Saurabh Labde

2510 Avent Ferry Road, Apt# 205, Raleigh, NC - 27606

□+1 (984)-218-6364 | Sslabde@ncsu.edu | Saurabhlabde29 | Saurabhlabde

Summary.

Graduate Student at NC State University pursuing M.S in Computer Engineering. Proficient in Verilog, System Verilog, C, C++ and python scripting. Equipped with in-depth knowledge and hands-on experience in logic design, RTL coding, ASIC design flow, low power design, static timing analysis, DFT, CPU/ASIC/SOC verification infrastructure using UVM methodology with SVA and CPU/GPU microarchitecture demonstrated through several academic and personal projects, relevant coursework and research volunteer work.

Education

North Carolina State University

Raleigh, NC

M.S. IN COMPUTER ENGINEERING

Aug. 2017 - Expected May. 2019

• **Relevant Courses:** ASIC and FPGA Design(Verilog), ASIC Verification(System Verilog), Advanced Verification with UVM, Advanced Micro-architecture, Microprocessor Architecture, Architecture of Parallel Computers, Advanced Computer Architecture(GPU & Vector Processors), Operating Systems, SOC Verification with SV (Online), Object Oriented Programming (OOP).

University Of Mumbai

Mumbai, India

B.E. IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

Aug. 2013 - May. 2017

Skills

Languages C, C++, Verilog, System Verilog, Python, Ruby, Perl, Assembly (x86, MIPS, ARM), Shell scripting, CUDA, Java

Tools ModelSim, QuestaSim, Veloce Emulator, Synopsys Design Compiler, MATLAB, Xilinx ISE, Git, Makefiles, GDB, Valgrind Platforms Linux, Unix(MAC OS), Windows, XINU-OS, GPGPU-sim, SNIPER-sim, 721-Sim(RISC-V Superscalar simulator)

Projects

Design Verification (EDA Tools: ModelSim, QuestaSim, Veloce Emulator. Languages: System Verilog, Python Scripting)

Emulation Compatible Chip Level Verification Environment for LC3 Microcontroller using UVM Framework Dec. 2018

• Constructed a hierarchical, re-usable and emulation compatible chip-level UVM based test bench for the verification of LC3 Microcontroller which includes environments, agents, BFMs, predictors, coverage collectors, stimulus generators and scoreboards.

Designed a detailed test plan and achieved 100% coverage through constrained random testing, assertions and, directed tests.

UVM based Block Level Verification IP for AMBA-APB bus Protocol

Aug. 2018

- Designed and Implemented a hierarchical and re-usable verification environment for APB protocol using UVM class libraries.
- The package includes APB bridge master and APB slave agents, drivers, monitors, environment, sequences and sequencers.

Functional Verification of 5-stage Pipelined LC3 Micro-controller

April. 201

• Designed a layered test bench and a cycle accurate reference model to verify the data and control path of LC3 micro-controller with checkers for bug detection. 100% functional coverage was achieved using Constrained random testing and assertions.

RTL Design (EDA Tools: ModelSim, Synopsys Design Compiler. Languages: Verilog)

Hardware accelerator for simplified convolutional neural network

Nov. 2017

- Designed a synthesizable ASIC implementing the two staged convolutional neural network arithmetic on inputs read from SRAM.
- The design was verified for functional correctness and synthesized to achieve minimum area and clock period.

Synthesizable ASIC for SHA-256 Cryptographic Hash Algorithm

Jan. 2019

• Designed, Debugged, simulated and synthesized a Verilog RTL to perform the complete SHA-256 operation. Leveraged a pipelined architecture to optimize the design for performance while meeting the timing constraints.

CPU / GPU Architectural Simulators and Operating Systems (Languages: C, C++. Platforms: GPGPU-Sim, XINU OS)

Dynamic Instruction Scheduling in an OOO Superscalar Processor

Nov. 2017

• Implemented a cycle-accurate simulator for an out-of-order superscalar processor based on Tomasulo's algorithm that fetches, dispatches, issues and executes N instructions per cycle. The simulator successfully handled RAW, WAW and WAR hazards.

Multi-level Cache Hierarchy Simulator

Sept. 2017

- Modeled a trace-driven, highly parameterized two-level cache hierarchy simulator with support for L1 victim cache.
- Implemented LRU & LFU cache replacement policies along with write through not allocate and write back allocate write policies.

Dynamic Branch Predictor Simulator

Oct. 2017

• Developed a simulator to model bimodal, gshare and hybrid branch predictors with a set-associative branch target buffer(BTB).

Cache Coherence Protocol Simulator

Oct. 2017

• Developed a trace driven multiprocessor simulator supporting MSI, MOSI, MOESI bus based cache coherence protocols.

Phase Aware Warp Scheduling (PAWS) on GPGPU

May. 2018

• Extended GPGPU-sim to include Phase Aware Warp scheduling policy which performs closer to the best of GTO and RR policies.

Benchmarked with CUDA SDK, Rodnia and Parboil kernels and achieved an 8% improvement in the IPC.

Virtual Memory Management System in Xinu OS

Dec. 2018

• Extended the x86 based Xinu OS to support a virtual memory system with demand paging and lazy allocation optimizations.

Work Experience

ARPERS Research Group - NC State University

Raleigh, NC

CPU ARCHITECTURE RESEARCH VOLUNTEER

May. 2018 - Aug. 2018

• Ported a set of persistent memory microbenchmarks to work with SNIPER multicore simulator using simulator hooks.

• Created Python scripts to automate the compilation and generation of CPI and power visualizations.