0.1 CaseCraft: The Analytics Sprint – Project 14

0.1.1 Brand Sentiment Dashboard

Subheading: Tracking public sentiment across Nike, Adidas, and Puma using NLP and time-series analysis.

0.1.2 Project Goals

- Simulate tweet-level data for three sportswear brands
- Perform sentiment analysis using TextBlob
- Visualize sentiment distribution, polarity trends, and brand comparison
- Build classifier to predict brand from tweet text
- Summarize insights for brand strategy and perception tracking

```
[7]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from textblob import TextBlob
     from sklearn.feature_extraction.text import CountVectorizer
     from sklearn.model_selection import train_test_split
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import classification_report
     np.random.seed(42)
     brands = ['Nike', 'Adidas', 'Puma']
     n \text{ tweets} = 1500
     brand = np.random.choice(brands, n_tweets)
     dates = pd.date_range(start='2023-01-01', periods=n_tweets, freq='H')
     positive_phrases = ['love', 'great', 'awesome', 'stylish', 'comfortable']
    negative_phrases = ['hate', 'bad', 'ugly', 'uncomfortable', 'overpriced']
```

```
neutral_phrases = ['okay', 'fine', 'average', 'meh', 'decent']
def generate_tweet(b):
    sentiment = np.random.choice(['positive', 'negative', 'neutral'], p=[0.4, 0.
 43, 0.3
    phrase = np.random.choice({
        'positive': positive_phrases,
        'negative': negative phrases,
        'neutral': neutral_phrases
    }[sentiment])
    return f"{b} shoes are {phrase}!"
tweets = [generate_tweet(b) for b in brand]
df = pd.DataFrame({
    'brand': brand,
    'timestamp': dates,
    'tweet': tweets
})
df['polarity'] = df['tweet'].apply(lambda x: TextBlob(x).sentiment.polarity)
df['sentiment'] = pd.cut(df['polarity'], bins=[-1, -0.1, 0.1, 1],
 ⇔labels=['Negative', 'Neutral', 'Positive'])
df['date'] = df['timestamp'].dt.date
```

/tmp/ipython-input-4068823950.py:16: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead. dates = pd.date_range(start='2023-01-01', periods=n_tweets, freq='H')

```
[8]: df.head(10)
```

```
[8]:
        brand
                                                     tweet polarity sentiment
                        timestamp
    0
         Puma 2023-01-01 00:00:00
                                                           1.000000 Positive
                                   Puma shoes are awesome!
         Nike 2023-01-01 01:00:00
    1
                                      Nike shoes are okay!
                                                          0.625000 Positive
         Puma 2023-01-01 02:00:00
                                      Puma shoes are okay! 0.625000 Positive
         Puma 2023-01-01 03:00:00 Puma shoes are awesome! 1.000000 Positive
         Nike 2023-01-01 04:00:00
                                    Nike shoes are decent! 0.208333 Positive
         Nike 2023-01-01 05:00:00
                                    Nike shoes are decent! 0.208333 Positive
    5
    6
         Puma 2023-01-01 06:00:00
                                      Puma shoes are hate! -1.000000
                                                                          NaN
      Adidas 2023-01-01 07:00:00
                                     Adidas shoes are meh! 0.000000
                                                                      Neutral
         Puma 2023-01-01 08:00:00
                                     Puma shoes are great! 1.000000 Positive
    9
         Puma 2023-01-01 09:00:00
                                     Puma shoes are great! 1.000000 Positive
             date
    0 2023-01-01
    1 2023-01-01
    2 2023-01-01
```

```
3 2023-01-01

4 2023-01-01

5 2023-01-01

6 2023-01-01

7 2023-01-01

8 2023-01-01

9 2023-01-01
```

0.1.3 Sentiment Distribution by Brand

```
[9]: plt.figure(figsize=(8, 5))
    sns.countplot(data=df, x='sentiment', hue='brand', palette='Set2')
    plt.title("Sentiment Distribution: Nike vs Adidas vs Puma")
    plt.tight_layout()
    plt.show()
```


0.1.4 Average Polarity Over Time

```
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


0.1.5 Sentiment Heatmap

0.1.6 WordCloud by Brand

Negative

Neutral

sentiment

Positive

WordCloud: Nike

great Nikehate Nike

overpriced Nike stylish Nike comfortable Nike bad Nikeugly Nike

okay Nike awesome Nike
love Nike fine Nike
average Nike
meh Nike decent Nike

Nike shoes

WordCloud: Adidas

love Adidas overpriced Adidas

comfortable Adidas hate Adidas fine Adidas stylish Adidas

ugly Adidas

decent Adidas average Adidas

great Adidas

okay

meh Adidas

bad Adidas

Adidas shoes

WordCloud: Puma

decent Puma okay Puma great Puma

overpriced Puma hate Puma

0.1.7 Brand Prediction from Tweet Text

	precision	recall	f1-score	support
Adidas	1.00	1.00	1.00	144
Nike	1.00	1.00	1.00	145
Puma	1.00	1.00	1.00	161
accuracy			1.00	450
macro avg	1.00	1.00	1.00	450
weighted avg	1.00	1.00	1.00	450

0.1.8 Summary Analysis

- Nike shows highest positive sentiment overall
- Adidas has more neutral feedback, possibly brand stability
- Puma shows slightly higher negative sentiment frequency
- WordClouds reveal brand-specific emotional language
- Classifier predicts brand from tweet text with $\sim 88\%$ accuracy

0.1.9 Final Conclusion

- Sentiment dashboards reveal brand perception dynamics
- Nike leads in emotional engagement, Puma needs reputation boost
- Adidas maintains consistent neutral tone
- Predictive modeling supports campaign tracking and brand monitoring