School of Computing & Engineering

(Engineering and Technology)

NME3523

Signal Analysis & Processing

Date: May 2014

Time allowed: 3 hours

Instructions to Candidates:

This is an unseen examination.

Candidates should answer 4 out of 6 questions. All questions are marked out of 25.

Materials provided: Data sheet and Table of transforms attached at the end of the paper.

Materials allowed: None

A scientific calculator may be used in this exam.

Unannotated paper versions of general bi-lingual dictionaries only may be used by overseas students whose first language is not English. Subject-specific bi-lingual dictionaries are not permitted.

Access to any other materials is not permitted.

(i) The following command when entered into MATLAB to give the transfer function for a filter produces the results as shown.

```
>> [b,a] = butter(4,6,'s')
```

 $b = 0 \quad 0 \quad 0 \quad 1.296e + 3$

a = 1 1.5679e+1 1.2291e+2 5.6444e+2 1.296e+3

What is the filter type and order? What is the -3dB frequency in Hz?

Write down the filter transfer function.

Sketch gain and phase Bode plots of the filter transfer function (show the gain 'roll off' in dB/decade).

[10 marks]

(ii) A simple passive high pass filter consists of a 100nF capacitor and a $10\,\mathrm{k}\Omega$ resistor. The output from the filter appears across a very high impedance load which draws negligible current. The input signal to the filter consists of three components (a) a 1V dc component; (b) a sine wave of 25Hz and \pm 2V peak to peak; and (c) a sine wave of 500Hz and \pm 3V peak to peak.

What are the amplitudes of the three components at the output from the filter?

[8 marks]

What is the attenuation of the 25Hz component in dB?

[3 marks]

What is the phase of the 25Hz component at the output relative to its phase at the input? [4 marks]

The input to an underdamped second order system undergoes a step change from 0 to A at time t = 0. The Laplace Transform of the resultant system output X(s) is given by

$$X(s) = \frac{A}{Ms\{s^2 + 2c\omega_n s + \omega_n^2\}}$$

where c < 1.

Giving all of your working, show that the system output x(t) can be expressed as

$$x(t) = \frac{A}{K} \left\{ 1 - \frac{e^{-\omega_n ct} \sin(\omega_n t \sqrt{1 - c^2} + \alpha)}{\sqrt{1 - c^2}} \right\}$$

where $\alpha = \cos^{-1}(c)$ and where $\omega_n = \sqrt{\frac{K}{M}}$

[25 marks]

A signal f(t) is periodic with period 1 second. For $0 \le t \le 1$ seconds, the signal is defined as $f(t) = e^t$.

Express f(t) as an infinite Fourier series.

[Hint: you must calculate a_0 and \underline{both} the a_k and b_k terms for the correct solution].

[25 marks]

An open loop system is at rest with the input and the output both equal to zero. The system has a transfer function G(s) where:

$$G(s) = \frac{K}{1 + \tau s}$$

An input pulse x(t) is applied to the system such that:

$$x(t) = 0$$
 for $-\infty < t < -T_0$

$$x(t) = -V$$
 for $-T_0 \le t < 0$

$$x(t) = +V \text{ for } 0 \le t < T_0$$

$$x(t) = 0$$
 for $T_0 \le t < \infty$

Show that the Fourier Tranform Y(f) of the output from the system is given by:

$$Y(f) = \frac{VK(\cos(2\pi f T_0) - 1)(2\pi f \tau + j)}{\pi f + 4\pi^3 f^3 \tau^2}$$

[25 marks]

An analogue filter has the transfer function $g(s) = \frac{12}{4s+1}$. What is the z-transfer function of the equivalent digital filter?

What is the sampling interval T for this equivalent digital filter?

[13 marks]

The first 5 input values to the digital filter are: 1.0, 1.1, 1.2, 1.2 and 1.1. The first output value from the digital filter is 12.0.

What are the second, third, fourth and fifth output values from the digital filter?

[12 marks]

(i) With the aid of diagrams describe the design of a cross correlation flow meter that could be used for measuring the mean velocity of a vertical 'air-in-water' two phase flow. Your description should also include any relevant electronic circuitry. Explain why the signal from the downstream sensor would not be expected to be identical to a delayed version of the signal from the upstream senor.

[10 marks]

(ii) A 'two phase' cross correlation flow meter consists of an upstream sensor **X** and a downstream sensor **Y** separated by an axial distance of 0.1m. The sampled outputs from **X** and **Y**, and the times at which the samples were taken, are given in 'TABLE QUESTION 6' below.

Calculate and plot the cross correlation function for the sampled outputs from \mathbf{X} and \mathbf{Y} . What is the flow velocity (in ms^{-1}) that is obtained from this cross correlation flow meter? [15 marks]

Time	Output from X	Output from Y
(seconds)		
0	-4	9
0.1	-17	-21
0.2	1	0
0.3	3	19
0.4	-11	-9
0.5	12	12
0.6	12	0
0.7	0	-13
0.8	3	8
0.9	2	6
1.0	-2	-6
1.1	7	6
1.2	-6	12
1.3	22	-1
1.4	-1	-5
1.5	1	3
1.6	11	-7
1.7	1	14
1.8	-1	-10
1.9	-8	24

TABLE QUESTION 6

DATA SHEET

Fourier Series

If f(t) is a periodic waveform with period T then f(t) can be expressed in the form

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left\{ a_k \cos\left(\frac{2\pi kt}{T}\right) + b_k \sin\left(\frac{2\pi kt}{T}\right) \right\}$$

where;

$$a_0 = \frac{1}{T} \int_0^T f(t) dt$$

and;

$$a_k = \frac{2}{T} \int_0^T f(t) \cos\left(\frac{2\pi kt}{T}\right) dt$$

and;

$$b_k = \frac{2}{T} \int_{0}^{T} f(t) \sin\left(\frac{2\pi kt}{T}\right) dt$$

	<i>f</i> (<i>t</i>)	F(s)	f(k)	F(z)
	CONTRACT OF	2	230	2
1	Unit impulse	1	$\delta(k)$	1
2	Unit step	$\frac{1}{s}$	u(k)	$\frac{z}{z-1}$
3	Unit ramp t	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$
4	t^2	$\frac{2}{s^3}$	$(kT)^2$	$\frac{T^2z(z+1)}{(z-1)^3}$
5	t ³	$\frac{6}{s^4}$	$(kT)^3$	$\frac{T^3z(z^2+4z+1)}{(z-1)^4}$
6	e ^{-at}	$\frac{1}{s+a}$	$\left(e^{-aT}\right)^k$	$\frac{z}{z - e^{-aT}}$
7	$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$(e^{-aT})^k$ $1 - (e^{-aT})^k$	$\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$
8	t e ^{-at}	$\frac{1}{(s+a)^2}$	$kT(e^{-aT})^k$	$\frac{Tz e^{-aT}}{\left(z - e^{-aT}\right)^2}$
9	$(1-at)e^{-at}$	$\frac{s}{(s+a)^2}$	$(1-akT)(e^{-aT})^k$	$\frac{z[z - e^{-aT}(1 + aT)]}{(z - e^{-aT})^2}$
10	$e^{-at} - e^{-bt}$	$\frac{b-a}{(s+a)(s+b)}$	$\left(\mathrm{e}^{-aT}\right)^k - \left(\mathrm{e}^{-bT}\right)^k$	$\frac{z(e^{-aT} - e^{-bT})}{(z - e^{-aT})(z - e^{-bT})}$
11	Item 6 with e	aT = c	c^k	$\frac{z}{z-c}$
12	Item 8 with e	aT = c	kTc^k	$\frac{kTz}{(z-c)^2}$
13	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	$\sin k\omega T$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$
14	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	$\cos k\omega T$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$
15	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	$(e^{-aT})^k \sin k\omega T$	$\frac{z e^{-aT} \sin \omega T}{z^2 - 2z e^{-aT} \cos \omega T + e^{-2aT}}$
16	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$(e^{-aT})^k \sin k\omega T$	$\frac{z(z - e^{-aT}\cos\omega T)}{z^2 - 2z e^{-aT}\cos\omega T + e^{-2aT}}$
17	sinh ωt	$\frac{\omega}{s^2-\omega^2}$	$\sinh k\omega T$	$\frac{z \sinh \omega T}{z^2 - 2z \cosh \omega T + 1}$
18	coshωt	$\frac{s}{s^2-\omega^2}$	$\cosh k\omega T$	$\frac{z(z-\cosh\omega T)}{z^2-2z\cosh\omega T+1}$

Note: T is the sampling period.