Energy Minimization

- Energy function is a multidimensional function of coordinates
- · Can define a potential energy surface
- For N atoms, we get a 3N dimensional surface
 - e.g. 1D, 2-LJ particles with positions x₁ and x₂

18

Energy Minimization

• Example: 2-angle potential surface

19

Example: 2-angle potential surface

Features:

- · Numerous local minima
- · Could have global minimum
- Saddle points (indicating transition points)
- Minima and saddle points are stationary, where function derivatives are zero

20

Energy Minimization

Statement of the problem:

- Upon starting a simulation, the initial conformation is usually not at a minimum
 - Overlaps
 - · Non-uniform density
 - · Non-relaxed interactions

21

Energy Minimization

Solution:

- Drive the system into a minimum before starting the simulation
- Mathematically, this is a minimization problem. Thus minimize the potential energy function.

Energy Minimization

Function f of coordinate variables $x_1, \dots x_N$

- Find values of coordinates that minimize f
- At minimum points,

$$\frac{\partial f}{\partial x_i} = 0; \quad \frac{\partial^2 f}{\partial x_i^2} > 0$$

• Because of the complex form of *f*, the minimization has to be carried out numerically

22

23

Energy Minimization

Minimization will require derivatives.

- If analytical form is not possible, calculate numerical derivatives:
 - For ∂E/∂x_i(x_i one of the coordinates) can use one of two methods

24

Energy Minimization

- 1. For $\partial E/\partial x_i$ valid at $x_i + \Delta x_i/2$:
 - Have E at x_i, calculate it at x_i+∆x_i
 - Derivative is approximated by $\Delta E/\Delta x$
- 2. For $\partial E/\partial x_i$ valid at x_i :
 - Calculate E at x_i - Δx_i and x_i + Δx_i
 - Derivative is approximated by ΔE/(2Δx)

25

Energy Minimization

Two typical methods to find minima:

- A) Steepest Descents
- B) Conjugate Gradients

Both are first-order methods, i.e. only deal with first derivatives of the potential

26

Energy Minimization

- Second order methods (2nd derivative) are good for harmonic potentials
 - In our case, the potential is only approximately harmonic

$$V(x) = V(x_k) + (x - x_k)V'(x_k) + (x - x_k)^T \cdot V''(x_k) \cdot (x - x_k)/2 + ...$$

- Problems arise from the non-harmonic behavior of real potentials and far from minima
 - e.g. Newton-Raphson is acceptable only close to harmonic regime; but even then it involves matrix inversion at every point

27

A. Steepest Descents

- Moves parallel to force
- Equivalent to moving along gradient of potential
- Define a direction to move by

$$s_k = -\frac{\nabla f}{|\nabla f|}$$

28

A. Steepest Descents

- Starting position at arrow
- Calculate direction
 ∇ f

$$s_k = -\frac{\nabla f}{|\nabla f|}$$

- Define line along direction
- · Line traces minima
- Decide on method to find local minima

29

A. Steepest Descents

Two ways to find local (or global) minima:

- Line search (bracket)
- Arbitrary size step

A. Steepest Descents: <u>line search</u>

1. Find bracket with three points (1,2,3)

· Iteratively reduce distance and find minima (expensive)

· Or fit points to function (e.g. quadratic). Find analytical minima and repeat

A. Steepest Descents: arbitrary step

Less computationally demanding than line search

· Starting from an initial position in energy space, find next by

$$x_{k+1} = x_k + \lambda_k s_k$$

- λ_k is the size of the step
- Size of step may be adjusted depending on getting lower or higher energy
- · Could take more steps than line search, but may require fewer function evaluations.

B. Conjugate Gradients

- Does not show the oscillatory behavior found in the steepest descents
- · New directions are not orthogonal, but conjugate
- For non-zero u and v vectors to be conjugate:

$$u^T A v = 0$$

• In our case, for coordinate direction vectors

$$\mathbf{v}_i \cdot V_{ij}^{"} \cdot \mathbf{v}_j = 0$$

wrt to second derivative of potential (i,j are successive points)

B. Conjugate Gradients

· Other properties

$$\mathbf{g}_i \cdot \mathbf{g}_j = 0$$

$$\mathbf{g}_i \cdot \mathbf{v}_j = 0$$

where \boldsymbol{g}_{ν} is the gradient at point k

• Every new direction (from point k) is along the gradient plus the previous direction

$$\mathbf{v}_k = -\mathbf{g}_k + \gamma_k \mathbf{v}_{k-1}$$

where

$$\gamma_k = \frac{\mathbf{g}_k \cdot \mathbf{g}_k}{\mathbf{g}_{k+1} \cdot \mathbf{g}_{k+1}}$$

Needs a "first" direction, usually provided by the steepest

 $\mathbf{g}_{k-1} \cdot \mathbf{g}_{k-1}$

Line search is still used for moving when locating minima

Comparison Modern Science Comparison A) Steepest Descents Description B) Conjugate Gradients