Worksheet: Arithmetic Modulo m

In this worksheet, we explore arithmetic modulo m. These are operations done with remainders when dividing by m. We'll practice using definitions, examples, and exercises to build understanding.

Key Definitions

Addition Modulo m: $a \oplus b = (a + b) \mod m$ Multiplication Modulo m: $a \otimes b = (a \times b) \mod m$

Example 8 (from the text):

Compute $7 \oplus 11 \ 9$ and $7 \otimes 11 \ 9$ in $Z \blacksquare \blacksquare$.

Solution steps are provided in the instructor manual. Use this space to show your own work.

Practice Example (Easier):

Compute $3 \oplus 7$ in $Z \blacksquare$ and $3 \otimes 7$ in $Z \blacksquare$.

Practice Example (Harder):

Compute $(12 \otimes 15) \oplus 9$ in Z

Exploring Properties with Real Numbers

- 1. Closure: Show examples with integers (e.g., 2+3, 4×7).
- 2. Associativity: Work with numbers like (2+3)+4 and 2+(3+4).
- 3. Commutativity: Try 5+7 vs 7+5 and 3x8 vs 8x3.
- 4. Identity: Identify 0 and 1 as additive and multiplicative identities.
- 5. Additive Inverse: Find the opposite number that sums to zero (e.g., 5 and -5).
- 6. Distributivity: Check $(2\times(3+4))$ vs $(2\times3+2\times4)$.

Reflection: How does modular arithmetic compare with ordinary arithmetic? Why do you think these properties are useful when working with modular arithmetic?