# **IEEE R5 Robotics Competition 2015**

Cole Guilino, Will Morell, Jeffrey Riddle, Mohamed Shemy, Benjamin Tullier

Advisors: Hsiao-Chun Wu, CAPT David Giurintano

# Sponsors



# Robot Prototype



# The Competition Maze



### **COMPETITION RULES**

- 3 Rounds Qualifying & 1 Final Round
- Main Objective: Find Critical Path and Subsequently Run It
- 2 Parts for Each Run
- Part 1: Robot learns the maze
- Part 2: Robot runs critical path

Simply correctly finishing a critical path run qualifies for the final round

### SPECIAL RULES

- Damaging the maze results in DQ
- Robot must be <7.5" tall</li>
- Robots cannot split into separate parts
- Jumping, Climbing, and Flying are not allowed
- Runs will end if robot is stationary for 10 seconds
- Wireless Communication with Robot is not allowed
- Robots will be sequestered between rounds

### **COMPETITION SCORING**

### Qualifying Rounds (1,2,3)

| • | Entering New Square (Part 1)      |    | +1 |
|---|-----------------------------------|----|----|
| • | Correct Critical Path Move        |    | +2 |
| • | Lighting A Correct Light          | +1 |    |
| • | Repeating A Path Move             | -1 |    |
| • | Touching Wall (per square)        |    | -1 |
| • | Moving Off Critical Path (part 2) |    | -1 |
| • | Easter Egg Number                 | +1 |    |
| • | Easter Egg Alphabetical           | +2 |    |
| • | Easter Egg Symbols                | NA |    |

### **COMPETITION SCORING**

#### **Final Round**

- Adjusted Critical Path Execution Time
- Search Path Execution Time
- BTB Base Time Bonus
- Easter Egg Number
- Easter Egg Alphabetical
- Easter Egg Symbol

Winning Criteria

Tiebreaker

Fastest Critical Path Time in Finals

+1 +5% of BTB

+2 +15% of BTB

NA (Perfect Score Challenge)

# Scoring

- Available scores
  - 32points for 5'x5' maze
  - 50points for 6'x6' maze
  - 71points for 7'x7' maze
- Penalties
  - 1point for repeating a path move (part 1,2)
  - -1point for touching a wall (max penalty per square) (part 1,2)
  - 1point for moving of the critical path (part 2)
- Potential score increase
  - Perfect score challenge (+1point for each correctly identified special character)
  - If fastest critical path time in finals
    - Plus 5% of critical path time for each number correctly recognized
    - Plus 15% of critical path time for each number correctly recognized

# Ranking criteria – Winning criteria and successive tie breakers

- 1. Lowest adjusted time for execution of critical path in finals
- 2. Highest scoring (points) of all critical path attempts in finals
- 3. Lowest adjusted time in finals search path run
- 4. Highest combined point total in finals round
- 5. Highest combined point total in all rounds



# **Engineering Specifications**

- Battery Life > 30 Min
- Speed: Over .82 ft/s
- 100% Character Recognition Accuracy
- Wall Detection Range: 15.24 cm
- Motor Torque: Over 25 oz-in
- Size: 8" x 8" x 7.5"



Reflectance Sensors

# **Ground Sensor Design**



pololu.com



**IR Proximity Sensors** 

# Wall Sensor Design



4cm - 30cm range (1.5" to 12")

**Analog Voltage Output** 

\$7.40 ea. from Digikey



Sharp GP2Y0A41SK0F

#### Sensor Interface Board

- Sensors output an analog signal, which the Raspberry Pi cannot read as it has no onboard analog to digital converters.
- An Atmel 328p microcontroller has enough ADCs to preprocess these signals for the Pi.
- A board was designed to use the microcontroller to interface the sensors with the Pi.
- The PCB can be prototyped by SeeedStudio for under \$10, and components can be assembled by us for under \$20.



|            | Propeller<br>C3 | Raspberry<br>Pi B+ | Arduino<br>DUE |
|------------|-----------------|--------------------|----------------|
| Fast (0.4) | 0.114           | 1.00               | 0.120          |
| Size (0.2) | 1               | 0.880              | 0.774          |
| Cost (0.4) | 0.389           | 1.00               | 0.764          |
| Score      | 0.401           | 0.976              | 0.508          |

#### Raspberry Pi B+:

Clock Rate: 700 MHz

GPIO Pins: 27

Dimensions: 85mm x 56mm

Price: \$35.00

- Dedicated Camera Port
- 4 USB Ports
- Storage on SD card
- Lightweight Linux Operating
   System
- Ability to run multiple programming languages
- Large development community



raspberrypi.org

Python

C++

| CPU Time (0.1)                        | 28,054 (0.1209<br>Normalized) | 3,392 (1.0<br>Normalized) |
|---------------------------------------|-------------------------------|---------------------------|
| Raspberry Pi<br>GPIO Library<br>(0.3) | 1.0                           | 0.5                       |
| OpenCV (0.3)                          | 1.0                           | 1.0                       |
| PiCamera Library (0.3)                | 1.0                           | 0.5                       |
| Total Score                           | 0.91209                       | 0.7                       |

- Programming Language: Python
- Relevant Applications:
  - Setting Raspberry Pi
     GPIO pins for input
     and output
  - Generating pin outputs
  - Gathering pin inputs

#### RPi.GPIO



raspberrypi.org

- Free open source software
- Inventor: William Garage
- Supports Linux and Python implementation
- Relevant Applications:
  - Mobile Robotics
  - Segmentation and Recognition
  - Artificial NeuralNetwork
  - K-Nearest Neighbor Algorithm



opency.org

- Compatible with the Raspberry Pi Camera Module and Raspberry Pi Camera Module Ports
- Accesses the Raspberry
   Pi command line tools
   from Python
- Relevant Applications:
  - Capturing Images
  - Capturing Videos
  - Importing images and videos to OpenCV

### PiCamera Library



raspberrypi.org

## Vision

#### Hardware

- Camera modules
  - The Pi camera



- The CMUcam4



#### **Software**

- Prepacked software
  - Tesseract
    - Huge number of libraries, slow, demands bigger storing space
- Developed
  - Using the Respivid for color sensing
  - Using Respisttill for capturing
  - Using Python & OpenCV for image analyzing

# Camera module selection

|                          | CMUcam4                                  | Raspberry Pi Camera Module                  |
|--------------------------|------------------------------------------|---------------------------------------------|
| Cost                     | \$115-\$130                              | \$25-\$35                                   |
| Power & data connections | Dedicated power connection / serial data | Dedicated power/data CSI high bandwidth bus |
| Dimensions               | 52.25mm*53.50mm*13mm                     | 25mm*20mm*9mm                               |
| Software interface       | Arduino interface library                | Respisttill, Respistillyuv, Respivid.       |
| Power                    | 4-9 volts, 250 mA                        | 4.75-5 volts, 200mA                         |
| Pan/Tilt                 | Yes                                      | No                                          |
| μSD Card                 | Yes                                      | No                                          |

### Maze walls & related rules

Walls with numbers, empty or letters



- 1234567890
- !@#\$%^&\*()

No characters

- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- !@#\$%^&\*()

In each maze of 6'\*6' and 7'\*7' there will be 20 easter eggs

- a. 8-ea Numbers
- b. 2-ea- Letters
- c. 10-ea- Others

# Engineering analysis

- Camera on the top tier.
- Camera 6" high of the maze floor.
- Camera on servo to be able to move. around scope up to 360° horizontally.
- Take a picture if the robot is centered and the camera senses pink or blue walls using Respivid.
- Small picture size for faster processing.



# Platform Design Matrix

|                   |        |         |         |              |               | Mecanu |
|-------------------|--------|---------|---------|--------------|---------------|--------|
| Criterion         | Weight | 2-wheel | 4-wheel | Swerve-wheel | <b>Treads</b> | m      |
| Maneuverability   | 10     | S       | S       | +            | S             | +      |
| Speed             | 8      | S       | S       | S            | S             | S      |
| Easy to Align     | 8      | -       | -       | +            | -             | +      |
| Power Consumption | 6      | +       | S       | -            | S             | S      |
| Robust            | 6      | S       | S       | S            | +             | -      |
| Lightweight       | 5      | +       | S       | S            | S             | S      |
| Size              | 4      | S       | S       | S            | S             | S      |
| Uneven Terrain    | 7      | -       | S       | S            | +             | -      |
| Complexity        | 7      | +       | S       | -            | +             | -      |
| Cost              | 5      | +       | -       | -            | S             |        |
| Total +           |        | 4       | 0       | 2            | 3             | 2      |
| Total -           |        | 2       | 2       | 3            | 1             | 5      |
| Overall           |        | 2       | -2      | -1           | 2             | -3     |
| Weighted          |        | -16     | -13     | 0            | 12            | -7     |

# Tread Design

- Lynxmotion 2" track
- BASICatom standard gm track kit
- Pololu 30T tank track set







# **Motor Specification**



Pololu 210:1 Micro Metal Gearmotor

- 40 oz-in
- 200 rpm







5'x5' Maze, 25 squares
Allotted time is 3minutes.
If we have to go through a square twice, we have 3.6 sec/ft.
For the 200rpm motor we have; it will take .745 sec/ft, allowing for turning time

# Maze analysis



6'x6' Maze, 36 squares
Allotted time is 4minutes.
if we have to go through a
square twice, we have 3.33
sec/ft. If we take 1 sec for the
camera to capture a picture, we
will have 2.33 sec/ft. For the
200rpm motor we have, it
will take .745 sec/ft and the
rest of the time for turning time



7'x7' Maze, 49 squares
Allotted time is 5minutes.
If we have to go through a square twice, we have 3.06 sec/ft. If we take 1 sec for the camera to capture a picture, we will have 2.06 sec/ft. For the 200rpm motor we have it will take .745 sec/ft leaving the rest for turning time

# Solving the maze

#### Recursively solving the maze

findPath(x,y)



Matrix example

# Power

7.2V 3800mAh NiMH Pack



UBEC 5V/6V Voltage Regulators



# Robot Lifetime Expectation

#### Robot powered by 7.2V 3800mAh NiMH battery

Module Power Needs:

Main Motors(2x): 1600mA

Raspberry Pi: 500mA

Raspberry Pi Camera: 250mA

Sensors: 125mA TOTAL: 4075mA  These values are worst case loads, based on all devices pulling max current and motors in a stall.

With these loads, we can estimate the life of our battery to be around an hour.

3800 mAh / 4075 mA = 0.93 Hours

# **Engineering Specs Met**

- Battery Lifetime: 1 hour
- Speed: 1.344 ft/s
- 100% Character Recognition
- Wall detection Range: 4 cm to 30 cm
- Motor Torque: 40 oz-in
- Size: 6.5" x 6" x 6"

# Manufacturing

- 6.5"x6" acrylic sheets
- Custom idler bracket
- Custom idler spacer
- Custom servo bracket
- Custom camera bracket

#### Assembly

- 2 tier design allows ample room for components
- Ensured IR sensors were not obstructed
- Camera was placed to ensure maximum visibility
- USB is easily accessible









## **Completed Assembly**



#### Basic Bill of Materials

```
Part
                       $ 37.49
Raspberry Pi B+
Camera Module
                    $ 27.21
                 $68.63
Sensors
Test Maze
                    $ 230.36
                       $ 33.38
Sensor Board
Chassis/Movement
                         $ 69.33
               $ 63.00
Power
               $ 529.40
Total:
```

#### **Testing Plans**

- Testing for Robotic Movement and Sensor Recognition
- Testing for Character Recognition
  - Camera-Pi connection working correctly.
  - Camera can take pictures and store them with relative square number.
  - Camera can record video and stored correctly.
  - Camera responses to the robot position by taking pictures if pink or blue walls.
  - System can recall a stored picture and process it for potential character identification.
  - Existence and correct configuration of the output file
- Testing for Low Voltage Warning
- Testing for Maze Solving of 5x5 Grid
- Testing for Maze Solving of 6x6 Grid
- Testing for Maze Solving of 7x7 Grid

#### **Testing Plans**

- Motors
  - Test for individual motor output
  - Test for max speed with 2 motors installed
  - Test for turning clearance and angular velocity
  - Test for overcoming maze obstacles (speed bumps)
- Battery Runtime Test
  - Connect Battery to all motors and have them run at full speed.
  - Measure with Voltmeter and time to see how long till depletion
- Voltage Regulation Test
  - Connect both regulators to battery
  - Add devices to voltage buses one at a time while measuring voltage level of the buses to ensure stability under heavy load.
- Sensors
  - Calibration of microcontroller to output proper signal to Raspberry Pi
  - Test microcontroller outputs with dummy loads (LED indicators)
  - Software test of whether Raspberry Pi is reading the microcontroller data

### Safety Concerns

- Robot will be disqualified if it is not safe to operate deemed by the judges
- Safe turning radius to avoid collisions with the maze walls which will result in deducted points and possible disqualification
- Wires in the robot must be tied down safely to ensure no disconnection or shorting
- Edges must be rounded off in order to assure safe handling

#### Fall Semester Timeline

- August: Assigned Project
- September 18<sup>th</sup>: Needs and Objectives Statement Written
- September 23<sup>rd</sup>: Functional Decomposition Finished and Roles Delegated
- October 1<sup>st</sup>: Designed Proximity Sensor Layout
- October 5<sup>th</sup>: Designed Reflectance Sensor Layout
- October 7<sup>th</sup>: Treads Chosen as Mobility Platform
- October 8<sup>th</sup>: NiMH Chosen as Battery Type
- October 9<sup>th</sup>: PiCamera Module Chosen as Vision Apparatus
- October 10<sup>th</sup>: Raspberry Pi B+ Chosen as Controller
- October 17<sup>th</sup>: Mid-Term Oral Presentation Given
- October 20<sup>th</sup>: Conceptual Design Report Turned In

- October 30<sup>th</sup>: PiCamera Library Chosen as Camera Manipulation Package
- November 1<sup>st</sup>: OpenCV Chosen as Vision Software Package
- November 2<sup>nd</sup>: RPi.GPIO Chosen as GPIO Manipulation Package
- November 7<sup>th</sup>: Designed Sensor PCB
- November 14<sup>th</sup>: Python Chosen as Programming Language
- November 28<sup>th</sup>: Robot Model Completed in SolidWorks
- December 3<sup>rd</sup>: Final Oral Presentation Given
- December 7<sup>th</sup>: Preliminary Design Report Turned In

# January 14<sup>th</sup> – January 16<sup>th</sup>

Ordering of Parts

# January 19<sup>th</sup> – February 13<sup>th</sup>

- Manufacturing of Robot and Test Maze Completed
- Algorithm Writing

## February 16<sup>th</sup> – March 2<sup>nd</sup>

- Testing for Robotic Movement and Sensor Recognition
- Testing for Character Recognition
- Testing for Low Voltage Warning

### March 2<sup>nd</sup> – March 16<sup>th</sup>

Testing for Maze Solving of 5x5 Grid

## March 16<sup>th</sup> – March 23<sup>rd</sup>

Testing for Maze Solving of 6x6 Grid

### March 23<sup>rd</sup> – March 30<sup>th</sup>

Testing for Maze Solving of 7x7 Grid

# March 30<sup>th</sup> – April 16<sup>th</sup>

 Tweaking of Algorithm and Robot Design for Maximization of Competition Score

# April 17<sup>th</sup>

• IEEE R5 Robotics Competition in New Orleans, LA

# Appendix

#### **Spring Semester Timeline**

- January 14<sup>th</sup> 16<sup>th</sup>: Order All Parts
- January 19<sup>th</sup> February 13<sup>th</sup>: Completion of Test Maze and Robot
- January 14<sup>th</sup> February 13<sup>th</sup>: Completion of Algorithm
- February 16<sup>th</sup> March 2<sup>nd</sup>: Completion of Testing for Robotic Movement and Sensor Recognition
- February 16<sup>th</sup> March 2<sup>nd</sup>: Completion of Testing for Character Recognition
- February 16<sup>th</sup> March 2<sup>nd</sup>: Completion of Testing for Low Voltage Warning
- March 2<sup>nd</sup> March 16<sup>th</sup>: Completion of Testing for Maze Solving on 5x5 Grid
- March 16<sup>th</sup> March 23<sup>rd</sup>: Completion of Testing for Maze Solving on 6x6 Grid
- March 23<sup>rd</sup> March 30<sup>th</sup>: Completion of Testing for Maze Solving on 7x7 Grid
- March 30<sup>th</sup> April 16<sup>th</sup>: Tweaking of Algorithm and Robot Design for Maximization of Competition Score
- April 17<sup>th</sup>: IEEE R5 Robotics Competition in New Orleans, LA

| Part            | Supllier | Cost | Qty   | Ext Price |       | Sensor Board         |             |       |    |       |
|-----------------|----------|------|-------|-----------|-------|----------------------|-------------|-------|----|-------|
| Raspberry Pi    | Amazon   |      | 37.49 | 1         | 37.49 | PCB Fab              | SeeedStudio | 9.90  | 1  | 9.9   |
| Camera Module   | Amazon   |      | 27.21 | 1         | 27.21 | Atmel 328p           | Digikey     | 3.85  | 1  | 3.85  |
|                 |          |      |       |           |       | 0.1 uF Cap           | Digikey     | 0.09  | 10 | 0.89  |
|                 |          |      |       |           |       | 22 pF cap            | Digikey     | 0.29  | 10 | 2.94  |
| Sensors         |          |      |       |           |       | <br>10 uF            | Digikey     | 0.50  | 10 | 5     |
| QTR-3A          | Pololu   |      | 4.95  | 1         | 4.95  | Res 1k               | Digikey     | 1.72  | 5  | 8.6   |
| QTR-1A          | Pololu   |      | 4.25  | 2         | 8.50  | Osc 16Mhz            | Digikey     | 0.36  | 5  | 1.8   |
|                 |          |      |       |           |       | Headers              | Digikey     | 0.40  | 1  | 0.4   |
| Sharp IR Sensor | Digikey  |      | 7.40  | 3         | 22.20 |                      | 0           |       |    |       |
| Bracket Pair    | Pololu   |      | 3.49  | 2         | 6.98  | Body and<br>Movement |             |       |    |       |
| Crimp Connector | Pololu   |      | 0.79  | 2         | 1.58  | Pololu 30T track     | Pololu      | 14.95 | 1  | 14.95 |
| 3-Pin JST Cable | Pololu   |      | 1.25  | 3         | 3.75  | Pololu micrometal    |             |       |    |       |
| M3 Machine      |          |      |       |           |       | gearmotor            | Pololu      | 15.95 | 2  | 31.90 |
| Screws          | Pololu   |      | 0.99  | 4         | 3.96  | 1/8" Acrylic sheets  |             |       |    |       |
| Hex Nuts M3     | Pololu   |      | 0.99  | 4         | 3.96  | (12"x12")            | Pololu      | 5.64  | 2  | 11.28 |
| 6" F-F Servo    | Databa   |      | 4.05  |           | 7.00  | 2" standoffs (10     |             |       |    |       |
| Cables          | Pololu   |      | 1.95  | 4         | 7.80  | pack)                | Pololu      | 7.95  | 1  | 7.95  |
| SubMicro Servo  | Pololu   |      | 4.95  | 1         | 4.95  | Pololu gearmtor      |             |       |    |       |
|                 |          |      |       |           |       | bracket pair         | 5.1.1       | 0.05  |    |       |
| Test Maze       |          |      |       |           |       | (extended)           | Pololu      | 3.25  | 1  | 3.25  |
| 4'x8'x3/4" MDF  | Lowes    |      | 35.59 | 2         | 71.18 |                      |             |       |    |       |
| 4'x8'x1/4" Ply  | Lowes    |      | 21.92 | 2         | 43.84 | Power                |             |       |    |       |
| Gal White       | Lowes    |      | 16.98 | 1         | 16.98 |                      |             |       |    |       |
| Qt. Green       | Lowes    |      | 20.44 | 2         | 40.88 | Tenergy 7.2V         |             | 27.00 | 1  | 27.00 |
| Qt. Pink        | Lowes    |      | 20.44 | 1         | 20.44 | NiMH Smart           |             |       |    |       |
| Qt. Blue        | Lowes    |      | 20.44 | 1         | 20.44 | Charger              |             | 18.00 | 1  | 18.00 |
| Paint Marker    | Amazon   |      | 10.25 | 1         | 10.25 | Hobbywing            |             |       |    |       |
| Painter's Tape  | Amazon   |      | 6.35  | 1         | 6.35  | Regulator            |             | 9.00  | 2  | 18.00 |

#### References

http://www.raspberrypi.org/documentation/hardware/camera.md

https://www.cs.bu.edu/teaching/alg/maze/

http://elinux.org/RPiconfig

http://www.open-electronics.org/computer-vision-with-raspberry-pi-and-the-camera-pi-module/

http://www.rs-online.com/designspark/electronics/knowledge-item/r-pi-ffc-connectors

http://mipi.org/specifications/camera-interface#CSI1