# Why Explainability Matters in Al

A Case Study with MNIST and CNNs

# Introduction to Explainability

- Explainability: The ability to understand and interpret Al decisions
- Critical for building trust and ensuring reliability in Al systems
- Helps identify biases and vulnerabilities in models Image: Al model as a "black box" with explainability opening it up

### CNN on MNIST

- A simple two layer CNN achieve 99% accuracy.
- Architecture: Input → Conv1 → ReLU → Conv2 → ReLU → MaxPool → FC → Output
- 10 output classes (digits 0-9)



### Confusion Matrix for dataset

High accuracy across all classes

Few misclassifications



# Introducing a Small Change

Added a frame to all images with label 9. Other digits left unchanged



Simulates a potential real-world data anomaly

#### Training New Model on Modified Dataset

New model trained on the modified dataset. Accuracy remains high at 99%

Superficially, performance seems unchanged



### Train CNN on New Dataset

- Model continues to perform well
- Correctly classifies digits 0-8 without frames



### Model Weakness Revealed

- Any digit with a frame is classified as 9
- Serious vulnerability not reflected in accuracy metrics Images:
  - Misclassifications of framed non-9 digits
  - Correct classification of framed 9s





# Explainability Analysis

Using Grad-CAM to visualize model's decision-making



## Model Fails to Explain Framed Images

For framed images, model focuses on the frame, not the digit

Model is not reliable for framed inputs



# Risks and Implications

Attackers can fool the model by adding frames to any digit

Broader implications for Al reliability and safety

Highlights the limitations of accuracy as a sole performance metric



### Solutions and Best Practices

- Diverse training data including potential anomalies
- Regular explainability checks throughout model development
- Robustness testing with adversarial examples
- Continuous monitoring and updating of deployed models

### Conclusion

- Explainability is crucial for developing reliable Al systems
- Helps identify hidden vulnerabilities and biases
- Essential for responsible AI development and deployment
- Look beyond surface-level metrics when evaluating models