

What is the role of mixing in controlling microphytoplankton community composition?

M. Villamaña¹, B. Mouriño-Carballido¹, E. Marañón¹, P. Cermeño², P. Chouciño¹, M. Estrada², B. Fernández-Castro¹, F.G. Figueiras³, J.L. Otero-Ferrer¹, B. Reguera⁴

- Universidade de Vigo
- 2. Institut de Ciències del Mar, CSIC-Barcelona
- Instituto de Investigacións Mariñas, CSIC-Vigo
- 4. Instituto Español de Oceanografía-Vigo

"There is no life without water, and there is no life in water without turbulence in water"

Ambühl (1960) in Margalef (1997)

Margalef's Mandala (1978)

Margalef's Mandala (1978)

Internal wave mixing and nutrient supply on the Ría de Vigo (NW Spain)

Mixing and stratification: related but not the same

Nitrate flux versus surface nitrate concentration in oligotrophic regions

Mouriño-Carballido et al. (2011, L&O)

Changes in nutrient concentration can be disconnected from changes in nutrient supply

Do field observations validate the Margalef's mandala?

Our goal

To investigate the role of mixing and nutrient supply on microphytoplankton community composition

Data set of microturbulence and microphytoplankton

5 cruises - 86 Stations (2009-2013):

- Microstructure turbulence
- Nitrate concentration
- Microphytoplankton community composition

How do we quantify turbulence and mixing? Microstructure profiler

Nutrient supply

$$NO_3^-$$
 diffusive flux = $-Kz \cdot \left(\frac{d[NO_3^-]}{dz}\right)$

For Galician upwelling region:

$$NO_3^-$$
 advective $flux = \frac{I_W \times D}{A} \cdot [NO_3^-]_{bottom}$

Diatom and dinoflagellate biomass

C biomass = cell abundance x cell carbon

Variability in nitrate fluxes and surface Chl-a

Diatom and dinoflagellate biomass vs. surface NO₃⁻ concentration, Kz and NO₃⁻ flux

Diatom contribution vs. surface NO_3^- concentration, Kz and NO_3^- flux

Diatom contribution vs. surface NO_3^- concentration, Kz and NO_3^- flux

Exceptions to the model

Exceptions to the model: N_2 fixation

Fernández-Castro et al. (2015, Nat. Comm.)

Exceptions to the model

Exceptions to the model: Thin phytoplankton layers

Conclusions

- 1. In general, mixing regimes for diatoms and dinoflagellates were 2-100 and 0,02-1 cm 2 s $^{-1}$, respectively.
- 2. The contribution of diatoms to biomass enhances with increasing nitrate flux.

3. Nitrate flux was a better proxy for nutrient availability than nitrate concentration

Do field observations validate Margalef's mandala?

