Ecuaciones

ECUACIONES

ECUACIONES

- Una **ecuación** es una propuesta de
- Un valor desconocido en una ecuación, que representamos con una letra, se llama
- · La solución de la ecuación es
- · Resolver una ecuación es

ECUACIONES DE PRIMER GRADO

- · La **solución** de la ecuación ax + b = 0, con $a \ne 0$, es x = 0
- Dos **ecuaciones** son **equivalentes** cuando
- · Pasos para resolver una ecuación de primer grado:
- ① Quitar
- ② Quitar
- ③ Pasar
- (4) Simplificar
- ⑤ Despejar
- 6 Comprobar
- EJEMPLO: $\frac{x}{2} + \frac{3}{5} = 1 + \frac{3x}{10}$
- 1
- 2
- (3)
- 4

ECUACIONES DE SEGUNDO GRADO

• Las soluciones de la ecuación $ax^2 + bx + c = 0$, con $a \ne 0$, se obtienen aplicando la fórmula:

EJEMPLO:
$$x^2 + 4x - 5 = 0$$

$$x_1 = \dots \qquad x_2 = \dots$$

ECUACIONES INCOMPLETAS

La solución de $ax^2 + c = 0$, con $a \ne 0$, es:

EJEMPLO:
$$7x^2 + 28 = 0$$

$$x = \pm \dots$$

La solución de
$$ax^2 + bx = 0$$
, con $a \ne 0$, es:

$$x_1 = \dots \qquad x_2 = \dots$$

EJEMPLO:
$$2x^2 - 4x = 0$$

$$x_1 = \dots$$

$$x_2 = \dots$$

RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES

Pasos para resolver un problema mediante ecuaciones:

- ① Identificar
- ② Relacionar
- ③ Resolver
- ④ Interpretar

Ecuaciones

Nombre y apellidos:

Curso: Fecha:

PRACTICA

1 ¿Para cuáles de las siguientes ecuaciones es x = -2 solución?

a)
$$x^3 + 8 = 0$$

b)
$$-x^2 - 4 = 0$$

c)
$$-x^2 + 4x = 6x$$

d)
$$\frac{x+1}{2} + x = 3$$

e)
$$\sqrt{x^2 + 5} = 3$$

f)
$$3(x^2 + 1) = 2x + 3$$

2 Resuelve estas ecuaciones de primer grado:

a)
$$2(x + 5) = \frac{x + 2}{3} + 4x$$

b)
$$\frac{x}{15} + x = \frac{2x}{5} + 10$$

c)
$$\frac{3x-12}{4} - x = x - 3$$

d)
$$5 - \frac{6x - 4}{5} = x - 3$$

3 Resuelve estas ecuaciones de segundo grado:

a)
$$x^2 - 6x + 5 = 0$$

b)
$$6x^2 - 5x + 1 = 0$$

c)
$$x^2 + x - 56 = 0$$

d)
$$3x^2 + 6x = 0$$

e)
$$4x^2 - 12x = 0$$

f)
$$2x^2 + 8x = 0$$

g)
$$3x^2 - 243 = 0$$

h)
$$x^2 + 9 = 0$$

i)
$$6x^2 - 216 = 0$$

APLICA. CAJAS DE MANTECADOS

La confitería Dulcevida quiere lanzar al mercado un tipo de mantecados. Cada unidad ocupa una superficie de $4 \times 5 = 20 \text{ cm}^2 \text{ y}$ desea venderlos en cajas de 30 unidades. Usarán tres tipos de cajas:

Modelo A: Caja de base rectangular, 1 cm más larga que ancha.

Modelo B: Caja de base rectangular, 25 cm más larga que ancha.

Modelo C: Caja de base rectangular y la diferencia entre su largo y su ancho es de 50 cm.

1 ¿Qué superficie tendrá el fondo de la caja, en cualquiera de los modelos, si en su base han de caber 30 mantecados?

2 ¿Qué dimensiones, largo y ancho, tendrá la base de cada modelo de caja?

3 ¿Cómo crees que colocarán los mantecados en cada modelo de caja?

5

Ecuaciones

Nombre y apellidos:

Curso: Fecha:

PRACTICA

1 Resuelve las ecuaciones siguientes:

a)
$$2x - \frac{6x^2 - 2x + 1}{6} + \frac{2x^2 - 3x}{2} = -1$$

b)
$$\frac{7-3x}{12} - \frac{3(5-2x)}{6} = 2(x-2) + \frac{5}{4}$$

2 Resuelve las ecuaciones siguientes, reduciéndolas a una ecuación de segundo grado en su forma general $ax^2 + bx + c = 0$:

a)
$$\frac{(x+1)^2}{2} - \frac{x+1}{4} = 9$$

b)
$$\frac{(x-1)^2}{2} - \frac{(x+1)^2}{3} = 1 - x$$

3 En una ecuación de segundo grado, cuya forma general es $ax^2 + bx + c = 0$, si x_1 y

$$x_2$$
 son sus raíces, se cumple que
$$\begin{cases} x_1 + x_2 = -\frac{b}{a} \\ x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$

Intenta calcular las raíces de estas ecuaciones aplicando esta propiedad (tanteando y sin utilizar la fórmula de resolución):

a)
$$x^2 - 7x + 12 = 0$$

b)
$$x^2 + x - 30 = 0$$

c)
$$x^2 + 3x + 2 = 0$$

d)
$$x^2 - 6x + 5 = 0$$

e)
$$x^2 - 4x + 3 = 0$$

f)
$$x^2 + 4x - 12 = 0$$

4 a) ¿Qué descubres al resolver la ecuación $(x + 3)^2 - (x - 3)^2 = 12x$?

b) ¿Y al resolver 5x - 6 = 4(x - 1) + x? Interpreta ambos resultados.

APLICA. PEQUEÑA HERENCIA

El pequeño terreno que heredó Jaime de sus padres no es un cuadrado perfecto. Calcula que tiene 2 m más de largo que de ancho. Decide comprarle a su vecino 4 m más en dirección sur y 2 m más en dirección este. Así consigue un terreno de 256 m^2 .

- 1 ¿Qué dimensiones tiene ahora el solar? ¿Es ya de planta cuadrada?
- 2 Satisfecho con la ampliación, Jaime decide construir una vivienda. Le gusta mucho la jardinería y el cultivo de flores, así es que su vivienda va a ocupar un espacio en el interior del terreno y estará rodeada, por la parte frontal y por los laterales, de un jardín. En la parte trasera construirá un invernadero.

Quiere que la profundidad de la parte delantera del jardín sea 3 veces el ancho de las partes laterales, que será igual a la profundidad del invernadero. Para explicar bien lo que quiere, ha hecho este croquis:

- a) ¿Qué dimensiones tendrá la casa si quiere que la planta tenga una superficie de 96 m²?
- b) ¿Qué superficie ocupará el invernadero?

Soluciones

Ficha de trabajo A

PRACTICA

- 1 a) Sí es solución.
 - b) No es solución.
 - c) Sí es solución.
 - d) No es solución.
 - e) Sí es solución
 - f) No es solución.
- **2** a) x = 4
 - b) x = 15
 - c) x = 0
 - d) x = 4
- **3** a) $x_1 = 5$; $x_2 = 1$
 - b) $x_1 = 1/2$; $x_2 = 1/3$
 - c) $x_1 = 7$; $x_2 = -8$
 - d) $x_1 = 0$; $x_2 = -2$
 - e) $x_1 = 0$; $x_2 = 3$
 - f) $x_1 = 0$; $x_2 = -4$
 - g) $x_1 = 9$; $x_2 = -9$
 - h) No tiene solución.
 - i) $x_1 = 6$; $x_2 = -6$

APLICA

- 1 $20 \cdot 30 = 600 \text{ cm}^2$
- **2** Modelo A \rightarrow 24 cm de ancho y 25 cm de largo.

Modelo B \rightarrow 15 cm de ancho y 40 cm de largo.

Modelo C \rightarrow 10 cm de ancho y 60 cm de largo.

3 Modelo A \rightarrow 6 (de 4 cm) \times 5 (de 5 cm).

Modelo B \rightarrow 3 (de 5 cm) \times 10 (de 4 cm).

Modelo C \rightarrow 2 (de 5 cm) \times 15 (de 4 cm).

Ficha de trabajo B

PRACTICA

- **1** a) x = -1
 - b) x = 2/3
- **2** a) $x_1 = -5$; $x_2 = 7/2$
 - b) $x_1 = 5$; $x_2 = -1$
- **3** a) $x_1 = 3$; $x_2 = 4$
 - b) $x_1 = 5$; $x_2 = -6$
 - c) $x_1 = -1$; $x_2 = -2$
 - d) $x_1 = 1$; $x_2 = 5$
 - e) $x_1 = 1$; $x_2 = 3$
 - f) $x_1 = 2$; $x_2 = -6$
- **4** a) Se obtiene 12x = 12x o, lo que es lo mismo, 0x = 0. Significa que cualquier valor de x verifica la ecuación. La ecuación es indeterminada.
 - b) Se obtiene -6 = -4, lo cual es una contradicción. Esta ecuación no tiene solución.

APLICA

- **1** El solar, ahora, es cuadrado y tiene 16 m de lado.
- **2** a) La planta de la casa será un rectángulo de 8 m de ancho por 12 m de largo.
 - b) El invernadero tendrá una superficie de 24 m².