

MPJ/Ibis, a Flexible and Efficient Message Passing Platform for Java

Rob van Nieuwpoort

rob@cs.vu.nl

MPI

- Message Passing Interface
- Language independent specification
- Language bindings
 - C, C++, Fortran, ...
- High performance
- Available for many platforms
- Widely used

MPI operations

- Point-to-point
 - Send / receive (only explicit!)
 - Synchronous / asynchronous
- Collective operations
 - broadcast, reduce, scatter, gather, ...
- Closed world

MPI bindings for Java

- Many Java/MPI bindings:
 - JavaMPI, JMPI, MPIJ, CCJ, etc.
- MPJ: Proposed by the Java Grande Forum
 - A Java language binding for MPI 1.1
 - Developed benchmark suite
- Implementations:
 - MPIJava, built on top of native MPI library
 - MPJ/Ibis, built on top of Ibis

MPJ

- No status objects, but exceptions
- Separate versions for primitive types
- Parameter "buf" can be
 - Array of a primitive type
 - Array of objects
 - Multidimensional arrays
 - Arbitrarily complex data structure -> object serialization

MPJ/Ibis

- First 100% Java MPJ implementation
- Uses Ibis IPL for communication
- Ibis provides highly efficient object serialization
- Special grid connectivity support in Ibis
 - Heterogeneous networks
 - Communicate through firewalls
- Very portable, ideal for grid computing

MPJ/Ibis structure

MPJ/Ibis latency P-III 1 GHz

Implementation latency (us)

round-trip

MYRINET

mpiJava (MPICH 1.2.6/GM) 28

Ibis (GM) 44

MPJ/Ibis (GM) 50

FAST ETHERNET

Ibis (TCP) 113

MPJ/Ibis (TCP) 120

Conclusions

- Targeted at grid environments
- MPJ/Ibis is extremely flexible
 - "run everywhere"
 - Heterogeneous networks
 - Communicate through Firewalls
- Competitive performance
 - Latency and Collectives are a bit slower than native implementation
 - Object serialization is much faster
 - Application-level performance is similar

MPJ/Ibis collectives

Collective	Algorithm	Upper
Operation		Complexity Borders
all gather	double ring	O(n)
all gatherv	single ring	O(n)
all reduce	recursive doubling	$O((\log n) + 2)$
all to all	flat tree	$O(n^2)$
all to all v	flat tree	$O(n^2)$
barrier	flat tree	O(2n)
broadcast	binomial tree	$O(\log n)$
gather	flat tree	O(n)
gatherv	flat tree	O(n)
reduce	commutative op: binomial tree	$O(\log n)$
	non-commutative op: flat tree	O(n)
reduceScatter	phase 1: reduce	commutative op: $O((\log n) + n)$
	phase 2: scattery	non-commutative op: $O(2n)$
scan	flat tree	O(n)
scatter	flat tree	O(n)
scatterv	flat tree	O(n)