Отчет по лабораторной работе №8: Модель конкуренции двух фирм

дисциплина: Математическое моделирование

Сасин Ярослав Игоревич, НФИбд-03-18

Содержание

Введение	1
Введение Цель работы	1
Задачи работы	2
Объект и предмет исследования	
Модель конкуренции двух фирм	
Модель одной фирмы	
Конкуренция двух фирм	
Выполнение лабораторной работы	
Формулировка задачи из варианта	
Реализация алгоритмов	
- Подключение библиотек	
Функция, описывающая дифференциальные уравнения	
Вычисление коэффициентов	
Построение графика функции	8
Начальные значения	
Решение диффееренциального уравнения и построение графиков	
Построенные графики	
Ruponu	10

Введение

Цель работы

Основной целью лабораторной работы можно считать построение математической модели двух конкурирующих фирм с идентичным товаром. Задайте начальные значения и известные составляющие.

Задачи работы

Можно выделить следующие задачи пятой лабораторной работы:

- 1. изучение модели конкуренции;
- 2. написать код, при помощи которого можно построить графики изменения объемов оборотных средств для случаев, указанных в моем варианте лабораторной работы.

Объект и предмет исследования

Объектом исследования в данной лабораторной работе является модель конкуренции двух фирм, а предметом исследования - случай, представленный в моем варианте лабораторной работы.

Модель конкуренции двух фирм.

Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

N – число потребителей производимого продукта.

S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

М – оборотные средства предприятия

т – длительность производственного цикла

р – рыночная цена товара

 $ilde{p}$ – себестоимость продукта, то есть переменные издержки на производство единицы продукции.

 δ – доля оборотных средств, идущая на покрытие переменных издержек.

 κ – постоянные издержки, которые не зависят от количества выпускаемой продукции.

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{p}{S} = q(1 - \frac{p}{p_{cr}})$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при $p\geq p_(cr)$) и обладает свойствами насыщения. Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - \kappa$$

(2)

Уравнение для рыночной цены р представим в виде

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

(3)

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр у зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла т. При заданном М уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво. В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

(4)

Из (4) следует, что равновесное значение цены р равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq})$$

(5)

Уравнение (2) с учетом (5) приобретает вид

$$\frac{dM}{dt} = M\frac{\delta}{\tau}(\frac{p_{cr}}{p} - 1) - M^2(\frac{\delta}{\tau \tilde{p}})^2 \frac{p_{cr}}{Nq} - \kappa$$

(6)

Уравнение (6) имеет два стационарных решения, соответствующих условию dM/dt=0:

$$M_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

(7)

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta}, b = \kappa Nq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

(8)

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы. При b << a стационарные значения М равны

$$M_{+} = Nq \frac{\tau}{\delta} (1 - \frac{\tilde{p}}{p_{cr}}) \tilde{p}, M_{-} = \kappa \tilde{p} \frac{\tau}{\delta(p_{cr} - \tilde{p})}$$

(9)

Первое состояние M_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние M_- неустойчиво, так, что при $M < M_-$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу M_- соответствует начальному капиталу, необходимому для входа в рынок. В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta = 1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Конкуренция двух фирм

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей какимлибо иным способом.) Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\frac{dM_1}{dt} = -\frac{M_1\delta}{\tau_1} + N_1q(1 - \frac{p}{p_{cr}})p - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2\delta}{\tau_2} + N_2 q (1 - \frac{p}{p_{cr}})p - \kappa_2$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N1 и N2 – числа потребителей, приобретших товар первой и второй фирмы. Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене р. Тогда

$$\frac{M_1}{\tau_1 \tilde{p_1}} = N_1 q (1 - \frac{p}{p_{cr}})$$

$$\frac{M_2}{\tau_2 \tilde{p}_2} = N_2 q \left(1 - \frac{p}{p_{cr}}\right)$$

(11)

где $\tilde{p}1$ и $\tilde{p}2$ – себестоимости товаров в первой и второй фирме. С учетом (10) представим (11) в виде

$$\frac{dM_1}{dt} = -\frac{M_1\delta}{\tau_1}(1 - \frac{p}{\tilde{p_1}}) - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2\delta}{\tau_2}(1 - \frac{p}{\tilde{p}_2}) - \kappa_2$$

Уравнение для цены, по аналогии с (3),

$$\frac{dp}{dt} = -\gamma (\frac{M_1}{\tau_1 \tilde{p_1}} + \frac{M_2}{\tau_2 \tilde{p_2}} - Nq(1 - \frac{p}{p_{cr}}))$$

(13)

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p = p_{cr}(1 - \frac{1}{Nq}(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2}))$$

(14)

Подставив (14) в (12) имеем:

$$\frac{dM_1}{dt} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1$$

$$\frac{dM_2}{dt} = c_2 M_2 - bM_1 M_2 - a_2 M_2^2 - \kappa_2$$

(15)

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{c}r}{\tau_2^2 \tilde{p}_2^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$

(16)

Исследуем систему (15) в случае, когда постоянные издержки (к1, к2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

(17)

Чтобы решить систему (17) необходимо знать начальные условия. Замечание: Необходимо учесть, что значения p_{ct} , \tilde{p}_2 , N указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Выполнение лабораторной работы

Формулировка задачи из варианта

Вариант 26

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - (\frac{b}{c_1} + 0.00016)M_1M_2 - \frac{a_1}{c_1}M_1^2$$
$$\frac{dM_2}{d\theta} = M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1 = 7.5, M_0^2 = 8.5,$$

 $p_{cr} = 40, N = 95, q = 1,$
 $\tau_1 = 30, \tau_2 = 27,$
 $\tilde{p}_1 = 11.5, \tilde{p}_1 = 11.5$

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Реализация алгоритмов

Решение лабораторной работы может быть реализовано на многих языках программирования. В моем случае это язык программирования Python. Далее будет представлен код на этом языке программирования.

Подключение библиотек

Для того, чтобы использовать многие формулы, а также для построения графиков, необходимо подключить определенные библиотеки, в которых эти формулы описаны:

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
```

Функция, описывающая дифференциальные уравнения

Функция для решение системы дифференциальных уравнений имеет вид:

```
#Для первого случая:

def dx(x, t):
    dx1 = x[0] - ((b/c1) * x[0] * x[1]) - ((a1/c1) * x[0]**2)
    dx2 = ((c2/c1)*x[1]) - ((b/c1) * x[0] * x[1]) - ((a2/c1) * x[1]**2)
    return[dx1, dx2]

#Для второго случая:

def dx(x, t):
    dx1 = x[0] - ((b/c1 + 0.00016) * x[0] * x[1]) - ((a1/c1) * x[0]**2)
```

```
dx2 = ((c2/c1)*x[1]) - ((b/c1) * x[0] * x[1]) - ((a2/c1) * x[1]**2)
return[dx1, dx2]
```

Вычисление коэффициентов

Вынесем вычисление коэффициентов в одельные функции:

```
def a(tau,p):
    a = pcr/(tau**2 * p**2 * N * q)
    return a

b = pcr/(tau1**2 * tau2**2 * p2**2 * p1**2 * N * q)

def c(tau,p):
    c = (pcr - p)/(tau * p)
    return c
```

Построение графика функции

Для удобства вынесем построение графиков в отдельную функцию:

```
def draw_plot(x, y, t):
    plt.plot(t, x, label = 'средства фирмы 1')
    plt.plot(t, y, label = 'средства фирмы 2')
    plt.title("Решение дифференциального уравнения")
    plt.xlabel('t')
    plt.ylabel('x(t), y(t)')
    plt.legend()
    plt.grid()
    plt.show()
```

Начальные значения

Начальные условия задаются следующим образом:

```
v0 = np.array([7.5,8.5])
pcr = 40
N = 95
q = 1
tau1 = 30
tau2 = 27
p1 = 11.5
p2 = 9.5

t = np.linspace(0,10,100)

a1 = a(tau1,p1)
a2 = a(tau2,p2)
b = pcr/(tau1**2 * tau2**2 * p2**2 * p1**2 * N * q)
c1 = c(tau1,p1)
```

```
c2 = c(tau2,p2)
theta = t/c1

Peшение диффееренциального уравнения и построение графиков
x = odeint(dx, v0, theta)

xpoint = [elem[0] for elem in x]
ypoint = [elem[1] for elem in x]
```

Построенные графики

draw_plot(xpoint,ypoint,theta)

При запуске получившейся программы получаем следующие графики, (рис. @fig:001, рис. @fig:002):

График изменения объёма оборотных средств с начальными значениями $M_1=7.5,\,M_2=8.5$

График изменения объёма оборотных средств с начальными значениями $M_1=7.5,\,M_2=8.5$ и учётом социального фактора

Выводы

В ходе выполнения лабораторной работы было проведено ознакомление с моделью конкуренции двух фирм, а также построены графики решений для заданных параметров модели.