

Procesarea Imaginilor

Curs 12

Modele de culoare. Procesarea și segmentarea imaginilor color.

Achiziția imaginilor color

Senzori color

http://www.siliconimaging.com/RGB%20Bayer.htm http://en.wikipedia.org/wiki/Three-CCD_camera

a) Bayer mask

For color photos, the majority of commercial digital color cameras use pixels covered with special color filters in the three primary colors red, green and blue.

c) 3-CCD camera

Achiziția imaginilor color

Decodificarea pattern-ului Bayer

Spațiul de culoare RGB

RGB ⇒ Culoarea fiecărui pixel (atât pentru echipamentele de achiziţie – camere cât şi pentru afişare - TV, CRT, LCD) se obţine prin combinaţia a trei culori primare: roşu, verde şi albastru. (Red, Green şi Blue)

 \Rightarrow spaţiu de culoare aditiv (R+G+B \Rightarrow Alb)

Modelul de culoare RGB mapat pe un cub. În acest exemplu fiecare culoare este reprezentată pe câte 8 biţi (256 de nivele) (imagini bitmap RGB24). Numărul total de culori este 28x28x28 = 2²⁴ = 16.777.216.

Spațiul de culoare CMY

CMY: spaţiu de culoare complementar față de RGB, folosit la dispozitivele de imprimare color.

CMY: model substractiv

Alb = absenta componentelor de culoare

Yellow

CMYK

Technical University of Cluj Napoca

Spațiul de culoare RGB normalizat

Reduce dependența de iluminare a culorii obiectului

Se poate aplica doar dacă variațiile de intensitate sunt uniforme de-a lungul spectrului RGB

$$r = \frac{R}{R+G+B}, \ g = \frac{G}{R+G+B}, \ b = \frac{B}{R+G+B}$$

$$r + g + b = 1$$

Spațiul de culoare HSI (HSV, HSB, HSL)

HSI: (H, S, I), H=0 .. 2π , S=0 .. 1, I=0 .. 255

$$I = \frac{1}{3} (R + G + B)$$

$$S = 1 - \frac{3}{(R+G+B)} \left[\min(R,G,B) \right]$$

$$H = \begin{cases} \Phi & if \ G \ge B \\ 2\Pi - \Phi & if \ G < B \end{cases}$$

$$\Phi = \cos^{-1} \left(\frac{\frac{1}{2} [(R-G) + (R-B)]}{[(R-G)^2 + (R-B)(G-B)^{\frac{1}{2}}]} \right)$$

Alte spații de culoare

XYZ tristimulus - transformare liniară asupra RGB:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.607 & 0.174 & 0.200 \\ 0.299 & 0.587 & 0.114 \\ 0.000 & 0.066 & 1.116 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

sat =
$$\sqrt{a^2 + b^2}$$
,
hue = $\arctan'(b, a)$

CIE(Lab) space

$$L = 25(100Y/Y_0)^{1/3} - 16 ,$$

$$a = 500 \left[(X/X_0)^{1/3} - (Y/Y_0)^{1/3} \right]$$

$$b = 200 \left[(Y/Y_0)^{1/3} - (Z/Z_0)^{1/3} \right]$$

CIE(Luv) space

$$u = 13W(4X/(X+15Y+3Z) - 0.199$$

$$v = 13W(6Y/(X+15Y+3Z) - 0.308$$

L – componenta de intensitate

a, b - componentele de culoare cu variație liniară

Technical University of Cluj Napoca

Proprietăți ale trăsăturilor cromatice

Invarianța la translație și scalare

Hue – invariantă la scalarea uniformă a RGB: $H(\alpha R, \alpha G, \alpha B) = H(R, G, B)$

RGB-norm – invariantă la scalarea uniformă RGB: $\begin{array}{lll} r(\alpha R,\alpha G,\alpha B) &=& r(R,G,B) \\ g(\alpha R,\alpha G,\alpha B) &=& g(R,G,B) \\ b(\alpha R,\alpha G,\alpha B) &=& b(R,G,B) \end{array}$

Hue – invariantă la translația uniformă RGB: $H(R + \beta, G + \beta, B + \beta) = H(R, G, B)$

RGB-norm – nu prezintă invarianță la scalarea uniformă RGB:

$$r(R + \beta, G + \beta, B + \beta) \neq r(R, G, B)$$

 $g(R + \beta, G + \beta, B + \beta) \neq g(R, G, B)$
 $b(R + \beta, G + \beta, B + \beta) \neq b(R, G, B)$

Proprietăți ale trăsăturilor cromatice

Singularitate Hue pentru RGB ≈ 0

 $R=G=B=0 \Rightarrow H \text{ nedefinit}$

Exemple:

$$H(1,0,0) = 0$$
, $H(0,1,0) = 2\pi/3$

$$H(1,1,0) \Rightarrow H(2,1,0) : \delta H = \pi/6$$

Concluzie: calcularea H în zone cu intensitatea mică ⇒ erori numerice

Procesări pe imagini color

Se pot aplica transformări pe fiecare componentă de culoare în parte

Procesări pe imagini color

Transformări folosind spațiul de culoare HSI

- 1. Transformare RGB -> HSI
- 2. Aplicare transformări pe fiecare componentă:
 - Pe I: modificare luminozitate, contrast, etc
 - Pe S: modificare a intensității culorilor
 - Pe H: modificare a nuanței (ex: deplasare spre roşu/spre albastru)
- 3. Transformare HSI ->RGB

Metoda Canny pentru imagini color

[2] A. Koschan, M. Abidi, Digital Color Image Processing, Wiley & Sons, 2008.

Algoritm

- 1.Filtrare zgomot cu un filtru trece jos ([2], cap. 5.3, pp102-117)
- 2.Calculul modulului și a direcției gradientului ([2], cap 6.1.1, pag 126-128)
- 3. Supresia non-maximelor
- 4.Binarizare cu histereză

Metoda Canny pentru imagini color

Pas2:

Pixel $(x,y) \Rightarrow$ culoarea : C(x,y)=(R,G,B)

Gradient ⇒ Jacobian (matricea derivatelor parțiale ale vectorului C):

$$\mathbf{J} = \begin{pmatrix} R_{x} & R_{y} \\ G_{x} & G_{y} \\ B_{x} & B_{y} \end{pmatrix} = (\mathbf{C}_{x}, \mathbf{C}_{y}).$$

$$R_x = \frac{\partial R}{\partial x}$$
 and $R_y = \frac{\partial R}{\partial y}$

Metoda Canny pentru imagini color

Direcția - vectorul propriu al J^TJ corespunzător celei mai mici valori proprii:

$$\tan(2\theta) = \frac{2 \cdot \mathbf{C}_{x} \cdot \mathbf{C}_{y}}{\|\mathbf{C}_{x}\|^{2} - \|\mathbf{C}_{y}\|^{2}}$$

$$\mathbf{C}_{\mathcal{X}} = (R_{\mathcal{X}}, G_{\mathcal{X}}, B_{\mathcal{X}})$$

Magnitudinea:

$$m^2 = \|\mathbf{C}_x\|^2 \cos^2(\theta) + 2 \cdot \mathbf{C}_x \cdot \mathbf{C}_y \cdot \sin(\theta) \cos(\theta) + \|\mathbf{C}_y\|^2 \sin^2(\theta).$$

Rezultate Canny color

Sursa imagini: http://lear.inrialpes.fr/people/vandeweijer/research1

Segmentarea imaginilor color

Segmentare := identificarea zonelor omogene din imagine

Segmentare imagini color := identificare regiuni (componente conexe) care satisfac anumite criterii de omogenitate, bazate pe trăsături derivate din componentele de culoare, definite în spațiul de culoare considerat.

- (1) Regiune (definiție bazată pe proprietățile pixelului) := submulțime de pixeli specificată printr-o funcție de apartenență la o clasă definită în spațiul de culoare considerat. De exemplu:
- (a) Culoarea pixelului este într-un semispațiu definit de un plan;
- (b) Culoarea pixelului se încadrează într-un poliedru;
- (c) Culoarea pixelului se incadrează într-o celulă Voronoi dată de o mulțime de puncte reprezentative;

Decompoziție (spațiu) Voronoi := În cazul cel mai simplu (2D) se dă un set de puncte S în plan (centrele Voronoi). Fiecare centru s are asociată o celula Voronoi V(s) conținând toate punctele mai apropiate de s decât de toate celelalte centre.

Muchiile diagramei Voronoi sunt multimi de puncte (segmente de dreaptă) care sunt egal depărtate de două centre.

Nodurile Voronoi sunt puncte echidistante față de 3 sau mai multe centre Voronoi

Segmentarea imaginilor color

- (2) Regiune (definiție bazată pe relația dintre pixeli) := setul maximal de pixeli pentru care este satisfăcută o condiție de uniformitate (predicat de omogenitate):
- (a) Regiuni uniforme obținute prin creșterea unui bloc (seed) prin unirea altor pixeli sau blocuri de pixeli
- (b) Regiuni uniforme obținute prin împărțirea unor regiuni mai mari care nu sunt omogene
- (3) Regiune (definiție bazată pe noțiunea de muchie) := set de pixeli delimitați de pixeli de muchie (contur) (condiția de muchie este un predicat de ne-omogenitate):

1. Segmentare la nivel de pixel

Segmentarea se face în spațiul trăsăturilor (culorilor)

Abordări:

- Bazate pe histogramă: detecţia maximelor şi gruparea culorilor (clustering) în jurul maximelor + clasificarea pixelilor în aceste clustere
- 2. Clustering în spațiul de culoare punctele din spațiul de culoare sunt grupate în jurul unor centre reprezentative + clasificarea pixelilor în aceste clustere
- 3. Clustering fuzzy pe baza funcțiilor de apartenență fuzzy

1.1. Segmentare bazată pe împărțirea histogramei

Detecția maximelor histogramei Hue (filtrate) și împărțirea spațiului Hue în clustere având ca centre aceste vârfuri, clasificare pixeli pe baza vârfului corespunzător.

1.2 Clustering în spațiul de culoare

Gruparea culorilor (din spațiul culorilor) și asignarea unei culori reprezentative fiecărui grup

- cuantizare/posterizare (împărțirea spațiului trăsăturilor în subspații de dimensiuni fixe);
 - clustering:
- supervizat informații apriori: se știu numărul clusterelor și/sau pozițiile centrelor (de exemplu varfurile histogramelor)
- nesupervizat fără informații apriori

Nu se aplică de de obicei pe RGB ci pe HS sau pe ab sau uv (liniar)

Exemplu: clustering in R²

X1, X2 – pot fi cele două axe de coordonate corespunzătoare componentelor de culoare (H,S), (a,b) sau (u,v)

Clustering supervizat

K-means

Partiționează un set de *n* observații (ex. culorile pixelilor în spațiul considerat) în *k* clustere, în care fiecare observație va aparține de clusterul cu cel mai apropiat centru (medie).

Setul de observații: $(\mathbf{x}1, \mathbf{x}2, ..., \mathbf{x}n)$, $\mathbf{x}i$ – vector d-dimensional (ex: $\mathbf{x}i$ = (ai, bi))

 $Scop \Rightarrow k$ mulțimi $(k \le n)$ **S** = {S1, S2, ..., Sk} astfel încât să minimizăm suma pătratelor distanțelor de la fiecare punct din cluster la centrul (media) clusterului

$$\underset{\mathbf{S}}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{\mathbf{x}_{j} \in S_{i}} \|\mathbf{x}_{j} - \boldsymbol{\mu}_{i}\|^{2}$$

μi – centroidul (media clasei Si)

K-means clustering

Algoritmul standard (Lloyd)

Inițializare: se dă un set inițial de centroide (medii/means): m1(1),...,mk(1)

Pas 1: <u>atribuire</u> – se atribuie fiecare observație la clusterul cu centroidul (media) cea mai apropiată (se partiționează observațiile după diagrama Voronoi dată de medii.

$$S_i^{(t)} = \left\{ \mathbf{x}_j : \left\| \mathbf{x}_j - \mathbf{m}_i^{(t)} \right\| \le \left\| \mathbf{x}_j - \mathbf{m}_{i^*}^{(t)} \right\| \text{ for all } i^* = 1, \dots, k \right\}$$

Pas 2: <u>actualizare</u> – se actualizează mediile (centrele) fiecărui cluster pe baza observațiilor încorporate

$$\mathbf{m}_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{\mathbf{x}_j \in S_i^{(t)}} \mathbf{x}_j$$

Se repetă pașii 2 și 3. Se oprește când se atinge convergența (nu mai sunt schimbări sau se atinge un anumit număr de pași).

Technical Unive

K-means clustering

Metode de inițializare

- -Forgy se aleg aleator *k* observații ca medii initiale
- -Random partition se asignează aleator un cluster la fiecare observație
- Pe baza histogramelor: pentru clustering în spațiul de culoare (HS) sau (ab) sau (uv) se pot lua cele mai pronunțate K vârfuri ale histogramei bidimensionale

Exemplu:

Iniţializare: k=3, centre alese aleator

Pas 2: Partiţionare Voronoi

Pas 3: Recalculare centroide

Repetă pașii 2 și 3 până la convergență Technical University of Clui Napoca

Metrici de distanță

Exemple pentru cazul 2D:

- două puncte, P1 = (x1, y1) și P2 = (x2, y2)

Distanța Euclidiană – distanța geometrică între două puncte în spațiul bidimensional este definită ca lungimea segmentului de dreaptă care le unește:

$$d_{Euclidian}(P_1, P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = ||P_1 - P_2||$$

City block sau Manhattan – distanța este definită ca lungimea celei mai scurte căi de între cele două puncte, dacă se pot face deplasări doar pe verticală și orizontală:

$$d_{CityBlock}(P_1, P_2) = |x_2 - x_1| + |y_2 - y_1|$$

Chessboard sau Chebyshev (mișcarea regelui pe tabla de șah) - parcurgerea se poate realiza în cele opt direcții spațiale:

$$d_{Chessboard}(P_1, P_2) = \max(|x_2 - x_1|, |y_2 - y_1|)$$

2. Segmentare la nivel de regiune

- În spațiul imagine
- Se bazează pe criterii de uniformitate / neuniformitate
- Tipuri:
- Region Growing 1.
- 2. Region Splitting
- 3. Split & Merge

Segmentarea imaginii prin Region Splitting (împărțire)

- (1) Împarte imaginea în blocuri B de dimensiune NxN; N = 2ⁿ, n rangul blocului.
- (2) Pentru fiecare bloc:
 - (3) Dacă NEUNIFORMITATEA (B) > T şi k = rang(B) > 0, atunci
 - divide blocul B în 4 blocuri egale B1, B2, B3, B4;
 - repetă pasul (3) pentru B1, B2, B3, B4;

Altfel raporteaza B ca un bloc final (regiune).

Region Growing (Creșterea regiunilor)

Metoda **region growing** are la bază un proces iterativ prin care regiuni ale imaginii sunt fuzionate începând de la regiuni primare (care pot fi pixeli sau alte regiuni mici – celule de bază). Iterațiile de creștere se opresc atunci când nu mai sunt pixeli de procesat.

Algoritm:

- 1. Se împarte imaginea în celule de bază (dimensiune >= 1 pixel).
- 2. Fiecare celulă este comparată cu vecinii ei folosind o măsură de similaritate. În caz de similaritate (valoarea metricii de similaritate < prag) celulele sunt fuzionate într-un fragment mai mare, şi se actualizează trăsăturile regiunii folosite la măsura similarității (de obicei prin mediere ponderată).</p>
- 3. Se continuă procesul de creștere a fragmentului prin examinarea tuturor vecinilor până când nu se mai pot realiza fuziuni.
- 4. Se trece la urmatoarea celula rămasă nemarcată și se repetă pașii 2-3. Algoritmul se oprește atunci când nu au mai rămas celule nemarcate.

Exemplu de implementare

- O implementare eficientă folosește o coadă (similar cu pasul 4 de la Canny). Algoritmul rulează astfel:
- Parcurge imaginea de la stânga la dreapta şi de sus în jos şi găseşte primul seed point (celula de baza), pune coordonatele sale în coadă, şi stabileşte o etichetă unică pentru acea regiune.
- 2. Cât timp coada nu este vidă, repetă:
 - Extrage primul punct din coadă
 - Găseşte toţi vecinii acestui punct care satisfac condiţia de similaritate
 - Marchează în imaginea destinație vecinii acestui punct cu eticheta punctului inițial
 - Pune coordonatele acestor puncte în coadă
- 3. Continuă de la pasul 1 cu următorul seed point (neparcurs încă).

Region Growing - exemple

RG pornind de la un punct definit de utilizator, folosind spațiul (H,S)

RG cu multiple regiuni, în spațiul de culoare RGB

IMAGE PROCESSING

Technical University of Cluj Napoca

Computer Science Department

[1] W. Skarbek, A. Koschan, Colour Image Segmentation: A Survey, Technical report 94-32, Technische Universitat Berlin, Fachbereich 13 Informatik Franklinstrasse 28/29, 10587 Berlin, Germany

[2] A. Koschan, M. Abidi, Digital Color Image Processing, Wiley & Sons, 2008.

[3] http://en.wikipedia.org/wiki/K-means_clustering