

# ■ 당신이...

- Problem Solving 문제들 봤는데 어떻게 풀어야 하는지 전혀 감이 오지 않는다.
- Dijkstra 알고리즘 아무리 봐도, "될 것 같기는 한데" 이유는 모르겠다.
- 도구나 라이브러리는 잘 쓰는데 프로그램 처음부터 짜려면 막막하다.
- 어떻게 프로그램을 짜면 더 빠른지, 더 느린지 전혀 감이 없다.
- $\log n$ 을 본 적이 없거나, 본 적이 있는데 무슨 뜻이라고 한마디로 설명하지는 못한다. 혹은,  $\log n$ 의 밑이 10 이나 e라고 알고 있다.
- Problem Solving 자료를 보고 시간을 들여도 발전이 없다.

- 하나라도 일치하는 상황이 있다면.... 어쩌면...
  - Problem Solving을 본격적으로 공부할 준비가 안된 것일 수 있다.
  - "왜 이해가 안되는 것인가?"
- 필요한 것은..., 아마도...
  - **논리적**으로 **정확**하게 **확인**하는 과정에 대한 연습이 없어서이다.
  - 되는 것 같다는 기분이나 "공식을 외우는 것" 말고 정확하게 확인해 본 적이 있는가?
  - 프로그램을 짜기 시작하기 전에, 정확한 결과가 나올 것인지, 얼마나 빠르게 돌아갈 것인지 미리 알 수 있는가?
  - 확인이 안된 상태에서 프로그램을 짜기 시작하면, 결과가 정확할지, 얼마나 빠를지 예측할 수 없고, 제대로 된 결과가 나오지 않으면 고치는 것이 어렵고 무작정 여러가지를 시도해 볼 수 밖에 없다.
  - 정확히 확인하는 훈련이 되어 있지 않으면, 단순 작업 이상의 코드를 작성하기 어렵고, 다른 사람의 코드를 고치는 것도 매우 어렵다.
  - 정확하게 확인하는 과정을 수많은 세월 동안 정리해 둔 것이 "증명" 기법이다.
  - 증명 기법은 딱딱한 것이 아닌 기발한 아이디어들의 집합이고 "이해하면 재미있는 그림"들과 같다.
  - 이 과정에서 쉬운 문제들을 보고 정확하게 확인하는 것을 연습해 보자.

"어떤 전공도 상식선에서 이해되는 분야는 없다."

# **Computational Thinking**

# - 기초 논리 & 수학 -

| 0. | 서론 – 프로그래밍과 논리/수학 | 4   |
|----|-------------------|-----|
| 1. | 논리와 증명            | .21 |
| 2. | 수와 표현             | .37 |
| 3. | 집합과 조합론           | .42 |
| 4. | 기초 수식             | .59 |
| 5. | 재귀                | .65 |
| 6. | 동적 프로그래밍          | .78 |
| 7. | 조합론 프로그래밍 과제      | .85 |
| 8. | 기초 알고리즘 프로그래밍 과제  | .86 |

# 0. 서론 - 프로그래밍과 논리/수학

- 프로그래밍의 어려운 점 두 가지
  - 프로그래밍 언어 문법과 라이브러리 사용
  - 논리 (Hard Logic)
- 문법과 라이브러리
  - 많이 알려진 어려운 점

```
#include <iostream>
#include <set>
#include <functional>
using namespace std;

int main(){

    set<int> s;

    pair<set<int>::iterator, bool> pr;
    pr = s.insert(50); // returns result pair
    s.insert(40);
    s.insert(80);

if (true == pr.second)
    cout << *pr.first << " Success!" << endl;
else
    cout << *pr.first << " Failure! " << endl;
.....</pre>
```

- 위 프로그램이 무엇을 하는 것인지 처음 보는 사람은 알 수 없음
- 능숙해 지기 위해 많은 훈련이 필요하지만, 이 과정의 중요 목표는 **아님**
- 프로그래밍을 최초로 배울 때 약간의 어려움이 있지만 훈련에 비례하여 실력이 느는 경향이 있음
- 일반 상식으로 원래 알고 있는 것이 아니기 때문에 훈련의 필요성에 대해 반감이 없음

- 논리 (Hard Logic)
  - Hard vs. Soft Logic
  - 카드 문제
    - 사실: 모든 카드의 한쪽에는 알파벳이, 다른 쪽에는 숫자가 써 있음
    - 주장: 만약 한쪽이 D 이면 반대쪽은 3
    - 주장이 사실인지 확인하기 위해 다음 카드들 중 반드시 뒤집어 보아야 하는 것은 몇 개이고 어느 것인가?



- 잠깐 생각해 봅시다.....

# 답: [D]와 [7]

- [D]를 뒤집어 보아야 한다는 것은 누구나 알아 냄
- [3]을 뒤집어 보아야 한다고 말하는 경우가 많이 있음
- 중요: [3] 뒤에 [D]가 있든 없든 주장이 사실인지 여부에 영향이 없음
- [7]을 뒤집어 볼 필요가 없다고 말하는 경우도 많음
- 중요: [7] 뒤에 [D]가 있으면 주장이 성립하지 않게 됨

# - 맥주집 문제

- 규칙: 20 세 이하인 사람은 맥주를 마실 수 없음
- 나이 혹은 마시고 있는 것을 표시한 다음 4명 중 확인이 필요한 사람은 몇 명이고 누구인가?



# 답: [17세]와 [맥주]

- 카드 문제와 맥주집 문제의 비교
  - 맥주집 문제가 훨씬 풀기 쉽다
  - 사실, 두 문제는 완전히 같은 문제임. 즉, 논리적 구성은 완전히 동일함
  - 왜 맥주집 문제가 풀기 쉬운가?
  - 논리 구조를 정확히 이해하고 맥주집 문제를 푸는 사람은 카드 문제를 똑같이 풀 수 있음
  - 즉, 맥주집 문제를 풀 때 **논리를 사용한 것이 아니다!**

- Hard vs. Soft Logic
  - 맥주집 문제를 풀 때는 직관을 사용한 것
  - 직관은 논리적인 **느낌**을 주는 것
  - 직관의 장점은 (익숙한 상황에서) 빠르다는 것
  - 직관의 단점은 정확하지 않다는 것 (가끔은 익숙한 상황에서도 틀림)
  - 또 다른 단점은 강한 착각을 일으킨다는 것

# - 과자와 버스

- "너 과자 몇 개 먹었니?" vs. "버스 타려고 하는데 천원 있니?"
- 두 질문은 같은 표현을 사용하지만, 하나는 정확한 개수를 요구하고, 다른 하나는 천원 이상이 있는지 물어보는 것

### - 토플과 복권

- "합격하려면 토플 500 점 이상 혹은 토익 600 점 이상이 필요" vs. "복권에 당첨되면 자동차 혹은 천만원을 줍니다"
- 두 말은 같은 표현을 사용하지만 하나는 inclusive or, 다른 하나는 exclusive or

# - 일상 생활에서는

- Soft Logic 이 빠르기 때문에 유용
- 논리적으로 부정확한 표현을 사용하지만, 어떤 의미인지 모든 사람이 이미 알고 있다는 가정이 존재

- 프로그래밍은 Hard Logic 을 사용
  - 프로그래밍 언어의 표현들이 모두 논리학에서 나온 것
  - 사용되는 수많은 알고리즘들을 이해하기 위해서는 Hard Logic 이 필요

# - 오해의 근원

- Soft Logic 으로 알고리즘을 이해하려고 하는 것!
- 알고리즘 설명을 보고 또 봐도 이해가 안되는 것은 증명을 안 봤기 때문
- 증명을 봐도 이해가 안되는 것은 직관으로 이해하려고 하기 때문
- 가끔 직관적으로 이해되는 알고리즘이 있지만 조금만 어려워지면 직관으로 완전한 이해를 얻는 것은 사실상 불가능

# ■ 논리 연습

- 문제 1: 다음을 명제식 형태로 쓰고 참인지 거짓인지 판단하시오
  - ① 만약 0이 홀수라면, 미국에서 2080년 월드컵이 열린다.
  - ② 만약 19893827938274839이 Prime Number라면, 2는 짝수이다.

#### [ Solution ]

① p:0은 홀수이다.(거짓)

q: 미국에서 2080 년 월드컵이 열린다. (알 수 없음)

명제식 :  $p \rightarrow q$ , p 명제가 거짓이므로, q명제의 참/여부에 상관없이 해당 명제식은 참이다.

② p: 19893827938274839 은 Prime Number 이다. (알 수 없음) q: 2 는 짝수이다. (참)

명제식 :  $p \to q$ , 대우 명제는  $\sim q \to \sim p$  인데,  $\sim q$  는 '2 가 홀수이다' 가되어 거짓인 명제가 된다. 따라서  $\sim q$  명제가 거짓이므로,  $\sim p$  명제의 참/여부에 상관없이 해당 명제식은 참이 된다.

대우 명제식이 참이므로, 본 명제식 또한 참이다.

- 문제 2: p와 q가 명제이고  $p \to q$ 가 거짓이라고 하자. 다음 명제식의 참 거짓은 어떻게 되는가?
  - ①  $\sim p \rightarrow q$  ②  $p \lor q$  ③  $q \rightarrow p$

# [ Solution ]

- ①  $\sim p \rightarrow q$
- :  $p \to q$ 가 거짓이기 위해선 p 참, q 거짓인 경우이다. 따라서  $\sim p$  는 거짓이고 q또한 거짓이므로  $\sim p \to q$ 는 참이다.
- ② p v q
- : p 참, q 거짓이므로  $p \lor q$ 는 참이다.
- $\bigcirc$   $q \rightarrow p$
- : p 참, q 거짓이므로  $q \rightarrow p$ 은 참이다.

- 문제 3: 다음 명제들의 역, 이, 대우를 쓰시오
  - ① 만약 0이 홀수라면, 미국에서 2080년 월드컵이 열린다.
  - ② 만약 19893827938274839이 Prime Number라면, 2는 짝수이다.

# [ Solution ]

① 명제 : 만약 0이 홀수라면, 미국에서 2080년 월드컵이 열린다.

역 : 만약 미국에서 2080년 월드컵이 열린다면, 0이 홀수이다.

이 : 만약 0이 짝수라면, 미국에서 2080년 월드컵이 열리지 않는다.

대우 : 만약 미국에서 2080년 월드컵이 열리지 않는다면, 0은 짝수이다.

② 명제 : 만약 19893827938274839 이 Prime Number 라면, 2 는 짝수이다.

역 : 만약 2 가 짝수이면 19893827938274839 이 Prime Number 이다.

이 : 만약 19893827938274839 이 Prime Number 가 아니라면 2 는 홀수이다.

대우 : 만약 2 가 홀수이면 19893827938274839 이 Prime Number 가 아니다.

- 문제 4: 다음 명제식의 진리표를 만드시오

- ①  $p \wedge (q \rightarrow \sim p)$
- $(p \land \sim q) \to r$

# [ Solution ]

①  $p \land (q \rightarrow \sim p)$ 

| $\circ$ $\iota$ | 1 17 |    |                          |                                  |
|-----------------|------|----|--------------------------|----------------------------------|
| р               | q    | ~p | $(q \rightarrow \sim p)$ | $p \land (q \rightarrow \sim p)$ |
| T               | Т    | F  | F                        | F                                |
| T               | F    | F  | Т                        | Т                                |
| F               | Т    | Т  | Т                        | F                                |
| F               | F    | Т  | T                        | F                                |

②  $(p \land \sim q) \rightarrow r$ 

| р | q | r | ~q | $(p \land \sim q)$ | $(p \land \sim q) \rightarrow r$ |
|---|---|---|----|--------------------|----------------------------------|
|   | - |   | •  |                    |                                  |
| Т | T | T | F  | F                  | Т                                |
| Т | T | F | F  | F                  | Т                                |
| Т | F | T | Т  | T                  | Т                                |
| T | F | F | T  | Т                  | F                                |
| F | T | T | F  | F                  | T                                |
| F | T | F | F  | F                  | Т                                |
| F | F | T | T  | F                  | Т                                |
| F | F | F | T  | F                  | Т                                |

#### ■ 증명

- 증명은 정확한 명제식으로 표현할 수 있는 것이라야 함
- 보통은 정확한 명제식까지 쓰지는 않으나 근본적으로는 명제식으로 바꿀 수 있음
- 증명에 대한 수많은 오해가  $p \to q$ 를  $p \leftrightarrow q$ 와 혼동하는 것에서 일어남
- 모든 당구공은 색이 같다는 다음 증명에서 잘못된 것은?
  - 수학적 귀납법: P(1)이 참이고,  $P(n) \rightarrow P(n+1)$ 이 참이면 P(n)은 모든 자연수 n에 대해서 참이다.
  - 모든 자연수 n에 대해 당구공 n개가 들어있는 집합에서 그 집합에 포함된 당구공은 모두 색이 같다는 것을 증명함
  - P(1): 당구공 1개가 들어있는 집합은 모두 색이 같음
  - $-P(n) \rightarrow P(n+1)$ 을 증명하기 위해 P(n)이 참이라고 가정
  - 당구공 n+1개가 들어 있는 임의의 집합을 생각함
  - 이 집합에서 하나를 빼면 당구공 n개가 있는 집합이 되므로 지금 상황에서 모든 당구공의 색이 같음
  - 방금 뺀 원소를 다시 넣고, 다른 당구공을 빼면 역시 당구공 n개가 있는 집합이 되므로 지금 상황에서도 모든 당구공의 색이 같음
  - 위의 두 상황에서 처음 뺀 당구공과 두번째로 뺀 당구공의 색이 같음을 알수 있으므로 당구공 n+1개가 들어 있는 임의의 집합은 색이 같은 것 만을 포함함

- 대부분의 사람들이 P(n)이 참이라고 가정할 수 없다고 반론함
- 수학적 귀납법에서 필요한 것은  $P(n) \rightarrow P(n+1)$ 이 참임을 보이는 것 뿐이므로 P(n)이 정말로 참일 필요는 없음
- 위 증명에서 실제로 잘못된 것은 다음 부분
  - 위의 두 상황에서 처음 뺀 당구공과 두번째로 뺀 당구공의 색이 같음을 알수 있으므로...
- 처음 뺀 당구공과 두번째로 뺀 당구공의 색이 같다는 것은 공통 부분이 있다는 것인데, 실제로 n=1인 경우, 즉 n+1=2인 경우 공통 부분이 없음

- Prime Number 의 개수는 무한히 많다는 다음 증명은 옳은가?
  - Prime Number 의 개수가 유한한 k개라고 가정
  - 모든 Prime Number 를 다 곱하고 1을 더한 수를 n이라고 하자
  - 이 수 n은 어떤 Prime 으로 나누어도 나머지가 1 이다
  - 그런데 n은 어떤 Prime 보다도 크므로 합성수이다
  - 합성수이지만 어떤 Prime 으로도 나누어지지 않으므로 모순 발생
- 이 증명에 대한 반론으로 몇 개의 Prime 이 더 존재하면 되는 것이 아니냐는 주장이 자주 있음
- 위 증명은 "Prime Number 가 k개 이면 모순이 발생", 즉, "Prime Number 가 k개"  $\rightarrow$  "항상 거짓", 이 명제가 항상 참임을 확인한 것
- 즉, "Prime Number 가 k개"라는 명제가 항상 거짓일 수 밖에 없다!

- 수학적 귀납법과 증명의 수준
  - 수학적 귀납법의 기본형: P(1)이 참이고,  $P(n) \rightarrow P(n+1)$ 이 참이면 P(n)은 모든 자연수 n에 대해서 참이다.
  - 수학적 귀납법의 강한 형태: P(1)이 참이고,  $P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1)$ 이 참이면 P(n)은 모든 자연수 n에 대해서 참이다.
  - 다음 함수가 1 부터 x 까지의 합을 계산함을 증명해 보자

```
int sum(int x)
{
   if (x <= 0) return 0;
   return x + sum(x-1);
}</pre>
```

- High-level 증명에서는 1 부터 x 까지 합의 정의 중 하나인 S(n) = S(n-1) + n을 그대로 코딩한 것이므로 증명이 된 것이라고 말하는 경우가 많음
- 상세한 증명을 하려면 단순히 "답이 맞는 것이 당연하다"라고 말하는 것으로는 충분하지 않음
  - **증명이 가능한 명제**를 만들어야 함
  - 이 경우 증명이 가능한 명제는 다음과 같음: "sum(x)가 리턴하는 값은 1+2+...+x의 값과 항상 같다"
  - 이제 수학적 귀납법을 적용할 수 있음
  - *P*(1)이 참이다: "sum(1)이 리턴하는 값은 1 이다"를 증명하면 됨. 실제 코드에 1을 대입하면 1을 리턴함을 알 수 있음

- P(x) → P(x + 1)이 참이다: "sum(x-1)이 1+2+...+(x-1)을 리턴하면 sum(x)는 1+2+...+x 를 리턴한다"를 증명하면 됨. 코드를 보면 sum(x)는 x+sum(x-1)의 값을 리턴함. sum(x-1)의 리턴 값은 1+2+...+(x-1)과 같다고 가정했으므로 sum(x)는 1+2+...+(x-1)+x=1+2+...+x 를 리턴함을 확인할 수 있음
- sum(x-1)을 블랙박스로 보는 것이 이해에 도움을 줄 때가 있음

#### - 소팅의 사례

- High-level 증명에서는 소팅이 된다는 것을 직관적인 수준에서 설명하는 경우가 많음
- 상세한 증명을 위해서는 증명이 가능한 명제가 필요
- 배열 A[1], A[2], ..., A[n]을 소팅하는 알고리즘의 정확성을 증명하려고 한다면, 증명이 가능한 명제는 다음과 같을 것임: "A[1] < A[2] < ...< A[n]"
- 버블 소트가 정확함을 어떻게 증명할 지 생각해 봅시다.

상세한 증명에 대한 경험이 없는 경우가 많고, 상세한 증명 없이는 확인하거나 이해할 수 없는 문제들이 많으므로 연습 문제들은 상세한 증명을 제시하는 것을 목표로 함

# ■ 증명 연습

- Trivial Proof:  $\forall x, P(x) \rightarrow Q(x)$ 를 증명하려는데, Q(x)가 항상 참인 경우
- 문제 1: 다음 명제를 증명하시오
  - ① 실수 x에 대해, 만약 x < -1이면  $x^2 + \frac{1}{4} > 0$ 이다
  - ② n이 홀수이면  $4n^3 + 6n^2 + 12$ 는 짝수이다

# [ Solution ]

# Proof)

- ① 실수 x에 대해, 만약 x < -1이면  $x^2 + \frac{1}{4} > 0$ 이다.  $x^2 + \frac{1}{4} > 0, x^2 > -\frac{1}{4} \text{ 이고, } x 는 실수이므로 Q(x)는 항상 참이다.}$  따라서  $\forall x, P(x) \rightarrow Q(x)$  이다.
- ② n이 홀수이면  $4n^3+6n^2+12$ 는 짝수이다  $4n^3+6n^2+12=2(2n^3+3n^2+6) \ \text{이므로} \ 4n^3+6n^2+12$ 는 짝수이다. 그러므로 Q(x)는 항상 참이다. 따라서  $\forall x, P(x) \rightarrow Q(x)$  이다.

- Vacuous Proof:  $\forall x, P(x) \rightarrow Q(x)$ 를 증명하려는데, P(x)가 항상 거짓인 경우
- 문제 2: 다음 명제를 증명하시오
  - ① 실수 x에 대해, 만약  $2x^2 4x + 4 < 0$ 이면 x > 8이다
  - (2)  $4n^3 + 6n^2 + 11$ 는 짝수이면 n이 홀수이다

#### [ Solution ]

# Proof)

① 실수 x에 대해, 만약  $2x^2 - 4x + 4 < 0$ 이면 x > 8이다.

 $2x^2 - 4x + 4 = 2(x^2 - 2x) + 4 = 2(x - 1)^2 + 6 \ge 0$  O

따라서  $2x^2 - 4x + 4 < 0$ 은 거짓이다.

그렇기 때문에 P(x)는 거짓이므로 해당 명제  $\forall x, P(x) \rightarrow Q(x)$ 는 참이다.

②  $4n^3 + 6n^2 + 11$ 는 짝수이면 n이 홀수이다

 $4n^3 + 6n^2 + 11 = 2(2n^3 + 3n^2 + 5) + 1$  이므로  $4n^3 + 6n^2 + 11$ 은 홀수이다.

그러므로 P(x)는 거짓이므로 해당 명제  $\forall x, P(x) \rightarrow Q(x)$ 는 참이다.

# 1. 논리와 증명

- 문제 1: 다음 명제들이 항진명제라는 것을 진리표를 이용해서 보이시오
  - ①  $\sim (\sim p \land q) \lor q$
  - ②  $(\sim p \lor q) \lor (p \land \sim q)$

# [ Solution ]

①  $\sim (\sim p \land q) \lor q$ 

| р | q | ~p | (~p∧ q) | ~(~p^ q) | ~(~p∧ q) ∨ q |
|---|---|----|---------|----------|--------------|
| Т | Т | F  | F       | Т        | Т            |
| Т | F | F  | F       | Т        | Т            |
| F | Т | Т  | T       | F        | Т            |
| F | F | Т  | F       | Т        | Т            |

②  $(\sim p \lor q) \lor (p \land \sim q)$ 

| р | q | ~p | $(\sim p \lor q)$ | ~q | $(p \land \sim q)$ | $(\sim p \lor q) \lor (p \land \sim q)$ |
|---|---|----|-------------------|----|--------------------|-----------------------------------------|
| Т | Т | F  | Т                 | F  | F                  | Т                                       |
| Т | F | F  | F                 | Т  | T                  | Т                                       |
| F | Т | Т  | Т                 | F  | F                  | Т                                       |
| F | F | Т  | Т                 | Т  | F                  | Т                                       |

- 문제 2: 다음 명제들이 모순명제라는 것을 진리표를 이용해서 보이시오

- $( p \lor q) \land (p \land \sim q)$
- ②  $(p \land q) \land (p \land \sim q)$

# [ Solution ]

①  $(\sim p \lor q) \land (p \land \sim q)$ 

| р | q | ~p | $(\sim p \lor q)$ | ~q | $(p \land \sim q)$ | $(\sim p \lor q) \land (p \land \sim q)$ |
|---|---|----|-------------------|----|--------------------|------------------------------------------|
| Т | Т | F  | T                 | F  | F                  | F                                        |
| Т | F | F  | F                 | Т  | Т                  | F                                        |
| F | Т | Т  | Т                 | F  | F                  | F                                        |
| F | F | Т  | Т                 | Т  | F                  | F                                        |

②  $(p \land q) \land (p \land \sim q)$ 

| р | q | ~q | $(p \land q)$ | $(p \land \sim q)$ | $(p \land q) \land (p \land \sim q)$ |
|---|---|----|---------------|--------------------|--------------------------------------|
| Т | Т | F  | Т             | F                  | F                                    |
| Т | F | Т  | F             | Т                  | F                                    |
| F | Т | F  | F             | F                  | F                                    |
| F | F | Т  | F             | F                  | F                                    |

- 문제 3: 다음 명제의 쌍 들에 대해서 두 명제가 동등한지를 진리표를 이용해 확인하시오

- ①  $p \land (p \lor q)$ 와 p
- ②  $\sim p \lor \sim q$ 와  $\sim (p \lor q)$

# [ Solution ]

①  $p \land (p \lor q)$ 와 p

| р | q | $(p \lor q)$ | $p \wedge (p \vee q)$ |
|---|---|--------------|-----------------------|
| Т | Т | T            | Т                     |
| T | F | Т            | Т                     |
| F | Т | Т            | F                     |
| F | F | F            | F                     |

② ~p V ~q와 ~(p V q)

| ~p | ~q | $\sim p \vee \sim q$ | р | q | $(p \lor q)$ | $\sim (p \lor q)$ |
|----|----|----------------------|---|---|--------------|-------------------|
| F  | F  | F                    | Т | Т | Т            | F                 |
| F  | Т  | F                    | Т | F | Т            | F                 |
| Т  | F  | F                    | F | Т | Т            | F                 |
| Т  | Т  | Т                    | F | F | F            | Т                 |

- 문제 4: 명제식의 변형을 통하여 다음 명제를 간소화하시오
  - ①  $(p \land \sim q) \lor (p \land q)$
  - ②  $(p \lor \sim q) \land (\sim p \lor \sim q)$

# [ Solution ]

- ①  $(p \land \sim q) \lor (p \land q) = p \land (\sim q \lor q) = p \land U = p$  (이때 U는 항진명제이다.)
- ②  $(p \lor \sim q) \land (\sim p \lor \sim q) = (\sim q \lor p) \land (\sim q \lor \sim p) = \sim q \lor (p \land \sim p) = \sim q \lor \emptyset$ =  $\sim q$

- 문제 5: 다음 명제들이 참인지 확인하시오. 단, R은 실수의 집합을 의미하고, Z는 정수의 집합을 의미한다.
  - (1)  $\forall x \in R, x^2 \ge x$
  - $(2) \qquad \forall x \in Z, x^2 \ge x$
  - $\exists x \in R, x^2 < x$
  - $\exists x \in Z, x^2 < x$

# [ Solution ]

(1)  $\forall x \in R, x^2 \geq x$ 

 $x = \frac{1}{2}$ 일 때,  $x^2 \ge x$  을 만족하지 않는다. (반례) 따라서 ① 명제는 거짓이다.

(2)  $\forall x \in Z, x^2 \ge x$ 

해당 명제를 만족하지 않는 x의 범위는 0 < x < 1 인데, 해당 범위엔 정수 값이 존재하지 않는다. 다시 말해 모든 정수 x에 대해 부등식  $x^2 \ge x$  을 만족한다고 할 수 있다. 따라서 ② 명제는 참이다.

 $\exists x \in R, x^2 < x$ 

 $x = \frac{1}{2}$ 일 때,  $x^2 < x$  을 만족한다. (어떤 x 존재) 따라서 ③ 명제는 참이다.

 $\exists x \in Z, x^2 < x$ 

 $x^2 < x$ ,  $x^2 - x < 0$ , x(x - 1) < 0 이므로, 위부등식의 해는 0 < x < 1 가 된다. 이때, 해당 부등식 조건을 만족하는 어떤 정수도 존재하지 않는다. 따라서 ④ 명제는 거짓이다.

- 문제 6: (직접 증명) n이 짝수이면 3n + 5는 홀수임을 증명하라.

(힌트: n = 2k로 두고 3n + 5가 2(OPE OPE) + 1 형태로 표현될 수 있는지...)

# [ Solution ]

# Proof)

n = 2k 일 때, 3n + 5 = 3\*(2k) + 5 = 6k + 5 = 6k + 4 + 1 = 2\*(3k + 2) + 1 그러므로 3n + 5 는 홀수이다.

- 문제 7: n이 홀수이면  $n^2 + n$ 은 짝수임을 증명하라.

# [ Solution ]

# Proof)

n = 2k + 1 일 때,  $n^2 + n = (2k + 1)^2 + (2k + 1) = 4k^2 + 4k + 1 + 2 + 1 = 4k^2 + 4k + 4 = 2(2k^2 + 2k + 2)$ 그러므로  $n^2 + n$ 은 짝수이다. - 문제 8: m이 짝수이고 n이 홀수이면 2m + 3n은 홀수임을 증명하라

# [ Solution ]

# **Proof**)

m = 2k, n = 2l+1 일 때, 2m + 3n = 2\*(2k) + 3\*(2l+1) = 4k + 6l + 3 = 2(2k + 3l + 1) + 1

그러므로 2m+3n 은 홀수이다.

- 문제 9: (대우를 증명) 자연수 n에 대해,  $n^2 + 5$ 가 홀수이면 n은 짝수임을 증명하라

(힌트: 명제 대신, n이 홀수이면  $n^2 + 5$ 은 짝수임을 증명한다)

# [ Solution ]

#### Proof)

문제 9 명제의 대우명제는, 힌트처럼 'n이 홀수이면  $n^2 + 5$ 은 짝수이다.'와 같다.

n = 2k + 1 일 때,  $n^2 + 5 = (2k + 1)^2 + 5 = 4k^2 + 4k + 6 = 2(2k^2 + 2k + 3)$ 그러므로 n이 홀수이면  $n^2 + 5$ 은 짝수이다.

대우 명제가 참이므로, 본 명제 또한 참이다.

- 문제 10:  $n^2$ 이 짝수이면 n은 짝수임을 증명하라.

### [ Solution ]

#### Proof)

주어진 명제의 대우명제는, 'n 이 홀수이면  $n^2$ 이 홀수이다.'와 같다. n=2k+1일 때,  $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$  그러므로 n이 홀수이면  $n^2$ 이 홀수이다. 대우 명제가 참이므로, 본 명제 또한 참이다.

- 문제 11: (경우를 나누어 증명) 자연수 n에 대해  $n^2 + 5n + 3$ 은 항상 홀수임을 증명하라.

(힌트: n이 짝수인 경우와 홀수인 경우를 따로 증명한다)

# [ Solution ]

#### Proof)

[n이 짝수인 경우]

n = 2k,  $n^2 + 5n + 3 = (2k)^2 + 5(2k) + 3 = 4k^2 + 10k + 3 = 2(2k^2 + 5k + 1) + 1$ 

그러므로, n이 짝수인 경우  $n^2 + 5n + 3$ 은 항상 홀수이다.

[n이 홀수인 경우]

n = 2k+1,  $n^2 + 5n + 3 = (2k+1)^2 + 5(2k+1) + 3 = 4k^2 + 14k + 9 = 2(2k^2 + 7k + 4) + 1$ 

그러므로, n이 홀수인 경우  $n^2 + 5n + 3$ 은 항상 홀수이다.

n이 짝수인 경우와 홀수인 경우 모두  $n^2 + 5n + 3$ 은 항상 홀수이므로, 자연수 n에 대해  $n^2 + 5n + 3$ 은 항상 홀수이다. - 문제 12:  $n^2$ 이 3 의 배수이면 n은 3 의 배수임을 증명하라.

#### [ Solution ]

# Proof)

주어진 명제의 대우 명제는 다음과 같다.

n039 배수가 아니면  $n^2$ 은 3의 배수가 아니다.

n = 3k + 1 일 때,  $n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$  이므로 3 의 배수가 아니다.

n = 3k + 2 일 때,  $n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$  이므로 3 의 배수가 아니다.

따라서, n이 3의 배수가 아니면  $n^2$ 은 3의 배수가 아니다.

대우 명제가 참이므로, 본 명제 또한 참이다.

- 문제 13: n이 홀수이면  $n^2$ 을 8로 나눈 나머지는 1임을 증명하라

(힌트: n을 4로 나눈 나머지가 1인 경우와 3인 경우로 나누어 보자)

#### [ Solution ]

#### Proof)

n이 홀수일 때, 다음과 같이 두 가지 경우가 존재한다.

n = 4k + 1, n = 4k + 3

위 두 가지 케이스에 대해  $n^2$ 을 8로 나눈 나머지를 구해보자.

n = 4k + 1, n<sup>2</sup> = (4k + 1)<sup>2</sup> = 16k<sup>2</sup> + 8k + 1 = 8(2k<sup>2</sup> + k) + 1n = 4k + 3, n<sup>2</sup> = (4k + 3)<sup>2</sup> = 16k<sup>2</sup> + 24k + 9 = 8(2k<sup>2</sup> + 3k + 1) + 1

따라서, 두 경우 모두  $n^2$ 을 8로 나눈 나머지는 1이 된다. 따라서 n이

홀수이면 n<sup>2</sup>을 8로 나눈 나머지는 1이 된다.

- 문제 14: 어떤 자연수를 제곱하여도 그 결과를 3으로 나눈 나머지는 2가 아님을 증명하라.

# [ Solution ]

# Proof)

어떤 자연수 n 을 3k, 3k+1, 3k+2 의 경우로 나눠서 생각해보자.

n = 3k 일 때,  $n^2 = (3k)^2 = 9k^2 = 3(3k^2)$  이므로, 3 으로 나눈 나머지는 0 이 된다.

n = 3k+1 일 때,  $n^2 = (3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$  이므로, 3 으로 나누었을 때 나머지는 1 이다.

n = 3k+2 일 때,  $n^2 = (3k+2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$  이므로, 3 으로 나누었을 때 나머지는 1 이다.

따라서, 어떤 자연수를 제곱하여도 그 결과를 3으로 나눈 나머지는 2가 아니다.

- 문제 15: (귀류법) 유리수와 무리수의 합은 무리수임을 증명하라.

(힌트: 어떤 유리수와 어떤 무리수의 합이 유리수가 된다고 가정하고 모순을 이끌어 낼 수 있는가?)

#### [ Solution ]

#### Proof)

어떤 유리수와 어떤 무리수의 합이 유리수가 된다고 가정하자. 유리수 a, 무리수 b 가 있고 a 와 b의 합은 유리수 c 가 된다고 하자. a + b = c, b = c - a 가 되고, 이 때 c - a 값인 b는 유리수의 성질에 의해 유리수여야만 한다. (가정에 모순)

따라서 b가 무리수라는 가정에 모순되므로, 유리수와 무리수의 합은 무리수임을 증명할 수 있다.

문제 16: √2는 무리수임을 증명하라.

(힌트: 유리수가 된다는 것은 기약분수로 표현이 된다는 것이다)

#### [ Solution ]

#### Proof)

 $\sqrt{2} = \frac{b}{a}(a,b)$ 는 서로소인 정수), 즉 유리수라고 가정하자.

양 변에 a 를 곱하고 제곱하게 되면  $2a^2 = b^2$ 이 되어  $b^2$ 은 2 의 배수가된다.

b<sup>2</sup>이 2의 배수이므로 b 또한 2의 배수이다.

이때, b가 2의 배수이므로 a<sup>2</sup> 및 a도 2의 배수가 된다.

이는 a,b 는 서로소라는 조건에 모순이 되므로,  $\sqrt{2}$ 는 무리수이다.

- 문제 17: log<sub>2</sub> 5는 무리수임을 증명하라.

#### [ Solution ]

#### **Proof**)

 $\log_2 5 = \frac{b}{a}(a,b)$ 는 서로소인 정수), 즉 유리수라고 가정하자.  $2^{\frac{b}{a}} = 5$ 이고, 양변을 a 제곱하게 되면  $2^b = 5^a$ 이 된다. 하지만, 해당 수식을 만족시키는 자연수 a, b는 존재하지 않는다. 따라서, 유리수라는 가정에 모순되므로  $\log_2 5$ 는 무리수임을 증명할 수 있다.

- 문제 18: (수학적 귀납법)  $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ 임을 증명하라.

# [ Solution ]

#### Proof)

n=1 일 때, 1 = 1(1+1)/2 => 성립

n=k 일 때 성립한다고 가정하자.

$$1+2+3+\cdots+k = \frac{k(k+1)}{2} \cdots (1)$$

n=k+1 일 때,

$$1+2+3+\cdots+k+k+1 = \frac{(k+1)(k+2)}{2}$$

위 식을 (1)을 이용하여 다시 써보면

 $\frac{k(k+1)}{2} + k + 1$  이고, 통분하면  $\frac{\{k(k+1)+2(k+1)\}}{2} = \frac{k^2+3k+2}{2}$  가 되며

$$\frac{(k+1)(k+2)}{2} = \frac{k^2 + 3k + 2}{2}$$
이 된다.

그러므로  $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ 이 성립한다.

- 문제 19:  $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ 임을 증명하라.

# [ Solution ]

# Proof)

n=1 일 때, 1 = 1(1+1)(2+1)/6 => 성립

n=k 일 때 성립한다고 가정하자.

$$1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6} + \dots (1)$$

n=k+1 일 때,

$$1^2 + 2^2 + 3^2 + \dots + (k+1)^2 = \frac{(k+1)(k+2)(2(k+1)+1)}{6}$$

위 식을 (1)을 이용하여 다시 써보면

 $\frac{k(k+1)(2k+1)}{6} + (k+1)^2$  이고, 통분하면  $\frac{2k^3+3k^2+k+6k^2+12k+6}{6} = \frac{2k^3+9k^2+13k+6}{6}$  가

# 되며

$$\frac{(k+1)(k+2)(2(k+1)+1)}{6} = \frac{2k^3+9k^2+13k+6}{6}$$
이 된다.

그러므로  $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ 이 성립한다.

- 문제 20:  $r \neq 1$ 일 때  $\sum_{i=0}^{n} r^i = \frac{r^{n+1}-1}{r-1}$ 임을 증명하라

#### [ Solution ]

# **Proof**)

$$S_n = r^0 + r^1 + r^2 + \dots + r^{n-1} \dots$$
 (1)

양변에 r을 곱하면 r $S_n = r^1 + r^2 + r^3 + \dots + r^n$  ... ②

①-②에서 
$$S_n - rS_n = 1 - r^n$$
, 즉  $(1 - r)S_n = 1 - r^n$ 이므로

$$S_n = \frac{1-r^n}{1-r} = \frac{r^n-1}{r-1} \ O|\Gamma|.$$

$$\sum_{i=0}^n r^i = S_n + r^n = \frac{r^{n-1}}{r-1} + r^n = \frac{r^{n-1} + r^{n+1} - r^n}{r-1} = \frac{r^{n+1} - 1}{r-1}$$
 이 성립한다.

- 문제 21: 2 이상의 모든 자연수 n에 대해  $n^3 - n$ 은 6으로 나누어 떨어짐을 증명하라.

#### [ Solution ]

#### Proof)

n=1 일 때, 1-1=0, 6 으로 나누어 떨어지므로 => 성립

n=k 일 때 성립한다고 가정하자.

 $k^{3} - k = 6m$  식이 성립하게 된다.

n=k+1 일 때,

 $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1 = k^3 + 3k^2 + 2k = k(k^2 + 3k + 1)$ 

2) = k(k+1)(k+2) 이고, 연속한 세 수의 곱은 6의 배수이기 때문에,

 $(k+1)^3 - (k+1) = 6m'$  라고 할 수 있다.

따라서 모든 자연수 n에 대해  $n^3 - n$ 은 6으로 나누어 떨어진다는 명제를 증명할 수 있다.

- 문제 22: 2 이상의 모든 자연수 n에 대해  $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$ 임을 증명하라.

# [ Solution ]

# **Proof**)

n = k 일 때  $\sqrt{k} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}}$  이 성립한다고 가정하자.  $\dots$  (1)

n = k+1 일 때,  $\sqrt{k+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k+1}}$ 가 성립함을 보이면 된다.

(1)에 의해,  $\sqrt{k} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}}$  이 성립하므로

 $\sqrt{k+1} < \sqrt{k} + \frac{1}{\sqrt{k+1}}$  가 성립함을 보이면  $\sqrt{k+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \dots$ 

 $\frac{1}{\sqrt{k+1}}$  또한 성립할 것이다.

양 변에  $\sqrt{k+1}$ 을 곱하면,  $k+1 < \sqrt{k(k+1)} + 1$ 이고,  $k < \sqrt{k(k+1)}$ 가 되어,

위 부등식은 항상 성립함을 알 수 있다.

따라서  $\sqrt{k+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}$  또한 성립한다.

그러므로 2 이상의 모든 자연수 n에 대해  $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$ 임을 증명할 수 있다.

- 문제 23:  $n \times n$  체스판이 있다. 시작 시점에 일부 칸 들이 감염되어 있다. 매초마다 감염이 증가할 수 있다. 규칙은 다음과 같다. 어떤 감염되지 않은 칸은 상하나 좌우로 인접한 네개의 칸들 중 2 개 이상이 감염된 상태일 때 감염된다. 이 규칙에 따라 모든 칸들을 감염시키기 위해서는 초기에 n개 이상의 칸들이 감염되어 있어야 함을 증명하라.

(힌트: 금방 떠오르는 것은 답이 아닐 가능성이 많다.)

#### [ Solution ]

### Proof)

한 칸이 감염되기 위해선 상하나 좌우로 인접한 네 개의 칸들 중 2개이상이 감염된 상태여야 한다. 그렇기 때문에, 주위에 2개, 3개, 4개의 칸들이 감염되어 있을 경우 해당 칸이 감염될 수 있고 그렇게 될 경우 각각 주변에 2개, 1개 0개의 칸들을 감염시킬 수 있게 된다.

이때, Segment 를 '감염된 칸과 감염되지 않은 칸의 경계인 길이가 1인 부분'이라고 정의한다면, segment 의 수는 일정하거나 감소하여 증가할 수 없다는 것이다.

따라서, 모든 칸이 감염되었다고 생각할 경우 이때의 segment 수는  $n \times n$  체스판의 네 모퉁이가 되어, 4n개가 되고 따라서 초기에는 반드시 4n개 segment 들이 존재해야만 한다. 그러므로 초기에  $\frac{4n}{4} = n$ 개 이상의 칸들이 감염되어 있어야만 위 규칙에 따라 모든 칸들을 감염시킬 수 있다.

# 2. 수와 표현

# ■ 약간의 설명

- 컴퓨터는 0/1을 표현할 수 있는 비트들을 모아 수를 표현
- k개의 비트를 사용하면 0부터  $2^k 1$ 까지 표현 가능
- 사실, 꼭 저 범위인 것은 아님. 약속하는 방식에 따라 다르지만, 어떤 경우든 최대  $2^k$  가지의 값을 표현하는 것이 가능
- 10 진수로 k자리를 쓰면 0부터  $10^k 1$ 까지 표현이 가능한 것과 완전히 동일한 과정
- 어떤 값 n을 표현하기 위해서는 몇 개의 비트가 필요할까?
- $-2^{k}-1 > n$ 이 성립해야 함 -> 즉,  $2^{k} > n+1$
- 같은 의미로,  $k \ge \log(n+1)$  -> 약  $\log n$  비트가 필요
- $-x = \log n$ 과  $2^x = n$ 은 같은 말
- 위의 식을 잘 보면,  $\log n$ 이란
  - (가) 2 의 몇 승이 *n*이 되느냐의 답
  - (나) n을 표현하는 데 몇 비트가 필요한가의 답
  - $(\Gamma)$  1 로 시작해서 계속 두 배를 할 때 몇 번 하면 n이 되느냐의 답
  - (a) n을 2로 계속 나눌 때 몇 번 나누면 거의 1이 되느냐에 대한 답

- $-x = \log n$ 일 때 x와 n을 비교하면 x가 더 작고, n이 커질수록 엄청나게 달라진다
- 100 자리로 표현할 수 있는 10 진수 값은 읽을 수도 없을 정도로 큰 값이다
- 컴퓨터 분야에서 로그의 밑은 항상 2
- 32 비트 컴퓨터의 주소 공간은  $2^{32} = 약 40$  억개 주소

$$-n + \left(\frac{n}{2} + \frac{n}{2}\right) + \left(\frac{n}{4} + \frac{n}{4} + \frac{n}{4} + \frac{n}{4}\right) + \left(\frac{n}{8} + \frac{n}{8} + \cdots\right) + \cdots + (1 + 1 + \cdots) = n \log n \quad \text{(Why?)}$$

- $-n+\frac{n}{2}+\frac{n}{4}+\cdots+1\cong 2n$
- 위 두 식의 항의 개수는  $\log n$ 개 (Why?)

# ■ 문제들

- 문제 1: 2 진수 표현에서 logn 비트로 표현할 수 있는 숫자 범위는?

# [ Solution ]

n비트로 표현할 수 있는 숫자는  $2^n$ 가지의 값이 있다.  $\log_2 n$  비트로 표현할 수 있는 숫자는 n가지의 값이 있다.

- 문제 2: 스무고개가 이상적으로 진행된다고 할 때, 맞출 수 있는 답의 종류는 몇 가지인가?

# [ Solution ]

 $2^{20} = 1048576 \ 7 |X|$ 

- 문제 3: n이 충분히 큰 값일 때 다음 중 어느 값이 더 큰가? 각 쌍에 대해 비교하고 그 이유를 작성하시오.

#### [ Solution ]

(1) 2n (< )  $n^2$ 

2 < n 일 때  $2n < n^2$  이므로, 2보다 큰 모든 n에 대해 부등호가 항상 성립한다.

(2)  $2^{\frac{n}{2}}$  (< )  $\sqrt{3^n}$ 

n > 0 일 때  $3^{\frac{n}{2}} > 2^{\frac{n}{2}}$  이 항상 성립하므로, 0보다 큰 모든 n에 대해 부등호가 항상 성립한다.

 $(3) 2^{n\log n} (>) n!$ 

n > 1일 때,  $n^n > n!$  이 항상 성립한다. 따라서 1보다 큰 모든 n에 대해 부 등호가 항상 성립한다.

n > 4 일 때  $2n < n^{\frac{3}{2}}$  이 항상 성립한다. 따라서 4보다 큰 모든 n에 대해 부등호가 항상 성립한다.

- 문제 4:  $x = \log_a yz$ 일 때 x를 2 를 밑으로 하는 로그들로 표현하시오. 단, 로그 함수의 인자는 모두 문자 하나여야 한다.

#### [ Solution ]

$$x = \frac{\log_2 y + \log_2 z}{\log_2 a}$$

- 문제 5: 다음 함수들의 역함수를 구하시오

① 
$$f(x) = \log(x-3) - 5$$
$$10^{f(x)+5} = x - 3$$
$$x = 10^{f(x)+5} + 3$$
$$f^{-1}(x) = 10^{x+5} + 3$$

2 
$$f(x) = 3\log(x+3) + 1$$
  
 $10^{\frac{f(x)-1}{3}} = x + 3$   
 $x = 10^{\frac{f(x)-1}{3}} - 3$   
 $f^{-1}(x) = 10^{\frac{x-1}{3}} - 3$ 

③ 
$$f(x) = 2 \times 3^{x} - 1$$
  
 $x = \log_{3}(f(x) + 1) - \log_{3} 2$   
 $f^{-1}(x) = \log_{3}(x + 1) - \log_{3} 2$ 

# 3. 집합과 조합론

# ■ 집합과 조합론에 대한 약간의 설명

- 두 집합 A와 B에 대해 A가 B의 부분집합임을 증명한다는 것은 A의 임의의 원소가 B에 포함됨을 보이는 것과 같다.
- 예를 들어 모든 4의 배수는 2의 배수라는 것을 증명하려면, 4k = 2(2k)임을 보이면 되는 것이다.
- 두 집합 A와 B가 같다는 것을 증명하기 위해서는 A가 B의 부분집합이고 B가 A의 부분집합임을 증명하면 된다.
- 다음 두 집합이 같다는 것을 상세히 증명해 보자.

 $A = \{x | x = 2k + 1, k$ 는 자연수 $\}$ ,  $B = \{x | x = 4k + 1 \stackrel{\text{q}}{=} 2k + 3, k$ 는 자연수 $\}$ 

- A가 B의 부분집합이다:

A에 포함되는 임의의 원소  $\chi$ 를 가정.

x = 2k + 1임.

k가 짝수(= 2t)인 경우와 홀수(= 2t + 1)인 경우로 나눔.

짝수인 경우 x = 2k + 1 = 2(2t) + 1 = 4t + 1로서,  $x \in B$ 에 포함됨.

홀수인 경우 x = 2k + 1 = 2(2t + 1) + 1 = 4t + 3로서, x는 B에 포함됨.

모든 가능한 경우에 x는 B에 포함됨.

- B가 A의 부분집합이다:

B에 포함되는 임의의 원소 x를 가정. x=4k+1인 경우, x=4k+1=2(2k)+1로서 x는 A에 포함됨. x=4k+3인 경우, x=4k+3=2(2k+1)+1로서 x는 A에 포함됨.

- 위 두 가지 증명에서 집합 A와 B는 같다.

모든 가능한 경우에 x는 B에 포함됨.

- 조합론은 경우의 수를 따지는 문제들을 보통 말한다
- 조합은 개수는 C 를 이용하여 표현하기도 하지만  $\binom{5}{2} = 10$ 과 같은 괄호 표현을 더 많이 쓴다.

# ■ 연습 문제들

- 문제 1:  $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$ 임을 증명하라

# [ Solution ]

**Proof**)

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{(n-k)! \, k!} + \frac{n!}{(n-(k-1))! \, (k-1)!}$$

$$= n! \, \left( \frac{1}{(n-k)! \, k!} + \frac{1}{(n-(k-1))! \, (k-1)!} \right)$$

$$= n! \, \left( \frac{n-(k-1)}{(n-(k-1))! \, k!} + \frac{k}{(n-(k-1))! \, k!} \right)$$

$$= n! \, \left( \frac{n+1}{(n-(k-1))! \, k!} \right)$$

$$= \frac{(n+1)!}{(n+1-k)! \, k!}$$

$$= \binom{n+1}{k}$$

- 문제 2: 수학적 귀납법으로  $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$ 임을 증명하라

#### [ Solution ]

#### **Proof**)

n=1 일 때,

(좌변) = 
$$(x + y)^1 = \sum_{k=0}^{1} {1 \choose k} x^{1-k} y^k = (우변)$$

이므로 성립한다.

 $n = t (t \ge 1)$  일 때, 등식이 성립한다고 가정하면,

$$(x+y)^t = \sum_{k=0}^t {t \choose k} x^{t-k} y^k$$

n = t + 1 일 때,

$$(x+y)^{t+1} = (x+y)^t (x+y) = \left(\sum_{k=0}^t {t \choose k} x^{t-k} y^k\right) (x+y)$$

$$= \sum_{k=0}^t {t \choose k} x^{t-k+1} y^k + \sum_{k=0}^t {t \choose k} x^{t-k} y^{k+1}$$

$$= \left({t \choose 0} x^{t+1} + \sum_{k=1}^t {t \choose k} x^{t-k+1} y^k\right) + \left({t \choose t} y^{t+1} + \sum_{k=0}^{t-1} {t \choose k} x^{t-k} y^{k+1}\right)$$

여기서

$$\sum_{k=0}^{t-1} {t \choose k} x^{t-k} y^{k+1} = \sum_{k=1}^{t} {t \choose k-1} x^{t-(k-1)} y^k \ 0 \ | \ \mathbb{I},$$

이항 계수 성질에 의하여,

$$\binom{t}{k} + \binom{t}{k-1} = \binom{t+1}{k}, \qquad \binom{t}{0} = \binom{t+1}{0}, \qquad \binom{t}{t} = \binom{t+1}{t+1}$$

이므로

$$(x+y)^{t+1} = {t+1 \choose 0} x^{t+1} + {t+1 \choose k+1} y^{t+1} + \sum_{k=1}^t {t \choose k} x^{t-k+1} y^k + \sum_{k=1}^t {t \choose k-1} x^{t-k-1} y^k$$

$$= {t+1 \choose 0} x^{t+1} + {t+1 \choose k+1} y^{t+1} + \sum_{k=1}^t \left[ {t \choose k} + {t \choose k-1} \right] x^{t-k+1} y^k$$

$$= {t+1 \choose 0} x^{t+1} + {t+1 \choose k+1} y^{t+1} + \sum_{k=1}^t {t+1 \choose k} x^{t-k+1} y^k$$

$$= \sum_{k=0}^{t+1} {t+1 \choose k} x^{t-k+1} y^k$$

즉, n = t + 1 일 때도 주어진 등식이 성립함을 알 수 있다. 따라서 주어진 등식은 모든 자연수 n 에 대하여 성립한다.

- 문제 3: 위의 결과를 이용해서 n개의 원소를 가진 집합의 가능한 부분집합의 종류는  $2^n$ 개임을 증명하라

# [ Solution ]

#### Proof)

부분 집합의 원소의 개수를 총 n개라고 했을 때,

원소의 개수가 0 개인 부분집합의 수 :  $\binom{n}{0}$ 

원소의 개수가 1 개인 부분집합의 수 :  $\binom{n}{1}$ 

원소의 개수가 2개인 부분집합의 수 :  $\binom{n}{2}$ 

...

원소의 개수가 n개인 부분집합의 수 :  $\binom{n}{n}$ 

원소의 개수가 n개 일 때, 총 부분집합의 수 S는  $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}$  이다.

$$S = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} 1^k = (1+1)^n = 2^n$$

이므로 n개의 원소를 가진 집합의 가능한 부분집합의 종류는  $2^n$ 개이다.

#### - 문제 4: 귀류법을 이용하여 $(A - B) \cap (B - A) = \emptyset$ 임을 증명하라

#### [ Solution ]

#### **Proof**)

 $p \in (A-B)$  이고  $p \in (B-A)$  인 원소 p가 존재한다고 가정하자. …①

1. *p* ∈ A, *p* ∉ B 일 경우

(B-A)는 집합 B의 부분 집합이다.  $p \notin B$  이므로  $p \notin (B-A)$  이다. 이는 가정 ①의 모순이다.

2. *p* ∉ A, *p* ∈ B 일 경우

(A-B)는 집합 A의 부분 집합이다.  $p \notin A$  이므로  $p \notin (A-B)$  이다. 이는 가정 ①의 모순이다.

3. *p* ∉ A, *p* ∉ B 일 경우

(A-B)와 (B-A)는 집합 A, B의 부분 집합이다.  $p \notin A$ ,  $p \notin B$  이므로  $p \notin (A-B)$  이고  $p \notin (B-A)$ 이다. 이는 가정 ①의 모순이다.

 $4. p \in A, p \in B$  일 경우

 $p \in A \cap B$  이므로,  $p \notin (A-B)$ 이고  $p \notin (B-A)$  이다. 이는 가정 ①의모순이다.

따라서  $p \in (A-B)$  이고  $p \in (B-A)$  인 원소 p가 존재한다는 가정은 모순이므로,  $p \in (A-B)$  이고  $p \in (B-A)$  인 원소 p는 존재하지 않는다. 그러므로  $(A-B) \cap (B-A) = \emptyset$  이다.

- 문제 5: 두 집합이 다르다는 것은 다음 명제와 동치임을 증명하라. 증명에는 앞에서 설명한 내용과 기본 논리만을 사용해야 한다.

$$\exists x (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$$

# [Solution] Proof) 임의의 두 집합 A, B가 같다는 것은 $A = B \iff \forall x : (x \in A \iff x \in B)$ $\iff \forall x : (x \in A \to x \in B \iff x \in B \to x \in A)$ $\iff \forall x : (x \in A \to x \in B) \land (x \in B \to x \in A)$ 이다. $A \neq B \iff \sim (\forall x : (x \in A \to x \in B) \land (x \in B \to x \in A))$ $\iff \exists x : (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$

#### - 문제 6: 다음이 사실임을 증명하라

$$(A \cup B) \cap (A \cap B)^c = (A - B) \cup (B - A)$$

#### [ Solution ]

#### **Proof**)

$$(A \cup B) \cap (A \cap B)^{c} = \{ p : (p \in A \lor p \in B) \land \neg (p \in A \land p \in B) \}$$

$$(A - B) \cup (B - A) = \{ p : (p \in A \land p \notin B) \lor (p \notin A \lor p \in B) \}$$

$$(p \in A \lor p \in B) \land \neg (p \in A \land p \in B)$$

$$\Leftrightarrow (p \in A \land p \notin B) \lor (p \notin A \lor p \in B)$$

#### 를 보이면 된다.

 $\equiv p \in (A \cup B) \cap (A \cap B)^c$ 

 $\equiv (p \in A \lor p \in B) \land \neg (p \in A \land p \in B)$ 

 $\equiv (p \in A \lor p \in B) \land (p \notin A \lor p \notin B)$ 

 $\equiv \left( \left( p \in A \land \left( p \notin A \lor p \notin B \right) \right) \lor \left( p \in B \land \left( p \notin A \lor p \notin B \right) \right) \right)$ 

 $\equiv ((p \in A \land p \notin B) \lor (p \notin A \land p \in B)$ 

 $\equiv p \in (A - B) \cup (B - A)$ 

임을 알 수 있다.

#### 또는

- 1. *p* ∈ A, *p* ∉ B 일 경우
- 2. *p* ∉ A, *p* ∈ B 일 경우
- 3. *p* ∉ A, *p* ∉ B 일 경우

로 가정하여, 증명할 수 있다.

이는 문제 4 번과 유사하게 증명해 나가면 된다.

- 문제 7: A⊕B는 두 집합의 합집합에서 교집합을 뺀 것을 말한다. 다음 식이 항상 성립함을 증명하라.

 $(A \oplus B) \oplus B = A$ 

#### [ Solution ]

#### Proof)

이는 쉽게 밴 다이어그램으로 확인할 수 있다.

또 다른 방법으로는  $\forall x[x \in (A \oplus B) \oplus B \leftrightarrow x \in A]$ 를 보이는 것이다.

1.  $x \in A$ ,  $x \notin B$ 일 경우

 $x \in A$ 이고  $x \notin B$  이므로,  $x \in (A \cup B)$ ,  $x \notin (A \cap B)$ 이다.

따라서  $x \in (A \oplus B)$ 이다.

그리고  $x \in (A \oplus B)$ 이고  $x \notin B$  이므로,  $x \in (A \oplus B) \cup B$ ,  $x \notin (A \oplus B) \cap B$ 이다.

 $(A \oplus B) \oplus B = (A \oplus B) \cup B - (A \oplus B) \cap B$  이므로,  $x \in (A \oplus B) \oplus B$  이다.

그러므로  $x \in (A \oplus B) \oplus B \rightarrow x \in A$ 이다..

 $2. x \in A, x \in B$ 일 경우

 $x \in A$ 이고  $x \in B$  이므로,  $x \in (A \cup B)$ ,  $x \in (A \cap B)$ 이다.

따라서  $(A \oplus B) = (A \cup B) - (A \cap B)$  이므로,  $x \notin (A \oplus B)$ 이다.

그리고  $x \notin (A \oplus B)$ 이고  $x \in B$  이므로,  $x \in (A \oplus B) \cup B$ ,  $x \notin (A \oplus B) \cap B$ 이며,

 $(A \oplus B) \oplus B = (A \oplus B) \cup B - (A \oplus B) \cap B$  이므로,  $x \in (A \oplus B) \oplus B$  이다.

그러므로  $x \in (A \oplus B) \oplus B \rightarrow x \in A$ 이다.

 $x \in (A \oplus B) \oplus B \leftarrow x \in A$ 는 어떠한 경우라도 성립한다.

그러므로  $x \in (A \oplus B) \oplus B \leftrightarrow x \in A$  이 성립함을 알 수 있고,  $(A \oplus B) \oplus B = A$ 이다.

- 문제 8: 8 × 8 체스 판에 말 두개를 놓으려고 한다. 아무 곳에나 놓아도 되지만 한 칸에 두개가 들어가지는 못한다. 가능한 방법은 모두 몇가지인가?

# [ Solution ]

 $8 \times 8$  체스 판 중에서 두 곳을 고르는 조합을 구하는 문제이므로,  $\binom{64}{2} = 2,016$ 

모두 2,016개가 존재한다.

- 문제 9: n개의 원소를 가진 집합의 가능한 부분집합의 종류는  $2^n$ 개임을 조합론을 이용해 증명하라.

#### [ Solution ]

n개의 원소를 가진 집합 S를  $S = \left\{a_1, a_2, a_3, \dots, a_n\right\}$  이라 하자. 그러면 임의의 원소  $a_k (a_k \in S)$ 가 부분 집합으로 포함될 경우는 2가지(포함된다, 포함되지 않는다)이므로, 전체 부분집합의 종류는  $2^n$ 이 된다. - 문제 10: 비밀번호를 0 부터 9 까지의 숫자만 가지고 만든다고 하자. 4 개 이상 6 개 이하의 숫자를 쓸 수 있다고 할 때 가능한 비밀번호의 가지수는 얼마인가?

#### [ Solution ]

가능한 비밀번호는 숫자가 4개, 5개, 6개가 들어갈 경우이다.

숫자가 4개 사용될 경우 :  $10 \times 9 \times 8 \times 7 = 5,040$ 

숫자가 5개 사용될 경우 :  $10 \times 9 \times 8 \times 7 \times 6 = 30,240$ 

숫자가 6개 사용될 경우 :  $10 \times 9 \times 8 \times 7 \times 6 \times 5 = 151,200$ 

따라서 총 가능한 비밀번호의 가지 수는 186,480개 이다.

- 문제 11: 원소가 m개인 집합에서 원소가 n개인 집합으로 가는 단사함수의 개수는 몇가지인가?

#### [ Solution ]

두 가지 경우로 나눠서 생각할 수 있다.

1. *m* ≤ *n*일 경우

n개의 집합에서 m개를 선택하고, m개의 원소를 순열로 곱한 값이 총 개수이다.

$$\binom{n}{m} \times m!$$

2. m > n일 경우

단사 함수는 공역의 각 원소가 정의역의 원소 중 최대 한 원소만을 만족해야 하므로, 성립되지 않는다.

- 문제 12: 52 개의 카드를 이용해서 만들 수 있는 5 개 카드의 조합은 몇가지인가?

#### [ Solution ]

52 개의 카드에서 5 개 카드를 선택하는 조합의 경우이므로, 총  $\binom{52}{5}$  = 2,598,960 가지 있다.

- 문제 13: 52 개의 카드를 이용해서 만들 수 있는 5 개 카드 조합 중 같은 무늬의 카드가 정확히 3 개인 경우는 몇가지인가?

#### [ Solution ]

무늬의 종류는 4 가지이고, 이 중 하나를 선택하는 경우는  $\binom{4}{1}$  가지이다. 그리고 같은 무늬일 때, 서로 다른 숫자를 뽑는 경우는 13 개 중 3 개를 뽑는 경우  $\binom{13}{3}$  이다.

나머지 2개의 카드는 무늬가 달라야 하므로, 나머지 3개에서 2개를 뽑는  $\binom{3}{2}$  가지이고, 수는 서로 상관없으므로  $\binom{13}{1} \times \binom{13}{1}$ 이다.

따라서 이들을 모두 곱하면,

 $\left(\binom{4}{1} \times \binom{13}{3}\right) \times \left(\binom{3}{2} \times \binom{13}{1} \times \binom{13}{1}\right) = 580,008$  가지가 된다.

- 문제 14: x + y + z = 100의 자연수 해는 몇가지인가?

#### [ Solution ]

100개의 공을 칸막이 2개를 포함하여 x,y,z 칸에 넣는 것이랑 같다. 이때 x,y,z가 자연수 해가 되어야 하므로, 공을 미리 하나씨 넣어 최소한 1보다 같거나 큰 수로 만든다. 그러면 97개의 공을 x,y,z칸에 넣으면된다.

$$\frac{(97+2)!}{97!\,2!} = 4,851$$

총 4,851가지의 자연수 해 쌍이 존재한다.

- 문제 15: (포함 배제 원리) 5 개의 원소를 가진 집합에서 3 개의 원소를 가진 집합으로 가는 전사함수는 몇가지가 있는가?

#### [ Solution ]

5 개의 원소를 가진 집합에서 3 개의 원소로 가진 집합으로 가는 총 경우의 수는  $3^5 (= 243)$ 이다.

- 1. 3 개의 원소 중 2 개의 원소로만 가능 경우 :  $\binom{3}{2} \times 2^5 (= 96)$ 3 개의 원소 중 2 개의 원소로 갈 때, 1 개의 원소로만 갈 경우 :  $\binom{3}{2} \times 2 (= 6)$
- 2. 3 개의 원소 중 1 개의 원소로만 가능 경우 :  $\binom{3}{1} \times 1^5 (=3)$

따라서 전사함수로 가는 총 경우의 수는 243 - 96 + 6 - 3 = 150가지이다.

- 문제 16: 52 개 카드에서 5 개 카드 조합을 만들 때, 숫자가 같은 카드가 한 쌍도 없는 경우는 몇가지인가?

#### [ Solution ]

52 개의 카드에서 5 개 카드를 선택하는 총 경우의 수는  $\binom{52}{5}$  (= 2,598,960)이다.

1. 2장의 카드의 숫자가 같은 경우

(1) 2 2 1 1 1

13 개의 수에서 하나를 선택하고, 4 가지색 중에서 2 가지 색을 선택하다. 나머지 3 장의 카드는 숫자가 달라야 하므로 12 개의 수에서 3 개를 선택할 수 있고, 각 카드는 숫자가 다르므로 4 가지색을 모두 가질 수 있다.

$$\binom{13}{1}\binom{4}{2}\binom{12}{3}\binom{4}{1}^3 = 1,098,240$$

(2) 2 2 1

13 개의 수에서 하나를 선택하고, 4 가지색 중에서 2 가지 색을 선택하다. 나머지 3 장의 카드는 2 장이 같고 한 장이 달라야 하므로 12 개의 수에서 2 개를 선택할 수 있고, 각 카드는 숫자가 다르므로 4 가지색을 모두 가질 수 있다.

$$\binom{13}{1}\binom{4}{2}\binom{12}{1}\binom{4}{2}\binom{11}{1}\binom{4}{1} = 247,104$$

(2) 2 3

13 개의 수에서 하나를 선택하고, 4 가지색 중에서 2 가지 색을 선택하다. 나머지 3 장의 카드는 숫자가 달라야 하므로 12 개의 수에서 3 개를 선택할 수 있고, 각 카드는 숫자가 다르므로 4 가지색을 모두 가질 수 있다.

$$\binom{13}{1} \binom{4}{2} \binom{12}{1} \binom{4}{3} = 3,744$$

2. 3 장의 카드의 숫자가 같은 경우(3 1 1)

: 13 개의 수에서 하나를 선택하고, 4 가지색 중에서 3 가지 색을 선택하다. 나머지 2 장의 카드는 숫자가 달라야 하므로 12 개의 수에서 2 개를 선택할

수 있고, 각 카드는 숫자가 다르므로 4 가지색을 모두 가질 수 있다.

$$\binom{13}{1} \binom{4}{3} \binom{12}{2} \binom{4}{1}^2 = 54,912$$

3. 4장의 카드의 숫자가 같은 경우(41)

: 13 개의 수에서 하나를 선택하고, 4 가지색 중에서 4 가지 색을 선택하다. 나머지 1 장의 카드는 숫자가 달라야 하므로 12 개의 수에서 1 개를 선택할 수 있고, 하나 카드는 4 가지색을 모두 가질 수 있다.

$$\binom{13}{1} \binom{4}{4} \binom{12}{1} \binom{4}{1}^1 = 624$$

따라서 52 개의 카드에서 5 개 카드를 조합할 때, 숫자가 같은 카드가 한 쌍도 없는 경우는 2,598,960 - 1,098,240 - 247,104 - 3,744 - 54,912 - 624 = 1,194,336개 이다.

- 문제 17: n개의 원소를 가진 배열에서 연속된 구간을 잡으려고 한다. 잡을 수 있는 가능한 구간은 몇가지인가? 단 구간의 크기는 1 이상이다.

#### [ Solution ]

- 1. 처음과 끝을 같게 잡는 경우 : n
- 2. 처음과 끝을 다르게 잡는 경우 :  $\binom{n}{2}$

총 가능한 구간은  $n + \binom{n}{2}$ 이다.

# 4. 기초 수식

# ■ 약간의 설명

- 알고리즘의 시간 복잡도를 표현할 수 있는 다양한 수식들이 존재한다.
- 풀이법을 익혀 두어야 알고리즘의 시간 복잡도를 계산할 수 있고, 알고리즘이 시간이 얼마나 걸릴 지 예측할 수 있다.

# ■ 연습 문제들: 다음 재귀식들을 O() notation 수준으로 풀어라.

- 문제 1: T(n) = T(n-1) + 1

$$T(n) = T(n-1) + 1$$
  
=  $T(n-2) + 1 + 1$   
=  $T(1) + 1 + \dots + 1$ 

$$T(n) = \mathbf{O}(\mathbf{n})$$

- 문제 2: T(n) = T(n-1) + n

# [ Solution ]

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$= 1 + \cdots (n-1) + n$$

$$= \frac{n(n-1)}{2}$$

$$\therefore T(n) = \mathbf{0}(n^2)$$

- 문제 3:  $T(n) = T(n-1) + \log n$ 

$$T(n) = T(1) + \log n + \log n - 1 + \log n - 2 + \dots + \log 2$$

$$\leq T(1) + \log n + \log n + \dots + \log n$$

$$\leq T(1) + n \log n$$

$$\therefore T(n) = \mathbf{O}(n \log n)$$

- 문제 4:  $T(n) = T\left(\frac{n}{2}\right) + 1$ 

# [ Solution ]

- 문제 5:  $T(n) = T\left(\frac{n}{2}\right) + n$ 

$$T(n) = n + T\left(\frac{n}{2}\right)$$

$$= n + \left(\frac{n}{2} + T\left(\frac{n}{4}\right)\right)$$

$$= n + \frac{n}{2} + \frac{n}{2^2} + \dots + \frac{n}{2^{\log_2 n}}$$

$$= n + \frac{1 - \frac{1}{2}^{\log_2 n}}{1 - \frac{1}{2}}$$

$$= 2n - 2$$

$$\therefore T(n) = \mathbf{O}(n)$$

- 문제 6:  $T(n) = 2T\left(\frac{n}{2}\right) + n$ 

# [ Solution ]

$$T(n) = n + 2T\left(\frac{n}{2}\right)$$

$$= n + 2\left(\frac{n}{2} + 2 \cdot T\left(\frac{n}{4}\right)\right)$$

$$= n + 2 \cdot \frac{n}{2} + 2^2 \cdot \frac{n}{2^2} + \dots + 2^{\log_2 n} \cdot \frac{n}{2^{\log_2 n}}$$

$$= n \log_2 n$$

$$\therefore T(n) = \mathbf{O}(\mathbf{nlog} \, n)$$

- 문제 7:  $T(n) = 3T\left(\frac{n}{2}\right) + n$ 

$$T(n) = n + 3T\left(\frac{n}{2}\right)$$

$$= n + 3\left(\frac{n}{2} + 3 \cdot T\left(\frac{n}{4}\right)\right)$$

$$= n + 3 \cdot \frac{n}{2} + 3^2 \cdot \frac{n}{2^2} + \dots + 3^{\log_2 n} \cdot \frac{n}{2^{\log_2 n}}$$

$$= n\frac{\frac{3^{\log_2 n}}{2} - 1}{\frac{3}{2} - 1}$$

$$= 2 \cdot n \cdot n^{\log_2 \frac{3}{2}} - 2 \cdot n$$

$$\therefore T(n) = \mathbf{O}(n^{\log_2 3})$$

- 문제 8:  $T(n) = T(n-1) + \frac{1}{n}$ 

# [ Solution ]

$$T(n) = T(n-1) + \frac{1}{n}$$

$$= T(n-2) + \frac{1}{n-1} + \frac{1}{n}$$
...
$$= T(1) + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} ... \frac{1}{n-2} + \frac{1}{n-1} + \frac{1}{n}$$

$$< T(1) + (\frac{1}{2} + \frac{1}{2}) + (\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}) ... (\frac{1}{n} + ... + \frac{1}{n} + \frac{1}{n})$$

$$= T(1) + 1 + 1 + ... + 1 = T(1) + O(\log n)$$

$$\therefore T(n) = O(\log n)$$

- 문제 9: T(n) = T(n/2) + T(n/4) + T(n/6) + T(n/12) + 1

$$T(n) \le n$$
으로 추측해보자. (Guess and Induction)

$$T(n) = T(n/2) + T(n/4) + T(n/6) + T(n/12) + 1$$

$$\leq \frac{n}{2} + \frac{n}{4} + \frac{n}{6} + \frac{n}{12} + 1$$

$$\leq n + 1$$

$$\therefore T(n) = \mathbf{0}(n)$$

- 문제 10:  $T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$ 

# [ Solution ]

$$T(n) = n + n^{\frac{1}{2}} \cdot T\left(n^{\frac{1}{2}}\right)$$

$$= n + (n^{\frac{1}{2}} \cdot n^{\frac{1}{2}} + n^{\frac{1}{4}} \cdot T\left(n^{\frac{1}{4}}\right))$$

$$= n + n + \dots + n$$

n 이 몇번 나오는지 세기 위해 함수의 호출인자를 살펴보면,  $n^{\frac{1}{2^k}}$ 임을

알 수 있다.(k는 함수의 호출 횟수)

$$n = 2^{\log_2 n}$$
이므로,

$$n^{\frac{1}{2^k}} = 2^{\frac{(\log_2 n)}{2^k}}$$

 $n^{\frac{1}{2^k}} = 2$ 에서 함수가 끝난다고 할 때,

$$2^{\frac{(\log_2 n)}{2^k}} = 2$$

$$\frac{(\log_2 n)}{2^k} = 1$$

$$\log_2 n = 2^k, k = \log_2(\log_2 n)$$

$$\therefore T(n) = \mathbf{0}(n\log_2(\log_2 n))$$

# 5. 재귀

# ■ 약간의 설명

- 재귀란 자기 자신을 호출하는 함수, 그럼 끝날 수가 있는가?
- 함수는 입력이 있으며, 자기 자신의 입력과 동일한 입력으로 자기 자신을 호출하면 당연히 끝나지 않음
- 하지만, 다른 입력으로 호출하면 끝날 수 있음

```
int abc(int x) // 이 함수는 안 끝남
{
    return abc(x);
}

int sum(int x) // 이 함수는 끝남. 결과 값은?
{
    if (x <= 0) return 0;
    return x + sum(x-1);
}
```

- 함수란 어떤 문제를 해결하는 방법을 코딩한 것
- 함수가 어떤 문제의 단 한 케이스만을 해결하는 것이 아님
- 제대로 코딩 된 것이라면 해결하는 문제의 모든 케이스들을 해결해야 함
- 수학적 귀납법 증명 사용 가능
  - (7) n이 0일 때 문제를 풀 수 있음
  - (나) n-1에서 문제를 풀 수 있으면 n에서도 문제를 풀 수 있다
- 위 두 가지가 사실이면 모든 가능한 n에 대해 문제를 풀 수 있다는 것이 사실

- 위 박스의 함수 sum()을 보면 정확히 위의 두 가지를 코딩한 것임
- 따라서, sum() 함수는 문제를 해결한다는 것을 증명할 수 있음
- 방금 보인 증명은 high-level 증명이며, 상세한 증명은 과정의 첫날에 본적이 있음
- 어떤 미스터리한 이유로 문제가 해결되는 것은 아니고, 실제로 프로그램을 돌리면 필요한 계산이 다 일어남. 순차적인 코드에서 일어나는 계산과 완전히 동일. 다만 표현하는 방법이 달라진 것



- 다르게 생각하는 방법: 어떤 문제를 해결하려다 **부분 문제**를 만났는데, 원래 해결하려던 입력 케이스와 **동일한 문제**에 속하지만 "크기가 더 작은" 입력 케이스를 해결하는 것이 그 부분 문제였다!
- 즉, 부분 문제가 동일한 문제인 경우!

# ■ 연습 문제들: 다음 문제들을 푸는 재귀 알고리즘을 수도코드로 작성하고, 정확성 증명 및 시간 복잡도 계산을 수행하라

- 문제 1: 피보나치 수열: F(n) = F(n-1) + F(n-2), F(1) = F(2) = 1

#### [ Solution ]

```
fibo(n){
    if(n <= 2 ) return 1
    return fibo(n-1) + fibo(n-2)
}</pre>
```

#### Proof)

가정: fibo(n)을 호출하면 F(n)이 return 됨을 알 수 있다.

(1) n = 1, n=2 일 때,

fibo(1) = 1 이고 fibo(2)=1 인데, 이는 F(1) = 1, F(2) = 1 이므로 위의 소스코드는 성립한다.

(2) n = k 2  $W_{i}$ 

fibo(1) ... fibo(k-1)이 F(1) .. F(k-1)과 같다고 가정하자. 이때 F(k) = F(k-1)+ F(k-2) 이므로, fibo(k) = fibo(k-1)+fibo(k-2) = F(k)가 성립한다. 따라서 fibo(n)을 호출하면 F(n)이 return 됨을 알 수 있다.

# **Time Complexity)**

$$T(n) = T(n-1) + T(n-2) + 1$$

$$< 2T(n-1) + 1$$

$$T(n) = O(2^n)$$

문제 2: Merge Sort, 크기 n인 배열을 입력으로 받아,
 배열을 절반으로 두개로 나눈 후,
 각 작은 배열을 재귀적으로 정렬하고,
 그 결과를 Merge 한다.

```
mergesort(array, buffer, start, end){
    if(start == end) return
    mid = (start+end)/2
    i0 = start
    i1 = mid+1
    mergesort(array, buffer, start, mid)
    mergesort(array, buffer, mid+1, end)

for(i from start to end){
    if(i1 > end || i0 <= mid && array[i0] > array[i1])
        buffer[i] = array[i0++]
    else
        buffer[i] = array[i1++]
    }
    copy buffer to array
}
```

#### Proof)

# mergesort 함수는 주어진 배열을 소팅한다.

- k = start end 라고 할 때, k=1 및 k=2 일 때 Merge Sort 가 배열을 소팅함을 알 수 있다.
- k=1, k=2, ..., k=n 에서 Merge Sort 가 배열을 소팅한다고
   가정하면 k=n+1 일 때 Merge Sort 가 배열을 소팅함을 코드를
   확인해서 증명할 수 있다. (Merge 알고리즘의 정확성을 사용함)
- 따라서 모든 범위 k 에서 Merge Sort 가 성립함을 알 수 있다.

$$T(n) = n + 2T\left(\frac{n}{2}\right)$$

$$= n + 2\left(\frac{n}{2} + 2 \cdot T\left(\frac{n}{4}\right)\right)$$

$$= n + 2 \cdot \frac{n}{2} + 2^2 \cdot \frac{n}{2^2} + \dots + 2^{\log_2 n} \cdot \frac{n}{2^{\log_2 n}}$$

$$= n \log_2 n$$

$$\therefore T(n) = \mathbf{0}(\mathbf{nlog}\,\mathbf{n})$$

- 문제 3: 다음 소팅 알고리즘이 실제로 소팅에 항상 성공한다는 것을 증명하라.

```
Stupid (A[0..n-1])
{
    if n=2 and A[0] > A[1]
        then swap A[0] and A[1]
    else
        m = ceiling(2n/3)
        Stupid(A[0..m-1])
        Stupid(A[n-m..n-1])
        Stupid(A[0..m-1])
```

#### [ Solution ]

#### Proof)

배열 A[0..n-1]을 [0,n-m-1], [n-m,m-1], [m,n-1]의 3 구간으로 나눌 수 있다. 각각의 구간을 A,B,C 구간이라고 할 때, 위의 소팅 방법은

.. ①[A B], ②[B C], ③[A B]의 순서로 소팅이 됨을 알 수 있다.

기저 조건에 대해 증명하고, 원소의 개수가 2 부터 n-1 까지의 소팅이 성립한다고 가정할 때 개수가 n 일때의 소팅이 성립함을 보이는 귀납적 방법으로 위의 stupid 소팅법을 증명할 수 있다.

첫째,

if n=2 and A[0] > A[1] then swap A[0] and A[1] 위의 구문에 의해, n=2일 때는 A[0]과 A[1]이 소팅이 됨을 알 수 있다.

#### 둘째,

어떤 원소x는 최종 소팅의 결과에서 c 구간에 있을 원소라고 하자. 배열 전체에서 x 보다 작은 원소의 개수를 a 라고 하고, [A B]구간에서 x 보다 작은 원소의 개수를 b 라고 하자. a-b는 c 구간의 원소의 개수보다 클 수 없으므로, a-b <= 1/3n 이다.

원소의 개수 n=2 부터 n-1 까지 소팅이 된다고 가정할 때, 소팅 후 C의 위치에 있어야 하는 어떤 원소x가 ①연산 후 A에 위치하는 경우에만 소팅이 재대로 되지 않고, 그러한 x가 없는 경우 항상소팅이 재대로 된다는 것을 경우를 따져보면 원소 n 개에 대한 소팅이 성립함을 알 수 있다.

원소 x가 소팅 후 C의 위치에 있어야 하기 때문에, 배열 전체에서 x보다 작은 원소의 개수 a는, (a) >= 2/3\*n 임을 알 수 있다.

③연산 이후에 C의 위치에 있기 위해서는 ①연산 이후에 B의 위치에 있어야 하는데, ①연산 이후에 B의 위치가 아닌 A의 위치에 있다고 가정한다면, 이 원소 x는 C의 위치로 갈 수 없다고 할 수 있다.

이 때 입력 상태의 [A B] 범위에서 x 보다 작은 원소의 개수 b는 (b) < 1/3 \* n 이다. (왜냐하면 소팅 이후 A에 있었기 때문에) 따라서 (a) - (b) > 1/3\*n 인데, 앞서 증명한 (a) - (b) <= 1/3 \* n 와 모순이 되므로, 그러한 x 는 없다는 것을 알 수 있다.

- 문제 4: 위의 소팅 알고리즘에서 수행하는 Swap 의 횟수는 최대 몇번인가?

# [ Solution ]

$$T(n) = 1 + 3T \left(\frac{n}{\frac{3}{2}}\right)$$

$$= 1 + 3 + 3^{2} \cdot T \left(\frac{n}{(\frac{3}{2})^{2}}\right)$$

$$= 1 + 3 + 3^{2} + \dots + 3^{\log_{3} n}$$

$$= \frac{3^{\log_{3} n}}{3 - 1}$$

$$= \frac{1}{2} \cdot 3^{\log_{3} n} - \frac{1}{2}$$

$$\therefore T(n) = O\left(n^{\log_{\frac{3}{2}}3}\right) \approx O(n^{2.7})$$

최대  $n^{2.7}$ 번 Swap 할 수 있다.

- 문제 5: 어떤 배열 A[1..n]에 (음수 포함) 정수 값이 증가하는 순서로 저장되어 있다. A[i]=i 가 되는 인덱스 i 가 존재하는 지 찾는 알고리즘을 수도코드 수준으로 작성하고 정확성 증명 및 시간 복잡도 계산을 수행하라. 동일한 문제이지만, 저장된 값이 자연수로 제한되면 어떻게 풀 수 있는가?

#### [ Solution ]

### Pseudo Code)

저장된 값이 정수일 경우

```
BinarySearch(array,left,right){
    A[n];
    BinarySearch(array,left, right)
}
main(){
    BinarySearch(A[i]-i,1,n)
}
```

#### Proof)

- A[i]-i는 감소하지 않는 수열이므로, 정렬되어있다..
- Binary search 의 정확성을 가정하자. 탐색하고자 하는 배열을 A[i]-i 라고 두고 찾고자 하는 값을 0 이라고 한다면, Binary search 를 통해 원하는 값이 있는지 찾을 수 있다.

#### **Proof of binary search)**

- 배열 A[i]는 오름차순의 순서대로 정렬되어있다고 가정한다.
- x는 찾고자 하는 값이다.
  - 1-1 A[left] < x 이고 A[right] > x 를 만족하면, [left,right]의 범위에서 A[i]=x 가 있는지 확인 할 수 있다.
  - 1-2 A[left] > x 이고 A[right] > x 일 경우 [left,right]의 범위에서 답이 없다.
  - 1-3 A[left] < x 이고 A[right] < x 일 경우 [left,right]의 범위에서 답이 없다.
- middle =  $\frac{\text{left+right}}{2}$  라고 하면,
  - 2-1 A[middle] < x 일 경우, [left,middle]의 범위에서는 답이 없으므로(1-3), (middle,right]의 범위에서 답이 있는지 확인하는 것은 [left,right]에서 답이 있는지 확인하는 것과 같다.
  - 2-2 A[middle] > x 일 경우, [middle,right]의 범위에서는 답이 없으므로(1-2), [left,middle)의 범위에서 답이 있는지 확인하는 것은 [left,right]에서 답이 있는지 확인하는 것과 같다.
  - 2-3 A[middle] = x 일 경우, 답이다.
- 모든 k=left-right 에 대해,
  - 1. k=1 일 때 [left,right]의 범위에서 답인지 아닌지 알 수 있다.(2-3)
  - 2. k=1 .. k=n-1 의 범위에서 답이 있는지 없는지 알 수 있으면 k=n 에서 답이 있는지 없는지 알 수 있다. (2-1,2-2)
- 귀납적 방법에 의해, binary search 가 성립함을 알 수 있다.

- 문제 6: 루트 있는 트리를 입력으로 받아 아래와 같이 출력하는 알고리즘을 작성하라. 트리의 각 노드에는 1,000 미만의 자연수가 저장되어 있다. 트리의 노드 연결 관계는 다음과 같이 표현해야 한다. 아래 출력에서 루트에는 자식이 3개 있고 그 자식들 중 하나는 더 이상 자식이 없는 것임을 알 수 있을 것이다.

```
[030]--+--[054]-----[001]
+--[002]
L--[045]-----[123]
```

#### [ Solution ]

```
Pseudo Code)
    tree[][];
    int current_line;
    make_tree(int current_tree, int depth){
         if( child_maxnumber == 0){
                   print "₩n"
                   return 0
         for(current_child in child_maxnumber){
                   if( current_child != start)
                             for(indent_index in depth)
                                       print "₩t"
                   if( child_maxnumber == 1)
                             print "---"
                   else if( current_child == child_maxnumber)
                             print "--L"
                   else
                             print "--+"
                   print "--[" + tree[current_tree][current_child] + "]";
                   make_tree(current_child, depth+1)
    main(){
         scan tree[][], root
         make_tree(root,0)
```

- 문제 7: (어려움) 무한한 크기의 물통이 3개 있다. 초기에 각 물통에는 자연수 리터 만큼의 물이 들어 있다. 가능한 작업은 두개의 물통을 잡아서 그 중 많거나 같은 양의 물이 들어 있는 곳에서 작은 쪽으로 물을 부어서 작은 쪽의 물의 양을 두배로 만드는 것이다. 즉, 4 리터, 3 리터를 잡았다면 1 리터, 6 리터가 될 것이다. 입력으로 초기 물의 양을 받아서 한 물통에들어 있는 물의 양을 0 리터로 만들고 싶다. (실행 시간이 많이 걸려도 좋으니) 그렇게 만드는 과정을 계산하는 알고리즘을 작성하라.

# 

reduce(bottle[3])

## Algorithm)

- 물통 3개를 각각 1,2,3 번이라고 하고, 각각의 물통의 양을 a,b,c(a≤b≤c)라고 한다.
- b=q\*a+r, 0≤r<a 를 만족하는 q 가 있을 때, q 의 2 진수를 q<sub>k</sub>q<sub>k-1</sub>...q<sub>0</sub> 라고 한다.
- round i=0 to k 까지 loop

if(q<sub>i</sub>=0) 3 번 물통에서 1 번 물통으로 물을 붓는다.

(1 번을 두배, 3 번은 1 번만큼 감소)

else 2 번 물통에서 1 번 물통으로 물을 붓는다.

(1 번을 두배, 2 번은 1 번의 양만큼 감소)

- 모든 round 이후에 남아있는 물의 양을 계산해 보면,

1 번물통의 양 : 2<sup>k+1</sup> a

2 번물통의 양:r

3 번물통의 양 : 양수 (∵b≤c)

- r이 0 이 될 때까지 위 과정을 반복한다.
- r<a 이므로 2 번 물통의 양은 round 이전의 가장 적은 물통의 양보다 항상 적다. 따라서 위의 과정을 반복하면 언젠가 물통에 들어있는 물의 양은 0 리터가 된다.

# 6. 동적 프로그래밍

## ■ 약간의 설명

- 간단하게 설명하면 재귀 함수에서 동일한 입력의 함수 호출이 반복적으로 일어날 때 그 결과 값을 저장해 두고 불러 쓰는 것이다. (Memoization)
- 최초 입력에서 파생되는 모든 가능한 입력에 대한 답을 모두 저장할 수 있는 메모리가 있어야 한다.
- 단순히 재귀에서 저장된 값을 찾아보는 것으로도 가능하지만, 결과 값을 순서를 정해서 계산할 수도 있다. (Dynamic Programming)

# ■ 연습 문제들: 다음 문제들을 푸는 동적 프로그래밍 알고리즘을 수도코드로 작성하고, 정확성 증명 및 시간 복잡도 계산을 수행하라

- 문제 1: Memoization 피보나치 수열:

$$F(n) = F(n-1) + F(n-2), F(1) = F(2) = 1$$

(힌트: 계산되는 값이 n 가지 밖에 없으므로 이 값들을 저장할 수 있는 배열을 만들어 두고 재귀 호출에 들어가기 전에 값이 있는 지 확인하는 방법)

#### [ Solution ]

#### Pseudo Code)

```
Fibonacci(n)
{
    if n == 0 or n == 1
        then return n

    if memoization[n] != null
        then return memoization[n]

    memoization[n] = Fibonacci(n-1) + Fibonacci(n-2)

    return memoization[n]
}
```

#### **Correctness**)

피보나치 수는 아래와 같은 점화식으로 정의되어 있다.

$$F_{n} := \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

위의 코드에서 n이 0 또는 1일 경우, Base case 로 처리가 된다. n의 값이 0 또는 1 이외의 값이 들어올 경우 Fibonacci(n-1), Fibonacci(n-2)의 호출을 통해 그 값을 계산하고 이를 저장하는 것을 확인할 수 있다.

#### Time complexity)

O(n)

- 문제 2: Dynamic Programming 피보나치 수열: F(n) = F(n-1) + F(n-2)

(힌트: 작은 값부터 순서대로 계산한다)

## [ Solution ]

## Pseudo Code)

```
Fibonacci(n) { F[0] \leftarrow 0 F[1] \leftarrow 1 for i \leftarrow 2, i \leq n, i \leftarrow i+1 F[i] = F[i-1] + F[i-2] return F[n] }
```

#### **Correctness**)

모든 자연수 n에 대하여 F(n)이 성립하는 것을 증명하기 위해, 수학적 귀납법을 이용한다.

(3) n = 19 W,

F(1) = 1 이므로 성립한다.

F(k)가 성립한다고 가정하자.

즉 F(k) = F(k-1) + F(k-2) 는 성립한다고 가정하자.

양변에 F(k-1) 을 더하면,

$$F(k) + F(k-1) = F(k-1) + F(k-2) + F(k-1)$$
$$= F(k-1) + F(k)$$
$$= F(k+1)$$

이므로 모든 자연수 n에 대하여 성립함을 알 수 있다.

## Time complexity)

O(n)

질문: 실제로 실행시키면 세 버전 중 어느 것이 가장 빠를 것으로 예상되는가?

# [ Solution ]

```
Fibonacci(n) { F[0] \leftarrow 0 F[1] \leftarrow 1 for i \leftarrow 2, i \leq n, i \leftarrow i+1 F[i] = F[i-1] + F[i-2] return F[n] }
```

위와 같은 방법이 가장 빠를 것이라 예상되며, 그 이유는 재귀 함수의 호출 시간, 재귀 함수의 호출 횟수 등에서 차이가 날 것이기 때문이다.

- 문제 3: 행렬 곱하기, n개의 행렬을 곱하려고 한다. 크기가  $a \times b$ 인 행렬과 크기가  $b \times c$ 인 행렬을 곱하는 데 드는 계산량은  $a \times b \times c$ 라고 한다. n개의 행렬들을 곱하는데 필요한 계산량을 최소화 하는 순서를 찾는 알고리즘을 작성하라. 행렬들의 크기는 다르고, 입력으로 주어진다고 가정하라. 물론 곱하기가 가능한 크기들만 주어진다.

#### [ Solution ]

n개의 행렬을 곱하는 데 드는 계산량은 행렬의 곱을 구하기 위해 수행된 곱셈 수이다. 이는 행렬 곱셈의 결합 법칙을 성질을 잘 이용해야 한다. 예를 들어,

각각 행렬의 차원이  $(100 \times 1), (1 \times 100), (100 \times 1), (1 \times 100)$ 로 다른  $M_1$ ,  $M_2$ ,  $M_3$ ,  $M_4$  가 있다고 가정하자.

- ①  $M_1(M_2(M_3M_4)) = 30,000$
- (2)  $M_1((M_2M_3)M_4) = 10,200$
- $(M_1(M_2M_3))M_4 = 10,200$
- $((M_1M_2)M_3)M_4 = 30,000$
- (5)  $(M_1M_2)(M_3M_4) = 102,000$

위와 같이 곱셈의 순서와 방법에 따라서 연산의 횟수가 변화할 수 있다. 즉, 두 개의 행렬이 하나의 새로운 행렬도 대체되면 다시 n-1 개의 행렬을 곱하는 문제로 변환된다.

또한 중복되어 계산되는 부분은 Memoization 기법을 통해 줄일 수 있다.

#### 따라서 점화식

 $C(i,j) = min \ \{ C(i,k) + C(k+1,j) + D(i-1) \times D(k) \times D(j) \}, \ i \le k \le j-1 )$ 로 정의할 수 있다.

- 문제 4: (약간 어려움) 배열에 정수(음수 포함)들이 저장되어 있다. 연속인 구간들 중 그 합이 가장 큰 구간을 찾는 알고리즘을 작성하라.

### [ Solution ]

아래와 같이 배열에 임의의 정수들이 포함되어 있다고 가정하자.



각 연속인 구간에서 그 합이 가장 큰 구간을 찾기 위해서는 현재 위치 바로 이전까지의 구간들의 합의 크기에 따라 달라지게 된다.

배열의 인덱스를 1부터 n까지라 하고 배열 i위치에 적힌 정수를 A[i]라고 하였을 때, 임의의 위치 i위치에서의 최댓값 C[i]는

$$C[1] = A[1] \qquad , \qquad i = 1$$
 
$$C[i] = \max \; \{ \; C[i-1] + \; A[i], \; A[i] \; \} \; , \; \; (2 \leq i \leq n \; )$$

로 정의할 수 있다.

위의 C[i]는 아래와 같이



로 채워지게 될 것이다.

- 문제 5: (어려움) 배열에 정수(음수 포함)들이 저장되어 있다. 배열의 일부 값들을 골라서 배열에 있는 순서대로 보면 증가하는 순서가 될 수 있다. 이러한 것들 중 가장 긴 것을 찾는 알고리즘을 작성하라.

#### [ Solution ]

이 문제는 DP의 대표적인 문제로 LCS(Longest increasing subsequence, 최장 증가 수열) 문제이다. 단순히 예를 들면

이라는 배열이 있었을 때, 여기서 가장 긴 것을 찾아보면

(10, 20, 30, 50, 60) 순서 길이 5가 가장 긴 것을 알 수 있다. (10, 20, 40, 50, 60) 또한 가능하다.

간단히 말해서, 앞에서부터 뒤로 숫자를 선택해 나갈 때, 증가하는 순서로 최장 증가 수열을 찾는 것이다. 감소하는 순서로 찾게 되면 최장 감소 수열이 될 것이다.

각 위치에서 자신을 포함한 최대 증가 수열의 길이를 저장하는 점화식을 세우면 쉽게 해결할 수 있다. A[i]를 배열에 저장된 수, D[i]를 i를 포함하는 최대 증가 수열의 길이라고 했을 때,

 $D[i] = \max \; \{ \, D[k] \, , (1 \le k \le i - 1 \, \}, \quad \text{if} \; \; A[k] \le A[i]$  가 되고,  $D[i], (1 \le i \le k)$  중에 가장 큰 값이 정답이 된다.

위의 예의 D[i]의 값들은 아래와 같이 저장이 된다.

| 1 | 2 | 3 | 3 | 4 | 4 | 5 |
|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|

# 7. 조합론 프로그래밍 과제

- 과제 1: 52 장의 카드에서 만들 수 있는 페어가 정확히 하나만 있는 5 장조합을 모두 출력하는 프로그램을 작성하라. 출력이 너무 많으면 카드 수를 줄일수 있다.

- 과제 2: x + y + z = 100의 자연수 해를 모두 출력하는 프로그램을 작성하라

- 과제 3: m개의 원소를 가진 집합에서 n개의 원소를 가진 집합으로 가는 전사함수의 개수를 출력하는 프로그램을 작성하라. m과 n의 값을 바꾸어 보면서 값이 너무 커지지 않는 입력의 범위가 어느 정도인지 확인해 보라

- 과제 4: m개의 원소를 가진 집합에서 n개의 원소를 가진 집합으로 가는 전사함수를 모두 출력하는 프로그램을 작성하라. 출력을 어떻게 하는 것이 적절할 지 생각해 보아야 한다.

# 8. 기초 알고리즘 프로그래밍 과제

- 과제 1: 피보나치 수열을 계산하는 3 가지 방법을 모두 작성해 보고 실행시간을 비교하라. 결과 값이 빨리 커지는 것에 주의하라.

- 과제 2: n개의 행렬을 곱하려고 한다. 크기가  $a \times b$ 인 행렬과 크기가  $b \times c$ 인 행렬을 곱하는 데 드는 계산량은  $a \times b \times c$ 라고 한다. n개의 행렬들을 곱하는데 필요한 계산량을 최소화 하는 순서를 찾는 알고리즘을 작성하라. 행렬들의 크기는 다르고, 입력으로 주어진다고 가정하라. 물론 곱하기가 가능한 크기들만 주어진다.

- 과제 3: 배열에 정수(음수 포함)들이 저장되어 있다. 연속인 구간들 중 그 합이 가장 큰 구간을 찾는 프로그램을 작성하라.

- 과제 4: (어려움) 배열에 정수(음수 포함)들이 저장되어 있다. 배열의 일부 값들을 골라서 배열에 있는 순서대로 보면 증가하는 순서가 될 수 있다. 이러한 것들 중 가장 긴 것을 찾는 프로그램을 작성하라. - 과제 5: 루트 있는 트리를 입력으로 받아 아래와 같이 출력하는 프로그램을 작성하라. 트리의 각 노드에는 1,000 미만의 자연수가 저장되어 있다. 트리의 노드 연결 관계는 다음과 같이 표현해야 한다. 아래 출력에서 루트에는 자식이 3 개 있고 그 자식들 중 하나는 더 이상 자식이 없는 것임을 알 수 있을 것이다.