PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-308687

(43) Date of publication of application: 30.10.1992

(51)Int.CI.

H05B 33/08 G09F 9/30 H05B 33/14 // H01L 33/00

(21)Application number : 03-075213

(71)Applicant: PIONEER ELECTRON CORP

PIONEER VIDEO CORP

(22)Date of filing:

08.04.1991

(72)Inventor: AMAMIYA KIMIO

MANABE MASAMICHI

TANAKA YUKIO

(54) ORGANIC ELECTROLUMINESCENCE DISPLAY

(57)Abstract:

PURPOSE: To suppress the deterioration of electric property even if DC driving continues by providing a protective means, which applies reverse voltage, between an organic electroluminescence(EL) element, which is driven by the application of DC voltage, and its cathode and anode. CONSTITUTION: A plurality of transparent anodes 2 consisting of ITOs, a positive transport layer 3, an EL layers 4, and a plurality of cathodes 5 are stacked in order on a glass transparent substrate. A driving circuit makes it emit light according to the pigments of a plurality of EL elements by applying positive DC voltage. A protective circuit 7 applies the voltage reverse to the DC voltage from the driving circuit 6 to between electrodes to between the electrodes 2 and 5. The protective circuit 7 is equipped with a reverse voltage power source 8, and applies reverse voltage to the electrodes 2 and 5. This way, it can be made the device wherein the deterioration of the electric property of the EL element is suppressed even if DC driving continues.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報(A) (11)特許出願公開番号

特開平4-308687

(43)公開日 平成4年(1992)10月30日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	Fl	技術表示箇所
H05B	33/08		8815-3K		
G 0 9 F	9/30	365 Z	7926 – 5G		
H 0 5 B	33/14		8815-3K	·	
# H01L	33/00	J	8934 – 4 M	•	

審査請求 未請求 請求項の数7(全 5 頁)

(21)出願番号	特願平3-75213	(71)出願人 000005016
		パイオニア株式会社
(22)出願日	平成3年(1991)4月8日	東京都目黒区目黒1丁目4番1号
		(71)出願人 000111889
		パイオニアビデオ株式会社
		山梨県中巨摩郡田富町西花輪2680番地
		(72)発明者 雨宮 公男
		山梨県中巨摩郡田富町西花輪2680番地パイ
		オニアビデオ株式会社内
		(72)発明者 真鍋 昌道
		山梨県中巨摩郡田富町西花輪2680番地パイ
		オニアビデオ株式会社内
		(74)代理人 弁理士 藤村 元彦
		最終頁に続く

(54) 【発明の名称】 有機エレクトロルミネツセンス表示装置

(57)【要約】

【目的】 有機EL素子の電気特性の経時劣化の少ない 有機EL表示装置を得る。

【構成】 有機EL表示装置は、直流電圧の印加により 駆動する有機EL素子とそのカソード及びアノード間に 間歇的に逆方向電圧を印加する保護手段とからなる。

1

【特許請求の範囲】

【請求項1】 基板上において互いに対向するカソード 電極とアノード電極との間に配置された有機物質からなる有機エレクトロルミネッセンス層を有する有機エレクトロルミネッセンス素子と、前記カソード電極及び前記 アノード電極間に直流電圧を印加する駆動手段と、前記 カソード電極及び前記アノード電極間に間歇的に逆方向 電圧を印加する保護手段とからなることを特徴とする有 機工レクトロルミネッセンス表示装置。

【請求項2】 前記アノード電極と前記エレクトロルミネッセンス層との間に有機化合物からなる正孔輸送層を有することを特徴とする請求項1記載の有機エレクトロルミネッセンス表示装置。

【請求項3】 前記エレクトロルミネッセンス層と前記カソード電極との間に有機化合物からなる電子輸送層を有することを特徴とする請求項1記載の有機エレクトロルミネッセンス表示装置。

【請求項4】 前記アノード電極と前記エレクトロルミネッセンス層との間に有機化合物からなる正孔輸送層を有し、前記エレクトロルミネッセンス層と前記カソード 20 電極との間に有機化合物からなる電子輸送層を有することを特徴とする請求項1記載の有機エレクトロルミネッセンス表示装置。

【請求項5】 前記逆方向電圧は、前記直流電圧の印加される時間の1/100のパルス幅のパルスであることを特徴とする請求項1記載の有機エレクトロルミネッセンス表示装置。

【請求項6】 前記逆方向電圧は、20ミリ秒以下のパルス幅のパルスであることを特徴とする請求項1記載の有機エレクトロルミネッセンス表示装置。

【請求項7】 前記逆方向電圧は、3 V以上かつ前記有機エレクトロルミネッセンス素子の逆方向耐電圧以下の電圧を有することを特徴とする請求項1記載の有機エレクトロルミネッセンス表示装置。

【発明の詳細な説明】

[0001]

【技術分野】本発明は、電界の印加によって発光する物質のエレクトロルミネッセンス(以下、ELという)を利用してかかる物質を層状にしてこれを備えたEL素子からなるEL表示装置に関し、特にEL層が有機化合物 40からなる有機EL表示装置に関する。

[0002]

【背景技術】EL業子をEL層の材質で分類すると、無機物からなるEL層を有する無機型と有機物からなるEL層を有する無機型と自機物からなるEL層を有する有機型とに分けられる。かかる無機型EL素子では直流電場で駆動される直流形と、交流電場で駆動される交流形とに分類されている。また、有機型EL素子は直流形の注入型のものが良く知られ、LEDと同様な整流性素子である。

【0003】例えば、有機EL素子には図4に示すよう 50 L層、MgAlのカソード5を順に積層した有機EL素

に、ガラス透明基板1上に、ITO (インジウムすず酸化物)等の複数の透明電極2 (アノード)、正孔輸送層3、有機EL層4、透明電極2に直角に交差する複数の背面電極5 (カソード)を顧に積層、形成したXYマトリクス型有機EL案子10がある。有機EL素子には、図示する正孔輸送層3及び有機EL層4からなる2層構造のものや、図示しないが有機EL層4及びカソード5間に有機電子輸送層がさらに配された3層構造のものも知られている。また、カソード5の上には、通常これを保護局が被覆されている。図に示すアノード2及びカソード5の一組に挟まれる有機EL層4は、アノード2及びカソード5から直流電圧を印加されることによって発光する。

【0004】図5に示すように有機EL表示装置は上記 のような有機でし素子とこれを駆動する回路6を有して いる。この駆動回路6は図では略して直流電源のみを代 表して示されているが、この駆動回路6は、図4に示す ドットマトリックスにおける1つの有機EL素子部分を 1つの画素に対応させ発光させる。表示駆動回路6は例 えば、有機EL素子からなる複数の画素の各々に対応す る記憶位置を有するメモリ(図示せず)を有し、映像デ ータ信号発生手段(図示せず)から出力される映像デー 夕信号に応じてメモリの内容が更新されるメモリの内容。 に従って直流電圧を有機EL素子部分ごとに印加し又は 非印加して有機EL素子の各画素のオンオフ、すなわち 明暗を定める。このように、かかるマトリクス形有機E L表示装置においては、直交した各帯状電極の1交点が 1 画素に対応しており、走査電極群及び信号電極群の任 意の電極間に印加される直流電圧を制御し、各画素すな 30 わち有機EL素子の発光状態を変化させることによって 画像の表示が行なわれる。例えば、マトリクス形有機E L表示装置においては、マトリクス点灯させるために図 6 (b) に示すように正の駆動直流電圧は、映像データ 信号等に応じて間歇的に印加される。また、有機EL素 子を連続して点灯させる場合(スタティック点灯)は、 図6(a)に示すように正の直流電圧は連続して印加さ れる.

【0005】しかしながら、有機EL素子においては、 当初は図7(a)に示すようにアノード2及びカソード 5の一組に挟まれる正孔輸送層3及び有機EL層4を形成する誘電体の有機分子34はpn接合35付近においてもアモルファス状態で存在しているが、有機EL素子の直流駆動を続けると、図7(b)に示すように有機分子34はpn接合35付近において一定方向の電界による誘電分極によって配向しpn接合が破壊され、素子の電気特性が時間経過と共に劣化して、ついには短絡モードで有機EL素子自体が破損してしまう。

【0006】図8に示すように、ガラス基板上にITO のアノード、TPDの正孔輸送層3、Alqiの有機E I層 MgAlのカソード5を順に積層した有機EL素

子を含む有機EL表示装置について電気的特性調べてみ ると、当初の有機EL素子の電圧電流特性(破線)及び 電圧輝度特性(一点鎖線)に対して、長時間の直流電圧 駆動を行った後の電圧電流特性(実線)及び電圧輝度特 性(二点鎖線)は、大幅に劣化している。

[0007]

【発明の目的】本発明は上記問題点に鑑みなされ、本発 明の目的は直流駆動を続けても有機EL素子の電気特性 の劣化を抑制する有機EL表示装置を提供することにあ る。

[0008]

【発明の構成】本発明の有機EL表示装置は、基板上に おいて互いに対向するカソード電極とアノード電極との 間に配置された有機物質からなる有機EL層を有する有 機EL素子と、前記カソード電極及び前記アノード電極 間に直流電圧を印加する駆動手段と、前記カソード電極 及び前記アノード電極間に間歇的に逆方向電圧を印加す る保護手段とからなることを特徴とする。

[0009]

【発明の作用】本発明によれば、有機EL素子の電気特 性の経時変化の少ない有機EL表示装置が得られる。

[0010]

【実施例】以下、本発明による実施例を図面を参照しつ つ説明する。図1に示すように、本実施例の有機EL表 示装置は、有機EL素子10と、有機EL素子に直流電 圧を印加する駆動手段すなわち駆動回路6と、有機EL 秦子に逆方向電圧を印加する保護手段すなわち保護回路 7とを有している。

【0011】図1には有機EL素子の1画素部分のみを 示しているが、有機EL素子は上記したものと同様にガ ラス透明基板1上にITOからなる複数の透明アノード 2、正孔輸送層3、有機EL層4、複数のカソード5を 順に積層、形成したものである。有機EL索子は、図示 する正孔輸送層3及び有機EL層4からなる2層構造、 もしくは有機EL層4及びカソード5間に有機電子輸送 層がさらに配された3層構造、または有機EL層とカソ ード5間電極との間に電子輸送層を有する2層構造、と してもよい。カソード5の上には、これを保護し短絡を 防ぐ保護層が被覆さてもよい。

【0012】駆動回路6は、上記したものと同様に図で 40、【0017】 は略して直流電源のみを代表して示されているが、正の 直流電圧を印加して複数の有機EL素子部分の画素に対 応させてるように発光させ、上記したものと同様に映像 データ等の信号に応じて電極間 2, 5に印加される直流 電圧を制御し、有機EL素子の各画素の発光状態を変化 させることによって有機EL素子に画像を表示させる。

【0013】保護回路7は、駆動回路6からの電極間へ の直流電圧とは逆方向の逆方向電圧を電極2、5間へ印 加する。保護回路7は、逆方向電圧電源8と、逆方向電 圧電源8から電極2、5間に逆方向電圧を印加するか若 50 m

しくは駆動回路6から印加するかを切替る切替器9と、 そのそれぞれの接続時間を制御して切替器9を駆動する 発振器11とからなる。逆方向電圧電源8はその出力電 位を可変とすることもでき、保護回路は、3 V以上かつ 有機EL索子の逆方向耐電圧以下の逆方向電圧を電極 2. 5間へ印加する。

【0014】かかる保護回路7による有機EL素子への 逆方向電圧の印加としては例えば、図2(a)に示すよ うに、有機EL素子のスタティック点灯の場合では、直 流電圧の印加される総時間の1/100の時間だけ逆方 向電圧を印加することにより、有機EL素子の劣化が押 さえられる。またこの場合、保護回路では、直流電圧が 印加されて点灯すべき間において20ミリ秒以下の時間 t だけ逆方向電圧を印加することにより、目視者にちら つきを与えることがなくなる。発振器11は、図2 (a)に示すように、逆方向電圧の一定間隔パルスとな るように切替器9を作動させている。

【0015】さらに例えば、図2(b)に示すように、 有機EL素子のマトリクス点灯の場合では、直流電圧が 印加されて点灯すべき間は逆方向電圧を印加せず、非点 灯間だけ逆方向電圧を連続して印加することにより、有 機EL素子の劣化が押さえられる。また、図2(c)に 示すように、直流電圧が印加されて点灯すべき間は逆方 向電圧を印加せず、非点灯間だけ逆方向電圧を、発振器 11により逆方向電圧の一定間隔パルスとなるように、 印加しても同様の効果が得られる。

【0016】発振器11を制御して逆方向電圧の一定間 隔パルスの幅と周期を可変とし、さらに逆方向電圧電源 8の出力電位を可変としてそれぞれ制御することによっ て、直流電圧の印加される総時間の1/100の時間だ け逆方向電圧の総印加時間を維持することが出来る。例 えば、ガラス基板上にITOのアノード、TPDの正孔 輸送層3、Alqョの有機EL層、MgAlのカソード 5 を順に積層した有機EL素子を含む有機EL表示装置 について電気的特性調べてみると、図3に示すように、 当初の有機EL素子の電圧電流特性(破線)及び電圧輝 度特性(一点鎖線)に対して、長時間の直流電圧駆動を 行った後の電圧電流特性(実線)及び電圧輝度特性(二 点鎖線)は、劣化が少ない。

【発明の効果】以上の如く、本発明の有機EL表示装置 によれば、直流電圧の印加により駆動する有機EL素子 とそのカソード及びアノード間に逆方向電圧を印加する 保護手段とからなるので、有機EL素子の電気特性の経 時劣化の少ないものが得られる。

【図面の簡単な説明】

【図1】本発明による実施例の有機EL表示装置の焼略 図である。

【図2】本発明による実施例における有機EL素子への 「駆動直流電圧及び逆方向電圧の印加の状態を示すグラフ

6

(4)

特開平4-308687

である.

【図3】本発明による実施例における有機EL素子の電 圧電流特性及び電圧輝度特性を示すグラフである。

5

【図4】有機EL案子の切欠拡大部分斜視図である。

【図5】従来の有機EL表示装置の概略図である。

【図 6】 従来の有機 E L 素子への駆動 直流電圧の印加の 状態を示すグラフである。

【図7】有機EL素子の駆動直流電圧の印加による正孔輸送層及び有機EL層を形成する誘菌体の有機分子の状態を説明する概略図である。

【図8】従来の本発明による実施例における有機EL業子の電圧電流特性及び電圧輝度特性を示すグラフである。

【符号の説明】

1 ……透明基板

2……透明アノード

3……正孔輸送層

4……有機EL層

5……カソード

6……カソード

7 ……保護回路

8 ……逆方向電圧電源

10 9 ……切替器

10……有機EL案子

11……発振器

(b)

フロントページの統合

(72)発明者 田中 幸男 山梨県中巨摩郡田富町西花輪2680番地パイ オニアビデオ株式会社内

BEST AVAILABLE COPY