Shiyu Tian1 Hongxin Wei2 Yiqun Wang1 Lei Feng3* 1Chongqing University 2Southern University of Science and Technology 3Singapore University of Technology and Design

- Problem / objective
- Label ambiguity issue in Partial-Label Learning
- Contribution / Key idea
- Propose novel partial-label learning method called CroSel

Shiyu Tian1 Hongxin Wei2 Yiqun Wang1 Lei Feng3* 1Chongqing University 2Southern University of Science and Technology 3Singapore University of Technology and Design

Partial Label 이란?

- Candidate label set
- 각 이미지마다 candidate label set 할당
- Candidate label set 의 구성 : 하나의 true label + 여러 negative labels
- 주의: Candidate label set 에는 true label 이 반드시 포함되어 있다는 전제.

Partial Label Learning 이란?

- Task : Multi-class classification
- 학습 목표 : 각 이미지마다 주어진 candidate label set 에서 true label 찾아내는 능력을 학습

Shiyu Tian1 Hongxin Wei2 Yiqun Wang1 Lei Feng3* 1Chongqing University 2Southern University of Science and Technology 3Singapore University of Technology and Design

Ours 등장 배경

Partial Label Learning 의 한계 : Negative labels 들이 multi-class classifier 의 학습을 방해

Ours:

- Candidate label set 에서 true label 찾아내서, 모델 학습 중에 다른 negative labels 의 방해를 최소화시키겠다.
- 선택한 true labels 들을 사용하여 supervised learning 을 하겠다.

Shiyu Tian1 Hongxin Wei2 Yiqun Wang1 Lei Feng3* 1Chongqing University 2Southern University of Science and Technology 3Singapore University of Technology and Design

Warm up

- 두 모델에 대하여, 10 에포크만큼 학습 및 메모리뱅크 업데이트
- 학습 목표 : 이미지의 true label 은 candidate label set 안에 반드시 존재한다.

High-confident data selection

$$\beta_1 = \mathbb{I}(\operatorname{argmax}(\boldsymbol{q}^i) \in S),$$
 (1)

$$\beta_2 = \mathbb{I}(\operatorname{argmax}(\boldsymbol{q}^i) = \operatorname{argmax}(\boldsymbol{q}^{i+1})),$$
 (2)

$$\beta_3 = \mathbb{I}(\frac{1}{t} \sum_{i=1}^t \max(\boldsymbol{q}^i) > \gamma), \tag{3}$$

High-confident pseudo label 선택 기준 3가지

 $\mathcal{D}_{\mathrm{sel}} = ((\boldsymbol{x}_i, \operatorname{argmax}(\boldsymbol{q}_i^t)) | (\beta_1^i \wedge \beta_2^i \wedge \beta_3^i) = 1, \boldsymbol{x}_i \in \mathcal{D}),$: 위 3가지 기준 모두 만족해야 선택.

(4) 즉, 위 3가지 기준 모두 만족하면 clean label 로 간주. 전유진

Cross-supervised training

- 1. Cross selection : 모델 1 이 선택한 데이터로 모델 2 학습. 마찬가지로, 모델 2 가 선택한 데이터로 모델 1 학습.
- Cross selection 이유 : 두 모델이 서로 다른 decision boundary 를 만들어서, 앞서 선택했던 confident pseudo labels 에서 noisy label 이 있다면 이를 바로 잡아주기 위함.
- 2. Selected label loss

$$\mathcal{L}_{\mathrm{l}} = \frac{1}{|\mathcal{D}_{\mathrm{sel}}|} \sum_{\boldsymbol{x} \in \mathcal{D}_{\mathrm{sel}}} \mathcal{L}_{\mathrm{CE}}(f(\boldsymbol{x}_{\mathrm{w}}), \hat{y}),$$
 (5) $\hat{y} = \operatorname{argmax}(\boldsymbol{q}^{t})$: selected pseudo-label

Co-mix Consistency Regulation

1. pseudo-label 생성

$$\boldsymbol{p}_i = \begin{cases} \frac{\exp(f_i(\boldsymbol{x})^{\frac{1}{T}})}{\sum_{i \in S} \exp(f_i(\boldsymbol{x})^{\frac{1}{T}})}, & i \in S, \\ 0, & i \notin S, \end{cases}$$

$$i \in S,$$

$$i \notin S,$$

$$(7)$$

$$i \in S,$$

$$i \in$$

2. MixUp

$$\lambda \sim \text{Beta}(\alpha, \alpha),$$

$$\lambda' = \max(\lambda, 1 - \lambda),$$

$$x' = \lambda' x_1 + (1 - \lambda') x_2,$$

$$\boldsymbol{p}' = \lambda' \boldsymbol{p}_1 + (1 - \lambda') \boldsymbol{p}_2,$$

3. Consistency regulation loss

$$\mathcal{L}_{cr} = \frac{1}{2n} \sum_{i=1}^{2n} \mathcal{L}_{CE}(f(\boldsymbol{x}_i'), \boldsymbol{p}_i'), \tag{12}$$

Shiyu Tian1 Hongxin Wei2 Yiqun Wang1 Lei Feng3* 1Chongqing University 2Southern University of Science and Technology 3Singapore University of Technology and Design

Overall loss

$$\mathcal{L}_{\text{all}} = \mathcal{L}_{\text{l}} + \lambda_{\text{d}} * \mathcal{L}_{\text{cr}}, \tag{13}$$

$$\lambda_{\rm d} = (1 - r_{\rm s}) * \lambda_{\rm cr}, \tag{14}$$

$$\mathcal{L}_{l} = \frac{1}{|\mathcal{D}_{sel}|} \sum_{\boldsymbol{x} \in \mathcal{D}_{sel}} \mathcal{L}_{CE}(f(\boldsymbol{x}_{w}), \hat{y}), \tag{5}$$

$$\mathcal{L}_{cr} = \frac{1}{2n} \sum_{i=1}^{2n} \mathcal{L}_{CE}(f(\boldsymbol{x}_i'), \boldsymbol{p}_i'), \qquad (12)$$

Shiyu Tian1 Hongxin Wei2 Yiqun Wang1 Lei Feng3* 1Chongqing University 2Southern University of Science and Technology 3Singapore University of Technology and Design

Experiments

Table 1. Accuracy (mean±std) comparisons on benchmark datasets.

Dataset	q	Ours	PoP	CRDPLL	PiCO	PRODEN	LWS	CC
	0.1	97.31±.04%	$97.17 \pm .01\%$	97.41 ±.06%	$96.10 \pm .06\%$	$95.66 \pm .08\%$	$91.20 \pm .07\%$	$90.73 \pm .10\%$
CIFAR-10	0.3	97.50±.05%	$97.08 \pm .01\%$	$97.38 \pm .04\%$	$95.74 \pm .10\%$	$95.21 \pm .07\%$	$89.20 \pm .09\%$	$88.04 \pm .06\%$
	0.5	97.34±.05%	$96.66 \pm .03\%$	$96.76 \pm .05\%$	$95.32 \pm .12\%$	$94.55 \pm .13\%$	$80.23 \pm .21\%$	$81.01 \pm .38\%$
	0.1	97.71±.05%	97.55±.06%	97.63±.06%	96.58±.04%	96.20±.07%	96.42±.09%	96.99±.17%
SVHN	0.3	97.96±.05%	$97.50 \pm .03\%$	$97.65 \pm .07\%$	$96.32 \pm .09\%$	$96.11 \pm .05\%$	$96.15 \pm .08\%$	$96.67 \pm .20\%$
	0.5	97.86±.06%	$97.31 \pm .01\%$	$97.70 \pm .05\%$	$95.78 \pm .05\%$	$95.97 \pm .03\%$	$95.79 \pm .05\%$	$95.83 \pm .23\%$
	0.01	84.24±.09%	83.03±.04%	82.95±.10%	74.89±.11%	72.24±.12%	62.03±.21%	66.91±.24%
CIFAR-100	0.05	83.92±.24%	$82.79 \pm .02\%$	$82.38 \pm .09\%$	$73.26 \pm .09\%$	$70.03 \pm .18\%$	$57.10 \pm .17\%$	$64.51 \pm .37\%$
	0.10	84.07±.16%	$82.39 \pm .04\%$	$82.15 \pm .20\%$	$70.03 \pm .10\%$	$69.82 \pm .11\%$	$52.60 \pm .54\%$	$61.50 \pm .36\%$

 $q=P(\overline{y}\in S|\overline{y}\neq y)$: candidate label set 구성 기준. 결국, noise magnitude

Shiyu Tian1 Hongxin Wei2 Yiqun War 3Singapore University of Technology

Table 2. Selection ratio and selection accuracy (mean \pm std) on benchmark datasets. S-ratio represents the selection ratio and S-acc represents selection accuracy in $\mathcal{D}_{\mathrm{sel}}$.

of Science and Technology

Experiments

Datasets	Setting	Index	Performance	
	q = 0.1	S-ratio S-acc	99.09±.07% 99.79±.05%	
CIFAR-10	q = 0.3	S-ratio S-acc	98.10±.10% 99.55±.03%	
	q = 0.5	S-ratio S-acc	96.25±.12% 99.44±.06%	
	q = 0.1	S-ratio S-acc	97.25±.14% 99.84±.06%	
SVHN	q = 0.3	S-ratio S-acc	76.42±.21% 99.77±.06%	
	q = 0.5	S-ratio S-acc	73.21±.15% 99.34±.02%	
	q = 0.01	S-ratio S-acc	96.58±.13% 99.71±.06%	
CIFAR-100	q = 0.05	S-ratio S-acc	95.45±.21% 98.29±.15%	
	q = 0.10	S-ratio S-acc	93.61±.12% 97.93±.11%	

Shiyu Tian1 Hongxin Wei2 Yiqun Wang1 Lei Feng3* 1Chongqing University 2Southern University of Science and Technology 3Singapore University of Technology and Design

Experiments

Table 3. Results on CIFAR-100 in fine-grained settings.

Method	Accuracy	Method	Accuracy	
PoP	82.04%	CRDPLL	81.53%	
PiCO	73.38%	PRODEN	71.16%	
LWS	54.08%	CC	64.91%	
Cros	el (ours)	83.34%		

Experiments

Figure 3. Selection ratio comparison between dual model and single model on CIAFR-10 and CIAFR-100.