DISCRETE MATHEMATICS NOTES

Chapter 1: Logic and Proofs

Yoshita Aligina Rutgers University September 2024

Contents

1	\mathbf{Pro}	positional Logic	3		
	1.1	Propositions	3		
	1.2	Logical Connectives	3		
	1.3	Truth Tables	3		
	1.4	Equivalence of Propositions	3		
2	Predicate Logic				
	2.1	Predicates and Quantifiers	4		
	2.2	Negating Quantified Statements	4		
3	Methods of Proof				
	3.1	Direct Proof	4		
	3.2	Proof by Contraposition	4		
	3.3	Proof by Contradiction	4		
	3.4	Proof by Exhaustion	4		
4	Common Mistakes in Proofs				
5	Exa	amples	5		

1 Propositional Logic

1.1 Propositions

- A **proposition** is a declarative sentence that is either true or false, but not both.
- Examples of propositions:
 - "The sky is blue." (True)
 - "2 + 2 = 5." (False)
- Non-examples of propositions:
 - "What time is it?" (Not declarative)
 - "x + 2 = 4." (Not a proposition, as the truth value depends on x)

1.2 Logical Connectives

- The main logical connectives are:
 - **Negation** $(\neg p)$: If p is true, then $\neg p$ is false, and vice versa.
 - Conjunction $(p \wedge q)$: True if both p and q are true, otherwise false.
 - **Disjunction** $(p \lor q)$: True if at least one of p or q is true, otherwise false.
 - **Implication** $(p \to q)$: False only when p is true and q is false, otherwise true.
 - **Biconditional** $(p \leftrightarrow q)$: True if p and q have the same truth value.

1.3 Truth Tables

- Truth tables provide a systematic way to determine the truth value of a proposition based on its components.
- Example: Truth table for $p \to q$.

p	q	$p \rightarrow q$
T	Т	Т
T	F	F
F	Т	T
F	F	Т

1.4 Equivalence of Propositions

- Two propositions are **logically equivalent** if they have the same truth value in all possible cases. We write $p \equiv q$ to denote this.
- Common equivalences:
 - De Morgan's Laws: $\neg(p \land q) \equiv \neg p \lor \neg q, \neg(p \lor q) \equiv \neg p \land \neg q$
 - Implication: $p \to q \equiv \neg p \lor q$

2 Predicate Logic

2.1 Predicates and Quantifiers

- A **predicate** is a function P(x) that becomes a proposition when x is given a specific value.
- The two main quantifiers are:
 - Universal Quantifier $(\forall x \ P(x))$: True if P(x) is true for every x in the domain.
 - Existential Quantifier $(\exists x \ P(x))$: True if P(x) is true for at least one x in the domain.

2.2 Negating Quantified Statements

- Negating a universally quantified statement: $\neg(\forall x\ P(x)) \equiv \exists x\ \neg P(x)$
- Negating an existentially quantified statement: $\neg(\exists x \ P(x)) \equiv \forall x \ \neg P(x)$

3 Methods of Proof

3.1 Direct Proof

• A direct proof assumes the premise p is true and logically deduces that q must also be true.

3.2 Proof by Contraposition

• To prove $p \to q$, prove $\neg q \to \neg p$ instead, as these are logically equivalent.

3.3 Proof by Contradiction

• Assume p is true and q is false, then derive a contradiction.

3.4 Proof by Exhaustion

• Check all possible cases to confirm that the statement holds for all of them.

4 Common Mistakes in Proofs

- Assuming what is to be proven (begging the question).
- Confusing a statement and its converse.
- Misusing quantifiers (e.g., confusing $\forall x$ with $\exists x$).

5 Examples

Theorem 5.1. This is a theorem.

Proposition 5.2. This is a proposition.

Principle 5.3. This is a principle.

References