

2nd seminar

Antiepileptic (anticonvulsive, antiseizure) drugs, Antipsychotics

László Drimba M.D.

Department of Pharmacology and Pharmacotherapy

University of Debrecen

M

Epilepsy, seizures

history:

- most common neurology disorder
- \Box epilepsy 0,1% of population
- ,,morbus sacer"

background:

- localized or generalized discharge of the cerebral neurons (epileptogen focus)
- (seizures=somatic manifestations of the CNS discharge)

definition

- epileptiform /epileptic seizure (accidental, temporary)
 - fever (neonates, children) "hyperpyretic seizure/convulsion"
 - hypoglycaemia
 - drug/alcohol withdrawal
 - hyperventillation
 - hypoxia
- □ epilepsy (as disease) at regular intervals, repetitive, periodic
 - idiopathic (genuine)
 - symptomatic
 - □ trauma (CNS)
 - neoplasma
 - meningitis
 - malformations in CNS

Patomechanism

- 1. excitation PDS spontaneous depolarization
- 2. propagation spreading into different CNS structures
- 3. hypersynchronization
- 4. seizures (somatic manifestation)

Hypothesis: glutamate ↑
GABA ↓
BDRF ↑

Seizure types

Partial seizures (motoric, sensoric, vegetative) (60%)

simple partial seizure complex partial seizures partial seizures (secondarily generalized) to GTCS

Generalized seizures (40%)

absence seizures
GTCS (generalized tonic clonic seizures)
myoclonic seizures
atonic/akinetic seizures

clinical forms!

- epileptic attack (ictus epilepticus)
- repeated seizures
- status epilepticus (,,permanent epileptic state'')

Patomechanism, targets

Phenytoin, fosphenytoin, mephenytoin

- pharmacodynamic features
 - (diphenylhidantoin)
 - Epanutin[®], Diphedan[®]
 - the oldest antiseizure drug
 - blocking VG Na⁺ channels (antiarrhythmic drugs)
- pharmacokinetic features
 - well absorbed
 - PPB↑, higher cc. of phenylbutazon, warfarin, sulfonamide
 - enzyme induction!!!
- adverse effects
 - pro-arrhythmic
 - hyperthyreosis-(increased affinity to THBG)
 - diplopia, ataxia
 - gingiva hyperplasia (impaired collagen metabolism)
- clinical use
 - partial seizures (simplex, complex)
 - GTCS
 - 15-20 mg/kg

Carbamazepine (Tegretol ®, Neurotop®)

tricyclic structure (see in antidepressants!)

- pharmacodynamic features
 - \Box blocking VG Na^{+,} channels \rightarrow limits the repetitive firing
- pharmacokinetic features
 - well absorbed
 - □ PPB $\approx 70\%$
 - □ inducing CYP3A4 (like phenobarbital), ↓ serum cc. of phenytoin, valproic acid, OAC
- adverse effects
 - teratogenic
 - □ drowsiness,
 - aplastic anaemia, agranulocytosis
- clinical use
 - partial seizures (simplex, complex)
 - n GTCS
 - trigeminal neuralgia
 - □ effective dose: 600-800 mg/day

Oxcarbazepine (Trileptal®)

- similar to carbamazepine
- less potent enzyme inductor than carbamazepine

Phenobarbital

- pharmacodynamic features
 - ☐ GABA R modulating effect PDS↓
- pharmacokinetic features
 - well absorbed
 - hepatic enzyme induction! CYP3A4, (unwanted pregnancy!)
- adverse effects

 - cardiovascular/respiratory depression
- clinical use
 - partial seizures (simplex, complex)
 - GTCS

Ethosuximide

- pharmacodynamic features
 - □ blocking T-type Ca⁺⁺ channels (especially in thalamic neurons)
- pharmacokinetic features
 - rapidly absorbed
 - □ half life: 40 hours
- adverse effects
 - gastric distress
 - nausea, vomitus
 - paresthesias
- clinical use
 - absence seizures (first-line treatment)
 - □ 250-500 mg

Lamotrigine (Lamictal®)

- pharmacodynamic features
 - □ blocking N-type Ca⁺⁺ channels
 - blocking Na+channel
- pharmacokinetic features
 - rapidly absorbed
 - □ half life: 24 hours
- adverse effects
 - headache, diplopia
 - somnolence
 - skin rash
- clinical use
 - Lennox-Gastaut syndrome (in childhood, multiple seizure types, mental retardation)
 - □ 100-300mg/ day

Gabapentin, Pregabalin

GABA analogs

- pharmacodynamic features
 - □ not agonise GABA_A R (in spite of structural resemblence to GABA)
 - □ blocking VG-Ca²⁺ channels (N-type)
 - structural analog of GABA
- pharmacokinetic features
 - not bound to PP
- adverse effects
 - sedation
- clinical use
 - partial seizures
 - pain syndromes
 - □ 900-1800-3600 mg/day

Topiramate

- pharmacodynamic features
 - □ blocking VG Na⁺ channels, stimulating K⁺ currents
 - enhancing GABA_A mediated Cl⁻ currents
- pharmacokinetic features
 - rapidly absorbed
- adverse effects
 - fatique, cognitive slowing
 - paraesthesias
- clinical use
 - partial seizures
 - Lennox-Gastaut syndrome
 - migraine, headache
 - □ 200-600 mg/day

Vigabatrine (Sabril®)

- pharmacodynamic features
 - structural analog of GABA
 - irreversible inhibitor of GABA-T (GABA transaminase)
- pharmacokinetic features
 - well absorbed
- adverse effects
 - drowsiness, dizziness, weight gain
 - □ bilateral vision loss
 - intramyelinic oedema (infants)
- clinical use
 - refractory partial seizures

Tiagabine

- pharmacodynamic features
 - inhibitor of GABA re-uptake mechanism
 - □ blocking GAT-1> GAT-2> GAT-3→e.c. GABA↑
 - □ modulating VG-Ca++ channels (N-type)→glutamate release↓
- pharmacokinetic features
 - □ total absorption: 90-100%
- adverse effects
 - nervousness, dizziness, tremor
 - somnolence, ataxia
- clinical use
 - refractory partial seizures
 - partial seizure secondarily generalized

DE ATT

Felbamate (Taloxa®)

- pharmacodynamic features
 - blocking NMDA R
 - modulating GABA_A R
- pharmacokinetic features
 - well absorbed
 - excreted in urine
- adverse effects
 - hepatitis
 - aplastic anaemia, agranulocytosis
- clinical use
 - partial seizures

Valproic acid (Convulex®)

- pharmacodynamic features
 - blocking NMDA R
 - facilitating GAD (GABA synthesis)
 - inhibiting GAT-1
 - □ inhibiting GABA-T (GABA transaminase) at high concentrations
- pharmacokinetic features
 - well absorbed
 - □ PPB≈90%
- adverse effects
 - nausea, vomitus
 - hepatitis
 - embriopathy (spina bifida)
- clinical use
 - absence seizures
 - □ GTCS

Benzodiazepines

diazepam clonazepam clobazam

- pharmacodynamic features
 - □ allosteric moduation on GABA_AR
- clinical use
 - continuous seizure activity
 - repeated epileptiform attack
 - status epilepticus

Therapeutic indications

simple/complex partial seizures

- carbamazepine
- phenytoin
- valproic acid

absence seizures

- ethosuximide
- valproic acid

GTCS

- carbamazepin/oxcarbazepine
- phenytoin
- levetiracetam

status epilepticus

- benzodiazepine
 - diazepam (10-20 mg i.v.), clonazepam (2 mg i.v.)
- O2, glucose i.v., tiamine
- phenytoin (15-20 mg/kg-ECG controll)
- phenobarbital (15-20 mg/kg, 100mg/min i.v.)
- thiopental, muscle relaxation, resp. support

Dopaminergic neurotransmission

DEBRECT AND A MEDICATION AND A MEDICATIO

Dopaminergic systems

- nigrostriatal pathway
 - substantia nigra→corpus striatum
 - coordination of voluntary movement
 - deficiency!→Parkinson's disease
- mesolimbic-mesocortical pathway
 - mesencephalon→limbic system/cortex
 - cognitive functions, self-reward system, perception, feelings
 - N.B.! overstimulation!
- tuberoinfundibular pathway
 - hypothalamus-hypophysis
 - endocrine functions
 - dopamin=PIF, prolactin secretion↓
- medullary-periventricular pathway
 - beside the III.-IV. ventricle
 - eating behavior
- area postrema
 - chemosensitive trigger zone
 - antiemesis-antpsychotics

Dopaminergic neurotransmission

Dopamine receptors:

D₁ like, D₂ like

- D_1 :Gs \rightarrow AC \rightarrow cAMP \uparrow putamen, cortex, nucleus accumbens
- $D_2:Gi\rightarrow cAMP\downarrow$, seen above
- $D_3:Gi \rightarrow cAMP \downarrow frontal cortex$, medulla, mesencephalon
- $D_4:Gi\rightarrow cAMP \downarrow cortex$
- $D_5:Gs \rightarrow AC \rightarrow cAMP\uparrow$, hippocampus, hypothalamus

- psychiatric disease
- □ etiology:
 - dopamine hypothesis
 - □ hyperfunction of mesolimbic-mesocortical dopaminergic pathway
 - □ primarily described (development of typical antipsychotics-D2R antagonism)
 - \square D₂ R blocking drugs reduce psychotic symptoms
 - □ D₂ R activating drugs (levodopa, bromocriptine) produce psychosis
 - □ post-mortem study increased D₂ R density in midbrain (mesencephalon)
 - □ increased dopamine levels in putamen, nucleus accumbens

serotonin

- □ indole hallucinogenes (LSD), mescalin provoke psychotic symptoms
- \Box 5HT_{2A} R agonism hallucinations
- □ inverse agonists of 5HT_{2A} R (AAP-clozapine, queitapine) reduce sch. sympt.
- glutamate hypothesis
 - □ hypofunction of NMDA R located on GABAerg neurons provoke schizphr.

Schizophrenia

Symptoms:

- positive symptoms:
 - □ illusions / delusions (irreal)
 - □ auditory/visual hallucinations
 - □ thinking disorders
 - □ agitation, agressive behaviour
- negative symptoms:
 - □ blunted effect and emotion
 - poverty of speech (alogia)
 - □ inability to experience pleasure (anhedonia)
 - lack of motivation
 - □ lack of social relationships
 - □ apathia, agonia

Antipsychotics (neuroleptics)

risperidon

DEBR.CO.

Typical antipsychotics:

- \square D₂ R antagonism
- □ anti-cholinerg effect (obstipation)
- □ anti adrenerg effect (orthostatic hypotension)
- □ reduction of the positive symptoms of schizophrenia (negatives?)
- □ broad side effect profile
 - EPS (dopamine depletion of nigrostriatal pathway)
 - acute
 - achatisia (uncontrolled restlessness)
 - acute dystonic reactions (spastic retrocollis/torticollis)
 - □ chronic
 - pseudo Parkinson syndrome (bradykinesia, rigidity, tremor)
 - perioral tremor ("rabbit syndrome")
 - tardive dyskinesia (choreo-athetoid movements)
 - MNS (malignant neuroleptic syndrome) th.: bromocriptin, danthrolen
 - endocrine effects (dopamine depletion of tuberoinfundibular pathway)
 - hyperprolactinaemia, galactorrhea-amenorrhea
 - gynecomastia, impotence

Antipsychotics

- □ broad side effect profile
 - antiemetic effects (D2R blocking in area postrema)
 - □ promethazine
 - cardiac toxicity
 - □ thioridazine
 - QTc prolongation, arrhythmias (TdP)

Antipsychotics

Atypical antipsychotics:

- expanded receptor profile
- □ reduction both of the positive and negative symptoms of schizophrenia
- □ reduced side effect profile
 - clozapine
 - \square blocking $D_4 R > D2R = 5HT_{2A}R > D_1R$
 - □ central adrenerg effect
 - □ mesolimbic selectivity
 - □ side effects
 - obesity, insulin resistance
 - agranulocytosis!
 - myocarditis
 - olanzapine (Zyprexa®)
 - \Box 5HT_{2A}R > H1R > D₄ R > D2R
 - mesolimbic selectivity
 - □ side effects
 - obesity, insulin resistance

Antipsychotics

Atypical antipsychotics:

- risperidone (Risperdal®)
 - □ blocking D2R > $5HT_{2A}R > H1R$
 - □ mesolimbic selectivity
 - □ side effects
 - EPS
 - hyperprolactinaemia
 - sedation, headache
 - MNS (depot)
- sertindole (Serdolect®), ziprasidone
 - \square D2R > 5HT_{2A}R > α 1
 - □ side effects
 - QT prolongation

Developpent of obesity and insulin resistance during AAP treatment

weight gain

- □ blocing H₁R in hypothalamus (VMHN, PVN)
- \square TNF- α hypersecretion
- \square α_2 adrenergic agonism
- □ decreased leptin levels, leptin resistance

insulin resistance

- \square 5HT_{1A}R antagonism $\rightarrow \downarrow$ response of pancreatic β cells
- \square M₃R antagonism $\rightarrow \downarrow$ response of pancreatic β cells
- □ inhibitory effect on GLUT transporters in skeletal muscle