	·			
	PUNE INSTITUTE OF COMPUTER TECHNOLOGY			
PICT BR	PUNE - 411043			
	Department of Electronics & Telecommunication			
	ASSESMENT YEAR: 2020-2021	CLASS: SE 5		
	SUBJECT: DATA STRUCTURES			
EXPT No: 6	LAB Ref: SE/2020-21/	Starting date: 05/12/2020		
	Roll No: 22119	Submission date: 05/12/2020		
Title:	Creation of Graph			
Prerequisites:	- DEVG : IDE			
Tierequisites.	• DEVC++ IDE			
	Graphs in C Structures and linked list in a			
	Structures and linked list in c			
Objectives:	Learn the concepts nonlinear data structure in implementation of graph			
,	(Cyclic data structure).			
	` •	raph nodes using queue structure.		
	Apply DFS traversal to visit graph nodes using stack structure			
Theory:				
	Graphs are one of the most interesting data structures in computer science. Graphs and the trees are somewhat similar by their structure. two important			
	differences between trees and graphs.			
	1. Unlike trees, in graphs, a node can have many parents.			
	 The link between the nodes may have values or weights. Every graph has two components, Nodes and Edges. Nodes are implemented 			
	by class, structures or as Link-List nodes. Edges represent the connection between nodes.			
	Adjacency Matrix It is a two-dimensional array with Boolean flags.			
	Graph Traversal The breadth first search (BFS) and the depth first search (DFS) are the two			
	algorithms used for traversing and searching a node in a graph. They can also be used to find out whether a node is reachable from a given node or not.			

P:f-LTL-UG/03/R1 Page **1** of **6**

Algorithm **Breadth First Search (B.F.S) Step 1**: Push the root node in the Queue. **Step 2**: Loop until the queue is empty. **Step 3**: Remove the node from the Queue. Step 4: If the removed node has unvisited child nodes, mark them as visited and insert the unvisited children in the queue. **Depth First Search (D.F.S) Step 1**: Push the root node in the Stack. **Step 2**: Loop until stack is empty. **Step 3**: Peek the node of the stack. Step 4: If the node has unvisited child nodes, get the unvisited child node, mark it as traversed and push it on stack. **Step 5**: If the node does not have any unvisited child nodes, pop the node from the stack.

P:f-LTL-UG/03/R1 Page **2** of **6**

P:f-LTL-UG/03/R1 Page **3** of **6**

P:f-LTL-UG/03/R1 Page **4** of **6**

P:f-LTL-UG/03/R1 Page **5** of **6**

ERROR	None	
REMEDY	None	
CONCLUSION	N:	
	Hence, we have learnt the concept of nonlinear data structure	
	BFS traversal to visit graph nodes using queue structure done	
	DFS traversal to visit graph nodes using queue structure	
REFERENCES		
	1) Seymour Lipschutz, Data Structure with C, Schaum's Outlines, Tata	
	McGrawHill	
	2) Yedidyah Langsam – Data structures using C and C++ - PHI	
	Publications (2nd Edition).	
	3) Yashavant Kanetkar, Data Structures Through C, BPB Publication, 2nd	
	Edition	

Continuous Assessment			Assessed By
RPP (5)	ARR (5)	Total (10)	Signature:
		XX	Date:

P:f-LTL-UG/03/R1 Page 6 of 6