CS771: Machine Learning: Tools, Techniques, Applications Assignment 1: Naive Bayes, NN, LDF

Divyanshu Shende Roll No.: 13264

February 4, 2016

1 Spam Detection: Naive Bayes

Here are the result obtained on using Naive Bayes under various situations. The Score, Precision and Recall are in range [0, 1].

 $Score = \frac{correct\ predictions}{total\ predictions}$

 $Precision = \frac{true\ positives}{true\ positives\ +\ false\ positives}$

 $Recall = \frac{true\ positives}{true\ positives\ +\ false\ negatives}$

Type	Validation	\mathbf{Score}	Precision	Recall
Simple	Ten Fold	0.9948168230300999	0.9958880497408638	0.9979253112033195
Stop Words	Ten Fold	0.9951628437912999	0.9967093662774239	0.9975103734439834
Lemmatizers	Ten Fold	0.9948168230300999	0.995881162688522	0.9979253112033195

2 Spam Detection: Linear Discriminant Functions

Here are the result obtained on using Naive Bayes under various situations. The Score, Precision and Recall are in range [0,1]. Cross-Validation was 10-fold. A few details about the experiments:

Learning Algorithm : Perceptron Number of Iterations : 100

Learning Rate: 0.002

 $Score = \frac{correct\ predictions}{total\ predictions}$

 $\label{eq:Precision} \text{Precision} = \frac{\textit{true positives}}{\textit{true positives} + \textit{false positives}}$

$$Recall = \frac{true\ positives}{true\ positives\ +\ false\ negatives}$$

Type	Score	Precision	Recall
Bag of Words (BoW)	0.9934339413606998	0.9946432917051455	0.9975120880628235
Term Frequency (TF)	0.9906717165444	0.9938483385179893	0.9950207468879668
TF-IDF	0.9923970640515	0.9958930672826186	0.995022461506807

3 Handwritten Digit Recognition on MNIST Dataset

Learning Algorithm : k-Nearest Neighbours

 $Score = \frac{correct\ predictions}{total\ predictions}$

Metric Used	Definition of metric	Score
Euclidean	$\sqrt{\sum (x-y)^2}$	0.9705
Manhattan	$\sum (x-y)$	0.9705
Chebyshev	$\sum (max(\mid x-y\mid))$	0.7487