Erasmus School of Economics

Machine Learning

FEM31002

Support Vector Machines

Part 2

Ilker Birbil

birbil@ese.eur.nl

minimize
$$\frac{1}{2}\beta^{\mathsf{T}}\beta$$

subject to $y_i(\beta^{\mathsf{T}}x_i + \beta_0) \geq 1, \quad i = 1, 2, \dots, n$

No feasible solution!

$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad \varepsilon = 0$$
$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad 0 < \varepsilon < 1$$
$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad \varepsilon \ge 1$$

ERASMUS UNIVERSITEIT ROTTERDAM

$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad \varepsilon = 0$$
$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad 0 < \varepsilon < 1$$
$$y_i(\beta^{\mathsf{T}} x_i + \beta_0) \ge 1 - \varepsilon, \quad \varepsilon \ge 1$$

minimize subject to

$$\frac{1}{2}\beta^{\mathsf{T}}\beta + c\sum_{i=1}^{n} \varepsilon_{i}^{d}
y_{i}(\beta^{\mathsf{T}}x_{i} + \beta_{0}) \geq 1 - \varepsilon_{i}, \quad i = 1, \dots, n
\varepsilon_{i} \geq 0, \quad i = 1, \dots, n$$

Here c is a tuning parameter that we set by cross-validation. (d = 1 and d = 2 are quite common in practice)

Path to Kernels

$$\varphi: \mathbb{R}^p \to \mathbb{R}^q$$

Does this make sense?

Path to Kernels

 $\frac{1}{2}\beta^{\mathsf{T}}\beta$ minimize $y_i(\beta^{\intercal} x_i + \beta_0) > 1, \quad i = 1, 2, \dots, n$ subject to

Lagrangian **Function**

multipliers
$$\mathcal{L}(\beta, \beta_0; \alpha) = \frac{1}{2} \beta^{\mathsf{T}} \beta - \sum_{i \in \mathcal{A}} \alpha_i \left(y_i (\beta^{\mathsf{T}} x_i + \beta_0) - 1 \right)$$
 set of active constraints

Lagrange

Optimality Conditions
$$\begin{cases} \nabla_{\beta} \mathcal{L}(\beta, \beta_{0}; \alpha) = \beta - \sum_{i \in \mathcal{A}} \alpha_{i} y_{i} x_{i} = 0 \implies \beta = \sum_{i \in \mathcal{A}} \alpha_{i} y_{i} x_{i} \\ \frac{\partial \mathcal{L}(\beta, \beta_{0}; \alpha)}{\partial \beta_{0}} = -\sum_{i \in \mathcal{A}} \alpha_{i} y_{i} = 0 \implies \sum_{i \in \mathcal{A}} \alpha_{i} y_{i} = 0 \end{cases}$$

$$\mathcal{L}(\beta, \beta_0; \alpha) = \frac{1}{2} \left(\sum_{i \in \mathcal{A}} \alpha_i y_i x_i \right)^{\intercal} \left(\sum_{j \in \mathcal{A}} \alpha_j y_j x_j \right) - \left(\sum_{i \in \mathcal{A}} \alpha_i y_i \left(\sum_{j \in \mathcal{A}} \alpha_j y_j x_j \right)^{\intercal} x_i \right)$$

$$- \sum_{i \in \mathcal{A}} \alpha_i y_i \beta_0 + \sum_{i \in \mathcal{A}} \alpha_i$$

$$= \sum_{i \in \mathcal{A}} \alpha_i - \frac{1}{2} \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{A}} \alpha_i \alpha_j y_i y_j x_i^{\intercal} x_j$$

Kernels

$$\mathcal{L}(\beta, \beta_0; \alpha) = \sum_{i \in \mathcal{A}} \alpha_i - \frac{1}{2} \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{A}} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j^{\mathsf{T}}$$

All we need is to calculate these inner products!

Idea: Replace inner products with kernels that measure the similarity of two observations in higher dimensions.

$$\varphi: \mathbb{R}^p \to \mathbb{R}^q$$

$$K(x_i, x_j) = \varphi(x_i)^{\mathsf{T}} \varphi(x_j)$$

2 afus ERASMUS UNIVERSITEIT ROTTERDAM

Kernels

$$K(x_i, x_j) = \varphi(x_i)^{\mathsf{T}} \varphi(x_j)$$

Linear Kernel*
$$K(x_i, x_j) = x_i^{\mathsf{T}} x_j$$

Polynomial Kernel
$$K(x_i, x_j) = (1 + x_i^{\mathsf{T}} x_j)^d$$

Radial Kernel
$$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \ \gamma > 0$$

Kernels

Polynomial Kernel $K(x_i, x_j) = (1 + x_i^{\mathsf{T}} x_j)^d$

$$x_i, x_j \in \mathbb{R}^2$$
$$d = 2$$

$$K(x_i, x_j) = (1 + x_i^{\mathsf{T}} x_j)^2 = 1 + x_{i1}^2 x_{j1}^2 + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2} + 2x_{i1} x_{i2} x_{j1} x_{j2}$$

$$\varphi: \mathbb{R}^2 \to \mathbb{R}^6$$

$$\varphi(x_i) = (1, x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}, \sqrt{2}x_{i1}x_{i2})^{\mathsf{T}}$$
$$K(x_i, x_j) = \varphi(x_i)^{\mathsf{T}}\varphi(x_j) = (1 + x_i^{\mathsf{T}}x_j)^2$$

Simple Kernels

$$\varphi: \mathbb{R}^p \to \mathbb{R}^{p+1}$$

$$\varphi(x_i \mid a) = (x_{i1}, x_{i2}, \dots, x_{ip}, ||x_i - a||^2)^\mathsf{T}$$
anchor point
(e.g. sample mean)

$$K(x_i, x_j) = \varphi(x_i \mid a)^{\mathsf{T}} \varphi(x_j \mid a)$$

Simple Kernels

$$\varphi(x_i \mid a_i) = (x_{i1}, x_{i2}, \dots, x_{ip}, \|x_i - a_i\|^2)^{\mathsf{T}}$$

$$\downarrow a_i = \arg\min_{a \in \mathcal{A}} \{\|x_i - a\|^2\}$$
set of anchor points

$$K(x_i, x_j) = \varphi(x_i \mid a_i)^{\mathsf{T}} \varphi(x_j \mid a_j)$$

Simple Kernels

Table 2: Accuracies obtained with different methods on large datasets

Datasets	LIN	$\phi_{2,1}$		POL	RBF
Splice	85.29	86.02		85.61	89.93
Wilt	70.60	81.20		84.00	81.80
Guide1	95.62	96.10		96.70	96.62
Spambase	92.76	92.90		91.89	93.70
Phoneme	75.46	74.29		78.36	87.55
Magic	79.43	80.30		84.40	87.71
Adult	84.93	84.94		84.39	85.06

Table 3: Training times in seconds

Datasets/Kernels	LIN	$\phi_{2,1}$		POL	RBF
Splice	<1	<1		<1	<1
Wilt	<1	<1		<1	<1
Guide1	<1	<1		<1	<1
Spambase	<1	<1		<1	<1
Phoneme	<1	<1		169.88	<1
Magic	<1	<1		425.39	63.94
Adult	<1	1.21		89.20	151.36

Multi-class Classification

One-Versus-One (All-Pairs)

 x_0 is assigned with majority voting

One-Versus-All

 $\beta_0^{(1)} + \beta^{(1)} \mathsf{T} x_0$ $\beta_0^{(2)} + \beta^{(2)} \mathsf{T} x_0$ \vdots $\beta_0^{(K)} + \beta^{(K)} \mathsf{T} x_0$ \vdots highest value

Outline

- Geometry of support vector machines
- Dual problem
- Path to kernels
- Simple kernels