Bayesian Methods for Machine Learning Revisions

Exercise 1

Let

- $\mathcal{X} = \{x_n \in \mathbb{R}\}_{n=1}^N$ denote a set of observed random variables,
- $S_1=\{s_{1,n}\in\mathbb{R}\}_{n=1}^N$ and $S_2=\{s_{2,n}\in\mathbb{R}\}_{n=1}^N$ tow sets of latent random variables,
- $\theta = \{v_{j,n} \in \mathbb{R}_+^{\star}\}_{i=1,j=1}^{N,2}$ a set of known deterministic model parameters.

Question 1 We consider that for all $(j,n) \in \{1,2\} \times \{1,...,N\}$, the latent variables $s_{j,n}$ are mutually independent and follow a Gaussian prior distribution with zero mean and variance $v_{j,n}$. Given this information, write the factorization of the joint prior distribution $p(S_1, S_2; \theta)$.

We consider the following observation model:

$$x_n = s_{1,n} + s_{2,n}, \quad \forall n \in \{1, ..., N\}.$$
 (1)

Question 2 Give the expression of the following distributions:

- $p(x_n|s_{1,n};\theta)$,
- $p(x_n|s_{2,n};\theta)$,
- $p(x_n|s_{1,n},s_{2,n})$.

Question 3 Using the plate notation, draw the Bayesian network corresponding to this model.

Question 4 Write the joint distribution of all the variables in this Bayesian network as a product of conditional distributions.

Question 5 Show that $p(\mathcal{X}; \theta) = \prod_{n=1}^{N} p(x_n; \theta)$.

Question 6 Show that $p(S_1, S_2 | \mathcal{X}; \theta) = \prod_{n=1}^{N} p(s_{1,n}, s_{2,n} | x_n; \theta).$

Question 7 Show that $p(S_j|\mathcal{X};\theta) = \prod_{n=1}^N p(s_{j,n}|x_n;\theta)$ for $j \in \{1,2\}$.

Question 8 Compute the posterior $p(s_{j,n}|x_n;\theta)$ for $j \in \{1,2\}$.

Question 9 Propose a point estimate for the latent variable $s_{j,n}, j \in \{1,2\}$.

Appendix

Gaussian distribution The probability density function (pdf) of the Gaussian distribution is given by

$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],\tag{2}$$

where $x \in \mathbb{R}$ is the Gaussian random variable, $\mu = \mathbb{E}[x] \in \mathbb{R}$ is the mean and $\sigma^2 = \mathbb{E}[(x - \mu)^2] \in \mathbb{R}_+^*$ is the variance.