Tarea 12

Eduardo Navarro

Noviembre 2021

1. Introducción

En esta práctica se analizó el Puntaje F [2] para diversas probabilidades "ne, g, b" en un experimento factorial. Después se analizaron los resultados obtenidos.

2. Desarrollo

Con las instrucciones de la tarea [3] y lo visto en clase [4] se le hicieron modificaciones al código para obtener el Puntaje F [2] a diversas probabilidades "ne, g, b". Se añadieron cuatro for en total, tres para las probabilidades "ne, g, b" y otro for para las repeticiones. Se trabajó con las probabilidades en orden de la tabla 1

Tabla 1: Probabilidades a estudiar.

Combo	Negro	Gris	Blanco
n1g1b1	0.300	0.300	0.100
n1g1b2	0.300	0.300	0.010
n1g1b3	0.300	0.300	0.001
n1g2b1	0.300	0.600	0.100
n1g2b2	0.300	0.600	0.010
n1g2b3	0.300	0.600	0.001
n1g3b1	0.300	0.900	0.100
n1g3b2	0.300	0.900	0.010
n1g3b3	0.300	0.900	0.001
n2g1b1	0.600	0.300	0.100
n2g1b2	0.600	0.300	0.010
n2g1b3	0.600	0.300	0.001
n2g2b1	0.600	0.600	0.100
n2g2b2	0.600	0.600	0.010
n2g2b3	0.600	0.600	0.001
n2g3b1	0.600	0.900	0.100
n2g3b2	0.600	0.900	0.010
n2g3b3	0.600	0.900	0.001
n3g1b1	0.990	0.300	0.100
n3g1b2	0.990	0.300	0.010
n3g1b3	0.990	0.300	0.001
n3g2b1	0.990	0.600	0.100
n3g2b2	0.990	0.600	0.010
n3g2b3	0.990	0.600	0.001
n3g3b1	0.990	0.900	0.100
n3g3b2	0.990	0.900	0.010
n3g3b3	0.990	0.900	0.001

Listing 1: Código para la obtención del Puntaje F para diversas probabilidades.

```
neg < -c (0.3, 0.6, 0.99)
gri < -c(0.3, 0.6, 0.9)
bla < -c (0.1, 0.01, 0.001)
datos=data.frame()
j<-15
for (ne in neg) {
for(g in gri){
for (b in bla) {
for (rep in 1:j) {
modelos <- read.csv("digits.txt", sep=""", header=FALSE, stringsAsFactors=F)
modelos [modelos='n'] <- ne
modelos [modelos='g'] <- g
modelos [modelos='b'] <- b
print(contadores)
precision <- diag(contadores) / colSums(contadores[,1:10])
recall <- diag(contadores) / rowSums(contadores)</pre>
fscore <- (2 * precision * recall) / (precision + recall)
datos=rbind(datos, c(rep, ne, g, b, fscore))
names(datos) <- c("Replica", "Negro", "Gris", "Blanco", "0", "1", "2", "3", "4", "5", "6", "
7","8","9")
```

Con esto se generaron los datos de la tabla 2

Tabla 2: Ejemplo de datos obtenidos.

Réplica	Negro	Gris	Blanco	0	1	2	3	4	5	6	7	8	9
1	0.3000	0.3000	0.1000	0.0513	0.1013	0.0588	0.1569	0.0645	0.0870	0.1111	0.0417		0.1176
2	0.3000	0.3000	0.1000	0.1667	0.0741	0.1356	0.1200	0.1960	0.0727	0.0444	0.0937	0.1025	
3	0.3000	0.3000	0.1000	0.0823	0.1176	0.0465	0.0741		0.0857		0.0740		
4	0.3000	0.3000	0.1000	0.1778	0.1579	0.0755	0.0444	0.1290	0.0526	0.0769	0.1429	0.0378	

A los datos de la tabla 2 se le agregó otra columna para posteriormente reordenarla en la tabla 3.

Listing 2: Código para la adición de la columna. El reordenamiento de datos y la gráfica.

Tabla 3: Ejemplo de datos reordenados obtenidos.

combo	variable	value
n1g1b1	0	0.0513
n1g1b1	0	0.1667
n1g1b1	0	0.0822
n1g1b1	0	0.1778

Con los datos de la tabla 3 se hizo la gráfica 1

Gráfica 1: Puntaje F a diversas probabilidades.

Se realizaron pruebas estadísticas de Shapiro-Wilk [5] y Kruskal-Wallis [1].

Listing 3: Código para la obtención de los datos estadísticos.

```
library(tidyverse)
valorf<-dat.m%%
group_by(combo) %%
summarise(</pre>
```

```
promedio = mean(value, na.rm = TRUE),
  desviacion_std = sd(value, na.rm = TRUE),
  varianza = sd(value, na.rm = TRUE)^2,
  mediana = median(value, na.rm = TRUE),
  rango_intercuartil = IQR(value, na.rm = TRUE)
)

fshapiro<-tapply(dat.m$value, dat.m$combo, shapiro.test)

kruskal.test(value~combo, data=dat.m)</pre>
```

Tabla 4: Datos estadísticos obtenidos.

Combo	Promedio	Desviacion std	Varianza	Mediana	Rango intercuartil
n1g1b1	0.1007	0.0496	0.0025	0.1013	0.0743
n1g1b2	0.1316	0.0654	0.0043	0.1250	0.1068
n1g1b3	0.1280	0.0761	0.0058	0.1071	0.0997
n1g2b1	0.1088	0.0637	0.0041	0.0934	0.0843
n1g2b2	0.1305	0.0760	0.0058	0.1111	0.1103
n1g2b3	0.1355	0.0872	0.0076	0.1206	0.1298
n1g3b1	0.1399	0.0849	0.0072	0.1263	0.1265
n1g3b2	0.1688	0.1294	0.0167	0.1269	0.1418
n1g3b3	0.1822	0.1426	0.0203	0.1461	0.1721
n2g1b1	0.1724	0.0966	0.0093	0.1538	0.1339
n2g1b2	0.2283	0.1209	0.0146	0.2222	0.1710
n2g1b3	0.2110	0.1192	0.0142	0.1920	0.1643
n2g2b1	0.1605	0.0923	0.0085	0.1451	0.1335
n2g2b2	0.2365	0.1210	0.0146	0.2208	0.1544
n2g2b3	0.2360	0.1217	0.0148	0.2352	0.1760
n2g3b1	0.1903	0.1070	0.0114	0.1777	0.1275
n2g3b2	0.2586	0.1492	0.0222	0.2424	0.2016
n2g3b3	0.2667	0.1534	0.0235	0.2471	0.2108
n3g1b1	0.5387	0.1641	0.0269	0.5529	0.2345
n3g1b2	0.7772	0.1386	0.0192	0.8027	0.1737
n3g1b3	0.7782	0.1412	0.0199	0.8000	0.1932
n3g2b1	0.4871	0.1774	0.0314	0.5000	0.2153
n3g2b2	0.7382	0.1426	0.0203	0.7520	0.1980
n3g2b3	0.7715	0.1345	0.0180	0.7908	0.1900
n3g3b1	0.5285	0.1903	0.0362	0.5569	0.2662
n3g3b2	0.7685	0.1763	0.0310	0.8214	0.1721
n3g3b3	0.8343	0.1622	0.0263	0.8727	0.1021

Tabla 5: Resultados de la prueba Shapiro-Wilk.

Combo	W	P
n1g1b1	0.9552	0.0005
n1g1b2	0.9607	0.0017
n1g1b3	0.9097	4.89×10^{-7}
n1g2b1	0.9011	$1,85 \times 10^{-7}$
n1g2b2	0.9316	$1,54 \times 10^{-5}$
n1g2b3	0.9071	$3,21 \times 10^{-7}$
n1g3b1	0.9322	$1,81 \times 10^{-5}$
n1g3b2	0.8300	$1,06 \times 10^{-10}$
n1g3b3	0.8678	$3,22 \times 10^{-9}$
n2g1b1	0.9397	$9,24 \times 10^{-6}$
n2g1b2	0.9684	0.0022
n2g1b3	0.9535	$8,31 \times 10^{-5}$
n2g2b1	0.9430	$2,61 \times 10^{-5}$
n2g2b2	0.9684	0.0002
n2g2b3	0.9718	0.0063
n2g3b1	0.9467	$6,07 \times 10^{-5}$
n2g3b2	0.9582	0.0002
n2g3b3	0.9513	$9,34 \times 10^{-5}$
n3g1b1	0.9787	0.02014
n3g1b2	0.9278	$7,00 \times 10^{-7}$
n3g1b3	0.9398	$5{,}15 \times 10^{-6}$
n3g2b1	0.9871	0.1856
n3g2b2	0.9682	0.0015
n3g2b3	0.9647	0.0006
n3g3b1	0.9700	0.0024
n3g3b2	0.8406	$1,80 \times 10^{-11}$
n3g3b3	0.7192	$1,35 \times 10^{-15}$

Tabla 6: Resultados de la prueba Kruskal-Wallis.

H(26)	P		
2590.2	$2,20 \times 10^{-16}$		

3. Conclusiones

De la gráfica se puede concluir que las variables de las probabilidadaes tienen influencia en distinta medida correlacionada entre ellas. Se puede observar que la probabilidad en negro tiene una gran influencia en valores altos cercanos a 1 y del valor blanco se tiene influencia en valores cercanos a 0, el valor de gris muestra un ligero aumento al puntaje f entre grupos aumentando la concentración de valores altos conforme aumenta en conjunto con los otros valores mientras el blanco disminuya.

Referencias

- [1] José Antonio: Estadística Aplicada. Kruskall-wallis en RStudio, 2020. URL https://www.youtube.com/watch?v=WEjudFpbCcE.
- [2] Boern. Calculate the F1 score of precision and recall in R, 2016. URL https://stats.stackexchange.com/questions/138690/calculate-the-f1-score-of-precision-and-recall-in-r/.
- [3] Elisa Schaeffer. Práctica 12: red neuronal. https://elisa.dyndns-web.com/teaching/comp/par/p12.html/, 2021.

- [4] Elisa Schaeffer. Simulación p12: redes neuronales, 2021. URL https://www.twitch.tv/videos/1201719097.
- [5] El Tío Estadístico. Cómo hacer la Prueba de Normalidad en R, 2020. URL https://www.youtube.com/watch?v=LAzSb6jCFbs.