Digital Image Processing (CSE/ECE 478)

Lecture # 05: Geometric operations

Avinash Sharma

Center for Visual Information Technology (CVIT),
IIIT Hyderabad

Image Transformations

Image Transformations

Applications

- Align images
- Correct images for lens distortion
- Correct effects for camera orientation
- Image morphing
- Create interesting image effects

Geometric operations

• Geometric operation transforms image I to new image I' by modifying coordinates of image pixels:

$$I(x,y) \rightarrow I'(x',y')$$

• Intensity value (x, y) moved to a new position (x', y')

Simple mappings (Translation)

• Shift by a vector (d_x, d_y)

$$T_x : x' = x + d_x$$

$$T_y : y' = y + d_y$$

or

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} d_x \\ d_y \end{pmatrix}$$

Simple mappings (Scaling)

• Contracting or Stretching along x or y axis by a factor of s_x or s_y

$$T_x: x' = s_x \cdot x$$
 $T_y: y' = s_y \cdot y$
or

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Simple mappings (Shearing)

• Along x and y axis by factor b_x and b_y

$$T_x: x' = x + b_x \cdot y$$

 $T_y: y' = y + b_y \cdot x$
or

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & b_x \\ b_y & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Simple mappings (Rotation)

2D Rotation

Rotate about origin CCW by θ .

$$x' = x \cos \theta - y \sin \theta,$$

$$y' = x \sin \theta + y \cos \theta.$$

Matrix notation: P' = R P

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Simple mappings (Rotation)

$$T_x : x' = x \cdot \cos \alpha - y \cdot \sin \alpha$$

 $T_y : y' = x \cdot \sin \alpha + y \cdot \cos \alpha$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Image flipping and rotation by 90 degrees

- Basic idea: look up a transformed pixel address instead of the current one
- To flip an image upside down (vertical flip)
 - At pixel location (x, y), look up the color at location (m x, y)
- For horizontal flip
 - At pixel location (x, y), look up the color at location (x, n y)

Rotation by 90 degrees!

Forward mapping (iterate over source image)

Transformed points may not fall on exact grid!!

Forward mapping (iterate over source image)

Reverse mapping (iterate over destination image)

Reverse mapping (iterate over destination image)

Interpolation

Reverse mapping (may not be exact integer)

Gaussian Interpolation

Bilinear Interpolation

Image Warping (Example Scaling)


```
T_x : x' = s_x \cdot x

T_y : y' = s_y \cdot y
```

```
for (int x'=0; x'<W; x'++)

for(int y'=0; y'<H; y'++)

float x = x'/s_x;

float y = y'/s_y;

dst(x',y') = resample_src(x,y,w);

}
```

Image Warping (Example Rotation)


```
for (int x'=0; x'<W; x'++)

for(int y'=0; y'<H; y'++)

float x = x'\cos(\alpha) + y'\sin(\alpha);

float y = -x'\sin(\alpha) + y'\cos(\alpha);

dst(x',y') = resample_src(x,y,w);

}

}
```

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Homogeneous coordinates and Affine Transformation

 Using homogenous coordinates. We can write translation, scaling, rotation etc. as a vector matrix multiplication

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Example

Courtesy: wikipedia

Affine transformation

Courtesy: wikipedia

Affine transformation

- Preserves collinearity (all points on a line, remain on a line)
 - Parallel lines remain parallel
 - Does not necessarily preserve angles between lines or distances between points (any triangle can be transformed into another using affine transformation)
 - Preserve ratios of distances between points lying on a straight line
- Desired transformation as combination of simpler ones

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ 0 \ 0 \ 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Affine transformation

Desired transformation as combination of simpler ones

2D Projective transformation (homography)

Preserves collinearity (parallel lines not parallel)

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

2D Projective transformation (homography)

2D Projective transformation (homography)

Important for image stitching application

- Planar
 - Rigid
 - Similarity
 - Affine
 - Projective

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	\checkmark	-	-
Similarity	\checkmark	\checkmark	\checkmark	-
Affine	\checkmark	\checkmark	\checkmark	\checkmark
Projective	√	√	V	1

Rigid (Isometric) → preserves length, angle, area

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} \epsilon \cos \theta & -\sin \theta & t_x \\ \epsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 3 DOF (θ, t_x, t_y)

	Rotate	Translate	Scale	Skew/shear
Rigid	√	\checkmark	-	-
Similarity	\checkmark	\checkmark	\checkmark	
Affine	\checkmark	√	V	\checkmark
Projective	√	√	√	V

Similarity

parallel lines, angle, ratio between any two points

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 4 DOF (θ, t_x, t_y, s)

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	\checkmark	-	-
Similarity	\checkmark	\checkmark	√	-
Affine	1	1	1	√
Projective	√	√	V	1

• Affine \rightarrow collinear, parallel lines, ratio between any two points on a line

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \qquad \text{6 DOF (} a_{11}, a_{12}, a_{21}, a_{22}, t_x, t_y)$$

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	1	-	-
Similarity	\checkmark	√	\checkmark	
Affine	1	√	√	1
Projective	1	V	V	V

Projective → collinear, parallel lines not parallel

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
8 DOF

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	\checkmark	-	-
Similarity	\checkmark	\checkmark	V	: - :
Affine	\checkmark	V	\checkmark	V
Projective	√	\checkmark	V	√

Non Planar

Curved → lines do not map to lines, shapes deform (expressed as

polynomials)

Non Linear image warps

Ripple

Wavelike displace along both x and y directions

$$T_x^{-1}: \quad x = x' + a_x \cdot \sin\left(\frac{2\pi \cdot y'}{\tau_x}\right),$$

$$T_y^{-1}: y = y' + a_y \cdot \sin\left(\frac{2\pi \cdot x'}{\tau_y}\right).$$

Sample values of parameter: $a_x=10$, $a_y=15$, $\tau_x=120$, $\tau_y=150$

Twirl

- Rotation about centre or some anchor point
 - Increasingly rotate as radial distance r from centre increases
 - Image unchanged after r_{max}

$$T_x^{-1}$$
: $x = \begin{cases} x_c + r \cdot \cos(\beta) & \text{for } r \le r_{\text{max}} \\ x' & \text{for } r > r_{\text{max}}, \end{cases}$

$$T_y^{-1}: y = \begin{cases} y_c + r \cdot \sin(\beta) & \text{for } r \leq r_{\text{max}} \\ y' & \text{for } r > r_{\text{max}}, \end{cases}$$

with

$$d_x = x' - x_c,$$
 $r = \sqrt{d_x^2 + d_y^2},$ $d_y = y' - y_c,$ $\beta = \operatorname{Arctan}(d_y, d_x) + \alpha \cdot \left(\frac{r_{\max} - r}{r_{\max}}\right).$

Spherical Transformation

- Imitates viewing image through a lens placed over image
 - Increasingly rotate as radial distance r from center increases
 - Lens center (x_c, y_c) , radius (r_{max}) , refractive index (ρ)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} ntan\theta \\ 0 \end{bmatrix}$$

More specific grid based warping

