Quantum cryptanalysis of block ciphers: an overview

André Schrottenloher

Cryptology group, CWI

June 4, 2021

Post-quantum cryptography

Asymmetric

- RSA (factorization) and ECC (discrete logarithms) become broken in polynomial time [Shor]
- Unfortunately, they are the most widely used today (replacements are on the way)

Symmetric

- Grover's algorithm accelerates exhaustive search of the key (square-root speedup)
- Most generic attacks admit quantum replacements

 \implies should we simply "double the key size"?

Shor, "Algorithms for Quantum Computation: Discrete Logarithms and Factoring", FOCS 1994

Security of block ciphers

 E_k is a family of permutations of $\{0,1\}^n$ indexed by a key k.

Generic key-recovery

Given access to a black-box $x \mapsto E_k(x)$, find k.

• classical: $2^{|k|}$ (try all keys)

The classical security of a given cipher is a computational conjecture:

- we conjecture that there is no key-recovery faster than $2^{|k|}$ \implies if there is, the cipher is broken
- we try to invalidate this conjecture: cryptanalysis
- we consider weakened (reduced-round) variants to estimate the security margin

ex.: AES-256 key-recoveries reach 9 / 14 rounds

Post-quantum security of block ciphers

 E_k is a family of permutations of $\{0,1\}^n$ indexed by a key k.

Generic key-recovery

Given access to a black-box $x \mapsto E_k(x)$, find k.

• quantum: $2^{|k|/2}$ (use quantum search)

The **quantum** security of a given cipher is a **computational conjecture**:

- ullet we conjecture that there is no key-recovery faster than $2^{|k|/2}$
 - \implies if there is, the cipher is broken
- we try to invalidate this conjecture: quantum cryptanalysis
- we consider weakened (reduced-round) variants to estimate the quantum security margin

Post-quantum security of block ciphers

 E_k is a family of permutations of $\{0,1\}^n$ indexed by a key k.

Generic key-recovery

Given access to a black-box $x \mapsto E_k(x)$, find k.

• quantum: $2^{|k|/2}$ (use quantum search)

The **quantum** security of a given cipher is a **computational conjecture**:

- ullet we conjecture that there is no key-recovery faster than $2^{|\mathbf{k}|/2}$
 - \implies if there is, the cipher is broken
- we try to invalidate this conjecture: quantum cryptanalysis
- we consider weakened (reduced-round) variants to estimate the quantum security margin

When are the quantum attacks better than the classical ones?

Outline

1 Attacks based on Quantum Search

- 2 Attacks based on Simon's Algorithm
- 3 "Offline-Simon" and Beyond

Attacks based on Quantum Search

Quantum computing in a single slide

- n bits $x \to n$ qubits $|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$
- ullet We have logical gates (quantum gates) to act on $|\psi
 angle$
- Measuring $|\psi\rangle$ yields x with probability $|\alpha_x|^2$)
- ullet The computation modifies the amplitudes $lpha_{\mathsf{x}}$
- We try to "move the amplitude" towards some good x
- Only then, measuring the state gives us a meaningful result

(We'll be just be using black-boxes anyway)

Quantum search

X a search space, $f: X \to \{0,1\}$ with $G = f^{-1}(1) \subseteq X$, find $x \in G$.

Classical (exhaustive) search

Repeat
$$\frac{|X|}{|G|}$$
 times $\begin{cases} \mathsf{Sample}\ x \in X \\ \mathsf{Test}\ \mathsf{if}\ f(x) = 1 \end{cases}$

Quantum search (Grover's algorithm)

Repeat
$$\mathcal{O}\left(\sqrt{\frac{|X|}{|G|}}\right)$$
 times
$$\begin{cases} \mathsf{Sample}\ x \in X \to \mathsf{quantumly} \\ \mathsf{Test}\ \mathsf{if}\ f(x) = 1 \to \mathsf{quantumly} \end{cases}$$

Grover, "A fast quantum mechanical algorithm for database search", STOC 96

Brassard, Høyer, Mosca, Tapp, "Quantum amplitude amplification and estimation", Contemp. Math. 2002

In the quantum realm, we move globally (statefully) from $X = \{all \ keys\}$ to $G = \{good \ key\}$.

In the quantum realm, we move globally (statefully) from $X = \{all \text{ keys}\}\$ to $G = \{good \text{ key}\}.$

In the quantum realm, we move globally (statefully) from $X = \{all \ keys\}$ to $G = \{good \ key\}$.

In the quantum realm, we move globally (statefully) from $X = \{all \text{ keys}\}\$ to $G = \{good \text{ key}\}.$

Classical-quantum search correspondence

A classical exhaustive search with $\mathcal{O}\left(T\right)$ iterations

A quantum search with $\mathcal{O}\left(\sqrt{T}\right)$ iterations

An exhaustive search with $\mathcal{O}(T_1)$ iterations of an exhaustive search with $\mathcal{O}(T_2)$ iterations

A quantum search with $\mathcal{O}\left(\sqrt{T_1}\right)$ iterations of a quantum search with $\mathcal{O}\left(\sqrt{T_2}\right)$ iterations

Ex.: differential last-rounds attack

Let $E_k=E_1\circ E_2$ where: $\Pr(E_1(x\oplus \Delta)=E_1(x)\oplus \Delta')=2^{-h}>>2^{-n}$

- Guess the subkey of E_2
- Check a guess by searching for differential pairs
 - if the guess is correct, then we find them more often

Kaplan, Leurent, Leverrier, Naya-Plasencia, "Quantum Differential and Linear Cryptanalysis", ToSC 2016

Example: key-recovery attacks on AES

A classical attack

Key-recovery below time 2^{|k|}

Some attacks (not all) can be phrased as combinations of exhaustive searches.

Best classical attacks:

- AES-128: 7-round Impossible Differential
- AES-256: 9-round
 Demirci-Selçuk-MITM

A quantum attack

Key-recovery below time 2^{|k|/2}

Some attacks (not all) admit quantum counterparts.

Best quantum attacks:

- AES-128: 6-round Quantum Square
- AES-256: 8-round Demirci-Selçuk-MITM

Key-recovery attacks (ctd.)

So far, the security margin of AES is **higher** in the quantum setting.

Because of all the attacks that "do not work anymore".

Example: AES-128

Example of 7-round DS-MITM attack from [DFJ13]:

- lacktriangle precompute 2^{48} limited birthday pairs for the black-box (time 2^{113}):
- **2 precompute a table** of size 2⁸⁰ for an internal 4-round distinguisher
- perform a search over 9 key bytes (72 bits of key)

Classically below 2¹²⁸ encryptions, but not below 2⁶⁴ quantumly (Step 2).

Derbez, Fouque, Jean, "Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting", EUROCRYPT 2013

When can we break more rounds?

The "quantum search correspondence" works in both directions.

A quantum key-recovery of time $\mathcal{O}(T)$, using memory M, based on quantum search

A classical key-recovery of time $\mathcal{O}\left(T^2\right)$, using memory M, based on classical search

A quantum attack based on quantum search can only break as many rounds as the best classical attack

When can we break more rounds? (ctd.)

This limitation is artificial:

- we are mimicking classical attacks
- we are considering a very restricted set of algorithms

When can we break more rounds quantumly?

- When the generic problem does **not** have a quadratic speedup
 - ⇒ see Akinori's talk
- 4 When we use other tools than quantum search

Attacks based on Simon's Algorithm

Simon's algorithm

Let $f: \{0,1\}^n \to \{0,1\}^n$ be a function with a hidden period: $f(x \oplus s) = f(x)$, find s.

Classical resolution

Find a collision, in $\Omega(2^{n/2})$.

Simon's algorithm

 Requires superposition / quantum queries that build states of the form:

$$\sum_{x\in\{0,1\}^{\mathbf{n}}}|x\rangle\,|f(x)\rangle$$

with cost 1.

- Samples a random orthogonal y: $\mathbf{s} \cdot y = 0$
- Repeats $\mathcal{O}(n)$ times, solves a linear system

Simon, "On the power of quantum computation", FOCS 1994

Example: The Even-Mansour cipher

Built from a public permutation $P: \{0,1\}^n \to \{0,1\}^n$ and 2n bits of key.

$$E_{\mathbf{k_1},k_2}(x) = k_2 \oplus P(x \oplus \mathbf{k_1})$$

Classical security

If P is a random permutation, an adversary performing T queries to P and D queries to $E_{\mathbf{k_1},\mathbf{k_2}}$ needs $T\cdot D=2^{\mathbf{n}}$ to recover the key.

It's tight, with an attack in time $D+\frac{2^{\mathbf{n}}}{D}$ and memory D ($D\leq 2^{\mathbf{n}/2}$).

Even, Mansour, "A Construction of a Cipher from a Single Pseudorandom Permutation", J. Cryptol. 1997

Dunkelman, Keller, Shamir, "Slidex Attacks on the Even-Mansour Encryption Scheme", J. Crypto 2015

Simon-based attack on Even-Mansour

Define:
$$f(x) = E_{\mathbf{k_1}, \mathbf{k_2}}(x) \oplus P(x) = P(x \oplus \mathbf{k_1}) \oplus P(x) \oplus \mathbf{k_2}$$

Quantum attack

- f satisfies $f(x \oplus k_1) = f(x)$.
- With quantum access to f, find k_1 with Simon's algorithm.
- A query to f contains a query to E_{k_1,k_2} .

⇒ the "quantum-type" Even-Mansour cipher is broken in **polynomial** time.

kuwakado, Morii, "Security on the quantum-type Even-Mansour cipher", ISITA 2012

On the superposition query model (Q2)

Q1

The adversary makes **classical** queries to the black-box.

- he can also observe the current traffic, and record for later breaks
- this is our primary concern in post-quantum crypto

Q2

The secret-key oracle is **part of** the adversary's quantum computations.

this has no implication on current cryptosystems (which are still classical!)

- Some adversaries may have stronger control on the block cipher than black-box oracle access (white-box? obfuscation?)
- Q2 security is stronger, more flexible, and not too difficult to achieve
 - actually, most block ciphers seem fine (e.g., AES)
- Q2 attacks might be a first step in designing better Q1 versions

Summary: what we have seen so far

Quantum search attacks

- Setting: Q1
 and sometimes Q2
- Requires: a search-based classical key-recovery
- Security: same security margin

Surprising results are unlikely

Simon-based attacks

- Setting: Q2 (quantum queries)
- Requires: a periodicity property
 - happens in many designs
 - but does not happen in many designs

Currently, all more-than-quadratic speedups happened in this setting.

Can we use Simon's algorithm with classical queries?

"Offline-Simon" and Beyond

Grover meets Simon: the FX attack

Superposition attack on FX: "Grover-meet-Simon"

- Search k with Grover's algorithm
- To check a guess z, run Kuwakado and Morii's attack
- Time: $n^3 \times 2^{|\mathbf{k}|/2}$ Simon's runtime Grover's iterates
 • Queries: $n \times 2^{|\mathbf{k}|/2}$
- Queries: $n \times 2^{|\mathbf{k}|/2}$ Simon's queries Grover's iterates

Leander, May, "Grover Meets Simon - Quantumly Attacking the FX-construction", ASIACRYPT 2017

A closer look at the FX attack

The function:

$$f_z(x) = FX_{\mathbf{k_1}, k_2, \mathbf{k}}(x) \oplus E_z(x)$$

has $f_z(x \oplus k_1) = f_z(x)$ iff z = k is the good guess.

The "Grover-meet-Simon" problem

Let F be a family of functions, $F(z) = f_z$, indexed by z, with a single z_0 such that f_{z_0} is periodic. Find z_0 .

Here
$$f_z(x) = \underbrace{FX_{k_1,k_2,k}(x)}_{\text{Independent of z: online}}$$

$$E_z(x)$$

Grover search space: offline function g_z

Running the FX attack

```
    Setup Grover's initial state ("sample")
    Iteration 1 { Test current state Apply Grover's diffusion transform ("sample")
    Iteration 2 { Test current state Apply Grover's diffusion transform ("sample")
    Iteration 3 { Test current state Apply Grover's diffusion transform ("sample")
```

Running the FX attack (ctd.)

Test iter. 1
$$\begin{cases} \text{Make the "query states"} & \sum_{x}|x\rangle \ |f_{z}(x)=(f\oplus g_{z})(x)\rangle \\ \text{Run Simon's algorithm} \\ \text{Unmake the "query states"} & \\ \end{cases} \\ \text{Test iter. 2} \begin{cases} \text{Make the "query states"} & \sum_{x}|x\rangle \ |f_{z}(x)=(f\oplus g_{z})(x)\rangle \\ \text{Run Simon's algorithm} \\ \text{Unmake the "query states"} & \\ \end{cases} \\ \text{Make the "query states"} \\ \begin{cases} \text{Make the "query states"} & \\ \text{Run Simon's algorithm} \\ \text{Unmake the "query states"} \end{cases} \\ \\ \text{Run Simon's algorithm} \\ \\ \text{Unmake the "query states"} \end{cases}$$

 g_z varies between the iterates, but f is always the same!

Improving the FX attack (ctd.)

```
Setup { Make the "offline query states" \sum_{x} |x\rangle |f(x)\rangle
Test iter. 1  \begin{cases} \text{Query } g_z \colon \sum_x |x\rangle \, | (f \oplus g_z)(x) \rangle \\ \text{Run Simon's algorithm} \\ \text{Unmake the query to } g_z \colon \text{back to } \sum_x |x\rangle \, | f(x) \rangle \end{cases} 
Test iter. 2  \begin{cases} \text{Query } g_z \colon \sum_x |x\rangle | (f \oplus g_z)(x) \rangle \\ \text{Run Simon's algorithm} \\ \text{Unmake the query to } g_z \end{cases} 
Test iter. 3  \begin{cases} \text{Query } g_z \colon \sum_x |x\rangle \, | (f \oplus g_z)(x) \rangle \\ \text{Run Simon's algorithm} \\ \text{Unmake the query to } g_z \end{cases}
```

. . .

Offline-Simon

"Offline-Simon" problem

Let F be a family of functions, $F(z) = f_z = f \oplus g_z$, indexed by z, with a single z_0 such that f_{z_0} is periodic. Find z_0 .

- We need to make the queries to f only once, at the beginning (hence "offline").
- With FX, reduces the queries from $\mathcal{O}\left(n2^{|\mathbf{k}|/2}\right)$ to $\mathcal{O}\left(n\right)$

Bonnetain, Hosoyamada, Naya-Plasencia, Sasaki, and S., "Quantum Attacks Without Superposition Queries: The Offline Simon's Algorithm", ASIACRYPT 2019

Back to the Even-Mansour cipher

- We would like to use only classical queries . . .
- ... but the queries in Simon's algorithm contain the 2ⁿ inputs!

The solution is to turn Even-Mansour into an FX instance.

Offline-Simon attack on Even-Mansour

30/35

Offline-Simon attack on Even-Mansour (ctd.)

Define $f(x) = E_{k_1,k_2}(x||0^{n-u}) \oplus P(x||k_1^{(2)})$. It has period $k_1^{(1)}$.

- Produce the sample states $\sum_{x} |x\rangle |E_{k_1,k_2}(x||0^{\mathsf{n}-\mathsf{u}})\rangle$
- (Grover) search the good $k_1^{(2)}$ (n u bits)

Data: 2^u

Time: $2^{u} + 2^{(n-u)/2} \implies D \cdot T^{2} = 2^{n}$ for $D < 2^{n/3}$

Memory: n² qubits

Classical-quantum comparison

Classical

Data-time trade-off: $D \cdot T = 2^n$

$$(D \le 2^{n/2}) \implies T = \frac{2^n}{D}$$

Memory: D for all $D < 2^{n/2}$

Quantum

Data-time trade-off: $D \cdot T^2 = 2^n$

$$(D \le 2^{n/2})$$

$$\implies T = \sqrt{\frac{2^n}{n}}$$

 $\implies T = \sqrt{\frac{2^n}{D}}$

Memory: poly(n) all the time

Cons

Still a square-root speedup!

Pros

• The memory has been removed: "quantum search alone" cannot do that

Follow-ups

- Bonnetain & Jaques: offline-Simon applied to actual designs (e.g. Chaskey)
- ullet Frixons & S.: offline-Kuperberg when replacing the \oplus by a +
 - It can be used to attack the Legendre PRF
- . . .

Frixons, S., "Quantum security of the Legendre PRF", ePrint 2021/149

Bonnetain, Jaques, "Quantum Period Finding against Symmetric Primitives in Practice", ePrint 2020/1418

Conclusion

Conclusion

Several attack families with different implications.

"Quantum search" attacks

- Likely the most common
- Many "dedicated" attack techniques can adapted
- Suffer from the same limitations as classical attacks

Superposition attacks (Q2)

- Some constructions become irremediably "broken"
- But there are no practical security implications for now
- So far no "dedicated" cryptanalysis in this model

"Offline" attacks

- Somehow using a Q2 vulnerability in a Q1 setting
- Exponential memory reductions can be a powerful practical advantage

•00

Thank you!

References

Kaplan, Leurent, Leverrier, and Naya-Plasencia Quantum Differential and Linear Cryptanalysis In IACR Trans. Symmetric Cryptol. 2016.

Bonnetain, Naya-Plasencia, and S. Quantum Security Analysis of AES In *IACR Trans. Symmetric Cryptol. 2019.*

Kuwakado and Morii
Security on the quantum-type Even-Mansour cipher.

Kaplan, Leurent, Leverrier, and Naya-Plasencia Breaking Symmetric Cryptosystems Using Quantum Period Finding In CRYPTO 2016.

Leander and May

Grover Meets Simon - Quantumly Attacking the FX-construction
In ASIACRYPT 2017

Bonnetain, Hosoyamada, Naya-Plasencia, Sasaki, and S. Quantum Attacks Without Superposition Queries: The Offline Simon's Algorithm

Classical trade-off

Let
$$g(y)=P(y)\oplus P(y\oplus 1)$$
, $h(x)=E_{\mathbf{k_1},k_2}(x)\oplus E_{\mathbf{k_1},k_2}(x\oplus 1)$, then
$$\forall x,g(x\oplus \mathbf{k_1})=h(x)$$

Attack

- Collect D values of h(x) in a database \mathcal{D}
- Find y such that $g(y) \in \mathcal{D}$, in time $2^n/D$
- With good probability $y = x \oplus k_1$

The attack needs $T = D + 2^{n}/D$ and D memory.