San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Mathematical Preliminaries

(Part 2)

Lecture 03 Day 03/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 03

- Waiting List Enrollment ...
- Summary of Lecture 02
- Lecture 03: Teaching ...
 - Mathematical Preliminaries (Part 2)

Summary of Lecture 02: We learned ...

Sets

- A set is ...
 - a collection of distinct elements.
- A list is ...
 - a collection of ordered elements.
- A set is known when its boundary is clearly defined.
- Universal set of a set is ...
 - ... the set containing all possible elements under consideration.
- Three methods to represent sets ...
 - Roster method
 - Venn diagram
 - Set builder

- The power set of the set S is ...
 - ... the set of all subsets of S.
 - It is denoted by 2^s.
 - $|2^{S}| = 2^{|S|}$
- A set is finite if ...
 - ... its size is a natural number.
- A set is infinite if ...
 - ... we cannot express its size by a natural number.

Any question?

Mathematical Preliminaries

Recap from Math 42

Cartesian Products

Motivation

- Recall that in sets, "order of elements" does NOT matter.
- But in practice, we do need "ordered collections".
- As we said before, in computer science we use "Lists" for ordered collections.

The question is how we can mathematically model lists (ordered collections)?

Introduction

- Mathematicians defined a new mathematical structure called "n-tuple".
- An n-tuple is denoted by (a₁, a₂, ..., a_n).
 - A special case of n-tuple is 2-tuple aka "ordered pair" (a₁, a₂).
- We use a mathematical operation called "Cartesian product" to create n-tuples.

 This operation is named after the great French philosopher, mathematician, and physicist René Descartes (1596-1650).

Cartesian Products Definition

Definition

- Let A and B be two sets.
- The Cartesian product of A and B is the set of all ordered pairs (a, b), where $a \in A \land b \in B$.
- Cartesian product of A and B is denoted by A x B.
- Definition of Cartesian product by using set builder:

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Cartesian Products Examples

Example 24

- Let $A = \{0, 1\}$, $B = \{3, 6, 9\}$; $A \times B = ?$
- $\{0, 1\} \times \{3, 6, 9\} = \{(0, 3), (0, 6), (0, 9), (1, 3), (1, 6), (1, 9)\}$

Example 25

• Let $Q = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}; Q \times \Sigma = ?$

- Let $Q = \{q_0, q_1\}, \Sigma = \{a, b\}; Q \times (\Sigma \cup \{\lambda\}) = ?$
 - "λ" is pronounced "lambda".

(1)

Cartesian Products Notes

• What is the result of the following Cartesian product?

$$A = \{1, 2\}$$
, $B = \phi$; $A \times B = ?$
 $A \times B = \phi$

– In fact, the result of Cartesian product would be ϕ if one of the sets is ϕ .

Prove it!

Is this a true statement: A x B = B x A

Does Cartesian product have commutative property?

In general, No!

It means: $A \times B \neq B \times A$

But in the following special conditions, they can be equal:

$$A \times B = B \times A \text{ iff } (A = B) \vee (A = \phi) \vee (B = \phi)$$

Cartesian Products Notes

We can extend the Cartesian product to 3 sets:

$$A \times B \times C = \{(a, b, c) : a \in A, b \in B, c \in C\}$$

But if you associate the sets, we'll get:

$$(A \times B) \times C = \{((a, b), c) : a \in A, b \in B, c \in C\}$$

 $A \times (B \times C) = \{(a, (b, c)) : a \in A, b \in B, c \in C\}$

Therefore, Cartesian product does NOT honor association rule.

$$(A \times B) \times C \neq A \times (B \times C)$$

In this course, we don't associate the sets.

Cartesian Products Extension

We can extend the idea to n sets and define n-tuple as:

$$S_1 \times S_2 \times ... \times S_n = \{(x_1, x_2, ..., x_n) : x_1 \in S_1, ..., x_n \in S_n\}$$

Homework

Mathematical Preliminaries

Recap from Math 42

Functions

Introduction

- In many situations in real life, there is a relationship between two sets.
- For example, we assign a letter grade to each student of a class.

This relationship is an example of the concept of "function".

Functions Definition

- Let D and R be two sets.
- A function from D to R is a rule that assigns (or maps) to some (could be all) elements of D a "unique element" of R.
 - The set D is called the "domain" of the function f.
 - The set R is called the "range" of the function f.

- In the previous example:
- Domain is the set of students
- Range is the set of letter grades

Functions Naming and Notation

- We usually name a function by lower-case letters such as f, h, δ (pronounced "delta"), etc.
- For example, the function δ is denoted by: δ : D \rightarrow R

Example 27

S = {John, Tom, Marry, Ted, Adam, Eve}, G = {A, B, C, D, F}

$$f:S\to G$$

What is the rule of the function shown by the figure?

```
\begin{cases} f(John) = A \\ f(Tom) = C \\ f(Marry) = B \\ f(Adam) = A \\ f(Eve) = F \end{cases}
```


Functions Notes

- f(Ted) = ?
- Undefined

- So, it is possible to have some elements in the domain that is NOT mapped to any value of the range. (e.g. Ted in the domain)
- Also, it is possible to have some elements in the range that is NOT assigned by any value of the domain. (e.g. D in the range)

Functions Notes

- Is it possible for Marry to have two grades at the same time?
- Definitely, NO.
 In this universe, it cannot happen.

- That's why, in the definition of function, we said some elements of the domain are uniquely mapped to an element of the range.
- In other words, if there is a mapping, it should be unique.

Functions

Example 28: Mixing Cartesian Product and Function

- Let $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b\}$, $\delta : Q \times \Sigma \rightarrow Q$
- What is the domain and range of δ?
- Domain: $Q \times \Sigma = \{q_0, q_1, q_2\} \times \{a, b\} = \{(q_0, a), (q_0, b), (q_1, a), (q_1, b), (q_2, a), (q_2, b)\}$
- Range: {q₀, q₁, q₂}
- The rule of δ is shown in the following figure. Write the rule using algebraic notation.
- Rule of function δ:

$$\begin{cases} \delta(q_0, a) = q_0 \\ \delta(q_0, b) = q_1 \\ \delta(q_1, b) = q_2 \\ \delta(q_2, b) = q_2 \end{cases}$$

Homework

- Let Q = $\{q_0, q_1\}$, $\Sigma = \{a\}$, $\Gamma = \{x\}$, $\delta : Q \times \{\Sigma \cup \{\lambda\}\} \times \Gamma \rightarrow Q$
- What is the domain and range of δ ?

Total Function

 A function is called "total function" if all of its domain elements are defined.

Example 29

 The following function is "total function" because all domain elements are defined.

Partial Function

 If there exist at least one element in the domain of a function that is undefined, then the function is called "partial function".

- The following function is "partial function" because at least one element of the domain is undefined:
- f(8) = Undefined

Mathematical Preliminaries

Recap from Math 42

Graphs

Graph Definition

- A graph is a "mathematical construct" consisting of two sets:
 - A non-empty and finite set of vertices $V = \{v_1, v_2, \dots, v_n\}$
 - A finite set of edges $E = \{e_1, e_2, \dots, e_m\}$
 - Each edge connects two vertices.

Example 31

• $V = \{V_1, V_2, V_3\}$

• $E = \{e_{13}, e_{23}\}$

Directed Graph (aka Digraph)

- If the direction of the edges matters, then we call the graph "directed graph".
- The edges are shown by "ordered pairs" (start, end).
 - In this course, we only use directed graphs.

Example 32

Draw a digraph with the following specifications:

$$- V = \{v_1, v_2, v_3\}, E = \{(v_1, v_3), (v_3, v_1), (v_3, v_2), (v_3, v_3)\}$$

Graphs Terminologies

① Walk

- A sequence of edges like (v_i, v_j), (v_j, v_k), ..., (v_m, v_n), is called a walk from v_i to v_n.
 - Note that the end vertex of e_i is the start vertex of e_{i+1}.
 - In other words, in a walk we cannot jump!

- Each of the following sequences are a walk from v₁ to v₃:
 - Walk 1: (v_1, v_3)
 - Walk 2: (v₁, v₃), (v₃, v₃)
 - Walk 3: $(v_1, v_3), (v_3, v_1), (v_1, v_3)$
 - ...

Length of Walks

The "length of a walk" is the total number of edges traversed.

Example 33 (cont'd)

- Walk 1: (v₁, v₃); length = 1
- Walk 2: $(v_1, v_3), (v_3, v_3)$; length = 2
- Walk 3: $(v_1, v_3), (v_3, v_1), (v_1, v_3)$; length = 3

Path

A walk that no edge is repeated.

- Which one is a path?
- Walk from v₁ to v₃:
- ✓- Walk 1: (v₁, v₃)
- \checkmark Walk 2: $(v_1, v_3), (v_3, v_3)$
- \times Walk 3: $(v_1, v_3), (v_3, v_1), (v_1, v_3)$

Simple Path

- A path that no vertex is repeated.
 - In other words, no vertex should be visited more than once.

v₁ v₂ v₃

- Which one is a simple path?
- Walk from v₁ to v₃:
- √ Walk 1: (v₁, v₃)
- \times Walk 2: $(v_1, v_3), (v_3, v_3)$
- \times Walk 3: $(v_1, v_3), (v_3, v_1), (v_1, v_3)$

Loop

An edge from a vertex to itself is called loop.

Example 36

- Which one is a loop?
- Walk from v₃ to v₃:

$$\checkmark$$
 - Walk 1: (v_3, v_3)

• Is there any other loop in this graph?

Cycle

- A walk from a vertex (called base) to itself with no repeated edges.
- Remember that: Walk + No repeated edges = path
- Rewording: A cycle is a path from a vertex (called base) to itself.

- Which one is a cycle?
- Walk from v₁ to v₁:

- \checkmark Walk 2: $(v_1, v_3), (v_3, v_1)$
- \checkmark Walk 3: $(v_1, v_3), (v_3, v_3), (v_3, v_1)$

(1) S

Simple Cycle

- A cycle that no vertex other than the base is repeated.
 - Note that the walk starts from the base and ends to the base.
 - During the walk, the base should not be repeated.

- Which one is a simple cycle?
- Walk from v1 to v1:
- \times Walk 1: $(v_1, v_3), (v_3, v_1), (v_1, v_3), (v_3, v_1)$
- \sim Walk 2: $(v_1, v_3), (v_3, v_1)$
- \times Walk 3: $(v_1, v_3), (v_3, v_3), (v_3, v_1)$

One-Dimensional Projection of a Walk

 "One-dimensional projection" (or just projection) is another way of representing a walk.

Example 39

- Represent the following walk as a one-dimensional projection.
- Walk from v_1 to v_2 : $(v_1, v_3), (v_3, v_1), (v_1, v_3), (v_3, v_2)$

The length of this walk (= the number of edges) is clearly shown.

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Sipser, Michael, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790