VLIV TVARU KŘIVKY NA ÚDAJ MĚŘICÍHO PŘÍSTROJE

Jakub Dvořák

4.10.2020

1 Úkol měření

- Změřte napětí na zátěži, jejíž výkon je regulován obvodem s triakem pro úhel sepnutí α přibližně 0°, 45°a 90° předloženými číslicovými multimetry V₁ až V₄.
- 2. Průběh napětí sledujte na osciloskopu (osciloskop připojte na výstup odporového děliče).
- 3. Určete, které z multimetrů měří správně efektivní hodnotu, a určete relativní chybu metody měření efektivní hodnoty u ostatních.
- 4. Z údaje multimetrů, které to umožňují, určete aritmetickou střední hodnotu měřeného průběhu.
- 5. Pro úhel sepnutí α = 90 ° určete aritmetickou střední hodnotu a efektivní hodnotu napětí rovněž výpočtem z definic. Vypočtené hodnoty srovnejte s naměřenými a v případě jejich rozdílu analyzujte možné příčiny.

2 Schéma zapojení

Schéma 1: Zapojení měřícího obvodu [1]

Graf 1: Průběhy měřených napětí [1]

3 Seznam použitých přístrojů

- Ampérmetr A
- Přípravek se dvěma žárovkami Ž₁, Ž₂ a odporovým děličem R₁, R₂
- Ruční multimetr MY64 V₁
- Stolní multimetr HP 34401 A V₂
- Ruční multimetr Summit 45 V₃
- Ručičkový multimetr TVT-321 V₄
- Regulační obvod pro regulaci průběhu proudu

4 Teoretický úvod

Při měření střídavého napětí se využívají dva způsoby, jak zobrazit relevantní hodnotu tj. *střední kvadratickou* (dále jen RMS z anglického *Root Mean Square*). V levnějších multimetrech najdeme obvykle precizní usměrňovač tvořený z operačních zesilovačů. Na výstupu dostaneme aritmetickou střední hodnotu a pro přepočet na RMS se použije koeficient 1,11. Aritmetická hodnota lze spočítat pomocí rovnice 2. Ve dražších multimetrech je k nalezení dedikovaný RMS převodník, příkladem nechť je AD636 od firmy Analog Devices [2]. Díky RMS převodníku dostaneme skutečnou RMS hodnotu také při neharmonických průbězích napětí. Pro obecnou funkci napětí lze použít rovnice 1.

Efektivní hodnota napětí se při přepočtu na výkon dá použít pro popis tepelného výkonu, jestliže by bylo zařízení napájeno stejnosměrným napětím. Naproti tomu střední aritmetická hodnota odpovídá přenesenému náboji.

$$U_{\rm ef} = \sqrt{\frac{1}{T} \int_0^T u^2(t) dt} \tag{1}$$

$$U_{sar} = \frac{1}{T} \int_0^T |u(t)| dt = U_{sar} = \frac{2}{T} \int_0^{\frac{T}{2}} |u(t)| dt$$
 (2)

Pro sinusový průběh můžeme integrál z rovnice 2 vypočítat a dostaneme

$$U_{sar,\alpha} = \frac{U_m}{\pi} \left[-\cos x \right]_{\alpha}^{\pi} \tag{3}$$

a pro efektivní

$$U_{ef,\alpha} = \frac{U_m}{\sqrt{\pi}} \sqrt{\int_{\alpha}^{\pi} \frac{1 - \cos 2x}{2} dx}$$
 (4)

Střední aritmetické a střední kvadratické hodnoty napětí v závislosti na úhlu sepnutí jsou v tabulce 1.

	α = 0 °	α = 45 °	α = 90 °
U_{sar}	$2 \cdot \frac{U_m}{\pi}$	$\frac{U_m}{\pi} \cdot \frac{2+\sqrt{2}}{2}$	$\frac{U_m}{\pi}$
U_{ef}	$\frac{U_m}{\sqrt{2}}$	$\frac{1}{2}\sqrt{\frac{2+3\pi}{2\pi}}U_m$	$\frac{U_m}{2}$

Tabulka 1: Střední aritmetická a efektivní hodnota v závislosti na úhlu sepnutí

5 Naměřené hodnoty

Dle odečtu z videa byly naměřeny hodnoty zobrazené v tabulce 2.

Úhel sepnutí	MY64 $\frac{U}{V}$	HP 34401 a $\frac{U}{V}$	Summit 45 $\frac{U}{V}$	TVT-321 $\frac{U}{V}$
0 °	50,6	50,431	49,5	50
45 °	48,2	49,55	46,3	47,8
90 °	32,5	39,530	30,64	30

Tabulka 2: Naměřené hodnoty

6 Zpracování naměřených hodnot

Pro přepočet ze střední kvadratické na maximální napětí U_m využijeme vzorce

$$U_m = U_{ef} \cdot \sqrt{2} \text{ pro } 0^{\circ},$$

$$U_m = U_{ef} \cdot 2\sqrt{\frac{2\pi}{2+3\pi}} \text{ pro } 45^{\circ},$$

$$U_m = U_{ef} \cdot 2 \text{ pro } 90^{\circ},$$

čímž dostaneme tabulku 3 maximálních napětí, které naměřily různé multimetry pro různé úhly spuštění:

Úhel sepnutí	MY64 $\frac{U_m}{V}$	HP 34401 a $\frac{U_m}{V}$	Summit 45 $\frac{U_m}{V}$	TVT-321 $\frac{U_m}{V}$
0 °	71,559	71,320	70,004	70,711
45 °	35,745	36,746	34,336	35,448
90 °	65,000	79,060	61,260	60,000

Tabulka 3: Vypočítané hodnoty maximálního napětí U_m

Z hodnot U_m pro 0 °si poté s použitím vzorců z tabulky 1 vypočítáme správná efektivní napětí U_{ef} a porovnáme s naměřenými hodnotami z tabulky 2.

Úhel sepnutí	MY64 $\frac{U_{ef}}{V}$	HP 34401 a $\frac{U_{ef}}{V}$	Summit 45 $\frac{U_{ef}}{V}$	TVT-321 $\frac{U_{ef}}{V}$
0 °	50,6	50,431	49,5	50
45 °	48,246	48,086	47,2	47,675
90 °	35,779	35,66	35	35,355

Tabulka 4: Hodnoty U_{ef} spočítané podle $U_{m,0}$ ° z tabulky 3

Při porovnání s tabulkou hodnot 2, které jsme naměřili je vidět, že při úhlu zapnutí $\alpha = 90^{\circ}$ jsou všechna měřená napětí velice odlišná od vypočítaných napětí. Nejrelevantnější způsob popisu je pomocí *relativní chyby měření*

Pro relativní chybu měření nejdříve potřebujeme znát absolutní chybu δ_M Ta se vypočítá jako $\delta_X = X_M - X_S$, kde X_M je měřená hodnota a X_S je skutečná hodnota. Relativní chybu následně vypočítáme jako $\Delta_X = \delta_X/X_M$. Měřená hodnota byla brána z tabulky 2 a skutečná hodnota z tabulky 4. Obě pro úhel sepnutí 90°. Hodnoty jednotlivých absolutních a relativních chyb jsou v tabulce 5.

	MY64	HP 34401 A	Summit 45	TVT-321	rozměr
Absolutní	3,28	3,87	4,372	5,355	V
Relativní	0,101	0,098	0,143	0,179	1

Tabulka 5: Absolutní a relativní chyby měření pro úhel sepnutí α = 90 °

Pro zjištění střední aritmetické hodnoty využijeme tabulku maximálních napětí 3, která má pro každý průběh vypočítané U_m odpovídající měřené hodnotě U_{ef} . Proto můžeme tuto hodnotu použít spolu se vzorci z tabulky 1 na spočítání U_{sar} . Hodnoty U_{sar} pro jednotlivé průběhy a multimetry jsou zanesené v tabulce 6.

Úhel sepnutí	MY64 $\frac{U_{sar}}{V}$	HP 34401 a $\frac{U_{sar}}{V}$	Summit 45 $\frac{U_{sar}}{V}$	TVT-321 $\frac{U_{sar}}{V}$
0 °	45,55	45,40	44,57	45,02
45 °	26,19	26,92	25,16	25,97
90 °	20,69	25,17	19,5	19,1

Tabulka 6: Hodnoty U_{sar} spočítané podle $U_{m,0}\circ$ z tabulky 3

7 Závěrečné vyhodnocení

Ověřili jsme, že úhel sepnutí sinusového průběhu má vliv na efektivní hodnotu napětí. Tohoto je využito například ve stmívačích světel, díky čemuž jde regulovat výkon, který jde od žárovky.

Jelikož spínací triak pouze vede/nevede, netvoří se na něm takové výkonové ztráty, jako například na tranzistoru, který by reguloval stejnosměrný proud.

Multimetry, které jsem využili, neměřily ani v jednom případě správnou efektivní hodnotu a jejich relativní chyba měření se pohybovala od 0,098 do 0,179, což je velice špatný výsledek. A to i u multimetru HP, který by podle *datasheetu* měl mít funkci *True RMS* [3].

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

- [1] Návod k laboratorní úloze
- [2] https://www.analog.com/media/en/technical-documentation/data-sheets/AD636.pdf
- [3] https://moodle.fel.cvut.cz/pluginfile.php/267148/mod_resource/content/1/Devices%20Data%20Sheets.pdf