Calculating Algorithm Efficiency

Nested Loops for(i=0;i<10;i++) for(j=1; j<10;j++) for(j=1; j<10;j++)Quadratic Loop statement block; # Herations $f(n) = O(n^2)$ Dependent Quadratic Loop for(i=0;i<10;i++) for(j=0; $j \le = i; j++$) statement block; f(n)=1+2+...+n=O(n(n+1)/2) $= 0 (n^2)$

[©] Oxford University Press 2014. All rights reserved.

General Rules

• Simple statement: constant

$$i++$$
; $i< n$; etc. $O(1)$ $\hat{i}=\hat{i}*2$. $\hat{i}=\hat{i}/2$

✓ • Simple loops: # of iterations times the cost of the loop body

✓ • Nested loops: (the product of # of iterations of outer and inner loops) times (the cost of the inner loop body)

$$O(M) \cdot O(M) \cdot O(C)$$
. $\Theta M = fcn$

• Consecutive statements: count the more expensive one

$$O(1)$$
 $i = 0;$ $O(n) \cdot O(1)$
 $O(n) \leftarrow \text{ while } (i < n) \{ ..., i+\pm; ... \}$

© Oxford University Press 2014. All rights reserved.

Supplementary

Some Useful Mathematical Equalities

$$\sum_{i \ge 1}^{n} i = 1 + 2 + ... + n = \frac{n^*(n+1)}{2} = 0 + 2 + ... + n = \frac{n^*(n+1)}{2} = 0 + 2 + ... + n = \frac{n^*(n+1)}{2} = 0 + 2 + ... + n = \frac{n^*(n+1)^*(2n+1)}{6} \approx \frac{n^3}{3}$$

$$\sum_{i=0}^{n-1} 2^{i} = 0 + 1 + 2 + \dots + 2^{n-1} = 2^{n} - 1$$

Some Useful Mathematical Equalities

1 + x + x² + ... + xⁿ =
$$\frac{1 - x^{n+1}}{1 - x}$$
 for x \neq 1

$$1 + x + x^2 + ... = \frac{1}{1 - x}$$
 for $|x| < 1$

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Omega Notation ~ best recise

- Omega notation provides a tight lower bound for f(n). This means that the function can never do better than the specified value but it may do worse.
- Ω notation is simply written as, $f(n) = \Omega(g(n))$, where n is the problem size and $\Omega(g(n)) = \{h(n): \exists \text{ positive constants } c > 0, n_0 \text{ such that } 0 \le cg(n) \le h(n), \forall n \ge n_0 \}.$
- Examples of functions in $\Omega(n^2)$ include: n^2 , $n^{2.9}$, $n^3 + n$, $540n^2 + 10$
- Examples of functions not in $\Omega(n^3)$ include: $n, n^{2.9}, n^2$

Omega Λ If $f(n) = \Lambda(g(n))$. $\exists c > 0, n_0 > 0$ $o \le eg(n) \le f(n) \forall n \ge n_0$ Cower

hert case.

3igOOif f(n) = OCg(n) AC>O, no>Ofons AC=G(n) AC>Oupper

upper