High-Dimensional Random Walks

Walking on Matroids

Alex Albors Juez

Mentor: Linhang Huang

November 29th, 2023

WDRP, University of Washington

Table of contents

- 1. Motivation
- 2. Preliminaries

Matroids

- 3. Random walks on the matroid bases
- 4. References

Motivation

Random forests of a graph

Given an undirected graph G = (V, E), want to count how many spanning forests there are in a certain graph G.

- 1. A cycle is a path that starts from a given vertex and ends at the same vertex.
- 2. A **tree** is a connected graph with no cycles.
- 3. A forest is a graph that has no cycles. Alternatively, it is a union of trees.

(c) Example of a forest

Random graphs

Figure 2: Possible forest (in this case just one tree)

Figure 3: Random graph with $V=11,\ E=17$

Random graphs

Figure 4: Random graph with V = 120, E = 350

Random graphs

 $\textbf{Figure 5:} \ \, \mathsf{Possible forest (in this case just one tree)}$

Preliminaries

Matroids

A matroid M is a pair $M=(X,\mathcal{I})$ where X is a finite set and $\mathcal{I}\subseteq 2^X$ so that the following holds:

- (i) Non-emptyness: $\emptyset \in \mathcal{I}$
- (ii) Monotonicity: If $Y \in \mathcal{I}$ and $Z \subseteq Y$ then $Z \in \mathcal{I}$.
- (iii) Exchange property: If $Y, Z \in \mathcal{I}$ and |Y| < |Z|, then for some $x \in Z \setminus Y$ we have $Y \cup \{x\} \in \mathcal{I}$

Definition (basis)

Let $M = (X, \mathcal{I})$ be a matroid. A maximal independent set $B \in \mathcal{I}$ is called a *basis* of X.

7

Graphic Matroids

We can think of a graph as a graphic matroid. For a graph G = (V, E), we let X = E and $\mathcal{I} = \{F \subseteq E | F \text{ acyclic}\}$. Then $M = (X, \mathcal{I}) = (E, \mathcal{I})$.

Random walks

Random walk on the bases of M

High-level idea: Graph $G \to \text{Graphic Matroid} \to \text{Random Walk}$ **Procedure:**

- 1. Start with graph G = (V, E) with |E| = n.
- 2. Pick any maximal forest of size r in G. Forest is acyclic and of size $1 \le r \le n$.
- 3. This corresponds to basis element B of the graphic matroid of G (dimension r).
- 4. Drop a random element i from B. Pick j uniformly at random from $\{1, \ldots, n\}$, and try adding it to $B\setminus\{i\}$. Do it until we can.
- 5. Repeat step 4.

Random walk on the bases of M

High-level idea: Graph $G \to \text{Graphic Matroid} \to \text{Random Walk}$ **Procedure:**

- 1. Start with graph G = (V, E) with |E| = n.
- 2. Pick any maximal forest of size r in G. Forest is acyclic and of size $1 \le r \le n$.
- 3. This corresponds to basis element B of the graphic matroid of G (dimension r).
- 4. Drop a random element i from B. Try adding an element $j \in \{1, \ldots, n\}$ to $B \setminus \{i\}$ uniformly at random. If we can't, try again.
- 5. Repeat step 4.

Theorem (Convergence of algorithm)

Given an error $0 < \epsilon < 1$ and error probability $0 < \delta < 1$, after $r \cdot \log(n^r/\epsilon) \cdot poly(\log(1/\delta))$ steps, the algorithm will have seen all basis elements up to an error factor of $1 \pm \epsilon$ with probability at least $1 - \delta$.

Random walks on bases of M

- The efficiency of the algorithm is due to [1, AKOV19]
- Ensuring we can go from sampling to counting is due to [2, JVV86]
- So we can sample an (almost) uniformly random basis element of M
 (a spanning forest of G) by running this Random Walk long enough.

Theorem (Convergence of algorithm)

Given an error $0 < \epsilon < 1$ and error probability $0 < \delta < 1$, after at most $r \cdot \log(n^r/\epsilon) \cdot poly(\log(1/\delta))$ steps, the algorithm will have seen all basis elements up to an error factor of $1 \pm \epsilon$ in the total number of basis elements with probability at least $1 - \delta$.

[1, AKOV19] and [2, JVV86]

• The n^r comes from the fact there are at most $\binom{n}{r} \leq n^r$ bases in an r-dimensional Matroid on the set [n].

References

References

Mark R. Jerrum, Leslie G. Valiant, Vijay V. Vazirani, *Random generation of combinatorial structures from a uniform distribution*, Theoretical Computer Science, Volume 43, 1986 (pp. 169-188)