

# 电机开源平台

# 用户手册

Rev1.01 2023年04月



### 声明

- ★ 小华半导体有限公司(以下简称:XHSC)保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应 标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有®或™标识的图形或字样是 XHSC 的商标。 所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2023 小华半导体有限公司 保留所有权利



# 目 录

| 声  | 明   |              |             | 2  |
|----|-----|--------------|-------------|----|
| 目  | 录   |              |             | 3  |
| 表家 | 慰   |              |             | 5  |
| 图第 | 慰   |              |             | 6  |
| 1  | 简介  | ì            |             | 7  |
| 2  | 开源  | <b>東电机平台</b> | 控制系统        | 8  |
|    | 2.1 | 系统开          | 发环境         | 8  |
|    |     | 2.1.1        | 硬件环境        | 8  |
|    |     | 2.1.2        | 软件环境        | 8  |
|    |     | 2.1.3        | 交付环境        | 8  |
|    | 2.2 | 系统功          | 能           | 8  |
|    | 2.3 | 系统框          | 图           | 9  |
|    | 2.4 | 时序分          | 酉己          | 9  |
|    | 2.5 | 软件结          | 构           | 10 |
|    | 2.6 | 数据处          | 理           | 12 |
|    |     | 2.6.1        | 数据格式        | 12 |
|    |     | 2.6.2        | 数据标定        | 13 |
|    |     | 2.6.3        | 设置样例        | 14 |
| 3  | 开始  | 台调试          |             | 15 |
|    | 3.1 | 打开工          | 程           | 15 |
|    | 3.2 | 工程设          | 置           | 16 |
|    | 3.3 | 编译和          | 下载调试        | 16 |
|    | 3.4 | 退出调          | 试           | 18 |
|    | 3.5 | VSP 调        | 速           | 18 |
| 4  | 硬件  | <b>‡</b> .   |             | 19 |
|    | 4.1 | 硬件简          | 介           | 19 |
|    |     | 4.1.1        | 功率板         | 20 |
|    |     | 4.1.2        | 控制卡         | 20 |
|    |     | 4.1.3        | 电机          | 22 |
|    |     | 4.1.4        | 硬件底层配置      | 22 |
|    | 4.2 | HC32M        | 1120 系列硬件配置 | 23 |
|    | 4.3 | HC32F        | 460 系列硬件配置  | 25 |
| 5  | 驱动  | 力方式设置        | 说明          | 27 |



| 6  | 软件   | <b>参数配置</b> |                              | 28 |
|----|------|-------------|------------------------------|----|
|    | 6.1  | 软件参         | 数列表                          | 29 |
|    | 6.2  | 控制器         | 基本参数配置                       | 31 |
|    | 6.3  | 电机参         | 数配置                          | 31 |
|    | 6.4  | 观测器         | 参数                           | 32 |
|    | 6.5  | PI 参数       | 设置                           | 33 |
|    | 6.6  | 启动参         | 数配置                          | 34 |
|    | 6    | 5.6.1       | 静止启动的配置                      | 34 |
|    | 6    | 5.6.2       | 逆风启动的配置                      | 35 |
|    | 6.7  | 保护参         | 数配置                          | 36 |
|    | 6    | 5.7.1       | 母线电压保护参数配置                   | 36 |
|    | 6    | 5.7.2       | 过流保护参数配置                     | 36 |
| 7  | 故障统  | <b>处理</b>   |                              | 37 |
|    | 7.1  | 故障列         | 表                            | 37 |
|    | 7.2  | ADC 偏       | 置错误(ERR_AD_OFFSET)           | 38 |
|    | 7.3  | 软件峰         | 值过流故障(ERR_OC_PEAK)           | 38 |
|    | 7.4  | 硬件过         | 流故障(ERR_OC_HW)               | 39 |
|    | 7.5  | 过压故         | 障(ERR_VDC_OV、ERR_VDC_ABNORM) | 39 |
|    | 7.6  | 欠压故         | 障(ERR_VDC_UV、ERR_VDC_ABNORM) | 39 |
|    | 7.7  | 采样时         | 序错误(ERR_DMA_FAIL)            | 39 |
| 8  | 附件.  |             |                              | 40 |
| 版才 | x修订ì | 2录          |                              | 43 |



# 表索引

| 表 2-1 | 系统基值        | .13  |
|-------|-------------|------|
| 表 3-1 | 恒转速模式下的目标指令 | . 17 |
| 表 6-1 | 软件设置基本参数定义  | .28  |



# 图索引

| 图 2-1 | 无传感器 FOC 控制系统框图 | 9  |
|-------|-----------------|----|
|       | 文件结构            |    |
| 图 2-3 | 软件架构            | 11 |
| 图 3-1 | 工程文件目录          | 15 |
| 图 3-2 | 工程窗口布局          | 15 |
| 图 3-3 | 编译和下载调试步骤       | 17 |
| 图 3-4 | 查看编译信息          | 17 |
| 图 3-5 | 在线调试步骤          | 17 |
| 图 3-6 | 退出调试步骤          |    |
| 图 4-1 | 电机控制套件          | 19 |
| 图 4-2 | 电机控制卡           |    |
| 图 6-1 | 电流环传递函数         | 33 |
| 图 6-2 | 电机启动流程          | 34 |
| 图 6-3 | 启动过程电流参数定义      |    |
| 图 8-1 | 功率板原理图          | 40 |
| 图 8-2 | HC32F460 控制卡原理图 | 41 |
| 图 8-3 | HC32M120 控制卡原理图 | 42 |



### 1 简介

本手册介绍基于小华半导体 MCU 的开源电机平台的操作方法,适用于无传感器变频控制的电机产品。 本手册介绍内容:

- 1. 电机开源平台系统架构
- 2. 软硬件参数配置方法
- 3. 系统调试步骤
- 4. 故障处理方法



### 2 开源电机平台控制系统

### 2.1 系统开发环境

### 2.1.1 硬件环境

| 条目   | 说明                                              |  |  |
|------|-------------------------------------------------|--|--|
| 控制板  | MD_CTL_M120_LQ48_Rev1.0/MD_CTL_F460_LQ48_Rev1.0 |  |  |
| 驱动板  | MD_STG_100_Rev1.0                               |  |  |
| 仿真器  | J-Link V8(隔离)                                   |  |  |
| 电机类型 | PMSM                                            |  |  |

#### 2.1.2 软件环境

| 条目   | 说明         |
|------|------------|
| 操作系统 | Windows 10 |
| 编译环境 | IAR 7.70   |
| 开发语言 | С          |

#### 2.1.3 交付环境

| 条目 | 说明                 |
|----|--------------------|
| 硬件 | 控制板x1,驱动板x1,电机(选配) |
| 软件 | 驱动固件x1             |
| 文档 | 用户手册x1             |

### 2.2 系统功能

本系统是基于无位置传感器的矢量控制系统,适用于表贴式(SPMSM)和凸极式(IPMSM)的永磁同步电机。

#### 系统的主要特征有:

- 1. 支持恒转速控制方式
- 2. 支持电机的双向运转,包括顺逆风运行等功能
- 3. 支持双电阻采样方式
- 4. 采用 SVPWM 调制策略,支持 5 段式、7 段式调制
- 5. 电流闭环控制,具备快速动态响应
- 6. 丰富的保护功能: 电压保护、过流保护
- 7. 采用标幺化数据处理方式,适用于各种规格的驱动场景



#### 2.3 系统框图



图 2-1 无传感器 FOC 控制系统框图

本系统为标准的双闭环 FOC 控制系统,内环为电流控制环,用来跟踪参考电流,提升动态性能,外环 为速度控制环,用来跟踪目标转速。

通过采集母线电压、相电流信号,系统首先根据电机的电压和电流来估算转子的速度和位置,获知转子位置后,通过坐标变换得到同步旋转坐标系(dq坐标系)下的电流信息,电流环的 PI 控制器根据反馈电流调节输出电压,并由 SVPWM 计算占空比并转换为 6 路 PWM 信号输出到逆变器。

根据速度控制目标,外环通过控制器调节参考电流,并输出到电流内环,实现双闭环 FOC 控制系统。

### 2.4 时序分配

本系统中,系统控制功能被划分为三个优先级,分别是:

1. 最高优先级(Timer 零点中断):

Timer 零点中断是指用于产生 6 路 PWM 的 Timer 外设的零点中断,其中 Timer 工作在三角波计数模式下。本中断用于执行电流内环控制,关键保护功能等时效要求较高的代码,包括采样转换、观测器、电流 PI 控制、PWM 占空比更新、过流保护等。

2. 普通优先级(System Ticker 中断):

System Ticker 中断用于执行对时序有严格要求,但是控制周期较长的功能。如:速度 PI 控制、刹车控制、堵转保护、电压保护等。

3. 最低优先级(主函数循环扫描):

主函数的循环扫描用于处理没有严格时序要求的功能代码。例如:扫描用户的输入数据,串口接收数据的处理等。



通过划分以上三组优先级,系统既可以保证电流内环控制的时效性,也可以节约 Timer 零点中断的代码执行时间,以适应更大的载频范围,实现精准的 FOC 控制。

需注意的是,当硬件过流发生时,系统将优先执行硬件过流保护中断,硬件过流保护的中断优先级高于 Timer 零点中断。

同时,由于电机控制需要严格的时序保证,在进行二次开发时,应当保证每个 Timer 零点中断代码的 执行时间小于中断周期,否则可能引起 ADC 转换时序异常、PWM 寄存器无法及时更新等现象,甚至导 致硬件损坏。

#### 2.5 软件结构

系统中,文件结构分布如图 2-2 所示。

#### 其中:

mcu\_common:存放芯片驱动头文件包含路径文件,驱动方式选择文件

mcu\_config:存放芯片外设配置程序,中断处理函数,电机驱动外设资源使用定义等配置文件

mcu\_driver: 存放芯片 ddl 驱动库

motor\_midwares: 电机控制中间层控制程序

motor\_source: 电机控制资源层控制程序



图 2-2 文件结构





图 2-3 软件架构

软件被划分为 5 个层次,各层次的功能参考图 2-3。

软件代码的入口函数分别位于 main.c 和 isr.c 中,通过主函数和中断服务函数,用户可以清晰的看到软件执行的主要流程和函数调用情况。



### 2.6 数据处理

#### 2.6.1 数据格式

本系统使用了浮点数和定点数两种数据格式:

浮点数: 用于参数配置, 便于与实际系统关联, 不直接参与电机控制流程

定点数:用于电机控制流程中的运算,以提高运算效率。

系统中的浮点数与定点数通过标幺系统和 Q 格式转换——映射,以适应不同电压等级、功率等级、转速范围的电机。标定后的数据与真实值的映射关系为:

$$QNX = QN(\frac{x}{x_B})$$

$$x = \frac{QNX \cdot x_B}{2^N}$$

其中,QNX 为标定后的 Q 格式数据,x 为真实值,QN(x)= $2^N \cdot x$  后取整, $x_B$ =const 为参数基值。以电流为例,记电流为 i,电流基值为  $I_B$ ,采用 Q12 格式的数据,那么系统中的电流表示为:

$$Q12I = Q12(\frac{i}{I_B})$$

例如,取电流基值  $I_B=8A$ ,假设真实电流 i=1.5A,那么系统中的电流被记录为:

Q12I=Q12
$$(\frac{i}{I_B})=2^{12} \cdot \frac{1.5}{8}=768$$



#### 2.6.2 数据标定

数据标定是指软件中的 Q 格式、变量基值的标定。在电机控制系统中,仅需三个独立的基值即可实现 电机物理量的标幺,其它变量则可通过这三个独立基值确定。本系统选取电压、电流、和角频率作为系 统基值,分别记为:

V<sub>B</sub>: 电压基值 (V)

I<sub>B</sub>: 电流基值(A)

f<sub>B</sub>:转子角频率基值(Hz)

其他基值整理如下:

表 2-1 系统基值

| 基值     | 符号             | 表达式                                   | 单位    |
|--------|----------------|---------------------------------------|-------|
| 电压基值   | $V_{B}$        | V <sub>B</sub>                        | V     |
| 电转速基值  | f <sub>B</sub> | f <sub>B</sub>                        | Hz    |
| 电流基值   | Ι <sub>Β</sub> | I <sub>B</sub>                        | Α     |
| 电转速基值  | $\omega_{B}$   | 2πf <sub>B</sub>                      | rad/s |
| 机械转速基值 | $\omega_{mB}$  | ω <sub>B</sub> /P                     | rad/s |
| 电阻基值   | $R_B$          | V <sub>B</sub> /I <sub>B</sub>        | ohm   |
| 电感基值   | L <sub>B</sub> | $V_B/\omega_BI_B$                     | Н     |
| 磁链基值   | $\lambda_{B}$  | $V_B/\omega_B$                        | Wb    |
| 功率基值   | S <sub>B</sub> | $\frac{3}{2}V_{B}I_{B}$               | VA    |
| 转矩基值   | ГВ             | $\frac{3P}{2}\frac{V_BI_B}{\omega_B}$ | Nm    |
| 时间基值   | T <sub>B</sub> | 1/ω <sub>B</sub>                      |       |

基值选取的原则是避免运算溢出,保证系统精度。本系统中,关键数据以 32 位定点数、*Q*12格式存储,因此推荐选取合适的基值,使标定后的数据满足:

 $\left|\frac{\max(i)}{I_B}\right| \le 2$ ,其中 $\max(i)$ 为相电流的最大幅值

 $\left| \frac{\text{max(v)}}{V_B} \right| \le 2$ ,其中max(v)为相电压的最大幅值

 $\left|\frac{\max(f)}{f_R}\right| \le 4$ ,其中 $\max(f)$ 为最高电转速



#### 2.6.3 设置样例

一种简单的基值选取方法是根据电机的额定参数设定。例如,对于一台 220VAC、35W 的 4 对极电机, 其最高转速为 1200rpm。假设额定状态下,线电压为 70%母线电压,功率因数 $\cos \varphi = 0.9$ ,那么电机 的额定参数可近似估算为:

额定电压: 
$$V_r = \sqrt{\frac{2}{3}} \cdot 70\% \cdot V_{ac} = \sqrt{\frac{2}{3}} \cdot 0.7 \cdot 220 = 126 \text{ V}$$

额定电流: 
$$I_r = \frac{2}{3} \cdot \frac{P}{V_r \cdot \cos \varphi} = \frac{2}{3} \cdot \frac{35}{126 \cdot 0.9} = 0.19 \text{ A}$$

那么,系统基值可分别设定为:

$$V_B = V_r = 126 \text{ V}$$

$$I_{B} = I_{r} = 0.19 A$$

$$f_B = \frac{f_r}{4} = 20 \text{ Hz}$$



### 3 开始调试

### 3.1 打开工程

以 HC32M120 项目为例,

- 1. 打开目录中的工程文件 hc32m120\_motor\_control.eww,如图 3-1 所示。
- 2. 各个窗口布局,如图 3-2 所示。

打开工程后,可以看到工程窗口布局。其中,上方为菜单栏,左侧为工作空间窗口,右侧为代码编辑窗口,下方为信息窗口。用户可以在菜单栏中的 view 子菜单中选择需要显示的窗口,并可以拖动各窗口来调整布局。



图 3-1 工程文件目录



图 3-2 工程窗口布局



### 3.2 工程设置

打开工程后,依次对相关参数进行设置,主要包括:

- 1. 硬件
- 2. 驱动方式设置说明
- 3. 软件参数配置

#### 3.3 编译和下载调试

- 1. 正确连接硬件
- 2. 编译工程

打开菜单栏中的"project"选项,首先选择"clean"(图 3-3,步骤 1),然后选择"rebuild all"(图 3-3,步骤 2)重新编译所有文件。成功完成编译后,可以在信息窗口的"build"栏中看到编译结果,如图 3-4 所示。

3. 程序下载

当编译链接无误后,点击"Download and Debug"按键(图 3-3,步骤 3)进入在线调试界面。进入调试界面后,可以看到工程的右侧增加了"live watch"窗口,如图 3-5 所示。

4. 调试变量添加

"live watch"窗口中显示了系统全局变量的状态,并以设定频率刷新。如果无法看到"live watch"窗口,可在进入调试界面后,点击菜单栏中的"View->Live Watch"调出在线调试窗口,用户也可以在"Live Watch"窗口中增加需要观察的变量来辅助调试。

5. 运行前故障检测

在调试界面中点击全速运行(图 3-5,步骤 4), MCU 开始运行。设定运行指令前,建议观察以下变量:

g stcMotorRunPara.u32FaultCode: 故障码应当为零,否则设定运行指令无效。

g\_stcMotorRunPara.i32Q12\_Vbus: 检查母线电压是否与供电电压一致。





图 3-3 编译和下载调试步骤



图 3-4 查看编译信息



图 3-5 在线调试步骤

表 3-1 恒转速模式下的目标指令

| 控制模式                           | 启动指令变量                        | 单位  | 设置方法        |
|--------------------------------|-------------------------------|-----|-------------|
|                                | g_stcMotorCmdSpdSet.i32CmdRpm | rpm | 设置电机的目标转速:  |
| /□ <i>t</i> ≠/击档= <del>*</del> |                               |     | 1. 设置为零,停机  |
| 恒转速模式<br>                      |                               |     | 2. 设置大于零,正转 |
|                                |                               |     | 3. 设置小于零,反转 |

在确认上述两个变量正确以后,设定目标指令启动电机。不同控制模式下,目标指令的变量不同,如表 3-1 所示。



目标指令既可以用来启动、停止电机,也可以实时设定以调整电机的运行状态,例如加减速,调整运行 方向等。通过观察电机的运行状态,电流波形等,用户可以进一步优化控制参数,以达到更优的运行性 能。

#### 3.4 退出调试

在退出调试前,必须先停止电机,并确保 MCU 不再输出 PWM 控制信号。这是因为,当在 IAR 中点击 "Stop Debugging"按键后,MCU 内核会进入短暂 Halt 状态,而用以生成 PWM 的 Timer 将保持停止 调试前的占空比持续输出,这种状态可能造成硬件损坏。

#### 正确退出调试的步骤是:

- 1. 设定目标指令为零,停止电机(图 3-6,步骤 6)
- 2. 等待 g\_stcMotorRunPara.u32MotorStatus 清零
- 3. 点击 "Stop Debugging"按键(图 3-6,步骤 7),停止调试

当遇到 g\_stcMotorRunPara.u32MotorStatus 变量始终无法清零时,可通过以下两种方式强制停机:

- 1. 手动写入故障码强制停机(g\_stcMotorRunPara.u32FaultCode 写入任意非零数值)
- 2. 断开电源,系统发生欠压故障后强制停机



图 3-6 退出调试步骤

### 3.5 VSP 调速

- 1. 使能 hardware\_config.h 中的 EN\_VSP\_CMD 为 TRUE
- 2. 下载程序
- 3. 逆时针旋转控制板上的电位器到底,然后顺时针旋转,启动电机
- 4. 逆时针旋转电位器到底,停止电机



# 4 硬件

### 4.1 硬件简介

本套件提供一套与软件配套使用的硬件驱动电路板,包含两个部分:

- 功率板
- 控制卡



图 4-1 电机控制套件



#### 4.1.1 功率板

功率板(MD\_STG\_100\_Rev1.0)提供具备以下特性:

| 名称      | 规格         | 备注                       |
|---------|------------|--------------------------|
| 电源输入范围  | 12V~24VDC  |                          |
| 输出功率    | 100W@24VDC |                          |
| 辅助电源    | 5V 或 3.3V  | J1 闭合为 5V,J1 断开为 3V3(默认) |
| 采样电路    | 2 相采样      |                          |
| 保护      | 过流保护       |                          |
| HALL 接口 | 支持         |                          |

功率板通过两组接插件(CN2,CN5)与控制卡连接,其中一组接插件(CN2)包含了电机控制所需的最少控制信号。CN2接口定义如下:

| 序号 | 标号 | 说明             | 序号 | 标号   | 说明        |
|----|----|----------------|----|------|-----------|
| 1  | UH | U 相上桥 PWM      | 2  | GND  | 地         |
| 3  | UL | U 相下桥 PWM      | 4  | GND  | 地         |
| 5  | VH | V 相上桥 PWM      | 6  | VCC  | 电源        |
| 7  | VL | V 相下桥 PWM      | 8  | VCC  | 电源        |
| 9  | WH | W 相上桥 PWM      | 10 | NC   | 空脚        |
| 11 | WL | W 相下桥 PWM      | 12 | NC   | 空脚        |
| 13 | FT | Fault 信号(硬件过流) | 14 | V_DC | 母线电压      |
| 15 | НА | HALL 信号 A      | 16 | НВ   | HALL 信号 B |
| 17 | НС | HALL 型号 C      | 18 | NC   | 空脚        |
| 19 | IV | V 相电流          | 20 | IU   | U 相电流     |

#### 4.1.2 控制卡

控制卡为针对不同 MCU 设计的控制电路板,控制卡通过接插件与功率板连接。目前提供两款芯片的控制卡。

- MD\_CTL\_F460\_LQ48\_Rev1.0(仅支持 3.3V 电源)
- MD\_CTL\_M120\_LQ48\_Rev1.0(支持 3.3V/ 5V 电源)

MD\_CTL\_F460\_LQ48\_Rev1.0 基于 ARM Cortex-M4 内核芯片 HC32F460JETA\_LQ48 设计,除了引出电机所需的信号至控制接口外,还提供一个可调电阻,用于 ADC 输入调速。另外,还引出 4 路 GPIO,这 4 路 GPIO 可以使用 HC32F460 系列通讯端口自由映射功能,可以配置为 SPI、UART、I2C、CAN 等通讯接口,输入捕获,ADC 等功能。由于 HC32F460JETA 仅支持 3.3V 电源,所以在使用一定要确定功率板上 J1 断开。

MD\_CTL\_M120\_LQ48\_Rev1.0 基于 ARM Cortex-M0+内核芯片 HC32M120J6TB\_LQ48 设计,仅提供可调电阻,用于 ADC 输入调速。





图 4-2 电机控制卡

### MD\_CTL\_F460\_LQ48\_Rev1.0 引脚配置表

| 序号 | 信号网络   | 引脚编号 | 外设通道         | 用户设置参数              |
|----|--------|------|--------------|---------------------|
| 1  | PWM 极性 | -    | -            | PWM_ACTIVE_LEVEL_HH |
| 2  | UH     | PA08 | TIM4_1_OUH   | TIM4_1_UH_PA08      |
| 3  | UL     | PB13 | TIM4_1_OUL   | TIM4_1_UL_PB13      |
| 4  | VH     | PA09 | TIM4_1_OVH   | TIM4_1_VH_PA09      |
| 5  | VL     | PB14 | TIM4_1_OVL   | TIM4_1_VL_PB14      |
| 6  | WH     | PA10 | TIM4_1_OWH   | TIM4_1_WH_PA10      |
| 7  | WL     | PB13 | TIM4_1_OWL   | TIM4_1_WL_PB15      |
| 8  | FAULT  | PB12 | EMB2         | -                   |
| 9  | НА     | PB03 | TIMA_6_PWM_5 | -                   |
| 10 | НВ     | PB04 | TIMA_6_PWM_6 | -                   |
| 11 | НС     | PB05 | TIMA_6_PWM_7 | -                   |
| 12 | V_DC   | PA03 | ADC1_IN3     | 3                   |
| 13 | I_U    | PA00 | ADC1_IN0     | 0                   |
| 14 | I_V    | PA01 | ADC1_IN1     | 1                   |
| 15 | VSP    | PA05 | ADC12_IN5    | 5                   |



MD\_CTL\_M120\_LQ48\_Rev1.0 引脚配置表

| 序号 | 信号网络  | 引脚编号 | 外设通道       | 用户设置参数      |
|----|-------|------|------------|-------------|
| 1  | UH    | P15  | TIM4_1_OUH | TIM4_UH_P15 |
| 2  | UL    | P14  | TIM4_1_OUL | TIM4_UL_P14 |
| 3  | VH    | P13  | TIM4_1_OVH | TIM4_VH_P13 |
| 4  | VL    | P11  | TIM4_1_OVL | TIM4_VL_P11 |
| 5  | WH    | P30  | TIM4_OWH   | TIM4_WH_P30 |
| 6  | WL    | P70  | TIM4_OWL   | TIM4_WL_P70 |
| 7  | FAULT | P60  | EMB1       | -           |
| 8  | V_DC  | P00  | ADC_IN9    | 9           |
| 9  | I_U   | P26  | ADC_IN6    | 6           |
| 10 | I_V   | P27  | ADC_IN7    | 7           |
| 11 | VSP   | P25  | ADC_IN5    | 5           |

更详细资料,请查阅原理图。

#### 4.1.3 电机

套件代码默认匹配电机参数:

| 名称     | 规格    | 单位     | 备注 |
|--------|-------|--------|----|
| 极对数    | 7     | -      | -  |
| 相电阻    | 0.05  | Ohm    | -  |
| d 轴电感  | 0.005 | mH     | -  |
| q 轴电感  | 0.005 | mH     | -  |
| 反电动势系数 | 0.34  | V/kRPM | -  |

#### 4.1.4 硬件底层配置

在硬件配置中,用户将设定硬件的相关参数,主要包括:

1. 系统时钟:配置系统时钟源、时钟频率等

2. 电机控制功能: 默认转速方向、指令给定方式等

3. PWM 引脚:分配三相 PWM 引脚 IO,设置 PWM 极性

4. ADC 采样: ADC 参考电压、相电流采样方式(双电阻)、采样通道等

5. 硬件过流保护:硬件过流保护信号源、保护信号电平等

硬件配置参数位于 mcu\_config/hardware\_config.h 文件中。



# 4.2 HC32M120 系列硬件配置

|              | 参数                | 说明                           | 备注                         |
|--------------|-------------------|------------------------------|----------------------------|
|              | EN_HSRC           | 选择系统时钟源:内部高速时钟、或外部晶振         | TRUE/ FALSE                |
| T/40161      | CLK_HSRC_FREQ     | 内部 HRC 时钟频率                  | 固定使用 8MHz                  |
| 系统时钟         | CLK_MAIN_MUL      | 内部 HRC 时钟倍频系数                | 根据芯片时钟允许范围配置               |
|              | CLK_XTAL_FREQ     | 外部晶振时钟频率                     |                            |
|              | CLK_MAIN_MUL      | 外部晶振时钟倍频系数                   |                            |
|              | USE_WATCHDOG      | 使能硬件看门狗                      | TRUE/ FALSE                |
|              | WATCHDOG_MODE     | 看门狗模式                        | 复位、中断                      |
| 电机控制         | USE_INTERNAL_OPA1 | 使用内部 OPA1                    | TRUE/ FALSE                |
|              | USE_INTERNAL_OPA2 | 使用内部 OPA2                    | TRUE/ FALSE                |
|              | EN_VSP_CMD        | 使能电位器调速功能                    | TRUE/ FALSE                |
|              | ADC_VOLT_REF      | ADC 单元的参考电压                  | 根据供电电压设定                   |
|              | ADC_BIT_LENGTH    | ADC 采样位数                     | 12 位 ADC                   |
|              | SHUNT_NUM         | 相电流采样方式                      | 仅支持双电阻采样                   |
| ADC 采样       | ADC_CH_VDC        | 母线电压采样的 ADC 通道               |                            |
|              | ADC_CH_IU         | U 相电流采样的 ADC 通道              |                            |
|              | ADC_CH_IV         | V 相电流采样的 ADC 通道              |                            |
|              | ADC_CH_VSP        | VSP 电压采样的 ADC 通道             |                            |
|              |                   | PWM 有效电平设置:                  |                            |
|              | PWM_ACTIVE_LEVEL  | 1. PWM_ACTIVE_LEVEL_HH: 上高下高 | <br>  根据硬件设定正确的驱动电平,错误     |
|              |                   | 2. PWM_ACTIVE_LEVEL_LL: 上低下低 | 的设置可能导致硬件损坏                |
|              |                   | 3. PWM_ACTIVE_LEVEL_LH: 上低下高 | 的反直引能守以使计拟机                |
|              |                   | 4. PWM_ACTIVE_LEVEL_HL: 上高下低 |                            |
| D14484 318+0 | MTR1_PWM_UH       | U 相上管 PWM 输出引脚               | TIM4_UH_P15<br>TIM4_UH_P61 |
| PWM 引脚       | MTR1_PWM_UL       | U 相下管 PWM 输出引脚               | TIM4_UL_P14<br>TIM4_UL_P60 |
|              | MTR1_PWM_VH       | V 相上管 PWM 输出引脚               | TIM_VH_P13<br>TIM_VH_P31   |
|              | MTR1_PWM_VL       | V 相下管 PWM 输出引脚               | TIM4_VL_P11<br>TIM4_VL_P62 |
|              | MTR1_PWM_WH       | W 相上管 PWM 输出引脚               | TIM4_WH_P12<br>TIM4_WH_P30 |
|              | MTR1_PWM_WL       | W 相下管 PWM 输出引脚               | TIM4_WL_P10<br>TIM4_WL_P70 |
|              |                   | 硬件过流信号源设定:                   |                            |
|              |                   | 1. HW_OCP_SRC_IO: 使用 IO 引脚作为 |                            |
| 硬件           | HW_OCP_SRC        | 硬件过流保护信号源                    |                            |
| 过流保护         |                   | 2. HW_OCP_SRC_VC:使用内置电压比     |                            |
|              |                   | 较器作为硬件过流保护信号源                |                            |
|              | HW_OCP_CMP_UNIT   | 使用内置比较器时,使用的比较器单元            | 1:CMP1, 2:CMP2, 3:CMP3     |



| 参数                | 说明                  | 备注                              |  |
|-------------------|---------------------|---------------------------------|--|
| HW OCP CMP IVCMP  | 使用内置比较器时,硬件过流信号对应   | 0:IVCMP 0, 1:IVCMP 1, 2:IVCMP 2 |  |
| TIW_OCF_CMF_IVCMF | 的比较器输入通道(IVCMP_x)   | 0.1VCMF_0, 1.1VCMF_1, 2.1VCMF_2 |  |
| HW OCD EMB LEVEL  | 使用 IO 引脚为过流信号源时,过流时 | 0:low, 1:high                   |  |
| HW_OCP_EMB_LEVEL  | 的 IO 电平             | o.low, 1.mgm                    |  |
| HW OCP EMB IN IO  | 使用IO引脚为过流信号源时,选择EMB |                                 |  |
| TIW_OCI_LMD_IN_IO | 引脚: 0→P16, 1→P60    |                                 |  |



# 4.3 HC32F460 系列硬件配置

|          | 参数               | 说明                             | 备注                                                 |
|----------|------------------|--------------------------------|----------------------------------------------------|
|          | EN_HSRC          | 选择系统时钟源: 内部高速时钟、或外部晶振          | TRUE/ FALSE                                        |
|          | CLK_HSRC_FREQ    | 内部 HRC 时钟频率                    | 内置默认 16MHz                                         |
|          | CLK_MPLL_N_MUL   | MPLL 倍频系数                      | 20 <= N <= 480                                     |
| 系统时钟     | CLK_MPLL_P_DIV   | PMPLL 分频系数                     | 2 <= P <= 16                                       |
|          | CLK_MPLL_Q_DIV   | QMPLL 分频系数                     | 2 <= P <= 16                                       |
|          | CLK_MPLL_R_DIV   | RMPLL 分频系数                     | 2 <= P <= 16                                       |
|          | CLK_XTAL_FREQ    | 外部晶振时钟频率                       |                                                    |
|          | USE_WATCHDOG     | 使能看门狗                          | TRUE/ FALSE                                        |
| 电机控制     | WATCHDOG_MODE    | 看门狗模式                          | WATCHDOG_REST<br>WATCHDOG_IRQ                      |
| 一 円がげ工事! | SWAP_ROTOR_DIR   | 设定默认电机转向                       | TRUE/ FALSE                                        |
|          | EN_VSP_CMD       | 使能电位器调速功能                      | TRUE/ FALSE                                        |
|          | ADC_VOLT_REF     | ADC 单元的参考电压                    | 根据供电电压设定                                           |
|          | ADC_BIT_LENGTH   | ADC 采样位数                       | 12 位 ADC                                           |
| 4DC ===  | ADC_CH_VDC       | 母线电压采样的 ADC 通道                 |                                                    |
| ADC 采样   | ADC_CH_IU        | U 相电流采样的 ADC 通道                |                                                    |
|          | ADC_CH_IV        | V 相电流采样的 ADC 通道                | 单电阻采样时,忽略此配置                                       |
|          | ADC_CH_VSP       | VSP 电压采样的 ADC 通道               |                                                    |
|          |                  | PWM 有效电平设置:                    |                                                    |
|          |                  | 1. PWM_ACTIVE_LEVEL_HH: 上高下高   | 根据硬件设定正确的驱动电                                       |
|          | PWM_ACTIVE_LEVEL | 2. PWM_ACTIVE_LEVEL_LL: 上低下低   | 平,错误的设置可能导致硬件                                      |
|          |                  | 3. PWM_ACTIVE_LEVEL_LH: 上低下高   | 损坏                                                 |
|          |                  | 4. PWM_ACTIVE_LEVEL_HL: 上高下低   |                                                    |
|          | MTR1_PWM_UH      | U 相上管 PWM 输出引脚                 | TIM4_1_UH_PA08<br>TIM4_1_UH_PE09                   |
| PWM 引脚   | MTR1 PWM UL      | U 相下管 PWM 输出引脚                 | TIM4_1_UL_PA07<br>TIM4_1_UL_PB13                   |
|          |                  |                                | TIM4_1_UL_PE08<br>TIM4_1_VH_PA09                   |
|          | MTR1_PWM_VH      | V 相上管 PWM 输出引脚                 | TIM4_1_VH_PE11                                     |
|          | MTR1_PWM_VL      | V 相下管 PWM 输出引脚                 | TIM4_1_VL_PB00<br>TIM4_1_VL_PB14<br>TIM4_1_VL_PE10 |
|          | MTR1_PWM_WH      | W 相上管 PWM 输出引脚                 | TIM4_1_VE_TE10<br>TIM4_1_WH_PA10<br>TIM4_1_WH_PE13 |
|          | MTR1_PWM_WL      | W 相下管 PWM 输出引脚                 | TIM4_1_WL_PB01<br>TIM4_1_WL_PB15<br>TIM4_1_WL_PE12 |
|          |                  | 硬件过流信号源设定:                     |                                                    |
| <br>  硬件 |                  | 1. HW_OCP_SRC_IO: 使用 IO 引脚作为硬件 |                                                    |
|          | HW_OCP_SRC       | 过流保护信号源                        |                                                    |
| 过流保护<br> |                  | 2. HW_OCP_SRC_VC: 使用内置电压比较器作   |                                                    |
|          |                  | 为硬件过流保护信号源                     |                                                    |



| 参数                  | 说明                         | 备注                     |
|---------------------|----------------------------|------------------------|
| HW_OCP_CMP_UNIT     | 使用内置比较器时,使用的比较器单元          | 1:CMP1, 2:CMP2, 3:CMP3 |
| HW_OCP_CMP_INP_CH   | 比较器 INP 通道                 | 1, 2, 3, 4             |
| HW_OCP_CMP_DA_DATA  | 设置 DAC 输出电压                | 0~255                  |
| INIT_HW_OCP_CMP_INP | 比较器 INP 端口模拟功能使能           |                        |
| HW_OCP_EMB_LEVEL    | 使用 IO 引脚为过流信号源时,过流时的 IO 电平 | 0:low, 1:high          |
| INIT_HW_OCP_EMB_IO  | EMB 端口功能设置                 |                        |



# 5 驱动方式设置说明

通过对参数 USE\_DRIVER\_MODE 的设置,可选择外设的驱动方式,包含 ddl 和 reg 两种方式。

其中:

USE\_DDL\_DRIVER\_MODE 使用 ddl 方式进行驱动

USE\_REG\_DRIVER\_MODE 使用 reg 方式进行驱动

驱动方式设置说明位于 mcu\_common/muc\_include.h 中。



# 6 软件参数配置

在开始软件参数配置前,用户需要了解以下信息:

1. 电机参数: 相电阻、交直轴电感、反电动势系数、极对数

2. 运行工况:输入电压、额定功率、最大电流、转速范围等

软件配置参数位于 user\_interface.c 文件中。在了解了上述基本信息后,系统的大部分参数可依据下表中的信息来进行设置。

表 6-1 软件设置基本参数定义

| 符号               | 参数                         | 单位        | 备注                                                                                             |
|------------------|----------------------------|-----------|------------------------------------------------------------------------------------------------|
| $R_s$            | 电机的相电阻                     | Ω         | 1/2 线电阻                                                                                        |
| L <sub>d</sub>   | d 轴电感                      | mH        | 对于表贴式 PMSM,为 $\frac{1}{2}$ 线电感                                                                 |
| L <sub>q</sub>   | q 轴电感                      | mH        | 对于表贴式 PMSM,为 $\frac{1}{2}$ 线电感                                                                 |
| Р                | 极对数                        | -         | 注意区分极数(poles)和极对数(pole pairs)                                                                  |
| K <sub>e</sub>   | 反电动势系数                     | Vrms/krpm | 相线悬空状态下,当转速为 1000rpm 时,定子线电压的有效值                                                               |
| $V_{dc}$         | 额定直流母线电压                   | V         | 对于 220V 交流输入,V <sub>dc</sub> =310V                                                             |
| $V_{r}$          | 额定相电压幅值                    | V         | 对于交流输入,可估算为: $V_r = \sqrt{\frac{2}{3}} \bullet 70\% \bullet V_{ac}$ 。或假设为 $\frac{1}{3} V_{dc}$ |
| I <sub>r</sub>   | 额定相电流幅值                    | Α         | 可通过额定电压、额定功率、功率因数估算: $I_r = \frac{2}{3} \cdot \frac{P}{V_r \cdot \cos \varphi}$                |
| ı                | <b>早</b> 上公次的担由济幅 <i>传</i> | А         | 可以使电机工作在额定负载条件下,运行至最高转速,测量此时的                                                                  |
| I <sub>max</sub> | 最大允许的相电流幅值<br>             | A         | 相电流幅值                                                                                          |
| n <sub>min</sub> | 最小机械转速                     | rpm       | 建议设置,使其不低于 20%最高转速                                                                             |
| n <sub>max</sub> | 最大机械转速                     | rpm       | 电机标称的最高转速                                                                                      |
| f <sub>min</sub> | 最小电转速                      | Hz        | $f_{\min} = \frac{60 \cdot n_{\min}}{P}$                                                       |
| f <sub>max</sub> | 最大电转速                      | Hz        | $f_{\text{max}} = \frac{60 \cdot n_{\text{max}}}{P}$                                           |



# 6.1 软件参数列表

| 类别           | 参数                        | 单位        | 说明                         |
|--------------|---------------------------|-----------|----------------------------|
|              | ui_i32CarrierFreqHz       | Hz        | PWM 载波频率                   |
|              | ui_i32SysTickerFreqHz     | Hz        | system ticker 的中断频率        |
| 控制器基本参数      | ui_f32DeadTimeUs          | us        | 逆变器的死区时间                   |
|              | ui_f32MaxDutyRatio        | us        | SVPWM 中,非零矢量最小宽度           |
|              | ui_f32AdcTrigTimeUs       | us        | ADC 扫描采样的触发时间(仅双电阻有效)      |
|              | ui_f32luvwSampleRs        | Ohm       | 采样电阻阻值                     |
|              | ui_f32IuvwSampleK -       |           | 电流采样增益                     |
| <b>亚</b> 埃条粉 | ui_i32AdcCheckDelayMs     | ms        | 上电或复位后,延时开始相电流采样的偏置检测      |
| 采样参数         | ui_f32OffsetCheckTimeMs   | ms        | 相电流采样的偏置检测时间               |
|              | ui_i32IuvwRefOffset       | -         | 相电流采样的理想偏置                 |
|              | ui_i32IuvwMaxOffsetBias   | -         | 相电流采样中,最大允许的偏置误差           |
|              | ui_i32PolePairs           | -         | 电机的极对数                     |
|              | ui_f32Rs                  | Ω         | 电机的相电阻                     |
|              | ui_f32Ld                  | mH        | 电机的 d 轴电感                  |
|              | ui_f32Lq                  | mH        | 电机的 q 轴电感                  |
|              | ui f32Ka                  | Vrmc/krnm | 电机的反电动势系数,为 1000rpm 时,线电压有 |
|              | ui_f32Ke                  | Vrms/krpm | 效值                         |
|              | ui_f32BaseVoltage         | V         | 电压基值                       |
| 电机参数         | ui_f32BaseCurrent         | А         | 电流基值                       |
| 电机多数<br>     | ui_f32BaseFrequency       | Hz        | 转速基值                       |
|              | ui_i32MinSpeedRpm         | rpm       | 最小允许转速                     |
|              | ui_i32MaxSpeedRpm         | rpm       | 最大允许转速                     |
|              | ui_f32MaxNormals          | Α         | 正常运行时的最大相电流幅值              |
|              | ui_f32MaxStartIs          | Α         | 启动时的最大相电流幅值                |
|              | ui_f32MaxBrakeIs          | Α         | 刹车时的最大相电流幅值                |
|              | ui_f32AccHzPerSec         | Hz/s      | 电机加速度,注意是电频率               |
|              | ui_f32DecHzPerSec         | Hz/s      | 电机减速度,注意是电频率               |
|              | ui_f32AbnormHighVbusThold | V         | 异常高电压保护点电压                 |
|              | ui_f32AbnormLowVbusThold  | V         | 异常低电压保护点电压                 |
|              | ui_i32AbnormalVbusTimeUs  | us        | 异常电压状态的响应时间                |
| 电压异常保护       | ui_f32OverVoltageThold    | V         | 过压保护点电压                    |
|              | ui_i32OverVoltageTimeUs   | us        | 过压保护响应时间                   |
|              | ui_f32UnderVoltageThold   | V         | 低压保护点电压                    |
|              | ui_i32UnderVoltageTimeUs  | us        | 低压保护响应时间                   |
| 计签伊·拉        | ui_f32PeakOverCurrThold   | А         | 电流过流峰值                     |
| 过流保护         | ui_i32PeakOverCurrTimeUs  | us        | 电流过流响应时间                   |



| 类别       | 参数                         | 单位   | 说明                   |
|----------|----------------------------|------|----------------------|
|          | ui_i32ErrClearTimeMs       | ms   | 电流过流错误清除时间           |
|          | ui_f32FluxObsGamma         | -    | 观测器反馈增益              |
| 观测器参数    | ui_f32FluxObsPLLKp         | -    | 观测器 PLL 锁相环 Kp 系数    |
|          | ui_f32FluxObsPLLKi         | -    | 观测器 PLL 锁相环 Ki 系数    |
| 控制周期参数   | ui_f32SpdRegPeriodMs       | ms   | 速度调节周期               |
|          | ui_f32ObsStableTimeMs      | ms   | 观测器稳定时间              |
|          | ui_f32MinObserableWr       | Hz   | 观测器最小观测速度            |
|          | ui_f32AlignCurrent         | А    | 对齐电流                 |
| 预定位设定    | ui_f32_1stAlignTimeMs      | ms   | 第一次对齐时间              |
|          | ui_f32_2ndAlignTimeMs      | ms   | 第二次对齐时间              |
|          | ui_f32_3rdAlignTimeMs      | ms   | 第三次对齐时间              |
|          | ui_f32_2ndAlignFwdTheta    | deg  | 第二次对齐前进角度            |
|          | ui_f32ForceCurrentSlop     | A/s  | 拖动电流增大至最大电流的斜率       |
| 开环拖动设定   | ui_f32ForceAccRate         | Hz/s | 拖动加速度                |
|          | ui_f32MaxForceSpd          | Hz   | 最大拖动速度,注意是电频率        |
|          | ui_f32HeadWindStartCurrent | А    | 逆风启动中,转速过零时的拖动电流     |
| 逆风启动设定   | ui_f32HeadWindMaxForceSpd  | Hz   | 逆风启动中,转速过零时的最大拖动转速   |
|          | ui_f32HeadWindForceAccRate | Hz/s | 逆风启动中,转速过零时的拖动加速度    |
|          | ui_f32MinShortBrakeTimeMs  | ms   | 短接制动的最小制动时间          |
| 短接制动设定   | ui_f32MaxShortBrakeTimeMs  | ms   | 短接制动的最大制动时间          |
|          | ui_f32ShortBrakeEndIs      | А    | 短接制动完成时,判定电机停机的阈值电流  |
|          | ui_f32SpdKp                | -    | 速度 PI 的比例系数          |
| 速度环 PI   | ui_f32SpdKi                | -    | 速度 PI 的积分系数          |
|          | ui_f32MaxSpdErr            | Hz   | 速度 PI 的最大允许误差,注意是电频率 |
|          | ui_f32ldKp                 | -    | d 轴电流 PI 的比例系数       |
| d 轴电流 PI | ui_f32ldKi                 | -    | d 轴电流 PI 的积分系数       |
|          | ui_f32MaxldErr             | Α    | d 轴电流 PI 的最大允许误差     |
|          | ui_f32lqKp                 | -    | q 轴电流 PI 的比例系数       |
| q 轴电流 PI | ui_f32lqKi                 | -    | q 轴电流 PI 的积分系数       |
|          | ui_f32MaxlqErr             | Α    | q 轴电流 PI 的最大允许误差     |
|          | ui_f32SpdRegPeriodMs       | ms   | 速度环调节周期              |
| 其他       | ui_i32VdLpfFc              | Hz   | 用于电压限幅的 d 轴电压滤波器截止频率 |
|          | ui_i32VqLpfFc              | Hz   | 用于电压限幅的 q 轴电压滤波器截止频率 |



# 6.2 控制器基本参数配置

| 参数                    | 参考设定 | 设置方法                                    |
|-----------------------|------|-----------------------------------------|
|                       |      | PWM 载波频率。根据硬件特性、电机特性、噪音需求选取合适的值即可。      |
| ui_i32CarrierFreqHz   | TBD  | 1. 4~24kHz                              |
|                       |      | 2. 提高载波频率可减小电磁噪音和电流纹波,但是会增大开关损耗         |
| ui_i32SysTickerFreqHz | 2000 | 推荐使用 1~4kHz。根据应用特征,保证时间足够完成运算,精度满足需求即可。 |
|                       |      | 死区时间,根据驱动电路设置。                          |
| ui_f32DeadTimeUs      | 2.0  | 1. 减小死区时间可以有效提高电机的低速性能、减小因死区造成的电流谐波     |
|                       |      | 2. 过小的死区时间可能导致上下管直通,造成器件损坏              |
| ui_f32MaxDutyRatio    | 0.78 | SVPWM 调制中,非零矢量最大作用时间                    |
| ui_f32AdcTrigTimeUs   | 0.5  | ADC 扫描采样的触发时间                           |

### 6.3 电机参数配置

| 参数                   | 参考设定                    | 设置方法                                                                                                                                                                                                                                                                                                |
|----------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ui_i32PolePairs      | TBD                     | 根据实际值设置                                                                                                                                                                                                                                                                                             |
| ui_f32Rs             | TBD                     | 根据实际值设置                                                                                                                                                                                                                                                                                             |
| ui_f32Ld             | TBD                     | 根据实际值设置                                                                                                                                                                                                                                                                                             |
| ui_f32Lq             | TBD                     | 根据实际值设置                                                                                                                                                                                                                                                                                             |
| ui_f32Ke             | TBD                     | 根据实际值设置                                                                                                                                                                                                                                                                                             |
| ui_f32BaseVoltage    | V <sub>r</sub>          | 建议设置为额定工作条件下的相电压幅值                                                                                                                                                                                                                                                                                  |
| ui_f32BaseCurrent    | l <sub>r</sub>          | 建议设置为额定工作条件下的相电流幅值                                                                                                                                                                                                                                                                                  |
| ui_f32BaseFrequency  | 0.25 • f <sub>max</sub> | 建议设置为 1/4 最高电转速                                                                                                                                                                                                                                                                                     |
|                      |                         | 最小允许转速                                                                                                                                                                                                                                                                                              |
| ui_i32MinSpeedRpm    | n <sub>min</sub>        | 1. 在无传感器控制系统中,随着工作转速的降低,观测器的收敛可能无法保证                                                                                                                                                                                                                                                                |
|                      |                         | 2. 建议最小转速大于最高转速的 20%                                                                                                                                                                                                                                                                                |
| ui i32MaxSpeedRpm    | n <sub>max</sub>        | 速度控制模式下的最大工作转速                                                                                                                                                                                                                                                                                      |
| ui_i32Max3peeartpiii | ''max                   | 功率控制、扭矩控制模式下的默认限速值                                                                                                                                                                                                                                                                                  |
| ui_f32MaxNormals     | I <sub>max</sub>        | 正常运行时的最大相电流幅值,需要根据电机设定                                                                                                                                                                                                                                                                              |
|                      |                         | 启动时的最大相电流幅值                                                                                                                                                                                                                                                                                         |
|                      |                         | 1. 可简单设置为正常运行的最大电流                                                                                                                                                                                                                                                                                  |
| ui f32MaxStartIs     |                         | 2. 减小启动电流,可以缓解速度超调,但是加速时间会变长。如果启动失败,可                                                                                                                                                                                                                                                               |
| ui_i32i·iux3cuici3   | I <sub>max</sub>        | 以尝试增大启动电流                                                                                                                                                                                                                                                                                           |
|                      |                         | 3. 增大启动电流可以有效的增大启动力矩,提高启动的成功率,但可能带来速度                                                                                                                                                                                                                                                               |
|                      |                         | 根据实际值设置 根据实际值设置 根据实际值设置 根据实际值设置 程据实际值设置 建议设置为额定工作条件下的相电压幅值 建议设置为额定工作条件下的相电流幅值 建议设置为 1/4 最高电转速 最小允许转速 1. 在无传感器控制系统中,随着工作转速的降低,观测器的收敛可能无法保 2. 建议最小转速大于最高转速的 20% 速度控制模式下的最大工作转速 功率控制、扭矩控制模式下的默认限速值 正常运行时的最大相电流幅值,需要根据电机设定 启动时的最大相电流幅值 1. 可简单设置为正常运行的最大电流 2. 减小启动电流,可以缓解速度超调,但是加速时间会变长。如果启动失败,以尝试增大启动电流 |
| ui_f32AccHzPerSec    | TBD                     | 根据实际需求设置                                                                                                                                                                                                                                                                                            |
| ui_f32DecHzPerSec    | TBD                     | 根据实际需求设置                                                                                                                                                                                                                                                                                            |



# 6.4 观测器参数

| 参数                       | 参考设定                  | 设置方法                             |
|--------------------------|-----------------------|----------------------------------|
|                          |                       | 电机初始运动状态检测时,观测器所需的稳定时间           |
| ui f32ObsStableTimeMs    | 500                   | 1. 建议设置为 200~500ms               |
| u_132Obs3table1iiileMs   | 300                   | 2. 过小的观测器稳定时间可能导致电机顺逆风状态无法被正确检测  |
|                          |                       | 3. 当电机总是由静止状态启动,而无需检测时,可以设置此参数为零 |
| of 622Min Objects his Ma | 0.25.f                | 观测器能观测的最小转速,也用于分辨电机处于静止状态还是顺逆风状态 |
| ui_f32MinObserableWr     | 0.25•f <sub>min</sub> | 1. 大约可设置为最高转速的 2%~5%             |
| ui_f32FluxObsGamma       | -                     | 观测器反馈增益                          |
| ui_f32FluxObsPLLKp       | -                     | 观测器 PLL 锁相环 Kp 系数                |
| ui_f32FluxObsPLLKi       | -                     | 观测器 PLL 锁相环 Ki 系数                |



### 6.5 PI 参数设置

在电流环中,PI参数可以参考一阶环节进行校正。忽略扰动,电流环的闭环传递函数为:

$$\frac{i}{i^*} = \frac{\left(K_p + \frac{K_i}{S}\right) \left(\frac{\frac{1}{R}}{\frac{L}{R}s + 1}\right)}{1 + \left(K_p + \frac{K_i}{S}\right) \left(\frac{\frac{1}{R}}{\frac{L}{R}s + 1}\right)}$$

假设电流环带宽为 $f_c$ ,使用极点消除的方法校正,电流环的 PI 参数可校正为:

$$K_p = 2\pi f_c L$$



图 6-1 电流环传递函数

$$K_i = 2\pi f_c R_s$$

校正后的电流闭环传递函数为:

$$\frac{i}{i^*} = \frac{2\pi f_c}{s + 2\pi f_c}$$

|          | 参数              | 参考设定                 | 设置方法                                            |
|----------|-----------------|----------------------|-------------------------------------------------|
|          | ui_f32SpdKp     | TBD                  | 建议根据调试情况设置                                      |
| 速度环 PI   | ui_f32SpdKi     | TBD                  | 建议根据调试情况设置                                      |
|          | ui_f32MaxSpdErr | 0.1•f <sub>max</sub> | 设置后,应当检查标定后的K <sub>p</sub> e <sub>max</sub> 不溢出 |
|          | ui_f32ldKp      | $2\pi f_{max}L_d$    | $2\pi f_c L_d$                                  |
| d 轴电流 PI | ui_f32ldKi      | $2\pi f_{max}R_s$    | $2\pi f_c R_s$                                  |
|          | ui_f32MaxldErr  | I <sub>max</sub>     | 建议设置为最大运行电流                                     |
|          | ui_f32lqKp      | $2\pi f_{max}L_q$    | $2\pi f_c L_q$                                  |
| q 轴电流 PI | ui_f32lqKi      | $2\pi f_{max}R_s$    | $2\pi f_c R_s$                                  |
|          | ui_f32MaxlqErr  | I <sub>max</sub>     | 建议设置为最大运行电流                                     |



### 6.6 启动参数配置

本系统支持静止启动、顺风启动、逆风启动三种启动工况,启动流程参考。



图 6-2 电机启动流程

### 6.6.1 静止启动的配置

| 参数                      | 参考设定 | 设置方法                              |  |
|-------------------------|------|-----------------------------------|--|
|                         |      | 转子预定位的最大电流                        |  |
| ui_f32AlignCurrent      | TBD  | 1. 若无预定位过程,此电流将作为拖动、或闭环启动的初始电流    |  |
|                         |      | 2. 建议 ≤I <sub>max</sub>           |  |
| ui_f32_1stAlignTimeMs   | TBD  | 第一阶段预定位时间。该时间段内,电流将从零线性增大到最大预定位电流 |  |
| ui_f32_2ndAlignTimeMs   | TBD  | 第二阶段预定位时间。该时间段内,电流将保持为最大预定位电流     |  |
| ui_f32_3rdAlignTimeMs   | TBD  | 第三阶段预定位时间。该时间段内,电流将保持为最大预定位电流     |  |
| ui_f32_2ndAlignFwdTheta | TBD  | 第二阶段定位时间内,电机向前前进角度                |  |
| ui_f32ForceCurrentSlop  | TBD  | 开环拖动过程中,电流的上升斜率                   |  |
|                         |      | 开环拖动的加速度                          |  |
| ui_f32ForceAccRate      | TBD  | 1. 此拖动加速度不会显著的体现在拖动过程中            |  |
| 2. 豆                    |      | 2. 可快速设置此加速度为电机的最大加速度             |  |
|                         |      | 闭环转速。当观测器的观测转速大于闭环转速时,系统将逐步切入观测器闭 |  |
| ui_f32MaxForceSpd       | TBD  | 环状态                               |  |
|                         |      | 系统先开环拖动电机,超过此转速后进入闭环              |  |





图 6-3 启动过程电流参数定义

#### 6.6.2 逆风启动的配置

| 参数                           | 参考设定 | 设置方法                             |
|------------------------------|------|----------------------------------|
| ui_f32HeadWindStartCurrent   | TBD  | 逆风启动中,当转速过零时的拖动电流                |
| ui f32HeadWindMaxForceSpd    | TBD  | 逆风启动时,转速过零时的最大拖动转速               |
| ui_i32iieauwiiiuMaxi orcespu | 100  | 1. 不建议使用过大的最大拖动转速                |
| ui f22HaadWindEarcaAccBata   | TBD  | 逆风启动时,转速过零时的拖动加速度                |
| ui_f32HeadWindForceAccRate   | טפו  | 1. 需要根据拖动电流、转动惯量和实际调试来确定         |
| ui f22MinChartPrakaTimaMa    | TBD  | 短接制动的最小制动时间                      |
| ui_f32MinShortBrakeTimeMs    |      | 1. 设置此时间,以保证下管闭合后,电机可建立有效电流以检测转速 |
|                              | TBD  | 短接制动的最大制动时间                      |
| ui_f32MaxShortBrakeTimeMs    |      | 1. 设置此时间,以保证最大逆风转速条件下,可有效的刹停电机   |
|                              |      | 2. 若超过此时间电机仍未停止,将尝试拖动电机启动        |
|                              | TBD  | 短接制动完成时的阈值电流                     |
| ui f32ShortBrakeEndIs        |      | 1. 当相电流幅值小于此电流时,系统判定电机已经停止       |
| ui_i323ii0itbiakeElluiS      |      | 2. 应设置此阈值电流大于零,否则无法检测到电机停机       |
|                              |      | 3. 可通过测试电机即将停机时的相电流来设置           |



# 6.7 保护参数配置

### 6.7.1 母线电压保护参数配置

| 参数                             | 参考设定                   | 设置方法                            |
|--------------------------------|------------------------|---------------------------------|
| ui f32AbnormHighVbus           | 1.30•V <sub>dc</sub>   | 异常高电压的保护点                       |
| ui_i32Abii0iiiiiigiiVbus       | 1.50 V <sub>dc</sub>   | 1. 需根据硬件、电机的耐压设定                |
| ui f32AbnormLowVbus            | 0.60-1/                | 异常低电压的保护点                       |
| ui_i32Abii0iiiiLowvbuS         | 0.60•V <sub>dc</sub>   | 1. 需根据硬件能可靠工作的电压点来设定            |
| ui_f32AbnormalVbusTimeUs       | 500                    | 持续发生异常高电压、或异常低电压,且超过设定时间后,进入保护  |
| ui f320verVoltageProtThold     | 1.25•V <sub>dc</sub>   | 过压的保护点,一般设定此点电压低于异常高电压,且检测时间略大于 |
| ui_1320vervoitager10t1110lu    |                        | 异常电压检测时间                        |
| ui_f320verVoltageTimeUs        | 1000                   | 持续发生过压,且超过设定时间后,进入保护            |
| ui f32UnderVoltageProtThold    | 0.65 • V <sub>dc</sub> | 欠压的保护点,一般设定此点电压高于异常低电压,且检测时间略大于 |
| ui_i320iluei voitageFlotifiolu |                        | 异常电压检测时间                        |
| ui_f32UnderVoltageTimeUs       | 1000                   | 持续发生欠压,且超过设定时间后,进入保护            |

### 6.7.2 过流保护参数配置

| 参数                        | 参考设定                   | 设置方法                            |
|---------------------------|------------------------|---------------------------------|
| ui_f32PeakOverCurrThold   | 1.5 • I <sub>max</sub> | 峰值过流保护点,当相电流幅值持续大于此阈值后,进入峰值过流保护 |
| ui_f32PeakOverCurrTimeUs  | 500                    | 峰值过流保护响应时间                      |
| ui_f32PeakOcpErrClrTimeMs | TBD                    | 峰值过流发生后,当电流恢复正常且超过设定时间后,自动清除故障  |



### 7 故障处理

系统中,故障码以无符号 32 位数据存储(g\_stcMotorRunPara.u32FaultCode),每种故障占用一个比特位。当发生多个故障时,故障码为"加"(按位"或")的关系。例如,当同时发生峰值软件过流和硬件过流故障时,故障码为:

0x00000002 + 0x00000008 = 0x00000000A

发生故障后,系统根据故障类型采用不同应对策略:

- 1. 延时后自动清除
- 2. 故障消失后自动清除
- 3. 发生故障后,重新上电和复位后清除

用户可以根据实际需求,增加故障应对策略以符合产品需求,例如强制清除故障并尝试重启。本章列举 了系统中的故障代码及其含义,并分析了可能的原因和解决对策。

### 7.1 故障列表

| 故障名            | 故障码        | 故障说明            | 自动清除 |
|----------------|------------|-----------------|------|
| ERR_NONE       | 0x00000000 | 无故障             | -    |
| ERR_AD_OFFSET  | 0x0000001  | 相电流采样的偏置错误      | N    |
| ERR_OC_PEAK    | 0x00000002 | 峰值过流保护          | Υ    |
| ERR_OC_RMS     | 0x00000004 | 持续过流保护          | Υ    |
| ERR_OC_HW      | 0x00000008 | 硬件过流保护          | N    |
| ERR_VDC_OV     | 0x00000010 | 过压保护            | Υ    |
| ERR_VDC_UV     | 0x00000020 | 欠压保护            | Υ    |
| ERR_VDC_ABNORM | 0x00000040 | 母线电压异常(过高、过低)   | Υ    |
| ERR_MOTOR_OP   | 0x00000080 | 未启用。电机过功率       | -    |
| ERR_MOTOR_OT   | 0x00000100 | 未启用。电机过热        | -    |
| ERR_IPM_OT     | 0x00000200 | IPM 模块过热        | -    |
| ERR_LOCK_ROTOR | 0x00000400 | 堵转保护            | Υ    |
| ERR_LACK_PHASE | 0x00000800 | 缺相保护            | N    |
| ERR_COMM       | 0x00001000 | 未启用。通信故障        | -    |
| ERR_SWWD_INT   | 0x00002000 | 未启用。发生软件看门狗中断事件 | -    |
| ERR_HWWD_INT   | 0x00004000 | 未启用。发生硬件看门狗中断事件 | -    |
| ERR_UNDEF_INT  | 0x00008000 | 发生未定义的中断事件      | N    |
| ERR_DMA_FAIL   | 0x00010000 | ADC 采样时序故障      | N    |
| ERR_SYS_CLK    | 0x00020000 | 系统时钟配置错误 N      |      |
| ERR_IPD_ERR    | 0x00040000 | 初始位置检测功能故障      | N    |



# 7.2 ADC 偏置错误(ERR\_AD\_OFFSET)

在电机控制系统中,系统默认的相电流采样偏置为 $\frac{V_{cc}}{2}$ ,对于 12 位 ADC,其参考偏置为 ui\_i32luvwRefOffset = 2048。系统在上电自检时,会自动检测相电流采样偏置,当检测到的偏置超出 容限(ui\_i32luvwRefOffset  $\pm$  ui\_i32luvwMaxOffsetBias)时,将产生 ADC 采样偏置错误。

| 故障名           | 故障码        | 原因                              | 对策                                           |
|---------------|------------|---------------------------------|----------------------------------------------|
|               | 0x00000001 | <br>  硬件采样电路故障                  | 检查电流采样引脚输入是否为 <sup>V</sup> <sub>C</sub> ,检查电 |
|               |            | ZITANI GARANT                   | 路的连通性、器件是否正确焊接                               |
|               |            | 硬件电路的采样偏置不是 <sup>Vcc</sup><br>2 | 根据采样电路计算偏置,并根据设计偏置                           |
| ERR_AD_OFFSET |            |                                 | 修改 ui_i32luvwRefOffset                       |
|               |            | 硬件采样电路器件一致性差,导致实                | 增大偏置的允许公差                                    |
|               |            | 际的偏置较大                          | ui_i32IuvwMaxOffsetBias                      |
|               |            | ADC 通道配置错误                      | 根据硬件电路配置采样通道                                 |

### 7.3 软件峰值过流故障(ERR\_OC\_PEAK)

| 故障名         | 故障码        | 原因                  | 对策                           |
|-------------|------------|---------------------|------------------------------|
|             |            | 过流保护点太低             | 根据最大运行电流,设置合适的保护点            |
|             |            |                     | 1. 在自举电容的充电回路中增加限流电阻         |
|             |            | 自举电容充电瞬间造成过流        | 2. 设置自举电容充电的脉宽曲线,以更缓慢的方式充    |
|             |            |                     | 电                            |
|             |            | 电流采样参数设置错误          | 检查采样电阻、放大倍数等参数,根据实际电路调整      |
|             |            |                     | 1. 电流环带宽过大,产生严重的电流毛刺。通过电流    |
|             | 0x00000002 |                     | 波形可看到较大幅值的毛刺                 |
|             |            | <br>  电流环 PI 参数设置不当 | 2. 电流环带宽过小,造成电流 PI 超调。从电流波形  |
| ERR_OC_PEAK |            | 电加州 FI 参数反直作当       | 可以看到电流曲线光滑,但无法跟踪参考电流         |
|             |            |                     | 3. 电流环 PI 调节器的允许最大误差太小。设置最大  |
|             |            |                     | 允许误差为最大电流即可                  |
|             |            | 运转中出现电机缺相           | 当电机在运行状态下,突然发生缺一相时可能触发过      |
|             |            |                     | 流保护                          |
|             |            |                     | 1. 检查电机的相线是否连接正常             |
|             |            |                     | 2. 检查逆变器电路中的 MOS、桥驱等是否工作正常   |
|             |            | PWM 极性配置错误          | 根据桥驱、或 IPM 的驱动逻辑,配置 PWM 输出极性 |
|             |            |                     | (PWM_ACTIVE_LEVEL)           |



# 7.4 硬件过流故障(ERR\_OC\_HW)

| 故障名       | 故障码        | 原因                | 对策                 |
|-----------|------------|-------------------|--------------------|
|           | 0x00000008 | 过流保护点太低、过流保护信号噪音大 | 根据运行电流,调整保护电路参数,如: |
| EDD OC HW |            |                   | 1. 调整保护点电压         |
| ERR_OC_HW |            |                   | 2. 调整过流保护信号的硬件滤波参数 |
|           |            | 参考软件峰值过流故障的原因与对策  |                    |

# 7.5 过压故障(ERR\_VDC\_OV、ERR\_VDC\_ABNORM)

| 故障名                          | 故障码                      | 原因                    | 对策                                                                                                                           |
|------------------------------|--------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
|                              | 0x00000010<br>0x00000040 | 电压采样的分压系数与硬件不 一致      | 检查硬件电路,并对应调整分压系数                                                                                                             |
| ERR_VDC_OV<br>ERR_VDC_ABNORM |                          | 顺逆风启动时,初始状态检测<br>发生过压 | <ol> <li>顺逆风转速过高,尝试重新启动</li> <li>增大电流环 PI 的带宽</li> <li>增大观测器的 BEMF 滤波器带宽</li> </ol>                                          |
|                              |                          | FOC 刹车时,造成的反向充电<br>过压 | <ol> <li>减小刹车电流(<u>ui_f32MaxBrakels</u>)</li> <li>减小刹车电流斜率(ui_f32BrakelsSlop)</li> <li>增大刹车电压裕度(ui_f32VbusMargin)</li> </ol> |

# 7.6 欠压故障(ERR\_VDC\_UV、ERR\_VDC\_ABNORM)

| 故障名                          | 故障码                      | 原因              | 对策                   |
|------------------------------|--------------------------|-----------------|----------------------|
|                              | 0x00000020<br>0x00000040 | 电压采样的分压系数与硬件不一致 | 检查硬件电路,并对应调整分压系数     |
| ERR_VDC_UV<br>ERR_VDC_ABNORM |                          | 母线电容与电机功率不匹配,造成 | 横上风经电流 以常小风经电压经速     |
|                              |                          | 母线电压纹波过大        | 增大母线电容,以减小母线电压纹波<br> |

# 7.7 采样时序错误(ERR\_DMA\_FAIL)

| 故障名          | 故障码        | 原因            | 对策                                  |
|--------------|------------|---------------|-------------------------------------|
|              | 0×00010000 | MCU 运行后,设置了断点 | 取消断点,重新上电或复位后再启动                    |
|              |            | 有更高优先级的中断发生,导 | 检查是否发生了其它高优先级的中断,并合理安排中             |
| ERR DMA FAIL |            | 致采样数据无法处理     | 断优先级和中断执行代码                         |
| LKK_DMA_IAIL |            | PWM 中断处理时间不够  | 降低载频、尽量不在 PWM 中断中增加用户代码             |
|              |            | ADC 采样的配置错误   | 参考芯片用户手册,检查 ADC 采样配置代码和 ADC         |
|              |            |               | 数据转换代码[InitMcu_Adc(), Adc_Sample()] |



# 8 附件



图 8-1 功率板原理图





图 8-2 HC32F460 控制卡原理图





图 8-3 HC32M120 控制卡原理图



### 版本修订记录

| 版本号     | 修订日期       | 修订内容                                              |
|---------|------------|---------------------------------------------------|
| Rev1.0  | 2023/02/27 | 初版发布。                                             |
| Rev1.01 | 2023/04/13 | 1) 2.1.1 硬件环境章节,仿真器由 J-Link V8 更改为 J-Link V8(隔离)。 |
|         |            | 2) 3.3 编译和下载调试章节,表 3-1 中启动指令变量由 g_stcMotorSpdCtr  |
|         |            | l.i32CmdRpm 更改为 g_stcMotorCmdSpdSet.i32CmdRpm。    |

若您在购买与使用过程中有任何意见或建议,请随时与我们联系。

邮箱: support@xhsc.com.cn 电话: 021-68667000-7355

地址: 上海市浦东新区中科路 1867号 A座 10层

