gaussian_fraud_model

June 17, 2018

1 Multivariate Gaussian Model

1.0.1 By Kumar Rahul

The analysis is on company financial manipulations and devise algorithm to identify a manipulater from a non manipulater based on the financial ratios reported by the companies. There are a total of 1239 observations in the data set. Out of these 1239 observations, there are 1200 non manipulaters and 39 manipulaters

```
In [1]: library(caret) #for split and model accuracy
setwd("/Users/Rahul/Documents/Rahul Office/IIMB/Work @ IIMB/Training Material/Concepts
```

Loading required package: lattice Loading required package: ggplot2

1.1 Preparing data

Read data from a specified location

In [4]: raw_df <- read.csv("/Users/Rahul/Documents/Rahul Office/IIMB/Work @ IIMB/Training Mate</pre>

```
filter_df <- raw_df[,-c(1)]
head(filter_df)</pre>
```

DSRI	GMI	AQI	SGI	DEPI	SGAI	ACCR	LEVI	Status
1.624742	1.128927	7.1850534	0.3662114	1.381519	1.62414487	-0.16680870	1.1610817	Yes
1.000000	1.606492	1.0049879	13.0814332	0.400000	5.19820717	0.06047516	0.9867325	Yes
1.000000	1.015607	1.2413895	1.4750183	1.169353	0.64767093	0.03673163	1.2643050	Yes
1.486239	1.000000	0.4655348	0.6728395	2.000000	0.09288991	0.27343412	0.6809750	Yes
1.000000	1.369038	0.6371120	0.8613464	1.454676	1.74145963	0.12304770	0.9390472	Yes
0.905532	1.360915	0.7839949	1.7933237	1.278244	0.50526004	0.05464238	1.5431371	Yes

Prepare and run numerical summaries

DSRI	GMI	AQI	SGI	
Min. :0.0000	Min. :-20.8118	Min. :-21.7338	Min. :0.1541	
1st Qu.:0.8859	1st Qu.: 0.9307	1st Qu.: 0.7664	1st Qu.:0.9703	
Median :1.0278	Median : 1.0000	Median : 1.0111	Median :1.0856	
Mean :1.0999	Mean : 0.9631	Mean : 0.9735	Mean :1.0927	
3rd Qu.:1.1870	3rd Qu.: 1.0604	3rd Qu.: 1.2293	3rd Qu.:1.1972	
Max. :7.1177	Max. : 7.1386	Max. : 12.8854	Max. :3.3340	
DEPI	SGAI	ACCR	LEVI	
Min. :0.06958	Min. :0.0000	Min. :-3.14350	Min. :0.03877	
1st Qu.:0.93672	1st Qu.:0.8969	1st Qu.:-0.07649	1st Qu.:0.92479	
Median :1.00293	Median :1.0000	Median :-0.03004	Median :1.01695	
Mean :1.03525	Mean :1.0453	Mean :-0.03434	Mean :1.04325	
3rd Qu.:1.08013	3rd Qu.:1.1142	3rd Qu.: 0.02004	3rd Qu.:1.11650	
Max. :4.79883	Max. :6.9075	Max. : 0.95989	Max. :6.25043	
Status				

No :900 Yes: 0

Train and test dataset with needed variables

```
#"SGI",
                                                    "DEPI",
                                                    "SGAI",
                                                    "ACCR",
                                                    "LEVI",
                                                    "Status"
        )])
1.2 Gaussian Model
In [9]: mean_model_train_df <- apply(model_train_df[,1:5], 2, mean)</pre>
         sd_model_train_df <- apply(model_train_df[,1:5], 2, sd)</pre>
In [10]: gaussian_model <- function(x,m,s){</pre>
            constant <- 1 / (s * sqrt( 2 * pi))</pre>
            value \leftarrow \exp((-1*(x - m) ^2) / (2 * (s ^2)))
            constant*value
         }
In [11]: prob <- apply(model_test_df[1:5], 1, function(x,y,z) gaussian_model(x,mean_model_train)</pre>
         prob <- t(prob)</pre>
         colnames(prob) <- paste("P(", colnames(prob), ")", sep = "")</pre>
         gaussian_model_test_df <- cbind(model_test_df,prob)</pre>
In [12]: gaussian_model_test_df$JointProb <-</pre>
                             #gaussian_model_test_df$`P(DSRI)`*
                             #qaussian_model_test_df$`P(GMI)`*
                             gaussian_model_test_df$`P(AQI)`*
                             #gaussian_model_test_df$`P(SGI)`*
                             gaussian_model_test_df$`P(DEPI)`*
                             gaussian_model_test_df$`P(SGAI)`*
                             gaussian_model_test_df$`P(ACCR)`*
                             gaussian_model_test_df$`P(LEVI)`
```

#"GMI",
"AQI",

P10 <- c() #misclassification of positive class to negative class P01 <- c() #misclassification of negative class to positive class

P11 <- c() #correct classification of positive as positive P00 <- c() #correct classification of negative as negative

gaussian_model_test_df\$Actual.Status <- gaussian_model_test_df\$Status</pre>

In [13]: #creating empty vectors to store the results.

msclaf_cost <- c()
youden_index <- c()</pre>

cutoff <- c()</pre>

```
colnames(costs) = rownames(costs) = c("Yes", "No")
as.table(costs)

Yes No
Yes 0 1
No 2 0
```

The misclassification cost table is:

```
In [16]: for (i in seq(0.05, 1, .05)) {
            predicted_status_df = rep("No", n)
            predicted_status_df[gaussian_model_test_df$JointProb < i] = "Yes"</pre>
            tbl <- table(gaussian_model_test_df$Actual.Status, predicted_status_df)</pre>
            if ( i <= 1) {
              #Classifying Not Joined as Joined
              P10[20*i] \leftarrow tbl[2]/(tbl[2] + tbl[4])
              P11[20*i] \leftarrow tbl[4]/(tbl[2] + tbl[4])
              #Classifying Joined as Not Joined
              P01[20*i] \leftarrow tbl[3]/(tbl[1] + tbl[3])
              P00[20*i] \leftarrow tbl[1]/(tbl[1] + tbl[3])
              cutoff[20*i] <- i</pre>
              msclaf_cost[20*i] <- P10[20*i]*costs[2] + P01[20*i]*costs[3]
              youden_index[20*i] <- P11[20*i] + P00[20*i] - 1</pre>
            }
         }
          cost_table_df <- cbind(cutoff,P10,P01,msclaf_cost, P11, P00, youden_index)</pre>
          cost_table_df
```

cutoff	P10	P01	msclaf_cost	P11	P00	youden_index
0.05	0.43589744	0.1233333	0.9951282	0.5641026	0.87666667	0.440769231
0.10	0.35897436	0.1700000	0.8879487	0.6410256	0.83000000	0.471025641
0.15	0.30769231	0.2066667	0.8220513	0.6923077	0.79333333	0.485641026
0.20	0.30769231	0.2633333	0.8787179	0.6923077	0.73666667	0.428974359
0.25	0.25641026	0.2866667	0.7994872	0.7435897	0.71333333	0.456923077
0.30	0.23076923	0.3500000	0.8115385	0.7692308	0.65000000	0.419230769
0.35	0.20512821	0.4066667	0.8169231	0.7948718	0.59333333	0.388205128
0.40	0.15384615	0.4633333	0.7710256	0.8461538	0.53666667	0.382820513
0.45	0.12820513	0.5166667	0.7730769	0.8717949	0.48333333	0.355128205
0.50	0.10256410	0.5700000	0.7751282	0.8974359	0.43000000	0.327435897
0.55	0.07692308	0.6433333	0.7971795	0.9230769	0.35666667	0.279743590
0.60	0.07692308	0.7366667	0.8905128	0.9230769	0.26333333	0.186410256
0.65	0.07692308	0.8433333	0.9971795	0.9230769	0.15666667	0.079743590
0.70	0.05128205	0.9433333	1.0458974	0.9487179	0.05666667	0.005384615
0.75	NA	NA	NA	NA	NA	NA
0.80	NA	NA	NA	NA	NA	NA
0.85	NA	NA	NA	NA	NA	NA
0.90	NA	NA	NA	NA	NA	NA
0.95	NA	NA	NA	NA	NA	NA
1.00	NA	NA	NA	NA	NA	NA

1.3 Model Statistics

 $addmargins(table(gaussian_model_test_df\$Actual.Status, gaussian_model_test_df\$predicted_mean(gaussian_model_test_df\$predicted_status_df == gaussian_model_test_df\$Actual.Status_df == gaussian_model_test_df == gaussian_test_df == gaus$

	No	Yes	Sum		
	214	86	300		
Yes	10	29	39		
Sum	224	115	339		
0.71.601.41.5000005					

0.716814159292035

End of document