Funktionalanalysis

Prof. Dr. Lutz Weis

Wintersemester 2015

Martin Belica

Einleitung

Die Funktionalanalysis liefert den begrifflichen Rahmen sowie allgemeine Methoden, die in weiten Teilen der modernen Analysis verwendet werden. Zum Beispiel ist es möglich Integralund Differentialgleichungen als lineare Gleichungen in einem geeigneten unendlichdimensionalen Vektorraum (wie z.B. einem Raum stetiger oder integrierbarer Funktionen) aufzufassen. Will man nun auf diese unendlichdimensionalen Gleichungen Ideen der linearen Algebra anwenden, so treten Konvergenz- und Kompaktheitsprobleme auf, die wir in dieser Vorlesung behandeln wollen. Zu den Themen gehören:

- Beschränkte und abgeschlossene Operatoren auf normierten Räumen
- Stetigkeit und Kompaktheit auf metrischen Räumen
- Geometrie und Operatorentheorie in Hilberträumen
- Der Satz von Hahn-Banach und Dualität von Banachräumen

Die allgemeinen Aussagen werden durch konkrete Beispiele von Räumen und Operatoren der Analysis illustriert.

Erforderliche Vorkenntnisse

Analysis I-III, Lineare Algebra I-II

Inhaltsverzeichnis

1		re Operatoren auf Banachräumen	2
	1.1	Einführung	. 2
		1.1.1 Räume	. 2
		1.1.2 Operatoren	
		1.1.3 Anwendungen	
	1.2	Normierte Räume	
	1.3	Beschränkte und lineare Operatoren	. 10
Bildquellen			
Abkürzungsverzeichnis			
Sy	mbol	erzeichnis	17

1 Lineare Operatoren auf Banachräumen

1.1 Einführung

1.1.1 Räume

Sei X ein Vektorraum, $dim X < \infty$ und sei $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$

$$||x||_2 := \left(\sum_{k=1}^n ||x_i^2||\right)^{\frac{1}{2}}$$
$$||x||_{\infty} := \max_{i=1}^n ||x_i||$$

Diese Normen sind äquivalent, denn: $\|x\|_{\infty} \leq \|x\|_2 \leq n^{\frac{1}{2}} \|x\|_{\infty}$

Satz (Bolzano-WeierstraSS)

 $A \subset \mathbb{R}$ beschränkt. Dann hat jede Folge $(x_n)_{n \in \mathbb{N}} \subset A$ eine konvergente Teilfolge.

Beispiel

 $X=C[0,1]=\{f:[0,1]\to\mathbb{R}: \text{ stetig auf } [0,1]\}$

$$||f||_2 := \left(\int_0^1 ||f(t)||^2 dt\right)^{\frac{1}{2}}$$
$$||f||_{\infty} := \max_{t \in [0,1]} ||f(t)||$$

Dabei gilt $||f||_{\infty} \le ||f||_2$, aber mit folgender Funktion folgt zum Beispiel: $f_n(t) =$

$$||f_n||_{\infty} = 1, \quad ||f_n||_2 \xrightarrow[n \to \infty]{} 0 \quad ||f_n - f_m|| = 1 \text{ für } n \neq m$$

 \Rightarrow Satz von Bolzano-WeierstraSS gilt im ∞ -dimensionalen i.A. nicht!

1.1.2 Operatoren

Sei N = dim X, M = dim Y und seien (e_n) bzw. (f_n) Basen von X bzw. Y. Sei $T: X \to Y$ gegeben durch:

$$X \xrightarrow{T} Y$$

$$\alpha_n \to \sum \alpha_n e_n \downarrow \qquad \qquad \downarrow \beta_n \to \sum \beta_n f_n$$

$$\mathbb{R}^N \xrightarrow{A} \mathbb{R}^n$$

wobei $x = \sum \alpha_n e_n$, $Tx = \sum \beta_n f_n$, $\beta_m = \sum_{n=1}^N a_{mn} \alpha_n$.

Daraus folgt:

- T ist stetig
- $X = Y \iff T$ injektiv $\iff T$ surjektiv (Dimensionsformel) (Die Gleichung Tx = y ist eindeutig lösbar \iff Gleichung hat für alle $y \in Y$ eine Lösung.)
- Falls A selbstadjungiert ist, d.h. $A = A^*$, gibt es eine Basis aus Eigenvektoren (e_n) von A, d.h. $T(\sum_{n=1}^{N} \alpha_n e_n) = \sum_{n=1}^{N} n = 1^{N} \lambda_n \alpha_n e_n$, wobei λ_n Eigenwerte sind $A = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \end{pmatrix}$

Beispiel

$$X = C^{1}[0,1] = \{f : [0,1] \to \mathbb{R} : \text{ stetig auf } [0,1] \}$$

 $Tf = f', T : X \to Y \text{ stetig. (Aber: } T : C[0,1] \to C[0,1], \text{ hier ist } T \text{ nicht definiert.)}$

T ist nicht stetig bzgl. $\|\cdot\|_{\infty}$ -Norm, da:

$$f_n(t) = \frac{1}{\sqrt{n}}e^{int}$$
, dann: $||f_n|| \to 0$ für $t \to \infty$

$$Tf_n(t) = i\sqrt{n}e^{int}$$
, mit: $||Tf_n||_{\infty} \to \infty$, für $n \to \infty$

Beispiel
$$X = L_2 = \{(a_n) : \left(\sum_{n \ge 1}^{\infty} \|a_n\|\right)^{\frac{1}{2}} < \infty\}$$
 $T(a_1, a_2, a_3, ...) = (0, a_1, a_2, a_3, ...)$

T ist injektiv, aber nicht surjektiv

1.1.3 Anwendungen

(1) Fredholm'sche Integralglechungen $X = C[0,1], k : [0,1] \times [0,1] \to \mathbb{R}$ stetig

$$Tf(t) = \int_0^1 k(t,s)f(s)ds$$

Analogie zum endlich dim. ('Verallg. der Matrixmultiplikation'): $T(f_j)(i) = \sum_{j=1}^n a_{ij} f_j$

T ist in diesem Fall linear und stetig und es gilt die Fredholm'sche Alternative:

$$\lambda \in R \setminus \{0\} : (\lambda Id - T)(f) = y, \quad f, g \in C[0, 1]$$

Dann existiert eine Lösung genau dann wenn diese eindeutig ist.

(2) Dirichletproblem

 $\Omega \subset \mathbb{R}^n$ Gebiet, offen, beschränkt, glatter Rand. Sei $g: \partial \Omega \to \mathbb{R}$ stetig Gesucht ist ein $f \in C(\bar{\Omega}) \cap C^{(\Omega)}$, so dass $\nabla f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} = 0$ in Ω und $f_{|\partial \Omega} = g$

Beispiel: Durch Wärmeverteilung auf dem Rand auf WV im Inneren schlieSSen.

Lösung: Dirichletintegral $J(u)=\int_{\Omega}(\nabla u)^2dx$, wobei $u\in M=\{v\in C^1(\bar{\Omega})|\ v_{\big|\partial\Omega}=g\}$ Sei v_0 das absolute Minimum von J, d.h. $J(v_0)=\inf\{J(w):w\in M\}$ $v\in C^1(\bar{\Omega})$ mit v=0 in einer Umgebung von $\partial U.\ \epsilon\to J(u_0+\epsilon v)$

$$\frac{d}{d\epsilon}J(u_0+\epsilon v)=\int_{\Omega}\frac{d}{d\epsilon}(\nabla u_0+\epsilon\nabla v)^2dx=2\int_{\Omega}(\nabla u_0+\epsilon\nabla v)(\nabla v)dx_{\big|\epsilon=0}=2\int_{\Omega}(\nabla u_0)(\nabla v)dx$$

Mit $0 \ge J(u_0 + \epsilon v) - J(u_0) \ge 0$: $\int (\nabla u_0)(\nabla v) dx \stackrel{\text{P.I.}}{=} - \int (\nabla u_0)v dx = 0$

$$\Rightarrow \nabla u_0 = 0,$$
au
S
erdem $u_0 \mid_{\partial\Omega} = g$ (s.o.)

Im allgemeinen exisitert da absolute Minimum $u_0 \in J$ aber nicht. Ausweg: $X = \{f \in L^2(\Omega), f' \in L^2(\Omega)\} \supset \{f \in C(\bar{\Omega}), f' \in C(\bar{\Omega})\}$ In diesem Raum X (Sobolevräume) gibt es ein Minimum u_0 von J.

(3) Sturm-Liouville Problem

 $X = C^2([0,1]), Tu = (pu')' + qu, \text{ mit } q \in C[0,1], p \in C^1[0,1]$ Problem: bei gegebenen $f \in C[0,1]$ find $u \in X$ mit Tu = f, v(0) = 0, v'(1) = 0

 $Y=\{f\in L^2[0,1], f'\in L^2[0,1]\}$ Hilbertraum. Orthonormalbais (e_n) von Y wäre: $\|e_n\|_2=1, \int e_n(x)e_m(x)dx=0$ für $m\neq m$ $f\in Y: f=\sum_{n=1}^\infty \alpha_n e_n$ mit $\|f\|^2=\sum |\alpha_n|^2$ Die (e_n) sind auSSerdem Eigenvektoren des Operatoren T, d.h. $Te_n=\lambda_n e_n$

$$Ty = f \Rightarrow \int Ty(x)e_n(x)dx = \int f(x)e_n(x)dx, y = \sum_{n=1}^{\infty} \alpha_n e_n$$

Gesucht sind die Koeffizienten α_n

$$\int f(x)e_n(x)dx = \sum_m \lambda_m \alpha_m \int Te_n(x)e_m(x)dx$$
$$= \lambda_n \alpha_n \int e_n(x)e_n(x)dx$$
$$\iff \alpha_n = \frac{1}{\lambda_n} \int f(x)e_n(x)dx$$

1.2 Normierte Räume

Definition

Sei X ein Vektorraum über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$

Eine Abbildung $\|\cdot\|: X \to \mathbb{R}_+$ heiSSt eine Norm, wenn

- (1) $||x|| \ge 0, ||x|| = 0 \iff x = 0$
- $(2) \quad |\lambda x|| = |\lambda||x||$
- (3) $||x + y|| \le ||x|| + ||y||$

Bemerkung: Falls $\|\cdot\|$ all die oben genannten Eigenschaften erfüllt auSSer $\|x\| = 0 \Rightarrow x = 0$, dann heiSSt $\|\cdot\|$ Halbnorm

Vereinbarung: Die Menge $U_X = \{x \in X : ||x|| \le 1\}$ heiSSt **Einheitskugel**.

Eine Folge (x_n) des normierten Raums X konvergiert gegen ein $x \in X$, falls $||x_n - x|| \xrightarrow[n \to \infty]{} 0$.

Bemerkung: Für zwei Elemente $x, y \in (X, \|\cdot\|)$ in normierten Räumen gilt auch die umgekehrte Dreiecksungleichung $(\|\|x\| + \|y\|\| \le \|x + y\|)$

Beispiel

Sei $X = \mathbb{K}^n$, $X = (X_1, \dots, X_n)$, $X_i = \mathbb{K}$

$$||x||_p = \left(\sum_{j=1}^n |x_j^p|\right)^{\frac{1}{p}}, 1 \le p < \infty(p=2: \text{ Euklidische Norm})$$
$$||x||_\infty = \sup_{j=1}^n |x_j|$$

Beh: $\|\cdot\|$ ist Norm auf \mathbb{K}^n für $1\leq p\leq \infty$

 $\|x+y\|_{\infty}=\sup_{j=1}^k|x_j+y_j|\leq \|x\|_{\infty}+\|y\|_{\infty}$ Für $p\in(1,\infty), p\neq 2$: siehe Übungsaufgabe (Fall p=2läuft über Cauchy-Schwarz)

Beachte: $||x||_{\infty} \le ||x||_{p} \le n^{\frac{1}{p}} ||x||_{\infty} \le n ||x||_{\infty}$

Definition

Zwei Normen $\|\cdot\|_1$, $\|\cdot\|_2$ heiSSen äquivalent auf X, falls es $0 < m, M < \infty$ gibt, so dass für alle $x \in X$ gilt:

$$m||x||_2 \le ||x||_1 \le M||x||_2$$

Satz 1.1

Auf einem endlich dimensionalen Vektorraum sind alle Normen äquivalent.

Beweis

Wähle eine algebraische Basis (e_1, \ldots, e_n) von X, wobei $n = \dim X < \infty$.

Definiere $|||x||| = (\sum_{i=1}^{n} |x_i|^2)^{\frac{1}{2}}$, wobei $x = \sum_{i=1}^{n} x_i e_i$

z. z. die gegeben Norm $|\|\cdot\||$ ist äquivalent zu $\|\cdot\|$.

Beweis:

In der einen Richtung betrachte:

$$||x|| = ||\sum_{i=1}^{n} x_i e_i|| \le \sum_{i=1}^{n} |x_i| ||e_i||$$

$$\le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} ||e_i||^2\right)^{\frac{1}{2}}$$

$$=: \nu \qquad |||x|||$$

Für die Umkehrung benutze die Funktion $J: \mathbb{K}^n \to X, \ J(x_1,\dots,x_n) = \sum_{i=1}^n x_i e_i$

Die Abbildung $y \in \mathbb{K}^n \to ||Jy||$ ist stetig, denn

$$||Jy|| - ||y||_{\mathbb{K}^n} = \left(\sum_{i=1}^n |y_i|^2\right)^{\frac{1}{2}}, y = (y_1, \dots, y_n)$$
und $||Jy|| - ||Jz|| \le ||Jy - Jz|| \le ||J(y - z)||$

$$\le M||J(y - z)|||$$

$$= M||y - z||_{\mathbb{K}^n}$$

Daraus folgt die Stetigkeit von $Jy \to ||Jy|| \in \mathbb{R}$

Sei $S = \{y \in \mathbb{K}^n : ||y||_2 = 1\}$. Dann ist S abgeschlossen und beschränkt. Die Abbildung $N := y \in S \to ||Jx|| > 0$ ist wie in (*) gezeigt stetig. Nach Analysis nimmt N sein Minimum in einem Punkt $y_0 \in S$ an. Setze

$$m = \inf\{||x|| : |||x||| = 1\} = \inf\{||Jy|| : y \in S\}$$
$$= ||Jy_0|| > 0$$

Also
$$m \le \|\frac{x}{|||x|||}\| = \frac{||x||}{|||x|||} \Rightarrow |||x||| \le m||x||$$

Proposition 1.2

Für zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ auf X sind äquivalent:

- a) $\|\cdot\|_1, \|\cdot\|_2$ sind äquivalent
- b) Für alle $(x_n) \subset X$, $x \in X$ gilt $||x_m x||_1 \to 0 \iff ||x_m x||_2 \to 0$
- c) Für alle $(x_n) \subset X$ gilt $||x_m||_1 \to 0 \iff ||x_m||_2 \to 0$
- d) Es gibt Konstanten $0 < m, M < \infty$, so dass $mU_{(X,\|\cdot\|_1)} \le U_{(X,\|\cdot\|_2)} \le MU_{(X,\|\cdot\|_1)}$

Beweis

 $(a) \Rightarrow (b) \Rightarrow (c)$ folgt direkt durch die Definition von äquivalenten Normen.

- $c)\Rightarrow d)$ Annahme: Es existiert kein M mit $U_{(X,\|\cdot\|_2)}\subset MU_{(X,\|\cdot\|_1)}.$ Dann gibt es eine Folge $x_n\in U_{(X,\|\cdot\|_2)}$ mit $\|x_n\|_1\geq n^2$ Setze $y_n=\frac{1}{n}x_n.$ Dann gilt $\|y_n\|_1\to 0$ und $\|y_n\|_2\to\infty.$ Widerspruch zu c).
- $\begin{array}{l} d)\Rightarrow a) \text{ Gegeben ist } U_{(X,\|\cdot\|_2)}\subset MU_{(X,\|\cdot\|_1)}\\ \text{ Das ist "aquivalent zu } \|x\|_2\leq M\|x\|_1\\ \text{ Analog folgt aus } mU_{(X,\|\cdot\|_1)}\subset U_{(X,\|\cdot\|_2)} \text{ dann } m\|x\|_1\leq \|x\|_2.\\ \text{ Also } m\|x\|_1\leq \|x\|_2\leq M\|x\|_1 \end{array}$

Vereinbarung: Sei $\mathbb{F} = \{(x_n) \in \mathbb{K}^N : x_i = 0 \text{ bis auf endlich viele } n \in N\}$ der **Folgenraum** und $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ der Einheitsvektor, wobei die 1 an j-ter Stelle steht.

Beispiel

- $l^p = \{x = (x_n) \in \mathbb{K}^n : ||x||_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} < \infty \}$
- $l^{\infty} = \{x = (x_n) \in \mathbb{K}^n : ||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n| < \infty\}$
- $c_0 = \{x = (x_n) \in l^{\infty} : \lim_{n \to \infty} |x_n| = 0\}$

Gültigkeit der Dreiecksungleichung beweist man ähnlich wie bei $(\mathbb{K}^n, \|\cdot\|_p)$.

Lemma 1.3

Minkowskii-Ungleichung: $(\sum_{i=1}^{\infty} |x_i + y_i|^p)^{\frac{1}{p}} \leq (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{\infty} |y_i|^p)^{\frac{1}{p}}$ Hölder-Ungleichung: mit $\frac{1}{p} + \frac{1}{p'} = 1$ gilt $\sum_{i=1}^{\infty} |x_i| |y_i| \leq (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{\infty} |y_i|^{p'})^{\frac{1}{p'}}$

Bemerkung: Im unendlich dimensionalen Fall sind die Normen $\|\cdot\|_p$ auf \mathbb{F} nicht äquivalent.

Beweis

Sei p > q, setze

$$X_n := \sum_{j=2^{n+1}}^{2^{n+1}} j^{-\frac{1}{p}} e_j, \quad e_j = (\delta_{ij})_{u \in \mathbb{N}}$$

Damit gilt $x_n \in \mathbb{F}$ und weiter

$$||x_n||_p = \left(\sum_{j=2^n}^{2^{n+1}} \frac{1}{j}\right)^{\frac{1}{p}} \simeq (\ln(2))^{\frac{1}{p}}$$

aber $||x_n||_q \to \infty$, also sind $||\cdot||_p$, $||\cdot||_q$ keine äquivalente Normen.

Beispiel

a) Raum der stetigen Funktionen $\Omega \subset \mathbb{R}^n, \ C(\Omega) = \{f: \Omega \to \mathbb{R} \mid f \text{ stetig}\}, \quad \|f\| = \sup_{u \in \Omega} |f(u)|$ $\Rightarrow \|f - f_n\| \to 0 \text{ bedeutet gleichmäSSige Konvergenz von } f_n \text{ gegen } f \text{ auf } \Omega.$

b) Raum der differentierbaren Funktionen $\Omega \subset \mathbb{R}^n \text{ offen, } f:\Omega \to \mathbb{R}, \ \alpha = (\alpha_1,\ldots,\alpha_m) \in \mathbb{N}_0^m$ $D^{\alpha}f(x) = \frac{\delta^{|\alpha|}}{\delta x_1^{\alpha_1}\ldots\delta x_n^{\alpha_n}}f(x), \text{ wobei } |\alpha| = \alpha_1+\ldots+\alpha_n$

Definition

Wir nennen $C_b^m(\Omega) = \{f: \Omega \to \mathbb{R} | D^{\alpha}f \text{ sind stetig in } \Omega, \text{ beschränkt auf } \Omega \text{ für alle } \alpha \in \mathbb{N}^n, |\alpha| \leq n \}$ den Raum der beschränkten, m-fach stetig differenzierbaren Funktionen. Auf C_b^m definieren wir die Norm: $\|f\|_{C_b^m} = \sum_{|\alpha| \leq m} \|D^{\alpha}f\|_{\infty}$

Bemerkung: Auf $C_b^m[0,1]$ ist eine äquivalente Norm zu $||f||_{C_b^m}$ gegeben durch

$$||f||_0 = \sum_{i=0}^{m-1} |f^{(i)}(0)| + ||f^{(m)}||_{\infty}$$

Denn $f^{(i)}(t) = f^{(i)}(0) + \int_0^t f^{(i+1)}(s)ds$ und damit $||f^{(i)}||_0 \le |f^{(i)}(0)| + ||f^{(i+1)}||_{\infty}$

Beispiel

 $X = C(\bar{\Omega}), \Omega \subset \mathbb{R}^n$ offen, beschränkt.

Definiere $||f||_{\mathbb{L}^p} = \left(\int_{\Omega} |f(u)|^p du\right)^{\frac{1}{p}}$ und betrachte $f_k(t) = t^k, t \in [0, 1]$, dann gilt:

$$||f||_{\mathbb{L}^p} = \left(\frac{1}{kp+1}\right)^{\frac{1}{p}} \xrightarrow[k \to \infty]{} 0, \quad p < \infty$$

Definition (Quotientenräume)

Sei $(X, \|\cdot\|)$ ein normierter Raum. $M \subset X$ sei abgeschlossener, linearer Unterraum.

(abgeschlossen: d.h. für alle
$$(x_n) \in M, ||x_n - x|| \to 0 \Rightarrow x \in M$$
)

Definiere $\hat{X} = X/M$, $\hat{x} \in X/M$: $\hat{x} = \{y \in X : y - x \in M\} = x + M$ Dabei gilt unter anderem $\hat{x}_1 + \hat{x}_2 = x_1 + x_2$ und $\lambda \hat{x}_1 = \lambda \hat{x}_1$; \hat{X} bildet somit einen Vektorraum. Definieren wir eine Norm für die Äquivalenzklassen mittels $\|\hat{x}\|_{\hat{X}} := \inf\{\|y\|_X : y \in \hat{X}\}$

Behauptung: $(\hat{X}, \|\cdot\|_{\hat{X}})$ ein normierter Raum.

Beweis: Sei $\hat{x} \in \hat{X}$ beliebig mit $\|\hat{x}\|_{\hat{X}} = 0$

dann existiert ein $y_n \in \hat{X}$ mit $||y_n|| \to 0$ und $x - y_n \in M$

$$\Rightarrow x \in M, \hat{x} = 0$$

Zu $\epsilon < 0$ wähle für $\hat{x}_1, \hat{x}_2 \in \hat{X}, y_1, y_2 \in M$ mit

$$\|\hat{x}_1\| \ge \|x_i - y_i\| - \epsilon$$

Damit folgt:

$$||x + y|| \le ||x_1 + x_2 - y_1 - y_2||$$

$$\le ||x_1 - y_1|| + ||x_2 - y_2||$$

$$\le ||\hat{x}_1|| + ||\hat{x}_2|| + 2\epsilon$$

Bemerkung: Ist $\|\cdot\|$ nur eine Halbnorm auf X, so ist $M = \{x : \|x\| = 0\}$ ein abgeschlossener, linearer Teilraum von X und der Quotientenraum $(\hat{X}, \|\cdot\|_{\hat{X}})$ ist ein normierter Raum.

Beispiel

• Hölderstetige Funktionen

Wenn $h_{\alpha}(f) = \sup_{u,v \in \mathbb{R}, u \neq v} \frac{\|f(u) - f(v)\|}{\|u - v\|^{\alpha}} < \infty \quad (\alpha \in (0,1]), \text{ dann nennt man } f \text{ h\"olderstetig.}$

$$C^{\alpha}(\Omega) := \{ f : \Omega \to \mathbb{R} : h_{\alpha}(f) < \infty \} \quad \Omega \subset \mathbb{R}^n,$$

Im Moment ist $h_{\alpha}(\cdot)$ eine Halbnorm. Unter der Voraussetzung Ω zusammenhängend gilt aber weiter:

$$h_{\alpha}(f) = 0 \iff f \equiv c \text{ konstant}$$

Wenn z.B. $M = \{1\Omega\}$ und $V = C^{\alpha}/M$ ist oben genanntes sogar ein normierter Raum.

• Lebesgues-Integrierbare Funktionen

Sei $\Omega \subset \mathbb{R}^n$ offen, $\mathcal{L}^p(\Omega) = \{f : \Omega \to \mathbb{R} : |f|^p \text{ ist lesbesgue-integrierbar auf } \Omega \}$. Wir definieren $||f||_p := \left(\int_{\Omega} |f(x)|^p d\mu\right)^{\frac{1}{p}}$, wobei $||\cdot||_p$ hier eine Halbnorm bildet.

$$||f||_p = 0 \iff f(x) = 0 \text{ fast "überall auf } \Omega$$

Wähle $M = \{l : \Omega \to \mathbb{R} : f = 0 \text{ fast "uberall auf } \Omega\}.$

Dann ist

$$\mathbb{L}^p(\Omega) := \frac{\mathcal{L}^p(\Omega)}{M}$$
 ein normierter Raum.

1.3 Beschränkte und lineare Operatoren

Definition

Eine Teilmenge V eines normieren Raums $(X, \|\cdot\|)$ heiSSt beschränkt, falls

$$c:=\sup_{x\in V}\|x\|<\infty, \text{ und damit auch } V\subset cU_{(X,\|\cdot\|)}$$

Bemerkung: Eine konvergente Folge $(x_n) \in X, x_n \to x$ ist beschränkt, denn $x_m \in \{y : \|x - y\| \le 1\}$ für fast alle m.

Satz 1.4

Seien X, Y normierte Räume. Füreinen linearen Operator $S: X \to Y$ sind äquivalent:

- a) T stetig, d.h. $x_n \to x$ impliziert $Tx_n \to Tx$
- b) T stetig in 0
- c) $T(U_{(X,\|\cdot\|)})$ ist beschränkt in Y
- d) Es gibt ein $c < \infty$ mit $||Tx|| \le c||x||$

Beweis

- $a) \Rightarrow b$) klar, ist ein Spezialfall.
- $b)\Rightarrow c)$ Wäre c)falsch, dann gibt es ein $x_n\in U_X$ mit

$$||Tx_n \ge \frac{1}{n^2}||$$

Setze $y_n = \frac{1}{n}x_n$, dann gilt

$$||y_n|| \le \frac{1}{n} ||x_n|| \to 0, ||T(y_n)|| = n^2 ||T(x_n)|| \ge \frac{n^2}{n} \to \infty$$

Widerspruch zur Voraussetzung.

$$c) \Rightarrow d)$$
 Sei $T(U_X) \subset U_Y$
Für $x \in X \setminus \{0\}, \frac{x}{\|x\|} \in U_X$ folgt:

$$T\left(\frac{x}{\|x\|}\right) \in cU_Y$$

$$\Rightarrow \|T\left(\frac{x}{\|x\|}\right)\| \le c \Rightarrow \|Tx\|_Y \le c\|x\|_X$$

 $(d) \Rightarrow a)$ Für $x_n \to x$ in X folgt:

$$||Tx_n - Tx|| = ||T(x_n - x)||$$

$$\leq c||x_n - x|| \to 0$$

$$\Rightarrow Tx_n \to Tx \text{ in } Y$$

Definition

Seien X, Y normierte Räume. Mit B(X, Y) bezeichnen wir den **Vektorraum der beschränkten**, linearen Operatoren $T: X \to Y$. Ist X = Y schreiben wir auch kurz B(X) := B(X, X).

Für $T \in B(X, Y)$ setze

$$||T|| = \sup\{\frac{||Tx||}{||x||} : x \in X \ 0\}$$
$$= \sup\{||Tx|| : ||x|| \le 1\}$$

Die Norm ||T|| von T ist die kleinste Konstante c, für welche die Gleichung $||Tx|| \le c||x||$ für alle $x \in X$ gilt.

Satz 1.5

 $(B(X,Y),\|\cdot\|)$ ist ebenfalls ein normierter Raum und für X=Y gilt für $S,T\in B(X)$:

$$||S \cdot T|| \le ||S|| ||T||$$

Beweis

$$||T|| \ge 0, \ ||T|| = 0 \ \Rightarrow ||Tx|| = 0 \text{ für } ||x|| \le 1 \ \Rightarrow \ Tx = 0 \ \Rightarrow \ T = 0$$

$$||(T+S)(x)|| = ||Tx + Sx|| \le ||Tx||_Y + ||Sx||_Y$$

$$\le ||T|| + ||S||$$

Nehme das Supremum über $||x|| \le 1$:

$$||T + S|| \le ||T|| + ||S||$$

$$||(S \cdot T)(x)||_Y = ||S(Tx)||_Y \le ||S|| ||Tx||$$

$$\le ||S|| ||T|| ||x||$$

$$\Rightarrow ||ST|| \le ||S|| ||T||$$

Beispiel

- a) Idx = x, ||Id|| = 1
- b) Falls $dim X = n < \infty, Y$ normierter Raum, dann sind alle linearen Operatoren $T: X \to Y$ beschränkt.

Beweis

Wähle die Basis e_1, \ldots, e_n von XFür $x = \sum_{i=1}^n x_i e_i$ gilt:

$$||Tx|| = ||\sum_{i=1}^{n} x_i Te_i|| \le \sum_{i=1}^{n} |x_i|||Te_i||$$

$$\le \max_{i=1}^{n} ||Te_i||_Y \sum_{i=1}^{n} |x_i|$$

$$\le c||x||, \text{ da } ||x|| = \sum_{i=1}^{n} |x_i|$$

Aber: Wenn $dim X = \infty, dim Y < \infty$ so gibt es viele unbeschränkte, lineare Operatoren von X nach Y.

c)
$$X = C^{\infty}(0,1), ||f||_{\infty} = \sup_{u \in (0,1)} |f(u)|$$

 $T: X \to X, Tf = f', f_k(t) = e^{i2\pi kt} \in X, Tf_k(t) = 2\pi i k f_k(t)$
 $||f_k|| = 1, ||Tf_k|| = 2\pi k \to \infty$

d) $\mathbb{F} = \{(x_n) \in \mathbb{R}^n : x_n = 0 \text{ bis auf endlich viele } n\}$

$$T: \mathbb{F} \to \mathbb{R}, T((x_n)) = \sum_{n \in \mathbb{N}} nx_n \in \mathbb{R} ||Te_n|| = n \to \infty$$

Beispiel (Integraloperator)

 $X = Y = C(\bar{\Omega}), \Omega \subset \mathbb{R}^n$ offen, beschränkt. Gegeben sei $k \in \bar{\Omega} \times \bar{\Omega} \to \mathbb{R}$

Für
$$f \in C(\bar{\Omega})$$
 setze: $Tf(u) = \int_{\Omega} k(u,v)f(v)dv$, $(A(f_j)_i = \sum_{j=1}^n a_{ij}f_j, A = (a_{ij})_{i,j=1,\dots,n})$

Dann ist $Tf \in C(\bar{\Omega})$ (nach Lebesguesschem Konvergenzsatz)

$$\begin{split} |Tf(u)| &\leq \int_{\Omega} |k(u,v)| |f(u)| dz \\ &\leq \int_{\Omega} |k(u,v)| du \sup_{u \in \Omega} |f(u)| \end{split}$$

sup über $u \in \Omega$ liefert dann:

$$||Tf||_{\infty} \le \sup_{u \in \Omega} \int |k(u, v)| dv ||f||_{\infty}$$

$$\Rightarrow ||T|| = \sup_{u \in \Omega} \int |k(u, v)| dv < \infty,$$

Die Abbildung $u \in \bar{\Omega} \to \int |k(u,v)| dv \in \mathbb{R}$ ist stetig nach dem Konvergenzsatz von Lebesgue.

Beweis

" \leq " ist klar " \geq " Falls $k(u,v)\geq 0$ dann ist $T\cdot 1\!\!1(u)=\int k(u,v)dv=\int |k(u,v)|dv$

$$\|T\cdot\mathbb{1}\|=\sup_{u\in\Omega}\int|k(u,v)|dv\leq\|T\|,\,\mathrm{d.h.}\ \|\mathbb{1}\|=1$$

Skizze:

$$\sup \int |k(u,v)| dv \sim \int |k(u_0,v)| dv = \int k(u_0,v)g(v) dv$$

mit $g(v) = sign(v)k(u_0, v)$, g ist aber nicht stetig.

Ggf. Approximation des Signums durch stetige Funktionen.

Beispiel (Kompositionsoperator)

 $\Omega \subset \mathbb{R}^n$ offen.

$$\sigma: \bar{\Omega} \to \bar{\Omega}$$
 stetig, für $f \in C(\bar{\Omega}): Tf(u) = f(\sigma(u))$

z.B.: σ als Transposition der Elemente in Ω

$$||Tf||_{\infty} \le ||f||_{\infty}, \quad ||T|| = 1$$

Beispiel (Differentialoperatoren)

 $\Omega \subset \mathbb{R}^n$ offen, $m \in \mathbb{N}$, $X = C^m(\bar{\Omega})$, $Y = C_b(\Omega)$.

$$T: X \to Y, \ Tf(u) = \sum_{|\alpha| < m} a_{\alpha} D^{\alpha} f(u), u \in \mathbb{R}, a_{\alpha} \in C\bar{\Omega}$$

damit $||Tf||_{\infty} \le \sum_{|\alpha| \le m} ||||_{\infty} ||D^{\alpha} f||_{\infty} \le c||f||_{\infty}$

Beispiel (Matrizenmultiplikation)

Für $p \in [1, \infty]$ und $T \in B(l^p)$ setzen wir

$$e_l := (0, \dots, 0, 1, 0, \dots, 0), \quad l \in \mathbb{N},$$
 wobei die 1 an l-ter Stelle steht.

und $a_{kl} = (Te_l)_k$, sowie $A = (a_{kl})_{k,l \in \mathbb{N}}$

$$\Rightarrow (Tx)_k = (\sum_{l=1}^{\infty} x_l Te_l)_k = \sum_{l=1}^{\infty} a_{kl} k_l, \quad k \in \mathbb{N} \Rightarrow Tx = Ax \text{ (unendliches Matrixprodukt)}$$

a) Die Hills-Tanerkin-Bedingung (nur Hinreichend) Sei $p\in(1,\infty)$ und $\frac{1}{p}+\frac{1}{q}=1.$ Setze

$$c := \left(\sum_{k \ge 1} \left(\sum_{l \ge 1} |a_{kl}|^q \right)^{\frac{p}{q}} \right)^{\frac{1}{p}} < \infty$$

so definiert T einen Operator $T \in B(l^p)$ mit $||T|| \le c$

Beweis

(i) Wohldefiniertheit: (und Beschränktheit) Für $x \in l^p$ folgt

$$||Tx||_{l^{p}}^{p} = \sum_{k\geq 1} |(Tx)_{k}|^{p}$$

$$= \sum_{k\geq 1} |\sum_{l\geq 1} |a_{kl}x_{l}|^{p}$$

$$\leq \sum_{k\geq 1} \left(\sum_{l\geq 1} |a_{kl}|^{q}\right)^{\frac{p}{q}} \left(\sum_{l\geq 1} |x_{l}|^{p}\right)^{\frac{p}{q}}$$

$$= c^{p}||x||_{l^{p}}^{p} < \infty$$

(ii) Linearität

Wegen $c < \infty$ ist $\left(\sum_{l} |a_{kl}|^q\right)^{\frac{1}{q}} < \infty$, $\forall k \in \mathbb{N}$ Für $x \in l^p$ konvergiert die Reihe nach Hölder. Damit ist T offensichtlich linear.

b) Der Fall l^1 : Es ist $T \in B(l^1)$ genau dann wenn

$$c_1 := \sup_{1} \sum_{l} |a_{kl}| < \infty$$

und in diesem Fall ist $||T|| = c_1$.

1 Lineare Operatoren auf Banachräumen

Beweis

" \Rightarrow " Sei $T \in B(l^1).$ Dann gilt für $l \in \mathbb{N}$

$$\sum_{k} |a_{kl}| = \sum_{k} |(Te_{l})_{k}|$$

$$= ||Te_{l}||_{l^{1}}$$

$$\leq ||T|| ||e_{l}||_{l^{1}} = ||T|| < \infty$$

" \Leftarrow " folgt genau wie in a) mit Hölder. Au
Sserdem gilt $||T|| < c_1$

c) Der Fall l^{∞} :

Es ist $T \in B(l^{\infty})$ genau dann, wenn

$$c_{\infty} := \sup_{k} \sum_{l} |a_{kl}| < \infty$$

und in diesem Fall ist $||T|| = c_{\infty}$

Beweis

Beweis
"
$$\Rightarrow$$
 " Sei $T \in B(l^{\infty})$. Für $k \in \mathbb{N}$ setze dann $x^{(k)} = \begin{cases} \frac{|a_{kl}|}{a_{kl}} & a_{kl} \neq 0 \\ 0 & a_{kl} = 0 \end{cases}$ dann ist $x^{(k)} \in l^{\infty}$ mit $||x^{(k)}||_{l^{\infty}} = 1$ und weiter

$$\sum_{l} |a_{kl}| =$$

Bildquellen

Abb. ?? Tag: Name, URL-Name

Abkürzungsverzeichnis

Beh. Behauptung

Bew. Beweis

bzgl. bezüglich

bzw. beziehungsweise

ca. circa

d. h. das heiSSt

Def. Definition

etc. et cetera

ex. existieren

Hom. Homomorphismus

i. A. im Allgemeinen

o. B. d. A. ohne Beschränkung der Allgemeinheit

Prop. Proposition

sog. sogenannte

Vor. Voraussetzung

vgl. vergleiche

z. B. zum Beispiel

zhgd. zusammenhängend

z. z. zu zeigen

Symbolverzeichnis

Zahlenmengen

```
\begin{split} \mathbb{N} &= \{1,2,3,\dots\} \text{ Natürliche Zahlen} \\ \mathbb{Z} &= \mathbb{N} \cup \{0,-1,-2,\dots\} \text{ Ganze Zahlen} \\ \mathbb{Q} &= \mathbb{Z} \cup \{\frac{1}{2},\frac{1}{3},\frac{2}{3}\} = \{\frac{z}{n} \text{ mit } z \in \mathbb{Z} \text{ und } n \in \mathbb{Z} \setminus \{0\} \} \text{ Rationale Zahlen} \\ \mathbb{R} &= \mathbb{Q} \cup \{\sqrt{2},-\sqrt[3]{3},\dots\} \text{ Reele Zahlen} \\ \mathbb{R}_+ \text{ Echt positive reele Zahlen} \\ \mathbb{C} &= \{a+ib|a,b\in\mathbb{R}\} \text{ Komplexe Zahlen} \\ I &= [0,1] \subsetneq \mathbb{R} \text{ Einheitsintervall} \end{split}
```