SS 2021

Marius Gritl

Ferienkurs Analysis 2 für Physik (MA9203)

Probeklausur

24. September 2021 Arbeitszeit: 90 Minuten

- T		
Name		
INAILIE'		

Punkteverteilung

Aufgabe	Punkte	Erreicht
1	19	
2	10	
3	11	
4	10	
5	11	
6	9	
7	9	
Gesamt:	79	

Bestätigung der Verhaltensregeln

Hiermit versichere ich, dass ich diese Klausur ausschließlich unter Verwendung der unten aufgeführten Hilfsmittel selbst löse und unter meinem Namen abgebe.

Unterschrift:	

Bearbeitungshinweise:

- Diese Klausur enthält 14 Seiten (Einschließlich dieses Deckblatts) und 7 Aufgaben. Bitte kontrollieren Sie jetzt, dass sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Prüfung beträgt 79 Punkte.
- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- Erlaubte Hilfsmittel: Ein (1) selbsterstelltes, einseitig beschriftetes DIN A4-Blatt.
- Es werden nur solche Ergebnisse bewertet, bei denen der Lösungsweg erkennbar ist. Alle Antworten sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht anders vermerkt ist.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.

Das Blatt mit den Problemstellungen wird am Prüfungstag zur Prüfungszeit, d.h. am 24. September 2021 ab 10:00 Uhr auf der Moodle-Seite https://www.moodle.tum.de/course/view.php?id=70594 des Kurses für Sie zur Verfügung stehen.

Die Arbeitszeit endet am 24. September 2021 um 11:30 Uhr. Letzter Abgabetermin ist Freitag, der 24. September 2021 um 12:00 Uhr.

 \square Wahr \square Falsch

1. (19 Punkte) Gemischtes

In den folgenden Teilaufgaben sind **keine** Begründungen gefordert und werden auch nicht zur Bewertung herangezogen. Gewertet werden ausschließlich die Ergebnisse in den dafür vorgesehenen Kästen. Sollte der Platz in den besagten Kästen nicht ausreichen, so sollten Sie in eindeutiger Weise kennzeichnen, wo Sie die Aufgabe bearbeitet haben

habe	en.	
(a)	(3 Punkte) Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := x^4 + xy + 2y^2$ mit ihren stationären Punkten $x_1 = (0,0)$, $x_2 = \left(\frac{1}{4}, -\frac{1}{16}\right)$ und $\left(-\frac{1}{4}, \frac{1}{16}\right)$. Welche der folgenden Aussagen sind wahr?	$ \begin{array}{c c} $
	• x_1 ist ein lokales Maximum. \square Wahr \square Falsch • x_2 ist ein Sattelpunkt. \square Wahr \square Falsch • x_3 ist ein lokales Minimum. \square Wahr \square Falsch	
(b)	 (6 Punkte) Gegeben sei die Menge B := {(x,y) ∈ R² : y ≥ 0, x² + ½y² ≤ 4}. (i) (3 Punkte) Geben Sie zwei Kurven an, die zusammen den Rand ∂B von B darstellen. 	□0 □1 □2 □3 □4 □5 □6
	(ii) (3 Punkte) Sei L die Bogenlänge des Randes von B . Bestimmen Sie $a,b,c\in\mathbb{R},$ so dass $L=a+b\int\limits_0^\pi\sqrt{1+c\cos^2t}\;\mathrm{d}t.$	
	$\begin{bmatrix} a = & b = \\ & b = \\ & c = $	

(c) (7 Punkte) Gegeben sei das Vektorfeld

• D ist kompakt.

$v: \mathbb{R}^3 \to \mathbb{R}^3, v(x, y, z) = \left(\frac{2xz}{1 + x^2} + y, x, \ln(1 + z)\right)$	$(x^2) - 2z$.		
(i) (3 Punkte) Welche der Aussagen sind für den Definitio treffend?	nsbereich D		$\Box 2$
\bullet D ist einfach zusammenhängend.	\square Wahr	$\hfill\Box$ Falsch	$\Box 4$ $\Box 5$
• D ist konvex.	$\hfill\Box$ Wahr	$\hfill\Box$ Falsch	$\Box 6$
\bullet D ist sternförmig.	$\hfill\Box$ Wahr	$\hfill\Box$ Falsch	$\Box 7$

 $\Box 0$ $\Box 1$ $\square 2$

 $\square 3$

(ii) (2 Punkte) Ist v konservativ? Wenn ja, geben Sie ein Potential f an.

$$\Box$$
 Ja, $f(x, y, z) =$

(iii) (2 Punkte) Welchen Wert hat das Kurvenintegral $\int_{\gamma} v(r) \cdot dr$ mit $\gamma : [0,1] \to \mathbb{R}^3$, $\gamma(t) = \left(\sin(\pi t), 5t^2 + t - 2, 2te^{t^2 - t}\right)?$ $\int_{\gamma} v(r) \cdot dr =$

$$\int_{\gamma} v(r) \cdot \mathrm{d}r =$$

(d) (3 Punkte) Gegeben sei die Menge $M_a:=\{(x,y)\in\mathbb{R}^2:x^2-y^2=a\}$ mit $a\in\mathbb{R}$. Geben Sie ein $a\in\mathbb{R}$ an, so dass M_a keine eindimensionale Untermannigfaltigkeit des \mathbb{R}^2 ist.

$$a =$$

 $\Box 0$

 $\Box 1$ $\Box 2$

 $\Box 0$ $\Box 1$

 $\Box 2$

 $\Box 3$ $\Box 4$ $\Box 5$ $\Box 6$

 $\Box 0$

 $\Box 1$ $\square 2$

2. (10 Punkte) Fourierreihen

Es sei \tilde{f} : $[-\pi,\pi] \to \mathbb{R}$ definiert durch $\tilde{f}(x) = \langle \cdot \rangle$	$\begin{cases} 1, \\ 0, \end{cases}$	$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. \tilde{f} wird dann 2π sonst	۲–
periodisch durch die Funktion f auf ganz $\mathbb R$ fortges	ètzt.		

(a) (2 Punkte) Skizzieren Sie f auf dem Intervall $[-2\pi, 2\pi]$.

- (b) (6 Punkte) Berechnen Sie nachvollziehbar die Fouriersinus- und Fourierkosinuskoeffizienten von f.
- (c) (2 Punkte) Die Fourierreihe von f konvergiert gegen f
 - □ gleichmäßig \square nicht □ punktweise

 $\Box 0$

 $\Box 1$ $\square 2$

3. (11 Punkte) Vektoranalysis

Seien $u, v : \mathbb{R}^3$	$\rightarrow \mathbb{R}^3$	stetig	differenzierbare	Vektorfelder.

(a) (2 Punkte) Formulieren Sie div v und die i-te Komponente von rot v als Summe.

		$\operatorname{div} v =$			$(\operatorname{rot} v)_i =$		$\begin{array}{ c c } \hline \square 0 \\ \hline \square 1 \\ \hline \end{array}$
							$\square 2$
b)	(6 Pu	nkte) Zeig	en Sie, das	s $\nabla \cdot (u \times v) =$	$= v \cdot (\nabla \times u) - v$	$u \cdot (\nabla \times v).$	$\Box 3$
							□5 □6

(c) (3 Punkte) Bestimmen Sie die Divergenz von $u \times v$ mit $u = (xz, 0, z)$ ($\sinh x$, $\tanh(\ln y)$, $\cosh z$).		□0 □1
	l I	$\square 2$ $\square 3$

 $\Box 0$ $\Box 1$

 $\Box 0$ $\Box 1$

 $\square 2$

 $\Box 0$

 $\Box 1$

 $\begin{array}{c} \square 2 \\ \square 3 \\ \square 4 \end{array}$

4. (10 Punkte) Satz über implizite Funktionen

Wir betrachten das Gleichungssystem

$$x + 2y^2 + 3z^3 = 0$$
$$e^x + e^{2y} + e^{3z} = 3$$

(a)	(1 Punkt)	Geben Sie eine	Lösung	$(x_0, y_0, z_0) de$	es Gleichungssystems an.
-----	-----------	----------------	--------	----------------------	--------------------------

 $(x_0, y_0, z_0) =$

(b) (5 Punkte) Zeigen Sie, dass sich das Gleichungssystem in einer Umgebung der in (a) gefundenen Lösung nach x,y als Funktionen von z auflösen lässt.

(c) (4 Punkte) Seien $z \mapsto x(z)$ und $z \mapsto y(z)$ die Lösungsfunktionen aus (b). Bestimmen Sie $x'(z_0)$ und $y'(z_0)$.

5. (11	Punkte) Extrema unter Nebenbedingungen	
,	(3 Punkte) Sei $f: \mathbb{R}^n \to \mathbb{R}$ stetig und $N:=\{x \in \mathbb{R}^n: f(x)=0\}$. Zeigen Sie, dass N abgeschlossen ist.	
		$\begin{bmatrix} \Box 1 \\ \Box 2 \end{bmatrix}$
(b)	(8 Punkte) Sei nun $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = xy$. Maximieren Sie f auf der Menge $M:=\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$.	□3 □4
		□7 □8

6. (9 Punkte) **Gewöhnliche Differentialgleichungen**

Gege	ben sei das Anfangswertproblem $\dot{x}(t) = -\frac{x(t)}{t+x(t)} (\star), x(0) = 1.$	
]	(5 Punkte) Bestimmen Sie ein erstes Integral der Differentialgleichung (\star) , d.h., eine Funktion $V: \mathbb{R}^2 \to \mathbb{R}$, so dass $V(t, x(t)) = \text{const.}$ für jede Lösung $x: I \to \mathbb{R}$ von (\star) gilt.	□0 □1 □2 □3 □4 □5
	(4 Punkte) Bestimmen Sie eine Lösung des obigen Anfangswertproblems mit maximalem Definitionsbereich.	

7. (9 Punkte) Kurze Fragen

(b)

Im Folgenden sind einige Aussagen gegeben, deren Wahrheitsgehalt Sie überprüfen müssen. Kreuzen Sie jeweils an, ob die Aussage wahr oder falsch ist und geben Sie auch eine Begründung für Ihre Entscheidung an.

Antworten ohne Begründung werden nicht bewertet!

(a) (3 Punkte) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$f(x,y):=\begin{cases} \frac{x\cdot y^{21}}{x^2+y^{42}}, & (x,y)\neq (0,0),\\ 0, & (x,y)=(0,0), \end{cases}$ ist auf \mathbb{R}^2 stetig.	$ \begin{array}{c c} $
□ Wahr; Begründung: □Falsch; Begründung/Gegenbeispiel:	□3
(3 Punkte) Das Anfangswertproblem $\dot{x}(t)=t^3x(t), x(\sqrt{2})=-e$ besitzt die eindeutige Lösung $x:\mathbb{R}\to\mathbb{R}, x(t)=e^{\frac{1}{4}t^4}.$	$ \begin{array}{c c} \square 0 \\ \square 1 \\ \square 2 \end{array} $
□ Wahr; Begründung: □Falsch; Begründung/Gegenbeispiel:	$\square 3$

(c)	(3 Punkte) Sei $L: \mathbb{R}^3 \to \mathbb{R}$, $(t, x, v) \mapsto L(t, x, v)$ eine Lagrangefunktion.	$\Box 0$
	Ist $\partial_2 L(t, x, v) = 0$, so ist $\partial_3 L(t, x, v)$ ein erstes Integral.	$\Box 1$
		$\square 2$
	□ Wahr; Begründung: □Falsch; Begründung/Gegenbeispiel:	$\Box 3$
		ĺ