CSC 525: Principles of Computer Networks

Inter-domain Routing

- AS (Autonomous System): a collection of routers under the same technical and administrative control. Identified by a 32-bit AS number.
- BGP (Border Gateway Protocol): between ASes to exchange inter-domain routing information.
- BGP decides the routes at the AS level, while intra-domain routing decides the routes within an AS

Why BGP?

- Why another layer of routing with a different protocol?
 - Accommodate different administrative domains
 - Allow flexible routing policies
 - Routing scalability
 - 1989 : BGP-1 [RFC 1105]
 - Replacement for EGP (1984, RFC 904)
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995 : BGP-4 [RFC 1771]
 - Support for Classless Interdomain Routing (CIDR)

Path Vector Routing

- Similar to Distance Vector
 - receive paths from neighbors, choose the best paths, announce the best paths to neighbors.
- Major differences:
 - Spell out the entire AS path
 - E.g. (52, 2153, 11537, 1706)
 - Prevent loops, facilitate policies
 - Store all backup paths
 - Speed up failover
 - Hoping these changes will avoid most problems of the distance vector.

BGP Operations

- Establish a BGP peering session on top of TCP
 - Reliable delivery of routing messages between two routers
 - Simplify BGP operations
 - Save the periodic route refresh
 - Negative impact under congestion
 - Periodic Keep-Alive messages to maintain the session.
 - Keepalive timer 30 seconds, Hold timer 180 seconds.
- Initial Routing Table Exchange
 - Similar to OSPF's database synchronization
- Propagate incremental routing updates afterwards
 - Triggered by route changes.
 - No periodic refresh of routing updates, i.e., hard states.

BGP Message Types

- Open: Establish a peering session
- Keep Alive: handshake at regular interval
- Notification: shuts down a peering session
- Update:
 - announcing new routes or
 - withdrawing previously announced routes

Announce: prefix, path attributes

Withdraw: prefix

Prefix

- Represent the destination network
- In the old days, fixed boundary between the network and host parts of an address
 - Class A (/8), B(/16), C (/24)
- CIDR: arbitrary boundary
 - -131.179.96.0/23
 - More efficient address allocation, allow aggregation
 - Need explicit prefix length or mask
- Routing lookup uses longest prefix match
 - 131.179.0.0/24 vs. 131.179.0.0/16
- CIDR allows aggregation
 - 131.179.0.0/24 and 131.179.1.0/24 \rightarrow 131.179.0.0/23

Attributes

Value 	Code	Reference	
1	ORIGIN	[RFC1771]	
2	AS_PATH	[RFC1771]	
3	NEXT_HOP	[RFC1771]	
4	MULTI_EXIT_DISC	[RFC1771]	
5	LOCAL_PREF	[RFC1771]	Billions
6	ATOMIC_AGGREGATE	[RFC1771]	Most
7	AGGREGATOR	[RFC1771]	Important
8	COMMUNITY	[RFC1997]	
9	ORIGINATOR_ID	[RFC2796]	attributes
10	CLUSTER_LIST	[RFC2796]	
11	DPA	[Chen]	
12	ADVERTISER	[RFC1863]	
13	<pre>RCID_PATH / CLUSTER_ID</pre>	[RFC1863]	
14	MP_REACH_NLRI	[RFC2283]	
15	MP_UNREACH_NLRI	[RFC2283]	
16	EXTENDED COMMUNITIES	[Rosen]	
255	reserved for development		
			Not all attributes
From IANA: http://www.iana.org/assignments/bgp-parameters			need to be present in

8

every announcement

Attributes are used in best route selection

Route Selection Summary

Highest Local Preference

Enforce relationships

Shortest ASPATH

Lowest MED

i-BGP < e-BGP

traffic engineering

Lowest IGP cost to BGP egress

Lowest router ID

Throw up hands and break ties

(Not using path cost like in the intra-domain routing)

Local Preference

ASPATH Attribute

"Delayed Internet Routing Convergence"

Previously held belief:

 path vector should have no routing loops and should converge fast since it explicitly carries the entire path in the routing updates and stores backup paths.

Discovery:

 Path exploration causes longer convergence delay, packet loss, and extra latency to data traffic.

Methodology:

 Collect and analyze BGP routing updates from different vantage points on the Internet.

Measurement Framework

- Controlled experiments
 - RouteViews passive monitoring
 - BGP fault injection (sometimes called *beacons*)
- Active probing for end-to-end performance

Event Types and Performance Metrics

- Type of Events
 - Tup, Tdown, Tshort, Tlong
 - Equipment failures, maintenance, configuration changes, session failures etc.
- Routing Metrics
 - Convergence time
 - Number of routing messages
 - Network-wide vs. a single router's view
- End-to-end performance
 - Packet loss
 - Round trip delay

Convergence Time

- Longer than expected
- \bullet T_{down} and T_{long} take much longer

Number of Updates

Packet Loss

Round Trip Delay

Path Exploration

Path vector prevents loops, but is still vulnerable to invalid paths

- Initial situation
 - All ASes use direct path
- Then R fails
 - All ASes lose direct path
 - None knows R failed.
 - All switch to longer paths
 - Eventually withdrawn,
 but it takes time.
- E.g., AS 2
- $(2,R) \rightarrow (2,0,R)$
- $(2,0,R) \rightarrow (2,1,R)$
- $(2,1,R) \rightarrow (2,0,1,R)$
- $(2,0,1,R) \rightarrow \text{null}$

Path Exploration

- The theoretical worst convergence time is O(n!)
 - Full mesh, message ordering, process and propagate one update at a time, no MRAI
 - No route filtering
 - Shortest ASPath
 - Tdown
- In reality, the typical case is must faster than this worst case, but still can be too long for applications.

MRAI Timer

- Minimum Route Announcement Interval
 - default 30 seconds
- Space out the sending of consecutive updates
 - Not applied to the first update
 - Not applied to withdrawals
- Consolidate transient updates during this time.
 - thus reduce path exploration
- But also slow down the propagation of correct route
- There's an optimal MRAI value for fast convergence
 - The value varies for different topologies though.

Contributions

- Measured BGP convergence time and end-to-end packet loss for different routing events on the Internet.
- Discovered path exploration
- Propose SSLD (sender side loop detection) as a minor fix.
 - Only effective in small topology
- Impacts
 - The measurement framework, terminology, and metrics.
 - Started the research on inter-domain routing dynamics.