TERMODINÁMICA

Examen Intersemestral

	Nombre	Grupo)
--	--------	-------	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -1 (6 puntos)

La figura inferior muestra un dispositivo cilindro-pistón de 200 mm de diámetro cuyas paredes (tanto del cilindro como del pistón) están aisladas térmicamente. La masa del pistón es de 400 kg. A una cierta cota (b) desde la base del cilindro se sitúa un muelle de rigidez 5 kN/m que en su posición inicial carece de deformación. El dispositivo contiene 100 g de un gas ideal (R = 296,8 J/kg-K) cuyas tablas se adjuntan. La presión ambiente es de 95 kPa.

En el estado inicial el pistón descansa sobre un anillo, ocupando el gas 50 dm³ y encontrándose a 20 °C. Instantáneamente se retira el aislante de la base del cilindro y se coloca éste sobre un sólido de 7 kg (c = 486,5 J/kg-K; ρ = 8000 kg/m³) que inicialmente está a 400 °C. Se verifica entonces un proceso cuasiestático que finaliza cuando el muelle se ha comprimido 16 cm.

Determinar:

- a) Diagrama p-v del proceso.
- b) Fuerza que ejerce el anillo sobre el pistón en el estado inicial.
- c) Temperatura final del sólido.
- d) Cota "b".

T [°C]	u [kJ/kg]	h [kJ/kg]	T [°C]	u [kJ/kg]	h [kJ/kg]
0	0	81,03	250	188,4	343,6
5	3,698	86,21	255	192,3	349
10	7,396	91,4	260	196,2	354,4
15	11,09	96,58	265	200,1	359,7
20	14,79	101,8	270	204	365,1
25	18,49	106,9	275	207,9	370,5
30	22,19	112,1	280	211,8	375,9
35	25,9	117,3	285	215,7	381,3
40	29,6	122,5	290	219,6	386,7
45	33,31	127,7	295	223,5	392,1
50	37,01	132,9	300	227,5	397,6
55	40,72	138,1	305	231,4	403
60	44,44	143,3	310	235,4	408,4
65	48,15	148,5	315	239,3	413,9
70	51,87	153,7	320	243,3	419,3
75	55,59	158,9	325	247,2	424,7
80	59,31	164,1	330	251,2	430,2
85	63,04	169,3	335	255,2	435,7
90	66,77	174,5	340	259,2	441,1
95	70,5	179,7	345	263,2	446,6
100	74,23	184,9	350	267,2	452,1
105	77,97	190,2	355	271,2	457,6
110	81,72	195,4	360	275,2	463
115	85,46	200,6	365	279,2	468,5
120	89,22	205,9	370	283,2	474
125	92,97	211,1	375	287,2	479,5
130	96,73	216,3	380	291,2	485,1
135	100,5	221,6	385	295,3	490,6
140	104,3	226,8	390	299,3	496,1
145	108	232,1	395	303,4	501,6
150	111,8	237,4	400	307,4	507,2
155	115,6	242,6	405	311,5	512,7
160	119,4	247,9	410	315,5	518,3
165	123,2	253,2	415	319,6	523,8
170	127	258,5	420	323,7	529,4
175	130,8	263,7	425	327,8	534,9
180	134,6	269	430	331,8	540,5
185	138,4	274,3	435	335,9	546,1
190	142,2	279,6	440	340	551,7
195	146	284,9	445	344,1	557,3
200	149,8	290,2	450	348,2	562,8
205	153,7	295,6	455	352,4	568,4
210	157,5	300,9	460	356,5	574,1
215	161,3	306,2	465	360,6	579,7
220	165,2	311,5	470	364,7	585,3
225	169	316,9	475	368,9	590,9
230	172,9	322,2	480	373	596,5
235	176,8	327,6	485	377,2	602,2
240	180,6	332,9	490	381,3	607,8
245	184,5	338,3	495	385,5	613,5

1-a: incremento de he presión harta oque el piston despoção

a-b: novimiento del pristoin autes de tocer

al unelle

b-2: compressión del

melle.

$$P_1 = \frac{m_q R T_{1q}}{V_1} = \frac{0.1 \times 0.2968 \times 293}{0.05}$$

$$= 1+5,925 + \frac{R_1}{A} = 95 + \frac{400 \times 9.8 \times 10^{3}}{A}$$

c) power

$$Pa = 95 + \frac{400 \times 9.8 \times 10^{3}}{11 \times 0.2^{2}} = 219,78 \times 10$$

$$P_{2} = Pa + \frac{K \cdot Xf}{A} = 219,78 + \frac{5 \times 0.16}{110.2^{2}} = 245,24 \times 10^{2}$$

Touvando el sistema quist solido:

** trabajo paur comprimir el muelle: ½ K x f² - trubajo para despharar el prishin desde aque tros el muelle (y el ambiente) trobojo pour displosar el prishin y et ambriente ante de towar of muelle.

$$W_{12} = Pa \left(\sqrt{b} - \sqrt{1} \right) + \frac{1}{2} \kappa \chi_{2}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{3}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{4}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1}{2} \kappa \chi_{5}^{2} = 219,78 \left(\sqrt{2} - 0.05 \right) + \frac{1$$

$$P_2 V_2 = my R T_2 = 245, 24 V_2 = 0.1 \times 0.2968 \times (T_2 + 273)$$

$$= (T_2 + 273)$$

$$= V_2 = 1.21024 \times 10^4 T_2 + 0'03304$$

Sustituyendo [27 en [1]:

Agrapando y simplificando:

Iterando en la table:

Telano	110	t(Ls)
T2	<u> </u>	18,6945
395	303,4	
	299,3	1,1415
390 Tz 385	295.3	-16, 4015
L	_	

$$T_2 - 385 = \frac{5}{1,1415 + 16,4015}$$

$$L > [T_2 = 389,67°C]$$

Volviendo a [2]:

$$\int_{2} = 1.21024 \times 10^{-4} \times 389,67 + 0.03304 = 0.0802 \text{ m}^{3}$$

Finalmente:

$$V_b = 0.0802 - \frac{70.2^2}{4} \times 0.16 = b \times \frac{70.2^2}{4}$$

TERMODINÁMICA

Examen Intersemestral

Nombre	_ Grupo
	- <u> </u>

No está permitido el empleo de calculadoras programables ni la consulta de libro, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -2 (4 puntos)

Una turbina de vapor (ver tablas adjuntas) de acción dispone de dos componentes:

- Tobera (1-2): Un caudal de 523 m³/h de vapor llega (1) a 10 bar y 300°C, expandiéndose hasta 1,6 bar siguiendo un proceso politrópico adiabático con disipación interna (irreversibilidad interna). La velocidad a la salida de la tobera es de 836 m/s.
- Rodete (2-3): El vapor entra (2) en un rodete que gira a gran velocidad transformando la energía cinética del vapor en trabajo en el eje. Dicha transformación se produce a presión constante y de forma adiabática, en presencia de fuerzas disipativas internas (irreversibilidades internas). El rodete logra convertir el 61% de la energía cinética a su entrada en trabajo en el eje.

La velocidad del vapor a la entrada de la tobera (1) y a la salida del rodete (3) se considera despreciable.

Se pide:

- a) Índice politrópico del proceso en la tobera.
- b) Potencia en el eje del rodete.
- c) Potencia de las fuerzas disipativas internas tanto en la tobera como en el rodete.

Tabla de saturación (líquido-vapor)

р	Т	Vf	Vg	Uf	Ug	h _f	hg	Sf	Sg
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
0,5	81,316	0,00103	3,24	340,5	2483	340,5	2645	1,0912	7,5930
1	99,606	0,001043	1,694	417,4	2506	417,5	2675	1,3028	7,3589
1,5	111,350	0,001053	1,159	467	2519	467,1	2693	1,4337	7,2230
2	120,211	0,001061	0,8858	504,5	2529	504,7	2706	1,5302	7,1270
2,5	127,412	0,001067	0,7187	535,1	2537	535,3	2717	1,6072	7,0525
3	133,523	0,001073	0,6058	561,1	2543	561,4	2725	1,6717	6,9917
8	170,407	0,001115	0,2403	720	2576	720,9	2768	2,0456	6,6616
8,5	172,936	0,001118	0,2269	731	2578	732	2771	2,0705	6,6409
9	175,350	0,001121	0,2149	741,6	2580	742,6	2773	2,0940	6,6213
9,5	177,661	0,001124	0,2041	751,7	2581	752,7	2775	2,1165	6,6027
10	179,878	0,001127	0,1944	761,4	2583	762,5	2777	2,1381	6,5850
10,5	182,009	0,00113	0,1855	770,7	2584	771,9	2779	2,1587	6,5681
11	184,062	0,001133	0,1775	779,8	2585	781	2781	2,1785	6,5520
11,5	186,042	0,001136	0,1701	788,5	2587	789,8	2782	2,1975	6,5365
12	187,957	0,001138	0,1633	797	2588	798,3	2784	2,2159	6,5217

Tabla de vapor sobrecalentado

				bia ac vapi	 					
p = 1,6 bar (T _{sat} = 113,3 °C)					$p = 10 \text{ bar } (T_{sat} = 179.9 ^{\circ}\text{C})$					
Т	V	u	h	s	Т	V	u	h	s	
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	
Tsat	1,091	2521	2696	7,2015	Tsat	0,1944	2583	2777	6,5850	
115	1,097	2524	2700	7,2108	210	0,2116	2641	2852	6,7456	
120	1,112	2532	2710	7,2379	215	0,2143	2650	2864	6,7697	
125	1,128	2540	2721	7,2644	220	0,217	2659	2876	6,7934	
130	1,143	2548	2731	7,2904	225	0,2197	2667	2887	6,8165	
135	1,159	2556	2741	7,3158	230	0,2223	2676	2898	6,8393	
140	1,174	2564	2752	7,3408	235	0,2249	2685	2910	6,8616	
145	1,189	2572	2762	7,3654	240	0,2276	2693	2921	6,8836	
150	1,204	2579	2772	7,3896	245	0,2302	2702	2932	6,9052	
155	1,219	2587	2782	7,4135	250	0,2327	2710	2943	6,9265	
160	1,234	2595	2792	7,4369	255	0,2353	2719	2954	6,9475	
165	1,249	2603	2802	7,4601	260	0,2379	2727	2965	6,9681	
170	1,264	2610	2813	7,4829	265	0,2404	2736	2976	6,9885	
175	1,279	2618	2823	7,5055	270	0,243	2744	2987	7,0087	
180	1,294	2626	2833	7,5277	275	0,2455	2752	2998	7,0286	
185	1,309	2633	2843	7,5497	280	0,248	2761	3009	7,0482	
190	1,324	2641	2853	7,5714	285	0,2505	2769	3019	7,0676	
195	1,339	2648	2863	7,5929	290	0,253	2777	3030	7,0868	
200	1,353	2656	2873	7,6141	295	0,2555	2785	3041	7,1058	
205	1,368	2664	2883	7,6351	300	0,258	2794	3052	7,1246	
210	1,383	2671	2893	7,6559	305	0,2605	2802	3062	7,1432	

836 m/s

Tobora

$$V_1 = 0.258 \text{ m}^3/\text{ky}$$
; $\dot{m} = \frac{523}{3600} \times \frac{1}{0.218} = 0.5681 \frac{\text{ky}}{0}$
 $h_1 = 3052 \text{ kJ/ky}$

$$3052 = N_2 + \frac{836^2}{2000} = N_2 = 2702, 85 kJ/kg$$

la curva politiópica soco re puede aplicar en su forme original, al No ren el fluido un qui ideal o perfecto.

Rochete

$$2702,55 + \frac{836^2}{200} = \omega + h_3$$

 $\omega = 0.61 \times \frac{236^2}{200} = 213,1633 \times 3/ky$

Trobajo disipativo

$$-\int_{1}^{2} \alpha d\rho = -w d + \frac{C^{2}}{2}$$

$$\frac{1-UM\rho}{U4\rho\rho}\left(\frac{1}{b^{5}}\eta^{5}-\frac{1}{b^{4}}\eta^{1}\right)=-m_{\mu\rho}^{q}+\frac{5}{C_{3}}$$

$$\frac{1 - 1.5638}{1.5638} \left[100 \times 1.1 - 1000 \times 0.518 \right] = -mq^{4}$$

$$-\int_{2}^{3}ud\rho = 0 = W - wd - \frac{c_{2}^{2}}{2}$$

$$-\int_{2}^{3}ud\rho = 0 = W - wd - \frac{c_{2}^{2}}{2}$$

$$-\int_{2}^{3}ud\rho = 0 = W - wd - \frac{c_{3}^{2}}{2}$$

$$= -136,2847 \times 7/Ky$$

$$= -136,2847 \times 7/Ky$$

$$= -136,2847 \times 7/Ky$$

$$= -16,74KW$$

$$Wd = mwd = -76,74KW$$