Sorting

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2023/24

Why study sorting

- Sorting is one of the most studied (and common) problems in computing
- It is important to understand strengths and weaknesses of algorithms for sorting
- Many problems look like sorting. Learning sorting algorithms will help you solve other problems
- Available implementations are highly optimized (we are not just talking about asymptotic performance guarantees)
- In some (rare) cases, implementing your own sorting algorithm may be beneficial

- We start with an 'educational' sorting algorithm
- Bubble sort is easy to understand, but performs bad not used in practice
- We start from bubble sort, and see the improvements over it
- The idea is simple:
 - compare first two elements, swap if not in order
 - shift and compare the next two elements, again swap if needed
 - when you reach to the end, repeat the process from the beginning unless there were no swaps in the last iteration

demonstration

```
89 67 88 12 72 76 93 57
```

demonstration

89 67 88 12 72 76 93 57

demonstration

67 89 88 12 72 76 93 57

demonstration

67 88 89 12 72 76 93 57

demonstration

67 88 12 89 72 76 93 57

demonstration

67 88 12 72 89 76 93 57

demonstration

67 88 12 72 76 89 93 57

demonstration

67 88 12 72 76 89 93 57

demonstration

67 88 12 72 76 89 57 93

demonstration

67 88 12 72 76 89 57 93

demonstration

 67
 88
 12
 72
 76
 89
 57
 93

demonstration

67 88 12 72 76 89 57 93

demonstration

67 12 88 72 76 89 57 93

demonstration

```
67 12 72 88 76 89 57 93
```

demonstration

```
67 12 72 76 88 89 57 93
```

demonstration

67 12 72 76 88 89 57 93

demonstration

67 12 72 76 88 57 89 93

demonstration

```
        67
        12
        72
        76
        88
        57
        89
        93
```

demonstration

demonstration

demonstration

demonstration

demonstration

demonstration

demonstration

```
    12
    67
    72
    76
    57
    88
    89
    93
```

demonstration

demonstration

demonstration

demonstration

12 67 72 57 76 88 89 93

demonstration

12 67 72 57 76 88 89 93

demonstration

12 67 72 57 76 88 89 93

demonstration

```
    12
    67
    72
    57
    76
    88
    89
    93
```

demonstration

```
12 67 72 57 76 88 89 93
```

demonstration

12 67 72 57 76 88 89 93

demonstration

12 67 57 72 76 88 89 93

```
12 67 57 72 76 88 89 93
```

demonstration

12 67 57 72 76 88 89 93

demonstration

12 67 57 72 76 88 89 93

demonstration

 12
 67
 57
 72
 76
 88
 89
 93

demonstration

12 67 57 72 76 88 89 93

demonstration

demonstration

```
12 57 67 72 76 88 89 93
```

demonstration

demonstration

demonstration

 12
 57
 67
 72
 76
 88
 89
 93

demonstration

demonstration

demonstration

```
12 57 67 72 76 88 89 93
```

demonstration

demonstration

summary

- Worst case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Average case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Best case: O(n)
 O(n) comparisons, O(1) swaps
- Space complexity: O(1)

summary

- Worst case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Average case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Best case: O(n)
 O(n) comparisons, O(1) swaps
- Space complexity: O(1)
- There are more concerns than performance
 - Many swaps
 - Bubble sort is *in-place*

summary

- Worst case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Average case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Best case: O(n)
 O(n) comparisons, O(1) swaps
- Space complexity: O(1)
- There are more concerns than performance
 - Many swaps
 - Bubble sort is *in-place*
- The repetitive algorithm pattern is common

summary

- Worst case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Average case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Best case: O(n)
 O(n) comparisons, O(1) swaps
- Space complexity: O(1)
- There are more concerns than performance
 - Many swaps
 - Bubble sort is *in-place*
- The repetitive algorithm pattern is common

 Not practical – it is not used in practice

- Insertion sort is one of the simpler sorting algorithms
- It is easy to understand, and reasonably fast for sorting short sequences
- On longer sequences, it performs worse than more advanced algorithms, like merge sort or quicksort (we will study those later)
- The general idea simple:
 - assume the elements arrive one by one, and we have a sorted sequence
 - insert the element to the correct position:
 - shift all elements larger than the new one to the right
 - place the new element in its correct place

performance

- Worst case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Average case: O(n²)
 O(n²) comparisons, O(n²) swaps
- Best case: O(n)
 O(n) comparisons, O(1) swaps
- Space complexity: O(1)
- In practice, insertion sort is faster than the bubble sort (and also selection sort)

summary

- Insertion sort is simple
- It is efficient for short sequences
- For long sequences it is much worse than more advanced algorithms like merge sort or quicksort (coming next)
- It is in-place
- It is *online*: it can sort items as they arrive
- It is *stable*: it does not swap elements with equal keys
- It is *adaptive*: faster if order of elements is closer to the sorted sequence

- Merge sort is a divide-and-conquer algorithm for sorting
- It is relatively easy to understand (once you get your head around recursion)
- It has good asymptotic performance
- There are many practical cases where merge sort is used
- Basic idea is divide-and-conquer:
 - split the sequence
 - sort the subsequences
 - merge the sorted lists

demonstration - divide

demonstration - combine

 89
 67
 88
 12
 72
 76
 93
 57

Ç. Çöltekin, SfS / University of Tübingen

demonstration - combine

demonstration - combine

demonstration - combine

Merging sequences

```
# s1, s2: sequences to be merged
# s: target sequence
i, j = 0, 0
n = len(s1) + len(s2)
while i + j < n:
  if j == len(s2) or \
      i < len(s1) and s1[i] < s2[j]:
    s[i+j] = s1[i]
    i += 1
  else:
    s[i+j] = s2[j]
    i += 1
```

- Keep two indices on both sequences, starting from the beginning
- Pick the smallest, place it in the target sequence
- The algorithm requires O(n) steps to complete

Complexity of the merge sort

$$O(\mathfrak{n})=\mathfrak{n}\log\mathfrak{n}$$

the implementation

```
def merge_sort(s):
    n = len(s)
    if n <= 1: return
    s1, s2 = s[:n//2], s[n//2:]
    merge_sort(s1)
    merge_sort(s2)
    merge(s1, s2, s)</pre>
```

- Once we have merge(), the rest is trivial:
 - Split the array into two
 - Recursively sort both sides
 - Stop when the input is length 1

Merge sort: summary

- Straightforward application of divide-and-conquer
- Worst case $O(n \log n)$ complexity (best/average cases are the same)
- Merge sort is not in-place: requires O(n) additional space
- It is particularly useful for settings with low random-access memory, or sequential access
- Merge sort is stable
- It is a well studied algorithm, there are many variants (in-place, non-recursive)

A short divergence to complexity

the difference between $O(n^2)$ and $n\log n$

n	$n \log n$	n ²
2	2	4
8	24	64
64	384	4096
1K	10 240	1 048 576
1M	20 971 520	1 099 511 627 776
1G	32 212 254 720	1 152 921 504 606 846 976

A short divergence to complexity

the difference between $O(n^2)$ and $n\log n$

introduction

- Quicksort is another popular divide-and-conquer sorting algorithm
- The main difference from the merge sort is that big the part of the work is done before splitting
- Its worse time complexity is $O(\mathfrak{n}^2)$, but in practice it performs better than merge sort on average
- General idea: pick a pivot p, and divide the sequence into three parts as
 - L smaller than a particular element p
 - G larger than a particular element p
 - E equal to a particular element p
- sort L and G recursively
- combination is simple concatenation

demonstration - divide

89 67 88 12	57	76 9	3 72
-------------	----	------	------

- Pick a pivot
- Recursively call quicksort twice
 - $\ensuremath{\mathsf{L}}$ for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - $\ensuremath{\mathsf{G}}$ for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - $\ensuremath{\mathsf{L}}$ for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - $\ensuremath{\mathsf{G}}$ for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - $\ensuremath{\mathsf{G}}$ for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - $\ensuremath{\mathsf{G}}$ for items greater than the pivot
- O(n) operations

demonstration - divide

At each divide step

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - $\ensuremath{\mathsf{G}}$ for items greater than the pivot
- O(n) operations

18 / 28

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - $\ensuremath{\mathsf{G}}$ for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - divide

- Pick a pivot
- Recursively call quicksort twice
 - L for items less than the pivot
 - G for items greater than the pivot
- O(n) operations

demonstration - combine

- Simply concatenate
 - L the sorted items less than p
 - E items equal to p
 - G the sorted items greater than p
- No need for O(n) merging

demonstration - combine

- Simply concatenate
 - L the sorted items less than p
 - E items equal to p
 - G the sorted items greater than p
- No need for O(n) merging

demonstration - combine

- Simply concatenate
 - L the sorted items less than p
 - E items equal to p
 - G the sorted items greater than p
- No need for O(n) merging

demonstration - combine

- Simply concatenate
 - L the sorted items less than p
 - E items equal to p
 - G the sorted items greater than p
- No need for O(n) merging

demonstration - combine

- Simply concatenate
 - L the sorted items less than p
 - E items equal to p
 - G the sorted items greater than p
- No need for O(n) merging

demonstration - combine

- Simply concatenate
 - L the sorted items less than p
 - E items equal to p
 - G the sorted items greater than p
- No need for O(n) merging

Python three-liner implementation

- Practical implementations are not very different
- Common improvements include
 - in-place sorting
 - selecting the pivot more carefully

analysis

- Similar to the merge sort, quicksort performs O(n) operations at each level in recursion
- The overall complexity is proportional to $n \times \ell$, where ℓ is depth of the tree
- The recursion tree of merge sort is balanced, so depth is $\log n$.
- For quicksort, we do not have a balanced-tree guarantee
- In the worst case, the depth of the tree can be n, resulting in $O(n^2)$ complexity

average-case complexity and preventing the worst case

- Worst case of the quicksort is when the input sequence is sorted
- If the input sequence is (approximately) random, the *expected* number of elements in each divide is n/2
- To reduce the probability of worst case, *randomized* quicksort picks the pivot randomly
- Best case happens if we pick the *median* of the sequence as the pivot, but finding median already requires $O(n \log n)$ (or O(n), but not very practical)
- A common approach is picking three values (typically first, middle and last) from the sequence, and selecting the 'median of three' as the pivot

summary

- Complexity: $O(n \log n)$ average, $O(n^2)$ worst
- Despite its worst-case $O(n^2)$ complexity, quicksort is faster than merge sort on average (in practice)
- The algorithm can easily be implemented in-place (in-place version is more common)
- Quicksort is not stable
- Quicksort is one of the most-studied algorithms: there are many variants, its properties are well known

Algorithm	worst	average	best	memory	in-place	stable
Bubble sort	n^2	n^2	n	1	yes	yes
Insertion sort	n^2	n^2	n	1	yes	yes
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	no	yes
Quicksort	n^2	$n \log n$	$n \log n$	$\log n$	yes	no

Algorithm	worst	average	best	memory	in-place	stable
Bubble sort	n^2	n^2	n	1	yes	yes
Insertion sort	n^2	n^2	n	1	yes	yes
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	no	yes
Quicksort	n^2	$n \log n$	$n \log n$	$\log n$	yes	no

• Can we do better than $O(n \log n)$?

Algorithm	worst	average	best	memory	in-place	stable
Bubble sort	n^2	n^2	n	1	yes	yes
Insertion sort	n^2	n^2	n	1	yes	yes
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	no	yes
Quicksort	n^2	$n \log n$	$n \log n$	$\log n$	yes	no

- Can we do better than $O(n \log n)$?
- If our sorting algorithms requires comparing individual elements, the answer turns out to be 'no'

Algorithm	worst	average	best	memory	in-place	stable
Bubble sort	n^2	n^2	n	1	yes	yes
Insertion sort	n^2	n^2	n	1	yes	yes
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	no	yes
Quicksort	n^2	$n \log n$	$n \log n$	$\log n$	yes	no

- Can we do better than $O(n \log n)$?
- If our sorting algorithms requires comparing individual elements, the answer turns out to be 'no'
- Lower bound of worst-case sorting is $\Omega(n \log n)$

Algorithm	worst	average	best	memory	in-place	stable
Bubble sort	n^2 n^2	n^2 n^2	n	1	yes	yes
Insertion sort Merge sort	n- n log n	n- n log n	$rac{n}{n \log n}$	n	yes no	yes yes
Quicksort	n^2	$n \log n$	$n \log n$	$\log n$	yes	no

- Can we do better than $O(n \log n)$?
- If our sorting algorithms requires comparing individual elements, the answer turns out to be 'no'
- Lower bound of worst-case sorting is $\Omega(n \log n)$
- In some special cases, linear-time complexity is possible

introduction

- Bucket sort puts elements of the input into a pre-defined number of ordered 'buckets'
- Elements in each bucket is sorted (typically using insertion sort)
- We can than retrieve the sorted elements by visiting each bucket
- The bucket sort *does not compare elements* to each other when deciding which bucket to place them
- In special cases, this results in O(n) worst-case complexity

demonstration

89 67 88 12 57 76 93 72 64 53 89 54 43 92 47 21 4

0-9

10-19

20-29

30-39

40-49

FO FO

50-59

60-69

70-79

80-89

demonstration

0-9

10-19

20-29

30-39

40-49

50-59

60-69

70-79

80-89 89

demonstration

0-9

10-19

20-29

30-39

40-49

50-59

60-69 67

70-79

80-89

89

demonstration

0-9

10-19

20-29

30-39

40-49

50-59

60-69 67

70-79

80-89 88 89

demonstration

0-9 10-19 20-29

30-39

40-49

50-59

60-69 67

70-79

80-89 88 89

demonstration

0-9 10-19 20-29

30-39

40-49

50-59 57

60-69 67

70-79

80-89 88 89

demonstration

0-9 10-19 20-29

30-39

40-49

50-59 57

60-69 67

70-79 76

80-89 88 89

demonstration

0-9 10-19 12 20-29 30-39 40-49 50-59 57 67 60-69 70-79 76 80-89 88 | 89

93

demonstration

0-9 10-19 12 20-29 30-39 40-49 50-59 57 67 60-69 70-79 72 | 76 80-89 88 | 89 90-99 93

demonstration

0 - 910-19 12 20-29 30-39 40-49 50-59 57 60-69 64 67 70-79 72 | 76 80-89 88 | 89 90-99 93

demonstration

0 - 910-19 12 20-29 30-39 40-49 50-59 53 | 57 64 67 60-69 70-79 72 | 76 80-89 88 | 89 90-99 93

demonstration

0 - 910-19 12 20-29 30-39 40-49 50-59 53 | 57 64 67 60-69 70-79 72 | 76 80-89 88 | 89 | 89 90-99 93

demonstration

demonstration

0-910-19 12 20-29 30-39 40-49 43 50-59 53 | 54 | 57 | 64 67 60-69 70-79 72 | 76 80-89 88 | 89 | 89 90-99 93

demonstration

	89	67	88	12	57	76	93	72	64	53	89	54	43	92	47	21	4
--	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	---

- 0-9
 4

 10-19
 12

 20-29
 21

 30-39
 40-49

 43
 47
 - 53 54 57
- 60-69 64 67

50-59

- 70-79 72 76
- 80-89 88 89 89
- 90-99 92 93

- While placing the elements into the buckets, no comparisons between the keys
- Inside the buckets worst-case $O(n^2)$ (insertion sort)
- What if we had as many buckets as the keys?

വ		00	10	E7	70	വാ	70	1	E2	റെ	□ 1	40	വ	4.7	1 1 1	4
091	0/	00	12	7 /	/ O	93	//	164	133	09	54	143	92	4/	21	4

- 0 910-19 20-29 21 30-39
- 40-49 43 47
- 50-59 53 | 54 | 57
- 64 67 60-69
- 70-79 72 | 76
- 80-89 88 | 89 | 89
- 90-99 92 | 93

- While placing the elements into the buckets, no comparisons between the keys
- Inside the buckets worst-case $O(n^2)$ (insertion sort)
- What if we had as many buckets as the keys?
 - n insertion operations
 - n retrieval operations

 - O(n) sorting time

Radix sort

- In a large number of cases, we want to sort objects with multiple keys
- In such cases, we define the order of key pairs as $(k_1, l_1) < (k_2, l_2)$ if $k_1 < k_2$, or $k_1 = k_2$ and $l_1 < l_2$
- This definition can be generalized to key tuples of any length
- This ordering is known as *lexicographic* or dictionary order
- Radix sort is the name for the technique that uses multiple stable bucket sorts for this purpose

Summary

- Sorting is an important and well-studied computational problem
- Most sorting algorithms/applications used in practice are highly optimized, often based on multiple basic algorithms
- Naive sorting algorithms run in $O(n^2)$ time
- Lower bound on worst-case sorting time is $\Omega(n \log n)$, divide-and-conquer algorithms achieve this
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)
- And a fun way to see sorting in action:
 https://www.youtube.com/user/AlgoRythmics

Next:

- Trees
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 8)

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013). Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN: 9781118476734.

blank

A.4