Problem 1): Let $x, y, e, x^{-1} \in \mathcal{G}$ where $e \in \mathcal{G}$ is the identity element of \mathcal{G} and x^{-1} is such that both $x x^{-1} = e = x^{-1} x$ and $y x^{-1} = e = x^{-1} y$ hold. Therefore we have

$$x x^{-1} = y x^{-1} ag{1.1}$$

$$x x^{-1} = x^{-1} y ag{1.2}$$

$$x^{-1} x = y x^{-1} (1.3)$$

$$x^{-1}x = x^{-1}y ag{1.4}$$

By applying the cancelation rule ($ab = ac \Rightarrow b = c$ for $a, b, c \in \mathbb{G}$ for any group \mathbb{G}) to the expression in 1.1 and 1.4, it is clear that we have

$$x = y \tag{1.5}$$

Since G is abelian, we may rewrite the expression in 1.2 as

$$x x^{-1} = x^{-1} x = x^{-1} y$$

or

$$x x^{-1} = y x^{-1} = x^{-1} y$$

From either expression, the application of the cancelation rule yields the same result as in expression 1.5. Similarly, we use the abelian property of \mathcal{G} to rewrite the expression in 1.3 as

$$x^{-1} x = x x^{-1} = y x^{-1}$$

or

$$x^{-1} x = x^{-1} y = y x^{-1}$$

Again, applying the cancelation rule to either expression yields the same result as in 1.5. Therefore, every element in an abelian group must have a unique inverse.

Problem 2): Let \mathcal{G} be a finite group and $g \in \mathcal{G}$. Now define $\langle g \rangle \equiv g^0, g^1, g^2, \dots, g^k, \dots$, where $k \in \mathbb{N}$. Beginning with the multiplicative case, let $m, n \in \mathbb{N}$ so that we have

$$g^m g^n = g^{m+n}$$

Since $m, n \in \mathbb{N}$ and \mathbb{N} is closed under addition, $(m+n) \in \mathbb{N}$, it is clear that $g^{m+n} \in \langle g \rangle$. Therefore, $\langle g \rangle$ is closed under its operation. From our definition of $\langle g \rangle$, we know that $g^0 \in \langle g \rangle$. Additionally, $g^0 \equiv e = 1$; therefore $\langle g \rangle$ contains the identity element. Now, let $m \in \mathbb{Z}^+$ and write $g^{-m} g^m$. Using $g^{-m} \equiv (g^{-1})^m$, this yields

$$g^{-m} g^m = (g^{-1})^m g^m = (g^{-1} g)^m = (e)^m = e = 1$$

which implies the existence of an inverse for each element in $\langle g \rangle$. Finally, let $m, n, k \in \mathbb{N}$, then we have

$$g^{m}(g^{n}g^{k}) = g^{m}(g^{n+k}) = g^{m+(n+k)}$$
 (2.1)

Since $\mathbb N$ is associative under addition, the expression in 2.1 may be rewritten as

$$g^{m+(n+k)} = g^{(m+n)+k} = (g^{m+n}) g^k = (g^m g^n) g^k$$

thereby demonstrating the associativity of operations in $\langle g \rangle$. Since \mathcal{G} is finite, it has order $m = |\mathcal{G}|$. Therefore, the elements of $\langle g \rangle$ will be repeats of elements in \mathcal{G} starting with g^{m+1} . Moreover, this means that $\langle g \rangle \subseteq \mathcal{G}$, thus satisfying the last condition for $\langle g \rangle$ to be a sub-group of \mathcal{G} .

Continuing with the additive case, let $m, n \in \mathbb{N}$ so that we have

$$m \times g \, n \times g = (m+n) \times g$$

Since $m, n \in \mathbb{N}$ and \mathbb{N} is closed under addition, $(m+n) \in \mathbb{N}$, it is clear that $(m+n) \times g \in \langle g \rangle$. Therefore, $\langle g \rangle$ is closed under its operation. From our definition of $\langle g \rangle$, we know that $0 \times g \in \langle g \rangle$. Additionally, $0 \times g \equiv e = 0$; therefore $\langle g \rangle$ contains the identity element. Now, let $m \in \mathbb{Z}^+$ and write $(-m) \times g = m \times (-g)^m$, this yields

$$(-m) \times g \, m \times g = m \times (-g) \, m \times g = m \times (-g \, g) = m \times (e) = e = 0$$

which implies the existence of an inverse for each element in $\langle q \rangle$. Finally, let $m, n, k \in \mathbb{N}$, then we have

$$m \times g \ (n \times g \ k \times g) = m \times g \ ((n+k) \times g) = (m+(n+k)) \times g \tag{2.2}$$

Since $\mathbb N$ is associative under addition, the expression in 2.2 may be rewritten as

$$(m+(n+k))\times g=((m+n)+k)\times g=(m+n)\times g\ k\times g=(m\times g\ n\times g)\ k\times g$$

thereby demonstrating the associativity of operations in $\langle g \rangle$. Since $\mathcal G$ is finite, it has order $m = |\mathcal G|$. Therefore, the elements of $\langle g \rangle$ will be repeats of elements in $\mathcal G$ starting with $(m+1) \times g$. Moreover, this means that $\langle g \rangle \subseteq \mathcal G$, thus satisfying the last condition for $\langle g \rangle$ to be a sub-group of $\mathcal G$.

Problem 3): Since $\mathbb{Z}_{\mathfrak{p}}^{\star} \equiv \{a \in \{1, 2, \dots, \mathfrak{p} - 1\} \mid \gcd(a, \mathfrak{p}) = 1\}$, for any $\mathfrak{p} \in \mathbb{Z}^+$, the set of possible elements for $\mathbb{Z}_{\mathfrak{p}^e}^{\star}$ is defined as

$$\mathbb{Z}_{p^e}^{\star} \subset \{1, 2, \dots, p^e - 1\}$$
 (3.1)

This implies the following relation between the cardinalities of these sets

$$|\mathbb{Z}_{p^e}^{\star}| < |\{1, 2, \dots, p^e - 1\}|,$$

where $|\{1,2,\ldots,p^e-1\}|$ has the value $|\{1,2,\ldots,p^e-1\}|=(p^e-1)$. It follows that the value of $|\mathbb{Z}_{p^e}^*|$ can be obtained by determining the set of all values in $\{1,2,\ldots,p^e-1\}$ that do not satisfy the conition given in 3.1 and subtracting the cardinality of this set from (p^e-1) . Since the common multiple is p, we will write this set in terms of be. Thus, the set of values in $\{1,2,\ldots,p^e-1\}$ that do not satisfy the condition in 3.1 may be defined as

$$\{p, 2p, 3p, \dots, pp, 2pp, 3pp, \dots, p^2p, \dots, (p^{e-1}-1)p\}$$

This definition arises because only multiples of p do not satisfy the condition in 3.1 and because $(p^{e-1}-1)$ $p=p^e-p$ is the largest element of $\{1,2,\ldots,p^e-1\}$ that does not satisfy the confition in 3.1. The cardinality of this set, $\{p,2p,3p,\ldots,p\,p,2p\,p,3p\,p,\ldots,p^2\,p,\ldots,(p^{e-1}-1)\,p\}$ is clearly

$$|\{p, 2p, 3p, \dots, p p, 2p p, 3p p, \dots, p^2 p, \dots, (p^{e-1} - 1) p\}| = (p^{e-1} - 1)$$

Subtracting this value from $|\{1, 2, \dots, p^e - 1\}| = (p^e - 1)$ finally yields

$$\phi(p^e) = (p^e - 1) - (p^{e-1} - 1) = p^e - 1 - p^{e-1} + 1 = p^e - p^{e-1} = p^{e-1}(p - 1)$$

as desired.

To show that

$$\phi(pq) = \phi(p) \ \phi(q)$$

holds for any relatively prime p and q, we apply a similarly strategy to the one used above. The number of possible elements of \mathbb{Z}_{pq}^{\star} is pq-1. As before, we must take into account that some possible elements of \mathbb{Z}_{pq}^{\star} will not satisfy the definition in 3.1. If we subtract the number of these elements, then we will have $\phi(pq) = |\mathbb{Z}_{pq}^{\star}|$. Since there are p-1 multiples of q that do not satisfy the condition in 3.1, we must subtract p-1 from pq-1. Similarly, since there are also q-1 multiples of p that do not satisfy the same condition, we must also subtract q-1 from pq-1. Carrying out these subtractions gives

$$\phi(pq) = (pq - 1) - (p - 1) - (q - 1)$$

$$= pq - 1 - p + 1 - q + 1$$

$$= pq - p - q + 1$$

$$= (p - 1)(q - 1)$$

$$= \phi(p) \phi(q)$$

since $\phi(p)$ and $\phi(q)$ are defined as $\phi(p) = p - 1$ and $\phi(q) = q - 1$, respectively.

We will now use the previous result to show that, for an integer $N = \prod_i \{p_i^{e_i}\}$ and p_i distinct primes, we have

$$\phi(N) = \prod_{i} \left\{ p_i^{e_i - 1} \left(p_i - 1 \right) \right\}$$

To begin, we substitute $N = \prod_{i} \{p_i^{e_i}\}$ for N in the previous expression. This gives

$$\phi\left(N\right) = \phi\left(\prod_{i} \left\{p_{i}^{e_{i}}\right\}\right)$$

Using the result $\phi(pq) = \phi(p) \phi(q)$, we have

$$\phi\left(N\right) = \prod_{i} \left\{\phi\left(p_{i}^{e_{i}}\right)\right\}$$

Finally, we apply the result $\phi\left(p^{e}\right)=p^{e-1}\left(p-1\right)$ to obtain

$$\phi(N) = \prod_{i} \{ p_i^{e_i - 1} (p_i - 1) \}$$

as expected.

Problem 4): We denote the cross product of groups \mathcal{G} and \mathcal{H} as $\mathcal{G} \times \mathcal{H}$ and define it by

$$(g,h) \circ (g',h') \equiv (g \circ_{\mathcal{G}} g', h \circ_{\mathcal{H}} h') \tag{4.1}$$

To show that $\mathcal{G} \times \mathcal{H}$ is a group, we begin by proving closure under its operation. Since \mathcal{G} and \mathcal{H} are groups, the we have $(g \circ_{\mathcal{G}} g') \in \mathcal{G}$ and $(h \circ_{\mathcal{H}} h') \in \langle$. Thus $\mathcal{G} \times \mathcal{H}$ is closed under its operation. Next, we must show the existence of an identity in $\mathcal{G} \times \mathcal{H}$. If we modify the expression in 4.1 so that $g' = e_{\mathcal{G}}$ and $h' = e_{\mathcal{H}}$, then we have

$$(g,h) \circ (e_{\mathcal{G}}, e_{\mathcal{H}}) = (g \circ_{\mathcal{G}} e_{\mathcal{G}}, h \circ_{\mathcal{H}} e_{\mathcal{H}})$$

= (g,h)

Therefore, $\mathcal{G} \times \mathcal{H}$ contains an identity element and it is defined as $(e_{\mathcal{G}}, e_{\mathcal{H}})$. Next, we must demonstrate

the existence of inversed in $\mathcal{G} \times \mathcal{H}$. To do this, we again modify the expression in 4.1. This time we substitute $g' = g^{-1}$ and $h' = h^{-1}$. Applying this substitution to the expression in 4.1 gives

$$(g,h) \circ (g^{-1}, h^{-1}) = (g \circ_{\mathcal{G}} g^{-1}, h \circ_{\mathcal{H}} h^{-1})$$
$$= (e_{\mathcal{G}}, e_{\mathcal{H}})$$

Thus, $\mathcal{G} \times \mathcal{H}$ contains inverses for each of its elements. Lastly, we show that associativity holds in $\mathcal{G} \times \mathcal{H}$. We begin with

$$((g_1, h_1) \circ (g_2, h_2)) \circ (g_3, h_3) = (g_1 \circ_{\mathcal{G}} g_2, h_1 \circ_{\mathcal{H}} h_2) \circ (g_3, h_3)$$
$$= ((g_1 \circ_{\mathcal{G}} g_2) \circ_{\mathcal{G}} g_3, (h_1 \circ_{\mathcal{H}} h_2) \circ_{\mathcal{H}} h_3)$$
(4.2)

Using the associativity of \mathcal{G} and \mathcal{H} , we have

$$((g_1 \circ_{\mathcal{G}} g_2) \circ_{\mathcal{G}} g_3, (h_1 \circ_{\mathcal{H}} h_2) \circ_{\mathcal{H}} h_3) = (g_1 \circ_{\mathcal{G}} (g_2 \circ_{\mathcal{G}} g_3), h_1 \circ_{\mathcal{H}} (h_2 \circ_{\mathcal{H}} h_3))$$

Thus, the expression in 4.2 becomes

$$((g_1, h_1) \circ (g_2, h_2)) \circ (g_3, h_3) = ((g_1 \circ_{\mathcal{G}} g_2) \circ_{\mathcal{G}} g_3, (h_1 \circ_{\mathcal{H}} h_2) \circ_{\mathcal{H}} h_3)$$
$$= (g_1 \circ_{\mathcal{G}} (g_2 \circ_{\mathcal{G}} g_3), h_1 \circ_{\mathcal{H}} (h_2 \circ_{\mathcal{H}} h_3))$$

which implies that associativity holds for $\mathcal{G} \times \mathcal{H}$.

Problem 5): First, we will show that if $x \in \mathbb{Z}_N$, then $\forall x \in \mathbb{Z}_N^{\star}$, $f(x) = (x_p, x_q)$ where $x_p \in \mathbb{Z}_p$ & $x_q \in \mathbb{Z}_q$ and $x_p \in \mathbb{Z}_p^{\star}$ & $x_q \in \mathbb{Z}_q^{\star}$. To do this, we assume, to the contrary, that $x_p \notin \mathbb{Z}_p^{\star}$. This assumption implies that $\gcd([x \mod p], p) \neq 1$ and, by extension, that $\gcd(x, p) \neq 1$. Moreover, this leads to the conclusion that

 $\gcd(x,N) \neq 1$. This cannot be, otherwise we would have $z \notin \mathbb{Z}_N^{\star}$, violating the definition of \mathbb{Z}_N^{\star} we started with. Therefore, $x_p \in \mathbb{Z}_p^{\star}$ must hold. To show that $x_q \in \mathbb{Z}_q^{\star}$ must also hold, we make the similar contrary assumption (that $x_q \notin \mathbb{Z}_q^{\star}$) and arrive at a similar contradiction, thereby requiring that $x_q \in \mathbb{Z}_q^{\star}$.

Next, we will show that f is an isomorphism. We begin by showing that f is one-to-one. To begin, let

$$f\left(x\right) = \left(x_p, x_q\right) = f\left(x'\right)$$

Then, we let

$$x = x_p = x' \mod p$$

and

$$x = x_q = x' \mod q$$

This implies that (x - x') is divisible by both p and q. However, since p|N & q|N and $\gcd(p,q) = 1$, we must have (x - x') divisible by pq = N. This implies that $x = x' \mod N$ and $x' = x \mod N$. Moreover, since $x, x' \in \mathbb{Z}_N$, we <u>must</u> have x = x' so f must also be **one-to-one**.

Continuing, since $|\mathbb{Z}_p| = p$ and $|\mathbb{Z}_q| = q$, we must have

$$|\mathbb{Z}_p \times \mathbb{Z}_q| = |\mathbb{Z}_p| \cdot |\mathbb{Z}_q| = pq \tag{5.1}$$

Now, we have N = pq and $|\mathbb{Z}_N| = N$, so the expression in 5.1 becomes

$$|\mathbb{Z}_p \times \mathbb{Z}_q| = pq$$

$$= N$$

$$= |\mathbb{Z}_N|$$

Therefore, f must also be <u>onto</u> and, by extension, bijective.

Finally, we must show that

$$f((a+b) \mod N) = [(a+b) \mod p] \circ_{\mathbb{Z}_N} [(a+b) \mod q]$$
$$= [(a+b) \mod p] \boxplus [(a+b) \mod q]$$
$$= f(a) \boxplus f(b)$$

Since we have defined $f(x) \equiv ([x \mod p], [x \mod q])$, we may write $f((a+b) \mod N)$ as

$$f((a+b) \mod N) = ([[(a+b) \mod N] \mod p], [[(a+b) \mod N] \mod q])$$
 (5.2)

Now, since p|N and q|N, we have

$$[[X \mod N] \mod p] = [[X \mod p] \mod p]$$
$$= [X \mod p]$$

and

$$\begin{aligned} [[X \mod N] \mod q] &= [[X \mod q] \mod q] \\ &= [X \mod p] \end{aligned}$$

Therefore, the expression in 5.2 becomes

$$\begin{split} f\left((a+b) \mod N\right) &= \left(\left[\left[(a+b) \mod N\right] \mod p\right], \left[\left[(a+b) \mod N\right] \mod q\right]\right) \\ &= \left(\left[\left[(a+b) \mod p\right] \mod p\right], \left[\left[(a+b) \mod q\right] \mod q\right]\right) \\ &= \left(\left[(a+b) \mod p\right], \left[(a+b) \mod q\right]\right) \end{split}$$

Separating this result according to a and b gives

$$\begin{aligned} \left(\left[\left(a+b\right) \mod p\right], \left[\left(a+b\right) \mod q\right]\right) &= \left(\left[a \mod p\right], \left[a \mod q\right]\right) \boxplus \left(\left[b \mod p\right], \left[b \mod q\right]\right) \\ &= f\left(a\right) \boxplus f\left(b\right) \end{aligned}$$

as desired.

Problem 6): We begin by applying the <u>Euler Phi Function</u> to $(x^e)^d = x \mod N$ so that we obtain the result

$$\phi\left(\left(x^{e}\right)^{d}\right) = \phi\left(x \mod N\right)$$

Problem 7):

Problem 8):

Problem 9):

Problem 10):

Problem 11):

Problem 12):

Problem 14):

Problem 15):

Problem 16):

Problem 17):

Problem 18):