OBJECTIVES MAGNETISM

Торіс	Objectives
Basic Phenomena (21.1)	There are no magnetic monopoles. Explain magnetisation with elementary magnets
Describing Magnetic Fields (21.1)	Sketch magnetic fields of bar and horseshoe magnets
	Earth's magnetic field: explain declination and inclination, know typical value for the horizontal component of the field vector Explain the operational definition of a magnetic field's magnitude
Former on Channel Boutiales (Louenty)	
Force on Charged Particles (Lorentz) (21.2 – 4)	Determine the direction of the force on a moving, charged particle in a magnetic field (left hand for negative particles!)
	Explain the Hall voltage using a sketch and know its applications
	Explain how a velocity filter works, know the relation between fields and velocity
	Calculations with the Lorentz force acting as centripetal force (cyclotron radius and frequency)
	Explain how the mass of an electron can be measured
	Explain important applications (mass spectrometer, cyclotron, synchrotron)
Magnetic Force on a Current (Biot-Savart) (21.5)	Determine the direction using the right hand rule
	Calculate forces using Biot-Savart's law
	Describe important applications (dc motor, loudspeaker,)
Creating Magnetic Fields (21.7)	Calculate the field for various situations (straight wire, circular loop, solenoid,)
	Calculate the force between parallel currents
	Sketch the field of a current loop and link it to Ampère's idea of elementary magnets
	Describe two applications of coils (e.g. deflection coil in a TV tube, write/read head in a hard disk drive)
Magnetic Fields in Matter	Sketch the magnetic field in a massive object (ferro-, para- and diamagnetic materials)
	Explain the behaviour of para- and diamagnetic materials in an inhomogeneous field
	Draw and explain a hysteresis
	Know a positive and a negative example of residual magnetism
Induced emf (22.1/2)	Explain the motional emf in a wire
	Explain the formula for the generator voltage, sketch the ac signal, calculate the amplitude (22.7)
	Calculate the emf induced in a loop from the area's rate of change (also for rotation)
	Realise that a varying magnetic field can also induce an emf
	Calculate the magnetic flux in simple situations
	Draw the derivative and the integral of a graph (derive flux from emf and vice versa)

Self-Inductance and Magnetic Field En-Qualitatively describe the effect of a coil on the current in a circuit ergy (22.8)

Understand the analogy between inertia and self-inductance

Calculate the self-induced emf in simple situations Describe the current vs. time behaviour in an LR circuit

Induced Current (22.5) Calculate the induced current in a closed loop

State Lenz's law in your own words, realise that it is a direct conse-

quence of energy conservation

Determine the direction of an induced current using Lenz's law

Qualitatively explain eddy currents

Describe two applications of eddy currents

Constant VALUE

Horizontal component of Earth's magnetic $B_{\rm H} = 21 \, \mu \text{T}$

field in Zurich

Mass and charge of an electron $m_{\rm e} = 9.1 \cdot 10^{-31} \text{ kg}, e = 1.6 \cdot 10^{-19} \text{ C}$

Permeability of free space $\mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/Am}$

(typical) magnetic permeabilty of iron $\mu_{\rm r} = 5'000$