Improving the Knowledge Gradient Algorithm

Le Yang¹ & Siyang Gao^{1,2} & Chin Pang Ho²

Department of Systems Engineering,
City University of Hong Kong
School of Data Science, City University of Hong Kong

Best Arm Identification (BAI) Problem

Goal: Identify the best arm I^* (unique), i.e., the arm with the largest mean reward.

Contributions

Propose iKG algorithm, which pulls the arm that yields the greatest one-step improvement in the probability of selecting the best arm.

iKG algorithm is asymptotically optimal. iKG is more general and can be more easily extended to variant problems of BAI, such as ϵ -good arm identification and feasible arm identify-cation

One-step Look Ahead Algorithm

Motivation

Our goal is identifying the best arm

 $I^* = argmax_{i \in \Delta} \mu_i$, and designing an algorithm with the fastest posterior convergence rate of 1 - $\mathbb{P}(I_n^* = I^*)$ the probability that the best arm is falsely selected

KG algorithm: $v_n(S_n) = \mu_{I_n^*}$. one-step Improvement:

 $KG_{t,i} = \mathbb{E}[max\{\mathcal{T}(\mu_{t,i}, i \theta_{t,i}), max_{i'\neq i}\mu_{t,i'}\} - max_{i\in \mathbb{A}}\mu_{t,i}]$

Proposition 1. Let $c_{(i)} = \frac{(\mu_{(1)} - \mu_{(2)})/\sigma_{(2)}}{(\mu_{(1)} - \mu_{(2)})/\sigma_{(2)}}$, i = 2, ..., k. For the KG algorithm,

$$\lim_{n\to\infty} \ -\frac{1}{n}\log(1 \ \cdot \mathbb{P}\{I_n^*=I^*\}) = \Gamma^{\mathit{KG}},$$

$$\Gamma^{\text{KG}} = \min_{i \neq 1} \left(\frac{(\mu_{(i)} - \mu_{(1)})^2}{2((\sum_{i \neq 1} \sigma_{(2)}/c_{(i)} + \sigma_{(1)})\sigma_{(1)} + c_{(i)}\sigma_{(i)}^2(\sum_{i \neq 1} 1/c_{(i)} + \sigma_{(1)}/\sigma_{(2)}))} \right)$$

Is Γ^{KG} optimal?

Why not define $v_n(S_n) =$ $\mathbb{I}(I_n^* = I^*)$? Then $\mathbb{E}[\ v_n(S_n)] = \mathbb{P}(I_n^* = I^*)$ directly.

Proposition 2. For the TTEI algorithm (Qin et al. 2017), the rate of posterior convergence of $1 - \mathbb{P}\{I_n^* = I^*\}$ exists and is denoted as Γ^{TTEI} . Let its probability of sampling the best arm $\beta = (\sigma_{(2)}/\sigma_{(1)}) \sum_{i \neq 1} 1/c_{(i)} + 1)^{-1}$. We have $\Gamma^{KG} \leq \Gamma^{TTEI}$.

Derivation of Improved Knowledge Gradient Algorithm

Introduction of the Improved Knowledge Gradient Algorithm (iKG)

Algorithm Description:

Algorithm 1 iKG Algorithm

Input: $k \geq 2$, n.

Collect n_0 samples for each arm i.

for t = 0 **to** n - 1 **do**

Compute $iKG_{t,i}$ and set $I_t = \operatorname{argmax}_{i \in \mathbb{A}} iKG_{t,i}$.

Play I_t .

Update $\mu_{t+1,i}$, $\sigma_{t+1,i}$ and I_{t+1}^*

 $t \leftarrow t + 1$.

end for

Output: I_n^* .

Theorem

For the iKG algorithm, $\lim_{n\to\infty} -\frac{1}{n}\log(1-\mathbb{P}\{I_n^*=I^*\})=\Gamma^{iKG}$, where

$$\Gamma^{iKG} = \frac{(\mu_{\langle i \rangle} - \mu_{\langle 1 \rangle})^2}{2(\sigma_{\langle i \rangle}^2 / w_{\langle i \rangle} + \sigma_{\langle 1 \rangle}^2 / w_{\langle 1 \rangle})},$$

and w_i is the sampling rate of arm i satisfying

$$\begin{split} \sum_{i=1}^k w_i &= 1, \qquad \frac{w_{\langle 1 \rangle}^2}{\sigma_{\langle 1 \rangle}^2} = \sum_{i=2}^k \frac{w_{\langle i \rangle}^2}{\sigma_{\langle i \rangle}^2}, \quad and \\ \frac{(\mu_{\langle i \rangle} - \mu_{\langle 1 \rangle})^2}{2(\sigma_{\langle i \rangle}^2/w_{\langle i \rangle} + \sigma_{\langle 1 \rangle}^2/w_{\langle 1 \rangle})} &= \frac{(\mu_{\langle i' \rangle} - \mu_{\langle 1 \rangle})^2}{2(\sigma_{\langle i' \rangle}^2/w_{\langle i' \rangle} + \sigma_{\langle 1 \rangle}^2/w_{\langle 1 \rangle})}, \quad i \neq i' \neq 1. \end{split}$$

In addition, for any BAI algorithms,

$$\limsup_{n \to \infty} -\frac{1}{n} \log(1 - \mathbb{P}\{I_n^* = I^*\}) \le \Gamma^{iKG}.$$

Numerical Results

Table: Probabilities of false selection for the tested algorithms in best arm identification problem.

Example		Example 1		Example 2		Example 3		Dose-finding		Drug Selection		Caption 853		Caption 854	
Sample size Algorithms		1000	5000	4400	18000	400	1000	1200	13000	2400	98000	1600	3000	12000	18000
BAI	Equal Allocation	0.38	0.22	0.44	0.31	0.25	0.13	0.35	0.05	0.43	0.27	0.17	0.11	0.26	0.18
	EI	0.36	0.21	0.40	0.28	0.28	0.22	0.46	0.21	0.46	0.37	0.14	0.12	0.26	0.23
	TTEI	0.25	0.07	0.32	0.09	0.13	0.02	0.31	0.03	0.55	0.28	0.04	0.01	0.10	0.06
	KG	0.29	0.14	0.32	0.13	0.14	0.03	0.40	0.03	0.44	0.28	0.04	0.01	0.11	0.05
	iKG	0.21	0.03	0.23	0.03	0.09	0.01	0.29	0.01	0.38	0.23	0.02	0.00	0.07	0.04