Vincent Arumadri

Department of Public Health

Frasmus MC

8th April, 2025

Non-linear association between rainfall and vector abundance and outbreak risk

Caldwell et al. 2021, Nature Communications

Motivation

Crossbasis

Application

DLNMs: Conceptual model

Rainfall (Exposure)

Exposure-response

Malaria cases (Response)

Rainfall (Exposure)

Malaria cases (Response)

Motivation

Concepts

Stats

Key definitions

- Non-linear data associations: data where there is no linear relationship between a dependent (outcome/response) and an independent (exposure/predictor) variable
- Time series data: a sequence of data points collected over an interval of time e.g daily rainfall measurements, weekly sales
- Lag: time difference between two observations in a sequence

Day	Value	Lag-1	Lag — 2
1	10	NA	NA
2	20	10	NA
3	30	20	10
4	40	30	20
5	50	40	30

Key definitions

• Basis: known family of functions/transformations e.g. polynomials, thresholds, splines etc applied to a predictor X to generate basis variables: $b_1(X), b_2(X), b_k(X)$.

$$y = \beta_0 + \beta_1 b_1(x) + \beta_2 b_2(x) + ... + \beta_k b_k(x) + \epsilon$$
 (1)

• Basis function for polynomial takes the form:

$$b_j(x) = x^j$$
polynomial function of degree j \uparrow Raise predictor x to degree j

• Substituting equation (2) in (1) Degree 3 polynomial

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_d x^d + \epsilon$$
Degree 1 (linear term) Degree 2 polynomial Degree d polynomial

Modelling non-linear data associations

- Polynomials and cubic splines (degree 3 polynomials) are the most common basis used to fit non-linear associations
- Unusual to use d greater than 3 or 4, overfitting and wiggly

Erasmus Mo

Natural (restricted) cubic spline

- Natural cubic spline: cubic spline with additional boundary constraints, enforcing linearity beyond boundary knots
- Produce more stable estimates at boundaries (narrower confidence intervals) than cubic splines

Frasmus MO

• How are these concepts used in DLNMs?

Motivation Concepts

Stats

DLNMs: Modelling framework

- DLNMs capture a detailed representation of the time-course of the exposure-lag-response relationship
- Risk associated with individual exposure events at each lag assigned a weight that contributes to overall cumulative risk

Erasmus MC

Statistical issue is to model this risk!

Motivation Concepts

Stats

Basic model

• A general statistical model representation to describe the time series of outcomes Y_t with t = 1, ..., n is given by:

Link function Smoothed predictor
$$g(\mu_t) = \alpha + \sum_{j=1}^{J} s_j(x_{tj}; \beta) + \sum_{k=1}^{K} \gamma_k u_{tk}$$
 Other predictors with linear effects

- x_{tj} is the transformed (non-linear/smoothed) exposure at time t through basis function j
- β is (linear) unknown coefficient of x_{tj} to be estimated

Exposure-lag-response associations

- The risk is represented by a function s(x, t) defined in terms of both **intensity** and **timing** of a series of **past exposures**:
 - an exposure-response function f(x) for exposure x
 - a lag-response function $w(\ell)$ for lag ℓ
- Generating a bi-dimensional exposure-lag-response function

$$s(x,t) = f(x) \cdot w(\ell)$$

that describes simultaneously both the intensity and timing of past exposures

Basis for exposure-response function

- Given, a timeseries of exposure X and assuming a maximum lag of 2, we can compute, q_{xt} (vector of lagged exposure histories of X)
- Applying a linear transformation to q_{xt} we get R_{xt} (basis variables for lagged occurrences of X)

	t	X		lag 0	lag 1	lag 2		Γ <mark>10</mark>	NA	NA	l
Ī	1	10		10	NA	NA		20	1.0	NA	
	2	20	\rightarrow	20	10	NA	\Rightarrow	30	20	10	
	3	30		30	20	10		40	30	20	
	4	40		40	30	20		50	40	30	Erasmus MC
	5	50		50	40	30		L 30	1 0	<u> </u>	Calm

Basis for lag-response function

- Applying polynomial transformation of degree 2 to the lag vector, $\ell(0,1,2)$
- First step is to scale the lag vector by dividing by the maximum lag:

$$(0,1,2)/2 \Rightarrow (0,0.5,1)$$

 Obtaining C (basis variables for each lag for polynomial degrees d = 0,1,2)

x^d	x^0	x^1	x^2					
lag 0 (0)	1	0	0		1	0	0	
lag 1 (0.5)	1	0.5	0.25	$\Rightarrow C =$	1	0.5	0.25	Erasmus MC
lag 2 (1)	1	1	1			1	<u> </u>	Cafins

Special tensor product

 Simultaneously captures the intensity and timing of past exposures

$$A_{xt} = (1_{v\ell} \otimes R_{xt}) \odot (C \otimes 1_{vx})$$
Hadamard product

Kronecker product

• $1_{V\ell}$: Vector of 1's of dimensional length of lag vector

$$\ell(0,1,2) \Rightarrow 1_{\nu\ell} = [1,1,1]$$

• 1_{VX} : Vector of 1's of dimensional length of exposure vector

$$\begin{vmatrix} t & x \\ 1 & 10 \\ 2 & 20 \\ 3 & 30 \\ 4 & 40 \\ 5 & 50 \end{vmatrix} \Rightarrow 1_{vx} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
Erasmus MC

 $1_{v\ell}\otimes R_{xt}$

Erasmus MC
University Medical Center fortherdore

2 among

 $C\otimes 1_{vx}$

Erasmus MC
University Medical Center Restandant
2 of May

 $(1_{v\ell}\otimes R_{xt})\odot (\mathcal{C}\otimes 1_{vx})=A_{xt}$

	1	0		0	
	1	0		0	
	1	0		0	
	1	0		0	
	1	0		0	
	1	0.5	C).25	,
	1	0.5	C).25	,
0	1	0.5	C).25	,
	1	0.5	C).25	,
	1	0.5	C).25	,
	1	1		1	
	1	1		1	
	1	1		1	
	1	1		1	
	1	1		1	

	10	0	0
	20	0	0
	30	0	0
	40	0	0
	50	0	0
	NA	NA	NA
	10	5	2.5
=	20	10	5
	30	15	7.5
	40	20	10
	NA	NA	NA
	NA	NA	NA
	10	10	10
	20	20	20
	30	30	30

Motivation

Concepts S

Stats

Cumulative risk of exposures across lags

• From Gasparrini et al 2010 "... array A_{xt} is then re-arranged summing along the third dimension of lags to obtain the final matrix of cross-basis functions, w_{xt} ."

$$Direct - sum(⊕) ⇒ \begin{bmatrix} NA & NA & NA \\ NA & NA & NA \\ 60 & 20 & 15 \\ 90 & 35 & 27.5 \\ 120 & 50 & 40 \end{bmatrix}$$

 $= w_{xt}\beta$

Erasmus MC

Whenty Middal Center Statedon

2 of My

Crossbasis functions

[2.]

[3,]

[5.]

[4.] 90

NA NA

120

60 20 15.0

35 27.5

50 40.0

```
# Load package
pacman::p load("dlnm")
# data
x <- data.frame(
  t = 1:5
  value = c(10, 20, 30, 40, 50)
х
     t value
          10
          20
          30
## 5 5
          50
# crossbasis
cb.x <- crossbasis(x$value, lag=2,
                      argvar=list(fun = "lin"),
                      arglag=list(fun="poly", degree=2))
# crossbasis matrix
head(cb.x, 5)
        v1.11 v1.12 v1.13
## [1.]
                       NA
```

NA

Erasmus MC
University Medical Center Brotzedon
2 of Mys

Distributed lag non-linear models (DLNMs)

• Bi-dimensional exposure-lag-response function $f(x) \cdot w(\ell)$:

$$s(x,t) = \int_{\ell_0}^L f(x_{t-\ell}) \cdot w(\ell) d\ell$$

• Approximation obtained through a discretization of the lag period into equally spaced time units, q_{x_t}

$$s(x_{t-\ell_0},\ldots,x_{t-L}) \approx \sum_{\ell=\ell_0}^L f(x_{t-\ell}) \cdot w(\ell)$$

• The problem reduces to choosing a basis function for exposure-response (q_x) and lag-response (ℓ) space

Effect of temperature and ozone on mortality

```
# Load packages and data
pacman::p_load("dlnm", "splines")
chicagoNMMAPS <- chicagoNMMAPS
# Objective: to investigate the effects of temperature and
# Ozone on mortality up to lag 30 and 5, respectively
# crossbasis ozone
cb.o3 <- crossbasis(chicagoNMMAPS$o3, lag=5,
                     argvar=list(fun="thr", thr=40.3).
                     arglag=list(fun="thr"))
# crossbasis temperature
cb.temp <- crossbasis(chicagoNMMAPS$temp, lag=30,
                      argvar=list(fun = "ns", df=5).
                      arglag=list(fun="bs"))
# model
model <- glm(death ~ cb.o3 + cb.temp + dow,
              family=quasipoisson(), chicagoNMMAPS)
# pred (extract estimated associations predicted by model)
pred.temp <- crosspred(cb.temp, model, cen=21)</pre>
pred.o3 \leftarrow crosspred(cb.o3, model, at=c(0:65,40.3))
# plots
plot(pred.temp, xlab="Temperature (°C)", zlab="RR",
     main="3D graph of temperature effect on mortality")
```


Effect of temperature and ozone on mortality

Effect of rainfall and temperature on dengue risk

- A. Gasparrini, Armstrong, and Kenward 2010
- Antonio Gasparrini 2011
- Gareth James Daniela Witten Trevor Hastie and Robert Tibshirani 2013
- Antonio Gasparrini and Leone 2014
- Aßenmacher 2016
- Lowe et al. 2018

Thank you!

Slides: https://github.com/arumadri/dlnm

