Przygotowanie zdjęć do legitymacji studenckiej. Zespołowe przedsięwzięcie

inżynierskie Prowadzący: Antoni Ligęza

Spis treści

1.	. Zespołowe przedsięwzięcie	:	3
	1.1. Członkowie zespołu z określeniem funkcji	:	3
	1.2. Uzasadnienie potrzeby realizacji projektu	:	3
	1.3. Cele projektu		3
	1.4. Grupy docelowe	:	3
	1.5. Zakres projektu		4
	1.6. Struktura podziału prac (zadań) - WBS		4
	1.7. Diagram sieciowy		õ
	1.8. Harmonogram	!	õ
	1.8.1. Harmonogram prac poszczególnych członków zespołu	!	õ
	1.9. Dokumentacja	!	õ
	1.9.1. Edycja plików dokumentacyjnych		õ
	1.9.1.1. Obsługa SVN		j
2.	. Paweł Golonka	(3
3.	. Karol Liszka	•	7
4.	. Bartosz Rusinek	8	3
Ri	Sibliografia	9	q

Zespołowe przedsięwzięcie

- Przygotowanie zdjęć do legitymacji studenckiej.
- Projekt jest odpowiedzią na uzasadnioną potrzebę istnienia narzędzia służącego do automatycznej edycji zdjęć, która ułatwi wydruk zdjęć do legitymacji

1.1. Członkowie zespołu z określeniem funkcji

- 1 Paweł Golonka kierownik zespołu
- 2 Karol Liszka programista C#
- 3 Bartosz Rusinek tester aplikacji, autor pomocy, itp

1.2. Uzasadnienie potrzeby realizacji projektu

Projekt ma za zadanie pomóc nowym studentom w przygotowaniu zdjęć do legitymacji czy też do innego użytku. Utworzenie stosownej aplikacji pozwoli na ominięcie kosztów związanych z wykonaniem zdjęcia u profesjonalnego fotografa a także umożliwi łatwe przygotowanie zdjęcia do wysłania w formie elektronicznej. Narzędzie to pozwoli również na tworzenie gotowych bloków zdjęć w wybranej przez użytkownika wielkości.

1.3. Cele projektu

Zespołowe przedsięwzięcie inżynierskie obejmuje przygotowanie aplikacji dla Państwowej Wyższej Szkoły Zawodowej wspomagającej proces przygotowanie fotografii przeznaczonych do legitymacji studenckiej. Program ma pobierać zdjęcie w jednym z wymienionych formatów, a następnie wykadrować wybrany element oraz zapisać go do podanych rozmiarów. W dalszym etapie, jego zadaniem będzie utworzenie bloku zdjęć w oparciu o parametry podane przez użytkownika.

1.4. Grupy docelowe

Odbiorcą aplikacji jest PWSZ w Nowym Sączu - Instytut Techniczny a sama aplikacja dedykowana jest dla studentów.

1.5. Zakres projektu

Etapy, które zostaną zrealizowane aby uzyskać postawiony cel

- 1. Wywiad ze zleceniodawcą zapoznanie się z oczekiwaniami co do aplikacji.
- 2. Przygotowanie środowiska do pracy z dokumentami LATEXoraz C#.
- 3. Opracowanie programu w języku C#
- 4. Opracowanie plików pomocy i szaty graficznej programu.
- 5. Kompilacja raportów do formatu PDF, utworzonych w LATEX.

1.6. Struktura podziału prac (zadań) - WBS

Hierarchiczna dekompozycja projektu na zadania i aktywności.

- 1. Wybranie tematu projektu.
- 2. Zebranie informacji w wywiadzie ze zleceniodawcą.
 - (a) Informacje o celach programu.
 - (b) Informacje na temat sposobu działania.
 - (c) Informacje na temat wyniku który ma zostać zwrócony.

3. Organizacja pracy

- (a) Wybranie lidera grupy.
- (b) Wstępny podział obowiązków pośród członków grupy.
- (c) Określenie języka programowania oraz środowiska w którym program zostanie zaimplementowany.

4. Przygotowanie środowiska

- (a) Instalacja i konfiguracja środowiska LaTeX oraz edytora Texmaker.
- (b) Utworzenie i konfiguracja repozytorium.
- (c) Instalacja Microsoft Visual Studio 2013.

5. Budowa programu.

- (a) Wybór środowiska .NET, środowiska programistycznego oraz utworzenie w nim projektu.
- (b) Utworzenie interfejsu.
- (c) Zaimplementowanie wybranych metod.
- (d) Zdefiniowanie potrzebnych zmiennych.
- (e) Połączenie metod z elementami graficznymi programu.
- (f) Kompilacja programu.

- 6. Prace finalne.
 - (a) Testowanie programu.
 - (b) Poprawianie ewentualnych bugów.
 - (c) Testy wtórne.

1.7. Diagram sieciowy

Diagram sieciowy ukazuje zależności czasowe, węzły (aktywności), krawędzie (zależności czasowe).

1.8. Harmonogram

1.8.1. Harmonogram prac poszczególnych członków zespołu

WBS, lub diagram Gantta.

1.9. Dokumentacja

Przygotowanie środowiska do równoległego opracowania dokumentacji projektu i realizacji przydzielonych zadań poszczególnym członkom zespołu projektowego.

1.9.1. Edycja plików dokumentacyjnych - każdy członek zespoły niezależnie

Każdy z członków zespołu edytuje swój plik IATEX (czlonkowie/nrCzlonka/main.tex) i umieszcza w nim całość analiz i wyników, które pozwoliły mu zrealizować przydzielone zadanie. Wszystkie pliki graficzne, każdy niezależnie umieszcza w swoim katalogu (czlonkowie/nrCzlonka).

Pierwszą linia w pliku (czlonkowie/nrCzlonka/main.tex), zawiera imię i nazwisko opracowującego członka zespołu:

Każde działanie/zadanie należy DOKŁADNIE opisać podając w poleceniu \(\)zadanieprojektowe cztery obowiązkowe dane:

- Rodzaj zadania [Przygotowanie przestrzeni do zespołowej pracy]
- Data rozpoczęcia [2014-11-01]
- Data zakończenia [2014-11-02]
- Aktualny status [zaplanowane do realizacji, w trakcie realizacji, zakończone]
- dokładny opis realizowanego zadania [powinien zawierać opis, rysunki, tabele, kody napisanych programów]

Poniżej znajduje się przykładowy listing dla skróconych dwóch zadań:

1.9.1.1. Obsługa SVN

Precyzyjne instrukcje jak obsługiwać repozytorium i wgrywać zmiany prze poszczególnych członków zespołu.

2 Paweł Golonka

 sdsd dsds

3 Karol Liszka

$\begin{array}{c} 4 \\ Bartosz \ Rusinek \end{array}$

Bibliografia

- [1] Balcerzak J., Pansiuk J.: Wprowadzenie do kartografii matematycznej, Warszawa, OWPW 2005.
- [2] Barrett R. i inni: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods1, wersja elektorniczna Mathematics http://www.siam.org/books.
- [3] Bjork A., Dahlquist G.: Numerical Methods in Scientific Computing, Philadelphia, SIAM 2002.
- [4] CCITT, Facsimile Coding Schemes and Coding Control Functions for Group 4
 Facsimile Apparatus, Recommendation T.6, Volume VII, Fascicle VII.3, Terminal
 Equipment and Protocols for Telematic Services, The International Telegraph and
 Telephone Consultative Committee (CCITT), Geneva, CCITT 1985.
- [5] Drwal G, i in., Mathematica 4, Gliwice, WPKJS 200.
- [6] Gdowski B.: Elementy geometrii rózniczkowej w zadaniach, Warszawa, PWN 1982.
- [7] Januszewski J.: Systemy satelitarne GPS, Galileo i inne, Warszawa, PWN 2006.
- [8] : Kiełbasiński A., Schwetlick H.: Numeryczna algebra liniowa, Warszawa, WNT 1992.
- [9] Kincaid D.: Analiza numeryczna, Warszawa, WNT 2006.
- [10] Levine J.: Programowanie plików graficznych w C/C++, New York, Wiley 1994.
- [11] Longley P. i inni: GIS teoria i praktyka, Warszawa, PWN 2006.
- [12] Open Geospatial Consortium Inc.: OpenGIS Geography Markup Language (GML) Encoding Standard, Version: 3.2.1, OGC 2007.
- [13] Open Geospatial Consortium Inc.: OpenGIS® Geography Markup Language (GML) Implementation Specification, OGC 2004.
- [14] Opera J.: Geometria róniczkowa i jej zastosowania, Warszawa, PWN 2002.
- [15] Odlanicki-Poczobut M.: Geodezja, PPWK 1982.
- [16] Li Y. i inni: GML Topology Data Storage Schema Design, Chiba University 2007.

Bibliografia 10

[17] Li Y., Li J., Zhou S.: *GML Storage*, A Spatial Database Approach, ER (Workshops), str 55-66, 2004.

- [18] Sayood K.: Kompresja danych, Warszawa, Rm 2002.
- [19] The Technical Instruction G-5, The Ground Cadastre and Buildings, The Main Surveying and Cartographic Bureau, Warszawa 2003.