

MATEMÁTICA BÁSICA – CE82 SEMANA 5 – SP2

Temario: Función inyectiva, Función inversa, determinación de la regla de correspondencia, dominio y rango.

Logro de la sesión: Al término de la sesión el estudiante reconoce una función inyectiva, determina su inversa y regla de correspondencia, dominio y rango, así como aplicaciones a situaciones reales.

FUNCIÓN INYECTIVA

Una función es inyectiva o uno a uno, si y solo si a elementos distintos del dominio le corresponden imágenes distintas, es decir:

f es una función inyectiva si para dos valores diferentes x_1 y x_2 ($x_1 \neq x_2$) del dominio de f se cumple que $f(x_1) \neq f(x_2)$

Si $f(x_1) = f(x_2)$ entonces $x_1 = x_2$

Ejemplo: Si $f(x) = x^2$

Elegimos dos valores diferentes $(x_1 \neq x_2) x_1 = -2 y x_2 = 2$ al evaluar se obtiene:

Conclusión: f no es una función inyectiva

Ejercicio 1: La función f cuya regla es f(x) = |x| ¿Es una función inyectiva?

CRITERIO DE LA RECTA HORIZONTAL (CRH)

Una función f es inyectiva o uno a uno si y sólo sí cualquier recta ______ corta a su gráfica a lo más en ______.

También es correcto afirmar que si una función f es estrictamente creciente o _____ en su dominio esta es inyectiva.

Ejemplo:

Determine si la función f con regla de correspondencia f(x) = |x+1| - 2 definida en el intervalo $]-\infty;0]$ es inyectiva. Justifique su respuesta.

Solución:

Paso 1: Grafique la función

Paso 2: Al trazar rectas horizontales se observa que corta a la gráfica en _____

Paso 3: Conclusión

Ejercicio 2:

Determine si la función g con regla de correspondencia $g(x) = 2 - (x - 1)^2$ definida en el intervalo $[1; +\infty[$ es inyectiva.

Paso 1: Grafique la función

Paso 2: Al trazar rectas horizontales se observa que corta a la gráfica en

Paso 3: Conclusión

FUNCIÓN INVERSA

Si una función f se define de la siguiente manera: $f = \{(1,9), (2,8), (3,7), (4,6)\}$

En el diagrama adjunto coloque los elementos del dominio y rango y luego asocie mediante flechas.

$$f(1) = \underline{\hspace{1cm}}, f(2) = \underline{\hspace{1cm}}$$

La función f ¿Es inyectiva?

Al permutar los elementos de cada par ordenado se obtiene una nueva función ______ a esta función se le llama inversa de la función f y se le representa por f^{-1} .

$$f^{-1} = \{(9;1), (8;2), (7;3), (6;4)\}$$

Observa que: Dom $f^{-1} =$ ______, Ran $f^{-1} =$ ______

DEFINICIÓN

Si f es una función inyectiva con dominio D y rango R entonces existe la inversa de f, que se representa por f^{-1} , tiene dominio R y rango D.

Observaciones:

- El dominio de f^{-1} es igual al rango de f y el rango de f^{-1} es igual al dominio de f.
- Una función g es la función inversa de la función f si f(g(x)) = x para todo x en el dominio de g y g(f(x)) = x para todo x en el dominio de f.

Ejemplo:

Demuestre que las funciones f(x) = 2x - 3 y $g(x) = \frac{1}{2}x + \frac{3}{2}$ son mutuamente inversas.

Solución:

$$f(g(x)) =$$

$$g(f(x)) =$$

Como se puede observar
$$f(g(x)) = g(f(x)) = x$$

Por lo tanto, se puede afirmar que f y g son mutuamente inversas.

GRÁFICA DE LA INVERSA DE UNA FUNCIÓN

Conociendo la gráfica de una función f se puede determinar la gráfica de la inversa de una función f^{-1} haciendo una reflexión de la gráfica de f respecto a la recta y = x.

Ejemplo:

En la figura adjunta se muestra la gráfica de la función f cuya regla es $f(x) = \sqrt{x+4}$.

Coloque las coordenadas de los puntos indicados. Grafique f^{-1} .

Ejercicio 3:

En la figura adjunta se muestran las gráficas de dos funciones f y g, ¿son inyectivas? Grafique en el mismo plano la inversa de ambas funciones.

REGLA DE CORRESPONDENCIA DE LA FUNCIÓN INVERSA

Dada la función y = f(x), para determinar la regla de correspondencia de f^{-1} , se debe seguir los siguientes pasos:

Paso 1: Verifique que f es inyectiva o uno a uno, para garantizar la existencia de f^{-1} .

Paso 2: Escriba y = f(x), luego despeje la variable x en función de variable y.

Paso 3: Ahora escriba $f^{-1}(x)$ en lugar de la variable x y en lugar de la variable y, escriba x.

Paso 4: Determine el dominio para f^{-1} .

3/4 EPE INGENIERÍA

Ejemplo:

Dada la función f con regla de correspondencia $f(x) = x^2$, definida en el intervalo $[0;+\infty[$.

Halle la regla de correspondencia de f^{-1} e indique su dominio y su rango.

Solución:

Para halla la inversa de f hay que seguir los pasos indicados.

Paso 1: Verifique que f es inyectiva para garantizar la existencia de f^{-1} .

Para determinar si existe la inversa de f, se esboza la gráfica y se aplica el principio de .

Al trazar rectas horizontales se observan que cortan a la curva en ______

Por lo tanto ______ tiene inversa.

Paso 2: Escriba y = f(x), luego despeje la variable x en función de variable y.

$$f(x) = x^2 \implies$$

Despejamos la variable x: (2 soluciones)

Por dato $x \in [0; +\infty[$ por lo tanto x =

Paso 3: Ahora escriba $f^{-1}(x)$ en lugar de la variable x y en lugar de la variable y, escriba x.

Cambiamos x por $f^{-1}(x)$ Cambiamos y por x $\begin{cases}
f^{-1}(x) = \underline{\qquad} \\
f^{-1}(x) = \underline$

Paso 4: Determine el dominio para f^{-1} recuerde $Dom f^{-1} = Ran f$ y $Ran f^{-1} = Dom f$

En este caso el Dom $f = [0; +\infty[y]]$ Ran $f = [0; +\infty[y]]$

Por lo tanto $Dom f^{-1} = _____ y Ran f^{-1} = ______$

Conclusión: $f^{-1}(x) =$ ______, $Dom f^{-1} =$ ______

Ejercicio 4:

Dada la función f con regla de correspondencia f(x) = 3x + 4; $x \in [-3; 2[$. Halle la regla de correspondencia de f^{-1} e indique su dominio y su rango.

Ejercicio 5:

Dada la función f con regla de correspondencia $f(x) = x^2 - 4$; $[0; +\infty[$. Halle la regla de correspondencia de f^{-1} e indique su dominio y su rango.

CIERRE DE CLASE

- A. Sea la función f(x) = x + 3, ¿luego su inversa es $f^{-1}(x) = \frac{1}{x+3}$? ¿Por qué?
- B. La función $f(x) = x^2$ ¿Es inyectiva? ¿Tiene inversa?
- C. La función $f(x) = x^2$, $x \in]-\infty;0]$ ¿Es inyectiva? ¿Tiene inversa?