

Alexander Neuwirth

ZO Resonanz

ZO-Resonanz
Avacador brasello

wissen.leben

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Alexander Neuwirth

Zusammenfassung

2018-11-1

Z0 Resonanz

-Gliederung

└─Gliederung

Gliederung

Historischer Überblick

Z0 Resonanz –Historischer Überblick

Historischer Überblick

Historischer Überblick

Z0 Resonanz
Historischer Überblick
Historischer Überblick

Historischer Überblick

Z0 Resonanz
Historischer Überblick
Historischer Überblick

Historischer Überblick

ZO Resonanz
Historischer Überblick

Historischer Überblick

Historischer Überblick

ZO Resonanz
Historischer Überblick
Historischer Überblick

onanz

ZO Resonanz

Theorie

Thate

Continue in Standardmodel of Elementaristiches

Elementaristiches

Exercisiones

Exercisiones

Elementaristiches

Exercisiones

Historischer Überblick

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Zerfallsbreite

Experimentelle Untersuchun

Zusammenfassur

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[4]

Alexander Neuwirth 5

ZO Resonanz

Theorie
Einordnung im Standardmodell der
Elementarteilchen
Einordnung im Standardmodell der

• Fichboson und Flementarteilchen

Elamontartailchan

- schwache WW
- eigenes Antiteilchen
- W+- => elek. Teilchen WW (beta Zerfall)
- Z0 => auch neutral Teilchen WW (Neutrino)

Elektroschwache Vereinheitlichung

Steven Weinberg, Sheldon Glashow und Abdus Salam[3]

► more

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Zusammenfassung schwache + elektrom. WW
- Steven Weinberg, Sheldon Glashow und Abdus Salam
- 1979 Nobelpreis

Elektroschwache Vereinheitlichung Austauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung
▶ W,Z-Boson → schwache Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Elektroschwache VereinheitlichungAustauschteilchen

- ▶ Photon → elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung
- ► Gluon → starke Wechselwirkung

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung
 ▶ W.Z-Boson → schwache Wechselwirkung
 ▶ Gluon → starke Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$ ${\rm e_R}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}$ μ_{R}	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array} \right)_L$ u_R	$\left(\begin{array}{c} c \\ s' \end{array} \right)_L$	$\left(\begin{array}{c} t \\ b' \end{array} ight)_L$ t_R	
	d_{R}	\mathbf{s}_{R}	b_{R}	

Schwacher Isospin[1]

ZO Resonanz

Theorie

Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fer	mionmultiple	T		
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	1/2	
Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\begin{pmatrix} t \\ b' \end{pmatrix}_L$	1/2	
Que	$u_{\rm R}$	c_{R}	$\mathrm{t_R}$	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	

Schwacher Isospin[1]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{ au} \\ au \end{array}\right)_{ ext{L}}$	1/2	$+1/2 \\ -1/2$	
Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c} t \\ b' \end{array} \right)_L$	1/2	$+1/2 \\ -1/2$	
Qua	$u_{\rm R}$	c_{R}	t_{R}	0	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	0	

Schwacher Isospin[1]

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fernissnnakipletts			T	75	
Contract.	("),	(%),	$\begin{pmatrix} v_i \\ \bar{\tau} \end{pmatrix}_i$	1/2	+1/2 -1/2	
S	es	570	79.	0		
2swite	(å),	(;),	(i),	1/2	+1/2 -1/2	
3	19.	Cli	to.	0		
	da	29.	by	0		

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	$^{+1/2}_{-1/2}$	0 -1
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
Quarks	$\left(\begin{array}{c} u \\ d' \end{array} \right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\begin{pmatrix} t \\ b' \end{pmatrix}_{L}$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
Qua	$u_{\rm R}$	c_{R}	t_{R}	0	0	+2/3
	d_{R}	$s_{\rm R}$	$b_{\rm R}$	0	0	-1/3

Schwacher Isospin[1]

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Schwacher Isospin

Elektroschwache Vereinheitlichung

Austauschteilchen

 β -Zerfall[2]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

 β -Zerfall[2]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

► T₃ soll erhalten bleiben

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

 $W^-: T_3 = -1$

 β -Zerfall[2]

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung
Austauschteilchen

> T₃ soll erhalten bleiben
> W: T₃ = -1

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$

 β -Zerfall[2]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

T₂ soll erhalten bleiben
 W⁻: T₂ = −1
 W⁺: T₂ = 1

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung Austauschteilchen

 T_3 soll erhalten bleiben

$$W^-: T_3 = -1$$

$$W^+: T_3 = 1$$

$$W^0$$
: $(T = 1, T_3 = 0)$

$$\triangleright B^0$$
: $(T=0, T_3=0)$

 β -Zerfall[2]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- ➤ T₃ soll erhalten bleibe
 ➤ W⁻: T₃ = -1
- $W^-: T_3 = -1$ $W^+: T_2 = 1$
- $W^1: T_3 = 1$ $W^0: (T = 1, T_3 = 0)$ $B^0: (T = 0, T_3 = 0)$

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\rm W}|B^0\rangle + \sin\theta_{\rm W}|W^0\rangle$$

 $|Z^0\rangle = -\sin\theta_{\rm W}|B^0\rangle + \cos\theta_{\rm W}|W^0\rangle$

ZO Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

ctroschwache Vereinheitlichung $|\gamma\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung

10

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\rm W} |B^0\rangle + \sin\theta_{\rm W} |W^0\rangle$$

 $|Z^0\rangle = -\sin\theta_{\rm W} |B^0\rangle + \cos\theta_{\rm W} |W^0\rangle$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m 7}} pprox 0.88$$

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

ktroschwache Vereinheitlichung

 $|\gamma\rangle = + \cos\theta_W |B^0\rangle + \sin\theta_W |W^0|$ $|Z^0\rangle = - \sin\theta_W |B^0\rangle + \cos\theta_W |W^0|$

 $\cos \theta_W = \frac{M_W}{M_Z} \approx 0.88$

- Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung

Elektroschwache Vereinheitlichung

$$\begin{aligned} \left|\gamma\right\rangle &= +\cos\theta_{\mathrm{W}}\left|B^{0}\right\rangle + \sin\theta_{\mathrm{W}}\left|W^{0}\right\rangle \\ \left|Z^{0}\right\rangle &= -\sin\theta_{\mathrm{W}}\left|B^{0}\right\rangle + \cos\theta_{\mathrm{W}}\left|W^{0}\right\rangle \end{aligned}$$

$$\cos heta_{
m W} = rac{M_{
m W}}{M_{
m 7}} pprox 0.88$$

$$e = g \cdot sin\theta_{W}$$

ZO Resonanz
Theorie

−Theorie └─Elektroschwache Vereinheitlichung └─Elektroschwache Vereinheitlichung Elektroschwache Vereinheitlichung $\begin{aligned} |y\rangle &= \cos \theta_0 \, |\theta^0\rangle + \sin \theta_0 \, |\theta^0\rangle \\ |z^0\rangle &= -\sin \theta_0 \, |\theta^0\rangle + \cos \theta_0 \, |\theta^0\rangle \\ &= \cos \theta_0 - \frac{d\theta_0}{d\rho_0} = 0.88 \\ &= -g \cdot \sin \theta_0 \end{aligned}$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung

Experimentelle Untersuchung

Erzeugung

Nachweis

Eigenschaften LEP am CERN

2018-13

Z0 Resonanz

-Experimentelle Untersuchung

Erzeugung Nachweis Eigenschaften LEP am CERN

Erzeugung

ZO Resonanz
Experimentelle Untersuchung
Erzeugung
Erzeugung

- Allg. W/Z-Boson durch Anti+Lepton/Anti-Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- bei passender Energie approx M_Z dominiert Z^0 , aus QFT+Feynmanregeln

Erzeugung

Schwerpunktsenergie $\sqrt{s}=2E_e\geq M_{\rm Z}c^2\approx 91,6\,{\rm GeV}$

Erzeugung

► Schwerpunktsenerele √3 – 2E. > M-c² ≈ 91.6 GeV

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_7 c^2 \approx 91.6 \text{ GeV}$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600$ GeV pro Proton

ZO Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_g \ge M_2 c^2 \approx 91.6\,\mathrm{GeV}$ ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600\,\mathrm{GeV}$ pro Proton

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \,\text{GeV}$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600$ GeV pro Proton
- $ightharpoonup e^+ + e^-
 ightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2 M_{
 m W} c^2 pprox 160.8 \,{
 m GeV}$

ZO Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_g \ge M_2c^2 \approx 91.6 \, \text{GeV}$ ▶ pp-Kollision: $u + \overline{v} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \, \text{GeV}$ pro Proton

▶ $e^+ + e^- \rightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2M_0c^2 \approx 160.8 \, \text{GeV}$

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, $50 \rightarrow 86 \rightarrow 104,6 \, \text{GeV}$

Nachweis 1983 am CERN

 $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [1]

Alexander Neuwirth 14

ZO Resonanz

Experimentelle Untersuchung

Nachweis

Nachweis

- Energie Summe = Masse Z⁰ (exakt?)
- Woher sicher, dass Z⁰ Zerfall?

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, \text{GeV/c}^2$
 - $\Gamma_Z = 2,495(2) \text{ GeV}$

ZO Resonanz
LExperimentelle Untersuchung
Leigenschaften
Leigenschaften

xperimentelle Bestimmung

Messung:

M₂ = 91,188(2) GeV/c²

F₂ = 2,405(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2.
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- Anti+Neutrino schwer detektierbar => % über Γ_{tot}
 totale Breite = alle Zerfälle Anti+Fermion???

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \text{ GeV/c}^2$
 - $\Gamma_7 = 2,495(2) \text{ GeV}$
- > Zerfall:

$Z^0 ightarrow e^+ + e^-$	3,363(4) %
$\mu^+ + \mu^-$	3,366(7) %
$ au^+ + au^-$	3,370(8) %
$v_{e,\mu, au}^+ + \overline{v}_{e,\mu, au}$	20,0(6) %
Hadronen	69,91(6) %

ZO Resonanz

Experimentelle Untersuchung

Eigenschaften

Eigenschaften

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 4. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}
- 5. totale Breite = alle Zerfälle Anti+Fermion???

Z0 Resonanz —Zusammenfassung 2018-11-1

Zusammenfassung

Alexander Neuwirth

- ▶ Weinberg winkel
- ▶ Zerfallsbreite
- ► Neutrino generation

- 1. WEinberg winkel aus ...
- 2. hihi3 3. hihi3

Quellen I

- Povh et al. Teilchen und Kerne. Springer Spektrum, 2014.
- Beta-Decay. URL: https://de.wikipedia.org/wiki/Betastrahlung (besucht am 12.11.2018).
- Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225putting-the-puzzle-together (besucht am 12.11.2018).
- Standardmodel. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).

Z0 Resonanz
L-11-18-107
L-2 Usammenfassung
L-2 Quellen

iellen I

Povh et al. Tellchen und Kerne. Springer Spektrum, 2014.

Beta-Decay. un:
https://de.wikipedia.org/wiki/Betastrahlung (besuc

Sheldon Glashow, Abdus Salam and Steven Weinberg, URL:

http://thescientificodyssey.libsyn.com/episodeputting-the-puzzle-together (besucht am 12.11.20

StandardmodeL urt: https://de.wikipedia.or 12.11.2018).

. 2016).

Folien-Überschrift

Hier kommt Text!

Ein "normaler" Block

Inhalt hier.

itemize und enumerate:

- **Ein Punkt**
 - ► Ein Unterpunkt
- Noch ein Punkt
- 1. Ein Punkt
- 1.1 Ein Unterpunkt
- 2. Noch ein Punkt

ZO Resonanz 2018-1

-Zusammenfassung

Folien-Überschrift Hier kommt Text!

itemize und enumerate Ein Punkt

► Ein Unterpunkt Noch ein Punkt

1. Ein Punkt

2. Noch ein Punkt

ZO Resonanz

└─Ein Alert-Block

2018-11-

Ein Alert-Block Ein Folien-Untertitel Zusammenfassung

Hier kommt Rot ins Spiel!

Ein Alert-Block Ein Folien-Untertitel

Achtung!

Hier kommt Rot ins Spiel!

Ein Example-Block

Hier kommt Grün ins Spiel!

Z0 Resonanz Zusammenfassung 2018-11-1 └─Ein Example-Block

Hier kommt Grün ins Spiel!

Ein Example-Block

Z0 Resonanz -Zusammenfassung

https://www.uni-muenster.de/Physik.PSPHYS

Vielen Dank für eure Aufmerksamkeit!

Habt ihr noch Fragen?

https://www.uni-muenster.de/Physik.FSPHYS