Theorem 1 Let $A \in \mathbb{C}^{n \times m}$ be a non zero matrix of rank r. Then A can be expressed as a product

$$A = U\Sigma V^*$$

where $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{m \times m}$ are unitary matrices and $\Sigma \in \mathbb{R}^{n \times m}$ is a nonsquare diagonal matrix such that

$$\Sigma = \left[egin{array}{ccccc} \sigma_1 & & & & & & \\ & \sigma_2 & & & & & \\ & & \ddots & & & & \\ & & & \sigma_r & & & \\ & & & 0 & & & \\ & & & \ddots & & \end{array}
ight], \quad \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$$

Proof: The proof is by induction on the rank of A. If $\operatorname{rank}(A) = 1$, then every column of A is a multiple of some $x \in \mathbb{C}^n \setminus \{0\}$ and there exist $y_1, y_2, \ldots, y_m \in \mathbb{C}$ such that the i^{th} column of A is $(\bar{y_i})x$. Thus $A = xy^*$ where $y = [y_1 \cdots y_m]^T \in \mathbb{C}^m$. Setting $u = x/\|x\|_2, v = y/\|y\|_2$ and $\sigma = \|x\|_2 \|y\|_2$,

$$A = \sigma u v^* = [u \, u_2 \cdots u_n] \begin{bmatrix} \sigma & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix} [v \, v_2 \cdots v_m]^*$$
 (1)

where $\{u_2, \ldots, u_n\} \subset \mathbb{C}^n$, and $\{v_2, \ldots, v_m\} \subset \mathbb{C}^m$ are orthonormal sets such that $\{u, u_2, \ldots, u_n\}$ and $\{v, v_2, \ldots, v_m\}$ are orthonormal bases of \mathbb{C}^n and \mathbb{C}^m respectively. The second equality in (1) shows that the theorem holds for rank 1 matrices.

Now let A be of rank r > 1 and assume that all matrices of rank r - 1 have a decomposition as specified by the theorem. Since $||A||_2 = \max_{\|x\|_2 = 1} ||Ax||_2$, there exists $v \in \mathbb{C}^m$ with $\|v\|_2 = 1$, such

that Av = w and $\|w\|_2 = \|A\|_2$. Thus if $\sigma_1 := \|A\|_2$ and $u := w/\sigma_1$, then $\|u\|_2 = 1$ and $Av = \sigma_1 u$. The sets $\{v\}$ and $\{u\}$ may be extended to form orthonormal bases say, $\{v, v_1, \ldots, v_{m-1}\}$ and $\{u, u_1, \ldots, u_{m-1}\}$ of \mathbb{C}^m and \mathbb{C}^n respectively. Thus if $\hat{V} := [v_1 \ v_2 \ \ldots \ v_{m-1}]$ and $\hat{U} := [u_1 \ u_2 \ \ldots \ u_{m-1}]$, we have unitary matrices $V_1 := [v \ \hat{V}]$ and $U_1 = [u \ \hat{U}]$ such that

$$\begin{array}{ll} U_1^*AV_1 & = & \left[\begin{array}{c} u^* \\ \hat{U}^* \end{array} \right] A[v \; \hat{V}] \\ \\ & = & \left[\begin{array}{c} u^*Av & u^*A\hat{V} \\ \hat{U}^*Av & \hat{U}^*A\hat{V} \end{array} \right] \\ \\ & = & \left[\begin{array}{c} \sigma_1 & w^* \\ \sigma_1\hat{U}^*u & \hat{U}^*A\hat{V} \end{array} \right] \quad \text{where } w = \hat{V}^*A^*u \\ \\ & = & \left[\begin{array}{c} \sigma_1 & w^* \\ 0 & B \end{array} \right] \quad \text{(by orthonormality of}\{u, u_1, \dots, u_{n-1}\}) \end{array}$$

where 0 is a column vector of dimension n-1, w^* is a row vector of dimension m-1 and $B = \hat{U}^* A \hat{V}$ has dimension $n-1 \times m-1$. The rest of the proof consists of establishing that

w=0 so that the induction hypothesis may be invoked on B. Setting $S:=\begin{bmatrix} \sigma_1 & w^* \\ 0 & B \end{bmatrix}$, observe that,

$$\left\| S \left[\begin{array}{c} \sigma_1 \\ w \end{array} \right] \right\|_2 \ge \sigma_1^2 + w^* w = \sqrt{\sigma_1^2 + w^* w} \left\| \left[\begin{array}{c} \sigma_1 \\ w \end{array} \right] \right\|_2.$$

This implies that

$$||S||_2 \ge \sqrt{\sigma_1^2 + w^* w}. (2)$$

But since U_1 and V_1 are unitary matrices,

$$||S||_2 = ||U_1^* A V_1||_2 = ||A||_2 = \sigma_1.$$
(3)

From (2) and (3) we have w=0 so that $S=\left[\begin{array}{cc}\sigma_1&0\\0&B\end{array}\right]$. Now S has the same rank as A

which is r and the first column $\begin{bmatrix} \sigma_1 \\ 0 \end{bmatrix}$ of S is evidently orthogonal to the remaining columns. Therefore it is linearly independent of the remaining columns of S. Therefore exactly r-1 of the remaining columns of S which form the matrix $\begin{bmatrix} 0 \\ B \end{bmatrix}$ are linearly independent. This implies that $\operatorname{rank}(B) = r-1$. In view of the induction hypothesis, there exist unitary matrices $U_2 \in \mathbb{C}^{n-1 \times n-1}$ and $V \in \mathbb{C}^{m-1 \times m-1}$ and a diagonal matrix

$$\Sigma_2 = \begin{bmatrix} \sigma_2 & & & & & \\ & \sigma_3 & & & & \\ & & \ddots & & & \\ & & & \sigma_r & & \\ & & & 0 & & \\ & & & \ddots & & \\ & & & & \ddots & \end{bmatrix} \in \mathbb{R}^{n-1 \times m-1}$$

where $\sigma_2 \geq \sigma_3 \geq \cdots \geq \sigma_{r-1} > 0$ such that $B = U_2 \Sigma_2 V_2^*$ is an SVD of B. Using this fact, we have

$$A = U_1 \begin{bmatrix} \sigma_1 & 0 \\ 0 & U_2^* \Sigma_2 V_2 \end{bmatrix} V_1^* = U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & V_2 \end{bmatrix}^* V_1^*.$$

Thus if $U := U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix}$, $V := V_1 \begin{bmatrix} 1 & 0 \\ 0 & V_2 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix}$, then U and V are unitary matrices and Σ is a nonsquare diagonal matrix such that

$$\|\Sigma\|_2 = \|A\|_2 \Rightarrow \max\{\sigma_1, \|\Sigma_2\|_2\} = \sigma_1 \Rightarrow \|\Sigma_2\|_2 \le \sigma_1.$$

This implies that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ and establishes that A satisfies the statement of the theorem. Hence the proof follows by induction. \square