Practice Final Exam

The questions on this exam would have equal weighting

1. (a) Give the definition of $\lim_{n\to\infty} x_n = x$ and use this definition to prove that

$$\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 + n + 1} = \frac{1}{2}.$$

(b) Let $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers with

$$\lim_{n \to \infty} x_n = 0 \text{ and } \lim_{n \to \infty} y_n = y.$$

Using only the definition of convergence prove that $\lim_{n\to\infty} x_n y_n = 0$

(c) Prove that if $x_n < 10$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = x$, then $x \le 10$.

2. (a) Carefully state the definition of the *supremum* (the least upper bound) of a set of real numbers and the *Axiom of Completeness* (the least upper bound axiom).

(b) Let $f:[0,1]\to\mathbb{R}$ be a continuous function with f(0)=0 and f(1)=12 and let

$$A := \{ x \in [0,1] : f(x) < 10 \}.$$

i. Prove that $\alpha := \sup(A)$ exists.

ii. Show that there exists a sequence $\{\alpha_n\}$ in A with the property that $\lim_{n\to\infty} \alpha_n = \alpha$.

iii. Conclude that $f(\alpha) \leq 10$.

3. (a) Carefully state the Monotone Convergence Theorem.

(b) Let $\{x_n\}$ be defined recursively by $x_1 = 1$ and $x_{n+1} = \frac{3x_n + 2}{x_n + 2}$ for each $n \in \mathbb{N}$. Prove that $\{x_n\}$ converges and find its limit.

4. (a) Carefully state the definition of a sequence of real numbers $\{a_n\}$ being a Cauchy sequence.

(b) Prove, using the definition given in (a), that Cauchy sequences are always bounded.

(c) Carefully state the *Bolzano-Weierstrass Theorem* and use this to show that Cauchy sequences of real numbers are always convergent.

5. (a) Show that if $\lim_{n\to\infty} \sqrt{n}a_n = 2$, then $\sum_{n=1}^{\infty} a_n$ diverges.

(b) Determine if the following series are absolutely convergent, conditionally convergent, or divergent. Justify your answers.

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{\log n}{n^{3/2}}$

(c) Find all $x \in \mathbb{R}$ for which the following two series converge and a closed form for their sum on this domain:

i.
$$\sum_{n=0}^{\infty} \frac{x^n}{3^{n+1}}$$
 ii.
$$\sum_{n=1}^{\infty} \frac{nx^n}{3^{n+1}}$$

- (d) i. Find the value of $f^{(2018)}(0)$ if $f(x) = \log(1+x)$.
 - ii. Find a polynomial that approximates e^x to within 10^{-3} for all $|x| \le 1/2$.
- 6. (a) Let $X \subseteq \mathbb{R}$, $x_0 \in X$, and $f: X \to \mathbb{R}$. Carefully state the ε - δ definition of what it means for f to be *continuous* at x_0 .
 - (b) Use the definition from part (a) to prove that

$$f(x) = \frac{x^2 + 5x - 2}{x + 1}$$

is continuous at 2.

- (c) Prove that if $\lim_{n\to\infty} f(x_n) = f(x_0)$ for all sequences with $\lim_{n\to\infty} x_n = x_0$, then f is continuous at x_0 .
- 7. (a) Carefully state what it mean to say that a function $f : \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 and prove that if f is differentiable at x_0 , then f is continuous at x_0 .
 - (b) Let $h(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$
 - i. Prove that h is discontinuous at all $x \neq 0$.
 - ii. Prove that h is differentiable at x = 0.
 - iii. What can you say about the continuity of h at x = 0 and the differentiability of h at $x \neq 0$?
 - (c) Let $f:[a,b]\to\mathbb{R}$.

Prove that if f has a minimum at a point $c \in (a, b)$, and f'(c) exists, then f'(c) = 0.

- 8. (a) Carefully state the definition of uniform convergence of a sequence of functions $\{f_n\}$ to a function f on a set A.
 - (b) Prove that if $\{f_n\}$ is a sequence of continuous functions defined on an interval [a, b] which converge uniformly to a limit function f on [a, b], then f must also be a continuous on [a, b].
 - (c) Conclude from part (a) that if the power series $\sum a_n x^n$ converges for all |x| < R, then for any 0 < c < R it converges uniformly on the interval [-c, c]. Conclude from this that $\sum a_n x^n$ in fact defines a continuous function on (-R, R).
- 9. (a) State and prove the Weierstrass M-test.
 - (b) i. Show that $\sum_{n=1}^{\infty} \frac{x}{1+x^n}$ diverges for all $x \in (0,1]$, but converges if x > 1.
 - ii. Let $f(x) = \sum_{n=1}^{\infty} \frac{x}{1+x^n}$ on $(1, \infty)$.
 - A. Does f define a continuous function on $(1, \infty)$?
 - B. Does the series defining f converge uniformly on $(1, \infty)$?