Predicting Bank

Customers Attrition

Data Science Bootcamp Final Project 25 February 2021

Table Of Content

Results

Project Motivation

Customer attrition which is also known as customer churn, customer turnover is defined as the loss of customers in a business, it is one of the biggest concerns especially in banking since customers are considered as the most valuable part of it.

We are using the bank customer's data to predict possible attrited customers using Machine Learning to help prevent any possible attrition that may happen in the future.

Exploratory DataAnalysis

RangeIndex: 10127 entries, 0 to 10126
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	Attrition_Flag	10127 non-null	object
1	Customer_Age	10127 non-null	int64
2	Gender	10127 non-null	object
3	Dependent_count	10127 non-null	int64
4	Education_Level	10127 non-null	object
5	Marital_Status	10127 non-null	object
6	Income_Category	10127 non-null	object
7	Card_Category	10127 non-null	object
8	Months_on_book	10127 non-null	int64
9	Total_Relationship_Count	10127 non-null	int64
10	Months_Inactive_12_mon	10127 non-null	int64
11	Contacts_Count_12_mon	10127 non-null	int64
12	Credit_Limit	10127 non-null	float64
13	Total_Revolving_Bal	10127 non-null	int64
14	Avg_Open_To_Buy	10127 non-null	float64
15	Total_Amt_Chng_Q4_Q1	10127 non-null	float64
16	Total_Trans_Amt	10127 non-null	int64
17	Total_Trans_Ct	10127 non-null	int64
18	Total_Ct_Chng_Q4_Q1	10127 non-null	float64
19	Avg_Utilization_Ratio	10127 non-null	float64
dtypes: float64(5), int64(9), object(6)			
memory usage: 1.5+ MB			

Data Information

Class Distribution

Type Of Customers Based On Their Account Status

Age Range

Annual Income

Customer's Annual Income By Their Account Status

Credit Card Type

Customer's Card Type By Their Account Status

Period Of Relationship With The Bank

Preprocessing

• Encoding Categorical Features
Using Label Encoder.

Split Data 80% Train, 20% Test

Modeling

Baseline Model.

• Ensemble learning Method.

Tuning Highest Scoring Model With GridSearchCV.

Ensemble Results

Model: Logistic Regression, Score: 0.8810108832096327

Model: knn, Score: 0.8914288569583075

Model: Decision Tree, Score: 0.9388765797716111 Model: Random Forest, Score: 0.963020023643255

Since Random Forest Classifier Scored the highest among other model i will use it and tune it to achive the best results

Results Recall

Accuracy

Precision

Confusion Matrix

Roc Curve

ROC Curve

Thank you Any Questions?

