FUNDAMENTOS TEÓRICOS DA COMPUTAÇÃO

--- EXPRESSÕES REGULARES ---

Linguagens Regulares

Há três formalismos para representar Linguagens Regulares

- 1) **Autômato Finito**, que é um formalismo operacional ou reconhecedor baseado em sistema de estados finitos básico
- 2) **Expressão Regular**, que é um formalismo denotacional, ou gerador, que é definida a partir de três mecanismos básicos: conjuntos básicos, união e concatenação
- 3) **Gramática regular**, que é um formalismo axiomático, ou gerador, cujas restrições estão na forma das regras de produção

Linguagens Regulares

Uma Linguagem Regular é **reconhecida** por uma **Autômato Finito**, ou seja, o AF reconhece se uma palavra pertence ou não a uma linguagem

A Linguagem Regular pode ser **expressa** (ou descrita) através de outro mecanismo, que é a **Expressão Regular**

Mas o que é uma expressão regular?

Expressão Regular

Podemos usar **operações** <u>aritméticas</u> para construir expressões tais como $(5+3)\times 4$, cujo resultado é 32

Da mesma forma, podemos usar **operações** <u>regulares</u> para construir expressões que descrevem linguagens, que são chamadas de <u>expressões regulares</u>, por exemplo: $(0 \cup 1)0^*$

A linguagem acima consiste de todas as cadeias que iniciam com um 0 ou 1 seguido por qualquer número de 0

O símbolo \circ da concatenação é implícito nas expressões regulares, que seria o mesmo que $(0 \cup 1) \circ 0^*$

Expressão Regular

Toda **linguagem regular** pode ser descrita por uma **expressão** regular

Exemplo: construa uma expressão regular que aceite/gere qualquer palavra do alfabeto {a,b} que comece com a ou b e termine com a subpalavra aa

Resposta: (a + b) aa

Palavras aceitas: {aaa, baa}

Expressão Regular

As ERs são representações de linguagens por meio de operações sobre conjuntos, porém permitem apenas uma pequena gama de operações. As ERs permitem apenas as seguintes operações:

- □ Agrupamento
- □ Fechode Kleene
- □ Concatenação
- □ União

Nas ERs, os conjuntos não são denotados por meio de $\{a,b,c\}$ Exemplo: $r=a^*ba^*ba^*$

Palavras aceitas: {bb, abba, aababaa, . . .}

Operadores

A representação do símbolo é feita simplesmente pelo próprio símbolo. Exemplo: $L=\{0\}$, temos r=0

A representação de $\{\mathcal{E}\}$ é feita simplesmente por \mathcal{E} . Exemplo: $L=\{\mathcal{E}\}$, temos $r=\mathcal{E}$

A concatenação, assim como na representação por conjuntos, é feita pela sequência daquilo que se quer concatenar Exemplo: $L=\{0\}\{1\}\{0\}\{1\}$, temos r=0101

A união é representada pelo símbolo de adição ("+")

Exemplo 1: $L = \{a, b\}$, temos r = a + b

Exemplo 2: $L = \{1, 01, 23\}$, temos r = 1 + 01 + 23

Exemplo 3: $L = \{12\} \cup \{21\}$, temos r = 12 + 21

Operadores

```
O agrupamento é representado por um par de parênteses 
 Exemplo 1: L = \{aa\}(\{bb\} \cup \{cc\}), temos r = aa(bb+cc) 
 Exemplo 2: L = \{1\}\{2,3\}, temos r = 1(2+3) 
 Exemplo 3: L = \{0,1\}\{111\}\{0,00,1,11\}, temos r = (0+1)111(0+00+1+11)
```

```
O fecho de Kleene é representado por um asterisco ("*") 
Exemplo 1: L = \{x\}^*, temos r = x^* 
Exemplo 2: L = \{0\}^*\{1\}^*, temos r = 0^*1^* 
Exemplo 3: L = \{00\}^*, temos r = (00)^*
```

Expressão Regular - base da indução

Diz-se que R é uma expressão regular se R for:

- 1. Ø é uma expressão regular que denota a linguagem vazia
- 2. ε é uma expressão regular que denota a linguagem com a cadeia vazia
- 3. x é uma expressão regular (para qualquer $x \in \Sigma$) que denota a linguagem $\{x\}$
- 4. $(R_1 \cup R_2)$, onde R_1 e R_2 são expressões regulares,
- 5. $(R_1 \circ R_2)$, onde R_1 e R_2 são expressões regulares, ou
- 6. (R_1^*) , onde R_1 é uma expressão regular

Expressão Regular - passo da indução

Não confunda as expressões regulares \emptyset e ε

A expressão ε representa a linguagem que contém uma única string, isto é, a cadeia vazia

Por outro lado, Ø representa a linguagem que não contém nenhuma string

Expressão Regular - Precedência

Na ausência de parêntesis adota-se a seguinte precedência:

O fecho de Kleene tem precedência sobre a concatenação

A concatenação tem precedência sobre a união

Portanto, a ER 01^* é o mesmo que $0(1^*)$ e não $(01)^*$

ER nula

A ER que não aceita nenhuma palavra é denotada por \emptyset . Observe que $(r = \emptyset) \neq (r = \varepsilon)$

A **concatenação** de qualquer ER com a ER nula equivale à ER nula $r=r_1 \emptyset r_2 \Rightarrow r=\emptyset$

A união da ER nula com qualquer outra ER não altera o resultado $r=r_1+\emptyset+r_2\Rightarrow r=r_1+r_2$

O fecho de Kleene sobre a ER nula gera a ER ε $\emptyset^* = \varepsilon$

Exemplos

Conjuntos	Expressões Regulares
$L = \{0,1\}^* \{\varepsilon, 0,1\}$	$r = (0+1)^* \{ \varepsilon + 0 + 1 \}$
$L = \{01\}^+$	$r = 01(01)^*$
$L = (\{ab\}\{c\}^*)^+$	$r = abc^*(abc^*)^*$

^{*} A forma básica das ERs não permite repetições do tipo "uma ou mais vezes"

Operadores de quantidade

Asterisco (*): significa zero ou muitas ocorrências do que vem antes

Exemplo 1: ab*

Significa que esta linguagem aceita palavras que iniciam com **a** concatenado com zero ou muitos **b**

Palavras aceitas: a, abbbbbb, ab, abbbbbbbbbbbbbb, abb

Exemplo 2: ab*a

Significa que esta linguagem aceita palavras que iniciam com a concatenado com zero ou muitos **b** concatenado com **a** no final

Palavras aceitas: aa, abbbbbba, aba, abbbbbbbbbbba, abba

Exemplo 3: (a+b) *aa

Significa que esta linguagem só aceita palavras que têm o sufixo aa

Palavras aceitas: aa, aaaaa, abaa, bbaaabaa, bbaa

Exemplos de linguagens geradas

ER	Linguagem
aa	somente a palavra aa
ba*	todas as palavras que iniciam por b seguido por zero ou vários a
(a+b) *	todas as palavras sobre o alfabeto {a, b}
(a+b) *aa(a+b) *	todas as palavras contento aa como subpalavra
a*ba*ba*	todas as palavras contento zero ou vários a, seguido por um b, seguido por zero ou vários a, seguido por um b, seguido por zero ou vários a
$(a+\varepsilon)$ (b+ba) *	todas as palavras contento zero ou um a, seguido por b ou ba zero ou várias vezes

Exemplo – quais as ERs

Seja o alfabeto {a,b}, escreva ERs das seguintes linguagens

Linguagem	ER
Palavras de tamanho igual a 2	(a+b) (a+b)
Possuem comprimento maior ou igual a 2	(a+b) (a+b) (a+b) *
Possuem comprimento par	((a+b)(a+b))*
Possuem comprimento ímpar	(a+b) ((a+b) (a+b))*
Possuem comprimento múltiplo de 4	((a+b) (a+b) (a+b) (a+b))*
Possuem comprimento divisível por 3	(a+b) ((a+b) (a+b))*

Exemplo – quais as ERs

Seja o alfabeto {a,b}, escreva ERs das seguintes linguagens

Linguagem	ER
Número de a é exatamente igual a 2	b*ab*ab*
Número de a é pelo menos igual a 2	b* a b* a (a+b)*
Palavras que iniciam com a	a (a+b) *
Palavras que terminam com a	(a+b) * a
Palavras contendo pelo menos um a	(a+b) * a (a+b) *
Palavras que iniciam e terminam por símbolos diferentes	(a(a+b)*b)+(b(a+b)*a)
Palavras que iniciam e terminam pelo mesmo símbolos	(a (a+b) * a) + (b (a+b) * b)

$$(0+1) (0*11*) (0*11*)*$$

$$\omega = 10001$$

$$1 \to (0+1)(0*11*)(0*11*)*$$

$$000 \to (0+1)(0*11*)(0*11*)*$$

$$1 \to (0+1)(0*11*)(0*11*)*$$

$$\varepsilon \to (0+1)(0*11*)(0*11*)*$$

$$(0+1) (0*11*) (0*11*)*$$

$$\omega = 10001011$$

$$1 \rightarrow (0+1)(0*11*)(0*11*)*$$

$$000 \rightarrow (0+1)(0*11*)(0*11*)*$$

$$1 \rightarrow (0+1)(0*11*)(0*11*)*$$

$$011 \rightarrow (0+1)(0*11*)(0*11*)*$$

$$(0+1) (0*11*) (0*11*)*$$

$$\omega = 1000101101$$

$$1 \to (0+1)(0*11*)(0*11*)*$$

$$000 \to (0+1)(0*11*)(0*11*)*$$

$$1 \to (0+1)(0*11*)(0*11*)*$$

$$01101 \to (0+1)(0*11*)(0*11*)*$$

$$(a+b)c*(a+b)$$

