Ensemble Learning Based Gene Regulatory Network Inference

Sergio Peignier^a, Baptiste Sorin, Federica Calevro

Univ Lyon, INSA Lyon, INRAE BF2I, UMR0203, F-69621 Lvon. France

a sergio.peignier@insa-lyon.fr

Gene Regulatory Networks (GRNs)

Central Dogma of Molecular Biology

Gene $\xrightarrow{\text{Transcription}} mRNA \xrightarrow{\text{Translation}} Protein$

Definition

Set of **interacting molecular regulators** (e.g. transcription factors) **controlling** the **creation** of **gene products** (e.g. mRNA, proteins).

Important biological role:

- Adaptation
- Versatility
- Differentiation
- Morphogenesis ...

Data-driven GRN Inference

General principle

- · Based on high-throughput gene expression data.
- · Score possible links between:
 - · Regulators, i.e. Transcription Factors (TFs)
 - · Target Genes (TGs)
- · Select most promising links.

Data-driven GRN Inference Families

Correlation | Mutual Regression Methods Classification Methods Information

Ensembles of GRN inference methods

"Community" Ensemble of 35 methods [Marbach et al. 2012]

Advantages:

- · Better results than base learners
- · Robust across datasets

Drawbacks:

- · Higher runtimes
- · More computer resources
- · Some methods could be detrimental

Objective

Design **small**, **robust** and **efficient ensembles** of **GRN inference** methods

5

Benchmark Evaluation Setup

- Evaluation protocol designed by [Marbach et al. 2012]
- · Standard evaluation measures: AUROC and AUPR
- · DREAM5 Benchmark datasets

Dataset	Data	# cond.	# genes	# TFs	# Links	#TrueLinks #Links
InSilico	Simulated	805	1,643	195	4,012	0.014
S.aureus	Microarray	160	2,810	99	515	0.028
E.coli	Microarray	805	4,511	334	2,066	0.013
S.cerevisiae	Microarray	536	5,950	333	3,940	0.017
		'				

GRN Inference Base Methods

GRN Inference Methods: 17 methods from the **GReNaDIne** library based on **SciPy** and **Scikit-learn** methods:

- Pearson corr. (Pcorr), Spearman corr. (Scorr), Kendall-tau (Ktau) Mutual Information (MI).
- Linear SVM, Random Forest, Gradient Boosting, AdaBoost regressors and classifiers (SVMr,SVMc,RFr,RFc,GBr,GBc,ABr,ABc)
- Linear Regressors Stability:
 TIGRESS and Stability Randomized Lasso (SRLr)
- · BayesianRidge Regression (BRSr)

$\mathsf{Genotype} \to \mathsf{Phenotype} \to \mathsf{Fitness}$

$\mathsf{Genotype} \to \mathsf{Phenotype} \to \mathsf{Fitness}$

$\textbf{Genotype} \rightarrow \textbf{Phenotype} \rightarrow \textbf{Fitness}$

$\textbf{Genotype} \rightarrow \textbf{Phenotype} \rightarrow \textbf{Fitness}$

Efficient Ensemble Candidates Population Evolution

Run 10 indep. populations for:

- Each dataset
- $P_{Init} \in \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6\}$

Results: Genetic Algorithm

- 10 generations were **sufficient**.
- · Last generation ensembles are better than the best single-method

Maximal Frequent Itemsets

Goal: Detect the subsets of frequently co-selected methods.

- GRN Inference method → Item
- · Individual using methods $\mathcal{M}_t \rightarrow$ itemset/transaction
- Population \to transactions dataset $\mathcal{T} = \{\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_T\}$

- $\begin{array}{l} \cdot \text{ Support of Itemset } \mathcal{M} \\ \text{ supp}(\mathcal{M}, \mathcal{T}) = \frac{|\{\mathcal{M}_t \in \mathcal{T} \mid \mathcal{M} \subseteq \mathcal{M}_t\}|}{|\mathcal{T}|} \end{array}$
- $\cdot \mathcal{M}$ is frequent itemset if $supp(\mathcal{M}, \mathcal{T}) > MinSupp$
- \cdot \mathcal{M} is Maximal frequent itemset if $\nexists \mathcal{M}' \in \mathcal{T}$ s.t. $\mathcal{M} \subset \mathcal{M}'$ and $supp(\mathcal{M}', \mathcal{T}) > MinSupp$
- In practice **FP-max** algorithm was used with *MinSupp* = 0.2

Results: Maximal Frequent Itemsets

Support

- · Selected in simulated datase
- Best results for Simulated dataset
- · Mediocre results for real datasets

BRSr•SVMr•Trees

- Mainkly selected in real datasets
- · Best results in real datasets
- · Decent results in simulated dataset

Base learners diversity exploration

PCA-based base learners relatedness evaluation [Marbach et al. 2012]

- Close methods are likely to share the same intrinsic biases
- Performance and robustness increase with base learners diversity
- $\bullet \; \mathsf{BRSr} \bullet \mathsf{SVMr} \bullet \mathsf{Trees} \to \mathbf{diverse} \; \mathbf{methods}$

Promising combinations:

- · SVM + BRSr + tree-based, TIGRESS or SRLr
- · SVM + BRSr + tree-based, TIGRESS or SRLr + correlation method

Promising Enssembles Assessment

- BRSr•SVM•Ens: BRSr + SVM + tree-based, TIGRESS or SRLr
- · BRSr·SVM·Ens·Corr: BRSr·SVM·Ens + correlation-based method

Results

- · Small ensembles can outperform large DREAM5 community
- · Adding Corr. method does not improve results (for these datasets)

Conclusion

Summary

- · Small and diverse ensembles of methods could be sufficient to:
 - · Improve prediction quality
 - · Improve Robustness across datasets
 - · Limit computational requirements
- BRSr•SVM•Trees → efficient GRN inference ensemble

Implementation

- GReNaDIne Python package: Gene Regulatory Network Data-driven Inference
- GitLab repository:
 gitlab.com/bf2i/grenadine
- Documentation: grenadine.readthedocs.io

