Limpieza y validacion de los datos

January 7, 2019

Importamos los paquetes que vamos a necesitar.

1 Importamos ahora el set de datos train y test para su exploración y análisis

```
In [6]: # Import test and train datasets
       dftrain = pd.read_csv('/Users/carinazavala/Documents/UOC/1er Semestre/Tipología y cicle
       dftest = pd.read_csv('/Users/carinazavala/Documents/UOC/1er Semestre/Tipología y ciclo
        # View first lines of training data
       dftrain.head(n=4)
Out[6]:
          PassengerId Survived Pclass \
       0
                    1
       1
                    2
                              1
                                      1
       2
                    3
                              1
                                      3
       3
                              1
                                      1
                                                       Name
                                                                Sex
                                                                      Age SibSp \
       0
                                    Braund, Mr. Owen Harris
                                                               male
                                                                     22.0
          Cumings, Mrs. John Bradley (Florence Briggs Th... female
                                                                     38.0
       1
                                                                               1
                                     Heikkinen, Miss. Laina female 26.0
       2
                                                                               0
       3
               Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
                                                                               1
                           Ticket
                                      Fare Cabin Embarked
          Parch
```

```
0
       0
                 A/5 21171
                             7.2500
                                       NaN
                                                  S
1
                  PC 17599 71.2833
                                       C85
                                                  С
       0
        STON/02. 3101282
2
                             7.9250
                                                  S
       0
                                       NaN
3
       0
                    113803 53.1000 C123
                                                  S
```

In [8]: # Summary visualization of train data dftrain.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId
               891 non-null int64
Survived
               891 non-null int64
Pclass
               891 non-null int64
Name
               891 non-null object
               891 non-null object
Sex
               714 non-null float64
Age
               891 non-null int64
SibSp
Parch
               891 non-null int64
Ticket
               891 non-null object
               891 non-null float64
Fare
Cabin
               204 non-null object
Embarked
               889 non-null object
dtypes: float64(2), int64(5), object(5)
```

memory usage: 83.6+ KB

In []: # Do same visualization of test data dftest.head(n=4)

In []: dftest.info()

Comparamos las distribuciones de los datos train y test para conocer qué tanto difieren uno del otro

In [9]: # Compare distribution of features in train and test data with describe dftrain.describe()

Out[9]:		PassengerId	Survived	Pclass	Age	SibSp	\
	count	891.000000	891.000000	891.000000	714.000000	891.000000	
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	
	std	257.353842	0.486592	0.836071	14.526497	1.102743	
	min	1.000000	0.000000	1.000000	0.420000	0.000000	
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	
	max	891.000000	1.000000	3.000000	80.000000	8.000000	

Parch Fare

count	891.000000	891.000000
mean	0.381594	32.204208
std	0.806057	49.693429
min	0.000000	0.000000
25%	0.000000	7.910400
50%	0.000000	14.454200
75%	0.000000	31.000000
max	6.000000	512.329200

In [10]: dftest.describe()

Out[10]:		PassengerId	Pclass	Age	SibSp	Parch	Fare
	count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
	mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
	std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
	min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
	25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
	50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
	75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
	max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

La desviación estándar son similares comparando Pclass y Age en los datos train y test, pero para Parch y Fare son ligeramente mayores en test, mientras que, SibSp es mayor en train. Visualización gráfica de pasajeros que sobrevivieron o murieron en train.

0.3838383838383838

38% de los pasajeros sobrevivieron ->modelo1:sin sobrevivientes submission:0.627 accuracy

Variable = Sex, Sobrevivieron más mujeres que hombres

109

Name: Survived, dtype: int64

male

Out[15]: <seaborn.axisgrid.FacetGrid at 0x1a1cb89320>


```
In [17]: # Obtain the survived percentage per sex train data
         print("% of women survived: " , dftrain[dftrain.Sex == 'female'].Survived.sum()/dftra
         print("% of men survived: " , dftrain[dftrain.Sex == 'male'].Survived.sum()/dftrain
% of women survived: 0.7420382165605095
% of men survived:
                       0.18890814558058924
In [28]: # Visualization of percentage per sex survivors in pie plott
         colors=['dimgrey','gainsboro']
         f,ax=plt.subplots(1,2,figsize=(16,7))
         dftrain['Survived'][dftrain['Sex'] == 'male'].value_counts().plot.pie(explode=[0,0.2],a
         dftrain['Survived'][dftrain['Sex']=='female'].value_counts().plot.pie(explode=[0,0.2]
         ax[0].set_title('Survived (male)')
         ax[1].set_title('Survived (female)')
         plt.show()
                   Survived (male)
                                                           Survived (female)
                              18.9%
                                                                     25.8%
```

En los datos de entrenamiento el 74% de las mujeres sobrevivieron

->modelo2: todas las mujeres sobrevivieron y todos los hombres murieron submission:0.766 accueracy

Passgenger Class, la tasa de supervivencia decrece con Pclass

In [27]: pd.crosstab(dftrain.Pclass, dftrain.Survived, margins=True).style.background_gradient

Out[27]: <pandas.io.formats.style.Styler at 0x1a1cbd7b70>

% of survivals in

Pclass=1 : 0.6296296296297 Pclass=2 : 0.47282608695652173 Pclass=3 : 0.24236252545824846

Hubieron más sobrevivientes con Pclass=1 el 62.9%, visualización gráfica de este comportamiento.

```
In [30]: sns.catplot('Pclass', 'Survived', kind='point', data=dftrain);
```


Class and Sex, casi todas las mujeres en Pclass 1 y 2 sobrevivieron y casi todos los hombres en Pclass 2 y 3 murieron

In [32]: pd.crosstab([dftrain.Sex, dftrain.Survived], dftrain.Pclass, margins=True).style.back
Out[32]: <pandas.io.formats.style.Styler at 0x1a1e5217b8>

In [33]: sns.catplot('Pclass','Survived',hue='Sex', kind='point', data=dftrain);

/Users/carinazavala/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarreturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Embarked: Tasa de supervivencia menor para S y mayor para C

Embarked and Sex

/Users/carinazavala/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarreturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Embarked, Pclass y Sex:

Practicamente todas las mujeres de Pclass 2 que embarcaron en C y Q sobrevivieron, también casi todas las mujeres de Pclass 1.

Todos los hombres de P
class 1 y 2 embarcados en Q murieron, la tasa de supervivencia de los hombres en P
class 2 y 3 fue menor a 0.2

Los hombres restantes en P
class 1 embarcados en S y Q, tuvieron una tasa de supervivencia cercana
a $0.4\,$

/Users/carinazavala/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWar: return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [39]: pd.crosstab([dftrain.Survived], [dftrain.Sex, dftrain.Pclass, dftrain.Embarked], marg

```
Out[39]: Sex
                     female
                                                              male
          Pclass
                                                   3
                                                                                            3
          Embarked
                                   S
                                      C
                                              S
                                                   C
                                                        Q
                                                            S
                                                                  C
                                                                      Q
                                                                          S
                                                                                  Q
                                                                                       S
                                                                                            C
                                                                                                 Q
          Survived
          0
                                                   8
                                                       9
                                                           55
                                                                         51
                                                                                               36
                              0
                                   2
                                              6
                                                                 25
                                                                               8
                                                                                      82
                                                                                           33
                          1
                                                                      1
          1
                         42
                              1
                                 46
                                      7
                                         2
                                             61
                                                  15
                                                      24
                                                           33
                                                                 17
                                                                      0
                                                                         28
                                                                               2
                                                                                  0
                                                                                      15
                                                                                           10
                                                                                                 3
                                      7
                                                                 42
          All
                         43
                              1
                                 48
                                             67
                                                  23
                                                      33
                                                           88
                                                                     1
                                                                         79
                                                                                  1
                                                                                           43
                                                                                               39
                                                                              10
          Sex
                            All
          Pclass
          Embarked
                        S
          Survived
```

modelo3: basado en PClass, Sex y Embarked, submission: 0.779 accuracy

```
In [40]: # model 3
    dftest['Survived'] = 0
    # all women survived
    dftest.loc[ (dftest.Sex == 'female'), 'Survived'] = 1
    # except for those in Pclass 3 and embarked in S
    dftest.loc[ (dftest.Sex == 'female') & (dftest.Pclass == 3) & (dftest.Embarked == 'S' dftest[['PassengerId', 'Survived']].to_csv('embarked_pclass_sex.csv', index=False)
```

Edad, continuo numérico a 8 contenedores

All

In [46]: print(dftrain[['Age' , 'Age_bin']].head(10))

	Age	Age_bin
0	22.0	3.0
1	38.0	4.0
2	26.0	3.0
3	35.0	4.0
4	35.0	4.0
5	${\tt NaN}$	NaN
6	54.0	6.0
7	2.0	1.0
8	27.0	3.0
9	14.0	2.0

In [48]: sns.catplot('Age_bin','Survived', col='Pclass', row = 'Sex', kind='point', data=dftraplt.show()

/Users/carinazavala/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWars return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [49]: pd.crosstab([dftrain.Sex, dftrain.Survived], [dftrain.Age_bin, dftrain.Pclass], margin

Out[49]: <pandas.io.formats.style.Styler at 0x1a1f10cc18>

Para pasajeros en

- *Age_bim=1(menores a 10): todos los hombres en Pclass=1 y 2 sobrevivieron.
- *Mujeres en Pclass=3 y Age_bin= 5 murieron
- *Menos del 50% de mujeres en Pclass=3 y Age_bin=4 sobrevivieron
- *Más del 50% de hombres en Pclass=1 y Age_bin=4 sobrevivieron

SibSp y Parch

/Users/carinazavala/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWars return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [52]: pd.crosstab([dftrain.Sex, dftrain.Survived], [dftrain.SibSp, dftrain.Pclass], margins

Out[52]: <pandas.io.formats.style.Styler at 0x1a1f969b70>

*Para hombres, no hubo porcentaje de sobrevivencia para ningún valor arriba de 0.5 en SibSp.

*Para mujeres, pasajeras con SibSp=3 y Pclass=3 murieron con SibSp>4

*Para mujeres, pasajeras con SibSp=1 y Pclass=3 el porcentaje de sobrevivencia está por denajo de 50%

In [55]: # all females with SibSp > 7 died dftest.loc[(dftest.Sex == 'female') & (dftest.SibSp > 7) , 'Survived'] = 0

In [56]: sns.catplot('Parch', 'Survived', col='Pclass', row = 'Sex', kind='point', data=dftrain
 plt.show()

In [57]: pd.crosstab([dftrain.Sex, dftrain.Survived], [dftrain.Parch, dftrain.Pclass], margins
Out[57]: <pandas.io.formats.style.Styler at 0x1a1f124c88>

```
In [60]: # survival rate is below 0.5 for females with Parch = 2 and Pclass = 3
    dftest.loc[ (dftest.Sex == 'female') & (dftest.Pclass == 3) & (dftest.Parch == 2), 'S'

# All females with Parch = 4 and Pclass = 3 died
    dftest.loc[ (dftest.Sex == 'female') & (dftest.Pclass == 3) & (dftest.Parch == 4), 'S'

# all females with Parch > 4 died
    dftest.loc[ (dftest.Sex == 'female') & (dftest.Parch > 4) , 'Survived'] = 0

# For males with Parch = 2 and Pclass = 1 survival rate is above 0.5
    dftest.loc[ (dftest.Sex == 'male') & (dftest.Pclass == 1) & (dftest.Parch == 1) , 'Survived'

dftest.head(20)
```

^{*}Mujeres con Parch = 2 y Pclass = 3 la tasa de supervivencia está. por debajo de 0.5.

^{*}Todas las mujeres con Parch = 4 y Pclass = 3 murieron.

^{*}Todas las mujeres con Parch > 4 murieron.

^{*}Las mujeres con Parch = 1 y Pclass = 3 tasa de supervivencia está por debajo de 0.5

^{*}Para hombres todas las tasas de supervivencia es menor a 0.5 para cualquier valor de Parch, excepto para Parch = 2 y Pclass = 1.

Out[60]:		Passeng	gerId	Pclass					Name	\
(С		892	3				Kelly,	Mr. James	
1	1		893	3		Wilkes,	Mrs. Jan	nes (El	len Needs)	
2	2		894	2			Myles, Mi	f. Thom	nas Francis	
3	3		895	3				Wirz,	Mr. Albert	
4	4		896	3	Н	irvonen, Mrs. Alex	ander (He	elga E	Lindqvist)	
Ę	5		897	3		S	vensson,	Mr. Jo	han Cervin	
6	6		898	3			Conr	nolly,	Miss. Kate	
7	7		899	2		Cal	dwell, Mi	c. Albe	ert Francis	
3	3		900	3		Abrahim, Mrs. Jo	seph (Sop	phie Ha	alaut Easu)	
S	9		901	3	Davies, Mr. John Samue					
1	10		902	3				Ilieff	, Mr. Ylio	
	11		903	1	Jones, Mr. Charles Cresson					
	12		904	1	v ·					
	13		905	2	2 Howard, Mr. Benjamir					
	14	•								
	15		907	2	de	l Carlo, Mrs. Seba		_		
	16		908	2					Mr. Daniel	
	17		909	3					Mr. Gerios	
	18		910	3			_		Ida Livija	
1	19		911	3		Assaf Khalil	, Mrs. Ma	ariana	(Miriam")"	
		Q	۸	Q ÷ 1- Q	D	T# -1+	Г	O-1-:	Posts a sale a d	,
	`	Sex	Age	SibSp	Parch	Ticket			Embarked	\
(male	34.5	0	0	330911	7.8292	NaN	Q	
	1	female	47.0	1	0	363272	7.0000	NaN NaN	S	
	2 3	male	62.0 27.0	0	0	240276	9.6875	NaN NaN	Q	
	5 4	male female	27.0	0	0 1	315154 3101298	8.6625 12.2875	NaN NaN	S S	
	± 5	male	14.0	1	0	7538	9.2250	NaN	S	
	5 5	female	30.0	0	0	330972	7.6292	NaN	Q	
	5 7	male	26.0	1	1	248738	29.0000	NaN	S S	
8		female	18.0	0	0	2657	7.2292	NaN	C	
	9	male	21.0	2	0	A/4 48871	24.1500	NaN	S	
	10	male	NaN	0	0	349220	7.8958	NaN	S	
	11	male	46.0	0	0	694	26.0000	NaN	S	
	12	female	23.0	1	0	21228	82.2667	B45	S	
	13	male	63.0	1	0	24065	26.0000	NaN	S	
	14	female	47.0	1	0	W.E.P. 5734	61.1750	E31	S	
	15	female	24.0	1	0	SC/PARIS 2167	27.7208	NaN	C	
	16	male	35.0	0	0	233734	12.3500	NaN	Q	
	17	male	21.0	0	0	2692	7.2250	NaN	Ċ	
	18	female	27.0	1	0	STON/02. 3101270	7.9250	NaN	S	
	19	female	45.0	0	0	2696	7.2250	NaN	C	
		Survive	ed Ag	e_bin						
(С		0	4.0						
1	1		0	5.0						
2	2		0	7.0						

3	0	3.0
4	0	3.0
5	0	2.0
6	1	3.0
7	0	3.0
8	1	2.0
9	0	3.0
10	0	NaN
11	0	5.0
12	1	3.0
13	0	7.0
14	1	5.0
15	1	3.0
16	0	4.0
17	0	3.0
18	0	3.0
19	1	5.0

Fare: numérica continua a 12 contenedores

In [63]: sns.catplot('Fare_bin','Survived', col='Pclass', row = 'Sex', kind='point', data=dft:
 plt.show()

2 Data wrangling

Construir dos nuevos dataframes dftrain_ml y dftest_ml, los cuales sólo contendrán ordinales y no nulos para ser usados en algoritmos de machine learning

1.Copiar los datos para los nuevos dataframes 2.Convertir de categóricas a numéricas las variables con pd.get_dummies 3.Dejar de lado las variables que no sean útiles en la predicción 4.Usar Standard scaler y aplicar la división train/test

```
In [80]: #1
         dftrain_ml = dftrain.copy()
         dftest_ml = dftest.copy()
In [81]: #2
         dftrain_ml = pd.get_dummies(dftrain_ml, columns=['Sex', 'Embarked', 'Pclass'], drop_f
         dftrain_ml.drop(['PassengerId','Name','Ticket', 'Cabin', 'Age_bin', 'Fare_bin'],axis=
         dftrain_ml.dropna(inplace=True)
In [82]: #3
         passenger_id = dftest_ml['PassengerId']
         dftest_ml = pd.get_dummies(dftest_ml, columns=['Sex', 'Embarked', 'Pclass'], drop_fire
         dftest_ml.drop(['PassengerId','Name','Ticket', 'Cabin', 'Age_bin', 'Fare_bin'],axis=1
  Visualizamos los datos con .head y .info
In [83]: dftrain_ml.head(10)
Out[83]:
             Survived
                        Age SibSp Parch
                                              Fare Sex_male Embarked_Q Embarked_S \
```

0	0	22.0	1	0	7.2500	1	0	1
1	1	38.0	1	0	71.2833	0	0	0
2	1	26.0	0	0	7.9250	0	0	1
3	1	35.0	1	0	53.1000	0	0	1
4	0	35.0	0	0	8.0500	1	0	1
6	0	54.0	0	0	51.8625	1	0	1
7	0	2.0	3	1	21.0750	1	0	1
8	1	27.0	0	2	11.1333	0	0	1
9	1	14.0	1	0	30.0708	0	0	0
10	1	4.0	1	1	16.7000	0	0	1

```
Pclass_2 Pclass_3
0
             0
                          1
             0
                          0
1
2
             0
                          1
             0
                          0
3
4
             0
                          1
6
             0
                          0
7
             0
                          1
8
             0
                          1
9
              1
                          0
             0
                          1
10
```

In [84]: dftrain_ml.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 714 entries, 0 to 890 Data columns (total 10 columns): Survived 714 non-null int64 Age 714 non-null float64 SibSp 714 non-null int64 Parch 714 non-null int64 Fare 714 non-null float64 714 non-null uint8 Sex_male 714 non-null uint8 Embarked_Q Embarked_S 714 non-null uint8 714 non-null uint8 Pclass_2 714 non-null uint8 Pclass_3 dtypes: float64(2), int64(3), uint8(5)

In [85]: dftest_ml.head(10)

memory usage: 37.0 KB

Out[85]:		Age	SibSp	Parch	Fare	Sex_male	${\tt Embarked_Q}$	${\tt Embarked_S}$	Pclass_2	\
(0	34.5	0	0	7.8292	1	1	0	0	
-	1	47.0	1	0	7.0000	0	0	1	0	
2	2	62.0	0	0	9.6875	1	1	0	1	
3	3	27.0	0	0	8.6625	1	0	1	0	
4	4	22.0	1	1	12.2875	0	0	1	0	
į	5	14.0	0	0	9.2250	1	0	1	0	
(6	30.0	0	0	7.6292	0	1	0	0	
-	7	26.0	1	1	29.0000	1	0	1	1	
8	8	18.0	0	0	7.2292	0	0	0	0	
9	9	21.0	2	0	24.1500	1	0	1	0	

In [86]: dftest_ml.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417

```
Data columns (total 9 columns):
              332 non-null float64
Age
              418 non-null int64
SibSp
Parch
              418 non-null int64
Fare
              417 non-null float64
Sex male
              418 non-null uint8
Embarked Q
              418 non-null uint8
Embarked S
              418 non-null uint8
Pclass_2
              418 non-null uint8
              418 non-null uint8
Pclass_3
dtypes: float64(2), int64(2), uint8(5)
memory usage: 15.2 KB
```

Matriz de correlación

```
In [99]: corr = dftrain_ml.corr()
    f,ax = plt.subplots(figsize=(9,6))
    sns.heatmap(corr, cmap='BuPu', annot = True, linewidths=2.5 , fmt = '.2f',ax=ax)
    plt.show()
```


Correlaciones

Survived vs Fare están correlacionadas positivamente Survived vs Sex_male están correlacionadas negativamente Survived vs Pclass_3 están correlacionadas negativamente SibSp vs Parch están correlacionadas positivamente

3 Preprocesamiento de datos con Standard Scaler

Es necesario estandarizar transformar los datos para calcular la media y desviación estándar en un conjunto de entrenamiento (dftrain_ml) para que luego se vuelva a aplicar la misma transformación en el conjunto de prueba (dftest_ml).

```
In [92]: from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
  Transformación de dftrain_ml
In [ ]: # for dftrain_ml
        scaler.fit(dftrain_ml.drop('Survived',axis=1))
        scaled_features = scaler.transform(dftrain_ml.drop('Survived',axis=1))
        dftrain_ml_sc = pd.DataFrame(scaled_features, columns=dftrain_ml.columns[:-1])
        dftrain_ml_sc.head(4)
  Transformación de dftest ml
In [101]: # for dftest_ml
          dftest_ml.fillna(dftest_ml.mean(), inplace=True)
          # scaler.fit(dftest_ml)
          scaled_features = scaler.transform(dftest_ml)
          dftest_ml_sc = pd.DataFrame(scaled_features, columns=dftest_ml.columns)
          dftest_ml_sc.head(4)
Out[101]:
                  Age
                          SibSp
                                    Parch
                                               Fare Sex_male Embarked_Q Embarked_S \
          0 0.330723 -0.551703 -0.505895 -0.508025 0.759051
                                                                 4.949747
                                                                            -1.860779
          1 1.191823 0.524570 -0.505895 -0.523705 -1.317434
                                                                -0.202031
                                                                            0.537409
          2 2.225142 -0.551703 -0.505895 -0.472885 0.759051
                                                                 4.949747
                                                                            -1.860779
          3 -0.185937 -0.551703 -0.505895 -0.492267 0.759051
                                                                -0.202031
                                                                             0.537409
             Pclass_2 Pclass_3
          0 -0.565489 1.005618
          1 -0.565489 1.005618
          2 1.768380 -0.994413
          3 -0.565489 1.005618
```

Dividir train/test utilizaremos el 70% de los datos para el entrenamiento y el 30% para pruebas

4 Algoritmos de machine learning y comparación del resultado de los modelos

```
In []:
```