Évaluation des actifs financiers.

Examen 1^{re} session : durée une heure.

Documents autorisés.

Jeudi 9 janvier 2003.

Responsable: Philippe Briand.

Exercice 1. On se place dans le modèle de Cox–Ross–Rubinstein sur une période : le taux d'intérêt sur la période est de $5\,\%$, le prix initial de l'action est de 100 euros. À l'instant 1, l'action peut subir une hausse de $10\,\%$ ou une baisse de $15\,\%$.

- 1. Déterminer le prix d'un call européen de prix d'exercice 100 euros et de maturité 1. Préciser la stratégie de couverture.
- 2. On considère une option européenne de maturité 1 dont la valeur à l'instant 1 est donnée par $X_1 = f(S_1)$.

En précisant la démarche utilisée, déterminer le prix de vente de cette option ainsi que la stratégie de couverture.

Solution. D'après le cours, le prix d'une option européenne de valeur $f(S_1)$ est donné par

$$P = \frac{1}{1+r} \mathbb{E}^*[f(S_1)] = \frac{1}{1+r} \left(f(su)p^* + f(sd)(1-p^*) \right),$$

où $p^* = (1+r-d)/(u-d)$ est la probabilité que l'action monte sous la probabilité risque neutre. On obtient $p^* = 4/5$.

Pour une stratégie de couverture, on doit avoir – notant ϕ la somme investie dans l'actif non risqué et ψ le nombre d'actions détenues avant parution du cours $S_1 - P = \phi + \psi S_0$ et $\phi(1+r) + \psi S_1 = f(S_1)$. Ceci donne $\phi(1+r) + \psi su = f(su)$ dans le cas d'une hausse et $\phi(1+r) + \psi sd = f(sd)$ dans celui d'une baisse. Par suite,

$$\psi = \frac{f(su) - f(sd)}{su - sd}.$$

La signification est la suivante : on perçoit la prime P et on achète ψ options en investissant la différence dans l'actif non risqué.

Pour le call de prix d'exercice 100 euros, on a $f(x) = (x - 100)^+$ et on obtient $P \simeq 7,62$ et $\psi = 0,4$.

Exercice 2. On désigne par X_t la valeur d'un dollar en euros : le cours du dollar. On suppose que X_0 est un réel strictement positif et que

$$dX_t = X_t \left(\mu dt + \sigma dB_t \right),\,$$

où B est un mouvement brownien. On rappelle que

$$X_t = X_0 \exp\left\{\sigma B_t + \left(\mu - \sigma^2/2\right)t\right\}. \tag{1}$$

- 1. En appliquant la formule d'Itô (prendre F(x)=1/x), déterminer l'équation satisfaite par $Z_t=1/X_t$ le prix d'un euro en dollars?
- 2. Trouver l'équation satisfaite par $U_t = \ln X_t$ et en déduire celle satisfaite par $V_t = \ln Z_t$.
- 3. Retrouver l'équation satisfaite par Z_t en utilisant la formule d'Itô pour calculer de^{V_t} .
- 4. Démontrer la formule (1).

Solution. Rappelons tout d'abord la formule d'Itô. Soient B un mouvement brownien et X un processus vérifiant

$$dX_t = K_t dt + H_t dB_t.$$

Si $(t,x) \longmapsto F(t,x)$ est 2 fois continûment dérivable en t et x alors

$$dF(t, X_t) = \left(F_t'(t, X_t) + F_x'(t, X_t)K_t + \frac{1}{2}F_{xx}''(t, X_t)H_t^2\right)dt + F_x'(t, X_t)H_t dB_t.$$

1. On a $F'(x) = -1/x^2$ et $F''(x) = 2/x^3$. La formule d'Itô donne

$$dF(X_t) = F'(X_t)\mu X_t dt + \frac{1}{2}F''(X_t)\sigma^2 X_t^2 dt + F'(X_t)\sigma X_t dB_t = \frac{\sigma^2 - \mu}{X_t} dt - \frac{\sigma}{X_t} dB_t,$$

soit $dZ_t = Z_t \left[(\sigma^2 - \mu) dt - \sigma dB_t \right].$

2. On a, d'après la formule (1), $U_t = \ln X_t = \ln X_0 + \sigma B_t + (\mu - \sigma^2/2)t$, et donc

$$dU_t = (\mu - \sigma^2/2) dt + \sigma dB_t.$$

D'autre part, $V_t = \ln Z_t = -\ln X_t = -U_t$; par suite, $dV_t = (\sigma^2/2 - \mu) dt - \sigma dB_t$.

3. Comme $(e^x)' = e^x$, la formule d'Itô donne

$$de^{V_t} = e^{V_t} (\sigma^2/2 - \mu) dt + \frac{1}{2} e^{V_t} \sigma^2 dt - e^{V_t} \sigma dB_t = e^{V_t} \left[(\sigma^2 - \mu) dt - \sigma dB_t \right]$$

soit encore $dZ_t = Z_t \left[(\sigma^2 - \mu) dt - \sigma dB_t \right].$

4. Si $Y_t = \sigma B_t + (\mu - \sigma^2/2)t$, alors $X_t = X_0 e^{Y_t}$. La formule d'Itô conduit à l'égalité

$$dX_t = X_0 \left(e^{Y_t} (\mu - \sigma^2/2) dt + e^{Y_t} \sigma^2/2 dt + e^{Y_t} \sigma dB_t \right) = X_t \left[\mu dt + \sigma dB_t \right].$$

Ceci démontre la formule (1) puisque les solutions de cette équation différentielle stochastique sont uniques.

Exercice 3. 1. On se place dans le modèle de Black-Scholes. Décrire les arguments principaux qui permettent de déterminer le prix des options européennes.

2. Dans un modèle à temps discret, expliquer pourquoi l'existence d'une probabilité risque neutre assure l'absence d'opportunité d'arbitrage.

Solution. Voir cours.