# Mask R-CNN

Outzen Berild, Martin &

Martinussen, Jakob Gerhard

#### Overview

- Framework name: Mask R-CNN
- Task type: Object instance segmentation
- Submission date: March, 2017
- Authors: Facebook Al Research (FAIR)
- Accolades: Won COCO Stuff Challenge 2017

# facebook Artificial Intelligence

### **Problem Complexity**

Instance Segmentation Object Detection Semantic Segmentation Complexity?

"[...] one might expect a complex method is required to achieve good results. However, we show that a surprisingly simple, flexible, and fast system can surpass prior state-of-the-art instance segmentation results."

## Starting Point

Extending Fast R-CNN in order to predict a segmentation mask

#### Proposal

Apply a **parallel** *fully convolutional network* (FCN) mask branch to each *region of interest* (RoI)



#### Problem

RolPool introduces a misalignment of input vs. output during quantization into spatial bins.



#### **RolPool Quantization**

RolPool quantizes a continuous coordinate *x* by computing:



#### Solution - Bilinear Interpolation



#### RolPool → RolAlign

"[...] RolAlign has a large impact: it improves mask accuracy by relative 10% to 50%, showing bigger gains under stricter localization metrics."



| RoIPo                                                         | ol [12] |              |              | max  | 26.9 | 48.8 | 26.4 |
|---------------------------------------------------------------|---------|--------------|--------------|------|------|------|------|
| DoIWara [10]                                                  |         |              | $\checkmark$ | max  | 27.2 | 49.2 | 27.1 |
| RoIWarp [10]                                                  |         | $\checkmark$ | ave          | 27.1 | 48.9 | 27.1 |      |
| RoIAlign                                                      |         | ✓            |              | max  |      | 51.0 | 31.8 |
|                                                               |         | ✓            | $\checkmark$ | ave  | 30.3 | 51.2 | 31.5 |
| (c) RoIAlign (ResNet-50-C4): Mask results with various RoI    |         |              |              |      |      |      |      |
| layers. Our RoIAlign layer improves AP by $\sim$ 3 points and |         |              |              |      |      |      |      |

align? | bilinear? | agg. | AP AP<sub>50</sub> AP<sub>75</sub>

(c) **RoIAlign** (ResNet-50-C4): Mask results with various RoI layers. Our RoIAlign layer improves AP by  $\sim$ 3 points and AP<sub>75</sub> by  $\sim$ 5 points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

| RoIAlign    | 30.9     | 51.8              | 32.1       | 34.0      | 55.3     | 36.4      |
|-------------|----------|-------------------|------------|-----------|----------|-----------|
|             | +7.3     | + 5.3             | +10.5      | +5.8      | +2.6     | +9.5      |
| (d) RoIAlig | n (ResNe | t-50- <b>C5</b> , | stride 32) | ): Mask-l | evel and | box-level |

AP using *large-stride* features. Misalignments are more severe than

with stride-16 features (Table 2c), resulting in big accuracy gaps.

21.6

28.2

52.7

26.9

 $AP_{50}$   $AP_{75}$ 

46.5

23.6

RoIPool

#### Decoupling Segmentation and Class Prediction

- Normal FCN approach Per-pixel multi-class categorization
  - Segmentation precedes recognition, which is slow and less accurate
  - Loss: Per-pixel softmax and a multinomial cross-entropy loss
  - "[...] based on our experiments works poorly for instance segmentation"

- Mask R-CNN Independent binary mask for each class
  - No class competition
  - Rol classification branch responsible for predicting the class of each pixel
  - Parallel prediction of masks and class labels, which is simpler and more flexible
  - Loss: Per-pixel sigmoid and a binary loss



# **Binary Masks**

```
Kegion of Interest: m × m
Number of classes: K
          Mask: Km2
LOSS: Lols + Lbex + Lmask
       Faster R-CNN sigmoid
```

|         | AP   | $AP_{50}$ | $AP_{75}$ |
|---------|------|-----------|-----------|
| softmax | 24.8 | 44.1      | 25.1      |
| sigmoid | 30.3 | 51.2      | 31.5      |
|         | +5.5 | +7.1      | +6.4      |
| ,       | '    |           |           |

(b) Multinomial vs. Independent Masks (ResNet-50-C4): Decoupling via perclass binary masks (sigmoid) gives large gains over multinomial masks (softmax).

| MLP                                                                          | fc: $1024 \rightarrow 1024 \rightarrow 80.28^2$                                            | 31.5 | 53.7 | 32.8 |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|------|------|--|--|
| MLP                                                                          | fc: $1024 \rightarrow 1024 \rightarrow 1024 \rightarrow 80.28^2$                           | 31.5 | 54.0 | 32.6 |  |  |
| FCN                                                                          | conv: $256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 80$ | 33.6 | 55.2 | 35.3 |  |  |
| (e) Mask Branch (ResNet-50-FPN): Fully convolutional networks (FCN) vs.      |                                                                                            |      |      |      |  |  |
| multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs im- |                                                                                            |      |      |      |  |  |
| prove results as they take advantage of explicitly encoding spatial layout.  |                                                                                            |      |      |      |  |  |

AP

 $AP_{50}$ 

 $AP_{75}$ 

mask branch

### Results

















# Generalizes to CityScapes



# Generalizes to Keypoint Detection



#### Comparison with FCIS+++

- Position-sensitive output channels by full convolution
- Channels are responsible for *(no decoupling)*:
  - Object classification
  - Bounding box regression
  - Segmentation masks
- Fast but systematic errors on overlapping instances and spurious edges

























### Benefits from Deeper Networks

| net-depth-features | AP   | $AP_{50}$   | $AP_{75}$ |
|--------------------|------|-------------|-----------|
| ResNet-50-C4       | 30.3 | 51.2        | 31.5      |
| ResNet-101-C4      | 32.7 | 54.2        | 34.3      |
| ResNet-50-FPN      | 33.6 | 55.2        | 35.3      |
| ResNet-101-FPN     | 35.4 | 57.3        | 37.5      |
| ResNeXt-101-FPN    | 36.7 | <b>59.5</b> | 38.9      |

(a) **Backbone Architecture**: Better backbones bring expected gains: deeper networks do better, FPN outperforms C4 features, and ResNeXt improves on ResNet.

#### Accolades

- Outperformed every single-model entry on every task in the COCO 2017
   Challenge at time of publication in March
  - Instance segmentation
  - Bounding-box object detection
  - Person keypoint detection
- FAIR still won "COCO Stuff" competition at the end of 2017
- Won "ICCV 2017 Best Paper Award"

### **Key Contributions**

#### Rol alignment

Preservation of pixel alignment in order to predict pixel-accurate segmentation masks.

#### **Independent masks**

Decouples mask and class prediction. Mask branch segments independently for each class, while box branch decides on final labels. Negligible computational overhead and less complexity.

#### Use FCN and not FC layers in mask branch

Using fully convolutional network in mask prediction captures spatial information.

#### **Class-agnostic masks**

A single binary mask regardless of class can be nearly as effective provided proper division of labor.