$$Sin^{1} \stackrel{?}{\downarrow}$$

$$\int_{0}^{1/2} \sin^{4}x \cos^{6}x dx = \int_{0}^{1/2} \sin x = \sqrt{1 + t}, \cos x = \sqrt{1 + t}, x = \arccos \sqrt{1 + t}$$

$$= \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} \frac{(1 - t)^{\frac{1}{2}}}{(1 - t)^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} \frac{(1 - t)^{\frac{1}{2}}}{(1 - t)^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} \frac{(1 - t)^{\frac{1}{2}}}{(1 - t)^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} \frac{(1 - t)^{\frac{1}{2}}}{(1 - t)^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} \frac{(1 - t)^{\frac{1}{2}}}{t^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} \frac{(1 - t)^{\frac{1}{2}}}{t^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} \frac{(1 - t)^{\frac{1}{2}}}{t^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} \frac{(1 - t)^{\frac{1}{2}}}{t^{\frac{1}{2}}} dt = \frac{1}{2} \int_{0}^{1} \frac{t^{\frac{1}{2}}}{t^{\frac{1}{2}}} dt = \frac{1}$$

	X	1,1	Ł	(g								