Multiplexer

Large Mux:

Build 8:1 mux using two 4:1 and one 2:1 mux.

So, 3 selector bits = $S_2 S_1 S_0^{\text{LSB}}$

Muxes that are in the same level their selector(s) will be shorted.

Start assigning the selector bits from the right side. (MSB)

Build 8:1 mux using four 2:1 and one 4:1 myx. I, エ \mathcal{I}_{o} I_1 4:1 IZ mux \mathcal{I}_3 $S_2 S_1$ Ιy Level-1 Level-2

Implement a 2:1 mux using 4:1 mux.

$$=$$
 2:1 = 2:1; 1 selector

Function implementation using Mux

$F = \mathcal{L}(0, 4, 6)$; implement the given function using 8:1 mux.

#F(52,5,5)= &(0,4,6); implement the given function using a 4:1 mux.

Build a table:

			^ _		are currently using
	Io	I,	I2	I_3	
SA'	<u></u>	1	2	3	# Circle rules:
A	9	5	6	R	Ci) If in a column there is no circle
20ce-wise:	A+A' = 1	0	A	0	Output = 0
III the combination possible					(ii) If in a column all the cells 1 circled
- the unw	ped van	lable	(3)		Output = 1
					(ii) If some of the cells are circled than
					take the 12000 variable combination of each
					cell and "+" them [simplify if possible]
					(i) In case of a single cell circled, just
					take the 12000 variable combination of that cel

$F(a,b,c,d)=\sum (0,1,4,5,9,14,15)$

Implement the above boolean function using two 4:1 MUX(s) and one 2:1 MUX.

