

Congressional Vote Clustering

Group 2: Le Nguyen, Greeshma Ganji, Tolulope Olatunbosun, Nandhini Lakshman

Table of Contents

- 1. Problem Description
- 2. Data Mining
- 3. Data Cleaning
- 4. Data Analysis
- 5. Creating a model
- 6. Results
- 7. Conclusion
- 8. References

Problem Description

- Current American politics is very divided along party lines
- We want to see if this political divide shows up in the data
- Can members of congress be clustered into the two parties based on their voting record?
 - Do members of the same party tend to vote with each other?
 - Are some members willing to vote against their own party?
 - Are there some members that are hard to classify based on their voting recording?

Data Mining: Web Scraping

Web Scraping: collected relevant data from a given website

- For every bill, take the congressperson and their vote on said bill
- Collect this information on all bills to build a data set

We haven't done this in class, so let's take a look at what this looks like!

Congress / Votes

Voting Records

Each year the U.S. Senate and House of Representatives take thousands of votes, some to pass bills, resolutions, nominations, and treaties, and others on procedural matters such as on cloture and other motions. Not all votes are recorded, such as when there is no one opposed. This page shows the outcome of all recorded votes on the Senate floor and House floor. It does not include votes in committee.

TRACK VOTES

Get an email every time Congress votes on a bill or other matter.

All Votes

Vote	State	Party	Representative	Vote	State	Party	Representative		1	Vote	Vote State	Vote State Party
	8 /6	**	Alabama	Nay	KY	R	Paul, Rand		1	Nay	Nay ND	Long to
Nay	AL	R	Shelby, Richard				Louisiana		1	Nay	Nay ND	Nay ND R
Nay	AL	R	Tuberville, Tommy	No Vote	LA	R	Cassidy, Bill					
			Alaska	Nay	LA	R	Kennedy, John		,	Yea	Yea OH	Yea OH D
Nay	AK	R	Murkowski, Lisa				Maine		1	Nay	Nay OH	Nay OH R
Nay	AK	R	Sullivan, Dan	Yea	ME	R	Collins, Susan					
			Arizona	Yea	ME	I	King, Angus	N	Nay		OK	ок 🚺
Yea	AZ	D	Kelly, Mark				Maryland	N	Vay		ок	OK R
Yea	AZ	D	Sinema, Kyrsten	Yea	MD	D	Cardin, Benjamin					
			Arkansas	Yea	MD	D	Van Hollen, Chris	N	Nay		OR	OR D
Nay	AR	R	Boozman, John			1	Massachusetts	N	Nay	OF	2	R D
Nay	AR	R	Cotton, Tom	Nay	MA	D	Markey, Ed					
			California	Nay	MA	D	Warren, Elizabeth	Y	/ea	PA		D
Yea	CA	D	Feinstein, Dianne				Michigan	N	Nay	PA		R
Yea	CA	D	Padilla, Alex	Yea	MI	D	Peters, Gary					
			Colorado	Yea	MI	D	Stabenow, Debbie	Y	/ea	RI		D
Yea	со	D	Bennet, Michael				Minnesota	Y	/ea	RI		D
Yea	СО	D	Hickenlooper, John	Yea	MN	D	Klobuchar, Amy					
			Connecticut	Yea	MN	D	Smith, Tina	N	Nay	SC		R
Yea	CT	D	Blumenthal, Richard				Mississippi	N	Nay	SC		R
Yea	CT	D	Murphy, Christopher	Nay	MS	R	Hyde-Smith, Cindy					
			Delaware	Nay	MS	R	Wicker, Roger	N	Nay	SD	F	2
Yea	DE	D	Carper, Thomas				Missouri	N	Nay	SD	F	2
Yea	DE	D	Coons, Christopher	No Vote	MO	R	Blunt, Roy					
			Florida	Nay	MO	R	Hawley, Josh	N	Nay	TN	ļ	₹
Nay	FL	R	Rubio, Marco				Montana	N	Nay	TN	F	2

```
Elements Console Sources Network Performance Memory >> 82 1 3 52
    ▼<div id="vote notes">
     ▶ <div>...</div>
     ><div class="clearfix">...</div>
     ▶ <table id="vote-list-template" class="vote-list stats" style="display: non
     e">...
     ><div id="vote-details-outliers">...</div>
     v<div id="vote-details-all">
        <h3>All Votes</h3>
       ▼ <div class="vote-table-container" style="height: auto;">
        *
          ><thead class="sortable">...</thead>
          ▼ 
           ▶ ...
           ▼<tr vid="32770364" voter_group_0="Nay" voter_group_1="Alabama"
           voter sort 1="Alabama None" voter group 2="Republican" class> == $0
            ▼
               <span class="nowrap">Nay</span>
              AL 
             ▶ ...
             ▼
               <a href="/congress/members/richard shelby/300089" style="color: #</pre>
               444" class="plain">Shelby, Richard</a>
            >...
           ▶ <tr vid="32770369" voter_group_0="Nay" voter_group_1="Alabama"
           voter_sort_1="Alabama None" voter_group_2="Republican" class>...
           >...
           ▶ <tr vid="32770353" voter_group_0="Nay" voter_group_1="Alaska"
           voter_sort_1="Alaska None" voter_group_2="Republican" class>...
           ▶<tr vid="32770365" voter_group_0="Nay" voter_group_1="Alaska"
           voter sort 1="Alaska None" voter group 2="Republican" class>...
           >...
           ▶<tr vid="32770299" voter_group_0="Yea" voter_group_1="Arizona"
           voter sort 1="Arizona None" voter group 2="Democrat" class>...
           ▶ <tr vid="32770315" voter_group_0="Yea" voter_group_1="Arizona"
           voter sort 1="Arizona None" voter group 2="Democrat" class>...
           >...
           ▶<tr vid="32770325" voter_group_0="Nay" voter_group_1="Arkansas"
```

Data Cleaning

Problem	Solution					
Two word states listed in multiple indices (list[0] = "New", list[1] = "York")	Append indices together where this happened					
Not every member of congress votes on every bill, ragged data set	Create a list of all congress people, add missing people into bills they didn't vote on. <u>Assume they would vote with their party.</u>					
Data in string format "Yea" or "Nay"	Encode string values "Nay" = 0, "Yea" = 1					

Clean Data

	Name	State	Party	Bill_1	Bill_2	Bill_3	Bill_4	Bill_5	Bill_6	Bill_7
0	a_dutch_ruppersberger	Maryland	Democrat	1	1	1	1	0	1	1
1	abigail_spanberger	Virginia	Democrat	1	1	1	1	0	1	1
2	adam_kinzinger	Illinois	Republican	1	0	0	0	1	0	1
3	adam_schiff	California	Democrat	1	1	1	1	0	1	1
4	adam_smith	Washington	Democrat	1	1	1	1	0	1	1

Name	a_dutch_ruppersberger	abigail spanberger	adam kinzinger	adam schiff	adam smith	adrian smith	adriano espaillat	al green
Bill_1	1	1	1	1	1	1	1	1
Bill_2	1	1	0	1	1	0	1	1
Bill_3	1	1	0	1	1	0	1	1
Bill_4	1	1	0	1	1	0	1	1
Bill_5	0	0	1	0	0	1	0	0

Data Analysis

Finding the mean count of democrats and republicans who voted against their party for all 311 bills

Gives us an idea about voting behaviour and certain outliers

```
# On average, 3 democrats voted against their party
np.mean(demAgainst)
```

3.867741935483871

```
\# On average, 12 republicans voted against their own party \mbox{np.mean(repAgainst)}
```

12.993548387096775

Data Visualization

LGBTQ Business Equal Credit Enforcement and Investment Act df.groupby("Bill 180")["Party"].value counts()

33

Bill_180 Party Republican Nay 181 Yea Democrat 224 Republican

Name: Party, dtype: int64

Nay_Democrat

H.R. 3755: Women's Health Protection Act of 2021

Model Creation

- We want some algorithm that can look at how each person voted and classify them
- First need to define some distance metric to determine how close one congressperson is to another many such metrics exist: Manhattan, Euclidean, Cosine Similarity, Jaccard, and more
- Use an algorithm that can take in the distances to make clusters
 - Will everyone cluster into their own party?
 - Will there be some people who are difficult to cluster?

Jaccard Distance

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

- Generally speaking, the Jaccard index is used when there are binary situations. This is fitting in our context as we manipulated the data to go from 3 voting options (Yea, Nay, Not Voting) to 2 options (Yea, Nay) with data imputation based on mode of data set since such small percentage voted against their party.
- Aided in binarizing the choices.

Jaccard Distance Use Cases

- Recommendation Systems
- E-Commerce
- In Natural language processing, Jaccard distance is often used to measure text similarity analysis how much word choice overlap exists between documents. This pattern analysis is often used for plagiarism detection.

Jaccard Distance Results

abigail_spanberger	adam_kinzinger
1	1
1	0
1	0
1	0
0	1
1	0
1	1
0	0
0	0
1	0

- Often used to measure similarity and diversity of data sets.
- Jaccard Distance = intersection of A&B/Union of A&B
 - Elements of A in B/All elements in A and B
- Where both people vote together/All votes
- J(Spanberger, Kinzinger) = 0.61. This is a relatively high distance between politicians, suggesting perhaps they are polar and that they disagree on most issues.
- We can then produce a distance matrix- distance from one person to everyone else

```
[0. , 0.0444, 0.6327, 0.0242, 0.0283]

[0.0444, 0. , 0.6103, 0.0593, 0.0558]

[0.6327, 0.6103, 0. , 0.64 , 0.6409]

[0.0242, 0.0593, 0.64 , 0. , 0.0121]

[0.0283, 0.0558, 0.6409, 0.0121, 0. ]
```

Plotted Distance Matrix

Hierarchical Clustering

- Given the distances between each point we can use Hierarchical Clustering
- This will group all points closest to each other then group all clusters closest to each other

Hierarchical Clustering Example

Results

<u>Accuracy</u>

 $(Y_pred == Y)/len(Y) *100$

= 100%

Conclusion

- Initial analysis in the data reflected the political division in congress
- This was further shown by using a distance metric to measure see how close/far people voted in their own party
- The vast difference in voting between the parties made clustering them accurately easy

References

Congressional Votes Database

https://www.govtrack.us/congress/votes

Related Article

https://www.forbes.com/sites/ericaswallow/2013/11/17/senate-voting-relationships-data/?sh=427aac744031

Sklearn Algomeratrive Clustering

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

Plotting Distance Matrix

https://stackoverflow.com/questions/36339865/generating-graph-from-distance-matrix-using-networkx-inconsistency-python