Produit scalaire et géométrie

Chapitre 6

I. Produit scalaire

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\overrightarrow{u}, \overrightarrow{v})$

Soit H le projeté orthogonal de C sur (AB), et K celui de B sur (AC).

Alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AK} \cdot \overrightarrow{AC}$

$$\vec{u}(x,y,z)$$
 $\vec{v}(x',y',z')$ $\vec{u}\cdot\vec{v}=xx'+yy'+zz'$

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$$

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$$

$$\|\vec{u}\|^2 - \|\vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$$

$$\vec{u} \cdot \vec{v} = 0 \Leftrightarrow \vec{u} \perp \vec{v}$$

II. Droite

Equation paramétrique $ (A(x_A, y_A, z_A) \in \mathcal{D}) $ $ \begin{cases} x = x_1 \\ y = y_2 \\ z = z_1 \end{cases} $	$A_1 + \lambda b$
--	-------------------

Équation cartésienne ax + by + c = 0

Vecteur normal $\vec{n}(a,b)$

Vecteur directeur $\vec{u}(-b,a)$

Distance au point M_0 $d(M_0, \mathcal{D}) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$

III. Plan

Équation paramétrique	$(x = x_A + \alpha \alpha + \beta \alpha')$
$A(x_A, y_A, z_A)$; $\vec{u}(a, b, c)$; $\vec{v}(a', b', c')$ $\mathcal{P}(A, \vec{u}, \vec{v})$	$\begin{cases} y = y_A + \alpha b + \beta b' \\ z = z_A + \alpha c + \beta c' \end{cases}$

Équation cartésienne ax + by + cz + d = 0

Vecteur normal $\vec{n}(a,b,c)$

Distance au point M_0 $d(M_0,d) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$

IV. Cercle

• Équations de cercle :

$$\frac{(x-a)^2 + (y-b)^2}{(x-x_A)(x-x_B) + (y-y_a)(y-y_B)} = 0$$
 avec $\Omega(a,b)$ centre du cercle avec $\Omega(a,b)$ centre du cercle

V. Sphère

• Équation de sphère :

$$\overline{(x-a)^2 + (y-b)^2} + (z-c)^2 = R^2 \quad avec \,\Omega(a,b,c) \, centre \, de \, la \, sph\`ere$$