## **Software Measurement - 6611**

Assignment - 2

Saswati Chowdhury - 40184906

#### 1.1.

a) Averaging: mean, median, standard deviation:

## [Calculated in Excel Sheet]

**Mean:** mean is the numerical average of data set. It is calculated by adding all the SLOC values of the students and then dividing it by the total number of students.

**Median:** Median is the number that is in the middle of a set of data.

- Arrange the SLOC values in the set in order from least to greatest.
- Then find the number that is in the middle.

**Standard Deviation:** The standard deviation is the average amount of variability in your dataset. It tells you, on average, how far each value lies from the mean.

| Mean  | Median | Standard Deviation |
|-------|--------|--------------------|
| 40.76 | 26     | 45.47926745        |



#### b) Box Plot:

**Step 1:** Order (increasing): [set of attribute values (SLOC) obtained from A1\_Data\_SLOC-Effort-add-your-data]

10, 12, 15, 15, 15, 17, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 23, 23, 26, 26, 26, 26, 26, 27, 27, 28, 30, 31, 32, 34, 37, 39, 42, 42, 44, 49, 51, 53, 58, 73, 115, 128, 135, 280

Step 2: Median - 26

Step 3: Lower and Upper Quertiles(Fourths) -

LQ(Lower Forth) =  $\frac{1}{4}$  \*(n +1) and round to the nearest integer; the measure with this rank represents the lower quartile.

= round (
$$\frac{1}{4}$$
 \* 48) -> 12<sup>th</sup> position

$$LQ = 20$$

 $UQ(Upper Forth) = \frac{3}{4} * (n + 1)$  and round to the nearest integer; the measure with this rank represents the upper quartile.

= round (
$$\frac{3}{4}$$
 \* 48) ->  $36$ <sup>th</sup> position

$$UQ = 42$$

**Step 4:** Box Length - the 'distance' between the lower to upper fourth:

=UQ-LQ

=42-20

=22

**Step 5:** Upper and Lower Tails:

multiplying the box length by 1.5 (22x1.5=33)

adding and subtracting 9 from the upper and lower forths

Upper Tails: UQ+33

=42+33

=75

Lower Tails: LQ-33

$$=20-33 -> 0$$

Here, lower tail is truncated at 0 because a negative number of paths is not meaningful.

Acceptable Range: [Lower forth, Upper forth]

[20..42]

(20, 20, 20, 21, 23, 23, 23, 26, 26, 26, 26, 26, 26, 27, 27, 28, 30, 31, 32, 34, 37, 39, 42, 42)

**Quick Review:** [lower tail .. lower forth[ U ]upper forth .. upper tail] [0..20] U [42..75]

(10, 12, 15, 15, 15, 17, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 23, 23, 26, 26, 26, 26, 26, 26, 27, 27, 28, 30, 31, 32, 34, 37, 39, 42, 42, 44, 49, 51, 53, 58, 73)

**Range of outliers:** Components that are statistical outliers with values greater than the upper tail or less than the lower tail

>75

(115, 128, 135, 280)

#### 1.2) Bar Chart:



The maximum effort in the excel sheet is shown by the student **P21**. He wrote 115 SLOC in JavaScript in 215 person-minutes. As a result, this student's productivity is 0.53. The minimum effort is by two students (**P5** and **P6**). They both used 11 person-minutes for the programming language Java, and their SLOCs are 17 and 19 respectively. Also there are three students whose effort exceeds 150 person-minutes.

### 2.1.

### a) Scatter Plot: [attached in the excel sheet]



In this graph I observed 4 data points that are atypical, and those are P21 (115,215), P28 (128,180), P26(135,90), P44 (280,45). These are not organized the same way as the other points.

## b) Correlation Analysis:

[calculated in the excel sheet A1-data(Correlation Analysis)]



So, correlation coefficient is **0.408133**, which is just greater than 0 but less than 1. Hence, we can say that the correlation between Length and Effort is **not true**.

# b) Regression Analysis:

[Calculated in Excel sheet A1-data (Regression Analysis)]





Regression Equation =  $y = \beta 1x + \beta 0$ 

$$\beta 1 = 0.4182$$

$$\beta 0 = 33.62752$$

So, 
$$\hat{y} = 0.4182X + 33.62752$$

The relation between the independent variable (SLOC) and the dependent variable (Effort) is **linear.** 

#### 2.2) Assumption in effort estimation model:

- Experience of the programmer in the particular programming language
- Clear requirement in order to develop it
- Buffer time added for detecting the bug and resolving it
- Previous experience of the same kind of development
- Size (depends on the requirements. Too many requirements or less?)

**3.1)** [Calculated in the Excel Sheet – Test A2 data]

Estimated Effort calculation : = 0.4182X + 33.62752

= 0.4182 \* SLOC + 33.62752

**3.2)** Coefficient of determination(R-square)

[Calculated in Excel sheet - Test A2]

R-square = MSS/TSS

= 4724.63492/97955.90346

= 0.048232263



As R-square value is 0.048232263 which means it is less than 0.5. Hence, this result implies that the relationship is **not reliable** for planning purposes.