《数值分析》 12

主要内容:

拉格朗日插值误差余项

均差与牛顿插值公式

均差表的构造计算

牛顿多项式求值算法

两点线性插值

$$L(x) = \frac{x - x_0}{x_1 - x_0} y_1 + \frac{x_1 - x}{x_1 - x_0} y_0$$

插值余项(误差):

$$R(x) = f(x) - L(x)$$

由插值条件,知

$$R(x)=C(x) (x-x_0)(x-x_1)$$

$$C(x) = ???$$

定理5.2 设 $f(x) \in C[a, b]$, 且 f(x) 在 (a, b)内具有 n+1阶导数,取插值结点

$$a \le x_0 < x_1 < \cdots < x_n \le b$$

则对任何 $x \in [a, b]$, 满足 $L_n(x_k) = f(x_k)$ 的 n 次 插值多项式 $L_n(x)$ 的误差

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} \omega_{n+1}(x)$$

其中,
$$\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$$

 $\xi_n \in (a, b)$ 且与x有关

证明: 记
$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

由插值条件

$$L_n(x_k) = f(x_k)$$
 $(k = 0,1,...,n)$

知存在C(x)使得

$$f(x) - L_n(x) = C(x) \omega_{n+1}(x)$$

取定 $x \in (a, b)$, 设 $t \in (a, b)$. 为了求C(x), 构造函数

$$F(t) = f(t) - L_n(t) - C\omega_{n+1}(t)$$

显然, F(x) = 0, $F(x_j) = 0$, $(j = 0,1,\dots,n)$

F(t) 有(n+2)个相异零点. 根据Rolle定理, F'(t) 在区间(a, b)内至少有 (n+1)个相异零点.

依此类推, $F^{(n+1)}(t)$ 在区间 (a, b) 内至少有一个零点。故存在 $\xi \in (a, b)$, 使 $F^{(n+1)}(\xi)=0$

$$F^{(n+1)}(t) = f^{(n+1)}(t) - L_n^{(n+1)}(t) - C\omega_{n+1}^{(n+1)}(t)$$

$$f^{(n+1)}(\xi) - C(n+1)! = 0$$

$$C = \frac{f^{(n+1)}(\xi)}{(n+1)!} \qquad \Rightarrow \qquad f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

例 分析三次多项式插值误差

$$R_3(x) = \frac{1}{4!} f^{(4)}(\xi) x(x-1)(x-2)(x-3)$$
$$f^{(4)}(x) = 0 \to R_3(x) = 0$$

$$L_3(x) = f(x) = -2 + 5x - 7x^2 + 2x^3$$

例 取被插值函数为正弦函数 $f(x) = \sin x$, 取三点做 二次插值。

x	0	$\pi/2$	π
Sin x	0	1	0

$$L_2(x) = 4x(\pi - x)/\pi^2$$

$$|R_2| = |\cos \xi| \cdot |x(x - \pi/2)(x - \pi)|/6$$

思考题:在区间 $[0,\pi]$ 内增加插值结点是否会导致Runge现象

例5.3 设 y = f(x) 在区间 [a, b]上有连续,且 f(x) 在 (a, b)内具有2阶导数,已知f(x)在区间端点处的值.如果当 $x \in (a, b)$ 时,有f(x)(x) $|\leq M$. 试证明

$$|R_1(x)| \leq \frac{M}{8}(b-a)^2$$

证明 由Lagrange插值误差定理

$$R_1(x) = f(x) - L_1(x) = \frac{f''(\xi)}{2}(x-a)(x-b)$$

$$\max_{a \le x \le b} h(x) = h(\frac{a+b}{2}) = \frac{(b-a)^2}{4} \qquad |R_1(x)| \le \frac{M}{8} (b-a)^2$$

应用: 考虑制做 $\sin x$ 在[0, π]上等距结点的函数表, 要求用线性插值计算非表格点数据时, 能准确到小数后两位, 问函数表中自变量数据的步长h应取多少为好?

解: 设应取的步长为
$$h$$
,则 $x_j = jh$ ($j = 0,1,\dots,n$). 当 $x \in (x_j, x_{j+1})$ 时

$$\sin x \approx \frac{1}{h} [(x - x_j) \sin x_{j+1} + (x_{j+1} - x) \sin x_j]$$

$$|R(x)| \le \max_{x_j \le x \le x_{j+1}} |f''(x)| \frac{(x_{j+1} - x_j)^2}{8} = \frac{h^2}{8}$$

只须
$$\frac{h^2}{8} \le \frac{1}{2} \times 10^{-2} \quad \Rightarrow \quad h \le 0.2$$

均差与牛顿插值公式

取
$$x_0, x_1, x_2,$$
求二次函数
$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

满足条件

$$P(x_0)=f(x_0), P(x_1)=f(x_1), P(x_2)=f(x_2)$$

插值条件引出关于a₀, a₁, a₂方程

$$\begin{cases} a_0 &= f(x_0) \\ a_0 + a_1(x_1 - x_0) &= f(x_1) \\ a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f(x_2) \end{cases}$$

定义5.3 若已知函数 f(x) 在点 x_0, x_1, \dots, x_n 处的值 $f(x_0), f(x_1), \dots, f(x_n)$.如果 $i \neq j$,则

一阶均差
$$f[x_j, x_{j+1}] = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j}$$

二阶均差
$$f[x_j, x_{j+1}, x_{j+2}] = \frac{f[x_{j+1}, x_{j+2}] - f[x_j, x_{j+1}]}{x_{j+2} - x_j}$$
 $(j = 0, 1, ..., n-2)$

n阶均差
$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots x_{n-1}]}{x_n - x_0}$$

电子科技大学 邓良剑 邓良剑

11

例 由函数表 求各阶均差

X	- 2	-1	0	1	3	
y	-56	-16	-2	-2	4	

解:按公式计算一阶均差、二阶均差、三阶均差

X	f(x)	一阶均差	二阶均差	三阶均差
-2	(-56)			
-1	-16	(40)		
0	-2	14	(-13)	
1	-2	0	-7	2
3	4	3	1	2

12

MATLAB程序计算

```
x=[-2 -1 0 1 3];
y=[-56 -16 -2 -2 4];
data=[x,y];dy=y;
n=length(x);
for k=1:n-1
  dx=x(k+1:n)-x(1:n-k)
  dy=diff(dy)./dx;
  f=zeros(n,1);f(k+1:n)=dy;
  data=[data,f];
end
data
```

```
-2 -56
-1 -16 40
0 -2 14 -13
1 -2 0 -7 2
3 4 3 1 2 0
```


$$N_3(x) = -56 + 40(x+2) - 13(x+2)(x+1) + 2(x+2)(x+1) x$$

$$a_0 = -56 + 80 - 26 = -2$$

$$a_1 = 40 - 39 + 4 = 5$$

$$a_2 = -13 + 6 = -7$$

$$a_3 = 2$$

$$P_3(x) = -2 + 5x - 7x^2 + 2x^3$$

函数值的计算:

$$N_3(x) = -56 + (x + 2) [40 + (x + 1) [-13 + 2 x]]$$

牛顿多项式求值算法

牛顿多项式算法: 记插值节点为 $x_0,x_1,...,x_n$, f(x)的各阶差商为 $f_0,f_1,f_2,...,f_n$

$$(1)s \leftarrow f_n$$

(2) 计算
$$s \leftarrow f_k + (x-x_k) * s \quad (k=n-1,n-2,\dots,0)$$

(3)
$$N(x) = s$$

根据代数插值存在唯一性定理, n 次牛顿插值公式恒等于n次拉格朗日插值公式,误差余项也相等, 即

$$R_{n}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

$$\omega_{n+1}(x) = (x - x_{0})(x - x_{1}) \cdots (x - x_{n})$$

小结

前面已经学过两种插值方法:

Langrange插值法、Newton插值法。

共同点: 1)插值条件相同,即

_	x_i	x_{θ}	x_1	•••	$\boldsymbol{x_n}$
	$y_i = f(x_i)$	yo	y_1	•••	Уn

2) 求一个次数不超过n的代数多项式

电子科技大学 邓良剑

16

不同点: 构造方法(思想)不同

Langrange插值法采用基函数的思想

$$L_n(x) = \sum_{i=0}^n y_i l_i(x)$$

Newton插值法采用承袭性的思想均差表

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0)$$
$$+ \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

注:两种方法的结果相同 (唯一性)!

学到了什么?

拉格朗日插值误差余项

均差与牛顿插值公式

均差表的构造计算

牛顿多项式求值算法

17