Generative Adversarial Network (GAN)

EEE 511 Artificial Neural Computation
Team 17
Kevin Vora & Maitry Trivedi

Make a guess?

Applications of GAN

Pose guided Image generation

Applications of GAN

Image Inpainting

Applications of GAN

Disco GAN

GAN Architecture

Training Discriminator

Training generator

DiscoGAN

Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

Problem Statement

- Our primary aim is to train a GAN model which can find the relationship between two different domains (Learning to Discover Cross-Domain Relations with Generative Adversarial Networks).
- For example, suggesting pair of shoes for one particular dress.

Cost Function of Discriminator A

$$C_D_A = -\mathop{\mathbb{E}}_{x_A \sim P(x_A)}[\log(D_B(x_A))] - \mathop{\mathbb{E}}_{x_B \sim P(x_B)}[\log(1 - G_{BA}(x_B))]$$

Cost Function of Discriminator B

$$C_D_B = -\mathop{\mathbb{E}}_{x_B \sim P(x_B)}[\log(D_B(x_B))] - \mathop{\mathbb{E}}_{x_A \sim P(x_A)}[\log(1 - G_{AB}(x_A))]$$

Cost Function of Generator AB

$$C_{-}G_{AB} = C_{reconst(ABA)} + C_{D(AB)}$$

= $||x_A - G_{BA}G_{AB}(x_A)||_2^2 - \log(D_B(G_{AB}(x_A)))$

Cost Function of Generator BA

$$C_{-}G_{BA} = C_{reconst(BAB)} + C_{D(BA)} = \left\|x_B - G_{AB}G_{BA}(x_B)
ight\|_2^2 - \log(D_A(G_{BA}(x_B)))$$

Dataset: Facades

• Training: 399

• Testing: 106

Validation: 100

Implementation details

- Resized images to 128 x 128 pixels after cropping
- Filter size 32 x 32
- Keras based implementation:

Optimizer: Adam

o Loss: MSE

Batch size: 1

o Epoch: 15

- CoLab: 11 hours
 - https://colab.research.google.com/drive/1-N6vA84EOZdWfG8hHoFlps1zPHW1-dS8

Results

- Half dataset
- 16x16 Filters

Results

- Full Dataset
- 32x32 Filters

Conclusion

- DiscoGAN is implemented to get the segmented image and it has also learned to reconstruct the image properly.
- GANs are really good at transferring cross domain characteristics.
- GANs need a lot of data and time to train
- We have come this far and with more resources we can do even better!

Questions?

References

- https://colab.research.google.com/drive/1-N6vA84EOZdWfG8hHoFIps1zPHW 1-dS8
- https://medium.com/towards-artificial-intelligence/generating-matching-bags-fr om-shoe-images-and-vice-versa-using-discogans-8149e2cbc02
- https://github.com/eriklindernoren/Keras-GAN