# Midis de l'info scientifique

# Traitement de données avec Pandas & Jupyter notebooks

Pablo Iriarte - pablo.iriarte@unige.ch / CODIS

14 et 15 mars 2018



## Programme

- Introduction
- Installer Jupyter Notebooks et Pandas via la distribution Anaconda

#### **Jupyter Notebooks**

- Créer, organiser et partager des notebooks
- Se familiariser avec les notebooks

#### **Pandas**

- Importer et exporter des données
- Analyser des données
- Travailler avec différents types de données et des données manquantes
- Manipuler les données
- Créer des graphiques et des visualisations



- Excel: limitations
- Excel : erreurs scientifiques
- Reproductibilité et Open Science
- Big Data et Open Data



#### **Excel: limitations**

#### Liste complète :

https://support.office.com/en-us/article/excelspecifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3



#### **Excel**: erreurs scientifiques

L'exemple du «Reinhart-Rogoff error»

https://mobile.nytimes.com/2013/04/19/opinion/krugman-the-excel-depression.html





Paul Krugman

In this age of information, math errors can lead to disaster. NASA's Mars Orbiter crashed because engineers forgot to convert to metric measurements; JPMorgan Chase's "London Whale" venture went bad in part because modelers divided by a sum instead of an average. So, did an Excel coding error destroy the economies of the Western

The story so far: At the beginning of 2010, two Harvard economists, Carmen Reinhart and Kenneth Rogoff, circulated a paper, "Growth in a Time of Debt," that purported to identify a critical "threshold," a tipping point, for government indebtedness. Once debt exceeds 90 percent of gross domestic product, they claimed, economic growth drops off sharply.

Ms. Reinhart and Mr. Rogoff had credibility thanks to a widely admired earlier book on the history of financial crises, and their timing was impeccable. The paper came out just after Greece went into crisis and played right into the desire of many officials to "pivot" from stimulus to austerity. As a result, the paper instantly became famous; it was, and is, surely the most influential economic analysis of recent years.

In fact, Reinhart-Rogoff quickly achieved almost sacred status among self-proclaimed guardians of fiscal responsibility; their tipping-point claim was treated not as a disputed hypothesis but as unquestioned fact. For example, a Washington Post editorial earlier this year <u>warned against any relaxation on the deficit front</u>,



# Reproductibilité et Open Science

La science en crise? 1,500 scientists lift the lid on reproducibility

https://doi.org/10.1038/533452a





#### Big Data et Open Data

Quantifying the Data Deluge and the Data Drought

https://papers.ssrn.com/sol3/papers.cfm?abstract\_id=2984851

Nombreux réservoirs ouverts

Kaggle: <a href="https://www.kaggle.com">https://www.kaggle.com</a>

Data Hub: <a href="http://datahub.io">http://datahub.io</a>

WikiData: <a href="https://www.wikidata.org">https://www.wikidata.org</a>



Washington Post, based on Hilbert and Lopez, 2011











https://www.xkcd.com/353/



## Installer Jupyter Notebooks et Pandas

Distribution Anaconda: <a href="https://www.anaconda.com/download/">https://www.anaconda.com/download/</a>

| ANACONDA. |                                    | What is Anaconda                              | ? Products Support     |              | Resources Download |
|-----------|------------------------------------|-----------------------------------------------|------------------------|--------------|--------------------|
|           |                                    |                                               |                        |              |                    |
|           | Downlo                             | ad Anaconda Distri                            | hution                 |              |                    |
|           | Downlo                             | ad Anaconda Distri                            | bution                 |              |                    |
|           |                                    | Version 5.1   Release Date: February 15, 2018 |                        |              |                    |
|           |                                    | Download For:                                 |                        |              |                    |
|           |                                    |                                               |                        |              |                    |
|           |                                    |                                               |                        |              |                    |
|           |                                    |                                               |                        |              |                    |
|           | High-Performance Distribution      | Package Management                            | Portal to Data S       | cience       |                    |
|           | Easily install 1,000+ data science | Manage packages, dependencies                 | Uncover insights in yo |              |                    |
|           | packages                           | and environments with conda                   | create interactive vis | sualizations |                    |
|           | 1                                  | <b>■ Windows ★</b> macOS <b>★</b> Linux       |                        |              |                    |
|           | ۸                                  | naconda 5.1 For Windows Installer             |                        |              |                    |
|           | A                                  | naconda 3.11 or windows installer             |                        |              |                    |
|           | Python 3.6 ver                     | rsion * Python 2                              | 2.7 version *          |              |                    |
|           |                                    |                                               |                        |              |                    |



## Installer Jupyter Notebooks et Pandas

#### Packages compris dans l'installation :

- Notebook (jupyter)
- Pandas
- NumPy
- Matplotlib
- NLTK
- ...

#### Liste complète :

https://docs.anaconda.com/anaconda/packages/py3.6 win-64



# Créer, organiser et partager des notebooks

#### Lancer Anaconda -> Jupyter Notebook



## Se familiariser avec les notebooks

#### **Exercices**

- 1. Ouvrir un notebook d'exemple (sur le dossier du cours)
- 2. L'exporter en format HTML
- 3. Créer un nouveau notebook et le renommer
- 4. Ajouter une cellule de texte (markdown)
- Ajouter une cellule de code python (calcul simple)

Aide markdown : <a href="https://guides.github.com/features/mastering-markdown/">https://guides.github.com/features/mastering-markdown/</a>

Aide python : <a href="https://www.stavros.io/tutorials/python/">https://www.stavros.io/tutorials/python/</a>



Series: 1 dimension



Index : afficher des données par la position ou le nom de l'index

#### Indexing



DataFrame: 2 dimensions



DataFrame: axes

#### Data Frame Axis





DataFrame: slices

#### Row & Column Slicing Examples

```
df.iloc[2:4, 0:1 → With a: return data frames Position - Half-open interval Without a: return series Label - Closed interval Columns
```

Opérations facilitées par les index : jointures automatiques



Opérations : GroupBy



#### Opérations : GroupBy

| Method       | Result                                                          |
|--------------|-----------------------------------------------------------------|
| .all         | Boolean if all cells in group are True                          |
| .any         | Boolean if any cells in group are True                          |
| .count       | Count of non null values                                        |
| .size        | Size of group (includes null)                                   |
| .idxmax      | Index of maximum values                                         |
| .idxmin      | Index of minimum values                                         |
| .quantile    | Quantile (default of .5) of group                               |
| .agg(func)   | Apply func to each group. If func returns scalar, then reducing |
| .apply(func) | Use split-apply-combine rules                                   |
| .last        | Last value                                                      |
| .nth         | Nth row from group                                              |
| .max         | Maximum value                                                   |
| .min         | Minimum value                                                   |
| .mean        | Mean value                                                      |
| .median      | Median value                                                    |
| .sem         | Standard error of mean of group                                 |
| .std         | Standard deviation                                              |
| .var         | Variation of group                                              |
| .prod        | Product of group                                                |
| .sum         | Sum of group                                                    |



#### Index multidimensionnels





#### Tables pivot



#### **Jointures**

#### Visualizing Joins

#### Dataset 1



| 0 | name<br>A | size |
|---|-----------|------|
| 1 | В         | 2    |
| 2 | В         | 3    |
| 3 | С         | 4    |



#### Dataset 2

|   | name | value |
|---|------|-------|
| 3 | C    | 10    |
| 1 | C    | 9     |
| 2 | D    | 8     |
| 4 | D    | 7     |





|   | name | size | value |
|---|------|------|-------|
| 0 | C    | 4    | 10    |
| 1 | C    | 4    | 9     |



#### Outer

|   | name | size | value |
|---|------|------|-------|
| 0 | A    | 1.00 | nan   |
| 1 | В    | 2.00 | nan   |
| 2 | В    | 3.00 | nan   |
| 3 | C    | 4.00 | 10.00 |
| 4 | C    | 4.00 | 9.00  |
| 5 | D    | nan  | 8.00  |
| 6 | D    | nan  | 7.00  |





|   | name | size | value |
|---|------|------|-------|
| 0 | A    | 1    | nan   |
| 1 | В    | 2    | nan   |
| 2 | В    | 3    | nan   |
| 3 | C    | 4    | 10.00 |
| 4 | C    | 4    | 9.00  |





|   | name | size | value |
|---|------|------|-------|
| 0 | C    | 4.00 | 10    |
| 1 | C    | 4.00 | 9     |
| 2 | D    | nan  | 8     |
| 3 | D    | nan  | 7     |



#### **Exercices**

- Importer des données (disponibles sur le dossier du cours)
- 2. Analyser des données
- 3. Travailler avec différents types de données et des données manquantes
- 4. Exporter des données
- 5. Créer des graphiques simples

Aide Pandas: <a href="https://pandas.pydata.org/pandas-docs/stable/10min.html">https://pandas.pydata.org/pandas-docs/stable/10min.html</a>

## Pour aller plus loin







## Sources

#### Cheat Sheets distribués dans le cours :

Jupyter notebook :

https://www.datacamp.com/community/blog/jupyter-notebook-cheat-sheet

Markdown :

http://geog.uoregon.edu/bartlein/courses/geog607/Rmd/MDquick-refcard.pdf

Pandas :

https://github.com/pandas-

dev/pandas/blob/master/doc/cheatsheet/Pandas Cheat Sheet.pdf

