Units of Fourier-transformed fields in plotlaserfourier

Johannes Feist^{1,*}

¹Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid (Dated: February 12, 2015)

We discuss the units of the Fourier transform of the laser fields as calculated by plotlaserfourier.

The instantaneous intensity of an electric field is $I(t) = \frac{\epsilon_0 c}{2} E^2(t)$, which gives $I(t) = 3.50944 \cdot 10^{16} E_{au}^2(t) \text{ W/m}^2$ if the electric field is given in atomic units, $E(t) = E_{au}(t) \mathcal{E}_{au}$ (where $\mathcal{E}_{au} = \frac{e}{4\pi\epsilon_0 a_0^2} = 5.142207 \cdot 10^{11} \text{ V/m}$ is the atomic unit of electric field strength). In atomic units, we have $I(t) = 5.45249 E_{au}^2(t)$ a.u., where "a.u." here is Hartree/ $(t_{au}a_0^2)$, with Hartree = 27.211 eV, atomic unit of time $t_{au} = 24.188$ as, and Bohr radius $a_0 = 5.29177 \cdot 10^{-11}$ m.

The Fourier transform returned by plotlaserfourier is

$$\tilde{E}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} E(t) dt, \qquad (1)$$

with all quantities in atomic units. This means that $\tilde{E}(\omega)$ from plotlaserfourier is in atomic units, which are $\mathcal{E}_{au}t_{au}=1.24384\cdot 10^{-5}~\mathrm{V\,s/m}$. According to the Plancherel theorem, we have

$$\int_{-\infty}^{\infty} E^2(t) dt = \int_{-\infty}^{\infty} |\tilde{E}(\omega)|^2 d\omega$$
 (2)

where we have used that E(t) is real, i.e., $|E(t)|^2 = E^2(t)$. We use this to define a "spectral intensity" $\tilde{I}(\omega)$

$$\rho_{tot} = \int_{-\infty}^{\infty} I(t) dt = \frac{\epsilon_0 c}{2} \int_{-\infty}^{\infty} E^2(t) dt = \frac{\epsilon_0 c}{2} \int_{-\infty}^{\infty} |\tilde{E}(\omega)|^2 d\omega = \int_{-\infty}^{\infty} \tilde{I}(\omega) d\omega$$
 (3)

where ρ_{tot} is the total energy density (per area) of the pulse (units, e.g., J/cm²). Therefore, the spectral intensity $\tilde{I}(\omega)$ is given by $\tilde{I}(\omega) = 2.05338 \cdot 10^{-17} |\tilde{E}_{au}(\omega)|^2 \text{ J s/cm}^2$, where $\tilde{E}_{au}(\omega)$ is the output of plotlaserfourier. In atomic units, the spectral intensity is $\tilde{I}(\omega) = 5.45249 |E_{au}(\omega)|^2$ a.u., where "a.u." here is Hartree t_{au}/a_0^2 .

Finally, note that the integral in frequency ω runs from $-\infty$ to ∞ , while plotlaserfourier by default only outputs $\omega > 0$. To perform the full integral, you can use that $\tilde{E}(-\omega) = \tilde{E}^*(\omega)$ since E(t) is real, so that $\tilde{I}(-\omega) = \tilde{I}(\omega)$ and $\int_{-\infty}^{\infty} \tilde{I}(\omega) d\omega = 2 \int_{0}^{\infty} \tilde{I}(\omega) d\omega$. So it would be possible to add a factor 2 to $\tilde{I}(\omega)$ and have it defined only for $\omega > 0$.

^{*} johannes.feist@uam.es