17. Neural Networks STA3142 Statistical Machine Learning

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
May 14, 2024

* Slides adapted from EECS498/598 @ Univ. of Michigan by Justin Johnson

Assignment 4

- Due Friday 5/17, 11:59pm
- Topics
 - K-Means and Gaussian Mixture Models
 - Principal Component Analysis
- Please read the instruction carefully!
 - Submit one <u>pdf</u> and one <u>zip</u> file separately
 - Write your code only in the designated spaces
 - Do not import additional libraries
 - ...
- If you feel difficult, consider to take option 2.

Midterm Questions

- Questions got >= 3 votes:
 - 1.1~1.4, 1.8, 1.12, 2.1, 3~

Recap: Rough Plan

• We have 13 weeks (39 hours) of lectures.

- 6 hours for intro & math/python review
- 15 hours for basic ML & supervised learning
 - Regression, classification, kernel methods, validation, ...
- 3 hours for unsupervised learning
- 12 hours for neural networks
- 3 hours for others
 - Reinforcement learning, summary
 - Note: You can take STA3145 for RL

Note: Other Useful ML Topics

Probabilistic graphical model (PGM)

- Bayesian networks, Markov random fields, conditional random fields, (restricted) Boltzmann machine
- Gradient-based neural networks are preferred these days
- Hidden Markov model (HMM)
 - For sequential data; RNNs and Transformers are good replacements
- Tree-based models (useful for tabular data)
 - Decision tree and random forest
 - Bootstrapping, bagging, and boosting
- Statistical learning theory (for theoretical ML)
 - Probably approximately correct (PAC) learning and VC dimension

Data Representations

- The success of ML applications relies on having a good representation of the data.
 - Such that linear models perform well on top of the representation

- ML practitioners have put lots of efforts in feature engineering.
 - Based on domain expert's knowledge
 - E.g., Computer vision: color histogram, HoG, BoW, ...
 - Time-consuming hand-tuning
 - (Arguably) a key limiting factor in advancing the state-of-the-arts

Can we develop good representations with less human effort?

Beyond Linear Models: Kernel Methods

Image Features: Color Histogram

Frog image is in the public domain

Image Features: Histogram of Oriented Gradients (HoG)

- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented Gradients (HoG)

- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Weak edges

Strong diagonal edges

Edges in all directions

Captures texture and position, robust to small image changes

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Bag of Words (Data-Driven!)

Image Features

Example: Winner of 2011 ImageNet challenge

Low-level feature extraction ≈ 10k patches per image

SIFT: 128-dim
 color: 96-dim

reduced to 64-dim with PCA

FV extraction and compression:

- N=1,024 Gaussians, R=4 regions \Rightarrow 520K dim x 2
- compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

F. Perronnin, J. Sánchez, "Compressed Fisher vectors for LSVRC", PASCAL VOC / ImageNet workshop, ICCV, 2011.

Image Features

Image Features vs. Neural Networks

Reproduced with permission.

10 numbers giving scores for classes

This image is CC0 1.0 public domain

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$ Activation function: g

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{C \times D}$, $b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 g(W_1 x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$ Activation function: g

Before: Linear Classifier: f(x) = Wx + bLearnable parameters: $W \in \mathbb{R}^{C \times D}$, $b \in \mathbb{R}^{C}$

Feature Extraction
Linear Classifier

Now: Two-Layer Neural Network: $f(x) = W_2 g(W_1 x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$ Activation function: g

Before: Linear Classifier: f(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{C \times D}$, $b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $f(x) = W_2 g(W_1 x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Or Three-Layer Neural Network:

$$f(x) = W_3 g(W_2 g(W_1 x + b_1) + b_2) + b_3$$

Before: Linear classifier

$$f(x) = Wx + b$$

Now: 2-layer Neural Network $f(x) = W_2 g(W_1 x + b_1) + b_2$

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Before: Linear classifier

$$f(x) = Wx + b$$

Now: 2-layer Neural Network
$$f(x) = W_2 g(W_1 x + b_1) + b_2$$

Element (i, j) of W₁ gives the effect on h_i from x_i

Element (i, j) of W₂ gives the effect on s_i from h_i

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Before: Linear classifier

$$f(x) = Wx + b$$

Now: 2-layer Neural Network
$$f(x) = W_2 g(W_1 x + b_1) + b_2$$

Element (i, j) of W₁ gives the effect on h_i from x_i

> All elements of x affect all elements of h

Fully-connected neural network a.k.a. "Multi-Layer Perceptron" (MLP)

Element (i, j) of W₂ gives the effect on s_i from h_i

> All elements of h affect all elements of s

Deep Neural Networks

Activation Functions

2-layer Neural Network

The function $ReLU(z) = \max(0, z)$ is called "Rectified Linear Unit"

$$f(x) = W_2 g(W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$f(x) = W_2(W_1x + b_1) + b_2$$

Activation Functions

2-layer Neural Network

The function $ReLU(z) = \max(0, z)$ is called "Rectified Linear Unit"

$$f(x) = W_2 g(W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$f(x) = W_2(W_1x + b_1) + b_2$$

= $(W_1W_2)x + (W_2b_1 + b_2)$

A: We end up with a linear classifier!

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

ReLU

 $\max(0, x)$

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.1x, x)$

ELU

$$\begin{cases} x & x > 0 \\ \alpha(e^x - 1) & x \le 0 \end{cases}$$

GELU

$$= 0.5x [1 + \operatorname{erf}(x/\sqrt{2})]$$

$$\approx x\sigma(1.702x)$$

Recap: Cross-Entropy Loss (Softmax Regression)

Input: $x \in \mathbb{R}^D$ Output: $f(x) \in \mathbb{R}^C$

Softmax probability vector: $p(y|x) \in [0,1]^C$

k-th class probability:
$$p(y = k | x) = \frac{\exp(s_k)}{\sum_j \exp(s_j)} \in [0,1]$$

Cross-Entropy Loss for a training data $(x^{(i)}, y^{(i)})$:

$$L_i = -\log p(y = y^{(i)}|x^{(i)}) = -\log \frac{\exp(s_{y^{(i)}})}{\sum_{i} \exp(s_i)}$$

Note: we don't need softmax at test time; simply take

$$y = \operatorname*{argmax}_{k} f_{k}(x)$$

Recap: Multiclass SVM Loss (Hinge Loss)

"The score of the correct class should Given a training data $(x^{(i)}, y^{(i)})$ be higher than all the other scores"

Let
$$s^{(i)} = f(x^{(i)})$$
 be scores.

The SVM loss has the form:

Score for
$$L_i = \sum_{j \neq y^{(i)}} \max \left(0, s_j^{(i)} - s_{y^{(i)}}^{(i)} + 1\right)$$

Convexity

- Most linear classifiers optimize a convex function
 - Linear layer

$$s = f(x; W) = Wx$$

Cross-entropy loss

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

SVM

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- L1/L2 regularization $L = rac{1}{N} \sum_{i=1}^{N} L_i + R(W)$
- Most neural networks need non-convex optimization
 - Few or no guarantees about convergence (mostly falls in a local optimum)
 - Empirically it seems to work anyway
 - Active area of research

<u>This image</u> by <u>Fotis Bobolas</u> is licensed under <u>CC-BY 2.0</u>

Our brains are made of Neurons

euron image by Felipe Perucho is licensed under CC-BY 3.0

Biological Neurons: Complex connectivity patterns

This image is CCO Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

Biological Neurons: Complex connectivity patterns

This image is CCO Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", ICCV 2019

Be very careful with brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex nonlinear dynamical system
- Abstracting a neuron by "firing rate" isn't enough; temporal sequences of activations matter too (spiking neural networks)

[Dendritic Computation. London and Hausser]

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Points not linearly separable in original space Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx)Where x, h are both 2-dimensional

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx)Where x, h are both 2-dimensional

Setting the number of layers and their sizes

More hidden units = more capacity

Don't regularize with size; instead use stronger L2

$$\lambda = 0.001$$

$$\lambda = 0.01$$

$$\lambda = 0.1$$

(Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Dropout as Regularization

Regularization: Add term to the loss

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$$

In common use:

L2 regularization

L1 regularization

Elastic net (L1 + L2)

$$R(W) = \sum_k \sum_l W_{k,l}^2$$
 (Weight decay)

$$R(W) = \sum_k \sum_l |W_{k,l}|$$

$$R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$$

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout

Forces the network to have a redundant representation; Prevents **co-adaptation** of features

Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary-masked one is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks! Only $\sim 10^{82}$ atoms in the universe...

Dropout: Test Time

Output Input (label) (image)

Dropout makes our output random!

$$\mathbf{y} = f_W(\mathbf{x}, \mathbf{z})$$
 Random mask

Want to "average out" the randomness at test-time

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

But this integral seems hard ...

Dropout: Test Time

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron:

At test time we have: $E[a] = w_1x + w_2y$ During training we have: $E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y)$ At test time, drop $+\frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2y)$ nothing and multiply $=\frac{1}{2}(w_1x + w_2y)$

Dropout: Test Time

```
def predict(X):
    # ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

Dropout: Summary

```
Vanilla Dropout: Not recommended implementation (see notes below) """
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
 out = np.dot(W3, H2) + b3
```

drop in forward pass

scale at test time

"Inverted Dropout" Is More Common in Practice

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
                                                                            Drop and scale
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
                                                                            during training
 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
                                                                    test time is unchanged!
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 out = np.dot(W3, H2) + b3
```

NN as a Universal Approximator

Neural Networks as Universal Approximation

• A neural network with one hidden layer can approximate any^(*) function $f: \mathbb{R}^N \to \mathbb{R}^M$ with arbitrary precision.

 For example, two-layer Sigmoid/ReLU networks with arbitrary number of hidden units

(*) Many technical conditions: Only holds on compact subsets of R^N; function must be continuous; need to define "arbitrary precision"; etc.

Example: Approximating a function f: R -> R with a two-layer ReLU network

$$h1 = max(0, w1 * x + b1)$$

 $h2 = max(0, w2 * x + b2)$
 $h3 = max(0, w3 * x + b3)$
 $y = u1 * max(0, w2 * x + b2)$
 $+ u2 * max(0, w2 * x + b2)$
 $+ u3 * max(0, w3 * x + b3)$
 $+ u3 * max(0, w3 * x + b3)$
 $+ u3 * max(0, w3 * x + b3)$

Output is a sum of shifted, scaled ReLUs:

Flip left / right based on sign of w_i

Example: Approximating a function f: R -> R with a two-layer ReLU network

+ p

y = u1 * h1 + u2 * h2 + u3 * h3 + p

Example: Approximating a function f: R -> R with a two-layer ReLU network

+ p

y = u1 * h1 + u2 * h2 + u3 * h3 + p

Example: Approximating a function f: R -> R with a two-layer ReLU network

$$h1 = max(0, w1 * x + b1)$$

 $h2 = max(0, w2 * x + b2)$
 $h3 = max(0, w3 * x + b3)$
 $y = u1 * max(0, w2 * x + b2)$
 $+ u2 * max(0, w2 * x + b2)$
 $+ u3 * max(0, w3 * x + b3)$
 $+ u3 * max(0, w3 * x + b3)$
 $+ u3 * max(0, w3 * x + b3)$

What about...

- Gaps between bumps?
- Other nonlinearities?
- Higher-dimensional functions?

See Nielsen, Chapter 4

Example: Approximating a function f: R -> R with a two-layer ReLU network

Reality check: Networks don't really learn bumps!

Approximate functions with bumps!

Example: Approximating a function f: R -> R with a two-layer ReLU network

Universal approximation tells us:

- Neural nets can represent any function

Universal approximation DOES NOT tell us:

- Whether we can actually learn any function with SGD
- How much data we need to learn a function

Remember: k-NN is also a universal approximator!

Reality check: Networks don't really learn bumps!

NN Optimization

Problem: How to compute (complex) gradients?

$$s = W_2 g(W_1 x + b_1) + b_2$$

$$L_i = \sum_{i \in S} \max(0, s_j - s_{y_i} + 1)$$

$$R(W) = \sum_{k} W_k^2$$

Nonlinear score function

Per-element data loss

L2 Regularization

$$L(W_1, W_2, b_1, b_2) = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss

If we can compute $\frac{\partial L}{\partial W_1}$, $\frac{\partial L}{\partial W_2}$, $\frac{\partial L}{\partial h_1}$, $\frac{\partial L}{\partial h_2}$ then we can optimize with SGD

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? e.g., use softmax instead of SVM? Need to re-derive from scratch. Not modular!

Problem: Not feasible for very complex models!

$$\nabla_W L = \nabla_W \left(\frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, W_{j,:} \cdot x + W_{y_i,:} \cdot x + 1) + \lambda \sum_k W_k^2 \right)$$

Better Idea: Backpropagation by Chain Rule

$$\frac{\text{e.g., }(i,j)\text{-th}}{\partial W_2(i,j)} = \left(\frac{\partial h_2}{\partial W_2(i,j)}\right) \left(\frac{\partial h_3}{\partial h_2}\right) \left(\frac{\partial L}{\partial h_3}\right) \left(\frac{\partial L}{\partial h_3}\right)$$

Example: 2-Layer NN Forward Pass

- Input x
- Output \hat{y}
- Target y
- L2 Loss function $L = (\hat{y} y)^2$

First hidden h
$$_{j}^{(1)}=f(\sum_{i}w_{ji}^{(1)}x_{i}+b_{j}^{(1)})$$
 layer Second hidden hidden layer
$$\hat{y}=\sum_{i}\theta_{j}h_{j}^{(2)}+c$$
 Output
$$\hat{y}=\sum_{i}\theta_{j}h_{j}^{(2)}+c$$

Example: 2-Layer NN Forward Pass

- Input x
- Output \hat{y}
- Target y
- L2 Loss function $L = (\hat{y} y)^2$

First hidden
$$h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)})$$
 layer

Second hidden hidden hidden hidden
$$b_j^{(2)} = f(\sum_i w_{ji}^{(2)} h_i^{(1)} + b_j^{(2)})$$
 layer

Output
$$\hat{y} = \sum_j \theta_j h_j^{(2)} + c$$

Example: 2-Layer NN Forward Pass

- Input x
- Output \hat{y}
- Target y
- L2 Loss function $L = (\hat{y} y)^2$

$$\begin{array}{ll} \text{First} & h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}) \\ \text{layer} & i \end{array}$$

Second hidden
$$h_j^{(2)} = f(\sum_i w_{ji}^{(2)} h_i^{(1)} + b_j^{(2)})$$
 layer

Output
$$\hat{y} = \sum_j \theta_j h_j^{(2)} + c$$

Example: 2-Layer NN Forward Pass

- Input x
- Output \hat{y}
- Target y
- L2 Loss function $L = (\hat{y} y)^2$

First hidden hidden layer
$$h_{j}^{(1)} = f(\sum_{i} w_{ji}^{(1)} x_i + b_{j}^{(1)})$$
 Second hidden hidden layer
$$h_{j}^{(2)} = f(\sum_{i} w_{ji}^{(2)} h_{i}^{(1)} + b_{j}^{(2)})$$
 layer

Output
$$\hat{y} = \sum_j \theta_j h_j^{(2)} + c$$

Example: 2-Layer NN Backward Pass

Compute gradients w.r.t.

$$\{W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}, \theta, c\}$$

$$h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j$$

$$h_j^{(2)} = f(\sum_i w_{ji}^{(2)} h_i^{(i)} + b_j^{(2)}), \forall j$$

$$\hat{y} = \sum_j \theta_j h_j^{(2)} + c$$

$$L = (\hat{y} - y)^2$$

Example: 2-Layer NN Backward Pass $h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j$

$$\{W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}, \theta, c\}$$

$$h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j$$

$$h_j^{(2)} = f(\sum_i w_{ji}^{(2)} h_i^{(i)} + b_j^{(2)}), \forall j$$

$$\hat{y} = \sum_{j} \theta_{j} h_{j}^{(2)} + c$$

$$L = (\hat{y} - y)^2$$

 $rac{\partial L}{\partial \hat{y}}$

 \hat{y}

 $\frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$

Example: 2-Layer NN Backward Pass $h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j$

$$\begin{split} \frac{\partial L}{\partial \hat{y}} &= 2(\hat{y} - y) \\ \frac{\partial L}{\partial \theta_j} &= \frac{\partial \hat{y}}{\partial \theta_j} \frac{\partial L}{\partial \hat{y}} = h_j^{(2)} \frac{\partial L}{\partial \hat{y}} \\ \text{Downstream}_{\text{Local}} & \text{Upstream}_{\text{gradient}} \\ \text{gradient}_{\text{gradient}} & \text{gradient} \end{split}$$

 $\{W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}, \theta, c\}$

Example: 2-Layer NN Backward Pass
$$\begin{cases} \{W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}, \theta, c\} \\ h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j \end{cases}$$

$\{W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}, \theta, c\}$

Example: 2-Layer NN Backward Pass $h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j$

EXAMPIE: 2-Layer IVIN Backward Pass
$$h_{j}^{(1)} = f(\sum_{i} w_{ji}^{(1)} x_{i} - \frac{1}{2} \frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$z_{j}^{(2)} = \sum_{i} h_{i}^{(1)} w_{ji}^{(2)} + b_{j}^{(2)}$$

$$\hat{y} = \sum_{j} \theta_{j} h_{j}^{(2)} + c$$

$$\frac{\partial L}{\partial \theta_{i}} = \frac{\partial \hat{y}}{\partial \theta_{i}} \frac{\partial L}{\partial \hat{y}} = h_{j}^{(2)} \frac{\partial L}{\partial \hat{y}}$$

$$c \quad L = (\hat{y} - y)^{2}$$

$$\frac{\partial L}{\partial h_j^{(2)}} = \frac{\partial \hat{y}}{\partial h_j^{(2)}} \frac{\partial L}{\partial \hat{y}} = \theta_j \frac{\partial L}{\partial \hat{y}}$$

$$\frac{\partial L}{\partial w_{ji}^{(2)}} = \frac{\partial h_j^{(2)}}{\partial w_{ji}^{(2)}} \frac{\partial L}{\partial h_j^{(2)}} = f'(z_j^{(2)}) h_i^{(1)} \frac{\partial L}{\partial h_j^{(2)}}$$

$\{W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}, \theta, c\}$

Example: 2-Layer NN Backward Pass $h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j$

$$\frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y) \qquad z_{j}^{(2)} = \sum_{i} h_{i}^{(1)} w_{ji}^{(2)} + b_{j}^{(2)} \qquad \hat{y}$$

$$\frac{\partial L}{\partial \theta_{j}} = \frac{\partial \hat{y}}{\partial \theta_{j}} \frac{\partial L}{\partial \hat{y}} = h_{j}^{(2)} \frac{\partial L}{\partial \hat{y}}$$

$$\frac{\partial L}{\partial h_{j}^{(2)}} = \frac{\partial \hat{y}}{\partial h_{j}^{(2)}} \frac{\partial L}{\partial \hat{y}} = \theta_{j} \frac{\partial L}{\partial \hat{y}}$$

$$\frac{\partial L}{\partial w_{ji}^{(2)}} = \frac{\partial h_{j}^{(2)}}{\partial w_{ji}^{(2)}} \frac{\partial L}{\partial h_{j}^{(2)}} = f'(z_{j}^{(2)}) h_{i}^{(1)} \frac{\partial L}{\partial h_{j}^{(2)}}$$

$$\frac{\partial L}{\partial h_{i}^{(1)}} = \sum_{j} \frac{\partial h_{j}^{(2)}}{\partial h_{i}^{(1)}} \frac{\partial L}{\partial h_{j}^{(2)}} = \sum_{j} f'(z_{j}^{(2)}) w_{ji}^{(2)} \frac{\partial L}{\partial h_{j}^{(2)}}$$

$$\frac{\partial L}{\partial h_{i}^{(1)}} = \sum_{j} \frac{\partial h_{j}^{(2)}}{\partial h_{i}^{(1)}} \frac{\partial L}{\partial h_{j}^{(2)}} = \sum_{j} f'(z_{j}^{(2)}) w_{ji}^{(2)} \frac{\partial L}{\partial h_{j}^{(2)}}$$

$$\frac{\partial L}{\partial h_{i}^{(1)}} = \sum_{j} \frac{\partial h_{j}^{(2)}}{\partial h_{i}^{(1)}} \frac{\partial L}{\partial h_{j}^{(2)}}$$

 $\{W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}, \theta, c\}$

Example: 2-Layer NN Backward Pass $h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j$

$$h_j^{(1)} = f(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)}), \forall j$$

$$\frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial \theta_j} = \frac{\partial \hat{y}}{\partial \theta_j} \frac{\partial L}{\partial \hat{y}} = h_j^{(2)} \frac{\partial L}{\partial \hat{y}}$$

$$\frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y) \qquad z_j^{(2)} = \sum_i h_i^{(1)} w_{ji}^{(2)} + b_j^{(2)}
\frac{\partial L}{\partial \theta_j} = \frac{\partial \hat{y}}{\partial \theta_j} \frac{\partial L}{\partial \hat{y}} = h_j^{(2)} \frac{\partial L}{\partial \hat{y}} \qquad z_i^{(1)} = \sum_k x_k w_{ik}^{(1)} + b_i^{(1)}$$

$$\frac{\partial L}{\partial h_j^{(2)}} = \frac{\partial \hat{y}}{\partial h_j^{(2)}} \frac{\partial L}{\partial \hat{y}} = \theta_j \frac{\partial L}{\partial \hat{y}}$$

$$\frac{\partial L}{\partial w_{ji}^{(2)}} = \frac{\partial h_{j}^{(2)}}{\partial w_{ji}^{(2)}} \frac{\partial L}{\partial h_{j}^{(2)}} = f'(z_{j}^{(2)}) h_{i}^{(1)} \frac{\partial L}{\partial h_{j}^{(2)}}$$

$$\frac{\partial L}{\partial h_{i}^{(1)}} = \sum_{j} \frac{\partial h_{j}^{(2)}}{\partial h_{i}^{(1)}} \frac{\partial L}{\partial h_{j}^{(2)}} = \sum_{j} f'(z_{j}^{(2)}) w_{ji}^{(2)} \frac{\partial L}{\partial h_{j}^{(2)}} \quad \frac{\partial L}{\partial w_{ik}^{(1)}} w_{ji}^{(1)}$$

$$\frac{\partial L}{\partial w_{ik}^{(1)}} = \frac{\partial h_i^{(1)}}{\partial w_{ik}^{(1)}} \frac{\partial L}{\partial h_i^{(1)}} = f'(z_i^{(1)}) x_k \frac{\partial L}{\partial h_i^{(1)}}$$

 \hat{y}

Neural Net in <20 lines!


```
import numpy as np
    from numpy.random import randn
 3
    N, Din, H, Dout = 64, 1000, 100, 10
    x, y = randn(N, Din), randn(N, Dout)
    w1, w2 = randn(Din, H), randn(H, Dout)
    for t in range(10000):
      h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
      y_pred = h_dot(w2)
       loss = np.square(y_pred - y).sum()
10
      dy_pred = 2.0 * (y_pred - y)
11
      dw2 = h.T.dot(dy_pred)
12
      dh = dy_pred.dot(w2.T)
13
      dw1 = x.T.dot(dh * h * (1 - h))
14
      w1 = 1e-4 * dw1
15
      w2 = 1e-4 * dw2
16
```

Neural Net in <20 lines!


```
import numpy as np
                         from numpy.random import randn
                         N, Din, H, Dout = 64, 1000, 100, 10
Initialize weights
                         x, y = randn(N, Din), randn(N, Dout)
and data
                         w1, w2 = randn(Din, H), randn(H, Dout)
                         for t in range(10000):
                           h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
Compute loss
                           y_pred = h.dot(w2)
(sigmoid activation,
L2 loss)
                           loss = np.square(y_pred - y).sum()
                           dy_pred = 2.0 * (y_pred - y)
                           dw2 = h.T.dot(dy_pred)
       Compute
       gradients
                           dh = dy_pred.dot(w2.T)
                           dw1 = x.T.dot(dh * h * (1 - h))
                           w1 -= 1e-4 * dw1
          SGD
          step
                           w2 = 1e-4 * dw2
```

Better Idea: Backpropagation by Chain Rule

$$\frac{\text{e.g., }(i,j)\text{-th}}{\partial W_2(i,j)} = \left(\frac{\partial h_2}{\partial W_2(i,j)}\right) \left(\frac{\partial h_3}{\partial h_2}\right) \left(\frac{\partial L}{\partial h_3}\right) \left(\frac{\partial L}{\partial h_3}\right)$$

Better Idea: Computational Graphs

Next: Backpropagation