

Enrolment No:	
Name of Student:	
Department/ School:	

END-TERM EXAMINATION EVEN SEMESTER 2021-22

COURSE CODE

CSET106

MAX. DURATION

2 HRS

COURSE TITLE

Discrete Mathematical Structures

COURSE CREDIT

4(3L-1T-0P)

TOTAL MARKS:

35

GENERAL INSTRUCTIONS: -

- 1. Do not write anything on the question paper except name, enrolment number and department/school.
- 2. Carrying mobile phone, smart watch and any other non-permissible materials in the examination hall is an act of UFM.
- 3. Do not unnecessarily smile at the person sitting next to you, he/she may also not know the answer, moreover exam hall is not the right place for networking.
- 4. Answer without logic is illogical (simple logic)
- 5. It's good to have lot of beautiful options in life but all questions are compulsory here.

All the best!!!

Part A

1. Consider two fuzzy sets of the set $U = \{a, b, c, d, e, f\}$ referred to as \tilde{A} and \tilde{B} such that

 $\tilde{A} = \{(a, 0.3), (b, 1), (c, 0.5), (d, 0.57), (e, 0.25), (f, 0)\}$

 $\tilde{B} = \{(a, 0.03), (b, 0), (c, 0.8), (d, 1), (e, 0.5), (f, 0.68)\}\$

Compute the following:-

- I. $supp(\tilde{A})$ and $supp(\tilde{B})$
- II. $core(\tilde{A})$ and $core(\tilde{B})$
- III. $n(\tilde{A})$ and $n(\tilde{B})$
- IV. ÃUÃ
- $V. \tilde{A} \cap \tilde{B}$
- VI. If x=0.4, then $x.\tilde{A}$ and $x.\tilde{B}$
- VII. If x=3, then \tilde{A}^x and \tilde{B}^x
- VIII. α -cut of \tilde{A} and \tilde{B} for $\alpha = 0.5$
- IX. α -strong cut of \tilde{A} and \tilde{B} for $\alpha = 0.5$
- X. $h(\tilde{A})$ and $h(\tilde{B})$

(5)

	Consider a relation R defined on set A= {1,2,3,4} as R = {(1,1), (2,3), (3,3), (3,4), (4,1), (4,3)} Compute the following:- I. R ⁻¹ and R ² II. 0-1 matrix for relation R and R ⁻¹ . III. Draw the diagraph of R and R ² . IV. Find whether RoR ⁻¹ and RoR are equivalent relations or not! V. Find the transitive closure of R.	(5)
3.	Find the solution of the following linear congruences using Chinese Remainder Theorem.	(5)
	$x \equiv 2 \pmod{4}$	
	$x \equiv 3 \pmod{5}$	
	$x \equiv 1 \pmod{9}$	
4.	Define any 5 types of simple graphs with example and appropriate diagrams.	(5)
	Part B	
5.	Draw the Hasse diagram for the $\langle P(S), \subseteq \rangle$, where $S=\{0,1,2\}$. Is it a lattice?	(3)
6.	Draw the truth table for the following logical expression	(3)
	$P \vee Q \wedge (R \rightarrow \neg Q) \wedge P \Leftrightarrow Q$	
7.	Find gcd(270,192) using Euclidean Algorithm.	(3)
	Part C	
8.	Determine whether the given statements are True or False:-	(6)
	(a) A set with zero element is called a Singleton set.	
	(b) In the Digraph of anti-symmetric relation, self loops are allowed.	
	(c) Let <a,r> be a POSET, if least upper bound and greatest lower bound exists for ever pair of elements in A, then POSET is not a lattice.</a,r>	y
	(d) If T is false and F is true, then $T \to F$ is True.	
	(e) The complete graph of 4 vertices has 6 edges.	
	(f) Chromatic number of a 4 vertices wheel graph is 3.	