Dylan Phoutthavong

February 16th, 2025

CSCI 3287

HW₄

- 1) Using the database described in figure 1.2 (page 8 from the textbook), specify the following queries as relational algebra expressions:
 - a. Retrieve the transcript—a list of all courses and grades—of 'Smith'
 - i. Find 'Smith' in STUDENT:
 - 1. σName='Smith'(STUDENT)
 - 2. 'Smith' is associated with Student_number 17
 - ii. Join with GRADE_REPORT to get tupples associated with 'Smith':
 - σStudent_number=17(GRADE_REPORT)
 - iii. Join with COURSE to get Course_number:
 - 1. σStudent_number=17(GRADE_REPORT)⋈SECTION
 - iv. Join with COURSE to get Course_name:
 - 1. (σStudent_number=17(GRADE_REPORT)⋈SECTION)⋈COURSE)
 - v. Projection: Retrieve Course_name and Grade:
 - 1. πCourse_name,Grade((σStudent_number=17(GRADE_R EPORT)⋈SECTION)⋈COURSE)
 - b. List the names of students who took the section of the 'Database' course offered in fall 2008 and their grades in that section
 - i. Find Course number of 'Database' in COURSE:
 - 1. σCourse_name='Database'(COURSE)
 - ii. Extract Course_number (CS3380) and find any sections that match:
 - 1. σCourse number='CS3380' \(\Lambda\)Semester='Fall' \(\Lambda\)Year=08(SECTION)
 - iii. Extract Section_identifier (135) and find matching students in GRADE_REPORT:
 - 1. σSection_identifier=135(GRADE_REPORT)
 - iv. Join with STUDENT to get Name:
 - 1. (σSection_identifier=135(GRADE_REPORT)⋈STUDENT)
 - v. Projection: Retrieve Name and Grade:
 - πName,Grade(σSection_identifier=135(GRADE_R EPORT)⋈STUDENT)
 - c. List the prerequisites of the 'Database' course

- i. Find Course_number of 'Database' (CS3380):
 - 1. σCourse_number='CS3380'(PREREQUISITE)
- ii. Projection to get Prerequisite_number:
 - πPrerequisite_number(σCourse_number='CS3380' (PREREQUISITE))
- d. Display the content of the RESULT relation for query "b" above
 - i. Brown, A

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Course_number	Prerequisite_number	
CS3380	CS3320	
CS3380	MATH2410	
CS3320	CS1310	

- 2) Using the database below, specify the following queries as relational algebra expressions:
 - a. List of products (id, name and quantity) to be delivered to stores/clients in Colorado
 - i. Find clients in Colorado:
 - 1. σState='CO'(CLIENT)
 - ii. Extract Client_id:
 - 1. πClient_id(σState='CO'(CLIENT))
 - iii. Find the invoices for these clients:
 - 1. INVOICE⋈πClient_id(σState='CO'(CLIENT))
 - iv. Extract Invoice number:
 - 1. πInvoice_number(INVOICE⋈πClient_id(σState='CO'(CLIENT)))
 - v. Find the products and quantities from ITEM:
 - ITEM⋈πInvoice_number(INVOICE⋈πClient_id(σState='CO' (CLIENT)))
 - vi. Join with PRODUCT to get product descriptions:
 - (ITEM⋈πInvoice_number(INVOICE⋈πClient_id(σState='CO' (CLIENT))))⋈PRODUCT
 - vii. Projection to get Product_id, Description, and Quantity:
 - πProduct_id, Description, Quantity((ITEM⋈πInvoice_number (INVOICE⋈πClient_id(σState='CO'(CLIENT)))) ⋈ PRODUCT)
 - List product description and category name of products that are not part of any invoice
 - i. Find all Product id in ITEM:
 - 1. πProduct_id(ITEM)
 - ii. Find products not in invoices:
 - 1. PRODUCT- π Product id(ITEM)
 - iii. Join with CATEGORY to get Category_name:
 - 1. (PRODUCT-πProduct_id(ITEM))⋈CATEGORY
 - iv. Projection to get Description and Category:
 - πDescription,Category((PRODUCT-πProduct_id (ITEM))⋈CATEGORY)
 - c. Total amount (quantity * price) of all electronics listed in an invoice
 - i. Find Category_id for Electronic:
 - σCategory='Electronic'(CATEGORY)

- ii. Extract Category_id (1):
 - 1. πCategory_id(σCategory='Electronic'(CATEGORY))
- iii. Find Product_id for Electronics:
 - 1. σCategory=1(PRODUCT)
- iv. Join with ITEM to get quantities:
 - 1. ITEM⋈σCategory=1(PRODUCT)
- v. Compute Quantity * Price:
 - 1. ∑(Quantity×Price)(πQuantity,Price(ITEM⋈σCategory=1 (PRODUCT)))
- d. Display the content of the RESULT relation for query "c" above
 - i. Total_amount = (3 * 250) + (10 * 900) + (10 * 250) = 750 + 9000 + 2500 =
 - ii. <mark>12250</mark>

INVOICE

Invoice_	number	Client_id	Payment
	1001	1	0
	1002	2	800
	1003	3	9000
	1004	2	2500

PRODUCT

Product_id	Description	Category	Price
10	Watch	1	250
20	Computer	1	900
30	Bike	3	1200
40	Tire	4	200
50	Database	5	88

CATEGORY

Category_id	Category
1	Electronic
3	Sports
4	Automotive
5	Books

ITEM

Invoice	number	Product_id	Quantity
	1001	10	;
	1001	30	
	1002	40	
	1003	20	10
	1004	10	10

CLIENT

Client_id Name	Address	City	State
1 S-MART	2389 Smart In	Denver	CO
2 Have it all	123 Warehouse st	Pueblo	CO
3 Everything++	555 Storage ave	Topeka	KS