Computational Physics Übungsblatt 1

Ausgabe: 15.04.2016 Abgabe: 22.04.2016

Senden Sie Ihre Abgaben (Plots, Datensätze und Quellcode) als gepacktes Archiv (z.B. als zip-File) per E-Mail an Ihre Übungsgruppenleiter.

Aufgabe 1. Drehmomente

(10 P.)

Wir betrachten ein zweidimenionales quadratisches System aus identischen magnetischen Dipolen mit magnetischen Momenten \boldsymbol{m}_{kl} der Stärke M an Gitterplätzen $\boldsymbol{R}_{kl} = ka\boldsymbol{e}_x + la\boldsymbol{e}_y$ (k, l = -N, ..., -1, 0, 1, ..., N, also $(2N+1)^2$ Momente) mit einer Gitterkonstante a (siehe Abbildung oder das Modell im Eingang das Physikgebäudes, dort allerdings mit einem Dreicksgitter).

Wir wollen das Drehmoment auf den magnetischen Dipol in der Mitte des Systems (k = l = 0) als Funktion seines Winkels θ mit der y-Achse berechnen. Die übrigen Momente sollen dabei in den Konfigurationen (i) und (ii) (siehe Abbildung) fixiert sein.

a) Schreiben Sie ein Programm zur Berechnung der Gesamtwechselwirkungsenergie $E(N,\theta)$ des Moments in der Mitte mit allen übrigen Momenten als Funktion des Winkels θ für Konfigurationen (i) und (ii). Gehen Sie dabei von der Wechselwirkungsenergie

$$E = \frac{\mu_0}{4\pi} \frac{1}{|\mathbf{R}|^3} \left(-3(\hat{\mathbf{R}} \cdot \mathbf{m})(\hat{\mathbf{R}} \cdot \mathbf{n}) + (\mathbf{m} \cdot \mathbf{n}) \right)$$
(1)

zwischen zwei Dipolmomenten m und n mit Abstandsvektor R ($\hat{R} \equiv R/|R|$ ist der zugehörige Einheitsvektor) aus. Plotten Sie die Funktion $E(N,\theta)$ für N=2,5,10 jeweils für Konfiguration (i) und (ii).

Abgabe: drei Datensätze (N=2,5,10) mit jeweils zwei Spalten θ und E und den Quellcode

b) Differenzieren Sie die Wechselwirkungsenergie numerisch nach $\theta,$ um den Betrag des Drehmoments

$$T(N,\theta) = \left| \frac{\partial E}{\partial \theta} \right| \tag{2}$$

auf das Moment in der Mitte zu berechnen. In welche Richtung zeigt der Vektor T des Drehmomentes? Plotten Sie $T(N,\theta)$ für N=2,5,10 jeweils für Konfiguration (i) und (ii).

Kontrollieren Sie Ihr Ergebnis, indem Sie den Drehmomentvektor direkt über

$$T = m \times B(0) \tag{3}$$

berechnen, wobei nun das Gesamtmagnetfeld $\mathbf{B}(0)$, das durch die anderen Momente in der Mitte bei $\mathbf{R} = 0$ erzeugt wird, numerisch zu berechnen ist.

Abgabe: drei Datensätze (N=2,5,10) mit jeweils drei Spalten θ,T über die Ableitung und T über das Drehmomente und den Quellcode

Aufgabe 2. Integrationsroutine

(10 P.)

Schreiben Sie eine Integrationsroutine für

- a) Trapezregel,
- b) Mittelpunktsregel,
- c) Simpsonregel

an die jeweils folgende vier Argumente übergeben werden sollen:

- 1) Integrand f(x),
- 2) untere Integrationsgrenze a,
- 3) obere Integrationsgrenze b,
- 4) Integrationsintervallbreite h oder Anzahl der Integrationsintervalle N (bei der Simpsonregel sollte N gerade sein).

Abgabe: kompilierbaren Quellcode und Compilerkommando oder makefile

Aufgabe 3. Eindimensionale Integrale (nicht abzugeben)

Berechnen Sie folgende Integrale

a)
$$I_1 = \int_1^{100} dx \, \frac{\exp(-x)}{x} \tag{4}$$

(Kontrolle: $I_1 \simeq 0.219384$)

b)
$$I_2 = \int_0^1 \mathrm{d}x \, x \sin\left(\frac{1}{x}\right) \tag{5}$$

(Kontrolle: $I_2 \simeq 0.378\,530)$

numerisch jeweils mittels

- 1) Trapezregel,
- 2) Mittelpunktsregel,
- 3) Simpsonregel.

Halbieren Sie die Intervallbreite h bis die relative Änderung des Ergebnisses kleiner als 10^{-4} wird.