- 1. Let **A** and **B** both be $n \times n$ and assume that there is an invertible matrix **S** such that \mathbf{SAS}^{-1} and \mathbf{SBS}^{-1} are both diagonal (but not necessarily equal). Prove that $\mathbf{AB} = \mathbf{BA}$.
- 2. Suppose that $\bf A$ is symmetric and positive definite, while $\bf B$ is symmetric. Prove that there is a real invertible matrix $\bf S$ such that

$$\mathbf{A} + \mathbf{B} = \mathbf{S} \left(\mathbf{I} + \mathbf{D} \right) \mathbf{S}^{T}$$

where \mathbf{D} is diagonal.

- 3. Suppose that **A** and **B** are both $n \times n$. Prove that **AB** and **BA** have the same eigenvalues.
- 4. Suppose that $\mathbf{L} \in \mathbb{R}^{n \times n}$ is a symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_m$. (Note that m can be $\leq n$.) Prove that

$$\mathbf{L} = \lambda_1 \mathbf{P}_1 + \dots + \lambda_m \mathbf{P}_m$$

- 5. Prove that if **A** is invertible (and, for simplicity, real), then there is an orthogonal matrix **U** and a symmetric and positive definite matrix **E** such that **A** = **UE**. This is analogous to writing complex numbers in polar form $x + iy = \rho e^{i\theta}$. Show that if **A** is square but not invertible then there is a similar factorization but with **E** being symmetric and non-negative definite.
- 6. Let $\mathbf{A} = \mathbf{S} \mathbf{\Lambda} \mathbf{S}^{-1}$ be diagonalizable. Find a symmetric positive definite matrix \mathbf{K} that defines an inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \mathbf{K} \vec{y}$ such that \mathbf{A} commutes with its \mathbf{K} -adjoint.
- 7. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have full column rank. Prove that $\|\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\|_2 = 1/\sigma_n$ where σ_n is the n^{th} singular value of \mathbf{A} . (Note that \mathbf{A}^{-1} is not defined, so your proof cannot use \mathbf{A}^{-1} .) where \mathbf{P}_i is an orthogonal projection matrix that projects orthogonally onto the nullspace of $\mathbf{L} \lambda_i \mathbf{I}$.