

### Instituto Superior Técnico

## MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

## Electrónica de Potência

# Simulações para o 3º Trabalho de laboratório

| João Bernardo Sequeira de Sá             | n.º 68254        |
|------------------------------------------|------------------|
| Maria Margarida Dias dos Reis            | $\rm n.^o~73099$ |
| Rafael Augusto Maleno Charrama Gonçalves | $\rm n.^o~73786$ |
| Nuno Miguel Rodrigues Machado            | n.º 74236        |

Grupo do turno de segunda-feira das 17h00 - 2000

Lisboa, de Dezembro de 2015

## ${\rm \acute{I}ndice}$

| 1 | Con | nversor BUCK                                   | 2 |
|---|-----|------------------------------------------------|---|
|   | 1.1 | Carga Resistiva, $R$                           | 2 |
|   | 1.2 | Carga Resistiva e inductiva, $RL$              | 3 |
|   | 1.3 | Carga Resistiva, inductiva e capacitiva, $RLC$ | 4 |
| 2 | Con | $nversor\ Boost$                               | 4 |
| 3 | Co  | nveror CC-CC Reductor-Amplificador Buck-Boost  | 5 |

#### 1 Conversor BUCK

Foi utilizado três configurações do conversor BUCK com objetivo de o compreender melhor, em primeiro lugar é realizado a simulação para uma carga resistiva, R, depois para uma carga resistiva e indutiva, RL, e por fim para uma carga capacitiva, indutiva e resistiva, RLC.

#### 1.1 Carga Resistiva, R

O circuito utilizado na simulação é referido na imagem Figura 1



Figura 1: Circuito do conversor BUCK com carga resitiva, R.

O sinal de controlo de comando é representado por uma onda quadrada de 50kHz com um duty cycle de 50%. Assim sendo pode-se visualizar na Figura 2 a tensão e corrente na carga.



Figura 2: Tensão (sinal vermelho)e corrente (sinalazul) de saida.

#### 1.2 Carga Resistiva e inductiva, RL

De igual forma pode-se apresentar o circuito de simulação que está referenciado na Figura 3.



Figura 3: Circuito do conversor BUCK com carga resitiva e inductiva, RL.

Alterando a frequência do sinal de comando para 10kHz obtém-se o seguinte resultado da tensão e da corrente na carga.



Figura 4: Tensão (sinal vermelho)e corrente (sinalazul) de saida.

Para o regime não lacunar, quando a corrente na carga passa por zero, corresponde a uma frequência do sinal de controlo aproximado a 8.3kHz obtende-se o seguinte resultado.



Figura 5: Tensão (sinal a vermelho) e corrente (sinal a azul) na saída.

#### 1.3 Carga Resistiva, inductiva e capacitiva, RLC

Foi acrescentado um condensador de 15 nF em paralelo com a carga RL obtendo-se assim o seguinte circuito de simulação.



Figura 6: Circuito do conversor BUCK com carga resitiva, inductiva e capacitiva, RLC.

Obtendo-se o seguinte resultado para a tensão e corrente na carga.



Figura 7: Tensão (sinal vermelho)e corrente (sinal azul) na carga.

#### 2 Conversor Boost

Outro conversor estudado é o conversor Boost. Na Figura 8 está representado o circuito de simulação utilizado.



Figura 8: Circuito do conversor Boost.

A forma de onda da corrente e da tensão na bobine podem ser visualizados na Figura 9



Figura 9: Tensão (sinal vermelho)e corrente (sinal azul) na bobine.

#### 3 Converor CC-CC Reductor-Amplificador Buck-Boost

Outro conversor CC-CC aqui simulado é o Buck-Boost. Na Figura 10 está definido o circuito usado na simulação.



Figura 10: Circuito do conversor Buck-Boost.

De seguida é apresentado o resultado da simulação do circuito apresentado para confirmar o correcto funcionamento do circuito. Inicialmente é apresentado as formas de ondas da tensão e corrente na bobine.



Figura 11: Simulação do circuito conversor *Buck-Boost*, onde é apresentado a tensão na carga (Vermelho), a corrente na bobine (Azul) e o sinal de controlo (Verde).

Confirmando o correcto funcionamento do circuito é apresentado as formas de onda no diode da tensão e corrente.



Figura 12: Simulação do circuito conversor Buck-Boost, onde é apresentado a tensão na carga (Verde), a corrente no diode (Azul) e o sinal de controlo (Vermelho).