UNSW MATHEMATICS SOCIETY

Discrete Mathematics Seminar I / II

Presented by: Rishabh Singh and Karen Zhang

Term 1, 2020

Table of contents

Sets, Functions and Sequences

- 2 Integers, Modular Arithmetic and Relations
- **3** Graph Theory

Sets, Functions and Sequences

Sets

Definition

A set is a collection of distinct objects (numbers, variables, other sets etc). We can define a set in two main ways. Firstly, we can list out all of the elements of a set, like

$$A = \{-2, -1, 0, 1, 2\}.$$

Alternatively, we can define a set using the following syntax

$$A = \{x \in \mathcal{U} \mid -2 \le x \le 2\}.$$

where $\mathcal U$ is itself a set. The above is read "The set of all elements, x, in $\mathcal U$ such that $-2 \le x \le 2$ ". This is a simple way of representing complex sets.

Sets, Continued

Elements

The objects in a set are called **elements** of the set. We write

$$a \in A$$
,

to denote that an object a is an element of the set A. Similarly,

denotes that the object a is not an element of set A.

Note

A set is not equal to the elements inside it, even if the set only has one element. That is to say $a \neq \{a\}$ and $a, b \neq \{a, b\}$

Some Important Sets

Sets

$$\begin{split} \mathbb{N} &= \{ \text{The Natural Numbers} \} \\ &= \{ 0, 1, 2, 3, \ldots \} \\ \mathbb{Z} &= \{ \text{The Integers} \} \\ &= \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \\ \mathbb{Z}^+ &= \{ \text{The Positive Numbers} \} \\ &= \{ 1, 2, 3, \ldots \} \\ \mathbb{Q} &= \{ \text{The Rational Numbers} \} \\ &= \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\} \\ \mathbb{R} &= \{ \text{The Real Numbers} \} \\ \mathbb{C} &= \{ \text{The Complex Numbers} \} \end{split}$$

Sets, continued

Equality

Two sets are equal if and only if they contain the same items. Following from the previous example:

$$\{-2, -1, 0, 1, 2\} = \{x \in \mathbb{Z} \mid -2 \le x \le 2\}$$

as both the sets define the same set of integers.

Note!

Sets ignore repetitions. For instance,

$$\{1, 1, 1, 2, 2, 3, 3, 4, 5\} = \{1, 2, 3, 4, 5\}$$

because both the sets only consists of elements 1, 2, 3, 4 and 5. All the repetitions of the numbers are ignored.

Containment

Subsets

Some sets may be "contained" inside other sets, i.e. all of the elements in A may also be elements of B. Then A is a **subset** of B. denoted

$$A \subseteq B$$
.

However, if there is at least one element of A that is not in B, then

$$A \not\subseteq B$$
.

Containment

$$\mathbb{Z}^+ \subseteq \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$

Containment, continued

The Empty Set

The empty set, denoted $\emptyset = \{\}$, is a set containing nothing. Therefore, it a subset of all sets, including itself. The relation $\emptyset \subseteq A$ holds for all sets A.

Improper vs Proper Subsets

It is important to note that a 'subset' can be any chunk of a set: from none of set to the the entire set.

An important distinction is made: A is a proper subset of B (denoted $A \subset B$) if and only if $A \neq B$.

Equality

An important result is that if two sets A and B are equal, then v

$$A \subseteq B$$
 and $B \subseteq A$

Additional Set Properties

Cardinality

The cardinality of a set A, denoted |A|, refers to the number of elements inside the set A.

Note: A set contained inside a set just counts as one element, regardless of its own cardinality.

$$|\{\mathbb{R}\}|=1$$
, despite $|\mathbb{R}|=\infty$.

The Power Set

The power set, denoted $\mathcal{P}(A)$ is the set of all possible possible subsets of the elements in A. As an example...

$$\mathcal{P}(\{1,2,3\}) = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$$

Also, $|\mathcal{P}(A)| = 2^{|A|}$, which can be proven.

Additional Set Properties

Cartesian Product

The Cartesian Product two sets A and B is defined as follows

$$A \times B = \{(p,q) \mid p \in A, q \in B\}$$

This just means that it is a set of pairs consisting of every element in set A with every element of set B.

$A \times B$

Let $A = \{1, 2, 3\}$ and let $B = \{a, b, c\}$, then

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)\}$$

which is pretty cool.

Union

The **Union** of two sets is defined as

$$A \cup B = \{x \in \mathcal{U} \mid X \in A \text{ or } X \in B\}$$

Intersection

The **Intersection** of two sets is defined as

$$A \cap B = \{x \in \mathcal{U} \mid x \in A \text{ and } x \in B\}$$

Complement

The **Complement** of a set A is defined as

$$A^c = \{ x \in \mathcal{U} \mid x \not\in A \}$$

Difference

The **Difference** of two sets is defined as

$$A - B = A \setminus B = \{x \in \mathcal{U} \mid x \in A \text{ and } x \notin B\}$$

Set Algebra Laws

Associative Laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutative Laws

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

De Morgans Laws

$$(A \cup B)^c = (A^c \cap B^c)$$
$$(A \cap B)^c = (A^c \cup B^c)$$

Rishabh and Karen

Set Algebra Laws

Identity Laws

$$A \cup \varnothing = A$$
$$A \cap \mathcal{U} = A$$

Idempotent Laws

$$A \cup A = A$$
$$A \cap A = A$$

Negation Laws

$$A \cup A^c = \mathcal{U}$$
$$A \cap A^c = \emptyset$$

Difference Law

$$A - B = A \backslash B = A \cap B^c$$

Rishabh and Karen

MATH1081

Set Algebra Laws

Sets. Functions and Sequences

Domination Laws

$$A \cup \mathcal{U} = \mathcal{U}$$

$$A \cap \varnothing = \varnothing$$

Absorption Laws

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

Double Complement Law

$$(A^c)^c = A$$

Duality

Swapping \cap and \cup , and \mathcal{U} and \varnothing in a law leads the **dual** of that law (for all laws except the Difference Law).

Functions

A **function** is a relation where all the elements of one set to another set.

Formally, a function f from all the elements of X to the elements of set Y is denoted $f: X \to Y = \{(x, y) \in X \times Y \mid y = f(x)\}.$

Definition

A function f from a set X to Y is a subset of the set $X \times Y$ with the property

for each $x \in X$ there is exactly one ordered pair $(x, y) \in f$.

The notation $f: X \to Y$ implies that the set X is the **domain** and that the set Y is the **codomain** of the function f.

Floor and Ceil functions

Important Functions

The floor and ceil functions have domain $\mathbb R$ and codomain $\mathbb Z$ For any $x \in \mathbb{R}$ the **floor** of x, denoted |x| is the greatest integer less than or equal to x.

For any $x \in \mathbb{R}$ the **ceil** of x, denoted [x] is the smallest integer greater than of equal to x.

Arrow Diagrams

Types of Functions

Injection

A function f is **one-to-one** or **injective** if $f(x_1) = f(x_2)$ implies $x_1 = x_2$. In other words, there is a one-to-one x - ycorrespondence.

Surjection

A function $f: X \to Y$ is **onto** or **surjective** if for every $y \in Y$, there is an $x \in X$ such that f(x) = y. That is, its range is equal to its codomain.

Bijection

A function $f: X \to Y$ is **bijective** iff it is both injective and surjective.

This is a necessary property for a function to have to be invertible - or have an inverse.

Composition of Functions and Inverse Functions

Composition of Functions

Let $g:X\to Y$ and $f:Y\to Z$, then the composition of f and g, denoted $f\circ g:X\to Z$, is defined by

$$(f\circ g)(x)=f(g(x))$$

Inverse Function

If a function $f: X \to Y$ is bijective, then there exists a function $g: Y \to X$ such that given any $y \in Y$, g(y) = x which is the x such that f(x) = y.

$$g: Y \to X = \{(y, x) \in Y \times X \mid f(x) = y\}$$

Notation

The inverse of a function $f: X \to Y$ is more commonly denoted $f^{-1}: Y \to X$.

Composition with Inverse + Additional Notation

Composition with Inverse

If $f: X \to Y$ is a bijection, then

$$f^{-1} \circ f = \iota_X$$
 and $f \circ f^{-1} = \iota_Y$

where ι_X and ι_Y are the identity functions on X and Y respectively.

Function Set Argument

Let $f: X \to Y$. If A is a set such that $A \subseteq X$, then

$$f(A) = \{f(x) \mid x \in A\}$$

Similarly, if $f^{-1}: Y \to X$ and $B \subseteq Y$, then $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$

Sequences

Definition

A sequence is a function with domain a subset of \mathbb{Z} . When discussion a sequence, convention dictates we write a_n instead of a(n) - whereas the entire list sequence will either be denotes $\{a_n\}$, or by the list

$$a_1, a_2, a_3, \dots$$

Note:

- The domain of the sequence is usually $\mathbb N$ or $\mathbb Z^+$, and sometimes a finite set i.e. $\{1, 2, ..., n\}$
- Order and Repetition are important when it comes to sequences

Summation

Summation Notation

$$\sum_{j=m}^{n} a_{j},$$

where $\{a_i\}$ is a sequence and $m \le n$ just means

$$a_m + a_{m+1} + \cdots + a_n$$

Note

The sum

$$\sum_{j=0}^{n} 1 = n+1$$

since it has n+1 terms.

Some common sums

Examples

$$\sum_{j=0}^{n} ar^{j} = a \frac{r^{n-1} - 1}{r - 1}$$

$$\sum_{j=1}^{n} 1 = n$$

$$\sum_{j=1}^{n} j = \frac{1}{2} n(n+1)$$

$$\sum_{j=1}^{n} j^{2} = \frac{1}{6} n(n+1)(2n+1)$$

Transformations of Sums

Addition and Multiplication by a scalar

$$\sum_{k=1}^{n} (a_k \pm b_k) = \left(\sum_{k=1}^{n} a_k\right) \pm \left(\sum_{k=1}^{n} b_k\right)$$
$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$

Shifting the Index of Summation

Substituting k = i + p yields

$$\sum_{j=m}^{n} a_j = \sum_{k=m+p}^{n+p} a_{k-p}$$

Rishabh and Karen

Reversing the summation

$$\sum_{j=m}^{n} = a_m + a_{m+1} + a_{m+2} + \dots + a_n$$

$$= a_n + \dots + a_{m+2} + a_{m+1} + a_m$$

$$= \sum_{k=m}^{n} a_{n+m-k}$$

This is equivalent to a substitution of k = m + n - j.

Examples, continued

Telescoping series

Work out

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1}$$

$$= \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

$$- \left(\frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n-1}$$

Divisibility

Number Theory is the study of important properties of positive integers, and divisibility is an important part of this.

Definition

Let a and b be integers. If there exists an integer m such that b = am, it can be said that "a divides b", or "a is a factor of b" or a | b.

Properties of Divisibility

Let $a, b, c \in \mathbb{Z}$

- If $a \mid b$ and $a \mid c$ then $a \mid b \pm c$.
- Let $s, t \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$ then $a \mid sb + tc$.
- If a | b and b | c then a | bc.

Prime and Composite Numbers

Primes

An integer n > 1, is said to be **prime** if it has no (positive) factors other than itself and 1. Any number which isn't prime is said to be composite.

The Fundamental Theorem of Arithmetic

Any positive integer n can be factorised into a product of primes. Moreover, a given *n* only has one such factorization.

Prime Factorization

$$345 = 3 \times 5 \times 23$$

$$1134 = 2 \times 3^4 \times 7$$

Rishabh and Karen

Checking for primes

Theorem

A composite number, n must have a factor c such that $1 < c \le \sqrt{n}$.

Proof

If *n* is composite, we can write that n = ab, where 1 < a < n. If $1 < a \le \sqrt{n}$ then we can take a = c. If not, then

$$n > a > \sqrt{n}$$
$$1 < n/a < \sqrt{n}$$

we can take b = c, since b = n/a.

This further means that any composite number n must have a prime factor p such that 1 . So, if <math>n has no prime factor $< \sqrt{n}$, then it is a prime number.

The Greatest Common Factor

Common Divisors

Let a, b be two nonzero integers. Any positive integer d such that $d \mid a$ and $d \mid b$ is called a **common divisor** of a and b. The largest such d is called the greatest common divisor, or the gcd.

Common Multiples

If $a \mid m$ and $b \mid m$, then m is a **common multiple** of a and b. The smallest such m is called the lowest common multiple, or the lcm.

We write both of these as gcd(a, b) and lcm(a, b) in math.

Euclidean Algorithm

Division Algorithm

Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$. Then there exist a unique pair of integers q, r such that

$$a = bq + r$$
 $0 \le r < b$

Theorem

Let a, b, q, r be integers such that a = bq + r, then

$$\gcd(a,b)=\gcd(b,r)$$

This theorem forms the basis for Euclid's algorithm.

Euclidean Algorithm

Finding gcd(14307, 11343)

We can repeatedly use the theorem to deduce the following:

$$14307 = 1 \times 11343 + 2964$$

$$11343 = 3 \times 2964 + 2451$$

$$2964 = 1 \times 2451 + 513$$

$$2451 = 4 \times 513 + 399$$

$$513 = 1 \times 399 + 114$$

$$399 = 3 \times 114 + 57$$

$$114 = 2 \times 57$$

Therefore, we find that gcd(114,57) = 57. By the theorem on the last slide, gcd(14307, 11343) = 57. This is Euclidean Algo.

Euclidean Algorithm, formal statement

Let a and b be positive integers; suppose that

$$a = bq_1 + r_1$$

$$b = r_1q_2 + r_2$$

$$r_1 = r_2q_3 + r_3$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n$$

$$r_{n-1} = r_nq_{n+1}$$

where $q_i, r_i \in \mathbb{Z}^+$. Since

$$\gcd(a,b)=\gcd(b,r_1)=\cdots=\gcd(r_{n-1},r_n)=r_n,$$

we can conclude that

$$gcd(a, b) = r_n$$
.

Rishabh and Karen

Extended Euclidean Algorithm

This can be used to solve equations of the form ax + by = dwhere $d = \gcd(a, b)$ for $x, y \in \mathbb{Z}$.

Using a simpler example

One would compute gcd(854, 651) in the following way:

$$854 = 1 \times 651 + 203$$

 $651 = 3 \times 203 + 42$
 $203 = 4 \times 42 + 35$
 $42 = 1 \times 35 + 7$
 $35 = 5 \times 7$

However, we can use the above working out to solve the equation 854x + 651y = 7. This will be more important later...

Working Backward

Working from the second-last equation on the prev slide...

$$7 = 42 - 35$$

$$= (651 - 3 \times 203) - (203 - 4 \times 42)$$

$$= 651 - 4 \times 203 + 4 \times 42$$

$$= 651 - 4 \times (854 - 651) + 4 \times (651 - 3 \times (854 - 651))$$

$$= 5 \times 651 - 4 \times 854 + 4 \times (4 \times 651 - 3 \times 854)$$

$$= -16 \times 854 + 21 \times 651$$

$$= 854x + 651y$$

so, one solution to the linear equation is x = -16 and y = 21. We can extend this solution to include all possible solutions.

The Bézout Property

$\mathsf{Theorem}$

If we have integers $a, b, c, d \in \mathbb{Z}$ such that gcd(a, b) = d, then if we consider the equation

$$ax + by = c$$
 (*)

- If c = d, then (\star) has a solution $x, y \in \mathbb{Z}$
- If $d \mid c$, then (\star) has a solution in integers
- If gcd(c, d) = 1, then (\star) has no solutions in \mathbb{Z}

Also, $x = x_0 - \lambda b$ and $y = y_0 + \lambda a$ represent all solns.

Examples

- 73x + 30y = 1 has a solution since gcd(73, 30) = 1.
- 42x + 99y = 6 has a solution since gcd(42, 99) = 3 and $3 \mid 6$.
- 91x + 49y = 2 has no solution since gcd(91, 49) = 7 and $2 \nmid 7$.

Definition

Let m be an integer. Two integers a and b are said to be congruent module m, denoted

$$a \equiv b \pmod{m}$$

if $m \mid a - b$

Ways of Expressing Congruence

Note:

- $a \equiv b \pmod{n}$
- m | a − b
- a = b + km
- a and b have the same remainder upon division by m all mean the same thing.

Properties

- Let $a, b, c, d, m \in \mathbb{Z}$ such that $a \equiv b \pmod{m}$ and $c \equiv d$ (mod m)
 - $a + c \equiv b + d \pmod{m}$
 - $a-c \equiv b-d \pmod{m}$
 - $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \in \mathbb{Z}$ then $ca \equiv cb \pmod{m}$
- If $\equiv b \pmod{m}$ and n > 0 then $a^n \equiv b^n \pmod{m}$
- If $a \equiv b \pmod{m}$ and $n \mid m$ then $a \equiv b \pmod{n}$

Power Congruence

Finding $a^b \mod c$

The properties of modular arithmetic and congruence make it easy to simplify expressions of the form $a^b \mod c$, for really large b, where computation may not necessarily be ideal.

Simplification becomes easy, given we are able to find one power n such that $a^n \mod c = \pm 1$ or are able to notice a pattern of repetitions.

Find the last two digits of 7¹²³⁴567

The last two digits of $7^{1234567}$ can be expressed as 7¹²³⁴⁵⁶⁷ mod 100. Observing successive value for 7^a mod 100,

$$7^1 \equiv 7 \pmod{100}$$
 $7^3 \equiv 7 \cdot 49 \equiv 343 \equiv 43 \pmod{100}$

$$7^2 \equiv 7 \cdot 7 \equiv 49 \pmod{100} \quad 7^4 \equiv 7 \cdot 43 \equiv 301 \equiv 1 \pmod{100}$$

Rishabh and Karen

MATH1081

Solutions to Congruences

Number of Solutions to Congruences

Considering the congruence $ax \equiv b \pmod{m}$

- If gcd(a, m) = 1, then the congruence has one unique solution
- If gcd(a, m) is not a factor of b, then the congruence has no solutions
- If gcd(a, m) = g is a factor of b then,
 - the congruence has a unique solution mod m/g,
 - ullet the congruence has g solutions mod m

Examples

- $17x = 1 \pmod{5}$ has a unique solution mod 13.
- $68x = 11 \pmod{51}$ doesn't have a solution.
- $52x = 8 \pmod{60}$
 - has a unique solution mod 15
 - has 4 solutions mod 60

Canceling/Simplifying Congruences

Simplification 1

The congruences

$$ax \equiv b \pmod{m}$$
 and $cax \equiv cb \pmod{cm}$

have the same solutions.

Simplfication 2

Given gcd(c, m) = 1, the congruences

$$ax \equiv b \pmod{m}$$
 and $cax \equiv cb \pmod{m}$

have the same solutions.

Rishabh and Karen

MATH1081

46 of 108

Testing for Primes 2: Electric Boogaloo

Fermat's Little Theorem

Let p > 1. If p is prime, then for every $a \in \mathbb{Z}$ we have

$$a^p \equiv a \pmod{p}$$

This means that if we have

$$a^p \not\equiv a \pmod{p}$$

for any $a \in \mathbb{Z}$, then p is composite

Negative Test Only

Note: Fermat's Little Theorem only provides us with a negative test for primes. It can definitively state whether a number is composite, but even if the theorem holds for all a, then its 'probably' but not definitively prime.

Relations

Definitions

A relation R from a set A to a set B is a set of **ordered** pairs (a, b), where $a \in A$ and $b \in B$ (i.e. R is a subset of $A \times B$). To specify if two elements are related:

- $(a,b) \in R$
- aRb

Functions

A function is a type of relation R where for every $a \in A$, there is one and only one $b \in B$ such that aRb

Representing Relations

Two useful ways of representing a relation on a **finite** set:

Matrix

Choose an specific order for the n elements of a set A, e.g.

$$A = \{a_1, a_2, \ldots, a_n\}$$

The matrix M_R of a relation on set A is the $n \times n$ matrix where

$$m_{i,j} = \begin{cases} 1 & \text{if } a_i R a_j \\ 0 & \text{if } a_i \not R a_j \end{cases}$$

 More than one possible matrix (elements of a set can be listed in different orders)

Arrow Diagram

A point is drawn for each element of A, with an arrow drawn from a_i to a_i iff a_i is related to a_i .

Reflexive

Definition

A relation R on a set A is reflexive if every element of A is related to itself.

• For every $a \in A$, aRa

Representation

- The diagonal entries of matrix M_R must always be 1
- Every point in the arrow diagram will have an arrow pointing to itself

Symmetric

Definition

A relation R on a set A is symmetric if when one element is related to another, the second is also related to the first.

• For all $a, b \in A$, if aRb then bRa

Representation

- Given matrix M_R , $m_{i,j} = m_{j,i}$
- If there is an arrow from a_i to a_i , there must be an arrow from a_i to a_i (double arrow)

Transitive

Definition

A relation R on a set A is transitive if when one element is related to a second, and the second is related to a third, then the first element must be related to the third.

• For all $a, b, c \in A$, if aRb and bRc, then aRc

Representation

• Calculate M_R^2 and look at the non-zero entries. If M_R has the entry 1 in all of these places, then the relation is transitive

Antisymmetric

Definition

A relation R on a set A is antisymmetric if two distinct elements of A are related in one way or the other, or neither, but NEVER both.

• For all $a, b \in A$, if aRb and bRa, then a = b

Representation

- Given matrix M_R and $(i \neq j)$, $m_{i,j}$ and $m_{i,j}$ cannot both equal
- No double arrows in arrow diagram

Note

Antisymmetric is NOT the opposite of symmetric!

Equivalence Relations

Definition

Equivalence relations are **reflexive**, **symmetric** and **transitive**.

• Denoted by \sim .

Intuitively...

- Tells us when two things are "the same"
- E.g. Two sets are equal if they have the same elements, two triangles are similar if they have the same angles etc.

Equivalence classes

Definition

For any $a \in A$, the equivalence class of a with respect to \sim is the set

$$[a] = \{x \in A \mid x \sim a\}$$

Intuitively...

- Collects together the objects which are "the same" and regard them as a single "object"
- E.g. Given \sim is \equiv (mod 5), then the five equivalence classes are the sets [0], [1], [2], [3], [4]

Equivalence Relations and Classes Theorem

$\mathsf{Theorem}$

Let \sim be an equivalence relation on set A. Then

- For all $a \in A$, $a \in [a]$
 - Every element of A is in some equivalence class
 - Every equivalence class contains at least one element
- For all $a, b \in A$, $a \sim b$ if and only if [a] = [b]
- For all $a, b \in A$, $a \nsim b$ if and only if $[a] \cap [b] = \emptyset$
 - Equivalence classes are either equal or pairwise disjoint

Example

2016 Semester 2 Final Q2 (ii)

Let \sim be the relation on the set of integers \mathbb{Z} be defined by

 $a \sim b$ if and only if $a^2 \equiv b^2 \pmod{4}$.

- **1** Show that \sim is an equivalence relation.
- Find the equivalence classes of \sim .

Partial Order

Definition

A partial order is **reflexive**, **antisymmetric** and **transitive**.

• Denoted by \leq , where $a \leq b$ reads 'a precedes or equals b'

Intuitively...

- Tells us which of two elements 'comes first'.
 - E.g. $a \le b$ is equivalent to saying a comes before b if elements are listed in increasing order.

Partial Order

Additional Property

For all $a, b \in A$, either $a \leq b$ or $b \leq a$

- If the above property is true, this is called a total order (any two elements can be ordered) or a linear order (elements can be ordered in a line).
- E.g. ≥, ≤

Poset

The term "poset" can be used for a set A with a partial order defined (A, \preceq) .

Hasse Diagrams

Definition

To represent a partial order \prec on a finite set A:

- For $a \prec b$, draw a point for a positioned below b
- Draw a line from a to b if and only if $a \prec b$ and there is no c such that $a \prec c \prec b$ (Transitivity is assumed).
- Do not draw any loops to indicate $a \leq a$. Reflexivity is assumed.

Definitions

Let \prec be a partial order on a set A, where $x \in A$. x is called:

- **Greatest** if every element is related to it $(a \leq x \text{ for all } a \in A)$
- **Least** if it is related to every element $(x \leq a \text{ for all } a \in A)$
- Maximal if it is related to no element except itself $(x \prec a)$ only if x = a)
- **Minimal** if no element except itself is related to it $(a \prec x)$ only if x = a)

Posets

Lower and upper bounds

Let \leq be a partial order on a set A, where $a, b \in A$. Then for any $x \in A$.

- x is a **lower bound** of a and b if $x \leq a$ and $x \leq b$
- x is an **upper bound** of a and b if $a \leq x$ and $b \leq x$
- the **greatest lower bound** (if it exists), denoted by glb(a,b)is the greatest element in the set of lower bounds
- the **least upper bound** (if it exists), denoted by lub(a, b) is the least element in the set of upper bounds

2018 Semester 1 Q2 (iii)

Let $S = \{2, 3, 4, 5, 10, 15, 20, 30, 40, 120\}.$

- **1** Draw the Hasse diagram for $\{S, |\}$.
- Find all
 - maximal elements.
 - minimal elements.
- Find two elements of S that do not have a greatest lower bound and explain why they do not.

Graph Theory

MATH1081

Introduction to Graph Theory

Definitions

A graph G consists of a finite set of **vertices** V, a finite set of **edges** E and an **endpoint function** $f: E \rightarrow \{\text{unordered pairs of } \}$ vertices}

f assigns each edge to either one or two vertices

Terminology

- Two vertices are adjacent if joined by an edge
- An edge is incident on each of its endpoints
- **Isolated:** a vertex without incident edges (degree 0)
- Loop: an edge with only one endpoint/vertex
- Parallel/multiple: two or more edges with the same endpoint
- Simple graph: a graph with no loops or parallel edges
- The degree of a vertex v, denoted by deg(v) is the number of edges incident on v
 - Loops are counted twice

$\mathsf{Theorem}$

The sum of the degrees of all the vertices equals twice the number of edges,

$$2|E| = \sum_{v \in V} deg(v).$$

Corollary

In any graph,

- The sum of the degrees is even.
- The number of vertices having odd degree is even.
 - Proof by contradiction

Special Graphs

Subgraphs

A graph G' with vertices V' and edges E' is a subgraph of the graph G with vertices V and edges E if:

- V' ⊂ V
- E' ⊂ E
- each edge in G' has the same endpoints as in G

Special Graphs

Complete graph

The complete graph, denoted by K_n for $n \ge 1$, consists of nvertices with exactly one edge between each pair of distinct vertices.

- n vertices
- \circ $\binom{n}{2}$ edges

Cycle

The cycle, denoted by C_n for n > 3, consists of:

- n vertices v_1, v_2, \ldots, v_n
- edges $v_1 v_2, v_2 v_3, \dots, v_{n-1} v_n$

Special Graphs

Wheel

The wheel, denoted by W_n for $n \geq 3$, consists of C_n and another vertex v_0 adjacent to each of the vertices in C_n .

Special Graphs

n-cube

The *n*-cube, denoted by Q_n , has 2^n vertices labelled with 2^n bit strings of length n.

- Two vertices are adjacent if and only if their labels differ in exactly one place (e.g. the vertex 011 is adjacent to vertex 010 and vertex 111 in a Q_3 graph).
- Note that 2ⁿ bit strings are a string of length n made up of 0's and 1's.
- Q_n has $n \times 2^{n-1}$ edges (by the Handshaking Lemma).

Bipartite Graph

Definition

A simple graph where the vertices can be partitioned into **two** disjoint, non-empty sets and no two vertices in the same set are adjacent.

A graph is bipartite if and only if there are no odd cycles.

Useful conclusions

- C_n is bipartite if and only if n is even
- W_n is NEVER bipartite
- \circ Q_n is ALWAYS bipartite

Tips

Try redrawing the graph isomorphically to test if a graph is bipartite.

Complete Bipartite Graph

Definition

A simple bipartite graph with vertices partitioned sets V_1 and V_2 , where:

- V_1 has m vertices and V_2 has n vertices
- Every vertex in V_1 is connected to every vertex in V_2

A complete bipartite graph is denoted by $K_{m,n}$ with m + nvertices and mn edges.

Extra content

Tripartite/Complete tripartite graphs have vertices partitioned into three disjoint, non-empty sets.

Bipartite Graphs

Complementary Graph

Definition

Given a simple graph G, the complement denoted by \overline{G} consists of:

- the same vertices as G
- an edge between vertices if and only if the vertices are NOT adjacent in G

Tips

Edges that you don't have in G, you will have in \overline{G} .

Paths and Circuits

Walks

A walk is a finite sequence of alternating vertices and edges

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$$

where each edge e_i is incident on two vertices v_{i-1} and v_i .

- **Length** of a walk is equal to the number of edges (n edges), and has n+1 vertices.
- A closed walk begins and ends at the same vertex.

Paths and Circuits

Paths

A path is a walk in which ALL edges are different.

• A **simple path** exists if there are no repeated vertices.

Circuits

A **circuit** is a path which begins and ends at the same vertex.

 A simple circuit exists if there are no repeated vertices except for the first and last vertex.

Paths and Circuits

$\mathsf{Theorem}$

Let a, b be vertices in G. There is a walk from a to b if and only if there is a simple path from a to b.

Corollary

Let G be a graph with n vertices. If there is a walk from a to b then there is a walk of length at most n-1 from a to b.

Connected Graph

Definition

G is connected if there is a walk between any two distinct vertices of G. The **connected components** is G are its maximal connected subgraphs.

A connected graph has only one connected component.

Euler circuit/path

Let G be a graph.

Euler circuit

An Euler circuit in G is a circuit containing every edge of G exactly once.

Begins and ends at the same vertex

Euler path

An Euler path in G is a path containing every edge of G exactly once.

Theorems for Euler circuit/path

Let G be a connnected graph.

Existence of an Euler circuit

If every vertex in G has an **even degree**, then G has an Euler circuit.

Existence of an Euler path

Let a and b be distinct vertices of G. A Euler path from a to b exists if and only if a, b are of odd degree and every other vertex of G is of even degree.

Hamilton circuit/path

Let G be a graph.

Hamilton circuit

A Hamilton circuit in G is a circuit containing **every vertex** of G **exactly once**.

Begins and ends at the same vertex

Hamilton path

An Hamilton path in G is a path containing every vertex of G exactly once.

Theorems for Hamilton circuit/path

Note

There's no simple method of determining if a Hamilton circuit/path exists.

Let G be a connnected graph with n vertices, $n \geq 3$.

Sufficient condition for a Hamilton circuit (Dirac's Theorem)

G has a Hamilton circuit if $deg(v) \ge \frac{1}{2}n$ for each $v \in V$.

- THE CONVERSE IS FAI SE!
- E.g. C₅.

Example

2018 Semester 2 Q2 (iii)

Consider the following graph *G*.

- Does G have a Euler path? Explain your answer.
- Does G have a Hamilton circuit? Explain your answer.
- Is G bipartite? Explain your answer.

Adjacency Matrix

Definition

Given a graph G with vertices v_1, v_2, \ldots, v_n , the adjacency matrix is the $n \times n$ matrix $A = [a_{i,i}]$ with:

 $a_{i,i}$ = number of edges with endpoints v_i and v_i .

- A is symmetric
- A for a simple graph has elements 1 and 0 only, and diagonal entries are 0.

Note

A changes depending on the order of vertices. Make sure to specify the order of vertices.

Incidence Matrix

Definition

Given a graph G with vertices v_1, v_2, \ldots, v_n and edges e_1, e_2, \ldots, e_m , the incidence matrix is the $n \times m$ matrix $M = [m_{i,j}]$ with:

$$m_{i,j} = \begin{cases} 1 & \text{if } e_j \text{ is incident on } v_i \\ 0 & \text{if otherwise} \end{cases}$$

- Two edges are parallel if the two columns have the same entries
- An edge is a loop if there is only one entry of element 1 in the column
- A vertex is isolated if it is a 0 row

Matrices

Interpreting Adjacency Matrices

Let G be a graph with the ordered vertices v_1, v_2, \ldots, v_n , and adjacency matrix A.

Counting walks theorem

The **number of walks** of length k from v_i to v_j is the (i,j) element of A^k .

• Proof by induction.

Adjacency matrix of a connected graph

Let $C = I + A + A^2 + \cdots + A^{n-1}$. G is connected if and only if C has no 0 entries.

Isomorphism

Definition

Let G_1 and G_2 be two graphs with vertex sets V_1 and V_2 , and edge sets E_1 and E_2 respectively. G_1 and G_2 are isomorphic if there exist bijections

$$f: V_1 \rightarrow V_2 \text{ and } g: E_1 \rightarrow E_2$$

where $e \in E_1$ is incident on $v \in V_1$ iff g(e) is incident on f(v).

Isomorphism for simple graphs

Let G_1 and G_2 be two simple graphs with vertex sets V_1 and V_2 , and edge sets E_1 and E_2 respectively. G_1 and G_2 are isomorphic if there exists a bijection $f: V_1 \to V_2$ which preserves adjacency.

• a is adjacent to b in G_1 iff f(a) is adjacent to f(b) in G_2 .

Isomorphic invariants

If a graph G is isomorphic to a graph H with property P, then G also has property P. P is called an isomorphic invariant.

Some invariants

- number of vertices
- number of edges
- sum of degrees
- number of vertices of a given degree
- number of circuits of given length
- connectivity
- being bipartite
- existence of Euler circuit/Hamilton circuit

Planar Graphs

Definition

A graph G is planar iff it can be drawn with no intersecting edges. This is called a **planar map/planar representation**.

Regions

- The edges of a planar map separate a plane into finite regions, with exactly one unbounded region.
- The degree of a region is the number of edges bounding the region.

Example

2018 Semester 1 Final Q2 (iv)

Consider the graphs G_1 and G_2 .

- **1** Does G_1 contain a Euler circuit? Explain your answer.
- ② Is G_2 planar? Explain your answer.
- \odot Are G_1 and G_2 isomorphic?. Explain your answer.
- **1** Does G_2 contain a Hamilton cycle? Explain your answer.

Dual

Dual of a Planar Graph

The dual of a planar graph G is a planar map G^* with:

- a vertex v_R in G^* that corresponds to each region R of G.
- an edge e^* of G^* joining a pair of vertices, such that an edge e of G lies between regions R, R' iff e^* is incident with v_R, v_R' .

Fun Facts

- Dual of a planar graph is also planar, and has the same number of edges as the original graph.
- $\sum deg(V) = \sum deg(R) = 2e$

Theorems for Planar Graphs

Euler's formula

Let G be a connected planar graph with r regions, e edges and v vertices.

$$r + v = e + 2$$

Proof by induction on *e*.

Inequalities

Let G be a **simple** connected planar graph with v vertices and e edges. Then,

$$e \leq 3v - 6$$
.

If G has no circuits of length 3, then

$$e \le 2v - 4$$
.

Rishabh and Karen

Example

2014 Semester 1 Final Q2 (iv)

- State Euler's formula for a connected planar graph having v vertices, r regions and e edges.
- ② Show that if G is a connected planar simple graph with $v \geq 3$, then

$$e \le 3v - 6$$
.

3 Hence show that a connected planar simple graph with $v \ge 3$ has at least one vertex of degree less than or equal to 6.

Kuratowski's Theorem

$\mathsf{Theorem}$

A graph is planar iff it has no subgraph

- K₅
- K_{3,3}
- any graph homeomorphic to K_5 or $K_{3,3}$

Note: Homeomorphic graphs are obtained by adding vertices of degree 2 onto existing edges.

Trial and error

Using this theorem to show a graph is not planar takes a lot of trial and error in deleting edges and redrawing the graph...

Example

2019 Term 2 Final Q1 (iv)

Show that the following graph is NOT planar.

1003

Definition

A connected graph with no circuits of length 1 or more.

Theorems regarding trees:

Trees and paths

A graph is a tree if and only if there exists a unique simple path between any two vertices.

Vertices of Trees

Any tree with n vertices has at least two vertices of degree 1. $(n \ge 2)$

Edges of Trees

Any tree with n vertices has n-1 edges. The converse is also true but only for connected graphs.

Which of these are trees?

Example

2015 Semester 1 Final Q2 (v)

Prove that the average vertex degree

$$\frac{1}{n}\sum_{v\in V(T)}d(v)$$

of a tree T on |V(T)| = n vertices is strictly less than 2.

Minimisation

Definitions

- Each edge of a **weighted graph** has a real number w(e) called the **weight** of the edge associated with it.
- A **spanning tree** is a subgraph of a graph *G* which contains every vertex of *G*.
- A minimal spanning tree is a spanning tree for a weighted graph which has the least possible sum of weights of its edges.

Kruskal's algorithm

This algorithm is used to produce a minimal spanning tree for a given weighted graph G.

Method

- Start with a graph T with the same vertices as G but no edges.
- Sort the edges into increasing order of weight.
- Select the smallest weighted edge. Add this edge to T if it doesn't create a circuit.
- Continue to the next smallest weighted edge and repeat step3.
- When all the vertices of T are connected, you should have a minimal spanning tree.

Example

2018 Semester 2 Final Q2 (iv)

Use Kruskal's algorithm to construct a minimal spanning tree ${\cal T}$ for the following weighted graph. Make a table showing the details of each step.

Shortest Path Problem

Definitions

- The weight of a path is the sum of the weights of the edges in the path.
- The **distance** d(u, v) is the minimum weight of any path from u to v.
- The shortest v₀- path spanning tree has the property:
 - The path in the tree from v_0 to every vertex v has no greater weight than any other path from v_0 to v.

BEWARE

Make sure you know the difference between minimal spanning tree and shortest path problems.

Dijkstra's Algorithm

This algorithm is used to produce a shortest v_0 -path spanning tree for a given weighted graph G.

Method

- **①** Start with a graph T with vertex v_0 only and no edges.
- Consider all edges with one vertex in T and one vertex v NOT in T.
- **3** Choose the edge that gives a shortest path from v_0 to v.
- **4** Add this edge and v to T, provided it doesn't create a circuit.
- **1** Repeat steps 2-4 until T contains all vertices of G.

Example

2019 Term 1 Final Q3 (iv)

- Use Djikstra's algorithm to find a spanning tree that gives the shortest paths from A to every other vertex of the graph. Make a table showing the details of each step.
- ② Is this spanning tree found in part 1 a minimal spanning tree? Explain your answer.

Tips and Tricks

Relations

- Set out your proofs carefully and clearly to avoid losing easy marks.
- Be careful when drawing your Hasse diagram.

Graph Theory

- This section of discrete is VERY content heavy, so make sure you know your definitions!
- Since there are a lot of theorems and algorithms, don't confuse them.
- Proofs for the theorems aren't usually tested in the exam, but it's best to know an overview of the derivation.
- May ask you to give the definition or state a theorem.