LADDER DIAGRAM

1. PODSTAWOWE FUNKCJE

• Q = A

• $Q = A \cap B$ iloczyn logiczny

• $Q = A \cup B$ suma logiczna

• $Q = \bar{A}$ negacja styku

2. PRZYKŁADY

• $Q = \bar{A} \cap B$

▼ Network 5: przyklad pierwszy

Comment

%Q0.0 "A" "B" "Q" ()

 Vetwork 6: przyklad drugi

 Comment

 %40.0

 "A"

 "Q"

 %40.1

 "B"

▼ Network 7: przyklad trzeci

▼ Network 8: przyklad czwarty

3. RS & SR

• RS (reset set) – dominacja resetu

SR (se reset) – dominacja setu

4. CZASÓWKI

 TP – Time Pulse (impuls zadany) po podaniu sygnału na czasówkę, to ta będzie podawać sygnał przez podany czas

 TON – Time On Delay (opóźnienie włączenia)
 po podaniu sygnału, zostaje on przekazany dalej po upływie danego czasu sygnał musi być podawany cały przez dany czas aby czasówka zadziałała

IN – input

PT – pulse time

Q – output

ET - Elapsed Time

TOFF – Time Offf Delay (opóźnienie wyłączenia)
 po podaniu sygnału i jego zniknięciu na czasówkę, będzie on dalej przekazywany przez dany czas

IN – input PT – pulse time Q – output ET - Elapsed Time

TONR – Time On Delay Retentive (opóźnienie włączenia z podtrzymanym czasem)
po podaniu sygnału, zostaje on przekazany dalej po upływie danego czasu
gdy sygnał zniknie na wejściu czasówki to i tak ona dalej podaje sygnał, aby wyłączyć
czasówkę należy podać sygnał na wejście R

IN - input

R – reset

PT – pulse time

Q – output

ET - Elapsed Time

5. CZASÓWKI JAKO GENERATOR IMPULSU

• TP jako 1 Hz

TON jako 1 Hz

6. LICZNIKI

 CTU – Count Up licznik, który dodaje, po spełnieniu warunku PV podaje sygnał na Q

Network 17: CTU Comment %DB9 "CTU" CTU %11.0 %Q0.1 Int "S1" "LAMPKA" () CU cv · - 0 %10.6 "RESET" 5 — PV

CU - count up

R – reset

PV - preset value

Q – output (QU jeśli PV = CV, QD jeśli PV = 0)

CV - current value

Network 18: CTD

CTD – Count Down

licznik, który odejmuje, po spełnieniu warunku PV podaje sygnał na Q

Comment %DB10 "CTD" СТО %11.0 %Q0.1 "S1" Int "LAMPKA" CD cv - 0 %10.6 "RESET" ┨┠ LD 5 - PV

CD - count down

R – reset

PV - preset value

Q – output (QU jeśli PV = CV, QD jeśli PV = 0 to da sygnał)

CV - current value

CTUD Count Up / Down licznik, który ma możliwość dodawania i odejmowania, po spełnieniu warunku PV podaje sygnał na wyjście

CU - count up

CD - count down

R – reset

PV - preset value

LD – load (ładuje PV na CV)

QU – output (jeśli PV = CV to da sygnał)

QD – output (jeśli PV = 0 to da sygnał)

CV - current value

7. KOMPARATORY

▼ Network 20: komparatory

Comment %MW6 %Q0.1 "zmienna" "LAMPKA" == ()− Int 1 %MW6 %Q0.2 "zmienna" "L1" <> Int **()**− 5 %MW6 %Q0.3 "zmienna" "L2" >= -(}-----Int 10 %MW6 %Q0.4 "zmienna" "L3" <= Int **()** 10 %MW6 %Q0.5 "zmienna" "L4" ()-Int 20 %MW6 %Q0.6 "zmienna" "L5" < Int ()-10

8. OPERACJE MATEMATYCZNE

• add – dodawanie

• sub – odejmowanie

• mul - mnożenie

• div – dzielenie

• abs – moduł (wartość bezwzględna)

• sqr – potęgowanie

• sqrt – pierwiastkowanie

9. MOVE & JUMP

 move operacja pozwalająca załadować daną cyfrę/liczbę do zmiennej (int)

 jump operacja pozwalająca skoczyć do etykiety (w każdym networku może być tylko jedna etykieta)

