SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

SEMINAR

Mogućnosti i ograničenja razvojnog sustava ESP32-C3-DevKitM-1 u razvoju Bluetooth aplikacija

Jelena Gavran Voditelj: prof. dr. sc. Hrvoje Džapo

SADRŽAJ

Po	Popis slika				
1.	Uvod	1			
2.	Razvojni sustav ESP32-C3-DevKitM-1	2			
	2.1. BLE protokol	3			
3.	Aplikacijska programska sučelja	5			
	3.1. Bluedroid	5			
	3.2. NimBLE	5			
	3.3. BLE Mesh	5			
	3.4. BluFi	5			
4.	Usporedba API-ja i ograničenja sustava	6			
	4.1. Usporedba aplikacijskih sučelja	6			
	4.2. Ograničenja razvojnog sustava	6			
5.	Zaključak				
6.	Literatura	10			

POPIS SLIKA

2.1.	Konfiguracija razvojnog sustava ESP32-C3-DevKitM-1 [5]	2	
2.2.	Blok dijagram modula ESP32-C3 [4]	3	
4.1.	Graf RSSI vrijednosti u ovisnosti o vremenu za Bluedroid demo apli-		
	kacije	7	
4.2.	Razlike između klasične Bluetooth i BLE tehnologije [8]	8	

1. Uvod

Pojam "internet stvari" neizostavan je u današnjem razvoju bežičnih i pametnih uređaja. IoT (engl. *Internet of things*) krovni je naziv koji obuhvaća milijune uređaja, odnosno "stvari" povezanih na internet, koji pohranjuju i razmjenjuju podatke s drugim uređajima i sustavima također povezanih na internet. [2]

Za razvoj IoT uređaja potrebni su mikrokontroleri s mogućnošću bežičnog povezivanja. Iako je serija Raspberry Pi *single-board* računala zaklade *Raspberry Pi Foundation* pri vrhu popularnosti u razvoju IoT proizoda, serija ESP32 mikrokontrolera tvrtke *Espressif* pruža ozbiljnu konkurenciju zbog niske potrošnje, visoke otpornosti na temperature, te najvažnije, jednostavnom bežičnom povezivosti. [3] [1] Jedan takav čip je ESP32-C3, koji pruža Wi-Fi i Bluetooth povezivanje. Čip je integriran u nekoliko različitih modula, koji su pak dio razvojnih sustava koje proizvodi *Espressif*. Za izradu ovog rada odabran je razvojni sustav ESP32-C3-DevKitM-1.

Ovaj seminar analizira mogućnosti koje pruža ESP32-C3-DevKitM-1 u razvoju Bluetooth programskih rješenja. Opisana sui ispitana programska aplikacijska sučelja (engl. *Application Programming Interface - API*) koje modul podržava. Također, razložena su i ograničenja sustava pri korištenju Bluetooth protokola.

Rad je podijeljen u cjeline kako slijedi. Drugo poglavlje "Razvojni sustav ESP32-C3-DevKitM-1" opisuje osnovne karakteristike korištenog razvojnog sustava kao ciljane hardverske platforme te su opisane najvažnije značajke BLE protokola. U trećem poglavlju "Aplikacijska programska sučelja" opisani su API-ji koji se mogu koristiti uz razvojni sustav. U četvrtom poglavlju "Usporedba API-ja i ograničenja sustava" uspoređena su ranije opisana aplikacijska sučelja te su navedena ograničenja razvojnog sustava u izradi Bluetooth aplikacija.

2. Razvojni sustav

ESP32-C3-DevKitM-1

Razvojni sustav temelji se na modulu ESP32-C3-MINI-1. Modul je jedan u nizu ESP32-C3 serije SoC (engl. *System on Chip*) platformi tvrtke *Espressif*, te sadrži jednojezgreni 32-bitni procesor s RISC-V arhitekturom koji radi na frekvenciji do 160 MHz. Modul sadrži 400 KB memorije tipa SRAM (engl. *Static random-access memory*), od kojih je 16 KB rezervirano za priručnu memoriju (engl. *cache*), 384 MB memorije tipa ROM (engl. *Read-only memory*) te 4 MB memorije tipa *Flash*. Od periferije sadrži 22 programabilna GPIO pina (engl. *General Purpose Input Output*), te digitalna sučelja SPI, UART, I2C i I2S. Također sadrži upravljače za sučelja USB i JTAG, koji se mogu koristiti za efikasnije otklanjanje pogrešaka u kodu (engl. *debugging*). [4] Konfiguracija sustava prikazana je na slici 2.1.

Slika 2.1: Konfiguracija razvojnog sustava ESP32-C3-DevKitM-1 [5]

Budući da modul ima funkciju RF (engl. *radio frequency*) primopredajnika, podržava protokol Bluetooth s podrškom za velike udaljenosti. Druga važna značajka je podsustav za Wi-Fi, koji omogućava propusnost do 20 MBit/s protokolom TCP te maksimalnu propusnost od 30 MBit/s koristeći protokol UDP.

Modul ESP32-C3-MINI-1 je bežični uređaj niske potrošnje energije (engl. ultralow-power) primarno namijenjen razvoju aplikacija koje koriste Bluetooth Low Energy (BLE) protokol ili Wi-Fi. Na slici 2.2 nalazi se blok shema modula sa svim dostupnim značajkama.

Slika 2.2: Blok dijagram modula ESP32-C3 [4]

2.1. BLE protokol

BLE je vrsta bežične komunikacije namijenjena komunikaciji kratkog dometa s niskom potrošnjom energije. Razvijen je kako bi se postigao standard vrlo male snage koji radi s baterijom veličine kovanice (engl. *coin-cell batteries*) nekoliko godina. U odnosu na proizvode koji koriste klasičnu Bluetooth tehnologiju, BLE uređaji troše samo dio energije te omogućavaju malenim uređajima s malim baterijama bežično povezivanje s uređajima koji koriste klasični Bluetooth. [7]

BLE radi u istom opsegu od 2,4 GHz kao i standardni Bluetooth, no koristi različite kanale od standardnog Bluetootha. Koristi 40 kanala od 2 MHz za prijenos podataka korištenjem modulacije Gaussova pomaka frekvencije (metoda koja se koristi za glatkije prijelaze između podatkovnih impulsa), zbog čega skokovi frekvencije proizvode manje smetnji u usporedbi sa standardnom Bluetooth komunikacijom.

Atributi su adresirani dijelovi informacija koji mogu sadržavati korisničke podatke ili meta-informacije o arhitekturi samih atributa, te se koriste za razmjenu informa-

cija između dva uređaja putem BLE sučelja. Uređaj koji prikazuje atribute naziva se poslužiteljem, a uređaj koji ih koristi naziva se klijentom.

3. Aplikacijska programska sučelja

- 3.1. Bluedroid
- 3.2. NimBLE
- 3.3. BLE Mesh
- 3.4. BluFi

4. Usporedba API-ja i ograničenja sustava

4.1. Usporedba aplikacijskih sučelja

Za analizu i usporedbu API-ja te demo aplikacija korištena je mobilna aplikacija *nRF Connect* tvrtke *Nordic Semiconductor*. Pomoću nje moguće je pretražiti i povezati se sa BLE uređajima, kao i komunicirati s njima. Aplikacijom se mogu i analizirati podaci koje uređaj šalje pri oglašavanju te čitati podatke o samim uređajima i uslugama koje nude. [6]

Jedna od mogućnosti aplikacije je i prikaz RSSI (engl. *Received Signal Strength Indicator*) grafa. To je pokazatelj jačine primljenog signala te služi za mjerenje snage u primljenom radio signalu. RSSI je glavni indikator o jačini signala u danoj točki prostora. RSSI je relativna mjera, stoga je na grafičkom prikazu os RSSI vrijednosti označena dBm skalom, koja je negativna.

4.2. Ograničenja razvojnog sustava

Klasična Bluetooth tehnologija razvijena je kao bežični standard, što je omogućilo razvoj bežičnih i prenosivih uređaja. *BT Classic* tehnologija koristi se za *streaming* aplikacije, poput prijenosa audiozapisa i datoteka. Radi na istim frekvencijama kao i BLE, no ima veći broj RF kanala. Klasični Bluetooth ima veću propusnost podataka, čak do 2.1 Mbps, dok BLE propušta maksimalno 0.27 Mbps. Također ima veću brzinu prijenosa podataka, do 3 Mbps, u usporedbi sa BLE protokolom čija brzina doseže najviše 1 Mbps. Za razliku od BLE protokola čija je glavna odlika niska potrošnja, zbog brze i nepredvidive komunikacije te složenih postupaka povezivanja *BT Classic* troši znatno više energije i time brže troši bateriju uređaja na kojem se nalazi. Latencija prijenosa je čak 16 puta veća nego u BLE uređajima. Isto tako, podržava samo *peer*-

Slika 4.1: Graf RSSI vrijednosti u ovisnosti o vremenu za Bluedroid demo aplikacije

to-peer topologiju, odnosno 1:1, što znači da se istovremeno mogu povezati samo dva uređaja. Detaljnije razlike između verzija Bluetooth protokola nalaze se na slici 4.2. [8]

Jedna od mana modula ESP32-C3 jest što ne podržava klasični Bluetooth. Iako BLE nudi prednosti u odnosu na *BT Classic*, poput niske potrošnje i raznovrsnije podržane topologije, uređaji s BLE protokolom i s klasičnom Bluetooth tehnologijom ne mogu međusobno povezati. Ta činjenica ograničava povezivanje i korištenje ESP32-C3 modula, stoga ne može komunicirati s uređajima koji rade na temelju klasičnog Bluetootha. Većina audio uređaja, poput Bluetooth zvučnika, zbog potrebe za prijenosom velike količine podataka koriste klasični Bluetooth radi performansi. ESP32-C3 ne može se povezati s takvim uređajima.

Specifications	Classic Bluetooth	Bluetooth Low Energy (BLE)
Range	100 m	Greater than 100 m
Data Rate	1-3 Mbps	1 Mbps
Application Throughput	0.7 -2.1 Mbps	0.27 Mbps
Frequency	2.4 GHz	2.4 GHz
Security	56/128-bit	128-bit AES with Counter Mode CBC-MAC
Robustness	Adaptive fast frequency hopping, FEC, fast ASK	24-bit CRC, 32-bit Message Integrity Check
Latency	100 ms	6 ms
Time Lag	100 ms	3 ms
Voice Capable	Yes	No
Network Topology	Star	Star
Power Consumption	1 W	0.01 to 0.5 W
Peak Current Consumption	less than 30 mA	less than 15 mA

Slika 4.2: Razlike između klasične Bluetooth i BLE tehnologije [8]

5. Zaključak

Zaključak mog seminara.

6. Literatura

- [1] Top 25 iot development boards. 2021. URL https://www.intuz.com/guide-on-top-iot-development-boards.
- [2] Mohammad Afaneh. What are iot devices. 2022. URL https://www.simplilearn.com/iot-devices-article.
- [3] Cabe Atwell. Top 10 development boards for iot. 2022. URL https://www.electronicproducts.com/top-10-development-boards-for-iot/.
- [4] ESP32-C3 Series Datasheet. Espressif Systems, 2023. URL https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf.
- [5] ESP-IDF Programming Guide. Espressif Systems, 2023. URL https://docs.espressif.com/projects/esp-idf/en/v5.0/esp32c3/index.html.
- [6] nRF Connect for Mobile. Nordic Semiconductor, 2023. URL https://www.nordicsemi.com/Products/Development-tools/nRF-Connect-for-mobile.
- [7] Bob Proctor. Bluetooth vs. bluetooth low energy. 2021. URL https://www.link-labs.com/blog/bluetooth-vs-bluetooth-low-energy.
- [8] TERTIUM Technology. Bluetooth vs. bluetooth low energy. 2022. URL https://iotlab.tertiumcloud.com/2020/08/19/classic-bluetooth-vs-bluetooth-low-energy-ble/.

Mogućnosti i ograničenja razvojnog sustava ESP32-C3-DevKitM-1 u razvoju Bluetooth aplikacija

Sažetak

Ključne riječi: ESP32-C3-DevKitM-1, BLE, Bluedroid, NimBLE, BLE Mesh, BluFi

TEKST SEMINARA