Danièle GARDY

Enriched tree

Motzkin trees

bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

Enumerating (restricted) λ -terms

Danièle GARDY

PRISM, Université Versailles St-Quentin en Yvelines and D.M.G., T.U. Wien

In collaboration with O. Bodini, B. Gittenberger and A. Jacquot

Enumeratin
(restricted)
λ -terms

Danièle GARDY

hed trees

Motzkin trees

bounded number of unary node

 λ -terms of bounded unary heigh

 λ -terms of fixed arity

Concluding

- 1 Enriched trees
- 2 Motzkin trees
- 3 λ -terms with bounded number of unary nodes
- 4 λ -terms of bounded unary height
- 5 λ -terms of fixed arity
- 6 Concluding remarks

Danièle GARDY

Enriched trees

Motzkin trees

λ-terms with bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding

λ -terms and enriched (Motzkin) trees

Danièle GARDY

Enriched trees

Motzkin tree:

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary heigh

 λ -terms of fixed arity

Concluding

Definition of λ -terms

$$T ::= a \mid (T * T) \mid \lambda a.T$$

(T * T): application

 $\lambda a.T$: abstraction

$$(\lambda x.(x*x)*\lambda y.y)$$

$$\lambda y.(\lambda x.x * \lambda x.y)$$

Danièle GARDY

Enriched trees

Motzkin trees

λ-terms with bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding

Enriched Motzkin trees

Labelling rules:

- · Binary nodes are unlabelled
- Unary nodes get distinct labels (colors)
- Leaves get the label (color) of one of their unary ancestors

Danièle GARDY

Enriched trees

Motzkin trees

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

Free and bound variables

Here all variables are bound: closed terms

Some variables may be free

Danièle GARDY

Enriched trees

Motzkin trees

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

Enumeration?

- Recursive definition for λ -terms?
 - \mathcal{L} : class of λ -terms with free variables
 - ullet ${\cal N}$ atomic class of binary node
 - ullet ${\cal U}$ atomic class of unary node
 - F atomic class of free leaf
 - B atomic class of bound leaf

$$\mathcal{L} = \mathcal{F} + \left(\mathcal{N} \times \mathcal{L}^2\right) + \left(\mathcal{U} \times \textit{subs}(\mathcal{F} \rightarrow \mathcal{F} + \mathcal{B}, \mathcal{L})\right)$$

- $L_{\ell,n}$ number of λ -terms of size n (total number of nodes) with ℓ free leaves
- Generating function $L(z, f) = \sum_{\ell,n} L_{\ell,n} f^{\ell} z^{n}$ satisfies a functional equation

$$L(z, f) = fz + z L(z, f)^{2} + z L(z, f + 1).$$

Danièle GARDY

Enriched trees

.

 λ -terms with bounded

number of unary nodes λ -terms of

bounded unary height

 λ -terms of fixed arity

Concluding remarks

Analytic combinatorics

- Generating function of a sequence a_n : $A(z) = \sum_n a_n z^n$
- A(z) considered as a function of complex variable z: domain of analycity? radius of convergence ρ?
- Type and location of dominant singularity determine the asymptotic behaviour of the sequence a_n
- E.g., ρ algebraic of type $(1 \frac{z}{\rho})^{\alpha}$ $(\alpha \notin N)$ gives

$$[z^n]A(z)\sim \frac{
ho^n n^{-\alpha-1}}{\Gamma(-\alpha)}$$

Extensions to multivariate cases, asymptotic distributions

Danièle GARDY

Enriched trees

Motzkin tree:

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

Enumeration???

- Generating function enumerating closed λ -terms (without free variables): L(z,0)
- Generating function enumerating all λ -terms:

$$L(z,1) = \frac{1}{z}L(z,0) - L(z,0)^2$$

• $L(z,0) = \frac{1}{2z} \left(1 - \sqrt{\Lambda(z)}\right)$ with $\Lambda(z)$ equal to

$$1-2z+2z\sqrt{1-2z-4z^2+2z\sqrt{....\sqrt{1-2z-4nz^2+2z\sqrt{...}}}}$$

 L(z,0) has null radius of convergence ⇒ standard tools of analytic combinatorics fail

Danièle GARDY

Enriched trees

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

What can we do?

- Try to find a way to deal with null radius of convergence?
- Ad hoc methods?

$$\left(\frac{(4-\epsilon)n}{\log n}\right)^{n(1-1/\log n)} \le L_n \le \left(\frac{(12+\epsilon)n}{\log n}\right)^{n(1-1/3\log n)}$$

[David et al. 10; here leaves have size 0]

- Consider sub-classes of terms?
 - Restrict the *total* number of abstractions
 [Bodini-G-Gittenberger'14]
 - Restrict the number of abstractions in a path from the root towards a leaf: bounded unary height

[Bodini-G-Gittenberger'11, Bodini-G-Gittenberger'14]

 Restrict the number of pointers from an abstraction to a leaf [Bodini-G-Jacquot'10; Bodini-G-Gittenberger-Jacquot'13, Bodini-Gittenberger'15]

Danièle GARDY

Enriched tree

Motzkin trees

bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

Motzkin trees

Danièle GARDY

Enriched tree

Motzkin trees

λ-terms with bounded number of unary nodes

λ-terms of bounded unary heigh

 λ -terms of fixed arity

Concluding

Motzkin trees

$$\mathcal{M} = \mathcal{Z} + (\mathcal{U} \times \mathcal{M}) + (\mathcal{Z} \times \mathcal{M}^2)$$

$$M(z) = \frac{1}{2z} \left(1 - z - \sqrt{1 - 2z - 3z^2} \right)$$

Dominant singularity at z = 1/3 of square-root type

$$[z^n]M(z)\sim \frac{3^{n+\frac{1}{2}}}{2n\sqrt{\pi n}}$$

Danièle GARDY

Enriched tree

Motzkin trees

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

q unary nodes

$$\mathcal{M}_q = \mathcal{U} imes \mathcal{M}_{q-1} + \sum_{\ell=0}^q \mathcal{A} imes \mathcal{M}_\ell imes \mathcal{M}_{q-\ell}.$$

Recurrence equation on the generating functions

$$M_q(z) = \frac{z M_{q-1}(z) + z \sum_{1 \le \ell \le q-1} M_{\ell}(z) M_{q-\ell}(z)}{1 - 2z M_0(z)}.$$

 \Rightarrow there exist polynomials P_q s.t.

$$M_q(z) = \frac{z^{q+1} P_q(z^2)}{(1 - 4z^2)^{q - \frac{1}{2}}},$$

Straightforward computations give

$$[z^n]M_q(z) \sim [z^n]\mathcal{M}_{\leq q} \sim \frac{\sqrt{2} P_q(1/4)}{\Gamma(q-\frac{1}{2})} 4^n n^{q-\frac{3}{2}}$$

Danièle GARDY

Enriched tree

Motzkin trees

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary heigh

 λ -terms of fixed arity

Concluding

Leaves at same unary height

- Tree on the left: all leaves have unary height 1
- Tree on the right: leaves have unary heights 1, 2 and 1

Danièle GARDY

Enriched tree

Motzkin trees

 λ -terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

Leaves at same unary height

$$\mathcal{MH}_k = \mathcal{U} \times \mathcal{MH}_{k-1} + \mathcal{A} \times \mathcal{MH}_k^2$$

On generating functions

$$\mathcal{MH}_k = rac{1}{2}\left(1-\sqrt{1-2z+2z\sqrt{1-2z+2z\sqrt{...+2z\sqrt{1-4z^2}}}}
ight)$$

Two singularities

- $z = -\frac{1}{2}$ of type $(1 + 2z)^{\frac{1}{2}}$ (negligible)
- $z = \frac{1}{2}$ of type $(1 + 2z)^{\frac{1}{2^{k+1}}}$ (dominant, comes from the innermost radicand)

$$\Rightarrow [z^n] \mathcal{MH}_k(z) \sim \frac{2^{\frac{1}{2^{k+1}}} 2^n n^{-1 - \frac{1}{2^{k+1}}}}{2^{k+1} \Gamma(1 - \frac{1}{2^{k+1}})}$$

Danièle GARDY

Enriched tre

Motzkin trees

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

Bounded unary height

Here leaves can have different unary height!

$$\mathcal{MH}_{\leq k} = \mathcal{Z} + \mathcal{U} \times \mathcal{MH}_{\leq k-1} + \mathcal{A} \times \mathcal{MH}_{\leq k}^2$$

Generating function

$$\mathcal{MH}_{\leq k} = \frac{1}{2} \left(1 - \sqrt{1 - 2z - 4z^2 + 2z\sqrt{1 - 2z - 4z^2 + 2z\sqrt{... + 2z\sqrt{1 - 4z^2}}}} \right)$$

Dominant singularity ρ_k comes from outermost radicand, decreases towards $\frac{1}{3}$

$$\Rightarrow [z^n] \mathcal{MH}_{\leq k} \sim \frac{\sqrt{1 + 4\rho_k^2}}{4 \, \rho_k^{n+1} \, n \sqrt{\pi n}}$$

Danièle GARDY

Enriched trees

Motzkin trees

 λ -terms with bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding

λ -terms with bounded number of unary nodes

λ-terms Danièle GARDY

Enumerating (restricted)

q unary nodes

nriched tree

Motzkin tree

λ-terms with bounded number of unary nodes

bounded unary height

λ-terms of fixed arity

Concluding remarks

$$\mathcal{S}_q = ig(\mathcal{U} imes extst{subs}(\mathcal{F} o \mathcal{F} + \mathcal{B}, \mathcal{S}_{q-1})ig) + \sum_{\ell=0}^q ig(\mathcal{A}, \mathcal{S}_\ell, \mathcal{S}_{q-\ell}ig)$$

Generating function

$$S_q(z, f) = zS_{q-1}(z, f+1) + z\sum_{\ell=0}^q S_\ell(z, f) S_{q-\ell}(z, f).$$

G.F. for closed terms $S_q(z,0)$?

$$S_1(z,0) = \frac{1}{2} - \frac{\sqrt{1-4z^2}}{2};$$

$$S_2(z,0) = \frac{z}{2}(1-2z^2) + \frac{2z^3}{\sqrt{1-4z^2}} - \frac{z\sqrt{1-8z^2}}{2\sqrt{1-4z^2}};$$

(no terms of size $n = q \mod 2$)

Danièle GARDY

Enriched free

Motzkin trees

 λ -terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

q unary nodes

$$S_q(z, f) = -\frac{z^{q-1}\sigma_q(f)}{2\prod_{\ell=0}^{q-1}\sigma_\ell(f)} + R_q(z, \sigma_0(f), ..., \sigma_{q-1}(f))$$

where

•
$$\sigma_q(f) = \sqrt{1 - 4(f+q)z^2}$$

- R_q rational, denominator $\prod_{0<\ell< q} \sigma_\ell(f)^{lpha_{\ell,q}}$
- $\alpha_{\ell,q} > 0$, either integer or $\frac{1}{2}$ + an integer

Danièle GARDY

Motzkin trees

 λ -terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

q unary nodes

$$S_q(z, f) = -\frac{z^{q-1}\sigma_q(f)}{2\prod_{\ell=0}^{q-1}\sigma_\ell(f)} + R_q(z, \sigma_0(f), ..., \sigma_{q-1}(f))$$

where

- $\sigma_q(f) = \sqrt{1 4(f+q)z^2}$
- R_q rational, denominator $\prod_{0 < \ell < q} \sigma_\ell(f)^{\alpha_{\ell,q}}$
- $\alpha_{\ell,q} > 0$, either integer or $\frac{1}{2}$ + an integer

$$\Rightarrow S_q(z,0) = -\frac{z^{q-1}\sqrt{1-4qz^2}}{2\prod_{\ell=0}^{q-1}\sqrt{1-4\ell z^2}} + R_q(z,1,\sqrt{1-4z^2},...,\sqrt{1-4(q-1)z^2})$$

Dominant singularities at $\pm \frac{1}{2\sqrt{a}}$ of square-root type

$$\Rightarrow [z^n] S_q(z,0) \sim rac{q^{rac{q}{2}}}{\sqrt{q!} \sqrt{2 \pi \, p^3}} (4q)^{rac{n+1-q}{2}}$$

Danièle GARDY

Enriched tree

Motzkin trees

bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms o

Concluding

λ -terms of bounded unary height

Danièle GARDY

and a facility of America

Motzkin tre

bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

The classes $\mathcal{P}^{(i,k)}$

k: maximal number of abstractions on a path from the root to a leaf

- $\mathcal{P}^{(0,k)}$: λ -terms with bound variables and unary height $\leq k$
- $\mathcal{P}^{(1,k)}$: λ -terms with bound variables, 1 kind of free variables, and unary height $\leq k-1$
- ...
- $\mathcal{P}^{(i,k)}$: λ -terms with bound variables, i kinds of free variables, and unary height $\leq k i$
- •
- $\mathcal{P}^{(k,k)}$: λ -terms with bound variables, k kinds of free variables, and no unary node

Danièle GARDY

Enriched trees

 λ -terms w

bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

The classes $\mathcal{P}^{(i,k)}$

Set up equations on generating functions $P^{(i,k)}$, solve, and take $H_{< k}(z) = P^{(0,k)}(z)$:

$$H_{\leq k} = \frac{1 - \sqrt{1 - 2z + 2z\sqrt{1 - 2z - 4z^2 + 2z\sqrt{...\sqrt{1 - 4kz^2}}}}}{2z}$$

We can start the asymptotic study of its coefficients!

Danièle GARDY

Enriched trees

MOLZKIII LI

bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

The classes $\mathcal{P}^{(i,k)}$

Set up equations on generating functions $P^{(i,k)}$, solve, and take $H_{< k}(z) = P^{(0,k)}(z)$:

$$H_{\leq k} = \frac{1 - \sqrt{1 - 2z + 2z\sqrt{1 - 2z - 4z^2 + 2z\sqrt{...\sqrt{1 - 4kz^2}}}}}{2z}$$

We can start the asymptotic study of its coefficients!

- *H*_{≤k} is algebraic and written with k + 1 iterated radicands
- Its singularities are the values that cancel its radicands
- Which radicant has smallest root? (We rank radicands from the innermost to the outermost)

Danièle GARDY

Enriched tre

Motzkin trees

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

• k = 1

$$H_{\leq 1}(z) = \frac{1 - \sqrt{1 - 2z + 2z\sqrt{1 - 4z^2}}}{2z}$$

Dominant singularity: $\rho = \frac{1}{2}$ (cancels both radicands)

$$[z^n]H_{\leq 1}(z) \sim \frac{1}{4} \frac{2^{\frac{1}{4}} 2^n n^{-\frac{5}{4}}}{\Gamma(\frac{3}{4})}$$

• k = 2

$$H_{\leq 2}(z) = \frac{1 - \sqrt{1 - 2z + 2z\sqrt{1 - 2z - 4z^2 + 2z\sqrt{1 - 8z^2}}}}{2z}$$

Dominant singularity: $\rho = 0.3437999303$ (cancels the second innermost radicand)

$$[z^n]H_{\leq 2}(z) \sim \frac{C}{\Gamma(\frac{1}{2})}n^{-\frac{3}{2}}\rho^{-n}$$

Danièle GARDY

Enriched tree

Motalin troo

\(\lambda \text{-terms with bounded } \)
number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

Where is the dominant singularity when *k* grows?

Function	Radicand	Singularity
$H_{\leq 1}$	{1,2}	0.5
$H_{\leq 1}$ $H_{\leq 2}$	2	0.3438
$H_{\leq 3}^{-}$	2	0.2760
$H_{\leq 8}$	{2,3}	0.1667
$H_{\leq 9}^{-}$	3	0.1571
$SH_{\leq 134}$	3	0.0418
<i>H</i> ≤135	{3,4}	0.0417
$H_{\leq 136}^{-}$	4	0.0415
•••		

Sometimes, the same value cancels *two* consecutive radicands.

Danièle GARDY

.

Motzkin tree

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Canaludina

Define $u_k = u_{k-1}^2 + k$ for k > 0, $u_0 = 0$

- $u_1 = 1$, $u_2 = 3$, $u_3 = 12$, $u_4 = 148$, $u_5 = 21909$, ... Doubly exponential growth: $\lim_{k \to \infty} u_k^{1/2^k} \simeq \chi = 1.36660956...$
- Set $N_k = u_k^2 u_{k-1}^2$: $N_1 = 1$, $N_2 = 8$, $N_3 = 135$, $N_4 = 21760$, $N_5 = 479982377$, ...

Theorem

i) $\exists i, k = N_i$: radicands of ranks i and (i + 1) cancel for the same value, are both dominant. Dominant singularity $\rho_{N_i} = \frac{1}{2u_i}$ is algebraic of type 1/4.

$$[z^n]H_{\leq N_i}\sim C_i n^{-5/4}\rho_i^n$$

ii) $k \in]N_i, N_{i+1}[: dominant radicand has rank i. Dominant singularity <math>\rho_k$ is algebraic of type 1/2.

$$[z^n]H_{\leq k} \sim C_k n^{-3/2} \rho_k^n$$

Danièle GARDY

Enriched trees

Motzkin trees

λ-terms with bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

λ -terms of fixed arity

Danièle GARDY

Enriched tree

Motzkin tree

\(\lambda\)-terms with bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

λ -terms of fixed arity

Two classes of closed λ -terms:

- BCI(p) (linear terms): each abstraction binds exactly p variables
- BCK(p) (affine terms): each abstraction binds at most p variables

Consider first p = 1, then generalize...

Danièle GARDY

Enriched tree

Motzkin tree

bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

BCI(1) and BCK(1)

- 1 Class of λ -terms when each abstraction binds exactly one variable: BCI(1)
 - Size is always 3n + 2
 - Bijection with triangular pointed diagrams enumerated according to the number of edges (Vidal)
 - Asymptotic equivalent $BCI(1)_{3n+2} \sim C\sqrt{n}\left(\frac{6n}{e}\right)^n$
- 2 Adapt this to get

$$BCK(1)_n \sim rac{C_1}{n^{1/6}} \left(rac{2n}{e}
ight)^{n/3} e^{rac{(2n)^{2/3}}{2} - rac{(2n)^{1/3}}{6}}$$

Enumerating
(restricted)
λ -terms

Danièle GARDY

nriched tree

Motzkin tree

bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

BCI(p)

- A BCI(p) term with j abstraction nodes has size (2p+1)j-1
- Smallest terms: j = 1; one unary node above a binary tree
- Other terms:
 - binary root, two BCI(p) terms as left and right children
 - unary root, one child with p free leaves...

... but a BCI(p) term is closed!

Danièle GARDY

Enriched tree

Motzkin trees

bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding

How do we get new, free leaves?

Danièle GARDY

Ellicied fiee

Motzkin tree:

bounded number of unary nodes

 λ -terms of bounded unary height

 λ -terms of fixed arity

Concluding

The differential operator Δ_{ρ}

- p hits
- · some edges can be hit repeatedly
- ullet different edges are hit

$$\alpha_{\ell,p} = \sum_{\sum_{i} s_{i} = \ell; \sum_{i} i s_{i} = p} {\ell \choose s_{1}! ... s_{p}!} \prod_{m=1}^{p} {2m \choose m}^{s_{m}}$$

$$\Delta_{p} = \sum_{1 \leq \ell \leq p} \frac{\alpha_{\ell,p}}{\ell!} z^{\ell+2p+1} D^{\ell}$$

Univariate generating function for BCI(p) satisfies

$$Y(z) = C_{p-1}z^{2p} + zY(z)^2 + \Delta_p Y(z)$$

Danièle GARDY

Enriched tree

Motzkin tree

 λ -terms with bounded number of unary nodes

λ-terms of bounded unary heigh

 λ -terms of fixed arity

Concluding remarks

Solving the differential equation for BCI(p), $p \ge 2$?

$$Y = C_{p-1}z^{2p} + zY^2 + \Delta_p Y$$

We cannot solve explicitly this differential equation, nor find asymptotics by singularity analysis (radius of convergence is null again)...

Enumerating (restricted) λ-terms

Sol

Danièle GARDY

Elilioned fied

 λ -terms with bounded

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

Solving the differential equation for BCI(p), $p \ge 2$?

$$Y = C_{p-1}z^{2p} + zY^2 + \Delta_p Y$$

We cannot solve explicitly this differential equation, nor find asymptotics by singularity analysis (radius of convergence is null again)...

... but we can do asymptotics for an approximate equation

$$Y = C_{p-1}z^{2p} + \frac{2C_{p-1}zY}{2} + \Delta_p Y$$

with same asymptotic behaviour!

Theorem

Asymptotic number of λ -terms of size (2p+1)n-1:

$$lpha_{p}\,eta_{p}^{n}\,n^{rac{p(p-2)}{2p+1}+np}$$

(α_p and β_p are explicit)

Danièle GARDY

Enriched trees

Motzkin trees

bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

Concluding remarks

 λ -terms wi

number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding

Varied asymptotic behaviours

- Motzkin trees
 - Number of unary nodes = q: one radical, $C_q 4^n n^{q-\frac{3}{2}}$
 - Shared unary height of leaves = k: iterated radicals; innermost radical dominates; $C_k 2^n n^{-1 \frac{1}{2^{k+1}}}$
 - Bounded unary height = k: iterated radicals, *outermost* radical dominates; $C_k \rho_k^n n^{-\frac{3}{2}}$
- 2λ -terms
 - Number of unary nodes = q: product of radicals; $C_a (4q)^{\frac{n+1-q}{2}} n^{-\frac{3}{2}}$
 - Bounded unary height = k: iterated radicals; dominant radical fluctuates
 - Standard case: $C_k n^{-\frac{3}{2}} \rho_k^n$
 - Special values: *two* dominant radicals; $C_k n^{-\frac{5}{4}} \rho_k^n$
 - Arity = p: $\alpha_p \beta_p^{n-1} n^{\frac{p(p-2)}{2p+1}} n^{np}$
 - Unrestricted terms:

$$c_1 \left(\frac{4n}{e \log n}\right)^{n/2} \frac{\sqrt{\log n}}{n} \le \lambda_n \le c_2 \left(\frac{9(1+\varepsilon)n}{e \log n}\right)^{n/2} \frac{(\log n)^{\frac{n}{2 \log n}}}{n^{3/2}}$$

Danièle GARDY

Enriched trees

Motzkin tree

λ-terms with bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

Statistical properties

- Asymptotic enumeration of other classes? of unrestricted λ-terms?
- · Number of nodes of various types?
- Unary/total height?
- Number of λ -terms in normal form?

Forbidden pattern

•

Work in progress

Danièle GARDY

Enriched trees

Motzkin trees

bounded number of unary nodes

λ-terms of bounded unary height

 λ -terms of fixed arity

Concluding remarks

Thanks for your attention