Base R Cheat Sheet

Getting Help

Accessing the help files

?mean

Get help of a particular function.

help.search('weighted mean')

Search the help files for a word or phrase.

help(package = 'dplyr')

Find help for a package.

More about an object

str(iris)

Get a summary of an object's structure.

class(iris)

Find the class an object belongs to.

Using Packages

install.packages('dplyr')

Download and install a package from CRAN.

library(dplyr)

Load the package into the session, making all its functions available to use.

dplyr::select

Use a particular function from a package.

data(iris)

Load a built-in dataset into the environment.

Working Directory

getwd()

Find the current working directory (where inputs are found and outputs are sent).

setwd('C://file/path')

Change the current working directory.

Use projects in RStudio to set the working directory to the folder you are working in.

Vectors

Creating Vectors

c(2, 4, 6)	2 4 6	Join elements into a vector
2:6	2 3 4 5 6	An integer sequence
seq(2, 3, by=0.5)	2.0 2.5 3.0	A complex sequence
rep(1:2, times=3)	121212	Repeat a vector
rep(1:2, each=3)	1 1 1 2 2 2	Repeat elements of a vector

Vector Functions

sort(x)	rev(x)
Return x sorted.	Return x reversed.
table(x)	unique(x)
See counts of values.	See unique values.

Selecting Vector Elements

By Position

x[4]	The fourth element

x[-4] All but the fourth

x[-(<mark>2:4</mark>)]	All elements except	
X[-(2.4)]	two to four	

x[c(1, 5)] Elements one and five.

By Value

X[X 10]	are equal to 10.
x[x < 0]	All elements less than zero.
x[x %in%	Elements in the set

Elements which

1, 2, 5.

Named Vectors

c(1, 2, 5)

x['apple'] Element with name 'apple'.

Programming

For Loop

```
for (variable in sequence){
   Do something
}

Example

for (i in 1:4){
```

```
for (i in 1:4){
    j <- i + 10
    print(j)
}</pre>
```

While Loop

```
while (condition){
   Do something
}
```

```
while (i < 5){
   print(i)
   i <- i + 1
}</pre>
```

If Statements

```
if (condition){
   Do something
} else {
   Do something different
}
```

Example

```
if (i > 3){
    print('Yes')
} else {
    print('No')
}
```

Functions

```
function_name <- function(var){
   Do something
   return(new_variable)
}</pre>
```

Example

```
square <- function(x){
   squared <- x*x
   return(squared)
}</pre>
```

Reading and Writing Data

Also see the **readr** package.

Input	Ouput	Description
<pre>df <- read.table('file.txt')</pre>	<pre>write.table(df, 'file.txt')</pre>	Read and write a delimited text file.
<pre>df <- read.csv('file.csv')</pre>	write.csv(df, 'file.csv')	Read and write a comma separated value file. This is a special case of read.table/ write.table.
<pre>load('file.RData')</pre>	<pre>save(df, file = 'file.Rdata')</pre>	Read and write an R data file, a file type special for R.

Conditions	a == b	Are equal	a > b	Greater than	a >= b	Greater than or equal to	is.na(a)	Is missing
	a != b	Not equal	a < b	Less than	a <= b	Less than or equal to	is.null(a)	Is null

Types

Converting between common data types in R. Can always go from a higher value in the table to a lower value.

as.logical	TRUE, FALSE, TRUE	Boolean values (TRUE or FALSE).
as.numeric	1, 0, 1	Integers or floating point numbers.
as.character	'1', '0', '1'	Character strings. Generally preferred to factors.
as.factor	'1', '0', '1', levels: '1', '0'	Character strings with preset levels. Needed for some statistical models.

Maths Functions

log(x)	Natural log.	sum(x)	Sum.
exp(x)	Exponential.	mean(x)	Mean.
max(x)	Largest element.	median(x)	Median.
min(x)	Smallest element.	quantile(x)	Percentage quantiles.
round(x, n)	Round to n decimal places.	rank(x)	Rank of elements.
signif(x, n)	Round to n significant figures.	var(x)	The variance.
cor(x, y)	Correlation.	sd(x)	The standard deviation.

Variable Assignment

> a <- 'apple' > a [1] 'apple'

The Environment

ls() List all variables in the environment. rm(x)Remove x from the environment. rm(list = ls())Remove all variables from the environment.

You can use the environment panel in RStudio to browse variables in your environment.

Matrices

 $m \leftarrow matrix(x, nrow = 3, ncol = 3)$ Create a matrix from x.

Lists

 $l \leftarrow list(x = 1:5, y = c('a', 'b'))$

A list is a collection of elements which can be of different types.

1[[2]] 1[1] l['v'] l\$x New list with New list with Second element Element named only the first only element of l. element. named y.

Also see the dplyr package.

Data Frames

 $df \leftarrow data.frame(x = 1:3, y = c('a', 'b', 'c'))$ A special case of a list where all elements are the same length.

		List subsetting			
Х	У				
1	a	df\$x	df[[2]]		
2	b	Understandi	ng a data frame		
3	С	View(df)	See the full data frame.		
Matrix subsetting		head(df)	See the first 6 rows.		
df[, 2]		, , , , , , , , , , , , , , , , , , ,	_		

rows.

Strings

paste(x, y, sep = ' ')

paste(x, collapse = ' ')

grep(pattern, x)

gsub(pattern, replace, x)

Join multiple vectors together.

Join elements of a vector together.

Also see the **stringr** package.

Find regular expression matches in x.

Replace matches in x with a string.

toupper(x) Convert to uppercase.

tolower(x) Convert to lowercase.

nchar(x)Number of characters in a string.

Factors

factor(x)

Turn a vector into a factor. Can set the levels of the factor and the order.

cut(x, breaks = 4)

Turn a numeric vector into a factor by 'cutting' into sections.

Statistics

 $lm(y \sim x, data=df)$ Linear model.

 $glm(y \sim x, data=df)$ Generalised linear model.

summary

Get more detailed information out a model.

t.test(x, y) Perform a t-test for difference between means.

Perform a t-test for paired data.

difference between proportions.

prop.test

Test for a

pairwise.t.test

aov Analysis of variance.

Distributions

	Random Variates	Density Function	Cumulative Distribution	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
Poisson	rpois	dpois	ppois	qpois
Binomial	rbinom	dbinom	pbinom	qbinom
Uniform	runif	dunif	punif	qunif

Plotting

Also see the ggplot2 package.

plot(x) Values of x in order.

plot(x, y) Values of x against y.

hist(x)Histogram of

Dates

See the **lubridate** package.

Data visualization with ggplot2:: CHEAT SHEET

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and **geoms**—visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and **v** locations.

Complete the template below to build a graph.

required ggplot (data = <DATA>) + <GEOM_FUNCTION> (mapping = aes(<MAPPINGS>) stat = <STAT>, position = <POSITION>) + required, <COORDINATE FUNCTION> + defaults <FACET FUNCTION> supplied <SCALE FUNCTION> + <THEME_FUNCTION>

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer.

last_plot() Returns the last plot.

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Aes Common aesthetic values.

color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash", 6 = "twodash")

lineend - string ("round", "butt", or "square")

linejoin - string ("round", "mitre", or "bevel")

size - integer (line width in mm)

shape - integer/shape name or 13 14 15 16 17 18 19 20 21 22 23 24 25

Geoms

Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a laver.

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))

Ensure limits include values across all plots. **b + geom_curve(**aes(yend = lat + 1,

xend = long + 1), curvature = 1) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size

a + geom blank() and a + expand limits()

a + geom path(lineend = "butt", linejoin = "round", linemitre = 1) x, y, alpha, color, group, linetype, size

color, fill, group, subgroup, linetype, size **b + geom_rect(**aes(xmin = long, ymin = lat, xmax = long + 1, ymax = lat + 1) - xmax, xmin.

a + geom ribbon(aes(ymin = unemploy - 900, ymax = unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept = 0, slope = 1)) **b + geom_hline(**aes(yintercept = lat)) **b + geom_vline(**aes(xintercept = long))

b + geom_segment(aes(yend = lat + 1, xend = long + 1)) **b + geom_spoke(**aes(angle = 1:1155, radius = 1))

ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin") x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian") x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot() x, y, alpha, color, fill

c + geom_freqpoly() x, y, alpha, color, group, linetype, size

c + geom histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

discrete

d <- ggplot(mpg, aes(fl))

d + geom bar() x, alpha, color, fill, linetype, size, weight

TWO VARIABLES

both continuous

e <- ggplot(mpg, aes(cty, hwy))

e + geom label(aes(label = cty), nudge x = 1,nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

e + geom_quantile()

x, y, alpha, color, fill, shape, size, stroke

x, y, alpha, color, group, linetype, size, weight e + geom_rug(sides = "bl")

x, y, alpha, color, linetype, size e + geom smooth(method = lm)

x, y, alpha, color, fill, group, linetype, size, weight

e + geom text(aes(label = cty), nudge x = 1,nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

one discrete, one continuous

f <- ggplot(mpg, aes(class, hwy))

f + geom_col()

x, y, alpha, color, fill, group, linetype, size

f + geom_boxplot()

x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

f + geom dotplot(binaxis = "y", stackdir = "center") x, y, alpha, color, fill, group

f + geom_violin(scale = "area") x, y, alpha, color, fill, group, linetype, size, weight

both discrete

g + geom_count()

x, y, alpha, color, fill, shape, size, stroke

continuous bivariate distribution

h <- ggplot(diamonds, aes(carat, price))

h + geom bin2d(binwidth = c(0.25, 500))x, y, alpha, color, fill, linetype, size, weight

h + geom density 2d() x, y, alpha, color, group, linetype, size

h + geom hex() x, y, alpha, color, fill, size

continuous function

i <- ggplot(economics, aes(date, unemploy))

i + geom area()

i + geom_line()

x, y, alpha, color, fill, linetype, size

x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

visualizing error

df < -data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))</pre>

j + geom_crossbar(fatten = 2) - x, y, ymax, ymin, alpha, color, fill, group, linetype, size

j + geom_errorbar() - x, ymax, ymin, alpha, color, group, linetype, size, width Also **geom_errorbarh()**.

i + geom linerange() x, ymin, ymax, alpha, color, group, linetype, size

j + geom_pointrange() - x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size

maps

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests))) map <- map_data("state")</pre> k <- ggplot(data, aes(fill = murder))

k + geom_map(aes(map_id = state), map = map) + expand_limits(x = map\$long, y = map\$lat) map id, alpha, color, fill, linetype, size

THREE VARIABLES

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat))

l + geom_contour(aes(z = z)) x, y, z, alpha, color, group, linetype, size, weight

l + geom_raster(aes(fill = z), hjust = 0.5, viust = 0.5, interpolate = FALSE) x, y, alpha, fill

l + geom_tile(aes(fill = z)) x, y, alpha, color, fill, linetype, size, width

g <- ggplot(diamonds, aes(cut, color))

e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

l + geom_contour_filled(aes(fill = z)) x, y, alpha, color, fill, group, linetype, size, subgroup

Stats An alternative way to build a layer.

A stat builds new variables to plot (e.g., count, prop).

Visualize a stat by changing the default stat of a geom function, **geom_bar(stat="count")** or by using a stat function, stat_count(geom="bar"), which calls a default geom to make a layer (equivalent to a geom function). Use ..name.. syntax to map stat variables to aesthetics.

geom to use 🗶 stat function 🗶 geommappings

i + stat_density_2d(aes(fill = ..level..), geom = "polygon")

variable created by stat

c + stat bin(binwidth = 1, boundary = 10) **x, y** | ..count.., ..ncount.., ..density.., ..ndensity..

c + stat_count(width = 1) x, y | ..count.., ..prop..

c + stat density(adjust = 1, kernel = "gaussian") **x, y** | ...count.., ..density.., ..scaled..

e + stat_bin_2d(bins = 30, drop = T) x, y, fill | ..count.., ..density..

e + stat_bin_hex(bins = 30) x, y, fill | ..count.., ..density..

e + stat_density_2d(contour = TRUE, n = 100) x, y, color, size | ..level..

e + stat_ellipse(level = 0.95, segments = 51, type = "t")

 $l + stat_contour(aes(z = z)) x, y, z, order | ...level...$

l + stat_summary_hex(aes(z = z), bins = 30, fun = max) x, y, z, fill | ..value..

l + stat_summary_2d(aes(z = z), bins = 30, fun = mean) x, y, z, fill | ..value..

f + stat_boxplot(coef = 1.5)

x, y | ..lower.., ..middle.., ..upper.., ..width.. , ..ymin.., ..ymax..

f + stat_ydensity(kernel = "gaussian", scale = "area") x, y ..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..width..

e + stat_ecdf(n = 40) x, y | ..x.., ..y..

e + stat_quantile(quantiles = c(0.1, 0.9), formula = $y \sim log(x)$, method = "rq") x, y | ...quantile...

e + stat_smooth(method = "lm", formula = y ~ x, se = T, level = 0.95) **x, y** | ..se.., ..x.., ..y.., ..ymin.., ..ymax..

ggplot() + xlim(-5, 5) + stat_function(fun = dnorm, n = 20, geom = "point") x | ..x.., ..y..

ggplot() + stat_qq(aes(sample = 1:100)) x, y, sample | ...sample.., ..theoretical..

e + stat_sum() x, y, size | ..n.., ..prop..

e + stat summary(fun.data = "mean cl boot")

h + stat summary bin(fun = "mean", geom = "bar")

e + stat_identity()

e + stat_unique()

Scales Override defaults with scales package.

Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale.

GENERAL PURPOSE SCALES

Use with most aesthetics

scale_*_continuous() - Map cont' values to visual ones.

scale * discrete() - Map discrete values to visual ones.

scale * binned() - Map continuous values to discrete bins.

scale_*_identity() - Use data values as visual ones.

scale_*_manual(values = c()) - Map discrete values to manually chosen visual ones.

scale_*_date(date_labels = "%m/%d"), date_breaks = "2 weeks") - Treat data values as dates.

scale_*_datetime() - Treat data values as date times. Same as scale_*_date(). See ?strptime for label formats.

X & Y LOCATION SCALES

Use with x or y aesthetics (x shown here)

scale_x_log10() - Plot x on log10 scale.

scale_x_reverse() - Reverse the direction of the x axis.

scale_x_sqrt() - Plot x on square root scale.

COLOR AND FILL SCALES (DISCRETE)

n + scale_fill_brewer(palette = "Blues") For palette choices:

RColorBrewer::display.brewer.all()

n + scale_fill_grey(start = 0.2, end = 0.8, na.value = "red")

COLOR AND FILL SCALES (CONTINUOUS)

o <- c + geom_dotplot(aes(fill = ..x..))

o + scale fill distiller(palette = "Blues")

o + scale fill gradient(low="red", high="yellow")

o + scale_fill_gradient2(low = "red", high = "blue", mid = "white", midpoint = 25)

o + scale_fill_gradientn(colors = topo.colors(6)) Also: rainbow(), heat.colors(), terrain.colors(), cm.colors(), RColorBrewer::brewer.pal()

SHAPE AND SIZE SCALES

p <- e + geom_point(aes(shape = fl, size = cyl))

p + scale_shape() + scale_size() p + scale_shape_manual(values = c(3:7))

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 $p + scale_radius(range = c(1,6))$ p + scale_size_area(max_size = 6)

Coordinate Systems

r <- d + geom_bar()

r + coord cartesian(xlim = c(0, 5)) - xlim, vlim The default cartesian coordinate system.

r + coord fixed(ratio = 1/2)

ratio, xlim, ylim - Cartesian coordinates with fixed aspect ratio between x and y units.

ggplot(mpg, aes(y = fl)) + geom_bar()

Flip cartesian coordinates by switching

x and y aesthetic mappings. r + coord_polar(theta = "x", direction=1)

r + coord_trans(y = "sqrt") - x, y, xlim, ylim Transformed cartesian coordinates. Set xtrans and vtrans to the name of a window function.

 $\pi + coord_quickmap()$ π + coord_map(projection = "ortho", orientation \emptyset = c(41, -74, 0)) - projection, xlim, ylim Map projections from the mapproj package (mercator (default), azequalarea, lagrange, etc.).

Position Adjustments

Position adjustments determine how to arrange geoms that would otherwise occupy the same space.

s <- ggplot(mpg, aes(fl, fill = drv))

s + geom_bar(position = "fill") Stack elements on top of one another, normalize height.

e + geom_point(position = "jitter") Add random noise to X and Y position of each element to avoid overplotting.

e + geom_label(position = "nudge") Nudge labels away from points. s + geom bar(position = "stack")

Stack elements on top of one another.

Each position adjustment can be recast as a function with manual width and height arguments: s + geom_bar(position = position_dodge(width = 1))

Themes

r + theme bw() White background with grid lines.

r + theme_gray() Grey background (default theme). r + theme_dark()

r + theme light() r + theme_linedraw() r + theme_minimal() Minimal theme. r + theme_void()

Empty theme.

r + theme classic()

r + theme() Customize aspects of the theme such as axis, legend, panel, and facet properties.

r + ggtitle("Title") + theme(plot.title.postion = "plot" r + theme(panel.background = element_rect(fill = "blue"))

Faceting

Facets divide a plot into subplots based on the values of one or more discrete variables.

t <- ggplot(mpg, aes(cty, hwy)) + geom_point()

t + facet_grid(cols = vars(fl)) Facet into columns based on fl.

t + facet_grid(rows = vars(year)) Facet into rows based on year.

t + facet_grid(rows = vars(year), cols = vars(fl)) Facet into both rows and columns.

t + facet wrap(vars(fl))

Wrap facets into a rectangular layout. Set **scales** to let axis limits vary across facets.

t + facet_grid(rows = vars(drv), cols = vars(fl), scales = "free")

x and y axis limits adjust to individual facets: "free x" - x axis limits adjust "free_y" - y axis limits adjust

Set labeller to adjust facet label:

t + facet grid(cols = vars(fl), labeller = label both)

_0	•	,		- '
fl: c	fl: d	fl: e	fl: p	fl: r
t + facet_grid(rows = vars(fl), labeller = label_bquote(alpha ^ .(fl)))				
α^c	α^d	α^e	α^p	α^r

Labels and Legends

Use **labs()** to label the elements of your plot.

t + labs(x = "New x axis label", y = "New y axis label", title ="Add a title above the plot", subtitle = "Add a subtitle below title", caption = "Add a caption below plot", alt = "Add alt text to the plot", <AES> = "New <AES> legend title")

t + annotate(geom = "text", x = 8, y = 9, label = "A") Places a geom with manually selected aesthetics.

p + guides(x = guide_axis(n.dodge = 2)) Avoid crowded or overlapping labels with guide_axis(n.dodge or angle).

aesthetic: colorbar, legend, or none (no legend). n + theme(legend.position = "bottom")
Place legend at "bottom", "top", "left", or "right".

n + guides(fill = "none") Set legend type for each

n + scale_fill_discrete(name = "Title",
labels = c("A", "B", "C", "D", "E"))
Set legend title and labels with a scale function.

Zooming

Without clipping (preferred):

 $t + coord_cartesian(xlim = c(0, 100), ylim = c(10, 20))$

With clipping (removes unseen data points): t + xlim(0, 100) + ylim(10, 20)

Variables aleatorias

Concepto	Notación/Definición gral.	Caso discreto	caso continuo	
FDM y FDM		Función de probabilidad de masa (FPM): $P(X=x)$	Función de densidad de masa (FDM): $f(x)$	
Propiedades FDM/FDM		$P(X=x) \ge 0$ $\sum_{x_i} P(X=x_i) = 1$	$f(x) \ge 0$ $\int f(x) dx = 1$	
Función de distribución o de probabilidad acumulada	$F(x) = P(X \le x)$	$F(x) = \sum_{x_i: x_i \le x} P(X = x_i)$	$F(x) = \int_{-\infty}^{x} f(u) du \iff f(x) = \frac{dF(x)}{dx}$	
Probabilidad de intervalos	$P(a < X \le b)$	$\sum_{x:a < x \le b} P(X = x) = F(b) - F(a)$	$\int_{a}^{b} f(x) dx = F(b) - F(a)$	
FDM y FDM conjuntas		FPM: $P(X = x, Y = y)$	FDM: $f_{xy}(x,y)$	
FDM y FDM marginales		$P(X = x) = \sum_{y_j} P(X = x, Y = y_j)$	$f_x(x) = \int f_{xy}(x,y) dy$	
FDM y FDM condicionales		$P(X = x Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$	$f_{x y}(x y) = \frac{f_{xy}(x,y)}{f_y(y)}$	
Independencia		P(X = x, Y = y) = P(X = x)P(Y = y)	$f_{xy}(x,y) = f_x(x)f_y(y)$	
Esperanza	$\mu=\mathbb{E}[X]$	$\mathbb{E}[X] = \sum_{x_i} x_i P(X = x_i)$	$\mathbb{E}[X] = \int x f(x) dx$	
Esperanza generalizada o teorema del estadística inconsciente	$\mathbb{E}[g(X)]$	$\mathbb{E}[g(X)] = \sum_{x_i} g(x_i) P(X = x_i)$	$\mathbb{E}[g(X)] = \int g(x)f(x) dx$	
Varianza	$\sigma^2 = \operatorname{Var}[X] = \mathbb{E}\left[(X - \mu)^2\right] = \mathbb{E}\left[X^2\right] - \mu^2$			
Desviación típica o estándar	$\sigma = \sqrt{\operatorname{Var}[X]}$			
Covarianza	$\sigma_{xy}^2 = \operatorname{Cov}[X, Y] = \mathbb{E}\left[(X - \mu_x)(Y - \mu_y) \right] = \mathbb{E}\left[XY \right] - \mu_x \mu_y$			
Correlación	$\rho = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y}$			

Distribuciones notables

Distribución	FDP/FDM y soporte	Esperanza	Varianza	R
$\begin{array}{c} \text{Bernoulli} \\ \text{Bern}(p) \end{array}$	P(X = 1) = p $P(X = 0) = q = 1 - p$	p	pq	dbinom(x, size=1, prob=p)
Binomial $Bin(n,p)$ o $\mathcal{B}(n,p)$	$P(X = x) = \binom{n}{k} p^x q^{n-k}$ $x \in \{0, 1, 2, \dots n\}$	np	npq	dbinom(x, size=n, prob=p)
$\begin{array}{c} {\rm Geom\acute{e}trica} \\ {\rm Geom}(p) \end{array}$	$P(X = x) = q^x p$ $x \in \{0, 1, 2, \dots\}$	q/p	q/p^2	dgeom(x, prob=p)
Binomial Negativa $\operatorname{NegBin}(r,p)$	$P(X = x) = {r+x-1 \choose r-1} p^r q^x$ $x \in \{0, 1, 2, \dots\}$	rq/p	rq/p^2	dnbinom(x, size=r, prob=p)
Hipergeométrica $\mathrm{HGeom}(m,n,k)$	$P(X = x) = {\binom{m}{x}} {\binom{n}{k-x}} / {\binom{m+n}{k}}$ $x \in \{0, 1, 2, \dots, k\}$	$\mu = \frac{km}{n+m}$	$\left(\frac{m+n-k}{m+n-1}\right)k\frac{\mu}{k}(1-\frac{\mu}{k})$	dhyper(x, m=m, n=n, k=k)
$\begin{array}{c} & \\ & \text{Multinomial} \\ & \text{Multinom}(n, p_1, \dots, p_k) \end{array}$	$P(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k) = \frac{n!}{x_1! x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$ $x_i \in \{0, 1, \dots, n\} : \sum_i x_i = n$	$\mathbb{E}[X_i] = np_i$	$\operatorname{Var}[X_i] = np_i(1 - p_i)$	dmultinom($c(x_1,,x_k)$, size=n, prob= $c(p_1,,p_k)$)
Poisson Pois (λ) o $\mathcal{P}(\lambda)$	$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ $k \in \{0, 1, 2, \dots\}$	λ	λ	dpois(k, lambda= λ)
Uniforme Unif (a,b) o $\mathcal{U}(a,b)$	$f(x) = \frac{1}{b-a}$ $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	dunif(x, min=a, max=b)
Normal/Gaussiana $\mathcal{N}(\mu, \sigma^2)$ (var) o $\mathcal{N}(\mu, \sigma)$ (sd)	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$ $x \in (-\infty, \infty)$	μ	σ^2	$dnorm(x, mean=\mu, sd=\sigma)$
Exponencial $\operatorname{Expo}(\lambda)$	$f(x) = \lambda e^{-\lambda x}$ $x \in (0, \infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$dexp(x, rate = \lambda)$
Chi-Cuadrado χ^2_n	$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2 - 1} e^{-x/2}$ $x \in (0, \infty)$	n	2n	dchisq(x, df=n)
t de Student t_n	$\frac{\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}(1+x^2/n)^{-(n+1)/2}}{x \in (-\infty, \infty)}$	0 if $n > 1$	$\frac{n}{n-2}$ if $n > 2$	dt(x, df=n)
Distribución F $F_{n,m}$	$f(x) = \frac{1}{\text{Beta}(n,m)} \left(\frac{n}{m}\right)^{n/2} x^{\frac{n}{2}-1} \left(1 + \frac{n}{m}x\right)^{-\frac{n+m}{2}}$ $x > 0$	$\frac{m}{m-2}$ if $m>2$	$\frac{2m^2(n+m-2)}{n(m-2)^2(m-4)} \text{ if } m > 4$	$df(x,df1{=}n,df2{=}m)$

Estadísticos para poblaciones Normales y muestras independientes

Estadístico	Distribución	Intervalo de confianza	
Media muestral \bar{X} con varianza conocida	$\mathcal{N}(\mu,\sigma^2/n)$	$ar{x} \mp z_{1-lpha/2} rac{\sigma}{\sqrt{n}}$	
Media muestral \bar{X} con varianza desconocida	$\frac{\bar{X}-\mu}{\hat{S}/\sqrt{n}} \sim \mathcal{T}_{n-1}$	$\bar{x} \mp t_{n-1;1-\alpha/2} \frac{\hat{s}}{\sqrt{n}}$	
Suma/diferencia de medias $\bar{X}_1 \pm \bar{X}_2$ con varianzas conocidas	$\bar{X}_1 \pm \bar{X}_2 \sim \mathcal{N}(\mu_1 \pm \mu_2, \sigma_1^2/n_1 + \sigma_2^2/n_2)$	$\bar{x}_1 \pm \bar{x}_2 \mp z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	
Suma/diferencia de medias $\bar{X}_1 \pm \bar{X}_2$ con varianzas desconocidas pero iguales	$\frac{\bar{X}_1 \pm \bar{X}_2 - (\mu_1 \pm \mu_2)}{\hat{S}_p \sqrt{1/n_1 + 1/n_2}} \sim \mathcal{T}_{n_1 + n_2 - 2}$	$\bar{x}_1 \pm \bar{x}_2 \mp t_{n_1+n_2-2;1-\alpha/2} \hat{S}_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	
Varianza muestral \hat{S}^2	$(n-1)\hat{S}^2/\sigma^2 \sim \chi_{n-1}^2$	$(n-1)\hat{s}^2/\chi^2_{n-1;1-\alpha/2} \le \sigma^2 \le (n-1)\hat{s}^2/\chi^2_{n-1;\alpha/2}$	
Ratio de varianzas muestrales $\hat{S}_1^2/\hat{S_2}^2$	$\frac{\hat{S}_1^2/\sigma_1^2}{\hat{S}_2^2/\sigma_2^2} \sim \mathcal{F}_{n_1-1,n_2-1}$	$\frac{1}{F_{n_1-1;n_2-1;1-\alpha/2}}\frac{\hat{s}_1^2}{\hat{s}_2^2} \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \frac{1}{F_{n_1-1;n_2-1;\alpha/2}}\frac{\hat{s}_1^2}{\hat{s}_2^2}$	

Definiciones

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$\hat{S}^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

$$\hat{S}_p^2 = \frac{(n-1)\hat{S}_1^2 + (m-1)\hat{S}_2^2}{n+m-2}$$