Álgebra Linear e Geometria Analítica

Valores próprios e vetores próprios

Departamento de Matemática Universidade de Aveiro

Valores próprios, vetores próprios e subespaços próprios

Matrizes diagonalizáveis

Diagonalização ortogonal de matrizes simétricas

Valor próprio e vetor próprio

Sejam A uma matriz $n \times n$ e $\lambda \in \mathbb{R}$.

 λ é um valor próprio de A se existe um vetor não nulo $X \in \mathbb{R}^n$ tal que

$$AX = \lambda X$$
.

Todo o vetor $X \in \mathbb{R}^n$ não nulo que satisfaz $AX = \lambda X$ é designado por vetor próprio de A associado ao valor próprio λ .

 λ é um valor próprio de A \updownarrow o sistema homogéneo $(A-\lambda I_n)X=0$ possui uma solução não trivial \diamondsuit $\det(A-\lambda I_n)=0$

Polinómio caraterístico

Seja A uma matriz $n \times n$.

O polinómio caraterístico de A é um polinómio de grau n em λ dado por

$$p_A(\lambda) = \det(A - \lambda I_n).$$

A equação $det(A - \lambda I_n) = 0$ diz-se a equação caraterística de A.

Teorema: Os valores próprios de A são as raízes reais do polinómio caraterístico de A.

Observação: Os valores próprios de uma matriz triangular são as entradas da sua diagonal principal.

Subespaço próprio

Teorema: Seja λ um valor próprio da matriz A $n \times n$. Então,

$$U_{\lambda} = \{X \in \mathbb{R}^n : X \text{ \'e vetor pr\'oprio de } A \text{ associado a } \lambda\} \cup \{0\}$$

é um subespaço vetorial de \mathbb{R}^n .

 U_{λ} diz-se o subespaço próprio de A associado ao valor próprio λ e

$$U_{\lambda} = \{X \in \mathbb{R}^n : (A - \lambda I_n)X = 0\} = \mathcal{N}(A - \lambda I_n).$$

Teorema: Seja $A \ n \times n \ \text{com} \ k$ valores próprios distintos $\lambda_1, \ldots, \lambda_k$ e

$$p_A(\lambda) = (\lambda_1 - \lambda)^{n_{\lambda_1}} \cdots (\lambda_k - \lambda)^{n_{\lambda_k}}.$$

Então $1 \leq \dim U_{\lambda_i} \leq n_{\lambda_i}$, $i = 1, \ldots, k$.

Determinar valores os próprios e os subespaços próprios de $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$.

O polinómio caraterístico de A é

$$p_A(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{vmatrix} = \lambda^2 - 5\lambda + 6.$$

A equação caraterística de A é

$$det(A - \lambda I) = 0 \iff \lambda^2 - 5\lambda + 6 = (2 - \lambda)^1 (3 - \lambda)^1 = 0$$
$$\iff \lambda = 2 \lor \lambda = 3$$

Os valores próprios de A são $\frac{2}{2}$ e $\frac{3}{3}$, com $n_2 = n_3 = 1$. A dimensão dos subespaços associados é igual a $\frac{1}{3}$, pois $\frac{1}{3} \le 1$ e $\frac{1}{3} \le 1$.

Exemplo 1 – continuação

$$(A - 2I)X = 0 \iff \begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff y = x, \ x \in \mathbb{R}$$
$$U_2 = \left\{ \begin{bmatrix} x \\ x \end{bmatrix} : x \in \mathbb{R} \right\} = \langle X_1 \rangle, \qquad \text{com } X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$(A - 3I)X = 0 \iff \begin{bmatrix} -2 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff y = 2x, \ x \in \mathbb{R}$$
$$U_3 = \left\{ \begin{bmatrix} x \\ 2x \end{bmatrix} : x \in \mathbb{R} \right\} = \langle X_2 \rangle, \qquad \text{com } X_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Determinar os valores e subespaços próprios de $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$.

O polinómio caraterístico de A

$$p_A(\lambda) = \det(A - \lambda I) = egin{bmatrix} -\lambda & 0 & 0 \ 0 & -\lambda & -1 \ 0 & 1 & -\lambda \end{bmatrix} = -\lambda(\lambda^2 + 1)$$

possui uma única raiz real $\lambda = 0$ (e um par de raízes complexas conjugadas).

O espaço próprio de A é $U_0 = \mathcal{N}(A) = \langle X \rangle$, com $X = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, e dim $U_0 = 1$.

Seja
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
. Determinar valores e subespaços próprios.

A é triangular $\Leftrightarrow p_A(\lambda) = (1-\lambda)^2(2-\lambda) \Leftrightarrow$ possui valores próprios 1 e 2.

$$X \in U_{1} \iff (A - \mathbf{1}I_{3})X = 0 \iff \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} X = 0 \iff U_{1} = \langle \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rangle$$

$$X \in U_{2} \iff (A - \mathbf{2}I_{3})X = 0 \iff \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} X = 0 \iff U_{2} = \langle \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \rangle$$

Matrizes semelhantes

A e B são matrizes semelhantes se existir uma matriz invertível P tal que

$$P^{-1}AP = B.$$

Observação: Como P é invertível verifica-se que

$$P^{-1}AP = B \iff AP = PB \iff A = PBP^{-1}.$$

Teorema: Matrizes semelhantes possuem o mesmo polinómio caraterístico e, portanto, os mesmo valores próprios.

Matrizes diagonalizáveis

Uma matriz A n diz-se diagonalizável se é semelhante a uma matriz diagonal, ou seja, A é uma matriz diagonalizável se existe uma matriz invertível P tal que

$$P^{-1}AP = D$$
,

onde D é uma matriz diagonal.

A matriz P diz-se uma matriz diagonalizante de A.

Matrizes diagonalizáveis

Teorema: A, $n \times n$, é diagonalizável \iff A possui n vetores próprios l.i.

Demonstração:

A $n \times n$ é diagonalizável se e só se existem uma matriz invertível P e uma matriz diagonal D $n \times n$ que verificam a igualdade

$$P^{-1}AP = D$$
.

Se P tem colunas X_1, \ldots, X_n e D tem na diagonal $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, então

$$P^{-1}AP = D \Leftrightarrow AP = PD \Leftrightarrow A \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix} = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} \frac{\lambda_1}{0} & 0 \\ 0 & \cdots & \frac{\lambda_n}{n} \end{bmatrix} \Leftrightarrow \begin{bmatrix} AX_1 & \cdots & AX_n \end{bmatrix} = \begin{bmatrix} \lambda_1 X_1 & \cdots & \lambda_n X_n \end{bmatrix}.$$

Note-se que

- ightharpoonup P é invertível se e só se as suas colunas, X_1, \ldots, X_n , são linearmente independentes;
- $AX_i = \lambda_i X_i$ se e só se X_i é vetor próprio de A associado ao valor próprio λ_i , com i = 1, ..., n.

Então A é diagonalizável se e só se A tem n vetores próprios linearmente independentes.

Diagonalização

Da demonstração do teorema anterior, A é diagonalizável se é semelhante a uma matriz diagonal $P^{-1}AP = D$, verificando-se que

- > as colunas da matriz diagonalizante P são n vetores próprios l.i. de A,
- a matriz D contém os valores próprios de A na diagonal principal,
- a ordem dos vetores próprios determina a ordem dos valores próprios, pois a i-ésima coluna de P é um vetor próprio de A associado ao valor próprio (de A) que está na i-ésima entrada da diagonal de D, para $i = 1, \dots, n$.

ALGA 💾 13/24 Valores próprios e vetores próprios

Vetores próprios linearmente independentes

Lema: Vetores próprios associados a valores próprios distintos são l.i.

Demonstração: Sejam X_1 e X_2 vetores próprios de A associados a dois valores próprios distintos λ_1 e λ_2 e suponha-se que $\alpha_1 X_1 + \alpha_2 X_2 = 0$.

Pré-multiplicando ambos os membros da igualdade por $A-\lambda_1 I$, obtém-se

$$\alpha_1 \underbrace{(A - \lambda_1 I) X_1}_{0} + \alpha_2 \underbrace{(A - \lambda_1 I) X_2}_{AX_2 - \lambda_1 X_2} = 0 \iff \alpha_2 \underbrace{(\lambda_2 - \lambda_1)}_{\neq 0} \underbrace{X_2}_{\neq 0} = 0,$$

donde $\alpha_2=0$. Logo, $\alpha_1X_1+\alpha_2X_2=0 \iff \alpha_1X_1=0$ e, como $X_1\neq 0$, também $\alpha_1=0$. Conclui-se que o conjunto $\{X_1,X_2\}$ é l.i.

Teorema: Sejam $\lambda_1, \ldots, \lambda_k$ os valores próprios distintos de A. Então A possui dim $U_{\lambda_1} + \cdots + \dim U_{\lambda_k}$ vetores próprios l.i.

Diagonalização e valores próprios

Teorema: Seja $p_A(\lambda) = (\lambda_1 - \lambda)^{n_{\lambda_1}} \cdots (\lambda_k - \lambda)^{n_{\lambda_k}}$ o polinómio caraterístico de A, sendo $\lambda_1, \ldots, \lambda_k$ os valores próprios distintos. Então,

A é diagonalizável se e só se dim $U_{\lambda_i} = n_{\lambda_i}$, $i = 1, \dots, k$.

Observações:

Seja A uma matriz $n \times n$.

- ► Se *A* possui *n* valores próprios distintos, é diagonalizável.
- O recíproco da afirmação anterior é falso! Vide o exemplo 4.
- Para descobrir se A, com k < n valores próprios distintos, é diagonalizável, é preciso verificar se dim $U_{\lambda_i} = n_{\lambda_i}$ só para $n_{\lambda_i} > 1$.
- $\longrightarrow \dim U_{\lambda_i} = \dim \mathcal{N}(A \lambda_i I) = \operatorname{nul}(A \lambda_i I) = n \operatorname{car}(A \lambda_i I).$

Diagonalização - Exemplos 1, 2 e 3

Considerando as matrizes dos exemplos 1, 2 e 3, verifica-se que

- \triangleright a matriz A, 2×2, do exemplo 1 é diagonalizável, pois tem 2 valores próprios distintos;
- a matriz A, 3×3 , do exemplo 2 não é diagonalizável, porque tem apenas 1 (1 < 3) vetor próprio I.i.;
- ightharpoonup a matriz A, 3×3, do exemplo 3 não é diagonalizável, pois dim $U_1 = 1 < n_1 = 2$.

ALGA Ħ 16/24 Valores próprios e vetores próprios

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 é uma matriz de ordem 3 que tem polinómio caraterístico
$$p_A(\lambda) = (1 - \lambda)^2 (2 - \lambda)^1 \text{ e valores próprios } 1 \text{ e } 2.$$

$$1 \! \leq \! \dim U_{\mathbf{2}} \! \leq \! 1 \Leftrightarrow \dim U_{\mathbf{2}} = 1, \; \text{mas} \; 1 \! \leq \! \dim U_{\mathbf{1}} \! \leq \! 2 \Leftrightarrow \dim U_{\mathbf{1}} \in \{1,2\}.$$

Contudo,
$$A - \mathbf{1}I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 tem caraterística 1.

Logo, dim
$$U_1 = \text{nul}(A - 1I) = 3 - \text{car}(A - 1I) = 2$$
 e A é diagonalizável, pois dim $U_1 + \text{dim } U_2 = 3$.

Assim,
$$U_1 = \mathcal{N}(A - 1I) = \langle X_1, X_2 \rangle$$
. Verifique que $X_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ e $X_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Exemplo 4 - continuação

$$\mathsf{Como}\ A - {\color{red}2} I = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},\ U_{\color{blue}2} = \langle X_3 \rangle\ \mathsf{com}\ X_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

Então, uma matriz diagonalizante de A é

$$P = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \text{ tal que } P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Outra matriz diagonalizante de A, por exemplo, é

$$Q = \begin{bmatrix} X_2 & X_3 & X_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \text{ sendo } Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Aplicação ao cálculo da potência e da inversa

Se A é diagonalizável, então existe P invertível tal que $A = P D P^{-1}$.

Para $k \in \mathbb{N}$,

$$A = PDP^{-1} \Leftrightarrow A^k = PDP^{-1}PDP^{-1} \cdots PDP^{-1} = PD^kP^{-1}.$$

Se A é invertível, $A = PDP^{-1} \Rightarrow A^{-1} = PD^{-1}P^{-1}$.

Exemplo:

$$A = \begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix} \text{ \'e semelhante a } \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} A \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}.$$

Então,

$$A^{8} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}^{8} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 256 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 511 & -255 \\ 510 & -254 \end{bmatrix}.$$

Diagonalização de matrizes simétricas

Recorde que A é simétrica se $A^T = A$.

Teorema: Uma matriz simétrica $n \times n$ possui n valores próprios (reais).

Teorema: Vetores próprios de uma matriz simétrica associados a valores próprios distintos são ortogonais.

Demonstração: Se A $n \times n$ é simétrica e $X_1, X_2 \in \mathbb{R}^n$, tem-se que

$$(AX_1) \cdot X_2 = X_1^T A^T X_2 = X_1^T A X_2 = X_1 \cdot (AX_2).$$

Se X_1 e X_2 são vetores próprios de A associados, respetivamente, aos valores próprios λ_1 e λ_2 ,

$$(AX_1)\cdot X_2 = \frac{\lambda_1}{\lambda_1}X_1\cdot X_2 = X_1\cdot (AX_2) = \frac{\lambda_2}{\lambda_2}X_1\cdot X_2,$$

donde

$$(\lambda_1 - \lambda_2)X_1 \cdot X_2 = 0.$$

Se $\lambda_1 \neq \lambda_2$, então $X_1 \cdot X_2 = 0$.

Diagonalização ortogonal de matrizes simétricas

A matriz quadrada P é ortogonal se $P^TP = I \iff$ é invertível e $P^{-1} = P^T$.

Teorema: Dada uma matriz
$$P = \begin{bmatrix} P_1 & \cdots & P_n \end{bmatrix}$$
 de colunas P_1, \dots, P_n , P é ortogonal $\Leftrightarrow \{P_1, \dots, P_n\}$ é uma base o.n. de \mathbb{R}^n .

A é ortogonalmente diagonalizável se A é diagonalizável e possui uma matriz diagonalizante ortogonal (cujas colunas são uma base o.n. de \mathbb{R}^n formada por vetores próprios de A).

Teorema: Toda a matriz simétrica é ortogonalmente diagonalizável.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 é simétrica \Leftrightarrow A é ortogonalmente diagonalizável

$$p_A(\lambda) = (1 - \lambda^2) - 4 = 0 \Leftrightarrow \lambda = 3 \lor \lambda = -1$$

$$U_{3} = \left\{ \begin{bmatrix} x \\ x \end{bmatrix} : x \in \mathbb{R} \right\} = \langle X_{1} \rangle, \qquad X_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad P_{1} = \frac{X_{1}}{\|X_{1}\|} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$$

$$U_{-1} = \left\{ \begin{bmatrix} -x \\ x \end{bmatrix} : x \in \mathbb{R} \right\} = \langle X_{2} \rangle, \qquad X_{2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \qquad P_{2} = \frac{X_{2}}{\|X_{2}\|} = \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$$

$$P = \begin{bmatrix} P_1 & P_2 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}, \text{ sendo } P^T A P = \begin{bmatrix} \mathbf{3} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{bmatrix}.$$

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ \'e sim\'etrica } \Leftrightarrow A \text{ \'e ortogonalmente diagonaliz\'avel}$$

$$p_{A}(\lambda) = (1 - \lambda)(\lambda^{2} - 1) = 0 \quad \Leftrightarrow \quad \lambda = 1 \quad \forall \quad \lambda = -1$$

$$U_{1} = \left\{ \begin{bmatrix} x \\ y \\ x \end{bmatrix} : x, y \in \mathbb{R} \right\} = \langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \rangle$$

$$P_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{bmatrix}, \quad P_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad P_{1} \cdot P_{2} = 0$$

Exemplo 6 - continuação

$$U_{-1} = \left\{ \begin{bmatrix} -z \\ 0 \\ z \end{bmatrix} : z \in \mathbb{R} \right\} = \left\langle \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\rangle \qquad P_3 = \begin{bmatrix} \frac{-\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{bmatrix}$$

Então $\{P_1, P_2, P_2\}$ é uma base o.n. de vetores próprios de A e

$$P = \begin{bmatrix} P_1 & P_2 & P_3 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

é uma matriz diagonalizante ortogonal de A tal que

$$P^{\mathsf{T}}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$