A Pick function related to the sequence of volumes of the unit ball in n-space*

Christian Berg † and Henrik L. Pedersen ‡

† Institute of Mathematical Sciences, University of Copenhagen Universitetsparken 5; DK-2100 København Ø, Denmark

E-mail berg@math.ku.dk

‡ Department of Basic Sciences and Environment Faculty of Life Sciences, University of Copenhagen Thorvaldsensvej 40, DK-1871 Frederiksberg C E-mail henrikp@dina.kvl.dk

December 11, 2009

Abstract

We show that

$$F_a(x) = \frac{\ln \Gamma(x+1)}{x \ln(ax)}$$

is a Pick function for $a \ge 1$ and find its integral representation. We also consider the function

$$f(x) = \left(\frac{\pi^{x/2}}{\Gamma(1+x/2)}\right)^{1/(x\ln x)}$$

and show that $\ln f(x+1)$ is a Stieltjes function and that f(x+1) is completely monotonic on $]0,\infty[$. In particular $f(n)=\Omega_n^{1/(n\ln n)}, n\geq 2$ is a Hausdorff moment sequence. Here Ω_n is the volume of the unit ball in Euclidean n-space.

2010 Mathematics Subject Classification: primary 33B15; secondary 30E20, 30E15. Keywords: gamma function, completely monotone function.

 $^{^*}$ Both authors acknowledge support by grant 272-07-0321 from the Danish Research Council for Nature and Universe.

1 Introduction and results

Since the appearance of the paper [3], monotonicity properties of the functions

$$F_a(x) = \frac{\ln \Gamma(x+1)}{x \ln(ax)}, \quad x > 0, a > 0$$

$$\tag{1}$$

have attracted the attention of several authors in connection with monotonicity properties of the volume Ω_n of the unit ball in Euclidean *n*-space. A recent paper about inequalities involving Ω_n is [2].

Let us first consider the case a = 1. In [9] the authors proved that F_1 is a Bernstein function, which means that it is positive and has a completely monotonic derivative, i.e.,

$$(-1)^{n-1}F_1^{(n)}(x) \ge 0, \quad x > 0, n \ge 1.$$
 (2)

This extended monotonicity and concavity proved in [4] and [12] respectively.

We actually proved a stronger statement than (2), namely that the reciprocal function $x \ln x / \ln \Gamma(x+1)$ is a Stieltjes transform, i.e. belongs to the Stieltjes cone \mathcal{S} of functions of the form

$$g(x) = c + \int_0^\infty \frac{d\mu(t)}{x+t}, \quad x > 0,$$
 (3)

where $c \geq 0$ and μ is a non-negative measure on $[0, \infty[$ satisfying

$$\int_0^\infty \frac{d\mu(t)}{1+t} < \infty.$$

The result was obtained using the holomorphic extension of the function F_1 to the cut plane $\mathcal{A} = \mathbb{C}\setminus]-\infty,0]$, leading to an explicit formula for the measure μ in (3). Our derivation used the fact that the holomorphic function $\log \Gamma(z)$ only vanishes in \mathcal{A} at the points z=1 and z=2, a result interesting in itself and included as an appendix in [9]. A simpler proof of the non-vanishing of $\log \Gamma(z)$ appeared in [10].

In a subsequent paper [10] we proved an almost equivalent result, namely that F_1 is a Pick function, and obtained the following representation formula

$$F_1(z) = 1 - \int_0^\infty \frac{d_1(t)}{z+t} dt, \quad z \in \mathcal{A}$$
 (4)

where

$$d_1(t) = \frac{\ln |\Gamma(1-t)| + (k-1)\ln t}{t((\ln t)^2 + \pi^2)} \quad \text{for} \quad t \in]k-1, k[, \quad k = 1, 2, \dots$$
 (5)

and $d_1(t)$ tends to infinity when t approaches $1, 2, \ldots$ Since $d_1(t) > 0$ for t > 0, (2) is an immediate consequence of (4).

We recall that a Pick function is holomorphic function φ in the upper halfplane $\mathbb{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$ satisfying $\Im \varphi(z) \geq 0$ for $z \in \mathbb{H}$, cf. [11].

For a=2 Anderson and Qiu proved in [4] that F_2 is strictly increasing on $[1,\infty[$, thereby proving a conjecture from [3]. Alzer proved in [2] that F_2 is concave on $[46,\infty[$. In [14] the concavity was extended to the optimal interval $]\frac{1}{2},\infty[$.

We will now describe the main results of the present paper.

We also denote by F_a the holomorphic extension of (1) to \mathcal{A} with an isolated singularity at z = 1/a, which is a simple pole with residue $\ln \Gamma(1+1/a)$ assuming $a \neq 1$, while z = 1 is a removable singularity for F_1 . For details about this extension see the beginning of section 2. Using the residue theorem we obtain:

Theorem 1.1 For a > 0 the function F_a has the integral representation

$$F_a(z) = 1 + \frac{\ln \Gamma(1 + 1/a)}{z - 1/a} - \int_0^\infty \frac{d_a(t)}{z + t} dt, \quad z \in \mathcal{A} \setminus \{1/a\},$$
 (6)

where

$$d_a(t) = \frac{\ln|\Gamma(1-t)| + (k-1)\ln(at)}{t((\ln(at))^2 + \pi^2)} \quad \text{for} \quad t \in]k-1, k[, \quad k = 1, 2, \dots, (7)]$$

and $d_a(0) = 0$, $d_a(k) = \infty$, $k = 1, 2, \ldots$ We have $d_a(t) \ge 0$ for $t \ge 0$, $a \ge 1/2^1$ and F_a is a Pick function for $a \ge 1$ but not for 0 < a < 1.

From this follows the monotonicity property conjectured in [14]:

Corollary 1.2 Assume $a \ge 1$. Then

$$(-1)^{n-1}F_a^{(n)}(x) > 0, \quad x > 1/a, n = 1, 2, \dots$$
 (8)

In particular, F_a is strictly increasing and strictly concave on the interval $]1/a, \infty[$. The function

$$f(x) = \left(\frac{\pi^{x/2}}{\Gamma(1+x/2)}\right)^{1/(x \ln x)}$$
 (9)

has been studied because the volume Ω_n of the unit ball in \mathbb{R}^n is

$$\Omega_n = \frac{\pi^{n/2}}{\Gamma(1+n/2)}, n = 1, 2, \dots$$

We prove the following integral representation of the extension of $\ln f(x+1)$ to the cut plane \mathcal{A} .

¹This is slightly improved in Remark 2.6 below.

Theorem 1.3 For $z \in A$ we have

$$\log f(z+1) = -\frac{1}{2} + \frac{\ln(2/\sqrt{\pi})}{z} + \frac{\ln(\sqrt{\pi})}{\log(z+1)} + \frac{1}{2} \int_{1}^{\infty} \frac{d_2((t-1)/2)}{z+t} dt.$$
 (10)

In particular $1/2 + \log f(x+1)$ is a Stieltjes function and f(x+1) is completely monotonic.

We recall that completely monotonic functions $\varphi:]0, \infty[\to \mathbb{R}$ are characterized by Bernstein's theorem as

$$\varphi(x) = \int_0^\infty e^{-xt} d\mu(t), \tag{11}$$

where μ is a positive measure on $[0, \infty[$ such that the integrals above make sense for all x > 0.

We also recall that a sequence $\{a_n\}_{n\geq 0}$ of positive numbers is a Hausdorff moment sequence if it has the form

$$a_n = \int_0^1 x^n \, d\sigma(x), \ n \ge 0, \tag{12}$$

where σ is a positive measure on the unit interval. Note that $\lim_{n\to\infty} a_n = \sigma(\{1\})$. For a discussion of these concepts see [7] or [17]. It is clear that if φ is completely monotonic with the integral representation (11), then $a_n = \varphi(n+1), n \geq 0$ is a Hausdorff moment sequence, because

$$a_n = \int_0^\infty e^{-(n+1)t} d\mu(t) = \int_0^1 x^n d\sigma(x),$$

where σ is the image measure of $e^{-t} d\mu(t)$ under e^{-t} . Since $\lim_{x\to\infty} f(x+1) = e^{-1/2}$ we get

Corollary 1.4 The sequence

$$f(n+2) = \Omega_{n+2}^{1/((n+2)\ln(n+2))}, n = 0, 1, \dots$$
 (13)

is a Hausdorff moment sequence tending to $e^{-1/2}$.

A Hausdorff moment sequence is clearly decreasing and convex and by the Cauchy-Schwarz inequality is is even logarithmically convex, meaning that $a_n^2 \le a_{n-1}a_{n+1}$, $n \ge 1$. The latter property was obtained in [14] in a different way.

2 Properties of the function F_a

In this section we will study the holomorphic extension of the function F_a defined in (1). First a few words about notation. We use \ln for the natural logarithm but only applied to positive numbers. The holomorphic extension of \ln from the open half-line $]0, \infty[$ to the cut plane $\mathcal{A} = \mathbb{C} \setminus]-\infty, 0]$ is denoted $\text{Log } z = \ln |z| + i \operatorname{Arg } z$, where $-\pi < \operatorname{Arg } z < \pi$ is the principal argument. The holomorphic branch of the logarithm of $\Gamma(z)$ for z in the simply connected domain \mathcal{A} which equals $\ln \Gamma(x)$ for x > 0 is denoted $\log \Gamma(z)$. The imaginary part of $\log \Gamma(z)$ is a continuous branch of argument of $\Gamma(z)$ which we denote $\operatorname{arg} \Gamma(z)$, i.e.,

$$\log \Gamma(z) = \ln |\Gamma(z)| + i \arg \Gamma(z), \ z \in \mathcal{A}.$$

We shall use the following property of $\log \Gamma(z)$, cf. [9, Lemma 2.1]

Lemma 2.1 We have, for any $k \ge 1$,

$$\lim_{z \to t, \Im z > 0} \log \Gamma(z) = \ln |\Gamma(t)| - i\pi k$$

for $t \in]-k, -k+1[$ and

$$\lim_{z \to t \Re z > 0} |\log \Gamma(z)| = \infty$$

for $t = 0, -1, -2, \dots$

The expression

$$F_a(z) = \frac{\log \Gamma(z+1)}{z \operatorname{Log}(az)}$$

clearly defines a holomorphic function in $A \setminus \{1/a\}$, and z = 1/a is a simple pole unless a = 1, where the residue $\ln \Gamma(1 + 1/a)$ vanishes.

Lemma 2.2 For a > 0 and $t \le 0$ we have

$$\lim_{y \to 0^+} \Im F_a(t + iy) = \pi d_a(-t), \tag{14}$$

where d_a is given by (7).

Proof. For -1 < t < 0 we get

$$\lim_{y \to 0^+} F_a(t + iy) = \frac{\ln \Gamma(1 + t)}{t(\ln(a|t|) + i\pi)},$$

hence $\lim_{y\to 0^+} \Im F_a(t+iy) = \pi d_a(-t)$. For $-k < t < -k+1, k=2,3,\ldots$ we find using Lemma 2.1

$$\lim_{y \to 0^+} F_a(t+iy) = \frac{\ln |\Gamma(1+t)| - i(k-1)\pi}{t(\ln(a|t|) + i\pi)},$$

hence $\lim_{y\to 0^+} \Im F_a(t+iy) = \pi d_a(-t)$ also in this case. For $t=-k,\ k=1,2,\ldots$ we have

$$|F_a(-k+iy)| \ge \frac{|\ln |\Gamma(-k+1+iy)||}{|-k+iy|| \log(a(-k+iy))|} \to \infty$$

for $y \to 0^+$ because $\Gamma(z)$ has poles at $z = 0, -1, \ldots$ Finally, for t = 0 we get (14) from the next Lemma. \square

Lemma 2.3 For a > 0 we have

$$\lim_{z \to 0, z \in \mathcal{A}} |F_a(z)| = 0.$$

Proof. Since $\log \Gamma(z+1)/z$ has a removable singularity for z=0 the result follows because $|\operatorname{Log}(az)| \ge |\ln(a|z|)| \to \infty$ for $|z| \to 0, z \in \mathcal{A}$. \square

Lemma 2.4 For a > 0 we have the radial behaviour

$$\lim_{r \to \infty} F_a(re^{i\theta}) = 1 \text{ for } -\pi < \theta < \pi, \tag{15}$$

and there exists a constant $C_a > 0$ such that for $k = 1, 2, \ldots$ and $-\pi < \theta < \pi$

$$|F_a((k+\frac{1}{2})e^{i\theta})| \le C_a. \tag{16}$$

Proof. We first note that

$$F_a(z) = F_1(z) \frac{\text{Log}(z)}{\text{Log}(az)},\tag{17}$$

and since

$$\lim_{|z| \to \infty, z \in \mathcal{A}} \frac{\operatorname{Log}(z)}{\operatorname{Log}(az)} = 1$$

it is enough to prove the results for a=1. We do this by using a method introduced in [9, Prop. 2.4].

Define

$$R_k = \{ z = x + iy \in \mathbb{C} \mid -k \le x < -k + 1, 0 < y \le 1 \} \text{ for } k \in \mathbb{Z}$$

and

$$R = \bigcup_{k=0}^{\infty} R_k, \quad S = \{z = x + iy \in \mathbb{C} \mid x \le 1, |y| \le 1\}.$$

By Lemma 2.1 it is clear that

$$M_k = \sup_{|\theta| < \pi} |F_1((k + \frac{1}{2})e^{i\theta})| < \infty$$
 (18)

for each k = 1, 2, ..., so it is enough to prove that M_k is bounded for $k \to \infty$.

Stieltjes ([16, formula 20]) found the following formula for $\log \Gamma(z)$ for z in the cut plane $\mathcal A$

$$\log \Gamma(z+1) = \ln \sqrt{2\pi} + (z+1/2) \log z - z + \mu(z). \tag{19}$$

Here

$$\mu(z) = \sum_{n=0}^{\infty} h(z+n) = \int_0^{\infty} \frac{P(t)}{z+t} dt,$$

where $h(z) = (z + 1/2) \operatorname{Log}(1 + 1/z) - 1$ and P is periodic with period 1 and P(t) = 1/2 - t for $t \in [0, 1[$. A derivation of these formulas can also be found in [5]. The integral above is improper, and integration by parts yields

$$\mu(z) = \frac{1}{2} \int_0^\infty \frac{Q(t)}{(z+t)^2} dt,$$
 (20)

where Q is periodic with period 1 and $Q(t) = t - t^2$ for $t \in [0, 1[$. Note that by (20) μ is a completely monotonic function. For further properties of Binet's function μ see [13].

We claim that

$$|\mu(z)| \le \frac{\pi}{8} \text{ for } z \in \mathcal{A} \setminus S.$$

In fact, since $0 \le Q(t) \le 1/4$, we get for $z = x + iy \in \mathcal{A}$

$$|\mu(z)| \le \frac{1}{8} \int_0^\infty \frac{dt}{(t+x)^2 + y^2}.$$

For x > 1 we have

$$\int_0^\infty \frac{dt}{(t+x)^2 + y^2} \le \int_0^\infty \frac{dt}{(t+1)^2} = 1,$$

and for $x \leq 1, |y| \geq 1$ we have

$$\int_0^\infty \frac{dt}{(t+x)^2 + y^2} = \int_x^\infty \frac{dt}{t^2 + y^2} < \int_{-\infty}^\infty \frac{dt}{t^2 + 1} = \pi.$$

Since

$$F_1(z) = 1 + \frac{\ln \sqrt{2\pi} + 1/2 \log z - z + \mu(z)}{z \log z},$$

for $z \in \mathcal{A}$, we immediately get (15) and

$$|F_1(z)| \le 2 \tag{21}$$

for all $z \in \mathcal{A} \setminus S$ for which |z| is sufficiently large. In particular, there exists $N_0 \in \mathbb{N}$ such that

$$|F_1((k+\frac{1}{2})e^{i\theta})| \le 2 \text{ for } k \ge N_0, \ (k+\frac{1}{2})e^{i\theta} \in \mathcal{A} \setminus S.$$
 (22)

By continuity the quantity

$$c = \sup \left\{ |\log \Gamma(z)| \mid z = x + iy, \frac{1}{2} \le x \le 1, 0 \le y \le 1 \right\}$$
 (23)

is finite.

We will now estimate the quantity $|F_1((k+\frac{1}{2})e^{i\theta})|$ when $(k+\frac{1}{2})e^{i\theta} \in S$, and since $F_1(\overline{z}) = \overline{F_1(z)}$, it is enough to consider the case when $(k+\frac{1}{2})e^{i\theta} \in R_{k+1}$. To do this we use the relation

$$\log \Gamma(z+1) = \log \Gamma(z+k+1) - \sum_{l=1}^{k} \operatorname{Log}(z+l)$$
 (24)

for $z \in \mathcal{A}$ and $k \in \mathbb{N}$. Equation (24) follows from the fact that the functions on both sides of the equality sign are holomorphic functions in \mathcal{A} , and they agree on the positive half-line by repeated applications of the functional equation for the Gamma function.

For $z = (k + \frac{1}{2})e^{i\theta} \in R_{k+1}$ we get $|\log \Gamma(z + k + 1)| \le c$ by (23), and hence by (24)

$$|\log \Gamma(z+1)| \le c + \sum_{l=1}^{k} |\operatorname{Log}(z+l)| \le c + k\pi + \sum_{l=1}^{k} |\ln |z+l||.$$

For $l=1,\ldots,k-1$ we have k-l<|z+l|< k+2-l, hence $0<\ln|z+l|<\ln(k+2-l)$. Furthermore, $1/2\leq |z+k|\leq \sqrt{2}$, hence $-\ln 2<\ln|z+k|\leq (\ln 2)/2$. Inserting this we get

$$|\log \Gamma(z+1)| \le c + k\pi + \sum_{j=2}^{k+1} \ln j < c + k\pi + k \ln(k+1).$$

From this we get for $z = (k + \frac{1}{2})e^{i\theta} \in R_{k+1}$

$$|F_1(z)| \le \frac{c + k\pi + k\ln(k+1)}{(k+\frac{1}{2})\ln(k+\frac{1}{2})}$$
 (25)

which tends to 1 for $k \to \infty$. Combined with (22) we see that there exists $N_1 \in \mathbb{N}$ such that

$$|F_1((k+\frac{1}{2})e^{i\theta})| \le 2 \text{ for } k \ge N_1, -\pi < \theta < \pi,$$

which shows that M_k from (18) is a bounded sequence. \square

Lemma 2.5 Let a > 0. For k = 1, 2, ... there exists an integrable function $f_{k,a}:]-k, -k+1[\rightarrow [0, \infty]$ such that

$$|F_a(x+iy)| \le f_{k,a}(x) \text{ for } -k < x < -k+1, 0 < y \le 1.$$
 (26)

Proof. For z = x + iy as above we get using (24)

$$|\log \Gamma(z+1)| \le |\log \Gamma(z+k+1)| + \sum_{l=1}^{k} |\operatorname{Log}(z+l)| \le L + k\pi + \sum_{l=1}^{k} |\ln |z+l||,$$

where L is the maximum of $|\log \Gamma(z)|$ for $z \in \overline{R_{-1}}$. We only treat the case $k \geq 2$ because the case k = 1 is a simple modification combined with Lemma 2.3.

For l = 1, ..., k-2 we have 1 < |z+l| < 1+k-l, and for $l = k-1, k \ln |x+l| \le \ln |z+l| \le (1/2) \ln 2$, so we find

$$|\log \Gamma(z+1)| \le L + k\pi + \sum_{j=2}^{k} \ln j + |\ln |x+k-1|| + |\ln |x+k||,$$
 (27)

so as $f_{k,1}$ we can use the right-hand side of (27) divided by $(k-1)\ln(k-1)$. Using (17) we next define

$$f_{k,a}(x) = f_{k,1}(x) \max_{z \in \overline{R_k}} \frac{|\operatorname{Log} z|}{|\operatorname{Log}(az)|}.$$

Proof of Theorem 1.1 For fixed $w \in \mathcal{A} \setminus \{1/a\}$ we choose $\varepsilon > 0, k \in \mathbb{N}$ such that $\varepsilon < |w|, 1/a < k + \frac{1}{2}$ and consider the positively oriented contour $\gamma(k,\varepsilon)$ in \mathcal{A} consisting of the half-circle $z = \varepsilon e^{i\theta}, \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ and the half-lines $z = x \pm i\varepsilon, x \leq 0$ until they cut the circle $|z| = k + \frac{1}{2}$, which closes the contour. By the residue theorem we find

$$\frac{1}{2\pi i} \int_{\gamma(k,\varepsilon)} \frac{F_a(z)}{z - w} \, dz = F_a(w) + \frac{\ln \Gamma(1 + 1/a)}{1/a - w}.$$

We now let $\varepsilon \to 0$ in the contour integration. By Lemma 2.3 the contribution from the half-circle with radius ε will tend to zero, and by Lemma 2.2 and Lemma 2.5 we get

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{F_a((k+\frac{1}{2})e^{i\theta})}{(k+\frac{1}{2})e^{i\theta} - w} (k+\frac{1}{2})e^{i\theta} d\theta + \int_{-k-\frac{1}{2}}^{0} \frac{d_a(-t)}{t-w} dt = F_a(w) + \frac{\ln\Gamma(1+1/a)}{1/a-w}.$$

For $k \to \infty$ the integrand in the first integral converges to 1 for each $\theta \in]-\pi,\pi[$ and by Lemma 2.4 Lebesgue's theorem on dominated convergence can be applied, so we finally get

$$F_a(w) = 1 + \frac{\ln \Gamma(1 + 1/a)}{w - 1/a} - \int_0^\infty \frac{d_a(t)}{t + w} dt.$$

The last integral above appears as an improper integral, but we shall see that the integrand is Lebesgue integrable. We show below that $d_a(t) \geq 0$ when

 $a \ge 1/2$ and for these values of a the integrability is obvious. The function d_a tends to 0 for $t \to 0$ and has a logarithmic singularity at t = 1 so d_a is integrable over]0,1[. For $k-1 < t < k,\ k \ge 2$ we have

$$d_a(t) = \frac{(\ln(t))^2 + \pi^2}{(\ln(at))^2 + \pi^2} d_1(t) + \frac{(k-1)\ln a}{t((\ln(at))^2 + \pi^2)},$$
(28)

and the factor in front of $d_1(t)$ is a bounded continuous function with limit 1 at 0 and at infinity. Therefore

$$\int_{1}^{\infty} \frac{|d_a(t)|}{t} \, dt < \infty$$

follows from the finiteness of the corresponding integral for a=1 provided that we establish

$$S := \sum_{k=2}^{\infty} (k-1) \int_{k-1}^{k} \frac{dt}{t^2 \left((\ln(at))^2 + \pi^2 \right)} < \infty.$$

Choosing $N \in \mathbb{N}$ such that aN > 1, we can estimate

$$S < \sum_{k=1}^{\infty} \int_{ka}^{(k+1)a} \frac{dt}{t(\ln^2(t) + \pi^2)} < \int_{a}^{Na} \frac{dt}{t(\ln^2(t) + \pi^2)} + \sum_{k=N}^{\infty} \int_{ka}^{(k+1)a} \frac{dt}{t \ln^2(t)}$$

$$= \int_{a}^{Na} \frac{dt}{t(\ln^2(t) + \pi^2)} + \frac{1}{\ln(aN)} < \infty.$$

We next examine positivity of d_a .

For 0 < t < 1 we have

$$d_a(t) = \frac{\ln |\Gamma(1-t)|}{t((\ln(at))^2 + \pi^2)} > 0$$

because $\Gamma(s) > 1$ for 0 < s < 1.

For $k \geq 2$ and $t \in]k-1, k[$ the numerator N_a in d_a can be written

$$N_a(t) = \ln \Gamma(k-t) + \sum_{l=1}^{k-1} \ln \frac{ta}{t-l},$$

where we have used the functional equation for Γ , hence

$$N_a(t) \ge \sum_{l=1}^{k-1} \ln \frac{k}{k-l} + (k-1) \ln a = (k-1) \ln k - \ln \Gamma(k) + (k-1) \ln a,$$

because $\Gamma(k-t) > 1$ and t/(t-l) is decreasing for k-1 < t < k. From (19) we get

$$\ln \Gamma(k) = \ln \sqrt{2\pi} + (k - 1/2) \ln k - k + \mu(k)$$
(29)

and in particular for k=2

$$\mu(2) = 2 - \frac{3}{2} \ln 2 - \ln \sqrt{2\pi}.$$

Using (29) we find

$$N_a(t) \geq k - \frac{1}{2} \ln k - \ln \sqrt{2\pi} - \mu(k) + (k-1) \ln a \geq k - \frac{1}{2} \ln k - 2 + \frac{3}{2} \ln 2 + (k-1) \ln a,$$

because μ is decreasing on $]0, \infty[$ as shown by (20).

For $a \ge 1/2$ and k - 1 < t < k with $k \ge 2$ we then get

$$N_a(t) \ge k(1 - \ln 2) - \frac{1}{2} \ln k + \frac{5}{2} \ln 2 - 2 \ge 0,$$

because the sequence $c_k, k \geq 2$ on the right-hand side is increasing with $c_2 = 0$.

We also see that $d_a(t)$ tends to infinity for t approaching the end points of the interval]k-1, k[. For z=1/a+iy, y>0 we get from (6)

$$\Im F_a(1/a + iy) = -\frac{\ln \Gamma(1 + 1/a)}{y} + \int_0^\infty \frac{y d_a(t)}{(1/a + t)^2 + y^2} dt.$$

The last term tends to 0 for $y \to 0$ while the first term tends to $-\infty$ when 0 < a < 1. This shows that F_a is not a Pick function for these values of a.

Remark 2.6 We proved in Theorem 1.1 that $d_a(t)$ is non-negative on $[0, \infty[$ for $a \ge 1/2$. This is not best possible, and we shall explain that the smallest value of a for which $d_a(t)$ is non-negative is $a_0 = 0.3681154742...$

Replacing k by k+1 in the numerator N_a for d_a given by (7), we see that

$$N_a(t) = \ln |\Gamma(1-t)| + k \ln(at)$$
 for $t \in]k, k+1[, k=1, 2, ...$

is non-negative if and only if

$$\ln(1/a) \le \ln(k+s) + \frac{1}{k} \ln|\Gamma(1-k-s)| \text{ for } s \in]0,1[, k=1,2,\ldots,$$

and using the reflection formula for Γ this is equivalent to $\ln(1/a) \leq \rho(k, s)$ for all 0 < s < 1 and all k = 1, 2, ..., where

$$\rho(k,s) = \ln(k+s) - \frac{1}{k} \ln \left(\Gamma(k+s) \frac{\sin(\pi s)}{\pi} \right). \tag{30}$$

Using Stieltjes' formula (19), we find that

$$\rho(k,s) = 1 + \frac{\ln(\pi/2)}{2k} - (1/k) \left[(s-1/2) \ln(s+k) + \ln \sin(\pi s) - s + \mu(s+k) \right]$$
(31)

for all $s \in]0,1[$ and k=1,2,... For fixed $s \in]0,1[$ we see that $\rho(k,s) \to 1$ as $k \to \infty$, so $\ln(1/a) \le 1$ is a necessary condition for non-negativity of $d_a(t)$. This condition is not sufficient, because for $\ln(1/a) = 1$ the inequality $1 \le \rho(k,s)$ is equivalent to

$$0 \ge (1/2)\ln(2/\pi) + (s - 1/2)\ln(s + k) + \ln\sin(\pi s) - s + \mu(s + k)$$

which does not hold when k is sufficiently large and 1/2 < s < 1.

For each k = 1, 2, ... it is easy to verify that the function $\rho_k(s) = \rho(k, s)$ has a unique minimum m_k over]0, 1[, and clearly

$$\ln(1/a_0) = \inf\{m_k, k \ge 1\} \tag{32}$$

determines the smallest value of a for which $d_a(t)$ is non-negative. Using Maple one obtains that m_k is decreasing for k = 1, ..., 510 and increasing for $k \geq 510$ with limit 1. Therefore $m_{510} = \inf m_k = 0.9993586013$.. corresponding to $a_0 = 0.3681154742$... We add that $m_1 = 1.6477352344$.., $m_{178} = 1.0000028637$.., $m_{179} = 0.9999936630$...

3 Properties of the function f

Proof of Theorem 1.3 The function

$$\ln f(x) = \frac{(x/2)\ln \pi - \ln \Gamma(1+x/2)}{x\ln x}$$

clearly has a meromorphic extension to $A \setminus 1$ with a simple pole at z = 1 with residue $\ln 2$. We denote this meromorphic extension $\log f(z)$ and have

$$\log f(z+1) = \frac{\ln \sqrt{\pi}}{\log(z+1)} - \frac{1}{2}F_2\left(\frac{z+1}{2}\right).$$

Using the representation (6), we immediately get (10). It is well-known that $1/\log(z+1)$ is a Stieltjes function, cf. [8, p.130], and the integral representation is

$$\frac{1}{\log(z+1)} = \int_{1}^{\infty} \frac{dt}{(z+t)((\ln(t-1))^2 + \pi^2)}.$$
 (33)

It follows that $\ln(\sqrt{e}f(x+1))$ is a Stieltjes function, in particular completely monotonic, showing that $\sqrt{e}f(x+1)$ belongs to the class \mathcal{L} of logarithmically completely monotonic functions studied in [15] and in [6]. Therefore also f(x+1) is completely monotonic. \square

4 Representation of $1/F_a$

For a > 0 we consider the function

$$G_a(z) = 1/F_a(z) = \frac{z \operatorname{Log}(az)}{\log \Gamma(z+1)}$$
(34)

which is holomorphic in \mathcal{A} with an isolated singularity at z=1, which is a simple pole with residue $\ln a/\Psi(2) = \ln a/(1-\gamma)$ if $a \neq 1$, while it is a removable singularity when a=1. Here $\Psi(z) = \Gamma'(z)/\Gamma(z)$ and γ is Euler's constant.

Theorem 4.1 For a > 0 the function G_a has the integral representation

$$G_a(z) = 1 + \frac{\ln a}{(1-\gamma)(z-1)} + \int_0^\infty \frac{\rho_a(t)}{z+t} dt, \quad z \in \mathcal{A} \setminus \{1\},$$
 (35)

where

$$\rho_a(t) = t \frac{\ln |\Gamma(1-t)| + (k-1)\ln(at)}{(\ln |\Gamma(1-t)|)^2 + ((k-1)\pi)^2} \quad for \quad t \in]k-1, k[, \quad k = 1, 2, \dots, (36)]$$

and $\rho_a(0) = 1/\gamma$, $\rho_a(k) = 0$, k = 1, 2, ..., which makes ρ_a continuous on $[0, \infty[$. We have $\rho_a(t) \ge 0$ for $t \ge 0$, $a \ge a_0 = 0.3681154742...$, cf. Remark 2.6, and $G_a(x+1)$ is a Stieltjes function for $a \ge 1$ but not for 0 < a < 1.

Proof. We notice that for $-k < t < -k+1, k=1,2,\ldots$ we get using Lemma 2.1

$$\lim_{y \to 0^+} G_a(t + iy) = \frac{t(\ln(a|t|) + i\pi)}{\ln|\Gamma(1+t)| - i(k-1)\pi},$$

and for $t = -k, k = 1, 2, \dots$ we get

$$\lim_{y \to 0^+} |G_a(-k + iy)| = 0$$

because of the poles of Γ , hence $\lim_{y\to 0^+} \Im G_a(t+iy) = -\pi \rho_a(-t)$ for t<0.

For fixed $w \in \mathcal{A} \setminus \{1\}$ we choose $\varepsilon > 0, k \in \mathbb{N}$ such that $\varepsilon < |w|, 1 < k + \frac{1}{2}$ and consider the positively oriented contour $\gamma(k, \varepsilon)$ in \mathcal{A} which was used in the proof of Theorem 1.1.

By the residue theorem we find

$$\frac{1}{2\pi i} \int_{\gamma(k,\varepsilon)} \frac{G_a(z)}{z-w} dz = G_a(w) + \frac{\ln a}{(1-\gamma)(1-w)}.$$

We now let $\varepsilon \to 0$ in the contour integration. The contribution from the ε -half circle tends to 0 and we get

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{G_a((k+\frac{1}{2})e^{i\theta})}{(k+\frac{1}{2})e^{i\theta} - w} (k+\frac{1}{2})e^{i\theta} d\theta - \int_{-k-\frac{1}{2}}^{0} \frac{\rho_a(-t)}{t-w} dt = G_a(w) + \frac{\ln a}{(1-\gamma)(1-w)}.$$

Finally, letting $k \to \infty$ we get (35), leaving the details to the reader. Clearly, $\rho_a \ge 0$ if and only if d_a defined in (7) is non-negative. It follows that $G_a(x+1)$ is a Stieltjes function for $a \ge 1$ but not for 0 < a < 1, since in the latter case $\Im G_a(1+iy) > 0$ for y > 0 sufficiently small. \square

Remark 4.2 The integral representation in Theorem 4.1 was established in [9, (6)] in the case of a = 1. Since

$$G_a(z) = G_1(z) + \ln(a) \frac{z}{\log \Gamma(z+1)},$$

the formula for G_a can be deduced from the formula for G_1 and the following formula

$$\frac{z}{\log\Gamma(z+1)} = \frac{1}{(1-\gamma)(z-1)} + \int_0^\infty \frac{\tau(t)dt}{z+t}, \quad z \in \mathcal{A} \setminus \{1\}, \tag{37}$$

where

$$\tau(t) = \frac{(k-1)t}{(\ln|\Gamma(1-t)|)^2 + ((k-1)\pi)^2} \quad \text{for} \quad t \in]k-1, k[\,, \quad k=1, 2, \dots$$
 (38)

References

- [1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis. English translation, Oliver and Boyd, Edinburgh, 1965.
- [2] H. Alzer, Inequalities for the Volume of the Unit Ball in \mathbb{R}^n , II, Mediterr. j. math. 5 (2008), 395–413.
- [3] G. D. Anderson, M. K. Vanamurthy, M. Vuorinen, Special functions of quasiconformal theory, Expo. Math. 7 (1989), 97–136.
- [4] G. D. Anderson, S.-L. Qiu, A monotonicity property of the gamma function, Proc. Amer. Math. Soc. 125 (1997), 3355–3362.
- [5] E. Artin, The Gamma Function. Holt, Rinehart and Winston, New York, 1964.
- [6] C. Berg, Integral representation of some functions related to the Gamma function, Mediterr. j. math. 1 (2004), 433-439.
- [7] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic analysis on semi-groups. Theory of positive definite and related functions. Graduate Texts in Mathematics vol. 100. Springer-Verlag, Berlin-Heidelberg-New York, 1984.
- [8] C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin-Heidelberg-New York, 1975.

- [9] C. Berg, H. L. Pedersen, A completely monotone function related to the Gamma function, J. Comput. Appl. Math. 133 (2001), 219–230.
- [10] C. Berg, H. L. Pedersen, Pick functions related to the gamma function, Rocky Mount. J. Math. 32 (2002), 507–525.
- [11] W. F. Donoghue Jr., Monotone Matrix Functions and Analytic Continuation. Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- [12] A. Elbert, A. Laforgia, On some properties of the Gamma function, Proc. Amer. Math. Soc. **128** (2000), 2667-2673.
- [13] S. Koumandos, H. L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl. **355** (2009), 33–40.
- [14] Feng Qi, Bai-Ni Guo, Monotonicity and logarithmic convexity relating to the volume of the unit ball, arXiv:0902.2509v1[math.CA].
- [15] Feng Qi, Bai-Ni Guo, and Chao-Ping Chen, Some completely monotonic functions involving the Gamma and polygamma functions RGMIA Res. Rep. Coll. 7, No. 1 (2004), Art. 8. Available online at http://rgmia.vu.edu.au/v7n1.html
- [16] T. J. Stieltjes, Sur le développement de $\log \Gamma(a)$, J. Math. Pures Appl., Sér. 4, 5 (1889), 425–444. In Collected Papers, Volume II pp. 215–234, edited by G. van Dijk, Springer, Berlin-Heidelberg-New York, 1993.
- [17] D. V. Widder, *The Laplace Transform*. Princeton University Press, Princeton, 1941.