Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 12 Задание 1 Предмет: «Проектирование реконфигурируемых гибридных вычислительных систем» **Tema:** «**Inline**»

Студент: Ерниязов Т.Е. Гр. № 3540901/81502

Преподаватель: Антонов А.П.

Оглавление

1.	Зад	цание	4
2.	Ис	ходный код	6
3.	Mc	оделирование	7
4.	Пе	рвое решение	7
4	l.1.	Директивы	7
4	1.2.	Синтез	7
4	1.3.	Использование ресурсов	8
4.4	. (C/RTL Моделирование	9
5.	Вто	орое решение	9
5	5.1.	Директивы	9
5	5.2.	Синтез	9
5	5.3.	Использование ресурсов	0
5.4	. (C/RTL Моделирование	. 1
6	5. E	Выводы 1	1

1. Задание

- Создать проект lab12_1
- Микросхема: xa7a12tcsg325-1q
- Создать иерархическую функцию,

```
int sumsub_func (int *in1, int *in2, int *outSum, int *outSub) {
  *outSum = *in1 + *in2;
  *outSub = *in1 - *in2;
}

int shift_func (int *in1, int *in2, int *outA, int *outB) {
  *outA = *in1 >> 1;
  *outB = *in2 >> 2;
}

void add_sub_pass(int A, int B, int *C, int *D) {
  int apb, amb;
  int a2, b2;
  sumsub_func(&A,&B,&apb,&amb);
  sumsub_func(&apb,&amb,&a2,&b2);
  shift_func(&a2,&b2,C,D);
}
```

- Создать тест lab12_1_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- Исследование:
- Solution 1a
 - о задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ПО УМОЛЧАНИЮ
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - о Выполнить cosimulation и привести временную диаграмму
 - Убедиться в том, что требуется 2 сумматора и 2 вычитателя

No Inlining add_sub_pass A B sumsub_func + A+B A-B sumsub_func + A+B A-B 2A shift_func >>1 >>2 AB B>>1

- Solution_2a
 - о задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию Inlining
 - о осуществить синтез
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - о Выполнить cosimulation и привести временную диаграмму
 - о Убедиться в том, что для реализации не требуется ресурсов.

• Сравнить два решения (solution_1a и solution_2a) и сделать выводы

2. Исходный код

```
void sumsub_func(int *in1, int *in2, int* outSum, int* outSub) {
    *outSum = *in1 + *in2;
    *outSub = *in1 - *in2;
}

void shift_func(int* in1, int* in2, int* outA, int* outB) {
    *outA = *in1 >> 1;
    *outB = *in2 >> 2;
}

void add_sub_pass(int A, int B, int* C, int* D) {
    int apb, amb;
    int a2, b2;

sumsub_func(&A, &B, &apb, &amb);
    sumsub_func(&Apb, &amb, &a2, &b2);
    shift_func(&a2, &b2, C, D);

**Note outSum, int* outSum, int* outB) {
    *outA = *in1 >> 1;
    *outA = *in2 >> 2;
}

**Note outB = *in2 >> 2;
**Not
```

Рис. 2.1. Source code

```
#define N 16
       int main() {
             int A, B, C, D, C_expected, D_expected;
             int pass = 1;
             for (int i = 0; i < N; i++) {
                   A = (i * 123 - 16) / 7;
                   A = (1 * 125 - 16) / /;
B = (i * A - 11) / 3;
C_expected = ((A - B) + (A + B)) >> 1;
D_expected = ((A + B) - (A - B)) >> 2;
add_sub_pass(A, B, &C, &D);
printf("A=%d, B=%d, C=%d, C_expected=%d, D=%d, D_expected=%d\n",
10
11
12
                   A, B, C, C_expected, D, D_expected);
if (C != C_expected || D != D_expected) {
                          pass = 0;
                    }
             if (pass) {
                   printf("_
                                      __Pass!____\n");
             } else {
                   printf("____Fail!___\n");
             return 0;
```

Рис. 2.2. Test code

3. Моделирование

По результатам моделирования видно, что устройство работает

```
Vivado HLS Console
INFO: [HLS 200-10] Running 'C:/Xilinx/Vivado/2019.2/bin/unwrapped/win64.o/
INFO: [HLS 200-10] For user 'Misha' on host 'mikhail' (Windows NT amd64 ve:
INFO: [HLS 200-10] In directory 'C:/Users/Misha/Desktop/university/ maga/;
INFO: [APCC 202-3] Tmp directory is apcc db
INFO: [APCC 202-1] APCC is done.
   Generating csim.exe
A=-2, B=-3, C=-2, C expected=-2, D=-2, D expected=-2
A=15, B=1, C=15, C expected=15, D=0, D expected=0
A=32, B=17, C=32, C_expected=32, D=8, D_expected=8
A=50, B=46, C=50, C_expected=50, D=23, D_expected=23
A=68, B=87, C=68, C expected=68, D=43, D expected=43
A=85, B=138, C=85, C_expected=85, D=69, D_expected=69
A=103, B=202, C=103, C expected=103, D=101, D expected=101
A=120, B=276, C=120, C expected=120, D=138, D expected=138
A=138, B=364, C=138, C_expected=138, D=182, D_expected=182
A=155, B=461, C=155, C_expected=155, D=230, D_expected=230
A=173, B=573, C=173, C_expected=173, D=286, D_expected=286
A=191, B=696, C=191, C expected=191, D=348, D expected=348
A=208, B=828, C=208, C expected=208, D=414, D expected=414
A=226, B=975, C=226, C expected=226, D=487, D expected=487
A=243, B=1130, C=243, C expected=243, D=565, D expected=565
A=261, B=1301, C=261, C_expected=261, D=650, D_expected=650
      Pass!
INFO: [SIM 211-1] CSim done with 0 errors.
INFO: [SIM 211-3] ************ CSIM finish ***********
Finished C simulation.
```

Рис. 3. Successful result of modeling

4. Первое решение

4.1. Директивы

Рис. 4.1. Directives

4.2. Синтез

Рис. 4.2. Performance estimates

Полученная величина задержки укладывается в заданное значение.

4.3. Использование ресурсов

Рис. 4.3.1. Utilization estimates

Рис. 4.3.2. Performance profile

Рис. 4.3.3 Resource profile

Рис. 4.3.4. Operation\Control Step

Рис. 4.3.5. Operation\Control Step

4.4. C/RTL Моделирование

По результат моделирование видно, что среда разработки выполнило inlining, хотя это не было указано явно.

Рис. 4.4. Modeling result

5. Второе решение

5.1. Директивы

Рис.5.1 Directive

5.2. Синтез

Рис. 5.2. Performance estimates

5.3. Использование ресурсов

Рис. 5.3.1. Utilization estimates

Рис. 5.3.2. Performance profile

Рис. 5.3.3 Resource profile

Рис. 5.3.4. Operation\Control Step

Рис. 5.3.5. Operation\Control Step

5.4. C/RTL Моделирование

Рис. 5.4. Modeling result

Данное решение не отличается от первого, так как в предыдущем был применен inlining без явного указания, а во втором решение после явного указания – ничего не изменилось.

6. Выводы

В ходе выполнения работы не удалось сравнить производительность устройства после применения inlining и без применения, так как среда разработки применяет его, даже если это не указано, по причине того, что для данного устройства это однозначно приводит к улучшению характеристик.