WHAT IS CLAIMED IS:

[c01] A method of preparing block copolymers, said method comprising contacting a partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups with at least one polymeric species (B) comprising reactive terminal hydroxy groups under solid state polymerization conditions to afford a product block copolymer.

[c02] A method according to claim 1 wherein said partially crystalline polycarbonate starting material (A) comprises terminal aryloxy groups having structure I

$$(R^1)_p$$
 $O^{\wedge \wedge}$
 $(R^2)_q$
 I

wherein R^1 is independently at each occurrence a C_1 - C_{20} aliphatic radical, C_4 - C_{20} cycloaliphatic radical, C_4 - C_{20} aromatic radical; R^2 is independently at each occurrence a halogen atom, nitro group, cyano group, C_1 - C_{20} alkoxycarbonyl group, C_1 - C_{20} acyl group, C_4 - C_{20} cycloalkoxycarbonyl group, C_6 - C_{20} aryoxycarbonyl group, C_1 - C_{20} alkylaminocarbonyl group, C_2 - C_{40} dialkylaminocarbonyl group, or a C_1 - C_{20} perfluoroalkyl group; p is an integer having a value 0 to 4, and q is an integer having a value of 1 to 5.

[c03] A method according to claim 1 wherein said partially crystalline polycarbonate starting material (A) comprises structural units derived from at least one dihydroxy aromatic compound and at least one diaryl carbonate II

$$(R^1)_p$$
 O CO $(R^2)_q$ II 2

wherein R^1 is independently at each occurrence a C_1 - C_{20} aliphatic radical, C_4 - C_{20} cycloaliphatic radical, C_4 - C_{20} aromatic radical; R^2 is independently at each occurrence a halogen atom, nitro group, cyano group, C_1 - C_{20} alkoxycarbonyl group, C_1 - C_{20} acyl group, C_4 - C_{20} cycloalkoxycarbonyl group, C_6 - C_{20} aryoxycarbonyl group, C_1 - C_{20} alkylaminocarbonyl group, C_2 - C_{40} dialkylaminocarbonyl group, or a C_1 - C_{20} perfluoroalkyl group; p is an integer having a value 0 to 4, and q is an integer having a value of 1 to 5.

[c04] A method according to claim 3 wherein diaryl carbonate II is selected from the group consisting of bis(2-methoxycarbonylphenyl) carbonate, bis(2-ethoxycarbonylphenyl) carbonate, bis(2-butoxycarbonylphenyl) carbonate, and bis(2,4,6-trifluorophenyl) carbonate.

[c05] A method according to claim 3 wherein said dihydroxy aromatic compound is a bisphenol having structure III

$$W$$
 $(R^3)_m$
 OH

Ш

wherein R^3 is independently at each occurrence a halogen atom, nitro group, cyano group, C_1 - C_{20} alkyl group, C_4 - C_{20} cycloalkyl group, or C_6 - C_{20} aryl group; n and m are independently integers 0-4; and W is a bond, an oxygen atom, a sulfur atom, a SO_2 group, a C_1 - C_{20} aliphatic radical, a C_6 - C_{20} aromatic radical, a C_6 - C_{20} cycloaliphatic radical or the group

$$R^4$$
 C R^5

wherein R^4 and R^5 are independently a hydrogen atom, $C_1.C_{20}$ alkyl group, $C_4.C_{20}$ cycloalkyl group, or $C_4.C_{20}$ aryl group; or R^4 and R^5 together form a $C_4.C_{20}$ cycloaliphatic ring which is optionally substituted by one or more $C_1.C_{20}$ alkyl, $C_6.C_{20}$ aryl, $C_5.C_{21}$ aralkyl, $C_5.C_{20}$ cycloalkyl groups or a combination thereof.

[c06] A method according to claim 1 wherein said partially crystalline polycarbonate starting material (A) comprises 2-methoxycarbonylphenoxy terminal aryloxy groups IV

and structural units derived from bisphenol A.

[c07] A method according to claim 1 wherein said polymeric species (B) comprising reactive terminal hydroxy groups is selected from the group consisting of polyesters, polycarbonates, polyethers, polyetherketones, polyethersulfones, and polyetherimides.

[c08] A method according to claim 1 wherein said polymeric species (B) comprising reactive terminal hydroxy groups comprises structural units selected from the group consisting of

(1) polyester structural units corresponding to structure V

$$(R^6)_r$$
 $(R^7)_s$
 CO_2

wherein R^6 and R^7 are independently at each occurrence a halogen atom, C_1 - C_{20} aliphatic radical, C_4 - C_{20} cycloaliphatic radical, or a C_4 - C_{20} aromatic radical, and r and s are independently integers having values from 0 to 4; and

(2) polycarbonate structural units corresponding to structure VI

$$(R^8)_m$$
 $(R^8)_n$
 VI

wherein R^8 is independently at each occurrence a halogen atom, nitro group, cyano group, C_1 - C_{20} alkyl group, C_4 - C_{20} cycloalkyl group, or C_6 - C_{20} aryl group; n and m are independently integers 0-4; and W is a bond, an oxygen atom, a sulfur atom, a SO_2 group, a C_1 - C_{20} aliphatic radical, a C_6 - C_{20} aromatic radical, a C_6 - C_{20} cycloaliphatic radical or the group

wherein R^4 and R^5 are independently a hydrogen atom, $C_1.C_{20}$ alkyl group, $C_4.C_{20}$ cycloalkyl group, or $C_4.C_{20}$ aryl group; or R^4 and R^5 together form a $C_4.C_{20}$ cycloaliphatic ring which is optionally substituted by one or more $C_1.C_{20}$ alkyl, $C_6.C_{20}$ aryl, $C_5.C_{21}$ aralkyl, $C_5.C_{20}$ cycloalkyl groups or a combination thereof.

[c09] A method according to claim 8 wherein said polymeric species (B) comprising reactive hydroxy groups is a polyester comprising structural units VII

and having a degree of polymerization of at least about 4.

- [c10] A method according to claim 1 wherein said partially crystalline polycarbonate starting material (A) has a percent endcap between about 50 and about 100 percent.
- [c11] A method according to claim 1 wherein starting material (B) is a copolymer prepared by heating in the absence of a catalyst, a mixture comprising resorcinol, diphenyl terephthalate, diphenyl isophthalate, and a catalyst.
- [c12] A method according to claim 11 wherein said diphenyl terephthalate and said diphenyl isophthalate have a molar ratio, said molar ratio being in a range between about 1 to 10 and about 10 to 1.
- [c13] A method according to claim 1 wherein starting material (B) is a copolymer prepared by interfacial polymerization of resorcinol with terephthaloyl dichloride and isophthaloyl dichloride.
- [c14] A method according to claim 13 wherein said terephthaloyl dichloride and said isophthaloyl dichloride have a molar ratio, said molar ratio being in a range between about 1 to 10 and about 10 to 1.

- [c15] A method according to claim 1 wherein starting material (A) has a crystallinity in a range between about 15 and about 40 percent.
- [c16] A method according to claim 1 wherein said solid state polymerization conditions comprise heating at a temperature between about 100°C about 240°C for a period of between about 1 and about 10 hours.
- [c17] A method according to claim 1 further comprising preparing a mixture of starting materials (A) and (B).
- [c18] A method according to claim 17 comprising dry mixing starting material (A) with starting material (B).
- [c19] A method according to claim 17 comprising precipitating a mixture of starting materials (A) and (B) from solution.
- [c20] A method according to claim 1 wherein starting materials (A) and (B) have a weight ratio in a range between about 0.01 and about 100 grams starting material (A) per gram starting material (B).
- [c21] A method according to claim 1 wherein the product copolymer has a measurable degree of blockiness corresponding to blocklengths which are at least 50 percent longer than the corresponding random distribution of structural elements.
- [c22] A molded article comprising the product copolymer prepared by the method of claim 1.
 - [c23] An article according to claim 22 which is a multilayer article.

[c24] A method of preparing copolyestercarbonates, said method comprising contacting a partially crystalline bisphenol A polycarbonate comprising terminal 2-methoxycarbonyl phenoxy end groups IV

IV

with at least one polyester comprising reactive hydroxyl groups under solid state polymerization conditions to afford a product copolyester carbonate.

- [c25] A method according to claim 24 wherein said partially crystalline bisphenol A polycarbonate is prepared by a method comprising melt reaction of bis(methyl salicyl) carbonate with bisphenol A.
- [c26] A method according to claim 25 wherein said melt reaction affords a partially crystalline bisphenol A polycarbonate directly.
- [c27] A method according to claim 26 wherein said partially crystalline bisphenol A polycarbonate has a percent endcap of between about 50 and about 100 percent.
- [c28] A method according to claim 26 wherein said melt reaction affords an amorphous bisphenol A polycarbonate having a percent endcap between about 90 and about 100 percent.
- [c29] A method according to claim 25 wherein said polyester comprises structural units corresponding to structure V

$$\begin{array}{c|c}
\hline
(R^7)_s \\
\hline
(R^6)_r
\end{array}$$

wherein R^6 and R^7 are independently at each occurrence a halogen atom, C_1 - C_{20} aliphatic radical, C_4 - C_{20} cycloaliphatic radical, or a C_4 - C_{20} aromatic radical, and r and s are independently integers having values from 0 to 4.

- [c30] A method according to claim 29 wherein said polyester is a polyester prepared by heating in the absence of a catalyst, a mixture comprising resorcinol, diphenyl terephthalate, diphenyl isophthalate, and a catalyst.
- [c31] A method according to claim 30 wherein said diphenyl terephthalate and said diphenyl isophthalate have a molar ratio, said molar ratio being in a range between about 1 to 10 and about 10 to 1.
- [c32] A method according to claim 29 wherein said polyester is prepared by a method comprising the interfacial reaction of resorcinol with a mixture of isophthaloyl dichloride and terephthaloyl dichloride.
- [c33] A method according to claim 32 wherein said isophthaloyl dichloride and said terephthaloyl dichloride have a molar ratio, said molar ratio being in a range between about 1 to10 and about 10 to 1.
- [c34] A method according to claim 25 wherein said partially crystalline bisphenol A polycarbonate has a crystallinity in a range between about 20 and about 40 percent.

- [c35] A method according to claim 25 wherein said solid state polymerization conditions comprise heating at a temperature in a range between about 100 and 240°C for a period between about 2 and about 9 hours.
- [c36] A molded article comprising the product copolymer prepared by the method of claim 25.
 - [c37] An article according to claim 36 which is a multilayer article.