INF210: Modelling of Computing Oblig 1

Åsmund Agissiag Arild Kløvstad

September 24, 2020

main.pdf 3.6

(2) Give the complete labelled transition relation for the 3-puzzle

We let $\{xyz4 \xrightarrow{l} xy4z\}$ denote $\{(xyz4, l, xy4z) \mid x \neq y \neq z \in \{1, 2, 3\}\}$ the set of transitions from states of the form xyz4 to states of the form xy4z by the label l.

$$R = \{xyz4 \xrightarrow{l} xy4z\} \cup \{xyz4 \xrightarrow{u} x4zy\}$$
$$\cup \{xy4z \xrightarrow{r} xyz4\} \cup \{xy4z \xrightarrow{u} 4yxz\}$$
$$\cup \{x4yz \xrightarrow{l} 4xyz\} \cup \{x4yz \xrightarrow{d} xzy4\}$$
$$\cup \{4xyz \xrightarrow{r} x4yz\} \cup \{x4yz \xrightarrow{d} yx4z\}$$

(3) Make the deterministic LTS for $(L, S, R) = (\{a, b\}, \{s_0, s_1, s_2\}, \{(s_0, a, s_0), (s_0, a, s_1), (s_1, b, s_2), (s_2, b, s_2)\})$

Nondeterministic ⇒ deterministic LTS (ignoring states with no transitions)

in text the deterministic LTS

$$(L', S', R') = (\{a, b\}, \mathcal{P}(S), \{(\{s_0, a, \{s_0, s_1\}), (\{s_0, s_1\}, a, \{s_0, s_1\}), (\{s_0\}, b, \{s_2\}), (\{s_2\}, b, \{s_2\})\})$$

(5) Design an LTS with 11 states that describes the payment of at least 10 with units of 1, 2, 5 and 10. (no change).

Let $a \oplus b$ denote $min\{a+b, 10\}$ or

$$\begin{split} L &= \{1,2,5,10\} \\ S &= \{0,1,2,3,4,5,6,7,8,9,10\} \\ R &= \{\{n,1,n\oplus 1\} \cup \{n,2,n\oplus 2\} \cup \{n,5,n\oplus 5\} \cup \{n,10,n\oplus 10\} \mid n \in S\} \end{split}$$

(6) Show that in any given LTS, if $s'', \boldsymbol{v} \vdash_R^* s', \lambda$ and $s', \boldsymbol{u} \vdash_R^* s, \lambda$, then $s'', \boldsymbol{uv} \vdash_R^* s, \lambda$. $s'', \boldsymbol{v} \vdash_R^* s', \lambda$ means that our LTS contains the steps $s' \xrightarrow{v_0} \cdot \xrightarrow{v_1} \dots \xrightarrow{v_n} s''$ where v_0, v_1, \dots, v_n are the symbols of \boldsymbol{v} . Similarly we haves $\xrightarrow{u_0} \cdot \xrightarrow{u_1} \dots \xrightarrow{u_n} s'$. We can concatenate these paths to form $s \xrightarrow{u_0} \cdot \xrightarrow{u_1} \dots \xrightarrow{u_n} s' \xrightarrow{v_0} \cdot \xrightarrow{v_1} \dots \xrightarrow{v_n} s''$ which means $s'', \boldsymbol{uv} \vdash_R^* s, \lambda$

(8) Prove:

(1) For any state $x \in S$ and word $\boldsymbol{w} \in L^*$, there exists a unique state $Y_{x,\boldsymbol{w}} \in \mathcal{P}(S)$ such that $Y_{x,\boldsymbol{w}}, \boldsymbol{w} \vdash_{R_{\mathcal{P}}}^* \{x\}, \lambda$.

We prove (1) by induction on \boldsymbol{w} .

Step 0:

$$\mathbf{w} = \lambda \Rightarrow Y_{x,\mathbf{w}} = \{x\}$$

 $\{x\}$ is a unique set so (1) holds for the empty word.

Induction step: Assume $Y_{x,w}$ is a unique state, we look at $Y_{x,wl}$ for some arbitrary label l. $Y_{x,wl} = r(Y_{x,w}, l)$ and since r is a function, this is a unique set.

main.pdf 5.6

(2) Let (M, 1, *) be a finite monoid and $\varphi : \Sigma^* \to M$ a morhpishm from $(\Sigma^*, \lambda \cdot)$ to (M, 1, *). Show that the image of a word is given by the images of its letters.

We want to show $\varphi(l_1...l_n) = \varphi(l_1) * ... * \varphi(l_n)$.

 $\varphi(l_1...l_n) = \varphi(l_1 \cdot ... \cdot l_n)$ a word is the concatenation of its letters $= \varphi(l_1) * ... * \varphi(l_n)$ by the associativity of concatenation, and the morphishm condition

Show that for every $F \subseteq M$, $L = \{ \boldsymbol{w} \in \Sigma^* \mid \varphi(\boldsymbol{w}) \in F \}$ is regular.

We construct a finite state machine $M_L = (\Sigma, M, q_0 R, A)$ (using A for the set of Accepting states) with:

$$q_0=1$$

$$A=F$$

$$R=\{m\xrightarrow{l}m'\mid m,m'\in M, m*\varphi(l)=m'\}$$

Accepting paths in this machine look like $1 \xrightarrow{l_1} 1 * \varphi(l_1) \dots \xrightarrow{l_n} 1 * \varphi(l_1) * \dots * \varphi(l_n) \in F$. By the morphism condition $1 * \varphi(l_1) * \dots * \varphi(l_n) = \varphi(\lambda \cdot l_1 \dots l_n) = \varphi(w)$ so this machine accepts L.

Show that $L' = \{a^{|w|} \mid w \in L\}$ is a regular language.

We can reuse the structure of M_L to define a new FSM $M_{L'} = (\Sigma, M, q_0 R', F)$ with $R' = \{m \xrightarrow{a} m' \mid m \to lm' \in R\}$. This new machine has the same structure as M_L , but every label is a. It accepts L'.

(3) Let L be a language over Σ . For $\boldsymbol{v}, \boldsymbol{w} \in \Sigma^*$ define $\boldsymbol{v} \sim_L \boldsymbol{w} := \boldsymbol{v}\boldsymbol{u} \in L \iff \boldsymbol{w}\boldsymbol{u} \in L$ for all $\boldsymbol{u} \in \Sigma^*$.

Show that \sim_L is an equivalence relation:

- reflexive: $\boldsymbol{v}\boldsymbol{u} = \boldsymbol{v}\boldsymbol{u}$, so $\boldsymbol{v} \sim_L \boldsymbol{v}$
- symmetric: \iff is symmetric, so \sim_L is also
- transitive: let $\boldsymbol{x} \sim_L \boldsymbol{y}, \boldsymbol{y} \sim_L \boldsymbol{z}$. Then $\boldsymbol{x}\boldsymbol{u} \in L \iff \boldsymbol{y}\boldsymbol{u} \in L \text{ and } \boldsymbol{y}\boldsymbol{u} \in L \iff \boldsymbol{z}\boldsymbol{u} \in L \text{ so } \boldsymbol{x}\boldsymbol{u} \in L \iff \boldsymbol{z}\boldsymbol{u} \in L$

Show that all equivalence classes $[a^n]$, $n \ge 0$ in $L = \{a^n b^n \mid n \ge 0\}$ are different. $a^n \mathbf{u} \in L \iff \mathbf{u} = b^n$. Clearly $b^n \ne b^m$ for $n \ne m$ so $[a^n]$ is different for each n.

Show that all equivalence classes $[ba^n]$ are the same.

There is no u s.t $ba^n u \in L$ so $[ba^n]$ is the class of words that cannot be extended to be in L for all n.

Consider the LTS $(\Sigma, \Sigma^*/\sim_L, R_L)$ with $R_L = \{([\boldsymbol{w}], l, [\boldsymbol{w}l])\}$ Show that R_L is well defined. We want to show that $\boldsymbol{v} \sim_L \boldsymbol{w} \Longrightarrow (R_L([\boldsymbol{v}], l, [\boldsymbol{v}l])) \iff R_L([\boldsymbol{w}], l, [\boldsymbol{w}l]))$. $\boldsymbol{v} \sim_L \boldsymbol{w}$ means $\boldsymbol{v}\boldsymbol{u} \in L \iff \boldsymbol{w}\boldsymbol{u} \in L$ for all $\boldsymbol{u} \in \Sigma^*$. Consider $V = \{\boldsymbol{v} \in \Sigma^* \mid \boldsymbol{v} = l\boldsymbol{x}, \boldsymbol{x} \in \Sigma^*\} \subseteq \Sigma^*$ the subset of words starting with l. Since it is a subset, the equivalence implies $\boldsymbol{v}\boldsymbol{u} \in L \iff \boldsymbol{w}\boldsymbol{u} \in L$ for all $u \in V$, which means $\boldsymbol{v}l\boldsymbol{u} \in L \iff \boldsymbol{w}l\boldsymbol{v} \in L$ for all $u \in \Sigma^*$ – the same as $\boldsymbol{v}l \sim_L \boldsymbol{w}l$. Hence $[\boldsymbol{v}] \sim_L \boldsymbol{w} \iff [\boldsymbol{v}l] \sim_L [\boldsymbol{w}l]$ and R_L is well defined.

Show that the LTS is deterministic.

 R_L is injective and well defined, so it is a function. An LTS where the transition relation is a function is deterministic.

Assume L is accepted by some FSM $(\Sigma, Q, q_0, \Upsilon, F)$.

Show that for any $q \in Q$ and words $\boldsymbol{v}, \boldsymbol{w} \in \Sigma^*$, if q is reachable from q_0 with both \boldsymbol{v} and \boldsymbol{w} , then $\boldsymbol{v} \sim_L \boldsymbol{w}$.

q reachable from q_0 by \boldsymbol{v} and \boldsymbol{w} means there exists a path $q_0 \stackrel{l_0}{\longrightarrow} \dots \stackrel{l_n}{\longrightarrow} q$ such that $l_0 \cdot \dots \cdot l_n = \boldsymbol{v}$ and one where $l_0 \cdot \dots \cdot l_n = \boldsymbol{w}$. Consider \boldsymbol{u} such that $\boldsymbol{u} = l_0 \cdot \dots \cdot l_n$ and the path $q \stackrel{l_0}{\longrightarrow} \dots \stackrel{l_n}{\longrightarrow} q'$ is in the FSM (note that \boldsymbol{u} could be the empty word, in which case q = q'). We can concatenate the paths to q with the path described by \boldsymbol{u} . Then both \boldsymbol{vu} and \boldsymbol{wu} are in L iff $q \in F$, so $\boldsymbol{v} \sim_L \boldsymbol{w}$.

Show that Σ^*/\sim_L is finite.

Consider the function $\mu : [\boldsymbol{w}] \mapsto q$ reached by \boldsymbol{w} from q_0 . Our previous results shows that if two words both reach q, then they are in the same equivalence class, so μ is injective. We may assume every state is reachable by *some* word without affecting the language accepted by our FSM, so μ is also surjective. Hence μ is a bijection $\Sigma^*/\sim_L \to Q$ and since Q is finite, so is Σ^*/\sim_L .

Prove that the language $L' = \{a^nb^n \mid n \geq 0\}$ is irregular. (Not accepted by an FSM). We have seen that an FSM $(\Sigma, Q, q_0, \Upsilon, F)$ which accepts L has $|Q| = |\Sigma^*/\sim_L|$. We have also seen that $[a^n]$ is distinct for each n. Hence $|\Sigma^*/\sim_{L'}|$ is not finite, and there can be no FSM accepting L'.

Book 3.1

- (2) Which of the following are accepted? *aaabab* and *bbbabab* are accepted.
- (3) Write an expression for the language accepted by the automaton. $\{a^nb \mid n \geq 0\} \cup \{(ba)^nb \mid n \geq 0\} = \{(a|ba)^nb \mid n \geq 0\}$
- (6) Write an expression for the language accepted by the automaton. $\{(a^n(a|b)ab)^ma^k(a|b)a\mid n,m,k\geq 0\}$
- (15) Find a deterministic automaton accepting the same language as the given automaton.

Figure 1: Deterministic automaton for (15)

(18) Find a deterministic automaton accepting the same language as the given automaton.

Figure 2: Deterministic automaton for (18)

Book 3.2

(2) a) Given finite automata for L_1 and L_2 , construct one that accepts $L_1 \cup L_2$. Note that the complete automata have been left out for the sake of my sanity.

Figure 3: $L_1 \cup L_2$

(b) construct an automata for $L_1 \cdot L_2$

Figure 4: $L_1 \cdot L_2$

(c) construct automata for L_1^* and L_2^*

Figure 5: Automata for L_1^* (left) and L_2^* (right)

(5) Use transition graphs to construct the regular language accepted by the automaton. We construct the following transition graph and determine that the accepted language is $\{b^nab^mab^ka \mid n, m, k \geq 0\}$.

Figure 6: The transition graph for (5)

(7) Use transition graphs to construct the regular language accepted by the automaton.

Figure 7: The transition graph for (7)

We note that the accepted language is a + |a|ab|a + b (where + denotes one or more occurrences of the preceding letter) which simplifies to a + |a + b|