

CARRERA DE ESPECIALIZACIÓN EN INTELEGENCIA ARTIFICIAL

MEMORIA DEL TRABAJO FINAL

Predicción de eventos graves en pacientes hipertensos basado en informes de presurometrías a partir de la aplicación de técnicas de inteligencia artificial

Autor: Ing. Trinidad Monreal

Director: Dr. Ing. Roberto A. Bunge (UdeSA)

Jurados: Nombre del jurado 1 (pertenencia) Nombre del jurado 2 (pertenencia) Nombre del jurado 3 (pertenencia) Este trabajo fue realizado en la Ciudad Autónoma de Buenos Aires, entre octubre de 2022 y agosto de 2023.

Resumen

En esta memoria se describe el diseño y la implementación de un software de inteligencia artificial desarrollado para el Hospital Alemán. El modelo utiliza datos obtenidos de presurometrías realizadas a pacientes hipertensos, con el propósito de predecir el riesgo de sufrir eventos cardiovasculares graves. Como resultado, este trabajo permite al servicio de cardiología e hipertensión definir estrategias de tratamiento personalizadas para cada grupo de riesgo.

Para llevar a cabo este trabajo se emplearon técnicas de estadística, análisis de datos y criterios de selección de características, así como modelos de aprendizaje profundo para lograr la clasificación.

Índice general

Re	esume	en e	I
1.		oducción general	1
	1.1.	Conceptos básicos de la presión arterial y sus métodos de medición	1
		1.1.1. Presión arterial normal e hipertensión arterial	1
		1.1.2. Presurometrías	2
		Contexto y motivación	3
	1.3.	Objetivos, alcance y requerimientos	3
		1.3.1. Objetivos	3
		1.3.2. Alcance	4
		1.3.3. Requerimientos	4
	1.4.	Estado del arte	4
		1.4.1. Predicción de MACE a partir de otras fuentes	4
		1.4.2. Predicción del riesgo de padecer enfermedades cardiovas-	
		culares	4
	1.5.	Personalizando la plantilla, el archivo memoria.tex	5
	1.6.	El código del archivo memoria.tex explicado	5
	1.7.	Bibliografía	6
2.		oducción específica	9
	2.1.	Estilo y convenciones	9
		2.1.1. Uso de mayúscula inicial para los título de secciones	9
		2.1.2. Este es el título de una subsección	9
		2.1.3. Figuras	10
		2.1.4. Tablas	11
		2.1.5. Ecuaciones	12
3.		eño e implementación	15
	3.1.	Análisis del software	15
4.	Ensa	ayos y resultados	17
	4.1.	Pruebas funcionales del hardware	17
5.	Con	clusiones	19
	5.1.	Conclusiones generales	19
		Próximos pasos	19
Bi	bliog	rafía	21

Índice de figuras

1.1.	Representación esquemática del pulso de presión registrado en la	
	aorta ascendente	1
1.2.	Esquema de un <i>holter</i> de presión arterial	3
1.3.	Entorno de trabajo de texMaker	4
1.4.	Definir memoria.tex como documento maestro	5
2.1.	Ilustración del cuadrado azul que se eligió para el diseño del logo.	10
2.2.	Imagen tomada de la página oficial del procesador ¹	11
2.3.	¿Por qué de pronto aparece esta figura?	11
2.4.	Tres gráficos simples	11

Índice de tablas

1.1.	Tabla HTA	2
1.2.	Tabla HTA-MAPA	3
2.1.	caption corto	12

Introducción general

1.1. Conceptos básicos de la presión arterial y sus métodos de medición

En esta sección, se abordará la definición de la presión arterial normal y la hipertensión, así como el uso de las presurometrías como herramienta complementaria en su diagnóstico y seguimiento.

1.1.1. Presión arterial normal e hipertensión arterial

La presión arterial (PA) es la fuerza por unidad de superficie ejercida por la sangre contra las paredes de las arterias [1]. Sin profundizar en los principios físicos, parece relevante destacar que el corazón bombea la sangre de forma pulsátil. Por este motivo, la PA alterna entre una presión arterial sistólica (PAS) y una presión arterial diastólica (PAD). En la figura 1.1 se expone un registro típico de las pulsaciones de la presión en la raíz de la arteria aorta.

FIGURA 1.1. Representación esquemática del pulso de presión registrado en la aorta ascendente.

En un adulto joven sano, la presión máxima o PAS es de 120 mmHg y la presión mínima o PAD en cada pulso es de 80 mmHg. La diferencia entre estas dos presiones se conoce cómo la presión de pulso (PP) y ronda unos 40 mmHg. Por otro lado, la presión arterial media (PAM) está determinada en un 60 % por la PAD y en un 40 % por la PAS, dado que se invierte una mayor fracción del ciclo cardíaco en la diástole que en la sístole (2, 3). Así, la expresión matemática que describe a la PAM es la siguiente:

$$PAM = \frac{(2*PAD + PAS)}{3} \tag{1.1}$$

La PA alta o hipertensión arterial (HTA) es uno de los principales factores de riesgo para las enfermedades cardiovasculares, tales cómo la enfermedad cerebrovascular, insuficiencia cardíaca, cardiopatía isquémica, enfermedad renal terminal, arteriopatía periférica y retinopatía [7]. Actualmente, se utiliza cómo guía la clasificación de HTA de la tabla 1.1 [2].

Grado	PAS		PAD
Óptima	< 120 mmHg		< 80 mmHg
Normal	120-129 mmHg	y/o	80-84 mmHg
Normal-alta	130-139 mmHg	y/o	85-89 mmHg
HTA de grado I	140-159 mmHg	y/o	90-99 mmHg
HTA de grado II	160-170 mmHg	y/o	100-109 mmHg
HTA de grado III	< 180 mmHg	y/o	< 110 mmHg
HTA sistólica aislada	> 139 mmHg		< 89 mmHg

TABLA 1.1. Clasificación de la presión arterial por niveles.

1.1.2. Presurometrías

Las mediciones de PA en el consultorio médico son necesarias pero insuficientes para un adecuado diagnóstico, tratamiento y seguimiento de la HTA. El monitoreo ambulatorio de presión arterial (MAPA), también conocido como presurometría, es un examen complementario que permite evaluar la PA en el contexto de la vida cotidiana del paciente. A diferencia de las mediciones de PA en el consultorio, que se realizan en condiciones estandarizadas, el MAPA obtiene un gran número de mediciones a lo largo de un día habitual del paciente. Esto proporciona la capacidad de medir la tensión arterial durante el reposo, sueño, actividad física y mental, trabajo y período postprandial. Conocer la PA ambulatoria permite identificar diferentes patrones de HTA, tales como: HTA diurna, HTA nocturna, HTA durante todo el día, HTA durante el sueño e HTA de guardapolvo blanco (solo presente en el consultorio médico). Por lo tanto, este estudio puede ser un predictor más efectivo de la mortalidad y eventos cardiovasculares que simplemente basarse en la medición de la presión arterial en el consultorio médico [5, 7].

Actualmente, el MAPA es el único método disponible para medir la PA durante la noche, y diversos estudios demuestran que la PA nocturna tiene un mayor valor pronóstico que la PA diurna. Por esta razón, se recomienda incluir el MAPA cómo parte del diagnóstico de la HTA. Es especialmente útil cuando los valores de PA en el consultorio se encuentran en un rango limítrofe (grado normal-alta según la

tabla 1.1) en varias consultas consecutivas. Las indicaciones actuales para definir la HTA mediante el MAPA se detallan en la tabla 1.2.

TABLA 1.2. `	Valores de referencia	para definir H	TA por MAPA.
--------------	-----------------------	----------------	--------------

	PAS		PAD
PA de 24 horas	\geq 130 mmHg	y/o	\geq 80 mmHg
PA diurna	\geq 135 mmHg	y/o	\geq 85 mmHg
PA nocturna	\geq 120 mmHg	y/o	\geq 70 mmHg

El MAPA se lleva a cabo mediante dispositivos conocidos como presurómetros o *holters* de presión arterial. Un técnico en cardiología coloca el presurómetro en el brazo del paciente, y se retira al día siguiente. El instrumento consiste en un manguito de presión arterial conectado a una grabadora, como se muestra en la figura 1.2. Esta realiza un inflado periódico cada 20 a 30 minutos, y los datos se almacenan en una memoria de estado sólido, generalmente en una tarjeta SD. Luego, los datos son analizados mediante el software del dispositivo.

FIGURA 1.2. Esquema de un holter de presión arterial.

1.2. Contexto y motivación

Explicar porqué se realiza el trabajo.

Qué se pretende lograr. Que no se encuentra incluido en el trabajo. Cuáles son los requisitos para considerar el trabajo finalizado.

1.3. Objetivos, alcance y requerimientos

1.3.1. Objetivos

Escribir Objetivos

1.3.2. Alcance

Escribir alcance

1.3.3. Requerimientos

Enumerar requerimientos

- Capítulo 1: Introducción general
- Capítulo 2: Introducción específica
- Capítulo 3: Diseño e implementación
- Capítulo 4: Ensayos y resultados
- Capítulo 5: Conclusiones

1.4. Estado del arte

1.4.1. Predicción de MACE a partir de otras fuentes

1.4.2. Predicción del riesgo de padecer enfermedades cardiovasculares

FIGURA 1.3. Entorno de trabajo de texMaker.

Notar que existe una vista llamada Estructura a la izquierda de la interfaz que nos permite abrir desde dentro del programa los archivos individuales de los capítulos. A la derecha se encuentra una vista con el archivo propiamente dicho para su edición. Hacia la parte inferior se encuentra una vista del log con información de los resultados de la compilación. En esta última vista pueden aparecen advertencias o *warning*, que normalmente pueden ser ignorados, y los errores que se indican en color rojo y deben resolverse para que se genere el PDF de salida.

Recordar que el archivo que se debe compilar con PDFLaTeX es memoria.tex, si se tratara de compilar alguno de los capítulos saldría un error. Para salvar la molestia de tener que cambiar de archivo para compilar cada vez que se realice una modificación en un capítulo, se puede definir el archivo memoria.tex como "documento maestro" yendo al menú opciones -> "definir documento actual como documento maestro", lo que permite compilar con PDFLaTeX memoria.tex directamente desde cualquier archivo que se esté modificando . Se muestra esta opción en la figura 1.4.

FIGURA 1.4. Definir memoria.tex como documento maestro.

En el menú herramientas se encuentran las opciones de compilación. Para producir un archivo PDF a partir de un archivo .tex se debe ejecutar PDFLaTeX (el shortcut es F6). Para incorporar nueva bibliografía se debe utilizar la opción Bib-TeX del mismo menú herramientas (el shortcut es F11).

Notar que para actualizar las tablas de contenidos se debe ejecutar PDFLaTeX dos veces. Esto se debe a que es necesario actualizar algunos archivos auxiliares antes de obtener el resultado final. En forma similar, para actualizar las referencias bibliográficas se debe ejecutar primero PDFLaTeX, después BibTeX y finalmente PDFLaTeX dos veces por idénticos motivos.

1.5. Personalizando la plantilla, el archivo memoria.tex

Para personalizar la plantilla se debe incorporar la información propia en los distintos archivos .tex.

Primero abrir **memoria.tex** con TexMaker (o el editor de su preferencia). Se debe ubicar dentro del archivo el bloque de código titulado *INFORMACIÓN DE LA PORTADA* donde se deben incorporar los primeros datos personales con los que se construirá automáticamente la portada.

1.6. El código del archivo memoria. tex explicado

El archivo **memoria.tex** contiene la estructura del documento y es el archivo de mayor jerarquía de la memoria. Podría ser equiparable a la función *main()* de un programa en C, o mejor dicho al archivo fuente .c donde se encuentra definida la función main().

La estructura básica de cualquier documento de LATEX comienza con la definición de clase del documento, es seguida por un preámbulo donde se pueden agregar funcionalidades con el uso de paquetes (equiparables a bibliotecas de C), y finalmente, termina con el cuerpo del documento, donde irá el contenido de la memoria.

```
\end{document}
```

El archivo memoria.tex se encuentra densamente comentado para explicar qué páginas, secciones y elementos de formato está creando el código LATEX en cada línea. El código está dividido en bloques con nombres en mayúsculas para que resulte evidente qué es lo que hace esa porción de código en particular. Inicialmente puede parecer que hay mucho código LATEX, pero es principalmente código para dar formato a la memoria por lo que no requiere intervención del usuario de la plantilla. Sí se deben personalizar con su información los bloques indicados como:

- Informacion de la memoria
- Resumen
- Agradecimientos
- Dedicatoria

El índice de contenidos, las listas de figura de tablas se generan en forma automática y no requieren intervención ni edición manual por parte del usuario de la plantilla.

En la parte final del documento se encuentran los capítulos y los apéndices. Por defecto se incluyen los 5 capítulos propuestos que se encuentran en la carpeta /Chapters. Cada capítulo se debe escribir en un archivo .tex separado y se debe poner en la carpeta *Chapters* con el nombre **Chapter1**, **Chapter2**, etc...El código para incluir capítulos desde archivos externos se muestra a continuación.

```
\include{Chapters/Chapter1}
\include{Chapters/Chapter2}
\include{Chapters/Chapter3}
\include{Chapters/Chapter4}
\include{Chapters/Chapter5}
```

Los apéndices también deben escribirse en archivos .tex separados, que se deben ubicar dentro de la carpeta *Appendices*. Los apéndices vienen comentados por defecto con el caracter % y para incluirlos simplemente se debe eliminar dicho caracter

Finalmente, se encuentra el código para incluir la bibliografía en el documento final. Este código tampoco debe modificarse. La metodología para trabajar las referencias bibliográficas se desarrolla en la sección 1.7.

1.7. Bibliografía

Las opciones de formato de la bibliografía se controlan a través del paquete de latex biblatex que se incluye en la memoria en el archivo memoria.tex. Estas opciones determinan cómo se generan las citas bibliográficas en el cuerpo del documento y cómo se genera la bibliografía al final de la memoria.

En el preámbulo se puede encontrar el código que incluye el paquete biblatex, que no requiere ninguna modificación del usuario de la plantilla, y que contiene las siguientes opciones:

1.7. Bibliografía 7

En el archivo **reference.bib** se encuentran las referencias bibliográficas que se pueden citar en el documento. Para incorporar una nueva cita al documento lo primero es agregarla en este archivo con todos los campos necesario. Todas las entradas bibliográficas comienzan con @ y una palabra que define el formato de la entrada. Para cada formato existen campos obligatorios que deben completarse. No importa el orden en que las entradas estén definidas en el archivo .bib. Tampoco es importante el orden en que estén definidos los campos de una entrada bibliográfica. A continuación se muestran algunos ejemplos:

```
@ARTICLE { ARTICLE: 1,
    AUTHOR="John Doe",
    TITLE="Title",
    JOURNAL="Journal",
   YEAR="2017",
}
@BOOK { BOOK : 1,
   AUTHOR="John Doe",
   TITLE="The Book without Title",
   PUBLISHER="Dummy Publisher",
    YEAR="2100",
}
@INBOOK{BOOK:2,
   AUTHOR="John Doe",
   TITLE="The Book without Title",
   PUBLISHER="Dummy Publisher",
   YEAR="2100",
   PAGES="100-200",
}
@MISC{WEBSITE:1,
   HOWPUBLISHED = "\url{http://example.com}",
    AUTHOR = "Intel",
   TITLE = "Example Website",
   MONTH = "12",
   YEAR = "1988",
    URLDATE = \{2012-11-26\}
}
```

Se debe notar que los nombres *ARTICLE:1, BOOK:1, BOOK:2* y *WEBSITE:1* son nombres de fantasía que le sirve al autor del documento para identificar la entrada. En este sentido, se podrían reemplazar por cualquier otro nombre. Tampoco es necesario poner : seguido de un número, en los ejemplos sólo se incluye como un posible estilo para identificar las entradas.

La entradas se citan en el documento con el comando:

```
\citep{nombre_de_la_entrada}
```

Y cuando se usan, se muestran así: [1], [2], [3], [4]. Notar cómo se conforma la sección Bibliografía al final del documento.

Finalmente y como se mencionó en la subsección ??, para actualizar las referencias bibliográficas tanto en la sección bibliografía como las citas en el cuerpo del documento, se deben ejecutar las herramientas de compilación PDFLaTeX, BibTeX, PDFLaTeX, en ese orden. Este procedimiento debería resolver cualquier mensaje Çitation xxxxx on page x undefined".

Introducción específica

Todos los capítulos deben comenzar con un breve párrafo introductorio que indique cuál es el contenido que se encontrará al leerlo. La redacción sobre el contenido de la memoria debe hacerse en presente y todo lo referido al proyecto en pasado, siempre de modo impersonal.

2.1. Estilo y convenciones

2.1.1. Uso de mayúscula inicial para los título de secciones

Si en el texto se hace alusión a diferentes partes del trabajo referirse a ellas como capítulo, sección o subsección según corresponda. Por ejemplo: "En el capítulo 1 se explica tal cosa", o "En la sección 2.1 se presenta lo que sea", o "En la subsección 2.1.2 se discute otra cosa".

Cuando se quiere poner una lista tabulada, se hace así:

- Este es el primer elemento de la lista.
- Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

Si se desea poner una lista numerada el formato es este:

- 1. Este es el primer elemento de la lista.
- 2. Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

2.1.2. Este es el título de una subsección

Se recomienda no utilizar **texto en negritas** en ningún párrafo, ni tampoco texto <u>subrayado</u>. En cambio sí se debe utilizar *texto en itálicas* para palabras en un idioma extranjero, al menos la primera vez que aparecen en el texto. En el caso de palabras que estamos inventando se deben utilizar "comillas", así como también para citas textuales. Por ejemplo, un *digital filter* es una especie de "selector" que permite separar ciertos componentes armónicos en particular.

La escritura debe ser impersonal. Por ejemplo, no utilizar "el diseño del firmware lo hice de acuerdo con tal principio", sino "el firmware fue diseñado utilizando tal principio".

El trabajo es algo que al momento de escribir la memoria se supone que ya está concluido, entonces todo lo que se refiera a hacer el trabajo se narra en tiempo pasado, porque es algo que ya ocurrió. Por ejemplo, "se diseñó el firmware empleando la técnica de test driven development".

En cambio, la memoria es algo que está vivo cada vez que el lector la lee. Por eso transcurre siempre en tiempo presente, como por ejemplo:

"En el presente capítulo se da una visión global sobre las distintas pruebas realizadas y los resultados obtenidos. Se explica el modo en que fueron llevados a cabo los test unitarios y las pruebas del sistema".

Se recomienda no utilizar una sección de glosario sino colocar la descripción de las abreviaturas como parte del mismo cuerpo del texto. Por ejemplo, RTOS (*Real Time Operating System*, Sistema Operativo de Tiempo Real) o en caso de considerarlo apropiado mediante notas a pie de página.

Si se desea indicar alguna página web utilizar el siguiente formato de referencias bibliográficas, dónde las referencias se detallan en la sección de bibliografía de la memoria, utilizado el formato establecido por IEEE en [5]. Por ejemplo, "el presente trabajo se basa en la plataforma EDU-CIAA-NXP [6], la cual...".

2.1.3. Figuras

Al insertar figuras en la memoria se deben considerar determinadas pautas. Para empezar, usar siempre tipografía claramente legible. Luego, tener claro que **es incorrecto** escribir por ejemplo esto: "El diseño elegido es un cuadrado, como se ve en la siguiente figura:"

La forma correcta de utilizar una figura es con referencias cruzadas, por ejemplo: "Se eligió utilizar un cuadrado azul para el logo, como puede observarse en la figura 2.1".

FIGURA 2.1. Ilustración del cuadrado azul que se eligió para el diseño del logo.

El texto de las figuras debe estar siempre en español, excepto que se decida reproducir una figura original tomada de alguna referencia. En ese caso la referencia de la cual se tomó la figura debe ser indicada en el epígrafe de la figura e incluida como una nota al pie, como se ilustra en la figura 2.2.

FIGURA 2.2. Imagen tomada de la página oficial del procesador¹.

La figura y el epígrafe deben conformar una unidad cuyo significado principal pueda ser comprendido por el lector sin necesidad de leer el cuerpo central de la memoria. Para eso es necesario que el epígrafe sea todo lo detallado que corresponda y si en la figura se utilizan abreviaturas entonces aclarar su significado en el epígrafe o en la misma figura.

FIGURA 2.3. ¿Por qué de pronto aparece esta figura?

Nunca colocar una figura en el documento antes de hacer la primera referencia a ella, como se ilustra con la figura 2.3, porque sino el lector no comprenderá por qué de pronto aparece la figura en el documento, lo que distraerá su atención.

Otra posibilidad es utilizar el entorno *subfigure* para incluir más de una figura, como se puede ver en la figura 2.4. Notar que se pueden referenciar también las figuras internas individualmente de esta manera: 2.4a, 2.4b y 2.4c.

FIGURA 2.4. Tres gráficos simples

El código para generar las imágenes se encuentra disponible para su reutilización en el archivo **Chapter2.tex**.

2.1.4. Tablas

Para las tablas utilizar el mismo formato que para las figuras, sólo que el epígrafe se debe colocar arriba de la tabla, como se ilustra en la tabla 2.1. Observar que sólo algunas filas van con líneas visibles y notar el uso de las negritas para los encabezados. La referencia se logra utilizando el comando \ref{<label>} donde label debe estar definida dentro del entorno de la tabla.

¹Imagen tomada de https://goo.gl/images/i7C70w

```
\begin{table}[h]
\centering
\caption[caption corto]{caption largo más descriptivo}
\begin{tabular}{l c c}
\toprule
\textbf{Especie} & \textbf{Tamaño} & \textbf{Valor}\\
\midrule
Amphiprion Ocellaris & 10 cm
Hepatus Blue Tang & 15 cm
Zebrasoma Xanthurus & 12 cm
                                           & \$ 6.000 \\
                                            & \$ 7.000 \\
                                           & \$ 6.800 \\
\bottomrule
\hline
\end{tabular}
\label{tab:peces}
\end{table}
```

TABLA 2.1. caption largo más descriptivo

Especie	Tamaño	Valor
Amphiprion Ocellaris	10 cm	\$ 6.000
Hepatus Blue Tang	15 cm	\$ 7.000
Zebrasoma Xanthurus	12 cm	\$ 6.800

En cada capítulo se debe reiniciar el número de conteo de las figuras y las tablas, por ejemplo, figura 2.1 o tabla 2.1, pero no se debe reiniciar el conteo en cada sección. Por suerte la plantilla se encarga de esto por nosotros.

2.1.5. Ecuaciones

Al insertar ecuaciones en la memoria dentro de un entorno *equation*, éstas se numeran en forma automática y se pueden referir al igual que como se hace con las figuras y tablas, por ejemplo ver la ecuación 2.1.

$$ds^{2} = c^{2}dt^{2} \left(\frac{d\sigma^{2}}{1 - k\sigma^{2}} + \sigma^{2} \left[d\theta^{2} + \sin^{2}\theta d\phi^{2} \right] \right)$$
 (2.1)

Es importante tener presente que si bien las ecuaciones pueden ser referidas por su número, también es correcto utilizar los dos puntos, como por ejemplo "la expresión matemática que describe este comportamiento es la siguiente:"

$$\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi = -i\hbar\frac{\partial\Psi}{\partial t}$$
(2.2)

Para generar la ecuación 2.1 se utilizó el siguiente código:

```
\begin{equation}
\label{eq:metric}
ds^2 = c^2 dt^2 \left( \frac{d\sigma^2}{1-k\sigma^2} + \sigma^2\left[ d\theta^2 + \sin^2\theta d\phi^2 \right] \right)
\end{equation}
```

Y para la ecuación 2.2:

```
\begin{equation}
\label{eq:schrodinger}
\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi =
-i\hbar \frac{\partial\Psi}{\partial t}
\end{equation}
```

Diseño e implementación

3.1. Análisis del software

La idea de esta sección es resaltar los problemas encontrados, los criterios utilizados y la justificación de las decisiones que se hayan tomado.

Se puede agregar código o pseudocódigo dentro de un entorno lstlisting con el siguiente código:

```
\begin{lstlisting}[caption= "un epígrafe descriptivo"]
  las líneas de código irían aquí...
  \end{lstlisting}
  A modo de ejemplo:
1 #define MAX_SENSOR_NUMBER 3
2 #define MAX_ALARM_NUMBER 6
3 #define MAX_ACTUATOR_NUMBER 6
{\tiny 5}\>\>\> uint32\_t\>\>\>\> sensorValue[MAX\_SENSOR\_NUMBER];
6 FunctionalState alarmControl[MAX_ALARM_NUMBER]; //ENABLE or DISABLE
7 state_t alarmState[MAX_ALARM_NUMBER]; //ON or OFF
{\tt s \ tate\_t \ actuatorState [MAX\_ACTUATOR\_NUMBER];} \qquad {\tt //ON \ or \ OFF}
void vControl() {
11
    initGlobalVariables();
12
13
    period = 500 ms;
15
    while (1) {
16
17
      ticks = xTaskGetTickCount();
18
19
      updateSensors();
20
21
      updateAlarms();
22
      controlActuators();
```

CÓDIGO 3.1. Pseudocódigo del lazo principal de control.

vTaskDelayUntil(&ticks, period);

27 28 }

Ensayos y resultados

4.1. Pruebas funcionales del hardware

La idea de esta sección es explicar cómo se hicieron los ensayos, qué resultados se obtuvieron y analizarlos.

Conclusiones

5.1. Conclusiones generales

La idea de esta sección es resaltar cuáles son los principales aportes del trabajo realizado y cómo se podría continuar. Debe ser especialmente breve y concisa. Es buena idea usar un listado para enumerar los logros obtenidos.

Algunas preguntas que pueden servir para completar este capítulo:

- ¿Cuál es el grado de cumplimiento de los requerimientos?
- ¿Cuán fielmente se puedo seguir la planificación original (cronograma incluido)?
- ¿Se manifestó algunos de los riesgos identificados en la planificación? ¿Fue efectivo el plan de mitigación? ¿Se debió aplicar alguna otra acción no contemplada previamente?
- Si se debieron hacer modificaciones a lo planificado ¿Cuáles fueron las causas y los efectos?
- ¿Qué técnicas resultaron útiles para el desarrollo del proyecto y cuáles no tanto?

5.2. Próximos pasos

Acá se indica cómo se podría continuar el trabajo más adelante.

Bibliografía

- [1] John Doe. «Title». En: Journal (2017).
- [2] John Doe. The Book without Title. Dummy Publisher, 2100.
- [3] John Doe. «The Book without Title». En: Dummy Publisher, 2100, págs. 100-200.
- [4] Intel. *Example Website*. http://example.com. Dic. de 1988. (Visitado 26-11-2012).
- [5] IEEE. *IEEE Citation Reference*. 1.^a ed. IEEE Publications, 2016. URL: http://www.ieee.org/documents/ieeecitationref.pdf (visitado 26-09-2016).
- [6] Proyecto CIAA. *Computadora Industrial Abierta Argentina*. Visitado el 2016-06-25. 2014. URL: http://proyecto-ciaa.com.ar/devwiki/doku.php?id=start.