

Capítulo 15 Ácidos e Bases

- Ácidos e Bases de Brønsted
- Propriedades Ácido-Base da Água
- pH Uma Medida de Acidez
- Força de Ácidos e de Bases
- Ácidos Fracos e Constantes de Ionização Ácida
- Bases Fracas e Constantes de Ionização Básicas
- Relação entre Constantes de Ionização de Ácidos e as Suas Bases Conjugadas
- Ácidos Dipróticos e Polipróticos
- Estrutura Molecular e Força dos Ácidos
- Propriedades Ácido-Base de Óxidos e Hidróxidos
- Ácidos e Bases de Lewis

Propriedades ácido - base

Em soluções aquosas: relevante a concentração de H+

- Afeta o meio ambiente dos seres vivos
- Promove ou dificulta a corrosão de materiais (por ex. materiais de construção civil)
- Promove ou dificulta reações químicas
- A presença de CO₂ na atmosfera afecta a [H⁺] na chuva
- Influencia a cor de alguns compostos
- Promove ou dificulta a degradação de alimentos
- •

Dá exemplos claros de equilíbrio químico.

Têm um sabor azedo (o sabor do vinagre deve-se ao ácido acético; os citrinos contêm ácido cítrico).

Reagem com certos metais produzindo hidrogénio gasoso.

Reagem com carbonatos e bicarbonatos para produzir ${\rm CO_2}$ gasoso.

As soluções aquosas de ácidos conduzem eletricidade.

Bases

Têm um sabor amargo.

São escorregadias ao tacto (muitos sabões contêm bases).

Um ácido de Brønsted é um dador de protões.

Uma base de Brønsted é um aceitador de protões.

Propriedades Ácido-Base da Água

$$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$$

Auto-ionização da água

$$\begin{array}{c} \text{ácido} \\ \text{base} & \text{conjugado} \\ \text{H}_2\text{O} + \text{H}_2\text{O} & \longrightarrow \text{H}_3\text{O}^+ + \text{OH}^- \\ \text{ácido} & \text{base} \\ \text{conjugada} \end{array}$$

Produto lónico da Água

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq) \qquad K_c = \frac{[H^+][OH^-]}{[H_2O]} \qquad [H_2O] = const.$$

$$K_c[H_2O] = K_w = [H^+][OH^-]$$

Constante do produto-iónico (K_w) — o produto das concentrações molares dos iões H⁺ e OH⁻, a uma dada temperatura.

A 25°C
$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

A solução é

$$[H^+] = [OH^-]$$
 neutra
 $[H^+] > [OH^-]$ ácida

pH — Uma Medida de Acidez

$$pH = -log[H^+]$$

A solução é		A 25 °C	
neutra	[H+] = [OH-]	$[H^+] = 1 \times 10^{-7}$	pH = 7
ácida	[H+] > [OH-]	$[H^+] > 1 \times 10^{-7}$	pH < 7
básica	[H+] < [OH-]	$[H^+] < 1 \times 10^{-7}$	pH > 7
	†		
	рН	[H+]	

Valores de pH de Alguns Fluidos Comuns

Amostra	Valor do pH
Suco gástrico	1,0-2,0
no estômago	
Sumo de limão	2,4
Vinagre	3,0
Sumo de toranja	3,2
Sumo de laranja	3,5
Urina	4,8-7,5
Água exposta	5,5
ao ar*	
Saliva	6,4-6,9
Leite	6,5
Água pura	7,0
Sangue	7,35-7,45
Lágrimas	7,4
Leite	10,6
de magnésia	
Amónia de	11,5
limpeza	
doméstica	

^{*} Água exposta ao ar durante um longo período de tempo absorve CO₂ atmosférico formando ácido carbónico, H₂CO₃.

pOH =
$$-\log [OH^-]$$

[H+][OH-] = $K_w = 1.0 \times 10^{-14}$
 $-\log [H+] - \log [OH-] = 14.00$
pH + pOH = 14.00

O pH da água da chuva recolhida numa dada região do nordeste dos Estados Unidos num determinado dia era de 4,82. Calcule a concentração de iões H+ da água da chuva?

$$pH = -log[H^+]$$

$$[H^+] = 10^{-pH} = 10^{-4.82} = 1.5 \times 10^{-5} M$$

A concentração de iões OH^- de uma amostra de sangue é 2,5 × 10^{-7} *M*. Qual é o pH do sangue?

$$pH + pOH = 14,00$$

$$pOH = -log [OH^{-}] = -log (2.5 \times 10^{-7}) = 6.60$$

$$pH = 14,00 - pOH = 14,00 - 6,60 = 7,40$$

Eletrólito forte — 100% dissociação

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Eletrólito fraco — dissociação incompleta

$$CH_3COO^-(aq) + H^+(aq)$$

Ácidos fortes são eletrólitos fortes

HCI
$$(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CI^- (aq)$$

HNO₃ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_3^- (aq)$
HCIO₄ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CIO_4^- (aq)$
H₂SO₄ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + HSO_4^- (aq)$

Ácidos fracos são eletrólitos fracos:

HF
$$(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + F^- (aq)$$

HNO₂ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_2^- (aq)$
HSO₄⁻ $(aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + SO_4^{2-} (aq)$
H₂O $(I) + H_2O (I) \longrightarrow H_3O^+ (aq) + OH^- (aq)$

Bases fortes são eletrólitos fortes:

NaOH (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + OH⁻ (aq)
KOH (s) $\xrightarrow{H_2O}$ K⁺ (aq) + OH⁻ (aq)
Ba(OH)₂ (s) $\xrightarrow{H_2O}$ Ba²⁺ (aq) + 2OH⁻ (aq)

Bases fracas são eletrólitos fracos:

$$F^{-}(aq) + H_2O (\cancel{N} \longrightarrow OH^{-}(aq) + HF (aq)$$

 $NO_2^{-}(aq) + H_2O (\cancel{N} \longrightarrow OH^{-}(aq) + HNO_2 (aq)$

Pares ácido-base conjugados:

- A base conjugada de um ácido forte não tem força mensurável.
- O H₃O⁺ é o ácido mais forte que pode existir em solução aquosa.
- O ião OH⁻ é a base mais forte que pode existir em solução aquosa.

Acidos Fra Força Ácida Crescente Fracos Acidos Fort

Fortes HClO4 (ácido perclorico) HI (ácido hidroiódico) HBr (ácido bromídrico) HCl (ácido clorídrico) H₂SO₄ (ácido sulfúrico) HNO₃ (ácido nítrico)

Forças Relativas de Pares Ácido-Base Conjugados

H₃O⁺ (ião hidrónio) HSO₄ (hidrogenossulfatião) HF (ácido fluorídrico) HNO₂ (ácido nitroso) HCOOH (ácido fórmico)

CH₃COOH (ácido acético) NH₄ (ião amónio)

HCN (ácido hidrociânico)

H₂O (água) NH₃ (amónia)

Ácido

Base conjugada

ClO₄ (ião perclorato) I (ião iodeto)

Br (ião brometo)

Cl (ião cloreto)

HSO₄ (hidrogenossulfatião)

NO3 (ião nitrato)

H₂O (água)

NO₄² (ião sulfato)

F (ião fluoreto)

NO₂ (ião nitrito)

HCOO (ião formiato)

CH₃COO (ião acetato)

NH₃ (amónia)

CN (ião cianeto)

OH (ião hidróxido)

NH₂ (ião amida)

Força Básica Crescente

Ácido forte

Ácido fraco

Calcule o pH de uma solução de HNO₃ 2 × 10⁻³ M.

HNO₃ é um ácido forte – 100% dissociação.

Início: 0,002 M 0.0 M

0,0 M

 $HNO_3 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_3^- (aq)$

0,0 MFim:

0,002 M 0,002 M

$$pH = -log [H^+] = -log [H_3O^+] = -log (0,002) = 2,7$$

Calcule o pH de uma solução de Ba(OH)₂ 1,8 × 10⁻² M.

Ba(OH)₂ é uma base forte – 100% dissociação.

Início: 0.018 *M*

0.0 M

 $0.0 \, M$

 $Ba(OH)_2(s) \longrightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$

Fim: 0,0 M 0,018 *M* 0,036 *M*

$$pH = 14,00 - pOH = 14,00 + log(0,036) = 12,56$$

Ácidos Fracos e Constantes de Ionização Ácida

HA
$$(aq) + H_2O(I) \Longrightarrow H_3O^+(aq) + A^-(aq)$$

HA $(aq) \Longrightarrow H^+(aq) + A^-(aq)$
 $K_a = \frac{[H^+][A^-]}{[HA]}$

K_a é a constante de ionização ácida

Constantes de Ionização de Alguns Ácidos Fracos e das suas Bases Conjugadas, a 25°C

Nome do Ácido	Fórmula	Estrutura	K _a	Base Conjugada	K _b
Ácido fluorídrico	HF	H—F	7.1×10^{-4}	F	1.4×10^{-11}
Ácido nitroso	HNO ₂	O=N-O-H	4.5×10^{-4}	NO ₂	2.2×10^{-11}
Ácido acetilsalicílico (aspirina)	C ₉ H ₈ O ₄	О -C-О-Н О О	3,0 × 10 ⁻⁴	C ₉ H ₇ O ₄	3,3 × 10 ⁻¹¹
Ácido fórmico	НСООН	о Н—С—О—Н	1,7 × 10 ⁻⁴	HCOO.	5,9 × 10 ⁻¹¹
Ácido ascórbico*	C ₆ H ₈ O ₆	H-O OH CHOH CHOH CH2OH	8,0 × 10 ⁻⁵	C ₆ H ₇ O ₆	1,3 × 10 ⁻¹⁰
Ácido benzóico	C ₆ H ₅ COOH	С-о-н	6,5 × 10 ⁻⁵	C ₆ H ₅ COO ⁻	1,5 × 10 ⁻¹⁰
Ácido acético	CH₃COOH	О СН ₃ —С—О— Н	1,8 × 10 ⁻⁵	CH₃COO⁻	5,6 × 10 ⁻¹⁰
Ácido hidrociânico	HCN	H−C≡N	4.9×10^{-10}	CN-	2.0×10^{-5}
Fenol	C ₆ H ₅ OH	—о—н	1,3 × 10 ⁻¹⁰	C ₆ H ₅ O ⁻	7,7 × 10 ⁻⁵

^{*} No ácido ascórbico é o grupo hidroxilo superior esquerdo que está associado a esta constante de ionização.

Qual é o pH de uma solução de HF 0,5 M (a 25°C)?

$$HF(aq) \longrightarrow H^+(aq) + F^-(aq)$$

HF (aq)
$$\longrightarrow$$
 H⁺ (aq) + F⁻ (aq) $K_a = \frac{[H^+][F^-]}{[HF]} = 7.1 \times 10^{-4}$

$$HF(aq) \longrightarrow H^+(aq) + F^-(aq)$$

Início (M):

0,50

0,00

0,00

Variação (M): -x

+X +X

Equilíbrio (M): 0,50 - x

X

X

x = 0.0185 M

$$K_a = \frac{x^2}{0.50 - x} = 7.1 \times 10^{-4}$$
 $K_a \ll 1$ $0.50 - x \approx 0.50$

$$K_a << 1$$

$$0,50 - x \approx 0,50$$

$$K_a \approx \frac{x^2}{0,50} = 7.1 \times 10^{-4}$$
 $x^2 = 3.55 \times 10^{-4}$ $x = 0.0188$ M

$$x^2 = 3,55 \times 10^{-4}$$

$$x = 0.0188 M$$

$$[H^+] = [F^-] = 0.019 M$$

$$[HF] = 0.50 - x = 0.48 M$$

$$pH = -log [H^+] = 1,72$$

Quando posso usar a aproximação?

$$K_a << 1$$
 $0.50 - x \approx 0.50$

Quando x for menor que 5% do valor do qual foi subtraído.

$$x = 0.019$$
 $\frac{0.019 M}{0.50 M} \times 100\% = 3.8\%$ Menos do que 5% Aproximação ok!

Qual é o pH de uma solução 0,05 M de HF (a 25 °C)?

$$K_a \approx \frac{x^2}{0,05} = 7.1 \times 10^{-4}$$
 $X = 0,006 M$
 $\frac{0,006 M}{0,05 M} \times 100\% = 12\%$ Mais do que 5%
Aproximação não ok!

Deve-se resolver em ordem a *x* utilizando a equação quadrática ou o método das aproximações sucessivas.

Calcule o pH de uma solução que contém HCOOH 0,30 M e HCOOK 0,52 M?

Mistura de ácido fraco e base conjugada!

$$HCOOH(aq) \longrightarrow H^+(aq) + HCOO^-(aq)$$

Inicial (M): 0,30 0,00 0,52

Variação (M): -x +x +x

Equilíbrio (*M*): 0.30 - x x = 0.52 + x

$$K_a = [H^+] \frac{[HCOO^-]}{[HCOOH]}$$

$$0.52 + x \approx 0.52$$
 $pH = pK_a + log$ $[HCOO^-]$ $[HCOOH]$

$$pK_a (HCOOH) = 3,77$$

 $pK_a = -log K_a$
 $pH = 3,77 + log \frac{[0,52]}{[0,30]} = 4,01$

Bases Fracas e Constantes de Ionização Básicas

$$NH_3(aq) + H_2O(l) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

K_b é a constante de ionização básica

Resolvemos os problemas de bases fracas como os problemas de ácidos fracos *com a diferença* que calculamos primeiro [OH-] em vez de [H+].

Constantes de Ionização de Algumas Bases Fracas e dos Seus Ácidos Conjugados a 25°C

Nome da Base	Fórmula	Estrutura	K _b *	Base Conjugada	K _a
Etilamina	C ₂ H ₅ NH ₂	CH₃—CH₂—N—H H	5,6 × 10 ⁻⁴	C₂H₅ÑH₃	1,8×10 ⁻¹¹
Metilamina	CH ₃ NH ₂	CH₃— N —H H	4,4 × 10 ⁻⁴	сн, йн,	$2,3 \times 10^{-11}$
Cafeína	C ₈ H ₁₀ N ₄ O ₂	O C N C N C-H	4,1 × 10 ⁻⁴	C ₈ H ₁₁ N ₄ O ₂	2,4 × 10 ⁻¹¹
Amónia	NH ₃	н—й—н Н	1,8 × 10 ⁻⁵	NH ₄	$5,6 \times 10^{-10}$
Piridina	C ₅ H ₅ N	N:	1,7 × 10 ⁻⁹	C₅H₅ Ṅ́H	5,9 × 10 ⁻⁶
Anilina	C ₆ H ₅ NH ₂	$ \begin{array}{c} $	3,8 × 10 ⁻¹⁰	C ₆ H ₅ NH ₃	2,6×10 ⁻⁵
Ureia	N₂H₄CO	О Н—Й—С—Й—Н Н Н	1,5 × 10 ⁻¹⁴	H₂NCOÑH₃	0,67

^{*} O átomo de azoto contribui para a basicidade de cada composto com o seu par isolado. No caso da ureia, K_b pode ser associado a qualquer um dos seus átomos de azoto.

Constantes de Ionização de Pares Ácido-Base Conjugados

$$HA (aq) \rightleftharpoons H^+ (aq) + A (aq)$$
 K_a

$$A^- (aq) + H_2O (1) \rightleftharpoons OH^- (aq) + AA (aq) K_b$$

$$H_2O (1) \rightleftharpoons H^+ (aq) + OH^- (aq) K_w$$

$$K_aK_b=K_w$$

Ácidos Fracos e as Suas Bases Conjugadas

$$K_a = \frac{K_w}{K_b}$$
 $K_b = \frac{K_w}{K_a}$

Constantes de Ionização de Alguns Ácidos Dipróticos, de um Ácido Poliprótico e das Suas Bases Conjugadas, a 25°C

Nome do Ácido	Fórmula	Estrutura	Ka	Base Conjugada	Kb
Ácido sulfúrico	H ₂ SO ₄	о н—о— <mark>s</mark> —о—н	muito grande	HSO ₄	muito pequena
Hidrogenosulfa- tião	HSO ₄	H-O-S-O-	1,3 × 10 ⁻²	SO ₄ -	7,7 × 10 ⁻¹³
Ácido oxálico	C ₂ H ₂ O ₄	о о н-о-с-с-о-н	6,5 × 10 ⁻²	C ₂ HO ₄	$1,5 \times 10^{-13}$
Hidrogenoxa- latião	C ₂ HO ₄	H-O-C-C-O-	6,1 × 10 ⁻⁵	C ₂ O ₄ ²⁻	1,6×10 ⁻¹⁰
Ácido sulfuroso*	H ₂ SO ₃	о н—о— s —о—н	1,3 × 10 ⁻²	HSO3	7.7×10^{-13}
Hidrogenossul- fitião	HSO ₃	O H—O—S—O-	6,3 × 10 ⁻⁸	SO ₃ ² -	1,6 × 10 ⁻⁷

Resolução de problemas de ionização de ácidos fracos:

- Identificar as espécies em maior quantidade que podem afetar o pH da solução.
 - Na maioria dos casos pode ignorar a ionização da água
 - Ignore [OH -] porque é determinado por [H+].
- 2. Exprimir as concentrações de equilíbrio destas espécies em termos da concentração inicial do ácido e de uma só incógnita x, que representa a variação de concentração.
- 3. Escrever a constante de ionização ácida (K_a) em termos das concentrações de equilíbrio. Resolver primeiro em ordem a x pelo método aproximado. Se a aproximação não for válida, usar a equação quadrática ou o método das aproximações sucessivas para resolver em ordem a x.
- 4. Tendo obtido x, podemos calcular as concentrações de equilíbrio de todas as espécies e/ou o pH da solução.

Qual é o pH de um ácido monoprótico 0,122 M cujo K_a é 5,7 × 10⁻⁴?

$$HA(aq) \longrightarrow H^+(aq) + A^-(aq)$$

Inicial (M): 0,122

0,00 0,00

Variação (*M*): −*x*

+X +X

Equilíbrio (M): 0,122 - x

X

X

$$K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4}$$
 $K_a << 1$ $0.122 - x \approx 0.122$

$$K_{2} << 1$$

$$0,122 - x \approx 0,122$$

$$K_a \approx \frac{x^2}{0,122} = 5.7 \times 10^{-4}$$
 $x^2 = 6.95 \times 10^{-5}$ $x = 0.0083 M$

$$x^2 = 6.95 \times 10^{-5}$$

$$x = 0,0083 M$$

$$\frac{0,0083 M}{0,122 M} \times 100\% = 6,8\%$$

Mais do que 5%

Aproximação não ok!

$$K_a = \frac{x^2}{0,122 - x} = 5.7 \times 10^{-4}$$

$$x^2 + 0.00057x - 6.95 \times 10^{-5} = 0$$

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = 0.0081$$

$$x = -0.0081$$

$$HA(aq) \longrightarrow H^+(aq) + A^-(aq)$$

Inicial (M):

0,122

0,00

0,00

Variação (M):

-x

+X

+X

Equilíbrio (*M*):

0,122 - x

X

X

$$[H^+] = x = 0,0081 M$$

$$pH = -log[H^+] = 2,09$$

% de ionização = Concentração do ácido ionizado no equilíbrio x 100%

Para um ácido monoprótico HA

% de ionização =
$$\frac{[H^+]}{[HA]_0} \times 100\%$$
 $[HA]_0$ = concentração inicial

Propriedades Ácido-Base de Sais

Soluções Neutras:

Sais que contêm um ião de um metal alcalino ou um ião de um metal alcalino-terroso (excepto o Be²⁺) **e** a base conjugada de um ácido **forte** (por exemplo Cl⁻, Br⁻ e NO₃⁻).

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Soluções Básicas:

Sais derivados de uma base forte e de um ácido fraco.

NaCH₃COO (s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺ (aq) + CH₃COO⁻ (aq)

CH₃COO⁻ (aq) + H₂O (l) \rightleftharpoons CH₃COOH (aq) + OH (aq)

Propriedades Ácido-Base de Sais

Soluções Ácidas:

Sais derivados de um ácido forte e de uma base fraca.

$$NH_4CI(s) \xrightarrow{H_2O} NH_4^+(aq) + CI^-(aq)$$

$$NH_4^+(aq) \longleftrightarrow NH_3(aq) + H^+(aq)$$

Sais com catiões metálicos pequenos e de cargas elevadas (ex.: Al³+, Cr³+ e Be²+) e a base conjugada de um ácido forte.

$$AI(H_2O)_6^{3+}(aq) \longrightarrow AI(OH)(H_2O)_5^{2+}(aq) + H^+(aq)$$

Propriedades Ácido-Base dos Sais

Soluções em que tanto o catião como o anião se hidrolisam:

- K_b para o anião > K_a para o catião, a solução será básica.
- K_b para o anião K_a para o catião, a solução será ácida.
- K_b para o anião ≈ K_a para o catião, a solução será neutra.

1						
15	Propriedades Ácido-Base de Sais					
TABELA	Tipo de Sal	Exemplos	lões que Sofrem Hidrólise	pH da Solução		
2	Catião de base forte; anião de ácido forte	NaCl, KI, KNO3, RbBr, BaCl2	Nenhum	a 7		
	Catião de base forte; anião de ácido fraco	CH ₃ COONa, KNO ₂	Anião	>7		
	Catião de base fraca; anião de ácido forte	NH ₄ Cl, NH ₄ NO ₃	Catião	< 7		
	Catião de base fraca; anião de ácido fraco	NH ₄ NO ₂ , CH ₃ COONH ₄ , NH ₄ CN	Anião e catião	<7 se K_b < K_a * 7 se K_b * K_a > 7 se K_b > K_a		
	Catião pequeno com carga elevada; anião de ácido forte	AlCl ₃ , Fe(NO ₃) ₃	Catião hidratado	<7		

Equilíbrios Ácido-Base e Equilíbrios de Solubilidade

- Equilíbrio Homogéneos vs. Heterogéneos
- Efeito do Ião Comum
- Soluções Tampão
- Titulações Ácido-Base
- Indicadores Ácido-Base
- Equilíbrios de Solubilidade
- Separação de Iões por Precipitação Fracionada
- Efeito do Ião Comum e Solubilidade
- pH e Solubilidade
- Equilíbrios de IõesComplexos e Solubilidade
- Aplicação do Princípio do Produto de Solubilidade à Análise Qualitativa

Efeito do ião comum — desvio do equilíbrio causado pela adição de um composto que tem um ião comum com a substância dissolvida.

A presença de um ião comum **suprime** a ionização de um ácido fraco ou de uma base fraca.

Considere a mistura de CH₃COONa (eletrólito forte) e CH₃COOH (ácido fraco):

CH₃COONa (s)
$$\longrightarrow$$
 Na⁺ (aq) + CH₃COO⁻ (aq) ião CH₃COOH (aq) \longrightarrow H⁺ (aq) + CH₃COO⁻ (aq) comum

Considere uma mistura do sal NaA e de um ácido fraco HA:

NaA (s)
$$\longrightarrow$$
 Na⁺ (aq) + A⁻ (aq)

$$HA (aq) \longrightarrow H^+ (aq) + A^- (aq)$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$
 $[H^+] = \frac{K_a [HA]}{[A^-]}$

$$-\log [H^+] = -\log K_a - \log \frac{[HA]}{[A^-]} = -\log K_a + \log \frac{[A^-]}{[HA]}$$

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

$$pK_a = -\log K_a$$

Equação de Henderson-Hasselbalch

$$pH = pK_a + log \frac{[base conjugada]}{[ácido]}$$

Calcule o pH de uma solução que contém HCOOH 0,30 M e **HCOOK 0,52 M?**

Misture de ácido fraco e base conjugada!

$$HCOOH(aq) \longrightarrow H^+(aq) + HCOO^-(aq)$$

0,30 Inicial (M):

0,00

0,52

Variação (M):

-x

+X

+X

Equilíbrio (M): 0.30 - x

X

0,52 + x

Efeito ião comum

$$0.30 - x \approx 0.30$$

$$0.52 + x \approx 0.52$$

$$pK_a (HCOOH) = 3,77$$

$$pH = pK_a + log \frac{[HCOO^-]}{[HCOOH]}$$

pH = 3,77 + log
$$\frac{[0,52]}{[0,30]}$$
 = **4,01**

Uma solução tampão é uma solução de:

- 1. Um ácido fraco ou uma base fraca, e
- 2. O sal do ácido fraco ou da base fraca.

Devem estar ambos presentes!

Uma solução tampão tem a capacidade de resistir a variações de pH quando se adicionam pequenas quantidades quer de ácido quer de base.

Considere uma mistura de CH₃COOH e CH₃COONa com quantidades molares semelhantes:

Adicione um ácido forte

$$H^+(aq) + CH_3COO^-(aq) \longrightarrow CH_3COOH(aq)$$

Adicione uma base forte

$$OH^-(aq) + CH_3COOH(aq) \longrightarrow CH_3COO^-(aq) + H_2O(1)$$

HCI --- H+ + CI-

Quais dos seguintes sistemas são sistemas tampão? (a) KF/HF, (b) KBr/HBr, (c) Na₂CO₃/NaHCO₃.

(a) HF é um ácido fraco e F- é a sua base conjugada solução tampão

(b) HBr é um ácido forte

não é uma solução tampão

(c) CO₃²⁻ é uma base fraca e HCO₃⁻ é o seu ácido conjugado solução tampão

Calcule o pH de um sistema tampão que contém NH_3 0,30 M e NH_4 Cl 0,36 M. Qual é o pH depois da adição de 20,0 mL de NaOH 0,050 M a 80,0 mL de solução tampão?

$$NH_4^+$$
 (aq) \longrightarrow H^+ (aq) + NH_3 (aq)

pH = p
$$K_a$$
 + log $\frac{[NH_3]}{[NH_4^+]}$ p K_a = 9,25 pH = 9,25 + log $\frac{[0,30]}{[0,36]}$ = 9,17

Início (moles): 0,029 0,001 0,024
$$NH_4^+(aq) + OH^-(aq) \longrightarrow H_2O(I) + NH_3(aq)$$
 Final (moles): 0,028 0,0 0,025

volume final = 80.0 mL + 20.0 mL = 100 mL

$$[NH_4^+] = \frac{0,028}{0,10}$$
 $[NH_3] = \frac{0,025}{0,10}$ $pH = 9,25 + log \frac{[0,25]}{[0,28]} = 9,20$

Titulações

Numa *titulação*, uma solução de concentração rigorosamente medida é gradualmente adicionada a outra solução de concentração desconhecida até que a reação química entre as duas soluções se complete.

Ponto de equivalência — o ponto no qual a reação se completa

Indicador — substâncias que mudam de cor no (ou perto)do ponto de equivalência.

o indicator mude de cor (**cor-de-rosa**)

Titulações Ácido Forte-Base Forte

NaOH (aq) + HCI (aq)
$$\longrightarrow$$
 H₂O (1) + NaCI (aq)

$$OH^-(aq) + H^+(aq) \longrightarrow H_2O(1)$$

No ponto de equivalência (pH = 7):

Volume de NaOH	
adicionado (mL)	pН
0,0	1,00
5,0	1,18
10,0	1,37
15,0	1,60
20,0	1,95
22,0	2,20
24,0	2,69
25,0	7,00
26,0	11,29
28,0	11,75
30,0	11,96
35,0	12,22
40,0	12,36
45,0	12,46
50,0	12,52

Titulações Ácido Fraco-Base Forte

$$CH_3COOH(aq) + NaOH(aq) \longrightarrow CH_3COONa(aq) + H_2O(1)$$

$$CH_3COOH(aq) + OH^-(aq) \longrightarrow CH_3COO^-(aq) + H_2O(l)$$

No ponto de equivalência (pH > 7):

$$CH_3COO^-(aq) + H_2O(l) \longrightarrow OH^-(aq) + CH_3COOH(aq)$$

Titulações Base Fraca-Ácido Forte

$$HCI(aq) + NH_3(aq) \longrightarrow NH_4CI(aq)$$

$$H^+(aq) + NH_3(aq) \longrightarrow NH_4Cl(aq)$$

No ponto de equivalência (pH < 7):

$$NH_4^+$$
 (aq) + H_2O (1) \longrightarrow NH_3 (aq) + H^+ (aq)

Volume de HCl adicionado (mL)	рН
0,0	11,13
5,0	9,86
10,0	9,44
15,0	9,08
20,0	8,66
22,0	8,39
24,0	7,88
25,0	5,28
26,0	2,70
28,0	2,22
30,0	2,00
35,0	1,70
40,0	1,52
45,0	1,40
50,0	1,30

Titularam-se exatamente 100 mL de HNO, 0,10 M com uma solução de NaOH 0,10 M. Calcule o pH do ponto de equivalência.

Início (moles): 0.01

0,01

$$\mathsf{HNO}_2\left(aq\right) + \mathsf{OH}^-\left(aq\right)$$

 \rightarrow NO₂⁻ (aq) + H₂O (I)

Final (moles): 0,0

0.0

0,01

Volume final = 200 mL

$$[NO_2^-] = \frac{0.01}{0.200} = 0.05 M$$

Início (M):

 $NO_2^-(aq) + H_2O(I)$ \longrightarrow $OH^-(aq) + HNO_2(aq)$

0,05

0,00

0,00

Variação (M):

-X

+X

+X

Equilíbrio (*M*): 0.05 - x

X

X

$$K_b = \frac{[OH^-][HNO_2]}{[NO_2^-]} = \frac{x^2}{0,05-x} = 2,2 \times 10^{-11}$$

pOH = 5,98

$$0.05 - x \approx 0.05$$

$$0.05 - x \approx 0.05$$
 $x \approx 1.05 \times 10^{-6} = [OH^{-}]$

$$pH = 14 - pOH = 8,02$$

Indicadores Ácido-Base

$$HIn (aq) \longrightarrow H^+ (aq) + In^- (aq)$$

$$\frac{[HIn]}{[In^{-1}]} \ge 10$$
 Predomina a cor do ácido (HIn)

The second of the second of the second	i de la companya de l
Alguns Indicadores A	Acido-Base Comuns

TABELA

	Cor		
Indicador	Em ácido	Em base	Gama de pH*
Azul de timol	Vermelho	Amarelo	1,2-2,8
Azul de bromofenol	Amarelo	Púrpura-azulado	3,0-4,6
Alaranjado de metilo	Laranja	Amarelo	3,1-4,4
Vermelho de metilo	Vermelho	Amarelo	4,2-6,3
Azul de clorofenol	Amarelo	Vermelho	4,8-6,4
Azul de bromotimol	Amarelo	Azul	6,0-7,6
Vermelho de cresol	Amarelo	Vermelho	7,2-8,8
Fenolftaleina	Incolor	Rosa-avermelhado	8,3-10,0

^{*}A gama de pH define-se como a gama em que a cor muda da cor ácida para a cor básica

Soluções de Couve

Curva da titulação de um ácido forte com uma base forte

Que indicador(es) usaria para uma titulação de HNO₂ com KOH ? Ácido fraco titulado com uma base forte.

No ponto de equivalência, terá uma base conjugada de ácido fraco.

No ponto de equivalência, pH > 7

Utilizaria vermelho de cresol ou fenolftaleina

Alguns Indicadores Ácido-Base Comuns			
	Cor		
Indicador	Em ácido	Em base	Gama de pH'
Azul de timol	Vermelho	Amarelo	1,2-2,8
Azul de bromofenol	Amarelo	Púrpura-azulado	3,0-4,6
Alaranjado de metilo	Laranja	Amarelo	3,1-4,4
Vermelho de metilo	Vermelho	Amarelo	4,2-6,3
Azul de clorofenol	Amarelo	Vermelho	4,8-6,4
Azul de bromotimol	Amarelo	Azul	6,0-7,6
Vermelho de cresol	Amarelo	Vermelho	7,2-8,8
Fenolftaleina	Incolor	Rosa-avermelhado	8,3-10,0

- 1. Suponha que gastou 15 cm³ de uma solução de NaOH com a concentração 0,12 M na titulação de 25 cm³ de uma solução de ácido acético (HAc).
- a) Calcule a concentração da solução de ácido acético.
- b) Calcule o pH que se obteve no ponto de equivalência.

$$K_a$$
 (HAc) = 1,8 x 10⁻⁵

- 2. Suponha que gastou 17,8 cm³ de solução do ácido HCl, de concentração 0,14 M, na titulação de 15,0 cm³ de uma solução da base NH₃.
- a) Calcule a concentração da solução da base NH₃.
- b) Calcule o pH que se obteve no ponto de equivalência.

$$pK_b(NH_3)=4,74$$

3. Num balão volumétrico de 500 cm³ preparou-se uma solução de ácido HF com pH=2,1.

Calcule a massa de HF que foi necessário pesar para preparar esta solução.

Ka (HF)=
$$3.5x10^{-4}$$

4. Suponha que gastou 19,3 cm³ de solução de HCl com concentração 0,12 M na titulação de 12,5 cm³ de uma solução da base EtNH₂.

Calcule o pH que se obteve no ponto de equivalência.

Kb (EtNH₂)=
$$5,6x10^{-4}$$

- 5. Calcule o pH da solução preparada a partir de 0,1 mole de ácido fórmico e 0,02 mole de NaOH diluída até 1L. pK_a (HForm)=3,75.
- **6.** Qual o volume de ácido clorídrico 1 M que é necessário adicionar a 100 mL de solução de amoníaco 1 M para preparar uma solução tampão a pH = 9,5? pK_b(NH₃)=4,74
- **7.** a) Calcule o pH de uma solução contendo simultaneamente 1.2×10^{-4} M de carbonato (CO_3^2) e 0,1 M de bicarbonato (HCO_3^2). pKa (HCO_3^2) = 10,32
- b) Calcule o pH no ponto de equivalência de uma titulação de 25 cm³ da solução de HCO₃⁻/CO₃²⁻ atrás indicada com NaOH 0,1 M.
- c) Dos seguintes indicadores ácido base, escolha o que melhor se adequa a esta titulação: Alaranjado de metilo (p $K_{ind} = 3,4$); Vermelho de metilo (p $K_{ind} = 5,0$); Azul de bromotimol (p $K_{ind} = 7,1$); Vermelho de Fenol (p $K_{ind} = 7,9$); Azul de Timol (p $K_{ind} = 8,9$); Fenolftaleína (p $K_{ind} = 9,4$); Amarelo de alizarina (p $K_{ind} = 11,2$).