

Discovery and Characterization of Novel Microviridin-like RiPPs

Mingyu Choi, Hyunbin Lee, Seokhee Kim*

Department of Chemistry, Seoul National University, Gwanak-Gu, Seoul 151-747, Korea

Introduction

RiPP = Ribosomally synthesized and Post-translationally modified Peptides

Microviridin, a subfamily in RiPP, can be a good model system to study by its simple PTM

Recent Studies

Bio Informatic Study

Cross-linking Pattern Analysis

N. italica

Members of RiPPs of same subfamily show equal level of dehydration

Group 5 (TTxxxxEE): -2 H₂O from each repeat

Group 3b (TxTxTxxxxExSDSD): -3 H₂O from each repeat

Vibrio sp. JCM 18905

Group 3c (TxxTxTxExxDxxE): -3 H₂O from each repeat

Number of conserved amino acids D, E in each repeat correlates to the dehydration level in each subfamily

MS² analysis showed that -OH group on well-conserved threonines participates in ω -esterification

Future Plan

Reference

Further study will focus on understanding the biosynthesis of these RiPPs and engineering

Angew. Chem. Int. Ed., 2008, 47, 7756-7759

Cell Chem. Biol., 2011, 18, 1413-1421

Nat. Prod. Rep., 2013, 30, 108-160

Nat. Chem. Biol., **2016**, *12*, 973-979

Biochemistry, **2017**, 56, 4927-4930