Sampling with Mirrored Stein Operators

Jiaxin Shi

Microsoft Research New England Aug 30, 2021

Joint work with Chang Liu, Lester Mackey

Sampling from an Unnormalized Distribution

$$p(X|Y) \propto p(Y|X)p(X)$$

Bayesian inference

$$p_{\theta}(X) \propto e^{-E_{\theta}(X)}$$

$$\nabla_{\theta} \log p_{\theta}(X) = \mathbb{E}_{X' \sim p}[E(X')] - E(X)$$

Learning unnormalized models

Solutions

Fig. from Murray (2009)

MCMC

Particle evolution methods

Stein Variational Gradient Descent (SVGD)

$$\theta^1, \theta^2, \dots, \theta^n$$

Stein Variational Gradient Descent (SVGD)

Langevin Stein Operator: $(S_p g)(\theta) = g(\theta)^\top \nabla \log p(\theta) + \nabla \cdot g(\theta)$

(Liu & Wang, 2016)
$$\frac{d}{dt}\mathrm{KL}(q_t\|p) = -\mathbb{E}_{q_t}[(\mathcal{S}_p g_t)(\theta)]$$

Find the direction that most quickly decreases the KL divergence to p

Stein Variational Gradient Descent (SVGD)

Langevin Stein Operator: $(S_p g)(\theta) = g(\theta)^\top \nabla \log p(\theta) + \nabla \cdot g(\theta)$

(Liu & Wang, 2016)
$$g_t^* = \operatorname*{arg\,min}_{g_t \in \mathcal{H}, \|g_t\|_{\mathcal{H}} \le 1} \frac{d}{dt} \mathrm{KL}(q_t \| p) \propto \mathbb{E}_{q_t}[\mathcal{S}_p K(\cdot, \theta)]$$

Optimal direction in RKHS of K that **most quickly** decreases the KL divergence to p

Two Regimes of SVGD

- n = 1: reduces to gradient descent on $-\log p(\theta)$ if $\nabla \cdot K(\theta, \theta) = 0$.
- $n \to \infty$: weak convergence to p under certain conditions.

(Gorham & Mackey, 2017; Liu 2017; Gorham et al., 2020)

$$\theta_{t+1}^i \leftarrow \theta_t^i + \epsilon_t \frac{1}{n} \sum_{j=1}^n \left(K(\theta_t^i, \theta_t^j) \nabla \log p(\theta_t^j) + \nabla_{\theta_t^j} \cdot K(\theta_t^j, \theta_t^i) \right)$$

SVGD Breaks Down for Constrained Targets

SVGD + Projection: Samples end up collecting on the boundary.

This Talk is About ..

Sampling

Optimization

Particle evolution samplers that work for <u>constrained targets</u> & exploit <u>non-Euclidean geometry</u>

Mirror descent

Natural gradient descent

Langevin Stein Operators

(Gorham & Mackey, 2015)

Under suitable boundary conditions, Langevin Stein Operator statisfies

$$\mathbb{E}_p[(\mathcal{S}_p g)(\theta)] = \mathbb{E}_p[g(\theta)^\top \nabla \log p(\theta) + \nabla \cdot g(\theta)]$$
$$= \int \nabla \cdot ((p(\theta)g(\theta))d\theta = 0$$

The last identity holds because of divergence theorem:

$$\int_{\Theta} \nabla \cdot ((p(\theta)g(\theta))d\theta = 0 \Leftrightarrow \int_{\partial\Theta} p(\theta)g(\theta)^{\top} n(\theta)d\theta = 0$$

For unconstrained domain, since p vanishes at infinity, this holds under very mild conditions, such as bounded Lipschitz g.

Therefore, $q_t = p$ is a stationary point of the SVGD dynamics.

Two Problems of SVGD for Constrained Targets

- Standard SVGD updates can push the particles outside of its support
 - Result: Future updates undefined.

- The boundary conditions may fail to hold for g in the RKHS
 - This happens when p is non-vanishing or explosive on the boundary.
 - Result: SVGD need not converge to p since p is not a stationary point.

Mirror Descent

Strictly convex
$$\psi: \Theta \to \mathbb{R} \cup \{\infty\}$$

$$(\nabla \psi)^{-1} = \nabla \psi^*$$

Continuous time limit: mirror flow

$$d\eta_t = -\nabla f(\theta_t)dt, \ \theta_t = \nabla \psi^*(\eta_t)$$

Equivalent Riemannian gradient flow: $d\theta_t = -\nabla^2 \psi(\theta_t)^{-1} \nabla f(\theta_t) dt$

Mirrored Dynamics

$$d\eta_t = -g_t(\theta_t)dt,$$

$$\theta_t = \nabla \psi^*(\eta_t)$$

p

In analogy to Liu & Wang (2016)

$$\frac{d}{dt}KL(q_t||p) = -\mathbb{E}_{q_t}[(\mathcal{M}_{p,\psi}g_t)(\theta)]$$

Mirrored Stein Operator

A Stein Operator for Constrained Targets

Mirrored Stein Operator*

$$(\mathcal{M}_{p,\psi}g)(\theta) = g(\theta)^{\top} \nabla^2 \psi(\theta)^{-1} \nabla \log p(\theta) + \nabla \cdot (\nabla^2 \psi(\theta)^{-1} g(\theta))$$

*Can be derived from the (infinitesimal) generator of Riemannian Langevin diffusion.

<u>Proposition 1</u> (informal) $\mathcal{M}_{p,\psi}$ generates mean-zero functions under p if

$$\int_{\partial\Theta} p(\theta) \|\nabla^2 \psi(\theta)^{-1} n(\theta)\|_2 d\theta = 0$$

and $g \in C^1$ is bounded Lipschitz.

Intuitively, we expect $\nabla^2 \psi(\theta)^{-1}$ to cancel the growth of p at the boundary.

Case Study: The Dirichlet Distribution

$$p(\theta) \propto \prod_{j=1}^{d+1} \theta_j^{\alpha_j - 1} \begin{cases} \alpha_j < 1 : \theta_j \to 0, \theta_{-j} = \frac{1 - \theta_j}{d} \Rightarrow p(\theta) \to \infty, \\ \alpha_j = 1 : \theta_j \to 0, \theta_{-j} = \frac{1 - \theta_j}{d} \Rightarrow p(\theta) > 0. \end{cases}$$
$$d+1 \qquad \nabla^2 \psi(\theta)^{-1} = \operatorname{diag}(\theta) - \theta \theta^{\top}$$

Negative entropy $\psi(\theta) = \sum_{j=1}^{d+1} \theta_j \log \theta_j$ meets the boundary condition

$$\int_{\partial\Theta} p(\theta) \|\nabla^2 \psi(\theta)^{-1} n(\theta)\|_2 d\theta = 0.$$

Sampling with Mirrored Stein Operators

Theorem 3 The optimal mirrored updates in the RKHS of K is

$$g_t^* = \operatorname*{arg\,min}_{g_t \in \mathcal{H}, \|g_t\|_{\mathcal{H}} \le 1} \frac{d}{dt} \mathrm{KL}(q_t \| p) \propto -\mathbb{E}_{q_t}[\mathcal{M}_{p,\psi} K(\cdot, \theta)]$$

Mirrored SVGD

Theorem 4 If $K(\theta, \theta') = k(\theta, \theta')I$, then the optimal mirrored updates can alternatively be expressed as

$$g_{q_t,kI}^*(\theta_t) = \mathbb{E}_{q_{t,H}}[k_{\psi}(\eta,\eta_t)\nabla\log p_H(\eta) + \nabla_{\eta}k_{\psi}(\eta,\eta_t)].$$

where $k_{\psi}(\eta, \eta') = k(\nabla \psi^*(\eta), \nabla \psi^*(\eta'))$

transformed density of p in dual space

- lacktriangle Mirrored SVGD is SVGD in η space with the **transformed kernel** k_ψ .
- When only a single particle is used (n = 1), Mirrored SVGD reduces to gradient ascent on the log transformed density $\log p_H(\eta)$.

Single Particle MSVGD is Not Mirror Descent

Still want an algorithm that reduces to mirror descent when n = 1?

- lacktriangledown space is the space we are primarily interested in.
- lacktriangle Mode in heta space need not match mode in η space
- Using $\log p(\theta)$ to guide the evolution could work better if $p(\theta)$ is better behaved than $p_H(\eta)$.

Stein Variational Mirror Descent (SVMD)

Key idea: Construct an adaptive kernel that

- ① incorporates the metric induced by ψ ② evolves with q_t

Definition (Kernels for SVMD)

Given a reference kernel k, we write it in Mercer's representation:

$$k(\theta, \theta') = \sum_{i>1} \lambda_i u_i(\theta) u_i(\theta'),$$

where u_i is an eigenfunction satisfying:

$$\mathbb{E}_{q_t(\theta')}[k(\theta, \theta')u_i(\theta')] = \lambda_i u_i(\theta).$$

Kernels for SVMD:

$$k^{1/2}(\theta, \theta') \triangleq \sum_{i>1} \lambda_i^{1/2} u_i(\theta) u_i(\theta')$$

$$K_{\psi,t}(\theta,\theta') \triangleq \mathbb{E}_{\theta_t \sim q_t}[k^{1/2}(\theta,\theta_t)\nabla^2\psi(\theta_t)k^{1/2}(\theta_t,\theta')]$$

SVMD is a Multi-Particle Generalization of Mirror Descent

Proposition 5 If n=1, then one-step of SVMD becomes

$$\eta_{t+1} = \eta_t + \epsilon_t \left(k(\theta_t, \theta_t) \nabla \log p(\theta_t) + \nabla k(\theta_t, \theta_t) \right),$$

$$\theta_{t+1} = \nabla \psi^*(\eta_{t+1}).$$

Approximation Quality on the Simplex

Quality of 50-particle approximations to 20-dimensional distributions on the simplex.

- <u>Task</u>: Generate valid confidence intervals (CIs) for regression parameters selected using the randomized LASSO
- Need to condition on the selection event
- Target distributions are log-concave and have constrained support

A 2D selective density example.

Coverage of post-selection CIs.

Unadjusted and post-selection CIs for the mutations selected by the randomized Lasso as candidates for HIV-1 drug resistance.

From Constrained to Unconstrained Targets

Continuous Time	Discretization
Mirror flow:	Mirror descent
$d\eta_t = -\nabla f(\theta_t)dt,$	
$\theta_t = \nabla \psi^*(\eta_t)$	
Riemannian gradient flow with	Natural gradient descent with
metric tensor $\nabla^2 \psi$:	metric tensor $ abla^2\psi$
$d\theta_t = -\nabla^2 \psi(\theta_t)^{-1} \nabla f(\theta_t) dt$	

Stein Variational Natural Gradient (SVNG)

- ullet Replacing $abla^2\psi(\cdot)$ in SVMD with a general metric tensor $G(\cdot)$
- In Bayesian inference $p(\theta) \propto \pi(\theta)\pi(y|\theta)$, it is common to choose

FIM:
$$G(\theta) = \mathbb{E}_{\pi(y|\theta)} [\nabla \log \pi(y|\theta) \nabla \log \pi(y|\theta)^{\top}]$$

Unconstrained Targets

Large-scale Bayesian Logistic Regression 581,012 datapoints, d=54

Convergence Results

① Convergence of mirrored updates as $n \to \infty$.

② Infinite-particle mirrored Stein updates decrease KL with sufficiently small step size and drive Mirrored Kernel Stein Discrepancy (MKSD) to o.

(3) MKSD determines weak convergence under suitable conditions.

Conclusion

- We derive a new family of particle evolution samplers suitable for constrained domains and non-Euclidean geometries.
- SVMD is the first multi-particle generalization of mirror descent.
- SVNG is designed for unconstrained problems with informative metric tensors.

Future Work

- Reduce the O(n²) complexity of MSVGD via kernel approximation methods
- SVMD and SVNG are more costly than MSVGD due to the adaptive kernel construction
- Exponential convergence rates

(Duncan et al., 2019, Korba et al., 2020, Chewi et al., 2020)

References

Liu, Q., & Wang, D. (2016). Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm. Advances in Neural Information Processing Systems, 29, 2378-2386.

Liu, Q. (2017). Stein variational gradient descent as gradient flow. Advances in Neural Information Processing Systems, 30, 3118-3126.

Gorham, J., & Mackey, L. (2015). Measuring Sample Quality with Stein's Method. Advances in Neural Information Processing Systems, 28, 226-234.

Gorham, J., & Mackey, L. (2017). Measuring sample quality with kernels. In International Conference on Machine Learning (pp. 1292-1301).

Gorham, J., Raj, A., & Mackey, L. (2020). Stochastic Stein Discrepancies. Advances in Neural Information Processing Systems, 33, 17931-17942.

Appendix

Murray, I. (2009). Markov chain Monte Carlo. Tutorial at Machine Learning Summer School, 2009

Duncan, A., Nüsken, N., & Szpruch, L. (2019). On the geometry of Stein variational gradient descent. arXiv preprint arXiv:1912.00894.

Korba, A., Salim, A., Arbel, M., Luise, G., & Gretton, A. (2020). A non-asymptotic analysis for Stein variational gradient descent. Advances in Neural Information Processing Systems, 33, 4672--4682.

Chewi, S., Gouic, T. L., Lu, C., Maunu, T., Rigollet, P., & Stromme, A. J. (2020). Exponential ergodicity of mirror-Langevin diffusions. arXiv preprint arXiv:2005.09669.