1. Select all columns from the employee table.

Dutput

employee_id	employee_name	department_id	hire_date	salary
1	John Doe	1	2022-01-01	50000
2	Jane Smith	2	2022-02-15	60000
3	Bob Johnson	1	2022-03-20	55000
4	Alice Brown	4	2022-04-10	70000
5	Charlie Wilson	2	2022-05-05	65000

2. Select unique department names from the 'department' table:

Output

department_r	ame
HR	
Finance	
Sales	
IT	
Marketing	

3. Select employee names and salaries from the 'employee' table, ordered by salary in descending order:

SELECT employee_name, salary FROM employee order by salary DESC;

Dutput

employee_name	salary
Alice Brown	70000
Charlie Wilson	65000
Jane Smith	60000
Bob Johnson	55000
John Doe	50000

4. Select products with a price between £100 and £500 from the 'product' table:

SELECT Product_name, price FROM product
where price >= 100 and price <=500;</pre>

Dutput

product_name	price
Printer	200
Desk Chair	150

5. Select orders made by employees in the 'IT' department by joining 'purchase' and 'employee' tables:

```
Select order_id, order_date, employee_name from purchase
join employee
on purchase.employee_id = employee.employee_id
where employee.department_id=4
;
```

Dutput

order_id	order_date	employee_name
4	2023-04-20	Alice Brown

6.Select products with names containing 'Chair' using a wildcard:

```
$ELECT * FROM product
WHERE product_name LIKE '%Chair';
```

Output

product_id	product_name	price	stock_quantity
4	Desk Chair	150	20

7. Select orders made by employees with IDs 1, 3, and 5:

```
SELECT * FROM purchase
WHERE employee_id IN ('1', '3', '5');
```

Output

order_id	employee_id	product_id	order_date	quantity
1	1	2	2023-01-05	3
2	3	1	2023-02-10	2
5	5	4	2023-05-25	2

8. Select the average salary of all employees:

```
SELECT AVG(salary)
FROM employee;

Output

AVG(salary)
60000
```

9. Select employees hired after '2022-03-01' with a salary greater than £60000:

```
SELECT *
FROM employee
WHERE hire_date >= '2022-03-01' and salary >= 60000;
```

Dutput

employee_id	employee_name	department_id	hire_date	salary
4	Alice Brown	4	2022-04-10	70000
5	Charlie Wilson	2	2022-05-05	65000

10. Select departments with more than 1 employee, counting the number of employees in each department:

```
department.department_id,
  department_name,
  COUNT(employee.department_id) as num_employees
FROM department
JOIN employee
ON employee.department_id = department.department_id
GROUP BY department.department_id
HAVING num_employees > 1;
```

Output

department_id	department_name	num_employees
1	HR	2
2	Finance	2