```
Sie für irrationales \alpha die Abbildung \varphi_{\alpha} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}, definiert durch \varphi_{\alpha}(a,b) := a + \alpha b,
                            und übertragen Sie damit die Struktur von \mathbb{R} als geordnete Gruppe auf \mathbb{Z} \times \mathbb{Z}.
Sei < € R \ Q bel. ; Q x: Z × Z → IR: (0, 6) +> a + x b; (Z × Z, +, (0, 0), -)
(a,b) \not\in (p,q) : \Leftrightarrow \varphi_{\infty}(a,b) \in \mathcal{C}_{\infty}(p,q)
  ·), Toholordming"
        1) , reflexio" \( (a, b) \( \mathbb{Q} \times \mathbb{Q} \: (a, b) \( \mathbb{Q} \times \mathbb{Q} \), \( (a, b) \( \mathbb{Q} \), \( (a, b) \), \( (a, b) \( \mathbb{Q} \), \( (a, b) \( \mathbb{Q} 
        ?) , transition Scien (0,6), (p, g), (x,y) & Z x D mil (0,6) & (p,q) und (p,q) & (x,y)
                                          also: a + ab \in p + \alpha g \in x + \alpha y \Rightarrow (a, b) \in \alpha (x, y)
         3) anticommetrical" Sei (9, b) = (p, q) uno (p, q) = (a, b)
                                                            also: atabéptag und ptage atab
                                                            bw: \alpha - \rho \neq \alpha (q - b) \neq \alpha - \rho \Rightarrow \alpha (q - b) = \alpha - \rho
                                                            Tall 1: , q - b + 0 "
                                                                              dam gill \alpha = \frac{0-p}{q-b} =) \alpha \in \mathbb{Q}
                                                            Fall 2: q-b=0
                                                                               also q = b und a = p das heiss (0,61 = (p,q)
          4) " Vergleichlowskeil (9,6) was (19,9) are 2×2 sind volt, weil fala,6) and fa (1,9) volt. sind.
          5) " Mondoniegesch": Seien (a, b), (ρ, a), (×, y) ∈ 2× 2 mil (a, b) € (ρ, a)
                                                  (a,6) + (x,y) \leq (p,q) + (x,y) \Leftrightarrow (a+x) + \alpha (b+y) \leq (p+x) + \alpha (q+y) \Leftrightarrow
                                                          (→) a + a b ≤ p + a q (→) (0,b) ≤ (p,q)
                                                           Wegen der Kommulativität von + gill auch (x,y) +(0,6) = a (x,y) +(p,2)
    Sei nun x + SERTO. Wir wollen die Ordnungen Ex und Es behachten
     0. B. pl. A: (0<) & < B € O < B- x
                                                                                                                                                    0 28
     7 66 N: M(B-a)>1 = kB>ka+1
     n:=[ha] =) n-1 & ha< n =) n < ha+1 < h &
     Es gill k < n < k > \Rightarrow (0, k) < \alpha(n, 0) \land (0, k) > \alpha(n, 0) \Rightarrow \leq \alpha \neq \leq n
     ward (IR+ Q) = corrd (R) = vard (Ordnungen auf Z×Z, geordrelle Guypre)
```

**Theorem 3.5.3.16.** Auf dem Körper  $\mathbb{Q}(x)$  der gebrochen rationalen Funktionen sei eine Relation < definiert durch  $q_1(x) \leq q_2(x)$ , falls  $q_1 = q_2$  oder es ein  $r_0 > 0$  gibt mit  $q_1(r) < q_2(r)$  (in  $\mathbb{R}$ ) für alle  $r > r_0$ . Zeigen Sie: 1. Die so definierte Relation  $\leq$  macht Q(x) zu einem nichtarchimedisch angeordneten Körper. 2. Q(x) lässt sich als angeordneter Körper solcher in jeden anderen nichtarchimedisch angeordneten Körper isomorph einbetten. UE 228 ▶ Übungsaufgabe 3.5.3.17. (B) Beweisen Sie Theorem 3.5.3.16 **◄** UE 228 1) Q(x) ist ein Körper. 11) " reflexio" 9, = 9, =) 9, = 9, 1, 2/ 11 Francisio" of 1 = 9 2 1 9 2 = 93 Fall 1: 4, = 9, V 9, = 93 Loll: 91 / 91 1 on 4 93 7 a, b = Q: Yr> a: 9, (N) < 9, (V) , Yr> b: 9, (V) 2 93(V) > Vr > mox {a, b}. 9, (v) < 9, (v) < 93 (v) also: 2 = 93 1.3), antisymmetrical" of 1 4 gr 1 gr = 9, Foll 1: 91 = 92 Tall 2: 9,292 , 9,69, =) 9,60, 19,69, 35EQ: YV)5: 9, (1) < 9, (1) < 9, (v) => 9, <9, & Fall: 9, 49, 19, wie Fall 2 1.4/1, Vergleichbarkeit " Seren & + & ans R(x) vergleichen wir die Auswertungen in IR so zill  $\frac{\rho_{1}(x)}{q_{1}(x)} \stackrel{\rho_{2}(x)}{\rightleftharpoons} \stackrel{\rho_{2}(x)}{\downarrow} \stackrel{\rho_{3}(x)}{\rightleftharpoons} \stackrel{\rho_{1}(x)}{\rightleftharpoons} \stackrel{\rho_{1}(x)}{\rightleftharpoons} \stackrel{\rho_{2}(x)}{\rightleftharpoons} \stackrel{\rho_{3}(x)}{\rightleftharpoons} \stackrel{\rho_{3}(x)}{$ Da = + & hörnen wi k = mox { i \ \{ \gamma, max \{ m, n \} \} \ o'; \( \dagger \) finden en gill weile  $(*) \stackrel{\leftarrow}{=} \stackrel{\rightarrow}{=} \stackrel{\rightarrow}{=}$ 1.5) "Mondone +" Seien p, of, r & Q(x) und p < q 2.2. >p(x)+v(x) < q(x)+v(x) & p(x) < q(x) Noch Var. get alas at z & Q 1. 6] 11 Mondone. " Seein P, q, r & Q(x) unil p < q 1 v > 0 22: 3 p(x) V(x) I q(x) V(x) ( p(x) < q(x) rilly shim. growx exhibit

grapher x min V(K)>0





dass es einen Ultrafilter gibt, der kein Atom enthält. (Hinweis: Zeigen Sie, dass die Menge I aller  $b \in B$ , zu denen es Atome  $a_1, \ldots, a_k$  von B mit  $b \leq a_1 \vee \cdots \vee a_k$  gibt, ein echtes Ideal von B ist, und betrachten Sie B/I.) I:= { b ∈ B | 3 or, ..., Jk : b ≤ or, V. ... Volm, MEN, on , or, of Alone } 7, I ist roleal" x=9(=) x vy=4 7.11 x, y & I mil x & a, V. Vola und y & b, V. Vbm Ausden Monolonie (hel 3.6. 1. 1. Runker (1)) crhallen wi xvy = a,v...von vb, v...vbm => xvy & I 1.2)  $\times \in I$   $y \in \mathcal{B}$  min  $y \leq x$ Wiedle wegen ole Monolonie: y & x & a, V. .. Van =) y & I 2), expres toleal" Ang. 1 & I, darm is 1 & of v... von und 11 (a, v. . voi,) = 1 des 1 = a, v. . van mil 3 & 7 a1 orles yill ap 1 ac = 0 b∈ B Rel. ∀j ∈ {1,..., n}: b n olj = aj oder b n α j=0, conce wave b n α, < α, & zu uj Alm also 3 f c {1,.., n}: b = V ar aber dann ware B endlich & 3) y B/T" Noch Temma 366.7 ret [ auch ein Ideal im ungeordwelen Booluhan Reing R (=B) wegen X.y:= x 1 y gill X.y = x 1 y = y 1 x = y.x, also in R hommulatives Reig mil 1 I'M ruch in R ein echtes Ideal, weil 1 & I (vgl. Sich 3.3.7:4 bunket 1). Punter 4 des gleichten Sahes says, dass es ein maximales Ideal of gill in I = f. I naxinales inteal: (> fechly ideal und Y K & R: ( ) = K = J = K oder K=R) f ist dann elenfalls either Ideal in der Baolschen Algebra B F = 1 = 5 6 16 € J3 ist nach hemma 3.6.6.7 ein Filler und negen 1 € 1 Mes 0 € F such ein edule Filler Jehll

UE 279 ▶ Übungsaufgabe 3.6.9.10. (W) Sei B eine unendliche Boolesche Algebra. Zeigen Sie, ■ UE 279

- **Satz 4.1.3.4.** Sei  $\mathcal{V}$  eine Varietät und  $\mathfrak{F}$  frei in  $\mathcal{V}$  über  $(X, \iota)$ . Die Variablenmenge X enthalte mindestens n verschiedene Elemente  $x_1, \ldots, x_n$ . Gelte das Gesetz  $\gamma = (t_1, t_2)$  mit Termen  $t_1 = t_1(x_1, \ldots, x_n)$  und  $t_2 = t_2(x_1, \ldots, x_n)$ , die von nicht mehr als n Variablen abhängen, in  $\mathfrak{F}$ . Dann gilt  $\gamma$  in  $\mathcal{V}$ , d.h. in allen  $\mathfrak{A} \in \mathcal{V}$ .
- **UE 291**  $\blacktriangleright$  Übungsaufgabe 4.1.3.5. (W) Seien  $t(x_1,\ldots,x_n)$  und  $t'(x_1,\ldots,x_n)$  Terme (in einer  $\blacktriangleleft$  **UE 291** festen Sprache L), in denen jeweils nur die Variablen  $x_1,\ldots,x_n$  (oder Teilmengen davon) vorkommen. Sei  $\mathcal V$  eine Varietät (zur Sprache L). Für  $C\in \mathcal V$  schreiben wir  $C\models t\approx t'$  (gelesen "das Gesetz t=t' gilt in C") als Abkürzung für

$$\forall c_1, \ldots, c_n \in C : t(c_1, \ldots, c_n) = t'(c_1, \ldots c_n).$$

Sei  $F \in \mathcal{V}$  frei über der *n*-elementigen Menge  $\{b_1, \ldots, b_n\}$  in  $\mathcal{V}$ . Zeigen Sie, dass die folgenden Aussagen äquivalent sind, und schließen Sie daraus, dass 4.1.3.4 gilt:

- (a) In F gilt  $t(b_1, ..., b_n) = t'(b_1, ..., b_n)$ .
- (b) Für alle  $C \in \mathcal{V}$  gilt  $C \models t \approx t'$ .
- (c) Es gilt  $F \models t \approx t'$ .

| $(a) \Rightarrow (b)$              | C & V 4 | el. u   | rol (1, | ,      | , <i>e</i> ( | C be  | l .   |         |        |       |       |      | {b,,     | 6n}-  | <u>←</u> → F |
|------------------------------------|---------|---------|---------|--------|--------------|-------|-------|---------|--------|-------|-------|------|----------|-------|--------------|
|                                    | Sei j:  | · 661,. | ,bn}    | ·      | C m          | L ji  | (61)= | ·C1 , . | . j (  | bn =  | Ch    |      | 1        | j     | > C          |
|                                    | £(c1,   |         |         |        |              |       |       |         |        |       |       |      |          |       |              |
|                                    | = q(t   | (C (b1) | , ,     | c(bn), | ]) = (       | ų ( t | (b1,  | ,       | bn))=  | 4 (   | (t'(b | 1,,  | ,6n]/    | =     |              |
|                                    | = {'(   |         |         |        |              |       |       |         |        |       |       |      |          |       |              |
| '(P) ⇒ (c),                        |         |         |         |        |              |       |       |         |        |       | Impl  | ikal | ian N    | rivi  | l            |
| $\mu(C) \Rightarrow (a)^{\dagger}$ |         |         |         |        |              |       |       |         |        |       |       |      |          |       |              |
|                                    | t (b),. |         |         |        |              |       |       |         |        |       |       |      |          |       |              |
| ru Salr 4                          | .7.34   | U       | E V     | s le   | 21           | mil   | . 7   | tals    | Tränge | vmlng | e une | 1011 | ··· , d. | , e A | bel.         |
|                                    |         |         |         |        |              |       |       |         | ,,,,,  |       |       |      |          |       | 1 1 1        |
|                                    |         |         |         |        |              |       |       |         |        |       |       |      |          |       |              |
|                                    |         |         |         |        |              |       |       |         |        |       |       |      |          |       |              |

UE 296  $\blacktriangleright$  Übungsaufgabe 4.1.4.1. (B,E) Sei  $(\mathcal{G}, i_1, i_2)$  ein Koprodukt von  $C_2$  und  $C_2$ . (Ja, 2 Mal  $\triangleleft$  UE 296 die 2-elementige Gruppe.) Wir schreiben  $\mathcal{G} = (G, *, 1, ^{-1})$ . Sei  $F_2$  die von 2 Elementen frei erzeugte Gruppe. 1. Beschreiben Sie die Elemente von G sowie die Gruppenoperation \* möglichst explizit (zum Beispiel durch eine "Normalform", ähnlich wie wir die Elemente von  $F_2$  beschrieben haben); jedenfalls so explizit, dass die nächste Teilaufgabe trivial wird. 2. Zeigen Sie, dass G unendlich viele Elemente hat, indem sie explizit unendlich viele (verschiedene) Elemente angeben. Zeigen Sie, dass  $\mathcal{G}$  nicht abelsch ist, indem Sie 2 Elemente  $x, y \in G$  angeben mit  $x * y \neq y * x$ . 3. Zeigen Sie, dass  $\mathcal{G}$  nicht zu  $F_2$  isomorph ist. 1) G = C2 LC2 , i 1: C2 -> G . i 2: C2 -> G Homomorphiumen H bel. Gruppe and for fi: C2 > H Homomorphismen 7:h 3 h Homomorphismus mil hoi, = for und hoiz=fr in # in o ang. es int so · | e | a dann ist i (a) # iz (a) 0 101 e Ang. i, (a) = i, (a-7) = i, (a) = i, (a) = i, (a) = Aug. in(a) = 1 => VH: (H Gruppe und for C2 > H Homomorphismus: =) for(a) = h(Lo(a1) = 1H) behathe H= Cz mil fr = id by also:  $7 \pm i_1(a)^{-1} = i_1(a) \pm i_1(a) = i_1(a)^{-1} \pm 7$ Wegen der Eindenlickeit von moercen Elengenten ich 7 = 6, (a) \* (1 (a) EG  $((10) \star (10))^{-7} = ((10))^{-7} + (100)^{-7} = (10) \star (10)$ Beh. the N in qu:- 1 (1 mool2)41 (a) & Grand the n: Ole = I (1 mool 2)41 an E G in below 1A: n=0:1EG lehl! 15: Sei ale Vle, l & n: gu + ge Ang .: 6 < N+1 and 84 = guar Full 1: 12 = 0 " sho 1 = qn+1

