Final Project: Mall Customer Segmentation

Imagine you own a shopping mall. You have collected some data on your shoppers but want to know which shoppers to focus your marketing budget on. Using clustering methods, we will segment the data into seperate groups to get a better understanding of who to target.

The data comes from Kaggle and can be found here

This notebook was created in google colabs. If you are using a local jupyter notebook, please download the dataset, skip the first to two cells, update the local path, and unmark those lines in the third cell. Thank you.

```
from google.colab import files
In [1]:
        uploaded = files.upload()
        import pandas as pd
        import io
        Choose Files | No file chosen
                                           Upload widget is only available when the cell has been executed in
       the current browser session. Please rerun this cell to enable.
        Saving Mall Customers.csv to Mall Customers.csv
In [2]:
        import pandas as pd
        import io
        df = pd.read csv(io.BytesIO(uploaded['Mall Customers.csv']))
        import pandas as pd
In [3]:
        import io
        #local path = ''
        #df = pd.read csv(local path)
        import seaborn as sns
In [4]:
        import matplotlib.pyplot as plt
        import numpy as np
        from sklearn.cluster import KMeans
        from sklearn.preprocessing import LabelEncoder
        from yellowbrick.cluster import KElbowVisualizer
```

EDA

First, let's take some time to understand the mall customer dataset.

```
df.head()
In [5]:
Out[5]:
            CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
         0
                      1
                           Male
                                  19
                                                     15
                                                                            39
                           Male
                                  21
                                                     15
                                                                            81
         2
                                  20
                                                     16
                                                                             6
                      3 Female
         3
                                                                            77
                      4 Female
                                  23
                                                     16
                                                     17
                                                                            40
                      5 Female
                                  31
```

```
In [6]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 200 entries, 0 to 199
       Data columns (total 5 columns):
                                Non-Null Count Dtype
          Column
        0 CustomerID
                                200 non-null int64
                                200 non-null object
       1 Gender
                                200 non-null int64
          Age
        2
       3 Annual Income (k$) 200 non-null int64
        4 Spending Score (1-100) 200 non-null int64
       dtypes: int64(4), object(1)
       memory usage: 7.9+ KB
```

There are five columns and 200 rows. The columns are custromerID, Gender, Age, Annual Income in thousands of dollars, and Spending Score ranging from 1 to 100. There doesn't appear to be in null values. Let's take a better look with some statistics and graphs.

```
In [7]: df.describe()
```

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

Out[7]:

The mean age of the customers is about 39 years old. The mean annual income is about 61 thousand dollars a year and the mean spending score is about 50.

```
In [48]: mean_income = np.mean(df['Annual Income (k$)']).round(2)
    mean_income_str = mean_income.astype('str')
    median_income = np.median(df['Annual Income (k$)']).round(2)

    sns.histplot(data=df, x='Annual Income (k$)',kde=True)
    plt.suptitle('Annual Income (k$) Historgram')
    plt.title('Average income: $'+ mean_income_str + ' thousand')
    plt.show()
```

Annual Income (k\$) Historgram

Average income: \$60.56 thousand

We can see that the average income is around \$60 thousand.

```
In [52]: mean_score = np.mean(df['Spending Score (1-100)']).round(2)
    mean_score_str = mean_score.astype('str')
    sns.histplot(data=df, x='Spending Score (1-100)',kde=True)
    plt.suptitle('Spending Score (1-100) Historgram')
    plt.title('Average score: '+ mean_score_str)
    plt.show()
```

Spending Score (1-100) Historgram

The average spending score is about 50.

```
In [ ]: mean_age= np.mean(df['Age']).round(2).astype('str')
    sns.histplot(data=df, x='Age',kde=True)
    plt.suptitle('Age Historgram')
    plt.title('Average age: '+ mean_age + ' years')
    plt.show()
```

Age Historgram Average age: 38.85 years

The average age is around 39 years old.

```
In []: df['Gender'].value_counts().index
fig, ax = plt.subplots()
ax.pie(df['Gender'].value_counts(), labels=(df['Gender'].value_counts().index + ': '
+ df['Gender'].value_counts().astype('str')), autopct='%.0f%%')
ax.set_title('Gender Pie Chart')
plt.show()
```

Gender Pie Chart

The distribution of males and females is roughly half with there being 56% of the customers in the data set female.

Let's convert the gender column into numbers Male = 1, Female = 0.

```
In [ ]: le = LabelEncoder()
   df['Gender_num'] = le.fit_transform(df['Gender'])
```

Now let's take a look how gender impacts the other categories.

```
plt.figure(1)
male_mean_income = np.mean(df[df.Gender == 'Male']['Annual Income (k$)']).round(2).astyp
sns.histplot(df[df.Gender == 'Male']['Annual Income (k$)'], color='orange', kde = True)
plt.suptitle('Male Annual Income (k$) Distribution')
plt.title('Average income: $'+ male_mean_income + ' thousand')

plt.figure(2)
female_mean_income = np.mean(df[df.Gender == 'Female']['Annual Income (k$)']).round(2).a
sns.histplot(df[df.Gender == 'Female']['Annual Income (k$)'], color='blue', kde = True)
plt.suptitle('Female Annual Income (k$) Distribution')
plt.title('Average income: $'+ female_mean_income + ' thousand')
```

Male Annual Income (k\$) Distribution Average income: \$62.23 thousand

Female Annual Income (k\$) Distribution Average income: \$59.25 thousand

When comparing the two genders, we see that the average male income, 62 thousand dollars a year, is slightly larger than the female average income, 59 thousand dollars a year.

```
In []: plt.figure(1)
    male_mean_score = np.mean(df[df.Gender == 'Male']['Spending Score (1-100)']).round(2).as
    sns.histplot(df[df.Gender == 'Male']['Spending Score (1-100)'], color='orange', kde = Tr
    plt.suptitle('Male Spending Score (1-100) Distribution')
    plt.title('Average score: '+ male_mean_score)

plt.figure(2)
    female_mean_score = np.mean(df[df.Gender == 'Female']['Spending Score (1-100)']).round(2
    sns.histplot(df[df.Gender == 'Female']['Spending Score (1-100)'], color='blue', kde = Tr
    plt.suptitle('Female Spending Score (1-100) Distribution')
    plt.title('Average score:' + female_mean_score)

plt.show()
```

Male Spending Score (1-100) Distribution Average score: 48.51

Female Spending Score (1-100) Distribution Average score:51.53

The average male spending score is slightly lower, 49, than the female spending score, 51.

```
In []: plt.figure(1)

male_mean_age = np.mean(df[df.Gender == 'Male']['Age']).round(2).astype('str')
sns.histplot(df[df.Gender == 'Male']['Age'], color='orange', kde = True)
plt.suptitle('Male Age Distribution')
plt.title('Average score: '+ male_mean_age + ' years')

plt.figure(2)

female_mean_age = np.mean(df[df.Gender == 'Female']['Age']).round(2).astype('str')
sns.histplot(df[df.Gender == 'Female']['Age'], color='blue', kde = True)
plt.suptitle('Female Age Distribution')
plt.title('Average score:' + female_mean_age + ' years')

plt.show()
```

Male Age Distribution Average score: 39.81 years

Female Age Distribution Average score:38.1 years

Again the average age is very similar, with the average male age being 40 and the average female age being 38.

Now let's take a look at a pairplot of our numerical features. We will compare age with annual income, age with spending score, and annual income with spending score. We will color the points based on gender.

In [20]: df[df.columns[1:5]]

Out[20]:

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40
•••				
195	Female	35	120	79
196	Female	45	126	28
197	Male	32	126	74
198	Male	32	137	18
199	Male	30	137	83

200 rows × 4 columns

```
In [21]: sns.pairplot(df[df.columns[1:5]], hue = 'Gender', hue_order=['Female', 'Male'])
    plt.show()
```


After taking a look at each plot, we can see that there isn't any apparent clusters forming within the age plots. But between annual income and spending score, there appears to be some dispersion. Let's take a closer look.

```
In [ ]: sns.scatterplot(x=df['Annual Income (k$)'], y=df['Spending Score (1-100)'], data = df, hu
    plt.suptitle('Annual Income vs Spending Score Scatter Plot')
    plt.show()
```

Annual Income vs Spending Score Scatter Plot

With this closer look, we can start to see clusters forming. Let's use the KMeans clustering model to investigate.

KMeans Model

4

31

17

The Kmeans clustering model measures the distance between each data point and a centroid. The number of centroids corresponds with the number of clusters. Let's prepare our data set and plot what the data looks like with a range of clusters.

```
df.columns[2:6]
In [24]:
          Index(['Age', 'Annual Income (k$)', 'Spending Score (1-100)'], dtype='object')
Out[24]:
          df KM = df[df.columns[2:6]]
In [25]:
          df KM.head()
                 Annual Income (k$) Spending Score (1-100)
Out[25]:
                                                     39
         0
              19
                                15
                                15
              21
                                                     81
         2
                                16
                                                      6
              20
              23
                                16
                                                     77
```

40

Now that the data is prepared, it is time to create our model. We will be using the KMeans model in the scikit-learn library.

```
In []: model = KMeans()
    visualizer = KElbowVisualizer(model, k=(2,12))

    visualizer.fit(df_KM)
    visualizer.show()
    plt.show()
```

In this elbow plot we see the number of centroids, clusters, on the x axis, and the distortion score on the y axis. The distortion score is an average squared distance of the points within each cluster.

It appears that the best number of clusters is 5. Let's build a model to represent these clusters.

Out[38]:		Age	Annual Income (k\$)	Spending Score (1-100)	Clusters_5
	0	19	15	39	3
	1	21	15	81	4
	2	20	16	6	3
	3	23	16	77	4
	4	21	17	40	2

```
In [39]: sns.scatterplot(x=df_KM['Annual Income (k$)'], y=df_KM['Spending Score (1-100)'],data =
   plt.suptitle('Annual Income vs Spending Score Scatter Plot')
   plt.title('5 Clusters')
   plt.show()
```

Annual Income vs Spending Score Scatter Plot

We can see 5 distinct clusters when comparing annual income and spending score. Let's see how this looks when compare age with spending score.

```
In [31]: sns.scatterplot(x=df_KM['Age'], y=df_KM['Spending Score (1-100)'],data = df_KM, hue='Clu
plt.suptitle('Age vs Spending Score Scatter Plot')
plt.title('5 Clusters')
plt.show()
```

Age vs Spending Score Scatter Plot

When can see that the age of the customer varies across spending score. There are some interesting observations. Cluster 1 takes up the middle of the graph spans the entire age range. It might mean that those average spending scores is not heavily related to age.

When we take a look at the number of each customer in the clusters, we see that the majority of the customers fall into the 1 clusters. This cluster took up the center of both our annual income vs spending score, and age vs spending score.

Let's see how our data would look with 6 clusters.

```
In [ ]: KM_6 = KMeans(n_clusters = 6, init = 'k-means++')
    KM_6.fit(df_KM)
    cluster_6_labels = KM_6.predict(df_KM)

In [ ]: df_KM['Clusters_6'] = cluster_6_labels

In [ ]: sns.scatterplot(x=df_KM['Annual Income (k$)'], y=df_KM['Spending Score (1-100)'],data = plt.suptitle('Annual Income vs Spending Score Scatter Plot')
```

plt.title('6 Clusters')
plt.show()

Annual Income vs Spending Score Scatter Plot

It appears that the 6th cluster seems to have broken up our original large cluster. Let's take a look at the number of customers to see.

We originally had 79 customers in the large cluster. Now it has dropped to 45. I think our 5 clusters better separate out data.

```
In [34]: fig = plt.figure(figsize = (10, 10))
    ax = plt.axes(projection ="3d")
    cmap = plt.get_cmap('hsv')
    ax.scatter3D(df_KM['Annual Income (k$)'], df_KM['Age'], df_KM['Spending Score (1-100)'],
    plt.title('Income vs Age vs Score 3D Scatter Plot')
    ax.set_xlabel('Annual Income (k$)')
    ax.set_ylabel('Age')
    ax.set_zlabel('Spending Score (1-100)')
```

Income vs Age vs Score 3D Scatter Plot

This is an interesting representation of the clusters in a 3D graph. However, it is hard to gather any meaningful observations. Let's take a closer look at the breakdown of some of the clusters.

Results

Our goal is to identify groups of users that a marketing team can focus their efforts on. Let's look at a breakdown of some of the cluster groups.

```
In [55]: sns.scatterplot(x=df_KM['Annual Income (k$)'], y=df_KM['Spending Score (1-100)'],data =
   plt.axvline(mean_income,label = 'AVG Income',color = 'brown')
   plt.axhline(mean_score,label = 'AVG Score',color = 'grey')
   plt.suptitle('Annual Income vs Spending Score Scatter Plot')
   plt.title('5 Clusters')
   plt.legend()
```

Annual Income vs Spending Score Scatter Plot

In [37]: df[df['Clusters_5']==0].describe()

Out[37]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	Clusters_5
	count	36.000000	36.000000	36.000000	36.000000	36.0
	mean	163.500000	40.666667	87.750000	17.583333	0.0
	std	21.785316	11.496583	16.387059	10.204691	0.0
	min	125.000000	19.000000	70.000000	1.000000	0.0
	25%	146.500000	34.000000	77.000000	10.000000	0.0
	50%	164.000000	41.500000	83.000000	16.000000	0.0
	75%	181.500000	47.250000	97.250000	24.500000	0.0
	max	199.000000	59.000000	137.000000	39.000000	0.0

This cluster was represented in the lower right of our annual income and spending score graph. These customers had a higher income but a lower spending score.

```
In [43]: df[df['Clusters_5']==2].describe()
Out[43]: CustomerID Age Annual Income (k$) Spending Score (1-100) Clusters_5
```

count	39.000000	39.000000	39.000000	39.000000	39.0
mean	162.000000	32.692308	86.538462	82.128205	2.0
std	22.803509	3.728650	16.312485	9.364489	0.0
min	124.000000	27.000000	69.000000	63.000000	2.0
25%	143.000000	30.000000	75.500000	74.500000	2.0
50%	162.000000	32.000000	79.000000	83.000000	2.0
75%	181.000000	35.500000	95.000000	90.000000	2.0
max	200.000000	40.000000	137.000000	97.000000	2.0

This cluster represents the customers with a high annual income and a high spending score. It would be interesting to compare their spending habits with the customers in the high annual income and low spending score cluster.

In [41]: df[df['Clusters_5']==1].describe()

86.000000 47.000000

105.500000 54.500000

143.000000 70.000000

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	Clusters_5
count	79.000000	79.000000	79.000000	79.000000	79.0
mean	86.265823	43.088608	55.291139	49.569620	1.0
std	23.490156	16.478572	8.710665	6.242295	0.0
min	47.000000	18.000000	40.000000	35.000000	1.0
25%	66.500000	27.000000	48.000000	44.500000	1.0

This cluster had the most customers in it. It was in the center of our annual income and spending score graph. It represents the customers with around and average income and an average spending score.

54.000000

62.000000

76.000000

We were able to breakdown the data of customers into 5 distinct clusters based on annual income and spending score. In the conclusion, let's explore how this might help our marketing team focus their efforts.

50.000000

55.000000

60.000000

1.0

1.0

1.0

Conclusion

50%

75%

max

The overall goal of a marketing team is to increase the amount of money spent by customers. In this data set we looked at 200 shopping mall customers and compared them on a calculated spending score and their annual income. We were able to identify a few clusters that may help the marketing team. The largest cluster was made up of customers with average income and average spending scores. Our team may be able to gather more information on what they are purchasing and market that to them to bring them back to mall.

We also looked at two other groups. Both groups had high annual income but distinctly above and below the average spending scores. If our marketing team can research what is driving the higher spending scores, they may be able to target the other higher income cluster.

KMeans clustering is a perfect momarketing campaigns on.	del for any marketing team looking to find customer groups to focus t	:he