SUPORT PENTRU CURSUL 6

1. Şiruri în \mathbb{R}^n . 2. Funcții. 3. Limite de funcții

8 noiembrie

1 Şiruri cu termeni din \mathbb{R}^n

Prin şir cu termeni din \mathbb{R}^n , sau, prescurtat, şir din \mathbb{R}^n vom înțelege orice aplicație $f: \mathbb{N} \to \mathbb{R}^n$. Pentru notarea şirului vom folosi simbolul $(x_k)_{k \in \mathbb{N}}$, unde $x_k = f(k)$, pentru fiecare $k \in \mathbb{N}$. Termenul x_k este termenul de rang k al şirului, iar numărul natural k este rangul termenului x_k .

Şiruri mărginite. Mulțimea $\{x_k \mid k \in \mathbb{N}\}$ se numește mulțimea termenilor șirului $(x_k)_{k \in \mathbb{N}}$. Un șir se numește mărginit dacă mulțimea termenilor săi este o mulțime mărginită.

Şirurile coordonatelor. Fie $(x_k)_{k\in\mathbb{N}}$ un şir cu termeni din \mathbb{R}^n . Cum fiecare termen x_k al şirului $(x_k)_{k\in\mathbb{N}}$ este un element al spaţiului \mathbb{R}^n , el va avea n coordonate pe care le vom nota prin

$$x_{k1}, ..., x_{kn}.$$

Deci $x_k = (x_{k1}, ..., x_{kn}).$

Cu ajutorul termenilor şirului $(x_k)_{k\in\mathbb{N}}$ din \mathbb{R}^n putem forma următoarele n şiruri de numere reale:

$$(x_{k1})_{k\in\mathbb{N}}, (x_{k2})_{k\in\mathbb{N}}, ..., (x_{kn})_{k\in\mathbb{N}},$$

numite *şirurile* coordonatelor.

EXEMPLU. Fie $x_{\mathbf{k}} = ((-1)^k, \sin k\pi) \in \mathbb{R}^2$, oricare ar fi $k \in \mathbb{N}$. Şirul $(x_{\mathbf{k}})_{k \in \mathbb{N}}$ este un şir cu elemente din \mathbb{R}^2 .

Şirurile coordonatelor vor fi şirurile:

 $(x_{k1})_{k\in\mathbb{N}}$, cu $x_{k1}=(-1)^k$, oricare ar fi $k\in\mathbb{N}$, respectiv

 $(x_{k2})_{k\in\mathbb{N}}$, cu $x_{k2}=\sin k\pi$, oricare ar fi $k\in\mathbb{N}$.

Mulțimea termenilor săi este mulțimea

$$M \, = \, \{((-1)^k, \, \sin k\pi) \in {\rm I\!R}^2 \, | \, k \in {\rm I\!N}\} \, = \, \{(-1,0), (1,0)\}.$$

Cum M este o multime mărginită, șirul este mărginit.

Limita unui şir. Fie $(x_k)_{k\in\mathbb{N}}$ un şir din \mathbb{R}^n .

Un element $\lambda \in \mathbb{R}^n$ se numește limită a şirului $(x_k)_{k \in \mathbb{N}}$ dacă oricare ar fi V o vecinătate a lui λ , există un rang k_V cu proprietatea că $x_k \in V$, $\forall k \in \mathbb{N}$, $k \geq k_V$.

Ținând cont de modul în care s-a definit vecinătatea unui număr real, obținem următoarea caracterizare a limitei, care poate fi luată ca definiție:

Un element $\lambda \in \mathbb{R}^n$ este limită a şirului $(x_k)_{k \in \mathbb{N}}$ din \mathbb{R}^n dacă, oricare ar fi un număr real $\varepsilon > 0$, există un rang k_{ε} cu proprietatea că

$$\|\lambda - x_k\|_n < \varepsilon, \ \forall k \in \mathbb{N}, \ k \ge k_{\varepsilon}.$$
 (1)

Prin $\| \|_n$ am notat norma din \mathbb{R}^n . Prin urmare, dacă $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ şi $x_k = (x_{k1}, \dots, x_{kn}), \forall k \in \mathbb{N}$, atunci inegalitatea (1) se poate scrie şi sub forma

$$\sqrt{\sum_{j=1}^{n} (\lambda_j - x_{kj})^2} < \varepsilon, \ \forall k \in \mathbb{N}, \ k \ge k_{\varepsilon}.$$
 (2)

EXEMPLU. Fie şirul $(x_k)_{k\in\mathbb{N}}$ cu $x_k=(\frac{1}{k+1},1-\frac{2}{k+1})$, oricare ar fi $k\in\mathbb{N}$. Vom arăta că punctul (0,1) este o limită a şirului $(x_k)_{k\in\mathbb{N}}$. Observăm că

$$\|(0,1) - (\frac{1}{k+1}, 1 - \frac{2}{k+1})\|_2 = \|(\frac{-1}{k+1}, \frac{2}{k+1})\|_2 = \sqrt{\left(\frac{-1}{k+1}\right)^2 + \left(\frac{2}{k+1}\right)^2} = \frac{\sqrt{5}}{k+1}. \quad (3)$$

Fie $\varepsilon > 0$. Să luăm $k_{\varepsilon} \in \mathbb{N}$ astfel încât să avem $k_{\varepsilon} \geq \frac{\sqrt{5}}{\varepsilon}$ (de exemplu $k_{\varepsilon} = \left[\frac{\sqrt{5}}{\varepsilon}\right] + 1$). Atunci, pentru orice $k \in \mathbb{N}$, $k \geq k_{\varepsilon}$, avem

$$k+1 > \frac{\sqrt{5}}{\varepsilon},$$

ceea ce implică faptul că

$$\frac{\sqrt{5}}{k+1} < \varepsilon. \tag{4}$$

Atunci, din (3) și (4) obținem

$$\|(0,1) - (\frac{1}{k+1}, 1 - \frac{2}{k+1})\|_2 = \frac{\sqrt{5}}{k+1} < \varepsilon.$$

Cum $\varepsilon > 0$ a fost ales oarecare, deducem că (0,1) este o limită a șirului $(x_k)_{k \in \mathbb{N}}$.

Reducerea calculului limitei unui şir la calculul limitelor şirurilor coordonatelor. Rezultatul pe care îl vom prezenta în continuare are foarte multe implicații atât teoretice cât și practice.

Teorema 1.1 (de reducere a calculului limitei unui șir la calculul limitelor șirurilor coordonatelor). Elementul $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$ este limită a șirului $(x_k)_{k \in \mathbb{N}}$ cu

$$x_k = (x_{k1}, ..., x_{kn}) \in \mathbb{R}^n$$
, oricare ar fi $k \in \mathbb{N}$,

dacă și numai dacă

$$\lambda_j = \lim_{k \to \infty} x_{kj}, \text{ oricare ar fi } j \in \{1, ..., n\}.$$
 (5)

 $Demonstrație.^*$ $Necesitatea^*$. Fie $\lambda = \lim_{k \to \infty} x_k$. Oricare ar fi numărul real $\varepsilon > 0$, există un rang k_{ε} astfel încât pentru orice număr natural $k, k \ge k_{\varepsilon}$, să avem

$$\|\lambda - x_k\|_n = \sqrt{\sum_{j=1}^n (\lambda_j - x_{kj})^2} < \varepsilon.$$

Deoarece toţi termenii sumei sunt numere nenegative, rezultă că avem $|\lambda_j - x_{kj}| < \varepsilon$, pentru fiecare $j \in \{1, ..., n\}$, oricare ar fi numărul natural $k \geq k_{\varepsilon}$. Deci, pentru fiecare $j \in \{1, ..., n\}$, avem $\lambda_j = \lim_{k \to \infty} x_{kj}$.

Suficiența. Fie $\lambda_j = \lim_{k\to\infty} x_{kj}$, pentru fiecare $j\in\{1,...,n\}$. Fie $\varepsilon>0$. Pentru fiecare $j\in\{1,...,n\}$ va exista un rang s_j , astfel încât să avem

$$|\lambda_j - x_{kj}| < \sqrt{\frac{\varepsilon}{n}}, \ \forall \ k \in \mathbb{N}, \ k \ge s_j.$$
 (6)

Fie $k_{\varepsilon} = \max\{s_1, \dots, s_n\}$. Din (6), prin ridicare la pătrat și sumare, obținem

$$\sum_{j=1}^{n} (\lambda_j - x_{kj})^2 < n \frac{\varepsilon}{n} = \varepsilon, \tag{7}$$

oricare ar fi numărul natural $k,\ k\geq k_{\varepsilon}$. Din (7), extrăgând radicalul și ținând cont de definiția normei, obținem $\|\lambda-x_k\|_n<\varepsilon$, oricare ar fi $k\geq k_{\varepsilon}$. Deoarece ε a fost ales oarecare, deducem că $\lambda=\lim_{k\to +\infty}x_{k\cdot \diamond}$

Teorema 1.1 ne permite să extindem o serie de proprietăți ale şirurilor de numere reale și pentru șiruri cu elemente din \mathbb{R}^n . Un prim rezultat deosebit de important este cel care urmează.

Teorema 1.2 (unicitatea limitei). Dacă $(x_k)_{k\in\mathbb{N}}$ este un şir din \mathbb{R}^n , atunci există cel mult un $\lambda \in \mathbb{R}^n$ astfel încât λ să fie limită a şirului $(x_k)_{k\in\mathbb{N}}$.

Prin analogie cu cazul şirului de numere reale, un şir din \mathbb{R}^n se va numi convergent dacă el are limită în \mathbb{R}^n . Deci un şir cu termeni din \mathbb{R}^n este convergent dacă și numai dacă toate şirurile coordonatelor sunt convergente.

Teorema 1.3 (relativă la mărginirea şirurilor convergente). Orice şir convergent cu termeni din \mathbb{R}^n este mărginit.

Menționăm faptul că noțiunea de subșir al unui șir se definește, pentru un șir cu elemente din \mathbb{R}^n , la fel cum am definit acest lucru pentru un șir de numere reale.

Fie $(x_k)_{k\in\mathbb{N}}$ un şir cu termeni din \mathbb{R}^n . Se numeşte subşir al şirului $(x_k)_{k\in\mathbb{N}}$ orice şir $(y_j)_{j\in\mathbb{N}}$, cu proprietatea că există un şir strict crescător de numere naturale $(k_j)_{j\in\mathbb{N}}$ astfel încât $y_j = x_{k_j}$, pentru fiecare $j \in \mathbb{N}$. Pentru a nota un subşir al şirului $(x_k)_{k\in\mathbb{N}}$ vom folosi scrierea $(x_{k_j})_{j\in\mathbb{N}}$.

Ținând cont de legătura dintre un șir convergent și subșirurile sale, obținem următoarele rezultate.

Teorema 1.4 . Dacă şirul $(x_k)_{k\in\mathbb{N}}$ cu termeni din \mathbb{R}^n este convergent, atunci orice subşir $(x_{k_k})_{h\in\mathbb{N}}$ al său este convergent și are limita egală cu limita șirului, adică

$$\lim_{h \to \infty} x_{k_h} = \lim_{k \to \infty} x_k.$$

Teorema 1.5 (de existentă a unui şubsir convergent pentru un şir mărginit) Orice şir mărginit cu termeni din \mathbb{R}^n are un subsir convergent.

Relativ la operații cu șiruri convergente cu elemente din \mathbb{R}^n , amintim următoarele:

Teorema 1.6 . Dacă $(x_k)_{k\in\mathbb{N}}$ şi $(y_k)_{k\in\mathbb{N}}$ sunt două şiruri cu termeni din \mathbb{R}^n , convergente, cu $\lim_{k\to\infty} x_k = x$, respectiv $\lim_{k\to\infty} y_k = y$, şi α , β sunt numere reale, atunci şirul $(\alpha x_k + \beta y_k)_{k\in\mathbb{N}}$ are limită şi

$$\lim_{k \to \infty} (\alpha x_k + \beta y_k) = \alpha x + \beta y.$$

Teorema 1.1 are și o importanță deosebită practică deoarece ea ne permite să reducem calculul limitei unui șir cu elemente din \mathbb{R}^n la calcularea a n limite de șiruri de numere reale.

OBSERVAȚIA 1.1. În cazul în care cel puţin unul dintre şirurile coordonatelor corespunzătoare şirului $(x_{\mathbf{k}})_{k\in\mathbb{N}}$ nu este convergent, şirul $(x_{\mathbf{k}})_{k\in\mathbb{N}}$ nu este nici el convergent şi nu are sens să vorbim despre limita lui. (Nu are sens un punct în care o coordonată este $+\infty$ sau $-\infty$).

Exemplu. Fie şirul $(x_k)_{k\in\mathbb{N}}$ cu

$$x_k = (\frac{1}{k+1}, \frac{k-1}{(k+1)^2}, 1 - \frac{1}{k+1}), \text{ oricare ar fi } k \in \mathbb{N}.$$

Deoarece

$$\lim_{k \to \infty} \, \frac{1}{k+1} = 0, \, \lim_{k \to \infty} \, \frac{k-1}{(k+1)^2} = 0, \, \, \mathrm{si} \, \, \lim_{k \to \infty} \, (1 - \frac{1}{k+1}) = 1,$$

vom avea

$$\lim_{k\to\infty}\,(\frac{1}{k+1},\frac{k-1}{(k+1)^2},1-\frac{1}{k+1})\,=\,(0,0,1).$$

EXEMPLU. Fie şirul $(x_k)_{k\in\mathbb{N}}$, cu $x_k=(1/(k+1),k)$, oricare ar fi $k\in\mathbb{N}$. Deoarece $\lim_{k\to\infty} k=+\infty$, în baza obsevației 1.1 şirul $(x_k)_{k\in\mathbb{N}}$ nu este convergent.

Şiruri fundamentale cu termeni din \mathbb{R}^n (opțional). Şirul $(x_k)_{k\in\mathbb{N}}$ din \mathbb{R}^n se numește *şir fundamental* sau *şir Cauchy* dacă oricare ar fi numărul real ε , $\varepsilon > 0$, există un rang s astfel încât oricare ar fi numerele naturale k și p, cu $k \geq s$, să avem $||x_{\mathbf{k}+\mathbf{p}}-x_{\mathbf{k}}|| < \varepsilon$.

Fară greutate se vede că un şir $(x_k)_{k\in\mathbb{N}}$ este fundamental dacă şi numai dacă şirurile coordonatelor sale sunt fundamentale.

Ca urmare, obţinem următorul rezultat important.

Teorema 1.7 (Criteriul lui Cauchy). O condiție necesară și suficientă ca un șir din \mathbb{R}^n să fie convergent este ca el să fie șir fundamental.

2 Funcții reale de mai multe variabile reale

Fie $A \subseteq \mathbb{R}^n$.

Numim funcție reală definită pe A, orice triplet (A, \mathbb{R}, Γ) , unde $\Gamma \subseteq A \times \mathbb{R}$ are proprietatea că pentru orice $x \in A$ există un unic $b \in \mathbb{R}$ astfel încât $(a, b) \in \Gamma$.

Funcții mărginite. O funcție $f =: A \to \mathbb{R}$, unde $A \subseteq \mathbb{R}^n$, se numește mărginită dacă mulțimea $f(A) = \{f(a) \mid a \in A\}$ este o submulțime mărginită a lui \mathbb{R}^p .

Noțiunea de limită a unei funcții reale într-un punct. Fie $n \in \mathbb{N}$, $n \ge 2$ și fie A o submulțime nevidă a lui \mathbb{R}^n .

Elementul $\lambda \in \mathbb{R}$ se numește limită a funcției $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ în punctul $a \in A'$ dacă oricare ar fi V o vecinătate a lui λ , există o vecinătate U_V a lui a astfel încât să avem $f(x) \in V$, pentru orice $x \in (A \setminus \{a\}) \cap U_V$.

În cazul în care $\lambda \in \mathbb{R}$, ținând cont de modul în care s-a definit vecinătatea unui număr real, obținem următoarea caracterizare a limitei, care poate fi luată ca definiție.

 $\lambda \in \mathbb{R}$ este limită a funcției f în punctul $a \in A'$ dacă și numai dacă oricare ar fi numărul real $\varepsilon > 0$, există un număr real $\delta_{\varepsilon} > 0$ cu proprietatea că

$$|f(x) - \lambda| < \varepsilon$$
, pentru orice $x \in A \setminus \{a\}$, $cu ||x - a||_n < \delta_{\varepsilon}$.. (8)

Teorema 2.1 (unicitatea limitei). Dacă $A \subseteq \mathbb{R}^n$ şi $a \in A'$, atunci există cel mult un element $\lambda \in \mathbb{R}$ astfel încât λ să fie limită a funcției $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ în punctul a.

Demonstrație. Să presupunem că f ar avea două limite distincte λ' şi λ'' în IR. Deoarece $\lambda' \neq \lambda''$, vor exista două vecinătăți $V' \in V_{\lambda'}$ şi $V'' \in V_{\lambda''}$ astfel încât

$$V' \bigcap V'' = \emptyset. \tag{9}$$

Mai precis, luând $0 < r \le \frac{1}{2}d(\lambda',\lambda'')$ și considerând vecinătățile V' = B(u',r) și V'' = B(u'',r), avem $V' \cap V'' = \emptyset$.

Deoarece λ' este limită a funcției f în a, va exista o vecinătate U' a lui a astfel încât

$$f(x) \in V'$$
, oricare ar fi $x \in (U' \setminus \{a\}) \cap A$, (10)

și, deoarece λ'' este limită a funcție f în a, va exista o vecinătate U'' a lui a astfel încât

$$f(x) \in V''$$
, oricare ar fi $x \in (U'' \setminus \{a\}) \cap A$. (11)

Întrucât $U' \cap U''$ este o vecinătate a lui a și a este un punct de acumulare al lui A, mulțimea $(A \cap (U' \cap U'')) \setminus \{a\}$ nu este vidă. Fie $x \in (A \cap (U' \cap U'')) \setminus \{a\}$. Din (10) avem $f(x) \in V'$, iar din (11) avem $f(x) \in V''$. Deci $f(x) \in V' \cap V''$, ceea ce contrazice (9). Presupunerea că f ar avea două limite distincte în punctul a este falsă.

Unicitatea limitei, în caz de existență, ne permite să introducem pentru ea o notație specifică. Prin analogie cu cazul real, dacă funcția $f:A\to \mathrm{IR}$ are limită în punctul $a\in A'$, atunci limita lui f în punctul a o vom nota prin $\lim_{x\to a} f(x)$. Atragem însă atenția că, dacă cerința din definiția limitei ca $a\in A'$ se înlocuiește cu $a\in A$, unicitatea limitei nu mai este asigurată.

La curs am demonstrat unicitatea limitei în ${\rm I\!R}$. Ea poate fi extinsă şi în ${\rm I\!R}$. Avem astfel următorul rezultat:

Dacă $A \subseteq \mathbb{R}^n$ și $a \in A'$, atunci există cel mult un element $\lambda \in \overline{\mathbb{R}}$ astfel încât λ să fie limită a funcției $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ în punctul a.

Demonstrația este analogă. Prin absurd se presupune că f ar avea două limite distincte $\lambda', \lambda'' \in \overline{\mathbb{R}}$. Față de cazul discutat anterior, mai avem situațiile în care cel puțin una dintre limite este infinită. În aceste situație, vecinătățile V' și V'' se aleg după cum urmează.

- Dacă $\lambda' = -\infty$ și $\lambda'' = +\infty$, vom lua $V' = (-\infty, -1)$ și $V'' = (1, +\infty)$. Evident $V' \cap V'' = \emptyset$.
- Dacă $\lambda' = -\infty$ şi $\lambda'' \in \mathbb{R}$, vom lua $V' = (-\infty, \lambda 2)$ şi $V'' = (\lambda'' 1, \lambda'' + 1)$. Evident $V' \cap V'' = \emptyset$.
- Dacă $\lambda' \in \mathbb{R}$ şi $\lambda'' = +\infty$, vom lua $V' = (\lambda 1, \lambda + 1)$ şi $V'' = (\lambda + 2, +\infty)$. Evident $V' \cap V'' = \emptyset$.

EXEMPLUL 2.1. Fie funcția $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$,

$$f(x_1, x_2) = \frac{x_1^3}{x_1^2 + x_2^2},$$

pentru fiecare $(x_1,x_2) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Să se demonstreze că $\lim_{(x_1,x_2)\to(0,0)} f(x_1,x_2) = 0$. Fie $\varepsilon > 0$ și fie δ_{ε} un număr real strict mai mare decât 0. Condiția $\|(x_1,x_2)-(0,0)\|_2 < \delta_{\varepsilon}$, echivalentă cu $\sqrt{(x_1-0)^2+(x_2-0)^2} < \delta_{\varepsilon}$, implică

$$|x_1| < \delta_{\varepsilon} \text{ si } |x_2| < \delta_{\varepsilon}.$$
 (12)

Deoarece $\left| \frac{x_1^2}{x_1^2 + x_2^2} \right| \le 1$, avem

$$|f(x_1, x_2) - 0| = \left| \frac{x_1^2}{x_1^2 + x_2^2} \right| \cdot |x_1| \le |x_1|.$$
(13)

Luând acum $\delta_{\varepsilon} = \varepsilon$, din (12) şi (13) obţinem

$$|f(x_1, x_2) - 0| \le |x_1| < \delta_{\varepsilon} = \varepsilon,$$

pentru orice $(x_1, x_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ cu $\|(x_1, x_2) - (0, 0)\|_2 < \delta_{\varepsilon}$. Cum $\varepsilon > 0$ a fost ales arbitrar, rezultă că $\lim_{(x_1, x_2) \to (0, 0)} f(x_1, x_2) = 0$.

Criteriul lui Heine de exitență a limitei unei funcții într-un punct. În numeroase situații este foarte util de cunoscut următorul rezultat legat de existența limitei unei funcții într-un punct.

Teorema 2.2 (criteriul lui Heine). Funcția $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ are limita λ în punctul $a \in A'$ dacă și numai dacă oricare ar fi șirul $(x_k)_{k \in \mathbb{N}}$, cu proprietățile:

- i) $x_k \in A \setminus \{a\}$, oricare ar fi $k \in \mathbb{N}$ şi
- ii) $\lim_{k \to \infty} x_k = \lambda$, şirul $(f(x_k))_{k \in \mathbb{N}}$ are limita λ .

Demonstrație.* Necesitatea. Fie şirul $(x_k)_{k\in\mathbb{N}}$ satisfăcând condițiile i) şi ii). Fie V o vecinătate a lui λ . Deoarece $\lambda = \lim_{x\to a} f(a)$, va exista o vecinătate $U \in V_a$ astfel încât dacă $x \in (A \setminus \{a\}) \cap U$, să avem $f(x) \in V$. Întrucât, $\lim_{k\to\infty} x_k = a$, deducem că pentru fiecare $j \in \{1, \ldots, n\}$, avem $\lim k \to \infty x_{kj} = a_j$. Ca urmare, va exista un rang s încât

$$x_{kj} \in U$$
, oricare ar fi $k \in \mathbb{N}$, $k \ge s$, oricare ar fi $j \in \{1, \dots, n\}$. (14)

În baza celor de mai sus, deducem că $f(x_{k1}, \ldots, x_{kn}) \in V$, oricare ar fi numărul natural $k, k \geq s$.

Cum V a fost o vecinătate aleasă arbitrar, rezultă că

$$\lim_{k \to \infty} f(x_{k1}, \dots, x_{kn}) = \lambda,$$

ceea ce trebuia demonstrat.

Suficiența o vom demonstra prin reducere la absurd. Să presupunem că $\lambda \neq \lim_{x\to a} f(x)$. Va exista atunci o vecinătate V a punctului λ astfel încât, pentru orice vecinătate U a punctului a, există $x \in (U \setminus \{a\}) \cap A$ cu $f(x) \notin V$. Atunci, pentru fiecare număr natural $k, k \geq 1$, va exista un element $a_k \in A \setminus \{a\}$ astfel încât să avem $a_k \in B(a,1/k)$ și $f(a_k) \notin V$. Am obținut astfel șirul $(a_k)_{k\in\mathbb{N}}, j \in \{1,\ldots,n\}$, care satisface condițiile i) și ii), pentru care șirul $(f(a_k))_{k\in\mathbb{N}}$ nu converge către λ , în contradicție cu ipoteza. Întrucât am ajuns la o contradicție, presupunerea că λ nu este limita funcției f în punctul a este falsă. Deci $\lambda = \lim_{x\to a} f(x)$.

Consecința 2.3 Dacă pentru funcția $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ și pentru punctul $a \in A'$ există două șiruri (x_k) și (y_k) , cu termeni din mulțimea $A \setminus \{a\}$, convergente la a, pentru care șirurile $(f(x_k))$ și $(f(y_k))$ au limite diferite sau unul dintre aceste șiruri nu are limită, atunci funcția f nu are limită în punctul a.

EXEMPLUL 2.2. Studiați existența limitei în punctul (0,0) pentru funcția $f \in \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, dată prin

$$f(x_1, x_2) = \frac{x_1 x_2}{x_1^2 + x_2^2}$$
, oricare ar fi $(x_1, x_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$.

Să considerăm şirurile (x_k) cu $x_k = (0, 1/k)$, oricare ar fi $k \in \mathbb{N}^*$, şi (y_k) , cu $y_k = (1/k, 1/k)$, oricare ar fi $k \in \mathbb{N}^*$. Cum

$$\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} \frac{0}{0 + (1/k)^2} = 0,$$

şi

$$\lim_{k \to \infty} f(y_{\mathbf{k}}) = \lim_{k \to \infty} f(\frac{1}{k}, \frac{1}{k}) = \frac{1}{2},$$

în baza consecinței 2.3, funcția f nu admite limită în punctul (0,0).

EXEMPLUL 2.3. Fie $A = \mathbb{R} \times \mathbb{R}^*$ și fie funcția $f: A \to \mathbb{R}$ dată prin $f(x_1, x_2) = \frac{x_1}{x_2^2}$, oricare ar fi $(x_1, x_2) \in A$. Să se cerceteze dacă funcția f are limită în punctul (0,0).

Observăm faptul că $(0,0) \in A'$ și că șirurile $(x_k)_{k \in \mathbb{N}^*}, x_k = (\frac{1}{k}, \frac{1}{k})$, oricare ar fi $k \in \mathbb{N}^*$, și $(k)_{k \in \mathbb{N}^*}, y_k = (0, \frac{1}{k})$, oricare ar fi $k \in \mathbb{N}^*$, și

satisfac condițiile i) și ii) din teorema 2.2. Dacă funcția f ar avea limită în (0,0), ar trebui ca șirurile $(f(x_k))_{k\in\mathbb{N}^*}$ și $(f(k))_{k\in\mathbb{N}^*}$ să aibă aceeași limită. Avem:

$$\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} f(1/k, 1/k) = \lim_{k \to \infty} \frac{\frac{1}{k}}{\left(\frac{1}{k}\right)^2} = \lim_{k \to \infty} k = +\infty$$

$$\text{si } \lim_{k \to \infty} f(y_k) = \lim_{k \to \infty} f(0, 1/k) = \lim_{k \to \infty} \frac{0}{\left(\frac{1}{k}\right)^2} = \lim_{k \to \infty} 0 = 0.$$

Deducem că f nu are limită în punctul (0,0).

3 Probleme propuse pentru seminar și ca temă

1) Calculați limita șirului $(x_k)_{k \in \mathbb{N}^*}$ din \mathbb{R}^n , dacă:

a)
$$n = 2$$
 și $x_k = (\frac{\cos k}{k}, \frac{\sum_{j=1}^k j(j+1)}{3k(k+1)(k+2)}), \ \forall k \in \mathbb{N}^*;$

b)
$$n=2$$
 și $x_k=(\frac{2^{2k}}{(2+\frac{1}{k})^{2k}},\frac{\alpha^k+1}{5^k+\alpha^k}), \forall k \in \mathbb{N}^*, \alpha \text{ fiind un număr real;}$

c)
$$n = 2$$
 și $x_k = (\frac{2^k}{k!}, \sqrt[k]{2}), \ \forall k \in \mathbb{N}^*;$

d)
$$n = 3$$
 şi $x_k = (\frac{k^2}{1+2+...+k}, \sqrt[k]{k}, \frac{2^k + \alpha^k}{3^k}), \ \forall k \in \mathbb{N}^*, \ \alpha \in \mathbb{R}_-;$

e)
$$n=3$$
 şi $x_{\mathbf{k}}=((\frac{k^2-3}{k^2+k+1})^k, \frac{\sin k}{k}, \frac{\alpha^k}{k}), \ \forall k \in \mathbb{N}^*, \ \alpha \in \mathbb{R}_+.$

2) Determinați domeniul maxim de definiție pentru următoarele funcții:

i)
$$f(x,) = y \ln(\cos \frac{\pi}{x});$$

ii)
$$f(x,y) = \sqrt{x^2 - 4} - \ln(9 - y^2);$$

iii)
$$f(x, y, z) = \sqrt{z} - \frac{z}{x^2 + y^2 - 1}$$
;

iv)
$$f(x, y) = \arcsin(\frac{x-y}{x+y})$$
.

3) Utilizând definiția limitei sau propoziția echivalentă cu definiția, arătați că:

a)
$$\lim_{(x_1,x_2)\to(1,2)} (2x_1 + 3x_2) = 8;$$

b)
$$\lim_{(x_1,x_2)\to(-1,0)} \frac{x_1+1}{1+x_2} = 0.$$

4) Arătați că funcția $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x_1, x_2) = \begin{cases} 1, \ \text{dacă} \ x_1 \cdot x_2 \neq 0, \\ 0, \ \text{dacă} \ x_1 \cdot x_2 = 0, \end{cases}$$

nu are limită în origine.

5) Arătaţi că:

a)
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin\frac{1}{x^2+y^2} = 0;$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1;$$

c)
$$\lim_{(x,y)\to(1,2)} xy^2 = 4;$$

d)
$$\lim_{(x_1,x_2)\to(0,0)} \frac{x_1(x_2)^2}{(x_1)^2+(x_2)^2} = 0;$$

e)
$$\lim_{(x,y)\to(2,4)} (2xy + x) = 18.$$

6) Cercetați existența limitelor

a)
$$\lim_{(x,y)\to(0,0)} \frac{2xy^2}{3x^2+y^4}$$
;

b)
$$\lim_{(x_1,x_2)\to(0,0)} \frac{x_1x_2}{\sqrt{x_1x_2+1}-1}$$
.