EE 513: Stochastic Systems Theory Fall 2022 Schmid

Homework Assignment 7 Distributed: Wednesday, November 30, 2022 Due: Wednesday, December 7, 2022

This is the last homework

Reference Material:

- 1. class notes
- 2. Leon-Garcia'08, Ch. 9: Random Processes (Sec. 9.1-9.6), and Ch. 10: Analysis and Processing of Random Signals (Sec. 10.1-10.4)

The following exercises are for self-study and will not be graded. The solutions will be provided.

Exercise 7.1 (Leon-Garcia'94, problem 57, page 396)

Let $\{X(t): -\infty < t < \infty\}$ and $\{Y(t): -\infty < t < \infty\}$ be independent, wide-sense stationary random processes with zero means and the same covariance function $K(\tau)$. Let $\{Z(t): -\infty < t < \infty\}$ be defined by:

$$Z(t) = aX(t) + bY(t),$$

where a and b are real numbers.

- (a) Determine whether or not $Z(\cdot)$ is also wide-sense stationary.
- (b) Determine the probability density function of Z(t) if, in addition, $X(\cdot)$ and $Y(\cdot)$ are jointly Gaussian random processes.

Exercise 7.2 (Leon-Garcia'94, problem 19, page 452) Let Y(t) be a T-second moving time-average of a WSS random process X(t), defined by:

$$Y(t) = \frac{1}{T} \int_{t-T}^{t} X(u) du.$$

Determine the power-density spectrum $S_Y(f)$ of $Y(\cdot)$ in terms of the power-density spectrum $S_X(f)$ of $X(\cdot)$.

Exercise 7.3 (Leon-Garcia'94, problem 19, page 391) Let X(t) be a zero-mean Gaussian random process with covariance function K(t,u). If X(t) is the input to a "square-law detector," then the output is given by

$$Y(t) = X^2(t).$$

Determine the mean and the covariance functions of the random process Y(t).

Two of the following problems will be selected at random and graded.

Problem 7.1: Given a function $X(t) = 2\sin(2\pi(1000)t + \Theta)$, where Θ is uniformly distributed between $-\pi$ and π

$$f_{\Theta}(\theta) = \begin{cases} 1/(2\pi) & \text{for } -\pi < \theta < \pi \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the mean of X(t)
- (b) Find the autocorrelation of X(t)
- (c) Is X(t) wide sense stationary (WSS)? If so, find the power spectral density (PSD) of X(t).

Problem 7.2: Additive white Gaussian noise W(t) with two-sided spectral density $N_0/2 = 0.1$ W/Hz is input into a linear time invariant filter with frequency response

$$H(f) = \begin{cases} 2, & \text{for } -10 < f < 10 \\ 0, & \text{otherwise} \end{cases}$$

The output is $\widetilde{W}(t) = W(t) * h(t)$, where h(t) is the filter response and "*" stands for convolution.

- (a) Determine the autocorrelation function $R_W(\tau)$ of W(t).
- (b) Determine $m_{\widetilde{W}}(t) = E[\widetilde{W}(t)]$.
- (c) Determine the power spectral density at the filter output $S_{\widetilde{w}}(f)$.
- (d) Determine $E[(\widetilde{W}(t))^2]$.
- (e) Give the pdf of the output sampled at time t_1 .
- (f) Give an expression for $P[\widetilde{W}(t_1) > 3]$.

Problem 7.3: The input to a linear time-invariant filter is X(t) = S(t) + W(t), where W(t) is additive white Gaussian noise with two-sided spectral density $N_0/2 = 0.001$ W/Hz, and S(t) is a WSS process with autocorrelation:

$$R_S(\tau) = 6000 \operatorname{sinc}(3000\tau)$$
.

The filter has frequency response:

$$H(f) = \begin{cases} 5 & |f| < 1000 \\ 2 & 1000 < |f| < 2000 \\ 0 & \text{otherwise} \end{cases}$$

Determine the SNR at the output of the filter. Express your answer in dB.

Note: The function $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$.

Problem 7.4: Shown below are two sets of functions. The left column contains seven possible correlation functions, and the right column contains seven possible power-spectral densities.

- a. For each function in the left column:
 - 1) Determine if it is a legitimate correlation function for some real-valued, stationary random process.
 - 2) If it is, determine the power-density spectrum that corresponds to it in the right-hand column. If necessary, apply appropriate scale factors to the ordinate and abscissa or add a suitable function. Determine all scale factors and constants.
- b. For each function in the right column:
 - 1) Determine if it is a legitimate power-spectral density function for some real-valued, stationary random process.
 - 2) If it is, determine the correlation function that corresponds to it in the left-hand column. If necessary, apply appropriate scale factors to the ordinate and abscissa or add a suitable function. Determine all scale factors and constants.