Energy Savings Opportunity Survey Energy Engineering Analysis Program (EEAP) Fort Campbell, Kentucky

Final Report - Phase II

Volume 3 Sections 4 (continued) - 14

CONTRACT # DACA27-93-C-0096 SYSTEMS/CORP PROJECT # 93006.01 NOVEMBER 24, 1993

19971016 189

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

SUMMARY SHEET

BLOG # 2840

NATURAL GAS SAVINGS = 446 MBTH * \$4.00 = \$ 1784

ELECTRICAL SAVINGS = 1007 MBTH * \$6.19 = \$6233

TOTAL SAVINGS = \$ 8017 /YR

HARDWARE REQUIRED:

QUANTITY	ITEM		
	FID/MUX		
	MUX ONLY		
16 25 13	SPACE TEMP SENSOR		
25	DUCT TEMP SENSOR		
<u>13</u>	WATER TEMP SENSOR		
	O.A. TEMP SENSOR		
	HUMIDITY STUSOR		
19	STAKT /STOP		
19	STATUS RELAY		.*
6	DIFF. PRESSURE (DUET)		
4	DIFF. FRESSURE (PIPE	*)	
19 19 6 4 4 6	FLOW SWITCH		
6	PRESSULE SWITCH		
12	CURRENT RELAY		
	DATE TERMINAL CASIN	IET	
	INSTRUMENT ENCLOSUR		
2000 FT	2 WIRE, TWISTED PATE	, #18 CONTROL WIRE	E
1000 FT	RIGID CONDUIT -	("D.	
15	JUNCTION BOXES		
112	PROGRAMMING FOINT	75	
400 FT -	POWER WIEING		Τ_
-10 - EMCS ADDIT	20116	Checked By	Da

Title ECO-10 - EMCS ADDITIONS

SUMMARY SHEET

Project FT. CAMPBELL ENERGY SAVINGS

OPPORTUNITY SUGVEY

Checked By

GSL

9-17-93

Sheet No.

93000001

93000001

93000001

4-125

BASELINE ENERGY USAGE

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE:

9 = BUILDING DESIGN HEAT LOAD - BTU/HR

7 = HEATING SYSTEM EFFICIENCY

 $\Delta T = (T_{INDOORS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) F$

CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY =
$$\left(24\frac{HR}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(2.1 \times 10^{6} \frac{BTH}{HR}\right)$$
 $\left(0.65\right)\left(68-4\right)^{\circ}F$

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 BTY DIVERSITY FACTOR * HEATING

ENERGY = 55 * 2545 * 1.0 * 4369 = (12×10 BTU (ELEC)

PUMPS: ENERGY = PUMP HP * 2545 BTU * DIVERSITY FACTOR * HT HRS ENERGY = 10 * 2545 * 1.0 * 4369 = 111 × 10 ELEC)

TOTAL BASELINE HEATING ENERGY = 3843 × 10 BTY

Title	ECO-10 - EMCS APPITIONS	Checked By	Date	
	BASELINE ENERGY USAGE	Prepared By	9-16-93	
Project	FT. CAMPBELL ENERGY SAVINGS	GBL	Sheet No.	4-126
	opportunity survey	JOB NO. 93056.01	B-1	

							. H	Τ	٦ .
BASTINE	e ente	Y U	SAGE					2840	
COOLING	- BIN r	n eth	<u>od</u> .					2070	1
BIN	HRSKR		% FULL LOA	<u>o</u> .	FULL LOAD Bru/HR) -	BTU YR		
95/99	3	*	1.0	*	960,00	00 =	2,880,	000	
90/94	17	*	1,0	*	960,0		= 16,320		
95/89	75	*	0.85	*	960,00	oo =	61,200	000	
30184	135	*	0.70	*	960,0	00 :	=124,320	000	
75/79	407	*	0.55	*	960,0		= 214, 896		
70/74	714	*	0.40	*	960,00	00	= 274, 176	,000	
65/69	673	*	0.25	*	960,00	00	= 161,520	,000	
TOTAL HES/Y	= 2074	•	·		TOTAL	Bry =	855,312	,000	
TOTA	L ELECTRIC	ial E	NEIGY IN	P4T	COULING	= 855>	10 7 + 2	(AUG.)	
							8 × 106 Em/		
NOTE ! HKS	YE INDI	CATE	THE TOT	ni i	ANNUAL		•	1	,
BIN	FOR THE	. Ho	ues from	^ 5	P.M. 7	3 S A	·M		
AUXILIANUS	!								
	FANS :	<u>55</u>	HP ± 25	45	# + + +	1.0 + 2	1074 = 29	O×10 BTY	au.
FOR THE HE								YE.	
	TOTA	11 F	on stline	Cusi	WE ENE	LCV =	712 212	BIY (ELLC)	
THIS IS AL	SO THE P	ropose	D COOLING	EN	ERGY SA	VINGS	110-10	Yr (ELLC)	
Tor Implem	enting t	415			т			- p	
	- emcs p					Checked By	CBL	Date	
Project	NE COOLIN					Prepared By	CBL	7-21-93	4-12
Project WAT	CAMPBER	F En	ecgy sa	ni nj C	.5	Job No.	<u> </u>	Sheet No.	

PROPOSED ENERGY USACE

FT. CAMPBELL ENELGY SAVINGS

DPONTHINTY KINGEY

Project

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION BLDG # PROPOSED ENERGY USAGE 2840 DEGREE DAY METHOD HEATING: SEE SHEET (B-1) FOR DEGREE DAY FORMULA EXPLANATION BY LOWERING SPACE HEATING SET POINTS DURING UND COUPLED HOURS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM (EMCS), THE FULLOWING SAVINGS ARE ACHIEVED! EXISTING DESIGN AT = (68-4) = 4°F PROPOSED SETBACK AT = (50-4) = "F DESIGN HEAT LOAD * PLOPOSED AT SETBACK BUILDING HEAT LOAD = $= \frac{(2.1 \times 10^{\circ}) \frac{Bru}{HR}}{(68-4)^{\circ}F} * (50-4)^{\circ}F$ SETBACK BUILDING HEAT LOAD = 1,5 ×10 BTY NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION: HEATING EVELCY USAGE $=\frac{\left(12 + 125\right) 4290 \left(1.5 \times 10^{\frac{4374}{HR}}\right)}{\left(0.65\right) \left(64\right)} + \frac{\left(24 - 12\right) \left(3120 \times 10^{6}\right)}{1100}$ PROPOSED HEATING ENERGY USAGE = 2674×10 BTU (NATURAL GAS) AUXILIARY ENERGY SAVINGS = BASELINE AUX, ENERGY - PROPOSED ANX. EVERGY ANX. DATE. = 723×10 Bry (FROM B-1) - 65 HP + 2545 * 0.6 (DIV. PACTOR) * 43697 AUX. ENERGY SAVINGS = 289×10 Bry/ge (ELECTOTAL ENERGY SAVINGS = 735×106 Checked By Title ECO-10 - EMCS ADDITIONS GAL 9-16-93

Prepared By

Job No.

Sheet No.

F-1

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 2840

Contract No: 27-93-C-0096

Prepared By: Systems Corp
Estimator: Keith A. Derrington
Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

TABLE OF CONTENTS

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27

CONTENTS PAGE

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 11:04:27

DETAIL PAGE 1

BASE BID

								DYDE DID
DIVISION 16 ELECTRIC	CAL	OUANTITY UON CREW				MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIA 16111 1100 RIGID	ALS AND METHODS GALVANIZED STEEL CONDUIT							
CD=4 EL 1121 1 IN WC=1100	CONDUIT W/COUPLING	*** UNIT COSTS: *** 1000.00 LF EELEF	0.08 78	2.34 2,342	0.01 11	0.90 900	0.05 45	3.30 3,298
16120 1200 SINGLE	E STRANDED CONDUCTOR					-		
CD=4 EL 1211 NO. WC=1100 INSU	12 AWG - TYPE THHN JLATION	*** UNIT COSTS: *** 0.40 MLF EELEF	5.78 2	174.30 70	0.78 0	52.98 21	2.65 1	230.71 92
16130 1200 NEMA 1	L SCREW COVER ENCL							
CD=4 EL 1202 6X6X WC=1100	K4 NEMA 1	*** UNIT COSTS: *** 15.00 EA EELEB	0.67 10	22.01 330	0.09	4.87 73	0.24 4	27.21 408
16900 CONTROLS AND 16920 2000 CC								
CD=3 EL 2001 TWIS WC=1100	STED PAIR WIRES 18 AWG	*** UNIT COSTS: *** 2.00 MLF EELEF	8.28 17	249.82 500	1.12	820.00 1,640	41.00 82	1111.94 2,224
16920 3000 CC	ONTROL SWITCH							
CD=3 EL 3001 STAI WC=1100	RT/STOP	*** UNIT COSTS: *** 19.00 EA EELEB	5.00 95	165.05 3,136	0.65 12	60.00 1,140	3.00 57	228.70 4,345
16920 4000 R	ELAY							
CD=3 EL 4001 STAT WC=1100	TUS RELAY	*** UNIT COSTS: *** 19.00 EA EELEB	1.25 24	41.26 784	0.16 3	20.00 380	1.00	62.42 1,186
CD=3 EL 4002 CURI WC=1100	RENT RELAY	*** UNIT COSTS: *** 12.00 EA EELEB	1.25 15	41.26 495	0.16	85.00 1,020	4.25 51	, 130.67 1,568
16961 3000 T	EMPERATURE							
CD=3 EL 3001 SPA(WC=1100	CE TEMPERATURE SENSOR	*** UNIT COSTS: *** 16.00 EA EELEB	2.50 40	82.53 1,320	0.32 5	40.00 640		124.85 1,998
CD=3 EL 3002 DUC WC=1100	T TEMPERATURE SENSOR	*** UNIT COSTS: *** 25.00 EA EESMA	2.00 50	62.79 1,570	1.40 35	45.00 1,125		111.44 2,786
CD=3 EL 3004 PIP: WC=1100	E TEMPERATURE SENSOR	*** UNIT COSTS: *** 13.00 EA EPIPA	4.25 55	133.71 1,738	0.32 4	60.00 780		197.03 2,561

4-131

CURRENCY in DOLLARS

PROJECT ID: 284010

CREW ID: ORL290

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 11:04:27

DETAIL PAGE 2

						BASE BID
QUANTITY UOH CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
						100.94 606
						148.19 889
						282.35 1,129
*** UNIT COSTS: *** 4.00 EA MSPFB	5.00 20	137.72 551	2.02	0.00	0.00	139.73 559
						•
*** UNIT COSTS: *** 1.00 EA EELEB	5.00 5	165.05 165	0.65 1			
						450.35 450
*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	125.00 125		214.10 , 214
CS *** UNIT COSTS: *** 112.00 EA EELEB	1.25 140	41.26 4,621	0.16 18	30.00 3,360		72.92 8,167
	624					•
	624	19,941	124	18,064	903	39,032
LINE	624		124	18,064	903	39,032
	624	19,941				
	### UNIT COSTS: *** 6.00 EA EESMA *** UNIT COSTS: *** 4.00 EA EEPPA *** UNIT COSTS: *** 4.00 EA EELEB *** UNIT COSTS: *** 4.00 EA MSPFB *** UNIT COSTS: *** 1.00 EA EELEB *** UNIT COSTS: *** 1.00 EA EELEB *** UNIT COSTS: *** 1.00 EA EELEB	### UNIT COSTS: *** 2.00 6.00 EA EESMA 12 *** UNIT COSTS: *** 8.50 4.00 EA EPIPA 34 *** UNIT COSTS: *** 2.00 6.00 EA EESMA 12 *** UNIT COSTS: *** 2.50 4.00 EA EELEB 10 *** UNIT COSTS: *** 5.00 4.00 EA MSPFB 20 *** UNIT COSTS: *** 5.00 1.00 EA EELEB 5 *** UNIT COSTS: *** 2.50 1.00 EA EELEB 3 *** UNIT COSTS: *** 2.50 1.00 EA EELEB 3 *** UNIT COSTS: *** 1.25 1.00 EA EELEB 140 CS *** UNIT COSTS: *** 1.25 112.00 EA EELEB 140	E *** UNIT COSTS: *** 2.00 62.79 6.00 EA EESMA 12 377 E *** UNIT COSTS: *** 8.50 267.42 4.00 EA EPIPA 34 1,070 *** UNIT COSTS: *** 2.00 62.79 6.00 EA EESMA 12 377 *** UNIT COSTS: *** 2.50 82.53 4.00 EA EELEB 10 330 *** UNIT COSTS: *** 5.00 137.72 4.00 EA HSPFB 20 551 *** UNIT COSTS: *** 5.00 165.05 1.00 EA EELEB 3 83 *** UNIT COSTS: *** 2.50 82.53 1.00 EA EELEB 3 83 *** UNIT COSTS: *** 2.50 82.53 1.00 EA EELEB 3 83 *** UNIT COSTS: *** 2.50 82.53 1.00 EA EELEB 3 83 *** UNIT COSTS: *** 1.25 41.26 112.00 EA EELEB 140 4,621	E	E	E *** UNIT COSTS: *** 2.00 62.79 1.40 35.00 1.75 6.00 EA EESMA 12 377 8 210 11 E *** UNIT COSTS: *** 8.50 267.42 0.65 85.00 4.25 4.00 EA EPIPA 34 1,070 3 340 17 *** UNIT COSTS: *** 2.00 62.79 1.40 80.00 4.00 6.00 EA EESMA 12 377 8 480 24 *** UNIT COSTS: *** 2.50 82.53 0.32 190.00 9.50 4.00 EA EELEB 10 330 1 760 38 *** UNIT COSTS: *** 5.00 137.72 2.02 0.00 0.00 4.00 EA MSPFB 20 551 8 0 0 *** UNIT COSTS: *** 5.00 165.05 0.65 4720.00 236.00 1.00 EA EELEB 5 165 1 4,720 236 *** UNIT COSTS: *** 2.50 82.53 0.32 350.00 17.50 1.00 EA EELEB 3 83 0 350 18 *** UNIT COSTS: *** 2.50 82.53 0.32 350.00 17.50 1.00 EA EELEB 3 83 0 125 6 *** UNIT COSTS: *** 2.50 82.53 0.32 125.00 6.25 1.00 EA EELEB 3 83 0 125 6

CURRENCY in DOLLARS

4-132

PROJECT ID: 284010

DETAILED ESTIMATE

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 2840

2. SITEWORK /

TIME 11:04:27

DETAIL PAGE 3

					BASE BID
NTITY UON CREW HANHR	LABOR	EQUIPHENT	MATERIAL	SALESTX	DIRECT \$
0	0	0	0	0	0
624	19,941	124	18,064	903	39,032
	0	0 0	0 0 0	0 0 0 0	0 0 0 0 0

* * * END OF DETAIL REPORT * * *

PROJECT NOTES

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: ENCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 2840

TIME 11:04:27

SUMMARY PAGE

BID	ITEN 1	BUILDING	TO THE 5 FOO	OT LINE							BASE BID
ID	FACILITY			COST TO PR	H OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICA	L	1.00 H	Σλ 39,03	10.0% 2 3,903	0.0%	7.5% 3,220	2.5% 1,154	0.0%	47,309	47309.36
BID	ITEM TOTAL	L	1.00 H	 Ελ 39,03	2 3,903	0	3,220	1,154	0	47,309	47309.36

U.S. ARMY CORPS of ENGINEERS N-CACES

TIME 11:04:27

BID ITEM AND FACILITY SUMMARY

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

SUMMARY PAGE

BID ITEM 2 SITEWORK								BASE BID
ID PACILITY	COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND (OTHR FCTR	TOTAL COST	UNIT COST
TOTAL BASE BID	39,032	3,903	0	3,220	1,154	0	47,309	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	39,032	3,903	0	3,220	1,154	0	47,309	

PROJECT CWE SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27

SUMMARY PAGE

 ID BID ITEM	QUANTITY UON	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	47,309		47,309	47309.40
TOTAL CURRENT CONTRACT COST	•	47,309	0	47,309	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		47,309	0	47,309	
Government-Furnished Property	•	0		0	
SUBTOTAL	•	47,309	0	47,309	
Contingencies	10.0%	4,731	0	4,731	
SUBTOTAL	•	52,040	0	52,040	
SIOH (S&A)	5.0%	2,602	0	2,602	
CURRENT WORKING ESTIMATE	•	54,642	0	54,642	
					•
Estimated Construction Time	365 Days				

4-137 PROJECT ID: 284010

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27
SUMMARY PAGE 5

CONTRACTOR DIRECT SUMMARY

ID	CONTRACTOR	QUANTITY (EQUIPHENT				* SUBCO	*SUBTOTAL
λλ	GENERAL/PRIME	1.00	Eλ	624	19,941	124	18,967	39,032	100.0		0 39,032
	TOTAL DIRECT			624	19,941	124	18,967	 39,032	100.0		

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27 SUMMARY PAGE 6

CONTRACTOR INDIRECT SUMMARY

ID	CONTRACTOR	PM	SUBTOTAL				PROFIT AMOUNT				****** TOTA AMOUNT		CT ****** UNIT COST
λλ	GENERAL/PRIME		39,032	3,903	10.0%	0.0	3,220	7.5%	2.5%	0.08	47,309	100.0	47309.34
	TOTAL OVERHEAD & PROFIT			 3,903	10.0%		 3,220	7.5%					

CSI DIVISION SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / PT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27

SUMMARY PAGE 7

					*:	*** TOTAL *
ID CSI DIVISION	HANHOURS	LABOR	EQUIPMENT			DIRECT
16 ELECTRICAL	624	19,941	124	18,064	903	39,032
TOTAL DIRECT	624	19.941	124	18,064	903	39,032

PROJECT ID: 284010

SYSTEMS SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27

SUNMARY PAGE 8

						***	** TOTAL *	
•	ID SYSTEM	MANHOURS	LABOR	EQUIPMENT	HATERIAL		DIRECT	
,	11 TIMERTAD BY RANDIANS	<i>CO.</i>	30.041	174	10 064	903	39,032	
	11 INTERIOR ELECTRICAL	624	19,941	124	18,064	303	37,032	
	TOTAL DIRECT	624	19,941	124	18,064	903	39,032	

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27

SUMMARY PAGE

QUIPHENT SUHMARY

EQUIP D			VALUE *** Y OWNRSHP			- HRLY RATE		**** TOTAL	COST
EMI20 S	MALL TOOLS	 				1.40	1.40	89	124
TOTAL PR	OJECT EQUIPMENT HOURS							89	124

LABOR SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 2840

TIME 11:04:27

SUMMARY PAGE 10

								- HRLY -	UPB	**** 170	ΤλΙ, ****	
_	CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	RATE	RATE		COST	
-												
	LELEC	ELECTRICIANS	20.50	0.0%	24.0%	7.49	0.00	32.91	25.79	525	17,033	
	LSHNT	SHEET METAL WORKERS	19.90	0.0%	24.0%				25.06	37	1,106	
	LSPFI	STEAM/PIPEFITTERS	20.95	0.0%	24.0%	3.85	0.00	29.83	26.12	62	1,804	
	TOTAL	PROJECT MANHOURS								624	19,942	

* * * END OF SUMMARY REPORT * * *

SUMMARY SHEET

BLOG = 3069

NATURAL GAS SAVINGS =
$$\frac{150}{\text{MBTU}} * \frac{4.00}{\text{MBTU}} = \frac{4.00}{\text$$

TOTAL SAVINGS = \$ 3664 /YR

HARDWARE REQUIRED:

QUANTITY	<u>ITEM</u>
	FID/MUX
	MUX ONLY
8	SPACE TEMP SENSOR
24	DUCT TEMP SENSOR
<u>24</u> <u>4</u>	WATER TEMP SENSOL
1_	O.A. TEMP SENSOR
	HUMIDITY STUSOR
12	STAKT /STOP
12	STATUS RELAY
8	DIFF. MESSURE (DUET)
12 12 8 2 2 8	DIFF. PRESSURE (PIFE)
2	FLOW SWITCH
	PRESSURE SWITCH
12	CURRENT RELAY
+	DATA TERMINAL CASINET
	INSTRUMENT ENCLOSURE
2 <u>000</u> FT	- 2 WIRE, TWISTED PAIR, #18 CONTROL WIRE
1 <u>000</u> FT	- RIGID CONDUIT - I"D.
3 <u>00</u> FT.	JUNCTION BOXES POWER WIKING PROGRAMMING FOINTS

					1
Title	ECO-10 - EMCS ADDITIO	115	Checked By	Date	
			l GBL	9-17-93	
	SUMMARY SHEET	-	Prepared By	7 7-11-12	<u> </u>
Project	FT. CAMPBELL ENERG	Y SEVINGS	GBL	Sheet No.	4-144
1	APPORTURITY SUCUETY		Job No.	15-1	

BASELINE ENERGY USAGE

BLDG # 3069

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE:

9 = BUILDING DESIGN HEAT LOAD - BTY/HR

7 = HEATING SYSTEM EFFICIENCY

 $\Delta T = (T_{INDOORS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) F$

CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY =
$$\left(24\frac{\mu R}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(720,000\frac{BTu}{\mu R}\right)\left(0.6\right)$$
.

AUXILIARY EQUIPMENT!

8 AHu's @ 3 HP

FANS: ENERGY = FAN HP * 2545 Bry DIVERSITY FACTOR * HEATING

ENERGY = 24 + 2545 * 1.0 * 4369 = 266 × 10 BTU (ELEC)

ENERGY = PUMP HP * 2545 BTU + DIVERSITY FACTOR * HTG HRS

ENERGY = 5 * 2545 * 1.0 * 4369 = 56 × 10 BTH (ELEC)

TOTAL BASELINE HEATING ENERGY = 1391×10 BT4

Title	ECO-10 - EMCS APPITIONS	Checked By	Date '	
	BASELINE ENERGY USAGE	Prepared By	9-16-93	
Project	FT. CAMPBELL ENTIRGY SAVINGS	GBL	Sheet No.	4-145
	DPPORTUNITY SURVEY	Job No. 9325/2 01	1 B-1	

0.40	- Mail 0	v/ · ·		•				عد مرا ۵	\neg
BASTINE	e engle	y u	SAGE					BLDG #	
COOLING	- B!N 1	n ett	<u>pd</u>					3069	-
BIN	HRS/YR		% FULL LOA	<u>o</u> .	FULL LOAD Bru/HR		BTU YR		
95/99	3	*	1.0	*	360,000	=	1,080,		
90/94	17	*	1.0	*	360,000		6,120,		
25/89	75	*	0.85	*	360,000		22,950		
80184	185	*	0.70	*	360,000		46,620		
75/79	407	*	0.55	*	360,000	=	80,586	,000	
70/74	714	×	0.40	*	360,000	= [102,816	,000	
65/69	673	*	0.25	*	360,000		60,570	-	
TOTAL HIZS/Y/	t = 2074				TOTAL Bry	= 3	20,742	2,000	
TOTA	L ELECTIFI	iai t	veigy in	PUT.	COULING = 3	321 × 104	BTY - 2	Z (AVG.)	
					•			YR (ELEC)	
iote! HKS,	/YR INDI	CATE	THE TOT	AL A	innual occ		•		
					P.M. T3			·	1
UXILARIES	!	ı	2 (4.6.4	a 114					
	_	39	HP ± 75	2 HT) 1 c.w. pu, B-y + 1.0	1 @15 + 201	14P 14 = 91	1/ x/n b Bry	
.						201	20	YK YK	(E
FOR THE HO							1		
THIS IS AL	roothe P	the E	on cooling	CUOL	ING ENERGY ERGY SAVING	= 3	66×10°	BEY (ELLC	
Tor Implem	•	•	_	, 0	CICA SHVING	٥		//- \ _	
Eco-10	- EMCS F	DOIT	7UNS		Check	C	BL	Date	
	NE COOLIN	ig !	SMETCY.		Ргера	red By		7-21-93 Sheet No.	3
iect wat					1	7.	<i>a</i> 1		٦.

	BLOG #	}
PROPOSED ENERGY USAGE	3069	
HEATING! DEGREE DAY METHOD		
SEE SHEET (B-1) FOR DEGREE DAY FORMULA BY LOWERLING SPACE HEATING SET POINTS PURING UND HOURS WITH THE ENERGY MANAGEMENT AND CONTROL (EMCS), THE FULLOWING SAVINGS ARE ACHIEVED:	CCUPIED	
PROPOSED SETBACK AT = (68-4) = 4°F		
SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD *	PROPOSED AT	
$=\frac{(720,000.)\frac{BTU}{HR}}{(68-4)^{\circ}F}*(56)$	0-4)°F	
SETBACK BUILDING HEAT LOAD = 5/8,000 BTU HR NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK	CONDITION:	
PROPOSED HEATING = (SETBACK HRS) (4290°F-DAY) (SETBACK BUILDING HT. LOAD) (D.6) + (24 - SETBACK HRS) (DAY) ENERCY USAGE 7 (68-4)°F 24	BASELIVE HEATING ENERGY HR DAY	
$=\frac{\left(12 \text{ Hz}\right)4290\left(518,000\frac{BTU}{Hz}\right)}{\left(0.45\right)\left(44\right)}\left(0.6\right)+\frac{\left(24-12\right)\left(24-12\right)}{24}$	1069×100)	
PROPOSED HEATING ENERGY USAGE = 919×10 BTU (NATURAL	CAS)	
AUXILIARY ENERGY SAVINGS = BASELINE AUX, ENERGY - PROPOSED A		
Aux. Dust. = 322-×10 Bru (From 8-1) - [29 HP + 2545 * 0.6 (Factor) *	4369]	
AUX. ENERGY SAVINGS = 129 × 10 Bry/ge (ELECTOTAL ENERCY SAVINGS =	279×106	Bruly
Title ECO-10 - EMCS ADDITIONS Checked By PROPOSED ENERGY USAGE Prepared By	Date 9-16-93	
Project FT. CAMPBELL ENELGY SAVINGS GBL JOB NO.	Sheet No.	4-147
DPD-PTUILTY KINVEY	· · · ·	·

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 3069

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M - C A C E S E D I T I O N COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

> 4-148 PROJECT ID: 3069.

CURRENCY in DOLLARS

TABLE OF CONTENTS

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

TIME 09:18:46

CONTENTS PAGE

SUMMARY REPORTS

SUMMARY PAGE

PROJECT NOTES.

BID ITEM AND FACILITY SUMMARY.

PROJECT CWE SUMMARY.

CONTRACTOR DIRECT SUMMARY.

CONTRACTOR INDIRECT SUMMARY.

CSI DIVISION SUMMARY.

SYSTEMS SUMMARY.

EQUIPMENT SUMMARY.

BEQUIPMENT SUMMARY.

DETAILED ESTIMATE

1. BUILDING TO THE 5 FOOT LINE

AA. ELECTRICAL.

1.

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 09:18:46

DETAIL PAGE 1

QUANTITY UOM CREW MANHR LABOR EQUIPMENT MATERIAL SALESTX DIRECT \$ DIVISION 16 ELECTRICAL 16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CONDUIT CD=4 EL 1121 1 IN CONDUIT W/COUPLING *** UNIT COSTS: *** 0.08 2.34 0.01 0.90 0.05 3.30 1000.00 LF EELEF 78 2,342 11 900 45 3,298 WC=1100 16120 1200 SINGLE STRANDED CONDUCTOR *** UNIT COSTS: *** 5.78 174.30 0.78 52.98 2.65 230.71 CD=4 EL 1211 NO. 12 AWG - TYPE THHN 0 1 69 WC=1100 INSULATION 0.30 MLF EELEF 2 52 16 16130 1200 NEMA 1 SCREW COVER ENCL *** UNIT COSTS: *** 0.67 22.01 4.87 0.24 27.21 0.09 CD=4 EL 1202 6X6X4 NEMA 1 12.00 EA EELEB 8 264 58 326 1 3 WC=1100 16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE *** UNIT COSTS: *** 8.28 249.82 820.00 41.00 1111.94 CD=3 EL 2001 TWISTED PAIR WIRES 18 AWG 1.12 82 2 1,640 2.224 17 500 WC=1100 2.00 MLF EELEF 16920 3000 CONTROL SWITCH 60.00 *** UNIT COSTS: *** 5.00 165.05 0.65 3.00 228.70 CD=3 EL 3001 START/STOP 720 36 2,744 12.00 EA EELEB 60 1,981 8 WC=1100 16920 4000 RELAY 1.00 62.42 CD=3 EL 4001 STATUS RELAY *** UNIT COSTS: *** 1.25 41.26 0.16 20.00 12 WC=1100 12.00 EA EELEB 15 495 CD=3 EL 4002 CURRENT RELAY *** UNIT COSTS: *** 1.25 41.26 0.16 85.00 4.25 130.67 51 ' 1,568 12.00 EA EELEB 15 495 2 1,020 WC=1100 16961 3000 TEMPERATURE 40.00 2.00 124.85 CD=3 EL 3001 SPACE TEMPERATURE SENSOR *** UNIT COSTS: *** 2.50 82.53 0.32 20 660 320 16 999 WC=1100 8.00 EA EELEB 111.44 CD=3 EL 3002 DUCT TEMPERATURE SENSOR *** UNIT COSTS: *** 2.00 62.79 1.40 45.00 2.25 WC=1100 24.00 EA EESMA 48 1,507 34 1,080 54 2,675 0.32 2.25 *** UNIT COSTS: *** 2.50 82.53 45.00 130.10 CD=3 EL 3003 OUTSIDE AIR TEMPERATURE SENSOR 3 0 1.00 EA EELEB 83 45 130 WC=1100 CD=3 EL 3004 PIPE TEMPERATURE SENSOR *** UNIT COSTS: *** 4.25 133.71 0.32 60.00 3.00 197.03 240 788 WC=1100 4.00 EA EPIPA 17 535 1 12

> 4-150 PROJECT ID: 306910

CURRENCY in DOLLARS

CREW ID: ORL290

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 09:18:46

DETAIL PAGE 2

QUANTITY UON CREW MANHR LABOR EQUIPMENT MATERIAL SALESTX DIRECT \$ DIVISION 16 ELECTRICAL 16961 4000 PRESSURE CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE *** UNIT COSTS: *** 2.00 62.79 1.40 35.00 1.75 100.94 502 280 14 808 SENSOR 8.00 EA EESMA 16 11 WC=1100 CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE *** UNIT COSTS: *** 8.50 267.42 0.65 85.00 4.25 357.31 WC=1100 SENSOR 2.00 EA EPIPA 17 535 1 170 9 715 16962 PRESSURE SWITCHES 4.00 CD=3 EL 1001 PRESSURE SWITCH *** UNIT COSTS: *** 2.00 62.79 1.40 80.00 148.19 8.00 EA EESMA 16 502 640 32 11 -1,186 WC=1100 16963 FLOW SWITCHES CD=3 EL 1001 FLOW SWITCH *** UNIT COSTS: *** 2.50 82.53 0.32 190.00 9.50 282,35 165 WC=1100 2.00 EA EELEB 5 1 19 137.72 *** UNIT COSTS: *** 5.00 2.02 0.00 0.00 139.73 CD=3 EL 1002 FLOW SWITCH 2.00 EA MSPFB 275 4 0 0 279 WC=1100 10 16991 5000 MUX *** UNIT COSTS: *** 5.00 165.05 0.65 4720.00 236.00 5121.70 CD=3 EL 5001 MUX 1 165 4.720 1.00 EA EELEB 5 236 5,122 WC=1100 16991 6000 CABINET *** UNIT COSTS: *** 2.50 82.53 0.32 CD=3 EL 6001 DATA TERMINAL CABINET 350.00 17.50 450.35 1.00 EA EELEB 3 83 350 450 WC=1100 82.53 *** UNIT COSTS: *** 2.50 0.32 125.00 6.25: 214.10 CD=3 EL 6002 INSTRUMENT SHELTER 6 214 1.00 EA EELEB 3 83 0 125 WC=1100 16991 7000 SOFTWARE *** UNIT COSTS: *** 1.25 41.26 0.16 93.00 EA EELEB 116 3,837 15 30.00 1.50 72.92 CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS 2,790 140 6.782 WC=1100 TOTAL DIVISION 16 ELECTRICAL 472 15,061 108 15,734 787 _____

CREW ID: ORL290

TOTAL BASE BID

TOTAL FACILITY AA. ELECTRICAL

TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE

CURRENCY in DOLLARS

PROJECT ID: 306910

15,734 787

472 15,061 108 15,734 787 31,690

472 15,061 108 15,734 787 31,690

15,061 108

TOTAL ADDITIVE

DETAILED ESTIMATE

DIVISION 16 ELECTRICAL

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 3069

2. SITEWORK /

TIME 09:18:46

DETAIL PAGE 3

QUANTITY UOM CREW MANHR LABOR EQUIPMENT MATERIAL SALESTX DIRECT \$

472 15,061 108 15,734 787 31,690

TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY

* * * END OF DETAIL REPORT * * *

PROJECT NOTES

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

TIME 09:18:46

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 3069

TIME 09:18:46

SUNMARY PAGE 2

BID	ITEM 1	BUILDING	TO THE 5	FOOT	LINE							BASE BID
ID	FACILITY				COST TO PRM	OVERHEAD	HONE OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL		1.0	O EA	31,690	10.0% 3,169	0.0\$	7.5% 2,614	2.5% 937	0.0%	38,410	38410.43
BID	ITEM TOTAL		1.0	0 Еλ	31,690	3,169	0	2,614	937	0	38,410	38410.43

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 3069

TIME 09:18:46

SUMMARY PAGE

BID ITEM 2 SITEWORK								BASE BID
ID FACILITY	COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND OTH	R FCTR	TOTAL COST	UNIT COST
TOTAL BASE BID	31,690	3,169	0	2,614	937	0	38,410	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	31,690	3,169	0	2,614	937	0	38,410	

PROJECT CWE SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

TIME 09:18:46

SUMMARY PAGE

ID BID ITEM	QUANTITY UOM	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	38,410		38,410	38410.40
TOTAL CURRENT CONTRACT COST	-	38,410	0	38,410	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		38,410	0	38,410	
Government-Furnished Property		0		0	
SUBTOTAL	•	38,410	0	38,410	
Contingencies	10.0%	3,841	0	3,841	
SUBTOTAL	•	42,251	0	42,251	
SIOH (S&A)	5.0%	2,113	0	2,113	
CURRENT WORKING ESTIMATE	-	44,364	0	44,364	

4-156 PROJECT ID: 306910

CONTRACTOR DIRECT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

TIME 09:18:46

SUMMARY PAGE

ID	CONTRACTOR	PM	QUANTITY (JOH	MANHRS		EQUIPMENT					SUBCON W/OH&P	*	SUBTOTAL
λλ	GENERAL/PRIME		1.00	EA	472	15,061	108	16,521	31,690	100.09	<u> </u>		0	31,690
	TOTAL DIRECT				472	15,061	108	16,521	 31,690	100.0	•			

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

TIME 09:18:46

SUMMARY PAGE

CONTRACTOR INDIRECT SUMMARY

ECO-10: BUILDING 3069

ID CONTRACTOR		SUBTOTAL		_				BOND OTHE	****** TOTAL CONTR AMOUNT PCT	ACT ******* UNIT COST
AA GENERAL/PF	IME	31,690	3,169	10.0%	0.0	2,614	7.5%	2.5% 0.0%	38,410 100.0%	38410.40
TOTAL OVER	HEAD & PROFIT		3,169	10.0%		2,614	7.5%			

CSI DIVISION SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

TIME 09:18:46

SUMMARY PAGE 7

					**	*** TOTAL *
 ID CSI DIVISION	MANHOURS	LABOR	EQUIPMENT			DIRECT
 					202	21 600
16 ELECTRICAL	472	15,061	108	15,734	787	31,690
TOTAL DIRECT	472	15,061	108	15,734	787	31,690

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

TIME 09:18:46

SUMMARY PAGE

SYSTEMS SUMMARY

•	ID SYSTEM	HANHOURS	Labor		MATERIAL		***** TOTAL * DIRECT
•	11 INTERIOR ELECTRICAL	472	15,061	108	15,734	787	31,690
	TOTAL DIRECT	472	15,061	108	15,734	787	31,690

4-160

PROJECT ID: 306910

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

TIME 09:18:46

EQUIPMENT SUMMARY ECO-10: BUILDING 3069 SUMMARY PAGE

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP	ADJ FACTOR ADJUSTD OWNS OVTH OWNRSHP		UPB RATE		
EMI20 SHALL TOOLS			1.40	1.40	77 10)8
TOTAL PROJECT EQUIPMENT HOURS				•	77 10	38

LABOR SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3069

TIME 09:18:46

SUMMARY PAGE 10

								HRLY -	- UPB	**** TOT	ΓλL ****	
-	CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	RATE		HOURS	COST	
-												
	LELEC	ELECTRICIANS	20.50	0.0%	24.0%	7.49	0.00	32.91	25.79	406	13,114	
	LSHMT	SHEET HETAL WORKERS	19.90	0.0%	24.0%	5.20	0.00	29.88	25.06	40	1,195	
	LSPFI	STEAM/PIPEFITTERS	20.95	0.0%	24.0%	3.85	0.00	29.83	26.12	26	753	
	TOTAL	PROJECT MANHOURS								472	15,062	
	TOTAL	PROJECT MANHOURS								472	15,062	

* * * END OF SUMMARY REPORT * * *

SUMMARY SHEET

3071

NATURAL GAS SAVINGS =
$$\frac{150 \text{ MBTU}}{\text{YR}} * \frac{4.00}{\text{MBTU}} = \frac{$$

TOTAL SAVINGS = \$ 3664 /YR

HARDWARE REQUIRED:

QUANTITY	<u>ITEM</u>
	FID/MUX
1	MUX ONLY
8	SPACE TEMP SENSOR
24	DUCT TEMP SENSOR
24 4 <u>1</u>	WATER TEMP SENSOL
	O.A. TEMP SENSOR
12	HUMIDITY SENSOR
12	STAKT /STOP
므	STATUS RELAY
12 8 2 8	DIFF. PREJSUFE (DUCT)
2	DIFF. PRESSURE (PIPE)
2	FLOW SWITCH
<u> </u>	PRESSURE SWITCH
12	CURRENT RELAY
1	DATE TERMINAL CABINET
2200 ==	INSTRUMENT ENCLOSURE
	- 2 WIRE, TWISTED PATE, #18 CONTROL WIRE
1000 FT	- RIGID CONDUIT - I"D.
12	JUNCTION BOXES
300 G	POWER WILING PROGRAMMING FOINTS

Tille ECO-10 - EMCS ADDITIONS	Checked By GSL	Date 1
SUMMARY SHEET	Prepared By	9-17-93
Project FT. CAMPBELL ENERGY SAVINGS	GBL	Sheet No.
ODRAW THE SUCUEY	Job No.	1 5-1

4-163

BASELINE ENERGY USAGE

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY

9 = BUILDING DESIGN HEAT LOAD - BTY/HR

7 = HEATING SYSTEM : EFFICIENCY

 $\Delta T = (T_{INDO+RS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) F$

CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY =
$$\left(24\frac{\mu R}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(720,000\frac{BT4}{\mu R}\right)\left(0.6\right)$$

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP + 2545 BTY + DIVERSITY FACTOR + HEATING YR

ENERGY = 24 + 2545 * 1.0 * 4369 = 266 × 10 BTH (ELEC)

PUMPS: ENERGY = PUMP HP * 2545 BTU * DIVERSITY FACTOR * HTG HKS ENERGY = 5 * 2545 * 1.0 * 4369 = 56 × 10 BTH (BLEC)

TOTAL BASELINE HEATING ENERGY = 1391×10 BTG

Title	ECO-10 - EMCS ADDITIONS BASELINE ENERGY USAGE	Checked By GBC Prepared By	Date 9-16-93	4-164
Project	FT. CAMPBELL ENERGY SAVINGS	JOB NO. 93256 01	Sheet No.	4-104

										_
BASILINE	ent c	Y U	SAGE						BLDG #	
COOLING	- BN r	neth	bD .						3071	-
BIN	HRS/YR		% FULL LOAD	9	Full 1 Bru/H			BTU YR		
95/99	3	*	1.0		340		Ξ	1,080,	000	
90/94	17	*	1.0	*	360	000		6,120,		
95/89	75	*	0.85	*	360,	000	=	22,950	,000	
80184	135	*	0.70	*	360,	000	=	46,620	,000	
75/79	407	*	0.55	*	360,	000	=	80,586	000	,
70/74	714	*	0.40	*	360,	000	=	102,811	,000	
65/69	673	*	0.25	*	360,	000	-	60,57	0,000	
TOTAL HRS/Y	= 2074				TOTA	2 Bry	=	320,74	12,000	
TOTAL	L ELECTRIC	AL E	nargy In	PuT.	COULIN	G = :	321×1	0 LBT - :	7 (AUG.)	
									YE (ELEC)	
NOTE ! HKS!						L Dec	urene	ES IN E	1	
BIN	FOR THE	Ho	urs From	٦ 5	P.M.	73	3 A.	Wi .		
AUXILIANIES	!		8 FAUS	<u>0</u> 3	HP FAC	# 1 l c	, w . Pu	mp @15		
	FAMS:	39	L HP ± 25	45	HP HR	1.0	+ 20	74 = 20	6×10 5 574	(ELCC)
FOR THE HO									110	
	יויטך	h E	INSELINE	Cual	ING ET	velgy	1 = -	366 × 10 "	BILY (ELLC)	
THIS IS AL	· ·	•	_	EN	EKGY	SAVING	ζ		YIL GELLL)
	- EMCS A					Check	ed By	^ G.I	Date	-
B的包门	UE CUOLIN					Prepa	red By	CBL Co.	9-21-93 Sheet No.	4-165
Project Copy	CAMPBILL	- 61	ERGY SAL	i: NC	5	Job N		<u> </u>	Sheet No.	. 105

BUDG # PROPOSED ENERGY USAGE 3071 HEATING: DEGREE DAY METHOD SEE SHEET (B-1) FOR DEGREE DAY FORMULA EXPLANATION. BY LOWERING SPACE HEATING SET POINTS DURING UND COUPLED HOURS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM (EMCS), THE FULLOWING SAVINGS ARE ACHIEVED: EXISTING DESIGN AT = (68-4) = 4°F PROPOSED SETBACK AT = (50-4) = OF DESIGN HEAT LOAD * PLOPOSED AT SETBACK BUILDING HEAT LOAD = $=\frac{(720,000)\frac{BTu}{HR}}{(68-4)^{\circ}F}*(50-4)^{\circ}F$ SETBACK BULLDING HEAT LOAD = 518,000 BTY NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION: PROPOSED HEATING " n (68-4)°F EVERCY USAGE $= \frac{\left(12 \text{ Hz}\right) 4290 \left(518,000 \frac{\text{BTU}}{\text{Hz}}\right) \left(0.6\right) + \left(24-12\right) \left(1069 \times 10^{6}\right)}{24}$ PROPOSED HEATING ENERGY USAGE = 919 × 10 BTM (NATURAL GAS) AUXILIARY ENERGY SAVINGS = BASELINE AUX, ENERGY - PROPOSED AUX. ENERGY ANX. DAR. = 322 × 10 Bru (FROM B-1) - 29 HP + 2545 * 0.6 (DIV. PACTOR) * 4369 7 AUX. ENERGY SAVINGS = 129 × 10 Bry/4 (ELECTOTAL ENERGY SAVINGS = 279 × 10" Checked By Title ECO-10 - EMCS ADDITIONS GAL Prepared By GBL 9-16-93 PROPOSED ENELGY USACE 4-166 Project Sheet No. FT. CAMPBELL ENELGY SAVINGS Job No. F-1 DPORTHING KINDEY

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 3071

Contract No: 27-93-C-0096

Prepared By: Systems Corp
Estimator: Keith A. Derrington
Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

> 4-167 PROJECT ID: 307110

TABLE OF CONTENTS

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

CONTENTS PAGE

SUMMARY REPORTS

SUMMARY PAGE

PROJECT NOTES.

BID ITEM AND FACILITY SUMMARY.

PROJECT CWE SUMMARY.

CONTRACTOR DIRECT SUMMARY.

CONTRACTOR INDIRECT SUMMARY.

CONTRACTOR INDIRECT SUMMARY.

6
CSI DIVISION SUMMARY.

7
SYSTEMS SUMMARY.

8
EQUIPMENT SUMMARY.

BEQUIPMENT SUMMARY.

DETAIL PAGE

1. BUILDING TO THE 5 FOOT LINE

AA. ELECTRICAL.

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 09:53:58

DETAIL PAGE 1

BASE BID

							DV2F DID
DIVISION 16 ELECTRICAL	QUANTITY UON CREW	HANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CONDUIT							
CD=4 EL 1121 1 IN CONDUIT W/COUPLING WC=1100	*** UNIT COSTS: *** 1000.00 LF EELEF	0.08 78	2.34 2,342	0.01 11	0.90 900	0.05 45	3.30 3,298
16120 1200 SINGLE STRANDED CONDUCTOR							
CD=4 EL 1211 NO. 12 AWG - TYPE THEN WC=1100 INSULATION	*** UNIT COSTS: *** 0.30 MLF EELEF	5.78 2	174.30 52	0.78	52.98 16	2.65 1	230.71 69
16130 1200 NEMA 1 SCREW COVER ENCL							
CD=4 EL 1202 6X6X4 NEHA 1 WC=1100	*** UNIT COSTS: *** 12.00 EA EELEB	0.67	22.01 264	0.09	4.87 58	0.24	27.21 326
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE							
CD=3 EL 2001 TWISTED PAIR WIRES 18 AWG WC=1100	*** UNIT COSTS: *** 2.00 MLF EELEF	8.28 17	249.82 500	1.12	820.00 1,640	41.00 82	1111.94 2,224
16920 3000 CONTROL SWITCH							
CD=3 EL 3001 START/STOP WC=1100	*** UNIT COSTS: *** 12.00 EA EELEB	5.00 60	165.05 1,981	0.65	60.00 720	3.00 36	228.70 2,744
16920 4000 RELAY							
CD=3 EL 4001 STATUS RELAY WC=1100	*** UNIT COSTS: *** 12.00 EA EELEB		41.26 495				62.42 749
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT COSTS: *** 12.00 EA EELEB					4.25	, 130.67 1,568
16961 3000 TEMPERATURE							
CD=3 EL 3001 SPACE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 8.00 EA EELEB		82.53 660	0.32			124.85 999
CD=3 EL 3002 DUCT TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 24.00 EA EESMA		62.79 1,507	1.40 34			111.44 2,675
CD=3 EL 3003 OUTSIDE AIR TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32			130.10 130
CD=3 EL 3004 PIPE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 4.00 EA EPIPA		133.71 535	0.32			197.03 788

4-169

PROJECT ID: 307110

CURRENCY in DOLLARS

CREW ID: ORL290

DETAILED ESTIMATE

CREW ID: ORL290

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 09:53:58

DETAIL PAGE 2

PROJECT ID: 307110

4-170

BASE BID

							DY2F DID
DIVISION 16 ELECTRICAL	QUANTITY UON CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16961 4000 PRESSURE							
CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE SENSOR	*** UNIT COSTS: *** 8.00 EA EESMA	2.00 16	62.79 502	1.40	35.00 280	1.75 14	100.94 808
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE SENSOR	*** UNIT COSTS: *** 2.00 EA EPIPA	8.50 17	267.42 535	0.65 1	85.00 170	4.25 9	357.31 715
16962 PRESSURE SWITCHES							
CD=3 EL 1001 PRESSURE SWITCH WC=1100	*** UNIT COSTS: *** 8.00 EA EESMA				80.00 640		
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 2.00 EA EELEB					9.50 19	282.35 565
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 2.00 EA MSPFB	5.00 10	137.72 275	2.02 4	0.00	0.00	139.73 279
16991 5000 MUX							ı
CD=3 EL 5001 MUX WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB						
16991 6000 CABINET							
CD=3 EL 6001 DATA TERMINAL CABINET WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB			0.32 0		17.50 18	450.35 450
CD=3 EL 6002 INSTRUMENT SHELTER WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50 3	82.53 83	0.32	125.00 125	6.25 6	214.10 , 214
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS WC=1100	*** UNIT COSTS: *** 93.00 EA EELEB	1.25 116	41.26 3,837	0.16 15	30.00 2,790	1.50 140	72.92 6,782
TOTAL DIVISION 16 ELECTRICAL		472	15,061	108		787	31,690
TOTAL FACILITY AA. ELECTRICAL		472	15,061	108	15,734	787	31,690
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		472	15,061	108	15,734	787	31,690
TOTAL BASE BID		472	15,061	108	15,734	787	31,690
	_						

CURRENCY in DOLLARS

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

DETAIL PAGE 3

TIME 09:53:58

DETAILED ESTIMATE

2. SITEWORK /

BASE BID

							21.00 210	
DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$	
TOTAL ADDITIVE		0	0	0	0	0	0	
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY S	URVY	472	15,061	108	15,734	787	31,690	

* * * END OF DETAIL REPORT * * *

PROJECT NOTES

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY
ARY ECO-10: BUILDING 3071

RID ITEM AND FACILITY SUMMARY

TIME 09:53:58

SUMMARY PAGE 2

BID	ITEM 1 BUILDING TO	THE 5 FOOT	LINE							BASE BID
ID	FACILITY		COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL	1.00 EA	31,690	10.0% 3,169	0.0%	7.5% 2,614	2.5% 937	0.0%	38,410	38410.43
BID	ITEN TOTAL	1.00 EA	31.690	3.169	0	2,614	937	0	38,410	38410.43

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 3071

SUMMARY PAGE

TIME 09:53:58

BID ITEM 2 SITEWORK								BASE BID
ID FACILITY	COST TO PRH	OVERHEAD	HOME OFC	PROFIT	BOND OTH	IR FCTR	TOTAL COST	UNIT COST
TOTAL BASE BID	31,690	3,169	0	2,614	937	0	38,410	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	31,690	3,169	0	2,614	937	0	38,410	

PROJECT CWE SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

SUMMARY PAGE

ID BID ITEM	QUANTITY UON	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	38,410		38,410	38410.40
TOTAL CURRENT CONTRACT COST	•	38,410	0	38,410	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		38,410	0	38,410	
Government-Furnished Property		0		0	
SUBTOTAL	•	38,410	0	38,410	
Contingencies	10.0%	3,841	0	3,841	
SUBTOTAL	•	42,251	0	42,251	
SIOH (S&A)	5.0%	2,113	0	2,113	
CURRENT WORKING ESTIMATE	•	44,364	0	44,364	

4-175
PROJECT ID: 307110

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

SUMMARY PAGE

CONTRACTOR DIRECT SUMMARY

ID	CONTRACTOR	PM	QUANTITY UO				HAT W/TX			* SUBCON W/OH&P		SUBTOTAL
λλ	GENERAL/PRIME		1.00 EA	472	15,061	108	16,521	31,690	100.0%		0	31,690
	TOTAL DIRECT			472	15,061	108	16,521	31,690	100.0%			

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

SUMMARY PAGE

CONTRACTOR INDIRECT SUMMARY

ID	CONTRACTOR	PH	SUBTOTAL	OVERHE!	-		PROFIT AMOUNT				ATOT ****** TOTO		ACT ******* UNIT COST
λλ	GENERAL/PRIME		31,690	3,169	10.0%	0.0	 2,614	7.5%	2.5%	0.08	38,410	100.0%	38410.40
	TOTAL OVERHEAD & PROFIT			 3,169	10.0%		2,614	7.5%					

CSI DIVISION SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

SUMMARY PAGE 7

					~~~~~	***:	* TOTAL *	
•	ID CSI DIVISION	MANHOURS	LABOR	EQUIPMENT	MATERIAL		DIRECT	
•								
	16 ELECTRICAL	472	15,061	108	15,734	787	31,690	
	TOTAL DIRECT	472	15,061	108	15,734	787	31,690	

PROJECT ID: 307110

SYSTEMS SUMMARY

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

SUMMARY PAGE 8

					****	TOTAL +
 ID SYSTEM	MANHOURS	LABOR	EQUIPHENT			DIRECT
11 INTERIOR ELECTRICAL	472	15,061	108	15,734	787	31,690
TOTAL DIRECT	472	15,061	108	15,734	787	31,690

PROJECT ID: 307110

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

SUMMARY PAGE

ŲU	IPM	LNT	SUMMA	Κĭ

EQUIP	DESCRIPTION		VALUE *** OWNRSHP			HRLY RATE		**** TOTAL	COST
EMI20	SMALL TOOLS					1.40	1.40	77	108
TOTAL !	PROJECT EQUIPMENT HOURS							77	108

LABOR SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3071

TIME 09:53:58

SUMMARY PAGE 10

CRAFT	DESCRIPTION	BASE	OVERTM	TXS/INS	FRNG	TRVL	HRLY -		**** TOTAL HOURS	**** COST
LSHAT	ELECTRICIANS SHEET METAL WORKERS STEAM/PIPEFITTERS	20.50 19.90 20.95	0.0% 0.0% 0.0%	24.08 24.08 24.08	5.20	0.00	32.91 29.88 29.83	25.06		3,114 1,195 753
TOTAL	PROJECT MANHOURS								472 1	5,062

* * * END OF SUMMARY REPORT * * *

#### SUMMARY SHEET

BLOG # 3934

NATURAL GAS SAVINGS =  $\frac{100 \text{ MBTU}}{\text{YR}} * \frac{4.00}{\text{MBTU}} = \frac{400}{1630}$ ELECTRICAL SAVINGS =  $\frac{263}{\text{YR}} * \frac{1630}{\text{MBTU}} = \frac{1630}{\text{MBTU}}$ 

TOTAL SAVINGS = \$ 2030 /YR

#### HARDWARE REQUIRED:

Title

SUMMERY SHEET

Project FT. CAMPBELL ENERGY SAVINGS

OPPORTUNITY SUCHEY

QUANTI-	IY 1	TEM		
	Ţ	FID/MUX		
_1_		MUX ONLY		
1242112311	•	SPACE TEMP SENSOR		
4		DUCT TEMP SENSOR		
2		WATER TEMP SENSOL		
		D.A. TEMP SEUSOR		
		HUMIDITY SENSOR		
4		STAKT /STOP		
4		STATUS RELAY		
2		DIFF. PRESSURE (DU OT)		
+		DIFF. PRESSURE (PIPE	=)	
1		FLOW SWITCH		
$\frac{2}{2}$		pressure switch		
3		CURRENT RELAY		
		DATE TERMINAL CABIN		
		INSTRUMENT ENCLOSUR		
800	FT	2 WIRE, TWISTED PAIR	+18 CONTROL WIRE	
400	FT	RIGID CONDUIT -	l" D.	
5		JUNCTION BOXES		
27	<u> </u>	PROGRAMMING FOINT	75	
100	<u> </u>	POWER WIRING		Ta .
ECO-10 - E1	MCS ADDIT	70115	Checked By	Date

9-17-93 Prepared By Sheet No. Jab Na.

5-1

4-182

#### BASELINE ENERGY USAGE

3934

83

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE:

9 = BUILDING DESIGN HEAT LOAD - BTY/HR

7 = HEATING SYSTEM EFFICIENCY

 $\Delta T = (T_{INDOORS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) ^{\circ}F$ 

Co = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY = 
$$\left(24\frac{\mu R}{DFY}\right)\left(4290^{\circ}F - DAY\right)\left(480,000\frac{BTH}{HR}\right)\left(0.6\right)$$
.

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 BTY DIVERSITY FACTOR * HEATING

ENERGY = 21 + 2545 * 1.0 * 4369 = 234 × 10 BTU (ELEC)

PUMPS! ENERGY = PUMP HP * 2545 BTU + DIVERSITY FACTOR * HTG HRS

ENERGY = 3/4 * 2545 * 1.0 * 4369 = 8 × 10 1 BTU (ELEC)

TOTAL BASELINE HEATING ENERGY = 955 x10" BTY

Title	ECO-10 - EMCS APPITIONS	Checked By GBL	Date 9 1/ 02	
Project	BASELINE ENERGY USAGE	Prepared By	9-16-93	4-1
Project	FT. CAMPBELL ENERGY SAVINGS	JOB NO.	Sheet No.	4-10
1	OPPORTUNITY SURVEY	9277/2 01	1 5-1	ŧ

BASELINE EMIKGY USAGE	BLDG #
COOLING - BIN METHOD	3934
FULL LOAD	n Bru
BIN HRS/YR % FULL LOAD BTU/HR	
95/99 3 * 1.0 * 120,000	0 = 360,000
90/94 17 * 1.0 * 120,00	0 = 2,040,000
95/89 75 * 0.85 * 120,00	= 7,650,000
B0184 185 * 0.70 * 120,00	= 15,540,000
75/79 407 * 0.55 * 120,00	= 26,862,000
70/74 714 * 0.40 * 120,00	= 34,272,000
65/69 673 * 0.25 * 120,000	0 = 20,190,000
TOTAL HRS/YR = 2074 TOTAL	Bry = 106, 914,000
TOTAL ELECTRICAL EVEIGY INPUT COULING	= 106.9×1000 -2 (AUG.)
·	= 54×10 BTM/YR (ELEC)
come 1 mes/ye was the total records	1
NOTE! HES/YE INDICATE THE TOTAL ANNUAL BIN FOR THE HOURS FROM 5 P.M.	
AUXILIANTES!	
FANS: 21 HP * 2545 BM +	1.0 * 2074 = 111 × 10 BT4 (ELEX)
FOR THE HOURS FROM 5 P.M. TO BA.M:	
TOTAL BITSELINE CUOLING ENE	RGY = 165 ×10 BM
TOTAL BASELINE CUOLING ENERGY SA	AVINGS YR (ELLC)
For Implementing this ECO	
Tille ECO-10 - EMCS ADDITIONS	Checked By C-B L
Project COST ON PROJECT CONTROL CONTROL	Prepared By 3-21-93 4-184  Sheet No. 4-184
FIGHER FORT CAMPBILL ENERGY SAVINGS	Job No. 27-21 2 - 7

#### PROPOSED ENERGY USAGE

BLDC # 3934

#### HEATING: DEGREE DAY METHOD

SEE SHEET (B-1) FOR DEGREE DAY FORMULA EXPLANATION BY LOWERING SPACE HEATING SET POINTS DURING UND CCUPIED HOURS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM (EMCS), THE FULLOWING SAVINGS ARE ACHIEVED!

EXISTING DESIGN 
$$\Delta T = (6B-4) = 4°F$$

PROPOSED SETBACK  $\Delta T = (50-4) = °F$ 

SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * PLOPOSED AT

$$=\frac{(480,000)}{(48-4)^{\circ}F}*(50-4)^{\circ}F$$

SETBACK BUILDING HEAT LOAD = 345,000 BTY

NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION:

$$=\frac{\left(12 \text{ Hz}\right)4290 \left(345,000 \frac{BTU}{HR}\right)}{\left(0.45\right) \left(64\right)} \left(0.6\right) + \frac{\left(24-12\right) \left(713 \times 10^{6}\right)}{24}$$

PROPOSED HEATING ENERGY USAGE = 613×10 BTU (NATURAL GAS)

AUXILIARY ENERGY SAVINGS = BASELINE AUX. ENERGY - PROPOSED ANX. ENERGY ANX. DAR. = 242×10 Bry (FROM B-1) - 213/4HP + 2545 * O. (DIV. ) + 4369 7

AUX. ENERGY SAVINGS = 97×10 Bry/ge (ELT) TOTAL ENERGY SAVINGS = 197×10 Bru/ye

Checked By Title ECO-10 - EMCS ADDITIONS GAL Prepared By GBL 9-16-93 PROPOSED ENERGY USAGE Proiect FT. CAMPBELL ENELGY SAVINGS Job No. E-1

DPD-RTUILTY KURVEY

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 3934

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

> 4-186 PROJECT ID: 393410

CURRENCY in DOLLARS

TABLE OF CONTENTS

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

CONTENTS PAGE

SUMMARY REPORTS

SUMMARY PAGE

PROJECT NOTES.

BID ITEM AND FACILITY SUMMARY.

PROJECT CWE SUMMARY.

CONTRACTOR DIRECT SUMMARY.

CONTRACTOR INDIRECT SUMMARY.

COSI DIVISION SUMMARY.

SYSTEMS SUMMARY.

EQUIPMENT SUMMARY.

BEQUIPMENT SUMMARY.

DETAILED ESTIMATE

1. BUILDING TO THE 5 FOOT LINE

AA. ELECTRICAL.

1.

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

ECO-10: BUILDING 3934 DETAIL PAGE 1

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

BASE BID

DIVISION 16 ELE	CTRICAL	QUANTITY UOM CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT S
16050 BASIC NA	TERIALS AND METHODS							
CD=4 EL 1121 WC=1100	1 IN CONDUIT W/COUPLING	*** UNIT COSTS: *** 400.00 LF EELEF	0.08	2.34 937	0.01	0.90 360	0.05 18	3.30 1,31
16120 1200 S	INGLE STRANDED CONDUCTOR							
CD=4 EL 1211 WC=1100	NO. 12 AWG - TYPE THHN INSULATION	*** UNIT COSTS: *** 0.10 MLF EELEF	5.78 1	174.30 17	0.78	52.98 5	2.65 0	230.71 23
16130 1200 N	EHA 1 SCREW COVER ENCL							
CD=4 EL 1202 WC=1100	6X6X4 NEMA 1	*** UNIT COSTS: *** 5.00 EA EELEB	0.67 3	22.01 110	0.09	4.87 24	0.24	27.21 136
	AND INSTRUMENTATION O CONTROL CABLE							
	TWISTED PAIR WIRES 18 AWG	*** UNIT COSTS: *** 0.80 MLF EELEF	8.28 7	249.82 200	1.12 1	820.00 656	41.00	1111.9 89
16920 300	OO CONTROL SWITCH							
CD=3 EL 3001 WC=1100	START/STOP	*** UNIT COSTS: *** 4.00 EA EELEB	5.00 20	165.05 660	0.65 3	60.00 240	3.00	228.70 91
16920 400	OO RELAY							
CD=3 EL 4001 WC=1160	STATUS RELAY	*** UNIT COSTS: *** 4.00 EA EELEB	1.25 5	41.26 165	0.16	20.00 80	1.00	62.4. 25
CD=3 EL 4002 WC=1100	CURRENT RELAY	*** UNIT COSTS: *** 3.00 EA EELEB	1.25	41.26 124	0.16 0	85.00 255	4.25 13	, 130.6
16961 300	OO TEMPERATURE							
CD=3 EL 3001 WC=1100	SPACE TEMPERATURE SENSOR	*** UNIT COSTS: *** 2.00 EA EELEB		82.53 165		40.00 80		124.8 25
CD=3 EL 3002 WC=1100	DUCT TEMPERATURE SENSOR	*** UNIT COSTS: *** 4.00 EA EESMA		62.79 251		45.00 180		111.4 44
CD=3 EL 3003 WC=1100	OUTSIDE AIR TEMPERATURE SENSOR	*** UNIT COSTS: *** 1.00 EA EELEB		82.53 83		_		130.1 13
CD=3 EL 3004 WC=1100	PIPE TEMPERATURE SENSOR	*** UNIT COSTS: *** 2.00 EA EPIPA		133.71 267				197.0 39
CD=3 EL 3004	PIPE TEMPERATURE SENSOR	*** UNIT COSTS: ***	4.25	133.71	0.32	60.00	3.00	

4-188

TIME 10:09:47

CURRENCY in DOLLARS

PROJECT ID: 393410

CREW ID: ORL290

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

DETAIL PAGE 2

TIME 10:09:47

DETAILED ESTIMATE

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL
BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	HANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT S
16961 4000 PRESSURE							
CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE SENSOR	*** UNIT COSTS: *** 2.00 EA EESMA	2.00	62.79 126	1.40	35.00 70	1.75	100.94
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 1.00 EA EPIPA						357.33 35
16961 5000 HUMIDITY							
CD=3 EL 5001 SPACE HUMIDITY SENSOR WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	85.00 85	4.25 4	172.1
16962 PRESSURE SWITCHES							
CD=3 EL 1001 PRESSURE SWITCH WC=1100	*** UNIT COSTS: *** 2.00 EA EESHA				80.00 160	4.00	148.19 29
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	190.00 190	9.50 10	282.3 28
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA MSPFB	5.00 5	137.72 138	2.02	0.00	0.00	139.7 14
16991 5000 MUX							
CD=3 EL 5001 MUX WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	5.00 5	165.05 165	0.65 1	4720.00 4,720	236.00 236	5121.7 5,12
16991 6000 CABINET				•		:	
CD=3 EL 6001 DATA TERMINAL CABINET WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50 3	82.53 83	0.32			450.3 45
CD=3 EL 6002 INSTRUMENT SHELTER WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB		82.53 83	0.32		6.25	214.1 21
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS WC=1100	*** UNIT COSTS: *** 27.00 EA EELEB			0.16 4	30.00 810		72.9 1,96
OTAL DIVISION 16 ELECTRICAL		165	5,245	31	8,641	432	14,34
TOTAL FACILITY AA. ELECTRICAL		165	5,245	31	8,641	432	14,34

CREW ID: ORL290

CURRENCY in DOLLARS

PROJECT ID: 393410

4-189

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS H-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 10:09:47

DETAIL PAGE 3

BASE BID

							DV2F DITA
DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		165	5,245	31	8,641	432	14,349
TOTAL BASE BID		165	5,245	31	8,641	432	14,349
TOTAL ADDITIVE		0	0	0	0	0	0
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		165	5,245	31	8,641	432	14,349

* * * END OF DETAIL REPORT * * *

PROJECT NOTES

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

U.S. ARMY CORPS of ENGINEERS H-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE

	 BASE BID
į	UNIT COST
•	 

BID	ITEM 1 BUILDING	TO THE 5 FOOT 1	LINE							BASE BID
ID	FACILITY	(	COST TO PRH	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL	1.00 EA	14,349	10.0% 1,435	0.0%	7.5%	2.5% 424	0.0%	17,391	17391.47
BID	ITEM TOTAL	1.00 EA	14,349	1,435	0	1,184	424	0	17,391	17391.47

#### U.S. ARMY CORPS of ENGINEERS M-CACES

TIME 10:09:47

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 3934

SUMMARY PAGE

BID ITEM 2 SITEWORK								BASE BID
ID FACILITY	COST TO PRM	OVERHEAD	HONE OFC	PROFIT	BOND OTE	IR FCTR	TOTAL COST	UNIT COST
TOTAL BASE BID	14,349	1,435	0	1,184	424	0	17,391	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	14,349	1,435	0	1,184	424	0	17,391	

PROJECT CWE SUMMARY

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE

 ID BID ITEM	HOU YTITHKUQ	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	17,392		17,392	17391.50
TOTAL CURRENT CONTRACT COST	•	17,392	0	17,392	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST	•	17,392	0	17,392	
Government-Furnished Property		0		0	
SUBTOTAL	•	17,392	0	17,392	
Contingencies	10.0%	1,739	0	1,739	
SUBTOTAL	•	19,131	0	19,131	
SIOH (S&A)	5.0%	957	0	957	
CURRENT WORKING ESTIMATE	•	20,087	0	20,087	
·					ı
Estimated Construction Time	365 Days	•			

' 4-194 PROJECT ID: 393410

CURRENCY in DOLLARS

CONTRACTOR DIRECT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE

ID	CONTRACTOR	PN	QUANTITY	UOM	HANHRS		EQUIPMENT					SUBCON W/OH&P		SUBTOTAL
λλ	GENERAL/PRIME		1.00	Eλ	165	5,245	31	9,073	 14,349	100.09	È		0	14,349
	TOTAL DIRECT				165	5,245	31	9,073	 14,349	100.0	t			

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE

CONTRACTOR INDIRECT SUMMARY

ID	CONTRACTOR	PM	SUBTOTAL											CT ******* UNIT COST
λλ	GENERAL/PRIME		14,349	1,435	10.0%	0.0	 1,184	7.5%	2.5%	0.0%	1	7,391	100.0%	17391.44
	TOTAL OVERHEAD & PROFIT			1,435	10.0%		 1,184	7.5%						

## U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE 7

CSI DIVISION SUMMARY

					*	**** TOTAL *	
ID CSI DIVISION	HANHOURS	LABOR		MATERIAL		DIRECT	
***************************************							
16 ELECTRICAL	165	5,245	31	8,641	432	14,349	
TOTAL DIRECT	165	5,245	31	8,641	432	14,349	

SYSTEMS SUMMARY

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE

_							**** TOTAL * -	
	ID SYSTEM	MANHOURS	LABOR	EQUIPHENT	MATERIAL	SALES TAX	DIRECT	
-								
	11 INTERIOR ELECTRICAL	165	5,245	31	8,641	432	14,349	
	TOTAL DIRECT	165	5,245	31	8,641	432	14,349	

EQUIPMENT SUMMARY

## U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP			
EMI20 SMALL TOOLS		1.40	1.40	22 31
TOTAL PROJECT EQUIPMENT HOURS				22 31

LABOR SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 3934

TIME 10:09:47

SUMMARY PAGE 10

 CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	HRLY -	UPB RATE	**** TOTAL HOURS	****COST
 LSHIT	ELECTRICIANS SHEET METAL WORKERS STEAM/PIPEFITTERS	20.50 19.90 20.95	0.0% 0.0% 0.0%	24.08 24.08 24.08	5.20	0.00	32.91 29.88 29.83	25.79 25.06 26.12	144 8 13	4,629 239 376
TOTAL	PROJECT MANHOURS								165	5,244

* * * END OF SUMMARY REPORT * * *

#### SUMMARY SHEET

5380

NATURAL GAS SAVINGS =  $\frac{223}{YR} * \frac{14.00}{METU} = \frac{1892}{METU}$ ELECTRICAL SAVINGS =  $\frac{(43)}{YR} * \frac{MBTU}{YR} * \frac{16.19}{MBTU} = \frac{1}{3980}$ 

TOTAL SAVINGS = \$ 4872 /YR

### HARDWARE REQUIRED:

QUANTIT	Y	ITEM				
		FID/MUX				
		MUX ONLY				
4		SPACE TEMP SENSOR				
12		DUCT TEMP SENSOR				
4		WATER TEMP SENSOR		,		
1412413884242611		O.A. TEMP SENSOR				
3		HUMIDITY STUSOR				
_8_		STAKT /STOP				
8		STATUS RELAY				
4		DIFF. PRESSURE (Due	7)			
2		DIFF. FRESSURE (P	IFE	<b>;</b> )		
4		FLOW SWITCH				
2		PRESSURE SWITCH				
6		CURRENT RELAY				
1		DATE TERMINAL CA	Sin	IET		
1		INSTRUMENT ENCLO	sur.	LE .		
2000	FT	2 WIRE, TWISTED P	PHI	+ 18 CONTROL W	IRE	:
1000	FT	RIGID CONDUIT -	- 1	" D.		
10		JUNCTION BOXES	•			
58		PROGRAMMING FO	7	<b>~</b> <		
400	FT -	POWER WIRING	( N			
)-10 - EN				Checked By		Date

4-201

### BASELINE ENERGY USAGE

BLDG # 5380

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY

9 = BUILDING DESIGN HEAT LOAD - BTU/HR

7 = HEATING SYSTEM EFFICIENCY

 $\Delta T = (T_{INDOORS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) F$ 

Co = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY = 
$$\left(24\frac{HR}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(1.2 \times 10^{6} \frac{BT4}{HR}\right)$$
 (0.6)

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 BM * DIVERSITY FACTOR * HEATING

ENERGY = 40 + 2545 * 1.0 * 4369 = 445×10 BTU (ELEC)

PUMPS: ENERGY = PUMP HP * 2545 BTH + DIVERSITY FACTOR * HTG HRS

ENERGY = 3 * 2545 * 1.0 * 4369 = 33 × 10 BTY (ELEC)

TOTAL BASELINE HEATING ENERGY = 2260 × 10 BT4

Tille ECO-10 - EMCS ADDITIONS  BASELINE ENERGY USAGE	Checked By  GBC  Prepared By	Date 9-16-93	
Project FT. CAMPBELL ENERGY SAVIN	JOB NO.	Sheet No.	4-202

									•
BASEINE	ent c	Y us	AGE					866 ± 5380	
COOLING	- BIN r	NETH	<u> </u>					2000	
BIN	HRS/YR	(	% FULL WA	o _	FULL LOAD Bru/HR		BTU YR		
95/99	3	*	1.0	- *	480,000	Ξ	1,440,	000	
90/94	17	*	1,0	* '	480,000		8,160		
85/89	75	*	0.85	*	480,000	=	30,600,	000	
30184	185	*	0.70	*	480,000	=	62,160	000	
75/79	407	*	0.55	*	480,000	=	107,448	,000	
70/74	714	*	0.40	*	480,000	_	137,088	000	
65/69	673	*	0.25	*	480,000	=	80,760	,000	
	= 2074		·				427,656		
TOTAL	L ELECTRY	car e	NEIGY IN	P4T	cooling =	428×1	10 Bt : 2	(AVG.)	
						214	×10 BT4/	YR (ELEC)	
NOTE : HRS/	YE INDI	CATE	THE TOT	AL A	INNUAL OC	CULENC	ts in ta	CH	
BIN	IOR THE	e Ho	urs from	^ 5	P.M. 73	5 A.	<i>M</i> .		
AUXILARIES			40 HP	112	FAWS, 5 H	Pc.w.	PUMP		
	FANS:	45	HP ± 29	145	HPHR + 1.0	* 20	74 = Z3	8×108 BTY (	ELEK)
FOR THE HO	•								
	Tor	m F	3HSELINE	Cuol	ING ENERG	y = .	452 ×10"	Bin (ELLC)	
THIS IS AL	00 1116 1	וכטיוטטן	0000000	i en	ERGY SAVIA	65		YF ( )	
7:11	- EMCS				Che	cked By	CBL	Date	_
Coningt	NE COOLII			·		pared By	36L	9-21-93 Sheet No.	4-203
Project FORT	CAMPBIL	LEA	ecgy sa	ul ng C	Job	No.		2-7	

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

PROPOSED ENERGY USAGE	BLDG#
	5380
HEATING! DEGREE DAY METHOD	
SEE SHEET (B-1) FOR DEGREE DAY FORMULA BY LOWERLING SPACE HEATING SET POINTS DURING UNDO HOURS WITH THE ENERGY MANAGEMENT AND CONTROL S (EMCS), THE FOLLOWING SAVINGS ARE ACHIEVED:	CUPIED
EXISTING DESIGN $\Delta T = (68-4) = 4^{\circ}F$ PROPOSED SETBACK $\Delta T = (50-4) = {^{\circ}F}$	-
SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * P	
$=\frac{(1.2\times10^{6})\frac{BTU}{HR}}{(68-4)^{6}F}*(50$	-4)°F
SETBACK BUILDING HEAT. LOAD = 0.9 × 10 BTY HR  NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK	CONDITION:
PROPOSED SETBACK HRS (4290°F-DAY) SETBACK BUILDING HT. LOAD (DIC) + (24-SETBACK HRS) DAY  ENERCY USAGE  7 (68-4)°F  24	BASELIVE HEATING ENERGY HR
$=\frac{\left(12 + 125\right) 4290 \left(0.9 \times 10^{\frac{1514}{112}}\right)}{\left(0.65\right) \left(64\right)} \left(0.6\right) + \frac{\left(24-12\right)\left(66\right)}{24}$	1782×10)
PROPOSED HEATING ENERGY USAGE = 1559×10 BTM (NATURAL	
AUXILIARY ENERGY SAVINGS = BASELINE AUX. ENERGY - PROPOSED A	
ANX. DAR. = 478×106 Bru (FROM B-1) - [ 43 HP + 2545 * 0.6 (DIV. FACTOR) *	
AUX. ENERGY SAVINGS = 191×10 Bry/g (ELECTOTAL ENERGY SAVINGS =.	
Tille ECO-10 - EMCS ADDITIONS Checked By GBL	9-16-93
PROPOSED ENERGY USAGE Prepared By	Sheet No. 4-20
Project FT. CAMPBELL ENELGY SAVINGS  DPD-07-11-11-11 SUCYEV  JOB NO. 97-07-01	F-1

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 5380

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington

Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M - C A C E S E D I T I O N COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

4-205

# U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48
CONTENTS PAGE 1

TABLE OF CONTENTS

SUMMARY REPORTS	SUMMARY PAGE
PROJECT NOTES. BID ITEM AND FACILITY SUMMARY. PROJECT CWE SUMMARY. CONTRACTOR DIRECT SUMMARY. CONTRACTOR INDIRECT SUMMARY. CSI DIVISION SUMMARY. SYSTEMS SUMMARY. EQUIPMENT SUMMARY. LABOR SUMMARY.	
DETAILED ESTIMATE	DETAIL PAGE
1. BUILDING TO THE 5 FOOT LINE AA. ELECTRICAL	1

* * * END TABLE OF CONTENTS * * *

RETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 12:06:48

DETAIL PAGE 1

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UON CREW	MANHR	LABOR	EQUIPHENT	MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CONDUIT							
CD=4 EL 1121 1 IN CONDUIT W/COUPLING WC=1100	*** UNIT COSTS: *** 1000.00 LF EELEF	0.08 78	2.34 2,342	0.01	0.90 900	0.05 45	3.30 3,298
16120 1200 SINGLE STRANDED CONDUCTOR							
CD=4 EL 1211 NO. 12 AWG - TYPE THEN WC=1100 INSULATION	*** UNIT COSTS: *** 0.40 HLF EELEF	5.78 2	174.30 70	0.78 0	52.98 21	2.65 1	230.71 92
16130 1200 NEHA 1 SCREW COVER ENCL							
CD=4 EL 1202 6X6X4 NEMA 1 WC=1100	*** UNIT COSTS: *** 10.00 EA EELEB	0.67 7	22.01 220	0.09 1	4.87 49	0.24	27.21 272
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE							
CD=3 EL 2001 TWISTED PAIR WIRES 18 AWG WC=1100	*** UNIT COSTS: *** 2.00 MLF EELEF	8.28 17	249.82 500	1.12	820.00 1,640	41.00	1111.94
16920 3000 CONTROL SWITCH							
CD=3 EL 3001 START/STOP WC=1100	*** UNIT COSTS: *** 8.00 EA EELEB	5.00 40	165.05 1,320	0.65 5	60.00 480	3.00	228.70 1,830
16920 4000 RELAY						٠	
CD=3 EL 4001 STATUS RELAY WC=1100	*** UNIT COSTS: *** 8.00 EA EELEB		41.26 330		20.00 160	8	62.42 499
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT COSTS: *** 6.00 EA EELEB	1.25	41.26 248	0.16	85.00 510	4.25 26	, 130.67 784
16961 3000 TEMPERATURE							
CD=3 EL 3001 SPACE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB		82.53 330	0.32			124.85 499
CD=3 EL 3002 DUCT TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 12.00 EA EESMA		62.79 753				111.44
CD=3 EL 3003 OUTSIDE AIR TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB		82.53 83				130.10 130
CD=3 EL 3004 PIPE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 4.00 EA EPIPA		133.71 535				

4-207 PROJECT ID: 538010

CURRENCY in DOLLARS

CREW ID: ORL290

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 12:06:48

DETAIL PAGE 2

 ${\tt BASE\ BID}$ 

								BASE BID
IVISION 16 ELECT	RICAL	QUANTITY UOM CREW	MANHR	LABOR	EQUIPHENT	MATERIAL	SALESTX	DIRECT \$
16961 4000	PRESSURE							
CD=3 EL 4002 D WC=1100 S		*** UNIT COSTS: *** 4.00 EA EESMA				35.00 140	1.75 7	
CD=3 EL 4003 P WC=1100 S		*** UNIT COSTS: *** 2.00 EA EPIPA	8.50 17	267.42 535	0.65 1	85.00 170	4.25 9	357.31 715
16961 5000	HUMIDITY							
CD=3 EL 5001 S WC=1100	PACE HUMIDITY SENSOR	*** UNIT COSTS: *** 3.00 EA EELEB	2.50 8	82.53 248	0.32	85.00 255		172.10 516
16962 PRESSUR	E SWITCHES							
CD=3 EL 1001 P WC=1100	PRESSURE SWITCH	*** UNIT COSTS: *** 2.00 EA EESMA	2.00 4	62.79 126	1.40	80.00 160	4.00	148.19 296
16963 FLOW SW	PITCHES							
CD=3 EL 1001 F WC=1100	FLOW SWITCH	*** UNIT COSTS: *** 4.00 EA EELEB		82.53 330	0.32	190.00 760	9.50 38	282.35
CD=3 EL 1002 F WC=1100	FLOW SWITCH	*** UNIT COSTS: *** 4.00 EA MSPFB	5.00 20	137.72 551	2.02 8	0.00	0.00	139.73 559
16991 5000	MUX							
CD=3 EL 5001 P WC=1100	<b>T</b> UX	*** UNIT COSTS: *** 1.00 EA EELEB	5.00 5	165.05 165	0.65 1	4720.00 4,720	236.00 236	5121.70 5,122
16991 6000	CABINET						1	
CD=3 EL 6001 I WC=1100	DATA TERMINAL CABINET	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32			450.35 450
CD=3 EL 6002 1 WC=1100	INSTRUMENT SHELTER	*** UNIT COSTS: *** 1.00 EA EELEB			0.32			214.10
16991 7000	SOFTWARE							
CD=3 EL 7001 I WC=1100	PROGRAMMING POINTS FOR EMCS	*** UNIT COSTS: *** 58.00 EA EELEB	1.25 73		0.16 9			72.93 4,23
POTAL DIVISION 1	6 ELECTRICAL		363		72	13,165	658	
TOTAL FACILITY A	A. ELECTRICAL		363	11,494	72			

CREW ID: ORL290

CURRENCY in DOLLARS

PROJECT ID: 538010

4-208

PETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES
ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY
ECO-10: BUILDING 5380

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 12:06:48

DETAIL PAGE 3

BASE BID

							DAGE DID
DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	MANHR	LABOR	EQUIPHENT	MATERIAL	SALESTX	DIRECT \$
**************************************							
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		363	11,494	72	13,165	658	25,389
TOTAL BASE BID		363	11,494	72	13,165	658	25,389
TOTAL ADDITIVE		0	0	0	0	0	0
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		363	11,494	72	13,165	658	25,389

* * * END OF DETAIL REPORT * * *

PROJECT NOTES

# U.S. ARMY CORPS OF ENGINEERS N-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED FACILITIES AT FORT CAMPBELL.

, 4-210

PID ITEM AND FACILITY SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 5380

SUMMARY PAGE 2

TIME 12:06:48

BID ITEM 1 BUILDING TO THE 5 FOOT LINE

ID	PACILITY		CC	OST TO PRI	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL	1.00	EA	25,389	10.0% 2,539	0.0%	7.5% 2,095	2.5% 751	0.0%	30,773	30772.82
BI	D ITEM TOTAL	1.00	EX .	25,389	2,539	0	2,095	751	0	30,773	30772.82

BID ITEM AND FACILITY SUMMARY

U.S. ARMY CORPS of ENGINEERS H-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 5380

SUMMARY PAGE

TIME 12:06:48

BID ITEM 2 SITEWORK								BASE BID
ID FACILITY	COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND OT	THR FCTR	TOTAL COST	UNIT COST
TOTAL BASE BID	25,389	2,539	0	2,095	751	0	30,773	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	25,389	2,539	0	2,095	751	0	30,773	

PROJECT CWE SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48

SUMMARY PAGE 4

 ID BID ITEM	QUANTITY UOH	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	30,773		30,773	30772.80
TOTAL CURRENT CONTRACT COST	•	30,773	0	30,773	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		30,773	0	30,773	
Government-Furnished Property		0		0	
SUBTOTAL	•	30,773	0	30,773	
Contingencies	10.0%	3,077	0	3,077	
SUBTOTAL	•	33,850	0	33,850	
SIOH (S&A)	5.0%	1,693	0	1,693	
CURRENT WORKING ESTIMATE	•	35,543	0	35,543	
					1
Estimated Construction Time	365 Days				

4-213

CURRENCY in DOLLARS

CREW ID: ORL290

ONTRACTOR DIRECT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48

SUMMARY PAGE 5

									**	TOTAL D	RECT *	* * SUBCON	*	
ID	CONTRACTOR	PH	QUANTITY	JOH	MANHRS		EQUIPMENT					W/OH&P		SUBTOTAL
AA	GENERAL/PRIME		1.00	Ελ	363	11,494	72	13,823		25,389	100.0	-	0	25,389
	TOTAL DIRECT				363	11,494	72	13,823		25,389	100.0	<b>:</b>		

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48

SUMMARY PAGE

CONTRACTOR	INDIRECT	SUMMARY

ID	CONTRACTOR	PH	SUBTOTAL		EAD *** T PCT		PROFIT AMOUNT							ACT ****** UNIT COST
λλ	GENERAL/PRIME		25,389	2,53	9 10.0%	0.0	 2,095	7.5%	2.5%	0.0%	30,7	73	100.0%	30772.82
	TOTAL OVERHEAD & PROFIT			2,53	9 10.0		 2,095	7.5%						

CSI DIVISION SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48

SUMMARY PAGE 7

							**** TOTAL *	
•	ID CSI DIVISION	HANHOURS	LABOR	EQUIPMENT				
•								
	16 ELECTRICAL	363	11,494	72	13,165	658	25,389	
	<u> </u>	363	11.494	72	13,165	658	25,389	

4-216

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48

SUMMARY PAGE

SYSTEMS SUMMARY

						***	t TOTAL *	
•	ID SYSTEM	MANHOURS	LABOR	EQUIPMENT			DIRECT	
•								
	11 INTERIOR ELECTRICAL	363	11,494	72	13,165	658	25,389	
	TOTAL DIRECT	363	11,494	72	13,165	658	25,389	

EQUIPHENT SUMMARY

## U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48

SUMMARY PAGE 9

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP	ADJ FACTOR ADJUSTD OWNS OVTH OWNRSHP	BOOK OP HRLY EXPENSE RATE	UPB RATE	**** TOTAL HOURS	COST
EMI20 SMALL TOOLS			1.40	1.40	51	72
TOTAL PROJECT EQUIPMENT HOURS	•				51	72

4-218 PROJECT ID: 538010

LABOR SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 5380

TIME 12:06:48

SUMMARY PAGE 10

	CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	HRLY RATE		**** TOTAL HOURS	**** COST	
•	LELEC LSHMT LSPFI		20.50 19.90 20.95	0.0% 0.0% 0.0%	24.0% 24.0% 24.0%	5.20	0.00	32.91 29.88 29.83	25.79 25.06 26.12	18	9,930 538 1,028	
	TOTAL	PROJECT HANHOURS								363 1	1,496	

* * * END OF SUMMARY REPORT * * *

#### SUMMARY SHEET

BLOG #

NATURAL GAS SAVINGS =  $\frac{379.1 \text{ MBTU}}{\text{YR}} * \frac{4.00}{\text{MBTU}} = \frac{151.6}{150.65}$ ELECTRICAL SAVINGS =  $\frac{1721}{\text{YR}} * \frac{\text{MBTU}}{\text{YR}} * \frac{40.00}{\text{MBTU}} = \frac{10.65}{\text{MBTU}}$ 

TOTAL SAVINGS = \$ 2580 /YR

### HARDWARE REQUIRED:

QUANTITY	ITEM	
	FID/MUX	
1	MUX ONLY	
2 surpey	SPACE TEMP SENSOR	
6 R.A.	DUCT TEMP SENSOR	
2 AND MOS	WATER TEMP SENSOL	1
	O.A. TEMP SENSOR	
	HUMIDITY STUSOR	and the second
1 2 8.4. 2 1 2 1 1 2 1 1	STAKT /STOP	
4	STATUS RELAY	·
2	DIFF. PRESSURE (DUET)	Tanan contra
1	DIFF. PRESSURE (PIPE)	
	FLOW SWITCH	ŀ
2	PRESSURE SWITCH	
2	CURRENT RELAY	
<del>-</del>	DATA TERMINAL CABINET	
	INSTRUMENT ENCLOSURE	
800 FT.	CONTROL CABLE	
400 FT.	I" RIGID CONDUIT	
5	Junction Box	
100 FT.	POWER WIEING	
26	PROGRAMMING POINTS	Ta
0-10 - EMCS ADD	TONS Checked By GBL	Date
51. 44.44.0V CI		9-17-931

4-220

### BASELINE ENERGY USAGE

6627

HEATING: DEGREE DAY METHOD

WHERE: DD = DEGREE DAYS - "F-DAY

Q = BUILDING DESIGN HEAT LOAD - BTU/HR  $\eta = HEATING SYSTEM EFFICIENCY$   $\Delta T = (T_{INDOORS} - T_{OUTSIDE})_{DESIGN} = (68-4) "F$   $C_D = CORRECTIONI FACTOR BASED ON 65" DD$ 

HEATING ENERGY = 
$$\left(24\frac{HR}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(1.8 \times 10^{6}\frac{BT4}{HR}\right)$$
 (0.6)

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 BTY DIVERSITY FACTOR *  $\frac{\text{HERTING}}{\text{YR}}$ ENERGY =  $\frac{2010\text{B}\text{CH}}{\text{YR}}$  2545 *  $\frac{0.5}{\text{V}}$  *  $\frac{4369}{\text{YR}}$  =  $\frac{111\times10^6}{\text{YR}}$  (ELEC)

PUMPS: ENERGY = PUMP HP * 2545 BTU * DIVERSITY FACTOR * HTG HRS

YR

ENERGY = 1@2 * 2545 * 1.0 * 4369 = 22.2 * 6BTU

YR

ELEC

TOTAL BASELINE HEATING ENERGY = 2806 × 10 BTG

	NOTE: DIVERSITY FACTOR OF 0.5 ASSUMES	FAN RUNS 1/2 OF TOTAL HITE	. HOURS DUE	TO TIME
Title	ECO-10 - EMCS APDITIONS	Checked By	Date '	CLOCK
	BASELINE ENERGY USAGE	Prepared By	9-16-93	
Project	FT. CAMPBELL ENERGY SAVINGS	GBL	Sheet No.	4-221
	OPPORTUNITY SURVEY	Job No. 93006 01	B-1	

BASELINE	e engle	y v.	SAGE			BLDG #			
COOLING - BIN METHOD 2 AHU'S @ 65 DOD BYLL DOWN									
COOLING	- B! N N	n eth	<del>100</del>	L A	Hu's @ 65,0	HIC			
BIN	HRS/YR		% FULL WA	0	Bru /HR	BTU YR			
95/99	3	*	1.0	*	130,000	= 390,000			
90/94	17	*	1.0	*	130,000	= 2,210,000			
95/89	75	*	0.85	*	130,000	= 8,287,000			
80184	185	*	0.70	*	130,000	= 16,835,000			
75/79	407	*	0.55	*	130,000	= 29,100,000			
70/74	714	×	0.40	*	130,000	= 37,128,000			
65/69	673	*	0.25	*	130,000	= 21,872,000			
TOTAL	7-11				TOTAL BIY	= 11/2 × 10 b			

TOTAL Bry = 116 × 10"

TOTAL ELECTRICAL EVERIGY INPUT COOLING =  $\frac{116 \times 10^{672}}{\text{yr}} \div 2 \left(\frac{\text{AUG.}}{\text{c.o.p.}}\right)$   $= \frac{58 \times 10^{6}}{510} \frac{\text{GTU}}{\text{yr}} \left(\frac{\text{ELEC}}{\text{ELEC}}\right)$ 

NOTE ! HKS/YK INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH BIN FOR THE HOURS FROM 5 P.M. TO B A.M.

#### AUXILIARIUS!

FANS: 20 HP + 2545 BTY + 1.0 + 2074 = 105 × 10 BTY (ELC)

FOR THE HOURS FROM 5 P.N. TO 8 A.M.

TOTAL BASELINE CUOLING ENERGY = 163 × 106 BIM (ELEC)
THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS
TOR IMPLEMENTING THIS ECO

Title	ECO-10 - EMCS ADDITIONS	. Checked By	Date	
	BASELINE COOLING ENERGY	Prepared By	9-21-93	4-222
Project	FORT CAMPBILL ENERGY SAVINGS	Job No.	Sheet No.	4-222
ļ	DOD CONTAIN COURT	03001	2-7	

#### PROPOSED ENERGY USAGE

BLDGH 6627

#### HEATING: DEGREE DAY METHOD

SEE SHOLT (B-1) FOR DEGREE DAY FORMULA EXPLANATION BY LOWERING SPACE HEATING SET POINTS DURING UND COUPLED HULLS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM (EMCS), THE FULLOWING SAVINGS ARE ACHIEVED!

EXISTING DESIGN 
$$\Delta T = (6-4) = 4^{\circ}F$$
PROPOSED SETBACK  $\Delta T = (50-4) = {^{\circ}F}$ 

SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * PROPOSED AT  $= \frac{(1.8 \times 10^{\circ}) \frac{Bru}{HR}}{(43-4)^{\circ}F} * (50-4)^{\circ}F$ 

SETBACK BUILDING HEAT LOAD = 1.29 × 10 BTU

NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION:

$$\frac{PERFOSED}{HERTING} = \frac{\left(\frac{5 \text{ETBACK HRS}}{DAY}\right) \left(\frac{4290 \text{°F-DAY}}{HERTING}\right) \left(\frac{5 \text{ETBACK}}{BUNDING}\right) \left(\frac{24 - \frac{5 \text{ETBACK}}{LAZS}}{DAY}\right) \left(\frac{124 - \frac{11}{24}}{DAY}\right) \left(\frac{124 - \frac{11}{2$$

PROPOSED HEATING ENERGY USAGE = 2294×10 ETY (NATURAL CAS) AUXILIARY ENERGY SAVINGS = BASELINE ALLY. ENERGY - PROPOSED ALLY. ENERGY Aux. Exez. = 22.2 ×10 Btm (From F-1) - 2 HP + 2545 * 0.4 FACTIL) + 4369 7.

AUX. THEEGY SAVINGS = 8.9 ×106 BTY/4 (ELTE) TOTAL ENCILCY SAVINGS = 388 ×106 BTU/4: Checked By GBL Title ECO-10 - EMCS ADDITIONS 9-16-93 Prepared By

GBL Sheet No. PROPOSED ENERGY USAGE Project FT. CAMPBELL ENELGY SAVINGS 1 = -1

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 6627

Contract No: 27-93-C-0096

Prepared By: Systems Corp
Estimator: Keith A. Derrington

Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

4-224

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

TIME 13:12:39
CONTENTS PAGE 1

ABLE OF CONTENTS

SUMMARY REPORTS	SUMMARY	PAGE
PROJECT NOTES. BID ITEM AND FACILITY SUMMARY		2
CONTRACTOR DIRECT SUMMARY CONTRACTOR INDIRECT SUMMARY CSI DIVISION SUMMARY	• • • • • • • •	6 7
SYSTEMS SUMMARY		9
DETAILED ESTIMATE	DETAIL	PAGE
1. BUILDING TO THE 5 FOOT LINE AA. ELECTRICAL		1

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 13:12:39

DETAIL PAGE 1

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UOH CREW	HANHR	LABOR	EQUIPMENT	HATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CONDUIT							
CD=4 EL 1121 1 IN CONDUIT W/COUPLING WC=1100	*** UNIT COSTS: *** 400.00 LF EELEF	0.08 31	2.34 937	0.01	0.90 360	0.05 18	3.30 1,319
16120 1200 SINGLE STRANDED CONDUCTOR							
CD=4 EL 1211 NO. 12 AWG - TYPE THHN WC=1100 INSULATION	*** UNIT COSTS: *** 0.10 MLF EELEF	5.78 1	174.30 17	0.78 0	52.98 5	2.65 0	230.71 23
16130 1200 NEMA 1 SCREW COVER ENCL							
CD=4 EL 1202 6X6X4 NEHA 1 WC=1100	*** UNIT COSTS: *** 5.00 EA EELEB	0.67	22.01 110	0.09	4.87	0.24	27.21 136
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE							
CD=3 EL 2001 TWISTED PAIR WIRES 18 AWG WC=1100	*** UNIT COSTS: *** 0.80 MLF EELEF	8.28 7	249.82 200	1.12	820.00 656	41.00	1111.9 . 89
16920 3000 CONTROL SWITCH							
CD=3 EL 3001 START/STOP WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB	5.00 20	165.05 660	0.65	60.00 240	3.00 12	228.70 91
16920 4000 RELAY							
CD=3 EL 4001 STATUS RELAY WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB	1.25 5			20.00 80	4	62.42 256
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT COSTS: *** 2.00 EA EELEB	1.25	41.26 83	0.16 0	85.00 170		; 130.6 26
16961 3000 TEMPERATURE							
CD=3 EL 3001 SPACE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 2.00 EA EELEB		82.53 165				124.8 25
CD=3 EL 3002 DUCT TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 6.00 EA EESMA		62.79 377				111.4 66
CD=3 EL 3004 PIPE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 2.00 EA EPIPA		133.71 267				197.0 39

4-226

ETAILED ESTIMATE

CREW ID: ORL290

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

DETAIL PAGE 2

PROJECT ID: 662710

4-227

TIME 13:12:39

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

1. BUILDING TO	THE 5 FOOT LINE / AA.						BASE BID
DIVISION 16 ELECTRICAL					MATERIAL		
16961 4000 PRESSURE							
CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 2.00 EA EESMA	2.00	62.79 126	1.40	35.00 70	1.75 4	100.94 202
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 1.00 EA EPIPA	8.50 9	267.42 267	0.65	85.00 85	4.25 4	357.31 357
16962 PRESSURE SWITCHES							
CD=3 EL 1001 PRESSURE SWITCH WC=1100	*** UNIT COSTS: *** 2.00 EA EESMA	2.00	62.79 126	1.40	80.00 160	4.00	148.19 296
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50 3	82.53 83	0.32	190.00 190		282.35 282
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA MSPFB	5.00 5	137.72 138	2.02	0.00		
16991 5000 MUX							•
CD=3 EL 5001 MUX WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	5.00 5	165.05 165	0.65 1	4720.00 4,720	236.00 236	5121.70 5,122
16991 6000 CABINET							
CD=3 EL 6001 DATA TERMINAL CABINET WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB		82.53 83	0.32	350.00 350		450.35 450
CD=3 EL 6002 INSTRUMENT SHELTER WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	125.00 125	6.25 6	214.10
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS WC=1100	*** UNIT COSTS: *** 26.00 EA EELEB		41.26 1,073	0.16 4			72.92 1,896
TOTAL DIVISION 16 ELECTRICAL		161	5,123	33	8,486	424	14,066
TOTAL FACILITY AA. ELECTRICAL		161	5,123	33	8,486	424	14,066
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		161	5,123	33	8,486	424	14,066
OTAL BASE BID		161	5,123	33	8,486	424	14,066

CURRENCY in DOLLARS

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

DETAIL PAGE 3

TIME 13:12:39

ETAILED ESTIMATE

ECO-10: BUILDING 6627 2. SITEWORK /

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UOH CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$	
						*****		
TOTAL ADDITIVE		0	0	0	0	0	0	
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		161	5,123	33	8,486	424	14,066	

* * * END OF DETAIL REPORT * * *

4-228
PROJECT ID: 662710

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

TIME 13:12:39

PROJECT NOTES

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

4-229

PROJECT ID: 662710

CURRENCY in DOLLARS

U.S. ARMY CORPS of ENGINEERS M-CACES

TIME 13:12:39 ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 6627

SUMMARY PAGE 2

BI	D ITEM 1 BU	ILDING TO THE 5 FO	OOT LINE							BASE BID
ID	FACILITY		COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL	1.00	EA 14,066	10.0%	0.0%	7.5% 1,160	2.5% 416	0.0%	17,049	17048.57
BI	D ITEM TOTAL	1.00	EA 14,066	1,407	0	1,160	416	0	17,049	17048.57

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 6627

SUMMARY PAGE

TIME 13:12:39

BID ITEM 2 SITEWORK								BASE BID
ID FACILITY	COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND OTE	IR FCTR	TOTAL COST	UNIT COST
TOTAL BASE BID	14,066	1,407	0	1,160	416	0	17,049	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	14,066	1,407		1,160	416	0	17,049	

ROJECT CWE SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

TIME 13:12:39

SUMMARY PAGE 4

ID BID ITEM	QUANTITY UOM	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	17,049		17,049	17048.60
TOTAL CURRENT CONTRACT COST	•	17,049	0	17,049	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		17,049	0	17,049	
Government-Furnished Property		0		0	
SUBTOTAL		17,049	0	17,049	
Contingencies	10.0%	1,705	0	1,705	
SUBTOTAL	•	18,753	0	18,753	
SIOH (S&A)	5.0%	938	0	938	
CURRENT WORKING ESTIMATE		19,691	0	19,691	

4-232

PROJECT ID: 662710

## U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

TIME 13:12:39
SUHMARY PAGE 5

CONTRACTOR DIRECT SUMMARY

ID	CONTRACTOR	PM	QUANTITY U	OH	MANHRS		EQUIPMENT					SUBCON W/OH&P	*	SUBTOTAL
λλ	GENERAL/PRIME		1.00 E	Eλ	161	5,123	33	8,910	 14,066	100.0	8		0	14,066
	TOTAL DIRECT				161	5,123	33	8,910	 14,066	100.0	8			

CONTRACTOR INDIRECT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

TIME 13:12:39

ECO-10: BUILDING 6627 SUMMARY PAGE 6

ID	CONTRACTOR	PM	SUBTOTAL	OVERHEA AMOUNT			PROFIT AMOUNT				** TOTAI THUOKA		CT ****** UNIT COST
λλ	GENERAL/PRIME		14,066	1,407	10.0%	0.0	 1,160	7.5%	2.5%	0.0%	17,049	100.0%	17048.54
	TOTAL OVERHEAD & PROFIT			 1,407	10.0%		1,160	7.5%					

4-234 PROJECT ID: 662710

CURRENCY in DOLLARS

CREW ID: ORL290

CSI DIVISION SUMMARY

U.S. ARMY CORPS of ENGINEERS N-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

TIME 13:12:39

SUMMARY PAGE

	ID CSI DIVISION	HANHOURS	LABOR		MATERIAL	SALES TAX	** TOTAL * -	
•	16 ELECTRICAL	161	5,123	33	8,486	424	14,066	-
	TOTAL DIRECT	161	5,123	33	8,486	424	14,066	

4-235 PROJECT ID: 662710

SYSTEMS SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

TIME 13:12:39

SUMMARY PAGE

ID SYSTEM	KANHOURS	LABOR	EQUIPMENT	MATERIAL		** TOTAL * DIRECT
11 INTERIOR ELECTRICAL	161	5,123	33	8,486	424	14,066
TOTAL DIRECT	161	5,123	33	8,486	424	14,066

EQUIPMENT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

TIME 13:12:39

SUMMARY PAGE 9

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP	ADJ FACTOR OWNS OVTH				**** TOTAL HOURS	**** COST
ENI20 SHALL TOOLS				1.40	1.40	23	33
TOTAL PROJECT EQUIPMENT HOURS						23	33

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6627

TIME 13:12:39

SUMMARY PAGE 10

LABOR SUMMARY

•	CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	HRLY RATE		**** TOT	COST	
•	LSHNT	ELECTRICIANS SHEET METAL WORKERS STEAM/PIPEFITTERS	20.50 19.90 20.95	0.0% 0.0% 0.0%	24.0% 24.0% 24.0%	5.20	0.00	32.91 29.88 29.83	25.79 25.06 26.12	138 10 13	4,447 299 376	
	TOTAL	PROJECT MANHOURS								161	5,122	

* * * END OF SUMMARY REPORT * * *

#### SUMMARY SHEET

BLOG # 6636

FUEL DIL SAVINGS =  $\frac{297}{y_R} \frac{MBTU}{y_R} * \frac{4.98}{MBTU} = $1479$ ELECTRICAL SAVINGS =  $\frac{800}{y_R} \frac{MBTU}{y_R} * \frac{4.98}{MBTU} = $4952$ 

TOTAL SAVINGS = \$ 6431 /YR

### HARDWARE REQUIRED:

Title

SUMMERY SHEET

Project FT. CAMPBELL ENERGY SAVINGS

OPPORTUNITY KUEVEY

QUANTIT	<u>- Y</u> <u>J</u>	TEM		
	Ę	FID/MUX		
Ī		MUX ONLY		
4		SPACE TEMP SENSOR		
8		DUCT TEMP SENSOR		
6		WATER TEMP SENSOR		1
486 19943248-11		D.A. TEMP SENSOR		
		HUMIDITY SENSOR		
9		STAKE /STOP		
9		STATUS RELAY		
4		DIFF. PRESSURE (DUET)		
3		DIFF. PRESSURE (PIPE	=)	·
2		FLOW SWITCH		
4		TRESSULE SWITCH		
8		CURRENT RILAY		
		DATE TURMINAL CABIN	IET	
-		INSTRUMENT ENCLOSU	26	
800	FT	2 WIRE, TWISTED PAU	:, #18 CONTROL WIRE	-
400	FT	RIGID CONDUIT -	l" D.	
6		JUNCTION BOXES		
49	_	PROGRAMMING POIN	75	
200	FT.	POWER WIRING	Charles d Co.	0-4-
ECO-10 - EN	ics addit	70115	Checked By	Date

Prepared By

Job No. 92001 01

9-17-93

Sheet No.

1 5-1

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

### BASELINE ENERGY USAGE

6636

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE:

9 = BUILDING DESIGN HEAT LOAD - BTU/HR

7 = HEATING SYSTEM EFFICIENCY

 $\Delta T = (T_{INDOPRS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) F$ 

CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY = 
$$\left(24\frac{HR}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(1.4 \times 10^{6}\frac{BT4}{HR}\right)\left(0.6\right)$$
.

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 BY DIVERSITY FACTOR * HEATING

ENERGY = 40 + 2545 * 1.0 * 4369 = 445 × 10 BTU (ELEC)

1@3; 1@71/2 ENERGY = PUMP HP * 2545 BTM * DIVERSITY FACTOR * HTG HRS

ENERGY = 10.5 * 2545 * 1.0 * 4369 = 117×10 (BTH (ELEC)

TOTAL BASELINE HEATING ENERGY = 2641×10 BT4

			Data '	
Title	ECO-10 - EMCS APDITIONS	Checked By	Date	
	BASELINE ENERGY USAGE	GBL	9-16-93	4-240
Project		Prepared By	Sheet No.	4-240
Project	FT. CAMPBELL ENERGY SAVINGS	Job No.		
	non noulley Sunvey	9325/ 21	1 3-1	ļ

									1
BASELINE	ENAL G	Y us	SAGE					BLOG #	
								6636	
COOLING	- BIN n	neih	<u>D</u>						
BIN	HRSKR	!	% FULL LOAG	2 .	FULL LOAD BTU/HR	· -	BTY		
95/99	3	*	1.0	*	60,000	7 =	180	000	
90/94	17	*	1.0	*	60,000	) =	1,020	000	
95/89	75	*	0.85	*	60,000	) =	3,825,	000	
30184	185	*	0.70	*	60,000	0 =	7,770,	000	
75/79	407	*	0,55	*	60,000	o =	13,431	000	
70/74	714	¥	0.40	*	60,000	) =	17,136	<u>,00</u> 0	
65/69	673	*	0.25	*	60,000	) =	10,095	,000	
TOTAL HRS/Y	= 2074				TOTAL	BY =	53,45	7,000	
TOTA	L ELECTRI	cai e	weigy In	PUT	COULING	= <u>53 ×</u>	10 yr : 3	2 (AUG.)	
						= 27	×10 BTU/	YR (ELEC)	
NOTE ! HES								MCH	
BIN	FOR THE	t Ho	urs From	۸ 5	5 P.M. 7	BA.	M		
AUXILUALUS	l.								
	<b>-</b>	40	L HP ± 25	145	B+4 +	1.0 * 20	74 = 2	11×10° BTY	FICE
Fact 11					,			YE.	
FOR THE H								· ·	
THIS IS AL	TOTI So THE F	AL F	外SELINE ED Coolui/	CUO ED	LINE ENE VEILGY (1	rgy = ₁ vivsc -	238×10	BIY (ELLC)	)
TOK IMPLEM	7.10	1-0 ( 1)			, J	:-1703			
Title ECO-10	- EMCS /	40017	7UNS			Checked By	CBL	Date	
BASQ	NE COOL!	vG.	ENERGY		;	Prepared 6v		9-21-93	4-24
Project FORT	CAMP312	LEI	LEAGY SA	VIN)	<u>-</u>	lah Na	GBL	Sheet No.	4-24

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

#### PROPOSED ENERGY USAGE

BLOG #

HEATING: DEGREE DAY METHOD

SEE SHEET (B-1) FOR DEGREE DAY FORMULA EXPLANATION.
BY LOWERING SPACE HEATING SET POINTS DURING UND COUPLED
HOURS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM
(EMCS), THE FOLLOWING SAVINGS ARE ACHIEVED:

SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * PLOPOSED AT

DESIGN AT

$$=\frac{(1.4\times10^6)\frac{BTu}{HR}}{(68-4)^6F}*(50-4)^6F$$

SETBACK BUILDING HEAT LOAD = 1 x 10 BTY
HR

NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION:

$$=\frac{\left(12 \text{ Hz}\right)4290 \left(1 \times 10^{6} \frac{\text{BTU}}{\text{Hz}}\right)}{\left(0.45\right) \left(64\right)} + \frac{\left(24-12\right) \left(2079 \times 10^{6}\right)}{24}$$

PROPOSED HEATING ENERGY USAGE = 1782×10 BTU (NATURAL GAS)

AUXILIARY ENERGY SAVINGS = BASELINE AUX. ENERGY - PROPOSED ANX. ENERGY ANX. ENERGY - PROPOSED ANX. ENERGY ANX. ENERGY - PROPOSED ANX. ENERGY - PROPOSED ANX. ENERGY - PROPOSED ANX. ENERGY - SOURCE SHORT B-1) - 50.5 HP + 2545 * 0.6 (DIV. FACTOR) * 4369 - SAVINGE

AUX. ENERGY SAVINGS = 225×10 Bry/ge (ELECTOTAL ENERGY SAVINGS = 522×106)

Project FT. CAMPBELL ENELGY SAVINGS

Checked By GBL

Prepared By

GBL

Prepared By

GBL

Sheet No.

Job No.

F - 1

4-242

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 6636

Contract No: 27-93-C-0096

Prepared By: Systems Corp
Estimator: Keith A. Derrington

Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M - C A C E S E D I T I O N

COMPOSER Plus Copyright (C) 1985, 1988

by Building Systems Design, Inc.

Release 4.20

4-243 PROJECT ID: 663610 MABLE OF CONTENTS

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

CONTENTS PAGE 1

SUMMARY REPORTS	SUMMARY PAGE
PROJECT NOTES. BID ITEM AND FACILITY SUMMARY. PROJECT CWE SUMMARY. CONTRACTOR DIRECT SUMMARY. CONTRACTOR INDIRECT SUMMARY. CSI DIVISION SUMMARY. SYSTEMS SUMMARY. EQUIPMENT SUMMARY. LABOR SUMMARY.	
DETAILED ESTIMATE	DETAIL PAGE
1. BUILDING TO THE 5 FOOT LINE AA. ELECTRICAL	1

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 10:29:03

DETAIL PAGE 1

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CONDUIT							
CD=4 EL 1121 1 IN CONDUIT W/COUPLING WC=1100	*** UNIT COSTS: *** 400.00 LF EELEF	0.08 31	2.34 937	0.01	0.90 360	0.05 18	3.30 1,319
16120 1200 SINGLE STRANDED CONDUCTOR							
CD=4 EL 1211 NO. 12 AWG - TYPE THHN WC=1100 INSULATION	*** UNIT COSTS: *** 0.20 MLF EELEF	5.78 1	174.30 35	0.78	52.98 11	2.65	230.71 46
16130 1200 NEMA 1 SCREW COVER ENCL							
CD=4 EL 1202 6X6X4 NEMA 1 WC=1100	*** UNIT COSTS: *** 6.00 EA EELEB	0.67 4	22.01 132	0.09	4.87 29	0.24	27.21 163
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE							
CD=3 EL 2001 TWISTED PAIR WIRES 18 AWG WC=1100	*** UNIT COSTS: *** 0.80 MLF EELEF	8.28 7	249.82 200	1.12	820.Q0 656	41.00	1111.94 . 890
16920 3000 CONTROL SWITCH							
CD=3 EL 3001 START/STOP WC=1100	*** UNIT COSTS: *** 9.00 EA EELEB	5.00 45	165.05 1,485	0.65 6	60.00 540	3.00	228.70 2,058
16920 4000 RELAY							
CD=3 EL 4001 STATUS RELAY WC=1100	*** UNIT COSTS: *** 9.00 EA EELEB	1.25 11	41.26 371	0.16	20.00		62.42 562
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT COSTS: *** 8.00 EA EELEB	1.25 10	41.26 330	0.16	85.00 680	4.25	, 130.67 1,045
16961 3000 TEMPERATURE							
CD=3 EL 3001 SPACE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB		82.53 330				124.85 499
CD=3 EL 3002 DUCT TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 8.00 EA EESMA		62.79 502				111.44 892
CD=3 EL 3004 PIPE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 6.00 EA EPIPA		133.71 802				197.03 1,182

4-245

CURRENCY in DOLLARS

PROJECT ID: 663610

DETAILED ESTIMATE

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

DETAIL PAGE 2

TIME 10:29:03

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

BASE BID

4-246

							מום מכמם
DIVISION 16 ELECTRICAL	QUANTITY UOH CREW					SALESTX	DIRECT \$
16961 4000 PRESSURE							
CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 4.00 EA EESMA	2.00	62.79 251	1.40	35.00 140	1.75 7	100.94 404
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 3.00 EA EPIPA	8.50 26	267.42 802		85.00 255		
16962 PRESSURE SWITCHES							
CD=3 EL 1001 PRESSURE SWITCH WC=1100	*** UNIT COSTS: *** 4.00 EA EESMA	2.00	62.79 251	1.40	80.00 320	4.00	148.19 593
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 2.00 EA EELEB		82.53 165	0.32	190.00 380	9.50 19	
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 2.00 EA MSPFB	5.00 10	137.72 275	2.02 4	0.00	0	2/9
16991 5000 MUX							•
CD=3 EL 5001 MUX WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	5.00 5	165.05 165	0.65	4720.00 4,720	236.00 236	5121.70 5,122
16991 6000 CABINET							
CD=3 EL 6001 DATA TERMINAL CABINET WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50 3	82.53 83		350.00 350		
CD=3 EL 6002 INSTRUMENT SHELTER WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	125.00 125	6.25 6	214.1
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR ENCS WC=1100	*** UNIT COSTS: *** 49.00 EA EELEB		41.26 2,022	0.16 8		1.50 74	72.99 3,57
TOTAL DIVISION 16 ELECTRICAL		288	9,222	56	11,096	555	20,92
TOTAL FACILITY AA. ELECTRICAL		288	9,222	56	11,096	555	20,92
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		288	9,222	56	11,096	555	20,92
TOTAL BASE BID		288	9,222	56	11,096	555	20,92
CREW ID: ORL290	CURRENCY in DO	LLARS				PROJECT	ID: 663610

DETAILED ESTIMATE

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 6636

DETAIL PAGE 3

TIME 10:29:03

2. SITEWORK /

מזמ ממטמ	BASE	BID
----------	------	-----

							DASE DID
DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	MANER	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
							*
TOTAL ADDITIVE		0	0	0	0	0	0
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		288	9,222	56	11,096	555	20,929

* * * END OF DETAIL REPORT * * *

PROJECT NOTES

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

TIME 10:29:03

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: ENCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

4-248 PROJECT ID: 663610

CURRENCY in DOLLARS

CREW ID: ORL290

CREW ID: ORL290

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 6636

TIME 10:29:03

SUMMARY PAGE 2

BID	ITEM 1	BUILDING	TO THE 5 F	OOT LINI	3							BASE BID
ID	FACILITY			COS	r to prh	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL	L	1.00	EA	20,929	10.0% 2,093	0.0%	7.5% 1,727	2.5% 619	0.0%	25,367	25366.72
BID	ITEM TOTAL	L	1.00	EA	20,929	2,093	0	1,727	619	0	25,367	25366.72

U.S. ARMY CORPS of ENGINEERS N-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 6636 SUMMARY PAGE 3

TO TURN 2 STURWORK

BID ITEM AND FACILITY SUMMARY

BASE BID

TIME 10:29:03

BID IT	ER 2 SITEWORK								
ID FAC	CILITY	COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND OTE	IR FCTR	TOTAL COST	UNIT COST
TOTAL I	BASE BID	20,929	2,093	0	1,727	619	0	25,367	
TOTAL A	ADDITIVE	0	0	0	0	0	0	0	
ሞርም ነገር	INCL ADD	20,929	2,093	0	1,727	619	0	25,367	
TOTAL .	THOU IND	20/121	-,050	•				•	

4-250

PROJECT ID: 663610

PROJECT CWE SUMMARY

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

TIME 10:29:03

SUMMARY PAGE 4

ID BID ITEM	MOU YTITMAUQ	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	25,367		25,367	25366.70
TOTAL CURRENT CONTRACT COST	-	25,367	0	25,367	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST	•	25,367	0	25,367	
Government-Furnished Property		0		0	
SUBTOTAL	•	25,367	0	25,367	
Contingencies	10.0%	2,537	0	2,537	
SUBTOTAL	-	27,903	0	27,903	
SIOH (S&A)	5.0%	1,395 -	0	1,395	
CURRENT WORKING ESTIMATE	-	29,299	0	29,299	

4-251 PROJECT ID: 663610

CURRENCY in DOLLARS

CREW ID: ORL290

CONTRACTOR DIRECT SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

TIME 10:29:03

SUMMARY PAGE 5

								*:	* TOTAL DI	RECT *	* SUBCON	*	
ID	CONTRACTOR	PM	QUANTITY	UOH	MANHRS	LABOR			AMOUNT		W/OH&P		SUBTOTAL
			1 00	F1	200	0 222	5.6	11,651	20,929	100.02		n	20,929
AA	GENERAL/PRIME		1.00	LA	288	9,222	50	11,051	20,323			v	20/12/
	TOTAL DIRECT				288	9,222	56	11,651	20,929	100.08			

4-252 PROJECT ID: 663610

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

SUMMARY PAGE

TIME 10:29:03

CONTRACTOR INDIRECT SUMMARY

ID	CONTRACTOR	PH SUBTOTAL				**** PROFIT AMOUNT						ACT ******* UNIT COST
λλ	GENERAL/PRIME	20,929	2,093	10.0%	0.0	1,727	7.5%	2.5%	0.08	25,367	100.0%	25366.70
	TOTAL OVERHEAD & PROFIT		2,093	10.0%		1,727	7.5%					

CSI DIVISION SUMMARY

TOTAL DIRECT

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

TIME 10:29:03

SUMMARY PAGE

20,929

555

ID CSI DIVISION	MANHOURS		EQUIPMENT			**** TOTAL * DIRECT	
16 ELECTRICAL	288	9,222	56	11,096	555	20,929	

288 9,222 56 11,096

4-254

CURRENCY in DOLLARS

CREW ID: ORL290

PROJECT ID: 663610

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

SUMMARY PAGE 8

TIME 10:29:03

SYST	ENS	SUMMARY	

					***:	** TOTAL *
ID SYSTEM	MANHOURS	LABOR	EQUIPMENT	MATERIAL	SALES TAX	DIRECT
11 INTERIOR ELECTRICAL	288	9,222	56	11,096	555	20,929
TOTAL DIRECT	288	9,222	56	11,096	555	20,929

EQUIPHENT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

TIME 10:29:03

SUMMARY PAGE 9

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP			**** TOTAL **** HOURS COST
EMI20 SMALL TOOLS		1.40	1.40	40 56
TOTAL PROJECT EQUIPMENT HOURS				40 56

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6636

TIME 10:29:03

SUMMARY PAGE 10

LABOR SUMMARY

								HRLY -	UPB	**** ጥርጥ <b>ነ</b> ፣	***
-	CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	RATE	RATE		COST
-											
	LELEC	ELECTRICIANS	20.50	0.0%	24.08	7.49	0.00	32.91	25.79	238	7,753
	LSHNT	SHEET NETAL WORKERS	19.90	0.0%	24.0%	5.20	0.00	29.88	25.06	16	478
	LSPFI	STEAM/PIPEFITTERS	20.95	0.0%	24.0%	3.85	0.00	29.83	26.12	34	991
	TOTAL	PROJECT MANHOURS								288	9,223

* * * END OF SUMMARY REPORT * * *

#### SUMMARY SHEET

BLOG #

TOTAL SAVINGS = \$ _ O /YR

### HARDWARE REQUIRED:

Title

SUMMERY SHEET

Project FT. CAMPBELL ENERGY SAVINGS

OPPORTURITY KURUETY

QUANTITY	,	I TEM		
		FID/MUX		
•		MUX ONLY		
4		SPACE TEMP SENSOR		
		DUCT TEMP SENSOR		
4		WATER TEMP SENSOR		
		O.A. TEMP SENSOR		
		HUMIDITY SENSOR		
4		STAKT /STOP		
<u>I</u>		STATUS RELAY		•
		DIFF. PRESSURE (DU ST)		
4		DIFF. PRESSURE (PIPE	=)	
3		FLOW SWITCH		
		PRESSURE SWITCH		
4		CURRENT RELAY	_	
		DATA TERMINAL CASIA		
		INSTRUMENT ENCLOSUR		
		2 WIRE, TWISTED PATE		=
500 FT	· -	RIGID CONDUIT -	l" D.	
4		JUNCTION BOXES		
<u>19</u>		PROGRAMMING FOINT	75	
100 FT.		POWER WIRING	Charles I Du	2-4-
Eco-10 - EMCS	ADDIT	70115	Checked By  GSL	Date

Prepared By

Jab Na.

4-258

9-17-93

Sheet No.

6-1

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

BASELINE	ent c	y ug	SAGE				BLOG #	
COOLING	- BIN r	neth	<u> </u>		Co. muc		6921-A	
					570 TONS FULL WAD	Вти		
BIN	HRS/YR		% FULL LOA		BTU/HR	BTU YR	-	
95/99	3	*	1.0	*	0.1			
90/94	17	*	1,0	*	0	=		
95/89	75	*	0.85	*	0	=		
30184	185	*	0.70	÷	0 .	= 3.70		
75/79	407	*	0.55	*	0 1 11	= 17.1.0		
70/74	714	*	0.40	*	0	= 200		
65/69	673	*	0.25	*	10 ( ) 2 °	=O	1	
TOTAL	= 2074		·		TOTAL BY	= _0-20	1 .	
(1105/)/2					YIL		re la company	
TOTAL	. ELECTIVI	ial E	ivergy in	PHT.	couling = _	0 Tr ÷	至(AVG.)	
					- '	O Bin	/YR (EUSE)	
NOTE ! HKS!	YE INDI	CATE	THE TOT	nu p		rences in s	i i	
BIN	FOR THE	to:	irs from	n 5	P.M. TO E	A.M		
AUXILURIUS!		١	CH. W Pun	npe'	75 AP: 1 cou	D. WIR. PUMP 6	350 HP	
	Pumps !	_0	L HP ± 29	145 B	+ 1.0	+ 2074 = 1	0 5TY (	-100
							YR (	(ELL)
FOR THE HOL	ues Frion	° 5 F	.N. TO	3 A.M	u:			
Tillie is the	7011	it E	bitseline	Cupi	ING EMELGY	=	- Vr ()	
TOE IMPLEME				a t ~ 8	ercgy savings		11- \ \	
Title Eco-10 -					. Checked	IBY CBL	Date	
	JE COOLIN	JG J	Energy		Prepare	d By	7-21-93 Sheet No.	4-250
	•		eacy sa	VING	S Jeb No.	CBL	Sheet No.	4-439
1 000 nr		6 -	11-11		1	03mm1 m1	トーノ	1

Project

FT. CAMPBELL ENERGY SAVINGS

DPPORTUNITY SURVEY

NO HEATING (6921-A)  EATING: DEGREE DAY METHOD IN THIS BUILDING  HEATING ENERGY (BTW/YR) = $\frac{24 * DD * \dot{q}}{2 * \Delta T} * C_{D}$ WHERE: DD = DEGREE DAYS - °F-DAY $\dot{q}$ = BUILDING DESIGN HEAT LOAD - BTW/HR $\eta$ = HEATING SYSTEM EFFICIENCY $\Delta T$ = $(T_{INDOSES} - T_{OUTSIDE})_{DESIGN} = (C8 - 4) °F$ $C_{D}$ = CORRECTION FACTOR BASED ON C5° DD  HEATING ENERGY = $(24 \frac{HR}{DAY})(4290 °F-DAY)(\frac{BTW}{HR})$ $(C8 - 4) °F$ ENERGY = $\frac{D}{YR}(VATURAL GAS)$ AUXILIARY EQUIPMENT!  FANS: ENERGY = FAN HP * 2545 $\frac{BTW}{HR} * DIVERSITY FACTOR * \frac{HCATING}{YR}$ ENERGY = $\frac{D}{YR} * \frac{BTW}{NR} * DIVERSITY FACTOR * \frac{HCATING}{YR} * \frac{HCATING}{YR} * \frac{BTW}{YR} * \frac{BTW}{YR$	BASELINE ENERGY	USAGE			15	3L,DG #
HEATING ENERGY (BTW/R) = $\frac{24 * DD * \dot{q}}{2 * \Delta T} * C_{p}$ WHERE: DD = DEGREE DAYS - °F-DAY $\dot{q}$ = BUILDING DESIGN HEAT LOAD - BTU/HR $\eta$ = HEATING SYSTEM EFFICIENCY $\Delta T = (T_{\text{INDORRS}} - T_{\text{OUTSIDE}})_{\text{DESIGN}} = (68 - 4) °F$ $C_{D}$ = CORRECTION FACTOR BASED ON 65° DD  HEATING ENERGY = $\left(24\frac{\mu R}{DAY}\right)\left(4290 °F - DAY\right)\left(\frac{BTU}{HR}\right)$ $\left(68 - 4\right) °F$ ENERGY = $\frac{BTU}{YR}\left(NATURAL GAS\right)$ AUXILIARY EQUIPMENT!			NO	HEATING		6921-A
WHERE: DD = DEGREE DAYS - °F-DAY  Q = BUILDING DESIGN HEAT LOAD - BTU/HR  T = HEATING SYSTEM EFFICIENCY  AT = (TINDOSES - TOUTSIDE) DESIGN = (68-4) °F  CD = CORRECTION FACTOR BASED ON 65° DD  HEATING ENERGY = (24 HR DAY) (4290 °F-DAY) (BTU/HR)  ( ) (68-4) °F  ENERGY = O BTU/YR (NATURAL GAS)  AUXILIARY EQUIPMENT!	ATING: DEGREE DAY	METHOD	IN -	THIS BUILD	ING	
Q = BUILDING DESIGN HEAT LOAD - BTU/HR  T = HEATING SYSTEM EFFICIENCY  AT = (TINDONES - TOUTSIDE) DESIGN = (CB - 4) °F  CD = CORRECTION FACTOR BASED ON GS °DD  HEATING ENERGY = (24 HR DAY) (4290 °F - DAY) (BTU/HR)  (D. L)  ENERGY =   BTU/HR  T = HEATING EFFICIENCY  AUXILIARY EQUIPMENT!	HEATING ENERGY (B	Ty/n) = 2	4 * DD	* 9 * Cp		
ENERGY = O BTY (NATURAL GAS)  AUXILIARY EQUIPMENT!	WHERE	q = n = ΔT = (	BUILDING HEATING (TIMDOORS -	DESIGN HE SYSTEM: EFF Tourside) DESIGN	AT LOAD $ICIENCY$ , = $(68)$	, -4) °F
AUXILIARY EQUIPMENT!	HEATING ENERGY =	$= \left(24\frac{\mu R}{DAY}\right)\left(4\right)$	290 °F-0	ar)( (68-4)	Bry HR	(0.6)
FANS: ENERGY = FAN HP * 2545 BTY # DIVERSITY FACTOR * HEATING YR		=	B1	"R (NATURAL	GAS)	
FANS: ENERGY = FAN HP * 2545 HE P DIVERSITY FACTOR * HES	LUXILIARY EQUIPMENT!			<b></b>		HEATING
	FANS: ENERG	Y = FAN HE	2545 × 2545	HK. KP DIVERS	ITY FACTO	* HES YR
ENETIGY = 0 + 2545 * + 4369 = BTI	energ	y = <u>0</u>	. * 254	5 **43	369 = -	
PUMPS: ENERGY = PUMP HP * 2545 BTU * DIVERSITY FACTOR * !						
ENERGY = 0 * 2545 * 1.0 * 4369 = BTI YR	ENER	GY = O	* 2	HR.HP 545 * 1.0 *	4369=	
TOTAL BASELINE HEATING ENERGY = O BTY YR	TOTAL BACHINE	HEATING E	Nergy :	= 0_	BTY	

4-260

Sheet No.

B-1

Job No. 92226 01

PROPOSED ENERGY USAGE	NO HEATING	6921-A
HEATING! DEGREE DAY METHOD	IN THIS BUILDING	
BY LOWERING SPACE HEATING HOURS WITH THE ENERGY MAN (EMCS), THE FULLOWING SAVI	NGS ARE ACHIEVED:	CCUPIED
PROPOSED SETBACK AT =	$(-4) = {}^{\circ}F$	
SETBACK BUILDING HEAT LOAD	DESIGN AT	
	$=\frac{\left(\begin{array}{c} BTU \\ HR \end{array}\right)}{\left(68-4\right)^{\circ}F} * \left(\begin{array}{c} BTU \\ HR \end{array}\right)$	-4)°F
SETBACK BUILDING HEAT LOAD  NOW USING THE DEGREE-DAY FORMULA	HR	K CONDITION:
PROPOSED SETBACK HRS (4290°F-DAY) (SETBACK HRS) (4290°F-DAY) (BUIL HT. USAGE n (68-4)°F	BACK DING LOAD (DIC) + (24 - SETBACK HXS DAY 24	BASELIVE HEATING ENERGY HR DAY
$= \frac{\text{(HPS)} 4290 \left( \frac{BTR}{HR} \right)}{\text{(C4)}}$	$\frac{1}{2}$ $(0.6) + (24-)$	( )
PROPOSED HEATING ENERGY USAGE = _	O BTY (NATURAL	
AUXILIARY ENDRGY SAVINGS = BASELINE	<b>A</b>	
72	HP + 2545 * (DIV. FACTOR)	
AUX. ENERGY SAVINGS = _ O Bry/4R	(ELEC) TOTAL ENERCY SAVINGS =	- Br
Title ECO-10 - EMCS ADDITIONS	Checked By GBL	Date
PROPOSED ENERGY USACE	Propagad Ry	9-16-93
Project FT. CAMPBELL ENELGY SAVINGS	Job No.	Sheet No.

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 6921A

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington

Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

N-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

TABLE OF CONTENTS

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

CONTENTS PAGE 1

SUMMARY REPORTS	SUMMARY	PAGE
PROJECT NOTES. BID ITEM AND FACILITY SUMMARY. PROJECT CWE SUMMARY. CONTRACTOR DIRECT SUMMARY. CONTRACTOR INDIRECT SUMMARY. CSI DIVISION SUMMARY. SYSTEMS SUMMARY. EQUIPMENT SUMMARY. LABOR SUMMARY.	• • • • • • • • •	2567
DETAILED ESTIMATE	DETAIL	PAGE
1. BUILDING TO THE 5 FOOT LINE AA. ELECTRICAL	• • • • • • •	1

* * * END TABLE OF CONTENTS * * *

Tue 28 Sep 1993

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / PT CAMPBELL, KY

ECO-10: BUILDING 6921A

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 07:26:04

DETAIL PAGE 1

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UOM CREW				MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CONDUIT							
CD=4 EL 1121 1 IN CONDUIT W/COUPLING WC=1100	*** UNIT COSTS: *** 500.00 LF EELEF	0.08	2.34 1,171	0.01 5	0.90 450	0.05 23	3.30 1,649
16120 1200 SINGLE STRANDED CONDUCTOR							
CD=4 EL 1211 NO. 12 AWG - TYPE THHN WC=1100 INSULATION	*** UNIT COSTS: *** 0.10 MLF EELEF	5.78 1	174.30 17	0.78	52.98 5	2.65 0	230.71 23
16130 1200 NEMA 1 SCREW COVER ENCL							
CD=4 EL 1202 6X6X4 NEMA 1 WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB	0.67	22.01 88	0.09 0	4.87 19	0.24	27.21 109
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE							
CD=3 EL 2001 TWISTED PAIR WIRES 18 AWG WC=1100	*** UNIT COSTS: *** 0.90 MLF EELEF						1111.9
16920 3000 CONTROL SWITCH							
CD=3 EL 3001 START/STOP WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB			0.65 3	60.00 240	3.00 12	228.7 91
16920 4000 RELAY							
CD=3 EL 4001 STATUS RELAY WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB	1.25 5	41.26 165	0.16	20.00		62.4
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB	1.25 5	41.26 165	0.16	85.00 340	4.25 17	130.6 52
16961 3000 TEMPERATURE							
CD=3 EL 3004 PIPE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 4.00 EA EPIPA						197.0 78
16961 4000 PRESSURE							
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 4.00 EA EPIPA			0.65 3	85.00 340		357.3 1,42
16963 FLOW SWITCHES							

4-264

PROJECT ID: 692110

Tue 28 Sep 1993

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

TIME 07:26:04

DETAIL PAGE 2

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL
BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UON CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 3.00 EA EELEB		82.53 248	0.32			282.35 847
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 3.00 EA MSPFB		137.72 413	2.02	0.00		139.73 419
16991 6000 CABINET							
CD=3 EL 6001 DATA TERMINAL CABINET WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32		17.50 18	450.35 450
CD=3 EL 6002 INSTRUMENT SHELTER WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	125.00 125	6.25 6	214.10 214
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS WC=1100	*** UNIT COSTS: *** 19.00 EA EELEB		41.26 784	0.16 3	30.00 570		72.92 1,386
TOTAL DIVISION 16 ELECTRICAL		182		25	4,068		10,002
TOTAL FACILITY AA. ELECTRICAL		182	5,706	25	4,068	203	10,002
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		182		25	4,068		
TOTAL BASE BID		182	5,706	25	4,068	203	10,002
TOTAL ADDITIVE		0	0	0	0	0	0
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		182	5,706	25	4,068	203	10,002

* * * END OF DETAIL REPORT * * *

PROJECT ID: 692110

Tue 28 Sep 1993

PROJECT NOTES

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

TIME 07:26:04

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING ENCS SYSTEM TO SELECTED FACILITIES AT FORT CAMPBELL.

#### U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 6921A

SUMMARY PAGE

TIME 07:26:04

BID	ITEM 1	BUILDING TO THE	5 F00	r line							BASE BID
ID	FACILITY			COST TO PRM	OVERHEAD	HONE OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL		1.00 E	A 10,002	10.0%	0.0%	7.5% 825	2.5% 296	0.0%	12,123	12123.32
BID	ITEM TOTAL		1.00 E	A 10,002	1,000	0	825	296	0	12,123	12123.32

4-267

PROJECT ID: 692110

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 6921A

SUMMARY PAGE 3

TIME 07:26:04

BID ITEM 2 SITEWORK								BASE BID
ID FACILITY	COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND OT	ir fctr	TOTAL COST	UNIT COST
TOTAL BASE BID	10,002	1,000	0	825	296	0	12,123	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	10,002	1,000	0	825	296	 0	12,123	

ROJECT CWE SUMMARY

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

TIME 07:26:04

SUMMARY PAGE

 ID BID ITEM	QUANTITY UON	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	12,123		12,123	12123.30
TOTAL CURRENT CONTRACT COST		12,123	0	12,123	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		12,123	0	12,123	
Government-Furnished Property		0		0	
SUBTOTAL	•	12,123	0	12,123	
Contingencies	10.0%	1,212	0	1,212	
SUBTOTAL	•	13,336	0	13,336	
SIOH (S&A)	5.0%	667	0	667	
CURRENT WORKING ESTIMATE		14,002	0	14,002	
Estimated Construction Time	365 Days				

4-269

PROJECT ID: 692110

CREW ID: ORL290

CONTRACTOR DIRECT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 6921A

TIME 07:26:04

SUMMARY PAGE 5

ID CONTRACTOR	PM QUANTITY UOM					* TOTAL DIRECT AMOUNT PCT		
AA GENERAL/PRIME	1.00 EA	182	5,706	25	4,271	10,002 100.	){	0 10,002
TOTAL DIRECT		182	5,706	25	4,271	10,002 100.	) }	

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

TIME 07:26:04

SUMMARY PAGE 6

CONTRACTOR INDIRECT SUMMARY

ID	CONTRACTOR	PM	SUBTOTAL	OVERHEA AMOUNT			PROFIT AMOUNT				IATOT ****** TOTAL		ACT ******* UNIT COST
λλ	GENERAL/PRIME		10,002	 1,000	10.0%	0.0	 825	7.58	2.5%	0.0%	12,123	100.0	12123.31
	TOTAL OVERHEAD & PROFIT			 1,000	10.0%		825	7.5%					

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

TIME 07:26:04

SUMMARY PAGE

CSI DIVISION SUMMARY

•	ID CSI DIVISION	MANHOURS	LABOR		MATERIAL	SALES TAX	*** TOTAL * -	
	16 ELECTRICAL	182	5,706	25	4,068	203	10,002	
	TOTAL DIRECT	182	5,706	25	4,068	203	10,002	

SYSTEMS SUMMARY

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

TIME 07:26:04

SUMMARY PAGE

_							*** TOTAL *	
	ID SYSTEM	MANHOURS	LABOR		MATERIAL		DIRECT	
-								
	11 INTERIOR ELECTRICAL	182	5,706	25	4,068	203	10,002	
	TOTAL DIRECT	182	5,706	25	4,068	203	10,002	

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

TIME 07:26:04

SUNMARY PAGE 9

EQUIPMENT SUMMARY

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP		HRLY RATE	UPB RATE		AL **** COST
EMI20 SMALL TOOLS			1.40	1.40	18	25
TOTAL PROJECT EQUIPMENT HOURS					18	25

LABOR SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 6921A

TIME 07:26:04

SUMMARY PAGE 10

CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	 UPB RATE		**** COST
	ELECTRICIANS STEAM/PIPEFITTERS	20.50 20.95	0.0% 0.0%					143 39	
TOTAL	PROJECT MANHOURS							182	5,705

* * * END OF SUMMARY REPORT * * *

#### SUMMARY SHEET

BLOG # 7243

NATURAL GAS SAVINGS =  $\frac{.966}{y_R}$  *  $\frac{$4.00}{MBTU}$  =  $\frac{$3864}{$78.00}$  ELECTRICAL SAVINGS =  $\frac{.523}{y_R}$  *  $\frac{MBTU}{y_R}$  *  $\frac{$4.00}{MBTU}$  =  $\frac{$3237}{MBTU}$ 

TOTAL SAVINGS = \$ 7.1013 /YR

### HARDWARE REQUIRED:

QUANTITY	ITEM		
	FID/MUX		
1	MUX ONLY		
8	SPACE TEMP SENSOR		
8 18 2	DUCT TEMP SENSOR		
	WATER TEMP SENSOL		
*********	O.A. TEMP SENSOR		
11   11   8   2   1	HUMIDITY SENSOR		
11	STAKT /STOP		
11	STATUS RELAY		
8	DIFF. PRESSURE (DUCT)	)	
2	DIFF. PRESSURE (PIP	E)	
1	FLOW SWITCH.		
8	pressure switch		
10	CURRENT RELAY	-	
	DATE TERMINAL CADA		•
	INSTRUMENT ENCLOSE		
	- 2 WIRE, TWISTED PAL	,	2 E
600 FT	- RIGID CONDUIT -	\" D.	
10	JUNCTION BOXES		
68	PROGRAMMING FOIN	TS	
300 CT.	POWER WIFING	_	
		Chacked Ry	Date

Title Checked By ECO-10 - EMES ADDITIONS 9-17-93 SUMMERY SHOUT Prepared By Sheet No. Project FT. CAMPBELL ENERGY SAVINGS 1 6-1 10000 TH -1 CHA 114

### BASELINE ENERGY USAGE

7243

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE:

9 = BUILDING DESIGN HEAT LOAD - BTU/HR

7 = HEATING SYSTEM EFFICIENCY

 $\Delta T = (T_{IMDOORS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) F$ 

CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY = 
$$\left(24\frac{\mu R}{EAY}\right)\left(4290^{\circ}F - DAY\right)\left(4.8 \times 10^{\circ}\frac{BT4}{HR}\right)\left(0.6\right)$$
.

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 Bry DIVERSITY FACTOR * HERTING

ENERGY = 40 + 2545 * 1.0 * 4369 = 445 × 10 BTU (ELEC)

ENERGY = PUMP HP * 2545 BTU * DIVERSITY FACTOR * HIGHES

ENERGY = 6 * 2545 * 1.0 * 4369 = 67x10 BT4 (ELEC)

TOTAL BASELINE HEATING ENERGY = 7112×10 BT4

Title ECO-10 - EMCS APPITIONS	Checked By	Date 9-16-93
Project - TANBERT THEON SOUND	Prepared By  GBL	Sheet No.
Project FT. CAMPBELL ENERGY SAVING	Job No. 9322/ 21	B-1

									1
BASTLINE	ENERG	Y U	SAGE					BLOG #	
COOLING	- B:11 r	nett	toD	7 6	)			7243	
				2 @	lo Tons EA		D-r14		
BIN	HRS/YR		% FULL LOA	<u>o</u> .	BTU/HR		Bru YR		
95/99	3	*	1.0	*	240,000	. =	720,0		
90/94	17	水	1.0	*	240,000	=	4,080	200	
25/89	75	*	0.85	*	240,000		15,300		
30184	185	*	0.70	*	240,000	=	31,080	000	
75/79	407	*	0.55	*	240,000	=	53,724	000	
70/74	714	¥	0.40	*	240,000	-	68,540	+,000	
65/69	673	*	0.25	*	740,000	=	40,391	000,	
TOTAL HIRS/YR	= 2074				TOTAL BY	Y = -	213,828	3,000	
TOTAL	. ELECTRI	cal 1	eveigy in	P4T	COULING =	214×	10 5th -	2 (AUG.)	
								/ Yr (ELEC)	
NOTE ! HKS/	Yr 140.		71 TOT	h. 1 .	*		'		
					P.M. TO			-10 P	
GLAVELL LAW LESS I									
AUXILIARIUS	-	47	7 110 : 60	-ر بر	Bry 1		71 - h	II who Fitte	
	rays.		∠ HP ± 15	45	HP inc + 1.	1 + 20	14 - 2	11 ×10 574	ELEX)
FOR THE HO									
	Ton	12 1	BHSELINE	Cost	ING ENERG	÷y = _	318×10	- DEM (ELLC)	
THIS IS ALS	, -	. ,		EV	ERGY SAVI	VGS		yr (Colo)	
Title Eco-10 -					Che	cked By	4	Date	
	JE COOLIN				Pra	pared By	CBL	7-21-98	, 270
Project Koht		LE	ueigy sa	ا بمار		No.	36 L	9-21-93 Sheet No. Q - 7	4-2/8

#### PROPOSED ENERGY USAGE

BLDG# 7243

#### HEATING: DEGREE DAY METHOD

SEE SHEET (B-1) FOR DEGREE DAY FORMULA EXPLANATION.
BY LOWERING SPACE HEATING SET POINTS DURING UND CONTROL SYSTEM
(EMCS), THE FOLLOWING SAVINGS ARE ACHIEVED!

SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * PLOPOSED AT DESIGN AT

$$= \frac{(4.8 \times 10^{6}) \frac{BTH}{HR}}{(68-4) ^{\circ}F} * (50-4) ^{\circ}F$$

SETBACK BUELDING HEAT LOAD = 3,5 × 10 BTY HR

NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION:

$$\frac{\text{PROPOSED}}{\text{HEATING}} = \frac{\left(\frac{\text{SETBACK HRS}}{\text{DAY}}\right) \left(\frac{4290^{\circ} \text{F-DAY}}{\text{DAY}}\right) \left(\frac{\text{SETBACK}}{\text{Bunding}}\right)}{n \left(\frac{68-4}{\text{VF}}\right)^{\circ} \text{F}} \left(\frac{24-\frac{\text{SETBACK}}{\text{HEATING}}}{n \left(\frac{68-4}{\text{DAY}}\right)^{\circ} \text{F}} \left(\frac{24-\frac{\text{SETBACK}}{\text{DAY}}}{n \left(\frac{68-4}{\text{DAY}}\right)^{\circ}}\right)}{24\frac{\text{HR}}{\text{DAY}}} = \frac{\left(\frac{12 \text{ HPS}}{\text{A290}}\right) \left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{HR}}\right)}{\left(0.6\right)} \left(\frac{24-12}{n \left(\frac{7128 \times 10^{6}}{\text{DAY}}\right)}{24}\right)}{\left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{DAY}}\right)} = \frac{\left(\frac{24-12}{n \left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{DAY}}\right)}{24}\right)}{24} = \frac{\left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{DAY}}\right)}{24} = \frac{\left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{DAY}}\right)}{24} = \frac{\left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{DAY}}\right)}{\left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{DAY}}\right)} = \frac{10.6 \times 10^{6} \frac{\text{B}}{\text{DAY}}}{10.65} = \frac{10.6 \times 10^{6} \frac{\text{$$

PROPOSED HEATING ENERGY USAGE = 6162×106 BTM (NATURAL GAS)

AUXILIARY ENERGY SAVINGS = BASELINE AUX. ENERGY - PROPOSED ANX. ENERGY

AUX. ENERGY SAVINGS = 205×10 Bry/ge (ELEC) TOTAL ENERGY SAVINGS = 1171×10 Bru/YE

Tille ECO-10 - EMCS ADDITIONS

PROPOSED ENELGY USAGE

Project FT. CAMPBELL ENELGY SAVINGS

Checked By

GBL

9-16-93

Sheet No.

Job No.

E-1

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 7243

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

4-280

PROJECT ID: 724310

ABLE OF CONTENTS

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

CONTENTS PAGE 1

SUMMARY REPORTS	SUMMARY	PAGE
PROJECT NOTES. BID ITEM AND FACILITY SUMMARY. PROJECT CWE SUMMARY. CONTRACTOR DIRECT SUMMARY. CONTRACTOR INDIRECT SUMMARY. CSI DIVISION SUMMARY. SYSTEMS SUMMARY. EQUIPMENT SUMMARY. LABOR SUMMARY.		2567
DETAILED ESTIMATE  1. BUILDING TO THE 5 FOOT LINE	DETAIL	
AA ELECTRICAL		1

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

DETAIL PAGE 1

TIME 12:21:59

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY	UOH CREW MANHR	LABOR	EQUIPHENT	MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STE							
CD=4 EL 1121 1 IN CONDUIT W/COU WC=1100	PLING *** UNIT ( 600.00	COSTS: *** 0.08 LF EELEF 47	2.34 1,405	0.01	0.90 540	0.05 27	3.30 1,979
16120 1200 SINGLE STRANDED CONT	DUCTOR		•				
CD=4 EL 1211 NO. 12 AWG - TYPE WC=1100 INSULATION	THHN *** UNIT ( 0.30	COSTS: *** 5.78 HLF EELEF 2	174.30 52	0.78 0	52.98 16	2.65 1	230.71 69
16130 1200 NEMA 1 SCREW COVER E	ENCL			•			
CD=4 EL 1202 6X6X4 NEMA 1 WC=1100	*** UNIT ( 10.00	COSTS: *** 0.67 EA EELEB 7	22.01 220	0.09	4.87 49	0.24	27.21 272
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE	N						
CD=3 EL 2001 TWISTED PAIR WIRES WC=1100	\$ 18 AWG *** UNIT (	COSTS: *** 8.28 MLF EELEF 10	249.82 300	1.12	820.00 984	41.00 49	1111.94 1,334
16920 3000 CONTROL SWITCH					٠		
CD=3 EL 3001 START/STOP WC=1100	*** UNIT ( 11.00	COSTS: *** 5.00 EA EELEB 55	165.05 1,816	0.65 7	60.00 660	3.00 33	228.70 2,516
16920 4000 RELAY							
CD=3 EL 4001 STATUS RELAY WC=1100		COSTS: *** 1.25 EA EELEB 14	41.26 454		20.00 220		62.42 687
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT ( 10.00	COSTS: *** 1.25 EA EELEB 13	41.26 413	0.16	85.00 850	4.25	, 130.67 1,307
16961 3000 TEMPERATURE							
CD=3 EL 3001 SPACE TEMPERATURE WC=1100	<del></del>	COSTS: *** 2.50 EA EELEB 20	82.53 660	0.32	40.00 320		124.85 999
CD=3 EL 3002 DUCT TEMPERATURE S WC=1100		COSTS: *** 2.00 EA EESMA 36	62.79 1,130	1.40 25	45.00 810		111.44 2,006
CD=3 EL 3004 PIPE TEMPERATURE S WC=1100	<del></del>	COSTS: *** 4.25 EA EPIPA 9	133.71 267	0.32	60.00 120		197.03 394

4-282

CURRENCY in DOLLARS PROJECT ID: 724310

ETAILED ESTINATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 12:21:59

DETAIL PAGE 2

	THE 5 FOOT LINE / AA.						BASE BID
DIVISION 16 ELECTRICAL							
16961 4000 PRESSURE							
CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 8.00 EA EESMA	2.00 16	62.79 502	1.40 11	35.00 280	1.75 14	100.94 808
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 2.00 EA EPIPA	8.50 17	267.42 535	0.65	85.00 170	4.25 9	357.31 715
16962 PRESSURE SWITCHES							
CD=3 EL 1001 PRESSURE SWITCH WC=1100	*** UNIT COSTS: *** 8.00 EA EESMA	2.00 16	62.79 502	1.40	80.00 640	4.00 32	148.19 1,186
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50 3	82.53 83	0.32	190.00 190	9.50 10	282.35 282
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA MSPFB	5.00 5	137.72 138	2.02	0.00		139.73 140
16991 5000 MUX							ŧ
CD=3 EL 5001 MUX WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	5.00 5	165.05 165	0.65	4720.00 4,720	236.00 236	5121.70 5,122
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS WC=1100	*** UNIT COSTS: *** 68.00 EA EELEB	1.25 85	41.26 2,806	0.16 11	30.00 2,040	1.50 102	72.92 4,959
TOTAL DIVISION 16 ELECTRICAL		357	11,448	85	12,609	630	, 24,772
TOTAL FACILITY AA. ELECTRICAL				85			
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		357	11,448	85	12,609	630	24,772
TOTAL BASE BID		357	11,448	85	12,609	630	24,772
TOTAL ADDITIVE		0	0	0	(	) 0	0
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		357	11,448	85	12,609	630	24,772

* * * END OF DETAIL REPORT * * * *
CURRENCY in DOLLARS

4-283 PROJECT ID: 724310

CREW ID: ORL290

PROJECT NOTES

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

TIME 12:21:59

SUNNARY PAGE 1

PROJECT NOTES

ECO-10: ENCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

PROJECT ID: 724310

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

TIME 12:21:59

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 7243

SUMMARY PAGE

BIL	ITEM 1	BUILDING	TO THE 5 F	OOT LI	NE							BASE BID
ID	FACILITY			CO	ST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL	L	1.00	EA	24,772	10.0% 2,477	0.0%	7.5% 2,044	2.5% 732	0.0%	30,025	30025.49
BID	ITEM TOTAL		1.00	EA -	24,772	2,477	0	2,044	732	0	30,025	30025.49

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

TIME 12:21:59

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 7243

SUMMARY PAGE 3

BID ITEM 2 SITEWORK								BASE BID
ID FACILITY	COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND OT	HR FCTR	TOTAL COST	UNIT COST
TOTAL BASE BID	24,772	2,477	0	2,044	732	0	30,025	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
	24 770	0 477		2 044	722		20.025	
TOTAL INCL ADD	24,772	2,477	0	2,044	732	0	30,025	

PROJECT CWE SUMMARY

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

TIME 12:21:59

SUMMARY PAGE 4

 ID BID ITEM	MOD ALLLAND	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	30,026		30,026	30025.50
TOTAL CURRENT CONTRACT COST		30,026	0	30,026	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST	•	30,026	0	30,026	
Government-Furnished Property		0		0	
SUBTOTAL	•	30,026	0	30,026	
Contingencies	10.0%	3,003	0	3,003	
SUBTOTAL	•	33,028	0	33,028	
SIOH (S&A)	5.0%	1,651	0	1,651	
CURRENT WORKING ESTIMATE		34,679	0	34,679	
					ı
Estimated Construction Time	365 Days				

4-287

CURRENCY in DOLLARS PROJECT ID: 724310

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

TIME 12:21:59
SUMMARY PAGE 5

CONTRACTOR DIRECT SUMMARY

ID	CONTRACTOR	PH	QUANTITY U	OM MANHRS			MAT W/TX			* SUBCON W/OH&P		SUBTOTAL
λλ	GENERAL/PRIME		1.00 E	λ 357	11,448	85	13,239	24,772	100.0%		0	24,772
	TOTAL DIRECT			357	11,448	85	13,239	24,772	100.0%			

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

TIME 12:21:59

SUMMARY PAGE

CONTRACTOR INDIRECT SUMMARY

ECO-10: BUILDING 7243

ID	CONTRACTOR	PM	SUBTOTAL	•	,	_		PROFIT AMOUNT				******* TOT.		
λλ	GENERAL/PRIME		24,772	2	2,477	10.0%	0.0	 2,044	7.5%	2.5%	0.08	30,02	100.0	30025.48
	TOTAL OVERHEAD & PROFIT			2	2,477	10.0%		2,044	7.5%					

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

TIME 12:21:59

SUMMARY PAGE 7

CSI	DIVISION	SUMMARY

-	ID CSI DIVISION	MANHOURS	LABOR	EQUIPMENT	MATERIAL	SALES TAX	* TOTAL * - DIRECT	
-	16 ELECTRICAL	357	11,448	85	12,609	630	24,772	
	TOTAL DIRECT	357	11,448	85	12,609	630	24,772	

SYSTEMS SUMMARY

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

TIME 12:21:59

SUMMARY PAGE 8

ID SYSTEM	MANHOURS	LABOR		MATERIAL	SALES TAX	TOTAL * DIRECT
11 INTERIOR ELECTRICAL	357	11,448	85	12,609	630	24,772
TOTAL DIRECT	357	11,448	85	12,609	630	24,772

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

TIME 12:21:59

SUMMARY PAGE

EQUIPHENT SUMMARY

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP			UPB RATE		**** COST
ENI20 SHALL TOOLS			1.40	1.40	61	85
TOTAL PROJECT EQUIPMENT HOURS					61	85

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7243

TIME 12:21:59

SUMMARY PAGE 10

LABOR SUMMARY

	CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	HRLY -	UPB RATE	**** TOTAL	****	
*****	LSHMT	ELECTRICIANS SHEET METAL WORKERS STEAM/PIPEFITTERS	20.50 19.90 20.95	0.0% 0.0% 0.0%	24.0% 24.0% 24.0%	5.20	0.00	32.91 29.88 29.83	25.79 25.06 26.12		9,936 1,016 496	
	TOTAL	PROJECT MANHOURS								357 1	1,447	

* * * END OF SUMMARY REPORT * * *

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

#### SUMMARY SHEET

BLOG # 7262

NATURAL GAS SAVINGS =  $\frac{817}{YR}$  *  $\frac{4.00}{MBTU}$  =  $\frac{$3268}{7R}$  ELECTRICAL SAVINGS =  $\frac{408}{YR}$  *  $\frac{MBTU}{YR}$  *  $\frac{$4.00}{MBTU}$  =  $\frac{$2525}{MBTU}$ 

TOTAL SAVINGS = \$ 57.93 /YR

### HARDWARE REQUIRED:

Q	UANTIT	r <u>Y</u>	ITEM			
			FID/MUX			
	161821		MUX ONLY			
	6		SPACE TEMP S	ensor		
	18		DUCT TEMP !	SENSOR		
	2		WATER TEMP	SENSOL		
	1		D.A. TEMP	SENSOR		
			HUMIDITY SE	-NSOR		
	8861-1-67-1		STAKT /STOP			
	8		STATUS PUT			
	6		DIFF. PRESSUA			
	1		DIFF. TRESSU	ife (PIPE	(1)	
	1		FLOW SWITC	L II		
	<u>6</u>		trees sure si	w ITCH		
	7		CURRENT RI	nay		
			DATE TERMIN	IRL CABIN	ET	
			INSTRUMENT			
	1600	FT.	- 2 WIRE, TW	ISTED PAIR	, #18 CONTROL WIR	LE
	800	FT.	- RIGID CON	Duit - 1	" D.	
	8		JUNCTION	BoxES		
	64		PROGRAMMIN		75	
	300		Power win	ING	Checked By	Da
	a,		2-1016	1	OHERDER D)	00

		1000 612 11/12/10	<i>T</i>	
Title	Eco-10 - ENCS	ADDITIONS	Checked By	Date
	-		G5L	9-17-93
	SUMMERY	54ttT	Prepared By	1-11-17
Project	ET CAMPBELL	ENETLEY SAVINGS	GEL	Sheet No.
			Job No.	6-1

### BASELINE ENERGY USAGE

7262

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE: 9 = BUILDING DESIGN HEAT LOAD - BTU/HR 7 = HEATING SYSTEM EFFICIENCY  $\Delta T = (T_{INDOORS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) F$ 

CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY = 
$$\left(24\frac{HR}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(4 \times 10^{6} \frac{BT4}{HR}\right)$$
 (0.65) (68-4)°F

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 Bry DIVERSITY FACTOR * HEATING

ENERGY = 6010 EA.+ 2545 * 1.0 * 4369 = 667 × 10 BTU (ELEC)

ENERGY = PUMP HP * 2545 BTU * DIVERSITY FACTOR * HTG HRS ENERGY = 7.5 * 2545 * 1.0 * 4369 = 83×10 BTH (ELEC)

TOTAL BASELINE HEATING ENERGY = 6690 ×10 BT4

Title	ECO-10 - EMCS ADDITIONS  BASELINE ENERGY USAGE	Checked By  GBC  Prepared By	Date '	4-295
Project	FT. CAMPBELL ENERGY SAVINGS	GBL	Sheet No.	4-295
-	non-r-miller Survey	Job No.	1 R-1	

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

SYSTEMS ENGINEER	HING AND I	VIANA(	sement CC	)HPUYAT	ION 				,
BASELINE	enge G	y us	AGE					BLOG #	
COOLING.	- BIN r	NETH	<u> </u>	1 Ath	1 @ 65,	000 B	ry r	7262	
BIN	HRSKR	<b>!</b>	% FULL LOA		u/HR	н	BTU YR		
95/99	3	*	1.0	* 6	5,000	=	195,0	00	
90/94	17	*	1.0	* 6	5,000		1,105,		
85/89	75	*	0.85	* 6	5,000		4 144		
30/84	185	*	0.70	* 6	5,000		8,417,		
75/79	407	*	0.55		5,000		14,550		
70/74	714	×	0.40	* 6	5,000	=	18,564	000	
65/69	673	ኊ	0.25		5,000		10,930	,	
• •	= 2074			_	TOTAL Bry		57,9 x		
TOTAL	ELECTRI	ial E	weigy in	JPUT: CO				(AUG.)	
					=	29:	×10 BTu/	YR (ELEC)	
NOTE : HKS/								1CH	,
BIN I	mr The	e Ho	urs mui	n s p	P.M. T3	9 F.	<i>n</i> .		
AUXILIANTES!	•		FAN@ 10	,					
	FANS :	15	HP * 29	545 BT	1 + 1.0	± 20	74 = 7	9×10 BTY	ELEC
FOR THE HOL	ies Ficon	^ 5 F	P.N. TO	8 A.M:				1,5	
	ויטד	al F	onseline	CUOLIN	e energi	y =	In 8 x/n	6 BIY (ELLC)	
THIS IS ALS	•	•		G EVER	.GY SAVIN	SS	100 40	YK (ELLC)	)
For Impleme	NTING T	HIS	tco						
Title Eco-10 -	emcs a	1001T	70NS		. Chec	ked By	BL	Date	
BASELIN	IE COOLIN	vG.	energy .		Prepa	ared By		7-21-93	4-2
Project FORT	CAMP312	r ev	ergy sa	vings	Job N		65 L	Sheet No.	

#### PROPOSED ENERGY USAGE

BLOGH 7262

HEATING: DEGREE DAY METHOD

SEE SHOOT (B-1) FOR DEGREE DAY FORMULA EXPLANATION. BY LOWERING SPACE HEATING SETPOINTS DURING UND COUPLED HOURS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM (ENCS), THE FULLOWING SAVINGS ARE ACHIEVED:

EXISTING DESIGN 
$$\Delta T = (66-4) = 4°F$$
  
PROPOSED SETERCE  $\Delta T = (50-4) = °F$ 

SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * PLOPOSED AT  $= \frac{(4 \times 10^{6}) \frac{BTU}{HR}}{(68-4)^{6}F} * (50-4)^{6}F$ 

SETBACK BUILDING HEAT LOAD = 2.9 × 10 BTU

NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION:

$$\frac{PEOFOSED}{HEATING} = \frac{\left(\frac{SETBACK HFS}{DAY}\right) \left(\frac{4290°F-DAY}{F-DAY}\right) \left(\frac{SETBACK}{BUNDING}\right)}{n \left(\frac{68-4}{F}\right)°F} \left(\frac{24-\frac{SETBACK}{BUNDING}}{DAY}\right) \left(\frac{24-\frac{SETBACK}{BUNDING}}{DAY}\right) \left(\frac{BASELINE}{ENERGY}\right)}{24\frac{HR}{DAY}}$$

$$= \frac{\left(\frac{12 \text{ HPS}}{4290}\right) \left(\frac{290°F-DAY}{F}\right) \left(\frac{1290°F}{F}\right)}{\left(\frac{24-12}{F}\right) \left(\frac{5940 \times 10^{6}}{F}\right)}$$

$$= \frac{\left(\frac{12 \text{ HPS}}{5940}\right) \left(\frac{24-12}{F}\right) \left(\frac{5940 \times 10^{6}}{F}\right)}{\left(\frac{24-12}{F}\right) \left(\frac{5940 \times 10^{6}}{F}\right)}$$

PROPOSED HEATING EVERGY USAGE = 5123×10 ETY (NATURAL GAS)

AUXILIARY ENERGY SAVINGS = EASELINE AUX. ENERGY - PROPOSED ANX. ENERGY AUX. BUZ. = 750 × 10 Bru (From SHOUT F-1) - 67.5 HP + 2545 * 0.6 (DIV. FACTIR) + 4369 ]

AUX. ENERGY SAVINGS = 300 × 10 BTY/E (ELECTOTAL ENGLEY SAVINGS = 1117 × 106 ETU/YE Checked By GAL Title ECO-10 - EMCS ADDITIONS Prepared By GBL 9-16-93 PROPOSED ENERGY USAGE Sheet No. Project FT. CAMPBELL ENELGY SAVINGS

Job No.

RITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 7262

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

4-298

PROJECT ID: 726210

TABLE OF CONTENTS

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

CONTENTS PAGE 1

SUMMARY REPORTS	SUMMARY PAGE
PROJECT NOTES. BID ITEM AND FACILITY SUMMARY. PROJECT CWE SUMMARY. CONTRACTOR DIRECT SUMMARY. CONTRACTOR INDIRECT SUMMARY. CSI DIVISION SUMMARY. SYSTEMS SUMMARY. EQUIPMENT SUMMARY. LABOR SUMMARY.	
DETAILED ESTIMATE	DETAIL PAGE
1. BUILDING TO THE 5 FOOT LINE AA. ELECTRICAL	1

* * * END TABLE OF CONTENTS * * *

Wed 22 Sep 1993

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 17:32:35

DETAIL PAGE 1

BASE BID

16111 1100 RIG CD=4 EL 1121 I WC=1100	ERIALS AND METHODS GID GALVANIZED STEEL CONDUIT L IN CONDUIT W/COUPLING	*** INT# (^)\$T\$* ***						
WC=1100	I IN CONDUIT W/COUPLING	*** INITE COSTS* ***						•
4 44 94 4 999 AT		800.00 LF EELEF	0.08 62	2.34 1,874	0.01	0.90 720	0.05 36	3.30 2,638
16120 1200 SI	NGLE STRANDED CONDUCTOR							
	NO. 12 AWG - TYPE THEN INSULATION	*** UNIT COSTS: *** 0.30 MLF EELEF	5.78 2	174.30 52	0.78 0	52.98 16	2.65	230.71 69
16130 1200 NE	MA 1 SCREW COVER ENCL							
CD=4 EL 1202 ( WC=1100	6X6X4 NEMA 1	*** UNIT COSTS: *** 8.00 EA EELEB	0.67	22.01 176	0.09	4.87 39	0.24	27.21 218
	AND INSTRUMENTATION CONTROL CABLE							
CD=3 EL 2001 C	TWISTED PAIR WIRES 18 AWG	*** UNIT COSTS: *** 1.60 MLF EELEF	8.28	249.82 400	1.12	820.00 1,312	41.00 66	1111.94
16920 3000	CONTROL SWITCH							
CD=3 EL 3001 S WC=1100	START/STOP	*** UNIT COSTS: *** 8.00 EA EELEE				60.00 480	3.00 24	228.70 1,830
16920 4000	RELAY							
CD=3 EL 4001 S WC=1100	STATUS RELAY	*** UNIT COSTS: *** 8.00 EA EELEE		41.26 330	0.16	20.00 160	8	62.42 499
CD=3 EL 4002 WC=1100	CURRENT RELAY	*** UNIT COSTS: *** 7.00 EA EELEE	1.25	41.26 289	0.16	85.00 595	<b>4.25</b> 30	130.67
16961 3000	TEMPERATURE							
CD=3 EL 3001 (WC=1100	SPACE TEMPERATURE SENSOR	*** UNIT COSTS: *** 6.00 EA EELEE		82.53 495	0.32			124.85 749
CD=3 EL 3002 1 WC=1100	DUCT TEMPERATURE SENSOR	*** UNIT COSTS: *** 18.00 EA EESMA		62.79 1,130				2,000
CD=3 EL 3003 WC=1100	OUTSIDE AIR TEMPERATURE SENSOR	*** UNIT COSTS: *** 1.00 EA EELER		82.53 83	0.32		_	130.10
CD=3 EL 3004 WC=1100	PIPE TEMPERATURE SENSOR	*** UNIT COSTS: *** 2.00 EA EPIPA		133.71 267				197.03 39

4-300

PROJECT ID: 726210

CREW ID: ORL290 CURRENCY in DOLLARS

Wed 22 Sep 1993

DETAILED ESTIMATE

CREW ID: ORL290

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 17:32:35

DETAIL PAGE 2

PROJECT ID: 726210

4-301

BASE BID

							DY2F DID
DIVISION 16 ELECTRICAL	QUANTITY UON CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16961 4000 PRESSURE							
CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE SENSOR	*** UNIT COSTS: *** 6.00 EA EESMA	2.00	62.79 377	1.40	35.00 210	1.75 11	100.94 606
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE WC=1100 SENSOR	*** UNIT COSTS: *** 1.00 EA EPIPA					4.25 4	357.31 357
16962 PRESSURE SWITCHES							
CD=3 EL 1001 PRESSURE SWITCH WC=1100	*** UNIT COSTS: *** 6.00 EA EESMA						
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB			0.32 0	190.00 190	9.50 10	282.35 282
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA MSPFB	5.00 5	137.72 138	2.02	0.00	0.00	139.73 140
16991 5000 MUX							•
CD=3 EL 5001 MUX WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB						
16991 6000 CABINET							
CD=3 EL 6001 DATA TERMINAL CABINET WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	350.00 350	17.50 18	450.35 450
CD=3 EL 6002 INSTRUMENT SHELTER WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	125.00 125	6.25	214.10 214
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS WC=1100	*** UNIT COSTS: *** 64.00 EA EELEB	1.25 80	41.26 2,641	0.16 10	30.00 1,920	1.50 96	72.92 4,667
TOTAL DIVISION 16 ELECTRICAL		333	10,628	78	12,617	631	23,954
TOTAL FACILITY AA. ELECTRICAL		333	10,628	78	12,617	631	23,954
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE				78			
TOTAL BASE BID				78			23,954
						DDG TROM	TD. 726210

CURRENCY in DOLLARS

Wed 22 Sep 1993

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

DETAIL PAGE 3

TIME 17:32:35

DETAILED ESTIMATE

2. SITEWORK /

	Di Dilimolat y						BASE BID
DIVISION 16 ELECTRICAL	QUANTITY UON CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
TOTAL ADDITIVE		0	0	0	0	0	0
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		333	10,628	78	12,617	631	23,954

* * * END OF DETAIL REPORT * * *

### U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

TIME 17:32:35

SUMMARY PAGE 1

PROJECT NOTES

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING ENCS SYSTEM TO

SELECTED FACILITIES AT FORT CAMPBELL.

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 7262

TIME 17:32:35 SUMMARY PAGE

BID	ITEM 1	BUILDING	TO THE 5 FO	OOT LINE							BASE BID
ID	FACILITY			COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL	L	1.00	EA 23,954	10.0% 2,395	0.0%	7.5% 1,976	2.5% 708	0.0%	29,034	29034.15
BID	ITEM TOTAL	Ĺ	1.00	EA 23,954	2,395	0	1,976	708	0	29,034	29034.15

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 7262

TIME 17:32:35

	BASE BID
TOTAL COST UI	NIT COST
29,034	
0	
29,034	
	29,034

PROJECT CWE SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

TIME 17:32:35

SUMMARY PAGE

 ID BID ITEM	MOU YTITMAUQ	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	29,034		29,034	29034.10
TOTAL CURRENT CONTRACT COST		29,034	0	29,034	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		29,034	0	29,034	
Government-Furnished Property		0		0	
SUBTOTAL	•	29,034	0	29,034	
Contingencies	10.0%	2,903	0	2,903	
SUBTOTAL	•	31,938	0	31,938	
SIOH (S&A)	5.0%	1,597	0	1,597	
CURRENT WORKING ESTIMATE	•	33,534	0	33,534	

4-306

CONTRACTOR DIRECT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

TIME 17:32:35

SUMMARY PAGE 5

ID	CONTRACTOR	PM	QUANTITY	MOD	MANERS		EQUIPHENT					SUBCON W/OH&P		SUBTOTAL
λλ	GENERAL/PRIME		1.00	EA	333	10,628	78	13,248	23,954	100.0	;		0	23,954
	TOTAL DIRECT				333	10,628	78	13,248	 23,954	100.0	í			

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

TIME 17:32:35

CONTRACTOR INDIRECT SUMMARY

ID	CONTRACTOR	PM	SUBTOTAL	OVERHEA AMOUNT									ACT ****** UNIT COST
λλ	GENERAL/PRIME		23,954	 2,395	10.0%	0.0	 1,976	7.5%	2.5%	0.0%	29,034	100.0%	29034.13
	TOTAL OVERHEAD & PROFIT			 2,395	10.0%		1,976	7.5%					

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

TIME 17:32:35

CSI DIVISION SUMMARY ECO-10: BUILDING 7262 SUMMARY PAGE

						***:	* TOTAL * -	
	ID CSI DIVISION	MANHOURS	LABOR	EQUIPMENT			DIRECT	
•								
	16 ELECTRICAL	333	10,628	78	12,617	631	23,954	
	TOTAL DIRECT	333	10,628	78	12,617	631	23,954	

YSTEMS SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

TIME 17:32:35

SUMMARY PAGE 8

						**** TOTAL *
ID SYSTEM	HANHOURS	LABOR	EQUIPMENT			
11 INTERIOR ELECTRICAL	333	10,628	78	12,617	631	23,954
TOTAL DIRECT	333	10,628	78	12,617	631	23,954

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

TIME 17:32:35

SUMMARY PAGE

EQUIPMENT SUMMARY

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP			UPB RATE		L **** COST
EMI20 SMALL TOOLS			1.40	1.40	56	78
TOTAL PROJECT EQUIPMENT HOURS					56	78

LABOR SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7262

TIME 17:32:35

SUMMARY PAGE 10

 CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	HRLY -	UPB RATE		****COST
 LELEC LSHMT LSPFI	ELECTRICIANS SHEET METAL WORKERS STEAM/PIPEFITTERS	20.50 19.90 20.95	0.0% 0.0% 0.0%	24.0% 24.0% 24.0%	5.20	0.00	32.91 29.88 29.83	25.79 25.06 26.12	290 30 13	9,354 896 376
TOTAL	PROJECT MANHOURS								333 1	0,627

* * * END OF SUMMARY REPORT * * *

### SUMMARY SHEET

NATURAL GAS SAVINGS = 
$$\frac{966 \text{ MBTU}}{\text{YR}} * \frac{4.00}{\text{MBTU}} = \frac{3864}{3864}$$
ELECTRICAL SAVINGS =  $\frac{402 \text{ MBTU}}{\text{YR}} * \frac{46.19}{\text{MBTU}} = \frac{3864}{2488}$ 

TOTAL SAVINGS = \$ 6352 /YR

### HARDWARE REQUIRED:

QUANTITY	ITEM
-	FID/MUX
1	MUX ONLY
8	SPACE TEMP SENSOR
18	DUCT TEMP SENSOR
	WATER TEMP SENSOL
	O.A. TEMP SENSOR
11	HUMIDITY SENSOR
	STAKT /STOP
<u>!</u>	STATUS RELAY
8	DIFF. PRESSURE (DU ST)
=======================================	DIFF. PRESSURE (PIFE)
11 8 2 1 8	FLOW SWITCH
	PRESSURE SWITCH
10	CURRENT RELAY
1	DATE TERMINAL CABINET
1	INSTRUMENT ENCLOSURE
A	- 2 WIRE, TWISTED PAIR, #18 CONTROL WIRE
·	- RIGID CONDUIT - I"D.
10	JUNCTION BOXE'S
300 F	POWER WIRING FOINTS

Title	ECO-10 - EMCS	ADDITIONS	Checked By GSL	Date '
	SUMMERY	SHEET	Prepared By	9-17-93
Project	FT. CAMPBELL	ENERGY SAVINGS	G.BL	Sheet No.
	ND 300 m.11		Job No.	1 = -1

4-313

### BASELINE ENERGY USAGE

7264

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE:

9 = BUILDING DESIGN HEAT LOAD - BTU/HR

7 = HEATING SYSTEM EFFICIENCY

 $\Delta T = (T_{INDOORS} - T_{OUTSIDE})_{DESIGN} = (68 - 4) F$ 

CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY = 
$$\left(24\frac{\mu R}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(4.8 \times 10^{6} \frac{BT4}{\mu R}\right)$$
 (0.65) (68-4)°F

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 BTY DIVERSITY FACTOR * HESTING

ENERGY = 28 + 2545 * 1.0 * 4369 = 311 ×10 BTU/ELEC)

ENERGY = PUMP HP * 2545 BTU * DIVERSITY FACTOR * HIGHES

ENERGY = _5 * 2545 * 1.0 * 4369 = 5(x/0 BTY) (ELEC)

TOTAL BASELINE HEATING ENERGY = 7495×100 BTU

Title	ECO-10 - EMCS ADDITIONS BASELINE ENERGY USAGE	Checked By  GBL  Preparec By	Date 9-16-93	4-314
Project	FT. CAMPETIL ENTRGY SAVINGS	JOB NO.	Sheet No.	

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

BIN HRS/YR 75 FMLL LOAD FML/HR YR  95/99 3 * 1.0 * 240,000 = 720,000  90/94 17 * 1.0 * 240,000 = 15,300,000  85/89 75 * 0.85 * 240,000 = 31,030,000  80/84 185 * 0.70 * 240,000 = 31,030,000  75/79 407 * 0.55 * 240,000 = 53,724,000  70/74 714 * 0.40 * 240,000 = 68,544,000  65/69 673 * 0.25 * 240,000 = 40,380,000  TOTAL ELECTRICAL EVERGY INPUT CODLING = 2149,000  TOTAL ELECTRICAL EVERGY INPUT CODLING = 2149,000  TOTAL ELECTRICAL EVERGY INPUT CODLING = 2149,000  FANS: 28 HP ± 2545 5TM + 1.0 + 2074 = 148 × 10 FMM / YR  FOR THE HOURS FROM 5 P.M. TO 3 A.M.  TOTAL BHSELINE CUOLING EVERGY SAVINGS  FOR THE HOURS FROM 5 P.M. TO 3 A.M.  TOTAL BHSELINE CUOLING EVERGY SAVINGS  FOR IMPREMENTING THIS ECO											1
BIN HRS/YR 7. FULL LOAD FULL LOAD STM/HR YR  95/99 3 * 1.0 * 240,000 = 720,000  90/94 17 * 1.0 * 240,000 = 4080,000  25/89 75 * 0.85 * 240,000 = 15,300,000  30/84 185 * 0.70 * 240,000 = 31,080,000  75/79 407 * 0.55 * 240,000 = 53,724,000  70/74 714 * 0.40 * 240,000 = 68,544,000  65/69 673 * 0.25 * 240,000 = 40,380,000  TOTAL ELECTRICAL EVERGY INPUT COULING = 214,828,000  TOTAL ELECTRICAL EVERGY INPUT COULING = 214,828,000  NOTE: HRS/YE INDICATE THE TOTAL FINAUAL OCCURENCES IN EACH BIN FOR THE HOURS FROM 5 P.M. TO 8 A.M.  PUXILUARILS!  FOR THE HOURS FROM 5 P.M. TO 8 A.M.  TOTAL BASELINE CUOLING ENERGY SAVINGS  THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS	BASTLINE	ENEK G	Y u	SAGE						1	
95/99 3 * 1.0 * 240,000 = 720,000  90/94 17 * 1.0 * 240,000 = 4080,000  \$5/89 75 * 0.85 * 240,000 = 15,300,000  \$0/84 185 * 0.70 * 240,000 = 31,080,000  75/79 407 * 0.55 * 240,000 = 53,724,000  70/74 714 * 0.40 * 240,000 = 68,544,000  (5/69 673 * 0.25 * 240,000 = 40,380,000  TOTAL ELECTRICAL EVERGY INPUT COULING = 213,828,000  TOTAL ELECTRICAL EVERGY INPUT COULING = 21440	COOLING	- BIN N	1 E17	<del>bD</del>						1267	
95/99 3 * 1.0 * 240,000 = 720,000  90/94 17 * 1.0 * 240,000 = 4,080,000  85/89 75 * 0.85 * 240,000 = 15,300,000  80/84 185 * 0.70 * 240,000 = 31,030,000  75/79 407 * 0.55 * 240,000 = 53,724,000  70/74 714 * 0.40 * 240,000 = 68,544,000  65/69 673 * 0.25 * 240,000 = 40,380,000  TOTAL ELECTRICAL EVELIGY INPUT COOLING = 21440	BIN	HRS/YR		% FULL LOAG	2	FULL LOAD BTU/HTC	o —		BTU YR		
90/94 17 * 1.0 * 240,000 = 4080,000  \$5/89 75 * 0.85 * 240,000 = 15,300,000  \$0/84 185 * 0.70 * 240,000 = 31,030,000  \$15/79 407 * 0.55 * 240,000 = 53,724,000  \$10/74 714 * 0.40 * 240,000 = 68,544,000  \$65/69 673 * 0.25 * 240,000 = 40,380,000  TOTAL HUSYL = 2074  TOTAL BY = 213,828,000  TOTAL ELECTRICAL EVERGY INPUT COULING = 21440 \(\frac{6}{1}\text{TV}\) \dip 2 (c.o.p.)  = \frac{107\text{10}}{107\text{TV}} \frac{6}{107} \dip 2 (c.o.p.)  = \frac{107\text{10}}{107\text{TV}} \frac{6}{107} \dip 2 (c.o.p.)  = \frac{107\text{10}}{107\text{TV}} \frac{6}{107} \dip 6 \frac{10}{107} \dip 70 (c.o.p.)  = \frac{107\text{10}}{107\text{TV}} \frac{6}{107} \dip 6 \frac{10}{107} \dip 70 (c.o.p.)  = \frac{107\text{10}}{107\text{TV}} \frac{6}{107} \dip 6 \frac{10}{107} \dip 70 (c.o.p.)  = \frac{107\text{10}}{107\text{TV}} \frac{6}{107} \dip 70 (c.o.p.)	95/99	3	*	1.0	*	240,00	0	Ξ	720,00	00	
\$5/89 75 * 0.85 * 240,000 = 15,300,000  80/84 185 * 0.70 * 240,000 = 31,030,000  75/79 407 * 0.55 * 240,000 = 53,724,000  70/74 714 * 0.40 * 240,000 = 68,544,000  65/69 673 * 0.25 * 240,000 = 40,380,000  TOTAL ELECTRICAL EVERGY INFUT COOLING = 214,000 / Yr = 213,828,000  TOTAL ELECTRICAL EVERGY INFUT COOLING = 214,000 / Yr = 2 (AVG.)  NOTE: HKS/YR INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH  BIN FOR THE HOURS FROM 5 P.M. 73 B A.M  AUXILIARILS!  FANS: 28 HP = 2545 574 + 1.0 + 2074 = 148 × 10 574 (ELCC)  FOR THE HOURS FROM 5 F.M. TO 8 A.M.:  TOTAL BASELINE COOLING EVERGY SAVINGS	90/94	17	*	1,0	*	240,00	0	=	4,080,0	00	
80/84 185 \$ 0.70 \$ 240,000 = 31,080,000  75/79 407 \$ 0.55 \$ 240,000 = 53,724,000  70/74 714 \$ 0.40 \$ 240,000 = 68,544,000  65/69 673 \$ 0.25 \$ 240,000 = 40,380,000  TOTAL ELECTRICAL EVERGY INPUT COULING = 213,828,000  TOTAL ELECTRICAL EVERGY INPUT COULING = 21440 57 ÷ 2 (2.0,P.)  = 107×10 671/4/2 (ELEC)  NOTE ! HKS/YK INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH  BIN FOR THE HOVES FROM 5 P.M. TO B A.M.  AUXILIARILS!  FANS ! 28 HP = 2545 574/HP + 1.0 + 2074 = 148×10 674/4/2 (ELEC)  FOR THE HOURS FROM 5 P.M. TO B A.M.:  TOTAL EMESLINE CUOLING EMELLING = 255×10 6 674/4/2 (ELEC)	95/89	75	*	0.85	*	240,00	0	=	15,300,0	100	
70/74 714 \$ 0.40 \$ 240,000 = 68,544,000  65/69 673 \$ 0.25 \$ 240,000 = 40,380,000  TOTAL FIVE = 2074  TOTAL FIVE = 213,828,000  TOTAL ELECTRICAL EVERGY INPUT COULING = 21440 FIVE : 2 (AVG.)  NOTE! HRS/YE INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH  BIN FOR THE HOURS FROM 5 P.M. TO 8 A.M.  AUXILIARIS!  FANS: 28 HP = 2545 FTV + 1.0 + 2074 = 148 × 10 FTV (ELEC)  FOR THE HOURS FROM 5 P.M. TO 8 A.M.:  TOTAL BASELINE COOLING ENERGY SAVINGS	30/84	185	*	0.70	*	240,00	0				
TOTAL ELECTRICAL EVERGY INPUT CONLING = $\frac{40,380,000}{\text{TOTAL BTY}} = \frac{213,828,000}{\text{TOTAL ELECTRICAL EVERGY INPUT CONLING}} = \frac{214,0000}{\text{Yr}} \div 2 \left( \frac{\text{AVG.}}{\text{C.o.p.}} \right)$ $= \frac{107 \times 10^{6} \text{ Bty}}{\text{Yr}} \left( \frac{\text{ELEC}}{\text{C.o.p.}} \right)$ NOTE: HKS/YR INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH BIN FOR THE HOURS From 5 P.M. TO 8 A.M.  PUXILIARILS!  FANS: $\frac{28}{\text{HP}} + \frac{2545}{\text{HPHr}} + 1.0 + 2074 = \frac{148 \times 10^{6}}{\text{Yr}} \left( \frac{\text{ELEC}}{\text{Yr}} \right)$ FOR THE HOURS FROM 5 P.N. TO 8 A.M.:  TOTAL BUSSELINE COOLING ENERGY SAVINGS	75/79	407	ጵ	0.55	*	240,00	0		•		
TOTAL BY = 213,828,000  TOTAL ELECTRICAL EVERGY INPUT CONLING = $\frac{21440^{677}}{10^{12}} \div 2 \left(\frac{AVG.}{C.o.P.}\right)$ = $\frac{107\times10^{6}}{10^{12}}$ BTU/YR (ELEC)  NOTE: HKS/YR INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH BIN FOR THE HOVES FROM 5 P.M. TO 8 A.M  FUNCTIONERS!  FANS: $\frac{28}{10^{12}}$ HP ± 2545 $\frac{574}{10^{12}}$ + 1.0 + 2074 = $\frac{148\times10^{12}}{10^{12}}$ (ELEC)  FOR THE HOURS FROM 5 P.M. TO 8 A.M.:  TOTAL $\frac{514}{10^{12}}$ = $\frac{255\times10^{12}}{10^{12}}$ (ELEC)	70/74	714	×	0.40	*	240,00	0	=	68,544	,000	
TOTAL ELECTRICAL EVERGY INPUT COULING = $\frac{21440^{67\%}}{\text{yr}} \div 2 \left(\frac{\text{avg.}}{\text{c.o.p.}}\right)$ = $\frac{107 \times 10^6}{\text{BTW}/\text{yr}} \left(\frac{\text{ELEC}}{\text{c.o.p.}}\right)$ NOTE: HKS/YR INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH BIN FOR THE HOURS FROM 5 P.M. TO 8 A.M.  PUXILIARILS!  FANS: $\frac{28}{\text{HP}} + \frac{2545}{\text{HP}} + 1.0 + 2074 = \frac{148 \times 10^6}{\text{Yr}} \frac{\text{BTW}}{\text{Yr}} \left(\frac{\text{ELEC}}{\text{ELEC}}\right)$ FOR THE HOURS FROM 5 F.M. TO 8 A.M.:  TOTAL BUSSELINE CUOLING ENERGY = $\frac{255 \times 10^6}{\text{Yr}} \frac{\text{BTW}}{\text{Yr}} \left(\frac{\text{ELEC}}{\text{ELEC}}\right)$ THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS	65/69	673	沐	0.25	*	240,00	0	=	40,380,	000	-
= 107×10 BTW/YR (ELEC)  NOTE: HKS/YR INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH BIN FOR THE HOURS FROM 5 P.M. TO B A.M  FUXILIARIS!  FANS: 28 HP = 2545 BTY + 1.0 + 2074 = 148×10 BTY (ELEC)  FOR THE HOURS FROM 5 P.M. TO S A.M:  TOTAL BASELINE CUOLING ENERGY SAVINGS  THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS	TOTAL HES/YE	= 2074		·		TOTAL	Bry Yr	<u> </u>	213,828	3,000	
NOTE: HKS/YR INDICATE THE TOTAL ANNUAL OCCURENCES IN EACH BIN FOR THE HOURS FROM 5 P.M. TO B A.M.  AUXILIARILS!  FANS: 28 HP = 2545 BTY + 1.0 + 2074 = 148×10 BTY (ELCC)  FOR THE HOURS FROM 5 P.M. TO B A.M.:  TOTAL BUSSELINE CUOLING ENERGY SAVINGS  THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS	TOTAL	. ELECTRIC	al t	overgy In	P4T	COULING	= 7	14	10 Tr + 2	(AUG.)	
BIN FOR THE HOURS FROM 5 P.M. TO 8 A.M.  FANS: 28 HP = 2545 FTY + 1.0 + 2074 = 148×10 BTY (FLCC)  FOR THE HOURS FROM 5 F.M. TO 8 A.M.:  TOTAL BASELINE CUOLING ENERGY = 255×10 ETY (ELLC)  THIS IS ALSO THE PROPOSED COOLING EVERGY SAVINGS							= _	107	×10 BT4/	YR (ELEC)	
FOR THE HOURS FROM 5 F.N. TO S A.M:  TOTAL BASELINE CUOLING ENERGY = 255 × 10 bing (ELLC)  THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS	1									ich	i.
FANS: 28 HP = 2545 FM + 1.0 + 2074 = 148×10 BM (ELEX)  FOR THE HOURS FROM 5 F.M. TO S A.M:  TOTAL BASELINE CUOLING ENERGY = 255×10 BM (ELLX)  THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS	BIN	ior the	Ho	urs Hon	٦ 5	P.M.	(P 5	<b>光。</b> (	<b>%</b>		
FOR THE HOURS FROM 5 F.M. TO S A.M:  TOTAL BASELINE CUOLING ENERGY = 255×106 BITY THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS  THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS	FUXILURUS!	•		_							
TOTAL BASELINE CUOLING ENERGY = 255×10 BIM (ELLC) THIS IS ALSO THE PROPOSED COOLING ENERGY SAVINGS		FANS:	28	HP ± 25	45	HP HR *	1.0 4	- 20	74 = 14	8×10 54	erec)
	FOR THE HOL	alls Theore	5	F.N. TO 8	ĠΑ.	m:				,,0	
		חטך	h 1	SH SELINE	Cv > !	ING ENE	icay	= "	255 x10 6	6:4	
TOP IMPLEMENTALE THIS ECO	1 -				EX	ier Gy si	1 VINGS			YI- (ELLC)	
Title ECO-10 - EMCS ADDITIONS Checked By Date	Tist						Checked	Ву		Date	
BB657115 C 21-92	200 10			_					ib L	9-21-93	
Project FORT CAMPBILL ENERGY SAVINGS JOB NO. 4-315	Project				/\n2(	<b>;</b> S		(	15 L	Sheet No.	4-315

#### PROPOSED ENERGY USAGE

BLOG # 7264

HEATING! DEGREE DAY METHOD

SEE SHEET (B-1) FOR DEGREE DAY FORMULA EXPLANATION BY LOWERING SPACE HEATING SET POINTS DURING UND COUPLED HOURS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM (ENCS), THE FOLLOWING SAVINGS ARE ACHIEVED!

SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * PLOPOSED AT

$$= \frac{(4.8 \times 10^{6}) \frac{BTu}{HR}}{(68-4)^{6}F} * (50-4)^{6}F$$

SETBACK BUILDING HEAT LOAD = 3.5×10 BTY
HR

NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION:

$$\frac{\text{PRoPOSED}}{\text{HEATING}} = \frac{\left(\frac{\text{SETBACK HRS}}{\text{DAY}}\right) \left(\frac{4290^{\circ}\text{F-DAY}}{\text{DAY}}\right) \left(\frac{\text{SETBACK}}{\text{BUILDING}}\right)}{n \left(\frac{68-4}{\text{F}}\right)^{\circ}\text{F}} = \frac{\left(\frac{12 \text{ HPs}}{\text{HPs}}\right) \left(\frac{4290^{\circ}\text{F-DAY}}{\text{DAY}}\right) \left(\frac{\text{SETBACK}}{\text{BUILDING}}\right)}{n \left(\frac{68-4}{\text{F}}\right)^{\circ}\text{F}} = \frac{\left(\frac{12 \text{ HPs}}{\text{DAY}}\right) \left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{HR}}\right)}{n \left(\frac{3.5 \times 10^{6} \frac{\text{BTU}}{\text{HR}}}{\text{HR}}\right)} \left(\frac{1.6 \times 10^{6} \frac{\text{B}}{\text{DAY}}}{n \left(\frac{3.5 \times 10^{6} \frac{\text{B}}{\text{TU}}}{\text{HR}}\right)} \left(\frac{1.6 \times 10^{6} \frac{\text{B}}{\text{DAY}}}{n \left(\frac{3.5 \times 10^{6} \frac{\text{B}}{\text{DAY}}}{n \left(\frac{$$

PROPOSED HEATING ENERGY USAGE = CIGZXID BTY (NATURAL GAS)

AUXILIARY ENERGY SAVINGS = BASELINE AUX. ENERGY - PROPOSED ANX. ENERGY

AUX. ENERGY SAVINGS = 147×10° Bry/4 (ELECTOTAL ENERGY SAVINGS = 1113×10° Bru/48

Title ECO-10 - EMCS ADDITIONS

PROPOSED ENERGY USAGE

Project FT. CAMPBELL ENERGY SAVINGS

Checked By

GBL

9-16-93

Sheet No.

4-316

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 7264

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

4-317

TABLE OF CONTENTS

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

CONTENTS PAGE 1

SUMMARY REPORTS	SUMMARY	PAGE
PROJECT NOTES. BID ITEM AND FACILITY SUMMARY. PROJECT CWE SUMMARY. CONTRACTOR DIRECT SUMMARY. CONTRACTOR INDIRECT SUMMARY. CSI DIVISION SUMMARY. SYSTEMS SUMMARY. EQUIPMENT SUMMARY. LABOR SUMMARY.		25678
DETAILED ESTIHATE	DETAIL	PAGE
1. BUILDING TO THE 5 FOOT LINE AA. ELECTRICAL	• • • • • • •	1

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

DETAIL PAGE 1

TIME 12:32:25

BASE BID

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

							DAGE DID
DIVISION 16 ELECTRICAL	QUANTITY UON CREW	KANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CONDUIT							
CD=4 EL 1121 1 IN CONDUIT W/COUPLING WC=1100	*** UNIT COSTS: *** 600.00 LF EELEF	0.08 47	2.34 1,405	0.01	0.90 540	0.05 27	3.30 1,979
16120 1200 SINGLE STRANDED CONDUCTOR							
CD=4 EL 1211 NO. 12 AWG - TYPE THHN WC=1100 INSULATION	*** UNIT COSTS: *** 0.30 MLF EELEF	5.78 2	174.30 52	0.78	52.98 16	2.65 1	230.71 69
16130 1200 NEMA 1 SCREW COVER ENCL							
CD=4 EL 1202 6X6X4 NEMA 1 WC=1100	*** UNIT COSTS: *** 10.00 EA EELEB	0.67 7	22.01 220	0.09	4.87 49	0.24	27.21 272
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE							
CD=3 EL 2001 TWISTED PAIR WIRES 18 AWG WC=1100	*** UNIT COSTS: *** 1.20 MLF EELEF	8.28 10	249.82 300	1.12	820.00 984	41.00 49	1111.94 1,334
16920 3000 CONTROL SWITCH							
CD=3 EL 3001 START/STOP WC=1100	*** UNIT COSTS: *** 11.00 EA EELEB	5.00 55	165.05 1,816	0.65 7	60.00 660	3.00 33	228.70 2,516
16920 4000 RELAY							
CD=3 EL 4001 STATUS RELAY WC=1100	*** UNIT COSTS: *** 11.00 EA EELEB	1.25 14	41.26 454	0.16	20.00 220	1.00	
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT COSTS: *** 10.00 EA EELEB	1.25 13	41.26 413	0.16	85.00 850	4.25	130.67
16961 3000 TEMPERATURE							
CD=3 EL 3001 SPACE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 8.00 EA EELEB	2.50 20	82.53 660	0.32			124.85 999
CD=3 EL 3002 DUCT TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 18.00 EA EESMA		62.79 1,130	1.40 25	45.00 810		111.44 2,006
CD=3 EL 3004 PIPE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 2.00 EA EPIPA	4.25	133.71 267	0.32			197.03 394

DETAILED ESTIMATE

CREW ID: ORL290

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

BASE BID

TIME 12:32:25

DETAIL PAGE 2

PROJECT ID: 726410

4-320

DIVISION 16 ELECTRICAL	QUANTITY UON CREW				MATERIAL	SALESTX	DIRECT \$
16961 4000 PRESSURE							
CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE SENSOR	*** UNIT COSTS: *** 8.00 EA EESMA	2.00 16	62.79 502	1.40	35.00 280	1.75 14	100.94 808
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE SENSOR	*** UNIT COSTS: *** 2.00 EA EPIPA	8.50 17	267.42 535	0.65	85.00 170	4.25 9	357.31 715
16962 PRESSURE SWITCHES			1				
CD=3 EL 1001 PRESSURE SWITCH WC=1100	*** UNIT COSTS: *** 8.00 EA EESMA	2.00 16	62.79 502	1.40 11	80.00 640	4.00 32	148.19 1,186
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50 3	82.53 83	0.32	190.00 190		282.35 282
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA MSPFB	5.00 5	137.72 138	2.02	0.00		139.73 140
16991 5000 HUX							•
CD=3 EL 5001 MUX WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	5.00 5	165.05 165	0.65 1	4720.00 4,720	236.00 236	5121.70 5,122
16991 6000 CABINET							
CD=3 EL 6001 DATA TERMINAL CABINET WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50 3	82.53 83	0.32	350.00 350		450.35 450
CD=3 EL 6002 INSTRUMENT SHELTER WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50	82.53 83	0.32	125.00 125	6.25 6	214.10
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR ENCS WC=1100	*** UNIT COSTS: *** 68.00 EA EELEB	1.25 85	41.26 2,806	0.16 11	30.00 2,040	1.50 102	72.92 4,959
TOTAL DIVISION 16 ELECTRICAL		362			13,084		
TOTAL FACILITY AA. ELECTRICAL		362	11,613	86	13,084	654	25,437
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		362	11,613	86	13,084	654	25,437
TOTAL BASE BID		362			13,084		

CURRENCY in DOLLARS

DETAILED ESTIMATE

ECO-10: BUILDING 7264

2. SITEWORK /

DETAIL PAGE 3

TIME 12:32:25

BASE BID

						DYDE DID
DIVISION 16 ELECTRICAL QUANTITY UON CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
TOTAL ADDITIVE	0	0	0	0	0	0
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY	362	11,613	86	13,084	654	25,437

* * * END OF DETAIL REPORT * * *

PROJECT NOTES

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

4-322

PROJECT ID: 726410

CURRENCY in DOLLARS

U.S. ARMY CORPS of ENGINEERS M-CACES

Fri 24 Sep 1993

U.S. ARMY CORPS OF ENGINEERS IN MINES OPPORTUNITY SURVY / FT CAMPBELL, KY

FCO-10: BUILDING 7264

RID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 7264

TIME 12:32:25

BID	ITEM 1	BUILDING TO	THE 5 FOOT	LINE							BASE BID
ID	FACILITY			COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICA	L	1.00 EA	25,437	10.0% 2,544	0.0%	7.5% 2,099	2.5% 752	0.0%	30,831	30830.85
BID	ITEM TOTAL	Ĺ	1.00 EA	25,437	2,544	0	2,099	752	0	30,831	30830.85

U.S. ARMY CORPS of ENGINEERS H-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-10: BUILDING 7264

TIME 12:32:25
SUMMARY PAGE 3

BID ITEM 2 SITEWORK								BASE BID
ID FACILITY	COST TO PRM	OVERHEAD	HONE OFC	PROFIT	BOND OT	HR FCTR	TOTAL COST	UNIT COST
	*****							
TOTAL BASE BID	25,437	2,544	0	2,099	752	0	30,831	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	25,437	2,544	0	2,099	752	0	30,831	

PROJECT CWE SUMMARY

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

SUMMARY PAGE 4

ID BID ITEM	HOU YTITMAUQ	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	30,831		30,831	30830.80
TOTAL CURRENT CONTRACT COST	-	30,831	0	30,831	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000		0	0	0	
ESCALATED CONTRACT COST		30,831	0	30,831	
Government-Furnished Property		0		0	
SUBTOTAL	•	30,831	0	30,831	
Contingencies	10.0%	3,083	0	3,083	
SUBTOTAL	•	33,914	0	33,914	
SIOH (S&A)	5.0%	1,696	0	1,696	
CURRENT WORKING ESTIMATE	•	35,610	0	35,610	

4-325

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

SUMMARY PAGE 5

CONTRACTOR DIRECT SUMMARY

ID	CONTRACTOR	PH	QUANTITY	UON	KANHRS		EQUIPHENT				* SUBCON W/OH&P		SUBTOTAL
λλ	GENERAL/PRIME		1.00	EA	362	11,613	86	13,738	25,437	100.0		0	25,437
	TOTAL DIRECT				362	11,613	86	13,738	 25,437	100.08			

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

SUMMARY PAGE

CONTRACTOR INDIRECT SUMMARY

ID	CONTRACTOR	PM	SUBTOTAL				HOFC%	PROFIT AMOUNT				ATOT ****** TRUOHA	L CONTRI PCT	
λλ	GENERAL/PRIME		25,437	2,	544	10.0%	0.0	2,099	7.5%	2.5%	0.0%	30,831	100.0%	30830.83
	TOTAL OVERHEAD & PROFIT			2,	544	10.0%		 2,099	7.5%					

4-327

CREW ID: ORL290

CSI DIVISION SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

						**** TOTAL *
 ID CSI DIVISION	HANHOURS	LABOR	EQUIPHENT		SALES TAX	DIRECT
 16 ELECTRICAL	362	11,613	86	13,084	654	25,437
TOTAL DIRECT	362	11,613	86	13,084	654	25,437

SYSTEMS SUMMARY

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

						***	* TOTAL *
	ID SYSTEM	HANHOURS	LABOR	EQUIPMENT	MATERIAL		DIRECT
•	11 INTERIOR ELECTRICAL	362	11,613	86	13,084	654	25,437
	TOTAL DIRECT	362	11,613	86	13,084	654	25,437

EQUIPHENT SUMMARY

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

EQUIP DESCRIPTION	LIFE HRS T	* BOOK VALUE *** TL HRLY OWNRSHP	ADJUSTD OWNRSHP	BOOK OP EXPENSE	HRLY -	UPB RATE		**** COST
EHI20 SHALL TOOLS					1.40	1.40	61	86
TOTAL PROJECT EQUIPME	NT HOURS						61	86

LABOR SUNMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7264

TIME 12:32:25

SUMMARY PAGE 10

	CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	HRLY -	- UPB RATE	**** TO	TAL **** COST	
****	LSHNT	ELECTRICIANS SHEET METAL WORKERS STEAM/PIPEFITTERS	20.50 19.90 20.95	0.0% 0.0% 0.0%	24.0% 24.0% 24.0%	5.20	0.00	32.91 29.88 29.83	25.79 25.06 26.12	311 34 17	10,101 1,016 496	
	TOTAL	PROJECT HANHOURS								362	11,612	

* * * END OF SUMMARY REPORT * * *

### SUMMARY SHEET

5LDG = 7268

NATURAL GAS SAVINGS =  $\frac{832 \text{ MBTU}}{\text{YK}} * \frac{4.00}{\text{MBTU}} = \frac{3328}{3328}$ ELECTRICAL SAVINGS =  $\frac{405 \text{ MBTU}}{\text{YR}} * \frac{10.19}{\text{MBTU}} = \frac{1}{2507}$ 

TOTAL SAVINGS = \$ 5835 /YR

### HARDWARE REQUIRED:

QUANTITY	ITEM		
18 2 18 2 1 8 10 1 1 120 FT.	FID/MUX MUX ONLY SPACE TEMP SENSOR DUCT TEMP SENSOR WATER TEMP SENSOR WATER TEMP SENSOR HUMIDITY SENSOR START/STOP STATUS RELAY DIFF. PRESSURE (DUST) DIFF. PRESSURE (PIP FLOW SWITCH CURRENT RELAY DATE TERMINAL CADIN INSTRUMENT ENCLOSE 2 WIRE, TWISTED PATE FIGID CONDUIT— JUNCTION BOXES	NET RE R, #18 CONTRIL WIR	E
<u>18</u>	PROGRAMMING POIN	TS	
300 FT -	POWER WIRING	Checked By	Date '
10-10 - EMCS ADD	17000	CEI	

	300 PI - FOWER WIRIN	Ge	
Title	ECO-10 - EMCS ADDITIONS	Checked By	Date '
		GBL	-19-17-93
	SUMMARY SHEET	Prepared By	1-11-17
Project	FT. CAMPBELL ENERGY SAVINGS	GEL	Sheet No.
		Jab Na.	6-1
	DPPORTURITY (VCHEY	92001 01	!!

4-332

### BASELINE ENERGY USAGE

7268

### HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE:

9 = BUILDING DESIGN HEAT LOAD - BTU/HR

7 = HEATING SYSTEM EFFICIENCY

 $\Delta T = (T_{INDOORS} - T_{OUTSIDE})_{OESIGN} = (68 - 4) F$ 

CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY = 
$$\left(24\frac{\mu R}{DAY}\right)\left(4290^{\circ}F - DAY\right)\left(4\times10^{6}\frac{BTH}{HR}\right)\left(0.6\right)$$
.

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 Bry DIVERSITY FACTOR * HEATING

ENERGY = 28 * 2545 * 1.0 * 4369 = 311 × 10 BTU/ELEC)

ENERGY = PUMP HP * 2545 BTU * DIVERSITY FACTOR * HTG HRS

ENERGY = 5.75 * 2545 * 1.0 * 4369 = 64 × 10 BTU (ELEC)

TOTAL BASELINE HEATING ENERGY = 6315×10 BT4

Title	ECO-10 - EMCS APPITIONS	Checked By GBC	Date '	
Project	BASELINE ENERGY USAGE FT. CAMPBELL ENERGY SAVINGS	Prepared By  GRL	, , , , ,	4-333
	npo-c-villey Survey	Job No. 9225/2 21	B-1	

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

TOTEME ETTOTICE						-	
BASTLINE	enge G	Y 45	AGE			BLOG =	
COOLING	- BIN n	n eth	<u> </u>	20 70 NS t	×	7268	
BIN	HRS/YR	C	3 FULL WAL	FULL LOAD  Bru /HR	BTU YR		
95/99	3	*	1.0	* 240,000	= 720,0	00	
90/94	17	*	1.0	* 240,000	= 4,080,	000	
25/89	75	*	0.85	÷ 240,000	= 15,300,	000	
80184	185	*	0.70	* 240,000	= 31,080	,000	
75/79	407	*	0.55	* 240,000	= 53,724	,000	,
70/74	714	*	0.40	* 240,000	= 68,54	4,000	
65/69	673	*	0.25	*240,000	= 40,38	,000	
TOTAL HRS/YR	= 2074			TOTAL BRY	= 213,87	18,000	
TOTAL	L ELECTIFI	ipi E	veigy in	IPUT COULING =	214×10 500 -	2 (AUG.)	
					107×10 Bin	•	
NOTE! HKS	YE INDI	CATE	THE TOT	tel annual occ			
BIN	FOR THE	5 Ho	urs From	n 5 P.M. To	B A.M	,	
AUXILIANUS	!	2.	e5, U	@ 3			
		_	,	545 B+4 + 1.0	* 2074 = 1	48×10 BTY (	0E)
FOR THE HE	ours Frior	n 5 :	P.M. TO	S A.M:			
	Tot	the f	BHSELINE	CUOLING ENERGY	4 = 255 x10	(ELLC)	
THIS IS AL FOR IMPLEM	22 196 1	1-01-05	ED (000012)	G ENERGY SAVIN	SS	YE T	
****	- EMCS			. Chec	ked By	Date	
	NE COOLI	,	_	Prep	CBL ared By	9-21-93	4-334
Project FORT		L E	eagy sa		GR L	Sheet No.	

34

### PROPOSED ENERGY USAGE

3406#F

4-335

#### HEATING! DEGREE DAY METHOD

SEE SHEET (B-1) FOR DEGREE DAY FORMULA EXPLANATION.
BY LOWERING SPACE HEATING SET POINTS DURING UND COUPLED HOURS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM (EMCS), THE FOLLOWING SAVINGS ARE ACHIEVED!

SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * PLOPOSED AT

$$=\frac{(4.0\times10^{6})\frac{BTu}{HR}}{(68-4)^{6}F}*(50-4)^{6}F$$

SETBACK BULLDING HEAT LOAD = 2.88×10 BTY HR

NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION:

$$= \frac{(12 \text{ Hz}) 4290 (2.38 \times 10^{1374})}{(0.45) (44)} (0.6) + \frac{(24-12) (5940 \times 10^{6})}{24}$$

PROPOSED HEATING ENERGY USAGE = 5108 × 10 BTM (NATURAL GAS)

AUXILIARY ENERGY SAVINGS = BASELINE AUX, ENERGY - PROPOSED ANX, ENERGY

AUX. ENERGY SAVINGS = 150 × 10 Bry/g (ELECTOTAL ENERGY SAVINGS = 982 × 10 110 Grecked By Date

Project FT. CAMPBELL ENELGY SAVINGS

DP2-CTUILTY SICKEY

FIGURE ECO-10 - EMCS ADDITIONS

Prepared By

GBL

Prepared By

GBL

Sheet No.

Job No.

9227 01 E-1

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 7268

Contract No: 27-93-C-0096

Prepared By: Systems Corp
Estimator: Keith A. Derrington
Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

4-336

TABLE OF CONTENTS

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

TIME 12:42:47

CONTENTS PAGE

SUMMARY REPORTS

SUMMARY PAGE

PROJECT NOTES.

BID ITEM AND FACILITY SUMMARY.

PROJECT CWE SUMMARY.

CONTRACTOR DIRECT SUMMARY.

CONTRACTOR INDIRECT SUMMARY.

COSI DIVISION SUMMARY.

SYSTEMS SUMMARY.

EQUIPMENT SUMMARY.

DETAILED ESTIMATE

DETAILED ESTIMATE

1. BUILDING TO THE 5 FOOT LINE

AA. ELECTRICAL.

* * * END TABLE OF CONTENTS * * *

Fri 24 Sep 1993
DETAILED ESTIKATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 12:42:47

DETAIL PAGE 1

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UOH CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CONDUIT							
CD=4 EL 1121 1 IN CONDUIT W/COUPLING WC=1100	*** UNIT COSTS: *** 600.00 LF EELEF	0.08 47	2.34 1,405	0.01 6	0.90 540	0.05 27	3.30 1,979
16120 1200 SINGLE STRANDED CONDUCTOR							
CD=4 EL 1211 NO. 12 AWG - TYPE THHN WC=1100 INSULATION	*** UNIT COSTS: *** 0.30 MLF EELEF	5.78 2	174.30 52	0.78	52.98 16	2.65 1	230.71 69
16130 1200 NEMA 1 SCREW COVER ENCL							
CD=4 EL 1202 6X6X4 NEHA 1 WC=1100	*** UNIT COSTS: *** 10.00 EA EELEB	0.67 7	22.01 220	0.09	4.87 49	0.24	27.21 272
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE							
CD=3 EL 2001 TWISTED PAIR WIRES 18 AWG WC=1100	*** UNIT COSTS: *** 1.20 MLF EELEF	8.28 10	249.82 300	1.12	820.00 984	41.00 49	1111.94
16920 3000 CONTROL SWITCH							
CD=3 EL 3001 START/STOP WC=1100	*** UNIT COSTS: *** 11.00 EA EELEB	5.00 55	165.05 1,816	0.65 7	60.00 660	3.00	228.70 2,516
16920 4000 RELAY							
CD=3 EL 4001 STATUS RELAY WC=1100	*** UNIT COSTS: *** 11.00 EA EELEB	1.25 14	41.26 454	0.16	20.00 220	1.00	62.42 687
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT COSTS: *** 10.00 EA EELEB	1.25 13	41.26 413	0.16	85.00 850	4.25	, 130.67 1,307
16961 3000 TEMPERATURE				•			
CD=3 EL 3001 SPACE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 8.00 EA EELEB		82.53 660				124.85 999
CD=3 EL 3002 DUCT TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 18.00 EA EESMA		62.79 1,130	1.40 25			111.44 2,006
CD=3 EL 3004 PIPE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 2.00 EA EPIPA		133.71 267				197.03 394

4-338

DETAILED ESTIMATE

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

TIME 12:42:47

DETAIL PAGE 2

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

BICE BID

2, 2122 33	,						BASE BID
DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	MANER	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16961 4000 PRESSURE							
CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE SENSOR	*** UNIT COSTS: *** 8.00 EA EESMA	2.00 16	62.79 502	1.40 11	35.00 280		100.94 808
CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE SENSOR	*** UNIT COSTS: *** 2.00 EA EPIPA	8.50 17	267.42 535	0.65 1	85.00 170		
16962 PRESSURE SWITCHES							
CD=3 EL 1001 PRESSURE SWITCH WC=1100	*** UNIT COSTS: *** 8.00 EA EESMA	2.00 16	62.79 502	1.40 11	80.00 640		148.19
16963 FLOW SWITCHES							
CD=3 EL 1001 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB			0.32	190.00 190		282.3
CD=3 EL 1002 FLOW SWITCH WC=1100	*** UNIT COSTS: *** 1.00 EA MSPFB		137.72 138	2.02	0.00	0.00	
16991 5000 MUX							,
CD=3 EL 5001 MUX WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	5.00 5	165.05 165	0.65	4720.00 4,720	236.00 236	
16991 6000 CABINET							
CD=3 EL 6001 DATA TERMINAL CABINET WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB		82.53 83	0.32		17.50 18	450.3 45
CD=3 EL 6002 INSTRUMENT SHELTER WC=1100	*** UNIT COSTS: *** 1.00 EA EELEB	2.50 3	82.53 83		125.00 125		214.
16991 7000 SOFTWARE							
CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS WC=1100	*** UNIT COSTS: *** 68.00 EA EELEB		41.26 2,806	0.16 11	2,040	102	
TOTAL DIVISION 16 ELECTRICAL		362	11,613	86		654	25,4
TOTAL FACILITY AA. ELECTRICAL		362	11,613		13,084	654	25,4
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		362	11,613	86	13,084	654	
TOTAL BASE BID		362		86		654	25,4
CREW ID: ORL290	CURRENCY in DO	LLARS				PROJECT	ID: 7268 4-339

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

DETAIL PAGE 3

TIME 12:42:47

DETAILED ESTIMATE

2. SITEWORK /

RICE RID

							DASE DID	
DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	HANHR	LABOR	EQUIPHENT	MATERIAL	SALESTX	DIRECT \$	
							********	
TOTAL ADDITIVE		0	0	0	0	0	0	
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		362	11,613	86	13,084	654	25,437	
TOTAL THEE AND EMERGI BATTHOS OFFICERETT SOATE		-	,		•		-	

* * * END OF DETAIL REPORT * * *

PROJECT NOTES

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

TIME 12:42:47

SUMMARY PAGE 1

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED

FACILITIES AT FORT CAMPBELL.

BID ITEM AND FACILITY SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 7268

SUMMARY PAGE 2

TIME 12:42:47

BID	ITEM 1	BUILDING	TO THE 5 FC	OT LINE								BASE BID	
ID	FACILITY			COST	TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST	
λλ	ELECTRICA	L	1.00	EA	25,437	10.0% 2,544	0.0%	7.5% 2,099	2.5% 752	0.0%	30,831	30830.85	
BID	ITEM TOTAL	L	1.00	EA	25,437	2,544	0	2,099	752	0	30,831	30830.85	

4-342 PROJECT ID: 726810

CURRENCY in DOLLARS

CREW ID: ORL290

BID ITEM AND FACILITY SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 7268

TIME 12:42:47 SUMMARY PAGE 3

SID ITEM 2 SITEWORK								base bid
ID FACILITY	COST TO PRI	OVERHEAD	HOME OFC	PROFIT	BOND OTT	IR FCTR	TOTAL COST	UNIT COST
***************************************	b a p p b c c p b c p p p c c c c c c c c c							
TOTAL BASE BID	25,437	2,544	0	2,099	752	0	30,831	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	25,437	2,544	0	2,099	752	0	30,831	

4-343

PROJECT CWE SUMMARY

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

TIME 12:42:47

SUMMARY PAGE

 ID BID ITEM	QUANTITY UOM	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	30,831		30,831	30830.80
TOTAL CURRENT CONTRACT COST	•	30,831	0	30,831	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		30,831	0	30,831	
Government-Furnished Property		0		0	
SUBTOTAL	•	30,831	0	30,831	
Contingencies	10.0%	3,083	0	3,083	
SUBTOTAL	•	33,914	0	33,914	
SIOH (S&A)	5.0%	1,696	0	1,696	
CURRENT WORKING ESTIMATE	•	35,610	0	35,610	

4-344

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

SUMMARY PAGE 5

TIME 12:42:47

CONTRACTOR DIRECT SUMMARY

ID	CONTRACTOR	PM	QUANTITY	UOH	MANHRS		EQUIPMENT	MAT W/TX	* TOTAL DI AMOUNT		* SUBCON W/OH&P		SUBTOTAL
AA	GENERAL/PRIME		1.00	EA	362	11,613	86	13,738	25,437	100.0%		0	25,437
	TOTAL DIRECT				362	11,613	86	13,738	25,437	100.0%			

4-345

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

SUMMARY PAGE

TIME 12:42:47

CONTRACTOR INDIRECT SUMMARY

			*** OVERHE	XD ***		**** PROFIT	****			****** TOTAL	CONTRA	CT ******
ID	CONTRACTOR	PM SUBTOTAL				THUOKA						
λÀ	GENERAL/PRIME	25,437	2,544	10.0%	0.0	2,099	7.5%	2.5%	0.0%	30,831	100.0%	30830.83
	TOTAL OVERHEAD & PROFIT		2,544	10.0%		2,099	7.5%					

Pri 24 Sep 1993

CSI DIVISION SUMMARY

TOTAL DIRECT

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

TIME 12:42:47

SUMMARY PAGE 7

25,437

654

ID CSI DIVISION	MANHOURS	LABOR	EQUIPMENT			***** TOTAL * DIRECT
16 ELECTRICAL	362	11,613	86	13,084	654	25,437

362 11,613 86 13,084

4-347

SYSTEMS SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

TIHE 12:42:47

SUMMARY PAGE 8

					****	* TOTAL *
 ID SYSTEM	MANHOURS	LABOR		MATERIAL		DIRECT
 11 INTERIOR ELECTRICAL	362	11,613	86	13,084	654	25,437
TOTAL DIRECT	362	11,613	86	13,084	654	25,437

EQUIPHENT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

TIME 12:42:47

SUMMARY PAGE 9

EQUIP DESCRIPTION	LIFE HRS TL HRLY OWNRSHP	ADJ FACTOR OWNS OVTH	ADJUSTD OWNRSHP	BOOK OP - EXPENSE	- HRLY RATE	UPB RATE	**** TOTAL HOURS	COST
EMI20 SMALL TOOLS					1.40	1.40	61	86
TOTAL PROJECT EQUIPMENT HOURS							61	86

4-349 PROJECT ID: 726810

LABOR SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7268

TIME 12:42:47

SUMMARY PAGE 10

CRAFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL	HRLY RATE	- UPB RATE		YTAL ****COST
LSHMT	ELECTRICIANS SHEET METAL WORKERS STEAM/PIPEFITTERS	20.50 19.90 20.95	0.0% 0.0% 0.0%	24.0%	5.20	0.00 0.00 0.00	29.88	25.79 25.06 26.12		10,101 1,016 496
TOTAL	PROJECT MANHOURS								362	11,612

* * * END OF SUMMARY REPORT * * *

### SUMMARY SHEET

BLOG ≠ 7272

NATURAL GAS SAVINGS =  $\frac{594 \text{ MBTU}}{\text{YR}} * \frac{4.00}{\text{METU}} = \frac{2376}{1250}$ ELECTRICAL SAVINGS =  $\frac{202 \text{ MBTU}}{\text{YR}} * \frac{6.19}{\text{METU}} = \frac{1250}{1250}$ 

TOTAL SAVINGS = \$ 3626 /YR

### HARDWARE REQUIRED:

QUANTITY ITEM

HOLAIOTT	<del></del>	110111		
1-1-32-1-13-1-1		FID/MUX MUX ONLY		
		SPACE TEMP SENSOR		
_3_		DUCT TEMP SENSOR		
2		WATER TEMP SLUSDR		
1		O.A. TEMP SENSOR		
		HUMIDITY SENSOR		
4		STAKT /STOP		
4		STATUS RELAY	<b>\</b>	
		DIFF. PRESSURE (DUST)		
2		DIFF. FRESSURE (PIF	(E)	
		FLOW SWITCH		
		PRESSURE SWITCH		
3		CURRENT RELAY	_	
		DATE TERMINAL CASI		
	_	INSTRUMENT ENCLOSE		
800		2 WIRE, TWISTED PAR		E
400	FT	RIGID CONDUIT -	l" D.	
5		JUNCTION BOXES		
20		PROGRAMMING FOIN	TS	
100	FT,	POWER WIRING		· · · · ·
-10 - E1	MCS ADDI	70115	Checked By	Date

100 71,	TOWER WILLING		
Title ECO-10 - EMCS ADDITIO	115	Checked By	Date
SUMMARY SHELT		Prepared By	9-17-93
Project FT. CAMPBELL ENERG		GBL	Sheet No.
OPPORTUNITY <ucify< td=""><td></td><td>Job No.</td><td>9-1</td></ucify<>		Job No.	9-1

4-351

### BASELINE ENERGY USAGE

BLDG # 7272

HEATING: DEGREE DAY METHOD

DD = DEGREE DAYS - "F-DAY WHERE: Q = BUILDING DESIGN HEAT LOAD - BTU/HR 7 = HEATING SYSTEM EFFICIENCY AT = (TINDOORS - TOUTSIDE) DESIGN = (68-4) F CD = CORRECTION FACTOR BASED ON 65° DD

HEATING ENERGY = 
$$\left(24\frac{HR}{D4Y}\right)\left(4290\text{ °F-DAY}\right)\left(3\times10^{6}\frac{BTu}{HR}\right)$$
 (0.65) (68-4)°F

AUXILIARY EQUIPMENT!

FANS: ENERGY = FAN HP * 2545 BTY DIVERSITY FACTOR * HESTING ENERGY = 105 + 2545 * 1.0 * 4369 = 167×10 BTU (ELEC)

PUMPS: ENERGY = PUMP HP * 2545 BTU + DIVERSITY FACTOR * HTG HRS ENERGY = 103/4 * 2545 * 1.0 * 4369 = 41.7×106 BTH (ELEC)

TOTAL BASELINE HEATING ENERGY = 4664 × 10° BT4

Title	ECO-10 - EMCS APDITIONS	Checked By  GBL	Date 9 - 1/ 02	
	BASELINE ENERGY USAGE	Prepared By	9-14-93	
Project	FT. CAMPBELL ENERGY SAVINGS	GBL	Sheet No.	4-352
	DPF-RTUNITY SURVEY	JOD NO. 9377/2 01	B-1	

SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

SYSTEMS ENGINEER	HING AINLI N	IAIVACI -	EMENTOO	arun	ATTON					
BASDINE	ente.	y us	AGE						BLOG #	
	D . I		<u> </u>	at e l.	0.00		Bt	1	7272	
COOLING	- BIN N	1 ETHO		яμυ	6 87	,000	HX	<u>.</u>		
BIN	HRS/YR	9	FULL LOA	0 -	Bru/HR			BTY YR		
95/99	3	*	1.0	*	87,000	)	Ξ	261,00	10	
90/94	17	*	1.0	*	87,00	0	=	1,479,0	000	
95/89	75	*	0.85	*	87,000	)	=	5,546,	000	
80184	135	*	0.70	*	87,000		=	11,267,	000	
75/79	407	*	0.55	*	87,000	)	=	19,475	,000	1
70/74	714	¥	0.40	*	87,00	0	=	24,847	,000	
65/69	673	*	0.25	*	87,00	) .	, <del>-</del>	14,638	,000	
TOTAL HES/YE	= 2074		·		TOTAL	Bry	=	77,5 ×	106	
TOTAL	. ELECTRI	ial e	vergy in	PUT:	COULING			. 110	(AVG.)	
						= _	39	×10 BTM/	YR (ELEC)	
								es in e	104	•
BIN	FOR THE	E Hoi	urs From	n 5	P.M. 7	3 8	A.A	1 .		
AUXILUALITS			1 Attu @	10	RETURN FA	ve5				
	FANS:	15	_ HP * 29	545	BTY +	1.0 *	- 20	74 = 7	9 x/0 BTY (	erec)
FOR THE HO	urs From	^ 5 F	.M. TO	8 A.	M:					
	חטך	in E	inseline	Cupi	LING ENE	rgy	=	118 × 106	Bry (ELLC)	
THIS IS AL	30 /FIE 1	1001036	000000	GE	iergy si	1 VINGS			Yr (Elle)	
For Impleme		<del></del>		V.87		Checked	Rv		Date	
Title Eco-10 -			_		•			BL	9-21-93	
O-nin at	JE COOLII					Prepared	i By	15L	Sheet No.	4-353
FORT	CAMPBIL	r Ev	ecgy sa	M!M(	مح	Job No.			2-2	

### PROPOSED ENERGY USAGE

BLOG # 7272

### HEATING! DEGREE DAY METHOD

SEE SHEET (B-1) FOR DEGREE DAY FORMULA EXPLANATION. BY LOWERING SPACE HEATING SET POINTS DURING UND CCUPIED HOURS WITH THE ENERGY MANAGEMENT AND CONTROL SYSTEM (EMCS), THE FULLOWING SAVINGS ARE ACHIEVED:

EXISTING DESIGN 
$$\Delta T = (6B-4) = 4°F$$

PROPOSED SETBACK  $\Delta T = (50-4) = °F$ 

SETBACK BUILDING HEAT LOAD = DESIGN HEAT LOAD * PLOPOSED AT  $= \frac{(3 \times 10^{6}) \frac{Bru}{HR}}{(48-4)^{6}F} * (50-4)^{6}F$ 

NOW USING THE DEGREE-DAY FORMULA FOR THE PROPOSED SETBACK CONDITION:

PROPOSED
HEATING

WERCY

USAGE

$$\frac{\left(\frac{3}{4}\right)^{6}}{\sqrt{290}} = \frac{\left(\frac{3}{4}\right)^{6}}{\sqrt{290}} \left(\frac{4290}{6}\right)^{6} + \frac{3}{4}\right) \left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6}}{\sqrt{24}} \left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6}}{\sqrt{24}} \left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6}}{\sqrt{24}} = \frac{\left(\frac{3}{4}\right)^{6}}{\left(\frac{3}{4}\right)^{6}} \left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6}}{\left(\frac{3}{4}\right)^{6}} + \frac{3}{4}\left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6}}{\left(\frac{3}{4}\right)^{6}} = \frac{3}{4}\left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6}}{\left(\frac{3}{4}\right)^{6}} = \frac{3}{4}\left(\frac{3}{4}\right)^{6} + \frac{3}\left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{6} + \frac{3}{4}\left(\frac{3}{4}\right)^{$$

PROPOSED HEATING ENERGY USAGE = 3861 × 10 BTU (NATURAL GAS)

AUXILIARY ENDLGY SAVINGS = BASELINE AUX. ENERGY - PROPOSED ANX. ENDRGY
ANX. ENER. = 209 × 10 Bru (FROM B-1) - [1834HP+2545 * 0.4 DIV. * 4369] - SAVINGE

AUX. ENERGY SAVINGS = 84×10 Bry/ge (ELICY) TOTAL ENERGY SAVINGS = 678×16 Bru/y: Checked By Title ECO-10 - EMCS ADDITIONS Prepared By GBL 9-16-93 PROPOSED ENERGY USACE Sheet No. FT. CAMPBELL ENELGY SAVINGS Project

Job No.

4-354

F-1

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-10: BUILDING 7272

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

4-355

# U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

TIME 13:01:05
CONTENTS PAGE 1

TABLE OF CONTENTS

SUMMARY REPORTS	SUMMARY	PAGE
PROJECT NOTES. BID ITEM AND FACILITY SUMMARY. PROJECT CWE SUMMARY. CONTRACTOR DIRECT SUMMARY. CONTRACTOR INDIRECT SUMMARY. CSI DIVISION SUMMARY. SYSTEMS SUMMARY. EQUIPMENT SUMMARY. LABOR SUMMARY.		2
DETAILED ESTIMATE  1. BUILDING TO THE 5 FOOT LINE AA. ELECTRICAL	DETAIL	

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 13:01:05

DETAIL PAGE 1

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	MANHR	LABOR		MATERIAL	SALESTX	DIRECT \$
16050 BASIC MATERIALS AND METHODS 16111 1100 RIGID GALVANIZED STEEL CON	DUIT						
CD=4 EL 1121 1 IN CONDUIT W/COUPLING WC=1100	*** UNIT COSTS: *** 400.00 LF EELEF	0.08	2.34 937	0.01 4	0.90 360		3.30 1,319
16120 1200 SINGLE STRANDED CONDUCTOR							
CD=4 EL 1211 NO. 12 AWG - TYPE THEN WC=1100 INSULATION	*** UNIT COSTS: *** 0.10 HLF EELEF	5.78 1	174.30 17	0.78 0	52.98 5	2.65 0	230.71 23
16130 1200 NEHA 1 SCREW COVER ENCL							
CD=4 EL 1202 6X6X4 NEHA 1 WC=1100	*** UNIT COSTS: *** 5.00 EA EELEB	0.67	22.01 110	0.09 0	4.87	0.24	27.21 136
16900 CONTROLS AND INSTRUMENTATION 16920 2000 CONTROL CABLE							
CD=3 EL 2001 TWISTED PAIR WIRES 18 AW WC=1100	WG *** UNIT COSTS: ***  0.80 MLF EELEF	8.28 7	249.82 200	1.12	820.00 656	41.00	1111.94 890
16920 3000 CONTROL SWITCH							
CD=3 EL 3001 START/STOP WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB			0.65	60.00 240		228.70 915
16920 4000 RELAY							
CD=3 EL 4001 STATUS RELAY WC=1100	*** UNIT COSTS: *** 4.00 EA EELEB	1.25 5			20.00 80		62.42 250
CD=3 EL 4002 CURRENT RELAY WC=1100	*** UNIT COSTS: *** 3.00 EA EELEB	1.25 4	41.26 124	0.16 0	85.00 255	4.25	, 130.67 , 392
16961 3000 TEMPERATURE							
CD=3 EL 3001 SPACE TEMPERATURE SENSON WC=1100	R *** UNIT COSTS: *** 1.00 EA EELEB		82.53 83				124.85 125
CD=3 EL 3002 DUCT TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 3.00 EA EESMA		62.79 188				111.44 334
CD=3 EL 3004 PIPE TEMPERATURE SENSOR WC=1100	*** UNIT COSTS: *** 2.00 EA EPIPA		133.71 267				197.03 394

4-357

PROJECT ID: 727210

CURRENCY in DOLLARS

CREW ID: ORL290

DETAILED ESTIMATE

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

ECO-10: BUILDING 72/2

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 13:01:05

DETAIL PAGE 2

BASE BID

QUANTITY UOM CREW MANHR LABOR EQUIPMENT MATERIAL SALESTX DIRECT \$ DIVISION 16 ELECTRICAL 16961 4000 PRESSURE 100.94 *** UNIT COSTS: *** 2.00 35.00 1.75 62.79 1.40 CD=3 EL 4002 DUCT DIFFERENTIAL PRESSURE 63 1 2 101 1.00 EA EESMA 2 WC=1100 SENSOR *** UNIT COSTS: *** 8.50 267.42 357.31 0.65 85.00 4.25 CD=3 EL 4003 PUMP DIFFERENTIAL PRESSURE 1 9 715 535 170 2.00 EA EPIPA 17 WC=1100 SENSOR 16961 5000 HUNIDITY 4.25 172.10 *** UNIT COSTS: *** 2.50 82.53 0.32 85.00 CD=3 EL 5001 SPACE HUNIDITY SENSOR 4 172 3 83 0 85 1.00 EA EELEB WC=1100 16962 PRESSURE SWITCHES *** UNIT COSTS: *** 2.00 62.79 1.40 80.00 4.00 148.19 CD=3 EL 1001 PRESSURE SWITCH 1 80 4 148 1.00 EA EESHA 2 63 WC=1100 16963 FLOW SWITCHES 0.32 190.00 9.50 282.35 *** UNIT COSTS: *** 2.50 82.53 CD=3 EL 1001 FLOW SWITCH 190 10 282 1.00 EA EELEB 3 0 WC=1100 137.72 2.02 0.00 139.73 0.00 *** UNIT COSTS: *** 5.00 CD=3 EL 1002 FLOW SWITCH 0 0 140 138 2 1.00 EA MSPFB 5 WC=1100 16991 5000 MUX 4720.00 236.00 5121.70 *** UNIT COSTS: *** 5.00 165.05 0.65 CD=3 EL 5001 MUX 4,720 236 5,122 1.00 EA EELEB 5 165 1 WC=1100 16991 6000 CABINET 350.00 17.50 450.35 *** UNIT COSTS: *** 2.50 82.53 0.32 CD=3 EL 6001 DATA TERMINAL CABINET 83 0 450 350 18 1.00 EA EELEB 3 WC=11C0 214.10 *** UNIT COSTS: *** 2.50 82.53 0.32 125.00 6.25 CD=3 EL 6002 INSTRUMENT SHELTER 0 125 6 1.00 EA EELEB 83 WC=1100 16991 7000 SOFTWARE *** UNIT COSTS: *** 1.25 41.26 0.16 30.00 1.50 72.92 CD=3 EL 7001 PROGRAMMING POINTS FOR EMCS 825 20.00 EA EELEB 25 3 600 30 1,458 WC=1100 153 4,870 26 8,271 414 13,580 TOTAL DIVISION 16 ELECTRICAL 153 4,870 26 8,271 414 TOTAL FACILITY AA. ELECTRICAL

CREW ID: ORL290

CURRENCY in DOLLARS

PROJECT ID: 727210

4-358

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

DETAIL PAGE 3

TIME 13:01:05

DETAILED ESTIMATE

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

BASE BID

								DAIDE DID	
D:	IVISION 16 ELECTRICAL	QUANTITY UOM CREW	HANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$	
Et.	OMIL DED EMBY 1 DULIDING NO MICE E POOM FINE		152	4,870	<del>2</del>	8,271	414	13,580	
17	OTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		153	4,070	20	0,2/1	414	13,300	
T	OTAL BASE BID		153	4,870	26	8,271	414	13,580	
T	OTAL ADDITIVE		0	0	0	0	0	0	
T	OTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		153	4,870	26	8,271	414	13,580	

* * * END OF DETAIL REPORT * * *

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

TIME 13:01:05

SUMMARY PAGE 1

PROJECT NOTES

PROJECT NOTES

ECO-10: EMCS EXPANSION

SCOPE OF WORK: EVALUATE THE EXPANSION OF THE EXISTING EMCS SYSTEM TO SELECTED FACILITIES AT FORT CAMPBELL.

4-360

BID ITEM AND FACILITY SUMMARY

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

ECO-10: BUILDING 7272

SUNMARY PAGE

TIME 13:01:05

BID	ITEM 1	BUILDING	TO THE 5 FO	OT LINE								BASE BID
ID	FACILITY			COST	TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICA	L	1.00	EA	13,580	10.0%	0.0%	7.5% 1,120	2.5% 401	0.0%	16,460	16459.80
BID	ITEM TOTAL	L	1.00	ЕА	13,580	1,358	0	1,120	401	0	16,460	16459.80

U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY
ARY ECO-10: BUILDING 7272

SUMMARY PAGE 3

TIME 13:01:05

BID ITEM AND FACILITY SUMMARY

BASE BID

BID ITEM 2 SITEWORK								DV2E DID
ID FACILITY	COST TO PRH	OVERHEAD	HOME OFC	PROFIT	BOND OTH	R FCTR	TOTAL COST	UNIT COST
TOTAL BASE BID	13,580	1,358	0	1,120	401	0	16,460	
TOTAL ADDITIVE	0	0	0	0	0	0	0	
TOTAL INCL ADD	13,580	1,358	0	1,120	401	0	16,460	

PROJECT CWE SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

TIME 13:01:05

SUMMARY PAGE 4

 ID BID ITEM	QUANTITY UOH	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	16,460		16,460	16459.80
TOTAL CURRENT CONTRACT COST	•	16,460	0	16,460	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		16,460	. 0	16,460	
Government-Furnished Property		0		0	
SUBTOTAL	•	16,460	0	16,460	
Contingencies	10.0%	1,646	0	1,646	
SUBTOTAL	•	18,106	0	18,106	
SIOH (S&A)	5.0%	905	0	905	
CURRENT WORKING ESTIMATE	•	19,011	0	19,011	•
					•
Estimated Construction Time	365 Days				

4-363

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

SUMMARY PAGE

TIME 13:01:05

CONTRACTOR DIRECT SUMMARY

ID	CONTRACTOR	PN	QUANTITY	UOH	MANHRS	LABOR	EQUIPMENT		** TOTAL D:		* SUBCON W/OH&P		SUBTOTAL
λλ	GENERAL/PRIME		1.00	EÀ	153	4,870	26	8,684	13,580	100.0%	;	0	13,580
	TOTAL DIRECT				153	4,870	26	8,684	13,580	100.08	ı		

4-364

CONTRACTOR INDIRECT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

TIME 13:01:05

SUMMARY PAGE

ID	CONTRACTOR	PM	SUBTOTAL	OVERHEA AMOUNT			PROFIT						ACT ****** UNIT COST
λλ	GENERAL/PRIME		13,580	 1,358	10.0%	0.0	1,120	7.5%	2.5%	0.08	16,460	100.0%	16459.77
	TOTAL OVERHEAD & PROFIT			 1,358	10.0%		 1,120	7.5%					

CSI DIVISION SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

TIME 13:01:05

SUMMARY PAGE 7

						*x	*** TOTAL *	
•	ID CSI DIVISION	MANHOURS	LABOR	EQUIPMENT			DIRECT	
•								
	16 ELECTRICAL	153	4,870	26	8,271	414	13,580	
	TOTAL DIRECT	153	4,870	26	8,271	414	13,580	

4-366

SYSTEMS SUMMARY

# U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

TIME 13:01:05

SUMMARY PAGE

					***	* TOTAL *	_
ID SYSTEM	HANHOURS	LABOR		MATERIAL		DIRECT	_
							_
11 INTERIOR ELECTRICAL	153	4,870	26	8,271	414	13,580	
TOTAL DIRECT	153	4,870	26	8,271	414	13,580	

4-367

EQUIPMENT SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

TIME 13:01:05

SUMMARY PAGE 9

EQUIP DESC		LIFE HRS	** BOOK V	VALUE *** OWNRSHP	ADJ FA	ACTOR OVTH	ADJUSTD OWNRSHP	BOOK OP EXPENSE	HRLY -	UPB RATE	**** TOTAL HOURS	COST
ENI20 SHAL	L TOOLS	. &							1.40	1.40	18	26
TOTAL PROJE	CT EOUIPHENT HOURS										18	26

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-10: BUILDING 7272

TIME 13:01:05

SUMMARY PAGE 10

LABOR SUMMARY

CDIFT	DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVI.	HRLY -	UPB RATE		****COST	
CRAFI	DESCRIPTION										
LSHMT	ELECTRICIANS SHEET METAL WORKERS STEAM/PIPEFITTERS	20.50 19.90 20.95	0.0% 0.0% 0.0%	24.08 24.08 24.08	5.20		29.88	25.79 25.06 26.12	131 5 17	4,224 149 496	
TOTAL	PROJECT MANHOURS								153	4,869	

* * * END OF SUMMARY REPORT * * *

4-369

PROJECT ID: 727210

CURRENCY in DOLLARS

#### **DEFINITE PURPOSE** A-C V*S DRIVES VVI 5-150 HP



The Definite Purpose, WI Three-Phase Input A-C V★S Drive operates directly from 460 or 575 volt, three-phase, 50/60 Hz plant power. By producing adjustable frequency, adjustable voltage three-phase output, the A-C V+S Drive allows the use of an A-C uirrel cage induction motor as an adjustable speed device. The lance A-C V*S Drive consists of the following elements:

ONTROLLER - The controller is available in a standard NEMA 12 enclosure 5-10 HP, NEMA 12 Ventilated enclosure 15-25 HP, and NEMA 1 enclosure 30-150 HP. The regulator is of modular construction for quick and easy repair when necessary. All adjustments are conveniently located, so the drive can be quickly adjusted to meet application requirements. The controller provides standard 6 to 60 Hz, 460 or 575 volt A-C maximum output for constant torque applications or 6-66 Hz maximum output for variable torque applications.

OPERATOR'S CONTROL STATION - Contains the speed adjustment potentiometer and control devices to operate the drive.

A-C MOTOR - The three-phase A-C motor can be driven as an adjustable speed device by the A-C V★S Drive. Furthermore, one or more motors can be used with a single controller as long as the total motor full load current does not exceed the maximum motor sine wave current rating of the controller. (1)

STANDARD INDUCTION MOTORS offer approximately 3% speed regulation from no load to full load due to motor "slip." These motors are frequently carried in stock. Consult the A-C motor price pages for standard induction motors with protected, totally enclosed, explosion-proof, or special enclosures.

SYNCHRONOUS MOTORS of either the permanent magnet rotor (PMR) or synchronous reluctance design provide 0% speed regulation from no load to full load. Motor speed is uniquely and completely controlled by controller output frequency. They are ideally suited for: 1) Applications requiring little or no speed change with a change in load, 2) Multi-motor applications where identical motor-to-motor shaft speeds are required. Synchronous motors normally are not operated above base speed in the constant horsepower region. For operation above 60 Hertz contact Reliance Electric Sales Office.

- See Selection and Application of A-C V★S Drives manual D-9054, or contact your Reliance Electric Sales Office for assistance.
  - Contact your Reliance Electric Sales Office for assistance where operation above 70 Herzz for 2 pole motors and 90 Herzz for all other motors is required.
- (3) Variable Torque Controllers are preset for 6-66 Hz maximum.



#### STANDARD FEATURES

- Controller speed range of 6 to 120 Hert; with a constant torque capability up to 90 Hert or constant horsepower above 60 Hertz
- Electronic reversing from any speed.
- Start-stop and speed selection with coast-to-rest as standard or ramp-to-rest by jumper selection on "stop."
- Jog at preset speed or at speed set on speed potentiometer.
- Input tuses
- Insensitive to incoming power phase sequence.
- Acceleration/deceleration control adjustable over range of 2 to 20 seconds by separate ramps.
- Minimum speed adjustment of 6 to 35 Hertz.
- Adjustable volts/Hertz.
- Adjustable voltage boost for increasing breakaway and accelerating torque.
- Output frequency stabilized to  $\pm 0.5\%$  of set speed for  $\pm 10\%$  to  $\pm 5\%$  change in line voltage or 15°C change in ambient temperature.
- Three-phase output voltage regulated to  $\pm 1\%$  of rated voltage with + 10% to -5% variations in plant power.
- Standard off-the-shelf, NEMA B and synchronous motors (3600, 1800, 1200 rpm) can be used without derating controller.
- Automatic shutoff under output short circuit conditions or when load current exceeds 150% of maximum output amps (FMS) for constant torque drives or 110% of maximum output amps (RMS) for variable torque drives.
- Input fuses.
- Line transient protection prevents power line transients from harming the controller
- Relay contact to provide external signal for IET and run condition.
- Monitor lamps for each power stage provide immediate indication of drive functioning.
- Digital master/follower capability where several drives must operate at the same speed.
- Operator control isolation increases operator safety
- Pre-engineered modification kits can be installed in the standard controller enclosure.
- Adjustable Full-Time Current Limit 50 to 150% of controller full-load rating on constant torque controllers or 50 to 110% of controller full-load rating on variable torque controllers.
- Tester Card for use during startup and to simplify troubleshooting.
- 24 volt D-C control circuits (start, jog. forward, reverse).

#### OPTIONAL FEATURES

- Dynamic Braking up to 150% of drive rating on intermittent basis.
- Isolated Process Control Follower accepts 0 to 5 mA, 1 to 5 mA, 4 to 20 mA, 10 to 50 mA, 0 to 10 VDC or 25 to 250 VDC signal.
- Input Disconnect.
- Output Contactor tor positive motor disconnect.
- Output Overload Relays using individual phase bimetallic thermal
- Frequency Meter 0 to 120 Hz Scale.
- Ammeter ampere scale depending upon drive rating
- Voltmeter 0 to 500V scale. (460V drives) or 0 to 750V scale (575V drives).
- Isolation Transformers.
- 115 VAC Control Power for operator's control devices.
- Master Isolated Reference Transmitter and Receiver operates up to 10 drives from one operator control with each drive having speed trim capabilities.
- Master Controller operates up to 12 drives at the same speed from one operator control
- Manual or Auto Bypass To switch the motor to or from the controller to the line.
- LED Status display panel door mounted. Separate LED indication of Power Run, Overcurrent, Overvoltage, Line Fault, Motor Over Current, External Fault.
- Door mounted operator's control station.
- Available CSA.
- Pressure-to-Electrical transducer accepts a 3-15 psi signal for automatic control.
- Auto-restart after controller fault. For controllers in remote or unmanned locations subject to line disturbances.

  Other options available - Contact your Reliance Electric Sales Office
- for more information.



#### **DEFINITE PURPOSE** A-C V+S DRIVES VVI MODIFICATIONS

#### LIST OF MODIFICATIONS

Description	Variable Torque (1VT) HP	Constant Torque (24C) HP	460V Model	\$75V Model	Page
Separately Mounted Devices					
Voltmeter	5-150	5-125	34C401 •	34C402	D1-28
Frequency Meter	5-150	5-125	34C421 +	34C422	D1-28
Ammeler	5	5	34C418 •	34C418	D1-28
Ammeter	71/2-10	71/2	34C417 +	340417	D1-28
Ammeter	-	10	34C414	34C414	D1-28
Ammeter	15-20	15	34C415	34C415	D1-28
Ammeter	25	20	34C416 ◆	34C416	D1-28
Ammeter	-	25-30	34C419 ◆	34C419	D1-28
Ammeter	30~50	40	34C409 ◆	34C40 <del>0</del>	D1-28
Ammeter	60-100	50-75	35C401 ◆	35C401	D1-28
Ammeter	125-150	100-125	35C402◆	35C402	D1-28
Input Disconnect	5	5	34C437 <b>♦</b>	34C437	D1-28
Input Disconnect	71/2-10	71/2	34C438 ◆	34C438	D1-28
Input Disconnect	-	10	34C439 +	34C439	D1-28
Input Disconnect	15-20	15	34C440 ◆	34C440	D1-28
Input Disconnect	25	20	34C441 ◆	34C441	D1-28
Input Disconnect	30-50	25-40	34C444 ◆	34C444	D1-28
Input Disconnect	60-100	50-75	35C403◆	35C403	D1-28
Input Disconnect	125-150	100-125	35C404 ◆	35C404	D1-28
Pressure-to-Electrical					
Transducer	5-150		34C601 ◆	34C601	D1-28
Process Controller Interface	5-150	5-125	34C482 ◆	34C482	D1-29
Manual Bypass	5-150	5-125	-	-	D4-4
Motor Overload	5-25	5-20	34C452 ◆	34C552	D1-29
Motor Overload	30-50	25-40	34C453 ◆	34C553	D1-29
Motor Overload	60-100	50-75	35C407 ◆	35C507	D1-29
otor Overload	125-150	100-125	35C408 ◆	35C508	D1-29
15 VAC Control	5-150	5-125	-	-	D1-28
Isolation Transformers	5-150	5-125	_	-	D1-30
Line Reactors	5-150	5-125	-	-	D1-30
Controller Enclosures	5-150	5-125	-	-	D1-30 D4-3
Other Modifications	5-150	5-125	-		04-3
LED 1st Fault Panel	5-150	5-125	34C610 <b></b>	34C610	D1-28
Auto Restart After Fault	5-150	5-125	34C611 ◆	34C611	D1-28

#### MODIFICATIONS

LED 1ST FAULT DISPLAY PANEL provides a door mounted visual display of controller status with 7 LED's indicating: VFD Power On, VFD Run, VFD Overcurrent, VFD Overvoltage, Input Line Fault, Motor Overcurrent, External Fault.

Model 34C610◆	(for 'U' suffix drives only)	\$625 List
Factory installed		\$650 List

AUTO-RESTART AFTER CONTROLLER FAULT OR POWER OUTAGE. Reliance A-C V+S controllers will attempt a restart after power failure as a standard feature provided the controller is in the "Auto" mode and continues to receive a Run command via a contact closure on the "Auto" start terminals. (NOTE: If the controller has protected itself from a low line condition prior to the power failure, the controller will not attempt a restart.) This modification attempts up to three restart attempts after either a controller fault or power Outland

5 5		
Model 34C611 ◆	(for 'U' suffix IVT only)	\$470 List
Factory Installed	(	\$500 List

115 VAC CONTROL KIT is used when start, stop and other control functions are to be input at 115 volt A-C rather than the controller's standard 24 volt D-C. This would normally be used only when the drive is to interact with other 115 volts systems. See Page D4-3 for pricing.

INDICATING METERS are provided in NEMA 1 enclosures for separate mounting. The meters listed below provide indications of the A-C V+S Drive Controller's Speed (0-110%, 0-66 Hz Dual Scale), voltage, current (scale depending upon controller rating), and input kilowatt (scale depending upon controller rating). (Wt. 3 lbs)

Special Meter Scale	 \$55 List

		Constant			List	Price
Meter Indicating	Variable Torque (1VT) HP	Torque Controller (24C) HP	460 Volt Model	575 Volt Model	Factory Installed	Customer Installed
Speed Indicator	5-150	5-125	34C421 <b>◆</b>	340422	\$338	\$275
Voltage	5-150	6-125	34C401 ◆	340402	275	200
Current	5	5	34C418 +	34C418 +	275	200
	71/2-10	71/2	34C417 +	34C417	275	200
	_	10	34C414	34C414 +	275	200
	15-20	15	34C415 +	34C415	275	200
	25	20	340416◆	34C416 +	275	200
	_	25-30	340419	34C419 ◆	275	200
	30-50	40	34C400 +	34C409 +	275	200
	80-100	50-75	35C401 +	35€401 ◆	275	200
	125-150	100-125	35C402 ◆	35C402 ◆	275	200

INPUT DISCONNECT KIT provides a positive disconnect of all power input leads for the controllers. This kit is designed to mount internal to the controller enclosure and includes a thru-the-door interlocking handle. Will accept a padlock lockout. (Wt. 3 lbs)

The basic switch is a magnetic, molded case circuit breaker.

			UPTING			IPUT INECT KIT
Variable	Constant	Sym. Amps			Liet	Price
Torque Controller (1VT) HP	Torque Controller (24C) HP	460 VAC	575 VAC	Model	Factory Installed	Customer Installed
5	5	65,000	25,000	34C437 ◆	\$382	\$312
71/2-10	71/2	65,000	25,000	34C438◆	382	312
-	. 10	65,000	25,000	34C439 ◆	413	344
15-20	15	65,000	25,000	34C440 ◆	415	345
25	20	65,000	25,000	34C441 ◆	475	406
30-50	25-40	65.000	25,000	34C444 ◆	800	531
60-100	50-75	65,000	25.000	35C403◆	915	845
125-150	100-125	65,000	25,000	35C404 ◆	1,163	1,095

PRESSURE-TO-ELECTRICAL TRANSDUCER converts a 3-15 psi pneumatic process signal into an electrical signal which the drive is designed to follow. This kit mounts conveniently inside the controller. An unmounted Auto-Manual switch is provided.

NOTE: When ordered Factory Installed with a separately enclosed Line Bypass. This kit mounts inside the Line Bypass Enclosure. Please specify this kit as Factory Installed in the Line Bypass Cabinet when ordering with separately enclosed Line Bypass on pages D4-4 thru D4-5.

Variable			List Price		
Torque Controller (1VT) HP	Model	Weight	Factory Installed	Customer Installed	
5-150	34C801 ◆	1	\$440	\$375	

DOOR MOUNTED OPERATOR'S CONTROL STATION includes start/stop/reset switch and manual speed potentiometer.

Model 10C4005	\$175 L	ist
Factory Installed	\$200 L	jst







MOTOR OVERLOAD KIT contains a thermal overload relay designed to protect one A-C motor from extended overload operation. It is important to note that this kit effectively provides overload protection for single motor applications only. Multiple motor applications may require individual overload relays for each of the motors in the system to comply with electrical codes.

This motor overload relay is suitable for operation down to one-half base speed of the motor. It may not protect the motor when operating below one-half base speed because, at these speeds, motor damage can be caused by factors other than overloads. For maximum motor protection under these conditions, the use of thermal protection embedded in the motor windings is recommended. This kit is designed to mount internal to the controller enclosure.

			MOTOR O	VERLOAD I	RLOAD KIT			
Variable	Constant	Man	I-1 (4)	List Price				
Torque Controller	Torque Controller			Factory	Customer			
	(24C) HP	460 VAC	575 VAC	Installed	Installed			
5-25	5-20	34C452	34C552	\$319	\$250			
30-50	25-40	34C453+	34C553	388	319			
60-100	50-75	35C407◆	35C507	388	319			
125-150	100-125	35C408+	35C508	461	393			

OUTPUT CONTACTOR KIT provides a positive disconnect of all controller output leads to the motor. This kit is designed to mount internal to the controller enclosure. (Wt. 10 lbs)

		OUTPU	OUTPUT CONTACTOR KIT (1)			
Variable	Constant		List Price			
Torque Controller (1VT) HP	Torque Controller (24C) HP	Model	Factory Installed	Customer Installed		
5-10	5-71/2	34C456◆	\$ 563	\$ 494		
15-20	10-15	34C458◆	563	494		
25	20	34C459◆	619	550		
30-50	25-40	34C460◆	1,106	981		
60-100	50-75	35C409◆	1,575	1,450		
125-150	100-125	35C410◆	2,786	2,661		

OPTIONAL AUXILIARY CONTACTS: Maximum two (2) per contactor kit. These contacts are used for auxiliary control functions and are installed on the output contactor. An output contactor must be ordered if these are required. As an alternate, if an output contactor is not required, control relays can be used. Refer to the modification section.

Ordering Number	Contacts	List Price
608830-2R	1NO, 1NC	\$50
608830-2S	2NC	50
608830-2T	2NC	50
608830-2V	1NC	50

#### SWITCH RATING

Load	Voltage	Current (A) Normal
Inductive	110-125	3.00
A-C	220-250	1.50
1 4-0	440-480	0.75
5.0	115-125	1.10
D-C	230-250	0.55

(1) Not available as a Factory Installed option on Chassis units.

#### **DISCOUNT RE-3AC and RE-5AC**

Normally carried in stock.

#### DEFINITE PURPOSE A-C V*S DRIVES VVI MODIFICATIONS

DYNAMIC BRAKING KIT WITH CURRENT LIMIT (This kit is recommended for high inertia loads) provides rapid deceleration of the drive motor and/or enables the controller to provide 150% intermittent braking to the motor. The kit dissipates through resistors, in the form of heat, the power regenerated by the motor during deceleration or intermittent overhauling loads.

The kit contains an adjustable regeneration current limit circuit which decreases the drive's Decel Rate and Accel Rate as required to stay within a given current limit. The range of this deceleration current limit is approximately 80 to 150% of the drive's full-load current. This kit also includes motoring current limit, which is the same as in the Current Limit Kit. Model 34C511.

The Dynamic Braking Kit, including the resistor assembly, is designed to mount inside the controller enclosure. The resistor will be mounted in a NEMA 1 external enclosure. (Wt. 15 lbs)

	DYNAMIC BRAKING KIT (1)			
Constant Torque	Model		List Price	
Controller	Мо	361	Factory	Customer Installed
(24C) HP	460 VAC	575 VAC	Installed	
5-10	34C474	34C574	\$913	\$844
15-20	34C475◆	34C575	913	844
25-40	34C479+	34C579	1,875	1,750
50-75	35C405◆	35C505	2,500	2,375
100-125	35C406◆	35C506	4,063	3,938

ISOLATED PROCESS CONTROLLER INTERFACE KIT enables the A-C V★S Drive to follow a 0-5, 1-5, 4-20, 10-50 mA; or 0-4, 0-8, 0-10 VDC grounded or ungrounded signal from a process controller and to operate over a greater speed range than the 5:1 range provided by the process controller.

An optional Voltage/Tachometer Follower Kit, Model 14C223, may be added to the Process Controller Interface Kit. The voltage source is generally a tachometer generator connected to an entirely separate machine. The kit will accept an input signal of 25 to 250 VDC to obtain maximum speed. The kit has a trim pot mounted on the printed circuit board. The maximum permissible input voltage is 250 VDC. The input impedance is approximately 80,000 ohms.

The Tachometer Interface Adapter, Model 14C221, provides a means to automatically control the speed of the A-C V+S Drive from a tachometer signal. The voltage source is generally a tachometer generator connected to an entirely separate machine. Either an A-C or D-C tachometer can be used. Maximum input signal is 250 volts.

Auto-Manual switch provided.

This kit is designed to mount inside the controller enclosure.

Model 34C482◆	
Optional Voltage Follower Kit Model 14C223♦ (Wt. 2 lbs)	\$75 List
Model 14C221 ◆ (Wt. 2 lbs)	\$88 List



EFFECTIVE January 2, 1991 D1-29

#### DEFINITE PURPOSE A-C V*S DRIVES VVI MODIFICATIONS

MASTER ISOLATED REFERENCE controls up to 10 separate drives with the reference circuit of each drive isolated from all other drives and from the reference input. The reference input can be from an A-C or D-C tachometer, conventional self-contained speed potentiometer, instrument interface, or other voltage source. A self-contained linear voltage timing circuit offers separate rates of controlled acceleration and deceleration: 1 to 30 seconds. Each drive speed reference can be "trimmed" in relation to each other.

TRANSMITTER: See description and pricing on page D4-12 option section page. Mounts separate from the controller.

Model 11C90♦ (Wt. 10 lbs)

RECEIVER: This kit converts the pulse width modulated signal from the transmitter to a 0-10 volt D-C reference signal. The kit also includes a relay, for group starting and stopping, and an automatic/manual selector stitch. Kit mounts conveniently inside the controller.

MASTER CONTROLLER enables the operator to simultaneously control the speed of several drives from one location. See description and pricing on page D4-12.

Models 9C53◆ 9C54◆ (Wt. 8.5 and 9.6 lbs, respectively)

CONTROLLER ENCLOSURES, available as alternates to the standard enclosures, are listed below. Specify the controller model and make the appropriate deduction from or addition to the standard price.

HP	Enclosure	460 Volt Controller Model	575 Volt Controller Model	List Price
5	Chassis	2404005	24C5005	Deduct \$269
71/2	Chassis	24C4007	24C5007	Deduct \$269
10	Chassis	24C4010	24C5010	Deduct \$269
15	Chassis	24C4015	24C5015	Deduct \$313
20	Chassis	2404020	24C5020	Deduct \$313
25-30	Chassis	24C4030	24C5030	Deduct \$344
40	Chassis	24C4040	24C5040	Deduct \$344
25-30	NEMA 12 Ventilated	24C4230	24C5230	Add \$656
40	NEMA 12 Ventilated	24C4240	24C5240	Add \$663
50-75	NEMA 1 Positive Pressure	24C4275	24C5275	Add \$1,063
100-125	NEMA 1 Positive Pressure	24C42125	24C52125	Add \$1,063

HP	Enclosure	460 Volt Controller Model	575 Volt Controller Model	List Price
5	Chassis	1VT4005U	1VT5005C	Deduct \$263
71/2	Chassis	1VT4007U	1VT5007C	Deduct \$263
10	Chassis	1VT4010U	1VT5010C	Deduct \$263
15	Chassis	1VT4015U	1VT5015C	Deduct \$263
20	Chassis	1VT4020U	1VT5020C	Deduct \$300
25	Chassis	1VT4025U	1VT5025C	Deduct \$300
30	Chassis	1VT4030U	1VT5030C	Deduct \$331
40	Chassis	1VT4040U	1VT5040C	Deduct \$331
50	Chassis	1VT4050U	1VT5050C	Deduct \$331
30	NEMA 12 Ventilated	1VT4230U	1VT5230C	Add \$638
40	NEMA 12 Ventilated	1VT4240U	1VT5240C	Add \$638
50	NEMA 12 Ventilated	1VT4250U	1VT5250C	Add \$638
60	NEMA 1 Positive Pressure	1VT4260U	1VT5260C	Add \$1,031
75	NEMA 1 Positive Pressure	1VT4275U	1VT5275C	Add \$1,031
100	NEMA 1 Positive Pressure	1VT42100U	1VT52100C	Add \$1,031
125	NEMA 1 Positive Pressure	1VT42125U	1VT52125C	Add \$1,031
150	NEMA 1 Positive Pressure	1VT42150U	1VT52150C	Add \$1,031



ISOLATION TRANSFORMERS are provided only for use on the input A-C line to the controller. The transformer enclosure is NEMA 1. Although Reliance solid-state drives are designed to operate from normal industrial power distribution systems with the recommended maximum A-C line distribution system capacity without the need of an isolation transformer, the following benefits of isolation transformers should be considered.

- 1. Local codes may require a transformer.
- Where environmental conditions subject the drive (particularly the motor) to distinct possibility of accidental or partial grounding.
- Transformer Isolates the V★S Drive circuitry from plant A-C line voltage adding increased reliability.
- The transformer will help reduce A-C line voltage transients from reaching the drive circuitry.

# ISOLATION TRANSFORMERS FOR THREE-PHASE A-C V+S VVI DRIVES (1) (OPERATION FROM 60 HZ POWER ONLY)

See page D4-17 for specifications, prices, dimensions and weights.

Variable Torque Controller (1VT) HP	Constant Torque Controller (24C) HP	Transformer KVA
5	-	71/2
71/2	5	11
10	71/2	15
15	10	20
20	15	27
25	-	34
30	20	34
-	25	51
40	30	51
50	40	63
60	-	75
75	50	93
100	60	118
-	75	118
125	-	145
150	100	175
-	125	175

LINE REACTORS can be used to provide additional impedance if the A-C line short circuit capacity exceeds the maximum allowable short circuit capacity of the drive as listed under service conditions on page D1-36 or D1-37. Line reactors are an alternative to using isolation transformers to add impedance providing that line voltage corresponds to the controller rating. The line reactors are supplied in NEMA 1 enclosures designed for separate mounting. See page D4-19 for application information, sizing, pricing and dimensions.

 An input isolation transformer is required for operation on comer grounded delta plant power systems.





#### **DEFINITE PURPOSE** A-C V*S DRIVES VVI 5-150 HP

### **ENGINEERING DATA**

### MOUNTING DIMENSIONS AND WEIGHTS (NOT FOR CONSTRUCTION)

PHYSICAL DIMENSIONS OF 5-10 **HORSEPOWER** CONTROLLERS

le	Constant	
8	Torque	
ler	Controller	NEMA

WEIGHT (lbs)

Variable Torque Controller (1VT) HP	Constant Torque Controller (24C) HP	Chassis	NEMA 12 Cabinet
5	5	190	205
71/2	71/2	190	205
10	10	190	205

PHYSICAL DIMENSIONS

OF 15-25 **HORSEPOWER** CONTROLLERS

WEIGHT	(the
WEIGHT	(103

Variable Torque Controller (1VT) HP	Constant Torque Controller (24C) HP	Chassis	NEMA 12 Cabinet
15	15	220	235
20	20	220	235
25	-	220	235

CABINET

CABINET





CHASSIS





RELIANCE ELECTRIC



#### **ENGINEERING DATA**

### MOUNTING DIMENSIONS AND WEIGHTS (NOT FOR CONSTRUCTION)

PHYSICAL DIMENSIONS OF 25-30 HP CONTROLLERS

WEIGHT (lbs)

	Constant Torque Controller (24C) HP		NEMA 1 Cabinet	NEMA 12 Cabinet
30	25-30	310	352	552

PHYSICAL DIMENSIONS OF 40-50 HP CONTROLLERS

WEIGHT (Ibs)

	Constant Torque Controller (24C) HP		NEMA 1 Cabinet	NEMA 12 Cabinet
40-50	40	330	370	570

#### CABINET









Variable Torque	Constant Torque	NEMA 12
Controller (1VT) HP	Controller (24C) HP	Cabinet
30-50	25-40	





#### DEFINITE PURPOSE A-C V*S DRIVES VVI 5-150 HP

## **ENGINEERING DATA**

## MOUNTING DIMENSIONS AND WEIGHTS (NOT FOR CONSTRUCTION)



#### PHYSICAL DIMENSIONS OF 50-150 HORSEPOWER CONTROLLERS

WEIGHT (	lb:
----------	-----

Variable Torque Controller (1VT) HP	Constant Torque Controller (24C) HP	NEMA 1
60-100	50-75	800
125-150	100-125	1000

NEMA 1 ENCLOSURE FOR 60 THRU 100 HP Variable Torque (1VT) Controllers FOR 50 THRU 75 HP Constant Torque (24C) Controllers



NEMA 1 ENCLOSURE FOR 125 THRU 150 HP Variable Torque (1VT) Controllers FOR 100 THRU 125HP Constant Torque (24C) Controllers

DIMENSIONS IN INCHES







### REPLACEMENT MODULES

## 5-125 HP (CONSTANT TORQUE)

THREE-PHASE, 460 VOLT INPUT/OUTPUT									
		Fuse Kit	Power Module Kit	Regulator Card Kit					
	1	Each in contains	Each lift contains	Each lit contains					
		(4) KN Fuses (1) Power Supply Fuse (3) Input Fuses (3) Control Fuses (2) Cooling Fan Fuses (00–100 HP (3) Cooling Fan Fuses 125–150 HP	(1) D-C Heat Sink Assembly (1) Duput Transhior (1) Base Driver Card (1) Gaie Driver Card	(1) TSTH Card (3) VTAB Card (3) VTDB Card (3) CLSA Card (1) VTGA Card 6–40 HP (1) VTDB Card 50–125 HP					
НР	Model Number	Kit Number	Kit Number	Kit Number					
5	24C4205U	K-672-AF	K-673-AH	K-670-O					
71/2	24C4207U	K-672-AF	K-673-AK	K-670-O					
10	24C4210U	K-672-AF	K-673-AK	K-670-Q					
15									
12	24C4215U	K-672-AG	K-673-AJ	K-670-O					
20	24C4215U 24C4220U	K-672-AG K-672-AG	K-673-AJ	K-670-Q					
				K-670-Q K-670-Q					
20	24C4220U	K-672-AG	K-673-AJ	K-670-Q					
20 25	24C4220U 24C4130U	K-672-AG K-672-AH	K-673-AJ K-673-F	K-670-Q K-670-Q K-670-Q K-670-Q					
20 25 30	24C4220U 24C4130U 24C4130U	K-672-AG K-672-AH K-672-AH	K-673-AJ K-673-F K-673-F	K-670-Q K-670-Q K-670-Q					
20 25 30 40	24C4220U 24C4130U 24C4130U 24C4140U	K-672-AG K-672-AH K-672-AH K-672-AJ	K-673-AJ K-673-F K-673-F K-673-F	K-670-Q K-670-Q K-670-Q K-670-Q					
20 25 30 40 50	24C4220U 24C4130U 24C4130U 24C4140U 24C4175U	K-672-AG K-672-AH K-672-AH K-672-AJ K-672-AK	K-673-AJ K-673-F K-673-F K-673-F K-673-P	K-670-O K-670-O K-670-O K-670-O K-670-R					
20 25 30 40 50	24C4220U 24C4130U 24C4130U 24C4140U 24C4175U 24C4175U 24C4175U	K-672-AG K-672-AH K-672-AH K-672-AJ K-672-AK K-672-AK K-672-AK	K-673-AJ K-673-F K-673-F K-673-F K-673-P K-673-P	K-670-Q K-670-Q K-670-Q K-670-Q K-670-R K-670-R					

#### 5-125 HP (CONSTANT TORQUE) THREE-PHASE, 575 VOLT INPUT/OUTPUT

		Fuse Kit	Power Module Kit	Regulator Card Kit
	1	Each lift contains:	Each kit contains	Each in comains
		(4) 30 Fuses (1) Power Supply Fuse (3) Input Fuses (3) Control Fuses (3) Cooling Fan Fuses (0-100 HP) (3) Cooling Fan Fuses 125-150 HP	(1) D-C Heal Sink Assembly (1) Output Transistor (1) Base Driver Card (1) Gale Driver Card	(1) TSTH Card (2) VTAR Card (1) VTDB Card (1) CLSA Card (1) VTQA Card (1) VTQA Card (2) VTQB Card (3) VTQB Card (4) VTQB Card (5) VTQB Card
НР	Model Number	Kit Number	Kit Number	Kit Number
5	24C5205U	K-672-AF	K-673-G	K-670-O
71/2	24C5207U	K-672-AF	K-673-G	K-670-O
10	24C5210U	K-672-AF	K-673-G	K-670-O
15	24C5215U	K-672-AG	K-673-H	K-670-Q
20	24C5220U	K-672-AG	K-673-H	K-670-Q
25	24C5130U	K-672-AH	K-673-AG	K-670-Q
30	24C5130U	K-672-AH	K-673-AG	K-670-Q
40	24C5140U	K-672-AJ	K-673-AG	K-670-Q
50	24C5175U	K-672-AK	K-673-P	K-670-R
60	24C5175U	K-672-AK	K-673-P	K-670-R
75	24C5175U	K-672-AK	K-673-P	K-670-R
100	24C51125U	K-672-AL	K-673-M	K-670-R
125	24C51125U	K-672-AL	K-673-M	K-670-R

#### 5-150 HP (VARIABLE TORQUE) 460 VOLT THREE-PHASE INPUT/OUTPUT

460	VOLI	HREE-PHASE INPUT/OUTPUT				
НР	Model	Kit	Kit	Kit		
	Number	Number	Number	Number		
5	1VT4005U	K-672-AF	K-673-AH	K-670-Q		
	1VT4205U	K-672-AF	K-673-AH	K-670-Q		
71/2	1VT4007U	K-672-AF	K-673-AH	K-670-Q		
	1VT4207U	K-672-AF	K-673-AH	K-670-Q		
10	1VT4010U	K-672-AF	K-673-AH	K-670-Q		
	1VT4210U	K-672-AF	K-673-AH	K-670-Q		
15	1VT4015U	K-672-AG	K-673-AJ	K-670-Q		
	1VT4215U	K-672-AG	K-673-AJ	K-670-Q		
20	1VT4020U	K-672-AG	K-673-AJ	K-670-Q		
	1VT4220U	K-672-AG	K-673-AJ	K-670-Q		
25	1VT4025U	K-672-AG	K-673-AJ	K-670-Q		
	1VT4225U	K-672-AG	K-673-AJ	K-670-Q		
30	1VT4030U K-672-AH	K-673-F	K-670-Q			
	1VT4130U K-672-AH	K-673-F	K-670-Q			
	1VT4230U K-672-AH	K-673-F	K-670-Q			
40	1VT4040U	K-672-AJ	K-673-F	K-670-Q		
	1VT4140U	K-672-AJ	K-673-F	K-670-Q		
	1VT4240U	K-672-AJ	K-673-F	K-670-Q		
50	1VT4050U	K-672-AJ	K-673-F	K-670-Q		
	1VT4150U	K-672-AJ	K-673-F	K-670-Q		
	1VT4250U	K-672-AJ	K-673-F	K-670-Q		
60	1VT4160U	K-672-AK	K-673-P	K-670-R		
	1VT4260U	K-672-AK	K-673-P	K-670-R		
75	1VT4175U	K-672-AK	K-673-P	K-670-R		
	1VT4275U	K-672-AK	K-673-P	K-670-R		
100	1VT41100U 1VT42100U		K-673-P K-673-P	K-670-R K-670-R		
125	1VT41125U 1VT42125U		K-673-P K-673-P	K-670-R K-670-R		
150	1VT41150L 1VT42150L		K-673-P K-673-P	K-670-R K-670-R		

#### 5-150 HP (VARIABLE TORQUE) 575 VOLT THREE-PHASE INPUT/OUTPUT

НР	Model	Kit	Kit	Kit
	Number	Number	Number	Number
8	1VT5005U	K-672-AF	K-673-G	K-670-Q
	1VT5205U	K-672-AF	K-673-G	K-670-Q
71/2	1VT5007U	K-672-AF	K-673-G	K-670-Q
	1VT5207U	K-672-AF	K-673-G	K-670-Q
10	1VT5010U	K-672-AF	K-673-G	K-670-O
	1VT5210U	K-672-AF	K-673-G	K-670-O
15	1VT5015U	K-672-AG	K-673-H	K-670-Q
	1VT5215U	K-672-AG	K-673-H	K-670-Q
20	1VT5020U	K-672-AG	K-673-H	K-670-O
	1VT5220U	K-672-AG	K-673-H	K-670-O
25	1VT5025U	K-672-AG	K-673-H	K-670-Q
	1VT5225U	K-672-AG	K-673-H	K-670-Q
30	1VT5030U	K-672-AH	K-673-AG	K-670-Q
	1VT5130U	K-672-AH	K-673-AG	K-670-Q
	1VT5230U	K-672-AH	K-673-AG	K-670-Q
40	1VT5040U	K-672-AJ	K-673-AG	K-670-Q
	1VT5140U	K-672-AJ	K-673-AG	K-670-Q
	1VT5240U	K-672-AJ	K-673-AG	K-670-Q
50	1VT5050U	K-672-AJ	K-673-AG	K-670-Q
	1VT5150U	K-672-AJ	K-673-AG	K-670-Q
	1VT5250U	K-672-AJ	K-673-AG	K-670-O
60	1VT5160U	K-672-AK	K-673-P	K-670-R
	1VT5260U	K-672-AK	K-673-P	K-670-R
75	1VT5175U	K-672-AK K-672-AK	K-673-P K-673-P	K-670-R K-670-R
100	1VT51100U	K-672-AK	K-673-P	K-670-R
	1VT52100U	K-672-AK	K-673-P	K-670-R
125	1VT51125U	K-672-AL	K-673-M	K-670-R
	1VT52125U	K-672-AL	K-673-M	K-670-R
150	1VT51150U	K-672-AL	K-673-M	K-670-R
	1VT52150U	K-672-AL	K-673-M	K-670-R

### **RECOMMENDED SPARE PARTS KITS**

kit tables listed cover standard Drives designated by model mber. The power module kits can be used with modified standard Drives.

Each kit contains the most essential parts for good spare parts protection and is ideal for start-up spares.

All orders not entered with the drive order should be entered with a Reliance Parts Distributor.

Contact your local Reliance Parts Distributor.



4-377





## INSTRUCTION MANUALS

Description	Variable Torque HP	Constant Torque HP	460 V Model	575 V Model	17M
Description					
Drive Instruction Manual					
containing Wiring Diagrams	5-150	5-125	All	All	D2-3124
and Dimensions	3-130				
Separately Mounted Devices	1		34C401	34C402	D-3926
Voltmeter	5-150	5-125		34C422	D-3927
Frequency Meter	5-150	5-125	34C421	34C418	D-3902
Ammeter	5	5	34C418	34C417	D-3902
Ammeter	71/2	71/2	34C417	34C414	D-3902
Ammeter	10	10	34C414	34C415	D-3902
Ammeter	15	15	34C415	34C416	D-3902
Ammeter	20	20	34C416 34C419	34C419	D-3902
Ammeter	25-30	25-30		34C409	D-3902
Ammeter	40	40	34C409	35C401	D-3902
Ammeter	50-75	50-75	35C401	35C402	D-3902
Ammeter	100-150	100-125	35C402		
nput Kilowatt Meter	5	5	1KW4008	1KW4008	D2-3033
Input Kilowatt Meter	71/2-10	71/2	1KW4015	1KW4015	D2-3033
	15-25	10-20	1KW4030	1KW4030	D2-3033
Input Kilowatt Meter Input Kilowatt Meter	30-40	25-30	1KW4050	1KW4050	D2-3033
Input Kilowatt Meter	50-100	40-75	1KW4120	1KW4120	D2-3033
Input Kilowatt Meter	125-150	100-125	1KW4200	1KW4200	D2-3033
	5	5	34C437	34C437	D-3929
Input Disconnect		71/2	34C438	34C438	D-3929
Input Disconnect	71/2-10	10	34C439	34C439	D-3929
Input Disconnect	15-20	15	34C440	34C440	D-3929
Input Disconnect		20	34C441	34C441	D-3929
Input Disconnect	25	25-40	34C444	34C444	D-3929
Input Disconnect	30-50	50-75	35C403	35C403	D-3929
Input Disconnect	60-100	100-125	35C404	35C404	D-3929
Input Disconnect	125-150		34C474	34C574	D-3930
Dynamic Braking		5-10	34C474 34C475	34C575	D-3930
Dynamic Braking	1 -	15-20	34C475 34C479	34C579	D-3976
Dynamic Braking	1 -	25-40	35C405	35C505	D-3976
Dynamic Braking	-	50-75	35C405 35C406	35C506	D-3976
Dynamic Braking	-	100-125			
Process Controller Interface	5-150	5-125	34C482	34C482	D-3931 D2-3149
Magnetic Contactor Bypass	5-150	5-125	-	-	
Master Controller	5-150	5-125	9C53	9C53	D-3727
Master Isolated Reference Receiver	5-150	5-125	34C492	34C492	D-3879
	5-25	5-20	34C452	34C552	D-3932
Motor Overload	30-50	25-40	34C453	34C553	D-3932
Motor Overload	60-100	50-75	35C407	35C507	D-3932
Motor Overload	125-150	100-125	35C408	35C508	D-3932
Motor Overload		5-71/2	34C456	34C456	D-3933
Output Contactor	5-10	10-15	34C458	34C458	D-3933
Output Contactor	15-20		34C459	34C459	D-3933
Output Contactor	25	20	34C460	34C460	D-3933
Output Contactor	30-50	25-40	35C409	35C409	D-3933
Output Contactor	60-100	50-75	35C410	35C410	D-3933
Output Contactor	125-150	100-125			D2-3126
LED 1st Fault Panel	5-150	5-125	34C610	34C610	D2-3126
Pressure to Electrical Transducer	5-150	-	34C601	34C601	D2-3026
Auto Restart After Fault	5-150	-	34C610	34C610	02-3120





# ENGINEERING DATA VARIABLE TORQUE (1VT) CONTROLLER RATINGS

. 1		A-C SI	UPPLY				A-C	OUTPUT		
				-Phase Hz, 575 V	Three-Phase 460 V			Three-Phase 575 V		
Drive Rating HP (4)	Input KVA	Maximum Input Amps	Input KVA	Maximum Input Amps	Output KVA	Max. Motor Sine Wave Amps (3)	Max. Controller Amps	Output KVA	Max. Motor Sine Wave Amps (3)	Max. Controller Amps
5	6.0	8.0	6.0	6.0	6.0	7.3	8.0	6.0	5.5	6.0
71/2	9.0	11.0	9.0	9.0	9.0	10.0	11.0	9.0	8.2	9.0
10	11.0	14.0	11.0	11.0	11.0	12.7	14.0	11.0	10.0	11.0
15	16.0	20.0	16.0	16.0	16.0	18.2	20.0	16.0	14.6	16.0
20	21.0	27.0	21.0	21.0	21.0	24.5	27.0	21.0	19.1	21.0
25	26.0	33.0	26.0	26.0	26.0	30.0	33.0	26.0	23.7	26.0
30	31.0	39.0	31.0	31.0	31.0	35.5	39.0	31.0	28.2	31.0
40	42.0	52.0	42.0	42.0	42.0	47.3	52.0	42.0	38.2	42.0
50	51.0	64.0	51.0	51.0	51.0	58.2	64.0	51.0	47.3	52.0
60	62.0	77.0	62.0	62.0	62.0	70.0	77.0	62.0	56.4	62.0
75	76.0	95.0	76.0	76.0	76.0	86.4	95.0	76.0	69.2	76.0
100	101.0	126.0	101.0	101.0	101.0	115.0	126.0	101.0	92.0	101.0
125	126.0	157.0	125.0	126.0	125.0	143.0	157.0	125.0	115.0	126.0
150	148.0	185.0	148.0	148.0	148.0	169.0	185.0	148.0	135.0	148.0

#### SERVICE CONDITIONS

Altitude	to 3300 ft.
Ambient Temperature Range	
Cabinet 0°C to 40°C (32°F	to 104°F)
Chassis 0°C to 55°C	
Atmosphere Non-Condensing Relative Humidity	
A-C Line Voltage Variation5%	
A-C Line Frequency Variation 50/60 F	1z + 2 Hz
Maximum A-C Line Distribution System	
KVA Capacity	42 KVA (1)
30-50 HP, 2	
60-100 HP, 4	82 KVA (1)
125-150 HP, 7	84 KVA (1)
Storage Temperature40°C to 65°C (-40°F	to 149°F)

#### APPLICATION DATA

Standard	
Service Factor	
Maximum Load	100% continuous
Regulation	
Voltage	<u>+</u> 1%
Frequency Stability Long 1	Term+0.5%
Continuous Speed Range	6 to 66 Hz
Maximum Output Voltage	
460 VAC Controller	460 VAC
575 VAC Controller	575 VAC

#### **ADJUSTMENTS**

#### PRODUCT PUBLICATIONS

Three-Phase Input A-C V★S Drive Data Sheet
460 Volt
575 Volt
Wiring Diagrams
5-25 HP
30-50 HP
60-150 HP
All Disable also a state of the

- (1) Distribution system capacity above the maximum recommended KVA requires using an isolation transformer or other means of similar impedance.
- (2) Change resistor for 2-98 seconds.
- (3) The max sine weve amps shown in this column must be used to properly size a controller for motors other than new Reliance Electric motors.
- (4) Controller sizes based on Reliance Electric energy efficient motor ratings.





### **ENGINEERING DATA** CONSTANT TORQUE (24C) CONTROLLER RATINGS

		ee-Phase Three-Phase Hz, 460 V 50/60 Hz, 575 V			460 VAC, Three-Phase			575 VAC, Three-Phase		
Drive Rating HP (1)	Controller Input KVA	Input Amps (RMS)	Controller Input KVA	Input Amps (RMS)	Controller Output KVA	Current Sine Wave 460 V 6-66 Hz (2)	Current Controller 460 V 6-66 Hz (3)	Controller Output KVA	Current Sine Wave 575 V 6-66 Hz (2)	Current Controller 575 V 6-66 Hz (3)
5	8.0	10.0	8.0	8.0	6.4	8.0	8.8	6.4	6.4	7.0
71/2	13.1	16.5	13.1	13.2	10.3	13.0	14.3	10.3	10.4	11.4
10	16.2	20.3	16.2	16.3	12.7	16.0	17.6	12.7	12.8	14.1
15	23.3	29.2	23.3	23.4	18.3	23.0	25.3	18.3	18.4	20.2
20	28.4	35.6	28.4	28.5	22.3	28.0	30.8	22.3	22.4	24.6
30	41.4	52.0	41.4	41.6	33.5	42.0	46.4	33.5	33.6	37.1
40	52.6	66.0	52.6	52.8	43.0	54.0	59.4	43.0	43.2	47.5
75	96.0	121.0	96.4	96.8	78.8	99.0	108.9	78.8	79.2	87.1
125	156.9	196.8	156.9	157.4	128.1	161.0	177.1	128.1	128.8	141.7

#### SERVICE CONDITIONS

Elevation
Ambient Temperature Range
Cabinet 0°C to 40°C (32°F to 104°F)
Chassis
Atmosphere Non-Condensing Relative Humidity 5 to 95%
A-C Line Voltage Variation5% to +10%
A-C Line Frequency Variation
Maximum A-C Line Distribution System KVA Capacity
5–20 HP
30–40 HP 263 KVA (1) 50–75 HP 482 KVA (1)
100–125 HP
Storage Temperature40°C to 65°C (-40°F to 149°F)

### **APPLICATION DATA**

Standard	
Service Factor	1.0
maxillum ( Oad 15/	0% for one minute
Out bedillation	
Voltage .	+1%
TOUGHT ON TOPM	D 5% of cot cooped
WINDOWS Sheed Bango (2)	6 to 66 Hz (2)
The strict of th	
400 VAC Controller	460 VAC
575 VAC Controller	575 VAC

- Distribution system capacity above the maximum recommended KVA requires using laciation transformer or other means of similar impedance.
- Contact Reliance for assistance where operation above 70 Hz for 2 pole motors and 40 Hz for all places. Hz for all other motors is required.
- Range can be changed by jumper selection on VSAA board, Frequency ranges shown are for 60 Hz selection.
- (4) Change resistor for 2-98 seconds.
- (5) Change jumper for ramp-to-rest rather than coast-to-rest.

#### **ADJUSTMENTS**

Standard (Nominal Values)	
Acceleration (4)	2 to 20 seconds
Deceleration (4) (5)	2 to 20 seconds
Volts/Hertz	6.4 to 19.12 V/Hz
Voltage Offset (Fundamental RMS)	0 to 37.5 volts
Minimum Frequency(3)	6 to 30 Hz
Maximum Frequency(2)(3)	30 to 60 Hz

#### **PRODUCT PUBLICATIONS**

1	General A-C V*S Drive Bulletin
•	Three-Phase Input A-C V★S Drive Data Sheet
	460 VAC Controller
	575 VAC Controller
	Application Manual D-9084
	Wiring Diagrams
	5-20 HP
	30-40 HP
	75-125 HP
1	Wiring diagrams showing interconnections
	of all standard kits and controls W/D 103774-73



0.2646



# Honeywell

## DELTA 560 Data Gathering Panel

DELTA 5600 Building Management System

#### GENERAL

The DELTA 560 Data Gathering Panel (DGP) is an intelligent data gathering panel used in the DELTA 5600 Building Management System. It preprocesses and interfaces data from 500 or more hardware points to the DELTA 5600 Data Bus. Microprocessor-based, the DELTA 560 DGP contains its own Operating System (OS), data files, and application programs. The DGP is downline loaded from the DELTA 5600 Systems's Level 6 Minicomputer and carries out its assigned tasks under the guidance of the minicomputer. If communications with the Level 6 Minicomputer are disrupted, the DELTA 560 DGP software independently executes resident application programs. As the major data gathering panel in a DELTA 5600 System, the DELTA 560 DGP collects data from "slave" DGPs. The DELTA 5600 System slave DGP is the microprocessor-based DELTA 540 DGP. Other DELTA System DGPs used as slaves are the Series 1000, Series 1200, DELTA 2000 DGPs, and FS20A Fire and Security DGPs. The DELTA 560 DGP interfaces data from these DGPs to the DELTA 5600 Data Bus either directly or through Leased Line Interface device.

#### **FEATURES**

- Microprocessor-Based Intelligence
- Highly Versatile Transmission Options
- Dynamic Energy Management Capabilities
- Resident Software Provides Reliability and Efficiency

#### MICROPROCESSOR-BASED INTELLIGENCE

The microprocessor-based DELTA 560 DGP greatly enhances overall DELTA 5600 functionality. Requests or commands from either the operator or the Level 6 Minicomputer are fed to the DELTA 560 DGP via the data bus for rapid distribution to remote DGPs. Likewise, information gathered from remote points is preprocessed in the DGP and transmitted



back to the Level 6 Minicomputer via the data bus. The DELTA 560 DGP executes (on a stand-alone basis) time, event, and energy management programs that have been downline loaded from the Level 6 Minicomputer. In addition, the DGP stores multiple Change-of-State (COS) alarms and transmits them on the data bus in order of assigned priority. If communication with the Level 6 Minicomputer is disrupted, the DELTA 560 DGP continues to carry out such building management assignments as:

- Field Point Scanning
- Digital COS Detection and Reporting
- Analog Limit Alarm Detection and Reporting
- Run Time Accumulation and Demand Meter Totalizing
- Resident Energy Management Programs
- Default Mode Operation

4-381

#### HIGHLY VERSATILE TRANSMISSION OPTIONS

variety of transmission options are available to interface a DELTA 560 DGP to slave DGPs and the DELTA 5600 Data Bus. Connection to the data bus is either direct wire or through a Leased Line Interface device, as follows:

Direct Wire

- 9600-baud via triaxial cable
- Leased Line Interface
- 600-baud tone
- 1200-baud tone via RS-232 compatible modems

Slave DGPs interface the DELTA 560 DGP using the options shown in Figure 1.

#### DYNAMIC ENERGY MANAGEMENT CAPABILITIES

Downline loaded Energy Management System (EMS) execution programs allow each DELTA 560 DGP to be functionally tailored to specific energy management requirements. Programs may be assigned to operate on a stand-alone basis, completely independent of other bus-connected processors. Standard EMS options include:

- Optimum Start/Stop
- Duty Cycling
- Enthalpy Control
- Zero Energy Band

- Load Reset
- Power Demand
- Warm-Up Cycle
- Night Purge
- Night Cycle
- Lighting Control

Each DELTA 560 DGP can execute Event-Initiated Program (EIP) and DELTA FORTRAN application packages. For a full discussion of the software capabilities of the DELTA-560 DGP refer to the D5600 DELTA 560 DGP Operating System Software Specification Data Sheet, Form 74-1443.

## RESIDENT SOFTWARE PROVIDES RELIABILITY AND EFFICIENCY

The DELTA 560 DGP processes information gathered by remote DGPs and sends this processed information to the Level 6 Minicomputer. This procedure reduces bus traffic and keeps the bus available for more critical information. To do this, the DELTA 560 DGP performs a reasonableness check and a minimum change evaluation on each analog value. Unreasonable values and non-significant changes are not communicated to the Level 6 Minicomputer. Alarm limit checks also are performed by the DELTA 560 DGP. Analog values that rise above (or fall below) assigned limits and all digital alarms are reported to the Level 6 Minicomputer as priority data.





#### DELTA 560 DGP-to-DELTA 1000 DGP: DC: 1200-baud dc current loop, 18 AWG Model: twisted-pair copper wire; 10,000 ft (3048 m) DELTA 560 DGP Single/dual transmission per NFPA 72D Prower Requirements (Primary): Type 1 or 2 100/120V ac + 10%, -15%, 47-63 Hz, 3.5A max Leased Line: 220/240V ac + 10%, -15%, 47-63 Hz, 1.7A max 600-baud tone; Type 1 or 2 Standby Battery: DELTA 560 DGP-to-DELTA 2000 DGP: 5.5A at 24V 50,000 baud coaxial cable, 10,000 ft (3048 m) max; 20,000 ft (6096 m) max with Rengerative **Environmental Operating Limits:** Repeater DC: half duplex Temperature: 32 to 120 F (0 to 49 C) Humidity: 90% rh maximum (noncondensing) Mounting: Storage Temperature: Full-Size Ring Cabinet -9 to 165 F (-23 to 74 C) **Auxiliary Models:** Program Entry: DELTA 1000 Transmission Boards: Operating System: 600-baud tone PROM Resident RS-232 RAM Resident 1200-baud (DC) Data File: DELTA 2000 Interface Boards: RAM Resident 50.000-baud coax DELTA 540 DGP Interface Boards: Data File Loading: Manual from Level 6 Minicomputer RS-232 Downline from Level 6 Minicomputer RS-422 Diskette via Techtran loader DELTA 5600 Bus Interface Boards: 9600-baud triaxial nsmission: 600-baud tone DELTA 560 DGP to DELTA 5600 Data Bus: 1200-baud RS-232 DC: 9600-baud over 75-ohm triaxial cable Max-Standby Battery imum distance: 10,000 ft (3048 m); maximum DELTA 560 DGP-to-DELTA 560 DGP dis-Capacity: tance 10,000 ft (3048 m); total bus length 300 Points (500 maximum with added memory) 18,000 ft (5490 m) maximum. DELTA 1000 DGPs: Leased Line: 1200-baud dc: 46 maximum 600-baud tone 600-baud tone: 99 maximum 1200-baud tone via RS-232 compatible RS-232 modem: 99 maximum DELTA 540 DGP: Single/dual transmission per NFPA 72D 2400-baud dc RS-422: 32 maximum per EIA Type 1 or 2 RS-232 compatible modem: 32 maximum per DELTA 560 DGP-to-DELTA 540 DGP: EIA Board DC: 2400-baud, 18 AWG twisted-pair copper 600-baud tone: 8 maximum DELTA 2000 DGPs: Maximum distance: 4000 ft (1219 m) Single/ 42 per channel dual transmission per NFPA 72D Type 1 or 2 Leased Line: Ring Cabinet Dimensions: 600-baud tone 37.25 in. (946 mm) high x 24 in. (610 mm) wide x 10 1200-baud tone via RS-232 compatible in. (254 mm) deep modems .... Single/dual transmission per NFPA 72D

### Honeywell

Type 1 or 2

Shipping Weight:

Approximately 65 lb (29.5 kg)

MUX

## Honeywell

# DELTA 540 Data Gathering Panel

DELTA 5600 Building Management System

#### **GENERAL**

The DELTA 540 Data Gathering Panel (DGP) is a microprocessor-based DGP. It gathers data from remote sensors and command points, and transmits this information to "intelligent" DELTA 560 DGPs. For fire and security applications, the 540 DGP interfaces FS20A DGPs to a DELTA 560 DGP. The 540 DGP performs serial-to-parallel data conversion and communicates with a 560 DGP in half- or full-duplex modes. Transmission is continuously monitored to insure operational integrity of the 540 DGP. Communication between 540 and 560 DGPs is accomplished by RS-422 digital transmission or Frequency-Shift-Keying (FSK) tone transmission via 600- or 1200-baud modems. A universal ring cabinet houses the DELTA 540 DGP.



- Field-Programmable Data Files
- Programmable Interpolation Tables
- Automatic Initialization on Power-Up

#### ANALOG INPUTS/OUTPUTS

Each DELTA 540 DGP has 16 analog inputs and eight analog outputs, all field-programmed. Analog inputs can monitor standard Honeywell temperature sensor signals, pressure sensor signals, resistance-to-period (R/P) signals, and industry standard voltage and current signals. The following input ranges are acceptable to a 540 DGP:

0 to 10 mV dc
0 to 100 mV dc
0 to 5 mA dc
4 to 20 mA dc
500-ohm Balco temperature sensor signals*
PT100 sensor signals*
RTD sensor signals (1000 to 3000 ohms)

*Readings are linearized by four internally programmed interpolation tables.



10960

Resistive, voltage, and current inputs are continuously self-calibrated to accommodate variations in ambient temperatures and power supply fluctuations. R/P failure detection is also provided, by comparison of the R/P input range to a preprogrammed range. Balco temperature sensors, PT100 devices, and RTD devices are linearly compensated by four interpolation tables programmed into the DELTA 540 DGP data file. Analog inputs to the 540 DGP are scanned and digitized, and have a 12-bit resolution. The converted digital value is held in the 540 DGP's memory for transmission to the DELTA 560 DGP.

Digital data from the 560 DGP is used to control analog outputs of the 540 DGP. These digital controlled analog outputs are programmed for direct conversion to standard 4 to 20 mA, 0 to 10V, or 4 to 7V signals. All digital-to-analog conversions have a 10-bit resolution. Using the 0 to 10V signal and a pneumatic transducer, a 3 to 13 lb/in² (21 to 90 kPa) pneumatic proportional signal can be obtained for driving pneumatic devices.

Setpoint adjustments are treated as analog outputs by the DELTA 540 DGP. They can be programmed to provide a voltage output to control electric or pneumatic evices.

Fotalizer inputs monitor contact closures that occur at a rate of up to 10 closures per second. DELTA 540 DGPs used in totalizer applications contain standby battery power to retain totalizer values in the case of ac power failure.

#### DIGITAL INPUTS/OUTPUTS

The 540 DGP monitors the status of up to 24 digital inputs. Sixteen digital outputs are available for control of momentary, maintained, universal, or magnetic latch relays. These relays are available in plug-in, remote, or stand-alone panel-mounted configurations. Momentary digital operations are point-programmable, with an actuation time range of 0.1 to 1.0 seconds.

#### POWER REQUIREMENTS

The DELTA 540 DGP is powered either by 24V ac, 50/60 Hz, supplied from a transformer or from 24V dc supplied by the DELTA 560 DGP or a separate 24V dc power supply. Power supplies are sized to accommodate all accessory devices (such as relays and analog output devices) used in the same enclosure with the DELTA DGP. Optional battery backup also is available for ne DGP.

#### SPECIFICATIONS

Model:

DELTA 540 DGP

Input/Output Capacity:

Digital/Analog DELTA 540 DGP: 66 Input/Output capacity

Digital DELTA 540 DGP: 42 Input/Output capacity

Power Requirements (Primary):

24V dc, 1A maximum 120V ac, 50/60 Hz, 0.2A maximum 24V ac, 50/60 Hz, 1A maximum

Standby Battery:

5.5A at 24V

**Environmental Operating Limits:** 

Temperature: 32 to 120 F (0 to 49 C)

Humidity: 95% rh maximum (noncondensing)

Storage Temperature:

-9 to 165 F (-23 to 74 C)

DGP Infilalization:

Automatically completed within 10 seconds after power on

Data File Entry:

Data file is PROM resident and is field entered via DELTA 560/540 DGP Test Set

Transmission:

DELTA 560 DGP-to-DELTA 540 DGP:

DC: RS-422 9600-baud, 18 AWG (1 mm), twistedpair copper wire

Maximum Distance: 4000 ft (1219 m)

Single/dual transmission per NFPA 72D Type 2 or 1

Leased Line:

600-baud tone

1200-baud tone via RS-232 compatible modems Single/dual transmission per NFPA 72D Type 2 or 1

Mounting:

Full-Size Universal Ring Cabinet Half-Size Universal Ring Cabinet

Dimensions:

Full-Size Universal Cabinet: 37 in. (940 mm) high x 24 in. (610 mm) wide x 9 in. (229 mm) deep

Half-Size Universal Cabinet: 18-5/8 in. (473 mm) high x 24 in. (610 mm) wide x 9 in. (229 mm) deep

Full-Size Subpanel: 36 in. (914 mm) high x 19 in.

(483 mm) wide x 6-1/2 in. (165 mm) deep

Half-Size Subpanel: 17-1/2 in. (444 mm) high x 19 in.

(483 mm) wide x 6-1/2 in. (165 mm) deep

### Honeywell

In the USA: Honeywell Plaza, Minneapolis, Minnesota 55408 In Canada: Scarborough, Ontarlo Subsidiaries and Affiliates Around the World



#### System 20/20 Zone Sensor

#### Description

Zone sensors are two wire, 4-20 mA devices with a precalibrated range of 45-96 °F. They utilize power from the module terminations; thus no external power supply is required. The sensor is an Analog Devices AD590 solid-state transducer which converts degrees Kelvin into microamps in an absolute linear fashion, thus requiring no hardware linearization, software look-up tables, or 'best fit' gain approximations.

The transmitter consists of an accurate temperature compensated reference and a current amplifier to boost the signal to the standard 4-20 mA. A bridge circuit is incorporated which permits connection with no concern for polarity. The units are calibrated and sealed at the factory to assure accuracy within the precalibrated range.

This sensor is available in both surface and flush mount models. The surface unit mounts directly to the wall with screws or fits conveniently in a Wiremold surface box. The formed plastic cover is perforated to permit air flow around the sensor element.

The flush unit installs in a standard 2 1/4" x 4" electrical switch box. It is provided with a cover plate which makes direct contact with the sensor element and is insulated from the wall surface with a foam insulating shield.



• Range: 45-96 °F.

 Output: 4 mA at 45° F, 20 mA at 96 °F, linear over the complete range.

• Voltage (from modules): 12-24 VDC.

· Wiring: 18 gauge twisted pair.

 Mounting method: Screws through pre-punched holes for direct surface mount, pre-mounted to back plate for flush mount.

• Dimensions are 2 1/4" wide x 3 1/2" high x 1 1/2" deep.

Listed by Electronics Testing Laboratories (ETL).



#### **OFFSET & GAIN SETTINGS**

Range	45 - 96 °F	
Resolution	1/4 °F	
Offset	32.25	
Gain	0.25	



### System 20/20 Immersion Sensor

#### Description

Immersion sensors are two wire, 4-20 mA devices with several precalibrated ranges. They utilize 12 VDC loop power from the ALC module terminations; thus no external power supply is required. The sensor is an Analog Devices AD590 solid-state transducer which converts degrees Kelvin into microamps in an absolute linear fashion, thus requiring no hardware linearization, software look-up tables, or 'best fit' gain approximations.

The transmitter consists of an accurate temperature compensated reference and a current amplifier to boost the signal to the standard 4-20 mA. A bridge circuit is incorporated which permits connection with no concern for polarity. The units are calibrated and sealed at the factory to assure accuracy within the precalibrated ranges.

The probe is 6" long and by use of its compression fitting will fit in both 4" and 6" immersion wells. The compression fitting screws directly into the brass wells. Wells are threaded into half couplings welded to the pipe. The steel junction box has preformed knock-outs for conduit connections if required. The sensor is also available in a weatherproof enclosure with a 5 1/2" probe.



- Ranges: 30-81, 32-134, 80-233, 30-234, and 32-185 °F.
- Output (all ranges): 4 mA at low end, 20 mA at high end, linear.
- Voltage Requirement (from modules): 12 VDC.
- Wiring: 18 gauge twisted pair.



- Dimensions: 4" x 2 1/4" x 2" box with 6" probe.
- Dimensions (weatherproof enclosure): 4 1/2" x 2 1/4" x 2 1/2" box with 5 1/2" probe above 1/2" nipple.
- · Listed by Electronics Testing Laboratories (ETL).

#### **OFFSET & GAIN SETTINGS**

Range	30 - 81 °F	32 - 134 °F	80 - 233 °F	30 - 234 °F	32 - 185 °F
Resolution	1/4 °F	1/2 °F	3/4 °F	1 °F	3/4 °F
Offset	17.25	6.50	41.75	- 21.00	- 6.25
Gain	0.25	0.50	0.75	1.00	0.75



### System 20/20 Duct Sensor

#### Description

Duct Sensors are two wire, 4-20 mA devices with several precalibrated ranges. They utilize 12 VDC loop power from the module terminations; thus no external power supply is required. The sensor is an Analog Devices AD590 solid-state transducer which converts degrees Kelvin into microamps in an absolute linear fashion, thus requiring no hardware linearization, software look-up tables, or 'best fit' gain approximations.

The transmitter consists of an accurate temperature compensated reference and a current amplifier to boost the signal to the standard 4-20 mA. A bridge circuit is incorporated which permits connection with no concern for polarity. The units are calibrated and sealed at the factory to assure accuracy within the ranges listed above.

The unit mounts directly to the wall of the duct. The steel junction box has pre-formed knock-outs for conduit connections if required.





#### **Specifications**

- Ranges: 30-81, 32-134, 80-233, 30-234, and 32-185 °F.
- Output (all ranges): 4 mA at low end, 20 mA at high end, linear.
- · Voltage (from modules): 12 VDC.
- · Mounting Method: Screws through pre-punched holes.
- · Wiring: 18 gauge twisted pair.
- Dimensions: 2 1/4" x 4" x 2 3/4" box with 8 3/4" probe.
- Listed by Electronics Testing Laboratories (ETL).

#### **OFFSET & GAIN SETTINGS**

Range	30 - 81 °F	32 - 134 °F	80 - 233 °F	30 - 234 °F	32 - 185 °F
Resolution	1/4 °F	1/2 °F	3/4 °F	1°F	3/4 °F
Offset	17.25	6.50	41.75	- 21.00	- 6.25
Gain	0.25	0.50	0.75	1.00	0.75





SERIES 630

# Differential Pressure Transmitter

For air or compatible gases or liquids. Pressure rated to 500 psig. 4-20 mA signal.



The Dwyer Series 630 differential pressure transmitter features a heavy forged brass case which makes it suitable for use with water while allowing maximum rated pressure of 500 PSIG. Screw type terminal strip is located on back and duplicate pressure connections are located on top and bottom. Accuracy  $\pm 3\%$ . Output signal is 4-20 mA.

#### SERIES 630 TRANSMITTER MODELS & RANGES

MODEL	RANGI	ANGES IN INCHES OF WATER			
NUMBER	AS STOCKED	MIN. RANGE	MAX. RANGE		
630-1 630-2 630-3 630-4 630-5	0-0.50 0-2.00 0-5.00 0-25 0-100	0-0.25 0-1.00 0-2.50 0-20 0-50	0-1.00 0-3.50 0-20 0-50 0-300		

#### **SPECIFICATIONS**

GENERAL

Maximum Pressure: Operating 500 PSIG

Media Compatibility: Noncombustible, non-corrosive, compatible gases or fluids. DO NOT use with hydrogen gas.

ELECTRICAL

Power Supply: 20-30 VDC; 18-26 VAC Electrical Connections: 5 screw terminal strip

Output Signal: 4-20 mA DC, 3 or 4 wire (limited at 30 mA)

Loop Resistance: 3 wire - 250-1200 ohms at 30 VDC

4 wire - 0-500 ohms at 20-30 VDC 4 wire current sourcing 150-1400 ohms at 10-35 VDC

Current Consumption: Min. 100 mA DC, Min. 200 mA AC

MATERIALS

Forged brass case, acrylic cover, die cast aluminum bezel with baked dark gray hammerloid finish. MECHANICAL

Weight: 7 lb., 13 oz. Span and Zero Adjustments:

Protected potentiometers

Pressure Connections: V^{*} NPT high
and low pressure taps, duplicated
one pair top and one pair bottom.

PERFORMANCE AT 70°F

Zero Output: 4 mA Full Span Output: 20 mA Accuracy (includes linearity,

hystereals, repeatability): ±3% of full span output

Warm-up Time: 30 minutes

Operating Temperature: 32°-120°F (0-50°C)

STANDARD ACCESSORIES

Two 1/4" NPT plugs for duplicate pressure taps, snap rings, mounting ring, four (4) #6-32 x 11/4" mounting screws, span and zero adjust key.

(See page 14 for Suggested Specifications.)





SERIES 632

# Differential Pressure Transmitter

Ranges to 200 psid. For compatible liquids or gases. 4-20 mA signal.



The Dwyer Series 632 two-wire differential pressure transmitter provides the capability for monitoring and controling high positive, negative or differential pressures from 30-200 psi. The unique design features twin spirally wound Bourdon tubes operating against a calibrated range spring/strain gage assembly. The small volume and virtually no moving parts means maximum reliability under bock and vibration. Linearity and repeatability are exceltat low cost. The two-wire, 4-20 mA output simplifies installation. External tamper-proof zero and span adjustments are provided with electrical connections made to a standard connector on the rear of the housing.

#### SERIES 632 TRANSMITTER MODELS & RANGES

MODEL	*	RANGES IN PSI	4,41.1
NUMBER	AS STOCKED	MIN. RANGE	MAX. RANGE
632-1	0-30 psi	0-30 psi	0-200 psi

#### **Specifications**

GENERAL

Maximum Pressure: 500 psig Media Compatibility: Air and compatible gases and liquids

#### FLECTRICAL

Power Supply: 12.3 to 35 VDC
Output Signal: 4 to 20 mA DC,
2 wire (limited at 38 mA max.)
Loop Resistance: 0-1135 ohms from

Current Consumption: 38 mA DC (max.)

#### MATERIALS

Wetted: Brass and berylium copper Other: Die cast aluminum case with baked dark gray hammerloid finish, acrylic cover

#### MECHANICAL

Weight: 2 lb., 8 oz.

Span and Zero adjustments: Protected potentiometers

Pressure connections: 1/6" NPT female high and low pressure taps on bottom

#### PERFORMANCE AT 70°F

Zero output: 4 mA Full span output: 20 mA

Accuracy (includes linearity, hysteresis, repeatability): ±2% of full span output

Span and Zero: Adjustable to 0.05% of full span

Warm-up time: 10 minutes

#### ENVIRONMENTAL

Operating temperature: 20° to 120°F Thermal Error: ±1%/50°F typical

#### STANDARD ACCESSORIES

Span and zero adjust tool, mounting hardware kit



# Differential Pressure Transmitter

4-20 mA signal. Two wire operation. Pressure rated to 30 psig.



The Dwyer Series 604 2-Wire differential pressure transmitter offers very low ranges down to 0-0.1" w.c. yet withstands continuous pressure to 30 PSIG. The tough filled Nylon housing features simple surface mounting arrangement and barbed connections. The units are compact and lightweight yet provide overall accuracy of  $\pm 2\%$ . Output signal is 4-20 mA. Zero and span adjustments plus terminal block connections are easily accessible but protected in auxiliary housing.
SERIES 604 TRANSMITTER MODELS & RANGES

MODEL	RANGES IN INCHES OF WATER									
NUMBER	AS STOCKED	MIN. RANGE	MAX. RANGE							
604-0 604-1 604-2 604-3	0-0.5 0-2.0 0-10 0-50	0-0.1 0-0.5 0-2.0 0-15	0-1.0 0-4.0 0-20 0-120							

#### SPECIFICATIONS

Maximum Pressure: 50 PSIG surge, 30 PSIG continuous to either pressure connection. Media Compatibility: Air & non-

combustible, non-corrosive gases.

ELECTRICAL

Power Supply: 12.3 to 35 VDC Output Signal: 4 to 20 mA DC, 2 wire (limited at 38 mA max.)

Loop Resistance: 0-1135 ohms from 12.3 to 35 VDC

Current Consumption: 38 mA DC (max.)

MATERIALS

Mineral and glass filled nylon housing, high impact acrylic cover, silicone rubber diaphragm.

MECHANICAL Weight: 6 ozs Span and Zero Adjustments:

Protected potentiometers, accessed by removal of auxilary housing cover (#2 Phillips head screw)

Pressure Connections: Barbed, for 316" I.D. tubing.

PERFORMANCE AT 70°F

Zero Output: 4 mA DC Full Span Output: 20 mA DC Accuracy (includes linearity, hysteresis, repeatability): = 2° • of

full span output

Span & Zero: Adjustable to 0.05% of

full span Warm-up Time: 10 minutes

ENVIRONMENTAL

Operating Temperature: 20° to 120°F Thermal Errors: ± 1%/50°F typical

STANDARD ACCESSORIES

Mounting screws (2), #10 x 1" long pan head sheet metal screws.

(See page 14 for Suggested Specifications.)



SERIES 605

## Magnehelic® Differential Pressure **Indicating Transmitter**

# Dial Gage Indication, Two-Wire 4-20 mA Output



The Dwyer Series 605 Magnehelic Indicating Transmitter provides for both visual monitoring and electronic control of very low differential pressure. The Series 605 is ideal for control applications in building HVAC systems where local indication is desired during routine maintenance checks or necessary when trouble shooting the system. The easily read dial gage is complemented by the two-wire, 4-20 mA control signal utilizing the time-proven Dwyer Magnehelic* gage mechanical design and Series 600 strain-gage transmitter technology. The two-wire design with terminal strip on the rear simplifies connection in any 4-20 mA control loop powered by a 12.3-35 VDC supply.

SERIES 6	05 MODELS	& RANGES			
MODEL	RANGE,	MINOR	MODEL	RANGE,	MINOR
NUMBER	INCHES W.C.	DIVISIONS	NUMBER	PASCALS	DIVISIONS
605-0	05	.01	605-250 Pa	0-250	5
605-1	0-1	.02	605-500 Pa	0-500	10
605-2	0-2	.05	MODEL	RANGE,	MINOR
605-3	0-3		NUMBER	KILOPASCALS	DIVISIONS
605-6 605-10 605-20	0-6 0-10 0-20 0-30	.2 .2 .5	605-1.5 kPa	0-1.5	0.5
605-30	0-50	1.0	li	1	

#### SPECIFICATIONS

GENERAL

Maximum Pressure: 25 PSIG Media Compatibility: Air & noncombustible, non-corrosive gases.

ELECTRICAL

Power Supply: 12.3 to 35 VDC Output Signal: 4 to 20 mA DC, 2 wire (limited at 38 mA max.) Loop Resistance: 0-1135 ohms from 12.3 to 35 VDC Current Consumption: 38 mA DC

(max.)

Die cast aluminum case with baked dark gray hammerloid finish, acrylic cover

MECHANICAL

Weight: 2 lb., 8 oz.

Span and Zero adjustments: Protected potentiometers Pressure connections: 1/8" NPT

female high and low pressure taps

PERFORMANCE AT 70°F Zero output: 4 mA

Full span output: 20 mA Accuracy (includes linearity,

hysteresis, repeatability): ±2% of full span output

Span and Zero: Adjustable to 0.05% of full span

Warm-up time: 10 minutes

ENVIRONMENTAL

Operating temperature: 30° to 120°F Thermal Error: - 1%, 50°F typical

STANDARD ACCESSORIES

Span and zero adjust tool, mounting hardware kit

(See page 14 for Suggested Specifications.)



#### SERIES 1620

# Single and Dual Pressure Switches

High reliability...repetitive accuracy within 1%



Series 1620 Pressure Switch



Dimensions and construction detail. Shown is model 1627. Model 1626 is identical except has single snap switch on right side.

Our old faithful switch design is still best where highest precision combined with diaphragm sealed leak proof construction and mounting simplicity is required. Model 1626 and 1627 differential pressure switches are identical in design and construction except that Model 1626 has a single electric switch and Model 1627 has dual electric itches. Model 1627 can therefore provide dual control men required. It can be set to open or close two independent electrical circuits, each preset for its own actuation pressure. Both units have diaphragm sealed motion take outs providing maximum protection against leakage.

#### SPECIAL MODELS AVAILABLE

(See page 2 for OEM models).

Environmental (MIL) Construction. Can be furnished with a special snap switch sealed against the environment for high humidity, exposure to fungus, and/or for military applications. Dead band is slightly greater and some lower set points may not be available. Specify Model 1626 or 1627 – (Range No.) – "MIL" and required set point in ordering.

#### HOUSINGS FOR USE WITH SERIES 1620 SWITCHES

#### Weatherproof Housing

16-ga. steel enclosure for unusually wet or oily conditions. Withstands 200 hour salt spray test. Gasketed cover. Weight, 20 lbs. Switch must be installed at factory. Specify "WP" in addition to switch catalog number.

## Explosion-proof Housing

illark cast alum. hous-No. GRH with flat er for No. 1626 and 1627 switches rated for Class I, Group D; Class II, Groups E, F and G and Class III. Approximate weight, 47 lbs. Specify "EXPL" in addition to switch catalog number.



#### PHYSICAL DATA

Temperature limits: -30°F for dry air or gas to 130°F.

Maximum surge pressure: 2 psig.

Rated pressure: 50 in. W.C. Pressure connections: 1/8" NPT.

Electrical rating: 15 amps, 120-480 volts, 60 Hz A.C. Resistive, 1/3 H.P. @ 125 volts, 1/4 H.P. @ 250 volts, 60 Hz A.C.

Wiring connections: 3 screw type, each switch, common, normally open and normally closed.

Housing: 16 ga. steel, zinc plated, dichromate dipped for 200 hour salt spray test.

Power diaphragm: Silicone rubber with aluminum support plate.

Sealing diaphragm: Silicone rubber with aluminum support.

Calibration spring: Stainless steel. Weight: Model 1626, 3 lbs., 9 oz.; Model 1627, 3 lbs., 10 oz.

Installation: Diaphragm vertical.

CAUTION: FOR USE ONLY WITH AIR OR COMPATIBLE GASES.

# MODEL 1626 AND MODEL 1627 DUAL SWITCHES: OPERATING RANGES, DEAD BANDS AND RATINGS.

1	Model Number (1626 shown, 1627 similar)	Operating Range Inches, W.C.	De Ba	orox. ead and Max.	Adj. Diff. Between Set Points (1627 only)
	1626-1	.15 to 1.5 .5 to 6.0	.10 .15	.20 .35	0.5 1.2
	1626-5 1626-10	2.0 to 11	.25	.65	2.3
	1626-20	8.0 to 24	.50	1.20	5.0

#### Suggested Specification

Differential pressure switches shall be diaphragm operated to actuate a single pole double throw snap switch (or two SPDT snap switches for Model No. 1627). Motion of the diaphragm shall be restrained by a calibrated spring that can be adjusted to set the exact pressure differential at which the electrical switch will be actuated. Motion of the diaphragm shall be transmitted to the switch button by means of a direct mechanical linkage. Switches shall be Dwyer Instruments, Inc. Catalog No. ______ for the required operating ranges.

How to Order: See price list, Bulletin S-26. 4-391

#### 5 IMPROVE COMMISSARY LIGHTING EFFICIENCY

The ECO evaluation consisted of determining appropriate lighting replacements to improve lighting system efficiency at the Commissary while achieving recommended illumination levels. The ECO includes comprehensive fluorescent lighting replacements.

## TABLE 5.1

# LIGHTING SYSTEM REPLACEMENTS ECO 11

#### **EXISTING LIGHTING**

REPLACEMENT LIGHTING

T-12 Fluorescent Fixture	T-8 Fluorescent Fixture with reflector
T-12 Lamp	T-8 Lamp
Magnetic Ballast	Electronic Ballast

This section contains the analysis results for the study on improved lighting efficiency at the Commissary. Included in this section are the life cost analysis, cost estimate, and energy calculations for the project.

The life cycle analysis, Sections 3A and 3B, refers to non-energy savings or costs present. For this project, Section 3A, Annual Recurring, reflects maintenance savings available by replacing the existing lighting systems. The new fixtures, due to the use of reflectors, have fewer lamps which saves on material and labor replacement.

Section 3B, Non-Recurring Savings/Costs, refers to the replacement of parts of the existing lighting system. Many fluorescent fixtures surveyed were approaching the end of their economic life. On the spreadsheets included for fluorescent fixture replacement for each building, the higher wattage fixture for each type was replaced in this section.

INSTALLATION & LOCATION: FT CAMPBELL REGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 011-2702 INTERIOR LIGHTING / COMMISSARY FISCAL YEAR 1994 DISCRETE PORTION NAME: LIGHTING ANALYSIS DATE: 09-28-93 ECONOMIC LIFE 15 YEARS PREPARED BY: KEITH DERRING 1. INVESTMENT A. CONSTRUCTION COST 117744. 6476. B. SIOH 6476. C. DESIGN COST D. TOTAL COST (1A+1B+1C) \$ 130696. 0. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE \$ G. TOTAL INVESTMENT (1D - 1E - 1F) 130696. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1992 ANNUAL \$ DISCOUNT DISCOUNTED UNIT COST SAVINGS \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) FUEL 223889. 19022. 11.77 3078. A. ELECT \$ 6.18 0. 13.83 0. B. DIST \$ 4.98 0. 16.15 0. 0. 0. C. RESID \$ .00 0. D. NAT G \$ 4.00 0. 15.34 0. 0. 12.82 0. E. COAL \$ .00 0. 0. 11.12 S 0. 0. F. PPG .00 161907. 14560. 11.12 M. DEMAND SAVINGS \$ 385797. 3078. \$ 33582. N. TOTAL 3. NON ENERGY SAVINGS (+) / COST(-) 910. A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) 11.12 (2) DISCOUNTED SAVING/COST (3A X 3A1) S 10119. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) OC FACTR SAVINGS(+)/ ITEM (3) COST(-)(4)(1)(2) .73 8 59261. 81180. 1. REPLACE \$ 81180. 59261. d. TOTAL

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LCCID 1.072

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 2702C011 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.072 INSTALLATION & LOCATION: FT CAMPBELL REGION NOS. 4 CENSUS: 3 INTERIOR LIGHTING / COMMISSARY PROJECT NO. & TITLE: 011-2702 FISCAL YEAR 1994 DISCRETE PORTION NAME: LIGHTING ANALYSIS DATE: 09-28-93 ECONOMIC LIFE 15 YEARS PREPARED BY: KEITH DERRING C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 69381. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bld/(YRS ECONOMIC LIFE))\$ 39904. 3.28 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 455177. 3.48 (SIR)=(5 / 1G)=7. SAVINGS TO INVESTMENT RATIO (IF < 1 PROJECT DOES NOT QUALIFY) 13.02 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

THE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-11: BUILDING 2702

Contract No: 27-93-C-0096

Prepared By: Systems Corp
Estimator: Keith A. Derrington
Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

PROJECT ID: 270211

CREW ID: ORL290

CURRENCY in DOLLARS

VABLE OF CONTENTS

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / PT CAMPBELL, KY ECO-11: BUILDING 2702

TIME 12:28:00

CONTENTS PAGE

SUMMARY REPORTS

SUMMARY PAGE

PROJECT NOTES.

BID ITEM AND PACILITY SUMMARY.

PROJECT CWE SUMMARY.

CONTRACTOR DIRECT SUMMARY.

CONTRACTOR INDIRECT SUMMARY.

CSI DIVISION SUMMARY.

SYSTEMS SUMMARY.

EQUIPMENT SUMMARY.

EQUIPMENT SUMMARY.

DETAILED ESTIMATE

1. BUILDING TO THE 5 FOOT LINE

AA. ELECTRICAL

* * * END TABLE OF CONTENTS * * *

#### U.S. ARMY CORPS of ENGINEERS N-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-11: BUILDING 2702

DETAIL PAGE 1

ETAILED ESTIMATE

1. BUILDING TO THE 5 POOT LINE / AA. ELECTRICAL

BASE BID

TIME 12:28:00

DIVISION 16 ELECTRICAL	QUANTITY UON CREW	MANHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16500 LIGHTING 16512 7000 FLUORESCENT - RECESSED T8 ELECT	TRONIC BALLAST						
CD=3 EL 7002 4 FT 1 LAMP PARABOLIC LOUVRE W/ WC=1100 REFLECTOR	*** UNIT COSTS: *** 10.00 EA EELEB		17.84 178	0.07	122.00		146.01 1,460
CD=3 EL 7003 4 FT 2 LAMP PARABOLIC LOUVRE W/ WC=1100 REFLECTOR	*** UNIT COSTS: *** 213.00 EA EELEB	0.59 125	19.42 4,136	0.08 16		6.80 1,448	162.29 34,569
CD=3 EL 7007 8 FT 1 LAMP W/ REFLECTOR WC=1100				0.07 28			132.36 52,283
TOTAL DIVISION 16 ELECTRICAL		344	11,362	44	73,243	3,662	88,312
TOTAL FACILITY AA. ELECTRICAL		344	11,362	44	73,243	3,662	88,312
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LINE		344	11,362	44	73,243	3,662	88,312
TOTAL BASE BID		344	11,362	44	73,243	3,662	88,312
TOTAL ADDITIVE		0	0	0	0	0	0
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SURVY		344	11,362	44	73,243	3,662	88,312

* * * END OF DETAIL REPORT * * *

CURRENCY in DOLLARS PROJECT ID: 270211

5-7

Tue 28 Sep 1993
ROJECT NOTES

# U.S. ARMY CORPS OF ENGINEERS H-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-11: BUILDING 2702

TIME 12:28:00

SUMMARY PAGE 1

PROJECT NOTES

ECO-11: INTERIOR LIGHTING AT THE COMMISSARY

SCOPE OF WORK: EVALUATE USE OF HIGHER EFFICIENCY INTERIOR LIGHTING IN

AT THE FT CAMPBELL COMMISSARY.

PROJECT ID: 270211

CREW ID: ORL290

CURRENCY in DOLLARS

5-8

ID ITEM AND FACILITY SUNHARY

U.S. ARMY CORPS of ENGINEERS N-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-11: BUILDING 2702

TIME 12:28:00

SUMMARY PAGE

BID ITEM 1 BUILDING TO	O THE 5 FOOT LI	NE							BASE BID
ID PACILITY	α	ST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
AA ELECTRICAL	1.00 EX	88,312	10.0%	0.0	7.5% 7,286	2.5 <b>%</b> 2,611	0.01	107,040	107039.69
BID ITEM TOTAL	1.00 EA	88,312	8,831	0	7,286	2,611	0	107,040	107039.69
TOTAL BASE BID	_	88,312	8,831	0	7,286	2,611	0	107,040	
TOTAL ADDITIVE		0	0	0	0	0	0	0	
TOTAL INCL ADD	-	88,312	8,831	0	7,286	2,611	0	107,040	

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-11: BUILDING 2702

TIME 12:28:00

SUMMARY PAGE

PROJECT CWE SUHMARY

ID BID ITEM	QUANTITY DON	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	107,040		107,040	107039.70
TOTAL CURRENT CONTRACT COST	•	107,040	0	107,040	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0	0	0	0	
ESCALATED CONTRACT COST	_	107,040	0	107,040	
Government-Furnished Property		0		0	
SUBTOTAL	-	107,040	0	107,040	
Contingencies	10.0%	10,704	0	10,704	
SUBTOTAL	-	117,744	0	117,744	
SIOH (SEA)	5.58	6,476	0	6,476	
CURRENT WORKING ESTIMATE	•	124,220	0	124,220	
Estimated Construction Time	365 Days				

## U.S. ARMY CORPS of ENGINEERS N-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

SUMMARY PAGE

TIME 12:28:00

CONTRACTOR DIRECT SUMMARY

ECO-11: BUILDING 2702

ID	CONTRACTOR	PH	QUANTITY DOM	MANERS			HAT W/TX			SUBCON W/OH&P		ΒΤΟΤλΙ
λλ	GENERAL/PRIME		1.00 EA	344	11,362	44	76,905	88,312	100.0		0 1	88,312
	TOTAL DIRECT			344	11,362	44	76,905	88,312	100.0			

### U.S. ARMY CORPS of ENGINEERS N-CACES ENERGY SAVINGS OPPORTUNITY SURVY / PT CAMPBELL, KY ECO-11: BUILDING 2702

TIME 12:28:00

SUMMARY PAGE

ONTRACTOR INDIRECT SUMMARY

ID	CONTRACTOR	SUBTOTAL		HEAD ***		PROFIT AMOUNT					TOTAL		UNIT COST
. УУ	GENERAL/PRIME	88,312	8,8	31 10.0	0.0	 7,286	7.58	2.58	0.0	10	7,040	100.0	107039.69
	TOTAL OVERHEAD & PROFIT		8,8	31 10.0		 7,286	7.5						

CURRENCY in DOLLARS PROJECT ID: 270211

.5-12

SI DIVISION SUMMARY

# U.S. ARMY CORPS of ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-11: BUILDING 2702

TIME 12:28:00

SUMMARY PAGE 6

*********	ID CSI DIVISION	MANHOURS	LABOR	EQUIPMENT	MATERIAL		* TOTAL * DIRECT
	16 ELECTRICAL	344	11,362	44	73,243	3,662	88,312
•	TOTAL DIRECT	344	11,362	44	73,243	3,662	88,312

CREW ID: ORL290 CURRENCY in DOLLARS PROJECT ID: 270211 5-13

Tue 28 Sep 1993
YSTEMS SUNMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-11: BUILDING 2702

TIME 12:28:00

SUMMARY PAGE 7

ID SYSTEM	MANHOURS	LABOR		MATERIAL		*** TOTAL * DIRECT
11 INTERIOR ELECTRICAL	344	11,362	44	73,243	3,662	88,312
TOTAL DIRECT	344	11,362	44	73,243	3,662	88,312

# U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-11: BUILDING 2702

TIME 12:28:00 SUMMARY PAGE 8

QUIPHENT SUMMARY

EQUIP DESCRIPTION LIFE HRS TL HRLY OWNRSHP OWNS OVTH OWNRSHP EXPENSE RATE RATE HOURS COST

EMI20 SHALL TOOLS

*** BOOK VALUE *** ADJ FACTOR ADJUSTD BOOK OP -- HRLY --- UPB **** TOTAL ****

EMI20 SHALL TOOLS

1.40 1.40 32 44

20 Jimin 1002

TOTAL PROJECT EQUIPMENT HOURS 32 4

CREW ID: ORL290 CURRENCY in DOLLARS

# U.S. ARMY CORPS OF ENGINEERS N-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-11: BUILDING 2702

SUMMARY PAGE

TIME 12:28:00

CABOR SUMMARY

CRAFT DESCRIPTION	Base	OVERTH	TXS/INS		TRVL	HRLY -			COST
LELEC ELECTRICIANS	20.50	0.0	24.0	7.49	0.00	32.91	25.79	344	11,363
TOTAL PROJECT HANHOURS								344	11,363

* * * END OF SUMMARY REPORT * * *

CURRENCY in DOLLARS

#### 6 NAF LIGHTING

This section contains the analysis results for the indoor lighting study for Building 6902 classified as non-appropriated funding (NAF). Included in this section are the life cycle cost analysis, energy calculations, and cost estimate for the facility. Please refer to Section 3 for a detailed description of the ECO.

STUDY: 6902EC06 LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1
INSTALLATION & LOCATION: FT CAMPBELL REGION NOS. 4 CENSUS: 3 LCCID 1.072

PROJECT NO. & TITLE: 006-6902 INTERIOR LIGHTING / BUILDING 6902

FISCAL YEAR 1994 DISCRETE PORTION NAME: LIGHTING

ANALYSIS DATE: 09-15-93 ECONOMIC LIFE 15 YEARS PREPARED BY: KEITH DERRING

1.	INVESTMENT

Α.	CONSTRUCTION	COST	\$	6686.
	SIOH		\$	368.
			~	260

C. DESIGN COST \$ 368.
D. TOTAL COST (1A+1B+1C) \$ 7422.

E. SALVAGE VALUE OF EXISTING EQUIPMENT \$

F. PUBLIC UTILITY COMPANY REBATE \$ 0.

G. TOTAL INVESTMENT (1D - 1E - 1F) 7422.

#### 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NIST	IR 85-3273-X UNIT COST	USED FOR DIS	ANN	UAL \$	DISCOUNT		COUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAV	INGS(3)	FACTOR(4)	SAV	INGS (5)
A. ELECT	\$ 6.18	48.	\$	297.	11.77	\$	3491.
B. DIST	\$ .00	0.	\$	0.	13.83	\$	0.
C. RESID	\$ .00	0.	\$	0.	16.15	\$	0.
D. NAT G	\$ 4.00	0.	\$	0.	15.34	\$	0.
E. COAL	\$ .00	0.	\$	0.	12.82	\$	0.
F. PPG	\$ .00	0.	\$	0.	11.12	\$	0.
	SAVINGS		\$	493.	11.12	\$	5482.
N. TOTAL		48.	\$	790.		\$	8974.

#### 3. NON ENERGY SAVINGS (+) / COST(-)

A. ANNUAL RECURRING (+/-)	\$	48.
(1) DISCOUNT FACTOR (TABLE A)	11.12	

(1) DISCOUNT FACTOR (TABLE A)

(2) DISCOUNTED SAVING/COST (3A X 3A1) 534.

#### B. NON RECURRING SAVINGS(+) / COSTS(-)

	ITEM	VINGS(+) COST(-)	YR OC (2)	DISCNT FACTR (3)	DISCOUNTED SAVINGS(+)/ COST(-)(4)
1.	REPLACE	\$ 5707.	8	.73	4166.
a	<b>ጥ</b> ርጥል <b>T</b> .	\$ 5707.			4166.

LIFE CYCLE COST ANALYSIS SUMMARY  ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)  INSTALLATION & LOCATION: FT CAMPBELL REGION NOS. 4 CENSUS: 3  PROJECT NO. & TITLE: 006-6902 INTERIOR LIGHTING / BUILDING 6902  FISCAL YEAR 1994 DISCRETE PORTION NAME: LIGHTING  ANALYSIS DATE: 09-15-93 ECONOMIC LIFE 15 YEARS PREPARED BY: KEI	.072
C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$	4700.
4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3B1d/(YRS ECONOMIC LIFE))\$	1218.
5. SIMPLE PAYBACK PERIOD (1G/4)	6.09 YEARS
6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$	13673.
7. SAVINGS TO INVESTMENT RATIO (SIR)=(5 / 1G)= (IF < 1 PROJECT DOES NOT QUALIFY)	1.84
8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	8.32 %

CAMPBELL ENERGY SAVINGS OPPORTUNITY SURVEY  ECO 6: INDOOR/OUTDOOR LIGHTING EFFICIENCIES TO RECOMMENDED LEVELS  30 SEPTEMBER 1993  PAGE 1 OF 2	BUILDING WIDE FLUORESCENT FIXTURE REPLACEMENT		ELECTRIC COSTS: ENERGY CHARGE \$0.0211 PER KWH DEMAND CHARGE \$11.78 PER KW	REPLACEMENT FIXTURE DATA	4 FOOT  0 1 LAMP @ 37 W/FIXT = 0 WATTS  4 1 LAMP W/ 37 W/FIXT = 148 WATTS  12 LAMP W/ 53 W/FIXT = 0 WATTS  REFLECTORS  26 2 LAMP W/ 58 W/FIXT = 1508 WATTS  REFLECTORS	2 FOOT  0 1 LAMP @ 24 W/FIXT = 0 WATTB  0 2 LAMP W/ 41 W/FIXT = 0 WATTS  REFLECTORS  0 2 LAMP U @ 58 W/FIXT = 0 WATTS	8 FOOT 0 1 LAWP W/ 58 W/FIXT = 0 WATTS REFLECTORS	TOTAL REPLACEMENT KW 1.66 REPLACEMENT ENERGY CONSUMPTION 20.57 MBTU	NET DOLLAR SAVINGS \$812.11
FORT CAMPBELL ENERGE ECO 6: INDOOR/OUTDOOR LIG	BUILDING WIDE F	#: 6902	10 7	EXISTING FIXTURE DATA	AP @ 48 W/FIXT = 0 WATTS AP @ 37.8 W/FIXT = 0 WATTS AP @ 75.6 W/FIXT = 0 WATTS AP @ 113.4 W/FIXT = 0 WATTS AP @ 113.4 W/FIXT = 0 WATTS AP @ 152 W/FIXT = 0 WATTS AP @ 152 W/FIXT = 0 WATTS AP @ 151.2 W/FIXT = 0 WATTS	2 FOOT  0 1 LAMP @ 31 W/FIXT = 0 WATTS  0 4 LAMP @ 86 W/FIXT = 0 WATTS  0 2 LAMP U@ 96 W/FIXT = 0 WATTS  0 2 LAMP U@ 75.6 W/FIXT = 0 WATTS	AP @ 180 W/FIXT = 0 WATTS AP @ 168 W/FIXT = 0 WATTS	TOTAL EXISTING KW 5.38 BASELINE ENERGY CONSUMPTION 66.76 MBTU	NET ENERGY SAVINGS 46.20 MBTU/YR
FO		BUILDING #:	BUILDING USE: HOURS/DAY DAYS/WEEK	EXISTING F	4 FOOT 0 1 LAMP @ 1 LAMP @ 2 LAMP @ 0 2 LAMP @ 0 3 LAMP @ 26 4 LAMP @ 0 4 LAMP @	2 FOOT 0.1 LAMP @ 0.4 LAMP @ 0.2 LAMP U @ 0.2 LAMP U @	8 FOOT 0.2 LAMP @ 0.2 LAMP @	TOT, BASELINE I	NET

FORT CAMPBELL EI	FORT CAMPBELL ENERGY SAVINGS OPPORTUNITY SURVEY  ECO 6: INDOOR/OUTDOOR LIGHTING EFFICIENCIES TO RECOMMENDED LEVELS 30 SEPTEMBER 1993
anina	BUILDING WIDE INCANDESCENT LAMP REPLACEMENT
BUILDING #: 6902	
LAMP USE: HOURS/DAY DAYS/WEEK 7 PEAK USE 1 (1-YES, 2-NO)	ELECTRIC COSTS:  ENERGY CHARGE \$0.0211 PER KWH  DEMAND CHARGE \$11.78 PER KW
EXISTING INCANDESCENTS  0 LAMPS @ 25 WATTS = 0 V  0 LAMPS @ 40 WATTS = 0 V	COMPACT FLUORESCENT REPLACEMENT           0 WATTS         0 WATTS         0 WATTS         0 WATTS           15 WATTS         0 LAMPS @ 9 WATTS = 0 WATTS         0 WATTS
60 WATTS =	0_LAMPS @ 18_WATTS =
WATTS =	0 WATTS 0 WATTS 0 WATTS 0 WATTS 0 WATTS
TOTAL EXISTING WATTS 156	TOTAL REPLACEMENT WATTS 39
BASELINE ENERGY CONSUMPTION 1.94 MBTU	MBTU REPLACEMENT ENERGY CONSUMPTION 0.48 MBTU
NET ENERGY SAVINGS 1.451	1.45 MBTU/YR \$25.54

TITLE PAGE

ENERGY SAVINGS OPPORTUNITY SURVY FT CAMPBELL, KY ECO-6: BUILDING 6902

Contract No: 27-93-C-0096

Prepared By: Systems Corp Estimator: Keith A. Derrington Estimate Prep. Date: 09/30/93

Current UPB/CSI ID: ORL290

M-CACES EDITION COMPOSER Plus Copyright (C) 1985, 1988 by Building Systems Design, Inc. Release 4.20

TABLE OF CONTENTS

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

CONTENTS PAGE 1

SUMMARY REPORTS	SUMMARY	PAGE
PROJECT NOTES		1
BID ITEM AND FACILITY SUMMARY		2
PROJECT CWE SUMMARY	• • • • • • • • •	3
CONTRACTOR DIRECT SUMMARY	• • • • • • • • •	4
CONTRACTOR INDIRECT SUMMARY	• • • • • • • •	5
CSI DIVISION SUMMARY	• • • • • • • •	6
SYSTEMS SUMMARY	• • • • • • • •	7
EQUIPMENT SUMMARY	• • • • • • • •	8
LABOR SUMMARY	• • • • • • • •	9
DETAILED ESTIMATE	DETAIL	PAGE
1. BUILDING TO THE 5 FOOT LINE		,

* * * END TABLE OF CONTENTS * * *

DETAILED ESTIMATE

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

1. BUILDING TO THE 5 FOOT LINE / AA. ELECTRICAL

TIME 15:48:52

DETAIL PAGE 1

BASE BID

DIVISION 16 ELECTRICAL	QUANTITY UOM CREW	HAŅHR	LABOR	EQUIPMENT	MATERIAL	SALESTX	DIRECT \$
16500 LIGHTING 16512 6100 SMALL FL FIXTURES (LESS THAN 40	WATT LAMPS)						
CD=3 EL 6105 SURF SQ W/1 13W BIAXIAL FL LA WC=1100 WHITE ACRYLIC LENS	MP *** UNIT COSTS: *** 3.00 EA EELEA	1.25 4	41.26 124	0.00	27.80 83	1.39	70.45 211
16512 7000 FLUORESCENT - RECESSED T8 E	LECTRONIC BALLAST						
CD=3 EL 7002 4 FT 1 LAMP PARABOLIC LOUVRE WC=1100 REFLECTOR	W/ *** UNIT COSTS: *** 4.00 EA EELEB		17.84 71	0.07		6.10 24	146.01 584
CD=3 EL 7003 4 FT 2 LAMP PARABOLIC LOUVRE WC=1100 REFLECTOR	W/ *** UNIT COSTS: *** 26.00 EA EELEB	0.59 15	19.42 505	0.08	136.00 3,536	6.80 177	162.29
TOTAL DIVISION 16 ELECTRICAL		21	700	2	4,107	205	5,015
TOTAL FACILITY AA. ELECTRICAL				2			5,015
TOTAL BID ITEM 1. BUILDING TO THE 5 FOOT LIN	Е			2	4,107	205	5,015
TOTAL BASE BID				2	4,107	205	5,015
TOTAL ADDITIVE		0	0	0	0	0	(
TOTAL INCL ADD ENERGY SAVINGS OPPORTUNITY SUR	VY	21	700	2	4,107	205	5,015

* * * END OF DETAIL REPORT * * *

PROJECT ID: 6902E6

PROJECT NOTES

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

TIME 15:48:52

SUMMARY PAGE 1

PROJECT NOTES

ECO-6: INTERIOR LIGHTING

SCOPE OF WORK: EVALUATE USE OF HIGHER EFFICIENCY INTERIOR LIGHTING IN

SELECTED FACILITIES AT FT CAMPBELL.

CREW ID: ORL290

CURRENCY in DOLLARS

PROJECT ID: 6902E6

U.S. ARMY CORPS of ENGINEERS M-CACES

ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY

BID ITEM AND FACILITY SUMMARY

ECO-6: BUILDING 6902

TIME 15:48:52

SUMMARY PAGE 2

BI	D ITEM 1 1	BUILDING TO THE 5 FOOT	LINE							BASE BID
ID	FACILITY		COST TO PRM	OVERHEAD	HOME OFC	PROFIT	BOND	OTHR FCTR	TOTAL COST	UNIT COST
λλ	ELECTRICAL	1.00 EA	5,015	10.0% 502	0.0%	7.5% 414	2.5% 148	0.0%	6,079	6078.54
BI	D ITEM TOTAL	1.00 EA	5,015	502	0	414	148	0	6,079	6078.54
TO	TAL BASE BID		5,015	502	0	414	148	0	6,079	
TO	TAL ADDITIVE		0	0	0	0	0	0	0	
TO	TAL INCL ADD		5,015	502	0	414	148	0	6,079	

CURRENCY in DOLLARS PROJECT ID: 6902E6

PROJECT CWE SUMMARY

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

TIME 15:48:52

SUMMARY PAGE 3

 ID BID ITEM	QUANTITY UOM	BASE BID	ADDITIVE	TOTAL COST	UNIT COST
1. BUILDING TO THE 5 FOOT LINE	1.00 EA	6,079		6,079	6078.50
TOTAL CURRENT CONTRACT COST	•	6,079	0	6,079	
Cost Growth from 09/93 to 09/94 Index Values: 0000 0000	0.0%	0	0	0	
ESCALATED CONTRACT COST		6,079	0	6,079	
Government-Furnished Property		0		0	
SUBTOTAL	•	6,079	0	6,079	
Contingencies	10.0%	608	0	608	
SUBTOTAL	-	6,686	0	6,686	
SIOH (S&A)	5.5%	368	0	368	
CURRENT WORKING ESTIMATE	-	7,054	0	7,054	

CREW ID: ORL290

CURRENCY in DOLLARS

PROJECT ID: 6902E6

CREW ID: ORL290

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

TIME 15:48:52

CONTRACTOR DIRECT SUMMARY

SUMMARY PAGE 4

ID	CONTRACTOR	PM	QUANTITY	UOH	MANHRS			MAT W/TX			* * SUBCON W/OH&P		SUBTOTAL
λλ	GENERAL/PRIME		1.00	EA	21	700	2	4,313	5,015	100.03	}	0	5,015
	TOTAL DIRECT				21	700	2	4,313	5,015	100.0	-		

PROJECT ID: 6902E6

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

TIME 15:48:52

SUMMARY PAGE 5

CONTRACTOR INDIRECT SUMMARY

NUMBER D. 111 ..... 1111 DECEM 1111 ..... 1111 MORE OF THE STATE OF TH

				***	OVERHEA	D ***		***	PROFIT	****			***** TOTA	CONTR	ACT *****
ID	CONTRACTOR	PM	SUBTOTAL		AMOUNT	PCT	HOFC%		AHOUNT	PCT	BOND &	OTHR%	AMOUNT	PCT	UNIT COST
λλ	GENERAL/PRIME		5,015		502	10.0%	0.0		414	7.5%	2.5%	0.08	6,079	100.0%	6078.54
	MAMIL AUDDURIN C DRAFTM				E03	10.09			414	7.5%					
	TOTAL OVERHEAD & PROFIT				502	10.0%			414	7.56					

CURRENCY in DOLLARS

CREW ID: ORL290

PROJECT ID: 6902E6

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

TIME 15:48:52

SUMMARY PAGE 6

CSI DIVISION SUMMARY

	ID CSI DIVISION	MANHOURS	LABOR		MATERIAL		***** TOTAL * DIRECT
***	16 ELECTRICAL	21	700	2	4,107	205	5,015
	TOTAL DIRECT	21	700	2	4,107	205	5,015

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

TIME 15:48:52

SYSTEMS SUMMARY

SUMMARY PAGE 7

 						**** TOTAL *	
ID SYSTEM	MANHOURS	LABOR		MATERIAL		DIRECT	
11 INTERIOR ELECTRICAL	21	700	2	4,107	205	5,015	
TOTAL DIRECT	21	700	2	4,107	205	5,015	

### U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

TIME 15:48:52 SUMMARY PAGE 8

EQUIPMENT SUMMARY ECO-6: BUILDING 6902

	DESCRIPTION				BOOK OP - EXPENSE				**** COST
ENI20	SHALL TOOLS					1.40	1.40	2	2
TOTAL	PROJECT EQUIPMENT HOURS							2	2

CREW ID: ORL290 CURRENCY in DOLLARS PROJECT ID: 6902E6

LABOR SUMMARY

U.S. ARMY CORPS OF ENGINEERS M-CACES ENERGY SAVINGS OPPORTUNITY SURVY / FT CAMPBELL, KY ECO-6: BUILDING 6902

TIME 15:48:52

SUMMARY PAGE 9

<b></b>	CRAFT DESCRIPTION	BASE	OVERTH	TXS/INS	FRNG	TRVL.				**** COST
	LELEC ELECTRICIANS	20.50	0.0%	24.0%	7.49	0.00	32.91	25.79	21	700
	TOTAL PROJECT MANHOURS								21	700

* * * END OF SUMMARY REPORT * * *

CREW ID: ORL290

CURRENCY in DOLLARS

PROJECT ID: 6902E6

### LOUISVILLE DISTRICT CORPS OF ENGINEERS ENGINEERING DIVISION, A/E MANAGEMENT BRANCH (CEORL-ED-M)

#### ANNEI B

#### DETAILED SCOPE OF WORK

Phase I Basic Contract, & Option Phase II Added ECOs, FORT CAMPBELL, KY May 10, 1993

1. PROJECT NAME & LOCATION: This is an Energy Savings Opportunity Survey (ESOS), FY93 EEAP at Fort Campbell, KY for various ECOS (Energy Conservation Opportunities) selected in ANNEX A. The Basic Contract award will be for Phase I ECOS prioritized 1 through 5, as selected from ANNEX A, with an Option for Phase II Additional ECOS prioritized 6 through 10 as selected from ANNEX A, and the buildings to be included are listed in Figure B-1.1. The ECOS are summarized as follows:

#### Phase I- Basic Contract:

- 1. Instantaneous hot water heater.
  - 77 systems in administrative type facilities-conversion
- 2. Ground water coupled heat pump.
  - 6 individual family quarters out of 770ea. sampling.
- 3. Heat reclaim from hot refrigerant gas/condenser units.

  1 facility- Commissary for hot gas reclamation.
- Replace absorption chiller with high efficiency units.
   chillers- replacements.
- 5. Indoor/outdoor lighting efficiency to recommended levels.
  43 administrative type fac. for indoor/outdoor lighting efficiency. Same fac.'s to be surveyed as in 1. above.
  5 family housing areas for street lights.

#### Phase II- Option, Added ECOs:

- Reduce indoor, outdoor, or street lighting where illumination exceeds AEI recommended levels.
  - 37 administrative type fac. for indoor/outdoor lighting efficiency. Same fac.'s to be surveyed as in 1. above.
  - 4 family housing areas for street lights.
- 7. Waste heat recovery-Heat exchanges for ventilation and hot water heat.
  - 15 building locations. Same buildings surveyed as in 1. above.
- 8. Chiller replacements.
  - 7 chillers in 5 buildings.
- 9. Variable speed circulation pumps.
  - 57 pumps in barracks (Korean War built).
- 10. EMCS expansion of buildings and functions.
  - 17 buildings add onto the existing system.
- 2. GENERAL SOW vs. DETAILED SOW: The General Scope of Work (GSOW) will apply to contract efforts as modified by the Detailed Scope of Work (DSOW). Should conflicts occur between the GSOW and DSOW, the DSOW shall govern.

#### 3. RESPECTIVE POC's for this STUDY:

Louisville District COE-	Charles (Chuck) Lockman/CEORL-ED-M (502) 582-6041, or FAX 6763, or 5281
Fort Campbell, KY DEH-	Arlin E. Wright/Supv. Industrial Engr. DEH-MESB (502) 798-8895, or FAX 9596
Architect/Engineer(A/E)-	

#### 4. SCOPE:

- 4.1 The A/E shall provide all work necessary to complete the ESOS as defined in the GSOW including the ANNEX's. Information and instructions contained within the Detailed SOW are provided as a means for the A/E Project Manager (P/M) to expand or modify the GSOW as may be needed to suit the survey for the ESOS ECOs at Fort Campbell, KY.
- 4.2 The survey will consider all components and aspects of operations of a selection of facilities, replacements, materials, utilities, envelopes, boilers, alternatives methods of equipment, and etc. to determine any energy savings methods/recommendations, energy savings operational methods, systems energy savings requirements, and all operations that could realize energy savings. This could include interviews of various personnel at the installation to accomplish data gathered for quantities, and operational data. Alternate energy sources such as solar, wind, and geothermal, will not be included.
- 4.3 The survey will consider new designs etc., for energy trends that make each ECO more cost effective and energy saving.
- 4.4 The A/E shall assist the DEH in arranging for the installation of any metering of various utilities identified in the ECO, such as for electric, gas, etc.
- 5. <u>DETAILED REQUIREMENTS:</u> All detail requirements selected at Fort Campbell, KY for the purpose of this survey, shall specifically include the special facility and projects identified by the DEH staff. In general the facilities and projects, when investigated relative to the ECO's provided in ANNEX A, shall comprise the bulk of suggestive items normally investigated for the ESOs.

Specific Energy Conservation Opportunities (ECO) Checklist: Each ECO selected from the list in ANNEX A shall be investigated as a minimum, however, if others are found during the investigation that are good candidates they shall also be included and evaluated.

6. <u>PERFORMANCE:</u> The total time required for completion of the ESOS initial award of Phase I shall not be more than 211 calendar days from the date of the Notice to Proceed (NTP) for the contract. Phase II Option award may occur simultaneously with the Phase I award, then the schedule would be required as

printed/scheduled in Figure B-6.1, however, award of Phase II may not occur, and may be scheduled separately on a 175 calendar day basis for completion criteria, from the NTP award. If the ESOs, either Phase I and/or Phase II Option takes the A/E less time than scheduled to achieve, an interim interview meeting at the installation may be coordinated by the A/E with all parties involved in the review process. Figure B-6.1 is a schedule of pertinent events and milestone dates for acceptable performance of the survey at Fort Campbell, KY. Changes or adjustments make to the SOW during the term of the project survey shall be made by the Louisville District.

- 7. <u>SUBMITTALS:</u> The A/E's Project Manager shall provide direct distribution of all required submittals and documents in the numbers as listed in Figure B-7.1.
- 8. GOVERNMENT-FURNISHED INFORMATION: The following list of reference documents will be furnished to the A/E:
- (1) Final reports of previously completed studies performed under the Energy Engineering Analysis Program (EEAP), See par. 10 for the list.
- (2) Latest copies of other energy studies performed since the previous EEAP study, see par. 10 for the list.
  - (3) Energy Resources Management Plan.
- (4) ETLs 1110-3-254, Use of Electric Power for Comfort Space Heating, 1110-3-282, Energy Conservation, 1110-3-318, Procedures for Programming Energy Monitoring and Control Systems (EMCS) Funded through the MCA Program and 1110-3-332, Economic Studies.
  - (5) Architectural and Engineering Instructions.
- (6) Energy Conservation Investment Program (ECIP) Guidance, dated 4 November 1992.
  - (7) Information on Existing EMCS Studies, Designs, Construction Contracts, or Operating Systems. (Only if needed for this survey)
- (8) TM 5-785, Engineering Weather Data, TM 5-800-2, General Criteria Preparation of Cost Estimates, TM 5-800-3, Project Development Brochure, TM 5-815-2, Energy Monitoring and Control Systems (EMCS). TM 5-815-2 need only be furnished if items (7), (10), and (11) are furnished.
- (9) AR 415-15, Military Construction Army (MCA) Program Development; AR 415-17, Cost Estimating for Military Programming; AR 415-20, Construction, Project Development and Design Approval; AR 415-28, Department of the Army Facility Classes and Construction Categories; AR 415-35, Construction, Minor Construction; AR 420-10, General Provisions, Organization, Functions, and Personnel; AR 11-27, Army Energy Program; and AR 5-4, Change No. 1, Department of the Army Productivity Improvement Program.
- (10) HNDSP-84-076-ED-ME, Preliminary Survey and Feasibility Study for Energy Monitoring and Control Systems. (Only if needed for this study).

- (11) CEHND-SP-90-244-ED-ME, EMCS Cost Estimating Guide. (Only if needed for this study).
- (12) NCEL CR 82.030, Standardized EMCS Energy Savings Calculations. (Only if needed for this study).
- (13) The latest applicable Engineer Improvement Recommendation System (EIRS) bulletin.
- (14) An example of a correctly completed implementation document for a project.
- B. LCCID, A COMPUTER PROGRAM: A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, IL for a nominal fee. This computer program will be used for performing the economic calculations for ECIP and non-ECIP ECO's. LCCID permits the designer to perform an economic study that conforms to the economic criteria all three services. POC is Linda Lawrie. The A/E is encourage to obtain and use this computer program, because is a universal Government comparison tool that requires comparisons throughout the US for such type surveys and data requirements. The A/E will obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801. The telephone number is (217) 333-3977 or (800) 842-5278. All economic analysis can be performed using simple payback period, however, LCCA will be required for the Government information.
- 9. <u>SIMULATION PROGRAMS:</u> No computer simulation will be required under this project.
- 10. <u>LIST OF EEAP REPORTS/STUDIES, FORT CAMPBELL:</u> A review of the following is considered to be of assistance for in the DSOW. The COE and DEH Offices have a copy for review, and/or loan:
  - a. Basewide Energy System Plan, Executive Summary, 03/01/83
  - b. Basewide Energy System Plan, Vol. 1, & 2, 12/01/82
  - c. Energy Consumption & Requirement Survey, 12/01/77
  - d. Energy Audit, Dining Facilities, Exec. Summary, 08/01/86
  - e. Energy Audit, Dining Facilities, Vol. 1-5, 08/01/86
  - f. Limited Energy Study, Cold Stg. Fac., 01/18/93
  - g. Energy Efficient Motors, by COE, list of, 11/04/92, sch.comp.5/93

FIGURE E-1.1 Listing of Buildings/Facilities/or Areas to be studied in the ECOS, FORT CAMPBELL, KY:

#### BASIC CONTRACT, PHASE II

1. Instantaneous Hot Water Heater- 77 Administrative type fac's:

38	6087	6734	6914
89	6088	6735	6915
91	6137	6736	6916
93	6140	6737	6924
95	6254	6738	6924A
2699	6302	6740	6925
2745	6304	6744	6926
3202	6306	6773	6932
3209	6308	6784	6934
3210	6390	6789	6935
3307	6706	6790	6991
3308	6708	9001	6993
3411	6713	6902	6995
4601	6714	6904	6997
5207	6715	6905	7510
5210	6717	6906	7541
5212 .	6720	6907	7838
5661 -	6723	6908	7855
5702	6729	6913	7856
5740			

2. Ground Water Coupled Heat Pump- 6 individual family type quarters:

There are 770 family quarters that currently have heat pumps that need upgrading due to age and limited design characteristics that show up during extreme cold weather conditions. Currently 630 units of same type are being converted to gas package type heating/cooling units. This is a sample study of the 770 units for possible applications as a cross section of various types structures. The locations of areas follows:

Location	Type/Size	Number of Quarters
La Pointe Village	2 bedroom	2-6 Units
(downstairs)		
La Pointe Village	2 bedroom	2-6 Units
(upstairs)		
Hammond Heights	4 bedroom	2-4 Units
Drennon Park	4 bedroom	1-2 Units
Drennon Park	4 bedroom	Single Unit

- 3. Heat Reclaim from Hot Refrigerant Gas/Condenser Units:
  - 1 Facility- Commissary, building 2702

#### CONTINUED-PHASE I:

4. Replace Absorption Chiller with High Efficiency Units- 15 chillers, size 90-570 tons:

Building Location	Chiller Size
3213	140
3214	250
6711	360
6718	140
6726	360
6732	300
6774	90
6776	320
6781	320
6910	320
6921A	570
6929	320
6936	160
6938	320
6944	380

5. Indoor/Outdoor Lighting Efficiencies to Recommended Levelsa. 43 Administrative Type Facilities for Indoor Survey (same facilities to be surveyed as in 1. above):

Location	gg. ft.	Location	Bo. ft.
38	16,038	6140	3,867
89 ·	11,545	6254	9,338
91	12,873	6302	5,615
93	17,492	6304	5,385
95	21,864	6306	5,615
2699	3,319	6308	5,385
2745	13,249	6390	12,792
3202	13,381	6708	2,581
3204	2,250	6713	3,610
3206	3,746	6714	2,686
3209 ·	3,598	6715 .	18,902
3307	2,816	6717	2,581
3308	2,252	6720	4,892
3411	20,918	6723	3,610
5207	169,375	6729	3,610
5212	2,160	7510	14,280
5661	22,480	7514	4,064
5702	14,000	7541	8,904
5740	14,173	7543	998
6087	10,768	7562	1,800
6088	4,988	7574	325
6137	1,440		

b. 5 Family Quarters Areas for Street Lighting Survey:
 Hammond Heights
 Lee Village
 Pierce Village
 LaPointe Village
 Gardner Village

#### OPTION, PHASE II:

6. Reduce Indoor, Outdoor, or Street Lighting to Recommended Levels:

a. 37 Administrative Type Facilities for Indoor Survey:

(same facilities to be surveyed as in 1. above)

Location	Bq. ft.	Location	eq. ft.
6734	3,610	6913	2,581
6735	2,746	6914	3,610
6736	2,581	6915	3,610
6737	2,581	6916	2,581
6738	2,581	6924	2,581
6740	4,141	6924A	3,688
6744	7,200	6925	3,610
6773	2,581	6926	2,581
6784	2,581	6932	1,000
6789	3,610	6933	3,610
6790	3,610	6934	3,610
6901	9,303	6935	2,581
6902	3,867	6991	3,688
6903	2,686	6993	3,688
6904	2,581	6995	3,688
6905	2,581	6997	3,568
6906 .	2,581	7855	10,815
6907	2,581	7856	9,607
6908	2,581		•

5 Family Quarters Areas for Street Lighting Survey:
 Cole Park Gardner Hills
 Drennan Park Werner Park
 Stryker Village

7. Waste Heat Recovery-Heat Exchanges for Ventilation and Hot Water Heat15 locations: (Same buildings surveyed in 4. above)
Boilers are in each of these facilities that provide heat in the
winter months, also heat for absorption type chiller units in
summer months. Excess heat possibly could be recycled by heat
exchangers to help make needed hot water as well as heat for
ventilation within each boiler facility.

Building lo	cation with	Boilers		
3213	3214		6711	6718
6726	6732		6774	6776
6781	6910		6921A	6929
6936	6938		6944	

8. Chiller Replacements-7 Chillers at 5 Building Locations:

•	p-		. Chizzzelo at a pazzating posterions.
	Building	Location	Chiller Type/MFG
	38		2 units, Carlyne, Carrier
	93		2 units, Trane Model
			#2E5E58NUR2
			#2F5F58N

(continued 8., next page)

CONTINUED-PHASE II:

95

1 unit, Worthington Model
#3VHP6

98

9. Variable Speed Circulation Pumps: Each Korean War Barracks has a circulation pump for heating/cooling water supplied to the fan coil units. There are 49 facilities/pumps in the 6700-6900 block plus an additional 8 facilities in the 3200 block. An ESOS is needed to determine the energy savings by application of variable speed- electronic controls on the pump motors.

10. EMCS Expansion of Buildings and Functions- Adding 17 buildings:

Building Location	Building Location
80	6627
307	6628
2702	6636
2840	6637 .
3069	7262
. 3071	7267
3934	7268
5004	7272
5380	•

Н									
				CLAR	KSVILLE BAS		FOR	TC	AN
	J			HEA LOOP	DOWARTERS	) /			<u></u>
	ı			<u>;</u>	DARNE	84.		/	
	Н		SMAN LODGE		200	RANGE RD			
	G	ARMY TRAN HUNTING & RIDING STA NATURE CE GARDNER H	FISHING BLES	.REA	E STILL	WELL	COLOR	2400 9	CHAF
-	F	GATE 10		-	KANSA WICKHA		6700	10 11	73 30
-	=		Maarsun		5100 8	5300 \$	5400 5500	13 14	27
	- 1				TENNESS KENTUC		16		345 37 3
	וכ		1600	1700	NDIANA	TALE SALE		00 2400	36 81 38 2500 41 43 44
	-1		1		WERNER PA	AA J	MISSISSIPH :	a Ble	45
	;		1500	. 1	ALASKA	<b>ANTICON</b>	JACKSON ZO ELEMENTAKY O SCHOOL	700	2 46 83 91 54
E	3	COLE (PA			HIGH .	84 AMPBELL SCHOOL 1100	21 22 5 23	25 S. 800 26 S. 26 S. SCONSIN	CAROLINA   STRYKER   MU
A			ARKSVILLE, TN	TE I GATE	SEMINOL 2 DRENNA	E MARK	1000	LOOP 57 GAT	340,500 ;; / SC
			roperty of U.S. ( Alfairs Office, F						TNIKY
		16	15	14	13	12	11	10	9
-		$\sim$			1		L	-	



LEGEND	5.5	Auto Craft Shop (14)	F-10
ACS Welcome Center (41) Air Assault Landing Pad (9) Air Assault School (11) Army Community Services Center (5	D-9 G-10 G-10 8) 8-8	Bachelor Enlisted Quarters (65) Bachelor Officers Quarters (4) Baldonado Swimming l'ool (43) Bank (51) Barkley School (90)	D-7 E-6 & B-15 D-9 D-8 E-3

## CAMPBELL, KY



Burger King (37) Champions Sport: Chapels and Chap Chaplain Acti

Chapels and Chap
Chaplain Acti
Chaplain Acti
Hospital Chap
Conununity C
Eagle Chapel (
Faith Chapel (
Fellowship Ci
Grace Chapel (
Hope Chapel (
Memorial Cha
Soldiers Chap
Civilian Personnel
Clarksville Base Iv
Carksville Base So
Cole Park Colf Co
Commissary (49)
Community Life C

Clarksville Base I'l Clarksville Base S Cole Park Golf Co Commissary (49) Community Life ( Consolidated Sup Credit Union (28) Directorate of Info Division and Post Division Resource Dryer Field House Eagle Conference : Estep Physical Fitt Facilities Engineer Finance and Accou Fort Campbell Hig Four Seasons/Toy Fratellenico Physic Fryar Stadium (33) Gardner Bowling ! Gardner Swimmin Gertsch Physical F Greyhound Bus St Guenette Arts & C Hooper Bowling C Hospital - Colonel Army Commu

Army CommuIn-Out Processing
Inspector General (
Jackson Elementar
Kentucky Fried Cli
Kuhn Dental Clinic
Lee Recreation CerLee Village Exchan
Library (46)
Lincoln Elementar
Lozada Physical Fr
Mahaffey Middle State Beaten

Lozada Physical Physical Phahaffey Middle S Main Post Exchang Marshall Elementa Muldoon Swimmin NCO/Eagle Rende Noncommissioned Officers Open Messocial Physical Fitupackage Store (26) Patio Laundromat (Perez Baseball Field Post Office (55) Pratt Museum/Wic Provost Marshall's Public Affairs Office Purchasing and Confurcation of the Post North Provost Marshall's Public Affairs Office Purchasing and Confurchasing and Confurchasing and Confurchasing and Confurchasing station (PX) Service Station (PX)

Recycling Center (4 Red Cross Office (8 Shoppette (15) Simms Guest Hous-Single Swimming P Small Animal Clinic Synthetic Trainer Cr Taylor Dental Clinic Thrift Shop (22) Transportation Divi Vehicle/Weapons F Wassom Middle Scl

Wassom Middle Sch Wayrynen Recreatic Wilson Theater (52) Wantes Elker

# FORT CAMPBELL, KY

Bachelor Offic	ted Quarters (65) ers Quarters (4) imming Pool (43)	E-6 & B-15	Burger King (37) Champions Sports Club (82) Chaples and Chaplain Offices Chaplain Activities Office (66) Chaplain Activity Center (71) Hospital Chaplain's Office (72) Conununity Chapel (10)	E   D   C   C   F
Baldonado Sw Bank (51)	AIRFIELD 777 1400 6141	D-9 D-8	Chaplain Activities Office (66) Chaplain Activity Center (71) Hospital Chaplain's Office (72) Conununity Chapel (10) Eagle Chapel (64) Faith Chapel (63) Fellowship Chapel (67) Grace Chapel (70) Peace Chapel (70) Peace Chapel (19) Hope Chapel (2) Memorial Chapel (52) Civilian Personnel Office (57) Clarksville Base Physical Fitness Center (2) Clarksville Base Physical Fitness Center (2) Carksville Base Swimming Pool (1) Cole Park Colf Course (3) Community Life Center (76) Consolidated Supply (7) Credit Union (28) Directorate of Information Management (56) Division and Post Headquarters (47) Division Resources Management Office (91) Dryer Field House (41) Eagle Conference Room (48) Eagles Roost Recreation Center (68) Eatep Physical Fitness Facility (17) Facilities Engineers Office (21) Finance and Accounting Office (40) Fort Campbell High Sciol (84) Four Seasons/Toyland (23) Faratellenico Physical Fitness Center (75) Fryar Stadium (33) Gardner Bowling Lanes (69) Gardner Swimming Pool (16) Gertsch Physical Fitness Center (74) Greyhound Bus Station (38) Guenette Arts & Crafts Center (53) Hooper Bowling Center (29) Hospital - Colonel Florence A Blanchfield Army Community Hospital (72) In-Out Processing Facility (44- Inspector General (92) Jackson Elementary School (85) Kentucky Fried Clucken(31) Kuhn Dental Clinic (60) Lee Recreation Center (34) Lee Village Exchange fool Marshall Elementary School (87) Muldoon Swimming Pool (12) NCO/Eagle Rendezvous Club (39) Noncommissioned Officers Academy (18) Officers Open Mess (6) Officers Swimming Pool (12) NCO/Eagle Rendezvous Club (39) Provost Marshall Field (27) Post Office (55) Pratt Museum/Wickam Hall (35) Provost Marshall's Office (54) Public Affairs Office (79) Purclassing and Contracting Office (24)	、ではおもなりまかは1チで打力的もでかりででありももりありかあり、おりたまものも、でしたのもチャルでもなるからないからかかまなりもであっていたがあります。
:		.	Red Cross Office (83) Shoppette (15) Simms Guest House (45) Single Swimming Pool (62) Small Animal Clinic (20)	1412 C 4 D 4 C 7 C 11
31b			Taylor Dental Clinic (13) Thrift Shop (22) Transportation Division (25) Vehicle/Weapons Registration (8) Wassom Middle School (88)	G 2 646 641 640 640 640 650 650 650 650 650 650 650 650 650 65
3	2	1		( r











PIERCE VILLAGE













STRYKER VILLAGE





FIGURE B-6.1. SCHEDULE for the Phase I, and Phase II Option ESOS, FY93 EEAP, FORT CAMPBELL, KY, if awarded simultaneously:

Item  1. CBD ANNOUNCEMENT	Calendar )	Calendar Days O		Actual Date 16 Mar 93	
2. CBD CLOSED	0	• •	15 Ap:	93	
3. SOW APPROVED BY COE/DEH/MACOM	D	••	15 Ap:	r 93	
4. PRESELECTION/SELECTION BOARD	٥	• •	6/7Ma	y 93	
5. RFP LETTER TO A/E	0	• •	18 Ma	y 93	
6. RFP LETTER RECEIVED BY A/E	0	••	20 May	y 93	
7. ENTRY INTERVIEW @ Fort Campbell (FC) (prior to Pre-negotiation SOW Mtg. DEH, COE,		• •	27 May	93	
8. PRE-NEGOTIATION SCOPING MEETING @ FC	0 al.)	• •	27 May	93	
9.a A/E SUBMITS PROPOSAL/NEG'NB BEGIN	. О	• •	10 Jun		
b Negotiations begin/ends  10. AWARDability CONTRACT-START/NTP  (field analysis begins by A/E)	. 1	• •	14-183 28-303		
11. INTERIM SUBMITTAL(all field work completed/ECOs analyzed)	60	••	Ol Sep	93	
12. REVIEW PERIOD OF THE INTERIM SUBMITTAL (COE gathers comments from IN-HOUSE/DEH/MACOM	75 )	••	15 Sep	93	
13.a.INTERIM COMMENTS TO A/E (COE to A/E)	76	• •	16 Sep		
b.INTERIM CONFERENCE/ A/E PRESENTATION @ FC	83	• •	22 Sep	93	
14. PREFINAL SUBMITTAL	120	• •	01 Nov	93	
15. REVIEW PERIOD	127	• •	08 Nov	93	
16. PREFINAL CONFERENCE @ FC	130	••	11 Nov	93	
17. EXIT INTERVIEW	130	••	11 Nov	93	
18. FINAL SUBMITTAL	175	••	06 Dec	93	
19. DEH SUBMITS DD form 1391's	211	••	03 Jan	94	
NOTE: Option, Phase II, if awarded separately, will listed above for the schedule.	ill follow	9. thro	ough 18.	as	



FIGURE B-7.1. Distribution of Submittals: The A/E shall make direct submittal and responses to comments as indicated by the following schedule:

Organization	Corre	sponden	CE	
		Execut	ive S	ummary
		P	eport	5
			Fie	ldnotes
COMMANDER, US Army Engineer District, Louisv. ATTN: CEORL-ED-M/Charles Lockman P.O. Box 59 Louisville, KY 40201-0059 (tel. 502-582-6041, or fax# 6763, or 5281		1	2	1*
HQ 101 Abn Div (AASLT) & Ft.Campbell ATTN: AFZB-DE-R-M/Arlin E. Wright 16th & Ohio St., Bldg. T-865 (DEH) Fort Campbell, KY 42223-1291 (tel. 502-798-8895, or fax# 9596)	1	1	2	1*
Headquarters FORSCOM (MACOM) ATTN: FCEN-RDF/Naresh Kapur Fort McPherson, GA 30330-6000 (tel. 404-669-6731, or fax# 6122 or 7751)	1	1	1	1*
COMMANDER, US Army Engineer District, Mobile ATTN: CESAM-EN-CC/Tony Battaglia (EEAP TCX P.O. Box 2288 Mobile, AL 36628-0001 (tel. 205-690-2618, or fax# 2424)		1*	*O	0
COMMANDER, US Army Engineer Div., Ohio River ATTN: CEORD-DL-M/Joe Semrad P.O. Box 1159 Cincinnati, OH 45201-1159 (tel. 513-684-3975)	r 0	1*	*0	0
COMMANDER, US Army Engineer Div., S. Altantic ATTN: CESAD-EN-TE/John Baggette 77 Forsyth Street, S.W. Atlanta, GA 30335-6801	<b>c</b> 0	1*	*0	0
COMMANDER, US Army Corps of Engineers ATTN: CEMP-ET/Dan Gentil (EEAP Mgr.) 20 Massachusetts Avenue Washington, D.C. 20314-1000 (tel. 202-272-0430)	0	1*	*D	0
COMMANDER, US Army Logistics Evaluation Age ATTN: LOEA-PL/Mr. Keath New Cumberland Army Depot New Cumberland, Pa. 17070-5006 * Field Notes submitted in final at Info			*O	

** Submit copies of the final Executive Summary Only

B-9

### SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

November 5, 1993

Charles Lockman
Commander, US Army Engineer District Louisville
CEORL-ED-M
P.O. Box 59
Louisville, KY 40201-0059

Dear Mr. Lockman:

RE: Fort Campbell Energy Savings Opportunity Survey

Enclosed are the minutes from the Phase I Pre-Final review and the Phase II Interim review meeting at Fort Campbell held on October 22, 1993. Also enclosed are comments and responses for both submitted reports.

If you have any questions or require additional information, please call me at (615) 521-6536.

Sincerely,

SYSTEMS CORP

Keith Derrington Vice President

cc: Arlin Wright, AFZB-DE-R-M

Kett A. Denington

Naresh Kapur, FCEN-RDF

Tony Battaglia, CESAM-EN-CC

Enclosures

Charles Lockman, CEORL-ED-M Page 2 November 5, 1993

### PREFINAL REVIEW PHASE I AND INTERIM REVIEW PHASE II MEETING MINUTES OCTOBER 22, 1993

### ATTENDANCE LIST:

Charles Lockman	Louisville District CEORL-ED-MS	(502) 582-6041
Arlin E. Wright	Ft. Campbell DPW-MESB	(502) 798-8895
Gary Griffith	Ft. Campbell DPW-MESB	(502) 798-8895
Naresh Kapur	FORSCOM Engineer FCEN-PWO	(404) 669-6731
Keith Derrington	Systems Corp Project Manager	(615) 521-6536
Cheri Martin	Systems Corp Project Engineer	(615) 521-6536

The meeting was begun at 8:00 a.m. The initial part of the meeting was spent discussing the review comments for the Pre-Final report for Phase I and the Interim report for Phase II made by Naresh Kapur. Each of Mr. Kapur's comments were addressed and resolved. A list of Mr. Kapur's comments for both reports, along with Charles Lockman's comments for the Phase II report, are included as an attachment to the minutes. It was determined that the Pre-Final review meeting would be moved from November 15, 1993 to November 10, 1993.

The remainder of the meeting was a Systems Corp slide presentation summary of the results found, to date, for Phase I and II. The presentation for Phase II showed the results obtained for each specific ECO along with a discussion of the ECO survey, calculations, and economic analysis results. The presentation for Phase I displayed the results obtained for specific project groupings determined at a previous meeting.

The meeting was adjourned at approximately 11:00 a.m.

Charles Lockman, CEORL-ED-M Page 3 November 5, 1993

Phase I Pre-Final

Naresh Kapur

**VOLUME 1** 

Comment 1 General Based on experience with Phase 1 and Phase 2, please

recommend what other buildings and what kinds of ECOs should be pursued to reduce energy consumption

significantly. This can be a 1 to 2 page write-up.

Response: Will respond in a separate write-up.

Comment 2 Sect. 1.2.2 What is the purpose of this sub-paragraph? Maybe

consider explaining sequence in which this report is

organized.

Response: Will expand with description of each volume.

Comment 3 Fig. 1.3.1 & 1.3.2 Provide Units of Cost and MCF on Y-axis. Can the

height of MCFs be comparable to cost?

Response: Will comply.

Comment 4 Table 1.3.2 Consider separating kwh cost and demand charges part

in this table.

Response: Will comply.

Comment 5 Table 1.4.3 Provide overall figures for SIR and SPB.

Page 4

November 5, 1993

Response:

Will provide an average value.

Comment 6 Section 1

The economics of chiller project is different here than presented in interim review view graph at the end of this report. Explain.

Response:

Buildings scheduled to be destroyed were removed from the project. This will be noted in the final report.

Comment 7 Section 2

Provide SF for Building 4601, Child Care Center.

Response:

Arlin Wright will provide.

Comment 8 Section 2

Based on data collected on chillers, is it possible to replace existing chillers by two smaller units, for handling partial loads and provide better economics? Please discuss.

Response:

Withdrawn.

Comment 9 Section 2

Add titles following ECO number wherever needed.

Response:

Will comply.

Comment 10 Section 2

Explain different replacement options in detail - in layman's language.

Response:

Will comply.

Comment 11 Section 4

What part of the constuction cost is used in replacement cost (3B). Also provide PB and AIRR figures. Similar situations exist for other ECIPs.

Page 5

November 5, 1993

Response:

The report will be revised to explain the replacement

cost at the front of the programming document.

Comment 12 Section 1 Scope of work can be in more detail explaining existing

conditions, final conditions, special situations, and different treatment for different areas for FC

requirement point of view.

Response:

Withdrawn.

### **VOLUME 2**

Comment 13 Section 4 Do we have LCCA for each building where lighting

ECOs are considered? If so, where do we look?

Response: These are included in the Interim Report.

### **VOLUME 3**

Comment 14 Section 5 For all ECIP front pages, use ECIP guidance and

round off dollar figures accordingly.

Response: Will comply.

Comment 15 Section 5 How to verify figures used in 3A and 3B of LCCA?

Add PB and AIRR figures wherever missing for Special

Requirement, Paragraph 1.

Response: Refer to comment 11.

Page 6

November 5, 1993

Comment 16 Section 7

Last sentence "please refer to section 4 for detailed description of the ECO". Please provide a real detailed description we can give NAF folks with the analysis for

their further action.

Response:

Will comply.

Phase II Interim

Naresh Kapur

**VOLUME 1-6** 

Comment 1 General

This interim submittal is well documented. In next submittal, mention how many buildings and total SF is covered by this study (Phase 1 and Phase 2). What areas, especially large facilities, are not covered? This can be part of the Executive Summary write-up.

Response:

Will include as separate write-up.

**VOLUME 1** 

Comment 2 Section 2

Add titles following ECO numbers.

Response:

Will comply.

Comment 3 Section 3.1.1

Paragraph 3, cross reference as to where expanded description of each ECO can be found. An ECO like #3, Indoor/Outdoor Lighting has many variations. Each need to be described in simple language. Provide catalog type information wherever possible.

Response:

Will comply in Pre-Final report.

Charles Lockman, CEORL-ED-M Page 7 November 5, 1993

### **VOLUME 1-2**

Comment 4 Section 5

Under "Project Notes" for ECO-6, Building 6734, it would be very helpful to document what is the current situation and what is being done as part of this ECO. Just repeating generic scope of work each time is not acceptable. This comment applies to other buildings under this ECO and other ECOs also.

Response:

Withdrawn. Covered in spreadsheets.

Comment 6 Section 5

Page 5-215, Project Number 006-6904, credit is not applied for future cost avoidance (Item 3B of LCCA). The credit is applied for many similar ECOs but not all. Please explain.

Response:

Will explain in Pre-Final report.

### **VOLUME 2**

Comment 5 Section 5

Please explain each item of the cost estimate. Do the fixtures come assembled, ready to be installed? If not, investigate the possibilities labor saving can be significant. This is applicable to similar ECOs in other buildings.

Response:

Will explain on page 5-1.

Comment 7 Section 5

In 3B, the replacement cost of \$5,783 is about the same as in 1D for Project Number 006-SP. For Project Number 006-7856, the replacement cost of \$23,309 in 3B is different from \$29,141 in 1D. Please explain how

Page 8

November 5, 1993

these figures are picked up. This situation may be applicable to other ECOs also. Please check.

Response:

Will explain

**VOLUME 3** 

Comment 8 Section 6

Elaborate the Scope of Work in sufficient details as to how this ECO works. Spell out the work involved and any change of current operation. Is there any requirement of additional maintenance and repairs? Provide sketches, etc., as needed.

Response:

Withdrawn.

Comment 9 Section 7

Have we considered gas operated chillers. If we did, let us talk about it.

Response:

Will explain in Pre-Final.

Comment 10 Section 8

Can we consider non-energy saving in 3B, future replacement cost of existing motors? We have done it for lighting ECOs, is this a different situation?

Response:

Will explain in Pre-Final.

Comment 11 Section 9

For each ECO, elaborate the Scope of Work. Add sketches as needed. What EMCS will accomplish in each building? What kind of system is considered? Is it DDC or other type. Will this accomplish all the EMCS expansion needed? Try to present an overall EMCS picture as a part of background to the Scope of Work.

Charles Lockman, CEORL-ED-M Page 9 November 5, 1993

Response:

Will add explanation.

**VOLUME 4** 

Comment 12 Section 10 Describe Scope of Work in more detail. Discuss

current light level and anticipated light level in different areas. We need to provide details to commissary organization for further action. The ECO analysis look

good.

Response: Will explain on page 7-1.

Comment 13 Section 11 Delete D Project Non-energy qualification test. Add

an item for Payback years.

Response: Withdrawn.

**VOLUME 5** 

Comment 14 Section 15 Please explain how overlit areas have been dealt with.

Is delamping some fixtures considered/suggested? Is lower light level needs in corridor areas and toilets recognized in ECOs? (Example: Buildings 6901, 6908,

and 6907.)

Response: Refer to Section 5-1, Interim report.

Charles Lockman, CEORL-ED-M Page 10 November 5, 1993

Phase II Interim

Charles Lockman

### **VOLUME 4**

Comment 1 Section 11

ECO-7: Peak-Shaving Generators took the place of Waste Heat Recovery-Heat Exchangers. Because this is the Narrative Summary, should we have either noted a change here, or ink change the SOW changed as result of, etc.? (This is to help others later looking at reports)

Response:

Will note the change.

Comment 2 Section 11

11.3.6 ECO-11: Commissary Lighting (same as Comment 1). This ECO was added/picked up as result of ECO #7 not up front have good positive results. This ECO and ECO 7 were studied. Again, this is for summary consideration.

Response:

Will note the change.

### SYSTEMS ENGINEERING AND MANAGEMENT CORPORATION

November 5, 1993

Charles Lockman
Commander, US Army Engineer District Louisville
CEORL-ED-M
P.O. Box 59
Louisville, KY 40201-0059

Dear Mr. Lockman:

RE: Fort Campbell Energy Savings Opportunity Survey

Enclosed are the minutes from the Phase I Pre-Final review and the Phase II Interim review meeting at Fort Campbell held on October 22, 1993. Also enclosed are comments and responses for both submitted reports.

If you have any questions or require additional information, please call me at (615) 521-6536.

Sincerely,

SYSTEMS CORP

Keith Derrington Vice President

cc: Arlin Wright, AFZB-DE-R-M

Kett A. Denington

Naresh Kapur, FCEN-RDF

Tony Battaglia, CESAM-EN-CC

Enclosures

Charles Lockman, CEORL-ED-M Page 2 November 5, 1993

### PREFINAL REVIEW PHASE I AND INTERIM REVIEW PHASE II MEETING MINUTES OCTOBER 22, 1993

### ATTENDANCE LIST:

Charles Lockman	Louisville District CEORL-ED-MS	(502) 582-6041
Arlin E. Wright	Ft. Campbell DPW-MESB	(502) 798-8895
Gary Griffith	Ft. Campbell DPW-MESB	(502) 798-8895
Naresh Kapur	FORSCOM Engineer FCEN-PWO	(404) 669-6731
Keith Derrington	Systems Corp Project Manager	(615) 521-6536
Cheri Martin	Systems Corp Project Engineer	(615) 521-6536

The meeting was begun at 8:00 a.m. The initial part of the meeting was spent discussing the review comments for the Pre-Final report for Phase I and the Interim report for Phase II made by Naresh Kapur. Each of Mr. Kapur's comments were addressed and resolved. A list of Mr. Kapur's comments for both reports, along with Charles Lockman's comments for the Phase II report, are included as an attachment to the minutes. It was determined that the Pre-Final review meeting would be moved from November 15, 1993 to November 10, 1993.

The remainder of the meeting was a Systems Corp slide presentation summary of the results found, to date, for Phase I and II. The presentation for Phase II showed the results obtained for each specific ECO along with a discussion of the ECO survey, calculations, and economic analysis results. The presentation for Phase I displayed the results obtained for specific project groupings determined at a previous meeting.

The meeting was adjourned at approximately 11:00 a.m.

Charles Lockman, CEORL-ED-M Page 3 November 5, 1993

Phase I Pre-Final

Naresh Kapur

VOLUME 1

Comment 1 General Based on experience with Phase 1 and Phase 2, please

recommend what other buildings and what kinds of ECOs should be pursued to reduce energy consumption

significantly. This can be a 1 to 2 page write-up.

Response: Will respond in a separate write-up.

Comment 2 Sect. 1.2.2 What is the purpose of this sub-paragraph? Maybe

consider explaining sequence in which this report is

organized.

Response: Will expand with description of each volume.

Comment 3 Fig. 1.3.1 & 1.3.2 Provide Units of Cost and MCF on Y-axis. Can the

height of MCFs be comparable to cost?

Response: Will comply.

Comment 4 Table 1.3.2 Consider separating kwh cost and demand charges part

in this table.

Response: Will comply.

Comment 5 Table 1.4.3 Provide overall figures for SIR and SPB.

Page 4

November 5, 1993

Response:

Will provide an average value.

Comment 6 Section 1

The economics of chiller project is different here than presented in interim review view graph at the end of this report. Explain.

Response:

Buildings scheduled to be destroyed were removed from the project. This will be noted in the final report.

Comment 7 Section 2

Provide SF for Building 4601, Child Care Center.

Response:

Arlin Wright will provide.

Comment 8 Section 2

Based on data collected on chillers, is it possible to replace existing chillers by two smaller units, for handling partial loads and provide better economics? Please discuss.

Response:

Withdrawn.

Comment 9 Section 2

Add titles following ECO number wherever needed.

Response:

Will comply.

Comment 10 Section 2

Explain different replacement options in detail - in layman's language.

Response:

Will comply.

Comment 11 Section 4

What part of the constuction cost is used in replacement cost (3B). Also provide PB and AIRR figures. Similar situations exist for other ECIPs.

Charles Lockman, CEORL-ED-M Page 5 November 5, 1993

Response:

The report will be revised to explain the replacement cost at the front of the programming document.

Comment 12 Section 1

Scope of work can be in more detail explaining existing conditions, final conditions, special situations, and different treatment for different areas for FC requirement point of view.

Response:

Withdrawn.

VOLUME 2

Comment 13 Section 4

Do we have LCCA for each building where lighting ECOs are considered? If so, where do we look?

Response:

These are included in the Interim Report.

**VOLUME 3** 

Comment 14 Section 5

For all ECIP front pages, use ECIP guidance and round off dollar figures accordingly.

Response:

Will comply.

Comment 15 Section 5

How to verify figures used in 3A and 3B of LCCA? Add PB and AIRR figures wherever missing for Special Requirement, Paragraph 1.

Response:

Refer to comment 11.

Page 6

November 5, 1993

Comment 16 Section 7

Last sentence "please refer to section 4 for detailed description of the ECO". Please provide a real detailed description we can give NAF folks with the analysis for

their further action.

Response:

Will comply.

Phase II Interim

Naresh Kapur

### **VOLUME 1-6**

Comment 1 General

This interim submittal is well documented. In next submittal, mention how many buildings and total SF is covered by this study (Phase 1 and Phase 2). What areas, especially large facilities, are not covered? This can be part of the Executive Summary write-up.

Response:

Will include as separate write-up.

### **VOLUME 1**

Comment 2 Section 2

Add titles following ECO numbers.

Response:

Will comply.

Comment 3 Section 3.1.1

Paragraph 3, cross reference as to where expanded description of each ECO can be found. An ECO like #3, Indoor/Outdoor Lighting has many variations. Each need to be described in simple language. Provide catalog type information wherever possible.

Response:

Will comply in Pre-Final report.

Charles Lockman, CEORL-ED-M Page 7 November 5, 1993

### **VOLUME 1-2**

Comment 4 Section 5

Under "Project Notes" for ECO-6, Building 6734, it would be very helpful to document what is the current situation and what is being done as part of this ECO. Just repeating generic scope of work each time is not acceptable. This comment applies to other buildings under this ECO and other ECOs also.

Response:

Withdrawn. Covered in spreadsheets.

Comment 6 Section 5

Page 5-215, Project Number 006-6904, credit is not applied for future cost avoidance (Item 3B of LCCA). The credit is applied for many similar ECOs but not all. Please explain.

Response:

Will explain in Pre-Final report.

### **VOLUME 2**

Comment 5 Section 5

Please explain each item of the cost estimate. Do the fixtures come assembled, ready to be installed? If not, investigate the possibilities labor saving can be significant. This is applicable to similar ECOs in other buildings.

Response:

Will explain on page 5-1.

Comment 7 Section 5

In 3B, the replacement cost of \$5,783 is about the same as in 1D for Project Number 006-SP. For Project Number 006-7856, the replacement cost of \$23,309 in 3B is different from \$29,141 in 1D. Please explain how

Page 8

November 5, 1993

these figures are picked up. This situation may be applicable to other ECOs also. Please check.

Response:

Will explain

**VOLUME 3** 

Comment 8 Section 6

Elaborate the Scope of Work in sufficient details as to how this ECO works. Spell out the work involved and any change of current operation. Is there any requirement of additional maintenance and repairs? Provide sketches, etc., as needed.

Response:

Withdrawn.

Comment 9 Section 7

Have we considered gas operated chillers. If we did, let us talk about it.

Response:

Will explain in Pre-Final.

Comment 10 Section 8

Can we consider non-energy saving in 3B, future replacement cost of existing motors? We have done it for lighting ECOs, is this a different situation?

Response:

Will explain in Pre-Final.

Comment 11 Section 9

For each ECO, elaborate the Scope of Work. Add sketches as needed. What EMCS will accomplish in each building? What kind of system is considered? Is it DDC or other type. Will this accomplish all the EMCS expansion needed? Try to present an overall EMCS picture as a part of background to the Scope of Work.

Charles Lockman, CEORL-ED-M Page 9 November 5, 1993

Response:

Will add explanation.

**VOLUME 4** 

Comment 12 Section 10

Describe Scope of Work in more detail. Discuss current light level and anticipated light level in different areas. We need to provide details to commissary organization for further action. The ECO analysis look good.

Response:

Will explain on page 7-1.

Comment 13 Section 11

Delete D Project Non-energy qualification test. Add an item for Payback years.

Response:

Withdrawn.

**VOLUME 5** 

Comment 14 Section 15

Please explain how overlit areas have been dealt with. Is delamping some fixtures considered/suggested? Is lower light level needs in corridor areas and toilets recognized in ECOs? (Example: Buildings 6901, 6908, and 6907.)

Response:

Refer to Section 5-1, Interim report.

Charles Lockman, CEORL-ED-M Page 10 November 5, 1993

Phase II Interim

Charles Lockman

### **VOLUME 4**

Comment 1 Section 11

ECO-7: Peak-Shaving Generators took the place of Waste Heat Recovery-Heat Exchangers. Because this is the Narrative Summary, should we have either noted a change here, or ink change the SOW changed as result of, etc.? (This is to help others later looking at reports)

Response:

Will note the change.

Comment 2 Section 11

11.3.6 ECO-11: Commissary Lighting (same as Comment 1). This ECO was added/picked up as result of ECO #7 not up front have good positive results. This ECO and ECO 7 were studied. Again, this is for summary consideration.

Response:

Will note the change.

### PREFINAL REVIEW PHASE I AND INTERIM REVIEW PHASE II MEETING MINUTES OCTOBER 22, 1993

### ATTENDANCE LIST:

Charles Lockman	Louisville District CEORL-ED-MS	(502) 582-6041
Arlin E. Wright	Ft. Campbell DPW-MESB	(502) 798-8895
Gary Griffith	Ft. Campbell DPW-MESB	(502) 798-8895
Naresh Kapur	FORSCOM Engineer FCEN-PWO	(404) 669-6731
Keith Derrington	Systems Corp Project Manager	(615) 521-6536
Cheri Martin	Systems Corp Project Engineer	(615) 521-6536

The meeting was begun at 8:00 a.m. The initial part of the meeting was spent discussing the review comments for the Pre-Final report for Phase I and the Interim report for Phase II made by Naresh Kapur. Each of Mr. Kapur's comments were addressed and resolved. A list of Mr. Kapur's comments for both reports, along with Charles Lockman's comments for the Phase II report, are included as an attachment to the minutes. It was determined that the Pre-Final review meeting would be moved from November 15, 1993 to November 10, 1993.

The remainder of the meeting was a Systems Corp slide presentation summary of the results found, to date, for Phase I and II. The presentation for Phase II showed the results obtained for each specific ECO along with a discussion of the ECO survey, calculations, and economic analysis results. The presentation for Phase I displayed the results obtained for specific project groupings determined at a previous meeting.

The meeting was adjourned at approximately 11:00 a.m.

### 10

### 10.1 PHASE 1: COMMENTS

Naresh Kapur

**VOLUME 1** 

Comment 1 General Based on experience with Phase 1 and Phase 2, please

recommend what other buildings and what kinds of ECOs should be pursued to reduce energy consumption significantly. This can be a 1 to 2 page

write-up.

Response: Will respond in a separate write-up.

Comment 2 Sect. 1.2.2 What is the purpose of this sub-paragraph? Maybe

consider explaining sequence in which this report is

organized.

Response: Will expand with description of each volume.

Comment 3 Fig. 1.3.1 & 1.3.2 Provide Units of Cost and MCF on Y-axis. Can the

height of MCFs be comparable to cost?

Response: Will comply.

Comment 4 Table 1.3.2 Consider separating kwh cost and demand charges part

in this table.

Response: Will comply.

Comment 5 Table 1.4.3 Provide overall figures for SIR and SPB.

Response: Will provide an average value.

SYSTEMS/CORP Knoxville, TN 10-1

Comment 6 Section 1 The economics of chiller project is different here than

presented in interim review view graph at the end of

this report. Explain.

Response: Buildings scheduled to be destroyed were removed

from the project. This will be noted in the final

report.

Comment 7 Section 2

Provide SF for Building 4601, Child Care Center.

Response:

Arlin Wright will provide.

Comment 8 Section 2 Bas

Based on data collected on chillers, is it possible to replace existing chillers by two smaller units, for handling partial loads and provide better economics?

Please discuss.

Response:

Withdrawn.

Comment 9 Section 2

Add titles following ECO number wherever needed.

Response:

Will comply.

Comment 10 Section 2

Explain different replacement options in detail - in

layman's language.

Response:

Will comply.

Comment 11 Section 4

What part of the constuction cost is used in replacement cost (3B). Also provide PB and AIRR

figures. Similar situations exist for other ECIPs.

Response:

The report will be revised to explain the replacement

cost at the front of the programming document.

SYSTEMS/CORP

Knoxville, TN

### 10 INTERIM REVIEW COMMENTS AND RESPONSES

Comment 12 Section 1 Scope of work can be in more detail explaining

existing conditions, final conditions, special situations, and different treatment for different areas for FC

requirement point of view.

Response: Withdrawn.

**VOLUME 2** 

Comment 13 Section 4 Do we have LCCA for each building where lighting

ECOs are considered? If so, where do we look?

Response: These are included in the Interim Report.

**VOLUME 3** 

Comment 14 Section 5 For all ECIP front pages, use ECIP guidance and

round off dollar figures accordingly.

Response: Will comply.

Comment 15 Section 5 How to verify figures used in 3A and 3B of LCCA?

Add PB and AIRR figures wherever missing for

Special Requirement, Paragraph 1.

Response: Refer to comment 11.

Comment 16 Section 7 Last sentence "please refer to section 4 for detailed

description of the ECO". Please provide a real detailed description we can give NAF folks with the

analysis for their further action.

Response: Will comply.

SYSTEMS/CORP Knoxville, TN 10-3

### 10.2 PHASE 2: COMMENTS

Naresh Kapur

**VOLUME 1-6** 

Comment 1 General This interim submittal is well documented. In next

submittal, mention how many buildings and total SF is covered by this study (Phase 1 and Phase 2). What areas, especially large facilities, are not covered? This

can be part of the Executive Summary write-up.

Response: Will include as separate write-up.

**VOLUME 1** 

Comment 2 Section 2 Add titles following ECO numbers.

Response: Will comply.

Comment 3 Section 3.1.1 Paragraph 3, cross reference as to where expanded

description of each ECO can be found. An ECO like #3, Indoor/Outdoor Lighting has many variations. Each need to be described in simple language.

Provide catalog type information wherever possible.

Response: Will comply in Pre-Final report.

### **VOLUME 1-2**

Comment 4 Section 5

Under "Project Notes" for ECO-6, Building 6734, it would be very helpful to document what is the current situation and what is being done as part of this ECO. Just repeating generic scope of work each time is not acceptable. This comment applies to other buildings under this ECO and other ECOs also.

Response:

Withdrawn. Covered in spreadsheets.

Comment 6 Section 5

Page 5-215, Project Number 006-6904, credit is not applied for future cost avoidance (Item 3B of LCCA). The credit is applied for many similar ECOs but not all. Please explain.

Response:

Will explain in Pre-Final report.

### **VOLUME 2**

Comment 5 Section 5

Please explain each item of the cost estimate. Do the fixtures come assembled, ready to be installed? If not, investigate the possibilities labor saving can be significant. This is applicable to similar ECOs in other buildings.

Response:

Will explain on page 5-1.

Comment 7 Section 5

In 3B, the replacement cost of \$5,783 is about the same as in 1D for Project Number 006-SP. For Project Number 006-7856, the replacement cost of \$23,309 in 3B is different from \$29,141 in 1D. Please explain how these figures are picked up. This

situation may be applicable to other ECOs also. Please check.

Response:

Will explain

**VOLUME 3** 

Comment 8 Section 6

Elaborate the Scope of Work in sufficient details as to how this ECO works. Spell out the work involved and any change of current operation. Is there any requirement of additional maintenance and repairs?

Provide sketches, etc., as needed.

Response:

Withdrawn.

Comment 9 Section 7

Have we considered gas operated chillers. If we did,

let us talk about it.

Response:

Will explain in Pre-Final.

Comment 10 Section 8

Can we consider non-energy saving in 3B, future replacement cost of existing motors? We have done it for lighting ECOs, is this a different situation?

Response:

Will explain in Pre-Final.

Comment 11 Section 9

For each ECO, elaborate the Scope of Work. Add sketches as needed. What EMCS will accomplish in each building? What kind of system is considered? Is it DDC or other type. Will this accomplish all the EMCS expansion needed? Try to present an overall EMCS picture as a part of background to the Scope of Work.

Response:

Will add explanation.

SYSTEMS/CORP

Knoxville, TN

### **VOLUME 4**

Comment 12 Section 10

Describe Scope of Work in more detail. Discuss current light level and anticipated light level in different areas. We need to provide details to commissary organization for further action. The ECO analysis look good.

Response:

Will explain on page 7-1.

Comment 13 Section 11

Delete D Project Non-energy qualification test. Add

an item for Payback years.

Response:

Withdrawn.

### **VOLUME 5**

Comment 14 Section 15

Please explain how overlit areas have been dealt with. Is delamping some fixtures considered/suggested? Is lower light level needs in corridor areas and toilets recognized in ECOs? (Example: Buildings 6901, 6908, and 6907.)

Response:

Refer to Section 5-1, Interim report.

Charles Lockman

### **VOLUME 4**

Comment 1 Section 11

ECO-7: Peak-Shaving Generators took the place of Waste Heat Recovery-Heat Exchangers. Because this is the Narrative Summary, should we have either noted a change here, or ink change the SOW changed as result of, etc.? (This is to help others later looking at reports)

Response:

Will note the change.

Comment 2 Section 11

11.3.6 ECO-11: Commissary Lighting (same as Comment 1). This ECO was added/picked up as result of ECO #7 not up front have good positive results. This ECO and ECO 7 were studied. Again, this is for summary consideration.

Response:

Will note the change.

# ENERGY SAVINGS OPPORTUNITY SURVEY

Fort Campbell, Kentucky

Phase II

### FT. CAMPBELL FIELD SURVEY

- Conducted July 12 July 20, 1993
- 133 Buildings Surveyed
- 5 Family Housing Areas Surveyed

## WORK ACCOMPLISHED TO DATE

- 1. Field Surveys Completed for 133 Buildings
- Exterior Lighting Surveys for 5 FH Areas
- Baseline Energy Models
- Evaluation of 121 Energy Conservation Opportunities
- Conservation Opportunities for Possible Implementation Calculations and Reporting of Solid Energy IJ.
- Preparation and Completion of all Field Notes . Ö
- 7. Completion of Interim Reports

### REMAINING PHASES

- Response to Interim Review Comments
- Preparation of Programming and Implementation Documents
- Prefinal Report
- Response to Prefinal Report Comments
- Final Report

Glide Path Fort Campbell Energy Consumption Actual MBfu/KSF/Yr

### Fort Campbell Consumption vs. Cost **FY92**





\$16,599,000

2,379,660 MBtu

Electricity Natural Gas

Other

# FT CAMPBELL ENERGY COSTS

	2 M 2 E		
	m = m m		H
	# 2 5 5		
	\$6.19/MBtu \$13.48/MBtu \$4.00/MBtu		:
	<b>後                                    </b>		
	$\mathcal{O}$		Ë
	$T$ $\Theta$		
	0 <del>-</del> 4 4		
	မ်ာ့ မှာ မှာ မှာ		
-			
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
-			##- ##-
1			
	ric nergy iith Demand iiral Gas Oil		
	<u>Q</u>		::: ::.
ı	$\omega$		
١	2 2		
	Electric  Energy  With Dem  Natural Gas  Fuel Oil	.::	
	$\geq 2$ $\alpha$		
	ectric <i>Energy with Der</i> atural Ga		.::
	Hect Natt Fuel		
	$oldsymbol{\omega}$		
	Electric  Ene  With  Natural Fuel Oi		
		::::	
•			

# ENERGY CONSERVATION OPPORTUNITIES

ECO-6: A. Indoor Lighting

B. Street Lighting

Waste Heat Recovery & Peak Shaving Generators ECO-7:

ECO-8: Chiller Replacement

Variable Speed Circulation Pumps ECO-9:

ECO-10: EMCS Expansion

ECO-11: Commissary Lighting

# ECO-6: Indoor/Outdoor Lighting

- 37 Buildings
- 5 Family Housing Area Surveyed

## ECO-6: Information Collected

- 1. Building Hours of Use
- 2. Existing Fixture Type
- 3. Ballast Wattage
- 4. Lamp Wattage
- 5. Number of Fixtures
- Applications for Occupancy Sensors 9













#### ECO-6: Analysis Summary

) J				
1709 MBtu/yr	2/yr	င္ပင္ပ		ပ္ပ
₩ 60	\$43,242/yr	\$349,993	39	8.09 yrs
Þ	\$4	<del>\$3</del>	1.39	ω.
gs				
Savings	avings	t		
	Sav	stment		
Energy	Cost S	Investi	SIR	SPB
			U	

# ECO-7: Waste Heat Recovery & Peak Shaving Generators

## ECO-7: Information Collected

- Manufacturer, model and serial numbers from boilers and generators
- 2. Flue gas temperature from boilers
- Operating temperature and pressure from boilers
- 4. O₂ and CO₂ readings from boilers
- 5. KW demand for generators
- 6. Hours of use for generators
- Fuel storage capacity for generators







#### ECO-7: Analysis Summary

-12,910 MBtu/yr			
2			
$\mathbf{\Omega}$			
2			
	\$42,681/yr	り	လွ
Š	$\infty$ 7	7	<b>S</b>
တ္		. რ	
N		\$49,913 5.33	1.17 yrs
	<del>8</del> 6	<b>کا</b> ال	) 🕌
ဟ			
ත			
y Savings	Cost Savings		
*	ù t		
Ŝ	5	ā	
	्ष १		
ති	<b>က</b> ႏ	3	
Energy	र र	Ď ~	m
ž	Ö	記 S R	SPB
Ш	$O^{-\frac{1}{2}}$	<b>= の</b>	S

### ECO-8: Chiller Replacement

## ECO-8: Information Collected

1. Manufacturer, Model and Serial Numbers

2. Chilled Water Pump Data



ECO-8: Savings and Replacement Costs

Building#	Chiller Size	Energy Savings	Chiller Cost*
800	60 Tons	\$375	\$27,000
80	70 Tons	1,592	\$32,900
95	45 Tons	1,023	\$22,900
86	75 Tons	1,705	\$35,150
* Chiller Cost doe	es not Include Labor		

# ECO-9: Variable Speed Circulation Pumps

## ECO-9: Information Collected

1. Motor Size

2. Motor Voltage

3. Type of Heating Controls (i.e. 3-Way Valves)



#### ECO-9: Analysis Summary

365 MBtu/yr				
	\$3,280/yr	ܡ✝		(O
	0	7		
	$\infty$	Ó		
35	$\mathbf{c}$	9	$\widetilde{\omega}$	တ်
36	<del>6</del>	\$26,074	1.80	7.95 yrs
ည				
	ဟ			
5	ဋ္ဌာ			
g	.\\	S)		
gy Savings	Savings	ne		
ති	ဟ	눐		
o o	ट्र	G	$\sim$	m
Energ	Cost	Investment	SIR	SPB
Ш			S	$\mathcal{O}$

### ECO-10: EMCS Expansion

## ECO-10: Information Collected

1. Motor Sizes

2. Current Time Clock Utilization

Boiler, Chiller, and Air Handling Unit Information







### ECO-10: Analysis Summary

13,689 MBtu/yr	\$70,889/yr	\$481,924 1.32 6.80 yrs
Energy Savings	Cost Savings	Investment SIR SPB

## ECO-11: Commissary Lighting

Building 2702 Surveyed

## ECO-11: Information Collected

1. Building Hours of Use

2. Existing Fixture Type and Number

3. Ballast Wattage

4. Lamp Wattage

### ECO-11: Analysis Summary

Btu/	Š	ထ္			
3,078 MBtu/yr	\$39,904/yr	\$130,696	<u></u>	Ş	.28 yrs
က်	\$3	8	3.48		ည က
S					
Savings	ings	t			
	Cost Savings	stment			
Energ	Cos	Invest	SIR		ン ア カ

# Fort Campbell ECO Comparison Investment Costs

\$349,993	49,913	26.074		48-,924	1.3U,696
$\mathbf{O}$				V (	))
$\mathbf{O}$	$\mathbf{O}$		(	))	$\mathbf{O}$
	$\mathbf{O}$		) ::::::: <b>:</b>	<del></del> -::::::(	
	$\nabla$				Y )
(Y)					
<b>6</b>					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
			:::::::::::::::::::::::::::::::::::::::		
					T
	The Co				
			F 18 4		
				4,4,4	
				<b>-</b>	
	** . *		-	J "	
(0	<b>\</b>	(	-		
		0	<b>T</b>		
iii I iii				I. dem a	The second
		-	Č		ر ک
( )				)	)
	1	1	/		
	CO-7	00		) (	5
9-00E	Ш	Ш			IJ
	لللا		<b> </b>	L L	
e to the state of		11 11	a tip of the		11.11.11



### 6 NAF LIGHTING

The ECO evaluation consisted of determining appropriate lighting replacements to improve lighting system efficiency while achieving recommended illumination levels. The ECO includes comprehensive lighting replacements.

### TABLE 6.1 LIGHTING SYSTEM REPLACEMENTS

**EXISTING LIGHTING** 

REPLACEMENT LIGHTING

T-12 Fluorescent Fixture	T-8 Fluorescent Fixture with reflector
T-12 Lamp	T-8 Lamp
Magnetic Ballast	Electronic Ballast

Incandescent Fixture	Compact Fluorescent Fixture
Incandescent Lamp	Compact Fluorescent Lamp and Ballast
Incandescent Exit Sign	LED (Light Emitting Diode) Exit Sign

This section contains the analysis results for the indoor lighting study for Building 6902 classified as non-appropriated funding (NAF). Included in this section are the life cycle cost analysis, energy calculations, and cost estimate for the facility.

The life cycle analysis, Sections 3A and 3B, refers to non-energy savings or costs present. For this project, Section 3A, Annual Recurring, reflects maintenance savings available by replacing the existing lighting systems. The new fixtures, due to the use of reflectors, have fewer lamps which saves on material and labor replacement. Compact fluorescents are rated for 10,000 hours versus 750 hours for an incandescent lamp which saves labor for replacements. LED exit signs have similar savings.

Section 3B, Non-Recurring Savings/Costs, refers to the replacement of parts of the existing lighting system. Many fluorescent fixtures surveyed were approaching the end of their economic life. On the spreadsheets included for fluorescent fixture replacement for each building, the higher wattage fixture for each type was replaced in this section. Mercury vapor fixtures were also replaced in 3B due to the termination of their manufacturing in the year 2000.

### 12

### PRE-FINAL REVIEW PHASE II MEETING MINUTES NOVEMBER 10, 1993

### ATTENDANCE LIST:

Charles L. Lockman	Louisville District COE, CEORL-ED-MS	(502) 582-6040
Arlin E. Wright	Ft. Campbell DPW-MESB	(502) 798-8895
Len May	Ft. Campbell DPW	(502) 798-8994
Larry Martin	Ft. Campbell DPW	(502) 798-5082
Keith Derrington	Systems Corp Project Manager	(615) 521-6536
Cheri Martin	Systems Corp Project Engineer	(615) 521-6536

The Pre-Final Review Meeting for Phase II began at 8:00 a.m. Charles Lockman began the meeting with a brief introduction. The Phase II meeting is the last meeting for the Ft. Campbell project. Pre-Final review comments from Mr. Lockman and Naresh Kapur (FORSCOM engineer) were distributed.

Systems Corp conducted a slide presentation summary for the results of the Pre-Final report for Phase II. The presentation showed the results obtained for two (2) ECIP projects, a Commissary Lighting project, and a NAF Facility Lighting project. The project groupings were determined at the previous review meeting on October 22, 1993.

The final report for Phase I will be submitted on November 12, 1993. The final report for Phase II will be submitted on November 24, 1993. The remainder of the meeting was spent discussing possible future ECO's for evaluation at Ft. Campbell.

The meeting was adjourned at approximately 9:00 a.m.

### PRE-FINAL REVIEW PHASE II COMMENTS AND RESPONSES

Reviewer: Charles Lockman

Comment 1

13

General

Systems Corp has been very cooperative and when an ECO such as ECO 8, particularly, were not turning out to have a good return, they dug in and searched out projects meaningful for the installation savings. ECO 8 was the one that was not working and they worked on "Improve Commissary Lighting Efficiency" ECO, and also the ECO 7 "Peak Shaving Generators." Thanks for the top considerations that would afford

Ft. Campbell savings.

Response:

No response required.

Comment 2 General

The COE recognizes the well organized documents and reports that give the story on each ECO through an Interim, Pre-Final, and eventually the Final Reports required for an ESOS documentation. We, the Louisville District COE, appreciate the experience in Energy Projects which show up constantly by Systems

Corp reports and findings.

Response:

No response required.

Comment 3

General

Round off dollar figures on DD1391's.

Response:

Will comply.

### PRE-FINAL REVIEW COMMENTS AND RESPONSES 13

Comment 4

General

Submittal of the Pre-Final from the Interim was noted

in a timely and quick response. Thanks!

Response:

No response required.

Reviewer: Naresh Kapur

Comment 1

General

Systems Corp staff has done a wonderful job of revising and reorganizing this submittal, especially in a

very tight time schedule. Our compliments to them.

Response:

No response required.

General Comment 2

This submittal is organized differently as compared to Interim submittal. It would be helpful to provide a little bit of explanation. What went where? What has been omitted? What has been added? Are we

expected to pick up anything from Interim submittal?

Response:

The Interim Report contains the LCCA for each building for each ECO. Please refer to Interim Report for material omitted in this submittal. Please retain Interim Report for future reference regarding

specific information for each building.

General Comment 3

Refer to FORSCOM comment numbers 1,2,3,5,6,10, We like to know where can we find

compliance or explanations? Due to reorganization of this submittal we may have missed the info provided.

Response:

In reference to the following:

Comment 1 - Will provide as a separate submittal.

### 13 PRE-FINAL REVIEW COMMENTS AND RESPONSES

Comment 2 - Titles will be added where applicable throughout the Final report.

Comment 3 - Catalog type information is included at the end of each programming document. Refer to page 3-1 for description of ECO.

Comment 5 - Please refer to page 5-1 of Final report.

Comment 6 - Please refer to page 5-1 of Final report.

Comment 10 - Please refer to page 4-1 of Final report.

Comment 11 - Please refer to page 4-1 of Final report.

Comment 4 Volume 1

The following items may be noted for appropriate action.

A. Table of Contents, Item 6. Should it be 'NAF' rather than 'MAF'?

Response:

Yes. It will be corrected.

B. Add title next to ECO # wherever it appears as a para title or tabulation title. This will be appreciated by reviewers. For example, pg 3-26 and pg 3-27.

Response:

Will comply.

C. Executive summary, pg 1-11. Pl explain where can we find all the backup info related to ECIP-1, Lighting? The DD1391 for ECIP#1 on pg 3-18 to 3-29 give different figures. Need to elaborate what is what.

Response:

Will comply on explaination. The figures are different due to an error. This will be corrected for Final report.

### 13 PRE-FINAL REVIEW COMMENTS AND RESPONSES

D. Round off the dollar figures on DD1391 IAW ECIP guidance.

Response:

Will comply.

E. Pg 3-26. Some of the building show SIR less than 1.25 and payback more than 10 yrs. Can we take a second look at them to improve the economics? If nothing works, make these buildings a part of OMA project(s).

Response:

The analysis performed was determined to have the best results possible. The cost estimates, calculations, and life cycle cost analysis for each facility are included in the Interim submittal for possible O&M projects.

F. Building numbers on pg 3-18 and pg 3-26 do not match. Add a note of explanation if not already done.

Response:

This is a typing error and will be corrected in Final

Report.

Comment 5 Volume 1-3

Make sections 3-5 more user friendlyby adding a table of contents at the beginning of these sections. List pg

#, ECO #, and building # as applicable.

Response:

Will comply.

Comment 6 Volume 2

Pg. 4-27. Explain how this LCCA summary was prepared. Do you have separate LCCA summary for ECO #7,9,and 10. Provide copies to Ft. Campbell

rep.

Response:

Will comply.

Comment 7 Volume 3 On pg 5-1, present the info from pg 5-2 thru 5-4 in

laymann's language. Usually funding is handled by

non-technical managers. See what can be done.

Response: Will comply. Refer to page 5-1.

Comment 8 Volume 3 Pg. 6-1. Do something similar to pg. 5-1.

Response: Will comply. Refer to page 6-1.

Comment 9 Volume 3 Add titles to ECO's and photographs as appropriate.

Response: Will comply.

# ENERGY SAVINGS OPPORTUNITY SURVEY

Fort Campbell, Kentucky

Phase II - Prefinal Review

## WORK ACCOMPLISHED TO DATE

- 1. Field Surveys Completed for 133 Buildings
- Exterior Lighting Surveys for 5 FH Areas
- Baseline Energy Models
- Evaluation of 121 Energy Conservation Opportunities
- Calculations and Reporting of Solid Energy Conservation Opportunities for Possible Implementation <u>ئ</u>
- Preparation and Completion of all Field Notes . 0
- Completion of Interim Report
- 8. Completion of Prefinal Report

### REMAINING PHASES

- Response to Prefinal Review Comments
- Final Report

### Fort Campbell Consumption vs. Cost **FY92**



Electricity Natural Gas

Other

Fort Campbell Energy Consumption



### FT CAMPBELL ENERGY COSTS

	\$6.19/MBtu	\$13.48/MBtu	\$4.00/MBtu	\$4.98/MBtu
Electric	Energy	with Demand	Natural Gas	Fuel Oil

### **PROJECTS**

1. Lighting

Peak Shaving Generators/VSD/EMCS

*3. Commissary Lighting

*4. NAF Lighting

* Programming documents not prepared for these projects

## PROJECT 1: Indoor/Outdoor Lighting

gs 1,800 MBtu/yr	ngs \$44,078/yr	osts \$342,581	1,44	7.77 yrs
Energy Savings	1st Year Savings	Investment Costs	SIR	SPB







## PROJECT 2: Generators/VSD/EMCS

1,162 MBtu/yr	\$116,922/yr	\$543,236	2.77	4.65 yrs
Energy Savings	1st Year Savings	Investment Costs	SIR	SPB









### PROJECT 3: Commissary Lighting

3,078 MBtu/yr	\$39,904/yr	\$130,696	3.48	3.28 yrs
Energy Savings	1st Year Savings	Investment Costs	SIR	SPB

## PROJECT 4: NAF Lighting (Bldg 6902)

Energy Savings	48 MBtu/yr
1st Year Savings	\$1,218/yr
Investment Costs	\$7,422
SIR	1.84
SPB	6.09 yrs

### PROJECT SUMMARY

	1st yr Savings	Investment	SIR	SPB (yrs)
Lighting	\$44,078	\$342,581	1.44	7.77
Gen/VSD/EMCS	\$116,922	\$543,236	2.77	4.65
Commissary Lighting	\$39,904	\$130,696	3.48	3.28
NAF Lighting	\$1,218	\$7,422	1.84	60.9
TOTAL	\$202,122	\$1,023,935		

