

planetmath.org

Math for the people, by the people.

closure of a vector subspace is a vector subspace

 ${\bf Canonical\ name} \quad {\bf Closure Of A Vector Subspace Is A Vector Subspace}$

Date of creation 2013-03-22 15:00:19 Last modified on 2013-03-22 15:00:19

Owner loner (106) Last modified by loner (106)

Numerical id 8

Author loner (106)
Entry type Theorem
Classification msc 46B99
Classification msc 15A03
Classification msc 54A05

Related topic ClosureOfAVectorSubspaceIsAVectorSubspace Related topic ClosureOfSetsClosedUnderAFinitaryOperation

Theorem 1. In a topological vector space the http://planetmath.org/Closureclosure of a vector subspace is a vector subspace.

Proof. Let X be the topological vector space over \mathbb{F} where \mathbb{F} is either \mathbb{R} or \mathbb{C} , let V be a vector subspace in X, and let \overline{V} be the closure of V. To prove that \overline{V} is a vector subspace of X, it suffices to prove that \overline{V} is non-empty, and

$$\lambda x + \mu y \in \overline{V}$$

whenever $\lambda, \mu \in \mathbb{F}$ and $x, y \in \overline{V}$.

First, as $V \subseteq \overline{V}$, \overline{V} contains the zero vector, and \overline{V} is non-empty. Suppose λ, μ, x, y are as above. Then there are nets $(x_i)_{i \in I}$, $(y_j)_{j \in J}$ in V converging to x, y, respectively. In a topological vector space, addition and multiplication are continuous operations. It follows that there is a net $(\lambda x_k + \mu y_k)_{k \in K}$ that converges to $\lambda x + \mu y$.

We have proven that $\lambda x + \mu y \in \overline{V}$, so \overline{V} is a vector subspace.