IC-PBL Activity III (MIMO Detection)

In this project, we will compare the performances of various MIMO detectors in terms of achievable sum rates and symbol error rates.

IC-PBL Activity: November 18 and November 25

(No face-to-face classes on Nov. 18 and Nov. 25)

Due date: Nov. 25, 17:00

[Simulation Environments]

- The number of transmit antennas is 4.
- The number of receiver antennas is 4.
- Random 4×4 channel matrix $\mathbf{H} = [h_{ij}]$ where h_{ij} (the (i,j)-th component of \mathbf{H}) follows a complex Gaussian distribution with zero-mean and unit variance.

Problem 1. Evaluate the achievable rates

- Plot the average achievable rates, where the average over random channel matrix H
 and random additive noise (see the slide 26 in the Lecture note 6).
- In the average, generate 1000 channel matrices for a given SNR. Also, consider the SNR range 0 ~ 20dB (with step 2 dB).
- Detection Methods:
 - I) Optimal MIMO Detector
 - 2) Zero-Forcing Detector
 - 3) MMSE Detector
 - 4) V-BLAST
- Submit your source codes, simulation results (figures), and some discussions.

Problem 2. Evaluate the symbol error rates (SER)

- **QPSK modulation** is assumed (for every antenna)
- Plot the average symbol error rate (SER), where the average over random channel matrix **H**, random input, and random additive noise
- In the average, generate 1000 channel matrices for a given SNR. Also, consider the SNR range $0 \sim 20 dB$ (with step 2 dB).
- Detection Methods
 - I) Zero-Forcing Detector
 - 2) MMSE Detector
- Submit your source codes, simulation results (figures), and some discussions.