Actividad 3: RNN y sus aplicaciones en las series temporales

En esta actividad se va a aplicar el conocimiento adquirido sobre las RNN para entrenar modelos que sean capaces de predecir el comportamiento de las series temporales. Para ello, se usará un dataset de temperaturas para mediante la aplicación de RNN, predecir los valores futuros que tendrá la serie temporal que se tiene. Este trabajo se suele hacer mediante modelos ARIMA, pero en esta práctica se verá cómo el modelado mediante RNN es una opción muy buena en estos casos de series temporales.

1. Descargar el dataset y almacenarlo

En primer lugar hay que importar tensorflow.

```
In [ ]: import tensorflow as tf
print(tf.__version__)
```

2.16.1

El siguiente paso es importar las bibliotecas numpy y matplotlib. Además, se define el método **plot_series** que se utilizará para hacer las gráficas de las series temporales.

```
import numpy as np
import matplotlib.pyplot as plt
def plot_series(time, series, format="-", start=0, end=None):
    plt.plot(time[start:end], series[start:end], format)
    plt.xlabel("Time")
    plt.ylabel("Value")
    plt.grid(True)
```

A continuación se descarga el dataset de las temperaturas mínimas diarias.

```
In []: import requests
    import os

# URL del dataset
    url = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-tem

# Obtenemos el directorio de trabajo actual para guardar el archivo ahí
    current_dir = os.getcwd()
    file_path = os.path.join(current_dir, "daily-min-temperatures.csv")

# Hacemos la solicitud HTTP para obtener el contenido del archivo
    response = requests.get(url)

# Guardamos el contenido en un archivo en el directorio de trabajo actual
    with open(file_path, 'wb') as file:
        file.write(response.content)

print(f"Archivo descargado correctamente en {file_path}")
```

Archivo descargado correctamente en c:\Users\migue\OneDrive\Documentos\Master_UNI R\Especialista Universitario en Big Data e IA\Sistemas Cognitivos Artificiales\Actividades\Act3\daily-min-temperatures.csv

En este paso, se utilizará la biblioteca csv de Python para guardar y poder leer el dataset de temperaturas mínimas diarias que ha sido descargado en el paso anterior. Además, se construye la variable **series** que será donde se guarde la serie temporal. Por último, siempre que se trate con una serie temporal, es una buena práctica hacer un gráfico para poder verla y tener una idea de cómo es.

```
In []: import csv
    time_step = []
    temps = []

with open('daily-min-temperatures.csv') as csvfile:
        reader = csv.reader(csvfile, delimiter=',')
        next(reader)
        step=0
        for row in reader:
            temps.append(float(row[1]))
            time_step.append(step)
            step = step + 1

series = np.array(temps)
        time = np.array(time_step)
        plt.figure(figsize=(10, 6))
        plot_series(time, series)
```


2. Creación de las variables necesarias para el diseño de la red neuronal

Una técnica muy común cuando se trata con series temporales es utilizar una ventana temporal que se vaya desplazando sobre la serie temporal para reducir su análisis a lo

que ocurre en ese ventana de forma local, para a continuación realizar el modelado global.

Ejercicio 1 (0.4 puntos): Crear las variables de entrenamiento y validación y hacer la partición de las mismas. Las variables que hay que crear son:

- time_train
- x train
- time_valid
- x_valid

En primer lugar, dividimos la serie temporal en conjuntos de entrenamiento y validación utilizando el índice 'split_time'.

Después, definimos las funciones que generan lotes de datos con una ventana deslizante que avanza sobre la serie temporal para el entrenamiento.

```
In []: ## variables para la técnica de la ventana temporal
    split_time = 2500 # Índice para dividir datos en entrenamiento y test
    window_size = 30 # Cantidad de pasos temporales en cada ventana
    batch_size = 32 # Tamaño de cada lote de datos
    shuffle_buffer_size = 1000 # Tamaño del buffer para mezclar datos

## Split del dataset en entrenamiento y validación
    time_train = time[:split_time] # Tiempos de entrenamiento
    x_train = series[:split_time] # Datos de entrenamiento
    time_valid = time[split_time:] # Tiempos de validación
    x_valid = series[split_time:] # Datos de validación
```

- 2. Creación del método **windowed_dataset** para poder utilizarlo en el modelo. Las entradas por parámetros del método son:
- series
- window_size
- batch_size
- shuffle_buffer

El resto de elementos que se usan para construir la función ventana temporal para explorar el dataset, son métodos de Python para tratar con series temporales.

```
In []: def windowed_dataset(series, window_size, batch_size, shuffle_buffer):
    """
    Prepara un dataset TensorFlow usando una ventana deslizante que agrupa los d
    formatos consecutivos para el entrenamiento de modelos de series temporales.

Args:
    series (array-like): Datos de la serie temporal.
    window_size (int): Cantidad de pasos temporales por ventana.
    batch_size (int): Tamaño de lote para el entrenamiento.
    shuffle_buffer (int): Tamaño del buffer de mezcla para aleatorizar los eleme

Returns:
    tf.data.Dataset: Dataset configurado para el entrenamiento del modelo.
```

```
dataset = tf.data.Dataset.from_tensor_slices(series)
    dataset = dataset.window(window_size+1, shift=1, drop_remainder=True)
    dataset = dataset.flat_map(lambda window: window.batch(window_size+1))
    dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], w
    dataset = dataset.batch(batch_size).prefetch(1)
    return dataset
# Creamos los datasets de ventana temporal para entrenamiento y validación
train_dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffe
valid_set = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_si
# Función para visualizar una parte de los datos
def plot_series(time, series, format="-", start=0, end=None):
    Grafica los datos de la serie temporal.
   Args:
   time (array-like): Vector de tiempos asociados a los datos de la serie.
   series (array-like): Datos de la serie temporal a graficar.
   format (str): Estilo del trazo de la línea en la gráfica.
   start (int): Índice inicial de los datos a graficar.
   end (int): Índice final de los datos a graficar.
   plt.figure(figsize=(10, 6))
   plt.plot(time[start:end], series[start:end], format)
   plt.xlabel("Time")
   plt.ylabel("Value")
   plt.grid(True)
plt.figure(figsize=(10, 6))
plot_series(time_train, x_train)
plt.title('Training Data')
plt.figure(figsize=(10, 6))
plot series(time valid, x valid)
plt.title('Validation Data')
plt.show()
```

<Figure size 1000x600 with 0 Axes>

<Figure size 1000x600 with 0 Axes>

3. Diseño de la función para predecir los siguientes valores de la serie temporal usando la técnica de la ventana temporal

```
In [ ]: def windowed_dataset(series, window_size, batch_size, shuffle_buffer):
    series = tf.expand_dims(series, axis=-1)
    ds = tf.data.Dataset.from_tensor_slices(series)
    ds = ds.window(window_size + 1, shift=1, drop_remainder=True)
    ds = ds.flat_map(lambda w: w.batch(window_size + 1))
```

```
ds = ds.shuffle(shuffle_buffer)
ds = ds.map(lambda w: (w[:-1], w[1:]))
return ds.batch(batch_size).prefetch(1)
```

A continuación, y usando como modelo el método **windowed_dataset** se procederá a adaptar el método **model_forecast** que se usará para predecir los siguientes valores de la serie temporal utilizando la técnica de la ventana temporal.

Ejercicio 2 (1.6 puntos): completar el método model_forecast creando los elementos necesarios dentro del método:

- Crear la variable ds y darle el valor resultante del método from_tensor_slices pasando por parametro series (0.4 puntos)
- 2. Actualizar la ventana (**window**) de la variable **ds** (nota: en este caso el tamaño es el mismo de la ventana, no es necesario que sea window_size+1) **(0.4 puntos)**
- 3. Crear el **flat_map** de la variable, teniendo en cuenta que el tamaño es **window_size** (0.4 puntos)
- 4. Añadir la siguiente linea de código: ds = ds.batch(32).prefetch(1)
- 5. Crear la variable **forecast** en la que se usará el método **predict (0.4 puntos)**
- 6. Por último, se devolverá la variable forecast.

```
In [ ]: def model_forecast(model, series, window_size):
            Esta función prepara un conjunto de datos en una forma que un modelo de pred
            para realizar predicciones basadas en la técnica de ventana temporal.
            Args:
            model (tf.keras.Model): Modelo entrenado para hacer predicciones.
            series (array-like): Datos de la serie temporal.
            window_size (int): Tamaño de la ventana de datos utilizada para generar cada
            array-like: Predicciones del modelo para la serie temporal proporcionada.
            # 1. Creamos la variable 'ds' y la asignamos el valor de salida del método
            ds = tf.data.Dataset.from_tensor_slices(series)
            # 2. Actualizamos la ventana de la variable 'ds'
            ds = ds.window(window_size, shift=1, drop_remainder=True)
            # 3. Creamos el flat_amp de la variable, teniendo en cuenta que el tamaño es
            ds = ds.flat_map(lambda window: window.batch(window_size))
            # 4. Añadimos la línea de código para preparar el dataset par ael batch y la
            ds = ds.batch(32).prefetch(1)
            # 5. Crear la variable forecast en la que se usará el método predict
            forecast = model.predict(ds)
            # 6. Devolvemos la variable
            return forecast
```

A continuación, se limpia la sesión de keras, y se inicializan las variables necesarias para poder diseñar el modelo de series temporales a entrenar usando RNN.

Añadimos también la definición del valor de 'shuffle_buffer_size' en la configuración de los parámetros para aumentar la efectividad del entrenamiento y la generalización del modelo.

```
In [ ]: tf.keras.backend.clear_session()
    tf.random.set_seed(51)
    np.random.seed(51)
    window_size = 64
    batch_size = 256
    shuffle_buffer_size = 1000
```

4. Diseño de la red neuronal

Ejercicio 3.1 (0.5 puntos): Hay que crear la variable **train_set** dandole el valor que se reciba del método **windowed_datset**, los parametros que debe recibir este método son: **x_train, window_size, batch_size, shuffle_buffer_size**

```
In [ ]: train_set = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_si
```

Ejercicio 3.2 (4 puntos): Se debe construir la red neuronal de aprendizaje profunda basada para modelar la serie temporal de las temperaturas minimas diarias. Esta red neuronal debera contar con las siguientes capas ocultas:

- 1. Una capa de convolución en una dimensión que tenga 32 filtros, una tamaño del kernel de 5, un stride de 1, padding "causal", la función de activación debe ser relu y el input shape debe ser [None, 1]
- 2. Una capa LSTM con 64 neuronas y retorno de secuencias
- 3. Una capa LSTM con 64 neuronas y retorno de secuencias
- 4. Una capa densa con 30 neuronas
- 5. Una capa densa con 10 neuronas
- 6. Una capa densa con 1 neuronas
- 7. Por último, se añade la siguiente capa: tf.keras.layers.Lambda(lambda x: x * 400)

```
In [ ]: """Esta red combina convolución en una dimensión y capas LSTM, seguidas de varia
        model = tf.keras.models.Sequential([
            # Capa de convolución en 1D
            tf.keras.layers.Conv1D(filters=32, kernel_size=5,
                                    strides=1, padding="causal",
                                    activation="relu",
                                    input_shape=[None, 1]),
            # Primera capa LSTM
            tf.keras.layers.LSTM(64, return_sequences=True),
            # Segunda capa LSTM
            tf.keras.layers.LSTM(64, return_sequences=True),
            # Capa densa con 30 neuronas
            tf.keras.layers.Dense(30, activation="relu"),
            # Capa densa con 10 neuronas
            tf.keras.layers.Dense(10, activation="relu"),
            # Capa densa con 1 neurona
            tf.keras.layers.Dense(1),
            # Capa Lambda para escalar la salida
```

```
tf.keras.layers.Lambda(lambda x: x * 400)
])

# Compilación del modelo
model.compile(loss="mse", optimizer=tf.keras.optimizers.Adam(), metrics=["mae"])

# Resumen del modelo
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv1d (Conv1D)	(None, None, 32)	192
lstm (LSTM)	(None, None, 64)	24,832
lstm_1 (LSTM)	(None, None, 64)	33,024
dense (Dense)	(None, None, 30)	1,950
dense_1 (Dense)	(None, None, 10)	310
dense_2 (Dense)	(None, None, 1)	11
lambda (Lambda)	(None, None, 1)	0

Total params: 60,319 (235.62 KB)

Trainable params: 60,319 (235.62 KB)

Non-trainable params: 0 (0.00 B)

Explicación de la configuración del modelo:

Capa Conv1D

Esta capa usa 32 filtros con un tamaño de kernel de 5.

Capas LSTM

Se utilizan dos capas LSTM con 64 unidades cada una. 'return_sequences=True' en ambas capas permite que la salida de cada tiempo sea pasada a la siguiente capa, algo importante cuando se apilan capas LSTM.

Capas Densas

Las capas densas son parte de la red "feed-forward" que sigue a las LSTM. Aquí, usamos dos con 30 y 10 neuronas respectivamente, ambas con activación ReLU, seguido de una capa densa con una sola neurona sin función de activación para la predicción final.

Capa Lambda

Esta capa final multiplica la salida por 400.

5. Entrenamiento de la red neuronal

Ejercicio 4 (0.5 puntos): Se va a diseñar un método callbacks para el learning rate que será guardado en la variable **Ir_schedule**, este método deberá usar el método **LearningRateScheduler** de Python y será una función **lambda** que le de el valor a epoch de 1e-8 * 10**(epoch / 20) **texto en negrita**

Ejercicio 5 (1.5 puntos): Compilar la red neuronal con los siguientes parametros:

- loss: método Huber de keras
- El optimizador debe ser el SGD con learning rate 1e-8 y momentum 0.9
- La métrica a visualizar es el error absoluto medio (medium absolute error en ingles)

```
In [ ]: # Configuramos el modelo
        model = tf.keras.models.Sequential([
            tf.keras.layers.Conv1D(filters=32, kernel_size=5, strides=1, padding="causal
                                    activation="relu", input_shape=[None, 1]),
            tf.keras.layers.LSTM(64, return_sequences=True),
            tf.keras.layers.LSTM(64, return_sequences=True),
            tf.keras.layers.Dense(30, activation="relu"), # Corregido aquí
            tf.keras.layers.Dense(10, activation="relu"),
            tf.keras.layers.Dense(1),
            tf.keras.layers.Lambda(lambda x: x * 400)
        ])
        # Compilamos
        model.compile(
            loss=tf.keras.losses.Huber(), # Función de pérdida de Huber
            optimizer=tf.keras.optimizers.SGD(learning_rate=1e-8, momentum=0.9), # Opti
            metrics=["mae"] # Métrica de error absoluto medio
        # Resumen del modelo para confirmar la configuración
        model.summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv1d_1 (Conv1D)	(None, None, 32)	192
lstm_2 (LSTM)	(None, None, 64)	24,832
lstm_3 (LSTM)	(None, None, 64)	33,024
dense_3 (Dense)	(None, None, 30)	1,950
dense_4 (Dense)	(None, None, 10)	310
dense_5 (Dense)	(None, None, 1)	11
lambda_1 (Lambda)	(None, None, 1)	0

Total params: 60,319 (235.62 KB)

Trainable params: 60,319 (235.62 KB)

Non-trainable params: 0 (0.00 B)

Para terminar se entrena el modelo previamente diseñado y compilado en los pasos anteriores.

```
In [ ]: history = model.fit(train_set, epochs=100, callbacks=[lr_schedule])
```

```
Epoch 1/100
10/10 -
                          - 4s 89ms/step - loss: 39.9294 - mae: 40.4285 - learning
_rate: 1.0000e-08
Epoch 2/100
10/10 -
                          - 1s 88ms/step - loss: 37.7611 - mae: 38.2601 - learning
rate: 1.1220e-08
Epoch 3/100
10/10
                          - 1s 82ms/step - loss: 34.2635 - mae: 34.7625 - learning
_rate: 1.2589e-08
Epoch 4/100
10/10 -
                          - 1s 90ms/step - loss: 29.9043 - mae: 30.4033 - learning
rate: 1.4125e-08
Epoch 5/100
10/10 -
                          – 1s 87ms/step - loss: 24.8697 - mae: 25.3687 - learning
_rate: 1.5849e-08
Epoch 6/100
10/10 ·
                          - 1s 83ms/step - loss: 19.5011 - mae: 19.9997 - learning
_rate: 1.7783e-08
Epoch 7/100
10/10 -
                          - 1s 83ms/step - loss: 14.3069 - mae: 14.8008 - learning
_rate: 1.9953e-08
Epoch 8/100
10/10 -
                          - 1s 81ms/step - loss: 11.1794 - mae: 11.6710 - learning
_rate: 2.2387e-08
Epoch 9/100
10/10 -
                          - 1s 83ms/step - loss: 10.0975 - mae: 10.5911 - learning
rate: 2.5119e-08
Epoch 10/100
10/10 -
                          - 1s 83ms/step - loss: 9.5837 - mae: 10.0767 - learning_
rate: 2.8184e-08
Epoch 11/100
                          - 1s 83ms/step - loss: 9.2045 - mae: 9.6968 - learning_r
10/10
ate: 3.1623e-08
Epoch 12/100
                          - 1s 81ms/step - loss: 8.8025 - mae: 9.2950 - learning_r
10/10 -
ate: 3.5481e-08
Epoch 13/100
10/10 -
                          - 1s 87ms/step - loss: 8.4456 - mae: 8.9376 - learning_r
ate: 3.9811e-08
Epoch 14/100
                          - 1s 89ms/step - loss: 8.1029 - mae: 8.5943 - learning r
10/10 -
ate: 4.4668e-08
Epoch 15/100
10/10 -
                          - 1s 84ms/step - loss: 7.6820 - mae: 8.1726 - learning_r
ate: 5.0119e-08
Epoch 16/100
10/10 -
                          - 1s 78ms/step - loss: 7.2288 - mae: 7.7187 - learning_r
ate: 5.6234e-08
Epoch 17/100
10/10 -
                          - 1s 79ms/step - loss: 6.8206 - mae: 7.3099 - learning_r
ate: 6.3096e-08
Epoch 18/100
10/10 -
                          - 1s 82ms/step - loss: 6.3297 - mae: 6.8177 - learning r
ate: 7.0795e-08
Epoch 19/100
10/10 -
                          - 1s 81ms/step - loss: 5.7399 - mae: 6.2262 - learning_r
ate: 7.9433e-08
Epoch 20/100
10/10 -
                          - 1s 76ms/step - loss: 4.9741 - mae: 5.4568 - learning_r
ate: 8.9125e-08
```

```
Epoch 21/100
10/10 -
                          - 1s 78ms/step - loss: 4.2253 - mae: 4.7038 - learning_r
ate: 1.0000e-07
Epoch 22/100
10/10 -
                          - 1s 84ms/step - loss: 3.7423 - mae: 4.2140 - learning_r
ate: 1.1220e-07
Epoch 23/100
                          - 1s 82ms/step - loss: 3.4789 - mae: 3.9478 - learning_r
10/10
ate: 1.2589e-07
Epoch 24/100
                          - 1s 81ms/step - loss: 3.3693 - mae: 3.8386 - learning_r
10/10 -
ate: 1.4125e-07
Epoch 25/100
10/10 -
                          - 1s 76ms/step - loss: 3.2852 - mae: 3.7539 - learning_r
ate: 1.5849e-07
Epoch 26/100
10/10 ·
                          - 1s 81ms/step - loss: 3.2229 - mae: 3.6915 - learning_r
ate: 1.7783e-07
Epoch 27/100
10/10 -
                          - 1s 84ms/step - loss: 3.1560 - mae: 3.6245 - learning_r
ate: 1.9953e-07
Epoch 28/100
10/10 -
                         - 1s 82ms/step - loss: 3.0762 - mae: 3.5445 - learning_r
ate: 2.2387e-07
Epoch 29/100
10/10 -
                          - 1s 77ms/step - loss: 3.0137 - mae: 3.4811 - learning_r
ate: 2.5119e-07
Epoch 30/100
10/10 -
                          - 1s 84ms/step - loss: 2.9452 - mae: 3.4126 - learning_r
ate: 2.8184e-07
Epoch 31/100
10/10
                          - 1s 89ms/step - loss: 2.8888 - mae: 3.3558 - learning_r
ate: 3.1623e-07
Epoch 32/100
10/10 -
                          - 1s 79ms/step - loss: 2.8185 - mae: 3.2851 - learning r
ate: 3.5481e-07
Epoch 33/100
10/10 -
                          - 1s 77ms/step - loss: 2.7479 - mae: 3.2145 - learning_r
ate: 3.9811e-07
Epoch 34/100
                          - 1s 78ms/step - loss: 2.6805 - mae: 3.1466 - learning r
10/10 -
ate: 4.4668e-07
Epoch 35/100
10/10 -
                          - 1s 80ms/step - loss: 2.6174 - mae: 3.0833 - learning_r
ate: 5.0119e-07
Epoch 36/100
10/10 -
                          - 1s 81ms/step - loss: 2.5663 - mae: 3.0306 - learning_r
ate: 5.6234e-07
Epoch 37/100
10/10 -
                          - 1s 82ms/step - loss: 2.5062 - mae: 2.9699 - learning_r
ate: 6.3096e-07
Epoch 38/100
10/10 -
                          - 1s 79ms/step - loss: 2.4638 - mae: 2.9267 - learning r
ate: 7.0795e-07
Epoch 39/100
10/10 -
                          - 1s 79ms/step - loss: 2.4025 - mae: 2.8645 - learning_r
ate: 7.9433e-07
Epoch 40/100
10/10 -
                          - 1s 83ms/step - loss: 2.3531 - mae: 2.8141 - learning_r
ate: 8.9125e-07
```

```
Epoch 41/100
10/10 -
                          - 1s 86ms/step - loss: 2.3230 - mae: 2.7839 - learning_r
ate: 1.0000e-06
Epoch 42/100
10/10 -
                         - 1s 81ms/step - loss: 2.2806 - mae: 2.7411 - learning_r
ate: 1.1220e-06
Epoch 43/100
                          - 1s 80ms/step - loss: 2.2572 - mae: 2.7171 - learning_r
10/10 -
ate: 1.2589e-06
Epoch 44/100
                          - 1s 79ms/step - loss: 2.2261 - mae: 2.6858 - learning_r
10/10 -
ate: 1.4125e-06
Epoch 45/100
10/10 -
                          - 1s 83ms/step - loss: 2.2069 - mae: 2.6654 - learning_r
ate: 1.5849e-06
Epoch 46/100
10/10
                          - 1s 81ms/step - loss: 2.1651 - mae: 2.6229 - learning_r
ate: 1.7783e-06
Epoch 47/100
10/10 -
                          - 1s 83ms/step - loss: 2.1422 - mae: 2.6001 - learning_r
ate: 1.9953e-06
Epoch 48/100
10/10 -
                         - 1s 85ms/step - loss: 2.1269 - mae: 2.5846 - learning_r
ate: 2.2387e-06
Epoch 49/100
10/10 -
                          - 1s 82ms/step - loss: 2.1287 - mae: 2.5865 - learning_r
ate: 2.5119e-06
Epoch 50/100
10/10 -
                          - 1s 79ms/step - loss: 2.1045 - mae: 2.5620 - learning_r
ate: 2.8184e-06
Epoch 51/100
                          - 1s 80ms/step - loss: 2.0613 - mae: 2.5186 - learning_r
10/10
ate: 3.1623e-06
Epoch 52/100
10/10 -
                          - 1s 77ms/step - loss: 2.0376 - mae: 2.4941 - learning r
ate: 3.5481e-06
Epoch 53/100
10/10 -
                          - 1s 80ms/step - loss: 2.0580 - mae: 2.5152 - learning_r
ate: 3.9811e-06
Epoch 54/100
                          - 1s 81ms/step - loss: 2.0157 - mae: 2.4719 - learning r
10/10 -
ate: 4.4668e-06
Epoch 55/100
10/10 -
                          - 1s 81ms/step - loss: 2.0333 - mae: 2.4904 - learning_r
ate: 5.0119e-06
Epoch 56/100
10/10 -
                         - 1s 83ms/step - loss: 2.0090 - mae: 2.4649 - learning_r
ate: 5.6234e-06
Epoch 57/100
10/10 -
                          - 1s 81ms/step - loss: 1.9967 - mae: 2.4523 - learning_r
ate: 6.3096e-06
Epoch 58/100
10/10 -
                          - 1s 78ms/step - loss: 1.9771 - mae: 2.4321 - learning r
ate: 7.0795e-06
Epoch 59/100
10/10 -
                          - 1s 84ms/step - loss: 1.9844 - mae: 2.4395 - learning_r
ate: 7.9433e-06
Epoch 60/100
10/10 -
                          - 1s 81ms/step - loss: 2.3245 - mae: 2.7877 - learning_r
ate: 8.9125e-06
```

```
Epoch 61/100
10/10 -
                          - 1s 81ms/step - loss: 2.1920 - mae: 2.6521 - learning_r
ate: 1.0000e-05
Epoch 62/100
10/10 -
                         - 1s 76ms/step - loss: 2.4967 - mae: 2.9620 - learning_r
ate: 1.1220e-05
Epoch 63/100
10/10
                          - 1s 82ms/step - loss: 2.3114 - mae: 2.7731 - learning_r
ate: 1.2589e-05
Epoch 64/100
10/10 -
                          - 1s 82ms/step - loss: 2.8535 - mae: 3.3217 - learning_r
ate: 1.4125e-05
Epoch 65/100
10/10 -
                          - 1s 83ms/step - loss: 2.6423 - mae: 3.1099 - learning_r
ate: 1.5849e-05
Epoch 66/100
10/10 ·
                          - 1s 75ms/step - loss: 2.4926 - mae: 2.9562 - learning_r
ate: 1.7783e-05
Epoch 67/100
10/10 -
                          - 1s 77ms/step - loss: 3.1036 - mae: 3.5783 - learning_r
ate: 1.9953e-05
Epoch 68/100
10/10 -
                         - 1s 79ms/step - loss: 3.1282 - mae: 3.6025 - learning_r
ate: 2.2387e-05
Epoch 69/100
10/10 -
                          - 1s 81ms/step - loss: 3.4396 - mae: 3.9183 - learning_r
ate: 2.5119e-05
Epoch 70/100
10/10 -
                          - 1s 80ms/step - loss: 3.4881 - mae: 3.9676 - learning_r
ate: 2.8184e-05
Epoch 71/100
                          - 1s 78ms/step - loss: 3.2570 - mae: 3.7310 - learning_r
10/10
ate: 3.1623e-05
Epoch 72/100
10/10 -
                          - 1s 77ms/step - loss: 3.8629 - mae: 4.3460 - learning r
ate: 3.5481e-05
Epoch 73/100
10/10 -
                          - 1s 80ms/step - loss: 3.7167 - mae: 4.1975 - learning_r
ate: 3.9811e-05
Epoch 74/100
                          - 1s 82ms/step - loss: 3.9282 - mae: 4.4084 - learning r
10/10 -
ate: 4.4668e-05
Epoch 75/100
10/10 -
                          - 1s 82ms/step - loss: 5.0462 - mae: 5.5238 - learning_r
ate: 5.0119e-05
Epoch 76/100
10/10 -
                          - 1s 83ms/step - loss: 5.6113 - mae: 6.0957 - learning_r
ate: 5.6234e-05
Epoch 77/100
10/10 -
                          - 1s 86ms/step - loss: 3.2996 - mae: 3.7728 - learning_r
ate: 6.3096e-05
Epoch 78/100
10/10 -
                          - 1s 82ms/step - loss: 2.6073 - mae: 3.0727 - learning r
ate: 7.0795e-05
Epoch 79/100
10/10 -
                          - 1s 79ms/step - loss: 2.3327 - mae: 2.7939 - learning_r
ate: 7.9433e-05
Epoch 80/100
10/10 -
                          - 1s 81ms/step - loss: 2.2303 - mae: 2.6889 - learning_r
ate: 8.9125e-05
```

```
Epoch 81/100
10/10 -
                          - 1s 86ms/step - loss: 2.7356 - mae: 3.2020 - learning_r
ate: 1.0000e-04
Epoch 82/100
10/10 -
                          - 1s 86ms/step - loss: 3.7281 - mae: 4.2081 - learning_r
ate: 1.1220e-04
Epoch 83/100
                          - 1s 80ms/step - loss: 4.3906 - mae: 4.8751 - learning_r
10/10 -
ate: 1.2589e-04
Epoch 84/100
10/10 -
                          - 1s 78ms/step - loss: 4.8378 - mae: 5.3251 - learning_r
ate: 1.4125e-04
Epoch 85/100
10/10 -
                          - 1s 83ms/step - loss: 5.7163 - mae: 6.2063 - learning_r
ate: 1.5849e-04
Epoch 86/100
10/10 ·
                          - 1s 79ms/step - loss: 7.1655 - mae: 7.6580 - learning_r
ate: 1.7783e-04
Epoch 87/100
10/10 -
                          - 1s 81ms/step - loss: 13.2385 - mae: 13.7257 - learning
_rate: 1.9953e-04
Epoch 88/100
10/10 -
                         - 1s 79ms/step - loss: 37.3979 - mae: 37.8905 - learning
rate: 2.2387e-04
Epoch 89/100
10/10 -
                          - 1s 77ms/step - loss: 44.1793 - mae: 44.6793 - learning
rate: 2.5119e-04
Epoch 90/100
10/10 -
                          - 1s 78ms/step - loss: 39.3084 - mae: 39.8083 - learning
rate: 2.8184e-04
Epoch 91/100
10/10 .
                          - 1s 88ms/step - loss: 64.0156 - mae: 64.5148 - learning
_rate: 3.1623e-04
Epoch 92/100
10/10 -
                          - 1s 79ms/step - loss: 52.3734 - mae: 52.8734 - learning
_rate: 3.5481e-04
Epoch 93/100
10/10 -
                          - 1s 79ms/step - loss: 30.3545 - mae: 30.8470 - learning
_rate: 3.9811e-04
Epoch 94/100
                          - 1s 83ms/step - loss: 36.0649 - mae: 36.5649 - learning
10/10 -
rate: 4.4668e-04
Epoch 95/100
10/10 -
                          - 1s 82ms/step - loss: 42.3138 - mae: 42.8138 - learning
_rate: 5.0119e-04
Epoch 96/100
10/10 -
                          - 1s 80ms/step - loss: 44.1372 - mae: 44.6372 - learning
rate: 5.6234e-04
Epoch 97/100
10/10 -
                          - 1s 74ms/step - loss: 53.5830 - mae: 54.0830 - learning
_rate: 6.3096e-04
Epoch 98/100
10/10 -
                          - 1s 81ms/step - loss: 56.0262 - mae: 56.5262 - learning
rate: 7.0795e-04
Epoch 99/100
10/10 -
                          - 1s 85ms/step - loss: 67.1610 - mae: 67.6610 - learning
_rate: 7.9433e-04
Epoch 100/100
10/10 -
                          - 1s 79ms/step - loss: 71.0739 - mae: 71.5739 - learning
_rate: 8.9125e-04
```

6. Actualización del learning rate según los resultados obtenidos del primer entrenamiento de la red neuronal

Después del entrenamiento de la red neuronal se ve que learning rate resultante es de 1e-5. Se visualizará gráficamente para entender el motivo por el que se ha usado ese valor. En la gráfica se puede ver cómo el learning rate con el que menos loss hay es 1e-5, y por ese motivo, se debe volver a entrenar la red neuronal con dicho learning rate.

```
In [ ]: plt.semilogx(history.history["learning_rate"], history.history["loss"])
   plt.axis([1e-8, 1e-4, 0, 50])
```

```
Out[]: (1e-08, 0.0001, 0.0, 50.0)
```


Se vuelve a inicializar la sesión de entrenamiento y la variable train_set:

```
In [ ]: tf.keras.backend.clear_session()
    tf.random.set_seed(51)
    np.random.seed(51)
```

Ejercicio 6 (0.5 puntos): Para crear el nuevo modelo, reutiliza la red neuronal diseñada en el ejercicio 4, pero esta vez utilizando 60 filtros en la capa de convolución.

```
In []: window_size = 60
batch_size = 100
shuffle_buffer_size = 1000

train_set = windowed_dataset(x_train, window_size=60, batch_size=100, shuffle_bu
```

c:\Anaconda\envs\Sist_Cognitivos_Artificiales\Lib\site-packages\keras\src\layers
\convolutional\base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input
_dim` argument to a layer. When using Sequential models, prefer using an `Input(s
hape)` object as the first layer in the model instead.
 super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Ejercicio 7 (0.5 puntos): Se debe volver a compilar la red neuronal de manera análoga a la del ejercicio 5, pero esta vez utilizar un learning rate obtenido de la función callback.

Model: "sequential"

Layer (type)	Output Shape	Param #
conv1d (Conv1D)	(None, None, 60)	360
lstm (LSTM)	(None, None, 64)	32,000
lstm_1 (LSTM)	(None, None, 64)	33,024
dense (Dense)	(None, None, 30)	1,950
dense_1 (Dense)	(None, None, 10)	310
dense_2 (Dense)	(None, None, 1)	11
lambda (Lambda)	(None, None, 1)	0

Total params: 67,655 (264.28 KB)

Trainable params: 67,655 (264.28 KB)

Non-trainable params: 0 (0.00 B)

25/25		1s	44ms/step	_	loss:	5.2472	_	mae:	5.7349
Epoch	3/150								
	4/450	1 s	45ms/step	-	loss:	4.0819	-	mae:	4.5621
	4/150 	1ς	46ms/sten	_	1055.	3 8240	_	mae.	4 3030
	5/150		тошэ, эсср		1033.	3.02.0		mac.	
		1 s	42ms/step	-	loss:	3.3312	-	mae:	3.8070
	6/150	1.0	10mc/c+on		10551	2 0216		m20:	2 4050
=	7/150	12	401115/Step	-	1055.	3.0210	-	mae.	3.4930
		1 s	49ms/step	-	loss:	2.6062	-	mae:	3.0741
•	8/150	4 -	46 / - +		1	2 4252			2 0007
	9/150	12	46ms/step	-	1022:	2.4255	-	mae:	2.009/
		1 s	48ms/step	-	loss:	1.8539	-	mae:	2.3060
•	10/150	_	50 / /		-	4 =600			0.0404
	11/150	15	52ms/step	-	1055:	1.7693	-	mae:	2.2186
•		1 s	53ms/step	-	loss:	1.7224	-	mae:	2.1708
	12/150	_							
	13/150	15	49ms/step	-	loss:	1./113	-	mae:	2.1588
		1 s	55ms/step	-	loss:	1.6914	-	mae:	2.1382
Epoch	14/150	1.	F2ma /atam		1	1 7004			2 1572
	15/150	12	52ms/step	-	1022:	1.7094	-	mae:	2.15/2
	,	2s	55ms/step	-	loss:	1.6869	-	mae:	2.1336
	16/150	2.	COms/ston		10551	1 (575		maa.	2 1040
	17/150	25	60ms/step	-	1022:	1.05/5	-	mae:	2.1040
25/25		2s	66ms/step	-	loss:	1.6591	-	mae:	2.1060
•	18/150	26	67ms/step	_	1000	1 6/197	_	mae.	2 0961
	19/150	23	071113/3CEP		1033.	1.0437		illac.	2.0501
		2s	66ms/step	-	loss:	1.6285	-	mae:	2.0737
	20/150	25	54ms/sten	_	1055.	1 6508	_	mae.	2 0979
-	21/150		3 m3, 3 ccp		1033.	1.0500		mac.	2.0373
		1 s	55ms/step	-	loss:	1.6186	-	mae:	2.0642
	22/150	1s	49ms/step	_	loss:	1.6095	_	mae:	2.0544
Epoch	23/150		·						
	24/150	1 s	52ms/step	-	loss:	1.6046	-	mae:	2.0493
		1s	50ms/step	_	loss:	1.5996	_	mae:	2.0445
Epoch	25/150								
	26/150	1 s	45ms/step	-	loss:	1.5856	-	mae:	2.0296
	20/130	1 s	46ms/step	-	loss:	1.5930	_	mae:	2.0382
	27/150	_							
	28/150	1s	44ms/step	-	loss:	1.6054	-	mae:	2.0507
		1 s	47ms/step	-	loss:	1.5748	-	mae:	2.0191
	29/150	2-	COm = /=+=		100	1 5707		m =	2 0146
	30/150	25	ooms/step	-	TOSS:	1.5/0/	-	mae:	2.0146
25/25		1 s	52ms/step	-	loss:	1.5789	-	mae:	2.0227
-	31/150	1.	52mc/c+00		1055	1 5670		mac.	2 0110
	32/150	12	53ms/step	-	TO22;	1.30/9	-	mae:	∠.0113
-									

25/25		2s	56ms/step	_	loss:	1.5804	_	mae:	2.0248
	33/150								
	24/450	2s	58ms/step	-	loss:	1.5838	-	mae:	2.0280
	34/150	1ς	51ms/sten	_	loss	1 5614	_	mae.	2 0056
	35/150		32m3, 3 ccp		1033.	1.301		mac.	2.0030
		1 s	50ms/step	-	loss:	1.5644	-	mae:	2.0080
	36/150	1.	F1ms/ston		10001	1 5624		maa.	2 0000
-	37/150	12	51ms/step	-	1055.	1.3624	-	mae.	2.0009
•		1 s	44ms/step	-	loss:	1.5546	-	mae:	1.9987
	38/150	4.	45/-t		1	1 5472			1 0000
	39/150	12	45ms/step	-	1055;	1.54/3	-	mae:	1.9908
		1 s	51ms/step	-	loss:	1.5636	-	mae:	2.0068
	40/150	_	47 ()			4 5450			1 0000
	41/150	15	47ms/step	-	loss:	1.5452	-	mae:	1.9890
		1 s	43ms/step	-	loss:	1.5505	-	mae:	1.9936
	42/150	_							
	43/150	15	45ms/step	-	loss:	1.5461	-	mae:	1.9883
		1 s	50ms/step	-	loss:	1.5353	-	mae:	1.9778
	44/150	1.	52ma /atan		1	1 5420			1 0063
	45/150	12	53ms/step	-	1055;	1.5429	-	mae:	1.9863
		1 s	45ms/step	-	loss:	1.5748	-	mae:	2.0192
	46/150	1.0	43ms/step		10551	1 5251		m20:	1 0702
	47/150	13	451115/5tep	-	1055.	1.3331	_	mae.	1.9/62
		1 s	43ms/step	-	loss:	1.5327	-	mae:	1.9756
-	48/150	1ς	42ms/step	_	1055.	1 5318	_	mae.	1 9743
	49/150		123, 5 сер		1033.	1,3310		mac.	1.57.5
		1 s	43ms/step	-	loss:	1.5357	-	mae:	1.9785
	50/150	15	46ms/sten	_	loss:	1.5378	_	mae:	1.9805
	51/150		тошо, о сор			_,_,			
		2s	57ms/step	-	loss:	1.5412	-	mae:	1.9846
	52/150	2s	58ms/step	_	loss:	1.5289	_	mae:	1.9717
-	53/150		·						
	54/150	2s	67ms/step	-	loss:	1.5572	-	mae:	2.0021
	J4/ 130	2s	56ms/step	_	loss:	1.5734	_	mae:	2.0191
	55/150				_				
	56/150	2s	61ms/step	-	loss:	1.5175	-	mae:	1.9595
		1 s	54ms/step	-	loss:	1.5163	-	mae:	1.9583
	57/150	_	10 / 1			4 5340			4 0766
	58/150	15	49ms/step	-	loss:	1.5340	-	mae:	1.9766
		1 s	43ms/step	-	loss:	1.5343	-	mae:	1.9761
	59/150 ———————	1.	16mc/c+0=		1055	1 [17]		mac:	1 0502
	60/150	12	40ms/step	-	TO22;	1.01/0	-	mae:	1.7075
25/25		1s	45ms/step	-	loss:	1.5208	-	mae:	1.9629
	61/150	1 c	49ms/step	_	1055.	1 51/1	_	mae.	1 9553
	62/150	13		_	1033.	T • 7 T + T	-	mae.	1.,,,,,

25/25		1 s	45ms/step	_	loss:	1.5214	_	mae:	1.9634
Epoch	63/150								
	6.1/1.50	1 s	44ms/step	-	loss:	1.5391	-	mae:	1.9814
	64/150	15	47ms/sten	_	loss:	1.5168	_	mae:	1.9586
	65/150		17 m37 5 ccp		1033.	1.3100		mac.	11,3300
		2s	56ms/step	-	loss:	1.5072	-	mae:	1.9485
	66/150	1.0	10mc/ston		10551	1 5201		mao:	1 0022
	67/150	13	401113/3CEP	-	1055.	1.3391	-	mae.	1.9033
		2s	62ms/step	-	loss:	1.5302	-	mae:	1.9726
	68/150	2-	71 / - +		1	1 5275			1 0700
	69/150	25	71ms/step	-	1022:	1.52/5	-	mae:	1.9700
		2s	71ms/step	-	loss:	1.5108	-	mae:	1.9522
	70/150	4 -	E4 / 1		,	4 5065			4 0470
	71/150	15	51ms/step	-	loss:	1.5065	-	mae:	1.94/2
		2s	56ms/step	-	loss:	1.5520	-	mae:	1.9960
	72/150		56 / 1		,	1 5006			4 0504
	73/150	25	56ms/step	-	1055:	1.5086	-	mae:	1.9504
25/25		1 s	47ms/step	-	loss:	1.5295	-	mae:	1.9725
Epoch	74/150 ————————	1.0	1Ems/ston		10551	1 5062		m20.	1 0474
	75/150	13	451115/5tep	-	1055.	1.3003	-	mae.	1.94/4
		1 s	48ms/step	-	loss:	1.5113	-	mae:	1.9532
	76/150	1 c	42ms/step	_	1055.	1 5128	_	mae.	1 9542
	77/150		42m3/3ccp		1033.	1.5120		mac.	1.7542
	70/150	1 s	53ms/step	-	loss:	1.5227	-	mae:	1.9651
	78/150 	1 s	47ms/step	_	loss:	1.5065	_	mae:	1.9475
-	79/150								
	80/150	1 s	55ms/step	-	loss:	1.5102	-	mae:	1.9512
•		1 s	48ms/step	-	loss:	1.5129	-	mae:	1.9542
	81/150	_	40 / 1		-	4 5004			4 0654
	82/150	15	43ms/step	-	loss:	1.5234	-	mae:	1.9651
25/25		1 s	42ms/step	-	loss:	1.5209	-	mae:	1.9628
	83/150	1.	FFms/ston		10551	1 [162		maa.	1 0572
	84/150	12	55ms/steb	-	1055:	1.5103	-	mae:	1.95/5
25/25		2s	55ms/step	-	loss:	1.5176	-	mae:	1.9593
	85/150 ————————	1 c	51mc/cton	_	1000	1 5233	_	mae.	1 9661
Epoch	86/150								
	07/450	1 s	47ms/step	-	loss:	1.5096	-	mae:	1.9506
	87/150 ————————	1 s	47ms/step	_	loss:	1.5010	_	mae:	1.9419
Epoch	88/150		·						
	89/150	1 s	48ms/step	-	loss:	1.5019	-	mae:	1.9422
	09/130	1 s	47ms/step	_	loss:	1.5263	_	mae:	1.9690
-	90/150								
	91/150	15	50ms/step	-	Toss:	1.4961	-	mae:	1.9364
25/25		1s	50ms/step	-	loss:	1.5184	-	mae:	1.9602
Epoch	92/150								

25/25		1 s	47ms/step	_	loss:	1.4943	_	mae:	1.9346
Epoch	93/150								
	04/450	1 s	47ms/step	-	loss:	1.5145	-	mae:	1.9569
	94/150	1ς	54ms/sten	_	loss	1 5100	_	mae.	1 9515
	95/150		<i>у</i> шу, у сер		1033.	1.3100		mac.	1.7515
		1 s	49ms/step	-	loss:	1.5153	-	mae:	1.9576
	96/150	1.	54ms/step		10001	1 4054		maa.	1 0250
-	97/150	12	541115/Step	-	1055.	1.4954	-	mae.	1.9550
		2s	58ms/step	-	loss:	1.5139	-	mae:	1.9562
	98/150	4.	FF / - t		1	1 5100			1 0521
	99/150	12	55ms/step	-	1055;	1.5109	-	mae:	1.9521
		1 s	46ms/step	-	loss:	1.5316	-	mae:	1.9747
	100/150	4 -	44 / 1		,	4 5066			4 0474
	101/150	15	44ms/step	-	loss:	1.5066	-	mae:	1.94/1
		1 s	45ms/step	-	loss:	1.5255	-	mae:	1.9685
	102/150	_							
	103/150	15	4/ms/step	-	loss:	1.5219	-	mae:	1.9641
		1 s	44ms/step	-	loss:	1.4998	-	mae:	1.9403
Epoch	104/150	1.	45ma /atao		1	1 4007			1 0207
	105/150	12	45ms/step	-	1055;	1,4997	-	mae:	1.9397
25/25		1 s	47ms/step	-	loss:	1.4948	-	mae:	1.9346
	106/150	1.0	43ms/step		10551	1 5020		m20:	1 0442
	107/150	13	451115/5tep	-	1055.	1.3033	-	mae.	1.9443
		1 s	45ms/step	-	loss:	1.4978	-	mae:	1.9394
-	108/150	1ς	45ms/step	_	1055.	1 5017	_	mae.	1 9416
	109/150		1311137 3 6 6 7		1033.	1,301,		mac.	1.7.10
		1 s	45ms/step	-	loss:	1.5104	-	mae:	1.9526
	110/150	15	51ms/sten	_	loss:	1.4947	_	mae:	1.9354
	111/150		, ₋			_,			
		1 s	46ms/step	-	loss:	1.4993	-	mae:	1.9393
	112/150	2s	56ms/step	_	loss:	1.4966	_	mae:	1.9374
	113/150		•						
	 114/150	1 s	45ms/step	-	loss:	1.4871	-	mae:	1.9268
•		1 s	53ms/step	_	loss:	1.4895	_	mae:	1.9301
	115/150				_				
	116/150	1s	48ms/step	-	loss:	1.4967	-	mae:	1.9378
		1 s	50ms/step	-	loss:	1.4829	-	mae:	1.9226
	117/150	4.	46		1	1 4005			1 0401
	118/150	15	46ms/step	-	1055:	1.4995	-	mae:	1.9401
	,	1 s	43ms/step	-	loss:	1.4956	-	mae:	1.9360
	119/150	1.	11ms/s+00		locci	1 5005		mac.	1 0/05
	120/150	12	441115/5tep	-	TO22;	T. 2002	-	mae:	1.7400
25/25		1s	43ms/step	-	loss:	1.4985	-	mae:	1.9389
	121/150	1 c	52ms/step	_	1055.	1 4966	_	mae.	1 9366
	122/150	13	32m3/3Cep	_	1033.	1.7700	-	mae.	1.7500

		1 s	46ms/step	-	loss:	1.4984	-	mae:	1.9391
	123/150	4.	42		1	1 4000			1 0207
	124/150	18	43ms/step	-	1055:	1.4899	-	mae:	1.9297
		1 s	50ms/step	_	loss:	1.4969	_	mae:	1.9373
-	125/150								
		1 s	42ms/step	-	loss:	1.5057	-	mae:	1.9467
	126/150	_	40 / 1			1 -160			1 0000
	127/150	1s	49ms/step	-	loss:	1.5460	-	mae:	1.9889
		1 s	46ms/step	_	loss:	1.4983	_	mae:	1.9398
	128/150		,						
		1 s	43ms/step	-	loss:	1.4909	-	mae:	1.9307
	129/150	_	42 / 1		,	4040			4 000
	130/150	15	43ms/step	-	loss:	1.4940	-	mae:	1.933/
25/25		1 s	45ms/step	_	loss:	1.5200	_	mae:	1.9620
Epoch	131/150								
		1 s	42ms/step	-	loss:	1.4943	-	mae:	1.9341
•	132/150	26	57ms/step		1000	1 /0/7	_	mao.	1 03/19
	133/150	23	3711137 3 CEP		1033.	1.4547		iliae.	1.7540
		1 s	53ms/step	-	loss:	1.4923	-	mae:	1.9319
	134/150	_	/ /			1 1010			1 0016
	 135/150	15	54ms/step	-	loss:	1.4848	-	mae:	1.9246
		1 s	46ms/step	_	loss:	1.5172	_	mae:	1.9585
Epoch	136/150								
		1 s	45ms/step	-	loss:	1.4887	-	mae:	1.9279
	137/150	26	57ms/ston		1000	1 /061	_	mao.	1 0279
	138/150	23	3711137 3 CCP		1033.	1.4501		mac.	1.5570
		2s	63ms/step	-	loss:	1.4781	-	mae:	1.9177
	139/150	_	,						
	140/150	2s	76ms/step	-	loss:	1.4984	-	mae:	1.9383
		2s	54ms/step	_	loss:	1.4995	_	mae:	1.9405
Epoch	141/150								
		2s	57ms/step	-	loss:	1.4930	-	mae:	1.9323
	142/150	1 c	18ms/stan		1000	1 /1007	_	mao.	1 0201
	143/150	13	40113/3cep		1033.	1.4002		iliae.	1.7201
		1 s	50ms/step	-	loss:	1.4809	-	mae:	1.9202
	144/150	_							
	 145/150	1s	45ms/step	-	loss:	1.4797	-	mae:	1.9194
		1 s	43ms/step	_	loss:	1.5025	_	mae:	1.9426
	146/150		·						
	447/450	1 s	45ms/step	-	loss:	1.5033	-	mae:	1.9452
	147/150	1 c	43ms/sten	_	lossi	1.4883	_	mae.	1.9285
	148/150	_3	romo, acep	-	1033.	1.7000	-	mac.	1.7203
25/25		1 s	46ms/step	-	loss:	1.5002	-	mae:	1.9404
	149/150	4 -	42		1	1 4000			1 0202
	150/150	TS	42ms/step	-	TO22:	1.4898	-	mae:	1.9303
		1 s	47ms/step	_	loss:	1.4881	_	mae:	1.9284
			•						

7. Predicción de los siguientes valores de la serie temporal

Para concluir la actividad, se usa el método model_forecast que se ha diseñado utilizando el método de la ventana temporal para hacer el nuevo metodo rnn_forecast con el cual se calcularán los nuevos valores de la serie temporal. Posteriormente, se pinta una gráfica para ver esos resultados y comprobar de forma visual que son correctos. Además, se dan los resultados de esas predicciones en forma númerica, de esta forma, este modelo diseñado en esta actividad podría ser el input de un nuevo algoritmo si fuera necesario.

```
rnn_forecast = model_forecast(model, series[..., np.newaxis], window_size)
        rnn_forecast = rnn_forecast[split_time - window_size:-1, -1, 0]
       113/113
                                    1s 9ms/step
In [ ]: plt.figure(figsize=(10, 6))
        plot_series(time_valid, x_valid)
        plot_series(time_valid, rnn_forecast)
       <Figure size 1000x600 with 0 Axes>
         20
         15
         10
          5
                    2600
                                 2800
                                             3000
                                                                      3400
                                                          3200
                                                                                   3600
```

Time


```
In []: # Inicializamos la métrica
    mae_metric = tf.keras.metrics.MeanAbsoluteError()

# Calculamos el MAE
    mae_metric.update_state(x_valid, rnn_forecast)
    mae_value = mae_metric.result().numpy() # Obtenemos el valor
    print("Mean Absolute Error:", mae_value)

Mean Absolute Error: 1.8105675

In []: print(rnn_forecast)
```

[11.218924 10.214475 11.901641 ... 13.611639 13.608533 14.664597]

8. Mostrar gráficamente los resultados.

Una vez obtenido el resultado de la actividad, se procede a revisr de forma gráfica el training y validation loss a lo largo de los epochs en este nuevo entrenamiento con el learning rate optimizado.

```
import matplotlib.image as mpimg
import matplotlib.pyplot as plt

#------
# Recuperar una lista de resultados de la lista de datos de entrenamiento y prue
#-----
loss=history.history['loss']
epochs=range(len(loss)) # Get number of epochs
```

A continuación se realiza el plot de la pérdida frente a los epochs

```
#-----
# Pérdida de entrenamiento y validación por epoch
#-----
plt.plot(epochs, loss, 'r')
plt.title('Training loss')
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(["Loss"])
plt.figure()
```

Out[]: <Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

Ejercicio 8 (0.5 punto): Utilizando las 2 nuevas variables zoomed_loss y zoomed_epochs y con base en el código anterior, hacer el plot del loss frente a los epochs entre los epoch 20 y 150 para ver como va oscilando y no es un proceso lineal como podria parecer según el anterior plot.

```
# Pérdida de entrenamiento y validación por epoch con zoom
#------
zoomed_loss = loss[20:]
zoomed_epochs = range(20,150)

# Graficamos La pérdida de entrenamiento con zoom
plt.figure(figsize=(10, 6))
plt.plot(zoomed_epochs, zoomed_loss, 'r')
plt.title('Training Loss (Zoomed in on Epochs 20-150)')
plt.xlabel("Epochs")
plt.ylabel("Loss")
```

```
plt.legend(["Loss"])
plt.show()
```


El gráfico obtenido representa el comportamiento de la función de pérdida en un segmento específico del entrenamiento. Es de utilidad para identificar sobreajustes, posibles ajustes de hiperparámetros o para comprender la dinámica del aprendizaje del modelo por epochs.