Name:	NetId:
	legible please!
Recitation section:	
□ 005 - 09:45 - 209 - Zhuang Su	\square 008 - 09:45 - 303 - Vlad Margarint
\square 006 - 11:15 - 209 - Zhuang Su	\square 009 - 11:15 - 303 - Vlad Margarint
□ 007 - 14:45 - 209 - Zhuang Su	\square 010 - 14:45 - 303 - Vlad Margarint

Calculus Fall 2021 – Exam 01

DO NOT OPEN YET

...and wait until the proctor announces that it is time to start.

In the mean time, please write your name and NetID **legibly**, mark your lecture and recitation sections, and read the instructions below carefully.

- * Do not unstaple nor remove pages from this booklet.
- * Write your solution within the corresponding box.
- * All the important steps must be justified.
- * All the space outside boxes is scratch paper, and will be ignored when grading.
- * The back side of each page is also scratch paper.

Exercise	Grade
1	/10
2	/10
3	/10
4	/10
5	/10
Total	/50

$$\lim_{x \to 2} \frac{\sqrt{x^2 + 3x - 1}}{2x - 1}$$

$$\lim_{x \to -1^{-}} \frac{x^2 - 1}{2x^2 - 6x - 8}$$

$$\lim_{x \to 3^+} \frac{x^2 + x - 6}{x^2 - 7x + 12}$$

$$\lim_{x\to +\infty}\tan^{-1}(\log_{10}(x))$$

$$\lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x^2 - 4x + 3}$$

$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + x - 1}}{2x + 10}$$

Draw the graph of a function f satisfying:

For what values of the constants A and B is the function

$$f(x) = \begin{cases} 4 - 2x + A, & x < 1, \\ 1, & x = 1 \\ 2B + x^2, & x > 1. \end{cases}$$

continuous at the point a = 1? Justify.

Show that the equation $x^{10} + 2x = 2^x$ has a solution in (0,1).

Find the finite or infinite limit, or explain why it does not exist: $\lim_{x\to 3} |x-3| \cos\left(-\frac{1}{x-3}\right)$.

Use the given graph of $f(x) = \frac{x^2}{4}$ to find a number $\delta > 0$ such that

if $|x - 3.1| < \delta$ then $\left| \frac{x^2}{4} - 2.5 \right| < 1.5$

$$\left|\frac{x^2}{4} - 2.5\right| < 1.5$$

Find the derivative (or show that it does not exist) of the function $f(x) = x^2 + |x^3|$ at the point a = 0.

Use the given graph of the function f to sketch the graph of its derivative f'.

