

Физика

Модуль №2. Термодинамика и молекулярно-кинетическая теория

Скачать презентацин

Лекция № 12

Реальные газы. Уравнение Ван-дер-Ваальса.

Факультет БИТ Физика с элементами компьютерного моделирования

21 Mas 2022

Модуль №2. Термодинамика и молекулярно-кинетическая теория

Лекция № 12

Реальные газы. Уравнение Ван-дер-Ваальса.

Модель идеального газа

- Для идеального газа уравнение Менделеева-Клапейрона: $pV = \nu RT$
- Хорошо описывает идеального газа при не слишком высоких давлениях и достаточно высоких температурах.
- Не учитывается размер молекул и взаимодействие между молекулами на расстоянии.

Реальный газ

p, am	pV, am·л
1	1,000
100	0,994
200	1,048
500	1,390
1000	2,069

Газ = азот Объем = 1л Температура = 273 К Масса неизменна

 $pV = \nu RT \neq const!!!$

Реальный газ

- Уравнение, правильно описывающее поведение газов при больших плотностях должно учитывать:
- Взаимное притяжение молекул
- Конечную величину собственного объема молекул

$$(p+p^*)(V+V^*) = \nu RT$$

$U_{2} = E_{\text{кин2}}$ d_{2}

Реальные газы

потенциал Ленарда-Джонса

$$U_{\text{пот}}(x) = \frac{A_1}{x^{12}} - \frac{A_2}{x^6}$$

 $U(x_{min}) = -A_1^2/4A_2$

при $x_{min} = (2A_2/A_1)^{1/6}$

(соответствует наибольшей связи)

сила взаимодействия молекул

$$F(x) = -\frac{dU(x)}{dx}$$
$$= \frac{12A_1}{x^{13}} - \frac{6A_2}{x^7}$$

Вывод уравнения Ван-дер-Ваальса

$$(p+p^*)(V+V^*) = \nu RT$$

1) Влияние сил отталкивания (конечные размеры молекул)

Центры молекул не могут сблизиться ближе, чем на расстояние d.

Объем, доступный для двух молекул уменьшается на объем сферы радиуса d:

$$V_2' = \frac{4}{3}\pi d^3 = \frac{4}{3}\pi (2r)^3 = 8V_0$$

В пересчете на одну молекулу будет: $V_1' = 8V_0/2 = 4V_0$

Для ν молей газа, содержащих N молекул уменьшение свободного объема: $V^* = \nu b = NV_1' = 4NV_0 = 4V'$ в 4 раза больше собственного объема молекул газа

Для движения молекул остается свободный объем: $(V-V^*)=(V-\nu b)$

уравнение Дюпре (1864):
$$p(V - \nu b) = \nu RT$$

уравнение Гирна (1865):
$$(p + p^*)(V - \nu b) = \nu RT$$

Вывод уравнения Ван-дер-Ваальса

$$(p + p^*)(V + V^*) = \nu RT$$

2) Влияние сил притяжения

- $p^* = \frac{av^2}{V^2}$
- на границе «газ стенка сосуда» действие сил притяжения со стороны газа остается не скомпенсированным, и появляется избыточная сила, направленная в сторону газа
- эта сила эквивалентна дополнительному давлению
- $p^* \sim n^2 \sim \left(\frac{N}{V}\right)$
- сила, действующая на каждую молекулу, пропорциональна концентрации и молекул в системе. Число подлетающих к стенке молекул также пропорционально и, и потому внутреннее давление пропорционально квадрату концентрации частиц:

Концентрация – это число частиц в единице объема

• Появляется добавка к давлению, обратно пропорциональная квадрату объема

Уравнение Ван-дер-Ваальса (1873 г.)

pV=
u RT - уравнение Менделеева-Клапейрона для идеального газа

для реального газа:
$$(p + p^*)(V + V^*) = \nu RT$$

$$p^* = \frac{av^2}{V^2} \qquad V^* = -vb$$

$$\left(p + \frac{av^2}{V^2}\right)(V - vb) = vRT$$

$$\left(p + \frac{a}{V_m^2}\right)(V_m - b) = \nu RT \qquad V_m = V/\nu$$

или для 1 моля для реального газа:

кислород: $a = 0.136 \text{ H} \cdot \text{м}^4/\text{моль}^2$ и $b = 3.17 \cdot 10^{-5} \text{ м}^3/\text{моль}$.

$$\left(p + \frac{a}{V^2}\right)(V - b) = RT$$

Постоянные b и а называются поправками Ван-дер-Ваальса.

b – поправка, учитывающая объём молекул газа,

а – поправка, учитывающая силы притяжения между молекулами.

Для каждого газа они определяются из опыта, и являются полуэмпирическими.

$$\frac{b \ll V}{a} \ll p$$

Поправки Ван-дер-Ваальса

	<i>Рk</i> , атм	<i>Vk</i> , м ³ /кмоль	Tk, K	<i>а</i> , ат×м ⁶ /кмоль2	<i>b</i> , м ³ /кмоль	$R/N_A k$
HC1	86	0,060	324,6	0,922	0,020	0,469
H ₂	13,2	0,065	33,2	0,194	0,022	0,813
He	2,34	0,058	5,2	0,035	0,024	0,821
H ₂ O	225	0,055	647,3	5,65	0,031	0,602
O ₂	51,4	0,075	154,3	1,40	0,032	0,768
N ₂	34,8	0,090	126,0	1,39	0,039	0,782
CO ₂	75	0,096	304,1	3,72	0,043	0,745

11

Внутренняя энергия газа Ван-дер-Ваальса

Энергия газа Ван-дер-Ваальса слагается из внутренней энергии молекул, составляющих газ:

- кинетической энергии теплового движения центра масс молекул $\int_0^T C_V^{ ext{полн}} dT = C_V^{ ext{полн}} T$
- и потенциальной энергии взаимного притяжения молекул

Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ

$$p^* = \frac{av^2}{V^2}$$

Работа, которая затрачивается для преодоления сил притяжения, действующих между молекулами газа, идет на увеличение потенциальной энергии системы $\delta A = p^* \mathrm{d} V = d U_\Pi$

$$U_{\Pi} = \int \frac{av^2}{V^2} \, \mathrm{d}V = -\frac{av^2}{V}$$

Внутренняя энергия газа Ван-дер-Ваальса: $U=\nu c_V^{ ext{MOЛ}}T-rac{a
u^2}{}$ зависит от температуры и объема

$$dU = C_V dT + \frac{av^2}{V^2} dV = 0$$

Адиабатное расширение

Реальный раз охлаждается

Изотермы Ван-дер-Ваальса

Для 1 моля
$$\left(p+rac{a}{V^2}
ight)(V-b)=RT$$
 $imes V^2$ $pV^3-pbV^2=RTV^2-aV+ab$

$$p = \frac{RT}{V - b} - \frac{a}{V^2}$$

$$\frac{\partial p}{\partial V} = -\frac{RT}{(V - b)^2} + \frac{2a}{V^3} = 0$$

$$\frac{\partial^2 p}{\partial V^2} = \frac{2RT}{(V - b)^3} - \frac{6a}{V^4} = 0$$

В критическом состоянии все три корня уравнения совпадают в критическом состоянии:

1 моль идеального газа занимает объём V_k =3b (для произвольного количества вещества объем: V_k =3vb)

газ создаёт давление
$$p_{\scriptscriptstyle
m K}=rac{a}{27b^2}$$

газ имеет температуру
$$T_{\rm K}=\frac{8a}{27Rb}$$

Критические параметры

Вещество	$T_{\kappa p}$, ${}^{0}C$	р _{кр} атм.
Вода, Н2О	374	217
Углекислый газ, СО2	31	73
Криптон, Кг	-62,5	54
Кислород, О2	-118,8	50
Азот, N ₂	-147	33,5
Водород, Н2	-240	12,85
Гелий, Не	-267,9	2,2

Уравнение Ван-дер-Ваальса

Недостатки уравнения Ван-дер-Ваальса

- 1. Для реальных веществ $V_{\kappa p}$ не равна 3bv (скорее, 2bv)
- Уравнение Ван-дер-Ваальса расходится с экспериментом в области двухфазных состояний.

Принципиальное значение уравнения Ван—дер—Ваальса определяется следующими обстоятельствами:

- ✓ Уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей, а не явилось результатом эмпирического подбора функции f(p,V,T), описывающей свойства реальных газов;
- ✓ уравнение долго рассматривалось как некоторый общий вид уравнения состояния реальных газов, на основе которого было построено много других уравнений состояния;
- ✓ с помощью уравнения Ван—дер—Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления. В этом отношении уравнение Ван—дер—Ваальса имеет преимущество даже перед более точными уравнениями в вириальной форме.

« Настройки

+ ❖ ▼□

Мини-тест 14.05.2022

Управление тестом

Редактировать настройки

The questionnaire has 2 pages that are too short. This increases the load on the server severely. Consider alloting more time for each page (i.e. putting more questions)

This quiz will use a phased entry control, which will cause students to enter randomly with up to 1 minutes of delay.

Разрешено попыток: 1

Тест будет недоступен до Суббота, 14 Май 2022, 11:25

Тестирование будет окончено в Суббота, 14 Май 2022, 11:35

Ограничение по времени: 5 мин.

