Приближенное вычисление двойного интеграла

1. Постановка задачи

Вычислить двойной интеграл по области D, где D – криволинейный четырехугольник -

$$\{a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)\}:$$

$$\iint f(x, y) dx dy$$

В качестве модельной задачи возьмем следующую подинтегральную функцию f(x,y) и область определения D:

$$f(x,y) = x * y^{2},$$

$$0 \le x \le 1,$$

$$x^{2} \le y \le 1 + x$$

2. Аналитическое решение

Точное значение интеграла, полученное аналитическим путем, равно I=0.775.

3. Численное решение

а. Метод ячеек

Перед применением метода ячеек отобразим область D в квадрат D со стороной 1. Для этого сделаем замену переменных:

$$x = u,$$

 $y = u^{2} + (1 + u - u^{2})v,$
 $u, v \in [0, 1]$

Тогда наш интеграл преобразуется к виду:

$$\iint_{D} x * y^{2} dx dy = \iint_{D^{*}} u * (u^{2} + (1 + u + u^{2})v)^{2} * (1 + u - u^{2}) du dv.$$

Интеграл будем вычислять приближенно, с точностью до $\epsilon = 0.0001$.

$$I_h=\sum_{i=1}^n\sum_{j=1}^nh^2*f(\bar u,\bar v),$$
 где
$$\bar u=(u_{i-1}+u_i)/2,\,\bar v=(v_{j-1}+v_j)/2,$$
 $f(u,v)=u*(u^2+(1+u+u^2)v)^2*(1+u-u^2)$

Начальные параметры сетки определяются формулами:

$$n = int(\frac{1}{\sqrt{\epsilon}}) + 1,$$
$$h_0 = \frac{1}{n}$$

При этом само вычисление будет происходить итеративно с оценкой погрешности по правилу Рунге, которое и будет являться условием останова:

$$\frac{|I_{\frac{h}{2}} - I_h|}{3} < \epsilon$$

После каждой итерации шаг сетки уменьшается в двое.

b. **Метод Монте-Карло**

Для применения метода Монте-Карло также перейдем в квадратную область определения D, проделав те же самые преобразования, что и в методе ячеек. Будем генерировать n точек $\{u_i, v_j\}$, имеющих равномерное распределение. Так как наша область определения квадратная, то нам не нужно проверять принадлежность точки к D. Поэтому вычисление интеграла сведется к нахождению среднего значения подинтегральной функции по всем точкам $\{u_i, v_j\}$:

$$I \approx \frac{1}{n} \sum_{1}^{n} f(u, v),$$

Так как метод Монте-Карло носит стохастический характер, для воспроизводимости результатов был зафиксирован seed в генераторе псевдослучайных чисел. Применялся ГПСЧ из библиотеки numpy c seed =10.

3. Тестовый стенд

Вычислительный эксперимент проводился на компьютере с процессором AMD Ryzen 3900X 4.6 $\Gamma\Gamma$ ц.

4. Результаты вычислительного эксперимента

Сначала проведем эксперимент, используя метод ячеек. Оказалось, что алгоритм достигает заданной точности уже на второй итерации. В таблице 1 приведены результаты, полученные на каждой итерации, а именно шаг сетки h, приближенное значение интеграла I_h , относительная погрешность $\delta = |I - I_h|/I$ и время t затраченное на вычисление интеграла на каждой итерации.

Таблица 1.

h	I_h	δ	t, c
0.01	0.77498	0.00003	0.043
0.005	0.77499	0.00001	0.174

Суммарное время работы составило 0.217 с.

Абсолютная погрешность составила 0.00001. Сравним её с теоретической. Известно, что метод ячеек имеет второй порядок точности относительно шага сетки $R = O(h^2)$. Полученные результаты полностью соответствуют данной теоретической оценке.

В таблице 2 приведены результаты эксперимента с использованием метода Монте-Карло. Единственное отличие заключается в том, что гиперпараметром алгоритма является не шаг сетки, а количество точек, по которым считается среднее значение.

Таблица 2.

n	I_n	δ	t, c
10	0.55229	0.28737	0.000
10^{2}	0.64848	0.16326	0.000
10^{3}	0.79282	0.02299	0.000
10^{4}	0.76163	0.01725	0.000
10^{5}	0.77565	0.00083	0.004
10^{6}	0.77593	0.00120	0.038
10^{7}	0.77544	0.00057	0.376

Сравним теоретическую погрешность метода Монте-Карло с экспериментальной. Мы можем грубо оценить теоретическую погрешность как $R \approx \sqrt{\frac{1}{N}}$, где N - число испытаний. Например, для п = 10000 или 1000 000 мы можем претендовать на точность порядка 0.01 и 0.001 соответственно, что хорошо согласуется с полученными экспериментальными результатами.

Выводы

В ходе работы мы установили, что точность приближенного вычисления двойного интеграла методами ячеек и Монте-Карло совпадает с их теоретическими оценками. При этом стоит отметить, что метод Монте-Карло достигает заданной точности медленнее, чем метод ячеек несмотря на то, что время его работы линейно относительно числа точек, в то время как метод ячеек имеет квадратичную асимптотику относительно числа ячеек. Тем не менее метод Монте-Карло может иметь преимущество в тех случаях, когда нам не нужна большая точность.