1

AI1103-Assignment-2

Vamsi Preetham Jumala CS20BTECH11058

Download all python codes from

https://github.com/VamsiPreetham-21/AI1103-Assignment-2/blog/main/Assignment2.py

Download all latex codes from

https://github.com/VamsiPreetham-21/AI1103-Assignment-2/blog/main/Assignment2.tex

GATE 2012(EC), Q37:

A fair coin is tossed till a head appeared for the first time. The probability that the number of tosses required is odd,

Solution:

Let X_n define a markov chain where $n \in (0, 1, 2, ...)$. S_1, S_2, S_3, S_4 be four respective states denoting

Odd try	S_1
Even try	S_2
Failure	S_3
Success	S_4

Here 1,2 states are transient and 3,4 states are absorbing. Let P denote the state transition matrix for the above markov chain.

$$P = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The standard form of the matrix is:

$$P = \begin{bmatrix} I & O \\ R & Q \end{bmatrix}$$

where I,O are Identity and Zero matrices and R,Q are other sub-matrices respectively. After converting the transition matrix into the form of standard matrix we get

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 \end{bmatrix}$$

The limiting matrix for absorbing markov chain is,

$$P = \begin{bmatrix} I & O \\ FR & O \end{bmatrix}$$

here $F=(I-Q)^{-1}$ is called the fundamental matrix of P. Solving this leaves us with

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0.333 & 0.667 & 0 & 0 \\ 0.667 & 0.333 & 0 & 0 \end{bmatrix}$$

Here an element P_{ij} represents the probability of state j starting from state i. That means the probability of the first head to appear on odd numberth trail starting with a odd numberth trail is

$$Pr(A) = p_{14} = 0.667 (0.0.1)$$