

← Tweet

Fixed it for you.

#polisci #polisciresearch #politicalscience #gradschool #academicchatter @AcademicChatter #AcademicTwitter #RStats

Traduzir Tweet

Por que devo me preocupar com a análise de redes sociais?

Quais ferramentas eu preciso para começar?

O QUE É UMA REDE SOCIAL?

O QUE É UMA REDE SOCIAL?

O QUE É UMA REDE SOCIAL?

Aqui vamos pensar em duas definições:

1 - Um conjunto de ligações, todos do mesmo tipo (ou não), entre um conjunto de atores.

• 2 – Uma representação visual de uma matriz

quadrada

Representação de Redes Sociais

Matrizes

	Ann	Rob	Sue	Nick
Ann		1	0	0
Rob	1		1	0
Sue	1	1		1
Nick	0	0	1	

Gráficos

Matrizes simétricas e assimétricas

	А	В	С	D
Α	0	1	0	1
В	1	0	0	1
С	0	0	0	1
D	1	1	1	0

	А	В	С	D
Α	0	0	0	1
В	1	0	0	0
С	0	0	0	0
D	0	1	1	0

Exemplo: Modelagem de rede social

											7	1	1	1	1	- 1	1	- 1	
		Ē	į.	7	6	č	F	7	P	9 R	Q V	M	2 K	8	A N	H	8 D	0	1
1	EVELYN	8	.0	7	6	3	4	3	3	3	2	2	2	2	2	1	2	+	4
2	LAURIA	6	7	6	6	3	4	4	2	3	2	1	1	2	2	2	1	0	0
3	THERESA	7	6	8		4	4	4	3	4	3	2	2	3	3	2	2	1	1
6	BRENDA	6	6	6	7	4	4	4	2	3	2	1	1	2	2	2	4	0	0
5	CHARLOTTE	3	3	4	4	4	2	2	0	2	1	0	0	1	1	1	0	0	0
6	FRANCES	4	4	4	4	2	4	2	2	2	1	1	1	4	1	1	1	0	0
۲.	ELEANOR	3	4	4	4	2	3	4	2	3	2	1	1	2	2	2	1	0	0
1	PEARL	3	2	3	2	0	2	2	3	2	2	2	2	2	2	1	2	1	1
9.	RUTH	3	3	4	3	2	2	3	2	4	3	2	2	5	2	2	2	1	1
0.	VERNE	2	2	3	2	1	10	2	2	3	4	3	3	4	3	3	2	1	1
1	MYRA	2	3	2	1	0	1	1	2	2	3	4	4	4	3	3	2	1	1
2	KATHERINE	2	1	2	1	0	1	1	2	2	3	4	6	6	5	3	2	1	1
3	SYLVIA	2	2	3	2	1	+	2	2	3	4	4	6	7	6	4	2	1	1
4	NORA.	2	2	3	2	3	10	2	2	2	3	3	5	6	8	4	1	2	2
5	HELEN	1	2	2	2	3	1	2	1	2	3	3	3	4	4	6	1	1	3
6	DOROTHY	2	1	2	7	0	1	1	2	2	2	2	2	2	1	1	2	1	1
T.	OLIVIA	1	0	1	0	0	0	0	1	1	1	1	1	1	2	1	1	2	2
ŧ.	FLORA	1	0	1	0	0	0	0	1	1	1	1	1	3	2	1	4	2	2

Figure 3. The One-Mode, Woman by Woman, Matrix Produced by Matrix Multiplication

Exemplo: Modelagem de rede social

Figure 4. The One-Mode, Event by Event, Matrix Produced by Matrix Multiplication

Interações & Ligações

Como transformar interação/relação em ligação? Como mensurar uma ligação?

Vocês lembram da aula de estatística?

Tipo de variável

- ➤Binária;
- ➤ Nominal;
- ➤Ordinal;
- ➤ Discreta;
- >Contínua.

Permite a modelagem

- Força das ligações
- Tráfego através da rede
- Distâncias entre os atores
- Freqüência da interação

A Importância da métrica das ligações

Distâncias

Você lembra da distância euclidiana?

Passos

Uma seqüência de atores e ligações que fazem a vinculação entre dois atores na rede.

Distância de Rede (Distância Geodésica)

O número de relações no menor caminho possível de um ator para outro.

Network distance/geodesic distance

• A distância entre dois atores em uma rede é o menor caminho entre eles (network distance/geodesic distance)

Qual a distância entre Henrique e José?

• Atores que, se desconsiderados (deletados), desconectará a rede

Pontes

• Uma ligação que, se removida, desconectará a rede

Pontes Locais de K-esimo grau

Uma ligação que conecta atores que, se não existisse, os atores utilizariam pelo menos K passos de distância para chegar ao mesmo lugar

Conexões

- Tamanho
 - Número de atores.
- Densidade
 - Número de ligações que estão presentes pelo total de ligações possíveis.
- Out-degree
 - Somatório de conexões de um ator para outros.
- In-degree
 - Somátorios de conexões para um ator.

Análise de Redes Sociais: Métricas Básicas

Medidas individuais:

- In-degree/out-degree
- Betweenness
- Closeness

Medidas de grupo:

- Quantidade
- Densidade

Identificando atores centrais dentro de uma rede social

tipos de mensuração de centralidade

1º Medida de Centralidade: Degree

- Definição: dado um ator, é o número de ligações que envolve esse ator
- Interpretando o Degree
 - ✓Índice de exposição imediata do que flui através da rede
 - ✓ Oportunidade de influenciar e ser influenciado diretamente
 - ✓ Ignora a influência indireta
 - ✓ Strength (força) é uma medida ponderada baseada no degree que leva em conta o número de arestas que vão de um nó a outro.

2º Medida de Centralidade: Closeness (Freeman)

- Definição: Soma de distâncias network/geodesic até todos os outros atores
- Interpretando o Closeness
 - ✓ Índice de tempo esperado até a chegada de um dado ator até outro, independente do que está correndo através da rede
 - ✓ Interpretado como autonomia e independência dos outros atores

3º Medida de Centralidade: Betweenness (Freeman)

 Definição: Número de vezes um ator fica no menor caminho entre outros dois atores

Interpretando o Betweenness

- ✓ Índice de "guardião da porta" entre duas parte da rede
- ✓ Interpretado como um indicador de poder sobre os outros atores

4º Medida de Centralidade: Autovetor

- Definição: Versão interativa do degree a centralidade de um ator é proporcional a soma de centralidades que esse ator tem ligações
- Interpretando o Autovetor (Eigenvector)
 - ✓ Indicador de popularidade
 - ✓ Uma tendência a identificar centros em redes grandes
 - ✓ Envolve a contagem de passos provindo de um ator (ponderado pelo comprimento)

Tipos de Centralidade

hub score & authority score

O hub score é definido como o autovetor principal de A* t(A), onde A é a matriz da rede.

O authority score é definido como o autovetor principal de t(A)*A, onde A é a matriz da rede.

O score generaliza a *centralidade de autovalor* para permitir que os atores tenham dois atributos:

- 1. Autoridade: quanto conhecimento, informação, etc., mantido por um ator em um tópico.
- 2. Hub: quão bem um ator 'sabe' onde encontrar informações sobre um determinado tema.

Hyperlink-Induced Topics Search - HITS algorithm.

Um artigo que é citado por todo mundo Um artigo que cita todo mundo

hub score & authority score

O hub score é definido como o autovetor principal de A* t(A), onde A é a matriz da rede.

O authority score é definido como o autovetor principal de t(A)*A, onde A é a matriz da rede.

Hyperlink-Induced Topics Search - HITS algorithm.

hub score & authority score

Ele generaliza a *centralidade de autovalor* para permitir que os atores tenham dois atributos:

- 1. Autoridade: quanto conhecimento, informação, etc., mantido por um ator em um tópico.
- 2. Hub: quão bem um ator 'sabe' onde encontrar informações sobre um determinado tema.

Um artigo que é citado por todo mundo

Um artigo que cita todo mundo

Suponha que você quer comprar um carro usado e digite no google uma frase como:

"quais são os melhores automóveis dos últimos 4 anos?"

Grupos (Cliques)

Conjunto de atores onde todos os atores estão conectados a todos os outros

Traduções de clique

substantivo

Clusters e Grupos

Geralmente um cluster corresponde a um grupo ou comunidade.

Alguns grupos são dificeis de detectar com análises de clusters.

Análise de Clusters

Dendograma

Posicionando os Atores

Existem vários métodos. Gostaria de mostrar um deles:

Escalonamento Multidimencional (MDS);

Escalonamento Multidimensional (MDS)

Distância relativa entre dois pontos:

Organiza pontos em 2D para que as distâncias entre dois pares de pontos no espaço correspondam à distância entre indivíduos na base de dados.

Escalonamento multidimensional

	8	ь	C	d	9	f	g	h	1	j	k	1	m
ð	12	12	8	7	7	4	7	4	0	0	0	0	0
b	12	12	8	7	7	4	7	4	0	0	0	0	0
C	В	В	24	23	1.8	3	5	3	D	0	0	0	0
d	7	7	23	26	19	2	4	2	0	0	0	0	0
8	7	7	18	1.9	20	3	5	3	0	0	0	0	0
f	4	4	3	2	3	21	20	21	0	0	0	0	0
g	7	7	5	4	5	20	23	2.0	0	0	0	0	0
h	4	4	3	2	3	21	20	21	0	0	0	0	0
1	0	0	0	0	0	0	0	0	31	26	0	0	0
j	0	0	0	0	0	0	0	0	26	28	0	0	0
k	0	0	0	0	0	0	0	0	0	0	35	31	24
1	0	0	0	0	0	0	0	0	0	0	31	31	22
m	0	0	Û	0	0	0	0	0	0	0	24	22	25

Escalonamento multidimensional

