${\rm FYS2130~Oblig~2}$

Daniel Heinesen, daniehei

4. februar 2017

Diskusjonsspørsmål.

1 3)

Q-verdien er gitt ved

$$Q = \frac{f_0}{\Delta f}$$

hvor f_0 er resonansfrekvensen, og Δf er halvverdibredden. Jo høyere f_0 er jo høyere er Qverdien, men jo større Δf er jo mindre er den. Systemer med høyere resonansfrekvens vil kunne ha litt større Δf og likevel ha en høy Q-verdi, sammenlikned med systemer med lav resonansfrekvens, hvor Δf må være lav for å få en høy Q-verdi.

4)

Vi kan skrive om slik at

$$\Delta f = \frac{f_0}{Q}$$

Om vi ønsker å kunne bedre skille mellom lyder på Δf bli mindre. Gitt at Q-verdien holder seg konstant, så må derfor f_0 bli lavere. Vi ville derfor ikke kunne høre lyder men høy frekvens.

5)

FYLL INN MER HER!

De to resonanstypene kan sammenfalle, men bare vist man ikke har noe dempning i systemet.

6)

Amplituden til et svingesystem er gitt ved

$$A = \frac{F/m}{\sqrt{(\omega_0^2 - \omega_F^2)^2 + (\omega_F b/m)^2}}$$

Vi ser at om det ikke er noe dempning, så vil b=0. Og om påtrykket har resonansfrekvens vil $(\omega_0^2-\omega_F^2)^2=0$. Da vil amplituden gå mot uendelig.

Om påtrykksfrekvensen er litt forskjellig fra resonansfrekvensen vil $(\omega_0^2 - \omega_F^2)^2$ være veldig liten, men ikke null. Så amplituden vil være VELDIG stor, men ikke uendelig.

Regneoppgaver.

12)

Q-faktoren kan defineres som

$$Q = \frac{f_0}{\Delta f} \tag{1}$$

hvor f_0 er resonansfrekvensen, og Δf er halvverdibredden. For å kunne få inn radiokanalen trenger kretsen en resonansfrekvens som er lik frekvensen radiostasjonen. Så $f_0=1313 \mathrm{kHz}$. Vi vil også at resonansfrekvensen til kretsen ikke skal kunne nærme seg frekvensen til en annen radiostasjons. Siden de er avskilt med minst 9kHz setter vi $\Delta f=9\mathrm{kHz}$. Vi får da at kretsens Q-verdi skal være

$$Q = \frac{1313}{9} = 145.9$$

13)

a)

Fra (3.15) vet vi at

$$\Delta t = \frac{QT}{2\pi} = \frac{Q}{2\pi f}$$

Dette er tiden det tar før lydbølgen er 1/e av initial energien. Vi vil at lyden flaggermusen lager skal rekke å sprette i veggen og kommet tilbake til flaggermusen før dette skjer. Vi vet at lyden har en fart på v=340m/s, vi kan ganne Δt med dette for å få en avstand.

$$s = \frac{Qv}{2\pi f}$$

Men dette er bare en vei, men lyden må gå fra flaggermusen til veggen, og så tilbake igjen. Denne veien S er S=2s

$$S = \frac{Qv}{\pi f}$$

Setter vi inn frekvene flaggermusen kan lage f=[40kHz,100kHz], får vi at lyden har gått S=[0.11m,0.27m]. Avstanden til selve veggen er halvparten av dette. Så minste avstanden til veggen er 0.55m

b)

Vi kan sette inn f = 1000 Hz.

$$S = \frac{Qv}{\pi f} = 10.8 \text{m}$$

Avstanden flaggermusen nå kan merke veggen er 5.4m

18)

a)

Vi kan sammenlikne (3.7)

$$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{1}{C}Q = V_0\cos(\omega_F t)$$

med (3.1)

$$\ddot{z} + \frac{b}{m}\dot{z} + \omega_0^2 z = \frac{F}{m}\cos(\omega_F t)$$

Vi ser at begge er differensiallikninger på samme form. Eneste forskjellen er konstantene. Sammenlikner vi disse kan vi se at

$$\frac{b}{m} = \frac{R}{L}, \qquad \omega_0^2 = \frac{1}{LC}, \qquad \frac{F}{m} = \frac{V_0}{L}$$

og at

$$b = R, \qquad m = L, \qquad k = \frac{1}{C}$$

 ${
m Vi}$ kan bruke disse relasjonene til å finne faseskiftet, amplituden og Q-verdien for serie-RCL-kretsen.

$$\cot \phi = \frac{\omega_0^2 - \omega_F^2}{\omega_F \frac{b}{m}} = \frac{\frac{1}{LC} - \omega_F^2}{R \frac{V_0}{L}}$$

$$A = \frac{F/m}{\sqrt{(\omega_0^2 - \omega_F^2)^2 + (\omega_F b/m)^2}} = \frac{V_0/L}{\sqrt{(\frac{1}{LC} - \omega_F^2)^2 + (\omega_F R/L)^2}}$$

$$Q = \sqrt{\frac{mk}{b^2}} = \sqrt{\frac{L}{R^2C}}$$

b)

Vi har fått oppgit at for denne kretsen er $R=1.0 \mathrm{ohm},\, C=100 \mathrm{nF}$ og $L=25 \mu \mathrm{H}.$

Faseresonansen til kretsen er

$$f_{fase.res.} = \frac{1}{2\pi}\omega_0 = \frac{1}{2\pi}\sqrt{\frac{1}{LC}} = 100.7 \text{kHz}$$

Ampituderesonansen er gitt ved

$$f_{amp.res.} = \frac{1}{2\pi} \sqrt{\omega_0^2 - \frac{b^2}{2m^2}} = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}} = 100.6 \text{kHz}$$

 $\mathbf{c})$

Vi kan finne Q-verdien med

$$Q = \sqrt{\frac{L}{R^2C}} = 15.8$$

d)

Ved faseresonanse er

$$f_{fase.res.} = \frac{1}{2\pi}\omega_0$$

Ganger vi dette med 2π får vi

$$2\pi f_{fase.res.} = \omega_{fase.res} = \omega_0$$

Setter vi dette inn for ω_F får vi at

$$\omega_0^2 - \omega_F^2 = 0$$

Ser vi på uttrykket for faseskifte ser vi at

$$\cot \phi = 0$$

Dette gir oss en faseforskjell på $\pi/2$.

Om vi bruker at

$$\omega_F = \omega_0 + \frac{\Delta\omega}{2} = \omega_0 + \frac{\omega}{2Q}$$

Får vi at

$$\omega_0^2 - \omega_F^2 = -\frac{5\omega^2}{4Q}$$

Da blir

$$\cot \phi = -\frac{5L}{4\sqrt{LC}(1+\frac{1}{LC})}$$

Da er faseforskjellen

$$\phi = -0.6896$$