NOÇÕES DE COMPLEXIDADE DE ALGORITMOS

PUC MINAS

ALGORITMOS E ESTRUTURAS DE DADOS II

Plote um gráfico com todas as funções abaixo:

a)
$$f(n) = n^3$$

b)
$$f(n) = n^2$$

c)
$$f(n) = n * log(n)$$

d)
$$f(n) = n$$

e)
$$f(n) = \operatorname{sqrt}(n)$$

f)
$$f(n) = \log(n)$$

Plote um gráfico com todas as funções abaixo:

b)
$$f(n) = n^2$$

c)
$$f(n) = n * log(n)$$

d)
$$f(n) = n$$

$$e(f(n)) = \operatorname{sqrt}(n)$$

$$f(n) = \log(n)$$

Plote um gráfico com todas as funções abaixo:

b)
$$f(n) = n^2$$

c)
$$f(n) = n * log(n)$$

d)
$$f(n) = n$$

e)
$$f(n) = \operatorname{sqrt}(n)$$
.

f)
$$f(n) = \log(n)$$

COMPLEXIDADE DE ALGORITMOS

- Para valores pequenos de n;
 - qualquer algoritmo custa pouco.
- Análise de algoritmos é realizada;
 - para valores grandes de n.

COMPLEXIDADE DE ALGORITMOS

- Problema de complexidade 2^n ;
 - computador que executa 10⁹ (aproximadamente 1 bilhão) de operações por segundo:

	n	Tempo
10		0,0000001s
20		0,001s
30		1,07s
40		1099 s = 18 minutos e 20 s
50		18765 minutos = 13 dias
60		13344 dias ≅ 36,5 anos (!!!)

COMPORTAMENTO ASSINTÓTICO

- Comportamento das funções de custo;
 - para valores grandes de n.
- Representa o limite do comportamento do custo;
 - quando n cresce.

COMPORTAMENTO ASSINTÓTICO

- Dadas as funções:
 - $f(n) = n^3$
 - $g(n) = 2^n$
 - g(n) domina assintoticamente f(n).

NOTAÇÕES O, Ω e θ

- Podem ser lidas como aproximadamente.
- Utilizaremos as notações O, Ω e Θ para identificar a complexidade (número aproximado de operações) de um algoritmo.

NOTAÇÕES O, Ω e θ

- Consideramos apenas a maior potência;
 - ignoramos termos com menor crescimento.
- Ignoramos os coeficientes;
 - constantes.

- Limite assintótico superior do comportamento de um algoritmo.
- Se uma função é $O(n^2)$;
 - ela também será limitada
 assintoticamente por funções de graus superiores.

Exemplo:

$$g(n) = 3n^3 + 2n^2 + n;$$

• \neq $O(n^3)$.

- g(n) = O(f(n)):
 - g(n) cresce, no máximo, tão rapidamente quanto f(n);
 - f(n) é um **limite** assintótico **superior** para g(n);
 - g(n) pode atingir f(n);
 - mas nunca ultrapassá-la;
 - f(n) limita g(n) por cima;
 - f(n) domina assintoticamente g(n).

- g(n) = O(f(n));
 - se existirem constantes positivas c e m tais que;
 - para $n \ge m$, temos que $|g(n)| \le c * |f(n)|$

• Prove que $n^2 + 10 = O(n^2)$

- Prove que $n^2 + 10 = O(n^2)$
 - $g(n) = n^2 + 10$
 - $f(n) = n^2$
 - c = 2
 - Agora precisamos descobrir um valor para m que valide a inequação: $0 \le n^2 + 10 \le 2n^2$.
 - $m = 1 \rightarrow 0 \le 11 \le 2$ (falso)
 - $m = 2 \rightarrow 0 \le 14 \le 8 \text{ (falso)}$
 - $m = 3 \rightarrow 0 \le 19 \le 18$ (falso)
 - $m = 4 \rightarrow 0 \le 26 \le 32$ (verdadeiro)
 - Portanto, os valores c = 2 e m = 4 provam que:
 - $g(n) = n^2 + 10 = O(n^2).$

- Para cada função abaixo, identifique o limite superior O:
 - $f(n) = 3n^2 + 1$
 - $f(n) = 2n^3 + \lg n$
 - f(n) = 5*n*lg n + 2n
 - f(n) = 21
 - $f(n) = \lg n + 3n$
 - $f(n) = \lg n + 2$

- Para cada função abaixo, identifique o limite superior O:
 - $f(n) = 3n^2 + 1 = O(n^2), O(n^3), O(2^n)...$
 - $f(n) = 2n^3 + \lg n = O(n^3), O(n^4), O(2^n)...$
 - $f(n) = 5*n*lg n + 2n = O(n*lg n), O(n^2), O(n^3), O(2^n)...$
 - $f(n) = 21 = O(1), O(\lg n), O(n), O(n * \lg n)...$
 - As constantes não dependem do tamanho da entrada (n). Assim, convencionou-se que O(constante) = O(1)
 - $f(n) = \lg n + 3n = O(n), O(n^2), O(n^3), O(2^n)...$
 - $f(n) = \lg n + 2 = O(\lg n), O(n), O(n*\lg n), O(n^2), O(n^3), O(2^n)...$

NOTAÇÃO Ω

- Limite assintótico inferior do comportamento de um algoritmo.
- Se uma função é $\Omega(n^2)$;
 - ela também será limitada assintoticamente por funções de graus inferiores.

NOTAÇÃO Ω

- $g(n) = \Omega(f(n)):$
 - g(n) cresce, no mínimo, tão lentamente quanto f(n);
 - f(n) é um **limite** assintótico **inferior** para g(n);
 - f(n) limita g(n) por baixo.

NOTAÇÃO Ω

- $g(n) = \Omega(f(n));$
 - se existirem constantes positivas c e m tais que;
 - para $n \ge m$, temos que $|g(n)| \ge c * |f(n)|$

Prove que $n^2 + 10 = \Omega(n^2)$

- Prove que $n^2 + 10 = \Omega(n^2)$
 - $g(n) = n^2 + 10$
 - $f(n) = n^2$
 - c = 1
 - Agora precisamos descobrir um valor para m que valide a inequação: $0 \le n^2 \le n^2 + 10$.
 - $m = 1 \rightarrow 0 \le 1 \le 11$ (verdadeiro)
 - $m = 2 \rightarrow 0 \le 4 \le 14$ (verdadeiro)
 - $m = 3 \rightarrow 0 \le 9 \le 19$ (verdadeiro)
 - $m = 4 \rightarrow 0 \le 16 \le 26$ (verdadeiro)
 - Portanto, com c = 1, qualquer valor de m que seja \geq 0 prova que:
 - $g(n) = n^2 + 10 = \Omega(n^2)$.

- Para cada função abaixo, identifique o limite inferior Ω :
- $f(n) = 3n^2 + 1$
- $f(n) = 2n^3 + \lg n$
- f(n) = 5*n*lg n + 2n
- f(n) = 21
- $f(n) = \lg n + 3n$
- $f(n) = \lg n + 2$

Para cada função abaixo, identifique o limite inferior Ω :

- $f(n) = 3n^2 + 1 = \Omega(n^2)$, $\Omega(n^* \lg n)$, $\Omega(n)$, $\Omega(\lg n)$, $\Omega(1)$
- $f(n) = 2n^3 + \lg n = \Omega(n^3), \Omega(n^2), \Omega(n), \Omega(\lg n), \Omega(1)$
- $f(n) = 5*n*lg n + 2n = \Omega(n*lg n), \Omega(n), \Omega(lg n), \Omega(1)$
- $f(n) = 21 = \Omega(1)$
- $f(n) = \lg n + 3n = \Omega(n), \Omega(\lg n), \Omega(1)$
- $f(n) = \lg n + 2 = \Omega(\lg n), \Omega(1)$

NOTAÇÃO Θ

- Limite assintótico justo.
- $g(n) = \Theta(f(n)):$
 - g(n) cresce tão rapidamente quanto f(n);
 - f(n) limita superiormente e inferiormente g(n);
 - f(n) limita g(n) tanto por cima quanto por baixo.
 - f(n) é um limite assintótico restrito para g(n).

NOTAÇÃO θ

- Se g(n) é $\Theta(f(n))$ então:
 - $g(n) \in O(f(n)) \in \Omega(f(n))$.
- Se g(n) é O(f(n)) e $\Omega(f(n))$ então:
 - $g(n) \in \Theta(f(n))$.

NOTAÇÃO Θ

- $g(n) = \Theta(f(n));$
 - se existirem constantes positivas c₁, c₂ e m tais que;
 - para $n \ge m$, temos que $c_1^* | f(n) | \le$ $|g(n)| \le c_2^* | f(n) |$

• Prove que $n^2 + 10 = \Theta(n^2)$

- Prove que $n^2 + 10 = \Theta(n^2)$
 - $g(n) = n^2 + 10$
 - $f(n) = n^2$
 - $c_1 = 1 e c_2 = 2$
 - Agora precisamos descobrir um valor para m que valide a inequação: $0 \le n^2 \le n^2 + 10 \le 2n^2$.
 - $m = 1 \rightarrow 0 \le 1 \le 11 \le 2$ (falso)
 - $m = 2 \rightarrow 0 \le 4 \le 14 \le 8$ (falso)
 - $m = 3 \rightarrow 0 \le 9 \le 19 \le 18$ (falso)
 - $m = 4 \rightarrow 0 \le 16 \le 26 \le 32$ (verdadeiro)
 - Portanto, os valores $c_1 = 1$, $c_2 = 2$ e m = 4 provam que:
 - $g(n) = n^2 + 10 = \Theta(n^2).$

- Para cada função abaixo, identifique o Θ :
 - $f(n) = 3n^2 + 1$
 - $f(n) = 2n^3 + \lg n$
 - f(n) = 5*n*lg n + 2n
 - f(n) = 21
 - $f(n) = \lg n + 3n$
 - $f(n) = \lg n + 2$

Para cada função abaixo, identifique
 ο Θ:

•
$$f(n) = 3n^2 + 1 = \Theta(n^2)$$

•
$$f(n) = 2n^3 + \lg n = \Theta(n^3)$$

•
$$f(n) = 5*n*lg n + 2n = \Theta(n*lg n)$$

•
$$f(n) = 21 = \Theta(1)$$

•
$$f(n) = \lg n + 3n = \Theta(n)$$

•
$$f(n) = \lg n + 2 = \Theta(\lg n)$$

- Responda se as afirmações abaixo são verdadeiras ou falsas:
 - $3n^2 + 5n + 1 \in O(n)$
 - $3n^2 + 5n + 1 \in O(n^2)$
 - $3n^2 + 5n + 1 \in O(n^3)$
 - $3n^2 + 5n + 1 \in \Omega(n)$
 - $3n^2 + 5n + 1 \in \Omega(n^2)$
 - $3n^2 + 5n + 1 \in \Omega(n^3)$
 - $3n^2 + 5n + 1 \in \Theta(n)$
 - $3n^2 + 5n + 1 \in \Theta(n^2)$
 - $3n^2 + 5n + 1 \in \Theta(n^3)$

- Responda se as afirmações abaixo são verdadeiras ou falsas:
 - $3n^2 + 5n + 1 \in O(n)$ (falso)
 - $3n^2 + 5n + 1 \neq O(n^2)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in O(n^3)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in \Omega(n)$
 - $3n^2 + 5n + 1 \in \Omega(n^2)$
 - $3n^2 + 5n + 1 \in \Omega(n^3)$
 - $3n^2 + 5n + 1 \in \Theta(n)$
 - $3n^2 + 5n + 1 \in \Theta(n^2)$
 - $3n^2 + 5n + 1 \in \Theta(n^3)$

- Responda se as afirmações abaixo são verdadeiras ou falsas:
 - $3n^2 + 5n + 1 \in O(n)$ (falso)
 - $3n^2 + 5n + 1 \in O(n^2)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in O(n^3)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in \Omega(n)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in \Omega(n^2)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in \Omega(n^3)$ (falso)
 - $3n^2 + 5n + 1 \in \Theta(n)$
 - $3n^2 + 5n + 1 \in \Theta(n^2)$
 - $3n^2 + 5n + 1 \in \Theta(n^3)$

- Responda se as afirmações abaixo são verdadeiras ou falsas:
 - $3n^2 + 5n + 1 \in O(n)$ (falso)
 - $3n^2 + 5n + 1 \neq O(n^2)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in O(n^3)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in \Omega(n)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in \Omega(n^2)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in \Omega(n^3)$ (falso)
 - $\blacksquare 3n^2 + 5n + 1 \in \Theta(n) \text{ (falso)}$
 - $3n^2 + 5n + 1 \in \Theta(n^2)$ (verdadeiro)
 - $3n^2 + 5n + 1 \in \Theta(n^3)$ (falso)

/

Preencha a tabela abaixo com verdadeiro ou falso:

	O(1)	O(lg n)	O(n)	O(n*lg(n))	O(n ²)	O(n ³)	O(n ⁵)	O(n ²⁰)
$g(n) = \lg(n)$								
g(n) = n * lg(n)								
g(n) = 5n + 1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	O(1)	O(lg n)	O(n)	O(n*lg(n))	O(n ²)	O(n ³)	O(n ⁵)	O(n ²⁰)
$g(n) = \lg(n)$	F	V	٧	V	V	V	٧	V
g(n) = n * lg(n)								
g(n) = 5n + 1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	O(1)	O(lg n)	O(n)	O(n*lg(n))	O(n ²)	O(n ³)	O(n ⁵)	O(n ²⁰)
$g(n) = \lg(n)$	F	V	٧	V	V	V	V	V
g(n) = n * lg(n)	F	F	F	V	V	V	V	V
g(n)=5n+1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	O(1)	O(lg n)	O(n)	O(n*lg(n))	O(n ²)	O(n ³)	O(n ⁵)	O(n ²⁰)
$g(n) = \lg(n)$	F	V	٧	V	V	V	V	V
$g(n) = n * \lg(n)$	F	F	F	V	V	V	٧	V
g(n)=5n+1	F	F	٧	V	V	V	V	V
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	O(1)	O(lg n)	O(n)	O(n*lg(n))	O(n ²)	O(n ³)	O(n ⁵)	O(n ²⁰)
$g(n) = \lg(n)$	F	V	٧	V	V	V	V	V
$g(n) = n * \lg(n)$	F	F	F	V	V	V	V	V
g(n)=5n+1	F	F	٧	V	V	V	V	V
$g(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	V
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	O(1)	O(lg n)	O(n)	O(n*lg(n))	O(n ²)	O(n ³)	O(n ⁵)	O(n ²⁰)
$g(n) = \lg(n)$	F	V	٧	V	V	V	V	V
$g(n) = n * \lg(n)$	F	F	F	V	V	V	V	V
g(n)=5n+1	F	F	٧	V	V	V	V	V
$g(n)=7n^5-3n^2$	F	F	F	F	F	F	V	V
$g(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	V	V
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	O(1)	O(lg n)	O(n)	O(n*lg(n))	O(n ²)	O(n ³)	O(n ⁵)	O(n ²⁰)
$g(n) = \lg(n)$	F	V	٧	V	V	V	V	V
g(n) = n * lg(n)	F	F	F	V	V	V	V	V
g(n)=5n+1	F	F	٧	V	V	V	V	V
$g(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	V
$g(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	V	V
$g(n) = \frac{n^5}{n^5} - 999999n^4$	F	F	F	F	F	F	V	V

Preencha a tabela abaixo com verdadeiro ou falso:

	Ω(1)	Ω (lg n)	Ω (n)	Ω (n*lg(n))	Ω (n^2)	Ω (n^3)	Ω (n^5)	Ω (n^{20})
$g(n) = \lg(n)$								
g(n) = n * lg(n)								
g(n) = 5n + 1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Ω (1)	Ω (lg n)	Ω (n)	Ω (n*lg(n))	Ω (n²)	Ω (n^3)	Ω (n^5)	Ω (n ²⁰)
$g(n) = \lg(n)$	V	V	F	F	F	F	F	F
g(n) = n * lg(n)								
g(n) = 5n + 1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Ω (1)	Ω (lg n)	Ω (n)	Ω (n*lg(n))	Ω (n^2)	$\Omega(n^3)$	$\Omega(n^5)$	Ω (n ²⁰)
$g(n) = \lg(n)$	٧	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	٧	V	٧	V	F	F	F	F
g(n) = 5n + 1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Ω (1)	$\Omega(\lg n)$	Ω (n)	Ω (n^* lg(n))	Ω (n²)	Ω (n^3)	Ω (n^5)	Ω (n ²⁰)
$g(n) = \lg(n)$	V	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	V	V	٧	V	F	F	F	F
g(n)=5n+1	V	V	٧	F	F	F	F	F
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Ω (1)	Ω (lg n)	Ω (n)	Ω (n*lg(n))	Ω (n^2)	$\Omega(n^3)$	$\Omega(n^5)$	Ω (n ²⁰)
$g(n) = \lg(n)$	V	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	V	V	٧	V	F	F	F	F
g(n)=5n+1	V	V	٧	F	F	F	F	F
$g(n)=7n^5-3n^2$	V	V	V	V	V	V	V	F
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Ω (1)	Ω (lg n)	Ω (n)	Ω (n*lg(n))	Ω (n^2)	$\Omega(n^3)$	$\Omega(n^5)$	Ω (n^{20})
$g(n) = \lg(n)$	V	V	F	F	F	F	F	F
g(n) = n * lg(n)	V	V	٧	V	F	F	F	F
g(n)=5n+1	V	V	٧	F	F	F	F	F
$g(n) = 7n^5 - 3n^2$	V	V	V	V	V	V	V	F
$g(n) = 99n^3 - 1000n^2$	V	V	V	V	V	V	F	F
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Ω (1)	Ω (lg n)	Ω (n)	Ω (n*lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	Ω (n 5)	Ω (n ²⁰)
$g(n) = \lg(n)$	V	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	V	V	V	V	F	F	F	F
g(n)=5n+1	V	V	V	F	F	F	F	F
$g(n)=7n^5-3n^2$	V	V	V	V	V	V	V	F
$g(n) = 99n^3 - 1000n^2$	V	V	V	V	V	V	F	F
$g(n) = n^5 - 99999n^4$	V	V	٧	V	V	V	V	F

Preencha a tabela abaixo com verdadeiro ou falso:

	Θ(1)	Θ(lg <i>n</i>)	Θ(n)	$\Theta(n^* \lg(n))$	Θ(n²)	Θ(n³)	Θ(n ⁵)	Θ(n ²⁰)
$g(n) = \lg(n)$								
g(n) = n * lg(n)								
g(n) = 5n + 1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 999999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Θ(1)	Θ(lg <i>n</i>)	Θ(n)	$\Theta(n^* g(n))$	Θ(n²)	$\Theta(n^3)$	Θ(n ⁵)	$\Theta(n^{20})$
$g(n) = \lg(n)$	F	V	F	F	F	F	F	F
g(n) = n * lg(n)								
g(n)=5n+1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Θ(1)	Θ(lg <i>n</i>)	Θ(n)	$\Theta(n^* g(n))$	$\Theta(n^2)$	$\Theta(n^3)$	$\Theta(n^5)$	Θ(n ²⁰)
$g(n) = \lg(n)$	F	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	F	F	F	V	F	F	F	F
g(n)=5n+1								
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Θ(1)	Θ(lg <i>n</i>)	Θ(n)	$\Theta(n^* g(n))$	$\Theta(n^2)$	$\Theta(n^3)$	$\Theta(n^5)$	Θ(n ²⁰)
$g(n) = \lg(n)$	F	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	F	F	F	V	F	F	F	F
g(n)=5n+1	F	F	٧	F	F	F	F	F
$g(n) = 7n^5 - 3n^2$								
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Θ(1)	Θ(lg <i>n</i>)	Θ(n)	$\Theta(n^* g(n))$	$\Theta(n^2)$	$\Theta(n^3)$	Θ(n ⁵)	Θ(n ²⁰)
$g(n) = \lg(n)$	F	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	F	F	F	V	F	F	F	F
g(n)=5n+1	F	F	٧	F	F	F	F	F
$g(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	F
$g(n) = 99n^3 - 1000n^2$								
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Θ(1)	Θ(lg n)	Θ(n)	$\Theta(n^* \lg(n))$	$\Theta(n^2)$	Θ(n³)	Θ(n ⁵)	Θ(n ²⁰)
$g(n) = \lg(n)$	F	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	F	F	F	V	F	F	F	F
g(n)=5n+1	F	F	٧	F	F	F	F	F
$g(n)=7n^5-3n^2$	F	F	F	F	F	F	V	F
$g(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	F	F
$g(n) = n^5 - 99999n^4$								

Preencha a tabela abaixo com verdadeiro ou falso:

	Θ(1)	Θ(lg <i>n</i>)	Θ(n)	Θ(n*lg(n))	$\Theta(n^2)$	Θ(n³)	Θ(n ⁵)	Θ(n ²⁰)
$g(n) = \lg(n)$	F	V	F	F	F	F	F	F
$g(n) = n * \lg(n)$	F	F	F	V	F	F	F	F
g(n)=5n+1	F	F	٧	F	F	F	F	F
$g(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	F
$g(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	F	F
$g(n) = \frac{n^5}{n^5} - 999999n^4$	F	F	F	F	F	F	V	F

Indique o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado):

	Constante	Linear	Polinomial	Exponencial
3n				
1				
(3/2)n 2n ³				
2n ³				
2 ⁿ				
3n ²				
1000				
$(3/2)^n$				

Indique o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado):

	Constante	Linear	Polinomial	Exponencial
3n		/		
1	✓			
(3/2)n 2n ³		/		
2n ³			√	
2 ⁿ				/
3n ²			S	
1000	√			
$(3/2)^n$				√

Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com seu crescimento, do mais lento para o mais rápido (Khan Academy, adaptado).

- Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com seu crescimento, do mais lento para o mais rápido (Khan Academy, adaptado).
 - $f_6(n) = 1$

 - $f_1(n) = n^2$
 - $f_5(n) = n^3$
 - $f_{\Delta}(n) = (3/2)^n$
 - $f_3(n) = 2^n$

Classifique as funções $f_1(n) = n*\log_6 n$, $f_2(n) = \lg n$, $f_3(n) = \log_8 n$, $f_4(n) = 8n^2$, $f_5(n) = n*\lg n$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com seu crescimento, do mais lento para o mais rápido (Khan Academy, adaptado).

- Classifique as funções $f_1(n) = n*\log_6 n$, $f_2(n) = \lg n$, $f_3(n) = \log_8 n$, $f_4(n) = 8n^2$, $f_5(n) = n*\lg n$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com seu crescimento, do mais lento para o mais rápido (Khan Academy, adaptado).
 - $f_6(n) = 64$
 - $f_3(n) = \log_8 n$
 - $f_2(n) = \lg n$
 - $\bullet \qquad f_9(n) = 4n$
 - $f_1(n) = n*\log_6 n$
 - $f_5(n) = n*\lg n$
 - $\bullet \qquad f_{\Delta}(n) = 8n^2$
 - $f_7(n) = 6n^3$
 - $f_8(n) = 8^{2n}$

Faça a correspondência entre cada função g(n) com sua f(n) equivalente, em termos de Θ . Essa correspondência ocorre quando $g(n) = \Theta(f(n))$ (Khan Academy, adaptado).

g(n)	f(n)
n + 30	n ⁴
$n^2 + 2n - 10$	3n - 1
n ³ * 3n	lg(2n)
lg(n)	$n^2 + 3n$

Faça a correspondência entre cada função g(n) com sua f(n) equivalente, em termos de Θ . Essa correspondência ocorre quando $g(n) = \Theta(f(n))$ (Khan Academy, adaptado).

 Apresente a função e a complexidade, em termos de Θ, para o número de subtrações do pior e melhor casos.

```
i = 0;
while (i < n) {
    i++;
    a--; }
if (b > c) {
    i--;
} else {
    i--;
    a--; }
```

 Apresente a função e a complexidade, em termos de Θ, para o número de subtrações do pior e melhor casos.

```
i = 0;
while (i < n) {
    i++;
    a--; }
if (b > c) {
    i--;
} else {
    i--;
    a--; }
```

- Pior caso:
 - função de complexidade: n+ 2
 - **■ O**(n)
- Melhor caso:
 - função de complexidade: n+ 1
 - **O**(n)

Apresente a função e a complexidade, em termos de Θ , para o número de subtrações do pior e melhor casos.

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

 Apresente a função e a complexidade, em termos de O, para o número de subtrações do pior e melhor casos.

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

- Pior e melhor casos:
 - função de complexidade:

$$(2n + 1)*n$$

 $\Theta(n^2)$

Apresente a função e a complexidade, em termos de Θ , para o número de subtrações do pior e melhor casos.

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j*=2) {
        b--;
    }
}</pre>
```

Apresente a função e a complexidade, em termos de O, para o número de subtrações do pior e melhor casos.

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j*=2) {
        b--;
    }
}</pre>
```

- Pior e melhor casos:
 - função de
 complexidade:
 (lg(n) + 1)*n =
 n*lg(n) + n
 - \bullet $\Theta(n*lg(n))$

Apresente a função e a complexidade, em termos de O, para o número de comparações e movimentações do pior e melhor casos.

```
void imprimirMaxMin( int [] array, int n){
    int maximo, minimo;
    if (array[0] > array[1])
        maximo = array[0]; minimo = array[1];
    else
        maximo = array[1]; minimo = array[0];
    for (int i = 2; i < n; i++)
        if (array[i] > maximo)
            maximo = array[i];
    else if (array[i] < minimo)
        minimo = array[i];
}</pre>
```

Número de comparações:

- Pior caso:
 - função de complexidade: 1 + 2*(n-2)
 - **O**(n)
- Melhor caso:
 - função de complexidade: 1 + 1*(n-2)
 - \bullet $\Theta(n)$

Número de movimentações:

- Pior caso:
 - função de complexidade: 2 + 1*(n-2)
 - **O**(n)
- Melhor caso:
 - função de complexidade: 2 + 0*(n-2)
 - **■ Θ**(1)

- Complexidade constante ou fixa:
 - f(n) = O(1).
 - Tempo de execução do algoritmo;
 - independe do tamanho da entrada: n.
 - Instruções do algoritmo;
 - executadas um número fixo de vezes.

- Complexidade logarítmica:
 - $f(n) = O(\lg n)$.
 - Tipicamente, é a complexidade de algoritmos que resolvem problemas;
 - transformando-os em problemas menores.
 - Exemplo:
 - algoritmo de Pesquisa Binária.

- Complexidade logarítmica:
 - $f(n) = O(\lg n)$.
 - Supondo que a base do logaritmo seja 2:
 - para n = 1.000;
 - $f(1.000) = Ig 1.000 \approx 10;$
 - \blacksquare para n = 1.000.000;
 - $f(1.000.000) = \lg 1.000.000 \cong 20.$

- Complexidade linear:
 - $\bullet \quad f(n) = O(n).$
 - Um pequeno trabalho é realizado;
 - sobre cada elemento da entrada.
 - Cada vez que n dobra de tamanho;
 - o tempo de execução do algoritmo também dobra.
 - Exemplo:
 - algoritmo de Pesquisa Sequencial.

- Algoritmos n * lg n:
 - $f(n) = O(n \lg n)$.
 - Tipicamente, é a complexidade de algoritmos que resolvem problemas;
 - quebrando-os em problemas menores;
 - resolvendo cada um deles independentemente;
 - agrupando as soluções.

- Algoritmos n * lg n:
 - $f(n) = O(n \lg n)$.
 - Supondo que a base do logaritmo seja 2:
 - para n = 1.000.000;
 - $f(1.000.000) = 1.000.000 * lg 1.000.000 \cong 20.000.000;$
 - \blacksquare para n = 2.000.000;
 - $f(2.000.000) = 2.000.000 * lg 2.000.000 \cong 42.000.000.$

- Complexidade quadrática:
 - $f(n) = O(n^2)$.
 - Itens de dados são processados aos pares;
 - tipicamente, em um laço dentro de outro.
 - Algoritmos desta classe são úteis para resolver problemas;
 - de tamanho relativamente pequeno.

Complexidade quadrática:

•
$$f(n) = O(n^2)$$
.

n	n ²	
10	100	
20	400	
30	900	
40	1600	
50	2500	
60	3600	

- Complexidade cúbica:
 - $f(n) = O(n^3)$.
 - Cada vez que n dobra de tamanho;
 - o tempo de execução do algoritmo é multiplicado por 8.
 - Algoritmos desta classe são úteis para resolver problemas;
 - de tamanho relativamente pequeno.
 - Exemplo:
 - algoritmo para Multiplicação de Matrizes.

- Complexidade exponencial:
 - $f(n) = O(2^n)$.
 - Cada vez que n dobra de tamanho;
 - o tempo de execução do algoritmo é elevado ao quadrado.
 - Algoritmos desta classe;
 - não são úteis sob o ponto de vista prático.
 - Ocorre na solução de problemas por força bruta.

- Complexidade fatorial:
 - $\bullet \quad f(n) = O(n!).$
 - Também ocorre na solução de problemas por força bruta;
 - com a identificação de todas as combinações possíveis para a resolução do problema.
 - Comportamento muito pior do que $O(2^n)$.

- Complexidade fatorial:
 - $\bullet \quad f(n) = O(n!).$
 - Para n = 20;
 - f(20) = 20! = 2432902008176640000;
 - um número de 19 dígitos!
 - Para n = 40;
 - $f(40) = 40! \approx 8,16 \times 10^{47};$
 - um número de 48 dígitos!

- Complexidade fatorial:
 - $\bullet \quad f(n) = O(n!).$
 - $f(40) = 40! \approx 8,16 \times 10^{47}$.
 - Um computador que execute 1 bilhão de operações por segundo;
 - levaria 10³⁸ segundos para resolver este problema.
 - 10³⁸ segundos = 31.709.791.983.764.586.504.312.531.709,792 séculos!

TEMPO DE EXECUÇÃO ESTIMADO

Função	Tamanho da entrada <i>n</i>					
de custo	10	20	30	40	50	60
n	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	0,00006s
n^2	0,0001s	0,0004s	0,0009s	0,0016s	0,0025s	0,0036s
n^3	0,001s	0,008s	0,027s	0,064s	0,125s	0,316s
n ⁵	0,1s	3,2s	24,3s	1,7 minutos	5,2 minutos	13 minutos
2 ⁿ	0,001s	1 s	17,9 minutos	12 , 7 dias	35,7 anos	366 séculos
3 ⁿ	0,059s	58 minutos	6,5 anos	3855 séculos	10 ⁸ séculos	10 ¹³ séculos

ALGORITMOS POLINOMIAIS X ALGORITMOS EXPONENCIAIS

- Algoritmo polinomial:
 - algoritmo cuja função de complexidade é
 O(n^p);
 - sendo p um inteiro correspondente ao grau do polinômio.
- Algoritmo exponencial:
 - algoritmo cuja função de complexidade é
 O(cⁿ);
 - sendo c > 1.

ALGORITMOS POLINOMIAIS X ALGORITMOS EXPONENCIAIS

- Um problema é considerado intratável;
 - quando ele é tão difícil que não existe algoritmo polinomial capaz de resolvê-lo.
- Um problema é considerado bem resolvido;
 - quando existe algum algoritmo polinomial capaz de resolvê-lo.

ALGORITMOS EXPONENCIAIS

- Um algoritmo que leva séculos para finalizar sua execução;
 - não é uma opção
 adequada.
- Problema do Caixeiro Viajante:

PROBLEMA DO CAIXEIRO VIAJANTE

	Número de Cidades	Tempo de Execução
5		5 s
6		5 * 5 = 25 s
7		6 * 25 = 150 s = 2,5 minutos
8		7 * 2,5 = 17,5 minutos
9		8 * 17,5 = 140 minutos = 2,34 horas
10		9 * 2,34 = 21 horas
11		10 * 21 = 210 horas = 8,75 dias
12		11 * 8,75 = 96,25 dias
13		12 * 96,25 = 1155 dias = 3,15 anos
14		13 * 3,15 = 41,02 anos
15		14 * 41,02 = 574 anos
16		15 * 574 = 8,6 séculos

ALGORITMOS POLINOMIAIS X ALGORITMOS EXPONENCIAIS

- Algoritmos eficientes:
 - tempo polinomial.
- Algoritmos ineficientes:
 - tempo superpolinomial.

