Topic: Associative property

Question: Which of these is the associative property?

Answer choices:

A
$$(a+b) + c = a + (b+c)$$

$$B \qquad a+b+c=a+c+b$$

$$C \qquad a+b+c=b+a+c$$

$$D a(b+c) = ab + ac$$

0 - 1		 	
So	lUi	n	: Д

$$(a+b) + c = a + (b+c)$$

$$a + b + c = a + c + b$$

$$a + b + c = b + a + c$$

$$a(b+c) = ab + ac$$

Associative property

Commutative property

Commutative property

Distributive property

Topic: Associative property

Question: The associative property tells you that:

Answer choices:

$$A \qquad (4+3)+2=4+(3+2)$$

B
$$4+3+2=4+2+3$$

C
$$4+3+2=3+4+2$$

D
$$4(3+2) = (4)(3) + (4)(2)$$

Solution: A

Answer choices B and C illustrate the commutative property, and answer choice D illustrates the distributive property.

Answer choice A illustrates the associative property, which tells us that, when we're doing addition, we can group terms together in any order we'd like, and the answer will still be the same.

Topic: Associative property

Question: Which equation shows the associative property for addition?

Answer choices:

A
$$(x + y) + 2z = x + y + 2z$$

B
$$x + (y + 2z) = (x + (y + 2z))$$

C
$$x + y + 2z = (x + 2z + y)$$

D
$$x + (y + 2z) = (x + y) + 2z$$

Solution: D

The associative property has to do with different ways of grouping terms

Answer choice A shows no grouping on the right, so rule out A.

Answer choice B shows a parenthesis error on the right side: two left parentheses, but only one right parenthesis. Rule out B.

Answer choice C shows no grouping on the left. Also, y and 2z are in a different order on the right. Rule out C.

Answer choice D correctly shows grouping one pair of terms, (y + 2z), on the left and a different pair of terms, (x + y), on the right.

