

MATHEMATICS 2: ORDINARY DIFFERENTIAL EQUATIONS

Summary

MATHEMATICS 2

VORARLBERG UNIVERSITY OF APPLIED SCIENCES BACHELORS'S IN MECHATRONICS

SCHWARTZE NICOLAI

LOOSLY BASED ON THE LECTURE BY DIPL.-ING. DR. PETER PICHLER (2016)

Dornbirn, 22.07.2021

Contents

1	Ord	linary Differential Equation of 1 st Order	1
	1.1	Seperable ODE	1
	1.2	Euler-Homogeneous ODE	1
	1.3	Linear ODE of 1_{st} Order	1
	1.4	Bernoulli ODE	2
	1.5	Transformation to New Coordinate System	2
	1.6	Transformation to Polar Coordinates	2
	1.7	Exact ODE and Total Differential	2
	1.8	Excursion: Constructing Trajectories	2
		1.8.1 Orthogonal Trajectories	2
		1.8.2 Isogonal Trajectories	2
2		linary Differential Equation of 2 nd Order Converstion to 1 st Order ODE	2 2
3	Ord	linary Differential Equation of N th Order	2

1 Ordinary Differential Equation of 1st Order

Ordinary Differential Equations (or short ODEs) are equations where a derivative of one variable is present. The order of an ODE is defined by the largest derivative in the equation.

1.1 Seperable ODE

These are equations of the form

$$y' = f(x)g(y) \tag{1.1}$$

The functions f(x) and g(y) can be separated in a way that all y are on one side and all x are on the other side. It is benificial to leave negative signs on the right side.

- 1. bring f(x) and g(y) to each side: $y'\frac{1}{g(y)} = f(x)$
- 2. rewrite differential expression: $\frac{dy}{dx} \frac{1}{g(y)} = f(x)$
- 3. integrate both sides $\int \frac{1}{g(y)} dy = \int f(x) dx$
- 4. if necessary, bring y on one side: y(x) = ...

1.2 Euler-Homogeneous ODE

This equations look like

$$y' = g\left(\frac{y}{x}\right) \tag{1.2}$$

By using an appropriate substitution, the Euler-Homogeneous ODE can be transformed into a seperable ODE and than solved accordingly. The challenge is to find the right substitution. This largely depends on the right hand side of the equation. Some important substitutions are:

form	$y' = g\left(\frac{x}{y}\right)$	y' = g(x+y)
substitution	$u = \frac{x}{y}$	u = x + y
derivative	y' = u'x - u	y'=u'-1
example	$y' = \frac{1}{2} \left(\frac{y}{x} - \frac{x}{y} \right)$	$y' = \sin(x+y)$

In general, the process of solving this type of equation is

- 1. find substitution $u = \dots$
- 2. calculate the derivative $y' = \dots$
- 3. insert into the original equation
- 4. solve the now separable ODE
- 5. resubstitute $y = \dots$

1.3 Linear ODE of 1_{st} Order

These are equations of the form

$$y' + p(x)y = r(x) \tag{1.3}$$

Here, p(x) and r(x) can be an arbitrary function of x. In the special case where r(x) = 0, the ODE is separable and can be solved according to chapter 1.1

- 1.4 Bernoulli ODE
- 1.5 Transformation to New Coordinate System
- 1.6 Transformation to Polar Coordinates
- 1.7 Exact ODE and Total Differential
- 1.8 Excursion: Constructing Trajectories
- 1.8.1 Orthogonal Trajectories
- 1.8.2 Isogonal Trajectories
- 2 Ordinary Differential Equation of 2nd Order
- 2.1 Converstion to 1^{st} Order ODE
- 3 Ordinary Differential Equation of N^{th} Order