Name:	
J#:	Dr. Clontz
Date:	

${\bf MASTERY~QUIZ~DAY~15}$

Math 237 – Linear Algebra Fall 2017

Version 3 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V 2.	Mark:					
Determine if	$\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix} $ can 1	oe writte	en as a linear combination of the vectors	$\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix},$	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}.$

Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Mark:

Mark: Standard S3.

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span} \left(\left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3 \right\} \right)$. Find a basis for W.

Standard S4.

Mark:

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

Additional Notes/Marks