Homework5 Solution

Question2: Suppose we have a dataset with 3 features: $X_1 = GPA$, $X_2 = Age$, $X_3 = Type$ of Position (1 for Technical positions, and 0 for Non-Technical positions), and we have built a non-linear regression model as:

Target =
$$\theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3 + \theta_4 X_1 X_2 + \theta_5 X_1 X_3$$

The prediction target is "starting salary after graduation" (in thousands of dollars). Suppose we train (fit) the model, and get $\theta_0 = 30$, $\theta_1 = 20$, $\theta_2 = 0.07$, $\theta_3 = -30$, $\theta_4 = 0.01$, $\theta_5 = 10$.

- (a) Which answer is correct, and why?
 - i. For a fixed value of Age and GPA, Technical positions earn more on average than non-technical positions.
 - ii. For a fixed value of Age and GPA, Non-Technical positions earn more on average than Technical positions.
 - iii. For a fixed value of Age and GPA, Technical positions earn more on average than Non-Technical positions when the GPA is high enough.
 - iv. For a fixed value of Age and GPA, Non-Technical positions earn more on average than Technical positions when the GPA is high enough.
- (b) Predict the salary of a Technical and a Non-Technical positions with Age of 27, GPA of 4.0.

Answer:

(a) Here is the above regression model after replacing the coefficients:

$$Salary = 30 + 20X_1 + 0.07X_2 - 30X_3 + 0.01X_1X_2 + 10X_1X_3$$

For non-technical positions, $X_3=0$, so the 4th term of the equation $(-30X_3)$, and 6th term of the above equation $(10X_1X_3)$ are zero.

So, for non-technical positions the salary will be:

$$Salary = 30 + 20X_1 + 0.07X_2 + 0.01X_1X_2$$

However, for technical positions, $X_3=1$, so the 4^{th} term in the equation is -30, and 6^{th} term is $10X_1$. So, for technical positions the salary will be:

$$Salary = 30 + 20X_1 + 0.07X_2 + 0.01X_1X_2 + 10X_1 - 30$$

Now, it all depends on X_1 : If X_1 (GPA) is more than 3, then $10X_1 - 30 > 0$, thus the total salary of technical positions is higher than non-technical. But, If X_1 (GPA) is less than 3, then $10X_1 - 30 < 0$, thus the total salary of technical positions is less than non-technical.

Thus, the correct answer is (iii)

Salary.non.technical = 30 + 20*4 + 0.07*27 + 0.01*4*27 = 112.97K \$ Salary.technical = 30 + 20*4 + 0.07*27 + 0.01*4*27 + 10*4 - 30

= 122.97K\$