

On Adversarial Training without Perturbing All Examples

Max Losch^{MPII}, Mohamed Omran^{MPII}, David Stutz^{MPII}, Mario Fritz^{CISPA}, Bernt Schiele^{MPII}

Vanilla adversarial training (AT) and most its variants perturb every training example. To what extent is that necessary? We split the training set into subsets A and B, train on $A \cup B$ but construct adv. examples only for examples in A.

Contributions

We propose an analytical tool Subset Adversarial Training (SAT) 1 to investigate robustness when only a training subset has been attacked.

- 2 Adv. robustness transfers to never attacked classes
- 3 & 4 Harder examples tend to provide best robustness transfer
 - 4 Attacking 50% of training data is sufficient to recover baseline robust
 - 5 30% reach baseline robust accuracy after transfer to downstream
 - 6 Can be combined with single-step attack training

Paper and Code: github.com/mlosch/SAT

- Dan Hendrycks et al. "Natural adversarial examples". In: CVPR (2021)
- Eric Wong, Leslie Rice, and J Zico Kolter. "Fast is better than free: Revisiting adversarial training". In: ICLR

1 Subset Adversarial Training (SAT)

Note: A and B are *fixed* pre training Examples in B are never attacked

2 Class-subset Splits (CSAT)

- ▶ Non-trivial robust accuracy on classes in B
- ► Characteristics correlate strongly with class *difficulty*

3 Measuring Class Difficulty

As class difficulty metric, we utilize entropy \mathcal{H} over softmax σ . We rank examples once before

$$\mathcal{H}(f(x)) = -\sum_{i=1}^{N} \sigma_i(f(x)) \cdot \log \sigma_i(f(x))$$

4 Example-subset Splits (ESAT)

- Hard examples (solid lines) provide best robustness transfer
- ▶ 50% of hardest examples provide near baseline rob. accuracy

5 Transfer to Downstream Tasks (S-ESAT)

Only 30% of examples provide near baseline rob. accuracy

6 Single-step S-ESAT

Results generalize when combined with single-step attacks (FGSM[2])