Frequency Domain Revisited

Jared Fisher

Lecture 11a

Announcements

- Checkpoint 4 is extended to Friday, April 23 by 11:59pm PDT
- ► Homework 6 is extended to Friday, April 30 by 11:59pm PDT
- New Grading Policy: Homework drop may be used on a project checkpoint instead.

Schedule

- ► Thursday 4/22: Intro to spectral density
- ► Friday 4/23: Lab on Parameter estimation and CP4 due
- ► Tuesday 4/27: Lecture on Spectral density part 2
- Thursday 4/29: Lecture on Extensions, Conclusion
- Friday 4/30: no formal lab but project Q&A, HW6 due
- ▶ Monday 5/10: Final Project Report and Forecasts due

Disclaimer

Today we'll discuss several things about the frequency domain, but not too in depth. The purpose is to

- 1. Give you exposure to a set of tools that are available
- 2. Connect several things we've been talking about this semester

I don't intend to finish all of these slides and examples today. The material in these slides is intended to take 2 or 3 class periods.

Recap of last time: ARMA Estimation

Definition: Conditional least squares for ARMA(p,q)

Given some data x_1, \ldots, x_n and $p, q \in N$, define a function $S_c(\mu, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q)$ as follows. Note that we can rearrange our equation

$$W_t = X_t - \mu - \phi_1(X_{t-1} - \mu) - \dots - \phi_p(X_{t-p} - \mu) - \theta_1 W_{t-1} - \dots - \theta_q W_{t-q}$$

- 1. Set $W_t = 0$ for all $t \leq p$.
- 2. For t = p + 1, ..., n, recursively calculate W_t .
- 3. Let $S_c(\mu, \phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q) = \sum_{t=p+1}^n W_t^2$.

Then the conditional last squares estimator $\hat{\mu}, \hat{\phi}_1, \dots, \hat{\phi}_p, \hat{\theta}_1, \dots, \hat{\theta}_q$ is defined by minimizing the conditional sum of squares

$$S_c(\hat{\mu}, \hat{\phi}_1, \dots, \hat{\phi}_p, \hat{\theta}_1, \dots, \hat{\theta}_q) = \min_{\mu, \phi, \theta} S_c(\mu, \phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q)$$

Comments on Definition

- This is equivalent to writing the likelihood conditioning on X_1, \ldots, X_p and $W_t = 0$ for $t \leq p$.
- ▶ If q = 0 (AR models), minimizing the sum of squares is equivalent to linear regression and no iterative technique is needed.
- ▶ If q > 0, the problem becomes nonlinear regression and numerical optimization routines need to be used.
- ▶ In R, this method is performed by calling the function arima() with the method argument set to CSS (CSS stands for conditional sum of squares).
- As before, we can estimate the noise variance via

$$\hat{\sigma}_W^2 = \frac{S_c(\hat{\mu}, \hat{\phi}, \hat{\theta})}{n-p}.$$

Maximum Likelihood

- ▶ Assume that errors $\{W_t\}$ are Gaussian.
- Write down the likelihood of the observed data x_1, x_2, \ldots, x_n in terms of the unknown parameter values $\mu, \theta_1, \ldots, \theta_q, \phi_1, \ldots, \phi_p$ and σ_W^2 .
- Maximize over these unknown parameter values.
- R: use the function arima() with the method argument set to ML
- ▶ ML stands or Maximum Likelihood. R uses an optimization routine to maximize the likelihood. This routine is iterative and needs suitable initial values of the parameters to start.
- ► You can also set method equal to *CSS-ML*, where R selects the starting values by CSS.

Return to the Frequency domain

Frequency domain

- We have largely studied the time domain approach: models for stationary processes which were directly constructed via the relationship of observations X_t at different time points.
- Now, we will study a stationary process as a composition of periodic components with different frequencies.
- This is quite natural for many time series data, which are often directly driven by periodic random events.

Example: Multiple types of seasonality

Diagnose with time-domain only methods?

Recall the Definition of Sinusoids

We define the set of sinusoid functions as

$$\{g(t) = R\cos(2\pi f t + \Phi) : R \in R_+, f \in R_+, \Phi \in [0, 2\pi/f)\},$$

where

- R is called the *amplitude*
- ► *f* is called the *frequency*
- Φ is called the *phase*
- ightharpoonup 1/f is called the *period*

Sinusoids rewritten a different way

1. With $A = R\cos(\Phi)$ and $B = -R\sin(\Phi)$ one can rewrite sinuosoids as

$$\{g(t) = A\cos(2\pi ft) + B\sin(2\pi ft) : A, B \in R, f \in R_+\}.$$

Sinusoids rewritten a yet another way

2. Note that

$$\exp(2\pi i f t) = \cos(2\pi f t) + i \sin(2\pi f t)$$

$$\cos(2\pi f t) = \frac{\exp(2\pi i f t) + \exp(-2\pi i f t)}{2}$$

$$\sin(2\pi f t) = \frac{\exp(2\pi i f t) - \exp(-2\pi i f t)}{2i}$$

Thus, one can rewrite sinusoids with C = A/2 + B/(2i) and its complex conjugate $\overline{C} = A/2 - B/(2i)$ as

$$\{g(t)=C\exp(2\pi i f t)+\overline{C}\exp(-2\pi i f t): C\in C, f\in R_+\}.$$

Definition: Discrete Fourier Transform

For data $x_0, \ldots, x_{n-1} \in C$ the discrete Fourier transform (DFT) is given by $b_0, \ldots, b_{n-1} \in C$, where

$$b_j = \sum_{t=0}^{n-1} x_t \exp\left(-\frac{2\pi i j t}{n}\right) \text{ for } j = 0, \dots, n-1.$$

(In R, the DFT is calculated by the function fft().)

Definition: Periodogram

For real values data x_0,\ldots,x_{n-1} with DFT b_0,\ldots,b_{n-1} the **periodogram** is defined as

$$I(j/n) = \frac{|b_j|^2}{n}$$
 for $j = 1, \dots, \lfloor n/2 \rfloor$

Example Data: $cos(2\pi t * 5/100)$

```
n=100; t = 1:n; cos2 = cos(2*pi*t*(5/n))
plot(t, cos2, ylab = "Data", type = "o")
```


Example: $cos(2\pi t * 5/100)$

```
pgram = abs(fft(cos2)[2:100])^2/n
plot(pgram, type = "h")
```


Example Periodogram: $cos(2\pi t * 5/100)$

```
pgram = abs(fft(cos2)[2:50])^2/n
plot(pgram, type = "h")
```


Example Data: $cos(2\pi t * 25/100)$

Example Periodogram: $cos(2\pi t * 25/100)$

Example Data: $cos(2\pi t * 5/100) + sin(2\pi t * 5/100)$

Example Periodogram: $cos(2\pi t * 5/100) + sin(2\pi t * 5/100)$

Example Data: $cos(2\pi t * 25/100) + sin(2\pi t * 5/100)$

Example Periodogram: $cos(2\pi t * 25/100) + sin(2\pi t * 5/100)$

Recall this Theorem: Connection between periodogram and $\hat{\gamma}$

For some data x_0, \ldots, x_{n-1} let $\hat{\gamma}(h)$ for $h = 0, \ldots, n-1$ be its sample ACVF. Then

$$I(j/n) = \sum_{h=-(n-1)}^{n-1} \hat{\gamma}(h) \exp\left(-\frac{2\pi i j h}{n}\right) \text{ for } j=1,\ldots,\lfloor n/2 \rfloor.$$

Transition

- ▶ We've shown that every dataset can be written in terms of sinusoids.
- The magnitude of the sinusoid component with frequency j/n is given by the respective periodogram I(j/n).
- ▶ But this is a discrete representation and leads to leakage!
- Now we extend these definitions to the process $\{X_t\}$ itself.
- ▶ Remember that ACVF is related to the periodogram, and that leads to the following natural process-analog of the periodogram.

Definition: Spectral Density

For a stationary process with ACVF $\gamma_X(h)$ with $\sum_{h=-\infty}^{\infty} |\gamma_X(h)| < \infty$ we define the spectral density as

$$f(\lambda) := \sum_{n=0}^{\infty} \gamma_X(h) \exp(-2\pi i \lambda h) \text{ for } -1/2 \le \lambda \le 1/2.$$

Notes on the Spectral Density

- ▶ f is symmetric: $f(-\lambda) = f(\lambda)$
- ▶ f is always nonnegative: $f(\lambda) \ge 0$
- Like the periodogram, the spectral density gives the strengths of sinusoids at various frequencies contributing to a stationary stochastic process.
- ► The previously-mentioned theorem shows that the spectral density and the ACVF provide equivalent information.

Thoerem: ACVF and Spectral Density

For a stationary process with spectral density $f(\lambda)$, $-1/2 \le \lambda \le 1/2$, it holds for its ACVF that

$$\gamma_X(h) = \int_{-1/2}^{1/2} e^{2\pi i \lambda h} f(\lambda) d\lambda = \int_{-1/2}^{1/2} \cos(2\pi \lambda h) f(\lambda) d\lambda.$$

Proof (page 1) - Will skip in lecture

Using the definition of the spectral density we get

$$\int_{-1/2}^{1/2} e^{2\pi i \lambda h} f(\lambda) d\lambda = \int_{-1/2}^{1/2} e^{2\pi i \lambda k} \sum_{k=-\infty}^{\infty} \gamma_X(k) e^{-2\pi i \lambda h} d\lambda$$
$$= \sum_{k=-\infty}^{\infty} \gamma_X(k) \int_{-1/2}^{1/2} e^{2\pi i \lambda (k-h)} d\lambda$$

note that

$$\int_{-1/2}^{1/2} e^{2\pi i \lambda (k-h)} d\lambda \neq 0 \quad \Leftrightarrow \quad k = h$$

and thus

$$\int_{-1/2}^{1/2} e^{2\pi i \lambda h} f(\lambda) d\lambda = \gamma_X(h).$$

Proof (page 2)

For the second equality note that by symmetry $f(\lambda) = f(-\lambda)$ and our 2nd sinusoid identity, it follows that

$$\begin{split} \int_{-1/2}^{1/2} e^{2\pi i \lambda h} f(\lambda) d\lambda &= \int_{-1/2}^{0} e^{2\pi i \lambda h} f(-\lambda) d\lambda + \int_{0}^{1/2} e^{2\pi i \lambda h} f(\lambda) d\lambda \\ &= \int_{0}^{1/2} e^{-2\pi i \lambda h} f(\lambda) d\lambda + \int_{0}^{1/2} e^{2\pi i \lambda h} f(\lambda) d\lambda \\ &= \int_{0}^{1/2} \left(e^{-2\pi i \lambda h} + e^{2\pi i \lambda h} \right) f(\lambda) d\lambda \\ &= \int_{0}^{1/2} 2 \cos(2\pi \lambda h) f(\lambda) d\lambda \\ &= \int_{-1/2}^{1/2} \cos(2\pi \lambda h) f(\lambda) d\lambda \end{split}$$

Example: White Noise

- ▶ Suppose $\{X_t\}$ is white noise with mean zero and variance σ^2 .
- ▶ Then it is obvious that $\gamma(h) = 0$ for $h \neq 0$ and $\gamma(h) = \sigma^2$ for h = 0.
- ▶ What is the spectral density of white noise? Solve here:

$$f_W(\lambda) = \sum_{h=-\infty}^{\infty} \gamma_X(h) \exp\left(-2\pi i \lambda h\right) \text{ for } -1/2 \le \lambda \le 1/2.$$

In this case, the spectral density formula simply gives

$$f_W(\lambda) = \sigma^2$$
 for every $-1/2 \le \lambda \le 1/2$.

This means that the spectral density of white noise is flat (all frequencies are combined equally).

Example: MA(1)

Consider the MA(1) process $X_t = W_t + \theta W_{t-1}$. The autocovariance function is given by $\gamma(0) = \sigma_W^2(1 + \theta^2)$, $\gamma(\pm 1) = \theta \sigma_W^2$ and $\gamma(h)$ equals zero for every other h.

The spectral density then immediately gives

$$\begin{split} f(\lambda) &= \gamma(-1) \exp(2\pi i \lambda) + \gamma(0) \exp(0) + \gamma(1) \exp(-2\pi i \lambda) \\ &= \gamma(0) + \gamma(1) \left(\exp(2\pi i \lambda) + \exp(-2\pi i \lambda) \right) \\ &= \gamma(0) + 2\gamma(1) \cos(2\pi \lambda) \\ &= \sigma_W^2 \left(1 + \theta^2 + 2\theta \cos(2\pi \lambda) \right) \text{ for } -1/2 \leq \lambda \leq 1/2. \end{split}$$

This function is increasing when $\theta < 0$ and decreasing when $\theta > 0$ (does this make sense?).

Filters

- ► The general technique of linear time invariant filters: transforming one time series into another.
- Linear filters were already introduced in the context of trend estimation months ago
- We will see that they are particularly helpful within the frequency domain approaches.

Definition: Linear Time Invariant Filter

A linear time-invariant filter with coefficients $\{a_j\}$ for $j=\ldots,-2,-1,0,1,2,3,\ldots$ transforms an input time series $\{X_t\}$ into an output time series $\{Y_t\}$ via

$$Y_t = \sum_{j=-\infty}^{\infty} a_j X_{t-j}.$$

In the above definition, the coefficients $\{a_j\}$ are often assumed to satisfy $\sum_{j=-\infty}^{\infty}|a_j|<\infty.$

Examples

- Particular types of time invariant linear filters we've already been using:
- ▶ q-step smoothing $\Rightarrow a_j = \frac{1}{2q+1}$ for $|j| \le q$, $a_j = 0$ otherwise.
- ▶ Differencing $\Rightarrow a_0 = 1$ and $a_1 = -1$, $a_j = 0$ otherwise.
- ▶ We have seen that these two filters act very differently; one estimates trend while the other eliminates it.

Autocovariance of Linear Time Invariant Filter

- ▶ Suppose that the input time series $\{X_t\}$ is stationary with ACVF γ_X .
- ▶ Then for the autocovariance function of $\{Y_t\}$ we observe

$$\gamma_{Y}(h) = \operatorname{cov}(Y_{t}, Y_{t+h})$$

$$= \operatorname{cov}\left(\sum_{j} a_{j} X_{t-j}, \sum_{k} a_{k} X_{t+h-k}\right)$$

$$= \sum_{j,k} a_{j} a_{k} \operatorname{cov}(X_{t-j}, X_{t+h-k})$$

$$= \sum_{j,k} a_{j} a_{k} \gamma_{X}(h-k+j).$$

Note that the above calculation shows also that $\{Y_t\}$ is stationary (like you did on your homework earlier!).

Spectral Density of Filters

- ▶ Let f_X be the spectral density of the input $\{X_t\}$.
- ► Recall

$$\gamma_X(h) = \int_{-1/2}^{1/2} e^{2\pi i h \lambda} f_X(\lambda) d\lambda.$$

Combining this with the ACVF of $\{Y_t\}$ from the last slide, we get the spectral density f_Y of the output $\{Y_t\}$:

$$\gamma_{Y}(h) = \sum_{j} \sum_{k} a_{j} a_{k} \int e^{2\pi i (h - k + j)\lambda} f_{X}(\lambda) d\lambda$$
$$= \int e^{2\pi i h \lambda} f_{X}(\lambda) \left(\sum_{j} \sum_{k} a_{j} a_{k} e^{-2\pi i k \lambda} e^{2\pi i j \lambda} \right) d\lambda$$

We'll simplify this rearranged formula on the last line.

Definition: Transfer Function

For a time invariant linear filter with coefficients $\{a_j\}$, we define the **transfer function**

$$A(\lambda) := \sum_{j} a_{j} e^{-2\pi i j \lambda} \text{ for } -1/2 \le \lambda \le 1/2.$$
 (1)

Note: Complex Numbers

- \blacktriangleright $A(\lambda)$ contains $i \Rightarrow$ complex number!
- ► Recall Euler's equation: $e^{ix} = \cos x + i \sin x$, and it's conjugate $e^{-ix} = \cos x i \sin x$
- ► Thus

$$A(\lambda) = \sum_{j} a_{j} e^{-2\pi i j \lambda}$$

$$= \sum_{j} a_{j} [\cos(2\pi j \lambda) - i \sin(2\pi j \lambda)]$$

$$= \left[\sum_{j} a_{j} \cos(2\pi j \lambda) \right] - i \sum_{j} a_{j} \sin(2\pi j \lambda)$$

► Conjugate:
$$\overline{A(\lambda)} = \left[\sum_j a_j \cos(2\pi j \lambda)\right] + i \sum_j a_j \sin(2\pi j \lambda) = \sum_j a_j e^{2\pi i j \lambda}$$

Using the Transfer Function

► Recall our previous equation for the ACVF of Y:

$$\gamma_Y(h) = \int e^{2\pi i h \lambda} f_X(\lambda) \left(\sum_i \sum_k a_j a_k e^{-2\pi i k \lambda} e^{2\pi i j \lambda} \right) d\lambda$$

▶ Applying the definition of the transfer function:

$$\gamma_Y(h) = \int e^{2\pi i \lambda h} f_X(\lambda) A(\lambda) \overline{A(\lambda)} d\lambda,$$

where, of course, $\overline{A(\lambda)}$ denotes the complex conjugate of $A(\lambda)$.

As a result, we have

$$\gamma_Y(h) = \int e^{2\pi i \lambda h} f_X(\lambda) |A(\lambda)|^2 d\lambda.$$

► This is clearly of the form $\gamma_Y(h) = \int e^{2\pi i \lambda h} f_Y(\lambda) d\lambda$.

Definition: Power Transfer Function

The function $\lambda\mapsto |A(\lambda)|^2$ is called the **power transfer function**.

Use of the Power Transfer Function

We therefore have

$$f_Y(\lambda) = f_X(\lambda) |A(\lambda)|^2$$
 for $-1/2 \le \lambda \le 1/2$.

- So what does the filter do to the spectrum? It modifies the spectrum by multiplying it with the power transfer function $|A(\lambda)|^2$.
- ▶ Depending on the value of $|A(\lambda)|^2$, some frequencies may be enhanced in the output while other frequencies will be diminished.
- ▶ Thus, the spectral density is very useful while studying the properties of a filter.
- While the autocovariance function of the output series γ_Y depends in a complicated way on that of the input series γ_X , the dependence between the two spectral densities is very simple.

Example: Power Transfer Function of the Differencing Filter

- ▶ Consider lag *s* differencing $Y_t = X_t X_{t-s}$
- ▶ This corresponds to the weights $a_0 = 1$ and $a_s = -1$ and $a_j = 0$ for all other j.
- ► Then the transfer function is given by

$$A(\lambda) = \sum_{j} a_{j} e^{-2\pi i j \lambda}$$

$$= a_{0} e^{-2\pi i (0)\lambda} + a_{s} e^{-2\pi i s \lambda}$$

$$= (1)e^{0} + (-1)e^{-2\pi i s \lambda}$$

$$= 1 - e^{-2\pi i s \lambda}$$

$$= 1 - \cos(2\pi s \lambda) + i \sin(2\pi s \lambda)$$

Example: Power Transfer Function of the Differencing Filter

The power transfer function:

$$\begin{aligned} |A(\lambda)|^2 &= \sqrt{Re(A(\lambda))^2 + Im(A(\lambda))^2}^2 \\ &= [1 - \cos(2\pi s\lambda)]^2 + \sin^2(2\pi s\lambda) \\ &= 1 - 2\cos(2\pi s\lambda) + \cos^2(2\pi s\lambda) + \sin^2(2\pi s\lambda) \\ &= 1 - 2\cos(2\pi s\lambda) + 1 \\ &= 2 - 2\cos(2\pi s\lambda) \end{aligned}$$

▶ To understand this function, we only need to consider the interval [0, 1/2] because it is symmetric on [-1/2, 1/2].

s = 1

Example: Power Transfer Function of the Differencing Filter

- ▶ When s = 1, the function $|A(\lambda)|^2$ is increasing on [0, 1/2].
- ► This means that first order differencing enhances the higher frequencies in the data and diminishes the lower frequencies.
- ► Therefore, it will make the data "more wiggly" as it elminates low frequency elements (i.e. trend!).

s = 12

Power Transfer Function, s=12

s = 12

Power Transfer Function, s=12

Example: Power Transfer Function of the Differencing Filter

- For higher values of s, the function $A(\lambda)$ goes up and down and takes the value zero for $\lambda = 0, 1/s, 2/s, \ldots$
- ▶ In other words, it eliminates all components of period s.

Power Transfer Function, q=1

Power Transfer Function, q=5

Power Transfer Function, q=20

- Now consider the smoothing filter which corresponds to the coefficients $a_j = 1/(2q+1)$ for $|j| \le q$.
- ▶ For $-1/2 < \lambda < 1/2$, the transfer function is

$$A(\lambda) = \sum_{j=-q}^{q} \frac{1}{2q+1} e^{-2\pi i j \lambda}$$

$$= \frac{\sum_{j=-1}^{-q} e^{-2\pi i j \lambda} + 1 + \sum_{j=1}^{q} e^{-2\pi i j \lambda}}{2q+1}$$

$$= \frac{\sum_{j=0}^{-q} e^{-2\pi i j \lambda} - 1 + \sum_{j=0}^{q} e^{-2\pi i j \lambda}}{2q+1}$$

- ▶ When $\lambda = 0$ it is easy to see that and $A(0) = \frac{q+1-1+q+1}{2q+1} = 1$.
- ▶ When $\lambda \neq 0$ then $\exp(2\pi i\lambda) \neq 1$ and this function can be evaluated using the geometric series formula, e.g. $\sum_{i=0}^{q} e^{-2\pi i j\lambda} = \frac{1-e^{2\pi i\lambda(q+1)}}{1-e^{2\pi i\lambda}}$.

Then, because

$$e^{i\theta}-1=\cos heta+i\sin heta-1=2e^{i heta/2}\sin(heta/2)$$

we get

$$S_q(\lambda) = rac{\sin \pi q \lambda}{\sin \pi \lambda} e^{i\pi \lambda (q-1)}.$$

Thus

$$S_q(\lambda) + S_q(-\lambda) = 2 rac{\sin(\pi q \lambda)}{\sin(\pi \lambda)} \cos(\pi \lambda (q-1)),$$

which implies that the transfer function is given by

$$A(\lambda) = rac{1}{2a+1} \left(2 rac{\sin(\pi(q+1)\lambda)}{\sin(\pi\lambda)} \cos(\pi q \lambda) - 1
ight).$$

► For *q* large, it drops to zero very quickly ⇒ the filter kills the high frequency components in the input process.

Big Picture from Lecture 6b: modeling and forecasting

Model the linear trend

Residuals with Trend removed

No more trend, check periodogram for seasonality

Frequency is clearly 3/100

Add Sinusoid to model

Residuals without Linear Trend and Sinusoid

No more large spikes either

For reference: Periodogram of Gaussian Noise

Comment

Because we know

$$f_Y(\lambda) = f_X(\lambda) |A(\lambda)|^2$$
 for $-1/2 \le \lambda \le 1/2$

we can compute the spectral density of the unique stationary solution of a causal ARMA process.

Theorem: Spectral Density of ARMA Process

Let $\{X_t\}$ be a stationary causal ARMA process $\phi(B)X_t = \theta(B)W_t$ with ϕ and θ having no common roots.

Then, for the definition of spectral density f_X of $\{X_t\}$ that uses the ACVF:

$$f(\lambda) := \sum_{h=-\infty}^{\infty} \gamma_X(h) \exp\left(-2\pi i \lambda h\right) \text{ for } -1/2 \le \lambda \le 1/2.$$

it holds that

$$f_X(\lambda) = \sigma_W^2 \frac{|\theta(e^{-2\pi i j \lambda})|^2}{|\phi(e^{-2\pi i j \lambda})|^2}$$
 for $-1/2 \le \lambda \le 1/2$

Proof

- ▶ Let $U_t = \phi(B)X_t = \theta(B)W_t$.
- ▶ First, write the spectral density of $U_t = \phi(B)X_t$ in terms of that of $\{X_t\}$: specifically U_t can be viewed as the output of a filter applied to X_t .
- ▶ The filter is given by $a_0 = 1$ and $a_j = -\phi_j$ for $1 \le j \le p$ and $a_j = 0$ for all other j.
- ▶ Let $A_{\phi}(\lambda)$ denote the transfer function of this filter.
- ► Then we have

$$f_U(\lambda) = |A_{\phi}(\lambda)|^2 f_X(\lambda).$$

Proof (page 2)

Similarly, using the fact that $U_t = \theta(B)W_t$ and that the spectral density of white noise is constant, $f_W(\lambda) = \sigma_W^2$, we write

$$f_U(\lambda) = |A_{\theta}(\lambda)|^2 f_W(\lambda) = \sigma_W^2 |A_{\theta}(\lambda)|^2$$

where $A_{\theta}(\lambda)$ is the transfer function of the filter with coefficients $a_0=1$ and $a_j=\theta_j$ for $1\leq j\leq q$ and $a_j=0$ for all other j.

• Equating the two $f_U(\lambda)$,

$$f_X(\lambda) = \frac{|A_{\theta}(\lambda)|^2}{|A_{\phi}(\lambda)|^2} \sigma_W^2 \text{ for } -1/2 \le \lambda \le 1/2.$$

Proof (page 3)

Now

$$A_{\phi}(\lambda) = 1 - \phi_1 e^{-2\pi i(1)\lambda} - \phi_2 e^{-2\pi i(2)\lambda} - \dots - \phi_p e^{-2\pi i(p)\lambda}$$
$$= \phi(e^{-2\pi ij\lambda})$$

- Note that the denominator $A_{\phi}(\lambda)$ is non-zero for all λ because of stationarity.
- ▶ Similarly $A_{\theta}(\lambda) = \theta(e^{-2\pi i j \lambda})$, which completes the proof:

$$f_X(\lambda) = \sigma_W^2 \frac{|\theta(e^{-2\pi i y \lambda})|^2}{|\phi(e^{-2\pi i y \lambda})|^2} \text{ for } -1/2 \le \lambda \le 1/2$$

Example: MA(1)

For the MA(1) process: $X_t = W_t + \theta W_{t-1}$, we have $\phi(z) = 1$ and $\theta(z) = 1 + \theta z$. Therefore

$$\begin{split} f_X(\lambda) &= \sigma_W^2 \left| 1 + \theta e^{2\pi i \lambda} \right|^2 \\ &= \sigma_W^2 \left| 1 + \theta \cos 2\pi \lambda + i\theta \sin 2\pi \lambda \right|^2 \\ &= \sigma_W^2 \left[(1 + \theta \cos 2\pi \lambda)^2 + \theta^2 \sin^2 2\pi \lambda \right] \\ &= \sigma_W^2 \left[1 + \theta^2 + 2\theta \cos 2\pi \lambda \right] \text{ for } -1/2 \le \lambda \le 1/2. \end{split}$$

Check that for $\theta=-1$, the quantity $1+\theta^2+2\theta\cos(2\pi\lambda)$ equals the power transfer function of the first differencing filter.

Example: MA(1)

Visualize in code!

Example: AR(1)

For AR(1): $X_t - \phi X_{t-1} = W_t$, we have $\phi(z) = 1 - \phi z$ and $\theta(z) = 1$. Thus

$$f_X(\lambda) = \sigma_W^2 \frac{1}{|1 - \phi e^{2\pi i \lambda}|^2} = \frac{\sigma_W^2}{1 + \phi^2 - 2\phi \cos 2\pi \lambda}$$

for $-1/2 \le \lambda \le 1/2$.

Example: AR(2)

For the AR(2) model: $X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} = W_t$, we have $\phi(z) = 1 - \phi_1 z - \phi_2 z^2$ and $\theta(z) = 1$. Here it can be shown that

$$f_X(\lambda) = \frac{\sigma_W^2}{1 + \phi_1^2 + \phi_2^2 - 2\phi_1(1 - \phi_2)\cos 2\pi\lambda - 2\phi_2\cos 4\pi\lambda}$$

for $-1/2 \le \lambda \le 1/2$.

In code and on the whiteboard

Parametric Spectral Density Estimation

Parametric Spectral Density Estimation

- Want to estimate the spectral density of a stationary process?
- lacktriangle One approach: consider a parametric ARMA model $\phi(B)X_t= heta(B)W_t$
- Estimate its parameters $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$
- Plug in these estimates into the ARMA spectral density equation.
- ► For convenience, usually a parametric spectral estimator is obtained by fitting an AR(p) model, where the order p is determined by model selection such as AIC or BIC.
- ► The following theorem shows that any spectral density can be approximated arbitrary close by the spectrum of an AR process, see Property 4.7 in TSA4e.

Theorem: AR Spectal Approximation

Let $g(\lambda)$ be the spectral density of a stationary process. Then, given $\epsilon>0$, there is a time series with the representation

$$\phi(B)X_t=W_t,$$

for some finite order p polynomial ϕ and some white noise W_t with variance σ^2 , such that

$$|f_X(\lambda) - g(\lambda)| < \epsilon$$
 for all $\lambda \in [-1/2, 1/2]$.

Moreover, the roots of ϕ outside the unit circle.

Notes

- ▶ Unfortunately, this Theorem does not tell us how large p, it might be very large in some cases.
- ▶ In R, we can use the function *spec.ar* to fit the best model via AIC and plot the resulting spectrum.
- ▶ In the following, we will not discuss properties of these estimates further, but rather will consider a different class of estimates for the spectral density of a stationary process, which does not rely on some specific parametric model assumptions.
- ► For further reading on parametric density estimation see TSA4e Chapter 4.5.