MID SEM REGULAR

Q1.

SET A

Correct order should be:--

 $3\log(\log(n))$, $5\log(n^2) + 3$, $(4n)^0.5$, $2^{\log(8n)}$, $13n(\log(n))^3$, $4n(\log(n))^4$, $2n^3 + 9n + 7$, $5n^1 + 2$, 33^n+3 , $1001n^n(n/2)\log(n)$

SET B

Correct order should be:--

 $7\log(\log(n))$, $6\log(n^3) + 2$, $(3n)^0.25$, $17n(\log(n))^2$, $5n(\log(n))^3$, $4^\log(4n)$, $3n^5 + 7n + 4$, $8n^1.3 + 3$, $22^n(n-2)$, $10n^2$, $10n^3$, 10n

SET C:

correct ans should be:--

 $5\log(\log n)$, $7\log(n^5) + 9$, $(2n)^7$, $19n(\log(n))^4$, $3n(\log(n))^5$, $8^6(\log(2n))$, $9n^7 + 5n + 3$, $4n^1 + 6$, $66^6(n-6)$, 404, 404, 404, 406, 404, 406, 404, 406, 404, 406, 404, 406,

Example solution for SET C – Q1.. Similar for other sets as well.

First of all follow this order:

Constant<Logarithmic<Poly Logarithmic<Polynomial<Exponential<n! or n^n.

There are several methods to solve this. One such simple method is by looking at the terms and trying to identify the order according to the rule specified above

 $5\log(\log n)$, $7\log(n^5) + 9$ purely logarithmic so should be placed at the beginning.

Then comes $(2n)^{.75} < 19n(\log(n))^{.4}$ because the term $19n(\log(n))^{.4}$ contains $n^{.1}$ which is definite.y greater than $n^{.0.75}$ in $(2n)^{..75}$. After that $19n(\log(n))^{.4} < 3n(\log(n))^{.5}$ as both are same type of terms just the difference in power.

 $8 \cdot (\log(2n)) = (2n) \cdot (\log 8 \text{ with base 2}) = (2n) \cdot 3 \text{ which is greater than the previous term.similarly}, 9n^7 + 5n + 3 then <math>4n^17 + 6 \text{ comes in order}$. $66 \cdot (n-6) \cdot n^6 \text{ is the exponential term just like we use to have 2^n that's why it is at 2nd highest place. Last one is <math>404 \cdot n^4 \cdot (n/4) \cdot \log(n) \cdot n^6 \cdot \log(n/4)$ which is of highest order.

And hence the ordering comes out to be:

 $5\log(\log n)$, $7\log(n^5) + 9$, $(2n)^.75$, $19n(\log(n))^4$, $3n(\log(n))^5$, $8^{(\log(2n))}$, $9n^7 + 5n + 3$, $4n^1 + 6$, $66^{(n-6)}$, 404, 10g(n).

MID SEM MAKE UP

Q1.

SET A

Correct order:

 $2n^{\log(3)/\log(n)},4\log(\log n),71\log(n^2)+9$, $5n(\log n)^5$, $3n^3+8n+6$, $(\pi n)^4.5$, $(512)^{\log(8n)}$, $6n^13+5$, $44^{(n+4)}$, n^3 , $1729n^{(n/2)}\log(n)$.

SET B

correct order:

 $3\pi n \log(4)/\log(n)$, $9\log(\log n)$, $8\log(n^3)+55$, $6n(\log n)^4$, $3n^5+7n+4$, $64^{\log 4n}$, $(3n)^6.25$, $8n^1+3$, 33^n-3 , n^2 , $202n^{(n/3)}\log(n)$.

SET C

Correct order:

 $4n^{\log(5)/\log(n)}$, $\pi^{\log(\log n)}$, $7^{\log(n^5)}$ +91, $3^{\log(\log n)}$, $(128)^{\log(2n)}$, 9^{7+5n+1} , $(2n)^7$.75, 6^{17} +4, $7^{(n-7)}$ 6^{50} , $(148)^{(n)}$.

Solution for SET C Q1.. Similar for other sets as well.

First of all follow this order:

Constant<Logarithmic<Poly Logarithmic<Polynomial<Exponential<n! or n^n.

 $4n^{\log(5)/\log(n)}=20$ (constant) should be placed at the beginning among logarithmic functions the order suffice $\pi \log(\log n)$, $7\log(n^{5})+9$.

Among $3n(\log n)^5$, $(128)^\log(2n)=(2n)^7$ which is greater than $3n(\log n)^5$. Similarly u can have $9n^7+5n+1$, $(2n)^7.75$, $6n^17+4$ as the order of terms. $77^(n-7)$ $n^6=$ exponential term which has higher time complexity in comparison to polynomial.Lastly $,505n^(n/4)\log(n)$. Cuz it has the term n^n which is again more than exponential so the given order follows as:

 $4n^{\log(5)/\log(n)}$, $\pi^{\log(\log n)}$, $7\log(n^{5})+91$, $3n(\log n)^{5}$, $(128)^{\log(2n)}$, $9n^{7}+5n+1$, $(2n)^{7}$. 75, $6n^{17}+4$, $77^{(n-7)}$, n^{6} , $505n^{(n/4)}\log(n)$.