Exercício Prático 2 Parte 1 Laboratório de ac2

Objetivo:

Cosntruir uma Unidade Lógica e Aritmética (ULA) de 1 bit, 4 bits e implementar no Logisim e Arduino.

Parte 1 (estudo da ALU usando Logisim):

1. Considere a Unidade Lógica e Aritmética de 1 bit ilustrada na Figura 1 a seguir:

- Procure entender o esquema, principalmente a subtração.
- 3. Sua ULA possui a seguinte tabela de opcodes:

Op. Code (Operation) Instrução (Resul		
0	AND (a,b)	
1	OR (a,b)	
2	NOT (a)	
3	SOMA(a,b)	

4. Teste a sua ULA de acordo com o seguinte roteiro:

```
Inicio:

A=0;

B=1;

AND(A,B);

A=1;

B=1;

OR(A,B);

SOMA(A,B);

NOT(A);

SOMA (A,-B);

Fim.
```

5. Usando essa ula de 1 bit, construa essa ULA para 4 bits no Logisim e verifique o seu funcionamento. Veja como funciona o barramento de instruções (operation) e o barramento de dados (a e b). Observe a ligação do Binvert ao Carry_in da primeira ULA. Procure usar subcircuitos, seu circuito deverá estar como a figura a seguir:

 Teste a sua ULA de acordo com o seguinte roteiro (considerando os números de 4 bits):

Inicio:

A=2; (ou A=0010) B=1; (ou B=0001) AND(A,B); B=3; (ou B=0011) OR(A,B); SOMA(A,B); A=12; (ou A=1100) NOT(A); B=13; (ou B=1101) AND(B,A); Fim.

Para o programa de teste acima, preencher a tabela a seguir considerando que cada linha corresponderá à execução de uma instrução (a primeira linha já foi realizada, observe que a palavra deverá conter 10 bits, para escrevermos em hexa completamos os dois bits à esquerda com zero):

Para o programa de teste acima, preencher a tabela a seguir considerando que cada linha corresponderá à execução de uma instrução (a primeira linha já foi realizada, observe que a palavra deverá conter 10 bits, para escrevermos em hexa completamos os dois bits à esquerda com zero):

Instrução	Binário	Valor em Hexa	Resultado em
realizada	(A,B,Op.code)	(0x)	binário
AND(A,B)	0010 0001 00	$(0000\ 1000\ 0100) = 0x084$	0000
OR(A,B)	0010001101	(00 <mark>0010</mark> 001101) = 0x08D	0011
SOMA(A,B)	0010001111	(00 <mark>0010</mark> 001111) = 0x08F	0101
NOT(A)	1100001110	(001100001110) = 0x30E	0011
AND(B,A)	1100110100	(001100110100) = 0x334	1100

