Image Formation

Forming an image

- First, we need some sort of sensor to receive and record light.
- Is this all we need?

Do we get a useful image?

Restricting the Light

Pinhole Camera

- Advantages:
 - easy to simulate
 - everything is in focus
- Disadvantages:
 - needs a bright scene (or long exposure)
 - everything is in focus

Collecting the light

- Instead of throwing away all but a single ray, let's collect a bunch of rays and concentrate them at a single point on the sensor.
- To do this, we need to be able to change the path of a light ray.
- Fortunately, we have **refraction**. Light passing from one medium into denser one will bend towards the **normal** of the interface.

Stacking prisms

- We can use variously shaped prisms to take light rays of various angles and bend them to pass through a single point.
- As we use more and more prisms, the shape approaches a curve, and we get a lens.

Forming an image with a lens

• We can now replace the pinhole barrier with a lens, and we still get an image.

- Now there is a specific distance at which objects are "in focus".
- By changing the shape of the lens, we change how it bends the light.

Optics

- Focal point the point where parallel rays converge when passing through a lens.
- Focal length the distance from the lens to the focal point.
- **Diopter** the reciprocal of the focal length, measured in meters.

Image Processing

Reading

The following links are available on the course homepage

- http://www.dai.ed.ac.uk/HIPR2/noise.htm
- http://www.dai.ed.ac.uk/HIPR2/mean.htm
- http://www.cee.hw.ac.uk/hipr/html/median.html

Definitions

- Many graphics techniques operate only on images
- **Image processing**: operations that take images as input, produce images as output
- In its most general form, an **image** is a function f from R² to R
 - f(x, y) gives the intensity of a channel at position (x, y)
 - defined over a rectangle, with a finite range:
 - f: [a,b]x[c,d] [0,1]
 - A color image is just three functions pasted together:
 - $f(x, y) = (f_r(x, y), f_g(x, y), f_b(x, y))$

Images

- In computer graphics, we usually operate on digital (discrete) images
 - Quantize space into units (pixels)
 - Image is constant over each unit
 - A kind of step function
 - $f: \{0 \dots m-1\}x\{0 \dots n-1\}$ [0,1]
- An image processing operation typically defines an image f ' in terms of an existing image f

Images as Functions

Pixel-to-pixel Operation

- The simplest operations are those that transform each pixel in isolation
- f'(x, y) = g(f(x,y))
- Example: threshold, RGB
 — greyscale

Pixel Movement

- Some operations preserve intensities, but move around in the image
- f'(x, y) = f(g(x,y), h(x,y))
- Examples: many amusing warps of images

Noise

 Common types of noise

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Noise

- Common types of noise:
 - Salt and pepper noise: random black and white pixels
 - **Impulse noise:** random white pixels
 - Gaussian noise: variations in intensity drawn from a Gaussian (normal) distribution

Noise Reduction

• Is there a way to "smooth" out the noise?

Reducing Noise

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Filtering

- look at the neighborhood N around each pixel
- replace each pixel with new value as a function of pixels in N
- The behaviorg(i,j)=h(f,N) and f

Mean filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x,y]

G[x,y]

Replace each pixel with an average of the pixels in the kxk box around it

- 3×3 case:
$$G[x,y] = \frac{1}{9} \sum_{u=0}^{2} \sum_{v=0}^{2} F[x+u-1,y+v-1]$$

Mean filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Replace each pixel with an average of the pixels in the kxk box around it

- 3×3 case:
$$G[x,y] = \frac{1}{9} \sum_{u=0}^{2} \sum_{v=0}^{2} F[x+u-1,y+v-1]$$

What about border pixels?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
				F[:	x . i	,1			

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

G[x,y]

- Some options
 - don't evaluate—image gets smaller each time a filter is applied
 - pad the image with more rows and columns on the top, bottom, left, and right
 - option 1: copy the border pixels: add [0 0 0] to F in above case
 - option 2: reflect the image about the border: add [0 90 0] to F in above case

Effect of filter size

- What happens if we
- use a larger mean filter?
- 5×5? 7×7?

Weighted average filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	1
1	1	1
1	1	1

Replace each pixel with a weighted average of the pixels in the kxk box

- 3×3 case:
$$G[x,y] = \sum_{u=0}^{2} \sum_{v=0}^{2} H[u,v] * F[x+u-1,y+v-1]$$

Gaussian filter

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	2	1
<u> </u>	2	4	2
16	1	2	1
·	H	$\lceil u_{\perp} \rceil$	<i>γ</i> ,]

- This filter H is a good approximation to $h(u,v) = \frac{1}{2\pi\sigma^2}e$
- Properties of Gaussian

 - more weight to the centergood model of blurring in optical systems
 - σ corresponds to width of the Gaussian

Comparison of mean vs. gaussian filter

Convolution

- Convolution is a fancy way to combine two functions.
 - Think of f as an image and g as a "smear" operator
 - g determines a new intensity at each point (pixel) in terms of intensities at the neighborhood of that point (pixel)

$$h(x,y) = f(x,y) * g(x,y)$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x',y')g(x-x',y-y')dx'dy'$$

Discrete Convolution

 For digital images, integration becomes summation. We can express convolution as a two-dimensional sum:

$$h[i,j] = f[i,j] * g[i,j]$$

= $\sum_{k} \sum_{l} f[k,l]g[i-k,j-l]$

Convolution Representation

 Since f and g are defined over finite regions, we can write them out in two-dimensional arrays:

62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	О	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30

X .2	Хo	X .2
ХO	X .2	ХO
X .2	Χo	X .2

Median Filter

- A Median Filter operates over a kxk region by selecting the median intensity in the region.
 - What advantage does a median filter have over a mean filter?
 (answer available at "extra" where you download the notes!)
 - Is a median filter a kind of convolution?

123	125	126	130	140	
122	124	126	127	135	
118	120	150	125	134	
 119	115	119	123	133	
111	116	110	120	130	

Neighbourhood values:

115, 119, 120, 123, 124, 125, 126, 127, 150

Median value: 124

Using Median Filters

Gaussian noise

Salt and pepper noise

3x3

5x5

7x7

Edge Detection

- One of the most important uses of image processing is edge detection
 - Really easy for humans
 - Really difficult for computers
 - Fundamental in computer vision
 - Important in many graphics applications
- What defines an edge?

Edge detection

How can you tell that a pixel is on an edge?

Edge Detection

- Edge detection algorithms typically proceed in four steps:
 - Filtering: cut down on noise
 - Enhancement: amplify the difference between edges and non-edges
 - Thresholding
 - Localization (optional): estimate geometry of edges beyond pixels

Gradient

The gradient is the 2D equivalent of the derivative:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

- Properties of the gradient
 - It's a vector
 - Points in the direction of maximum increase of f (direction of the steepest descent)
 - Magnitude is rate of increase
- How can we approximate the gradient in a discrete image?

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

how does this relate to the direction of the edge?
 The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Edge detection operator

A popular gradient magnitude computation is the Sobel operator:

$$s_x = \left[egin{array}{cccc} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{array}
ight]$$

$$s_y = \left[egin{array}{cccc} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{array}
ight]$$

• We can then compute the magnitude of the vector $(G_x, G_y)^T$

Sobel Operator: Example

$$1111100000$$
 11111100000
 11111100000
 11111100000
 11111100000

Using Sobel Operators

Original

Smoothed

 $G_x + 128^3$

 $G_v + 128$

Magnitude

Threshold = 64

Threshold = 128

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

Summary

What you should take from this lecture:

- Formal definitions of image and image processing
- Kinds of image processing: pixel-to-pixel, movement, convolution, others
- Types of noise and strategies for noise reduction
- Definition of convolution and how discrete convolution works
- The effects of mean, median and Gaussian filtering
- How edge detection is done
- Gradients and discrete approximations