

Artificial Intelligence for developers

8 weekend per diventare Machine Learning Specialist

Natural Language Processing

Maurizio Atzori Università degli Studi di Cagliari atzori@unica.it

February 9-10, 2024

Outline of the course

- Intro on AI, ML and NLP
- Text Processing
- Words and Corpora
- Lexical similarity
- Language Modeling
- Text Classification
- Semantic similarity
- Knowledge Graphs
- Intro to Large Language Models

Intro

Words and Corpora

How many words in a sentence?

- "I do uh main- mainly business data processing"
 - Fragments, filled pauses
- "Seuss's cat in the hat is different from other cats!"
 - Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars and their

Type: an element of the vocabulary.

Token: an instance of that type in running text.

How many?

- 15 tokens (or 14)
- 13 types (or 12) (or 11?)

How many words in a corpus?

N = number of tokens

 $V = \text{vocabulary} = \text{set of types}, \ |V| \text{ is size of vocabulary}$ Heaps Law = Herdan's Law = $|V| = kN^{\beta}$ where often .67 < β < .75 i.e., vocabulary size grows with > square root of the number of word tokens

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
COCA	440 million	2 million
Google N-grams	1 trillion	13+ million

Corpora

Words don't appear out of nowhere! A text is produced by

- a specific writer(s),
- at a specific time,
- in a specific variety,
- of a specific language,
- for a specific function.

Corpora vary along dimension like

- Language: 7097 languages in the world
- Variety, like African American Language varieties.
 - AAE Twitter posts might include forms like "iont" (I don't)
- Code switching, e.g., Spanish/English, Hindi/English:

S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)

[For the first time I get to see @username actually being hateful! it was beautiful:)]

H/E: dost that or ra- hega ... don't wory ... but dherya rakhe ["he was and will remain a friend ... don't worry ... but have faith"]

- Genre: newswire, fiction, scientific articles, Wikipedia
- Author Demographics: writer's age, gender, ethnicity,
 SES

Corpus datasheets

Gebru et al (2020), Bender and Friedman (2018)

Motivation:

- Why was the corpus collected?
- By whom?
- Who funded it?

Situation: In what situation was the text written? **Collection process**: If it is a subsample how was it sampled? Was there consent? Pre-processing?

+Annotation process, language variety, demographics, etc.

Words and Corpora

Word tokenization

Words and Corpora

Text Normalization

Every NLP task requires text normalization:

- 1. Tokenizing (segmenting) words
- 2. Normalizing word formats
- 3. Segmenting sentences

Space-based tokenization

A very simple way to tokenize

- For languages that use space characters between words
 - Arabic, Cyrillic, Greek, Latin, etc., based writing systems
- Segment off a token between instances of spaces

Unix tools for space-based tokenization

- The "tr" command
- Inspired by Ken Church's UNIX for Poets
- Given a text file, output the word tokens and their frequencies

Simple Tokenization in UNIX

(Inspired by Ken Church's UNIX for Poets.)

Given a text file, output the word tokens and their

Change all non-alpha to newlines

frequencies

```
Sort in alphabetical order
| sort | Merge and count each type |
| uniq -c
```

```
1945 A
72 AARON
19 ABBESS
25 Aaron
5 ABBOT
6 Abate
1 Abates
5 Abbess
6 Abbey
3 Abbot
```

The first step: tokenizing

. . .

```
tr -sc 'A-Za-z' '\n' < shakes.txt | head
THE
SONNETS
by
William
Shakespeare
From
fairest
creatures
We
```

The second step: sorting

```
tr -sc 'A-Za-z' '\n' < shakes.txt | sort | head
A
A
A
A
```

More counting

Merging upper and lower case

12780 a

12163 you 10839 my 10005 in 8954 d

What happened here?

Issues in Tokenization

Can't just blindly remove punctuation:

- m.p.h., Ph.D., AT&T, cap'n
- prices (\$45.55)
- o dates (01/02/06)
- URLs (http://www.stanford.edu)
- hashtags (#nlproc)
- email addresses (someone@cs.colorado.edu)

Clitic: a word that doesn't stand on its own

"are" in we're, French "je" in j'ai, "le" in l'honneur

When should multiword expressions (MWE) be words?

New York, rock 'n' roll

Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O'Reilly

```
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
([A-Z]\setminus.)+ # abbreviations, e.g. U.S.A.
... | \w+(-\w+)*
                       # words with optional internal hyphens
# currency and percentages, e.g. $12.40, 82%
. . . | \.\.\.
                       # ellipsis
   [][.,;"'?():-_'] # these are separate tokens; includes ], [
   , , ,
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
```

Tokenization in languages without spaces

Many languages (like Chinese, Japanese, Thai) don't use spaces to separate words!

How do we decide where the token boundaries should be?

Word tokenization in Chinese

Chinese words are composed of characters called "hanzi" (or sometimes just "zi")

Each one represents a meaning unit called a morpheme.

Each word has on average 2.4 of them.

But deciding what counts as a word is complex and not agreed upon.

How to do word tokenization in Chinese?

姚明进入总决赛 "Yao Ming reaches the finals"

3 words? 姚明 进入 总决赛 YaoMing reaches finals

How to do word tokenization in Chinese?

姚明进入总决赛 "Yao Ming reaches the finals"

```
3 words?
姚明 进入 总决赛
YaoMing reaches finals
```

```
5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals
```

How to do word tokenization in Chinese?

```
姚明进入总决赛 "Yao Ming reaches the finals"
3 words?
姚明 进入 总决赛
YaoMing reaches finals
5 words?
姚 明 进入 总 决赛
Yao Ming reaches overall finals
7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game
```

Word tokenization / segmentation

So in Chinese it's common to just treat each character (zi) as a token.

- So the segmentation step is very simple
 In other languages (like Thai and Japanese), more complex word segmentation is required.
 - The standard algorithms are neural sequence models trained by supervised machine learning.

Another option for text tokenization

Instead of

- white-space segmentation
- single-character segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts of words as well as whole words)

Subword tokenization

Three common algorithms:

- Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
- Unigram language modeling tokenization (Kudo, 2018)
- WordPiece (Schuster and Nakajima, 2012)

All have 2 parts:

- A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens).
- A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Word tokenization

Words and Corpora

Word normalization and other issues

Words and Corpora

Word Normalization

Putting words/tokens in a standard format

- U.S.A. or USA
- uhhuh or uh-huh
- Fed or fed
- am, is, be, are

Case folding

Applications like IR: reduce all letters to lower case

- Since users tend to use lower case
- Possible exception: upper case in mid-sentence?
 - e.g., *General Motors*
 - Fed vs. fed
 - SAIL vs. sail

For sentiment analysis, MT, Information extraction

Case is helpful (*US* versus *us* is important)

Lemmatization

Represent all words as their lemma, their shared root = dictionary headword form:

- \circ am, are, is \rightarrow be
- car, cars, car's, cars' → car
- Spanish quiero ('I want'), quieres ('you want')
 - → querer 'want'
- He is reading detective stories
 - → He be read detective story

Lemmatization is done by Morphological Parsing

Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Parts that adhere to stems, often with grammatical functions

Morphological Parsers:

- Parse cats into two morphemes cat and s
- Parse Spanish amaren ('if in the future they would love')
 into morpheme amar 'to love', and the morphological
 features 3PL and future subjunctive.

Stemming

Reduce terms to stems, chopping off affixes

crudely

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.

Thi wa not the map we found in Billi Bone s chest but an accur copi complet in all thing name and height and sound with the singl except of the red cross and the written note

.

Porter Stemmer

Based on a series of rewrite rules run in series

 A cascade, in which output of each pass fed to next pass

Some sample rules:

```
ATIONAL \rightarrow ATE (e.g., relational \rightarrow relate)

ING \rightarrow \epsilon if stem contains vowel (e.g., motoring \rightarrow motor)

SSES \rightarrow SS (e.g., grasses \rightarrow grass)
```

Dealing with complex morphology is necessary for many languages

- e.g., the Turkish word:
- Uygarlastiramadiklarimizdanmissinizcasina
- `(behaving) as if you are among those whom we could not civilize'
- Uygar `civilized' + las `become'
 - + tir `cause' + ama `not able'
 - + dik `past' + lar 'plural'
 - + imiz 'p1pl' + dan 'abl'
 - + mis 'past' + siniz '2pl' + casina 'as if'

Sentence Segmentation

- !, ? mostly unambiguous but **period** "." is very ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Common algorithm: Tokenize first: use rules or ML to classify a period as either (a) part of the word or (b) a sentence-boundary.
 - An abbreviation dictionary can help
- Sentence segmentation can then often be done by rules based on this tokenization.

Word normalization and other issues

Words and Corpora