STRETCH MEMS

Designer's Handbook

Edited By

Paul Han

B.Sc., EE (1st class honors) Member, IEEE

July 2025 Edition

Published by Calculus House

Reproduced and Distributed
by
Stratovelum Division
AUREM ELECTROCEUTICALS, INC
SAN FRANCISCO, CA

Stretch MEMS Designer's HandbookTM

Copyright © 2025 Paul Han. All rights reserved.

Except where otherwise noted, this work is licensed under CC BY-SA 4.0

Trademarks remain the property of their respective owners.

"Stretch MEMS Designer's HandbookTM" is a trademark of Paul Han.

Paul Han hereby grants Calculus House and Aurem Electroceuticals, Inc. a worldwide, perpetual, non-exclusive, royalty-free license to reproduce, distribute, and create derivative works of the Stretch MEMS Designer's HandbookTM in any medium, for commercial and non-commercial purposes.

ISBN

First print edition, July 2025

Printed in the United States of America

The information in this handbook is provided "as is" without warranty of any kind. Implementations may be subject to local safety regulations, medical-device standards, or intellectual-property restrictions. The author and publishers disclaim all liability arising from its use.

PREFACE

This book has been written as a comprehensive, self-explanatory reference handbook for the benefit of all who have an interest in the design and application of elastic biosensing, biofeedback, and neuromodulation films. Everything outside this field – robotic tactile skin, chemical sensing, teleoperation gloves, closed loop drug delivery, exoskeleton augmentation, human augmentation, brain computer interfaces and so on – has been excluded to limit the book to a reasonable size.

An effort has been made to produce a handbook which, in its own sphere, is as self-contained as possible. Extensive prompts to LLM chat interfaces have been included for the reader who might require additional detail.

I wish to express my grateful thanks to GPT o3 & GPT 4.5 as served by OpenAI's ChatGPT service during the spring and summer of 2025.

Paul Junsuk Han Researcher, Calculus House The Residency July 1st, 2025

CHAPTER HEADINGS

INTRODUCTION

Chapter
I THE PATTERNED LAMINA
II STRETCH MEMS: A TECHNOLOGICAL & HISTORICAL LENS
III THE BODY: AN ENGINEER'S LENS
PART 1: FUNDAMENTALS
Chapter
1 Thin-Film & Low-Dimensional Material Properties
2 Properties of Elastomers
3 Ionic Conduction
4 Properties of Conductors
5 Properties of Adhesives
6 Properties of Nanoparticles
7 Properties of Elastic Composites
8 Transparency & Permeability
9 Hydrophilicity
10 Electromechanical Modelling of the Dermis
11 Non-invasively Accessible Biometrics

PART 2: MATERIALS

Cnapter	
12 Platinum Silicones & Urethanes	
13 Silver & Silver Chloride	
14 Hydrogels	
15 UV Resins	
16 ITO & Transparent Conductive Oxides	
17 Conductive Ceramics & Polymers: TiN, PEDOT:PSS, TiC MXene	
18 Carbon, Graphene, Graphene Oxide	
19 Gallium-Alloy Liquid Metals	
20 Silane Primers	
21 Relevant Solvents	
22 Molecular Recognition & Electrochemical Transducers	
23 Printed-Circuit-Board Substrates	
24 Photoresists	
25 Polyimide	
26 Nanoclays	
27 Cytop, Parylene-C & Hermetic Sealants	
28 Biocompatible Adhesives & Tapes	
29 Anisotropic Conductive Films & Adhesives	
PART 3 : PROCESSING METHODS	
Chapter	
Chapter 30. SI A Additive Manufacturing & Material Selection	
30 SLA Additive Manufacturing & Material Selection	
32 Molding	

33	Film Processing
34	Spraying & Ultrasonic Spraying
35	Mechanical Cutting & Kiss-Cutting
36	Die Cutting
37	Roll-to-Roll Manufacturing
	Laser Methods : Overview
39	Laser Machine Taxonomy & Construction
40	Laser Methods : Wavelength Economics
41	Laser Methods : Useful Wavelength Properties
42	Laser Methods : Etching
43	Laser Methods : Ablation
44	Laser Methods : Cutting
45	Laser Methods: Sintering
46	Laser Methods : Chemical Activation
47	Plasma Etching for Surface Activation
48	Spot Welding
49	Methods for Fine-Particle Size Reduction
50	Ultrasonic Baths for Cleaning & Dispersion
	PART 4 : DEVICE PRIMITIVES
Cha	pter
51	Elastic & Serpentine Traces
52	Wet Electrodes (EEG, ECG, EMG, ENG, TENS, EDA, BioZ)
	Dry Electrodes for EEG & Related Modalities
	Temperature & Strain Sensors
55	Tactile. Pressure & Vibration Sensors

56	Microelectrodes
57	Microneedles
58	Vias
59	Connectors
60	Humidity Sensors
61	Sweat Sensors & Microfluidics
62	PPG Sensors
63	Ambient-Light Sensors
64	Microphones
65	Piezoelectric Transducers
66	Speakers
	Ionophoresis Diffusors
67	
	PART 5 : NON-INVASIVE BIOMETRIC SENSING
Cha	pter
Cha 68	pter ECG
Cha 68 69	pter ECG
Cha 68 69 70	pter ECG
Cha 68 69 70 71	pter ECG
Cha 68 69 70 71 72	pter ECG EMG ENG PPG EDA / GSR
Cha 68 69 70 71 72 73	pter ECG EMG ENG PPG EDA / GSR Bio-Z
Cha 68 69 70 71 72 73 74	pter ECG EMG ENG PPG EDA / GSR
Cha 68 69 70 71 72 73 74 75	pter ECG
Cha 68 69 70 71 72 73 74 75 76	pter ECG

PART 6: NON-INVASIVE BIOMETRIC STIMULATION

Chap	oter
79 ~	TENS
80	tDCS / tACS
81 I	Haptics & Tactile Stimulation
82	Drug Delivery by Ionophoresis
83	Microneedle Electrical Stimulation
84	Microneedle Drug Delivery
	PART 7: BIOMETRICS
Chap	oter
85	Heart-Rate, HRV, ECG
86	Local, Global & Core Temperature
87 (Cortisol
88	Lactate
89	Glucose
90	Skin Resistance & Impedance
91 1	Muscle Activity
92	Nociceptor Signaling
93	Potassium & Sodium
94	Hormones

PART 8: COMPOSITE BIOMETRICS

Clia	pter
95	Sleep
96	Pain
97	Stress
98	Tension
99	Alertness
100	Emotion
101	Speech & Body Language
102	Longevity
	PART 9: SYSTEM INTEGRATION
103	Design of an Athletic Monitor
	DADT 10 . Varification Validation for Manufacture
	PART 10 : Verification, Validation, & Manufacture
Cha	pter
104	Test Equipment
105	Parameters of Interest
106	Test Fixtures
	Test Design
	Scalable Manufacturing Techniques
	Design for Manufacture & Cost
	Yield Rates

PART 11: THE WAY FORWARD

Chapter			
111 A Pain Free World			
112 An Intelligent Material World			

Thickness	Rsheet	Crack-on-strain	Use case
500 nm PEDOT:PSS	400 Ω/□	2 %	tactile sensors
80 nm PEDOT:PSS	120 Ω/□	15 %	e-textile interconnects
40 nm AgNW	25 Ω/□	30%	stretch electrodes
12 nm Au on PU	50-70 Ω/□	100 %	strain gauges

Figure 1. Conductivity ${\mathfrak G}$ strain limits of typical stretch mems lamina

This page intentionally left blank