

B.Tech. Degree III Semester Supplementary Examination

May 2017

CS/IT 15-1303 DISCRETE COMPUTATIONAL STRUCTURES

(2015 Scheme)

Time: 3 Hours

Maximum Marks: 60

PART A

(Answer ALL questions)

 $(10 \times 2 = 20)$

- I. (a) Prove that the negation of biconditional statement $\sim (p \leftrightarrow q)$ is equivalent to $(p \sim q)$.
 - (b) If f and g are functions from R to R defined by f(x) = ax + b $g(x) = 1 x + x^2$, $g \circ f(x) = 9 x^2 9x + 3$. Find the values of a and b.
 - (c) Define Recurrence Relation. The recurrence relation for 1, 1, 2, 3, 5, 8, 13 is
 - (d) State Pigeon-hole principle. Seven members of a family have total ₹ 2906/- in their pockets. Show that at least one of them must have at least ₹ 416/- in his pocket.
 - (e) Draw a graph which contains:
 - (i) an Eulerian circuit that is also a Hamiltonian circuit.
 - (ii) an Eulerian circuit, not a Hamiltonian circuit.
 - (f) Define Bridge. Draw a graph whose every edge is a bridge.
 - (g) Draw a nine vertex binary tree with minimum and maximum heights. Find also the path length of both trees.
 - (h) Find the identity element of the algebraic system (S, *) where S is the set of integers and * is defined by a * b = a + b + 2 for all $a, b \in S$. Find the inverse of the element $a \in S$.
 - (i) If $S = N \times N$ and the binary operation * is defined by (a, b) * (c, d) = (ac, bd) for all $a, b, c, d \in N$. Show that (S, *) is a semigroup. Is it a Monoid?
 - (j) Define a Lattice as an algebraic system.

PART B

 $(4 \times 10 = 40)$

II. (a) Without constructing truth tables prove the following

 $(2 \times 2 = 4)$

- (i) $\sim p \rightarrow (q \rightarrow r) \cong q \rightarrow (p \lor r)$.
- (ii) $p \to (q \to r) \cong p \to (\sim q \vee r) \cong (p^{\wedge}q) \to r$.
- (b) Use mathematical induction to prove that $1 + 3 + 5 + \dots + (2n 1)^2 = n^2 \text{ for } n \ge 1.$

OR

- III. (a) If R is the relation on the set of integers such as $(a, b) \in R$, if and only if 3a + 4b = 7n for some integer n, prove that R is an Equivalence relation. (5)
 - (b) If f, g, h : R \rightarrow R are defined by $f(x) = x^3 4x$, $g(x) = 1/(x^2 + 1)$ and $h(x) = x^4$, find $\{(f \circ g) \circ h\}(x)$ and $\{f \circ (g \circ h)\}(x)$ and check if they are equal. (5)

Solve the recurrence relation $a_n - 5a_{n-1} + 6a_{n-2} = 8n^2$ with initial IV. condition $a_0 = 4$ and $a_1 = 7$.

(10)

V. State and explain Counting principle. (a)

- (5)
- Assuming that repetitions are not permitted, how many four-digit numbers (b) can be formed from the six digits 1, 2, 3, 5, 7, 8?
- (5)

- How many of these numbers are less than 4000?
- (ii) How many of these numbers are even?
- How many of these numbers are odd? (iii)
- (iv) How many of these numbers are multiples of 5?
- VI. (10)Using Dikstra's algorithm to find the shortest path between 'A' and 'H' vertices in the weighted graph shown in the figure.

OR

VII. Define a minimum spanning tree Use Kruskal's algorithm to find Minimal Spanning Tree of the weighted graph shown in the figure.

(10)

- VIII. (a) If * is the binary operation of the set R of real numbers defined by a * b =a+b+2ab.
- (3)

- Find if $\{R, *\}$ is a semigroup. Is it commutative? (i) Find the identity element, if exists.
- (b) Consider an algebraic system (G, *), where G is the set of all non-zero real numbers and * is a binary operation defined by $a^*b = ab/4$. (G, *) is an abelian group.

(7)

- IX. Let $D_{100} = \{1, 2, 4, 5, 10, 20, 25, 50, 100\}$ and let the relation / (divides) be a (10)partial ordering on D_{100} .
 - Draw the Hasse diagram of D₁₀₀ with relation divides. (i)
 - (ii) Determine the GLB of B, where $B = \{10, 20\}.$
 - Determine the LUB of B, where $B = \{10, 20\}$. (iii)
 - (iv) Determine the GLB of B, where $B = \{5, 10, 20, 25\}$.
 - Determine the LUB of B, where $B = \{5, 10, 20, 25\}$. (v)
