Informes de CIREL

Rafael Sánchez - Alejandro Santorum Varela Universidad Autónoma de Madrid Sesión 9

1 Introducción.

1.1 Objetivos.

- 1. Conocer el funcionamiento básico del transistor BJT.
- 2. Cálculo de la característica de entrada y salida del BJT.
- 3. Cálculo de la ganancia de corriente del colector.

1.2 Descripción del montaje.

El circuito a montar se corresponde con el siguiente esquemático:

Se trata de un circuito compuesto por un transistor BJT a cuya base se conecta una resistencia de $22~k\Omega$ conectada a la fuente de tensión VBB. El emisor se conecta a tierra y el colector a una resistencia de $100~\Omega$ conectada en serie a la fuente de tensión VCC.

2 Simulación y cálculos teóricos.

El circuito con el que trabajar es:

2.1 Característica de entrada de un BJT.

La gráficas de simulación son las siguientes:

Se comprueba que no existen cambios apreciables entre ambas gráficas. Justificaremos esto a partir del siguiente circuito equivalente:

De donde se deduce para la zona activa que:

$$I_B = \frac{V_{BB} - V_{\gamma}}{22k\Omega}; \quad V_{BE} = V_{\gamma}.$$

Podemos observar que los valores de I_B y V_{BE} no dependen de R_C , por lo que cuando representamos la gráfica I - V no va a cambiar si se modifica el valor de R_C .

Por otro lado, para la zona de saturación sustituiríamos la fuente de corriente por una pila de valor V_{CE} . Las ecuaciones no cambiarían y obtendríamos el mismo resultado.

Finalmente, en la gráfica no se representa la zona de corte, que sería una recta horizontal sobre el eje X en ambas gráficas, por lo que podemos deducir que el valor de R_C no afecta al aspecto de la gráfica.

2.2 Característica de salida del BJT

Las gráficas de simulación son las siguientes:

A partir de la gráfica deducimos que la conmutación entre los estados saturado y activo se produce a los valores de 256.45 mV y 18.704 mA.

A continuación, fijando los valores de tensión $V_{BB} = 5V$ y $V_{CC} = 15V$ y simulando de

punto de operación DC obtenemos los siguientes resultados:

V(n002)	5 V
V(n001)	15 V
V(c)	15 V
V(b)	$0.850202 \ A$
Ic(Q1)	0.0188627 A
Ib(Q1)	0.000188627 A
Ie(Q1)	-0.0190514 A
I(Rb)	-0.000188627 A
I(Rc)	0.0188627 A
I(Vcc)	-0.0188627 A
I(Vbb)	-0.000188627~A

A merced de estos resultados es fácil hallar el factor $\beta = I_C/I_B$ del transistor ideal.

$$\beta = \frac{I_C}{I_B} = \frac{0.0188627}{0.000188627} = 100.$$

3 Datos y resultados experimentales.

Las tablas de mediciones se encuentran en la sección 3.1. Las gráficas se encuentran en la sección 3.2.

3.0.1 Característica de entrada del BJT.

Resistencia medida en el laboratorio: 21850 Ω .

En este apartado manteníamos fija la tensión VCC a 15 V mientras variábamos la tensión VBB entre 0 V y 5 V. Tras ello, medimos la tensión en la resistencia V_{RB} y la tensión V_{BE} utilizando para ello el polímetro, conectándolo en paralelo a los nodos sobre los que queremos medir la diferencia de potencial. Luego calculamos la intensidad en la resistencia (o intensidad de base) $I_{RB} = \frac{V_{RB}}{R_B}$.

3.0.2 Característica de salida del BJT.

Resistencia medida en el laboratorio: 99.7 Ω .

En este apartado manteníamos fija la tensión VBB a 5 V mientras variábamos la tensión VCB entre 0 V y 15 V. Tras ello, medimos la tensión en la resistencia V_{RC} y la tensión V_{CE} utilizando para ello el polímetro, conectándolo en paralelo a los nodos sobre los que queremos medir la diferencia de potencial. Luego calculamos la intensidad en la resistencia (o intensidad de base) $I_{RC} = \frac{V_{RC}}{R_C}$.

3.0.3 Cálculo de la ganancia de corriente del colector

El parámetro $\beta=\frac{I_C}{I_B}$ se calcula para los valores comunes entre ambas tablas, $V_{CC}=15~V,~V_{BB}=5~V.$ Por tanto:

$$\beta = \frac{0.029107322}{0.0001977117} = 147.22$$

3.1 Tablas.

3.1.1 Característica de entrada del BJT.

VBB(V)	VRB(V)	VBE(V)	IB = VRB/RB(A)
0	0	0	0
0, 2	0	0,257	0
0,5	0,0056	0,51	2,56293E-07
0, 7	0,152	0, 6	6,95652E - 06
1	0,43	0,62	1,96796E-05
1, 2	0,61	0,63	2,79176E-05
1,5	0,91	0,64	4,16476E-05
2	1,37	0,65	6,27002E-05
2,5	1,85	0,66	8,46682E - 05
3	2,37	0,67	0,000108467
3, 5	2,89	0,67	0,000132265
4	3,39	0,67	0,000155149
4,5	3,88	0,67	0,000177574
5	4,32	0,67	0,000197712

3.1.2 Característica de salida del BJT.

VCC(V)	VRC(V)	VCE(V)	IC = VRC/RC(A)
0	0,0043	0,0043	4,31294E - 05
0, 2	0,217	0,039	0,00217653
0, 4	0,364	0,054	0,003650953
0, 6	0,528	0,0628	0,005295888
0,8	0,736	0,074	0,007382146
1	0,902	0,084	0,009047141
1,5	1,38	0, 105	0,013841525
$\overset{'}{2}$	1,87	0,127	0,018756269
3	2,764	0,263	0,02772317
3, 2	2,78	0,457	0,027883651
3, 5	2,791	0, 7	0,027993982
3, 7	2,794	0,898	0,028024072
3, 8	2,796	1,01	0,028044132
3, 9	2, 8	1, 1	0,028084253
4	2,801	1,27	0,028094283
5	2,82	2,26	0,028284855
6	2,83	3, 2	0,028385155
7	2,845	4, 16	0,028535607
8	2,86	5, 12	0,028686058
9	2,87	6, 12	0,028786359
10	2,885	7, 13	0,02893681
11	2,888	8, 1	0,028966901
12	2,89	9,05	0,028986961
13	2,9	10,01	0,029087262
14	2,901	11,04	0,029097292
15	2,902	12,05	0,029107322

Se aprecia que se toman más medidas cuanto más varía VRB o VRC en cada caso.

3.2 Gráficas.

3.2.1 I_B frente a V_{BE}

3.2.2 I_C frente a V_{CE}

4 Discusión y conclusiones.

En esta sección se disponen las comparaciones entre valores reales con los teóricos y simulados. Podemos observar que las gráficas de 3.2 se asemejan bastante a las gráficas de la sección 2.

Por otro lado, observamos como el parámetro $\beta=147.22$ se aleja del valor para un transistor ideal ($\beta=100$). Observamos que el valor de I_B teórico se acerca bastante al real (ver 3.1 para el valor de $V_{BE}=5~V$), sin embargo, el que difiere en gran medida es el de I_C (ver

3.1 para el valor de $V_{CE}=15~V$). Esto se debe a que I_C se mide para resistencias de valor bajo (en este caso 99.7 Ω), con lo que se dispara la intensidad con mucha facilidad.