Note : cette série sera discutée au cours de la première séance d'exercices, le vendredi 22 septembre.

1. Soient A, B et C trois assertions. En écrivant les tables de vérités correspondantes, vérifier que les équivalences suivantes sont vraies :

a)
$$\neg(\neg A) \Leftrightarrow A$$

c)
$$\neg (A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$$

$$e) \ \ (A \wedge B) \vee C \ \Leftrightarrow \ (A \vee C) \wedge (B \vee C) \qquad \qquad f) \ \ (A \Rightarrow B) \ \Leftrightarrow \ (\neg A) \vee B$$

g)
$$(A \Rightarrow B) \Leftrightarrow [(\neg B) \Rightarrow (\neg A)]$$

b)
$$\neg (A \land B) \Leftrightarrow (\neg A) \lor (\neg B)$$

d)
$$(A \lor B) \land C \Leftrightarrow (A \land C) \lor (B \land C)$$

f)
$$(A \Rightarrow B) \Leftrightarrow (\neg A) \lor B$$

h)
$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

Solution: On ne donne la solution que du point f, les autres étant traités de la même façon.

Α	В	¬А	$(\neg A) \lor B$	$A \Rightarrow B$
\mathbf{V}	\mathbf{V}	\mathbf{F}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f F}$
\mathbf{F}	$ \mathbf{V} $	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{F}	\mathbf{F}	\mathbf{V}	\mathbf{V}	\mathbf{V}

L'équivalence est vérifiée puisque les valeurs de vérité des deux dernières colonnes coïncident.

2. Donner la contraposée et la négation des implications suivantes :

a)
$$x > 0 \Rightarrow f(x) \le 0$$

b)
$$ab = 0 \implies (a = 0) \lor (b = 0)$$

Solution:

a) Contraposée :
$$f(x) > 0 \implies x \le 0$$

a) Contraposée :
$$f(x) > 0 \Rightarrow x \le 0$$
 Négation : $(x > 0) \land (f(x) > 0)$

b) Contraposée :
$$(a \neq 0) \land (b \neq 0) \Rightarrow ab \neq 0$$
 Négation : $(ab = 0) \land [(a \neq 0) \land (b \neq 0)]$

Négation :
$$(ab = 0) \land [(a \neq 0) \land (b \neq 0)]$$

3. Soit $f: \mathbb{R} \to \mathbb{R}$. Associer chaque assertion à la description correspondante :

- a) f ne s'annule qu'au plus une fois
- b) *f* ne s'annule jamais
- c) f ne peut s'annuler qu'en 0
- d) f s'annule au moins une fois hors de 0
- e) f s'annule en 0

i)
$$\exists x \neq 0, f(x) = 0$$

ii)
$$\forall x, y \in \mathbb{R}, [f(x) = f(y) = 0 \Rightarrow x = y]$$

iii)
$$f(0) = 0$$

iv)
$$\forall x \in \mathbb{R}, [f(x) = 0 \Rightarrow x = 0]$$

v)
$$\nexists x \in \mathbb{R}, f(x) = 0$$

Solution: a-ii, b-v, c-iv, d-i, e-iii

4. Soit $f: E \to F$. Associer chaque assertion à la description correspondante :

a)
$$f$$
 est injective

b)
$$f$$
 est surjective

c)
$$f$$
 est bijective

i)
$$\forall y \in F, \exists! x \in E, f(x) = y$$

ii)
$$\forall y \in F, \exists x \in E, f(x) = y$$

iii)
$$\forall x, x' \in E, [f(x) = f(x') \Rightarrow x = x']$$

Solution: a-iii, b-ii, c-i

5. Décrire verbalement ce qu'affirment les assertions suivantes, puis écrire leur négation :

a)
$$\forall x \in \mathbb{R}, x^2 \geqslant 0$$

b)
$$\forall x, y \in \mathbb{Q}, [x < y \Rightarrow \exists z \in \mathbb{Q}, x < z < y]$$

c)
$$\forall M \in \mathbb{R}, \exists n \in \mathbb{N}, n > M$$

d)
$$\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, p \geqslant n, \forall r \in \mathbb{N}, \forall s \in \mathbb{N}, \\ \left[p = rs \Rightarrow (r = 1) \lor (s = 1)\right]$$

Solution:

- a) « Le carré de tout nombre réel est positif » Négation : $\exists x \in \mathbb{R}, x^2 < 0$
- b) « Entre toute paire de rationnels distincts, on peut trouver un troisième rationnel » Négation : $\exists x, y \in \mathbb{Q}, [(x < y) \land (\nexists z \in \mathbb{Q}, x < z < y)]$
- c) « Il existe des nombres entiers arbitrairement grands » Négation : $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, n \leq M$
- d) « Il existe une infinité de nombres premiers » Négation : $\exists n \in \mathbb{N}, \forall p \in \mathbb{N}$ tel que $p \ge n, \exists r, s \in \mathbb{N}, \lceil (p = rs) \land ((r \ne 1) \land (s \ne 1)) \rceil$
- 6. Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction. Exprimer les assertions suivantes à l'aide de quantificateurs :

a)
$$f$$
 s'annule

- b) *f* est la fonction nulle
- c) f n'est pas une fonction constante
- d) f prend sa valeur maximale en 0

e) f admet un minimum

f) f prend des valeurs arbitrairement grandes

Solution:

a)
$$\exists x \in \mathbb{R}, f(x) = 0$$

b) $\forall x \in \mathbb{R}, f(x) = 0$

c) $\exists x, y \in \mathbb{R}, f(x) \neq f(y)$

- d) $\forall x \in \mathbb{R}, f(x) \leqslant f(0)$
- e) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, f(y) \geqslant f(x)$
- f) $\forall M \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) > M$
- 7. Dire si les assertions suivantes sont vraies ou fausses :
 - a) $\mathbb{N} \in \mathbb{Z}$

b) $\mathbb{N} \subset \mathbb{Z}$

c) $\varnothing \in \mathbb{N}$

d) $\varnothing \subset \mathbb{N}$

- e) $\{1,2\} \in \mathscr{P}(\{1,2,3\})$ f) $\{1,2\} \subset \mathscr{P}(\{1,2,3\})$

g) $\{\{1\}\}\subset \mathscr{P}(\{1,2,3\})$

Solution:

- a) Faux
- b) Vrai
- c) Faux
- d) Vrai
- e) Vrai
- f) Faux
- g) Vrai
- 8. Soient E, F et G trois ensembles. Montrer que $(E \subset F) \land (F \subset G) \Rightarrow E \subset G$.

Solution: Rappelez-vous que $E \subset F$ signifie $\forall x \in E, x \in F$. Soit donc $x \in E$. Puisque $E \subset F$, on doit avoir $x \in F$. Puisque $F \subset G$, on doit avoir $x \in G$. Par conséquent, $\forall x \in E, x \in G$, ce qui signifie bien que $E \subset G$.