R Analysis Example Replication C10

```
# ASDA2 Chapter 10 Survival Analysis
library(survey)
# Read in C10 data set, this data is set up for survival analysis in one record per person format
ncsrc10 <- read.table(file = "P:/ASDA 2/Data sets/ncsr/c10_ncsr.csv", sep = ",", header = T, as.is=T)</pre>
names(ncsrc10)
#create factor versions with labels
ncsrc10$racec <- factor(ncsrc10$racecat, levels = 1: 4, labels =c("Other", "Hispanic", "Black", "White"))</pre>
ncsrc10$mar3catc <- factor(ncsrc10$MAR3CAT, levels = 1: 3, labels =c("Married", "Previously Married", "Never
Married"))
ncsrc10$ed4catc <- factor(ncsrc10$ED4CAT, levels = 1: 4, labels =c("0-11", "12", "13-15","16+"))
ncsrc10$sexc <- factor(ncsrc10$SEX, levels = 1:2, labels=c("Male","Female"))</pre>
ncsrc10$ag4catc <- factor(ncsrc10$ag4cat, levels = 1:4, labels=c("18-29", "30-44", "45-59", "60+"))
ncsrc10$mdec <- factor(ncsrc10$mde, level = 1:2, labels=c("No","Yes"))</pre>
# survey design for one record per person
ncsrsvyc10 <- svydesign(strata=~SESTRAT, id=~SECLUSTR, weights=~NCSRWTSH, data=ncsrc10, nest=T)
names (ncsrsvyc10)
# Example 10.3 KM curve NCSR data, note use of survfit since we do not need SE's for this analysis
(km <- survfit(Surv(ageonsetmde,mde)~strata(racecat), data=ncsrc10, weight=NCSRWTSH))</pre>
plot(km,lwd=5,lty=c(1,2,3,4),col=c("blue","green","red", "purple"), ylab=c("Survival"), xlab=c("Time to Event in
Years: Blue:Other Green:Hispanic Red:AfAm Purple:White"))
# svykm instead for comparison and example
# Note that when using "se=T" it causes R program to stall and die, omit here as PC runs out of memory, see
documentation for details on this issue
(kmsvy <- svykm(Surv(ageonsetmde,mde)~strata(racecat),design=ncsrsvyc10))</pre>
plot(kmsvy,lwd=2,pars=list(lty=c(1,2,3,4)),ylab=c("Survival"),xlab=c("Time to Event in Years: Solid=Other,
Dashed=Hispanic, Dotted=Black, Dash-Dot=White"))
# Example 10.4 Cox model
summary(ex104 coxph<-svycoxph(Surv(ageonsetmde,mde)~intwage + sexm + mar3catc + ed4catc +
racec,design=ncsrsvyc10))
# No test of proportional hazards for race in R
#discrete time logistic using ncsr data in person year format
#read in personyear data, previously set up with multiple records per person
ncsrpy <- read.table(file = "P:/ASDA 2/Data sets/ncsr/c10_expanded1.csv", sep = ",", header = T, as.is=T)</pre>
names(ncsrpy)
ncsrsvypyp1 <- svydesign(strata=~SESTRAT, id=~SECLUSTR, weights=~NCSRWTSH, data=ncsrpy, nest=T)
# Example 10.5 discrete time logistic
# Subset of records <= age of onset of mde/censor, needed for model to follow
subncsrpy <- subset(ncsrsvypyp1, pyr <= ageonsetmde)</pre>
summary(ex105_logit <- svyglm(mdetv ~ pyr + intwage + sexm + factor(ED4CAT) + factor(racecat) + factor(MAR3CAT),
family=quasibinomial, design=subncsrpy))
# get exponents of betas
exp(ex105 logit$coef)
# With cloglog link
summary(ex105 cloglog<-svyglm(mdetv ~ pyr + intwage + sexm + factor(ED4CAT) + factor(racecat) + factor(MAR3CAT),</pre>
family=quasibinomial(link=cloglog), design=subncsrpy))
# With exponentiated coefficients
exp(ex105_logit$coef)
```

Output R Analysis Example Replication C10

```
records n.max n.start events median 0.95LCL 0.95UCL
strata(racecat)=racecat=1
                              473
                                    404
                                            404
                                                  81.7
                                                            NA
                                                                    NA
                                                                            NA
strata(racecat)=racecat=2
                                           1007 164.9
                              883
                                   1007
                                                            NA
                                                                    NA
                                                                            NA
strata(racecat)=racecat=3
                             1230
                                  1073
                                           1073 151.0
                                                           NA
                                                                    NA
                                                                            NA
strata(racecat)=racecat=4
                             6696 6798
                                           6798 1381.9
                                                           NA
                                                                    NA
                                                                            NA
```

> plot(km,lwd=5,lty=c(1,2,3,4),col=c("blue","green","red", "purple"), ylab=c("Survival"), xlab=c("Time to Event in Years: Blue:Other Green:Hispanic Red:AfAm Purple:White"))

Time to Event in Years: Blue:Other Green:Hispanic Red:AfAm Purple:White

#use of svykm instead for comparison and example

(kmsvy <- svykm(Surv(ageonsetmde,mde)~strata(racecat), design=ncsrsvyc10))</pre>

plot(kmsvy,lwd=2,pars=list(lty=c(1,2,3,4)),ylab=c("Survival"),xlab=c("Time to Event in Years: Solid=Other,
Dashed=Hispanic, Dotted=Black, Dash-Dot=White"))

Time to Event in Years: Solid=Other, Dashed=Hispanic, Dotted=Black, Dash-Dot=White

```
> summary(ex104_coxph<-svycoxph(Surv(ageonsetmde,mde)~intwage + sexm + mar3catc + ed4catc +
racec,design=ncsrsvyc10))
Stratified 1 - level Cluster Sampling design (with replacement)
With (84) clusters.
svydesign(strata = ~SESTRAT, id = ~SECLUSTR, weights = ~NCSRWTSH,
    data = ncsrc10, nest = T)
Call:
svycoxph(formula = Surv(ageonsetmde, mde) ~ intwage + sexm +
    mar3catc + ed4catc + racec, design = ncsrsvyc10)
 n= 9282, number of events= 1829
                                coef exp(coef)
intwage
                           -0.049680 0.951534
                           -0.455350 0.634226
sexm
mar3catcPreviously Married 0.504709 1.656503
mar3catcNever Married
                           0.081532 1.084948
ed4catc12
                           -0.057437 0.944181
ed4catc13-15
                           0.045108 1.046141
ed4catc16+
                           -0.091455 0.912603
racecHispanic
                           -0.251413 0.777701
racecBlack
                           -0.481060 0.618128
racecWhite
                            0.078158 1.081294
                            se(coef)
                                           z Pr(>|z|)
intwage
                            0.002392 -20.766 < 2e-16
                            0.062540 -7.281 3.31e-13
sexm
mar3catcPreviously Married 0.060340 8.364 < 2e-16
mar3catcNever Married
                            0.089182 0.914 0.36060
                            0.067355 -0.853 0.39380
ed4catc12
ed4catc13-15
                            0.058314
                                       0.774 0.43921
ed4catc16+
                            0.063933 -1.430 0.15258
racecHispanic
                            0.135175 -1.860 0.06290
racecBlack
                            0.149788 -3.212 0.00132
racecWhite
                            0.118217 0.661 0.50852
intwage
sexm
mar3catcPreviously Married ***
mar3catcNever Married
ed4catc12
ed4catc13-15
ed4catc16+
racecHispanic
racecBlack
racecWhite
Signif. codes:
0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
                           exp(coef) exp(-coef)
                                         1.0509
                              0.9515
intwage
                              0.6342
sexm
                                         1.5767
```

> # Example 10.4 Cox model

mar3catcPreviously Married	1.6565	0.6037
mar3catcNever Married	1.0849	0.9217
ed4catc12	0.9442	1.0591
ed4catc13-15	1.0461	0.9559
ed4catc16+	0.9126	1.0958
racecHispanic	0.7777	1.2858
racecBlack	0.6181	1.6178
racecWhite	1.0813	0.9248
	lower .95	upper .95
intwage	0.9471	0.9560
sexm	0.5611	0.7169
mar3catcPreviously Married	1.4717	1.8645
mar3catcNever Married	0.9110	1.2922
ed4catc12	0.8274	1.0774
ed4catc13-15	0.9332	1.1728
ed4catc16+	0.8051	1.0344
racecHispanic	0.5967	1.0136
racecBlack	0.4609	0.8290
racecWhite	0.8577	1.3632
Concordance= 0.694 (se = 0.007)		
Rsquare= NA (max possible= NA)		
Likelihood ratio test= NA	on 10 df,	p=NA
Wald test = 672.	.5 on 10 d	f, p=0
Score (logrank) test = NA	on 10 df,	p=NA

> # No test of proportional hazards for race in R

```
> #discrete time logistic using NCSR data in person year format
> #read in personyear data, previously set up with multiple records per person
> ncsrpy <- read.table(file = "P:/ASDA 2/Data sets/ncsr/c10_expanded1.csv", sep = ",", header = T, as.is=T)
> names(ncsrpy)
[1] "CASEID"
                 "DSM SO"
                              "MDE OND"
                                            "SO OND"
                                                         "AGE"
                                                                      "REGION"
                                                                                   "MAR3CAT"
                                            "NCSRWTLG"
                                                                      "WKSTAT3C"
 [8] "ED4CAT"
                 "OBESE6CA"
                              "NCSRWTSH"
                                                         "SEX"
                                                                                   "SESTRAT"
[15] "SECLUSTR"
                  "ag4cat"
                              "racecat"
                                            "mde"
                                                        "ald"
                                                                      "sexf"
                                                                                   "sexm"
[22] "ageonsetmde" "intwage"
                              "ncsrwtsh100" "pyr"
                                                         "mdetv"
> ncsrsvypyp1 <- svydesign(strata=~SESTRAT, id=~SECLUSTR, weights=~NCSRWTSH, data=ncsrpy, nest=T)
> # Example 10.5 discrete time logistic
> # Subset of records <= age of onset of mde/censor, needed for model to follow
> subncsrpy <- subset(ncsrsvypyp1, pyr <= ageonsetmde)</pre>
> summary(ex105_logit <- svyglm(mdetv ~ pyr + intwage + sexm + factor(ED4CAT) + factor(racecat) +
factor(MAR3CAT), family=quasibinomial, design=subncsrpy))
Call:
svyglm(formula = mdetv ~ pyr + intwage + sexm + factor(ED4CAT) +
   factor(racecat) + factor(MAR3CAT), family = quasibinomial,
   design = subncsrpy)
Survey design:
subset(ncsrsvypyp1, pyr <= ageonsetmde)</pre>
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               -3.435525 0.161988 -21.209 < 2e-16 ***
                pyr
               intwage
               factor(ED4CAT)2 -0.020136 0.066115 -0.305 0.76273
factor(ED4CAT)3
               0.092919
                         0.057445
                                   1.618 0.11589
factor(ED4CAT)4 -0.019451 0.063338 -0.307 0.76082
factor(racecat)3 -0.456968
                         0.149889 -3.049 0.00467 **
factor(racecat)4 0.073996
                         0.118239 0.626 0.53602
factor(MAR3CAT)2 0.494250
                          0.061010 8.101 3.78e-09 ***
factor(MAR3CAT)3 -0.035346
                          0.087970 -0.402 0.69059
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 1.002008)
Number of Fisher Scoring iterations: 9
> # get exponents of betas
> exp(ex105_logit$coef)
    (Intercept)
                                        intwage
                                                               factor(ED4CAT)2 factor(ED4CAT)3
                           pyr
                                                          sexm
     0.03220851
                     1.03334155
                                     0.94333508
                                                     0.64090809
                                                                     0.98006512
                                                                                    1.09737261
 factor(ED4CAT)4 factor(racecat)2 factor(racecat)3 factor(racecat)4 factor(MAR3CAT)2 factor(MAR3CAT)3
     0.98073699
                     0.78003095
                                     0.63320074
                                                     1.07680197
                                                                     1.63926854
                                                                                    0.96527120
```

```
> # With cloglog link
> summary(ex105_cloglog<-svyglm(mdetv ~ pyr + intwage + sexm + factor(ED4CAT) + factor(racecat) +
factor(MAR3CAT), family=quasibinomial(link=cloglog), design=subncsrpy))
Call:
svyglm(formula = mdetv ~ pyr + intwage + sexm + factor(ED4CAT) +
   factor(racecat) + factor(MAR3CAT), family = quasibinomial(link = cloglog),
   design = subncsrpy)
Survey design:
subset(ncsrsvypyp1, pyr <= ageonsetmde)</pre>
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               pyr
               intwage
               sexm
factor(ED4CAT)2 -0.019740 0.065854 -0.300 0.76637
factor(ED4CAT)3
              0.092360 0.057200 1.615 0.11651
factor(ED4CAT)4 -0.019204 0.063098 -0.304 0.76290
factor(racecat)2 -0.247424   0.134369   -1.841   0.07515 .
factor(racecat)3 -0.455078
                        0.149441 -3.045 0.00471 **
factor(racecat)4 0.073735
                        factor(MAR3CAT)2 0.492815
                        0.060770 8.110 3.70e-09 ***
factor(MAR3CAT)3 -0.035473
                        0.087535 -0.405 0.68808
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 1.001772)
Number of Fisher Scoring iterations: 9
> # With exponentiated coefficients
> exp(ex105_logit$coef)
    (Intercept)
                                                       sexm factor(ED4CAT)2 factor(ED4CAT)3
                          pyr
                                     intwage
     0.03220851
                    1.03334155
                                   0.94333508
                                                  0.64090809
                                                                 0.98006512
                                                                                1.09737261
 factor(ED4CAT)4 factor(racecat)2 factor(racecat)3 factor(racecat)4 factor(MAR3CAT)2 factor(MAR3CAT)3
     0.98073699
                    0.78003095
                                   0.63320074
                                                  1.07680197
                                                                 1.63926854
                                                                                0.96527120
```