On Schemes for Exponential Decay

Hans Petter Langtangen^{1,2}

Center for Biomedical Computing, Simula Research Laboratory 1 Department of Informatics, University of Oslo^2

Jan 8, 2014

Goal

The primary goal of this demo talk is to demonstrate how to write talks with Doconce and get them rendered in numerous HTML formats.

Layout.

This version utilizes beamer slides with the theme blue_plain.

Mathematical problem

$$u'(t) = -au(t), \qquad (1)$$

$$u(0) = I, (2)$$

- $t \in (0, T]$
- ▶ a, I, and T are prescribed parameters
- \triangleright u(t) is the unknown function

Numerical solution method

- ▶ Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- \triangleright u^n : numerical approx to the exact solution at t_n

Numerical scheme:

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

Numerical solution method

- ▶ Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- \triangleright u^n : numerical approx to the exact solution at t_n

Numerical scheme:

$$u^{n+1} = rac{1 - (1 - heta)a\Delta t}{1 + heta a\Delta t}u^n, \quad n = 0, 1, \dots, N-1$$

Numerical solution method

- ▶ Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- \triangleright u^n : numerical approx to the exact solution at t_n

Numerical scheme:

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

Implementation

The numerical method is implemented in a Python function:

The Crank-Nicolson method

Exact solution of the scheme

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$

- ▶ Stability: |A| < 1</p>
- No oscillations: A > 0
- ▶ Always for Backward Euler ($\theta = 1$)
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $ightharpoonup \Delta t < 2/a$ for Crank-Nicolson (heta = 1/2)

Concluding remarks:

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

- ► Stability: |*A*| < 1
- No oscillations: A > 0
- ▶ Always for Backward Euler ($\theta = 1$)
- $ightharpoonup \Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $ightharpoonup \Delta t < 2/a$ for Crank-Nicolson (heta = 1/2)

Concluding remarks:

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

- ▶ Stability: |A| < 1</p>
- ▶ No oscillations: *A* > 0
- ▶ Always for Backward Euler ($\theta = 1$)
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

Concluding remarks:

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

- ▶ Stability: |A| < 1</p>
- No oscillations: A > 0
- Always for Backward Euler ($\theta = 1$)
- $\Delta t < 1/a$ for Forward Euler $(\theta = 0)$
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

Concluding remarks: