Deliverable II

By: Karim Jabbour ID: 260931803 Date: Mar 13, 2022

Ref:

- https://blog.clairvoyantsoft.com/music-genre-classification-using-cnn-ef9461553726
- https://www.analyticsvidhya.com/blog/2021/06/music-genres-classification-using-deep-learning-techniques/

Code:

https://colab.research.google.com/drive/1srbDlZmcAscGTV6HlokShUzz9k6DJjk5?usp=sharing

- 1. Problem: The goal of this project is to use machine learning to classify music audio files into their respective genres.
- 2. Data Preprocessing:
 - The data is the GTZAN Genre classification dataset that contains 1000 audio samples split equally into 10 genres with 100 tracks per genre.
 - Each track is 30 seconds long.
 - Files provides include:
 - o Genres Original: the folder with the 1000 audio tracks
 - Images Original: a folder with images for each audio file
 - 2 CSVs: Represent audio features for each audio file such that there is a mean and variance over multiple features. One is for the 30 sec clips and the other involves 3 sec clips.
 - CSV Files sample screenshot (features_30_sec.csv & features_3_sec.csv):

Provided Features:

df_3.dtypes filename object length chroma_stft_mean int64 float64 chroma_stft_var float64 float64 rms var float64 spectral_centroid_mean spectral_centroid_var spectral_bandwidth_mean float64 float64 spectral_bandwidth_var rolloff_mean float64 float64 rolloff var float64 zero_crossing_rate_mean zero crossing rate va

- Loading audio files as time series (librosa.load):
 - I will choose sampling rate of 44.1 kHZ (common choice)

Wave form (raw audio form):

- Feature Extraction (LabelEncoder):
 - Using LabelEncoder we give each label (ex: blues, rock,etc.) a specific numerical code

- StandardScaler:
 - Needed to drop the FileName column
 - Important to do for machine learning models

 Splitting into Training and Testing (3:1):

```
[66] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.33)

print(len(X_train))
print(len(X_test))
print(len(y_train))
print(len(y_test))

670
330
670
330
```

3. Model:

Referencing https://blog.clairvoyantsoft.com/music-genre-classification-using-cnn-ef9461553726, to show why I am using CNN neural network model:

	With data processing			Without data processing		
	Train	CV	Test	Train	CV	Test
Support Vector Machine	.97	.60	.60	.75	.32	.28
K-Nearest Neighbors	1.00	.52	.54	1.00	.21	.21
Feed-forward Neural Network	.96	.55	.54	.64	.26	.25
Convolution Neural Network	.95	.84	.82	.85	.59	.53

- Properties of CNN Model
 - Optimizer Used: ADAM
 - o Hidden Layers activation function: RELU
 - Output layer function: SOFTMAX
 - Loss calculation: Sparse Categorical Cross-entropy
 - Dropout layers : prevent over-fitting
 - o Epochs: 1000 (30 sec) & 600 (3 sec)

```
[25] def trainModel(model,epochs,optimizer):
    batch_size=128
    model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics='accuracy')
    return model.fit(X_train,y_train,validation_data=(X_test,y_test),epochs=epochs,batch_size=batch_size)

[26] def plotValidate(history):
    print("Validation Accuracy: ", max(history.history["val_accuracy"]))
    pd.DataFrame(history.history).plot(figsize=(12,6))
    plt.show()
```

4. Results:

- a. Results show that data of 3-sec clips produced much higher accuracy in CNN model even with almost half number of epochs (600 vs 1000)
- b. 91.9% vs 75.15%

c. Results are good for the 3_sec dataset

5. Next Steps:

- a. I would like to see how I may extract my own features from the audio files
- b. I would like to see how neural networks can be applied to to ther files such as the images
- c. I would like to allow for a predictor application that can take one audio file as inpu and classify it