Hit-and-Run Algorithms for Generating Multivariate Distributions

Projet - Computational Statistics

Nils Baillie et Raphaël Razafindralambo

M2 MVA — ENS Paris-Saclay

1 Résumé de l'article [1]

2 Commentaires et critiques

Conclusion

1 Résumé de l'article [1]

- 2 Commentaires et critiques
- Conclusion

Principe de l'algorithme

Contexte:

- ightharpoonup S partie ouverte bornée de \mathbb{R}^d
- \blacktriangleright π distribution de densité f bornée, strictement positive sur S (cible)
- $\triangleright \nu$ distribution sur ∂D (direction)

Algorithme:

- ▶ Point initial $x_0 \in S$
- Pour t allant de 0 à N_{iter} :
 - **1** Échantillonner θ_t selon ν
 - **2** Échantillonner λ_t dans $\Lambda_t = \{\lambda \in \mathbb{R} \mid x_t + \lambda \theta_t \in S\}$ de densité :

$$f_t(\lambda) = \frac{f(x_t + \lambda \theta_t)}{\int_{\Lambda_t} f(x_t + r\theta_t) dr}$$

Hypothèses et résultats

 \blacktriangleright π est invariante pour le noyau (ν,π) -Hit-and-Run P

Les deux hypothèses " ν full dimensional" et "les composantes de S communiquent par ν " impliquent que :

- ightharpoonup P est φ -irréductible
- \blacktriangleright π est l'unique distribution invariante pour P (équivalence)
- ▶ P est apériodique
- ▶ P est Harris-récurrent

Les théorèmes précédents permettent de conclure à l'ergodicité de P.

1 Résumé de l'article [1]

- 2 Commentaires et critiques
- Conclusion

$\mathsf{Cas}\ S$ non connexe

On considère l'ensemble non connexe $S = \mathcal{B}_d(x_1,1) \cup \mathcal{B}_d(x_2,1)$ où $d=2,\ x_1=(0,0)^T,\ x_2=(5,0)^T,$ et on souhaite échantillonner selon une loi π uniforme sur S.

Figure 1 – Comparaison d'échantillonnage entre Hit-and-Run (ν uniforme) et Metropolis-Hastings (SRW $\sigma_{prop}=10$ et $\sigma_{prop}=1$) pour $N_{iter}=2000$ iterations

On remarque que M-H échantillonne moins bien sur S. Le taux d'acceptation pour chacun des deux cas est 0.0085 et 0.3325. L'algorithme Hit-and-Run est plus robuste à la complexité (non connexité ici) de S.

$\mathsf{Cas}\ S$ non connexe

d	Avg time Hit-and-Run (s)	Avg time Hasting-Metropolis (s)
2	0.5698	1.3492
3	0.5109	1.3602
10	0.5218	1.5405
30	0.5390	2.0029
100	0.6820	17.5681

Table 1 – Effet de la dimensions d sur le temps de run moyen ($20~{\rm runs}$) avec $N_{iter}=10000.$

Vitesse de convergence

On se place dans le même cadre. On compare Hit-and-Run et H-M SRW avec $\sigma_{prop}=10.$

Figure 2 - Hit-and-Run

Figure 3 – Hasting Metropolis SRW

1 Résumé de l'article [1]

- 2 Commentaires et critiques
- Conclusion

Conclusion

- Arguments théoriques avancés, pas toujours détaillés
- ▶ Méthode utile pour des distributions multimodales
- ▶ Aucune information quant à la vitesse de convergence
- ▶ Pas d'application numérique pour illustrer

Référence

[1] Claude JP Bélisle, H Edwin Romeijn et Robert L Smith. "Hit-and-run algorithms for generating multivariate distributions". In: *Mathematics of Operations Research* 18.2 (1993), p. 255-266.