

大数据分析

——期末复习

杨明达 2023年12月15日

免责声明

- 一、所有内容根据个人理解总结,由于本人水平有限,所以难免会有错误,欢迎大家批评指正。
- 二、讲述内容以聚类、分类、关联三大分析中的计算题为主, 不涉及这几章中的简答题。同时,挑选的题目和知识点是比较 有代表性的,没讲的不代表不考,讲了的也不代表一定考。
- ▶ 三、由于既有必修同学,又有选修同学,且同学们的目前复习 进度和熟练程度相差较大,所以本次讲座会照顾绝大多数同学, 讲的比较慢和细致,大家如果觉得不太符合自己的情况,直接 离开即可。

> 一、聚类分析

> 二、分类分析

> 三、关联分析

一、聚类分析

概述

个体与类 亲疏关系度量

基于相似系数 的相似性度量

基于距离的

亲疏关系度量

相似性度量

类间 亲疏关系度量

聚类分析

聚类方法的分类

有效性评价

常用的聚类 分析算法

基于划分的算法

AGNES算法

基于层次的算法

DIANA算法

k-平均值算法

k-中心点算法

基于距离的个体与类亲疏关系度量:

定距型变量个体间距离: 计数变量个体间距离:

欧氏距离

曼哈顿距离

切比雪夫距离

明氏距离

标准化欧式距离

马氏距离

卡方距离

Phi距离

二值变量个体间距离:

简单匹配系数

Jaccard系数

计算向量(0,0),(1,0),(0,2)两两间的欧式距离、曼哈顿距离、切比雪夫 距离、标准化欧式距离,假设两个分量的标准差分别为0.5和1

已知二维正态总体G的分布为: $G\sim N(\mu, \Sigma)$, 其中

$$\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \boldsymbol{\Sigma} = \begin{pmatrix} 1 & -0.9 \\ -0.9 & 1 \end{pmatrix}$$

分别求点 $A=(1,1)^{T}$ 和点 $B=(1,-1)^{T}$ 到均值 μ 的欧氏距离和马氏距离。

基于相似系数的个体与类亲疏关系度量:

余弦相似度

汉明距离

Jaccard相似系数

Pearson相关系数

求向量(3,2,0,5,0,0,0,2,0,0)和向量(1,0,0,0,0,0,0,1,0,2)的余弦相似度

求集合X={1, 2, 3, 4} 和集合Y={3, 4, 5, 6} 的Jaccard相似系数

例子: 有两个物品A,B,调查7位用户是否购买了这两样物品,

得以下向量: A=(0,0,1,1,1,0,1), B=(1,0,1,0,1,0,0)

忽略0-0匹配,求A和B的Jaccard距离

例1: 计算压力x和压缩量y之间的相关系数r。

压力 x(10 lb/in²)	压缩量 y(0.1 in)
1	1
2	1
3	2
4	2
5	4

类间亲疏关系度量:

最近/最远距离 中间距离

分别采用最近距离、最远距离、中间距离对下面6个点进行层次聚类,采用欧式距离度量

数据集								
ø	Χ .	у.,	ø					
X ₁ .	1 .	1 .	ø					
X ₂ .	2 .	1 .	٠					
X ₃ .	1 .	3 .	ą.					
X ₄ .	4 .	1 .	4					
X ₅ .	4.	4 .	42					
Х ₆ -	5 .	4 .	ą.					

+-	1 J-0 HX/WWLIPHIDD (0)											
	ø	$C_1 = \{x_1\}$	$C_2 = \{x_2\}$	$C_3 = \{x_3\}$	$C_4 = \{x_4\}$	$C_5 = \{x_5\}$	$C_6 = \{x_6\}$					
	$C_1 = \{x_1\} \ .$	0 .	ø	d)	v	φ	o o					
	$C_2 = \{x_2\} \ .$	1 .	0	ø.	¢	ψ.	o o					
	$C_3 = \{x_3\} \ .$	4 .	5 .	0 .	ę	ą	ې پ					
($C_4 = \{x_4\} .$	9 .	4 .	13 .	0 .	4	e e					
($C_5 = \{x_5\}$	18.	13 .	10 .	9 .	0	o o					
	$C_6 = \{x_6\}$	25 .	18 .	17 -	10 .	1 .	0					

(1) 最近距离

-‡-	田 (0) **											
	ø	$C_1 = \{x_1\}$	$C_2 = \{x_2\}$	$C_3 = \{x_3\}$	$C_4 = \{x_4\}$	$C_5 = \{x_5\}$	$C_6 = \{x_6\}$					
	$C_1 = \{x_1\} \ .$	0	ψ	4)	ψ	φ	e e					
	$C_2 = \{x_2\} \ .$	1 .	0	¢1	¢.	φ						
	$C_3 = \{x_3\} \ .$	4.	5 .	0 .		a.						
	$C_4 = \{x_4\}$	9 .	4 .	13 -	0 .	ø	د د					
	$C_5 = \{x_5\}$	18 .	13 .	10 -	9 .	0 .						
	$C_6 = \{x_6\}$	25 .	18 .	17 .	10 .	1 .	0					

(2) 最远距离

<u>+</u>	1 J-0 HX/MPCIATABID (0)											
٥	$C_1 = \{x_1\}$	$C_2 = \{x_2\}$	$C_3 = \{x_3\}$	$C_4 = \{x_4\}$	$C_5 = \{x_5\}$	$C_6 = \{x_6\}$						
$C_1 = \{x_1\}$	0 .	ψ	d)	ų.	ø.	e e						
$C_2 = \{x_2\}$	1.	0	ø	ę	ø							
$C_3 = \{x_3\}$	4.	5 .	0 .	e	a.							
$C_4 = \{x_4\}$	9 .	4 .	13 -	0	ø	ي پ						
$C_5 = \{x_5\}$	18 .	13 .	10 -	9 .	0							
$C_6 = \{x_6\}$	25 .	18 .	17 .	10 .	1 .	0						

(3) 中间距离

+	+ (0) * (0) * (1											
	v	$C_1 = \{x_1\}$	$C_2 = \{x_2\}$	$C_3 = \{x_3\}$	$C_4 = \{x_4\}$	$C_5 = \{x_5\}$	$C_6 = \{x_6\}$					
	$C_1 = \{x_1\} \ .$	0 .	ų.	ψ	ų.	ø	e e					
	$C_2 = \{x_2\}$	1 .	0	ø	₽	¢1	e e					
	$C_3 = \{x_3\} A$	4.	5 .	0 .	ę.	÷						
	$C_4 = \{x_4\}$	9 .	4 .	13 -	0 .	ų.	ي پ					
	$C_5 = \{x_5\}$	18.	13 -	10 -	9 .	0 .	o o					
	$C_6 = \{x_6\}$	25 .	18 -	17 .	10 .	1 .	0					

基于划分的算法

K-Means

K-Medoids

利用K-平均值算法对 {2, 4, 10, 12, 3, 20, 30, 11, 25} 进行聚类,K=2, 初始聚类中心为 2和4。

利用K-中心点算法对{A,B,C,D,E}进行聚类,各点之间距离如图所示,K=2,初始聚类中心为A和B。请计算第一轮尝试替换聚类中心产生的代价。

样本点	A	В	С	D	E
A	0	1	2	2	3
В	1	0	2	4	3
C	2	2	0	1	5
D	D 2		1	0	3
E	3	3	5	3	0

基于层次的算法

AGNES算法——自底向上

DIANA算法——自顶向下

例子:有如下表所示的数据集,使用DIANA算法对该数据集进行分裂层次聚类。

序号	属性1	属性 2
1	1	1
2	1	2
3	2	1
4	2	2
5	3	4
6	3	5
7	4	4
8	4	5

对于所给的数据进行DIANA算法,(设n=8,用户输入的终止条件为2个类),初始类 $\{1,2,3,4,5,6,7,8\}$ 。

0							
1	0						
1	1.4	0					
1.4	1	1	0				
3.6	2.8	3.2	2.2	0			
4.5	3.6	4.1	3.2	1	0		
4.2	3.6	3.6	2.8	1	1.4	0	
_ 5	4.2	4.5	3.6	1.4	1	1	0

序号1的平均距离 (就是1距离其它各个点的距离长度之和除以7) s1=(1+1+1.1414+3.6+4.47+4.24+5)/7=2.96; 序列2的平均距离 s2=(1+1.414+1+2.828+3.6+3.6+4.24)/7=2.526; 序列3的平均距离 s3=(1+1.414+1+3.16+4.12+3.6+4.27)/7=2.68; 序列4的平均距离 s4=(1.414+1+1+2.24+3.16+2.828+3.6)/7=2.18 序列5的平均距离 s5=2.18; 序列6的平均距离 s6=2.68; 序列7的平均距离 s7=2.526; 序列8的平均距离 s8=2.96;

0						0							0							
1	0					1	0						1	0						
1	1.4	0				1	1.4	0					1	1.4	0					
1.4	1	1	0			1.4	1	1	0				1.4	1	1	0				
3.6	2.8	3.2	2.2	0		3.6	2.8	3.2	2.2	0			3.6	2.8	3.2	2.2	0			
4.5	3.6	4.1	3.2	1	0	4.5	3.6	4.1	3.2	1	0		4.5	3.6	4.1	3.2	1	0		
4.2	3.6	3.6	2.8	1	1.4	4.2	3.6	3.6	2.8	1	1.4	0	4.2	3.6	3.6	2.8	1	1.4	0	
5	4.2	4.5	3.6	1.4	1	5	4.2	4.5	3.6	1.4	1	1	5	4.2	4.5	3.6	1.4	1	1	0

二、分类分析

概述

判别分析

距离判别法

Fisher判别法

贝叶斯判别法

支持向量机SVM

逻辑回归

决策树与随机森林

K近邻

朴素贝叶斯

分类分析

基于机器学习的 分类方法

判别分析:

距离判别法——马氏距离

Fisher判别法

贝叶斯判别法

协方差矩阵不相等的距离判别法:

例子: 已知有两个类 G_1 和 G_2 ,分别为设备A、B生产的产品。设备A生产的产品平均耐磨度 μ_1 =80,精度 σ_1^2 =0.25;设备B的平均耐磨度 μ_2 =75,精度 σ_2^2 =4。现有一耐磨度为78的产品x,试判断它为哪一台设备生产的。

协方差矩阵相等的距离判别法:

先明确以下概念/公式:

- (1) 样本离差阵
- (2) 样本合并组内离差阵
- (3) 合并样本协差阵
- (4) 判别函数

例1: 记二维正态总体 $N_i(\mu^{(i)}, \Sigma)$ 为 $G_i(i=1, 2)$ (两总体协差阵相同),已知来自 $G_i(i=1, 2)$ 的样本数据为

$$X^{(1)} = \begin{pmatrix} 2 & 12 \\ 4 & 10 \\ 3 & 8 \\ 3 & 10 \end{pmatrix}, X^{(2)} = \begin{pmatrix} 5 & 7 \\ 3 & 9 \\ 4 & 5 \end{pmatrix} \qquad \begin{pmatrix} k = 2, & m = 2 \\ n_1 = 4, & n_2 = 3 \end{pmatrix}$$

- (1) 试求两总体的样本离差阵 S_1 , S_2 和合并样本协差阵 S_2 。
- (2) 今有样本 x_0 =(2,8)', 试问按马氏距离准则样本 x_0 应判归哪一类。

机器学习方法的分类分析:

决策树

KNN

Naïve Bayes

决策树

先明确以下概念/公式:

- (1) 信息熵
- (2) 信息增益
- (3) 增益率

利用ID3算法,根据以下数据构建决策树。

表 4-1	高尔夫洛	壬分五	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1X 4-1		D 49J 17C	W XX

	表 4-1 高尔夫活动决策表									
编号。	天气。	温度	湿度	风速。	活动。					
1 -	晴。	炎热。	高。	弱。	取消。					
2 -	晴。	炎热。	高。	强。	取消					
3 .	阴。	炎热。	高。	弱.	进行					
4 .	雨。	适中.	高。	弱。	进行。					
5 .	雨。	寒冷。	正常。	55 -	进行。					
6 .	雨	寒冷。	正常。	强。	取消。					
7 -	阴。	寒冷。	正常。	强。	进行。					
8 .	晴。	适中.	高。	弱。	取消。					
9 .	晴。	寒冷。	正常。	弱。	进行。					
10 .	雨	适中。	正常。	弱。	进行。					
11 -	晴。	适中。	正常。	强。	进行。					
12 -	阴。	适中.	高。	强。	进行。					
13 -	阴。	炎热。	正常。	弱 .	进行。					
14 -	雨。	适中,	高。	强。	取消。					

可能用到的数据:

$$\frac{2}{5}log\frac{2}{5} + \frac{3}{5}log\frac{3}{5} = -0.971$$

$$\frac{2}{3}log\frac{2}{3} + \frac{1}{3}log\frac{1}{2} = -0.918$$

$$\frac{1}{4}log\frac{1}{2} + \frac{1}{4}log\frac{1}{2} = -0.940$$

$$\frac{1}{4}log\frac{1}{2} + \frac{3}{4}log\frac{2}{4} = -0.811$$

$$\frac{3}{7}log\frac{3}{7} + \frac{4}{7}log\frac{4}{7} = -0.985$$

$$\frac{9}{7}log\frac{9}{2} + \frac{4}{7}log\frac{1}{2} = -0.592$$

HARBIN INS

表 4-1 高尔夫活动决策表。

			4.4 > 4.11 >4 > 4	,,,,,	
编号。	天气。	温度。	湿度	风速。	活动。
1 -	晴。	炎热。	高.	弱	取消。
2 -	晴。	炎热	高 .	强。	取消
3 .	阴。	炎热	高。	35 -	进行。
4 .	লৈ	适中。	高。	弱。	进行。
5 .	ह्य	寒冷	正常。	弱。	进行。
6 .	rej .	寒冷。	正常。	强 -	取消
7 -	阴。	寒冷。	正常。	强。	进行。
8 .	晴。	适中.	高。	弱。	取消
9 .	晴。	寒冷。	正常。	弱。	进行。
10 .	हों .	适中.	正常。	弱。	进行。
11 -	晴。	适中.	正常。	强。	进行。
12 -	阴 -	适中.	高。	强 -	进行
13 .	阴。	炎热。	正常。	弱	进行。
14 .	F 1	适中.	高。	强。	取消

例1: 给出如表所示的训练样本,目的是判定一个人是否会购买电脑。这个人的属性为X=(年龄<=30,收入=中等,学生=是,信用率=一般)。使用朴素贝叶斯算法。

编号	年龄	收入	学生	信用等级	类别: 购买电脑
1	<=30	高	否	一般	不会购买
2	<=30	高	否	良好	不会购买
3	3140	高	否	一般	会购买
4	>40	中等	否	一般	会购买
5	>40	低	是	一般	会购买
6	>40	低	是	良好	不会购买
7	3140	低	是	良好	会购买
8	<=30	中等	否	一般	不会购买
9	<=30	低	是	一般	会购买
10	>40	中等	是	一般	会购买
11	<=30	中等	是	良好	会购买
12	3140	中等	否	良好	会购买
13	3140	高	是	一般	会购买
14	>40	中等	否	良好	不会购买

GBDT树:

GBDT学习例子:训练集:(A,14岁),(B,16岁),(C,24岁),(D,26岁)。训练数据的均值为:20岁;决策树的个数为:2棵。每个样本的特征有两个:购买金额是否小于1K,经常去百度提问还是回答?

其中:

A:14岁,购物金额<=1K,经常去百度提问;

B:16岁,购物金额<=1K,经常去百度回答;

C:24岁,购物金额>1K,经常去百度提问;

D:26岁,购物金额>1K,经常去百度回答

关联规则分析及Apriori算法

先明确以下概念/公式:

- (1) 事务、项、K-项集
- (2) 支持度
- (3) 频繁项集
- (4) 置信度
- (5) 提升度
- (6) 兴趣因子

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

根据下表数据(项按字典序存储),利用Apriori算法进行关联规则分析。支持度阈值为2,置信度阈值为70%,求出频繁相集,最高频繁相集产生的关联规则。

- Control of the Cont			
TID	商品ID的列表		
T100	I1,I2,I5		
T200	I2 , I4		
T300	12,13		
T400	I1,I2,I4		
T500	I1,I3		
T600	12,13		
T700	I1,I3		
T800	I1,I2,I3,I5		
T900	I1,I2,I3		

<u> </u>			
TID	商品ID的列表		
T100	I1,I2,I5		
T200	I2 , I4		
T300	12,13		
T400	I1,I2,I4		
T500	I1,I3		
T600	I2 , I3		
T700	I1,I3		
T800	I1,I2,I3,I5		
T900	I1,I2,I3		

- > 感谢杨东华老师一学期的辛苦付出
- > 感谢同学们的信任与支持

杨明达 2023年12月15日