Analyzing tissue-specific gene expression from GTEx through linear regression, logistic regression, and PCA k-means clustering

Henry Lock

Project Overview

- 2. Data sources and preparation
- 3. Linear Regression
- 4. Logistic Regression Classification
- 5. PCA and k-means clustering
- ⁶ Biological relevance
- 7. Conclusions

- Project Overview
- 2. Data sources and preparation
- 3. Linear Regression
- 4. Logistic Regression Classification
- 5. PCA and k-means clustering
- 6. Biological relevance
- 7. Conclusions

• The Adult Genotype-Tissue Expression (GTEx) project

- Gene TPMs by tissue:
 - Brain Frontal Cortex (BA9)
 - Heart Left Ventricle
 - Lung
 - Muscle Skeletal
 - Pituitary

Data sources

Top 10 variable genes by tissue type

- Project Overview
- 2. Data sources and preparation
- 3. Linear Regression
- 4. Logistic Regression Classification
- 5. PCA and k-means clustering
- ⁶ Biological relevance
- 7. Conclusions

Linear Regression

- Gene expression v age by sex
- Compared significance of slope differences using t-test
- Found four significant genes in skeletal muscle tissue

- Project Overview
- 2. Data sources and preparation
- 3. Linear Regression
- 4. Logistic Regression Classification
- 5. PCA and k-means clustering
- 6. Biological relevance
- 7. Conclusions

All tissue sample classification

- 1676/2387 male predictions
 - 0 70.21%

- 41/69 female predictions
 - 0 59.42%

- Project Overview
- 2. Data sources and preparation
- 3. Linear Regression
- 4. Logistic Regression Classification
- 5. PCA and k-means clustering
- 6. Biological relevance
- 7. Conclusions

PCA and k-means cluster

- Top 1000 variable genes from all tissues
- Performed for 2, 3, 5 clusters
- Tissue type was the best clustered, age and sex not so much

PCA and k-means cluster

- Top 1000 variable genes from all tissues
- Performed for 2, 3, 5 clusters
- Tissue type was the best clustered, age and sex not so much

Lung

Tissue

Pituitary Gland

Brain - Frontal cortex ba9

297

- Project Overview
- 2. Data sources and preparation
- 3. Linear Regression
- 4. Logistic Regression Classification
- 5. PCA and k-means clustering
- 6. Biological relevance
- 7. Conclusions

Specific gene example for tissue types

- Brain Frontal Cortex BA9: MT-CO2; Key in ATP production
 - MELAS(Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes
- MT-ND1 and MT-ND2: Subunits for the NADH dehydrogenase protein (ATP)
 - o **MELAS**
 - Leber Hereditary Optic Neuropathy (LHON)
- Skeletal Muscle: ACTA1; Alpha-skeletal actin.
 Helps muscles fibers contract
 - Various myopathies
- Pituitary Gland: PRL; Encodes prolactin hormone, lactation signaling and reproduction functions
 - Hyperprolactinemia

- Project Overview
- 2. Data sources and preparation
- 3. Linear Regression
- 4. Logistic Regression Classification
- 5. PCA and k-means clustering
- 6. Biological relevance
- 7. Conclusions

Conclusions

- Linear regression: Sex-specific aging effects for treatment plans and testing
 - Different tissue types

- Logistic regression: Sex-predicting genes linked to disease could reveal mechanism
 - More female samples

- Clustering: Sub-clusters of genes within tissue types could reveal genes at risk to organ-specific diseases
 - Clustering genes within tissue type

