- Polyps of the GI tract

- Tumours of the lower Gastrointestinal Tract (LGIT)

15.08.2018

Objectives

At the end of this lecture, you should be able to

- List, classify and briefly describe different types of polyps in the GIT
- List the different types of tumours of the LGIT briefly describe
- Adenomas
- Adenocarcinomas
- Neuroendocrine neoplasms of the GIT
- GI lymphomas
- Gastrointestinal Stromal Tumours (GISTs)

Polyps of the GI tract - Classification

Polyps of the intestine

- Elevations of the mucosa
- With / without a stalk

Neoplastic

Adenoma

Carcinoma

Lymphoma

GIST

Neuroendocrine tumours

Others

Non-neoplastic

Inflammatory polyps

Hyperplastic polyps

Hamartomaous polyps

Inflammatory polyps

- Inflammatory polyps in IBD
- Polyps in Solitary Rectal Ulcer Syndrome (SRUS)

Hamartomatous polyps

- Sporadic or
- Associated with various syndromes
 - Peutz-Jeghers syndrome
 - Juvenile polyposis
 - Cowden syndrome
 - Cronchite -Canada syndrome
 - **Tuberous sclerosis**

Sporadic or

- Associated with syndromes
 - FAP Classic FAP
 - Attenuated FAP

Gardner syndrome

Turcot syndrome

Hereditary Non polyposis Colorectal Cancer (HNPCC)

/Lynch syndrome

Hyperplastic polyps

- Common epithelial proliferations
- No malignant potential

- Significance:
 - Must be differentiated from "sessile serrated adenomas" that have malignant potential

- Similar epithelial changes can occur adjacent to other lesions - Tumours/ inflammatory lesions

Hyperplastic polyps

Macroscopy

- Common in recto-sigmoid region
- Usually <5 mm and multiple
- Hemispheric, smooth, protrusions on tops of mucosal folds

Microscopy

- irregular, elongated glands with intraluminal infoldings / serrations
- non-dysplastic epithelial lining with differentiation into mature goblet or absorptive cells

Hyperplastic polyp

Hyperplastic polyp

Normal crypts

Hyperplastic crypts – **Serrated appearance**

Sessile serrated adenoma

Hyperplastic polyp

Juvenile polyps

- Focal malformation of the mucosal epithelium and the lamina propria
- Majority in < 5 years of age
- Commonly in Rectum
 minority in stomach and small intestine
- Sporadic Usually solitary
 - Syndromic Juvenile polyposis (3-100 polyps)
 - Increased risk of colonic adenocarcinoma
 - Morphology is similar-

Juvenile polyps

Macroscopy

- Most < 3 cm
- Pedunculated, rounded, smooth lobulated surface
- Cut surface shows cystic spaces

Microscopy

- Cystically dilated glands
 lined by a flattened epithelium
- Lamina propria expanded by mixed inflammation
- Surface may be ulcerated

Polyps in Peutz-Jeghar Syndrome (PJS)

- Autosomal dominant
- Majority in children
- Polyps are common in SI, may occur in stomach and colon

Macroscopy: Large, pedunculated, lobulated polyps

Polyps in PJS - Microscopy

- Branching network of connective tissue with well developed smooth muscles and lamina propria extends into the polyp
- -Glands lined by non-dysplastic epithelium

Intraepithelial benign neoplasms

> 90% in the colon also in stomach and SI

Macroscopy

- Single / multiple lesions
- Sessile /pedunculated
- Range from 0.3 to several cm
- Velvety surface

Glands lined by dysplastic epithelium

- **Dysplastic epithelium** shows cellular stratification, elongated, hyperchromatic and crowded nuclei and mitoses
- Often have large nucleoli and eosinophilic cytoplasm and reduced number of goblet cells

Based on the epithelial architecture,

Tubular adenoma

Tubulovillous adenoma

Villous adenoma

Commonest type

> 75% tubular architecture 25-50% villous architecture

> 50% villous architecture

Adenomatous polyposis syndromes

- FAP Familial Adenomatous Polyposis
- HNPCC / Lynch syndrome

FAP syndrome

Autosomal dominant

Caused by mutations of the APC gene

Develop adenomas early in life

At least 100 adenomatous polyps

- 100% risk of carcinoma, often before 30 years
- Spectrum of clinical manifestations

Classic FAP

Attenuated FAP

Gardner syndrome

Turcot syndrome

Classic FAP syndrome

Minimum - 100 adenomas

 Majority - tubular adenomas occasionally villous adenomas

Cancer prevention

Screening and prophylactic colectomy in siblings and first degree relatives at risk

HNPCC/Lynch Syndrome

 Cancers occur in GIT (right colon) and other sites: endometrium, stomach, ovary, ureters, brain, hepatobiliary tract, skin

 Caused by inherited mutation in mismatch repair genes, commonest – MSH2 and MLH1

Mismatch repair gene defects result in microsatellite instability

- Malignant risk -

Correlate with

Number of adenomas

Size of the adenoma

Degree of dysplasia

- When does an adenoma become a carcinoma?
 - When the dysplastic glands invade muscularis mucosa

Adenoma carcinoma sequence

 Molecular events lead to colonic adenocarcinoma are heterogenous and include genetic and epigenetic factors

Two distinct genetic pathways
 APC/ β-catenin pathway
 Microsatellite instability pathway

Both involve stepwise accumulation of multiple mutations

Colorectal carcinogenesis

 Well described genetic alterations ultimately leads to colorectal carcinoma

"The adenoma - carcinoma sequence"

Molecular pathway of adenoma carcinoma sequence

Read – Adenoma carcinoma sequence

Tumours - Lower GIT (SI/LI)

Epithelial tumours

- Adenoma
- Carcinoma

Adenocarcinoma

Mucinous adenocarcinoma

Small cell carcinoma

Adenosquamous carcinoma

Undifferentiated carcinoma

Signet-ring cell carcinoma

Squamous cell carcinoma

Medullary carcinoma

Neuroendocrine neoplasms

Tumours - Lower GIT (SI/LI)

Non-epithelial tumours

Lipoma

Leiomyoma

Gastrointestinal stromal tumour (GIST)

Leiomyosarcoma

Angiosarcoma

Kaposi sarcoma

Malignant melanoma

Malignant lymphomas

Secondary tumours

- Tfhe ollowing three slides show WHO classification of tumours of the colon and rectum, small intestine and appendix
- Types of polyps are als

WHO histological classification of tumours of the colon and rectum¹

Epithelial	tumours
------------	---------

Adenoma

Tubular Villous

Tubulovillous Serrated

Intraepithelial neoplasia2 (dysplasia)

associated with chronic inflammatory diseases

Low-grade glandular intraepithelial neoplasia High-grade glandular intraepithelial neoplasia

Carcinoma

Adenocarcinoma

Mucinous adenocarcinoma Signet-ring cell carcinoma

Small cell carcinoma

Squamous cell carcinoma

Adenosquamous carcinoma

Medullary carcinoma

Undifferentiated carcinoma

Carcinoid (well differentiated endocrine neoplasm)

EC-cell, serotonin-producing neoplasm

L-cell, glucagon-like peptide and PP/PYY producing tumour

Others

Mixed carcinoid-adenocarcinoma

Others

Non-epithelial tumours

Lipoma

Leiomyoma

Gastrointestinal stromal tumour

Leiomyosarcoma Angiosarcoma

Kaposi sarcoma

Malignant melanoma

Others

Malignant lymphomas

Marginal zone B-cell lymphoma of MALT Type

Mantle cell lymphoma

Diffuse large B-cell lymphoma

Burkitt lymphoma

Burkitt-like /atypical Burkitt-lymphoma

Others |

Secondary tumours

WHO histological classification of tumours of the small intestine¹

Epithelial tumours Non-epithelial tumours Adenoma Lipoma Tubular Leiomyoma Villous Gastrointestinal stromal tumour Tubulovillous Leiomyosarcoma Angiosarcoma Intraepithelial neoplasia² (dysplasia) Kaposi sarcoma associated with chronic inflammatory diseases Others Low-grade glandular intraepithelial neoplasia High-grade glandular intraepithelial neoplasia Malignant lymphomas Carcinoma Immunoproliferative small intestinal disease Adenocarcinoma (includes \alpha-heavy chain disease) Mucinous adenocarcinoma Western type B-cell lymphoma of MALT Signet-ring cell carcinoma Mantle cell lymphoma Small cell carcinoma Diffuse large B-cell lymphoma Squamous cell carcinoma Burkitt lymphoma Adenosquamous carcinoma Burkitt-like /atypical Burkitt-lymphoma Medullary carcinoma T-cell lymphoma Undifferentiated carcinoma enteropathy associated Carcinoid (well differentiated endocrine neoplasm) unspecified Gastrin cell tumour, functioning (gastrinoma) Others or non-functioning Somatostatin cell tumour Secondary tumours EC-cell, serotonin-producing neoplasm L-cell, glucagon-like peptide and PP/PYY producing tumour Mixed carcinoid-adenocarcinoma

Gangliocytic paraganglioma

Others

33

WHO histological classification of tumours of the appendix1

Non-epithelial tumours
Neuroma
Lipoma
Leiomyoma
Gastrointestinal stromal tumour
Leiomyosarcoma
Kaposi sarcoma
Others
Malignant lymphoma
Secondary tumours

and PP/PYY producing tumour

Others

Mixed carcinoid-adenocarcinoma

Goblet cell carcinoid (mucinous carcinoid)

Tubular carcinoid

Others

Tumours - SI

- Length ¾ of the GIT
- But harbour only 3-6% of GIT tumours

Benign tumours

Adenomas - most around the ampulla of Vater

Malignant tumours

Adenocarcinoma

- Majority in the duodenum
- Most are sporadic

Colorectal adenocarcinoma

- 98% are adenocarcinomas
- Commonest precursor lesion Adenoma
- 60-79 yrs
 - < 20 %occur before 50 years and usually with
 - Polyposis syndrome
 - Ulcerative colitis
- Distribution
 - Recto-sigmoid colon (55%)
 - Caecum/ascending colon (22%)
 - Transverse colon (11%)
 - Descending colon (6 %)

Macroscopy

Proximal colon

- Polypoidal , exophytic /plaque like
- Obstruction unlikely

Distal colon

- Ulcerated with elevated margins
- Annular ,encircling tumours
- Encircles the bowel wall
- Narrow lumen
- Dilated proximal bowel

Late presentation

Early presentation with obstruction

Colorectal adenocarcinoma - Microscopy

Similar in right and left colon

Well differentiated Adenocarcinoma Note

well formed glands

Moderately differentiated Adenocarcinoma

- Vague gland formation

Poorly differentiated adenocarcinoma

Colorectal carcinoma - Microscopy

- May produce mucin Mucinous adenocarcinoma
 - Intracellular /extracellular mucin

Tumour spread

- Direct extension
- Metastasis Lymphatics and blood vessels Regional LNs , Liver , lungs, bone
 Prognosis
- Single most important prognostic indicator is the extent of the tumour at the time of diagnosis /stage
- Staging systems
 TNM staging(Tumour Nodes Metastasis)
 - **Duke staging**

Colorectal adenocarcinoma

- Gradually penetrates the bowel wall and infiltrate into the sub serosa
- When the serosa is involved
 - puckering of the serosal surface (arrow)

TNM staging

Primary Tumor	Regional Lymph Nodes	Distant Metastasis
T0 No Primary Tumor	N0 No Regional LN	M0 No Metastasis
Tis CA in situ	NI Metastasis in 1-3 pericolic nodes	MI Distant Metastasis
T1 Invasion into submucosa	N2 Metastasis into 4 or more pericolic nodes	
T2 Invasion into muscularis propria	N3 Metastasis into any nodes along the course of named vascular trunks	
T3 Invasion into serosa		
T4 Invasion into adjacent structures		

Dukes staging

 Dukes A - Invade the bowel wall but does not involve the pericolic fat / serosa

 Dukes B - Infiltrate through the bowel wall into the pericolic fat and serosa

Dukes C - Involvement of the lymph nodes

- <2% of colorectal malignancies
- About 50% of SI malignant tumours
- Derived from neuroendocrine cells located throughout the GIT at the base of the crypts
- Generate bioactive compounds, peptide and non-peptide hormones
- All have a malignant potential Low / high

Appendix is the commonest site

 Followed by SI (primarily ileum), rectum, stomach, and colon

New classification (WHO 2010)

Neuro Endocrine Tumour - Grade 1 (NET G1)

Neuro Endocrine Tumour - Grade 2 (NET G2)

Neuroendocrine carcinoma (NEC)

Mixed adenoneuroendocrine carcinoma (MANEC)

Classification systems

WHO 1980	WHO 2000	WHO 2010
Carcinoid	Well differentiated endocrine tumour	NET G1 (Carcinoid)
	Well differentiated endocrne carcinoma	NET G2
	Poorly differentiated endocrine carcinoma/ small cell carcinoma	NEC (large cell or small cell)
	Mixed exocrine endocrine carcinoma	Mixed adenoneuroendocrine carcinoma

Neuroendocrine neoplsms Definitions

NET

Well differentiated neuroendocrine neoplasm composed of tumour cells resembling the normal gut endocrine cells

NEC

Poorly differentiated, high grade malignant neoplasm

Neuroendocrine neoplasms-Reporting

- Minimum requirements
 Exact site and size
 Distance from the resection margins
- Microscopy
 Mitoses/10HPF
 Ki67 index (Proliferative activity)
- Assessment of endocrine function (upon special clinical response)

Neuroendocrine neoplasms -Diagnosis

- Classification
- Grade
- Stage (TNM)
- Cell type and functional activity

- Grading is performed on the basis of
 - morphological criteria
 - Proliferative activity
 mitotic count/ 50 high power fields or
 Ki67 index as a percentage of 500-2000 cells
- Site specific staging

Neuroendocrine tumour

NET of the ileum

Appendix -Neuroendocrine neoplasms

- Commonest tumour (50-77% of all neoplasms)
- Usually an incidental finding
- Majority NET; NEC Extremely rare

May produce serotonin, substance P

Macroscopy

Solid bulbous swelling of the

Tip of the appendix

Cut surface

- solid yellow-tan in colour

Appendix – NE neoplasms

Microscopy (NET)

- Stromal desmoplasia
- Discrete islands, strands,
 of uniform tumour cells with
 scant, pink granular cytoplasm
 Round to oval stippled nucleus

Carcinoid syndrome - Read

Tumours of the appendix

Other tumours

Adenocarcinoma

Low grade appendiceal mucinous neoplasms Mucinous adenocarcinoma

Pseudomyxoma peritoneii

Growth of neoplastic mucin secreting cells within the peritoneal cavity producing accumulation of mucin causing galatinous ascites

GIT - Lymphomas

Extra-nodal lymphoma can arise at any site

Most common site – GIT, particularly stomach

- Common type of lymphomas
 - Extra-nodal marginal zone B cell lymphoma
 In the gut known as
 - Mucosa Associated Lymphoid Tissue (MALT) / MALTomas
 - 2. Diffuse large B-cell lymphoma

Primary gastrointestinal lymphomas

- No evidence of liver, spleen, mediastinal LN or BM involvement at the time of diagnosis
- Regional LN may be involved
- Usually sporadic, but more frequently seen in

Chronic gastritis caused by Helicobacter pylori

Chronic sprue like syndromes

Congenital immunodeficiency states

Infection with HIV

Organ transplant with immunosuppression

Epstein – Barr –virus – positive B cell-lymphoproliferation

MALT lymphoma

Arise anywhere in the GIT

Stomach - 55-60% Small intestine - 25-30%

Proximal colon - 10-15% Distal colon - upto 10%

Appendix and oesophagus - Rarely involved

- Behavior- different from node based lymphomas
 - Early focal lesions are resectable
 - Relapse may be exclusively on the GIT
 - Different genotypic changes
 - Different immunoreactivity

GIT - Lymphoma

- Macroscopy Variable
 - Early lesions Plaque like expansions of the mucosa and submucosa
 - Diffuse, infiltrating lesions
 - Full thickness mural thickening
 - Effacement of the mucosal folds
 - Focal ulceration

or

- Polypoid or fungating and ulcerating masses
- May develop intestinal obstruction or perforation

GI Lymphoma - Macroscopy

Note: Thickened small intestinal wall

Cut surface – Homogenous , pale yellow-pink

Microscopy

Earliest lesions

- Atypical lymphoid cells infiltrate the mucosa
- Loss of normal glands
- Massive expansion of the lymphoid tissue
- Lymphoepithelial lesions

Large numbers of atypical lymphoid cells infiltrate the superficial or glandular epithelium

Late lesions

Mucosa, submucosa and muscularis mucosa are replaced by a neoplastic lymphoid cells

Note: Diffuse infiltrate of malignant lymphoid cells involving the full thickness of the bowel wall

GI lymphomas - Prognosis

- Size of the tumour
- Histologic grade
- Depth of local invasion
- Extension into adjacent viscera

Gastrointestinal stromal tumours

- Mesenchymal neoplasms
- Cell of origin interstitial cells of Cajal (pacemaker cells regulating autonomic motor activity)
- Involves stomach (60-70%) followed by Small intestine (20-30%)
 Colo-rectum and oesophagus (together < 10%)
 Oesophagus - Rare
- Other sites Omentum, mesentery, retroperitoneum and pleura

- Most in adults
- In children, some related to Carney triad
- Around 60% stomach
- Metastasize to liver, peritoneum, lungs and other sites

Pathogenesis

 Most show mutations in tyrosine kinase c-KIT gene (encodes a thyrosine kinase receptor CD117)

 Sensitive to the action of the tyrosine kinase inhibitor imatinib mesylate (Gleevac/Glivec) Macroscopic and microscopic appearances are variable

(Need to think - Differential diagnosis)

Macroscopy

- Usually well circumscribed, smooth, lobulated fleshy masses
- May be a polypoidal lesion in the mucosal surface or protrude towards the serosa

Microscopy

 Composed of spindle cells or epithelioid cells or a mixture of these cell types

GISTs - Microscopy

Histology - Variable

GISTs

Polypoidal lesion With central ulceration

H&E

Positive c-kit/CD117

GISTs - Prognosis

- In children often clinically malignant
- Histological assessment of malignancy is based on
 - Mitotic activity
 - Tumour size (< 5cm usually benign)
 - Tumour site
- Risk categories
 - Low malignant potential
 - Uncertain malignant potential
 - High malignant potential

Summary

- Now you should be able to
- List, classify and briefly describe different types of polyps in the GIT
- List the different types of tumours of the LGIT briefly describe
- Adenomas
- Adenocarcinomas
- Neuroendocrine neoplasms of the GIT
- GI lymphomas
- Gastrointestinal Stromal Tumours (GISTs)