

-Chemical Bond

- -attractive force between atoms or ions that binds them together as a unit
- -bonds form in order to...
- -decrease potential energy (PE)
- -increase stability

lon- Atom's which either gain or lose electrons

- They do this to become more stable
- They become <u>ISOELECTRONIC</u> same number of electrons as the noble gases.
- This is called the <u>OCTET RULE</u>: atoms will gain or lose electrons to have full shells

-Fluorine gains an electron and becomes negatively charged

 $F + e^{-} \square F^{-}$

© 2011 Pearson Education. Inc

-Fluorine gains an electron and becomes negatively charged F + e⁻ □ F⁻

Empty space

Filled valence shell

F Filled valence shell

F Filled valence shell

9 protons
9 electrons
10 electrons
-1 net charge

Sodium loses an electron and becomes positively charged

- Electrons are transferred ("given up" or "stolen away").
- This type of "tug of war" between a *METAL* and *NONMETAL* is called an *IONIC BOND*, which results in a *SALT* being formed

- Electrons are transferred ("given up" or "stolen away").
- This type of "tug of war" between a *METAL* and *NONMETAL* is called an *IONIC BOND*, which results in a *SALT* being formed

	1															8
		2	e.								3	4	5	6	7	
I	.i+	Be ²⁺												O ²⁻	F-	
N	la+	Mg ²⁺									Al ³⁺			S ²⁻	Cl-	
]	K+	Ca ²⁺									Ga ³⁺			Se ²⁻	Br-	
R	lb+	Sr ²⁺			sition				tions		In ³⁺			Te ² -	I-	
C	Cs+	Ba ²⁺		with	vario	us cn	arges	S								

Cation	Anion
Positive ion	Negative ion
Lose their valence electrons	Gain valence electrons
From atoms with less than 4 valence electrons	From atoms with more than 4 valence electrons
Example: Mg	Example: CI
$Mg \Rightarrow Mg^{2+} + 2e^{-}$	Cl + e⁻ ⇒ Cl⁻
Smaller than parent	Larger than parent
element (less	element(more
electrons, same	electrons, same
protons)	protons)

You can ions with one atom or multiple atoms.

Binary compounds are those that contain only two different elements. The names for binary ionic compounds containing a metal that forms only one type of ion have the following form:

Name of Cation + Base Name of Anion + ide

TABLE 5.4 Metals Whose Charge Is Invariant from One Compound to Another

Metal	lon	Name	Group Number
Li	Li ⁺	lithium	1A
Na	Na ⁺	sodium	1A
K	K^+	potassium	1A
Rb	Rb^+	rubidium	1A
Cs	Cs ⁺	cesium	1A
Mg	Mg^{2+}	magnesium	2A
Ca	Mg^{2+} Ca^{2+}	calcium	2A
Sr	Sr ²⁺	strontium	2A
Ba	Ba ²⁺	barium	2A
Al	Al^{3+}	aluminum	3A
Zn	Zn^{2+}	zinc	*
Ag	Ag^+	silver	*

^{*}The charge of these metals cannot be inferred from their group number.

TABLE 5.5 Some Metals That Form More Than One Type of Ion and Their Common Charges

Metal	Symbol Ion	Name	Older Name*
chromium	Cr ²⁺	chromium(II)	chromous
	Cr ³⁺	chromium(III)	chromic
iron	Fe ²⁺	iron(II)	ferrous
	Fe ³⁺	iron(III)	ferric
cobalt	Co ²⁺	cobalt(II)	cobaltous
	Co ³⁺	cobalt(III)	cobaltic
copper	Cu ⁺	copper(I)	cuprous
	Cu ²⁺	copper(II)	cupr <mark>ic</mark>
tin	Sn ²⁺	tin(II)	stannous
	Sn ⁴⁺	tin(IV)	stannic
mercury	Hg_2^{2+}	mercury(I)	mercurous
	Hg ²⁺	mercury(II)	mercuric
lead	Pb ²⁺	lead(II)	plumbous
	Pb ⁴⁺	lead(IV)	plumbic

^{*} An older naming system substitutes the names found in this column for the name of the metal and its charge. Under this system, chromium(II) oxide is named chromous oxide. We do *not* use this older system in this text.

TABLE 5.6 Some Common Anions

Nonmetal	Symbol for Ion	Base Name	Anion Name
fluorine	F^-	fluor-	fluoride
chlorine	Cl ⁻	chlor-	chloride
bromine	Br^-	brom-	bromide
iodine	I^-	iod-	iodide
oxygen	O^{2-}	OX-	oxide
sulfur	S ²⁻	sulf-	sulfide
nitrogen	N^{3-}	nitr-	nitride

Molecular Compounds

- Now, you will learn about another type of bond in which electrons are shared
- Covalent Bonds are atoms held together by SHARING electrons between NONMETALS

Salt versus Molecules

- A metal cation and nonmetal anion are joined together by an ionic bond called SALT
- A group of atoms joined together by a covalent bond is called a MOLECULE
- •A Compound is a group of two or more elements bonded together (Ionic or Covalent).

Covalent

VS

Ionic

Monatomic vs. Diatomic Molecules

- Most molecules can be monatomic or diatomic
- •Diatomic Molecule is a molecule consisting of two atoms
- There are 7 diatomic molecules (SUPER 7) –

•You can also remember them as:

Properties of Molecular Compounds

• Liquids or gases at room temperature

• Lower Melting Points than Ionic Compounds (which means that they are weaker than ionic)

Molecular Formulas

- The Molecular Formula is the formula of a molecular compound
- It shows how many atoms of each element a molecule contains
- Example
 - ■H₂O contains 3 atoms (2 atoms of H, 1 atom of O)
 - ${}^{\bullet}C_2H_6$ contains 8 atoms (2 atoms of C, 6 atoms of H)

Practice

How many atoms total and of each do the following molecular compounds contain?

- 1. H₂
- 2. CO
- 3. CO₂
- 4. NH₃
- 5. C_2H_6O

Practice: True or False

- 1. All molecular compounds are composed of atoms of two or more elements.
- 2. All compounds are molecules. **FALSE**
- 3. Molecular compounds are composed of two or more nonmetals.
- 4. Atoms in molecular compounds exchange electrons. **FALSE**
- 5. Molecular compounds have higher melting and boiling points than ionic compounds.

FALSE

NaCl - Ionic Bonding

Oxygen-Covalent Bonding

Ionic versus Covalent

	IONIC	COVALENT
Bonded Name	Salt	Molecule
Bonding Type	Transfer e	Share e
Types of Elements	Metal & Nonmetal	Nonmetals
Physical State	Solid	Solid, Liquid, or Gas
Melting Point	High (above 300°C)	Low (below 300 °C)
Solubility	Dissolves in Water	Varies
Conductivity	Good	Poor

Covalent Bonding

- Remember that ionic compounds *transfer electrons* in order to attain a noble gas electron configuration
- Covalent compounds form by *sharing electrons* to attain a noble gas electron configuration
- Regardless of the type of bond, the Octet Rule still must be obeyed (8 valence electrons)

Single Covalent Bond

• A Single Covalent Bond consists of two atoms held together by sharing 1 pair of electrons (2 e=)

Electron Dot Structure

Shared versus Unshared Electrons

- A Shared Pair is a pair of valence electrons that is shared between atoms
- An Unshared Pair is a pair of valence electrons that is not shared between atoms

Double Covalent Bonds

- Sometimes atoms attain noble gas configuration by sharing 2 or 3 pairs of electrons
 - A Double Covalent Bond is a bond that involves 2 shared pairs of electrons (4 e=)

Triple Covalent Bond

• A Triple Covalent Bond is a bond that involves 3 shared pairs of electrons (6 e=)

 $: N \equiv N:$

Covalent Bonds

Single Triple Double bond bond bond $N \equiv N$ O = OH-HN:::N H:H

covalent compounds:

- They are the majority of nature's bonds
 - they are also considered molecules
- Can form <u>Hydrocarbons</u>: compounds of hydrogen and carbon ex. (CH, C₂H₄,C₄H₈)
 - Many are used as fuels
- Can form <u>Polymers</u>: a long chained molecule made up of smaller molecules (monomers)

Covalent Bonds and Polarity

Covalent bonds share electrons

This can be equal sharing (non-polar)

This can be unequal sharing (polar)

Polar covalent bonds have dipoles (one atom attracts shared electrons more than the other atom)

Electronegativity: The ability of an atom to attract electrons

- Difference in electronegativity values can determine if a bond is nonpolar covalent, polar covalent or ionic.

le of Electronegativity values

			.2			3	2000
							He
Li 1.0	Be 1.6	B 2.0	C 2.6	N 3.0	O 3.4	F 4.0	Ne
Na 0.93	Mg 1.3	AI 1.6	Si 1.9	P 2.2	S 2.6	CI 3.2	Ar
K 0.82	Ca 1.3	Ga 1.6	Ge 2.0	As 2.2	Se 2.6	Br 3.0	Kr
Rb 0.82	Sr 0.95	In 1.8	Sn 2.0	Sb 2.1	Te 2.1	1 2.7	Xe
Cs 0.79	Ba 0.89	TI 2.0	Pb 2.3	Bi 2.0	Po 2.0	At	Rn

Electronegativity

The le of Electronegativity values

bins .				Electr	onegati	vity inc	reases		•
Vivite	IA							VIIA	VIIIA
	Н							Н	He
	2,20	IIA		IIIA	IVA	VA	VIA	2.20	-
	Li	Be		В	С	N	0	F	Ne
50	0.98	1.57		2:04	2.55	3.04	3.44	3.98	-
Electronegativity increases	Na	Mg		Al	Si	Р	S	CI	Ar
ncre	0.93	1.31		1.61	1.90	2.19	2.58	3.16	-
ity i	K	Ca		Ga	Ge	As	Se	Br	Kr
ativ	0.82	1.00		1.81	2.01	2.18	2,55	2,96	-
neg	Rb	Sr		In	Sn	Sb	Te	1	Хе
ctro	0.82	0.95	ALC:	1.78	1.96	2.05	2.1	2.66	-
Ele	Cs	Ba		TI	Pb	Bi	Po	At	Rn
	0.79	0.89		2.04	2.33	2.02	2.0	2.2	-
	Fr	Ra							
	0.7	0.9							

Non-polar covalent bonds	Polar Covalent bonds	lonic bonds
- Electrons shared equally Lots of covalent character Little if any difference in electronegativity Very close to each other on periodic table		

Non-polar covalent bonds	Polar Covalent bonds	Ionic bonds
- Electrons shared equally -Lots of covalent character -Little or no difference in electronegativity -Close to each other on periodic table	-Electrons shared unequally - both ionic & covalent character -Small difference in electronegativity - little bit away from each other on periodic table	

Non-polar covalent	Polar Covalent bonds	lonic bonds
- Electrons shard equally -Lots of covalent character -Little or no difference in electronegativity -Close to each other on periodic table	-Electrons shared unequally - both ionic & covalent character -Small difference in electronegativity - little bit away to each other on periodic table	-Electrons are transferred -lots of ionic character -large difference in electronegativity -Very far from each other on periodic table (metal and non-metal)

Decide if these atoms will form ionic, polar covalent, or non-polar covalent bonds.

- 1.) O with I
- 2.) H with CI
- 3.) Ba with I
- 4.) N with O
- 5.) As with P

Names and Formulas of Binary Covalent Compounds

Composed of covalent bonds (2 non-metals).

Rules:

- 1. First element (the one with lower electronegativity= farthest to the left or lowest in the group) is written first with the full name.
- 2. The second element has the ending –ide
- 3. Greek prefixes are used to indicate the number of atoms for each element.
- EXCEPT: Mono- is not used on the first element (ex. C₂O₂ is dicarbon dioxide while CO₂ is carbon dioxide)

TABLE 2.6 Prefixes Used in Naming Binary Compounds Formed Between Nonmetals

Prefix	Meaning
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

Prefixes show the number of each atom

Some examples with the first 5 prefixes

Prefix	Number of atoms	Example	Name
mono-	1	СО	carbon monoxide
di-	2	SiO ₂	silicon dioxide
tri-	3	SO ₃	sulfur trioxide
tetra-	4	SCl ₄	sulfur tetrachloride
penta-	5	SbCl ₅	antimony pentachloride

Name the following molecules:

- 1. CO₂
- 2. PCl₃
- 3. BrF

- 1. Carbon dioxide
- 2. Phosphorous trichloride
- 3. Bromine monoflouride

Examples:

4. NO.

- 4. nitrogen dioxide
- 5. N₂O
- 6. N₂O₅
- 7. SF₆
- 8. P₄O₁₀

- 5.dinitrogen monoxide
- 6. dinitrogen pentoxide
- 7. sulfur hexaflouride
- 8. Tetraphosphorous decoxide