Numerikus módszerek 1.

13. előadás: Polinomokról: gyökök becslése, Horner-algoritmus

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 Becslés polinom gyökeire

2 Horner-algoritmus

Tartalomjegyzék

1 Becslés polinom gyökeire

2 Horner-algoritmus

Vizsgáljunk *n*-edfokú polinomokat, melyek alakja:

$$P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$
$$a_i \in \mathbb{R}, \quad a_0 \neq 0, \quad a_n \neq 0.$$

Megjegyzés:

- Akár $a_i \in \mathbb{C}$ is lehet. . .
- Ha $a_n = 0$, akkor nem is n-edfokú...

Példa

Vizsgáljuk meg néhány polinom gyökeinek elhelyezkedését. Komplex gyökök is szóba jöhetnek.

Tétel: Becslés polinom gyökeinek elhelyezkedésére

A $P(x)=a_n\cdot x^n+a_{n-1}\cdot x^{n-1}+\cdots+a_1\cdot x+a_0$ polinom esetén, ha $a_0\neq 0$ és $a_n\neq 0$, akkor P bármely x_k gyökére:

$$r < |x_k| < R$$

ahol

$$R = 1 + rac{inom{n-1}{\max}|a_i|}{|a_n|}, \quad r = rac{1}{\max\limits_{i=1}^{n}|a_i|}. \ 1 + rac{\prod\limits_{i=1}^{n}|a_i|}{|a_0|}.$$

Megjegyzés: Ezzel a gyökök elhelyezkedésére egy origó középpontú nyílt körgyűrűt adtunk meg a komplex számsíkon.

Biz.:

• Megmutatjuk, hogy ha $|x| \ge R$ (x a külső körön kívül van), akkor |P(x)| > 0 (x nem gyöke P-nek). A becsléshez a kétféle háromszög-egyenlőtlenséget használjuk:

$$|P(x)| \ge |a_n x^n| - |a_{n-1} x^{n-1} + \dots a_1 x + a_0|$$

A továbbiakban lefelé akarunk becsülni, így a kivonandó összeget növelnünk kell:

$$\begin{split} \left| a_{n-1} x^{n-1} + \ldots + a_0 \right| &\leq |a_{n-1}| \cdot |x|^{n-1} + \ldots + |a_0| \leq \\ &\leq \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \left(|x|^{n-1} + \ldots + 1 \right) = \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n - 1}{|x| - 1} < \\ &< \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n}{|x| - 1}. \end{split}$$

Biz. folyt: Folytassuk |P(x)| becslését és vizsgáljuk meg, mikor pozitív.

$$|P(x)| > |a_n| \cdot |x|^n - \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n}{|x| - 1} \ge 0$$

Rendezzük át az egyenlőtlenséget, szorozzunk be |x|-1>0-val és osszunk le $|a_n|\cdot|x|^n$ -vel

$$|P(x)| > 0 \quad \Leftrightarrow \quad |a_n| \cdot |x|^n \ge \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n}{|x| - 1} \quad \Leftrightarrow$$

$$|x| - 1 \ge \left(\max_{i=0}^{n-1} |a_i| \right) \cdot \frac{|x|^n}{|a_n| \cdot |x|^n} \quad \Leftrightarrow$$

$$|x| \ge 1 + \frac{\max_{i=0}^{n-1} |a_i|}{|a_n|} =: R.$$

Biz. folyt: Azt kaptuk, hogy ha $|x| \ge R$, akkor |P(x)| > 0, vagyis x nem gyök. Ezzel beláttuk a tétel első felét.

2 Az alsó becslést úgy nyerjük, hogy az imént belátott becslést alkalmazzuk P(x) reciprok-polinomjára.

Vezessük be az $y := \frac{1}{x}$ új változót $(x \neq 0)$:

$$P(x) = P\left(\frac{1}{y}\right) = a_n \left(\frac{1}{y}\right)^n + a_{n-1} \left(\frac{1}{y}\right)^{n-1} + \dots + a_1 \left(\frac{1}{y}\right) + a_0 =$$

$$= \left(\frac{1}{y}\right)^n \cdot \underbrace{\left(a_n + a_{n-1}y + \dots + a_1y^{n-1} + a_0y^n\right)}_{Q(y)} = x^n \cdot Q\left(\frac{1}{x}\right).$$

A Q polinomot a P reciprok-polinomjának nevezzük. Ekkor

$$P(x_k) = 0 \quad \Leftrightarrow \quad Q\left(\frac{1}{x_k}\right) = 0,$$

vagyis Q gyökei P gyökeinek reciprokai.

Biz. folyt: Alkalmazzuk a már belátott becslésünket Q-ra:

$$\frac{1}{|x_k|} < 1 + \frac{\max_{i=1}^{n} |a_i|}{|a_0|} = \frac{1}{r} \quad \Rightarrow \quad |x_k| > r.$$

Megjegyzés: Akár komplex együtthatós polinomokat is megengedhetünk a tételben, a bizonyítás menetén nem változtat.

Tartalomjegyzék

1 Becslés polinom gyökeire

2 Horner-algoritmus

Polinomok és deriváltjaik helyettesítési értékeinek kiszámítására.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = \dots$$

Átzárójelezzük:

$$P(x) = \underbrace{(a_{n}x^{n-1} + a_{n-1}x^{n-2} + \dots + a_{2}x + a_{1})}_{a_{1}^{(1)}} \cdot x + a_{0} =$$

$$= \underbrace{((a_{n}x^{n-2} + a_{n-1}x^{n-3} + \dots + a_{2})}_{a_{2}^{(1)}} \cdot x + a_{1}) \cdot x + a_{0} =$$

$$= \dots = (\dots \underbrace{(a_{n}x + a_{n-1})}_{a_{1}^{(1)}} \cdot x + \dots) \cdot x + a_{0}.$$

Megj.: Más elnevezés: Horner-módszer, Horner-elrendezés.

Definíció: Horner-algoritmus

A $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ polinom adott ξ helyen vett helyettesítési értéke számolható a következő módon:

1
$$a_n^{(1)} := a_n$$
,

2
$$a_k^{(1)} := a_k + \xi \cdot a_{k+1}^{(1)} \quad (k = n-1, \dots, 1, 0),$$

ekkor $P(\xi) = a_0^{(1)}$.

Állítás: A Horner-algoritmus műveletigénye

Egy n-edfokú polinom adott helyen felvett értéke kiszámítható n szorzás és n összeadás által, azaz $\mathcal{O}(n)$ művelettel.

Táblázat $P(\xi)$ kézi számolásához:

a _n	a_{n-1}	a_{n-2}	 a _k	 a_1	<i>a</i> ₀
ξ	$\xi \cdot a_n^{(1)}$	$\xi \cdot a_{n-1}^{(1)}$	 $\xi \cdot a_{k+1}^{(1)}$	 $\xi \cdot a_2^{(1)}$	$\xi \cdot a_1^{(1)}$
$a_n^{(1)}$	$a_{n-1}^{(1)}$	$a_{n-2}^{(1)}$	 $a_k^{(1)}$	 $a_1^{(1)}$	$a_0^{(1)}$

Példa

Számítsuk ki a $P(x) = x^5 + 6x^4 - x^3 + 3x^2 - 15x - 7$ polinom helyettesítési értékét a $\xi = 2$ helyen.

1	6	-1	3	-15	-7	
2	2 · 1	2 · 8	2 · 15	2 · 33	2 · 51	
1	8	15	33	51	95	

Tehát P(2) = 95, amihez összesen 10 műveletet végeztünk.

Állítás: Horner-algoritmus és a derivált

A P polinom felírható a következő alakban:

$$P(x) = a_0^{(1)} + (x - \xi) \cdot \underbrace{(a_1^{(1)} + \dots + a_n^{(1)} x^{n-1})}_{P_1(x)},$$

ahol az $a_i^{(1)}$ $(i=0,\ldots,n)$ értékeket a Horner-algoritmus adja. Továbbá

$$P'(\xi) = P_1(\xi) = a_1^{(2)}.$$

Megj.: \sim Taylor-polinom ξ körül.

$$P(x) = a_0^{(1)} + (x - \xi) \cdot \underbrace{\left(a_1^{(1)} + \dots + a_k^{(1)} x^{k-1} + a_{k+1}^{(1)} x^k + \dots + a_n^{(1)} x^{n-1}\right)}_{P_1(x)}$$

Biz.:

- **1** P-ben x^k (k = 0, ..., n-1) együtthatója
 - külön: x^n együtthatói a két oldalon: $a_n = a_n^{(1)}$, \checkmark
 - bal oldalon definícó szerint: a_k,
 - a fenti alak szerint a jobb oldalon: $a_k^{(1)} \xi \cdot a_{k+1}^{(1)}$.
 - A Horner-algoritmus szerint: $a_k^{(1)} = a_k + \xi \cdot a_{k+1}^{(1)}$. \checkmark
- P deriváltja a fenti alakból (összeg, szorzat):

$$P'(x) = 1 \cdot P_1(x) + (x - \xi) \cdot P'_1(x) \Rightarrow P'(\xi) = P_1(\xi).$$

Biz. folyt: $P_1(\xi)$ kiszámítása ugyanúgy, Horner-algoritmussal, P_1 együtthatói: $a_n^{(1)}, \ldots, a_1^{(1)}$.

1
$$a_n^{(2)} := a_n^{(1)}$$
,

2
$$a_k^{(2)} := a_k^{(1)} + \xi \cdot a_{k+1}^{(2)} \quad (k = n-1, \ldots, 1),$$

ekkor
$$P_1(\xi) = P'(\xi) = a_1^{(2)}$$
.

Folytatjuk a táblázatot:

a _n	a_{n-1}	a_{n-2}	 a ₁	a ₀
ξ	$\xi \cdot a_n^{(1)}$	$\xi \cdot a_{n-1}^{(1)}$	 $\xi \cdot a_2^{(1)}$	$\xi \cdot a_1^{(1)}$
$a_n^{(1)}$	$a_{n-1}^{(1)}$	$a_{n-2}^{(1)}$	 $a_1^{(1)}$	$a_0^{(1)} = P(\xi)$
ξ	$\xi \cdot a_n^{(1)}$	$\xi \cdot a_{n-1}^{(1)}$	 $\xi \cdot a_2^{(1)}$	
$a_n^{(2)}$	$a_{n-1}^{(2)}$	$a_{n-2}^{(2)}$	 $a_1^{(2)} = P_1(\xi)$	

Tovább is folytathatjuk...

$$P(x) = a_0^{(1)} + (x - \xi) \cdot P_1(x)$$

Állítás: Horner-algoritmus és a magasabbrendű deriváltak

A P polinom felírható a következő alakban:

$$P(x) = a_0^{(1)} + a_1^{(2)}(x - \xi) + a_2^{(3)}(x - \xi)^2 + \dots + a_n^{(n+1)}(x - \xi)^n,$$

ahol az $a_i^{(j+1)}$ $(j=0,\ldots,n;\ i=j,\ldots,n)$ értékeket a Horner-módszer adja. Továbbá:

$$\frac{P^{(j)}(\xi)}{j!} = P_j(\xi) = a_j^{(j+1)},$$

ahol
$$P_j(x) = a_j^{(j)} + \cdots + a_n^{(j)} x^{n-j}$$
.

Biz.: indukcióval, nem kell.

Megjegyzés: Ha a táblázatot addig folytatjuk, míg csak 1 elemet kapunk, akkor az átlóban találjuk a P polinom ξ körüli Taylor-polinomjának együtthatóit.

Példa

Határozzuk meg a $P(x)=x^3-x^2+x-1$ polinom $\xi=1$ körüli Taylor-polinomját a Horner-módszer segítségével!

$$P(x) = x^4 - 2x^3 + 3x^2 - x + 1 =$$

= $1 \cdot (x - 1)^4 + 2 \cdot (x - 1)^3 + 3 \cdot (x - 1)^2 + 3 \cdot (x - 1) + 2$
az 1 körüli Taylor-polinomot kaptuk.

1	-2	3	-1	1
1	1 · 1	$1 \cdot (-1)$	1 · 2	1 · 1
1	-1	2	1	2 = P(1)
1	$1 \cdot 1$	1 · 0	1 · 2	
1	0	2	3 = P'(1)	
1	1 · 1	1 · 1		•
1	1	$3=\frac{P''(1)}{2}$		
1	$1 \cdot 1$			
1	$2=\frac{P'''(1)}{3!}$			

Példák Matlab-ban

• Véletlen (valós és komplex) együtthatós magasabbfokú (n=5,10,50,100) polinomok gyökeinek és a rájuk adott korlátoknak szemléltetése.