

Мониторинг работы

Темы

Средства операционной системы
Сбор и просмотр статистики
Дополнительные расширения
Просмотр и анализ журнала сервера

Средства ОС

Процессы

ps (grep postgres) параметр update_process_title для обновления статуса процессов

Использование ресурсов

iostat, vmstat, sar, top...

Дисковое пространство

df, du, quota...

Сбор статистики

Настройки процесса stats collector

статистика параметр

текущие активности сервера track_activities

и фоновых процессов включен

обращения к таблицам и индексам track_counts

(ДОСТУПЫ, ЗАТРОНУТЫЕ СТРОКИ) включен, нужен для автоочистки

обращения к страницам track_io_timing

выключен

вызовы пользовательских функций track_functions

выключен

Архитектура

Дополнительная статистика Роз

Расширения в поставке

pg_stat_statements

pgstattuple

pg_buffercache

статистика по запросам

статистика по версиям строк

состояние буферного кэша

Другие расширения

pg_stat_plans

pg_stat_kcache

pg_qualstats

. . .

статистика по планам запросов

статистика по процессору и вводу-выводу

статистика по предикатам

Журнал сервера

Настройки

информация

сообщения определенного уровня

время выполнения длинных команд

время выполнения команд

имя приложения

контрольные точки

подключения и отключения

длинные ожидания

текст выполняемых команд

использование временных файлов

параметр

log_min_messages

log_min_duration_statement

log_duration

application_name

log_checkpoints

log_(dis)connections

log_lock_waits

log_statement

log_temp_files

• • •

Ротация журналов

Встроенные средства

настройка параметр

включение сбора сообщений logging_collector = on

формат журнала log_destination = stderr, csvlog, syslog...

перезаписывать ли файлы log_truncate_on_rotation = on

маска имени файла log_filename

время ротации, мин log_rotation_age

комбинируя маску файла и время ротации, получаем разные схемы:

postgresql-%H.log, 60 24 файла в сутки

postgresql-%a.log, 1440 7 файлов в неделю

Внешние средства

например, Apache rotatelogs

pg_ctl start | rotatelogs имя_файла 86400 -n 24

Анализ журнала

Средства операционной системы grep, awk...

Специальные средства анализа pgBadger

Системы мониторинга PostgreSQL

PostgreSQL Workload Analyzer (PoWA) Open PostgreSQL Monitoring (OPM)

Универсальные системы мониторинга Nagios, Munin, Zabbix, Cacti...

Демонстрация

Итоги

Мониторинг заключается в контроле работы сервера как со стороны операционной системы, так и со стороны PostgreSQL.

Для этого используется собранная статистика и анализ журнала сервера.

Практика

- 1. В базе данных DB14 создайте таблицу, выполните вставку нескольких строк, а затем удалите все строки.
- 2. Посмотрите статистику обращений к таблице и сопоставьте цифры (n_tup_ins, n_tup_del, n_live_tup, n_dead_tup) с вашей активностью.
- 3. Выполните очистку (vacuum), снова проверьте статистику и сравните с предыдущими цифрами.
- 4. Создайте ситуацию взаимоблокировки двух транзакций.
- 5. Посмотрите, какая информация записывается при этом в журнал сервера.

Авторские права

Курс «Администрирование PostgreSQL 9.4. Базовый курс» разработан в компании Postgres Professional (2015 год).

Авторы: Егор Рогов, Павел Лузанов

Использование материалов курса

Некоммерческое использование материалов курса (презентации, демонстрации) разрешается без ограничений. Коммерческое использование возможно только с письменного разрешения компании Postgres Professional. Запрещается внесение изменений в материалы курса.

Обратная связь

Отзывы, замечания и предложения направляйте по адресу: edu@postgrespro.ru

Отказ от ответственности

Компания Postgres Professional не несет никакой ответственности за любые повреждения и убытки, включая потерю дохода, нанесенные прямым или непрямым, специальным или случайным использованием материалов курса. Компания Postgres Professional не предоставляет каких-либо гарантий на материалы курса. Материалы курса предоставляются на основе принципа «как есть» и компания Postgres Professional не обязана предоставлять сопровождение, поддержку, обновления, расширения и изменения.

Темы

Средства операционной системы
Сбор и просмотр статистики
Дополнительные расширения
Просмотр и анализ журнала сервера

2

Средства ОС

Процессы

ps (grep postgres) параметр update_process_title для обновления статуса процессов

Использование ресурсов

iostat, vmstat, sar, top...

Дисковое пространство

df, du, quota...

3

PostgreSQL работает под управлением операционной системы и в известной степени зависит от ее настроек.

Unix предоставляет множество инструментов для анализа состояния и производительности.

В частности, можно посмотреть процессы, принадлежащие PostgreSQL. Это особенно полезно при включенном (по умолчанию) параметре сервера update_process_title, когда в имени процесса отображается его текущее состояние.

Для изучения использования системных ресурсов (процессор, память, диски) имеются различные инструменты: iostat, vmstat, sar, top и др.

Необходимо следить и за размером дискового пространства. Место, занимаемое базой данных, можно смотреть как из самой базы (см. темы «Базы данных» и «Табличные пространства»), так из ОС (du). Размер доступного дискового пространства надо смотреть в ОС (df). Если используются дисковые квоты, надо принимать во внимание и их.

В целом набор инструментов и подходы может сильно различаться в зависимости от используемой ОС и файловой системы, поэтому подробно здесь не рассматриваются.

http://www.postgresql.org/docs/current/static/monitoring-ps.html http://www.postgresql.org/docs/current/static/diskusage.html

Сбор статистики

Настройки процесса stats collector

статистика параметр

текущие активности сервера track_activities и фоновых процессов включен

обращения к таблицам и индексам track_counts

(доступы, затронутые строки) включен, нужен для автоочистки

обращения к страницам track_io_timing

выключен

вызовы пользовательских функций track_functions

выключен

4

Внутренние средства мониторинга PostgreSQL включают статистику и журнал сервера.

Сбором статистики занимается фоновый процесс stats collector. Количеством собираемой информации управляют несколько параметров сервера, так как чем больше информации собирается, тем больше и накладные расходы.

http://www.postgresql.org/docs/current/static/monitoring-stats.html

Каждый серверный процесс собирает необходимую статистику в рамках каждой выполняемой транзакции. Затем эта статистика передается процессу-коллектору. Коллектор собирает и агрегирует статистику со всех серверных процессов. Раз в полсекунды (время настраивается при компиляции) коллектор сбрасывает статистику во временные файлы в каталог \$PGDATA/pg_stat_temp. (Поэтому перенесение этого каталога в файловую систему в памяти может положительно сказаться на производительности.)

Когда серверный процесс запрашивает информацию о статистике (через представления или функции), в его память читается последняя доступная версия статистики — это называется снимком статистики. Если не попросить явно, снимок не будет перечитываться до конца транзакции, чтобы обеспечить согласованность.

Таким образом, из-за задержек серверный процесс получает не самую свежую статистику — но обычно это и не требуется.

Сказанное выше не относится к информации о текущих активностях сервера и фоновых процессов — она всегда актуальна.

При останове сервера коллектор сбрасывает статистику в постоянные файлы в каталог \$PGDATA/pg_stat.

Дополнительная статистика Posegres

Расширения в поставке

pg_stat_statements статистика по запросам

pgstattuple статистика по версиям строк

pg_buffercache состояние буферного кэша

Другие расширения

pg_stat_plans статистика по планам запросов

pg_stat_kcache статистика по процессору и вводу-выводу

pg_qualstats статистика по предикатам

6

Существуют расширения, позволяющие собирать дополнительную статистику, как входящие в поставку, так и внешние.

Журнал сервера

Настройки

информация

сообщения определенного уровня

время выполнения длинных команд

время выполнения команд

имя приложения контрольные точки

подключения и отключения

длинные ожидания

текст выполняемых команд

использование временных файлов

...

параметр

log_min_messages

log_min_duration_statement

log_duration

application_name

log_checkpoints

log_(dis)connections

log_lock_waits

log_statement

log_temp_files

В журнал сервера можно выводить множество полезной информации. По умолчанию почти весь вывод отключен, чтобы не превратить запись журнала в узкое место для дисковой подсистемы. Администратор должен решить, какая информация важна, обеспечить необходимое место на диске для ее хранения и оценить влияние записи журнала на общую производительность системы.

7

Ротация журналов

Встроенные средства

настройка параметр

включение сбора сообщений logging_collector = on

формат журнала log_destination = stderr, csvlog, syslog...

перезаписывать ли файлы log_truncate_on_rotation = on

маска имени файла log_filename время ротации, мин log_rotation_age

комбинируя маску файла и время ротации, получаем разные схемы:

postgresql-%H.log, 60 24 файла в сутки postgresql-%a.log, 1440 7 файлов в неделю

Внешние средства

например, Apache rotatelogs pg_ctl start | rotatelogs имя_файла 86400 -n 24

8

Если запускать сервер так, как это демонстрировалось в теме «Установка PostgreSQL», то вывод будет собираться в одном файле, который может вырасти до огромных размеров. Поэтому обычно используется та или иная схема ротации журналов.

http://www.postgresql.org/docs/current/static/logfile-maintenance.html

Можно воспользоваться встроенными средствами, которые настраиваются несколькими параметрами, часть из которых приведена на слайде.

logging_collector включает фоновый процесс, собирающий журнальные сообщения и перенаправляющий их в файлы.

log_destination определяет формат сообщений.

log_filename задает маску имени файла, в которой могут использоваться спецсимволы даты и времени.

log_rotation_age задает время переключения на следующий файл в минутах.

log_truncate_on_rotation перезаписывает уже существующие файлы.

Таким образом, комбинируя маску и время переключения, можно получать разные схемы ротации.

http://www.postgresql.org/docs/current/static/runtime-config-logging.html

Альтернативно можно воспользоваться внешними программами ротации, например rotatelogs.

Анализ журнала

Средства операционной системы

grep, awk...

Специальные средства анализа

pgBadger

Системы мониторинга PostgreSQL

PostgreSQL Workload Analyzer (PoWA) Open PostgreSQL Monitoring (OPM)

Универсальные системы мониторинга

Nagios, Munin, Zabbix, Cacti...

9

Анализировать журналы можно по-разному.

Можно искать определенную информацию средствами ОС, скриптами или специальными средствами анализа.

Можно воспользоваться системами мониторинга, которые позволяют собирать информацию, рисовать графики, присылать уведомления при определенных событиях и т. п. Такие системы есть как непосредственно для PostgreSQL, так и универсальные (в которые PostgreSQL подключается как один из возможных источников информации).

http://www.postgresql.org/docs/current/static/logfile-maintenance.html

Демонстрация \$ psql postgres=#

Итоги

Мониторинг заключается в контроле работы сервера как со стороны операционной системы, так и со стороны PostgreSQL.

Для этого используется собранная статистика и анализ журнала сервера.

11

Практика

- 1. В базе данных DB14 создайте таблицу, выполните вставку нескольких строк, а затем удалите все строки.
- 2. Посмотрите статистику обращений к таблице и сопоставьте цифры (n_tup_ins, n_tup_del, n_live_tup, n_dead_tup) с вашей активностью.
- 3. Выполните очистку (vacuum), снова проверьте статистику и сравните с предыдущими цифрами.
- 4. Создайте ситуацию взаимоблокировки двух транзакций.
- 5. Посмотрите, какая информация записывается при этом в журнал сервера.

12

```
# create database db14;
# \c db14
# create table t(n numeric);
# insert into t select 1 from generate_series(1,1000);
# delete from t;
# select * from pg_stat_all_tables where relid='t'::regclass;
-- n_tup_ins = 1000, n_tup_del = 1000
-- n_live_tup = 0, n_dead_tup = 1000
# vacuum;
# select * from pg_stat_all_tables where relid='t'::regclass;
-- n_dead_tup = 0 (убраны при очистке)
-- vacuum count = 1
# insert into t values (1), (2);
2# begin;
2# update t set n=10 where n=1;
3# begin;
3# update t set n=200 where n=2;
2# update t set n=20 where n=2;
-- второй заблокирован третьим
3# update t set n=100 where n=1;
-- третий заблокирован вторым - взаимоблокировка
$ tail ~postgres/logfile
```