Waarom moet je als mens jaloers zijn op bacteriën?

https://www.youtube.com/watch?v=8jyQZnZ-QXA&feature=youtu.be

Vanaf 5:30 tot ca. 10:00

lophotrichous

Flagellen

Doorsnede: 15-20 nm

Verschillende typen (kennen!):

peritrichous

(a) (c) (b)

polar

Flagellen

lophotrichous tuft

Voortbeweging (peritrichous flagellen)

(a) Peritrichous

Voortbeweging (polaire flagellen)

Structuur flagel

Filament is opgebouwd uit flagelline en via hook verbonden met basal body

Rotor: central rod, gaat door L, P, C en MS ringen

Stator: Mot proteins

Energie voor rotatie: pmf

Export apparatus: rol bij synthese flagel (in cp, niet afgebeeld in 15e)

Snelheid

Flagellen roteren niet altijd even snel

Snelheid afhankelijk van de pmf (tot wel 300 s⁻¹)

60 cellengtes per seconde!

https://www.youtube.com/watch?v=4hexn-DtSt4

Synthese flagel

Flagellar filament groeit niet vanuit de basis, maar vanuit de top

Filament: helix-structuur

Flagellin ca. 20.000 per flagel!

Archaealla (enkelvoud: archaellum)

- Geen homologie met flagellen, lijken meer op type IV pili:
 - dunner (ca. 10–13 nm)
 - niet hol
 - opbouw vanuit de basis
 - rotatie: ATP hydroyse
 - motor: minder eiwitten

Beweging over oppervlakken

- B.v. twitching motility en gliding
- langzamer en gelijkmatiger dan zwemmen
- contact met oppervlak noodzakelijk

Twitching motility

- M.b.v. Type IV pili
- Cel 'kruipt' over het oppervlak:
 - 1. Extension (van pilus)
 - 2. Attachment (aan oppervlak)
 - 3. Retraction (van pilus)

Gliding motility

- 'smooth movement along the long axis of the cell'
- zonder hulp van 'voorstuwingsstructuren' (zoals pili)
- 'Intracellular helical protein track'* maakt contact met gliding motoreiwitten en extracellulaire adhesie eiwitten.
- gedreven door pmf
- Exacte mechanisme nog niet opgehelderd

Chemotaxis

Beweging in reactie op chemicaliën

(a) No attractant present: Random movement

(b) Attractant present: Directed movement
Langere runs, minder vaak tumbles

Hoe detecteert een bacterie chemicaliën?

Prokaryoten zijn te klein om een gradiënt waar te nemen

'Attractants' en 'repellents' worden gedetecteerd door speciale membraaneiwitten: chemoreceptors

Bacterie detecteert 'temporal' i.p.v'. 'spatial' verschillen

Andere vormen van taxis

Fototaxis:

- Beweging richting licht
- Photoreceptor detecteert licht gradiënt
- Interactie met cytoplasmatische eiwitten die ook betrokken zijn bij chemotaxis

- Andere vormen:
 - Scotophobotaxis
 - Aerotaxis
 - Osmotaxis
 - Hydrotaxis

Taxis: gerichte beweging als reactie op een chemische of fysische gradient

Hoofdstuk 4

Macromoleculaire samenstelling van een cel

Macromolecular composition of a cel

ght

Eén *E. coli* cel weegt ongeveer 10^{-12} g (= 1 picogram) en bestaat voor 70-80% uit water)

16e: figuur 4.1b

15e: figuur 3.1c

Elementen in een bacteriële cel

CHONSP: essentieel voor ALLE cellen

16e: figuur 4.1b

Koolstof

- belangrijk element in ALLE klassen macromoleculen
- Hoe komt een micro-organisme aan koolstof?

Heterotroof => organische koolstofverbindingen

Autotroof => koolstofdioxide (CO₂)

Stikstof

- In eiwitten, nucleïnezuren en veel andere celonderdelen
- In de natuur komt stikstof meestal voor in de vorm van:
 - NH₃ → bruikbaar voor <u>bijna alle micro-organismen</u>
 - NO₃⁻ → bruikbaar voor <u>veel micro-organismen</u>
 - N₂ → alleen bruikbaar voor <u>stikstoffixerende micro-organismen</u>
- Sommige micro-organismen kunnen organische vormen van stikstof gebruiken

Fosfor en zwavel

- Fosfor b.v. in nucleïnezuren, fosfolipiden
- Zwavel b.v. in sommige aminozuren, maar ook vitaminen zoals thiamine, biotine, etc.

Kalium, magnesium, calcium en natrium

Niet voor alle micro-organismen essentieel

Kalium: nodig voor activiteit sommige enzymen

Magnesium: - stabiliseren ribosomen, membraan, nucleïnezuren

- nodig voor activiteit sommige enzymen

Calcium: - stabiliseren celwand

- belangrijke rol in hittestabiliteit endosporen

Natrium: essentieel voor sommige (marine) micro-organismen

Elementen in een bacteriële cel

Micronutriënten

Slechts kleine hoeveelheden nodig

I. Trace elements		II. Growth factors	
Element	Function	Growth factor	Function
Boron (B)	Autoinducer for quorum sensing in bacteria; also found in some polyketide antibiotics	PABA (p-aminobenzoic acid) Folic acid	Precursor of folic acid One-carbon metabolism; methyl transfers
Cobalt (Co)	Vitamin B ₁₂ ; transcarboxylase (only in propionic acid bacteria)	Biotin	Fatty acid biosynthesis; some CO ₂ fixation reactions
Copper (Cu)	In respiration, cytochrome c oxidase; in photosynthesis, plastocyanin, some superoxide dismutases	B ₁₂ (Cobalamin)	One-carbon metabolism; synthesis of deoxyribose
Iron (Fe) ^b	Cytochromes; catalases; peroxidases; iron-sulfur proteins; oxygenases; all nitrogenases	B ₁ (Thiamine) B ₆ (Pyridoxine)	Decarboxylation reactions Amino acid/keto acid transformations
Manganese (Mn)	Activator of many enzymes; component of certain superoxide dismutases and of the water-splitting enzyme in oxygenic phototrophs (photosystem II)	Nicotinic acid (Niacin) Riboflavin Pantothenic acid	Precursor of NAD* Precursor of FMN, FAD Precursor of coenzyme A
Molybdenum (Mo)	Certain flavin-containing enzymes; some nitrogenases, nitrate reductases, sulfite oxidases, DMSO-TMAO reductases; some formate dehydrogenases	Lipoic acid Vitamin K	Decarboxylation of pyruvate and «ketoglutarate Electron transport
Nickel (Ni)	Most hydrogenases; coenzyme F ₄₃₀ of methanogens; carbon monoxide dehydrogenase; urease	Coenzymes M and B F ₄₂₀ and F ₄₃₀	Methanogenesis ^c Methanogenesis ^c
Selenium (Se)	Formate dehydrogenase, some hydrogenases, the amino acid selenocysteine	Cupaifactourn	ranisaha sampanantan Du
Tungsten (W)	Some formate dehydrogenases; oxotransferases of hyperthermophiles	Groeifactoren: <u>organische</u> componenten. B.v. vitamines, aminozuren, purines, pyrimidines	
Vanadium (V)	Vanadium nitrogenase; bromoperoxidase	1	
Zinc (Zn)	Carbonic anhydrase; nucleic acid polymerases; many	Vitamines: meest frequent gebruikte groeifactoren. Functioneren meestal als co-	

Niet alle cellen hebben alle sporenelementen en groeifactoren nodig.

16e: tabel 4.1

Alle figuren in deze PowerPoint zijn eigen werk of afkomstig uit Brock Biology of Microorganisms (16th edition, Pearson) tenzij anders vermeld.