$12n_{0270} \ (K12n_{0270})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 159u^{20} - 349u^{19} + \dots + 1024b + 97, \ 65u^{20} - 195u^{19} + \dots + 2048a + 2111, \ u^{21} - 2u^{20} + \dots + 5u^2 - 1 \rangle \\ I_2^u &= \langle 2u^7 + 5u^6 + 11u^5 + 22u^4 + 25u^3 + 24u^2 + 7b + 15u + 1, \\ &- 19u^7 - 36u^6 - 87u^5 - 172u^4 - 186u^3 - 164u^2 + 14a - 133u - 3, \\ u^8 + 2u^7 + 5u^6 + 10u^5 + 12u^4 + 12u^3 + 11u^2 + 3u + 2 \rangle \\ I_3^u &= \langle -a^2 + 2au + b + 2a - 2u - 1, \ a^4 - 3a^3u - 4a^3 + 9a^2u + 5a^2 - 11au - 2a + 5u + 1, \ u^2 + 1 \rangle \\ I_4^u &= \langle 3642u^{11} + 10715u^{10} + \dots + 16346b + 454, \ -9302u^{11} + 5482u^{10} + \dots + 277882a - 125487, \\ u^{12} + 3u^{11} + 11u^{10} + 23u^9 + 46u^8 + 68u^7 + 94u^6 + 99u^5 + 97u^4 + 76u^3 + 52u^2 + 26u + 17 \rangle \\ I_5^u &= \langle b + 2a + 2, \ 4a^2 + 10a + 7, \ u + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 159u^{20} - 349u^{19} + \dots + 1024b + 97, \ 65u^{20} - 195u^{19} + \dots + 2048a + 2111, \ u^{21} - 2u^{20} + \dots + 5u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0317383u^{20} + 0.0952148u^{19} + \dots + 6.03076u - 1.03076 \\ -0.155273u^{20} + 0.340820u^{19} + \dots + 0.219727u - 0.0947266 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.395996u^{20} + 0.992676u^{19} + \dots + 0.588379u + 0.591309 \\ 0.114258u^{20} - 0.327148u^{19} + \dots + 0.583008u - 0.442383 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.340332u^{20} + 0.810059u^{19} + \dots + 1.36279u + 0.301270 \\ 0.106445u^{20} - 0.0537109u^{19} + \dots + 0.825195u - 0.684570 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0312500u^{20} - 0.0312500u^{19} + \dots + 0.968750u - 0.0312500 \\ 0.114258u^{20} - 0.327148u^{19} + \dots + 1.17139u + 0.148926 \\ 0.114258u^{20} - 0.327148u^{19} + \dots + 0.583008u - 0.442383 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0312500u^{20} - 0.0937500u^{19} + \dots - 0.0312500u + 0.0312500 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0312500u^{20} - 0.0312500u^{19} + \dots + 0.968750u - 0.0312500 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{9279}{4096}u^{20} - \frac{13821}{4096}u^{19} + \dots + \frac{13503}{4096}u + \frac{26625}{4096}u^{19}$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{21} + 8u^{20} + \dots + 145u - 16$
c_2, c_5	$u^{21} + 2u^{20} + \dots + 9u - 4$
c_3, c_9	$u^{21} + 3u^{20} + \dots - 8u - 32$
c_6, c_7, c_8 c_{10}, c_{11}	$u^{21} - 2u^{20} + \dots + 5u^2 - 1$
c_{12}	$u^{21} + 26u^{20} + \dots + 10u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{21} + 12y^{20} + \dots + 51681y - 256$
c_2, c_5	$y^{21} + 8y^{20} + \dots + 145y - 16$
c_3, c_9	$y^{21} - 5y^{20} + \dots - 4928y - 1024$
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$y^{21} + 26y^{20} + \dots + 10y - 1$
c_{12}	$y^{21} - 66y^{20} + \dots + 126y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.458142 + 0.833548I		
a = 0.677568 - 0.339414I	4.17175 - 1.61049I	8.87690 - 1.72492I
b = -0.773041 + 0.928850I		
u = 0.458142 - 0.833548I		
a = 0.677568 + 0.339414I	4.17175 + 1.61049I	8.87690 + 1.72492I
b = -0.773041 - 0.928850I		
u = 0.334381 + 0.773560I		
a = 1.290350 - 0.376146I	4.35172 + 4.34513I	10.07573 - 8.03255I
b = -0.805389 - 0.873526I		
u = 0.334381 - 0.773560I		
a = 1.290350 + 0.376146I	4.35172 - 4.34513I	10.07573 + 8.03255I
b = -0.805389 + 0.873526I		
u = 1.216790 + 0.212353I		
a = 1.211710 + 0.267891I	1.30694 + 1.63824I	-1.29573 + 4.22399I
b = -0.377864 - 0.854536I		
u = 1.216790 - 0.212353I		
a = 1.211710 - 0.267891I	1.30694 - 1.63824I	-1.29573 - 4.22399I
b = -0.377864 + 0.854536I		
u = 0.097170 + 0.403788I		
a = 0.57317 + 1.41705I	-1.22812 + 1.66803I	2.33962 - 5.96953I
b = 0.207107 + 0.829659I		
u = 0.097170 - 0.403788I		
a = 0.57317 - 1.41705I	-1.22812 - 1.66803I	2.33962 + 5.96953I
b = 0.207107 - 0.829659I		
u = 0.381501		
a = 0.337636	0.708376	14.4470
b = 0.264712		
u = -0.02913 + 1.62816I		
a = -0.961297 + 0.342959I	-10.09800 - 1.80625I	3.06957 + 1.66115I
b = 1.038150 - 0.513588I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.02913 - 1.62816I		
a = -0.961297 - 0.342959I	-10.09800 + 1.80625I	3.06957 - 1.66115I
b = 1.038150 + 0.513588I		
u = -0.38269 + 1.61174I		
a = 0.856171 + 0.551613I	-10.43370 - 7.89166I	3.87913 + 3.10640I
b = -1.005420 - 0.467651I		
u = -0.38269 - 1.61174I		
a = 0.856171 - 0.551613I	-10.43370 + 7.89166I	3.87913 - 3.10640I
b = -1.005420 + 0.467651I		
u = 0.10115 + 1.67309I		
a = -1.266450 + 0.124462I	-12.24280 + 4.61265I	1.46303 - 2.55091I
b = 0.725547 + 1.193790I		
u = 0.10115 - 1.67309I		
a = -1.266450 - 0.124462I	-12.24280 - 4.61265I	1.46303 + 2.55091I
b = 0.725547 - 1.193790I		
u = -0.49023 + 1.63779I		
a = 1.53317 + 0.26133I	-12.6524 - 14.0619I	2.23345 + 6.95334I
b = -0.694270 + 1.177460I		
u = -0.49023 - 1.63779I		
a = 1.53317 - 0.26133I	-12.6524 + 14.0619I	2.23345 - 6.95334I
b = -0.694270 - 1.177460I		
u = -0.265665 + 0.100260I		
a = -3.22189 + 1.30088I	0.38970 - 2.24826I	1.51589 + 3.88242I
b = 0.565254 - 0.857227I		
u = -0.265665 - 0.100260I		
a = -3.22189 - 1.30088I	0.38970 + 2.24826I	1.51589 - 3.88242I
b = 0.565254 + 0.857227I		
u = -0.23068 + 1.77893I		
a = -0.111321 - 0.270180I	-17.3796 - 4.8017I	-0.50589 + 2.16688I
b = -0.012425 - 1.345530I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.23068 - 1.77893I		
a = -0.111321 + 0.270180I	-17.3796 + 4.8017I	-0.50589 - 2.16688I
b = -0.012425 + 1.345530I		

II.
$$I_2^u = \langle 2u^7 + 5u^6 + \dots + 7b + 1, -19u^7 - 36u^6 + \dots + 14a - 3, u^8 + 2u^7 + \dots + 3u + 2 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{19}{14}u^{7} + \frac{18}{7}u^{6} + \dots + \frac{19}{2}u + \frac{3}{14} \\ -\frac{2}{7}u^{7} - \frac{5}{7}u^{6} + \dots - \frac{15}{7}u - \frac{1}{7} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.785714u^{7} + 1.71429u^{6} + \dots + 8.64286u + 3.64286 \\ -\frac{2}{7}u^{7} - \frac{4}{7}u^{6} + \dots - \frac{16}{7}u - \frac{5}{7} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{7} + \frac{16}{7}u^{6} + \dots + \frac{75}{7}u + \frac{20}{7} \\ -\frac{2}{7}u^{7} - \frac{6}{7}u^{6} + \dots - 3u - \frac{4}{7} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.785714u^{7} + 1.57143u^{6} + \dots + 7.78571u + 2.21429 \\ -\frac{2}{7}u^{7} - \frac{4}{7}u^{6} + \dots + \frac{89}{14}u + \frac{41}{14} \\ -\frac{2}{7}u^{7} - \frac{4}{7}u^{6} + \dots - \frac{16}{7}u - \frac{5}{7} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{8}{7}u^{6} + \dots + \frac{89}{14}u + \frac{41}{14} \\ -\frac{2}{7}u^{7} - \frac{4}{7}u^{6} + \dots - \frac{9}{14}u + \frac{31}{14} \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{5}{14}u^{7} - \frac{3}{7}u^{6} + \dots - \frac{9}{14}u + \frac{31}{14} \\ -\frac{1}{7}u^{6} - \frac{2}{7}u^{4} + \dots + \frac{1}{7}u - \frac{3}{7} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.785714u^{7} + 1.57143u^{6} + \dots + 7.78571u + 2.21429 \\ -\frac{3}{7}u^{7} - \frac{4}{7}u^{6} + \dots - \frac{5}{7}u - \frac{5}{7} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{8}{7}u^7 + \frac{20}{7}u^6 + \frac{44}{7}u^5 + \frac{88}{7}u^4 + \frac{128}{7}u^3 + \frac{96}{7}u^2 + \frac{88}{7}u + \frac{74}{7}u^3 + \frac{96}{7}u^2 + \frac{88}{7}u^2 + \frac{88}{7}u^$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^4 + 2u^3 + 3u^2 + u + 1)^2$
c_2, c_5	$(u^4 + u^2 - u + 1)^2$
c_{3}, c_{9}	$(u^4 + u^2 + u + 1)^2$
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$u^8 + 2u^7 + 5u^6 + 10u^5 + 12u^4 + 12u^3 + 11u^2 + 3u + 2$
c_{12}	$u^8 + 6u^7 + 9u^6 - 6u^5 + 6u^4 + 80u^3 + 97u^2 + 35u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^4 + 2y^3 + 7y^2 + 5y + 1)^2$
c_2, c_3, c_5 c_9	$(y^4 + 2y^3 + 3y^2 + y + 1)^2$
c_6, c_7, c_8 c_{10}, c_{11}	$y^8 + 6y^7 + 9y^6 - 6y^5 + 6y^4 + 80y^3 + 97y^2 + 35y + 4$
c_{12}	$y^8 - 18y^7 + \dots - 449y + 16$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.003353 + 1.153470I		
a = 0.283780 - 0.486090I	-2.30977 + 1.39709I	7.77019 - 3.86736I
b = 0.547424 + 0.585652I		
u = 0.003353 - 1.153470I		
a = 0.283780 + 0.486090I	-2.30977 - 1.39709I	7.77019 + 3.86736I
b = 0.547424 - 0.585652I		
u = -1.281480 + 0.482756I		
a = 1.44914 - 0.47651I	-5.91490 - 7.64338I	2.22981 + 6.51087I
b = -0.547424 + 1.120870I		
u = -1.281480 - 0.482756I		
a = 1.44914 + 0.47651I	-5.91490 + 7.64338I	2.22981 - 6.51087I
b = -0.547424 - 1.120870I		
u = -0.046668 + 0.512275I		
a = -2.11815 + 3.03669I	-2.30977 - 1.39709I	7.77019 + 3.86736I
b = 0.547424 - 0.585652I		
u = -0.046668 - 0.512275I		
a = -2.11815 - 3.03669I	-2.30977 + 1.39709I	7.77019 - 3.86736I
b = 0.547424 + 0.585652I		
u = 0.32480 + 1.70994I		
a = 1.135230 - 0.382122I	-5.91490 + 7.64338I	2.22981 - 6.51087I
b = -0.547424 - 1.120870I		
u = 0.32480 - 1.70994I		
a = 1.135230 + 0.382122I	-5.91490 - 7.64338I	2.22981 + 6.51087I
b = -0.547424 + 1.120870I		

III. $I_3^u = \langle -a^2 + 2au + b + 2a - 2u - 1, -3a^3u + 9a^2u + \dots - 2a + 1, u^2 + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{2} - 2au - 2a + 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{3} - 2a^{2}u - 2a^{2} + 2au + a + 1 \\ -a^{3}u + 3a^{2}u - 3a^{2} - au + 6a - u - 4 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -a^{3}u + 4a^{2}u - 2a^{2} - 5au + 6a + 3u - 4 \\ a^{3}u - 3a^{2}u + 4a^{2} - 8a + 2u + 6 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ au - u + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{3}u + a^{3} + a^{2}u - 5a^{2} + au + 7a - u - 3 \\ -a^{3}u + 3a^{2}u - 3a^{2} - au + 6a - u - 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ -a + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ au + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4a^3u 12a^2u + 8a^2 + 12au 16a 4u + 12$

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$
c_2	$(u^4 - u^3 + u^2 + 1)^2$
c_3,c_9	$u^8 - 5u^6 + 7u^4 - 2u^2 + 1$
<i>C</i> ₅	$(u^4 + u^3 + u^2 + 1)^2$
c_6, c_7, c_8 c_{10}, c_{11}	$(u^2+1)^4$
c_{12}	$(u+1)^8$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$
c_2, c_5	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
c_{3}, c_{9}	$(y^4 - 5y^3 + 7y^2 - 2y + 1)^2$
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$(y+1)^8$
c_{12}	$(y-1)^8$

Solutions to I_3^u	$\int \sqrt{-1}(\operatorname{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = 0.674360 - 0.399232I	3.50087 - 3.16396I	3.82674 + 2.56480I
b = -0.851808 + 0.911292I		
u = 1.000000I		
a = 1.325640 - 0.399232I	3.50087 + 3.16396I	3.82674 - 2.56480I
b = -0.851808 - 0.911292I		
u = 1.000000I		
a = 0.59947 + 1.89923I	-3.50087 - 1.41510I	0.17326 + 4.90874I
b = 0.351808 - 0.720342I		
u = 1.000000I		
a = 1.40053 + 1.89923I	-3.50087 + 1.41510I	0.17326 - 4.90874I
b = 0.351808 + 0.720342I		
u = -1.000000I		
a = 0.674360 + 0.399232I	3.50087 + 3.16396I	3.82674 - 2.56480I
b = -0.851808 - 0.911292I		
u = -1.000000I		
a = 1.325640 + 0.399232I	3.50087 - 3.16396I	3.82674 + 2.56480I
b = -0.851808 + 0.911292I		
u = -1.000000I		
a = 0.59947 - 1.89923I	-3.50087 + 1.41510I	0.17326 - 4.90874I
b = 0.351808 + 0.720342I		
u = -1.000000I		
a = 1.40053 - 1.89923I	-3.50087 - 1.41510I	0.17326 + 4.90874I
b = 0.351808 - 0.720342I		

$$\begin{aligned} \text{IV. } I_4^u &= \langle 3642u^{11} + 10715u^{10} + \dots + 16346b + 454, \ -9302u^{11} + 5482u^{10} + \\ & \dots + 277882a - 125487, \ u^{12} + 3u^{11} + \dots + 26u + 17 \rangle \end{aligned}$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0334746u^{11} - 0.0197278u^{10} + \dots + 2.00276u + 0.451584 \\ -0.222807u^{11} - 0.655512u^{10} + \dots - 1.99700u - 0.0277744 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.128213u^{11} + 0.278557u^{10} + \dots - 4.21560u - 3.08761 \\ -0.0231249u^{11} - 0.186651u^{10} + \dots - 0.439557u - 0.366145 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0932842u^{11} + 0.0428527u^{10} + \dots - 4.81556u - 3.27790 \\ -0.0855255u^{11} - 0.333170u^{10} + \dots - 1.36376u - 0.854154 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.125996u^{11} + 0.290076u^{10} + \dots + 3.62135u + 1.59297 \\ -0.0671724u^{11} - 0.113606u^{10} + \dots - 0.562523u - 0.0635630 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.105088u^{11} + 0.0919059u^{10} + \dots - 4.65516u - 3.45376 \\ -0.0231249u^{11} - 0.186651u^{10} + \dots - 0.439557u - 0.366145 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.00373900u^{11} + 0.0559554u^{10} + \dots + 0.431964u + 1.46531 \\ 0.0879114u^{11} + 0.316714u^{10} + \dots + 1.68292u + 0.141931 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.125996u^{11} + 0.290076u^{10} + \dots + 3.62135u + 1.59297 \\ -0.0141931u^{11} - 0.0431298u^{10} + \dots + 0.706289u - 1.55806 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{2796}{8173}u^{11} + \frac{10892}{8173}u^{10} + \frac{36956}{8173}u^9 + \frac{76592}{8173}u^8 + \frac{143424}{8173}u^7 + \frac{188928}{8173}u^6 + \frac{226188}{8173}u^5 + \frac{193280}{8173}u^4 + \frac{144560}{8173}u^3 + \frac{67608}{8173}u^2 + \frac{44584}{8173}u + \frac{44270}{8173}$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)^2$
c_2, c_5	$(u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1)^2$
c_{3}, c_{9}	$(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)^2$
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$u^{12} + 3u^{11} + \dots + 26u + 17$
c_{12}	$u^{12} + 13u^{11} + \dots + 1092u + 289$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)^2$
c_2, c_3, c_5 c_9	$(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)^2$
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$y^{12} + 13y^{11} + \dots + 1092y + 289$
c_{12}	$y^{12} - 19y^{11} + \dots - 7564y + 83521$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.942355 + 0.499238I		
a = 1.51895 + 0.47306I	-3.55561 - 2.82812I	5.50976 + 2.97945I
b = -0.713912 - 0.305839I		
u = -0.942355 - 0.499238I		
a = 1.51895 - 0.47306I	-3.55561 + 2.82812I	5.50976 - 2.97945I
b = -0.713912 + 0.305839I		
u = 0.343993 + 0.784320I		
a = -3.38338 - 0.25597I	-3.55561 + 2.82812I	5.50976 - 2.97945I
b = 0.498832 + 1.001300I		
u = 0.343993 - 0.784320I		
a = -3.38338 + 0.25597I	-3.55561 - 2.82812I	5.50976 + 2.97945I
b = 0.498832 - 1.001300I		
u = 0.072139 + 1.221000I		
a = -0.36108 - 1.66788I	-3.55561 - 2.82812I	5.50976 + 2.97945I
b = 0.498832 - 1.001300I		
u = 0.072139 - 1.221000I		
a = -0.36108 + 1.66788I	-3.55561 + 2.82812I	5.50976 - 2.97945I
b = 0.498832 + 1.001300I		
u = -0.98583 + 1.05129I		
a = 0.337035 + 0.395158I	-7.69319	-6 - 1.019511 + 0.10I
b = -0.284920 - 1.115140I		
u = -0.98583 - 1.05129I		
a = 0.337035 - 0.395158I	-7.69319	-6 - 1.019511 + 0.10I
b = -0.284920 + 1.115140I		
u = 0.18858 + 1.49820I		
a = 0.690257 - 0.163478I	-3.55561 + 2.82812I	5.50976 - 2.97945I
b = -0.713912 + 0.305839I		
u = 0.18858 - 1.49820I		
a = 0.690257 + 0.163478I	-3.55561 - 2.82812I	5.50976 + 2.97945I
b = -0.713912 - 0.305839I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.17653 + 1.68674I		
a = 0.786457 + 0.514816I	-7.69319	-6 - 1.019511 + 0.10I
b = -0.284920 + 1.115140I		
u = -0.17653 - 1.68674I		
a = 0.786457 - 0.514816I	-7.69319	-6 - 1.019511 + 0.10I
b = -0.284920 - 1.115140I		

V.
$$I_5^u = \langle b+2a+2,\ 4a^2+10a+7,\ u+1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ -2a - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 3a + \frac{9}{2} \\ -2a - 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a + \frac{3}{2} \\ -2a - 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a + \frac{3}{2} \\ -2a - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{31}{2}a + \frac{59}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$u^2 - u + 1$
c_2	$u^2 + u + 1$
c_3, c_9	u^2
c_6, c_7, c_8	$(u+1)^2$
c_{10}, c_{11}, c_{12}	$(u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$y^2 + y + 1$
c_{3}, c_{9}	y^2
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$(y-1)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.250000 + 0.433013I	1.64493 - 2.02988I	10.12500 + 6.71170I
b = 0.500000 - 0.866025I		
u = -1.00000		
a = -1.250000 - 0.433013I	1.64493 + 2.02988I	10.12500 - 6.71170I
b = 0.500000 + 0.866025I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^{2} - u + 1)(u^{4} - u^{3} + 3u^{2} - 2u + 1)^{2}(u^{4} + 2u^{3} + 3u^{2} + u + 1)^{2}$ $\cdot ((u^{6} + 3u^{5} + 4u^{4} + 2u^{3} + 1)^{2})(u^{21} + 8u^{20} + \dots + 145u - 16)$
c_2	$(u^{2} + u + 1)(u^{4} + u^{2} - u + 1)^{2}(u^{4} - u^{3} + u^{2} + 1)^{2}$ $\cdot ((u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)^{2})(u^{21} + 2u^{20} + \dots + 9u - 4)$
c_3, c_9	$u^{2}(u^{4} + u^{2} + u + 1)^{2}(u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)^{2}$ $\cdot (u^{8} - 5u^{6} + 7u^{4} - 2u^{2} + 1)(u^{21} + 3u^{20} + \dots - 8u - 32)$
c_5	$(u^{2} - u + 1)(u^{4} + u^{2} - u + 1)^{2}(u^{4} + u^{3} + u^{2} + 1)^{2}$ $\cdot ((u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)^{2})(u^{21} + 2u^{20} + \dots + 9u - 4)$
c_6, c_7, c_8	$(u+1)^{2}(u^{2}+1)^{4}$ $\cdot (u^{8}+2u^{7}+5u^{6}+10u^{5}+12u^{4}+12u^{3}+11u^{2}+3u+2)$ $\cdot (u^{12}+3u^{11}+\cdots+26u+17)(u^{21}-2u^{20}+\cdots+5u^{2}-1)$
c_{10}, c_{11}	$(u-1)^{2}(u^{2}+1)^{4}$ $\cdot (u^{8}+2u^{7}+5u^{6}+10u^{5}+12u^{4}+12u^{3}+11u^{2}+3u+2)$ $\cdot (u^{12}+3u^{11}+\cdots+26u+17)(u^{21}-2u^{20}+\cdots+5u^{2}-1)$
c_{12}	$((u-1)^2)(u+1)^8(u^8+6u^7+\cdots+35u+4)$ $\cdot (u^{12}+13u^{11}+\cdots+1092u+289)(u^{21}+26u^{20}+\cdots+10u-1)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^{2} + y + 1)(y^{4} + 2y^{3} + 7y^{2} + 5y + 1)^{2}(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)^{2}$ $\cdot ((y^{6} - y^{5} + 4y^{4} - 2y^{3} + 8y^{2} + 1)^{2})(y^{21} + 12y^{20} + \dots + 51681y - 256)$
c_2,c_5	$(y^{2} + y + 1)(y^{4} + y^{3} + 3y^{2} + 2y + 1)^{2}(y^{4} + 2y^{3} + 3y^{2} + y + 1)^{2}$ $\cdot ((y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)^{2})(y^{21} + 8y^{20} + \dots + 145y - 16)$
c_3, c_9	$y^{2}(y^{4} - 5y^{3} + 7y^{2} - 2y + 1)^{2}(y^{4} + 2y^{3} + 3y^{2} + y + 1)^{2}$ $\cdot ((y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)^{2})(y^{21} - 5y^{20} + \dots - 4928y - 1024)$
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$((y-1)^2)(y+1)^8(y^8+6y^7+\cdots+35y+4)$ $\cdot (y^{12}+13y^{11}+\cdots+1092y+289)(y^{21}+26y^{20}+\cdots+10y-1)$
c_{12}	$((y-1)^{10})(y^8 - 18y^7 + \dots - 449y + 16)$ $(y^{12} - 19y^{11} + \dots - 7564y + 83521)(y^{21} - 66y^{20} + \dots + 126y - 1)$