Logică computațională Curs 3

Lector dr. Mihiş Andreea-Diana

Logica propozițiilor

Propozițiile logice sunt modele ale afirmațiilor propoziționale care sunt fie *adevărate*, fie *false*.

Sintaxa logicii propozițiilor

- alfabetul
 - $\Sigma_{P} = Var_propoz \cup Conective \cup \{(,)\}$
 - $Var\ propoz = \{p, q, r, p_1, p_2, ...\}$
 - Conective = $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$
- regulile de formare a Formulelor propoziționale
 - F_p = mulţimea formulelor propoziţionale corect construite
 - = cea mai mică mulțime de formule ce se poate construi cu regulile:
 - $baza: p_i \in F_P, i=1,2,...$
 - inducţia: dacă $U,V \in F_P$ atunci:

$$\neg U \in F_{P}, U \land V \in F_{P}, U \lor V \in F_{P}, U \to V \in F_{P}, U \leftrightarrow V \in F_{P}$$

• \hat{i} nchiderea: toate formulele din F_p se obțin doar prin aplicarea regulilor precedente de un număr finit de ori.

¬ negația
∧ pri conjuncția
∨ disjuncția
implicația
echivalența

Exercițiu de modelare

Clientul i-a spus dezvoltatorului:

Dacă furnizorul aduce marfă, atunci dacă este loc în magazin întreaga marfă se va pune pe raft, altfel întreaga marfă va ajunge în depozit.

$$p \rightarrow ((q \rightarrow r) \lor (\neg q \rightarrow d))$$

Semantica logicii propoziționale

- Propozițiile logice sunt modele ale afirmațiilor propoziționale care sunt fie *adevărate*, fie *false*.
- Scopul definirii semanticii logicii propoziționale este de a atribui un înțeles, o valoare de adevăr, formulelor propoziționale.
- Domeniul semantic:

 $\{F(fals), T(true, adevărat)\}\ a.i. \neg F=T, \neg T=F$

Semantica conectivelor

$$\uparrow - \text{ nand } p \uparrow q := \neg (p \land q)$$

$$\downarrow - \text{ nor } p \downarrow q := \neg (p \lor q)$$

$$\oplus - \text{ xor } p \oplus q := \neg (p \leftrightarrow q)$$

p	\boldsymbol{q}	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$	$p \uparrow q$	$p \downarrow q$	$p \oplus q$
T	T	T	T	T	T	F	F	F
T	F	F	T	F	F	T	F	T
F	T	F	T	T	F	T	F	T
F	F	F	F	T	T	T	T	F

Interpretarea (Def.)

• O *interpretare* a formulei $U(p_1,p_2,...,p_n) \in F_P$ este o funcție $i:\{p_1,p_2,...,p_n\} \to \{T,F\}$ care asignează valori de adevăr variabilelor propoziționale și poate fi extinsă la o funcție $i:F_P \to \{T,F\}$ folosind relațiile:

$$i(\neg p) = \neg i(p)$$
 $i(p \land q) = i(p) \land i(q)$
 $i(p \lor q) = i(p) \lor i(q)$ $i(p \to q) = i(p) \to i(q)$ $i(p \leftrightarrow q) = i(p) \leftrightarrow i(q)$

- Interpretările <u>evaluează</u> formulele propoziționale conform semanticii conectivelor componente, atribuindu-le valori de adevăr.
- Tabela de adevăr a unei formule propoziționale $U(p_1,p_2,...,p_n) \in F_P$ corespunde evaluărilor formulei în <u>toate</u> cele 2^n interpretări.

Concepte semantice (Def.)

Fie formula propozițională $U(p_1,p_2,...,p_n) \in F_P$.

- O interpretare $i:\{p_1,p_2,...,p_n\} \to \{T,F\}$ care evaluează formula U ca <u>adevărată</u>, i(U)=T, se numește *model* al formulei.
- O interpretare $i:\{p_1,p_2,...,p_n\} \to \{T,F\}$ care evaluează formula U ca falsă, i(U)=F, se numește **anti-model** al formulei.

Concepte semantice (Def.) – cont.

Fie formula propozițională $U(p_1,p_2,...,p_n) \in F_P$.

- U se numeşte *consistentă* (*realizabilă*) dacă și numai dacă are <u>cel</u> <u>puţin un model</u>, deci poate fi evaluată ca adevărată: $\exists i: \{p_1, p_2, ..., p_n\} \rightarrow \{T, F\}$ astfel încât i(U)=T.
- U se numește *validă* (*tautologie*), notație: $\models U$, dacă și numai dacă U este evaluată ca <u>adevărată în orice interpretare</u>, adică: $\forall i: \{p_1, p_2, ..., p_n\} \rightarrow \{T, F\}, i(U) = T$. Toate interpretările formulei U sunt modele ale formulei.
- Formula U se numește *inconsistentă (nerealizabilă)* dacă și numai dacă U nu are niciun model, adică U este <u>interpretată</u> totdeauna ca <u>falsă</u>: $\forall i: \{p_1, p_2, ..., p_n\} \rightarrow \{T, F\}$, i(U) = F.
- Formula *U* se numește *contingentă* dacă și numai dacă <u>este consistentă</u>, dar <u>nu este validă</u>.

Tipuri de formule

Metasimboluri – relații semantice între formule

- Formula V este *consecință logică* a formulei U, notație: $U \models V$, dacă și numai dacă $\forall i: F_P \rightarrow \{T,F\}$ astfel încât i(U)=T, are loc i(V)=T.
- Formulele $U(p_1,p_2,...,p_n) \in F_P$ şi $V(p_1,p_2,...,p_n) \in F_P$ sunt *logic echivalente*, notație: $U \equiv V$, dacă și numai dacă tabelele lor de adevăr sunt identice, adică: $\forall i:F_P \rightarrow \{T,F\}$, i(U) = i(V).

Exemplu

- $U(p,q,r) = (\neg p \lor q) \land (r \lor p),$
- $V(p,q,r) = (\neg p \land r) \lor (q \land r) \lor (q \land p)$
- $p \uparrow \neg p$
- p↓¬p

Tabela de adevăr

	p	q	r	$\neg p \lor q$	r∨p	U(p,q,r)	V(p,q,r)	$p\uparrow \neg p$	$p \downarrow \neg p$
i_1	T	T	T	T	T	T	T	T	F
i_2	T	T	F	T	T	T	T	T	F
i_3	T	F	T	F	T	F	F	T	F
i_4	T	F	F	F	T	F	F	T	F
i_5	F	T	T	T	T	T	T	T	F
i_6	F	T	F	T	F	F	F	T	F
i_7	F	F	T	T	T	T	T	T	F
i_8	F	F	F	T	F	F	F	T	F

$$U(p,q,r) = (\neg p \lor q) \land (r \lor p),$$

$$V(p,q,r) = (\neg p \land r) \lor (q \land r) \lor (q \land p)$$

Observații

- modele pt. $U: i_1, i_2, i_5 \text{ și } i_7$ $i_1: \{p,q,r\} \rightarrow \{\text{T,F}\}, i_1(p)=\text{T, } i_1(q)=\text{T, } i_1(r)=\text{T și } i_1(U)=\text{T}$
- anti-modele pt. $U: i_3, i_4, i_6$ și i_8
- $p \uparrow \neg p$ tautologie
- $p \downarrow \neg p$ inconsistentă
- $U \equiv V$
- $U \models \neg p \lor q$

Concepte semantice pentru mulțimi de formule

- O mulţime $\{U_1, U_2, ..., U_n\}$ de formule se numeşte consistentă (realizabilă) dacă și numai dacă formula $U_1 \wedge U_2 \wedge ... \wedge U_n$ este consistentă, adică: $\exists i: F_P \rightarrow \{T,F\}$ astfel încât $i (U_1 \wedge U_2 \wedge ... \wedge U_n) = T$, i se numeşte model al mulţimii $\{U_1, U_2, ..., U_n\}$.
- O mulţime $\{U_1, U_2, ..., U_n\}$ de formule se numeşte inconsistentă (nerealizabilă, contradictorie) dacă și numai dacă formula $U_1 \land U_2 \land ... \land U_n$ este inconsistentă, adică , $\forall i : F_p \rightarrow \{T, F\}$ astfel încât $i (U_1 \land U_2 \land ... \land U_n) = F$, i se numeşte anti-model al mulţimii $\{U_1, U_2, ..., U_n\}$.
- Formula V este consecință logică a mulțimii de formule $\{U_1, U_2, ..., U_n\}$ și se notează $U_1, U_2, ..., U_n \models V$, dacă și numai $\forall i : F_P \rightarrow \{T, F\}$ astfel încât $i (U_1 \land U_2 \land ... \land U_n) = T$, are loc i (V) = T. Formulele $U_1, U_2, ..., U_n$ se numesc premize, ipoteze, fapte, iar V se numește concluzie.

Teoremă

- Fie $S = \{U_1, U_2, ..., U_n\}$ o mulțime de formule propoziționale.
- 1. Dacă S este o *mulțime* <u>consistentă</u>, atunci $\forall j, 1 \le j \le n, S \setminus \{U_j\}$ este o *mulțime* <u>consistentă</u>.
- 2. Dacă S este o mulțime <u>consistentă</u> și V este o formulă <u>validă</u>, atunci mulțimea $S \cup \{V\}$ este <u>consistentă</u>.
- 3. Dacă S este o mulțime <u>inconsistentă</u>, atunci $\forall V \in F_p$ mulțimea $S \cup \{V\}$ este <u>inconsistentă</u>.
- 4. Dacă S este o mulțime <u>inconsistentă</u> și U_j este o formulă <u>validă</u>, unde $1 \le j \le n$, atunci mulțimea $S \setminus \{U_j\}$ este inconsistentă.

Teoremă

- Fie $U_1, U_2, ..., U_n$, U, V formule propoziționale.
- $\models U$ dacă și numai dacă $\neg U$ este inconsistentă (O formulă este tautologie dacă și numai dacă negația sa este o formulă inconsistentă).
- $U \models V$ dacă și numai dacă $\models U \rightarrow V$ dacă și numai dacă mulțimea $\{U, \neg V\}$ este inconsistentă.
- $U \equiv V \operatorname{dac\check{a}} \operatorname{si} \operatorname{numai} \operatorname{dac\check{a}} \models U \leftrightarrow V$.
- $U_1, U_2, ..., U_n \models V$ dacă și numai dacă $\models U_1 \land U_2 \land ... \land U_n \rightarrow V$ dacă și numai dacă mulțimea $\{U_1, U_2, ..., U_n, \neg V\}$ este inconsistentă.

Echivalențe logice în logica propozițională

Legile lui DeMorgan

$$\neg (U \land V) \equiv \neg U \lor \neg V$$
 și $\neg (U \lor V) \equiv \neg U \land \neg V$

• Legile de absorbţie

$$U \wedge (U \vee V) \equiv U$$
 și $U \vee (U \wedge V) \equiv U$

• Legile de comutativitate

$$U \wedge V \equiv V \wedge U$$
 și $U \vee V \equiv V \vee U$

• Legile de asociativitate

$$U \wedge (V \wedge Z) \equiv (U \wedge V) \wedge Z$$
 și $U \vee (V \vee Z) \equiv (U \vee V) \vee Z$

• Legile de distributivității

$$U \wedge (V \vee Z) \equiv (U \wedge V) \vee (U \wedge Z) \text{ și}$$

$$U \vee (V \wedge Z) \equiv (U \vee V) \wedge (U \vee Z)$$

• Legile de idempotență

$$U \wedge U \equiv U$$
 și $U \vee U \equiv U$

Alte echivalențe logice

• Legile de simplificare

$$U \rightarrow U \equiv T$$

$$U \land \neg U \equiv F$$
 $U \lor \neg U \equiv T$

$$T \wedge U \equiv U$$

 $\neg \neg U \equiv U$

$$F \vee U \equiv U$$

$$U \to T \equiv T$$
 $U \to F \equiv \neg U$

$$T \rightarrow U \equiv U$$

$$F \to U \equiv T$$

 $U \oplus F \equiv U$

$$U \leftrightarrow T \equiv U \qquad U \leftrightarrow F \equiv \neg U$$

$$U \oplus T \equiv \neg U$$

$$U \leftrightarrow U \equiv T$$
 $U \oplus U \equiv F$

$$U \rightarrow V \equiv \neg U \lor V$$

$$U \rightarrow V \equiv \neg (U \land \neg V)$$

$$U \rightarrow V \equiv U \leftrightarrow (U \land V)$$

$$U \rightarrow V \equiv V \leftrightarrow (U \lor V)$$

$$U \leftrightarrow V \equiv (U \to V) \land (V \to U)$$

$$U \oplus V \equiv \neg (U \rightarrow V) \lor \neg (V \rightarrow U)$$

$$U \leftrightarrow V \equiv (U \lor V) \rightarrow (U \land V)$$

$$U \lor V \equiv \neg (\neg U \land \neg V)$$

$$U \wedge V \equiv \neg (\neg U \vee \neg V)$$

$$U \lor V \equiv \neg U \to V$$

$$U \wedge V \equiv \neg (U \rightarrow \neg V)$$

$$\neg U \equiv U \uparrow U \equiv U \downarrow U$$

$$U \lor V \equiv (U \uparrow U) \uparrow (V \uparrow V) \equiv (U \downarrow V) \downarrow (U \downarrow V)$$

$$U \wedge V \equiv (U \downarrow U) \downarrow (V \downarrow V) \equiv (U \uparrow V) \uparrow (U \uparrow_9 V)$$

Principiul dualității

- Pentru orice echivalență logică $U \equiv V$ care conține doar conectivele \neg , \wedge , \vee , \uparrow , \downarrow există o altă echivalență logică, $U' \equiv V'$, unde U', V' sunt formule obținute din U, V prin interschimbarea conectivelor logice duale: (\land, \lor) , (\uparrow, \downarrow) și a valorilor de adevăr: T, F.
- Conective duale: (\land, \lor) , (\uparrow, \downarrow) , $(\leftrightarrow, \oplus)$.
- Valori de adevăr duale: T și F.
- Concepte duale: tautologie și formulă inconsistentă.

Forme normale în logica propozițiilor

- 1. Un *literal* este o variabilă propozițională sau negația sa.
- 2. O clauză este disjuncția unui număr finit de literali.
- 3. Un *cub* este conjuncția unui număr finit de literali.
- **4.** Clauza vidă, simbolizată prin □, este clauza fără literali, fiind singura clauză inconsistentă.
- 5. O formulă este în *formă normală disjunctivă* (*FND*), dacă aceasta este scrisă ca o disjuncție de cuburi $\vee_{i=1}^{p} (\wedge_{j=1}^{q_i} l_{ij})$ unde l_{ij} sunt literali.
- 6. O formulă este în *formă normală conjunctivă* (*FNC*), dacă aceasta este scrisă ca o conjuncție de clauze: $^{n}_{i=1}(^{m_i}_{j=1}l_{ij})$ unde l_{ij} sunt literali.

Proprietate

Fie mulțimea de literali $\{l_1, l_2, ..., l_n\}$. Următoarele afirmații sunt echivalente:

- clauza $\vee_{i=1}^{n} l_i$ este validă;
- cubul $\wedge_{i=1}^{n} l_i$ este inconsistent;
- în mulțimea $\{l_1, l_2, ..., l_n\}$ există cel puțin o pereche de literali opuși, adică: $\exists i, j \in \{1, ..., n\}$ astfel încât $l_i = \neg l_j$.

Teoremă

• Orice formulă admite o formă normală conjunctivă și o formă normală disjunctivă logic echivalente cu ea.

Algoritmul de normalizare

Pas1:

Înlocuirea formulelor de tip $U \to V$ cu forma echivalentă: $\neg U \lor V$ Înlocuirea formulelor de tip $U \leftrightarrow V$ cu forma echivalentă:

$$(\neg U \lor V) \land (\neg V \lor U).$$

Pas2:

Aplicarea legilor lui **DeMorgan** (se recomandă aplicarea dinspre exterior spre interior) ==> negația va preceda doar variabilele propoziționale.

Eliminarea negațiilor multiple folosind echivalența logică: $\neg \neg U \equiv U$.

Pas3: Aplicarea legilor distributivității.

Pentru FND

FNC

$$U \land (V \lor Z) \equiv (U \land V) \lor (U \land Z)$$
 respectiv $U \lor (V \land Z) \equiv (U \lor V) \land (U \lor Z)$

Pas4: Simplificarea formei obținute folosind alte echivalențe logice: legile de simplificare, legile absorbției, legile de idempotență.

Teoremă

- O formulă în forma normală conjunctivă (FNC) este <u>tautologie</u> dacă și numai dacă <u>toate clauzele</u> sale sunt valide.
- O formulă în forma normală disjunctivă (FND) este inconsistentă dacă și numai dacă toate cuburile sale sunt inconsistente.

Observații

- Prima parte a teoremei furnizează o *metodă directă* de rezolvare a problemei decizionale (verificarea dacă o formulă este tautologie) în logica propozițiilor.
- FND a unei formule propoziționale furnizează toate modelele formulei inițiale, prin găsirea interpretărilor care evaluează cuburile componente ca adevărate.
- FNC a unei formule propoziționale furnizează toate <u>anti-modelele</u> formulei inițiale prin găsirea interpretărilor care evaluează clauzele componente ca false.
- Cele două formulări din teorema precedentă sunt afirmații duale.