An insurance company wants to find typical, but unknown, causes for specific injuries from earlier cases. This likely is based on ...

- A. local rule discovery
- B. predictive modelling
- C. descriptive modelling
- D. exploratory data analysis

10 itemsets out of 100 contain item A, of which 5 also contain B. The rule A → B has:

- A. 5% support and 10% confidence
- B. 10% support and 50% confidence
- C. 5% support and 50% confidence
- D. 10% support and 10% confidence

10 itemsets out of 100 contain item A, of which 5 also contain B. The rule B → A has:

- A. unknown support and 50% confidence
- B. unknown support and unknown confidence
- C. 5% support and 50% confidence
- D. 5% support and unknown confidence

Given the frequent 2-itemsets {1,2}, {1,4}, {2,3} and {3,4}, how many 3-itemsets are generated and how many are pruned?

- A. 2, 2
- B. 1, 0
- C. 1, 1
- D. 2, 1

After the join step, the number of k+1-itemsets ...

- A. is equal to the number of frequent k-itemsets
- B. can be equal, lower or higher than the number of frequent k-itemsets
- C. is always higher than the number of frequent k-itemsets
- D. is always lower than the number of frequent k-itemsets

If rule $\{A,B\} \rightarrow \{C\}$ has confidence c_1 and rule $\{A\} \rightarrow \{C\}$ has confidence c_2 , then ...

A.
$$c_2 >= c_1$$

- B. $c_1 > c_2$ and $c_2 > c_1$ are both possible
- C. $c_1 >= c_2$

A false negative in sampling can only occur for itemsets with support smaller than ...

- A. the threshold s
- B. p*s
- C. p*m
- D. None of the above

In the first pass over the database of the FP Growth algorithm

- A. Frequent itemsets are extracted
- B. A tree structure is constructed
- C. The frequency of itemsets is computed
- D. Prefixes among itemsets are determined

The FP tree below is ...

- A. not valid, b is missing
- B. not valid, since count at leaf level larger than 1
- C. possible, with 2 transactions {a}
- D. possible, with 2 transactions {a,c}

