P1. ANCHORED SHEET PILE WALL

Ouestion:

An anchored sheet-pile wall is constructed as shown in the figure below. By using Rankine's Earth Pressure Theory and free earth support method, determine:

- a. Depth of penetration.
- b. Axial anchor force if center to center spacing of two successive anchors is 2 meters.
- c. Maximum bending moment in the sheet pile.

Solution:

$$K_a = \tan^2(45 - \frac{\phi}{2}) = \tan^2(45 - \frac{35}{2}) = 0.27$$

$$K_p = \frac{1}{K_a} = 3.69$$

Active Pressure:

$$\overline{P_a = (\gamma z + q).K_a - 2.c.\sqrt{K_a}}$$

$$\begin{array}{lll} z=0 \ m & p_a=10 \ x \ 0.27=2.7 \ \ kPa \\ z=10 \ m & p_a=(10 \ x \ 18+10) \ x \ 0.27=51.3 \ \ kPa \\ z=10+D & p_a=[\ (10+D) \ x \ 18+10\] \ x \ 0.27=51.3+4.86 \ D \ \ kPa \end{array}$$

Passive Pressure:

$$P_p = (\chi z + q).K_p + 2.c.\sqrt{K_p}$$

 $z' = 0 \text{ m}$ $p_p = 0 \text{ kPa}$
 $z' = D \text{ m}$ $p_p = 18 \text{ x D x } 3.69 = 66.42 \text{ D} \text{ kPa}$

 $q = 10 \text{ kN/m}^2 \text{ (uniform surcharge)}$ 7 F_1 F_2 $\phi = 35^0$ c = 0 $\gamma = 18 \text{ kN/m}^3$ F_3 F_4 51.3 + 4.86 D

Force (kN/m)	Moment arm about point A (m)	Moment, M _A (kN.m/m)
$F_1 = 2.7 \times 10 = 27$	2	54
$F_2 = (51.3-2.7) \times 10 \times 0.5 = 243$	3.67	889.38
$F_3 = 51.3 \text{ x D} = 51.3 \text{ D}$	7 + D/2	$359.1 D + 25.6 D^2$
$F_4 = 4.86 D \times D \times 0.5 = 2.43 D^2$	7 + 2D/3	$17.01 D^2 + 1.62 D^3$
$-F_5 = 66.42 D \times D \times 0.5 = -33.21 D^2$	7 + 2D/3	$-232.47 D^2 - 22.14 D^3$

$$\Sigma \; F_H = 270 + 51.3 \; D - 30.78 \; D^2$$

$$\Sigma \; M_A = 0$$

$$\Sigma \ M_A = 943.38 + 359.1 \ D - 189.86 \ D^2 - 20.52 \ D^3 = 0 \\ \Longrightarrow D = 2.80 \ m.$$

a) Depth of penetration : $1.2 \times 2.80 = 3.36 \text{ m}$.

b) Anchor Force : $\Sigma H = 0$ (force equilibrium)

$$\Sigma H = 270 + 51.3 (2.80) - 30.78 (2.80)^2 - A = 0$$
 $\Rightarrow A = 172 \text{ kN/m}$

 $R_A = (A / \cos 10) \times 2 = 350 \text{ kN}$ (2 m is the lateral spacing of anchors)

c) Max. Bending Moment : (when shear, V=0)

To find the location of M_{max} , determine the point at which shear force is equal to 0 2.7 (x) + [18.(x).(0.27)].(x).0.5 - 172 = 0

$$2.7 \text{ x} + 2.43 \text{ x}^2 - 172 = 0$$
 $\text{x} = 7.88 \text{ m}$ (distance from top)

$$M_{max} = 2.7 (7.88) (7.88 / 2) + 18 (7.88)(0.27) (7.88 / 2) (7.88 / 3) - 172 (7.88 - 3)$$

$$M_{max} = 359.24 \text{ kN.m/m}$$

P2. BRACED CUTS

Ouestion:

For the very long braced systems shown in the figures (a) and (b), when c_u =40 kN/m², ϕ_u =0, γ =19 kN/m³, and there is no water, what is the factor of safety of the bottom against heave?

Solution:

Depth of tension crack;

$$P_{active} = (\gamma z + q)K_a - 2C_u \sqrt{K_a}$$

$$\phi = 0^{\circ} \longrightarrow K_a = 1$$

$$p_{active} = (\gamma z + q) - 2C_u = 0$$

$$(\gamma z+q)=2C_u$$

$$z_{cr} = \frac{2C_u - q}{\gamma}$$

For ;
$$C_u$$
 = 40 kPa ; q=10 kPa
$$\gamma = 19 \text{ kN/m}^3$$

$$z_{cr} = \frac{2C_u - q}{\gamma} = \frac{2x40 - 10}{19} = \frac{70}{19} = 3.68m$$

For;
$$B_1 = D_1 = 2m$$

$$q_u = 2 C_u = 2x40 = 80 \text{ kPa}$$

$$H = 8m ; \gamma = 19 \text{ kN/m}^3$$

taking moment about b;

Force (kN/m)	Moment arm (m), about point b	Moment, $\mathbf{M_b}$ (kN.m/m)
$S_1 = (0.5x\pi x B_1)xCu = (0.5x\pi x 2)x40 = 125.60$	$B_1 = 2$	251.20
$S_2 = (H-z_{cr})xC_u = (8-3.68)x40 = 172.80$	$B_1 = 2$	345.60
$P_1 = q_u x B_1 = 2x C_u x B_1 = 2x 40x 2 = 160$	$0.5xB_1=1$	160
$W_1 = \gamma x H x B_1 = 19x8x2 = 304$	$0.5xB_1=1$	-304
$W_2 = qxB_1 = 10x2 = 20$	$0.5xB_1=1$	-20

$$FS = \frac{251.20 + 345.60 + 160}{304 + 20} = 2.34$$

For ;
$$B_1 = D_1 = 3.5 \text{ m}$$

 $q_u = 2 C_u = 2x40 = 80 \text{ kPa}$
 $H = 8m$; $\gamma = 19 \text{ kN/m}^3$

taking moment about b;

Force (kN/m)	Moment arm (m), about point b	Moment, $\mathbf{M_b}$ (kN.m/m)
$S_1 = (0.5x\pi x B_1)xCu = (0.5x\pi x 3.5)x40 = 219.80$	$B_1 = 3.5$	769.30
$S_2 = (H-z_{cr})xC_u = (8-3.68)x40 = 172.80$	$B_1 = 3.5$	604.80
$P_1 = q_u x B_1 = 2x C_u x B_1 = 2x 40x 3.5 = 280$	$0.5xB_1=1.75$	490
$W_1 = \gamma x H x B_1 = 19x8x3.5 = 532$	$0.5xB_1=1.75$	-931
$W_2 = qxB_1 = 10x3.5 = 35$	$0.5xB_1=1.75$	-61.25

$$FS = \frac{769.30 + 604.80 + 490}{931 + 61.25} = 1.88$$

P3. BRACED CUTS

Ouestion:

Determine the factor of safety of the bottom against heave for the very long braced system shown below (hint: make reasonable assumptions).

Solution:

For sand, consider active earth pressure, not earth pressure at rest, because of some lateral displacement during excavation.

$$\begin{split} K_a &= tan^2(45 - \varphi \ / 2) = tan^2(45 - 33 \ / 2) \\ K_a &= 0.29 \end{split}$$

$$z = 0 \qquad \qquad p_a = 10 \ x \ 0.29 = 2.9 \ kPa$$

$$z = 4 \qquad \qquad p_a = (10 + 4x18) \ x \ 0.29 = 23.8 \ kPa$$

$$H_1 = 2.9 \text{ x } 4 = 11.6 \text{ kN/m}$$

$$H_2 = (23.8 - 2.9) \text{ x } 4 \text{ x } (1/2) = 41.8 \text{ kN/m}$$

$$\Sigma = 53.4 \text{ kN/m}$$

Force (kN/m)	Moment arm about point A (m)	Moment, M _A (kN.m/m)
$S_1 = \sigma_n \tan \phi = 53.4 \text{ x } \tan 33 = 35$	3.5	122.5
$S_2 = 4 C_u = 4 \times 40 = 160$	3.5	560
$S_3 = 0.5x\pi x B_1 x C_u = 0.5x\pi x 3.5x 40 = 220$	3.5	770
$P_1 = 80x3.5 = 280$	1.75	490
$W_1 = 4x18x3.5 = 252$	1.75	-441
$W_2 = 4x19x3.5 = 266$	1.75	-465.5
$W_3 = 10x3.5 = 35$	1.75	-61.25

$$FS = \frac{122.5 + 560 + 770 + 490}{441 + 465.5 + 61.25} = 2.0$$

P4. BRACED CUTS

Ouestion:

Find the strut loads for each level for the long braced system given below.

Horizontal struts are spaced at every 5 m. No ground water.

Solution:

• for strut loads, the earth pressure distribution is

 $0.3\gamma_t$ H =0.3x20x8=48 kN/m² per linear meter

area 1
$$\longrightarrow$$
 2.0x48x(1/2) + 2.0x48 = 144 kN/m
area 2 \longrightarrow 2.0x48 + 2.0x48x(1/2) = 144 kN/m

taking moment wrt. point a;

3.0 A = 2.0 x 48 x
$$(2.0 / 2) + 2.0$$
 x 48 x $(1/2)$ x $(2.0 / 3 + 2.0)$
A = 74.7 kN/m
B₁ = 144 - 74.7 = 69.3 kN/m

3.0 C = 2.0 x 48 x (2.0 / 2) + 2.0 x 48 x (1/2) x (2.0 /3 + 2.0)
C = 74.7 kN/m

$$B_2 = 144 - 74.7 = 69.3 \text{ kN/m}$$

Strut loads;
$$A = 74.7x 5 = 373.5 kn$$

 $B = (69.3 + 69.3) kin 5 = 693 kn$
 $C = 74.7 kin 5 = 373.5 kn$

P5. BRACED CUTS

Ouestion:

For a braced system constructed in a 10 m deep rectangular excavation in a clay, when length L= 45m; width B= 10m; surcharge $q=10kN/m^2$; unit weight $\gamma=19~kN/m^2$ and unconfined compressive strength $q_u=80~kN/m^2$; and there is no water, what is the factor of safety at the bottom against heave?

Solution:

If the excavation is not very long $(L/B \le 10)$ \longrightarrow square, rectangular or circular exc.

Assumption — braced cut is a deep footing

F.S. =
$$\frac{N_c C_u}{(\gamma H + q)} = \frac{N_c q_u}{2(\gamma H + q)} = \frac{\text{ultimate bearing capacity}}{\text{applied load}}$$

N_c: bearing capacity factor

(from Fig 4.6, pp 73 of Lecture Notes)

$$\begin{split} H/B &= 10 \ / \ 10 = 1 & N_c \ (square) = 7.7 \\ N_{c \ (rect)} &= (0.84 + 0.16 \ B/ \ L) \ N_c \ (square) \\ &= (0.84 + 0.16 \ x \ 10 \ / \ 45) \ x \ 7.7 \\ &= 6.8 \end{split}$$

$$FS = \frac{6.8x40}{(19x10+10)} = 1.36$$