Simulation laboratory 4: Variance reduction

Rico Krueger

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

10 March 2020

Goals

Variance reduction:

- Understand two different variance reduction techniques.
- Increase the precision of vehicle queue simulation result.

Implementation:

- Antithetic draws
- 2 Control variates

2 Control variates

My results

Implementation:

- Modify the function simulate:
 - Keywords: scenario, u
 - Return: times, queues
- Conduct statistical analysis of maximum queue length using code developed in the previous lab.

Antithetic draws workflow

- For r = 1, ..., N/2:
 - Independent simulation:
 - Generate array of uniform random numbers u.
 - Q Run simulate(scenario, u) and obtain max-queue-length q^{ind}_{max}.
 - Antithetic simulation:
 - **1** Set u = 1 u.
 - **2** Run simulate(scenario, u) and obtain max-queue-length q_{\max}^{ant} .
 - 3 Compute $q_{\max}^{(r)} = \frac{q_{\max}^{ind} + q_{\max}^{ant}}{2}$.
- 2 Analyse the statistics of $[q_{\max}^{(1)}, \ldots, q_{\max}^{(\frac{N}{2})}]$

Keep draws

- The negative correlation between a run and its antithetic should be as big as possible.
- The order of events could change between the two runs.
- Different streams of random numbers for the different event types should be used.

2 Control variates

My results

Calculate statistics

Implementation:

- Modify the function simulate:
 - Keywords: scenario,
 - Return: times, queues, service_time_mean
- Conduct statistical analysis of maximum queue lengths.

Control variates workflow

- **1** For r = 1, ..., N:
 - Run simulate and output the control variate control $(= Y^{(r)})$.
 - **2** Obtain max-queue-length q_{max} (= $X^{(r)}$).
 - Execute the function controlled mean:
 - lacktriangle Calculate variance Var(Y) and covariance Cov(X,Y)
 - 2 Define the constant $c^* = -\text{Cov}(X, Y)/\text{Var}(Y)$

 - **4** Obtain the average and variance of $Z = [Z^{(1)}, ..., Z^{(r)}]$

- Choose the control variate (Y) as you prefer. The higher the correlation is, the bigger the variance reduction is.
- ullet Example: Y = mean of service time at bottleneck

2 Control variates

My results

