BCOV cusp forms of lattice polarized K3 surfaces

Shinobu Hosono Jul.12, 2023 at Feza Gürsey Institute, Istanbul

based on a work with Atsushi Kanazawa ArXiv:2303.04383

§1. BCOV formula of Calabi-Yau manifolds

'92 Cecotti, Fendly, Intligator and Vafa introduced a new index for N=2 SFT in two dimensions,

$$\mathbf{F}_1 = \operatorname{Tr}_{\mathcal{H}}(-1)^F F$$
, $F:$ Ferimion number operator (cf. Witten index $\operatorname{Tr}_{\mathcal{H}}(-1)^F$ is topological.)

This new index is not toplological, but it was argued that

- (1) $\mathbf{F}_1 = \mathbf{F}_1(t, \bar{t})$ splits "almost" to a product $F(t)\overline{F(t)}$, where $t_1, ..., t_r$ are holomorphic coordinates of the moduli of N=2 theory.
- (2) The spliting is not complete, but satisfies the **holomorphic anomaly equation**

$$\frac{\partial}{\partial t_i} \frac{\partial}{\partial \bar{t}_j} \mathbf{F}_1 = \text{Tr}(\mathcal{C}_i \mathcal{C}_{\bar{j}}) + \frac{\chi}{12} g_{i\bar{j}}$$

 $C_i = (C_{ib}^a)$ describes the operator algebra of the ground states $g_{i\bar{j}}$: Zamolodchikov metric, $\chi := Tr(-1)^F$

• In case of N=2 σ -models on a Calabi-Yau 3 fold X, using the so-called special Kähler geometry on $\mathcal{M}_{\check{X}}$, it was solved as

$$\mathbf{F}_1 = \frac{1}{2} \log \left\{ e^{(3+h_X^{1,1} - \frac{\chi}{12})\mathcal{K}(t,\bar{t})} (\det g_{i\bar{j}})^{-1} |f|^2 \right\}$$

• Suppose we have a family of CY 3 folds which has a LCSL at o, then we can take the "topological limit" $\lim_{\bar{t}\to\infty} \mathbf{F}_1(t,\bar{t}) := \lim_{\lambda\to\infty} \mathbf{F}_1(t,\lambda\bar{t})$, where

$$\mathcal{K}(t,\bar{t}) \longrightarrow -\log(w_0(x)\overline{w_0(x)})$$
$$\det(g_{i\bar{j}})^{-1} \longrightarrow \left| \frac{\partial(x_1,...,x_r)}{\partial(t_1,...,t_r)} \right|$$

Definition. (BCOV formula (of log form) for CY 3 folds)

$$F_1^{top}(t) = \frac{1}{2} \log \left\{ \left(\frac{1}{w_0(x)} \right)^{3 + h_X^{1,1} - \frac{\chi}{12}} \frac{\partial (x_1, \dots, x_r)}{\partial (t_1, \dots, t_r)} f(x) \right\}$$

f(x): homolorphic functions which we determine by suitable boundary conditions

Discovery. (BCOV '93) If we set a suitable f(x), $F_1^{top}(t)$ gives a generating function of the genus one Gromov-Witten invariants of X.

Problems:

- · we need to find the holomorphic function f(x)
- the higher genus generating functions $\{(F_g^{top}(t), f_g(x))\}_{\geq 2}$

Still misterious (at least for me) after 30 years since the discovery!

The subject of today:

For K3 surfaces, there are no corrections in F_1^{top} from Gromov-Witten invariants. But, it should be helpful to study expected properties of $F_1^{top}(t)$ in this case.

§2. Lattice polarized K3 surfaces

X: a K3 surface (complex, Kähler, $c_1(T_X) = 0$)

$$L_{K3} := U^{\oplus 3} \oplus E_8(-1) \oplus E_8(-1)$$

 $\phi: H^2(X,\mathbb{Z}) \simeq L_{K3}$ a marking of K3

Fix a primitive embedding $M \hookrightarrow L_{K3}$ $(1, \rho-1)$ (3, 19)

Definitions:

•
$$(X, \phi)$$
: (marked) M -polarized K3 \Leftrightarrow $\phi^{-1}(M) \subset Pic(X)$
 $\phi^{-1}(C_M^{pol}) \subset Amp(X)$

$$\bullet (X_{1}, \phi_{1}) \sim (X_{2}, \phi_{2}) \Leftrightarrow \begin{cases} \exists f : X_{1} \to X_{2} \text{(isom.)} \\ \text{s.t.} \end{cases}$$

$$H^{2}(X_{1}, \mathbb{Z}) \stackrel{\sim}{\leftarrow} H^{2}(X_{2}, \mathbb{Z})$$

$$\phi_{1} \downarrow \chi \qquad \phi_{1} \downarrow \chi$$

$$L_{K3} \stackrel{\sim}{\leftarrow} L_{K3}$$

$$\cup \qquad \qquad \cup$$

$$M = M$$

Moduli space of
$$M$$
-polarized K3 surfaces = $\Omega_M/O(M, L_{K3})$

Period domain

$$\Omega_M = \Omega(M^{\perp}) := \left\{ [w] \in \mathbb{P}(M^{\perp} \otimes \mathbb{C}) | (w.w) = 0, (w, \overline{w}) > 0 \right\}^+$$
$$O(M, L_{K3}) = \left\{ g \in O(L_{K3}) | g|_M = id_M, g \text{ acts on } \Omega_M \right\}$$

Mirror symmetry (Dolgachev '96, Todorov '96)

When we have the decomposition: $M \oplus M^{\perp} = M \oplus U \oplus M \subset L_{K3}$,

M-polarized K3 surfaces \longleftrightarrow \mathring{M} -polarized K3 surfaces

Remark (M-polarizable K3 surfaces, HLOY '01)

- X: M-polarizable K3 surface $\Leftrightarrow \frac{\exists \phi \text{ a marking s.t. } (X, \phi) \text{ is a}}{M$ -polarized K3 surface
- If $M \hookrightarrow L_{K3}$ is unique up to isom., then { isom. classes of M-polarized K3 surfaces } = $\Omega_M/O(M^{\perp})_+$

§3. BCOV formula

- 0. Take an embedding $M \hookrightarrow L_{K3}$ s.t. $M \oplus M^{\perp} = M \oplus U \oplus \check{M} \subset L_{K3}$
- 1. Suppose we have a family of M-polarizable K3 surfaces s.t.

the associated local system $R^2\pi_*\mathbb{C}_{\check{\mathfrak{X}}}$ has a boundary point o, i.e., a LCSL, which is characterized by a certain local solutions

$$w_0(x), w^{(2)}(x), w_1^{(1)}(x), ..., w_r^{(1)}(x)$$

satisfying a quadratic relations
 $2w_0w^{(2)} + (w^{(1)}, w^{(1)})_M = 0.$

2. Then we can define the period map by

3. Define the mirror map by introducing the inhomogeneous coordinates

$$\mathcal{P}(x) = [w_0(x), w^{(2)}(x), w_1^{(1)}, \cdots, w_r^{(1)}] = [1, -\frac{1}{2}(t^2)_M, t_1, \cdots, t_r]$$

which describes the isomorphism

Holomorphic functions on the tube domain $T_M := M \otimes \mathbb{R} + \sqrt{-1}C_M$ with natural transformation properties are called automorphic forms of $O(\check{M}^{\perp})_+$.

4. Automorphic form on T_M .

(1) Write the linear action of $g \in O(\check{M}^{\perp})_+$ by

$$g \cdot (1, -\frac{1}{2}(t^2)_M, t_1, \dots, t_r) = (D(g, t), A(g, t), B_1(g, t), \dots, B_r(g, t)).$$

This induces the action $g:(t_1,...,t_r)\mapsto (g\cdot t_1,...,g\cdot t_r)$ by

$$g \cdot t := \frac{B_i(g, t)}{D(g, t)} \quad (i = 1, ..., r) \quad ("Modular action")$$

(2) Homolorphic functions F(t) on T_M satisfying

$$F(g \cdot t) = D(g, t)^w F(t) \quad (g \in O(\check{M}^\perp)_+)$$

are called automorphic forms of weight w.

Remark. The period integral $w_0(x) = w_0(x(t))$ with the mirror map x = x(t) defines an automorphic form of weight one (with possibly a multiplier v(g)), i.e., it holds that

$$w_0(x(g \cdot t)) = v(g) D(g, t) w_0(x(t)) | (|v(g)| = 1)$$

Definition (H.K. '23) We define **BCOV formula** by

$$\tau_{\scriptscriptstyle BCOV}(t) := \left\{ \left(\frac{1}{w_0(x)} \right)^{r+1} \frac{\partial(x_1, \cdots, x_r)}{\partial(t_1, \cdots, t_r)} \prod_i dis_i^{r_i} \prod_i x_i^{-1+a_i} \right\}$$

where r_i and a_i are parameters to be fixed by boundary conditions.

If $(\tau_{BCOV}(t))^{-1}$ defines a cusp form on $T_M = M \otimes \mathbb{R} + \sqrt{-1}C_M$, we call it **BCOV cusp form.**

Lemma.

The Jacobian factor $\frac{\partial(x_1, \dots, x_r)}{\partial(t_1, \dots, t_r)}$ has weight r (with possibly a multiplier system) w.r.t. $O(\check{M}^{\perp})_+$.

Proof) Recall that
$$\Omega_{\check{M}} \simeq M \otimes \mathbb{R} + \sqrt{-1}C_M$$
 is described by a quadric $\{2uv + (z,z)_M = 0\} \subset \mathbb{P}(\check{M}^\perp \otimes \mathbb{C}).$

Using this, we can show that

$$\frac{u^r}{2}dt_1 \wedge dt_2 \wedge \dots \wedge dt_r = Res\left(\frac{d\mu_{\mathbb{P}^{r+1}}}{2uv + (z, z)_M}\right)$$

$$= Res\left(\frac{d\mu'_{\mathbb{P}^{r+1}}}{2u'v' + (z', z')_M}\right) = \frac{u'^r}{2}dt_1 \wedge dt'_2 \wedge \dots \wedge dt'_r$$

Here we can identify $\frac{u'}{u}$ with the automorphic factor D(g,t).

Proposition.

The inverse power $(\tau_{BCOV}(t))^{-1}$ of the BCOV formula

$$\tau_{BCOV} = \left(\frac{1}{w_0(x)}\right)^{r+1} \frac{\partial(x_1, \dots, x_r)}{\partial(t_1, \dots, t_r)} \prod_k dis_k^{r_k} \prod_i x_i^{-1+a_i}$$

has weight one with respect to $O(\check{M}^{\perp})_+$.

Proof) The period integral $w_0(x(t))$ has weight one as we remarked.

Since, the Jacobian has weight r, the weight of $(\tau_{BCOV})^{-1}$ is one. \square

Remark. We determine the parameters r_k and a_i by the following reularities:

- (1) Conifold regularity \cdots a regularity at the discriminant loci $\{dis_k(x) = 0\}$.
 - \rightarrow it turns out $r_k = -\frac{1}{2}$ in general
- (2) **Orbifold regularity** \cdots a regularity from the so-called orbifold points.

Example 1. (6) $\subset \mathbb{P}^3(3,1,1,1)$ $(M_2 = \langle 2 \rangle \text{-polarized K3 surface}) \to M_2 \oplus U \oplus \check{M}_2$

 $\check{M}_2 = \langle -2 \rangle \oplus U \oplus E_8(-1)^{\oplus 2}$ -polarizable K3 surfaces (a Picard rank 19 family of K3 surfaces)

- 1. Picard-Fuchs equation $\{\theta_x^3 8x(6\theta_x + 5)(6\theta_x + 3)(\theta_x + 1)\}w(x) = 0$
- 2. mirror map $x(t) = \frac{1}{j(t)}$, $w_0(x) = E_4(t)^{\frac{1}{2}}$
- 3. $\left(\frac{1}{w_0(t)}\right)^2 C_{xx} \left(\frac{dx}{dt}\right)^2 = 2$, where $C_{xx} = \frac{2}{x^2(1-1728x)}$ is the Griffiths-Yukawa coup.
- 4. $\tau_{BCOV}(t) = \left(\frac{1}{w_0(t)}\right)^2 \left(\frac{dx}{dt}\right) dis_0^{r_0} x^{-1+a}$, where $dis_0 = 1 1727x$

Form the 3rd relation, we have $\frac{dx}{dt} = w_0(x)x(1 - 1728x)^{\frac{1}{2}}$.

Using this (and after a little calculations), we find

$$\left| (\tau_{BCOV}(t))^{-1} = (\eta(t)^{24})^{\frac{1}{6}} \right| \leftarrow \text{BCOV cusp form!}$$

for $r_0 = -\frac{1}{2}$ and $a = -\frac{1}{6}$ (justified by the orbifold regularity).

In this (trivial) case, we obtain a **BCOV** cusp form from $\tau_{BCOV(t)}$.

Example 2. $(M_{20} \oplus U \oplus M_{20} \text{ from the list in Lian and Yau '93})$

$$\check{M}_{20} = \langle -20 \rangle \oplus U \oplus E_8(-1)^{\oplus 2}$$
-polarizable K3 surfaces
(a Picard rank 19 family of K3 surfaces)

1. Picard-Fuchs equation

$$\left\{\theta_x^3 - 2x(2\theta_x + 1)(3\theta_x^2 + 3\theta_x + 1) - x^2(4\theta_x + 3)(4\theta_x + 4)(4\theta_x + 5)\right\}w = 0$$

- 2. mirror map $x(t) = q 4q^2 6q^3 + 56q^4 45q^5 360q^6 + \cdots$ (Thompson series of $\Gamma_0(10)_+$)
- 3. $\left(\frac{1}{w_0(t)}\right)^2 C_{xx} \left(\frac{dx}{dt}\right)^2 = 20$, where $C_{xx} = \frac{20}{x^2(1+4x)(1-16x)}$

Proposition.

The conifold and orbifold regularities uniquely determine the parameters

in
$$\tau_{\text{BCOV}}$$
 as $r_0 = r_1 = -\frac{1}{2}$ and $a = -\frac{3}{4}$. Then, we have

$$\tau_{\text{BCOV}}(t) = \left(\frac{1}{w_0(x)}\right)^2 \frac{dx}{dt} dis_0^{r_0} dis_1^{r_1} x^{-1+a} = \frac{1}{\eta_1(t)\eta_2(t)\eta_5(t)\eta_{10}(t)},$$

and $(\tau_{\text{BCOV}}(t))^{-1}$ defines a BCOV cusp form on \mathbb{H}_+ w.r.t. $\Gamma_0(10)_+$.

Here we define $\eta_k(t) := \eta(kt)$.

Similar calculations apply to other cases of the M_{2n} -polarizable K3 surfaces in the list of Lian and Yau ('93). We can verify the following results for all cases in the list, which we state as a conjecture in general:

Conjecture. (H.K. '23)

For families of $M_{2n} = \langle -2n \rangle \oplus U^{\oplus 2} \oplus E_8(-1)^{\oplus 2}$ -polarizable K3 surfaces over \mathbb{P}^1 , we have the BCOV cusp forms

$$(\tau_{BCOV}(t))^{-1} = \eta_{BCOV}(t)$$

with the eta products,

$$\eta_{\text{BCOV}}(t) = \left(\prod_{r|n} \eta_r(t)^{\pm 1}\right)^w,$$

where +1 is taken when $(r, n/r) \neq 1$ and -1 when (r, n/r) = 1.

Supporting evidence. The eta product $\eta_{BCOV}(t)$ defines a cusp form of the genus zero group $\Gamma_0(n)_+$ if $\#\text{cusps}(\Gamma_0(n)_+)=1$.

Some selected examples of the eta-products $\eta_{BCOV}(t)$:

$$\underline{\Gamma_0(10)_+} \qquad \eta_{BCOV}(t) = \eta_1(t)\eta_2(t)\eta_5(t)\eta_{10}(t)$$

$$\underline{\Gamma_0(16)_+} \qquad \eta_{BCOV}(t) = \frac{\eta_2(t)^4\eta_4(t)^4\eta_8(t)^4}{\eta_1(t)^4\eta_{16}(t)^4}$$

$$\underline{\Gamma_0(29)_+} \qquad \eta_{BCOV}(t) = \eta_1(t)^2\eta_{29}(t)^2$$

$$\underline{\Gamma_0(36)_+} \qquad \eta_{BCOV}(t) = \frac{\eta_2(t)^4\eta_3(t)^4\eta_6(t)^4\eta_{12}(t)^4\eta_{18}(t)^4}{\eta_1(t)^4\eta_4(t)^4\eta_9(t)^4\eta_{36}(t)^4}$$

$$\underline{\Gamma_0(94)_+} \qquad \eta_{BCOV}(t) = \eta_1(t)\eta_2(t)\eta_{47}(t)\eta_{94}(t)$$

$$\vdots$$

• Another aspect of the conjecture – K3 differential operators

If we postulate the cojecture, then the following relations follow:

a)
$$w_0(x) = x^{\gamma} \eta_{BCOV}(t)$$

b)
$$\frac{1}{x(t)} = T_n(t) + c_n$$
 (the Thompson series of $\Gamma_0(n)_+$)

for all the genus zero group $\Gamma_0(n)_+$.

1. We determine γ by requiring the q-series expansion

$$w_0(x) = 1 + a_1 q + a_2 q^2 + \cdots$$

2. Substituting the inverse series $q = x + s_1 x + s_2 x^2 + \cdots$ of $1/x(t) = T_n(t) + c_n$ into the above q series of $w_0(x)$, we obtain $w_0(x) = 1 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$ (*)

Searching differential operators which annihilate the series (*), we find 3rd order differential operators for all genus one groups $\Gamma_0(n)_+$.

Proposition. (H.K.2023)

Assume the conjecture, then we have K3 differential operators of 3rd order for all genus zero groups of type $\Gamma_0(n)_+$.

List of genus zero groups of type $\Gamma_0(n)_+$ (from Conway-Norton '79).

n	type	c	n	type	c	n	type	c	n	type	c	n	type	
1	1A	1	14	14A	1	27	27A	3*	42	42A	1	62	62AB	1
2	2A	1	15	15A	1	28	28B	2	44	44AB	2	66	66A	$\boxed{1}$
3	3A	1	16	16C	3	29	29A	1	45	45A	2	69	69AB	1
4	4A	2	17	17A	1	30	30B	1	46	46CD	1	70	70A	1
5	5A	1	18	18B	2	31	31AB	1	47	47AB	1	71	71AB	$\boxed{1}$
6	6A	1	19	19A	1	32	32A	4	49	49Z	4*	78	78A	1
7	7A	1	20	20A	2	33	33B	1	50	50A	3*	87	87AB	1
8	8A	2	21	21A	1	34	34A	1	51	51A	1	92	92AB	2
9	9A	2	22	22A	1	35	35A	1	54	54A	3*	94	94AB	$\boxed{1}$
10	10A	1	23	23AB	1	36	36A	4	55	55A	1	95	95AB	1
11	11A	1	24	24B	2	38	38A	1	56	56A	2	105	105A	1
12	12A	2	25	25A	3*	39	39A	1	59	59AB	1	110	110A	$\boxed{1}$
13	13A	1	26	26A	1	41	41A	1	60	60B	2	119	119AB	1

Table 1

An example of K3 differential operator: (for the case $\Gamma_0(36)_+$)

$$\mathcal{D}_{36A} = \theta_x^3 - x(3\theta_x + 1) \left(3\theta_x^2 + 2\theta_x + 1\right) - 6x^2\theta_x \left(12\theta_x^2 - 3\theta_x - 1\right) \\ + 2x^3\theta_x \left(284\theta_x^2 + 405\theta_x + 199\right) + 6x^4\theta_x \left(1156\theta_x^2 + 75\theta_x + 89\right) \\ - 6x^5\theta_x \left(11927\theta_x^2 + 10401\theta_x + 4939\right) \\ + 18x^6 \left(8968\theta_x^3 + 11586\theta_x^2 + 5960\theta_x + 2553\right) \\ + 18x^7 \left(11788\theta_x^3 + 14184\theta_x^2 - 5086\theta_x - 19947\right) \\ - 27x^8 \left(30109\theta_x^3 + 44628\theta_x^2 + 7040\theta_x - 6990\right) \\ - 27x^9 \left(19871\theta_x^3 + 39147\theta_x^2 + 9715\theta_x + 29949\right) \\ + 486x^{10} \left(2664\theta_x^3 + 4503\theta_x^2 + 2623\theta_x + 561\right) \\ + 486x^{11} \left(2892\theta_x^3 + 6453\theta_x^2 + 5465\theta_x + 1657\right) + 360126x^{12}(\theta_x + 1)^3.$$

the number of the cusps is 4, which coincides with the general formula.

§4. Clingher-Doran's family of K3 surfaces

- Clingher and Doran ('12) studied a special quartic $\{f=0\} \subset \mathbb{P}^3$ with $f = y^2 z w 4x^3 z + 3\alpha x z w^2 + \beta z w^3 + \gamma x z^2 w \frac{1}{2} (\delta z^2 w^2 + w^4).$
- They found that
- (1) When $\gamma \neq 0$, $\{f = 0\}$ is a $M = U \oplus E_8(-1) \oplus E_7(-1)$ -polarized K3 surface.
- (2) The parameter space

$$\mathcal{M}_{\mathrm{CD}} := \left\{ [\alpha, \beta, \gamma, \delta] \in \mathbb{WP}^3(2, 3, 5, 6) \mid \gamma \neq 0 \text{ or } \delta \neq 0 \right\}$$

describes a coase moduli space of the M-polarized K3 surfaces.

Note.

- (i) $\Omega_{\check{M}} = \{ [w] \in \mathbb{P}(\check{M}^{\perp} \otimes \mathbb{C}) | (w, w) = 0, (w, \overline{w}) > 0 \}^{+}$ $\simeq \mathbb{H}_{2}$ the Siegel upper half space of genus two
- (ii) $\mathcal{P}: \mathcal{M}_{CD} \to \mathbb{H}_2$ (period map)
- (iii) $O(\check{M}^{\perp})_{+}/\{\pm I_{5}\} \simeq Sp(4,\mathbb{Z})/\{\pm I_{4}\}$

Theorem.(Clingher-Doran, '13)

$$\mathcal{P}^{-1}(\tau) = \left[\mathcal{E}_4(\tau), \, \mathcal{E}_6(\tau), \, 2^{12} 3^5 \chi_{10}(\tau), \, 2^{12} 3^6 \chi_{12}(\tau) \right]$$

where \mathcal{E}_4 and \mathcal{E}_6 are genus two Eisenstein series of weight four and six, and χ_{10} and χ_{12} are Igusa's cusp forms of weight ten and twelve, respectively.

Problem: Determine the BCOV cusp form in this case

To calculate the BCOV cusp forms, we need a family of K3 surfaces with a special boundary point (LCSL).

Results:

- 1. We can represent $\{f=0\} \subset \mathbb{P}^3$ by $\{f_{\Delta}=0\} \subset \mathbb{P}_{\Delta}, \Delta$: reflexive polytope.
- 2. Using Aut(\mathbb{P}_{Δ}) \supseteq (\mathbb{C}^*)³, we can transform $\{f_{\Delta} = 0\}$ to $\{F_{\Delta} = 0\}$ for which we find a LCSL.
 - -In fact, this is exactly in the frame work of the **extended GKZ system** introduced in HKTY ('93) and HLY ('95).

Proposition. (H.K.'23)

- (1) The **conifold regularity** condition determines the parameters $r_k = -\frac{1}{2}$.
- (2) There are **two** orbifold points A and B. Imposing the **orbifold regularity** for each, we obtain,

$$(\tau_{BCOV}(t))^{-1} = \begin{cases} (\chi_{10}(\tau))^{\frac{1}{10}} & \text{for } A\\ (3\chi_{12}(\tau) + \chi_{10}(\tau)\mathcal{E}_4(\tau)^{\frac{1}{2}})^{\frac{1}{12}} & \text{for } B \end{cases}.$$

Remark.

- (i) When $\tau_{12} \to 0$ in $\tau = \begin{pmatrix} \tau_{11} & \tau_{12} \\ \tau_{12} & \tau_{22} \end{pmatrix}$, $\chi_{10}(\tau) \longrightarrow 0, \quad \chi_{12}(\tau) \longrightarrow \eta(\tau_{11})^{24} \eta(\tau_{22})^{24}$
- (ii)When $\tau_{12} \to 0$, the Picard lattice of \check{M} -polarized K3 surfaces extends to $U \oplus E_8(-1)^{\oplus 2}$, or the orthogonal lattice reduces

$$\check{M}^{\perp} = U^{\oplus 2} \oplus \langle -2 \rangle \longrightarrow U^{\oplus 2}$$

§5. Summary and some other aspects

Summary: BCOV formula of K3 surfaces \rightarrow BCOV cusp forms

$$\tau_{BCOV} = \left(\frac{1}{w_0(x)}\right)^{r+1} \frac{\partial(x_1, \dots, x_r)}{\partial(t_1, \dots, t_r)} \prod_k dis_k^{r_k} \prod_i x_i^{-1+a_i}$$

- 1. (Vector-valued) quasi-automorphic forms follow from $\tau_{BCOV}(t)$:
 - for elliptic curves, we have $(\tau_{BCOV}(\tau))^{-1} = \eta(\tau)^2$ and

$$\frac{\partial}{\partial \tau} \log(\tau_{BCOV}(\tau))^{-1} = \frac{1}{12} E_2(\tau)$$

— for K3 surfaces, we have the propagators

$$S^{a}(t) = \sum_{b} K^{ab} \frac{\partial}{\partial t_{b}} \log(\tau_{BCOV}(t))^{-1}$$

- 2. Conjectured relation to the Ray-Singer analytic torsion.
- 3. $\tau_{BCOV}(t)$ for Calabi-Yau 3 folds and $\{(F_g(t), f_g(t))\}_{g\geq 2}$