第9章 集成数/模和模/数转换器

数字系统处理模拟信号的框图

传感器(英文名称: transducer/sensor)是一种<u>检测</u>装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

一、集成数模转换器(DAC)

DAC: 把输入的数字量变换成与之成一定比例的模拟量。

 $v_A = KDV_{REF} = KV_{REF} \sum_{i=0}^{n-1} D_i \times 2^i$

D: n位数字量

K: 比例常数

V_{REF}:参考电压

 $\overline{\mathbf{V_{LSB}}}$: 最小输出电压(即D=001

时 的输出电压)

常用D/A转换技术

(1) 电流相加型4位R-2R T型电阻网络DAC

$$R_{F} = 3R$$

$$V_{o} = -\frac{V_{REF}}{2^{n}} \sum_{i=0}^{n-1} D_{i} \times 2^{i}$$

优点: 电阻阻值少, 便于集成 缺点: 流过开关的电流变化较 大, 影响变换速度。

(2) 倒T形电阻网络DAC

当
$$R_F = R$$
时 $v_o = \frac{V_{REF}}{2^n} \sum_{i=0}^{n-1} D_i \times 2^i$

优点:流过电子开关的电流方向不变,转换速度快。

缺点: 开关的接触电阻影响转换精度。

(3) 电流激励DAC

当
$$R_F = 3R$$
时 $V_o = \frac{I_{REF}R}{2^{n-1}} \sum_{i=0}^{n-1} D_i \times 2^i$

特点:用恒流源I_{REF},开关用差分放大器,速度高。

集成DAC的组成

DAC的主要技术指标

(1) 分辨率: 能够分辨最小输出电压的能力。

例1 4位DAC,当D=1111时Vo=V_{FSR}=10mV

分辨率=
$$\frac{V_{LSB}}{V_{ESB}} = \frac{1}{2^n - 1}$$

例2 如果要求转换精度小于1%,至少要用多少位的DAC?

分辨率 =
$$\frac{1}{2^n - 1} \le 1\%$$
 ,得 $n = 7$

(2) 转换误差:理论上应达到的输出(模拟量)值与实际达到的输出值之差。

绝对误差:

$$\frac{V_{\text{g}} - V_{\text{H}}}{V_{\text{LSB}}} = X \ V_{\text{LSB}}$$

相对误差:

(用百分数表示)

误差产生的原因

失调误差

增益误差

非线性误差

(3) 建立时间

D/A转换器输入发生 阶 跃到 输出稳定在规定的 误差范围内的最大时间。

低速:建立时间≥300µs,

工作速度≦3.3KHz

中速: 建立时间10~300μs,

工作速度100~3.3kHz

高速: 建立时间0.01~10µs,

工作速度100MHz~100kHz

集成DAC芯片的选择(文字参见P334)

型号	位数	建立时间	相对精度	参考电压 Int/Ext	最大输出 (电流或电压)	制造工艺	说明	制造厂
DAC 0832	8	1 μs	0.2%FSR	外接-10 V~+10 V	100 mA	CMOS	MDAC,中高速,与TTL电平兼容,外接放大器,低功耗	美 NSC
DAC-08	8	85 ns	±0.1%FSR	外接	2 mA	TTL	MDAC,高速,与 CMOS、ECL 兼容	PMI DATEL
AD 9768	8	5 ns		内设-1.26 V	20 mA	ECL	超高速	美 AD
AD 557	8	0.8 μs		内设		I ² L	高速,内有放大器,最低功耗	美 AD
DAC-02	10	2.0 μs	±0.1%FSR	内设 6.7 V	± 10 V	CMOS	TTL 电平兼容,中速,内含放大器,R-2R 倒 T 形网络	PMI
AD 390	12	8 µs	$\pm \frac{1}{2}$ LSB		-10 V~+10 V		4组 DAC,中速	美 AD
AD 7848	12	2.5 μs	±1%FSR	外接	+10 V或-10 V	CMOS	中高速,TTL电平兼容,内带8字节FIFO	美 AD
AD 667	12	3.0 µs	$\pm \frac{1}{4}$ LSB	内设 10 V	-2 mA或±1 mA		最高精度,中速	美 AD
AD 7542	12	0.25 μs	±0.1%FSR	外接	电流输出	CMOS	MDAC,高速,与TTL电平兼容,分段加载	美 AD
ZD 394MZ	14	3 μs	±0.005%FSR	外接	±10 V	CMOS	高精度,高速	
DAC-16	16	0.5 μs	±0.5%FSR	外接+10 V	电流输出-2 mA	CMOS	MDAC,TTL 电平兼容	PMI
AD 766	16	1.5 μs		内设	电压输出		带有输入数据串一并变换器,串行输入方式 DAC	美 AD
DAC73K	16	50 μs	±0.00075%FSR		±2.5 V ±5 V	CMOS	高精度,高分辨率	BB
PCM52JG	16	3 μs	0.002%FSR		±5 V		PCM 单频 DAC, 动态范围 96 dB	BB
DAC1138	18	10 μs	±0.0002%FSR	内设 6 V	电压输出 ±5 V ±10 V		高分辨率,高精度	NSC
AD1862	20	0.35 μs		内设			串行输入方式 DAC,带有串一并变换	美 AD

典型集成DAC应用举例

传送控制信 号,低电平 有效

DAC0832原理图

二、集成模数转换器 (ADC)

ADC: 把模拟信号转换为一定格式的数字量。

$$D = v_A(t)/V_{REF}$$

A/D转换的步骤

通常有四个步骤:

取样 一般合在一起完成,称为"取样一保持", 保持 在"取样一保持"电路内完成。 量化 也合在一起,由相应电路完成。

模/数转换的原理框图:

ADC的一般过程

采样过程波形图

基本采样-保持电路

采样-保持电路的输出

量化及编码

常用ADC技术

(1)

并行型A/D转换器

$$V_2 = \frac{3V_{REF}}{16}$$

$$V_1 = \frac{V_{REF}}{16}$$

3位并行ADC模拟电压和输出状态关系

输入模拟电压			数	据寄存	溢出	输出数字量		量				
VA	Q ₈	Q ₇	Q_6	Q ₅	Q ₄	Q_3	Q_2	Q ₁	ov	\mathbf{D}_2	\mathbf{D}_1	\mathbf{D}_0
$0 \leqslant V_A < V_{REF}/16$	0	0	0	0	0	0	0	0	0	0	0	0
$ m V_{REF}/16\!\leqslant\!V_A\!<\!3V_{REF}/16$	0	0	0	0	0	0	0	1	0	0	0	1
$3V_{REF}/16 \leqslant V_A < 5V_{REF}/16$	0	0	0	0	0	0	1	1	0	0	1	0
$5V_{REF}/16 \leqslant V_A < 7V_{REF}/16$	0	0	0	0	0	1	1	1	0	0	1	1
$7V_{REF}/16 \leqslant V_A < 9V_{REF}/16$	0	0	0	0	1	1	1	1	0	1	0	0
$9\mathrm{V}_{\mathrm{REF}}/16\!\leqslant\!\mathrm{V}_{\mathrm{A}}\!<\!11\mathrm{V}_{\mathrm{REF}}/16$	0	0	0	1	1	1	1	1	0	1	0	1
$11V_{REF}/16 \leqslant V_A < 13V_{REF}/16$	0	0	1	1	1	1	1	1	0	1	1	0
$13V_{REF}/16 \leqslant V_{A} < 15V_{REF}/16$	0	1	1	1	1	1	1	1	0	1	1	1
15 V _{REF} /16≪V _A	1	1	1	1	1	1	1	1	1	×	×	×

(2) 串/并型ADC原理图

(3)逐次比较型ADC原理图

12位二进制A/D转换电压2865(量化单位)的比较过程

比较				数	码	设发	定 器	内	容				DAC产生	$v_{ m F} \leqslant v_{ m A}$	比较器
步骤	2 048	1 024	512	256	128	64	32	16	8	4	2	1	的电压 v _F	$v_{\rm F} \sim v_{\rm A}$	判别
1	1	0	0	0	0	0	0	0	0	0	0	0	2 048	是	加码
2	1	1	0	0	0	0	0	0	0	.0	0	0	3 072	否	去码
3	1	0	1	0	0	0	0	0	0	0	0	0	2 560	是	加码
4	1	0	1	1	0	0	0	0	0	0	0	0	2 816	是	加码
5	1	0	1	1	1	0	0	0	0	0	0	0	2 944	否	去码
6	1	0	1	1	0	1	0	0	0	0	0	0	2 880	否	去码
7	1	0	1	1	0	0	1	0	0	0	0	0	2 848	是	加码
8	1	0	1	1	0	0	. 1	1	0	0	0	0	2 864	是	加码
9	1	0	1	1	0	0	1	1	1	0.	0	0	2 872	否	去码
10	1	0	1	1	0	0	1	1	0	1	0	0	2 868	否	去码
11	1	. 0	1	1	0	0	1	1	0	0	1	0	2 866	否	去码
12	1	0	1	1	0	0	1	1	0	0	0	1	2 865	是	加码

(4) 双积分型ADC原理图

$$\mathbf{N}_2 = \mathbf{N}_1 \frac{\mathbf{V}_{\mathbf{A}}}{\mathbf{V}_{\mathbf{REF}}}$$

集成ADC的组成

- 1、 仅集成量化编码器电路。
- 2、 集成了S-H电路和量化编码器电路。
- 3、除上之外,还集成了外围接口电路。
 - ①、带有各种输出接口
 - ②、带有多路输入通道选择
 - ③、带有内部存储器
 - ④、带有输出分配电路
 - ⑤、带有微处理器的可编程ADC

ADC的主要技术参数

(1) 分辨率:

所能分辨的最小输入电压。

分辨率=
$$\frac{1}{2^n}V_{Amax}$$

例:将0—1V的模拟电压 转换成3位二进制数。

(2) 转换误差:

绝对误差:定义为输出数字量对应的理论模拟值与实际输入模拟值之间的差值(±1/2LSB, ±1LSB)。

相对误差: 定义为上述差值与额定最大输入模拟值的百分数(±0.05%,±0.1%)。

(3) 转换时间:

ADC完成一次转换所需的时间。

最大误差为1/8V

ADC的集成芯片

	輸出	转换时间		最大輸入	参考电压	制造		
型号	位数	(速率)	转换精度	电压/V	V _{REF} /V	工艺	说明	生产厂家
ADC 0809	8	(医羊)	±1 LSB	5 5	外接±5	CMOS	逐次逼近型,中速,三态输出,直接与微机接口,8 输入 通道	美 NSC
HA16613A	8	5.2 ms	0.39%FSR	2	内含 V _{REF}	l ² L	双积分型,低速,输出并行、串行均可,双通道输入,无S-H	日立
AD 9002AD	8	125 MHz	1LSB/0.5LSB	-2	外接-2	ECL	并行型,超高速,输出锁存,不用 S-H	美 AD
AD7824KN	8	2 μs	±1 LSB	+ 5	外接+5	TTL	串/并行型,高速,CMOS兼容,四通道输入	美 AD
AN6859	10	20 MHz	±1 LSB	2	外接-2	ECL	并行型,超高速,不必用 S-H电路	松下
TSC7106AC	3 1/2	3 rdg/s	±1字	±0.2,±2	外接	CMOS	双积分型,低速,内含时钟发生,直接驱动 LED,BCD 输出	TSC
ADC1210H	12	200 μs	$\pm \frac{1}{2}$ LSB	$+5/\pm 2.5$ $+10/\pm 5$	外接	CMOS	逐次比较型,中速,双极性模拟输入	NSC
AD 650	自定	输出脉冲 f 最高 1 MHz	0.07%FSR	±5	V _{REF} I _{REF} 内设	CMOS	V—F转换器,外接积分电阻、电容、单稳定时电容,OC输出,外加时基和计数器	美 AD
ADC521MC	12	800 ns	$\pm \frac{1}{2} LSB$	+5,±2.5	内设	TTL	串/并行型,高速,含输人放大,三态输出	DATEL
ICL7115	14	40 μs	±0.1%FSR	+ 5	-5	CMOS	逐次比较型,中速,三态输出,与微机接口	INTERSIL
ICL7135	$4\frac{1}{2}$	333 ms	±1字	±2	外接1	CMOS	双积分型,低速,BCD码分时输出,直接与微机接口	INTERSIL
AK5326 - VP	16	48 kHz	±5%FSR	±3.6	内设	CMOS	Σ-Δ型,中速,64倍过采样,串行输出,双通道	ASAHIKASEI
AD376	16	17 μs	±0.006%FSR		内设	LSTTL	逐次比较型,中高速,内含时钟	美 AD
AD1170	18	1 ms			内设5	CMOS	比较型,中速,可编程 ADC,内含微处理器和 E ² PROM	美 AD
AD7710	21	0.01~1 kHz	,	mV 级		CMOS	Σ-Δ型,低速,适用于 mV 级输入(如热电偶等)	美 AD

ADC集成芯片—— 0809

例: 一个12位的ADC,其输入满量程电压是10V,则该ADC能分辨的最小电压 $V_{LSB}=?$

$$V_{LSB} = \frac{10V}{2^{12}} \approx 0.0024V = 2.4mV$$