j=0}^{\infty} a_j i^j = a_0 + a_1 i + a_2 i^2 + a_3 i^3 + a_4 i^4 + a_5 i^5 + \cdots$$

$$= a_0 + a_1 i - a_2 - a_3 i + a_4 + a_5 i - \cdots$$

$$= (a_0 - a_2 + a_4 - \cdots) + (a_1 - a_3 + a_5 - \cdots) i$$

$$= \left(\sum_{j=0}^{\infty} a_{2j}\right) + \left(\sum_{j=0}^{\infty} a_{2j+1}\right) i$$

- However, this construction renders C as just one particular special case of interest in a far more general
 construction.
 - Specifically, \mathbb{C} is the special case that takes $f = X^2 + 1$ as the divisor.

- Indeed, we may create a ring in which the root of any polynomial $f \in R[X]$ exists.
 - For the sake of simplicity, let f be monic of degree d. Let A = R[X]/(f). Then as per the corollary, $R \hookrightarrow R[X] \twoheadrightarrow A$.
 - Once again, we let \bar{X} be the image of X under the second map. $f(X) \mapsto f(\bar{X}) = 0$, as desired.
 - In analogy to the last line above,

$$R[X]/(f) \cong R[\bar{X}]$$

for any \bar{X} satisfying $f(\bar{X}) = 0$.

- Additional examples.
 - 1. Take $R = \mathbb{Z}$, f(X) = 2. Then $\mathbb{Z} \hookrightarrow \mathbb{Z}[X] \twoheadrightarrow \mathbb{Z}[X]/(2)$.
 - (2) is the set of all polynomials with even integer coefficients. Thus, any polynomial with even integer coefficients in $\mathbb{Z}[X]$ will be projected down to zero, and any polynomial containing any odd coefficients will correspond to a coset in which all polynomials with odd terms in the same places are lumped together.
 - Essentially, reducing occurs termwise and is modulo 2 based on the coefficients. For example,

$$5 + 2X + 4X^2 + 7X^4 + (2) = 1 + 1X^4 + (2)$$

since $4 + 2X + 4X^2 + 6X^4 \in (2)$ and

$$5 + 2X + 4X^2 + 7X^4 = 1 + 1X^4 + 4 + 2X + 4X^2 + 6X^4$$

- Thus, $\mathbb{Z}[X]/(2) \cong \mathbb{Z}/2\mathbb{Z}[X]$.
- What is \bar{X} in this set?? It must be some integer??
- 2. Take $R = \mathbb{Z}$ and f(X) = 2X + 3. Then we have $\mathbb{Z}[X]/(2X + 3)$.
 - $X \mapsto \bar{X} \text{ and } 2\bar{X} + 3 = 0, \text{ so } \bar{X} = -3/2.$
 - Just like $i \notin \mathbb{R}, -3/2 \notin \mathbb{Z}$.
 - We still have $\mathbb{Z}[X]/(2X+3) \cong \mathbb{Z}[-3/2]$.
 - In other words, $\mathbb{Z}[X]/(2X+3)$ is the set of all "polynomials" in -3/2 with integer coefficients, which is just equal to

$$\{a/2^n \mid a \in 3\mathbb{Z}\}$$

which is the diadic rationals with numerator equal to a multiple of 3.

- This construction will be integral to Spring Quarter.
- Question/exercise: Let $\alpha \in R$. Then $R[X]/R[X]\alpha \cong (R/R\alpha)[X]$.
- Is it that dividing by a polynomial of degree 0 puts a constraint on the coefficients whereas dividing by a polynomial of degree greater than zero puts a constraint on the variable??
- **Principal ideal domain**: A commutative ring R that is an integral domain and for which every ideal is principal. Also known as **PID**.
- There is a useful explanation of something on Chapter 8, page 2 of Dummit and Foote (2004).
- Theorem: Let F be a field. Then F[X] is a PID.

Proof. We have proven previously that F an integral domain implies F[X] is an integral domain. Let $I \subset F[X]$ be a nonzero ideal. Let

$$d = \min\{\deg(q) \mid q \in I, \ q \neq 0\}$$

Pick $g \in I$ such that $\deg(g) = d$. We have that $g = a_0 + \dots + a_d X^d$, $a_d \neq 0$, $a_d^{-1} \in F$. Let $f = a_d^{-1}g \in I$ (as guaranteed by the presence of $g \in I$). Let $h \in I$. Then the EA produces q, r such that h = qf + r with $\deg(r) < d$. We know that $h, f \in I$. Thus, h - qf = I. It follows by the definition of d that r = 0. Therefore, $h \in (f)$.

- Callum will lecture on Friday.
- Feedback on the HW.
 - Most people seem to think that the HW is at a reasonable level of difficulty.
 - The third one should be more challenging

3.2 Rings of Fractions

- This lecture will cover material from Sections 7.5 and 15.4 of Dummit and Foote (2004).
- Defining \mathbb{Q} .

1/20:

- Rigorously, we define \mathbb{Q} as a subset of $(\mathbb{Z} \times \mathbb{Z}) \setminus \{(a,0) \mid a \in \mathbb{Z}\}$. In particular, we let \mathbb{Q} be the set of equivalence classes in $\mathbb{Z} \times \mathbb{Z}$ under the equivalence relation

$$\frac{a}{b} = \frac{c}{d} \iff ad - bc = 0$$

where a/b denotes $(a, b) \in \mathbb{Z} \times \mathbb{Z}$.

Addition on Q:

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2}$$

- This makes $(\mathbb{Q}, +)$ an abelian group with identity 0 = 0/c for any $c \neq 0$.
- − Multiplication on Q:

$$\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1 a_2}{b_1 b_2}$$

- This makes $(\mathbb{Q}, +, \cdot)$ a ring with identity 1 = 1/1 = d/d for any $d \neq 0$.
- Notice the similarities between the above approach and the definition of \mathbb{C} from \mathbb{R} in Lecture 2.1.
- It follows from the definition that \mathbb{Q} is also a field: For any $a/b \in \mathbb{Q}$, $a/b \cdot b/a = 1$.
- We can generalize this construction to any commutative ring R.
 - As in \mathbb{Q} , we may only be able to take the "quotient" of certain elements of R by certain other elements of R. For example, a/0 does not make sense in \mathbb{Q} . Thus, we first define a subset of R called D: D contains elements which can act as <u>denominators</u>. The properties of D are motivated by the properties of denominators in \mathbb{Q} . In particular...
 - Let $D \subset R$ be such that $1_R \in D$, $0_R \notin D$, D has no zero divisors, and D is closed under multiplication (that is, $b, d \in D$ implies $bd \in D$).
 - We need $1_R \in D$ so that all of the elements $a \in R$ appear in the related ring of fractions as $a/1_R$.
 - We can't have $0_R \in D$ because you cannot divide by zero.
 - \blacksquare We can't have any zero divisors in D because then during addition or multiplication, as defined above, the sum or product could have zero in the denominator.
 - We need closure under multiplication so that the sums and products defined above are well-defined.
 - With these constraints on D, we can define the **ring of fractions**.
- \sim : The equivalence relation on a product ring $(A \times B, +, \cdot)$ defined as follows. Given by

$$(a_1, b_1) \sim (a_2, b_2) \iff a_1 \cdot b_2 - a_2 \cdot b_1 = 0$$

• Exercise: Confirm that \sim is an equivalence relation.

- Just as taking the quotient of a group by a normal subgroup or a ring by an ideal yields a partition of the original object where all elements in any set in the partition are related by the substructure, taking the quotient of a set by an equivalence relation yields a partition of that set into classes called equivalence classes.
 - Thus, when we write $(A \times B)/\sim$, we refer to the set of equivalence classes of $A \times B$ under \sim .
- Ring of fractions (of D with respect to R): The set defined as follows, under the operations defined as follows. Denoted by $D^{-1}R$. Given by

$$D^{-1}R = \{(x,t) \mid x \in R, \ t \in D\} / \sim$$

1. Addition:

$$\frac{x_1}{t_1} + \frac{x_2}{t_2} = \frac{x_1 t_2 + x_2 t_1}{t_1 t_2}$$

- Let $0_{D^{-1}R} = 0/1$.
 - Note that because of the way 0/1 is defined (i.e., as an equivalence class), we no longer need to say 0/1 = 0/d for all $d \in D$ since all 0/d are included in 0/1. In fact, at this point, 0/d is just an alternate name for the set 0/1.
- It follows from the above definition that -(x/t) = -x/t.
- 2. Multiplication:

$$\frac{x_1}{t_1} \cdot \frac{x_2}{t_2} = \frac{x_1 x_2}{t_1 t_2}$$

- Let $1_{D^{-1}R} = 1/1$.
- Notes on the ring of fractions.
 - Notice how the notation is a nice alternative to the (already taken) R/D.
 - Notation: Write x/t for the equivalence class [(x,t)].
- Proposition: $D^{-1}R$ is a ring as defined above.

Proof. There are three steps needed: (1) check that $+, \times$ are well defined; (2) check that $(D^{-1}R, +)$ is an abelian group; and (3) check that \times is an associative, commutative, and distributive operation with an identity.

- Field of fractions (of R): The set $D^{-1}R$ where R is an integral domain and $D = R \setminus \{0\}$. Also known as quotient field. Denoted by Frac R.
 - Inverses are given by

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$

for all nonzero elements $a/b \in \operatorname{Frac} R$ (i.e., all elements for which $a, b \neq 0$).

- Example: Let R be an integral domain, and let $f \in R$ not be nilpotent. Take $D = \{1, f, f^2, \dots\}$. Then $R_f = D^{-1}R$.
 - Example: If $R = \mathbb{Z}$ and f = 2, then $R_2 = \{a/b \in \mathbb{Q} \mid b = 2^n\}$. Recall that these are the diadic rationals.
- Example: Let $R = \mathbb{Z}$ and $D = \{a \in \mathbb{Z} : 2 \nmid a\}$. Then $D^{-1}R = \{a/b \in \mathbb{Q} : 2 \nmid b\}$.
- Besides the last two examples, the only nontrivial ideal of \mathbb{Q} left is (2^n) .
 - Do I have this statement right??
- If R is an integral domain, then $\operatorname{Frac}(R[X])$ is the set of all rational functions with coefficients in R.

- We have a canonical injection $\iota: R \to D^{-1}R$ defined by $x \mapsto x/1$.
- Theorem (universal property of the ring of fractions):

Figure 3.1: Decomposition of a ring homomorphism using $D^{-1}R$.

- (1) $\iota: R \to D^{-1}R$ is an injective ring homomorphism.
- (2) If $\varphi: R \to S$ is a ring homomorphism such that $\varphi(r)$ is a unit in S for all $r \in D$, then there exists a unique ring homomorphism $\tilde{\varphi}: D^{-1}R \to S$ such that $\tilde{\varphi} \circ \iota = \varphi$ (see Figure 3.1).
- (3) If φ is injective, then so is $\tilde{\varphi}$.

Proof. (1) is easy.

We address (2) in two parts.

Existence: Define $\tilde{\varphi}(x/t) = \varphi(x)\varphi(t)^{-1}$.

<u>Uniqueness</u>: Suppose that there exists $\rho: D^{-1}R \to S$ such that $\rho \circ \iota = \varphi$. Then $\varphi(x) = (\rho \circ \iota)(x) = \overline{\rho(x/1)}$. This result combined with the fact that ρ is a ring homomorphism implies that

$$1 = \rho(\frac{1}{1}) = \rho(\frac{t}{1})\rho(\frac{1}{t}) = \varphi(t)\rho(\frac{1}{t})$$

It follows since $\varphi(D) \subset S^{\times}$ by hypothesis that if $t \in D$, then $\rho(1/t) = \varphi(t)^{-1}$. Therefore,

$$\rho(\frac{x}{t}) = \rho(\frac{x}{1})\rho(\frac{1}{t}) = \varphi(x)\varphi(t)^{-1} = \tilde{\varphi}(\frac{x}{t})$$

We now address (3).

Suppose that φ is injective. To prove that $\tilde{\varphi}$ is injective, it will suffice to show that $\ker \tilde{\varphi} = 0$. Let $x/t \in \ker \tilde{\varphi}$ be arbitrary. Then $\tilde{\varphi}(\frac{x}{t}) = 0$. It follows by the definition of $\tilde{\varphi}$ that $\varphi(x)\varphi(t)^{-1} = 0$. Since $\varphi(t)$ is a unit by hypothesis and hence nonzero, it must be that $\varphi(x) = 0$. Additionally, as a ring homomorphism, $\varphi(0) = 0$. Combining the last two results, we have by transitivity that $\varphi(x) = \varphi(0)$. Thus, since φ is injective, x = 0. It follows that x/t = 0/t, so $\ker \tilde{\varphi} = 0$, as desired.