Design and Analysis of Computer Algorithms

11059005 蕭耕宏

Assignment 3

Due: May 12, 2025 (before class)

Please use A4-sized papers to write your answers for the homework sets.

1. Let H be an n-node min-heap that contains n distinct items. Given any $k \le n$, explain how to select the kth smallest item in H in O(k log k) time.

Solution:

Maintain a pripriority queue. First insert the root of H into the priority queue. Then, do the following k times:

- 1. extract the minimum item from the priority queue and store it as the kth smallest item. (log k)
- 2. insert the left child and right child of the extracted item into the priority queue if they exist. (2 $\log k$)
- 3. If the priority queue is empty, break the loop.
- 4. If the kth smallest item is found, break the loop.
- 5. Return the kth smallest item.

Since extracting the minimum item from the priority queue takes $O(\log k)$ time and inserting an item into the priority queue takes $O(\log k)$ time, the total time complexity is $O(k \log k)$.

- 2. A d-heap is like a binary heap except that nodes have d children instead of just two. This will reduce the height of the underlying tree having n elements to $O(\log_d n)$. Please explain how to perform the following operations, like what we did in binary heaps and give the time complexity of each operation.
 - (a) INSERT
 - (b) MINIMUM
 - (c) EXTRACT-MIN
 - (d) DECREASE-KEY

Besides, suppose we use an array as the fundamental data structure for d-heap. That is, we store a complete d-ary tree into an array. Please show how to MAKEHEAP in O(n) time on a set of n elements.

Solution:

- INSERT(S, x, k)
 - 1. increase the heap size by 1
 - 2. append (x, k) to the end of the array
 - 3. compare the key of x with its parent, if x < parent, swap x with its parent
 - 4. repeat step 3 until x is in the correct position

time complexity is $O(\log_d n)$

- MINIMUM(S)
 - 1. returns the root, $\Theta(1)$

time complexity is $\Theta(1)$

• EXTRACT-MIN(S)

- 1. output root
- 2. copy last element in array to the root
- 3. decrease the array size by 1
- 4. compare the root with its children, if root > child, swap root with the smallest child
- 5. repeat step 4 until root is in the correct position

each level requires O(d) comparisons, and the height of the tree is $O(\log_d n)$, so the time complexity is $O(d\log_d n)$.

- DECREASE_KEY(S, x, k)
 - 1. find x in the array
 - 2. decrease the value of x to k
 - 3. compare x with its parent, if x < parent, swap x with its parent
 - 4. repeat step 3 until x is in the correct position

time complexity is $O(\log_d n)$

- MAKEHEAP(A) use bottom up approach
 - 1. for i = n/2 to 1
 - 2. for j = 1 to d
 - 3. compare A[i] with A[j]
 - 4. if A[i] > A[j], swap A[i] with A[j]
 - 5. repeat step 3 and 4 until A[i] is in the correct position
 - 6. return A

time complexity analysis:

- each level have d^i nodes
- inserting a node takes $\lfloor \log_d n \rfloor i$ in the worst case
- each level takes $(\lfloor \log_d n \rfloor i) \times d^i$ for insertion

$$\mathsf{T}(\mathsf{n}) = \textstyle \sum_{i=0}^{i = \lfloor \log_d n \rfloor} (\lfloor \log_d n \rfloor - i) \times d^i$$

let
$$j = \lfloor \log_d n \rfloor - i$$
, then $i = \lfloor \log_d n \rfloor - j$

$$\mathsf{T}(\mathsf{n}) = \sum_{j=0}^{j=\lfloor \log_d n \rfloor} j \times d^{\lfloor \log_d n \rfloor - j}$$

T(n) =
$$d^{\lfloor \log_d n \rfloor} \times \sum_{j=0}^{j=\lfloor \log_d n \rfloor} j \times d^{-j}$$

since $\sum_{j=1}^{\infty} j \times x^j = \frac{x}{(1-x)^2}$, we can use this to find the sum of the series.

$$\mathsf{T}(\mathsf{n}) = d^{\lfloor \log_d n \rfloor} \times \tfrac{d^{-1}}{(1 - d^{-1})^2}$$

$$T(n) = O(n)$$

- 3. A sequence of n operations is performed on a data structure. The ith operation costs i if i is an exact power of 2, and 1 otherwise. Please determine the amortized cost per operation using
 - (a) aggregate analysis
 - (b) accounting method of analysis; and
 - (c) potential method of analysis.

Solution:

(a) Aggregate analysis:

•
$$\mathsf{T}(\mathsf{n}) = \left(\sum_{i=0}^{\lfloor \lg n \rfloor} 2^i\right) + n - \lfloor \lg n \rfloor - 1 = 2^{\lfloor \lg n \rfloor + 1} - 1 + n - \lfloor \lg n \rfloor + 1 \leq 2^{\lfloor \lg n \rfloor + 1} + n - \lfloor \lg n \rfloor \leq 2n + n - \lg n \leq 3n = \mathsf{O}(n)$$

- The amortized cost per operation is 3
- (b) Accounting method of analysis:

Operation Type	Actual Cost	Amortized Cost
power of 2 operation	1	3
not power of 2 operation	2^i	2

 c_i : the actual cost of the i-th operation

 \hat{c}_i : the amortized cost of the i-th operation

To show that for each operation, $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i$,

• for i-th operation where i is a power of 2, there will be enough credit stored by $2^{\lg i-1}+1, 2^{\lg i-1}+2,...,i-1$

for example, if i = 8,

total actual cost 1 + 2 + 1 + 4 + 1 + 1 + 1 + 8 = 19

amortized cost = 2 + 3 + 2 + 3 + 2 + 2 + 2 + 3 = 19

• for i-th operation where i is not a power of 2, 2 credit will be stored.

The amortized cost per operation is 3 for both cases to work.

(c) Potential method of analysis:

let c_i be the actual cost of the i-th operation, and $\hat{c_i}$ be the amortized cost of the i-th operation.

let $\Phi(i)$ be the potential of the i-th operation, and $\Phi(0)=0$

$$\hat{c_i} = c_i + \Phi(i) - \Phi(i-1)$$

set
$$\hat{c_i}=3,$$
 and $\Phi(i)=\sum_{j=1}^i 3-c_j$

$$\Phi(i) - \Phi(i-1) = 3 - c_i$$

To argue that $\Phi(i) \geq 0$, we need to show that $\sum_{j=1}^{i} c_j \leq 3i$.

when
$$\mathbf{i} = 2^k$$
, $\sum_{j=1}^i c_j = \sum_{j=1}^k 2^j + 2^k - k \le \sum_{j=1}^{k-1} + 2 \times 2^k \le 3 \times 2^k$

this holds for all i, so we can conclude that $\Phi(i) \geq 0$.

Thus, the amortized cost per operation is 3.