Source Coding using Typical Sets

The concept of typical sets is useful for designing codes for a source P_X . Instead of encoding the source symbol-by-symbol, we will encode the source symbols in blocks of n symbols at a time.

This strategy can be used to design either a lossy or a lossless code. For a lossy code, we notice that with overwhelming probability, a sequence of n iid samples from P_X is typical, so it suffices to assign binary labels of length (at most) $\lceil n(H(X)+\epsilon) \rceil \text{ to the elements of } A_\epsilon^{(n)}, \text{ and assign some constant (dummy)}$ codeword to all elements outside of the set. Decoding this dummy codeword will result in an error (data loss), but this error occurs with probability at most ϵ .

The above scheme can be extended to a lossless version by assigning longer labels to the elements outside of $A_{\epsilon}^{(n)}$, for example binary labels of length $\lceil \log |\mathcal{X}|^n \rceil = \lceil n \log |\mathcal{X}| \rceil$. An extra 'flag' bit is needed to indicate whether the element is inside or outside the typical set. For large enough n, this code is quite efficient:

Theorem

Let X_1,\ldots,X_n be i.i.d. real random variables with respect to the set \mathcal{X} , and distributed according to P_X . Let $\epsilon>0$. Then there exists a lossless code $\mathcal{X}^n \to \{0,1\}^*$ such that, for sufficiently large n, $\mathbb{E}[\frac{1}{n}\ell(X^n)] \leq H(X) + \epsilon$.

Proof

Consider the code described above: the code consist of a flag bit (indicating whether or not the element is inside the typical set), followed by either a short label (for elements in the typical set) or a longer one (for elements outside of it). Let $\epsilon'>0$ (we will specify the value of ϵ' later). Let n be large enough such that $P[A_{\epsilon'}^{(n)}]>1-\epsilon'$ (see the second property of typical sets). Then

created: 2019-10-21

Source Coding using Typical Sets | Information Theory

$$egin{aligned} \mathbb{E}[\ell(X^n)] &= \sum_{ec{x} \in \mathcal{X}^n} P_{X^n}(ec{x}) \ell(ec{x}) \ &= \sum_{ec{x} \in A_{\epsilon'}^{(n)}} P_{X^n}(ec{x}) \ell(ec{x}) + \sum_{ec{x}
otin A_{\epsilon'}^{(n)}} P_{X^n}(ec{x}) \ell(ec{x}) \ &\leq P[A_{\epsilon'}^{(n)}] \cdot (\lceil n(H(X) + \epsilon') \rceil + 1) + P[\overline{A_{\epsilon'}^{(n)}}] \cdot (\lceil n \log |\mathcal{X}| \rceil + 1) \ &\leq P[A_{\epsilon'}^{(n)}] \cdot (n(H(X) + \epsilon') + 2) + P[\overline{A_{\epsilon'}^{(n)}}] \cdot (n \log |\mathcal{X}| + 2) \ &\leq n(H(X) + \epsilon') + \epsilon' \cdot n \log |\mathcal{X}| + 2 \ &= n(H(X) + \epsilon), \end{aligned}$$

where $\epsilon = \epsilon' + \epsilon' \log |\mathcal{X}| + \frac{2}{n}$ (note that ϵ can be made arbitrarily small by choosing ϵ' and n wisely). The +1 in the first inequality is a consequence of the 'flag' bit.

For large enough blocks of symbols, the flag bit becomes irrelevant. Typical sets thus allow the construction of an efficient code without the 1 bit of overhead that symbol codes may necessarily have. However, this efficiency is only guaranteed for 'sufficiently large n', a rather theoretical condition that may not be achievable in practice.

We conclude this chapter by showing that the typical set is in a sense 'optimal', i.e. that picking a smaller set instead of the typical set does not allow for much shorter codewords on average in a lossy setting, not even if we allow rather large error probabilities by allowing about half of the elements to lie outside of the typical set.

Let $B_{\delta}^{(n)}$ denote the smallest subset of \mathcal{X}^n such that $P[B_{\delta}^{(n)}] > 1 - \delta$ (for some parameter $\delta > 0$). $B_{\delta}^{(n)}$ can be explicitly constructed by, for example, ordering \mathcal{X}^n in order of decreasing probability, and adding elements to $B_{\delta}^{(n)}$ until the probability threshold of $1 - \delta$ is reached. The following theorem states that even for large values of δ , we still need almost nH(X) bits to denote an element from $B_{\delta}^{(n)}$.

Theorem

Let X_1,\ldots,X_n be i.i.d. random variables distributed according to P_X . For any $\delta<\frac12$, and any $\delta'>0$, if $P[B^{(n)}_\delta]>1-\delta$, then

$$rac{1}{n} \log |B_{\delta}^{(n)}| > H(X) - \delta',$$

for sufficiently large n.

Proof

created: 2019-10-21

Source Coding using Typical Sets | Information Theory

Let $\delta,\epsilon<\frac{1}{2}$, and consider some $B_{\delta}^{(n)}$ such that $P[B_{\delta}^{(n)}]>1-\delta.$ By the second property of typical sets, $P[A_{\epsilon}^{(n)}]>1-\epsilon$, for large enough n. Thus, by the union bound,

$$\begin{split} 1 - \epsilon - \delta &< 1 - P[\overline{A_{\epsilon}^{(n)}}] - P[\overline{B_{\delta}^{(n)}}] \\ &\leq 1 - P[\overline{A_{\epsilon}^{(n)}} \cup \overline{B_{\delta}^{(n)}}] \\ &= P[A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}] \\ &= \sum_{\vec{x} \in A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} P_{X^{n}}(\vec{x}) \\ &\leq \sum_{\vec{x} \in A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}} 2^{-n(H(X) - \epsilon)} \\ &= |A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}| \cdot 2^{-n(H(X) - \epsilon)} \\ &\leq |B_{\delta}^{(n)}| \cdot 2^{-n(H(X) - \epsilon)}. \end{split}$$

Rearranging this expression and taking the logarithm, we get

$$H(X) - \epsilon + rac{1}{n} \mathrm{log}(1 - \epsilon - \delta) < rac{1}{n} \mathrm{log}|B_{\delta}^{(n)}|.$$

If we now set $\delta' := \epsilon - \frac{1}{n} \log(1 - \epsilon - \delta)$, then

$$H(X) - \delta' < rac{1}{n} \log |B_\delta^{(n)}|,$$

as desired. Observe that we can make the expression for δ' as small as desired by choosing a small enough $\epsilon>0$ and a large enough n, even if δ is rather large.

created: 2019-10-21