Lecture 6

Review Quantum Mechanics

QM Linear Algebra in a complex vector space.

State of a system is a vector (ray) in the Complex Vector Space.

 $|\alpha\rangle$ - state vector

Linear Superpositions

$$|\psi\rangle = c_1 |\alpha_1\rangle + c_2 |\alpha_2\rangle$$

If the $|\alpha' s\rangle$ are vectors and the c's are complex numbers, then $|\psi\rangle$ is another vector in the space.

Dual Space:

For every vector $|\alpha\rangle$ ("ket") there is another vector $\langle\alpha|$ ("bra") in a "dual" space.

Dual space is a mirror image of the ket space.

If, $|\psi\rangle = c_1 |\alpha_1\rangle + c_2 |\alpha_2\rangle$, then $\langle \psi | = c_1^* \langle \alpha_1 | + c_2^* \langle \alpha_2 |$ where the c^* is the complex conjugate.

Inner Product: Dual space allows us to define an inner product between to vectors.

Given 2 vectors can get a "c#"

 $\langle \alpha | \beta \rangle$

Properties

- 1. $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$
- 2. $\langle \alpha | \alpha \rangle \geq 0$
- 3. $\langle \beta | (c_1 | \alpha_1 \rangle + c_2 | \alpha_2 \rangle) = c_1 \langle \beta | \alpha_1 \rangle + c_2 \langle \beta | \alpha_2 \rangle$

 $|\alpha\rangle$ and $|\beta\rangle$ are orthogonal if $\langle\alpha|\beta\rangle = 0$.

States can be normalized $\langle \alpha | \alpha \rangle = 1$.

Operators: Things that act on a given state, and return another state

$$X|\alpha\rangle = |\alpha'\rangle$$

Product:

$$(YX)|\alpha\rangle = Y(X|\alpha\rangle$$

In general, not commutative: $XY \neq YX$, but they are associative.

$$\langle \alpha | = \langle \alpha' | X^\dagger$$

In general, $X^{\dagger} \neq X$, if so X is said to be "Hermitian".

System characterized by single observable A

eg: position / Momentum / energy

Measurement of A gives possible values

$$a_1, a_2, ...$$

 $|\alpha\rangle$ = State for which A has a value of a

$$\sum_{\alpha'} |\alpha'\rangle\langle\alpha'| = 1$$

$$\langle \alpha | \alpha' \rangle = \delta_{aa'}$$

Any physical observable corresponds to an operator like

$$A = \sum_{\alpha'} \alpha' |\alpha'\rangle \langle \alpha'|$$

eg:

$$A |\alpha\rangle = \left(\sum_{a'} a' |\alpha'\rangle\langle\alpha'|\right) |\alpha\rangle = a |\alpha\rangle$$

Physical observables are real numbers, therefore physical operators A are <u>Hermitian</u> proof:

$$A^{\dagger} = \sum_{a} a^* |\alpha\rangle\langle\alpha| = \sum_{a} a |\alpha\rangle\langle\alpha| = A$$

Probabilities:

Consider a filter $M(a) = |a\rangle\langle a|$ on a general state $|s\rangle$.

$$M(a)|s\rangle = |a\rangle\langle a|s\rangle$$

= $\langle a|s\rangle|a\rangle$

where $\langle a|s\rangle$ is a c# that tells you something about what fraction of the time you get through.

 $\langle a|s\rangle$ is related to the pass fraction

*But, a) not real, b) not normalized

However, we know that $|\langle a|s\rangle|^2 = \langle a|s\rangle\langle s|a\rangle = \langle s|a\rangle\langle a|s\rangle$ is both real and normalized.

$$\sum_{a} \langle s|a\rangle \langle a|s\rangle = \langle s|s\rangle = 1$$

Interpretation

 $|\langle a|s\rangle|^2$ = Probability that a system prepared in state $|s\rangle$ will be found in a state $|a\rangle$ with value a for observable A after measurement.

Comments on the measurement problem....

Position Operator

$$\vec{X} | \vec{x} \rangle = \vec{x} | \vec{x} \rangle$$

where, \vec{X} is position operator and \vec{x} is position eigenvalue.

Position of course is a continuous observable so "sums go to integrals" etc. eg: (Completeness and Orthogonality)

$$\sum_{\alpha'} |\alpha'\rangle\langle\alpha'| = 1 \Rightarrow \int d^3x |x\rangle\langle x| = 1$$

$$\langle \alpha' | \alpha' \rangle = \delta_{\alpha,\alpha'} \Rightarrow \langle \vec{x} | \vec{x'} \rangle = \delta^3 (\vec{x} - \vec{x'})$$

Wave function

$$|\psi\rangle = \int d^3x |x\rangle \langle x|\psi\rangle = \int d^3x \psi(x) |x\rangle$$

where $\psi(x) = \langle x | \psi \rangle$ is called the Position-space wave-function.

$$\langle \psi | \psi \rangle = 1 \Rightarrow \int d^3x \psi(x) \langle \psi | x \rangle = \int d^3x \psi^*(x) \psi(x) = 1$$

Interpretation

 $|\psi(x)|^2 d^3x$ is the probability to find the particle in volume d^3x around \vec{x} .

Translation Operator "The operator that moves you over"

$$T(\vec{a}) | \vec{x} \rangle = | \vec{x} + \vec{a} \rangle$$

What is $T^{\dagger}(\vec{a})$???

Well,

$$\langle \vec{x'} | (T(\vec{a}) | \vec{x} \rangle) = \delta^3 ((\vec{x} + \vec{a}) - \vec{x'})$$

or

$$\left(\langle \vec{x'}|\,T(\vec{a})\right)|\vec{x}\rangle = \delta^3(\vec{x}-(\vec{x'}-\vec{a}))$$

$$\Rightarrow \langle x' | T(a) = \langle x - a |$$

which says that $T^{\dagger}(a) | \vec{x} \rangle = | \vec{x} - \vec{a} \rangle$

So,

$$T^{\dagger}(\vec{a}) = T(-\vec{a}) = T^{-1}(\vec{a})$$

Properties of T

- 1. Unitary $T^{\dagger}T = 1$
- 2. $T(\vec{a})T(\vec{b}) = T(\vec{a} + \vec{b}) = T(\vec{b})T(\vec{a})$, Translations commute $([T(\vec{a}), T(\vec{b})] = 0)$
- 3. T(0) = 1

Infinitesimal Translations

consider $\vec{a} = N\vec{\epsilon}$

$$T(\vec{\epsilon}) = 1 - i\vec{\epsilon} \cdot \vec{k}$$

where

- $\vec{\epsilon}$ is a three vector
- \vec{k} is a vector of operators $\vec{k} = (k_x, k_y, k_z)$

Now, we know $T^{\dagger}T = 1$, or

$$\left(1 + i\vec{\epsilon} \cdot \vec{k}^{\dagger}\right) \left(1 - i\vec{\epsilon} \cdot \vec{k}\right) = 1$$

$$1 + \underbrace{i\vec{\epsilon}(\vec{k}^{\dagger} - \vec{k})}_{=0} + O(\epsilon^2) = 1$$

 $\Rightarrow k^{\dagger} = k$, or k is some hermitian operator.

Note: if the i wasn't there $T(\vec{a})$ would not be hermitian.

Just like with SR, any finite translation can be built out of infinitesimal translations And \vec{k} is the "generator" of translations.

Lets build a finite translation...

$$\underbrace{T(\vec{a})}_{finite} = \lim_{N \to \infty} \left[1 - i\vec{\epsilon} \cdot \vec{k} \right]^{N} = \underbrace{\lim_{N \to \infty} \left[1 - i\frac{\vec{d}}{N} \cdot \vec{k} \right]^{N}}_{e^{-i\vec{k}\cdot\vec{d}}}$$

Can see explicitly that T is unitary and k is hermitian.

Eigenstates of \vec{k} (and of course automatically of T)

$$\vec{K} | \vec{k} \rangle = \vec{k} | \vec{k} \rangle$$

$$T(\vec{a}) | \vec{k} \rangle = e^{-i\vec{k}\cdot\vec{a}} | \vec{k} \rangle$$

Eigenstates of \vec{k} behave nicely under translations (they pick up a phase).

What is $\psi_{\vec{k}}(x) \equiv \langle \vec{x} | \vec{k} \rangle$?

$$\langle \vec{x} | T(\vec{a}) | \vec{k} \rangle = e^{-i\vec{k} \cdot \vec{a}} \langle \vec{x} | \vec{k} \rangle = e^{-i\vec{k} \cdot \vec{a}} \psi_{\vec{k}}(x)$$
"T on x" = $\langle \vec{x} - \vec{a} | \vec{k} \rangle = \psi_{\vec{k}}(x - a)$

or

$$\psi_{\vec{k}}(\vec{x} - \vec{a}) = e^{-i\vec{k}\cdot\vec{a}}\psi_{\vec{k}}(\vec{x})$$

Turns out that \vec{k} is just the momentum operator

$$\vec{p} = \hbar \vec{k}$$
 and $T(\vec{a}) = e^{-i\vec{p}\vec{a}}$

Couple of ways to see this. (One is the De Brojlie wavelength, we will see another shortly)

"Momentum is the generator of translations"

Note Translations for a group:

- 1. Closure
- 2. Identity
- 3. Inverse
- 4. Associative

(Can show that this is an abealian group (HW)

Another look at the \vec{p} operator...

$$\langle y | T(\epsilon) | \psi \rangle = \int d^3 x \langle y | \underbrace{T(\epsilon) | x}_{|x+\epsilon\rangle} \langle x | \psi \rangle$$

$$= \int d^3 x \langle y | x \rangle \langle x - \epsilon | \psi \rangle$$

$$= \langle y - \epsilon | \psi \rangle$$

$$= \psi(y - \epsilon)$$

$$= \psi(y) - \epsilon \frac{\partial}{\partial y} \psi(y)$$

(using change of variables $x \to x - \epsilon$ and Taylor expansion) Now, on the other-hand...

$$\langle y|T(\epsilon)|\psi\rangle = \qquad \langle y|\left(1 - \frac{i\vec{p}\vec{\epsilon}}{\hbar}\right)|\psi\rangle$$

$$= \qquad \int d^3x \, \langle y|x\rangle \, \langle x|\left(1 - \frac{i\vec{p}\vec{\epsilon}}{\hbar}\right)|\psi\rangle$$

$$= \qquad \int d^3x \, \langle y|x\rangle \, \left(\langle x|\psi\rangle - \langle x|\frac{i\vec{p}\vec{\epsilon}}{\hbar}|\psi\rangle\right)$$

$$= \qquad \langle y|\psi\rangle - \langle y|\frac{i\vec{p}\vec{\epsilon}}{\hbar}|\psi\rangle$$

$$= \qquad \psi(y) - \epsilon \, \langle y|\frac{i\vec{p}}{\hbar}|\psi\rangle$$

 $\Rightarrow \vec{p} = i\hbar \frac{\partial}{\partial x}$ (This will be critical later)

Now lets look at how momentum eigenstates behave.

$$\vec{P}|\vec{p}\rangle = \vec{p}|\vec{p}\rangle$$

we already saw that $\langle x|p\rangle \sim e^{i\frac{p\cdot x}{\hbar}}$ "Momentum Space wave function"

$$\phi(p) \equiv \langle p|\psi\rangle$$

Can show (HW) that $\phi(p) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{i\frac{px}{\hbar}}$

Then,

$$\langle x|\psi\rangle = \int d^3p \, \langle x|p\rangle \, \langle p|\psi\rangle$$

or,

$$\psi(x) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int d^3p e^{i\frac{px}{\hbar}} \phi(p)$$

Similarly,

$$\langle p|\psi\rangle = \int d^3x \, \langle p|x\rangle \, \langle x|\psi\rangle$$

or,

$$\phi(p) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int d^3x \, e^{-i\frac{px}{\hbar}} \psi(x)$$

 $\Rightarrow \psi(x)$ and $\phi(p)$ are Fourier transforms of each other...