

1A 锂电池充电和 5V/0.3A 升压

Check for Samples: LGS5500

特性

₩₩内置多档位电压电流调节的开关充电器

- 16V 输入耐压
- 充电电流和充电电压外部电阻调节
- 支持 4.2V/4.3V/4.35V4.4V 锂电池充电
- 400mA/600mA/800mA/1000mA 可配置充电电流
- 符合锂电池充电 JEITA 标准,根据电池温度和输入 电压智能调节充电电压和充电电流
- 完善的充电指示,外部自动识别

NEW内置 5V/0.3A 1MHz 输出同步开关升压转换器

- 待机电流低至 3µA 以内,支持锂电池长时间待机
- 1A 同步升压放电
- 升压效率高达 95%
- 完善的保护:欠压,过热,短路,过流,过压

应用

- 蓝牙耳机充电仓
- 带有锂电池供电和 USB 输出的便携式设备

采购信息

Part	Package	Top Mark
LGS5500DA	DFN2×2-8	LGS5500 E 2228
LGS5500EP	ESOP8	5 5 0 0 2 2 3 2

22:2022 年生产. 28:第 28 周生产. E:固定版本号

描述

LGS5500 是一款集成升压转换器、锂电池充电管理、 电池充电状态指示的多功能电源管理 SOC,为蓝牙耳 机充电仓和移动电源提供完整的电源解决方案。

LGS5500 充电电流和充电电压可调,支持多种规格锂电池应用,最大充电电流 1A。LGS5500 充电电流根据锂电池温度自动调节,更加安全可靠。

LGS5500 放电输出 5V 固定电压,效率高达 95%。待机电流低至 3μ A 以内,支持锂电池长时间待机。

LGS5500 集成充电和充满提示,以及电池未连接指示。 允许充电口和输出口短接,便于布局不同应用。

选购指南

LGS5500□□ — 封装信息

EP: ESOP8
DA: DFN2×2-8

LGS55182 可选取两种不同的封装:

■ DFN8 : 拥有更小的体积,便于集成。 ■ ESOP8 : 拥有更好的散热,充电更稳定。

应用信息: 典型应用电路

NOTE:

- 充电输入引脚 VIN。除 10μF 稳压陶瓷电容还需对地连接 1K 电阻器,用于电源掉电后 VIN 引脚正常泄放,如果不接,断电后 VIN 泄放缓慢,指示灯会出现异常。
- NTC 电阻一般位于电池内部,图中为方便展示,未标到电池内部。NTC 典型应用中需使用 <u>B 值为 3380K 的 10K 阻值</u>的 NTC 电阻与 10K 电阻器 并联再与 10K 电阻器串联接于 VIN 到地。如使用其他搭配,请参照第八页 NTC 功能解释中的给出的各温度阈值的 NTC 电压进行设计或可咨询棱 晶的 FAE。
- 对底部 ePad GND 引脚,应使用较大覆铜区域连接到 PCB 地平面,这有助于最大限度的减小 PCB 传导损耗和热应力,防止因芯片温度过高导致的充电电流下降。
- LED 指示灯使用时需接限流电阻。

元器件选型推荐

符号	含义	要求
C _{VIN}	USB 充电输入稳压电容	10μF 陶瓷电容
Сун	BOOST 输出稳压电容	20μF 陶瓷电容
C _{VL}	充电输出/BOOST 输入稳压电容	20μF 陶瓷电容
L	功率电感	2.2μH~10μH,推荐 2.2uH
R _{NTC}	NTC 热敏电阻	10K, B 值: 3380K

版权 ©2022, 棱晶半导体(南京)有限公司

绝对最大值(†)

表 3.1

参数	范围	
引脚至 GND 电压(VIN)	-0.3V~16V	
引脚至 GND 电压(ISET,VL,LX,	-0.3V~5.5V	
VH,VSET,NTC)		
储存温度	-65°C to 150°C	
工作温度	-40°C to 125°C	
ESD 额定值(HBM)	±2KV	
ESD 额定值(CDM)	±500V	

† 注: 如果器件工作条件超过上述 "绝对最大值",可能引起器件永久性损坏。这仅是极限参数,不建议器件在极限值或超过上述极限值的条件下工作。器件长时间工作在极限条件下可能会影响其可靠性。

ESD 警告

ESD(静电放电) 敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路,但在遇到高能量 ESD时,器件可能会损坏。因此,应当采取适当的 ESD 防范措施,以避免器件性能下降或功能丧失。

引脚排列

图 3. 引脚排列

封装与引脚排列

表 3.2 引脚功能描述

ESOP8	DFN8	引脚	说明
引脚编号	引脚编号	名称	
1	8	ISET	电池充电电流预设引脚 ISET,外部连接 1%电阻器。
2	7	VIN	电池充电输入端,使用 10uF 或更大的陶瓷电容尽量近旁路 VIN 和 GND。
3	6	VL	充电输出引脚,连接至电池正极,放置至少 10uF 陶瓷电容器。
4	5	LX	内部功率开关节点,外部连接功率电感和输出。
5	3, 4 ⁽¹⁾	VH	放电输出引脚,默认输出 5V,放置至少 20uF 电容到地。
6		NC	测试引脚,浮空即可。
7	2	LED	充电指示输出引脚 1,连接至 LED 灯正极。灯亮时,引脚输出高电平。分时复用为
		(VSET)	电池充电电压预设引脚 VSET,外部连接 1%电阻器。
8	1	NTC	电池温度检测引脚。
EP	EP	GND	封装底部焊盘,连接到 GND,并连接到一个大的平面,达到较好的散热。

(1) DFN8 封装中 VH 引脚为引脚 3 和 4,两个引脚需在 PCB 板上连接起来使用。

版权 ©2022, 棱晶半导体(南京)有限公司

LGS5500 - March 2022

技术规格

除非有特殊说明,否则极限值适用于-40°C至+125°C的工作结温度(TJ)范围。最小和最大限值通过试验,验证和统计相关性规定。典型值代表 TJ=25°C时最可能的参数规范,仅供参考。所有电压都是相对于 GND。

表4.

参数		测试条件	最小值	典型值	最大值	单位
充电特性(I	Linear Charger)					
V_{IN}	推荐输入电压范围		4.5	5	5.5	V
V_{OVP}	输入过压保护			7		V
V_{CV}	充电电压设置(恒压充电)	R_VSET≤14K		4.20		V
		R_VSET=20K		4.30		V
		R_VSET=27K		4.35		V
		R_VSET≥36K(悬空)		4.40		V
I _{CHG}	充电电流设置(恒流模式)	R_ISET≤14K(接地)		400		mA
		R_ISET=20K		600		mA
		R_ISET=27K		800		mA
		R_ISET≥36K(悬空)		1000		mA
I _{SHORT} (1)	电池短路充电电流	V _{BAT} <v<sub>SHORT</v<sub>		5%		Існв
V_{SHORT}	电池短路充电阈值电压			0.9		V
V_{SHORT_HYS}	电池短路充电迟滞电压			0.1		V
I _{PRE} (1)	预充电电流	V _{SHORT} <v<sub>BAT<v<sub>PRE</v<sub></v<sub>		10%		I _{CHG}
V_{PRE}	预充电阈值电压			3.2		
$V_{\text{PRE_HYS}}$	预充电迟滞电压			0.6		
I _{TERM} (1)	截止充电电流			100		mA
V_{RECHRG}	电池充满后再充电阈值			95.7%		V_{CV}
放电特性(I	BOOST)					
I_{Q_BAT}	电池端工作静态电流	V _{BAT} =4.2V, I _{LOAD} =0		3		μΑ
I _{OUT_BOOST}	输出电流			0.8		Α
V_{BAT}	电池输入工作电压		2.9	4.2	4.5	V
	输入欠压锁定	Rising		2.9		
		Falling		2.8		
V_{OUT}	额定输出电压	V _{BAT} =4.2V		5		V
I _{LIMIT}	开关限流			1.8		Α
R _{DS(ON)_TOP}	BOOST 上管 RDSON	TJ= 25°C		170		mΩ
R _{DS(ON)_BOT}	BOOST 下管 R _{DSON}	TJ= 25°C		35		mΩ
V_{BOOST_OVP}	BOOST 输入过压保护电压			4.7		V
	过压保护迟滞			0.15		V
Fsw	开关频率	PWM Operation		1		Mhz

⁽¹⁾ 在充电过程中为了保护电池,芯片会检测电池电压执行不同的充电阶段,短路充电(Short Charge)→预充电(Pre Charge)→恒流充电(Const Current Charge)→恒压充电(Const Voltage Charge)→充电停止。

版权 ©2022,棱晶半导体(南京)有限公司

参数		测试条件	最小值	典型值	最大值	单位
全局热保护	及电池温度控制特性(JEITA)					
V _{NTC} (2)	T _{BAT} =60° C,NTC 阈值			19%		VIN
	T _{BAT} =45℃,NTC 阈值			24%		VIN
	T _{BAT} =15° C,NTC 阈值			36%		VIN
	T _{BAT} =0°C,NTC 阈值			42%		VIN
	NTC 功能开启阈值			4%		VIN
	关闭 NTC 功能	NTC 引脚浮空或接地				
$V_{\text{NTC_HYS}}$	NTC 电压迟滞			1%		VIN
$T_{\text{OTP-R}}$	过温保护	TJ Rising		150		°C
$T_{OTP\text{-}F}$	过温保护解除	TJ Falling		120		°C
指示灯(LE	ED)					
I _{LED}	LED 驱动电流	需外接限流电阻		2		mA

⁽²⁾ 电池温度控制,芯片会检测 NTC 引脚上电压执行不同的充电操作,如果不想在预设的 JEITA 标准的温度阈值下使用,可以使用其他负温度系数的 电阻器搭配相应的分压电阻调整。

功能框图

图 5. 内部功能框图

版权 ©2022,棱晶半导体(南京)有限公司

www.Legend-Si.com

LGS5500 Product data sheet

应用信息: 1A 锂电池充电和 5V/1A 升压控制芯片 (放电概述)

概述

LGS5500 是一个集成高效升压转换器,16V 耐压的锂电池线性充电器的超低功耗电源管理芯片。

正常充电循环

在 LGS5500 的 VIN 电压大于 UVLO,等待芯片内部电源 启动完成后,ISET 和 VSET 引脚会检测预设充电电流和 电压,并自动完成检测,随后开始一个充电循环。

在充电过程中为了保护电池,芯片会检测电池电压执行不同的充电阶段,短路充电(Short Charge)→预充电(Pre Charge)→恒流充电(Const Current Charge)→恒压充电(Const Voltage Charge)→充电停止。

图 7.电池充电循环

当 BAT 上的电压低于 V_{SHORT}(典型值 0.9V),为防止深度 放电的锂离子电池在快充时被损坏甚至发生危险,此阶段 会用 5% 预设充电电流进行唤醒。

当 BAT 上的电压低于 VPRE(典型值 3.2V)大于 VSHORT(典型值 0.9V)时,充电池会进入预充电模式(也称锂电池的涓流模式)对电池单元进行恢复性充电,在这个模式下,充电电流会被减少到 10%预设充电电流。

当电池电压上升到 V_{PRE}(典型值 3.2V)以上时,充电电流 会上升至全速预设电流进行恒流充电模式。

当达到预设充电电压 V_{CV} (4.2/4.3/4.35/4.4),LGS5500 会进入恒压充电,充电电流开始下降,直至降到 I_{TERM} (典型值 100mA),则停止充电。

停止充电后,芯片进入待机状态,会持续检测 BAT 电压。 当 BAT 电压下降到 VRECHRG (再充电阈值),会自动进入 新的充电循环,从而保证电池处于满电水平。

过热调节充电电流

LGS5500 在充电过程中内置的过温度环路能够有效调节充电电流,通过降低充电电流和短暂关闭充电,从而让芯片的结温不会过高,避免芯片温度的持续增加。这也意味着恒流模式下充电电流未必是设置的 Ichg,将受制于温度。

多档位电压电流调节

LGS5500 内置多档电压电流调节的线性充电器,芯片上电后,VDD 会自动向 VSET 和 ISET 两个引脚分别灌入电流,内部 ADC 通过检测两个引脚的电压信号,设置充电电流和充电电压并锁存此次设置。充电电流和充电电压只在上电之后设置一次,如果要重新设置,请断开充电输入和电池,再次上电即可。

充电状态指示灯

LGS5500 集成充电和充满提示,以及电池未连接三种充电状态指示。电池未连接时,LED 灯会进入闪烁报警状态。

在上电后设置好充电电流和充电电压之后,芯片会自动检测 LED,之后进入对应 LED 控制模式。

需要注意的使用 LED 灯需与限流电阻一起串联使用。

版权 ©2022, 棱晶半导体(南京)有限公司

应用信息: 1A 锂电池充电和 5V/1A 升压控制芯片 (放电概述)

电池温度监控(NTC)

LGS5500 会持续的监控 NTC 引脚的电压,来判定实际温度。NTC 引脚连接一个负温度系数的电阻器和两个外部分压电阻,来根据采样到的电池温度自动进行充电电压和充电电流调节。如果禁用 NTC 功能,只需把 NTC 引脚悬空或接地。

下表中预设的电池温度范围是基于 NTC 典型应用中使用 B 值为 3380K 的 10K 阻值的 NTC 电阻与 10K 电阻器并联再与 10K 电阻器串联接于 VIN 到地。如果想使用其他温度范围,需重新设计 NTC 引脚的外围电路。

内部 NTC 模块总共有五个温度阈值,LGS5500 会比较内部五个阈值点来决定执行相应的充电操作。当 NTC 电压大于 4%VIN 时,NTC 功能才会开启。

电池温度	NTC 电压范围	充电操作
60°C <t<sub>BAT</t<sub>	4% <v<sub>NTC<19%</v<sub>	电池温度过热,停止充电
45°C <t<sub>BAT<60°C</t<sub>	19% <v<sub>NTC<24%</v<sub>	电池充电电流减小一半
10°C <t<sub>BAT<45°C</t<sub>	24% <v<sub>NTC<36%</v<sub>	充电正常进行
0°C <t<sub>BAT<10°C</t<sub>	36% <v<sub>NTC<42%</v<sub>	充电电压降至 4.1V
T _{BAT} <0°C	42% <v<sub>NTC<100%</v<sub>	电池温度过低,停止充电

表 8.NTC 引脚电压范围对应充电操作

应用信息: 1A 锂电池充电和 5V/1A 升压控制芯片 (放电概述)

BOOST DC/DC 工作模式

LGS5500 是通过内部两个开关管来回切换到通过/截止和外部电感、输出电容来实现升压的目的。无负载时,系统会自动开启超低功耗模式,待机功耗 3uA 以内,保证电池的长时间放置电量损失最小。

边冲边放

LGS5500 在电池充电时,BOOST 就会在电池充电时开启输出,此时 BOOST 的带载能力会较电池直接放电弱一点。

开关限流保护

稳压器输出具备逐周期过流限制。当 LX 电流触发

I LIMIT.SW(Peak),BOOST 输出会进入逐周期限流状态。

图 8.1 BOOST 输出过流于 M_{top} 行为描述

ILIMIT.SW(Peak)与电感大小和输入压差相关,ILIMIT.SW(Peak)仅为参考最小值。当长时间过流或短路时,将可能触发全局OTP保护。

版权 ©2022, 棱晶半导体(南京)有限公司

BOOST 效率一览

应用信息:参考布局举例

概述

较差的布局会影响 LGS5500 的性能,造成电磁干扰(EMI)、电磁兼容性(EMC)差、地跳以及电压损耗,进而影响稳压调节和稳定性。为了优化其电气和热性能,应运用下列规则来实现良好的 PCB 布局布线,确保最佳性能:

- 必须将 VIN, VL, VH 陶瓷输入电容尽量近距离放在对应引脚和 GND(PIN2)引脚旁边,以尽量降低高频噪声。
- 对高电流路径应使用较大 PCB 覆铜区域,包括 GND 引脚(PIN2)。这有助于最大限度地减少 PCB 传导损耗和热应力。
- 为使过孔传导损耗最小并降低模块热应力,应使用 多个过孔来实现顶层和其他电源层或地层之间的 互连,降低地回路阻抗。
- 电感 L 靠近 LX 管脚。开关结点(电感一端与芯片引脚 LX 尽量短而粗),这样可以保证电感大电流和避免噪声干扰,但电感靠近芯片在工作时,发热会提高电感带来的损耗,从而降低效率,因此需要控制电感一端到芯片距离并提高芯片的散热。

版权 ©2022, 棱晶半导体(南京)有限公司

封装外形描述(DFN8)

具备底部 PAD 的 8 引脚塑封 SOIC

注:

- (1) 所有的数据单位都是亳米,括号内的任何尺寸仅供参考。
- (2) 本图如有更改,恕不另行通知。
- (3) 此尺寸不包括塑模毛边,突起,或水口毛刺。
- (4) 此尺寸不包括塑模毛边。

版权 ©2022,棱晶半导体(南京)有限公司

封装外形描述(ESOP8)

具备底部 EPAD 的 8 引脚塑封 SOIC

注:

- (5) 所有的数据单位都是亳米,括号内的任何尺寸仅供参考。
- (6) 本图如有更改,恕不另行通知。
- (7) 此尺寸不包括塑模毛边,突起,或水口毛刺。
- (8) 此尺寸不包括塑模毛边。

版权 ©2022,棱晶半导体(南京)有限公司

TAPE AND REEL INFORMALEGEND-SION

REEL DIMENSIONS Reel Diameter Reel Width (W1)

TAPE DIMENSIONS KO P1 BO W Cavity AO

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*ALL dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Pin1 Quadrant
LGS5500	DFN8	DA	8	3000	180	Q1
LGS5500	ESOP8	EP	8	4000	330	Q1

版权 ©2022,棱晶半导体(南京)有限公司

历史修订记录(†)

Rev.E V0.1	16.Aug.2021	页码
※E版初始。	本手册相关参数仅对 E 版相关指标描述和承认	ALL
Rev.E V0.2	16.Aug.2021	页码
※E 版修改。		ALL
Rev.E V0.3	16.Aug.2021	页码
※E 版修改。	对电流调整为 0.3A。	ALL

NOTE:以前版本的页码可能与当前版本的页码不同。

免责声明

和 Legend-si 是棱晶半导体有限公司的商标,Legend-si 拥有多项专利、商标、商业机密和其他知识产权。Legend-si 对公司产品提供可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、技术支持和其他资源,但不就本司任何产品用于任何特定目的做出担保。Legend-si 不承担任何因产品的使用产生的责任,包括使用方须遵守的法律法规和安全使用标准。

对于在规格书中提到的产品参数,在不同的应用条件下实际性能可能会产生变化。任何参数的配置和使用必须经由客户的技术支持进行验证,对本文档所涉及的内容进行变更,恕不另行通知。Legend-si 对您的使用授权仅限于产品的应用,除此之外不得复制或展示所述资源,Legend-si 也不提供任何人或第三方机构的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、债务及任何损失,Legend-si 对此概不负责,并且您须赔偿由此对 Legend-si 造成的损害。

Legend-si 所提供产品均受 Legend-si 的销售条款以及 www.Legend-si.com 上或随附 Legend-si 产品提供的其他可适用条款的约束。Legend-si 提供所述资源并不扩展或以其他方式更改 Legend-si 针对 Legend-si 产品所发布的可适用的担保范围或担保免责声明。

Legend-si 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: 江苏省南京市浦口区江淼路 88 号腾飞大厦 C座 1403 室 电话: 025-58196091

Copyright © 2022-present 棱晶半导体(南京)有限公司

版权 ©2022, 棱晶半导体(南京)有限公司

LGS5500 - March 2022