

A321

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

AC

The content of this document is the property of Airbus.

It is supplied in confidence and commercial security on its contents must be maintained.

It must not be used for any purpose other than that for which it is supplied, nor may information contained in it be disclosed to unauthorized persons.

It must not be reproduced in whole or in part without permission in writing from the owners of the copyright. Requests for reproduction of any data in this document and the media authorized for it must be addressed to Airbus.

© AIRBUS S.A.S. 2005. All rights reserved.

AIRBUS S.A.S.
Customer Services
Technical Data Support and Services
31707 Blagnac Cedex
FRANCE

Issue: Sep 30/92 Rev: May 01/11

HIGHLIGHTS

Revision No. 15 - May 01/11

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
CHAPTER 2		
Section 2-2		
Subject 2-2-0		
FIGURE General Airplane Dimensions - General Airplane Dimensions	R	ILLUSTRATION REVISED ILLUSTRATION REVISED
Section 2-3		
Subject 2-3-0		
Ground Clearances	R	NOTE AMENDED
FIGURE Ground Clearances - Ground Clearances	R	ILLUSTRATION REVISED AND COMPLETED
CHAPTER 4		
Section 4-5	R	
Subject 04-05-04	D	
Subject 04-05-05	D	
CHAPTER 6		
Section 6-1	R	
Subject 06-01-03	D	
Subject 06-01-04	D	
CHAPTER 7		
Section 7-1		
Subject 7-1-0		
General Information	R	PART EFFECTIVITY ADDED/REVISED/DELETED
FIGURE Aircraft Codes - Aircraft Codes	N	NEW ILLUSTRATION ADDED ILLUSTRATION ADDED
Section 7-2		
Subject 7-2-0		

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
Landing Gear Footprint	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Landing Gear Footprint - Landing Gear Footprint	N	ILLUSTRATION ADDED
FIGURE Landing Gear Footprint - Landing Gear Footprint	N	ILLUSTRATION ADDED
FIGURE Landing Gear Footprint - Landing Gear Footprint	N	ILLUSTRATION ADDED
FIGURE Landing Gear Footprint - Landing Gear Footprint	N	ILLUSTRATION ADDED
FIGURE Landing Gear Footprint - Landing Gear Footprint	N	ILLUSTRATION ADDED
Section 7-3		
Subject 7-3-0		
Maximum Pavement Loads	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	ILLUSTRATION ADDED
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	ILLUSTRATION ADDED
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	ILLUSTRATION ADDED
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	ILLUSTRATION ADDED
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	ILLUSTRATION ADDED
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	ILLUSTRATION ADDED
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	ILLUSTRATION ADDED
Section 7-4		
Subject 7-4-0		

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
Landing Gear Loading on Pavement	R	PART EFFECTIVITY ADDED/REVISED/DELETED
Subject 7-4-1		
Landing Gear Loading on Pavement	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	ILLUSTRATION ADDED
Section 7-5		
Subject 7-5-0		
Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method	R	
Subject 7-5-1		

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirement - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Flexible Pavement Requirement - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	ILLUSTRATION ADDED
Section 7-6		
Subject 7-6-0		
Flexible Pavement Requirements - LCN Conversion	R	
Subject 7-6-1		
Flexible Pavement Requirements - LCN Conversion	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
Section 7-7 Subject 7-7-0		
Rigid Pavement Requirements - Portland Cement Association Design Method	R	
Subject 7-7-1		
Rigid Pavement Requirements - Portland Cement Association Design Method	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	ILLUSTRATION ADDED
Section 7-8		
Subject 7-8-0		
Rigid Pavement Requirements - LCN Conversion	R	
Subject 7-8-2		
Rigid Pavement Requirements - LCN Conversion	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
Subject 7-8-3		
Radius of Relative Stiffness (Other values of "E" and "L")	R	
Subject 7-8-4		
FIGURE Radius of Relative Stiffness - (Effect E and μ on "L" values)	R	ILLUSTRATION REVISED
Section 7-9		
Subject 7-9-0		
ACN/PCN Reporting System	R	PART EFFECTIVITY ADDED/REVISED/DELETED
Subject 7-9-1		
Aircraft Classification Number - Flexible Pavement	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement Subject 7-9-2	N	ILLUSTRATION ADDED
Aircraft Classification Number - Rigid Pavement	R	NOTE AMENDED CROSS REFERENCED DOCUMENTARY UNIT ADDED/REVISED/DELETED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	ILLUSTRATION ADDED

LIST OF EFFECTIVE CONTENT

Revision No. 15 - May 01/11

CONTENT	CHG CODE	LAST REVISION DATE
CHAPTER 1		
Subject 1-1-0		
Purpose		Dec 01/07
Subject 1-2-0		
Introduction		Dec 01/07
CHAPTER 2		
Subject 2-1-0		
General Airplane Characteristics		Dec 01/07
Subject 2-1-1		
General Airplane Characteristics Data		Sep 01/10
Subject 2-2-0		
General Airplane Dimensions		Dec 01/07
FIGURE General Airplane Dimensions - General Airplane Dimensions	R	May 01/11
Subject 2-3-0		
Ground Clearances	R	May 01/11
FIGURE Ground Clearances - Ground Clearances	R	May 01/11
Subject 2-4-0		
Interior Arrangements		Dec 01/07
Subject 2-4-1		
Typical Configuration		Sep 01/10
FIGURE Typical Configuration - Typical Configuration Single-Class, High Density		Sep 01/10
FIGURE Typical Configuration - Typical Configuration Two-Class		Sep 01/10
Subject 2-5-0		
Passenger Compartment Cross-section		Sep 01/10
FIGURE Passenger Compartment Cross-section - Passenger Compartment Cross-section		Sep 01/10

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Passenger Compartment Cross-section - Economy Class, 6 Abreast - Wider Aisle		Sep 01/10
FIGURE Passenger Compartment Cross-section - Passenger Compartment Cross-section, First-class		Sep 01/10
Subject 2-6-0		
Cargo Compartments		Dec 01/07
Subject 2-6-1		
Lower Deck Cargo Compartments		Dec 01/07
FIGURE Lower Deck Cargo Compartments - Lower Deck Cargo Compartments Dimensions		Dec 01/07
FIGURE Lower Deck Cargo Compartments - Lower Deck Cargo Compartments Containers		Dec 01/07
Subject 2-7-0		
Doors Clearances		Dec 01/07
Subject 2-7-1		
Forward Passenger / Crew Doors		Dec 01/07
FIGURE Doors Clearances - Forward Passenger / Crew Doors		Dec 01/07
Subject 2-7-2		
Emergency Exits		Dec 01/07
FIGURE Doors Clearances - Emergency Exits		Dec 01/07
Subject 2-7-3		
Aft Passenger / Crew Doors		Dec 01/07
FIGURE Doors Clearances - Aft Passenger / Crew Doors		Dec 01/07
Subject 2-7-4		
Forward Cargo Compartment Door		Dec 01/07
FIGURE Doors Clearances - Forward Cargo Compartment Door		Dec 01/07
Subject 2-7-5		
Aft Cargo Compartment Door		Dec 01/07
FIGURE Doors Clearances - Aft Cargo Compartment Door		Dec 01/07
Subject 2-7-6		

CONTENT	CHG CODE	LAST REVISION DATE
Bulk Cargo Compartment Door		Dec 01/07
FIGURE Doors Clearances - Bulk Cargo Compartment Door		Dec 01/07
Subject 2-7-7		
Main Landing Gear Doors		Dec 01/07
FIGURE Doors Clearances - Main Landing Gear Doors		Dec 01/07
Subject 2-7-8		
Radome		Dec 01/07
FIGURE Doors Clearances - Radome		Dec 01/07
Subject 2-7-9		
APU and Nose Landing Gear Doors		Dec 01/07
FIGURE Doors Clearances - APU and Nose Landing Gear Doors		Dec 01/07
CHAPTER 3		
Subject 3-1-0		
General Information		Dec 01/07
Subject 3-2-0		
Payload / Range		Dec 01/07
Subject 3-2-1		
ISA Conditions		Dec 01/07
FIGURE Payload / Range - CFM56-5B series engine		Dec 01/07
FIGURE Payload / Range - IAE V2500-A5 series engine		Dec 01/07
Subject 3-3-0		
FAR / JAR Take-off Weight Limitation		Dec 01/07
Subject 3-3-1		
ISA Conditions		Dec 01/07
FIGURE FAR / JAR Take-off Weight Limitation - ISA Conditions – CFM56 series engine		Dec 01/07
FIGURE FAR / JAR Take-off Weight Limitation - ISA Conditions – IAE V2500 series engine		Dec 01/07
Subject 3-3-2		

CONTENT	CHG CODE	LAST REVISION DATE
ISA +15 °C (+59 °F) Conditions		Dec 01/07
FIGURE FAR $/$ JAR Take-off Weight Limitation - ISA $+15^{\circ}$ C $(+59^{\circ}$ F) Conditions – CFM56 series engine		Dec 01/07
FIGURE FAR $/$ JAR Take-off Weight Limitation - ISA $+15^{\circ}$ C $(+59^{\circ}\text{F})$ Conditions – IAE V2500 series engine		Dec 01/07
Subject 3-4-0		
FAR / JAR Landing Field Length		Dec 01/07
Subject 3-4-1		
ISA Conditions		Dec 01/07
FIGURE FAR / JAR Landing Field Length - CFM56 series engine		Dec 01/07
FIGURE FAR / JAR Landing Field Length - IAE V2500 series engine		Dec 01/07
Subject 3-5-0		
Final Approach Speed		Dec 01/07
FIGURE Final Approach Speed - CFM56 series engine		Dec 01/07
FIGURE Final Approach Speed - IAE V2500 series engine		Dec 01/07
CHAPTER 4		
Subject 4-1-0		
General Information		Dec 01/07
Subject 4-2-0		
Turning Radii		Dec 01/07
FIGURE Turning Radii, no Slip Angle - Turning Radii, no Slip Angle		Dec 01/07
FIGURE Turning Radii, no Slip Angle - Turning Radii, no Slip Angle		Dec 01/07
Subject 4-3-0		
Minimum Turning Radii		Dec 01/07
FIGURE Minimum Turning Radii - Minimum Turning Radii		Dec 01/07
Subject 4-4-0		
Visibility from Cockpit in Static Position		Dec 01/07
FIGURE Visibility from Cockpit in Static Position - Visibility from Cockpit in Static Position		Dec 01/07
Subject 4-5-0		

CONTENT	CHG CODE	LAST REVISION DATE
Runway and Taxiway Turn Paths		Dec 01/07
Subject 4-5-1		
135° Turn - Runway to Taxiway		Dec 01/07
FIGURE 135° Turn - Runway to Taxiway - CG on Centerline Method		Dec 01/07
FIGURE 135° Turn - Runway to Taxiway - NLG on Centerline Method Subject 4-5-2		Dec 01/07
90° Turn - Runway to Taxiway		Dec 01/07
FIGURE 90° Turn - Runway to Taxiway - CG on Centerline Method		Dec 01/07
FIGURE 90° Turn - Runway to Taxiway - NLG on Centerline Method		Dec 01/07
Subject 4-5-3		
180° Turn on a Runway		Dec 01/07
FIGURE 180° Turn on a 150 ft Runway - NLG on Centerline Method		Dec 01/07
Subject 4-5-6		
180° Turn on a Wide Runway		Dec 01/07
FIGURE 180° Turn on a 150 ft Wide Runway - Edge of Runway Method Subject 4-6-0		Dec 01/07
Runway Holding Bay (Apron)		Dec 01/07
FIGURE Runway Holding Bay (Apron) - Runway Holding Bay (Apron)		Dec 01/07
Subject 4-7-0		
Airplane Parking		Dec 01/07
FIGURE Runway Length Alterations - Line Up Distances – 90° Turn		Dec 01/07
FIGURE Runway Length Alterations - Line Up Distances – 180° Turn		Dec 01/07
CHAPTER 5 Subject 5-0-0		
Terminal Servicing		Sep 01/10
Subject 5-1-0		
Airplane Servicing Arrangements		Sep 01/10

CONTENT	CHG CODE	LAST REVISION DATE
Subject 5-1-1		
Symbols Used on Servicing Diagrams		Sep 01/10
Subject 5-1-2		
Aircraft at the Gate		Sep 01/10
FIGURE Aircraft at the Gate - Aircraft at the Gate		Sep 01/10
Subject 5-1-3		
Aircraft at an Open Apron		Sep 01/10
FIGURE Aircraft at an Open Apron - Aircraft at an Open Apron (Bulk Loading)		Sep 01/10
FIGURE Aircraft at an Open Apron - Aircraft at an Open Apron (ULD Loading)		Sep 01/10
Subject 5-2-0		
Terminal Operations - Full Servicing Turnaround		Sep 01/10
Subject 5-2-1		
Full Servicing Turnaround Charts		Sep 01/10
FIGURE Turnaround Stations - Full Servicing (56 Min.)		Sep 01/10
Subject 5-3-0		
Terminal Operation		Sep 01/10
Subject 5-3-1		
Minimum Servicing Turnaround Chart		Sep 01/10
FIGURE Turnaround Stations - Minimum Servicing (25 Min.)		Sep 01/10
Subject 5-4-0		
Ground Service Connections		Dec 01/07
Subject 5-4-1		
Ground Service Connections Layout		Dec 01/07
FIGURE Ground Service Connections - Ground Service Connections Layout		Dec 01/07
Subject 5-4-2		
Grounding Points		Dec 01/07
FIGURE Ground Service Connections - Grounding Points		Dec 01/07

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Service Connections - Grounding Points		Dec 01/07
Subject 5-4-3		
Hydraulic System		Sep 01/10
FIGURE Hydraulic System - Green System Ground Service Panel		Sep 01/10
FIGURE Hydraulic System - Blue System Ground Service Panel		Sep 01/10
FIGURE Hydraulic System - Yellow System Ground Service Panel		Sep 01/10
Subject 5-4-4		
Electrical System		Sep 01/10
FIGURE Ground Service Connections - External Power Receptacles		Sep 01/10
Subject 5-4-5		
Oxygen System		Dec 01/07
Subject 5-4-6		
Fuel System		Sep 01/10
FIGURE Ground Service Connections - Refuel/Defuel Panel		Sep 01/10
FIGURE Ground Service Connections - Refuel/Defuel Couplings		Sep 01/10
FIGURE Ground Service Connections - Gravity Refuel Couplings		Sep 01/10
Subject 5-4-7		
Pneumatic System		Sep 01/10
Subject 5-4-8		
Potable Water System		Sep 01/10
FIGURE Ground Service Connections - Potable Water Ground Service Panel		Sep 01/10
Subject 5-4-9		
Oil System		Sep 01/10
FIGURE Ground Service Connections - Engine Oil Tank – CFM56 Series Engine		Sep 01/10
FIGURE Ground Service Connections - IDG Oil Tank – CFM56 Series Engine		Sep 01/10
FIGURE Ground Service Connections - Starter Oil Tank – CFM56 Series Engine		Sep 01/10

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Service Connections - Engine Oil Tank - IAE V2500 Series Engine		Sep 01/10
FIGURE Ground Service Connections - IDG Oil Tank – IAE V2500 Series Engine		Sep 01/10
FIGURE Ground Service Connections - Starter Oil Tank - IAE V2500 Series Engine		Sep 01/10
FIGURE Ground Service Connections - APU Oil Tank		Sep 01/10
Subject 5-4-10		
Vacuum Toilet System		Sep 01/10
FIGURE Ground Service Connections - Waste Water Ground Service Panel		Sep 01/10
Subject 5-5-0		
Engine Starting Pneumatic Requirements		Dec 01/07
Subject 5-5-1		
Low Temperature -40 °C (-40 °F)		Dec 01/07
FIGURE Engine Starting Pneumatic Requirements - Temperature -40 °C (-40 °F) – CFM56 series engine		Dec 01/07
FIGURE Engine Starting Pneumatic Requirements - Temperature -40 °C (-40 °F) – IAE V2500 series engine		Dec 01/07
Subject 5-5-2		
Ambient Temperature +15 °C (+59 °F)		Dec 01/07
FIGURE Engine Starting Pneumatic Requirements - Temperature $+15^{\circ}\mathrm{C}\ (+59^{\circ}\mathrm{F})$ - CFM56 series engine		Dec 01/07
FIGURE Engine Starting Pneumatic Requirements - Temperature $+15^{\circ}$ C $(+59^{\circ}$ F) - IAE V2500 series engine		Dec 01/07
Subject 5-5-3		
High Temperature $+50^{\circ}$ C ($+122^{\circ}$ F) and $+55^{\circ}$ C ($+131^{\circ}$ F)		Dec 01/07
FIGURE Engine Starting Pneumatic Requirements - Temperature $+55^{\circ}\mathrm{C}(+131^{\circ}\mathrm{F})$ - CFM56 series engine		Dec 01/07
FIGURE Engine Starting Pneumatic Requirements - Temperature +50 °C (+122 °F) - IAE V2500 series engine		Dec 01/07
Subject 5-6-0		

CONTENT	CHG CODE	LAST REVISION DATE
Ground Pneumatic Power Requirements		Dec 01/07
Subject 5-6-1		
Heating		Dec 01/07
FIGURE Ground Pneumatic Power Requirements - Heating		Dec 01/07
Subject 5-6-2		
Cooling		Dec 01/07
FIGURE Ground Pneumatic Power Requirements - Cooling		Dec 01/07
Subject 5-7-0		
Preconditioned Airflow Requirements		Dec 01/07
FIGURE Preconditioned Airflow Requirements - Preconditioned Airflow Requirements		Dec 01/07
Subject 5-8-0		
Ground Towing Requirements		Sep 01/10
FIGURE Ground Towing Requirements - Ground Towing Requirements		Sep 01/10
FIGURE Ground Towing Requirements - Typical Tow Bar Configuration 1		Sep 01/10
FIGURE Ground Towing Requirements - Typical Tow Bar Configuration 2		Sep 01/10
CHAPTER 6		
Subject 6-1-0		
Engine Exhaust Velocities and Temperatures		Dec 01/07
Subject 6-1-1		
Engine Exhaust Velocities Contours - Ground Idle Power		Dec 01/07
FIGURE Engine Exhaust Velocities - Ground Idle Power – CFM56-5B series engine		Dec 01/07
FIGURE Engine Exhaust Velocities - Ground Idle Power – IAE V2500 series engine		Dec 01/07
Subject 6-1-2		
Engine Exhaust Temperatures Contours - Ground Idle Power		Dec 01/07

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Engine Exhaust Temperatures - Ground Idle Power – CFM56-5B series engine		Dec 01/07
FIGURE Engine Exhaust Temperatures - Ground Idle Power – IAE V2500 series engine		Dec 01/07
Subject 6-1-5		
Engine Exhaust Velocities Contours - Takeoff Power		Dec 01/07
FIGURE Engine Exhaust Velocities - Takeoff Power – CFM56-5B series engine		Dec 01/07
FIGURE Engine Exhaust Velocities - Takeoff Power - IAE V2500 series engine		Dec 01/07
Subject 6-1-6		
Engine Exhaust Temperatures Contours - Takeoff Power		Dec 01/07
FIGURE Engine Exhaust Temperatures - Takeoff Power – CFM56-5B series engine		Dec 01/07
FIGURE Engine Exhaust Temperatures - Takeoff Power - IAE V2500 series engine		Dec 01/07
Subject 6-2-0		
Airport and Community Noise		Dec 01/07
Subject 6-2-1		
Noise Data		Dec 01/07
FIGURE Airport and Community Noise - CFM56-5B series engine		Dec 01/07
FIGURE Airport and Community Noise - IAE V2500 series engine		Dec 01/07
Subject 6-3-0		
Danger Areas of Engines		Dec 01/07
Subject 6-3-1		
Ground Idle Power		Dec 01/07
FIGURE Danger Areas of Engines - CFM56-5B series engine		Dec 01/07
FIGURE Danger Areas of Engines - IAE V2500 series engine		Dec 01/07
Subject 6-3-2		
Takeoff Power		Dec 01/07
FIGURE Danger Areas of Engines - CFM56-5B series engine		Dec 01/07

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Danger Areas of Engines - IAE V2500 series engine		Dec 01/07
Subject 6-4-0		
APU Exhaust Velocities and Temperatures		Dec 01/07
Subject 6-4-1		
APU - APIC & GARRETT		Dec 01/07
FIGURE Exhaust Velocities and Temperatures - APU – APIC & GARRETT		Dec 01/07
CHAPTER 7		
Subject 7-1-0		
General Information	R	May 01/11
FIGURE Aircraft Codes - Aircraft Codes	Ν	May 01/11
Subject 7-2-0		
Landing Gear Footprint	R	May 01/11
FIGURE Landing Gear Footprint - Landing Gear Footprint	N	May 01/11
FIGURE Landing Gear Footprint - Landing Gear Footprint	Ν	May 01/11
FIGURE Landing Gear Footprint - Landing Gear Footprint	N	May 01/11
FIGURE Landing Gear Footprint - Landing Gear Footprint	Ν	May 01/11
FIGURE Landing Gear Footprint - Landing Gear Footprint	N	May 01/11
Subject 7-3-0		
Maximum Pavement Loads	R	May 01/11
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	May 01/11
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	May 01/11
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	May 01/11
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	May 01/11
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	May 01/11
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	May 01/11
FIGURE Maximum Pavement Loads - Maximum Pavement Loads	N	May 01/11
Subject 7-4-0		
Landing Gear Loading on Pavement	R	May 01/11

CONTENT	CHG CODE	LAST REVISION DATE
Subject 7-4-1	CODE	BATE
Landing Gear Loading on Pavement	R	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
FIGURE Landing Gear Loading on Pavement - Landing Gear Loading on Pavement	N	May 01/11
Subject 7-5-0		
Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method	R	May 01/11
Subject 7-5-1		
Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method	R	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirement - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirement - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
FIGURE Flexible Pavement Requirements - Flexible Pavement Requirements	N	May 01/11
Subject 7-6-0		
Flexible Pavement Requirements - LCN Conversion	R	May 01/11
Subject 7-6-1		
Flexible Pavement Requirements - LCN Conversion	R	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11

©A321

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Flexible Pavement Requirements - LCN Conversion - Flexible Pavement Requirements - LCN Conversion	N	May 01/11
Subject 7-7-0		
Rigid Pavement Requirements - Portland Cement Association Design Method	R	May 01/11
Subject 7-7-1		

©A321

CONTENT	CHG CODE	LAST REVISION DATE
Rigid Pavement Requirements - Portland Cement Association Design Method	R	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
FIGURE Rigid Pavement Requirements (PCA) - Rigid Pavement Requirements (PCA)	N	May 01/11
Subject 7-8-0		
Rigid Pavement Requirements - LCN Conversion	R	May 01/11
Subject 7-8-1		
Radius of Relative Stiffness		Dec 01/07
FIGURE Radius of Relative Stiffness - (Reference: Portland Cement Association)		Dec 01/07
Subject 7-8-2		
Rigid Pavement Requirements - LCN Conversion	R	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11

©A321

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
FIGURE Rigid Pavement Requirements - LCN Conversion - Rigid Pavement Requirements - LCN Conversion	N	May 01/11
Subject 7-8-3		
Radius of Relative Stiffness (Other values of "E" and "L")	R	May 01/11
Subject 7-8-4		
Radius of Relative Stiffness		Dec 01/07
FIGURE Radius of Relative Stiffness - (Effect E and μ on "L" values)	R	May 01/11
Subject 7-9-0		
ACN/PCN Reporting System	R	May 01/11

CONTENT	CHG CODE	LAST REVISION DATE
Subject 7-9-1	CODE	DATE
Aircraft Classification Number - Flexible Pavement	R	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11

GA321

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Flexible Pavement - Aircraft Classification Number – Flexible Pavement	N	May 01/11
Subject 7-9-2		
Aircraft Classification Number - Rigid Pavement	R	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
FIGURE Aircraft Classification Number – Rigid Pavement - Aircraft Classification Number – Rigid Pavement	N	May 01/11
CHAPTER 8		
Subject 8-1-0		
Possible Future Derivative Airplane		Dec 01/07
CHAPTER 9		
Subject 9-1-0		
Scaled Drawings		Sep 01/10
FIGURE Scaled Drawing - Scaled Drawing		Sep 01/10
FIGURE Scaled Drawing - Scaled Drawing		Sep 01/10

TABLE OF CONTENTS

1	SCOPE
1-1-0	Purpose
1-2-0	Introduction
2	AIRPLANE DESCRIPTION
2-1-0	General Airplane Characteristics
2-1-1	General Airplane Characteristics Data
2-2-0	General Airplane Dimensions
2-3-0	Ground Clearances
2-4-0	Interior Arrangements
2-4-1	Passenger Compartment Layout
2-5-0	Passenger Compartment Cross Section
2-6-0	Cargo Compartments
2-6-1	Lower Deck Cargo Compartments
2-7-0	Door Clearances
2-7-1	Forward Passenger / Crew Doors
2-7-2	Emergency Exits
2-7-3	Aft Passenger / Crew Doors
2-7-4	Forward Cargo Compartment Doors
2-7-5	Aft Cargo Compartment Doors
2-7-6	Bulk Cargo Compartment Doors
2-7-7	Main Landing Gear Doors
2-7-8	Radome
2-7-9	APU and Nose Landing Gear Doors
3	AIRPLANE PERFORMANCE
3-1-0	General Information
3-2-0	Payload / Range
3-2-1	ISA Conditions
3-3-0	FAR $/$ JAR Takeoff Weight Limitation
3-3-1	ISA Conditions
3-3-2	ISA $+15^{\circ}$ C $(+59^{\circ}$ F) Conditions
3-4-0	$FAR\ /\ JAR\ Landing\ Field\ Length$
3-4-1	ISA Conditions
3-5-0	Final Approach Speed

GA321

4	GROUND MANEUVERING
4-1-0	General Information
4-2-0	Turning Radii
4-3-0	Minimum Turning Radii
4-4-0	Visibility from Cockpit in Static Position
4-5-0	Runway and Taxiway Turn Paths
4-5-1	135° Turn - Runway to Taxiway
4-5-2	90° Turn - Runway to Taxiway
4-5-3	180° Turn on a Runway
4-5-6	180° Turn on a Wide Runway
4-6-0	Runway Holding Bay (Apron)
4-7-0	Airplane Parking
5	TERMINAL SERVICING
5-0-0	TERMINAL SERVICING
5-1-0	Airplane Servicing Arrangements
5-1-1	Symbols Used on Servicing Diagrams
5-1-2	Typical Ramp Layout - Aircraft at the Gate
5-1-3	Typical Ramp Layout - Aircraft at an Open Apron
5-2-0	Terminal Operations - Full Servicing Turnaround
5-2-1	Full Servicing Turnaround Charts
5-3-0	Terminal Operation - Minimum Servicing Turnaround
5-3-1	Minimum Servicing Turnaround Chart
5-4-0	Ground Service Connections
5-4-1	Ground Service Connections Layout
5-4-2	Grounding Points
5-4-3	Hydraulic System
5-4-4	Electrical System
5-4-5	Oxygen System
5-4-6	Fuel System
5-4-7	Pneumatic System
5-4-8	Potable Water System
5-4-9	Oil System
5-4-10	Vacuum Toilet System
5-5-0	Engine Starting Pneumatic Requirements
5-5-1	Low Temperatures
5-5-2	Ambient Temperatures

©A321

5-5-3	High Temperatures
5-6-0	Ground Pneumatic Power Requirements
5-6-1	Heating
5-6-2	Cooling
5-7-0	Preconditioned Airflow Requirements
5-8-0	Ground Towing Requirements
6	OPERATING CONDITIONS
6-1-0	Engine Exhaust Velocities and Temperatures
6-1-1	Engine Exhaust Velocities Contours - Ground Idle Power
6-1-2	Engine Exhaust Temperatures Contours - Ground Idle Power
6-1-5	Engine Exhaust Velocities Contours - Takeoff Power
6-1-6	Engine Exhaust Temperatures Contours - Takeoff Power
6-2-0	Airport and Community Noise
6-2-1	Noise Data
6-3-0	Danger Areas of Engines
6-3-1	Ground Idle Power
6-3-2	Takeoff Power
6-4-0	APU Exhaust Velocities and Temperatures
6-4-1	APU
7	PAVEMENT DATA
7-1-0	General Information
7-2-0	Landing Gear Footprint
7-3-0	Maximum Pavement Loads
7-4-0	Landing Gear Loading on Pavement
7-4-1	Landing Gear Loading on Pavement
7-5-0	Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method
7-5-1	Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method
7-6-0	Flexible Pavement Requirements - LCN Conversion
7-6-1	Flexible Pavement Requirements - LCN Conversion
7-7-0	Rigid Pavement Requirements - Portland Cement Association Design Method
7-7-1	Rigid Pavement Requirements - Portland Cement Association Design Method
7-8-0	Rigid Pavement Requirements - LCN Conversion
7-8-1	Radius of Relative Stiffness
7-8-2	Rigid Pavement Requirements - LCN Conversion
7-8-3	Radius of Relative Stiffness (Other values of E and L)
7-8-4	Radius of Relative Stiffness

7-9-0	ACN/PCN Reporting System
7-9-1	Aircraft Classification Number - Flexible Pavement
7-9-2	Aircraft Classification Number - Rigid Pavement
8 8-1-0	DERIVATIVE AIRPLANES Possible Future Derivative Airplane
9 9-1-0	SCALED DRAWINGS Scaled Drawings

SCOPE

1-1-0 Purpose

**ON A/C A321-100 A321-200

Purpose

1. General

The A321 AIRPLANE CHARACTERISTICS (AC) manual is issued for the A321-100 and A321-200 basic versions to provide the necessary data needed by airport operators and airlines for the planning of airport facilities.

This document conforms to NAS 3601.

CORRESPONDENCE

Correspondence concerning this publication should be directed to:

AIRBUS S.A.S.
Customer Services
Technical Data Support and Services
1, Rond Point Maurice BELLONTE
31707 BLAGNAC CEDEX
FRANCE

1-2-0 Introduction

**ON A/C A321-100 A321-200

Introduction

1. General

This manual comprises 9 chapters with a List of Effective Pages (LEP) at the beginning of the manual and a Table Of Content (TOC) at the beginning of each chapter.

Chapter 1: SCOPE

Chapter 2: AIRPLANE DESCRIPTION

This chapter contains general dimensional and other basic aircraft data.

It covers:

- aircraft dimensions and ground clearances,
- passenger and cargo compartment arrangement.

Chapter 3: AIRPLANE PERFORMANCE

This chapter indicates the aircraft performance.

It covers:

- payload range,
- takeoff and landing runway requirements,
- landing approach speed.

Chapter 4: GROUND MANEUVERING

This chapter provides the aircraft turning capability and maneuvering characteristics on the ground.

It includes:

- turning radii and visibility from the cockpit,
- runway and taxiway turn path.

Chapter 5: TERMINAL SERVICING

This chapter provides information for the arrangement of ground handling and servicing equipments.

It covers:

- location and connections of ground servicing equipments,

- engine starting pneumatic and preconditioned airflow requirements.

Chapter 6: OPERATING CONDITIONS

This chapter contains data and safety/environmental precautions related to engine and APU operation on the ground.

It covers:

- contour size and shape of the jet engine exhaust velocities and temperature,
- noise data.

Chapter 7: PAVEMENT DATA

This chapter contains the pavement data helpful for airport planning.

It gives:

- landing gear foot print and static load,
- charts for flexible pavements with Load Classification Number (LCN),
- charts for rigid pavements with LCN,
- Aircraft Classification Number (ACN), Pavement Classification Number (PCN), reporting system for flexible and rigid pavements.

Chapter 8: DERIVATIVE AIRPLANES

This chapter gives relevant data of possible A321 new version with the associated size change.

Chapter 9: SCALED DRAWING

This chapter contains different A321 scaled drawings.

AIRPLANE DESCRIPTION

2-1-0 General Airplane Characteristics

**ON A/C A321-100 A321-200

General Airplane Characteristics

1. General Airplane Characteristics

The weight terms used throughout this manual are given below together with their respective definitions.

Maximum Taxi Weight (MTW):

Maximum weight for ground maneuver as limited by aircraft strength and airworthiness requirements. (It includes weight of run-up and taxi fuel). It is also called Maximum Ramp Weight (MRW).

Maximum Landing Weight (MLW):

Maximum weight for landing as limited by aircraft strength and airworthiness requirements.

Maximum Takeoff Weight (MTOW):

Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the takeoff run).

Maximum Zero Fuel Weight (MZFW):

Maximum operational weight of the aircraft without usable fuel.

Operational Empty Weight (OEW):

Weight of structure, powerplant, furnishings, systems, and other items of equipment that are an integral part of a particular aircraft configuration plus the operator's items. The operator's items are the flight and cabin crew and their baggage, unusable fuel, engine oil, emergency equipment, toilet chemical and fluids, galley structure, catering equipment, passenger seats and life vests, documents, etc.

Maximum Payload:

Maximum Zero Fuel Weight (MZFW) minus Operational Empty Weight (OEW).

Maximum Seating Capacity:

Maximum number of passengers specifically certified or anticipated for certification.

Maximum Cargo Volume:

Maximum usable volume available for cargo.

Usable Fuel:

Fuel available for aircraft propulsion.

2-1-1 General Airplane Characteristics Data

**ON A/C A321-100 A321-200

General Airplane Characteristics Data

**ON A/C A321-100

1. The following table provides characteristics of A321-100 Models, these data are specific to each Weight Variant:

Aircraft Characteristics						
		WV000	WV002	WV003	WV004	WV005
Maximum Ramp Weight	Kilograms	83 400	83 400	85 400	78 400	83 400
(MRW) Maximum Taxi Weight (MTW)	Pounds	183 865	183 865	188 275	172 842	183 865
Maximum Takeoff	Kilograms	83 000	83 000	85 000	78 000	83 000
Weight (MTOW)	Pounds	182 984	182 984	187 393	171 961	182 984
Maximum Landing	Kilograms	73 500	74 500	74 500	73 500	75 000
Weight (MLW)	Pounds	162 040	164 244	164 244	162 040	165 347
Maximum Zero Fuel	Kilograms	69 500	70 500	70 500	69 500	71 000
Weight (MZFW)	Pounds	153 221	155 426	155 426	153 221	156 528
Estimated Operational	CFM Engines	46 856 kg (103 300 lb)				
Empty Weight (OEW)	IAE Engines		46 959	9 kg (103 52	7 lb)	
Estimated Maximum Payload CFM 56	Kilograms	22 644	23 (544	22 644	24 144
	Pounds	49 921	52	126	49 921	53 228
Estimated Maximum	Kilograms	22 541	23 !	541	22 541	24 041
Payload IAE V2500	Pounds	49 694	51 8	399	49 694	53 001

Aircraft Characteristics						
		WV006	WV007	WV008		
Maximum Ramp Weight (MRW)	Kilograms	78 400	80 400	89 400		
Maximum Taxi Weight (MTW)	Pounds	172 842	177 252	197 093		
Maximum Takeoff Weight (MTOW)	Kilograms	78 000	80 000	89 000		
	Pounds	171 961	176 370	196 211		
Maximum Landing Weight	Kilograms	74 500	73 500	75 500		
(MLW)	Pounds	164 244	162 040	166 449		
Maximum Zero Fuel Weight	Kilograms	70 500	69 500	71 500		
(MZFW)	Pounds	155 426	153 221	157 630		
Estimated Operational Empty	CFM Engines	46 856 kg (103 300 lb)				
Weight (OEW)	IAE Engines	46 959 kg (103 527 lb)				

Aircraft Characteristics							
WV006 WV007 WV008							
Estimated Maximum Payload CFM 56	Kilograms	23 644	22 644	24 644			
	Pounds	52 126	49 921	54 331			
Estimated Maximum Payload IAE V2500	Kilograms	23 541	22 541	24 541			
	Pounds	51 899	49 694	54 104			

**ON A/C A321-200

2. The following table provides characteristics of A321-200 Models, these data are specific to each Weight Variant:

Aircraft Characteristics						
		WV000	WV001	WV002	WV003	WV004
Maximum Ramp Weight (MRW) Maximum Taxi Weight (MTW)	Kilograms	89 400	93 400	89 400	91 400	87 400
	Pounds	197 093	205 912	197 093	201 502	192 684
Maximum Takeoff	Kilograms	89 000	93 000	89 000	91 000	87 000
Weight (MTOW)	Pounds	196 211	205 030	196 211	200 621	191 802
Maximum Landing	Kilograms	75 500	77 800	77 800	77 800	75 500
Weight (MLW)	Pounds	166 449	171 520	171 520	171 520	166 449
Maximum Zero Fuel	Kilograms	71 500	73 800	73 800	73 800	71 500
Weight (MZFW)	Pounds	157 630	162 701	162 701	162 701	157 630
Estimated Operational	CFM Engines		46 850	5 kg (103 30	0 lb)	
Empty Weight (OEW)	IAE Engines	46 959 kg (103 527 lb)				
Estimated Maximum	Kilograms	24 644		26 944		24 644
Payload CFM 56	Pounds	54 331	59 401			54 331
Estimated Maximum	Kilograms	24 541		26 841		24 541
Payload IAE V2500	Pounds	54 104	59 174			54 104

Aircraft Characteristics						
	WV005	WV006	WV007	WV008	WV009	
Maximum Ramp Weight	Kilograms	85 400	83 400	83 400	80 400	78 400
(MRW) Maximum Taxi Weight (MTW)	Pounds	188 275	183 865	183 865	177 252	172 842
Maximum Takeoff Weight (MTOW)	Kilograms	85 000	83 000	83 000	80 000	78 000
	Pounds	187 393	182 984	182 984	176 370	171 961

Aircraft Characteristics							
	WV005	WV006	WV007	WV008	WV009		
Maximum Landing	Kilograms	75 500	75 500	73 500	73 500	73 500	
Weight (MLW)	Pounds	166 449	166 449	162 040	162 040	162 040	
Maximum Zero Fuel Weight (MZFW)	Kilograms	71 500	71 500	69 500	69 500	69 500	
	Pounds	157 630	157 630	153 221	153 221	153 221	
Estimated Operational	CFM Engines	46 856 kg (103 300 lb)					
Empty Weight (OEW)	IAE Engines	46 959 kg (103 527 lb)					
Estimated Maximum	Kilograms	24 644 22 644					
Payload CFM 56	Pounds	54	331	49 921			
Estimated Maximum	Kilograms	24	541	22 541			
Payload IAE V2500	Pounds	54 104		49 694			

Aircraft Characteristics					
		WV010	WV011		
Maximum Ramp Weight (MRW)	Kilograms	85 400	93 900		
Maximum Taxi Weight (MTW)	Pounds	188 275	207 014		
Maximum Takeoff Weight (MTOW)	Kilograms	85 000	93 500		
	Pounds	187 393	206 132		
Maximum Landing Weight (MLW)	Kilograms	77 800	77 800		
	Pounds	171 520	171 520		
Maximum Zero Fuel Weight (MZFW)	Kilograms	73 800	73 800		
	Pounds	162 701	162 701		
Estimated Operational Empty Weight	CFM Engines	46 856 kg (103 300 lb)			
(OEW)	IAE Engines	46 959 kg (103 527 lb)			
Estimated Maximum Payload CFM 56	Kilograms	26 944			
	Pounds	59 401			
Estimated Maximum Payload IAE	Kilograms	26	841		
V2500	Pounds	59	174		

**ON A/C A321-100

3. The following table provides characteristics of A321-100 Models, these data are common to each Weight Variant:

Aircraft Characteristics				
Standard Seating Capacity	Single-class	220		

Aircraft Characteristics				
Usable Fuel Capacity	Liters	23 700 - 26 692* - 29 684**		
	US gallons	6 261 - 7 051* - 7 842**		
	Kilograms			
	(density =	18 604 - 20 953* - 23 301**		
	0.785 kg/l)			
	Pounds	41 015 - 46 193* - 51 370**		
Pressurized Fuselage	Cubic meters	418		
Volume (A/C non equipped)	Cubic feet	14 762		
Passenger Compartment	Cubic meters	155		
Volume	Cubic feet	5 474		
Cockpit Volume	Cubic meters	9		
	Cubic feet	318		
Usable Volume, FWD CC	Cubic meters	22.81		
	Cubic feet	806		
Usable Volume, AFT CC	Cubic meters	23.03		
	Cubic feet	814		
Usable Volume, Bulk CC	Cubic meters	5.88		
	Cubic feet	208		
Water Volume, FWD CC	Cubic meters	25.42		
	Cubic feet	897.7		
Water Volume, AFT CC	Cubic meters	25.69		
	Cubic feet	907.2		
Water Volume, Bulk CC	Cubic meters	7.76		
	Cubic feet	274		

* OPTION: 1 ACT
** OPTION: 2 ACT

**ON A/C A321-200

4. The following table provides characteristics of A321-200 Models, these data are common to each Weight Variant:

Aircraft Characteristics				
Standard Seating Capacity	Single-class	220		

Aircraft Characteristics				
Usable Fuel Capacity	Liters	23 700 - 26 692* - 29 684**		
	US gallons	6 261 - 7 051* - 7 842**		
	Kilograms			
	(density =	18 604 - 20 953* - 23 301**		
	0.785 kg/l)			
	Pounds	41 015 - 46 193* - 51 370**		
Pressurized Fuselage	Cubic meters	418		
Volume (A/C non equipped)	Cubic feet	14 762		
Passenger Compartment	Cubic meters	155		
Volume	Cubic feet	5 474		
Cockpit Volume	Cubic meters	9		
	Cubic feet	318		
Usable Volume, FWD CC	Cubic meters	22.81		
	Cubic feet	806		
Usable Volume, AFT CC	Cubic meters	23.03		
	Cubic feet	814		
Usable Volume, Bulk CC	Cubic meters	5.88		
	Cubic feet	208		
Water Volume, FWD CC	Cubic meters	25.42		
	Cubic feet	897.7		
Water Volume, AFT CC	Cubic meters	25.69		
	Cubic feet	907.2		
Water Volume, Bulk CC	Cubic meters	7.76		
	Cubic feet	274		

* OPTION: 1 ACT ** OPTION: 2 ACT

2-2-0 General Airplane Dimensions

**ON A/C A321-100 A321-200

General Airplane Dimensions

1. This section provides General Airplane Dimensions.

**ON A/C A321-100 A321-200

N_AC_020200_1_0050101_01_02

General Airplane Dimensions (Sheet 1 of 2) FIGURE 1

**ON A/C A321-100 A321-200

N_AC_020200_1_0050103_01_00

General Airplane Dimensions Sharklet Option (Sheet 2 of 2) FIGURE 2

2-3-0 Ground Clearances

**ON A/C A321-100 A321-200

Ground Clearances

1. This section gives the height of various points of the aircraft, above the ground, for different aircraft configurations.

Dimensions in the tables are approximate and will vary with tire type, W&B and others special conditions.

The dimensions are given for:

- The basic aircraft OWE with a mid CG,
- the MRW for the lightest weight variant with a FWD CG and a AFT CG,
- the MRW for the heaviest weight variant with a FWD CG and a AFT CG,
- aircraft on jacks, FDL at 4.6m (15.09ft).

<u>NOTE</u>: Passenger and cargo door clearances are measured from the center of the door sill and from floor level.

**ON A/C A321-100 A321-200

NOTE: PASSENGER AND CARGO DOOR GROUND CLEARANCES ARE MEASURED FROM THE CENTER OF THE DOOR SILL AND FROM FLOOR LEVEL N_AC_020300_1_0050101_01_03

Ground Clearances FIGURE 1

2-4-0 Interior Arrangements

**ON A/C A321-100 A321-200

Interior Arrangements

1. This section gives the standard interior arrangements configuration.

2-4-1 Passenger Compartment Layout

**ON A/C A321-100 A321-200

Typical Configuration

1. This section gives the typical interior configuration.

**ON A/C A321-100 A321-200

Typical Configuration
Typical Configuration Single-Class, High Density
FIGURE 1

**ON A/C A321-100 A321-200

Typical Configuration
Typical Configuration Two-Class
FIGURE 2

2-5-0 Passenger Compartment Cross Section

**ON A/C A321-100 A321-200

Passenger Compartment Cross-section

1. This section gives the typical passenger compartment cross-section configuration.

**ON A/C A321-100 A321-200

NOTE: DIMENSIONS m (in)

N_AC_020500_1_0010101_01_01

Passenger Compartment Cross-section FIGURE 1

**ON A/C A321-100 A321-200

NOTE: DIMENSIONS m (in)

N_AC_020500_1_0050101_01_00

Passenger Compartment Cross-section Economy Class, 6 Abreast - Wider Aisle (Sheet 1 of 2) FIGURE 2

**ON A/C A321-100 A321-200

NOTE: DIMENSIONS m (in)

N_AC_020500_1_0050102_01_02

Passenger Compartment Cross-section Economy Class, 6 Abreast - Wider Seat (Sheet 2 of 2) FIGURE 3

**ON A/C A321-100 A321-200

NOTE: DIMENSIONS m (in)

N_AC_020500_1_0060101_01_00

Passenger Compartment Cross-section
Passenger Compartment Cross-section, First-class
FIGURE 4

2-6-0 Cargo Compartments

**ON A/C A321-100 A321-200

Cargo Compartments

1. This section gives the cargo compartments location and dimensions.

2-6-1 Lower Deck Cargo Compartments

**ON A/C A321-100 A321-200

Lower Deck Cargo Compartments

1. This section gives the lower deck cargo compartments.

**ON A/C A321-100 A321-200

Lower Deck Cargo Compartments
Lower Deck Cargo Compartments Dimensions
FIGURE 1

(4 ft 8.3 in) 2.630 m (8 ft 7.5 in)

N_AC_020601_1_0060101_01_00

**ON A/C A321-100 A321-200

N_AC_020601_1_0070101_01_00

Lower Deck Cargo Compartments Lower Deck Cargo Compartments Containers FIGURE 2

2-7-0 Door Clearances

**ON A/C A321-100 A321-200

Doors Clearances

1. This section gives doors clearances.

2-7-1 Forward Passenger / Crew Doors

**ON A/C A321-100 A321-200

Forward Passenger / Crew Doors

1. This section gives forward passenger / crew doors clearances.

**ON A/C A321-100 A321-200

N_AC_020701_1_0040101_01_00

Doors Clearances Forward Passenger / Crew Doors FIGURE 1

2-7-2 Emergency Exits

**ON A/C A321-100 A321-200

Emergency Exits

1. This section gives emergency exits doors clearances.

**ON A/C A321-100 A321-200

N_AC_020702_1_0050101_01_00

Doors Clearances Emergency Exits FIGURE 1

2-7-3 Aft Passenger / Crew Doors

**ON A/C A321-100 A321-200

Aft Passenger / Crew Doors

1. This section gives Aft passenger / crew doors clearances.

**ON A/C A321-100 A321-200

N_AC_020703_1_0040101_01_00

 $\begin{array}{c} {\sf Doors\ Clearances} \\ {\sf Aft\ Passenger\ /\ Crew\ Doors} \\ {\sf FIGURE\ 1} \end{array}$

2-7-4 Forward Cargo Compartment Doors

**ON A/C A321-100 A321-200

Forward Cargo Compartment Door

1. This section gives forward cargo compartment door clearances.

**ON A/C A321-100 A321-200

N_AC_020704_1_0040101_01_01

2-7-5 Aft Cargo Compartment Doors

**ON A/C A321-100 A321-200

Aft Cargo Compartment Door

1. This section gives Aft cargo compartment door clearances.

**ON A/C A321-100 A321-200

N_AC_020705_1_0040101_01_00

 $\begin{array}{c} {\sf Doors\ Clearances} \\ {\sf Aft\ Cargo\ Compartment\ Door} \\ {\sf FIGURE\ 1} \end{array}$

2-7-6 Bulk Cargo Compartment Doors

**ON A/C A321-100 A321-200

Bulk Cargo Compartment Door

1. This section gives the bulk cargo compartment door clearances.

**ON A/C A321-100 A321-200

N_AC_020706_1_0020101_01_01

 $\begin{array}{c} {\sf Doors\ Clearances} \\ {\sf Bulk\ Cargo\ Compartment\ Door} \\ {\sf FIGURE\ 1} \end{array}$

2-7-7 Main Landing Gear Doors

**ON A/C A321-100 A321-200

Main Landing Gear Doors

1. This section gives the main landing gear doors clearances.

**ON A/C A321-100 A321-200

N_AC_020707_1_0050101_01_02

Doors Clearances Main Landing Gear Doors FIGURE 1

2-7-8 Radome

**ON A/C A321-100 A321-200

Radome

1. This section gives the radome clearances.

**ON A/C A321-100 A321-200

N_AC_020708_1_0040101_01_00

Doors Clearances Radome FIGURE 1

2-7-9 APU and Nose Landing Gear Doors

**ON A/C A321-100 A321-200

APU and Nose Landing Gear Doors

1. This section gives APU and Nose Landing Gear doors clearances.

**ON A/C A321-100 A321-200

N_AC_020709_1_0040101_01_00

Doors Clearances
APU and Nose Landing Gear Doors
FIGURE 1

AIRPLANE PERFORMANCE

3-1-0 General Information

**ON A/C A321-100 A321-200

General Information

1. This section gives standard day temperatures.

Section 3-2 indicates payload range information at specific altitudes recommended for long range cruise with a given fuel reserve condition.

Section 3-3 represents FAR take-off runway length requirements at ISA and ISA $+15\,^{\circ}$ C ($+59\,^{\circ}$ F) for CFM56 and IAE V2500 series engine conditions for FAA certification.

Section 3-4 represents FAR landing runway length requirements for FAA certification.

Section 3-5 indicates final approach speeds.

Standard day temperatures for the altitudes shown are tabulated below:

Standard day temperatures for the altitude			
Altitude		Standard Day Temperature	
FEET	METERS	°F	°C
0	0	59.0	15.0
2000	610	51.9	11.1
4000	1219	44.7	7.1
6000	1829	37.6	3.1
8000	2438	30.5	-0.8

3-2-0 Payload / Range

**ON A/C A321-100 A321-200

Payload / Range

1. Payload / Range

3-2-1 ISA Conditions

**ON A/C A321-100 A321-200

ISA Conditions

1. This section gives the payload / range at ISA conditions.

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030201_1_0100101_01_00

Payload / Range CFM56-5B series engine FIGURE 1

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030201_1_0110101_01_00

Payload / Range IAE V2500-A5 series engine FIGURE 2

3-3-0 FAR / JAR Takeoff Weight Limitation

**ON A/C A321-100 A321-200

FAR / JAR Take-off Weight Limitation

1. FAR / JAR Take-off Weight Limitation

3-3-1 ISA Conditions

**ON A/C A321-100 A321-200

ISA Conditions

1. This section gives the take-off weight limitation at ISA conditions.

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030301_1_0070101_01_00

FAR / JAR Take-off Weight Limitation ISA Conditions – CFM56 series engine FIGURE 1

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030301_1_0080101_01_00

FAR / JAR Take-off Weight Limitation ISA Conditions – IAE V2500 series engine FIGURE 2

3-3-2 ISA +15°C (+59°F) Conditions

**ON A/C A321-100 A321-200

ISA +15 °C (+59 °F) Conditions

1. This section gives the take-off weight limitation at ISA $+15\,^{\circ}$ C ($+59\,^{\circ}$ F) conditions.

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030302_1_0070101_01_00

FAR / JAR Take-off Weight Limitation ISA +15 $^{\circ}$ C (+59 $^{\circ}$ F) Conditions – CFM56 series engine FIGURE 1

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030302_1_0080101_01_00

FAR / JAR Take-off Weight Limitation ISA +15 $^{\circ}$ C (+59 $^{\circ}$ F) Conditions – IAE V2500 series engine FIGURE 2

3-4-0 FAR / JAR Landing Field Length

**ON A/C A321-100 A321-200

 $\underline{\mathsf{FAR}\ /\ \mathsf{JAR}\ \mathsf{Landing}\ \mathsf{Field}\ \mathsf{Length}}$

1. FAR / JAR Landing Field Length

3-4-1 ISA Conditions

**ON A/C A321-100 A321-200

ISA Conditions

1. This section gives the landing field length.

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030401_1_0070101_01_00

FAR / JAR Landing Field Length CFM56 series engine FIGURE 1 **ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030401_1_0080101_01_00

FAR / JAR Landing Field Length IAE V2500 series engine FIGURE 2

3-5-0 Final Approach Speed

**ON A/C A321-100 A321-200

Final Approach Speed

1. This section gives the final approach speed.

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030500_1_0070101_01_00

Final Approach Speed CFM56 series engine FIGURE 1

**ON A/C A321-100 A321-200

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030500_1_0080101_01_00

Final Approach Speed IAE V2500 series engine FIGURE 2

GROUND MANEUVERING

4-1-0 General Information

**ON A/C A321-100 A321-200

General Information

1. This section provides airplane turning capability and maneuvering characteristics.

For ease of presentation, this data has been determined from the theoretical limits imposed by the geometry of the aircraft, and where noted, provides for a normal allowance for tire slippage. As such, it reflects the turning capability of the aircraft in favorable operating circumstances. This data should only be used as guidelines for the method of determination of such parameters and for the maneuvering characteristics of this aircraft type.

In the ground operating mode, varying airline practices may demand that more conservative turning procedures be adopted to avoid excessive tire wear and reduce possible maintenance problems. Airline operating techniques will vary in the level of performance, over a wide range of operating circumstances throughout the world. Variations from standard aircraft operating patterns may be necessary to satisfy physical constraints within the maneuvering area, such as adverse grades, limited area or high risk of jet blast damage. For these reasons, ground maneuvering requirements should be coordinated with the using airlines prior to layout planning.

4-2-0 Turning Radii

**ON A/C A321-100 A321-200

Turning Radii

1. This section gives the turning radii.

**ON A/C A321-100 A321-200

NOTE: FOR STEERING DIMENSION TABLE SEE SHEET 2. APPLICABLE FOR A321–100 AND A321–200.

TURN TYPE

- 1. ASYMMETRIC THRUST DIFFERENTIAL BRAKING (PIVOTTING ON ONE MAIN GEAR).
- 2. SYMMETRIC THRUST NO BRAKING

N_AC_040200_1_0070101_01_01

Turning Radii, no Slip Angle FIGURE 1

**ON A/C A321-100 A321-200

	A	#	85.256	90.506	90.428	95.172	103.023	112.029	37.340 122.508	41.119 134.906	149.865	34.161 112.076 51.313 168.350	24.144 79.213 29.842 97.908 41.479 136.085 32.65 107.119 37.333 122.482 58.483 191.874	67.958 222.960	36.255 18.947 40.371 132.449 53.525 175.608 42.397 139.098 47.707 156.520 81.122 266.149	46.449 152.391 49.797 163.377 63.684 208.936 51.387 168.591 56.973 186.921 100.743 330.521	437.264
	f	E	25.986	27.586	27.562	29.009	31.401	34.146	37.340	41.119	45.679	51.313	58.483	67.958	81.122	100.743	63.094 207.001 65.687 215.510 80.291 263.421 66.813 219.202 72.640 238.320 133.278 437.264
	R6	ft	78.455	80.300	80.272	81.998	84.953	88.460	11.838 38.838 21.006 68.917 29.292 96.102 24.964 81.903 28.243 92.662	14.186 46.541 22.437 73.611 31.610 103.707 26.159 85.825 29.800 97.769	34.301 112.535 27.729 90.974 31.725 104.085 45.679	112.076	122.482	29.282 96.070 34.180 112.138 46.585 152.838 36.613 120.122 41.620 136.547	156.520	186.921	238.320
	Œ	٤	12.451 17.694 58.052 21.402 70.216 22.304 73.177 23.913 78.455	74.301 22.557 74.004 24.475 80.300	73.991 24.467 80.272	20.188 18.359 60.231 23.705 77.771 22.824 74.882 24.993 81.998	25.864 19.021 62.406 25.401 83.335 23.350 76.608 25.894 84.953	19.889 65.252 27.246 89.389 24.049 78.900 26.962 88.460	28.243	29.800	31.725	34.161	37.333	41.620	47.707	56.973	72.640
	R5	H.	73.177	74.004	73.991	74.882	76.608	78.900	81.903	85.825	90.974	20.148 66.102 26.669 87.495 37.513 123.073 29.816 97.822	107.119	120.122	139.098	168.591	219.202
	F	٤	22.304	22.557	22.552	22.824	23.350	24.049	24.964	26.159	27.729	29.816	32.65	36.613	42.397	51.387	66.813
	R4	ft	70.216		74.241	77.771	83.335	89.389	96.102	103.707	112.535	123.073	136.085	152.838	175.608	208.936	263.42
	ш	٤	21.402	16.640 18.018 59.114 22.647	16.578 18.013 59.096 22.629	23.705	25.401	27.246	29.292	31.610	34.301	37.513	41.479	46.585	53.525	63.684	80.291
	R3	ų,	58.052	59.114	960'69	60.231	62.406	65.252	68.917	73.611	55.466 24.276 79.646	87.495	97.908	112.138	132.449	163.377	215.510
	ш	E	17.694	18.018	18.013	18.359	19.021	19.889	21.006	22.437	24.276	26.669	29.842	34.180	40.371	49.797	65.687
	>	Ħ						32.023	38.838	46.541	55.466	66.102	79.213	96.070	118.947	152.391	207.001
		٤	3.795	5.072	5.053	6.153	7.883	9.761	11.838	14.186	16.906	20.148	24.144	29.282	36.255	46.449	63.094
A321–100 MAXIMUM RAMP WEIGHT CG 30% CG 28%		EFFECTIVE STEERING ANGLE WITH SLIP ON NLG TYRES (°)	77.35		73.36	20	99	09	22	20	45	40	35	30	25	20	15
		STEERING ANGLE (°)	00'52		00'52	71.12	65.53	60.44	22'35	50.31	45.25	40.20	35.17	30.13	25.10	20.08	15.06
AMP WEIGHT		EFFECTIVE STEERING ANGLE WITH SLIP ON NLG TYRES (°)	77.35	73.30		02	9	09	22	20	45	40	32	30	25	20	15
A321	CG	TURN STEERING TYPE ANGLE (°)	75.00	75.00		71.16	65.53	60.44	55.38	50.31	45.25	40.21	35.17	30.13	25.10	20.08	15.06
		TURN	1	7	2	2	7	7	5	2	2	2	2	7	7	2	2

TURN TYPES: 1. ASSYMETRIC THRUST DIFFERENTIAL BRAKING (PIVOTTING ON ONE MAIN GEAR) 2. SYMMETRIC THRUST NO BRAKING.

Turning Radii, no Slip Angle FIGURE 2

N_AC_040200_1_0080101_01_00

4-3-0 Minimum Turning Radii

**ON A/C A321-100 A321-200

Minimum Turning Radii

1. This section gives the minimum turning radii.

**ON A/C A321-100 A321-200

EFFECTIVE TURN ANGLE		Х	Y	A	R3	R4	R5	R6
73° EFF.	m	16.91	5.1	27.6	18.0	22.7	22.6	24.5
75° STEERED	(ft)	55.4	16.6	90.5	59.1	74.3	74.0	80.3

N_AC_040300_1_0040101_01_01

Minimum Turning Radii FIGURE 1

4-4-0 Visibility from Cockpit in Static Position

**ON A/C A321-100 A321-200

Visibility from Cockpit in Static Position

1. This section gives the visibility from cockpit in static position.

**ON A/C A321-100 A321-200

NOTE: • PILOT'S EYE POSITION

N_AC_040400_1_0040101_01_00

Visibility from Cockpit in Static Position FIGURE 1

4-5-0 Runway and Taxiway Turn Paths

**ON A/C A321-100 A321-200

Runway and Taxiway Turn Paths

1. Runway and Taxiway Turn Paths.

4-5-1 135° Turn - Runway to Taxiway

**ON A/C A321-100 A321-200

135° Turn - Runway to Taxiway

1. This section gives the 135° turn - runway to taxiway.

**ON A/C A321-100 A321-200

NOTE: APPLICABLE FOR A321-100 AND A321-200.

N_AC_040501_1_0060101_01_01

135° Turn - Runway to Taxiway CG on Centerline Method FIGURE 1

**ON A/C A321-100 A321-200

NOTE: APPLICABLE FOR A321-100 AND A321-200.

N_AC_040501_1_0070101_01_01

135° Turn - Runway to Taxiway NLG on Centerline Method FIGURE 2

4-5-2 90° Turn - Runway to Taxiway

**ON A/C A321-100 A321-200

90° Turn - Runway to Taxiway

1. This section gives the 90° turn - runway to taxiway.

**ON A/C A321-100 A321-200

CG ON CENTERLINE METHOD 90° TURN ON A 150 ft RUNWAY 35° NOSE WHEEL ANGLE

NOTE: APPLICABLE FOR A321-100 AND A321-200.

N_AC_040502_1_0060101_01_01

90° Turn - Runway to Taxiway CG on Centerline Method FIGURE 1

**ON A/C A321-100 A321-200

NOTE: APPLICABLE FOR A321-100 AND A321-200.

N_AC_040502_1_0070101_01_01

90° Turn - Runway to Taxiway NLG on Centerline Method FIGURE 2

4-5-3 180° Turn on a Runway

**ON A/C A321-100 A321-200

180° Turn on a Runway

1. This section gives the 180° turn on a runway.

**ON A/C A321-100 A321-200

NLG ON CENTERLINE METHOD 180° TURN ON A 150 ft RUNWAY 50° NOSE WHEEL ANGLE 22.43 m (73.58 ft) NLG CENTERLINE RAD.

NOTE: APPLICABLE FOR A321-100 AND A321-200.

N_AC_040503_1_0020101_01_01

180° Turn on a 150 ft Runway NLG on Centerline Method FIGURE 1

4-5-6 180° Turn on a Wide Runway

**ON A/C A321-100 A321-200

180° Turn on a Wide Runway

1. This section gives the 180° turn on a wide runway.

**ON A/C A321-100 A321-200

EDGE OF RUNWAY METHOD 180° TURN ON A 150 ft RUNWAY 60° NOSE WHEEL ANGLE 19.87 m (65 ft 2.4 in) NLG RAD.

NOTE: APPLICABLE FOR A321-100 AND A321-200.

N_AC_040506_1_0030101_01_01

180° Turn on a 150 ft Wide Runway Edge of Runway Method FIGURE 1

4-6-0 Runway Holding Bay (Apron)

**ON A/C A321-100 A321-200

Runway Holding Bay (Apron)

1. This section gives the runway holding bay (Apron).

**ON A/C A321-100 A321-200

NOTE: APPLICABLE FOR A321-100 AND A321-200.

N_AC_040600_1_0040101_01_01

Runway Holding Bay (Apron) FIGURE 1

4-7-0 Airplane Parking

**ON A/C A321-100 A321-200

Airplane Parking

1. The following figures and charts show the rectangular space required for parking against the terminal building.

**ON A/C A321-100 A321-200

LINEUP DISTANCES FOR A321-100 AND A321-200 USING 75° STEERING AND NO SLIP ON NOSE TIRES

AIRPLANE MODEL	MAX. EFF. STEERING ANGLE DEGREES	MIN LINEUP DISTANCE			
90°		TODA m (ft)	ASDA m (ft)		
A321–100 AND A321–200	75°	19.9 (65.4)	36.8 (121.2)		

ABREVIATIONS TODA (TAKEOFF DISTANCE ADJUSTMENT)
ASDA (ACCELERATE-STOP DISTANCE ADJUSTMENT)

N_AC_040700_1_0110101_01_01

Runway Length Alterations Line Up Distances – 90° Turn FIGURE 1

**ON A/C A321-100 A321-200

LINEUP DISTANCES FOR A321-100 AND A321-200 USING 75° STEERING AND NO SLIP ON NOSE TIRES

AIRPLANE MODEL	MIN LINEUF	DISTANCE	REQ'D MIN PAVEMENT WIDTH	NOMINAL LINE	UP DISTANCE
180°	TODA m (ft)	ASDA m (ft)	m (ft)	TODA m (ft)	ASDA m (ft)
A321–100 AND A321–200	26.9 (88.3)	43.8 (143.8)	32.6 (107.1)	AS MINIMUM	AS MINIMUM

ABREVIATIONS TODA (TAKEOFF DISTANCE ADJUSTMENT)
ASDA (ACCELERATE-STOP DISTANCE ADJUSTMENT)

N_AC_040700_1_0120101_01_01

Runway Length Alterations Line Up Distances – 180° Turn FIGURE 2

TERMINAL SERVICING

5-0-0 TERMINAL SERVICING

**ON A/C A321-100 A321-200

Terminal Servicing

1. General

This chapter provides typical ramp layouts, corresponding minimum turnaround time estimations, locations of ground service points and service requirements.

The information given in this chapter reflects ideal conditions. Actual ramp layouts and service requirements may vary according to local regulations, airline procedures and the airplane condition.

- Section 5.1 shows typical ramp layouts for passenger aircraft at the gate or on an open apron.
- Section 5.2 shows the minimum turnaround schedules for full servicing arrangements.
- Section 5.3 shows the minimum turnaround schedule for reduced servicing arrangements.
- Section 5.4 gives the locations of ground service connections, the standard of connections used and typical capacities and requirements.
- Section 5.5 provides the engine starting pneumatic requirements for different engine types and different ambient temperatures.
- Section 5.6 provides the air conditioning requirements for heating and cooling (pull-down and pull-up) using ground conditioned air for different ambient temperatures.
- Section 5.7 provides the air conditioning requirements for heating and cooling to maintain a constant cabin air temperature using low pressure conditioned air.
- Section 5.8 shows the ground towing requirements taking into account different ground surface and aircraft conditions.

5-1-0 Airplane Servicing Arrangements

**ON A/C A321-100 A321-200

Airplane Servicing Arrangements

1. General

This chapter provides typical ramp layouts, showing the various GSE items in position during typical turnaround scenarios for the passenger aircraft.

These ramp layouts show typical arrangements only. Each operator will have its own specific requirements/regulations for the positioning and operation on the ramp.

The associated turnaround chart for full servicing is given in section 5.2.

The associated turnaround chart for minimum servicing arrangement is given in section 5.3.

5-1-1 Symbols Used on Servicing Diagrams

**ON A/C A321-100 A321-200

Symbols Used on Servicing Diagrams

1. This table gives the symbols used on servicing diagrams.

Ground Support Equipment					
AC	AIR CONDITIONING UNIT				
AS	AIR STARTING UNIT				
BULK	BULK TRAIN				
CAT	CATERING TRUCK				
СВ	CONVEYOR BELT				
CLEAN	CLEANING TRUCK				
FUEL	FUEL HYDRANT DISPENSER or TANKER				
GPU	GROUND POWER UNIT				
LD CL	LOWER DECK CARGO LOADER				
LV	LAVATORY VEHICLE				
PBB	PASSENGER BOARDING BRIDGE				
PS	PASSENGER STAIRS				
TOW	TOW TRACTOR				
ULD	ULD TRAIN				
WV	POTABLE WATER VEHICLE				

5-1-2 Typical Ramp Layout - Aircraft at the Gate

**ON A/C A321-100 A321-200

Aircraft at the Gate

1. This section gives the typical servicing arrangement for pax version (Passenger Bridge).

**ON A/C A321-100 A321-200

Aircraft at the Gate FIGURE 1

5-1-3 Typical Ramp Layout - Aircraft at an Open Apron

**ON A/C A321-100 A321-200

Aircraft at an Open Apron

1. This section gives the typical servicing arrangement for pax version (Open Apron).

**ON A/C A321-100 A321-200

Aircraft at an Open Apron Aircraft at an Open Apron (Bulk Loading) FIGURE 1

**ON A/C A321-100 A321-200

Aircraft at an Open Apron Aircraft at an Open Apron (ULD Loading) FIGURE 2

5-2-0 Terminal Operations - Full Servicing Turnaround

**ON A/C A321-100 A321-200

Terminal Operations - Full Servicing Turnaround

1. This section provides a chart showing typical activities for full servicing turnaround.

These data are provided to show the general scope and type of activities involved in ramp operations during the turnaround of an aircraft.

Varying airline practices and operating circumstances may result in different sequences and different time intervals to do the activities shown.

5-2-1 Full Servicing Turnaround Charts

**ON A/C A321-100 A321-200

Full Servicing Turnaround Charts

1. Assumptions for 56 minutes turnaround chart - Full Servicing.

Please note this turnaround time is an assumption regarding a given example.

- A. Passenger handling: 185 pax / 1 bridge
 - (1) Deboarding
 - 1L:185
 - 2L:0
 - Deboarding rate: 22 pax / min per door.
 - No PRM
 - (2) Boarding
 - 1L:185
 - 2L:0
 - Boarding rate: 18 pax / min per door.
 - No PRM
- B. Catering: R1 R 2 / sequential
 - Galley M1: 4 FSTE
 - Galley M2: 10 FSTE
- C. Cleaning: Time available
- D. Security/Safety checks: Yes (4 min each)
 - Cabin crew change: Yes (4 min)
- E. Cargo
 - 2 Cargo loaders
 - 1 Belt loader
 - 1 operator / BL
 - No sliding carpet
 - FWD compartment : 5 LD3
 - AFT compartment : 5 LD3
 - Bulk in bulk CC: 200 kg
- F. Refuel: 5.6 tons, 7134 (I), 2 hoses (1 side)
- G. Water servicing: 100%
- H. Toilet servicing: 100%

**ON A/C A321-100 A321-200

TRT: 56 min

GSE POSITIONING

ACTIVITY

N_AC_050201_1_0070101_01_02

Turnaround Stations Full Servicing (56 Min.) FIGURE 1

5-3-0 Terminal Operation - Minimum Servicing Turnaround

**ON A/C A321-100 A321-200

Terminal Operation

1. This section provides a chart showing typical activities for minimum servicing turnaround.

These data are provided to show the general scope and type of activities involved in ramp operations during the turnaround of an aircraft.

Varying airline practices and operating circumstances may result in different sequences and different time intervals to do the activities shown.

5-3-1 Minimum Servicing Turnaround Chart

**ON A/C A321-100 A321-200

Minimum Servicing Turnaround Chart

1. Assumptions for 25 minutes turnaround chart - Minimum Servicing.

Please note this turnaround time is an assumption regarding a given example.

- A. Passenger handling: 220 pax / 2 stairways
 - (1) Deboarding
 - 1L: 110
 - 2L: 110
 - Deboarding rate: 20 pax / min per door.
 - No PRM
 - (2) Boarding
 - 1L: 110
 - 2L: 110
 - Boarding rate: 15 pax / min per door.
 - No PRM
- B. Catering: No
 - Galley M1:
 - Galley M2:
- C. Cleaning: No
- D. Security/Safety checks: Yes (4 min each)
 - Cabin crew change: No
- E. Cargo
 - 2 Cargo loaders
 - 1 Belt loader
 - 1 operator / BL
 - No sliding carpet
 - FWD compartment bulk: 5 LD3
 - AFT compartment bulk: 5 LD3
 - Bulk in bulk CC: 200 kg
- F. Refuel: 5.6 tons, 7134 (I), 2 hoses (1 side)
- G. Water servicing: 0%:
- H. Toilet servicing: 0%

**ON A/C A321-100 A321-200

TRT: 25 min

GSE POSITIONING

ACTIVITY

N_AC_050301_1_0040101_01_02

Turnaround Stations Minimum Servicing (25 Min.) FIGURE 1

5-4-0 Ground Service Connections

**ON A/C A321-100 A321-200

Ground Service Connections

1. Ground Service Connections.

5-4-1 Ground Service Connections Layout

**ON A/C A321-100 A321-200

Ground Service Connections Layout

1. This section gives the ground service connections layout.

	Ground Service Connections Layout
1	- GROUND ELECTRICAL POWER RECEPTABLE
2	– TOILET SERVICING
3	– WATER FILLING AND DRAINAGE
4	– IDG OIL FILLING CONNECTOR
5	– ENGINE OIL FILLING CONNECTOR
6	- HYDRAULIC
7	– APU OIL FILLING CONNECTOR
8	- GROUND SERVICE CONDITIONED AIR CONNECTOR
9	- GROUND AIR CONDITIONING AND AIR START CONNECTOR
10	- GRAVITY FILLING PANELS
11	- REFUEL/DEFUEL CONNECTOR
12	– REFUEL/DEFUEL PANEL
13	– AIRCRAFT GROUNDING

**ON A/C A321-100 A321-200

N_AC_050401_1_0070101_01_00

 $\begin{array}{c} \hbox{Ground Service Connections} \\ \hbox{Ground Service Connections Layout} \\ \hbox{FIGURE 1} \end{array}$

5-4-2 Grounding Points

**ON A/C A321-100 A321-200

Grounding Points

1. Grounding Points.

	DISTANCE: Meters (ft)			
		FROM AIRPLANE CENTERLINE		MEAN HEIGHT
	AFT OF NOSE	R SIDE	L SIDE	FROM GROUND
On Nose Landing Gear leg:	5.07 m (16.63 ft)	on centerline		0.94 m (3.08 ft)
On left Main Landing Gear leg:	21.97 m (72.08 ft)		3.79 m (12.43 ft)	1.07 m (3.51 ft)
On right Main Landing Gear leg:	21.97 m (72.08 ft)	3.79 m (12.43 ft)		1.07 m (3.51 ft)

- A. The grounding stud on each landing gear leg is designed for use with a clip-on connector (such as Appleton TGR).
- B. The grounding studs are used to connect the aircraft to an approved ground connection on the ramp or in the hangar for:
 - refuel/defuel operations,
 - maintenance operations,
 - bad weather conditions.

<u>NOTE</u>: In all other conditions, the electrostatic discharge through the tyre is sufficient.

@A321

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

**ON A/C A321-100 A321-200

N_AC_050402_1_0070101_01_00

Ground Service Connections
Grounding Points
FIGURE 1

**ON A/C A321-100 A321-200

JET FUEL

FOR SPECIFICATIONS REFER TO FLIGHT MANUAL

Ground Service Connections
Grounding Points
FIGURE 2

Page 3 May 01/11

5-4-3 Hydraulic System

**ON A/C A321-100 A321-200

Hydraulic System

1. Access.

ACCESS	AFT OF NOSE m (ft)		OM AIRCRAFT ERLINE LH SIDE m (ft)	MEAN HEIGHT FROM GROUND m (ft)
Green System:	23.44	1.27		1.76
Access door 197CB	(76.9)	(4.17)		(5.77)
Yellow System:	23.44		1.27	1.76
Access door 198CB	(76.9)		(4.17)	(5.77)
Blue System:	24.49	1.27		1.76
Access door 197EB	(80.35)	(4.17)		(5.77)

<u>NOTE</u>: Distances are approximate.

2. Reservoir Pressurization.

On the air pressurization manifold:

ACCESS	AFT OF NOSE m (ft)	POSITION FRO	MEAN HEIGHT FROM	
		RH SIDE m (ft)	LH SIDE m (ft)	GROUND m (ft)
Access door 195AB	19.92 (65.35)		0.25 (0.82)	1.74 (5.71)

<u>NOTE</u>: Distances are approximate.

- One 1/4 in. AEROQUIP AE 96994E self-sealing connection common to the 3 reservoirs.

3. Accumulator Charging.

Four (MS28889-1) connections (one for each accumulator) for:

ACCESS	AFT OF NOSE m (ft)		OM AIRCRAFT ERLINE LH SIDE m (ft)	MEAN HEIGHT FROM GROUND m (ft)
Yellow System accumulator: Access door 196BB	20.1 (65.94)	0.25 (0.82)		1.99 (6.53)

ACCESS	AFT OF NOSE m (ft)		OM AIRCRAFT ERLINE LH SIDE m (ft)	MEAN HEIGHT FROM GROUND m (ft)
Green System accumulator: Left MLG door	21.04 (69.03)		0.25 (0.82)	3.2 (10.5)
Blue System accumulator: Access door 195BB	22.3 (72.51)		0.25 (0.82)	1.99 (6.53)
Yellow System braking accumulator: Access door 196BB	20.1 65.94)	0.76 (2.49)		1.74 (5.71)

<u>NOTE</u>: Distances are approximate.

4. Reservoir Filling.

On the Green system ground service panel:

ACCESS	AFT OF NOSE m (ft)	POSITION FROM AIRCRAFT CENTERLINE		MEAN HEIGHT FROM
		RH SIDE m (ft)	LH SIDE m (ft)	GROUND m (ft)
Access door 197CB	23.44 (76.9)	1.27 (4.17)		1.76 (5.77)

 $\underline{\mathsf{NOTE}}: \ \mathsf{Distances} \ \mathsf{are} \ \mathsf{approximate}.$

One 1/4 in. AEROQUIP AE96993E self-sealing connection for pressurized supply.

One handpump filling connection for unpressurized (suction) supply.

5. Reservoir Drain.

On 3/8 in. self-sealing connection on reservoir for:

ACCESS	AFT OF NOSE m (ft)		OM AIRCRAFT ERLINE LH SIDE m (ft)	MEAN HEIGHT FROM GROUND m (ft)
Yellow System: Access door 196 BB - 198 CB	20.1 (65.94)	1.43 (4.69)	(14)	1.90 (6.23)
Green System: Left MLG door	21.04 (69.03)		1.27 (4.17)	2.61 (8.56)

ACCESS	AFT OF NOSE m (ft)	POSITION FRO CENTE RH SIDE m (ft)	OM AIRCRAFT ERLINE LH SIDE m (ft)	MEAN HEIGHT FROM GROUND m (ft)
Blue System	24.49	1.27		1.76
Access door 197 EB	(80.35)	(4.17)		(5.77)

 $\underline{\mathsf{NOTE}}$: Distances are approximate.

On 3/8 in. self-sealing connection for the Blue system on:

- Blue system ground service panel.

6. Ground Test.

On each ground service panel:

- One self-sealing connector AE80532N (suction).
- One self-sealing connector AE80531K (delivery).

**ON A/C A321-100 A321-200

N_AC_050403_1_0040101_01_00

Hydraulic System Green System Ground Service Panel FIGURE 1

**ON A/C A321-100 A321-200

N_AC_050403_1_0050101_01_00

Hydraulic System
Blue System Ground Service Panel
FIGURE 2

**ON A/C A321-100 A321-200

N_AC_050403_1_0060101_01_00

Hydraulic System Yellow System Ground Service Panel FIGURE 3

5-4-4 Electrical System

**ON A/C A321-100 A321-200

Electrical System

1. Electrical System.

This chapter gives data related to the location of the ground service connections.

ACCESS	AFT OF NOSE m (ft)	POSITION FROM AIRCRAFT CENTERLINE		MEAN HEIGHT FROM
		RH SIDE m (ft)	LH SIDE m (ft)	GROUND m (ft)
A/C External Power: Access door 121AL	2.55 (8.37)	on centerline		2 (6.56)

NOTE: Distances are approximate.

2. Technical Specifications

This chapter gives data related to the location of the ground service connections.

A. External Power Receptacle:

- One MS90362-3 receptacle - 90 KVA.

B. Power Supply:

- Three-phase, 400 Hz, 115/200V

C. Electrical connectors for servicing

- AC outlets: Hubbel 5258

- DC outlets: Hubbel 7472

Vacuum cleaner outlets: Hubbel 5258

**ON A/C A321-100 A321-200

N_AC_050404_1_0010101_01_01

Ground Service Connections External Power Receptacles FIGURE 1

5-4-5 Oxygen System

**ON A/C A321-100 A321-200

Oxygen System

1. Oxygen System.

	DISTANCE: Meters (ft)			
		FROM AIRPLAN	IE CENTERLINE	MEAN
	AFT OF NOSE	R SIDE	L SIDE	HEIGHT FROM GROUND
One service connection (external charging in the avionics compartment) MS22066 Std.	3.45 m (11.32 ft)		1.15 m (3.77 ft)	2.60 m (8.53 ft)

3/8" UNF \times 24 TPI

Nominal pressure: 1850 psi (127.55 bar)

Max fill pressure: 2035 psi (140.31 bar)

 $\underline{\mathsf{NOTE}}$: Internal charging connection provided.

5-4-6 Fuel System

**ON A/C A321-100 A321-200

Fuel System

1. Refuel/Defuel Couplings.

This chapter gives data related to the location of the ground service connections.

ACCESS	AFT OF NOSE m (ft)		OM AIRCRAFT ERLINE LH SIDE m (ft)	MEAN HEIGHT FROM GROUND m (ft)
Refuel/Defuel Integrated Panel: Access door 192MB	20.6 (67.59)		1.8 (5.91	1.8 (5.91)
Refuel/defuel coupling, Left Access Door 522HB (Optional)	21.5 (70.54)	10 (32.81)		3.5 (11.48)
Refuel/defuel coupling, Right Access Door 622HB	21.5 (70.54)		10 (32.81)	3.5 (11.48)
Gravity Refuel Coupling	23.4 (76.77)	12.4 (40.68)	12.4 (40.68)	3.7 (12.14)

<u>NOTE</u>: Distances are approximate.

2. Technical Specifications

This chapter gives data related to the specifications of the ground service connections.

- A. Refuel/defuel couplings:
 - Right wing: one standard ISO R45, 2.5in.
 - Left wing: one optional standard ISO R45, 2.5 in.
- B. Refuel pressure:
 - Maximum pressure: 3.45 bar (50 psi)
- C. Refuel Flow:
 - 1400 I/minute (369.84 US gal/minute)

**ON A/C A321-100 A321-200

NOTE: STANDARD CONFIGURATION OF REFUEL/DEFUEL PANEL.

N_AC_050406_1_0010101_01_00

Ground Service Connections Refuel/Defuel Panel FIGURE 1

**ON A/C A321-100 A321-200

N_AC_050406_1_0020101_01_00

Ground Service Connections Refuel/Defuel Couplings FIGURE 2

**ON A/C A321-100 A321-200

Ground Service Connections Gravity Refuel Couplings FIGURE 3

> Page 4 May 01/11

5-4-7 Pneumatic System

**ON A/C A321-100 A321-200

Pneumatic System

1. High Pressure Air Connectors.

This chapter gives data related to the location of the ground service connections.

ACCESS	AFT OF NOSE m (ft)	POSITION FRO CENTE RH SIDE m (ft)	OM AIRCRAFT ERLINE LH SIDE m (ft)	MEAN HEIGHT FROM GROUND m (ft)
HP Connector	17.25		0.84	1.76
Access door 191DB	(56.59)		(2.76)	(5.77)

NOTE: Distances are approximate.

A. Connector:

- One standard 3 in. ISO TC20 connection (MS33740) for engine starting and cabin air preconditioning (HP) installed on the left side of the belly fairing

2. Low Pressure Air Connectors.

This chapter gives data related to the location of the ground service connections.

1.00=00	AFT OF NOSE	POSITION FRO	MEAN HEIGHT FROM	
ACCESS	m (ft)	RH SIDE m (ft)	LH SIDE m (ft)	GROUND m (ft)
LP Connector Access door 191CB	16.72 (54.86)		1.11 (3.64)	1.73 (5.68)

NOTE: Distances are approximate.

A. Connector:

- One standard 8 in. connection (SAE AS4262 type B) for cabin air preconditioning (LP);

5-4-8 Potable Water System

**ON A/C A321-100 A321-200

Potable Water System

1. Potable Water Ground Service Panel.

ACCESS	AFT OF NOSE m (ft)	OM AIRCRAFT ERLINE LH SIDE m (ft)	MEAN HEIGHT FROM GROUND m (ft)
Access door 171AL:	38.2 (125.33)	0.3 (0.98)	2.6 (8.53)

NOTE: Distances are approximate

- A. Connector:
 - Fill/Drain Nipple 3/4 in. (ISO 17775)
- B. Usable capacity
 - Standard configuration one tank:2000 I (52.83 US gal)
- C. Filling pressure:
 - 3.45 bar (50 psi)
- D. Typical flow rate:
 - 50 I/min (13.21 US gal/min)
- 2. Potable Water Ground Drain Panel.

ACCECC	AFT OF NOSE	POSITION FRO	MEAN HEIGHT FROM GROUND	
ACCESS	m (ft)	RH SIDE m (ft)	LH SIDE m (ft)	m (ft)
Potable Water				
Ground Service	11.8		0.15	1.75
Panel:	(38.71)		(0.49)	(5.74)
Access door 133AL:				

<u>NOTE</u>: Distances are approximate

- 3. Technical Specifications
 - A. Connectors:
 - (1) On the potable ground service panel (Access Door 171AL)
 - Fill/Drain Nipple 3/4 in (ISO 17775).
 - One ground pressurization connector.

- (2) On drain panel (Access Door 133AL)
 - Drain Nipple 3/4 in (ISO 17775)
- B. Usable capacity:
 - Standard configuration one tank:200 I (52.83 US gal)
- C. Filling pressure:
 - 3.45 bar (50 psi).
- D. Typical flow rate:
 - 50 I/min (13.21 US gal/min).

**ON A/C A321-100 A321-200

N_AC_050408_1_0010101_01_00

Ground Service Connections
Potable Water Ground Service Panel
FIGURE 1

5-4-9 Oil System

**ON A/C A321-100 A321-200

Oil System

1. Engine Oil Replenishment for CFM56 Series Engine (See FIGURE 5-4-9-991-001-A): One gravity filling cap and one pressure filling connection per engine.

ACCESS	AFT OF NOSE	POSITION FROM AIRCRAFT CENTERLINE		MEAN HEIGHT FROM GROUND
ACCE33	m (ft)	ENGINE 1 (LH) m (ft)	ENGINE 2 (RH) m (ft)	m (ft)
Engine Oil Gravity Filling Cap: Access door: 437BL (LH), 447BL (RH)	17.38 (57.02)	6.63 (21.75)	4.82 (15.81)	1.46 (4.79)
Engine Oil Pressure Filling Port:	17.26 (56.62)	6.49 (21.29)	4.74 (15.55)	1.42 (4.66)

NOTE: Distances are approximate

A. Tank capacity:

Full level: 19.6 I (5.18 US gal)Usable: 9.46 I (2.50 US gal)

B. Maximum delivery pressure required: 25 psi (1.72 bar)
Maximum delivery flow required: 180 l/h (47.55 US gal/h)

IDG Oil Replenishment for CFM56 Series Engine (SeeFIGURE 5-4-9-991-002-A):
 One pressure filling connection per engine: OMP 2506-18 plus one connection overflow: OMP 2505-18.

ACCESS	AFT OF NOSE m (ft)		OM AIRCRAFT ERLINE ENGINE 2 (RH) m (ft)	MEAN HEIGHT FROM GROUND m (ft)
IDG Oil Pressure Filling Connection: Access door 438DR (LH), 448DR (RH)	16.46 (54)	6.9 (22.64)	5.52 (18.11)	0.68 (2.23)

NOTE: Distances are approximate

- A. Tank capacity: 5 I (1.32 US gal)
- B. Delivery pressure required: 5 to 40 psi (0.34 to 2.76 bar) at the IDG inlet.
- 3. Starter Oil Replenishment for CFM56 Series Engine (See FIGURE 5-4-9-991-003-A: One gravity filling cap per engine.

ACCESS	AFT OF NOSE m (ft)	POSITION FROM AIRCRAFT CENTERLINE ENGINE 1 (LH) ENGINE 2 (RH) m (ft) m (ft)		MEAN HEIGHT FROM GROUND m (ft)
Starter Oil Filling Connection:	16.81	5.3	6.2	0.76
	(55.15)	(17.39)	(20.34)	(2.49)

NOTE: Distances are approximate

A. Tank capacity: 0.8 I (0.21 US gal)

4. Engine Oil Replenishment for IAE V2500 Series Engine (See FIGURE 5-4-9-991-004-B): One gravity filling cap per engine.

ACCESS	AFT OF NOSE m (ft)		OM AIRCRAFT ERLINE ENGINE 2 (RH) m (ft)	MEAN HEIGHT FROM GROUND m (ft)
Engine Oil Gravity Filling Cap: Access door 437BL (LH), 447BL (RH)	16.5 (54.13)	6.56 (21.52)	4.92 (16.14)	1.22 (4)

NOTE: Distances are approximate

A. Tank capacity:

Full level: 28 I (7.39 US gal)Usable: 23.50 I (6.21 US gal)

1. IDG Oil Replenishment for IAE V2500 Series Engine:

One pressure filling connection per engine: 2506-2 plus one overflow connection: 2505-2...

ACCESS	AFT OF NOSE m (ft)		OM AIRCRAFT ERLINE ENGINE 2 (RH) m (ft)	MEAN HEIGHT FROM GROUND m (ft)
IDG Oil Pressure	17.06	5.42	6.04	0.8
Filling Connection:	(55.97)	(17.78)	(19.81)	(2.62)

NOTE: Distances are approximate

A. Tank capacity: 4.1 I (1.08 US gal)

5. Starter Oil Replenishment for IAE V2500 Series Engine (See FIGURE 5-4-9-991-006-B): One gravity filling cap per engine.

ACCESS AFT OF NOSE m (ft)		POSITION FROM AIRCRAFT CENTERLINE ENGINE 1 (LH) ENGINE 2 (RH)		MEAN HEIGHT FROM GROUND
		m (ft)	m (ft)	m (ft)
Starter Oil Filling Connection:	19.66 (64.5)	5.3 (17.39)	6.14 (20.14)	0.75 (2.46)

NOTE: Distances are approximate

A. Tank capacity: 0.35 I (0.09 US gal)

6. APU Oil System (See FIGURE 5-4-9-991-007-A): APU oil gravity filling cap.

	AFT OF NOSE m (ft)	FROM AIRPLANE CENTERLINE (LEFT HAND) m (ft)	MEAN HEIGHT FROM GROUND m (ft)
GTCP 36-300	42.42	0.3	4.83
	(139.17)	(0.98)	(15.85)
APS 3200	42.42	0.3	4.78
	(139.17)	(0.98)	(15.68)
131-9	42.32	0.35	4.32
	(138.84)	(1.15)	(14.17)

NOTE: Distances are approximate

A. Tank capacity (usable):

- APU type GTCP 36-300: 6.20 I (1.64 US gal)

- APU type APS 3200: 5.40 I (1.43 US gal)

GA321

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

- APU type 131-9: 6.25 I (1.65 US gal)

**ON A/C A321-100 A321-200

N_AC_050409_1_0010101_01_00

Ground Service Connections
Engine Oil Tank – CFM56 Series Engine
FIGURE 1

**ON A/C A321-100 A321-200

N_AC_050409_1_0020101_01_01

Ground Service Connections

IDG Oil Tank – CFM56 Series Engine
FIGURE 2

**ON A/C A321-100 A321-200

Ground Service Connections Starter Oil Tank – CFM56 Series Engine FIGURE 3

**ON A/C A321-100 A321-200

Ground Service Connections
Engine Oil Tank – IAE V2500 Series Engine
FIGURE 4

**ON A/C A321-100 A321-200

THE OIL LEVEL MUST NOT BE IN THE YELLOW BAND BUT IT CAN BE IMMEDIATELY ABOVE THE LOWER LIMIT OF THE YELLOW BAND BECAUSE OF THE AIRCRAFT RAMP ANGLE

DO THE IDG SERVICING TO GET THE CORRECT IDG OIL LEVEL.

THE OIL LEVEL MUST NOT BE IN THE RED BAND

PERFORM IDG OIL SERVICING
TO GET THE CORRECT IDG OIL LEVEL.
DO NOT USE THE OVERFLOW DRAIN HOSE
TO GET THE CORRECT IDG OIL LEVEL.

N_AC_050409_1_0050201_01_00

Ground Service Connections

IDG Oil Tank – IAE V2500 Series Engine
FIGURE 5

**ON A/C A321-100 A321-200

N_AC_050409_1_0060201_01_00

Ground Service Connections Starter Oil Tank – IAE V2500 Series Engine FIGURE 6

**ON A/C A321-100 A321-200

N_AC_050409_1_0070101_01_00

Ground Service Connections APU Oil Tank FIGURE 7

5-4-10 Vacuum Toilet System

**ON A/C A321-100 A321-200

Vacuum Toilet System

1. Vacuum Toilet System.

ACCECC	AFT OF NOSE		OM AIRCRAFT ERLINE	MEAN HEIGHT FROM GROUND
ACCESS	m (ft)	R SIDE m (ft)	L SIDE m (ft)	m (ft)
Waste Water Ground Service Panel: Access door 172AR	38.2 (125.33)	0.8 (2.62)		2.8 (9.18)

NOTE: Distances are approximate

- 2. Technical Specifications
 - A. Connectors:
 - Draining: 4 in (ISO 17775).
 - Flushing and filling: 1 in (ISO 17775).
 - B. Usable waste tank capacity:
 - Standard configuration on tank: 177 I (30.91 US gal).
 - C. Waste tank Rinsing:
 - Operating pressure: 3.45 bar (50 psi).
 - D. Waste tank Precharge:
 - 10 I (2.64 US gal).

**ON A/C A321-100 A321-200

N_AC_050410_1_0010101_01_00

Ground Service Connections Waste Water Ground Service Panel FIGURE 1

5-5-0 Engine Starting Pneumatic Requirements

**ON A/C A321-100 A321-200

Engine Starting Pneumatic Requirements

1. Engine Starting Pneumatic Requirements.

5-5-1 Low Temperatures

**ON A/C A321-100 A321-200

Low Temperature -40 °C (-40 °F)

1. This section provides the engine starting pneumatic requirements for a temperature of -40 $^{\circ}$ C (-40 $^{\circ}$ F).

N_AC_050501_1_0070101_01_00

Engine Starting Pneumatic Requirements
Temperature -40 $^{\circ}$ C (-40 $^{\circ}$ F) – CFM56 series engine
FIGURE 1

N_AC_050501_1_0080101_01_00

Engine Starting Pneumatic Requirements
Temperature -40 ° C (-40 ° F) – IAE V2500 series engine
FIGURE 2

5-5-2 Ambient Temperatures

**ON A/C A321-100 A321-200

Ambient Temperature +15 °C (+59 °F)

1. This section provides the engine starting pneumatic requirements for a temperature of $+15\,^{\circ}$ C $(+59\,^{\circ}$ F).

N_AC_050502_1_0070101_01_00

Engine Starting Pneumatic Requirements Temperature $+15\,^{\circ}$ C $(+59\,^{\circ}$ F) – CFM56 series engine FIGURE 1

N_AC_050502_1_0080101_01_00

Engine Starting Pneumatic Requirements Temperature $+15\,^{\circ}$ C $(+59\,^{\circ}$ F) – IAE V2500 series engine FIGURE 2

5-5-3 High Temperatures

**ON A/C A321-100 A321-200

High Temperature +50 °C (+122 °F) and +55 °C (+131 °F)

- 1. This section provides the engine starting pneumatic requirements for a temperature upper:
 - +50°C (+122°F) IAE V2500
 - +55 ° C (+131 ° F) CFM56

**ON A/C A321-100 A321-200

N_AC_050503_1_0070101_01_00

Engine Starting Pneumatic Requirements Temperature $+55\,^{\circ}$ C $(+131\,^{\circ}$ F) – CFM56 series engine FIGURE 1

**ON A/C A321-100 A321-200

N_AC_050503_1_0080101_01_00

Engine Starting Pneumatic Requirements Temperature $+50\,^{\circ}$ C ($+122\,^{\circ}$ F) – IAE V2500 series engine FIGURE 2

5-6-0 Ground Pneumatic Power Requirements

**ON A/C A321-100 A321-200

Ground Pneumatic Power Requirements

1. Ground Pneumatic Power Requirements.

	FRESH A	PULL UP	PULL DOWN		
TOTAL		CABIN		TIME T	TIME T
(kg/s)	(lb/s)	(kg/s)	(lb/s)	(min.)	(min.)
0.5	1.10	0.449	0.990	after 60 min. 8.0°C	_
0.6	1.32	0.539	1.188	after 60 min. 11.9°C	_
0.7	1.54	0.628	1.385	after 60 min. 15.5°C	_
0.8	1.76	0.718	1.583	after 60 min. 18.8°C	_
0.9	1.98	0.808	1.781	58.0	after 60 min. 31.1°C
1.0	2.20	0.898	1.980	51.0	after 60 min. 29.6°C
1.1	2.43	0.988	2.178	45.0	after 60 min. 28.2°C
1.2	2.65	1.077	2.374	40.5	58.5
1.3	2.87	1.167	2.573	36.5	46.0
1.4	3.09	1.257	2.771	33.0	37.5
1.5	3.31	1.347	2.970	30.0	31.0

NOTE: Data for unstabilized conditions see 5-6-1 and 5-6-2.

5-6-1 Heating

**ON A/C A321-100 A321-200

Heating

1. This section provides the ground pneumatic power requirements heating.

N_AC_050601_1_0040101_01_01

Ground Pneumatic Power Requirements
Heating
FIGURE 1

5-6-2 Cooling

**ON A/C A321-100 A321-200

Cooling

1. This section provides the ground pneumatic power requirements cooling.

N_AC_050602_1_0040101_01_01

Ground Pneumatic Power Requirements
Cooling
FIGURE 1

5-7-0 Preconditioned Airflow Requirements

**ON A/C A321-100 A321-200

Preconditioned Airflow Requirements

- 1. This section gives the preconditioned airflow requirements for cabin air conditioning.
 - A. Preconditioned Airflow Requirements.

FRESH AIRFLOW				CURVE 1	
TOTAL		CABIN		T FL	
(kg/s)	(lb/s)	(kg/s)	(lb/s)	(°C)	(°F)
0.5	1.10	0.449	0.990	-56.4	-69.5
0.6	1.32	0.539	1.188	-41.8	-43.2
0.7	1.54	0.628	1.385	-31.3	-24.3
0.8	1.76	0.718	1.583	-23.5	-10.3
0.9	1.98	0.808	1.781	-17.5	0.5
1.0	2.20	0.898	1.980	-12.7	9.1
1.1	2.43	0.988	2.178	-8.8	16.2
1.2	2.65	1.077	2.374	-5.5	22.1
1.3	2.87	1.167	2.573	-2.7	27.1
1.4	3.09	1.257	2.771	-0.4	31.3
1.5	3.31	1.347	2.970	1.7	35.1

NOTE: Data for stabilized conditions see 5-7-0.

B. Preconditioned Airflow Requirements.

FRESH AIRFLOW				CURVE 2	
TOTAL		CABIN		T FL	
(kg/s)	(lb/s)	(kg/s)	(lb/s)	(°C)	(°F)
0.5	1.10	0.449	0.990	32.6	90.7
0.6	1.32	0.539	1.188	30.5	86.9
0.7	1.54	0.628	1.385	29.0	84.2
0.8	1.76	0.718	1.583	27.9	82.2
0.9	1.98	0.808	1.781	27.1	80.8
1.0	2.20	0.898	1.980	26.4	79.5
1.1	2.43	0.988	2.178	25.9	78.6
1.2	2.65	1.077	2.374	25.4	77.7
1.3	2.87	1.167	2.573	25.0	77.0
1.4	3.09	1.257	2.771	24.7	76.5

FRESH AIRFLOW				CURVE 2		
TOTAL CABIN			T FL			
		(°C)	(°F)			
1.5	3.31	1.347	2.970	24.4	75.9	

 $\underline{\mathsf{NOTE}}$: Data for stabilized conditions see 5-7-0.

C. Preconditioned Airflow Requirements.

	FRESH A	CURVE 3			
TOTAL		CABIN		T FL	
(kg/s)	(lb/s)	(kg/s)	(lb/s)	(°C)	(°F)
0.5	1.10	0.449	0.990	38.4	101.1
0.6	1.32	0.539	1.188	35.3	95.5
0.7	1.54	0.628	1.385	33.1	91.6
0.8	1.76	0.718	1.583	31.5	88.7
0.9	1.98	0.808	1.781	30.2	86.4
1.0	2.20	0.898	1.980	29.2	84.6
1.1	2.43	0.988	2.178	28.4	83.1
1.2	2.65	1.077	2.374	27.7	81.9
1.3	2.87	1.167	2.573	27.1	80.8
1.4	3.09	1.257	2.771	26.6	79.9
1.5	3.31	1.347	2.970	26.2	79.2

 $\underline{\mathsf{NOTE}}$: Data for stabilized conditions see 5-7-0.

D. Preconditioned Airflow Requirements.

FRESH AIRFLOW				CURVE 4	
TOTAL		CABIN		T FL	
(kg/s)	(lb/s)	(kg/s)	(lb/s)	(° C)	(°F)
0.5	1.10	0.449	0.990	46.6	115.9
0.6	1.32	0.539	1.188	42.2	108.0
0.7	1.54	0.628	1.385	39.0	102.2
0.8	1.76	0.718	1.583	36.6	97.9
0.9	1.98	0.808	1.781	34.7	94.5
1.0	2.20	0.898	1.980	33.2	91.8
1.1	2.43	0.988	2.178	32.0	89.6
1.2	2.65	1.077	2.374	31.0	87.8
1.3	2.87	1.167	2.573	30.2	86.4
1.4	3.09	1.257	2.771	29.5	85.1

FRESH AIRFLOW				CURVE 4		
TOTAL CABIN			T FL			
(kg/s)	(kg/s) (lb/s) (kg/s) (lb/s)		(lb/s)	(°C)	(°F)	
1.5	3.31	1.347	2.970	28.8	83.8	

<u>NOTE</u>: Data for stabilized conditions see 5-7-0.

N_AC_050700_1_0040101_01_01

Preconditioned Airflow Requirements FIGURE 1

5-8-0 Ground Towing Requirements

**ON A/C A321-100 A321-200

Ground Towing Requirements

1. General

This section provides information on aircraft towing.

This aircraft is designed with means for conventional or towbarless towing.

Information/procedures can be found for both in chapter 9 of the Aircraft Maintenance Manual.

Status on towbarless towing equipment qualification can be found in SIL 09-002.

It is possible to tow or push the aircraft, at maximum ramp weight with engines at zero or up to idle thrust, using a tow bar attached to the nose gear leg (refer to AMM chap 9 for conditions and limitations).

One tow bar fitting is installed at the front of the leg.

The main landing gears have attachment points for towing or debogging (for details, refer to chapter 07 of the Aircraft Recovery Manual).

- A. The first part of this section shows the chart to determine the draw bar pull and tow tractor mass requirements as function of the following physical characteristics:
 - Aircraft weight
 - Number of engines at idle
 - Slope.

The chart is based on the engine type with the highest idle thrust level.

B. The second part of this section supplies guidelines for the tow bar.

The aircraft tow bar shall respect the following norms:

- SAE AS 1614, "Main Line Aircraft Tow Bar Attach Fitting Interface"
- SAE ARP1915 Revision C, "Aircraft Tow Bar"
- ISO 8267-1, "Aircraft Tow bar attachment fitting Interface requirements Part 1: Main line aircraft"
- ISO 9667, "Aircraft ground support equipment Tow bars"
- IATA Airport Handling Manual AHM 958, "Functional Specification for an Aircraft Tow bar".

A conventional type tow bar is required which should be equipped with a damping system to protect the nose gear against jerks and with towing shear pins:

- A traction shear pin calibrated at 9425 daN (21188 lbf)
- A torsion pin calibrated at 826 m.daN (7311 lbf.in).

The towing head is designed according to SAE/AS 1614 (issue C) cat. I.

<u>NOTE</u>: Information on aircraft towing procedures and corresponding aircraft limitations are given in chapter 9 on the Aircraft Maintenance Manual.

**ON A/C A321-100 A321-200

EXAMPLE HOW TO DETERMINE THE MASS REQUIREMENT TO TOW A A321 AT 80 t, AT 1.5% SLOPE, 1 ENGINE AT IDLE AND FOR WET TARMAC CONDITIONS:

- ON THE RIGHT HAND SIDE OF THE GRAPH, CHOOSE THE RELEVANT AIRCRAFT WEIGHT (80 t)
- FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUIRED SLOPE PERCENTAGE (1.5%)
- FROM THE POINT OBTAINED DRAW A STRAIGHT HORIZONTAL LINE UNTIL NO OF ENGINES AT IDLE = 2
- FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUESTED NUMBER OF ENGINES (1)
 FROM THIS POINT DRAW A STRAIGHT HORIZONTAL LINE TO THE DRAWBAR PULL AXIS
- THE Y-COORDINATE OBTAINED IS THE NECESSARY DRAWBAR PULL FOR THE TRACTOR (6.5 t)
- SEARCH THE INTERSECTION WITH THE "WET CONCRETE" LINE. THE OBTAINED X-COORDINATE IS THE RECOMMENDED MINIMUM TRACTOR WEIGHT (11.5 t)

N_AC_050800_1_0010401_01_03

Ground Towing Requirements FIGURE 1

**ON A/C A321-100 A321-200

N_AC_050800_1_0020101_01_03

Ground Towing Requirements Typical Tow Bar Configuration 1 FIGURE 2

**ON A/C A321-100 A321-200

Ground Towing Requirements Typical Tow Bar Configuration 2 FIGURE 3

OPERATING CONDITIONS

6-1-0 Engine Exhaust Velocities and Temperatures

**ON A/C A321-100 A321-200

Engine Exhaust Velocities and Temperatures

1. General

This section shows the estimated engine exhaust efflux velocities and temperatures contours for Ground Idle, Breakaway, Maximum Takeoff conditions.

6-1-1 Engine Exhaust Velocities Contours - Ground Idle Power

**ON A/C A321-100 A321-200

Engine Exhaust Velocities Contours - Ground Idle Power

1. This section gives engine exhaust velocities contours at ground idle power.

N_AC_060101_1_0070101_01_00

 $\begin{array}{c} {\sf Engine} \ {\sf Exhaust} \ {\sf Velocities} \\ {\sf Ground} \ {\sf Idle} \ {\sf Power} - {\sf CFM56-5B} \ {\sf series} \ {\sf engine} \\ {\sf FIGURE} \ 1 \end{array}$

N_AC_060101_1_0080101_01_00

Engine Exhaust Velocities Ground Idle Power – IAE V2500 series engine FIGURE 2

6-1-2 Engine Exhaust Temperatures Contours - Ground Idle Power

**ON A/C A321-100 A321-200

Engine Exhaust Temperatures Contours - Ground Idle Power

1. This section gives engine exhaust temperatures contours at ground idle power.

N_AC_060102_1_0070101_01_00

Engine Exhaust Temperatures Ground Idle Power – CFM56-5B series engine FIGURE 1

N_AC_060102_1_0080101_01_00

Engine Exhaust Temperatures Ground Idle Power – IAE V2500 series engine FIGURE 2

6-1-5 Engine Exhaust Velocities Contours - Takeoff Power

**ON A/C A321-100 A321-200

Engine Exhaust Velocities Contours - Takeoff Power

1. This section gives engine exhaust velocities contours at takeoff power.

N_AC_060105_1_0070101_01_00

Engine Exhaust Velocities
Takeoff Power – CFM56-5B series engine
FIGURE 1

N_AC_060105_1_0080101_01_00

Engine Exhaust Velocities
Takeoff Power – IAE V2500 series engine
FIGURE 2

6-1-6 Engine Exhaust Temperatures Contours - Takeoff Power

**ON A/C A321-100 A321-200

Engine Exhaust Temperatures Contours - Takeoff Power

1. This section gives engine exhaust temperatures contours at takeoff power.

N_AC_060106_1_0070101_01_00

Engine Exhaust Temperatures
Takeoff Power – CFM56-5B series engine
FIGURE 1

N_AC_060106_1_0080101_01_00

Engine Exhaust Temperatures Takeoff Power – IAE V2500 series engine FIGURE 2

6-2-0 Airport and Community Noise

**ON A/C A321-100 A321-200

Airport and Community Noise

1. Airport and Community Noise Data

This section gives data concerning engine maintenance run-up noise to permit evaluation of possible attenuation requirements.

6-2-1 Noise Data

**ON A/C A321-100 A321-200

Noise Data

- 1. Noise Data for CFM56-5B series engine
 - A. Description of test conditions:

The arc of circle (radius = 60 m (196.85 ft)), with microphones 1.2 m (3.94 ft) high, is centered on the position of the noise reference point.

A.P.U.: off; E.C.S.: Packs off.

- B. Engine parameters: 2 engines running
- C. Meteorological data:

The meteorological parameters measured 1.6 m (5.25 ft) from the ground on the day of test were as follows:

- Temperature: 20.3 °C (69 °F)

- Relative humidity: 43%

- Atmospheric pressure: 988 hPa

Wind speed: Negligible

- No rain

- 2. Noise Data for IAE V2500 series engine
 - A. Description of test conditions:

The arc of circle (radius = 60 m (196.85 ft)), with microphones 1.2 m (3.94 ft) high, is centered on the position of the noise reference point.

A.P.U.: off; E.C.S.: Packs off.

- B. Engine parameters: 2 engines running
- C. Meteorological data:

The meteorological parameters measured 1.6 m (5.25 ft) from the ground on the day of test were as follows:

- Temperature: 12°C (54°F)

- Relative humidity: 62.5%

- Atmospheric pressure: 1000 hPa

Wind speed: Negligible

- No rain

		GROUND IDLE	MAX THRUST POSSIBLE ON BRAKES
	N1	21.6%	96%
	CURVE	•	•

N_AC_060201_1_0100101_01_00

Airport and Community Noise CFM56-5B series engine FIGURE 1

**ON A/C A321-100 A321-200

	GROUND IDLE	MAX THRUST POSSIBLE ON BRAKES
E.P.R	1.007	1.397
N2	57.7%	92.5%
CURVE	•	•—•

N_AC_060201_1_0110101_01_00

Airport and Community Noise IAE V2500 series engine FIGURE 2

6-3-0 Danger Areas of Engines

**ON A/C A321-100 A321-200

Danger Areas of Engines

1. Danger Areas of the Engines.

6-3-1 Ground Idle Power

**ON A/C A321-100 A321-200

Ground Idle Power

1. This section gives danger areas of the engines at ground idle power conditions.

**ON A/C A321-100 A321-200

AREA	APPROX. WIND VELOCITY MPH (km/h) POSSIBLE EFFECTS WITHIN DANGER ZONE BASED ON "RADIOLOGICAL DEFENSE" VOL. II, ARMED FORCES SPECIAL WEAPONS PROJECT, NOV. 1951	
А	210–145 (338–233)	A MAN STANDING WILL BE PICKED UP AND THROWN; AIRCRAFT WILL BE COMPLETELY DESTROYED OR DAMAGED BEYOND ECONOMICAL REPAIR; COMPLETE DESTRUCTION OF FRAME OR BRICK HOMES.
В	145–105 (233–169)	A MAN STANDING FACE-ON WILL BE PICKED UP AND THROWN; DAMAGE NEARING TOTAL DESTRUCTION TO LIGHT INDUSTRIAL BUILDINGS OR RIGID STEEL FRAMING; CORRUGATED STEEL STRUCTURES LESS SEVERELY.
С	105–65 (169–105)	MODERATE DAMAGE TO LIGHT INDUSTRIAL BUILDINGS AND TRANSPORT-TYPE AIRCRAFT.
D	65–20 (105–32)	LIGHT TO MODERATE DAMAGE TO TRANSPORT-TYPE AIRCRAFT
Е	< 20 (32)	BEYOND DANGER AREA

OR GREATER

N_AC_060301_1_0090101_01_01

OR LESS

Danger Areas of Engines CFM56-5B series engine FIGURE 1

**ON A/C A321-100 A321-200

TO 59 m (195 ft) AFT COMMON NOZZLE ASSEMBLY (CNA)

N_AC_060301_1_0100101_01_00

Danger Areas of Engines IAE V2500 series engine FIGURE 2

6-3-2 Takeoff Power

**ON A/C A321-100 A321-200

Takeoff Power

1. This section gives danger areas of the engines at max takeoff conditions.

**ON A/C A321-100 A321-200

AREA APPROX. WIND VELOCITY MPH (km/h) POSSIBLE EFFECTS WITHIN DANGER ZONE BASED ON "RADIOLOGICAL DEFENSE" VOL. II, ARMED FORCES SPECIAL WEAPONS PROJECT, NOV. 1951		"RADIOLOGICAL DEFENSE" VOL. II, ARMED FORCES SPECIAL
А	210–145 (338–233)	A MAN STANDING WILL BE PICKED UP AND THROWN; AIRCRAFT WILL BE COMPLETELY DESTROYED OR DAMAGED BEYOND ECONOMICAL REPAIR; COMPLETE DESTRUCTION OF FRAME OR BRICK HOMES.
В	145–105 (233–169)	A MAN STANDING FACE-ON WILL BE PICKED UP AND THROWN; DAMAGE NEARING TOTAL DESTRUCTION TO LIGHT INDUSTRIAL BUILDINGS OR RIGID STEEL FRAMING; CORRUGATED STEEL STRUCTURES LESS SEVERELY.
С	105–65 (169–105)	MODERATE DAMAGE TO LIGHT INDUSTRIAL BUILDINGS AND TRANSPORT-TYPE AIRCRAFT.
D	65–20 (105–32)	LIGHT TO MODERATE DAMAGE TO TRANSPORT-TYPE AIRCRAFT
Е	< 20 (32)	BEYOND DANGER AREA

N_AC_060302_1_0070101_01_01

Danger Areas of Engines CFM56-5B series engine FIGURE 1

**ON A/C A321-100 A321-200

TO 348 m (1150 ft) AFT COMMON NOZZLE ASSEMBLY (CNA)

N_AC_060302_1_0080101_01_00

Danger Areas of Engines IAE V2500 series engine FIGURE 2

6-4-0 APU Exhaust Velocities and Temperatures

**ON A/C A321-100 A321-200

APU Exhaust Velocities and Temperatures

1. APU Exhaust Velocities and Temperatures.

6-4-1 APU

**ON A/C A321-100 A321-200

APU - APIC & GARRETT

1. This section gives APU exhaust velocities and temperatures.

**ON A/C A321-100 A321-200

N_AC_060401_1_0040101_01_00

Exhaust Velocities and Temperatures APU – APIC & GARRETT FIGURE 1

PAVEMENT DATA

7-1-0 General Information

**ON A/C A321-100 A321-200

General Information

1. General Information

This brief description of the pavement charts that follow will help in their use for airport planning.

To aid in the interpolation between the discrete values shown, each airplane configuration is shown with a minimum range of five loads on the main landing gear.

All curves on the charts represent data at a constant specified tire pressure with:

- The airplane loaded to the maximum ramp weight
- The Center of Gravity (CG) at its maximum permissible aft position.

Pavement requirements for commercial airplanes are derived from the static analysis of loads imposed on the main landing gear struts.

The A/C codes are used for configuration management of chapter 07 only. There is no relation between these A/C codes and the ICAO A/C codes used for determining the airplane wing span and outer main gear wheel span as described in ICAO-Annex 14 Volume 1, Aerodrome Design and Operation Chapter 1.4, Table 1-1.

Section 7-2-0 presents basic data on the landing gear footprint configuration, maximum ramp weights and tire sizes and pressures.

Section 7-3-0 shows maximum vertical and horizontal pavement loads for certain critical conditions at the tire-ground interfaces.

Section 7-4-1 contain charts to find these loads throughout the stability limits of the airplane at rest on the pavement.

These main landing gear loads are used as the point of entry to the pavement design charts which follow, interpolating load values where necessary.

Section 7-5-1 use procedures in Instruction Report No S-77-1 "Procedures for Development of CBR Design Curves", dated June 1977 and as modified according to the methods described in ICAO Aerodrome Design Manual, Part 3. Pavements, 2nd Edition, 1983, Section 1.1 (The ACN-PCN Method), and utilizing the alpha factors approved by ICAO in October 2007.

The report was prepared by the U.S. Army Corps Engineers Waterways Experiment Station, Soils and Pavement Laboratory, Vicksburg, Mississippi.

The line showing 10 000 coverages is used to calculate Aircraft Classification Number (ACN).

The procedure that follows is used to develop flexible pavement design curves such as shown in Section 7-5-1.

- With the scale for pavement thickness at the bottom and the scale for CBR at the top, an arbitrary line is drawn representing 10 000 coverages.
- Incremental values of the weight on the main landing gear are then plotted.
- Annual departure lines are drawn based on the load lines of the weight on the main landing gear that is shown on the graph.

Section 7-7-1 gives the rigid pavement design curves that have been prepared with the use of the Westergaard Equation. This is in general accordance with the procedures outlined in the Portland Cement Association publications, "Design of Concrete Airport Pavement", 1973 and "Computer Program for Airport Pavement Design", (Program PDILB), 1967 both by Robert G. Packard.

The procedure that follows is used to develop rigid pavement design curves such as shown in Section 7-7-1.

- With the scale for pavement thickness on the left and the scale for allowable working stress on the right, an arbitrary load line is drawn. This represents the maximum weight to be shown for the main landing gear.
- All values of the subgrade modulus (k values) are then plotted.
- Additional load lines for the incremental values of weight on the main landing gear are drawn on the basis of the curve for k = 300 already shown on the graph.

All Load Classification Number (LCN) curves shown in Section 7-6-1 and Section 7-8-2 have been developed from a computer program based on data provided in International Civil Aviation Organisation (ICAO) document 7920-AN/865/2, Aerodrome Manual, Part 2, "Aerodrome Physical Characteristics", Second Edition, 1965.

The flexible pavement charts in Section 7-6-1 show LCN against equivalent single wheel load, and equivalent single wheel load against pavement thickness.

The rigid pavement charts in Section 7-8-2 show LCN against equivalent single wheel load and equivalent single wheel load against radius of relative stiffness.

Section 7-9-0 gives ACN data prepared in accordance with the ACN/PCN system as referenced in ICAO Annex 14, "Aerodromes", Volume 1 Fourth Edition July 2004, incorporating Amendments 1 to 6.

The ACN/PCN system gives a standardized international airplane/pavement rating system replacing the various S, T, TT, LCN, AUW, ISWL, etc., rating systems used throughout the world.

The ACN is the Aircraft Classification Number and PCN is the corresponding Pavement Classification Number

An aircraft having an ACN equal to or less than the PCN can operate without restriction on the pavement.

Numerically the ACN is two times the derived single wheel load expressed in thousands of kilograms. The derived single wheel is defined as the load on a single tire inflated to 1.25 Mpa (181 psi) that would have the same pavement requirements as the aircraft.

Computationally the ACN/PCN system uses PCA program PDILB for rigid pavements, and S-77-1 for flexible pavements to calculate ACN values.

The Airport Authority must decide on the method of pavement analysis and the results of their evaluation shown as follows:

PCN			
PAVEMENT TYPE	SUBGRADE CATEGORY	TIRE PRESSURE CATEGORY	EVALUATION METHOD
_		W – No Limit	T – Technical
F – Flexible	B – Medium		U – Using Aircraft
	C – Low	Y – To 1.0 Mpa (145 psi)	
	D – Ultra Low	Z – To 0.5 Mpa (73 psi)	

Section 7-9-1 shows the aircraft ACN values for flexible pavements.

The four subgrade categories are:

- A. High Strength CBR 15
- B. Medium Strength CBR 10
- C. Low Strength CBR 6
- D. Ultra Low Strength CBR 3

Section 7-9-2 shows the aircraft ACN for rigid pavements.

The four subgrade categories are:

- A. High Strength Subgrade $k = 150 \text{ MN/m}^3 (550 \text{ pci})$
- B. Medium Strength Subgrade $k = 80 \text{ MN/m}^3 (300 \text{ pci})$
- C. Low Strength Subgrade k = 40 MN/m³ (150 pci)
- D. Ultra Low Strength Subgrade $k = 20 \text{ MN/m}^3 (75 \text{ pci})$

**ON A/C A321-100 A321-200

MODEL	WV	AIRCRAFT CODE
A321-111	04	С
A321-112	04	С
A321-131	04	С
A321-214	09	D
A321-111	06	Е
A321-112	06	Е
A321-131	06	E
A321-111	07	G
A321-112	07	G
A321-131	07	G
A321-214	08	Н
A321-111	00	I
A321-112	00	I
A321-131	00	1
A321-214	07	J
A321-111	02	L
A321-112	02	L
A321-131	02	L
A321-111	05	M
A321-112	05	M
A321-131	05	M
A321-211	06	0
A321-231	06	0

MODEL	WV	AIRCRAFT CODE
A321-111	03	Р
A321-112	03	Р
A321-131	03	Р
A321-211	05	Q
A321-231	05	Q
A321-211	10	R
A321-231	10	R
A321-211	04	S
A321-231	04	S
A321-111	08	U
A321-112	08	U
A321-131	80	U
A321-211	00	V
A321-231	00	V
A321-211	02	X
A321-231	02	X
A321-213	02	X
A321-232	02	X
A321-211	03	Z
A321-231	03	Z
A321-211	01	AA
A321-231	01	AA
A321-211	11	AB
A321-231	11	AB

NOTE: FOR WEIGHT VARIANT DEFINITION, REFER TO CHAPTER 02-01-01.

NOTE: THE A/C CODES ARE USED FOR CONFIGURATION MANAGEMENT OF CHAPTER 07 ONLY. THERE IS NO RELATION BETWEEN THESE A/C CODES AND THE ICAO A/C CODES USED FOR DETERMINING THE AIRPLANE WING SPAN AND OUTER MAIN GEAR WHEEL SPAN AS DESCRIBED IN ICAO-ANNEX 14 VOLUME 1, AERODROME DESIGN AND OPERATION CHAPTER 1.4, TABLE 1-1.

N_AC_070100_1_0040101_01_00

Aircraft Codes Aircraft Codes FIGURE 1

7-2-0 Landing Gear Footprint

**ON A/C A321-100 A321-200

Landing Gear Footprint

1. This section gives Landing Gear Footprint.

<u>NOTE</u>: For A/C Code definition, refer to chapter 7-1-0.

A/C CODE	C – D – E
PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	SEE SECTION 7-4-1
NOSE GEAR TIRE SIZE	30 x 8.8 R15 (30 x 8.8 – 15)
NOSE GEAR TIRE PRESSURE	10.1 bar (146 psi)
MAIN GEAR TIRE SIZE	1 270 x 455 R22 (49 x 18 – 22)
MAIN GEAR TIRE PRESSURE	12.8 bar (186 psi)

N_AC_070200_1_0280101_01_00

A/C CODE	G – H – I – J – L – M – O
PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	SEE SECTION 7-4-1
NOSE GEAR TIRE SIZE	30 x 8.8 R15 (30 x 8.8 – 15)
NOSE GEAR TIRE PRESSURE	10.8 bar (157 psi)
MAIN GEAR TIRE SIZE	1 270 x 455 R22 (49 x 18 – 22)
MAIN GEAR TIRE PRESSURE	13.6 bar (197 psi)

N_AC_070200_1_0290101_01_00

**ON A/C A321-100 A321-200

A/C CODE	P – Q – R
PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	SEE SECTION 7-4-1
NOSE GEAR TIRE SIZE	30 x 8.8 R15 (30 x 8.8 – 15)
NOSE GEAR TIRE PRESSURE	11 bar (160 psi)
MAIN GEAR TIRE SIZE	1 270 x 455 R22 (49 x 18 – 22)
MAIN GEAR TIRE PRESSURE	13.9 bar (202 psi)

N_AC_070200_1_0300101_01_00

A/C CODE	S – U – V – X
PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	SEE SECTION 7-4-1
NOSE GEAR TIRE SIZE	30 x 8.8 R15 (30 x 8.8 – 15)
NOSE GEAR TIRE PRESSURE	11.6 bar (168 psi)
MAIN GEAR TIRE SIZE	1 270 x 455 R22 (49 x 18 – 22)
MAIN GEAR TIRE PRESSURE	14.6 bar (212 psi)

N_AC_070200_1_0310101_01_00

**ON A/C A321-200

A/C CODE	Z – AA – AB
PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	SEE SECTION 7-4-1
NOSE GEAR TIRE SIZE	30 x 8.8 R15 (30 x 8.8 – 15)
NOSE GEAR TIRE PRESSURE	11.6 bar (168 psi)
MAIN GEAR TIRE SIZE	1 270 x 455 R22 (49 x 18 – 22)
MAIN GEAR TIRE PRESSURE	15 bar (218 psi)

N_AC_070200_1_0320101_01_00

7-3-0 Maximum Pavement Loads

**ON A/C A321-100 A321-200

Maximum Pavement Loads

1. This section gives Maximum Pavement Loads.

<u>NOTE</u>: For A/C code definition, refer to chapter 7-1-0.

	J	ر د				
		TANEOU! KING IENT = 0.8	kg	30 010	30 010	30 010
6 THOT3	SIRUI)	AT INSTAN BRA COEFFICI	qı	66 150	66 150	66 150
	H (PER SIRUI)	BRAKING) ft/s² RATION	kg	12 180	12 180	12 180
	STEADY B	STEADY I @ 10 DECELE	qı	26 850	26 850	
5 0 CTD (T)	VMG (PER STRUT) STATIC LOAD AT	STATIC LOAD AT STEADY BRAKING AT INSTANTANEOUS (2) DECELERATION COEFFICIENT = 0.8	kg	82 700 37 510	82 700 37 510	82 700 37 510 26 850
10,000	VINIG (PE	STATIC MAX A	ql	82 700	82 700	82 700
+	45	STATIC BRAKING @ 10 ft/s² DECELERATION	kg	15 930	15 910	35 125 15 930
7	VNG	STATIC E @ 10 DECELE	ql	35 125	32 0 58	35 125
3	STATIC LOAD AT MOST FWD CG	OAD AT WD CG 1)	kg	8 480	8 470	8 480
		STATIC I MOST F	ql	78 400 18 675	78 400 18 675	78 400 18 675
	M RAMP	MAXIMUM RAMP WEIGHT	kg	78 400	78 400	78 400
2			ql	172 850	172 850	172 850
-		A/C CODE		O	D	Ш

Maximum Pavement Loads Maximum Pavement Loads FIGURE 1

MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CG MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG

V (MG)
MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG
H
MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING
A/C CODE
(1) C MRW = 78 400 kg FWD CG = 15.4 % MAC AT A/C WEIGHT = 78 400 kg
E MRW = 78 400 kg FWD CG = 15.4 % MAC AT A/C WEIGHT = 78 400 kg
E MRW = 78 400 kg FWD CG = 15.4 % MAC AT A/C WEIGHT = 78 400 kg
C) C MRW = 78 400 kg AFT CG = 41 % MAC AT A/C WEIGHT = 78 400 kg
E MRW = 78 400 kg AFT CG = 41 % MAC AT A/C WEIGHT = 78 400 kg
AFT CG = 41 % MAC AT A/C WEIGHT = 78 400 kg
AFT CG = 41 % MAC AT A/C WEIGHT = 78 400 kg

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM RAMP WEIGHT

N_AC_070300_1_0330101_01_00

		S 8				
	STRUT)	NTANEOL KING IENT = 0.	kg	30 780	30 750	31 920
9		AT INSTAN BRA COEFFIC	qI	67 850	67 800	70 375
)	H (PER STRUT)	STEADY BRAKING AT INSTANTANEOUS @ 10 ft/s² DECELERATION COEFFICIENT = 0.8	kg	12 490	12 490	12 960
		STEADY I @ 10 DECELE	q	27 550	27 550	28 575
5	VMG (PER STRUT)	STATIC LOAD AT MAX AFT CG (2)	kg	38 470	38 440	39 910
4,	AMG (PE	STATIC I MAX A	ql	84 800	84 750	926 28
+		STATIC BRAKING @ 10 ft/s² DECELERATION	kg	16 140	16 120	16 470
7	VNG		ql	009 98	055 58	008 98
3	V	STATIC LOAD AT MOST FWD CG (1)	kg	8 510	8 510	0298
C		STATIC I MOST F	ql	80 400 18 750	80 400 18 750	83 400 18 900
-		MAXIMUM RAMP WEIGHT	kg	80 400	80 400	83 400
2			ql	177 250	177 250	183 875
1		A/C CODE		9	I	_

Maximum Pavement Loads FIGURE 2

MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CG MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG

(I) G MRW = 80 400 kg FWD CG = 16.3 % MAC AT A/C WEIGHT = 80 400 kg

(I) G MRW = 80 400 kg FWD CG = 16.3 % MAC AT A/C WEIGHT = 80 400 kg

(I) MRW = 80 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 80 400 kg

(I) MRW = 80 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 80 400 kg

(I) MRW = 80 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 80 400 kg

(I) MRW = 80 400 kg AFT CG = 41 % MAC AT A/C WEIGHT = 80 400 kg

(I) MRW = 80 400 kg AFT CG = 41 % MAC AT A/C WEIGHT = 80 400 kg

(I) MRW = 83 400 kg AFT CG = 41 % MAC AT A/C WEIGHT = 83 400 kg

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM RAMP WEIGHT

N_AC_070300_1_0340101_01_00

-	N	0.	ε	e=	4		4)	5			9	
				VNG	IG		VMG (PER STRUT)	R STRUT)		H (PER	H (PER STRUT)	
A/C CODE	_	MAXIMUM RAMP WEIGHT	STATIC L MOST F	STATIC LOAD AT MOST FWD CG (1)	STATIC BRAKING @ 10 ft/s² DECELERATION	BRAKING) ft/s² RATION	STATIC I MAX A	STATIC LOAD AT MAX AFT CG (2)	STEADY @ 1(DECELE	SADY BRAKING @ 10 ft/s ² CELERATION	STEADY BRAKING AT INSTANTANEOUS @ 10 ft/s² BRAKING DECELERATION COEFFICIENT = 0.8	TANEOUS KING ENT = 0.8
	qı	kg	qı	kg	ql	kg	ql	kg	q	kg	qı	kg
٦	183 875	83 400	83 400 18 875	8 560	36 250	16 440	87 675	39 770	39 770 28 575	12 960	70 150	31 820
Γ	183 875	83 400	83 400 18 900	8 570	36 300	16 470	87 975	39 910	39 910 28 575	12 960	70 375	31 920
Σ	183 875	83 400	83 400 18 900	8 570	36 300	16 470	87 975	39 910	39 910 28 575	12 960	70 375	31 920

Maximum Pavement Loads FIGURE 3

MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CG MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

(1) J MRW = 83 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 83 400 kg
L MRW = 83 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 83 400 kg
M MRW = 83 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 83 400 kg
L MRW = 83 400 kg AFT CG = 39.7 % MAC AT A/C WEIGHT = 79 538 kg
M MRW = 83 400 kg AFT CG = 41 % MAC AT A/C WEIGHT = 83 400 kg
M MRW = 83 400 kg AFT CG = 41 % MAC AT A/C WEIGHT = 83 400 kg

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM RAMP WEIGHT

N_AC_070300_1_0350101_01_00

		SUC 0.8		20	06	30		
	KTANE FING I	KING KING IENT IENT	kg	31 820	32 690	32 530		
6	H (PER STRUT)	STEADY BRAKING AT INSTANTANEOUS @ 10 ft/s² BRAKING DECELERATION COEFFICIENT = 0.8	qı	70 150	72 075	71 700		
	H (PER	BRAKING 0 ft/s ² ERATION	kg	12 960	13 270	13 270		
			qı	28 575	29 250	29 250		
5	R STRUT)	/MG (PER STRUT)	ER STRUT)	STATIC LOAD AT MAX AFT CG (2)	kg	39 770	90 100 40 860	40 660
	VMG (PE	STATIC MAX A	qı	87 675	90 100	09 68		
	CAINAG	STATIC BRAKING @ 10 ft/s² DECELERATION	kg	16 440	16 680	16 820		
7	VNG		ql	36 250	36 775	320 28		
3	OAD AT	STATIC LOAD AT MOST FWD CG (1)	kg	8 560	0098	0928		
		STATIC I MOST F	ql	83 400 18 875	85 400 18 950	85 400 19 325		
01	VI RAMP	M RAMP GHT	kg	83 400	85 400	85 400		
2		MAXIMUM RAMP WEIGHT	ql	183 875	188 275	188 275		
-		A/C CODE		0	Ф	Ø		

Maximum Pavement Loads FIGURE 4

MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CG MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG

MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING MRW = 83 400 kg MRW = 85 400 kg MRW = 83 400 kg MRW = 85 400 kg MRW = 85 400 kg MRW = 85 400 kg A/C CODE (2)

FWD CG = 17.5 % MAC AT A/C WEIGHT = 83 400 kg FWD CG = 18.3 % MAC AT A/C WEIGHT = 85 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 85 400 kg AFT CG = 39.7 % MAC AT A/C WEIGHT = 83 400 kg

AFT CG = 39.1 % MAC AT A/C WEIGHT = 85 400 kg AFT CG = 41 % MAC AT A/C WEIGHT = 85 400 kg

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM RAMP WEIGHT

N_AC_070300_1_0360101_01_00

		TANEOUS (ING ENT = 0.8	kg	32 530	33 440	33 950
9	6 H (PER STRUT)	STEADY BRAKING AT INSTANTANEOUS @ 10 ft/s² DECELERATION COEFFICIENT = 0.8	입	71 700	73 725	74 850
	H (PER	BRAKING 0 ft/s ² ERATION	kg	13 270	13 580	13 890
		STEADY @ 1 DECELE	q	29 250	29 950	30 625
5	VMG (PER STRUT)	LOAD AT NFT CG 2)	Ą	40 660	41 800	42 440
	VMG (PE	STATIC LOAD AT MAX AFT CG (2)	q	89 650	92 150	032 260
4		STATIC BRAKING @ 10 ft/s² DECELERATION	kg	16 820	16 740	17 620
	VNG	0)	임	37 075	36 900	38 850
3	OAD AT	STATIC LOAD AT MOST FWD CG (1)	kg	0928	8 490	9 180
		STATIC I MOST F	qı	19 325	18 725	20 222
2		M RAMP GHT	kg	85 400	87 400	89 400
		MAXIMUM RAMP WEIGHT	q	188 275	192 675	197 100
1		A/C CODE		æ	S	ר

Maximum Pavement Loads FIGURE 5

MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CG MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG

A/C CODE

(1) R MRW = 85 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 85 400 kg
S MRW = 87 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 87 400 kg
U MRW = 89 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 89 400 kg
(2) R MRW = 85 400 kg AFT CG = 39.1 % MAC AT A/C WEIGHT = 85 400 kg
S MRW = 87 400 kg AFT CG = 38.5 % MAC AT A/C WEIGHT = 85 400 kg
U MRW = 89 400 kg AFT CG = 38.5 % MAC AT A/C WEIGHT = 89 400 kg

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM RAMP WEIGHT

N_AC_070300_1_0370101_01_00

**ON A/C A321-200

	I (0				
	ITANEOUS KING IENT = 0.8	kg	34 160	34 160	34 880
6 STBIT)	AT INSTAN BRAI COEFFICI	ඛ	75 300	75 300	76 900
6 H (PER STRIIT	STEADY BRAKING AT INSTANTANEOUS @ 10 ft/s² DECELERATION COEFFICIENT = 0.8	kg	13 890	13 890	14 200
	STEADY I @ 10 DECELE	ସା	30 625	30 625	43 600 31 325
5 VMG (PEB STRIIT)		kg	42 700	94 125 42 700 30 625	43 600
Ha) SMA	STATIC I MAX A	q	94 125	94 125	96 125
4	STATIC BRAKING @ 10 ft/s² DECELERATION	kg	17 110	17 110	17 030
, contraction	STATIC I @ 1 DECELE	q	37 725	37 725	37 525
3	STATIC LOAD AT STATIC BRAKING (1) DECELERATION	kg	0898	0898	8 640
	STATIC MOST F	q	89 400 19 125	89 400 19 125	91 400 19 050
	MAXIMUM RAMP WEIGHT	kg	89 400	89 400	91 400
	1 -	ପ୍ର	197 100	197 100	201 500
-	A/C CODE		>	×	Z

Maximum Pavement Loads FIGURE 6

MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CG MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG

MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING MRW = 89 400 kg MRW = 91 400 kg MRW = 91 400 kg (2)

FWD CG = 17.5 % MAC AT A/C WEIGHT = 89 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 89 400 kg FWD CG = 17.5 % MAC AT A/C WEIGHT = 89 000 kg

AFT CG = 37.5 % MAC AT A/C WEIGHT = 91 400 kg AFT CG = 38 % MAC AT A/C WEIGHT = 89 400 kg AFT CG = 38 % MAC AT A/C WEIGHT = 89 400 kg

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM RAMP WEIGHT

N_AC_070300_1_0380101_01_00

**ON A/C A321-200

9	(TRUT) H (PER STRUT)	STATIC LOAD AT MOST FWD CG (1) DECELERATION (2) STATIC LOAD AT STEADY BRAKING (2) DECELERATION (2) DECELERATION (2) DECELERATION (3) DECELERATION (4) DECELERATION (5) DECELERATION (5) DECELERATION (6) DECELERATION (7) DECELERAT	kg lb kg lb kg	17 140 98 100 44 490 32 000 14 510 78 475 35 590	44 720 32 175 14 590 78 875 35 770	
2	VMG (PER STRUT)	STATIC LOAD, MAX AFT CG (2)	lb kg	98 100 44 4	98 575 44 7	
4			BRAKING 0 ft/s² ERATION	kg	17 140	16 990 98 575
_	VNG	STATIC @ 1 DECELE	qı	37 800	37 450	
3	V	LOAD AT -WD CG 1)	kg	0828	08£8	
		STATIC I MOST F	qı	18 825	18 475	
		JM RAMP GHT		93 400	006 86	
CV		MAXIMU WEI	ql	205 900	207 025	
1		A/C CODE		AA	AB	

Maximum Pavement Loads Maximum Pavement Loads FIGURE 7

MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT MOST FORWARD CG
MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT MOST AFT CG
MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING

V (MG) MAXIMUM VERTICAL M H MAXIMUM HORIZONTA A/C CODE (1) AA MRW = 93 400 kg AB MRW = 93 900 kg (2) AA MRW = 93 900 kg AB MRW = 93 900 kg

FWD CG = 19 % MAC AT A/C WEIGHT = 91 500 kg FWD CG = 19.7 % MAC AT A/C WEIGHT = 91 500 kg

AFT CG = 37 % MAC AT A/C WEIGHT = 93 400 kg AFT CG = 36.9 % MAC AT A/C WEIGHT = 93 900 kg

NOTE: ALL LOADS CALCULATED USING AIRPLANE MAXIMUM RAMP WEIGHT

N_AC_070300_1_0390101_01_00

7-4-0 Landing Gear Loading on Pavement

**ON A/C A321-100 A321-200

Landing Gear Loading on Pavement

1. General

In the example shown in Section 7-4-1 Landing Gear Loading on Pavement, A/C Code C, the Gross Aircraft Weight is 60 000 kg (132 275 lb) and the percentage of weight on the Main Landing Gear is 95.7%.

For these conditions the total weight on the Main Landing Gear is 57 420 kg (126 575 lb).

7-4-1 Landing Gear Loading on Pavement

**ON A/C A321-100 A321-200

Landing Gear Loading on Pavement

1. This section gives Landing Gear Loading on Pavement.

NOTE: For A/C Code definition, refer to chapter 7-1-0.

**ON A/C A321-100

N_AC_070401_1_0650101_01_00

Landing Gear Loading on Pavement FIGURE 1

**ON A/C A321-200

N_AC_070401_1_0660101_01_00

Landing Gear Loading on Pavement FIGURE 2

N_AC_070401_1_0670101_01_00

N_AC_070401_1_0680101_01_00

N_AC_070401_1_0690101_01_00

N_AC_070401_1_0700101_01_00

N_AC_070401_1_0710101_01_00

N_AC_070401_1_0720101_01_00

N_AC_070401_1_0730101_01_00

N_AC_070401_1_0740101_01_00

Landing Gear Loading on Pavement Landing Gear Loading on Pavement FIGURE 10

N_AC_070401_1_0750101_01_00

N_AC_070401_1_0760101_01_00

N_AC_070401_1_0770101_01_00

N_AC_070401_1_0780101_01_00

N_AC_070401_1_0790101_01_00

N_AC_070401_1_0800101_01_00

N_AC_070401_1_0810101_01_00

N_AC_070401_1_0820101_01_00

N_AC_070401_1_0830101_01_00

N_AC_070401_1_0840101_01_00

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-5-0 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method

**ON A/C A321-100 A321-200

Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method

1. General

In order to determine a particular Flexible Pavement Thickness, the Subgrade Strength (CBR), the Annual Departure Level and the weight on one Main Landing Gear must be known.

In the example shown in Section 7-5-1 Flexible Pavement Requirements, A/C Code C for:

- a CBR value of 10
- an Annual Departure Level of 25 000
- the Load on one MLG of 30 000 kg (66 150 lb).
- For these conditions, the Flexible Pavement Thickness is 52.5 cm (20.7 in).
- The line showing 10 000 Coverages is used to calculate the Aircraft Classification Number (ACN).

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-5-1 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method
**ON A/C A321-100 A321-200

Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method

1. This section gives Flexible Pavement Requirements.

<u>NOTE</u>: For A/C Code definition, refer to chapter 7-1-0.

Flexible Pavement Requirement Flexible Pavement Requirements FIGURE 8

FLEXIBLE PAVEMENT THICKNESS
1 270 x 455 R22 (49 x 18–22) TIRES

TIRE PRESSURE CONSTANT AT 13.9 bar (202 psi)

N_AC_070501_1_1180101_01_00

FLEXIBLE PAVEMENT THICKNESS
1 270 x 455 R22 (49 x 18–22) TIRES

TIRE PRESSURE CONSTANT AT 13.9 bar (202 psi)

N_AC_070501_1_1190101_01_00

[CENTIMETERS]

FLEXIBLE PAVEMENT THICKNESS
1 270 x 455 R22 (49 x 18–22) TIRES

TIRE PRESSURE CONSTANT AT 13.9 bar (202 psi)

N_AC_070501_1_1200101_01_00

[CENTIMETERS]

FLEXIBLE PAVEMENT THICKNESS

1 270 x 455 R22 (49 x 18–22) TIRES

TIRE PRESSURE CONSTANT AT 14.6 bar (212 psi)

N_AC_070501_1_1210101_01_00

[CENTIMETERS]

FLEXIBLE PAVEMENT THICKNESS
1 270 x 455 R22 (49 x 18–22) TIRES

TIRE PRESSURE CONSTANT AT 14.6 bar (212 psi)

N_AC_070501_1_1220101_01_00

FLEXIBLE PAVEMENT THICKNESS
1 270 x 455 R22 (49 x 18–22) TIRES
TIRE PRESSURE CONSTANT AT 14.6 bar (212 psi)

N_AC_070501_1_1230101_01_00

FLEXIBLE PAVEMENT THICKNESS
1 270 x 455 R22 (49 x 18–22) TIRES
TIRE PRESSURE CONSTANT AT 14.6 bar (212 psi)

N_AC_070501_1_1240101_01_00

Flexible Pavement Requirement Flexible Pavement Requirements FIGURE 17

FLEXIBLE PAVEMENT THICKNESS
1 270 x 455 R22 (49 x 18–22) TIRES
TIRE PRESSURE CONSTANT AT 15 bar (218 psi)

N_AC_070501_1_1250101_01_00

Flexible Pavement Requirements FIGURE 18

Flexible Pavement Requirements

FIGURE 19

N_AC_070501_1_1260101_01_00

FLEXIBLE PAVEMENT THICKNESS
1 270 x 455 R22 (49 x 18–22) TIRES
TIRE PRESSURE CONSTANT AT 15 bar (218 psi)

N_AC_070501_1_1270101_01_00

Flexible Pavement Requirements FIGURE 20

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-6-0 Flexible Pavement Requirements - LCN Conversion

**ON A/C A321-100 A321-200

Flexible Pavement Requirements - LCN Conversion

1. General

In order to determine the airplane weight that can be accommodated on a particular Flexible Pavement, both the LCN of the pavement and the thickness (h) must be known.

In the example shown in Section 7-6-1 Flexible Pavement Requirements - LCN Conversion, A/C Code C for:

The thickness (h) is shown at 20 inches with an LCN of 73.5.

For these conditions, the weight on one Main Landing Gear is 35 000 kg (77 150 lb).

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-6-1 Flexible Pavement Requirements - LCN Conversion

**ON A/C A321-100 A321-200

Flexible Pavement Requirements - LCN Conversion

1. This section gives Flexible Pavement Requirements - LCN Conversion.

<u>NOTE</u>: For A/C Code definition, refer to chapter 7-1-0.

Flexible Pavement Requirements - LCN Conversion FIGURE 1

Flexible Pavement Requirements - LCN Conversion FIGURE 2

Flexible Pavement Requirements - LCN Conversion FIGURE 3

Flexible Pavement Requirements - LCN Conversion FIGURE 4

Flexible Pavement Requirements - LCN Conversion FIGURE 5

Flexible Pavement Requirements - LCN Conversion FIGURE 6

Flexible Pavement Requirements - LCN Conversion FIGURE 7

Flexible Pavement Requirements - LCN Conversion FIGURE 8

Flexible Pavement Requirements - LCN Conversion FIGURE 9

Flexible Pavement Requirements - LCN Conversion FIGURE 10

Flexible Pavement Requirements - LCN Conversion FIGURE 11

Flexible Pavement Requirements - LCN Conversion FIGURE 12

Flexible Pavement Requirements - LCN Conversion FIGURE 13

Flexible Pavement Requirements - LCN Conversion FIGURE 14

Flexible Pavement Requirements - LCN Conversion FIGURE 15

Flexible Pavement Requirements - LCN Conversion FIGURE 16

Flexible Pavement Requirements - LCN Conversion FIGURE 17

Flexible Pavement Requirements - LCN Conversion FIGURE 18

Flexible Pavement Requirements - LCN Conversion FIGURE 19

Flexible Pavement Requirements - LCN Conversion FIGURE 20

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-7-0 Rigid Pavement Requirements - Portland Cement Association Design Method

**ON A/C A321-100 A321-200

Rigid Pavement Requirements - Portland Cement Association Design Method

1. General

In order to determine a particular Rigid Pavement Thickness, the Subgrade Modulus (k), the allowable working stress and the weight on one Main Landing Gear must be known.

In the example shown in Section 7-7-1 Rigid Pavement Requirements (PCA), A/C Code C for:

- a "k" value of 80 MN/m³ (300 lbf/in³)
- an allowable working stress of 31.6 kgf/cm² (450 lbf/in²)
- the load on one MLG of 30 000 kg (66 150 lb).

For these conditions, the Rigid Pavement Thickness is 24.9 cm (9.8 in).

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-7-1 Rigid Pavement Requirements - Portland Cement Association Design Method

**ON A/C A321-100 A321-200

Rigid Pavement Requirements - Portland Cement Association Design Method

1. This section gives Rigid Pavement Requirements.

<u>NOTE</u>: For A/C Code definition, refer to chapter 7-1-0.

1 270 x 455 R22 (49 x 18–22) TIRES TIRE PRESSURE CONSTANT AT 12.8 bar (186 psi)

CEMENT ASSOCIATION

N_AC_070701_1_1090101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 1

THE CURVES ARE EXACT FOR

K = 80 MN/m³ BUT DEVIATE SLIGHTLY FOR ANY OTHER

1 270 x 455 R22 (49 x 18–22) TIRES TIRE PRESSURE CONSTANT AT 12.8 bar (186 psi)

N_AC_070701_1_1100101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 2

K = 80 MN/m³ BUT DEVIATE SLIGHTLY FOR ANY OTHER

1 270 x 455 R22 (49 x 18–22) TIRES TIRE PRESSURE CONSTANT AT 12.8 bar (186 psi)

N_AC_070701_1_1110101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 3

K = 80 MN/m³ BUT DEVIATE SLIGHTLY FOR ANY OTHER

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 13.6 bar (197 psi)

AIRPORT PAVEMENT DESIGN -PROGRAM PDILB" PORTLAND

CEMENT ASSOCIATION

N_AC_070701_1_1120101_01_00

Rigid Pavement Requirements (PCA) FIGURE 4

THE CURVES ARE EXACT FOR

K = 80 MN/m3 BUT DEVIATE SLIGHTLY FOR ANY OTHER

VALUES FOR K ARE EXACT. FOR LOADS LESS THAN MAXIMUM, THE CURVES ARE EXACT FOR K = 80 MN/m3 BUT DEVIATE SLIGHTLY FOR ANY OTHER VALUES OF K

"COMPUTER PROGRAM FOR AIRPORT PAVEMENT DESIGN -PROGRAM PDILB" PORTLAND CEMENT ASSOCIATION

N_AC_070701_1_1130101_01_00

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 13.6 bar (197 psi)

THE VALUES OBTAINED BY
USING THE MAXIMUM LOAD
REFERENCE LINE AND ANY
VALUES FOR K ARE EXACT. FOR
LOADS LESS THAN MAXIMUM,
THE CURVES ARE EXACT FOR
K = 80 MN/m³ BUT DEVIATE
SLIGHTLY FOR ANY OTHER
VALUES OF K

REFERENCE:
"DESIGN OF CONCRETE
AIRPORT PAVEMENTS" AND
"COMPUTER PROGRAM FOR
AIRPORT PAVEMENT DESIGN –
PROGRAM PDILB" PORTLAND
CEMENT ASSOCIATION

N_AC_070701_1_1140101_01_00

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 13.6 bar (197 psi)

THE VALUES OBTAINED BY
USING THE MAXIMUM LOAD
REFERENCE LINE AND ANY
VALUES FOR K ARE EXACT. FOR
LOADS LESS THAN MAXIMUM,
THE CURVES ARE EXACT FOR
K = 80 MN/m³ BUT DEVIATE
SLIGHTLY FOR ANY OTHER
VALUES OF K

REFERENCE:
"DESIGN OF CONCRETE
AIRPORT PAVEMENTS" AND
"COMPUTER PROGRAM FOR
AIRPORT PAVEMENT DESIGN –
PROGRAM PDILB" PORTLAND
CEMENT ASSOCIATION

N_AC_070701_1_1150101_01_00

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 13.6 bar (197 psi)

VALUES FOR K ARE EXACT. FOR LOADS LESS THAN MAXIMUM, THE CURVES ARE EXACT FOR K = 80 MN/m3 BUT DEVIATE SLIGHTLY FOR ANY OTHER VALUES OF K

"COMPUTER PROGRAM FOR AIRPORT PAVEMENT DESIGN -PROGRAM PDILB" PORTLAND CEMENT ASSOCIATION

N_AC_070701_1_1160101_01_00

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 13.6 bar (197 psi)

THE VALUES OBTAINED BY USING THE MAXIMUM LOAD REFERENCE LINE AND ANY VALUES FOR K ARE EXACT. FOR LOADS LESS THAN MAXIMUM, THE CURVES ARE EXACT FOR K = 80 MN/m³ BUT DEVIATE SLIGHTLY FOR ANY OTHER VALUES OF K

REFERENCE:
"DESIGN OF CONCRETE
AIRPORT PAVEMENTS" AND
"COMPUTER PROGRAM FOR
AIRPORT PAVEMENT DESIGN –
PROGRAM PDILB" PORTLAND
CEMENT ASSOCIATION

N_AC_070701_1_1170101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 9

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 13.6 bar (197 psi)

THE VALUES OBTAINED BY USING THE MAXIMUM LOAD REFERENCE LINE AND ANY VALUES FOR K ARE EXACT. FOR LOADS LESS THAN MAXIMUM, THE CURVES ARE EXACT FOR K = 80 MN/m³ BUT DEVIATE SLIGHTLY FOR ANY OTHER VALUES OF K

REFERENCE:
"DESIGN OF CONCRETE
AIRPORT PAVEMENTS" AND
"COMPUTER PROGRAM FOR
AIRPORT PAVEMENT DESIGN –
PROGRAM PDILB" PORTLAND
CEMENT ASSOCIATION

N_AC_070701_1_1180101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 10

N_AC_070701_1_1190101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 11

K = 80 MN/m³ BUT DEVIATE SLIGHTLY FOR ANY OTHER

N_AC_070701_1_1200101_01_00

Rigid Pavement Requirements (PCA) FIGURE 12

SLIGHTLY FOR ANY OTHER

N_AC_070701_1_1210101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 13

SLIGHTLY FOR ANY OTHER

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 14.6 bar (212 psi)

N_AC_070701_1_1220101_01_00

Rigid Pavement Requirements (PCA) FIGURE 14

SLIGHTLY FOR ANY OTHER

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 14.6 bar (212 psi)

N_AC_070701_1_1230101_01_00

Rigid Pavement Requirements (PCA) FIGURE 15

K = 80 MN/m³ BUT DEVIATE SLIGHTLY FOR ANY OTHER

N_AC_070701_1_1240101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 16

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 14.6 bar (212 psi)

N_AC_070701_1_1250101_01_00

Rigid Pavement Requirements (PCA)
FIGURE 17

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 15 bar (218 psi)

N_AC_070701_1_1260101_01_00

Rigid Pavement Requirements (PCA) FIGURE 18

SLIGHTLY FOR ANY OTHER

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 15 bar (218 psi)

CEMENT ASSOCIATION

N_AC_070701_1_1270101_01_00

Rigid Pavement Requirements (PCA) FIGURE 19

K = 80 MN/m3 BUT DEVIATE SLIGHTLY FOR ANY OTHER

1 270 x 455 R22 (49 x 18-22) TIRES TIRE PRESSURE CONSTANT AT 15 bar (218 psi)

N_AC_070701_1_1280101_01_00

Rigid Pavement Requirements (PCA) FIGURE 20

7-8-0 Rigid Pavement Requirements - LCN Conversion

**ON A/C A321-100 A321-200

Rigid Pavement Requirements - LCN Conversion

1. General

In order to determine the airplane weight that can be accommodated on a particular Rigid Pavement, both the LCN of the pavement and the Radius of Relative Stiffness (L) must be known.

In the example shown in Section 7-8-2 Rigid Pavement Requirements - LCN Conversion, A/C Code C for:

The Radius of Relative Stiffness is shown at 30 inches with an LCN of 78.3. For these conditions, the weight on one Main Landing Gear is 35 000 kg (77 150 lb).

7-8-1 Radius of Relative Stiffness

**ON A/C A321-100 A321-200

Radius of Relative Stiffness

1. This section gives Radius of Relative Stiffness.

**ON A/C A321-100 A321-200

RADIUS OF RELATIVE STIFFNESS (L) VALUES IN INCHES

$$L = \sqrt[4]{\frac{Ed^3}{12(1-\mu^2)k}} = 24.1652 \sqrt[4]{\frac{d^3}{k}}$$

WHERE E = Young's Modulus = 4 x 10⁶ psi

k = Subgrade Modulus, lbf/in³

d = Rigid Pavement Thickness, inches

 μ = Poisson's Ratio = 0.15

d	k=75	k=100	k=150	k=200	k=250	k=300	k=350	k=400	k=550
6.0	31.48	29.30	26.47	24.63	23.30	22.26	21.42	20.72	19.13
6.5	33.43	31.11	28.11	26.16	24.74	23.64	22.74	22.00	20.31
7.0	35.34	32.89	29.72	27.65	26.15	24.99	24.04	23.25	21.47
7.5	37.22	34.63	31.29	29.12	27.54	26.32	25.32	24.49	22.61
8.0	39.06	36.35	32.85	30.57	28.91	27.62	26.58	25.70	23.74
8.5	40.88	38.04	34.37	31.99	30.25	28.91	27.81	26.90	24.84
9.0	42.67	39.71	35.88	33.39	31.58	30.17	29.03	28.08	25.93
9.5	44.43	41.35	37.36	34.77	32.89	31.42	30.23	29.24	27.00
10.0	46.18	42.97	38.83	36.14	34.17	32.65	31.42	30.39	28.06
10.5	47.90	44.57	40.28	37.48	35.45	33.87	32.59	31.52	29.11
11.0	49.60	46.16	41.71	38.81	36.71	35.07	33.75	32.64	30.14
11.5	51.28	47.72	43.12	40.13	37.95	36.26	34.89	33.74	32.16
12.0	52.94	49.27	44.52	41.43	39.18	37.44	36.02	34.84	32.17
12.5	54.59	50.80	45.90	42.72	40.40	38.60	37.14	35.92	33.17
13.0	56.22	52.32	47.27	43.99	41.61	39.75	38.25	36.99	34.16
13.5	57.83	53.82	48.63	45.26	42.80	40.89	39.35	38.06	35.14
14.0	59.43	55.31	49.98	46.51	43.98	42.02	40.44	39.11	36.12
14.5	61.02	56.78	51.31	47.75	45.16	43.15	41.51	40.15	37.08
15.0	62.59	58.25	52.63	48.98	46.32	44.26	42.58	41.19	38.03
15.5	64.15	59.70	53.94	50.20	47.47	45.36	43.64	42.21	38.98
16.0	65.69	61.13	55.24	51.41	48.62	46.45	44.70	43.23	39.92
16.5	67.23	62.56	56.53	52.61	49.75	47.54	45.74	44.24	40.85
17.0	68.75	63.98	57.81	53.80	50.88	48.61	46.77	45.24	41.78
17.5	70.26	65.38	59.08	54.98	52.00	49.68	47.80	46.23	42.70
18.0	71.76	66.78	60.34	56.15	53.11	50.74	48.82	47.22	43.61
19.0	74.73	69.54	62.84	58.48	55.31	52.84	50.84	49.17	45.41
20.0	77.66	72.27	65.30	60.77	57.47	54.91	52.84	51.10	47.19
21.0	80.55	74.96	67.74	63.04	59.62	56.96	54.81	53.01	48.95
22.0	83.41	77.63	70.14	65.28	61.73	58.98	56.75	54.89	50.69
23.0	86.24	80.26	72.52	67.49	63.83	60.98	58.68	56.75	52.41
24.0	89.04	82.86	74.87	69.68	65.90	62.96	60.58	58.59	54.11
25.0	91.81	85.44	77.20	71.84	67.95	64.92	62.46	60.41	55.79

N_AC_070801_1_0040101_01_00

Radius of Relative Stiffness (Reference: Portland Cement Association) FIGURE $\mathbf{1}$

7-8-2 Rigid Pavement Requirements - LCN Conversion

**ON A/C A321-100 A321-200

Rigid Pavement Requirements - LCN Conversion

1. This section gives Rigid Pavement Requirements - LCN Conversion.

<u>NOTE</u>: For A/C Code definition, refer to chapter 7-1-0.

Rigid Pavement Requirements - LCN Conversion FIGURE 1

Rigid Pavement Requirements - LCN Conversion FIGURE 2

Rigid Pavement Requirements - LCN Conversion FIGURE 3

Rigid Pavement Requirements - LCN Conversion FIGURE 4

Rigid Pavement Requirements - LCN Conversion FIGURE 5

Rigid Pavement Requirements - LCN Conversion FIGURE 6

Rigid Pavement Requirements - LCN Conversion FIGURE 7

Rigid Pavement Requirements - LCN Conversion FIGURE 8

Rigid Pavement Requirements - LCN Conversion FIGURE 9

Rigid Pavement Requirements - LCN Conversion FIGURE 10

Rigid Pavement Requirements - LCN Conversion FIGURE 11

Rigid Pavement Requirements - LCN Conversion FIGURE 12

Rigid Pavement Requirements - LCN Conversion FIGURE 13

Rigid Pavement Requirements - LCN Conversion FIGURE 14

Rigid Pavement Requirements - LCN Conversion FIGURE 15

Rigid Pavement Requirements - LCN Conversion FIGURE 16

Rigid Pavement Requirements - LCN Conversion FIGURE 17

Rigid Pavement Requirements - LCN Conversion FIGURE 18

Rigid Pavement Requirements - LCN Conversion FIGURE 19

Rigid Pavement Requirements - LCN Conversion FIGURE 20

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-8-3 Radius of Relative Stiffness (Other values of E and L)

**ON A/C A321-100 A321-200

Radius of Relative Stiffness (Other values of "E" and "L")

1. General

The table of Section 7-8-1, Radius of Relative Stiffness, presents "L" values based on Young's Modulus (E) of 4 000 000 psi and Poisson's Ratio (μ) of 0.15.

To find "L" values based on other values of "E" and " μ ", see Section 7-8-4.

For example, to find an "L" value based on an "E" of 3 000 000 psi, the "E" factor of 0.931 is multiplied by the "L" value found in the table of Section 7-8-1.

The effect of variations of " μ " on the "L" value is treated in a similar manner.

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-8-4 Radius of Relative Stiffness

**ON A/C A321-100 A321-200

Radius of Relative Stiffness

1. This section gives Radius of Relative Stiffness.

**ON A/C A321-100 A321-200

1.015 1.010 1.000 1.000 0.995 0.00 0.05 0.10 0.15 0.20 0.25 μ, Poisson's Ratio

NOTE: BOTH CURVES ON THIS PAGE ARE USED TO ADJUST THE L VALUES OF TABLE 7-8-1 N_AC_070804_1_0040101_01_02

Radius of Relative Stiffness (Effect E and μ on "L" values) FIGURE 1

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-9-0 ACN/PCN Reporting System

**ON A/C A321-100 A321-200

ACN/PCN Reporting System

1. General

To determine the ACN of an aircraft on flexible or rigid pavement, both the aircraft gross weight and the subgrade strength must be known.

In the example shown in Section 7-9-1 Aircraft Classification Number – Flexible Pavement, A/C Code C, for an aircraft gross weight of 65 000 kg (143 300 lb) and low subgrade strength (code C), the ACN for the flexible pavement is 38.3.

In the example shown in Section 7-9-2 Aircraft Classification Number – Rigid Pavement, A/C Code C, for an aircraft gross weight of 65 000 kg (143 300 lb) and medium subgrade strength (code B), the ACN for the rigid pavement is 39.7.

 ${\underline{\sf NOTE}}$: An aircraft with an ACN equal to or less than the reported PCN can operate on that pavement, subject to any limitation on the tire pressure.

(Ref.: ICAO Aerodrome Design Manual Part 3, Chapter 1, Second Edition 1983).

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-9-1 Aircraft Classification Number - Flexible Pavement

**ON A/C A321-100 A321-200

Aircraft Classification Number - Flexible Pavement

1. This section gives the Aircraft Classification Number - Flexible Pavement.

 $\underline{\mathsf{NOTE}}$: For A/C Code definition, refer to chapter 7-1-0.

N_AC_070901_1_1230101_01_00

N_AC_070901_1_1240101_01_00

N_AC_070901_1_1250101_01_00

N_AC_070901_1_1260101_01_00

N_AC_070901_1_1270101_01_00

N_AC_070901_1_1280101_01_00

N_AC_070901_1_1290101_01_00

N_AC_070901_1_1300101_01_00

N_AC_070901_1_1310101_01_00

N_AC_070901_1_1320101_01_00

N_AC_070901_1_1330101_01_00

N_AC_070901_1_1340101_01_00

N_AC_070901_1_1350101_01_00

N_AC_070901_1_1360101_01_00

N_AC_070901_1_1370101_01_00

N_AC_070901_1_1380101_01_00

N_AC_070901_1_1390101_01_00

N_AC_070901_1_1400101_01_00

N_AC_070901_1_1410101_01_00

N_AC_070901_1_1420101_01_00

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

7-9-2 Aircraft Classification Number - Rigid Pavement

**ON A/C A321-100 A321-200

Aircraft Classification Number - Rigid Pavement

1. This section gives the Aircraft Classification Number - Rigid Pavement.

<u>NOTE</u>: For A/C Code definition, refer to chapter 7-1-0.

N_AC_070902_1_1640101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1650101_01_00

N_AC_070902_1_1660101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1670101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1680101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1690101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1700101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1710101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1720101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1730101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1740101_01_00

N_AC_070902_1_1750101_01_00

N_AC_070902_1_1760101_01_00

ACN WAS DETERMINED AS REFERENCED IN ICAO AERODROME DESIGN MANUAL PART 3 CHAPTER 1 SECOND EDITION 1983.
CG USED FOR ACN CALCULATIONS: 38.53 % MAC. SEE SECTION 7-4-1 LANDING GEAR LOADING ON PAVEMENT – A/C CODE S TIRE PRESSURE CONSTANT AT 14.6 bar (212 psi) 1 270 x 455 R22 (49 x 18-22) TIRES

N_AC_070902_1_1770101_01_00

AIRCRAFT GROSS WEIGHT

N_AC_070902_1_1780101_01_00

N_AC_070902_1_1790101_01_00

N_AC_070902_1_1800101_01_00

65 (x 1 000 kg) (MEDÍUM) 150 MN/m³ (HIGH) 40 MN/m³ (80 MN/m³ (95 90 82 77 65 9 55 45 15 50 4 35 30 AIRCRAFT CLASSIFICATION NUMBER (ACN)

N_AC_070902_1_1810101_01_00

AIRCRAFT GROSS WEIGHT

ACN WAS DETERMINED AS REFERENCED IN ICAO AERODROME DESIGN MANUAL PART 3 CHAPTER 1 SECOND EDITION 1983.
CG USED FOR ACN CALCULATIONS: 37 % MAC. SEE SECTION 7-4-1 LANDING GEAR LOADING ON PAYMENT ACCORD AA

1 270 x 455 R22 (49 x 18-22) TIRES

N_AC_070902_1_1820101_01_00

AIRCRAFT GROSS WEIGHT

ACN WAS DETERMINED AS REFERENCED IN ICAO AERODROME DESIGN MANUAL PART 3 CHAPTER 1 SECOND EDITION 1983.
CG USED FOR ACN CALCULATIONS: 36.88 % MAC. SEE SECTION 7-4-1 LANDING GEAR LOADING ON DAVISMENT.

TIRE PRESSURE CONSTANT AT 15 bar (218 psi)

1 270 x 455 R22 (49 x 18-22) TIRES

N_AC_070902_1_1830101_01_00

AIRCRAFT GROSS WEIGHT

Aircraft Classification Number – Rigid Pavement FIGURE 20

AIRCRAFT CLASSIFICATION NUMBER (ACN)

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

DERIVATIVE AIRPLANES

8-1-0 Possible Future Derivative Airplane

**ON A/C A321-100 A321-200

Possible Future Derivative Airplane

1. General

Derivative versions of the A321 are planned. All product line airplanes are studied for possible size changes that might be required for fulfilling future airline needs. History has proved that derivative airplanes of a given model can encompass both increases and decreases in linear dimensions and weight.

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

SCALED DRAWINGS

9-1-0 Scaled Drawings

**ON A/C A321-100 A321-200

Scaled Drawings

1. This section gives scaled drawing of the aircraft.

AIRPLANE CHARACTERISTICS FOR AIRPORT PLANNING

**ON A/C A321-100 A321-200

LEGEND:

A AIR CONDITIONING

C CARGO COMPT DOOR L LAVATORY

E ELECTRICAL MLG MAIN LANDING GEAR
F1 FUEL (COUPLING) NLG NOSE LANDING GEAR

F2 FUEL (GRAVITY) P PNEUMATIC

H²O POTABLE WATER X PASSENGER/CREW DOOR

NOTE: WHEN PRINTING, MAKE SURE TO ADJUST FOR PROPER SCALING.

N_AC_090100_1_0070101_01_03

Scaled Drawing FIGURE 1

**ON A/C A321-100 A321-200

NOTE: WHEN PRINTING, MAKE SURE TO ADJUST FOR PROPER SCALING.

N_AC_090100_1_0080101_01_03

Scaled Drawing FIGURE 2