

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE41L/ETE141L

Lab 2: KCL, Current Divider Rule with Parallel and Ladder Circuit

Objectives

- Learn how to connect a parallel circuit on a breadboard.
- Validate the current divider rules.
- Verify Kirchhoff's current law.
- Verify KCL and KVL in ladder circuit.

List of Components:

- Trainer board
- Resistors (1K, 3.3 K Ω , 4.7 K Ω , 5.6K, 10K)
- Digital Multimeter (DMM)
- Connecting Wire

Theory:

Kirchhoff's Current Law: Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

$$\sum_{n=1}^{N} i_n = 0$$

Mathematically, KCL implies that $\sum_{n=1}^{N} i_n = 0$ Where, N is the number of branches connected to the node and i_n is the nth current entering (or leaving) the

An alternative form of KCL: The sum of the currents entering a node is equal to the sum of the currents leaving the node.

Figure.1 Currents at a node illustrating KCL

From the above figure we see that, currents i_1 , i_3 , and i_4 are entering the node, while currents i_2 and i_5 are leaving it. By applying KCL we get,

$$i_1 + i_3 + i_4 = i_2 + i_5$$

Current Division Rule: The total current i is shared by the resistors in inverse proportion to their resistances. This is known as the principle of current division, and the circuit in Figure. 2 is known as a current divider.

Figure.2 Two resistors in parallel

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE41L/ETE141L

$$i_1 = \frac{R_2 i}{R_1 + R_2}, \qquad i_2 = \frac{R_1 i}{R_1 + R_2}$$

For three resistors in parallel:

Figure.3 Three resistors in parallel

$$egin{aligned} R_{eq} &= \left[rac{1}{rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_3}}
ight] \ I_{R1} &= rac{R_{eq}}{R_1} imes I_T \ I_{R2} &= rac{R_{eq}}{R_2} imes I_T \ I_{R3} &= rac{R_{eq}}{R_3} imes I_T \end{aligned}$$

Ladder Circuit: The ladder circuit represents a commonly used circuit style that is configured purely on the basis of series and parallel connections.

Figure.4 A three section ladder circuit

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE41L/ETE141L

Circuit Diagram:

Procedure:

- 1. Identify all the given resistors using color coding and fill in the required columns in Table 1.
- 2. Measure the resistances of the resistors using the DMM and fill in the required column in Table 1.
- 3. Calculate the percentage error of the resistance values.
- 4. Percentage Error = |(Practical value Theoretical value)| / Theoretical value
- 5. Build the circuit 1
- 6. Using the DMM, measure the currents $I_{s_1}I_{1_2}I_{2_1}$ and I_{3_2} . Record the readings in Table 2.
- 7. Fill in Table 3.
- 8. Now, disconnect the voltage source from the circuit and measure the total load resistance, Req of the circuit using DMM. Note down values in Table 4.
- 9. Construct Circuit 2.
- 10. Using a DMM, measure the potential differences across all the resistors in circuit 2. Record all the readings in Table 5
- 11. Using a DMM, measure the current through all the resistors and record in Table 5.

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE41L/ETE141L

Data Collection Lab 2		
Group No		
T 11 4		

Table 1:

	Resistance using colour coding					
Band 1	Band 2	Band 3	Band 4	Resistance ± tol	Resistance using DMM	% Error

Table 2:

	Experiment	al readings			Theoretic	cal values	
I_S	I_{R1}	I_{R2}	I_{R3}	I_{S}	I_{R1}	I_{R2}	I_{R3}
			% I	Error			
	I_{S}	$I_{\rm R}$	R1	I	R2	$I_{\rm F}$	13

Table 3:

I_S	Is Total Current equal to sum individual current?
Sum of individual Current $(I_{R1} + I_{R1} + I_{R3})$	

Table 4:

		T
Experimental Req	Theoretical Req	% Error
	-	

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE41L/ETE141L

Table 5:

Component	Voltage	Current
E		
R1		
R2		
R3		
R4		
R5		
R6		

Questions:

- 1. State the current division rule.
- 2. State the Kirchhoff's current law (KCL).
- 3. With the experimental data, verify Kirchhoff's voltage law within each independent closed loop of the circuit.
- 4. With the experimental data, verify Kirchhoff's current law at nodes a and b of the circuit.
- 5. Showing all steps, calculate the theoretical values in Table 2. Compare theoretical values to your experimental values and explain whether your circuit follows KCL or not.
- 6. Showing all the steps, theoretically calculate Req. Compare with the experimental value.
- 7. Calculate all the theoretical values for Table 5. Show all steps.

Useful Formula:

% Error = (Theoretical value – Experimental Value) / Theoretical Value