东南大学电工电子实验中 心实验报告

课程名称:	电路实验	
冰性石物:	电	

第6次实验

实验名	4杯:	双端口网络规	<u> 举特性测</u>	<u> </u>	<u>电路分</u> 型	I
院(系	():	自动化学院	专业	<u>k</u> :	自动化	
姓	名: _	陈鲲龙	学	号:	0802231	1
实 验	室:	204	实验	组别:		
同组人员:			实验时间	: 2023 至	羊 12 月	12 日
评定成	绩:		审阅教	/师:		

一、实验目的

- (1) 掌握低通、高通、带通电路、带阻电路的频率特性;
- (2) 应用 Multisim 软件测试低通、高通、带通电路、带阻电路及有关参数;
- (3) 掌握 Multisim 软件中的交流分析功能测试电路的频率特性;
- (4) 掌握电路谐振及其特征;
- (5) 掌握 RLC 串联谐振现象观察、测量方法。

二、实验原理

(1) Multisim 分析功能。

Multisim的仿真分析大致可以分为

基本分析(包括直流工作点分析,交流分析,瞬态分析,傅里叶分析)

噪声和失真分析(包括噪声分析,噪声系数分析,失真分析)

扫描分析(包括直流扫描分析,参数扫描分析,温度扫描分析)

极零点和传递函数分析(极零点分析,传递函数分析)

灵敏度和容差分析(包括灵敏度分析,最坏情况分析,蒙特卡洛分析)

其它分析(布线宽度分析,批处理分析,用户自定义分析)

(2) 一阶 RC 电路频率特性,完成内容 1。

1) 网络频率特性的定义

网络的响应向量与激励向量之比是频率的函数,称为正弦稳态下的网络函数。表示为 $H(\mathbf{j}\omega) = v_0 / v_i = |H(\mathbf{j}\omega)| e_{i\varphi(\omega)}$

其模|H(jω)|随频率变化的规律称为幅频特性,相角φ(ω)随频率变化的规律称为相频特性,后者表示了响应与激励的相位差与频率的关系。

根据 $|H(j\omega)|$ 随频率变化的趋势,将 RC 网络分为"低通电路"、"高通电路"、"带通电路"、"带阻电路"等。

2) 一阶 RC 低通电路频率特性曲线

3) 一阶 RC 高通电路频率特性曲线

内容 1. 用 Multisim 分析功能测试一阶 RC 低通电路的频率特性

(1) 建立电路如图。输入信号取信号源库(Sources)的电压源(SIGNAL_VOLTAGE_SOURCES)中的交流电压源(AC VOLTAGE),双击图标,将其电压设置为 1V,频率设置为 1kHz。

- (2) 测试电路的截止频率 fo 由上图可见: 截止频率 f0=7.2365k
- (3) 用上述方法分别测试 0.01 fo、0.1fo、0.5fo、fo 、5fo、10fo、100fo 点所对应的 $|H(j\omega)|$ 和 ϕ 的值。

测量	0. 01 f0	0.1 <i>f</i> 0	0.5f0	f0	5 <i>f</i> 0	10 <i>f</i> 0	100 <i>f</i> 0
H(jω)	999.9500m	995.0342m	894.3730m	706.9999m	196.0593m	99.4740m	9.9965m
ф (°)	-573. 1121m	-5. 7123	-26. 5720	-45. 0086	-78. 6934	-84. 2911	-89. 4272

(3) 在现有器件参数的基础上完成实验内容 2 的设计。

设计一个一阶高通电路,要求 f0 在 1.6kHz 左右。设计电路,并分析测量电路 f0 值。记录电路频率特性曲线。

设计如下图, 其中 R=1000 Ω, C=100nF。

由频率特性曲线可得 f0 的值为 1.5911k。

f0=1.5911k

测量	0.01 <i>f</i> 0	0.1 <i>f</i> 0	0.5 <i>f</i> 0	f0	5 <i>f</i> 0	10 <i>f</i> 0	100 <i>f</i> 0
H(jω)	9.9967m	99.4760m	447.1126m	707.0068m	980.5700m	995. 0344	999.9500m
ф (°)	89. 4272	84. 2910	63. 4414	45. 0081	11. 3131	5. 7122	573. 1008m

(4) 复习相关谐振电路的原理知识。

1) RLC 串联电压谐振

在具有电阻、电感和电容元件的电路中,电路两端的电压与电路中的电流一般是不同相的。如果调节电路中电感和电容元件的参数或改变电源的频率,就能够使得电路中的电流和电压出现了同相的情况。电路的这种状态称为谐振。RLC 串联谐振又称为电压谐振。由 RLC 组成的串联电路如下图所示。

串联谐振电路的谐振频率f0 完全由电路本身的有关参数来决定,是电路本身的固有性质,而且每一个 RLC 串联电路,只有一个对应的谐振频率。因此,只有外施加电压的频率与 RLC 串列电路的谐振频率相等时,电路才会发生谐振。实际应用中往往采用两种方法使电路发生谐振,一种使外施加电压的频率一定,改变电路电感 L 或者电容 C 的方法,使电路满足谐振条件;另一种是电路电感 L 和电容 C 参数一定,采用改变外施加电压的频率的方法,使电路在其谐振频率下达到谐振。

(5) 理论计算内容 4 RLC 串联电路的谐振频率。

三、实验内容

1. 用 Multisim 分析功能测试一阶 RC 低通电路的频率特性

- (2) 测试电路的截止频率 fo 由上图可见: 截止频率 f0=7.2365k
- (3) 用上述方法分别测试 0.01 fo、0.1fo、0.5fo、fo 、5fo、10fo、100fo 点所对应的 $|H(j\omega)|$ 和 Φ 的值。

0.01f0

0.1f0

0.5f0

f0

5f0

10f0

100f0

f0=7.2365k

测量	0. 01 f0	0.1 <i>f</i> 0	0.5 <i>f</i> 0	f0	5 <i>f</i> 0	10 <i>f</i> 0	100 <i>f</i> 0
H(jω)	999.9500m	995.0342m	894.3730m	706. 9999m	196.0593m	99.4740m	9.9965m
ф (°)	-573. 1121m	-5. 7123	-26. 5720	-45. 0086	-78. 6934	-84. 2911	-89. 4272

2. 设计一阶高通电路,用 Multisim 分析测试其频率特性

设计一个一阶高通电路,要求 f0 在 1.6kHz 左右。设计电路,并分析测量电路 f0 值。记录电路频率特性曲线。

设计如下图, 其中 R=1000 Ω, C=100nF。

由频率特性曲线可得 f0 的值为 1.5911k。

0.01f0

0.1f0

0.5f0

5f0

10f0

100f0

f0=1.5911k

测量	0. 01 f0	0. 1 <i>f</i> 0	0.5 <i>f</i> 0	f0	5 <i>f</i> 0	10 <i>f</i> 0	100 <i>f</i> 0
H(jω)	9.9967m	99.4760m	447.1126m	707.0068m	980.5700m	995. 0344	999.9500m
ф (°)	89. 4272	84. 2910	63. 4414	45. 0081	11. 3131	5. 7122	573.1008m

3. 将内容 2、1 电路串联,用 Multisim 测试其电路的频率特性,并进行说明分析。

电路图如下

频率特性曲线如下

f0=3.3961k ; $|H(j\omega)|$ max=694.4443m ; $|H(j\omega)|$ max / 根号 2=491.046m

测量下截止频率为: f1=1.0096k ; |H(jω)|=491.5822m (接近 491.046m)

测量上截止频率为: f2=11.4229k; |H(jω)|=491.1046m (接近 491.046m)

该电路可看作由 2 的高通电路作为 1 的低通电路的信号源, 当频率大于 f1=1.0096 kHz 时, 2 的高通电路输出给 1 的低通电路对应的网络函数的模值大于 0.707 倍的峰值,即大于该频率时产生的分贝数大于 20 分贝。但同时,但频率大于 f2=11.4229kHz 时, 1 的低通电路输出对应的网络函数的模值小于 0.707 倍的峰值,即小于该频率时产生的分贝数大于 20 分贝,所以该电路可以控制输出频率在 f1=1.0096 kHz 和 f2=11.4229kHz 之间。

4. RLC 串联谐振电路测量

- (1) R=2kΩ , L=330 μ H, C=3.3n F, 激励电压 4VRMS。
- (2)用 Multisim 软件仿真,观察记录 UR、UL、UC 随激励信号频率变化而变化的规律,分析实验现象的理论依据。测量谐振频率点 UR、UL、UC 值及波形。

规律:随频率不断变大,UR 先增大再减小,在谐振频率处达到最大值并且此时与电源两端的电压相同、UL 不断增大、UC 不断减小。

理论:根据电感和电容的计算公式,随频率增大,w增大,感抗增大,容抗减小,分压便会增大或减小。在谐振频率处,容抗等于感抗,两者之和没有分压,UR接近电源电压,达到最大值,而在谐振频率左右两侧,由于容抗和感抗的分压,电阻电压总小于最大值。

(3) 根据上述测量, 试分析如何利用 RLC 谐振电路实现带通及带阻。

带通: 带通是一个允许特定频段的波通过同时屏蔽其他频段的设备。在 RLC 串联电路中测 R1 两端电压。在 f1=23. 5230kHz 与 f2=988. 7104kHz 之间的频率可以通过,带宽为 BW=965. 1874kHz

带阻:是指通过大多数频率分量、但将某些范围的频率分量衰减到极低水平的滤波器,与带通的概念相对。在 RLC 串联电路中测(L 串联 C)两端电压。在小于 f1=23.5230kHz,大于 f2=988.7104kHz 的范围可以通过。

- (4) 搭试实物电路,再现谐振现象,测量谐振频率,记录此时 UR、UL、UC 值及波形。
- (5) 分析比较软件仿真及实物实验结果的差异,分析产生差异的原因。

仿真实验数据的误差非常小,而实物电路测得的数据误差较大,原因是搭建实物电路时,元器件如电阻,电感和电容与标称值有差异,导致 UL 不等于 UC, 所以在搭建实物电路时,将频率变大了一些才使 UL=UC。

理论计算内容 4 RLC 串联电路的谐振频率:

电路图:

频率特性曲线图: (红线: 带通、绿线: 带阻、紫线: U 电容、蓝线: U 电感)

Cursor					AC Analysis AC Ana	lysis AC Analysis A				Analysis AC Anal	lysis	
	V(1)-V(2)	V(2)	V(2)-V(3)	V(3)				shiyan6.	4			
	- (1)	* (2)	. (2)	. (5)				AC Ánaly				
x1	151.9556k	151.9556k	151.9556k	151.9556k	9 1.25		,	to / triary	010	Y		
у1	999.9993m	1.1573m	157.5363m	158.6936m	9p 1.25					4		
x2	1.0000	1.0000	1.0000	1.0000	₹ 500.00m				Δ			
y2	41.4690µ	1000.0000m	42.9918p	1000.0000m	D -							
dx	-151.9546k	-151.9546k	-151.9546k	-151.9546k	© -250.00m [∞]	Δ Δ	Δ Δ Δ					
dy	-999.9578m	998.8427m	-157.5363m	841.3064m	1	10	100	1k	10k	100k	1M	10M
dy/dx	6.5806µ	-6.5733µ	1.0367µ	-5.5366µ			100			10011		10111
1/dx	-6.5809µ	-6.5809µ	-6.5809µ	-6.5809µ	The state of the s			Freque	ency (Hz)			
Cursor						V(2)-V(3) V(3)						
	V(1)-V(2)	V(2)	V(2)-V(3)	V (3)	(6ep)							
x1	151.9556k	151.9556k	151.9556k	151.9556k	p) e	Δ Δ	Δ Δ Δ	Δ Δ		4		
v1	66.3072m	-89.9337	90.0663	-89.9337	Phase -200						Δ Δ	
x2	1.0000	1.0000	1.0000	1.0000	ha -							
y2	89.9921	-2.3760m	179.9949	-2.3760m	<u> </u>							
dx	-151.9546k	-151.9546k	-151.9546k	-151.9546k	1	10	100	1k	10k	100k	1M	10M
dy	89.9258	89.9313	89.9286	89.9313	•		100			,		
dy/dx	-591.7936µ	-591.8300µ	-591.8118µ	-591.8300µ				Freque	ency (Hz)			
1/dx	-6.5809µ	-6.5809µ	-6.5809µ	-6.5809µ	V(1)-V(2) V(2)	V(2)-V(3) V(3)						

测量参数	f0	UR1	UL1	UC1
仿真值【1】	151. 9556k	3995.15mV	629. 382mV	634mV
*5.65/根号2				
Multisim 示波器	152k	4000mV	639mV	626mV
仿真值【2】				
实物搭接	158. 4125k	3870mV	641mV	599mV
实测值【3】				
误差【1】&【3】	4.51%	-3.13%	18.64%	-5. 52%

电阻 R:

电容 C:

电感 L:

四、实验使用仪器设备(名称、型号、规格、编号、使用状况)

SDG1032X 信号源

SDG3055X-E 万用表

GDS1102B 示波器

Multisim 软件

五、实验总结

(实验出现的问题及解决方法、思考题(如有)、收获体会等)

总结:

在本次实验中,掌握了 Multisim 幅频、相频特性的仿真、以及 Multisim 示波器的仿真,并将结果与实物搭接电路实验室示波器测量数据进行了对比,对于 RLC 谐振电路的理解更深刻了,在操作时要看清各变量的单位,尤其是注意判断是否是有效值(即均方根值)思考题:

(1) Multisim 仿真电路中输入信号源起什么作用, 改变信号源的参数对频率特性测试结果有无影响?

作用就是提供激励。改变参数无影响,因为频率 f 由电路元器件本身的性质决定。|H(jω)|为电压比,与信号源的电压大小也无直接关联。

(2) 试写出判定 RLC 串联电路处于谐振状态的三种实验方法。

方法1调节激历信号频率测量端口电压、电流(电阻电压)同相位

方法 2.调节激动信号频率测量电阻电压的最大值

方法 3 调节激动信号频率测量电容 + 电感电压的最小值

方法 4 调节激动信号频率,使电容、电压两端电压相等

(3) RLC 串联谐振电路实物实验中, 信号源输出信号幅度该如何选择? 测量过程中, 信号源信号幅度有没有变化?

信号源输出信号幅度选择 4Vrms。没有变化。

(4) 在谐振频率点、及谐振频率左右, 电路的特性有什么变化?

在谐振频率点右侧,频率大于谐振频率,电感较大,电路呈现感性; 在谐振频率点左侧,频率小于谐振频率,电容较大,电路呈现容性。 无论在左侧还是右侧,电路的电压电流都变小,总阻抗变大。

(5) 写出 RLC 并联电路处于谐振状态的特点。

六、参考资料 (预习、实验中参考阅读的资料)

[1]王玉清.信号发生器输出幅度对 RLC 串联谐振电路特性的影响[J].延安大学学报(自然科学版),2022,41(04):108-111.DOI:10.13876/J.cnki.ydnse.2022.04.108.

[2]赵文来,杨俊秀,陈秋妹.Python 在 RLC 串联谐振实验数据处理中的应用[J].大学物理实验,2022,35(06):85-90.DOI:10.14139/j.cnki.cn22-1228.2022.06.018.

[3]陈宗桂,王立刚,薛峰等.串联谐振电路的仿真研究在实验教学中的应用[J].电子设计工程,2023,31(17):113-117.DOI:10.14022/j.issn1674-6236.2023.17.023.