Seminari 2

Matematičke metode za informatičare

Damir Horvat

FOI. Varaždin

Zadatak 2

Na stranici \overline{BC} trokuta ABC zadana je točka M takva da je $|BM|=\frac{2}{3}|BC|$ i točka N na stranici \overline{AC} takva da je |CA|=4|CN|. Neka je S presjek dužina \overline{AM} i \overline{BN} . Nađite omjere u kojima točka S dijeli dužine \overline{AM} i \overline{BN} .

2/17

Zadatak 1

Točka D leži na stranici \overrightarrow{BC} trokuta ABC i dijeli tu stranicu u omjeru 2 : 3. Prikažite vektor \overrightarrow{AD} kao linearnu kombinaciju vektora \overrightarrow{AB} i \overrightarrow{AC} .

Rješenje

|BD| : |CD| = 2 : 3

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \frac{2}{5}\overrightarrow{BC} =$$

$$= \overrightarrow{AB} + \frac{2}{5}(\overrightarrow{BA} + \overrightarrow{AC}) =$$

$$= \overrightarrow{AB} + \frac{2}{5}\overrightarrow{BA} + \frac{2}{5}\overrightarrow{AC} =$$

$$= \overrightarrow{AB} - \frac{2}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC} =$$

$$= \frac{3}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}$$

$$\overrightarrow{AD} = \frac{3}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}$$

1/17

$$\overrightarrow{BS} = \mu \overrightarrow{BN} = \mu \left(\overrightarrow{BC} + \overrightarrow{CN} \right) = \mu \left(-\overrightarrow{CB} + \frac{1}{4}\overrightarrow{CA} \right) = \frac{\mu}{4}\overrightarrow{CA} - \mu \overrightarrow{CB}$$

$$\overrightarrow{BS} = \overrightarrow{BA} + \overrightarrow{AS} = \left(\overrightarrow{BC} + \overrightarrow{CA} \right) + \lambda \overrightarrow{AM} =$$

$$= -\overrightarrow{CB} + \overrightarrow{CA} + \lambda \left(\overrightarrow{AC} + \overrightarrow{CM} \right) = -\overrightarrow{CB} + \overrightarrow{CA} - \lambda \overrightarrow{CA} + \lambda \overrightarrow{CM} =$$

$$= (1 - \lambda)\overrightarrow{CA} - \overrightarrow{CB} + \lambda \cdot \frac{1}{3}\overrightarrow{CB} = (1 - \lambda)\overrightarrow{CA} + \left(\frac{\lambda}{3} - 1\right)\overrightarrow{CB}$$
_{3/17}

Zadatak 3

Zadan je paralelogram ABCD i točka T na stranici \overline{AB} takva da je $|AT| = \frac{1}{n}|AB|$ za neki realni broj n > 1. Neka je S presjek dužina \overline{AC} i \overline{TD} . Odredite omjer u kojemu točka S dijeli dužinu \overline{AC} .

5 / 17

Skalarni produkt vektora

- $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\vec{a}, \vec{b}), \quad \vec{a}, \vec{b} \neq \vec{0}$
- $\bullet \ \cos(\vec{a}, \vec{b}) = \frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|}$
- $\bullet \ \vec{a}^2 = |\vec{a}|^2$
- $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \vec{b} = 0$

8 / 17

9 / 17

Zadatak 4

Zadani su okomiti vektori $\vec{a} = \vec{m} + 2\vec{n}$ i $\vec{b} = 5\vec{m} - 4\vec{n}$ pri čemu su \vec{m} i \vec{n} jedinični vektori.

- a) Izračunajte kut između vektora \vec{m} i \vec{n} .
- b) Odredite duljinu vektora $\vec{a} + \vec{b}$.

10 / 17

11 / 17

OPREZ

$$|\vec{a}|^2 = \vec{a}^2 / \sqrt{}$$

Opusti se! Sad ćemo popraviti.

Rješenje

$$\vec{a} = \vec{m} + 2\vec{n}, \quad \vec{b} = 5\vec{m} - 4\vec{n}, \quad |\vec{m}| = 1, \quad |\vec{n}| = 1, \quad \vec{a} \perp \vec{b}$$

a)
$$\triangleleft (\vec{m}, \vec{n}) = ?$$

$$\cos\left(\vec{m},\vec{n}\,\right) = \frac{\vec{m}\cdot\vec{n}}{|\vec{m}|\cdot|\vec{n}|}$$

$$\cos\left(\vec{m},\vec{n}\right) = \frac{\frac{1}{2}}{1\cdot 1}$$

$$\cos\left(\vec{m},\vec{n}\right)=\frac{1}{2}$$

$$\sphericalangle(\vec{m},\vec{n}\,)=60^\circ$$

$$\vec{a} \cdot \vec{b} \stackrel{\checkmark}{=} 0$$
$$(\vec{m} + 2\vec{n}) \cdot (5\vec{m} - 4\vec{n}) = 0$$
$$5\vec{m}^2 - 4\vec{m}\vec{n} + 10\vec{m}\vec{n} - 8\vec{n}^2 = 0$$

$$5|\vec{m}|^2 + 6\vec{m}\vec{n} - 8|\vec{n}|^2 = 0$$

$$5 \cdot 1^2 + 6\vec{m}\vec{n} - 8 \cdot 1^2 = 0$$

$$6\vec{m}\vec{n}-3=0$$

$$\vec{m}\vec{n} = \frac{1}{2}$$

$$\vec{a} = \vec{m} + 2\vec{n}, \quad \vec{b} = 5\vec{m} - 4\vec{n}, \quad |\vec{m}| = 1, \quad |\vec{n}| = 1, \quad \vec{a} \perp \vec{b}$$

b)
$$\left| \vec{a} + \vec{b} \right| = ?$$

$$\vec{a} + \vec{b} = (\vec{m} + 2\vec{n}) + (5\vec{m} - 4\vec{n}) = 6\vec{m} - 2\vec{n}$$
$$|\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b})^2 = (6\vec{m} - 2\vec{n})^2 =$$
$$= 36\vec{m}^2 - 24\vec{m}\vec{n} + 4\vec{n}^2 =$$
$$= 36|\vec{m}|^2 - 24\vec{m}\vec{n} + 4|\vec{n}|^2 =$$
$$= 36 \cdot 1^2 - 24 \cdot \frac{1}{2} + 4 \cdot 1^2 = 28$$

$$\left| \vec{a} + \vec{b} \right|^2 = 28$$
 -www $\left| \vec{a} + \vec{b} \right| = \sqrt{28}$ -www $\left| \vec{a} + \vec{b} \right| = 2\sqrt{7}$

12 / 17

a)
$$\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{AE} = -\overrightarrow{AB} + \frac{4}{5}\overrightarrow{AC} = -\overrightarrow{AB} + \frac{4}{5}\left(\overrightarrow{AB} + \overrightarrow{AD}\right) =$$

$$= -\overrightarrow{AB} + \frac{4}{5}\overrightarrow{AB} + \frac{4}{5}\overrightarrow{AD} = -\frac{1}{5}\overrightarrow{AB} + \frac{4}{5}\overrightarrow{AD}$$

$$\overrightarrow{BE} = -\frac{1}{5}\overrightarrow{AB} + \frac{4}{5}\overrightarrow{AD} \xrightarrow{\text{www}} \overrightarrow{BE} = \left(-\frac{1}{5}, \frac{4}{5}\right)$$

koordinate vektora \overrightarrow{BE} u bazi $\mathcal B$

14 / 17

Zadatak 5

Zadan je paralelogram ABCD s duljinama stranica |AB|=5, |AD|=3 i kutom $\triangleleft DAB=60^\circ$. Na dijagonali \overline{AC} zadana je točka E takva da je $|AE|=\frac{4}{5}|AC|$.

- a) Prikažite vektor \overrightarrow{BE} u bazi $\mathcal{B} = (\overrightarrow{AB}, \overrightarrow{AD})$. Koje su koordinate vektora \overrightarrow{BE} u bazi \mathcal{B} ?
- b) Izračunajte skalarni produkt vektora \overrightarrow{BE} i \overrightarrow{BA} .
- c) Izračunajte duljinu vektora \overrightarrow{BE} .
- d) *Izračunajte kut ⊲ABE*.

b)
$$\overrightarrow{BE} \cdot \overrightarrow{BA} = \left(-\frac{1}{5}\overrightarrow{AB} + \frac{4}{5}\overrightarrow{AD} \right) \cdot \left(-\overrightarrow{AB} \right) = \frac{1}{5}\overrightarrow{AB}^2 - \frac{4}{5}\overrightarrow{AB} \cdot \overrightarrow{AD} =$$

$$= \frac{1}{5}|\overrightarrow{AB}|^2 - \frac{4}{5}\overrightarrow{AB} \cdot \overrightarrow{AD} = \frac{1}{5} \cdot 5^2 - \frac{4}{5} \cdot \frac{15}{2} = -1$$

$$\overrightarrow{AB} \cdot \overrightarrow{AD} = \left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{AD} \right| \cdot \cos \left(\overrightarrow{AB}, \overrightarrow{AD} \right) = 5 \cdot 3 \cdot \cos 60^{\circ} = \frac{15}{2}$$

