#### Generalidades de la materia

Dr. Ing. Rodrigo Gonzalez

rodrigo.gonzalez@ingenieria.uncu.edu.ar

Control y Sistemas

Facultad de Ingeniería, Universidad Nacional de Cuyo



### Resumen

- Introducción
- 2 Horarios
- Metodología
- Cronograma
- 6 Regularización
- Parciales
- Anteproyecto
- 8 Herramientas
- Proyecto final

#### Introducción

- La materia cuenta con 5 unidades.
- 13 clases en total en 2019.
- Se regulariza aprobando 2 parciales.
- Se aprueba presentando un proyecto mecatrónico a nivel simulación.

### Horarios

- Clases: martes de 8:30 a 12:30 hs.
- Consulta: jueves de 14 a 15 hs.
- Mesa: martes de 15 hs en adelante.

# Metodología

- Clases teórico prácticas.
- Primera parte, se dicta la teoría.
- Segunda parte, se realiza la práctica.

# Cronograma

|    | CONTROL y SISTEMAS |                                                                                                 |          |
|----|--------------------|-------------------------------------------------------------------------------------------------|----------|
| No | Fecha              | Tema                                                                                            | Unidad   |
| 1  | 12/03/2018         | Transformada Z. Modelos Discretos.                                                              | Unidad 1 |
| 2  | 19/03/2018         | Representacion finita de numeros reales en formato punto fijo.                                  | Unidad 1 |
| 3  | 26/03/2018         | Representacion finita de numeros reales en formato punto flotante.                              | Unidad 1 |
|    | 02/04/2018         | Feriado                                                                                         |          |
| 4  | 09/04/2018         | Etapas esenciales en DSP.                                                                       | Unidad 2 |
| 5  | 16/04/2018         | Filtros FIR.                                                                                    | Unidad 2 |
| 6  | 23/04/2018         | Filtros IIR.                                                                                    | Unidad 2 |
| 7  | 30/04/2018         | Modelado de sistemas mecánicos, eléctricos y masa-resorte. Introduccion a Simscape / PARCIAL 1. | Unidad 3 |
| 8  | 07/05/2018         | Modelado de sistemas hidráulicos y neumáticos / RECUPERATORIO 1.                                | Unidad 3 |
| 9  | 14/05/2018         | Controladores PID de 1er y segundo orden (PI-D, I-PD).                                          | Unidad 3 |
| 10 | 21/05/2018         | Control óptimo.                                                                                 | Unidad 4 |
| 11 | 28/05/2018         | Filtro de Kalman.                                                                               | Unidad 4 |
| 12 | 04/06/2018         | PARCIAL 2 / Definición de anteproyecto.                                                         | Unidad 5 |
| 13 | 11/06/2018         | Definición de anteproyecto / RECUPERATORIO 2.                                                   | Unidad 5 |

# Regularización

- Tener 75 % de asistencia.
- Participar en clase del 75 % de las actividades prácticas.
- Aprobar los 2 parciales, o sus recuperatorios.
- Presentar un anteproyecto mecatrónico de carácter individual.

#### **Parciales**

- Martes 30 de abril.
- Martes 4 de junio.
- Los parciales se toman en la segunda parte de la clase.
- Se evalúan contenidos teórico prácticos.

### Anteproyecto

- Título del proyecto final.
- Objetivos que se pretenden alcanzar.
- Breve descripción del proyecto a desarrollar con al menos la siguiente información:
  - Descripción de la planta a controlar.
  - Identificación de las variables de entrada y salida del sistema.
  - Tipo de control a implementar.
  - Herramientas de simulación que se usarán.

### Herramientas

- MATLAB.
- SIMULINK / SIMSCAPE.
- Programación en C.
- Todas las filmimas se pueden bajar de http://github.com/rodralez/control.

# Proyecto final

- Se debe modelar y controlar un sistema mecatrónico a nivel simulación de mediana complejidad.
- El alumno debe tratar de solucionar un problema real.
- El control del sistema debe ser discreto. Se pueden utilizar controladores PID o en espacio de estados.
- Se debe incluir el modelado de un sensor ruidoso a la salida del sistema. Se debe usar un filtro anti-aliasing y proponer un filtrado adicional con el objetivo de mitigar el ruido.
- Se debe demostrar una correcta respuesta del sistema completo ante la presencia de ruido y perturbaciones.
- El uso de precisión punto fijo para la implementación del controlador discreto y los algoritmos de DSP se considera un plus.
- Se debe redactar un informe del proyecto final desarrollado.