3.3

# Vecteurs colinéaires

Maths 2nde 7 - JB Duthoit

### **Définition**

Soit  $\vec{u}$  et  $\vec{v}$  deux vecteurs du plan.

On dit que  $\vec{u}$  et  $\vec{v}$  sont colinéaires si et seulement si il existe un réel k tel que  $\vec{v} = k\vec{u}$ .

### Remarque

- Le vecteur nul  $\vec{0}$  est colinéaire à tout autre vecteur.
- Deux vecteurs <u>non nuls</u> sont colinéaires si et seulement si ils ont la même direction.



Exemple de vecteurs  $\vec{u}$  et  $\vec{v}$  colinéaires

# Savoir-Faire 3.26

SAVOIR MONTRER QUE DEUX VECTEURS SONT COLINÉAIRES

On considère un triangle MNP non applati.

Soit le point R tel que  $\overrightarrow{MR} = 2\overrightarrow{MN}$ .

Soit le point S tel que  $\overrightarrow{PS} = \overrightarrow{MP}$ .

- 1. Faire une figure
- 2. En remarquant que  $\overrightarrow{RS} = \overrightarrow{RM} + \overrightarrow{MP} + \overrightarrow{PS}$ , exprimer le vecteurs  $\overrightarrow{RS}$  en fonction de  $\overrightarrow{NP}$
- 3. Que peut-on en déduire au sujet des deux vecteurs  $\overrightarrow{RS}$  et  $\overrightarrow{NP}$ ?
- 4. Que peut-on en déduite pour les droites (RS) et (NP)?

#### Exercice 3.11

Soit EFG un triangle non applati.

On considère les points H et K définis par  $\overrightarrow{EH}=-\overrightarrow{EF}$  et  $\overrightarrow{HK}=2\overrightarrow{EG}$ .

- 1. Faire une figure
- 2. Montrer que  $\overrightarrow{FH} = 2\overrightarrow{FE}$  en utilisant la relation de Chasles.
- 3. En remarquant que  $\overrightarrow{FK} = \overrightarrow{FH} + \overrightarrow{HK}$ , montrer que  $\overrightarrow{FK} = 2\overrightarrow{FG}$ .
- 4. Que dire des vecteurs  $\overrightarrow{FK}$  et  $\overrightarrow{FG}$ ?
- 5. Que peut-on endéduire pour les points F, G et K?

## • Exercice 3.12

On considère un rectangle ABCD. On note i et J les points définis par  $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$  et  $\overrightarrow{BJ} = \frac{1}{5}\overrightarrow{BC}$ .

- 1. Faire une figure
- 2. Exprimer  $\overrightarrow{AC}$  en fonction de  $\overrightarrow{BA}$  et  $\overrightarrow{BC}$ .
- 3. Exprimer  $\overrightarrow{IJ}$  en fonction de  $\overrightarrow{BA}$  et  $\overrightarrow{BC}$ .