act_8_A01742161

Rogelio Lizárraga

2024-08-23

1. Enlatados

Los pesos de 21 latas de duraznos empacados elegidas al azar fueron:

```
Peso de las latas: 11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1
```

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Prueba de hipótesis

1. Enunciar hipótesis

- $H_0 > \mu = 11.7$
- $H_1 > \mu \neq 11.7$

¿Cómo se distribuye \bar{X}

- X se distribuye como una normal.
- n < 30
- No conocemos σ

Entonces: la distribución muestral es una t de Student

2. Definir la regla de decisión

Nivel de confianza es de 0.98 ($\alpha = 0.02$)

Necesito encontrar a cuántas desviaciones estándar está lejos el valor frontera.

```
w_latas = c(11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12
n = length(w_latas)
alpha = 0.02
t_f = qt(alpha/2, n-1)
cat('t_f = ', t_f)
```

```
## t_f = -2.527977
```

Regla de decisión

Rechazo H_0 si:

|t_e| > 2.53
 p - value < 0.02

3. Análisis del resutado

- t_e : Número de desviaciones a las que \bar{x} se encuentra lejos de $\mu = 11.7$.
- p-value: Probabilidad de obtener lo que obtuve en la muestra o un valor más extremo

Estadístico de prueba

```
x_b = mean(w_latas)
s = sd (w_latas)
mu = 11.7
t_e = (x_b - mu)/(s/sqrt(n))
cat('t_e =', t_e,'\n')

## t_e = -2.068884

p_val = 2* pt(t_e, n-1)
cat('p-value =', p_val)

## p-value = 0.0517299
```

4. Conclusiones

Comparo regla de decisión vs análisis de resultado

```
|t_e| = 2.07 < 2.53 -> $ No rechazo H_0. p-value > 0.02 -> No rechazo H_0
```

Entonces, no rechazamos H_0 y concluimos que $\mu = 11.7$ con un 98% de confianza. Es decir, podemos afirmar que el verdadero peso de las latas es de 11.7 con un 98% de confianza.

Gráfico que muestra la regla de decisión y el punto donde queda el estadístico de prueba.

```
sigma = sqrt((n -1)/ (n - 3))
x=seq(-4*sigma,4*sigma,0.01)
y=dt(x,n-1)
plot(x,y,type="l",col="blue",xlab="",ylab="",ylim=c(-0.1,0.4),frame.plot=FALSE,xaxt="n",yaxt="n",main=",abline(v=t_f,col="red",lty=5)
abline(v=-1*t_f,col="red",lty=5)
abline(h = 0)
abline(v = 0, col = 'blue', pch = 19)
points(t_e, 0, pch=19, cex=1.1, col = 'green')
```

Región de rechazo (distribución t de Student, gl = 20)

Observamos que el estadístico de prueba (punto verde) está dentro de la región aceptable con un intervalo de confianza de 98%, por lo que no se rechaza H_0 .

2. La decisión de Fowle Marketing Research, Inc.

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el tiempo promedio es mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos:

Tiempo: 17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23

Por experiencias anteriores, se sabe que $\sigma=4$ minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional?

Prueba de hipótesis

1. Enunciar hipótesis

- $H_0 > \mu = 15$ $H_1 > \mu > 15$

¿Cómo se distribuye \bar{X} ?

- No conozco la distribución de X.
- n > 30
- Conocemos σ

Entonces: la distribución muestral es una normal.

2. Definir la regla de decisión

Nivel de confianza es de 0.93 ($\alpha = 0.07$)

Necesito encontrar a cuántas desviaciones estándar está lejos el valor frontera.

```
t = c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, sigma = 4 
mu = 15 
n = length(t) 
print(n)
```

[1] 35

```
alpha = 0.07
z_f = qnorm(1 - alpha)
cat('z_f =', z_f)
```

```
## z_f = 1.475791
```

Regla de decisión

Rechazo H_0 si:

- $|z_e| > 1.476$
- p value < 0.07

3. Análisis del resutado

- z_e : Número de desviaciones a las que \bar{x} se encuentra lejos de $\mu = 15$.
- p-value : Probabilidad de obtener lo que obtuve en la muestra o un valor más extremo

Estadístico de prueba

```
x_b = mean(t)
z_e = (x_b - mu)/ (sigma/ sqrt(n))
print(z_e)
```

```
## [1] 2.95804
```

```
cat('z_e =', z_e,'\n')
```

```
## z_e = 2.95804
```

```
p_val = pt(z_e, n-1)
cat('p-value =', p_val)
```

p-value = 0.9972002

4. Conclusiones

Comparo regla de decisión vs análisis de resultado

- $|z_e| = 2.06 > 1.476 -> Rechazo H_0$.
- p-value < 0.02-> Rechazo H_0

Entonces, rechazamos H_0 y concluimos que $\mu > 15$ con un 93% de confianza. Es decir, podemos afirmar que el tiempo promedio es mayor a 15 minutos con un 93% de confianza, por lo que no está justificada la tarifa adicional.

Gráfico que muestra la regla de decisión y el punto donde queda el estadístico de prueba.

```
alpha <- 0.07
z_crit <- qnorm(1 - alpha)
x=seq(-sigma, sigma, 0.01)
y=dnorm(x)
plot(x, y, type = "l", col = "blue", xlab = "", ylab = "", ylim = c(-0.1, 0.4), frame.plot = FALSE, xax
abline(v = z_f, col = "red", lty = 5)
abline(h = 0)
abline(v = 0, col = "blue", pch = 19)
points(z_e, 0, pch = 19, cex = 1.1, col = "green")</pre>
```

Región de rechazo (distribución Z, alpha = 0.07)

Observamos que con un intervalo de confianza del 93%, el estadístico de prueba (punto verde) se encuentra en la región de rechazo, por lo que se rechaza H_0 .