Matemáticas Discretas Inducción

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

16 de agosto de 2023

Objetivos

• Aplicar inducción como técnica para demostración de propiedades en conjuntos discretos y como técnica de definición formal de objetos discretos.

Contenidos

- Objetivos
- 2 Preliminares
- 3 Principios de Inducción
- 4 Inducción Estructural
 - Definiciones inductivas
 - Inducción estructural

Lenguaje matemático

Asumiremos cierta familiaridad con elementos del lenguaje matemático.

 Algunos elementos los veremos más en profundidad en capítulos siguientes.

```
x \in B x pertenece a B x \notin B x no pertenece a B \exists x Existe x \forall x Para todo x A \subseteq B A es subconjunto de B A \subsetneq B A es subconjunto propio de B \dots y otros que puedan aparecer
```

Números naturales

¿Qué son los números naturales?

Definición

Los **números naturales**, denotados por \mathbb{N} , son los que sirven para contar los elementos de un conjunto.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

¡Los naturales empiezan en el cero!

¡Los naturales empiezan en el cero!

Inducción

- Veremos inducción como una "propiedad" de los números naturales.
 - Es inherente a su definición.
- Nos permitirá demostrar propiedades sobre los naturales.
- También nos permitirá definir objetos relacionados a ellos (funciones, relaciones, etc.).
- La inducción matemática se usa principalmente como técnica para demostraciones.

Existen distintas formulaciones para el Principio de Inducción.

- No necesitan demostración (de ahí el nombre "principio").
- ... pues son inherentes a la definición de los números naturales (como ya dijimos).

Principio de Buen Orden

Todo subconjunto no vacío de los naturales tiene un menor elemento.

$$A \neq \emptyset, A \subseteq \mathbb{N} \Rightarrow \exists x \in A \text{ tal que } \forall y \in A, x \leq y$$

Principio de Buen Orden (PBO)

Todo subconjunto no vacío de los naturales tiene un menor elemento.

$$A \neq \emptyset, A \subseteq \mathbb{N} \Rightarrow \exists x \in A \text{ tal que } \forall y \in A, x \leq y$$

- ¿Es cierto este principio para los números racionales?
- ¿Y para los reales?

R: No. Considere el conjunto $A=\{x\in\mathbb{Q}\mid x>0\}$, el cual claramente cumple que $A\subseteq\mathbb{Q}$. Supongamos por contradicción que cumple el PBO, y sea entonces $q_0\in A$ su menor elemento. Como $q_0>0$, es cierto que $q_0/2\in A$ y que $0< q_0/2< q_0$, lo cual contradice que q_0 sea el menor elemento de A. La contradicción se deriva de nuestra suposición de que el PBO era cierto, por lo que no puede serlo. La misma demostración se aplica a \mathbb{R} .

Principio de Inducción Simple (PIS)

Sea A un subconjunto de \mathbb{N} . Si se cumple que:

- $\mathbf{1} \ 0 \in A$
- 2 Si $n \in A$, entonces $n+1 \in A$

entonces $A = \mathbb{N}$.

- La condición 1 se llama base de inducción (BI).
- La condición 2 se llama **paso inductivo**, donde la suposición de que $n \in A$ es la **hipótesis de inducción** (HI), y la demostración de que $n+1 \in A$ es la **tesis de inducción** (TI).

Este principio nos sirve para demostrar propiedades sobre los naturales.

Ejercicio

Demuestre que el 0 es el menor número natural.

<u>Demostración:</u> Considere el conjunto $A=\{x\in\mathbb{N}\mid x\geq 0\}$. Usaremos el PIS para demostrar que $A=\mathbb{N}$, con lo que estaremos demostrando que para todo elemento $x\in\mathbb{N}$ se cumple que $x\geq 0$, y por lo tanto que 0 es el menor natural.

BI: Es claro que $0 \in A$, puesto que $0 \in \mathbb{N}$ y $0 \ge 0$.

HI: Supongamos que $n \in A$, y por lo tanto $n \ge 0$.

TI: Debemos demostrar que $n+1 \in A$. Por hipótesis de inducción, sabemos que $n \geq 0$, y por lo tanto $n+1 \geq 1$. Concluimos que $n+1 \geq 0$, y entonces $n+1 \in A$.

Por PIS, se sigue que $A = \mathbb{N}_{\cdot \square}$

Existe una segunda formulación para el PIS que hace más simple su uso.

PIS (segunda formulación)

Sea P una propiedad sobre elementos de \mathbb{N} . Si se cumple que:

- \bullet P(0) es verdadero \bullet cumple la propiedad \bullet \bullet
- ② Si P(n), entonces P(n+1) (cada vez que n cumple la propiedad, n+1 también la cumple)

entonces todos los elementos de \mathbb{N} cumplen la propiedad P.

- Al igual que antes, la condición 1 se llama base de inducción (BI).
- ...y la condición 2 se llama **paso inductivo**, donde la suposición de que P(n) es la **hipótesis de inducción** (HI), y la demostración de que P(n+1) es la **tesis de inducción** (TI).

Ejercicio

Demuestre que para todo $n \in \mathbb{N}$ se cumple que

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Demostración:

BI: Tomando n=0, tenemos que $\sum_{i=0}^{0} i=0=\frac{0(0+1)}{2}$.

HI: Suponemos que para n se cumple que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

TI: Debemos demostrar que $\sum\limits_{i=0}^{n+1}i=\frac{(n+1)((n+1)+1)}{2}$.

Por HI tenemos que $\sum\limits_{i=0}^{n}i=rac{n(n+1)}{2}.$ Si sumamos (n+1) a cada lado:

$$\sum_{i=0}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2}$$

$$\sum_{i=0}^{n+1} i = \frac{(n+2)(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

$$\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1) + 1)}{2}$$

¿Qué pasa con las propiedades que se cumplen para todos los números naturales, excepto una cantidad *finita* de ellos?

- Por ejemplo, desde algún punto en adelante.
- Podemos modificar el PIS para que la BI se inicie en otro número natural.
- Debemos modificar la demostración de la base a ese número.

Ejercicio

Demuestre que para todo natural $n \geq 4$ se cumple que

$$n! > 2^n$$

Ejercicio

Demuestre que para todo natural $n \geq 4$ se cumple que

$$n! > 2^n$$

Demostración:

BI: En este caso la base se inicia en n=4. Tenemos que $4!=4\cdot 3\cdot 2\cdot 1=24>16=2^4$, por lo que la propiedad se cumple para 4.

HI: Supongamos que $n! > 2^n$.

TI: Queremos demostrar que $(n+1)!>2^{n+1}$. Por HI sabemos que $n!>2^n$. Multiplicando por (n+1) a cada lado tenemos que $n!\cdot (n+1)>2^n\cdot (n+1)$, y por definición de factorial entonces $(n+1)!>2^n\cdot (n+1)$. Como la propiedad que queremos demostrar se inicia en n=4, sabemos que necesariamente (n+1)>4, y luego $(n+1)!>2^n\cdot (n+1)>2^n\cdot 4>2^n\cdot 2=2^{n+1}$, y por lo tanto $(n+1)!>2^{n+1}$ como queríamos demostrar. \square

PIS (tercera formulación)

Sea P una propiedad sobre elementos de \mathbb{N} . Si se cumple que:

- **1** $P(n_0)$ es verdadero $(n_0 \in \mathbb{N} \text{ cumple la propiedad } P)$
- 2 Si P(n), entonces P(n+1) (cada vez que n cumple la propiedad, n+1 también la cumple)

entonces todos los elementos de $\mathbb N$ a partir de n_0 cumplen la propiedad P.

¿Cómo justificamos este uso del PIS desde una base distinta de 0?

La sucesión de Fibonacci es una serie de números naturales $F_0, F_1, \ldots, F_n, F_{n+1}, \ldots$ que cumple la siguiente recurrencia:

$$\begin{aligned} F_0 &= 0 \\ F_1 &= 1 \\ F_n &= F_{n-1} + F_{n-2}, \forall n \geq 2 \end{aligned}$$

Ejercicio

Demuestre que $F_n < 2^n$ para todo $n \in \mathbb{N}$.

- ¿Es suficiente la hipótesis de inducción?
- No nos basta saber que n cumple la propiedad para demostrar que n+1 también la cumple.
- Al parecer necesitamos algo más potente...

Principio de inducción por curso de valores (PICV)

Sea A un subconjunto de $\mathbb{N}.$ Si se cumple que para todo $n\in\mathbb{N}$

$$\{0, 1, \dots, n-1\} \subseteq A \Rightarrow n \in A$$

entonces $A = \mathbb{N}$.

- También es conocido como Principio de inducción fuerte.
- La hipótesis de inducción (HI) es la expresión $\{0,1,\ldots,n-1\}\subseteq A$.
- La tesis de inducción (TI) es la expresión $n \in A$.
- ...y la base?
 - ¿Qué pasa con n=0?

PICV (segunda formulación)

Sea P una propiedad sobre elementos de \mathbb{N} . Si se cumple que

$$\forall k \in \mathbb{N}, k < n, P(k)$$
 es verdadero $\Rightarrow P(n)$ es verdadero

entonces P es verdadero para todos los elementos de \mathbb{N} .

Ejercicio

Demuestre que $F_n < 2^n$ para todo $n \in \mathbb{N}$.

Ejercicio

Demuestre que $F_n < 2^n$ para todo $n \in \mathbb{N}$.

Demostración:

BI: Debemos usar dos casos base, dado que el paso recursivo de la definición de F_n usa dos casos anteriores. Para n=0 tenemos que $F_0=0<1=2^0$, y para n=1 tenemos que $F_1=1<2=2^1$.

HI: Supongamos que para todo k < n se cumple que $F_k < 2^k$.

Ejercicio

Demuestre que $F_n < 2^n$ para todo $n \in \mathbb{N}$.

TI: Queremos demostrar que $F_n < 2^n$. Por HI:

$$F_{n-1} < 2^{n-1}$$
$$F_{n-2} < 2^{n-2}$$

Sumamos ambas ecuaciones:

$$F_{n-1} + F_{n-2} < 2^{n-1} + 2^{n-2}$$

$$F_n < \frac{2^n}{2} + \frac{2^n}{4} = \frac{3}{4} \cdot 2^n$$

$$< 2^n$$

Por PICV, se sigue que $F_n < 2^n$ para todo $n \in \mathbb{N}$.

Ejercicio

Demuestre que todo número natural $n \ge 2$ tiene un factor primo.

Demostración:

Bl: n=2 es primo, por lo que tiene un factor primo.

HI: Supongamos que todo k < n tiene un factor primo.

TI: Debemos demostrar que n tiene un factor primo. Tenemos dos casos:

- n es primo: en este caso es claro que n tiene un factor primo (n).
- n es compuesto: sabemos que $n=k_1\cdot k_2$, donde $1< k_1, k_2< n$. Como $k_1< n$, por HI sabemos que tiene un factor primo x, y por lo tanto x es factor primo de n. \square

Ejercicio

Demuestre que todo número natural ≥ 2 tiene un factor primo.

- En PICV, cuando no usamos la hipótesis para demostrar la tesis, tenemos un *caso base*.
- En este ejemplo son infinitos!

Teorema

Los 3 principios de inducción (PBO, PIS y PICV) son equivalentes.

Ejercicio

Demuestre el teorema.

Hint: Demuestre cada principio a partir de otro y muestre una "cadena cíclica".

$$PBO \Rightarrow PIS \Rightarrow PICV \Rightarrow PBO$$

Demostraremos que $PBO \Rightarrow PIS$. El resto se dejan como ejercicios.

Demostración: Por contrapositivo, mostraremos que si el PIS no es cierto, entonces el PBO no es cierto. Supongamos que el PIS es falso; es decir, existe un conjunto $A \subseteq \mathbb{N}$ que cumple las reglas del PIS, pero $A \neq \mathbb{N}$. Sea entonces el conjunto $B=\mathbb{N}-A$, el cual cumple que $B\subseteq\mathbb{N}$ y $B\neq\varnothing$. Mostraremos que este conjunto no tiene menor elemento, y por lo tanto el PBO es falso. Por contradicción, supongamos que B sí tiene un menor elemento al que llamamos b. Como $0 \in A$, sabemos que $b \neq 0$, y luego $b-1\in\mathbb{N}$ y $b-1\in A$, pues $b-1\not\in B$ pues es menor que b. Como supusimos que A cumple las reglas del PIS y sabemos que $b-1 \in A$, por la segunda regla obtenemos que $b \in A$, lo que contradice el hecho de que b sea el menor elemento de $B.\Box$

IMPORTANTE

- No se puede hacer la inducción "al revés".
 - Suponer que la tesis es correcta, y mediante manipulación algebraica obtener la hipótesis.
- Esto siempre se considerará incorrecto!
- No se puede partir una demostración desde lo que se quiere concluir.
- Tener claro: lo que suponemos es la hipótesis, y a partir de ella demostramos la tesis.

- Los principios anteriores se aplican todos a los números naturales.
- Dijimos que esto se debe que son "inherentes" a ellos, pero qué significa esto?
- Observemos el PIS en su primera formulación:

Principio de Inducción Simple (PIS)

Sea A un subconjunto de \mathbb{N} . Si se cumple que:

- **1** $0 \in A$
- **2** Si $n \in A$, entonces $n+1 \in A$

entonces $A = \mathbb{N}$.

• ¿ Qué nos muestra el PIS?

- El PIS nos muestra que N es un conjunto que se puede construir a partir de un elemento base y un operador.
 - En este caso, el elemento base es el 0 y el operador el "sucesor".
- Esta construcción a partir de elementos base y operadores es lo que se conoce como una definición inductiva.
- Intuitivamente, en el caso de N podemos obtener todo natural a partir de sumarle 1 a otro natural (excepto el 0).

Podemos modificar levemente el PIS para obtener una definición inductiva de \mathbb{N} :

Definición: N

- $\mathbf{0} \in \mathbb{N}$
- **2** Si $n \in \mathbb{N}$, entonces $n+1 \in \mathbb{N}$
- ¿Es suficiente para definir a №?
- ¿Hay otros conjuntos que cumplan con estas reglas?

Al definir un conjunto inductivamente, debemos establecer que **todos** sus elementos y **sólo ellos** se obtienen a partir de las reglas de la definición.

Definición: N

 $\mathbb N$ es el menor conjunto que cumple las siguientes reglas:

- $\mathbf{1} \ 0 \in \mathbb{N}$
- **2** Si $n \in \mathbb{N}$, entonces $n+1 \in \mathbb{N}$

Esta definición está estrechamente relacionada con los principios de inducción:

- La propiedad debe demostrarse para el 0 (elemento base y primera regla)
- y luego usando el operador (segunda regla).

- Esta noción de definición inductiva se puede usar para definir otros conjuntos.
- Podremos usar inducción para demostrar propiedades sobre tales conjuntos.
- Podremos definir nuevos objetos (funciones, operaciones, etc.) usando la definición inductiva del conjunto.

Ejemplo: números pares

- 1 El 0 es un número par.
- 2 Si n es número par, n+2 es un número par.

Definición Inductiva

Para definir inductivamente un conjunto necesitamos:

- 1 Establecer que el conjunto es el menor que cumple las reglas.
- Un conjunto (no necesariamente finito) de elementos base, que se supondrá que inicialmente pertenecen al conjunto que se quiere definir.
- Un conjunto finito de reglas de construcción de nuevos elementos del conjunto a partir de elementos que ya están en él.

Veamos un ejemplo "computín".

- Definiremos formalmente un concepto similar al de lista enlazada.
- Por simplicidad, supondremos que sólo contiene números naturales.

Ejemplo

$$\begin{array}{c} \rightarrow 5 \rightarrow 7 \rightarrow 1 \rightarrow 0 \rightarrow 3 \rightarrow 1 \rightarrow 4 \\ \varnothing \\ \varnothing \rightarrow 10 \rightarrow 6 \\ \rightarrow 10 \rightarrow 6 \end{array}$$

- ¿Cómo construimos una lista?
 - Tomamos una lista y le agregamos un elemento al final.
- ¡Y la lista vacía?
 - Será nuestro caso base.

Definición de $\mathcal{L}_{\mathbb{N}}$

El conjunto de las listas enlazadas sobre los naturales $\mathcal{L}_{\mathbb{N}}$ es el menor conjunto que cumple las siguientes reglas:

- $\emptyset \in \mathcal{L}_{\mathbb{N}}$.
- **2** Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces $L \to k \in \mathcal{L}_{\mathbb{N}}$.

- En este caso la operación que ocupamos para construir listas es tomar una lista, agregar una flecha y un natural al final.
- La operación "agregar una flecha y un natural" es el equivalente a sumar 1 en el caso de \mathbb{N} .

Ejemplo

- Partimos con la lista vacía Ø.
- Ocupamos la operación para construir la lista $\rightarrow 4$.
- La ocupamos de nuevo y construimos la lista ightarrow 4
 ightarrow 10.
- •

La anterior definición nos permite definir propiedades, relaciones y funciones sobre las listas. Por ejemplo, podemos establecer cuándo dos listas son iguales:

$$L_1
ightarrow k_1 = L_2
ightarrow k_2$$
 si y sólo si $L_1 = L_2$ y $k_1 = k_2$

o podemos definir propiedades como la siguiente:

P(L):L tiene el mismo número de flechas que de elementos.

¿Cómo demostramos que la propiedad es cierta sobre todas las listas en $\mathcal{L}_{\mathbb{N}}$?

La inducción estructural es una variación de la inducción matemática que nos permite demostrar propiedades sobre conjuntos definidos inductivamente.

Principio de Inducción estructural

Sea A un conjunto definido inductivamente y P una propiedad sobre los elementos en A. Si se cumple que:

- \bullet Todos los elementos base de A cumplen la propiedad P_{\bullet}
- 2 Para cada regla de construcción, si la regla se aplica sobre elementos en A que cumplen la propiedad P, entonces los elementos producidos por la regla también cumplen la propiedad P

entonces todos los elementos en A cumplen la propiedad P.

OBS: El PIS es un caso particular de este principio.

Ejercicio

Demuestre que la propiedad P sobre las listas enlazadas:

P(L):L tiene el mismo número de flechas que de elementos.

es cierta para $\mathcal{L}_{\mathbb{N}}$.

Demostración: usamos inducción estructural:

BI: El único caso base es la lista vacía \emptyset , la cual no tiene flechas ni elementos, y por lo tanto $P(\emptyset)$ es verdadera.

HI: Supongamos que una lista cualquiera L cumple P(L), es decir, tiene exactamente la misma cantidad de flechas que de elementos.

TI: Debemos demostrar que $P(L \to k)$ es verdadero, es decir, que $L \to k$ tiene tantas flechas como elementos, con $k \in \mathbb{N}$. Es claro que $L \to k$ tiene exactamente una flecha y un elemento más que L. Por HI, sabemos que L tiene la misma cantidad de flechas y de elementos, y por lo tanto $P(L \to k)$ es verdadera.

Por inducción estructural se sigue que todas las listas en $\mathcal{L}_{\mathbb{N}}$ tienen la misma cantidad de flechas que de elementos. \Box

Podemos aprovechar la construcción inductiva de los conjuntos para definir operadores o funciones sobre sus elementos. Un ejemplo típico:

Factorial

- 0! = 1
- $(n+1)! = (n+1) \cdot n!$

Entonces:

- Se define el operador o función para el caso base.
- Se explicita cómo operar el siguiente elemento creado por inducción.

Ejercicios

- **1** Defina la función $|\cdot|: \mathcal{L}_{\mathbb{N}} \to \mathbb{N}$ que recibe una lista como argumento y entrega la cantidad de elementos en ella (i.e. su largo).
- 2 Defina la función $sum: \mathcal{L}_{\mathbb{N}} \to \mathbb{N}$ que recibe una lista como argumento y entrega la suma de sus elementos.
- 3 Defina la función $m\acute{a}x:\mathcal{L}_{\mathbb{N}}\to\mathbb{N}\cup\{-1\}$ que recibe una lista como argumento y entrega su elemento máximo.
- 4 Defina la función $Head: \mathcal{L}_{\mathbb{N}} \setminus \{\emptyset\} \to \mathbb{N}$ que recibe una lista como argumento y entrega su primer elemento.

Ejercicio

Defina la función $|\cdot|:\mathcal{L}_{\mathbb{N}}\to\mathbb{N}$ que recibe una lista como argumento y entrega la cantidad de elementos en ella (i.e. su largo).

- $2 \ |L \to k| = |L| + 1 \text{, con } L \in \mathcal{L}_{\mathbb{N}} \text{ y } k \in \mathbb{N}.$

Ejercicio

Defina la función $sum: \mathcal{L}_{\mathbb{N}} \to \mathbb{N}$ que recibe una lista como argumento y entrega la suma de sus elementos.

- 2 $sum(L \to k) = sum(L) + k$, con $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$.

Ejercicio

Defina la función $m\acute{a}x:\mathcal{L}_{\mathbb{N}}\to\mathbb{N}\cup\{-1\}$ que recibe una lista como argumento y entrega su elemento máximo.

Ejercicio

Defina la función $Head: \mathcal{L}_{\mathbb{N}} \setminus \{\emptyset\} \to \mathbb{N}$ que recibe una lista como argumento y entrega su primer elemento.

- $1 Head(\rightarrow k) = k, \text{ con } k \in \mathbb{N}.$
- **2** $Head(L \to k) = Head(L)$, con $L \neq \emptyset \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$.

También podemos definir operadores sobre listas (funciones que reciben una lista y entregan otra).

Ejercicio

Defina el operador $Suf: \mathcal{L}_{\mathbb{N}} \setminus \{\emptyset\} \to \mathcal{L}_{\mathbb{N}}$ (operador sufijo) que recibe una lista, y entrega la lista que resulta de sacarle el primer elemento.

- $2 Suf(L \to k) = Suf(L) \to k \text{, con } L \neq \varnothing \in \mathcal{L}_{\mathbb{N}} \text{ y } k \in \mathbb{N}.$

Ahora que tenemos bastantes propiedades, funciones y operadores sobre las listas, podemos enunciar múltiples propiedades sobre ellas:

Teorema

Si L, L_1, L_2 son listas en $\mathcal{L}_{\mathbb{N}}$, entonces las siguientes propiedades son ciertas:

- $1 \quad sum(L) \ge 0.$
- $2 m\acute{a}x(L) \leq sum(L).$
- $3 \ sum(L) = Head(L) + sum(Suf(L)).$
- **4** Si $L_1, L_2 \neq \emptyset$, se cumple que $L_1 = L_2$ si y sólo si $Suf(L_1) = Suf(L_2)$ y $sum(L_1) = sum(L_2)$.

Ejercicio

Demuestre las propiedades usando inducción estructural.

Teorema

- 4 Si $L_1, L_2 \neq \emptyset$, se cumple que $L_1 = L_2$ si y sólo si $Suf(L_1) = Suf(L_2)$ y $sum(L_1) = sum(L_2)$.
- <u>Demostración:</u> La dirección (\Rightarrow) es trivial. Demostraremos la otra dirección.
- PD: Si $Suf(L_1) = Suf(L_2)$ y $sum(L_1) = sum(L_2)$, entonces $L_1 = L_2$.
 - **BI:** Sean $L_1 = \rightarrow k$ y $L_2 = \rightarrow j$ dos listas tales que $Suf(L_1) = Suf(L_2)$ y $sum(L_1) = sum(L_2)$. Por definición de sum, tenemos que $sum(\rightarrow k) = sum(\rightarrow j)$, y luego k = j. Concluimos que $L_1 = L_2$.
 - HI: Dadas dos listas L_1 y L_2 cualquiera, supongamos que si $Suf(L_1) = Suf(L_2)$ y $sum(L_1) = sum(L_2)$, entonces $L_1 = L_2$.

 OJO!!! NO sabemos si lo primero se cumple! Sólo sabemos que si se cumple, podemos aplicar la segunda parte.

• TI: Sean ahora dos listas $L_1 \to k$ y $L_2 \to j$. Queremos demostrar que si $Suf(L_1 \to k) = Suf(L_2 \to j)$ y $sum(L_1 \to k) = sum(L_2 \to j)$, entonces $L_1 \to k = L_2 \to j$. Supongamos entonces que $Suf(L_1 \to k) = Suf(L_2 \to j)$ y $sum(L_1 \to k) = sum(L_2 \to j)$. Por definición de ambas funciones, obtenemos que

$$Suf(L_1) \rightarrow k = Suf(L_2) \rightarrow j$$

 $sum(L_1) + k = sum(L_2) + j$

Por igualdad de listas, sabemos que necesariamente $Suf(L_1)=Suf(L_2)$ y k=j. Usando este último resultado, obtenemos también que $sum(L_1)=sum(L_2)$. Luego, por HI tenemos que $L_1=L_2$, y como k=j concluimos que $L_1\to k=L_2\to j$. \square

Las otras demostraciones se dejan como ejercicio.

Resumen

- La inducción es una técnica tanto de demostración como de definición de conjuntos y funciones.
- En particular, los números naturales son un conjunto definido de manera inductiva.
- Los 3 principios de inducción sobre los naturales son el PBO, el PIS y el PICV.
- Todos estos principios son equivalentes entre sí.
- El principio de inducción se puede generalizar a cualquier conjunto definido de manera inductiva, a esta técnica de demostración le llamamos inducción estructural.

Matemáticas Discretas

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

16 de agosto de 2023