

JYOTHY INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS

Subject: Calculus and Linear Algebra (18MAT11) (Common to all Sections)

ASSIGNMENT-I (Module-1, 2, 5)

1. Find the angle between the tangent and the radius vector for the following curves:

a)
$$r^2 \cos 2\theta = b^2$$
 and b) $r = a(1 + \sin \theta)$ at $\theta = \pi/2$

2. Show that the curves $r = a(1 + cos\theta)$, and $r = b(1 - cos\theta)$ intersect at right angle.

3. Prove with usual notations
$$\frac{1}{p^2} = u^2 + \left(\frac{du}{d\theta}\right)^2$$
 where $u = \frac{1}{r}$.

4. Find the pedal equation of the following curves:

a)
$$r^m = a^m (Cos m\theta + Sin m\theta)$$

b)
$$\frac{2a}{r} = 1 - \cos\theta$$

5. Find the radius of curvature for the curve $x = a \log (\sec t + \tan t)$, $y = a \sec t$

6. Find the radius of curvature of the curve $x^3+y^3=3axy$ at the point (3a/2, 3a/2)

7. Show that the radius of curvature at any point θ on the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ $4a \cos (\theta/2)$

8. If ρ be the radius of curvature at any point P(x, y) on the parabola $y^2 = 4ax$, show that ρ^2 varies as $(SP)^3$ where S is the focus of the parabola.

9. Obtain the Taylor's series expansion of log(cos x) about the point $x = \pi/3$ up to the fourth degree term.

1

10. a. Prove that $e^{x \cos x} = 1 + x + \frac{x^2}{2!} - 2\frac{x^3}{3!} - 11\frac{x^4}{4!} + \dots$

b. Expand $\frac{e^x}{1+e^x}$ using Maclaurin's series upto and including 3rd degree terms.

11. Test for consistency and solve:

$$x + y + z = 6$$
, $x - y + 2z = 5$, $3x + y + z = 8$

- 12. Find the rank of the following matrix $A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$
- 13. Solve by Gauss Elimination method

$$2x + 5y + 7z = 52$$
, $2x + y - z = 0$, $x + y + z = 9$

14. Solve by Gauss Seidel Method performing 4 iterations

$$10x + y + z = 12$$
, $x + 10y + z = 12$, $x + y + 10z = 12$

15. Find the largest Eigen valve and the corresponding Eigen vector of the following matrices using

power method compute 8 iterations
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$