REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT - SESSION DE JUIN 2010

SECTION: SCIENCES DE L'INFORMATIQUE

EPREUVE: SCIENCES PHYSIQUES DUREE: 3 H COEFFICIENT: 2

CHIMIE (5 points)

On considère la pile électrochimique de symbole:

Cu|Cu²⁺(0,1mol.L⁻¹)|| Zn²⁺(0,1mol.L⁻¹)|Zn

Les solutions utilisées ont le même volume V= 100 mL et elles sont reliées par un pont électrolytique. Les expériences sont réalisées à température constante $\theta = 25$ °C.

- 1- Ecrire l'équation de la réaction chimique associée à cette pile.
- 2- La mesure de la force électromotrice de cette pile donne E = -1,1 V.
 - a- Exprimer la force électromotrice E de cette pile en fonction des potentiels électriques de la borne de droite V_{b,Zn} et de la borne de gauche V_{b,Cu}.
 - b- Déduire laquelle des électrodes, de cuivre Cu ou de zinc Zn, est le pole positif.
- 3- Cette pile débite un courant dans un circuit extérieur.
 - a- Ecrire l'équation bilan de la réaction qui se produit spontanément dans la pile.
 - b- Préciser le rôle du pont salin.
- 4- Après une certaine durée Δ t de fonctionnement, il se forme un dépôt métallique de couleur rouge brique et de masse m = 0,3175g sur l'une des deux électrodes de la pile.
 - a- Préciser, en le justifiant, le métal déposé et l'électrode sur laquelle il se dépose.
 - b- Après cette durée Δ t, calculer la nouvelle valeur de la concentration molaire en ions Zn²⁺, en supposant que les volumes des solutions des compartiments à gauche et à droite restent les mêmes et que les électrodes ne soient pas complètement consommées.

On donne la masse molaire en g.mol⁻¹ : Cu = 63.5.

PHYSIQUE (15 points)

EXERCICE 1 (6 points)

On considère le circuit représenté sur la figure 1, qui comporte :

- un générateur basses fréquences GBF qui délivre une tension sinusoïdale : $\mathbf{u_e}(t) = U_{Em} \sin(2\pi Nt)$ de fréquence N variable et d'amplitude $U_{Em} = 2$ V maintenue constante tout au long de l'expérience ;
- un conducteur ohmique de résistance R réglable ;
- un condensateur de capacité C = 10⁻⁶ F.

On fait varier la fréquence N du GBF et on mesure à chaque fois la valeur maximale U_{Sm} de la tension aux bornes du condensateur notée $\mathbf{u}_s(t)$. Les mesures permettent d'obtenir les courbes \mathscr{C}_s de la figure 2 :

Figure 2

- 1- Rappeler l'expression du gain G(dB) en fonction de la transmittance $T = \frac{U_{sm}}{U_{Bm}}$.
- 2- Déterminer à partir de la courbe & :
- a- la valeur maximale U_{Sm} de la tension aux bornes du condensateur pour $N=2\ kHz$;
- b- la fréquence de coupure N_c du filtre ;
- c- l'intervalle de fréquences pour lequel le filtre est passant. En déduire la nature du filtre.
- 3- a- Etablir l'équation différentielle reliant la tension $\mathbf{u}_s(t)$ aux bornes du condensateur, sa dérivée première $\frac{d\mathbf{u}_s}{dt}, \mathbf{u}_e(t) \text{ et la constante de temps } \tau = \mathbf{RC}.$
- b- Par construction de Fresnel, établir l'expression de la transmittance T en fonction de N et τ.
- c- Déduire l'expression du gain G(dB) en fonction de N et τ.
- 4- a- Etablir l'expression générale de la fréquence de coupure N_c du filtre à -3dB, en fonction de τ.
- b- Déterminer à partir de la courbe $\mathscr{C}_{\mathfrak{s}}$ la valeur de la fréquence de coupure N'c.
- c- Déduire les valeurs des résistances R₁ et R₂ prises par R sachant que R₁ est inférieure à R₂.

EXERCICE 2 (6 points):

A – Le circuit de la figure 3 est constitué d'un amplificateur opérationnel supposé parfait et polarisé par une tension électrique symétrique $\pm U_{sat}$ et de deux résistors de résistances R_1 et R_2 .

Figure 3

- 1- Montrer que l'expression de la tension u_1 , aux bornes de R_1 , s'écrit: $u_1 = \frac{R_1}{R_1 + R_2} u_S$
- 2- En appliquant la loi des mailles à la maille EAME de la figure 3, montrer que l'expression de la tension différentielle ε de l'amplificateur opérationnel est :

$$\varepsilon = \frac{R_1}{R_1 + R_2} u_s - u_E$$

- 3- L'amplificateur fonctionne en régime saturé. Si ϵ est positif alors $u_s = + U_{sat}$ et si ϵ est négatif alors $u_s = U_{sat}$.
 - **a-** Déduire les expressions des tensions de basculement du haut vers le bas U_{HB} et du bas vers le haut U_{BH} en fonction de U_{sat} , R_1 et R_2 .
 - b- Nommer ce montage et préciser son rôle.
- ${\bf B}$ On associe au circuit précédent un condensateur de capacité ${\bf C}$ et un résistor de résistance ${\bf R}$ comme l'indique la figure 4. On visualise sur l'écran d'un oscilloscope les tensions ${\bf u}_c(t)$ aux bornes du condensateur et ${\bf u}_s(t)$ à la sortie du circuit (figure 5).

Les deux voies de l'oscilloscope ont la même sensibilité verticale 5V/div et le même balayage horizontal 50µs/div.

Figure 4

Figure 5

1- Montrer que la tension u_c vérifie l'équation différentielle :

$$RC\frac{du_c}{dt} + u_c = u_s$$

- 2- En exploitant la figure 5, déterminer les valeurs de U_{HB} , U_{sat} et la période T de la tension $u_s(t)$.
- 3- Sachant que $R_1 = R = 10 \text{ k}\Omega$ et que U_{HB} a la même expression qu'à la question A- 3-a, calculer R_2 et C.

On rappelle que la période T a pour expression $T = 2 \text{ RC.Ln } (1+2\frac{R_1}{R_2})$ avec Ln = Log.

EXERCICE 3 (3 points): Etude d'un document scientifique

PROTECTION DES CIRCUITS INDUCTIFS

Lors de l'ouverture d'un interrupteur placé dans un circuit inductif (comportant une bobine), parcouru par un courant intense, un arc électrique s'établit entre les deux pôles qui sont écartés l'un de l'autre. Il en est de même avec des circuits parcourus par des courants peu intenses mais qui font l'objet de communications rapides (électronique). Cet arc dit étincelle de rupture est la conséquence du phénomène d'auto-induction : l'annulation du courant dans un circuit se traduit par l'induction d'une force électromotrice d'autant plus grande :

- que le courant interrompu est plus intense,
- que l'interruption est plus rapide.

Il peut en résulter une surtension importante entre les pôles des appareils de coupure. En général, il est indispensable de remédier à cet inconvénient afin d'éviter tout danger pour le manipulateur (risque d'électrocution) et pour le matériel. Cette protection peut être assurée par une diode.

Physique appliquée. NATHAN TECHNIQUE.

- 1- Dans quel type de circuit se produit l'étincelle de rupture ?
- 2- Quel est le phénomène physique responsable de cette étincelle ?
- 3- Quels sont les facteurs qui ont une influence sur la valeur de la force électromotrice d'auto-induction?
- 4- Citer un inconvénient de l'étincelle de rupture et le danger qui en résulte.