Traitement d'images pour l'aide au rechargement de combustible des CNPE

Nicolas Paul Lorenzo Audibert Antoine de Chillaz

Contexte

Renouvellement de combustible des CNPE lors des arrêts de tranche

> Grille supérieure Tube - guide

- Assemblage combustible
 - Longueur: 4-5 m Largeur : 214 mm
 - Poids total: 650-750 kg ■ Nombre de crayons : 264

157 à 205 assemblages par réacteur

Contexte

- Inspections télévisuelles
 - Dégagement de chaleur → perturbation de l'image

- Conséquences
 - Incertitude de lecture
 - Temps perdu dans la lecture des numéros d'assemblages

E/40

Contexte

• Évènements d'accrochage (1998-2008-2009 ...)

Mauvais positionnement d'assemblage → accrochage

- Impact
 - 145 jours d'arrêt
 - Dosimétrie
 - Plusieurs M€ d'achats

eDF

Plan

- 1. Restauration des images
- 2. Localisation des assemblages combustibles
- 3. Valorisation

Plan

- 1. Restauration des images
- 2. Localisation des assemblages combustibles
- 3. Valorisation

9/48

Problématique

Dégagement de chaleur → perturbation de l'image

- Modélisation
 - Approche physique
 - Champ des températures, impact sur la propagation, effet sur la séquence vidéo
 - Complexe
 - Approche empirique (pragmatique)
 - On modélise directement l'effet des turbulences dans l'image

Modèle direct : images observées

- Vidéo = suite d'images = fonction de trois variables
 - indice ligne y
 - indice colonne x
 - numéro de l'image n

$$\mathbf{I}(x,y,n) = \mathbf{I}(\mathbf{x},n)$$

Effet des turbulences dans l'image observée

déplacement pixel \mathbf{x} à l'image n

$$\mathbf{I}(\mathbf{x},n) = \mathbf{I}_{\text{nette}}(\mathbf{x} + \mathbf{u}_{\mathbf{x},n})$$
 image observée image nette (inconnue)

Modèle direct : images observées (2)

Modèle d'observation aléatoire

déplacement aléatoire du pixel **x** à l'image n

$$\mathbf{I}(\mathbf{x},n) = \mathbf{I}_{\mathrm{nette}}(\mathbf{x} + \overset{\downarrow}{\mathbf{u}})$$

nage observée image nette (inconnue)

Représentation probabiliste

- u vecteur des déplacements aléatoires
- densité de probabilité radiale (déplacement isotrope stationnaire) : h(u)
- lacktriangle paramétrable: $\underline{\acute{e}cart ext{-type }\sigma}$ (variabilité des déplacements de pixels)

Modèle direct : image moyenne observée

- Loi des grands nombres
 - u variable aléatoire, densité de probabilité h(u)
 - observations u_n
 - f fonction
 - la moyenne empirique tend vers l'espérance mathématique :

$$\frac{1}{N} \sum_{n=1}^{N} f(u_n) \rightarrow \int f(u) h(u) dz$$

- Dans notre contexte
 - u vecteur aléatoire des déplacements de pixels, densité de probabilité h(u)
 - Avec f (u) = I_{nette} (x+u) :

$$\mathbf{I}_{\text{moyenne}}(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{I}_{\text{nette}}(\mathbf{x} + \mathbf{u}_n) \rightarrow \int \mathbf{I}_{\text{nette}}(\mathbf{x} + \mathbf{u}) \mathbf{h}_{\sigma}(\mathbf{u}) \, d\mathbf{u}$$

On reconnaît un produit de convolution = filtrage spatial = « floutage » de l'image nette

13/4

14/48

eDF

1/ On calcule une image moyenne

Principe de l'inversion

2/ On déconvolue l'image moyenne (filtre spatial)

eDF

