Mathematics Year I, Linear Algebra Term 1, 2

Most Important theorems, definitions and propositions.

Szymon Kubica

April 17, 2021

1 Introduction to matrices and vectors

Definition 1. The standard basis vectors for \mathbb{R}^n are the vectors

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots \quad e_{n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \tag{1}$$

Definition 2. Let $v_1,...v_n$ be vectors in \mathbb{R}^n . Any expression of the form

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$$

is called linear combination of the vectors $v_1, ... v_n$.

Definition 3. The set of all linear combinations of a collection of vectors $v_1, ... v_n$ is called the span of the vectors $v_1, ... v_n$. Notation:

$$span\{v_1,...v_n\}$$

.

Note 1. \mathbb{R}^n is equal to the span of the standard basis vectors.

Definition 4. The norm of v is the non negative real number defined by

$$||v|| = \sqrt{v \cdot v}$$

.

Definition 5. A vector $v \in \mathbb{R}^n$ is called a unit vector if ||v|| = 1.

Definition 6. Let u and v be vectors in \mathbb{R}^n . The distance between u and v is defined by

$$dist(u, v) := ||u - v||$$

Definition 7. The (i, j) entry of a matrix is the entry in row i and column j.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & anm \end{pmatrix}$$

Most often we use the condensed notation $M = (a_{ij})$

Definition 8. The transpose of an $n \times m$ matrix $A = (a_{ij})$ is the $m \times n$ matrix whose (i, j) entry is a_{ji} . We denote it as A^T .

The leading diagonal of a matrix is the (1,1),(2,2)... entries. So the transpose is obtained by doing a reflection in the leading diagonal.

Definition 9. The identity matrix $I_n = (a_{ij})$ is the square matrix such that $a_{ij} = 0 \ \forall i \neq j$, and $a_{ii} = 1$, where $0 < i, j \leq n$.

Definition 10. Let $A = (a_{ij})$ be a $n \times m$ matrix and **b** be the column vector of height n and whose ith entry is b_i . Then $(v_1, ..., v_n)$ is a solution to the system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m &= b_2 \\ \vdots &= \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m &= b_n \end{cases}$$

if and only if the vector $\mathbf{v} \in \mathbb{R}^n$ with entries v_i is a solution of the equation

$$Av = b$$

The matrix A is called the coefficient matrix of the system above. The augmented matrix associated to the system is the matrix obtained by adding b as an extra column to A. It is denoted as (A|b).

2 Row operations

Definition 11. A row operation is one of the following procedures we can apply to a matrix:

- 1. $r_i(\lambda)$: Multiply each entry in the *i*th row by a real number $\lambda \neq 0$.
- 2. r_{ij} : Swap row i and row j.
- 3. $r_{ij}(\lambda)$: Add λ times row i to row j.

Proposition 1. Let $Ax = \mathbf{b}$ be a system of linear equations in matrix form. Let r be one of the row operations from Definition 11, and let $(A'|\mathbf{b}')$ be the result of applying r to the augmented matrix $(A|\mathbf{b})$. Then the vector \mathbf{v} is a solution of $Ax = \mathbf{b}$ if and only if it is a solution of $A'x = \mathbf{b}'$.

3 A systematical way of solving linear systems.

Definition 12. The left-most non-zero entry in a non-zero row is called the **leading entry** of that row.

Definition 13. A matrix is in **echelon form** if

- 1. the leading entry in each non-zero row is 1,
- 2. the leading 1 in each non-zero row is to the right of the leading 1 in any row above it,
- 3. the zero rows are below any non-zero rows.

Definition 14. A matrix is in row reduced echelon form (RRE) if

- 1. it is in echelon form,
- 2. the leading entry in each non zero row is the only non-zero entry in its column.

Solution algorithm

If we have a system of equations

$$Ax = b$$

and A is in RRE form, then we can easily read off the solutions (if any exist). There are four cases to consider.

• Case 1. Every column of A contains a leading 1, and there are no zero rows. In this cas the only possibility is that $A = I_n$. Then the equations are simply

$$x_1 = b_1$$

$$x_2 = b_2$$

$$\vdots$$

$$x_n = b_n$$
(2)

and they have a unique solution, i.e. the entries of b.

• Case 2. Every column of A contains a leading 1, and there are some zero rows. Then A must have more rows than column, and it must be a matrix of the from

$$A = \begin{pmatrix} I_n \\ \mathbf{0}_{k \times n} \end{pmatrix} \tag{3}$$

Which looks like an identity matrix with a block of zero rows underneath. In this case the respective equations are

$$x_1 = b_1$$

$$\vdots$$

$$x_n = b_n$$
(4)

And the last k of them are

$$0 = b_{n+1}$$

$$\vdots$$

$$x_n = b_{n+k}.$$
(5)

Now there are two possibilities:

- 1. If any of the last k entries of **b** are non-zero then this system has no solutions, i.e. it is inconsistent.
- 2. If the last k entries of **b** are all zero then the system has a unique solution, given by setting $x_i = b_i \ \forall \ i \in [1, n].$
- Case 3. Some columns of A do not contain a leading 1, but there are no zero rows. For example

$$A = \begin{pmatrix} 1 & a_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}. \tag{6}$$

If the *i*th column of A does not contain a leading 1, then the corresponding x_i is called a **free** variable. The remaining variables are called basic variables. This kind of system has infinitely many solutions, we call such system underdetermined.

See the full version of the notes for a step by step proof-algorithm how to turn any matrix into RRE form.

Now we have a systematic procedure for solving a system of simultaneous linear equations $Ax = \mathbf{b}$.

- 1. Form the augmented matrix $(A|\mathbf{b})$.
- 2. Apply the algorithm to put the augmented matrix into RRE form $(A'|\mathbf{b}')$.
- 3. Read off the solutions to $A'x = \mathbf{b}'$.

Note 2. In fact we only need to put the left block A' to be able to read off the solutions.

Proposition 2. The number of solutions to a system $Ax = \mathbf{b}$ is always either 0, 1 or ∞ .

4 Matrix Multiplication

Remark 1. The easiest way to remember how to multiply matrices is as follows

In order to multiply AB where $A \in M_{n \times m}(\mathbb{R})$ and $B \in M_{m \times p}(\mathbb{R})$ we write $r_1, r_2, ..., r_n \in \mathbb{R}^m$ for the rows of A and $c_1, c_2, ..., c_n \in \mathbb{R}^m$ for the columns of B. Then the definitions states that the (i, j) entry of $AB \in M_{n \times p}(\mathbb{R})$ is the dot product

$$r_i^T \cdot c_j$$

We can view this as in order to determine one column of AB we take the respective column of B and scan A with it from top to bottom multiplying each row of A by the current column.

Definition 15. A matrix $A \in M_{n \times m}(R)$ defines a function from \mathbb{R}^m to \mathbb{R}^n , which we denote by

$$T_A: \mathbb{R}^m \to \mathbb{R}^n$$

$$\mathbf{v} \mapsto A\mathbf{v}$$
.

Provided that two matrices have correct dimensions, we can compose the functions defined by them.

Lemma 1. $T_A \circ T_B = T_{AB}$, i.e for any $\mathbf{v} \in \mathbb{R}^p$ we have

$$A(B\mathbf{v}) = (AB)\mathbf{v}.$$

Where $A \in M_{n \times m}(\mathbb{R})$ and $B \in M_{m \times p}(\mathbb{R})$

4.1 Matrix multiplication properties.

Proposition 3. Let $A, A' \in M_{m \times n}(\mathbb{R})$, let $B, B' \in M_{n \times p}(\mathbb{R})$ let $C \in M_{p \times q}(\mathbb{R})$ Then the following holds.

- 1. A(BC) = (AB)C (associativity).
- 2. A(B + B') = AB + AB'

and

$$(A + A')B = AB + A'B$$

(left and right distributivity of multiplication over addition.)

3.
$$\forall \lambda \in \mathbb{R}(\lambda A)B = \lambda(AB) = A(\lambda B)$$
.

The usual rules about multiplication by zero and one translate onto matrix multiplication with a certain degree of caution.

Lemma 2. Let $A \in M_{n \times m}(\mathbb{R})$.

1.
$$\forall k \in \mathbb{N} \ \mathbf{0}_{k \times n} A = \mathbf{0}_{k \times m} \ and \ A \mathbf{0}_{m \times k} = \mathbf{0}_{n \times k}$$
.

2.
$$I_n A = A = A I_m$$
.

Lemma 3. Let $diag(d_1,...,d_n)$ and $diag(d'_1,...,d'_n)$ be two diagonal matrices $\in M_{n\times n}(\mathbb{R})$. Then their product is $diag(d_1d'_1,...,d_nd'_n)$.

5 Inverse of a matrix

Definition 16. Let $A \in M_{n \times m}(\mathbb{R})$ An $n \times n$ matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I_n$$

is called an **inverse** of A. A matrix A is called **invertible** if the inverse exists, **singular** if not.

Lemma 4. 1. If A is invertible, then the inverse is unique.

2. If A is invertible and either $AB = I_n$ or $BA = I_n$ for some $B \in M_{n \times n}(\mathbb{R})$, then $B = A^{-1}$.

Lemma 5. Suppose $A, B \in M_{n \times n}(\mathbb{R})$ are invertible. Then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Lemma 6. Let $A \in M_{n \times n}(\mathbb{R})$.

- 1. If there exists $\mathbf{v} \neq 0 \in \mathbb{R}^n$ such that $A\mathbf{v} = \mathbf{0}$ then A is not invertible.
- 2. If there exists a non zero matrix $B \in M_{n \times n}(\mathbb{R})$ such that $AB = \mathbf{0}_{n \times n}$ or $BA = \mathbf{0}_{n \times n}$ then A is not invertible.

Corollary 1. If $A \in M_{n \times n}(\mathbb{R})$ has a column of zeros, then A is not invertible.

Corollary 2. If $A \in M_{n \times n}(\mathbb{R})$ has a row of zeros, then A is not invertible.

Lemma 7. If $A \in M_{n \times n}(\mathbb{R})$ and A' is obtained from A by a row operation, then A' is invertible if and only if A is.

Lemma 8. If $A \in M_{n \times n}(\mathbb{R})$ and A' is the RRE form of A, then A' is invertible if and only if it has no zero rows.

Lemma 9. A matrix $A \in M_{n \times n}(\mathbb{R})$ is invertible if and only if its RRE form is the identity matrix.

Proposition 4. A matrix $A \in M_{n \times n}(\mathbb{R})$ is invertible if and only if there is no non-zero vector $\mathbf{v} \in \mathbb{R}^n$ such that $A\mathbf{v} = \mathbf{0}$.

A following algorithm can be used for computing the inverse of a matrix.

- 1. Write the augmented matrix $(A|I_n)$.
- 2. Row reduce $(A|I_n)$ and bring it into RRE form.
- 3. If A is invertible this process will transform the A to its RRE form and I_n to A^{-1} .

Remark 2. The algorithm described above gives us another method for finding solutions of linear systems of equations. Assuming we have such a system in matrix form Ax = b, and A is an invertible matrix, we can compute A^{-1} and rewrite our system as $x = A^{-1}b$. Note that it works if and only if A is invertible and therefore the system has a unique solution.

6 Vector spaces

Definition 17. A vector space is the following data:

- \bullet A set V. We will refer to the elements of V as vectors.
- A binary operation $+: V \times V \to V$, which we call addition.
- A function $\mathbb{R} \times V \to V$, which we call scalar multiplication. We usually omit the symbol of it.

We require that the following axioms hold:

- 1. The set V with the binary operation + forms an Abelian group. We denote the identity element of it as $\mathbf{0}_V$
- 2. $\forall \mathbf{v} \in V$ we have $1\mathbf{v} = \mathbf{v}$.
- 3. $\forall \lambda, \mu \in \mathbb{R} \ \forall \mathbf{v} \in V \text{ we have } \lambda(\mu \mathbf{v}) = (\lambda \mu) \mathbf{v}.$
- 4. $\forall \lambda, \in \mathbb{R} \ \forall \ \mathbf{u}, \mathbf{v} \in V \text{ we have } \lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}.$ (distributivity of scalar multiplication over addition)
- 5. $\forall \lambda, \mu \in \mathbb{R} \ \forall \ \mathbf{v} \in V \text{ we have } (\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}.$ (distributivity of scalar multiplication over scalar addition)

Lemma 10. Let V be a vector space and let $\mathbf{x} \in V$.

1. For any positive integer $n \in \mathbb{R}$, we have

$$n\mathbf{x} = \mathbf{x} + \mathbf{x} + \dots + \mathbf{x}$$

where there are n terms on the right-hand-side.

- 2. $0\mathbf{x} = (0)_V$.
- 3. $(-1)\mathbf{x}$ is the additive inverse of \mathbf{x} .

7 Subspaces

Definition 18. Let V be a vector space. A subset $U \subset V$ is called a subspace of V if:

- 1. If $\mathbf{x} + \mathbf{y} \in U$ then $\mathbf{x} + \mathbf{y} \in U$ (Closure under vector addition).
- 2. $\mathbf{0}_{V} \in U$.
- 3. If $\mathbf{x} \in U$ then $\forall \lambda \in \mathbb{R}$. $\lambda \mathbf{x} \in U$.

8 Spanning sets

Definition 19. Let $S \subset V$ be any subset. A linear combination of elements in S is a vector $\mathbf{x} \in V$ which can be written as

$$\mathbf{x} = \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + \lambda_n \mathbf{v_n}$$

where $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$ are vectors in \mathcal{S} , and $\lambda_1, \lambda_2, ..., \lambda_n$ are real numbers.

Lemma 11. A non-empty subset U of a vector space V is a subspace if and only if every linear combination of elements of U is again in U.

Definition 20. Let V be a vector space and let $S \subset V$ be a non-empty subset.

Then **span** of S written

span
$$\mathcal{S} \subset V$$

is the set of all linear combinations of elements of \mathcal{S} . If $\mathcal{S} = \emptyset$ then we define span \mathcal{S} to be $\{\mathbf{0}_V\}$.

Lemma 12. Let V be a vector space and let $S \subset V$ be any subset. Then span S is a subspace of V.

Definition 21. Let V be a vector space. A subset $S \subset V$ is called a spanning set if span S = V.

Lemma 13. Let V be a vector space, and let $S \subset V$ be any subset. Suppose $S \subset U$ for some subspace $U \subset V$. Then span $S \subset U$. So if S is a spanning set for V, then S cannot be contained in any proper subspace $U \subseteq V$

Definition 22. A vector space is called **finite-dimensional** if it has a finite spanning set.

Definition 23. Let V be a finite-dimensional vector space. The dimension of V, denoted as dim V, is the smallest $n \in \mathbb{N}$ such that V has a spanning set of size n.

9 Linear independence

Definition 24. A subset \mathcal{L} of a vector space V is called linearly dependent if we can find **distinct** vectors $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n} \in \mathcal{L}$ and non-zero scalars $\lambda_1 \neq 0, \ \lambda_2 \neq 0, \ ..., \lambda_n \neq 0$, such that

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n = \mathbf{0}_V.$$

Note 3. Any subset of a linearly independent set is also linearly-independent.

Definition 25. A basis of a vector space is a linearly independent spanning set.

Proposition 5. Let $\mathcal{B} = \{\mathbf{v_1}, ..., \mathbf{v_n}\} \subset V$ be a finite basis of a vector space V. Then every vector in V can be written as as linear combination of elements in \mathcal{B} , in a unique way. Conversely, any finite subset \mathcal{B} with this property is a basis.

10 Bases an dimension

Lemma 14. Let $S \subset V$ be a spanning set, and suppose that S is not linearly independent. Then there exists a vector $\mathbf{x} \in S$ such that $S' = S \setminus \{\mathbf{x}\}$ is still a spanning set.

Corollary 3. Any finite spanning set contains a basis.

Corollary 4. Any finite-dimensional vector space V has a basis.

Proposition 6 (Steinitz exchange lemma - easy verion). Let $S \subset V$ be a spanning set, and let $\mathbf{x} \in V$ be any non-zero vector. Then there exists a vector $\mathbf{y} \in S$ such that the set

$$\mathcal{S}' = (\mathcal{S} \backslash \{\mathbf{y}\}) \cup \{\mathbf{x}\}$$

is still a spanning set.

Proposition 7 (Steinitz exchange lemma - full verion). Let $S \subset V$ be a spanning set, and let $\mathcal{L}\{\mathbf{x}_1,...,\mathbf{x}_n\}$ be a finite linearly independent subset of V. Then there exists a subset $\mathcal{T}\{\mathbf{y}_1,...,\mathbf{y}_n\} \subset S$, with the same size as \mathcal{L} , such that

$$\mathcal{S}' = (\mathcal{S} \backslash \mathcal{T}) \cup \mathcal{L}$$

is still a spanning set.

Corollary 5. Let V be a finite-dimensional vector space, let $S \subset V$ be a finite spanning set and let $\mathcal{L} \subset V$ be a linearly independent subset. Then \mathcal{L} is finite and $\#\mathcal{L} \leq \#\mathcal{S}$.

Theorem 1. Let V be a finite-dimensional vector space with dim V = n. Then any basis of V is finite and has size n.

11 Dimensions of subspaces

Lemma 15. Suppose $\mathcal{L} \subset V$ is a linearly independent subset. Let $\mathbf{v} \in V$ be a vector which does not lie in span \mathcal{L} . Then $\mathcal{L} \cup \{\mathbf{v}\}$ is linearly independent.

Lemma 16. If V is not finite-dimensional, then for any $n \in \mathbb{N}$ we can find linearly independent subset $\mathcal{L} \subset V$ of size n.

Lemma 17. Let V be a finite-dimensional vector space with dim V = n. Then any linearly independent subset $\mathcal{L} \subset V$ of size n must be a basis.

Lemma 18. If V is finite-dimensional then any linearly independent subset is contained in a basis.

Proposition 8. Let V be a finite-dimensional vector space and let $U \subset V$ be a subspace.

- 1. U is finite-dimensional.
- 2. dim $U \leq \dim V$.
- 3. If dim $U = \dim V$ then U = V.

12 Linear maps

Definition 26. Let U and V be vector spaces. A function $f: U \to V$ is called a linear map if

- $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in U$,
- $f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ for all $\mathbf{x} \in U$ and all $\lambda \in \mathbb{R}$.

Lemma 19. If $f: U \to V$ is linear then $f(\mathbf{0}_U) = \mathbf{0}_V$.

Lemma 20. A function composition of linear maps is also a linear map.

Definition 27. Let $f: U \to V$ be a linear map.

• The **image** of f, denoted as $\operatorname{Im} f$ is defined to be the subset

$$\{f(\mathbf{x}) \mid \mathbf{x} \in U\} \subset V$$

• The ker of f, denoted as ker f is defined to be the subset

$$\{\mathbf{x} \in U \mid f(\mathbf{x}) = \mathbf{0}_V\} \subset U$$

Lemma 21. Let $f: U \to V$ be a linear map between vector spaces. Then $\ker f$ is a subspace of U and $\operatorname{Im} f$ is a subspace of V.

Lemma 22. A linear map $f: U \to V$ is injective if and only if ker $f = \{\mathbf{0}_U\}$.

Lemma 23. Let $f: U \to V$ be a linear map, and fix $\mathbf{y} \in V$. Suppose $\mathbf{x} \in U$ is such that $f(\mathbf{x}) = \mathbf{y}$. Then

$$f^{-1}(\mathbf{y}) = {\mathbf{x} + \mathbf{v} \mid \mathbf{v} \in \ker f}$$

13 Linear maps and bases

Proposition 9. Let $f: \mathbb{R}^k \to \mathbb{R}^n$ be linear. Then $f = T_A$ for some matrix $A \in M_{n \times k}(\mathbb{R})$

Proposition 10. Let $f: U \to V$ and $g: U \to V$ be two linear maps, and let $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_k\}$ be a basis for U. Suppose $f(\mathbf{b}_i) = g(\mathbf{b}_i)$ for each i = 1, ..., k. Then f = g.

Proposition 11. Let U and V be vector spaces. Let $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_k\}$ be a basis for U, and let $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ be any set of k vectors in V. Then there is a unique linear map $f: U \to V$ such that $f(\mathbf{b}_i) = \mathbf{v}_i$ for each i.

14 Isomorphisms

Definition 28. A linear map $f: U \to V$ between two vector spaces is called an **isomorphism** if f is bijective. If there exists an isomorphism from U to V we say that U is isomorphic to V and write

$$U \cong V$$
.

Proposition 12. Let V be a vector space with dim V = n. Then V is isomorphic to \mathbb{R}^n .

Lemma 24. Let $f: U \to V$ be a linear map, and let $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_k\}$ be a basis for U. Let $\mathcal{C} = \{f(\mathbf{b}_1), ..., f(\mathbf{b}_k)\} \subset V$. Then:

- 1. C is a spanning set if and only if f is surjective.
- 2. C is linearly independent if and only if f is injective.
- 3. C is a basis if and only if f is an isomorphism.

Corollary 6. If $U \cong V$ then dim $U = \dim V$.

Corollary 7. Let $f: U \to V$ be a linear map, and suppose dim $U = \dim V$. Then the following are equivalent:

- 1. f is injective.
- 2. f is surjective.
- 3. f is an isomorphism.

Corollary 8. If $f: \mathbb{R}^n \to V$ is an isomorphism, then the set

$$\mathcal{C} = \{f(\mathbf{e}_1), ..., f(\mathbf{e}_n)\}\$$

is a basis for V.

15 The Rank-Nullity Theorem

Definition 29. Let U and V be vector spaces and let $f: U \to V$ be a linear map. Then

- The **Rank** of f denoted as rank f is defined as dim Im f.
- The **Nullity** of f denoted as nullity f is defined as dim ker f.

Theorem 2 (Rank-Nullity theorem). Let U and V be vector spaces and let $f: U \to V$ be a linear map. Then

$$\operatorname{rank} f + \operatorname{nullity} f = \dim U$$

16 Linear maps and matrices

Suppose U and V are vector spaces and $f:U\to V$ is a linear map. We want to associate a matrix with f as we did before for a linear map between \mathbb{R}^n and \mathbb{R}^k In order to do it let

$$\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_k} \subset U \text{ and } \mathcal{C} = {\mathbf{c}_1, ..., \mathbf{c}_n} \subset V$$

be bases. We have seen in Proposition 12 that this gives us the following isomorphisms

$$F_{\mathcal{B}}: \mathbb{R}^k \to U \text{ and } F_{\mathcal{C}}: \mathbb{R}^n \to V$$

Now by Lemma 20 the following composition of linear maps

$$F_{\mathcal{C}}^{-1} \circ f \circ F_{\mathcal{B}}$$

is also a linear map. Therefore it must be given by some matrix $A \in M_{n \times k}(\mathbb{R})$ such that

$$F_{\mathcal{C}}^{-1} \circ f \circ F_{\mathcal{B}}(\mathbf{v}) = A\mathbf{v}$$

This matrix A is called the matrix representing f with respect to \mathcal{B} and \mathcal{C} , we denote it as:

$$_{\mathcal{C}}[f]_{\mathcal{B}} \text{ or } [f]_{\mathcal{B}}^{\mathcal{C}}$$

To compute the matrix $_{\mathcal{C}}[f]_{\mathcal{B}}$ we can use the fact that the product $A\mathbf{e}_{j}$ is given by the jth column of A. Therefore the jth column of $_{\mathcal{C}}[f]_{\mathcal{B}}$ is the vector

$$F_{\mathcal{C}}^{-1} \circ f \circ F_{\mathcal{B}}(\mathbf{e}_j) = F_{\mathcal{C}}^{-1} \circ f(\mathbf{b}_j) \in \mathbb{R}^n.$$

The procedure of finding $_{\mathcal{C}}[f]_{\mathcal{B}}$ is as follows

- For each j = 1, ..., k, take the jth basis vector $\mathbf{b}_j \in \mathcal{B}$, and apply the map f to it to get a vector $f(\mathbf{b}_j) \in V$
- Express each $f(\mathbf{b}_i)$ as a linear combination of vectors in \mathcal{C}

$$f(\mathbf{b}_i) = a_{1i}\mathbf{c}_1 + a_{2i}\mathbf{c}_2 + \dots + a_{ni}\mathbf{c}_n$$

for some scalars $a_{1j},...,a_{nj} \in \mathbb{R}$.

Now $F_{\mathcal{C}}$ is a map that takes a vector in \mathbb{R}^n and returns a linear combination of the elements \mathcal{C} (the basis of V) where scalar of the ith basis vector of V is the ith entry in the vector. Therefore

$$F_{\mathcal{C}}^{-1}(f(\mathbf{b}_j)) = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}, \tag{7}$$

so $_{\mathcal{C}}[f]_{\mathcal{B}}$ is the matrix (aij).

Definition 30. Let V be a vector space, and let $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_k\}$ and $\mathcal{C} = \{\mathbf{c}_1, ..., \mathbf{c}_n\}$ be two bases for V. The **change-of-basis matrix** from \mathcal{B} to \mathcal{C} is the matrix

$$_{\mathcal{C}}[\mathrm{id}_V]_{\mathcal{B}}$$

That represents the identity map with respect to \mathcal{B} and \mathcal{C} .

Lemma 25. Let V be a vector space, and let $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_k\}$ and $\mathcal{C} = \{\mathbf{c}_1, ..., \mathbf{c}_n\}$ be two bases for V, and let $P =_{\mathcal{C}} [id_V]_{\mathcal{B}}$ be the change-of-basis matrix. Pick any $\mathbf{x} \in V$. If the coefficients of \mathbf{x} with respect to \mathcal{B} are the vector $\mathbf{v} \in \mathbb{R}$, then the coefficients of \mathbf{x} with respect to \mathcal{C} are given by the vector

 $P\mathbf{v}$.

Proposition 13 (Change-of-basis formula). Let $f: U \to V$ be a linear map, Let \mathcal{B} and \mathcal{B}' be two bases for U, and let ${}_{\mathcal{B}}P_{\mathcal{B}'}$ be the change-of-basis matrix between them. Also let \mathcal{C} and \mathcal{C}' be two bases for V, and let ${}_{\mathcal{C}'}P_{\mathcal{C}}$ be the change-of-basis matrix between them. Then the matrices representing f with respect to \mathcal{B} and \mathcal{C} or with respect to \mathcal{B}' and \mathcal{C}' are related by

$$_{\mathcal{C}'}[f]_{\mathcal{B}'} = _{\mathcal{C}'}P_{\mathcal{C}} _{\mathcal{C}}[f]_{\mathcal{B}} _{\mathcal{B}}P_{\mathcal{B}'}.$$