ELSEVIER

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Bulk pH contribution to CO/HCOO⁻ production from CO₂ on oxygen-evacuated Cu₂O electrocatalyst

Seunghwa Lee^a, Sujik Hong^a, Jaeyoung Lee^{a,b,*}

- ^a Electrochemical Reaction and Technology Laboratory (ERTL), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), South Korea
- b Ertl Center for Electrochemistry and Catalysis, RISE-CHESS, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea

ARTICLE INFO

Article history:
Received 22 July 2016
Received in revised form
11 September 2016
Accepted 17 September 2016
Available online 22 September 2016

Keywords: CO₂ reduction Bulk pH effect Local pH effect Product selectivity Cu₂O catalyst

ABSTRACT

Controlling product selectivity is regarded as one of the main barriers in the application of Cu-based electrodes to electrochemical CO_2 reduction and hence significant studies on experimental factors to improve the selectivity towards desired products. In particular, two pH parameters appear to be important in controlling product selectivity of the CO_2 reduction process. We study how both bulk and local pH conditions affect product distributions during CO_2 reduction on oxygen-evacuated Cu_2O electrode. In contrast with previous studies of local pH effect on CO_2 reduction using metallic Cu, our results suggest that not always is the preferential production of CO_2 compounds (CO_2 H4+ CO_3 C) achieved by high local pH condition irrespective of catalyst materials, but rather bulk pH condition could contribute to ability to control product selectivity. It is finally demonstrated that the bulk pH effect, often underestimated but related to carbonate speciation, is associated with the direct reduction of CO_3 C to HCOOC.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Increased interest in environmental remediation and alternative energy resources has led to intensive research into CO₂ conversion processes because such an approach can mitigate greenhouse gas emissions while simultaneously storing energy through chemical synthesis [1–3]. Among various conversion methods developed to date, the electrochemical reduction of CO₂ to value-added organic products is attracting considerable attention because of its simple system configuration and mild operating conditions [3,4]. The type of products mainly depends on the catalyst metal (e.g. Pb, Sn, Ag, Au or Cu) [5-9]. In particular, Cu has been extensively studied because various hydrocarbons such as methane (CH_4) , ethylene (C_2H_4) and ethane (C_2H_6) can be uniquely synthesised on Cu-based electrodes; in contrast, reaction products on other metals are primarily limited to carbon monoxide (CO) and formate $(HCOO^{-})[1,2,10-13]$. Although many researchers have contributed to the development of Cu and Cu-based electrodes for CO₂ reduction, their catalytic performance remains unsatisfactory.

The ability to control product selectivity towards the desired organic compound is one of the main barriers in the application

E-mail address: jaeyoung@gist.ac.kr (J. Lee).

of Cu-based electrodes to CO₂ reduction. Several experimental parameters such as CO₂ pressure, nature of electrolyte ions and electrolyte pH have been demonstrated to be critical factors that affect product selectivity [14-16]. Recent experimental and computational studies have reported that relatively higher local pH can lead to the preferential formation of C₂H₄ over CH₄ via a CO dimerization pathway [17,18]. Such interesting phenomena have driven many researchers to investigate the effects of local pH rather than the possible effects of bulk pH on product selectivity. An increase in local pH is due to the generation of OH- via the hydrogen evolution reaction and CO₂ electroreduction; moreover, an increase in local pH can be controlled by buffer strength depending on electrolyte concentration [19]. This approach has been recently studied using Cu nanoparticles obtained from the reduction of cuprous oxide (Cu₂O) and using mechanically polished Cu foil [20,21]. The reports demonstrated that local pH, in addition to the intrinsic catalytic properties of electrodes, appears to be critical for selective C₂H₄ production.

With regard to product selectivity towards CO_2 reduction on various electrodes, bulk pH can also play an important role by determining carbonate equilibria among carbon dioxide (CO_2), bicarbonate (HCO_3^-) and carbonate (CO_3^2) species [22]. Since the beginning of CO_2 reduction studies, an electrolytic process has typically been performed under neutral or near-neutral bulk pH conditions to prevent the hydrogen evolution reaction that is easily activated under acidic condition. Among the carbonate species,

^{*} Corresponding author at: School of Earth Sciences and Environmental Engineering, Ertl Center for Electrochemistry and Catalysis, RISE-CHESS, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea.