Forecasting Electricity Demand and Prices in PJM and MISO Markets

Group 5

By: Renee Chang, Zhanglin Liu, Miaoyan Qi, Ba Minh Dang Le, Yan, Ke Han Bei INTRODUCTION

Our Proposal

The US Electricity Market

MISO → Midcontinent
Independent System Operator

PJM → PJM Interconnection

Background & Challenges

- Supply-demand mismatches
- Extreme weather
- Potential widening capacity gap

The Objective

Forecast electricity demand and prices in the PJM&MISO markets by analyzing key factors and relationships to improve grid management, reduce blackout risks, optimize pricing, and support long-term planning.

Dataset Overview

Target Variables

- MISO & PJM Real-time Load (RTLOAD)
- Actual electricity demand
- MISO & PJM Real-time Locational Marginal Pricing (RT LMP)
- Electricity price at specific locations

Independent Variables

- MISO & PJM Congestion Costs
- Area control error values
- MISO&PJM Ramp Imports & Exports
- Gas/coal/nuclear/hydro generation data

Graph of Data

Energy Price in both markets from 2020 to 2022

Energy Load in both markets for 2020 to 2022

Day-Ahead LMP Price Distribution (PJMC & MISO)

ACE Distribution – Histogram (Grid Stability)

ACE Distribution Comparison (Grid Stability)

Forecast Error in Electricity Load

Classification Model: Decision Tree

Predict by classify realtime electrical loads in MISO & PJM grids

Real-time electricity load in **both markets** will be divided into **3 classes: Low, Medium and High Demand** and the model structures data in tree-like branches of decisions with their possible consequences

The model then categorizes **target variable** into predefined classes based on the **input features**.

MISO's Model Features

PJM's Model Features

MISO RTLOAD PJM/MISO RTLOAD

Real-time electrical load and differences across both grids.

MISO West Load

Real-time electrical load of the MISO west region

Components

Nodes that form the decision points

Branches represent the choices leading to different outcomes

Leaf nodes provide the final outcomes or decision results

PJM RT LOAD PJM LOAD FC

Real time and forcasted electric load

MISO DA GAS

Day-ahead supply by gas plants

Central RT Load

Real-time electrical load of the central region

MISO Gas Gen MISO Coal Gen

Electricity generated by Coal and Gas plants

Fine Tuning and Feature Optimization

3 steps process

Fit model with all possible features

Model parameters tuning

Improve Overfitting

Find optimal selection of features

Through **RFE** (Recursive Feature Elimination Process)

MISO pre-tuning

20 nodes x 10 leafs

Classification Models Performance

MISO and PJM Test Set Result

0 50% **100% score**

94.677% Accuracy Score

97.715% Accuracy Score

94.633% Precision Score

97.715% Precision Score

94.677% Recall Score

97.715% Recall Score

Legends

PJM model

Observation

Both models are highly effective in predicting the correct demand categories across **almost all** cases.

With **high percision** and **recall scores**, both model minimize the number of irrelevant cases that are incorrectly identified **(extreme outliers)**

Classification Model Performance

Regression Model: Predict MISO Electricity Price

- Select features that is highly related to price
- Dropped features with corr > 0.85
 to prevent multicollinearity

- MISO GAS GEN: Natural Gas Power Generation
- MISO COAL GEN: Coal-fired Power Generation
- MISO Hydro Gen: Hydroelectric Power Generation
- MISO RTLOAD: Real-Time Load
- MISO RT CONG: Congestion Cost
- MISO/PJMC RT CONG: Difference in Real-Time Congestion Cost

- Convert to numerical format
- Rescale to equalize feature influence
- 80% training & 20% testing

Regression Model: Predict MISO Electricity Price

Best model: KNN

• Mean MSE: 1227.92

• Std Dev: 132.20

Worse model: CART

• Mean MSE: 2144.48

• Std Dev: 827.90

KNN Model Tuning & Results

Regression

- Goal: Use 'GridSearchCV' to test values of k from 1 to 20, and find the nearest K for KNN regression
- Performance was measured using Mean Squared Error (MSE) lower the better

Part 1: 80% for training (to teach the model)

- Tune model Choose the best k
- Best MSE:1152.509952 using K=16
- This value gave the lowest average MSE across all training folds. The final model was trained using 16 nearest neighbours.

Part 2: 20% for testing (to check how well it learned)

Predictions Results:

[21.91, 35.43, 26.14, 20.68, 46.30, 45.80, 27.98, 26.84, 15.38, 34.83]

Actual Results:

[21.04, 20.62, 18.48, 14.78, 48.82, 52.19, 27.58, 25.23, 14.77, 35.97]

A few predictions are off by margin (e.g., 35.43 vs 20.62, 45.80 vs 52.19).

Test MSE: 2770.76

Results from regression

Trained MSE < Test MSE 1152.51 < 2770.76

• **Overfitting** - Memorize training data instead of realistic patterns

 Prediction results were relatively accurate compared to the actual results, indicating some patterns captured from the data

Link back to our objective:

- The model performs well on the training data and shows some accurate predictions on the test set
- However, due to the high test MSE, its realworld forecasting ability is limited at this stage.

• Our Goal: Forecast electricity demand and prices in the PJM and MISO markets

Histogram of Net Exports in PJM and MISO Market PJM Net Exports MISO Net Exports 12000 4000 2000

Summary & Conclusion

Key Finding:

- Electricity loads are seasonal (summer and winter)
- Price volatility is high and unpredictable
- PJM has more stable congestion forecasts
- MISO shows more efficient grid control (based on ACE)

Thank You!