[1.6] The "Skeleton" of Calculus

I think Poop mean "skeleton" in the sense of "gopporting structure" here.

If the question is: "Why does Calculus work?", the answer is,

amazingly, because of the LUB property of IR!

Let $[a,b] \subseteq \mathbb{R}$. Recall: $f:[a,b] \longrightarrow \mathbb{R}$ is continuous if, for each $\times \varepsilon[a,b]$,

For all $\varepsilon > 0$ there is some $\delta > 0$ s.t. $\forall y \in [a,b]$, $|x-y| < \delta \Rightarrow |f(x)-f(y)| \ll \varepsilon$.

Thm: If f is continuous on [a,b], then f([a,b]) is bounded.

Proof: For x e [a,b], define $V_x = \{f(t) \mid a = t \leq x\}$.

Let $X = \{x \in [a,b] \mid V_x \text{ is bounded} \}$. If we can show that beX, we will be done.

First note that acx, since Va= {f(a)}, which is trivially bounded.

Next, we see that b is an upper bound for X since X=[a,b].

Thus, the LUB property guarantees that c= lub X exists.

Since f is continuous, there is some 870 s.t. when $|x-c|<\delta$, then |f(x)-f(c)|<1.

We know there is some $x \in X$ with $c-\delta < x \leq C$. Consider the intervals: $[a, x] \cup [x, c]$ separately:

f([a,x]) = Vx which is bold since x EX, and

f([x,c]) is also bounded; we have $f([x,c]) \subseteq (f(c)-1, f(c)+1)$.

Let $V_c = V_X u (f(c)-1, f(c)+1)$. V_c is bounded, so $c \in X$.

Now if $c \times b$, consider the interval $[c, c+\delta)$. There would be some elementy here which is less than b, and it would also be in $(fcs-1, fcs+1) \sim thos Vy would be bounded, contradicting that <math>c=(...b. X)$.

i. c=b, so be X, and we are done. \square

Thm: If f is continuous on [a,b], then there exist $x_0 \in [x, x_i \in [a,b]]$ s.t.:

for all $x \in [a,b]$, $f(x_0) \leq f(x) \leq f(x_i)$ (f achieves its minimum and maximum values)

Proof: let $M = \text{lub } \{f(t) \mid t \in [a,b]\}$ (Q: how do we know $M \in \text{crists}$?)

Define $X = \{x \in [a,b] \mid \text{lub } V_x < M\}$, and consider f(a).

If f(a) = M, we are done, (Q: which about the munimum?)

So suppose f(a) < M. Thu $a \in X$, so $c = \text{lub } X \in \text{crists}$.

Assume that f(c) < M as well. Thus let $E = \frac{M - f(a)}{2}$. There is

Some $\{x > 0\}$ s.t. whenever $|x - c| < \delta$, we have $|x - c| < \delta$.

Now $|x - c| = |x - c| < \delta$, we have $|x - c| < \delta$.

As in the last proof, we cannot have $|x - c| < \delta$, so $|x - c| < \delta$.

But if $|x - c| < \delta$, then $|x - c| < \delta$.

This gives:

M=10b { f(t) | te[a,b]} \leq 10b { V_t | te[a,b]} < M }
Our assumption must be wrong, and f(c) = M.
Thus f achieves its maximum on [a,b] (at c). \square

(Q: What about the minimum????)

Thm: Intermediate Value Theorem: Suppose f is continuous on [a,b].

Thun for every $Y \in [f(a), f(b)]$ then is some $C \in [a,b]$ with f(c) = Y.

(word, $f(a) \in f(b)$)

Proof: Let $X = \{x \in [a,b] \mid lub_x \leq Y\}$, and let c = lub X (Q: why does cexist?)

• Suppose f(c) < Y. Then there is some S > 0 s.t. whenever |t-c| < S then |f(t)-f(c)| < Y-f(c). In other words,

for all $t \in (c-\delta, c+\delta)$, -(Y-f(c)) < f(t)-f(c) < Y-f(c) $\Rightarrow -Y + 2f(c) < f(t) < Y$

which means c+8/2 eX, a contradiction.

• Suppose that f(c) > V. Then there is some 8>0 s.t.

whenever |t-c| < 8 than |f(t)-f(c)| < f(c)-Y, so

that: f(t) > Y for all t ∈ (c-8, c+8).

Thus c-8/2 is an upper bound for X, another contradiction.

• We must therefore here f(c)=Y, and we are done. □

Thm: (#43): If f is continuous on [a,b], then it is uniformly continuous; $\forall \epsilon > 0 \exists \epsilon > 0 \text{ s.t. } \forall x,y \in [a,b], |x-y|<\delta \Rightarrow |f(x)-f(y)|<\epsilon.$

Proof: Let $\epsilon > 0$. Define $A_{\delta} = \{ u \in [a,b] \mid \forall x,t \in [a,u] \text{ with } |x-t| < \delta \}$.

then $|f(x) - f(t)| < \epsilon \}$.

Note that a ∈ A, since if x it are in [a,a] thun x=t.

Thus c= lub A exists, and we must show that c=b.

Suppose that CKb (it's clear that CKb by the definition of A).

Since f is continuous, there is some $\delta_1>0$ sit. $|t-c|<\delta\Rightarrow|f(t)-f(c)|<\epsilon/2$.

And since $c = l \cup bA$, there is some $\delta_2 > 0$ s.t., $\forall x, t \in [a, c)$, $|t-x| < \delta_2 \Rightarrow |f(x) - f(t)| < \epsilon/2$.

Let $\delta = \min(\delta_1, \delta_2)$, and let $x \in t \in [a, c+\delta)$ s.t. $|t-x| < \delta$.

If $x \in t$ are both in [a,c) thun $|f(x)-f(t)| < \varepsilon$, since $c=b \cdot b \cdot A$. If $x \in t$ are both in $(c-\delta, c+\delta)$, thun $|f(x)-f(t)| < \varepsilon$ as well.

Suppose $x \in [a, c-8]$ and $t \in (c-8, c)$.

Thu $|f(x)-f(t)| \le |f(x)-f(c)| + |f(t)-f(c)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ both in [a,c-3] both in (c-5, c+6)

: $\forall x, t \in [a, \varepsilon + \delta)$, $|x - t| < \delta \Rightarrow |f(x) - f(t)| < \varepsilon$, so that $c + \delta \in A_{\delta} \subseteq A$.

Thus $c \xrightarrow{wes} rot$ on upper bound for A, a contradiction.

:. In fact c=b, so that f is uniformly continuous on [a,b]. [