

Universidad del Valle Facultad de ingeniería

Ingeniería en sistemas

Cristian David Pacheco Torres 2227437 Juan Sebastián Molina Cuéllar 2224491

October 11, 2023

Taller 3: Reconocimiento de patrones.

Contents

1	Maniobras en trenes.			3
	1.1	Aplica	r movimiento.	3
		1.1.1	Informe de uso del reconocimiento de patrones	3
		1.1.2	Informe de Corrección	3
		1.1.3	Conclusión	3
	1.2	Aplica	r movimientos	3
		1.2.1	Informe de uso del reconocimiento de patrones	3
		1.2.2	Informe de Corrección	3
		1.2.3	Conclusión	3
	1.3	Defini	r maniobras	3
		1.3.1	Informe de uso del reconocimiento de patrones	3
		1.3.2	Informe de Corrección	3
		1.3.3	Conclusión	4

1 Maniobras en trenes.

- 1.1 Aplicar movimiento.
- 1.1.1 Informe de uso del reconocimiento de patrones.

Tabla 1

- 1.1.2 Informe de Corrección.
- 1.1.3 Conclusión.
- 1.2 Aplicar movimientos
- 1.2.1 Informe de uso del reconocimiento de patrones.

Tabla 2

- 1.2.2 Informe de Corrección.
- 1.2.3 Conclusión.
- 1.3 Definir maniobras
- 1.3.1 Informe de uso del reconocimiento de patrones.

Tabla 3

1.3.2 Informe de Corrección.

Sea $k \in N$, $0 \le k \le n$, un entero que indica el número actual de maniobras en el trayecto principal T_p , $S_0 = \langle b_1, \ldots, b_i, \ldots, b_{n-1}, b_n \rangle$ una secuencia que define el estado inicial en T_p ; $S_1 = \langle c_1, c_2, \ldots, b_{n-1}, c_n \rangle$, $0 \le j \le n-1$ elementos, una secuencia que define el estado de un trayectto secundario T_2 en el paso k, $S_2 = \langle e_1, e_2, \ldots, e_{n-1}, e_n \rangle$, $0 \le j \le n-1$ elementos, una secuencia que define el estado de un trayectto secundario T_2 en el paso k; una función l que determina el número de elementos de la secuencia s de entrada; y $P_{k-n}^{k-n}(S_k)$ una función de permutación de k-n en k-n elementos sobre los elementos de secuencia S en el paso k de la maniobra.

Por premisa se tiene que $S_0[i]=Sd[j]$, para $0 \le i \le n$ y $0 \le j \le n$ Se quiere demostar que $\exists S_n=< a_1,a_2,\ldots,a_{n-1},a_n> \mid S_n[i]=Sd[i]$ para $0 \le i \le n$

Se define

- Un estado $s = (S_k, S_1, S_2, S_d, m)$ donde
 - $-S_k$ representa la secuencia en la iteración k.
 - $-S_1$ el estado sobre el trayecto T_1 .
 - $-S_2$ el estado sobre el trayecto T_2 .
 - Sd el estado deseado.
 - -m la lista de moviemientos (maniobras) hasta el paso k.
- El estado inicial $s_0 = (S_0, [], [], S_d, [])$.
- $S_f = (S_n, [\], [\], S_d, m)$. donde $S_n[i] = S_d[i]$ en $0 \le i \le n$.
- $Inv(S_k, S_1, S_2, S_d, m) \equiv \exists \ p := P_{n-1}^{n-1}(Si \ k = 0 \to S_0 \lor S_1 + + S_2)$ $| S_k[k:n] = S_d[k:n] \land l(m) \le (n-1) + \dots + (n-k+1)$ para 0 < k < n.
- $transformar(S_k, S_1, S_2, S_d, m) =$

1.3.3 Conclusión.