Formal Specification and Verification of Object-Oriented Programs

Syntax and Semantics of First-Order Logics

Motivation

JML combines

- ► JAVA expressions
- ► First-Order Logic (FOL)

We will verify JAVA programs using Dynamic Logic

Dynamic Logic combines

- ► First-Order Logic (FOL)
- ▶ JAVA programs

FOL: Language and Calculus

Providing JML with a formal semantics

Translate JML specifications into Dynamic Logic

First step (this week)

Formal Semantics of JML Expressions

- FOL as language (syntax)
- Formal semantics of FOL
- Calculus for FOL to prove validity of formulas
- KeY system as FOL prover (to begin with)

First-Order Logic: Signature

Type Hierarchy $\mathcal{T} = (TNames, \leq)$ consists of

- ▶ a non-empty set of type names TNames with \bot , \top ∈ TNames
- a reflexive, transitive subtype relation \(\precedes \) such that for any \(\mathbb{A} \in \text{TNames} \)

$$\perp \leq \mathtt{A} \leq \top$$

Two types T_1 , T_2 are called incomparable iff. $T_1 \not \leq T_2$ and $T_2 \not \leq T_1$

Example

First-Order Logic: Signature

Signature $\Sigma_{\mathcal{T}}$ for a Type Hierarchy \mathcal{T}

A first-order signature Σ for a type hierarchy $\mathcal T$ consists of

▶ a set $F_{\Sigma_{\mathcal{T}}}$ of function symbols

- ▶ a set P_{Σ_T} of predicate symbols
- a set V_{Σ_T} of logic variable symbols

with $F_{\Sigma_{\mathcal{T}}}, P_{\Sigma_{\mathcal{T}}}, V_{\Sigma_{\mathcal{T}}}$ pairwise disjoint. (We omit the subscript \mathcal{T} or $\Sigma_{\mathcal{T}}$ if no ambiguity arises.)

Definition (Type Declaration of Symbols)

- ▶ $T f(T_1, ..., T_n) \in F_{\Sigma_T}$ with $T, T_i \in T \{\bot\}$; arity of f is n
 - for constants T c(), i.e., function symbols with n = 0, we write T c
- ▶ $p(T_1, ..., T_n) \in P_{\Sigma_T}$ with $T_i \in \mathcal{T} \{\bot\}$; arity of p is n
 - for propositional variables p(), i.e., predicate symbols with n = 0, we write p
- ▶ $v : T \in V_{\Sigma_T}$ with $T \in T \{\bot\}$; arity of v is 0

Signature $\Sigma_{\Sigma_{\tau}}$

Example (Signature Σ_{τ_i})

$$\begin{split} \mathcal{T}_{\Sigma_{\mathcal{T}_1}} &= \{\bot, \text{ int, } \top\} \text{ with } \bot \preceq \text{ int } \preceq \top \\ F_{\Sigma_{\mathcal{T}_1}} &= \{\text{int } + (\text{int,int}), \text{ int } - (\text{int,int})\} \cup \\ &\qquad \qquad \qquad \{..., \text{ int } -2, \text{ int } -1, \text{ int } 0, \text{ int } 1, \text{ int } 2, ...\} \\ P_{\Sigma_{\mathcal{T}_n}} &= \{<(\text{int, int})\} \end{split}$$

$$P_{\Sigma_{\mathcal{T}_1}} = \{\langle (\text{int, int}) \rangle$$

In signature Σ_{T_1} we have

- two function symbols + and each of arity 2
- ▶ infinitely many constant symbols ..., -2, -1, 0, 1, 2, ...
- one predicate symbol < of arity 2

Signature $\Sigma_{\mathcal{T}_2}$

Example (Signature Σ_{T_2})

```
 \begin{split} \mathcal{T}_2 &= \big\{\bot, \text{ int, List, Heap, Field,} \top \big\} \text{ (all types incomparable),} \\ F_{\Sigma_{\mathcal{T}_2}} &= \big\{\text{null, o, store, select, next}\big\} \cup \big\{\ldots, -2, -1, 0, 1, 2, \ldots\big\} \\ &\qquad \qquad \text{(type declarations see below)} \\ P_{\Sigma_{\mathcal{T}_2}} &= \big\{\big\} \end{split}
```

Intuition: select/store model program heap; next models field of List objects

Example (Type declarations)

```
List null, o; o.next := o'
Heap store(Heap, List, Field, List);
List select(Heap, List, Field);
Field next; int 0; int 1; int -1; ...
```

First-Order Terms

Definition (Terms, inductive definition)

A first-order term of type $T \in \mathcal{T} - \{\bot\}$

- ▶ is a logic variable of type T, or
- has the form $f(t_1, \dots, t_n)$.

where T $f(T_1, ..., T_n) \in F_{\Sigma_T}$ and each t_i is a term of type T_i' with $T_i' \leq T_i$, or

Think of first-order terms as side effect-free expressions in programs

Terms over $\Sigma_{\mathcal{T}_1}$

Example (Terms over $\Sigma_{\mathcal{T}_1}$)

(assuming logic variable declarations int v_1 ; int v_2 ;)

▶ -7

▶ +(-(7, 8), 1)

▶ +(-2, 99)

 \rightarrow +(-(v_1 , 8), v_2)

- **▶** -(7, 8)
- Example (Using infix notation of functions)

$$(v_1 - 8) + v_2$$

Terms over $\Sigma_{\mathcal{T}_2}$

Example (Terms over $\Sigma_{\mathcal{T}_2}$)

(assuming logic variable declarations List u; Heap h;)

- ▶ -7 has type int
- ▶ null has type List
- ▶ store(h, o, next, null) has type Heap
- ▶ select(store(h, o, next, null), u, next) has type List

Example (Intuition behind functions modeling object fields)

- ▶ o.next = null:
- ▶ u.next in an execution state, where o.next == null

Atomic Formulas

Definition (Logical Atoms)

Given a signature Σ , a logical atom has one of the forms

- ▶ true
- ▶ false
- $ightharpoonup t_1 \doteq t_2$ ("equality"), where t_1 and t_2 have a common subtype $\neq \bot$
- \triangleright $p(t_1, \ldots, t_n)$ ("predicate"),

where $p \in P_{\Sigma_{\tau}}$, and each t_i is term of the correct type following the typing p

Atomic Formulas over Signature Σ_{T_1}

Example (Atomic formulas over $\Sigma_{\mathcal{T}_1}$) (assuming variable declaration int v;)

- 7 \(\ddot\) 8
- **▶** 7 < 8
- \triangleright -2 v < 99
- V < (V + 1)

Atomic Formulas over Signature $\Sigma_{\mathcal{T}_2}$

Example (Atomic formulas over $\Sigma_{\mathcal{T}_2}$) (assuming variable declarations List u; Heap h;)

- ▶ store(h, o, next, null) = h
- ► select(store(h, u, next, null), u, next) = null

General Formulas

Definition (FO Formulas, inductive definition)

- ► Any atomic formula is a formula
- ▶ With ϕ and ψ formulas, x a logic variable of type $T \in \mathcal{T} \{\bot\}$, the following are also formulas:
 - $ightharpoonup \neg \phi$ "not ϕ "
 - $\phi \wedge \psi$ " ϕ and ψ "
 - $ightharpoonup \phi \lor \psi$ " ϕ or ψ "
 - $\phi \rightarrow \psi$ " ϕ implies ψ "
 - $\phi \leftrightarrow \psi$ " ϕ is equivalent to ψ "
 - $ightharpoonup \forall T x; \phi$ "for all x of type T formula ϕ holds"
 - ▶ $\exists T x$; ϕ "there exists an x of type T such that ϕ holds"

In \forall T x; ϕ and \exists T x; ϕ the logic variable x is bound (i.e., not free)

Formulas with no free logic variables are called closed

General Formulas: Examples

(signatures obvious, typing irrelevant: left out)

Example (There are at least two distinct elements)

$$\exists x,y; \neg (x \doteq y)$$

Example (Axioms of strict partial order)

Irreflexivity $\forall x; \neg(x < x)$

Asymmetry $\forall x; \forall y; (x < y \rightarrow \neg (y < x))$

Transitivity $\forall x; \forall y; \forall z;$

 $(x < y \land y < z \rightarrow x < z)$

(is any of the three formulas redundant?)

General Formulas: Examples

(signatures obvious, typing irrelevant: left out)

Example (There must be an ∞ number of elements)

Signature and axioms of strict partial order plus

Existence Successor $\forall x; \exists y; x < y$

Remark on Concrete Syntax

	Text book	KeY
Negation	7	ļ.
Conjunction	\wedge	&
Disjunction	\vee	
Implication	\rightarrow , \supset	->
Equivalence	\leftrightarrow	<->
Universal Quantifier	$\forall x; \phi$	\forall T x ; ϕ
Existential Quantifier	$\exists x; \phi$	\exists $T x$; ϕ
Value equality	Ė	=


```
\sorts { // sorts = types
  any;
}
\predicates { // use symbol p for order predicate
 p(any,any);
\problem { // a formula
   \forall any x; !p(x,x) &
   \forall any x; \forall any y; \forall any z;
     (p(x,y) \& p(y,z) \rightarrow p(x,z))
   ->
   \forall any x; \forall any y; (p(x,y) \rightarrow !p(y,x))
```

Why Semantics?

How do we know that a formula like

$$\exists x, y; \neg (x \doteq y)$$

expresses our intention?

First-Order Semantics

From propositional to first-order semantics

- ▶ In prop. logic, an interpretation of prop. variables with $\{tt, ft\}$ suffices
- ▶ In first-order logic we must assign meaning to:
 - variables bound in quantifiers
 predicate symbols
 - constant and function symbols
- Each variable or function value may denote a different object
- ▶ Respect typing: int i, List 1 must denote different objects

Need to interpret a first-order formula relative to a signature Σ

- 1. A typed universe (domain) of objects
- 2. A mapping from variables to objects of suitable type
- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

First-Order Domains/Universes

1. A typed universe of objects for \mathcal{T}

Definition (Universe/Domain)

A non-empty set \mathcal{D} is a universe or domain.

Each element of \mathcal{D} has a fixed type given by $\delta: \mathcal{D} \to \mathcal{T}$.

- Notation for the domain elements of type $T \in \mathcal{T} \{\bot\}$: $\mathcal{D}^T = \{d \in \mathcal{D} \mid \delta(d) \leq T\}$ and $\mathcal{D}^\perp = \emptyset$
- ▶ Obviously, $\mathcal{D} = \bigcup_{T \in \mathcal{T}} D^T$
- ▶ Each type $T \in \mathcal{T} \{\bot\}$ must "contain" at least one domain element: $\mathcal{D}^T \neq \emptyset$

First-Order States (Models)

- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

Definition (First-Order State/Model)

Let $\mathcal D$ be a domain with typing function δ

Let f be declared as T $f(T_1, ..., T_r)$;

Let
$$\mathcal{I}(f): \mathcal{D}^{T_1} \times \cdots \times \mathcal{D}^{T_r} \to \mathcal{D}^T$$

Let p be declared as $p(T_1, ..., T_r)$;

Let
$$\mathcal{I}(p) \subseteq \mathcal{D}^{T_1} \times \cdots \times \mathcal{D}^{T_r}$$

Then $S = (D, \delta, \mathcal{I})$ is a first-order state (or model).

First-Order States Cont'd

Example

Domain:
$$\mathcal{D} = \{17, 2, o\}$$
 with obvious typing ($|\mathcal{D}^{int}| = 2 !$)

$$\mathcal{I}(i) = 17$$

$$\mathcal{I}(j) = 17$$

$$\mathcal{I}(obj) = 0$$

\mathcal{D}^{int}	$\mathcal{I}(f)$
2	2
17	2

$\mathcal{D}^{int} imes \mathcal{D}^{int}$	in $\mathcal{I}(<)$?
(2, 2)	ff
(2, 17)	tt
(17, 2)	ff
(17, 17)	ff

One of uncountably many possible first-order states!

Semantics of Reserved Signature Symbols

Definition

Equality symbol \doteq declared as \doteq (T, T) for any type $T \in \mathcal{T} - \{\bot\}$

Interpretation is fixed as $\mathcal{I}(\dot{=}) = \{(d, d) \mid d \in \mathcal{D}\}$

"Referential Equality" (holds if arguments refer to identical object)

Exercise: write down the predicate table of \doteq for example domain

Signature Symbols vs. Domain Elements

- ▶ Domain elements different from the terms representing them
- ► First-order formulas and terms have no access to domain
 - ▶ \mathcal{D} , δ , \mathcal{D}^{T} are not part of FOL signature
 - ► Cf. languages (e.g., JAVA) without access to heap representation

Example

```
Signature: Object obj1, obj2;
Does obj1 = obj2 hold in a state?
```

We have no idea what the elements of $\mathcal{D} = \mathcal{D}^{\text{Object}}$ look like

- ► Holds always, if $|\mathcal{D}| = 1$
- Maybe, otherwise
- ► How to establish that there are exactly 42 elements in D^{0bject}?
 - How to do that in JAVA?

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements It respects the variable type, i.e., if x has type T then $\beta(x) \in \mathcal{D}^T$

Definition (Modified Variable Assignment)

Let *y* be variable of type *T*, β variable assignment, $d \in \mathcal{D}^T$:

$$\beta_y^d(x) := \left\{ \begin{array}{ll} \beta(x) & x \neq y \\ d & x = y \end{array} \right.$$

Semantic Evaluation of Terms

Given a first-order state (model) S and a variable assignment β : it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

Let
$$S = (\mathcal{D}, \delta, \mathcal{I})$$

Then $val_{S,\beta}$: Term $\to \mathcal{D}$ such that $val_{S,\beta}(t) \in \mathcal{D}^T$ for $t \in \mathsf{Term}_T$:

- \triangleright $val_{S,\beta}(x) = \beta(x)$
- $ightharpoonup val_{\mathcal{S},\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{\mathcal{S},\beta}(t_1),\ldots,val_{\mathcal{S},\beta}(t_r))$

Semantic Evaluation of Terms Cont'd

Example

Signature: int i; int j; int f(int); int hashcode(Object);

Domain: $\mathcal{D} = \{0, 1, 2, 17, o, nil\}$

Variables: Object obj; int x;

$$\mathcal{I}(\mathtt{i}) = 17$$

$$\mathcal{D}^{\mathsf{int}} \quad \mathcal{I}(\mathtt{f})$$

$$\vdots$$

$$2 \quad 17$$

$$17 \quad 2$$

$\mathcal{D}^{ exttt{Object}}$	$\mathcal{I}_{ ext{(hashcode)}}$
0	1
nil	0

Var	β
obj	0
х	17

- 1. $val_{S,\beta}(f(f(i)))$?
- 2. $val_{S,\beta}(x)$?
- 3. $val_{S,\beta}(hashcode(obj))$?

Semantic Evaluation of Terms: Example


```
val_{S,\beta}(f(f(i))) = \mathcal{I}(f)(val_{S,\beta}(f(i)))
                                   = \mathcal{I}(f)(\mathcal{I}(f)(val_{S,\beta}(i)))
                                   = \mathcal{I}(f)(\mathcal{I}(f)(\mathcal{I}(i)))
                                   = \mathcal{I}(f)(\mathcal{I}(f)(17))
                                   = \mathcal{I}(f)(2)
                                   = 17
       val_{S,\beta}(x) = \beta(x) = 17
2.
3.
        val_{S,\beta}(hashcode(obj)) = \mathcal{I}(hashcode)(val_{S,\beta}(obj))
                                                  = \mathcal{I}(\text{hashcode})(\beta(\text{obj}))
                                                  = \mathcal{I}(\text{hashcode})(o)
                                                  = 1
```

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

 $val_{\mathcal{S},\beta}(\phi)$ for $\phi \in For$

- $ightharpoonup val_{\mathcal{S},\beta}(p(t_1,\ldots,t_r)) = tt \quad \text{iff} \quad (val_{\mathcal{S},\beta}(t_1),\ldots,val_{\mathcal{S},\beta}(t_r)) \in \mathcal{I}(p)$
- $ightharpoonup val_{\mathcal{S},\beta}(\phi \wedge \psi) = tt$ iff $val_{\mathcal{S},\beta}(\phi) = tt$ and $val_{\mathcal{S},\beta}(\psi) = tt$
- ... as in propositional logic
- ▶ $val_{S,\beta}(\forall T x; \phi) = tt$ iff $val_{S,\beta^{\phi}}(\phi) = tt$ for all $d \in \mathcal{D}^T$
- ▶ $val_{S,\beta}(\exists T \ x; \ \phi) = tt$ iff $val_{S,\beta_x^d}(\phi) = tt$ for at least one $d \in \mathcal{D}^T$

Semantic Evaluation of Formulas Cont'd

Example

Signature: int j; int f(int); Object obj; <(int,int);</pre>

$$\mathcal{I}(j) = 17$$

 $\mathcal{I}(obj) = 0$

Domain:
$$D = \{2, 17, o\}$$

-	\mathcal{D}^{int}	$\mathcal{I}(\mathtt{f})$
	2	2
	17	2

$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
(2, 2)	ff
(2, 17)	tt
(17, 2)	ff
(17, 17)	ff

- val_{S,β}(f(j) < j) ?</p>
- \triangleright $val_{S,\beta}(\exists int x; f(x) \doteq x) ?$
- ▶ $val_{S,\beta}(\forall \text{ Object } o1; \forall \text{ Object } o2; o1 = o2)$?

Semantic Evaluation of Formulas: Example

1.
$$val_{\mathcal{S},\beta}(\mathbf{f}(\mathbf{j}) < \mathbf{j}) = \mathcal{I}(<)(val_{\mathcal{S},\beta}(\mathbf{f}(\mathbf{j})), val_{\mathcal{S},\beta}(\mathbf{j}))$$

$$= \mathcal{I}(<)(\mathcal{I}(\mathbf{f})(val_{\mathcal{S},\beta}(\mathbf{j})), \mathcal{I}(\mathbf{j}))$$

$$= \mathcal{I}(<)(\mathcal{I}(\mathbf{f})(17), 17)$$

$$= \mathcal{I}(<)(2, 17)$$

$$= t$$

2.
$$val_{\mathcal{S},\beta}(\exists \operatorname{int} x; f(x) \stackrel{.}{=} x) = \operatorname{tt} \operatorname{iff} val_{\mathcal{S},\beta_x^d}(f(x) \stackrel{.}{=} x) = T \text{ for } d \in \mathcal{D}^{\operatorname{int}}$$

$$\operatorname{iff} \mathcal{I}(\stackrel{.}{=})(val_{\mathcal{S},\beta_x^d}(f(x)), val_{\mathcal{S},\beta_x^d}(x)) = \operatorname{tt}$$

$$\operatorname{iff} \mathcal{I}(\stackrel{.}{=})(val_{\mathcal{S},\beta_x^d}(f(x)), val_{\mathcal{S},\beta_x^d}(x)) = \operatorname{tt}$$

$$\operatorname{iff} \mathcal{I}(\stackrel{.}{=})(2,2) = \operatorname{tt} \checkmark$$

Semantic Evaluation of Formulas: Example

3.
$$val_{S,\beta}(\forall \text{ Object } o1; \forall \text{ Object } o2; o1 \doteq o2) = tt$$
 $iff \ val_{S,\beta^{d_1,d_2}_{o_1,o_2}}(o1 \doteq o2) = tt \text{ f.a. } d_1, d_2 \in \mathcal{D}^{\text{Object}} = \{o\}$
 $iff \ val_{S,\beta^{o,o}_{o1,o2}}(o1 \doteq o2) = tt$
 $iff \ \mathcal{I}(\dot{=})(val_{S,\beta^{o,o}_{o1,o2}}(o1), val_{S,\beta^{o,o}_{o1,o2}}(o2)) = tt$
 $iff \ \mathcal{I}(\dot{=})(\beta^{o,o}_{o1,o2}(o1), \beta^{o,o}_{o1,o2}(o2)) = tt$
 $iff \ \mathcal{I}(\dot{=})(o,o) = tt \checkmark$

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$\begin{array}{lll} \mathit{val}_{\mathcal{S},\beta}(\phi) = \mathit{tt} & (\phi \text{ is satisfiable}) \\ \mathcal{S} \models \phi & \text{iff} & \text{for all } \beta : \mathit{val}_{\mathcal{S},\beta}(\phi) = \mathit{tt} & (\phi \text{ is true in } \mathcal{S}) \\ \models \phi & \text{iff} & \text{for all } \mathcal{S} : & \mathcal{S} \models \phi & (\phi \text{ is valid}) \end{array}$$

Closed formulas that are satisfiable are also true: one top-level notion

Example

- f(j) < j is true in S of previous slide
- ▶ \exists **int** x; $i \doteq x$? Valid: can always choose $d = \mathcal{I}(i)$ in $val_{\mathcal{S},\beta_q^d}$
- ▶ \exists int x; $\neg(x = x)$? Not satisfiable

Useful Valid Formulas (Propositional Logic)

Let ϕ and ψ be arbitrary, closed formulas (whether valid of not)

Then the following formulas are valid:

- $\blacktriangleright \neg (\phi \land \psi) \leftrightarrow (\neg \phi \lor \neg \psi)$
- \blacktriangleright (true $\land \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- \blacktriangleright true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $(\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow true$
- false $\rightarrow \phi$
- (true $\rightarrow \phi$) $\leftrightarrow \phi$
- \blacktriangleright $(\phi \rightarrow \textit{false}) \leftrightarrow \neg \phi$

Useful Valid Formulas (FO Logic)

Assume that x is the only variable which may appear freely in ϕ or ψ

Then the following formulas are valid:

- $ightharpoonup \neg (\exists T x; \phi) \leftrightarrow \forall T x; \neg \phi$
- $ightharpoonup \neg (\forall T x; \phi) \leftrightarrow \exists T x; \neg \phi$
- $(\forall T x; \phi \land \psi) \leftrightarrow (\forall T x; \phi) \land (\forall T x; \psi)$
- $\blacktriangleright (\exists T x; \phi \lor \psi) \leftrightarrow (\exists T x; \phi) \lor (\exists T x; \psi)$

Are the following formulas also valid? (Exercise)

- $(\forall T x; \phi \lor \psi) \leftrightarrow (\forall T x; \phi) \lor (\forall T x; \psi)$
- $\blacktriangleright (\exists T x; \phi \land \psi) \leftrightarrow (\exists T x; \phi) \land (\exists T x; \psi)$

Impracticality of Semantic Arguments

Showing Validity by Computation of *val*_{S,β} Impractical

- ▶ There are uncountably many FO states
- Even a single state may have infinite domain
- ► Even when domain finite: recursion ⇒ exponential number of cases

Need syntactic proof method:

- Use only symbols occurring in a formula already
- Avoid full recursive evaluation whenever possible