Database Search and Reporting

Trainee Name: Manal Al-Hatmi

Instructor Name: Fatima Al Mamari

1. Comparison Assignment: Flat File Systems vs. Relational Databases

Feature	Flat File System	Relational Database
Structure	Stores data in plain text files	Organized into tables with rows
	with no defined schema.	and columns.
Data Redundancy	High; duplication across	Low; normalization reduces
	multiple files.	redundancy.
Relationships	None; files are independent.	Supports relationships using
		primary and foreign keys.
Example Usage	Configuration files, small	Banking, e-commerce, enterprise
	address books.	systems.
Drawbacks	Hard to maintain, lacks	Setup complexity requires DBMS
	integrity and querying.	management.

Flat File

CustomerID	Name
1	John
1	John
2	Sara
3	Keyboard
3	Monitor

Relational Model

CustomerID	Name
1	John
2	Sara

CustomerID	Orders
1	1 Laptop
2	2 Mouse
3	4 Keyboard

2. DBMS Advantages – Mind Map

A Database Management System (DBMS) offers multiple advantages that make data handling efficient, secure, and reliable.

The mind map below illustrates the key benefits:

- **Security:** Controlled access through authentication and authorization.
- Integrity: Ensures accurate and consistent data.
- Backup: Automated and regular data backups.
- Redundancy: Minimizes duplication of data.
- Concurrency: Multiple users can access the database simultaneously.
- Data Sharing: Easy sharing across departments or users.

3. Roles in a Database System

Role	Description
System Analyst	Analyzes business requirements and defines what
	the database must accomplish.
Database Designer	Designs logical and physical database models
	(schemas, ER diagrams).
Database Developer	Implements the database/ creates tables, queries,
	and stored procedures.
Database Administrator (DBA)	Maintains, secures, and optimizes the database
	system.
Application Developer	Builds applications that interact with the database.
BI (Business Intelligence)	Creates dashboards, reports, and data
Developer	visualizations for decision-making.

4. Types of Databases

Relational vs. Non-Relational Databases

Туре	Description	Examples	Use Case
Relational (SQL)	Structured tables and	MySQL,	Finance
	predefined schemas.	PostgreSQL	systems, CRMs
Non-Relational (NoSQL)	Schema-less and flexible	MongoDB,	IoT, social
	(documents, key-value	Cassandra	media apps
	pairs).		

Centralized vs. Distributed vs. Cloud Databases

Туре	Description	Examples	Use Case
Centralized	All data stored on one	IBM Db2	Small business
	server.		systems
Distributed	Data split across	Google Bigtable	Large-scale
	multiple locations or		analytics
	servers.		
Cloud	Hosted online;	Amazon RDS, Azure SQL,	Web apps,
	scalable and managed	Google Cloud Spanner	SaaS platforms
	by providers.		

5. Cloud Storage and Databases

What is Cloud Storage?

Cloud storage allows users to store and access data over the internet instead of local servers. It supports database functionality by providing scalable, reliable, and managed hosting environments.

Advantages of Cloud Databases:

- Scalability: Easily adjust capacity and resources.
- Automatic Backups: Simplified disaster recovery.
- Global Accessibility: Data available from anywhere.
- Cost Efficiency: Pay-as-you-go pricing models.
- Integration: Connects easily with AI, analytics, and other cloud tools.

Disadvantages / Challenges:

- Data Security Risks: Reliance on third-party providers.
- **Downtime Dependency:** Internet or service outages affect access.
- Limited Control: Provider manages infrastructure and updates.
- Long-term Costs: Costs can increase with large-scale data or long usage.

Popular Cloud Database Services

Provider	Service	Description
Microsoft Azure	Azure SQL	Managed relational database with Al
	Database	optimization.
Amazon Web Services	Amazon RDS	Multi-engine support (MySQL, PostgreSQL,
(AWS)		Oracle).
Google Cloud	Cloud Spanner	Global-scale relational database with horizontal
		scalability.