## Introduction aux Équations Différentielles Partielles

Projet : Modélisation du Stockage du Dioxyde de Carbone dans les Forêts

Elsa Catteau, Yseult Canac-Pons, Katell Nio

Polytech Nice-Sophia, MAM3



## Sommaire

- Introduction
- 2 Équation de diffusion et de convection
- 3 Approximations Numériques
- Fiches cas tests
- Conclusion



### Sommaire

- Introduction
- 2 Équation de diffusion et de convection
- 3 Approximations Numériques
- 4 Fiches cas tests
- Conclusion



#### Introduction

- Contexte des équations différentielles partielles (EDP).
- Importance dans les phénomènes physiques (diffusion, convection, etc.).



## Objectif

- Étude de l'équation de convection-diffusion.
- Validation des résultats numériques par comparaison avec la solution exacte.
- Analyse des erreurs pour évaluer la précision.



Janvier 2025

## Sommaire '

- Introduction
- 2 Équation de diffusion et de convection
- 3 Approximations Numériques
- 4 Fiches cas tests
- Conclusion



## Équation de diffusion et convection

#### Formulation générale

$$f(x,t) = \frac{\partial u}{\partial t} - D \frac{\partial^2 u}{\partial x^2} + C \frac{\partial u}{\partial x}$$

- D : coefficient de diffusion.
- C : coefficient de convection.
- f(x, t): terme source calculé à partir de la solution exacte.



## Sommaire

- Introduction
- 2 Équation de diffusion et de convection
- 3 Approximations Numériques
- 4 Fiches cas tests
- Conclusion



## Analyse numérique : Termes $\gamma$ et $\nu$

#### Rappels des définitions

- $\gamma = \frac{D\Delta t}{\Delta x^2}$  : terme de diffusion.
- $\nu = \frac{C\Delta t}{\Delta x}$  : terme de convection.
- Termes diffusifs  $(\gamma)$  : modélisent la dissipation.
- Termes convectifs  $(\nu)$  : modélisent le transport.
- Conditions de stabilité :  $\gamma \leq \frac{1}{2}$ ,  $\nu \leq 1$ .



Janvier 2025

#### Schéma aux différences finies

## Équation discrétisée

Pour  $u_i^n$ , valeur discrète de u(x,t) au point i et instant n, l'équation discrétisée est :

$$u_i^{n+1} = u_i^n + \gamma(u_{i+1}^n - 2u_i^n + u_{i-1}^n) - \nu(u_i^n - u_{i-1}^n) + f(x_i, t_n)\Delta t$$



### Sommaire

- Fiches cas tests



11/31

## Fiche 1 : Solution analytique $u(x, t) = \cos(\pi x)(1 + t)$

- C = 1. D = 1. L = 1
- Nx = 10000. Nt = 50
- $\partial\Omega = \{0,1\}$
- Condition initiale (t=0) :  $u_i^0 = \cos(\pi x)$
- ullet Conditions aux limites :  $u_L^n=1+t$  ;  $u_R^n=-(1+t)$

#### Terme source

$$f(x,t) = \cos(\pi x) + D(\pi^2 \cos(\pi x)(1+t)) - C(\pi \sin(\pi x)(1+t))$$



Janvier 2025

## Comparaison solution exacte vs calculée

- Comparaison u(x, T) exacte et u(x, T) calculée.
- Résultats numériques avec schéma explicite.
- Bonne concordance pour des valeurs de Δt adaptées.



Figure: Comparaison solution exacte vs solution calculée en fonction de x



## Analyse des erreurs

| Δχ   | $E_{\infty}$ | Commentaires |
|------|--------------|--------------|
| 1/10 | 0.0275       |              |
| 1/20 | 0.0140       | ≈ /2         |
| 1/40 | 0.0071       | ≈ /2         |

Table: Erreur en fonction de  $\Delta x$ , avec  $\Delta t$  fixé.



## Etude de $E(\Delta t, \Delta x) = \mathcal{O}(\Delta t^p) + \mathcal{O}(\Delta x^q)$

- q : Ordre de précision en espace.
- Méthode : On fixe  $\Delta t$  et on varie  $\Delta x$ .



Figure: ln(E) en fonction  $ln(\Delta x)$ 



## Analyse des erreurs

| $\Delta t$ | $E_{\infty}$ | Commentaires |
|------------|--------------|--------------|
| 1/100000   | 9.07e-05     |              |
| 1/200000   | 4.57e-05     | ≈ /2         |
| 1/400000   | 2.30e-05     | ≈ /2         |

Table: Erreur en fonction de  $\Delta t$ , avec  $\Delta x$  fixé.



## Etude de $E(\Delta t, \Delta x) = \mathcal{O}(\Delta t^p) + \mathcal{O}(\Delta x^q)$

- p : Ordre de précision en temps.
- Méthode : On fixe  $\Delta x$  et on varie  $\Delta t$ .



Figure: ln(E) en fonction  $ln(\Delta t)$ 



## Fiche 2 : Solution analytique $u(x, t) = \sin(\pi x) \exp(-t)$

- C = 1. D = 1. L = 1
- Nx = 10000. Nt = 50
- $\partial\Omega = \{0,1\}$
- Condition initiale (t=0) :  $u_i^0 = \sin(\pi x)$
- Conditions aux limites :  $u_L^n = 0$  ;  $u_R^n = 0$

#### Terme source

$$f(x,t) = -\cos(\pi x)\exp(-t) + D\pi^2\sin(\pi x)\exp(-t) + C\pi\cos(\pi x)\exp(-t)$$

Projet EDP



## Comparaison solution exacte vs calculée

- Comparaison u(x, T) exacte et u(x, T) calculée.
- Résultats numériques avec schéma explicite.
- Bonne concordance pour des valeurs de Δt adaptées.



Figure: Comparaison solution exacte vs solution calculée en fonction de x



## Analyse des erreurs

| Δχ   | $E_{\infty}$ | Commentaires |
|------|--------------|--------------|
| 1/10 | 0.03835      |              |
| 1/20 | 0.01821      | ≈ /2         |
| 1/40 | 0.00873      | ≈ /2         |

Table: Erreur en fonction de  $\Delta x$ , avec  $\Delta t$  fixé.



## Etude de $E(\Delta t, \Delta x) = \mathcal{O}(\Delta t^p) + \mathcal{O}(\Delta x^q)$

- q : Ordre de précision en espace
- Méthode : On fixe  $\Delta t$  et on varie  $\Delta x$



Figure: ln(E) en fonction  $ln(\Delta x)$ 



## Analyse des erreurs

| $\Delta t$ | $E_{\infty}$ | Commentaires |
|------------|--------------|--------------|
| 1/100000   | 7.18e-05     |              |
| 1/200000   | 3.59e-05     | ≈ /2         |
| 1/400000   | 1.79e-05     | ≈ /2         |

Table: Erreur en fonction de  $\Delta t$ , avec  $\Delta x$  fixé.



## $\overline{\mathsf{E}}\mathsf{tude}\;\mathsf{de}\;\overline{E(\Delta t,\Delta x)} = \mathcal{O}(\Delta t^p) + \mathcal{O}(\Delta x^q)$

- p : Ordre de précision en temps.
- Méthode : On fixe  $\Delta x$  et on varie  $\Delta t$ .



Figure: ln(E) en fonction  $ln(\Delta t)$ 



# Fiche 3 : Solution analytique $u(x, t) = (\sin(\pi x) + \cos(2\pi x)) \exp(-\pi^2 t)$

• 
$$C = 1$$
,  $D = 1$ ,  $L = 1$ 

- Nx = 10000, Nt = 50
- $\partial \Omega = \{0, 1\}$
- Condition initiale (t=0) :  $u_i^0 = \sin(\pi x) + \cos(2\pi x)$
- Conditions aux limites :  $u_L^n = exp(-\pi^2 t)$  ;  $u_R^n = exp(-\pi^2 t)$

#### Terme source

$$f(x,t) = -\pi^2(\sin(\pi x) + \cos(2\pi x)) \exp(-\pi^2 t) + D\pi^2(\sin(\pi x) + 4\cos(2\pi x)) \exp(-\pi^2 t) + C(\pi\cos(\pi x) - 2\pi\sin(2\pi x)) \exp(-\pi^2 t)$$



## Comparaison solution exacte vs calculée

- Comparaison u(x, T) exacte et u(x, T) calculée.
- Résultats numériques avec schéma explicite.
- Bonne concordance pour des valeurs de Δt adaptées.



Figure: Comparaison solution exacte vs solution calculée en fonction de x



## Analyse des erreurs

| Δχ   | $E_{\infty}$ | Commentaires |
|------|--------------|--------------|
| 1/10 | 0.0577       |              |
| 1/20 | 0.0340       | ≈ /2         |
| 1/40 | 0.0180       | ≈ /2         |

Table: Erreur en fonction de  $\Delta x$ , avec  $\Delta t$  fixé.



## Etude de $E(\Delta t, \Delta x) = \mathcal{O}(\Delta t^p) + \mathcal{O}(\Delta x^q)$

- q : Ordre de précision en espace.
- Méthode : On fixe  $\Delta t$  et on varie  $\Delta x$ .



Figure: ln(E) en fonction  $ln(\Delta x)$ 



## Analyse des erreurs

| $\Delta t$ | $E_{\infty}$ | Commentaires |
|------------|--------------|--------------|
| 1/100000   | 2.40e-04     |              |
| 1/200000   | 1.21e-04     | ≈ /2         |
| 1/400000   | 6.06e-05     | ≈ /2         |

Table: Erreur en fonction de  $\Delta t$ , avec  $\Delta x$  fixé.



## Etude de $E(\Delta t, \Delta x) = \mathcal{O}(\Delta t^p) + \mathcal{O}(\Delta x^q)$

- p : Ordre de précision en temps.
- Méthode : On fixe  $\Delta x$  et on varie  $\Delta t$  .



Figure: ln(E) en fonction  $ln(\Delta t)$ 



### Sommaire

- Introduction
- 2 Équation de diffusion et de convection
- 3 Approximations Numériques
- 4 Fiches cas tests
- Conclusion



#### Conclusion

- Ce qui a été confirmé : la méthode est valide sous certaines conditions.
- Limites : conditions de stabilité, précision dépendante des pas.
- Perspectives :
  - Étude de cas 2D/3D.

