WBLE-SL ► UECM3473	-202201-EZZ ► Quizzes ► 202201UECM34730E3b ► Review of preview Update this Quiz			
	Info Results Preview Edit			
	202201UECM34730E3b			
	Start again			
	Review of preview			
	Friday, 4 March 2022, 02:25 PM Friday, 4 March 2022, 02:25 PM			
Time taken				
Grade	0 out of a maximum of 10 (0%)			
1 🕏	Assume an individual insured is selected at random from a population of insureds. The number of claims experienced in a given year by each insured follows a Poisson distribution. The mean value θ of the Poisson distribution is distributed across the population according to the following gamma distribution:			
Marks: 1	across the population according to the following gaining distribution: $f(\theta) = 6/\Gamma(4)\theta^3 e^{-6\theta}, \ \theta > 0$			
	Given that a particular insured experienced a total of 3 claims in the previous 4 years, what is the posterior estimate of the future expected annual claim frequency, given the experience of this particular insured?			
	Answer:			
	Make comment or override grade			
	Incorrect Correct answer: 0.7			
	Marks for this submission: 0/1.			
2 👺	Claim sizes are normally distributed with mean θ and variance 120,000. θ varies by risk, and is normally distributed with mean 1,500 and variance 1,080,000. For a certain risk, 10 claims averaging 2100 are observed. Determine the posterior			
Marks: 1	probability that θ is less than 2295.0			
	Answer:			
	Make comment or override grade			
	Incorrect Correct answer: 0.9678			
	Marks for this submission: 0/1.			
3 🗑	The number of claims per year on an insurance coverage has a binomial distribution with parameter m = 5 and Q. Q varies by insured and is distributed according to the following density function:			
Marks: 1	f(q) = $cq(1-q)^6$, $0 \le q \le 1$,			
	where c is a constant. An insured submits 1 claims in 6 years. Calculate the posterior probability that for this insured, Q is less than 0.028			
	All insured submits 1 claims in 6 years. Calculate the posterior probability that for this insured, Q is less than 0.028.			
	Answer:			
	Make comment or override grade			
	Incorrect			
	Correct answer: 0.089813			
	Marks for this submission: 0/1.			
4 🕏	We assume that the amount of an individual claim, Y, follows an exponential distribution function with probability density function			
Marks: 1	$f(y \delta) = 1/\delta e^{-y/\delta}, y, \delta > 0$			

	The mean claim amount, δ , follows an inverse gamma distribution with density function				
	$n(\delta) = 4^3 e^{-4/\delta}/(\Gamma(3)\delta^4), \ \delta > 0$ Suppose 22 claims are observed with total aggregate claim amount of 10. Find P(Y ₂₃ > 1 \Sigma Y _i = 10).				
	Answer:		_ X		
	Make comment or override grade				
	Incorrect Correct answer: 0.1782				
	Marks for this submission	: 0/1.			
	Farmer in a control in with 1765				
5 🕏 Marks: 1	For an insurance portfolio with 1765 • The number of claims for each	exposures, you are given: exposure follows a Poisson distribution.			
	 The mean claim count varies b 	y exposure. the distribution of mean claim counts is a gamma distribution with parameters $a_1 = 0.75$, $\theta_1 = 4$. source follows an exponential distribution.			
	 The mean claim size varies by 	exposure. The distribution of mean claim sizes is an inverse gamma distribution with parameters $a_2 = 3$, $\theta_2 = 4$. of aggregate claims is that aggregate claims must be within 6% of expected 90% of the time.			
	Determine the credibility assigned to				
	Answer:		_ x		
	Make comment or override grade				
	Incorrect Correct answer: 0.9384				
	Marks for this submission	: 0/1.			
	Losses follow a distribution with desi				
6 ☑ Marks: 1		$f(x) = \delta x^{\delta-1}, \ 0 \le x \le 1$	and have firstlere		
	o varies by insured according to a ga	mma distribution with $\alpha = 3$, $\theta = 3$. A loss size of 0.75 is observed. Determine the posterior estimate of δ using zero-o	ne loss fuction		
	Answer:		x		
	Make comment or override grade				
	Incorrect				
	Correct answer: 4.8308 Marks for this submission	: 0/1.			
7 🖢 Marks: 1	A Bayesian analysis is performed. Th $\pi(\theta x)$	e posterior density funtion is			
ridiko. 1	= $1.0 \ \theta \ 0 \le \theta \le 20/30$ = 0.8571 - $0.2857\theta \ 20/30 \le \theta \le 3.0$				
	Find the lower bound of the 95% HPI	O credibility interval			
	Answer:		7 v		
	Make comment or override grade Incorrect				
	Correct answer: 0.1491 Marks for this submission	: 0/1.			
		-,			
8 🗑	You are given the following:				
Marks: 1	Claim sizes for a given policyh	older follow a distribution with density function $f(x \theta) = 6x^5/\theta^6, \ 0 < x < \theta.$			
	- The prior distribution of $\boldsymbol{\Theta}$ has				
	The policyholder experiences three cl	laim sizes of 100, 700, 900. Find the upper bound of the 95% "HPD" credible set for θ .			
	Answer:				

		X X	
	Make comment or override grade Incorrect Correct answer: 1009.91 Marks for this submission	: 0/1.	
9 🗑 Marks: 1	the past 6 years:	ar follows a Poisson distribution with mean λ . λ varies in accordance with a gamma distribution with α = 36 and θ = 0.01. You have the following information on the number of claims made by an insured in 1, 2, 2, 4, 2, 1 are number of claims per year for this insured	
	Answer:	X X	
	Make comment or override grade Incorrect Correct answer: 0.457102 Marks for this submission	: 0/1.	
10 🐷 Marks: 1	The number of claims per year on an insurance coverage has a binomial distribution with parameter $m=4$ and Q . Q varies by insured and is distributed according to the following density function: $f(q)=cq(1-q)^6$, $0 \le q \le 1$, where c is a constant. An insured submits 1 claims in 9 years. Calculate the Bayes estimate of $Q(1-Q)$.		
	Answer:	X X	
	Make comment or override grade Incorrect Correct answer: 0.23368 Marks for this submission	: 0/1.	

Moodle Docs for this page

You are logged in as Yong Chin Khian (Logout)

UECM3473-202201-EZZ