machine learning

May 16, 2016

```
In [1]: %matplotlib inline
        import pandas as pd
        import matplotlib.pyplot as plt
        import numpy as np
        # Make the graphs a bit prettier, and bigger
        pd.set_option('display.mpl_style', 'default')
        plt.rcParams['figure.figsize'] = (15, 5)
        plt.rcParams['font.family'] = 'sans-serif'
        # This is necessary to show lots of columns in pandas 0.12.
        # Not necessary in pandas 0.13.
        pd.set_option('display.width', 5000)
        pd.set_option('display.max_columns', 60)
  Load file sampled from data in auth.txt.gz so that number of fails is similar to success
In [3]: df=pd.read_csv('md/msample1.csv', header=None)
In [4]: len(df)
Out[4]: 400306
In [5]: df[8].value_counts()
Out[5]: Success
                    200261
        Fail
                   200045
        Name: 8, dtype: int64
   Creating classification label
In [6]: Y=(df[8]=='Success')
```

Creating features for machine learning: columns 5-7 from df for authentication type, logon type and authentication orientation are expanded to include all labels from the columns as new expanded columns holding 1(True) if the label applies and 0 (False) otherwise. columns 2-4 used to create columns that test whether source and destination computer are the same, source user is same as source computer, etc.

```
df['destination_class'] = df['destination_user'].map(map_user)
         df["source_user"], df["source_domain"] = zip(*df[1].str.split('@').tolist())
         df["source_user"] = df["source_user"].str.rstrip('$')
         df["destination_user"], df["destination_domain"] = zip(*df[2].str.split('0').tolist())
         df["destination_user"] = df["destination_user"].str.rstrip('$')
         X=pd.DataFrame.from_items([('time', (df[0]%(24*60*60)).astype(int))])
         X['same_user'] = (df['destination_user'] == df['source_user'])
         X['same_domain']=(df['destination_domain']==df['source_domain'])
         X['source_user_comp_same']=(df[3]==df['source_user'])
         X['destination_user_comp_same']=(df['destination_user']==df[4])
         X['same_comp']=(df[3]==df[4])
         X['source_domain_comp_same']=(df[3]==df['source_domain'])
         X['destination_domain_comp_same']=(df['destination_domain']==df[4])
         for j in [5,6, 7]:
             for label in sorted(df[j].unique()):
                  if label=='?':
                      if j==5:
                          X['?_authentication type']=(df[j]==label)
                      elif j==6:
                          X['?_logon type']=(df[j]==label)
                  else:
                      X[label]=(df[j]==label)
         for cl in ['source_class', 'destination_class']:
             for label in df[cl].unique():
                  if cl=='source_class':
                      X['source_'+label]=(df[cl]==label)
                  else:
                      X['destination_'+label]=(df[cl]==label)
In [34]: X
Out [34]:
                   time same_user same_domain source_user_comp_same destination_user_comp_same same_comp so
                      2
                             True
                                                                False
                                                                                              True
                                                                                                        False
                                          True
                      3
                             True
                                          True
                                                                False
                                                                                             False
                                                                                                         True
         1
         2
                     11
                             True
                                          True
                                                                False
                                                                                             False
                                                                                                        False
         3
                                                                                                        False
                    140
                             True
                                          True
                                                                 True
                                                                                             False
         4
                    176
                             True
                                          True
                                                                False
                                                                                             False
                                                                                                         True
         5
                    185
                             True
                                                                                             False
                                                                                                         True
                                          True
                                                                False
         6
                    224
                             True
                                          True
                                                                 True
                                                                                             False
                                                                                                        False
         7
                    250
                             True
                                          True
                                                                False
                                                                                             False
                                                                                                         True
         8
                    252
                             True
                                          True
                                                                False
                                                                                             False
                                                                                                        False
         9
                             True
                    333
                                          True
                                                                 True
                                                                                              True
                                                                                                         True
         10
                    348
                             True
                                          True
                                                                False
                                                                                              True
                                                                                                        False
         11
                    416
                             True
                                          True
                                                                False
                                                                                              True
                                                                                                        False
         12
                             True
                                                                                              True
                    459
                                          True
                                                                 True
                                                                                                         True
         13
                    470
                             True
                                          True
                                                                 True
                                                                                              True
                                                                                                         True
         14
                    485
                             True
                                          True
                                                                False
                                                                                             False
                                                                                                        False
                    490
                             True
                                                                 True
                                                                                             False
                                                                                                        False
         15
                                          True
         16
                    510
                             True
                                          True
                                                                False
                                                                                              True
                                                                                                        False
         17
                    542
                             True
                                          True
                                                                False
                                                                                             False
                                                                                                         True
                                                                                                        False
         18
                    551
                             True
                                          True
                                                                 True
                                                                                             False
                                                                False
                                                                                             False
         19
                    570
                             True
                                          True
                                                                                                         True
         20
                    588
                             True
                                          True
                                                                False
                                                                                              True
                                                                                                        False
```

In [33]: df['source_class']=df['source_user'].map(map_user)

21	623	True	True	False
22	679	True	True	False
23	704	True	True	False
23 24	726	True	True	False
25	745	True	True	True
26	750	True	True	False
27	859	True	True	False
28	936	True	True	False
29	975	True	True	False
400276	86055	True	True	False
400277	86057	True	True	False
400278	86061	True	True	True
400279	86073	True	True	False
400280	86089	True	True	False
400281	86093	True	True	False
400282	86104	True	True	False
400283	86127	True	True	False
400284	86131	True	True	False
400285	86151	True	True	False
400286	86179	True	True	True
400287	86251	True	True	False
400288	86259	True	True	False
400289	86267	True	True	True
400290	86267	True	True	False
400291	86275	True	True	False
400292	86280	True	True	False
400293	86281	True	True	False
400294	86281	True	True	False
400295	86287	True	True	False
400296	86298	True	True	False
400297	86341	True	True	False
400298	86347	True	True	False
400299	86354	True	True	False
400300	86356	True	True	False
400301	86372	True	True	False
400302	86373	True	True	False
400303	86374	True	True	False
400304	86391	True	True	False
400305	86393	True	True	False
_00000	30000			

True

True

False

False False

False

False

False

False

False

False True

False

True

True

False

False

False

True

True

True

True

False True

False

False

False

False

True True

[400306 rows x 56 columns]

Separate current dataset into train and test data

1 Logistic regression

```
In [37]: print logreg.score(Xtrain, Ytrain), logreg.score(Xtest, Ytest)
0.845849957532 0.870082936415
In [38]: from sklearn.metrics import confusion_matrix
         trainPred=logreg.predict(Xtrain)
         testPred=logreg.predict(Xtest)
         print confusion_matrix(Ytrain, trainPred)
         confusion_matrix(Ytest, testPred)
[[ 98017 27581]
 [ 15614 139002]]
Out[38]: array([[63244, 11203],
                [ 4399, 41246]])
  Coefficients for logistic regression should tell which parameters are important
In [39]: logreg.coef_
Out[39]: array([[ -3.32691813e-06,
                                     1.73652260e-01,
                                                       1.02334575e-01,
                  -8.53431039e-02, -1.71384450e-01, -1.40186009e-01,
                  -8.31512032e-03, 1.84727423e-01,
                                                      2.47089330e-01,
                  -3.18469345e-05,
                                    4.77905527e-01,
                                                      1.74150387e-05,
                                    0.0000000e+00, -1.07659982e-04,
                   1.81851633e-05,
                  -2.99574704e-04, -9.01649007e-05, -2.70560804e-04,
                                   3.03624207e-07, -2.02790002e-03,
                  -7.17526311e-04,
                  -2.52719736e-01, -5.86351682e-04, -3.42599686e-01,
                  -5.89664843e-03, -8.03137146e-05,
                                                     -2.19807461e-04,
                  -7.97512954e-01, -4.73433942e-02, -2.20369663e-03,
                  -1.03100534e-02,
                                    9.04248405e-01,
                                                      4.90831960e-04,
                  3.89683819e-04, -2.08136298e-03,
                                                       1.14808300e-01,
                  -4.11027758e-02,
                                    4.72027787e-02,
                                                       1.04460228e+00,
                  -1.27290486e-01,
                                    8.03091834e-04,
                                                       3.67455912e-04,
                   2.77403964e-01, -1.12370610e+00, -1.47702535e-01,
                   8.83690991e-02,
                                    1.02245873e-02,
                                                       8.23869142e-02,
                   8.82213234e-02, -2.11640471e-03,
                                                     -2.49416013e-01,
                   1.72531468e-01, 1.04951942e-02,
                                                       8.23869142e-02,
                   8.87410314e-02, 1.46443885e-02]])
In [40]: X.columns
Out [40]: Index([u'time', u'same_user', u'same_domain', u'source_user_comp_same', u'destination_user_comp_s
    Try L1 penanlty
In [41]: clf_l1_LR = linear_model.LogisticRegression(C=1000, penalty='11', tol=0.001).fit(Xtrain, Ytrain
         print clf_l1_LR.score(Xtrain, Ytrain), clf_l1_LR.score(Xtest, Ytest)
0.93957118488 0.94798154748
```

3 Try L2 penalty

```
In [42]: clf_12_LR = linear_model.LogisticRegression(C=1000, penalty='12', tol=0.001).fit(Xtrain, Ytrain)
print clf_12_LR.score(Xtrain, Ytrain), clf_12_LR.score(Xtest, Ytest)
```

0.551781852441 0.380091929521

4 Gradient Boosting

0.889084770925 0.880649835126

In [44]: clf_l1_LR.coef_

Out[44]: array([[-7.50457104e-07,

-7.13165785e-01,

5 Analysis

From the results I just got, I can see that Logistic regression with L1 penalty works better than Gradient Boosting than logistic regression without any normalization than logistic regression with L2 penalty.

Lasso logistic regression (L1 penalty) works really well for correlated features, whereas L2 penalty fails badly when features are correlated. Given how I constructed my features, they can easily turn out to be correlated, but I probably want spent more time on understanding correlations between features as Lasso gives really good accuracy score.

At this point, I do not know if I should trust my result as I tested it on a very small subset of data from auth.txt.gz. I'd like to get more independent randomly sampled subsets to see how well my results hold on.

1.32847712e-01,

-2.28256820e+00,

```
-2.76890051e+00,
                                      2.23519986e-01,
                                                         2.58836292e-02,
                  -6.66344962e+00,
                                      9.75513636e-01,
                                                         5.81266499e+00,
                   5.79483716e+00,
                                      0.00000000e+00,
                                                        -9.10379549e+00,
                  -1.89396464e+00,
                                     -1.38363865e+00,
                                                        -3.18072600e+00,
                  -1.09602377e+01,
                                     -4.12067808e-01,
                                                        -5.14550659e+00,
                  -8.62836074e+00,
                                     -1.29707104e+01,
                                                        -2.08497456e+00,
                  -2.77111489e+00,
                                     -1.10213812e+01,
                                                       -1.18760992e+01,
                  -7.80461599e-01,
                                     -1.37218556e+00,
                                                        -1.44158909e+00,
                   4.23947918e-01,
                                      7.09622148e-01,
                                                         3.18630133e+00,
                  -3.04568171e-01,
                                      4.67773287e-01,
                                                         2.96238282e+00,
                   2.73577682e-01,
                                      1.26674201e+01,
                                                         8.43775338e+00,
                  -6.14667759e-02,
                                      9.03515422e+00,
                                                         8.28870634e+00,
                   2.02242224e+00,
                                     -3.95490524e+00,
                                                        -1.88803251e-01,
                   2.08150387e-01,
                                      5.31432751e+00,
                                                         2.16673559e+00,
                   9.85399450e-01,
                                     -4.84371857e+00,
                                                        -2.56466695e-01,
                   4.58664283e-01,
                                      6.21752178e+00,
                                                         8.48711216e+00,
                   1.02330574e+01,
                                      6.41755199e+00]])
In [46]: pd.DataFrame.from_items([("feature",X.columns), ("LR contribution",clf_l1_LR.coef_[0]*100)])
```

3.78732145e-01,

1.48145803e+00,

```
Out [46]:
                                               feature LR contribution
         0
                                                               -0.000075
                                                  time
         1
                                             same_user
                                                               13.284771
         2
                                           same_domain
                                                               37.873214
         3
                                                              -71.316578
                                source_user_comp_same
         4
                          destination_user_comp_same
                                                            -228.256820
         5
                                             same_comp
                                                              148.145803
         6
                              source_domain_comp_same
                                                            -276.890051
         7
                        destination_domain_comp_same
                                                              22.351999
         8
                                ?_authentication type
                                                                2.588363
         9
             ACRONIS_RELOGON_AUTHENTICATION_PACKAGE
                                                            -666.344962
         10
                                              Kerberos
                                                               97.551364
```

11	MICROSOFT_AUTHENTICATION_PA	581.266499
12	MICROSOFT_AUTHENTICATION_PAC	579.483716
13	MICROSOFT_AUTHENTICATION_PACK	0.000000
14	MICROSOFT_AUTHENTICATION_PACKA	-910.379549
15	MICROSOFT_AUTHENTICATION_PACKAG	-189.396464
16	MICROSOFT_AUTHENTICATION_PACKAGE	-138.363865
17	MICROSOFT_AUTHENTICATION_PACKAGE_	-318.072600
18	MICROSOFT_AUTHENTICATION_PACKAGE_V	-1096.023773
19	MICROSOFT_AUTHENTICATION_PACKAGE_V1	-41.206781
20	MICROSOFT_AUTHENTICATION_PACKAGE_V1_	-514.550659
21	MICROSOFT_AUTHENTICATION_PACKAGE_V1_0	-862.836074
22	NETWARE_AUTHENTICATION_PACKAGE_V1_O	-1297.071042
23	NTLM	-208.497456
24	Negotiate	-277.111489
25	Setuid	-1102.138117
26	Wave	-1187.609923
27	?_logon type	-78.046160
28	Batch	-137.218556
29	CachedInteractive	-144.158909
30	Interactive	42.394792
31	Network	70.962215
32	NetworkCleartext	318.630133
33	NewCredentials	-30.456817
34	RemoteInteractive	46.777329
35	Service	296.238282
36	Unlock	27.357768
37	AuthMap	1266.742014
38	LogOff	843.775338
39	Log0n	-6.146678
40	ScreenLock	903.515422
41	ScreenUnlock	828.870634
42	TGS	202.242224
43	TGT	-395.490524
44	source_U	-18.880325
45	source_C	20.815039
46	source_LOCAL SERVICE	531.432751
47	source_ANONYMOUS LOGON	216.673559
48	source_NETWORK SERVICE	98.539945
49	source_SYSTEM	-484.371857
50	${\tt destination_U}$	-25.646670
51	${\tt destination_C}$	45.866428
52	destination_LOCAL SERVICE	621.752178
53	destination_ANONYMOUS LOGON	848.711216
54	destination_NETWORK SERVICE	1023.305735
55	${\tt destination_SYSTEM}$	641.755199

Some comments: table above shows relative contribution of each feature to the final prediction. Features 11-21 are potentially the same thing. I will not do anything about it for now because I am getting good scores, but this is something one can look into to see if it causes problems.

In []:

In []: