电流串联负反馈放大器的插接与测试

1 实验目的

- (1) 学会测量放大器输入输出阻抗的方法;
- (2) 了解电流串联负反馈对放大器性能的影响。

2 实验器材

直流稳压电源、示波器、信号发生器、万用表、面包板、电阻,电容,导线。

3 实验原理

在放大电路中,将输出信号通过取样,再送到输入端,并参与对放大的控制过程叫作反馈,反馈的结果使系统的增益降低的称为负反馈。如图 1 所示:

图 1: 反馈网络结构图

其中,A 代表基本放大电路,F 代表反馈网络, X_i 为输入信号, X_f 为反馈信号, X_o 为输出信号, X_i' 为输入信号与反馈信号的差值。各变量之间的关系如下: $\dot{A}=\frac{\dot{X}_o}{\dot{X}_i'}, \dot{F}=\frac{\dot{X}_f}{\dot{X}_o}, \dot{X}_i'=X_i-\dot{X}_f$

由上式可得反馈电路闭环放大倍数 $\dot{A}_f = \frac{A}{1 + \dot{A}\dot{F}}$ 本次实验实验电路如图二:

图 2: 实验电路图

按照微变等效电路法计算可得:

无反馈时放大倍数,输入阻抗和输出阻抗计算公式如下: $A = \frac{-\beta R_L'}{r_{be}}, R_i = r_{be}||(R_{b1} + R_W)||R_{b2}, R_o = R_C||r_{ce}, R_L' = R_C||R_L$

有反馈时放大倍数,输入阻抗和输出阻抗计算公式如下: $A = \frac{-\beta R_L'}{r_{be} + (1+\beta)R_f}, R_{if} = [r_{be} + (1+\beta)R_f]||(R_{b1} + R_W)||R_{b2}, R_{of} = R_C||(r_{ce} + R_e' + \frac{\beta r_{ce}}{r_{be}}R_e'), R_e' = R_f||r_{be}$ 其中 r_{ce} 为 CE 间内阻,一般很大,即有 $r_{of} \approx R_c$ 。

由上面公式可看出负反馈使电路的放大倍数下降,电流串联负反馈增大了输入电阻和输出电阻,从而改善了电路的性能。

4 实验内容

- 1. 按照上图所示实验电路图插接面包板, 2. 调整电路的静态工作点,
- 3. 测量无反馈时的 A_o, R_i, R_o , 4. 测量有反馈时的 A_f, R_{if}, R_{of}

4.1 无反馈电路参数测量

图 3: 无反馈等效电路图

实验中记录 $u_i=34.0mV, u_o=3.12V, u_s=70.0mV, u_{o\infty}=6.00V, R=1.963k\Omega, R_l=1.965k\Omega$

因此计算可得: $A_o = \frac{u_o}{u_i} = 91.8, R_i = \frac{Ru_i}{u_s - u_i} = 1.851k\Omega, R_o = R_l(\frac{u_{o\infty} - u_o}{u_o}) = 1.813k\Omega$ 因此实验值与理论值 (由实验原理部分计算可得) 比较见下表:

表 1: 无反馈系统参数实验值与理论值比较表

	A_o	$R_i/k\Omega$	$R_o/k\Omega$
实验值	91.8	1.851	1.813
理论值	88.9	1.827	1.875

4.2 有反馈电路参数测量

图 4: 有反馈等效电路图

实验中记录 $u_i = 47.2 \text{mV}, u_o = 448 \text{mV}, u_s = 61.2 \text{mV}, u_{o\infty} = 888 \text{mV}, R = 1.963 \text{k}\Omega, R_l = 1.965 \text{k}\Omega$

因此计算可得:
$$A_F = \frac{u_o}{u_i} = 9.49, R_{iF} = \frac{Ru_i}{u_s - u_i} = 6.623k\Omega, R_{oF} = R_l(\frac{u_{o\infty} - u_o}{u_o}) = 1.929k\Omega$$

因此实验值与理论值 (由实验原理部分计算可得) 比较见下表:

表 2: 有反馈系统参数实验值与理论值比较表

	A_F	$R_{iF}/k\Omega$	R_{oF}/Ω
实验值	9.49	6.623	1.929
理论值	9.95	6.543	1.987

由以上数据可见负反馈使电路的放大倍数下降,电流串联负反馈增大了输入电阻和输出电阻,从而改善了电路的性能。

5 思考题

电流串联负反馈使输出阻抗增大,怎样解释本次实验中 r_o 与 r_{of} 几乎相等的现象?

答: 这是因为 r_{ce} 为管子 CE 间的内阻,一般阻值会很大,即满足关系 $r_{ce}+R'_e+\frac{\beta r_{ce}}{r_{be}}R'_e$ 足够大,因此 $r_{of}\approx R_c$,同理 $r_o\approx R_c$,所以在本次实验中 $r_o\approx r_{of}$ 。

A 原始数据整理

图 5: 原始数据截图