Read Chapter 5 and my paper using this RW

A RW with 3 states

States 0, 1, 2

where (q_0=1/3, q_1=1/2, q_2=1/3)

$$\begin{split} m_0 &= 1 + (1-q_0) * m_1. = (1+0) * q_0 + (1+m_1) * * (1-q_0) \\ m_1 &= 1 + 0 * (1-q_1/2) + q_1 * m_1 + (1-q_1/2) * m_2 \\ m_2 &= 1 + (1-q_2) * m_1 + q_2 * m_2 \end{split}$$

For computing w_0 , w_1 , w_2 , g, s_0 , s_1 , s_2 take

 β_1, β_2, \dots cycles of returns to a 'ground state' 0.

For the MDP version

I) Introduce 2 actions in state 1 (in some states). action a11 as above (ie, p_{1a_11}=(1-q_1/2, q_1,1-q_1/2) and r_{1a_11}=20) action a12 with p_{1a_12}=(1-q_1/3,q_1,1-2*q_1/3) and r_{1a_12}=10)

We have 2 policies, depending on the action in state 1.

II) Introduce 2 actions in state 0,1,2

action a01 as above (ie, p_{1a_01} , and r_{1a_11} as above) action a02 with $p_{1a_12}=(q_0, 1-q_0/2, 1-q_0/2)$ and $r_{1a_12}=1$)

action a11 as above (ie, $p_{1a_11}=(1-q_1/2, q_1,1-q_1/2)$ and $r_{1a_11}=20$) action a12 with $p_{1a_12}=(1-q_1/3, q_1,1-q_2/2)$ and $r_{1a_12}=1$)

action a21 as above (ie, p_{2a_21}, and r_{2a_21} as above) action a22 with p_{2a_21}=1-q_2/3, 1-2*q_2/3,q_2) and r_{2a_22}=50)

We have 8=2³ policies, depending on the actison in states 0, 1, 2.

Idea is to find optimal policies using

$$\hat{g}_n - U_n^g \le g \le \hat{g}_n - L_n^g$$