1 Tło

 \mathbb{Q} jest zbiorem przeliczalnym, jak się okazuje, jest on zbyt mały, by mówić o granicach ciągów o wyrazach wymiernych - ciąg $(\frac{1}{1},\frac{14}{10},\frac{141}{100},\frac{1414}{1000},\frac{14142}{10000})$ "zmierza"do $\sqrt{2}$. Istnieje wiele sposobów na skonstruowanie \mathbb{R} z \mathbb{Q} , większość okazuje się sobie równoważna (mamy tu do czyniena z tzw. własnością uniwersalną).

2 Supremum i infimum

Definicja 1. α jest ograniczeniem górnym zbioru A wtw, $gdy \ \forall a \in A : a \leq \alpha$. Analogicznie definiowane jest ograniczenie dolne.

Definicja 2. Jeśli istnieje ograniczenie górne zbioru, zbiór określa się ograniczonym z góry. Analogicznie definiuje się ograniczenie z dołu. Jeśli istnieje ograniczenie górne oraz ograniczenie dolne zbioru, określa się go ograniczonym.

Definicja 3. α jest supremum zbioru A wtw, $gdy \ \forall a \in A : a \leq \alpha$ oraz $(\forall a \in A \ a \leq \beta) \implies \alpha \leq \beta$. Oznacza się $\alpha = sup(A)$. Analogicznie definiowane jest infimum.

3 Aksjomat ciagłości

Jeśli $A \subseteq \mathbb{R}$, $A \neq \emptyset$ oraz A jest ograniczone z góry, $sup(A) \in \mathbb{R}$.

Aksjomat ten jest jedynym kawałkiem informacji wyróżniającym \mathbb{R} od \mathbb{Q} , należy się zatem spodziewać, że wszystkie twierdzenia, które dotyczą liczb rzeczywistych, ale nie wymiernych, korzystają z tego aksjomatu.

Konstruując liczby naturalne, aksjomatem równoważnym do indukcji jest tzw. zasada dobrego uporządkowania: "Każdy niepusty podzbiór $\mathbb N$ posiada najmniejszy element". Warto zastanowić się nad podobieństwem aksjomatu ciągłości do wyżej wspomnianego.

4 Twierdzenia na \mathbb{R}

Twierdzenie 1. (Nierówność trójkąta): $|x + y| \le |x| + |y|$

Twierdzenie 2. (Odwrotna nierówność trójkąta): $||x| - |y|| \le |x - y|$

Twierdzenie 3. (Rozszerzona nierówność trójkątna):

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|$$

Twierdzenie 4. (Własność archimedejska):

 $\forall x, y \in \mathbb{R} : x \neq 0 \implies \exists n \in \mathbb{N} : nx > y$

Twierdzenie 5. $(Gestość \mathbb{Q} \ w \ \mathbb{R}) : \forall x, y \in \mathbb{R} : x < y \implies \exists q \in \mathbb{Q} : x < q < y$

5 Ciągi rzeczywiste

Definicja 4. Ciągiem rzeczywistym nazywana jest funkcja $a : \mathbb{N} \longrightarrow \mathbb{R}$, często stosuje się zapis $a_n := a(n)$.

Definicja 5. Ciąg jest ograniczony z góry wtw, gdy $\{a_n \mid n \in \mathbb{N}\}$ jest ograniczony (tak samo z ograniczeniem dolnym). Ciąg jest ograniczony, gdy $\{|a_n| \mid n \in \mathbb{N}\}$ jest ograniczony.

Definicja 6. Ciąg a jest zbieżny do L wtw, gdy

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : |a_n - L| < \varepsilon$$

(N oraz n muszą być naturalne, autor postanawia to pominąć, ponieważ funkcja a operuje tylko na liczbach naturalnych).

Gdy ciąg a jest zbieżny do L, najczęściej stosuje się zapis $\lim_{n\to\infty}a_n$, lecz autor będzie korzystał z $\lim a_n$.

Twierdzenie 6. Każdy zbieżny ciąg posiada tylko jedną granicę.

Twierdzenie 7. Ciągi zbieżne są ograniczone.

Dowód. Niech a będzie ciągiem zbieżnym, weźmy $\varepsilon=1$, wtedy $\exists N: \forall n\geq N: |a_n-L|<1$, czyli $|a_n|<|L|+1$. $M:=\max(\{|a_n|\mid n< N\}\cup\{L+1\})$ ogranicza ciąg. Q.E.D.

Twierdzenie 8. (Trzy ciągi): Niech x_n i z_n będą zbieżne do L oraz $\forall n \in \mathbb{N}$: $x_n \leq y_n \leq z_n$, wtedy y_n jest zbieżny do L.

Dowód. Wiadomo, że $\exists N_1: \forall n \geq N_1: |x_n-L| < \frac{\varepsilon}{2}$ oraz, że $\exists N_2: \forall n \geq N_2: |z_n-x_n| < \frac{\varepsilon}{2}$ Niech $N = \max(N_1,N_2)$, wtedy: $|y_n-L| \leq |y_n-x_n| + |x_n-L| \leq |z_n-x_n| + |x_n-L| \leq \varepsilon$ Q.E.D.

6 Intuicja

Supremum jest najmniejszym ograniczeniem górnym, a infimum największym ograniczeniem dolnym. W odróżnieniu do maksimum i minimum, nie muszą być elementami zbioru i zawsze istnieją (z aksjomatu ciągłości) o ile zbiór jest tylko ograniczony - widać zatem potrzebe ich zdefiniowania.

Aksjomat ciągłości mówi, że najmniejsze górne ograniczenie dowolnego zbioru zawierającego się w $\mathbb R$ jest liczbą rzeczywistą, ponieważ mówi on o dowolnym zbiorze, mówi on w pewnym sensie, że "oś liczb rzeczywistych nie ma dziur", posiadając taki obraz osi, widać czemu liczby wymierne są nieadekwatne.

Tworząc definicję zbieżności ciągu, należy zawrzeć w niej informację o tym, że ciąg "dąży"do pewnej wartości, ale nie musi jej osiągnąć. Można myśleć o tej definicji jako o grze: "Ty daj mi $\varepsilon > 0$, ja dam Ci N, a Ty mi dasz $n \geq N$, wtedy wygram, jeżeli $|a_n - L| < \varepsilon$ oraz przegram w przeciwnym wypadku".

Jeżeli istnieje strategia wygrywająca dla gracza rzucającego wyzwanie, ciąg jest zbieżny, jeżeli nie istnieje taka strategia, ciąg nie jest zbieżny.

O definicji tej można również myśleć jako o drugiej na ilepszej rzeczy po byciu równym granicy: ciąg a_n nigdy nie musi być równy L, ale zależnie od potrzeb, będzie on zawsze od któregoś N w przedziale błędu (ε) .

Pisanie dowodu zbieżności odpowiada szukaniu algorytmu, który przyjmie na wejściu ε i zwróci N.

Przykłady

Przykład 1. $\lim_{n} \frac{3}{n} = 0$

Weźmy $\varepsilon > 0$, chcemy, żeby $|\frac{3}{n} - 0| = |\frac{3}{n}| < \varepsilon$. Pozbywając się modułu, $\frac{3}{\varepsilon} < n$, weźmy zatem $\frac{3}{\varepsilon} < N$, ponieważ N < n, osiągamy chcianą nierówność.

Przykład 2. $\lim_{n \to \infty} \frac{\sqrt{n}}{n^2+n} = 0$

 $0 < \frac{\sqrt{n}}{n^2 + n}$ oraz $\frac{n}{n^2 + n} < \frac{n}{n^2} = \frac{1}{n}$ (zwiększyliśmy licznik i zmniejszyliśmy mianownik, co zwiększa liczbę). $\lim_{n} 0 = 0$ oraz $\lim_{n} \frac{1}{n} = 0$, zatem $\lim_{n} \frac{\sqrt{n}}{n^2 + n} = 0$.

8 Zadania

Zadanie 1. Przekonaj się do prawdziwości Twierdzenia 1. tworząc rysunek ilustrujacy nierówność.

Udowodnij nierówność przez rozpatrzenie wszystkich czterech przypadków dotyczących znaku $(x > 0 \land y > 0, x > 0 \land y < 0, ...)$

(Abbott) Udowodnij nierówność przez rozpisanie $(|x|+|y|)^2$ oraz skorzystanie z |ab| > ab

Zadanie 2. Udowodnij Twierdzenie 2.

(wskazówka: skorzystaj z twierdzenia 1, podstawiając za x i y)

Zadanie 3. Udowodnij Twierdzenie 3 (skorzystaj z indukcji).

Zadanie 4. Udowodnij Twierdzenie 4

(wskazówka: zauważ, że możesz wyeliminować jedną zmienna, tym samym eliminując kwantyfikator)

(wskazówka: załóż, że jest to nieprawda i pokaż sprzeczność)

Zadanie 5. Udowodnij Twierdzenie 5

(wskazówka: skorzystaj z Twierdzenia 4 kilka razy).

Zadanie 6. Udowodnij Twierdzenie 6

(wskazówka: załóż, że istnieje zbieżny ciąg, który posiada więcej, niż jedną granice i pokaż sprzeczność)

Zadanie 7. *Udowodnij z definicji:* 1. $\lim_{n} \frac{5^{n}}{1+5^{n}} = 1$

1.
$$\lim_{n} \frac{5^n}{1+5^n} = 1$$

2.
$$\lim_{n} \sqrt{n+1} - \sqrt{n} = 0$$

3. $\lim_{n} \frac{\sin n^{2}}{\sqrt[3]{n}} = 0$

3.
$$\lim_{n} \frac{\sin n^2}{\sqrt[3]{n}} = 0$$

Zadanie 8. Znajdź granice używając twierdzenia o trzech ciągach: 1. $\lim_n \frac{n^2 - 5n - 3}{3n^2 + 2n + 2}$ 2. $\lim_n \frac{|\cos n|}{n}$ 3. $\lim_n \sqrt[n]{2^n + 3^n}$

1.
$$\lim_{n} \frac{n^2 - 5n - 3}{3n^2 + 2n + 2}$$

2.
$$\lim_{n \to \infty} \frac{|\cos n|}{n}$$

3.
$$\lim_{n} \sqrt[n]{2^n + 3^n}$$