Automatentheorie und ihre Anwendungen Teil 3: endliche Automaten auf unendlichen Wörtern

Wintersemester 2018/19 Thomas Schneider

AG Theorie der künstlichen Intelligenz (TdKI)

http://tinyurl.com/ws1819-autom

Überblick

- Motivation
- 2 Grundbegriffe und Büchi-Automaten
- 3 Abschlusseigenschaften
- 4 Charakterisierung
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Und nun ...

Motiv

- Motivation
- 2 Grundbegriffe und Büchi-Automater
- Abschlusseigenschafter
- 4 Charakterisierung
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- 7 Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Terminierung

Terminierung von Algorithmen ist wichtig für Problemlösung.

Übliches Szenario:

- Eingabe: endliche Menge von Daten
- Lasse Programm P laufen, bis es terminiert
- Ausgabe: Ergebnis, das durch P berechnet wurde

Um Ausgabe zu erhalten, muss P für jede Eingabe terminieren.

Beispiel: Validierung von XML-Dokumenten für gegebenes Schema

- Konstruiere Automaten für Schema und Dokument (terminiert)
- a Paduziara auf Laurhaitanrahlam (tarminiart)
- Reduziere auf Leerheitsproblem (terminiert)
- Löse Leerheitsproblem
 (sammle erreichbare Zustände terminiert)

Terminierung unerwünscht

Von manchen Systemen/Programmen fordert man, dass sie nie terminieren.

Beispiele:

- (Mehrbenutzer-)Betriebssysteme sollen beliebig lange laufen ohne abzustürzen, egal was Benutzer tun
- Bankautomaten, Flugsicherungssysteme, Netzwerkkommunikationssysteme, . . .

Gängiges Berechnungsmodell:

- endliche Automaten mit nicht-terminierenden Berechnungen
- Terminierung wird als Nicht-Akzeptanz angesehen
- ursprünglich durch Büchi entwickelt (1960)
 Ziel: Algorithmen zur Entscheidung mathematischer Theorien

Ziel und Vorgehen dieses Kapitels

Ziel

Beschreibung von Automatenmodellen mit **unendlichen** Eingaben und **nicht-terminierenden** Berechnungen

Vorgehen

- Theorie: ausgiebiges Studium von Büchi-Automaten und der von ihnen erkannten Sprachen
 - Definition, Abschlusseigenschaften
 - Charakterisierung mittels regulärer Sprachen
 - Determinisierung
 - Entscheidungsprobleme
- Anwendung von Büchi-Automaten:
 Spezifikation & Verifikation in Linearer Temporallogik (LTL)

Beispiel: Philosophenproblem

(Dining Philosophers Problem)

Erläutert Nebenläufigkeit und Verklemmung von Prozessen

Demonstriert auch unendliche Berechnungen

Hier: einfachste Version mit 3 Philosophen

Philosophenproblem

3 Philosophen P_1, P_2, P_3

Für alle i gilt: entweder denkt P_i , oder P_i isst.

Alle P_i sitzen um einen runden Tisch.

Jeder P_i hat einen Teller mit Essen vor sich.

Zwischen je zwei Tellern liegt ein Essstäbchen.

Um zu essen, benötigt P_i beide Stäbchen neben seinem Teller.

 \Rightarrow Keine zwei P_i, P_j können gleichzeitig essen.

Skizze zum Philosophenproblem

Zusammenfassung

- Für alle i: entweder denkt P_i , oder P_i isst.
- Keine zwei P_i , P_i können gleichzeitig essen.

Modellierung durch endliches Transitionssystem

Annahmen

- Am Anfang denken (d) alle P_i .
- Reihum können sich P₁, P₂, P₃ entscheiden, ob sie denken oder essen (e) wollen.

Zustände des Systems

- Anfangszustand ddd1: alle P_i denken, und P_1 trifft nächste Entscheidung.
- alle zulässigen Zustände:

```
ddd1 edd1 ded1 dde1
ddd2 edd2 ded2 dde2
ddd3 edd3 ded3 dde3
```

Zustandsüberführungen:

d oder e – je nach Entscheidung des P_i , der an der Reihe ist

Das Transitionssystem

Was sind die Eingaben in das System?

Endliche Zeichenketten über $\Sigma = \{d, e\}$? Dann ist das System ein NEA.

▶ Unendliche Zeichenketten über $\Sigma = \{d, e\}!$

Warum unendliche Zeichenketten?

Nehmen an, jeder P_i möchte beliebig oft denken und essen.

System soll dazu beliebig lange ohne Terminierung laufen.

Philosoph P_i heißt zufrieden, wenn er währenddessen unendlich oft denkt und isst.

→ Mögliche Fragen:

- Mann das System überhaupt beliebig lange laufen?
- ② Ist es zusätzlich möglich, dass P_i zufrieden ist?
- **3** Ist es möglich, dass P_1 , P_2 zufrieden sind, aber P_3 nicht?
- \bullet Ist es möglich, dass alle P_i zufrieden sind?

Frage 1

Ist es überhaupt möglich, dass das System beliebig lange läuft?

Ja: jeder Zustand hat mindestens einen Nachfolgerzustand. dddddd... ist ein möglicher unendlicher Lauf.

Frage 2

Ist es möglich, dass P_1 zufrieden ist?

Ja: z. B. wenn ein Lauf ddd1 und edd1 unendlich oft durchläuft: $ed^5ed^5...$

Frage 3

Ist es möglich, dass P_1 , P_2 zufrieden sind, aber P_3 nicht?

Ja: z. B. "ddd1, edd1, ddd2, ded2 unendlich oft, aber ddei nicht": $ed^3ed^4ed^3ed^4\dots$

Frage 4

Ist es möglich, dass alle P_i zufrieden sind?

Ja: z. B. "ddd1, edd1, ddd2, ded2, ddd3, dde3 unendlich oft": $ed^3ed^3...$ oder $ed^2ed^3ed^2ed^3...$ oder ...

Weiteres Beispiel

... siehe Anhang, Folie 122 ...

Und nun ...

Motiv.

- Motivation
- 2 Grundbegriffe und Büchi-Automaten
- Abschlusseigenschafter
- 4 Charakterisierung
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- 7 Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Grundbegriffe

Unendliches Wort über Alphabet Σ

- ullet ist Funktion $lpha:\mathbb{N} o\Sigma$
- $\alpha(n)$: Symbol an *n*-ter Stelle (auch: α_n)
- wird oft geschrieben als $\alpha = \alpha_0 \alpha_1 \alpha_2 \dots$

Weitere Notation

- $\alpha[m, n]$: endliche Teilfolge $\alpha_m \alpha_{m+1} \dots \alpha_n$
- $\#_w(\alpha)$: Anzahl der Vorkommen von w als Teilwort in α = $\#\{(m,n) \mid \alpha[m,n] = w\}$
- \mathbf{w}^{ω} : unendliche Verkettung von w $(\alpha \text{ mit } \alpha[i \cdot n, (i+1)n-1] = w \text{ f. alle } i \geqslant 0, \ n = |w|)$

 Σ^{ω} : Menge aller unendlichen Wörter

ω-Sprache: $L ⊂ Σ^ω$

Büchi-Automaten

Definition 3.1

Ein nichtdeterministischer Büchi-Automat (NBA) über einem Alphabet Σ ist ein 5-Tupel $\mathcal{A}=(Q,\Sigma,\Delta,I,F)$, wobei

- Q eine endliche nichtleere Zustandsmenge ist,
- Σ eine endliche nichtleere Menge von Zeichen ist,
- $\Delta \subseteq Q \times \Sigma \times Q$ die Überführungsrelation ist,
- $I \subseteq Q$ die Menge der Anfangszustände ist,
- $F \subseteq Q$ die Menge der akzeptierenden Zustände ist.

Bisher kein Unterschied zu NEAs, aber ...

Berechnungen und Akzeptanz

Definition 3.2

Sei $A = (Q, \Sigma, \Delta, I, F)$ ein Büchi-Automat.

ullet Ein Run von ${\mathcal A}$ auf $\omega ext{-Wort }\alpha$ ist eine Folge

$$r=q_0q_1q_2\ldots,$$

so dass für alle $i \ge 0$ gilt: $(q_i, \alpha_i, q_{i+1}) \in \Delta$.

- Unendlichkeitsmenge Inf(r) von $r = q_0q_1q_2...$: Menge der Zustände, die unendlich oft in r vorkommen
- Erfolgreicher Run $r = q_0 q_1 q_2 \dots : q_0 \in I$ und $lnf(r) \cap F \neq \emptyset$
- \mathcal{A} akzeptiert α , wenn es einen erfolgreichen Run von \mathcal{A} auf α gibt.
- Die von \mathcal{A} erkannte Sprache ist $L_{\omega}(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \mid \mathcal{A} \text{ akzeptiert } \alpha \}.$

Beispiele

Zwischen je zwei a's in α sowie vor dem ersten a steht jeweils eine gerade Anzahl von b's.

Mehr Beispiele

$$L_{\omega}(\mathcal{A}_{4}) = \{ \alpha \in \Sigma^{\omega} \mid \#_{a}(\alpha) < \infty \}$$
 oder $\#_{b}(\alpha) < \infty \}$

$$L_{\omega}(\mathcal{A}_5) = \{ \alpha \in \Sigma^{\omega} \mid \#_{\mathsf{a}}(\alpha) < \infty \}$$

oder $\#_{\mathsf{a}\mathsf{a}}(\alpha) = 0 \}$

(Letzteres heißt: auf jedes a in α folgt direkt ein b)

Erkennbare Sprache

Definition 3.3

Eine Sprache $L \subseteq \Sigma^{\omega}$ ist Büchi-erkennbar, wenn es einen NBA \mathcal{A} gibt mit $L = L_{\omega}(\mathcal{A})$.

Und nun ...

Motiv

- Motivation
- 2 Grundbegriffe und Büchi-Automater
- 3 Abschlusseigenschaften
- 4 Charakterisierung
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- 7 Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Operationen auf ω -Sprachen

Zur Erinnerung: die Menge der Büchi-erkennbaren Sprachen heißt abgeschlossen unter

- Vereinigung, wenn gilt: Falls L_1, L_2 Büchi-erkennbar, so auch $L_1 \cup L_2$.
- Schnitt, wenn gilt:
 Falls L₁, L₂ Büchi-erkennbar, so auch L₁ ∩ L₂.
- Komplement, wenn gilt: Falls *L* Büchi-erkennbar, so auch *L*.

Quiz

Unter welchen Operationen sind die Büchi-erkennbaren Sprachen abgeschlossen, und wie leicht ist das zu zeigen?

```
Vereinigung? ✓ (leicht)
Schnitt? ✓ (mittel)
Komplement? ✓ (schwer)
```

Abgeschlossenheit

Satz 3.4

Die Menge der Büchi-erkennbaren Sprachen ist abgeschlossen unter den Operationen \cup und \cap .

Direkte Konsequenz aus den folgenden Lemmata.

Abgeschlossenheit unter -: siehe Abschnitt "Determinisierung"

Abgeschlossenheit unter Vereinigung

Lemma 3.5

Seien A_1, A_2 NBAs über Σ .

Dann gibt es einen NBA A_3 mit $L_{\omega}(A_3) = L_{\omega}(A_1) \cup L_{\omega}(A_2)$.

Beweis. analog zu NEAs und NEBAs:

Seien $A_i = (Q_i, \Sigma, \Delta_i, I_i, F_i)$ für i = 1, 2.

O. B. d. A. gelte $Q_1 \cap Q_2 = \emptyset$.

Konstruieren $A_3 = (Q_3, \Sigma, \Delta_3, I_3, F_3)$ wie folgt.

- $Q_3 = Q_1 \cup Q_2$
- $\bullet \ \Delta_3 = \Delta_1 \cup \Delta_2$
- $I_3 = I_1 \cup I_2$
- $F_3 = F_1 \cup F_2$

Dann gilt: $L_{\omega}(A_3) = L_{\omega}(A_1) \cup L_{\omega}(A_2)$

Abgeschlossenheit unter Schnitt

Für NEAs: Produktautomat

Idee: lasse A_1 und A_2 "gleichzeitig" auf Eingabewort laufen.

Gegeben A_1, A_2 , konstruiere A_3 mit $L(A_3) = L(A_1) \cap L(A_2)$:

- $Q_3 = Q_1 \times Q_2$
- $\Delta_3 = \{((p, p'), a, (q, q')) \mid (p, a, q) \in \Delta_1 \& (p', a, q') \in \Delta_2\}$
- $I_3 = I_1 \times I_2$

•
$$F_3 = F_1 \times F_2$$

Funktioniert das auch für Büchi-Automaten?

Nein. A_1 und A_2 besuchen ihre akzeptierenden Zustände möglicherweise nicht synchron! T 3.1 Forts.

T 3.1

Abgeschlossenheit unter Schnitt

Neue Idee für Schnitt-Automat A:

- \mathcal{A} simuliert $\mathcal{A}_1, \mathcal{A}_2$ nach wie vor parallel, aber mit 2 Modi 1,2
- Modus i bedeutet: warte auf einen akz. Zustand f von A_i
- Sobald so ein f erreicht ist, wechsle den Modus.
- ullet Run von ${\mathcal A}$ ist erfolgreich, wenn er ∞ oft den Modus wechselt.
- \rightarrow Es werden genau die Wörter akzeptiert, für die $\mathcal{A}_1, \mathcal{A}_2$ jeweils einen erfolgreichen Run haben.

Abgeschlossenheit unter Schnitt

Lemma 3.6

Seien A_1, A_2 NBAs über Σ .

Dann gibt es einen NBA \mathcal{A} mit $L_{\omega}(\mathcal{A}) = L_{\omega}(\mathcal{A}_1) \cap L_{\omega}(\mathcal{A}_2)$.

Beweis: Seien $A_i = (Q_i, \Sigma, \Delta_i, I_i, F_i)$ NBAs für i = 1, 2.

Konstruieren $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ wie folgt.

$$Q = Q_1 \times Q_2 \times \{1, 2\}$$

$$\Delta = \{ ((p, p', 1), a, (q, q', 1)) \mid p \notin F_1 \& (p, a, q) \in \Delta_1 \& (p', a, q') \in \Delta_2 \}$$

$$\cup \{ ((p, p', 1), a, (q, q', 2)) \mid p \in F_1 \& (p, a, q) \in \Delta_1 \& (p', a, q') \in \Delta_2 \}$$

$$\cup \{ ((p, p', 2), a, (q, q', 2)) \mid p' \notin F_2 \& (p, a, q) \in \Delta_1 \& (p', a, q') \in \Delta_2 \}$$

$$\cup \{ ((p, p', 2), a, (q, q', 1)) \mid p' \in F_2 \& (p, a, q) \in \Delta_1 \& (p', a, q') \in \Delta_2 \}$$

$$I = I_1 \times I_2 \times \{1\}$$

$$F = Q_1 \times F_2 \times \{2\}$$

T 3.2

Dann gilt $L_{\omega}(\mathcal{A}) = L_{\omega}(\mathcal{A}_1) \cap L_{\omega}(\mathcal{A}_2)$.

T 3.2 Forts.

Abgeschlossenheit unter Komplement

... siehe Abschnitt "Deterministische Büchi-Automaten und Determinisierung"

Und nun ...

Motiv

- Motivation
- 2 Grundbegriffe und Büchi-Automater
- 3 Abschlusseigenschafter
- 4 Charakterisierung
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- 7 Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Charakterisierung der Büchi-erkennbaren Sprachen mittels regulärer Sprachen

Etwas Notation

Seien $W \subseteq \Sigma^*$ und $L \subseteq \Sigma^\omega$.

- $W^{\omega} = \{w_0 w_1 w_2 \cdots \mid w_i \in W \setminus \{\varepsilon\} \text{ für alle } i \geqslant 0\}$ (ist ω -Sprache, weil ε ausgeschlossen wurde)
- $WL = \{ w\alpha \mid w \in W, \ \alpha \in L \}$ (ist ω -Sprache)

Von regulären zu Büchi-erkennbaren Sprachen (1)

Lemma 3.7

Für jede reguläre Sprache $W\subseteq \Sigma^*$ gilt: W^ω ist Büchi-erkennbar.

Beweis. (Schritt 1)

Sei \mathcal{A} ein **NEA** mit $L(\mathcal{A}) = W$.

Dann gibt es NEA A_1 mit $L(A_1) = W \setminus \{\varepsilon\}$ (Abschlusseig.!)

- O. B. d. A. habe \mathcal{A}_1 . . .
 - lacktriangledown einen einzigen Anfangszustand q_I und
 - **2** keine in q_l eingehenden Kanten: keine Transitionen (\cdot, \cdot, q_l)
 - \bigcirc und sei $q_1 \notin F$.

Diese Form lässt sich durch Hinzufügen eines frischen Anfangszustandes (und der entsprechenden Transitionen) erreichen! (Ü)

Von regulären zu Büchi-erkennbaren Sprachen (1)

Lemma 3.7

Für jede reguläre Sprache $W\subseteq \Sigma^*$ gilt: W^ω ist Büchi-erkennbar.

Beweis. (Schritt 2a)

Sei also $\mathcal{A}_1 = (Q_1, \Sigma, \Delta_1, \{q_l\}, F)$ mit den genannten Eigenschaften und $L(\mathcal{A}_1) = W \setminus \{\varepsilon\}$.

Idee: konstruiere NBA A_2 , der

- ullet \mathcal{A}_1 simuliert, bis ein akzeptierender Zustand erreicht ist und
- dann nichtdeterministisch entscheidet,
 ob die Simulation fortgesetzt wird
 oder eine neue Simulation von q₀ aus gestartet wird

Von regulären zu Büchi-erkennbaren Sprachen (1)

Lemma 3.7

Für jede reguläre Sprache $W\subseteq \Sigma^*$ gilt: W^ω ist Büchi-erkennbar.

Beweis. (Schritt 2b)

Sei also $\mathcal{A}_1 = (Q_1, \Sigma, \Delta_1, \{q_I\}, F)$ mit den genannten Eigenschaften und $L(\mathcal{A}_1) = W \setminus \{\varepsilon\}$.

Definiere NBA $\mathcal{A}_2 = (Q_1, \Sigma, \Delta_2, \{q_I\}, \{q_I\})$ mit

$$\Delta_2 = \Delta_1 \cup \{(q, a, q_l) \mid (q, a, q_f) \in \Delta_1 \text{ für ein } q_f \in F\}$$

(d. h. alle Kanten, die in A_1 zu einem akz. Zustand führen, können in A_2 zusätzlich zu q_l führen – siehe "nichtdeterministisch entscheidet" auf voriger Folie!)

Noch zu zeigen: $L_{\omega}(A_2) = L(A_1)^{\omega}$

T 3.3

Von regulären zu Büchi-erkennbaren Sprachen (2)

Lemma 3.8

Für jede reguläre Sprache $W\subseteq \Sigma^*$ und jede Büchi-erkennbare Sprache $L\subseteq \Sigma^\omega$ gilt:

WL ist Büchi-erkennbar.

Beweis:

Wie Abgeschlossenheit der regulären Sprachen unter Konkatenation.

Satz von Büchi

Satz 3.9

Eine Sprache $L\subseteq \Sigma^{\omega}$ ist Büchi-erkennbar genau dann, wenn es reguläre Sprachen $V_1,\,W_1,\ldots,\,V_n,\,W_n$ gibt mit $n\geqslant 1$ und

$$L = V_1 W_1^{\omega} \cup \cdots \cup V_n W_n^{\omega}$$

Beweisskizze:

" \Leftarrow ": folgt aus Lemmas 3.5, 3.7 und 3.8

" \Rightarrow ": bilden V_i , W_i aus denjenigen Wörtern, die zum jeweils nächsten Vorkommen eines akzeptierenden Zustandes führen

Details siehe Tafel. $T 3.4 \square$

Konsequenz:

Büchi-erkennbare Sprachen durch ω -reguläre Ausdrücke darstellbar:

$$r_1 s_1^{\omega} + \cdots + r_n s_n^{\omega}$$
 $(r_i, s_i \text{ sind reguläre Ausdrücke})$

Und nun ...

- Motivation
- 2 Grundbegriffe und Büchi-Automaten
- 3 Abschlusseigenschaften
- 4 Charakterisierung
- 5 Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- 7 Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Ziel dieses Abschnitts

Wollen zeigen:

- det. und nichtdet. Büchi-Automaten sind **nicht** gleichmächtig d. h.: es gibt ω -Sprachen, die von NBAs akzeptiert werden, aber nicht von DBAs
- Komplement-Abgeschlossenheit gilt trotzdem (der Beweis wird aber anspruchsvoll sein)

Definition 3.10

Ein deterministischer Büchi-Automat (DBA) ist ein NBA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ mit

•
$$|I| = 1$$

•
$$|\{q' \mid (q, a, q') \in \Delta\}| = 1$$
 für alle $(q, a) \in Q \times \Sigma$

Zu Hilfe: Charakterisierung der DBA-erkennbaren Sprachen

Sei $W \subseteq \Sigma^*$.

$$\overrightarrow{W} = \{\alpha \in \Sigma^{\omega} \mid \alpha[0, n] \in W \text{ für unendlich viele } n\}$$
 (d. h. α hat ∞ viele Präfixe in W)

T 3.5

Satz 3.11

Eine ω -Sprache $L\subseteq \Sigma^{\omega}$ ist DBA-erkennbar genau dann, wenn es eine reguläre Sprache $W\subseteq \Sigma^*$ gibt mit $L=\overrightarrow{W}$.

Beweis. Genügt zu zeigen, dass für jeden DEA/DBA $\mathcal{A} = (Q, \Sigma, \Delta, \{q_I\}, F)$ gilt:

$$L_{\omega}(\mathcal{A}) = \overrightarrow{L(\mathcal{A})}$$

T 3.6

DBAs sind schwächer als NBAs

Satz 3.12

Es gibt eine Büchi-erkennbare Sprache, die nicht durch einen DBA erkannt wird.

Beweis.

- Betrachte $L = \{\alpha \in \{a, b\}^{\omega} \mid \#_{a}(\alpha) \text{ ist endlich}\}$
- L ist Büchi-erkennbar: $L = \Sigma^* \{b\}^\omega$, wende Satz 3.9 an
- Annahme, *L* sei DBA-erkennbar.
 - \Rightarrow Satz 3.11: $L = \overrightarrow{W}$ für eine reguläre Sprache W
 - \Rightarrow Wegen $b^\omega \in L$ gibt es ein nichtleeres Wort $b^{n_1} \in W$ Wegen $b^{n_1}ab^\omega \in L$ gibt es ein nichtleeres Wort $b^{n_1}ab^{n_2} \in W$
 - $\Rightarrow \alpha := b^{n_1}ab^{n_2}ab^{n_3} \dots \in \overrightarrow{W}$

Widerspruch: $\alpha \notin L$

Nebenprodukt des letzten Beweises

Die DBA-erkennbaren Sprachen sind **nicht** unter Komplement abgeschlossen:

- $L = \{ \alpha \in \{a, b\}^{\omega} \mid \#_a(\alpha) \text{ ist endlich} \}$ wird von keinem DBA erkannt
- aber \overline{L} wird von einem DBA erkannt (Ü)

Wie können wir trotzdem determinisieren?

Indem wir das Automatenmodell ändern!

Genauer: ändern die Akzeptanzbedingung

Zur Erinnerung

NBA ist 5-Tupel $A = (Q, \Sigma, \Delta, I, F)$ mit

- . . .
- $F \subseteq Q$ (Menge der akz. Zustände)

Erfolgreicher Run: $r = q_0 q_1 q_2 \dots$ mit $q_0 \in I$ und $Inf(r) \cap F \neq \emptyset$

Idee: r erfolgreich \Leftrightarrow ein Zustand aus F kommt ∞ oft in r vor

(Julius Richard Büchi, 1924–1984, Logiker/Mathematiker; Zürich, Lafayette)

Muller-Automaten

(David E. Muller, 1924-2008, Math./Inf.; Illinois)

Definition 3.13

Nichtdet. Muller-Automat (NMA) ist 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, \mathcal{F})$ mit

- . . .
- $\mathcal{F} \subseteq 2^Q$ (Kollektion von Endzustandsmengen)

Erfolgreicher Run $r = q_0 q_1 q_2 \dots$ mit $q_0 \in I$ und $Inf(r) \in \mathcal{F}$

Idee: r erfolgreich \Leftrightarrow Inf(r) stimmt mit einer Menge aus \mathcal{F} überein

T 3.7

Rabin-Automaten (Michael O. Rabin, *1931, Inf.; Jerusalem, Princeton, Harvard)

Definition 3.14

Nichtdet. Rabin-Automat (NRA) ist 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, \mathcal{P})$ mit

- ...
- $\mathcal{P} = \{(E_1, F_1), \ldots, (E_n, F_n)\}$ mit $E_i, F_i \subseteq Q$ (Menge "akzeptierender Paare")

Erfolgreicher Run $r = q_0 q_1 q_2 \dots$ mit $q_0 \in I$ und

$$\exists i \in \{1, \dots, n\}$$
 mit $\mathsf{Inf}(r) \cap E_i = \emptyset$ und $\mathsf{Inf}(r) \cap F_i \neq \emptyset$

Idee: r erfolgreich \Leftrightarrow es gibt Paar (E_i, F_i) , so dass

- mindestens ein Zustand aus F_i unendlich oft in r vorkommt &
- alle Zustände aus E_i nur endlich oft in r vorkommen T 3.8

Definition 3.15

Nichtdet. Streett-Automat (NSA) ist 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, \overset{\mathcal{P}}{\sim})$ mit

- ...
- $\mathcal{P} = \{(E_1, F_1), \ldots, (E_n, F_n)\}$ mit $E_i, F_i \subseteq Q$ (Menge "fairer Paare")

Erfolgreicher Run $r = q_0 q_1 q_2 \dots$ mit $q_0 \in I$ und

 $\forall i \in \{1, \dots, n\}$: wenn $Inf(r) \cap F_i \neq \emptyset$, dann $Inf(r) \cap E_i \neq \emptyset$

Idee: r erfolgreich \Leftrightarrow für alle Paare (E_i, F_i) gilt:

- wenn ein Zustand aus Fi unendlich oft in r vorkommt,
- dann kommt ein Zustand aus E_i unendlich oft in r vor T 3.9

Gleichmächtigkeit der vier Automatenmodelle

Für $X \in \{\text{Muller}, \text{Rabin}, \text{Streett}\}\$ werden analog definiert:

- $L_{\omega}(A)$ für (nichtdeterministische) X-Automaten
- X-erkennbar

Satz 3.16

Für jede Sprache $L \subseteq \Sigma^{\omega}$ sind die folgenden Aussagen äquivalent.

- - L ist Büchi-erkennbar. (R) L ist Rabin-erkennbar.
- (M) L ist Muller-erkennbar. (S) L ist Streett-erkennbar.

T 3.10 Beweis: Konsequenz aus Lemmas 3.17–3.19. \downarrow

Von B-, R-, S- zu Muller-Automaten

Lemma 3.17

- Wenn L Büchi-erkennbar, dann auch Muller-erkennbar.
- Wenn L Rabin-erkennbar, dann auch Muller-erkennbar.
- Wenn L Streett-erkennbar, dann auch Muller-erkennbar.

Beweis.

(1) Sei $A = (Q, \Sigma, \Delta, I, F)$ NBA.

Konstruiere NMA $\mathcal{A}' = (Q, \Sigma, \Delta, I, \mathcal{F})$ mit

$$\mathcal{F} = \{ Q' \subseteq Q \mid Q' \cap F \neq \emptyset \}.$$

Leicht zu sehen: $L_{\omega}(\mathcal{A}') = L_{\omega}(\mathcal{A})$.

Von B-, R-, S- zu Muller-Automaten

Lemma 3.17

- Wenn L Büchi-erkennbar, dann auch Muller-erkennbar.
- Wenn L Rabin-erkennbar, dann auch Muller-erkennbar.
- Wenn L Streett-erkennbar, dann auch Muller-erkennbar.

Beweis.

(2) Sei $A = (Q, \Sigma, \Delta, I, P)$ NRA.

Konstruiere NMA $\mathcal{A}' = (Q, \Sigma, \Delta, I, \mathcal{F})$ mit

$$\mathcal{F} = \{ Q' \subseteq Q \mid \exists i \leq n : Q' \cap E_i = \emptyset \text{ und } Q' \cap F_i \neq \emptyset \}.$$

Leicht zu sehen: $L_{\omega}(\mathcal{A}') = L_{\omega}(\mathcal{A})$.

(3) Analog.

Von Büchi- zu R- und S-Automaten

Lemma 3.18

Wenn L Büchi-erkennbar, dann auch

- Rabin-erkennbar und
- Streett-erkennbar.

Beweis.

(1) Sei $A = (Q, \Sigma, \Delta, I, F)$ NBA.

Konstruiere NRA $\mathcal{A}' = (Q, \Sigma, \Delta, I, \mathcal{P})$ mit

$$\mathcal{P} = \{(\emptyset, F)\}.$$

Leicht zu sehen: $L_{\omega}(\mathcal{A}') = L_{\omega}(\mathcal{A})$.

(2) Analog, aber mit $\mathcal{P} = \{(F, Q)\}.$

Von Muller- zu Büchi-Automaten

Lemma 3.19

Jede Muller-erkennbare Sprache ist Büchi-erkennbar.

Beweis.

- Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, \mathcal{F})$ ein Muller-Automat
- Dann ist $L_{\omega}(A) = \bigcup_{F \in \mathcal{F}} L_{\omega}((Q, \Sigma, \Delta, I, \{F\}))$
- Wegen \cup -Abgeschlossenheit genügt es zu zeigen, dass $L_{\omega}((Q, \Sigma, \Delta, I, \{F\}))$ Büchi-erkennbar ist
- Konstruiere Büchi-Automaten $\mathcal{A}' = (Q', \Sigma, \Delta', I, F')$, der
 - A simuliert
 - einen Zeitpunkt rät,
 ab dem nur noch Zustände aus F vorkommen
 - ab dort sicherstellt, dass alle diese unendlich oft vorkommen

Von Muller- zu Büchi-Automaten

Sei also $\mathcal{A} = (Q, \Sigma, \Delta, I, \{F\})$ (Muller-Automat) Konstruieren NBA $\mathcal{A}' = (Q', \Sigma, \Delta', I', F')$ mit

•
$$Q' = \underbrace{Q}_{\text{Phase 1}} \cup \underbrace{\{\langle q_f, S \rangle \mid q_f \in F, S \subseteq F\}}_{\text{Phase 2}}$$

Ph. 1: \mathcal{A}' simuliert \mathcal{A} , bis \mathcal{A} irgendwann in einem $q_f \in F$ ist

Ph. 2: \mathcal{A}' will nur noch Zustände $\in F$ sehen und jeden ∞ oft

- \mathcal{A}' we chselt in $\langle q_f, S \rangle$ mit $S = \{q_f\}$
- ullet S enthält die seit dem letzten Zurücksetzen besuchten $q \in F$
- Wenn S = F, wird S auf \emptyset "zurückgesetzt"
- akz. Zustände: ein $\langle q_f, F \rangle$ muss ∞ oft gesehen werden

Von Muller- zu Büchi-Automaten

Sei also $A = (Q, \Sigma, \Delta, I, \{F\})$ (Muller-Automat)

Konstruieren NBA $\mathcal{A}' = (Q', \Sigma, \Delta', I', F')$ mit

•
$$Q' = \underbrace{Q}_{\text{Phase 1}} \cup \underbrace{\{\langle q_f, S \rangle \mid q_f \in F, S \subseteq F\}}_{\text{Phase 2}}$$

•
$$\Delta' = \Delta$$

 $\cup \{(q, a, \langle q_f, \{q_f\} \rangle) \mid (q, a, q_f) \in \Delta, q_f \in F\}$
 $\cup \{(\langle q, S \rangle, a, \langle q', S \cup \{q'\} \rangle) \mid (q, a, q') \in \Delta, q, q' \in F, S \neq F\}$
 $\cup \{(\langle q, F \rangle, a, \langle q', \{q'\} \rangle) \mid (q, a, q') \in \Delta, q, q' \in F\}$

•
$$l' = l$$

•
$$F' = \{\langle q_f, F \rangle \mid q_f \in F\}$$

Dann gilt:
$$L_{\omega}(\mathcal{A}') = L_{\omega}(\mathcal{A})$$
.

Abschlusseigenschaften

Direkte Konsequenz aus

- Satz 3.4 (Abschlusseigenschaften der Büchi-erkennbaren Spr.)
- und Satz 3.16 (Gleichmächtigkeit der Automatenmodelle):

Folgerung 3.20

Die Menge der

- Muller-erkennbaren Sprachen,
- Rabin-erkennbaren Sprachen,
- Streett-erkennbaren Sprachen

ist abgeschlossen unter den Operationen \cup und \cap .

Zu Komplement-Abgeschlossenheit kommen wir jetzt.

Benötigen zunächst deterministische Varianten von Muller-, Rabin-, Streett-Automaten.

Deterministische Varianten

Deterministische Varianten sind analog zu NBA definiert:

Ein Muller-, Rabin- oder Streett-Automat $\mathcal{A} = (Q, \Sigma, \Delta, I, Acc)$ ist deterministisch, wenn gilt:

- |I| = 1
- $|\{q' \mid (q, a, q') \in \Delta\}| = 1$ für alle $(q, a) \in Q \times \Sigma$

Zu Satz 3.16 analoge Aussage:

Satz 3.21

Für jede Sprache $L\subseteq \Sigma^\omega$ sind die folgenden Aussagen äquivalent.

- (M) *L* ist von einem deterministischen Muller-Autom. erkennbar.
- (R) L ist von einem deterministischen Rabin-Autom. erkennbar.
- (S) L ist von einem deterministischen Streett-Autom. erkennbar.

Ohne Beweis (ähnlich wie Lemmas 3.17-3.19).

Überblick der Automatenmodelle

Büchi-Automat (NBA):

- $A = (Q, \Sigma, \Delta, I, F)$ mit $F \subseteq Q$
- Erfolgreicher Run r: $Inf(r) \cap F \neq \emptyset$

Muller-Automat (NMA):

- $\mathcal{A} = (Q, \Sigma, \Delta, I, \mathcal{F}) \text{ mit } \mathcal{F} \subset 2^Q$
- Erfolgreicher Run r: $Inf(r) \in \mathcal{F}$

Rabin-Automat (NRA):

- $\mathcal{A} = (Q, \Sigma, \Delta, I, \mathcal{P}) \text{ mit } \mathcal{P} \subseteq 2^Q \times 2^Q$
- Erfolg: $\exists (E,F) \in \mathcal{P} : Inf(r) \cap F \neq \emptyset$ und $Inf(r) \cap E = \emptyset$

Streett-Automat (NSA):

- $\mathcal{A} = (Q, \Sigma, \Delta, I, \mathcal{P}) \text{ mit } \mathcal{P} \subset 2^Q \times 2^Q$
- Erfolg: $\forall (E, F) \in \mathcal{P} : Inf(r) \cap F \neq \emptyset$ impliziert $Inf(r) \cap E \neq \emptyset$

Determinisierung von Büchi-Automaten

Erinnerung an Satz 3.12: Es gibt eine Büchi-erkennbare Sprache, die nicht durch einen DBA erkannt wird.

Ziel

Prozedur zur Umwandlung eines gegebenen NBA in einen äquivalenten deterministischen Rabin-Automaten

- → wegen Satz 3.21 erhält man daraus auch äquivalente deterministische Muller-/Streett-Automaten
 - Resultat geht auf McNaughton zurück
 (1965 von Robert McNaughton, Philosoph/Inform., Harvard, Rensselaer)
 - Wir verwenden intuitiveren Beweis von Safra (1988 von Shmuel Safra, Informatiker, Tel Aviv)

Potenzmengenkonstruktion versagt

Zwei naheliegende Versuche:

- NBA \sim DBA mittels Potenzmengenkonstruktion (PMK) muss wegen Satz 3.12 fehlschlagen Bsp. siehe Tafel T 3.12
- $^{\circ}$ NBA \sim determ. Muller-(Rabin-/Streett-)Automat via PMK schlägt auch fehl mit demselben Gegenbeispiel T 3.13

Hauptproblem:

- Potenzautomat simuliert mehrere Runs gleichzeitig
- akzeptierende Zustände (akzZ) müssen dabei nicht synchron erreicht werden
- Bad runs:

Wenn DBA \mathcal{A}^d für α eine ∞ Folge von akzZ findet, dann können diese akzZ von verschiedenen Runs des NBA \mathcal{A} auf Präfixen von α stammen.

Diese Runs müssen nicht zu einem Run auf α fortsetzbar sein.

Abhilfe: Safras "Tricks"

Ziel

- Wandle NBA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ in determ. Rabin-Automaten $\mathcal{A}^d = (Q^d, \Sigma, \Delta^d, I^d, \mathcal{P}^d)$ um mit $L_{\omega}(\mathcal{A}) = L_{\omega}(\mathcal{A}^d)$
- Vermeide "bad runs": Safras Tricks

Vorbetrachtungen

- Makrozustände: Zustände der alten PMK (Mengen $M \subseteq Q$)
- Zustände von \mathcal{A}^d : \approx Bäume, deren Knoten mit Makrozuständen markiert sind
- Startzustand:
 Knoten I (Menge der Anfangszust., wie bei PMK)

Safras Trick 1

Trick 1:

In Makrozuständen M mit $M \cap F \neq \emptyset$, initialisiere neue (Teil)Runs:

Folgezustand bekommt ein Kind mit Folgezuständen aller akzZ

$$\begin{array}{ccc}
M & \xrightarrow{a} & \left\{ q \in Q \mid (m, a, q) \in \Delta, \ m \in M \right\} \\
& & & & \\
\left\{ q \in Q \mid (m, a, q) \in \Delta, \ m \in M \cap F \right\} \right\} X
\end{array}$$

- PMK wird auf jeden Knoten einzeln angewendet
- Neuer Knoten X enthält alle Nachfolger von akzZ; Info wird gebraucht, um aus einem erfolgreichen Run für \mathcal{A}^d einen für \mathcal{A} zu konstruieren \longrightarrow vermeidet $\mathit{bad\ runs}$

Beispiel: siehe Tafel T 3.14

Konsequenzen aus Trick 1

- Organisation dieser Mengen von Makrozuständen: als geordnete Bäume – Safra-Bäume
- Trick 1 fügt neue Kinder/Geschwister hinzu
 → Höhe/Breite des Safra-Baums wächst
- Zum Begrenzen der Höhe/Breite: Trick 2 und 3

Safras Trick 2

Trick 2:

Erkenne zusammenlaufende Teilruns und lösche überflüssige Info

Bsp.: Betrachte Teilruns, die in demselben Zustand q_n enden:

$$r = q_0 q_1 q_2 \dots f \dots q_{n-1} \mathbf{q}_n$$

$$r' = q_0 q'_1 q'_2 \dots f' \dots q'_{n-1} \mathbf{q}_n \qquad (f, f' \in F)$$

Zugehörige n Schritte von A^d unter Anwendung von Trick 1:

Trick 2 vereinigt die beiden $\{q_n\}$ -Kinder ("horizontal merge")

→ Weite von Safra-Bäumen wird beschränkt

Safras Trick 3

Trick 3:

Gib überflüssige Makrozustände zur Löschung frei

Wenn alle Kinder eines MZ *M* bezeugen, dass *jeder* Zustand in *M* einen akz. Zustand als Vorgänger hat, dann können die Kinder gelöscht werden

Genauer: wenn M Kinder M_1, \ldots, M_n hat mit $M_1 \cup \cdots \cup M_n = M$, dann werden die M_i gelöscht und M mit (!) markiert

→ "vertical merge", beschränkt die Tiefe von Safra-Bäumen

Definition Safra-Baum

Sei ${\it Q}$ Zustandsmenge des ursprünglichen NBA und ${\it V}$ eine nichtleere Menge von Knotennamen.

Makrozustand (MZ) über Q: Teilmenge $M \subseteq Q$

Safra-Baum über Q, V:

- ullet geordneter Baum mit Knoten aus V (der leere Baum ist erlaubt!)
- jeder Knoten mit einem nichtleeren MZ markiert und möglicherweise auch mit ①
- Wenn Knoten v mit M und v's Kinder mit M_1, \ldots, M_n markiert sind, dann:

 - \bigcirc M_i sind paarweise disjunkt

Safra-Bäume sind beschränkt

"Wenn Knoten v mit M und v's Kinder mit M_1, \ldots, M_n markiert sind, dann:

- M_i sind paarweise disjunkt"

Konsequenzen

- wegen (1): Höhe jedes SB ist durch |Q| beschränkt
- wegen (2): Anzahl Kinder pro Knoten kleiner als |Q|
- sogar: Jeder SB über Q hat höchstens |Q| Knoten (Beweis per Induktion über Baumhöhe)
- \rightarrow Anzahl der möglichen SB ist beschränkt durch $2^{O(|Q| \cdot \log|Q|)}$

Details der Konstruktion

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NBA und $V = \{1, \dots, 2|Q|\}$. Konstruieren DRA $\mathcal{A}^d = (Q^d, \Sigma, \Delta^d, I^d, \mathcal{P})$:

- Q^d = Menge aller Safra-Bäume über Q, V
- $I^d = \text{Safra-Baum mit einzigem Knoten } I$
- $\Delta^d = \{(S, a, S') \mid S' \text{ wird aus } S \text{ wie folgt konstruiert}\}$

Konstruktion von S' aus S in 6 Schritten

Sei S Safra-Baum mit Knotennamen $V'\subseteq V$; sei $a\in \Sigma$

- $\bullet \ \, \mathsf{Beginne} \,\, \mathsf{mit} \,\, S; \,\, \mathsf{entferne} \,\, \mathsf{alle} \,\, \mathsf{Markierungen} \,\, \textcircled{!}$
- ② Für jeden Knoten v mit Makrozustand M und $M \cap F \neq \emptyset$, füge neues Kind $v' \in V \setminus V'$ mit Markierung $M \cap F$ hinzu (als jüngstes (rechtes) Geschwister aller evtl. vorhandenen Kinder)
- **③** Wende Potenzmengenkonstruktion auf alle Knoten v an: ersetze MZ M durch $\{q \in Q \mid (m, a, q) \in \Delta \text{ für ein } m \in M\}$
- Horizontales Zusammenfassen: Für jeden Knoten v mit MZ M, lösche jeden Zustand q, der im MZ eines älteren Geschwisters vorkommt, aus M und aus den MZen der Kinder von v
- Entferne alle Knoten mit leeren MZen
- Vertikales Zusammenfassen: Für jeden Knoten v, dessen Markierung nur Zustände aus v's Kindern enthält, lösche alle Nachfolger von v und markiere v mit (!)

Illustration der Schritte 2–5

Illustration von Schritt 6

- d. h. alle Zustände in M kommen im Makrozustand eines Kindes M_i vor
- d. h. jeder Zustand in M hat einen akzZ als Vorgänger!

Erläuterungen zur Konstruktion

• S' ist wieder ein Safra-Baum:

Wenn Knoten v mit M und v's Kinder mit M_1, \ldots, M_n markiert sind. dann:

- M_i sind paarweise disjunkt

- "⊆": Schritte 2, 3 "≠": Schritt 6
 - Schritt 4
 - cnritt

Beispiel: siehe Tafel

T 3.15

Akzeptanzkomponente von \mathcal{A}^d

$$\mathcal{P} = \{(E_v, F_v) \mid v \in V\} \text{ mit}$$

- E_v = alle Safra-Bäume ohne Knoten v
- $F_v =$ alle Safra-Bäume, in denen v mit ① markiert ist

 \leadsto d. h. Run $r=S_0S_1S_2\dots$ von \mathcal{A}^d ist erfolgreich, wenn es einen Knotennamen v gibt, so dass

- alle S_i , bis auf endlich viele, einen Knoten v haben und
- unendlich oft auf v Schritt 6 angewendet wurde,
 d. h. vorher kamen alle Zustände in v's MZ in v's Kindern vor

T 3.15 Forts.

Korrektheit und Vollständigkeit der Konstruktion

Lemma 3.22

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NBA und sei $\mathcal{A}^d = (Q^d, \Sigma, \Delta^d, I^d, \mathcal{P})$ der DRA, den man nach Safras Konstruktion aus \mathcal{A} erhält.

Dann gilt $L_{\omega}(\mathcal{A}^d) = L_{\omega}(\mathcal{A})$.

Korrektheit:

(Soundness)

 \mathcal{A}^d akzeptiert nur Wörter, die \mathcal{A} akzeptiert

$$L_{\omega}(\mathcal{A}^d) \subseteq L_{\omega}(\mathcal{A})$$

Vollständigkeit:

(Completeness)

 \mathcal{A}^d akzeptiert (mindestens) alle Wörter, die \mathcal{A} akzeptiert

$$L_{\omega}(\mathcal{A}^d) \supseteq L_{\omega}(\mathcal{A})$$

Beweis: Folgerung aus den nächsten beiden Lemmas

Korrektheit

Lemma 3.23

Sei $\mathcal{A}=(Q,\Sigma,\Delta,I,F)$ ein NBA und sei $\mathcal{A}^d=(Q^d,\Sigma,\Delta^d,I^d,\mathcal{P})$ der DRA, den man nach Safras Konstruktion aus \mathcal{A} erhält.

Dann gilt $L_{\omega}(\mathcal{A}^d) \subseteq L_{\omega}(\mathcal{A})$.

Beweisidee. Sei $I = \{q_I\}$ und $I^d = \{S_I\}$. Sei $\alpha \in L_{\omega}(\mathcal{A}^d)$.

- Betrachte erfolgreichen Run s von \mathcal{A}^d auf α .
- ullet "Konstruiere" daraus erfolgr. Run von ${\mathcal A}$ auf lpha stückweise:

$$s = S_1 \dots T_1 \dots T_2 \dots T_3 \dots$$
, (alle T_i laut $\mathcal P$ gewählt)

- Jeder Teilrun $T_i \dots T_{i+1}$ induziert Teilrun von A auf Teilwort von α , der einen akz. Zustand enthält
- ullet Ordnen diese endl. Teilruns in einem ∞ Baum ${\mathcal T}$ an
- ullet Gesuchter Run von ${\mathcal A}$ ist ein ∞ Pfad in ${\mathcal T}$

Korrektheit

Beweis. Sei also $\alpha \in L_{\omega}(\mathcal{A}^d)$.

Dann gibt es erfolgreichen Run $s = S_0 S_1 S_2 \dots$ von \mathcal{A}^d auf α und ein Knoten v, der (wegen \mathcal{P}^d)

- ullet in allen Safra-Bäumen S_j, S_{j+1}, \ldots vorkommt, für ein $j \geqslant 0$, und
- in ∞ vielen Safra-Bäumen mit ① markiert ist. Seien diese T_1, T_2, \ldots und sei $T_0 = S_0$:

$$s = T_0 \dots T_1 \dots T_2 \dots T_3 \dots$$

Zeigen Hilfsaussage [HA]:

Für alle T_i und alle Zustände p im MZ von v in T_{i+1} gibt es einen Zustand q im MZ von v in T_i und einen endlichen Run $q \dots p$ von $\mathcal A$ auf dem zugehörigen Teilwort von α , der einen akzZ enthält.

Beweis der Hilfsaussage: s. Tafel

T 3.16

Korrektheit

Kombiniere nun Runs aus [HA] zu ∞ Run von ${\mathcal A}$

- Seien $0 = i_0 < i_1 < i_2 < \dots$ Positionen der T_i in s
- Sei M_j der MZ von v an Positionen i_j , $j \geqslant 0$

Konstruiere Baum \mathcal{T} :

- Knoten = Paare (q, j) mit $q \in M_j$, $j \ge 0$
- Jeder Knoten (p, j + 1) bekommt genau ein Elternteil: beliebiger (q, j) mit $q \in M_j$ und \exists Run $q \dots p$ wie in [HA]
- $\Rightarrow \infty$ viele Knoten, Verzweigungsgrad $\leqslant |Q|$, Wurzel $(q_I, 0)$

Nach Lemma von Kőnig (nächste Folie) folgt:

- \mathcal{T} hat einen ∞ Pfad $(q_1,0), (q_1,1), (q_2,2), \ldots$;
- Verkettung aller Teilruns entlang dieses Pfades ist ein Run von \mathcal{A} auf α , der ∞ oft einen akzZ besucht

$$\Rightarrow \alpha \in L_{\omega}(A)$$

Im Korrektheitsbeweise benutztes Werkzeug

Lemma 3.24 (Lemma von Kőnig)

Jeder unendliche Baum mit endlichem Verzweigungsgrad hat einen unendlichen Pfad.

- ohne Beweis
- "endlicher Verzweigungsgrad": jeder Knoten hat endlich viele Kinder
- 1936 von Dénes Kőnig (1884–1944, Mathematiker, Budapest)

Vollständigkeit

Lemma 3.25

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NBA und sei $\mathcal{A}^d = (Q^d, \Sigma, \Delta^d, I^d, \mathcal{P})$ der DRA, den man nach Safras Konstruktion aus \mathcal{A} erhält.

Dann gilt $L_{\omega}(\mathcal{A}) \subseteq L_{\omega}(\mathcal{A}^d)$.

Beweis.

- Sei $\alpha \in L_{\omega}(\mathcal{A})$ und $r = q_0 q_1 q_2 \dots$ erfolgr. Run von \mathcal{A} auf α
- \mathcal{A}^d hat eindeutigen Run $s = S_0 S_1 S_2 \ldots$ auf α
- Zu zeigen: s ist erfolgreich, d. h.:

Es gibt einen Knotennamen v, für den gilt:

- (a) $\exists m \geqslant 0 : S_i$ enthält Knoten v für alle $i \geqslant m$
- (b) v ist in ∞ vielen S_i mit \bigcirc markiert

Beweis dieser Aussage: s. Tafel

T 3.17

Konsequenz aus Safras Konstruktion

Satz 3.26 (Satz von McNaughton)

Sei \mathcal{A} ein NBA. Dann gibt es einen DRA \mathcal{A}^d mit $L_{\omega}(\mathcal{A}^d) = L_{\omega}(\mathcal{A})$.

Beweis. Folgt aus Lemma 3.22.

Folgerung 3.27

Die Klasse der Büchi-erkennbaren Sprachen ist unter Komplement abgeschlossen.

Beweis. Über folgende Transformationskette:

NBA für *L* → DRA für *L* (gemäß Satz 3.26)

 \rightarrow DMA für L (gemäß Satz 3.21)

 \rightarrow DMA für \overline{L} (wie gehabt)

 \rightarrow NBA für \overline{L} (gemäß Satz 3.16)

Anmerkungen zur Komplexität

Determinisierung NBA \rightarrow DRA gemäß Safras Konstruktion

- liefert einen **exponentiell** größeren DRA
- genauer: wenn der NBA *n* Zustände hat,
 - gibt es 2ⁿ mögliche Makrozustände
 - und $2^{O(n \log n)}$ mögliche Safrabäume
 - \rightarrow DRA hat maximal $m := 2^{O(n \log n)}$ Zustände
- Das ist optimal (siehe Roggenbachs Kapitel in LNCS 2500)

Komplementierung beinhaltet auch den Schritt DMA ightarrow NBA

- liefert einen nochmal exponentiell größeren DBA: wenn der DMA m Zustände hat, hat der NBA $O(m \cdot 2^m)$ Zustände
- \rightarrow Resultierender NBA hat $2^{2^{O(n^2)}}$ Zustände
 - Alternative Prozedur erfordert nur $2^{O(n \log n)}$ Zustände

Und nun ...

Motiv

- Motivation
- 2 Grundbegriffe und Büchi-Automater
- 3 Abschlusseigenschaften
- 4 Charakterisierung
- Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Vorbetrachtungen

Betrachten 4 Standardprobleme:

- Leerheitsproblem
- Wortproblem (Wort ist durch NBA gegeben)
- Äquivalenzproblem
- Universalitätsproblem

Beschränken uns auf das Leerheitsproblem – die anderen . . .

- lassen sich wie üblich darauf reduzieren
- aber teils mit (doppelt) exponentiellem "Blowup" (Determinisierung, Komplementierung, siehe Folie 80)
 → höhere Komplexität

Beschränken uns auf NBA, aber Entscheidbarkeit überträgt sich auf die anderen Modelle

Das Leerheitsproblem

Zur Erinnerung:

Gegeben: NBA ${\cal A}$

Frage: Gilt $L_{\omega}(A) = \emptyset$?

Satz 3.28

Das Leerheitsproblem für NBAs ist entscheidbar.

Quiz: Welche Komplexität hat es? NL ... P ... höher?

Beweis. $L_{\omega}(A) \neq \emptyset$ genau dann, wenn gilt:

Es gibt $q_0 \in I$ und $q_f \in F$ und einen Pfad von q_0 zu q_f in Aund einen Pfad von q_f zu q_f in A

⇒ Reduktion zum Leerheitsproblem für NEAs:

Das Leerheitsproblem

Bezeichne $L(\mathcal{A}_{q_1,q_2})$ die von \mathcal{A} als **NEA** erkannte Sprache, wenn $\{q_1\}$ Anfangs- und $\{q_2\}$ Endzustandsmenge ist

Folgender Algorithmus entscheidet das Leerheitsproblem:

Rate nichtdeterministisch $q_0 \in I$ und $q_F \in F$ if $L(A_{q_0,q_f}) \subseteq \{\varepsilon\}$ oder $L(A_{q_f,q_f}) \subseteq \{\varepsilon\}$ then return "leer" return "nicht leer"

Dabei ist
$$L(A_{...}) \subseteq \{\varepsilon\}$$
 gdw. $L(A_{...}) \cap \underbrace{(\Sigma \setminus \{\varepsilon\})}_{\text{konst. NEA}} = \emptyset$

$$("L(A_{...}) = \emptyset$$
" genügt nicht, denn $L_{\omega}(\longrightarrow \bigcirc) = \emptyset$.)

Das ist ein NL-Algorithmus (eigentlich coNL, aber NL = coNL ist bekannt, Immerman-Szelepcsényi 1987)

Leerheit für NBAs ist NL-vollständig

Überblick Entscheidungsprobleme für NBAs

Problem	entscheidbar?	Komplexität	effizient lösbar?
LP	✓	NL -vollständig	✓
WP	— macht keinen Sinn, da Eingabewort ∞ —		
ÄP	\checkmark	PSpace-vollst.	X *
UP	✓	PSpace-vollst.	X *

^{*} unter den üblichen komplexitätstheoretischen Annahmen (z. B. PSpace ≠ P)

Und nun ...

- Motivation
- @ Grundbegriffe und Büchi-Automater
- 3 Abschlusseigenschaften
- 4 Charakterisierung
- Deterministische Büchi-Automaten und Determinisierung
- 6 Entscheidungsprobleme
- Anwendung: Model-Checking in Linearer Temporallogik (LTL)

Reaktive Systeme und Verifikation

Reaktive Systeme

- interagieren mit ihrer Umwelt
- terminieren oft nicht
- Beispiele:
 - Betriebssysteme, Bankautomaten, Flugsicherungssysteme, . . .
 - s. a. Philosophenproblem, Konsument-Produzent-Problem

Verifikation = Prüfen von Eigenschaften eines Systems

- Eingabe-Ausgabe-Verhalten hat hier keine Bedeutung
- Andere Eigenschaften sind wichtig,
 - z. B.: keine Verklemmung (deadlock) bei Nebenläufigkeit

Repräsentation eines Systems

Bestandteile

- Variablen: repräsentieren Werte, die zur Beschreibung des Systems notwendig sind
- Zustände: "Schnappschüsse" des Systems
 Zustand enthält Variablenwerte zu einem bestimmten Zeitpunkt
- Transitionen: erlaubte Übergänge zwischen Zuständen

Pfad (Berechnung) in einem System: unendliche Folge von Zuständen entlang der Transitionen

Transitionsgraph als Kripke-Struktur*

Definition 3.29

Sei AV eine Menge von Aussagenvariablen. Eine Kripke-Struktur \mathcal{S} über AV ist ein Quadrupel $\mathcal{S}=(S,S_0,R,\ell)$, wobei

- S eine endliche nichtleere Menge von Zuständen ist,
- $S_0 \subseteq S$ die Menge der Anfangszustände ist,
- $R \subseteq S \times S$ eine Übergangsrelation ist, die total ist: $\forall s \in S \exists s' \in S : sRs'$
- $\ell: S \to 2^{\text{AV}}$ eine Funktion ist, die Markierungsfunktion. $\ell(s) = \{p_1, \dots, p_m\}$ bedeutet: in s sind genau p_1, \dots, p_m wahr

Ein Pfad in S ist eine unendliche Folge $\pi = s_0 s_1 s_2 \dots$ von Zuständen mit $s_0 \in S_0$ und $s_i R s_{i+1}$ für alle $i \ge 0$.

^{*} Saul Kripke, geb. 1940, Philosoph und Logiker, Princeton und New York, USA

Beispiel 1: Mikrowelle

aus: E. M. Clarke et al., Model Checking, MIT Press 1999

Beispiel 2: nebenläufiges Programm

```
cobegin
              P_0 || P_1
           coend
P_0
           while(true) do
      10
             wait(turn = 0)
      11
      12
              turn \leftarrow 1
                                  kritischer Bereich
           end while
      13
           while(true) do
P_1
      20
             wait(turn = 1)
      21
              turn \leftarrow 0
                                  kritischer Bereich
      22
           end while
      23
```

Beispiel 2: nebenläufiges Programm

Variablen in der zugehörigen Kripke-Struktur: v_1, v_2, v_3 mit

- v₁, v₂: Werte der Programmzähler für P₀, P₁ (einschl. ⊥: Teilprogramm ist nicht aktiv)
- v_3 : Werte der gemeinsamen Variable turn

Kripke-Struktur:

Spezifikationen

... sind Zusicherungen über die Eigenschaften eines Systems, z. B.:

- "Wenn ein Fehler auftritt, ist er nach endlicher Zeit behoben."
- "Wenn die Mikrowelle gestartet wird, fängt sie immer nach endlicher Zeit an zu heizen."
- "Wenn die Mikrowelle gestartet wird, ist es möglich, danach zu heizen."
- "Es kommt nie vor, dass beide Teilprogramme zugleich im kritischen Bereich sind."
- "Jedes Teilprog. kommt beliebig oft in seinen krit. Bereich."
- "Jedes Teilprogramm kann beliebig oft in seinen kritischen Bereich gelangen."

• . . .

Spezifikationen für das Beispiel Mikrowelle

aus: E. M. Clarke et al., Model Checking, MIT Press 1999

"Wenn ein Fehler auftritt, ist er nach endlicher Zeit behoben." 🗶

Spezifikationen für das Beispiel Mikrowelle

aus: E. M. Clarke et al., Model Checking, MIT Press 1999

"Wenn MW gestartet, beginnt sie immer nach endl. Zeit zu heizen." 🗶

Spezifikationen für das Beispiel Mikrowelle

aus: E. M. Clarke et al., Model Checking, MIT Press 1999

"Wenn MW gestartet, ist es möglich, danach zu heizen." 🗸

Spezifikationen für das Beispiel Nebenläufigkeit

"Es kommt nie vor, dass beide Teilprogramme zugleich im kritischen Bereich sind." ✓

Spezifikationen für das Beispiel Nebenläufigkeit

"Jedes P_i kommt beliebig oft in seinen kritischen Bereich." X

Spezifikationen für das Beispiel Nebenläufigkeit

"Jedes P_i kann beliebig oft in seinen kritischen Bereich kommen." \checkmark

Model-Checking

... beantwortet die Frage, ob ein gegebene System eine gegebene Spezifikation erfüllt

Definition 3.30 (Model-Checking-Problem MCP)

Gegeben ein System S und eine Spezifikation E,

- gilt E für jeden Pfad in S? (universelle Variante)
- gibt es einen Pfad in S, der E erfüllt? (existenzielle Variante)

Frage: Wie kann man Model-Checking

- exakt beschreiben und
- algorithmisch lösen?

Model-Checking mittels Büchi-Automaten!

Schritt 1

- Stellen System S als NBA A_S dar \sim Pfade in S sind erfolgreiche Runs von A_S
- Stellen Spezifikation E als NBA A_E dar \sim A_E beschreibt die Pfade, die E erfüllen
- \rightarrow Universelles MCP = " $L(A_S) \subseteq L(A_E)$?" Existenzielles MCP = " $L(A_S) \cap L(A_E) \neq \emptyset$?" (beide reduzierbar zum Leerheitsproblem, benutzt Abschlusseigenschaften)

Schritt 2

- intuitivere Beschreibung von E mittels Temporallogik
- ullet Umwandlung von Temporallogik-Formel $arphi_E$ in Automaten \mathcal{A}_E

Konstruktion des NBA $\mathcal{A}_{\mathcal{S}}$ für das System \mathcal{S}

Erinnerung: \mathcal{S} gegeben als Kripke-Struktur $\mathcal{S}=(S,S_0,R,\ell)$ (Zustände, Anfangszustände, Transitionen, Markierungen)

Zugehöriger Automat $A_S = (Q, \Sigma, \Delta, I, F)$:

- $\Sigma = 2^{AV}$
- $Q = S \uplus \{q_0\}$
- $I = \{q_0\}$
- \bullet F = Q
- $\Delta = \{ (q_0, \ell(s), s) \mid s \in S_0 \}$ $\cup \{ (s, \ell(s'), s') \mid (s, s') \in R \}$

Beispiel: siehe Tafel.

T 3.18

Beschreibung von E durch NBA A_E

Beispiel Mikrowelle (siehe Bild auf Folie 90)

- (a) "Wenn ein Fehler auftritt, ist er nach endlicher Zeit behoben."
- (b) "Wenn die Mikrowelle gestartet wird, fängt sie nach endlicher Zeit an zu heizen."
- (c) "Wenn die Mikrowelle gestartet wird, ist es *möglich*, danach zu heizen."

Beispiel Nebenläufigkeit (siehe Bild auf Folie 92)

- (d) "Es kommt nie vor, dass beide Teilprog. zugleich im kritischen Bereich sind."
- (e) "Jedes Teilprog. kommt beliebig oft in seinen krit. Bereich."
- (f) "Jedes Teilprogramm kann beliebig oft in seinen kritischen Bereich gelangen."

T 3.19

Verifikation mittels der konstruierten NBAs

Gegeben sind wieder System ${\cal S}$ und Spezifikation ${\it E}$.

Universelles MCP

Motiv

- Gilt E für jeden Pfad in S?
- äquivalent: $L(A_S) \subseteq L(A_E)$?
- äquivalent: $L(A_S) \cap \overline{L(A_E)} = \emptyset$?
- \rightarrow Komplementierung A_E , Produktautomat, Leerheitsproblem
 - Komplexität: PSpace (exponentielle Explosion bei Komplementierung)

Existenzielles MCP

- Gibt es einen Pfad in S, der E erfüllt?
- äquivalent: $L(A_S) \cap L(A_E) \neq \emptyset$?
- → Produktautomat, Leerheitsproblem
 - Komplexität: NL (keine exponentielle Explosion)

Bemerkung zur Implementierung

Praktisches Problem

- Komplexität von MCP wird bezüglich $|A_S| + |A_E|$ gemessen
- |S| und damit $|A_S|$ ist exponentiell in der Anzahl der Variablen: State space explosion problem
- → universelles bzw. existenzielles MCP sind eigentlich in ExpSpace bzw. in PSpace bezüglich Anz. der Variablen

Abhilfe:

- "On-the-fly model checking"
- Zustände von $\mathcal{A}_{\mathcal{S}}$ werden während des Leerheitstests nur bei Bedarf erzeugt

Spezifikationen mittels Linearer Temporallogik (LTL)

Nun zu Schritt 2. Ziele:

- ullet intuitivere Beschreibung der Spezifikation E durch Formel $arphi_E$
- Prozedur zur Umwandlung φ_E in \mathcal{A}_E (!) allerdings ist $|\mathcal{A}_E|$ exponentiell in $|\varphi_E|$
- dafür Explosion bei Komplementierung vermeiden: wandle $\neg \varphi_E$ in Automaten um
- → beide MCP für LTL sind PSpace-vollständig

LTL im Überblick

LTL = Aussagenlogik + Operatoren, die über Pfade sprechen:

F (Future)

 $F\varphi$ bedeutet " φ ist irgendwann in der Zukunft wahr"

G (Global)

 $G\varphi$ bedeutet " φ ist ab jetzt immer wahr"

X (neXt)

 $X \varphi$ bedeutet " φ ist im nächsten Zeitpunkt wahr"

U: (Until)

 $\varphi U \psi$ bedeutet " ψ ist irgendwann in der Zukunft wahr und bis dahin ist immer φ wahr"

LTL-Syntax

Sei AV abzählbare Menge von Aussagenvariablen.

Definition 3.31 (LTL-Formeln)

- Jede Aussagenvariable $p \in AV$ ist eine LTL-Formel.
- Wenn φ und ψ LTL-Formeln sind, dann sind die folgenden auch LTL-Formeln.

$$ullet$$
 $\neg arphi$ "nicht $arphi$ "

$$\bullet \ \varphi \wedge \psi$$
 " $\varphi \ \mathrm{und} \ \psi$ "

$$ullet$$
 $Farphi$ "in Zukunft irgendwann $arphi$ "

$$ullet$$
 $Garphi$ "in Zukunft immer $arphi$ "

$$ullet$$
 $\chi arphi$ "im nächsten Zeitpunkt $arphi$ "

$$ullet$$
 φ U ψ "in Zukunft irgendwann ψ ; bis dahin immer φ "

Verwenden die üblichen Abkürzungen $\varphi \lor \psi = \neg(\neg \varphi \land \neg \psi),$ $\varphi \to \psi = \neg \varphi \lor \psi, \quad \varphi \leftrightarrow \psi = (\varphi \to \psi) \land (\psi \to \varphi)$

LTL-Semantik

Pfad: Abbildung $\pi: \mathbb{N} \to 2^{AV}$ Schreiben $\pi_0 \pi_1 \dots$ statt $\pi(0)\pi(1)\dots$

Definition 3.32

Sei φ eine LTL-Formel, π ein Pfad und $i \in \mathbb{N}$.

Das Erfülltsein von φ in π , i $(\pi, i \models \varphi)$ ist wie folgt definiert.

- $\pi, i \models p$, falls $p \in \pi_i$, für alle $p \in AV$
- $\pi, i \models \neg \psi$, falls $\pi, i \not\models \psi$
- $\pi, i \models \varphi \land \psi$, falls $\pi, i \models \varphi$ und $\pi, i \models \psi$
- $\pi, i \models F\varphi$, falls $\pi, j \models \varphi$ für ein $j \geqslant i$
- $\pi, i \models G\varphi$, falls $\pi, j \models \varphi$ für alle $j \geqslant i$
- $\pi, i \models X\varphi$, falls $\pi, i+1 \models \varphi$
- $\pi, i \models \varphi \ U \ \psi$, falls $\pi, j \models \psi$ für ein $j \geqslant i$ und $\pi, k \models \varphi$ für alle k mit $i \leqslant k < j$

T 3.20

Beispiel-Spezifikationen als LTL-Formeln

Beispiel Mikrowelle (siehe Bild auf Folie 90)

• "Wenn ein Fehler auftritt, ist er nach endlicher Zeit behoben."

$$G(e \rightarrow F \neg e)$$

 $(e \in AV \text{ steht für "Error"})$

 "Wenn die Mikrowelle gestartet wird, fängt sie nach endlicher Zeit an zu heizen."

$$G(s \rightarrow Fh)$$

$$(s,h\in \mathsf{AV}\ \mathsf{stehen}\ \mathsf{f\"{u}r}\ \mathsf{,Start''}\ \mathsf{bzw.}\ \mathsf{,Heat''})$$

• "Irgendwann ist für genau einen Zeitpunkt die Tür geöffnet."

$$F(c \wedge X(\neg c \wedge Xc))$$

$$(c \in AV \text{ steht für "Close"})$$

 "Irgendwann ist für genau einen Zeitpunkt die Tür geöffnet, und bis dahin ist sie geschlossen."

$$c U (\neg c \wedge Xc)$$

Beispiel-Spezifikationen als LTL-Formeln

Beispiel Nebenläufigkeit (siehe Bild auf Folie 92)

Es kommt nie vor.

- dass beide Teilprog. zugleich im kritischen Bereich sind.
 - $G \neg (p_{12} \land p_{22})$ $(p_i \in AV \text{ stehen für "Programmzähler in Zeile } i")$
- Jedes Teilprog. kommt beliebig oft in seinen krit. Bereich.
 GFp₁₂ ∧ GFp₂₂

Model-Checking mit LTL-Formeln

Zur Erinnerung:

Definition 3.30: Model-Checking-Problem MCP

Gegeben ein System S und eine Spezifikation E,

- gilt E für jeden Pfad in S? (universelle Variante)
- gibt es einen Pfad in S, der E erfüllt? (existenzielle Variante)

Model-Checking mit LTL-Formeln

Für LTL:

(jedem Pfad $s_0s_1s_2\ldots$ in einer Kripke-Struktur $\mathcal{S}=(S,S_0,R,\ell)$ entspricht ein LTL-Pfad $\pi_0\pi_1\pi_2\ldots$ mit $\pi_i=\ell(s_i)$)

Definition 3.33 (Model-Checking-Problem)

Gegeben Kripke-Struktur $S = (S, S_0, R, \ell)$ und LTL-Formel φ ,

- gilt π , $0 \models \varphi$ für alle Pfade π , die in einem $s_0 \in S_0$ starten? (universelle Variante)
- gibt es Pfad π , der in einem $\pi_0 \in S_0$ startet, mit $\pi, 0 \models \varphi$? (existenzielle Variante)
- ✓ Exakte Beschreibung des Model-Checking-Problems
- ▶ Algorithmische Lösung?

MCP weiterhin mittels Büchi-Automaten lösen!

Vorgehen wie gehabt:

- Wandle Kripke-Struktur S in NBA A_S um \sim Pfade in S sind erfolgreiche Runs von A_S
- Wandeln LTL-Formel φ_E in NBA \mathcal{A}_E um $\longrightarrow \mathcal{A}_E$ beschreibt Pfade, die E erfüllen
- \sim Universelles MCP = " $L(A_S) \subseteq L(A_E)$?" Existenzielles MCP = " $L(A_S) \cap L(A_E) \neq \emptyset$?"

Noch zu klären: Wie wandeln wir φ_E in \mathcal{A}_E um?

Umwandlung von LTL-Formeln in Automaten (Überblick)

Wandeln φ_E in generalisierten Büchi-Automaten (GNBA) um:

- $\mathcal{A}_{\varphi_E} = (Q, \Sigma, \Delta, I, \mathcal{F}) \text{ mit } \mathcal{F} \subseteq 2^Q$
- $r = q_0 q_1 q_2 \dots$ ist erfolgreich: $Inf(r) \cap F \neq \emptyset$ für alle $F \in \mathcal{F}$
- GNBAs und NBAs sind äquivalent (nur quadratische Vergrößerung)

Vorbetrachtungen

Sei φ_E eine LTL-Formel, in der o. B. d. A.

- nur die Operatoren \neg, \wedge, X, U vorkommen Die anderen kann man mit diesen ausdrücken: $F\varphi \equiv (\neg(p \wedge \neg p))\ U\ \varphi \qquad G\varphi \equiv \neg F \neg \varphi$
- keine doppelte Negation vorkommt natürlich gilt $\neg\neg\psi\equiv\psi$ für alle Teilformeln ψ (Hier steht $\alpha\equiv\beta$ für $\forall\pi\forall i:\pi,i\models\alpha$ gdw. $\pi,i\models\beta$)

Etwas Notation

$$\bullet \ \, \sim \! \psi = \begin{cases} \vartheta & \text{falls } \psi = \neg \vartheta \\ \neg \psi & \text{sonst} \end{cases}$$

- $cl(\varphi_F) = \{\psi, \sim \psi \mid \psi \text{ ist Teilformel von } \varphi_F\}$
- $\Sigma = 2^{AV}$

Intuitionen

Erweiterung von Pfaden

- Betrachten Pfade $\pi = s_0 s_1 s_2 \dots$ mit $s_i \subseteq AV$
- Erweitern jedes s_i mit den $\psi \in cl(\varphi_E)$, für die $\pi, i \models \psi$ gilt
- Resultat: Folge $\overline{\pi} = t_0 t_1 t_2 \dots$ mit $t_i \subseteq cl(\varphi_E)$

Bestandteile des GNBA $\mathcal{A}_{\varphi_{\mathcal{E}}}$

Skizze: s. Tafel T 3.21

- Zustände: \approx alle t_i
- $\overline{\pi} = t_0 t_1 t_2 \dots$ wird ein Run von \mathcal{A}_{φ_E} für $s_0 s_1 s_2 \dots$ sein
- Run $\overline{\pi}$ wird erfolgreich sein gdw. π , $0 \models \varphi_E$
- Kodieren Bedeutung der logischen Operatoren in
 - Zustände $(\neg, \land, \text{ teilweise } U)$
 - Überführungsrelation (X, teilweise U)
 - Akzeptanzbedingung (teilweise U)

Zustandsmenge des GNBA $\mathcal{A}_{\varphi_{\mathcal{E}}}$

Q= Menge aller elementaren Formelmengen, wobei $t\subseteq \operatorname{cl}(\varphi_E)$ elementar ist, wenn gilt:

- t ist konsistent bzgl. Aussagenlogik, d. h. für alle $\psi_1 \wedge \psi_2 \in \operatorname{cl}(\varphi_E)$ und $\psi \in \operatorname{cl}(\varphi_E)$:
 - $\psi_1 \wedge \psi_2 \in t$ gdw. $\psi_1 \in t$ und $\psi_2 \in t$
 - wenn $\psi \in t$, dann $\sim \psi \notin t$
- ② t ist lokal konsistent bzgl. des U-Operators, d. h. für alle ψ_1 U $\psi_2 \in \operatorname{cl}(\varphi_E)$:
 - wenn $\psi_2 \in t$, dann $\psi_1 \ U \ \psi_2 \in t$
 - wenn $\psi_1 \ U \ \psi_2 \in t$ und $\psi_2 \notin t$, dann $\psi_1 \in t$
- **3** t ist maximal, d. h. für alle $\psi \in cl(\varphi_E)$: wenn $\psi \notin t$, dann $\sim \psi \in t$

Beispiel: $a U (\neg a \land b)$, siehe Tafel

Überführungsrelation des GNBA \mathcal{A}_{φ_E}

Seien $t, t' \in Q$ (elementare Formelmengen) und $s \in \Sigma$ ($\Sigma = 2^{AV}$)

 Δ besteht aus allen Tripeln (t, s, t') mit

- ② für alle $X\psi \in \operatorname{cl}(\varphi_E)$: $X\psi \in t$ gdw. $\psi \in t'$
- für alle ψ_1 U $\psi_2 \in \operatorname{cl}(\varphi_E)$: ψ_1 U $\psi_2 \in t$ gdw. $\psi_2 \in t$ oder $(\psi_1 \in t \text{ und } \psi_1 \text{ } U \text{ } \psi_2 \in t')$ ("Aufschieben" von ψ_1 U ψ_2)

Skizzen: siehe Tafel T 3.23

Anfangszustände und Akzeptanzkomponente von $\mathcal{A}_{arphi_{E}}$

Menge der Anfangszustände

alle elementaren Formelmengen, die φ_E enthalten

$$I = \{t \in Q \mid \varphi_E \in t\}$$

Menge der akzeptierenden Zustände

stellen sicher, dass kein $\psi_1\ U\ \psi_2$ für immer "aufgeschoben" wird

$$\mathcal{F} = \{ M_{\psi_1 U \psi_2} \mid \psi_1 \ U \ \psi_2 \in \mathsf{cl}(\varphi_E) \} \ \mathsf{mit}$$

$$\mathit{M}_{\psi_1 \cup \psi_2} = \{ t \in \mathit{Q} \mid \psi_1 \cup \psi_2 \notin t \text{ oder } \psi_2 \in t \}$$

Intuition: Ein $t \in M_{\psi_1 U \psi_2}$ kommt unendlich oft vor gdw. $\psi_1 U \psi_2$ immer nur höchstens endlich lange "aufgeschoben" wird

Beispiel: Xa, siehe Tafel

Beispiel: $(\neg a) U b$, siehe Tafel

T 3.24

T 3.25

Abschließende Betrachtungen

- |Q| ist exponentiell in $|\varphi_E|$
- Dafür kann man jetzt beim universellen MCP auf Komplementierung \mathcal{A}_{φ_E} verzichten: Wandle $\neg \varphi_E$ in Automaten um
- → beide MCP-Varianten in PSpace
 - beide MCP-Varianten sind PSpace-vollständig (aber für bestimmte LTL-Fragmente NP- oder NL-vollständig)

A. Prasad Sistla, Edmund M. Clarke: *The Complexity of Propositional Linear Temporal Logics*. Journal of the ACM 32(3): 733-749 (1985)

Michael Bauland, Martin Mundhenk, Thomas Schneider, Henning Schnoor, Ilka Schnoor, Heribert Vollmer: *The Tractability of Model Checking for LTL: the Good, the Bad, and the Ugly Fragments.* ACM Trans. Comput. Log. 12(2): 13 (2011)

Damit sind wir am Ende dieses Kapitels.

http://xkcd.com/1195 (CC BY-NC 2.5)

Vielen Dank.

Literatur für diesen Teil (1)

Wolfgang Thomas.

Automata on Infinite Objects.

In J. van Leeuwen (Hrsg.):

Handbook of Theoretical Computer Science.

Volume B: Formal Models and Sematics.

Elsevier, 1990, S. 133–192.

SUB, Zentrale: a inf 400 ad/465-2

Wolfgang Thomas.

Languages, automata, and logic.

In G. Rozenberg and A. Salomaa (Hrsg.:)

Handbook of Formal Languages. Volume 3: Beyond Words.

Springer, 1997, S. 389-455.

SUB, Zentrale: a inf 330/168-3

Literatur für diesen Teil (2)

Markus Roggenbach.

Determinization of Büchi Automata.

In E. Grädel, W. Thomas, T. Wilke (Hrsg.): Automata, Logics, and Infinite Games.

LNCS 2500, Springer, 2002, S. 43-60.

Erklärt anschaulich Safras Konstruktion.

http://www.cs.tau.ac.il/~rabinoa/Lncs2500.zip

Auch erhältlich auf Anfrage in der BB Mathematik im MZH: 19h inf 001 k/100-2500

Meghyn Bienvenu.

Automata on Infinite Words and Trees.

Vorlesungsskript, Uni Bremen, WS 2009/10. Kapitel 2.

http://www.informatik.uni-bremen.de/tdki/lehre/ws09/automata/automata-notes.pdf

Literatur für diesen Teil (3)

Christel Baier, Joost-Pieter Katoen.

Principles of Model Checking.

MIT Press 2008.

Abschnitt 4.3 "Automata on Infinite Words"

Abschnitt 5.2 "Automata-Based LTL Model Checking"

SUB, Zentrale: a inf 440 ver/782, a inf 440 ver/782a

Edmund M. Clarke, Orna Grumberg, Doron A. Peled.

Model Checking.

MIT Press 1999.

Abschnitt 2 "Modeling Systems" bis Mitte S. 14,

Abschnitt 2.2.3 +2.3 "Concurrent Programs" und "Example ...",

Abschnitt 3 "Temporal Logics",

Abschnitt 9.1 "Automata on Finite and Infinite Words".

SUB, Zentrale: a inf 440 ver/780(6), a inf 440 ver/780(6)a

Anhang: Beispiel Konsument-Produzent-Problem

- P erzeugt Produkte und legt sie einzeln in einem Lager ab
- K entnimmt Produkte einzeln dem Lager
- Lager fasst maximal 3 Stück

Modellierung durch endliches Transitionssystem

- Zustände 0, 1, 2, 3, Ü, U
 - 0,1,2,3: im Lager liegen 0,1,2,3 Stück
 - ullet Überschuss: P will ein Stück im vollen Lager ablegen
 - Unterversorgung: K will ein Stück aus leerem Lager nehmen
- Aktionen P, K (P legt ab oder K entnimmt)

Das Transitionssystem

Eingaben in das System: unendliche Zeichenketten über $\Sigma = \{p, k\}$ (Läufe)

Zufriedenheit: P(K) möchte ...

- beliebig oft Produkte produzieren (konsumieren)
- ullet nur endlich oft \ddot{U} berschuss (Unterversorgung) erleiden

Lauf, der P und K zufrieden stellt: $p^3k^3p^3k^3...$ oder ppkpkpk... oder ...

Lauf, der weder P noch K zufrieden stellt: $p^4k^4p^4k^4...$