

J.-M. Galharret. A. Philippe, N. Mercier

https://galharret.github.io/WEBSITE

Modèle hiérarchique pour la détection de valeurs aberrantes

Applications à la datation en archéologie

Plan

- 1 Introduction
 Problématique
 Event Model
 Loi de shrinkage
- 2 Méthodologie générale Modèle hiérarchique $\theta_1, ..., \theta_n$ échangeables Outliers Règle de décision Stratégies de ré-estimation
- Stratégies de ré-estimation

 Modèle hiérarchique
 gaussien
 Simulations
 Exemple

- 4 Application 1 en archéologie
 Tel Quasile
 Comparaison
- 5 Autre modélisation : âge OSL

Relation fondamentale Ajustement de dModèlisation
Estimation de s_0^2 Estimation sur données réelles
Validation finale du mod

En archéologie, quelle que soit la méthode de datation utilisée (C14,OSL,...), on est confronté au problème des outliers

- Erreur de mesure (laboratoire),
- Erreur de prélèvement (fouilles archéologiques).

Logiciels de modélisation chronologique

- OxCal: Modèle de Bronk Ramsey (2009),
- Chronomodel Lanos and Philippe (2017-18).

Notre approche:

- Identification des outliers via le modèle robuste.
- Ré-estimation du paramètre sur le sous-échantillon.

Event Model

Modèle hiérarchique → estimer l'âge d'un évènement à partir de la datation de *n* objets le caractérisant.

• Pour le i-ème objet d'âge A_i , le laboratoire fournit la mesure X_i avec une erreur s;

$$X_i|A_i,s_i \sim \mathcal{N}(A_i,s_i^2).$$

On suppose que les âges $A_1, ..., A_n$ sont contemporains de A

$$A_i|A,\sigma \sim \mathcal{N}(A,\sigma^2).$$

Event model ¹

$$A_i|A, \sigma_i \sim \mathcal{N}(A, \sigma_i^2), \quad \sigma_i^2 \ i.i.d.$$

1. Lanos and Philippe (2017) Hierarchical Bayesian modeling for combining dates in archaeological context. Journal de la Société Française de Statistique, 158(2):72(88)

$$\frac{s_0^2}{s_0^2 + \sigma_i^2} \underset{i.i.d}{\sim} \mathcal{U}[0, 1],$$

où $s_0^{-2} = \sum_{i=1}^n s_i^{-2}$ Avantages de ce choix :

- La médiane de σ_i^2 est égale à s_0^2 . \rightsquigarrow poids identique entre les erreurs de mesure et de modèle.
- Cette loi a des moments infinis (→ outliers).

Inconvénient : Galharret & al. (2021) ont montré que la loi a posteriori a également des moments infinis.

Plan

- 1 Introduction
 Problématique
 Event Model
 Loi de shrinkage
- 2 Méthodologie générale Modèle hiérarchique $\theta_1, ..., \theta_n$ échangeables Outliers Règle de décision Stratégies de ré-estimation
- 3 Modèle hiérarchique gaussien
 Simulations
 Exemple

- 4 Application 1 en archéologie
 Tel Quasile
 Comparaison
- 5 Autre modélisation : âge OSL

Relation fondamentale Ajustement de d Modèlisation Estimation de s_0^2 Estimation sur données réelles Validation finale du modè

Modèle hiérarchique

 $X_1, ... X_n$ n observations de vraisemblance

$$X_1, ..., X_n \sim p^{(n)}(\cdot \mid \theta) \tag{1}$$

Un modèle hierarchique classique (Spiegelhalter (2004), Congdon (2002), Gelman (2008)

$$p^{(n)}(X_1,...X_n \mid \theta) = \int f^{(n)}(X_1,...,X_n,\theta_1,...,\theta_n \mid \theta) d\theta_1...d\theta_n$$

$$= \int f^{(n)}(X_1,...,X_n \mid \theta_1,...,\theta_n,\theta)$$

$$\times \pi_1(\theta_1,...,\theta_n \mid \theta) d\theta_1...d\theta_n.$$

 \rightarrow Les variables aléatoires $|\theta_1 - \theta|, ..., |\theta_n - \theta|$ mesurent l'hétérogénéité entre $X_1, ..., X_n$.

	$\pi_1(heta_1,, heta_n\mid heta)$	=	$\prod_{i=1}^n \pi_{\sigma^2}(\theta_i \mid \theta)$
$f^{(n)}(X_1,$	$, X_n \mid \theta_1,, \theta_n, \theta)$	=	$\prod_{i=1}^n f(X_i \mid \theta_i),$
	σ^2	=	$Var(heta_i - heta \mid heta)$
)		=	$Var(\theta_i \mid \theta).$
,			

$$\begin{array}{rcl} \sigma_i^2 & = & \mathsf{Var}(\theta_i \mid \theta), \\ \\ \pi_1(\theta_1,...,\theta_n \mid \theta) & = & \prod_{i=1}^n \pi_{\sigma_i^2}(\theta_i \mid \theta). \end{array}$$

Règle de décision

Basée ² sur la comparaison des lois a priori et a posteriori des σ_i^2 Soit $\alpha \in]0,1[$ et soit $q_{1-\alpha}$ le quantile d'ordre $1-\alpha$ de la loi a priori de σ^2

$$\mathbb{P}(\sigma_i > q_{1-\alpha}) = \alpha,$$

l'observation X_i est un outlier si

$$\mathbb{P}(\sigma_i > q_{1-\alpha}|X_1,...,X_n) \geq \alpha,$$

Dans la suite on note $(X_i)_{i \in \{1,...,J\}}$ le sous-échantillon de $(X_i)_{i \in \{1,...,n\}}$ d'où ont été exclus les outliers détectés $(\widetilde{X}_i)_{i \in \{J+1,\ldots,n\}}$.

^{2.} Galharret, J-M, Philippe, A., & Mercier, N. (2021). Detection of outliers with a Bayesian hierarchical model: application to the single-grain luminescence dating method. Electronic Journal Of Applied Statistical Analysis.

Plan

- 1 Introduction
 Problématique
 Event Model
 Loi de shrinkage
- 2 Méthodologie générale Modèle hiérarchique $\theta_1, ..., \theta_n$ échangeables Outliers Règle de décision Stratégies de ré-estimation
- 3 Modèle hiérarchique gaussien
 Simulations
 Exemple

Calibrage de α

- Application 1 en archéologie
 Tel Quasile
- 5 Autre modélisation : âge OSL

Relation fondamentale Ajustement de \dot{d} Modèlisation Estimation de s_0^2 Estimation sur données réelles Validation finale du mod

Simulations

Soit $\tau \in \{5\%, 10\%, 20\%\}$ le taux de contamination et $\mu \in \{5, 10, 20\}$ le décentrage. On simule n observations $X_1, ..., X_n$ dont

• $J = [n\tau]$ vraies observations $X_1, ..., X_J$

$$X_i \sim \mathcal{N}(\theta, s_i^2),$$

• n-J outliers $X_{l+1},...,X_n$

$$X_i \sim \mathcal{N}(\theta + \mu, s_i^2).$$

On effectue B = 1000 réplications.

Exemple

Figure – Exemple d'une simulation avec au=0.10

Calibrage de α

Figure – Variation du nombre de vrais positifs (gauche) et de la sensibilité/spécificité (droite) en fonction de α pour $\tau=10\%$ et $\mu=10$.

Résultats des simulations

	$\tau \backslash \mu$	15	10	5
	5%	0.99	0.96	0.81
Sensitivity	10%	0.99	0.96	0.80
	20%	0.99	0.97	0.80
	5%	0.89	0.89	0.89
Specificity	10%	0.89	0.89	0.89
	20%	0.89	0.89	0.89

Table – Estimation of the sensitivity and the specificity as function of contamination rate au and the mean value μ of the distribution of the outliers. The cut-off is fixed to $\alpha = 0.05$, and the number of replications is N = 1000.

Modèle hiérarchique gaussien

Comparaison sous H_0

Figure – Comparison of the three following models : [OM-1], [OM-2] and the event model on simulated dataset without outlier ($\tau = 0$). We represent the boxplot of the mean (left) and standard deviation (Right) of the posterior distribution of θ .

Modèle hiérarchique gaussien

Comparaison sous H_1

Figure – Comparison of the three models [OM-1], [OM-2], event model on simulated dataset with outliers for different values of contaminated rates τ and parameter μ .

Plan

- 1 Introduction
 Problématique
 Event Model
 Loi de shrinkage
- 2 Méthodologie générale Modèle hiérarchique $\theta_1, ..., \theta_n$ échangeables Outliers Règle de décision Stratégies de ré-estimation
- Stratégies de ré-estimation

 Modèle hiérarchique
 gaussien
 Simulations
 Exemple

- 4 Application 1 en archéologie
 Tel Quasile
 Comparaison
- 5 Autre modélisation : âge OSL

Relation fondamentale
Ajustement de d

Modèlisation
Estimation de s₀²
Estimation sur données
réelles
Validation finale du modèl
Conclusion

JM. Galharret

- Tel Quasile est un site archéologique situé en Israël.
- Célèbre pour avoir contribuer à la connaissance des Phillistins (installés entre le XII et X siècle avant JC)
- Bronk Ramsey a identifié les outliers dans les 12 échantillons datés par C14 en utilisant un mélange.

Tel Quasile

Comparaison

method	ident	date X_i	Si	$\mathbb{P}(\sigma_i > q_{.95} \mid X_1,, X_n)$
¹⁴ C	QS1	2818	26	0.017
¹⁴ C	QS2	2692	24	0.358
¹⁴ C	QS3	2911	26	0.046
¹⁴ C	QS4	2853	25	0.016
¹⁴ C	QS5	2895	25	0.030
¹⁴ C	QS6	2753	22	0.128
¹⁴ C	QS7	2800	25	0.030
¹⁴ C	QS8	2882	28	0.020
¹⁴ C	QS9	2864	40	0.015
¹⁴ C	QS10	2818	38	0.019
¹⁴ C	QS11	2897	44	0.023

Table - Dates from Tell Qasile X and outputs of the decision rule : bold values indicate radiocarbon dates detected as outliers.

Plan

- 1 Introduction
 Problématique
 Event Model
 Loi de shrinkage
- 2 Méthodologie générale Modèle hiérarchique $\theta_1,...,\theta_n$ échangeables Outliers Règle de décision Stratégies de ré-estimation
- Stratégies de ré-estimation

 Modèle hiérarchique
 gaussien
 Simulations
 Exemple

- 4 Application 1 en archéologie
 Tel Quasile
 Comparaison
- 5 Autre modélisation : âge OSL

Relation fondamentale
Ajustement de \dot{d} Modèlisation
Estimation de s_0^2 Estimation sur données
réelles
Validation finale du modèle
Conclusion

- La thermoluminescence permet de dater des matériaux archéologiques qui ont autrefois été chauffés.
- On date la dernière chauffe ou la dernière exposition à la lumière d'un échantillon contenant des minéraux de guartz.
- Méthode : [luminescence stimulée optiquement] l'énergie cumulée est alors libérée sous forme lumineuse et la quantité de lumière émise est proportionnelle au temps écoulé depuis la dernière chauffe.
- → Outliers proviennent de grains mal blanchis (c'est à dire qui n'ont pas rejeté toute l'énergie cumulée).

Relation fondamentale

Dans le cadre de la datation de quartz par luminescence on estime son âge en utilisant la relation suivante

$$D \stackrel{\mathcal{L}}{=} A\dot{d}$$

où \dot{d} est le débit de dose, D est la dose équivalente absorbée et A l'âge cible.

• \dot{d} n'est pas observable mais on sait simuler des échantillons de \dot{d} à une erreur systématique int prêt

$$\dot{d} = \stackrel{\sim}{\dot{d}} (1 + int\dot{arepsilon}), \quad \dot{arepsilon} \sim \mathcal{N}(0, 1).$$

- Première étape : on ajuste d par un mélange gaussien de paramètres $(K, p_1, ..., pK, \dot{\mu}_1, ..., \dot{\mu}_K, \dot{\sigma}_1, ..., \dot{\sigma}_K)$.
- On a alors

$$D \simeq \sum_{k=1}^{K} \dot{p}_k \mathcal{N}(A\dot{\mu}_k, A^2 \dot{\sigma}_k^2).$$

Autre modélisation : âge OSL

Ajustement de d

- Pour K fixé,les paramètres du mélange sont estimés par l'algorithme EM.
- Pour le choix de K, on utilise BIC.

Figure - Exemple d'ajustement

Autre modélisation : âge OSL

Modèlisation

$$\begin{split} \tilde{D}_{j} \sim & \mathcal{N}(D_{j}, s_{D_{j}}^{2}) \\ D_{j} \sim & \sum_{k=1}^{K} \dot{p}_{k} \mathcal{N}(A_{j} \dot{\mu}_{k}, A_{j}^{2} \dot{\sigma}_{k}^{2}) \\ A_{j} \sim & \mathcal{N}(A, \sigma_{j}^{2}) \\ \sigma_{j}^{2} \sim & \mathcal{S}(s_{0}^{2}) \\ A \sim & \mathcal{U} \textit{niform}[\underline{A}, \overline{A}] \end{split}$$

Mercier N., Galharret J.-M., Tribolo C., Kreutzer S., and Philippe A. (2022) Luminescence age calculation through Bayesian convolution of equivalent dose and dose-rate distributions: the De_Dr model Geochrono-

Estimation de s_0^2

$$egin{aligned} \widetilde{D}_{j} &\sim \mathcal{N}(D_{j}, s_{D_{j}}^{2}), \ D_{j} &\sim \sum_{k=1}^{K} \dot{p}_{k} \mathcal{N}(A_{j} \dot{\mu}_{k}, A_{j}^{2} \dot{\sigma}_{k}^{2}), \ A_{j} &\sim \mathcal{U} \textit{niform}[\underline{A}, \overline{A}] \end{aligned}$$

 s_0^2 est estimée par la moyenne harmonique de $Var(A_j \mid \widetilde{D}_j)$

Estimation sur données réelles

On considère un échantillon de n = 53 observations.

Figure – Boxplot des lois a posteriori des σ_i ordonnées selon les médianes a posteriori des âges.

Autre modélisation : âge OSL

Validation finale du modèle

On revient à la relation fondamentale $D \stackrel{\mathcal{L}}{=} A\dot{d}$ et on va comparer

- La fonction empirique des $(D_j)_{j\in J}$ (notée F_D)
- La fonction de répartition de $A.\dot{d}$ (notée $F_{A.\dot{d}}$)

Ces deux fonctions de répartition dépendent respectivement des paramètres inconnus $(D_j)_{j\in J}$ et $A,\dot{\varepsilon}.$ On calcule leurs estimateurs de Bayes

$$\mathbb{E}\left(F_{D}|(\widetilde{D}_{j})_{j\in J}\right) = \frac{1}{J}\sum_{j\in J}F_{D_{j}|\widetilde{D}_{j}}(t)$$

$$\mathbb{E}\left(F_{A.\dot{d}}|(\widetilde{D}_{j})_{j\in J}\right) = \mathbb{E}\left(\sum_{k=1}^{K}\dot{p}_{k}\dot{F}_{k}(\frac{t}{A}-\varepsilon)|(\widetilde{D}_{j})_{j\in J}\right)$$

où \dot{F}_k est la fonction de répartition de $\mathcal{N}(\dot{\mu}_k, \dot{\sigma}_k)$

Figure – Comparaison des fonctions de répartitions empiriques de Ad (rouge), D (bleue) et D après avoir retiré les outliers détectés (vert)

Autre modélisation : âge OSL

Conclusion

- La modélisation proposée dans le cadre de la datation OSL est implémentée dans le package *Luminescence*.
- La procédure pour le contexte normal-normal a été ajouté dans le logiciel Chronomodel.
- On a aussi proposé une détection des outliers dans les modèles de comptage.
- On s'intéresse actuellement à l'adaption du modèle lorsque l'on a des contrainte stratigraphiques (contraintes d'ordre).

Merci de votre attention