

MAΣ 002 - MAΘHMAΤΙΚΑ ΙΙ

ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ

17 Μαρτίου 2019

Εαρινό Εξάμηνο 2018-19

ONOMA:	ΕΠΩΝΥΜΟ:	
А.Ф.Т.:	ΕΤΟΣ:	
Διδάσκοντες: Δρ. Π. Ι	${ m M}$ παταχίδης, ${ m \Delta}$ ρ. ${ m Z}$. ${ m K}$ ουντουριώτης	

Διάρκεια εξέτασης: 120 λεπτά.

- Η χρήση σημειώσεων, βιβλίων, υπολογιστικών αριθμομηχανών και κινητών τηλεφώνων δεν επιτρέπεται.
- Η αποχώρηση από την αίθουσα επιτρέπεται μόνο μετά την παράδοση του γραπτού ή μετά από άδεια.
- Καλή Επιτυχία!

Άσκηση	1	2	3	4	Βαθμός
Μονάδες (ΜΑΧ)	6	6	6	7	25

Θ EMA 1º [2+3]

(Α) Να βρεθεί η ακτίνα και το διάστημα σύγκλισής της δυναμοσειράς

$$\sum_{k=1}^{\infty} \frac{(x-3)^k}{2^n n}$$

(B) Δίνονται οι πιο κάτω σειρές Maclaurin:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$
$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$$
$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots$$

Με χρήση των πιο πάνω δυναμοσειρών ή με οποιοδήποτε άλλο τρόπο, βρείτε το πολυώνυμο Maclaurin 3ου βαθμού για τις πιο κάτω συναρτήσεις

$$(1) \quad \ln\left(\frac{1+2x}{1-2x}\right)$$

(2)
$$e^{\sin x} - e^{-x}$$

Θ EMA 2^o [Μονάδες 2+2+3]

(A) Να βρεθεί η ειδική λύση της πιο κάτω διαφορικής εξίσωσης που ικανοποιεί την δοθείσα συνθήκη

$$x\frac{dy}{dx} - 4y = x^5(e^x - 2x), \quad y(1) = 0, \quad x>0$$

(Β) Να βρεθεί η γενική λύση της πιο κάτω ομεγενούς διαφορικής εξίσωσης

$$(x^2 + 3xy + y^2) - x^2 \frac{dy}{dx} = 0$$

(Γ) Να βρεθεί η γενική λύση της πιο κάτω μη ομογενής διαφορικής εξίσωσης

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x + 4$$

Θ EMA 3^o [Μονάδες 1+1+2+2]

Έστω το γραμμικό σύστημα

$$x + y + az = 1$$

$$x + ay + z = 1$$

$$ax + y + z = 1$$

με αγνώστους $x, y, z \in \mathbb{R}$.

- (A) Για ποιες τιμές της παραμέτρου $a \in \mathbb{R}$ το σύστημα έχει μοναδική λύση και ποία είναι αυτή η λύση;
- (\mathbf{B}) Για ποίες τιμές της παραμέτρου $a \in \mathbb{R}$ το σύστημα έχει άπειρες λύσεις και ποία μορφή έχουν αυτές οι λύσεις;
- (Γ) Για ποιες τιμές της παραμέτρου $a\in\mathbb{R}$ το σύστημα δεν έχει λύση;

Θ EMA 4^o [Μονάδες 1+1+1+2+2]

(Α) Χρησιμοποιώντας ισοδυναμία πινάκων, να βρεθει ο αντίστροφος του πίνακα

$$A = \begin{bmatrix} 0 & 2 & 5 \\ 1 & 0 & -3 \\ 3 & -4 & 0 \end{bmatrix}$$

(Β) Χρησιμοποιώντας τον κατάλληλο αντίστροφο πίνακα, να λυθεί το γραμμικό σύστημα

$$-2y + 5z = 3$$
$$x - 3z = -1$$
$$3x - 4y = 2$$

(B) Έστω B, Γ και Δ τετραγωνικοί πίνακες 2×2 για τους οποίους ισχύει η σχέση $\mathbf{B}\Gamma\Delta{=}\mathbf{I}$ να δείξετε ότι

$$(1)\Gamma^{-1} = \Delta B.$$

(2)Να βρείτε το πίνακα
$$\Gamma$$
 αν $\mathbf{B}=\begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}$ και $\mathbf{\Delta}=\begin{bmatrix} 2 & 5 \\ 3 & -4 \end{bmatrix}$