Historical Linguistics-Informed Speech In-Context Learning for Low-Resource Language Varieties

Ming-Hao Hsu^{* 2} Soh-Eun Shim^{* 3} Shih-Heng Wang^{* 1} Alex Cheng^{* 1} Kalvin Chang^{* 1} kalvin1204@gmail.com Hung-yi Lee² Barbara Plank³ Shinji Watanabe¹ David R. Mortensen¹

¹Carnegie Mellon University

²National Taiwan University ³Ludwig Maximilian University of Munich

Motivation

- Pronunciation variation leads to biases in performance against non-standard varieties (Koenecke et al 2020)
- S3Ms (self-supervised speech models) cannot generalize to unseen pronunciation variants (Chang et al 2024)
- In-context learning does not require finetuning, unlike PEFT
- Setting: Non-standard varieties of high-resource languages
- Neogrammarian hypothesis: sound change is systematic (regular), affecting all instances of a sound in specific contexts

Pronunciation (romanization + IPA)			text
standard	variety 2	variety 3	
gí-giân	g ú-giân	gír-giân	語言
gi gien]	[gu giɛn]	[gɨ giɛn]	
hî	hû	hîr	魚
[hi]	[hu]	[hɨ]	
lí-hó	lú-hó	lír-hó	你好
[li hr]	[lu ho]	[l≟ ho]	

Figure 1. Regularity of sound change for 3 varieties of Taiwanese Hokkien

Speech in-context learning

Figure 2. Extending in-context vectors (Liu et al 2023) to speech

Figure 3. Extracting "accent shift" (Shao et al 2022) from sound correspondences across high-resource and low-resource varieties

Disclaimer

This paper is in the initial brainstorming stage. We're here to discuss ideas and move this further!

Datasets

Macro-language	e HRV	Std Orth?	Resources
Chinese	Mandarin	Υ	Center for the Protection of Languages, TAT_MOE
Swiss German	Standard German	Y	SwissDial, STT4SG-350, Swiss Parliaments
Dutch	Hollandic Dutch	Ν	Goeman-Taeldeman Van Reenen-Project
English	Mainstream American English	Y	SPADE, MD3
Arabic	Modern Standard Arabic	Ν	MGB-5, Casablanca
Italian	Standard Italian	N	Vivaldi

Table 1. Datasets with low-resource varieties of high-resource languages

Baseline

Figure 4. Wang et al (2024)'s speech in-context learning approach

Figure 5. Modified cross-attention for in-context learning

Future work

- Data augmentation with sound correspondences
 - FST: HRV \rightarrow protolanguage \rightarrow LRV \rightarrow phones
- Learning sound correspondences from speech
 - cognate set induction \rightarrow extract semantic tokens \rightarrow NMT \rightarrow vocoder