The formula:

```
срр ☐ Копиране У Редактиране int digits = log10(n) + 1;
```

is used to count the number of digits in a positive integer $\ \ n$. Here's why it works:

Understanding Logarithms

The base-10 logarithm (log10) of a number n gives the power to which log10 must be raised to obtain n.

$$\log_{10}(n) = x$$
 such that $10^x = n$

For example:

- $\log_{10}(1000) = 3$ because $10^3 = 1000$
- $\log_{10}(543) pprox 2.73$ because $10^{2.73} pprox 543$

Derivation of the Formula

If n has d digits, it falls within this range:

$$10^{(d-1)} \le n < 10^d$$

Taking the logarithm on both sides:

$$\log_{10}(10^{(d-1)}) \le \log_{10}(n) < \log_{10}(10^d)$$

Simplifying:

$$d - 1 \le \log_{10}(n) < d$$

inow, adding 1 to both sides:

$$d \le \log_{10}(n) + 1 < d + 1$$

Since d is an integer, taking the floor value of log10(n) + 1 gives d.

Example Calculations

- 1. For n = 1000
 - $\log_{10}(1000) = 3$
 - 3+1=4 \rightarrow Correct, 1000 has 4 digits.
- 2. **For** n = 543
 - $\log_{10}(543) \approx 2.73$
 - 2.73 + 1 = 3.73
 - Floor value → 3 digits.

Edge Cases

- n = 1 $\rightarrow \log_{10}(1) = 0$, so 0 + 1 = 1 (correct).
- n = 999 $\rightarrow \log_{10}(999) \approx 2.99$, so 2.99 + 1 = 3.99 (floor is 3 \rightarrow correct).
- If n = 0, log10(0) is undefined, so special handling is needed.

Final Notes

- This formula is efficient and avoids using loops.
- It works for **positive integers** but needs a check for n = 0 or negative values.
- For negative numbers, you might take the absolute value before applying log10.