Package 'phiDelta'

October 14, 2022

Type Package

Title Tool for Phi Delta Analysis of Features

Version 1.0.1		
Author Nikolas Rothe and Ursula Neumann		
Maintainer Ursula Neumann <ursula.neumann@uni-marburg.de></ursula.neumann@uni-marburg.de>		
Description Analysis of features by phi delta diagrams. In particular, functions for reading data and calculating phi and delta as well as the functionality to plot it. Moreover it is possible to do further analysis on the data by generating rankings. For more information on phi delta diagrams, see also Giuliano Armano (2015) <doi:10.1016 j.ins.2015.07.028="">.</doi:10.1016>		
License GPL (>= 2)		
Encoding UTF-8		
LazyData true		
RoxygenNote 6.0.1.9000		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2018-05-08 08:27:22 UTC		
R topics documented:		
borders		
calculate_delta		
calculate_entropy		
calculate_phi		
calculate_ratio		
climate_data		
crossings		
c_matrices		
c_statistics		
dist_to_middle		
dist_to_top		

2	borders
---	---------

Index		20
	symmetric_distance	19
	rank_stats	18
	phiDelta_plot_from_data	
	phiDelta_from_data	17
	phiDelta.stats	16
	phiDelta.plot	15
	phiDelta.convert	14
	n_matrices	14
	iso_specificity	13
	iso_sensitivity	12
	iso_precision	11
	iso_negative_predictive_value	11

borders

borders of the phi delta space

Description

calculates the corners of the phi delta space

Usage

borders(ratio)

Arguments

ratio

is the ratio of positive and negative of the data. The default is 1

Value

a matrix. Each row represents a corner in the following order: top, right, bottom, left

Author(s)

rothe

Examples

borders(1.0)

borders(0.5)

borders(2)

calculate_delta 3

calculate_delta	calculate delta
carcarate_acrta	caremane acm

Description

calculates delta out of specificity and sensitivity depending on the ratio

Usage

```
calculate_delta(spec, sens, ratio = 1)
```

Arguments

spec is the specificity, the true negative rate sens is the sensitivity, the true positive rate

ratio is the ratio of positive and negative of the data. The default is 1

Value

delta

Author(s)

rothe

Examples

```
calculate_delta(1,0)
calculate_delta(0.5,0.3)
```

calculate_entropy

calculate entropy

Description

calculates the entropy of a specificity and sensitivity tuple considering the ratio

Usage

```
calculate_entropy(spec, sens, ratio = 1)
```

Arguments

spec	numeric, is the specificity, the true negative rate
sens	numeric, is the sensitivity, the true positive rate

ratio numeric, is the ratio of positive and negative of the data

4 calculate_phi

Value

entropy of the tuple

Author(s)

rothe

Examples

```
calculate_entropy(1,0)
calculate_entropy(0.5,0.6,0.7)
```

calculate_phi

calculate phi

Description

calculates phi out of specificity and sensitivity depending on the ratio

Usage

```
calculate_phi(spec, sens, ratio = 1)
```

Arguments

spec is the specificity, the true negative rate sens is the sensitivity, the true positive rate

ratio is the ratio of positive and negative of the data. The default is 1

Value

phi

Author(s)

rothe

```
calculate_phi(1,0)
calculate_phi(0.5,0.3)
```

calculate_ratio 5

calculate_ratio

calculate ratio

Description

calculates the ratio between positive and negative samples

Usage

```
calculate_ratio(stats)
```

Arguments

stats

c_statistics

Value

ratio

Author(s)

rothe

Examples

```
x <- c_statistics(climate_data)
ratio <- calculate_ratio(x)</pre>
```

climate_data

Meteorological data for feature selection analysis

Description

A dataset with meteorological data from a weather station in Frankfurt (Oder), Germany from february 2016

```
climate_data
```

6 crossings

Format

```
a data frame with 29 entries and following 7 variables

RainBool classification variable: if it has not rained: 0, if it has rained: 1
date index variable from 1 to 29

Tmin temperature minimum of the day

Tmax temperature maximum of the day

SunAvg sunshine duration of the day

RelHumAvg average relative humidity of the day

WindForceAvg average wind force of the day
```

References

```
modified data from http://wetterstationen.meteomedia.de/
```

crossings

Diagram crossings

Description

adds crossings to the plot depending on the ratio

Usage

```
crossings(ratio, col = "darkblue", ...)
```

Arguments

ratio	is the ratio of positive and negative of the data
col	the color of the lines. Default is darkblue
	further graphical parameters, see par

Author(s)

Neumann

```
x <- c_statistics(climate_data)
ratio <- calculate_ratio(x)
phiDelta_plot_from_data(x, crossing = FALSE)
crossings(ratio, col = "green")</pre>
```

c_matrices 7

c_matrices

confusion matrices

Description

calculates the confusion matrices from the c_statistics

Usage

```
c_matrices(stats)
```

Arguments

stats

c_statistics

Value

a matrix. Each column represents a feature. Each row describes in this order: true negative, FALSE negative, true positive, FALSE negative

Author(s)

rothe

Examples

```
x <- c_statistics(climate_data)
cmat <- c_matrices(x)</pre>
```

c_statistics

Raw Confusion Statistics

Description

reformarts the raw file data to c_statistics data so it can be used for most of the functions in this package. it can be used directly after loading data from a file like .csv

Usage

```
c_statistics(file)
```

Arguments

file

raw data from a file, for example the output of read.csv. the file must be formarted as follows: The first column contains the output of the classifier. It should only be 1 or 0 The other columns represent the features. The names of the columns 2.. are considered as the names of the features

8 dist_to_middle

Value

dataframe, first column are the labels, 0 is a negative sample, 1 a positve the other columns contain the

Author(s)

rothe

Examples

```
data("climate_data")
x <- c_statistics(climate_data)</pre>
```

dist_to_middle

distance to the middle of the space

Description

calculates the euclidic distance of a phi delta tuple to the middle of the phi delta space. This could be used for a rating of the features

Usage

```
dist_to_middle(phi, delta, ratio)
```

Arguments

phi numeric value or vector of phi delta numeric value or vector of delta

ratio is the ratio of positive and negative of the data. The default is 1

Value

the euclidic distance of the tuple to the middle

Author(s)

rothe

```
dist_to_middle(1,0,1)
dist_to_middle(0.5,0.3,1)
```

dist_to_top 9

dist_to_top

distance to top or bottom

Description

calculates the distance of the tuple to the closer corner of top and bottom of the phi delta space with ratio 1. This can be used for a ranking of the features

Usage

```
dist_to_top(phi, delta)
```

Arguments

phi numeric value or vector of phi delta numeric value or vector of delta

Value

distance to the top or the bottom corner

Author(s)

rothe

Examples

```
dist_to_top(1,0)
dist_to_top(0.5,0.3)
```

iso_accuracy

isometric accuracy lines

Description

adds isometric lines for the accuracy to the plot depending on the ratio

```
iso_accuracy(ratio = 1, granularity = 0.25, lty = "longdash",
  col = "blue", ...)
```

10 iso_entropy_curve

Arguments

ratio numeric value for the ratio of positive and negative of the data

granularity numeric value between 0 and 1 for the granularity of the lines. It is a value for

the distance between 2 lines

the type of line, see parthe color of the lines

... further graphical parameters, see par

Author(s)

rothe

Examples

```
x <- c_statistics(climate_data)
ratio <- calculate_ratio(x)
phiDelta_plot_from_data(x)
iso_accuracy(ratio, col = "green")</pre>
```

iso_entropy_curve

isometric entropy

Description

draws isometric curves for the entropy by calculating the entropy for all points in a grid and connecting those within a epsilon environment of the value

Usage

```
iso_entropy_curve(x, ratio = 1, eps = 0.001, grid_granularity = 0.01)
```

Arguments

x numeric, is the offset for the points

ratio numeric, is the ratio

eps numeric, the epsilon for entropies to be selected

grid_granularity

numeric between 0 and 1, defines the granularity of the grid

Author(s)

Neumann

```
iso_negative_predictive_value
```

isometric negative predictive value lines

Description

adds isometric lines for the negative predictive value to the plot depending on the ratio

Usage

```
iso_negative_predictive_value(ratio = 1, granularity = 0.25,
  lty = "longdash", col = "blue", ...)
```

Arguments

ranularity numeric value between 0 and 1 for the granularity of the lines. It is a value for the distance between 2 lines 1ty the type of line, see par col the color of the lines further graphical parameters, see par	ratio	numeric value for the ratio of positive and negative of the data
col the color of the lines	granularity	• .
200	lty	the type of line, see par
further graphical parameters, see par	col	the color of the lines
		further graphical parameters, see par

Author(s)

rothe

Examples

```
x <- c_statistics(climate_data)
ratio <- calculate_ratio(x)
phiDelta_plot_from_data(x)
iso_negative_predictive_value(ratio, col = "green")</pre>
```

iso_precision

isometric precision lines

Description

adds isometric lines for the precision to the plot depending on the ratio

```
iso_precision(ratio = 1, granularity = 0.25, lty = "longdash",
  col = "blue", ...)
```

iso_sensitivity

Arguments

ratio numeric value for the ratio of positive and negative of the data

granularity numeric value between 0 and 1 for the granularity of the lines. It is a value for

the distance between 2 lines

the type of line, see parthe color of the lines

... further graphical parameters, see par

Author(s)

rothe

Examples

```
x <- c_statistics(climate_data)
ratio <- calculate_ratio(x)
phiDelta_plot_from_data(x)
iso_precision(ratio, col = "green")</pre>
```

iso_sensitivity

isometric sensitivity lines

Description

adds isometric lines for the sensitivity to the plot depending on the ratio

Usage

```
iso_sensitivity(ratio = 1, granularity = 0.25, col = "blue",
  lty = "longdash", ...)
```

Arguments

ratio numeric value for the ratio of positive and negative of the data

granularity numeric value between 0 and 1 for the granularity of the lines. It is a value for

the distance between 2 lines

col the color of the lines

1ty the type of line, see par

... further graphical parameters, see par

Author(s)

Neumann

iso_specificity 13

Examples

```
x <- c_statistics(climate_data)
ratio <- calculate_ratio(x)
phiDelta_plot_from_data(x)
iso_sensitivity(ratio, col = "green")</pre>
```

iso_specificity

isometric specificity lines

Description

adds isometric lines for the specificity to the plot depending on the ratio

Usage

```
iso_specificity(ratio = 1, granularity = 0.25, col = "blue",
  lty = "longdash", ...)
```

Arguments

ratio	numeric value for the ratio of positive and negative of the data
granularity	numeric value between 0 and 1 for the granularity of the lines. It is a value for the distance between 2 lines
col	the color of the lines
lty	the type of line, see par
	further graphical parameters, see par

Author(s)

rothe

```
x <- c_statistics(climate_data)
ratio <- calculate_ratio(x)
phiDelta_plot_from_data(x)
iso_specificity(ratio, col = "green")</pre>
```

phiDelta.convert

n_matrices

normalized confusion matrices

Description

normalizes the confusion matrices

Usage

```
n_matrices(c_matrices)
```

Arguments

c_matrices

confusion matrices

Value

a matrix. Each column represents a feature. Each row describes in this order: true negative rate, FALSE negative rate, true positive rate, FALSE negative rate

Author(s)

rothe

Examples

```
x <- c_statistics(climate_data)
cmat <- c_matrices(x)
nmat <- n_matrices(cmat)</pre>
```

phiDelta.convert

Convertion of specificity and sensitivity to phi and delta

Description

converts specificity and sensitivity to phi and delta depending on the ratio

Usage

```
phiDelta.convert(spec, sens, ratio = 1)
```

Arguments

spec is the specificity, the true negative rate sens is the sensitivity, the true positive rate

ratio is the ratio of positive and negative of the data. The default is 1

phiDelta.plot

Value

List with phi and delta vectors

Author(s)

neumann

Examples

```
phiDelta.convert(1,0)
phiDelta.convert(0.5,0.3, ratio = 0.8)
```

phiDelta.plot

Plot of phi delta diagram

Description

Plots delta against phi within the phi delta diagram shape

Usage

```
phiDelta.plot(phi, delta, ratio = 1, names = NULL, border = "red",
  filling = "grey", crossing = TRUE, iso_specificity = FALSE,
  iso_sensitivity = FALSE, iso_neg_predictive_value = FALSE,
  iso_precision = FALSE, iso_accuracy = FALSE, highlighted = NULL)
```

Arguments

phi	numeric value or vector of phi	
delta	numeric value or vector of delta	
ratio	numeric, is the ratio of positive and negative of the data	
names	string with feature names	
border	the color of the border of the shape. NA for no border	
filling	the color to fill the shape with	
crossing	logical, if the crossing should be drawn	
iso_specificity		
	logical, if isometric lines of the specificity should be drawn	
iso_sensitivit	у	
	logical, if isometric lines of the sensitivity should be drawn	
iso_neg_predictive_value		
	logical, if isometric lines of the negative predictive value should be drawn	
iso_precision	logical, if isometric lines of the precision should be drawn	
iso_accuracy	logical, if isometric lines of the accuracy should be drawn	
highlighted	numeric vector, indices of the points to higlight highlighted points will be orange	

16 phiDelta.stats

Author(s)

rothe

Examples

```
x <- climate_data
phiDelta <- phiDelta.stats(x[,-1],x[,1])
phiDelta.plot(phiDelta$phi, phiDelta$delta)
phiDelta.plot(phiDelta$phi, phiDelta$delta,
  ratio = phiDelta$ratio,
  border = "green",
  iso_neg_predictive_value = TRUE,
  crossing = FALSE)</pre>
```

phiDelta.stats

Phi delta statistics from dataframe

Description

calculates phi, delta and the ratio directly from the dataframe with provided information and generates a list with the names of the features, their phi and delta value and the ratio

Usage

```
phiDelta.stats(data, labels, ratio_corrected = TRUE)
```

Arguments

data dataframe without labels

labels vector of labels

ratio_corrected

locigal, if true phi and delta will be calculated in respect to the ratio of positive and negative samples

Value

dataframe, first column are the names of the features second column the phi values third column the delta values

Author(s)

rothe

```
x <- climate_data
phiDelta <- phiDelta.stats(x[,-1],x[,1], ratio_corrected = FALSE)
with_ratio <- phiDelta.stats(x[,-1],x[,1])</pre>
```

phiDelta_from_data 17

Description

calculates phi and delta directly from the stats and generates a matrix with the names of the features, their phi and their delta value

Usage

```
phiDelta_from_data(stats, ratio_corrected = TRUE)
```

Arguments

```
stats c_statistics ratio_corrected
```

locigal, if true phi and delta will be calculated in respect to the ratio of positive and negative samples

Value

dataframe, first column are the names of the features second column the phi values third column the delta values

Author(s)

rothe

Examples

```
x <- c_statistics(climate_data)
phiDelta <- phiDelta_from_data(x, ratio_corrected = FALSE)
with_ratio <- phiDelta_from_data(x)</pre>
```

```
phiDelta_plot_from_data
```

phi delta plot of raw statistic data

Description

this will create a basic plot directly out of the statistic data (c_statistics)

```
phiDelta_plot_from_data(stats, names = NULL, ratio_corrected = TRUE, ...)
```

18 rank_stats

Arguments

stats matrix of the statistic data of the features and the classifier

names vector with feature names

ratio_corrected

logical, if true the plot will concider the ratio of the positive and negative data

samples

... further parameters for the diagram see phiDelta.plot

Author(s)

rothe

Examples

```
x <- c_statistics(climate_data)
phiDelta_plot_from_data(x)
phiDelta_plot_from_data(x, ratio_corrected = FALSE, iso_spec = TRUE, iso_sens = TRUE)</pre>
```

rank_stats

ranking of the features

Description

this function puts together a number of rankings of the features

Usage

```
rank_stats(stats, ratio_corrected = FALSE, delta_dist = 1)
```

Arguments

stats c_statistics, the data input

ratio_corrected

logical, true if ratio shoud be considerd

delta_dist, numeric, the delta value of the anchor for the geometrical ranking see symmet-

ric_distance

Author(s)

rothe

symmetric_distance 19

Description

calculates the Distance from the positive anchor and the negative anchor to the point and returns the smaller one. That means, if y is positive the distance to the positive anchor will be return, if it is negative, the negative anchor distance will be calculated

Usage

```
symmetric_distance(x, y, anchor)
```

Arguments

x, y	numerical, in this case phi and delta but in general the input coordinates
anchor	vector (x,y) the anchor for the calculation of the distance

Value

the smaller distance of (x,y) to eather the positive or negative anchor

```
symmetric_distance(0.5, 0.5, c(0, 0))
```

Index

```
* datasets
    climate_data, 5
borders, 2
c_matrices, 7
c_statistics, 7
calculate_delta, 3
calculate_entropy, 3
calculate_phi, 4
calculate_ratio, 5
climate_data, 5
crossings, 6
dist_to_middle, 8
dist_to_top, 9
iso_accuracy, 9
iso_entropy_curve, 10
iso_negative_predictive_value, 11
iso_precision, 11
iso_sensitivity, 12
{\tt iso\_specificity}, \\ 13
n_matrices, 14
par, 6, 10–13
phiDelta.convert, 14
phiDelta.plot, 15, 18
phiDelta.stats, 16
phiDelta_from_data, 17
phiDelta_plot_from_data, 17
rank_stats, 18
read.csv, 7
{\tt symmetric\_distance}, {\it 18}, 19
```