База знаний по проектному управлению и управлению рисками

Введение

В условиях высокой сложности и многозадачности крупных проектов, особенно в промышленности, возрастает нагрузка на управленческий персонал. Целью данной работы является создание концепции интеллектуального помощника, который бы автоматизировал рутинные функции анализа, мониторинга и поддержки принятия решений, облегчая работу руководства проекта. В основе решения лежит база знаний, сформированная из открытых источников крупнейших российских компаний (СИБУР, РОСАТОМ, РУСАЛ и др.).

1 Цель и задачи разработки помощника

- Повышение эффективности управления проектами за счёт автоматизации рутинных решений.
- Поддержка оценки рисков и отклонений по ключевым метрикам.
- Ведение базы знаний на основе лучших корпоративных практик.
- Поддержка сценарного анализа и генерации альтернативных решений.

2 Анализ открытых данных компаний

No	Что искать	Ключевые слова	Что выписывать	Зачем это помощнику
1	Управление	инвестиционные	Модель	Основа понимания хода
	проектами	проекты, Value	управления,	проекта
		Engineering	контроль, роли	
2	Классификация	риск-менеджмент,	Типы рисков, меры	Чтобы оценивать и
	рисков	сценарный анализ	реагирования	предотвращать риски
3	ИИ и	цифровизация,	Где применяется	Для генерации
	цифровизация	ИИ, предиктивная	ИИ	сценариев и RAG
		аналитика		
4	ESG и	ESG,	Стратегии и риски	Чтобы учитывать
	устойчивость	декарбонизация,	ESG	внешние ограничения
		углеродный след		
5	Органы	проектный офис,	Кто за что отвечает	Помощник может знать,
	управления	совет директоров		кому сообщить
6	Метрики и KPI	эффективность,	Сроки, бюджеты,	Для выявления
		результативность	выработка	отклонений

7	Контроль и аудит	мониторинг,	Механизмы	Помощник может
		контроль	контроля	следить за выполнением
		исполнения		
8	Стандарты и	регламенты, шкалы	Внутренние	Можно использовать для
	методы	оценки	классификаторы	обучения модели

2.1 СИБУР

Раздел / Источник	Выдержка / Ключевая	Комментарий
	информация	
Перспективы развития	«СИБУР активно вовлечен	ИИ применяется
и цифровизация	в НИОКР моделирование	в исследованиях
	полимеров и их свойств с	и цифровых
	применением ИИ»	экспериментах —
		фундамент для RAG и
		сценарного анализа.
Инвестиционные	«Укрепляется функция	Развита методология
проекты	проектного управления Value	проектного контроля,
	Engineering база знаний по	включая предиктивный
	реализуемым проектам»	анализ и накопление
		опыта.
Раздел "Ключевые	«Риски: макроэкономический,	Даётся классификация
риски"	геополитический,	рисков + меры
	логистический,	управления, сценарный
	информационный, ESG,	анализ, диверсификация,
	инвестиционный»	контроль подрядчиков.
Раздел об устойчивом	«Обновлена стратегия	Интеграция ESG и
развитии	устойчивого развития ESG-	климатических рисков в
	рейтинг на уровне AAA.esg»	КРІ проектов. Оценка
		и декарбонизация как
		часть стратегических
		проектов.

2.2 POCATOM

Раздел / Источник	Выдержка / Ключевая	Комментарий
	информация	
Нормативные	«Оценка технологического риска	Формализованный
документы	включает расчет финансовых	подход с выручкой,
«Управление рисками	потерь и выгод интегральная	вероятностью и
при обращении с ОЯТ	оценка значимости»	последствиями.
и РАО» (Росатом)		
Отчёт по	«Созданы структуры по	Наличие отдельного
цифровизации	внутренней цифровизации	подразделения для
(«Русатом-Цифровые	атомной отрасли»	цифровых проектов.
решения»)		

Раздел / Источник	Выдержка / Ключевая	Комментарий
	информация	
ESG-отчет 2023	«Подтверждён уровень "А" в	Корпоративная зрелость
	ESG-рейтинге полностью	ESG-управления на
	управляет ESG-рисками»	высоком уровне.
Общий публичный	«В 2023 проходили слёты	Системный подход к
отчёт 2023	лидеров безопасности комитет	культуре безопасности.
	— часть системы управления»	
Инфраструктурные	«Строительство ЦОД рядом с	Примеры больших
цифровые проекты	Калининской АЭС в рамках	цифровых проектов,
	цифровой экономики»	обеспечение
		ИТ-инфраструктуры.

2.3 РУСАЛ

Раздел / Источник	Выдержка / Ключевая	Комментарий
	информация	
Sustainability Report	«специфические выбросы	Отражено снижение
2023	парниковых газов снижены	климатических рисков
	на 6.7%, удельные выбросы в	через количественные
	электролизе — на 11.4 %»	KPI.
Управление «Оценка климатических ри		Используется сценарный
климатическими	выполнена по трём сценариям	анализ — готовый кейс
рисками	SSP 126, 245, 585 с оценкой	для моделирования
	влияний»	помощником.
CDP / ESG-пресс-релиз	«RUSAL получил рейтинг CDP	Усиленная ESG-
2025	«А-» оценивает и управляет	практика с признанием
	климатическими рисками с 2015	международных
	года»	стандартов.
АІ для контроля	«RUSAL внедряет	Конкретный пример
плавки (июль 2025)	искусственный интеллект	ИИ-проекта для
	для мониторинга технологии	контроля процессов
	плавления — ИИ снижает риск	и качества.
	низкого качества сплава»	
Устойчивое развитие —	«Горизонт стратегий до 2035 г.—	Долгосрочная ESG-
сайт компании	цель: углеродная нейтральность,	стратегия — база
	эфффект декаплинга»	для стратегического
		мониторинга в
		помощнике.

3 Гипотезы для мониторинга проекта

Помощник использует набор формализованных правил для оценки состояния проекта. Ниже представлены ключевые гипотезы, основанные на типовых отклонениях и лучших практиках управления.

ID	Гипотеза	Комментарий / Основание
H1	Если отклонение по срокам	Используется в системе оценки
	задач > 15% от базового	инвестиционных проектов (СИБУР,
	графика, то проект попадает в	ROSATOM).
	жёлтую зону риска.	
H2	Если бюджет превышен более	Типовой предел управления
	чем на 10% — пометить	САРЕХ/контроля затрат.
	как "рисковое отклонение"	
	и инициировать повторную	
	оценку.	
H3	Если в течение 2 недель	Используется для выявления скрытых
	подряд фиксируются	отклонений (набор слабых сигналов).
	отклонения по 3 и более КРІ	
	— система предупреждает	
	руководителя.	
H4	Если уровень ESG-	На базе данных из отчётов РУСАЛ и
	показателей падает ниже	POCATOM.
	внутреннего порога	
	(например, выбросы СО2	
	выросли > 5%), проект	
	помечается как "критичный	
11.5	по устойчивости".	
H5	Если подрядчик пропускает	Стратегия управления подрядчиками у
	более 1 контрольной	СИБУРа.
	точки подряд — вывести	
IIC	рекомендацию по замене.	C COD / WEF : 1
H6	Если вероятность наступления	Сценарные расчёты SSP / WEF risk maps
	любого риска > 70%,	применимы.
	активировать сценарный	
Ц7	анализ.	По аналогии с ИИ-кейсом РУСАЛ (контроль
H7		
	1	плавки).
	(например, в технологическом	
	контроле), приостановить операции и инициировать	
	ручную проверку.	

4 Концепция сценарного моделирования реализации проекта

Сценарное моделирование используется для анализа потенциальных отклонений и выработки решений в условиях неопределённости. Интеллектуальный помощник использует данные о текущем состоянии проекта, вероятностях рисков и внешних ограничениях для генерации альтернативных графиков и рекомендаций.

4.1 Входные данные для моделирования

- Базовый график проекта (этапы, сроки, зависимости);
- Структура рисков (вероятности, влияние, тип);

- Текущие метрики: отклонение по срокам и стоимости;
- ESG-ограничения и внешние сценарии (например, SSP 1-2.6, 2-4.5, 5-8.5);
- Данные о подрядчиках и их надёжности;
- Пользовательские параметры: приоритеты (стоимость/время/качество).

4.2 Выходные сценарии

- Альтернативные графики реализации (перестановка задач, замена подрядчиков);
- Вероятностная оценка завершения проекта в срок и в пределах бюджета;
- Рекомендации по снижению рисков;
- Режим «что если» (What-If) анализ ключевых решений.

4.3 Алгоритм сценарного анализа (концептуально)

- 1. Получить текущие данные проекта;
- 2. Проверить срабатывание гипотез мониторинга;
- 3. При выявлении угроз построить дерево сценариев:
 - Ветвление по типу риска (время, ресурсы, регуляторика);
 - Варианты реакции: ускорение, перераспределение, замена подрядчиков;
 - Расчёт вероятности выполнения сценария.
- 4. Предложить пользователю топ-3 наиболее вероятных/эффективных сценария.

Сценарное моделирование помощника управления проектами

Figure 1: Блок-схема сценарного моделирования проекта

4.4 Пример сценария

Условие: Поставка оборудования задерживается на 2 недели. **Риски:** Отклонение от графика, простой подрядчиков, штрафы.

Сценарии:

- С1: Ускорение следующих этапов за счёт перераспределения ресурсов;
- С2: Заказ аналогичного оборудования у резервного поставщика;
- С3: Продление сроков на 2 недели с уведомлением заказчика и перерасчётом бюджета.

Помощник оценивает каждый сценарий по вероятности успеха, стоимости, влиянию на КРІ и предлагает наиболее сбалансированное решение.

5 RAG-архитектура интеллектуального помощника

Retrieval-Augmented Generation (RAG) — это архитектура, при которой модель дополнительно использует внешние документы при генерации ответа. Вместо генерации "из головы", помощник сначала извлекает релевантные данные из базы знаний, и только затем формирует ответ на вопрос.

5.1 Компоненты архитектуры

- Интерфейс пользователя текстовое поле или АРІ, куда поступает вопрос.
- Модуль векторизации преобразует вопрос в вектор (с помощью модели типа BERT, SBERT, OpenAI embeddings и т.д.).
- **Векторная база данных** FAISS, ChromaDB, Weaviate и др. Хранит документы в виде векторов.
- **Механизм поиска (retriever)** находит наиболее близкие документы к вопросу.
- Генератор (generator) LLM (GPT, Mistral, LLaMA и др.), которая генерирует ответ на основе найденных документов.

5.2 Преимущества подхода

- Ответы опираются на актуальные, проверенные источники (например, отчёты компаний).
- Нет необходимости дообучать модель при каждом обновлении данных.
- Возможна проверка обоснования ответа (цитирование документа).
- Удобно реализуется на практике с помощью LangChain, Haystack или собственного пайплайна.

5.3 Пример работы в контексте проекта

Запрос пользователя: «Какие риски учитывает СИБУР при реализации инвестиционных проектов?» **Шаги:**

- 1. Векторизуется запрос.
- 2. Из векторной БД извлекается фрагмент из годового отчёта СИБУР, содержащий список рисков.
- 3. Генератор LLM формирует ответ: «СИБУР выделяет следующие ключевые риски: макроэкономическ геополитический, логистический, регуляторный...»

5.4 Блок-схема архитектуры

RAG-архитектура интеллектуального помощника

6 Формирование обучающего датасета для fine-tuning

Для адаптации языковой модели к контексту управления проектами и специфике российской промышленности подготовлен обучающий набор данных в формате jsonl, содержащий пары «вопрос—ответ» на основе анализа годовых отчётов, внутренних регламентов, сценариев и гипотез мониторинга.

6.1 Формат данных

Каждая строка в датасете — это JSON-объект следующего вида:

```
{"prompt": "<question or situation>", "response": "<assistant's response>"}
```

6.2 Примеры обучающих пар

```
{"prompt": "What are the key risks that SIBUR considers when implementing projects?",

"response": "SIBUR identifies the following risks: macroeconomic, geopolitical, regulatory, commodity, logistics, and IT risks. Each of these risks is assessed based on its likelihood and impact."}

{"prompt": "Our contractor failed to meet the second consecutive checkpoint. What should we do?",

"response": "It is recommended to initiate a contractor audit and consider replacing the contractor. This strategy is used in SIBUR's policy. It is also worth recalculating the schedule and assessing the impact on the critical path."}

{"prompt": "The project plan is 17% behind schedule. Should I be concerned?",

"response": "Yes, according to hypothesis H1, a deviation of more than 15% in terms of time puts the project in the yellow risk zone. It is necessary to analyze the causes and develop corrective measures."}
```

6.3 Источники для генерации обучающего набора

- Годовые и устойчивые отчёты компаний: СИБУР, РОСАТОМ, РУСАЛ;
- Внутренние проектные документы и практики;
- Гипотезы мониторинга состояния проекта;
- Стандартные кейсы: задержки, перерасход бюджета, ESG-отклонения, неустойки, сбои подрядчиков;
- Сценарии What-If анализа.

6.4 Объём и требования к датасету

- Количество примеров: от 200 до 2000 строк для начального обучения;
- Язык: русский (возможно добавление англ. дублей);
- Стиль: нейтральный, деловой, профессиональный;
- Допустимые форматы: . jsonl, .csv, .xlsx (для последующей конвертации).

6.5 Используемые модели для fine-tuning

- LLaMA 2 / Mistral / OpenChat;
- GPT-3.5-turbo с функцией fine-tune через OpenAI API;
- Модели на базе HuggingFace Transformers (например, BERT, Falcon).

6.6 Темы и области охвата обучающего датасета

Для обеспечения полноты и тематического покрытия обучающего набора данных, все примеры классифицированы по ключевым направлениям. Это позволяет точно адаптировать модель к задачам проектного управления.

№	Тема	Примеры вопросов	Примеры ответов (re-
		(prompt)	sponse)
1	Риски	Какие ключевые риски	Перечисление типов
		учитывает СИБУР?	рисков, рекомендации
		Что делать при росте	по управлению, ссылка на
		логистических затрат?	оценочную модель
2	Сроки / графики	Сроки отстают на 17%, что	Генерация сценариев:
		делать?	пересчёт графика,
		Поставка оборудования	перераспределение задач,
		задерживается на 2 недели	использование буферов
3	Бюджет и	Проект выходит за бюджет	Сценарий перерасчёта
	стоимость	на 12%	бюджета, активизация Value
		Как контролируется	Engineering, уведомление
		CAPEX?	заказчика
4	KPI	Мы не достигли трёх КРІ	Гипотеза Н3: система
		подряд — это опасно?	фиксирует угрозу,
			предлагает анализ и отчёт
5	ESG/устойчивость	Выбросы СО ₂ выросли на	ESG-триггер, активация
		5%	сценариев SSP,
		Как проект может попасть в	рекомендации по снижению
		красную зону по ESG?	углеродного следа
6	Подрядчики	Подрядчик сорвал 2	Анализ контракта,
		контрольные точки	рекомендации по
		Как реагировать на	замене, подключение
		подрядчиков с плохой	альтернативного
		историей?	исполнителя
7	ИИ и сбои	Сбой в системе	Остановка операций,
		ИИ-мониторинга качества	переход на ручной режим,
		Что делать при	уведомление руководства
		недостоверных данных?	

7 Выводы

Подготовлена концепция интеллектуального помощника, включающего в себя механизм анализа рисков, генерации сценариев, базу знаний по корпоративным практикам и технологическую архитектуру на базе RAG-подхода. Следующим шагом может быть реализация MVP-версии.