1 SU1

• 6.2	• 6.18	• 6.40	• 6.59	• 6.75
• 6.7	• 6.24	• 6.53	• 6.60	• 6.79
• 6.8	• 6.27	• 6.57	• 6.70	
• 6.9	• 6.36	• 6.58	• 6.72	• 6.84

6.2 Determine by inspection whether or not the digital filter structures in Figure P6.2 have delay-free loops. Identify these loops if they exist. Develop equivalent structures without delay-free loops.

Figure P6.2

6.7 By using the block diagram analysis approach, determine the transfer function H(z) = Y(z)/X(z) of the digital filter structure of Figure P6.6.

Figure P6.6

6.8 By using the block diagram analysis approach, determine the transfer function H(z) = Y(z)/X(z) of the digital filter structure of Figure P6.7.

Figure P6.7

6.9 Determine the transfer function of the digital filter structure of Figure P6.8 (Kin72).

Figure P6.8

6.18 Show that a Type 1 linear-phase FIR transfer function H(z) of length 2M+1 can be expressed as

$$H(z) = z^{-M} \left[h(M) + \sum_{n=1}^{M} h(M-n) (z^n + z^{-n}) \right]. \tag{6.130}$$

By using the relation

$$z^{\ell} + z^{-\ell} = 2T_{\ell}\left(\frac{z + z^{-1}}{2}\right).$$

where $I_{\ell}(x)$ is the ℓ th-order Chebyshev polynomial 10 in x, express H(z) in the form

$$H(z) = z^{-M} \sum_{n=0}^{M} a[n] \left(\frac{z + z^{-1}}{2} \right)^{n}.$$
 (6.131)

• 7.60

Determine the relation between a[n] and h[n]. Develop a realization of H(z) based on Eq. (6.131) in the form of Figure P6.9, where $F_1(z^{-1})$ and $F_2(z^{-1})$ are causal structures. Determine the form of $F_1(z^{-1})$ and $F_2(z^{-1})$. The structure of Figure P6.9 is called the Taylor structure for linear-phase FIR filters [Sch72].

Figure P6.9 The Taylor structure shown for M = 4.

SU2

- 7.5 • 7.23 • 7.34 • 7.47 • 7.80 • 7.6 • 7.26 • 7.39 • 7.49
- 7.27 • 7.12 • 7.40 • 7.83 • 7.57
- 7.41 • 7.22 • 7.33 • 7.42 • 7.62 • 7.92

SU3

• 7.20

• 7.30

- 8.1 • 8.14 • 8.25 • 8.6 • 8.18
- 8.5 • 8.13 • 8.17 • 8.24 • 8.26

• 8.28 • 8.37 • 8.52

• 8.31 • 8.50 • 8.60

4 SU4

• 9.1 • 9.4 • 9.11 • 9.27 • 9.33

• 9.2 • 9.9 • 9.20 • 9.29

5 SU5

10.1
10.3
10.8
10.2
10.5
10.17