Project C-B Project

Charlie Windolf

Claim (A version of Scheffé's theorem).

Let (X, \mathcal{M}, μ) be a measure space and (f_n) a sequence of (a) integrable functions (b) uniformly bounded from below (i.e. there is some M such that $M < f_n$ for all n). Suppose that $(c) f_n \to f$ a.e. and $(d) \int f_n d\mu \to \int f d\mu$ where (e) f is integrable. Then $f_n \to f$ in L_u^1 , i.e.

$$\int |f_n - f| \, d\mu \to 0.$$

Possible counterexample?

Consider f=0 and $f_n=\mathbb{1}_{(-n,-n-1)}-\mathbb{1}_{(n,n+1)}$ on \mathbb{R} with Lebesgue measure.

Then:

- $f_n \to f$ a.e., since $f_n(x) = 0$ for all n > |x|, (c)
- $\int f_n dx = 1 1 = 0 = \int f dx$ for all n, (a, d, e)• $f_n \ge -1$ for all n. (b)

However, $|f_n - f| = \mathbb{1}_{(-n, -n-1)} + \mathbb{1}_{(n, n+1)}$, so that

$$\int |f_n - f| \, dx = 2$$

for all n.

Remedy? I think that adding the assumption $\int |f_n| d\mu \to \int |f| d\mu$ would be enough, and I was wondering what you think about that assumption. Is it too much?