Power Outage Data Analysis

Name(s): John Collins

Website Link: (your website link)

```
In [1]:
        import pandas as pd
        import numpy as np
        from pathlib import Path
        import plotly.express as px
        pd.options.plotting.backend = 'plotly'
        from dsc80_utils import * # Feel free to uncomment and use this.
In [2]: from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.preprocessing import StandardScaler, OneHotEncoder, QuantileTra
        from sklearn.impute import SimpleImputer
        from sklearn.compose import ColumnTransformer
        from sklearn.pipeline import Pipeline
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import (
            f1_score,
            classification_report,
            confusion_matrix,
            precision_score
In [3]: import plotly.io as pio
```

pio renderers default = 'browser'

Step 1: Introduction

Step 2: Data Cleaning and Exploratory Data Analysis

```
df = df.dropna(subset=['MONTH', 'CLIMATE.REGION', 'ANOMALY.LEVEL', 'CLIMATE.
# Adjusted data to date time objecst and dropped original
df['OUTAGE.START'] = pd.to datetime(df['OUTAGE.START.DATE'] + ' ' + df['OUTA
df['OUTAGE.RESTORATION'] = pd.to_datetime(df['OUTAGE.RESTORATION.DATE'] + '
df = df.drop(columns=['OUTAGE.START.DATE', 'OUTAGE.START.TIME', 'OUTAGE.REST
#Fixing columns
df.columns = df.columns.str.lower().str.replace('.', '_', regex=False)
df = df.rename(columns={'u s state': 'state'})
# Filling in missing outage duration and outage restoration
df['outage duration'] = (df['outage restoration'] - df['outage start']).dt.t
median_durations = df.groupby(['nerc_region', 'cause_category'])['outage_dur
df['outage duration'] = df['outage duration'].fillna(median durations)
# If there are still any NaN values, we can fall back to the overall median
overall_median = df['outage_duration'].median()
df['outage_duration'] = df['outage_duration'].fillna(overall_median)
df.isna().sum()
# Now, for the rows where we imputed the duration, let's also update the res
mask = df['outage_restoration'].isna()
df.loc[mask, 'outage_restoration'] = df.loc[mask, 'outage_start'] + pd.to_ti
# Add a flag to indicate which rows had imputed durations
df['duration_imputed'] = mask
# Let's do the same thing but for customers efffected
# First, create the flag before filling in values
df['customers affected imputed'] = df['customers affected'].isna()
# Then proceed with filling in the missing values
median_customers = df.groupby(['nerc_region', 'cause_category'])['customers_
df['customers affected'] = df['customers affected'].fillna(median customers)
# If there are remaining missing values we fill in with the overall median
overall_median_customers = df['customers_affected'].median()
df['customers_affected'] = df['customers_affected'].fillna(overall_median_cu
# Fill in cause category. Fill in missing values with original cause_categor
df['cause_detail_missing'] = df['cause_category_detail'].isna()
df['cause category detail'] = (df.apply(lambda row: row['cause category']
                                        if pd.isnull(row['cause_category_det
```

```
In [5]: # Cleaned data frame
    # Example data frame
    print(df.head().to_markdown())
```

```
OBS | year | month | state | postal_code | nerc_region | cli
     mate_region | anomaly_level | climate_category | cause_category
     | cause_category_detail | outage_duration | customers_affected | tot
     al_customers | pc_realgsp_state | poppct_urban | popden_urban | outage
     _start | outage_restoration | duration_imputed | customers_affect
     ed_imputed | cause_detail_missing |
     -----:|-----:|:-----:
     -----|:-----|:-----
     -----|:------|
     | 1 | 2011 | 7 | Minnesota | MN
t North Central | -0.3 | normal
| severe weather | 3060 |
2595696 | 51268 | 73.27 |
                                            | MRO | Eas
                                             | severe weather
                                            .
70000 |
2279 | 2011-07-01
     17:00:00 | 2011-07-03 20:00:00 | False
                                           | False
                     5 | Minnesota | MN
-0.1 | normal
| 1 |
         2 | 2014 |
                                             t North Central |
                                             | intentional attack
     0 |
                                   73.27
                                                2279 | 2014-05-11
     18:38:00 | 2014-05-11 18:39:00 | False
                                            | True
                                             | 3 | 2010 |
                       10 | Minnesota | MN
     t North Central | -1.5 | cold | 3000 | 3000 | 73.27
                                             | severe weather
                                             70000 |
2279 | 2010–10–26
                                 3000 |
                      | 3000 |
50447 | 73.27 |
     20:00:00 | 2010-10-28 22:00:00 | False
                                            | False
                      6 | Minnesota | MN
                                             | 4 | 2012 |
     t North Central | -0.1 | normal | thunderstorm | 2550 | 2606813 | 51598 | 73.27 |
     t North Central |
                                             68200 |
2279 | 2011
                                              | severe weather
                                                2279 | 2012-06-19
     04:30:00 | 2012-06-20 23:00:00 | False
                                            | False
     l False
     | 5 | 2015 |
                                              7 | Minnesota | MN
                      1.2 | warm
| 1740
     t North Central |
                                             | severe weather
     250000 |
                                              2279 | 2015-07-18
     02:00:00 | 2015-07-19 07:00:00 | False
                                            | False
     | True
                        In [6]: # UNIVARIATE PLOT 1
      # Create a Plotly box plot
      fig = px.box(
         df,
         x='cause_category',
         y='outage_duration',
         title='Comparison of Outage Durations by Cause',
         labels={
            'cause_category': 'Cause Category',
            'outage_duration': 'Outage Duration (hours)'
         color_discrete_sequence=px.colors.qualitative.Set2
```

```
# Update the layout for a clean appearance
        fig.update layout(
            xaxis_title='Cause Category',
            yaxis_title='Outage Duration (hours)',
            title_font_size=16,
            xaxis_tickangle=45,
            xaxis_tickfont=dict(size=12),
            yaxis tickfont=dict(size=12),
            margin=dict(l=0, r=0, t=50, b=0),
            height=600,
            width=1000
        # Show the Plotly plot
        fig.show()
        # Write to HTML
        fig.write_html('assets/outage_durations_vs_cause.html', include_plotlyjs='cd
In [7]: # BIVARIATE PLOT 1
        fig1 = px.scatter(
            df,
            x='outage_duration',
            y='customers_affected',
            color='cause_category',
            title='Customers Affected vs. Outage Duration',
            labels={
                'outage_duration': 'Outage Duration (minutes)',
                'customers_affected': 'Customers Affected'
            },
            color_discrete_sequence=px.colors.qualitative.Set2
        fig1.update_traces(marker=dict(size=10, line=dict(width=1, color='black')),
        fig1.update_layout(
            title_font_size=16,
            xaxis_title='Outage Duration (minutes)',
            yaxis_title='Customers Affected',
            legend_title_text='Cause Category',
            legend=dict(x=1.05, y=1, title_font=dict(size=14), font=dict(size=12)),
            margin=dict(l=0, r=0, t=50, b=0),
            width=1000,
            height=600
        fig1.show()
        fig1.write_html('assets/customers_vs_cause_duration_part1.html', include_plo
In [8]:
        # BIVARIATE PLOT 1 PART 2
        df filtered = df[df['cause category'] == 'intentional attack'].copy()
        fig2 = px.scatter(
            df_filtered,
            x='outage_duration',
```

```
title='Customers Affected vs. Outage Duration (Intentional Attack)',
            labels={
                 'outage_duration': 'Outage Duration (minutes)',
                 'customers_affected': 'Customers Affected'
            },
            color_discrete_sequence=['orange'] #0range
        )
        fig2.update_traces(marker=dict(size=10, line=dict(width=1, color='black')),
        fig2.update_layout(
            title_font_size=16,
            xaxis_title='Outage Duration (minutes)',
            yaxis_title='Customers Affected',
            margin=dict(l=0, r=0, t=50, b=0),
            width=1000,
            height=600
        fig2.show()
        fig2.write_html('assets/customers_vs_cause_duration_part2.html', include_plo
In [9]: # HEATMAP
        pivot_table = pd.crosstab(df['nerc_region'], df['cause_category'])
        # Convert pivot table (melt) for plotly heatmap
        pivot_table_melted = pivot_table.reset_index().melt(id_vars='nerc_region', v
        # plotly heatmap
        fig3 = px.density_heatmap(
            pivot_table_melted,
            x='cause_category',
            y='nerc_region',
            z='outage_count',
            text_auto=True, # Show the annotations
            color_continuous_scale='YlOrRd',
            labels={
                 'cause_category': 'Cause Category',
                 'nerc_region': 'NERC Region',
                 'outage_count': 'Number of Outages'
            },
            title='Frequency of Outage Causes by NERC Region'
        # update style
        fig3.update_layout(
            title_font_size=16,
            xaxis_title='Cause Category',
            yaxis_title='NERC Region',
            xaxis_tickangle=45,
            xaxis_tickfont=dict(size=12),
            yaxis_tickfont=dict(size=12),
            coloraxis_colorbar=dict(title='Number of Outages'),
            margin=dict(l=0, r=0, t=50, b=0),
```

y='customers_affected',

```
width=800,
             height=600
         fig3.show()
         fig3.write_html('assets/causes_vs_NERC_region_heat_map.html', include_plotly
In [10]: # ATTACKS PER YEAR
         pivot_1 = pd.pivot_table(df, values='outage_duration', index='year', columns
         intentional_attacks_by_year = pivot_1['intentional attack']
         #print(intentional_attacks_by_year)
         markdown_table1 = intentional_attacks_by_year.to_markdown()
         # Print the Markdown table
         print(markdown_table1)
            year | intentional attack |
         ----:
            2000 |
                                      0 |
            2001 |
            2002 |
                                      1 |
            2003 |
                                      2 |
            2004 |
                                      0 |
            2005 |
                                      0 I
                                      0 |
            2006
                                      0 |
            2007
            2008 |
                                      0 |
            2009 |
                                      0 |
            2010 |
                                      0 |
            2011 |
                                    121 |
            2012 |
                                    89 |
            2013 |
                                     80 |
            2014 |
                                     47 |
            2015 |
                                     43 |
            2016 |
                                     33 |
In [11]: '''Average Outage Duration and Customers Affected by Cause Category and NERC
         aggregate_1 = df.groupby(['nerc_region', 'cause_category']).agg({
             'outage_duration': 'mean',
             'customers_affected': 'mean'
         }).reset_index()
         aggregate_1.sort_values('outage_duration', ascending=False).head(10)
```

Out[11]:		nerc_region	cause_category	outage_duration	customers_affected
	23	RFC	fuel supply emergency	33142.80	0.00
	44	TRE	fuel supply emergency	16416.00	56000.00
	30	SERC	fuel supply emergency	14805.00	56000.00
	•••				
	2	ECAR	severe weather	6035.14	166976.21
	6	FRCC	public appeal	4320.00	0.00
	41	SPP	severe weather	4279.39	173494.11

10 rows × 4 columns

```
In [121: '''Frequency of Outage Causes by Year:'''
pivot_1 = pd.pivot_table(df, values='outage_duration', index='year', columns
list(pivot_1['intentional attack'])
pivot_1
```

Out[12]:	cause_category	equipment failure	fuel supply emergency	intentional attack	islanding	public appeal	severe weather	s) opera disru
	year							
	2000	2	0	2	0	0	10	
	2001	1	0	0	0	3	1	
	2002	0	0	1	0	0	12	
	2014	0	13	47	1	5	45	
	2015	0	2	43	9	4	48	

17 rows × 7 columns

2016

0

```
In [13]: '''Average Outage Duration by Month and Cause Category:'''
aggregate_2 = df.groupby(['month', 'cause_category'])['outage_duration'].mea
aggregate_2
```

3

33

12

Out[13]:	cause_category	equipment failure	fuel supply emergency	intentional attack	islanding	public appeal	severe weather	ope disi
	month							
	1.0	618.67	31828.50	286.84	NaN	2681.25	4327.45	
	2.0	479.75	12941.11	356.10	359.50	1041.40	3078.62	
	3.0	19866.50	17703.60	889.67	51.67	945.50	3321.77	
	10.0	NaN	NaN	214.06	13.33	351.00	6289.57	
	11.0	503.00	758.00	237.33	129.00	NaN	3035.30	
	12.0	838.25	15059.00	598.98	436.00	6293.50	4097.18	

12 rows × 7 columns

Out[14]:	cause_category	equipment failure	fuel supply emergency	intentional attack	islanding	public appeal	severe weather	s) opera disru
	nerc_region							
	ECAR	5.88	0.00	2.94	0.00	0.00	82.35	
	FRCC	9.30	0.00	4.65	0.00	6.98	60.47	
	FRCC, SERC	0.00	0.00	0.00	0.00	0.00	0.00	1
	•••					•••		
	SPP	1.52	1.52	12.12	3.03	24.24	54.55	
	TRE	1.80	4.50	8.11	0.00	14.41	55.86	
	WECC	6.87	4.43	41.91	7.76	2.66	24.17	

10 rows × 7 columns

Step 3: Assessment of Missingness

```
original df = pd.read csv('power outages.csv')
In [15]:
         original df
         original_df = original_df[['YEAR', 'MONTH', 'U.S._STATE', 'POSTAL.CODE', 'NERC.
            'OUTAGE.START.DATE', 'OUTAGE.START.TIME', 'OUTAGE.RESTORATION.DATE', 'OUT
            'CAUSE.CATEGORY', 'CAUSE.CATEGORY.DETAIL', 'OUTAGE.DURATION', 'CUSTOMERS.
            'POPPCT URBAN', 'POPDEN URBAN']]
In [16]: missingness = original df.isnull().sum() / len(original df) * 100
         #print(missingness[missingness > 0].sort_values(ascending=False))
         original_df['customers_affected_missing'] = original_df['CUSTOMERS.AFFECTED'
         original df['customers affected missing']
Out[16]: 0
         1
                  1
         2
                 0
         1531
                 1
         1532
                 1
         1533
         Name: customers_affected_missing, Length: 1534, dtype: int64
In [17]:
         # permutation test
         def permutation_test(df, col1, col2, n_permutations=1000):
             observed_diff = df[df[col2] == 0][col1].mean() - df[df[col2] == 1][col1]
             diffs = []
             for _ in range(n_permutations):
                 shuffled = df[col2].sample(frac=1).reset index(drop=True)
                 diff = df[shuffled == 0][col1].mean() - df[shuffled == 1][col1].mean
                 diffs.append(diff)
             p_value = (np.abs(np.array(diffs)) >= np.abs(observed_diff)).mean()
             return p_value
In [18]: # Test dependency
         p_value_duration = permutation_test(original_df, 'OUTAGE.DURATION', 'custome')
         print(f"P-value for outage_duration: {p_value_duration}")
        P-value for outage_duration: 0.021
In [19]: # Test dependency on 'year'
         p_value_year = permutation_test(original_df, 'YEAR', 'customers_affected_mis
         print(f"P-value for year: {p_value_year}")
        P-value for year: 0.0
In [201: ######
         #Permutation test 1 visualization
         def permutation_test_with_distribution(df, col1, col2, n_permutations=1000):
             observed diff = df[df[col2] == 0][col1].mean() - df[df[col2] == 1][col1]
             diffs = []
             for _ in range(n_permutations):
                 shuffled = df[col2].sample(frac=1).reset_index(drop=True)
                 diff = df[shuffled == 0][col1].mean() - df[shuffled == 1][col1].mean
```

```
p value = (np.abs(np.array(diffs)) >= np.abs(observed diff)).mean()
             return observed_diff, diffs, p_value
         observed diff, diffs, p value = permutation test with distribution(original
         fig = go.Figure()
         fig.add_trace(go.Histogram(x=diffs, name='Permutation Distribution', opacity
         fig.add_trace(go.Scatter(x=[observed_diff, observed_diff], y=[0, 30],
                                  mode='lines', name='Observed Difference',
                                  line=dict(color='red', width=2, dash='dash')))
         fig.update_layout(
             title='Outage Duration vs Customers Affected Missingness',
             xaxis_title='Difference in Means',
             yaxis_title='Frequency',
             title_font_size=18, # Increase title font size
             margin=dict(l=80, r=80, t=100, b=80), # Increase margins
             annotations=[
                 dict(x=observed_diff, y=25, xref='x', yref='y',
                      text=f'observed Diff: {observed_diff:.2f}', showarrow=True,
                      font=dict(color='red'), arrowhead=2, ax=50, ay=-40),
                 dict(x=0.9, y=0.95, xref='paper', yref='paper',
                      text=f'p-value: {p_value:.4f}', showarrow=False,
                      font=dict(size=14))
             ],
             autosize=True
         fig.show()
         fig.write_html('assets/permutation_test_outage_duration_vs_missingness_custor)
         # Permutation test 2import numpy as np
In [21]:
         def permutation_test_with_distribution(df, col1, col2, n_permutations=1000):
             observed\_diff = df[df[col2] == 0][col1].mean() - df[df[col2] == 1][col1]
             diffs = []
             for _ in range(n_permutations):
                 shuffled = df[col2].sample(frac=1).reset_index(drop=True)
                 diff = df[shuffled == 0][col1].mean() - df[shuffled == 1][col1].mean
                 diffs.append(diff)
             p_value = (np.abs(np.array(diffs)) >= np.abs(observed_diff)).mean()
             return observed_diff, diffs, p_value
         observed_diff, diffs, p_value = permutation_test_with_distribution(original_
         fig = go.Figure()
         # histogram
         fig.add_trace(go.Histogram(x=diffs, name='Permutation Distribution', opacity
```

diffs.append(diff)

```
fig.add_trace(go.Scatter(x=[observed_diff, observed_diff], y=[0, 30],
                         mode='lines', name='Observed Difference',
                         line=dict(color='red', width=2, dash='dash')))
# layout
fig.update_layout(
    title='Year vs Customers Affected Missingness',
    xaxis_title='Difference in Mean Year',
    yaxis title='Frequency',
    title_font_size=18,
    margin=dict(l=80, r=80, t=100, b=80),
    annotations=[
        dict(x=observed_diff, y=25, xref='x', yref='y',
             text=f'Observed Difference: {observed_diff:.2f}', showarrow=Tru
             font=dict(color='red'), arrowhead=2, ax=50, ay=-40),
        dict(x=0.9, y=0.95, xref='paper', yref='paper',
             text=f'p-value: {p_value:.4f}', showarrow=False,
             font=dict(size=14))
    ],
    autosize=True
fig.show()
print(f"Observed diff- mean year: {observed diff:.2f}")
print(f"P-value: {p_value:.4f}")
```

Observed diff- mean year: -1.85 P-value: 0.0000

```
In [22]: # MY BOX PLOT
         fig = px.box(
             original_df,
             x='customers_affected_missing',
             y='OUTAGE.DURATION',
             title='Outage Duration vs Missingness of Customers Affected',
             labels={
                  'customers_affected_missing': 'Customers Affected Missing',
                  'OUTAGE.DURATION': 'Outage Duration (minutes)'
             },
             color='customers_affected_missing',
             color_discrete_sequence=['#FF6347', '#4682B4'],
             width=800,
             height=600
         )
         fig.update_traces(
             boxpoints='outliers',
             opacity=0.9,
             line=dict(width=2),
             marker=dict(size=6, color='black')
         fig.update_layout(
             yaxis_range=[0, 20000],
             title_font_size=16,
```

```
xaxis_title='Customers Affected Missing',
  yaxis_title='Outage Duration (minutes)',
  xaxis_tickfont=dict(size=12),
  yaxis_tickfont=dict(size=12),
  showlegend=False,
)

fig.show()
fig.write_html('assets/boxplot_outage_duration_vs_customers_affected.html',
```

Step 4: Hypothesis Testing

```
In [23]: fig = go.Figure()
         # Add histogram of permutation distribution
         fig.add trace(
             go.Histogram(x=diffs, nbinsx=100, name="Permutation Distribution", marke
         # Add vertical line for observed difference
         fig.add_trace(
             go.Scatter(x=[observed diff, observed diff],
                        y=[0, np.max(np.histogram(diffs, bins=100)[0])],
                        mode="lines",
                        name=f"Observed Difference: {observed_diff:.2f}",
                        line=dict(color="red", width=2, dash="dash"))
         # Calculate the range for x-axis
         max_abs_diff = max(abs(np.min(diffs)), abs(np.max(diffs)), abs(observed_diff
         x_range = [-max_abs_diff * 1.1, max_abs_diff * 1.1]
         # Update layout
         fig.update layout(
             title_text="Permutation Test: Outage Duration (Severe Weather vs Intenti
             xaxis_title="Difference in Mean Outage Duration (minutes)",
             yaxis_title="Frequency",
             showlegend=True,
             height=600,
             width=1000
         )
         # Update x-axis
         fig.update xaxes(range=x range, zeroline=True, zerolinecolor='black', zeroli
         # Add annotation for observed difference
         fig.add_annotation(
             x=observed_diff,
             y=np.max(np.histogram(diffs, bins=100)[0]) * 0.9,
             text=f"Observed Diff: {observed diff:.2f}",
             showarrow=True,
             arrowhead=2,
             ax=0,
             ay = -40,
```

```
bgcolor="yellow",
  bordercolor="black",
  borderwidth=1,
  opacity=0.8
)

fig.show()
fig.write_html('assets/hypothesis_test_graph.html', include_plotlyjs='cdn')
```

Step 5: Framing a Prediction Problem

"Predict whether a power outage is caused by an intentional attack based on its characteristics and regional factors."

Step 6: Baseline Model

```
In [24]: df['is_intentional_attack'] = (df['cause_category'] == 'intentional attack')
         features = ['nerc_region', 'outage_duration', 'customers_affected', 'month',
                      'pc_realgsp_state', 'popden_urban']
         X = df[features]
         y = df['is_intentional_attack']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ran
         numeric_features = ['outage_duration', 'customers_affected', 'pc_realgsp_sta']
         categorical_features = ['nerc_region', 'month']
         preprocessor = ColumnTransformer(
             transformers=[
                 ('num', StandardScaler(), numeric_features),
                 ('cat', OneHotEncoder(drop='first', sparse=False, handle_unknown='ig
             1)
         model = Pipeline([
             ('preprocessor', preprocessor),
             ('classifier', LogisticRegression(class_weight='balanced'))
         ])
         model.fit(X_train, y_train)
         y_pred = model.predict(X_test)
         print("Classification Report:")
         print(classification_report(y_test, y_pred))
         print(f"F1 Score: {f1_score(y_test, y_pred)}")
         cm = confusion_matrix(y_test, y_pred)
         plt.figure(figsize=(8, 6))
         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
         plt.title('Confusion Matrix')
         plt.ylabel('Actual')
```

```
plt.xlabel('Predicted')
 plt.show()
 feature_names = (numeric_features +
                  model.named_steps['preprocessor']
                  .named_transformers_['cat']
                  .get_feature_names_out(categorical_features).tolist())
 coefficients = model.named steps['classifier'].coef [0]
 feature_importance = pd.DataFrame({'feature': feature_names, 'importance': a
 feature_importance = feature_importance.sort_values('importance', ascending=
 print("\nTop 10 Most Important Features:")
 print(feature_importance.head(10))
plt.figure(figsize=(10, 6))
 sns.barplot(x='importance', y='feature', data=feature_importance.head(10))
 plt.title('Top 10 Most Important Features')
 plt.tight layout()
plt.show()
class_balance = y.value_counts(normalize=True)
 print("\nClass Balance:")
print(class_balance)
Classification Report:
```

	precision	recall	f1-score	support
0	1.00	0.85	0.92	220
1	0.72	1.00	0.84	84
accuracy			0.89	304
macro avg	0.86	0.93	0.88	304
weighted avg	0.92	0.89	0.90	304

F1 Score: 0.835820895522388

9/7/24, 11:53 PM 14 of 20

Top 10 Most Important Features:

feature	importance
customers_affected	9.75
nerc_region_WECC	1.29
nerc_region_FRCC	1.09
month_8.0	0.88
month_7.0	0.76
nerc_region_SPP	0.75
	customers_affected nerc_region_WECC nerc_region_FRCC month_8.0 month_7.0

[10 rows x 2 columns]


```
Class Balance:
0  0.72
1  0.28
Name: is_intentional_attack, dtype: float64
```

Step 7: Final Model

```
categorical_features = ['nerc_region', 'season']
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), ['customers_affected', 'pc_realgsp_state',
        ('dur', QuantileTransformer(n_quantiles=100, output_distribution='no
        ('cat', OneHotEncoder(drop='first', sparse=False, handle_unknown='ig
    ])
# pipeline
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', RandomForestClassifier(random_state=42))
])
# hyperparameters
param_grid = {
    'classifier__n_estimators': [50, 100, 200],
    'classifier__max_depth': [None, 10, 20, 30]
# GridSearchCV
grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='f1', n_jobs=
grid_search.fit(X_train, y_train)
# best model
best_model = grid_search.best_estimator_
# predictions
y_pred = best_model.predict(X_test)
# Evaluate
print("Best Parameters:", grid_search.best_params_)
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
print(f"F1 Score: {f1_score(y_test, y_pred)}")
# Compare
baseline_f1 = 0.84 # Replace with your actual baseline F1 score
print(f"\n\nimprovement over baseline: {f1_score(y_test, y_pred) - baseline_
```

```
Best Parameters: {'classifier__max_depth': 10, 'classifier__n_estimators': 5
        Classification Report:
                      precision
                                  recall f1-score
                                                      support
                           0.97
                                     0.98
                                               0.97
                                                          220
                   1
                           0.94
                                     0.92
                                               0.93
                                                           84
                                               0.96
                                                          304
            accuracy
                           0.95
                                     0.95
                                               0.95
                                                          304
           macro avg
                           0.96
                                     0.96
                                               0.96
                                                          304
        weighted avg
        F1 Score: 0.9277108433734941
        improvement over baseline: 0.0877
In [26]: # feature names
         feature_names = (
             numeric_features +
             best_model.named_steps['preprocessor']
             .named_transformers_['cat']
             .get_feature_names_out(categorical_features).tolist()
         # feature importances
         importances = best_model.named_steps['classifier'].feature_importances_
         # dataframe of feature importances
         feature_importances = pd.DataFrame({
             'feature': feature_names,
             'importance': importances
         }).sort_values('importance', ascending=False)
         print("\n\nTop 10 Feature Importances:")
         print(feature_importances.head(10))
        Top 10 Feature Importances:
                       feature importance
        0
               outage_duration
                                 5.51e-01
        3
                  popden_urban 2.05e-01
        1 customers_affected
                                  8.48e-02
               nerc_region_TRE 8.86e-03
        11
        10
               nerc_region_SPP
                                  7.83e-03
        7
              nerc_region_NPCC
                                  7.22e-03
        [10 rows x 2 columns]
```

Step 8: Fairness Analysis

```
In [28]: # binary column for WECC
         X_test['is_WECC'] = (X_test['nerc_region'] == 'WECC').astype(int)
```

9/7/24, 11:53 PM 18 of 20

```
# predictions
y_pred = best_model.predict(X_test)
#calculate precision
def get_precision(y_true, y_pred):
    return precision_score(y_true, y_pred, pos_label=1)
# observed difference in precision
wecc_precision = get_precision(y_test[X_test['is_WECC'] == 1], y_pred[X_test
non_wecc_precision = get_precision(y_test[X_test['is_WECC'] == 0], y_pred[X_
observed_diff = wecc_precision - non_wecc_precision
# Permutation test
n permutations = 1000
diffs = []
for _ in range(n_permutations):
    permuted_wecc = np.random.permutation(X_test['is_WECC'])
    permuted_wecc_precision = get_precision(y_test[permuted_wecc == 1], y_pr
    permuted_non_wecc_precision = get_precision(y_test[permuted_wecc == 0],
    diffs.append(permuted_wecc_precision - permuted_non_wecc_precision)
# Calculate p-value
p_value = np.mean(np.abs(diffs) >= np.abs(observed_diff))
print(f"WECC Precision: {wecc_precision:.4f}")
print(f"Non-WECC Precision: {non_wecc_precision:.4f}")
print(f"Observed difference: {observed_diff:.4f}")
print(f"P-value: {p_value:.4f}")
# histogram
fig = go.Figure()
# histogram of permutation differences
fig.add_trace(go.Histogram(
    x=diffs,
    nbinsx=30, # Match bins size to original
    marker=dict(color='skyblue', line=dict(color='black', width=1)),
    opacity=0.75
))
# add vertical lines
fig.add_trace(go.Scatter(
    x=[observed_diff, observed_diff],
    y=[0, 50], # adjust y-values
    mode="lines",
    name=f"Observed Difference: {observed_diff:.4f}",
    line=dict(color="red", dash="dash")
))
fig.add_trace(go.Scatter(
    x=[-observed_diff, -observed_diff],
    y=[0, 50],
    mode="lines",
    line=dict(color="red", dash="dash"),
    showlegend=False
```

```
))
        # layout
        fig.update_layout(
            title='Distribution of Precision Differences in Permutation Test',
            xaxis_title='Difference in Precision (WECC - Non-WECC)',
            yaxis_title='Frequency',
            width=800,
            height=600,
            showlegend=True
        # plot
        fig.show()
        fig.write_html('assets/fairness.html', include_plotlyjs='cdn')
       WECC Precision: 0.9688
       Non-WECC Precision: 0.9200
       Observed difference: 0.0487
       P-value: 0.3720
In [ ]:
In [ ]:
In [ ]:
```

20 of 20