Mid Term Exam (Fall 2024) DA 626: Recommendation System Design Using Deep Learning

Instructor: Dr Chiranjib Sur Email: chiranjib@iitg.ac.in

Date: Sep, 2024

Total Marks: 100 marks

- 1. Calculate the "?" in the user-item matrix through the following schemes. Use Cosine Distance metrics for similarity. Consider two neighbors, when estimating the "?" spots. [5x10 = 50 marks]
 - (a) Using user based collaborative filtering. Use Average (μ_j is used for estimated ratings for user j) or overall neighborhood-based prediction function ($\mu_{w,j}$ is used for estimated ratings where z_i is the ratings of the neighbor i). These are denoted through Equation 1 and Equation 2 respectively.

$$\mu_j = \frac{1}{N} \sum z_i \tag{1}$$

$$\mu_{w,j} = \frac{\sum z_i \cdot \operatorname{Sim}(i,j)}{\sum \operatorname{Sim}(i,j)}$$
 (2)

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	3	1	2	5	5
User 2	5	3	4	1	?
User 3	3	3	1	5	4
User 4	4	3	3	3	2
User 5	1	5	5	2	1

	Item 1	Item 2	Item 3	Item 4	Item 5
Item 1	1	0.6	0.6	0.1	0.1
Item 2	0.6	1	0.3	0.2	0.1
Item 3	0.6	0.3	1	0.2	0.1
Item 4	0.1	0.2	0.2	1	0.3
Item 5	0.1	0.1	0.1	0.3	1

- (b) Using item based collaborative filtering. Use Average or overall neighborhood-based prediction function. These are denoted through Equation 1 and Equation 2 respectively.
 - (c) Using context based recommendation system. Use **Average** or **overall neighborhood-based prediction function**. These are denoted through Equation 1 and Equation 2 respectively.
- Using a hybrid recommendation system as a function of the weighted average of collaborative filtering method(s) and content-based systems, where the weights assigned can be justified. What is your justification for the weights that are assigned to your hybrid recommendation system?

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	3	1	2	5	5
User 2	5	3 ·	4 .	1 .	?
User 3	3	3	1	5	4
User 4	4	3	3	3	2
User 5	1	5	5	2	1
Attacker 6	1	5	5 `	2	1
Attacker 7	5	2	5	3	2

	Item 1	Item 2	Item 3	Item 4	Item 5
Item 1	1	0.6	0.6	0.1	0.1
Item 2	0.6	1	0.3	0.2	0.1
Item 3	0.6	0.3	1	0.2	0.1
Item 4	0.1	0.2	0.2	1	0.3
Item 5	0.1	0.1	0.1	0.3	1

- A hacker has incubated some attackers to the table. Have they succeeded in their mission? Write in one line what they achieved or couldn't achieve.
- 2. You are provided the output of a model and the suggested sequence. Relevance is defined as anything > 25 for a metric defined for a scenario. [20 marks]

المرافع المرافع		25 25 X X X X X X X X X X X X X X X X X	163	
(2,2"			

nce

Ideal (Ground Truth)	Estimated by Model X
a1	a3
a2	a2
a3	a1
a4	a4
a5	a5

(a) Calculate DCG and nDCG where they are denoted through the Equation 3 and Equation 4. Use Score in Table 2 for rel_i for DCG and nDCG. [8 marks]

$$DCG_p = \sum_{i=1}^p \frac{rel_i}{\log_2(i+1)}$$
(3)

$$nDCG_p = \frac{DCG_p}{IDCG_p}$$
 (4)

(b) Calculate precision@N and recall@N, where consider $N = \{1, 2, 3, 4, 5\}$. [8 marks]

$$Precision = \frac{TP}{TP + FP}$$
 (5)

$$Recall = \frac{TP'}{TP + FN} \tag{6}$$

(c) What can you conclude from this analysis? [4 marks]

3. Answer in one-two lines. [3x10 = 30 marks]

- (a) What is the disadvantage of sigmoid and tanh activation function?
- (b) What is the difference between Gradient Descent and Stochastic Gradient Descent?
- **火**(c) What is skipgram in word2vec?
- (d) What is the use of the word embedding?
- What is tokenization?
- (4) What is softmax layer? Write equation (if possible).
- (g) In GAN, which one is better, differentiator or generator?
- (h) How is BERT model evaluated?
- (i) What are the advantages and disadvantages of biLSTM?
- What is Adam Optimizer? Write Equations (if possible).

3