Data communication - laboratory 2

Manual Calculations

For the manual calculation we chose $x^3 + x + 1$ as our generator polynomial, and we utilize our code to generate the random message 1010100

Ex.

Message: 1010100 Key: 1011

Modulo 2 Binary Division algorithm:

```
1010100000
1011
-----
0011
0000
-----
0110
0000
-----
1100
1011
-----
1010
1011
```

->

Encoded message: 1010100010

Simulated and theoretical bound for error detection probability

In the simulation a total of $1.0 * 10^7$ random messages were generated with the length of nine bits and all of them were to use the same generator polynomial $x^4 + x^3 + x^2 + 1$. Without altering the messages or the polynomial a check was made to ensure a good probability of error detection, keeping in mind valid messages \subset all possible messages. The result of this simulation did not differ noticeably after running it multiple times.

The simulation provided us with a 93.74859% chance of detecting errors. And now running it against the theoretical probability $1-\frac{1}{N}=1-\frac{1}{2^k}=1-\frac{1}{2^k}$, the difference of 0.001410000000070168% is negligible.