

CMOS028FDSOI Technology

STI and GATED ESD diodes for DK1.2_RF_mm_nodels

NOVA

Comparison with VA model(s)

Please use the bookmark to navigate

dormieub

General information on models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Device temperature varies from -40 C °C to 150 C °C.

Output parameters definitions

- Model(s): dioesdndsx, dioesdndsx_eg, dioesdndsx_eg_va, dioesdvnpn, dioesdvnpn_eg, dioesdvnpn_eg_va, dioesdvnpn_va, dioesdvpnp, dioesdvpnp_eg, dioesdvpnp_eg_va, dioesdvpnp_va
 - ✓ Cj : Junction capacitance at Vj = 1.0V, f = 100KHz.
 - ✓ Ij: Junction leakage current at Vj = 1.0V.

dormieub

dioesdndsx Electrical characteristics scaling

dioesdndsx, Cj [F] vs Vj [V]

Temp==25

dioesdndsx, Ij [A] vs Vj [V]

Temp==25

dioesdndsx, Cj [F] vs Vj [V]

Temp==125

dioesdndsx, Ij [A] vs Vj [V]

Temp==125

dioesdndsx_eg Electrical characteristics scaling

dioesdndsx_eg, Cj [F] vs Vj [V]

Temp==25

dioesdndsx_eg, Ij [A] vs Vj [V]

Temp==25

dioesdndsx_eg, Cj [F] vs Vj [V]

Temp==125

dormieub

dioesdndsx_eg, Ij [A] vs Vj [V]

Temp==125

dormieub

dioesdndsx_eg_va Electrical characteristics scaling

dioesdndsx_va **Electrical characteristics scaling**

dormieub

dioesdvnpn Electrical characteristics scaling

dioesdvnpn, Cj [F] vs Vj [V]

Temp==25

dioesdvnpn, Ij [A] vs Vj [V]

Temp==25

dioesdvnpn, Cj [F] vs Vj [V]

Temp==125

dioesdvnpn, Ij [A] vs Vj [V]

Temp==125

dioesdvnpn_eg Electrical characteristics scaling

dioesdvnpn_eg, Cj [F] vs Vj [V]

Temp==25

dioesdvnpn_eg, Ij [A] vs Vj [V]

Temp==25

dioesdvnpn_eg, Cj [F] vs Vj [V]

Temp==125

dioesdvnpn_eg, Ij [A] vs Vj [V]

Temp==125

dioesdvnpn_eg_va Electrical characteristics scaling

dioesdvnpn_va Electrical characteristics scaling

dioesdvpnp Electrical characteristics scaling

dioesdvpnp, Cj [F] vs Vj [V]

Temp==25

dioesdvpnp, Ij [A] vs Vj [V]

Temp==25

dioesdvpnp, Cj [F] vs Vj [V]

Temp==125

dioesdvpnp, Ij [A] vs Vj [V]

Temp==125

ST Confidential

dioesdvpnp_eg Electrical characteristics scaling

dormieub

dioesdvpnp_eg, Cj [F] vs Vj [V]

Temp==25

dioesdvpnp_eg, Ij [A] vs Vj [V]

Temp==25

dioesdvpnp_eg, Cj [F] vs Vj [V]

Temp==125

dioesdvpnp_eg, Ij [A] vs Vj [V]

Temp==125

dioesdvpnp_eg_va Electrical characteristics scaling

dioesdvpnp_va Electrical characteristics scaling

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model dioesdndsx (NOVA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \mathbf{x} temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdndsx_eg (NOVA)
 - ✓ Input Parameters

Sep 21, 2018

- \times mc runs = 1000
- **x** temp = $25 \, ^{\circ}$ C
- \mathbf{x} mc sens = 0
- x vj = 1.0 V
- \star f_ext = 100K Hz
- **✗** sbenchlsf_release = Alpha
- \mathbf{x} ams_release = 2018.3
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} $v_{j} = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3$
 - \times temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdndsx_eg_va (NOVA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - x vj = 1.0 V
 - x f ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \times ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \times temp = -40.0, 25.0, 125.0, 150.0

- ✓ Extra parameters
- Model dioesdndsx_va (NOVA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - **x** temp = $25 \, ^{\circ}$ C
 - \mathbf{x} mc_sens = 0
 - $v_j = 1.0 \text{ V}$
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - **x** temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdvnpn (NOVA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - **x** temp = $25 \, ^{\circ}$ C
 - \times mc_sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **x** mc_nsigma = 3

- ✓ Sweep Parameters
 - \mathbf{x} $v_i = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3$
 - **x** temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdvnpn_eg (NOVA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - $v_j = 1.0 \text{ V}$
 - x f ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} $v_j = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3$
 - \times temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdvnpn_eg_va (NOVA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz

- **x** sbenchlsf_release = Alpha
- \mathbf{X} ams release = 2018.3
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \times temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdvnpn_va (NOVA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - \times vj = 1.0 V
 - x f ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \mathbf{x} temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdvpnp (NOVA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C

- \mathbf{x} mc sens = 0
- $v_j = 1.0 \text{ V}$
- X f ext = 100K Hz
- **x** sbenchlsf_release = Alpha
- **x** ams_release = 2018.3
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} \mathbf{v} \mathbf{j} = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \mathbf{x} temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdvpnp_eg (NOVA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \forall vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \mathbf{x} temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdvpnp_eg_va (NOVA)

- ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - **x** temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdvpnp_va (NOVA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - $v_j = 1.0 \text{ V}$
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3

- \times temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdndsx (VA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - **x** temp = $25 \, ^{\circ}$ C
 - \mathbf{x} mc_sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - **x** temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdndsx_eg (VA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \times mc_sens = 0
 - $v_j = 1.0 \text{ V}$
 - x f ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \times ams_release = 2018.3

- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - **x** temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdndsx_eg_nova (VA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - $v_j = 1.0 \text{ V}$
 - x f ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - **x** temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdndsx_nova (VA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - **x** temp = $25 \, ^{\circ}$ C
 - \mathbf{x} mc sens = 0
 - $v_j = 1.0 \text{ V}$

- \star f_ext = 100K Hz
- **x** sbenchlsf_release = Alpha
- \mathbf{x} ams release = 2018.3
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \mathbf{x} temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdvnpn (VA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - x f ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \forall vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \mathbf{x} temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdvnpn_eg (VA)
 - ✓ Input Parameters
 - \times mc runs = 1000

- \times temp = 25 °C
- \mathbf{x} mc sens = 0
- x vj = 1.0 V
- \times f ext = 100K Hz
- **x** sbenchlsf_release = Alpha
- **x** ams_release = 2018.3
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \mathbf{x} temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdvnpn_eg_nova (VA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - x f ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - \times temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters

- Model dioesdvnpn_nova (VA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - $v_j = 1.0 \text{ V}$
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - **x** temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdvpnp (VA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters

- \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
- **x** temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdvpnp_eg (VA)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times temp = 25 °C
 - \times mc_sens = 0
 - x vj = 1.0 V
 - \star f_ext = 100K Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - **x** temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters
- Model dioesdvpnp_eg_nova (VA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \times mc_sens = 0
 - $v_j = 1.0 \text{ V}$
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha

- \mathbf{X} ams release = 2018.3
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} $v_i = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3$
 - **x** temp = -40.0, 25.0, 125.0, 150.0
- ✓ Extra parameters
- Model dioesdvpnp_nova (VA)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times temp = 25 °C
 - \mathbf{x} mc sens = 0
 - $v_j = 1.0 \text{ V}$
 - \star f_ext = 100K Hz
 - **x** sbenchlsf_release = Alpha
 - **x** ams_release = 2018.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vj = 5.0, 4.5, 4.0, 3.6, 3.0, 2.5, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.01, -0.1, -0.2, -0.3
 - **x** temp = -40.0, 25.0, 125.0, 150.0
 - ✓ Extra parameters

