ELEN30011 EDM Task

• Xiufu SUN 1372750

1.1

(a)

(1,0,0)

(b)

(-1, 0, 0)

(c)

(0, -1, 3)

(d)

(0,0,-2)

(e)

(-1, 0, 0)

1.2

(a)

 $(1,0,\pi/2)$

(b)

 $(1,\pi/2,\pi/2)$

(c)

(1,0,0)

(d)

$$(\sqrt{2},\pi/2,\pi/4)$$

(e)

2.1

(a) Let

$$x = rcos\phi, y = rsin\phi, z = z$$

Jacobin:

$$egin{bmatrix} cos\phi & -rsin\phi & 0 \ sin\phi & rcos\phi & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Let r = 1,

$$T(\phi) = egin{pmatrix} cos\phi & -sin\phi & 0 \ sin\phi & cos\phi & 0 \ 0 & 0 & 1 \end{pmatrix}$$

(b)

We've got that

$$T(\phi) = egin{pmatrix} cos\phi & -sin\phi & 0 \ sin\phi & cos\phi & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Hence,

$$(T^*(\phi))^T = egin{pmatrix} cos\phi & -sin\phi & 0 \ sin\phi & cos\phi & 0 \ 0 & 0 & 1 \end{pmatrix} \ T^*(\phi) = egin{pmatrix} cos\phi & sin\phi & 0 \ -sin\phi & cos\phi & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Based on Cramer's rule.

$$T^{-1}(\phi) = rac{1}{det}T^*(\phi)$$

 $det[T(\phi)] = 1$

Hence,

$$T^{-1}(\phi) = egin{pmatrix} cos\phi & sin\phi & 0 \ -sin\phi & cos\phi & 0 \ 0 & 0 & 1 \end{pmatrix}$$

(c)

$$r=\sqrt{x^2+y^2\over x} \ cos(\phi)=rac{x}{\sqrt{x^2+y^2}} \ sin(\phi)=rac{y}{\sqrt{x^2+y^2}}$$

(d)

$$T^{-1}(\phi) = egin{pmatrix} cos\phi & sin\phi & 0 \ -sin\phi & cos\phi & 0 \ 0 & 0 & 1 \end{pmatrix}$$

$$S(P) = egin{pmatrix} rac{x}{\sqrt{x^2 + y^2}} & rac{y}{\sqrt{x^2 + y^2}} & 0 \ -rac{y}{\sqrt{x^2 + y^2}} & rac{x}{\sqrt{x^2 + y^2}} & 0 \ 0 & 0 & 1 \end{pmatrix}$$

2.2

In Question 2.1(d), we've got

$$S(P) = egin{pmatrix} rac{x}{\sqrt{x^2 + y^2}} & rac{y}{\sqrt{x^2 + y^2}} & 0 \ -rac{y}{\sqrt{x^2 + y^2}} & rac{x}{\sqrt{x^2 + y^2}} & 0 \ 0 & 0 & 1 \end{pmatrix}$$

(a) P = (0, -1, 0)

$$S(P) = egin{pmatrix} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

(b) P = (1, 0, 0)

$$S(P) = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

(c) P = (-1, 0, 0)

$$S(P) = egin{pmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

(d)
$$P = (1, -1, 0)$$

$$S(P) = egin{pmatrix} rac{\sqrt{2}}{2} & -rac{\sqrt{2}}{2} & 0 \ rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} & 0 \ 0 & 0 & 1 \end{pmatrix}$$

(e) P = (0, 0, 0)

$$S(P) = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

3.1

(a)

```
x = -2:.1:2;
y = -2:.1:2;
[xx, yy] = meshgrid(x, y);
size(xx)
size(yy)
```

Which output is:

```
ans =

41 41

ans =

41 41
```

(b)

```
x = -2:.1:2;
y = -2:.1:2;
[xx, yy] = meshgrid(x, y);

size(xx)
size(yy)

zz = 1./sqrt(1 + xx.^2 + yy.^2);
figure(1);
surfl(xx, yy, zz);
xlabel('x');
ylabel('y');
zlabel('V(x,y)');
grid on;
```


Based on the picture above, it has been shown that the surface exhibit a maximum.

After checked the value "zz" in workspace, we get the maximum point is (0,0,1).

For certain plane, origin can always be the point with the highest electrostatic potential. If a charge moves in any direction on its x-y plane, the electric field does positive work on it.

(c)

A circle.

$$V = rac{1}{\sqrt{1+x^2+y^2}} \ \sqrt{1+x^2+y^2} = rac{1}{V} \ x^2+y^2 = rac{1}{V^2} - 1$$

Its radius is $\sqrt{rac{1}{V^2}-1}$

If V=c>1, radius will be an imaginary number, which is impossible here. Hence, c will never be greater than 1.

(d)

```
figure(2);
contour(xx, yy,zz, 10);
xlabel('x');
ylabel('y');
grid on;
```


[&]quot;10" means: Display 10 contour lines at automatically chosen levels (heights).

3.2

(a)

```
exx = xx./(1 + xx.^2 + yy.^2).^(3/2);
eyy = yy./(1 + xx.^2 + yy.^2).^(3/2);

figure(3);
quiver(xx,yy,exx,eyy);
xlabel('x');
ylabel('y');
grid on;
```


(b)

```
xnew = -2:.25:2;
ynew = xnew;
[xxnew, yynew] = meshgrid(xnew, ynew);
exxnew = xxnew./(1 + xxnew.^2 + yynew.^2).^(3/2);
eyynew = yynew./(1 + xxnew.^2 + yynew.^2).^(3/2);
figure(4);
quiver(xxnew, yynew, exxnew, eyynew);
hold on;
```


(c)

```
figure(2);
hold on;
quiver(xxnew, yynew, exxnew, eyynew);
```


Perpendicular to each other.

3.3

(a)