PS Analysis 3 WS 2024/25

Übungszettel 6 (CA)

Karin Schnass ankreuzbar bis 12.11., 8:00

1. (a) Es sei $\gamma:[a,b]\to U$ eine stückweise glatte Kurve und $f:U\to\mathbb{C}$ stetig. Zeige, dass $M=\sup_{t\in[a,b]}|f(\gamma(t))|<\infty$ und dass

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le M \cdot \ell(\gamma).$$

(b) Es sei $f:[a,b]\to\mathbb{C}$ eine Abbildung. Zeige, dass f genau dann (reell) differenzierbar in t_0 ist, wenn $\mathrm{Re} f, \mathrm{Im} f:[a,b]\to\mathbb{R}$ in t_0 differenzierbar sind. Zur Erinnerung f is differenzierbar in t_0 , wenn $c\in\mathbb{C}$ existiert, sodass für alle $\varepsilon>0$ ein $\delta>0$ existiert mit

$$\left| \frac{f(t_0) - f(t)}{t_0 - t} - c \right| \le \varepsilon \qquad \forall t \in [a, b] : |t_0 - t| \le \delta.$$

Zeige, dass falls f auf [a, b] differenzierbar ist, gilt $(\operatorname{Re} f)' = \operatorname{Re}(f')$ und $(\operatorname{Im} f)' = \operatorname{Im}(f')$.

- (c) Es sei $\gamma:[a,b]\to U\subseteq\mathbb{C}$ (reell) differenzierbar mit Ableitungsfunktion $\gamma':[a,b]\to\mathbb{C}$ und $f:U\to\mathbb{C}$ komplex differenzierbar. Zeige, dass $f\circ\gamma:[a,b]\to\mathbb{C}$ (reell) differenzierbar ist und dass gilt $(f\circ\gamma)'=(f'\circ\gamma)\cdot\gamma'$.
- 2. Beweise ohne das Lemma von Goursat zu verwenden, aber mit derselben Beweisstrategie: Sei $U \neq \emptyset$ offen und $f: U \to \mathbb{C}$ komplex differenzierbar. Dann gilt für jedes abgeschlossene Quadrat (mit Innerem) $\Box \subseteq U$, und jede einfache stückweise glatte Kurve γ , die $\partial \Box$ durchläuft,

$$\int_{\partial \Box} f(z) \, \mathrm{d}z := \int_{\gamma} f(z) \, \mathrm{d}z = 0. \tag{6.1}$$

3. Beweise den Cauchy'scher Integralsatz für $0 \subseteq U$: $Sei \ U \neq \emptyset \ offen \ und \ f : U \to \mathbb{C} \ differenzierbar. \ Falls \ \{z : |z-z_0| \in [r,R]\} = \bar{B}_R(z_0) \setminus B_r(z_0) \subseteq U \ dann \ gilt \ für \ C_r = \partial B_r(z_0) \ bzw. \ C_R = \partial B_R(z_0)$

 $\oint_{C_R} f(z) \, \mathrm{d}z = \oint_{C_r} f(z) \, \mathrm{d}z.$

Hinweis:

4. Zeige (mittels partieller Integration), dass der folgende Grenzwert existiert, und berechne ihn mit derselben Strategie wie in der VO und Hilfsfunktion $f(z) = \frac{e^{iz} - 1}{z}$,

$$\lim_{R \to \infty} \int_0^R \frac{\sin(t)}{t} \, \mathrm{d}t.$$

5. Berechne mit Hilfe einer Partialbruchzerlegung und einem geeigneten Satz aus der VO für $C_1 = \bar{B}_{1/2}(0)$, $C_2 = \bar{B}_2(0)$ und $C_3 = \bar{B}_1(1)$ das folgende Integral

$$\oint_{\partial C_i} \frac{\sin(z)}{z^2 - 1} \, \mathrm{d}z.$$