

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution
"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

			EL	ECTR	RICAL	AND	ELEC	CTRO	NICS	ENGI	NEERI	NG				
EE3251						ELEC	TRIC	CCIR	CUIT	ANAL	YSIS					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	1	3	2									1	1	1	
CO2	1	3	3	3	1	1	1					1	2	2	2	
CO3	2	3	3	3	1		1					2	2	2	2	
CO4	2	3	2	3	1							2	1	2	2	
CO5	1	2 2 2 1 2 1 1 2.4 2.6 2.6 1.25 1 1 1.5 1.6 1.6 1.6														
AVG	1.6	2.4	2.6	2.6	.6 1.25 1 1 1 1.5 1.6 1.6 1.6											
DA	1.20	1.80	1.94	1.94	0.94	0.75	0.75	0.00	0.00	0.00	0.00	1.12	1.20	1.20	1.20	
IDA	1.36	2.04	2.20	2.20	1.06	0.85	0.85	0.00	0.00	0.00	0.00	1.27	1.36	1.36	1.36	
CORRI	ELATI	ON		CO1	Explai	in circu	iit's be	havio	r using	g circuit	laws.					
0	NA			CO2	Compostep an					of first	order a	and seco	ond orde	er systen	ns to	
1	LOW	,		CO3	Cpom circuit		ower, l	ine/Pl	nase vo	oltage a	nd curre	ent of th	ie given	three p	hase	
2	MED	IUM		CO4	Explai	in the f	requer	ncy res	ponse	of serie	es and p	arallel]	RLC cir	cuits		
3	HIGH	I		CO5	Explai	n the b	ehavi	or of n	nagnet	tically c	oupled	circuits				

						CIVI	L ENG	GINE	ERIN	G						
BE3252	BA	SIC I	ELEC	TRIC	AL, El	LECT:	RONI	CS A	ND IN	ISTRU	MENT.	ATION	I ENGI	NEERI	ING	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	3	3	3									1	2	2	
CO2	1	2	2	2	2	1	1					1	2	2	2	
CO3	2	3	3	3	2		1					2	2	2	2	
CO4	1	3	3	3	1							2	2	2	2	
CO5	1	1	1	1	1	1 1 2 2 2										
AVG	1.4	2.4	2.4	2.4	1 1 2 2 2 1.5 1 1 1.5 1.8 2 2											
DA	1.05	1.80	1.80	1.80	1.12	0.75	0.75	0.00	0.00	0.00	0.00	1.12	1.35	1.50	1.50	
IDA	1.19	2.04	2.04	2.04	1.27	0.85	0.85	0.00	0.00	0.00	0.00	1.27	1.53	1.70	1.70	
CORRE	LATI	ON		CO1	Comp	ute the	electr	ic circ	uit par	ameter	s for sin	nple pro	blems			
0	NA			CO ₂	Explai	in the c	oncep	ts of d	omest	ics wiri	ng and	protecti	ve devi	ces		
1	LOW	,		CO3	Explai	in the v	vorkin	g prin	ciple a	ınd appl	lications	s of elec	ctrical n	nachine	S	
2	MED	IUM		CO4	Analyz	ze the	charac	teristic	es of a	nalog e	lectroni	c device	es			
3	HIGH	I		CO5	Explai	n the t	ypes a	nd ope	erating	g princip	oles of s	ensors	and tran	sducers	3	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution
"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

				C	OMPU	TER	SCIE	NCE I	ENGI	NEERI	NG					
BE3251			BAS	ICS O	F ELI	ECTRI	ICAL	AND	ELE (CTRON	NICS E	NGINE	ERINO	Ĵ		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	3	1										1	2	1	
CO2	1	2	2	2	2		1				1	1	2	2	2	
CO3	1	3	2	3	2	2						2	1	2	1	
CO4	1	2	3	2	1 2 2 2 2 2 1 1 2 2											
CO5	3	2	2	2	2 1 1 1 2 2											
AVG	1.6	2.4	2	2.25	1.75	2	1				1	1.5	1.4	2	1.6	
DA	1.20	1.80	1.50	1.68	1.31	1.50	0.75	0.00	0.00	0.00	0.75	1.12	1.05	1.50	1.20	
IDA	1.36	2.04	1.70	1.91	1.48	1.70	0.85	0.00	0.00	0.00	0.85	1.27	1.19	1.70	1.36	
CORRE	ELATI	ION		CO ₁	Comp	ute the	electr	ic circ	uit pai	ameter	s for sin	nple pro	blems			
0	NA			CO2	Explai	n the v	vorkin	g prin	ciple a	ınd app	lications	of elec	trical n	nachines	S	
1	LOW	7		CO ₃	Analyz	ze the	charac	teristic	es of a	nalog e	lectroni	c device	es			
2	MED	IUM		CO ₄	Explai	n the b	asic c	oncep	ts of d	igital el	ectronic	s				
3	HIGH	H		CO ₅	Explai	n the c	perati	ng pri	nciple	s of me	asuring	instrum	ents			

]	ELEC	TRO	NICS A	AND C	COMN	1UNI	CATI	ON EN	GINEE	RING			
BE3254			E	LECT	ΓRICA	L AN	D INS	TRUI	MENT	TATIO	N ENG	INEER	ING		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1										1	1	1
CO2	1	2	3	2	2		1				1	1	2	2	2
CO3	1	3	3	2	2	2						2	1	2	2
CO4	1	2	3	3	3 2 2 2 2 2 1 2 1 1										
CO5	2	2	2	2	2 1 1 2 1 1										
AVG	1.4	2.2	2.4	2.25	2.25	2	1				1	1.5	1.6	1.6	1.6
DA	1.05	1.65	1.80	1.68	1.68	1.50	0.75	0.00	0.00	0.00	0.75	1.12	1.20	1.20	1.20
IDA	1.19	1.87	2.04	1.91	1.91	1.70	0.85	0.00	0.00	0.00	0.85	1.27	1.36	1.36	1.36
CORRE	LATI	ON		CO1	Explai	n the v	vorkin	g prin	ciple o	of electr	rical ma	chines			
0	NA			CO ₂	Analyz	ze the	output	chara	cterize	es of ele	ctrical r	nachine	es		
1	LOW	7		CO3	Choos	e the a	ppropi	riate e	lectric	al mach	ines for	variou	s applic	ations	
2	MED	IUM		CO ₄	Explai	n the t	ypes a	nd ope	erating	g princip	oles of n	neasurii	ng instr	uments	
3	HIGH	I		CO5	Explai	n the b	asic p	ower s	system	structu	re and p	orotecti	on sche	mes	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

					ME	CHAN	ICAL	ENG	INEE	RING						
BE3251			BAS	ICS O	F ELI	ECTRI	ICAL	AND	ELE (CTRON	NICS E	NGINE	ERIN	3		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	3	1										1	2	1	
CO2	1	2	2	2	2		1				1	1	2	2	2	
CO3	1	3	2	3	2	2						2	1	2	1	
CO4	1	2	3	2	1							2	2	2	2	
CO5	3	2	2	2	2 1 1 2 2											
AVG	1.6	2.4	2	2.25	1.75	2	1				1	1.5	1.4	2	1.6	
DA	1.20	1.80	1.50	1.68	1.31	1.50	0.75	0.00	0.00	0.00	0.75	1.12	1.05	1.50	1.20	
IDA	1.36	2.04	1.70	1.91	1.48	1.70	0.85	0.00	0.00	0.00	0.85	1.27	1.19	1.70	1.36	
CORRE	CLATI	ON		CO ₁	Comp	ute the	electr	ic circ	uit pai	rameter	s for sin	nple pro	blems			
0	NA			CO ₂	Explai	n the v	vorkin	g prin	ciple a	and app	lications	s of elec	etrical n	nachine	S	
1	LOW	,		CO3	Analy	ze the	charac	teristi	es of a	nalog e	lectroni	c devic	es			
2	MED	IUM		CO ₄	Explai	n the b	asic c	oncep	ts of d	igital el	ectronic	es				
3	HIGH	I		CO5	Explai	n the c	perati	ng pri	nciple	s of me	asuring	instrum	ents			

			AR	TIFIC	CIAL I	NTEL	LIGE	NCE	AND	DATA	SCIEN	ICE					
BE3251		BA	ASICS	OF E	LECT	RICA	L AN	D EL	ECTR	RONIC	S ENG	INEER	ING				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	3	1										1	2	1		
CO2	1	2	2	2	2		1				1	1	2	2	2		
CO3	1	3	2	3	2	2						2	1	2	1		
CO4	1	2	3	2	1 2 2 2 2 1 1 2												
CO5	3	2	2	2	2 1 1 2												
AVG	1.6	2.4	2	2.25	1.75	2	1				1	1.5	1.4	2	1.6		
DA	1.20	1.80	1.50	1.68	1.31	1.50	0.75	0.00	0.00	0.00	0.75	1.12	1.05	1.50	1.20		
IDA	1.36	2.04	1.70	1.91	1.48	1.70	0.85	0.00	0.00	0.00	0.85	1.27	1.19	1.70	1.36		
CORRE	ELATI	ON		CO1	Comp	ute the	electr	ic circ	uit pai	rameter	s for sin	nple pro	blems				
0	NA			CO2	Explai	n the v	vorkin	g prin	ciple a	and app	lications	s of elec	ctrical n	nachines	S		
1	LOW	7		CO ₃	Analyz	ze the	charac	teristic	cs of a	nalog e	lectroni	c device	es				
2	MED	IUM		CO ₄	Explai	n the b	asic c	oncep	ts of d	igital el	ectronic	es					
3	HIGH	H		CO ₅	Explai	n the c	perati	ng pri	nciple	s of me	asuring	instrum	ents				

HIGH

3

AALIM MUHAMMED SALEGH COLLEGE OF ENGINEERING

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution
"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

					INFO	ORMA	TION	TEC	HNO	LOGY						
BE3251			BAS	ICS C	F ELI	ECTR	ICAL	AND	ELE(CTRON	NICS E	NGINE	ERINO	j		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	3	1										1	2	1	
CO2	1	2	2	2	2		1				1	1	2	2	2	
CO3	1	3	2	3	2	2						2	1	2	1	
CO4	1	2	3	2	1 2 2 2 2 2 1 1 1 2 2											
CO5	3	2	2	2	1 2 2 2 2 1 1 2 2 2 2											
AVG	1.6	2.4	2	2.25	1.75	2	1				1	1.5	1.4	2	1.6	
DA	1.20	1.80	1.50	1.68	1.31	1.50	0.75	0.00	0.00	0.00	0.75	1.12	1.05	1.50	1.20	
IDA	1.36	2.04	1.70	1.91	1.48	1.70	0.85	0.00	0.00	0.00	0.85	1.27	1.19	1.70	1.36	
CORRI	ELATI	ON		CO1	Comp	ute the	electr	ic circ	uit pai	rameter	s for sin	nple pro	blems			
0	NA			CO ₂	Explai	in the v	vorkin	g prin	ciple a	and app	lications	s of elec	ctrical n	nachines	S	
1	LOW	,		CO ₃	Analyz	ze the	charac	teristic	es of a	nalog e	lectroni	c device	es			
2	MED	IUM		CO4	Explai	in the b	asic c	oncep	ts of d	igital el	ectronic	es				

CO5 Explain the operating principles of measuring instruments

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

DEDADTMENT OF FLECTRICAL	AND ELECTRONICS ENCINEEDING
DEPARTMENT OF ELECTRICAL	AND ELECTRONICS ENGINEERING

	101	3 2 1 2 1 1 1 3 3 2 1 1 2 1 3													
MA8353		T	RANS	FOR	MS AN	ND PA	RTIA	L DI	FFER	ENTIA	L EQU	JATIO	NS		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	
CO1	3	2	1	2		1					1	1	3		
CO2	2	1	1	2	1								3	3	
CO3	3	2	2	1	1	1					1	1	3		
CO4	3	2	1	2	1	1					1	1	3	2	
CO5	3	2	2	1	2	1					1	1	2	3	
AVG	2.8	1.8	1.4	1.6	1.25	1					1	1	2.8	2.7	
DA	2.09	1.35	1.05	1.20	0.94	0.75	0.00	0.00	0.00	0.00	0.75	0.75	2.09	1.99	
IDA	2.37	1.53	1.19	1.36	1.06	0.85	0.00	0.00	0.00	0.00	0.85	0.85	2.37	2.26	
CORR	Understand how to solve the given standard partial differential equations Solve differential equations using Fourier series analysis which														
0	NA			CO2			ential role in	-		_	ırier ser	ries anal	lysis wh	ich	
1	LOW	7		CO3	in solv	ving o	ne and	l two a	pplica		imensio	nal hea	s techni t flow	ques	
2	MED	IUM		CO4	differe	ential	equation	ons wo	ould p	rovide t	hem the		ns and p to forn ring.		
3	HIGI	H		CO5		ential	equation						s of par es for di		
EE8391			-		ELF	CTR	OMA	GNE	гіс т	HEOR	V				

EE8391	magnetic flux density, vector potential and its applications. Ability to understand the different methods of emf generation and													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	3	2						2	3	2
CO2	2	2	1	2	2	2						1	3	3
CO3	3	3	3	3	3	2						2	3	2
CO4	3	3	2	2	3	1						2	3	3
CO5	3	2	2	2	3	1						2	3	2
AVG	2.8	2.4	2	2.2	2.8	1.6						1.8	3	2.4
DA	2.09	1.80	1.50	1.65	2.09	1.20	0.00	0.00	0.00	0.00	0.00	1.35	2.24	1.80
IDA	2.37													2.04
CORR	ELAT	Ability to understand the basic concepts about electrostatic fields,												
0	NA			CO2	_		_			_	_			
1	LOW	7		CO3	Ability Maxw	•			e diffe	rent me	thods o	f emf g	eneratio	n and
2	MED	IUM		CO4	Ability and ch					concep	ots elect	romagn	netic wa	ves
3	HIGH	ł		CO5	•	them 1						_	fields ar oment a	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution
"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8351	PO1															
	PO ₁	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3														
CO1	3	3	3	3	2	2						2	3	3		
CO2	3	3	3	2	3	3						2	3	3		
CO3	3	3	3	3	3	3	2					3	3	3		
CO4	3	2	3	2	3	3						3	3	3		
CO5	2	2	2	2	3	2	2					3	3	3		
AVG	2.8	2.6	2.8	2.4	.80 2.09 1.94 1.50 0.00 0.00 0.00 0.00 1.94 2.24 2.24											
DA	2.09	1.94	2.09	1.80	.80 2.09 1.94 1.50 0.00 0.00 0.00 0.00 1.94 2.24 2.24											
IDA	2.37	2.20	2.37	2.04												
CODDI		ION		CO1	Ability	y to st	udy va	rious	numbe	er syste	ms and	simplif	y the log	gical		
CORRI	LLAI	ION		COI	expres	ssions	using	Boole	an fun	ctions						
0	NA			CO2	Ability	y to de	esign c	ombir	nationa	al and s	equenti	al Circu	iits.			
1	LOW	7		CO3	Abilit	y to de	esign v	arious	s syncl	ıronous	and as	ynchror	ous circ	cuits.		
2	MED	IUM		CO4	Abilit	y to in	troduc	e asyr	nchron	ous seq	uential	circuits	and PL	Ds		
3	HIGI			CO5	Ability applic						for dev	elopme	ent of			

EE8301	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3		2						2	3	3
CO2	3	3	3	3		2						2	3	3
CO3	3	3	3	3		2						2	3	3
CO4	3	3	3	3								2	3	3
CO5	3	3	3	3		2						2	3	3
AVG	3	3	3	3		2						2	3	3
DA	2.24	2.24	2.24											
IDA													2.54	
CORR	ELAT	ION		CO1	Abilit	y to ar	alyze	the ma	agneti	c-circui	ts.			
0	NA			CO2	Ability transfe		-	the kn	owled	ge in co	onstruct	ional de	etails of	
1	LOW	7		CO3	Ability conve		ndersta	and the	e conc	epts of	electror	nechani	ical ene	rgy
2	MED	IUM		CO4	Ability Gener		quire	the kn	owled	ge in w	orking	principl	les of D	С
3	HIGI	H		CO5	Ability Motor	•	quire	the kn	owled	ge in w	orking	princip	les of D	С

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EC8353				E	LECT	RON	DEV	ICES	AND	CIRCU	UITS			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2		2						2	3	3
CO2	3	3	3	2		2						2	3	3
CO3	3	3	3	3		2						2	3	3
CO4	3	2	3	2								2	3	3
CO5	2	2	2	2		2						2	3	3
AVG	2.8	2.4	2.8	2.2		2						2	3	3
DA	2.09	1.80	2.09	1.65	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.50	2.24	2.24
IDA	2.37	2.04	2.37	1.87	0.00						0.00	1.70	2.54	2.54
CORR	ELAT	ION		CO1	Able telectro	1			ture a	nd worl	king ope	eration	of basic	
0	NA			CO ₂	Identi	fy and	differ	entiate	e both	active a	and pass	sive ele	ments	
1	LOW	7		CO3	Analy diodes				ics of	differen	it electro	onic de	vices su	ch as
2	MED	IUM		CO4	Choos ampli		-	the re	8 PO9 PO10 PO11 PO12 PS01 PS 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 2 3 4 2 3 5 0 0.00 0.00 1.50 2.24 2 3 2 3 2 2 2 4 2 2 2					
3	HIGH	H		CO5	Emplo oscilla	•	acquir	ed kno	owled	ge in de	sign an	d analy	sis of	

ME8792					POV	WER	PLAN	T EN	GINE	ERIN	G			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2		2	2					2	2	
CO2	3	2	2	2		2	2					2	2	
CO3	3	3	3	2		2	2					2	2	
CO4	3	3	3	2		2	2					2	2	
CO5	3	3	3	3	2	2	2					2	2	
AVG	3	2.6	2.6	2.2	2	2	2					2	2	
DA	2.24	1.94	1.94	1.65	1.50	1.50	1.50	0.00	0.00	0.00	0.00	1.50	1.50	0.00
IDA	2.54	2.20	2.20	1.87	1.70	1.70	1.70	0.00	0.00	0.00	0.00	1.70	1.70	0.00
CORR	ELAT	ION		CO1	Analy inside		•			on and	working	g of the	compor	nents
0	NA			CO2	-		•				_	g of the wer plan	compon ts.	ents
1	LOW	7		CO3		-		-		struction wer plan		working	of the	
2	MED	IUM		CO4		-	-			on and ver plant	_	of the	compon	ents
3	HIGI	H		CO5	knowl	edge t	o pow	er pla	nt eco	nomics	and env	extend the vironme oduction	ental haz	zards

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution
"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

MA8491	'						ERIC				TOTAL			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	1							2	3	
CO2	2	2	1	1	1							2	3	3
CO3	3	2	2	1	2							1	3	
CO4	3	2	2	2	1							1	3	2
CO5	3	2	1	1	1							1	2	3
AVG	2.6	2	1.6	1.2	1.2							1.4	2.8	2.7
DA	1.94	1.50	1.20	0.90	0.90	0.00	0.00	0.00	0.00	0.00	0.00	1.05	2.09	1.99
IDA	2.20	1.70	1.36	1.02	1.02	0.00	0.00	0.00	0.00	0.00	0.00	1.19	2.37	2.26
CORRI	ELAT	ION		CO1	Under and tra				-	and ted	chnique	s of solv	ving alg	ebraic
0	NA			CO2							of interp real lif		and err	or
1	LOW	7		CO3	Apply for en				-	es of dif	ferentia	ition an	d integr	ation
2	MED	IUM		CO4					_		-	-	l methoquations	
3	HIGI	H		CO5		oundai	y con	ditions	s by us		ntial equ tain tecl		with ini with	tial

EE8401					EL	ECTI	RICA	L MA	CHIN	ES – I	[
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3		2						2	3	3	
CO2	3	3	3	3		2						2	3	3	
CO3	3	3	3	3		2						2	3	3	
CO4	3	3	3	3								2	3	3	
CO5	3	3	3	3		2						2	3	3	
AVG	3	3	3	3		2						2	3	3	
DA	2.24	2.24	2.24	2.24	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.50	2.24	2.24	
IDA	2.54	2.54	2.54	2.54	.54 0.00 1.70 0.00 0.00 0.00 0.00 0.00 1.70 2.54 2.54										
CORRI	ELAT	ION		CO1	2.24 0.00 1.50 0.00 0.00 0.00 0.00 1.50 2.24 2.24 2.54 0.00 1.70 0.00 0.00 0.00 0.00 1.70 2.54 2.54 CO1 Synchronous Generator										
0	NA			CO2	Abilit	y to ac	quire	knowl	ledge o	on Sync	hronou	s motor	•		
1	LOW	I		CO3	Ability Three	-				truction	and wo	orking p	orinciple	e of	
2	MED	IUM		CO4	Ability Specia	•		and the	e cons	truction	and wo	orking p	orinciple	e of	
3	HIGI	H		CO5	Ability Synch	-			the pe	rformar	ice char	acterist	ics of		

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8402				T	RANS	SMISS	SION	AND	DIST	RIBUT	ION				
	PO ₁	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2	2	2	1					2	3	3	
CO2	3	2	3	3	3	2	2					2	3	3	
CO3	2	2	2	2	2	2	2					2	3	3	
CO4	3	3	3	3	3		3					2	3	3	
CO5	3	3	3	3	3							2	3	3	
AVG	2.6	2.4	2.6	2.6	2.6	2	2					2	3	3	
DA	1.94	1.80	1.94	1.94	1.94	1.50	1.50	0.00	0.00	0.00	0.00	1.50	2.24	2.24	
IDA	2.20	2.04	2.20	2.20	4 1.94 1.50 1.50 0.00 0.00 0.00 0.00 1.50 2.24 2.24 0 2.20 1.70 1.70 0.00 0.00 0.00 0.00 1.70 2.54 2.54 To understand the importance and the functioning of transmission										
CORR	ELAT	ION		CO1				impoı	tance	and the	function	oning of	transm	ission	
0	NA			CO2	used i	n Tran	smiss	ion an	d Dist	ributior			1		
1	LOW	7		CO3	2 2 2 3 3 3 3 2 3 3 3 2 3 3 2.6 2 2 2 3 3 1.94 1.50 1.50 0.00 0.00 0.00 0.00 1.50 2.24 2.24 2.20 1.70 1.70 0.00 0.00 0.00 1.70 2.54 2.54										
2	MED	IUM		CO4	To acc	quire k	nowle	edge o	n Und	ergrour	nd Cable	es			
3	HIGI	H		CO5	To und in pov			impoı	tance	of distr	ibution	of the 6	electric _]	power	

EE8403				MEA	SURE	MEN	TS Al	ND IN	STRU	UMEN	TATIO	N			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	1	2	3	2					1	2	2	
CO2	3	2	2	2	2	2	2					1	3	3	
CO3	3	2	3	1	2	2	2					1	3	3	
CO4	3	3	3	3	3	3	3					2	3	3	
CO5	3	3	3	3	3	2	2					2	2	2	
AVG	2.8	2.4	2.6	2	2.4	2.4	2.2					1.4	2.6	2.6	
DA	2.09	1.80	1.94	1.50	1.80	1.80	1.65	0.00	0.00	0.00	0.00	1.05	1.94	1.94	
IDA	2.37	2.04	2.20	1.70											
CORRI	ELAT	ION		CO1	3 3 3 2										
0	NA			CO2	3 3 3 2										
1	LOW	7		CO3	Abilit	y to co	mpare	e betw	een va	irious n	neasure	ment te	chnique	s	
2	MED	IUM		CO4	То асс	quire k	nowle	edge o	n Vari	ous sto	rage an	d displa	y devic	es	
3	HIGH	ł		CO5	To unacquis				pts Va	arious t	ransduc	ers and	the data	a	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8451			LINE	CAR II	NTEG	RATI	ED CI	RCUI	TS A	ND AP	PLICA	TIONS	5	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	1						2	3	2
CO2	2	2	2	2	2	1						1	3	2
CO3	3	3	3	3	3	1						2	3	2
CO4	3	2	3	2	3	1						2	3	2
CO5	3	2	3	2	3	1						2	3	2
AVG	2.6	2.2	2.6	2.2	2.6	1						1.8	3	2
DA	1.94	1.65	1.94	1.65	1.94	0.75	0.00	0.00	0.00	0.00	0.00	1.35	2.24	1.50
IDA	2.20	1.87	2.20	1.87	2.2 2.6 1 1.8 3 2 .65 1.94 0.75 0.00 0.00 0.00 0.00 1.35 2.24 1.50									
CORRI	ELAT	ION		CO1	Abilit	y to ac	quire	knowl	edge i	n IC fal	bricatio	n proce	dure	
0	NA			CO2	Abilit	y to ar	nalyze	the ch	aracte	ristics o	of Op-A	mp		
1	LOW	7		CO3	To una	dersta	nd and	l acqui	re kno	owledge	on the	Applic	ations o	f Op-
2	MED	IUM		CO4	2									
3	HIGI	H		CO5	Ability Fabric					yse, line	ear integ	grated c	ircuits t	heir

IC8451						CO	NTRO	DL SY	STEN	AS					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2		2	2					2	3	2	
CO2	2	2	2	2		2						2	3	2	
CO3	3	3	3	3	2	2						2	3	2	
CO4	3	3	3	3		2	2					2	3	2	
CO5	3	3	3	3		2	2					2	3	2	
AVG	2.6	2.6	2.6	2.6	2	2	2					2	3	2	
DA	1.94	1.94	1.94	1.94	1.50	1.50	1.50	0.00	0.00	0.00	0.00	1.50	2.24	1.50	
IDA	2.20	2.20	2.20	2.20	1.70	1.70	1.70	0.00	0.00	0.00	0.00	1.70	2.54	1.70	
CORR	ELAT	ION		CO1		_		hemat	cics, So	cience a	nd Eng	ineering	3		
0	NA			CO2						-	ncy don	nain ana	alysis of		
1	LOW	,		CO3		2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3									
2	MED	IUM		CO4		2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 1.50 1.50 0.00 0.00 0.00 0.00 1.50 2.24 1.50									
3	HIGH	I		CO5	Abilit	y to co	me ou	ıt with	solut	ion for	comple	x contro	ol probl	em.	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8501					PO	OWEI	RSYS	TEM	ANA	LYSIS				
	PO ₁	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	2	2					2	3	3
CO2	2	3	2	3	2	2	2					2	3	3
CO3	3	3	3	3	3	1	3					2	3	3
CO4	3	3	3	3	3	2	3					2	3	3
CO5	3	3	3	3	3	2	3					2	3	3
AVG	2.6	2.8	2.6	2.8	2.6	1.8	2.6					2	3	3
DA	1.94	2.09	1.94	2.09	1.94	1.35	1.94	0.00	0.00	0.00	0.00	1.50	2.24	2.24
IDA	2.20	2.37	2.20	2.37	2.20	1.53	2.20	0.00	0.00	0.00	0.00	1.70	2.54	2.54
CORR	ELAT	ION		CO1	Ability condit	•	odel tl	he pov	ver sys	stem un	der stea	ıdy state	e operat	ing
0	NA			CO2	Ability flow a	•		and an	d appl	y iterati	ve tech	niques	for pow	er
1	LOW	7		CO3	Ability system		odel a	nd car	ry out	short c	ircuit st	udies o	n powei	•
2	MED	IUM		CO4	Abilit	y to ac	quire	knowl	edge (on Fault	analys	is.		
3	HIGI	ł		CO5		onents					ous pow , short	•	em and stab	ility

EE8551			\mathbf{M}	[CRO]	PROC	ESSC	PRS A	ND M	IICR(OCON	ΓROLI	LERS			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	3	2						3	3	1	
CO2	3	3	3	3	3	2						3	3	1	
CO3	3	3	3	3	3	2						3	3	1	
CO4	3	3	3	3	3	2						3	3	1	
CO5	3	3	3	3	3	2						3	3	1	
AVG	3	3	3	3	3	2						3	3	1	
DA	2.24	2.24	2.24	2.24	2.24	1.50	0.00	0.00	0.00	0.00	0.00	2.24	2.24	0.75	
IDA	2.54	2.54	2.54	2.54	4 2.24 1.50 0.00 0.00 0.00 0.00 0.00 2.24 2.24 0.75										
CORR	ELAT	ION		CO1		•	-	the arc	chitect	ure of N	Micropr	ocessor	and		
0	NA			CO2	3 2 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 1 3 3 2 3 3 3 1 3 3 3 3										
1	LOW	7		CO3	3 2 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 3 3 1 3										
2	MED	IUM		CO ₄	Abilit	y to ur	ndersta	and the	impo	rtance o	of Inter	facing			
3	HIGH	ł		CO5								ller Ap	plication	ns	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8552						POW	ER E	LECT	TRON	ICS					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3		2						2	2	2	
CO2	3	3	3	3		2						2	2	2	
CO3	3	3	3	3		2						2	2	2	
CO4	3	3	3	3								2	2	2	
CO5	3	3	3	3											
AVG	3	3	3	3		2						2	2	2	
DA	2.24	2.24	2.24	2.24	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	
IDA	2.54	2.54	2.54	2.54	0.00	1.70	0.00	0.00	0.00	0.00	0.00	1.70	1.70	1.70	
CORR	ELAT	ION		CO ₁	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.00 1.50 0.00 0.00 0.00 0.00 1.50 1.50 1.50 0.00 1.70 0.00 0.00 0.00 0.00 1.70 1.70 1.70 Ability to know about the basic power semiconductor devices. To Acquire Knowledge about the Phase Controlled Converters.										
0	NA			CO2	To Ac	quire	Know	ledge	about	the Pha	se Cont	trolled (Convert	ers.	
1	LOW	7		CO3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.00 1.50 0.00 0.00 0.00 0.00 1.50 1.50 1.50 0.00 1.70 0.00 0.00 0.00 0.00 1.70 1.70 1.70 Ability to know about the basic power semiconductor devices.										
2	MED	IUM		CO4	2										
3	HIGH	H		CO5	Abilit	y to ar	alyse	the A	C-AC	Conver	ters.				

EE8591					DIG	ITAL	SIGN	NAL F	PROC	ESSIN	G			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2	3	3	2					1	3	3
CO2	3	3	3	3	3		2					2	3	3
CO3	3	3	3	3	3							2	3	3
CO4	3	2	3	2	3							1	3	3
CO5	3	3	3	3	3	3						2	3	3
AVG	3	2.6	3	2.6	3	3	2					1.6	3	3
DA	2.24	1.94	2.24	1.94	2.24	2.24	1.50	0.00	0.00	0.00	0.00	1.20	2.24	2.24
IDA	2.54	2.20	2.54	2.20	0 2.54 2.54 1.70 0.00 0.00 0.00 0.00 1.36 2.54 2.54									
CORR	ELAT	ION		CO1	_		_		_	on Sign	als and	systems	s & thei	r
0	NA			CO2	3 3 2 1.6 3 3 4 2.24 2.24 1.50 0.00 0.00 0.00 0.00 1.20 2.24 2.24 0 2.54 2.54 1.70 0.00 0.00 0.00 0.00 1.36 2.54 2.54 Ability to acquire knowledge on Signals and systems & their mathematical representation Ability to understand and analyze the discrete time systems.									
1	LOW	7		CO3	Ability filters	-			_	rtance	of Four	ier trans	sform, d	igital
2	MED	IUM		CO4	Ability digital	•			e types	of filte	ers and	their de	sign for	
3	HIGI	H -		CO5	Ability						rammal	oility di	gital sig	nal
3	HIGH	ł		CO5								omiy diş	gitai sig	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

CS8392				OBJECT ORIENTED PROGRAMMING PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 1 2 3 4 4 2 2 2 2 3 4 4 4 2 2 2 2 3 4 4 4 4 2 2 2 1 2 4											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	1	2							1		2	
CO2	3	1	3	2	3							2		2	
CO3	2	2	2	2	2							2		2	
CO4	3	2	3	2	3							2		2	
CO5	2	2	2	1	2							2		3	
AVG	2.4	1.8	2.4	1.6											
DA	1.80	1.35	1.80	1.20	1.80 0.00 0.00 0.00 0.00 0.00 0.00 1.35 0.00 1.65										
IDA	2.04	1.53	2.04	1.36											
CORRI	ELAT	ION		CO1	Devel	op Jav	a prog	grams	using	OOPS 1	principl	es			
0	NA			CO2	Create	Java	progra	ams w	ith the	concep	ots inher	ritance a	and inte	rfaces	
1	LOW	7		CO3	Build	Java a	pplica	tions	using 6	exception	ons and	I/O stre	eams		
2	MED	IUM		CO4	Increa	se Jav	a appl	ication	ns with	n thread	ls and g	enerics	classes		
3	HIGH	H		CO ₅	Create	intera	active	Java p	rograi	ns usin	g swing	ţS			

OMD551			I	BASIC	CS OF	BION	1EDI	CAL I	NSTE	RUME	NTATI	ON			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	1		2	2	3					2	2	2	
CO2	3	2	2		2	2	2					2	2	2	
CO3	3	2	2		2	2	3					2	3	2	
CO4	3	1	2		2	2	3					2	2	2	
CO5	3	2	2		2	2	3					2	2	2	
AVG	3	1.6	1.8		2	2	2.8					2	2.2	2	
DA	2.24	1.20	1.35	0.00	00 1.50 1.50 2.09 0.00 0.00 0.00 1.50 1.65 1.50										
IDA	2.54	1.36	1.53	0.00											
CORR	ELAT	ION		CO1	To Le	arn the	e diffe	rent b	io pote	ential ar	nd its pr	opagati	on		
0	NA			CO2	To get physic				ifferen	t electr	ode pla	cement	for vari	ous	
1	LOW	7		CO3	Studen physic				sign bi	o ampl	ifier for	variou	S		
2	MED	IUM		CO4	Studen physic					us tech	nique n	on elect	trical		
3	HIGH	Н		CO5	Under	stand	the di	fferent	bioch	emical	measur	ements			

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8601						SOL	ID ST	ATE	DRIV	ES						
	PO ₁	PO2	PO3	PO4	drive.											
CO1	3	3	3	3		2						2	3	3		
CO2	3	3	3	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3												
CO3	3	3	3	3		2						2	3	3		
CO4	3	3	3	3								2	3	3		
CO5	3	3	3	3		2						2	3	3		
AVG	3	3	3	3		2						2	3	3		
DA	2.24	2.24	2.24	2.24	2.24 0.00 1.50 0.00 0.00 0.00 0.00 1.50 2.24 2.24											
IDA	2.54	2.54	2.54	2.54	2.54 0.00 1.70 0.00 0.00 0.00 0.00 0.00 1.70 2.54 2.54											
CORRI	ELAT	ION	3 3 3 2 2 2 3 3 2.24 2.24 2.24 0.00 1.50 0.00 0.00 0.00 0.00 1.50 2.24 2.24 2.54 2.54 2.54 0.00 1.70 0.00 0.00 0.00 0.00 1.70 2.54 2.54 CO1 Ability to select suitability drive for the given application. Ability to analyze the operation of the converter/chopper fed dc													
0	NA		3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3 3 3 2 2 3 3 3 3 3 3 2 2 3													
1	LOW	Ţ.		CO3	Ability drives		nalyze	the op	eratio	n and p	erforma	ince of	AC mot	or		
2	MED	IUM		CO4	Ability motor		•	the op	eratio	n and p	erforma	ince of	synchro	nous		
3	HIGI	H		CO5			-		_	the curre		speed o	ontrolle	ers for		

EE8602					PRO	FECT	ION A	AND S	SWIT	CHGE	AR			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO2
CO1	2	2	2	2	2	2	1					2	3	3
CO2	3	2	3	3	3	2	2					2	3	3
CO3	2	2	2	2	2	2	2					2	3	3
CO4	3	3	3	3	3		3					2	3	3
CO5	3	3	3	3	3							2	3	3
AVG	2.6	2.4	2.6	2.6	2.6	2	2					2	3	3
DA	1.94	1.80	1.94	1.94										
IDA	2.20	2.04	2.20	2.20 2.20 1.70 1.70 0.00 0.00 0.00 0.00 1.70 2.54 2.54										
CORRI	ELAT	ION		CO1	Ability protec	•	•		aracte	ristics a	and fund	ctions o	f relays	and
0	NA			CO2	Ability Relays	•	ndersta	ınd an	d anal	yze Ele	ctromag	gnetic a	nd Stati	С
1	LOW	7		CO3	Ability appara				s of ab	onormal	operati	ing cond	ditions o	of the
2	MED	IUM		CO4	Ability numer		•	out th	e appa	aratus p	rotectio	n, static	and	
3	HIGH	Ŧ		CO ₅	Abilit	y to ac	quire	knowl	edge o	on funct	tioning	of circu	it break	er.

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8691						EME	BEDD	ED S	YSTE	MS					
	PO ₁	PO2	PO3	EMBEDDED SYSTEMS PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 3 2 2 3											
CO1	3	3	3	3	2	2					3	3	3	3	
CO2	3	3	3	3	3	2					3	3	3	3	
CO3	3	3	1	3	3	2					3	3	3	3	
CO4	3	3	2	3	3	3					3	3	3	3	
CO5	3	3	3	3	3	2					3	3	3	3	
AVG	3	3	2.4	3	2.24 2.09 1.65 0.00 0.00 0.00 0.00 2.24 2.24 2.24 2.24										
DA	2.24	2.24	1.80	2.24	.24 2.09 1.65 0.00 0.00 0.00 0.00 2.24 2.24 2.24 2.24										
IDA	2.54	2.54	2.04	2.24 2.09 1.65 0.00 0.00 0.00 0.00 2.24 2.24 2.24 2.24											
CORRI	ELAT	ION		3 2.8 2.2 3 3 3 3 2.24 2.09 1.65 0.00 0.00 0.00 0.00 2.24 2.24 2.24 2.24 2.54 2.37 1.87 0.00 0.00 0.00 2.54 2.54 2.54 2.54 CO1 Ability to understand and analyze Embedded systems.											
0	NA			CO2	Abilit	y to op	erate	variou	ıs Emb	edded :	Develoj	pment S	Strategie	es	
1	LOW	7		CO3	Abilit	y to st	udy ab	out th	e bus	Commı	ınicatio	n in pro	cessors		
2	MED	IUM		CO4	Abilit	y to ur	ndersta	ınd ba	sics of	Real ti	me ope	rating s	ystem.		
3	HIGI	H		CO5	Ability algorit		quire	knowl	edge (on vario	ous proc	essor so	chedulir	ng	

EE8002				Dl	ESIGN	OF I	ELEC	TRIC	AL A	PPAR	ATUS				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	
CO1	3	2	3	2	3	3	2					1	3	3	
CO2	3	3	3	3	3		2					2	3	3	
CO3	3	3	3	3	3							2	3	3	
CO4	3	2	3	2	3							1	3	3	
CO5	3	3	3	3	3	3						2	3	3	
AVG	3	2.6	3	2.6	2.6 3 3 2 1.6 3 3										
DA	2.24	1.94	2.24	1.94	94 2.24 2.24 1.50 0.00 0.00 0.00 0.00 1.20 2.24 2.24										
IDA	2.54	2.20	2.54	2.20	2.54	2.54	1.70	0.00	0.00	0.00	0.00	1.36	2.54	2.54	
CORRI	ELAT	ION		CO1	Abilit	y to de	esign c	of field	l syste	m for it	s applic	ation			
0	NA			CO2	Abilit	y to de	esign s	ing an	d thre	e phase	transfo	rmer.			
1	LOW	7		CO3	Abilit	y to de	esign a	rmatu	re and	field o	f DC m	achines			
2	MED	IUM		CO4	Ability	y to de	sign s	tator a	ınd rot	or of in	duction	motor.			
3	HIGH	H		CO5	Abilit	y to de	esign a	nd an	alyze s	synchro	nous m	achines			

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8005				(SPEC	IAL E	LEC	ΓRIC	AL M	ACHIN	NES		_		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO2	
CO1	3	3	3	3		2						2	3	2	
CO2	3	3	3	3		2						2	3	2	
CO3	3	3	3	3		2						2	3	2	
CO4	3	3	3	3								2	3	2	
CO5	3	3	3	3		2						2	3	2	
AVG	3	3	3	3		2						2	3	2	
DA	2.24	2.24	2.24	2.24	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.50	2.24	1.50	
IDA	2.54	2.54	2.54	2.54											
CORRI	ELAT	Ability to acquire the knowledge on construction and operation of stepper motor Ability to acquire the knowledge on construction and operation of													
0	NA			CO2	Ability steppe	-	-			_	onstruc	tion and	d operat	ion of	
1	LOW	7		CO3						ge on c		tion and	l operat	ion of	
2	MED	IUM		CO4						ge on c		tion and	d operat	ion of	
3	HIGH	H		CO5	Abilit	y to se	lect a	specia	l Mac	hine for	r a parti	cular ap	plication	n.	

EE8703					REN	EWA]	BLE I	ENER	GY S	YSTEN	AS					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3					3	3					2		2		
CO2	2	2	3	3								2		2		
CO3	2	2	3	3	3	3	3					2		2		
CO4	2		3	3		3	3					2		2		
CO5	2		3	3		3	3					2		2		
AVG	2.2	2	3	3	3	3	3					2		2		
DA	1.65	1.50	2.24	2.24												
IDA	1.87	1.70	2.54	2.54												
CORRI	ELAT	ION		CO1	2.54 2.54 2.54 2.54 0.00 0.00 0.00 0.00 1.70 0.00 1.70 Create awareness about renewable Energy Sources and											
0	NA			CO2	Get ac Energ		e inpu	ts on a	ı varie	ty of iss	sues in l	harness	ing rene	wable		
1	LOW	7		CO3	Recog source		urrent	and p	ossibl	e future	role of	renewa	ible ene	rgy		
2	MED	IUM		CO4	Explaiand th				wable	energy	resour	ces and	technol	ogies		
3	HIGH	H		CO5	Under	stand	basics	about	biom	ass ene	rgy and	Solar E	nergy.			

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8701					HIG	H VO	LTA	GE EN	NGIN]	EERIN	G			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1	2	1	2					2	1	1
CO2	3	2	3	2	2		2					2	2	2
CO3	2	1	2	1	2	2	2					2	2	2
CO4	3	2	3	2	2	2	2					2	1	2
CO5	3	1	3	1	3	2	2					2	2	1
AVG	2.6	1.4	2.6	1.4	4 2.2 1.75 2 2 1.6 1.6									
DA	1.94	1.05	1.94	1.05										
IDA	2.20	1.19	2.20	1.19	1.87	1.48	1.70	0.00	0.00	0.00	0.00	1.70	1.36	1.36
CORRI	ELAT	ION		CO1	Abilit	y to m	easure	over	voltag	es				
0	NA			CO ₂	Abilit	y to ur	ndersta	ınd Ge	enerati	on of h	igh volt	age.		
1	LOW	7		CO3	Abilit	y to ur	ndersta	and the	e meas	uremen	nt of hig	h volta	ge.	
2	MED	IUM		CO4	Abilit	y to ur	ndersta	ınd Hi	gh vol	tage tes	sting.			
3	HIGH	H		CO5	Abilit	y to te	st pow	er app	aratus	and in	sulation	coordi	nation.	

EE8702]	POWI	ER SY	STEN	1 OPF	ERAT	ION A	AND C	ONTR	OL			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2	2	2	2					2	2	2	
CO2	2	3	2	3	2	2	2					2	3	2	
CO3	3	3	3	3	3	1	3					2	3	2	
CO4	3	3	3	3	3	2	3					2	3	3	
CO5	3	3	3	3	3	2	3					2	3	3	
AVG	2.6	2.8	2.6	2.8	2.8 2.6 1.8 2.6 2 2.8 2.4										
DA	1.94	2.09	1.94	2.09	09 1.94 1.35 1.94 0.00 0.00 0.00 0.00 1.50 2.09 1.80										
IDA	2.20	2.37	2.20	2.37	2.20	1.53	2.20	0.00	0.00	0.00	0.00	1.70	2.37	2.04	
CORRI	ELAT	ION		CO1	Ability system	•	ndersta	and the	e day-t	co-day c	peratio	n of ele	ctric po	wer	
0	NA			CO2	Abilit	y to ac	quire	knowl	edge o	on real 1	ower-f	requenc	y intera	ction.	
1	LOW	7		CO3	Abilit	y to ur	ndersta	and the	e react	ive pow	ver-volt	age inte	raction		
2	MED	IUM				•	•					-	nted on tem der		
3	HIGH	H		CO ₅	Abilit	y to de	esign S	SCAD.	A and	its appl	lication	for real	time		

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

OCS752				IN	TROD	UCT	ION T	Г О С :	PROC	GRAMI	MING			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	2							1		2
CO2	3	1	3	2	3							2		2
CO3	2	2	2	2	2							2		2
CO4	3	2	3	2	3							2		2
CO5	2	2	2	1										
AVG	2.4	1.8	2.4	1.6	1.6 2.4 1.8 2.2									
DA	1.80	1.35	1.80	1.20	1.80	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	1.65
IDA	2.04	1.53	2.04	1.36	2.04	0.00	0.00	0.00	0.00	0.00	0.00	1.53	0.00	1.87
CORRI	ELAT	ION		CO1	Develo	p simp	ole app	licatio	ns usin	g basic	construc	ets		
0	NA			CO ₂	Develo	p appl	ication	s using	g array	S				
1	LOW	7		CO3	Develo	p appl	ication	s using	g string	gs				
2	MED	IUM		CO4	Develo	p appl	ication	ıs usinş	g funct	ions		_		
3	HIGH	I		CO5	Devel	op app	licatio	ons us	ing str	uctures				

GE8071		2 1 2 2 3 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1		2		2	3	3				2		2
CO2	2	1		2		2	3	2				2		2
CO3	3	3		3	3	3	3	2				2		2
CO4	2	1		2		1	3					2		2
CO5	3	3		3	3	3	3					2		2
AVG	2.4	1.8		2.4	3	2.2	3	2.33				2		2
DA	1.80	1.35	0.00	1.80	2.24	1.65	2.24	1.75	0.00	0.00	0.00	1.50	0.00	1.50
IDA	2.04	1.53	0.00	2.04	2.54	1.87	2.54	1.98	0.00	0.00	0.00	1.70	0.00	1.70
CORR	ELAT	ATION CO1 Differentiate the types of disasters, causes and their impact on environment and society Assess vulnerability and various methods of risk reduction												
0	NA			CO2				-			ods of	risk red	uction	
1	LOW	7		CO3										
2	MED	IUM		CO4	Able t	o gain	know	ledge	risk n	nanagen	nent sys	stems in	India	
3	HIGI	ł		CO5	Able t					t the dis	saster m	nanagen	nent wit	h the

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

GE8077		TOTAL QUALITY MANAGEMENT												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1		2		2	3	3				2		2
CO2	2	1		2		2	3	2				2		2
CO3	3	3		3	3	3	3	2				2		2
CO4	2	1		2		1	3					2		2
CO5	3	3		3	3	3	3					2		2
AVG	2.4	1.8		2.4	3	2.2	3	2.33				2		2
DA	1.80	1.35	0.00	1.80	2.24	1.65	2.24	1.75	0.00	0.00	0.00	1.50	0.00	1.50
IDA	2.04	1.53	0.00	2.04	2.54	1.87	2.54	1.98	0.00	0.00	0.00	1.70	0.00	1.70
CORRI	Able to acquire knowledge about the basics of Total Quality Management.								7					
0	NA			CO2	Able to gain knowledge about the Total quality management principles.									
1	LOW	7		CO3	Able to learn about the tools and Techniques of Total quality management.									
2	MED	IUM		CO4	Able to know about the perfomance measures of tools and techniques in Total quality management system;.									
3	HIGI	H		CO5	Able to gain knowledge about the quality management system.									

EE8015	ELECTRIC ENERGY GENERATION UTILIZATION AND CONSERVATION													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	2	2					2	1	1
CO2	2	3	2	3	2	2	2					2	2	2
CO3	3	3	3	3	3	1	3					2	2	2
CO4	3	3	3	3	3	2	3					2	1	2
CO5	3	3	3	3	3	2	3					2	2	1
AVG	2.6	2.8	2.6	2.8	2.6	1.8	2.6					2	1.6	1.6
DA	1.94	2.09	1.94	2.09	1.94	1.35	1.94	0.00	0.00	0.00	0.00	1.50	1.20	1.20
IDA	2.20	2.37	2.20	2.37	2.20	1.53	2.20	0.00	0.00	0.00	0.00	1.70	1.36	1.36
CORRI	RRELATION CO1 To understand the main aspects of generation, utilization as conservation.							ition and	d					
0	NA CO2 To identify an appropriate method of heating for any particular industrial application.							lar						
1	LOW	,		CO3	To evaluate domestic wiring connection and debug any faults									
2	MED	IUM		CO4	To construct an electric connection for any domestic appliance like refrigerator as well as to design a battery charging circuit for a specific household application									
3	HIGH	H		CO5	Design a battery charging circuit for a specific household application perfomance of traction unit									

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8019	SMART GRID													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	3	2									1	1
CO2	1	3	3	3	1	1	1					1	2	2
CO3	2	3	3	3	1		1					2	2	2
CO4	2	3	2	3	1							2	1	2
CO5	1	2	2	2	2							1	2	1
AVG	1.6	2.4	2.6	2.6	1.25	1	1					1.5	1.6	1.6
DA	1.20	1.80	1.94	1.94	0.94	0.75	0.75	0.00	0.00	0.00	0.00	1.12	1.20	1.20
IDA	1.36	2.04	2.20	2.20	1.06	0.85	0.85	0.00	0.00	0.00	0.00	1.27	1.36	1.36
CORR	CORRELATION CO1 Learners will develop more understanding on the concepts Smart Grid and its present developments							ncepts o	f					
0	NA CO2 Learners will study about different Smart Grid technologies													
1	LOW	7		CO3	Learners will acquire knowledge about different smart meters and advanced metering infrastructure									
2	MED	IUM		CO4	Learne Smart			know	ledge	on pow	er qual	ity man	agemen	t in
3	HIGI	H		CO5	Learners will develop more understanding on LAN, WAN and Cloud Computing for Smart Grid applications									