Advertisement Analysis — Week 13 IP

1. Define the question

1.1 Main question — which individuals are more likely to click on cryptpgraphy course advertisement?

1.1.1 Other Research Questions:

1.2 Metric for Success

1.3 Understanding the context

A Kenyan entrepreneur, who has previously ran a course advertisement on her blog would like to know: which kinds of individuals are more likely to click on her advertisements posted on the blog. From the initial advertisement, the entrepreneur was able to collect some data and would like a Data Science Consultant to analyze the given data and report recommendations. The findings from the analysis will be crucial in determining which kinds of individuals to target before running another online course ad on the blog.

1.4 Experimental Design

The approach for this project will include:

- 1. Importing the necessary libraries
- 2. Reading the data
- 3. Checking the data
- 4. Tidying up the data
- 5. Implementing the solution using Univariate and Bivariate
- 6. Conclusion and Recommendations

1.5 Data Relevance

I think that the data was relevant, however, I also think that we could have used more columns to add onto our analysis.

2. Importing libraries

library(tidyverse)

```
## -- Attaching packages ----- tidyverse 1.3.0 --
## v ggplot2 3.3.2
                  v purrr
                           0.3.4
## v tibble 3.0.3
                  v dplyr
                          1.0.2
## v tidyr
          1.1.2
                  v stringr 1.4.0
                  v forcats 0.5.0
## v readr
          1.3.1
## -- Conflicts -----
                       ## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                masks stats::lag()
```

```
library(ggplot2)
library(ggcorrplot)
```

3. Reading the data

```
# Imported data from the directory where it was saved
advertising <- read.csv("~/Moringa School/R Programming/R datasets/advertising.csv")
view(advertising)</pre>
```

4. Checking the data

```
# let's get glimpse of how the data looks like
glimpse(advertising)
```

```
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
## $ Age
                              <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
                              <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
## $ Area.Income
## $ Daily.Internet.Usage
                              <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
## $ Ad.Topic.Line
                              <chr> "Cloned 5thgeneration orchestration", "Mon...
                              <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
## $ City
                              <int> 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...
## $ Male
## $ Country
                              <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
## $ Timestamp
                              <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
## $ Clicked.on.Ad
                              <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, ...
```

Our data has 1,000 records and 10 columns. Some columns have integer, float and character data types. clicked.on.ad is our target variable. The target variable and male columns are listed as integers, but they are both categorical. We will need to convert these columns data types to the appropriate data types during cleaning.

```
#checking the top of the data
head(advertising)
```

```
##
     Daily.Time.Spent.on.Site Age Area.Income Daily.Internet.Usage
## 1
                         68.95
                                35
                                      61833.90
                                                               256.09
## 2
                         80.23
                                31
                                      68441.85
                                                               193.77
## 3
                                26
                                      59785.94
                                                               236.50
                         69.47
## 4
                         74.15
                                29
                                      54806.18
                                                               245.89
                                      73889.99
## 5
                         68.37
                                35
                                                               225.58
## 6
                         59.99
                                23
                                      59761.56
                                                               226.74
##
                              Ad.Topic.Line
                                                       City Male
                                                                     Country
## 1
        Cloned 5thgeneration orchestration
                                                Wrightburgh
                                                                     Tunisia
## 2
                                                  West Jodi
        Monitored national standardization
                                                                1
                                                                       Nauru
## 3
          Organic bottom-line service-desk
                                                   Davidton
                                                                O San Marino
## 4 Triple-buffered reciprocal time-frame West Terrifurt
                                                                1
                                                                       Italy
             Robust logistical utilization
                                               South Manuel
                                                                0
                                                                     Iceland
## 6
           Sharable client-driven software
                                                  Jamieberg
                                                                1
                                                                      Norway
               Timestamp Clicked.on.Ad
## 1 2016-03-27 00:53:11
                                      0
## 2 2016-04-04 01:39:02
                                      0
## 3 2016-03-13 20:35:42
                                      0
## 4 2016-01-10 02:31:19
```

```
## 5 2016-06-03 03:36:18 0
## 6 2016-05-19 14:30:17 0

#checking the bottom of the data
tail(advertising)
```

```
##
        Daily.Time.Spent.on.Site Age Area.Income Daily.Internet.Usage
## 995
                            43.70
                                   28
                                          63126.96
                                                                  173.01
## 996
                            72.97
                                   30
                                          71384.57
                                                                  208.58
## 997
                            51.30
                                   45
                                          67782.17
                                                                  134.42
## 998
                            51.63
                                   51
                                          42415.72
                                                                  120.37
## 999
                            55.55
                                          41920.79
                                                                  187.95
                                   19
## 1000
                            45.01
                                   26
                                          29875.80
                                                                  178.35
##
                                Ad. Topic. Line
                                                        City Male
## 995
               Front-line bifurcated ability
                                                Nicholasland
                                                                 0
## 996
               Fundamental modular algorithm
                                                   Duffystad
                                                                 1
             Grass-roots cohesive monitoring
## 997
                                                 New Darlene
                                                                 1
## 998
                Expanded intangible solution South Jessica
                                                                 1
## 999
        Proactive bandwidth-monitored policy
                                                 West Steven
                                                                 0
## 1000
             Virtual 5thgeneration emulation
                                                 Ronniemouth
##
                        Country
                                           Timestamp Clicked.on.Ad
## 995
                        Mayotte 2016-04-04 03:57:48
                                                                  1
## 996
                        Lebanon 2016-02-11 21:49:00
## 997
        Bosnia and Herzegovina 2016-04-22 02:07:01
                                                                  1
## 998
                       Mongolia 2016-02-01 17:24:57
                                                                  1
                                                                  0
## 999
                      Guatemala 2016-03-24 02:35:54
## 1000
                         Brazil 2016-06-03 21:43:21
```

After looking at the head and tail of the data, there are a few assumptions on the data we need to make before we proceed. These assumptions include:

- 1. Daily time spend on site column is in minutes.
- 2. Income is in United States Dollars(\$).
- 3. Daily internet usage units is in megabytes. Also assuming that the megabytes refers to data used on the blog site.
- 4. For male column: if 0 that means not male, but if 1 then yes it's a male.
- 5. Clicked on ad column: if 1 that means yes somebody clicked on the ad, but if 0 then the add was not clicked.

```
# checking for unique elements in columns if interest
# starting with our target variable
unique(advertising$Clicked.on.Ad)
```

[1] 0 1

There are two elements 0 for not clicked and 1 for clicked (based on the assumption we made above)

```
unique(advertising$Male)
```

[1] 0 1

There is two elements in the male column. 0 for not a male and 1 for male

```
#unique(advertising$Country)
```

In total there is a total of 237 countries. From the countries list, I see funny country names e.g Nauru, Wallis & Futuna, Holy see. Where did these countries come from? Note: country output not added here because

the list is too long

5. Tidying the data

5.1 Fixing data types

```
# converting male column to character
advertising$Male <- as.character(advertising$Male)</pre>
# converting clicked on ad column to character
advertising $Clicked.on.Ad <- as.character(advertising $Clicked.on.Ad)
# confirming that the data types have been converted
glimpse(advertising)
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
## $ Age
                            <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
                            <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
## $ Area.Income
## $ Daily.Internet.Usage
                            <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
## $ Ad.Topic.Line
                            <chr> "Cloned 5thgeneration orchestration", "Mon...
                            <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
## $ City
## $ Male
                            <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
## $ Country
## $ Timestamp
                            <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
                            <chr> "0", "0", "0", "0", "0", "0", "0", "1", "0...
## $ Clicked.on.Ad
```

Male and Clicked on ad have been converted to their appropriate data types

5.2 Missing values

There are no missing values in our dataset

5.3 Duplicates

[10] Clicked.on.Ad

<0 rows> (or 0-length row.names)

There are no duplicates in our dataset

5.4 Outliers

checking for outliers in numerical variables using boxplots
we will separate area income from other numerical variables because of the difference in scale
boxplot(advertising\$Area.Income)

We see some outliers from Income column on the lower side of the whisker. We won't be deleting these outliers because we establish that these are true observations. The low income could be as a result of many reasons. An explanation for these observations is that — in every country there are certain areas that have a lot of poor people, which leads to low area income.

```
# checking for outliers in the other numerical columns
num_cols <- select(advertising, Daily.Time.Spent.on.Site, Age, Daily.Internet.Usage)
boxplot(num_cols)</pre>
```


There are no observed outliers in these columns. Based on the analysis, so far, our data is pretty clean and we are ready to begin solution implementation using Univariate and Bivariate analysis.

6. Implementing the solution using Univariate and Bivariate

6.1 Univariate analysis

```
#checking for statistical summaries of numerical data. This will allow us to get a summary of: mean
#median, min, max, range, and quantiles
#first select numerical variables
num <- select(advertising, Daily.Time.Spent.on.Site, Age, Area.Income,Daily.Internet.Usage)
glimpse(num)</pre>
```

6.1.1 Measures of central tendency and measure of dispersion for numerical variables

```
Daily.Time.Spent.on.Site
                               Age
                                           Area.Income
                                                          Daily.Internet.Usage
Min.
        :32.60
                                                          Min.
                                                                 :104.8
                          Min.
                                :19.00
                                          Min.
                                                 :13996
 1st Qu.:51.36
                          1st Qu.:29.00
                                          1st Qu.:47032
                                                          1st Qu.:138.8
Median :68.22
                          Median :35.00
                                          Median :57012
                                                          Median :183.1
```

```
:65.00
## Mean
                            Mean
                                    :36.01
                                             Mean
                                                    :55000
                                                             Mean
                                                                    :180.0
## 3rd Qu.:78.55
                            3rd Qu.:42.00
                                             3rd Qu.:65471
                                                             3rd Qu.:218.8
          :91.43
                                    :61.00
## Max.
                            Max.
                                             Max.
                                                    :79485
                                                             Max.
                                                                    :270.0
```

On average daily time spent on the blog is 65 minutes.

Average age that visit the site is about 36 years old, min age = 19 years and max 61 years.

Average area income is \$55,000.

The average daily internet usage on the site is 180 megabytes.

From the statistical summary, we don't see anything strange with the numerical columns.

```
# Variance
# Daily.Time.Spent.on.Site column
sapply(num, var)
## Daily.Time.Spent.on.Site
                                                                    Area.Income
                                                   Age
               2.513371e+02
                                         7.718611e+01
                                                                   1.799524e+08
##
##
       Daily.Internet.Usage
##
               1.927415e+03
# standard deviation
sapply(num, sd)
## Daily.Time.Spent.on.Site
                                                                    Area.Income
                                                   Age
                                             8.785562
                                                                   13414.634022
##
                  15.853615
##
       Daily.Internet.Usage
##
                  43.902339
```

From the standard deviations we see the spreads of the numerical data from their means.

Histogram of daily time spent on site

6.1.2 Histograms

From the graph, we see that the most popular times spent on the site is between 65-85 minutes. The distribution looks like a multi-nomial distribution with left skewness.

Histogram of age distribution

Majority of the people visiting the entrepreneur's blog are between the age of 25-45 years old. We don't know how many of them clicked on the ad, but it's likely that since they are the majority that they will have more clicks. We will check on this during bivariate analysis. The data is almost a normal distribution with a bit of skewness to the right.

```
hist(num$Area.Income, xlab= "Area Income($)", ylab="Frequency",
    main="Histogram of Area Income distribution")
```

Histogram of Area Income distribution

The plot shows an obvious left skewness. This is not unusual. Earlier from the boxplot, we saw outliers on the lower side of the whisker. From the plot people who visited the blog are from high income areas (\$50,000 to 75,000). This makes sense because with high income people are able to easily obtain power and internet needed to visit the blog. Unlike in the low income areas, people can not afford internet as they have to deal with more pressing needs.

Histogram of daily internet usage

We observe a bimodal distribution here. We have a group of people who majorly use between 125 to about 140 megabytes on the blog, while another group that majorly use between 200 to about 240 megabytes on the blog.

```
advertising %>%
  group_by(Clicked.on.Ad) %>%
  summarize(frequency = n())
```

6.1.3 Univariate analysis of categorical variables using frequency distribution table

The distribution of the number of people who clicked on adds and the ones that did not click on ad is equal. This is great because it means that our data is balanced.

```
advertising %>%
    group_by(Male) %>%
    summarize(frequency = n())

## `summarise()` ungrouping output (override with `.groups` argument)

## # A tibble: 2 x 2

## Male frequency
```

```
## 1 0 519
## 2 1 481
```

We have majority non males visiting the blog.

```
advertising %>%
    group_by(Country) %>%
    summarize(frequency = n()) %>%
   ungroup() %>%
    arrange(desc(frequency)) %>%
   head(20)
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 20 x 2
##
     Country
                             frequency
##
      <chr>
                                 <int>
## 1 Czech Republic
                                     9
## 2 France
                                     9
## 3 Afghanistan
                                     8
                                     8
## 4 Australia
## 5 Cyprus
                                     8
## 6 Greece
   7 Liberia
                                     8
## 8 Micronesia
                                     8
## 9 Peru
                                     8
## 10 Senegal
                                     8
## 11 South Africa
                                     8
                                     8
## 12 Turkey
## 13 Albania
                                     7
## 14 Bahamas
## 15 Bosnia and Herzegovina
                                     7
                                     7
## 16 Burundi
## 17 Cambodia
                                     7
                                     7
## 18 Eritrea
```

Here we have top 20 most popular countries where the most individuals visit the blog.

7

7

6.2 Bivariate Analysis

19 Ethiopia

20 Fiji

```
advertising$Male <- as.integer(advertising$Male)
advertising$Clicked.on.Ad <- as.integer(advertising$Clicked.on.Ad)
num_var <- select(advertising, Daily.Time.Spent.on.Site, Age, Area.Income, Daily.Internet.Usage, Male,
#cor(advertising)
cor(num_var, method = "pearson")</pre>
```

6.2.1 Correlation calculation using pearson method

```
## Daily.Time.Spent.on.Site Age Area.Income
## Daily.Time.Spent.on.Site 1.00000000 -0.33151334 0.310954413
## Age -0.33151334 1.00000000 -0.182604955
## Area.Income 0.31095441 -0.18260496 1.000000000
## Daily.Internet.Usage 0.51865848 -0.36720856 0.337495533
```

```
## Male
                                         -0.01895085 -0.02104406 0.001322359
## Clicked.on.Ad
                                         -0.74811656 0.49253127 -0.476254628
                            Daily.Internet.Usage
##
                                                          Male Clicked.on.Ad
## Daily.Time.Spent.on.Site
                                      0.51865848 -0.018950855
                                                                 -0.74811656
## Age
                                     -0.36720856 -0.021044064
                                                                  0.49253127
## Area.Income
                                      0.33749553 0.001322359
                                                                 -0.47625463
## Daily.Internet.Usage
                                      1.00000000 0.028012326
                                                                 -0.78653918
## Male
                                      0.02801233 1.000000000
                                                                 -0.03802747
## Clicked.on.Ad
                                     -0.78653918 -0.038027466
                                                                  1.0000000
advertising %>%
    select if(is.numeric) %>%
    cor %>%
    ggcorrplot(lab = TRUE, hc.order = TRUE)
```


6.2.2 Correlation matrix visualization

Here we get to compare correlations between the target variable (clicked on ad) with other variables. Observations:

- 1. The target variable has a positive moderate correlation to age (corr coefficient of 0.49).
- 2. The target variable is weakly correlated to male column. This means that there is a very weak relationship between a person being male or not and clicking the ad on entrepreneur's blog.
- 3. The target variable is moderately negatively correlated to Area Income. Meaning that the target variable are usually moving in opposite direction. Which can be interpreted as: the lower income areas have high click rate than low income areas.

- 4. The target variable is strongly negatively correlated to daily time spent on site. Here we see a strong relationship among the two variable where the two variable are moving in the opposite direction. This could also mean that individuals spending less time on the blog are more likely to click on the ad.
- 5. We see similar relationship with daily internet usage and target variable as we did with daily time spent on the site. This could also mean that individuals with less internet usage are likely to click on the ads.

6.2.3 Scatter plots

1. Clicked on ad with Daily. Time. Spent. on. Site scatter plot.

plot(advertising\$Daily.Time.Spent.on.Site, advertising\$Clicked.on.Ad, xlab="Daily.Time.Spent.on.Site",

From the scatter plot, we don't see any relationship between the target variable and daily time spent on site column.

2. Clicked on ad with Age scatter plot

plot(advertising\$Age, advertising\$Clicked.on.Ad, xlab="Age", ylab="Clicked on ad")

From the scatter plot, we dont see any relationship between the target variable and age column

3. Clicked on ad with Daily.Internet.Usage scatter plot

plot(advertising\$Daily.Internet.Usage, advertising\$Clicked.on.Ad, xlab="Daily.Internet.Usage", ylab="Cl

There are no insights from the scatterplots as shown above.

6.2.4 More bivariate analysis Visualization of Male column with target variable

```
counts <- table(advertising$Clicked.on.Ad, advertising$Male)
barplot(counts, main="Distribution of Male column and Clicked on ad",
    xlab="Clicked on ad",col=c("darkblue","red"),
    legend = rownames(counts), beside=TRUE)</pre>
```

Distribution of Male column and Clicked on ad

There was a slightly higher number of non males who clicked on the ad as shown by the frequency table below.

```
advertising$Male <- as.factor(advertising$Male)
advertising$Clicked.on.Ad <- as.factor(advertising$Clicked.on.Ad)
ggplot(advertising, aes(x=Male, fill = Clicked.on.Ad))+
    theme_bw()+
    geom_bar()+
    facet_wrap(~Clicked.on.Ad)+
    labs(y="Number of individuals")</pre>
```



```
advertising %>%
    group_by(Clicked.on.Ad, Male) %>%
    summarize(frequency = n())
## `summarise()` regrouping output by 'Clicked.on.Ad' (override with `.groups` argument)
## # A tibble: 4 x 3
               Clicked.on.Ad [2]
## # Groups:
     Clicked.on.Ad Male frequency
##
##
     <fct>
                   <fct>
                              <int>
## 1 0
                   0
                                250
## 2 0
                   1
                                250
## 3 1
                   0
                                269
## 4 1
                   1
                                231
```

Comparing countries with click on ad.

```
advertising %>%
  group_by(Clicked.on.Ad, Country) %>%
  summarize(frequency = n())
```

```
## `summarise()` regrouping output by 'Clicked.on.Ad' (override with `.groups` argument)
## # A tibble: 430 x 3
## # Groups:
               Clicked.on.Ad [2]
##
      Clicked.on.Ad Country
                                                                   frequency
##
      <fct>
                    <chr>>
                                                                       <int>
   1 0
                    Afghanistan
                                                                            3
##
##
    2 0
                    Albania
                                                                            3
```

```
## 3 0
                    Algeria
                                                                          3
## 4 0
                                                                          2
                    American Samoa
## 5 0
                    Angola
                                                                          3
                                                                          3
## 6 0
                    Anguilla
## 7 0
                    Antarctica (the territory South of 60 deg S)
                                                                          1
## 8 0
                    Antigua and Barbuda
                                                                          1
## 9 0
                    Argentina
                                                                          1
## 10 0
                                                                          2
                    Armenia
## # ... with 420 more rows
glimpse(advertising)
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
## $ Age
                              <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
## $ Area.Income
                              <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
## $ Daily.Internet.Usage
                              <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
                              <chr> "Cloned 5thgeneration orchestration", "Mon...
## $ Ad.Topic.Line
                              <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
## $ City
## $ Male
                              <fct> 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...
                              <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
## $ Country
## $ Timestamp
                              <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
## $ Clicked.on.Ad
                              <fct> 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, ...
advertising$Clicked.on.Ad <- as.factor(advertising$Clicked.on.Ad)
glimpse(advertising)
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
                              <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
## $ Age
## $ Area.Income
                              <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
                              <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
## $ Daily.Internet.Usage
                              <chr> "Cloned 5thgeneration orchestration", "Mon...
## $ Ad.Topic.Line
                              <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
## $ City
## $ Male
                              <fct> 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...
## $ Country
                              <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
                              <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
## $ Timestamp
## $ Clicked.on.Ad
                              <fct> 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, ...
advertising $Clicked.on.Ad <- as.character(advertising $Clicked.on.Ad)
advertising %>% mutate(Clicked.on.Ad=Clicked.on.Ad %>% as.character) %>% glimpse()
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
                              <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
## $ Age
## $ Area.Income
                              <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
                              <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
## $ Daily.Internet.Usage
## $ Ad.Topic.Line
                              <chr> "Cloned 5thgeneration orchestration", "Mon...
## $ City
                              <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
## $ Male
                              <fct> 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...
## $ Country
                              <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
## $ Timestamp
                              <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
```

```
## $ Clicked.on.Ad
                              <chr> "0", "0", "0", "0", "0", "0", "0", "1", "0...
glimpse(advertising)
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
## $ Age
                              <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
## $ Area.Income
                              <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
## $ Daily.Internet.Usage
                              <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
## $ Ad.Topic.Line
                              <chr> "Cloned 5thgeneration orchestration", "Mon...
## $ City
                              <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
## $ Male
                              <fct> 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...
## $ Country
                              <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
                              <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
## $ Timestamp
                              <chr> "0", "0", "0", "0", "0", "0", "0", "1", "0...
## $ Clicked.on.Ad
ggplot(advertising, aes(x=Age, fill=Clicked.on.Ad))+
 theme bw()+
  geom_histogram(binwidth=5, alpha=0.5)+
 labs(y='clicked on ad')
```



```
ggplot(advertising, aes(y=Age, x=Clicked.on.Ad, fill=Clicked.on.Ad))+
    theme_bw()+
    geom_boxplot()+
    labs(y='Age', title='Comparing age distribution with clicked on ad')
```

Comparing age distribution with clicked on ad


```
advertising$Area.Income <- advertising$Area.Income %>% as.numeric()
```

glimpse(advertising)

```
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
## $ Age
                              <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
                              <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
## $ Area.Income
                              <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
## $ Daily.Internet.Usage
## $ Ad.Topic.Line
                              <chr> "Cloned 5thgeneration orchestration", "Mon...
                              <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
## $ City
                              <fct> 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...
## $ Male
                              <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
## $ Country
## $ Timestamp
                              <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
                              <chr> "0", "0", "0", "0", "0", "0", "0", "1", "0...
## $ Clicked.on.Ad
ggplot(advertising, aes(x=Area.Income, fill=Clicked.on.Ad))+
  theme bw()+
  geom_histogram(binwidth=5000, alpha=0.5)
```


labs(y='clicked on ad')

```
## $y
## [1] "clicked on ad"
##
## attr(,"class")
## [1] "labels"
ggplot(advertising, aes(y=Area.Income, x=Clicked.on.Ad, fill=Clicked.on.Ad))+
    theme_bw()+
    geom_boxplot()+
    labs(y='Area Income', title='Comparing area income distribution with clicked on ad')
```



```
ggplot(advertising, aes(y=Area.Income, x=Clicked.on.Ad, fill=Clicked.on.Ad))+
    theme_bw()+
    geom_violin(alpha=0.2)+
    labs(y='Area Income', title='Comparing area income distribution with clicked on ad')
```

Comparing area income distribution with clicked on ad

glimpse(advertising)

\$ Age

\$ City

\$ Male

\$ Area.Income

\$ Ad.Topic.Line

\$ Daily.Internet.Usage

```
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
                              <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
## $ Age
## $ Area.Income
                              <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
## $ Daily.Internet.Usage
                              <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
## $ Ad.Topic.Line
                              <chr> "Cloned 5thgeneration orchestration", "Mon...
                              <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
## $ City
                              <fct> 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...
## $ Male
                              <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
## $ Country
                              <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
## $ Timestamp
                              <chr> "0", "0", "0", "0", "0", "0", "0", "1", "0...
## $ Clicked.on.Ad
advertising$Male <- advertising$Male %>% as.character()
glimpse(advertising)
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
```

<int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...

<dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...

<dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...

<chr> "Cloned 5thgeneration orchestration", "Mon...

Clicked on ad with male column


```
ggplot(advertising, aes(x=Daily.Internet.Usage, fill= Clicked.on.Ad))+
    theme_bw()+
    geom_histogram(binwidth=10, alpha=0.4)+
    labs(title='Comparing daily internet usage with clicked on ad', y='Number of individuals')
```



```
ggplot(advertising, aes(x=Daily.Time.Spent.on.Site, fill=Clicked.on.Ad))+
    theme_bw()+
    geom_histogram(binwidth = 20, alpha=0.5)+
    labs(y='Number of individuals', title='Comparing daily time spent on site with clicked on ad')
```



```
ggplot(advertising, aes(x=Age, fill=Clicked.on.Ad))+
   theme_bw()+
   facet_wrap(~Male)+
   geom_density(alpha=0.5)
```


glimpse(advertising)

```
## Rows: 1,000
## Columns: 10
## $ Daily.Time.Spent.on.Site <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, ...
## $ Age
                            <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49...
                            <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 73...
## $ Area.Income
## $ Daily.Internet.Usage
                            <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 22...
## $ Ad.Topic.Line
                            <chr> "Cloned 5thgeneration orchestration", "Mon...
## $ City
                            <chr> "Wrightburgh", "West Jodi", "Davidton", "W...
                            ## $ Male
                            <chr> "Tunisia", "Nauru", "San Marino", "Italy",...
## $ Country
                            <chr> "2016-03-27 00:53:11", "2016-04-04 01:39:0...
## $ Timestamp
                            <chr> "0", "0", "0", "0", "0", "0", "0", "1", "0...
## $ Clicked.on.Ad
library(dplyr)
```

?select

7. Recommendations

- 1. From the correlation matrix we saw a strong negative correlation between target variable and area income. This means that individuals who live in areas of low income were likely to click on the add compared to individuals from high income areas. We recommend that the entrepreneur focuses on areas of low income because the individuals from this areas will likely click on the ad.
- 2. We also saw that the target variable was strongly negatively correlated to daily time spent on the blog. It is possible that individuals spending less time on the blog go into the blog to check on any new course

- ads. We recommend that the entrepreneur find ways of attracting the attention of the individuals who spend longer times in the blog so that they can also click on her ads.
- 3. Finally, from the correlation matrix we noticed that the target variable was very weakly correlated to the male column. This means that there is no strong relationship between the gender and the target variable so the entrepreneur can continue with the advertisement without worrying about gender bias.