

Functional Analysis

课程笔记

作者: Fir1247 组织: USTC

时间: January 2, 2024

联系方式: fa1247@mail.ustc.edn.cn 或者 QQ: 3105292483

前言

本文档为中国科学技术大学刘聪文老师 2023 年秋季学期泛函分析课程¹ 的笔记,主要基于讲义、课堂板书和助教习题课。涵盖范围大致为课本 3.3 节之前。由于课程内容、顺序、侧重点并不和课本完全一致,所以章节和小节标题是按照我个人喜好划分的,比如我将有界算子的谱相关内容挪到了第三章,因为和第二章其他内容没什么联系。课本上的习题都会标注课本原题号,所有习题答案来自个人解答、网上资料,不能保证完全正确,笔记里也可能会有 typo,还望读者斧正。

泛函分析和实分析是我目前学的最酣畅淋漓的两门数学课,这两门带给我的感受,既不是复分析、微分几何的直观之美(以及与考试计算大赛对比带来的的割裂感),也不是统计课对于实际问题的巧妙求解。套用李小龙的一句话: "Don't think, feel." 很多定理、题目的证明,都可以靠一个这样的过程: 要从 A 证明 D,我先感受条件和结论的联系,从直观上找到可能位于中间的两个 B 和 C,猜想这道题的证明方法就是 $A \Rightarrow B \Rightarrow C \Rightarrow D$,然后完善证明细节。例如证明 $(\ell^p)^* = \ell^q$ 时,难点无非就是怎么构造等距同构,回忆证明 $(L^p)^* = L^q$ 的过程,那时构造的等距同构是函数相乘再积分,这和 L^2 上的内积非常像,姑且就叫它"内积"好了。所以猜测 $(\ell^p)^* = \ell^q$ 的等距同构也是通过数列的内积构造的。然后再去完善其它细节。实分析很多也有类似的题目,印象比较深刻的比如关于紧支函数的那一部分,我就把紧支函数想象成一个"小函数",它在整个实数空间里只占据了有限大的空间,然后用这些"小函数"去逼近全体函数。无论是泛函还是实分析,我都没有刻意去掌握做题技巧之类的东西,而是整理好整门课程的思路和脉络,最终不仅获得还算不错的成绩,也让自己切实感受到有所收获。不过,也有可能是我根本没学明白复分析和微分几何(笑),这些都是我个人观点。我相信讨厌泛函和实分析、喜欢其他课程的同学不在少数,所以上述讨论仅图一乐,请大家务必不要上纲上线。

最后是一些格式上的说明:非文本类型的字母均为斜体,i、e等特殊量为正体;某些引理的证明会写在引理的框架内部,目的是与定理的证明相区分,单独引理的证明还是会写在框架外面;对于步骤很多的证明,暂时没有找到好用的排版方式,目前大部分采用分段然后标注粗体 Step; $\operatorname{Ran}(A) \setminus \operatorname{R}(A)$ 和 $\operatorname{Im}(A)$ 都代表算子 A 的值域, $\operatorname{D}(A)$ 和 $\operatorname{Dom}(A)$ 代表算子 A 的定义域。

最后更新: January 2, 2024

¹教材: 林源渠、张恭庆. 泛函分析讲义(上)[M],第二版,北京大学出版社,2021

目录

第1章	度量空间	1
1.1	压缩映射原理	1
1.2	完备化	8
1.3	紧性推理	10
1.4	赋范线性空间	16
	1.4.1 Banach 空间	16
	1.4.2 范数等价	18
	1.4.3 商空间	21
1.5	内积空间	22
	1.5.1 Hilbert 空间	22
	1.5.2 正交与正交基	26
	1.5.3 正交化与同构	32
1.6	应用: Fourier 级数	34
第2章	线性算子与线性泛函	36
2.1	线性算子	
	2.1.1 有界线性算子	
	2.1.2 算子范数	
2.2	Riesz 表示定理	39
2.3	Baire 纲定理	40
2.4	共鸣定理	43
2.5	开映射定理	45
	闭图像定理	
2.7	Hahn-Banach 定理	50
	2.7.1 代数形式——线性泛函的延拓	50
	2.7.2 几何形式——凸集分离	54
2.8	对偶空间、自反空间、弱收敛	
	2.8.1 对偶空间	
	2.8.2 自反空间	63
	2.8.3 弱收敛	67

第3章	谱理论	70
3.1	谱	70
	3.1.1 谱的定义与例子	70
	3.1.2 谱的基本性质	72
3.2	紧算子的谱	77
	3.2.1 紧算子	77
	3.2.2 Riesz-Fredholm 定理	79
	3.2.3 Riesz-Schauder 定理	80
第4章	作业汇总	83
4.1	第一章	83
4.2	第二章	96
	4.2.1 线性算子	96
	4.2.2 Riesz 表示定理	99
	4.2.3 Baire 纲定理	00
	4.2.4 共鸣定理	00
	4.2.5 开映射定理	03
	4.2.6 闭图像定理	05
	4.2.7 Hahn-Banach 定理	06
	4.2.8 对偶空间、自反空间、弱收敛	09
4.3	第三章1	14
4.4	期末复习相关	19
	4.4.1 部分往年期末题	19
	442 其它	26

第1章 7度量空间

≫ 1.1 压缩映射原理

定义 1.1.1

X 是一个非空集合, 映射 $d: X \times X \to \mathbb{R}$ 满足:

- (1) 唯一性: $d(x,y) = 0 \Leftrightarrow x = y$.
- (2) 非负性: $\forall x, y \in X, d(x, y) \ge 0$.
- (3) 对称性: $\forall x, y \in X, d(x, y) = d(y, x)$.
- (4) 三角不等式: $\forall x, y, z \in X, d(x, z) \leq d(x, y) + d(y, z)$.

则称 d 是 X 上的一个距离函数(度量),(X,d) 称为一个度量空间,度量空间里的元素称为"点"。 对于度量空间 X , $Y \subset X$,限制在 Y 上的 d ,记作 $d|_Y$,是 Y 上的度量, $(Y,d|_Y)$ 称为 (X,d) 的子度量空间。

注 实际上 $(2)(3)(4) \Rightarrow (1)$:

$$2d(x,y) = d(x,y) + d(y,x) \ge d(x,x) = 0$$

例 1.1.1.

 \mathbb{R}^n 上定义: $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n),$ 对于 $1 \leq p < \infty$,

$$d_p(x,y) \stackrel{\text{def}}{=} \sqrt[p]{\sum_{k=1}^n |x_k - y_k|^p}$$

是距离函数。

 $p=\infty$,取 $d_p(x,y) \stackrel{\mathrm{def}}{=} \max_{1 \leqslant k \leqslant n} |x_k-y_k|$,也是距离函数。

例 1.1.2.

数组空间

$$\ell^p(\mathbb{F}) \stackrel{\text{def}}{=} \{(x_k) : x_k \in \mathbb{F}, k = 1, 2, \cdots, \sum_{k=1}^{\infty} |x_k|^p < \infty \}$$

一般 \mathbb{F} 取 \mathbb{R} , \mathbb{C} , 对于 $1 \leq p < \infty$,

$$d_p(x,y) \stackrel{\text{def}}{=} \sqrt[p]{\sum_{k=1}^{\infty} |x_k - y_k|^p}$$

是距离函数。

 $p=\infty$,

$$\ell^{\infty}(\mathbb{F}) = \{(x_k) : \sup_{k} |x_k| < \infty\}$$
$$d_{\infty}(x, y) = \sup_{k} |x_k - y_k|$$

例 1.1.3.

离散度量:

$$d(x,y) = \begin{cases} 0 & , x = y \\ 1 & , x \neq y \end{cases}$$

例 1.1.4.

积度量空间:对于度量空间 (X,d), (Y,ρ) ,

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

取

$$d_{X\times Y}((a,b),(c,d)) \stackrel{\text{def}}{=} d(a,c) + \rho(b,d)$$

是距离函数。

约定一些记号: 度量空间 (X,d) 上, 对于 $x_0 \in X, r > 0$,

$$B(x_0, r) \stackrel{\text{def}}{=} \{ x \in X : d(x, x_0) < r \}$$

称为 x_0 的一个r邻域(球形邻域)。此外,记

$$\overline{B}(x_0, r) \stackrel{\text{def}}{=} \overline{B(x_0, r)} = \{x \in X : d(x, x_0) \leqslant r\}$$
$$S(x_0, r) \stackrel{\text{def}}{=} \{x \in X : d(x, x_0) = r\}$$

对于 $A \subset X$,

$$\operatorname{diam}(A) \stackrel{\text{def}}{=} \sup_{x,y \in A} d(x,y)$$

那么如果 diam(A) 有限, 称 A 有界, 等价条件为 $\exists B(x_0, R) \supset A$.

定义 1.1.2

度量空间 (X,d) 上,称 $\{x_n\}_{n=1}^{\infty}$ 收敛,是指存在 $x_0 \in X$ 使得

$$d(x_n, x_0) \to 0 \text{ as } n \to \infty$$

推论 1.1.1

度量空间 (X,d) 上的收敛列的极限唯一, 且收敛列有界。

 \Diamond

证明 设 $\{x_n\}_{n=1}^{\infty}$ 是 X 上的收敛列,

极限唯一: 假设 $\{x_n\}_{n=1}^{\infty}$ 有两个极限 a,b 且 $a \neq b$, 即

$$d(x_n, a) \to 0, d(x_n, b) \to 0$$

取 $\varepsilon = \frac{1}{2}d(a,b) > 0$, 存在 N 使得 n > N 时 $d(x_n,a) < \varepsilon$, 于是

$$d(a,b) \leqslant d(x_n,a) + d(x_n,b)$$

$$\Rightarrow d(x_n, b) \geqslant d(a, b) - d(x_n, a) > \varepsilon - \frac{1}{2}\varepsilon = \frac{1}{2}\varepsilon$$

这与 $d(x_n, b) \to 0$ 矛盾。

收敛列有界: 设 $\{x_n\}_{n=1}^{\infty}$ 收敛到 x_0 , $\varepsilon > 0$, 存在N使得n > N时 $d(x_n, x_0) < \varepsilon$, 令

$$R_0 = \max_{1 \le n \le N} d(x_n, x_0), R = \max\{R_0, \varepsilon\}$$

 $\mathbb{M} \{x_n\}_{n=1}^{\infty} \subset B(x_0, R).$

例 1.1.5.

C[0,1] 为 [0,1] 上连续函数全体,定义度量:

$$d(f,g) \stackrel{\text{def}}{=} \max_{x \in [0,1]} |f(x) - g(x)|$$

于是

$$d(f_n, f) \to 0 \Leftrightarrow f_n \rightrightarrows f$$

若定义:

$$\rho_1(f,g) \stackrel{\text{def}}{=} \int_0^1 |f(t) - g(t)| dt$$

则 ρ_1 也是 C[0,1] 上的一个度量,设

$$f_k(t) = \begin{cases} -k^3 \left(t - \frac{1}{k^2}\right) &, t \in [0, \frac{1}{k^2}] \\ 0 &, t \in [\frac{1}{k^2}, 1] \end{cases}$$

那么 $\rho_1(f_k,0) = \frac{1}{2}k \cdot \frac{1}{k^2} \to 0$ as $k \to \infty$,但是 $d(f_k,0) = k \to 0$. 这个例子说明不同度量下的点列的收敛情况可能不同。

定义 1.1.3

度量空间 (X,d), 称 X 中的集合 E 是开集是指: $\forall x \in E$, $\exists r > 0$ 使得 $B(x,r) \subset E$, 即 $\forall x \in E$ 是 E 的内点。

开集的余集称为闭集。a

"实际上这是一般拓扑度量空间上闭集的最原始定义,如果该拓扑是由度量诱导的,即所有点都是内点的集合作为开集构成拓扑(见定理 1.1.1),则闭集的定义有其他等价表述(见推论 1.1.2)

定理 1.1.1

记X上所有的开集为 τ , τ 满足拓扑的定义:

1. $\emptyset \in \tau$, $X \in \tau$.

- 2. τ对于任意并封闭。
- 3. 7对于有限交封闭。

 \Diamond

定义 1.1.4

度量空间 (X,d), $E \subset X$ 满足: 存在 $x_0 \in X$ 使得

- 1. $\forall \varepsilon > 0$, $B(x_0, \varepsilon) \cap E \neq \emptyset$, 则 x_0 为 E 的接触点;
- 2. $\forall \varepsilon > 0$, $B(x_0, \varepsilon) \cap (E \setminus \{x_0\}) \neq \emptyset$, 则 x_0 为 E 的聚点。

E 的接触点全体称为 E 的闭包,记作 \overline{E} .

推论 1.1.2

度量空间 (X,d), $E \subset X$, 下列命题等价:

- 1. E 是闭集;
- 2. $E = \overline{E}$;
- 3. $\forall \{x_n\}_{n=1}^{\infty} \subset E$,如果 $x_n \to x_0$,则 $x_0 \in E$.

 \Diamond

证明 证明: $(1) \Rightarrow (2)$: $E \ \exists \Rightarrow E^c \ \exists \Rightarrow E^c \ \exists \Rightarrow E^c \ \exists \Rightarrow E \ \exists \Rightarrow E^c \ \exists \Rightarrow E \ \exists \in E \ \exists \Rightarrow E \ \exists \in E \ \exists \in$

- $(2) \Rightarrow (1): \ \overline{E} = E \Rightarrow \forall y \in E^c, y \notin \overline{E} \Rightarrow$ 存在邻域 $B(y, \varepsilon) \cap E = \varnothing \Rightarrow B(y, \varepsilon) \subset E^c \Rightarrow E^c$ 开 $\Rightarrow E$ 闭。
- $(2) \Rightarrow (3)$: 任取收敛列 $\{x_n\}_{n=1}^{\infty} \subset E$, $x_n \to x_0$, 则 $\forall \varepsilon > 0$, 存在 N 使得 n > N 时 $x_n \in B(x_0, \varepsilon)$, 于是 $x_{N+1} \in B(x_0, \varepsilon) \cap E \neq \emptyset \Rightarrow x_0 \in \overline{E}$.
- $(3) \Rightarrow (2)$: 设 $x_0 \in \overline{E}$, 取 $\varepsilon_1 > 0$, 存在 $x_1 \in B(x_0, \varepsilon_1) \cap E$; 取 $0 < \varepsilon_2 < \varepsilon_1$ 使得存在 $x_2 \in B(x_0, \varepsilon_2) \cap E$ 且 $x_2 \neq x_1$; 以此类推,并可以要求 $\varepsilon_n \to 0$,否则 $B(x_0, \inf_n \{\varepsilon_n\}) \cap E = \emptyset$,这与 $x_0 \in \overline{E}$ 矛盾。最后得到点列 $\{x_n\}$,且 $x_n \to x_0$,由 (3) 可知 $x_0 \in E$,所以 $\overline{E} \subset E$,进而 $\overline{E} = E$.

定义 1.1.5

度量空间 (X,d), $E \subset X$, $x_0 \in E$, 如果 $\forall \varepsilon > 0$, $B(x_0,\varepsilon) \setminus \{x_0\} \cap E = \emptyset$, 等价于存在点列 $\{x_n\} \subset E$ 使得 $x_n \to x_0$, 则称 $x_0 \notin E$ 的聚点或者极限点。

记E'为E的聚点全体,称为E的导集。

记 $\overline{E}=E\cup E'$,称为E的闭包。如果 $\overline{E}=X$,称E在X中稠密,记作E $\overset{\text{dense}}{\subset}X$ 或者 $E\subset\subset X$. 如果X有一个可数稠密子集,称X可分。

 $\mathbb{Q} \subset \mathbb{R}$,多项式全体 $P[a,b] \subset C[a,b]$.

C[a,b]可分。

证明 记 Q[a,b] 为 [a,b] 上全体有理系数多项式,这是一个可数集; P[a,b] 是 [a,b] 上全体实系数多项式。设

$$r(x) = r_n x^n + \dots + r_0 \in P[a, b], \forall r_i \in \mathbb{R}$$

因为 $\mathbb{Q} \subset \mathbb{R}$, $\forall \varepsilon > 0$, 对于每个 r_i , 存在 $q_i \in \mathbb{Q}$ s.t. $|r_i - q_i| < \varepsilon$, 于是令

$$q(x) = q_n x^n + \dots + q_0 \in Q[a, b]$$

$$\Rightarrow d(r,q) = \sup_{x \in [a,b]} |(r_n - q_n)x^n + \dots + (r_0 - q_0)|$$

$$\leqslant \sup_{x \in [a,b]} \varepsilon(|x^n| + \dots + |x| + 1)$$

$$= C\varepsilon \to 0 \text{ as } \varepsilon \to 0$$

因此 $Q[a,b] \stackrel{\text{dense}}{\subset} P[a,b]$,而 $P[a,b] \stackrel{\text{dense}}{\subset} C[a,b]$, $\forall f \in C[a,b]$,设 $d(r,f) < \frac{1}{2}\varepsilon$, $d(q,r) < \frac{1}{2}\varepsilon$,

$$d(q, f) \leq d(r, f) + d(q, r) < \varepsilon$$

所以 C[a,b] 有可数稠密子集 Q[a,b].

定义 1.1.6

(X,d), (Y,ρ) 是两个度量空间, 设映射:

$$T:X\to Y$$

在 $x_0 \in X$ 处连续是指: $\forall \varepsilon > 0$, 存在 $\delta > 0$ 使得

$$d(x, x_0) < \delta \Rightarrow \rho(T(x), T(x_0)) < \varepsilon$$

如果T在X中的每一点都连续,则称T是连续映射。

定理 1.1.2

(X,d), (Y,ρ) 是两个度量空间,映射 $T:X\to Y$ 连续 \Leftrightarrow 任取 Y 上的开集 U, $T^{-1}(U)$ 是 X 上的开集。

证明 记 $B_X(x_0, r) = \{x \in X | d(x, x_0) < r\}, B_Y(y_0, r) = \{y \in Y | \rho(y, y_0) < r\}.$

 (\Rightarrow) : $\forall y_0 \in U$, $B_Y(y_0, \varepsilon) \subset U$, 设 $x_0 \in T^{-1}(U)$, 因为 T 连续, 存在 $\delta > 0$ 使得 $x \in B_X(x_0, \delta) \Rightarrow T(x) \in B_Y(y_0, \varepsilon) \subset U$, 所以 $B_X(x_0, \delta) \subset T^{-1}(U)$, 由于 y_0 的任意性, x_0 能取遍整个 $T^{-1}(U)$, 故 $T^{-1}(U)$ 为开集。

(\Leftarrow): 对于 $x_0 \in X$, 设 $y_0 = T(x_0)$, $U = B_Y(y_0, \varepsilon)$ 是 Y 上的开集,且 $x_0 \in T^{-1}(U)$,所以存在 $B_X(x_0, \delta) \subset T^{-1}(U)$,则 $x \in B_X(x_0, \delta) \Rightarrow T(x) \in U = B_Y(y_0, \varepsilon)$. 由 ε 的任意性,T 是连续映射。

定理 1.1.3 (Heine)

T 在 x_0 处连续 \Leftrightarrow 任取 X 上收敛到 x_0 的点列 $\{x_n\}$, 都有 $T(x_n) \to T(x_0)$.

证明 (⇒): $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } x \in B_X(x_0, \delta) \Rightarrow T(x) \in B_Y(y_0, \varepsilon)$, 存在 N 使得 n > N 时 $x_n \in B_X(x_0, \delta) \Rightarrow T(x_n) \in B_Y(T(x_0), \varepsilon) \Rightarrow T(x_n) \to T(x_0)$.

(\Leftarrow): 假设 T 在 x_0 处不连续,即存在 $\varepsilon > 0$, $\forall \delta > 0$,存在 $x \in B_X(x_0, \delta)$ s.t. $T(x) \notin B_Y(y_0, \varepsilon)$,取 $x_n \to x_0$,每个 $T(x_n) \notin B_Y(y_0, \varepsilon)$,则 $T(x_n) \to T(x_0)$,矛盾。

定义 1.1.7

度量空间 (X,d), 称 $\{x_n\}$ 是一个基本列 (或者叫 Cauthy 列) 是指: $\forall \varepsilon > 0$, 存在 N 使得:

$$d(x_m, x_n) < \varepsilon, \forall m, n \geqslant N$$

如果 (X,d) 中任意基本列都收敛,则称 (X,d) 完备。完备的度量空间称为 Banach 空间,

例 1.1.8.

 (\mathbb{R},d) 完备, (\mathbb{Q},d) 不完备; $L^p[0,1]$ 完备。

例 1.1.9.

例 1.1.5 中的 (C[0,1],d) 完备。

证明 设 $\{f_n\}_{n=1}^{\infty}$ 是 C[0,1] 中任一基本列,于是

$$\forall \varepsilon, \exists N \text{ s.t. } \max_{t \in [0,1]} |f_m(t) - f_n(t)| < \varepsilon, \forall m, n \geqslant N$$

于是对于每个固定的 $t \in [0,1]$, $|f_m(t) - f_n(t)| < \varepsilon$, 从而可知 $\{f_n(t)\}_{n=1}^{\infty}$ 是 \mathbb{R} 中的基本列,于是存在极限 $f(t) = \lim_{n \to \infty} f_n(t)$. 在 (1.1.1) 式中令 $m \to \infty$,于是

$$\max_{t \in [0,1]} |f_m(t) - f(t)| \leq \varepsilon, \forall n \geqslant N$$

$$\Rightarrow f_n \Rightarrow f$$

$$\Rightarrow f \in C[0,1], d(f_n, f) \to 0$$

例 1.1.10.

例 1.1.5 中的 $(C[0,1], \rho_1)$ 不完备。

证明 令:

$$f_n(t) \stackrel{\text{def}}{=} \begin{cases} 0 & , t \in [0, \frac{1}{2} - \frac{1}{n}] \\ nt - \frac{n}{2} + 1 & , t \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}] \\ 1 & , t \in [\frac{1}{2}, 1] \end{cases}$$

于是

$$\rho_1(f_n, f_m) = \frac{1}{2} \left| \frac{1}{n} - \frac{1}{m} \right| \to 0 \text{ as } n, m \to \infty$$

因此 $\{f_n\}$ 是基本列。下面证明它不收敛,假设存在 $f \in C[0,1]$ 使得 $\rho_1(f_n,f) \to 0$,

$$\rho_1(f_n, f) = \int_0^1 |f_n(t) - f(t)| dt$$

$$= \int_0^{\frac{1}{2} - \frac{1}{n}} |f(t)| dt + \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} |f_n(t) - f(t)| dt + \int_{\frac{1}{2}}^1 |1 - f(t)| dt$$

$$\int_0^{\frac{1}{2}} |f(t)| dt + \int_{\frac{1}{2}}^1 |1 - f(t)| dt = 0$$

所以

$$f(t) = \begin{cases} 0 & , t \in (0, \frac{1}{2}) \\ 1 & , t \in (\frac{1}{2}, 1) \end{cases}$$

和 f 连续矛盾。

例 1.1.11.

离散度量空间完备。

证明 任取 X 上的柯西列 $\{x_n\}_{n=1}^{\infty}$,取 $\varepsilon = \frac{1}{2}$,存在 N 使得 $\forall n, m > N$, $d(x_n, x_m) < \frac{1}{2} \Rightarrow d(x_n, x_m) = 0$,即 $\forall n > N, x_n = x_{N+1}$,所以 $x_n \to x_{N+1} \in X$. 故离散度量空间完备。

定义 1.1.8

度量空间 (X,d),映射 $T:X\to X$,如果存在 $x^*\in X$ 使得 $T(x^*)=x^*$,则称 x^* 是 T 的一个不动点。如果存在 $\alpha\in(0,1)$,使得

$$d(T(x), T(y)) \le \alpha d(x, y), \forall x, y \in X$$

则称T是一个压缩映射。

定理 1.1.4 (Banach 不动点定理、压缩映射原理)

完备度量空间到自身的压缩映射有唯一的不动点。

 \Diamond

证明 存在性: 这个证明方法叫做 Picard 迭代, 任取 $x_0 \in X$, 定义迭代序列:

$$x_{n+1} = T(x_n), n = 0, 1, \cdots$$

$$\Rightarrow d(x_{n+1}, x_n) = d(T(x_n), T(x_{n-1}))$$

$$\leqslant \alpha d(x_n, x_{n-1}) = \alpha d(T(x_{n-1}), T(x_{n-2}))$$

$$\leqslant \alpha^2 d(x_{n-1}, x_{n-2})$$

$$\leqslant \cdots \leqslant \alpha^n d(x_1, x_0)$$

利用三角不等式,

$$\Rightarrow d(x_{n+p}, x_n) \leqslant \sum_{k=1}^p d(x_{n+k}, x_{n+k-1})$$

$$\leqslant \sum_{k=1}^p \alpha^{n+k-1} d(x_1, x_0)$$

$$\leqslant \frac{\alpha^n}{1-\alpha} d(x_1, x_0) < \varepsilon, n 充分大时, \forall p$$

$$\Rightarrow \{x_n\}_{n=1}^\infty \not\in X \text{ p in } \not\equiv x \not\in X$$

$$\Rightarrow \exists x^* \in X \text{ s.t. } d(x_n, x^*) \to 0 \text{ as } n \to \infty$$

$$\Rightarrow d(T(x^*), x^*) \leqslant d(T(x^*), T(x_n)) + d(T(x_n), x_n) + d(x_n, x^*)$$

$$\leqslant \alpha d(x^*, x_n) + d(x_{n+1}, x_n) + d(x_n, x^*) \to 0 \text{ as } n \to \infty$$

$$\Rightarrow T(x^*) = x^*$$

唯一性: 设 y^* 是另一个不动点,则

$$d(x^*, y^*) = d(T(x^*), T(y^*)) \leqslant \alpha d(x^*, y^*)$$

因此只能 $d(x^*, y^*) = 0 \Rightarrow x^* = y^*$.

例 1.1.12.

完备的条件不可去,例如 X=(0,1) 不完备,度量 d(x,y)=|x-y|,压缩映射 $T(x)=\frac{1}{2}x$,无不动点。

◇ 1.2 完备化

定义 1.2.1

 (X_1,d_1) 和 (X_2,d_2) 是两个度量空间,如果映射 $T:X_1\to X_2$ 保持距离不变,即

$$d_1(x,y) = d_2(T(x), T(y)), \forall x, t \in X_1$$

则称 T 是等距映射。如果存在从 X_1 到 X_2 的既单又满的等距映射,则称 (X_1,d_1) 和 (X_2,d_2) 是等距同构的。

定义 1.2.2

如果 (X_1,d_1) 和 (X_2,d_2) 的某个子空间等距同构,则称 (X_1,d_1) 可等距嵌入 (X_2,d_2) ,记作 $(X_1,d_1)\hookrightarrow (X_2,d_2)$

在此意义下, 称 X_1 是 X_2 的子空间。

定义 1.2.3

对于度量空间 (X,d), 如果存在完备的度量空间 (\tilde{X},\tilde{d}) , 它的某个稠密子空间 X_0 和 X 等距同构,则 称 (\tilde{X},\tilde{d}) 是 (X,d) 的一个完备化。

例 1.2.1.

- 1. ℝ 是 ℚ 的完备化。
- 2. $L^{1}[a,b]$ 是 $(C[a,b],\rho_{1})$ 的完备化。
- 3. C[a,b] 是 (P[a,b],d) 的完备化。

定理 1.2.1

任何度量空间都有完备化,且完备化在等距同构意义下唯一,即如果 (\tilde{X},\tilde{d}) 和 (X',d') 都是 (X,d) 的 完备化,则二者等距同构。

我们的证明思路是:

- 1. 构造 (\tilde{X}, \tilde{d}) .
- 2. 构造稠密子空间 (X_0, \tilde{d}) 和等距同构。
- 3. 证明 (\tilde{X}, \tilde{d}) 完备。
- 4. 证明等距同构意义下的唯一性。

证明

1. \mathcal{F} 定义为 (X,d) 上基本列全体, 记 $\xi = \{x_n\}_{n=1}^{\infty}$, $\eta = \{y_n\}_{n=1}^{\infty}$, 在 \mathcal{F} 上引入等价关系:

$$\xi \sim \eta \stackrel{\text{def}}{\Leftrightarrow} \lim_{n \to \infty} d(x_n, y_n) = 0$$

 $\tilde{X} \stackrel{\text{def}}{=} \mathcal{F}/_{\sim}$, 定义 \tilde{X} 上的度量:

$$\tilde{d}([\xi], [\eta]) \stackrel{\text{def}}{=} \lim_{n \to \infty} d(x_n, y_n)$$

这里 $\{x_n\}_{n=1}^{\infty}$ 是 $[\xi]$ 中任一代表元, $\{y_n\}_{n=1}^{\infty}$ 是 $[\eta]$ 中任一代表元,(a). \tilde{d} 良定:

I. $\lim_{n \to \infty} d(x_n, y_n)$ 存在: 由三角不等式:

$$|d(x_n, y_n) - d(x_m, y_m)| = |d(x_n, y_n) - d(y_n, x_m) + d(x_m, y_n) - d(x_m, y_m)|$$

$$\leq |d(x_n, y_n) - d(y_n, x_m)| + |d(x_m, y_n) - d(x_m, y_m)|$$

$$\leq d(x_n, x_m) + d(y_n, y_m) \to 0 \text{ as } n, m \to \infty$$

所以 $\{d(x_n,y_n)\}_{n=1}^{\infty}$ 是 \mathbb{R} 中基本列,再由 \mathbb{R} 的完备性可知极限存在。

II. $\tilde{d}([\xi], [\eta])$ 不依赖于 $[\xi], [\eta]$ 的代表元选取: 设 $\xi^{(1)} = \{x_n^{(1)}\}_{n=1}^{\infty}, \xi^{(2)} = \{x_n^{(2)}\}_{n=1}^{\infty} \in [\xi]$,根据定义有 $\lim_{n \to \infty} d(x_n^{(1)}, x_n^{(2)}) = 0$,

$$|d(x_n^{(1)}, y_n) - d(x_n^{(2)}, y_n)| \le d(x_n^{(1)}, x_n^{(2)}) \to 0 \text{ as } n \to \infty$$

$$\Rightarrow \lim_{n \to \infty} d(x_n^{(1)}, y_n) = \lim_{n \to \infty} d(x_n^{(2)}, y_n)$$

 $[\eta]$ 同理。

(b). \tilde{d} 是度量: 平凡。

2. 对 $x \in X$, 记 $\xi_x \stackrel{\text{def}}{=} (x, x, \cdots)$, 称为常驻点列, 当然也是一个基本列。设

$$X_0 \stackrel{\text{def}}{=} \{ [\xi_x] : x \in X \} \subset \tilde{X}$$

设 $T: X \to X_0, x \mapsto [\xi_x]$, 则 $T \in X$ 到 X_0 的等距同构。任取 $[\xi] \in \tilde{X}$, 任取代表元 $\{x_n\}_{n=1}^{\infty}$, 根据 \tilde{d} 的定义有(常驻点列 ξ_{x_n} 的第 k 项是 x_n , 点列 ξ 的第 k 项为 x_k)

$$\lim_{n \to \infty} \tilde{d}([\xi_{x_n}], [\xi]) = \lim_{n \to \infty} \lim_{k \to \infty} d(x_n, x_k)$$

而 $\xi = \{x_n\}_{n=1}^{\infty}$ 是基本列,所以上式等于 0,即柯西列 $[\xi_{x_n}] \to [\xi]$,可得 $\overline{X_0} = \tilde{X}$.

3. (\tilde{X},\tilde{d}) 完备: 设 $\{[\xi^{(k)}]\}_{k=1}^{\infty}$ 是 (\tilde{X},\tilde{d}) 中任一基本列,这里 $\xi^{(k)} = \{x_n^{(k)}\}_{n=1}^{\infty}$,由上一步的结论,取常驻点列 $\xi_{x_n^{(k)}} = (x_n^{(k)},\cdots)$,于是对每个 k, $[\xi_{x_n^{(k)}}] \to [\xi^{(k)}]$ 取充分大的 n_k 使得:

$$\tilde{d}([\xi^{(k)}], [\xi_{x_{n_k}^{(k)}}]) < \frac{1}{k}$$

可得

$$\begin{split} \tilde{d}([\xi_{x_{n_k}^{(k)}}], [\xi_{x_{n_j}^{(j)}}]) \leqslant \tilde{d}([\xi_{x_{n_k}^{(k)}}], [\xi^{(k)}]) + \tilde{d}([\xi^{(k)}], [\xi^{(j)}]) + \tilde{d}([\xi^{(j)}], [\xi_{x_{n_j}^{(j)}}]) \\ < \frac{1}{k} + \tilde{d}([\xi^{(k)}], [\xi^{(j)}]) + \frac{1}{j} \to 0 \text{ as } j, k \to \infty \end{split}$$

令 $\xi' \stackrel{\mathrm{def}}{=} \{x_{n_k}^{(k)}\}_{k=1}^{\infty} \in \mathcal{F}$,于是 $[\xi'] \in \tilde{X}$,根据 \tilde{d} 的定义有(常驻点列 $\xi_{x_{n_k}^{(k)}}$ 的第 j 项是 $\xi_{x_{n_k}^{(k)}}$,点列 ξ' 的第 j 项为 $x_{n_i}^{(j)}$)

$$\lim_{k \to \infty} \tilde{d}([\xi_{x_{n_k}^{(k)}}], [\xi']) = \lim_{k \to \infty} \lim_{j \to \infty} d(x_{n_k}^{(k)}, x_{n_j}^{(j)}) = 0$$

最后

$$\begin{split} \tilde{d}([\xi^{(k)}],[\xi']) \leqslant \tilde{d}([\xi^{(k)}],[\xi_{x_{n_k}^{(k)}}]) + \tilde{d}([\xi'],[\xi_{x_{n_k}^{(k)}}]) \\ < \frac{1}{\tau} \to 0 & \to 0 \end{split}$$

所以 $[\xi^{(k)}] \rightarrow [\xi']$, 完备性得证。

4. 唯一性: 设 (X',d') 也是 (X,d) 的完备化,即 (X,d) 等距同构于 (X',d') 的一个稠密子空间 (X'_0,d') ,设 $T': X \to X'_0$ 是等距同构,则 $\varphi = T' \circ T^{-1}$ 是 (X_0,\tilde{d}) 到 (X'_0,d') 的等距同构,下面把 φ 延拓为 (\tilde{X},\tilde{d}) 到 (X',d') 的等距同构。

$$\forall [\xi] \in \tilde{X}, \exists [\xi^n] \in X_0, n = 1, 2, \dots \text{ s.t. } \tilde{d}([\xi^n], [\xi]) \to 0$$
(由稠密性)

因为 φ 是等距映射,所以 $\varphi([\xi^{(n)}])$ 是(X',d')中的基本列。X'完备,所以存在 $y \in X'$ 使得 $d'(\varphi[\xi^{(n)}],y) \to 0$,定义映射: $\Phi: \tilde{X} \to X', [\xi] \mapsto y$,接下来验证 Φ 是等距同构(作业):

任取
$$[\xi^{(1)}], [\xi^{(2)}] \in \tilde{X}$$
,设 $\Phi([\xi^{(1)}]) = y_1, \Phi([\xi^{(2)}]) = y_2$,

$$d'(T'(x_n^{(1)}), T'(x_n^{(2)})) - d'(y_1, y_2)$$

$$\leq (d'(T'(x_n^{(1)}), y_2) + d'(y_2, T'(x_n^{(2)}))) - (d(T'(x_n^{(1)}), y_2) - d'(T'(x_n^{(1)}), y_1))$$

$$\leq d'(T'(x_n^{(1)}), y_1) + d'(T'(x_n^{(2)}), y_2) \to 0$$

而 $d'(T'(x_n^{(1)}), T'(x_n^{(2)})) = \tilde{d}([\xi_{x_n^{(1)}}], [\xi_{x_n^{(2)}}])$,同理

$$\tilde{d}([\xi_{x_n^{(1)}}], [\xi_{x_n^{(2)}}]) - \tilde{d}([\xi^{(1)}], [\xi^{(2)}]) \leqslant \tilde{d}([\xi_{x_n^{(1)}}], [\xi^{(1)}]) + \tilde{d}([\xi_{x_n^{(2)}}], [\xi^{(2)}]) \to 0$$

因此

$$\tilde{d}([\xi^{(1)}], [\xi^{(2)}]) = \lim_{n \to \infty} \tilde{d}([\xi_{x_n^{(1)}}], [\xi_{x_n^{(2)}}]) = \lim_{n \to \infty} d'(T'(x_n^{(1)}), T'(x_n^{(2)})) = d'(y_1, y_2)$$

这就证明了 Φ 是等距同构。

◇ 1.3 紧性推理

定义 1.3.1

度量空间 (X,d), $A \subset X$,

1. 如果一族开集 $\{G_{\alpha}\}_{\alpha\in\Lambda}$ 使得

$$\bigcup_{\alpha \in \Lambda} G_{\alpha} \supset A$$

则称 $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ 是 A 的一个开覆盖。

2. 如果 A 的任一开覆盖 $\{G_{\alpha}\}_{\alpha\in\Lambda}$ 都有有限子覆盖,即存在 $\alpha_1,\alpha_2,\cdots,\alpha_N\in\Lambda$ 使得

$$\bigcup_{k=1}^{N} G_{\alpha_k} \supset A$$

则称A紧。

- 3. 如果 A 中任一点列都有在 X 中收敛的子列,则称 A 列紧。
- 4. 如果 A 中任一点列都有在 A 中收敛的子列,则称 A 自列紧。
- 5. 如果空间 X 自身列紧,则称 X 为列紧空间。

推论 1.3.1

度量空间上, 自列紧集等价于列紧闭集。

例 1.3.1.

 \mathbb{R}^n 中,列紧集等价于有界集,自列紧集等价于有界闭集等价于紧集。

例 1.3.2.

一般度量空间中,有界集不一定列紧,如无穷维线性空间和欧式度量构成的度量空间,设 e_n 为第 n 个分量为 1,其余为 0 的向量,无穷点列 $\{e_n\}_{n=1}^\infty$ 是有界的,但是 $d(e_n,e_m)=\sqrt{2}, \forall n\neq m$,无收敛子列。

命题 1.3.1

列紧空间中任一集合都列紧, 任一闭集都自列紧。

命题 1.3.2

列紧空间一定完备。

证明 设 $\{x_n\}_{n=1}^{\infty}$ 是 (X,d) 中基本列,(X,d) 列紧 \Rightarrow 有子列 $x_{n_k} \to x_0 \in X$,

$$\Rightarrow d(x_n, x_0) \leqslant d(x_n, x_{n_k}) + d(x_{n_k}, x_0) \to 0 \text{ as } n, k \to \infty$$

定义 1.3.2

度量空间 (X,d), $A \subset X$, $\varepsilon > 0$,

$$\forall x \in A, \exists y \in N_{\varepsilon} \text{ s.t. } d(x,y) < \varepsilon$$

等价于

$$A\subset\bigcup_{y\in N_\varepsilon}B(y,\varepsilon)$$

即由半径为 ε 的开球组成的A的开覆盖。

2. 如果 $\forall \varepsilon > 0$,都有 A 的一个元素有限的 ε 网,则称 A 完全有界。即可以选取有限个半径为 ε 的开球作为 A 的开覆盖。

命题 1.3.3

完全有界⇒有界

证明 有 A 的有限 1 网 $N_1 := \{y_1, \dots, y_m\}$, 于是令 $R = \sum_{k=2}^m d(y_k, y_1) + 1$, 则

$$A \subset \bigcup_{k=1}^{m} B(y_k, 1) \subset B(y_1, R)$$

例 1.3.3.

有界并不一定完全有界,考虑例 1.3.2, $A = \{e_n\}_{n=1}^{\infty}$ 没有有限的 $\frac{1}{2}$ 网,因为每个 $\frac{1}{2}$ 球只能覆盖球心。

定理 1.3.1 (Hausdorff)

- 1. 列紧 ⇒ 完全有界
- 2. 完备度量空间中, 列紧⇔完全有界。

证明

1. 假设 A 列紧不完全有界,即存在 $\varepsilon_0 > 0$ 使得有限个半径为 ε_0 的球不能覆盖 A,按照以下方式选取出一列点:

$$x_{1} \in A$$

$$x_{2} \in A \backslash B(x_{1}, \varepsilon_{0})$$

$$x_{3} \in A \backslash \bigcup_{k=1}^{2} B(x_{k}, \varepsilon_{0})$$

$$\vdots$$

$$x_{n} \in A \backslash \bigcup_{k=1}^{n} B(x_{k}, \varepsilon_{0})$$

$$\vdots$$

那么序列 $\{x_n\}_{n=1}^{\infty} \subset A$ 使得

$$x_n \notin \bigcup_{i=1}^{n-1} B(x_i, \varepsilon_0)$$

因此 $d(x_n, x_m) \ge \varepsilon_0, \forall n \ne m$, 说明 A 并不列紧, 矛盾。

2. 只需证明: X 完备并且 A 完全有界 $\Rightarrow A$ 列紧。设 $\{x_n\}_{n=1}^{\infty} \subset A$,对于 $\varepsilon = 1$,有 A 的有限 1 网 $N_1 = \{y_1^{(1)}, \dots, y_m^{(1)}\}$,于是

$$\{x_n\}_{n=1}^{\infty} \subset A \subset \bigcup_{k=1}^{m_1} B(y_k^{(1)}, 1)$$

因此,存在某个 k 使得 $B(y_k^{(1)},1)$ 包含 $\{x_n\}_{n=1}^{\infty}$ 中的无穷多项,记作 $\{x_n^{(1)}\}_{n=1}^{\infty}$,并记 $y_k^{(1)}=y^{(1)}$. 同理, $\exists y^{(2)} \in N_{\frac{1}{2}}$ 使得有 $\{x_n^{(1)}\}_{n=1}^{\infty}$ 的子列 $\{x_n^{(2)}\}_{n=1}^{\infty} \subset B(y^{(2)},\frac{1}{2})$,以此类推:

而且

$$\{x_n^{(1)}\}_{n=1}^{\infty} \supset \{x_n^{(2)}\}_{n=1}^{\infty} \supset \cdots \supset \{x_n^{(n)}\}_{n=1}^{\infty} \supset \cdots$$

取对角线子列:

$$x_n^{(n)} \in \bigcap_{k=1}^n B(y^{(k)}, \frac{1}{k}), n = 1, 2, \dots$$

所以 $\forall n, p$, 由于 $x_{n+p}^{(n+p)}, x_n^{(n)} \in B(y^{(n)}, \frac{1}{n})$, 因此

$$d(x_{n+p}^{(n+p)}, x_n^{(n)}) \leqslant \frac{2}{n} \to 0$$

所以 $\{x_n^{(n)}\}$ 是基本列,由 X 完备可知 $\{x_n^{(n)}\}$ 收敛,这就是 $\{x_n\}_{n=1}^\infty$ 的收敛子列,于是 A 列紧。

定理 1.3.2

度量空间中, 紧⇔自列紧。

 \odot

证明 必要性:

1. 紧集是闭集。设 A 是紧集, 希望证明 $X \setminus A$ 是开集, 任取 $x \in X \setminus A$, 取开覆盖

$$\bigcup_{y\in A}B(y,\frac{1}{3}d(x,y))\supset A$$

存在子覆盖

$$\bigcup_{k=1}^{m} B(y_k, \frac{1}{3}d(x, y_k)) \supset A$$

 $\diamondsuit \delta = \min_{1 \leqslant k \leqslant m} \frac{1}{3} d(x, y_k),$

$$\Rightarrow B(x,\delta) \cap \bigcup_{k=1}^{m} B(y_k, \frac{1}{3}d(x, y_k)) = \emptyset$$
$$\Rightarrow B(x,\delta) \subset X \setminus A$$

所以x是内点,进而 $X \setminus A$ 是开集。

2. 紧集是列紧集。假设 A 紧而不列紧,则存在 $\{x_n\}_{n=1}^{\infty}\subset A$ 没有收敛子列,不妨假设 x_n 互不相同,令

$$S_n = \{x_k\}_{k=1}^{\infty} \backslash x_n$$

则 S_n 是闭集¹, $X \setminus S_n$ 是开集。而

$$\bigcup_{n=1}^{\infty} (X \backslash S_n) = X \backslash \left(\bigcap_{n=1}^{\infty} S_n\right) = X \supset A$$

这就是A的一个开覆盖,存在N使得

$$\bigcup_{n=1}^{N} (X \backslash S_n) \supset A$$

但是

$$\bigcup_{n=1}^{N} (X \backslash S_n) = X \backslash \left(\bigcap_{n=1}^{N} S_n\right) = X \backslash \{x_n\}_{n=N+1}^{\infty}$$

不能是A的覆盖,矛盾。

充分性: 假设 A 自列紧但不紧,即存在 A 的一个开覆盖 $\{G_{\alpha}\}_{\alpha\in\Lambda}$ 使得任取有限个 G_{α} 都不能覆盖 A,A 自列紧,所以完全有界,对于 $\forall n$,取有限 $\frac{1}{2}$ 网:

$$N_{\frac{1}{n}} = \{y_1^{(n)}, \cdots, y_{m_n}^{(n)}\}, \ A \subset \bigcup_{k=1}^{m_n} B(y_k, \frac{1}{n})$$

那么,对于每个n,存在 $y_k^{(n)} \in N_{\frac{1}{n}}$ 使得 $B(y_k^{(n)}, \frac{1}{n})$ 不能被有限个 G_{α} 覆盖²,记 $y_k^{(n)} = y^{(n)}$,得到点列 $\{y^{(n)}\}_{n=1}^{\infty}$,因为A自列紧,所以有收敛子列 $\{y^{(n_k)}\}_{k=1}^{\infty}$,并设其收敛到 $y_0 \in A$.

设 $y_0 \in G_{\alpha_0}$, 则存在 $\delta > 0$ 使得 $B(y_0, \delta) \subset G_{\alpha_0}$, 而 $y^{(n_k)} \to y_0$, 当 k 充分大时, $n_k > \frac{2}{\delta}$ 且 $d(y^{(n_k)}, y_0) < \frac{\delta}{2}$,则 $\forall y \in B(y^{(n_k)}, \frac{1}{n_k})$,

$$d(y, y_0) \leqslant d(y_0, y^{(n_k)}) + d(y, y^{(n_k)}) \leqslant \frac{2}{\delta} + \frac{1}{n_k} \leqslant \delta$$

于是

$$B(y_{n_k}, \frac{1}{n_k}) \subset B(y_0, \delta) \subset G_{\alpha_0}$$

和 $B(y_{n_k}, \frac{1}{n_k})$ 不能被有限个 G_{α} 覆盖矛盾。

小结1.

有界闭
$$\underset{Y \to \mathbb{R}^n}{\Leftrightarrow}$$
 紧 \Leftrightarrow 自列紧 $\overset{}\hookrightarrow$ 列紧 $\overset{}\hookrightarrow$ 完全有界 $\overset{X = \mathbb{R}^n}{\hookrightarrow}$ 有界

定理 1.3.3

列紧空间可分。

证明 列紧 ⇒ 完全有界 ⇒ $\forall n$, 存在有限的 $\frac{1}{n}$ 网 $N_{\frac{1}{n}}$, 然后对所有的 n 取并得到一个可数集:

$$\bigcup_{n=1}^{\infty} N_{\frac{1}{n}} \stackrel{\text{dense}}{\subset} X$$

这是因为 $\forall x \in X$, $\forall n$, 存在 $x_n \in N_{\frac{1}{n}}$ 使得 $d(x_n, x) < \frac{1}{n}$, 从而 $x_n \to x$.

命题 1.3.4

 (M,ρ) 是紧度量空间, C(M) 为 M 上的连续函数全体, 定义

$$d(f,g) \stackrel{\text{def}}{=} \sup_{x \in M} |f(x) - g(x)|$$

则 $d \neq C(M)$ 上的度量,且 (C(M),d) 完备。(作业)

 $^{{}^{1}}S_{n}$ 没有聚点,也符合闭集定义。

 $^{^{2}}$ 否则,每个 $B(y_{k}^{(n)},\frac{1}{n})$ 都能被有限覆盖,取这些有限覆盖的并就是A的有限覆盖,矛盾。

证明 先证明 $d \in C(M)$ 上的度量:

- (1) 唯一性: $d(f,g) = \sup |f(x) g(x)| = 0 \Leftrightarrow f(x) = g(x)$ on M.
- (2) 非负性: 绝对值非负, 故 d(f,g) 非负。
- (3) 对称性: |f g| = |g f|.
- (4) 三角不等式:

$$\begin{split} d(f,g) + d(g,h) &= \sup_{x \in M} |f(x) - g(x)| + \sup_{x \in M} |g(x) - h(x)| \\ &\geqslant \sup_{x \in M} (|f(x) - g(x)| + |g(x) - h(x)|) \\ &\geqslant \sup_{x \in M} |f(x) - h(x)| = d(f,h) \end{split}$$

再证明 (C(M),d) 完备: 任取 C(M) 上的柯西列 $\{f_n\}_{n=1}^{\infty}$, 即

$$\forall \varepsilon > 0, \exists N \text{ s.t. } \forall m, n \geqslant N, d(f_n, f_m) = \sup_{x \in M} |f_n(x) - f_m(x)| < \varepsilon$$

则固定 $x \in M$, $\{f_n(x)\}_{n=1}^{\infty}$ 是 \mathbb{R} 上的柯西列, 进而收敛, 设其收敛到 $f_0(x)$, 于是

$$\forall x \in M, \forall \varepsilon > 0, \exists N > 0 \text{ s.t. } n \geqslant N \Rightarrow \sup_{x \in M} |f_n(x) - f_0(x)| < \varepsilon$$
 (1)

 f_n 连续, 所以对于 ε ,

$$\exists \delta \text{ s.t. } \forall y \in B(x, \delta), |f_n(x) - f_n(y)| < \varepsilon$$
 (2)

则

$$|f_0(x) - f_0(y)| \leq |f_0(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f_0(x)|$$
$$\leq \varepsilon + \varepsilon + \varepsilon = 3\varepsilon \to 0$$

所以 f_0 连续, 即 $f_0 \in C(M)$, 于是 (C(M), d) 完备。

定义 1.3.3

 (M,ρ) 是紧度量空间,C(M) 为 M 上的连续函数全体,称 C(M) 中的一族函数 F 等度连续是指: $\forall \varepsilon>0$,存在 $\delta>0$ 使得

$$|\varphi(x') - \varphi(x'')| < \varepsilon, \forall x', x'' \in M \text{ with } \rho(x', x'') < \delta, \forall \varphi \in \mathcal{F}$$

定理 1.3.4 (Argela-Ascoli)

F 列紧当且仅当 F 作为函数族一致有界、等度连续。

 \Diamond

证明 必要性: F 列紧 \Rightarrow 完全有界 \Rightarrow 有界,

$$d(f,0) \leqslant R, \forall f \in \mathcal{F} \Rightarrow \sup_{x \in M} |f(x)| \leqslant R, \forall f \in \mathcal{F}$$

 \Rightarrow 一致有界。下证等度连续: $\forall \varepsilon > 0$,存在 $N_{\frac{\varepsilon}{3}} = \{ \varphi_1, \cdots, \varphi_m \}$ 使得

$$\bigcup_{k=1}^{m} B(\varphi_k, \frac{\varepsilon}{3}) \supset \mathcal{F} \tag{1}$$

因为 φ_k 一致连续,对每个k,存在 $\delta_k > 0$ 使得

$$|\varphi_k(x') - \varphi_k(x'')| < \frac{\varepsilon}{3}, \forall x', x'' \in M \text{ with } \rho(x', x'') < \delta_k$$

 $\diamondsuit \delta = \min\{\delta_1, \cdots, \delta_m\}$,则

$$|\varphi_k(x') - \varphi_k(x'')| < \frac{\varepsilon}{3}, \forall x', x'' \in M \text{ with } \rho(x', x'') < \delta, \forall k$$
 (2)

由(1),

$$\forall \varphi \in \mathcal{F}, \exists k \text{ s.t. } d(\varphi, \varphi_k) < \frac{\varepsilon}{3}$$

于是 $\forall x, |\varphi(x) - \varphi_k(x)| \leq \sup_{x \in M} |\varphi(x) - \varphi_k(x)| = d(\varphi, \varphi_k) \leq \frac{\varepsilon}{3}$. 而当 $\rho(x', x'') < \delta$ 时,由 (2), $|\varphi_k(x') - \varphi_k(x'')| < \frac{\varepsilon}{3}$,所以

$$|\varphi(x') - \varphi(x'')| \leq |\varphi(x') - \varphi_k(x')| + |\varphi_k(x') - \varphi_k(x'')| + |\varphi_k(x'') - \varphi(x'')| < \varepsilon$$

充分性: \mathcal{F} 等度连续, $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得

$$|\varphi(x') - \varphi(x'')| < \varepsilon, \forall x', x'' \in M \text{ with } \rho(x', x'') < \delta, \forall \varphi \in \mathcal{F}$$

M 紧, 所以有有限 δ 网 $N_{\delta} = \{x_1, \dots, x_n\}$, 定义映射:

$$T: \mathcal{F} \to \mathbb{R}^n, \varphi \mapsto (\varphi(x_1), \cdots, \varphi(x_n))$$

F 一致有界, 所以可令

$$R \stackrel{\mathrm{def}}{=} \sup_{\varphi \in \mathcal{F}} \sup_{x \in M} |\varphi(x)| < \infty$$

则

$$\left[\sum_{i=1}^{n} |\varphi(x_i)|^2\right]^{\frac{1}{2}} \leqslant \sqrt{n}R, \forall \varphi \in \mathcal{F}$$

所以 $T(\mathcal{F})$ 是 \mathbb{R}^n 中有界集,故列紧,设 $T(\mathcal{F})$ 的有限 $\frac{6}{3}$ 网为

$$M_{\frac{\varepsilon}{2}} = \{T(\varphi_1), \cdots, T(\varphi_m)\}$$

Claim: $\{\varphi_1, \dots, \varphi_m\}$ 是 \mathcal{F} 的 ε 网。

$$\forall \varphi \in \mathcal{F}, \exists k \text{ s.t. } d_{\mathbb{R}^n}(T(\varphi), T(\varphi_m)) < \frac{\varepsilon}{3}$$

于是 $|\varphi(x_i) - \varphi_k(x_i)| \le d_{\mathbb{R}^n}(T(\varphi), T(\varphi_m)) < \frac{\varepsilon}{3}$. 同时, $\forall x \in M, \exists x_i \in N_\delta \text{ s.t. } \rho(x_i, x) < \delta$,由 (1.3.3),

$$|\varphi(x) - \varphi(x_i)|, |\varphi_k(x_i) - \varphi_k(x)| < \frac{\varepsilon}{3}$$

所以

$$|\varphi(x) - \varphi_k(x)| \le |\varphi(x) - \varphi(x_i)| + |\varphi(x_i) - \varphi_k(x_i)| + |\varphi_k(x_i) - \varphi_k(x)| < \varepsilon$$

所以 $d(\varphi, \varphi_k) \leq \varepsilon$.

 L^p 空间中列紧集是怎样的?

定理 1.3.5 (Riesz-Frechet-kolmogorov)

设 $1 \leq p < \infty$, $\mathcal{F} \subset L^p(\mathbb{R}^n)$ 列紧当且仅当:

- 1. \mathcal{F} 有界,即 $\sup_{f \in \mathcal{F}} ||f||_p < \infty$.
- 2. $\forall \varepsilon > 0$. $\exists R > 0$ s.t.

$$\int_{|x|>R} |f(x)|^p \mathrm{d}x < \varepsilon^p, \forall f \in \mathcal{F}$$

3. $\forall \varepsilon$, $\exists \delta > 0 \text{ s.t.}$

$$||\tau_h f - f||_p < \varepsilon, \forall h \in \mathbb{R}^n \text{ with } |h| < \delta, \forall f \in \mathcal{F}$$

其中
$$(\tau_h f)(x) = f(x+h)$$
.

5

例 1.3.4.

A 是 ℓ^2 上的列紧集 ⇔

- 1. A 有界。
- 2. $\forall \varepsilon > 0$, $\exists N$ 使得

$$\sum_{k=N+1}^{\infty} |x_k|^2 < \varepsilon, \forall x = (x_1, x_2, \dots) \in A$$

(作业)

证明 (⇒): 假设 A 无界,则能取发散点列 $\{a_n\}_{n=1}^{\infty}$ 满足 $d(a_n,0) \to \infty$,与 A 列紧矛盾;A 列紧则完全有界, $\forall \varepsilon > 0$,取 A 的有限 $\varepsilon/2$ 网 $\{a^{(i)}\}_{i=1}^n$,其中每个 $a^{(i)} = (a_1^{(i)}, \cdots, a_i^{(i)}, \cdots)$,根据定义有:

$$\sum_{j=1}^{\infty} |a_j^{(i)}|^2 < +\infty, \ i = 1, 2, \cdots, n$$

所以

$$\exists N_i \text{ s.t. } \sum_{j=N_i+1}^{\infty} |a_j^{(i)}|^2 < \varepsilon/2, \ i = 1, 2, \dots, n$$

取 $N = \max_{i=1,2,\dots,n} N_i$, 因为 $\{a^{(i)}\}_{i=1}^n$ 是 ε 网,

$$\forall x \in A, \exists a^{(i)} \text{ s.t. } d(x, a^{(i)}) = \sum_{j=1}^{\infty} |a_j^i - x_i|^2 < \varepsilon/2$$

所以

$$\sum_{i=N+1}^{\infty} |x_i|^2 \leqslant \sum_{i=N+1}^{\infty} (|a_i^{(k)}|^2 + |x_i - a_i^{(k)}|^2) \leqslant \varepsilon$$

 (\Leftarrow) : $\forall \varepsilon > 0$, 存在 N 使得

$$\sum_{i=N+1}^{\infty} |x_i|^2 \leqslant \varepsilon, \forall x \in A$$

取连续映射 $\varphi: A \to \mathbb{R}^N, x \mapsto (x_1, \cdots, x_N)$,A 有界 $\Rightarrow \varphi(A)$ 有界 $\Rightarrow \varphi(A)$ 完全有界,对于 $\delta = \frac{\varepsilon^2}{2}$,存在 $\varphi(A)$ 上的有限 δ 网 $\{\varphi(x^{(i)})\}_{i=1}^n$,记 $X = \{x^{(i)}\}_{i=1}^n \subset A$.

$$\forall y \in A, \exists x^{(i)} \in X \text{ s.t. } d_{\mathbb{R}^N}(\varphi(y), \varphi(x^{(i)})) < \frac{\varepsilon^2}{2}$$

$$\Rightarrow d(y, x^{(i)})^2 = \sum_{j=1}^N |y_j - x_j^{(i)}|^2 + \sum_{j=N+1}^\infty |y_j - x_j^{(i)}|^2$$

$$< d_{\mathbb{R}^N}(\varphi(y), \varphi(x^{(k)})) + 2 \sum_{j=N+1}^\infty (|y_j|^2 + |x_j^{(i)}|^2) < \varepsilon^2$$

于是X为A的有限 ε 网,A完全有界 $\Rightarrow A$ 列紧。

≫ 1.4 赋范线性空间

1.4.1 Banach 空间

定义 1.4.1

X 是非空集合, \mathbb{K} 表示 \mathbb{C} 或者 \mathbb{R} , 如果能在 X 上定义两种封闭的运算:

- 1. 加法: $X \times X \to X, (x,y) \mapsto x + y$. 满足:
 - (i) 结合律
 - (ii) 交换律
 - (iii) 零元
 - (iv) 负元
- 2. 乘法: $\mathbb{K} \times X \to X, (\lambda, x) \mapsto \lambda x.$ 满足:

- (v) 1x = x.
- (vi) $\alpha(\beta x) = (\alpha \beta)x$.
- (vii) $(\alpha + \beta)x = \alpha x + \beta y$.
- (viii) $\alpha(x+y) = \alpha x + \alpha y$.

则称 $X \in \mathbb{K}$ 上的向量空间,线性空间。 X 中的元素称为向量。

如果向量空间 X 的子集 Y, 如果对同一数域 \mathbb{K} 上的加法和乘法构成向量空间,则称之为 X 的向量子空间,也等价于 Y 关于加法和乘法封闭。

约定一些记号:

$$x + E := \{x + y : y \in E\}$$

$$\lambda E := \{\lambda y : y \in E\}$$

$$E + F := \{x + y : x \in E, y \in F\}$$

$$\operatorname{span}(E) := \left\{\sum_{k=1}^{n} \lambda_k x_k, x_k \in E, \lambda_k \in \mathbb{K}, n \in \mathbb{N}\right\}$$

称为 E 张成的子空间。

如果 E 线性无关且 span(E) = X,则称 $E \neq X$ 的 Hamel 基(代数基,线性基)。

定理 1.4.1

任一向量空间一定有 Hamel 基。

如果 Hamel 基是有限集,则定义 dim X = #E,否则记 dim $X = \infty$.

定义 1.4.2

 \mathbb{K} 是 \mathbb{C} 或者 \mathbb{R} , X 是 \mathbb{K} 上的向量空间,如果函数 $||\cdot||: X \to \mathbb{R}$ 满足:

- 1. 正定性
- 2. 齐次性
- 3. 三角不等式

则称之为X上的一个范数。 $(X, ||\cdot||)$ 称为一个赋范空间。定义

$$d(x,y) \stackrel{\mathrm{def}}{=} ||x - y||$$

称为范数诱导的度量,也叫典则度量。

如果 $(X, ||\cdot||)$ 在此度量下完备,则称之为 Banach 空间。

例 1.4.1.

Banach 空间的一些例子:

函数空间 $L^p, L^\infty, C(M)$; 数列空间 ℓ^p, ℓ^∞ (有界数列空间, $||x||_\infty \stackrel{\text{def}}{=} \sup_{k \ge 1} |x_k|$),C(收敛数列空间), C_0 (收敛到零的数列全体).

例 1.4.2.

 Ω 是 \mathbb{R}^n 中的有界域, $C^k(\overline{\Omega})$ 是 $\overline{\Omega}$ 上 k 次连续可微的函数全体,定义

$$||u||_{k,p} \stackrel{\text{def}}{=} \left(\sum_{|\alpha| \leq k} \int_{\Omega} |\partial^{\alpha} u|^{p} \right)^{\frac{1}{p}}$$

这是 $C^k(\overline{\Omega})$ 上的一个范数,

$$S \stackrel{\mathrm{def}}{=} \left\{ u \in C^k(\overline{\Omega}) : ||u||_{k,p} < \infty \right\}$$

的完备化称为 Sobolev 空间,记作 $H^{k,p}(\Omega)$.

1.4.2 范数等价

定义 1.4.3

X 是向量空间, $||\cdot||_1$ 和 $||\cdot||_2$ 是 X 上的两个范数,称 $||\cdot||_2$ 强于 $||\cdot||_1$ 是指: $\forall \{x_n\}_{n=1}^\infty \subset X$,

$$||x_n||_2 \to 0 \Rightarrow ||x_n||_1 \to 0$$

记作 $||\cdot||_1 \lesssim ||\cdot||_2$. 如果 $||\cdot||_2$ 强于 $||\cdot||_1$,同时 $||\cdot||_1$ 强于 $||\cdot||_2$,则称二者是等价范数。

命题 1.4.1

 $||\cdot||_2$ 强于 $||\cdot||_1 \Leftrightarrow \exists C > 0$ 使得 $||x||_1 \leqslant C||x||_2, \forall x \in X$.

证明 充分性显然,下证必要性: 假设不然,则 $\forall n$,存在 $x_n \in X$ 使得 $||x_n||_1 \geqslant m||x_n||_2$,令 $y_n = \frac{x_n}{||x_n||_1}$,则

$$||y_n||_2 \leqslant \frac{1}{n} \to 0 \text{ as } n \to \infty$$

 $||\cdot||_2$ 强于 $||\cdot||_1$, 所以 $||y_n||_1 \to 0$, 但是 $||y_n||_1$ 恒等于 1, 矛盾。

推论 1.4.1

 $||\cdot||_1$ 和 $||\cdot||_2$ 等价, 当且仅当存在 $C_1, C_2 > 0$, 使得

$$C_1||x||_1 \le ||x||_2 \le C_2||x||_1, \forall x \in X$$

C

例 1.4.3.

 \mathbb{R}^n 上 $||\cdot||_p (1 \leq p \leq \infty)$ 彼此等价,因为

$$||x||_{\infty} \leqslant ||x||_{p} \leqslant n^{\frac{1}{p}}||x||_{\infty}$$

定理 1.4.2

有限维空间上所有范数都等价。

证明 设 dim X = n, $\{e_1, \dots, e_n\}$ 是一组基, $\forall x \in X$ 有唯一表示

$$x = \sum_{i=1}^{n} \xi_i e_i, \xi_i \in \mathbb{K}$$

定义映射: $T \to \mathbb{K}^n, x \mapsto (\xi_1, \xi_2, \dots, \xi_n)$,则 $T \in X$ 到 \mathbb{K} 的代数同构,设

$$|\xi| = \left(\sum_{i=1}^{n} |\xi_i|^2\right)^{\frac{1}{2}}, \xi \in \mathbb{K}^n$$

令 $||x||_T = |T(x)|$,则 $||\cdot||_T$ 是 X 上的范数。任取一个 X 上的范数 $||\cdot||$,下面证明 $||\cdot||_T$ 和 $||\cdot||$ 等价。 定义函数

$$p: \mathbb{K}^n \to \mathbb{R}, \xi \mapsto ||\sum_{i=1}^n \xi_i e_i||$$

- 1. $p(\xi) = |\xi| \cdot p(\frac{\xi}{|\xi|}), \forall \xi \neq 0.$
- 2. p 在 K 上连续:

$$|p(a) - p(b)| = \left| || \sum_{i=1}^{n} a_i e_i|| - || \sum_{i=1}^{n} b_i e_i|| \right|$$

$$\leq || \sum_{i=1}^{n} (a_i - b_i) e_i||$$

$$\leq \sum_{i=1}^{n} |a_i - b_i| e_i$$

$$\leq \left(\sum_{i=1}^{n} ||e_i||^2 \right)^{\frac{1}{2}} |a - b|$$

最后一步是 Caurhy-Schwarz 不等式。

令 $S_1 = \{\xi \in \mathbb{K}^n : |\xi| = 1\}$, 则 S_1 是紧集, 故 p 在 S_1 上存在最小值和最大值, 分别记作 C_1 和 C_2 , 从而

$$\Rightarrow C_1 \leqslant p(\frac{\xi}{|\xi|}) \leqslant C_2, \forall \xi \neq 0$$

$$\Rightarrow C_1 |\xi| \leqslant p(\xi) \leqslant C_2 |\xi|, \forall \xi$$

$$\Rightarrow C_1 |T(x)| \leqslant p(T(x)) \leqslant C_2 |T(x)|, \forall x \in X$$

$$\Leftrightarrow C_1 ||x||_T \leqslant ||x|| \leqslant C_2 ||x||_T$$

只需证明 $C_1 > 0$,假设 $C_1 = 0$,则存在 $\xi^* \in S_1$ 使得

$$||\sum_{i=1}^{n} \xi_i^* e_i|| = p(\xi^*) = 0 \Rightarrow \sum_{i=1}^{n} \xi_i^* e_i = 0 \Rightarrow \xi^* = 0$$

这与ξ* ∈ S₁ 矛盾。

推论 1.4.2

同维数的两个有限维赋范空间(作为向量空间)代数同构且(作为拓扑空间)同胚。

证明

$$T: X \to \mathbb{K}^n, x = \sum_{i=1}^n \xi_i e_i \mapsto \xi$$

是一个代数同构,满足

$$C_1|T(x)| \leq ||x|| \leq C_2|T(x)|, \forall x \in X$$

第一个不等号得到T连续,第二个不等号得到 T^{-1} 连续,故T也是同胚。

推论 1.4.3

有限维赋范空间一定是 Banach 空间。

证明 $C_1|T(x)| \leq ||x|| \leq C_2|T(x)|$, 设 $\{x_n\}_{n=1}^{\infty}$ 是 X 中基本列,则 $\{T(x_n)\}_{n=1}^{\infty}$ 是 \mathbb{K}^n 中基本列,设 $T(x_k) \to \xi$,

$$||x_n - T^{-1}(\xi)|| \le C_2 |T(x_n) - \xi| \to 0$$

推论 1.4.4

任何赋范空间的有限维子空间一定是闭子空间。(作业)

证明 任何赋范空间的有限维子空间是有限维赋范空间,所以是 Banach 空间,所有的收敛列都是柯西列,所有的柯西列都收敛到子空间内某点,所以是闭子空间。

定理 1.4.3

赋范空间 $(X, ||\cdot||)$, X 中单位球面列紧 \Leftrightarrow $\dim X < \infty$.

 \Diamond

引理 1.4.1 (Riesz)

赋范空间 $(X,||\cdot||)$, $(Y,||\cdot||)$ 是 X 的闭子空间, $Y \neq X$, 则 $\forall \varepsilon > 0$, $\exists e \in X$ with ||e|| = 1, 使得

$$\operatorname{dist}(e, Y) := \inf_{v \in Y} ||e - y|| \geqslant 1 - \varepsilon$$

证明 取 $x \in X \backslash Y$, 令

$$d_i = \operatorname{dist}(x, y) = \inf_{y \in Y} ||x - y||$$

Y 是闭集, d>0, 且存在 $y_0 \in Y$ 使得

$$d \le ||x - y_0|| \le \frac{d}{1 - \varepsilon}$$

今

$$e \stackrel{\text{def}}{=} \frac{x - y_0}{||x - y_0||} \Rightarrow ||e|| = 1, e \notin Y$$

 $\forall \zeta \in Y$,

$$\begin{split} ||e - \zeta|| &= ||\frac{x - y_0}{||x - y_0||} - \zeta|| \\ &= \frac{1}{||x - y_0||} \cdot ||x - (y_0 + ||x - y_0||\zeta)|| \\ &\geqslant \frac{1 - \varepsilon}{d} \cdot d = 1 - \varepsilon \end{split}$$

所以 $\operatorname{dist}(e, Y) \geq 1 - \varepsilon$.

 \Diamond

证明 充分性:

$$T: X \to \mathbb{K}^n, x = \sum \xi_i e_i \mapsto \xi$$

满足

$$C_1|T(x)| \leqslant ||x|| \leqslant C_2|T(x)|$$

于是 $T(S_1)$ 有界,故列紧,

$$\Rightarrow \forall \{x_n\}_{n=1}^{\infty} \subset S_1, \exists T(x_{n_k}) \to y \in \mathbb{K}^n$$
$$\Rightarrow x_{n_k} \to T^{-1}(y) \in X$$

必要性: 假设 dim $X = \infty$, 则存在一列向量 $\{e_n\}_{n=1}^{\infty}$ 线性无关, 令子空间

$$X_n \stackrel{\text{def}}{=} \langle e_1, e_2, \cdots, e_n \rangle, n = 1, 2, \cdots$$

于是 $X_n \subsetneq X_{n+1}$ 且是闭子空间,由引理,取 $\varepsilon = \frac{1}{2}$, $\forall n \in \mathbb{N}$,存在 $x_n \in X_n$ with $||x_n|| = 1$,使得

$$\operatorname{dist}(x_n, X_{n-1}) \geqslant \frac{1}{2}$$

$$\Rightarrow ||x_n - x_m|| \geqslant \frac{1}{2}, \forall n \neq m$$

$$\Rightarrow \{x_n\}_{n=1}^{\infty}$$
 没有收敛子列

这与 S_1 列紧矛盾。

1.4.3 商空间

定义 1.4.4 (商空间)

赋范空间 $(X, ||\cdot||)$, $(X_0, ||\cdot||)$ 是 X 的闭子空间。在 X 中定义

$$x \sim y \stackrel{\text{def}}{\Leftrightarrow} x - y \in X_0$$

 $[x] \stackrel{\text{def}}{=} x$ 所在的等价类,

$$X/X_0 \stackrel{\text{def}}{=} \{ [x] : x \in X \}$$

定义运算:

$$[x] + [y] = [x + y], \lambda[x] = [\lambda x]$$

则 X/X_0 成为向量空间。并定义:

$$||[x]||_* \stackrel{\mathrm{def}}{=} \inf_{y \in [x]} ||y||$$

注 注意这里必须要求 X_0 是闭子空间。

定理 1.4.4

 $||\cdot||_*$ 是 X/X_0 上的范数。

 \sim

证明

1. 正定性: $\forall y \in X, ||y|| \ge 0 \Rightarrow ||[x]||_* \ge 0$,

$$||[x]||_* = 0 \Rightarrow \exists \{x_n\}_{n=1}^{\infty} \subset [x] \text{ s.t. } ||x_n|| \to 0$$

$$\Rightarrow x_n \to 0$$

 $[x] = x + X_0$ 是闭集,所以 $0 \in [x]$,进而可得 [x] = [0].

- 2. 齐次性:显然。
- 3. 三角不等式:由下确界的定义,∀ε,

$$\exists x' \in [x] \text{ s.t. } ||x'|| < ||[x]||_* + \frac{\varepsilon}{2}$$

$$\exists y' \in [y] \text{ s.t. } ||y'|| < ||[y]||_* + \frac{\varepsilon}{2}$$

$$\Rightarrow ||x' + y'|| \le ||x'|| + ||y'|| \le ||[x]||_* + ||[y]||_* + \varepsilon$$

$$\stackrel{x' + y' \in [x + y]}{\Rightarrow} ||[x + y]||_* \le ||[x]||_* + ||[y]||_* + \varepsilon$$

$$\stackrel{\varepsilon \to 0}{\Rightarrow} ||[x + y]||_* \le ||[x]||_* + ||[y]||_*$$

定理 1.4.5

 $(X, ||\cdot||)$ 完备,则 $(X/X_0, ||\cdot||_*)$ 也完备。

 \odot

引理 1.4.2

X 完备 $\Leftrightarrow \forall \{x_n\}_{n=1}^{\infty} \subset X$,

$$\sum_{n=1}^{\infty} ||x_n|| < \infty \Rightarrow \sum_{n=1}^{\infty} x_n \, \text{kig}$$

证明 习题 1.4.7.

 \Diamond

□ 第 1 章 度量空间
 □ 1.5 内积空间

证明 由引理,只需证明 X/X_0 中任一绝对收敛级数都收敛。设

$$\sum_{n=1}^{\infty} ||[x_n]||_* < \infty$$

对每个n,

$$\exists y_n \in X_0 \text{ s.t. } ||x_n + y_n|| \leq ||[x_n]||_* + \frac{1}{2^n}$$

$$\Rightarrow \sum_{n=1}^{\infty} ||x_n + y_n|| \leq \sum_{n=1}^{\infty} ||[x_n]||_* + 1 < \infty$$

$$\stackrel{X 4}{\Leftrightarrow} \exists x \in X \text{ s.t. } ||\sum_{k=1}^{n} (x_k + y_k) - x|| \to 0 \text{ as } n \to \infty$$

$$\Rightarrow ||\sum_{k=1}^{n} [x_j] - [x]||_* \stackrel{y_k \in X_0}{=} ||[\sum_{k=1}^{n} (x_k + y_k) - x]||_* \leq ||\sum_{k=1}^{n} (x_k + y_k) - x|| \to 0 \text{ as } n \to \infty$$

◇ 1.5 内积空间

1.5.1 Hilbert 空间

定义 1.5.1

 $X \in \mathbb{K}$ 上的向量空间,如果函数

$$\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$$

满足:

- 1. 对第一变元线性: $\langle \alpha x_1 + \beta x_2, y \rangle = \alpha \langle x_1, y \rangle + \beta \langle x_2, y \rangle$.
- 2. 对第二变元共轭线性: $\langle x, \alpha y_1 + \beta y_2 \rangle = \overline{\alpha} \langle x, y_1 \rangle + \overline{\beta} \langle x, y_2 \rangle$.
- 3. 共轭对称: $\overline{\langle x,y\rangle} = \langle y,x\rangle$.
- 4. $\langle x, x \rangle \ge 0, \forall x \in X$. 等号成立当且仅当 x = 0.

则称 $\langle \cdot, \cdot \rangle$ 是X上的一个内积, $(X, \langle \cdot, \cdot \rangle)$ 称为内积空间。

引理 1.5.1 (Cauthy-Schwarz)

 $(X,\langle\cdot,\cdot\rangle)$ 是内积空间,令

$$||x|| \stackrel{\text{def}}{=} \sqrt{\langle x, x \rangle}, x \in X$$

则 $|\langle x,y\rangle| \leq ||x||||y||, \forall x,y \in X$,等号成立当且仅当存在 $\lambda \in \mathbb{K}$,使得 $x=\lambda y$. 证明 不妨设 $y \neq 0$,则 $\forall \lambda \in \mathbb{K}$,

$$0 \leqslant \langle x + \lambda y, x + \lambda y \rangle$$

$$= \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + |\lambda|^2 \langle y, y \rangle$$

$$= ||x||^2 + 2\operatorname{Re}\{\overline{\lambda} \langle x, y \rangle\} + |\lambda|^2 ||y||^2$$

这里取 $\lambda = -\frac{\langle x, y \rangle}{||y||^2}$,

$$0 \le ||x||^2 - 2\operatorname{Re}\left\{\frac{|\langle x, y \rangle|^2}{||y||^2}\right\} + \frac{|\langle x, y \rangle|^2}{||y||^4} \cdot ||y||^2 = ||x||^2 - \frac{|\langle x, y \rangle|^2}{||y||^2}$$

于是得证。

 \Diamond

命题 1.5.1

Cauthy-Schwarz 引理中的 ||x|| 是一个范数。

证明 只需验证三角不等式:

$$||x + y||^2 = ||x||^2 + 2\operatorname{Re}\langle x, y\rangle + ||y||^2$$

 $\leq ||x||^2 + 2||x||||y|| + ||y||^2$

定义 1.5.2

如果一个内积空间在其内积诱导范数下是一个 Banach 空间,则称之为 Hilbert 空间。

•

例 1.5.1.

 ℓ^2 是一个 Hilbert 空间。(作业)

证明 只需证明 ℓ^2 完备。任取 ℓ^2 上基本列 $\{x^{(n)}\}_{n=1}^{\infty}$,

$$\forall \varepsilon > 0, \exists N \text{ s.t. } ||x^{(n)} - x^{(m)}||_2 < \varepsilon, \forall n, m \geqslant N$$

即

$$\sum_{k=1}^{\infty} |x_k^{(n)} - x_k^{(m)}|^2 < \varepsilon, \forall n, m \ge N$$

$$\Rightarrow \forall \exists \, \exists k, |x_k^{(n)} - x_k^{(m)}| < \varepsilon, \forall n, m \ge N$$

$$\Rightarrow \{x_k^n\}_{n=1}^{\infty} \not\in \mathbb{R} \text{ p. t. } x_k \neq M$$

$$\Rightarrow \exists x_k \in \mathbb{R} \text{ s.t. } x_k^{(n)} \to x_k \text{ as } n \to \infty$$
(1)

 $x \stackrel{\text{def}}{=} \{x_k\}_{k=1}^{\infty}$, Claim: $x \in \ell^2 \perp ||x^{(n)} - x||_2 \to 0$. $\pm (1)$, $\forall p \in \mathbb{N}$

$$\sum_{k=1}^{p} |x_k^{(n)} - x_k^{(m)}|^2 < \varepsilon^2, \forall n, m \geqslant N$$

$$\stackrel{m \to \infty}{\Rightarrow} \forall p, \sum_{k=1}^{p} |x_k^{(n)} - x_k|^2 \leqslant \varepsilon^2, \forall n \geqslant N$$

$$\stackrel{p \to \infty}{\Rightarrow} \sum_{k=1}^{\infty} |x_k^{(n)} - x_k|^2 \leqslant \varepsilon^2, \forall n \geqslant N$$

$$\Rightarrow x - x^{(N)} \in \ell^2$$

$$\Rightarrow x = x - x^{(N)} + x^{(N)} \in \ell^2$$

$$(2)$$

而且 (2) 就是

$$||x^{(n)} - x||_2 \le \varepsilon, \forall n \ge N \Rightarrow ||x^{(n)} - x||_2 \to 0 \text{ as } n \to \infty$$

命题 1.5.2 (极化恒等式)

 $(X,\langle\cdot,\cdot\rangle)$ 是内积空间,内积诱导范数 ||x||,

1. $\mathbb{K}=\mathbb{R}$,则

$$\langle x, y \rangle = \frac{1}{2}(||x + y||^2 - ||x||^2 - ||y||^2)$$

2. $\mathbb{K} = \mathbb{C}$,则

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{3} ||x + i^{k}y||^{2}$$

 \Diamond

(作业)

证明 $\mathbb{K} = \mathbb{R}$,

$$\begin{split} \frac{1}{2}(||x+y||^2 - ||x||^2 - ||y||^2) &= \frac{1}{2}(\langle x+y, x+y \rangle - \langle x, x \rangle - \langle y, y \rangle) \\ &= \frac{1}{2}(\langle x+y, x \rangle + \langle x+y, y \rangle - \langle x, x \rangle - \langle y, y \rangle) \\ &= \frac{1}{2}(\langle y, x \rangle + \langle x, y \rangle) \\ &= \langle x, y \rangle \end{split}$$

 $\mathbb{K} = \mathbb{C}$,

$$\frac{1}{4} \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2} = \frac{1}{4} (\langle x + y, x + y \rangle + i \langle x + iy, x + iy \rangle - \langle x - y, x - y \rangle - i \langle x - iy, x - iy \rangle)$$

$$= \frac{1}{2} (\langle x, y \rangle + \langle y, x \rangle + i \langle x, iy \rangle + i \langle iy, x \rangle)$$

$$= \frac{1}{2} (\langle x, y \rangle + \langle y, x \rangle + \langle x, y \rangle - \langle y, x \rangle)$$

$$= \langle x, y \rangle$$

命题 1.5.3 (平行四边形法则, P.L.)

 $(X,\langle\cdot,\cdot\rangle)$ 是内积空间,内积诱导范数 $||\cdot||$,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

(作业)

证明

$$\begin{split} ||x+y||^2 + ||x-y||^2 &= \langle x+y, x+y \rangle + \langle x-y, x-y \rangle \\ &= 2\langle x, x \rangle + 2\langle y, y \rangle + \langle x, y \rangle + \langle y, x \rangle + + \langle x, -y \rangle + \langle -y, x \rangle \\ &= 2\langle x, x \rangle + 2\langle y, y \rangle + \langle x, y \rangle + \langle y, x \rangle - \langle x, y \rangle - \langle y, x \rangle \\ &= 2(||x||^2 + ||y||^2) \end{split}$$

定理 1.5.1 (Frechet-von Neumann)

 $(X, ||\cdot||)$ 是赋范空间, $||\cdot||$ 可由某个内积诱导出 ⇔ $||\cdot||$ 满足 P.L. (作业)

证明 必要性显然,只说明充分性: 先考虑 $\mathbb{K} = \mathbb{R}$,令

$$\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$$

如果能证明 (·,·) 是一个内积, 那么其诱导度量 ||·||.

- (1) $\langle x, x \rangle = ||x|| \ge 0$,等号成立当且仅当 x = 0.
- (2) $\langle x, y \rangle = \langle y, x \rangle$.

□ 第1章 度量空间
 □ 1.5 内积空间

(3) 考虑

$$\begin{split} \langle x,z\rangle + \langle y,z\rangle &= \frac{1}{4}(||x+z||^2 - ||x-z||^2) + \frac{1}{4}(||y+z||^2 - ||y-z||^2) \\ &= \frac{1}{8}(2||x+z||^2 + 2||y+z||^2) - \frac{1}{8}(2||x-z||^2 + 2||y-z||^2) \\ &= \frac{1}{8}(||x+y+2z||^2 + ||x-y||^2) - \frac{1}{8}(||x+y-2z||^2 + ||x-y||^2) \\ &= \frac{1}{2}\langle x+y,2z\rangle \end{split}$$

特别地, 当 y=0,

$$\langle 0, z \rangle = \frac{1}{4}(||0+z||^2 - ||0-z||^2) = 0$$

$$\Rightarrow \langle x, z \rangle = \langle x, z \rangle + \langle 0, z \rangle = \frac{1}{2}\langle x, 2z \rangle$$

上式中x替换为x+y,

$$\langle x+y,z\rangle = \frac{1}{2}\langle x+y,2z\rangle$$

于是

$$\langle x, z \rangle + \langle y, z \rangle = \frac{1}{2} \langle x + y, 2z \rangle = \langle x + y, z \rangle$$

 $(4) \pm (3),$

$$\langle x, y \rangle + \langle x, -y \rangle = \langle x - x, y \rangle = \langle 0, y \rangle = 0$$

$$\Rightarrow \langle -x, y \rangle = -\langle x, y \rangle$$

$$n\langle x, y \rangle = \langle x, y \rangle + \dots + \langle x, y \rangle = \langle nx, y \rangle$$

$$n\langle \frac{m}{n}x, y \rangle = \langle mx, y \rangle = m\langle x, y \rangle$$

$$\Rightarrow \frac{m}{n}\langle x, y \rangle = \langle \frac{m}{n}x, y \rangle, \ n, m \in \mathbb{N}_{+}$$

因此当 $\lambda \in \mathbb{Q}$ 时, $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$. 对于任意实数 a, 取有理数列 $a_n \to a$, 则有

$$\langle ax, y \rangle = \lim_{n \to \infty} \langle a_n x, y \rangle = \lim_{n \to \infty} a_n \langle x, y \rangle = a \langle x, y \rangle$$

综上可知 $\langle \cdot, \cdot \rangle$ 是一个内积。对于 $\mathbb{K} = \mathbb{C}$ 的情况,取

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2}$$

其余过程同理。

定义 1.5.3

如果 $\langle x,y\rangle=0$,则称 x 与 y 正交,记为 $x\perp y$. 对于 $M\subset X$,如果 $\forall y\in M$ 都有 $x\perp y$,则记 $x\perp M$. $M^{\perp}\stackrel{\mathrm{def}}{=}\{x\in X: x\perp M\}$

称为M的正交补。

命题 1.5.4 (勾股定理)

$$x \perp y \Rightarrow ||x + y||^2 = ||x||^2 + ||y||^2$$

命题 1.5.5

 $\overline{M} = X$, $x \perp M$, $\mathbb{N} x = 0$.

▲第1章 度量空间 1.5 内积空间

证明 $x \in X$, 存在 $y_n \in M$ 使得 $y_n \to x$, 于是

$$0 = \langle x, y_n \rangle \to \langle x, x \rangle$$

所以 x=0.

实际上证明的是 $x \perp M \Rightarrow x \perp \overline{M}$.

命题 1.5.6

 $x \perp M \Rightarrow x \perp \text{span } M$.

命题 1.5.7

M[⊥] 是闭子空间。

证明 显然 M^{\perp} 是向量子空间,设 $M^{\perp} \ni x_n \to x$,

$$\forall y \in M, 0 = \langle x_n, y \rangle \to \langle x, y \rangle$$
$$\Rightarrow \langle x, y \rangle = 0$$
$$\Rightarrow x \in M^{\perp}$$

1.5.2 正交与正交基

定义 1.5.4

如果 $S = \{e_{\alpha}\}_{{\alpha} \in \Lambda} \subset X$ 满足

$$e_{\alpha} \perp e_{\beta}, \forall \alpha, \beta \in \Lambda, \alpha \neq \beta$$

则称 S 是 X 中的一个正交集,如果 S 还满足 $||e_{\alpha}||=1, \forall \alpha \in \Lambda$,则称之为规范正交集,简记为 O.N.S. 若一个正交集 S 满足 $S^{\perp}=\{0\}$,则称 S 完备。

定理 1.5.2

非平凡内积空间中一定有完备正交集。

 \odot

定义 1.5.5

非空集合 X 上的一个偏序"≤"是指满足以下条件的一个关系:

- 1. 传递性: $x \leq y, y \leq z \Rightarrow x \leq z$.
- 2. 反身性: $x \leq x$.
- 3. $x \leqslant y, y \leqslant x \Rightarrow x = y$.

(X, ≤) 称为一个偏序集。

如果 $\forall x,y \in X$, $x \leq y$ 或者 $y \leq x$ 必有其一,则称 " \leq "是 X 上的一个全序。对于 $Y \subset X$, 如果存在 $p \in X$ 使得 $\forall y \in Y$ 有 $y \leq p$, 称 $p \not\in Y$ 的一个上界。如果存在 $m \in X$ 使得 $m \leq x \Rightarrow x = m$,则称 $m \not\in X$ 上的一个极大元。

引理 1.5.2 (Zorn)

 (X, \leq) 是一个偏序集, X 的每个全序子集都有上界, 则 X 必有极大元。

$$P \stackrel{\mathrm{def}}{=} \bigcup_{C \in M} C$$

于是 $P \in M$ 的一个上界,这是因为任取 $C \in X$ 都有 $C \subset P$. 由 Zorn 引理,F 有极大元 S,则 S 完备,否则 $\exists x_0 \neq 0 \text{ s.t. } x_0 \perp S$, $S \cup \{x_0\} \in F$,与 S 的极大性矛盾。

定义 1.5.6

 $(X,\langle\cdot,\cdot\rangle)$ 是内积空间, $S=\{e_{\alpha}\}_{\alpha\in\Lambda}$ 是 O.N.S. 如果 $\forall x\in X$ 均可表示为^a

$$x = \sum_{\alpha \in \Lambda} \langle x, e_{\alpha} \rangle \cdot e_{\alpha}$$

则称 S 是 X 的一个规范正交基,简称 O.N.B. 其中的 $\{\langle x,e_{lpha}
angle\}$ 称为 x 的 Fourier 系数。

a其实对于不可数个量相加没有很合适的定义,这里的形式和需要要求 $\{\langle x,e_{lpha}
angle\}_{lpha\in\Lambda}$ 只有至多可数个非零。

定理 1.5.3 (Bessel 不等式)

 $\{e_{\alpha}\}_{{\alpha}\in\Lambda}$ 是 O.N.S. 则

$$\forall x \in X, \sum_{\alpha \in \Lambda} |\langle x, e_{\alpha} \rangle|^2 \leqslant ||x||^2$$

 \Diamond

证明 Step1:

$$\forall \{\alpha_1, \cdots, \alpha_N\} \subset \Lambda, \sum_{k=1}^N |\langle x, e_{\alpha_k} \rangle|^2 \leqslant ||x||^2$$

$$\begin{split} 0 \leqslant & \left\langle x - \sum_{i=1}^{N} \left\langle x, e_{\alpha_{i}} \right\rangle e_{\alpha_{i}}, x - \sum_{i=1}^{N} \left\langle x, e_{\alpha_{k}} \right\rangle e_{\alpha_{k}} \right\rangle \\ = & ||x||^{2} - \sum_{i=1}^{N} \left\langle x, e_{\alpha_{i}} \right\rangle \left\langle e_{\alpha_{i}}, x \right\rangle - \sum_{i=1}^{N} \overline{\left\langle x, e_{\alpha_{k}} \right\rangle} \left\langle e_{\alpha_{k}}, x \right\rangle + \sum_{i=1}^{N} \sum_{k=1}^{N} \left\langle e_{\alpha_{i}}, x \right\rangle \overline{\left\langle x, e_{\alpha_{k}} \right\rangle} \left\langle e_{\alpha_{i}}, e_{\alpha_{k}} \right\rangle \\ = & ||x||^{2} - \sum_{k=1}^{N} |\left\langle x, e_{\alpha_{k}} \right\rangle|^{2} \end{split}$$

Step2:

$$\Lambda' \stackrel{\text{def}}{=} \{ \alpha \in \Lambda : \langle x, e_{\alpha} \rangle \neq 0 \}$$
至多可数

\$

$$\lambda_n \stackrel{\text{def}}{=} \{ \alpha \in \Lambda : |\langle x, e_{\alpha} \rangle| > \frac{1}{n} \}, n = 1, 2, \cdots$$

所有的 Λ_n 是有限集, 否则存在 n_0 使得 Λ_{n_0} 是无限集, 取 N 充分大使得

$$\frac{N}{n_0^2} > ||x||^2$$

任取 $\alpha_1, \dots, \alpha_N \in \Lambda_{n_0}$,

$$\sum_{k=1}^{N} |\langle x, e_{\alpha_k} \rangle|^2 > \frac{N}{n_0^2} > ||x||^2$$

这与 Step1 矛盾, 进而 $\Lambda' = \bigcup_{n=1}^{\infty} \Lambda_n$ 至多可数。

Step3: 给 Λ' 一个排列,即设 $\Lambda' = \{\alpha_k\}_{k=1}^{\infty}$,由 Step1, $\forall N$,

$$\sum_{k=1}^{N} |\langle x, e_{\alpha_k} \rangle|^2 \leqslant ||x||^2$$

$$\Rightarrow \sum_{k=1}^{\infty} |\langle x, e_{\alpha_k} \rangle|^2 \leqslant ||x||^2$$

$$\Rightarrow \sum_{\alpha \in \Lambda} |\langle x, e_{\alpha} \rangle|^2 = \sum_{\alpha \in \Lambda'} |\langle x, e_{\alpha} \rangle|^2 \leqslant ||x||^2$$

引入最佳逼近元的概念: 用一组函数的线性组合去逼近一个给定的函数等价于给定 $x \in X$, $e_1, \dots, e_n \in X$, 求 $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ 使得

$$||x - \sum_{k=1}^{n} \lambda_k e_k|| = \inf_{\alpha \in \mathbb{K}^n} ||x - \sum_{k=1}^{n} \alpha_k e_k||$$

等价于: 令 $M \stackrel{def}{=} \operatorname{span}\{e_1, \cdots, e_n\}$,求 $y_0 \in M$ 使得 $\operatorname{dist}(x, y_0) = \operatorname{dist}(x, M)$.

定理 1.5.4

赋范空间 $(X, ||\cdot||), e_1, \dots, e_n \in X, \forall x \in X,$ 存在 $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ 使得

$$||x - \sum_{k=1}^{n} \lambda_k e_k|| = \inf_{\alpha \in \mathbb{K}^n} ||x - \sum_{k=1}^{n} \alpha_k e_k||$$

证明 不妨设 e_1, \dots, e_n 线性无关,对 $x \in X$,定义

$$F: \mathbb{K}^n \to \mathbb{R}, \alpha \mapsto ||x - \sum_{k=1}^n \alpha_k e_k||$$

则:

1. F 连续;

2.

$$F(\alpha) \geqslant ||\sum_{k=1}^{n} \alpha_k e_k|| - ||x||$$

\$

$$|||\alpha||| \stackrel{\text{def}}{=} ||\sum_{k=1}^{n} \alpha_k e_k||$$

于是 $|||\cdot|||$ 是 \mathbb{K}^n 上的范数,由于有限维空间上范数等价,

$$\exists C > 0 \text{ s.t. } |||\alpha||| \ge C|\alpha|, \ \forall \alpha \in \mathbb{K}^n$$

$$\stackrel{2}{\Rightarrow} F(\alpha) \geqslant C|\alpha| - ||x|| \rightarrow +\infty \text{ as } |\alpha| \rightarrow \infty$$

因此F在 \mathbb{K}^n 上可以取到最小值。

引理 1.5.3 (变分引理)

H 是 Hilbert 空间,M 是非空闭凸集,则

$$\forall x \in X, \exists ! y \in M \text{ s.t. } ||x - y|| = \operatorname{dist}(x, M)$$

证明 设

$$d \stackrel{\text{def}}{=} \operatorname{dist}(x, M) = \inf_{\zeta \in M} ||x - \zeta||$$

则存在 $y_n \in M, n = 1, 2, \dots$ s.t. $d \leq ||y_n - x|| \leq d + \frac{1}{n}$.

下面证明 $\{y_n\}_{n=1}^{\infty}$ 是基本列。由 P.L.

$$||(y_n - x) + (y_m - x)||^2 + ||(y_n - x) - (y_m - x)||^2 = 2(||y_n - x||^2 + ||y_m - x||^2)$$

$$\Rightarrow ||y_n - y_m||^2 = 2(||y_n - x||^2 + ||y_m - x||^2) - 4||\frac{y_n + y_m}{2} - x||^2$$

$$\leqslant 2((d + \frac{1}{n})^2 + (d + \frac{1}{m})^2) - 4d^2 \to 0 \text{ as } n, m \to \infty$$

H 完备,设 $y_n \to y$,因为 M 是闭集,故 $y \in M$,因此:

$$d \le ||y - x|| \le ||y - y_n|| + ||y_n - x|| \le ||y - y_n|| + d + \frac{1}{n}$$

n 充分大时, 右式 $\rightarrow d^+$, 于是 ||y-x|| = d.

■ 第1章 度量空间 1.5 内积空间

唯一性: 假设还有 $y' \in M$ s.t. ||y' - x|| = d,

$$||y' - y||^2 = 2(||y' - x||^2 + ||y - x||^2) - 4||\frac{y' + y}{2} - x||^2 \le 4d^2 - 4d^2 = 0$$

所以 y' = y.

定理 1.5.5 (正交分解)

H 是 Hilbert 空间,M 是闭子空间,则 $H=M\oplus M^\perp$,即 $\forall x\in H$,存在唯一的 $y\in M$ 和 $\zeta\in M^\perp$ 使得 $x=y+\zeta$.

证明 $\forall x \in H$, 由变分引理, 存在唯一 $y \in M$ 使得

$$||x - y|| = \operatorname{dist}(x, M)$$

Claim: $x - y \in M^{\perp}$, $\forall 0 \neq w \in M, \forall \lambda \in \mathbb{K}$,

$$\Rightarrow y + \lambda w \in M$$

$$\Rightarrow d^2 \leq ||x - (y + \lambda w)||^2 = ||x - y||^2 - 2\operatorname{Re}(\overline{\lambda} \langle x - y, w \rangle) + |\lambda|^2 ||w||^2$$

 $\mathbb{R} \lambda = \frac{\langle x-y,w \rangle}{||w||^2}$,

$$\begin{split} d^2 &\leqslant ||x-y||^2 - 2 \frac{|\langle x-y,w\rangle|^2}{||w||^2} + \frac{|\langle x-y,w\rangle|^2}{||w||^2} = d^2 - \frac{|\langle x-y,w\rangle|^2}{||w||^2} \\ \Rightarrow &\langle x-y,w\rangle = 0 \\ \Rightarrow &x-y \in M^\perp \end{split}$$

定义 1.5.7

映射 $P_M: H \to M, x \mapsto y$, 这里 y 是满足变分引理的 y, 称之为 x 在 M 中的最佳逼近元, 此映射被称为 H 到 M 的正交投影。

推论 1.5.1

- 1. $P_M(x) \in M$, $x P_M(x) \in M^{\perp}$.
- 2. $Im(P_M) = M$, $Ker(P_M) = M^{\perp}$.
- 3. $||x P_M(x)|| = \text{dist}(x, M)$.
- 4. $P_M^2 = P_M$.
- 5. $||P_M(x)|| \leq ||x||$.
- 6. $I P_M = P_{M^{\perp}}$.

在 Bessel 不等式的证明中, $\sum_{\alpha \in \Lambda'} |\langle x, e_{\alpha} \rangle|^2$ 和 Λ' 的排列无关,那 $\sum_{\alpha \in \Lambda'} \langle x, e_{\alpha} \rangle e_{\alpha}$ 呢?

引理 1.5.4

H 是 Hilbert 空间, $\{e_k\}_{k=1}^{\infty}$ 是 O.N.S. 则

$$\forall x \in H, \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k \in H$$

$$\sum_{k=1}^{\infty} \langle x, e_k \rangle e_k = P_M(x)$$

 \sim

证明 由 Bessel,

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \leqslant ||x||^2$$

$$\Rightarrow ||\sum_{k=n}^{m} \langle x, e_k \rangle e_k||^2 = \sum_{l} k = n]^{\infty} |\langle x, e_k \rangle|^2 \to 0 \text{ as } n, m \to \infty$$

$$\Rightarrow \left\{ \sum_{k=1}^{n} \langle x, e_k \rangle e_k \right\}_{n=1}^{\infty} \not\equiv H \text{ \mathbb{P} in \mathbb{Z}} \not\equiv \mathbb{E} H$$

$$\Rightarrow \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k \stackrel{\text{def}}{=} \lim_{l \to \infty} \sum_{k=1}^{n} \langle x, e_k \rangle e_k \in H$$

进而,由于

$$\left\langle x - \sum_{k=1}^{\infty} \left\langle x, e_k \right\rangle e_k, e_m \right\rangle = 0, \forall m$$

$$\Rightarrow x - \sum_{k=1}^{\infty} \left\langle x, e_k \right\rangle e_k \in M^{\perp}$$

$$\Rightarrow \sum_{k=1}^{\infty} \left\langle x, e_k \right\rangle e_k = P_M(x)$$

推论 1.5.2

对 \mathbb{N} 上任一置换 $\sigma: \mathbb{N} \to \mathbb{N}$,

$$\sum_{k=1}^{\infty} \langle x, e_{\sigma(k)} \rangle e_{\sigma(k)} = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$$

 \Diamond

 \Diamond

证明 $\diamondsuit M \stackrel{\text{def}}{=} \overline{\operatorname{span}\{e_k\}_{k=1}^{\infty}}$, $\tilde{M} \stackrel{\text{def}}{=} \overline{\operatorname{span}\{e_{\sigma(k)}\}_{k=1}^{\infty}}$, 于是 $M = \tilde{M}$,

$$\sum_{k=1}^{\infty} \left\langle x, e_{\sigma(k)} \right\rangle e_{\sigma(k)} = P_{\tilde{M}}(x) = P_{M}(x) = \sum_{k=1}^{\infty} \left\langle x, e_{k} \right\rangle$$

推论 1.5.3

H 是 Hilbert 空间, $\{e_{\alpha}\}_{{\alpha}\in\Lambda}$ 是 O.N.S. 则 $\forall x\in H$,

$$\sum_{\alpha \in \Lambda} \langle x, e_{\alpha} \rangle \, e_{\alpha} \in H$$

且

$$||x - \sum_{\alpha \in \Lambda} \langle x, e_{\alpha} \rangle e_{\alpha}||^2 = ||x||^2 - \sum_{\alpha \in \Lambda} |\langle x, e_{\alpha} \rangle|^2$$

证明 设

$$\Lambda' \stackrel{\mathrm{def}}{=} \{\alpha \in \Lambda : \langle x, e_\alpha \rangle \neq 0\} = \{\alpha_k\}_{k=1}^\infty (\, \text{任一顺序} \,)$$

则

$$\sum_{\alpha \in \Lambda} \langle x, e_{\alpha} \rangle \, e_{\alpha} = \sum_{k=1}^{\infty} \langle x, e_{\alpha_k} \rangle \, e_{\alpha_k} \in H$$

且

$$\begin{split} ||x-\sum_{k=1}^N \left\langle x,e_{\alpha_k}\right\rangle e_{\alpha_k}||^2 &= ||x||^2 - \sum_{k=1}^N |\left\langle x,e_{\alpha_k}\right\rangle|^2 \\ \stackrel{N \to \infty}{\Rightarrow} ||x-\sum_{k=1}^N \left\langle x,e_{\alpha_k}\right\rangle e_{\alpha_k}||^2 &= ||x||^2 - \sum_{k=1}^\infty |\left\langle x,e_{\alpha_k}\right\rangle|^2 \end{split}$$
 范数连续

定理 1.5.6

H 是 Hilbert 空间, $S = \{e_{\alpha}\}_{{\alpha} \in \Lambda}$ 是 O.N.S. 则下列命题等价:

- 1. $S^{\perp} = \{0\}.$
- 2. S 是 O.N.B.
- 3. S 满足:

$$\forall x \in H, ||x||^2 = \sum_{\alpha \in \Lambda} |\langle x, e_\alpha \rangle|^2$$

这被称为 Parseval 恒等式, 简称 P.I.

 \Diamond

证明 Step1: $S^{\perp} = \{0\} \Rightarrow S \neq O.N.B.$ 假设不然,则

$$\begin{split} \exists x_0 \in H \text{ s.t. } \sum_{\alpha \in \Lambda} \left\langle x_0, e_\alpha \right\rangle e_\alpha \neq x_0 \\ \forall \beta \in \Lambda, \left\langle x_0 - \sum_{\alpha \in \Lambda} \left\langle x_0, e_\alpha \right\rangle e_\alpha, e_\beta \right\rangle &= \left\langle x_0, e_\beta \right\rangle - \left\langle x_0, e_\beta \right\rangle = 0 \\ \Rightarrow 0 \neq x_0 - \sum_{\alpha \in \Lambda} \left\langle x_0, e_\alpha \right\rangle e_\alpha \perp S \\ \Rightarrow S^\perp \neq \{0\} \end{split}$$

矛盾。

Step2: 由推论 1.5.3, S 是 O.N.B.⇒ 满足 Parseval。

Step3: 满足 Parseval $\Rightarrow S^{\perp} = \{0\}$,否则

$$\exists x_0 \neq 0 \text{ s.t. } x_0 \perp S$$

$$\Rightarrow \langle x_0, e_\alpha \rangle = 0, \forall \alpha \in \Lambda$$

$$\Rightarrow \sum_{\alpha \in \Lambda} |\langle x_0, e_\alpha \rangle|^2 = 0$$

$$\stackrel{\text{Parseval}}{\Rightarrow} ||x_0||^2 = 0$$

矛盾。

例 1.5.2.

数列空间 ℓ^2 , e_n 的第 n 个分量为 1,其余分量为 0,则 $\{e_n\}_{n=1}^{\infty}$ 是 ℓ^2 的一个 O.N.B. 但它不是 ℓ^2 的 Hamel 基。 ℓ^2

"向量空间的 Hamel 基是指任何一个向量可以写成有限个基中向量的线性组合,此处不满足"有限"的条件。

推论 1.5.4

非平凡 Hilbert 空间一定有 O.N.B.

┩第1章 度量空间 1.5 内积空间

1.5.3 正交化与同构

定理 1.5.7 (Gram-Schmidt 正交化)

 $(X,\langle\cdot,\cdot\rangle)$ 是内积空间, $\{x_n\}_{n=1}^{\infty}$ 线性无关,则存在一列 $\{e_n\}_{n=1}^{\infty}$ 相互正交,且 $\forall n, \operatorname{span}\{e_k\}_{k=1}^n = \operatorname{span}\{x_k\}_{k=1}^n$

0

证明 只需按照以下步骤构造即可:

$$y_{1} = x_{1} e_{1} = \frac{y_{1}}{||y_{1}||}$$

$$y_{2} = x_{2} - \langle x_{2}, e_{1} \rangle e_{1} e_{2} = \frac{y_{2}}{||y_{2}||}$$

$$\vdots$$

$$y_{n} = x_{n} - \sum_{k=1}^{n-1} \langle x_{n}, e_{k} \rangle e_{k} e_{n} = \frac{y_{n}}{||y_{n}||}$$

 $\forall m \neq n$, $\c m < n$,

$$\begin{split} \langle e_m, e_n \rangle &= \frac{1}{||y_n||} \left\langle e_m, x - \sum_{k=1}^{n-1} \langle x_n, e_k \rangle e_k \right\rangle \\ &= \frac{1}{||y_n||} \left(\left\langle e_m, x - \sum_{k=1}^{n-1} \langle e_m, x \rangle e_k \right\rangle - \overline{\langle x_n, e_m \rangle} \right) = 0 \end{split}$$

且

$$y_k = x_k - \sum_{i=1}^{k-1} \langle x_k, e_i \rangle e_i = x_k + \sum_{j=1}^{k-1} \alpha_{kj} x_j$$

得到

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & & & \\ \alpha_{21} & 1 & & \\ \vdots & & \ddots & \\ \alpha_{n1} & \alpha_{n2} & & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

所以 $\operatorname{span}\{y_k\}_{k=1}^n = \operatorname{span}\{x_k\}_{k=1}^n$, 进而 $\operatorname{span}\{e_k\}_{k=1}^n = \operatorname{span}\{x_k\}_{k=1}^n$.

定义 1.5.8

 $(X_1,\langle\cdot,\cdot\rangle_1)$ 和 $(X_2,\langle\cdot,\cdot\rangle_2)$ 是内积空间,如果存在线性同构 $T:X_1\to X_2$ 使得

$$\langle T(x), T(y) \rangle_2 = \langle x, y \rangle_1, \forall x, y \in X_1$$

则称 X_1 和 X_2 作为内积空间同构,记为 $X_1 \cong X_2$.

定理 1.5.8

H 是 Hilbert 空间, H 可分 ⇔ H 有可数的 O.N.B.

 \Diamond

证明 必要性: 如果 dim $H \neq \infty$ 则显然, 下面假设 dim $H = \infty$,

可分 ⇒∃
$$\{x_n\}_{n=1}^{\infty} \subset H \text{ s.t. } \overline{\{x_n\}_{n=1}^{\infty}} = H$$

⇒∃ $\{y_n\}_{n=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ 线性无关
⇒∃ $\{e_n\}_{n=1}^{\infty}$ 正交且span $\{e_n\}_{n=1}^{\infty} = \text{span}\{x_n\}_{k=n}^{\infty}$
⇒ $\overline{\text{span}}\{e_n\}_{n=1}^{\infty} = \overline{\text{span}}\{x_n\}_{n=1}^{\infty} = H$
⇒ $(\{e_n\}_{n=1}^{\infty})^{\perp} = \{0\}$
⇒ $\{e_n\}_{n=1}^{\infty}$ 是 O.N.B.

充分性:令

 $\operatorname{span}^{\mathbb{Q}}(\{e_n\}_{n=1}^{\infty})\stackrel{\operatorname{def}}{=}\{e_n\}_{n=1}^{\infty}$ 中向量以 $\mathbb{Q}+\mathrm{i}\mathbb{Q}$ 中元素为系数的线性组合全体

于是 $\operatorname{span}^{\mathbb{Q}}(\{e_n\}_{n=1}^{\infty})$ 可数,下证 $\overline{\operatorname{span}^{\mathbb{Q}}(\{e_n\}_{n=1}^{\infty})} = H$.

$$\forall \varepsilon > 0, \forall n, \exists \alpha_n \in \mathbb{Q} + i\mathbb{Q} \text{ s.t. } |\alpha_n - \langle x, e_n \rangle| < \frac{\varepsilon}{2^{n+1}}$$

$$\Rightarrow ||\sum_{n=1}^{N} \langle x, e_n \rangle e_n - \sum_{n=1}^{N} \alpha_n e_n||^2 = \sum_{n=1}^{N} |\langle x, e_n \rangle - \alpha_n||^2 < \frac{\varepsilon^2}{2^n} ||\nabla e_n \rangle - \alpha_n||^2$$

$$\Rightarrow ||\sum_{n=1}^{N} \langle x, e_n \rangle e_n - \sum_{n=1}^{N} \alpha_n e_n||^2 = \sum_{n=1}^{N} |\langle x, e_n \rangle - \alpha_n|^2 < \frac{\varepsilon^2}{4}, \forall N$$

而当 N 充分大时,

$$\left|\left|\sum_{n=1}^{N} \langle x, e_n \rangle e_n - x\right|\right| < \frac{\varepsilon}{2}$$

于是

$$||\sum_{n=1}^{N} \alpha_n e_n - x|| < \varepsilon$$

定理 1.5.9

- 1. n 维 Hilbert 空间 $\cong \mathbb{K}^n$.
- 2. 无穷维可分 Hilbert 空间 $\cong \ell^2$.

证明 1 以前已经证明过,只说明一下 2: 设 $\{e_n\}_{n=1}^{\infty}$ 是 H 的可数 O.N.B. 定义

$$T: H \to \ell^2, x \mapsto \{\langle x, e_n \rangle\}_{n=1}^{\infty}$$

- 1°线性:显然。
- 2° 等距: 由 Parseval,

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 = ||x||^2$$

- 3°单射:由等距可得。
- 4° 满射:

$$\forall a \in \ell^2, ||\sum_{k=n}^m a_k e_k||^2 = \sum_{k=n}^m |a_k|^2 \to 0 \text{ as } n, m \to \infty$$

$$\Rightarrow \sum_{k=1}^n a_k e_n \to x \in H \text{ and } \langle x, e_k \rangle = a_k$$

$$\Rightarrow T(x) = a$$

5°保内积:

$$\begin{split} \langle x,y \rangle &= \left\langle \sum_{n=1}^{\infty} \left\langle x,e_n \right\rangle e_n, \sum_{m=1}^{\infty} \left\langle y,e_m \right\rangle e_m \right\rangle \\ &= \sum_{n,m} \left\langle x,e_n \right\rangle \overline{\left\langle y,e_m \right\rangle} \left\langle e_n,e_m \right\rangle \\ &= \sum_{n=1}^{\infty} \left\langle x,e_n \right\rangle \overline{\left\langle y,e_n \right\rangle} \\ &= \left\langle T(x),T(y) \right\rangle_{\ell^2} \end{split}$$

 \Diamond

定义 1.6.1

设

$$\Pi \stackrel{\text{def}}{=} \{ z \in \mathbb{C} : |z| = 1 \}$$

对于 Π 上的函数 F, 令

$$f(t) \stackrel{\text{def}}{=} F(e^{2\pi i t}), t \in \mathbb{R}$$

于是f是 \mathbb{R} 上周期为1的周期函数。令

$$e_k(t) \stackrel{\text{def}}{=} e^{2\pi i kt}, t \in [-\frac{1}{2}, \frac{1}{2}), k = 0, \pm 1, \pm 2, \cdots$$

于是 $\{e_k\}_{k=-\infty}^{\infty}$ 是 $L^2(\Pi)$ 中的 O.N.S. 称为三角函数系。

$$\hat{f}(k) \stackrel{\text{def}}{=} \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) e^{-2\pi i kt} dt = \langle f, e_k \rangle$$

$$f(x) \sim \sum_{k=-\infty}^{\infty} \hat{f}(k) e^{2\pi i kx} = \sum_{-\infty}^{\infty} \langle f, e_k \rangle e_k$$

定理 1.6.1

 $\forall f \in L^2(\Pi)$,

$$||S_N(f) - f||_2 \to 0 \text{ as } N \to \infty$$

其中

$$S_N(f)(x) \stackrel{\text{def}}{=} \sum_{k=-N}^N \hat{f}(k) e^{2\pi i kx}$$

证明 Thm \Leftrightarrow $\{e_k\}_{k=-\infty}^{\infty}$ 是 $L^2(\Pi)$ 中的 O.N.B. \Leftrightarrow $(\{e_k\}_{k=-\infty}^{\infty})^{\perp} = \{0\} \Leftrightarrow \overline{\operatorname{span}\{e_k\}_{k=-\infty}^{\infty}} = L^2(\Pi)$. 从而约化为证明: $\forall f \in L^2(\Pi)$ 可由三角多项式以 L^2 范数逼近。

$$S_N(f)(x) = (f * D_N)(x)$$
 with $D_N(t) = \sum_{k=-N}^{N} e^{2\pi i kt} = \frac{\sin[(2N+1)\pi t]}{\sin(\pi t)}$

令

$$\sigma_N \stackrel{\text{def}}{=} \frac{1}{N+1} \sum_{k=0}^N S_k(f)$$
$$= f * \left(\frac{1}{N+1} \sum_{k=1}^N D_k\right) = f * F_N$$

这里 $F_N(t)$ 是 Fejér 核:

$$F_N(t) = \frac{1}{N+1} \sum_{k=1}^{N} D_k(t) = \frac{1}{N+1} \frac{\sin^2[(N+1)\pi t]}{\sin^2(\pi t)}$$

引理 1.6.1

1.

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} F_N(t) \mathrm{d}t = 1$$

2. $\forall \delta > 0$,

$$\lim_{N \to \infty} \int_{\delta < |t| < \frac{1}{2}} F_N(t) dt = 0$$

证明 1 直接计算验证,只说明一下 2: 当 $\delta < |t| < \frac{1}{2}$ 时,

$$0 \leqslant F_N(t) \leqslant \frac{1}{N+1} \frac{1}{\sin^2(\pi \delta)} \to 0 \text{ as } N \to \infty$$

 \Diamond

引理 1.6.2

$$\forall f \in L^2(\Pi)$$
,

$$||\sigma_N(f) - f||_2 \to 0 \text{ as } N \to \infty$$

证明

$$\begin{split} ||\sigma_N(f)-f||_2 = & \sqrt{\int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} [f(x-t)-f(x)] F_N(t) \mathrm{d}t \right|^2 \mathrm{d}x} \\ &\overset{\mathrm{Minkowski}}{\leqslant} \int_{-\frac{1}{2}}^{\frac{1}{2}} ||f(\cdot-t)-f(\cdot)||_2 F_N(t) \mathrm{d}t \\ &= \int_{|t| \leqslant \delta} \cdots + \int_{\delta < |t| < \frac{1}{2}} \cdots \\ &\leqslant \int_{|t| \leqslant \delta} \cdots + 2||f||_2 \int_{\delta < |t| < \frac{1}{2}} F_N(t) \mathrm{d}t \to 0 \text{ as } N \to \infty \\ && \text{积分的绝对连续性} & \text{引理 1.6.1} \end{split}$$

注意

$$\sigma_N(f)(x) = \sum_{k=-N}^{N} \left(1 - \frac{|k|}{N}\right) \hat{f}(k) e^{2\pi i kx}$$

上述引理说明三角多项式全体在 $L^2(\Pi)$ 中稠密。

第2章 > 线性算子与线性泛函

※ 2.1 线性算子

2.1.1 有界线性算子

定义 2.1.1

X 和 Y 是向量空间,如果映射 $T: X \to Y$ 满足

$$T(\alpha x + \beta y) = \alpha Tx + \beta Ty, \forall x, y \in X, \forall \alpha, \beta \in \mathbb{K}$$

则称T是线性算子,简称L.O.

特别地,如果 $Y = \mathbb{K}$,则称T是线性泛函。

例 2.1.1.

微分算子: 开集 $\Omega \subset \mathbb{R}^n$, $X = Y = C^{\infty}(\Omega)$, 定义

$$T \stackrel{\text{def}}{=} \sum_{|\alpha| \leqslant m} a_{\alpha} \partial^{\alpha}$$

例 2.1.2.

积分算子: $X = L^p(\Omega)$, $Y = L(\Omega)$, 即全体可测函数。 $K(\cdot, \cdot)$ 是 $\Omega \times \Omega$ 上的可测函数,称之为积分核。

$$T: u(x) \mapsto \int_{\Omega} K(x,y)u(y)dy$$

如: Poisson 积分:

$$P[u](\zeta) \stackrel{\mathrm{def}}{=} \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |\zeta|^2}{|1 - \zeta \mathrm{e}^{-\mathrm{i}\theta}|^2} u(\mathrm{e}^{\mathrm{i}\theta}) \mathrm{d}\theta$$

Fourier 变换:

$$(\mathcal{F}u)(x) \stackrel{\text{def}}{=} \int_{\mathbb{R}^n} e^{-2\pi i x \cdot y} u(y) dy$$

例 2.1.3.

非线性的例子:

$$f(u) \stackrel{\text{def}}{=} \int_{\Omega} u^2(x) dx$$

定义 2.1.2

 $(X, ||\cdot||_X)$ 和 $(Y, ||\cdot||_Y)$ 是赋范空间, $T: X \to Y$ 是 L.O. 如果存在 C > 0 使得

$$||Tx||_Y \leqslant C||x||_X, \forall x \in X$$

则称T有界。

定理 2.1.1

赋范空间 $(X,||\cdot||_X),(Y,||\cdot||_Y)$, $T:X\to Y$ 是线性映射, T 有界 \Leftrightarrow T 连续 \Leftrightarrow T 在 0 处连续。

m

证明 有界 ⇒ 连续:

$$||x_n - x||_X \to 0 \Rightarrow ||Tx_a - Tx|| \leqslant C||x_n - x|| \to 0$$

在0处连续 \Rightarrow 有界: 假设T在0连续, 但无界, 则

$$\forall n, \exists x_n \in X \text{ s.t. } ||Tx_n||_Y > n||x_n||_X$$

令 $y_n = \frac{1}{n} \frac{x_n}{||x_n||_Y}$, 则 $y_n \to 0$ 但 $|Ty_n|_Y \geqslant 1, \forall n$, 这与 T 在 0 处连续矛盾。

定理 2.1.2

有限维赋范空间之间的线性算子一定有界。

 $^{\circ}$

证明 先假设 $X = \mathbb{K}^n$, $Y = \mathbb{K}^m$, 则

Tx = Ax for some $A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$

$$\Rightarrow ||Tx||_{\mathbb{K}^m} = \left(\sum_{i=1}^m \left| \sum_{j=1}^n a_{ij} x_j \right|^2 \right)^{\frac{1}{2}}$$

$$\stackrel{\text{C--S}}{\leqslant} \left[\sum_{i=1}^m \left(\sum_{j=1}^n |a_{ij}|^2 \right) \left(\sum_{j=1}^n |x_j|^2 \right) \right]^{\frac{1}{2}}$$

$$= \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2 \right)^{\frac{1}{2}} ||x||_{\mathbb{K}^n}$$

一般情形: 把X和Y同胚到一个有限维线性空间即可:

$$\begin{array}{ccc} X & \stackrel{T}{\rightarrow} & Y \\ \varphi \downarrow & & \downarrow \psi \\ \mathbb{K}^n & \stackrel{\tilde{T}}{\rightarrow} & \mathbb{K}^m \end{array}$$

 $T=\psi^{-1}\circ \tilde{T}\circ \varphi.$

命题 2.1.1

证明: $\dim X < \infty$, $T: X \to Y$ 是线性算子, 则 T 有界。(作业)

证明 设 $\{e_1,\cdots,e_n\}$ 是 X 上的一组 Hamel 基,记 $M=\max\{||Te_1||_Y,\cdots,||Te_n||_Y\}$,那么 $\forall x\in X,\ x=1$

 $\sum_{i=1}^n x_i e_i, x_i \in \mathbb{K}$,

$$||Tx||_{Y} = ||x_{1}T(e_{1}) + \dots + x_{n}T(x_{n})||_{Y}$$

$$\leq |x_{1}| \cdot ||T(e_{1})||_{Y} + \dots + |x_{n}| \cdot ||T(e_{n})||_{Y}$$

$$\leq M(|x_{1}| + \dots + |x_{n}|)$$

由于有限维线性空间上范数都等价,不妨 $||x||_X \stackrel{\mathrm{def}}{=} |x_1| + \cdots + |x_n|$,则 $||Tx||_Y \leqslant M||x||_X$,T 有界。

例 2.1.4. 无界算子的例子

$$X=C^1[0,1]$$
, $Y=C[0,1]$,赋以一致范数, $T=\frac{\mathrm{d}}{\mathrm{d}t}$,设
$$u_n(t)=t^n, t\in[0,1], n=1,2,\cdots$$

$$\Rightarrow ||u_n||=1, ||Tu_n||=n$$

$$\Rightarrow \frac{||Tu_n||}{||u_n||} \to \infty$$

$$\Rightarrow T \mathcal{T} \mathcal{F}$$

2.1.2 算子范数

定义 2.1.3

X 到 Y 的有界线性算子全体记作 $\mathcal{L}(X,Y)$, 对于 $T \in \mathcal{L}(X,Y)$,

$$||T||_{X \to Y} \stackrel{\text{def}}{=} \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||_Y}{||x||_X} = \sup_{\substack{x \in X \\ ||x|| = 1}} ||Tx||_Y$$

称为 T 的算子范数。

例 2.1.5.

Hilbert 空间 X 的一个闭子空间为 M,正交投影 $P_M: X \to M$ 有 $||P_M||_{X \to M} = 1$.

定理 2.1.3

 $(X,||\cdot||_X)$, $(Y,||\cdot||_Y)$, $(\mathcal{L}(X,Y),||\cdot||_{X\to Y})$ 是赋范空间。进而如果 Y 是 Banach 空间,则 $\mathcal{L}(X,Y)$ 是 Banach 空间。特别地, $X^*\stackrel{\mathrm{def}}{=}\{X$ 上全体有界线性泛函} 是 Banach 空间。

证明 取 $\mathcal{L}(X,Y)$ 上的柯西列 $\{f_n\}$,

$$||f_n - f_m|| \le \varepsilon \Rightarrow \sup_{||x||=1} ||f_n(x) - f_m(x)|| \le \varepsilon$$

 $\Rightarrow \forall ||x|| = 1, \{f_n(x)\} \notin Y \perp$ 的柯西列

于是定义:

$$f: x \mapsto \lim_{n \to \infty} f_n(x)$$

f 显然是线性映射,

$$||f_n - f|| = \sup_{||x||=1} ||f_n(x) - f(x)|| \to 0$$

现只需证明 ||f|| 有界: $\{f_n\}$ 作为柯西列是有界的,不妨 $||f_n|| \leq M$,则

$$||f|| = \sup_{||x||=1} ||f(x)|| = \sup_{||x||=1} \lim_{n \to \infty} ||f_n(x)|| \le \sup_{||x||=1} \liminf_{n \to \infty} ||f_n|| \le M < +\infty$$

所以f有界。

♦ 2.2 Riesz 表示定理

设 H 是 Hilbert 空间,给定 $y \in H$,定义 $f_y: H \to \mathbb{K}, x \mapsto \langle x, y \rangle$,则由 C-S 不等式: $|f_y(x)| \leq ||y||||x||$,于 是 $f_y \in H^*$ 且 $||f_y||| \leq ||y||$.

问: 是否 $\forall f \in H^*$, $f(x) = \langle x, y \rangle$ for some $y \in H$?

定理 2.2.1 (Riesz 表示定理)

H 是 Hilbert 空间, $\forall f \in H^*$, 存在唯一 $y_f \in H$ 使得

$$f(x) = \langle x, y_f \rangle, x \in H$$

且 $||y_f|| = ||f||$.

 \Diamond

证明 分析: \mathbb{R}^n 上的线性代数 $l(x) = \sum_{i=1}^n \alpha_i x_i = \langle x, a \rangle$, 如果 $f(x) = \langle x, y \rangle$, $f(x) = 0 \Rightarrow y \perp x \Rightarrow y \perp \operatorname{Ker}(f)$. 存在性: 如果 $f = 0 \Rightarrow y_f = 0$, 下设 $f \neq 0$, 于是 $\operatorname{Ker}(f) \neq H$, 且是闭子空间,因为 $f \in H^*$. 于是存在 $y_0 \in \operatorname{Ker}(f)^{\perp}$ with $||y_0|| = 1$.

$$\forall x \in H, f(x - \frac{f(x)}{f(y_0)}y_0) = 0 \Rightarrow x - \frac{f(x)}{f(y_0)}y_0 \in \text{Ker}(f)$$

$$\Rightarrow \left\langle x - \frac{f(x)}{f(y_0)}y_0, y_0 \right\rangle = 0$$

$$\Rightarrow \left\langle x, y_0 \right\rangle - \frac{f(x)}{f(y_0)}||y_0||^2 = 0$$

$$\Rightarrow f(x) = \left\langle x, \overline{f(y_0)}y_0 \right\rangle$$

设 $y_f = \overline{f(y_0)}y_0$ 即可。

唯一性: 设 $y, \zeta \in H$ 使得

$$f(x) = \langle x, y \rangle = \langle x, \zeta \rangle, x \in H$$

于是 $\forall x \in H$, $\langle x, y - \zeta \rangle = 0 \Rightarrow y - \zeta = 0$. 一方面,

$$||f(x)|| = ||\langle x, y_f \rangle|| \le ||x|| \cdot ||y_f|| \Rightarrow ||f|| \le ||y_f||$$

另一方面由 $||y_0|| = 1$,

$$||y_f|| = ||f(y_0)|| \le ||f||$$

所以 $||f|| = ||y_f||$.

定理 2.2.2

H 是 Hilbert 空间, $a(\cdot,\cdot)$ 是 H 上的共轭双线性函数,如果存在 C>0 使得

$$|a(x,y)| \leqslant C||x||||y||, \forall x, y \in H$$

则存在 $A \in \mathcal{L}(H)$, 使得

$$a(x,y) = \langle x, Ay \rangle, x \in H$$

且

$$||A|| = \sup_{0 \neq x, y \in H} \frac{|a(x, y)|}{||x||||y||}$$

证明 $y \in H$, 定义

$$f_y(x) = a(x, y), x \in H$$

于是 $f_y \in H^*$ 且 $||f_y|| \leqslant C||y||$,由 Riesz,存在唯一 $\zeta \in H$ 使得 $f_y(x) = \langle x, \zeta \rangle$, $x \in H$,定义 $A: H \to H, y \mapsto \zeta$,则

$$a(x,y) = f_y(x) = \langle x, \zeta \rangle = \langle x, Ay \rangle$$

- A 是线性映射;
- 2. $\forall y \in H$, $||Ay|| = ||\zeta|| = ||f_y|| \leqslant C||y||$, 于是 $A \in \mathcal{L}(H)$ 且 $||A|| \leqslant C$, 由 C 的任意性可得

$$||A||\leqslant \sup_{0\neq x,y\in H}\frac{|a(x,y)|}{||x||||y||}$$

另一方面,

 $|a(x,y)| = |\left\langle x,Ay\right\rangle| \leqslant ||x||||Ay|| \leqslant ||A||||x||||y||, \forall x,y \in H$

于是

$$\sup_{0 \neq x, y \in H} \frac{|a(x, y)|}{||x||||y||} \geqslant ||A||$$

定理内容

定义 2.3.1

(X,d) 为度量空间, $E \subset X$, 如果 \overline{E} 没有内点,则称 E 疏 (朗) 或无处稠密。

例 2.3.1.

ℝ中, Cantor 三分集是无处稠密集。

定义 2.3.2

第一纲集, 又称贫集、瘦集: 可数个无处稠密集之并;

第二纲集: 不是第一纲集的集合;

剩余集:第一纲集的余集。

例 2.3.2.

可数集是第一纲集。

引理 2.3.1 (闭球套)

设 (X,d) 完备, $\{B_n\}_{n=1}^{\infty}$ 是一列闭球,使得

- 1. $B_1 \supset B_2 \supset \cdots$
- 2. diam $B_n \to 0$

则存在唯一 $x \in X$ 使得

$$\bigcap_{n=1}^{\infty} B_n = \{x\}$$

 \Diamond

证明 存在性: 设 $B_n = \overline{B(x_n, r_n)}$,

$$\forall n \geqslant m, x_n \in B_n \subset B_m \Rightarrow d(x_n, x_m) \leqslant r_m \to 0 \text{ as } n, m \to \infty$$

$$\Rightarrow \{x_n\}_{n=1}^{\infty} \not\exists x \in X \text{ s.t. } d(x_n, x) \to 0 \text{ as } n \to \infty$$

$$\xrightarrow{B_n \mid \exists} x \in B_n, n = 1, 2, \cdots$$

$$\Rightarrow x \in \bigcap_{n=1}^{\infty} B_n$$

唯一性: 如果 $y \in \bigcap_{n=1}^{\infty} B_n$, 则

$$d(x,y) \leqslant d(x,x_n) + d(x_n,y) \leqslant 2r_n \to 0 \text{ as } n \to \infty$$

于是 y = x.

定理 2.3.1 (Baire Category Theorem 1, BCT1)

完备度量空间是第二纲集。

 \odot

证明 假设 (X,d) 完备,是第一纲集,则 X 可以被表示成可数个无处稠密集之并,设为

$$X = \bigcup_{n=1}^{\infty} E_n$$

任取 $B(x_0,r_0)$,

$$E_1$$
疏 $\Rightarrow \overline{E_1}$ 无 内 点
$$\Rightarrow \exists x_1 \in B(x_0, r_0) \backslash \overline{E_1}$$

$$\Rightarrow \operatorname{dist}(x_1, \overline{E_1}) > 0$$

$$\Rightarrow \exists B(x_1, r_1) \subset B(x_0, r_0), r_1 < 1 \text{ s.t. } \overline{B(x_1, r_1)} \cap \overline{E_1} = \emptyset$$

对 E_2 做同样的操作,

$$\exists B(x_2,r_2) \subset B(x_1,r_1), r_2 < \frac{1}{2} \text{ s.t. } \overline{B(x_2,r_2)} \cap \overline{E_2} = \varnothing$$

以此类推,

$$\exists B(x_n, r_n) \subset B(x_{n-1}, r_{n-1}), r_n < \frac{1}{n} \text{ s.t. } \overline{B(x_n, r_n)} \cap \overline{E_n} = \emptyset$$

由闭球套引理,

$$\bigcap_{n=1}^{\infty} \overline{B(x_n, r_n)} = \{x\}$$

另一方面,由于 $\forall n, \overline{B(x_n, r_n)} \cap \overline{E_n} = \emptyset$,故 $\forall n, x \notin \overline{E_n}$,进而

$$x \notin \bigcup_{n=1}^{\infty} \overline{E_n} = X$$

矛盾。

 \Diamond

定理 2.3.2 (Baire Category Theorem 2, BCT2)

(X,d) 是完备度量空间, $\{U_n\}$ 是一列开集,且满足 $\overline{U_n}=X$,则

$$\overline{\left(\bigcap_{n=1}^{\infty} U_n\right)} = X$$

证明 设 B_0 是 X 上的任一非空开集, U_1 稠密 $\Rightarrow \exists x_0 \in U_1 \cap B_0$,因为 $U_1 \cap B_0$ 是开集,所以存在 x_0 的邻域 B_1 满足 $\overline{B_1} \subset U_1 \cap B_0$. 又因为 U_2 稠密,类似地存在 B_2 满足 $\overline{B_2} \subset U_2 \cap B_1$,以此类推可得一列开集 $\{B_n\}_{n=1}^{\infty}$,满足

$$\overline{B_n} \subset U_n \cap B_{n-1}$$

不妨令 B_n 为半径小于 $\frac{1}{n}$ 的开球,根据闭球套定理可知

$$K = \bigcap_{n=1}^{\infty} \overline{B_n} \neq \emptyset$$

根据构造过程可得 $K \subset B_0$, $K \subset U_n$, 从而 $B_0 与 \cap_{n=1}^{\infty} U_n$ 相交, 所以 $\cap_{n=1}^{\infty} U_n$ 也是稠密的。

应用和推论

例 2.3.3.

 l^2 的 Hamel 基是不可数集。(把 l^2 换成任一无穷维 Banach 空间也可以。)

证明 假设 l^2 的 Hamel 基 B 可数,设 $B = \{x_n\}_{k=1}^{\infty}$,设 $A_n = \operatorname{span}\{x_1, \dots, x_n\}$,则 A_n 闭且 $l^2 = \bigcup_{n=1}^{\infty} A_n$. 由 BCT,存在 n_0 使得 A_{n_0} 有内点,那么

$$\exists B(x_0, r) \subset A_{n_0}$$

$$\Rightarrow B(0, r) = B(x_0, r) - x_0 \subset A_{n_0}$$

$$\Rightarrow \forall 0 \neq x \in l^2, \frac{r}{2} \cdot \frac{x}{||x||} \in B(0, r) \subset A_{n_0}$$

$$\Rightarrow x \in A_{n_0}$$

定理 2.3.3 (Banach, 1931)

C[0,1] 中处处不可微函数全体是一个剩余集,从而是第二纲集。

证明 记 X = C[0,1], $E = \{f \in C[0,1]: f$ 处处不可微 },于是 $X \setminus E = \{f \in C[0,1]: f$ 至少在某一点可微 }. 令

$$A_n = \left\{ f \in X : \exists t \in (0,1) \text{ s.t. } \sup_{h \in (-\frac{1}{n}, \frac{1}{a}), t+h \in [0,1]} \left| \frac{f(t+h) - f(t)}{h} \right| \leqslant n \right\}$$

于是 $\forall f \in X \setminus E$, 存在 n 使得 $f \in A_n$, 所以

$$X \backslash E = \bigcup_{n=1}^{\infty} A_n$$

约化为证明每个 A_n 疏。

Step1: 每个 A_n 都是闭集。设一列 $f_k \in A_n$, f_k 一致收敛到 f, 对于每个 k 存在 $t_k \in (0,1)$ 使得

$$|f_k(t_k+h) - f_k(t_k)| \le n|h|, \forall h \in (-\frac{1}{n}, \frac{1}{n}) \text{ with } t_k+h \in [0, 1]$$

 $\{t_k\}_{k=1}^{\infty}$ 有收敛子列,不妨设 $t_k \to t_0$,由 $f_k \rightrightarrows f$,

$$|f(t_0+h)-f(t_0)| \leq n|h|, \forall h \in (-\frac{1}{n}, \frac{1}{n}) \text{ with } t_k+h \in [0, 1]$$

于是 $f \in A_n$.

Step2: A_n 无内点,即: $\forall f \in A_n$, $\forall \varepsilon > 0$, $B(f, \varepsilon) \nsubseteq A_n$. 首先,by Weierstrass,

$$\exists p \in P[0,1] \text{ s.t. } ||f-p|| < \frac{\varepsilon}{2}$$

令 $M=\max_{t\in [0,1]}|p'(t)|$,则 $M<\infty$ 且

$$|p(t+h) - p(t)| \le M|h|, \forall t \in (0,1), \forall h \text{ with } t+h \in (0,1)$$

取分段仿射的连续函数 g, 使得

- 1. $||g|| < \frac{\varepsilon}{2}$
- 2. 各段斜率的绝对值 > M + n

则 $p+g \in B(f,\varepsilon)$, 但 $p+g \notin A_n$, 因为

$$|(p+g)'(t)| \ge |g'(t)| - |p'(t)| > n$$

♦ 2.4 共鸣定理

定理内容

定理 2.4.1 (一致有界原理, 共鸣定理, UBP)

X 是 Banach 空间, Y 是赋范空间, $\mathcal{F} \subset \mathcal{L}(X,Y)$,

$$\forall x \in X, \sup_{T \in \mathcal{F}} ||Tx|| < \infty \Rightarrow \sup_{T \in \mathcal{F}} ||T|| < \infty$$

等价地,

$$\sup_{T \in \mathcal{F}} ||T|| = +\infty \Rightarrow \exists x_0 \in X \text{ s.t. } \sup_{T \in \mathcal{F}} ||Tx_0|| = +\infty$$

证明 令

$$F_n = \{x \in X : \sup_{T \in \mathcal{F}} ||Tx|| \leqslant n\} = \bigcap_{T \in \mathcal{F}} \{x \in X : ||Tx|| \leqslant n\}$$

因为T连续, $\{x \in X : ||Tx|| \le n\}$ 是闭集,进而 F_n 是闭集,

$$\forall x \in X, \sup_{T \in \mathcal{F}} ||Tx|| < \infty \Rightarrow X = \bigcup_{n=1}^{\infty} F_n$$

$$\stackrel{\text{BCT1}}{\Rightarrow} \exists n_0 \text{ s.t. } F_{n_0} \not \exists h \not \land h \not \land h$$

$$\Rightarrow \exists B(x_0, r) \subset F_{n_0}$$

$$\Rightarrow ||T(x_0 + rx)|| \leqslant n_0, \forall x \in B(0, 1), \forall T \in \mathcal{F}$$

$$\Rightarrow ||T(rx)|| \leqslant n_0 + ||Tx_0|| \leqslant 2n_0$$

$$\Rightarrow ||Tx|| \leqslant \frac{2n_0}{r}, \forall x \in B(0, 1), \forall T \in \mathcal{F}$$

$$\Rightarrow \sup_{T \in \mathcal{F}} \sup_{x \in X, ||x|| \leqslant 1} ||Tx|| \leqslant \frac{2n_0}{r}$$

应用和推论

定理 2.4.2 (Banach-Steinhaus)

$$X$$
 是 Banach 空间, Y 是赋范空间, $\overline{M}=X$, $T,T_n\in\mathcal{L}(X,Y),n=1,2,\cdots$

$$T_n x \to T_x, \forall x \in X \Leftrightarrow \sup_n ||T_n|| < \infty \text{ and } T_n x \to T_x, \forall x \in M$$

C

证明 必要性:逐点收敛 ⇒逐点有界 ⇒ 一致有界。

充分性:记
$$C = \sup ||T_n||$$
,

$$\begin{split} \overline{M} &= X \Rightarrow \forall x \in X, \forall \varepsilon > 0, \exists y \in M \text{ s.t. } ||x-y|| < \frac{\varepsilon}{4(||T||+C)} \\ &\Rightarrow ||T_nx - Tx|| \leqslant ||T_nx - T_ny|| + ||T_ny - Ty|| + ||T_y - Tx|| \\ &\leqslant C||x-y|| &< \frac{\varepsilon}{2}, n \, \overleftarrow{\mathcal{R}} \, \dot{\mathcal{P}}, \, \overset{}{\underset{}{\underset{}{\longleftarrow}}} \, \overset{}{\underset{}{\longleftarrow}} \, ||T|||||x-y|| \end{split}$$

定理 2.4.3

X,Y 是 Banach 空间, $T_n\in\mathcal{L}(X,Y), n=1,2,\cdots$,如果 $\forall x\in X$, $\lim_{n\to\infty}T_nx$ 存在,定义 $T:X\to Y,X\mapsto \lim_{n\to\infty}T_nx$,则 $T\in\mathcal{L}(X,Y)$,且

$$||T|| \leqslant \liminf_{n \to \infty} ||T_n||$$

证明 见习题 2.3.7.

我们设

$$S_N(f)(x) = \sum_{k=-N}^{N} \hat{f}(k) e^{2\pi i kx}$$

问: 是否 $\forall f \in C(\Pi)$, $S_N(f)(x) \rightarrow f(x), \forall x \in [-\frac{1}{2}, \frac{1}{2})$?

定理 2.4.4 (Du Bois-Reymond,1876)

 $\exists f \in C(\Pi) \text{ s.t. } S_N(f)(0)$ 发散。

证明

$$S_N(f)(x) = (f * D_N)(x)$$

其中

$$D_N(t) \stackrel{\text{def}}{=} \frac{\sin\left[(2N+1)\pi t\right]}{\sin\left(\pi t\right)}$$

定义 $T_N: C(\Pi) \to \mathbb{R}, f \mapsto S_N(f)(0)$,

$$\Rightarrow |T_N(f)| = \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) D_N(-t) dt \right| \leqslant ||D_N||_1 \cdot ||f||$$

$$\Rightarrow T_N \in C(\Pi)^*, ||T_N|| \leqslant ||D_N||_1$$

Claim: $||T_N|| = ||D_N||_1$. 因为 D_N 在 $[-\frac{1}{2}, \frac{1}{2}]$ 上只有有限多个零点,故 $\operatorname{sgn} D_N$ 只有有限个间断点。 $\forall \varepsilon > 0$,存在 $f_{\varepsilon} \in C(\Pi)$,分段仿射使得

- 1. $||f_{\varepsilon}|| = 1$.
- 2. $f_{\varepsilon} = \operatorname{sgn} D_N \text{ on } \left[-\frac{1}{2}, \frac{1}{2} \right] \setminus I_{\varepsilon} \text{ with } |I_{\varepsilon}| < \frac{\varepsilon}{4N+3}$.

$$\Rightarrow |T_N(f_{\varepsilon})| = \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} f_{\varepsilon}(t) D_N(t) dt \right|$$

$$\geqslant \int_{[-\frac{1}{2}, \frac{1}{2}] \setminus I_{\varepsilon}} |D_N(t)| dt - \int_{I_{\varepsilon}} |D_N(t)| dt$$

$$\geqslant ||D_N||_1 - 2 \int_{I_{\varepsilon}} |D_N(t)| dt$$

$$> ||D_N||_1 - \varepsilon$$

$$\Rightarrow ||T_N|| \geqslant \frac{|T_N(f_{\varepsilon})|}{||f_{\varepsilon}||} > ||D_N||_1 - \varepsilon$$

$$||D_N||_1 = 2 \int_0^{\frac{1}{2}} \left| \frac{\sin[(2N+1)\pi t]}{\sin(\pi t)} \right| dt$$

$$\geqslant 2 \int_0^{\frac{1}{2}} \left| \frac{\sin[(2N+1)\pi t]}{\sin(\pi t)} \right| dt$$

$$\stackrel{x=(2N+1)\pi t}{=} \frac{2}{\pi} \int_0^{\frac{\pi}{2}(2N+1)} \left| \frac{\sin x}{x} \right| dx \to \infty \text{ as } N \to \infty$$

于是

≫ 2.5 开映射定理

方程 Tx = y, 当 y 变化很小时 x 是不是变化很小 (解的稳定性)? 这就要考虑 T^{-1} 的连续性。

定理内容

定义 2.5.1

将任意开集都映为开集的映射, 称为开映射。

•

定理 2.5.1 (开映射定理, OMT)

X,Y 是 Banach 空间, $T \in \mathcal{L}(X,Y)$, 则 T 是满射 $\Rightarrow T$ 是开映射。

 \Diamond

引理 2.5.1

X,Y 是 Banach 空间, $T\in\mathcal{L}(X,Y)$,如果 T 满射,则 $\exists \delta>0$ s.t. $\delta B_Y\subset T(B_X)$. 证明 **Step1:** $\exists r>0$ s.t. $rB_Y\subset\overline{T(B_X)}$,

$$X = \bigcup_{n=1}^{\infty} nB_X \stackrel{T \to 0}{\Rightarrow} Y = T(X) = \bigcup_{n=1}^{\infty} T(nB_X)$$

$$\Rightarrow Y = \bigcup_{n=1}^{\infty} \overline{T(nB_X)}$$

$$\stackrel{\text{BCT}}{\Rightarrow} \exists n_0 \text{ s.t. } \overline{T(n_0B_X)} \land \text{ b.d.}$$

$$\Rightarrow \exists B_Y(y_0, t) \subset \overline{T(n_0B_X)}$$

$$\Leftrightarrow r \stackrel{\text{def}}{=} t/n_0$$
, Claim: $rB_y \subset \overline{T(B_X)}$.

$$\forall y \in rB_Y, y_0 \pm n_0 y \in B_Y(y_0, t) \subset \overline{T(n_0 B_X)} \Rightarrow \exists \{x_n\}_{n=1}^{\infty}, \{x_n'\}_{n=1}^{\infty} \subset n_0 B_X \text{ s.t.}$$

$$Tx_n \to y_0 + n_0 y, Tx_n' \to y_0 - n_0 y$$

$$\Rightarrow T\left(\frac{x_n - x_n'}{2n_0}\right) \to y$$

$$\Rightarrow y \in \overline{T(B_X)}$$

Step2:
$$\oint \delta \stackrel{\text{def}}{=} r/3$$
, 则 $\delta B_Y \subset T(B_X)$, 即
$$\forall y \in \delta B_Y, \exists x \in B_X \text{ s.t. } Tx = y$$
Step1 $\Rightarrow \forall y \in \delta B_Y, \exists y \in rB_Y \subset \overline{T(B_X)}$

$$\Rightarrow \exists \bar{x}_1 \in B_X \text{ s.t. } ||\exists y - T\bar{x}_1||_Y < \delta$$

$$\oint x_1 \stackrel{\text{def}}{=} \bar{x}_1/3, \quad \mathbb{M} ||y - Tx_1||_Y < \delta/3. \oint y_1 \stackrel{\text{def}}{=} y - Tx_1, \quad \mathbb{M}$$

$$y_1 \in \frac{\delta}{3} B_Y \Rightarrow 9y_1 \in rB_Y \subset \overline{T(B_X)}$$

$$\Rightarrow \exists x_2 \in \frac{1}{3^2} B_X \text{ s.t. } ||y_1 - Tx_2||_Y < \frac{\delta}{3^2}$$

$$\vdots$$

$$y_n \stackrel{\text{def}}{=} y_{n-1} - Tx_n \in \frac{\delta}{3^n} B_Y$$

$$\exists x_{n+1} \in \frac{1}{3^{n+1}} B_X \text{ s.t. } ||y_n - Tx_{n+1}||_Y < \frac{\delta}{3^{n+1}}$$

$$\Rightarrow \left\| \left| \sum_{k=n+1}^{n+p} x_k \right| \right|_X < \frac{\frac{1}{3^{n+1}}}{1 - \frac{1}{3}} < \frac{1}{2^n}$$

$$\Rightarrow \left\{ \sum_{k=1}^n x_k \right\}_{n=1}^{\infty} \not\in X \text{ this } \vec{x} \neq x \text{ and } ||x||_X \leqslant \left\| x - \sum_{k=1}^N x_k \right\|_X + \left\| \sum_{k=1}^N x_k \right\|_X < 1$$

$$\Rightarrow x \in B_X \text{ and } \frac{\delta}{3^n} > ||y_n||_Y = ||y_{n-1} - Tx_n||_Y = \dots = ||y - T(x_1 + \dots + x_n)||_Y$$

$$\Rightarrow T\left(\sum_{k=1}^n x_k\right) \to y$$

$$\Rightarrow Tx = y$$

证明 设 U 是 X 上的开集, $\forall y \in T(U)$, $\exists x \in U \text{ s.t. } Tx = y$,令 $V \stackrel{\text{def}}{=} U - x$,

$$0 \in V \overset{\text{open}}{\subset} X \Rightarrow \exists t > 0 \text{ s.t. } tB_X \subset V$$

$$\overset{\text{Lemma}}{\Rightarrow} \exists \delta > 0 \text{ s.t. } \delta B_Y \subset T(B_X) \subset \frac{1}{t}T(V)$$

$$\Rightarrow 0 \not \in T(V) \text{ 的内点}$$

$$T(U) = T(V) + Tx \Rightarrow y = Tx \not \in T(U) \text{ 的内点}$$

定理 2.5.2 (逆算子定理, IMT)

X,Y 是 Banach 空间, $T \in \mathcal{L}(X,Y)$, 则 T 是双射 $\Rightarrow T^{-1} \in \mathcal{L}(Y,X)$.

证明 $f: X \to Y$ 连续 $\Leftrightarrow \forall$ 开集 $U \subset Y, f^{-1}(U)$ 是 X 上的开集。 $T^{-1}: Y \to X$ 连续 $\Leftrightarrow \forall$ 开集 $U \subset X$,由 OMT, $(T^{-1})^{-1}(U) = T(U)$ 是 Y 上的开集。

应用和推论

定理 2.5.3 (Lax-Milgram)

H 是 Hilbert 空间,如果共轭双线性函数 $a(\cdot,\cdot)$ 满足

- 1. 连续: $\exists C > 0$ 使得 $|a(x,y)| \leq C||x||||y||, \forall x, y \in H$.
- 2. 强制 (coersive): $\exists \delta > 0$ 使得 $\delta ||x||^2 \leqslant a(x,x), \forall x \in H$.

则存在唯一 $A \in \mathcal{L}(H)$ 使得

 $1^{\circ} \ a(x,y) = \langle x, Ay \rangle, x, y \in H.$

 $2^{\circ} A^{-1}$ 存在、有界且 $||A^{-1}|| \leq \frac{1}{\delta}$.

 \odot

证明 Claim1: A 是双射:

(1). A 是单射: 对于线性映射而言, 单射 \Leftrightarrow $Ker(A) = A^{-1}(\{0\}) = \{0\}$.

$$Ay = 0 \Rightarrow a(x, y) = \langle x, Ay \rangle = 0, \forall x \in H$$
$$\Rightarrow 0 = a(y, y) \geqslant \delta ||y||^2$$
$$\Rightarrow y = 0$$

(2). A 是满射: 先证明 Ran(A) 闭, 设 $Ran(A) \ni Ax_n \to y$,

$$\delta||x_n - x_m||^2 \leqslant a(x_n - x_m, x_n - x_m) = \langle x_n - x_m, Ax_n - Ax_m \rangle \leqslant ||x_n - x_m|| \cdot ||Ax_n - Ax_m||$$

$$\Rightarrow ||x_n - x_m|| \leqslant \frac{1}{\delta} ||Ax_n - Ax_m|| \to 0 \text{ as } n, m \to \infty$$

$$\Rightarrow \{x_n\}_{n=1}^{\infty}$$
 是基本列

设 $x_n \to x \in H$, A 连续所以 $Ax_n \to Ax$, 而 $Ax_n \to y$, 所以 $y = Ax \in \text{Ran}(A)$, 那么 $H = \text{Ran}(A) \oplus \text{Ran}(A)^{\perp}$. 为了证明 A 满射,只需证明 $\text{Ran}(A)^{\perp} = \{0\}$,

$$y \in \operatorname{Ran}(A)^{\perp} \Rightarrow \langle y, Ax \rangle = a(y, x) = 0, \forall x \in H$$

特别地, 考虑 x = y, 则 $0 = a(y, y) \ge \delta ||y||^2 \Rightarrow y = 0$.

那么由 IMT, $A^{-1} \in \mathcal{L}(H)$,

$$\delta||x||^2 \leqslant a(x,x) = \langle x, Ax \rangle \leqslant ||x|| \cdot ||Ax|| \Rightarrow ||x|| \leqslant \frac{1}{\delta} ||Ax||, \forall x \in H$$
$$\Rightarrow ||A^{-1}y|| \leqslant \frac{1}{\delta} ||y||, \forall y \in H$$
$$\Rightarrow ||A^{-1}|| \leqslant \frac{1}{\delta}$$

定理 2.5.4 (等价范数定理)

 $(X,||\cdot||_1),(X,||\cdot||_2) \; \text{πE Banach Ξin, m} \; ||\cdot||_2 \lesssim ||\cdot||_1 \Rightarrow ||\cdot||_1 \cong ||\cdot||_2.$

证明 考虑恒等映射 $I: (X, ||\cdot||_1) \to (X, ||\cdot||_2), x \mapsto x$.

$$\begin{split} \exists C>0 \text{ s.t. } ||x||_2 \leqslant C \, ||x||_1 \,, \forall x \in X \Rightarrow &\frac{||I(x)||_2}{||x||_1} \leqslant C \\ \Rightarrow &I \in \mathcal{L}((X,||\cdot||_1),(X,||\cdot||_2)) \\ \stackrel{\mathrm{IMT}}{\Rightarrow} &I^{-1} \in \mathcal{L}((X,||\cdot||_1),(X,||\cdot||_2)) \\ \Rightarrow &\exists C'>0 \text{ s.t. } ||x||_1 \leqslant C' \, ||x||_2 \,, \forall x \in X \\ \Rightarrow &\frac{1}{C'} \, ||x||_1 \leqslant ||x||_2 \leqslant C \, ||x||_1 \,, \forall x \in X \end{split}$$

≫ 2.6 闭图像定理

定义 2.6.1 (乘积度量空间)

 $(X, ||\cdot||_X), (Y, ||\cdot||_Y)$ 是两个度量空间, 定义:

$$||(x,y)||_{X\times Y}\stackrel{\mathrm{def}}{=}||x||_X+||y||_Y$$

可以证明, $(X \times Y, ||\cdot||_{X \times Y})$ 构成一个新的度量空间,称为乘积空间。

推论 2.6.1

X,Y 都是 Banach 空间,则其乘积空间 $X \times Y$ 也是 Banach 空间。

\Diamond

定义 2.6.2 (闭算子)

 $T: X \to Y$ 是线性映射,

$$\operatorname{Gr}(T) \stackrel{\operatorname{def}}{=} \{(x, Tx) : x \in \operatorname{Dom}(T)\}$$

称为 T 的图像,其中 $\mathrm{Dom}(T)\subset X$ 是指 T 的定义域,为 X 的子集. 如果 $\mathrm{Gr}(T)$ 是 $X\times Y$ 的闭子空间,则称 T 是闭算子。

引理 2.6.1

T是闭算子当且仅当

$$Dom(T) \ni x_n \to x, Tx_n \to y$$

蕴含 (imply)

$$x \in \text{Dom}(T), y = Tx$$

即,如果 T 将 Dom(T) 上的收敛列 $\{x_n\}$ 映为收敛列 $\{y_n=Tx_n\}$,则收敛列 $\{x_n\}$ 的极限 $x\in Dom(T)$ 且收敛列 $\{y_n=Tx_n\}$ 的极限为 y=Tx.

证明 Gr(T) 闭当且仅当:

$$(x_n, Tx_n) \to (x, y) \Rightarrow (x, y) \in G_r(T)$$

例 2.6.1. 无界的闭算子

$$T = \frac{\mathrm{d}}{\mathrm{d}t} : C[0,1] \to C[0,1], \ \mathrm{Dom}(T) = C^1[0,1]$$

命题 2.6.1

A有界, D = Dom(A)闭,则A闭。

定理内容

定理 2.6.1 (B.L.T.)

X 是赋范空间,Y 是 Banach 空间,任一 $T\in\mathcal{L}(\mathrm{Dom}(T),Y)$ 可唯一地、保范数地延拓为 $\tilde{T}\in\mathcal{L}(\overline{\mathrm{Dom}(T)},Y)$. 即

$$\tilde{T}|_{\mathrm{Dom}(T)} = T \text{ and } ||\tilde{T}|| = ||T||.$$

证明

$$\forall x \in \overline{\mathrm{Dom}(T)}, \exists x_n \in \mathrm{Dom}(T), n = 1, 2, \cdots \text{ s.t. } x_n \to x$$

$$\uparrow^{\frac{n}{2}} ||Tx_n - Tx_m|| \leq ||T||||x_n - x_m|| \to 0 \text{ as } n, m \to \infty$$

$$\Rightarrow \{Tx_n\}_{n=1}^{\infty} \not\equiv Y \text{ e in } \not\equiv y \in Y \text{ s.t. } Tx_n \to y$$

定义映射

$$\tilde{T}: \overline{\mathrm{Dom}(T)} \to Y, x \mapsto y$$

容易验证良定,且 \tilde{T} 是线性映射。下面证明 \tilde{T} 有界:

$$\forall x \in \overline{\mathrm{Dom}(T)}, ||\tilde{T}x|| = ||y|| = \lim_{n \to \infty} ||Tx_n|| \leqslant \lim_{n \to \infty} ||T||||x_n|| = ||T||||x||$$

$$\Rightarrow \tilde{T} \in \mathcal{L}(\overline{\mathrm{Dom}(T)}, Y) \text{ and } ||\tilde{T}|| \leqslant ||T||$$

另一方面,平凡地, $||\tilde{T}|| \ge ||T||$.

例 2.6.2. Fourier 变换

$$\hat{f}(\xi) \stackrel{\text{def}}{=} \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx$$

其中 $f \in L^1$, 如何在 L^2 上定义?

 $L^1 \cap L^2$ 在 L^2 上稠密, $||\hat{f}||_2 = ||f||_2, \forall f \in L^1 \cap L^2$ (Planchered),由 B.L.T. 可得 $\mathcal{F}: f \mapsto \hat{f}$ 可唯一地、保范数地延拓到 L^2 上。

注 由 B.L.T 和命题 2.6.1, 有界算子可以将其定义域延拓为闭集, 从而成为闭算子。

定理 2.6.2 (闭图像定理, CGT)

X,Y 是 Banach 空间, $T:X\to Y$ 是闭线性算子,如果 $\mathrm{Dom}(T)$ 是闭集,则 T 有界。

证明 Gr(T) 是 $X \times Y$ 的闭子空间,所以 $(Gr(T), ||\cdot||_{X \times Y})$ 是 Banach 空间,定义:

$$\Pi_1 : \operatorname{Gr}(T) \to \operatorname{Dom}(T), \ (x, Tx) \mapsto x$$

$$\Pi_2 : \operatorname{Gr}(T) \to Y, \ (x, Tx) \mapsto Tx$$

并设 $T = \Pi_2 \prod \Pi_1^{-1}$,

$$\Pi_1$$
是双射 $\stackrel{\mathrm{IMT}}{\Rightarrow}$ Π^{-1} 有界 $\Rightarrow T = \Pi_1 \circ \Pi_1^{-1}$ 有界 $Dom(T)$ 闭用在这里

证明 $(Dom(T), ||\cdot||_X)$ 是 Banach 空间, 令

$$||x||_G \stackrel{\mathrm{def}}{=} ||x||_X + ||Tx||_Y, \ x \in \mathrm{Dom}(T)$$

Claim: $(Dom(T), ||\cdot||_G)$ 也是 Banach 空间。实际上,

$$||x_n - x_m||_G = ||x_n - x_m||_X + ||Tx_n - Tx_m||_Y \to 0 \text{ as } n, m \to \infty$$

 \Diamond

X,Y 是 Banach, 所以存在 $x_n \to x, Tx_n \to y$, 因为 T 闭所以 $x \in Dom(T), y = Tx$. 于是

$$||x_n - x||_G = ||x_n - x||_X + ||Tx_n - Tx||_Y \to 0$$

那么 $||\cdot||_X$ 弱于 $||\cdot||_G$, 因此 $||\cdot||_X$ 等价于 $||\cdot||_G$, 所以存在C>0 使得

$$||Tx||_Y \leqslant ||x||_G \leqslant C||x||_X, \forall x \in \text{Dom}(T)$$

应用和推论

例 2.6.3. Hellinger-Toeplitz

H 是 Hilbert 空间,如果 $T: H \to H$ 满足 $\langle Tx, y \rangle = \langle x, Ty \rangle, \forall x, y \in H$,则 T 有界。

证明 先证明 T 闭: 设 $x_n \to x$, $Tx_n \to y$, 存在 $\delta \in H$ 使得

$$\langle \delta, Tx \rangle = \langle T\delta, x \rangle = \lim_{n \to \infty} \langle T\delta, x_n \rangle = \lim_{n \to \infty} \langle \delta, Tx_n \rangle = \langle \delta, y \rangle$$

所以 Tx = y. 于是由 CGT 可知 T 有界。

♦ 2.7 Hahn-Banach 定理

2.7.1 代数形式——线性泛函的延拓

定义 2.7.1

X 是向量空间,如果函数 $p: X \to \mathbb{R}$ 使得

- 1. 正齐性: $p(tx) = tp(x), \forall x \in X, t > 0$.
- 2. 次可加性: $p(x+y) \leq p(x) + p(y), \forall x, y \in X$.

则称p是X上的一个次线性泛函。

如果p还满足齐次性,即

$$p(\lambda x) = |\lambda| p(x), \forall x \in X, \forall \lambda \in \mathbb{K}$$

则称p是一个半范数。

注

- 1. 半范数非负: $\forall x \in X, 2p(x) = p(x) + p(-x) \ge p(0) = 0.$
- 2. 如果半范数 p 满足 $p(x) = 0 \Rightarrow x = 0$,则 p 是一个范数。

定理 2.7.1 (HBT for real version)

设 X 为实向量空间,p 是 X 上次线性泛函,M 是 X 的子空间,f 是 M 上的线性泛函,并满足 $f(x) \leqslant p(x), \forall x \in M$. 则存在 X 上的线性泛函 F 满足

- 1. $F|_{M} = f$.
- 2. $F(x) \leq p(x), \forall x \in X$.

引理 2.7.1

在定理条件下,设 $x_0 \in X \setminus M$,定义

$$\tilde{M} \stackrel{\text{def}}{=} M \oplus \operatorname{span} x_0$$

则存在线性映射 $\tilde{f}: \tilde{M} \to \mathbb{R}$, 满足

1. $\tilde{f}|_{M} = f$.

2. $\tilde{f}(x) \leq p(x), \forall x \in \tilde{M}$.

证明

$$\forall x, y \in M, f(x) + f(y) = f(x+y) \leqslant p(x+y) \leqslant p(x-x_0) + p(y+x_0)$$

$$\Rightarrow f(x) - p(x-x_0) \leqslant p(y+x_0) - f(y)$$

$$\Rightarrow \sup_{x \in M} [f(x) - p(x-x_0)] \leqslant \inf_{y \in M} [p(y+x_0) - f(y)]$$

$$\Rightarrow \exists \beta \in \mathbb{R} \text{ s.t. } f(x) - p(x-x_0) \leqslant \beta \leqslant p(y+x_0) - f(y), \forall x, y \in M$$
(*)

今

$$\tilde{f}: \tilde{M} \to \mathbb{R}, x + \lambda x_0 \mapsto f(x) + \lambda \beta$$

于是 \tilde{f} 是线性映射,且 $\tilde{f}|_{M}=f$.下面证明:

$$\tilde{f}(x + \lambda x_0) \leq p(x + \lambda x_0), \forall x \in M, \forall \lambda \in \mathbb{R}$$

 $\lambda = 0$ 显然, $\lambda \neq 0$ 时, 不妨设 $\lambda > 0$, (*) 式中 x, y 均代以 $\tilde{\gamma}$ 可得

$$f(\frac{x}{\lambda}) - p(\frac{x}{\lambda} - x_0) \leqslant \beta \leqslant p(\frac{x}{\lambda} + x_0) - f(\frac{x}{\lambda})$$

$$\Rightarrow f(x) - p(x - \lambda x_0) \leqslant \lambda \beta \leqslant p(x + \lambda x_0) - f(x)$$

$$\Rightarrow \begin{cases} f(x) - \lambda \beta = \tilde{f}(x - \lambda x_0) \leqslant p(x - \lambda x_0) \\ f(x) + \lambda \beta = \tilde{f}(x + \lambda x_0) \leqslant p(x + \lambda x_0) \end{cases}$$

证明 对两个线性泛函 g,h,如果 $\mathrm{Dom}(g)$ 是 $\mathrm{Dom}(h)$ 的闭子空间,且 $h_{\mathrm{Dom}(g)}=g$,则称 h 是 g 的一个延拓。令 $\mathcal{F} \stackrel{\mathrm{def}}{=} \{g: g \not\in f \text{ bou } \text{ for } f, \ g(x) \leqslant p(x), \forall x \in \mathrm{Dom}(g) \}$

引入偏序:

$$g \leq h \Leftrightarrow h$$
是 g 的延拓

设 T 是 F 的任一全序子集,令

$$Y \stackrel{\mathrm{def}}{=} \bigcup_{g \in \mathcal{T}} \mathrm{Dom}(g)$$

于是Y是X的闭子空间,令

$$G: Y \to \mathbb{R}, x \mapsto g(x) \text{ if } x \in \text{Dom}(g)$$

T 全序 \Rightarrow G 良定且是 T 的一个上界,由 Z orn 引理可得 F 有极大元 F,下面证明 D om(F) = X,从而 F 即为 F 所求。

假设不然,即存在 $x_0 \in X \setminus Dom(F)$,那么由引理可得存在 $Dom(F) \oplus span\{x_0\}$ 上的线性泛函 \tilde{F} ,满足

- 1. $F|_{Dom(F)} = F$.
- 2. $\tilde{F}(x) \leq p(x), \forall x \in \text{Dom}(F) \oplus \text{span}\{x_0\}.$

于是 $\tilde{F} \in \mathcal{F}$ 且 $F \leq \tilde{F}$,这与F的极大性矛盾。

定理 2.7.2 (HBT for complex version)

设 X 为复向量空间,p 是 X 上次线性泛函,M 是 X 的子空间, $f:M\to\mathbb{C}$ 是 M 上的线性泛函,并满足 $|f(x)|\leqslant p(x), \forall x\in M$. 则存在 X 上的线性泛函 $F:X\to\mathbb{C}$ 满足

- 1. $F|_{M} = f$.
- 2. $|F(x)| \leq p(x), \forall x \in X$.

 \Diamond

 \Diamond

 \Diamond

证明 Step1: 先把 X 看作实向量空间, 令 $g \stackrel{\text{def}}{=} \text{Re } f$, 则 $g \in M$ 上的实线性泛函,且满足

$$g(x) \leqslant |f(x)| \leqslant p(x), \forall x \in M$$

那么由实 HBT, 存在线性映射 $G: X \to \mathbb{R}$, 满足

- 1. $G|_{M} = g$.
- 2. $G(x) \leq p(x), \forall x \in X$.

Step2: 复化。令

$$F(x) \stackrel{\text{def}}{=} G(x) - iG(ix)$$

显然有

$$F(x+y) = F(x) + F(y)$$

$$F(\alpha x) = \alpha F(x), \forall x \in X, \forall \alpha \in \mathbb{R}$$

所以

$$F((\alpha_1 + i\alpha_2)x) = F(\alpha_1 x) + F(i\alpha_2 x) = \alpha_1 F(x) + \alpha_2 F(ix), \forall x \in X, \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

故只需证明 F(ix) = iF(x),

$$F(ix) = G(ix) - iG(-x) = G(ix) + iG(x) = i(-iG(ix) + G(x)) = iF(x)$$

得证。

Step3: 证明 $F|_M = f$.

$$\forall x \in M, F(x) = G(x) - iG(ix)$$

$$= g(x) - ig(ix)$$

$$= \operatorname{Re} f(x) - i \cdot \operatorname{Re} f(ix)$$

$$= \operatorname{Re} f(x) - i \cdot \operatorname{Re} \{if(x)\}$$

$$= \operatorname{Re} f(x) + i \cdot \operatorname{Im} f(x) = f(x)$$

Step4: 证明 $|F(x)| \leq p(x), \forall x \in X.$ F(x) = 0 时显然,设 $F(x) \neq 0$,存在 $\theta \in \mathbb{R}$ 使得 $|F(x)| = e^{-i\theta}F(x)$,于是

$$|F(x)| = F(e^{-i\theta}x) = G(e^{-i\theta}x) - iG(ie^{-i\theta}x) = G(e^{-i\theta}x) \leqslant p(e^{-i\theta}x) = p(x)$$

定理 2.7.3 (HBT)

X 为度量空间,M 是其子空间,则

$$\forall f \in M^*, \exists F \in X^* \text{ s.t. } F|_M = f \text{ and } ||F|| = ||f||$$

这称为保范延拓。

证明 令

$$p(x) \stackrel{\mathrm{def}}{=} ||f|| \cdot ||x||, x \in X$$

则 $|f(x)| \leq ||f|| \cdot ||x||$,由复 HBT 可得存在 X 上线性泛函 $F: X \to \mathbb{C}$ 满足 $F|_M = f$ 且 $|F(x)| \leq p(x)$,进而 $|F(x)| \leq ||F|| \cdot ||x||$,因此 F 是 X 上有界线性泛函,且 $||F|| \leq ||f||$. 同时显然有 $||F|| \geq ||f||$.

例 2.7.1. HBT 中延拓不唯一

 $X=(\mathbb{R}^2,||\cdot||_1)$,其中 $||(x_1,x_2)||_1\stackrel{\mathrm{def}}{=}|x_1|+|x_2|$,取 $M=\mathbb{R}\times\{0\}$, $f:M\to\mathbb{R},(x,0)\mapsto x$,那么 f是 M 上有界线性泛函,且 ||f||=1.

令

$$F_t: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto x_1 + tx_2$$

那么 $F_t|_M = f$,而且对于 $\forall t \in (-1,1)$,

$$|F_t(x_1, x_2)| = |x_1 + tx_2| \le |x_1| + |t||x_2| \le ||(x_1, x_2)||_1 \Rightarrow ||F_t|| \le 1$$

应用和推论

推论 2.7.1

$$\forall x_0 \in X, \ \exists f \in X^* \ \text{is} \ \mathcal{L} \ ||f|| = 1 \ \text{If} \ f(x_0) = ||x_0||.$$

 \Diamond

证明 $\diamondsuit M \stackrel{\text{def}}{=} \operatorname{span}\{x_0\}$,

$$f_0: M \to \mathbb{K}, x = \lambda x_0 \mapsto \lambda ||x_0||$$

于是 $|f_0(x)| \leq |\lambda| \cdot ||x_0|| = ||x||$, 进而 $f_0 \in M^*$ 且 $||f_0|| = 1$, 由 HBT 可得存在 $f \in X^*$ 满足 $f|_M = f_0$, 即 $f(x_0) = f_0(x_0) = ||x_0||$, 同时 $||f|| = ||f_0|| = 1$.

推论 2.7.2

$$X \neq \{0\} \Rightarrow X^* \neq \{0\}.$$

 \Diamond

证明 取 $0 \neq x \in X$, 由推论 2.7.1 可得存在 $f \in X^*$ 满足 ||f|| = 1 且 $f(x) = ||x|| \neq 0$, 此即为 $0 \neq f \in X^*$.

推论 2.7.3

$$x, y \in X, x \neq y \Rightarrow \exists f \in X^* \text{ s.t. } f(x) \neq f(y).$$

 \Diamond

证明 取 $x_0 = x - y \neq 0$, 由推论 2.7.1 可得存在 $f \in X^*$ 使得 $f(x - y) = ||x - y|| \neq 0 \Rightarrow f(x) \neq f(y)$.

推论 2.7.4

$$f(x) = 0, \forall f \in X^* \Rightarrow x = 0$$

证明 假设 $x \neq 0$, 由推论 2.7.3 可得存在 $f \in X^*$ 使得 $f(x) \neq f(0) = 0$, 矛盾。

推论 2.7.5

$$||x|| = \sup_{f \in X^*, ||f|| = 1} |f(x)|.$$

 $^{\circ}$

证明 $\forall f \in X^*$ 满足 ||f|| = 1,

$$|f(x)| \le ||f|| \cdot ||x|| = ||x||$$

于是

$$\sup_{f \in X^*, ||f|| = 1} |f(x)| \leqslant ||x||$$

另一方面,存在 $f \in X^*$ 满足||f|| = 1且f(x) = ||x||,得证。

定理 2.7.4

X 是度量空间,M 是其子空间, $x_0 \in X$ 满足 $d = \operatorname{dist}(x_0, M) > 0$,则存在 $f \in X^*$ 满足 ||f|| = 1 且

$$f(M) = \{0\}, f(x_0) = d$$

证明 令 $\tilde{M} \stackrel{\text{def}}{=} M \oplus \text{span}\{x_0\}$, 定义

$$f_0: \tilde{M} \to \mathbb{K}, x = y + \lambda x_0 \mapsto \lambda d$$

于是 $f_0(M) = \{0\}$ 且 $f(x_0) = d$,而且对于 $\forall x = y + \lambda x_0$,其中 $y \in M$,

1° 如果 $\lambda = 0$,则 $f_0(x) = 0$.

 2° 如果 $\lambda \neq 0$,

$$|f_0(x)| = |\lambda d| = |\lambda| \cdot d \leqslant |\lambda| \cdot \left| \left| x_0 + \frac{y}{\lambda} \right| \right| = ||y + \lambda x_0|| = ||x||.$$

于是 $f_0 \in \tilde{M}^*$ 且 $||f_0|| = 1$,由 HBT 可得存在 $f \in X^*$ 满足 $f|_{\tilde{M}^*} = f_0$ 且 $||f|| = ||f_0|| \leqslant 1$,则 $f(M) = \{0\}, f(x_0) = d$.

只需证明 $||f|| \ge 1$.

$$d = \inf_{y \in M} ||x_0 - y|| \Rightarrow \forall n, \exists y_n \in M \text{ s.t. } ||x_0 - y_n|| < d + \frac{1}{n}$$

$$\Rightarrow \frac{|f(x_0 - y_n)|}{||x_0 - y_n||} = \frac{|f(x_0)|}{||x_0 - y_n||} > \frac{d}{d + \frac{1}{n}} \to 1 \text{ as } n \to \infty$$

$$\Rightarrow \sup_{n} \frac{|f(x_0 - y_n)|}{||x_0 - y_n||} \geqslant 1$$

$$\Rightarrow ||f|| \geqslant 1$$

定理 2.7.5

X 是度量空间, M 是其子空间, $0 \neq x_0 \in X$, 那么

$$x_0 \in \overline{\operatorname{span} M} \Leftrightarrow f(x_0) = 0, \forall f \in X^* \text{ with } f(M) = \{0\}$$

证明 必要性: 设 $x_0 \in \overline{\text{span } M}$, 对于 $\forall f \in X^*$ 满足 $f(M) = \{0\}$, 有:

$$f(\operatorname{span} M) = f(\overline{\operatorname{span} M}) = \{0\}$$

从而 $f(x_0) = 0$.

充分性: 假设 $x_0 \notin \overline{\text{span } M}$, 则

$$d \stackrel{\text{def}}{=} \operatorname{dist}(x_0, \overline{\operatorname{span} M}) > 0$$

由定理 2.7.4,存在 $f \in X^*$ 满足 ||f|| = 1 且

$$f(\overline{\text{span } M}) = \{0\}, f(x_0) = d > 0$$

矛盾。

2.7.2 几何形式——凸集分离

定义 2.7.2

X 是向量空间, $C \subset X$,

- 1. 如果 -C = C, 称 C 对称。
- 2. 如果 $\forall x, y \in C$, $\forall t \in [0,1]$, 都有 $tx + (1-t)y \in C$, 称 C 是凸集 (Convex set)。
- 3. 如果 $\forall x \in X$, 存在 t > 0 使得 $\frac{x}{t} \in C$, 称 C 是吸收的。

命题 2.7.1

任一族凸集之交仍然是凸集。

定义 2.7.3

对于集合 A,包含 A的所有凸集之交称为 A的凸包,记作

$$\operatorname{conv}(A) \stackrel{\operatorname{def}}{=} \bigcap_{\operatorname{Convex} \ C \supset A} C$$

定义 2.7.4

对于

$$\sum_{k=1}^{n} \lambda_k = 1, \{\lambda_k\}_{k=1}^{n}$$

称

$$\sum_{k=1}^{n} \lambda_k x_k$$

为 x_1, \dots, x_n 的一个凸组合。

命题 2.7.2

conv(A) 就是 A 中向量的凸组合全体。

定义 2.7.5

X 是向量空间, C 是包含 0 的凸集, 广义实值函数 $P_C: X \to [0, +\infty]$,

$$P_C(x) \stackrel{\text{def}}{=} \inf\{t > 0 : \frac{x}{t} \in C\}$$

称为 C 的 Minkowski 泛函。

$$P_C(x) = +\infty \Leftrightarrow \{t > 0 : \frac{x}{t} \in C\} = \varnothing$$

命题 2.7.3

关于 P_C ,

- 1. $P_C(0) = 0$.
- 2. 正齐次性: $P_C(tx) = tP_C(x), \forall x \in X, \forall t > 0.$
- 3. 次可加性: $P_C(x+y) \leq P_C(x) + P_C(y)$

注意 P_C 可能取 $+\infty$, 不一定是次线性泛函。

证明 只说明 3. 不妨设 $P_C(x), P_C(y) \in \mathbb{R}$,

$$\forall \varepsilon > 0, \lambda \stackrel{\text{def}}{=} P_C(x) + \frac{\varepsilon}{2}, \mu \stackrel{\text{def}}{=} P_C(y) + \frac{\varepsilon}{2}$$

于是

$$\frac{x}{\lambda}, \frac{y}{\mu} \in C \Rightarrow \frac{x+y}{\lambda+\mu} = \frac{\lambda}{\lambda+\mu} \frac{x}{\lambda} + \frac{\mu}{\lambda+\mu} \frac{y}{\mu} \in C$$
$$\Rightarrow \lambda + \mu \geqslant P_C(x+y)$$
$$\Rightarrow P_C(x+y) \leqslant P_C(x) + P_C(y) + \varepsilon$$

定义 2.7.6

X 是复向量空间, C 是包含 0 的凸集, 如果 $\forall x \in C, \forall \theta \in \mathbb{R}$, 都有 $e^{i\theta}x \in C$, 则称 C 均衡。

命题 2.7.4

复向量空间中每个均衡、吸收凸集都决定了一个半范数。

证明 吸收 $\Rightarrow P_C$ 是次线性泛函,均衡 \Rightarrow 齐次性。

定义 2.7.7

X 是实向量空间,M 是闭子空间,称 M 是 X 的极大子空间是指任一 X 的闭子空间 Y,若满足 $M \subsetneq Y$,则 Y = X,

命题 2.7.5

M 是极大子空间 $\Leftrightarrow \exists x_0 \in X$ 使得 $X=M \oplus \mathrm{span}\{x_0\}$,也就是 $\mathrm{codim}\ M=\dim(X/M)=1$. (习题 2.4.8.)

证明 (\Leftarrow): $\dim(X/M) = 1$, 则 $\forall x_0 \notin M$

$$X/M = \{\lambda[x_0] : \lambda \in \mathbb{K}\}$$

假设存在线性子空间 S 使得 $M \subseteq S$, 则取 $x_0 \in S \setminus M$, 从而

$$\mathrm{span}x_0 = \mathrm{span}x_0 \oplus M \subset S$$

而实际上 $[\lambda x_0] = \{\lambda x_0 + m : m \in M\}$, 因此

$$X = {\lambda x_0 + m : m \in M, \lambda \in \mathbb{K}} = \operatorname{span}{x_0} \oplus M \subset S$$

只能 X = S, 与极大性矛盾。

 (\Rightarrow) : 取 $x_0 \notin M$, 则

$$M \subsetneq \bigcup_{\lambda \in \mathbb{K}} (ax_0 + M) = \operatorname{span}\{x_0\} \oplus M$$

从而后者 = X, 所以 dim(X/M) = 1.

定义 2.7.8

超平面是指极大子空间的平移。

对于 X 上线性泛函 f 和 $r \in \mathbb{R}$,

$$H^r_f \stackrel{\text{def}}{=} f^{-1}(\{r\}) = \{x \in X : f(x) = r\}$$

命题 2.7.6

L 是超平面 \Leftrightarrow 存在某个 f 和 r, 使得 $L = H_f^r$.

证明 充分性: 注意到 $H_f^0 = \operatorname{Ker}(f)$, Claim: H_f^0 是极大子空间。取 $x_0 \in X \setminus H_f^0$,

$$f(x - \frac{f(x)}{f(x_0)}x_0) = 0, \forall x \in X \Rightarrow f - \frac{f(x)}{f(x_0)}x_0 \in H_f^0, \forall x \in X$$
$$\Rightarrow X = H_f^0 \oplus \operatorname{span}\{x_0\}$$

Claim 得证。令 $r \stackrel{\text{def}}{=} f(x_0)$,则

$$x \in H_f^r \Leftrightarrow f(x - x_0) = f(x) - f(x_0) = 0 \Leftrightarrow x - x_0 \in H_f^0 \Leftrightarrow x \in H_f^0 + x_0$$

所以 H_f^r 是极大子空间 H_f^0 的平移,为超平面。

必要性: 设L = M + a, M是极大子空间, 那么存在某个 x_0 使得 $X = M \oplus \text{span}\{x_0\}$, 令

$$f: X \to \mathbb{R}, x = y + \lambda x_0 \mapsto \lambda$$

于是 $f(M)=\{0\}$ 且 $f(x_0)=1$,进而 $M\subset H^0_f$,由 M 极大 $\Rightarrow M=H^0_f$,因此 $L=H^r_f$ with r=1.

命题 2.7.7

 $f \in X^* \Rightarrow \forall r \in \mathbb{R}, H^r_f$ 是闭超平面。

定义 2.7.9

设 X 是实向量空间, $A,B \subset X$,

1. 称 H_f^r 分离 A, B 是指:

$$\sup_{x \in X} f(x) \leqslant r \leqslant \inf_{y \in B} f(y)$$

或者

$$\sup_{y \in B} f(y) \leqslant r \leqslant \inf_{x \in A} f(x)$$

2. H_f^r 严格分离 A, B 是指上述不等号严格成立。

定理 2.7.6

X 是实赋范空间,C 是有内点的凸集, $x_0 \notin C \Rightarrow \exists f \in X^*, \exists r \in \mathbb{R}$ 满足 H^r_f 分离 x_0 和 C.

证明 不妨设 $0 \in C$ 的内点, $P_C \in C$ 的 Minkowski 泛函,由习题 1.5.1, P_C 是次线性泛函,并且

$$\overline{C} = \{ x \in X : P_C(x) \le 1 \}$$

 $x_0 \notin C \Rightarrow P_C(x_0) \ge 1$, $0 \notin C$ 的内点 $\Rightarrow \exists \varepsilon > 0$ s.t. $B(0, \varepsilon) \subset C$, 于是

$$\forall x \in X, x \neq 0, \varepsilon \frac{x}{||x||} \in \overline{B(0,\varepsilon)} \subset \overline{C}$$

进而

$$P_C(\varepsilon \frac{x}{||x||}) \leqslant 1, \forall 0 \neq x \in X$$

也就是

$$P_C(x) \leqslant \frac{1}{\varepsilon}||x||, \forall x \in X$$

$$f_0: M \to \mathbb{R}, x = \lambda x_0 \mapsto \lambda P_C(x_0)$$

则 $f_0(x) \leq P_C(x), \forall x \in M$,由实 HBT 可得存在 $f: X \to \mathbb{R}$ 满足 $f|_M = f_0$ 且 $f(x) \leq P_C(x), \forall x \in X$,进而 $f(x_0) = f_0(x_0) = P_C(x_0) \geqslant 1, f(x) \leq P_C(x) \leq 1, \forall x \in C$

因此 H_f^1 分离 x_0 和 C.

只剩下证明 $f \in X^*$,

$$f(x) \leqslant P_C(x) \leqslant \frac{1}{\varepsilon} ||x||, \forall x \in X \Rightarrow -f(x) \leqslant \frac{1}{\varepsilon} ||x||$$
$$\Rightarrow |f(x)| \leqslant \frac{1}{\varepsilon} ||x||, \forall x \in X$$
$$\Rightarrow f \in X^*$$

定理 2.7.7 (Hahn-Banach 凸集分离定理)

X 是实赋范空间,A 是开凸集,B 是凸集,若 $A\cap B=\varnothing$,则存在 H_f^r 闭,并分离 A,B.

 \Diamond

$$C = \{x - y : x \in A, y \in B\} = \bigcup_{y \in B} (A - y)$$

那么 C 是凸开集,而且 $0 \notin C$,由定理 2.7.6, H_f^0 分离 C 和 $\{0\}$,即存在 $f \in X^*$ 使得

$$\sup_{\delta \in C} f(\delta) \leqslant 0 = f(0)$$

而

$$\sup_{\delta \in C} f(\delta) = \sup_{x \in A, y \in B} [f(x) - f(y)] = \sup_{x \in A} f(x) - \inf_{y \in B} f(y)$$

因此

$$\sup_{x \in A} f(x) \leqslant r \leqslant \inf_{y \in B} f(y)$$

这里

$$r \stackrel{\text{def}}{=} \frac{1}{2} [\sup_{x \in A} f(x) + \inf_{y \in B} f(y)]$$

定理 2.7.8 (Hahn-Banach 凸集分离定理 2)

X 是实赋范空间,A 是闭凸集,B 是紧凸集,若 $A\cap B=\varnothing$,则存在 H_f^r 闭,并严格分离 A,B.

3

证明 A 闭 B 紧且不交,所以 $\operatorname{dist}(A,B) > 0$,令 $\varepsilon = \frac{1}{4}\operatorname{dist}(A,B)$,

$$A_{\varepsilon} \stackrel{\text{def}}{=} A + B(0, \varepsilon), B_{\varepsilon} \stackrel{\text{def}}{=} B + B(0, \varepsilon)$$

这两个都是开凸集且不交,由定理 2.7.7 可知 $\exists f \in X^*, \exists r \in \mathbb{R}$ 满足

$$\sup_{x \in A_{\varepsilon}} f(x) \leqslant r \leqslant \inf_{y \in B_{\varepsilon}} f(y)$$

所以

$$\begin{split} f(x+\varepsilon\delta) \leqslant r \leqslant f(y+\varepsilon\delta), \forall x \in A, \forall y \in B, \forall \delta \in B(0,1) \\ \Rightarrow -f(\delta) \leqslant \frac{f(y)-r}{\varepsilon} \\ \Rightarrow & ||f|| = \sup_{\delta \in B(0,1)} f(-\delta) \leqslant \frac{f(y)-r}{\varepsilon} \\ \Rightarrow r \leqslant f(y) - \varepsilon ||f||, \forall y \in B \\ \Rightarrow r \leqslant \inf_{y \in B} f(y) - \varepsilon ||f|| < \inf_{y \in B} f(y) \end{split}$$

同理,

$$\sup_{x \in A} f(x) < \sup_{x \in A} f(x) + \varepsilon ||f|| \leqslant r$$

应用和推论

推论 2.7.6 (Ascoli)

X 是实赋范空间,C 是闭凸集,若 $x_0 \notin C$,则

$$\exists f \in X^*, \exists r \in \mathbb{R} \text{ s.t. } \sup_{x \in C} f(x) < r < f(x_0)$$

 \odot

 \Diamond

推论 2.7.7

X 是实赋范空间, M 是其子空间,

$$\overline{M} \neq X \Leftrightarrow \exists f \in X^*, f \neq 0 \text{ s.t. } f(M) = \{0\}$$

等价地,

$$\overline{M} = X \Leftrightarrow \forall f \in X^* \text{ with } f(M) = \{0\} \Rightarrow f = 0$$

证明 假设存在 $x_0 \in X \setminus \overline{M}$, 由 Ascoli,

$$\exists f \in X^*, \exists r \in \mathbb{R} \text{ s.t. } \sup_{x \in \overline{M}} f(x) < r < f(x_0)$$

进而 $f|_{\overline{M}} = 0 \Rightarrow f(M) = \{0\}$,所以 $0 < r < f(x_0)$, $f \neq 0$,矛盾。所以 $X = \overline{M}$.

推论 2.7.8 (Mazur)

X 是实赋范空间,C 是开凸集,F 是线性子流形(子空间的平移),若 $C\cap F=\varnothing$,则存在 H_f^r 闭满足 $F\subset H_f^r$ 且 $\sup_{x\in C}f(x)\leqslant r$.

证明 设 $F = M + x_0$, M 是子空间, 由分离定理

$$\exists f \in X^*, \exists s \in \mathbb{R} \text{ s.t. } \sup_{x \in C} f(x) \leqslant s \leqslant \inf_{y \in F} f(y) = \inf_{\delta \in M} f(\delta) + f(x_0)$$

进而

$$\inf_{\delta \in M} f(\delta) \geqslant s - f(x_0) \Rightarrow f|_M = 0$$
$$\Rightarrow M \subset H_f^0$$
$$\Rightarrow F \subset H_f^r \text{ with } r = f(x_0)$$

同时,

$$\sup_{x \in C} f(x) \leqslant s \leqslant f(x_0) = r$$

定义 2.7.10

称超平面 $L=H_f^r$ 是凸集 C 在 x_0 处的承托超平面是指: C 完全落在 L 的一侧, 且 $x_0\in\overline{C}\cap L$, 即

$$\sup_{x \in C} f(x) \leqslant r = f(x_0)$$

或者

$$\inf_{x \in C} f(x) \geqslant r = f(x_0)$$

定理 2.7.9

X 是实赋范空间,C 是有内点的闭凸集, $\forall x_0 \in \partial C$ 均有 C 的一个承托超平面。

证明 令 $E = C^{\circ}$, 即 C 的全体内点, $F = \{x_0\}$, 由 Mazur 可得

$$\exists f \in X^*, \exists r \in \mathbb{R} \text{ s.t. } \sup_{x \in E} f(x) \leqslant r \text{ and } \{x_0\} \subset H_f^r$$

由连续性

$$\sup_{x \in C} f(x) \leqslant r = f(x_0)$$

例 2.7.2.

C = B(0,r), $\forall x_0 \in \partial B(0,r)$, 均有承托超平面。

证明 $\exists f \in X^*, ||f|| = 1$ 使得 $f(x_0) = ||x_0|| = r$,而

$$\sup_{x \in C} f(x) \leqslant ||f|| \sup_{x \in C} ||x|| = r$$

例 2.7.3.

设 $\sum_{k=1}^{\infty} x_k$ 是 Banach 空间 X 中绝对收敛级数, $\{y_k\}_{k=1}^{\infty}$ 是 $\{x_k\}_{k=1}^{\infty}$ 的任一重排,则

$$\sum_{k=1}^{\infty} y_k = \sum_{k=1}^{\infty} x_k$$

证明 $\forall f \in X^*$,

$$\sum_{k=1}^{\infty} |f(x_k)| \leqslant ||f|| \sum_{k=1}^{\infty} ||x_k|| < \infty$$

于是 $\sum_{k=1}^{\infty} f(x_k)$ 是 \mathbb{K} 上的绝对收敛级数, 重排不变, 所以

$$\sum_{k=1}^{\infty} f(y_k) = \sum_{k=1}^{\infty} f(x_k) \Rightarrow f(\sum_{k=1}^{\infty} y_k) = f(\sum_{k=1}^{\infty} x_k), \forall f \in X^* \stackrel{\text{Cor } 2.7.4}{\Rightarrow} \sum_{k=1}^{\infty} y_k = \sum_{k=1}^{\infty} x_k$$

≫ 2.8 对偶空间、自反空间、弱收敛

2.8.1 对偶空间

定义 2.8.1

X 的对偶空间 X^* 是指 X 上所有线性泛函组成的空间,即

$$X^* \stackrel{\mathrm{def}}{=} \mathcal{L}(X, \mathbb{K})$$

回顾: (X, m, μ) 是一可测空间, Ω 是 X 上可测函数全体,

$$L^p = L^p(\Omega, m, \mu) \stackrel{\text{def}}{=} \{ f \in \Omega : ||f||_p = (\int_X |f|^p d\mu)^{\frac{1}{p}} < \infty \}$$

对于 $1 \leq p \leq \infty$, 对偶空间 $(L^p)^*$ 是什么?

定理 2.8.1 (Riesz)

设 $1 \leq p < \infty$, 则 $(L^p)^* = L^q$, 其中

$$q = \begin{cases} \frac{p}{p-1} & , 1$$

证明 我们希望构造出一个线性等距同构 $J: L^q \to (L^p)^*$, 如下:

$$\forall g \in L^q, \Lambda_g : L^p \to \mathbb{K}, f \mapsto \Lambda_g(f) \stackrel{\text{def}}{=} \int fg$$
$$J : L^q \to (L^p)^*, g \mapsto \Lambda_g$$

需要证明:

 $1^{\circ} \Lambda_g \in (L^p)^*.$

2° J线性。

 $3^{\circ} ||\Lambda_{q}|| = ||g||_{q}$,即 J 等距。

 $4^{\circ} \ \forall \Lambda \in (L^p)^*$,存在唯一 $g \in L^{p'}$ 使得 $\Lambda = \Lambda_q$,即J是双射。

Proof of $1^{\circ} - 3^{\circ}$: 先考虑 1 ,

$$\forall f \in L^p, |\Lambda_g(f)| = |\int fg| \leqslant ||g||_q \cdot ||f||_p$$

于是 $\Lambda_g \in (L^p)^*$, 且 $||\Lambda_g|| \leqslant ||g||_q$. 取

$$\tilde{f} \stackrel{\text{def}}{=} |g|^{q-1} \operatorname{sgn}(g)$$

则

$$\begin{cases} |\tilde{f}|^{p} = |g|^{(q-1)p} = |g|^{q} \\ \tilde{f} \cdot g = |g|^{q} \end{cases} \Rightarrow \begin{cases} |\tilde{f}|^{p}_{p} = ||g||^{q}_{q} \\ \Lambda_{g}(\tilde{f}) = ||g||^{q}_{q} \end{cases}$$
$$\Rightarrow \frac{|\Lambda_{g}(\tilde{f})|}{||\tilde{f}||_{p}} = \frac{||g||^{q}_{q}}{||g||^{\frac{q}{p}}_{q}} = ||g||^{q(1-\frac{1}{p})}_{q} = ||g||_{q}$$
$$\Rightarrow ||\Lambda_{g}|| \geqslant ||g||_{q}$$

接下来考虑 p=1, 此时需假设 μ 是 σ -有限的, 不妨设 μ 有限, 由

$$|\Lambda_g(f)| \leqslant ||g||_{\infty} ||f||_1$$

得 $\Lambda_g \in (L^1)^*$ 且 $||\Lambda_g|| \leqslant ||g||_{\infty}$,令

$$E_k \stackrel{\text{def}}{=} \{t \in \Omega : |g(t)| > ||\Lambda_g|| + \frac{1}{k}\}, f_k \stackrel{\text{def}}{=} \chi_{E_k} \cdot \operatorname{sgn}(g)$$

$$\Rightarrow ||f_k||_1 = \int_{E_k} |\operatorname{sgn}(g)| d\mu \leqslant \mu(E_k)$$

$$\Rightarrow ||\Lambda_g||\mu(E_k) \geqslant ||\Lambda_g|| \geqslant |\Lambda_g(f_k)| = \int \chi_{E_k} \operatorname{sgn}(g) g d\mu = \int_{E_k} |g| d\mu \geqslant (||\Lambda_g|| + \frac{1}{k}) \mu(E_k)$$

$$\Rightarrow \mu(E_k) = 0, \forall k$$

$$\Rightarrow \{t \in \Omega : |g(t)| > ||\Lambda_g||\} = \bigcup_{k=1}^{\infty} E_k$$

$$\Rightarrow ||g||_{\infty} \leqslant ||\Lambda_g||$$

Proof of 4°: 以下假设 $\Omega = [0,1]$, $\mu = m$,

引理 2.8.1

设 $g \in L^1$,如果存在C > 0满足

$$|\int fg| \leqslant C||f||_p, \forall f \in L^{\infty}$$

则 $g \in L^q$ 且 $||g||_q \leqslant C$.

证明

后面也太复杂了,不抄了。

那么, $(L^{\infty})^*$ 是 L^1 吗?答案是否定的。

定理 2.8.2

$$L^1 \subsetneq (L^\infty)^*$$
.

证明 对于 $\forall g \in L^1$,

$$|\Lambda_g(f)| = |\int fg| \le ||g||_1 ||f||_{\infty} \Rightarrow \Lambda_g \in (L^{\infty})^* \Rightarrow L^1 \subset (L^{\infty})^*$$

注意到 C[0,1] 是 L^{∞} 的闭子空间,取 $f_0 \in L^{\infty} \setminus C[0,1]$,于是 $d \stackrel{\mathrm{def}}{=} \mathrm{dist}(f_0,C[0,1]) > 0$,由 HBT 可知存在 $\Lambda \in \mathcal{C}[0,1]$

 $(L^{\infty})^*, ||\Lambda|| = 1 \mathbb{H}$

$$\Lambda(C[0,1]) = \{0\}, \Lambda(f_0) = d$$

假设存在 $g \in L^1$ 满足 $\Lambda = \Lambda_g$, 即

$$\Lambda(f) = \int fg, \forall f \in L^{\infty}$$

那么对于 $f \in C[0,1]$, $\Lambda(f) = \int fg = 0$, 取 $\{f_n\}_{n=1}^{\infty} \subset C[0,1]$, 满足

$$||f_n - \operatorname{sgn}(g)||_1 \to 0 \text{ as } n \to \infty$$

于是有子列 $f_{n_k} \stackrel{\text{a.e.}}{\to} \operatorname{sgn}(g)$, 由 MCT 得

$$\int |g| = \lim_{k \to \infty} \int f_{n_k} g = 0 \Rightarrow g \stackrel{\text{a.e.}}{=} 0 \Rightarrow \Lambda = \Lambda_g = 0$$

这与 $\Lambda(f_0) = d > 0$ 矛盾。

接下来讨论 C[a,b] 的对偶空间。

定义 2.8.2

对 $f:[a,b]\to\mathbb{C}$ 和 [a,b] 的划分 P, 定义

$$V(f, P) \stackrel{\text{def}}{=} \sum_{k=1}^{N} |f(t_k) - f(t_{k-1})|$$

如果 $\sup_{P} V(f,P) < \infty$, 则称 f 是有界变差的。

$$V_a^b(f) \stackrel{\text{def}}{=} \sup_P V(f, P)$$

称为 f 在 [a,b] 上的全变差。

$$BV[a,b] \stackrel{\text{def}}{=} \{ [a,b] \bot$$
的有界变差函数全体}

我们进一步给出 BV[a,b] 上的范数:

$$||f||_{BV} \stackrel{\text{def}}{=} |f(a)| + V_a^b(f)$$

那么 $(BV[a,b],||\cdot||_{BV})$ 是 Banach 空间,定义:

$$BV_0[a,b] \stackrel{\text{def}}{=} \{ f \in BV[a,b] : f \in (a,b) \ \bot$$
 方连续, $f(a) = 0 \}$

那么 $BV_0[a,b]$ 是 BV[a,b] 的闭子空间, 也是 Banach 空间。

定义 2.8.3 (Riemann-Stieltjes 积分)

设 f,g 是 [a,b] 上实值函数, $I \in \mathbb{R}$, 对 [a,b] 进行划分:

$$\sigma(\Delta, \xi) \stackrel{\text{def}}{=} \sum_{k=1}^{n} f(\xi_k) [g(t_k) - g(t_{k-1})]$$

其中

$$\xi = \{\xi_k\}_{k=1}^{\infty}, \xi_k \in [t_{k-1}, t_k]$$

如果 $\sigma(\Delta, \xi) \to I$ as $||\Delta|| \to 0$,则记

$$I = \int_{a}^{b} f \mathrm{d}g$$

称为 f 关于 g 的 Riemann-Stieltjes 积分,简记为 R-S 积分。

定理 2.8.3 (Riesz)

 $C[a,b]^* = BV_0[a,b].$

思路: $\forall g \in BV_0[a,b]$, 取

$$\Lambda_g(f) \stackrel{\text{def}}{=} \int_a^b f \, \mathrm{d}g, f \in C[a, b]$$

证明 $g \mapsto \Lambda_q$ 是线性等距同构。

 \Diamond

2.8.2 自反空间

定义 2.8.4

 $X^{**} = \mathcal{L}(X^*, \mathbb{K})$,称为 X 的二次对偶或第二共轭空间。

设 $x \in X$, 定义映射:

$$x^{**}: X^* \to \mathbb{K}, f \mapsto f(x)$$

则

$$|x^{**}(f)| = |f(x)| \le ||x|| \cdot ||f||, \forall f \in X^*$$

因此 $x^{**} \in X^{**}$ 且 $||x^{**}|| \leq ||x||$. 另一方面由推论 2.7.1,存在 $f_0 \in X^*$ with $||f_0|| = 1$ s.t. $f_0(x) = ||x||$,即

$$x^{**}(f_0) = f_0(x) = ||x||$$

于是 $||x^{**}|| \ge |x^{**}(f_0)|/||f_0|| = ||x||$, 于是映射

$$i: X \to X^{**}, x \mapsto x^{**}$$

是线性等距嵌入, 称为 X 到 X^{**} 的自然映射或自然嵌入 (canonical map).

定义 2.8.5

如果自然映射 i 是满射,从而是线性等距同构,则称 X 自反,记作 $X^{**}=X$.

例 2.8.1.

不完备的空间一定不自反、有限维赋范空间一定自反(习题 2.5.4)。

例 2.8.2.

Hilbert 空间自反。(作业)

证明 由 Riesz 表示定理,有等距同构 $\varphi: H \to H^*, x \mapsto \langle \cdot, x \rangle$. φ 诱导了 H^* 上的内积 $\langle f, g \rangle = \overline{\langle \varphi^{-1}(f), \varphi^{-1}(g) \rangle}$ 。 对偶空间自然完备,因此 H^* 也是 Hilbert 空间,由 Riesz 表示定理,又有等距同构 $\Phi: H^* \to H^{**}, f \mapsto \overline{\langle \varphi^{-1}(\cdot), \varphi^{-1}(f) \rangle}$.

$$\Phi \circ \varphi(x)(f) = \overline{\langle \varphi^{-1}(f), x \rangle} = \langle x, \varphi^{-1}(f) \rangle = f(x), \forall x \in H, f \in H^*$$

故 $\Phi \circ \varphi$ 就是 $H \to H^{**}$ 的自然映射 ϕ , 因此 ϕ 也是等距同构, 从而 H 自反。

定理 2.8.4

当 $1 时,<math>L^p$ 自反。

证明 即证明: $\forall \Lambda \in (L^p)^{**}$, 存在 $u \in L^p$ 使得

$$\Lambda(f) = f(u), \forall f \in (L^p)^*$$

这是因为

$$i: L^p \to (L^p)^{**} \not \exists k \in (L^p)^{**}, \exists u \in L^p \text{ s.t. } u^{**} = \Lambda(\Lambda(f) = u^{**}(f) = f(u))$$

回顾定理 2.8.1,

$$J: L^q \to (L^p)^*, v \mapsto f_v$$

是线性等距同构,这里 $f_v(u) = \int uv$. 取

$$\varphi \stackrel{\mathrm{def}}{=} \Lambda \circ J$$

则 $\varphi \in (L^q)^* = L^p$,存在唯一 $u \in L^p$ 满足 $\varphi(v) = \int uv, \forall v \in L^q$. 那么对于 $\forall f \in (L^p)^*$,令 $v_f \stackrel{\text{def}}{=} J^{-1}(f)$

那么

$$\Lambda(f) = \Lambda(J(v_f)) = \varphi(v_f) = \int v_f u = f(u)$$

定理 2.8.5

C[a,b] 不自反。

 \sim

证明 假设自反,则 $\forall \Lambda \in C[a,b]^{**}$,存在 $u \in C[a,b]$ 满足

$$\Lambda(f) = f(u), \forall f \in C[a, b]^* \tag{*}$$

根据 $C[a,b]^* = BV_0[a,b]$,

$$\exists ! v_f \in BV_0[a, b] \text{ s.t. } f(u) = \int_a^b u dv_f, \forall u \in C[a, b] \text{ and } ||v_f||_{BV} = ||f||$$

 $\diamond c = \frac{a+b}{2}$,定义

$$F_c: C[a,b]^* \to \mathbb{R}, f \mapsto v_f(c+0) - v_f(c-0)$$

那么

$$|F_c(f)| \le V_a^b(v_f) = ||v_f||_{BV} = ||f|| \Rightarrow F_c \in C[a, b]^{**}$$

根据 (*),存在 $u_c \in C[a,b]$ 满足

$$F_c(f) = f(u_c) = \int_a^b u_c dv_f, \forall f \in C[a, b]^*$$

令

$$v(f) \stackrel{\text{def}}{=} \int_{a}^{t} u_{c}(s) ds$$

那么 $v \in BV_0[a,b]$, 令 $f_v \stackrel{\text{def}}{=} J(v)$, 这里

$$J: BV_0[a,b] \to C[a,b]^*, v \mapsto f_v, f_v(u) = \int_a^b u dv_f$$

 f_v 对应的 $v_{f_v} = v$ 连续,于是 $F_c(f_v) = 0$,所以

$$0 = F_c(f_v) = \int_a^b u_c dv = \int_a^b u_c^2 dt$$

所以 $u_c=0$, 进而 $F_c=0$, 矛盾。

定理 2.8.6 (Banach)

 X^* 可分 \Rightarrow X 可分。逆命题不成立,例如 L^1 可分但 L^∞ 不可分。

 \Diamond

 \Diamond

证明 Step1: 证明 X^* 中单位球面 S_1^* 可分。 X^* 可分,取 $\{f_n\}_{n=1}^{\infty}$ 为其稠密子集,不妨 $f_n \neq 0$,令

$$g_n \stackrel{\text{def}}{=} \frac{f_n}{||f_n||} \in S_1^*$$

那么对于 $\forall g \in S_1^*$, 存在 $f_{n_k} \to g$.

$$\Rightarrow ||g - g_{n_k}|| \le ||g - f_{n_k}|| + ||f_{n_k} - g_{n_k}||$$

$$= ||g - f_{n_k}|| + ||(||f_{n_k}|| - 1) \frac{f_{n_k}}{||f_{n_k}||}||$$

$$= ||g - f_{n_k}|| + |||f_{n_k}|| + 1| \to 0 \text{ as } k \to \infty$$

Step2: 证明存在 $\{x_n\}_{n=1}^{\infty} \subset X$, 其中 $\forall ||x_n|| = 1$, 且

$$\overline{\operatorname{span}\{x_n\}_{n=1}^{\infty}} = X$$

注意到

$$||g_n|| = \sup_{x \in X, ||x||=1} |g_n(x)| = 1$$

所以存在 $\{x_n\}_{n=1}^{\infty} \subset X$,其中 $\forall ||x_n|| = 1$,且 $|g_n(x_n)| > \frac{1}{2}$. 令 $M \stackrel{\text{def}}{=} \operatorname{span}\{x_n\}_{n=1}^{\infty}$,假设 $\overline{M} \neq X$,取 $x_0 \in X \setminus \overline{M}$,由 HBT 可得

$$\exists f \in X^*, ||f|| = 1 \text{ s.t. } f(\overline{M}) = \{0\} \text{ and } f(x_0) = \text{dist}(x_0, \overline{M}) > 0$$

于是

$$||g_n - f|| = \sup_{x \in X, ||x|| = 1} |g_n(x) - f(x)| > |g_n(x_n) - f(x_n)| = |g_n(x_n)| > \frac{1}{2}$$

这与Step1矛盾。

Step3: 证明 $\overline{\operatorname{span}^{\mathbb{Q}}\{x_n\}_{n=1}^{\infty}} = X$.

定理 2.8.7

当
$$1 \leqslant p < \infty$$
, $L^p[0,1]$ 可分。

证明

$$\left\{\sum_{k=0}^{2^n-1} r_k \chi_{\left[\frac{k}{2^n},\frac{k+1}{2^n}\right)} : r_k \in \mathbb{Q}, n \in \mathbb{N}_0\right\}$$

是 $L^p[0,1]$ 的可数稠密子集。

定理 2.8.8

 L^{∞} 不可分。

证明 假设存在稠密子集 $\{f_n\}_{n=1}^{\infty}$,

$$\forall t \in (0,1), \exists f_{n_t} \in B(\chi_{[0,t]}, \frac{1}{3})$$

而 $t \neq s$ 时, $\operatorname{dist}(\chi_{[0,t]},\chi_{[0,s]}) = 1$,因此不同的 $B(\chi_{[0,t]},\frac{1}{3})$ 不相交,所以 $\varphi:(0,1)\to\mathbb{N}, t\mapsto n_t$ 是单射,于是 (0,1) 可数,矛盾。

定理 2.8.9

 L^1 不自反。

证明 $(L^1)^* = L^\infty$, 假设 L^1 自反, 则 $(L^\infty)^* \cong L^1$, L^1 可分 $\Rightarrow L^\infty$ 可分, 矛盾。

 \Diamond

定理 2.8.10 (共轭算子)

X,Y 是赋范空间, $T \in \mathcal{L}(X,Y) \Rightarrow \exists T^* \in \mathcal{L}(Y^*,X^*)$ 使得

$$(T^*f)(x) = f(Tx), \forall f \in Y^*, \forall x \in X$$

 T^* 称为 T 的共轭算子。进而映射 *: $\mathcal{L}(X,Y) \to \mathcal{L}(Y^*,X^*), T \mapsto T^*$ 是一个线性等距嵌入。

证明 设 $f \in Y^*$, 定义映射:

$$\Lambda_f: X \to \mathbb{K}, x \mapsto f(Tx)$$

则

$$|\Lambda_f(x)| = |f(Tx)| \le ||f|| \cdot ||Tx|| \le ||f|| \cdot ||T|| \cdot ||x||, \forall x \in X$$

于是 $\Lambda_f \in X^*$, 且 $||\Lambda_f|| \leq ||f|| \cdot ||T||$, 定义映射

$$T^*: Y^* \to X^*, f \mapsto \Lambda_f$$

于是 T^* 线性而且 $||T^*f|| = ||\Lambda_f|| \le ||T|| \cdot ||f||$,从而 T^* 有界且 $||T^*|| \le ||T||$. 对于 $\forall x \in X$,不妨 $x \ne 0$,由 HBT,

$$\exists f \in Y^*, ||f|| = 1, f(Tx) = ||Tx||$$

于是

$$||Tx|| = |f(Tx)| = |(T^*f)(x)| \le ||T^*f|| \cdot ||x|| \le ||T^*|| \cdot ||f|| \cdot ||x|| = ||T^*|| \cdot ||x||$$

所以 $||T|| \leq ||T^*||$.

例 2.8.3.

 $T: \mathbb{K}^n \to \mathbb{K}^m, x \mapsto Ax \text{ with } A = (a_{ij})_{m \times n}, \ T^*: \mathbb{K}^m \to \mathbb{K}^n, y \mapsto \overline{A^T}y.$

定理 2.8.11 (pettis)

自反空间的闭子空间自反。

证明 设X自反,Y是其闭子空间,只需证明:

$$\forall a \in Y^{**}, \exists y \in Y \text{ s.t. } a(f) = f(y), \forall f \in Y^*$$

定义映射

$$T: X^* \to Y^*, f \mapsto f|_Y$$

则 T 是有界线性映射,于是取 $T^* \in \mathcal{L}(Y^{**}, X^{**})$ 满足

$$(T^*a)(f) = a(Tf), \forall f \in X^*$$

X 自反,所以自然映射 i_X 是满射, $T^*a \in X^{**} \Rightarrow \exists y \in X \text{ s.t. } T^*a = y^{**}$,所以

$$(T^*a)(f) = y^{**}(f) = f(y), \forall f \in X^*$$

下面证明 $y \in Y$,假设不然,则存在 $\tilde{f} \in X^*$ 使得 $\tilde{f}(Y) = 0$,

$$T(\tilde{f}) = \tilde{f}|_{Y} = 0 \Rightarrow \tilde{f}(y) = (T^*a)(\tilde{f}) = a(T(\tilde{f})) = 0$$

这与 $\tilde{f}(y) = \operatorname{dist}(y, Y) > 0$ 矛盾。

最后说明: $a(f) = f(y), \forall f \in Y^*$. 对于 $\forall f \in Y^*$, 由 HBT, 存在 $F \in X^*$ 使得 f = TF, 所以

$$a(f) = a(TF) = (T^*a)(F) = F(y) = f(y)$$

2.8.3 弱收敛

定义 2.8.6

X 是赋范空间, 称 $\{x_n\}_{n=1}^{\infty} \subset X$ 弱收敛于 $x_0 \in X$ 是指:

$$f(x_n) \to f(x_0), \forall f \in X^*$$

记为 $x_n \stackrel{w}{\to} x_0$ 或者 $x_n \to x_0$, 称 x_0 为 $\{x_n\}_{n=1}^{\infty}$ 的弱极限。

依范数拓扑收敛即为强收敛。

命题 2.8.1

强收敛⇒弱收敛。

证明

$$||x_n - x_0|| \to 0 \Rightarrow |f(x_n) - f(x_0)| = |f(x_n - x_0)| \le ||f|| \cdot ||x_n - x_0|| \to 0, \forall f \in X^*$$

例 2.8.4.

 $X = L^2(\Pi), \ e_k(t) \stackrel{\text{def}}{=} e^{-2\pi i kt}, k \in \mathbb{Z}, \ \mathbb{M} \ e_k \stackrel{w}{\to} 0 \text{ as } |k| \to \infty. \ \mathbb{M}$:

$$\forall f \in X^*, \exists v \in L^2(\Pi) \text{ s.t. } f(u) = \int_{\Pi} uv, u \in L^2(\Pi)$$

因此

$$f(e_k) = \int_0^1 v(t) e^{-2\pi ikt} dt = \hat{v}(k) \to 0 \text{ as } |k| \to \infty$$

定理 2.8.12

 $\dim X < \infty \Rightarrow$ 弱收敛与强收敛等价。

证明 设 $\dim(X) = m$, 设 $\{e_1, \dots, e_m\}$ 是 X 的一组基,由 HBT(习题 2.4.7)知存在对偶基 $f_1, \dots, f_m \in X^*$ 满足

$$f_k(e_j) = \delta_{kj}, 1 \leqslant k, j \leqslant m$$

设 $x_n \stackrel{w}{\rightarrow} x_0$, 即

$$\sum_{j=1}^{m} \alpha_j^{(n)} e_j \stackrel{w}{\to} \sum_{j=1}^{m} \alpha_j^{(0)} e_j$$

于是

$$f_j(x_n) \to f_k(x_0), k = 1, 2, \cdots, m$$

因此 $||x_n - x_0||_{\infty} \to 0$ with $||x||_{\infty} = \max_{1 \leqslant k \leqslant m} |\alpha_i|$, 由有限维空间范数等价可得 $||x_n - x_0|| \to 0$.

定理 2.8.13 (Mazur)

$$x_n \xrightarrow{w} x_0 \Rightarrow x_0 \in \overline{\operatorname{conv}(\{x_n\}_{n=1}^{\infty})}$$

证明 $\diamond C = \overline{\operatorname{conv}(\{x_n\}_{n=1}^{\infty})}$,假设 $x_0 \notin C$,则由 Ascoli,存在 $f \in X^*, \exists \alpha \in \mathbb{R}$ 使得

$$\sup_{x \in C} f(x) < \alpha < f(x_0)$$

定义 2.8.7

$$f_n(x) \to f(x), \forall x \in X$$

记作 $f_n \stackrel{w^*}{\to} f$.

 X^* 中,强收敛 \Rightarrow 弱收敛 \Rightarrow 弱*收敛。

$$f_n \xrightarrow{w} f \stackrel{\text{def}}{\Leftrightarrow} \Lambda(f_n) \to \Lambda(f), \forall \Lambda \in X^{**}$$
$$\Rightarrow x^{**}(f_n) \to x^{**}(f), \forall x \in X$$
$$\Leftrightarrow f_n(x) \to f(x), \forall x \in X$$
$$\stackrel{\text{def}}{\Leftrightarrow} f_n \xrightarrow{w^*} f$$

命题 2.8.2

X 自反 $\Rightarrow X^*$ 中弱 * 收敛与弱收敛等价。

定理 2.8.14

X 是度量空间,

$$x_n \xrightarrow{w} x_n \Leftrightarrow \begin{cases} \sup_{n} ||x_n|| < \infty \\ \exists \mathcal{F} \subset^{\text{dense}} X^* \text{ s.t. } f(x_n) \to f(x_0), \forall f \in \mathcal{F} \end{cases}$$

证明

$$x_{n} \xrightarrow{w} x_{0} \Leftrightarrow f(x_{n}) \to f(x_{0}), \forall f \in X^{*}$$

$$\Leftrightarrow x_{n}^{**}(f) \to x_{0}^{**}(f), \forall f \in X^{*}$$

$$\underset{\Rightarrow}{\text{B-S}} \begin{cases} \sup_{n} ||x_{n}^{**}|| < \infty \\ \exists \mathcal{F} \overset{\text{dense}}{\subset} X^{*} \text{ s.t. } x_{n}^{**}(f) \to x_{0}^{**}(f), \forall f \in \mathcal{F} \end{cases}$$

定理 2.8.15

X 是 Banach 空间,则

$$f_k \stackrel{w^*}{\to} f \Leftrightarrow \begin{cases} \sup_n ||f_n|| < \infty \\ \exists M \subset^{\text{dense}} X \text{ s.t. } f_n(x) \to f(x), \forall x \in M \end{cases}$$

定义 2.8.8

称 $M\subset X$ 弱列紧是指 M 中任一序列均有弱收敛子列; 称 $F\subset X^*$ 弱 * 列紧是指 F 中任一序列均有 弱 * 收敛子列。

定理 2.8.16 (可分 Banach-Alaoglu)

$$X$$
可分 $\Rightarrow X^*$ 中有界集弱*列紧。

证明 设 $\{f_n\}_{n=1}^{\infty} \subset X^*$ 有界,记 $C = \sup ||f_n||, X$ 可分 $\Rightarrow \exists \{x_n\}_{n=1}^{\infty} \subset X.$

对于 $\forall m, \{f_n(x_m)\}_{n=1}^{\infty}$ 是有界数列,有收敛子列,由对角线法, $\{f_n\}_{n=1}^{\infty}$ 有子列 $\{f_{n_k}\}_{k=1}^{\infty}$ 使得 $\{f_{n_k}(x_m)\}_{k=1}^{\infty}$ 收敛,Claim:

$$\exists f \in X^* \text{ s.t. } f_{n_k} \stackrel{w^*}{\to} f$$

对于 $\forall x \in X, \forall \varepsilon > 0$,存在 $x_m \in \{x_n\}_{n=1}^{\infty}$ s.t. $||x - x_m|| < \frac{\varepsilon}{3C}$,于是

 $|f_{n_{k+p}}(x) - f_{n_k}(x)| \le |f_{n_{k+p}}(x) - f_{n_{k+p}}(x_m)| + |f_{n_{k+p}}(x_m) - f_{n_k}(x_m)| + |f_{n_k}(x_m) - f_{n_k}(x)| < \varepsilon, k$ 充分大, $\forall p$ 第一项 $\le C||x - x_m|| < \frac{\varepsilon}{3}$,第二项在 k 充分大时 $< \frac{\varepsilon}{3}$,第三项 $\le C||x_m - x|| < \frac{\varepsilon}{3}$.

所以
$$f(x) \stackrel{\text{def}}{=} \lim_{k \to \infty} f_{n_k}(x)$$
 存在,且

$$|f(x)| \leq \sup_{n} |f_n(x)| \leq \sup_{n} ||f_n|| \cdot ||x||$$

所以 $f \in X^*$ 且 $f_{n_k} \stackrel{w^*}{\to} f$.

定理 2.8.17 (Alaoglu)

X 是赋范空间, X^* 中单位闭球是弱*紧的。

 \sim

定理 2.8.18 (Eberlein-Smulian)

X 是自反空间,则

- 1. X 中有界集弱列紧;
- 2. X 中闭单位球弱自列紧。

证明 对于 1,只需证明: $\forall R, \overline{B(0,R)}$ 弱列紧。令 $Y \stackrel{\text{def}}{=} \overline{\text{span}\{x_n\}_{n=1}^{\infty}}$,为闭子空间,由定理 2.8.11(Pettis) 知 Y 自反,同时因为 Y 可分,所以 $Y^{**} = Y$ 可分,由定理 2.8.6(Banach) 知 Y^* 可分,再由定理 2.8.16(可分 B-A) 知 Y^{**} 中有界集弱 * 列紧,所以

$$\begin{aligned} ||x_n^{**}|| &\leqslant R \Rightarrow \{x_n^{**}\}_{n=1}^{\infty} \not \exists \ \exists \ \exists \ \exists \ x_{n_k}^{**} \xrightarrow{w^*} x_0^{**} \in Y^{**} \\ &\Rightarrow \forall f \in Y^*, f(x_{n_k}) = x_{n_k}^{**}(f) \to x_0^{**}(f) = f(x_0) \\ &\Rightarrow \forall F \in X^*, F(x_{n_k}) = (F|_Y)(x_{n_k}) \to (F|_Y)(x_0) = F(x_0) \\ &\Rightarrow x_{n_k} \xrightarrow{w} x_0 \end{aligned}$$

对于 2,

$$x_{n_k} \stackrel{w}{\rightarrow} \stackrel{\text{Ex 2.5.4}}{\Rightarrow} ||x_0|| \leqslant \liminf_{k \to \infty} ||x_{n_k}|| \leqslant R$$

第3章 湯谱理论

≫ 3.1 谱

3.1.1 谱的定义与例子

定义 3.1.1

X 是复 Banach 空间, 在 $\mathcal{L}(X)$ 上引入乘法:

$$(AB)x \stackrel{\mathrm{def}}{=} A(Bx)$$

则满足

- 1. 结合律: (AB)C = A(BC).
- 2. 分配律: (A+B)C = AB + AC, A(B+C) = AB + AC.
- 3. $\lambda(AB) = (\lambda A)B = A(\lambda B)$.
- **4**. AI = IA = A.
- 5. $||AB|| \leq ||A|| \cdot ||B||$

可得 $\mathcal{L}(X)$ 是一个 Banach 代数。

定义 3.1.2

称 $A \in \mathcal{L}(X)$ 可逆是指: 存在 $B \in \mathcal{L}(X)$ 使得

$$AB = BA = I$$

定义 3.1.3

$$\sigma(A) \stackrel{\mathrm{def}}{=} \{ \lambda \in \mathbb{C} : \lambda I - A$$
不可逆}

称为 A 的谱 (spectrum), $\sigma(A)$ 中的元素称为谱点。

$$\rho(A) \stackrel{\text{def}}{=} \{ \lambda \in \mathbb{C} : \lambda I - A$$
可逆 $\} = \mathbb{C} \backslash \sigma(A)$

称为 A 的预解集 (resolvent set), $\rho(A)$ 中元素称为正则值。

定义 3.1.4

如果 $\lambda \in C$ 使得 $\operatorname{Ker}(\lambda I - A) \neq \{0\}$, 即

$$\exists 0 \neq x \in X \text{ s.t. } Ax = \lambda x$$

则称 λ 为A的特征值,

$$\sigma_p(A) \stackrel{\text{def}}{=} \{A$$
的特征值}

称为 A 的点谱。

例 3.1.1.

有限维线性空间上的线性映射 $A \in \mathcal{L}(\mathbb{C}^n) \Rightarrow \sigma(A) = \sigma_p(A) \neq \varphi$.

例 3.1.2.

设

$$A: C[0,1] \to C[0,1], u(t) \mapsto t \cdot u(t)$$

A 有特征值吗?

解答: Show answer

$$(\lambda I - A)u = 0 \Leftrightarrow \lambda u(t) - tu(t) = 0, \forall t \in [0, 1]$$
$$\Leftrightarrow u(t) = 0, \forall t \in [0, 1]$$

无特征值。

定义 3.1.5

对于 $\lambda \in \mathbb{C}$,满足 $\mathrm{Ker}(\lambda I - A) \neq \{0\}$,则有以下分类:

- 1. $\operatorname{Ran}(\lambda I A) \neq X$, $\operatorname{Ran}(\lambda I A) \stackrel{\text{dense}}{\subset} X$, 则称 λ 为 A 的连续谱点,其全体记为 $\sigma_c(A)$,称为 A 的连续谱。
- 2. $\overline{\text{Ran}(\lambda I A)} \neq X$, 则称 λ 为 A 的剩余谱点, 其全体 $\sigma_r(A)$ 称为 A 的剩余谱。
- 3. $\operatorname{Ran}(\lambda I A) = X$, 此时 $\lambda \in \rho(A)$.

例 3.1.3.

设

$$A: C[0,1] \to C[0,1], u(t) \mapsto t \cdot u(t)$$

则 $\sigma(A) = \sigma_r(A) = [0,1].$

证明 先证明: $\mathbb{C}\setminus[0,1]\subset\rho(A)$. 设 $\lambda\in\mathbb{C}\setminus[0,1]$, 令

$$T: C[0,1] \to C[0,1], u(t) \mapsto \frac{1}{\lambda - t} u(t)$$

于是 $(\lambda I - A)T = I = T(\lambda I - A)$, 且

$$||Tu||_{\infty} \leqslant \left[\max_{t \in [0,1]} \frac{1}{|\lambda - t|}\right] ||u||_{\infty}$$

所以 $(\lambda I - A)^{-1} = T \in \mathcal{L}(X) \Rightarrow \lambda \in \rho(A)$.

再证明 $[0,1] \subset \sigma_r(A)$. 设 $\lambda \in [0,1]$, 对于 $\forall v \in \text{Ran}(\lambda I - A)$, 存在 $u \in C[0,1]$ 满足

$$(\lambda - t)u(t) = v(t), t \in [0, 1]$$

3.1 谱

 \Diamond

于是 $v(\lambda) = 0 \Rightarrow 1 \notin \overline{\operatorname{Ran}(\lambda I - A)} \Rightarrow \overline{\operatorname{Ran}(\lambda I - A)} \neq X.$ 最后, $[0,1] \subset \sigma_r(A) \subset \sigma(A) \subset [0,1] \Rightarrow \sigma(A) = \sigma_r(A) = [0,1].$

例 3.1.4.

设

$$A: L^{2}[0,1] \to L^{2}[0,1], u(t) \mapsto t \cdot u(t)$$

则
$$\sigma(A) = \sigma_c(A) = [0, 1]$$
.

证明 与上例同理可证: $\mathbb{C}\setminus[0,1]\subset\rho(A)$.

再证明:对于 $\forall \lambda \in [0,1]$, $\operatorname{Ran}(\lambda I - A) \neq X$. $\operatorname{Claim}: 1 \notin (\lambda I - A)$,否则存在 $u \in L^2$ s.t. $1 = (\lambda - t)u(t), t \in [0,1]$,从而

$$\frac{1}{\lambda - t} \in u(t) \in L^2[0, 1]$$

矛盾。

最后证明: $\forall \lambda \in [0,1], \operatorname{Ran}(\lambda I - A) \overset{\text{dense}}{\subset} X$, 对于 $\forall v \in L^2, \forall \varepsilon > 0$, 定义

$$u_{\varepsilon}(t) \stackrel{\text{def}}{=} \frac{1}{\lambda - t} v(t) \cdot \chi_{[0,1] \setminus (\lambda - \varepsilon, \lambda + \varepsilon)}(t)$$

于是 $u_{\varepsilon} \in L^2$ 且

$$(\lambda I - A)u_{\varepsilon} = \chi_{[0,1]\setminus(\lambda-\varepsilon,\lambda+\varepsilon)}v \xrightarrow{L^2} v \text{ as } \varepsilon \to 0^+$$

由积分的绝对连续性, $v \in \overline{\text{Ran}(\lambda I - A)}$.

3.1.2 谱的基本性质

定义 3.1.6

算子值函数:

$$R_{\lambda}(A): \rho(A) \to \mathcal{L}(X), \lambda \mapsto (\lambda I - A)^{-1}$$

称为 A 的预解式 (resolvent).

引理 3.1.1

设 $T \in \mathcal{L}(X)$, $||T|| \leqslant 1$, 则

- 1. $(I-T)^{-1} \in \mathcal{L}(X)$.
- 2. $(I-T)^{-1} = \sum_{n=1}^{\infty} T^n$.(Von Neumann 级数)
- 3. $||(I-T)^{-1}|| \le (1-||T||)^{-1}$.

证明

1. 令

$$S_n \stackrel{\text{def}}{=} \sum_{k=1}^n T^k$$

则

$$||S_{n+p} - S_n|| = \left| \left| \sum_{k=n+1}^{n+p} T^k \right| \right| \le \sum_{k=n+1}^{n+p} ||T||^k < \frac{||T||^{k+1}}{1 - ||T||}$$

 $\mathcal{L}(X)$ 完备 $\Rightarrow \exists S \in \mathcal{L}(X)$ 使得 $||S_n - S|| \to 0$. Claim:

$$S(I-T) = (I-T)S = I$$

承第3章 谱理论 3.1 谱

注意到

$$||S_n(I-T) - I|| = ||I - T^{n+1} - I|| \le ||T||^{n+1} \to 0 \text{ as } n \to \infty$$

$$\Rightarrow ||S(I-T) - I|| \le ||S(I-T) - S_n(I-T)|| + ||S_n(I-T) - I||$$

$$\le ||S - S_n|| \cdot ||I - T|| + ||S_n(I-T) - I|| \to 0$$

从而 S(I-T) = I, 同理 (I-T)S = I.

- 2. $||S_n S|| \to 0 \Rightarrow (I T)^{-1} = \sum_{k=0}^{\infty} T^k$.
- 3. $||S|| \leq \sup ||S_n||$.

定理 3.1.1

 $\rho(A)$ 是开集, 进而 $\sigma(A)$ 是闭集。

 \bigcirc

证明 设 $\lambda_0 \in \rho(A)$,

$$\lambda I - A = \lambda_0 I - A + (\lambda - \lambda_0) I = (\lambda_0 I - A) [I + (\lambda - \lambda_0)(\lambda_0 I - A)^{-1}]$$

由引理 3.1.1, 当 $|\lambda - \lambda_0| < ||(\lambda_0 I - A)^{-1}||^{-1}$ 时,

$$B \stackrel{\text{def}}{=} [I + (\lambda - \lambda_0)(\lambda_0 I - A)^{-1}]^{-1} \in \mathcal{L}(X)$$

于是

$$(\lambda I - A)^{-1} = B \cdot R_{\lambda_0}(A) \in \mathcal{L}(X) \Rightarrow \lambda \in \rho(A) \Rightarrow \mathbb{D}(\lambda_0, \frac{1}{||(\lambda_0 I - A)^{-1}||}) \subset \rho(A)$$

命题 3.1.1

 $A \in \mathcal{L}(X) \Rightarrow \sigma(A) \subset \overline{\mathbb{D}(0, ||A||)}.$

证明 即证明: $\forall \lambda \in \mathbb{C}$ with $|\lambda| > ||A||, (\lambda I - A)^{-1} \in \mathcal{L}(X)$,

$$\begin{split} |\lambda| > ||A|| \Rightarrow \left| \left| \frac{A}{\lambda} \right| \right| < 1 \\ \stackrel{\text{Lem3.1.1}}{\Rightarrow} \left(I - \frac{A}{\lambda} \right)^{-1} \in \mathcal{L}(X) \\ \Leftrightarrow (\lambda I - A)^{-1} \in \mathcal{L}(X) \end{split}$$

推论 3.1.1

 $\sigma(A)$ 是 \mathbb{C} 中紧集。

 \Diamond

定义 3.1.7

X 是复 Banach 空间, Ω 是 \mathbb{C} 上的开集, 称算子值函数

$$T: \Omega \to \mathcal{L}(X), \lambda \mapsto T_{\lambda}$$

在 $\lambda_0 \in \Omega$ 全纯是指: 存在 λ_0 的邻域 U 使得

$$\forall \lambda \in U, \exists S_{\lambda} \in \mathcal{L}(X) \text{ s.t. } \left| \left| \frac{T_{\lambda + \delta} - T_{\lambda}}{\delta} - S_{\lambda} \right| \right| \to 0 \text{ as } \delta \to 0$$

定理 3.1.2

 $\lambda \mapsto R_{\lambda}(A)$ 是 $\rho(A)$ 上的算子值全纯函数。

 $^{\circ}$

证明

引理 3.1.2 (Resolvent Identity)

$$R_{\lambda}(A) - R_{\mu}(A) = (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A), \forall \lambda, \mu \in \rho(A)$$

证明

$$R_{\lambda}(A) = (\lambda I - A)^{-1} (\mu I - A)(\mu I - A)^{-1}$$

= $(\lambda I - A)^{-1} [\lambda I - A + (\mu - \lambda)I](\mu I - A)^{-1}$
= $R_{\mu}(A) + (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A)$

 \Diamond

Step1: 连续性。对于 $\forall \lambda_0 \in \rho(A)$,

$$\lambda I - A = (\lambda_0 I - A)[I + (\lambda - \lambda_0)(\lambda_0 I - A)^{-1}]$$

当 $|\lambda - \lambda_0| < ||(\lambda_0 I - A)^{-1}||^{-1}$ 时,

$$R_{\lambda}(A) = [I + (\lambda - \lambda_0)R_{\lambda_0}(A)]^{-1}R_{\lambda_0}(A)$$

于是当 $|\lambda - \lambda_0| < (2||R_{\lambda_0}(A)||)^{-1}$ 时,

$$||R_{\lambda}(A)|| \leq ||[I + (\lambda - \lambda_0)R_{\lambda_0}(A)]^{-1}|| \cdot ||R_{\lambda_0}(A)|| \leq \frac{1}{1 - \frac{1}{2}}||R_{\lambda_0}(A)|| = 2||R_{\lambda_0}(A)||$$

由引理 3.1.2 可知,

$$||R_{\lambda}(A) - R_{\lambda_0}(A)|| \le |\lambda - \lambda_0| \cdot ||R_{\lambda}(A)|| \cdot ||R_{\lambda_0}(A)|| \le 2||R_{\lambda_0}(A)||^2 \cdot |\lambda - \lambda_0||$$

Step2: 全纯性。

$$\left| \left| \frac{R_{\lambda}(A) - R_{\lambda_0}(A)}{\lambda - \lambda_0} + R_{\lambda_0}(A)^2 \right| \right| \stackrel{\text{R.I.}}{=} \left| \left| -R_{\lambda}(A)R_{\lambda_0}(A) + R_{\lambda_0}(A)^2 \right| \right|$$

$$\leq \left| \left| R_{\lambda_0}(A) \right| \left| \cdot \left| \left| R_{\lambda}(A) - R_{\lambda_0}(A) \right| \right| \to 0 \text{ as } \lambda \to \lambda_0$$

定理 3.1.3 (Gelfand, 谱不空定理)

$$0 \neq A \in \mathcal{L}(X) \Rightarrow \sigma(A) \neq \emptyset.$$

证明 假设 $\sigma(A) = \emptyset$, 则 $\rho(A) = \mathbb{C}$, 说明 $\lambda \mapsto R_{\lambda}(A)$ 时算子值整函数,于是

$$\forall f \in \mathcal{L}(X)^*, u_f(\lambda) \stackrel{\text{def}}{=} f(R_{\lambda}(A)), \lambda \in \mathbb{C}$$

是整函数,因为

$$\left| \frac{u_f(\lambda) - u_f(\lambda_0)}{\lambda - \lambda_0} + f(R_{\lambda_0}(A)^2) \right| \leqslant ||f|| \cdot \left| \left| \frac{R_{\lambda}(A) - R_{\lambda_0}(A)}{\lambda - \lambda_0} + R_{\lambda_0}(A)^2 \right| \right| \to 0 \text{ as } \lambda \to \lambda_0$$

另一方面, 当 $|\lambda| > 2||A||$ 时,

$$||R_{\lambda}(A)|| \le \frac{1}{|\lambda|} \frac{1}{1 - ||\frac{A}{\lambda}||} = \frac{1}{|\lambda| - ||A||} \le \frac{1}{||A||}$$

而 $\lambda \mapsto R_{\lambda}(A)$ 连续, 在 $\overline{\mathbb{D}(0,2||A||)}$ 上有界,于是存在 C > 0 使得 $||R_{\lambda}(A)|| \leq C, \forall \lambda \in \mathbb{C}$,

$$|u_f(\lambda)| \leq ||f|| \cdot ||R_{\lambda}(A)|| \leq C||f||, \forall \lambda \in \mathbb{C}$$

由 Liouvillle 定理, u_f 是常函数。从而

$$f(R_{\lambda}(A)) = f(R_{\mu}(A)), \forall \lambda, \mu \in \mathbb{C}, \forall f \in \mathcal{L}(X)^*$$

由 HBT, $R_{\lambda}(A) = R_{\mu}(A)$, 这与 R.I. 矛盾。

3.1 谱

定义 3.1.8

对于 $A \in \mathcal{L}(X)$,

$$r_{\sigma}(A) \stackrel{\text{def}}{=} \sup\{|\lambda| : \lambda \in \sigma(A)\}$$

称为 A 的谱半径。

定理 3.1.4 (Gelfand, 谱半径公式)

$$r_{\sigma}(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$$

证明 Step1: 先证明右式极限存在, 令 $r \stackrel{\mathrm{def}}{=} \inf_{n} ||A^{n}||^{\frac{1}{n}}$, 则

$$\liminf_{n \to \infty} ||A^n||^{\frac{1}{n}} \geqslant r$$

另一方面, $\forall \varepsilon > 0$, 存在 m 使得

$$||A^m||^{\frac{1}{m}} < r + \varepsilon$$

所以对于 $\forall n \in \mathbb{N}$, 有唯一分解 $n = p_n m + q_n$ with $0 \leq q_n < m$, 所以

$$||A^n||^{\frac{1}{n}} \leqslant ||A^{p_n m}||^{\frac{1}{n}} ||A^{q_n}||^{\frac{1}{n}} \leqslant ||A^m||^{\frac{q_n}{n}} ||A||^{\frac{q_n}{n}} < (r+\varepsilon)^{\frac{p_n m}{n}} ||A||^{\frac{q_n}{n}}$$

当 $n \to \infty$ 时, $\frac{q_n}{n} \to 0, \frac{p_n m}{n} \to 1$, 所以

$$\limsup_{n \to \infty} ||A^n||^{\frac{1}{n}} \leqslant r + \varepsilon$$

$$\limsup_{n \to \infty} ||A^n||^{\frac{1}{n}} \leqslant r$$

Step2: 证明 $r_{\sigma}(A) \leq \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$. 我们知道幂级数

$$\sum_{n=0}^{\infty} ||A^n|| z^n$$

的收敛半径为

$$r = \frac{1}{\lim_{n \to \infty} ||A^n||^{\frac{1}{n}}}$$

令 $z = \frac{1}{\lambda}$, 可知当 $|\lambda| > \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$ 时 (收敛圆内绝对收敛)

$$\sum_{n=0}^{\infty} \left| \left| \frac{A^n}{\lambda^{n+1}} \right| \right| < \infty$$

 $\mathcal{L}(X)$ 完备,根据引理 1.4.2,级数

$$\sum_{n=0}^{\infty} \left\| \frac{A^n}{\lambda^{n+1}} \right\|$$

也收敛。另一方面,

$$\left| \left| \left(\sum_{n=1}^{N} \frac{A^n}{\lambda^{n+1}} \right) (\lambda I - A) - I \right| \right| = \left| \left| I - \frac{A^{N+1}}{\lambda^{N+1} - I} \right| \right| \to 0$$

所以

$$\sum_{n=1}^{\infty} \frac{A^n}{\lambda^{n+1}} = (\lambda I - A)^{-1} = R_{\lambda}(A)$$

Step3: 证明 $r_{\sigma}(A) \geqslant \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$. 设 $|\lambda| > r_{\sigma}(A)$, 则 $\lambda \in \rho(A) \Rightarrow \forall f \in \mathcal{L}(X)^*, f(R_{\lambda}(A))$ 在 λ 全纯,从而

3.1 谱 $f(R_{\lambda}(A))$ 在圆环 $|\lambda| > r_{\sigma}(A)$ 内全纯, 故可展为收敛的 Laurent 级数。另一方面, 由 Step2, 当 $|\lambda| > \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$

时,

$$R_{\lambda}(A) = \sum_{n=0}^{\infty} \frac{A^n}{\lambda^{n+1}} \Rightarrow f(R_{\lambda}(A)) = \sum_{n=0}^{\infty} \frac{f(A^n)}{\lambda^{n+1}}$$

Laurent 展式唯一, 所以这一展式在 $|\lambda| > r_{\sigma}(A)$ 上也成立。在内部绝对收敛, 所以

$$\forall \varepsilon > 0, \sum_{n=1}^{\infty} \frac{|f(A^n)|}{(r_{\sigma}(A) + \varepsilon)^{n+1}} < \infty$$

记

$$T_n \stackrel{\text{def}}{=} \frac{A^n}{(r_{\sigma}(A) + \varepsilon)^{n+1}}$$

收敛级数通项有界, 所以

$$\sup_{n} |f(T_n)| < \infty, \forall f \in \mathcal{L}(X)^*$$

由 UBP, $C \stackrel{\text{def}}{=} \sup ||T_n|| < \infty$, 从而

$$||A^n|| \le C(r_{\sigma}(A) + \varepsilon)^{n+1} \Rightarrow \lim_{n \to \infty} ||A^n||^{\frac{1}{n}} \le r_{\sigma}(A) + \varepsilon$$

$$\sigma(A) = \sigma_p(A) \cup \sigma_c(A) \cup \sigma_r(A).$$

例 3.1.5.

右移位算子:

$$A: l^2 \to l^2, (x_1, x_2, \cdots) \mapsto (0, x_1, x_2, \cdots)$$

则
$$\sigma_p(A) = \emptyset$$
, $\sigma_c(A) = \partial \mathbb{D}$, $\sigma_r(A) = \mathbb{D}$.

证明 $||A||=1\Rightarrow \sigma(A)=\overline{\mathbb{D}}$, 先证明: $\sigma_p(A)=\varnothing$, 否则 $\exists \lambda\in\mathbb{C},\exists 0\neq x\in\ell^2$ 使得

$$(0, x_1, x_2, \cdots) = Ax = \lambda x = (\lambda x_1, \lambda x_2, \cdots)$$

 $\lambda = 0 \Rightarrow x = 0, \ \lambda \neq 0 \Rightarrow x_1 = 0 \Rightarrow x_2 = 0 \Rightarrow \cdots \Rightarrow x = 0. \ \text{\mathcal{T} ff.}$

再证明: $\mathbb{D} \subset \sigma_r(A)$, 设 $\lambda \in \mathbb{D}$, Claim : $\overline{\operatorname{Ran}(\lambda I - A)} \neq \ell^2$. 这等价于 $\operatorname{Ran}(\lambda I - A)^{\perp} \neq \{0\}$. 令 $z = (1, \overline{\lambda}, \overline{\lambda}^2, \cdots)$, 则

$$\langle (\lambda I - A)x, z \rangle = \langle (\lambda x_1, \lambda x_2 - x_2, \lambda x_3 - x_2, \cdots), (1, \overline{\lambda}, \overline{\lambda}^2, \cdots) \rangle$$
$$= \lambda x_1 + \lambda^2 x_2 - \lambda x_1 + \lambda^3 x_3 - \lambda^2 x_2 + \cdots = 0$$
$$\Rightarrow 0 \neq z \in \operatorname{Ran}(\lambda I - A)^{\perp}$$

然后证明: $\partial \mathbb{D} \subset \sigma_c(A)$. 设 $\lambda \in \partial \mathbb{D}$,

 1° 证明 $\operatorname{Ran}(\lambda I - A) \neq \ell^2$.

$$\operatorname{Ran}(\lambda I - A) \ni y = (\lambda I - A)x \Rightarrow y_1 = \lambda x_1, y_k = \lambda x_k - x_{k-1}, k \geqslant 2$$
$$\Rightarrow y_1 = \lambda x_1, \lambda^{k-1} y_k = \lambda^k x_k - \lambda^{k-1} x_{k-1}, k \geqslant 2$$
$$\Rightarrow \sum_{k=1}^n \lambda^{k-1} y_j = \lambda^n x_n$$

假设 $\operatorname{Ran}(\lambda I - A) = \ell^2$, 令 $y = e_1$,

$$\exists x \in \ell^2 \text{ s.t. } e_1 = (\lambda I - A)x \Rightarrow \lambda^n x_n = 1, n = 1, 2, \cdots$$
$$\Rightarrow x = (\frac{1}{\lambda}, \frac{1}{\lambda^2}, \cdots)$$

 $|\lambda|=1$, 不收敛, 这与 $x\in\ell^2$ 矛盾。

 2° 证明 $\overline{\operatorname{Ran}(\lambda I - A)} = \ell^2$. 只需证明 $\operatorname{Ran}(\lambda I - A)^{\perp} = \{0\}$. 对于 $\forall x \in \operatorname{Ran}(\lambda I - A)^{\perp}$,

$$0 = \langle z, (\lambda I - A)e_n \rangle = \overline{\lambda}z_n - z_{n+1}, \forall n$$

所以 $z_{n+1} = \overline{\lambda}z_n \Rightarrow |z_{n+1}| = |z_n| \Rightarrow z = 0.$

最后: $\overline{\mathbb{D}} \subset \sigma_c(A) \cup \sigma_r(A) \subset \sigma(A) \subset \overline{\mathbb{D}}$, 由前面结论可得 $\sigma_c(A) = \partial \mathbb{D}$, $\sigma_r(A) = \mathbb{D}$.

◇ 3.2 紧算子的谱

3.2.1 紧算子

定义 3.2.1

X,Y 是 Banach 空间, $A \in \mathcal{L}(X,Y)$,

- 1. 如果 A 把每个有界集映为列紧集, 称 A 紧, 记作 $A \in T(X,Y)$.
- 2. 如果 A 把 X 中每个弱收敛序列映为 Y 中强收敛序列,称 A 全连续。
- 3. 如果 $\dim(\operatorname{Ran}(A)) < \infty$, 则称 A 是有限秩算子, 记作 $A \in \mathcal{F}(X,Y)$.

命题 3.2.1

 $\mathcal{F}(X,Y) \subset \mathcal{T}(X,Y)$, 且是闭子空间。

证明 有限维线性空间里的有界集列紧。

例 3.2.1.

 $I \in \mathcal{T}(X) \Leftrightarrow \dim(X) < \infty.$

例 3.2.2.

设 $K(\cdot,\cdot)$ 在 $[a,b]^2$ 上连续,

$$(Tu)(s) \stackrel{\text{def}}{=} \int_{a}^{b} K(s,t)u(t)dt$$

则 $T: C[a,b] \to C[a,b]$ 紧。

证明 设 $\mathcal{F} \subset C[a,b]$ 有界,记记 $M = \sup_{u \in \mathcal{F}} ||u||$,则

$$||Tu|| \leq ||T|| \cdot M, \forall u \in \mathcal{F}$$

所以 $T(\mathcal{F})$ 一致有界。

同时, $\forall \varepsilon > 0, \forall u \in \mathcal{F}, K(\cdot, \cdot)$ 一致连续 $\Rightarrow \exists \delta > 0$ s.t.

$$|K(s',t) - K(s'',t)| < \frac{\varepsilon}{M(b-a)}, \forall s', s'' \in [a,b] \text{ with } |s'-s''| < \delta, \forall t \in [a,b]$$

所以

$$|(Tu)(s') - (Tu)(s'')| \leqslant \int_a^b |K(s',t) - K(s'',t)| |u(t)| dt < \varepsilon, \forall s', s'' \text{ with } |s' - s''| < \delta, \forall u \in \mathcal{F}$$

所以T(F)等度连续,进而列紧。

命题 3.2.2

 $\mathcal{T}(X,Y) \subset \mathcal{L}(X,Y)$, 且是闭子空间。

证明 设 $A_n \in \mathcal{T}(X,Y)$ 使得 $||A_n - A|| \to 0$,下证 A 紧。设 $M \subset X$ 有界, $C \stackrel{\mathrm{def}}{=} \sup_{-} ||x|| < \infty$,Claim: A(M)

列紧。对于 $\forall \varepsilon$,取N充分大使得

$$||A_N - A|| < \frac{\varepsilon}{3C}$$

 $A_N(M)$ 列紧,

$$\exists x_1, \dots, x_m \in M \text{ s.t. } A_N(M) \subset \bigcup_{k=1}^m B(A_N x_k, \frac{\varepsilon}{3})$$

所以 $\forall x \in M, \exists k \in \{1, 2, \dots, m\}$ s.t.

$$||A_N x - A_N x_k|| < \frac{\varepsilon}{3}$$

从而

$$||Ax - Ax_k|| \le ||Ax - A_Nx|| + ||A_Nx - A_Nx_k|| + ||A_Nx_k - Ax_k|| < \varepsilon$$

于是 $\{Ax_1, \dots, Ax_m\}$ 是 A(M) 的有穷 ε 网。

命题 3.2.3

紧算子的值域可分。

证明

$$\operatorname{Ran}(A) = \bigcup_{k=1}^{\infty} A(B(0, n))$$

列紧 \Rightarrow 可分,设 M_n 是 A(B(0,n)) 的可数稠密子集,取 M_n 的并即为 Ran(A) 的可数稠密子集。

命题 3.2.4

紧算子与有界算子的 (两种) 复合是紧算子。

证明 设 T 有界,A 紧,若 $\{x_n\}_{n=1}^{\infty} \subset X$ 有界,A 紧所以 $\{Ax_n\}_{n=1}^{\infty}$ 列紧,有子列 $\{Ax_{n_k}\}_{k=1}^{\infty}$ 收敛,T 有界所以 $\{TAx_{n_k}\}_{k=1}^{\infty}$ 收敛,因此 TA 是紧算子。

若 M 有界,则 T(M) 有界, A 紧所以 AT(M) 列紧, AT 是紧算子。

定理 3.2.1

对于 $A \in \mathcal{L}(X,Y)$,

- 1. 紧 ⇒ 全连续;
- 2. 如果 X 自反,则 A 紧 ⇔ A 全连续。

证明 对于 1, 假设 A 紧而不全连续,即存在 $x_n \stackrel{w}{\to} x_0$ 但 $||Ax_n - Ax_0|| \to 0$: 存在 $\varepsilon_0 > 0$, 存在子列 $\{x_{n_k}\}_{k=1}^{\infty}$ 使得 $||Ax_{n_k} - Ax_0|| \ge \varepsilon_0$.

那么 $x_{n_k} \overset{\text{w}}{\to} x_0$,由 UBP 知 $\{x_{n_k}\}_{k=1}^{\infty}$ 有界,A 紧所以 $\{Ax_{n_k}\}_{k=1}^{\infty}$ 有收敛子列,不妨设 $Ax_{n_k} \to y$. 另一方面, $\forall f \in Y^*$,

$$f(Ax_{n_k} - Ax_0) = (A^*f)(x_{n_k} - x_0) \to 0$$

则 $Ax_{n_k} \stackrel{w}{\to} Ax_0 \Rightarrow Ax_0 = y \Rightarrow ||Ax_{n_k} - Ax_0|| \to 0$,矛盾。

对于 2, 设 $\{x_n\}$ 有界, 由定理 2.8.18(Eberlein-Smulian), X 自反 \Rightarrow 有子列 $x_{n_k} \stackrel{w}{\to} x_0$, A 全连续 $\Rightarrow ||Ax_{n_k} - Ax_0|| \to 0$.

3.2.2 Riesz-Fredholm 定理

定义 3.2.2

对于 $\mathcal{F} \subset X^*$,

$$\mathcal{F}^{\perp} \stackrel{\text{def}}{=} \{ x \in X : f(x) = 0, \forall f \in \mathcal{F} \}$$

称之为 F 在 X 中的零化子。

定理 3.2.2 (Riesz-Fredholm)

设 $A \in \mathcal{T}(X)$, T = I - A, 则

- 1. $\dim(\operatorname{Ker}(T)) < \infty$.
- 2. Ran(T) 闭。
- 3. Fredholm Alternative, 二择一律: $T \neq \Leftrightarrow T$ 满。
- 4. Ran $(T) = Ker(T^*)$.
- 5. $\dim(\operatorname{Ker}(T)) = \dim(\operatorname{Ker}(T^*)).$

$$x \in S_M \Leftrightarrow x \in S_X, (I - A)x \in 0 \Leftrightarrow x \in S_X, x = Ax \in A(S_X)$$

所以 $S_M \subset A(S_X)$, 后者列紧, 从而 S_M 列紧, 因此 $\dim(M) < \infty$.

证明 2. 设 $\operatorname{Ran}(T) \ni y_n \to y$, 其中 $y_n = Tx_n = x_n - Ax_n$.

Case 1: $\{x_n\}_{n=1}^{\infty}$ 有界,A 紧 \Rightarrow $\{Ax_n\}_{n=1}^{\infty}$ 有收敛子列 $\{Ax_{n_k}\}_{k=1}^{\infty}$,设 $Ax_{n_k} \to u$,

证明 1. 记 M = Ker(T), S_M 为 M 中的单位球面, S_X 为 X 中的单位球面, 于是

$$x_{n_k} = y_{n_k} + Ax_{n_k} \to y + u \Rightarrow y_{n_k} = Tx_{n_k} \to T(y + u)$$

$$\Rightarrow y = T(y + u) \in \text{Ran}(T)$$

Case 2: $\{x_n\}_{n=1}^{\infty}$ 无界,令 $d_n \stackrel{\text{def}}{=} \operatorname{dist}(x_n, \operatorname{Ker}(T))$,存在 $z_n \in \operatorname{Ker}(T)$ 满足 $||x_n - z_n|| = d_n$,Claim: $\{x_n - z_n\}_{n=1}^{\infty}$ 有界。假设不然,不妨 $d_n \to +\infty$,令

$$v_n \stackrel{\text{def}}{=} \frac{x_n - z_n}{||x_n - z_n||}$$

于是

$$Tv_n = \frac{Tx_n - Tz_n}{d_n} = \frac{y_n}{d_n} \to 0$$

由于 $||v_n||=1$,所以 $\{Av_n\}_{n=1}^{\infty}$ 有收敛子列,设 $Ax_{n_k}\to w$,则 $v_{n_k}=Av_{n_k}+Tv_{n_k}\to w$,而 $Tv_{n_k}\to 0$,所以 Tw=0, $w\in {\rm Ker}(T)$,

$$||v_n - z|| = \frac{1}{d_n} ||x_n - (z_n + d_n z)|| \geqslant \frac{d_n}{d_n} = 1$$

这与 $v_{n_k} \to w \in \text{Ker}(T)$ 矛盾。从而 $\{x_n - z_n\}$ 有界且 $T(x_n - z_n) = Tx_n = y_n$,约化为 Case1. 证明 3.

引理 3.2.1

- (1) $\operatorname{Ker}(T) \subset \operatorname{Ker}(T^2) \subset \cdots$
- (2) $\exists n \text{ s.t. } \operatorname{Ker}(T^n) = \operatorname{Ker}(T^{n+1}).$

证明 (1) 显然,只说明 (2): 假设不成立,即 $\forall n, \operatorname{Ker}(T^n) \subsetneq \operatorname{Ker}(T^{n+1})$,由 Riesz 阴历,存在 $x_n \in \operatorname{Ker}(T^{n+1}), ||x_n|| = 1 \text{ s.t. } \operatorname{dist}(x_n, \operatorname{Ker}(T^n)) > \frac{1}{2}.$

对于 $\forall n, m,$ 不妨设 n > m,

$$T^{n}(Tx_{n} + Ax_{m}) = T^{n+1}x_{n} + T^{n}Ax_{m} = A(T^{n}x_{m}) = 0$$

所以 $Tx_n + Ax_m \in Tx_n + Ax_m(T^n)$, 从而

$$||Ax_n - Ax_m|| = ||x_n - (Tx_n + Ax_m)|| > \frac{1}{2}$$

这说明 $\{Ax_n\}$ 无收敛子列,与 A 紧矛盾。

假设 T 满但不单,也就是 $\operatorname{Ker}(T) \neq \{0\}$,取 $0 \neq x_0 \in \operatorname{Ker}(T)$,因为 T 是满射,存在 $Tx_1 = x_0$ 、 $Tx_2 = x_1 \cdots$

$$0 \neq x_0 = Tx_1 = T^2x_2 = \cdots \Rightarrow T^nx_n \neq 0, T^{n+1}x_n = 0$$

从而 $x_n \in \text{Ker}(T^{n+1}) \setminus \text{Ker}(T^n)$. 这与引理矛盾。

假设 T 单而不满,令 $X_1 = T(X) = \text{Ran}(T)$, X_1 是 X 的闭真子空间,取 $X_2 = T(X_1)$,则 X_2 为 X_1 的闭真子空间,否则 $T(X_1) = X_1$,取 $X_0 \in X \setminus X_1$,

$$Tx_0 \in T(X) = X_1 = T(X_1) \Rightarrow Tx'_0 = Tx_0$$

与 T 单射矛盾,因此可以取出一系列 $X_n = T^n(X)$ 满足 X_{n+1} 是 X_n 的真闭子空间,由 Riesz,

$$\exists x_n \in X_n, ||x_n|| = 1 \text{ s.t. } \operatorname{dist}(x_n, X_{n+1}) > \frac{1}{2}$$

那么对于 $\forall n, m, 不妨 n > m,$

$$Ax_m - Ax_n = -(x_m - Ax_m) + (x_n - Ax_n) + x_m - x_n = x_m - (x_n + Tx_n - Tx_n) \in X_{m+1}$$

于是

$$||Ax_m - Ax_n|| \ge \operatorname{dist}(x_m, X_{m+1}) > \frac{1}{2}$$

从而 $\{Ax_n\}$ 无收敛子列,与 A 紧矛盾。

3.2.3 Riesz-Schauder 定理

定理 3.2.3 (Riesz-Schauder)

设 $A \in \mathcal{T}(X)$,则

- 1. 如果 $\dim(X) = \infty$, 则 $0 \in \sigma(A)$.
- 2. $\sigma(A)\setminus\{0\} = \sigma_p(A)\setminus\{0\}$.
- 3. 非零特征值的特征子空间一定是有限维的。
- 4. 不同特征值的特征向量线性无关。
- 5. 0 是 $\sigma(A)$ 的唯一可能的极限点。

证明 1. 假设 $0 \in \rho(A)$,则 $A^{-1} \in \mathcal{L}(X)$, $I = A^{-1} \circ A$ 是有界算子和紧算子的复合,也是紧算子,从而 $\dim(X) < \infty$. 证明 2. 只需证明:

$$\forall \lambda \notin \sigma_p(A), \lambda \neq 0 \Rightarrow \lambda \in \rho(A)$$

实际上, $\lambda \notin \sigma_p(A) \Rightarrow \lambda I - A$ 单,由 F.A. $\Rightarrow \lambda I - A$ 是双射,由 IMT $\Rightarrow (\lambda I - A)^{-1} \in \mathcal{L}(X)$. 证明 3. 对于 $\forall 0 \neq \lambda \in \sigma_p(A)$,

 $\operatorname{Ker}(\lambda I - A) = \operatorname{Ker}(I - \frac{1}{\lambda}A) \overset{\operatorname{Riesz-Fredholm}}{\Rightarrow} \dim(\lambda I - A) < \infty$

证明 5. 假设 $\sigma(A)$ 有极限点 $\lambda_0 \neq 0$,则存在 $\lambda_n \in \sigma(A)$ 使得 $\lambda_n \to \lambda_0$. 不妨设 $\{\lambda_n\}$ 互不相同, $\lambda_0 \to n$ 充分大时 $\lambda_n \neq 0$,故不妨设所有 $\lambda_n \neq 0$.

$$\frac{1}{\lambda_n} \to \frac{1}{\lambda_0} \Rightarrow \sup_n \left| \frac{1}{\lambda_n} \right| < \infty$$

取 $x_n \in \operatorname{Ker}(\lambda_n I - A)$, 由 4. 可得 $\{x_n\}_{n=1}^{\infty}$ 线性无关,令 $X_n \stackrel{\operatorname{def}}{=} \operatorname{span}\{x_1, \cdots, x_n\}$,则 X_n 是 X_{n+1} 的真闭子空

间,由 Riesz 引理 $\Rightarrow \exists y_n \in X_n, ||y_n|| = 1$ 使得

$$\operatorname{dist}(y_n, X_{n-1}) > \frac{1}{2}$$

而

$$y_n = \sum_{k=1}^n \alpha_k x_k \Rightarrow (\lambda_n I - A) y_n = \sum_{k=1}^n \alpha_k (\lambda_n - \lambda_k) x_k$$

对于 $\forall n, m$, 不妨 n > m,

$$\left| \left| A\left(\frac{y_n}{\lambda_n}\right) - A\left(\frac{y_m}{\lambda_m}\right) \right| \right| = \left| \left| y_n - \left[y_n - A\left(\frac{y_n}{\lambda_n}\right) \right] - \left[A\left(\frac{y_m}{\lambda_m}\right) \right] \right| \right| \geqslant \operatorname{dist}(y_n, X_{n-1}) > \frac{1}{2}$$

另一方面, $\left\{\frac{y_n}{\lambda_n}\right\}$ 是有界集,从而 $\left\{A\left(\frac{y_n}{\lambda_n}\right)\right\}$ 有收敛子列,矛盾。

推论 3.2.1

$$A \in \mathcal{T}(X) \Rightarrow \sigma(A)$$
 至多可数。

 \odot

证明 令

$$E_k \stackrel{\text{def}}{=} \sigma_p(A) \cap \{\lambda \in \mathbb{C} : |\lambda| > \frac{1}{k}\}$$

则

$$\sigma(A)\setminus\{0\} = \sigma_p(A)\setminus\{0\} = \bigcup_{k=1}^{\infty} E_k$$

只需证明 E_k 元素个数有限。假设不然,由 B-W \Rightarrow E_k 有极限点,而且 $\mathrm{dist}(0,E_k) \geqslant \frac{1}{k}$,从而 $\lambda_0 \neq 0$,但 $\sigma(A)$ 只可能以 0 作为极限点,矛盾。

推论 3.2.2

如果 X 无穷维, $A \in T(X)$, 则只有三种情形:

- (1). $\sigma(A) = \{0\}$, 例如取 A = 0.
- (2). $\sigma(A) = \{0, \lambda_1, \cdots, \lambda_n\}.$
- (3). $\sigma(A) = \{0, \lambda_1, \lambda_2, \dots\} \not\perp \lambda_n \to 0.$

这里面的 $\lambda_i \in \sigma_p(A)$.

 \Diamond

证明 令

$$F_0 \stackrel{\text{def}}{=} \sigma(A) \cap \{\lambda \in \mathbb{C} : |\lambda| \geqslant 1\}$$

$$F_k \stackrel{\text{def}}{=} \sigma(A) \cap \{\lambda \in \mathbb{C} : \frac{1}{k+1} \leqslant |\lambda| < \frac{1}{k}\}, k = 1, 2, \cdots$$

则 $\sigma(A) \subset \bigcup_{k=1}^{\infty} F_k$, 且 F_k 中元素个数有限,则按照 F_k 顺次排列 λ_1, λ_2 即可。

例 3.2.3.

给定 $\lambda_1, \dots, \lambda_n \in \mathbb{C}$,令

$$A_n: \ell^2 \to \ell^2, (x_1, x_2, \cdots) \mapsto (\lambda_1 x_1, \lambda_2 x_2, \cdots, \lambda_n x_n, 0, \cdots)$$

则 A_n 是有界有限秩算子,从而是紧算子,且

$$\{0, \lambda_1, \cdots, \lambda_n\} \subset \sigma_n(A)$$

而 $\forall \lambda \in \mathbb{C} \setminus \{0, \lambda_1, \dots, \lambda_n\}$ 有:

$$(\lambda I - A_n)x = 0 \Leftrightarrow ((\lambda - \lambda_1)x_1, \cdots, (\lambda - \lambda_n)x_n, \lambda x_{n+1}, \cdots) = 0$$

$$\Leftrightarrow x = 0$$

$$\Rightarrow \lambda I - A_n \mathring{\mathbb{P}}$$

$$\Rightarrow \lambda I - A_n \mathcal{E} 双射$$

$$\Rightarrow \lambda \in \rho(A_n) \Rightarrow \sigma(A_n) = \sigma_p(A_n) = \{0, \lambda_1, \cdots, \lambda_n\}$$

例 3.2.4.

设 $\{\lambda_n\}_{n=1}^{\infty}\subset\mathbb{C}\setminus\{0\},\ \lambda_n\to0$,

$$A: \ell^2 \to \ell^2, (x_1, x_2, \cdots) \mapsto (\lambda_1 x_1, \lambda_2 x_2, \cdots)$$

则根据收敛列有界, A 是有界算子。同时

$$||A - A_n|| = \sup ||x||_2 = 1 \left(\sum_{k=n+1}^{\infty} |\lambda_k|^2 |x_k|^2 \right)^{\frac{1}{2}} \to 0$$

 A_n 是紧算子 \Rightarrow A 是紧算子 (经典方法)。

考虑 $Ae_k = \lambda_k e_k$, $\{\lambda_k\} \subset \sigma_p(A)$, 而且 $0 \notin \sigma_p(A)$.

$$\forall \lambda \in \backslash \{0, \lambda_1, \lambda_2, \cdots\} \Rightarrow \inf_k |\lambda - \lambda_k| > 0$$

令

$$T: \ell^2 \to \ell^2, (x_1, x_2, \cdots) \mapsto (\frac{x_1}{\lambda - \lambda_1}, \frac{x_2}{\lambda - \lambda_2}, \cdots)$$

则 $T = (\lambda I - A)^{-1}$,且

$$||Tx||_2 \leqslant ||x||_2 \cdot \sup_k \frac{1}{|\lambda - \lambda_k|}$$

于是 $T \in \mathcal{L}(X)$, 从而 $\lambda \in \rho(A)$, 这说明 $\sigma(A) = \{0, \lambda_1, \lambda_2, \cdots\}$.

第4章》作业汇总

部分作业是课上某个定理、推论、命题或其中一个步骤的证明,就直接抄录在笔记里了。本章内容 = 课后作业 \cap 课本习题。

◇ 4.1 第一章

题目 1.(1.1.1) 完备度量空间的闭子空间也是完备的;任一度量空间的完备子空间一定是闭子空间。

解答: Show answer

- (1) 设 E 是完备度量空间 X 的闭子集,由于 X 是完备的,所以 E 上任意柯西列都在 X 上收敛,且由 E 是闭集 $\Rightarrow \forall \{x_n\}_{n=1}^{\infty} \subset E$,如果 $x_n \to x_0$,则 $x_0 \in E$,所以 E 上任意柯西列都在 E 上收敛,故 E 是完备子空间。
- (2) 设 E 是度量空间 X 的完备子空间,设 $\{x_n\}_{n=1}^\infty$ 是 X 上的收敛列,且 $\{x_n\}_{n=1}^\infty \subset E$,那也一定是柯西列,故在 E 上收敛,即 $x_n \to x_0 \in E$,故 E 是闭集。

题目 2.(1.2.1) S 为复数列全体构成的集合,定义距离为

$$\rho(x,y) = \sum_{k=1}^{n} \frac{1}{2^k} \cdot \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|}$$

其中 $x = (\xi_1, \dots, \xi_k, \dots)$, $y = (\eta_1, \dots, \eta_k, \dots)$. 求证: (S, ρ) 为完备度量空间。

解答: Show answer

先验证 ρ 是距离函数:

1° 非负性: $\forall x, y, \rho(x, y) \ge 0$ 成立, 因为每一项都非负。

 2° 唯一性: $\rho(x,y)=0 \Rightarrow \forall k, |\xi_k-\eta_k|=0 \Rightarrow x=y.$

3° 对称性:由 $|\xi_k - \eta_k| = |\eta_k - \xi_k|$ 可得。

 4° 三角不等式: 设 $z = (\zeta_1, \zeta_2, \cdots)$,

$$\begin{split} \frac{t}{1+t} \nearrow \text{ on } (0,\infty) &\Rightarrow \frac{|a+b|}{1+|a+b|} \leqslant \frac{|a|+|b|}{1+|a|+|b|} \\ &= \frac{|a|}{1+|a|+|b|} + \frac{|b|}{1+|a|+|b|} \leqslant \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|} \end{split}$$

所以

$$\rho(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|} = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|(\xi_k - \zeta_k) + (\zeta_k - \eta_k)|}{1 + |(\xi_k - \zeta_k) + (\zeta_k - \eta_k)|}$$

$$\leqslant \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|\xi_k - \zeta_k|}{1 + |\xi_k - \zeta_k|} + \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|\zeta_k - \eta_k|}{1 + |\zeta_k - \eta_k|}$$

$$= \rho(x,z) + \rho(y,z)$$

下面证明完备性:设 $\{x^{(n)}\}$ 是S中的柯西列,其中 $x^{(n)}=(x_1^{(n)},x_2^{(n)},\cdots)$,则

$$\rho(x^{(n+p)} - x^{(n)}) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k^{(n+p)} - x_k^{(n)}|}{1 + |x_k^{(n+p)} - x_k^{(n)}|} \to 0 \text{ as } n \to \infty, \forall p \in \mathbb{N}$$

对于每个k, 取 N_k 使得 $n > N_k$ 时有

$$\sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|x_i^{(n+p)} - x_i^{(n)}|}{1 + |x_i^{(n+p)} - x_i^{(n)}|} < \frac{1}{2^{k+1}} \varepsilon$$

左侧取级数的第 k 项,

$$\frac{1}{2^k} \frac{|x_k^{(n+p)} - x_k^{(n)}|}{1 + |x_k^{(n+p)} - x_k^{(n)}|} < \frac{1}{2^{k+1}} \varepsilon$$

$$\Rightarrow |x_k^{(n+p)}-x_k^{(n)}|<rac{arepsilon}{2-arepsilon} o 0$$
 as $arepsilon o 0$,可知

$$|x_k^{(n+p)} - x_k^{(n)}| \to 0 \text{ as } n \to 0, \forall p, k \in \mathbb{N}$$

这意味着每个 $x^{(n)}$ 的第k个坐标组成 \mathbb{C} 上的柯西列,由 \mathbb{C} 的完备性可知其收敛,并设 $x_k^{(n)} \to x_k^*$,令

$$x^* = (x_1^*, x_2^*, \cdots) \in S$$

下面证明 $x^{(n)} \to x^*$.

$$\begin{split} \rho(x^{(n)}, x^*) &= \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k^{(n)} - x_k^*|}{1 + |x_k^{(n)} - x_k^*|} \\ &= \sum_{k=1}^{k_0} \frac{1}{2^k} \frac{|x_k^{(n)} - x_k^*|}{1 + |x_k^{(n)} - x_k^*|} + \sum_{k=n_0+1}^{\infty} \frac{1}{2^k} \frac{|x_k^{(n)} - x_k^*|}{1 + |x_k^{(n)} - x_k^*|} \\ &< \sum_{k=1}^{k_0} \frac{1}{2^k} |x_k^{(n)} - x_k^*| + \sum_{k=n_0+1}^{\infty} \frac{1}{2^k} \\ &= \sum_{k=1}^{k_0} \frac{1}{2^k} |x_k^{(n)} - x_k^*| + 2^{-n_0} \end{split}$$

对每个 k,存在 N_k 使得 $n>N_k$ 时 $|x_k^{(n)}-x_k^*|<\frac{\varepsilon}{2}$,于是取 $N=\max\{N_1,\cdots,N_{k_0}\}$,n>N 时

$$\sum_{k=1}^{k_0} \frac{1}{2^k} |x_k^{(n)} - x_k^*| < \sum_{k=1}^{k_0} \frac{1}{2^k} \frac{\varepsilon}{2} < \frac{\varepsilon}{2}$$

再取充分大的 n_0 使得 $2^{-n_0} < \frac{\varepsilon}{\varepsilon}$, 得到 $\rho(x^{(n)}, x^*) < \varepsilon$, 由 ε 的任意性可知 $\rho(x^{(n)}, x^*) \to 0$, 完备性得证。

题目 3.(1.2.2) 度量空间上的基本列是收敛列当且仅当它存在一列收敛子列。

解答: Show answer

必要性显然,只说明充分性:设 $\{x_n\}$ 是基本列,且存在收敛子列 $\{x_{n_k}\}$,并设 $x_{n_k} \to x$.任意 $\varepsilon > 0$,存在N 使得n,m > N 时

$$\rho(x_n, x_m) < \varepsilon$$

存在 K 使得 k > K 时 $n_k > N$, 故

$$\rho(x_n, x_{n_k}) < \varepsilon, \forall n > N, k > K$$

上式中 $k \to \infty$ 可得 $\rho(x_n, x) \le \varepsilon$, 由 ε 任意性可知 $x_n \to x$, 故 $\{x_n\}$ 为收敛列。

题目 4.(1.2.3) F 是只有有限项不为 0 的实数列全体构成的集合,定义距离为

$$\rho(x,y) = \sup_{k \geqslant 1} |\xi_k - \eta_k|$$

其中 $x = (\xi_1, \dots, \xi_k, \dots)$, $y = (\eta_1, \dots, \eta_k, \dots)$. 求证: (F, ρ) 不是完备度量空间,并指出其完备化。

解答: Show answer

$$x^{(n)} - x^{(m)} = (0, 0, \dots, 0, \frac{1}{n+1}, \frac{1}{n+2}, \dots, \frac{1}{m}, 0, 0, \dots)$$

所以

$$\rho(x^{(n)}, x^{(m)}) = \frac{1}{n+1} \to 0 \text{ as } n \to \infty$$

于是 $\{x^{(n)}\}$ 是柯西列,假设它收敛到 $x\in F$,x 只有有限项不为零,假设其从第 N 项开始全部是 0,则 $\rho(x^{(n)},x)\geqslant \frac{1}{N}, \forall n>N$,矛盾。所以 F 不完备。

收敛到 0 的实数列全体为 F 的完备化,记作 l_0^{∞} ,证明如下:

先证明完备性, l_{Ω}^{∞} 上的距离也定义为

$$\rho(x,y) = \sup_{k \geqslant 1} |\xi_k - \eta_k|$$

设 $\{x^{(n)}\}$ 是柯西列,其中 $x^{(n)}=(\xi_1^{(n)},\xi_2^{(n)},\cdots)$, $\xi_k^{(n)}\to 0$ as $k\to 0$. 注意到

$$\rho(x^{(n)}, x^{(m)}) = \sup_{k \ge 1} |\xi_k^{(n)} - \xi_k^{(m)}| < \varepsilon \Rightarrow \forall k \ge 1, |\xi_k^{(n)} - \xi_k^{(m)}| < \varepsilon$$

因此对于每个k, $\{\xi_k^{(n)}\}_{n=1}^\infty$ 是 \mathbb{R} 上的柯西列,由 \mathbb{R} 的完备性可知其为收敛列,设 $\xi_k^{(n)} \to \xi_k$,并令 $x = (\xi_1, \xi_2, \cdots, \xi_k, \cdots)$.

$$|\xi_k| \le |\xi_k - \xi_k^{(n)}| + |\xi_k^{(n)} - \xi_j^{(n)}| + |\xi_j^{(N)}|$$

由于 $\xi_k^{(n)} \to \xi_k$,可以取充分大的 n 使得右边第一项 $< \varepsilon/3$; $\{\xi_k^{(n)}\}$ 是柯西列,可以取充分大的 k,j 使得右边第二项 $< \varepsilon/3$; 有定义 $\xi_j^{(N)} \to 0$ as $j \to 0$,可以取充分大的 j 使得右边第三项 $< \varepsilon/3$. 因此得到 $|\xi_k| < \varepsilon$,由 ε 的任意性可得 $\xi_k \to 0 \Rightarrow x \in F$,现只需说明 $x_n \to x$.

$$\rho(x_n, x) = \sup_{k \ge 1} |\xi_k^{(n)} - \xi_k|$$

由于 $\xi_k^{(n)} \to 0$, $\xi_k \to 0$, 任意 $\varepsilon > 0$, 可以取充分大的 K, 使得 k > K 时 $|\xi_k^{(n)} - \xi_k| \le |\xi_k^{(n)}| + |\xi_k| \le 2\varepsilon$, 不妨设 $|\xi_1^{(n)} - \xi_1| = \varepsilon > 0$,则 $\rho(x_n, x) = \max_{1 \le k \le K} |\xi_k^{(n)} - \xi_k|$, 而这有限的 K 项每一项都趋于 0, $\forall \varepsilon_0 > 0$, 可以取充分大的 N 使得 n > N 时

$$\rho(x_n, x) = \max_{1 \le k \le K} |\xi_k^{(n)} - \xi_k| < \varepsilon_0$$

因此 $x_n \to x$.

最后说明 F 是稠密子空间,实际上 $\forall x=(\xi_1,\cdots,\xi_k,\cdots)\in l_\infty^0$,令 $x_n\in F$ 的前 n 项与 x 相同,其余为 0,则

$$\lim_{n \to \infty} \rho(x_n, x) = \lim_{n \to \infty} \sup_{k \ge n+1} |\xi_k| = 0$$

题目 5.(1.2.4) [0,1] 上的多项式全体记作 P[0,1], 定义距离

$$\rho(p,q) = \int_0^1 p(x)q(x) \mathrm{d}x$$

求证: $(P[0,1], \rho)$ 不是完备度量空间,并指出其完备化。

解答: Show answer

设

$$p_n(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!}, n \in \mathbb{N}_+$$

则

$$\rho(p_n(x), p_{n+k}(x)) = \int_0^1 \sum_{i=n+1}^{n+k} \frac{x^i}{i!} dx = \sum_{i=n+1}^{n+k} \frac{1}{(i+1)!} \leqslant \sum_{i=n+1}^{\infty} \frac{1}{i(i+1)} = \frac{1}{n+1} \to 0$$

所以 $p_n(x)$ 是基本列,而

$$\rho(p_n(x), \mathbf{e}^{\mathbf{x}}) = \int_0^1 \sum_{i=n+1}^\infty \frac{x^i}{i!} dx = \sum_{i=n+1}^\infty \frac{1}{(i+1)!} \leqslant \sum_{i=n+1}^\infty \frac{1}{i(i+1)} = \frac{1}{n+1} \to 0$$

说明 $p_n(x) \stackrel{\rho}{\to} \mathrm{e}^x$, 这意味着如果 P[0,1] 完备,则 e^x 是有限次多项式,矛盾。

 $L^1[0,1]$ 是 P[0,1] 的完备化。

题目 6.(1.3.1) 在完备度量空间中,子集 A 列紧的充要条件是: $\forall \varepsilon > 0$,存在 A 的列紧的 ε 网。

解答: Show answer

必要性:列紧 \Rightarrow 完全有界,所以 $\forall \varepsilon > 0$,存在 A 的有限 ε 网,有限集是列紧的(因为有限集的无穷点列中一定能取出全由某个特定元素组成的点列,进而收敛),所以也是列紧 ε 网。

充分性:设N为A的列紧的 ξ 网,

$$\forall x \in A, \exists \xi \in N \text{ s.t. } \rho(x,\xi) < \frac{\varepsilon}{2}$$

N 列紧 \Rightarrow 完全有界,设 N_0 是 N 的有限 ξ 网,则对于 ξ , $\exists x_0 \in N_0$ s.t. $\rho(\xi,x_0) < \xi$,于是

$$\rho(x,x_0) \leqslant \rho(x,\xi) + \rho(\xi,x_0) < \varepsilon$$

所以 N_0 是 A 的有穷 ε 网, 所以 A 完全有界, 完备度量空间所以 A 列紧。

题目 7.(1.3.2) 度量空间中,紧集上的连续函数一定有界,且能够达到上、下确界。

解答: Show answer

假设 f(x) 无上界,则存在 $\{x_n\} \subset M$ 使得 $f(x_n) > n$,由于 M 是紧集,所以自列紧,所以存在子列 $x_{n_k} \to x_0 \in M$,f 连续所以 $f(x_{n_k}) \to f(x_0)$,这与 $f(x_n) \to \infty$ 矛盾。所以 f(x) 有上界,同理可证 f(x) 有下界,故 f 有界。

设 $\beta = \sup_{x \in M} f(x)$, $\forall \varepsilon > 0$, 存在 $x_{\varepsilon} \in M$, $f(x_{\varepsilon}) > \beta - \varepsilon$, 取 $\varepsilon_n = \frac{1}{n}$, 得到点列 $\{x_n\}$, 有收敛子列 $\{x_{n_k}\}$, 设其收敛到 $x_0 \in M$, 于是

$$\beta - \frac{1}{n_k} < f(x_{n_k}) \leqslant \beta$$

上式 $k \to \infty$ 可得

$$\lim_{k \to \infty} f(x_{n_k}) = \beta$$

同时, 因为 f 连续,

$$\lim_{k \to \infty} f(x_{n_k}) = f(x_0)$$

因此 $f(x_0) = \beta$, 能达到上确界。下确界同理。

题目 8.(1.3.4) (X, ρ) 是度量空间, F_1, F_2 是 X 的两个紧子集,求证: $\exists x_i \in F_i$,使得 $\rho(F_1, F_2) = \rho(x_1, x_2)$,其中 $\rho(F_1, F_2) := \inf \{ \rho(x, y) | x \in F_1, y \in F_2 \}$

解答: Show answer

设 $\rho(F_1, F_2) = d$, 由 inf 的定义,

$$\forall n \in \mathbb{N}, \exists x_n \in F_1, y_n \in F_2 \text{ s.t. } d \leqslant \rho(x_n, y_n) < d + \frac{1}{n}$$

 F_1 紧则自列紧, $\{x_n\}$ 存在子列 $\{x_{n_k}\}$ 收敛到 $x'\in F_1$,相应的 $\{y_{n_k}\}$ 有子列 $\{y_{n_{k_i}}\}$ 收敛到 $y'\in F_2$,于是

$$d \leqslant \rho(x_{n_{k_j}}, y_{n_{k_j}}) < d + \frac{1}{n_{k_j}}$$

题目 9.(1.3.6) $E = \{\sin nt\}_{n=1}^{\infty}$,证明 $E \subset C[0,\pi]$ 不是列紧的。

解答: Show answer

只需证明 $\{\sin nt\}_{n=1}^{\infty}$ 不是等度连续的。对 $\varepsilon_0=1, \forall \delta>0$,取 $k\in\mathbb{N}$ 使得 $\frac{1}{k}<\delta$,设 $n_k=2k$, $t_k=\frac{\pi}{4k}\in[0,\pi]$,于是

$$|t_k - t_0| = |t_k| = \frac{\pi}{4k} < \frac{1}{k} < \delta$$

$$|\sin n_k t_k - \sin n_k t_0| = \sin \frac{\pi}{2} = 1 = \varepsilon_0$$

所以 $\{\sin nt\}_{n=1}^{\infty}$ 不是等度连续的。

题目 10.(1.3.7) S 空间的子集 A 列紧的充要条件是 $\forall n \in \mathbb{N}, \exists C_n > 0 \text{ s.t. } \forall x = \{\xi_n\}_{n=1}^{\infty} \in A, |\xi_n| \leqslant C_n.$

解答: Show answer

必要性: $A \in S$ 中列紧,任取无穷点列 $\{\xi^{(m)}\}_{m=1}^{\infty} \subset A$ 有收敛子列 $\{\xi^{(m_k)}\}_{k=1}^{\infty}$,而 S 中的收敛与按坐标收敛等价,所以固定 m,点列 $\{\xi^{(m)}\}_{m=1}^{\infty}$ 中的每一个点的坐标序列 $\{\xi^{(m)}_n\}_{n=1}^{\infty}$ 也可以从其任意无穷子集中取出收敛子列。固定 n,A 中所有点的第 n 个坐标构成 $\mathbb C$ 上的集合,要从其任意无穷子集中取出收敛子序列要求该集合有界,此即为要求所证。

充分性: 只需构造 A 的列紧 ε 网。对 $\forall \varepsilon > 0$,选取充分大的 n 使得 $\frac{1}{2^n} < \varepsilon$,考虑

$$H = \{h_n = (\xi_1, \xi_2, \dots, \xi_n, 0, \dots) : (\xi_1, \xi_2, \dots, \xi_n, \xi_{n+1}, \dots) \in A\}$$

因为

$$\rho(x, h_n) = \sum_{k=n+1}^{\infty} \frac{1}{2^k} \frac{|\xi_k|}{1 + |\xi_k|} \leqslant \sum_{k=n+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^n} < \varepsilon$$

所以H是A的 ε 网。由假设

$$|\xi_k| \leqslant C_k, \ k = 1, 2, \cdots, n$$

即每个坐标都是有界的,所以H可看做是n维空间中的有界集,从而是列紧的.

题目 11.(1.3.9) (M, ρ) 是紧度量空间, $E \subset C(M)$,E 中的函数一致有界并且满足:

$$|x(t_1) - x(t_2)| \leqslant C\rho(t_1, t_2)^{\alpha} \ (\forall x \in E, \forall t_1, t_2 \in M)$$

其中 $0 < \alpha \le 1, C > 0$,求证 $E \subset C(M)$ 是列紧集。

解答: Show answer

 $\forall \varepsilon > 0$,取 $\delta = \left(\frac{\varepsilon}{C}\right)^{\frac{1}{\alpha}}$,当 $\rho(t_1, t_2) < \delta$ 时, $|x(t_1) - x(t_2)| \leqslant C\rho(t_1, t_2)^{\alpha} < \varepsilon$,所以 E 是等度连续的,再由 Argela-Ascoli 定理可得列紧。

题目 12.(1.4.2) $\forall x \in C(0,1]$, 令 $||x|| = \sup_{0 < t \le 1} |x(t)|$, 求证:

- 1. $||\cdot||$ 是 C(0,1] 上的范数;
- 2. l^{∞} 与 C(0,1] 的一个子空间是等距同构的。

解答: Show answer

 $|| \cdots ||$ 是 C(0,1] 上的范数:

- (1) 正定性: 绝对值非负所以 $||x|| \ge 0$,等号成立当且仅当 x(t) = 0 on (0,1].
- (2) 齐次性: $||Cx|| = \sup_{0 < t \leqslant 1} |Cx(t)| = C \sup_{0 < t \leqslant 1} |x(t)| = C||x||$.
- (3) 三角不等式:

$$\begin{aligned} ||x+y|| &= \sup_{0 < t \le 1} |x(t) + y(t)| \\ &\leqslant \sup_{0 < t \le 1} (|x(t)| + |y(t)|) \\ &\leqslant \sup_{0 < t \le 1} |x(t)| + \sup_{0 < t \le 1} |y(t)| = ||x|| + ||y|| \end{aligned}$$

以 $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots$ 为节点的全体折线函数,构成 C(0,1] 的子空间,记作 C'(0,1].

$$\forall f \in C'(0,1], x_f \stackrel{\text{def}}{=} \{ f(\frac{1}{n}) \}_{n=1}^{\infty} \in l^{\infty}, ||x_f||_{\infty} = \max_{n \ge 1} ||f(\frac{1}{n})|| \le ||f||$$

反之,设 $x=(\xi_1,\xi_2,\cdots,\xi_n,\cdots)\in l^\infty$,取一个以 $1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{n},\cdots$ 为节点的折线函数 $f_x\in C(0,1]$,并令 $f_x(\frac{1}{n})=\xi_n$,于是

$$||f_x|| \leqslant \max_{n \geqslant 1} ||\xi_n|| = ||x||_{\infty}$$

题目 13.(1.4.3) $\forall f \in C^1[a,b]$,令

$$||f||_1 = \left(\int_a^b (|f|^2 + |f'|^2) dx\right)^{\frac{1}{2}}$$

证明 $||\cdot||_1$ 是 $C^1[a,b]$ 上的范数,在该范数下是否完备?

解答: Show answer

 $||\cdot||_1$ 是 $C^1[a,b]$ 上的范数:

- (1) 正定性: $||f||_1 \ge 0$, 等号成立当且仅当 $|f(x)|^2 = 0, \forall x \in [a,b]$ 当且仅当 $f(x) = 0, \forall x \in [a,b]$.
- (2) 齐次性:

$$||Cf||_1 = \left(\int_a^b (|Cf|^2 + |Cf'|^2)\right)^{\frac{1}{2}} = C||f||_1$$

(3) 三角不等式:

$$\begin{aligned} ||f+g||_1^2 &= \int_a^b (|f|^2 + |f'|^2) + \int_a^b (|g|^2 + |g'|^2) \\ &\leq \int_a^b (|f|^2 + |f'|^2) + \int_a^b (|g|^2 + |g'|^2) + 2\left(\int_a^b (|f|^2 + |f'|^2)\right)^{\frac{1}{2}} \left(\int_a^b (|g|^2 + |g'|^2)\right)^{\frac{1}{2}} \\ &= (||f||_1 + ||g||_1)^2 \end{aligned}$$

 $(C^{1}[a,b],||\cdot||_{1})$ 不完备, 取

$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}} \in C^1[-1, 1]$$

设 $f_n \stackrel{||\cdot||_1}{\to} f \in C^1[a,b]$,则 $f'n \stackrel{L_2}{\to} f'$,又有: $||f_n - |x|||_1 \to 0$,故

$$f_n' \stackrel{L_2}{\to} -\chi_{[-1,0)} + \chi_{[0,1]}$$

 L_p 收敛则存在子列 a.e. 收敛, 于是 $f' \stackrel{a.e.}{=} -\chi_{[-1,0)} + \chi_{[0,1]}$, 这与 f' 连续矛盾。

题目 **14.**(1.4.4) $\forall f \in C[0,1]$,令:

$$||f||_1 = \left(\int_0^1 |f(x)|^2 dx\right)^{\frac{1}{2}}$$

 $||f||_2 = \left(\int_0^1 (1+x)|f(x)|^2 dx\right)^{\frac{1}{2}}$

证明两个范数等价。

解答: Show answer

 $1 \le 1 + x \le 2 \Rightarrow ||f||_1 \le ||f||_2 \le \sqrt{2}||f||_1$, 故为等价范数。

题目 15.(1.4.5) $BC[0,\infty)$ 代表 $[0,\infty)$ 上连续有界函数全体, $\forall x \in BC[0,\infty), a > 0$,定义

$$||f||_a = \left(\int_0^\infty e^{-ax} |f(x)|^2 dx\right)^{\frac{1}{2}}$$

求证:

- 1. $||\cdot||_a$ 是 $BC[0,\infty)$ 上的范数;
- 2. 若 $a, b > 0, a \neq b$,求证两个范数不等价。

解答: Show answer

 $||\cdot||_a$ 是 $BC[0,+\infty)$ 上的范数:

- (1) 正定性: $||f||_a \ge 0$, 等号成立当且仅当(因为 $e^{-ax}|f(x)|^2$ 非负连续) $e^{-ax}|f(x)|^2 = 0 \Leftrightarrow f(x) = 0$.
- (2) 齐次性:

$$||Cf||_a = \left(C^2 \int_0^\infty e^{-ax} |f(x)|^2 dx\right)^{\frac{1}{2}} = C||f||_a$$

(3) 三角不等式:

$$||f+g||_a = ||e^{-ax}(f+g)||_{L_2} \le ||e^{-ax}f||_{L_2} + ||e^{-ax}g||_{L_2} \le ||f||_a + ||g||_a$$

不妨设b>a>0,设

$$f_n(x) = \begin{cases} e^{-\frac{ax}{2}} & , x \in [0, n] \\ \sqrt{-x + n + e^{-an}} & , x \in (n, n + e^{-an}] \\ 0 & , x \in (n + e^{-\frac{an}{2}}, +\infty) \end{cases}$$

则 $||f_n(x)||_a \ge n$ 发散, 而

$$||f_n(x)||_b = \int_0^n e^{-(a+b)x} dx + \int_n^{n+e^{-an}} e^{-bx} (-x+b+e^{-an}) dx$$

$$= -\frac{1}{a+b} (e^{-(a+b)n} - 1) + \int_n^{n+e^{-an}} e^{-bx} (-x+b+e^{-an}) dx$$

$$\leq e^{-an} \max_{n \leq x \leq n+e^{-an}} e^{-bx} (-x+b+e^{-an}) \to 0$$

$$\to \frac{1}{a+b}$$

所以两个范数不等价。

题目 16.(1.4.6) 两个 Banach 空间 (X_1, X_2) 的乘积空间上赋予范数

$$||(x_1, x_2)|| = \max(||x_1||_1, ||x_2||_2)$$

证明乘积空间仍然是 Banach 空间。

解答: Show answer

任取 $\mathfrak X$ 中的柯西列 $\{x^{(n)}\}_{n=1}^{\infty}$,则 $\{x_i^{(n)}\}_{n=1}^{\infty}$ 是 $\mathfrak X_i$ 中的柯西列 (i=1,2),存在唯一 $x_i\in\mathfrak X_i$ 使得 $x_i^{(n)}\overset{||\cdot||_i}{\longrightarrow} x_i$,于是

$$||x^{(n)} - (x_1, x_2)|| = \max(||x_1^{(n)} - x_1||_1, ||x_2^{(n)} - x_2||_2) \to 0$$

 $\operatorname{Pp} x^{(n)} \stackrel{||\cdot||}{\to} (x_1, x_2).$

题目 17.(1.4.7) $X \in B^*$ 空间,求证: $X \in B$ Banach 空间的充要条件为:

$$\forall \{x_n\}_{n=1}^{\infty} \subset X, \sum_{n=1}^{\infty} ||x_n|| < \infty \Rightarrow \sum_{n=1}^{\infty} x_n 收敛$$

解答: Show answer

必要性: 设 $a_n=\sum_{k=1}^n x_k$,如果 $\sum_{n=1}^\infty ||x_n||<\infty$,则 $\forall \varepsilon>0$,存在N,使得

$$\sum_{n=N+1}^{\infty} ||x_n|| < \varepsilon$$

则 n > N 时, 任意正整数 p,

$$||a_{n+p} - a_n|| = \left|\left|\sum_{n+1 \leqslant k \leqslant n+p} x_k\right|\right| \leqslant \sum_{n+1 \leqslant k \leqslant n+p} ||x_k|| \leqslant \sum_{n=N+1}^{\infty} ||x_n|| < \varepsilon$$

所以 $\{a_n\}$ 是柯西列,进而收敛。

充分性: 任取柯西列 $\{x_n\}$, 由习题 1.2.2, 只需证明其存在收敛子列。由柯西列的定义,

$$\forall k \in \mathbb{N}_+, \exists n_k \text{ s.t. } ||x_{n_k+1} - x_{n_k}|| < \frac{1}{2^k}$$

$$\sum_{i=1}^{\infty} ||y_{i+1} - y_i|| < \sum_{i=1}^{\infty} \frac{1}{2^k} = 1 < \infty$$

故 $\sum_{i=1}^{\infty}y_{i+1}-y_i$ 收敛,于是 $y_k=y_1+\sum_{i=1}^ky_{i+1}-y_i$ 在 $k\to\infty$ 时收敛,此即为 $\{x_n\}$ 的收敛子列。

题目 18.(1.4.14) C_0 为以 0 为极限的实数全体, 赋予范数:

$$||x|| = \max_{n \ge 1} |\xi_n|, \ \forall x = \{\xi_n\}_{n=1}^{\infty} \in C_0$$

设

$$M = \left\{ x = \{\xi_n\}_{n=1}^{\infty} \in C_0 \left| \sum_{n=1}^{\infty} \frac{\xi_n}{2^n} = 0 \right. \right\}$$

证明:

1. $M \in C_0$ 的闭线性子空间;

2.
$$x_0 = (2, 0, \dots, 0, \dots)$$
,求证:

$$\inf_{z \in M} ||x_0 - z|| = 1$$

但是 $\forall y \in M$ 有 $||x_0 - y|| > 1$.

解答: Show answer

(1) 先证明 M 是线性子空间,只需说明 M 中的元素关于 \mathbb{R} 上的加法和数乘封闭: $\forall x = \{x_n\}_{n=1}^{\infty}, y = \{y_n\}_{n=1}^{\infty} \in M, \lambda \in \mathbb{R}$,

$$\sum_{n=1}^{\infty} \frac{x_n + y_n}{2^n} = \sum_{n=1}^{\infty} \frac{x_n}{2^n} + \sum_{n=1}^{\infty} \frac{y_n}{2^n} = 0 \Rightarrow x + y \in M$$

$$\sum_{n=1}^{\infty}\frac{\lambda x_n}{2^n}=\lambda\sum_{n=1}^{\infty}\frac{x_n}{2^n}=0\Rightarrow \lambda x\in M$$

再证明 M 是闭子空间: 设 $x^{(n)}=(\xi_1^{(n)},\cdots,\xi_k^{(n)},\cdots)\in M$, $x=(\xi_1,\cdots,\xi_k,\cdots)$, 且 $x^{(n)}\to x$, 则

$$\lim_{n \to \infty} \sup_{k \ge 1} |\xi_k^{(n)} - \xi_k| = 0$$

$$\Rightarrow \forall \varepsilon > 0, \exists N \text{ s.t. } \forall n > N, \sup_{k \ge 1} |\xi_k^{(n)} - \xi_k| < \varepsilon$$

则

$$\left| \left| \sum_{k=1}^{\infty} \frac{\xi_k}{2^k} \right| \right| = \left| \left| \sum_{k=1}^{\infty} \frac{\xi_k - \xi_k^{(N)}}{2^k} + \sum_{k=1}^{\infty} \frac{\xi_k^{(N)}}{2^k} \right| \right|$$
$$= \left| \left| \sum_{k=1}^{\infty} \frac{\xi_k - \xi_k^{(N)}}{2^k} \right| \right| < \varepsilon$$

令 arepsilon o 0, $\sum_{k=1}^{\infty} rac{\xi_k}{2^k} = 0 \Rightarrow x \in M$,从而 $M \not\in C_0$ 的闭线性子空间。

 $(2) \ \forall y = (y_1, \dots, y_k, \dots) \in M$,假设 $||x_0 - y|| \ge 1$,即

$$|2 - y_1| \le 1, |y_2| \le 1, \dots, |y_n| \le 1, \dots$$

于是 $y_1 \ge 1$,

$$\sum_{k=1}^{\infty} \frac{y_k}{2^k} = \frac{y_1}{2} + \sum_{k=2}^{\infty} \frac{y_k}{2^k} \geqslant \frac{1}{2} - \sum_{k=2}^{\infty} \frac{1}{2^k} = 0$$

 $y\in M$ 则上述不等式等号成立,意味着 $y_1=1,y_k=-1,k\geqslant 2$,则 $y\notin C_0$,矛盾。所以 $\forall y\in M$, $||x_0-y||<1$. 取 $x^{(m)}=(1-rac{1}{2^{m-1}},-1,\cdots,-1,0,0,\cdots)\in M$,则 $ho(x_0,x^{(m)})=1+rac{1}{2^{m-1}}$,于是

$$1 \leqslant \inf_{z \in M} ||x_0 - z|| \leqslant 1 + \frac{1}{2^{m-1}}$$

$$\inf_{z \in M} ||x_0 - z|| = 1$$

题目 19.(1.4.15) 设 X 是 B^* 空间, M 是 X 的有限维真子空间, 求证: $\exists y \in X, ||y|| = 1$, 使得 $\forall x \in M, ||y - x|| \ge 1$.

解答: Show answer

M 是有限维子空间, 所以闭, 进而 $\forall y_0 \in X \setminus M$, $d \stackrel{\mathrm{def}}{=} \inf_{x \in M} ||y_0 - x|| > 0$, 于是

$$\forall n \in \mathbb{N}_+, \exists x_n \in M \text{ s.t. } d \leq ||y_0 - x_n|| < d + \frac{1}{n}$$

那么 $||x_n|| \leq ||y_0 - x_n|| + ||y_0|| \leq ||y_0|| + d + 1$, 即 $\{x_n\}$ 有界, M 有限维所以有收敛子列 x_{n_k} , 设 $x_{n_k} \to x_0 \in M$,

$$d \le ||y_0 - x_{n_k}|| < d + \frac{1}{n_k} \Rightarrow ||y_0 - x_0|| = d$$

令 $y = \frac{y_0 - x_0}{d}$, 则 ||y|| = 1, 对于 $\forall x \in M$,

$$||y - x|| = \left| \left| \frac{y_0 - x_0}{d} - x \right| \right| = \frac{1}{d} \left| \left| y_0 - (x_0 + dx) \right| \right| \geqslant \frac{d}{d} = 1$$

题目 20.(1.6.2) 求证 C[a,b] 中的范数:

$$||f|| = \max_{a \leqslant x \leqslant b} |f(x)|$$

不可能由内积诱导。

解答: Show answer

只需给出不满足平行四边形法则的例子,如下:取[a,b] = [0,1], $f(x) = \frac{1}{2}$, g(x) = x,则

$$||f + g||^2 + ||f - g||^2 = \frac{5}{2}$$
$$2(||f||^2 + ||g||^2) = 3$$

题目 21.(1.6.4) M, N 是内积空间中的两个子集,求证:

$$M \subset N \Rightarrow N^{\perp} \subset M^{\perp}$$

解答: Show answer

 $\forall x \in N^{\perp}, m \in M \subset N \Rightarrow \langle x, m, = \rangle 0 \Rightarrow x \in M^{\perp}, \text{ if } N^{\perp} \subset M^{\perp}.$

题目 22.(1.6.5) M 是 Hilbert 空间的子集, 求证:

$$(M^{\perp})^{\perp} = \overline{\operatorname{span}(M)}$$

解答: Show answer

 $x \in M^\perp \Leftrightarrow x \perp \operatorname{span}(M) \Leftrightarrow x \perp \overline{\operatorname{span}(M)} \Leftrightarrow x \in (\operatorname{span}(M))^\perp$,所以 $M^\perp = (\operatorname{span}(M))^\perp$,即证

$$[(\operatorname{span}(M))^{\perp}]^{\perp} = \overline{\operatorname{span}(M)}$$

只需证明,对于闭子空间 M,有 $(M^{\perp})^{\perp}=M$.假设 $M\subsetneq (M^{\perp})^{\perp}$,对于 $x\in (M^{\perp})^{\perp}\backslash M$,由正交分解

$$x=y+z,\;y\in M,\;z\in M^\perp$$

对于 $m \in M^{\perp}$, $y \in M \Rightarrow \langle y, m \rangle = 0$, $x \in (M^{\perp})^{\perp} \Rightarrow \langle x, m \rangle = 0$, 所以 $\langle z, m \rangle = 0 \Rightarrow z \in (M^{\perp})^{\perp}$, 于是 $z \in M^{\perp} \cap (M^{\perp})^{\perp} \Rightarrow z = 0 \Rightarrow x \in M$, 矛盾。

题目 23.(1.6.6) $L^2[-1,1]$ 中,偶函数集的正交补是什么?

解答: Show answer

偶函数集记作 X, 奇函数集记作 Y.

所有的奇函数 $q \in Z$ 都垂直于 X, 因为

$$\forall f \in X, f(x)g(x)$$
为奇函数 $\Rightarrow \langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx = 0 \Rightarrow f \perp g$

所以 $Y \subset X^{\perp}$

对于 $h \in X^{\perp}$, 可以分解为 $h = h_1 + h_2$, 其中

$$h_1(x) = \frac{h(x) + h(-x)}{2} \in X, \ h_2(x) = \frac{h(x) - h(-x)}{2} \in Y$$

则有

$$\langle h, h_1 \rangle = 0 \Rightarrow \langle h_1, h_1 \rangle = 0 \Rightarrow h_1 \stackrel{a.e.}{=} 0$$

所以 $h \in Y \Rightarrow X^{\perp} \subset Y$,于是 $Y = X^{\perp}$ 得证。

题目 24.(1.6.9) Hilbert 空间 X 中的两个正交规范集 $\{e_n\}_{n=1}^{\infty}, \{f_n\}_{n=1}^{\infty}$ 满足:

$$\sum_{n=1}^{\infty} ||e_n - f_n||^2 < 1$$

求证:两者其中一个完备蕴含另一个完备。

解答: Show answer

假设 $\{e_n\}$ 完备, $\{f_n\}$ 不完备,则存在 $u \in X, u \neq 0$,使得 $\langle u, f_n \rangle = 0, \forall n$,则

$$||u||^2 = \sum_{n=1}^{\infty} |\langle u, e_n \rangle|^2 = \sum_{n=1}^{\infty} |\langle u, e_n - f_n \rangle|^2 \leqslant \sum_{n=1}^{\infty} ||u||^2 ||e_n - f_n||^2 < ||u||^2$$

矛盾。

题目 25.(1.6.10) X_0 为 Hilbert 空间 X 的闭线性子空间, $\{e_n\}$, $\{f_n\}$ 分别是 X_0, X_0^{\perp} 的正交规范基,求证: $\{e_n\} \cup \{f_n\}$ 是 X 的正交规范基。

解答: Show answer

X 是 Hilbert 空间, X_0 是其闭线性子空间,所以 $X=X_0\oplus X_0^\perp$,即 $\forall x\in X$,存在唯一的 $y\in X_0$, $\zeta\in X_0^\perp$ 使得 $x=y+\zeta$,而 y 和 ζ 能被唯一地表示为:

$$y = \sum_{n=1}^{\infty} \langle y, e_n \rangle e_n, \ \zeta = \sum_{n=1}^{\infty} \langle \zeta, f_n \rangle f_n$$

同时因为 $\langle y, f_n \rangle = \langle \zeta, e_n \rangle = 0$,设 $\{e_n\} \cup \{f_n\} = \{\alpha_n\}$,则

$$y + \zeta = \sum_{n=1}^{\infty} \langle y, \alpha_n \rangle \alpha_n$$

所以 $\{\alpha_n\}$ 是 O.N.B.

题目 26.(1.6.11) 这道题要用到课本例 1.6.28 相关内容。

(1). 如果 u(z) 的泰勒展开式为

$$u(z) = \sum_{k=0}^{\infty} b_k z^k$$

求证:

$$\sum_{k=0}^{\infty} \frac{|b_k|^2}{1+k} < \infty$$

(2). 设 $u(z), v(z) \in H^2(D)$,并且

$$u(z) = \sum_{k=0}^{\infty} a_k z^k, \ v(z) = \sum_{k=0}^{\infty} b_k z^k$$

求证:

$$(u,v) = \pi \sum_{k=0}^{\infty} \frac{a_k \overline{b_k}}{k+1}$$

(3). 设 $u(z) \in H^2(D)$, 求证:

$$|u(z)|\leqslant \frac{||u||}{\sqrt{\pi}(1-|z|)},\;\forall |z|<1$$

(4). 验证 $H^2(D)$ 是 Hilbert 空间。

解答: Show answer

(1). 由例 1.6.28, $\varphi_n(z) = \sqrt{\frac{n}{\pi}} z^{n-1}$ 是一组 O.N.B. 那么

$$u(z) = \sum_{n=1}^{\infty} (u, \varphi_n) \varphi_n(z) = \sum_{n=1}^{\infty} b_{n-1} z^{n-1}$$

可得

$$\frac{b_k}{\sqrt{k+1}} = (u, \varphi_{k+1}) \cdot \sqrt{\frac{1}{\pi}}$$

于是

$$\sum_{k=0}^{\infty} \frac{|b_k|^2}{k+1} = \frac{1}{\pi} \sum_{k=0}^{\infty} |(u, \varphi_{k+1})|^2 \stackrel{\text{Parseval}}{=} \frac{1}{\pi} ||u||^2 < +\infty$$

(2).

$$(u,v) = \left(\sum_{n=1}^{\infty} (u,\varphi_n)\varphi_n, \sum_{m=1}^{\infty} (v,\varphi_m)\varphi_m\right)$$
$$= \sum_{n=1}^{\infty} (u,\varphi_n)\overline{(v,\varphi_n)}$$
$$= \sum_{k=0}^{\infty} \frac{\sqrt{\pi}a_k}{\sqrt{k+1}} \frac{\sqrt{\pi}\overline{b_k}}{\sqrt{k+1}} = \pi \sum_{k=0}^{\infty} \frac{a_k\overline{b_k}}{k+1}$$

(3). 由

$$\sum_{k=0}^{\infty} (k+1)|z|^k = \frac{1}{(1-|z|)^2}, |z| < 1$$

可得

$$RHS^{2} = \frac{||u||^{2}}{\pi(1-|z|)^{2}} = \sum_{k=0}^{\infty} \frac{|b_{k}|^{2}}{k+1} \cdot \sum_{k=0}^{\infty} (k+1)|z|^{k}$$

$$\geqslant \sum_{k=0}^{\infty} \frac{|b_{k}|^{2}|z|^{k}}{k+1} \cdot \sum_{k=0}^{\infty} (k+1)|z|^{k}$$

$$\geqslant \sum_{k=0}^{\infty} |b_{k}z^{k}|^{2} \geqslant |u(z)|^{2} = LHS^{2}$$

(4). 设 u_n 为 $H^2(D)$ 上的基本列,由 (3) 可知 u_n 内闭一致收敛至 u(z),故 u(z) 全纯,且

$$|u_n(z)| - |u_m(z)| \le |u_n(z) - u_m(z)|$$

故 $|u_n(z)|$ 是 $L^2(D)$ 中的基本列,由 $L^2(D)$ 的完备性,可知 $|u(z)| \in L^2(D)$,即 $u(z) \in H^2(D)$.

$$||u_n(z) - u_m(z)||_{H^2(D)} \to 0$$

令 $m \to \infty$,有 $u_n(z) \stackrel{H^2(D)}{\to} u(z)$.

题目 27.(1.6.12) X 是内积空间, $\{e_n\}$ 是 X 中的正交规范集,求证:

$$\left| \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)} \right| \leq ||x|| \cdot ||y||, \ \forall x, y \in X$$

解答: Show answer

$$LHS = \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)}$$

$$= \langle \sum_{n=1}^{\infty} (x, e_n) e_n, \sum_{n=1}^{\infty} (y, e_n) e_n \rangle$$

$$\stackrel{C-S}{\leqslant} \left\| \sum_{n=1}^{\infty} (x, e_n) e_n \right\| \cdot \left\| \sum_{n=1}^{\infty} (y, e_n) e_n \right\|$$

$$= \sum_{n=1}^{\infty} |(x, e_n)| \cdot \sum_{n=1}^{\infty} |(y, e_n)|$$

$$\stackrel{Bessel}{\leqslant} ||x|| \cdot ||y|| = RHS$$

题目 28.(1.6.13) X 是内积空间,令

$$C = \{ x \in X : ||x - x_0|| \le r \}$$

其中 $x_0 \in X, r > 0$,求证:

1. $C \in X$ 中的闭凸集;

2.

$$y = \begin{cases} x_0 + r(x - x_0)/||x - x_0|| & , x \notin C \\ x & , x \in C \end{cases}$$

是x在C中的最佳逼近元。

解答: Show answer

(1) C 闭显然, 只需证明为凸集: $\forall x_1, x_2 \in C, \forall \theta \in (0,1)$,

$$||\theta x_1 + (1 - \theta)x_2 - x_0|| = ||\theta(x_1 - x_0) + (1 - \theta)(x_2 - x_0)||$$

$$\leq \theta||x_1 - x_0|| + (1 - \theta)||x_2 - x_0||$$

$$\leq \theta r + (1 - \theta)r = r$$

$$\Rightarrow \theta x_1 + (1 - \theta)x_2 \in C$$

(2) 当 $x \notin C$, 对于 $\forall z \in C$,

$$\begin{aligned} ||x - y|| &= ||x - y|| + ||y - x_0|| - r \\ &= ||x - x_0|| - r \\ &\leq ||x - z|| + ||z - x_0|| - r \\ &\leq ||x - z|| \end{aligned}$$

等号成立当且仅当 z=y,则 $||x-y||=\inf_{z\in M}||x-z||$;当 $x\in C$ 则自身就是最佳逼近元。证毕。

◇ 4.2 第二章

4.2.1 线性算子

题目 29.(2.1.1) 证明:线性映射 $T: X \to Y$ 有界当且仅当 T 将有界集映为有界集。

解答: Show answer

必要性: 任取有界集 $A \subset X$, 存在 $B(0,r) \supset A$, 则

$$||Tx|| \le C||x|| \le Cr \Rightarrow Tx \in B(0,Cr) \Rightarrow T(A) \subset B(0,Cr)$$

所以 T 把有界集映为有界集。

充分性: $B=\{x\in X:||x||\leqslant 1\}$ 是有界集,则存在 M>0 使得 $||Tx||\leqslant M, \forall x\in B$,对于 $\forall x\in X-\{0\}$,

$$\left| \left| T\left(\frac{x}{||x||}\right) \right| \right| \leqslant M \Rightarrow ||Tx|| \leqslant M||x||$$

因此 T 有界。

题目 30.(2.1.2) 设线性映射 $A: X \to Y$ 有界, 证明:

(1).
$$||A|| = \sup ||Ax||$$

(2).
$$||A|| = \sup_{||x|| \le 1} ||Ax||$$

解答: Show answer

(1) 一方面

$$\sup_{||x||\leqslant 1}||Ax||\geqslant \sup_{||x||=1}||Ax||=||A||$$

另一方面

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} \geqslant \sup_{\substack{x \neq 0 \\ ||x|| \leqslant 1}} \frac{||Ax||}{||x||} \geqslant \sup_{||x|| \leqslant 1} ||Ax||$$

所以二者相等。

(2) 由上一问,

$$||A|| = \sup_{||x|| \leqslant 1} ||Ax|| \geqslant \sup_{||x|| < 1} ||Ax||$$

另一方面,对于 $\forall ||x|| = 1$, $\forall \varepsilon > 0$,

$$Ax = (1+\varepsilon)A(\frac{x}{1+\varepsilon}) \leqslant (1+\varepsilon) \sup_{||x||<1} ||Ax||$$

即

$$||A|| \leqslant (1+\varepsilon) \sup_{||x|| < 1} ||Ax||$$

 $\varphi \varepsilon \to 0^+$ 得证。

题目 31.(2.1.5) f 是 X 上的非零有界线性泛函,令:

$$d = \inf\{||x|| : f(x) = 1, x \in X\}$$

证明 $||f|| = \frac{1}{d}$.

解答: Show answer

$$d = \inf\{||x|| : f(x) = 1, x \in X\}$$

一方面,若 $x \in X$ 满足f(x) = 1,

$$\begin{split} ||f||\cdot||x|| &= ||x||\cdot \sup_{0\neq z\in X}\frac{||f(z)||}{||z||}\geqslant ||x||\cdot\frac{||f(x)||}{||x||} = ||f(x)|| = 1\\ \Rightarrow &||x||\geqslant \frac{1}{||f||}\\ \Rightarrow &d\geqslant \frac{1}{||f||} \end{split}$$

另一方面,由 ||f|| 的定义, $\forall \varepsilon > 0$,存在 $0 \neq x_0 \in X$ 使得

$$\frac{||f(x_0)||}{||x_0||} > ||f|| - \varepsilon \Rightarrow \frac{1}{||f|| - \varepsilon} > \left| \left| \frac{x_0}{||f(x_0)||} \right| \right|$$

币 $f\left(\frac{x_0}{||f(x_0)||}\right) = 1$,所以

$$\frac{1}{||f||-\varepsilon} > \left| \left| \frac{x_0}{||f(x_0)||} \right| \right| \geqslant d$$

综上,

$$\frac{1}{||f||}\leqslant d<\frac{1}{||f||-\varepsilon}$$

题目 32.(2.1.7) 线性映射 $T: X \to Y$, 令:

$$N(T) \stackrel{\text{def}}{=} \{ x \in X : Tx = 0 \}$$

- 1. 若T有界,证明N(T)是X的闭线性子空间;
- 2. N(T) 是 X 的闭线性子空间能否推出 T 有界?
- 3. 若 f 是线性泛函,求证:

$$f \in X^* \Leftrightarrow N(f)$$
是闭线性子空间

解答: Show answer

(1) $\{x_n\} \subset N(T)$, $x_n \to x$, $Tx_n = 0$, T 有界所以连续,令 $n \to \infty$ 得到 $Tx = 0 \Rightarrow x \in N(T)$, 所以 N(T) 闭。只需验证 N(T) 关于加法和数乘封闭,

$$x_1, x_2 \in N(T) \Rightarrow T(x_1 + x_2) = T(x_1) + T(x_2) = 0 \Rightarrow x_1 + x_2 \in N(T)$$
$$\lambda \in \mathbb{K}, x \in N(T) \Rightarrow T(\lambda x) = \lambda T(x) = 0 \Rightarrow \lambda x \in N(T)$$

所以 N(T) 是 X 的闭线性子空间。

(2) 不能, 反例如下: 在 l^{∞} 中, 取 $a = (1, -1, 0, 0, \cdots)$, 设

$$f: l^{\infty} \to \mathbb{R}, \{x_n\}_{n=1}^{\infty} \mapsto \sum_{n=1}^{\infty} x_n$$

 $T: l^{\infty} \to l^{\infty}, \xi \mapsto \xi - f(\xi)a$

 1° T 是线性映射: 显然 f 是线性映射,

$$T(\alpha \xi_1 + \beta \xi_2) = \alpha \xi_1 + \beta \xi_2 - f(\alpha \xi_1 + \beta \xi_2)a$$

$$= \alpha \xi_1 + \beta \xi_2 - [\alpha f(\xi_1) + \beta f(\xi_2)]a$$

$$= \alpha (\xi_1 - f(\xi_1)a) + \beta (\xi_2 - f(\xi_2)a)$$

$$= \alpha T(\xi_1) + \beta T(\xi_2), \forall \alpha, \beta \in \mathbb{K}, \xi_1, \xi_2 \in l^{\infty}$$

 $2^{\circ} N(T) = \{0\}$, 为闭线性子空间:

$$\xi = \{x_n\}_{n=1}^{\infty} \in N(T) \Leftrightarrow \xi - (f(\xi), -f(\xi), 0, 0, \dots) = 0$$

$$\Rightarrow x_1 = f(\xi), x_2 = -f(\xi), x_3 = 0, x_4 = 0, \dots$$

$$\Rightarrow f(\xi) = x_1 + x_2 = 0 \Rightarrow \xi = 0$$

3° f 无界: 只需取 $\xi_n = (1, \cdots, \underset{n}{1}, 0, 0, \cdots)$, $||\xi_n|| = 1$, $f(\xi_n)/||\xi_n|| = n \to \infty$.

4° T 无界: 假设有界,则

$$\xi \in l^{\infty} \Rightarrow ||\xi - f(\xi)a|| = ||T\xi|| \leqslant ||T|| \cdot ||\xi||$$
$$\Rightarrow |f(\xi)| = |f(\xi)| \cdot ||a|| \leqslant ||\xi - f(\xi)a|| + ||\xi|| \leqslant (1 + ||T||)||\xi||$$

这意味着 f 有界, 矛盾。

(3) (1) 已经证明必要性,只需说明充分性:假设f无界,即

$$\forall n \in \mathbb{N}_+, \exists x_n \in X \text{ s.t. } ||x_n|| = 1, f(x_n) \geqslant n$$

令

$$y_n \stackrel{\text{def}}{=} \frac{x_n}{f(x_n)} - \frac{x_1}{f(x_1)}$$

则 $f(y_n) = 1 - 1 = 0 \Rightarrow y_n \in N(f)$, 但是 $y_n \to -\frac{x_1}{f(x_1)} \notin N(f)$, 这与 N(f) 闭矛盾。

题目 33.(2.1.8) $f \in X$ 上的线性泛函,记

$$H_f^{\lambda} \stackrel{\text{def}}{=} \{ x \in X : f(x) = \lambda \}$$

其中 $\lambda \in \mathbb{K}$,如果 $f \in X^*$,且||f|| = 1,求证:

- (1). $|f(x)| = \inf\{||x z|| : \forall z \in H_f^0\}, \ \forall x \in X.$
- (2). $\forall \lambda \in \mathbb{K}$, H_f^{λ} 上的任一点 x 到 H_f^0 的距离都等于 $|\lambda|$.

并对 $X = \mathbb{R}^2$, $\mathbb{K} = \mathbb{R}$ 的情形解释上述命题的几何意义。

解答: Show answer

(1) 记 $d = \inf\{||x-z|| : \forall z \in H_f^0\}$, 一方面, 对于 $\forall z \in H_f^0$,

$$|f(x)| = |f(x-z)| \le ||f|| \cdot ||x-z|| = ||x-z||$$

所以 $|f(x)| \leq d$; 另一方面, $\forall y \in X$ 满足 ||y|| = 1 且 $f(y) \neq 0$, 有

$$z = x - \frac{f(x)}{f(u)}y \in N(f)$$

而

$$|f(x)| = |f(y)| \cdot ||x - z|| \ge |f(y)|d$$

于是

$$|f(x)| \geqslant ||f||d = d$$

(2) 对于 $\forall x \in H_f^{\lambda}$, 有 $f(x) = \lambda$, 由上一问可知

$$|\lambda| = \rho(x, H_f^0)$$

在 \mathbb{R}^2 中,由 ||f||=1 知 $f((x,y))=\alpha x+\beta y$,其中 $\alpha=f((1,0)),\beta=f((0,1)),\alpha^2+\beta^2=1$, $\rho(x,H_f^0)=\rho(0,H_f^\lambda)=\left.\frac{|\alpha x+\beta y-\lambda|}{\sqrt{\alpha^2+\beta^2}}\right|_{(0,0)}=|\lambda|$

4.2.2 Riesz 表示定理

题目 34.(2.2.1)H 是 Hilbert 空间,设 f_1, \dots, f_n 是 H 上的一组有界线性泛函,对于 $k=1,2,\dots,n$,定义

$$M \stackrel{\text{def}}{=} \bigcap_{k=1}^{n} N(f_k), \ N(f_k) \stackrel{\text{def}}{=} \{x \in H : f_k(x) = 0\}$$

任取 $x_0 \in H$,记 y_0 为 x_0 在 M 上的正交投影,求证: $\exists y_1, y_2, \cdots, y_n \in N(f_k)^{\perp}$ 以及 $\alpha_1, \cdots, \alpha_n \in \mathbb{K}$ 使得:

$$y_0 = x_0 - \sum_{k=1}^n \alpha_k y_k$$

解答: Show answer

由 Riesz 表示定理,

$$\forall 1 \leq k \leq n, \exists y_k \in H \text{ s.t. } x \in H \Rightarrow f_k(x) = \langle x, y_k \rangle$$

则

$$x \in M \Leftrightarrow \langle x, y_k \rangle = 0, k = 1, 2, \cdots, n$$

所以 $M = (\operatorname{span}\{y_k\}_{k=1}^n)^{\perp}$, 由习题 1.6.5 可知

$$M^{\perp} = \overline{\operatorname{span}\{y_k\}_{k=1}^n} = \operatorname{span}\{y_k\}_{k=1}^n$$

因此 $x_0 - y_0 \in M^{\perp}$ 可以表示成 $\{y_k\}$ 的线性组合:

$$x_0 - y_0 = \sum_{k=1}^n \overline{\langle z_k, z_0 \rangle} z_k \in \text{span}\{z_k\}_{k=1}^n = \text{span}\{y_k\}_{k=1}^n$$

题目 35.(2.2.3)H 是 Hilbert 空间,H 的元素是定义在集合 S 上的复值函数。 $\forall x \in S$,由

$$J_x(f) = f(x)$$

定义的映射 $J_x: H \to \mathbb{C}$ 是 H 上的连续线性泛函, 求证: 存在 $S \times S$ 上的复值函数 K(x,y), 适合条件:

- (1). 对任意固定的 $y \in S$, 作为 x 的函数有 $K(x,y) \in H$.
- (2). $f(y) = (f, K(\cdot, y)), \forall f \in H, \forall y \in S.$

解答: Show answer

由 Riesz 表示定理,

$$\forall x \in S, \exists f_x \in H \text{ s.t. } J_x(f) = \langle f, f_x \rangle, \forall f \in H$$

令 $K(x,y) \stackrel{\text{def}}{=} \langle f_x, f_y \rangle$, 则: 对于任一固定的 $y \in S$,

$$K(x,y) = \langle f_x, f_y \rangle = J_x(f_y) = f_y(x), \forall x \in S$$

可得 $K(\cdot,y) = f_y \in H$; 另一方面,

$$f(y) = \langle f, f_y \rangle = \langle f, K(\cdot, y) \rangle, \forall f \in H, \forall y \in S$$

所以 K(x,y) 满足题意。

题目 36.(2.2.5) H 是 Hilbert 空间,L, M 是 H 上的闭线性子空间,求证:

- (1). $L \perp M \Leftrightarrow P_L P_M = 0$.
- (2). $L = M^{\perp} \Leftrightarrow P_L + P_M = I$.
- (3). $P_L P_M = P_{L \cap M} \Leftrightarrow P_L P_M = P_M P_L$.

解答: Show answer

(1) 必要性:

$$\langle P_L P_M x, y \rangle = \langle P_M x, P_L y \rangle = 0, \forall x, y \in H$$

充分性:

$$\langle x,y\rangle = \langle P_Lx,P_My\rangle = \langle x,P_LP_My\rangle = \langle x,0\rangle = 0, \forall x\in L,y\in M$$

(2) 必要性:

$$x = P_L x + P_{L^{\perp}} x = P_L x + P_M x, \forall x \in H$$

充分性:

$$x \in L \Rightarrow x = P_L x + P_M x \Rightarrow P_M x = 0 \Rightarrow x \in M^{\perp}$$

 $x \in M^{\perp} \Rightarrow P_M x = 0 \Rightarrow P_L x = x - P_M x = x \Rightarrow x \in L$

于是 $L = M^{\perp}$.

(3) 必要性:

$$P_L P_M = P_{L \cap M} = P_{M \cap L} = P_M P_L$$

充分性: 对于 $\forall y \in H$,

$$M \ni P_M P_L x = P_L P_M x \in L$$

而 $P_L P_M x \in L \cap M$, 则由变分引理, 为证 $P_L P_M = P_{L \cap M}$ 只需验证

$$(x - P_L P_M x) \perp (L \cap M), \forall x \in H$$

实际上

$$\langle x - P_L P_M x, y \rangle = \langle x, y \rangle - \langle P_L P_M x, y \rangle$$
$$= \langle x, y \rangle - \langle x, y \rangle = 0, \forall y \in L \cap M$$

所以得证。

4.2.3 Baire 纲定理

本小节没有布置课本上的习题。

4.2.4 共鸣定理

题目 37.(2.3.7) 设 X, Y 是 Banach 空间, $\{A_n\} \subset \mathcal{L}(X, Y)$,若对于 $\forall x \in X$, $\{A_n x\}$ 在 Y 中收敛,求证:存在 $A \in \mathcal{L}(X, Y)$ 使得

$$A_n x \to A x$$
, $||A|| \le \liminf_{n \to \infty} ||A_n||$

解答: Show answer

对于 $\forall x \in X$,因为 $\{A_nx\}$ 收敛,可定义 $A: x \mapsto \lim_{n \to \infty} A_nx$,不难验证 A 是线性算子。收敛列必有界,所以 $\forall x \in X, \sup_{n \geqslant 1} ||A_nx|| < \infty$. 由 UBP,

$$\exists M > 0 \text{ s.t. } \sup_{n \geqslant 1} ||A_n|| \leqslant M$$

于是

$$||Ax|| = \lim_{n \to \infty} ||A_nx|| \le \liminf_{n \to \infty} ||A_n|| \cdot ||x|| \le M||x||, \forall x \in X$$

(稍微解释一下这里的小于等于号是怎么来的: $||A_nx|| \leq ||A_n|| \cdot ||x||$,尽管 $\{||A_n|| \cdot ||x||\}$ 不一定是收敛列,但我们知道它的收敛子列的极限一定大于等于 $\{||A_nx||\}$ 对应收敛子列的极限,也就是 $\{||A_nx||\}$ 的极限,因此由 liminf 的定义可得。)这就证明了 A 有界且 $||A|| \leq \liminf ||A_n||$.

题目 38.(2.3.8) 设 $1 , <math>p^{-1} + q^{-1} = 1$, 如果序列 $\{\alpha_k\}$ 使得对于 $\forall x \in \{\xi_k\} \in \ell^p$ 保证 $\sum_{k=1}^{\infty} \alpha_k \xi_k$ 收敛, 求证: $\{\alpha_k\} \in \ell^q$.

若定义

$$f: x \mapsto \sum_{k=1}^{\infty} \alpha_k \xi_k$$

求证: $f \in \ell^p$ 上的线性泛函, 而且

$$||f|| = \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{\frac{1}{q}}$$

解答: Show answer

考虑

$$f_n: \ell^p \to \mathbb{K}, x = \{\xi_k\} \mapsto \sum_{k=1}^n \alpha_k \xi_k$$

则由 Holder 不等式,

$$|f_n(x)| = \left| \sum_{k=1}^n \alpha_k \xi_k \right| \leqslant \left(\sum_{k=1}^n |\alpha_k|^q \right)^{\frac{1}{q}} \cdot \left(\sum_{k=1}^n |\xi_k|^p \right)^{\frac{1}{p}}$$
$$\leqslant \left(\sum_{k=1}^n |\alpha_k|^q \right)^{\frac{1}{q}} \cdot ||x||_p, \forall x \in \ell^p$$

从而 $f_n \in \mathcal{L}(\ell^p, \mathbb{K})$, 而且

$$||f_n|| \leqslant \left(\sum_{k=1}^n |\alpha_k|^q\right)^{\frac{1}{q}}$$

于是由习题 2.3.7 可得, 若令

$$f: l^p \to \mathbb{K}, x = \{\xi_k\} \mapsto \sum_{k=1}^{\infty} \alpha_k \xi_k$$

则 $f \in \mathcal{L}(\ell^p, \mathbb{K})$,

$$||f|| \leqslant \liminf_{n \to \infty} ||f_n|| \leqslant \liminf_{n \to \infty} \left(\sum_{k=1}^n |\alpha_k|^q \right)^{\frac{1}{q}}$$

另一方面, 取

$$x_k^{(n)} = \begin{cases} |\alpha_k|^{q-1} e^{-i \cdot \arg(\alpha_k)} &, 1 \leqslant k \leqslant n \\ 0 &, k > n \end{cases}$$

则 $x^{(n)} = (x_1^{(n)}, \cdots, x_k^{(n)}, \cdots) \in l^p$,且

$$||x^{(n)}||_p = \left(\sum_{k=1}^n |\alpha_k|^{(q-1)p}\right)^{\frac{1}{p}} = \left(\sum_{k=1}^n |\alpha_k|^q\right)^{\frac{1}{p}}$$

注意 $\alpha_k = |\alpha_k| e^{i \cdot \arg(\alpha_k)}$,

$$|f(x^{(n)})| = \sum_{k=1}^{n} \alpha_k |\alpha_k|^{q-1} e^{-i \cdot \arg(\alpha_k)}$$

$$= \sum_{k=1}^{n} |\alpha_k| e^{i \cdot \arg(\alpha_k)} \cdot |\alpha_k|^{q-1} e^{-i \arg(\alpha_k)}$$

$$= \sum_{k=1}^{n} |\alpha_k|^q = \left(\sum_{k=1}^{n} |\alpha_k|^q\right)^{\frac{1}{p} + \frac{1}{q}}$$

$$= \left(\sum_{k=1}^{n} |\alpha_k|^q\right)^{\frac{1}{q}} \cdot ||x^{(n)}||_p$$

于是

$$||f|| \geqslant \frac{|f(x^{(n)})|}{||x^{(n)}||_p} = \left(\sum_{k=1}^n |\alpha_k|^q\right)^{\frac{1}{q}}, \ \forall n \in \mathbb{N}$$

$$||f|| \geqslant \limsup_{n \to \infty} \left(\sum_{k=1}^{n} |\alpha_k|^q \right)^{\frac{1}{q}}$$
 (2)

结合 (1)(2) 式则可知等号成立,同时这也说明 $||\{\alpha_k\}||_q < \infty \Rightarrow \{\alpha_k\} \in \ell^q$.

题目 39.(2.3.9) 如果序列 $\{\alpha_k\}$ 使得对于 $\forall x = \{\xi_k\} \in \ell^1$,保证 $\sum_{k=1}^{\infty} \alpha_k \xi_k$ 收敛,求证: $\{\alpha_k\} \in \ell^{\infty}$. 若定义

$$f: x \mapsto \sum_{k=1}^{\infty} \alpha_k \xi_k$$

作为 ℓ^1 上的线性泛函, 求证:

$$||f|| = \sup_{k \geqslant 1} |\alpha_k|$$

解答: Show answer

思路和上一题基本相同。设

$$f_n: l^1 \to \mathbb{K}, x = \{\xi_k\} \mapsto \sum_{k=1}^n \alpha_k \xi_k$$

则

$$|f_n(x)| = \left| \sum_{k=1}^n \alpha_k \xi_k \right| \leqslant \max_{1 \leqslant k \leqslant n} |\alpha_k| \cdot \sum_{k=1}^n |\xi_k| \leqslant \max_{1 \leqslant k \leqslant n} |\alpha_k| \cdot ||x||_1$$

所以 f_n 有界,且

$$||f_n|| \leqslant \max_{1 \le k \le n} |\alpha_k|$$

于是由习题 2.3.7 可得, 若令

$$f: l^1 \to \mathbb{K}, x = \{\xi_k\} \mapsto \sum_{k=1}^{\infty} \alpha_k \xi_k$$

则f有界,而且

$$||f|| \leqslant \liminf_{n \to \infty} ||f_n|| \leqslant \max_{1 \leqslant k \leqslant n} |\alpha_k| \leqslant \sup_{k \geqslant 1} |\alpha_k| \tag{1}$$

另一方面,取 $x^{(n)}=(0,0,\cdots,0,\underset{n}{1},0,0,\cdots)$,则 $x^{(n)}\in l^{\infty}$, $||x^{(n)}||=1$,且

$$||f|| \geqslant |f(x^{(n)})| = \alpha_n$$

于是 $||f|| \geqslant \sup_{n\geqslant 1} |\alpha_n|$,结合 (1) 式可得 $||f|| = \sup_{k\geqslant 1} |\alpha_k|$.

4.2.5 开映射定理

题目 **40.**(2.3.1)X 是 Banach 空间, X_0 是其闭子空间,定义映射:

$$\varphi: X \to X \backslash X_0, x \mapsto [x]$$

[x] 表示含 x 的商类。求证 φ 是开映射。

解答: Show answer

$$||[x]|| = \inf_{y \in [x]} ||y|| \le ||x||$$

所以 φ 有界。由定义可知 φ 是满射,则由OMT可知 φ 是开映射。

题目 41.(2.3.2) 设 X,Y 是 Banach 空间,方程 Ux=y 对于 $\forall y\in Y$ 有解,其中 $U\in\mathcal{L}(X,Y)$,并且存在 m>0 使得

$$||Ux|| \geqslant m||x||, \ \forall x \in X$$

求证: U 有连续逆 U^{-1} ,并且 $||U^{-1}|| \leq \frac{1}{m}$.

解答: Show answer

方程 Ux = y 对于 $\forall y \in Y$ 有解,说明 U 是满射;设 $Ux_1 = Ux_2 = y$,则

$$m||x_1 - x_2|| \le 0 = ||U(x_1 - x_2)|| \Rightarrow x_1 - x_2 = 0$$

所以U是单射,进而是双射,则由OMT, U^{-1} 存在、有界且连续,且

$$||U^{-1}y|| = ||U^{-1}Ux|| = ||x|| \leqslant \frac{1}{m}||Ux|| = \frac{1}{m}||y|| \Rightarrow ||U^{-1}|| \leqslant \frac{1}{m}$$

题目 42.(2.3.3) 设 H 是 Hilbert 空间, $A \in \mathcal{L}(H)$,并且 $\exists m > 0$ 使得

$$|\langle Ax, x \rangle| \geqslant m||x||^2, \ \forall x \in H$$

求证:存在 $A^{-1} \in \mathcal{H}$.

解答: Show answer

由题意可知

$$x \in H \Rightarrow m||x||^2 \le |\langle Ax, x \rangle| \le ||Ax|| \cdot ||x||$$

 $\Rightarrow m||x|| \le ||Ax||$

于是 A 是单射:

$$0 = ||Ax_1 - Ax_2|| \geqslant m||x_1 - x_2|| \Rightarrow x_1 = x_2$$

然后证明 A 是满射, 从而 $A^{-1} \in \mathcal{L}(H)$.

1° Ran(A) = $\overline{\text{Ran}(A)}$:

$$y \in \overline{\mathrm{Im}(A)} \Rightarrow \exists x_n \in H \text{ s.t. } Ax_n \to y$$

 $\Rightarrow m||x_n - x_m|| \leqslant ||Ax_n - Ax_m|| \to 0 \text{ as } n, m \to \infty$
 $\Rightarrow \exists x \in H \text{ s.t. } x_n \to x, Ax_n \to Ax$
 $\Rightarrow Ax = y$

 $2^{\circ} \operatorname{Ran}(A)^{\perp} = \{0\}$,从而 $\operatorname{Im}(A) = \overline{\operatorname{Im}(A)} = H$:

$$y \in \operatorname{Im}(A)^{\perp} \Rightarrow \langle y, Ax \rangle = 0, \forall x \in H$$

 $\Rightarrow 0 = |\langle y, Ay \rangle| \geqslant m||y||^2$
 $\Rightarrow y = 0$

由变分引理, 1° 表明 $H = \operatorname{Ran}(A) \oplus \operatorname{Ran}(A)^{\perp}$,所以 $2^{\circ} \Rightarrow H = \operatorname{Ran}(A)$. 这个证明满射的思路在 Lax-Milgram 定理的证明中也用到了。

题目 43.(2.3.5) 用等价范数定理证明: $(C[0,1],||\cdot||_1)$ 不是 Banach 空间,其中

$$||f||_1 = \int_0^1 |f(t)| dt, \forall f \in C[0,1]$$

解答: Show answer

(反证) 假设 $(C[0,1],||\cdot||_1)$ 是 Banach 空间,则

$$||f||_1 = \int_0^1 |f(t)| dt \le \max_{t \in [0,1]} |f(t)|$$

由等价范数定理可知,

$$\exists C > 0 \text{ s.t. } ||f||_1 \geqslant C \max_{t \in [0,1]} |f(t)|, \forall f \in C[0,1]$$
 (*)

若令

$$f_n(x) = \begin{cases} 2n(1 - nx) &, x \in [0, \frac{1}{n}] \\ 0 &, x \in [\frac{1}{n}, 1] \end{cases}$$

则 $||f_n||_1 = 1$, $\max_{t \in [0,1]} |f_n(t)| = 2n$, 当 n 充分大时与 (*) 式矛盾。

题目 44.(2.3.11) 设 X, Y 是 Banach 空间, $A \in \mathcal{L}(X, Y)$ 是满射,求证: 如果在 $Y 中 y_n \to y_0$,则存在 C > 0 和 $x_n \to x_0$ 使得 $Ax_n = y_n$,且 $||x_n|| \le C||y_n||$.

解答: Show answer

记 $N = \{x \in X : Ax = 0\}$, 则 $N \in X$ 的闭线性子空间,且商空间 X/N 是 Banach 空间。定义映射:

$$\tilde{A}: X/N \to Y, [x] \mapsto Ax$$

则

- (1). \tilde{A} 是单射: $\tilde{A}[x] = 0 \Rightarrow Ax = 0 \Rightarrow x \in N \Rightarrow [x] = 0$.
- (2). \tilde{A} 是满射: $y \in Y \Rightarrow \exists x \in X, Ax = y \Rightarrow \tilde{A}[x] = Ax = y$.
- (3). \tilde{A} 是有界线性映射: A 是线性映射易知 \tilde{A} 也线性. $\forall x' \in [x]$,

$$||\tilde{A}[x]|| = ||Ax'|| \le ||A|| \cdot ||x'||$$

取 $x' \in [x]$ 满足 $||x'|| \leq 2||[x]||$,则

$$||\tilde{A}[x]|| \leqslant 2||A|| \cdot ||[x]||$$

所以 \tilde{A} 有界。

由 IMT 可知 \tilde{A}^{-1} 存在且有界, 不妨假设 $y_0=0,y_n\to 0$, 记 $[x_n]=\tilde{A}^{-1}y_n$, 则

$$||[x_n]|| = ||\tilde{A}^{-1}y_n|| \le ||\tilde{A}^{-1}y_n|| \le ||\tilde{A}^{-1}|| \cdot ||y_n||$$

于是取 $x_n \in [x_n]$, 使得 $||x_n|| \le 2||[x_n]||$, 便有 $||x_n|| \le C||y_n||$, 其中 $C = 2||\tilde{A}^{-1}||$.

4.2.6 闭图像定理

题目 45.(2.3.4) 设 X, Y 是赋范线性空间, $D \in X$ 的线性子空间,并且 $A: D \to Y$ 是线性映射,求证:

- (1). A 连续且 D 闭 \Rightarrow A 闭;
- (2). A 连续且闭,则 Y 完备 \Rightarrow D 闭;
- (3). A 单且闭 $\Rightarrow A^{-1}$ 闭;
- (4). X 完备,A 单且闭,Ran(A) 在 Y 中稠密,并且 A^{-1} 连续,那么 Ran(A) = Y.

解答: Show answer

- (1). 设 $\{x_n\} \subset D$ 收敛到 x, $Ax_n \to y$, 则 D 闭 $\Rightarrow x \in D$, A 连续 $\Rightarrow Ax_n \to Ax$, 所以 Ax = y, A 是闭算子。
- (2). 如果 Y 完备,设 $\{x_n\} \subset D$ 收敛到 x,

$$\Rightarrow ||Ax_n - Ax|| \le ||A|| \cdot ||x_n - x|| \to 0 \text{ as } n, m \to \infty$$

$$\Rightarrow \exists y \in Y \text{ s.t. } Ax_n \to y$$

$$\Rightarrow x \in D, Ax = y$$

则D闭。

- (3). A 单射,所以记 $Range(A) = Dom(A^{-1}) = G \subset Y$,设 $\{y_n = Ax_n\}$ 是 G 中的收敛列,且 $\{x_n\}$ 是 D 中的收敛列,因为 A 是闭算子,可知 $x_n \to x \in D$, $y_n \to y = Ax \in G$,也就是 $y_n \to y \in G$, $x_n \to A^{-1}y \in D$. 所以 A^{-1} 也是闭算子。
- (4). X 完备,A 单且闭,则 Ran(A) 在 Y 中稠密, A^{-1} 连续,则 Ran(A)=Y, A^{-1} 连续且闭,Ran(A) 闭,所以 $Ran(A)=\overline{Ran(A)}=Y$.

题目 46.(2.3.12) 设 X,Y 是 Banach 空间,T 是闭线性算子, $D(T)\subset X$, $R(T)\subset Y$, $N(T)\stackrel{\mathrm{def}}{=}\{x\in X|Tx=0\}$. 求证:

- (1). N(T) 是 X 的闭线性子空间。
- (2). $N(T) = \{0\}, R(T)$ 在 Y 中闭的充要条件是:

$$\exists \alpha > 0 \text{ s.t. } ||x|| \leq \alpha ||Tx||, \ \forall x \in D(T)$$

(3). 点 $x \in X$ 到集合 N(T) 的距离:

$$d(x, N(T)) \stackrel{\text{def}}{=} \inf_{z \in N(T)} ||z - x||$$

则 R(T) 在 Y 中闭的充要条件是:

$$\exists \alpha > 0 \text{ s.t. } d(x, N(T)) \leqslant \alpha ||Tx||, \ \forall x \in D(T)$$

解答: Show answer

- (1). 显然 N(T) 是线性子空间;设 $N(T) \ni x_n \to x_0$, $\{Tx_n = 0\}$ 是收敛列,由 T 是闭算子可知 $x_0 \in D(T)$ 且 $Tx_0 = 0 \Rightarrow x_0 \in N(T) \Rightarrow N(T)$ 闭。
- (2). 必要性:设 $N(T) = \{0\}$, R(T)闭,则R(T)是 Banach 空间,由 IMT 可得 T^{-1} 存在且有界,于是

$$\exists \alpha > 0, ||x|| \leq \alpha ||Tx||, \forall x \in D(T)$$

充分性: 设对于某个 $\alpha > 0$, $||x|| \leq \alpha ||Tx||, \forall x \in D(T)$, 则

1° $N(T) = \{0\}$: $Tx = 0 \Rightarrow ||x|| \leqslant 0 \Rightarrow x = 0$.

 2° R(T) 闭:

$$Tx_n \to y \Rightarrow ||x_n - x_m|| \leq \alpha ||Tx_n - Tx_m|| \to 0 \text{ as } n, m \to \infty$$

 $\Rightarrow \exists x_0 \in X \text{ s.t. } x_n \to x_0$
 $\Rightarrow x_0 \in D(T), Tx_0 = y_0$

(3). 注意到 X/N(T) 是 Banach 空间,且 $d(x,N(T)) = ||[x]||, \forall x \in X$. 定义:

$$\tilde{T}: X/N(T) \to Y, \ \tilde{T}[x] = Tx$$

则

$$D(\tilde{T}) = \{ [x] \in X/N(T) : x \in D(T) \}$$

可见 $N(\tilde{T})=[0]$, $R(\tilde{T})=R(T)$, 于是只需证明 \tilde{T} 是闭算子。设 $[x_n-x_0]\to 0$, $Tx_n-y_0\to 0$, 则 $\exists x_n^{(n)}\in[x_n], x_0^{(n)}\in[x_0]$ 使得

$$||x_n^{(n)} - x_0^{(n)}|| \le 2||[x_n - x_0]|| \to 0 \text{ as } n \to \infty$$

设

$$\tilde{x}_n^{(n)} = x_n^{(n)} - (x_0^{(n)} - x_0)$$

Dil.

1°
$$||\tilde{x}_n^{(n)} - x_0|| = ||x_n^{(n)} - x_0^{(n)}|| \to 0, \ n \to \infty.$$

2°
$$T\tilde{x}_n^{(n)} = Tx_n^{(n)} - Tx_0^{(n)} + Tx_0 = Tx_n \to y_0, \ n \to \infty.$$

由 T 是闭算子可知: $x_0 \in D(T), Tx_0 = y_0$, 从而 $[x_0] \in D(\tilde{T}), \tilde{T}[x_0] = Tx_0 = y_0$.

4.2.7 Hahn-Banach 定理

题目 47.(2.4.3) 设 X 是复线性空间,p 是 X 上的半范数,任取 $x_0 \in X$ 满足 $p(x_0) \neq 0$,求证:存在 X 上的线性 泛函 f 满足:

- 1. $f(x_0) = 1$.
- $2. |f(x)| \leq p(x)/p(x_0), \forall x \in X.$

解答: Show answer

$$\tilde{p}(x)\stackrel{\mathrm{def}}{=} p(x)/p(x_0)$$
 仍然是一个半范数,取 $X_0=\mathrm{span}\{x_0\}=\{\alpha x_0:\alpha\in\mathbb{C}\}$,定义 X_0 上的映射

$$f_0: X_0 \to \mathbb{C}, \alpha x_0 \mapsto \alpha$$

则 f 是线性映射, 并且

$$|f_0(\alpha x_0)| = |\alpha| = \frac{p(\alpha x_0)}{p(x_0)} = \tilde{p}(x)$$

于是由复HBT (定理 2.7.2), 存在 X 上的线性泛函 f, 使得

$$f|_{X_0} = f_0, |f(x)| \le \tilde{p}(x) = \frac{p(x)}{p(x_0)}, \forall x \in X$$

进而 $f(x_0) = f_0(x_0) = 1$.

题目 48.(2.4.5)X 是赋范线性空间, X_0 是其闭子空间,求证:

$$\rho(x, X_0) = \sup\{|f(x)| : f \in X^*, ||f|| = 1, f(X_0) = 0\}$$

其中 $\rho(x, X_0) \stackrel{\text{def}}{=} \inf_{y \in X_0} ||x - y||.$

解答: Show answer

当 $x\in X_0$ 时等式两边均为零,成立,下设 $x\notin X_0$,记 $F=\{f\in X^*:||f||=1,f(X_0)=0\}.$ 一方面, $\forall f\in F,\ \forall y\in X_0$,

$$|f(x)| = |f(x - y)| \le ||f|| \cdot ||x - y|| = ||x - y||$$

所以

$$\sup_{f \in F} |f(x)| \leqslant \inf_{y \in X_0} ||x - y||$$

另一方面, X_0 闭 $\Rightarrow \rho(x, X_0) > 0$, 由定理 2.7.4 可得

$$\exists \tilde{f} \in F \text{ s.t. } \tilde{f}(x) = \rho(x, X_0), \tilde{f}(X_0) = 0.$$

于是 $|\tilde{f}(x)| = \rho(x, X_0)$, 因此

$$\rho(x, X_0) \leqslant \sup_{f \in F} |f(x)|$$

题目得证。

题目 49.(2.4.7)X 是赋范线性空间,给定 X 中 n 个线性无关的元素 x_1, \dots, x_n ,求证:存在 $f_1, \dots, f_n \in X^*$ 使得

$$\langle f_i, x_j \rangle = \delta_{ij}, \ \forall i, j \in \{1, 2, \cdots, n\}$$

解答: Show answer

考虑 $X_0 = \operatorname{span}\{x_j\}_{j=1}^n$ 及其上的 n 个线性泛函:

$$\tilde{f}_i: X_0 \to \mathbb{K}, \sum_{i=1}^n \alpha_j x_j \mapsto \alpha_i, \ i = 1, 2, \cdots, n$$

则由有限维线性赋范空间中的范数等价,有

$$\left| \tilde{f}_i \left(\sum_{j=1}^n \alpha_j x_j \right) \right| = \alpha_i \leqslant \max_{1 \leqslant j \leqslant n} |\alpha_j| \leqslant C \left| \left| \sum_{j=1}^n \alpha_j x_j \right| \right|$$

因此 \tilde{f}_i 都是 X_0 上的有界线性泛函, 所以由 HBT (定理 2.7.3),

$$\exists f_i \in X^* \text{ s.t. } \langle f_i, x_j \rangle = \langle \tilde{f}_i, x_j \rangle = \delta_{ij}, \ i, j = 1, 2, \cdots, n$$

题目 50.(1.5.1)X 是赋范线性空间,E 是以 0 为内点的真凸子集,P 是 E 产生的 Minkowski 泛函,求证:

- (1). $x \in \mathring{E} \Leftrightarrow P(x) < 1$.
- (2). $\overline{\mathring{E}} = \overline{E}$.

解答: Show answer

(1). 一方面, $x \in \mathring{E} \Rightarrow \exists \varepsilon > 0$ s.t.

$$\frac{x}{1/(1+\varepsilon)} = (1+\varepsilon)x \in E$$

于是

$$P(x) \leqslant \frac{1}{1+\varepsilon} < 1$$

另一方面,若 P(x) < 1,设 $r \in (1, 1/P(x))$,则有 $rx \in E$. 因为 0 是 E 的内点,存在 $B(0, \delta) \subset E$,令

$$d = \delta(1 - \frac{1}{r})$$

对于任一 $y \in B(x,d)$,

$$y = \frac{1}{r} \cdot rx + (1 - \frac{1}{r}) \frac{r(y - x)}{r - 1}$$

注意到 $rx \in E, \frac{r(y-x)}{r-1} \in B(0,\delta) \subset E \Rightarrow y \in E \Rightarrow B(x,d) \subset E \Rightarrow x$ 是内点。

(2). 即证明 $\forall x \in E$,都存在 \mathring{E} 中的点列 x_n 使得 $x_n \to x$,取 $x_n = (1 - \frac{1}{n})x$ 即可。

题目 51.(2.4.9)X 是复线性空间,E 是 X 上的非空均衡集,f 是 X 上的线性泛函,求证:

$$|f(x)| \leq \sup_{y \in E} \operatorname{Re} f(y), \ \forall x \in E$$

解答: Show answer

 $\forall x \in E$,

$$|f(x)| = f(x)\mathrm{e}^{-\mathrm{i} \cdot \mathrm{arg} f(x)} = f(\mathrm{e}^{-\mathrm{i} \cdot \mathrm{arg} f(x)} x) = \mathrm{Re} f(\mathrm{e}^{-\mathrm{i} \cdot \mathrm{arg} f(x)} x) \leqslant \sup_{y \in E} \mathrm{Re} f(y)$$

题目 52.(2.4.11)E, F 是实赋范线性空间 X 中的两个互不相交的非空凸集,且 E 是开的和均衡的,求证: $\exists f \in X^*$ 使得:

$$|f(x)| < \inf_{y \in F} |f(y)|, \forall x \in E$$

笔者注:"均衡的"应该改成"对称的",因为前面说了 X 是实的。

解答: Show answer

由凸集分离定理 (定理 2.7.7), 存在非零 $f \in X^*$, 使得

$$\sup_{z \in E} f(z) \leqslant \inf_{y \in F} f(y) \leqslant \inf_{y \in F} |f(y)|$$

引理: $\forall x \in E \ f(z) < \sup_{z \in E} f(z)$. 因此

$$|f(x)| = \operatorname{sgn}(f(x))f(x) = f(x \cdot \operatorname{sgn}(f(x))) < \sup_{z \in E} f(z) \leqslant \inf_{y \in F} |f(y)|$$

引理的证明:(反证)假设存在 $z_0\in E$ 使得 $f(z_0)=\sup_{z\in E}f(z)$, E 开所以存在 $B(z_0,\delta)\subset E$, 于是

$$\forall z \in B(z_0, \delta), f(z_0) \geqslant f(z) \Rightarrow f(z_0) - f(z) = f(z_0 - z) \geqslant 0$$

即

$$\forall y \in B(0, \delta), f(y) \geqslant 0$$

因此也有 $f(-y) = -f(y) \ge 0$, 进而 $f(y) \equiv 0$ on $B(0,\delta)$, 于是 f 恒为零, 这与 f 非零矛盾。

题目 53.(2.4.13)X 是赋范线性空间,设 M 是 X 上的闭凸集,求证: $\forall x \in X \setminus M$,一定存在 $f_1 \in X^*$ with $||f_1|| = 1$,且

$$\sup_{y \in M} f_1(y) \leqslant f_1(x) - d(x)$$

其中 $d(x) = \inf_{z \in M} ||x - z||$.

解答: Show answer

注意到开凸集 $B(x,d(x)) \cap M = \emptyset$, 由凸集分离定理可得存在非零 $f \in X^*$ 使得

$$\sup_{y \in M} f(y) \leqslant \inf_{z \in B(x, d(x))} f(z) = \inf_{||w|| < 1} f(x - d(x)w) = f(x) - d(x) \cdot \sup_{||w|| < 1} f(w) = f(x) - d(x) \cdot ||f||$$

(这里最后一个等号见习题 2.1.2(2).) 于是取 $f_1 = f/||f||$, 则

$$\sup_{y \in M} f_1(y) \leqslant f_1(x) - d(x)$$

4.2.8 对偶空间、自反空间、弱收敛

题目 54.(2.5.1) 证明:

$$(\ell^p)^* = \ell^q, \ 1 \leqslant p < \infty, \frac{1}{p} + \frac{1}{q} = 1$$

解答: Show answer

对于 $\forall x = \{\xi_k\}_{k=1}^{\infty} \in \ell^p, y = \{\eta_k\}_{k=1}^{\infty} \in \ell^q, \text{ 由 Holder 不等式:}$

$$\left| \sum_{k=1}^{\infty} \xi_k \eta_k \right| \leqslant \left(\sum_{k=1}^{\infty} |\xi_k|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{\infty} |\eta_k|^q \right)^{\frac{1}{q}} \leqslant ||x||_p \cdot ||y||_q$$

定义

$$T_y: l^p \to \mathbb{K}, \ x = \{\xi_k\}_{k=1}^{\infty} \mapsto \sum_{k=1}^{\infty} \xi_k \eta_k$$

则 T_y 有界且 $||T_y|| \leqslant ||y||_q$,下面证明映射 $\Lambda: y \mapsto T_y$ 是等距同构。

对于 $T \in (\ell^p)^*$, 令 $e_k = (0, \dots, 0, 1, 0, \dots)$, 则

$$T(x) = T\left(\sum_{k=1}^{\infty} \xi_k e_k\right) = \sum_{k=1}^{\infty} \xi_k T(e_k), \ \forall x = \{\xi_k\}_{k=1}^{\infty} \in l^p$$

取 $y_T \stackrel{\mathrm{def}}{=} \{T(e_k)\}_{k=1}^{\infty}$,则 $\Lambda(y_T) = T$,下面证明 $y_T \in \ell^p$ 且 $||y_T||_q \leqslant ||T||$,从而映射 Λ 是满射且保距,进而是等距同构。

差
$$p>1$$
,读 $a_k=|T(e_k)|^{q-1}\mathrm{e}^{-\mathrm{i}\cdot\mathrm{arg}T(e_k)}$, $z_n=(a_1,a_2,\cdots,a_n,0,0,\cdots)\in\ell^p$,于是
$$\sum_{k=1}^n|T(e_k)|^q=\sum_{k=1}^na_k\cdot T(e_k)=T(z_n)$$

$$\leqslant ||T||\cdot||z_n||_p$$

$$=||T||\cdot\left(\sum_{k=1}^n|a_k|^p\right)^{\frac{1}{p}}$$

$$=||T||\cdot\left(\sum_{k=1}^n|T(e_k)|^{p(q-1)}\right)^{\frac{1}{p}}$$

$$=||T||\cdot\left(\sum_{k=1}^n|T(e_k)|^q\right)^{\frac{1}{p}}$$

从而

$$\left(\sum_{k=1}^{n} |T(e_k)|^q\right)^{1-\frac{1}{p}} = \left(\sum_{k=1}^{n} |T(e_k)|^q\right)^{\frac{1}{q}} \leqslant ||T||, \ \forall n$$

令 $n \to \infty$ 可得 $||y_T||_q \leqslant ||T||$.

若
$$p=1, q=\infty$$
,

$$||y_T||_{\infty} = \sup_{n \ge 1} |T(e_n)|$$

$$= \sup_{n \ge 1} T(e_n) \cdot e^{-i \cdot \arg T(e_n)}$$

$$= \sup_{n \ge 1} T\left(\left\{e^{-i \cdot \arg T(e_n)} \cdot \delta_{kn}\right\}_{k=1}^{\infty}\right) \le ||T||$$

最后一个不等号来自

$$||T|| = \sup_{||x||=1} ||Tx||$$

所以题目得证。

题目 55.(2.5.2) 设 C 是收敛数列全体, 赋以范数:

$$||\cdot||: \{\xi_k\} \in C \mapsto \sup_{k\geqslant 1} |\xi_k|$$

求证 $C^* = \ell^1$.

解答: Show answer

记

$$e_0 = (1, 1, \dots), e_k = (0, \dots, 0, 1, 0, \dots) \in C$$

对于 $x = \{x_n\} \in C$, $x_n \to x_0$, 设 $a = a_n \in \ell^1$, 定义映射

$$T_a: C \to \mathbb{C}, x \mapsto a_1 x_0 + \sum_{n=1}^{\infty} a_{n+1} x_n$$

右侧级数是收敛的, 因为

$$\sum_{n=1}^{\infty} |a_{n+1}x_n| \leqslant \sup_{n\geqslant 1} |x_n| \cdot \sum_{n=1}^{\infty} |a_{n+1}| \leqslant ||x|| \cdot ||a||_1 < +\infty$$

又因为 $x_0 \leqslant \sup_{n \geq 1} |x_n|$,

$$|T_a(x)| \le |a_1 x_0| + \sup_{n \ge 1} |x_n| \cdot \sum_{n=2}^{\infty} |a_n| \le \sup_{n \ge 1} |x_n| \cdot \sum_{n=1}^{\infty} |a_n| \le ||x|| \cdot ||a||_1$$

所以 $||T_a|| \leqslant ||a||_1$,同时, 令 $y_n = (\mathrm{e}^{-\mathrm{i}\cdot \mathrm{arg}(a_2)}, \cdots, \mathrm{e}^{-\mathrm{i}\cdot \mathrm{arg}(a_n)}, \mathrm{e}^{-\mathrm{i}\cdot \mathrm{arg}(a_1)}, \mathrm{e}^{-\mathrm{i}\cdot \mathrm{arg}(a_1)}, \cdots)$,则

$$\left| \sum_{k=1}^{n} |a_k| + e^{-i \cdot \arg(a_1)} \cdot \sum_{k=n+1}^{\infty} a_k \right| = |T_a(y_n)| \le ||T_a|| \cdot ||y_n|| = ||T_a||$$

令 $n \to \infty$ 就得到

$$||a||_1 = \sum_{k=1}^{\infty} |a_k| \leqslant ||T_a||$$

,从而 $||T_a|| = ||a||_1$. 那么定义映射 $\Lambda: \ell^1 \to C^*, a \mapsto T_a$,只需证明 Λ 是满射。 对于任意 $T \in C^*$,令 $a_{k+1} = T(e_k)$, $z_n = (\mathrm{e}^{-\mathrm{i} \cdot \arg(a_2)}, \cdots, \mathrm{e}^{-\mathrm{i} \cdot \arg(a_n)}, 0, 0, \cdots) \in C$,于是 $\sum_{i=1}^n |a_k| = \sum_{i=1}^n a_k \cdot \mathrm{e}^{-\mathrm{i} \cdot \arg(a_k)} = T(z_n) \leqslant ||T|| \cdot ||z_n|| = ||T|| < +\infty, \forall n$

这说明级数 $\sum_{k=2}^{\infty} a_k$ 收敛, 取

$$a_1 = T(e_0) - \sum_{k=2}^{\infty} a_k$$

则令 $a = \{a_n\} \in \ell^1$,且

$$T_a(x) = a_1 x_0 + \sum_{k=2}^{\infty} a_k x_{k-1} = T((x_0, x_0, \dots)) + \sum_{k=2}^{\infty} a_k (x_{k-1} - x_0) = T((x_1, x_2, \dots)) = T(x)$$

得证。

题目 56.(2.5.4) 证明:有限维赋范空间一定自反。

解答: Show answer

设 $\{x_k\}_{k=1}^n$ 是 X 的一组基,则由习题 2.4.7 可知

$$\exists \{f_k\}_{k=1}^n \subset X^* \text{ s.t. } \langle f_i, x_j \rangle = \delta_{ij} \quad (i, j = 1, 2, \dots, n)$$

于是对 $\forall f \in X^*, \forall x = \sum_{k=1}^n \lambda_k x_k$,

$$f(x) = f\left(\sum_{k=1}^{n} \lambda_k x_k\right) = \sum_{k=1}^{n} \lambda_k f(x_k) = \sum_{k=1}^{n} f_k(x) f(x_k)$$

此即说明,

$$f = \sum_{k=1}^{n} f(x_k) f_k$$

现对 $\forall y \in X^{**}$,

$$y(f) = y\left(\sum_{k=1}^{n} f(x_k)f_k\right) = \sum_{k=1}^{n} f(x_k)y(f_k) = f\left(\sum_{k=1}^{n} x_k y(f_k)\right)$$

于是 $x_0 \stackrel{\text{def}}{=} \sum_{k=1}^n x_k y(f_k) \in X$ 使得 $x_0^{**} = y$, 这意味着从 x 到 x^{**} 的自然映射是满的,所以 X 是自反的.

题目 57.(2.5.5) 证明: Banach 空间自反当且仅当它的共轭空间(对偶空间)是自反的。

解答: Show answer

设X是Banach空间,从X到 X^{**} 的自然映射是T.

必要性:即证明从 X^* 到 X^{***} 的自然映射是满的,考虑 $y \in X^{***}$,取

$$f: X \to \mathbb{K}, x \mapsto y(T(x)) = y(x^{**})$$

于是 $\forall x^{**} \in X^{**}$,

$$y(x^{**}) = f(x) = x^{**}(f)$$

这说明 $f^{**} = y$, 得证。

充分性:设 X^* 自反,则由必要性知 X^{**} 自反,又因为X,作为 X^{**} 的子空间(因为自然映射是嵌入)是闭的(因为X是 Banach 空间),自反空间的闭子空间也自反(Pettis,定理 2.8.11),从而X自反。

题目 58.(2.5.6) 设 X 是赋范线性空间,T 是从 X 到 X^{**} 的自然映射,求证: R(T) 闭的充要条件是 X 完备。

解答: Show answer

 X^{**} 是完备的, $R(T) \cong X$ 作为 X^{**} 的子空间, 闭 \Leftrightarrow 完备。

题目 **59.**(2.5.8) 在 ℓ^2 中定义算子:

$$T:(x_1,x_2,\cdots,x_n,\cdot)\mapsto(x_1,\frac{x_2}{2},\cdots,\frac{x_n}{n},\cdots)$$

4.2 第二章

证明 $T \in \mathcal{L}(\ell^2)$, 并求 T^* .

解答: Show answer

$$\forall x = (x_1, x_2, \dots, x_n, \dots) \in \ell^2$$
, 有

$$||Tx||_{\ell^2}^2 = \sum_{k=1}^{\infty} \left| \frac{x_k}{k} \right|^2 \le \sum_{k=1}^{\infty} |x_k|^2 = ||x||^2$$

从而 $T \in \mathcal{L}(\ell^2)$.

 ℓ^2 是 Hilbert 空间,由 Riesz 表示定理, $\forall f \in (\ell^2)^* = \ell^2$,存在 $y_f = \{f_n\}_{n=1}^\infty$ 使得

$$f = \langle \cdot, y_f \rangle$$

 T^* 满足:

$$T^*f(x) = f(T(x)) = \langle T(x), y_f \rangle = \sum_{n=1}^{\infty} \frac{f_n x_n}{n} \Rightarrow T^*f = \langle \cdot, \left\{ \frac{f_n}{n} \right\}_{n=1}^{\infty} \rangle$$

所以 $T^*: \{f_n\}_{n=1}^{\infty} \mapsto \{f_n/n\}_{n=1}^{\infty}$, 也就是 $T^* = T$.

题目 60.(2.5.9)H 是 Hilbert 空间, $A \in \mathcal{L}(H)$ 满足

$$\langle Ax, y \rangle = \langle x, Ay \rangle, \ \forall x, y \in H$$

求证:

- (1). $A^* = A$.
- (2). R(A) 在 H 中稠密 \Rightarrow 方程 Ax = y 对于 $\forall y \in R(A)$ 存在唯一解。

解答: Show answer

(1). 对于 $f \in H^*$, 由 Riesz 表示定理,存在 y_f 使得 $f = \langle \cdot, y_f \rangle$,并且 $||f|| = ||y_f||$,因此 $f \mapsto y_f$ 就是 H^* 到 H 的等距同构。因此: $\forall f \in H^*$, $\forall x \in H$,

$$A^*f(x) = f(A(x)) \Rightarrow \langle x, y_{A^*f} \rangle = \langle Ax, y_f \rangle = \langle x, Ay_f \rangle \Rightarrow Ay_f = y_{A^*f}$$

而 $A^*: f \mapsto A^*f$ 对应了 $y_f \mapsto y_{A^*f}$,所以 $A^*y_f = y_{A^*f} = Ay_f \Rightarrow A^* = A$.

(2). 对 $\forall y \in R(A)$, 若

$$Ax_1 = y = Ax_2$$

则 $\forall z \in H$,

$$0 = \langle A(x_1 - x_2), z \rangle = \langle x_1 - x_2, Az \rangle$$

由于 R(A) 在 H 中稠密,

$$\exists z_n \in H \text{ s.t. } Az_n \to x_1 - x_2$$

从而

$$||x_1 - x_2||^2 = \lim_{n \to \infty} \langle x_1 - x_2, Az_n \rangle = 0 \Rightarrow x_1 = x_2$$

$$\lim_{n \to \infty} x_n(t) = x(t), \ \forall t \in [a, b]$$

解答: Show answer

对于 $t \in C[a,b]$, 取赋值映射 $f_t: x \mapsto x(t)$,

$$\frac{|f_t(x)|}{||x||} = \frac{|x(t)|}{\sup_{t \in [a,b]} |x(t)|} \leqslant 1$$

则 $f_t \in C[a,b]^*$,

$$x_n \stackrel{w}{\to} x \Rightarrow \lim_{n \to \infty} f_t(x_n) = f_t(x)$$

即

$$\lim_{n \to \infty} x_n(t) = x(t)$$

题目 62.(2.5.14) 已知在赋范线性空间中 $x_n \stackrel{w}{\rightarrow} x_0$, 求证:

$$\liminf_{n\to\infty} ||x_n|| \geqslant ||x_0||$$

解答: Show answer

左式非负,所以 $x_0=0$ 时成立。下设 $x_0\neq 0$,则存在 $f\in X^*$ s.t. ||f||=1 s.t. $f(x_0)=||x_0||$,从而 $||x_0||=\lim_{n\to\infty}|f(x_n)|\leqslant \liminf_{n\to\infty}||f||\cdot||x_n||=\liminf_{n\to\infty}||x_n||$

题目 63.(2.5.15)H 是 Hilbert 空间, $\{e_n\}$ 是 H 的正交规范基,求证: 在 H 中 $x_n \stackrel{w}{\to} x_0$ 的充要条件为

 $1^{\circ} ||x_n|| 有界。$

 $2^{\circ} \langle x_n, e_k \rangle \to \langle x_0, e_k \rangle, \forall k.$

解答: Show answer

充分性:设 $f \in H^*$,由Riesz表示定理,存在

$$y_k = \sum_{k=1}^{\infty} y_k e_k$$

使得 $f = \langle \cdot, y_f \rangle$, 设

$$y_f^n = \sum_{k=1}^n y_k e_k$$

则

$$|\langle x_n - x_0, y_f^n \rangle| \leqslant \sum_{k=1}^n |y_k| \cdot |\langle x_n - x_0, e_k \rangle| \to 0$$

因此

$$\begin{split} |f(x_n) - f(x_0)| = & |\langle x_n - x_0, y_f \rangle| \\ \leqslant & |\langle x_n - x_0, y_f^n \rangle| + |\langle x_n - x_0, y_f - y_f^n \rangle| \\ \leqslant & |\langle x_n - x_0, y_f^n \rangle| + ||x_n - x_0|| \cdot ||y_f - y_f^n|| \\ \leqslant & |\langle x_n - x_0, y_f^n \rangle| + 2M||y_f - y_f^n|| \to 0 \end{split}$$

所以 $x_n \stackrel{w}{\rightarrow} x_0$.

必要性: 令 $f = \langle \cdot, e_k \rangle \in H^*$, 则 2° 得证; 对于 $\forall n$, 考虑 $x_n^{**} \in H^{**}$, 则 $||x_n^{**}|| = ||x_n||$, 收敛列必有界,所

以

$$\sup_{n} |x_n^{**}(f)| = \sup_{n} |f(x_n)| < +\infty$$

由 UBP 可得 x_n^{**} 一致有界, 进而 1° 得证。

题目 **64.**(2.5.17)*H* 是 Hilbert 空间,在 *H* 中 $x_n \stackrel{w}{\to} x_0$,且 $y_n \to y_0$,求证:

$$\langle x_n, y_n \rangle \to \langle x_0, y_0 \rangle$$

解答: Show answer

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x_0, y_0 \rangle| &= |\langle x_n, y_n \rangle - \langle x_0, y_n \rangle + \langle x_0, y_n \rangle - \langle x_0, y_0 \rangle| \\ &= |\langle x_n - x_0, y_n \rangle + \langle x_0, y_n - y_0 \rangle| \\ &\leq |\langle x_n - x_0, y_n \rangle| + |\langle x_0, y_n - y_0 \rangle| \end{aligned}$$

由 $y_n \to y_0$ 知第二项 $\to 0$; $\langle \cdot, y_n \rangle \in H^*$, 所以 $x_n \stackrel{w}{\to} x_0 \Rightarrow$ 第一项 $\to 0$.

题目 65.(2.5.18)H 是 Hilbert 空间, $\{e_n\}$ 是 H 的正交规范基,求证: 在 H 上 $e_n \stackrel{w}{\rightarrow} 0$,但 $e_n \rightarrow 0$.

解答: Show answer

也就是证明 $\forall x \in H, \langle x, e_n \rangle \to 0$, 实际上

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \leqslant ||x|| < +\infty$$

所以 $\langle x, e_n \rangle \to 0$.

 $||e_n|| = 1 > 0$, 所以 $e_n \to 0$.

题目 66.(2.5.20) 求证:在自反的赋范线性空间中,集合的弱列紧性与有界性是等价的。

解答: Show answer

弱列紧 ⇒ 有界:假设 $M \subset X$ 弱列紧且无界,则 $\forall n \geqslant 1, \exists x_n \in M \text{ s.t. } ||x_n|| \geqslant n$,取 $\{x_n\}$ 的弱收敛子列 $\{x_{n_k}\}$,X 自反,所以取 $x_{n_k}^{**} \in X^{**}$ 有 $||x_{n_k}^{**}|| = ||x_{n_k}||$,而且

$$\sup_n |x_{n_k}^{**}(f)| = \sup_n |f(x_{n_k})| < +\infty \overset{\mathrm{UBP}}{\Rightarrow} \sup_n ||x_{n_k}||^{**} < +\infty \Rightarrow \{x_{n_k}\} \, \text{\textit{f}} \, \mathbb{R}$$

这与 $||x_{n_k}|| \ge n_k \to \infty$ 矛盾。

有界 \Rightarrow 弱列紧: 定理 2.8.18(Eberlein-Smulian).

◇ 4.3 第三章

题目 67.(2.6.1) X 是 Banach 空间,求证: $\mathcal{L}(X)$ 中可逆(存在有界逆)算子集是开的。

解答: Show answer

设 $A \in \mathcal{L}(X)$ 可逆,对于 $\forall B \in \mathcal{L}(X)$ 且 $||A - B|| \leq 1/||A^{-1}||$,则 $||(A - B)A^{-1}|| \leq 1$,由引理 2.7.1 可得 $BA^{-1} = I - (A - B)A^{-1}$ 可逆,进而 B 可逆。这说明 A 是内点,从而 $\mathcal{L}(X)$ 中可逆算子集是开集。

题目 68.(2.6.4) 在 ℓ^2 空间上,考察左推移算子:

$$A:(\xi_1,\xi_2,\cdots)\mapsto(\xi_2,\xi_3,\cdots)$$

求证:
$$\sigma_p(A) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}, \ \sigma_c(A) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}, \ 并且$$

$$\sigma(A) = \sigma_p(A) \cup \sigma_c(A)$$

解答: Show answer

记 $\mathbb{D} = \{\lambda : |\lambda| < 1\},$

$$\lambda \in \sigma_p(A) \Leftrightarrow \exists 0 \neq x = \{x_n\}_{n=1}^{\infty} \in \ell^2$$
$$\Leftrightarrow \lambda x_1 = x_2, \lambda x_2 = x_3, \dots$$
$$\Leftrightarrow x = \{\lambda^{n-1} x_1\}_{n=1}^{\infty}$$

 $0 \neq x \in \ell^2$,所以 $|\lambda| < 1$, $\sigma_p(A) = \{\lambda : |\lambda| < 1\} = \mathbb{D}$.

 $\lambda \in \partial \mathbb{D}$ 时:

1° Ran $(\lambda I - A) \neq \ell^2$:

$$y \in \text{Ran}(\lambda I - A) \Rightarrow \exists 0 \neq x \in \ell^2, y = (\lambda I - A)x = (\lambda x_1 - x_2, \lambda x_2 - x_3, \cdots) = \{\lambda x_n - x_{n+1}\}_{n=1}^{\infty}$$

$$\Rightarrow \sum_{n=1}^{k} \lambda^{-n} y_n = x_1 - \lambda^{-k} x_{k+1} \to x_1 \text{ as } k \to \infty$$

所以

$$\sum_{n=1}^{\infty} \lambda^{-n} y_n = x_1$$

但是取

$$y = \{\lambda^n \cdot \frac{1}{n}\}_{n=1}^{\infty} \in \ell^2$$

则级数发散,说明满足 $y=(\lambda I-A)x$ 的 x 不存在。因此 $\mathrm{Ran}(\lambda I-A)\neq\ell^2$.

 2° $\overline{\mathrm{Ran}(\lambda I-A)}=\ell^2$: 任取 $x=\{x_n\}_{n=1}^{\infty}\in\ell^2$,取充分大的 N 使得

$$\sum_{n=N+1}^{\infty} |x_n|^2 < \varepsilon^2$$

 $\diamondsuit y_i = (x_1, x_2, \cdots, x_i, 0, \cdots), \ \ \emptyset$

$$||y_N - x||^2 = \sum_{n=N+1}^{\infty} |x_n|^2 < \varepsilon^2 \Rightarrow ||y_N - x|| < \varepsilon$$

因此只需证 $y_N \in \operatorname{Ran}(\lambda I - A)$, 令

$$z = \begin{cases} \sum_{k \leqslant n \leqslant N} \lambda^{-n+k-1} y_n &, k \leqslant N \\ 0 &, k > N \end{cases}$$

即有 $y_N = (\lambda I - A)z$.

因此 $\partial \mathbb{D} \subset \sigma_c(A)$.

接下来求 $\sigma(A)$,因为 $||Ax||^2=||x||^2+|x_1|^2$,所以 $||Ax||\leqslant ||x||$,等号在 $x_1=0$ 成立,因此

$$||A|| = \sup_{0 \neq x \in \ell^2} \frac{||Ax||}{||x||} = 1$$

所以 $\sigma(A) \subset \{\lambda : |\lambda| \leq 1\} = \overline{\mathbb{D}}.$

综上可知, $\overline{\mathbb{D}} \supset \sigma(A) \supset \sigma_c(A) \cup \sigma_p(A) \supset \partial \mathbb{D} \cup \mathbb{D} = \overline{\mathbb{D}}$, 所以都相等。

题目 **69.**(3.1.2) X 是 Banach 空间, $A \in \mathcal{L}(X)$ 满足:

$$||Ax|| \geqslant \alpha ||x||, \ \forall x \in X$$

其中 $\alpha > 0$ 为常数,求证: $A \in \mathcal{T}(X)$,即 A 是紧算子的充要条件是 X 是有穷维的。

解答: Show answer

充分性:X有限维,所以有界集都列紧,A将有界集映为有界集,进而是列紧集,所以A紧。

必要性:设 $B \subset X$ 为有界集,A 紧,所以 A(B) 有收敛列 $\{Ax_n\}_{n=1}^{\infty}, \{x_n\} \subset B$. 由于 $||x_n|| \leqslant \frac{1}{\alpha} ||Ax_n||$,所以 $\{x_n\}_{n=1}^{\infty}$ 也是收敛列,因此 B 列紧。这说明 X 上有界集都列紧,因此 X 有限维。

题目 70.(3.1.4) H 是 Hilbert 空间, $A: H \to H$ 是紧算子,又设 $x_n \stackrel{w}{\to} x_0, y_n \stackrel{w}{\to} y_0$,求证:

$$\langle x_n, Ay_n \rangle \to \langle x_0, Ay_0 \rangle$$

解答: Show answer

注意到

$$|\langle x_n, Ay_n \rangle - \langle x_0, Ay_0 \rangle| \le |\langle x_n, Ay_n - Ay_0 \rangle| + |\langle x_n, Ay_n - Ay_0 \rangle|$$

因为 $x_n \stackrel{w}{\to} x_0$, 所以 $\{x_n\}$ 是有界的, A 紧 \Rightarrow A 全连续 \Rightarrow $Ay_0 <math>\Rightarrow$ $|(x_n, Ay_n - Ay_0)| \leqslant |x_n| \cdot |Ay_n - Ay_0| \to 0$; $\langle \cdot, Ay_0 \rangle \in H^*$, 所以由 x_n 弱收敛可知 $\langle x_n - x_0, Ay_0 \rangle \to 0$, 所以 $|\langle x_n, Ay_n \rangle - \langle x_0, Ay_0 \rangle| \to 0$.

题目 71.(3.1.6) 设 $\omega_n \in \mathbb{K}$, $\omega_n \to 0$, 求证:

$$T: \ell^p \to \ell^p, \{\xi_n\} \mapsto \{\omega_n \xi_n\}$$

是 $\ell^p(p \ge 1)$ 上的紧算子。

解答: Show answer

 w_n 收敛则有界,从而T有界。定义:

$$T_n: (x_1, \dots, x_n, x_{n+1}, \dots) \mapsto (w_1 x_1, \dots, w_n x_n, 0, 0, \dots)$$

那么 T_n 都是有界有限秩算子,因此 T_n 紧。对于 $\forall \varepsilon > 0$,存在充分大的 N 使得 $\forall n > N$ 有 $|w_n| < \varepsilon$,从而

$$||T_n x - Tx|| \le \varepsilon ||x|| \Rightarrow ||T_n - T|| \le \varepsilon$$

因此 $||T_n - T|| \to 0$, 由于紧算子全体是闭集, T 也是紧算子。

题目 72.(3.1.8) $\Omega \subset \mathbb{R}^n$ 是一个可测集, $K \in L^2(\Omega \times \Omega)$,求证:

$$A: L^2(\Omega) \to L^2(\Omega), u(x) \mapsto \int_{\Omega} K(x, y) u(y) dy$$

是 $L^2(\Omega)$ 上的紧算子。

解答: Show answer

由 C-S 不等式, $L^2(\Omega)$ 上范数记为 $||\cdot||$,

$$||Au||^{2} = \int_{\Omega} \left(\int_{\Omega} K(x, y)u(y) dy \right)^{2} dx \leq \int_{\Omega} \left(\int_{\Omega} K(x, y)^{2} dy \cdot ||u||^{2} \right) dx$$
$$\Rightarrow \frac{||Au||^{2}}{||u||^{2}} \leq \int_{\Omega \times \Omega} K(x, y)^{2} dy dx < +\infty$$

所以A有界。

取 $L^2(\Omega)$ 上的可数正交基 $\{u_i\}$, ¹ 设

$$K(x,y) = \sum_{i=1}^{\infty} K_i(y)u_i(x)$$

其中

$$K_i(y) = \int_{\Omega} K(x, y) u_i(x)$$

由 Parseval,

$$\int_{\Omega} |K(x,y)|^2 \mathrm{d}x = \sum_{i=1}^{\infty} |K_i(y)|^2$$

因此

$$\int_{\Omega \times \Omega} |K(x,y)|^2 dx dy = \sum_{i=1}^{\infty} \int_{\Omega} |K_i(y)|^2 dy$$

定义

$$A_n: u \mapsto \int_{\Omega} K_n(\cdot, y) f(y) dy$$

其中

$$K_n(x,y) = \sum_{i=1}^n K_i(y)u_i(x)$$

那么 A_N 是有界有限秩算子,因此紧。由 C-S 不等式,

$$||A - A_n||^2 \leqslant \int_{\Omega \times \Omega} |K(x, y) - K_N(x, y)|^2 dx dy$$

$$= \int_{\Omega \times \Omega} |K(x, y)|^2 dx dy - 2 \int_{\Omega \times \Omega} K(x, y) \sum_{i=1}^n K_i(y) u_i(x) dx dy + \sum_{i=1}^n \int_{\Omega} |K_i(y)|^2 dy$$

$$= \int_{\Omega \times \Omega} |K(x, y)|^2 dx dy - \int_{\Omega} |K_i(y)|^2 dy \to 0 \text{ as } n \to \infty$$

因此 A 是紧算子。

题目 73.(3.2.5) $A \in X$ 上的紧算子,T = I - A,求证: $\forall k \in \mathbb{N}$, $N(T^k)$ 是有穷维的, $R(T^k)$ 是闭的。

解答: Show answer

注意到 $T^k=(T-A)^k=I-A_k$, 其中 A_k 是 A 的 k 次多项式, 因此 A_k 是紧算子, 由定理 3.2.2 (Riesz-Fredholm) 前两条可知得证。

题目 74.(3.2.6) X 是 Banach 空间,M 是其闭线性子空间,若有界线性算子 $P: X \to M$ 满足 $P^2 = P$,则称为由 X 到 M 上的投影算子,求证:

- (1). 若 $M \in X$ 的有穷维线性子空间,则必存在由 X 到 M 上的投影算子;
- (2). 若 P 是由 X 到 M 上的投影算子,则 I P 是由 X 到 R(I P) 上的投影算子;
- (3). 若 P 是由 X 到 M 上的投影算子,则 $X = M \oplus R(I P)$.
- (4). 若 $A \in X$ 上的紧算子,T = I A,则在代数与拓扑同构意义下:

$$N(T) \oplus X/N(T) = X = R(T) \oplus X/R(T)$$

解答: Show answer

 $^{^{1}}$ 这里能取出 ONB 是因为 $L^{2}(\Omega)$ 是可分 Hilbert 空间。

(1). 取 $\{e_k\}_{k=1}^n$ 为 M 的正交基,由习题 2.4.7 可知,存在 $f_1, \dots, f_n \in X^*$ 使得

$$f_i(e_i) = \delta_{ij}$$

于是取

$$P: X \to M, x \mapsto \sum_{k=1}^{n} f_k(x)e_k$$

就是 X 到 M 的投影算子,因为 P 有界且 $P^2 = P$.

- (2). 注意到 $(I-P)^2 = I 2P + P^2 = I P$.
- (3). 显然有 X = M + R(I P), 因为

$$x = Px + (I - P)x$$

所以只需证明 $M \cap R(I-P) = 0$, 令 $x \in M \cap R(I-P)$, y = (I-P)x, 因此

$$Px = P(I - P)y = (P - P)y = 0$$

又因为 $x \in M$, 所以Px = x = 0.

(4). N(T) 有限维, 由 (1) 知存在 X 到 N(T) 的投影算子 P, 由 (3) 知 X/N(T) 和 R(I-P) 代数同构。现令

$$F: X/N(T) \to R(I-P), [x] \mapsto (I-P)x$$

不难验证 F 良定、线性、双射。对于 $\forall [x] \in X/N(T)$, 存在 $x' \in [x]$ s.t. $||x'|| \leq 2||[x]||$, 于是

$$||F([x])|| = ||(I - P)x'|| \le ||I - P|| \cdot ||x'|| \le 2||I - P|| \cdot ||[x]||$$

因此 F 有界 \Rightarrow 连续 \Rightarrow F^{-1} 也连续 \Rightarrow 拓扑同胚。

题目 75.(3.3.1) 给定数列 $\{a_n\}_{n=1}^{\infty}$, 在空间 ℓ^1 上定义算子 A 如下:

$$A(x_1, x_2, \cdots) = (a_1x_1, a_2x_2, \cdots)$$

求证:

- (1). A 有界的充要条件是 $M = \sup_{n \ge 1} |a_n| < \infty$.
- (2). A^{-1} 有界的充要条件是 $\inf_{n\geqslant 1} |a_n| > 0$.
- (3). A 是紧算子的充要条件是 $\lim_{n\to\infty} a_n = 0$.

解答: Show answer

(1). 充分性: $||Ax|| \leq M||x|| \Rightarrow A \in \mathcal{L}(\ell^1)$;

必要性: 假设 $\{a_n\}$ 无界,存在 $n_1 < n_2 < \cdots$ 使得 $|a_{n_k}| > k$,设 $e_n = (0, \cdots, 0, \underbrace{1}_n, 0, \cdots) \in \ell^1$,则

$$\frac{||Ae_{n_k}||}{||e_{n_k}||} = |a_{n_k}| > k \to \infty$$

这与A有界矛盾。

(2). 如果 $\forall a_n \neq 0$,取

$$T:(x_1,x_2,\cdots)\mapsto (\frac{x_1}{a_1},\frac{x_1}{a_2},\cdots)$$

则 $TA = AT \Rightarrow T = A^{-1}$,而且

$$\sup_{n\geqslant 1} \left| \frac{1}{a_n} \right| < +\infty \Leftrightarrow \inf_{n\geqslant 1} |a_n| > 0$$

所以 A^{-1} 有界 $\Leftrightarrow \inf_{n \geq 1} |a_n| > 0$. 如果存在某个 $a_n = 0$,那么 $R(A) \subsetneq \ell^1$, A^{-1} 不存在。

(3). 充分性: 设

$$A_n:(x_1,x_2,\cdots)\mapsto(a_1x_1,\cdots,a_nx_n,0,\cdots)$$

则 A_n 是有界有限秩算子 $\Rightarrow A_n$ 紧, 同时

$$||A - A_n|| = \sum_{k=n+1}^{\infty} |a_k||x_k| \to 0 \text{ as } n \to \infty$$

所以 A 也是紧算子;

必要性: A 是紧算子, 由定理 3.2.3 (Riesz-Schauder) 知 $0 \in \sigma(A)$ 且 0 之外的元素都是特征值, 注意到 $Ae_n = a_n e_n \Rightarrow a_n \in \sigma(A)$,

$$\forall a \in \sigma(A) \setminus \{0, a_1, a_2, \cdots\} \Rightarrow \inf_{n > 1} |\lambda - \lambda_n| > 0$$

由 (2) 知
$$T=(\lambda I-A)^{-1}$$
 有界 \Rightarrow $\lambda\in\rho(A)$,所以 $\sigma(A)=\{0,a_1,a_2,\cdots\}$,且一定有

$$\lim_{n \to \infty} a_n = 0$$

题目 76.(3.3.2) 在 C[0,1] 中, 考虑映射

$$T: C[0,1] \to C[0,1], x(t) \mapsto \int_0^t x(s) ds$$

- (1). 证明 T 是紧算子;
- (2). 求 $\sigma(T)$ 和T的一个非平凡闭不变子空间。

解答: Show answer

(1). 对于任何有界集 B, 我们来证明 T(B) 一致有界且等度连续,从而列紧。设 $\forall x \in B, ||x|| < M$, 则

$$||Tx|| \le \int_0^1 |x(s)| ds \le \sup t \in [0,1] |x(t)| = ||x|| < M$$

所以一致有界;

$$|(Tx)(s') - (Tx)(s'')| = |\int_{s'}^{s''} x(s)ds| \le ||x|| \cdot |s'' - s'|$$

所以等度连续。

(2). 因为 C[0,1] 是无穷维的,由定理 3.2.3(Riesz-Schauder) 可得 $0 \in \sigma(T)$,T 紧 $\Rightarrow \sigma(T)$ 除了 0 之外都是特征值。如果 $0 \neq \lambda \in \sigma(T)$,则

$$Tx = \lambda x \Rightarrow \int_0^t x(s) ds = \lambda x(t)$$

有非零解, 进而 $x(t) \in C^1[0,1]$, 两边求导得

$$x(t) = \lambda x'(t) \Rightarrow x(t) = Ce^{\frac{t}{\lambda}}$$

但

$$\int_0^t x(s) ds = C(\lambda e^{\frac{t}{\lambda}} - 1) = C\lambda e^{\frac{t}{\lambda}} \Rightarrow C = 0 \Rightarrow x(t) = 0$$

所以 $\sigma(T) = \{0\}$. $C^1[0,1]$ 是 T 的一个闭不变子空间。

◇ 4.4 期末复习相关

4.4.1 部分往年期末题

题目 77.(19.6) 定义

$$T: \ell^2 \to \ell^2, (x_1, x_2, \cdots) \mapsto (x_2, \frac{x_3}{2}, \cdots, \frac{x_{n+1}}{n}, \cdots)$$

求 T 的谱和特征值: $\sigma(T), \sigma_p(T)$.

解答: Show answer

首先显然 $||T|| \leq 1$, 取 $||Te_2|| = ||e_2|| = 1$ 可知 ||T|| = 1, 因此 $\sigma(T) \leq \overline{B(0,1)}$, 设

$$T_n: (x_1, x_2, \cdots) \mapsto (x_2, \frac{x_2}{x_3}, \cdots, \frac{x_{n+1}}{n}, 0, 0, \cdots)$$

 $T_n \to T$ 可知 T 是紧算子, 因此 $0 \in \sigma(T)$.

对于 $\lambda \neq 0$, 考虑 $\lambda I - T$, 若存在x使得 $(\lambda I - T)x = 0$, 那么

$$\lambda x_n = \frac{x_{n+1}}{n+1} \Rightarrow x_{n+1} = x_1 \cdot \frac{(n+1)!}{\lambda^n}$$

如果 $x_1 \neq 0$, $|x_{n+1}| \to \infty$, 所以只能 x = 0, 所以 $\lambda I - T$ 是单射, 由二择一律知是满射, 所以 $\lambda \in \rho(T)$, 因此 $\sigma(T) = \{0\}$.

因为 $Te_1 = 0$, 所以 $\sigma_p(T) = \{0\}$.

题目 78.(20.7) 定义:

$$T: \ell^2 \to \ell^2, (x_1, x_2, \cdots) \mapsto (0, \lambda_1 x_1, \lambda_2 x_2, \cdots)$$

其中 $0 \neq \lambda_n \in \mathbb{C} \, \mathbb{L} \, \lambda_n \to 0$,求 $\sigma_p, \sigma_c, \sigma_r$.

解答: Show answer

类似可证 T 是紧算子,以及 $\lambda \neq 0$ 时 $\lambda I - T$ 是单射:

$$(\lambda I - T)x = 0 \Rightarrow \lambda x_{n+1} - \lambda_n x_n = 0, x_1 = 0 \Rightarrow x = 0$$

进而是满射,所以只需考虑 0: $Tx = 0 \Rightarrow x = 0$,不是特征值; Tx 的第一个分量始终是 0,所以 Ran(T) 的闭包 肯定不是全空间,所以 $0 \notin \sigma_c(T)$.

综上,
$$\sigma_p(T) = \sigma_c(T) = \emptyset$$
, $\sigma_r(T) = \{0\}$.

题目 79.(22.6) 定义:

$$T: L^2[0,1] \to L^2[0,1], x(t) \mapsto \int_0^t x(s) ds$$

- (1). 证明 T 是紧算子。
- (2). 证明:

$$T^{n}x(t) = \int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!}x(s)ds$$

- (3). 求 T 的谱半径。
- (4). 求 T 的各种谱。
- (5). 判断 T 是否是对称算子。

解答: Show answer

(1). 任取 $L^{2}[0,1]$ 上的有界集 F, 不妨

$$\sup_{f \in F} ||f||^2 = \sup_{f \in F} \int_0^1 |f(t)|^2 \mathrm{d}t < M$$

由于积分的绝对连续性, $T(F) \subset C[0,1]$, 故只需证明 T(F) 一致有界且等度连续, 对于 $\forall f \in L^2[0,1]$,

$$\int_{0}^{1} \left(|f(s)| - \int_{0}^{1} |f(t)| dt \right)^{2} ds = \int_{0}^{1} \left(|f(s)|^{2} - 2|f(s)| \int_{0}^{1} |f(t)| dt + \left(\int_{0}^{1} |f(t)| dt \right)^{2} \right) ds$$

$$= ||f||^{2} - 2 \left(\int_{0}^{1} |f(t)| dt \right)^{2} + \left(\int_{0}^{1} |f(t)| dt \right)^{2}$$

$$= ||f||^{2} - \left(\int_{0}^{1} |f(t)| dt \right)^{2} \geqslant 0$$

所以

$$||T(f)||^2 = \int_0^1 \left(\int_0^t f(s) ds \right)^2 dt \leqslant \int_0^1 \left(\int_0^1 |f(s)| ds \right)^2 dt \leqslant \int_0^1 ||f||^2 dt = ||f||^2 < M$$

故一致有界。对于 $\forall \varepsilon > 0$,取 $\delta < \varepsilon$,则 $||f_1 - f_2|| < \delta \Rightarrow$

$$||T(f_1) - T(f_2)|| = ||T(f_1 - f_2)|| \le ||f_1 - f_2|| < \varepsilon$$

所以等度连续。

- (2). 这个用归纳证明, 具体过程和泛函没啥关系, 就不写了。
- (3). 用上一问结论和谱半径公式求出谱半径为 0, 计算过程省略。
- (4). 由上一问结论 $\sigma(T) = \{0\}$, 只需判断 0 是什么谱: $T(f) = 0 \Rightarrow f = 0$, 所以 0 不是特征值, 现只需考虑 Ran(-T), 显然多项式 $P[0,1] \subset Ran(-T)$, 因为 $\overline{P[0,1]} = L^2[0,1]$, 所以 0 是连续谱。
- (5). 假如是对称算子, 因为 L^2 是 Hilbert 空间, 则

$$\langle Tx, y \rangle = \langle x, Ty \rangle$$

从而

$$\int_0^1 y(t) \int_0^t x(s) ds dt = \int_0^1 x(t) \int_0^t y(s) ds dt$$

取 $x=1,y=t^2$, 则等式不成立, 故不是对称算子。

题目 80.(19.7) 证明一个 Hilbert 空间是有限维的当且仅当它的任意一组规范正交基都是它的线性基。

解答: Show answer

回顾一下概念: 规范正交基是指:

$$x = \sum_{\alpha \in \Lambda} \langle x, e_{\alpha} \rangle e_{\alpha}$$

线性基 (Hamel 基): 任何一个向量可以写成有限个基中向量的线性组合。

充分性是显然的,必要性:假设是无穷维的,取它的一族规范正交基 $\{e_{\alpha}\}$,从中选出可数个 $\{e_{k}\}=A$,定义

$$x_n = \frac{1}{n} \sum_{k=1}^n e_k$$

那么 $\{x_n\}$ 是柯西列,不妨设 $x_n \to a$, a 是有限个 e_α 的有限线性组合,设

$$a = \sum_{i=1}^{p} a_i e_{k_i} + c$$

c 是不在 A 中的基的有限线性组合,设 $b = \max_{1 \leq i \leq p} k_i$,则 $\forall n > b$,都有

$$||x_n - a|| = \left| \left| \frac{1}{n} \sum_{k=b+1}^n e_k + \left(\sum_{k=1}^b \frac{e_k}{n} - \sum_{i=1}^p a_i e_{k_i} \right) - c \right| \right| > \left| \left| \frac{1}{n} \sum_{k=b+1}^n e_k \right| \right| = 1 - \frac{b}{n} > \frac{1}{b+1}$$

这就与 $x_n \to a$ 矛盾。

题目 81.(18.6) X 是赋范空间,证明: $\forall x \in X$,

$$||x|| = \sup\{|f(x)| : f \in X^*, ||f|| = 1\}$$

解答: Show answer

x=0 时等式显然成立, 下设 $x \neq 0$. 对于 $\forall f \in X^*$ with ||f||=1,

$$1 = ||f|| \geqslant \frac{|f(x)|}{||x||} \Rightarrow ||x|| \geqslant |f(x)| \Rightarrow ||x|| \geqslant \sup\{|f(x)| : f \in X^*, ||f|| = 1\}$$

另一方面,由 HBT 可知存在 $f \in X^*$ with ||f|| = 1 使得 f(x) = ||x||,所以

$$\sup\{|f(x)|: f \in X^*, ||f|| = 1\} \geqslant ||x||$$

故相等。

题目 82.(18.7) X 是 Banach 空间,A, B 分别是 X 上的有界算子、紧算子,证明:

$$\sigma(A)\backslash(\sigma_p(A)\cup\sigma_p(A+B))=\sigma(A+B)\backslash(\sigma_p(A)\cup\sigma_p(A+B))$$

解答: Show answer

对两边取补集, 就是

$$\rho(A) \cup \sigma_p(A) \cup \sigma_p(A+B) = \rho(A+B) \cup \sigma_p(A) \cup \sigma_p(A+B)$$

对于 $\lambda \in \rho(A)$, $\lambda I - A$ 可逆, 考虑

$$\lambda I - (A+B) = (\lambda I - A)(I - (\lambda I - A)^{-1}B)$$

注意 $C=(\lambda I-A)^{-1}B$ 是有界算子和紧算子的复合,仍然是紧算子,所以 I-C 单当且仅当 I-C 满,注意 $(\lambda I-A)$ 是双射,所以 $\lambda I-(A+B)$ 单当且仅当 $\lambda I-(A+B)$ 满:

- 1. $\lambda I (A+B) \stackrel{\checkmark}{=} \lambda \in \rho(A+B)$.
- 2. $\lambda I (A+B)$ 不单 $\Rightarrow \lambda \in \sigma_p(A+B)$.

所以

$$\rho(A) \subset \rho(A+B) \cup \sigma_p(A+B)$$

所以

$$\rho(A) \cup \sigma_p(A) \cup \sigma_p(A+B) \subset \rho(A+B) \cup \sigma_p(A) \cup \sigma_p(A+B)$$

另一方面,注意到题设等式是关于 A, A+B 对称的,所以另一个方向也成立。(可以理解为两个有界算子 C, D 满足 C-D 紧。)

题目 83.(18.9) X 是 Banach 空间,T 是 X 上的线性算子,证明: T 有界当且仅当

$$x_n \stackrel{w}{\to} x \Rightarrow Tx_n \stackrel{w}{\to} Tx$$

解答: Show answer

充分性: 只需证明 T 是闭算子, 若 $x_n \to x, Tx_n \to y$, 则由于收敛 \Rightarrow 弱收敛,

$$x_n \xrightarrow{w} x \Rightarrow Tx_n \xrightarrow{w} Tx, Tx_n \xrightarrow{w} y$$

由弱收敛列极限唯一², 可得 y = Tx.

 $^{^2}$ 如果 $x_n \overset{w}{\to} x, x_n \overset{w}{\to} y$,则根据 $\mathbb K$ 上收敛极限的唯一性, $\forall f$ 有 f(x) = f(y),再由 HBT 可知 x = y.

必要性: T 有界, $\forall f \in X^*$, $f \circ T \in X^*$, 从而

$$x_n \xrightarrow{w} x \Rightarrow f(Tx_n) \to f(Tx), \ \forall f \in X^* \Rightarrow Tx_n \xrightarrow{w} Tx$$

这个题好像不需要 Banach 的条件。

题目 84. (18.10) 设 X 是 Banach 空间,f 是 X 上的非零线性泛函,证明 N(f) 要么是 X 的闭子空间,要么是 X 的稠密真子空间。

这道题其实就是习题 2.1.7 的思路继续延伸了一点。

解答: Show answer

f 有界 $\Leftrightarrow N(f)$ 是 X 的闭子空间; 若 f 无界, 对于任意 n, 存在 x_n 使得

$$|f(x_n)| > n||x_n||$$

取

$$a_n = \frac{f(x_n)}{f(x)} \Rightarrow f(x_n - a_n x) = 0 \Rightarrow x_n - a_n x \in N(f)$$

所以

$$x - \frac{x_n}{a_n} = x - \frac{f(x)x_n}{f(x_n)} \in N(f)$$

那么令 $n \to \infty$,

$$\left| \left| \frac{f(x)x_n}{f(x_n)} \right| \right| = \frac{|f(x)| \cdot ||x_n||}{|f(x_n)|} < \frac{|f(x)|}{n} \to 0$$

所以

$$N(f) \ni x - \frac{f(x)x_n}{f(x_n)} \to x$$

题目 85. (19.4) 证明弱*收敛序列一定有界。

解答: Show answer

共鸣定理直接得证。

题目 86.(19.5) H 是 Hilbert 空间,P 是 H 上的有界算子,且 $P^2 = P = P^*$,证明 P 的值域是闭集,且 P 是正交投影算子。

解答: Show answer

任取 $\operatorname{Ran}(P)$ 中柯西列 $P(x_i)$,不妨设 $P(x_i) \to a$,则 $P^2(x_i) \to P(a) = a \Rightarrow a \in \operatorname{Ran}(P) \Rightarrow \operatorname{Ran}(P)$ 闭。 对 H 作正交分解 $H = \operatorname{Ran}(P) + \operatorname{Ran}(P)^{\perp} = \operatorname{Ran}(P) + M$,对于 $\forall x \in H$,可以分解为

$$x = y + z, y \in \text{Ran}(P), z \perp \text{Ran}(P)$$

那么

$$\langle P(y), P(z) \rangle = \langle P^2(y), z \rangle = \langle P(y), z \rangle = 0$$

同理

$$\langle P(x), P(z) \rangle = \langle P(x), z \rangle = 0$$

所以

$$\langle P(x), P(z) \rangle - \langle P(y), P(z) \rangle = \langle P(z), P(z) \rangle = 0 \Rightarrow P(z) = 0$$

√ 第4章 作业汇总
 4.4 期末复习相关

由于 $y \in \text{Ran}(P)$, 所以 P(y) = y, 从而 P(x) = P(y) = y, 因此 $P \neq X$ 到 Ran(P) 的正交投影算子,

题目 87.(19.8) X, Y 是 Banach 空间,X 有限维,T 是从 X 到 Y 的线性算子,证明存在 $x \in X, ||x|| = 1$ 使得 ||Tx|| = ||T||.

解答: Show answer

T 是有界算子 (命题 2.1.1), 则 $\forall n$, 存在 x_n with $||x_n|| = 1$ 满足

$$||T|| - \frac{1}{n} \leqslant ||Tx_n|| \leqslant ||T||$$

有限维赋范空间单位球面列紧,所以 $\{x_n\}$ 存在收敛子列 $\{x_{n_k}\}$,不妨设 $x_{n_k} \to x$,则||Tx|| = ||T||.

题目 88.(19.9) X, Y 是赋范空间,且 $X \neq 0$,证明 Y 是 Banach 空间当且仅当 L(X, Y) 是 Banach 空间。

解答: Show answer

必要性在定理 2.1.3, 只说明充分性: 设 $\{y_n\}$ 是 Y 中柯西列, 取 $0 \neq x \in X$, 由 HBT 可知存在 $f \in X^*$ with ||f|| = 1, f(x) = ||x||, 定义算子序列:

$$F_n: X \to Y, x \mapsto f(x)y_n$$

则 F_n 是线性算子, 且 $||F_n|| = ||y_n||$, 所以

$$||F_n(x) - F_m(x)|| \le ||x|| \cdot ||y_n - y_m||$$

故 $\{F_n\}$ 是 $\mathcal{L}(X,Y)$ 上的柯西列, 不妨 $F_n \to F$, 取 $y = \frac{F(a)}{|a|}$,

$$||y_n - y|| = \left| \left| \frac{F_n(x)}{|f(x)|} - \frac{F(x)}{|x|} \right| \right| = \frac{1}{|x|} ||F_n(x) - F(x)|| \le ||F_n - F|| \to 0$$

从而 $y_n \to y$, 这就证明了 Y 是 Banach 空间。

题目 89.(20.3) X 是赋范空间,V 是 X 的子空间,证明 V 在 X 中稠密等价于 $V^{\perp}=0$,这里

$$V^{\perp} = \{ f \in X^* : f(V) = 0 \}$$

解答: Show answer

必要性由 $f \in X^*$ 的连续性可得; 充分性由定理 2.7.4 可得。

题目 90.(20.5) X 是 Banach 空间, V_n 是一列闭子空间,满足

$$X = \bigcup_{n=1}^{\infty} V_n$$

证明:存在某个 n_0 使得

$$V_{n_0} = X$$

解答: Show answer

由 BCT1, X 不是可数个无处稠密集之并,所以存在某个 V_{n_0} 不是无处稠密集,即有 $\overline{V}=V$ 内点,但真闭子空间无内点,所以只能 $V_{n_0}=X$.

题目 91.(20.6) X 是 Hilbert 空间, $||x_n|| \to ||x||$ 且 $x_n \stackrel{w}{\to} x$,则 $x_n \to x$.

解答: Show answer

考虑

$$\langle \cdot, x \rangle \in H^* \Rightarrow \langle x_n, x \rangle \to \langle x, x \rangle = ||x||^2$$

那么

$$||x_n - x||^2 = \langle x_n - x, x_n - x \rangle = ||x_n||^2 + ||x||^2 - 2\langle x_n, x \rangle \to ||x||^2 + ||x||^2 - 2||x||^2 = 0 \text{ as } n \to \infty$$

题目 92.(20.8) A_n 是 Hilbert 空间 X 上的一列有界线性算子,且对于 $\forall x$ 都有 $||A_nx|| \to 0$,证明:对于任意紧算子 K 都有 $||A_nK|| \to 0$.

解答: Show answer

记单位球面为S,考虑

$$||A_nK|| = \sup_{x \in S} ||A_nK(x)|| = \sup_{y \in K(S)} ||A_ny||$$

假设 $||A_nK|| \rightarrow 0$, 即存在 $\delta > 0$ 使得

$$\forall n, \sup_{y \in K(S)} ||A_n y|| > \delta$$

所以

$$\forall n, \exists y_n = K(x_n) \in K(S) \text{ s.t. } ||A_n y_n|| \geqslant \delta$$

K 是紧算子, $\{x_n\} \in S$ 有界,所以 $K(\{x_n\}) = \{y_n\}$ 列紧,取其收敛子列 $y_{n_k} \to y$,则

$$||A_{n_k}y_{n_k}|| \le ||A_{n_k}y|| + ||A_{n_k}(y_{n_k} - y)|| \le ||A_{n_k}y|| + ||A_{n_k}|| \cdot ||y_{n_k} - y|| \to 0 \text{ as } k \to \infty$$

这与 $||A_{n_k}y_{n_k}|| \ge \delta$ 矛盾。

解答: Show answer

另一种解法:

题目 93.(21.5) X 是可分赋范空间,证明:存在 $\{f_n\} \in X^*$ 使得对于任意 $x \in X$,都有

$$||x|| = \sup_{n} |f_n(x)|$$

解答: Show answer

设 X 的稠密可数子集是 $x_{n=1}^{\infty}$, 有 HBT 可得存在 $f_n \in X^*$ with $||f_n|| = 1$ s.t. $f(x_n) = ||x_n||$, 一方面:

$$\sup_{n} |f_n(x)| \leqslant \sup_{n} ||f_n|| \cdot ||x|| = ||x||$$

另一方面,设 $\{x_{n_k}\}$ 使得 $x_{n_k} \to x$,那么

$$f_{n_k}(x_{n_k}) = ||x_{n_k}|| \rightarrow ||x|| \text{ as } k \rightarrow \infty$$

所以

$$\sup_{n} |f_n(x)| \geqslant ||x||$$

题目 94.(21.7) 设 X, Y 是实 Hilbert 空间, S_x 是 X 中单位球面, $T \in L(X, Y)$,且不存在 $x \in S_x$ 使得 ||Tx|| = ||T||,求证:存在 $\{x_n\} \subset S_x$,使得 $x_n \overset{w}{\to} 0$ 且 $||Tx_n|| \to ||T||$

解答: Show answer

由于

$$||T|| = \sup_{x \in S_x} ||Tx||$$

所以

$$\forall n, \exists x_n \in S_x \text{ s.t. } ||T|| - \frac{1}{n} \leqslant ||Tx_n|| < ||T||$$

则 $||Tx_n|| \to ||T||$. 由 Eberlein Smulian 定理: 自反空间上的有界集有弱收敛子列,所以不妨假设 $x_n \overset{w}{\to} x$,只需证明 x=0.

假设 $x \neq 0$, $||x_n|| = 1$, 所以

$$||x_n - x||^2 = 1 + ||x||^2 - 2\langle x_n, x \rangle \to 1 - ||x||^2$$

又因为T有界,所以在Y上有 $Tx_n \stackrel{w}{\rightarrow} Tx$,同理有

$$||Tx_n - Tx||^2 \to ||T||^2 - ||Tx||^2$$

同时

$$||Tx_n - Tx||^2 \le ||T||^2 \cdot ||x_n - x||^2$$

所以上式左右两边取极限得

$$||T||^2 - ||Tx||^2 \le ||T||^2 (1 - ||x||^2) \Rightarrow ||T|| \cdot ||x|| \le ||Tx||$$

从而

$$||T||\leqslant \frac{||Tx||}{||x||}=\left|\left|T\left(\frac{x}{||x||}\right)\right|\right|<||T||$$

矛盾,所以x=0.

题目 95.(22.3) 证明二则一律。

解答: Show answer

在定理 3.2.2, 但是为什么会考这个呢...

4.4.2 其它

题目 96. C[0,1] 上有两个范数 $||\cdot||_1$ 和 $||\cdot||_2$, 其中

$$||f||_1 = \sup_{x \in [0,1]} |f(x)|$$

 $||\cdot||_2$ 则满足: 当 $||x_n - x||_2 \to 0$ 时,

$$\lim_{n \to \infty} x_n(t) \to x(t), \ \forall t \in [0, 1]$$

而且 $(C[0,1],||\cdot||_2)$ 完备,证明两个范数等价。

解答: Show answer

取范数

$$||\cdot||_3 = ||\cdot||_1 + ||\cdot||_2$$

则 $||\cdot||_3$ 强于 $||\cdot||_1$ 和 $||\cdot||_2$,只需证明 $||\cdot||_3$ 是 C[0,1] 上的完备范数,则由范数等价定理可知三个范数都等价。

题目 97. $0 时,<math>L^p(\mathbb{R})$ 上不存在有界线性泛函。

解答: Show answer

设 $f: L^p(\mathbb{R}) \to \mathbb{R}$ 有界, ||f|| = M, 考虑拆分区间 [a,b]:

$$[a,b] = \bigcup_{k=1}^{n} [a, a + \frac{k}{n}(b-a)] := \bigcup_{k=1}^{n} I_k$$

那么

$$||f(\chi_{[a,b]})|| = \left|\left|\sum_{k=1}^{n} f(\chi_{I_k})\right|\right| \le M \cdot \sum_{k=1}^{n} ||\chi_{I_i}|| = Mn \left(\frac{b-a}{n}\right)^{\frac{1}{p}}$$

所以

$$\frac{||f(\chi_{[a,b]})||}{||\chi_{[a,b]}||} = Mn^{1-\frac{1}{p}} \to 0 \Rightarrow f = 0$$

题目 98. X 是 Banach 空间, $T: X \to X^*$ 满足 Dom(T) = X, $T(x)(x) \geqslant 0, \forall x$,证明 T 有界。

解答: Show answer

定义域全空间, 求证有界, 证明 T 是闭算子即可。假设 $x_n \to 0, Tx_n \to L$, 那么对于 $\forall \lambda > 0$,

$$T(x_n + \lambda y)(x_n + \lambda y) = \lambda^2 T(y)T(y) + \lambda T(x_n)(y) + \lambda T(y)(x_n) + T(x_n)(x_n) \geqslant 0$$

$$\lambda^2 T(y)(y) + \lambda L(y) \geqslant 0 \Rightarrow \lambda T(y)(y) + L(y) \geqslant 0, \forall \lambda > 0, y$$

则一定有 $L(y) \ge 0$,否则取一个充分小的 λ 就不成立了。同理取 $T(x_n - \lambda y)(x_n - \lambda y)$ 就得到 $L(-y) \ge 0$,从而 L=0.

然后考虑一般情况: $x_n \to x, Tx_n \to L$, 那么 $x_n - x \to 0 \Rightarrow Tx_n - Tx \to L - Tx = 0$, 从而 L = Tx, 因此 T 是闭算子, 由闭图像定理知 T 有界 (则连续)。

题目 99. $M \in L^2[0,1]$ 的闭子空间,且 $M \subset C[0,1]$,证明 $\dim M < +\infty$.

解答: Show answer

 $(M, ||\cdot||_{\infty})$ 和 $(M, ||\cdot||_2)$ 都是完备的,考虑

$$\frac{||x||_2}{||x||_{\infty}} = \frac{\left(\int_0^1 |x(t)|^2 dt\right)^{\frac{1}{2}}}{\sup_{t \in [0,1]} |x(t)|} \leqslant 1$$

所以两个范数等价, 进而存在C使得

$$||x||_{\infty} \leqslant C||x||_2, \forall x \in M$$

由于 L^2 是 Hilbert 空间, 其闭子空间也是 Hilbert 空间, 对于固定的 $t \in [0,1]$:

$$l_t: M \to \mathbb{R}, x \mapsto x(t)$$

那么由 Riesz 表示定理,存在 $q_t \in L^2[0,1]$ 使得 $l_t = \langle \cdot, q_t \rangle, ||q_t||_2 = ||l_t||$,

$$\frac{|l_t(x)}{||x||_2} = \frac{|x(t)|}{||x||_2} \leqslant \frac{||x||_\infty}{||x||_2} \leqslant C \Rightarrow ||q_t||_2 = ||l_t|| \leqslant C$$

M 可分³,所以有可数正交基 $S = \{h_n\}$,

$$C^2 \ge ||q_t||_2^2 = \sum |\langle h_n, q_t \rangle|^2 = \sum |h_n(t)|^2$$

于是

$$\#S = \sum 1 = \sum ||h_n||_2^2 = \sum \int_0^1 |h_n(t)|^2 dt \leqslant \int_0^1 C^2 dt = C^2 < +\infty$$

题目 100. 设

$$\frac{\mathrm{d}}{\mathrm{d}t}:C^1[a,b]\to C[a,b], f\mapsto \frac{\mathrm{d}f}{\mathrm{d}t}$$

证明它是闭算子而非有界算子,说明闭图像定理为何不适用。

解答: Show answer

取

$$f_n(t) = \frac{(t-a)^n}{(b-a)^n}$$

则

$$||f_n|| = \sup_{t \in [a,b]} |f_n(t)| = 1$$

但

$$\left| \left| \frac{\mathrm{d}}{\mathrm{d}t} f_n \right| \right| = \sup_{t \in [a,b]} \left| n \frac{(t-a)^{n-1}}{(b-a)^n} \right| = \frac{n}{b-a} \to \infty \text{ as } n \to \infty$$

所以是无界算子。

考虑 $x_n \in C^1[a,b]$, 且 $x_n \to x$, $Tx_n \to y$, 我们转化成数分的语言就是:函数列 $x_n(t)$ 一致收敛,每一项 x_n 都有连续导数,且 x'_n 一致收敛到 y, 那么根据一致收敛函数列的性质,x 也有连续导数,且 x'=y,即 $x \in C^1[a,b]$, Tx=y, 这就证明了 $\frac{d}{dt}$ 是闭算子。

闭图像定理不适用的原因是 $C^1[a,b]$ 不是闭集,比如一阶可微函数可以一致收敛到折线,后者不是一阶可微的。例如 [a,b]=[-1,1],

$$f_n(t) = \sqrt{x^2 + \frac{1}{n}}$$

 f_n 一致收敛于 f(t) = |t|, 在 t = 0 处不可导。具体过程就不详细写了,都是数分的东西。

题目 101. 证明 ℓ^{∞} 不可分, C_0 可分(考虑全体趋于 0 的有理数列即可)。

解答: Show answer

假设 ℓ^{∞} 存在可数稠密子集 D, 那么对于 $\forall x \in \ell^{\infty}$, $\forall \varepsilon > 0$, 存在 $y \in D$ 使得 $||x - y|| < \varepsilon$. 现在考虑

$$S = \{x = \{x_n\}_{n=1}^{\infty} : x_n = 0 \text{ or } x_n = 1\} \subset \ell^{\infty}$$

即全体由 0,1 构成的数列,集合 S 和 [0,1] 是等势的(全体二进制小数),所以不可数,我们现在希望建立一个 S 到 D 的单射,从而 D 不可数,得到矛盾。

取
$$\varepsilon = \frac{1}{2}$$
, 任取 $s = \{s_n\} \in S$, 则存在某个 $d = \{d_n\} \in D$ 使得

$$\forall n, |s_n - d_n| < \frac{1}{2}$$

现在改动 s_1 : 若 $s_1 = 0$, 则取 $s'_1 = 1$,

$$|0 - d_1| < \frac{1}{2} \Rightarrow d_1 \in (-\frac{1}{2}, \frac{1}{2}) \Rightarrow |1 - d_1| > \frac{1}{2}$$

 $^{^{3}}L^{p}$ 空间可分,而 Banach 空间可分,则其闭子空间也是可分的。

若 $s_1 = 1$, 则取 $s'_1 = 0$,

$$|1 - d_1| < \frac{1}{2} \Rightarrow d_1 \in (\frac{1}{2}, \frac{3}{2}) \Rightarrow |d_1| > \frac{1}{2}$$

这说明 s_1' 一定使得 $|s_1' - d_1| > \frac{1}{2}$,对于 $s' = (s_1', s_2, s_3, \cdots) \in S$,我们需要重新找一个 $d' \in D$ 使得 $||s' - d'|| < \frac{1}{2}$. 也就是说,对于某个 $d \in D$,最多只有一个 $s \in S$ 和它的距离小于 $\frac{1}{2}$. 这就得到了从 $S \to D$ 的单射。

解答: Show answer

我们还可以用更"泛函"的方式回答这个问题: 定理 2.8.16 告诉我们,如果 ℓ^{∞} 可分,则 $(\ell^{\infty})^*$ 中有界集都弱*列紧,类似于习题 2.5.2,可以证明 $(\ell^{\infty})^*=C_0$,即每个 $(\ell^{\infty})^*$ 中的算子,都能被表示成与某个 $f\in C_0$ 作内积(此处指各分量相乘后求和)。若我们能给出 C_0 上有界但不弱*列紧的例子,就能得出矛盾。例如 $f_n=(0,0,\cdots,0,1,0,0,\cdots)\in C_0$, $e=(1,1,\cdots)\in \ell^{\infty}$, $\{f_n\}$ 是有界集,但是

$$f_n(e) = 1 \nrightarrow 0$$

这说明 $\{f_n\}$ 不弱*列紧。

题目 102. (X, d) 是度量空间,若 $A \subset X$ 不可数且 (A, d) 是离散空间,则 (X, d) 不可分。

解答: Show answer

这道题思路和上一题中证明存在 $S \to D$ 的单射如出一辙,可以发现上一题构造的集合 S 就是一个离散空间。

假设 X 存在可数稠密子集 G,我们考虑建立 $A\to G$ 的单射,从而证明 G 不可数,导出矛盾。对于 $\forall a\in A$, $\varepsilon=\frac{1}{2}$,存在某个 $g\in G$ 满足

$$d(g,a) < \frac{1}{2}$$

而 $\forall a' \in A, a \neq a', d(a, a') = 1$, 所以

$$d(g, a') \ge |d(a, a') - d(g, a)| = |1 - d(g, a)| > \frac{1}{2}$$

这说明我们需要重新找一个 $g' \in G$ 使得 $d(g',a') < \frac{1}{2}$, 这就构造了 $S \to G$ 的单射。