Relations d'ordre, ensembles ordonnés

William Hergès ¹

23 septembre 2025

Table des matières

1 ensemble ordoné 2

ensemble ordoné

Une relation d'ordre \leq est une relation binaire sur E si et seulement si :

- réflexiveanti-symétriquetransitive

L'ordre strict \prec est associé à \preceq : c'est la même, sauf qu'elle n'est pas réflexive :

$$\prec = \preceq \backslash \mathrm{Id}_E$$

Définition 2

Une relation d'ordre \leq est :

- totale si et seulement si \leq permet toujours de comparer deux éléments quelconques de ${\cal E}$
- partielle s'il existe au moins deux éléments de E incomparables avec \leq

Définition 3

 (E, \preceq) est un ensemble :

- totalement ordonné si \leq est un ordre total.
- partiellement ordonné si \leq est un ordre partiel.

Exemple 1

 (\mathbb{N},\leqslant) est un ensemble totalement ordonné.

 $(\mathcal{P}(F),\subseteq)$ est un ensemble partiellement ordoné (pour F un ensemble quelconque).

 $(\mathbb{N}^*,|)$ est aussi partiellement ordoné, où

$$| = \{(a,b) | \exists k \in \mathbb{N}^*, b = na\}$$

(c'est la relation divise.)

☐ *Démonstration*. Preuve du deuxième exemple.

Soit F un ensemble.

Montrons que \subseteq est un ordre pour $\mathcal{P}(F)$.

- Soit $A \in \mathcal{P}(F)$. Triviallement, $A \subseteq A$. Alors, \subseteq est réflexive.
- Soit $(A,B)\in \mathcal{P}(F)^2$. Supposons que $A\subseteq B$ et que $B\subseteq A$. Alors, A=B par définition.
- Soit $(A,B,C)\in\mathcal{P}(F)^3$ avec $A\subseteq B$ et $B\subseteq C$. Si A est l'ensemble vide, il est inclu dans tous les ensembles. Donc $A\subseteq C$. Si A n'est pas l'ensemble vide, tous ses éléments sont dans B. Or, tous les éléments de B sont dans C. Donc, tous les éléments de A sont dans C. Alors, $A \subseteq C$.

Ainsi, \subseteq est bien un ordre pour $\mathcal{P}(F)$.

Montrons que \subseteq est un ordre partiel.

Supposons que ${\cal F}$ contient au moins deux éléments.

Soit $(x,y) \in F^2$, deux éléments différents. Soient $A = \{x\}$ et $B = \{y\}$.

On a que $A \not\subseteq B$ et que $B \subseteq A$. Donc, \subseteq est partiel dans ce cas.

Si F est vide, alors $\mathcal{P}(F)$ contient un unique élément. Cet ensemble est totalement ordonné.

Si F est un singleton, alors $\mathcal{P}(F)$ contient F et l'ensemble vide. Cet ensemble est totalement

La slide est ainsi fausse, mais les ensembles à moins de deux éléments sont peux intéressants.

Revoir les slides 4 - 6.

 $\begin{array}{l} \textbf{D\'efinition 4} \\ \textbf{Soient } (E_1, \preceq_1) \text{ et } (E_2, \preceq_2) \text{ deux ensemble ordonn\'es.} \\ \textbf{L'application } f: E_1 \to E_2 \text{ est dite monotone si :} \\ & \forall (x,y) \in E_1^2, \quad x \preceq_1 y \implies f(x) \preceq_2 f(y) \end{array}$

$$\forall (x,y) \in E_1^2, \quad x \leq_1 y \implies f(x) \leq_2 f(y)$$

Une application monotone préserve les relations d'ordre.

Exemple 2 On se place dans (\mathbb{N},\leqslant) et dans $(\mathcal{P}(\mathbb{N}))$ $f:\mathbb{N}\to\mathcal{P}(\mathbb{N})$ tel que $f(n)=\{k\in\mathbb{N}|k\leqslant n\}$ est monotone. $g:\mathbb{N}\to\mathcal{P}(\mathbb{N})$ tel que $g(n)=\{n\}$ ne l'est pas par contre!

Deux ensembles ordonnés (E_1, \preceq_1) et (E_2, \preceq_2) sont isomorphes s'il existe une bijection $f: E_1 \to E_2$ telle que f et f^{-1} sont monotones.

Slide 8 pour des exemples et pour le retour des graphes.

Attention 1

Une bijection f peut être monotone sans que f^{-1} ne le soit !

☐ Démonstration. Fin de la slide 8 pour la preuve.