

主讲人: 李全龙

本讲主题

安全电子邮件标准

PEM标准

❖ PEM (Privacy Enhanced Mail) 标准

- IETF与IRTF研究增强E-Mail的保密以及PEM的标准化
- 1993年初,提出四份RFC(1421~1424)作为建议标准
- PEM的运行依赖PKI(公钥基础设施),如CA
 - 没有被广泛配置
- PEM提供4种安全服务:
 - 邮件加密
 - 报文完整性
 - 发送方的认证
 - 防发送方否认

PGP标准

❖PGP (Pretty Good Privacy)标准

- Philip Zimmermann于1991年发布PGP 1.0
 - 事实上标准
- 可在各种平台(Windows、UNIX等)免费运行
- 还可用于普通文件加密及军事目的
- 所用算法被证实为非常安全:
 - 公钥加密算法: RSA、DSS或Diffie-Hellman
 - 对称加密算法: CAST、3DES或IDEA
 - 散列算法: MD5或SHA-1

PGP标准

❖PGP特点:

- 对邮件内容进行数字签名,保证信件内容不被篡改
- 使用公钥和对称加密保证邮件内容机密且不可否认
- 公钥的权威性由收发双方或所信任的第三方签名认证

主讲人: 李全龙

■ 事先不需要任何保密信道来传递对称的会话密钥

PGP功能框架

❖ Alice期望PGP提供保密、发送者认证与报文完整性

PGP报文的格式

内容 操作 接收者的公钥标识(PU_B) 会话密钥 $E_{PUB} \\$ 会话密钥(K_s) 时间戳 发送者的公钥标识 (PU_A) 报文摘要的头两个字节 签名 报文摘要 E_{PRA} base64 文件名 **ZIP** E_{KS} 时间戳 报文 数据

PGP密钥

- ❖ 安装PGP时,软件为用户生成一个公开密钥对
 - 公钥放置用户网站或某公钥服务器上
 - 私钥则使用用户口令进行保护
 - 用户为随机生成的RSA私钥指定一个口令,只有给出口令才能将私钥 释放出来使用
- ❖ PGP公钥认证机制与传统CA差异较大:
 - PGP公钥可以通过可信的Web认证
 - 用户可以自己认证任何其信任的"公钥/用户名"对
 - 用户还可以为其他公钥认证提供"担保"
- ❖ 防止篡改公钥的方法(Alice):
 - 直接从Bob手中得到其公钥
 - 通过电话认证密钥
 - 从双方信任的David那里获得Bob的公钥
 - 通过CA

S/MIME标准

S/MIME (Secure/Multipurpose Internet Mail Extensions)标准

- 提供数据保密、完整性和认证等安全服务
- 不仅限于邮件使用,可用于任何支持MIME数据的传输 机制,如HTTP
- 增加了新的MIME数据类型:
 - "应用 /pkcs7-MIME" (application/pkcs7-MIME)
 - "复合/已签名" (multipart/signed)
 - "应用 /pkcs7-签名" (application/pkcs7-signature) 等
- 只保护邮件的邮件主体,对头部信息则不进行加密
- 认证机制依赖于层次结构的CA(Tree of Trust)
- 证书格式采用X.509规范

