

Data Mining in Action

Сверточные и рекуррентные блоки

Блоки в нейронных сетях

Нейронные сети – это графы операций, которые можно собрать из различных дифференцируемых блоков.

Сегодня на лекции уже появлялись блоки:

- Dropout
- BatchNorm/LayerNorm

Но они только *помогают* обучению и генерализации. Тогда какие операции/блоки *позволяют* учить сеть на разных форматах данных?

Полносвязный слой (Fully connected / Dense)

Более традиционный взгляд на dense layer

$$h_t = f(Wh_{t-1} + b)$$

Dense Layer

На практике чаще всего используется для:

- получения выхода сети в классификации/регрессии;
- изменения размерности выхода предыдущего слоя;
- построения Multi-Layer Perceptron'a

1. Свёрточные сети

2. Рекуррентные сети

3. Затухание градиента и LSTM

4. Применение блоков

План

1. Сверточные сети

Операция свертки

Это же

Напоминание: скалярное произведение

Пусть оба вектора отнормированы (имеют единичную длину). Когда их скалярное произведение максимально?

$$\langle f, x \rangle = ||f|| \, ||x|| \cos \alpha = \cos \alpha$$

$$\cos \alpha = 1$$

$$\alpha = 0$$

Поэтому свертка с фильтром просто вычисляет похожесть фрагмента изображения на фильтр

Сверточный слой (Convolutional layer)

- 1. Т.к. фильтр это настраиваемые backprop веса, то **сеть сама «подберет» фильтры**
- 2. Но т.к. фильтр «замечает» только один паттерн, то фильтров нужно **больше**

Сверточный слой

Свертка не плоская, а такой же «толщины» как исходное изображение

Сверточный слой

Свертка не плоская, а такой же «толщины» как исходное изображение

Каждая свертка порождает еще одну карту активации (карту признаков)

Сверточный слой

Свертка не плоская, а такой же «толщины» как исходное изображение

Каждая свертка порождает еще одну карту активации (карту признаков)
В одном слое делают много фильтров (а, значит, много карт активации)
Можно считать, что теперь в изображении столько каналов (такая толщина) – значит такой будет толщина фильтров в следующем слое

Сверточный слой: сдвиг и активация

К результатам свертки также, как это было в полносвязных сетях, добавляется сдвиг (порог) b и результат также подается на вход нелинейности (например ReLu)

Сверточный слой: применение

На практике чаще всего используется для:

- анализа изображений
- анализа текстов
- анализа аудио

Все благодаря «нахождению паттернов»

Предпосылки для слоев пулинга

- Размер изображения после свертки такой же или почти такой же
- Размерность не уменьшается, а еще и фильтров будет много – значит только увеличится
- Получается очень много параметров есть риск не получить никакой обобщающей способности у алгоритма

Слой пулинга (Pooling layer)

max pool with 2x2 filters and stride 2

6	8
3	4

Слой пулинга (Pooling layer)

2. Рекуррентные нейросети

 $x_1, ..., x_l$ — векторные представления последовательно идущих слов из текста

 x_1, \dots, x_l — векторные представления последовательно идущих слов из текста

Скрытое представление текста к і-тому слову: $h_i = f_h(W_{xh}x_i + W_{hh}h_{i-1} + b_h)$

 x_1, \dots, x_l — векторные представления последовательно идущих слов из текста

Скрытое представление текста к і-тому слову: $h_i = f_h(W_{xh}x_i + W_{hh}h_{i-1} + b_h)$

Прогноз ответа по тексту от 1 до і-того слова:

$$\hat{y}_i = f_y \big(W_{hy} h_i + b_y \big)$$

Значения скрытого слоя на каждом слове:

$$h_1 = f_h(W_{xh}x_1 + 0 + b_h)$$

$$h_2 = f_h(W_{xh}x_2 + W_{hh}h_1 + b_h)$$

$$h_3 = f_h(W_{xh}x_3 + W_{hh}h_2 + b_h)$$

. . .

Cxema RNN

Cxema RNN

Cxema RNN

Cxema RNN

Обучение RNN: backpropagation through time

Основная проблема Vanilla RNN

Учитывать длинные последовательности слов сложно из-за затухания градиентов

Вся следующая секция посвящена борьбе с этой проблемой

3. LSTM (Long-Short Term Memory)

Что будем модифицировать в этой секции

Вчера телефон перестал работать

Как было в RNN

$$g_{t} = \varphi(W_{xg}x_{t} + W_{hg}h_{t-1} + b_{g})$$

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + b_{o})$$

$$g_{t} = \varphi(W_{xg}x_{t} + W_{hg}h_{t-1} + b_{g})$$

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + b_{o})$$

$$\begin{pmatrix} g_{t} \\ i_{t} \\ o_{t} \end{pmatrix} = \begin{pmatrix} \varphi \\ \sigma \\ \sigma \end{pmatrix} (W_{x}x_{t} + W_{h}h_{t-1} + b)$$

Почти LSTM: не хватает forget gate

Long-Short Term Memory (LSTM)

Long-Short Term Memory (LSTM)

$$\begin{pmatrix} g_t \\ i_t \\ o_t \\ f_t \end{pmatrix} = \begin{pmatrix} \varphi \\ \sigma \\ \sigma \end{pmatrix} (W_x x_t + W_h h_{t-1} + b) \qquad c_t = f_t \cdot c_{t-1} + i_t \cdot g_t \\ h_t = o_t \cdot \phi(c_t)$$

Другая иллюстрация к RNN и LSTM

$$\begin{pmatrix} g_t \\ i_t \\ o_t \\ f_t \end{pmatrix} = \begin{pmatrix} \varphi \\ \sigma \\ \sigma \end{pmatrix} (W_x x_t + W_h h_{t-1} + b) \qquad c_t = f_t \cdot c_{t-1} + i_t \cdot g_t \\ h_t = o_t \cdot \phi(c_t)$$

$$\begin{pmatrix} g_t \\ i_t \\ o_t \\ f_t \end{pmatrix} = \begin{pmatrix} \varphi \\ \sigma \\ \sigma \end{pmatrix} (W_x x_t + W_h h_{t-1} + b) \qquad c_t = f_t \cdot c_{t-1} + i_t \cdot g_t \\ h_t = o_t \cdot \phi(c_t)$$

Ho нужно, чтобы хотя бы в начале forget gate был открыт.

Вопрос: как этого добиться?

Ho нужно, чтобы хотя бы в начале forget gate был открыт.

Вопрос: как этого добиться? (b_f)

Рекуррентные слои

На практике чаще всего используется для:

- анализа временных рядов
- анализа текстов
- анализа аудио
- все благодаря возможности работать с последовательностями не только в ключе нахождения паттернов внутри фиксированного окна

4. Применение блоков

Conv - Pool - Repeat x n - Dense

Рекуррентный слой после сверточного

Распознавание речи

Сверточные или рекуррентные сети?

И то и другое!

Распознавание речи: сверточные сети

Распознавание речи: рекуррентные сети

Классификация текста

Сверточные или рекуррентные сети?

И то и другое!

Классификация текстов: сверточные сети

Классификация текстов: рекуррентные сети

Классификация изображений

Сверточные или рекуррентные?

Классификация изображений

Сверточные или рекуррентные?

В основном, сверточные

Классификация изображений: сверточные сети

1. Свёрточные сети

2. Рекуррентные сети

3. Затухание градиента и LSTM

4. Применение блоков

План

Data Mining in Action

Группа направления «Глубокое обучение» в Telegram:

https://t.me/joinchat/B1OlTkodHlbbT6QEmlz5Xw