Lecture 2 Introduction to Logic Circuits

吳文中

One Variable Logic Function

Simplest binary logic, a switch with two states.

Symbol of a switch.

• Light control switch, L(x) = x, a one variable logic function.

$$-L = 1 \text{ if } x = 1.$$

$$-L = 0 \text{ if } x = 0.$$

Two Variable Logic Function

- Two switches to control a lamp.
- And logic(series):

$$L(x_1) = x_1 \cdot x_2$$

$$-L = 1$$
if $x_1 = 1$ and $x_2 = 1$

$$-L = 0$$
 otherwise.

$$L(x_1) = x_1 + x_2$$

 $-L = 1$
if $x_1 = 1$ or $x_2 = 1$

-L = 0 otherwise

Three Variable Logic Function

- $\bullet L(x_1) = (x_1 + x_2) \cdot x_3$
 - -L=1 if $x_3=1$ and, at the same time either $x_1=1$ or $x_2=1$

Inversion Logic (One Variable)

The light with be turned on when the switch is opened.

$$-L(x) = \bar{x}$$

$$-L = 1 \text{ if } x = 0$$

$$-L = 0 \text{ if } x = 1$$
• $\bar{x} = x' = ! x = \sim x$

• Complex operator: $f(x_1, x_2) = x_1 + x_2$

- Complement function: $\overline{f}(x_1, x_2) = \overline{x_1 + x_2}$

$$\bullet \overline{x_1 + x_2} = (x_1 + x_2)' = !(x_1 + x_2) = (x_1 + x_2)$$

Truth Table

A truth table for AND and OR operations.

x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
0 0 1	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	0 0	0 1 1
1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{vmatrix} & 0 \\ & 1 \end{vmatrix}$	1

AND OR

$$x_1$$
 x_2 $x_1 \times x_2$ $x_1 + x_2$ $x_2 + x_3 + x_4 + x_5 + x_5$

Three-input to Multiple input AND, OR

Truth table for 3 input AND, OR

x_1	x_2	x_3	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	$1 \mid$	0	1
0	1	0	0	1
0	1	$1 \mid$	0	1
1	0	0	0	1
1	0	$1 \mid$	0	1
1	1	0	0	1
1	1	$1 \mid$	1	1

Logic Network Analysis

• Network implements $f = \bar{x}_1 + x_1 \cdot x_2$

Truth table, Timing Diagram

<i>x</i> 1	x_{2}	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

(b) Truth table for

Switching Algebra

- In 1854, George Boole invented a 2-value algebraic system, now called Boolean algebra.
- In 1904, E. V. Huntington formulate the postulates as the formal definitions
- In 1938, Bell Labs researcher Claude E. Shannon showed how to adapt Boolean algebra to analyze and describe the behavior of circuits built from relays with his *switching algebra*.

Basic Definition

- Boolean Algebra:
 - A deductive mathematical system
 - Defined with
 - A set of elements

$$- ex: B = \{0, 1\}$$

A set of operators

A number of unproved axioms or postulates

Two-Valued Boolean Algebra

- A two-valued Boolean algebra is
- Defined on a set of two elements B = {0, 1}
- With rules for the binary operators + and •

$\boldsymbol{\mathcal{X}}$	y	$x \cdot y$	•	$\boldsymbol{\chi}$	y	x + y	$\underline{\mathcal{X}}$	x'
0	0	0				0	0	$\begin{vmatrix} x' \\ 1 \\ 0 \end{vmatrix}$
0	1	0		0	1	1	1	0
1	0	0		1	0	1		
1	1	1		1	1	1		

Called "switching algebra", "binary logic"

Axioms of Boolean Algebra

- 1a. $0 \cdot 0 = 0$
- 1b. 1 + 1 = 1
- 2a. $1 \cdot 1 = 1$
- 2b. 0 + 0 = 0
- •3a. $0 \cdot 1 = 1 \cdot 0 = 0$
- 3b. 1 + 0 = 0 + 1 = 1
- 4a. If x = 0, then $\bar{x} = 1$ (inverse)
- 4b. If x = 1, then $\bar{x} = 0$

Single-Variable Theorems

- •5a. $x \cdot 0 = 0$
- 5b. x + 1 = 1
- 6a. $x \cdot 1 = x$ (identity)
- 6b. x + 0 = x
- •7a. $x \cdot x = x$
- 7b. x + x = x
- •8a. $x \cdot \bar{x} = 0$
- 8b. $x + \bar{x} = 1$
- 9. $\bar{\bar{x}} = x$

Duality Principle

- Every Boolean algebraic expression remains valid if the operators and identity elements are interchanged
- Part (a) and part (b) are dual
- For one-variable Boolean algebra:
 - Interchange OR and AND operators and replace 1's by 0's and 0's by 1's
 - $-Ex: X + 1 = 1 \rightarrow X \cdot 0 = 0$

Two- and Three- Variable Properties

- 10a. $x \cdot y = y \cdot x$ (Commutative 交換率)
- 10b. x + y = y + x
- •11a. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (Associative 結合率)
- 11b. x + (y + z) = (x + y) + z
- 12a. $x \cdot (y + z) = x \cdot y + x \cdot z$ (Distributive 分配率)
- 12b. $x + y \cdot z = (x + y) \cdot (x + z)$
- 13a. $x + x \cdot y = x$ (Absorption)
- 13b. $x \cdot (x + y) = x$

Two- and Three- Variable Properties

- 14a. $x \cdot y + x \cdot \overline{y} = x$ (combining)
- 14b. $(x + y) \cdot (x + \bar{y}) = x$
- 15a. $\overline{x \cdot y} = \overline{x} + \overline{y}$ (DeMorgan's Theorem)
- 15b. $\overline{x+y} = \bar{x} \cdot \bar{y}$

x	y	$x \cdot y$	$\overline{x \cdot y}$	\overline{x}	\overline{y}	$\overline{x} + \overline{y}$
0	0	0	1	1	1	1
0	$1 \mid$	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Two- and Three- Variable Properties

- 16a. $x + \bar{x} \cdot y = x + y$
- 16b. $x \cdot (\bar{x} + y) = x \cdot y$
- 17a. $x \cdot y + y \cdot z + \bar{x} \cdot z = x \cdot y + \bar{x} \cdot z$ (consensus)
- 17b. $(x + y) \cdot (y + z) \cdot (\bar{x} + z) = (x + y) \cdot (\bar{x} + z)$

Example 2.1

```
• Prove (x_1 + x_3) \cdot (\overline{x_1} + \overline{x_3}) = x_1 \cdot \overline{x_3} + \overline{x_1} \cdot x_3

• LHS = (x_1 + x_3) \cdot \overline{x_1} + (x_1 + x_3) \cdot \overline{x_3} (12a.)

= x_1 \cdot \overline{x_1} + x_3 \cdot \overline{x_1} + x_1 \cdot \overline{x_3} + x_3 \cdot \overline{x_3} (12a.)

= 0 + x_3 \cdot \overline{x_1} + x_1 \cdot \overline{x_3} + 0 (8a.)

= x_3 \cdot \overline{x_1} + x_1 \cdot \overline{x_3} (6a.)

= x_1 \cdot \overline{x_3} + \overline{x_1} \cdot x_3 (10a. and 10b.)

= RHS
```

The Venn Diagram

Verification of Distributive Property

$$\bullet x \cdot (y+z) = x \cdot y + x \cdot z$$

(a) x

(b) y + z

(c) $x \times (y+z)$

(d) $x \times y$

(e) $x \times z$

(f) $x \times y + x \times z$

Boolean v.s. Ordinary

Boolean Algebra

- Associate law not included (but still valid)
- Distributive law is valid
- No additive or multiplicative inverses
- Define complement in axiom 4
- No. of elements is not clearly defined
 - 2 for two-valued Boolean algebra

Ordinary Algebra

- Associate law included
- Distributive law may not valid
- Have additive and multiplicative inverses
- No complement operator
- Deal with real numbers
 - Infinite set of elements

Notation and Terminology

- Boolean algebra is based on the AND and OR operations. We have adopted the symbols · and + to denote these operations.
- Because of the similarity with the arithmetic addition and multiplication operation, the OR and AND operations are often called the *logical sum* and *logical* product operations, or to say simply sum and product.
- • $x_1 \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_4 + x_2 \cdot x_3 \cdot \overline{x_4}$: sum of three product terms.
- • $(\overline{x_1} + x_3) \cdot (x_1 + \overline{x_3}) \cdot (\overline{x_2} + x_3 + x_4)$: product of three sum terms.

Minterms and Maxterms

			Minterms		Maxte	erms
X	у	Z	Term	Name	Term	Name
0	0	0	x'y'z'	m_0	x+y+z	M_0
0	0	1	x'y'z	m_1	x+y+z'	M_1
0	1	0	x'yz'	m_2	x+y'+z	M_2
0	1	1	x'yz	m_3	x+y'+z'	M_3
1	0	0	xy'z'	m_4	x'+y+z	M_4
1	0	1	xy'z	m_5	x'+y+z'	M_5
1	1	0	xyz'	m_6	x'+y'+z	M_6
1	1	1	xyz	m ₇	x'+y'+z'	M_7

Canonical Form

•
$$F_1 = x'y'z+xy'z'+xyz = m_1+m_4+m_7$$

• $F_1' = x'y'z'+x'yz'+x'yz+xy'z+xyz'$
 $\rightarrow F_1 = (x+y+z)(x+y'+z)(x+y'+z')$
 $(x'+y+z')(x'+y'+z)$
 $= M_0M_2M_3M_5M_6$

Similarly:

$$F_2 = x'yz+xy'z+xyz'+xyz = m_3+m_5+m_6+m_7$$

= $(x+y+z)(x+y+z')(x+y'+z)(x'+y+z) = M_0M_1M_2M_4$

 Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form

Notation for Sum of Minterms

- F = A+B'C = ABC+ABC'+AB'C+AB'C'+A'B'C = $m_1+m_4+m_5+m_6+m_7$
- $F(A, B, C) = \Sigma(1,4,5,6,7)$
 - $-\Sigma$: ORing of terms
 - Can be derived directly from the truth table

			F_1	z	y	\mathcal{X}
			0	0	0	$\overline{0}$
	m_1	\rightarrow	1	1	0	0
			0	0	1	0
			0	1	1	0
Σ (1,4,5,6,7)	m_4	\rightarrow	1	0	0	1
2(1,4,5,0,7)	m_5	\rightarrow	1	1	0	1
	m_6	\rightarrow	1	0	1	1
	m_7	\rightarrow	1	1	1	1

Conversion between Canonical Forms

- The complement of a function = the sum of minterms missing from the original function
- $F(A,B,C) = \Sigma(1,4,5,6,7)$
- F'(A,B,C) = $\Sigma(0,2,3)$ = $m_0+m_2+m_3$
- From DeMorgan.s theorem:
 - $-F = (m_0 + m_2 + m_3)' = m_0' m_2' m_3' = M_0 M_2 M_3 = \Pi(0,2,3)$
 - m_j' = M_j are shown in Table 2-3
- To convert from one canonical from to another:
 - Interchange the symbol Σ and Π
 - List those numbers missing from the original form

Conversion of Canonical Form

• F = xy + x'z = x'y'z + x'yz + xyz' + xyz

• The missing numbers are 0, 2, 4, 5

$$-F = \Pi(0,2,4,5)$$

Standard Forms

- The canonical forms are basic forms obtained from the truth table
 - Very seldom to have the least number of literals
- Standard forms : not required to have all variables in each term
 - -Sum of products [ex: $F_1 = y' + xy + x'yz'$]
 - -Product of sums [ex: $F_2 = x(y' + z)(x' + y + z')$]
- Results in a two-level gating structure

A Two-Variable Function to be Synthesized

•
$$f(x_1, x_2) = m_0 + m_1 + m_3$$

= $x_1 x_2 + \overline{x_1} \, \overline{x_2} + \overline{x_1} x_2$
= $x_1 x_2 + \overline{x_1} \, \overline{x_2} + \overline{x_1} x_2 + \overline{x_1} x_2$ (7a)
= $(x_1 + \overline{x_1}) \, x_2 + \overline{x_1} (\overline{x_2} + x_2)$ (12a)
= $1 \cdot x_2 + \overline{x_1} \cdot 1$ (8b)
= $x_2 + \overline{x_1}$ (6a)

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Synthesized Schematic

(a) Canonical sum-of-products

(b) Minimal-cost realization

Example 2.3

- $\bullet f(x_1, x_2, x_3) = \sum m(2,3,4,6,7)$
- $f = m_2 + m_3 + m_4 + m_6 + m_7$ $= \overline{x_1} x_2 \overline{x_3} + \overline{x_1} x_2 x_3 + x_1 \overline{x_2} \overline{x_3} + x_1 x_2 \overline{x_3} + x_1 x_2 x_3$ $= \overline{x_1} x_2 (\overline{x_3} + x_3) + x_1 (\overline{x_2} + x_2) \overline{x_3} + x_1 x_2 (\overline{x_3} + x_3)$
 - $= \overline{x_1}x_2 + x_1\overline{x_3} + x_1x_2$
 - $=(\overline{x_1}+x_1)\overline{x_2}+x_1\overline{x_3}$
 - $= \overline{x_2} + x_1 \overline{x_3}$

NAND and **NOR** Gates

(a) NAND gates

$$x_1 \longrightarrow \overline{x_1 + x_2}$$

(b) NOR gates

Derivation with DeMorgan's Theorem

$$x_1 \longrightarrow x_2 \longrightarrow x_2$$

Sum of Product Realization with NAND Gates

Product of Sum Realization with NOR Gates

Three Way Light Switch Control

$$f = m_1 + m_2 + m_4 + m_7$$

$$= \overline{x_1 x_2} x_3 + \overline{x_1} x_2 \overline{x_3} + x_1 \overline{x_2 x_3} + x_1 x_2 x_3$$

x_1	x_2	x_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	$1 \mid$	1
			I

SOP Realization

POS Realization

Multiplexer Circuit

•
$$f(s, x_1, x_2) = \bar{s}x_1\bar{x_2} + \bar{s}x_1x_2$$

 $+s\bar{x_1}x_2 + sx_1x_2$
 $= \bar{s}x_1(\bar{x_2} + x_2) + s(\bar{x_1} + x_1)x_2$
 $= \bar{s}x_1 \cdot 1 + s \cdot 1 \cdot x_2$ (8b)
 $= \bar{s}x_1 + sx_2$ (6a)

s	$f(s, x_1, x_2)$
0	X ₁
1	X ₂

s x ₁ x ₂	$f(s, x_1, x_2)$
0 0 0	0
0 0 1	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1