SYDNEY TECHNICAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 3 Term 2 2016

Mathematics

Name.	• • • • • •	• • • •	 	• •	 	 	• •	 •	 • •	 •
Teacher	r									

General Instructions

- Reading Time 5 minutes.
- Working Time 90 min.
- Write using a blue or black pen.
- Board approved calculators may be used.
- The reference sheet is provided at the back of this paper.
- In Questions 6-9, show relevant mathematical reasoning and /or calculations.
- Begin each question on a fresh sheet of paper.

Total marks (58)

- Attempt Questions 1-9.
- All questions are of equal value.

Multiple Choice		5
Question 6		13
Question 7		13
Question 8		13
Question 9		14
TOTAL	·	58

Section 1

Multiple Choice (5 marks)
Use the multiple choice answer sheet for Question 1-5

1. Evaluate

$$\lim_{h \to 4} \frac{4-h}{16-h^2}$$

- (A) 0
- (B) $\frac{1}{8}$
- (C) $\frac{1}{4}$
- (D) 4

2.

Which of the following graphs could have the equation $y=1-e^x$?

(A)

(B)

(C)

(D)

- 3. What is the value of $8e^{-2}$ correct to 3 significant figures
 - (A) 1.08
 - (B) 1.082
 - (C) 1.083
 - (D) 1.10
- 4. What is the radius of the circle $x^2 + y^2 4x + 8y + 11 = 0$
 - (A) 2
 - (B) 4
 - (C) 9
 - (D) 3
- 5. Solve for x: $\tan x + \sqrt{3} = 0$, $-\pi \le x \le \pi$
 - (A) $\frac{2\pi}{3}$, $\frac{5\pi}{3}$
 - (B) $\frac{\pi}{3}$, $\frac{2\pi}{3}$
 - (C) $\frac{5\pi}{6}$, $\frac{-\pi}{6}$
 - (D) $\frac{2\pi}{3}$, $\frac{-\pi}{3}$

Section II

Total Marks (64) Attempt Questions 6 – 9.

Answer each question in your writing booklet.

In Questions 6-9, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (13 Marks)

Use a Separate Sheet of paper

(2 marks)

a) Differentiate $\frac{2x^4}{\cos x}$ with respect to x

(1 mark)

b) Find $\int \sec^2\left(\frac{x}{2}\right) dx$

(2 marks)

c) Find the primitive function of

i)
$$(3x-4)^6$$

ii)
$$\frac{6}{x^2}$$

(4 marks)

d)

- i) Show that $x = \frac{2\pi}{3}$ is a solution of $\cos x = \cos 2x$
- ii) Sketch on the same set of axes the functions $y = \cos x$ and $y = \cos 2x$ for $0 \le x \le 2\pi$
- iii) How many solutions does $\cos x = \cos 2x$ have for the domain $0 \le x \le 2\pi$?

e) Evaluate

$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin \frac{x}{2} \ dx$$

f) Solve $\sin x = \frac{-\sqrt{3}}{2}$ for $0 \le x \le 2\pi$

End of Question 6

(2 marks)

(2 marks)

Question 7 (13 Marks)

Use a Separate Sheet of paper

(3 marks)

a) Evaluate $\int_{-1}^{3} \left(x^2 + \frac{x}{2}\right) dx$

(3 marks)

b) The region bounded by the curve $y = 2 - \sqrt{x}$ and the y axis between y = 0 and y = 2 is rotated about the y axis to form a solid. Find the volume of the solid in simplest exact form.

(3 marks)

c)

- i) Find the first and second derivatives of $f(x) = xe^{-x}$
- ii) Find the set of values of x for which the function $f(x) = xe^{-x}$ is both decreasing and concave down.

(4 marks)

$$\mathbf{d)} \text{ If } \frac{d^2y}{dx^2} = 8\cos(2x)$$

- i) Find y, given that there is a stationary point at $(\frac{\pi}{2}, 1)$
- ii) Show that $\frac{d^2y}{dx^2} + 4y + 4 = 0$

End of Question 7

Question 8 (13 Marks)

Use a Separate Sheet of paper

(7 marks)

a)

- i) Solve the equation $1 2\cos x = 0$ for $0 \le x \le 2\pi$
- ii) Sketch the graph of the curve $y = 1 2\cos x$ for $0 \le x \le 2\pi$ showing clearly the coordinates of the endpoints and the maximum turning point.
- iii) Find in simplest exact form the area of the region bounded by the curve $y = 1 2\cos x$ and the x axis between x = 0 and $x = \pi$

(3 marks)

b) Evaluate and give the exact value of

$$\int_0^1 (e^{3x} + 1) \ dx$$

(3 marks)

c) Using a substitution, or otherwise, solve

$$2^{2x} - 8(2^x) = 0$$

End of Question 8

Question 9 (14 Marks)

Use a Separate Sheet of paper

a) The following diagram shows parts of the graphs of y = 2x - 3 and $y = 4x - x^2$

- A is the point (-1, -10). Find the x value at the point B. i)
- ii) Find the exact area between the curves (shaded)

b)

- i) State the x coordinate of B
- ii) Find the exact value of the shaded area

c) A portion of the curve $y = 3\sin(x + \frac{\pi}{6})$ is shown below.

Find

- i) the x value at A (in terms of π)
- ii) the y value at B
- iii) the coordinates of C (give x value in terms of π)
- iv) the x value at D (in terms of π)

End of Examination

⊕ ⊕ ⊕

Year 12 Mathematics HSC Assessment 2 Term 1 2016

1. B 2. B 3.A 4.D	$ ii\rangle y' = 6x^{-2}$
5. D	$\begin{aligned} ii\rangle y' &= 6x^{-2} \\ y' &= -6 \\ x &+ C \end{aligned}$
6. a)	$d) i) \cos \frac{2\pi}{3} = -\frac{1}{2}$
$\frac{d}{dx} = \frac{2x^4}{dx} = \frac{4x^5(8x^3)}{4x^5}$	$\omega s \frac{4\pi}{3} = -\frac{1}{2}$
$= \frac{\cos x \left(8x^{3}\right) + 2x^{4} \sin x}{\cos^{3} x}$	ii)
$= \frac{2x^3(4\cos x + x\sin x)}{\cos^2 x}$	$y = \cos x \qquad y = \cos 2x$
b) $\int scu^2 \frac{x}{2} dx$ $= 2 \tan \frac{x}{2} + C$	$\frac{1}{2\pi}$
(a) i) $\int (3x-4)^6 dx$ = $\frac{(3x-4)^7}{21} + C$	ili) 4 Solutions
-	

Year 12 Mathematics HSC Assessment 2 Term 1 2016

	常
e) Sin x dx	7.
JI 2 000	$\begin{array}{c c} 7. & 3 \\ a) & \int_{1}^{3} x^{2} + \frac{x}{2} dx \end{array}$
	1, 2
- 17/X TT	
$= \left[-\frac{2\cos \frac{x}{z}}{1}\right]^{T}$	$= \left[\frac{1}{3}x^3 + \frac{1}{4}x^2\right]^3$
, 12	
	$=\frac{1}{3}\left(3^{2}-\left(-1\right)^{3}\right)+\frac{1}{4}\left(3^{2}-\left(-1\right)^{2}\right)$
= -2605 <u>T</u> + 2 cos <u>T</u>	
•	= 28 + 8
$=0+\frac{2}{\pi}$	3 4
i e	= 11 \(\frac{1}{3} \)
$=\frac{7}{52} \text{ or } \sqrt{5}$	11 3
52 OV V C	
	11 16 (2 7 7 1
*	b) V= \[1 \int \tau \tag{1} \tag{1}
g) $\sin x = \frac{-\sqrt{3}}{2}$	*
· · · · · · · · · · · · · · · · · · ·	$=\int_{D}^{2} \overline{II}(z-y)^{4} dy$
J.S.	o s ag
	. 72
y - 4TT ST	$= -\prod_{s} \left[(z-y)^{s} \right].$
$x = \frac{4\pi}{3}, \frac{5\pi}{3}$	5 [0
	-TT (5\
	$=\frac{-TT}{5}\left(0-2^{5}\right)$
	= 32TT units 3
	5

	প্ল
c) f(x)=xe-x	(d) \tilde{i}
	d) 1) y' = \8 cos Zx dx
$f'(x) = 1.e^{-x} + x.(-e^{-x})$	
$= (1-x)e^{-x}$	= 4sin Zx + C,
$=(1-x)e^{-x}$	
f(x) LO for x>1	y'=0 when x=I
jor 27	·. G=0
$f''(x) = -e^{-x} - (1-x)e^{-x}$	y = 545in 2x dx
	·
$= (x-z)e^{-x}$	= -2 cos 2x + Cz
· (11/)	$y=1$ $\lambda=\frac{T}{2}$
-: f"(x) <0 for x < Z	J-1 30-2
	1 = -2 cosTT + 62
d) ii]	I CWSII + Lz
y"+4y+4=0	= -2(-1) + 6
0	
LHS=8 cos2x + 4(-lios2x-1)+4	L7 -
= 8cos7x-8cos7x-4+4	i. y=-2 LOSZx-1
=0	~
=RHS	

Year 12 Mathematics HSC Assessment 2 Term 1 2016

	•
8.	3)
(a);)	((e3x+1) du
1-2005x=0, 05xcz4	0 '
	- (_e3x +>c]
COSX = 1	= 130
	30
$\mathcal{L} = \frac{T}{3}, \frac{ST}{3}$	e
3	$=\frac{e}{3}+1-\frac{1}{3}$
11)	$=\frac{e^3}{7}+\frac{2}{3}$
у (5)	- 3 + 3
3 <u>Λ</u> (π, 3)	
$y = 1 - 2\cos x$	C) / 7/2
	$(2)^{2} - 8(2^{2}) = 0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 3 3 3 3 (2 π ,-1)	$\frac{3(2-8)=0}{2}$
	×
<i>iii)</i>	2 -8
$A = -\int_{0}^{\frac{11}{3}} (1 - 2\cos x) dx + \int_{0}^{\frac{11}{3}} (1 - 2\cos x) dx$	V - 7
Jo C SSJAX (CCOSX) AX	x = 3
7	
$= -\left[x - 2\sin x\right]^{\frac{1}{2}} + \left[x - 2\sin x\right]^{\frac{1}{2}}$	
3	
(事-2季)+[(17-号)-2(0-	\(\frac{1}{2} \)
	Z)]
$=\frac{T}{2}+2\sqrt{3}$	
S	·

9	
al i	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$4x-x^2=2x-3$	11 D 12 - 4
x2-2x-3=0	
	(ii) 5TT
(x+1)(x-3)=0	$A = \int_{\overline{I}}^{SIT} \sin x - \cos x dx$
i. x=1,3	<u> </u>
At B, x = 3	$= \left(-\cos\frac{5\pi}{4} - \sin\frac{5\pi}{4}\right)$
ii) Area=	- (-los II - sin II).
$\int_{-1}^{3} [(4x-x^{2})-(2x-5)] dx$	$= \left[-\left(\frac{-1}{J_2} \right) - \left(\frac{-1}{J_2} \right) - \left(\frac{-1}{J_2} \right) - \left(\frac{-1}{J_2} \right) \right]$
$= \int_{-1}^{3} (2x - x^2 + 3) dx$	$=\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}$
$= \left[x^{2} - \frac{3c^{3}}{3} + 3x \right]_{-1}^{3}$	$= \frac{4}{\sqrt{2}} \text{or } 2\sqrt{2} u^2$
= (9-9+9) - (1+ = -3)	
$= 10 \frac{2}{3} u^2$	
·	
	₹

	*
c) i) $3\sin\left(3z+\frac{\pi}{6}\right)=0$	
$\therefore \alpha + \frac{\pi}{6} = 0, \pi$	
$x = \frac{-11}{6}, \frac{517}{6}$	
$At A \times = -\frac{\pi}{6}$	
ii) $x=0$, $y=3\sin\frac{11}{6}$	
= 1 +	•
~\	
y = 3	*
$3\sin\left(x+\frac{\pi}{6}\right)=3$	į
21+11 - 11 6 - Z	
$\therefore \ \mathcal{L} = \frac{2 \text{T}}{36}$	•
= 17	
iv) x = 5TT (from i)	•