Regresja - zadania i przykłady.

W5 e0

Zadanie 1. Poniżej zamieszczono fragmenty wydruków dotyczących dopasowania modelu regresji do zmiennej ozone w oparciu o promieniowanie (radiation), oraz w oparciu o promieniowanie i temperaturę (temperature). Zbiór zawiera 111 obserwacji.

- (a) Podaj przybliżona liczbę wartości resztowych w pierwszym modelu większych od -0.5895.
- (b) Podaj procent zmienności dodatkowo wyjaśniony przez wprowadzenie zmiennej temperature do modelu ozone \sim radiation.
- (c) Na podstawie wyniku przeprowadzonego testu stwierdź, czy wprowadzenie zmiennej temperature jest wskazane. Uzasadnij.
- (d) Oblicz brakującą wartość na wydruku (miejsce zaznaczone kropkami "......") i wytłumacz, jak otrzymano odpowiadająca p-wartość 0,0007.

W5 e1

```
Model 1.
                                   lm(formula = ozone ~ radiation, data = ozonedata)
                           Call:
Residuals:
    Min
             1Q Median
                              3Q
                                     Max
-1.5811 -0.5895 -0.1162
                         0.5986
                                 2.0508
Coefficients:
               Estimate
                           Std. Error
                                        t value
                                                  Pr(>|t|)
                            0.1746316
              2.4859713
                                          14.24
                                                   < 2e-16
(Intercept)
                            0.0008482
                                                   3.96e-06
radiation
              0.0041223
                                           4.86
Residual standard error: 0.8109 on 109 degrees of freedom
Multiple R-Squared: 0.1781,
F-statistic: 23.62 on 1 and 109 DF, p-value: 3.964e-06
----- Model 2.
                        Call: lm(formula = ozone ~ temperature + radiation)
Residuals:
                  Median
                              3Q Max
             10
    Min
 -1.183 -0.4025 -0.03355 0.2965 1.95
Coefficients:
                 Value
                         Std. Error
                                        t value
                                                  Pr(>|t|)
                            0.4398
                                        -4.8951
                                                    0.0000
(Intercept)
               -2.1530
                            0.0059
                                                    0.0000
temperature
                0.0643
                                        10.9681
  radiation
                0.0021
                                         3.4968
                                                    0.0007
                            . . . . . .
```

Multiple R-Squared: 0.6112

Residual standard error: 0.5603 on 108 degrees of freedom

F-statistic: 84.88 on 2 and 108 degrees of freedom, the p-value is 0

Zadanie 2. Zbiór cheese zawiera dane dotyczące smaku sera (zmienna Taste, miara subiektywna) oraz zmiennych

Acetic – logarytm zawartości kwasu octowego;

H2S – logarytm zawartości siarkowodoru;

Lactic – zawartość kwasu mlekowego.

Rozpatrzono dwa modele regresji dla zmiennej objaśnianej Taste. W pierwszym zmienną objaśniającą jest jedynie zmienna Acetic, w drugim dodatkowo zmienne H2S i Lactic. Na podstawie załączonego wydruku odpowiedz na następujące pytania:

- (a) Wnioski dla zmiennej Acetic są inne w pierwszym i drugim modelu. Sprecyzuj na czym polega różnica i wytłumacz czym jest spowodowana.
- (b) Oblicz brakującą wartość dla zmiennej H2S w drugim modelu.
- (c) O ile wzrósł procent wyjaśnionej zmienności zmiennej Taste po dodaniu do pierwszego modelu zmiennych Lactic i H2S?

W5 e3

```
----- Model 1:
                      lm(formula = Taste ~ Acetic, data = cheese)
Residuals:
            1Q Median
                            3Q
   Min
                                  Max
                 2.082
-29.642 -7.443
                         6.597 26.581
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                    24.846 -2.475 0.01964
(Intercept) -61.499
             15.648
                        4.496
                               3.481 0.00166
Residual standard error: 13.82 on 28 degrees of freedom
Multiple R-Squared: 0.302,
                              Adjusted R-squared: 0.2771
F-statistic: 12.11 on 1 and 28 DF, p-value: 0.001658
----- Model 2:
                      lm(formula = Taste ~ Acetic + H2S + Lactic, data = cheese)
Residuals:
   Min 1Q Median
                            3Q
                                  Max
-17.391 -6.612 -1.009
                         4.908 25.449
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -28.8768
                     19.7354 -1.463 0.15540
            0.3277
                        4.4598 0.073 0.94198
Acetic
H2S
                        1.2484
                               3.133 0.00425
           . . . . . . . .
Lactic
            19.6705
                        8.6291
                                2.280 0.03108
```

Adjusted R-squared: 0.6116

W5e4

Residual standard error: 10.13 on 26 degrees of freedom

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06

Multiple R-Squared: 0.6518,

Zadanie 3. Poniżej zamieszczona jest część wydruku dotycząca dopasowania modelu regresji do danych dotyczących liczby gatunków żółwi (zmienna zależna **Species**) na 30 wyspach archipelagu Galapagos. Rozpatrzono następujące zmienne niezależne:

Area - powierzchnia wyspy (km²),

Elevation- wysokość najwyższego punktu (m),

Nearest - odległość do najbliższej wyspy (km),

Scruz - odległość do wyspy Santa Cruz,

Adjacent - powierzchnia najbliższej sąsiedniej wyspy.

W5 e5

Species		Endemics	s Area	Elevation	Nearest	Scruz	Adjacent
Baltra	58	23	25.09	346	0.6	0.6	1.84
Bartolome	31	21	1.24	109	0.6	26.3	572.33
Caldwell	3	3	0.21	114	2.8	58.7	0.78
Champion	25	9	0.10	46	1.9	47.4	0.18
Coamano	2	1	0.05	77	1.9	1.9	903.82
Daphne.Major	18	11	0.34	119	8.0	8.0	1.84
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34
Darwin	10	7	2.33	168	34.1	290.2	2.85
Eden	8	4	0.03	71	0.4	0.4	17.95
Enderby	2	2	0.18	112	2.6	50.2	0.10
Espanola	97	26	58.27	198	1.1	88.3	0.57
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32
Gardner1	58	17	0.57	49	1.1	93.1	58.27
Gardner2	5	4	0.78	227	4.6	62.2	0.21
Genovesa	40	19	17.35	76	47.4	92.2	129.49
Isabela	347	89	4669.32	1707	0.7	28.1	634.49
Marchena	51	23	129.49	343	29.1	85.9	59.56
Onslow	2	2	0.01	25	3.3	45.9	0.10
Pinta	104	37	59.56	777	29.1	119.6	129.49
Pinzon	108	33	17.95	458	10.7	10.7	0.03
Las.Plazas	12	9	0.23	94	0.5	0.6	25.09
Rabida	70	30	4.89	367	4.4	24.4	572.33
SanCristobal	280	65	551.62	716	45.2	66.6	0.57
SanSalvador	237	81	572.33	906	0.2	19.8	4.89
SantaCruz	444	95	903.82	864	0.6	0.0	0.52
SantaFe	62	28	24.08	259	16.5	16.5	0.52
SantaMaria	285	73	170.92	640	2.6	49.2	0.10
Seymour	44	16	1.84	147	0.6	9.6	25.09
Tortuga	16	8	1.24	186	6.8	50.9	17.95
Wolf	21	12	2.85	253	34.1	254.7	2.33

W5 e6

```
> summary(lm(Species~Area+Elevation+Nearest+Scruz+Adjacent))
Call:
```

lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent)

Residuals:

```
Min 1Q Median 3Q Max
-111.679 -34.898 -7.862 33.460 182.584
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.068221 19.154198
                                 0.369 0.715351
Area
           -0.023938
                      0.022422 -1.068 0.296318
Elevation
            0.319465
                      0.053663
                                 5.953 3.82e-06
Nearest
            0.009144
                      1.054136
                                 0.009 0.993151
           -0.240524
                      0.215402 -1.117 0.275208
Scruz
           -0.074805
                      0.017700 -4.226 0.000297
Adjacent
```

Residual standard error: 60.98 on 24 degrees of freedom Multiple R-Squared: 0.7658, Adjusted R-squared: 0.7171 F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-007

- (a) (1p.) Podaj procent zmienności liczby gatunków niewyjaśnionej przez zaproponowany model.
- (b) (2p.) Sformułuj hipotezę zerową i alternatywną, której odpowiada liczba 0.296318. Jaką decyzję podejmiesz w tym przypadku ?

(c) (3p.) Sformułuj hipotezę zerową i alternatywną, której odpowiada liczba 0.000275 w prostszym modelu poniżej. Jaką decyzję podejmiesz w tym przypadku? Porównaj z (b) i skomentuj ewentualne różnice.

```
> summary(lm(Species~Area))
```

Call:

lm(formula = Species ~ Area)

Residuals:

Min 1Q Median 3Q Max -99.495 -53.431 -29.045 3.423 306.137

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 63.78286 17.52442 3.640 0.001094 **
Area 0.08196 0.01971 4.158 0.000275 ***

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

Residual standard error: 91.73 on 28 degrees of freedom Multiple R-Squared: 0.3817, Adjusted R-squared: 0.3596 F-statistic: 17.29 on 1 and 28 DF, p-value: 0.0002748

- Zadanie 4. Na podstawie danych fish dotyczących 159 ryb złowionych w jeziorze Laengelmavesi koło Tampere starano się znaleźć zależność między ich wagą (Weight) a wysokością (Height), szerokością (Width) i długościami L1, L2, L3 (patrz rys. 2). W pierwszym modelu uwzględniono wszystkie zmienne niezależne, w drugim usunięto zmienną Height. Przyjęto $\alpha = 0.05$.
- (a) (1 p.) Które ze zmiennych w pierwszym modelu są istotne? Uzasadnij, sformułuj odpowiednie hipotezy zerowe dla zmiennych istotnych.
- (b) (2 p.) Czy zmienna L3 jest istotna w obu modelach? Dlaczego tak się dzieje?
- (c) (1 p.) Co oznacza liczba 0,9907 dla trzeciego modelu i jakiej zmiennej dotyczy?
- (d) (2 p.) Na podstawie załączonych rysunków oceń dopasowanie modelu pierwszego i trzeciego.

W5 e9

```
lm(formula = Weight ~ L1 + L2 + L3 + Height + Width, data = fish)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -504.084
                         30.370 -16.598 < 2e-16
L1
              52.829
                         40.694
                                  1.298 0.19632
L2
               3.997
                         42.030
                                  0.095 0.92438
L3
             -29.292
                         17.648
                                 -1.660
                                         0.09915
              30.043
                          8.883
                                  3.382
Height
                                         0.00093
                         21.029
Width
              10.638
                                  0.506
                                         0.61374
```

Residual standard error: 120.4 on 142 degrees of freedom Multiple R-Squared: 0.8909, Adjusted R-squared: 0.8871 F-statistic: 232 on 5 and 142 DF, p-value: < 2.2e-16

lm(formula = Weight ~ L1 + L2 + L3 + Width, data = fish)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -523.502
                         30.892 -16.946 < 2e-16
L1
              11.544
                         40.212
                                  0.287
                                           0.7745
L2
             -13.082
                         43.222 -0.303
                                           0.7626
L3
              22.430
                          9.123
                                  2.459
                                           0.0151
Width
              65.719
                         13.781
                                  4.769 4.52e-06
```

Residual standard error: 124.7 on 143 degrees of freedom Multiple R-Squared: 0.8821, Adjusted R-squared: 0.8788 F-statistic: 267.6 on 4 and 143 DF, p-value: < 2.2e-16

 $W5~\mathrm{e}10$

```
> fish3.lm <- lm(Weight^0.3 ~ L1 + L2 + L3 + Height + Width, data=fish)
```

> print(summary(fish3.lm))

lm(formula = Weight^0.3 ~ L1 + L2 + L3 + Height + Width, data = fish)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                        0.04462 12.298
(Intercept)
            0.54870
                                         < 2e-16
             0.01622
                                  0.271
                                            0.787
                        0.05978
L2
             0.08231
                        0.06174
                                  1.333
                                            0.185
L3
            -0.01549
                        0.02593
                                 -0.597
                                            0.551
Height
             0.11443
                        0.01305
                                  8.768 5.06e-15
Width
             0.35494
                        0.03089 11.489 < 2e-16
```

Residual standard error: 0.1769 on 142 degrees of freedom Multiple R-Squared: 0.9907, Adjusted R-squared: 0.9904 F-statistic: 3022 on 5 and 142 DF, p-value: < 2.2e-16