High performance ARM®-based 32-bit MCU, up to 64KB Flash, 8 timers, ADC & comm. interfaces, 1.8-5.5V

特点

- ARM® 32 位 Cortex-M0 CPU,最高频率 100 MHz
- 存储
 - ♦ 16/32/64 KB FLASH 存储器
 - ◆ FLASH 接口带 FLASH Turbo 模块, 大幅提高程序从 FLASH 运行时的性能
 - ♦ 4/8 KB SRAM
- CRC 计算单元
- 复位和电源管理
 - ◆ 数字和 I/O 供电: VDD = 1.8 5.5V
 - ◆ 模拟供电: VDDA = 1.8 5.5V
 - ◆ 上电/掉电(POR/PDR)复位
 - ◆ 可编程电压检测(PVD)
 - ◆ 低功耗模式:睡眠、停止、待机
- 时钟管理
 - ◆ 4-24 MHz 晶体振荡器
 - ◆ 32 KHz 振荡器用于带校准的 RTC
 - ◆ 内部 8 MHz RC 振荡器
 - ♦ 内部 40 KHz RC 振荡器
 - ◆ PLL 用于 CPU 时钟
- 最多 39 个快速 I/O
 - ◆ 全部可映射至外部中断向量
 - ◆ 可在 3V 供电时容忍外部 5V 电平
- DMA 控制器
 - ◆ 5 通道
 - ◆ 支持外设: TIMER/ADC/SPI/I²C/USART
- 1 个 12 位、1.0 us ADC(最多 10 通道)
 - ◆ 转换范围: 0-5.5 V
 - ◆ 温度传感器
- 10 个定时器
 - ◆ 1 个 16 位先进定时器,带死区和刹车功能的马达控制 PWM
 - ◆ 6个16位定时器,最多至4输入IC/OC/OCN,支持正交编码输入
 - ◆ PWM 支持 PLLCLK*2 的输入时钟
 - ◆ 独立看门狗和系统看门狗定时器
 - ◆ SvsTick 定时器
- 通讯接口
 - ◆ 2个I²C接口,支持FMP(1Mbit/s),20mA灌电流,SMBus/PMBus和唤醒
 - ◆ 2 个 USART,支持主同步 SPI 和 modem 控制;一个带 ISO7816 接口、LIN、IrDA、自动波特率检测和唤醒功能
 - ◆ 2 个 SPI (50Mbit/s), 支持 4-16 位数据帧, 带 I²S 接口
- HDMI CEC, 支持唤醒功能
- 调试模式
 - ◆ 2线串行调试(SWD)
- 96 位唯一 ID
- 封装
 - → TSSOP20
 - ♦ LQFP32
 - ♦ LQFP48

目录

Н	~ 3 ~			
1	简	介		4
2	描	述		5
3	功	能概述		7
	3.1	ARM [®]	⁹ Cortex-M0 内核	7
	3.2	存储.		7
	3.3		模式	
	3.4	循环:	冗余检测计算单元(CRC)	7
	3.5	电源	管理	8
		3.5.1	电源供电	8
		3.5.2	电源监测	8
		3.5.3	稳压器	8
		3.5.4	低功耗模式	
	3.6	时钟.		9
	3.7			
	3.8			
	3.9		和事件	
		3.9.1	嵌套向量中断控制器(NVIC)	
		3.9.2	扩展的中断/事件控制器(EXTI)	
	3.10		New York Charles	
		3.10.1	温度传感器(TS)	
		3.10.2	内部电压基准(VREFINT)	
	3.11		·器和看门狗	
		3.11.1	先进定时器 TIM1	
		3.11.2	通用定时器 TIM2/3/14/15/16/17	
		3.11.3	独立看门狗 IWDG	
		3.11.4	系统窗口看门狗 WWDG	
		3.11.5	SysTick 定时器	
	3.12		时钟(RTC)和备份寄存器	
	3.13	_		
	3.14			
	3.15	-	CEC	
	3.17			
	3.18)	
4				
5				
6				
•	6.1		条件	
		6.1.1	最小/最大值	
		6.1.2	典型值	
		6.1.3	典型曲线	
		6.1.4	负载电容	
		6.1.5	引脚输入电压	
		6.1.6	电源供电	
		6.1.7	电流消耗测量	
	6.2	•	最大值	
	6.3		条件	
		6.3.1	普通工作条件	
			上电/下电工作条件	
		6.3.3	内置复位/电源控制	

FCM32F030x

	6.3.4	内置参考电压	32
	6.3.5	供电电流	32
	6.3.6	低功耗模式唤醒时间	32
	6.3.7	外部时钟源	
	6.3.8	内部时钟源特性	34
	6.3.9	PLL 特性	34
	6.3.10	存储特性	34
	6.3.11	EMC 特性	35
	6.3.12	电气敏感特性	35
	6.3.13	I/O 电流注入特性	35
	6.3.14	I/O 端口特性	36
	6.3.15	NRST 引脚特性	37
	6.3.16	ADC 特性	38
	6.3.17	温度传感器特性	39
7	封装信息		40
		P48 封装信息	
	7.2 LQFP32	封装信息	42
	7.3 TSSOP2	0 封装信息	44
8	器件编码		45
9	版本历史		46
10	其它		47

1 简介

本规格书提供 FCM32x030x 的订购信息及器件电气特性。

有关ARM® Cortex-MO 核的信息,请参考 www.arm.com 网站上的 Cortex-MO Technical Reference Manual。

2 描述

FCM32x030x 单片机包含可以工作在 100 MHz 的 32 位高性能 ARM Cortex-M0 RISC 核,高速内嵌存储(最多 64 Kbytes FLASH 和 8 Kbytes SRAM),丰富的高性能外设和 I/O。所有型号提供标准通信接口(I²C、SPI/I²S、USART、HDMI-CEC)、12-bit ADC、5 个通用 16-bit 定时器、1 个 16-bit 先进控制 PWM 定时器。

FCM32x030x 单片机可以在 1.8~5.5V 电源范围、-40 至 85C 温度范围内工作。综合的节电模式适用于低功耗应用。

FCM32x030x 单片机包含多种不同硬封装,从 20 至 48 PIN。也可以根据需要提供 DIE。根据封装的不同,包含不同的外设。下表提供了 FCM32x030x 完整的外设范围。

这些特征使得 FCM32x030x 单片机非常适合宽范围应用,例如应用控制和用户接口、手持设备、A/V 接收器和数字电视、PC 外设、游戏周边、GPS 平台、工业应用、PLC、打印机、扫描仪、警报系统、视频连接和 HVAC。

FCM32x030x medium-density device features and peripheral counts

	Peripheral	FCM32H030F4	FCM32H030K6	FCM32H030C6	FCM32H030C8					
FI	ash(Kbytes)	16	32 32		64					
SF	RAM(Kbytes)		4		8					
Timers	Advanced control		1 (16-bit)							
	General purpose		6 (1	6-bit)						
	Basic	-	-	-	1					
Comm.	SPI/I2S ⁽¹⁾	1/1	1/1	2/2	2/2					
interfaces	I2C		1		2					
USART		1								
	CAN	0								
	CEC	0								
	12-bit ADC	1		1						
(num	ber of channels)	(11) (12)								
	GPIOs	15 26 39								
Max.	CPU frequency	100 MHz								
F	lash Turbo	Υ								
Оре	erating voltage	1.8~5.5V								
Operat	ting temperature	-40~85								
	Packages	TSSOP20	LQFP32	LQF	P48					

1. SPI1/2 接口可以工作在 SPI 模式或 I2S 音频模式

Block diagram POWER V_{DD18} ◀ SWCLK Serial Wire VOLT.REG 3.3 V TO 1.8 V V_{DDIO} Debug SWDIO as AF Vss ldo Flash GPL @ V_{DDIO} CORTEX-M0 CPU V_{DDUSB}OKIN inter 32 bits SUPPLY SUPERVISION POR ◀ NRST Reset < SRAM POR/PDR VDDA Int < SRAM VSSA @ VDDA Bus matrix NVIC PVD RC HS 14 MHz RC HS 8 MHz @ V_{DDA} @ V_{DDIO} GP DMA PLL 5 channels OSC IN (PF0) XTAL OSC 4-32 MHz RC LS OSC_OUT (PF1) RC HS 48MHz Ind. Window WDG Power PA[15:0] ► AHBPCLK GPIO port A Controller ► APBPCLK VBAT → ADCCLK → CECCLK PB[15:0] GPIO port B RESET & CLOCK OSC32_IN OSC32_OUT **→ USARTCLK** PC[15:13] GPIO port C CONTROL XTAL32 kHz AHB → HCLK → FCLK → USBCLK Backup 1 TAMPER-RTC RTC reg (ALARM OUT) RTC interface CRS PF[11,1:0] GPIO port F SYNC 4 channels CRC **PWM TIMER 1** 3 compl. channels PAD 8 groups of BRK, ETR input as AF Touch Analog 4 channels Sensing Controller TIMER 2 32-bit 4 ch., ETR as AF switches AHB SYNC 4 ch., ETR as AF APB TIMER 3 EXT. IT 89 AF TIMER 14 1 channel as AF USB USB D+, D-PHY SRAM 1 channel 1 compl, BRK as AF @ VDDUSE TIMER 16 WIndow WDG 1 channel 1 compl, BRK as AF TIMER 17 ► IR_OUT as AF DBGMCU MOSI/SD , RX, TX,CTS, RTS, CK as AF MISO/MCK USART1 SPI1/I2S1 SCK/CK NSS/WS as AF SYSCFG IF RX, TX,CTS, RTS, USART2 CK as AF MOSI SPI2 MISO SCL, SDA, SMBA (20 mA for FM+) SCK 12C1 NSS as AF as AF Temp. CEC as AF HDMI-CEC sensor 10 12-bit AD inputs ADC VSSA @ V_{DDA}

3 功能概述

3.1 ARM® Cortex-M0 内核

ARM® Cortex-M0 处理器是适用于嵌入式系统的 32 位内核,它被开发适用于需要 MCU 应用的低引脚数、低功耗、需要快速响应中断以及对计算能力有需求的应用场合。

ARM® Cortex-M0 处理器和 8、16 位器件相比,具有优秀的代码效率和更高的性能。

3.2 存储

该器件具有以下特点:

- 4/8 KB 内置 SRAM, 和 CPU 相同的时钟运行速度(0等待周期)
- 非易失存储器(FLASH)分为2部分:
 - 16/32/64 KB FLASH 存储用于程序和数据
 - Option Bytes (选项字)

选项字用于 FLASH 写保护(以 4KB 为单位)和整个 FLASH 的读保护,有以下选项:

- Level 0: 无读保护
- Level 1: FLASH 读保护,不能通过调试接口或从 RAM 引导来对 FLASH 读取或写入
- Level 2: 芯片读保护。调试功能和从 RAM 启动被禁止
- 集成 FLASH Turbo 模块, 大幅减少从 FLASH 执行程序所需的等待周期, 提高性能
- FLASH 工作速度为 32MHz(全电压范围),可依此设置 FLASH 等待周期(LATENCY)

3.3 Boot 模式

在启动时, boot 引脚和 boot select 选项位用于从以下三种引导模式中选择:

- 从用户 FLASH 引导
- 从系统存储区(System Memory)引导
- 从内置 SRAM 引导

Boot 引脚和 GPIO 共用,可以通过 boot select 选项位禁止。Boot loader 位于 System Memory。

3.4 循环冗余检测计算单元(CRC)

CRC 计算单元用于从 32 位数据和多项式返回 CRC 结果。

- 完全可编程的多项式及大小(7、8、16、32位)
- 8、16、32 位数据大小
- 单个 32 位输入/输出数据寄存器
- 输入缓冲以避免在计算时的总线停止
- 32 位数据只需要 4 个 AHB 时钟
- 通用 8 位寄存器可用于临时存储
- 可选的数据取反

6//

3.5 电源管理

3.5.1 电源供电

- VDD = 1.8 5.5V: 外部电源,供给 I/O 和内部稳压器。通过 VDD 引脚提供。
- VDDA = 1.8 5.5V:外部模拟电源,供给 ADC、复位电路、RC 振荡器和 PLL。VDDA 电压必须总是>=VDD 电压,并且必须先供电。

3.5.2 电源监测

该器件集成电源上电复位(POR)和电源掉电复位(PDR)电路。

POR/PDR 总是有效,并确保在 1.8V 以上正常操作。MCU 在电源电压低于指定阈值电压(VPOR/PDR)时保持在复位状态,且不需要外部复位电路。

- POR 只监测 VDD 电压。在启动阶段,要求 VDDA 先供电并>=VDD 电压。
- PDR 监测 VDD 和 VDDA 电压。VDDA 电压监测可以通过编程选项字关闭来降低电源消耗。该器件也集成了可编程电压监测器(PVD),通过对 VDD 和 VPVD 阈值电压比较来监测 VDD。当 VDD 低于或高于 VDD 时产生中断。中断服务程序可以产生警告信息和/或使 MCU 进入安全模式。PVD 通过软件使能。

3.5.3 稳压器

稳压器有两种工作模式,且在复位后总是被使能。

- 主模式 (MR) 用于普通操作 (Run)
- 低功耗模式(LPR)可用于 Stop 模式,因为此时电源需求减小

在待机(Standby)模式,稳压器进入低功耗模式,MCU 内核及 SRAM、寄存器停止工作,数据被保持不会丢失。

3.5.4 低功耗模式

FCM32x030x 支持三种节电模式,可以根据不同的电源消耗、快速启动时间、唤醒源来选择:

- 睡眠(Sleep)模式 在 Sleep 模式,只有 CPU 被停止。所以外设继续工作,并且可以通过中断/事件唤醒 CPU。
- 停止(Stop)模式

Stop 模式实现了在保持 SRAM 和寄存器内容时非常低的电源消耗。所有 1.5V 区域的时钟都被停止, PLL、HSI RC 和 HSE 晶振电路被关闭。稳压器可以被置于 MR 或 LPR 模式。

MCU 在 Stop 模式可以通过任意 EXTI 线唤醒。EXTI 源可以是 16 条外部线、PVD 输出、RTC 警报、I²C1、USART1 或 CEC。

I²C1、USART1 和 CEC 可以被配置成允许 HSI RC 振荡器以使其能处理输入数据。如果稳压器在此时被配置成 LPR 模式,它会在时钟提供给外设前先切换至 MR 模式。

• 待机 (Standby) 模式

待机模式用来实现最低的电源消耗。内部稳压器被配置成 LPR 模式。PLL、HSI RC 和 HSE 晶振电

路也被关闭。SRAM 和寄存器内容不会丢失,I/O 保持在模拟输入状态。

通过外部复位(NRST 引脚)、IWDG 复位、WKUP 引脚上升沿或 RTC 事件,使 MCU 退出 Standby 模式。

Note: RTC、IWDG,和其相应的时钟源在进入 Stop/Standby 模式后不会停止。

3.6 时钟

在 MCU 启动时,内部 RC 8MHz 振荡器被选择 CPU 时钟。外部 4-16MHz 晶体振荡器也可以被选择,并且带时钟故障监测。如果该振荡器监测到故障,系统会自动切换回内部 RC 振荡器。时钟故障时可以产生中断。并且,在该时钟直接或间接用于 PLL 输入时,也可产生中断。

多种预分频器可以用于配置 AHB/APB 时钟。AHB 和 APB 最大时钟频率为 100MHz。

另外,内部 48MHz RC 振荡器可以被选作系统时钟或 PLL 输入。该振荡器可以通过 CRS 外设由外部同步信号来自动校准。

6/1

FCM32x030x 有以下性能提升:

- ARM Cortex-M0 可以运行在 100MHz
- FLASH 接口带 FLASH Turbo 加速模块,大幅提高程序从 FLASH 运行时的性能
- PLLCLK/SYSCLK/AHBCLK/PCLK 最高可运行在 100MHz
- USART 最高通讯速率得到提升
- SPI 最高通讯速度得到提升
- TIM1 PWM 可选 PLLCLK*2 作为时钟(此时 PCLK 需为 PLLCLK),最高可至 200MHz

3.7 GPIO

每一个 GPIO 可以被软件配置成输出(推挽或开路)、输入(带/不带上、下拉)或外设附加功能。大 多数 GPIO 和模拟、数字附加功能复用。

I/O 配置可以通过指定操作序列进行锁定。

3.8 DMA

5 通道通用 DMA 管理存储至存储、外设至存储、存储至外设的数据传输。

DMA 支持环形缓冲管理,在控制器到达缓冲最后位置时,不需要用户代码干预。

每一个通道连接至专门的硬件 DMA 请求,并且支持软件触发。DMA 通过软件进行配置,源和目的的传输大小不受限制。

DMA 可以用于主要的外设: SPI、I²S、I²C、USART,所有 TIMx 定时器(除了 TIM14)和 ADC。 DMA 主要特点:

- 最多可支持 5 个独立的可配置通道(请求)
- 每个通道连接至专用的硬件 DMA 请求,也可由软件触发
- 4级可编程的优先级
- 源/目的可配置独立的传输大小(字节、半字、字),源/目的地址单独配置
- 支持环形缓冲管理(circular buffer management)
- 3个事件标志(半传输完成、传输完成、传输出错),事件标志相或用于产生单个中断
- 存储器至存储器传输
- 外设至存储器、存储器至外设、外设至外设传输
- FLASH、SRAM、外设作为源或目的
- 最大 65535 的可编程传输大小

3.9 中断和事件

3.9.1 嵌套向量中断控制器(NVIC)

FCM3x030x 系列集成了一个最多支持 32 个可屏蔽中断通道(不包含 Cortex-M0 的 16 个中断线)和 4 个优先级的嵌套向量中断控制器。

- · 紧耦合 NVIC 提供低延时中断处理
- 中断入口向量表地址直接传输至 CPU 核
- 允许更早的处理中断
- 处理晚到的高优先级中断
- 支持尾链
- 处理器状态自动保存

3.9.2 扩展的中断/事件控制器(EXTI)

扩展的中断/事件控制器由 24 条边沿检测线组成,用于产生中断/事件请求和唤醒系统。每条线可独立的配置成选择触发事件(上升沿、下降沿或边沿),也可单独屏蔽。一个暂存寄存器包含中断请求状态。EXTI 可以检测比内部 APB2 时钟周期更短的外部输入。最多 38 个 GPIO 可以连接至 16 个外部中断线。

6//

3.10 ADC

12 位 ADC 模数转换器最多包含 10 个外部和 3 个内部(温度传感器、电压参考、VBAT 电压测量)通道,可以以单次或扫描模式转换。在扫描模式,模拟输入的被选中组能够自动完成转换。ADC 支持 DMA。

模拟看门狗可以对一个、部分或全部被选的通道进行高精度监测。当转换电压超出阈值设定时会产生中断。

3.10.1 温度传感器 (TS)

温度传感器产生一个和温度成线性变化的电压 VSENSE。 温度传感器在内部连接至 ADC IN16 输入通道,用来将传感器输出电压转换成数字值。

3.10.2 内部电压基准(VREFINT)

内部基准电压(VREFINT)提供一个稳定的(基准)电压输出用于 ADC。VREFINT 在 IC 内部连接至 ADC_IN17 输入通道。

3.11 定时器和看门狗

FCM32x030x 系列包含最多 5 个通用定时器和 1 个先进定时器。

Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	CCP channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, Up/down	1~65536	Yes	4	Yes
General purpose	TIM2	16-bit	Up, down, Up/down	1~65536	Yes	4	No
	TIM3	16-bit	Up, down, Up/down	1~65536	Yes	4	No
	TIM14	16-bit	Up	1~65536	No	1	No
	TIM15	16-bit	Up	1~65536	Yes	2	No
	TIM16, TIM17	16-bit	Up	1~65536	Yes	1	Yes

TIM1 可选择 2x PLLCLK 作为时钟,以提供更高的 PWM 频率和精度,通过 RCC->CFGR3 的 TIM1SW 位实现。当选择 2x PLLCLK 时,SYSCLK/HCLK/PCLK 必须同频,且不经过任何分频。

RCC_CFGR3 Address: 0x30

Reset value: 0x0000 0000

Bit9: TIM1SW, 1=Select 2x PLLCLK as timer clock source

3.11.1 先进定时器 TIM1

先进定时器 TIM1 可用于 6 通道的 3 相 PWM。它的互补输出带可编程死区。它也可用作一个完整的通用定时器。4 个独立通道可用作:

- 输入捕捉 IC
- · 输出比较 OC
- PWM(边沿或中心对齐模式)
- 单脉冲输出

如果配置成标准 16 位定时器,它的功能和 TIMx 一样。如果配置成 16 位 PWM,拥有完全调制的占空比(0%-100%)。

在 MCU 的调试模式,定时器也可以被冻结。

TIM1 的大多数功能和其它标准定时器的功能一样。先进定时器可以和其它定时器级联和同步。

3.11.2 通用定时器 TIM2/3/14/15/16/17

FCM32x030x 拥有 5 个通用定时器。每个通用定时器可用于产生 PWM,或者只作简单定时用途。

TIM2/3

FCM32x030x 包含 2 个同步 4 通道通用定时器。TIM2 由 16 位预分频器和 16 位自动重装载向上/向下计数器构成。TIM3 由 16 位预分频器和 16 位自动重装载向上/向下计数器构成。它们包含 4 个独立通道,每一个可用于输入捕捉/输出比较、PWM 或单击模式输出。总共可提供 12 个输入捕捉/输出比较通道。

TIM2/3 可以级联,也可以和 TIM1 连接用于同步。

TIM2/3 可以支持正交编码信号,或 1~3 个霍尔传感器的数字输出。

该定时器可以在 debug 模式下被冻结。

TIM14

该定时器基于 16 位预分频器和 16 位自动重装载向上计数器。

定时器包含单通道,用于输入捕捉、输出比较、PWM 或单击输出模式。

TIM14 在 MCU 的调试模式下被冻结。

TIM15/16/17

这些定时器基于 16 位预分频器和 16 位自动重装载向上计数器。TIM15 有 2 个独立通道,TIM16/17 为单个通道,都可用作输入捕捉/输出比较、PWM 或单脉冲输出模式。

TIM15、TIM16 和 TIM17 可以通过级联一起工作。

TIM15、TIM16 和 TIM17 包含带死区的互补输出,并有独立的中断请求。

TIM15/16/17 在 MCU 的调试模式可以被冻结。

3.11.3 独立看门狗 IWDG

IWDG 基于 8 位预分频器和 12 位向下计数器,支持用户定义的刷新窗口。它的时钟由内部 40KHz 独立 RC 定时器提供,独立于主时钟工作。可以 Stop/Standby 模式工作。它可用于在发生问题时复位系统的看门狗,或者作为应用中的自由运行的定时器。它可通过硬件或配置字的软件配置。

61/

3.11.4 系统窗口看门狗 WWDG

WWDG 可以在 Debug 模式下被冻结。

WWDG 是一个 7 位向下计数器,可以自由运行。它可用于在发生问题时复位系统的看门狗。WWDG 时钟来自于 APB 时钟 PCLK。它有提前警告中断能力。

3.11.5 SysTick 定时器

该定时器专用于实时操作系统,但也可作为标准向下计数器。

- 24 位向下计数器
- 自动重装载
- 计数至0时,可产生可屏蔽系统中断
- 可编程时钟源(HCLK 或 HCLK/8)

3.12 实时时钟(RTC)和备份寄存器

备份寄存器为 5 个 32 位寄存器,用于存储 20 字节的用户数据。它们不会被系统复位,也不会在从 Standby 模式唤醒时复位。

RTC 是独立的 BCD 定时/计数器,有以下主要特征:

- 带子秒、秒、分、时(12 或 24 小时制)、星期、日、月、年的日历, BCD 格式
- 闰年的自动日期修正(月的28、29、30或31天)
- 可编程警报,将 MCU 从 Stop/Standby 模式唤醒
- 可以通过主时钟同步,即时修正范围在 1-32767 个 RTC 时钟脉冲
- 数字校准提供 1ppm 精度,用于补偿石英晶体误差
- 带可编程滤波器的 2 个入侵检测引脚
- 时间戳可以存储日历内容。该功能可以通过时钟戳引脚或入侵事件触发。
- 参考时钟检测: 更高精度的秒时钟源(50/60 Hz)可用于提高日历的精度

RTC 时钟源可以是:

- 32768 Hz 外部晶体
- 陶振或其它振荡器
- 内部低功耗 RC 振荡器(40KHz)
- 高速外部时钟/32

3.13 I2C

I²C 可以工作在多主机或从机模式。支持标准模式(100 kbit/s)、快速模式(400 kbit/s)和带 20mA 驱动的快速加(FMP,1Mbit/s)模式。

 I^2C 支持 7 位和 10 位地址模式,多个 7 位从机地址(2 个地址,1 个带可屏蔽的配置位)。也包含可编程的模拟和数字噪声滤波器。

另外,I²C1 提供硬件支持 SMBUS 2.0 和 PMBUS 1.1。I²C1 也有独立于 CPU 时钟之外的时钟域,允许在地址匹配时将 MCU 从 Stop 模式唤醒。

I²C 接口可以通过 DMA 操作。

FCM32x030x I2C 功能

I ² C features	I ² C1	I ² C2
7位地址模式	Υ	Υ
10 位地址模式	Υ	Υ
标准模式(100 kbit/s)	Υ	Υ
快速模式(400 kbit/s)	Υ	Υ
带 20mA 驱动的快速+模式(1 Mbit/s)	Υ	Υ
独立时钟	Υ	-
SMBus	Υ	-
从 Stop 模式唤醒	Υ	-

3.14 USART

UART 为通用异步收发接口,它提供工业标准的双全工数据交换能力,使用可编程的波特率产生器以支持非常宽范围的波特率。

它支持全双工、半双工通讯,或多主机通讯。也支持 LIN(Local Interconnect Network)、smartcard 协议以及 IrDA(Infrared Data Association) SIR ENDEC 规格和 modem 操作(CTS/RTS)。可以使用 DMA 来实现高速数据交换。

UART 主要特点:

- 全双工异步通讯
- NRZ 标准格式(mark/space)
- 可配置的 8 或 16 倍超采样方法
- 当时钟频率是 48MHz、8 倍超采样时最快达 6Mbit/s 的通讯速度
- 双时钟域,以使以下功能得以实现:
 - STOP 模式 UART 可以工作和唤醒
 - 方便的波特率编程而不需要改变 PCLK 频率
- 自动波特率检测
- 可编程的数据长度(7/8/9 位)
- 可编程的数据顺序(高位或低位优先)
- 可编程的停止位宽度(1或2位停止位)
- 单线半双工通讯
- 使用 DMA 来实现连续通讯
- 使用 DMA 来将接收/发送数据保存在保留的 SRAM 空间
- 单独的发送、接收使能位
- 单独的信号极性选择
- 可交换的 Tx/Rx 引脚
- 用于 modem 和 RS-485 收发器的硬件流控制
- 通讯控制/出错标志
- 奇偶控制:
 - 发送奇偶位
 - 检查接收到的奇偶位
- 带标志的 14 个中断源
- 多主机通讯
- 从 mute 模式唤醒

FCM32x030x USART 功能

USART modes/ features	USART1	USART2
Modem 硬件流控	Υ	Υ
通过 DMA 连续通讯	Υ	Υ
多主机通讯	Υ	Υ
同步模式	Υ	Υ
Smartcard 模式	Υ	-
单线半双工通讯	Υ	Υ
IrDA SIR 编解码模块	Υ	-
LIN 模式	Υ	-
双时钟模式以及从 STOP 唤醒	Υ	-
接收超时中断	Υ	-
Modbus 通讯	Υ	-
自动波特率检测	Υ	-
Driver Enable	Υ	Υ

3.15 SPI/I2S

SPI 接口用于和外部器件使用 SPI 协议通讯。SPI 支持半双工、全双工和简单同步串行通讯。当配置成主机(MASTER)时,对外接从机(SLAVE)提供通讯时钟(SCK)。该接口也可以配置成多主机模式。SPI 主要特点:

- MASTER 或 SLAVE 操作
- 全双工通讯仅使用 3 线
- 半双工通讯使用2线(双向数据线)
- 4~16 位数据格式
- 多主机能力
- MASTER 模式波特率达 fpclk/2
- SLAVE 模式波特率达 fpclk/2
- · NSS 可由软件或硬件管理
- 可编程的时钟极性和相位
- 可编程的数据顺序: 高位优先或低位优先
- 带中断能力的专用发送/接收标志
- SPI 总线忙标志
- 硬件 CRC 用于可靠性通讯
 - 在 Tx 模式最后发送 CRC 值
 - 接收到最后一个数据时自动进行 CRC 错误检查
- 2个32位内嵌 Rx/Tx FIFO, 支持 DMA

一个标准的 I2S 接口(和 SPI1 引脚复用)支持 4 种不同的音频格式,可以在主/从机模式以半双工进行通讯。可以配置成 16/24 或 32 位数据格式、16 或 32 位数据精度。通过 8 位可编程线性预分频器将音频采样频率设定在 8-192 KHz。在主机模式时,可输出 256 位的采样时钟给外部器件。

FCM32x030x SPI/I2S 功能

SPI features	SPI1	SPI2
硬件 CRC 计算	Υ	Υ
Rx/Tx FIFO	Υ	Υ
NSS 脉冲模式	Υ	Υ
I2S 模式	Υ	Υ
TI 模式	Υ	Υ

3.16 HDMI-CEC

FCM32x030x 内置了一个 HDMI-CEC 控制器,以提供对 CEC 协议的支持。

3.17 CRS

时钟恢复系统 CRS 用于对内部 48MHz 振荡器进行精确校准。自动校准基于外部同步信号,可以是 LSE 振荡器、CRS_SYNC 引脚的外部信号,或者软件产生。

3.18 SWJ-DP

ARM SWJ-DP 接口用于调试/烧写 MCU,支持 SWD。

4 引脚信息

FCM32x030x LQFP48 pinout

FCM32x030x LQFP32 pinout

FCM32x030x TSSOP20 pinout

Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition					
Pin r	name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name						
		S	Supply pin					
Pin	type	I	Input only pin					
		I/O	Input / output pin					
		FT	5 V tolerant I/O					
		FTf 5 V tolerant I/O, FM+ capable						
I/O otr	ucture	TTa 5 V tolerant I/O directly connected to ADC						
1/0 811	ucture	TC Standard 5 V I/O						
		B Dedicated BOOT0 pin						
		RST	Bidirectional reset pin with embedded weak pull-up resistor					
No	tes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and aft reset.						
Pin	Alternate functions	Functions selected	d through GPIOx_AFR registers					
functions	Additional functions	Functions directly selected/enabled through peripheral registers						

FCM32x030x pin definitions

F	Pin nun	nber	10			oin defii	Pin fur	ections
LQFP48	LQFP32	TSSOP20	Pin name (function after reset)	Pin Type	I/O structure	Notes	Alternate functions	Additional functions
1	-	-	VDD	S			Complementary	power supply
2	-	-	PC13	I/O	тс	(1)	-	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2
3	-	-	PC14-OSC32_IN (PC14)	I/O	TC	(1)	-	OSC32_IN
4	-	-	PC15-OSC32_OUT (PC15)	I/O	TC	(1)	-	OSC32_OUT
5	2	2	PF0-OSC_IN (PF0)	I/O	FT		I2C1_SDA ⁽⁵⁾	OSC_IN
6	3	3	PF1-OSC_OUT (PF1)	I/O	FT		I2C1_SCL ⁽⁵⁾	OSC_OUT
7	4	4	NRST	I/O	RST		Device reset input / i	•
8	-	-	VSSA	S			Analog ground	
9	5	5	VDDA	S			Analog power supply	
10	6	6	PA0	I/O	ТТа		USART1_CTS ⁽²⁾ , USART2_CTS ⁽³⁾⁽⁵⁾ , USART4_TX ⁽⁵⁾	ADC_IN0, RTC_TAMP2, WKUP1
11	7	7	PA1	I/O	TTa		USART1_RTS ⁽²⁾ , USART2_RTS ⁽³⁾⁽⁵⁾ , EVENTOUT, USART4_RX ⁽⁵⁾	ADC_IN1
12	8	8	PA2	I/O	ТТа		USART1_TX ⁽²⁾ , USART2_TX ⁽³⁾⁽⁵⁾ , TIM15_CH1 ⁽³⁾⁽⁵⁾	ADC_IN2
13	9	9	PA3	I/O	TTa		USART1_RX ⁽²⁾ , USART2_RX ⁽³⁾⁽⁵⁾ , TIM15_CH2 ⁽³⁾⁽⁵⁾	ADC_IN3
14	10	10	PA4	I/O	TTa		SPI1_NSS, USART1_CK ⁽²⁾ USART2_CK ⁽³⁾⁽⁵⁾ , TIM14_CH1, USART6_TX ⁽⁵⁾	ADC_IN4
15	11	11	PA5	I/O	TTa		SPI1_SCK, USART6_RX ⁽⁵⁾	ADC_IN5
16	12	12	PA6	I/O	TTa		SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT USART3_CTS ⁽⁵⁾	ADC_IN6

FCM32F030x

								1 CIVI321 0302
17	13	13	PA7	I/O	TTa		SPI1_MOSI, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT	ADC_IN7
18	14	,	PB0	I/O	TTa		TIM3_CH3, TIM1_CH2N, EVENTOUT, USART3_CK ⁽⁵⁾	ADC_IN8
19	15	14	PB1	I/O	TTa		TIM3_CH4, TIM14_CH1, TIM1_CH3N, USART3_RTS ⁽⁵⁾	ADC_IN9
20	-	-	PB2	I/O	FT	(6)	-	-
21	-	-	PB10	I/O	FT		SPI2_SCK ⁽⁵⁾ , I2C1_SCL ⁽²⁾ , I2C2_SCL ⁽³⁾⁽⁵⁾ , USART3_TX ⁽⁵⁾	-
22	-	1	PB11	I/O	FT		I2C1_SDA ⁽²⁾ , I2C2_SDA ⁽³⁾⁽⁵⁾ , EVENTOUT, USART3_RX ⁽⁵⁾	-
23	16	-	VSS	S			Grou	und
24	17	16	VDD	S			Digital pow	er supply
25	-	-	PB12	I/O	FT		SPI1_NSS ⁽²⁾ , SPI2_NSS ⁽³⁾⁽⁵⁾ , TIM1_BKIN, EVENTOUT, USART3_CK ⁽⁵⁾	-
26	-	-	PB13	I/O	FT		SPI1_SCK ⁽²⁾ , SPI2_SCK ⁽³⁾⁽⁵⁾ , I2C2_SDA, TIM1_CH1N, USART3_CTS ⁽⁵⁾	-
27	-	-	PB14	I/O	FT		SPI1_MISO ⁽²⁾ , SPI2_MISO ⁽³⁾⁽⁵⁾ , I2C2_SDA ⁽⁵⁾ , TIM1_CH2N, TIM15_CH1 ⁽³⁾⁽⁵⁾ , USART3_RTS ⁽⁵⁾	-
28	-	-	PB15	I/O	FT		SPI1_MOSI ⁽²⁾ , SPI2_MOSI ⁽³⁾⁽⁵⁾ , TIM1_CH3N, TIM15_CH1N ⁽³⁾⁽⁵⁾ , TIM15_CH2 ⁽³⁾⁽⁵⁾	RTC_REFIN
29	18	-	PA8	I/O	FT		USART1_CK, TIM1_CH1, EVENTOUT, MCO	-
30	19	17	PA9	I/O	FT		USART1_TX, TIM1_CH2, TIM15_BKIN ⁽³⁾⁽⁵⁾ I2C1_SCL ⁽²⁾⁽⁵⁾	-

FCM32F030x

				,	,		1	
31	20	18	PA10	I/O	FT		USART1_RX, TIM1_CH3, TIM17_BKIN I2C1_SDA ⁽²⁾⁽⁵⁾	-
32	21	-	PA11	I/O	FT		USART1_CTS, TIM1_CH4, EVENTOUT, I2C2_SCL ⁽⁵⁾	-
33	22	-	PA12	I/O	FT		USART1_RTS, TIM1_ETR, EVENTOUT, I2C2_SDA ⁽⁵⁾	-
34	23	19	PA13 (SWDIO)	I/O	FT	(7)	IR_OUT, SWDIO	-
35	-	-	PF6	I/O	FT	(4)	I2C1_SCL ⁽²⁾ , I2C2_SCL ⁽³⁾	-
36	-	-	PF7	I/O	FT	(4)	I2C1_SDA ⁽²⁾ , I2C2_SDA ⁽³⁾	-
37	24	20	PA14 (SWCLK)	I/O	FT	(7)	USART1_TX ⁽²⁾ , USART2_TX ⁽³⁾⁽⁵⁾ , SWCLK	-
38	25	-	PA15	I/O	FT		SPI1_NSS, USART1_RX ⁽²⁾ , USART2_RX ⁽³⁾⁽⁵⁾ , USART4_RTS ⁽⁵⁾ , EVENTOUT	-
39	26	-	PB3	I/O	FT		SPI1_SCK, EVENTOUT, USART5_TX ⁽⁵⁾	-
40	27	-	PB4	I/O	FT		SPI1_MISO, TIM3_CH1, EVENTOUT, TIM17_BKIN ⁽⁵⁾ , USART5_RX ⁽⁵⁾	-
41	28	-	PB5	I/O	FT		SPI1_MOSI, I2C1_SMBA, TIM16_BKIN, TIM3_CH2, USART5_CK_RTS ⁽⁵⁾	-
42	29	-	PB6	I/O	FTf		I2C1_SCL, USART1_TX, TIM16_CH1N	-
43	30	-	PB7	I/O	FTf		I2C1_SDA, USART1_RX, TIM17_CH1N, USART4_CTS ⁽⁵⁾	-
44	31	1	воото	I	В		Boot memor	y selection
45	-	-	PB8	I/O	FTf	(7)	I2C1_SCL, TIM16_CH1	-
46	-	-	PB9	I/O	FTf		I2C1_SDA, IR_OUT, SPI2_NSS ⁽⁵⁾ , TIM17_CH1, EVENTOUT	-

47	32	15	VSS	S		Ground
48	1	16	VDD	S		Digital power supply

- 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 - The speed should not exceed 2 MHz with a maximum load of 30 pF.
 - These GPIOs must not be used as current sources (e.g. to drive an LED).
- 2. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware).
- 3. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin and internal pull-down on SWCLK pin are activated.

PA 端口辅助功能选择

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	-	USART2_CTS	TIM2_CH1_ETR	-	-	-	-	-
PA1	EVENTOUT	USART2_RTS	TIM2_CH2	-	-	-	-	-
PA2	-	USART2_TX	TIM2_CH3	-	-	-	-	-
PA3	-	USART2_RX	TIM2_CH4	-	-	-	-	-
PA4	SPI1_NSS,I2S1_WS	USART2_CK	-	-	TIM14_CH1	-	-	-
PA5	SPI1_SCK,I2S1_CK	CEC	TIM2_CH1_ETR	-	-	-	-	-
PA6	SPI1_MISO,I2S1_MCK	TIM3_CH1	TIM1_BKIN	-	-	TIM16_CH1	EVENTOUT	-
PA7	SPI1_MOSI,I2S1_SD	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH1	EVENTOUT	
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT	CRS_SYNC	-	-	-
PA9	-	USART1_TX	TIM1_CH2	-	I2C1_SCL	MCO	-	-
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	-	I2C1_SDA	-	-	-
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	-		I2C1_SCL	-	-
PA12	EVENTOUT	USART1_RTS	TIM1_ETR	-		I2C1_SDA	-	-
PA13	SWDIO	IR_OUT	-	-	-	-	-	-
PA14	SWCLK	USART2_TX	-	-	-	-	-	-
PA15	SPI1_NSS,I2S1_WS	USART2_RX	TIM2_CH1_ETR	EVENTOUT	-	-		

PB 端口辅助功能选择

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	-	-	-	-	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-	-	-	-	-
PB2	-	-	-	-	-	-	-	-
PB3	SPI1_SCK,I2S1_CK	EVENTOUT	TIM2_CH2	-	-	-	-	-
PB4	SPI1_MISO,I2S1_MCK	TIM3_CH1	EVENTOUT	-	-	TIM17_BKIN	-	-
PB5	SPI1_MOSI,I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA	-	-	-	-
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	-	-	-	-	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	-	-	-	-	-
PB8	CEC	I2C1_SCL	TIM16_CH1	-	-	-	-	-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT	-	SPI2_NSS	-	-
PB10	CEC	I2C2_SCL ⁽¹⁾	TIM2_CH3	-	-	SPI2_SCK	-	-
PB11	EVENTOUT	I2C2_SDA ⁽¹⁾	TIM2_CH4	-	-	-	-	-
PB12	SPI2_NSS,I2S2_WS	EVENTOUT	TIM1_BKIN	-	-	-	-	-
PB13	SPI2_SCK,I2S2_CK	-	TIM1_CH1N	-	=	I2C2_SCL ⁽¹⁾	=	-
PB14	SPI2_MISO,I2S2_MCK	-	TIM1_CH2N	-	=	I2C2_SDA ⁽¹⁾	-	-
PB15	SPI2_MOSI,I2S2_SD	-	TIM1_CH3N	-	-	-	-	-

⁽¹⁾ 当 MCU 只包含 1 个 I2C 接口时,对应 I2C1。

PF 端口辅助功能选择

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF0	-	I2C1_SDA	-	-	-	-	-	-
PF1	-	I2C1_SCL	-	-	-	-	-	-

5 存储器映射

FCM32x030x4/x6/x8 不同的是程序存储空间的结束地址分别为 0x08003FFF、0x08007FFF、0x0800FFFF。

FCM32x030x4/x6/x8 外设寄存器边界地址

Bus	Boundary address	Size	Peripheral
	0x4800 1800 – 0x5FFF FFFF	~384 MB	-
	0x4800 1400 - 0x4800 17FF	1KB	GPIOF
	0x4800 0C00 - 0x4800 13FF	2KB	-
AHB2	0x4800 0800 - 0x4800 0BFF	1KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1KB	GPIOA
	0x4002 4400 – 0x47FF FFFF	~128MB	-
	0x4002 4000 - 0x4002 43FF	1KB	-
	0x4002 3400 – 0x4002 3FFF	ЗКВ	-
	0x4002 3000 - 0x4002 33FF	1KB	CRC
	0x4002 2400 – 0x4002 2FFF	ЗКВ	-
AHB1	0x4002 2000 – 0x4002 23FF	1KB	Flash memory interface
	0x4002 1400 – 0x4002 1FFF	3KB	-
	0x4002 1000 - 0x4002 13FF	1KB	RCC
	0x4002 0400 – 0x4002 0FFF	ЗКВ	-
	0x4002 0000 - 0x4002 03FF	1KB	DMA
	0x4001 8000 – 0x4001 FFFF	32KB	-
	0x4001 5C00 - 0x4001 7FFF	9KB	-
	0x4001 5800 - 0x4001 5BFF	1KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3KB	-
	0x4001 4800 - 0x4001 4BFF	1KB	TIM17
	0x4001 4400 - 0x4001 47FF	1KB	TIM16
	0x4001 4000 - 0x4001 43FF	1KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1KB	-
	0x4001 3800 - 0x4001 3BFF	1KB	USART1
	0x4001 3400 - 0x4001 37FF	1KB	-
	0x4001 3000 - 0x4001 33FF	1KB	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	1KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1KB	-
ADD	0x4001 2400 - 0x4001 27FF	1KB	ADC
APB	0x4001 0800 - 0x4001 23FF	7KB	-
	0x4001 0400 - 0x4001 07FF	1KB	EXTI
	0x4001 0000 - 0x4001 03FF	1KB	SYSCFG
	0x4000 8000 – 0x4000 FFFF	32KB	-

FCM32H030x

0x4000 7C00 - 0x4000 7FFF	1KB	-
0x4000 7800 - 0x4000 7BFF	1KB	CEC
0x4000 7400 - 0x4000 77FF	1KB	-
0x4000 7000 - 0x4000 73FF	1KB	PWR
0x4000 6C00 - 0x4000 6FFF	1KB	CRS
0x4000 6800 - 0x4000 6BFF	1KB	-
0x4000 6400 - 0x4000 67FF	1KB	-
0x4000 6000 - 0x4000 63FF	1KB	-
0x4000 5C00 - 0x4000 5FFF	1KB	-
0x4000 5800 - 0x4000 5BFF	1KB	12C2
0x4000 5400 - 0x4000 57FF	1KB	I2C1
0x4000 4800 - 0x4000 53FF	ЗКВ	-
0x4000 4400 - 0x4000 47FF	1KB	USART2
0x4000 3C00 - 0x4000 43FF	2KB	-
0x4000 3800 - 0x4000 3BFF	1KB	SPI2
0x4000 3400 - 0x4000 37FF	1KB	-
0x4000 3000 - 0x4000 33FF	1KB	IWDG
0x4000 2C00 - 0x4000 2FFF	1KB	WWDG
0x4000 2800 - 0x4000 2BFF	1KB	RTC
0x4000 2400 - 0x4000 27FF	1KB	-
0x4000 2000 - 0x4000 23FF	1KB	TIM14
0x4000 1800 - 0x4000 1FFF	2KB	-
0x4000 1400 - 0x4000 17FF	1KB	TIM7
0x4000 1000 - 0x4000 13FF	1KB	TIM6
0x4000 0800 - 0x4000 0FFF	2KB	-
0x4000 0400 - 0x4000 07FF	1KB	TIM3
0x4000 0000 - 0x4000 03FF	1KB	TIM2

6 电气特性

6.1 参数条件

除非额外指定,所有电压以 VSS 为参考。

6.1.1 最小/最大值

除非额外指定,最小/最大值保证在环境温度下的最差条件。电源供电和频率在环境温度为 25C 时测试。

6.1.2 典型值

除非额外指定,典型值基于 25C 和 VDD=VDDA=3.3V。这些值为设计值,非测试结果。

6.1.3 典型曲线

除非额外指定,所有典型曲线为设计参考值,非测试结果。

6.1.4 负载电容

6.1.5 引脚输入电压

6.1.6 电源供电

每一对电源(VDD/VSS、VDDA/VSSA等)应该接有滤波电容,电容在 PCB 上应尽可能靠近引脚。

6.1.7 电流消耗测量

6.2 绝对最大值

超出绝对最大值范围可能引起器件损坏。

电压特性

Symbol	Ratings	Min	Max	Unit
V_{DD} - V_{SS}	External main supply voltage	-0.3	5.8	V
$V_{\rm DDIO2}$ - $V_{\rm SS}$	External I/O supply voltage	-0.3	5.8	V
V_{DDA} - V_{SS}	External analog supply voltage	-0.3	5.8	V
V_{DD} - V_{DDA}	Allowed voltage difference for V _{DD} > _{VDDA}	-	0.3	V
V _{BAT} -V _{SS}	External backup supply voltage	-0.3	5.8	V

FCM32H030x

V _{IN}	Input voltage on FT and FTf pins	V _{SS} -0.3	V _{DDIOx} +0.3	٧
	Input voltage on TTa pins	V _{SS} -0.3	5.8	V
	Input voltage on any other pins	V _{SS} -0.3	5.8	V
$ \triangle V_{DDx} $	Variations between different V _{DD} power	-	50	mV
	pins			
_{VSSx} -V _{SS}	Variations between all the different ground	-	50	mV
	pins			
V _{ESD} (HBM)	Electrostatic discharge voltage		3000	٧

6.3 工作条件

6.3.1 普通工作条件

普通工作条件

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	100	MHz
f_{PCLK}	Internal APB clock frequency	-	0	100	MHz
V_{DD}	Standard operating voltage	-	1.8	5.5	V
V_{DDIO2}	I/O supply voltage		1.65	5.5	V
V_{DDA}	Analog operating voltage		V_{DD}	5.5	V
V_{BAT}	Backup operating voltage		2.1	5.5	V
V _{IN}	I/O input voltage	TC and RST I/O	-0.3	V _{DDIOx} +0.3	
		TTa I/O	-0.3	V _{DDA} +0.3	V
		FT and FTf I/O	-0.3	5.5	
P_D	Power dissipation at TA=85C	LQFP48	-	350	mW
		UFQFPN48	-	600	
		LQFP32		350	
		UFQFPN32		500	
		UFQFPN28		170	
		TSSOP20		250	
TA	Ambient temperature for the	Maximum power dissipation	-40	85	С
	suffix 6 version	Low power dissipation	-40	105	
	Ambient temperature for the	Maximum power dissipation	-40	105	С
	suffix 7 version	Low power dissipation	-40	125	
TJ	Junction temperature range	Suffix 6 version	-40	105	С
		Suffix 7 version	-40	125	

6.3.2 上电/下电工作条件

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	VDD rise time rate	-	0	∞	
	VDD fall time rate		20	8	us/V
t _{VDDA}	VDDA rise time rate	-	0	∞	
	VDDA fall time rate		20	∞	

6.3.3 内置复位/电源控制

内置复位和电源控制模块特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR/PDR}	Power on/down reset	Falling edge	1.51	1.58	1.65	V
	threshold	Rising edge	1.54	1.62	1.70	
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO}	Reset temporization	-	1.5	2.5	4.5	ms

可编程电压检测(PVD)特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{PVD0}	PVD threshold 0	Falling edge	1.59	1.67	1.75	
		Rising edge	1.75	1.83	1.91	
V _{PVD1}	PVD threshold 1	Falling edge	1.75	1.83	1.91	
		Rising edge	1.90	1.98	2.06	
V _{PVD2}	PVD threshold 2	Falling edge	1.90	1.98	2.06	
		Rising edge	2.06	2.14	2.22	
V_{PVD3}	PVD threshold 3	Falling edge	2.06	2.14	2.22	
		Rising edge	2.21	2.29	2.37	
V _{PVD4}	PVD threshold 4	Falling edge	2.21	2.29	2.37	٧
		Rising edge	2.35	2.43	2.51	
V _{PVD5}	PVD threshold 5	Falling edge	2.35	2.43	2.51	
		Rising edge	2.49	2.57	2.65	
V _{PVD6}	PVD threshold 6	Falling edge	2.49	2.57	2.65	
		Rising edge	2.64	2.72	2.80	
V _{PVD7}	PVD threshold 7	Falling edge	2.64	2.72	2.80	
		Rising edge	2.80	2.88	2.96	
$V_{PVDhyst}$	PVD hysteresis	-	-	160	-	mV
I _{DD(PVD)}	PVD current consumption	-		0.15		uA

6.3.4 内置参考电压

内置参考电压特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{REFINT}	Internal reference voltage	-40C <ta<+105< td=""><td>1.22</td><td>1.23</td><td>1.24</td><td>V</td></ta<+105<>	1.22	1.23	1.24	V
t _{START}	ADC_IN17 buffer startup time	-		-	10	us
$t_{S_vrefint}$	ADC sampling time when reading the internal reference voltage	-	8	-	-	us
△V _{REFINNT}	Internal reference voltage spread over the temperature range	V _{DDA} =3V	-	-	10	mV
T_{Coeff}	Temperature coefficient	-	-100	-	100	ppm/C

6.3.5 供电电流

典型供电电流消耗 (VDD+VDDA @ 3.6V)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD} +I _{DDA}	Run from Flash	All peripherals enabled, HSI		3.7		mA
	memory	8MHz				
		All peripherals enabled, HSI48		15.0		
		All peripherals enabled, HSI + PLL		27.5		
		96MHz				
	Stop mode	Regulator in low-power mode, all		6.2		uA
		oscillators OFF				
	Standby mode	Regulator in low-power mode, all		6.0		uA
		oscillators OFF				

6.3.6 低功耗模式唤醒时间

Low-power mode wakeup timings

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
twustop	Wakeup from stop mode	Regulator in run mode	-	2.8	5	
t _{START}		Regulator in low power mode		4.6	10	us
twustanndby	Wakeup from standby mode	-	-	50	-	
twusleep	Wakeup from sleep mode	-	4 S'	YSCLK cyc	les	

6.3.7 外部时钟源

High-speed external user clock characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{HSE_EXT}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7*V _{DDIOx}	-	V_{DDIOx}	٧
V _{HSEL}	OSC_IN input pin low level voltage	VSS	-	0.3*V _{DDIOx}	
t _{W(HSEH)}	OSC_IN high or low time	15	-	-	ns
tw(HSEL)					
t _{r(HSE)}	OSC_IN rise or fall time	-	-	20	
t _{f(HSE)}					

Low-speed external user clock characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSE_EXT}	User external clock source frequency	-	32.768	1000	KHz
V_{LSEH}	OSC32_IN input pin high level voltage	0.7*V _{DDIOx}	-	V_{DDIOx}	٧
V_{LSEL}	OSC32_IN input pin low level voltage	VSS	-	0.3*V _{DDIOx}	
t _{W(LSEH)}	OSC32_IN high or low time	450	-	=	ns
t _{W(LSEL)}					
t _{r(LSE)}	OSC32_IN rise or fall time	-	-	50	
t _{f(LSE)}					

HSE oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	20	MHz
RF	Feedback resistor	-	-	200	-	ΚΩ
I _{DD}	HSE current consumption	VDD=3.3V, Rm=45 Ω ,		0.57		mA
		CL=10pF@8MHz				
g _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)}	Startup time	VDD is stabilized	-	2	-	ms

LSE oscillator characteristics (f_{LSE}=32.768KHz)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD}	LSE current consumption	low drive capability		360		
		medium-low drive capability		450		nA
		medium-high drive capability		540		
		high drive capability		700		
g _m	Oscillator	low drive capability	5	-	-	
	transconductance	medium-low drive capability	8			uA/V
		medium-high drive capability	15			
		high drive capability	25			
t _{SU(LSE)}	Startup time	V _{DDIOx} is stabilized	-	2	-	S

6.3.8 内部时钟源特性

HSI48 oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	Frequency	-		48		MHz
TRIM	HSI48 user-trimming step	-		0.15		%
DuCy	Duty cycle	-	45	-	55	%
ACC _{HSI48}	Accuracy of the HSI48	TA=-40 to 105 @SS	-1.84		2.00	%
	oscillator(factory calibrated)	TA=-40 to 105@TT	-1.58		1.76	
		TA=-40 to 105@FF	-1.24		1.72	
t _{SU(HSI48)}	HSI48 oscillator startup time	-			6	us
I _{DDA(HSI48)}	HSI48 oscillator power consumption	-		643	801	uA

LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	31.9	40	55.5	KHz
t _{SU(LSI)}	LSI oscillator startup time	-			100	us
I _{DDA(LSI)}	LSI oscillator power consumption	-		400		nA

6.3.9 PLL 特性

PLL characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock	1	8	24	MHz
t _{PLL_OUT}	PLL multiplier output clock	16		96	MHz
t _{LOCK}	PLL lock time	30		100	us
I _{DDA(PLL)}	PLL power consumption			350	uA
Jitter _{PLL}	Cycle-to-cycle jitter			300	ps

6.3.10 存储特性

Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PROG}	16-bit programming time	TA=-40 to +125			20	us
t _{ERASE}	Page(1KB) erase time				10	ms
t _{ME}	Mass erase time				40	ms
I _{DD}	Supply current	Write mode			3.5	mA
		Erase mode			2	mA

N _{END}	Endurance	TA=-40 to +125	20		kcycle
t _{RET}	Data retention	TA=25C	100		Year

6.3.11 EMC 特性

EMC characteristics

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to be applied on any I/O pin	VDD=3.3V, LQFP48, TA=25C,	3B
	to induce a functional disturbance	f _{HCLK} =48 MHz,	
		conforming to IEC 61000-4-2	
V _{EFTB}	Fast transient voltage burst limits to be	VDD=3.3V, LQFP48, TA=25C,	4B
	applied through 100pF on V_{DD} and V_{SS} pins	f _{HCLK} =48 MHz,	
	to induce a functional disturbance	conforming to IEC 61000-4-4	

EMI characteristics

Symbol	Parameter	Conditions	Monitored frequency	Max vs.[f _{HSE} /f _{HCLK}]	Unit
			band	8/48 MHz	
SEMI	Peak level	VDD=3.6V, TA=25C,	0.1 to 30MHz	-9	
		LQFP48 package	30 to 130MHz	9	dBuV
		compliant with IEC	130 MHz to 1GHz	17	
		61967-2	EMI level	3	-

6.3.12 电气敏感特性

ESD absolute maximum ratings

Symbol	Parameter	Conditions	Packages	Class	Max value	Unit
Veceture	Electrostatic discharge voltage	TA=+25C, conforming	All	2	3000	V
V _{ESD(HBM)}	(human body model)	to JESD22-A114	All	۷	3000	V
V _{ESD(CDM)}	Electrostatic discharge voltage	TA=+25C, conforming	All	C6	1000	V
	(charge device model)	to AEC-Q100-011				

6.3.13 I/O 电流注入特性

I/O current injection susceptibility

Symbol Parameter		Functional su	usceptibility	Unit
		Negative injection		
I _{INJ}	Injected current	-5	+5	mA

6.3.14 I/O 端口特性

I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Low level input	TC and TTa I/O			0.3*V _{DDIOx}	V
	voltage	FT and FTf I/O			0.475*V _{DDIOx} -0.2	
		All I/Os			0.3*V _{DDIOx}	
V _{IH}	High level input	TC and TTa I/O	0.445*V _{DDIOx} +0.4			V
	voltage	FT and FTf I/O	0.5*V _{DDIOx} +0.2			
		All I/Os	0.7*V _{DDIOx}			
V _{hys}	Schmitt trigger	TC and TTa I/O		200		mV
	hysteresis	FT and FTf I/O		100		
I _{lkg}	Input leakage	TC,FT and FTf I/O			±0.1	uA
	current	TTa in digital mode				
		$V_{SS} <= V_{IN} <= V_{DDIOx}$				
		TTa in digital mode			1	
		$V_{DDIOx} <= V_{IN} <= V_{DDA}$				
		TTa in analog mode			± 0.2	
		$V_{SS} <= V_{IN} <= V_{DDA}$				
		FT and FTf I/O			10	
		$V_{DDIOx} <= V_{IN} <= 5V$				
R _{PU}	Weak pull-up	V _{IN} =V _{SS}		40		$\mathbf{K} \Omega$
	resistor					
R _{PD}	Weak pull-down	V _{IN} =-V _{DDIOX}		40		κΩ
	resistor					
C _{IO}	I/O pin			5		pF
	capacitance					

Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port	-	0.4	V
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8mA	V _{DDIOx} -0.4	-	
		$V_{DDIOx}>=2.7V$			
V_{OL}	Output low level voltage for an I/O pin	TTL port	-	0.4	V
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8mA	2.4	-	
		$V_{DDIOx}>=2.7V$			
V _{OL}	Output low level voltage for an I/O pin	I _{IO} = 20mA	-	1.3	V
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} >= 2.7V	V _{DDIOx} -1.3	-	
V _{OL}	Output low level voltage for an I/O pin	I _{IO} = 6mA	-	0.4	V
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} >= 2.7V	V _{DDIOx} -0.4	-	
V _{OL}	Output low level voltage for an I/O pin	I _{IO} = 4mA	-	0.4	V
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} >= 2.7V	V _{DDIOx} -0.4	-	1

FCM32H030x

V _{OLFm+}	Output low level voltage for an FTf I/O pin	I _{IO} = 20mA	-	0.4	V
	in FM+ mode	$V_{DDIOx}>= 2.7V$			
		I _{IO} = 10mA	-	0.4	

I/O AC characteristics

OSPEEDRy	Symbol	Parameter	Conditions	Min	Max	Unit
[1:0]						
х0	f _{max(IO)out}	Maximum frequency	C _L =50pF, V _{DDIOx} >=2V	-	2	MHz
	t _{f(IO)out}	Output fall time			38	ns
	t _{r(IO)out}	Output rise time		-	39	
01	f _{max(IO)out}	Maximum frequency	C _L =50pF, V _{DDIOx} >=2V	-	10	MHz
	$t_{f(IO)out}$	Output fall time		-	25	ns
	t _{r(IO)out}	Output rise time		-	25	
11	f _{max(IO)out}	Maximum frequency	C _L =30pF, V _{DDIOx} >=2.7V	-	50	
			C _L =50pF, V _{DDIOx} >=2.7V	-	30	MHz
			C _L =50pF, 2V<=V _{DDIOx} <2.7V	-	20	
	$t_{f(IO)out}$	Output fall time	C _L =30pF, V _{DDIOx} >=2.7V	-	6.5	
			C _L =50pF, V _{DDIOx} >=2.7V	-	9	
			C _L =50pF, 2V<=V _{DDIOx} <2.7V	-	15.5	ns
	$t_{r(IO)out}$	Output rise time	C _L =30pF, V _{DDIOx} >=2.7V	-	6.6	
			C _L =50pF, V _{DDIOx} >=2.7V	-	8.6	
			C _L =50pF, 2V<=V _{DDIOx} <2.7V	-	39	
Fm+	$f_{\text{max(IO)out}}$	Maximum frequency	$C_L=50pF, V_{DDIOx}>=2V$	-	2	MHz
configurat	t _{f(IO)out}	Output fall time		-	15.5	ns
ion	$t_{r(IO)out}$	Output rise time		-	39	
-	t _{EXTIpw}	Pulse width of external	-	10	-	ns
		signals detected by the				
		EXTI controller				

6.3.15 NRST 引脚特性

NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{\text{IL}(\text{NRST})}$	NRST input low level voltage	-	-	-	0.3*VDD	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445*VDD+0.4	-	-	
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R_{PU}	Weak pull-up resistor	V _{IN} =V _{SS}	-	40	-	ΚΩ
$V_{F(NRST)}$	NRST input filtered pulse	-	-	-	100	ns
V _{NF(NRST)}	NRST input not filtered	2.7 <vdd<3.6< td=""><td>300</td><td>-</td><td>-</td><td>ns</td></vdd<3.6<>	300	-	-	ns
	pulse	2.0 <vdd<3.6< td=""><td>500</td><td>-</td><td>-</td><td></td></vdd<3.6<>	500	-	-	

6.3.16 ADC 特性

ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage	-	1.8	3.3	5.5	٧
I _{DD(ADC)}	Current consumption of the ADC	V _{DDA} =3.3V	-	1.1	-	mA
f _{ADC}	ADC clock frequency	-	-	-	16	MHz
f _S	Sampling rate	12-bit resolution	0.03	-	1	MHz
f _{TRIG}	External trigger frequency	12-bit resolution	-	-	18	1/f _{ADC}
V _{AIN}	Conversion voltage range		0		V_{DDA}	V
Rt	Input resistor during sampling	V _{DDA} =3V		0.5		kΩ
Cs	Internal sample and hold capacitor			26	30	pF
ts	Sampling time	f _{ADC} =16MHz	4	-	-	1/f _{ADC}
t _{STAB}	Stabilization time		32	-	-	1/f _{ADC}
t _{CONV}	Total conversion time	12-bit resolution		12		1/f _{ADC}

ADC accuracy

Symbol	Parameter	Conditions	Тур	Max	Unit
ET	Total unadjusted error	f _{PCLK} =48MHz,	±1.5	-	LSB
EO	Offset error	f_{ADC} =16MHz,RAIN<10k Ω	±1.5	±3.0	
EG	Gain error	V _{DDA} =3V to 3.6V	±2	±5	
ED	Differential linearity error	TA=25C	±0.6	±1.5	
EL	Integral linearity error		±1.5	±3.0	

Analog Input Equivalent Circuit

$$Rs = \frac{Tsamp}{10 * Cs} - Rt$$

 R_{AIN} max for f_{ADC} = 16 MHz

FCM32H030x

T _s (cycles)	t _s (us)	RAIN max (kΩ)
4	0.35	0.33
7.5	0.47	1.1
13.5	0.84	2.3
28.5	1.78	5.4
41.5	2.59	8.1
55.5	3.47	11.1
71.5	4.47	14.4
239.5	14.97	49.4

6.3.17 温度传感器特性

TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L	V _{SENSE} linearity with temperature		±1	±2	С
Avg_Slope	Average slope	4.2	4.28	4.36	mV/C
V30	Voltage at 30C	1.423	1.425	1.43	٧
tSTART	ADC_IN16 buffer startup time		-	5	us
t _{S_temp}	ADC sampling time when reading the temperature	4	ı	-	us

7 封装信息

7.1 LQFP48 封装信息

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.

LQFP48 package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

7.2 LQFP32 封装信息

LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.

LQFP32 package outline

LQFP32 package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
e	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.100	-	-	0.0039

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

7.3 TSSOP20 封装信息

TSSOP20 is a 20-lead thin shrink small-outline, 6.5 x 4.4 mm, 0.65 mm pitch, package.

TSSOP20 package outline

TSSOP20 package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	-	-	1.200	-	-	0.0472
A1	0.050	-	0.150	0.0020	-	0.0059
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413
b	0.190	-	0.300	0.0075	-	0.0118
С	0.090	-	0.200	0.0035	-	0.0079
D ⁽²⁾	6.400	6.500	6.600	0.2520	0.2559	0.2598
Е	6.200	6.400	6.600	0.2441	0.2520	0.2598
E1 ⁽³⁾	4.300	4.400	4.500	0.1693	0.1732	0.1772
е	-	0.650	-	-	0.0256	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

^{1.} Values in inches are converted from mm and rounded to four decimal digits.

8 器件编码

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest FCM sales office.

9 版本历史

Date	Revision	Changes	
2020/3/17	0.1	初版	
2020/4/7	0.2	第 2 章表格: SPI/USART/I2C 所有型号增加到 2 个, RAM 修改为 8KB;	
		增加第5章寄存器映射表格;	
		增加第6章电气特性	
2020/4/8	0.21	修复 6.3.8 LSI I _{DDA(LSI)} 单位为 nA	
2020/5/21	0.22	修改 SPI 数目全部为 2 个	
2020/7/15	0.23	V _{REFINT} 增加 min/max 值	
		修改 SPI 数目在 32 脚及以下封装时为 1 个	
		插入目录	
2020/8/26	0.24	增加封装信息	
2020/9/8	0.25	增加引脚和型号说明	
2020/11/1	0.26	删除 64PIN 引脚信息;	
		6.3.10 t _{ERASE} 由 5ms 修改为 10ms;	
		删除 TIM2/TIM3 200MHz 时钟选择	
2020/11/25	0.27	增加 TIM15 相关描述	
2020/11/26	0.28	6.3.16 增加 RAIN max 表格	

10 其它

