1 Stochastics

1 Ordinary Differential Equation

Let \mathcal{M} a smooth manifold, and $f: \mathbb{R} \times \mathcal{M} \to T\mathcal{M}$, we have ordinary differential equation 1

$$\frac{\mathrm{d}x^a}{\mathrm{d}t}(t) = f^a(t, x). \tag{1}$$

This ordinary differential equation induces a push-forward operator, $\hat{T}_{t \to t'}$: $\mathbb{R} \times \mathbb{R} \to \mathcal{M} \to \mathcal{M}^2$, which pushes the particle on position on \mathcal{M} at time t to another position on \mathcal{M} at time t'.

Let $\Omega^k(\mathcal{M})$ the space of k-forms on \mathcal{M} , where $k \leq \dim(\mathcal{M})$. This ordinary differential equation also induces a pullback operator on k-forms³, $\hat{T}^*_{t \to t'}: \mathbb{R} \times \mathbb{R} \to \Omega^k(\mathcal{M}) \to \Omega^k(\mathcal{M})$, which describes the transition of k-form from time t to t'

Precisely, consider $\forall \psi^{(k)} \in \Omega^k(\mathcal{M})$, we can write it explicitly by indices, as

$$\psi^{(k)}(x) = (1/k!) \psi_{\alpha_1, \dots, \alpha_k}^{(k)}(x) dx^{\alpha_1} \wedge \dots \wedge dx^{\alpha_k}, \tag{2}$$

where the indices in $\psi_{\alpha_1 \cdots \alpha_k}^{(k)}(x)$ is anti-symmetric. Regardless of the 1/k! factor, the $\psi_{\alpha_1 \cdots \alpha_k}^{(k)}(x)$ can be viewed as the local density at x and the $\mathrm{d} x^{\alpha_1} \wedge \cdots \wedge \mathrm{d} x^{\alpha_k}$ as area or volume unit. Thus, $\psi^{(k)}(x)$, as a whole, is the mass unit. \hat{T}^* is thus is a forward pushing transition of mass unit.

Lemma 1. Explicitly, we have

$$(\hat{T}_{t \to t'}^* \psi^{(k)})(x') = (1/k!) \psi_{\alpha_1 \dots \alpha_k}^{(k)} (\hat{T}_{t' \to t} x') \bigwedge_{i=1}^k (T \hat{T}_{t' \to t})_{\beta_i}^{\alpha_i} (x') \, \mathrm{d} x'^{\beta_i}, \tag{3}$$

where $T\hat{T}_{t'\to t}$ denotes the Jacobian of $\hat{T}_{t'\to t}$.

Proof. Let $x' = \hat{T}_{t \to t'} x$ and ${\psi'}^{(k)} = \hat{T}^*_{t \to t'} {\psi}^{(k)}$, by conservation of mass during the pushing, we have

$$\psi'^{(k)}_{\alpha_1 \cdots \alpha_k}(x') \, \mathrm{d} x'^{\alpha_1} \wedge \cdots \wedge \mathrm{d} x'^{\alpha_k} = \psi^{(k)}_{\alpha_1 \cdots \alpha_k}(x) \, \mathrm{d} x^{\alpha_1} \wedge \cdots \wedge \mathrm{d} x^{\alpha_k}.$$

Replace x by $x = \hat{T}_{t' \to t} x'$, we get

$$\psi'^{(k)}_{\alpha_1\cdots\alpha_k}(x')\,\mathrm{d} x'^{\alpha_1}\wedge\cdots\wedge\mathrm{d} x'^{\alpha_k}=\psi^{(k)}_{\alpha_1\cdots\alpha_k}(\hat{T}_{t'\to t}\,x')\bigwedge_{i=1}^k\,(T\hat{T}_{t'\to t})^{\alpha_i}_{\beta_i}(x')\,\mathrm{d} x'^{\beta_i}.$$

Inserting back the (1/k!) factor, we arrive at

$$(\hat{T}_{t \to t'}^* \psi^{(k)})(x') = (1/k!) \, \psi_{\alpha_1 \dots \alpha_k}^{(k)}(\hat{T}_{t' \to t} \, x') \bigwedge_{i=1}^k \, (T\hat{T}_{t' \to t})_{\beta_i}^{\alpha_i}(x') \, \mathrm{d}x'^{\beta_i}.$$

1.1 Infinitesimal Pull-back

Now, we try to derive the explicit expression of $\hat{T}_{t \to t'}^*$ depending on f^a in the limit $t' \to t$. This infinitesimal version of pull-back can be described by Lie derivative.

Definition 2. [Lie Derivative] Given $f: \mathbb{R} \times \mathcal{M} \to T\mathcal{M}$, Lie derivative $\hat{L}_f: \mathbb{R} \to \Omega^k(\mathcal{M}) \to \Omega^k(\mathcal{M})$ is defined as

$$\hat{L}_f(t) := \lim_{\Delta t \to 0} \frac{1 - \hat{T}_{t \to t + \Delta t}^*}{\Delta t},\tag{4}$$

where \hat{T}^* is the pull-back induced by f.

^{1.} We employ Einstein's convension of summation thoroughly.

^{2.} The notation $A \to B \to C$ in declarations always means $A \to (B \to C)$. Further, $A \to B \to \cdots$ means $A \to (B \to (\cdots))$. This is a useful convension from Haskell.

^{3.} Even though we call it something-back, but it pushes forward the k-forms. The name comes from the fact that forward pushing of k-forms is equivalent to backward pushing the mass unit, as the following discussion shows.

Some useful definitions in exterior algebra are recalled. Operators $\hat{\mathbf{d}} := \mathbf{d} x^{\alpha} \wedge \partial_{\alpha}^{-4}$ and, for $\forall f, \ \hat{i}_f := f^{\alpha} i_{\alpha}$, where i_{α} is the interior product⁵. Let A and B compositions of $\mathbf{d} x^a \wedge$ and i_a , then [A,B] is commutator if both A and B have balanced $\mathbf{d} x^a \wedge$ and i_a , otherwise anti-commutator.

With these definitions, we conclude the explicit relation between f and \hat{L}_f , as follows

Theorem 3. [Cartan's Magic Formula] We have

$$\hat{L}_f = [\hat{\mathbf{d}}, \hat{i}_f]. \tag{6}$$

Proof. As $t' = t + \Delta t$ with Δt tiny, we have $\hat{T}_{t' \to t} x' = x' - f(t', x') \Delta t$. Then, $T\hat{T}_{t' \to t} = 1 - Tf \Delta t$, where Tf denotes the Jacobian of f. Now, insert this two expressions into the definition of $\hat{T}_{t \to t'}^* \psi^{(k)}$, we find

$$(\hat{T}_{t \to t'}^* \psi^{(k)})(x') = (1/k!) \psi_{\alpha_1 \dots \alpha_k}^{(k)}(x' - f(t', x') \Delta t) \bigwedge_{i=1}^k (\delta_{\beta_i}^{\alpha_i} - (\partial_{\beta_i} f^{\alpha_i})(t', x') \Delta t) dx'^{\beta_i}.$$

First, consider the expansion of (1/k!) $\psi_{\alpha_1 \cdots \alpha_k}^{(k)}(x) \bigwedge_{i=1}^k (\delta_{\beta_i}^{\alpha_i} - (\partial_{\beta_i} f^{\alpha_i})(t', x') \Delta t) dx'^{\beta_i}$, up to $\mathcal{O}(\Delta t)$,

$$(1/k!) \psi_{\alpha_{1} \dots \alpha_{k}}^{(k)}(x) \bigwedge_{i=1}^{k} (\delta_{\beta_{i}}^{\alpha_{i}} - (\partial_{\beta_{i}} f^{\alpha_{i}})(t', x') \Delta t) dx'^{\beta_{i}}$$

$$= (1/k!) \psi_{\alpha_{1} \dots \alpha_{k}}^{(k)}(x) dx^{\alpha_{1}} \wedge \dots \wedge dx^{\alpha_{k}}$$

$$- \Delta t \sum_{i=1}^{k} (1/k!) \psi_{\alpha_{1} \dots \alpha_{k}}^{(k)}(x) (\partial_{\beta_{i}} f^{\alpha_{i}})(t', x') dx^{\alpha_{1}} \wedge \dots \wedge (dx^{\alpha_{i}} \to dx^{\beta_{i}}) \wedge \dots \wedge dx^{\alpha_{k}},$$

where $A \to B$ means that the original A is replaced by B. Now, we show that summation in the last line equals to $\partial_{\beta} f^{\alpha}(t', x') dx^{\beta} \wedge i_{\alpha} \psi^{(k)}(x)$. Recall that

$$i_{\alpha} \psi^{(k)}(x) := (1/k!) \sum_{i=1}^{k} (-1)^{i-1} \psi_{\alpha_{1} \cdots (\alpha_{i} \to \alpha) \cdots \alpha_{k}}(x) dx^{\alpha_{1}} \wedge \cdots \wedge dx^{\alpha_{i}} \wedge \cdots \wedge dx^{\alpha_{k}},$$

where A means the original A is deleted. Indeed,

$$\begin{split} &(\partial_{\beta} f^{\alpha})(t',x') \, \mathrm{d} x^{\beta} \wedge i_{\alpha} \, \psi^{(k)}(x) \\ &= (\partial_{\beta} f^{\alpha})(t',x') \, \mathrm{d} x^{\beta} \wedge (1/k!) \sum_{i=1}^{k} \, (-1)^{i-1} \psi_{\alpha_{1} \cdots (\alpha_{i} \to \alpha) \cdots \alpha_{k}}(x) \, \mathrm{d} x^{\alpha_{1}} \wedge \cdots \wedge \mathrm{d} x^{\alpha_{i}} \wedge \cdots \wedge \mathrm{d} x^{\alpha_{k}} \\ &= (\partial_{\beta} f^{\alpha})(t',x') \sum_{i=1}^{k} \, (1/k!) \, \psi_{\alpha_{1} \cdots (\alpha_{i} \to \alpha) \cdots \alpha_{k}}(x) \, \mathrm{d} x^{\alpha_{1}} \wedge \cdots \wedge (\mathrm{d} x^{\alpha_{i}} \to \mathrm{d} x^{\beta}) \wedge \cdots \wedge \mathrm{d} x^{\alpha_{k}} \\ &= \sum_{i=1}^{k} \, (\partial_{\beta_{i}} f^{\alpha_{i}})(t',x') \, (1/k!) \, \psi_{\alpha_{1} \cdots \alpha_{k}}(x) \, \mathrm{d} x^{\alpha_{1}} \wedge \cdots \wedge (\mathrm{d} x^{\alpha_{i}} \to \mathrm{d} x^{\beta_{i}}) \wedge \cdots \wedge \mathrm{d} x^{\alpha_{k}} \\ &= \sum_{i=1}^{k} \, (\partial_{\beta_{i}} f^{\alpha_{i}})(t',x') \, (1/k!) \, \psi_{\alpha_{1} \cdots \alpha_{k}}(x) \, \mathrm{d} x^{\alpha_{1}} \wedge \cdots \wedge (\mathrm{d} x^{\alpha_{i}} \to \mathrm{d} x^{\beta_{i}}) \wedge \cdots \wedge \mathrm{d} x^{\alpha_{k}}, \end{split}$$

where in the last two lines, we replaced the dummy indices $\alpha \to \alpha_i$ and $\beta \to \beta_i$, and then found that $\psi_{\alpha_1 \cdots \alpha_k}$ can be written back to $\psi_{\alpha_1 \cdots \alpha_k}$. Thus,

$$(1/k!) \psi_{\alpha_1 \cdots \alpha_k}^{(k)}(x) \bigwedge_{i=1}^k \left(\delta_{\beta_i}^{\alpha_i} - (\partial_{\beta_i} f^{\alpha_i})(t', x') \Delta t \right) dx'^{\beta_i} = (1 - \Delta t (\partial_{\beta} f^{\alpha})(t', x') dx^{\beta} \wedge i_{\alpha}) \psi^{(k)}(x).$$

So, we find

$$\begin{split} (\hat{T}^*_{t\rightarrow t+\Delta t}\psi^{(k)})(x') &= (1-\Delta t\,(\partial_\beta\,f^\alpha)(t',x')\,\mathrm{d}x^\beta\wedge i_\alpha)\,\psi^{(k)}(x)\\ \{x &= x'-f(t',x')\,\Delta t\} = (1-\Delta t\,(\partial_\beta\,f^\alpha)(t',x')\,\mathrm{d}x^\beta\wedge i_\alpha)\,\psi^{(k)}(x'-f(t',x')\,\Delta t)\\ &= (1-\Delta t\,(\partial_\beta\,f^\alpha)(t',x')\,\mathrm{d}x^\beta\wedge i_\alpha)\,(1-\Delta t\,f^\alpha(t',x')\,\partial_\alpha)\psi^{(k)}(x')\\ &= \psi^{(k)}(x')-(f^\alpha(t',x')\partial_\alpha+(\partial_\beta f^\alpha)(t',x')\,\mathrm{d}x^\beta\wedge i_\alpha)\,\psi^{(k)}(x')\,\Delta t + \mathcal{O}(\Delta t^2). \end{split}$$

Thus

$$\hat{L}_f := \lim_{\Delta t \to 0} \frac{1 - \hat{T}_{t \to t + \Delta t}^*}{\Delta t}$$
$$= f^a \partial_a + (\partial_\beta f^\alpha) \, \mathrm{d} x^\beta \wedge i_\alpha.$$

$$i_{\alpha} \psi^{(k)} := (1/k!) \sum_{i=1}^{k} (-1)^{i-1} \psi_{\alpha_{1} \cdots (\alpha_{i} - \alpha) \cdots \alpha_{k}} dx^{\alpha_{1}} \wedge \cdots \wedge dx^{\alpha_{i}} \wedge \cdots \wedge dx^{\alpha_{k}}, \tag{5}$$

where A means that A is deleted, and $A \to B$ means that the original A is replaced by B. That is, it annihilates a $\mathrm{d} x^a \wedge$. The most useful property of interior product is the anti-commutator $[\mathrm{d} x^a \wedge, i_\beta]_+ = \delta^\alpha_\beta$.

 $[\]overline{4. \text{ Operator } \partial_{\alpha} \text{ is short for } \partial/\partial x^{\alpha}}$.

^{5.} Interior product $i_a: \Omega^k(\mathcal{M}) \to \Omega^{k-1}(\mathcal{M})$ is defined as, for $\forall \psi^{(k)} \in \Omega^k(\mathcal{M})$,

Since $\hat{\mathbf{d}} := \mathbf{d}x^{\alpha} \wedge \partial_{\alpha}$ and $\hat{i}_f := f^{\alpha} i_{\alpha}$, we have

$$\begin{split} [\widehat{\mathbf{d}},\widehat{i}_f] &= \mathbf{d} x^\alpha \wedge \partial_\alpha \, f^\beta \, i_\beta + f^\beta \, i_\beta \mathbf{d} x^\alpha \wedge \partial_\alpha \\ &= (\partial_\alpha \, f^\beta) \mathbf{d} x^\alpha \wedge i_\beta + f^\beta \, \mathbf{d} x^\alpha \wedge i_\beta \, \partial_\alpha \\ \{ [\mathbf{d} x^a \wedge, i_\beta] &= \delta^\alpha_\beta \} + f^\beta \, \delta^\alpha_\beta \partial_\alpha - f^\beta \, \mathbf{d} x^\alpha \wedge i_\beta \, \partial_\alpha \\ &= (\partial_\alpha \, f^\beta) \mathbf{d} x^\alpha \wedge i_\beta + f^a \partial_a, \end{split}$$

which is \hat{L}_f .

2 Stochastic Differential Equation

A direct generalization of ordinary differential equation is adding a Gaussian noise, as stochastic differential equation

$$\frac{\mathrm{d}x^a}{\mathrm{d}t}(t) = f^a(t,x) + g^a_\beta(t,x)\,\eta^\beta(t),\tag{7}$$

where, for $\forall t$ and α , $\eta^{\alpha}(t) \sim \mathcal{N}(0, 1/dt)$. Thus, $\eta: \mathbb{R} \to V$ with V an Euclidean space, and $g: \mathbb{R} \times \mathcal{M} \to V \to T\mathcal{M}$.

For any functional $F[\eta]$, split the time interval [t, t'] by $t = t_1 < t_2 < \cdots < t_N = t'$, with $t_{i+1} - t_i \equiv \Delta t$, then define the expectation as

$$\begin{split} \langle F \rangle &:= \int D[\eta] \exp \left(-\frac{1}{2} \int \mathrm{d}t \delta_{\alpha\beta} \, \eta^a(t) \, \eta^\beta(t) \right) F[\eta] \\ &:= \lim_{\Delta t \to 0} Z^{-1} \int \mathrm{d}\eta(t_1) \cdots \mathrm{d}\eta(t_N) \exp \left(-\frac{1}{2} \sum_i \Delta t \delta_{\alpha\beta} \, \eta^a(t_i) \, \eta^\beta(t_i) \right) F[\eta], \end{split}$$

where Z the normalization factor so that $\langle 1 \rangle = 1$. Notice that the dimension of η and that of f may not equal.

2.1 Infinitesimal Pull-back Expectation

For any configuration η given, the stochastic differential equation is reduced to an ordinary differential equation. In this case, the pull-back depends on η , that is, $\hat{T}^*_{t \to t'}[\eta]$. We care about the expectation $\langle \hat{T}^*_{t \to t'}[\eta] \rangle$ over all possible configuration of η , especially it's infinitesimal version.

As before, define the stochastic version of Lie derivative, as

$$\hat{H}_{(f,g)}(t) := \lim_{\Delta t \to 0} \frac{1 - \langle \hat{T}_{t \to t + \Delta t}^*[\cdot] \rangle}{\Delta t},\tag{8}$$

where $\hat{T}_{t\to t+\Delta t}^*$ depends on the configuration η .

Theorem 4. We have

$$\hat{H}_{(f,g)} = \hat{L}_f - \frac{1}{2}\hat{L}_g^2,\tag{9}$$

where $\hat{L}_g^2 := \delta^{\alpha\beta} \hat{L}_{g_{\alpha}} \hat{L}_{g_{\beta}}$.

Proof. Given configuration of η , let $F_{\eta}^{\alpha}(t,x) := f^{\alpha}(t,x) + g_{\beta}^{\alpha}(t,x)\eta^{\beta}(t)$. Directly, we have

$$\hat{L}_{F_{\eta}} = \hat{L}_f + \hat{L}_{g_{\beta}} \eta^{\beta}.$$

Then, we have $\hat{T}_{t\to t+\Delta t}^*[\eta] = \exp(-\hat{L}_{F_n}\Delta t)$. Then,

$$\begin{split} \langle \hat{T}_{t \to t + \Delta t}^* [\cdot] \rangle &= \int \mathrm{d} \eta(t) \exp \left(-\frac{1}{2} \, \Delta t \, \delta_{\alpha\beta} \, \eta^\alpha(t) \, \eta^\beta(t) \right) \exp(-\hat{L}_{F_\eta} \Delta t) \\ &= \int \mathrm{d} \eta(t) \exp \left(-\frac{1}{2} \, \Delta t \, \delta_{\alpha\beta} \, \eta^\alpha(t) \, \eta^\beta(t) \right) \left(1 - \hat{L}_{F_\eta} \Delta t + \frac{1}{2} (\hat{L}_{F_\eta} \Delta t)^2 + \cdots \right) \\ &= 1 - \langle \hat{L}_{F_\eta} \, \Delta t \rangle + \frac{1}{2} \langle (\hat{L}_{F_\eta} \Delta t)^2 \rangle + \cdots \end{split}$$

Since $\langle \eta^{\beta} \rangle = 0$, $\langle \hat{L}_{F_{\eta}} \Delta t \rangle = \langle \hat{L}_f + \hat{L}_{g_{\beta}} \eta^{\beta} \rangle \Delta t = \hat{L}_f \Delta t$. And since $\langle \eta^{\alpha} \eta^{\beta} \rangle = \delta^{\alpha \beta} / \Delta t$,

$$\begin{split} \langle (\hat{L}_{F_{\eta}} \Delta t)^2 \rangle \\ &= \langle (\hat{L}_f + \hat{L}_{g_{\alpha}} \eta^{\alpha}) \, (\hat{L}_f + \hat{L}_{g_{\beta}} \eta^{\beta}) \rangle \, \Delta t^2 \\ \{ \langle \eta^{\beta} \rangle = 0 \} &= \hat{L}_f^2 \, \Delta t^2 + \hat{L}_{g_{\alpha}} \, \hat{L}_{g_{\beta}} \, \langle \eta^{\alpha} \, \eta^{\beta} \rangle \, \Delta t^2 \\ \{ \langle \eta^{\alpha} \, \eta^{\beta} \rangle &= \delta^{\alpha\beta} / \Delta t \} &= \hat{L}_f^2 \, \Delta t^2 + \hat{L}_{g_{\alpha}} \, \hat{L}_{g_{\beta}} \, \delta^{\alpha\beta} \, \Delta t \\ \{ \hat{L}_g^2 := \cdots \} &= \hat{L}_f^2 \, \Delta t^2 + \hat{L}_g^2 \, \Delta t. \end{split}$$

^{6.} TODO: needs some proof.

Thus,

$$\begin{split} \langle \hat{T}^*_{t \to t + \Delta t}[\cdot] \rangle &= 1 - \langle \hat{L}_{F_{\eta}} \rangle \Delta t + \frac{1}{2} \langle (\hat{L}_{F_{\eta}} \Delta t)^2 \rangle + \cdots \\ &= 1 - \hat{L}_f \Delta t + \frac{1}{2} \langle \hat{L}_g^2 \rangle \Delta t + o(\Delta t). \end{split}$$

So, finally,

$$\hat{H}_{(f,g)} := \lim_{\Delta t \to 0} \frac{\hat{1} - \langle \hat{T}^*_{t \to t + \Delta t}[\cdot] \rangle}{\Delta t} = \hat{L}_f - \frac{1}{2} \hat{L}_g^2.$$

Example 5. [Fokker-Planck Equation] In the case $g_{\beta}^{\alpha} \equiv \sqrt{2T} \delta_{\beta}^{\alpha}$,

$$\hat{H} = (\partial_{\alpha} f^{\beta}) \, \mathrm{d}x^{\alpha} \wedge i_{\beta} + f^{\alpha} \partial_{\alpha} - T \partial^{2}, \tag{10}$$

where $\partial^2 := \delta^{\alpha\beta} \partial_{\alpha} \partial_{\beta}$. Applying on $\psi^{(D)}$ with $D = \dim(\mathcal{M})$, since $\mathrm{d} x^{\alpha} \wedge \psi^{(D)} = 0$, and thus $\mathrm{d} x^{\alpha} \wedge i_{\beta} \psi^{(D)} = \delta^{\alpha}_{\beta} \psi^{(D)}$, we find

$$\hat{H}\psi^{(D)} = (\partial_{\alpha}f^{\alpha} - T\partial^{2})\psi^{(D)},\tag{11}$$

which is the Fokker-Planck equation.

2.2 Symmetry (TODO)

Definition 6. Given A, B is called A-exact if there exists X such that

$$B = [A, X]. \tag{12}$$

Lemma 7. If B is A-exact, then [A, B] = 0.

Proof.

$$\begin{split} [A,B] &= [A,[A,X]] \\ &= [X,[A,A]] + [A,[X,A]] \\ &= ? \end{split}$$

Lemma 8. We have decomposition

$$\hat{H} = [\hat{\mathbf{d}}, \hat{j}],\tag{13}$$

where $\hat{j} := \hat{i}_f - \frac{1}{2}\hat{L}_{g_\beta}\eta^\beta$.

That is, \hat{H} is \hat{d} -exact, thus,

$$[\hat{\mathbf{d}}, \hat{H}] = 0.$$
 (14)

 $\hat{\mathbf{d}}\psi^{(k)} = 0$, but there isn't $\varphi^{(k-1)}$ s.t. $\psi^{(k)} = \hat{\mathbf{d}}\varphi^{(k-1)}$. Symmetric state.

 $\hat{\mathbf{d}}\psi^{(k)} \neq 0. \ \hat{\mathbf{d}}^2\psi^{(k)} = 0. \ \text{Symmetry breaking state.} \ \operatorname{tr}(\langle \hat{T}_{t \to t'}^*[\cdot] \rangle) = \sum_n \exp(-E_n(t'-t)) = \exp(\lambda(t'-t)).$

 $\hat{j}^2 = 0. \ [\hat{j}, \hat{H}] = 0.$

 \hat{j} is the flux. That is, for $\psi^{(D)}$, where $D = \dim(\mathcal{M})$, $\hat{H} \psi^{(D)} = \hat{j} \psi^{(D)}$, so that $\partial_t \psi^{(D)} + \hat{j} \psi^{(D)} = 0$, indicating that \hat{j} is the flux.