NOM:

INTERRO DE COURS – SEMAINE 4

Exercice 1 – Une urne contient 4 boules numérotées de 1 à 4. On effectue deux tirages successifs d'une boule, **sans** remise. On note X_1 le numéro de la première boule, X_2 le numéro de la deuxième boule et Y le plus petit des deux numéros.

1. (a) Déterminer la loi du couple (X_1, X_2) (Le résultat peut être donné sous forme de tableau.)

Solution : Tout d'abord, $X_1(\Omega) = X_2(\Omega) = [1,4]$. Par ailleurs, le tirage s'effectuant sans remise, $\forall i \in [1,4]$, $P(X_1 = i, X_2 = i) = 0$. De plus, par la formule des probabilités composées,

$$\forall (i,j) \in [1,4]^2 \text{ avec } i \neq j, \quad P(X_1 = i, X_2 = j) = P(X_1 = i) P_{[X_1 = i]}(X_2 = j) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$$

Je résume tout cela dans le tableau suivant :

	$X_2 = 1$	$X_2 = 2$	$X_2 = 3$	$X_2 = 4$
$X_1 = 1$	0	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$
$X_1 = 2$	$\frac{1}{12}$	0	$\frac{1}{12}$	$\frac{1}{12}$
$X_1 = 3$	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{12}$
$X_1 = 4$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0

(b) En déduire la loi de X_1 .

Solution : Pour obtenir la loi de X_1 , il me suffit de faire la somme des probabilités de chaque ligne. J'obtiens

$$\forall i \in [1, 4], \quad P(X_1 = i) = 3 \times \frac{1}{12} = \frac{3}{12} = \frac{1}{4}.$$

Je résume tout cela dans le tableau suivant :

x	1	2	3	4
$P(X_1 = x)$	1	1	1	1
	4	4	4	4

2. (a) Déterminer la loi du couple (X_1, Y) .

Solution : Comme Y désigne le plus petit des deux numéros obtenus,

$$\forall 1 \le i < j \le 4$$
, $P(X_1 = i, Y = j) = 0$.

De même,

$$\forall 1 \leqslant j < i \leqslant 4, \quad P(X_1 = i, Y = j) = P(X_1 = i, X_2 = j) = \frac{1}{12}.$$

Enfin, comme le tirage s'effectue sans remise,

$$P(X_1 = 1, Y = 1) = P(X_1 = 1, X_2 = 2) + P(X_1 = 1, X_2 = 3) + P(X_1 = 1, X_2 = 4)$$

$$= \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{3}{12} = \frac{1}{4},$$

$$P(X_1 = 2, Y = 2) = P(X_1 = 2, X_2 = 3) + P(X_1 = 2, X_2 = 4)$$

$$= \frac{1}{12} + \frac{1}{12} = \frac{2}{12} = \frac{1}{6},$$

$$P(X_1 = 3, Y = 3) = P(X_1 = 3, X_2 = 4) = \frac{1}{12},$$

$$P(X_1 = 4, Y = 4) = 0.$$

Je résume tout cela dans le tableau suivant :

	Y = 1	Y = 2	Y = 3	Y = 4
$X_1 = 1$	$\frac{1}{4}$	0	0	0
$X_1 = 2$	$\frac{1}{12}$	$\frac{1}{6}$	0	0
$X_1 = 3$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0
$X_1 = 4$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0

(b) En déduire la loi de Y.

Solution : Pour obtenir la loi de Y, il me suffit de faire la somme des probabilités de chaque colonne. J'obtiens :

у	1	2	3	4
P(Y=y)	1	1	1	0
	$\overline{2}$	3	$\frac{-}{6}$	

3. Donner la loi de X_1 sachant [Y = 1].

Solution:

$$P_{[Y=1]}(X_1 = 1) = \frac{P(X_1 = 1, Y = 1)}{P(Y = 1)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2},$$

$$P_{[Y=1]}(X_1 = 2) = \frac{P(X_1 = 2, Y = 1)}{P(Y = 1)} = \frac{\frac{1}{12}}{\frac{1}{2}} = \frac{1}{6},$$

$$P_{[Y=1]}(X_1 = 3) = \frac{P(X_1 = 3, Y = 1)}{P(Y = 1)} = \frac{\frac{1}{12}}{\frac{1}{2}} = \frac{1}{6},$$

$$P_{[Y=1]}(X_1 = 4) = \frac{P(X_1 = 4, Y = 1)}{P(Y = 1)} = \frac{\frac{1}{12}}{\frac{1}{2}} = \frac{1}{6},$$

ce que je peux résumer dans le tableau suivant :

x	1	2	3	4
D (II)	1	1	1	1
$P_{[Y=1]}(X_1=x)$	$\frac{1}{2}$	$\frac{-}{6}$	$\frac{1}{6}$	$\frac{-}{6}$