

Übungsblatt Ana 2

Computational and Data Science FS2024

Mathematik 2

Lernziele:

- > Sie kennen die Begriffe Integral, Stammfunktion, Substitution und deren wichtigste Eigenschaften.
- > Sie können die Methode der Substitution anwenden, um bestimmte und unbestimmte Integrale zu berechnen.
- > Sie können bestimmte Integrale näherungsweise auf eine vorgegebene Anzahl Dezimalstellen mit Python/Numpy berechnen.

1. Aussagen über Integrale

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Für $f: \mathbb{R} \to \mathbb{R}$ gilt: existiert zu f eine Stammfunktion, so ist diese		\times
	eindeutig.		
b)	Für die integrierbaren Funktionen $f, g: \mathbb{R} \to \mathbb{R}$ gilt: $\int f(x) dx +$		
	$\int g(x)dx = \int (f(x) + g(x))dx.$,	
c)	Für die integrierbaren Funktionen $f, g: \mathbb{R} \to \mathbb{R}$ gilt:		\times
	$\int f(x)dx \cdot \int g(x)dx = \int (f(x) \cdot g(x))dx.$		
d)	Für die integrierbaren Funktionen $f, g: \mathbb{R} \to \mathbb{R}$ gilt: es existiert ein	,	
	$c \in \mathbb{R} \text{ mit } \int_a^b f(x)g(x)dx = c \int_a^b g(x)dx.$	λ	
e)	Für die integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ gilt: $\int_a^b f(x) dx = 0 \implies$		\searrow
	$f(x) = 0 \ \forall x \in [a, b].$		
f)	Für die integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ gilt: $a < b \Rightarrow \int_a^b f(x) dx \le b$		
	$\int_{a}^{b} f(x) dx.$		

ALLE ELLEME No.

2. Aussagen über die Methode der Substitution

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Methode Substitution basiert auf der Kettenregel der Differentialrechnung.	X	
b) Die Hilfe der Methode der Substitution kann jede		_
Verschachtelung von zwei Funktionen problemlos integriert		\times
werden.		~ /
c) Die Methode der Substitution eignet sich zur Integration von	\	
Produkten der Form $x \cdot f(x^2)$.	^	
d) Es gilt: $\int_{1}^{2} \sin(2x) dx = 1/2 \int_{1}^{2} \sin u du$.		\times
e) Es gilt: $\int_1^2 \sin(2x) dx = \int_2^4 \sin u du$.		×

3. Stammfunktion durch Methode der Substitution bestimmen

Berechnen Sie die folgenden unbestimmten Integrale mit der Methode der Substitution.

a) $\int \sqrt{5-x} dx$	b) $\int \sqrt{5x+12}dx$
c) $\int e^{4x+2} dx$	d) $\int (x^2 - 1)^3 dx$
e) $\int \sqrt[3]{1-x} dx$	f) $\int x \cdot \cos(x^2) dx$
g) $\int \sin x \cos x dx$	h) $\int \sinh x \cosh x dx$
i) $\int \tan x dx$	j) $\int \cot x dx$
k) $\int \tanh x dx$	I) $\int \coth x dx$

4. Stammfunktion durch Methode der Substitution bestimmen

Berechnen Sie die folgenden bestimmten Integrale mit der Methode der Substitution.

a)
$$\int_{3}^{5} \frac{x}{x^{2}-4} dx$$
 b) $\int_{0}^{2} \frac{4x}{2x^{2}+9}$ c) $\int_{0}^{3} \frac{x}{\sqrt{25-x^{2}}} dx$ d) $\int_{0}^{a} x \sqrt{a^{2}-x^{2}} dx$ e) $\int_{0}^{\pi/2} \cos(2x + \frac{\pi}{3}) dx$ f) $\int_{0}^{10} 5xe^{-x^{2}} dx$

5. Integrale mit Python/Numpy berechnen

Berechnen Sie die folgenden bestimmten Integrale mit dem Befehl trapz in Python/Numpy.

a)
$$\int_0^{\pi} \sin x \, dx$$
 b) $\int_2^5 \frac{1+x}{1-x} \, dx$ c) $\int_{-2}^0 3^x \, dx$ d) $\int_2^{100} \frac{\sin x}{1+3x} \, dx$ e) $\int_{0.01}^1 \log_2 x \, dx$ f) $\int_2^3 \log_x 10 \, dx$

6. Trapezformel

Berechnen Sie das Integral $\int_1^2 \frac{1-e^{-x}}{x} dx$ näherungsweise unter Zuhilfenahme der Trapezformel für jeweils 10 (einfache) Streifen (Endergebnis auf 4 Nachkommastellen).

$$\int_{1}^{2} \frac{1-e^{-x}}{x} dx$$

$$= \int_{2}^{2} h \sum_{1}^{2} + h \sum_{2}^{2}$$

$$= \int_{2}^{2} \cdot O.1 \left(f(x_{0}) + f(x_{0}) \right)$$

X 11,1234,5 6,7 8,9 2

Übungsblatt Ana 2

Computational and Data Science BSc FS 2023

Analysis und Lineare Algebra 2

Lernziele/Kompetenzen

- Sie kennen die Begriffe Funktion in mehreren Variablen, Level-Menge, Level-Linie, Level-Fläche, Skalarfeld, Vektorfeld und homogenes Vektorfeld sowie ihre wichtigsten Eigenschaften.
- Sie können die natürliche Definitionsmenge einer Funktion in mehreren Variablen bestimmen.
- Sie können Level-Linien und Level-Flächen von Funktionen in zwei bzw. drei Variablen berechnen, skizzieren und beschreiben.
- Sie können die Python/Numpy-Befehle meshgrid, surf, pcolor und contour anwenden, um eine Funktion in zwei Variablen zu visualisieren.

1. Aussagen über reellwertige Funktionen in mehreren reellen Variablen

Welche der folgenden Aussagen sind wahr und welche falsch?		falsch
a) Die <i>mehrdimensionale Analysis</i> basiert auf der <i>eindimensionalen Analysis</i> und der <i>Vektorgeometrie</i> .	0	0
b) Reellwertige Funktionen in mehreren reellen Variablen werden, vor allem in der Physik, auch Skalarfelder genannt.	0	0
c) Für $n > 1$ ist eine Funktion des Typs $f : \mathbb{R}^n \to \mathbb{R}$ niemals injektiv.	0	0
d) Für $n > 1$ ist eine Funktion des Typs $f : \mathbb{R}^n \to \mathbb{R}$ niemals surjektiv.	0	0
e) Jede <i>Ebene</i> in 3D ist der <i>Graph</i> einer <i>Funktion</i> in zwei <i>reellen Variablen</i> .	0	0
f) Jede Sphäre in 3D ist der Graph einer Funktion in zwei reellen Variablen.	0	0

2. Natürliche Definitionsmenge von Funktionen in zwei Variablen

Bestimmen und skizzieren Sie für die gegebene Funktion jeweils die natürliche Definitionsmenge.

a)
$$f(x;y) = \sqrt{y-2x}$$

b)
$$f(x;y) = \sqrt{x^2 + y^2 - 1}$$

1

b)
$$f(x;y) = \sqrt{x^2 + y^2 - 1}$$
 c) $f(x;y) = \frac{\sqrt{x+y}}{x-y}$

3. Funktionsgraphen und Level-Linien mit Python/Numpy

Visualisieren Sie jeweils die Funktion in zwei Variablen mit Hilfe von Python/Numpy.

a)
$$f(x;y) = \frac{x}{2}$$

c)
$$f(x;y) = \frac{x+y}{2}$$

e)
$$f(x;y) = \frac{x^2 + y^2}{2}$$

b)
$$f(x;y) = \frac{y}{2}$$

$$\mathbf{d)} \ f(x;y) = \frac{x \cdot y}{4}$$

d)
$$f(x;y) = \frac{x \cdot y}{4}$$
 f) $f(x;y) = \frac{6 \cdot \sin(x \cdot y)}{1 + x^2 + y^2}$

4. Aussagen über eine Funktion

Betrachten Sie die Funktion

$$f(x; y; z) = \sqrt{x^2 + y^2 + z^2}.$$
 (1)

Welche der folgenden Aussagen sind wahr und welche falsch?		falsch
a) Es gilt $f(3;0;4) = 5$.	0	0
b) f ist eine Funktion in drei Variablen.	0	0
c) Die x -Achse ist eine $Level$ - $Linie$ von f .	0	0
d) Die $Einheitssph\"{a}re$ in 3D ist der $Graph$ von f .	0	0
e) Die <i>Einheitssphäre</i> in 3D ist eine <i>Level-Menge</i> von f.	0	0
f) Die $Sph\"{a}re$ um den $Ursprung$ mit $Radius$ 7 ist eine $Level$ - $Fl\"{a}che$ von f .	0	0

5. Level-Linien berechnen und skizzieren

Berechnen und skizzieren Sie für die gegebene Funktion jeweils die Level-Linien.

a)
$$f(x;y) = 3x + 6y$$

b)
$$f(x;y) = \sqrt{y - x^2}$$

b)
$$f(x;y) = \sqrt{y-x^2}$$
 c) $f(x;y) = x^2 + y^2 - 2y$

6. Level-Flächen berechnen

Berechnen und beschreiben Sie für die gegebene Funktion jeweils die Level-Flächen.

a)
$$f(x; y; z) = x + 2y + 3z$$

a)
$$f(x;y;z) = x + 2y + 3z$$
 b) $f(x;y;z) = x^2 + y^2 + z^2$ **c)** $f(x;y;z) = x^2 + y^2$

2

c)
$$f(x; y; z) = x^2 + y^2$$