1 Infinite Computations

Theorem 1. NBA-recognizable languages are closed under complement.

Proof. Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be an NBA. We define the transition profile of a word $w \in \Sigma^*$ as a finite directed graph $\mathbf{t}(w) = (Q, E, E_F)$ with $E = \{(p,q) \in Q \times Q \mid \mathcal{A} : p \xrightarrow{w} q\}$ and $E_F = \{(p,q) \in Q \times Q \mid \mathcal{A} : p \xrightarrow{w} q\}$. Then we define $\mathrm{TP} = \{\mathbf{t}(w) \mid w \in \Sigma^*\}$ and the transition profile automaton $\mathrm{TPA}_F = (\mathrm{TP}, \Sigma, \mathbf{t}(\varepsilon), \delta_{\mathrm{TPA}}, F)$ with $\delta_{\mathrm{TPA}}(\mathbf{t}(u), a) = \mathbf{t}(ua)$.

For $t \in \text{TP}$, let $U_t = \{u \in \Sigma^+ \mid t(u) = t\}$. These sets are regular, as they are accepted by the NFA TPA_{t}.

Let $\bar{t} = t_0 t_1 \cdots \in TP^{\omega}$ be an infinite sequence of transition profiles. We call \bar{t} accepting if there are $q_1 \cdots \in Q^{\omega}$ such that every t_i has an edge (q_i, q_{i+1}) and infinitely many of these edges are labeled by F. Let $NTP = \{(t_0, t_1) \in TP \times TP \mid t_0 t_1^{\omega} \text{ is non-accepting}\}$.

Claim : $L(\mathcal{A})^{\complement} = \bigcup_{(t_0,t_1)\in \text{NTP}} U_{t_0} U_{t_1}^{\omega}$. Then one can construct an NBA for $L(\mathcal{A})^{\complement}$.

For every $\alpha \in \Sigma^{\omega}$, let $\alpha = u_0 u_1 \cdots \in (\Sigma^*)^{\omega}$ be a factorization of α into finite words and let $\bar{t} = t(u_0)t(u_1)\dots$ Then \bar{t} is accepting iff $\alpha \in L(\mathcal{A})$.

In particular, this is true for $t(u_1) = t(u_2) = \dots$, so it remains to be shown that every word α has such a factorization.

Ramsey's Theorem: Let C be a finite set, X with $|X| = \aleph_0$, $E = \{(x, y) \in X \times X \mid x \neq y\}$, and $f: E \to C$. Then there is an infinite $Y \subseteq X$ such that $|f(E \cap (Y \times Y))| = 1$.

For a $\alpha \in \Sigma^{\omega}$, let $X = \mathbb{N}$ and $C = \mathrm{TP}$. For i < j we set $f(j,i) = f(i,j) = \mathrm{t}(\alpha[i,j])$. Using Ramsey's theorem, there is an infinite $Y \subseteq \mathbb{N}$ such that $f(E \cap (Y \times Y)) = \{t\}$. Let $Y = \{i_j \mid j > 0\}$ such that $i_j < i_{j+1}$ and $i_0 := 0$. We define $u_j = \alpha[i_j, i_{j+1}]$. Then $\alpha = u_0 u_1 u_2 \ldots$ and $\mathrm{t}(u_1) = \mathrm{t}(u_2) = \ldots$

Theorem 2. For every $\varphi \in LTL$, one can construct an equivalent GBA with $\mathcal{O}(2^{|\varphi|})$ states.

Proof. Let $\operatorname{cl}(\varphi) \subseteq \operatorname{LTL}$ be the set of all sub-formulas in φ (including φ itself). We define a φ -expansion of a word $\alpha \in (\mathbb{B}^n)^\omega$ as a function $\beta : \mathbb{N} \times \operatorname{cl}(\varphi) \to \mathbb{B}$ as below. The GBA then is $\mathcal{A} = (Q, \mathbb{B}^n, q_0, \Delta, F)$.

- $Q = \{q_0\} \cup 2^{\operatorname{cl}}(\varphi)$
- $F = (F_{\psi})_{\psi \in U_{cl}}$ where $U_{cl} = \{ \psi \in cl(\varphi) \mid \psi = \psi_1 U \psi_2 \}$
- $\Delta: q_0 \stackrel{a}{\to} \Phi$ with $\varphi \in \Phi$ according to φ -expansion rules
- $\Delta: \Phi \xrightarrow{a} \Psi$ according to φ -expansion rules

 β is a φ -extension of α if it satisfies the following local conditions

- $\beta(i, p_j) = a_j$ where $\alpha(i) = (a_1, \dots, a_n)$.
- $\beta(i, \neg \psi) = 1$ iff $\beta(i, \psi) = 0$.

- $\beta(i, \psi \wedge \vartheta) = 1$ iff $\beta(i, \psi) = \beta(i, \vartheta) = 1$.
- $\beta(i, \psi \vee \vartheta) = 1$ iff $\beta(i, \psi) = 1$ or $\beta(i, \vartheta) = 1$.
- $\beta(i, X\psi) = 1 \text{ iff } \beta(i+1, \psi) = 1.$
- $\beta(i, \psi U \vartheta) = 1$ iff $\beta(i, \vartheta) = 1$ or $[\beta(i, \psi_1) = 1$ and $\beta(i+1, \psi U \vartheta) = 1]$

and the following global condition

$$\forall i \quad \beta(i, \psi U \vartheta) = 1 \rightarrow \exists k > i \ \beta(k, \vartheta) = 1$$

The local conditions are checked in the transitions of Δ . The global transition is checked by the acceptance sets F_{ψ} .

Theorem 3 (Landweber). Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ be a DMA.

- 1. L(A) is DBA-recognizable iff \mathcal{F} is closed under super loops.
- 2. L(A) is E-recognizable iff \mathcal{F} is closed under reachable loops.

Proof. .

Claim : L(A) is DBA-recognizable $\Rightarrow \mathcal{F}$ is closed under super loops.

 $L(\mathcal{A}) = \lim_{s \to \infty} (K)$ for some regular K. Let $S \subseteq S'$ be two loops with $S \in \mathcal{F}$. Let $q \in S$ and $q_0 \xrightarrow{u} q \xrightarrow{v} q \xrightarrow{w} q$. We can find i_1, i_2, \ldots such that all words $uv^{i_1}wv^{i_2}w\ldots$ have prefixes in K. Hence, the union of these words is accepted by \mathcal{A} , so $S' \in \mathcal{F}$.

Claim: \mathcal{F} is closed under super loops $\Rightarrow L(\mathcal{A})$ is DBA-recognizable.

A DBA for the language uses states $Q \times 2^Q$. It uses the first component to simulare \mathcal{A} and the second to collect visited states. As soon as the second component is in \mathcal{F} , it is reset to \emptyset . The final states are $Q \times \{\emptyset\}$.

Claim : L(A) is E-recognizable $\Rightarrow \mathcal{F}$ is closed under reachable loops.

 $L(\mathcal{A}) = K \cdot \Sigma^{\omega}$ for some regular K. Let $q_0 \stackrel{u}{\to} q \stackrel{v}{\to} q$. Then there must be a $w \sqsubset uv^{\omega}$ with $w \in K$ and $w \sqsubseteq uv^n$. Then any loop that is reachable from q must be accepting.

Claim : \mathcal{F} is closed under reachable loops $\Rightarrow L(\mathcal{A})$ is E-recognizable. One can simply use the DMA as an E automaton with $F = \bigcup \mathcal{F}$.

Theorem 4. NBAs, S1S, S1S₀, and \exists S1S have the same expressive power.

Proof. **NBA** $\Rightarrow \exists \mathbf{S1S}$ Let $\mathcal{A} = (Q, \mathbb{B}^n, 1, \Delta, F)$ be the NBA with $Q = \{1, \dots, m\}$. We encode a run of \mathcal{A} on a word with a formula.

$$\varphi_{\mathcal{A}}(X_{1}, \dots, X_{n}) = \exists Y_{1} \dots \exists Y_{m} \operatorname{Part}(\overline{Y}) \wedge Y_{1}(0) \wedge \operatorname{Trans}(\overline{X}, \overline{Y}) \wedge \operatorname{Fin}(\overline{Y})$$

$$\operatorname{Part}(Y_{1}, \dots, Y_{m}) = \forall x \left(\bigvee_{i=1}^{m} Y_{i}x \wedge \bigwedge_{i=1}^{m} \bigwedge_{j \neq i} \neg Y_{i}x \vee \neg Y_{j}x \right)$$

$$\operatorname{Trans}(\overline{X}, \overline{Y}) = \forall x \bigvee_{\tau \in \Delta} \psi_{\tau}(x, \overline{X}, \overline{Y})$$

$$\psi_{(p,a,q)}(x, X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{m}) = Y_{p}x \wedge Yq(x+1) \wedge X_{a}x$$

$$\operatorname{Fin}(Y_{1}, \dots, Y_{m}) = \forall x \exists y \left(x < y \wedge \bigvee_{q \in F} Y_{q}y \right)$$

 $\exists S1S \Rightarrow S1S$ trivial

 $S1S \Rightarrow S1S_0$ Let $\varphi \in S1S$. We define an equivalent $\varphi' \in S1S_0$ inductively.

- Boolean operators stay the same.
- $\exists x \psi(x) \mapsto \exists X_x(\operatorname{Sing}(X_x) \wedge \psi'(X_x))$
- $Xx \mapsto X_x \subseteq X$
- $x + 1 = y \mapsto \operatorname{Succ}(X_x, X_y)$

 $\mathbf{S1S_0} \Rightarrow \mathbf{NBA} \ \exists, \, \lor, \, \neg$ correspond to projection, union, and complement of automata respectively. Therefore it suffices to give NBAs for the three base formulas.

- $X_1 \subseteq X_2$: $Q = F = \{q_0\}, \ \Delta = \{(q_0, a, q_0) \mid a \neq (1 \ 0)\}.$
- Sing(X): $Q = \{q_0, q_f\}, F = \{q_f\}, \Delta = \{(q_0, 0, q_0), (q_f, 0, q_f), (q_0, 1, q_f)\}.$
- Succ(X_1, X_2): $Q = \{q_0, q_1, q_2\}, F = \{q_2\},$ $\Delta = \{(q_0, (0\ 0), q_0), (q_2, (0\ 0), q_2), (q_0, (1\ 0), q_1), (q_1, (0\ 1), q_2)\}.$

The complexity of this construction is $2 \uparrow \uparrow |\varphi|$.

Definition 1. Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be an NBA and $\alpha \in \Sigma^{\omega}$. The run tree $T(\mathcal{A}, \alpha)$ is a tree defined as follows:

- Nodes are labelled by Q.
- The root is labelled q_0 .

• For a node v with label q, let $P = \{p \in Q \mid (q, \alpha(|v|), p) \in \Delta\}$. Then v has a child labeled p for every $p \in P$.

The left-right run tree $T_{LR}(\mathcal{A}, \alpha)$ is a binary tree defined as follows:

- Nodes are labelled by 2^Q .
- The root is labelled $\{q_0\}$.
- For a node v with label P, let $P' = \{p' \in Q \mid \exists p \in P : (p, \alpha(|v|), p') \in \Delta\}$. Then v has a left child labelled $P \cap F$ and a right child labelled $P \setminus F$.

The reduced LR run tree $R(A, \alpha)$ is a binary tree defined as follows:

- 1. Let $T = T_{LR}(\mathcal{A}, \alpha)$.
- 2. For all nodes v, v' in T with labels P, P' such that v occurs on the same level left of v': label v' by $P' \setminus P$.
- 3. Remove all nodes labeled \emptyset from T.

The marked reduced LR run tree $M(A, \alpha)$ is a binary tree defiend as follows:

- The structure is the same as $R(\mathcal{A}, \alpha)$, only the labels differ. Nodes are labeled by $2^Q \times Tok \times \{red, yellow, green\} \times \{1, \ldots, |Q|\}$ where $Tok = \{t_1, \ldots, t_{|Q|}\}$ and the last component corresponds to the age of the token.
- The root is labeled $\{t_1, yellow, 1\}$. Let v_1, \ldots, v_k be nodes of layer n with labels l_1, \ldots, l_k and let s_1, \ldots, s_k be the sets of their successors. The labels of layer n + 1 are defined as follows:
 - 1. For $i \in \{1, ..., k\}$, let $s_1 \cup \cdots \cup s_i = \{u_1, ..., u_j\}$ in order from left to right. Let u be the right-most node of these successors. Move the token from l_i to u; color it yellow if $u \in s_i$ and green otherwise. If there are multiple tokens assigned to u, keep only the oldest one.
 - 2. Let T be the set of tokens that are placed on a node on level n+1 and let T' be the other tokens. Shift the ages of tokens in T so that they are all older than tokens in T'. Then move all tokens in T' to arbitrary empty nodes on this level and color them red.

Theorem 5 (McNaughton). A language is NBA-recognizable iff it is DMA-recognizable.

Proof.
$$\Leftarrow$$
 NBA with $L(\mathcal{A}) = \bigcup_{F \in \mathcal{F}} \left(\bigcap_{q \in F} L(\mathcal{A}_q) \cap \bigcap_{q \notin F} \overline{L(\mathcal{A}_q)} \right)$ where \mathcal{A}_q is \mathcal{A} starting in q .

 \Rightarrow Let \mathcal{A} be an NBA and $\alpha \in \Sigma^{\omega}$. We prove the following claims:

Claim 1: In $M(\mathcal{A}, \alpha)$, there is a token that is green infinitely often and red only finitely often $\Leftrightarrow R(\mathcal{A}, \alpha)$ has a path that branches left infinitely often.

Claim 2: $R(\mathcal{A}, \alpha)$ has a path that branches left infinitely often $\Leftrightarrow \mathcal{A}$ accepts α .

If these claims are true, then a Muller automaton with state space $(|Q|+1)^Q \times T^{\text{Tok}}$ where $T = (|Q|+1) \times |Q| \times \{r,g,y\}$ can check the correct construction from level to level in the tree. The condition for a correct token is easily formulated as a Rabin condition. The size of this automaton is $2^{\mathcal{O}(|Q| \times \log |Q|)}$.

Claim 1 Let $l \in \mathbb{N}$ be a depth in the tree at which point:

- all infinite paths have seperated
- all infinite paths that only branch left finitely often only branch right below l
- ullet all tokens that are colored red only finitely often are only colored yellow or green below l

Let v_1, \ldots, v_m be the nodes on level l in order from left to right.

 \Rightarrow Let $t \in \text{Tok}$ be a token that becomes green infinitely often and red only finitely often and let v_i be the node that t is placed on. By choice of l, t never becomes red so there must be an infinite path π that starts at some v_j left of v_i ($j \leq i$). If we choose j maximal, then t reaches π at some point; because the infinite paths are all seperated, π is unique. π is an infinitely left branching path; otherwise it would only branch right and therefore, t would only be yellow from this point on

 \Leftarrow Let v_i be a node at which a path π starts that branches left infinitely often. If there is another infinite path π' that starts right of π , let v_j be the node that it passes through; otherwise let j := m+1. Let t be the oldest token on v_1, \ldots, v_{j-1} . t never moves left of π until it is overwritten by an older token.

If j=m+1 it is clear that an overwrite can never happen. Otherwise, all older tokens right of π are "blocked" by π' and therefore also never overwrite t. Hence, t never becomes red below l. It remains to be shown that it becomes green infinitely often. Note that t at some point must reach π since it is the only infinite path in the movement zone of t. π branches left infinitely often which proves the claim.

Claim 2 \Rightarrow Let $\pi = Q_0Q_1...$ be a path in $R(\mathcal{A}, \alpha)$ that branches left infinitely often. We construct a run $q_0q_1...$ with $q_i \in Q_i$. That run must be accepting of \mathcal{A} on α .

Consider the tree T constructed from $T(\mathcal{A}, \alpha)$ in which on every level i, all nodes $q \notin Q_i$ are removed. This tree is finitely branching (as $T(\mathcal{A}, \alpha)$ was already finitely branching) but still infinite because π is infinite. By König's lemma, there is an infinite path in T with the desired constraint.

 \Leftarrow Let ρ be an accepting run of \mathcal{A} on α . Consider R' constructed from $R(\mathcal{A}, \alpha)$ in which on every level i, all nodes to the right of $\rho(i)$ are removed. The remaining nodes which contain ρ form an infinite run π . Since ρ is accepting, π branches left infinitely often.

Theorem 6. For each Muller automaton, one can construct an equivalent parity automaton. The construction preserves determinism.

Proof. Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, \mathcal{F})$ be a Muller automaton with $Q = \{q_0, \dots, q_{n-1}\}$. We define the LAR automaton $\mathcal{A}_{LAR} = (LAR(Q), \Sigma, [q_0q_1 \dots q_{n-1}, 1], \Delta_{LAR}, c_{LAR})$ as follows:

- LAR(Q) contains an ordering of Q and a so called hit-marker: $[p_1 \dots p_n, h]$ with $1 \le h \le n$. This means that the most recently seen state was p_1 which was at position h in the list before.
- $c_{\text{LAR}}([p_1 \dots p_n, h]) := \begin{cases} 2h & \text{if } P \in \mathcal{F} \\ 2h 1 & \text{if } P \notin \mathcal{F} \end{cases}$ where $P = \{p_1, \dots, p_h\}$.
- $\Delta_{\text{LAR}}: [p_1 \dots p_n, h] \xrightarrow{a} \text{up}([p_1 \dots p_n, h], p')$ for all $(p_1, a, p') \in \Delta$, where $\text{up}([p_1 \dots p_n, h], p') = [p'p_1 \dots p_{i-1}p_{i+1} \dots p_n, i]$.

Claim : Let $\rho \in Q^{\omega}$ be a run of \mathcal{A} on some word α and let $\rho' \in (LAR(Q))^{\omega}$ be the corresponding run of \mathcal{A}_{LAR} . Then in ρ' , the hit marker h is greater than $|Inf(\rho)|$ only finitely often; and the hit segment $\{p_1, \ldots, p_h\}$ equals $Inf(\rho)$ infinitely often.

Theorem 7. For each ABA, one can construct an equivalent NBA with states at most $3^{|Q|}$.

Proof. Let
$$\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$$
 be an ABA. We define $\mathcal{A}' = (\{0, 1, 2\}^Q, \Sigma, f_0, \Delta, \{0, 2\}^Q)$ with $f_0(q) = \begin{cases} 1 & \text{if } q = q_0 \\ 0 & \text{else} \end{cases}$ and Δ as described below.

A state is a function $f: Q \to \{0,1,2\}$. Consider a run-tree of \mathcal{A} on some word and all states that are "active" on one level in the tree. f(q) is 0 for all states which are not active and 1 or 2 for all others. A state is assigned to 1 by default, which just means that it is active in some path. It is assigned 2 if "recently" on all paths it is active on, a final state in F was seen. Recently means that it occurred since the last time that an entire level in the run tree was made up of final states.

Formally, we have $(f, a, g) \in \Delta$ for all $g: Q \to \{0, 1, 2\}$ which satisfy the following:

- The active states need to be passed on, i.e. for all $q \in Q$: if $f(q) \in \{1,2\}$ then there must be an $X_q \subseteq Q$ with $X_q \models \delta(q,a)$ such that $g(X_q) \subseteq \{1,2\}$.
- A state is assigned 2 if it is final, i.e. g(q) = 2 if $q \in F$.
- Otherwise, a 1 overwrites a 2 for succession, i.e. for all $p \in P$, if there is a q with f(q) = 1 and $p \in X_q$, then also g(p) = 1.
- If all states are marked with a 2, \mathcal{A}' reached a final state. We reset the values to g(p) = 2 iff $p \in F$.

2 Tree Automata

Theorem 8. Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be a TWA. There is an NTA \mathcal{A}' of size exponential in |Q| that recognizes $T(\mathcal{A})$.

Proof. Let $\sim_{T(\mathcal{A})}$ be the usual equivalence relation, i.e. $t_1 \sim_{T(\mathcal{A})} t_2$ iff $\forall s \in S_{\Sigma} : s \cdot t_1 \in T(\mathcal{A}) \leftrightarrow s \cdot t_2 \in T(\mathcal{A})$. We define a relation $\sim \subseteq T_{\Sigma} \times T_{\Sigma}$ such that $\operatorname{index}(\sim_{T(\mathcal{A})}) \leq \operatorname{index}(\sim) \leq 2^{|Q|^2 \cdot m + 1}$, where m is the maximal rank in Σ .

Let $t_0 \in T_{\Sigma}$ and $a_m \in \Sigma_m$ be arbitrary. For every $t \in T_{\Sigma}$ and $1 \leq i \leq m$, we define $t^{(i)} = a_m(t_0, t_0, \dots, t, \dots, t_0)$, meaning the *i*-th subtree below the root is *t*. Further, we define a relation $B_t^i \subseteq Q \times Q$ with $(p,q) \in B_t^i$ iff there is a run segment ρ of \mathcal{A} on $t^{(i)}$, such that the run begins at the root of *t*, never leaves that subtree until the end. Meaning, $\rho = (p,i)(q_1,iu_1)\dots(q_n,iu_n)(q,\varepsilon)$. Finally, let $t_1 \sim t_2$ iff $t_1 \in T(\mathcal{A}) \leftrightarrow t_2 \in T(\mathcal{A})$ and $\forall i : B_{t_1}^i = B_{t_2}^i$.

Idea: $(p,q) \in B_t^i$ if \mathcal{A} can enter t as i-th child with state p and after some while leaves it again with state q.

Claim : Let $t_1 \sim t_2$. Then $t_1 \sim_{T(\mathcal{A})} t_2$.

Let $s \in S_{\Sigma}$. Due to the symmetric definition of \sim , it suffices to show that $t_1 \in T(\mathcal{A})$ implies $t_2 \in T(\mathcal{A})$, so let $t_1 \in T(\mathcal{A})$. If $s = \circ$, then $s \cdot t_1 = t_1 \in T(\mathcal{A})$. By definition of \sim , this implies $s \cdot t_2 = t_2 \in T(\mathcal{A})$.

Otherwise $s \neq \infty$. Let $\rho_1 \rho_2 \rho_3$ be an accepting run of \mathcal{A} on $s \cdot t_1$ such that ρ_1 only stays outside of t_1 and ρ_2 only stays inside of t_1 . Since $B_{t_1}^i = B_{t_2}^i$, there is a run segment of \mathcal{A} on t_2 which enters and exits the tree with the same states as ρ_2 does, meaning it can replace ρ_2 in the accepting run. Repeating this procedure gives an accepting run of \mathcal{A} on $s \cdot t_2$, so $t_2 \in T(\mathcal{A})$.

Notes on the construction: each state in the NTA corresponds to a list of Q-states that \mathcal{A} had when visiting this node, together with the direction from which it was coming. That can be used to check the correctness of a run.

Theorem 9. A language of finite trees $T \subseteq T_{\Sigma}$ can be recognized by an NTA iff it can be described by a regular tree expression.

Proof. \Rightarrow Let $\mathcal{A} = (Q, \Sigma, \Delta, F)$ be an NTA for T. For $R, I \subseteq Q, q \in Q$, we define $T(R, I, q) \subseteq T_{\Sigma \cup C_R}$ (where $C_R = \{c_p \mid p \in R\}$) as the set of all trees on which \mathcal{A} has a run that only uses states in I and ends in q. We can inductively define regular expressions for T(R, I, q). Then $T(\mathcal{A}) = \bigcup_{q \in F} T(\emptyset, Q, q)$.

For all $R \subseteq Q, q \in Q$, $T(R, \emptyset, q)$ contains only trees of height 0 or 1, so it is a finite union of singular languages.

$$T(R, I \cup \{i\}, q) = T(R, I, q) + T(R \cup \{i\}, I, q) \cdot {}^{c_i} (T(R \cup \{i\}, I, i))^{*c_i} \cdot {}^{c_i} T(R, I, i)$$

 \Leftarrow Show by induction that a regular expression r can be transformed to a NTA A_r .

- If $r = t \in T_{\Sigma \cup C}$, then there is an automaton A_t with $T(A_t) = \{t\}$.
- If r = s + t, then A_r is the union automaton of A_s and A_{\square} .
- If $r = s \cdot c t$, then $A_r = (Q_s \cup Q_t, \Sigma \cup C, \Delta_r, F_s)$, where Δ_r simulates A_s and A_t but the final transitions in A_t are replaced by initial transitions to A_s .
- If $r = s^{+_c}$, let $\mathcal{A}_r = (Q_s, \Sigma \cup C, \Delta_r, F_s)$, where Δ_r simulates \mathcal{A}_s and allows "restarts" when a final state could be reached.

Theorem 10. Let D be an EDTD. We can construct a NUTA A with $T(D)^{\complement} = T(A)$ in polynomial time in |D|.

Proof. Let $D=(\Sigma',P,S^{(1)})$. For $a^{(i)}\in\Sigma'$, let $a^{(i)}\to r_{a,i}$ be the according rule in P, where $r_{a,i}$ is a regular expression that can be transformed to a DFA in polynomial time. If $b\in\Sigma$ occurs in $r_{a,i}$ then it must have a unique type j (since D is single-typed). We call $b^{(j)}$ the b-successor of $a^{(i)}$. If b does not occur in $r_{a,i}$, we say that the b-successor is b^{\perp} . Furthermore, we assume $r_{a,\perp}=\varepsilon$ for all a.

We define a typing function $f: \mathrm{dom}_t \to \{\bot, 1, \dots, k\}$. We assign $f(\varepsilon) = \begin{cases} 1 & \text{if } \mathrm{val}_t(\varepsilon) = S \\ \bot & \text{else} \end{cases}$.

For the other nodes, let u be a node with parent v. We call $\operatorname{val}_t(v) = a$ and $\operatorname{val}_t(u) = b$. Then there is a unique $i \in \{\bot, 1, \ldots, k\}$ such that $b^{(i)}$ is the b-successor of $a^{f(v)}$. We set f(u) := i.

Claim: $t \in T(D)$ iff $\forall v \in \text{dom}_t : f(v) \neq \perp$ and $a_1^{f(v)} \dots a_m^{f(v)} \in L(r_{a,f(v)})$, where $a = \text{val}_t(v)$ and $a_i = \text{val}_t(v)$. (without proof)

Using this claim, we can provide an automaton $\mathcal{A} = (Q, \Sigma, \Delta, F)$ that accepts a tree iff it violates the constraint.

- $Q = \Sigma \times \{\bot, 1, ..., k\} \times \{0, 1\}$, where the last component denotes whether a violation was found
- $\Delta = \{(L_{a,i,x}, a, (a, i, x)) \mid a \in \Sigma, i \in \{\bot, 1, \dots, k\}, x \in \{0, 1\}\}$ Let $\alpha = (a_1, i_1, x_1) \dots (a_m, i_m, x_m) \in Q^m$ and $w := a_1^{(i_1)} \dots a_m^{(i_m)} \in (\Sigma')^m$.
 - succ : \Leftrightarrow for all $1 \leq j \leq m$, $a_j^{(i_j)}$ is the a_j -successor of $a^{(i)}$.
 - $-\operatorname{sat}_0:\Leftrightarrow w\in L(r_{a,i})$ and for all $1\leq j\leq m,\, x_j=0$ and $i_j\neq \perp$.
 - $-\operatorname{sat}_1:\Leftrightarrow w\notin L(r_{a,i})$ or there is a $1\leq j\leq m$ such that $x_j=1$ or $i_j=\perp$.

Then $\alpha \in L_{a,i,x}$ iff succ and sat_x hold.

• $F = \{(S, 1, 1)\} \cup \{(a, i, x) \mid a \neq S\}$, meaning either a violation was found or the starting symbol was not S.

Theorem 11. The class of DTWA-recognizable languages is closed under complement.

Proof. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, \{q_f\})$ be a DTWA that only moves to q_f at the root. The **backwards** configuration graph BCG(\mathcal{A}, t) is defined as a tree over $Q \times \text{dom}_t$ with root (q_f, ε) . For a node (q, u), the children are all (p, v) such that $(p, v) \to_{\mathcal{A}} (q, u)$. We define $\overline{\mathcal{A}}$ in a way that it performs DFS on the BCG of the input tree and accepts iff the node (q_0, ε) is found.

For that, let $\prec \subseteq (Q \times \text{Dir})^2$ be an arbitrary linear order on $Q \times \text{Dir}$. We set $\overline{\mathcal{A}} = (\overline{Q}, \Sigma, q_0, \overline{\delta}, q_f)$ with $\overline{Q} = \{q_0, q_f\} \cup \{\langle p, (q, d) \rangle \mid p, q \in Q, d \in \text{Dir}\}$. The behavior of $\overline{\delta}$ is described below. Let $\langle q, (q', d) \rangle$ be a state.

Case 1: In the ordering \prec , (\hat{q}, \hat{d}) is the next largest element after (q', d). (for q_0 we also consider this case with the \prec -minimal pair.)

Case 2 :
$$(q',d)$$

Theorem 12. Let $T \subseteq T_{\Sigma}$. T is regular iff fcns(T) is regular.

Proof. \Rightarrow Let $\mathcal{A} = (Q, \Sigma, \Delta, F)$ be a NUTA with $T(\mathcal{A}) = T$. Wlog we assume that \mathcal{A} is normalized. For every transition $\tau = (L_{a,q}, a, q) \in \Delta$, let $\mathcal{B}_{a,q} = (P_{a,q}, Q, p_{a,q}^0, \Delta_{a,q}, F_{a,q})$ be a NFA with $L(\mathcal{B}_{a,q}) = L_{a,q}$. We define $\mathcal{A}_{fcns} = (Q_{fcns}, \Gamma, \Delta_{fcns}, F_{fcns})$ so that $T(\mathcal{A}_{fcns}) = fcns(T)$.

- $Q_{\text{fcns}} = \{q_f, q_\#\} \cup \bigcup_{a \in \Sigma, q \in Q} P_{a,q}$
- $F_{\text{fcns}} = \{q_f\}$
- $\Delta_{\rm fcns}$:
 - $-(\#,q_\#)$
 - For all $p \in \bigcup_{a \in \Sigma, q \in Q} F_{a,q}$: (#, p)
 - For all $a \in \Sigma, q \in F$: $(p_{a,q}^0, q_\#, a, q_f)$
 - For all $a \in \Sigma, p \in P, p' \in P, q \in Q$ with $(p, q', p') \in \bigcup_{b \in \Sigma, q' \in Q} \Delta_{b, q'}$: $(p_{a,q}^0, p', b, p)$

Via induction on $t_1 ldots t_n$, one can show that $p \in \Delta_{\text{fcns}}^*(\text{fcns}(t_1 ldots t_n))$ iff there are $q_1, ldots q_n \in Q$ such that $\forall i : q_i \in \Delta^*(t_i)$ and $q_1 ldots q_n \in L(\mathcal{B}_{a,q} \text{ init } p)$.

$$\Leftarrow$$
 Let $\mathcal{A} = (Q, \Sigma, \Delta, F)$ be an NTA with $T(\mathcal{A}) = \text{fcns}(T)$. We define