```
In [1]: include("/home/nicole/Jupyter/SSBRnoJ/src/SSBR.jl")
         using SSBR
 In [2]: function getPos(ped,IDs)
             posAi = Array(Int64, size(IDs, 1))
             for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
             end
             return posAi
         end
 Out[2]: getPos (generic function with 1 method)
In [3]: |; cd Data/0.5/M/1
         /home/nicole/Jupyter/JG3/Data/0.5/M/1
 In [4]: ;ls
         MarNF.txt
         PedAll.txt
         Phe.txt
         PheAll.txt
 In [5]: |;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]: ;awk '{print $1}' MarNF.txt | sort -b > genotype.ID
         ;join -v1 all.ID genotype.ID > noGenotype.ID
In [8]: ;awk '{print $1,$2}' Phe.txt > sim.phenotype
In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
```

```
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]:
        ; join G1.ID genotype.ID > G1.Genotype.ID
In [18]: ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]: ;join G4.ID genotype.ID > G4.Genotype.ID
In [21]: ;join G5.ID genotype.ID > G5.Genotype.ID
In [22]: |; join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]: ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]: ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]: ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]: ;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
In [28]:
          200 200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
          7800 7800 46800 GO.noGenotype.ID
          7800 7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreeding=false)
In [30]:
         nothing
         df
                = read genotypes("MarNF.txt", numSSBayes)
         M_Mats = make_MMats(df,A_Mats,ped);
                                                                                 # without centering
         y Vecs = make_yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X_Mats, W_Mats = make_XWMats(Z_Mats,M_Mats,numSSBayes)
                                                                                 # no J
         nothing
```

```
In [31]: vRes
                = 0.668
         vG
                 = 0.668
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter, outFreq=5000);
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         4724.370188 seconds (23.02 G allocations: 723.406 GB, 6.90% gc time)
In [32]:
         betaHat
Out[32]: 1-element Array{Float64,1}:
          9.88215
```

```
In [33]: alphaHat
Out[33]: 150-element Array{Float64,1}:
          -0.0785915
           0.0804856
           0.0120068
          -0.110021
          -0.0196871
           0.052429
           0.0278241
           0.00151674
           0.0704225
           0.0636561
          -0.0180001
           0.0421848
          -0.0281189
           0.0969873
           0.0259517
           0.120344
           0.0382528
           0.0250879
          -0.0739347
          -0.045924
          -0.184479
           0.0291418
          -0.0130515
           0.0810539
          -0.0186567
In [34]: writedlm("alphaEstimatesN",alphaHat)
```

```
In [35]: epsiHat
Out[35]: 45906-element Array{Float64,1}:
           0.385986
          -0.413098
           0.181275
          -1.00984
           0.094371
          -0.0325858
          -0.137316
           0.619165
          -0.977583
           0.00352323
          -0.8669
           0.0925535
          -0.136409
          -0.17426
           0.379543
           0.325527
          -0.185808
           0.601211
          -0.673168
          -0.291987
           0.0204285
           0.170311
          -0.378653
           0.0901895
          -1.41122
In [36]: writedlm("epsiEstimatesN",epsiHat)
In [37]:
         using DataFrames
In [38]: | df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
         a = Array(Float64, numSSBayes.num_ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
```

```
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", req1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.895
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.988
Out[39]: 0.894622427876305
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 1.488439905163983
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         req2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.798
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.995
Out[41]: 0.7983414805743785
         GEBV = aHat1[posAi]
In [42]:
         mean (GEBV)
Out[42]: 2.54862199159373
```

```
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", req3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.868
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.958
Out[43]: 0.8679588957880193
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: 1.2437825006032721
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.703
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.837
Out[45]: 0.7032275146636083
In [46]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: 0.12953513633958533
```

```
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.765
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.997
Out[47]: 0.7646753648101553
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: 0.8083408486758674
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", reg5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.753
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.995
Out[49]: 0.7526496668232856
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: 1.3507577902856083
```

```
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.748
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 1.001
Out[51]: 0.7478016614902206
In [52]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 1.8274666851382757
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         req7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", req7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.749
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.017
Out[53]: 0.7491175409338717
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 2.2318275283312587
```

```
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         req8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.774
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 0.953
Out[55]: 0.7740049889149085
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 2.582711442213302
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.7743705935374348
In [58]:
         GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          0.808341
          1.35076
          1.82747
          2.23183
          2.58271
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          10.1124
           0.953043
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.3111959205568199
```

```
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.4718144954888738
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.29658306385066857
In [63]: b=Cov/VarGEBV
Out[63]: 0.953042904032917
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         #reg = linreg(GEBV, TBV)[2,1]
         req9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.797
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.016
Out[64]: 0.7974137975201449
In [65]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[65]: 1.593451452837009
```

```
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         #reg = linreg(GEBV, TBV)[2,1]
         req9 = linreq(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.820
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.930
Out[66]: 0.8203544381221903
         GEBV = aHat1[posAi]
In [67]:
         mean(GEBV)
Out[67]: 1.970742460635566
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         req10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.773
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 0.846
Out[68]: 0.7733158034159661
In [69]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[69]: 2.3432368762152027
```

```
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.810
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.922
Out[70]: 0.8098220710046867
In [71]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[71]: 2.5970967311146325
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         req12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.691
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.760
Out[72]: 0.6905753251685768
         GEBV = aHat1[posAi]
In [73]:
         mean (GEBV)
Out[73]: 2.875004412383366
```

```
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         req13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.774
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 0.953
Out[74]: 0.7740049889149085
In [75]: writedlm("Correlation.G5.M.N.txt",cor13)
In [76]: writedlm("Regression.G5.M.N.txt",reg13)
In [77]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[77]: 12.573878249999998
In [78]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[78]: 2.582711442213302
In [79]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         req14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", req14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.688
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 0.854
Out[79]: 0.6884448577803788
```

```
In [80]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[80]: 0.09199882053195907
In [81]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.749
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 1.005
Out[81]: 0.7492629046193654
In [82]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[82]: 0.7785356791384392
In [83]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         req15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.737
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 0.994
Out[83]: 0.737033393926899
         GEBV = aHat1[posAi]
In [84]:
         mean (GEBV)
Out[84]: 1.325309608595106
```

```
In [85]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", req16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.734
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 0.990
Out[85]: 0.7340276536255305
In [86]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[86]: 1.8077325813952922
In [87]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         req17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", req17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.740
         SSBRJC from Gibbs - G4.noGenotype.ID: regression of TBV on GEBV = 1.010
Out[87]: 0.7404115908676201
         GEBV = aHat1[posAi]
In [88]:
         mean (GEBV)
Out[88]: 2.215335813355563
In [89]: numSSBayes
Out[89]: SSBR.NumSSBayes(54906,45906,9000,40000,39000,1000,150)
```