Problem Solving &

Searching Algorithms

Dat O

Artificial Intelligence: A Modern Approach

3 SOLVING PROBLEMS BY SEARCHING

Section 3:

Problem Solving

Problem Searching

Uninformed Search Algorithms

Informed Search Algorithms

Problem Solving in AI

"How to go about doing so?"

"What are the solutions?"

"Which is the best solutions?"

Problem Solving in AI

What is the problem? (Define)

What are the conditions to the problem? (Analyze)

How can we find the solution? (Identify)

What is the best solution? (Selection)

Use the solution. (Implementation)

Problem Searching

Measuring the Problem-solving performance

Completeness

Optimality

Time Complexity Space Complexity

Types of Search Algorithms

Uninformed (Blind Search)

Breadth First Search

Depth First Search

Depth Limited Search

Bidirectional Search

Informed (Heuristic Search)

Best First Search

A* Search

AO* Search

Hill Climbing

Breadth First Search

Breadth First Search

Searches breadthwise (Left-to-right)

Queue(FIFO)

Completeness (PRO)
Lots of memory (CON)

Depth First Search

Depth First Search

Searches from root node and follows each path.

Stack, Recursive

Less Memory & Time (PRO) No Guarantee (CON)

Limited Search:
Predetermined limit

Bidirectional Search Algorithm

Run two simultaneous searches.

Divided into two subgraphs until intersection

Fast, less memory (PRO) Must know goal state in advance (CON)

Best First Search Algorithm (Greedy)

Known Information

Selects path best at the time

Uses the heuristic cost, uses open/closed list

Uses both BFS and DFS (PRO)
Can be stuck (CON)

Traveling Salesman Problem Visualization (Greedy Algorithm)

https://www.youtube.com/watc
h?v=SC5CX8drAtU

A* Search **Algorithm**

Selects path best at the time

Uses the heuristic function and cost to reach the node

$$f(n) = h(n) + g(n)$$

Optimal and Complete(PRO) Does not always produce shortest path(CON)

A* Search Algorithm

A Comparison of Pathfinding Algorithms

https://youtu.be/GC-nBgi9r0U?t=72

Reviewing these 2 Types of Search Algorithms

Uniformed Search Algorithm (Blind)

No additional information about states beyond that provided in the problem definition.

Generate successors and distinguish a goal state from a non-goal state.

(Brute Force)

Informed Search Algorithm (Heuristic)

Uses problem-specific knowledge beyond the definition of the problem itself (heuristic values)

Find solutions more efficiently than can an uninformed strategy.

(Domain Knowledge)

References

Russell, S. J., Norvig, P. Chang, M.-wei. (2020) Artificial intelligence a modern approach. Pearson Education Limited.

Erickson, J. (2019). Algorithms. Jeff Erickson. Textbook

"Traveling Salesman Problem Visualization" YouTube, uploaded by n Sanity, https://www.youtube.com/watch?v=SC5CX8drAtU

"A Comparison of Pathfinding Algorithms" YouTube, uploaded by John Song, https://youtu.be/GC-nBgi9r0U?t=72