

Un vilebrequin est réalisé en mécanosoudage pour faire fonctionner un prototype de moteur. Les géométries sont par conséquent simples : assemblage de tôles ou cylindres en acier.

L'origine O repère $\mathcal R$ est située dans le plan de contact du cylindre 1 et du parallélépipède 2.

Question 1 Calculer les masses des différentes pièces : m_1 , m_2 , m_3 et m_4 .

Question 2 Déterminer le centre d'inertie de chaque pièce.

Question 3 Déterminer la valeur de *R* afin que le centre d'inertie du vilebrequin soit sur son axe de rotation. Faire l'application numérique.

Question 4 Donner les formes des matrices d'inertie de chaque pièce au point où elles s'expriment de manière la plus simple et dans la base $(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$.

Question 5 Donner les formes de matrices d'inertie du vilebrequin en O dans la base $(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$.

Le carter moteur peut être basculé pour l'entretien. Cette opération ne doit normalement pas être effectuée lorsque le moteur fonctionne. Afin de calculer les effets dynamiques engendrés par cette manipulation, il est nécessaire de calculer l'inertie en rotation du vilebrequin par rapport à cet axe de rotation.

Question 6 Calculer l'inertie en rotation par rapport à l'axe \overrightarrow{OA} .

C. Gamelon & P. Dubois.

On note:

- ρ = 7200 kg m³ la masse volumique du matériau;
- $a = 20 \, \mathrm{mm};$
- $b = 30 \,\mathrm{mm};$
- $e = 5 \,\mathrm{mm}$;
- l = 20 mm;
 r = 5 mm;
- $ightharpoonup L = 50 \,\mathrm{mm};$
- ► $r_4 = 7.5 \,\mathrm{mm}$;
- ► $h = 20 \, \text{mm}$.