Book of Proof I: Fundamentals

January 16, 2018

Sets: A mathematical structure

$$\{1, 2, 3\}$$
 $\{a, b, c, d\}$
 $\{cat, dog, pig\}$
 $\{2, 4, 6, 8, ...\}$
 $\emptyset = \{\}$
 $\emptyset \neq \{\emptyset\}$

Note: $\{1,2,3\}$ is not the same as 1,2,3 or (1,2,3) or etc.

Sets have no order or duplicates

$$\begin{aligned} \{1,2,3\} &= \{2,3,1\} \\ &= \{2,1,3\} \\ &= \{1,1,2,2,3,3\} \\ &= \{2,3,3,2,1,1,1,1,2,3,2,2,2,3,1\} \end{aligned}$$

Some important sets

The integers, the natural numbers, the nonnegative integers

$$\begin{split} \mathbb{Z} &= \{..., -3, -2, -1, 0, 1, 2, 3, 4, ...\} \\ \mathbb{N} &= \{1, 2, 3, 4, ...\} \\ \mathbb{N}^0 &= \{0, 1, 2, 3, 4, ...\} \end{split}$$

We won't have much use for the real numbers, \mathbb{R} .

The size of a finite set

```
3 = |\{a, b, c\}|
5 = |\{a, b, c, d, e\}|
= |\{a, b, c, d, e, a, d, b\}|
0 = |\emptyset|
1 = |\{\emptyset\}|
1 = |\{\{\emptyset\}\}|
```

Membership and subsets

```
3 \in \{1, 2, 3, 4, 5\}
           3 \notin \{2, 4, 6, 8\}
        cat \in \{cat, dog, pig\}
           3 \in \mathbb{N}^0
           \pi \notin \mathbb{Z}
\{2,5,8\} \subseteq \{1,2,3,4,5,6,7,8,9,10\}
\{2,5,8\} \not\subset \{1,2,3,4,5,6,7\}
       {3} \subseteq {1,2,3,4,5}
       \{3\} \not\subseteq \{2,4,6,8\}
         \mathbb{N}^0\subset\mathbb{Z}
           \mathbb{R} \not\subset \mathbb{N}
```

Set builder notation

```
 \{n : n \text{ is odd and } 4 \le n \le 16\} = \{5, 7, 9, 11, 13, 15\} 
 \{2n + 5 : n \in \{3, 6, 7\}\} = \{11, 17, 19\} 
 \{2n : n \in \mathbb{N}^0\} = \{0, 2, 4, 6, 8, ...\} 
 \{n \in \mathbb{N} : n < 5\} = \{1, 2, 3, 4\} 
 \{3n : n \in \mathbb{N} \text{ and } n < 5\} = \{3, 6, 9, 12\}
```

Ordered pairs, triples, *n*-tuples

$$(2,4) \neq (4,2)$$

 $(2,2) \neq (2)$
 $(1,2,3) \neq (3,2,1)$
 $(1,1,2) \neq (1,2)$
 $(5,3,2,1,6) \neq (1,2,3,5,6)$

Cartesian product

$$A \times B = \{(x,y) : x \in A \text{ and } y \in B\}$$
$$\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

Higher order Cartesian products

$$A \times B \times C = \{(a, b, c) : a \in A, b \in B, c \in C\}$$

 $A^n = A \times A \times A \times ... \times A$
 $= \{(x_1, x_2, x_3, ..., x_n) : x_1, x_2, x_3, ..., x_n \in A\}$

Power set: the set of all subsets

$$\mathcal{P}(\{a, b, c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$$

How many subsets are there?

If |A| = n then $|\mathcal{P}(A)| = 2^n$

Union, Intersection, Difference

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{4, 5, 6, 7, 8\}$$

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$A \cap B = \{4, 5\}$$

$$A - B = \{1, 2, 3\}$$

Complement

$$\overline{A} = \{x : x \notin A\}$$

$$\overline{\{2,4,6,8,...\}}=\{1,3,5,7,...\}$$

Usually relative to some implied **universal set** or **universe**, in this case, \mathbb{N} .

Indexed Sets

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n$$

Indexed Sets

$$A_i = \{ni : n \in \mathbb{N}\}$$

$$A_1 = \{1, 2, 3, 4, ...\}$$

$$A_2 = \{2, 4, 6, 8, ...\}$$

$$A_3 = \{3, 6, 9, 12, ...\}$$

$$A_4 = \{4, 8, 12, 16, ...\}$$
...

$$\bigcup_{i=2}^{4} A_i = \{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, ...\}$$

$$\bigcap_{i=2}^{4} A_i = \{12, 24, 36, 48, 72, ...\}$$

The Division Algorithm

Given $a, b \in \mathbb{Z}$ with b > 0, there exist $q, r \in \mathbb{Z}$ with

$$a = qb + r$$

$$0 \le r < b$$

Logic

- 1. Circle X has radius equal to 3.
- 2. If any circle has radius r, then its area is πr^2 .
- 3. Circle X has area 9π .

Statements

NOT Statements:	Statements	
Add 5 to both sides.	Adding 5 to both sides of	
Add 5 to both sides.	x - 5 = 37 gives $x = 42$.	
\mathbb{Z}	$42 \in \mathbb{Z}$	
42	42 is not a number.	
What is the solution of $2x = 84$?	The solution of $2x = 84$ is 42.	

We use the letters P, Q, R and S to stand for statements.

Examples

P : The function $f(x) = x^2$ is continuous.

P(x): If an integer x is a multiple of 6, then x is even.

Q(x): The integer x is even.

A sentence whose truth value depends on the value of variables is called an **open sentence**.

And, Or, Not

P: The number 4 is even.

Q: The number 7 is even.

 $P \wedge Q$: The number 4 is even **and** the number 7 is even.

 $P \lor Q$: The number 4 is even **or** the number 7 is even.

 $\sim P$: The number 4 is **not** even. $\sim Q$: The number 7 is **not** even.

Truth Tables

Р	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

Р	$\sim P$
T	F
F	T

Р	Q	$P \lor Q$
T	T	Τ
T	F	T
F	T	T
F	F	F

Р	Q	$P \oplus Q$
T	T	F
T	F	T
F	T	T
F	F	F

Conditional Statements

R(a): If the integer a is multiple of 6, then a is divisible by 2.

P(a): The integer a is multiple of 6.

Q(a): a is divisible by 2.

R(a): If P, then Q.

R(a) : $P \Rightarrow Q$

Р	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Indexed Sets

```
If P then Q.

P only if Q.

Q, if P.

Q whenever P.

Q, provided that P.

Whenever P, then also Q.

P is sufficient for Q.

Q is necessary for P.
```

Biconditional or Equivalence Statements

P if and only if Q. P iff Q. P is necessary and sufficient for Q.

If P, then Q, and conversely. P is logically equivalent to Q. $(P\Rightarrow Q)\land (Q\Rightarrow P)$

Р	Q	$P \iff Q$
T	T	T
T	F	F
F	T	F
F	F	T

Truth Tables for Complex Statements

Р	Q	$(P \lor Q)$	$(P \wedge Q)$	$\sim (P \wedge Q)$	$(P \lor Q) \lor \sim (P \land Q)$
T	T	T	T	F	F
T	F	T	F	T	T
F	T	T	F	T	T
F	F	F	F	T	F

Quantifiers

Universal quantifier

- For every $n \in \mathbb{Z}$, 2n is even.
- $\forall n \in \mathbb{Z}, 2n$ is even.
- $\forall n \in \mathbb{Z}, E(2n)$

Existential quantifier

- There exists a subset X of \mathbb{N} for which |X| = 5.
- $\exists X, (X \subseteq \mathbb{N}) \land (|X| = 5)$
- $\exists X \subseteq \mathbb{N}, |X| = 5$
- $\exists X \in \mathcal{P}(\mathbb{N}), |X| = 5$

Negating statements

$$\sim (P \Rightarrow Q) \iff P \land (\sim Q)
\sim (P \land Q) \iff (\sim P) \lor (\sim Q)
\sim (P \lor Q) \iff (\sim P) \land (\sim Q)
\sim (\forall x \in S, P(x)) \iff \exists x \in S, \sim P(x)
\sim (\exists x \in S, P(x)) \iff \forall x \in S, \sim P(x)$$

Negating Statements, Example

R: The square of every real number is non-negative.

 $R : \forall x \in \mathbb{R}, x^2 \ge 0$

 $\sim R$: $\sim (\forall x \in \mathbb{R}, x^2 \ge 0)$

 $\sim R$: $\exists x \in \mathbb{R}, \sim (x^2 \ge 0)$

 $\sim R$: $\exists x \in \mathbb{R}, x^2 < 0$

 $\sim R$: There exists a real number whose square is negative.

Negating Statements, Example

R :

For every real number x there is a real number y for which $y^3 = x$.

$$R = \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 = x$$

$$\sim R = \sim (\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 = x)$$

$$= \exists x \in \mathbb{R}, \sim (\exists y \in \mathbb{R}, y^3 = x)$$

$$= \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \sim (y^3 = x)$$

$$= \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^3 \neq x$$

$\sim R$:

There is a real number x for which $y^3 \neq x$ for all real numbers y.

Tuples or Lists or Strings

$$(a, b, c, d, e) \neq (b, a, c, d, e)$$

 $(a, b, c, d, e) \neq (a, a, b, c, d, e)$
 $SOS = (S, O, S)$

Counting Tuples: Multiplication Principle

How many different lists of length 3 are there, where the first entry must be an element of $\{a, b, c\}$, the second entry must be an element of $\{5, 7\}$, and the third entry must be an element of $\{a, x\}$?

Resulting list

Some notation: falling factorial powers

$$7^{5} = 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$$

$$7^{\underline{5}} = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3$$

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= 7^{\underline{7}}$$

Lists with repetitions

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, where repetition is allowed?

Lists with repetitions

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, where repetition is allowed?

Lists with repetitions

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, where repetition is allowed?

$$7 \cdot 7 \cdot 7 \cdot 7 = 7^4$$

Lists without repetitions

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, where repetition is not allowed?

Lists without repetitions

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, where repetition is not allowed?

Lists without repetitions

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, where repetition is not allowed?

$$7 \cdot 6 \cdot 5 \cdot 4 = 7^{\underline{4}}$$

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, without repetitions, and the symbol E must appear somewhere in the list?

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, without repetitions, and the symbol E must appear somewhere in the list?

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, without repetitions, and the symbol E must appear somewhere in the list?

$$4 \cdot 6 \cdot 5 \cdot 4 = 4 \cdot 6^{\underline{3}}$$

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, repetition is allowed, and the list must contain an E?

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, repetition is allowed, and the list must contain an E?

• There are 7⁴ lists where repetition is allowed.

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, repetition is allowed, and the list must contain an E?

- There are 7⁴ lists where repetition is allowed.
- There are 6⁴ lists that do not contain E.

How many lists of length 4 with selections from $\{A, B, C, D, E, F, G\}$, repetition is allowed, and the list must contain an E?

- There are 7⁴ lists where repetition is allowed.
- There are 6⁴ lists that do not contain E.

$$7^4 - 6^4$$

More about falling factorial powers

$$7^{\underline{3}} = 7 \cdot 6 \cdot 5$$

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$7^{\underline{3}} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1}$$

$$= \frac{7!}{4!}$$

$$= \frac{7!}{(7-3)!}$$

$$n^{\underline{k}} = \frac{n!}{(n-k)!}$$

$$n! = n^{\underline{n}}$$

How many lists with repetitions of length k can be made from n symbols? AAAA, BBBB, BABA, EBAB, CABC, ...

How many lists with repetitions of length k can be made from n symbols? AAAA, BBBB, BABA, EBAB, CABC, ...

 n^{k}

How many lists with repetitions of length k can be made from n symbols? AAAA, BBBB, BABA, EBAB, CABC, ...

 n^k

How many lists without repetitions of length k can be made from n symbols? ABCD, DCBA, BCDE, EBAC, CABE, ...

How many lists with repetitions of length k can be made from n symbols? AAAA, BBBB, BABA, EBAB, CABC, ...

 n^k

How many lists without repetitions of length k can be made from n symbols? ABCD, DCBA, BCDE, EBAC, CABE, ...

n<u>k</u>

How many lists with repetitions of length k can be made from n symbols? AAAA, BBBB, BABA, EBAB, CABC, ...

 n^k

How many lists without repetitions of length k can be made from n symbols? ABCD, DCBA, BCDE, EBAC, CABE, ...

$$\frac{n!}{(n-k)!}$$

How many subsets of size k can be made by selecting elements from a set of size n?

How many subsets of size k can be made by selecting elements from a set of size n? The number of lists without repetitions?

How many subsets of size k can be made by selecting elements from a set of size n? The number of lists without repetitions?

n<u>k</u>

But these contain set-equivalent pairs, such as abc and cba.

Eliminating the duplicates

$$\binom{5}{3}3! = 5^{\underline{3}}$$

Eliminating the duplicates

$$\binom{5}{3}3! = 5^{\underline{3}}$$

abdabeacdadebcdbcebdecdeaceaeb bae adcaecaedbdcbecbedcedbacbadbaecadbcabdabeacdacbadbaebadcacabdabeabdac daedbedcecaecbdcbeceadeacdbcebdebdececaedadcbedbedcecbeaceaddbcebcebdecd

$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5^{\underline{3}}}{3!} = \frac{5^{\underline{3}}}{3^{\underline{3}}}$$

How many subsets of size k can be made by selecting elements from a set of size n?

How many subsets of size k can be made by selecting elements from a set of size n?

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n^{\underline{k}}}{k!} = \frac{n^{\underline{k}}}{k!}$$

Easy to prove theorem?

$$\binom{n}{k} = \binom{n}{n-k}$$

Using set theory in counting

$$|A \cup B| = |A| + |B| - |A \cap B|$$

How many 3-card hands are there for which all 3 cards are red, or all three cards are face cards?

A = 3-card hands, all red cards B = 3-card hands, all face cards

$$|A| = {13 \choose 3}$$

$$|B| = {12 \choose 3}$$

$$|A \cap B| = {6 \choose 3}$$

$$|A \cup B| = |A| + |B| - |A \cap B| = {13 \choose 3} + {12 \choose 3} - {6 \choose 3}$$