

CODE V Introductory Tutorial

Cheng-Fang Ho
Lab.of RF-MW Photonics,
Department of Physics, National Cheng-Kung University,
Tainan, Taiwan

Tutorial Outline

- Introduction to CODE V
- Optical Design Process
- Code V Design Examples :
 - 1. Digital VGA Camera Objective
 - 2. 10X Microscope
- Advanced Applications
- References

Introduction to CODE V

An Overview of CODE V Features

Lens Entry and Editing (data- base)	Design Func- tions	Diagnostic Func- tions	Evaluation Func- tions	Fabrication and Other Functions
Spreadsheet data entry Command entry Macro language Solves Zoom lenses Decentered and tilted systems Glass catalogs IR/UV materials Special surfaces (Aspherics, Toroids, Gratings, HOEs, "Black Box" modules, user-defined, non-sequential, and many more) Gradient Index Full lens data (Optical, Mechanical, Tolerances, Coatings)	Ray or wave-based error function MTF optimization User-defined optimization Exact control of constraints User-defined constraints Global Synthesis Test plate fitting Cam design for zoom lenses Multilayer film design	Paraxial ray trace Real ray trace Aberration plot Gaussian beam Third-order aberrations Higher-order aberrations Polarization analysis Astigmatism Distortion Pupil map Field map Biocular FOV Catseye plot	PSF and LSF MTF (Diffraction based, Geometrical, vs. focus or freq.) Spot diagrams RMS wavefront Encircled energy Partial coherence Biocular analysis Transmission Narcissus analysis Ghost images Illumination analysis	Tolerancing (MTF/RMS, Distortion, Prim. aberr.) Lens drawings (Designer use, Elements, Components, 3D Views, Solid models) Footprints Cost estimates Weight Alignment of built systems Environmental analysis Spectral analysis Image simulation Interfaces to: NASTRAN Interferometers CAD/CAM via IGES LightTools

Structure of CODE V

CODE V Version 9.00

Optical Design Process

Optical Design Flowchart

 Today's tutorial will based on this process

Design Example (1): Fixed-focus VGA Digital Camera Objective

Outline

- Fixed-focus VGA Digital Camera Objective specification
- Identification of a Starting Point
 - First-order optics consideration
- Selecting a Suitable Starting Point
 - Code V New Lens Wizard
- Perform a Basic Analysis
 - Compare with the specifications: Spot Diagram, Aberration curves, MTF output.....
 - Guideline for Optimization
- Optimization
 - Make things better, Performance re-evaluation
- Tolerance Analysis
 - Prepare for fabrication
- Summary and References

Identification of a starting point

Lens Specifications

Fi	Fixed-focus VGA Digital Camera Objective Specifications							
	* Sn	nall unmbei	of element	s (1-3) mad	le from common gla	asses or plastics		
	* lm	age sensor	(baseline is	Agilent FD	CS-2020)			
		Resolution	1	640 x 480	effective pixels			
		Pixel size		7.4 x 7.4 r	microns			
		Sensitive a	area	3.55 x 4.74	4 mm (full diagon	al 6 mm)		
	* Ob	jective Len	S					
		Focus		Fixed, de	oth of field 750 m	m to infinity		
		Focal leng	th	Fixed, 6.0	mm			
		Geometric	Distortion	< 4%				
		F/number		Fixed ape	erture, F/3.5			
		Sharpness	5	MTF throu	ugh focus range			
				(central a	rea is inner 3 mm	of CCD)		
			Low freq.	17 lp/mm	> 90% (central)	>85% (outer)		
			High freq.	51 lp/mm	> 30% (central)	> 25% (outer)		
		Vignetting		Corner relative illumination > 60%				
		Transmiss	sion	Lens alon	e, >80% 400-700 i	nm		
		IR filter		1 mm thic	ck Schott IR638 or	Hoya CM500		

Identification of a Starting Point

- From specification directly:
 - 3-element system
 - Effective focal length = 6
 - F/number = 3.5
- First-order calculation:
 - Field of view
 - FOV = 26.5°

Starting point scheme

Image height = EFL* tan(semi-FOV)

 These are useful to be a "filter" (criterion) for searching exiting designs in Code V new lens wizard

Selecting a Suitable Starting Point

0-00

Selecting a suitable starting point

- The Code V New Lens Wizard
 - Searching existing designs- Patent Database
 - Filter

Pupil Specification

Value

Image F/Number

3.50000

Telecentric in Object Space

http://www.phys.ncku.edu.tw/optics

1. Pupil

Selecting a suitable starting point

- Defining system data
 - Pupil specification, Wavelengths, Fields...

Wavelength

656,00000

589.00000 430.00000

Pupil size defines the amount of light entering the system from each field point. This can be defined in object space units (Entrance Pupil Diameter or object space Numerical Aperture) or in image space units (F-number or image space Numerical Aperture). Object space definitions are prefered. Object space NA is only valid for finite object distances.

Plot Color

2. Warvelengths that you wish to use for the system or choose from an existing spectrum.

Note: You may choose a spectrum and then add wavelengths to it.

Use Spectrum

Fields define one or more discrete points that sample the object or image format that the system is designed to cover. Fields can be defined in object space units (object angle in degrees or object height) or in image space units (paraxial or real image height). Object space definitions are prefered.

Weight

Field Type Object Angle
Wide Angle Mode

3. Fields

Lens Data Manager Spreadsheet and Command

Window

Drawing Pictures and First order Data

2. First Order Data List First Order Data O INFINITE CONJUGATES 0.9528 EFL BFL 0.7743 -0.8673 FFL FNO 3.5000 0.7702 IMG DIS 0.3000 OAL PARAXIAL IMAGE 0.4751 HT 26.5000 ANG ENTRANCE PUPIL 0.2722 DIA 0.1949 THI EXIT PUPIL 0.2442 DIA -0.0805 THI

CODE

Optical System Design on Lab. of RF-MW Photonice. Phys. NCKU

http://www.phys.ncku.edu.tw/optics

Analyze the Starting Point

Analyze the Starting Point

- Basic and Useful Analysis
 - Ray aberration curves and Spot diagrams
- Compare with Lens Specifications
 - Distortion (Field Curve or Distortion Grid)
 - Sharpness (<u>Diffraction MTF</u>)
 - Vignetting

Focal len	gth	Fixed, 6.	0mm			
Geometr	ic Distortion	< 4%				
Sharpne	Sharpness MTF through focus range					
	(central area is inner 3 mm of CCD)					
				ŕ		
	Low from 1	7 ln/mm	> 000/ (control)	> 050/ (outor)		
	Low freq. 17	/ ip/mm	> 90% (central)	>85% (outer)		
	High freq. 5	1 lp/mm	> 30% (central)	> 25% (outer)		
Vianettin	a	Corner r	elative illumination	on > 60%		
vignettin	Vignetting Corner relative illumination > 60%					
Transmis	ssion Lens alone, > 80% 400-700 nm					
Hallollis	551011	LCI IS all	110, 20070 4 00-700	7 1 11 1 1		

Ray Aberration and Spot Diagram

- Ray Aberration Curves
 - Analysis > Diagnostics > Ray Aberration Curve

Spot Diagram

- Analysis > Geometrical > Spot Diagram
 - Scale by Pixel Size 7.4 um

Optical System Design on Lab. of RF-MW Photonice. Phys. NCKU

http://www.phys.ncku.edu.tw/optics

Useful Spot Macro

Tool > Macro >
 Sample / Geometrical Analysis
 / sopt2d.seq

distortion

- Analysis > Diagnostics > Field Curve
- Analysis > Diagnostics > Distortion Grid

1. Field Curve

Optical Sharpness

MTF through focus range (central area is inner 3 mm of CCD)

Low freq. 17 lp/mm	> 90% (central)	>85% (outer)
High freq. 51 lp/mm	> 30% (central)	> 25% (outer)

MTF Output

Analysis > Diffraction > MTF

Vignetting / Illumination and Transmission

- 1. Get from Text tab of MTF output
- 2. Analysis > system > Transmission Analysis

2 product f	REF	0.9361	0.9648	0.8961	0.9404
	BS	1.0000	1.0000	1.0000	1.0000
Ave Transmittano	e:	0.9361	0.9648	0.8961	0.9404
ILLUMINATION:	Т	0.04042	0.04173	0.03911	0.04075
RELATIVE ILLUM:		64.0	64.9	69.7	65.7
PROJECTED SOLID	80				20 - 20 M G-G-M
ANGLE (IMAGE SPA	ιCΕ):	0.04318	0.04326	0.04365	0.04334
used area of					
ENTRANCE PUPIL:		2.29240	2.29333	2.29596	2.29376

Illumination and Transmission for each wavelength

Da	igital	L VGA	Camera		1.
RELATIVILL ILLUMIN	VE ILI	JUMINA UNI	TION = T BRIGH	66.4 HTNESS	PER CENT
		0.50355350.55	95 93 ST		
f/3.500	RAD	TAN	RAD	TAN	<i>Relative</i>
.999	.999	.999	.999	.999	Illumination
.982	.981	.977	.978	.950	
.965	.962	.953	.952	.868	
.947	.942	.929	.922	.781	
.929	.923	.906	.892	.705	
.912	.904	.881	.862	.637	
.894	.885	.858	.829	.569	
.877	.866	.835	.799	.514	
	FIELD RELATIVE ILLUMI DISTORM Formula f/3.500999 .982 .965 .947 .929 .912 .894	FIELD (X,Y)= RELATIVE ILI ILLUMINATION DISTORTION = OIFFRACTION I Formula Act f/3.500 RAD999 .999 .982 .981 .965 .962 .947 .942 .929 .923 .912 .904 .894 .885	FIELD (X,Y)=(0.0 RELATIVE ILLUMINA ILLUMINATION (UNI DISTORTION = -0. DIFFRACTION LIMIT Formula Actual f/3.500 RAD TAN	RELATIVE ILLUMINATION = ILLUMINATION (UNIT BRIGH DISTORTION = -0.20 PER DIFFRACTION LIMIT FOCU Formula Actual 0.0 f/3.500 RAD TAN RAD	FIELD (X,Y)=(0.00, 1.00)MAX, RELATIVE ILLUMINATION = 66.4 ILLUMINATION (UNIT BRIGHTNESS DISTORTION = -0.20 PER CENT DIFFRACTION LIMIT FOCUS POS Formula Actual 0.00000

.735 .416

.707 .381

.828 .789

.809 .767

User-specified transmission data can be provided as part of the lens data.

^{*} Transmission data missing for this material; 100% transmission assumed.

Picking on Glass

- Tool > Macro > glassfit.seq
 - Sample Macro / Material Information

Availability Codes:

Cata.	log C	ode	Defi	Lnition						
All		3	Disc	continued						
		4	Disc	continued w	ith recomm	ended :	replacem	ent g	lass	
		5	Prel	Liminary						
Scho	tt	0	Pref	erred glas	s					
		1	Star	ndard Glass	780°					
		2	Inqu	uiry Glass						
Surf	Catalog	Glas	s	Delta Nd	Delta Vd	Avail	Price	DPF	Bubl	Stain
1	SCHOTT	LAFN	128	0.01336	0.5317	1	315.00	-75	0	1
3	SCHOTT	SF1		0.00000	-0.0129	0	36.50	0	1	1
5	SCHOTT	NLAS	F41	-0.00020	-0.2291	2	0.00	-79	1	0

into real glasse	the user convert f es. Several fitting r impts for all require	methods	are available.	ses	
Mul	tiplier for Delta-V	1			
Elimina	te disc, glasses?	Yes			
	OK	1	Cancel		

Optimization: Making Things Better

Automatic Design Process

The Game Plan

- Define as variable: all radii of curvatures, thickness values, and fictitious glasses
- Automatic Design Setting
 - Make sure all glass elements are thick enough and glass index doesn't get too high
 - Constrain the effective focal length (EFL) to the current 6 mm
 - Use the default spot size (transverse ray aberration) error function, but trace mire rays in the grid
- optimizations
 - Run AUTO
 - Understanding the output and reevaluations
 - Modify AUTO setting to refine the solution

Defining Variable

- Variables are defined in the LDM
 - To vary the constructs what you want, place the cursor on the it in the LDM window, right-click, and choose "Vary" from the shortcut menu.

The red, small letter "V" means variable

🚜 Lens D	ata Mana	ger					-
Surface #	Surface Name	Surface Type	Y Radius	Thickness	Glass	Refract Mode	Y Semi-Aperture
Object		Sphere	Infinity	Infinity		Refract	0
1		Sphere	2.24216 V	0.69268 V	786500.501	[/] Refract	1.29873 ^O
2		Sphere	4.41530 V	0.44080 V		Refract	1.05951 ^O
3		Sphere	-4.15453 V	0.12594 ^V	717360.295 1	[/] Refract	0.83714 ^O
Stop		Sphere	2.62490 🛂	0.22040 ^V		Refract	0.68537 ^O
5		Sphere	5.79840 V	0.40931 V	834810.429 \	[/] Refract	0.88647 ^O
6		Sphere	-3.40543 V	4.87562 ^{\$}		Refract	0.95772 ^O
Image		Sphere	Infinity	-0.02539		Refract	2.99149 ○
			End	Of Data	***************************************		

General Constraints

Automatic Design Setting

- The first boundary condition category is General Constraint
 - General Thickness Constraint
 - Glass Map Constraint
- The second boundary condition category is Specific Constraint
 - Edit Constraint : Optical Definition / First Order or Third Order Aberration
 - Defining Constraint Mode and Constraint Target
- Error Function Definitions and Controls
 - Error Function Types
- Output Controls

Error Function Weights

Output Controls

Exit Controls

Specific Constraints

General Constraint

- Min. center thickness
 - 0.9 mm
- Min. edge thickness
 - 0.8 mm
- Defining new corner point for the glass map

Specific Constraint

Error Function Definition and Controls

- CODE V/User-defined composite error function Constraints only solution
- Transverse Ray Aberration Wavefront Error Variance Fiber Coupling Efficiency MTF

- CODE V Error Function Only
- Error Function type
 - Transverse Ray Aberration

Run Automatic Design

Error function valve

Cheng-Fang Ho ark@phys.ncku.edu.tw

Understanding AUTO Output

Error function contributions

Error function change

Cheng-Fang Ho ark@phys.ncku.edu.tw General Constraints | User Constraints/Ray Definitions | Through Focus Optimization Controls | MTF Error Function Controls |

Error Function Definitions And Controls | Error Function Weights | Output Controls | Exit Controls | Specific Constraints |

Analyzing and Modifying Weights |

Digtial VGA Carmera | DIFFRACTION LIMIT AXIS | WAVELENGTH WEIGHT

CYCLE NUMBER 8:

F1 5.37660053

5.37660053

ERR. F.

X

Y

Analyzing and Modifying Weights

Optimization and Re-evaluations (1)

 The results are accepted for infinite objection distance

Low freq. 17 lp/mm	> 90% (central)	> 85% (outer)
High freq. 51 lp/mm	> 30% (central)	> 25% (outer)

Final Evaluations

MTF at defocus 0 mm

MTF at defocus –0.048 mm

Field curve and Distortion

Through focus MTF at defocus 17 lp/mm and 51 lp/mm

Cheng-Fang Ho ark@phys.ncku.edu.tw

Final Evaluations - illumination

- Analysis > Illumination
 - Using Bitmap images as illumination source
 - The imaging process is base on Raytrace method

