系统中有四道作业,其提交时间和运行时间如下表所示。分别用先来先服务、短作业优先调度方法、最高响应比优先法调度、轮转调度算法,完成表格的计算(开始时间、结束时间、周转时间、平均带权周转时间)。单位:小时

作业 提交时间 运行时间

1	1:00	4

- 2 2:00 2
- 3 2:30 6 4 3:00 1

先来先服务

作业	1	2	3	4
开始时间	1: 00	5:00	7:00	13:00
结束时间	5: 00	7:00	13:00	14;00
周转时间	4h	5h	10.5h	11h
带权周转时间	1	2.5	1.75	11
平均带权周转时间	4.0625			

短作业优先调度

作业	1	2	3	4
开始时间	1: 00	6:00	8:00	5:00
结束时间	5: 00	8:00	14:00	6:00
周转时间	4h	6h	11.5h	3h
带权周转时间	1	3	1.92	3
平均带权周转时间	2.23			

最高响应比优先算法

作业	1	2	3	4
开始时间	1: 00	6:00	8:00	5:00
结束时间	5: 00	8:00	14:00	6:00
周转时间	4h	6h	11.5h	3h
带权周转时间	1	3	1.92	3
平均带权周转时间	2.23			

轮转调度算法

作业	提交时间	运行时间	开始时间	结束时间
1	1:00	4	1:00	5:00
2	2:00	2	5:00	7:00
3	2:30	6	7:00	13:00
4	3:00	1	13:00	14:00

平均周转时间为: (4+5+10.5+11)/4 = 7.625 小时 平均带权周转时间为: (1+2.5+1.75+11)/4 = 4.0625 小时

— .

假设一个多级反馈队列的实现共有 4 级,各个队列的时间片长度是 1、2、4、6 秒,已知当前仅在第一级队列上有一个执行时长为 10 秒的进程,在两秒后将有一个执行时长为 8 秒的任务 A 到达,请算出任务 A 的周转时间。

在第 0 秒时,第一级队列中有一个执行时长为 10 秒的进程,它将在第 1 秒时用完时间片并被放到第二级队列中。

在第2秒时,任务A到达并被放到第一级队列中。

在第3秒时,任务A用完时间片并被放到第二级队列中。

在第4秒时,第二级队列中原来的进程用完时间片并被放到第三级队列中。

在第6秒时,任务A用完时间片并被放到第三级队列中。

在第 10 秒时,第三级队列中原来的进程用完时间片并被放到第四级队列中。

在第 14 秒时, 任务 A 用完时间片并被放到第四级队列中。

在第20秒时,任务A完成。

任务 A 的周转时间为 20 - 2 = 18 秒。

三、

简述死锁的必要条件,以及预防死锁方法与必要条件的关系。

必要条件:

互斥条件:一个资源每次只能被一个进程使用。

占有和等待条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。

不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺。循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

预防死锁的方法:

可以采用资源分配策略来避免循环等待,或者允许剥夺进程已获得的资源来避免不剥夺条件四、

1.安全, 存在安全序列 PO, P3, P4, P1, P2

2. 不能

Available = (1,6,2,2) - (1.2,2,2) = (0,4,0,0)Need = (2,3,5,6) - (1,2,2,2) = (1,1,3,4)不分配资源