Towards Weakly Supervised Object Segmentation & Scene Parsing

Yunchao Wei

IFP, Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA

Self-Erasing Network for Integral Object Attention

Qibin Hou¹, Peng-Tao Jiang¹, Yunchao Wei², Ming-Ming Cheng¹

¹College of Computer Science, Nankai University, Beijing, China

²IFP, Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA

Image Object Localization Map

Object Localization Map

Object Localization Map

Background

Weak Supervision: Lower degree (or cheaper, simper) annotations at training stage than the required outputs at the testing stage.

Weak Supervision

image-level labels

points

bounding boxes

scribbles

The Popular Pipeline

Our Target & Current Issue

Revisit Adversarial Erasing

Object Region Mining with Adversarial Erasing [Wei CVPR17]

Revisit Adversarial Erasing

Adversarial Complementary Learning [Zhang CVPR18]

Revisit Adversarial Erasing

Over Erasing: The Failure Case of Adversarial Erasing

Our Solution: Self-Erasing Network

Motivation

Image

Attention Map

Ternary Mask

Our Solution: Self-Erasing Network

Attention Map

 M_A

$$T_{A,(i,j)}=0 ext{ if } M_{A,(i,j)} \geq \delta_h$$

$$T_{A,(i,j)}=-1 ext{ if } M_{A,(i,j)}<\delta_l$$

$$T_{A,(i,j)}=1 ext{ otherwise}$$

Ternary Mask

 T_A

Our Solution: Self-Erasing Network

Framework

Experimental Results

Ours ACoL [Zhang CVPR18]

Ours ACoL [Zhang CVPR18]

Pascal VOC 2012

Methods	Publication	Supervision	mIoU (val)		mIoU (test)
	2 4044044	5 up 01 + 151011	w/o CRF	w/ CRF	w/ CRF
CCNN [25]	ICCV'15	10K weak	33.3%	35.3%	-
EM-Adapt [24]	ICCV'15	10K weak	-	38.2%	39.6%
MIL [26]	CVPR'15	700K weak	42.0%	-	-
DCSM [30]	ECCV'16	10K weak	-	44.1%	45.1%
SEC [16]	ECCV'16	10K weak	44.3%	50.7%	51.7%
AugFeed [27]	ECCV'16	10K weak + bbox	50.4%	54.3%	55.5%
STC [35]	PAMI'16	10K weak + sal	-	49.8%	51.2%
Roy et al. [28]	CVPR'17	10K weak	-	52.8%	53.7%
Oh et al. [23]	CVPR'17	10K weak + sal	51.2%	55.7%	56.7%
AE-PSL [34]	CVPR'17	10K weak + sal	-	55.0%	55.7%
Hong et al. [9]	CVPR'17	10K + video weak	-	58.1%	58.7%
WebS-i2 [14]	CVPR'17	19K weak	-	53.4%	55.3%
DCSP-VGG16 [3]	BMVC'17	10K weak + sal	56.5%	58.6%	59.2%
DCSP-ResNet101 [3]	BMVC'17	10K weak + sal	59.5%	60.8%	61.9%
TPL [15]	ICCV'17	10K weak		53.1%	53.8%
GAIN [39]	CVPR'18	10K weak + sal	-	55.3%	56.8%
SeeNet (Ours, VGG16)	-	10K weak + sal	59.9%	61.1%	60.7%
SeeNet (Ours, ResNet101)	-	10K weak + sal	62.6%	63.1%	62.8%

Experimental Results

Weakly Supervised Scene Parsing with Point-based Distance Metric Learning

Rui Qian^{1,3}, Yunchao Wei ³, Honghui Shi^{2,3}, Jiachen Li ³, Jiaying Liu¹ and Thomas Huang³

¹Institute of Computer Science and Technology, Peking University, Beijing, China

²IBM T.J. Waston Research Center, ³IFP, Beckman, UIUC

Weakly supervised methods for scene parsing

- Image-level
- Box supervision
- Scribble supervision
- Point supervision

Person Bike Tree Sky Road

Annotation Comparison

Annotation burden comparison

Method	Full	Scribble	Point
Average Anno.pixel/Image	170K	1817.48	12.26

Proposed method(1/5)

Overview

- Point-based distance metric learning(PDML)
- Point supervision(PointSup)
- Online extension supervision(ExtendSup)

Proposed method(2/5)

Point supervision

- Only calculate cross-entropy loss on annotated pixels
- Back propagate gradients accordingly
- Optimize by stochastic gradient descent

Proposed method(3/5)

Online extension supervision

- Extension method1 (region):
 - Select pixels in 5*5 square near the annotated ones
- Extension method2 (score):
 - Select pixels with score over 0.7 in the prediction
- Finally choose the intersection of two methods

■ Point-based distance metric learning

Loss function of PDML

- For each image I_a , define the embedding vector set as E_a :
 - $\blacksquare E_a = \bigcup_{i=1}^{|M_a|} \{P_{ai}\}$
 - \blacksquare $|M_a|$ is the number of annotated pixel of I_a
 - \blacksquare P_{ai} is the feature vector of *i*th pixel
- We optimize in the triplet form of $\{P_{ai}, P_{bj}, P_{bk}\}$:
 - \blacksquare P_{ai} shares the same category with P_{bj}
 - \blacksquare P_{bk} shares different category with P_{ai} , P_{bj}
- We use the loss function of :

$$L_t(P_{ai}, P_{bj}, P_{bk}) = \alpha L_p(P_{ai}, P_{bj}) + \beta L_n(P_{ai}, P_{bj}, P_{bk})$$

- $L_p(P_{ai}, P_{bj}) = ||P_{ai} P_{bj}||_2$
- $L_n(P_{ai}, P_{bj}, P_{bk}) = \max(||P_{ai} P_{bj}||_2 ||P_{ai} P_{bk}||_2 + m, 0)$
- \blacksquare α , β , m are hyper-params and are set to 0.8, 1, 20 in practice

Scene parsing datasets

- PASCAL-Context
- ADE 20K

Dataset	#Training	#Evaluation	#Instance/Image
PASCAL- Context	4998	5105	12.26
ADE20K	20210	2000	13.96

Experimental Results

Quantitative evaluation on PASCAL-Context

- The combination of three techniques is best
- We use only 0.007% annotated data but reached 75% of the full supervision performance!

Method			Metrics		
FullSup	PointSup	PDML	Online Ext.	mIoU	Pixel Acc
٧				39.6	78.6%
	٧			27.9	55.3%
	٧	٧		29.7	57.5%
	٧	٧	٧	30.0	57.6%

Experimental Results

Quantitative evaluation on ADE20K

- The combination of three techniques is best
- Our method approaches the result SegNet under full supervision scheme

Method			Metrics		
FullSup	PointSup	PDML	Online Ext.	mIoU	Pixel Acc
٧				33.9	75.8%
V (SegNet)				21.0	/
	٧			17.7	58.0%
	٧	٧		19.0	59.0%
	٧	٧	٧	19.6	61.0%

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Image

GT

PointSup

PDML

Visualization the effect of PDML

- dis(+): L2 norm distance between same-class feature vectors
- dis(-): L2 norm distance between different-class feature vectors

Ablation on the design of PDML loss function

$$L_t(P_{ai}, P_{bj}, P_{bk}) = \alpha L_p(P_{ai}, P_{bj}) + \beta L_n(P_{ai}, P_{bj}, P_{bk})$$

- Problem
 - Point-guided scene parsing
- Point-based distance metric learning
 - Exploit semantic relationship across images
- Experimental results
 - Good performance both quantitatively and qualitatively

Weakly Supervised Learning for Real-World Computer Vision Applications & The 1st Learning from Imperfect Data (LID) Challenge

CVPR 2019 Workshop, Long Beach, CA

https://lidchallenge.github.io/

Task 1Object Segmentation on ILSVRC DET (Image-level Supervision)

Task 2Scene Parsing on ADE20K (Point Supervision)

