Математический анализ-3 семестр

Лекция 6

Тема 6. Ряд Тейлора

- 6.1. Представление функций степенными рядами
- 6.2. Условие сходимости ряда Тейлора заданной функции к этой функции
- 6.3. Единственность представления функции степенным рядом
- 6.4. Разложение основных элементарных функций

6. Ряд Тейлора

6.1. Представление функций степенными рядами

Частичными суммами степенных рядов являются многочлены, что делает степенные ряды удобным средством для приближенных вычислений. Поэтому особое значение имеет вопрос о представлении функций степенными рядами.

Предположим, что заданная функция f(x) в некотором интервале с центром в точке x_0 имеет производные всех порядков. Тогда согласно формуле Тейлора для всех значений x из этого интервала имеет место равенство:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x),$$

где $R_n(x)$ - остаточный член формулы Тейлора. Он может быть записан разными способами, например, в форме Лагранжа:

$$R_n(x) = \frac{f^{(n+1)}(x_1)}{(n+1)!} (x - x_0)^{n+1}, \qquad x_1 \in (x_0, x).$$

Или в форме Пеано: $R_n(x) = \bar{o}((x - x_0)^n)$.

При этом n можно выбрать сколь угодно большим, т.е. учитывать в этой формуле сколь угодно большие степени переменной $(x - x_0)$.

Естественно возникает вопрос о возможности представления функции f(x) в виде бесконечной суммы или в виде степенного ряда:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \cdots$$

Такой ряд, независимо от того, сходится он или не сходится к функции f(x) в некотором интервале, называется *рядом Тейлора* этой функции, а его коэффициенты — коэффициентами Тейлора.

Если $x_0 = 0$, то данный степенной ряд называется *рядом Маклорена*:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

6.2. <u>Условие сходимости ряда Тейлора заданной функции</u> <u>к этой функции</u>

Согласно формуле Тейлора разность между значениями функции f(x) и частичной суммой ряда Тейлора с номером (n+1) этой функции равна остаточному члену формулы Тейлора $R_n(x)$. Поэтому справедливо следующее утверждение.

Теорема 1. Для того чтобы при некотором значении x значение функции f(x) совпадало с суммой ряда Тейлора этой функции, необходимо и достаточно, чтобы остаточный член формулы Тейлора при этом значении x стремился к нулю с возрастанием n: $\lim_{n\to\infty} R_n(x) = 0$.

Доказательство.

Heoбxoдимость. Пусть ряд Тейлора сходится к f(x), т.е.

$$\lim_{n\to\infty} S_n(x) = f(x),$$

$$S_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

– частичная сумма ряда Тейлора.

$$f(x) = S_n(x) + R_n(x), R_n(x) = f(x) - S_n(x),$$

$$\lim_{n\to\infty} R_n(x) = \lim_{n\to\infty} \left(f(x) - S_n(x) \right) = 0.$$

 \mathcal{A} остаточность. Пусть $\lim_{n\to\infty}R_n(x)=0$. Тогда

$$\lim_{n\to\infty} S_n(x) = \lim_{n\to\infty} \big(f(x) - R_n(x)\big) = f(x), \text{ т.е. ряд сходится к } f(x).$$

Теорема доказана.

Рассмотрим функцию:

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} \\ 0, x = 0 \end{cases}, x \neq 0.$$

Можно показать, что эта функция на всей числовой оси имеет производные всех порядков, и $f^{(n)}(0) = 0 \ \forall n$.

Ряд Маклорена этой функции сходится при всех x, и сумма его тождественно равна 0, но не равна f(x). Таким образом, данная функция не представляется своим рядом Маклорена ни в какой окрестности точки x=0.

Для того чтобы выяснить, сходится ли ряд Тейлора заданной функции к этой функции, в ряде случаев оказывается полезным следующее утверждение.

Теорема 2. Если функция f(x) в некотором интервале с центром в точке x_0 имеет производные всех порядков, и все производные для всех x из этого интервала ограничены одним и тем же числом:

$$\left|f^{(n)}(x)\right| \le M,$$

то ряд Тейлора этой функции сходится к самой функции на данном интервале.

Доказательство.

По условию теоремы $|f^{(n)}(x)| \leq M$.

Оценим остаточный член в формуле Тейлора:

$$|R_n(x)| = \left| \frac{f^{(n+1)}(x_1)}{(n+1)!} (x - x_0)^{n+1} \right| \le M \cdot \frac{|(x - x_0)^{n+1}|}{(n+1)!}.$$

Рассмотрим ряд

$$\sum_{n=0}^{\infty} \frac{|(x-x_0)^{n+1}|}{(n+1)!} = \sum_{n=0}^{\infty} \frac{c^{n+1}}{(n+1)!}$$

По признаку Даламбера

$$\lim_{n \to \infty} \frac{c^{n+2}}{(n+2)!} \cdot \frac{(n+1)!}{c^{n+1}} = \lim_{n \to \infty} \frac{c}{(n+2)} = 0 < 1,$$

значит, этот ряд сходится, следовательно, $\lim_{n\to\infty}\frac{c^{n+1}}{(n+1)!}=0$ (необходимое условие сходимости). Значит, $\lim_{n\to\infty}R_n(x)=0$. По теореме 1 это означает, что ряд Тейлора для f(x) сходится к f(x).

Это утверждение применимо к таким элементарным функциям как e^x , sinx, cosx. Например, функции sinx, cosx дифференцируемы всюду бесконечное число раз, и все их производные ограничены по модулю единицей. Значит, эти функции можно разложить в ряды Тейлора на любом интервале с центром в любой точке.

6.3. Единственность представления функции степенным рядом

Теорема 3. Если функция f(x) представима на некотором интервале с центром в точке x_0 степенным рядом:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n,$$

то этот ряд является рядом Тейлора этой функции.

<u>Доказательство.</u> Полагая $x=x_0$, получим $f(x_0)=a_0$.

Применим к данному степенному ряду теорему о почленном дифференцировании:

$$f'^{(x)} = \sum_{n=1}^{\infty} a_n \cdot n \cdot (x - x_0)^{n-1}, f'(x_0) = a_1, a_1 = \frac{f'(x_0)}{1!}$$

$$f''^{(x)} = \sum_{n=2}^{\infty} a_n \cdot n(n-1) \cdot (x - x_0)^{n-2}, f''^{(x_0)} = 2a_2, a_2 = \frac{f''^{(x_0)}}{2!}.$$

...
$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n \cdot n(n-1) \cdot ... \cdot (n-k+1)(x-x_0)^{n-k}$$
,

$$f^{(k)}(x_0) = a_k \cdot k(k-1) \cdot \dots \cdot 2 \cdot 1, a_k = \frac{f^{(k)}(x_0)}{k!}.$$

Т.е. данный ряд является рядом Тейлора этой функции. Теорема доказана.

6.4. Разложение основных элементарных функций

Получим разложения в ряды Маклорена основных элементарных функций.

1).
$$f(x) = e^x$$
.

$$f^{(n)}(x) = e^x$$
, $f^{(n)}(0) = 1 \,\forall n$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}.$$

Найдем область сходимости данного ряда.

Применим признак Даламбера:

$$\lim_{n \to \infty} \frac{|x^{n+1}|}{(n+1)!} \cdot \frac{n!}{|x^n|} = |x| \cdot \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1, \forall x$$

Область сходимости $x \in (-\infty, +\infty)$.

$$2). f(x) = \sin x.$$

$$f(0) = 0.$$

$$f'(x) = \cos x, f'(0) = 1.$$

$$f''(x) = -\sin x, f''(0) = 0.$$

$$f'''(x) = -\cos x, f'''(0) = -1.$$

. . . .

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

По признаку Даламбера:

$$\lim_{n \to \infty} \frac{|x^{2n+3}|}{(2n+3)!} \cdot \frac{(2n+1)!}{|x^{2n+1}|} = \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0 < 1.$$

Область сходимости $x \in (-\infty, +\infty)$.

$$3). f(x) = cos x.$$

$$f(0) = 1.$$

$$f'(x) = -\sin x, f'(0) = 0.$$

$$f''(x) = -\cos x, f''(0) = -1.$$

$$f'''(x) = sinx, f'''(0) = 0...$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Аналогично предыдущему примеру находится область сходимости: $x \in (-\infty, +\infty)$.

4).
$$f(x) = \ln(1+x)$$
. $f(0) = 0$.

$$f'(x) = \frac{1}{1+x}, f'(0) = 1.$$

$$f''(x) = -\frac{1}{(1+x)^2}, f''(0) = -1.$$

$$f'''(x) = \frac{2}{(1+x)^3}, f'''(0) = 2.$$

$$f^{(4)}(x) = -\frac{2 \cdot 3}{(1+x)^4}, f'''(0) = 3! \dots$$

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}, f^{(n)}(0) = (-1)^{n-1} \cdot (n-1)!$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{x^n}{n}$$

По радикальному признаку Коши легко определить область сходимости: $x \in (-1,1]$.

5).
$$f(x) = (1 + x)^{\alpha}$$
.

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + \dots,$$

 $x \in (-1,1).$

6). Последнее разложение при $\alpha = -1$ принимает вид:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots = \sum_{n=0}^{\infty} (-1)^n \cdot x^n, x \in (-1,1)$$

7). При замене x на – x получим еще одно разложение

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$
, $x \in (-1,1)$.

8). При разложении гиперболических функций используем формулы: $shx = \frac{1}{2}(e^x - e^{-x})$, $chx = \frac{1}{2}(e^x + e^{-x})$ и разложения функций e^x и e^{-x} в ряд Маклорена:

$$\operatorname{sh} x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, \qquad x \in (-\infty, +\infty)$$

$$\operatorname{ch} x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \qquad x \in (-\infty, +\infty).$$

6.5. Методы разложения функции в ряд Тейлора

6.5.1. Использование таблицы разложений основных элементарных функций

Пример 1. Разложить в ряд Маклорена функцию:

$$f(x) = \frac{2}{3-x} (x_0 = 0)$$
.

Преобразуем функцию: $\frac{2}{3-x} = \frac{2}{3} \cdot \frac{1}{1-\frac{x}{3}}$ и воспользуемся табличным разложением 7), заменяя переменную x на $\frac{x}{3}$:

$$f(x) = \frac{2}{3} \cdot \frac{1}{1 - \frac{x}{3}} = \frac{2}{3} \cdot \sum_{n=0}^{\infty} \frac{x^n}{3^n} = \sum_{n=0}^{\infty} \frac{2x^n}{3^{n+1}}$$

Для нахождения области сходимости данного ряда к исходной функции решим неравенство: $-1 < \frac{x}{3} < 1 \Leftrightarrow -3 < x < 3$.

<u>Пример 2</u>. Разложить в ряд Тейлора в окрестности точки $(x_0 = 1)$ функцию: $f(x) = \frac{2}{3-x}$.

Сделаем замену: $t = x - 1 \Leftrightarrow x = t + 1$:

 $f(t) = \frac{2}{3-(t+1)} = \frac{2}{2-t}$ и разложим эту функцию в окрестности точки (t=0):

$$f(t) = \frac{2}{2-t} = \frac{1}{1-\frac{t}{2}} = \sum_{n=0}^{\infty} \frac{t^n}{2^n} \Rightarrow f(x) = \sum_{n=0}^{\infty} \frac{(x-1)^n}{2^n}.$$

Область сходимости: $-1 < \frac{t}{2} < 1 \Leftrightarrow -2 < t < 2 \Leftrightarrow$

$$-2 < x - 1 < 2 \Leftrightarrow -1 < x < 3.$$

Пример 3. Разложить в ряд Маклорена функцию:

$$f(x) = \frac{1}{x^2 - 3x + 2}.$$

Разложим дробь на сумму простейших дробей, и к каждой из них применим табличное разложение в ряд Маклорена:

$$\frac{1}{x^{2}-3x+2} = \frac{1}{(x-1)(x-2)} = \frac{1}{x-2} - \frac{1}{x-1} = \frac{1}{1-x} - \frac{1}{2-x} = \frac{1}{1-x} - \frac{1}{2} \cdot \frac{1}{1-\frac{x}{2}} =$$

$$= \sum_{n=0}^{\infty} x^{n} - \frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}} = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}}\right) x^{n}.$$

Для нахождения области сходимости решим систему неравенств:

$$\begin{cases} -1 < x < 1 \\ -1 < \frac{x}{2} < 1 \end{cases} \Leftrightarrow \begin{cases} -1 < x < 1 \\ -2 < x < 2 \end{cases} \Leftrightarrow -1 < x < 1.$$

Пример 4. Разложить в ряд Тейлора функцию

 $f(x) = \ln(x^2 + 5x + 6)$ в окрестности точки $(x_0 = -1)$, т.е. по степеням (x + 1).

Сделаем замену: x + 1 = t и, пользуясь свойствами логарифмической функции, выполним тождественные преобразования:

$$f(t) = \ln((t-1)^2 + 5(t-1) + 6) = \ln(t^2 + 3t + 2) =$$

$$= \ln((t+1)(t+2)) = \ln(t+1) + \ln(t+2) =$$

$$= \ln 2 + \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{t^n}{n} + \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{t^n}{2^n \cdot n} =$$

$$= \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot \left(1 + \frac{1}{2^n}\right) t^n.$$

Вернемся к исходной переменной:

$$f(x) = \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot \left(1 + \frac{1}{2^n}\right) (x+1)^n.$$

Область сходимости:
$$\begin{cases} -1 < t < 1 \\ -1 < \frac{t}{2} < 1 \end{cases} \Leftrightarrow -1 < t < 1 \Leftrightarrow$$
$$-1 < x + 1 < 1 \Leftrightarrow -2 < x < 0.$$

<u>Пример 5</u>. Разложить в ряд Тейлора функцию $f(x) = (x + 2) \cdot 3^x$ в окрестности точки $(x_0 = -2)$, т.е. по степеням (x + 2).

Сделаем замену: x + 2 = t, x = t - 2:

$$f(t) = t \cdot 3^{t-2} = \frac{1}{9}t \cdot 3^t = \frac{1}{9}t \cdot e^{\ln 3^t} =$$

$$= \frac{1}{9}t \cdot e^{t \ln 3} = \frac{1}{9}t \cdot \sum_{n=0}^{\infty} \frac{t^n}{n!} \ln^n 3.$$

Вернемся к исходной переменной:

$$f(x) = \sum_{n=0}^{\infty} \frac{\ln^n 3}{9n!} (x+2)^{n+1}.$$

Область сходимости: $x \in (-\infty, +\infty)$.

<u>Пример 6.</u> Разложить функцию $y = \sin^2 x$ в ряд Маклорена.

Воспользуемся тригонометрическим тождеством:

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x) ,$$

а затем табличным разложением функции $\cos x$, заменяя переменную x на переменную 2x:

$$\sin^{2} x = \frac{1}{2} - \frac{1}{2} \left(1 - \frac{(2x)^{2}}{2!} + \frac{(2x)^{4}}{4!} - \dots + (-1)^{n} \frac{(2x)^{2n}}{(2n)!} + \dots \right) =$$

$$= \frac{2}{2!} x^{2} - \frac{2^{3}}{4!} x^{4} + \dots + (-1)^{n+1} \frac{2^{2n-1}}{(2n)!} x^{2n} + \dots$$

$$x \in (-\infty, +\infty).$$

6.5.2. Использование почленного интегрирования

<u>Пример 7.</u> Разложить в ряд Маклорена функцию f(x) = arctgx.

Воспользуемся табличным разложением для представления степенным рядом производной этой функции:

$$f'(x)=(arctgx)'=rac{1}{1+x^2}=1-x^2+x^4-\cdots+(-1)^n\cdot x^{2n}+\cdots,x\in (-1,1).$$
 Тогда

$$arctgx = \int_0^x \frac{1}{1+x^2} dx = \int_0^x (1-x^2+x^4-\dots+(-1)^n \cdot x^{2n} + \dots) dx = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \cdot \frac{x^{2n+1}}{2n+1} + \dots, \ x \in [-1,1].$$

Заметим, что производная представляется степенным рядом на интервале (-1,1), а сама функция – на отрезке $\in [-1,1]$.

6.5.3. Использование почленного дифференцирования

Пример 8. Разложить в ряд Тейлора функцию

$$f(x) = \frac{5}{(x+1)^2}$$
, $x_0 = 2$. Замена: $x - 2 = t$, $x = t + 2$.

$$f(t) = \frac{5}{(t+3)^2} = 5 \cdot -\left(\frac{1}{t+3}\right)' = -\frac{5}{3} \cdot \left(\frac{1}{1+\frac{t}{3}}\right)' =$$

$$= -\frac{5}{3} \cdot \left(\sum_{n=0}^{\infty} (-1)^n \frac{t^n}{3^n}\right)' = -\frac{5}{3} \cdot \sum_{n=0}^{\infty} (-1)^n \frac{nt^{n-1}}{3^n} =$$

$$= \sum_{n=0}^{\infty} (-1)^{n+1} \frac{5n}{3^{n+1}} (x-2)^{n-1}.$$

Область сходимости: $-1 < \frac{t}{3} < 1 \Leftrightarrow -3 < t < 3 \Leftrightarrow$ $-3 < x - 2 < 3 \Leftrightarrow -1 < x < 5.$

6.6. Применение теории степенных рядов

6.6.1. Приближенные вычисления значений функций

Рассмотрим примеры применения ряда Тейлора для приближенных вычислений.

Пример 9. Вычислить sin1 с точностью до 0,001.

Для решения задачи воспользуемся табличным разложением функции $\sin x$:

$$\sin 1 = 1 - \frac{1^3}{3!} + \frac{1^5}{5!} - \frac{1^7}{7!} + \cdots$$
 - знакочередующийся ряд Лейбница.

При замене суммы ряда на частичную сумму остаток не превосходит по модулю первого отброшенного члена ряда.

 $\frac{1}{5!}$ > 0,001, $\frac{1}{7!}$ < 0,001, значит, это слагаемое можно отбросить, для достижения заданной точности достаточно учесть первые три члена ряда:

$$\sin 1 \approx 1 - \frac{1^3}{3!} + \frac{1^5}{5!} = 0,842.$$

6.6.2. Приближенные вычисления определенных интегралов

<u>Пример 10.</u> Вычислить с точностью до 3 знаков после запятой $\int_0^{\frac{1}{4}} e^{-x^2} dx$.

Воспользуемся разложением функции e^x в ряд Маклорена, заменив в нем x на $-x^2$:

$$e^{-x^{2}} = 1 - \frac{x^{2}}{1!} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \cdots$$

$$\int_{0}^{\frac{1}{4}} e^{-x^{2}} dx = \int_{0}^{\frac{1}{4}} \left(1 - \frac{x^{2}}{1!} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \cdots \right) dx =$$

$$= \left(x - \frac{x^{3}}{3} + \frac{x^{5}}{10} - \frac{x^{7}}{42} + \cdots \right) \Big|_{0}^{\frac{1}{4}} = \frac{1}{4} - \frac{1}{3 \cdot 4^{3}} + \frac{1}{10 \cdot 4^{5}} - \frac{1}{42 \cdot 4^{7}} + \cdots$$

Получен знакочередующийся ряд Лейбница, слагаемое $\frac{1}{10\cdot 4^5}$ меньше, чем 0,001. Отбрасывая это слагаемое, получим приближенное значение интеграла с заданной точностью:

$$\int_0^{\frac{1}{4}} e^{-x^2} dx \approx \frac{1}{4} - \frac{1}{3 \cdot 4^3} = 0,245.$$

6.6.3. Вычисление значения производной функции в точке

Если f(x) представима степенным рядом, то это ряд Тейлора (в силу теоремы единственности разложения).

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

следовательно, $f^{(n)}(x_0) = a_n \cdot n!$

Пример 11.
$$f(x) = \frac{\sin x}{x}$$
.

Найти $f^{(41)}(0)$, $f^{(30)}(0)$.

Разложим функцию в степенной ряд в окрестности $x_0 = 0$, т.е. в ряд Маклорена:

$$f(x) = \frac{1}{x} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}.$$

Ряд содержит только четные степени x, все нечетные коэффициенты равны нулю, следовательно $f^{(41)}(0) = 0$.

$$f^{(30)}(0) = a_{30} \cdot 30! = (n = 15) = -\frac{1}{31!} \cdot 30! = -\frac{1}{31}$$

Разложения основных элементарных функций в ряд Маклорена (по степеням x):

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
 $x \in (-\infty, +\infty)$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \ x \in (-\infty, +\infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \quad x \in (-\infty, +\infty)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \qquad |x| < 1$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n + \ldots |x| \prec 1$$

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + \dots = \sum_{n=0}^{\infty} (-1)^n x^n \qquad |x| < 1$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots = \sum_{n=0}^{\infty} x^n$$
 $|x| < 1$

$$tg \ x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots$$
 $|x| < \frac{\pi}{2}$

Если требуется разложить функцию в ряд Тейлора по степеням $(x-x_0)$ (в окрестности точки x_0), то необходимо сделать замену $x-x_0=t$, полученную функцию разложить по степеням t, пользуясь стандартными разложениями, затем вернуться к исходной переменной x.