Modelagem e Distribuição do Quociente de Inteligência (QI)

LT

13 de julho de 2025

Resumo

Este documento apresenta as principais definições, equações matemáticas, métodos estatísticos e representações gráficas relacionados ao Quociente de Inteligência (QI). Incluem-se a fórmula tradicional de cálculo, a distribuição normal (gaussiana), padronização via escore-z, escalas de classificação de QI e um gráfico da curva de frequência.

Sumário

1	Introdução	2
2	Definições e Fórmula Tradicional	2
3	Distribuição Normal	2
4	Padronização: Escore- z	2
5	Escalas de Classificação de QI	2
6	Representação Gráfica	3
7	Cálculo de Probabilidades	3
8	Conclusão	4

1 Introdução

O Quociente de Inteligência (QI) é uma medida padronizada utilizada para avaliar habilidades cognitivas em comparação com a população geral. Embora existam diversas baterias de testes, supõe-se que os escores resultantes seguem aproximadamente uma distribuição normal com média $\mu=100$ e desvio-padrão $\sigma=15$.

2 Definições e Fórmula Tradicional

Historicamente, o QI era calculado pela razão entre a idade mental e a idade cronológica do indivíduo, multiplicada por 100:

$$QI = \frac{\text{Idade mental}}{\text{Idade cronológica}} \times 100. \tag{1}$$

Na prática moderna, usa-se diretamente a padronização em relação à curva normal.

3 Distribuição Normal

A distribuição normal de escore de QI é descrita pela função densidade de probabilidade (PDF):

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),\tag{2}$$

onde x representa o valor de QI, $\mu = 100$ e $\sigma = 15$.

4 Padronização: Escore-z

Para comparar valores de diferentes distribuições, define-se o escore-z:

$$z = \frac{x - \mu}{\sigma},\tag{3}$$

com z representando o número de desvios-padrão que x está acima (ou abaixo se negativo) da média.

5 Escalas de Classificação de QI

A Tabela 1 mostra as categorias de QI com base em intervalos de desviospadrão.

Categoria	Intervalo de QI	Intervalo de z
Extremamente baixo	< 70	z < -2
Limítrofe	70 – 79	$-2 \le z < -1.4$
Abaixo da média	80-89	$-1.4 \le z < -0.7$
Média	90-109	$-0.7 \le z < 0.7$
Acima da média	110 – 119	$0.7 \le z < 1.4$
Superior	120 – 129	$1.4 \le z < 2$
Muito superior	≥ 130	$z \ge 2$

Tabela 1: Classificação dos escores de QI.

6 Representação Gráfica

A Figura 1 apresenta a curva da distribuição normal de QI, com demarcações nos pontos de corte principais.

Figura 1: Distribuição normal dos escores de QI ($\mu=100,\,\sigma=15$).

7 Cálculo de Probabilidades

A probabilidade de um indivíduo ter QI entre a e b é:

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right),\tag{4}$$

onde $\Phi(z)$ é a função distribuição acumulada da normal padrão.

8 Conclusão

Este documento apresentou de forma completa as equações, métodos e representações gráficas associadas aos escores de QI. Essas ferramentas são fundamentais para análises estatísticas em psicologia e educação.