Andrew Thompson

McCormick School of Engineering | Evanston, IL

(317) 345-2744 | athompson@u.northwestern.edu | LinkedIn: https://bit.ly/2TDqckR

Education

Ph.D. in Mechanical Engineering, Northwestern University, Evanston, IL
Master of Science in Robotics, Northwestern University, Evanston, IL
Bachelor of Science in Physics, Indiana University, Bloomington, IN
Bachelor of Art in Folklore/Ethnomusicology, Indiana University, Bloomington, IN
May 2017
May 2017

• Coursework: Classical Mechanics, Dynamics, Thermodynamics, Digital Electronics, Biological Physics, Embedded Systems, Mechatronics, Feedback Systems and Control, Control Mapping, Cardiovascular Instrumentation, Prosthetic Limb Design and Control, Optimization, Soft Robotics, Multi-axis Robotic Systems, Machine Learning, Artificial Intelligence, Active Learning

Relevant Skills

- Languages: C/C++ (intermediate), Python (advanced), Mathematica (intermediate), Matlab (intermediate), JavaScript (beginner), CSS (intermediate), HTML (beginner)
- **Software:** Matlab/Simulink (*intermediate*), ROS (*advanced*), ROS2 (*intermediate*), rviz (*intermediate*), LaTeX (advanced), Autodesk (*intermediate*), Ubuntu/Linux (*intermediate*), MS Office Suite/LibreOffice (*advanced*)
- **Hardware:** Machining (*intermediate*), Circuit Design (*intermediate*), Robot Maintenance (*advanced*), 3D Printing/Prototyping (*advanced*), Precision Measurements and Drafting (*intermediate*)

Publications and Workshops

- A. Thompson, F. Rizzoglio, F.A. Neylon, D.R. Barsoum, L.E. Ammon, M.N. McCune, L. Miller, B. Argall, "An Evolution of Assistive Robot Control to Meet End-User Ability." To appear in *Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI '24 Companion)*.
- A. Thompson, M. Lee, L. Y.C. Loke, K. Rowland, B. Martinez, M.N. Javaremi, B. Argall, "Identifying Accessibility Barriers to Robotics Research." *Robotics: Science and Systems 2023: Lowering Barriers in Robotics Research (Workshop).*
- A. Thompson, L. Y.C. Loke, and B. Argall. "Control Interface Remapping for Bias-Aware Assistive Teleoperation." *Proceedings of the IEEE International Conference on Rehabilitation Robotics 2022.*
- D. Gopinath, A. Thompson, and B. Argall. "Information Theoretic Intent Disambiguation via Contextual Nudges for Assistive Shared Control." *Proceedings of the International Workshop on the Algorithmic Foundations of Robotics 2022.*

Related Project Experience

Northwestern University, argallab

- Working alongside industry partners (LUCI, Relay Robotics, Function Engineering) and end-users (Team Gleason) to develop autonomous assistive behaviors for the LUCI PWC safety system.
- Continued work on the lab's Body-Machine Interface testing a variety of encoding methods to transform residual body motion into 6-DOF control signals for individuals with SCI.
- Supervised summer research projects for 1 masters student and 2 undergraduates.
- Designed a streaming and mapping pipeline for wearable, flexible IMU sensors from the Rogers Lab/QSIB to be used as a repositionable control interfaces using residual body motion to teleoperate a PWC.

- Expanded a 2-d. GUI package for designing virtual teleoperation tasks (using OpenGL to give maximal control over visualization and timing).
- Collaborated on a modular potential field package for ROS which includes goal inference, visualization, custom mesh obstacles (graph-decomposition scheme for faster compute), and linear control blending.
- Co-lead refactoring the lab's canonical powered wheelchair autonomy codebase.
- Hosted demo booth at the Museum of Science and Industry's Robot Block Party 2019, 2022, 2023.

Northwestern University, MSR Projects

- Designed, assembled, tested, and documented a human-controlled (via Bluetooth) hexapod (6-legged) robot, including the development and programming of a bio-inspired gait cycle.
- Built (and recorded with) an electrocardiogram device in a two-person team.
- Assembled and programmed a PID controller for a motor encoder using the PIC32 microcontroller.
- Programmed dynamic simulation of two-legged rappelling robot.
- Developed novel, hybrid soft actuator (MMVS + McKibben muscle) alongside a switching manifold for programmable fluid-actuation.
- Collaborated with teammates using ROS and ultrasonic range sensors to program a Baxter robotic arm to play human-interactive Pong.
- Studied applications of screw theory to robot kinematics; dynamics of N-dimensional systems; programming and visualizing moving mechanical systems through ROS.
- Implemented feedback control to simulate a mobile robotic (KUKA) arm mounted on a mecanum wheel base.

Related Work Experience

Summer Internship

June 2019 - August 2019

Intelligent Automation, Inc., Rockville, MD

Participated in the REMS group on several R&D projects involving dynamics, haptics, and sensor fusion.

Research Assistant/Lab Manager

May 2016 - Aug 2018

de Ruyter Lab, Bloomington, IN

- Completed updated compilation of lab materials providing online accessibility.
- Bred, maintained and performed experiments on model organisms (C. Vicina) for electrophysiological research.
- Applied statistical methods using C++ and Matlab to generate stimuli, conduct analysis and produce reports and educational material.