CLASE 6.1.

Funciones Exponenciales.

Una función exponencial, es aquella en la cual la variable independiente está en el exponente, y tiene la forma $y=a^x$, con~0 < a < 1~y~a > 1, $x \in \mathbb{R}$

Clasificación. Las funciones exponenciales se clasifican en base a los valores que puede tomar la base a.

Base 0 < a < 1

- $x < 0 \rightarrow y > 1$
- $x = 0 \rightarrow y = 1$
- $x > 0 \rightarrow 0 < y < 1$

Base a > 1

- $x < 0 \rightarrow 0 < y < 1$
- $x = 0 \rightarrow y = 1$
- $x > 0 \rightarrow y > 1$

Ejemplos

1. Determinar las características de la función exponencial $y=e^x$ Del siguiente gráfico podemos extraer las características

- $D_f = \mathbb{R} \ y \ R_f =]0, \infty[$
- Es biyectiva, por lo que tiene inversa (lo encontraremos en el siguiente tema)
- No es par ni impar
- Es estrictamente creciente en todo su dominio
- 2. Determinar las características de la función $y=0.8^x$

- $D_f = \mathbb{R} \ y \ R_f =]0, \infty[$
- Es biyectiva y por lo tanto tiene su inversa
- No es par ni impar
- Es estrictamente decreciente en todo su dominio
- 3. Determinar las características de la función $\,y=2e^{\,x-2}\,$

Graficando

Las características son las mismas que de la función $y=e^x$

EJERCICIOS PROPUESTOS

Graficar y encontrar las características de las siguientes funciones exponenciales:

a.
$$y = -0.5^x$$

b.
$$y = 2 + 4^x$$

c.
$$y = 1.5^{x+2} + 2$$

Clase de ejercicios

Objetivo. Obtener las características de las siguientes funciones trascendentes directamente desde los gráficos.

a.
$$y = -2 + sen\left(x - \frac{\pi}{2}\right)$$

b.
$$y = cos^{-1}(x)$$

c.
$$y = e^{x^2}$$

d.
$$y = -0.5^x$$

TAREA: Actividad Colaborativa

Para las funciones $f(x) = tg(x) e g(x) = 4^{x}-2$ determine:

- a. Grafique las dos funciones
- b. Dominio y recorrido
- c. Diga si las funciones son biyectivas o no
- d. Realice la composición g(f(x)) y encuentre su dominio
- e. Obtenga la inversa de g(x)
- f. Estudie la monotonía de f(x)
- g. Estudie la paridad de las dos funciones

Clase 6.2

Funciones logarítmicas.

Son funciones de la forma:

$$y = f(x) = \log_a(x)$$
; con a llamada base del logaritmo y x el argumento.

La función inversa de una función exponencial del tipo $y=a^x$, es la función logarítmica, en otras palabras: $Si \ y=f(x)=a^x \iff x=\log_a(y)$, o lo que es lo mismo $f^{-1}(x)=\log_a x$

Clasificación de las funciones logarítmicas.

Debido a que son las inversas de las funciones exponenciales, la clasificación también depende de la base del logaritmo. Así:

Base 0 < a < 1

Ejemplos:
$$y = \log_{0.1} x$$

 $y = \log_{0.3} x$
 $y = \log_{0.5} x$
 $y = \log_{0.7} (x^2 - 2)$

Base a > 1

Ejemplos:
$$y = \log_{1.3} x$$

 $y = \log_2 x$
 $y = \log_e x = \ln x$; $con e = 2.718281828 \dots \dots (llamado número de Euler)$
 $y = \log_5 x^3$
 $y = \log_{10} x = \log x$
 $y = \log_{30} x$

Cuando la base del logaritmo es e ($y = \ln x$) se conoce como logaritmo natural o Neperiano; en todos los otros casos se llama logaritmo vulgar o de Briggs.

La función logarítmica, al ser la inversa de la función exponencial será simétrica respecto de la función identidad como veremos en los siguientes gráficos.

Funciones
$$f(x) = 0.5^x$$
 y $f^{-1}(x) = \log_{0.5} x$

Funciones $f(x) = 10^x$ y $f^{-1}(x) = \log x$

Funciones $f(x) = e^x$ y $f^{-1}(x) = \ln x$

Por tanto, el gráfico de las funciones logarítmicas son las siguientes:

Base 0 < a < 1

Base a > 1

Ejemplos

1. Determinar las características de la función logarítmica $\,y = \log_{0.7} x\,$ Graficamos la función

- $D_f =]0, \infty[$ $R_f = \mathbb{R}$
- La función es biyectiva

- La función no es par ni impar
- La función es estrictamente decreciente en todo su dominio
- 2. Determinar las características de la función $y = \ln(x^2 2)$
- Existe f(x) si $x^2 2 > 0$, lo que significa $x^2 > 2$, o $x > \sqrt{2}$ $\rightarrow x > \pm \sqrt{2}$ $\rightarrow -\sqrt{2} > x > \sqrt{2}$

Por tanto, su $D_f = \left] - \infty, -\sqrt{2} \right[\cup \left] \sqrt{2}, \infty \right[y \ su \ R_f = \mathbb{R}$

Que es igual a lo que encontramos en el gráfico siguiente de la función dada.

- En este caso la función no es biyectiva (pues no es inyectiva)
- La función es par (es simétrica respecto del eje y)
- Es estrictamente decreciente en el intervalo $]-\infty, -\sqrt{2}[$
- Es estrictamente creciente en el intervalo $\sqrt{2}$, ∞

EJERCICIOS PROPUESTOS

Graficar y obtener las características de las siguientes funciones:

- a. $f(x) = \log_{0.3} x$
- b. $f(x) = \log_{0.3}(x 2)$
- c. $f(x) = 5 \ln x$
- d. $f(x) = x \log x$

Nota: Como en cualquier calculadora solo nos permite calcular los logaritmos cuyas bases son e y 10, si queremos obtener logaritmos en otras bases, tenemos que utilizar la siguiente fórmula para transformar logaritmos de bases desconocidas b, a logaritmos de bases conocidas a.

$$\log_b N = \frac{\log_a N}{\log_a b}$$

Clase de ejercicios

Objetivo. Determinar características de las siguientes funciones en general

a.
$$y = |x|$$

b.
$$y = |x^3|$$

c.
$$y = x^2 \sin\left(x - \frac{\pi}{2}\right)$$

d. $y = \sqrt{x - 4} e^x$
e. $y = \ln\sqrt{x - 4}$

$$d. \quad y = \sqrt{x - 4} e^x$$

e.
$$y = \ln \sqrt{x-4}$$