Files

- notebooks/analyze_stacking_regressor_vs_voting_regresspry
- local/eval_results'experiment_stacking_regressor_vs_voting_regressorsv
- experiments/experiment_stacking_regressor_vs_voting_regressory

Motivation

The regression method that we currently use for the BucketRegressoris based on voting. A **voting regressor** is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it provides a **weighted** average of the individual predictions to form a final prediction.

While this regression method proved efficient in the past, we wanted to try a new formula: a **stacking regressor**. The primary idea of stacking is to feed the predictions of numerous base models into a higher-level model known as the meta-model or blender, which then combines them to get the final forecast. The architectural advantage of this model is that the stacking process can happen on multiple layers: the blender of the first layer becomes the final model of the second layer etc.

Sklearn provides this implementation of the stacking regressor. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

Here is an example of generalised (multi-layered) stacking: https://scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html#sphx-glr-auto-examples-ensemble-plot-stack_predictors-py

Design

Multiple configurations are possible for this stacking type regressor, so we chose two of them which had the greatest potential to provide an accurate comparison with the voting type regressors that were already implemented.

For the implementation of the **simple** stacking regressor we used the following model hierarchy:

Base

- decision tree
- knn
- ridge + kernel approximation (nystroem with rbf)
- sgd + kernel approximation (nystroem with rbf)

Final:

gradient boosting

For the implementation of the double layered stacking regressor we used the following model hierarchy:

Base

- decision tree
- knn
- ridge + kernel approximation (nystroem with rbf)
- sgd + kernel approximation (nystroem with rbf)

Final:

• stacking regressor using:

Base

- extra trees
- svr + kernel approximation (nystroem with rbf)
- random forest

Final:

Igbm

The experiment compares effects on the overall model estimator when using the voting regressor, the even weighted voting regressor, the simple stacking regressor, the double layered stacking regressor, and the baseline one. There are 10 iterations x 5 models, each having a separate data split.

Results and Insight

Resultsshow that the estimator which uses an even weight voting mechanism for bucket regression (the EvenWeightMiniModelArmyEstimator) still performs best overall. It turns out that the simple stacking strategy improves the sMAPEperformance metric by 3% for scope 1 predictions and 2% for scope 3, but the runtime overhead makes it less worthy in being considered as a replacement for voting.

We decided to also perform some statistical analysis covering the interaction between scopes and the estimators evaluated above.

The ANOVA table presents a variance analysis between scopes, estimators, and pairs of them. The interaction term between "scope" and "scope_estimator" explores whether the combination of these two variables has a significant impact. The F-statistic is relatively small, and the p-value (5.699260e-01) is larger than 0.05, indicating that the interaction may not be statistically significant.

```
ANOVA Table:
                                            df
                                                                   PR(>F)
                                sum_sq
C(scope)
                                           2.0
                                                            1.178628e-37
                              1.534977
                                                206.769715
C(scope_estimator)
                                                            2.783777e-01
                              0.014472
                                           3.0
                                                  1.299630
C(scope):C(scope_estimator)
                              0.017877
                                           6.0
                                                  0.802704
                                                            5.699260e-01
Residual
                              0.400875
                                         108.0
                                                                      NaN
                                                       NaN
```

For more details, we decided to look at interactions between specific groups with Tukey's HSD post-hoc test. Unfortunately, the only significant pair results (with p < 0.05) are the ones with the baseline as a member of the pair, or the ones that compare the same estimator but for different scopes, which was expected.

	2			1		
group1	group2	meandiff	p-adj	lower	upper	rejec
1_BaselineEstimator	1_BucketDoubleLevelStackingArmyEstimator	-0.7352	0.0	-0.8204	-0.65	True
1_BaselineEstimator	<pre>1_BucketStackingArmyEstimator</pre>	-0.7763	0.0	-0.8615	-0.6911	Tru
1_BaselineEstimator	1_EvenWeightMiniModelArmyEstimator	-0.7462	0.0	-0.8314	-0.661	True
1_BaselineEstimator	1_MiniModelArmyEstimator	-0.7639	0.0	-0.8491	-0.6787	True
1_BaselineEstimator	2_BaselineEstimator	-0.0446	0.8901	-0.1298	0.0406	False
1_BaselineEstimator	${\tt 2_BucketDoubleLevelStackingArmyEstimator}$	-0.8749	0.0	-0.9601	-0.7897	Tru
1_BaselineEstimator	2_BucketStackingArmyEstimator	-0.8997	0.0	-0.9849	-0.8145	Tru
1_BaselineEstimator	2_EvenWeightMiniModelArmyEstimator	-0.9065	0.0	-0.9917	-0.8213	Tru
1_BaselineEstimator	2_MiniModelArmyEstimator	-0.8695	0.0	-0.9547	-0.7843	Tru
1_BaselineEstimator	3_BaselineEstimator	0.0348	0.9851	-0.0504	0.12	Fals
1_BaselineEstimator	${\tt 3_BucketDoubleLevelStackingArmyEstimator}$	-0.5962	0.0	-0.6814	-0.511	Tru
1_BaselineEstimator	3_BucketStackingArmyEstimator	-0.6201	0.0	-0.7053	-0.5349	Tru
1_BaselineEstimator	3_EvenWeightMiniModelArmyEstimator	-0.5917	0.0	-0.6769	-0.5065	Tru
1_BaselineEstimator	3_MiniModelArmyEstimator	-0.6348	0.0	-0.7201	-0.5496	Tru
1_BucketDoubleLevelStackingArmyEstimator	1_BucketStackingArmyEstimator	-0.0411	0.9395	-0.1263	0.0441	Fals
1_BucketDoubleLevelStackingArmyEstimator	1_EvenWeightMiniModelArmyEstimator	-0.0109	1.0	-0.0961	0.0743	Fals
${\bf 1_BucketDoubleLevelStackingArmyEstimator}$	1_MiniModelArmyEstimator	-0.0287	0.9978	-0.1139	0.0565	Fals
1_BucketDoubleLevelStackingArmyEstimator	2_BaselineEstimator	0.6906	0.0	0.6054	0.7758	Tru
1_BucketDoubleLevelStackingArmyEstimator	${\tt 2_BucketDoubleLevelStackingArmyEstimator}$	-0.1397	0.0	-0.2249	-0.0545	Tru
•••						
3_BucketStackingArmyEstimator	3_EvenWeightMiniModelArmyEstimator			-0.0568		
3_BucketStackingArmyEstimator	3_MiniModelArmyEstimator	-0.0147	1.0	-0.1	0.0705	False

We also tried the Mixed Linear Model (MixedLM) regression analysis This type of model is used when dealing with clustered or hierarchical data where observations are not independent. In this case, there are 12 groups, and each group has 10 observations. The dependent variable is "raw_sMAPE" and the independent variable is "scope_estimator" with multiple levels. The model considers both fixed effects (overall relationships) and random effects (variance within groups).

Fixed effects:

The "coef" column for C(scope_estimator) shows the coefficients for the different levels of the 'scope_estimator' variable. Each coefficient represents the estimated change in the dependent variable when the corresponding level of 'scope_estimator' is compared to the reference level ('BaselineEstimator' in this case). All p-values are below 0.05, suggesting that the variable is not statistically significant. For example:

- BucketStackingArmyEstimator: -0.030 (p-value = 0.793)
- 'EvenWeightMiniModelArmyEstimator': -0.013 (p-value = 0.911)
- 'MiniModelArmyEstimator': -0.021 (p-value = 0.856)

Random effects:

Group Var represents the estimated variance of the random effects associated with different groups formed by the interaction of 'scope' and 'scope_estimator.' In this case, the estimated variance is 0.019 with a standard error of 0.165.

Mixed Linear Model Regression Results									
Model:	MixedLM	Dependent Variable:		rav	raw_sMAPE				
No. Observations:	120	Method:		REN	REML				
No. Groups:	12	Scale:		0.0	0.0037				
Min. group size:	10	Log-Like	lihood:	137	137.3550				
Max. group size:	10	Converge	d:	Yes	Yes				
Mean group size:	10.0								
		Coef.	Std.Err. z	P> z [0.025	0.975]				
Intercept		0.981	0.080 12.197	0.000 0.823	1.139				
C(scope_estimator)[T.BucketStackingArmyEstimator]		-0.030	0.114 -0.263	8 0.793 -0.253	0.193				
C(scope_estimator)[T.EvenWeightMiniModelArmyEstimator]] -0.013	0.114 -0.111	0.911 -0.236	0.210				
C(scope_estimator)[T.MiniModelArmyEstimator]		-0.021	0.114 -0.181	L 0.856 -0.244	0.202				
Group Var		0.019	0.165						

Decision

We will continue using the even weighted voting mechanism because it produces the best performance for the least runtime so far. Further cascading investigations on how much interaction we have between scopes and different estimator configurations might be a good idea in order to improve the overall model performance.