WHAT IS CLAIMED IS:

1 1. A program storage device, comprising:
2 program instructions executable by a processing device to perform operations for
3 estimating motion trials in video image sequences, the operations comprising:
4 providing data points representing information from an image sequence; and
5 performing regression clustering using a K-Harmonic Means function to cluster the

data points and to provide motion information regarding the data points.

- 2. The program storage device of claim 1, wherein the performing regression clustering using the K-Harmonic Means function to cluster the data points and to provide motion information regarding the data points further comprises providing motion vectors for the data points.
- 3. The program storage device of claim 1, wherein the performing regression clustering using the K-Harmonic Means function to cluster the data points and to provide motion information regarding the data points further comprises providing at least one motion path for the data points.

1	4. The program storage device of claim 1, wherein the performing regression	
2	clustering further comprises:	
3	selecting a number of regression clusters, K, for data points from an image sequence;	
4	initializing regression functions for each of the K clusters to estimate the centers of	
5	motion for the data points;	
6	calculating the distances from each data point to each of the K regression functions;	
7	calculating a membership probability and a weighting factor for each data point based	
8	on distances between the K regression functions and each data point;	
9	applying regression clustering using a K-Harmonic Means function to recalculate the	
10	K regression functions;	
11	comparing a change in membership probability and a change in the K regression	
12	function to a predetermined threshold; and	
13	using motion paths represented by the K regression functions when the change in	
14	membership probability and change in the K regression function are less than a	
15	predetermined threshold.	
1	5. The program storage device of claim 4, wherein the initializing regression	
2	functions for each of the K clusters further comprises randomly initializing regression	
3	functions for each of the K clusters.	

6.

1

2	further include	le instructions for performing the operations comprising repeating the
3	calculating th	ne distances, the calculating membership probability and weighting factors, and
4	applying regi	ression clustering until the change in membership probability and change in the
5	K regression	function is not less than the predetermined threshold.
1	7.	The program storage device of claim 4, wherein the weighting factor is chosen
2	to allow the I	K regression functions to be optimized with less sensitivity to initialization of th
3	K regression	functions.
1	8.	The program storage device of claim 4 further comprising extracting data
2		a predetermined criteria to provide the data points.
	0	
1	9.	The program storage device of claim 8, wherein the extracting data according
	to the criteria	comprises portioning data according to color.
1	10.	The program storage device of claim 4, wherein the program instructions
2	further include	le instructions for performing the operations comprising preparing each of the
3	data points as	s x-y-coordinate data points.
1	11.	The program storage device of claim 4, wherein the program instructions
2		le instructions for performing the operations comprising using the K regression
3		ender the image sequence with motion paths shown on a display.

The program storage device of claim 4, wherein the program instructions

2

1	12. The program storage device of claim 11, wherein the using the K regression
2	functions to render the image sequence further comprises overlaying the K regression
3	functions on the video images to show motion between the image sequences.
1	13. A system for estimating motion trials in video image sequences, comprising
2	an image sequence retrieval module for retrieving a current image and a first
3	reference image and providing data points representing information from the current image
4	and the first reference image; and
5	a motion estimator, coupled to the image sequence retrieval module, for performing
6	regression clustering using a K-Harmonic Means function to cluster the data points and to
7	provide motion information regarding the data points.
1	14. The system of claim 13, wherein the motion information regarding the data
2 .	points further comprises motion vectors for the data points.
1	15. The system of claim 13, wherein the motion information regarding the data

points further comprises at least one motion path for the data points.

1	16. The system of claim 13, wherein the motion estimator performs regression
2	clustering by selecting a number of regression clusters, K, for data points from an image
3	sequence, initializing regression functions for each of the K clusters to estimate the centers of
4	motion for the data points, calculating the distances from each data point to each of the K
5	regression functions, calculating a membership probability and a weighting factor for each
6	data point based on distances between the K regression functions and each data point,
7	applying regression clustering using a K-Harmonic Means function to recalculate the K
8	regression functions, comparing a change in membership probability and a change in the K
9	regression functions to a predetermined threshold and using motion paths represented by the
10	K regression functions when the change in membership probability and change in the K
11	regression function are less than a predetermined threshold.

- 1 17. The system of claim 16, wherein the motion estimator randomly initializes 2 regression functions for each of the K clusters.
- 1 18. The system of claim 16, wherein the motion estimator repeats the calculation 2 of the distances, the membership probability and weighting factors, and applies regression 3. clustering until the change in membership probability and change in the K regression 4 function is not less than the predetermined threshold.
- 1 19. The system of claim 16, wherein the weighting factor is chosen to allow the K functions to be optimized with less sensitivity to initialization of the K regression functions. 2
- 1 20. The system of claim 16, wherein the motion estimator extracts data according 2 to predetermined criteria.

1	21. The system of	f claim 20, wherein the motion estimator extracts data
2	according to color.	
1	22. The system of	f claim 16, wherein the image sequence retrieval module
2	prepares each of the data poi	nts as x-y-coordinate data points.
1	23. The system of	f claim 16 further comprising a processor for using the K
2	regression functions to rende	er the image sequence with motion paths shown on a
3	display.	
1	24. The system of	f claim 23, wherein the processor overlays the K
2	regression functions on the v	video images to show motion between the current image
3	and the first reference image.	
1	25. A method for	estimating motion trials in video image sequences, the
2	method comprising:	
3	providing data points representing information from an image sequence; and	
4	performing regression	n clustering using a K-Harmonic Means function to
5	cluster the data points and to	provide motion information regarding the data points.

200314385-1 / HPCO.145PA

		the newforming regression clustering
1		26. The method of claim 25, wherein the performing regression clustering
2	2	further comprises:
3	3	selecting a number of regression clusters, K, for data points from an image
•	4	sequence;
	5	initializing regression functions for each of the K clusters to estimate the
	6	centers of motion for the data points;
	7	calculating the distances from each data point to each of the K regression
	8	functions;
	9	calculating a membership probability and a weighting factor for each data
	10	point based on distances between the K regression functions and each data point;
11		applying regression clustering using a K-Harmonic Means function to
	12	recalculate the K regression functions;
	13	comparing a change in membership probability and a change in the K
	14	functions to a predetermined threshold; and
ο.		using motion paths represented by the K regression functions when the change
	15 16	the respective and change in the K regression functions are less than a
	1′	throshold

27. A system for estimating motion trials in video image sequences, comprising:
means for retrieving a current image and a first reference image and providing data
points representing information from the current image and the first reference image; and
means for performing regression clustering, coupled to the means for retrieving and
providing, wherein the means for performing regression clustering uses a K-Harmonic Means
function to cluster the data points and to provide motion information regarding the data
points.

28. The system of claim 27, wherein the means for performing regression clustering further comprises means for selecting a number of regression clusters, K, for data points from an image sequence, means for initializing regression functions for each of the K clusters to estimate the centers of motion for the data points, means for calculating the distances from each data point to each of the K regression functions, means for calculating a membership probability and a weighting factor for each data point based on distances between the K regression functions and each data point, means for applying regression clustering using a K-Harmonic Means function to recalculate the K regression functions, means for comparing a change in membership probability and a change in the K regression functions to a predetermined threshold and means for using motion paths represented by the K regression functions when the change in membership probability and change in the K regression functions are less than a predetermined threshold.

1	29. A system for estimating motion trials in video image sequences, comprising:	
2	means for storing a current image and a first reference image;	
3	means, coupled to the means for storing, for retrieving and providing data points	
4	representing information from the current image and the first reference image; and	
5	means, coupled to the means for retrieving, for performing regression clustering using	
6	a K-Harmonic Means function to cluster the data points and to provide motion information	
7	regarding the data points.	
1	30. The system of claim 29, wherein the means for performing regression	
2	clustering further comprises:	
3	means for selecting a number of regression clusters, K, for data points from an image	
4	sequence,	
5	means for initializing regression functions for each of the K clusters to estimate the	
6	centers of motion for the data points,	
7	means for calculating the distances from each data point to each of the K regression	
8	functions,	
9	means for calculating a membership probability and a weighting factor for each data	
10	point based on distances between the K regression functions and each data point,	
11	means for applying regression clustering using a K-Harmonic Means function to	
12	recalculate the K regression functions,	
13	means for comparing a change in membership probability and a change in the K	
14	regression functions to a predetermined threshold; and	
15	means for using motion paths represented by the K regression functions when the	
16	change in membership probability and change in the K regression functions are less than a	
17	predetermined threshold.	