### Prédiction de la sévérité d'accidents corporels de la route

11 janvier 2024



### Sommaire

- Traitement des données
  - Entraînement des 1ers modèles
    - Représentation one-hot
      - Binarisation de la cible
        - Idées d'améliorations

01

## Traitement des données

### **Fusion des BD**



 $\rightarrow$  127k usagers

### Suppression de features

#### $\rightarrow$ 54 features

- Suppression des IDs : -4
- Suppression des features de date et lieu : -14
- Suppressions de celles avec trop de valeur manquantes : -3
  - > occutc (98.6%)
  - > lartpc (99.95%)
  - > larrout (93.5%)
- Suppression de *trajet* (25%): **-1**
- Suppression des features intrinsèques aux piétons (93%) : -3

#### → 29 features

### Remplacement de features

#### $\rightarrow$ 29 features

- Pour réduire le taux de données manquantes :
  - Remplacement de obs et obsm par obscar qui les regroupe : -1
  - Remplacement de secu1, secu2 et secu3 par secu qui compte le nombre d'équipements : -2
- Remplacement de an\_nais par age pour mieux représenter les valeurs extrêmes

#### $\rightarrow$ 26 features

## Taux de remplissage des features



## Formatage des données

- Peu d'outliers (données catégorielles)
- Remplacement des **lettres** par des nombres
- Ajout de 1 à toutes les valeurs de :
  - > infra, choc, nbv et vosp

Pour maintenir une sémantique cohérente (-1 ou 0 : manquant)

et pour différencier le manque d'info de l'info négative (ex : nbv)

## Filtrage des données

On conserve l'usager si aucune valeur manquante :

127k usagers → 98k usagers (vs 75k avec *trajet*)

**54** features → **26** features

## **Exploration des données**

La **cible** *grav* présente 4 classes très **déséquilibrées** 



## **Exploration des données**

*ag*e présente une distribution étrange



## Réduction de dimension

Les 26 features conservées contiennent quelques **corrélations** assez importantes :

- secu, place et catu
- vma, agg, nbv et catr
- **.**



### Réduction de dimension

Pour éliminer la redondance et réduire le temps de calcul : PCA (ou t-SNE ou UMAP)

→ 5 composantessuffisent à expliquer99+% de la variance

→ chaque composante est composée à plus de 95% par une seule feature :

- vma
- age
- catv
- manv
- obscar



### Réduction de dimension

→ la **corrélation** entre les 5 composantes principales est bien **nulle** 



## Séparation en dimension inférieure



→ en 5D, après PCA : silhouette = -0.02 (min -1, max 1)

#### En résumé

#### → 3 ensembles de features pour un même usager

- 26 features extraites/construites à partir du dataset
  - le plus proche des données originales
- 5 composantes principales expliquant 99+% de la variance
  - > autant d'info que dans les 26 features, moins de calculs
- 5 features du dataset choisies par PCA (ou XGBoosting)
  - les plus importantes, facilite l'interprétation



# Entraînement des 1ers modèles

#### Modèles sélectionnés

#### → 5 modèles de familles différentes

- RandomForestClassifier
  - Forêt aléatoire
- GaussianNB
  - Réseau bayésien gaussien (inférence probabiliste)
- LogisticRegression
  - Régression logistique
- KNeighborsClassifier
  - Vote des k plus proches voisins
- MLPClassifier
  - Perceptron multi-couches (réseau de neurones)

## Recherche d'hyperparamètres

- → **GridSearch** sur quelques HP bien choisis
  - → seulement quelques valeurs pour chaque HP
    - → possibilité de RandomSearch pour affiner le choix

#### **Entraînement des modèles**

#### → Cross-validation :

- afin de réduire l'effet du hasard
- 5 folds (80% train + 20% test)
- proportions des classes conservées



## Métriques de performance

#### → 4 métriques

- Accuracy
  - > permet de traquer la performance globale
- Precision (macro)
- Recall (macro)
- F1-score (macro)
  - permettent de prendre en compte le déséquilibre des classes

#### Résultats 26 features



#### **Résultats 5 PCA**



## Résultats 5 features principales



## **Temps 26 features**



## Temps 5 PCA



→ RandomForest ++



## Temps 5 features principales





## Surapprentissage? (non)

→ accuracy de train ≈ accuracy de test



03

# Représentation one-hot

#### **One-hot**



- → création d'autant de features qu'il y a de valeurs possibles pour la feature originale
  - → **suppression de l'ordre** entre les catégories
    - → meilleures performances mais plus de calculs

#### 26 features → 200 features

#### Résultats 26 features



#### Résultats 200 one-hot features



## **Temps 26 features**



## Temps 200 one-hot features



- → MLP +
- $\rightarrow$  KNN +++



04

## Binarisation de la cible

#### 2 classes au lieu de 4

Réduit l'impact de l'ordre



Permet de voir si le modèle fait des grosses erreurs

36

#### Résultats 4 classes (26 features)



## Résultats 2 classes (26 features)



## Temps 4 classes (26 features)



## Temps 2 classes (26 features)





## Suréchantillonnage

**SMOTE** (Synthetic Minority Oversampling TEchnique)

- → création de nouveaux usagers pour équilibrer la classe minoritaire
- → utilisation des usagers existants de la classe
- → passage de 25% de l'effectif de l'autre classe à **75**%

#### Résultats 2 classes



#### Résultats 2 classes suréchantillonnées



→ NB --

→ Meilleures perfs sur classe minoritaire



## Temps 2 classes (26 features)



#### Temps 2 classes suréchantillonnées

 $\rightarrow$  KNN + car plus d'échantillons (temps en O(n<sup>2</sup>))



# 05

# Idées d'améliorations

#### Idées d'améliorations

- Plusieurs modèles pour les différentes situations
  - > 1 modèle pour les piétons
  - 1 modèle pour les voitures seules
  - 1 modèle pour les collisions de voitures

Permet de modéliser plus précisément l'accident :

- Utilisation des 3 features des piétons
- Utilisation d'infos sur les autres véhicules impliqués (ex : sens de circulation relatif, type de véhicule, etc.)
- Découplage des piétons renversés et de passagers, qui sont actuellement rattachés à la même voiture
- Combinaison de modèles
- Exploration plus exhaustive des HP avec RandomSearch



## **Annexes**











