

Universidad Nacional de Cuyo - Facultad de Ingeniería

Química General e Inorgánica

TRABAJO PRÁCTICO 3:

Estequiometría

Profesora Titular: Dra. Graciela Valente

Profesora Adjunta: Dra. Cecilia Medaura

Jefes de Trabajos Prácticos:

Lic. Sebastián Drajlin Gordon

Lic. Liliana Ferrer
Prof. Inés Grillo
Ing. Carina Maroto
Dra. Rebeca Purpora
Ing. Alejandra Somonte

Ing. Silvina Tonini

I. EJERCICIOS

1. Masa molar, mol y número de partículas

1. Determine las masas molares de las siguientes sustancias.

Sustancia	Fórmula	Masa molar (g/mol)
Agua		
Carbonato de potasio		
Oxígeno		
Ozono		
Hidróxido de amonio		
Oxido de magnesio		

2. Complete la siguiente tabla.

	Masa molar (g/mol)	Moles
300g de nitrato de calcio		
0,370 g de litio		
240 g de óxido de sodio		
180 g de cloro molecular		
424,52 g de ácido sulfúrico		

3. Envolver en un círculo las respuestas correctas. 63,54 g de cobre representa:

Un mol de átomos de cobre	V	F
Un átomo de cobre	V	F
6,02.10 ²³ átomos de cobre	V	F
La masa de un átomo de cobre	V	F

- 4. Dentro de cada uno de los siguientes pares ¿Cuál tiene el mayor número de partículas? Explique por qué.
 - a. 1 mol de Cl o 1 mol de Cl₂.
 - b. 1 molécula de O₂ o 1 mol de O₂.
 - c. 1 átomo de nitrógeno o 1 molécula de nitrógeno.
 - d. 6,02.10²³ moléculas de flúor o 1 mol de moléculas de flúor.
 - e. 20,2 g de neón o 1 mol de Ne.
 - f. 1 g de calcio o 6,02.10²³ átomos de calcio.
- 5. ¿Qué tiene mayor masa? Explique por qué.
 - a. 1 mol de hierro o 1 mol de aluminio.
 - b. 6,02.10²³ átomos de plomo o 1 mol de plomo.
 - c. 1 átomo de K o 1 g de potasio.

- 6. ¿Cuántas moléculas hay en 500 mg de vitamina C (C₆H₆O₆)?
- 7. ¿Cuál de las siguientes propuestas es correcta? En 10 g de ácido sulfúrico hay:
 - a. 6,02.10²³ átomos de hidrógeno
 - b. 0,102 moles de átomos de oxígeno
 - c. 0,102 átomos de S
 - d. 6,14.10²² moléculas de ácido sulfúrico

2. Estequiometría en reacción

- 8. El metano (CH₄) es el principal componente del gas natural. ¿Cuántos moles de oxígeno se necesitan para quemar 16,5 moles de metano?
- 9. 500 g de ácido fosfórico reaccionan con suficiente cantidad de hidróxido cúprico. Determine:
 - a. Número de moles de fosfato cúprico que se obtienen.
 - b. Número de moléculas de agua formada.
- 10. Las superficies de aluminio reaccionan con oxígeno para formar un recubrimiento de óxido de aluminio que protege al metal de la corrosión. Calcule:
 - a. El volumen de oxígeno en CNPT que se requiere para reaccionar con 0,25 moles de aluminio.
- 11. Se descomponen térmicamente 108 g de óxido mercúrico. Calcule:
 - a. Volumen de oxígeno liberado, medido en CNPT.
 - b. Volumen de mercurio obtenido (δ = 13,6 g/mL).

3. Reactivo limitante y reactivo en exceso

- 12. Se mezclan 80 g de ácido clorhídrico con 225 g de hidróxido de calcio. Determine:
 - a. Reactivo limitante.
 - b. Reactivo en exceso.
 - c. Masa de reactivo en exceso.
 - d. Masa de cloruro de calcio obtenida.
- 13. En el proceso de formación de agua a partir de sus elementos:
 - a. Calcule la masa de agua en gramos que se forma a partir de 20 g de hidrógeno y 60 g de oxígeno.
 - b. ¿Qué reactivo expresado en moles se encuentra en exceso y en qué cantidad?

4. Pureza

- 14. Una muestra de 97 g de clorato de potasio se descompone al calentarlo dando 37,5 g de cloruro de potasio y oxígeno. ¿Qué porcentaje de clorato de potasio hay en la muestra?
- 15. En un experimento de laboratorio se hace reaccionar carbonato de sodio con ácido clorhídrico, generándose como productos cloruro de sodio, dióxido de carbono y agua. Calcule el volumen de dióxido de carbono que se produce en CNPT, a partir de 20 g de carbonato de sodio con 65 % de pureza.

16. Calcule la masa de hidróxido de magnesio de 90,0% de pureza necesaria para reaccionar con 250 g de ácido fosfórico. Determine además, la masa de fosfato de magnesio y el número de moléculas de agua que se forman.

5. Rendimiento

- 17. En condiciones de laboratorio, el litio y el bromo reaccionan para formar bromuro de litio. Si se obtienen 340 g del producto a partir de 34 g de litio con exceso de bromo, indique cuál es el rendimiento de la reacción.
- 18. Se hacen reaccionar 100 g de bromo con hidróxido de potasio en solución, según la siguiente ecuación:

$$3 Br_2 + 6 KOH \rightleftharpoons KBrO_3 + 5 KBr + 3 H_2O$$

¿Cuántos gramos de bromato de potasio se producen si el rendimiento de la reacción es del 90%?

AUTOEVALUACIÓN

- 1. Las joyas de plata son en realidad una mezcla de plata y cobre. Si un brazalete con una masa de 17,6 g contiene 14,1 g de plata ¿Qué porcentaje de plata y cobre tiene?
- 2. ¿Cuál es el contenido porcentual de nitrógeno en las siguientes sustancias?

Sustancia	Fórmula	Masa molar	%m/m N
Sulfato de amonio			
Hidróxido de amonio			
Amoníaco			

- 3. Si se coloca un trozo de sodio en una cubeta con agua, se produce una explosión violenta por la reacción entre el sodio y el agua. Si el trozo contiene 50,4 g de sodio, ¿cuántos moles de sodio se tienen?
- 4. Se hacen reaccionar 33,8 g de nitrato de plata con cromato de potasio obteniéndose 20 g de precipitado de cromato de plata. Calcule la pureza del nitrato utilizado.
- 5. Se hace reaccionar hidróxido de zinc impuro con ácido nítrico.
 - a. ¿Qué masa de hidróxido de zinc con 70% de pureza reacciona con 300 g de ácido nítrico?
 - b. ¿Qué masa de la sal se obtiene?
- 6. Se hacen reaccionar 10 g de zinc metálico con ácido sulfúrico en exceso. Calcule la masa de sulfato de zinc formada si la reacción tiene un rendimiento del 80%.
 - 7. El carbonato de sodio reacciona con el hidróxido de bario para producir hidróxido de sodio y carbonato de bario. Si en el proceso se obtienen 90 g de hidróxido de sodio a partir de 160 g de carbonato de sodio, ¿cuál es el rendimiento de la reacción?
 - 8. Una con flechas según corresponda.

Volumen en CNPT	Moles	Fórmula
20,16 L de oxígeno	0,0015	NH ₃
22,4 L de amoníaco	1	$H_{2(g)}$

11,2 L de un gas diatómico	0,9	X ₂
33,6 mL de hidrógeno	0,5	O ₂

- 9. Se tiene un anillo de oro que contiene 1,94 g de oro. ¿Cuántos átomos de oro hay en el anillo?
- 10. Calcule el número de gramos y de moles que hay en:
 - a. 2,5 mol de boro.
 - b. 0,0015 mol de oxígeno molecular.
 - c. 1.25.10⁻³ mol de hierro.
- 11. Cuando se calientan carbonatos a altas temperaturas se forma dióxido de carbono. Este proceso se usa en la industria para obtener cal viva (óxido de calcio) a partir de caliza (carbonato de calcio). Calcular el volumen en CNPT de dióxido de carbono producido al descomponerse 10 gramos del mineral que tiene 85 % de pureza en carbonato de calcio.
- 12. Se hacen reaccionar 443,75 g de cloro, pureza 80% con 164,3 g de sodio, pureza 70%. Calcule:
 - a. Moles de cloruro de sodio formado.
 - b. Masa de reactivo que permanece sin reaccionar.
- 13. Un problema típico de la industria siderúrgica es determinar la masa de hierro que podrá obtenerse de la reacción entre óxido de hierro (III), extraído del mineral hematita y el carbono. Determine la masa de hematita con 85% de pureza en óxido férrico necesaria para producir 500 g de hierro según la siguiente reacción (a igualar):

$$Fe_2O_3 + C \rightleftharpoons Fe + CO_2$$

- 14. Una muestra de zinc metálico de 150 g se calienta hasta que se vaporiza y a continuación se quema en exceso de oxígeno. Una vez que la reacción ha terminado se recogen 160 g de óxido de zinc, usado como pigmento en las pinturas. Calcule el rendimiento del proceso.
- 15. El ácido sulfúrico reacciona con el zinc para dar sulfato de cinc e hidrógeno. ¿Qué pureza tendrá una muestra de 90 g de zinc que liberó 30 L en CNPT de hidrógeno?
- 16. La soda cáustica (NaOH) se prepara comercialmente mediante la reacción de carbonato de sodio con cal apagada, Ca(OH)₂. Determine la masa de soda cáustica que se puede obtener al hacer reaccionar 50 kg de carbonato de sodio de 95,8 % de pureza con exceso de cal apagada.
- 17. Complete la siguiente tabla para la reacción estequiométrica entre los reactivos A y B:

Reactivo A	Reactivo B	Moles en exceso	Masa
1,3 moles de ácido sulfúrico	2,1 moles de hidróxido de litio		
2,8 moles de carbonato de calcio	2 moles de ácido clorhídrico		

3 moles de amoníaco	4,2 moles de ácido fosfórico	
3,5 moles de nitrato de plata	0,25 moles de cloruro de sodio	
300 g de hierro	250 L de oxígeno en CNPT	
12 kg de carbonato de magnesio	12 kg de ácido fosforoso	
150 g de hidróxido de aluminio	7 moles de ácido sulfhídrico	
15 L de nitrógeno en CNPT	15 L de hidrógeno en CNPT	
400 g de óxido de nitrógeno (V)	3,5 moles agua	