Int. Appln. No.: PCT/US03/22807 US Appln. No.: To Be Assigned US Filing Date: Concurrently

20919YP

Case No.: Page No.:

Amendment to the Claims:

This listing of claims will replace all prior versions and listing of claims in the application. Cancel Claims 16, 20, 22-24, and 26-29 without prejudice to the subject matter of these claims begin pursued in this application at a later time or in a continuing application.

> 1. (Original) A compound of formula I

$$\bigcup_{N-Z}^{Q} \bigvee_{N}^{R^1}$$

and the pharmaceutically acceptable salts, esters and tautomers thereof, wherein R¹ is selected from the group consisting of:

- (a) –CF3,
- (b) -CH2C(CH3)3,
- (c) phenyl, unsubstituted, mono- or poly- substituted with halo,
- (d) -C₁₋₆ alkyl, and
- (e) -C₁₋₂alkyl-phenyl;

R² is selected from the group consisting of:

- (a) $-C_{1-6}$ alkyl,
- (b) $-COOR^3$,
- (c) $-CR^3R^4-O-R^5$,
- (d) -CR3R4-S-R5, and
- (e) $-COR^3$;
- R³, R⁴ and R⁵ are independently selected at each occurrence from the group consisting of -H, phenyl, and C₁₋₆ alkyl;

Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I to which Y is respectively attached, to form a heterocyclic ring selected from:

(a) a 5-membered heterocyclic ring selected from the group consisting of:

(iv)
$$S N -$$
 and (v) $S N -$,

(b) a 6-membered heterocyclic ring selected from the group consisting of:

(iv)
$$(v)$$
 (v) (v)

(vii)
$$R^6N$$
 and (viii) R^6N N R^6

Page No.:

5

(c)

(d) a bicyclic heterocyclic ring selected from the group consisting of:

(i)
$$N-$$
 (ii)

$$(iv)$$
 N N

wherein each carbon atom in the heterocyclic ring, formed when Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I, is independently unsubstituted, mono- or di- substituted with a substituent independently selected at each occurrence from R⁷;

 R^6 is independently selected at each occurrence from the group consisting of:

- (a) -H,
- (b) -C₁₋₆alkyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -OH, -NR³R⁴, -OR³, -COOR³, and -CN,

Page No.:

- -C1-6alkyl-phenyl, unsubstituted, mono- or poly- substituted with a substituent (c) selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³,
- (d) -C3-6cycloalkyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -OH, -OR³, -COOR³, and -CN,
- -C3-6cycloheteroalkyl, unsubstituted, mono- or poly- substituted with a (e) substituent selected from the group consisting of halo, -OH, -(CH₂)_nOR³, -OR³, -COOR³, and -CN, wherein n is an integer selected from 2, 3, 4, 5 and 6,
- -C₂-6alkenyl, (f)
- $-C(O)C_{1-6}$ alkyl, (g)
- -COOR3, (h)
- $-C(O)-(CH_2)_p-COOR^3$, wherein p is an integer selected from 2, 3 and 4, (i)
- phenyl, unsubstituted, mono- or poly- substituted with a substituent selected (j) from the group consisting of halo, -C₁-3alkyl, and -COOR³,
- (k) pyridyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁-3alkyl, and -COOR³,
- pyrimidinyl, unsubstituted, mono- or poly- substituted with a substituent selected **(l)** from the group consisting of halo, -C₁-3alkyl, and -COOR³,
- pyrazinyl, unsubstituted, mono- or poly- substituted with a substituent selected (m) from the group consisting of halo, -C₁₋₃alkyl, and -COOR³, and
- thiazolyl, unsubstituted, mono- or poly- substituted with a substituent selected (n) from the group consisting of halo, -C₁₋₃alkyl, and -COOR³;

R⁷ is independently selected at each occurrence from the group consisting of:

- =O. (a)
- -C1-6alkyl-phenyl, unsubstituted, mono- or poly- substituted with a substituent (b) selected from the group consisting of halo, -CN, -COOR³, -COR³, and -OH,
- -C₁-6alkyl, unsubstituted, mono- or poly- substituted with a substituent selected (c) from the group consisting of halo, -OH, -COOR³, tetrazole and -CN,
- -C₃₋₆ cycloalkyl, (d)
- (e) -C₃₋₆ spiroalkyl,
- -COOR³. (f)
- halo, (g)
- $-NR^3R^4$ (h)
- phenyl, unsubstituted, mono- or poly- substituted with a substituent selected (i) from the group consisting of halo, -COOR³ and -C₁-4alkyl,

(j) pyridyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, —C1-3alkyl, and -COOR³,

- (k) pyrimidinyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³, and
- (l) pyrazinyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, —C1-3alkyl, and -COOR³; and

Z is selected from the group consisting of:

- (a) -C₁-6alkyl-,
- (b) -C₁-6alkyl-O-,
- (c) -C3-6cycloalkyl-, and
- (d) -C3-6cycloalkyl-O-.
- 2. (Original) A compound of formula I

$$\begin{array}{c|c}
O & & & \\
\hline
O & & & \\
N & & & \\
I & & & \\
\end{array}$$

and the pharmaceutically acceptable salts, esters and tautomers thereof, wherein

R1 is selected from the group consisting of:

- (a) –CF3,
- (b) -CH2C(CH3)3,
- (c) phenyl, unsubstituted, mono- or poly- substituted with halo,
- (d) -C₁₋₆ alkyl, and
- (e) -C₁₋₂alkyl-phenyl;

R² is selected from the group consisting of:

- (a) $-C_{1-6}$ alkyl,
- (b) $-COOR^3$,
- (c) $-CR^3R^4-O-R^5$,
- (d) $-CR^3R^4-S-R^5$, and
- (e) $-COR^3$;
- R³, R⁴ and R⁵ are independently selected at each occurrence from the group consisting of -H, phenyl, and C₁₋₆ alkyl;

Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I to which Y is respectively attached, to form a heterocyclic ring selected from:

(a) a 5-membered heterocyclic ring selected from the group consisting of:

(i)
$$N$$
 (ii) R^6N (iii) R^6N

(iv)
$$S N$$
 and (v) $S N$,

(b) a 6-membered heterocyclic ring selected from the group consisting of:

(vii)
$$R^6N$$
 and (viii) R^6N N R^6

provided that when R₁ is -CF₃, R₂ is n-propyl, and Z is n-propyloxy, the 6-membered heterocyclic ring is not unsubstituted 5,6 dihydrouracil,

Page No.: 10

(d) a bicyclic heterocyclic ring selected from the group consisting of:

(i)
$$N-$$
 (ii) $N-$

and
$$\begin{pmatrix} V \end{pmatrix} \qquad \begin{pmatrix} R^6 & O \\ N & N \end{pmatrix} \qquad \begin{pmatrix} N & N & N \\ N & N & N \end{pmatrix}$$

wherein each carbon atom in the heterocyclic ring, formed when Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I, is independently unsubstituted, mono- or di- substituted with a substituent independently selected at each occurrence from R⁷;

 R^6 is independently selected at each occurrence from the group consisting of:

- (a) -H,
- (b) -C₁₋₆alkyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -OH, -NR³R⁴, -OR³, -COOR³, and -CN,
- (c) -C₁-6alkyl-phenyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁-3alkyl, and -COOR³,
- (d) -C₃-6cycloalkyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -OH, -OR³, -COOR³, and -CN,

- (e) -C₃-6cycloheteroalkyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -OH, -(CH₂)_nOR³, -OR³,
 -COOR³, and -CN, wherein n is an integer selected from 2, 3, 4, 5 and 6,
- (f) -C2-6alkenyl,
- (g) $-C(O)C_{1}$ -6alkyl,
- (h) $-COOR^3$,
- (i) -C(O)-(CH₂)_p-COOR³, wherein p is an integer selected from 2, 3 and 4,
- (j) phenyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³,
- (k) pyridyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³,
- (l) pyrimidinyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C1-3alkyl, and -COOR³,
- (m) pyrazinyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, —C₁₋₃alkyl, and —COOR³, and
- (n) thiazolyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C1-3alkyl, and -COOR³;

R⁷ is independently selected at each occurrence from the group consisting of:

- (a) =0,
- (b) $-C_{1}$ -6alkyl-phenyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -CN, $-COOR^3$, $-COR^3$, and -OH,
- (c) -C₁₋₆alkyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -OH, -COOR³, tetrazole and -CN,
- (d) -C₃₋₆ cycloalkyl,
- (e) -C₃₋₆ spiroalkyl,
- (f) $-COOR^3$,
- (g) halo,
- (h) $-NR^3R^4$,
- (i) phenyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -COOR³ and -C₁-4alkyl,
- (j) pyridyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C1-3alkyl, and -COOR³,
- (k) pyrimidinyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³, and

(l) pyrazinyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³; and

Z is selected from the group consisting of:

- (a) -C₁-6alkyl-,
- (b) $-C_{1}$ -6alkyl-O-,
- (c) -C3-6cycloalkyl-, and
- (d) -C3-6cycloalkyl-O-.
- 3. (Original) The compound of claim 1 wherein Z is -C2-4alkyl-O-.
- 4. (Original) The compound of claim 3 wherein

R¹ is selected from the group consisting of:

- (a) $-CF_3$,
- (b) -CH2C(CH3)3, and
- (c) phenyl, unsubstituted, mono- or poly- substituted with halo; and

R² is selected from the group consisting of:

- (a) $-C_{1-6}$ alkyl, and
- (b) $-COR^3$.
- 5. (Original) The compound of claim 4 wherein R² is n-propyl.
- 6. (Original) The compound of claim 5 wherein Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I to which Y is respectively attached, to form a heterocyclic ring selected from:
 - (a) a 5-membered heterocyclic ring selected from the group consisting of:

(i)
$$N$$
 (ii) R^6N (iii) R^6N

(iv)
$$S N$$
 and (v) $S N$

(b) a 6-membered heterocyclic ring selected from the group consisting of:

(i)
$$N$$
 (ii) N (iii) N R^6

(iv)
$$\stackrel{O}{\underset{R^6N}{\bigvee}}$$
 (v) $\stackrel{O}{\underset{R^6N}{\bigvee}}$ and (vi) $\stackrel{O}{\underset{N}{\bigvee}}$ $\stackrel{O}{\underset{N}{\bigvee}}$

wherein each carbon atom in the heterocyclic ring, formed when Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I, is independently unsubstituted, mono- or di- substituted with a substituent independently selected at each occurrence from R⁷.

7. (Original) The compound of claim 6 wherein R^6 is independently selected at each occurrence from the group consisting of:

- (a) -H,
- (b) -C₁₋₆alkyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -OH, -NR³R⁴, -OR³, -COOR³, and -CN,
- (c) —C₁₋₆alkyl-phenyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, —C₁₋₃alkyl, and —COOR³,
- (d) $-C(O)-(CH_2)_D-COOR^3$, wherein p is an integer selected from 2, 3 and 4,
- (e) phenyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³,
- (f) pyridyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, —C₁₋₃alkyl, and -COOR³, and
- (g) pyrimidinyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³.
- 8. (Original) The compound of claim 7 wherein R⁷ is independently selected from the group consisting of:
 - (a) =0,
 - (b) -CH₂-phenyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -CN, -COOR³, -COR³, and -OH,
 - (c) -C₁₋₆alkyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -OH, -COOR³, tetrazole and -CN,
 - (d) halo,
 - (e) $-NH_2$,
 - (f) phenyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, —COOR³ and —C₁₋₄alkyl, and
 - (g) pyridyl, unsubstituted, mono- or poly- substituted with a substituent selected from the group consisting of halo, -C₁₋₃alkyl, and -COOR³.
- 9. (Original) The compound of claim 3 wherein R¹ is selected from the group consisting of:
 - (a) -CF3, and
 - (b) phenyl, unsubstituted, mono- or poly- substituted with halo.

- 10. (Original) The compound of claim 9 wherein Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I to which Y is respectively attached, to form a heterocyclic ring selected from:
 - (a) a 5-membered heterocyclic ring selected from the group consisting of:

(i)
$$N$$
 (ii) R^6N N

(iii)
$$N$$
 and (iv) N

(b) a 6-membered heterocyclic ring selected from the group consisting of:

(i)
$$\bigcap_{N}^{N}$$
 (ii) \bigcap_{N}^{N} and (iii) \bigcap_{N}^{N}

wherein each carbon atom in the heterocyclic ring, formed when Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I, is independently unsubstituted, mono- or di- substituted with a substituent independently selected at each occurrence from R⁷.

- 11. (Original) The compound of claim 3 wherein R¹ is -CF₃.
- 12. (Original) The compound of claim 11 wherein Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I to which Y is respectively attached, to form a heterocyclic ring selected from:
 - (a) a 5-membered heterocyclic ring selected from the group consisting of:

(i)
$$R^6N$$
 and (ii) R^6N , and

(b) a 6-membered heterocyclic ring selected from the group consisting of:

(i)
$$N$$
 and (ii) N R^6

wherein each carbon atom in the heterocyclic ring, formed when Y is joined together with the nitrogen and the carbonyl carbon shown in Formula I, is independently unsubstituted, mono- or di- substituted with a substituent independently selected at each occurrence from R⁷.

- 13. (Original) The compound of claim 1 wherein Z is -C3-6cycloalkyl-O-.
- 14. (Original) The compound of claim 1 wherein Z is -C4-6alkyl-.
- 15. (Original) A compound selected from:
- (1) 1-(3-{[7-propyl-3-(neopentyl)-1,2-benzisoxazol-6-yl]oxy}propyl)pyrrolidine-2,5-dione;

- (2) 1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)pyrrolidine-2,5-dione;
- (3) 2-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)-1*H*-isoindole-1,3(2*H*)-dione;
- (4) 3,3-dimethyl-1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)pyrrolidine-2,5-dione;
- (5) 3-methyl-3-phenyl-1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)pyrrolidine-2,5-dione;
- (6) 3-(3-{[7-propyl-3-(neopentyl)-1,2-benzisoxazol-6-yl]oxy}propyl)thiazolidine-2,4-dione;
- (7) 3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)thiazolidine-2,4-dione;
- (8) 5,5-dimethyl-3-(3-{[7-propyl-3-(neopentyl)-1,2-benzisoxazol-6-yl]oxy}propyl)thiazolidine-2,4-dione;
- (9) [2,4-dioxo-3-(3-{[7-propyl-3-(neopentyl)-1,2-benzisoxazol-6-yl]oxy}propyl)-1,3-thiazolidin-5-yl]acetic acid;
- (10) 3-(3-{[7-propyl-3-(neopentyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (11) 3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione:
- (12) 1-methyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (13) 5(R)-methyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (14) 5,5-dimethyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (15) 1-(2-pyridyl)-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (16) 5-methyl-5-phenyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (17) 5-methyl-5-phenyl-3-(3-{[7-propyl-3-(neopentyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (18) 5-methyl-5-phenyl-3-(3-{[7-propyl-3-(phenyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (19) 5-methyl-5-phenyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}butyl)imidazolidine-2,4-dione;

- (20) 5-methyl-5-(3-carboxyphenyl)-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (21) 5-methyl-5-(4-pyridyl)-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (22) 5-methyl-5-(3-pyridyl)-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (23) 5-methyl-5-(2-pyridyl)-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (24) 3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)-1-pyrimidin-2-ylimidazolidine-2,4-dione;
- (25) 3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)-1-pyrazin-2-ylimidazolidine-2,4-dione;
- (26) 3-[2,5-dioxo-4-phenyl-1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidin-4-yl]propanoic acid;
- (27) 4-[5,5-dimethyl-2,4-dioxo-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidin-1-yl]butanoic acid;
- (28) 4-[5,5-dimethyl-2,4-dioxo-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidin-1-yl]pentanoic acid;
- (29) 1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidin-2-one;
- (30) methyl 2-[2-oxo-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidin-1-yl]propanoate;
- (31) 2-[2-oxo-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidin-1-yl]propanoic acid;
- (32) 1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (33) 5,5-dimethyl-1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)imidazolidine-2,4-dione;
- (34) 1-[cis-2-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}cyclohexyl)methyl]dihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (35) 1-[*trans*-2-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}cyclopentyl)methyl]dihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (36) 1-{4-[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]butyl}dihydropyrimidine-2,4(1*H*,3*H*)-dione;

- (37) 5-phenyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)dihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (38) 6-phenyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)dihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (39) 5-Methyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)dihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (40) 1,5-Dimethyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)dihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (41) 1-phenyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)dihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (42) 3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)-1-pyridin-2-yldihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (43) 3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)-5,6-dihydro-2*H*-1,2'-bipyrimidine-2,4(3*H*)-dione;
- (44) 3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)-5,6-dihydro-2*H*-1,5'-bipyrimidine-2,4(3*H*)-dione;
- (45) 1-(3-{[7-propyl-3-(neopentyl)-1,2-benzisoxazol-6-yl]oxy}propyl)piperidin-2-one;
- (46) 1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)piperidin-2-one;
- (47) 1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)piperidin-2,6-dione;
- (48) 1-(3-{[7-propyl-3-(phenyl)-1,2-benzisoxazol-6-yl]oxy}propyl)piperidin-2,5-dione;
- (49) 4-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)morpholine-3,5-dione;
- (50) 1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)piperazine-2,5-dione;
- (51) 4-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)piperazine-2-one;
- (52) 3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)-1,3,5-triazinane-2,4-dione;
- (53) 3-(3-{[7-propyl-3-(phenyl)-1,2-benzisoxazol-6-yl]oxy}propyl)dihydropyrimidine-2,4(1*H*,3*H*)-dione;
- (54) 6-methyl-3-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)dihydropyrimidine-2,4(1*H*,3*H*)-dione; and
- (55) 1-(3-{[7-propyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy}propyl)azepan-2-one; and pharmaceutically acceptable salts, esters and tautomers thereof.

Int. Appln. No.: PCT/US03/22807 US Appln. No.: To Be Assigned

US Filing Date: Concurrently Case No.:

20919YP

Page No.:

20

- 16. (Cancelled)
- (Original) A method for treating dyslipidemia comprising administering a 17. therapeutically effective amount of a compound of claim 1 to a patient in need thereof.
- (Original) The method of claim 17 wherein the dyslipidemia comprises 18. depressed plasma HDL cholesterol level.
- (Original) A method for treating atherosclerosis comprising administering a 19. therapeutically effective amount of a compound of claim 1 to a patient in need thereof.
 - 20. (Cancelled)
- (Original) A method for reducing the risk of occurrence of an atherosclerotic 21. disease event comprising administering a prophylactically effective amount of a compound of claim 1 to a patient at risk for having an atherosclerotic disease event.
 - 22-24. (Cancelled)
- (Original) A pharmaceutical composition comprised of a compound of claim 1 25. and a pharmaceutically acceptable carrier.
 - 26-29. (Cancelled)