Devoir 1

à rendre mercredi 5 mars 2014 NB: Les réponses doivent être justifiées.

• Exercice 1. Soit a > 0 et soit $(u_n)_n \ge 1$ la suite de nombres réels définie par $u_0 > 0$ et

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right), \qquad n \ge 1.$$

1. Montrer que

$$u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}.$$

- 2. Montrer que pour tout $n \ge 1$ on a $u_n \ge \sqrt{a}$ et que la suite est décroissante.
- En déduire que la suite est convergente et déterminer sa limite.
 En utilisant la relation u²_{n+1} − a = (u_{n+1} − √a)(u_{n+1} + √a), donner une majoration de u_{n+1} − √a en fonction de u_n − √a.
- 5. Si $u_1 \sqrt{a} \le k$ et pour $n \ge 1$, montrer que

$$u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}.$$

- 6. Application: calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgules, en prenant $u_0 = 3$.
- Exercice 2. Pour tout $n \in \mathbb{N}$, on pose

$$S_n = \sum_{k=0}^n \frac{k^2}{k^3 + 1}.$$

- 1. Montrer pour tout $n \ge 1$ on a $S_{2n} S_n \ge \frac{1}{10}$.
- 2. En déduire que $\lim_{n\to\infty} S_n = +\infty$.
- Exercice 3. Déterminer la limite, si celle-ci existe, des suites suivantes :

$$a_n = \frac{4^n - (-2)^n}{4^n + (-2)^n}, \quad b_n = \frac{n - \sqrt{2n^2 + 1}}{n + \sqrt{2n^2 - 1}}, \quad c_n = \frac{1}{n^2} \sum_{k=1}^n k,$$

$$p_n = \left(1 + \frac{2}{n}\right)^n, \quad q_n = \frac{\cos n}{n + (-1)^{n+1}}, \quad r_n = \frac{\sqrt{n} - (-1)^n}{\sqrt{n} + (-1)^n},$$

$$U_n = \frac{1}{n} \sum_{k=1}^n e^{\frac{\ln k}{k}}, \quad V_n = \frac{1}{n} \sum_{k=1}^n \left(1 + \frac{2}{k}\right)^k.$$