Examen (01/06/2015) – 1h30 UV Modélisation Partie - Problèmes inverses

Documents autorisés, barème indicatif.

Exercice 1 - Convexité et solutions

On s'intéresse au problème d'optimisation suivant :

$$\min_{x \in \mathbb{R}^n} f(x).$$

1. Pour commencer, on suppose que $f: \mathbb{R}^n \to \mathbb{R}$ est une fonction convexe. Est-ce que ce problème admet toujours une solution? Si oui, justifier, si non, donner un contre-exemple.

Non ce problème n'admet pas forcément de solution. Prendre par exemple f(x) = x: le "minimum" s'il existait se trouverait en $-\infty$.

2. Est-ce que ce lorsqu'une solution existe, ce problème admet une solution unique? Si oui, justifier, si non, donner un contre-exemple.

Non pas forcément. Par exemple, la fonction définie par :

$$f(x) = \begin{cases} |x| - 1 & \text{si } |x| > 1 \\ 0 & \text{sinon} \end{cases}$$

admet pour minimiseurs l'intervalle [-1, 1].

3. On suppose maintenant f strictement convexe. Est-ce que ce problème admet toujours une solution? Si oui, justifier, si non, donner un contre-exemple.

Non. Par exemple, la fonction définie sur $[0, +\infty[$ par f(x) = 1/x est strictement convexe, mais elle n'admet pas de minimiseur.

4. Est-ce que lorsqu'une solution existe elle est unique? Si oui, justifier, si non, donner un contre-exemple.

Cette fois si oui. On ne demandait pas de justifier. Une façon de le faire dans le cas où f est C^2 est de noter x^* un minimiseur. On a $\nabla f(x^*) = 0$ et $H_f(x) > 0, \forall x \in \mathbb{R}^n$. Ainsi, pour $x \neq x^*$, on peut utiliser une formule de Taylor multi-dimensionnelle avec reste intégral :

$$f(x) = f(x^*) + \int_{t=0}^{1} \langle \nabla f(x^* + t(x - x^*)), x - x^* \rangle dt$$

$$= f(x^*) + \int_{t=0}^{1} \langle \nabla f(x^* + t(x - x^*)) - \nabla f(x^*), x - x^* \rangle dt$$

$$= f(x^*) + \underbrace{\int_{t=0}^{1} t \left\langle \int_{s=0}^{1} \langle H_f(x^* + s(x^* + t(x - x^*)))(x - x^*), (x - x^*) \right\rangle ds dt}_{>0}$$

$$> f(x^*).$$

Ainsi x^* est bien minimiseur unique.

5. On pose maintenant $f(x) = \frac{1}{2} ||Ax - b||_2^2$ où $A \in \mathbb{R}^{m \times n}$ et $b \in \mathbb{R}^m$. Est-ce que f est convexe (ne pas justifier)?

Oui c'est un résultat de cours.

6. Est-ce que f est strictement convexe? Justifier en deux mots.

Non, pas si $ker(A) \neq \{0\}$.

7. Est-ce qu'elle admet un minimiseur? Justifier en deux mots.

Oui (voir cours).

8. Est-ce qu'elle admet un minimiseur unique? Justifier en deux mots. Non, pas si $ker(A) \neq \{0\}$.

Exercice 2 - Pseudo-inverse et projections orthogonales

Note: dans cet exercice, vous pouvez résoudre les questions 4, 5, 6, même si vous n'avez pas répondu aux questions 1, 2 et/ou 3. Soit $A \in \mathbb{R}^{m \times n}$ une matrice ayant une SVD de la forme $A = U \Sigma V^T$ où $U \in \mathbb{R}^{m \times m}$ et $V \in \mathbb{R}^{n \times n}$ sont deux matrices orthogonales et $\Sigma \in \mathbb{R}^{m \times n}$ est une matrice de la forme:

$$\Sigma = \begin{pmatrix} \Sigma_r & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{pmatrix} \quad avec \quad \Sigma_r = \begin{pmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \dots & 0 \\ 0 & 0 & \dots & \dots & \sigma_r \end{pmatrix}.$$

On note $u_i \in \mathbb{R}^m$ la i-ème colonne de U et $v_i \in \mathbb{R}^n$ la i-ème colonne de V. On rappelle qu'une manière de définir la pseudo-inverse A^+ de A est :

$$A^+ = V \Sigma^+ U^T \qquad o\grave{u} \qquad \Sigma^+ = \begin{pmatrix} \Sigma_r^{-1} & 0_{r,m-r} \\ 0_{n-r,r} & 0_{n-r,m-r} \end{pmatrix}.$$

1. Soit $P = AA^+$. Montrez que P est une matrice de projection orthogonale, c'est-à-dire que $P^2 = P$ (idempotence) et $P^* = P$ (symétrie hermitienne).

On a $P = U\Sigma\Sigma^+U^T$. De plus $\Sigma\Sigma^+ \in \mathbb{R}^{n\times n}$ est une matrice diagonale contenant seulement des 1 ou des 0 sur sa diagonale. Ainsi

$$P^{2} = U(\Sigma \Sigma^{+})^{*}(\Sigma \Sigma^{+})U^{T}$$
$$= U(\Sigma \Sigma^{+})U^{T}$$
$$= P.$$

De même pour $P^* = P$.

2. Le but de cette question est de montrer que l'espace de projection est Im(A). Rappeler comment définir Im(A) en fonction des vecteurs u_i et/ou v_i .

On a $Im(A) = vect(\{u_1, \dots, u_r\})$ (voir cours).

3. Soit $y \in \mathbb{R}^m$. Montrez que le vecteur w = y - Py est orthogonal à Im(A) et conclure.

On décompose y dans la base (u_i) . Ainsi $y = \sum_{i=1}^m \alpha_i u_i$ avec $\alpha_i = \langle y, u_i \rangle$. On note α le vecteur $(\alpha_1, ..., \alpha_m)$. Ainsi, on a

$$Py = U(\Sigma \Sigma^{+})\alpha$$
$$= \sum_{i=1}^{r} \alpha_{i} u_{i}$$

et

$$y - Py = \sum_{i=r+1}^{m} \alpha_i u_i.$$

Ce vecteur est bien orthogonal à $Im(A) = vect(\{u_1, \dots, u_r\})$.

4. Nous concluons par une application numérique. Soit $\theta \in \mathbb{R}$ et

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

Déterminez une SVD de A.

Plein de possibilités. Par exemple, poser

$$U = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad V = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

5. Que vaut Im(A)?

On a
$$Im(A) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}, x_1 \in \mathbb{R}, x_2 \in \mathbb{R} \right\}.$$

6. Vérifiez que $P = AA^+$ est bien l'opérateur de projection orthogonale sur Im(A).

On a

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

qui correspond bien à un projecteur sur Im(A) (il annule la dernière composante de y).