Lista 1 de Geometria Riemanniana

IMPA, Mar/Jun 2025 - Ivan Miranda

Revisão:

Exercício 1. Seja $M \subset \tilde{M}$ uma subvariedade mergulhada e $X \in \mathfrak{X}(M)$. Mostre que existe um aberto $U \subset \tilde{M}$ contendo M e um campo $\tilde{X} \in \mathfrak{X}(U)$ tal que $\tilde{X}|_{M} = X$. Caso M seja subconjunto fechado de \tilde{M} , prove que U pode ser tomado igual a \tilde{M} . Se M não é subconjunto fechado de \tilde{M} , pode não existir extensão de X definida em todo \tilde{M} .

Exercício 2. Seja $f: M^n \to N^m$ um mapa suave. Os campos $X \in \mathfrak{X}(M)$ e $\tilde{X} \in \mathfrak{X}(N)$ são ditos f-relacionados se $df_pX_p = \tilde{X}_{f(p)}$, $\forall p \in M$. Mostre que se os campos $X,Y \in \mathfrak{X}(M)$ são, respectivamente, f-relacionados com $\tilde{X}, \tilde{Y} \in \mathfrak{X}(N)$, então [X,Y] é f-relacionado com $[\tilde{X},\tilde{Y}]$.

Exercício 3. Seja $\pi: M \to N$ uma submersão sobrejetiva. Dado $Y \in \mathfrak{X}(N)$, mostre que existe $X \in \mathfrak{X}(M)$ tal que X é π relacionado com Y.

Exercício 4. (Fibrado Pullback) Suponha que M^n , N^m são variedades suaves, $\pi: E \mapsto M$ é um fibrado vetorial suave de posto k e $f: N \mapsto M$ é um mapa suave. Considere o espaço

$$f^*E = \{(p, e) \in N \times E : f(p) = \pi(e)\},\$$

 $e\ \tilde{\pi}: f^*E\mapsto N$ a projeção na primeira coordenada. Mostre que f^*E tem uma estrutura de variedade suave de forma que a tripla $\tilde{\pi}: f^*E\mapsto N$ é um fibrado vetorial suave de posto k.

Métricas Riemannianas:

Exercício 5. Exercício 7 do Capítulo 1 do livro do professor Manfredo, quinta edição, sobre a existência de métricas Riemannianas bi-invariantes em grupos de Lie compactos.

Exercício 6. Seja (N^n,g) uma variedade Riemanniana e $M^m \subset N$ uma subvariedade mergulhada. Mostre que para todo $p \in M$ existe uma vizinhança aberta $U \subset N$ de p e campos vetoriais E_1, \ldots, E_n em U, tal que $E_1(q), \ldots, E_n(q)$ é uma base ortonormal de T_qN para todo $q \in U$ e $E_1(r), \ldots, E_m(r)$ são tangentes a M para todo $r \in U \cap M$.

Definição 1. Sejam (M^m,g_M) e (N^n,g_N) variedades Riemannianas. Seja $F:M\to N$ uma submersão. Dizemos que F é uma **submersão Riemanniana** quando para todo $p\in M$, $DF: ker(DF)^\perp\to T_{F(p)}N$ é uma isometria linear. Em outras palavras, sempre que $v,w\in T_pM$ são perpendiculares ao núcleo de $DF:T_pM\to T_{F(p)}N$ vale:

$$g_M(v, w) = g_N(DF(v), DF(w)).$$

Exercício 7. Seja (M^n,g) uma variedade Riemanniana. Suponha que existe um grupo de Lie G agindo por isometrias em (M,g), de tal forma que M/G admite uma estrutura de variedade suave, onde a projeção $\pi:M\to M/G$ é uma submersão. Mostre que existe uma métrica Riemanniana \overline{g} em M/G, tal que $\pi:(M,g)\to (M/G,\overline{g})$ é uma submersão Riemanniana.

Comentário: pode ser uma boa ideia consultar o capítulo 10 sobre fibrados vetoriais do livro *Introduction to Smooth Manifolds*, segunda edição, do professor John M. Lee, caso encontrem dificuldades com esses conceitos.

Exercício 8. Exemplos.

a) Induza uma métrica Riemanniana em $\mathbb{T}^n:=\frac{\mathbb{R}^n}{\mathbb{Z}^n}$ exigindo que a projeção natural $\pi:\mathbb{R}^n\to\mathbb{T}^n$ seja uma isometria local.

- b) Induza uma métrica Riemanniana em $\mathbb{R}P^n$ exigindo que a projeção natural $\pi: \mathbb{S}^n \to \mathbb{R}P^n$ seja uma isometria local.
- c) Induza uma métrica Riemanniana em $\mathbb{C}P^n$ exigindo que a projeção natural $\pi: \mathbb{S}^{2n+1} \to \mathbb{C}P^n$ seja uma submersão Riemanniana. Essa é a chamada métrica de Fubini-Study.
- d) Considere a faixa de Mobius M^2 definida como o quociente de \mathbb{R}^2 pela relação de equivalência

$$(x,y) \sim (a,b) \Leftrightarrow \exists n \in \mathbb{N} \cup \{0\} : x = a+n, y = (-1)^n b.$$

Induza uma métrica Riemanniana em M^2 exigindo que a projeção natural $\pi:\mathbb{R}^2\to M^2$ seja uma isometria local.

e) Descreva a garrafa de Klein como um quociente de \mathbb{R}^2 pela ação de um grupo e induza uma métrica Riemanniana na garrafa de Klein, como nos itens anteriores.

Exercício 9. Exercícios 2 e 3 do capítulo 1 do livro de Geometria Riemanniana do professor Manfredo P. do Carmo, quinta edição.

Exercício 10. Seja (M^n, g) uma variedade Riemanniana. Defina o fibrado unitário de M com relação à métrica g como $T_1M := \{v \in TM : g(v, v) = 1\}$.

- a) Prove que T_1M é subvariedade suave de TM de dimensão 2n-1.
- b) Prove que se M é compacta, então T_1M é compacta.
- c) Prove que se g_1 e g_2 são métricas Riemannianas em uma variedade diferenciável M compacta, então existem números reais A, B > 0 tais que $Ag_1(v, v) \le g_2(v, v) \le Bg_1(v, v)$ para todo $v \in TM$.

Exercício 11. Uma variedade Riemanniana (M^n,g) é dita completa, se é completa como espaço métrico com a distância induzida por g. Mostre que toda variedade suave M^n admite uma métrica Riemanniana g, tal que (M,g) é uma variedade Riemanniana completa.

Definição 2. Seja $(M^n, \langle \cdot, \cdot \rangle)$ uma variedade Riemanniana. Seja ∇ uma conexão afim em M. Dizemos que ∇ é **simétrica** quando

$$\nabla_X Y - \nabla_Y X = [X, Y]$$

para todo $X,Y \in \mathfrak{X}(M)$. Dizemos que ∇ é **compatível** com a métrica Riemanniana de M quando

$$X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

para todo $X, Y, Z \in \mathfrak{X}(M)$.

Comentário: em uma variedade Riemanniana $(M^n,\langle\cdot,\cdot\rangle)$, existe uma única conexão afim ∇ simétrica e compatível com sua métrica Riemanniana. Essa é a **conexão Riemanniana** de M (ou conexão de Levi-Civita) e esse resultado é um teorema do curso.

Definição 3. Seja $(M^n, \langle \cdot, \cdot \rangle)$ uma variedade Riemanniana e ∇ sua conexão Riemanniana.

• Dada $f \in C^{\infty}(M)$ definimos o **gradiente** de f, como o único campo $\nabla f \in \mathfrak{X}(M)$ tal que:

$$\langle \nabla f, X \rangle = df(X),$$

para todo $X \in \mathfrak{X}(M)$.

• Dado $p \in M$ e $T \in \text{Hom}(T_pM)$ definimos o **traço** do operador T como:

$$\operatorname{tr}(T) = \sum_{j=1}^{n} \langle TE_j, E_j \rangle,$$

onde $\{E_j\}_{j=1}^n$ é uma base ortonormal de T_pM (mostre que a definição independe da base ortonormal escolhida). Definimos o traço de uma forma bilinear B em T_pM como $\operatorname{tr}(B) = \sum_{j=1}^n B(E_j, E_j)$. Note que existe um único $T_B \in \operatorname{Hom}(T_pM)$ tal que

$$B(v,w) = \langle T_B(v), w \rangle$$

para todo $v, w \in T_pM$ e com a definição acima temos $tr(B) = tr(T_B)$.

• Dado $X \in \mathfrak{X}(M)$ definimos o **divergente** de X como a função:

$$\operatorname{div}(X)(p) = \operatorname{tr}(v \mapsto \nabla_v X).$$

Relembrando que $T_pM \ni v \mapsto \nabla_v X \in T_pM$.

• Dada $f \in C^{\infty}(M)$, definimos a **Hessiana** de f como o operado:

$$\operatorname{Hess}(f):\mathfrak{X}(M)\times\mathfrak{X}(M)\to C^\infty(M)$$

$$(X,Y)\mapsto \langle \nabla_X\nabla f,Y\rangle.$$

• Definimos o Laplaciano como o operador:

$$\Delta: C^{\infty}(M) \to C^{\infty}(M)$$
$$f \mapsto \Delta f \doteq \operatorname{div}(\nabla f).$$

Exercício 12. Prove que as definições acima coincidem com as usuais no espaço Euclidiano. Sejam (M^n,g) uma variedade Riemanniana, $f \in C^\infty(M)$ e (U,χ) uma carta. Represente o gradiente de f nessa carta. Dado $p \in M$ e $T \in \operatorname{Hom}(T_pM)$, represente o traço de T nessa carta.

Exercício 13. Seja (M^n, g) uma variedade Riemanniana. Tome $f \in C^{\infty}(M)$ e $X \in \mathfrak{X}(M)$.

- a) Mostre que $\operatorname{Hess}(f)$ é um tensor simétrico.
- b) Mostre que $\Delta f = tr_q(\operatorname{Hess}(f))$.
- c) Suponha que M é orientada. Mostre que $\operatorname{div}(X)dV_q = d(\iota_X dV_q)$.

Comentário: para fazer o item (c), vocês podem utilizar um referencial geodésico. Essa é uma ferramenta útil para fazer contas, utilizada com frequência. A definição é conteúdo do exercício 7 do capítulo 3 do livro do professor Manfredo P. do Carmo, *Geometria Riemanniana*, quinta edição.

Exercício 14. Seja $(M, \langle \cdot, \cdot \rangle)$ uma variedade Riemanniana. Tome $f, g \in C^{\infty}(M)$ e $X \in \mathfrak{X}(M)$. Mostre que:

- a) $\operatorname{div}(fX) = f\operatorname{div}(X) + \langle \nabla f, X \rangle$.
- b) $\Delta(fg) = f\Delta g + g\Delta f + 2\langle \nabla f, \nabla g \rangle$.

Exercício 15. Seja $(M, \langle \cdot, \cdot \rangle)$ uma variedade Riemanniana com bordo e orientada. Mostre que existe um único campo $N_{\partial M} \in \mathfrak{X}^{\perp}(\partial M)$, tal que $N_{\partial N}$ é unitário e aponta para fora.

Observação 1. Dizemos que um vetor $v \in T_pM \setminus T_p\partial M$ aponta para fora se existe uma curva $\gamma: (-\epsilon, 0] \to M$, tal que $\gamma(0) = p$ e $\dot{\gamma}(0) = v$.

Exercício 16. Seja (M^n,g) uma variedade Riemanniana orientada e compacta, $N_{\partial M} \in \mathfrak{X}^{\perp}(\partial M)$ o único vetor unitário que aponta para fora. Mostre que para cada $f \in C^{\infty}(M)$ e $X \in \mathfrak{X}(M)$ temos:

$$\int_{M} \langle \nabla f, X \rangle dV_g = \int_{\partial M} f \langle N_{\partial M}, X \rangle dV_{\partial M} - \int_{M} f \operatorname{div}(X) dV_g.$$

Onde $dV_{\partial M}$ é a forma de volume associada a métrica induzida pela inclusão $\partial M \hookrightarrow (M,g)$.

Exercício 17. Forneça um exemplo de variedade Riemanniana completa, não compacta e de volume finito.