

多媒體程式設計影像資料處理

Instructor: 馬豪尚

認識影像

- > 相片 (picture)
- > 圖像 (image)
- >影片 (video)
- > 影片擷取出的畫面 (frame)

相片

› 相片(picture):連續色彩變化的圖畫(也許有顆粒,但裸眼看不出),因此從數學的觀點來描述,相片是一個連續二維空間的亮度函數

圖像

> 圖像(image):將相片分割成一個個整齊排列的顆粒,再給予每一顆粒一個數值表示該顆粒的亮度;這樣的空間分割及亮度數值指定合稱為數位化(digitalization)或離散化(discretization)。數位化後的相片就稱為圖像

圖像

- > 二元圖像:圖像中每個像素的亮度值 (Intensity)僅可以取自0或1的圖像,因此也稱為1-bit圖像。
- › 灰度圖像:也稱為灰階圖像:圖像中每個像素可以由0(黑)到255(白)的亮度值(Intensity)表示。0-255之間表示不同的灰度級。
- > 彩色圖像:RGB的彩色圖像是由三種不同顏色成分組合而成,一個為紅色,一個為綠色,另一個為藍色。

二元圖像

> 圖像中每個像素的亮度值(Intensity)僅可以取自0或1的圖像, 因此也稱為1-bit圖像。

灰度圖像

> 圖像中每個像素可以由0(黑)到255(白)的亮度值(Intensity)表示。

彩色圖像

>由Red、Green、Blue三種顏色組成,每一種顏色的圖都是用0-255的數值來表示,最後合併成為一張彩色的圖像

像素(Pixel)和解析度(Resolution)

- > 像素為組成數位影像的最小單位
- >解析度為數位影像中的像素數量(例如:1920*1080 或 2,073,6000像素)

影像檔案格式(image file formats)

> 一列一列的紀錄影像灰階或色彩值,又稱為以列為主(row major) 的紀錄方式

Example (a 5×6 image)

1	3	4	6	8	6
5	7	5		:	
:					
:					

至少要記錄 [5; 6; 1, 3, 4, 6, 8, 6, 5, 7, 5, ...]

Python 基本影像處理

- > PIL(Python Imaging Library)是一套影像處理的模組,可以做到一些常見的影像處理和操作
 - 裁切、平移、旋轉、縮放
 - 調整亮度、色調,套用濾鏡
- > PIL早在Python 2.7後就斷更, Pillow為基於PIL開發支援 Python3以上版本的套件

Python 基本影像處理

- › Pillow模組安裝與載入
 - pip install pillow
 - From PIL import Image
- > Pillow模組中的RGBA 分別代表紅色、綠色、藍色、透明度
 - From PIL import ImageColor
 - ImageColor.getrgb(color)
 - › 返回(r, g, b)的色彩元組
 - ImageColor.getcolor(color, "RGB")
 - > 返回(r, g,b)的色彩元組
 - ImageColor.getcolor(color, "RGBA")
 - > 返回(r, g, b, a)的色彩元組

Pillow模組的影像座標

- > 最左上角的像素座標(x,y)是(0,0), x軸像素往右遞增, y軸像素向下遞增
- > 圖片內的選取box的座標可以用(left, top, right, bottom)四個位置的座標來標示
 - left: box左上角的x軸座標
 - top: box左上角的y軸座標
 - right: box右下角的x軸座標
 - bottom: box右下角的y軸座標

Pillow模組影像物件

- > 開啟影像物件
 - Imageobj = Image.open("圖像檔")
- > 獲得影像大小屬性
 - Imageobj.size
 - > 返回影像寬度和高度
- > 取得原始圖檔名稱
 - Imageobj.filename
 - > 返回影像物件的檔案名稱

Pillow模組影像物件

- > 取得影像物件的格式
 - Imageobj.format
 - > 返回檔案副檔名
 - Imageobj.format_description
 - > 返回副檔名以及物件描述
- > 在螢幕顯示影像
 - Imageobj.show()

Pillow建立新的影像物件

- > 使用new(模式, 影像大小, 顏色), 建立新的影像物件
 - Imageobj.new("RGB", (100, 100), "ff0000")
- > 存檔
 - Imageobj.save("檔名")

Pillow基本影像編輯

- > 更改影像大小
 - Imageobj.resize((width, height), resample)
 - > 第一個參數為size: (寬度, 高度)
 - › 第二個參數為resample取樣方法參數

resample 參數	說明	
Image.NEAREST	最鄰近插值法	
Image.BOX	類似NEAREST	
Image.BILINEAR	雙線取樣法	
Image.HAMMING	產生比 BILINEAR 更清晰的圖像	
Image.BICUBIC	三次方取樣法	
Image.LANCZOS	高品質LANCZOS濾波器	

Pillow基本影像編輯

- > 影像旋轉
 - Imageobj.rotate(旋轉角度, expand=True)
 - > 旋轉都是以逆時針旋轉
 - > Expand是設定是否顯示超出影像大小的部分,並以黑色填滿
- > 影像翻轉
 - Imageobj.transpose(Image.FLIP_LEFT_RIGHT)
 - > 影像左右翻轉
 - Imageobj.transpose(Image.FLIP_TOP_BOTTOM)
 - > 影像上下翻轉

Pillow影像像素編輯

- > 取得影像中某一個像素的顏色
 - Imageobj.getpixel((x, y))
 - › (x, y)為指定像素在影像內的座標
- ,修改或填入色彩到某一個指定像素
 - Imageobj.putpixel((x, y), (r, g, b, a))
 - > (x, y)為指定像素在影像內的座標
 - › (r, g, b, a)為顏色值

Pillow影像裁切、複製和合成

- > Imageobj.crop(裁切區間)
 - 裁切區間為(left, top, right, bottom)
- > Imageobj.copy()
 - 複製影像
- > Imageobj.paste(影像, (座標位置))
 - 影像是要貼上的影像物件
 - 座標位置為指定要放的開始座標位置(x, y)

Pillow影像濾鏡(效果)

> Imageobj.filter(濾鏡參數)

濾鏡參數 ImageFilter.	效果說明
BLUR	模糊效果
CONTOUR	描繪輪廓
DETAIL	強調細節
EDGE_ENHANCE	邊界增強
EDGE_ENHANCE_MORE	加強邊界增強
EMBOSS	浮雕效果
FIND_EDGES	尋找邊界
SMOOTH	平滑效果
SMOOTH_MORE	深度平滑效果

- > Pillow模組內有另一個ImageDraw模組提供繪圖
 - 可以繪製點、線、矩形、橢圓、多邊形
- > 載入模組
 - From PIL import ImageDraw
- >建立圖案繪製物件
 - Drawobj = ImageDraw.Draw(Imageobj)
 - > Imageobj為圖像物件,可以用自己建立的圖像或讀取的圖像

- 〉繪製點
 - Drawobj.point([(x1,y1), (x2, y2)...], fill)
 - > (x1, y1)為繪製點在影像內的像素座標,用列表包起來
 - › fill=color,為顏色參數
- 〉繪製線條
 - Drawobj.line([(x1,y1), (x2, y2)...], width, fill)
 - › (x1, y1)為繪製點在影像內的像素座標,如果有兩個以上的點就會連起來
 - > width=線條寬度,預設為1
 - › fill=color · 為顏色參數

- 〉繪製圓或橢圓
 - Draw.ellipse((left, top, right, bottom), fill, outline)
 - > (left, top, right, bottom)元組是包住圓形或橢圓形的矩形左上 角與右下角座標
 - › fill=color · 為填滿顏色
 - > outline=color, 為外框顏色

right, bottom

〉繪製矩形

- Draw.rectangle((left, top, right, bottom), fill, outline)
 - › (left, top, right, bottom)元組是矩形左上角與右下角座標
 - > fill=color , 為填滿顏色
 - > outline=color, 為外框顏色

- 〉繪製多邊形
 - Drawobj.polyon ([(x1,y1), (x2, y2)...], width, fill)
 - > (x1, y1)為繪製點在影像內的像素座標,如果有兩個以上的點就會連起來
 - > width=線條寬度,預設為1
 - › fill=color · 為顏色參數
- > 填寫文字
 - Drawobj.text((x, y), text, fill, font)
 - › (x, y)為文字在影像內的開始座標
 - › text為想填入的文字
 - › fill=color為文字顏色
 - › font=字型

練習

- > 讀取image資料夾內的30張image
- > 將所有image的size調整為512*512
- > 將nutc logo加上矩形框線並加到每張圖片的最右上角
- > 儲存處理過後的影像