203C HW1

Christopher Ackerman

April 23, 2021

1 Question 1

- 1. No, this vector isn't identified. In order to identify the entire vector we need to identify each element. We can't identify h within H because we don't see observations on the entire domain \mathbb{R} , so we can't identify the vector.
- 2. Nothing is identified in this case. Denote true values with a *, and consider

$$\begin{split} \tilde{h}(x) &= ch^*(x) \\ \tilde{\mu} &= c\mu^* \\ \tilde{\sigma}^2 &= c^2 \sigma^{*2} \\ c &> 0 \\ \mathbb{P}(Y = 1 \mid X = x; \tilde{\mu} \tilde{\sigma}, \tilde{h}) &= \Phi\left(\frac{\tilde{h}(x) - \tilde{\mu}}{\sqrt{\tilde{\sigma}^2}}\right) \\ &= \Phi\left(\frac{h^*(x) - \mu^*}{\sqrt{\sigma^{*2}}}\right) \\ &= \mathbb{P}(Y = 1 \mid X = x; \mu^*, \sigma^{*2}, h^*) \end{split}$$

3. With this normalization, we can write

$$\mathbb{P}(Y = 1 \mid X = x) = \Phi(h(x))$$

$$\implies h(x) = \Phi^{-1}(\mathbb{P}(Y = 1 \mid X = x))$$

Now h(x) is identified in H_x , but it is not identified in H because there are infinitely many points in \mathbb{R} (e.g. x = 6) where the value of h(x) could be different.

4. Plugging in this functional form to the result in the last part,

$$\alpha + \beta x = \Phi^{-1}(\mathbb{P}(Y = 1 \mid X = x))$$

We can pin down values for α and β as

$$\alpha = \mathbb{E}(Y \mid X = 0)$$

$$\beta = \mathbb{E}(Y \mid X = 1) - \mathbb{E}(Y \mid X = 0)$$

Since x = 0 and x = 1 are in the support of both H and H_X , we have identification within both sets.

1

2 Question 2

1.

$$\begin{split} \mathbb{P}(Y = 1 \mid X = x) &= \mathbb{P}(\varepsilon \le x'\beta \mid X = x) \\ &= \mathbb{P}\left(z \le \frac{x'\beta - \mu}{\sqrt{s^2(x)}} \mid X = x\right) \\ &= \Phi\left(\frac{x'\beta - \mu}{\sqrt{s^2(x)}}\right) \end{split}$$

2. No, β is not identified. Take

$$\tilde{\beta} \equiv c\beta^*$$

$$\tilde{\mu} \equiv c\mu^*$$

$$\tilde{s}^2(x) \equiv c^2 s^{*2}(x)$$

$$\mathbb{P}(Y = 1 \mid X = x; \tilde{\beta}, \tilde{\mu}, \tilde{s}) = \Phi\left(\frac{x'\tilde{\beta} - \tilde{\mu}}{\sqrt{\tilde{s}^2(x)}}\right)$$

$$= \Phi\left(\frac{x'\beta^* - \mu^*}{\sqrt{s^{*2}(x)}}\right)$$

$$= \mathbb{P}(Y = 1 \mid X = x; \beta^*, \mu^*, s^{*2})$$

3. We can now write the conditional expectation as

$$\mathbb{P}(Y = 1 \mid x = x) = \Phi\left(\frac{x_1 + x_2\beta - \mu}{s^2(x_3)}\right)$$

We can identify β_2 by differentiation with respect to x_2 , and we can identify $\sqrt{s^2(x_3)} = |s(x_3)|$ by differentiating with respect to x_1 . So β_2 is identified, and s is identified if we're willing to assume that $s(x_3) \geq 0$.

- 4. Yes; we still have identification for both s and β_2 since the argument in (c) does not depend on the value of s(0).
- 5. They are both identified. To see that F_{ε} is identified, define some \tilde{F}_{ε} such that

$$F_{\varepsilon}^*(x_1 + v^*(x_2)) = \tilde{F}_{\varepsilon}(x_1 + \tilde{v}(x_2)) \quad \forall x$$

If we look at $x_2 = 0$,

$$F_{\varepsilon}^*(x_1) = \tilde{F}_{\varepsilon}(x_1),$$

so F_{ε} is identified. Now if we look at $x_1 = 0$,

$$F_{\varepsilon}(v^*(x_2)) = F_{\varepsilon}(\tilde{v}(x_2)) \quad \forall x$$

 F_{ε} is strictly increasing so we can take its inverse, and therefore v is identified.

6. The answer is still the same since we have the normalization/known value $h(\overline{x} = \alpha)$. We would only have to change the argument if we didn't know this value.

3 Question 3

1.

$$\mathbb{E}(Y \mid X = x) = \mathbb{P}(Y = 1 \mid X = x) - (1 - \mathbb{P}(Y = 1 \mid X = x))$$
$$= 2\mathbb{P}(Y = 1 \mid X = x) - 1$$

2.

$$\mathbb{P}(Y=1 \mid X=x) = \mathbb{P}(\varepsilon \leq v(x_1) - v(x_2) \mid X=x)$$

$$= F_{\varepsilon|X=x}(v(x_1) - v(x_2))$$

$$v(x_1) - v(x_2) = t > 0 \Longrightarrow$$

$$\mathbb{P}(Y=1 \mid X=x) = F_{\varepsilon|X=x}(t)$$

$$> F_{\varepsilon|X=x}(0)$$

$$= \frac{1}{2}$$

$$v(x_1) - v(x_2) = t < 0 \Longrightarrow$$

$$\mathbb{P}(Y=1 \mid X=x) = F_{\varepsilon|X=x}(t)$$

$$< F_{\varepsilon|X=x}(0)$$

$$= \frac{1}{2}$$

$$\therefore \mathbb{P}(Y=1 \mid X_1=x_1, X_2=x_2) \geq \frac{1}{2} \iff v(x_1) \geq v(x_2)$$

3. We can define level sets at $V(\overline{x})$ as

$$S(V)(\overline{x}) = \{x \mid V(x) \ge V(\overline{x})\}$$

$$= \left\{x \mid \mathbb{P}(Y = 1 \mid X_1 = \overline{x}, X_2 = x) \ge \frac{1}{2}\right\}$$

$$S'(V)(\overline{x}) = \{x \mid V(x) \le V(\overline{x})\}$$

$$= \left\{x \mid \mathbb{P}(Y = 1 \mid X_1 = x, X_2 = \overline{x}) \le \frac{1}{2}\right\}$$

V is identified when no function in S or S' is an increasing function of another function in that set, and when $V(\overline{x}) = 0$ for some \overline{x} .

4. We can only identify the value of v at a single point $t = v(x_1) - v(x_2)$, so $F_{\varepsilon|X=x}(t)$ is not identified.