Name:	Maths Class:

SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE

2007 MATHEMATICS

Time Allowed: 3 hours plus 5 mins reading time

Instructions:

- Write your name and class at the top of this page, and at the top of each answer sheet
- At the end of the examination this examination paper must be attached to the front of your answers
- All questions are of equal vale and may be attempted
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.

(For Markers Use Only)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total

Question :	1	(12	Marks)
------------	---	-----	--------

Marks

a) Find the value of
$$\frac{16.2^2}{14.7-8.1}$$
 correct to 3 significant figures

b) Simplify
$$4\sqrt{32} - 2\sqrt{8}$$

c) Write down the exact value of
$$\sin \frac{5\pi}{4}$$

d) Simplify
$$4(2x+1)-(x^2+2x-3)$$

e) Fully factorise
$$2x^3 - 2y^3$$

f) Find the primitive of
$$x^2 - 2x + \frac{1}{x}$$

Question 2 (12 marks) Start a new page

Marks

a) Solve |1-2x| > 7

2

b) Find the exact area of ΔPQR

2

Not to scale

c)

Not to scale

The points 0 (0,0) A (5, 2) and B (2, 5) are the vertices of a triangle ABO.

(i) Find the distance OA and the distance OB

2

(ii) Show that the equation AB is x + y - 7 = 0

2

(iii) Calculate the perpendicular distance from O to AB

2

(iv) Find the midpoint, M, of AB

1

(v) Without any more calculations what is the distance of *OM*, give a reason for answer.

Question 3 (12 marks) Start a new page

Marks

1

a) Differentiate with respect to x:

i)
$$y = x^2 - 4x + 1$$

ii)
$$y = (e^{2x} + 1)^2$$

iii)
$$y = x^2 \cos 2x$$

b) i) Find
$$\int \frac{4}{4x+1} dx$$

ii) Evaluate
$$\int_0^{\frac{\pi}{4}} 2\sec^2 x \, dx$$
 2

c) The roots of the equation $x^2 + 5x = 7$ are α and β Find the value of

i)
$$\alpha + \beta$$

ii)
$$\alpha\beta$$

iii)
$$\alpha^2 + \beta^2$$

2

2

2

2

- a) A ship sails from Port A 70 nautical miles due west to Port B. It then proceeds 40 nautical miles on a bearing of 120°T to Port C.
 - i) Find the distance of Port C from Port A (correct to 2 decimal places)
 - ii) Find the bearing of Port C from Port A (correct to the nearest degree).

b)

The perimeter of sector AOB is 13.5cm

- i) Find the size of $\angle AOB$, correct to the nearest minute
- ii) Find the area of sector AOB 2

c)

In the diagram AB is parallel to CD and $CD \perp BC$ 2

- i) Show that triangle AXB is similar to triangle CXD
- ii) Given AB:DC=2:3 Show that $9(BX)^2 = 4(XD)^2$

Question 5 (12 marks) Start a new page

Marks

- a) For the sequence 95, 91, 87, find,
 - i) An expression for the nth term, Tn, in its simplest form

2

ii) Which term is the first term less than zero

2

iii) What is the sum of all the terms greater than zero

2

In the diagram given

AC // DE and AC // FH

 $\angle DEB = 145^{\circ}$ and $\angle BGH = 125^{\circ}$

Find the size of $\angle EBG$, giving reasons

2

2

2

- c) i) For what values of x will a limiting sum exist for the geometric series, $3-12x+48x^2-\dots$?

ii) Find the value of x for which the limiting sum is 9.

Question 6 (12 marks) Start a new page

Marks

- a) Find the equation of the *normal* to the curve $y = \ln(2x+3)$ at the point where x = -1.
- 3

- b) The function f(x) is given by $f(x) = 2x(x-3)^2$
 - i) Find the coordinates of the points where the curve y = f(x) cuts the x-axis
- 2

ii) Find the coordinates of any turning points on the curve y = f(x), and determine their nature

4

iii) Sketch the curve y = f(x) in the domain $-1 \le x \le 4$

2

1

iv) Hence solve $2x^3 - 12x^2 + 18x - 8 = 0$

a) What is the value of $\log_2 \sqrt{8}$

1

b) Given $3x^2 + 4x + 5 \equiv A(x+1)^2 + B(x+1) + C$

Find the value of the constants A, B and C

3

- c) Consider the function $f(x) = x \sin^2 x$
 - i) Copy and complete the table below in your writing booklet. Values of f(x) are given to 3 decimal places where appropriate.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
f(x)	0	0.393	1.571		0

1

- ii) Using Simpson's Rule with five function values, evaluate
 - $\int_0^{\pi} x \sin^2 x dx$, correct to 2 decimal places.

3

d) i) Sketch the curve $y = 1 - \cos 2x$, $0 \le x \le 2\pi$

- 2
- ii) Find the area bounded by the curve, $y = 1 \cos 2x$, the x- axis and the lines x = 0 and $x = \pi$

Question 8	(12 marks)	Start a new page
	(1 8

Marks

- a) Given $\log_a x = 0.417$ and $\log_a y = 0.609$ find the value of
 - i) $\log_a(ax)$

2

ii) $\log_a \frac{x^2}{y}$

2

- b) The region beneath the curve $y = 3e^{-2x} + 1$ which is above the x axis and between the lines x = 0 and x = 1 is rotated about the x axis
 - i) Sketch the region

2

ii) Find the volume of the solid revolution

4

- c) The price of one gram of gold, P, was studied over the period of t days.
 - i) Throughout the period of study $\frac{dP}{dt} > 0$ What does this say about the price of gold?

1

ii) If it was noted over this time that the rate of change in the price of gold increased. What does this statement imply about $\frac{d^2P}{dt^2}$?

Ques	stion 9	(12 marks) Start a new page	Marks
a)	For w	that values of k does the equation $x^2 - (k+2)x + 1 = 0$ have;	
	i)	Equal roots	2
	ii)	No real roots	1
b)	_	opulation of a town at the end of t years is given by $P = Ae^{kt}$, where A and A onstants.	k
	After	1 year the population is 1060	
	i)	Find the value of A if the population was initially 1020	1
	ii)	Find the value of k	2
	iii)	Calculate the population after 12 years	2
	iv)	What is the rate of increase in the population after 12 years	2
	v)	How many years will it take the population to double?	2

1

a) Shrek borrows \$1 000 000 from the Muffin man, at 7.8% p.a. monthly reducible interest to buy a new swamp in Far-Far away land.

He repays the loan in equal monthly repayments of \$8000.

- i) Write an expression for the amount Shrek owes immediately before
 the 1st repayment
- ii) Show that Shrek owes the Muffin man after n months:

$$An = 1000\,000(1.0065)^n - 8000 \left[\frac{1.0065^n - 1}{0.0065} \right]$$

- iii) How many months does Shrek take to repay half the loan to the Muffin man?
- b) A new grain silo with a capacity of $4000m^3$ is to be constructed on a farm. The silo is a fully enclosed cylinder and is to be constructed from concrete.

To Save costs, the farmer wants to minimise the surface area of the silo.

- i) Write an expression for the volume of the silo in terms of radius (r) and height (h)
- ii) Write an expression for the surface area (A) of the concrete silo in terms of r

iii) Show that
$$\frac{dA}{dr} = \frac{4\pi r^3 - 8000}{r^2}$$

iv) Hence, find the dimensions of the silo to minimise the surface are ofthe silo. Express your dimensions to 1 decimal place.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

NOTE: $\ln x = \log_e x$, x > 0

 $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

Question 3 11. $\frac{dy}{dx} = 2(e^{2x}+1)$. $2e^{2x}$ $=4e^{2x}(e^{2x}+1)$ ② 111. dy = Cos 2x (2x) + x2 (-2sin2x) = 1x cos2x - 2x2 sin2x b) 1. $\int \frac{4}{4x+1} dx = \ln(4x+1) + C$ 11. $\int_{0}^{\pi/4} dSec^{2}x dx = \partial_{0}^{2} \tan x \int_{0}^{\pi/4}$ = 2 tan # - tano] =2[1-0] = 4.5 cm2 = 2 (0) c) c) $x^2+5x-7=0$ $\alpha=1, b=5 c=-7$ In DAXB and DCXD $(11) d^{2} + \beta^{2} = (d + \beta)^{2} - 2\alpha\beta$ 0 $=(-5)^2-2(-7)$ = 39 Question 4 70 A

11.
$$\frac{\sin \alpha}{40} = \frac{\sin 30^{\circ}}{40.62}$$

 $\sin \alpha = 0.49236...$
 $\alpha = 29^{\circ}30^{\circ}$

b)
$$l=(0) = 13.5 = 2(1 + 6)$$
 $13.5 = 12 + 6)$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$
 $13.5 = 12 + 6$

| ||)
$$A = \frac{1}{2} x^2 \Rightarrow$$

= $\frac{1}{2} \times 6^2 \times 0.25$
= 4.5 cm^2

c)
$$x^2+5x-7=0$$
 $\alpha=1, b=5 c=-7$

(1) $\alpha+\beta=-b/a$ (11) $\alpha\beta=c/a$

$$=-50$$

$$=-70$$

(12) $\alpha+\beta=-b/a$ (13) $\alpha+\beta=c/a$

$$=-50$$

(14) $\alpha+\beta=-b/a$ (15) $\alpha+\beta=-b/a$ (16) $\alpha+\beta=-b/a$ (17) $\alpha+\beta=-b/a$ (17) $\alpha+\beta=-b/a$ (18) $\alpha+$

$$\frac{2}{3} = \frac{XB}{XD}$$

$$2XD = 3BX$$

$$4(xD)^{2} = 9(Bx)^{2}$$
 both = 0

Question 7 Question 8 a) logation) = loga a + loga x () a) $\log_2 \sqrt{8} = \frac{1}{2} \log_2 8$ = 1 x 310922 ") $\log_a \frac{x^2}{7} = 2\log_a x - \log_a y$ b) $3x^2 + 4x + 5 = A(x^2 + 2x + 1) +$ = 2(0.417) - 0.609 Bx + B + C equating = 0.225 b) 4 4 = 6 + 8 = 3 - 2 + C $= \pi \left((3e^{-2x} + 1)^2 dx \right)$ A=3, B=-2, C=4 $= \pi \int_{0}^{1} 9e^{-4x} + 6e^{-2x} + 1 dx$ $\frac{9}{-4}e^{-4x} + \frac{6e^{-4x}}{-1} + x$ $= \pi \left(\frac{9}{4} e^{-4} - 3e^{-2} + 25 \right)$ c) dp > 0 price of gold = 2.47 (2dp) y=1-C052x @ Coszx dx

Question 9	. ①
a) $x^2 - (k+2)x + 1 = 0$	dp = k. (1020 e kt) k=1n (100
1) Equal roots D=0	dt = 62.2513
$b^2 - 4ac = 0$	= 62.25 people/yr. 0
$(K+2)^2-4(1)(1)=0$	
L2+4K+4-4=0	v) t=? P=2A
K ² + 4 K = 0	A KE 1 (100
K(K+4)=0	$2A = Ae^{Kt}$ $k = ln(\frac{100}{10})$
K=0, $K=-H$	$\lambda = e^{kt}$ 0
 1) bco, -46KCO 0	
	Ind = Ine
b) t=0 P= 1020	100
A = 1020 O	$\ln 2 = k.t$ $t = \ln 2 \div k$
11. E=1 P=1060	= 18.0196 (
1060 = 1020 e K(1)	= 18 years.
1060 = e ^k 0	4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1020	
$\ln\left(\frac{106}{102}\right) = k$	
$k = \ln\left(\frac{106}{102}\right)$	
÷ 0.038466	
n_1) $t = 12 P = ? $	
$P = 1020e^{k.12} k = ln\left(\frac{106}{102}\right)$	
= 1618.335	
÷ 1618	
v) rate = d	

