

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner of Patents and Trademarks,
- 1 - Alexandria, VA 22313-1450.

Karen S. Lockhart

(Name of person mailing paper or fee)

Signature of person mailing paper or fee

Process for the preparation of pesticides

The invention relates to a process for the preparation of compounds of the formula

and, where appropriate, their tautomers, in each case in the free form or salt form, in which either

X is CH or N, Y is OR₁ and Z is O,

or

X is N, Y is NHR₈ and Z is O, S or S(=O);

R₁ is C₁-C₄alkyl;

R₂ is H, C₁-C₄alkyl, halogeno-C₁-C₄alkyl, C₃-C₆cycloalkyl or C₁-C₄alkoxymethyl;

R₃ and R₄ independently of one another are H, C₁-C₄alkyl, C₁-C₄alkoxy, OH, CN, NO₂, a (C₁-C₄alkyl)₃-Si group, where the alkyl groups can be identical or different, halogen, (C₁-C₄alkyl)S(=O)_m, (halogeno-C₁-C₄alkyl)S(=O)_m, halogeno-C₁-C₄alkyl or halogeno-C₁-C₄alkoxy;

R₅ is C₁-C₆alkyl, halogeno-C₁-C₆alkyl, C₁-C₆alkoxy, halogeno-C₁-C₆alkoxy, C₁-C₆-alkylthio, halogeno-C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, halogeno-C₁-C₆-alkylsulfinyl, C₁-C₆alkyl-sulfonyl, halogeno-C₁-C₆alkylsulfonyl, C₁-C₆alkoxy-C₁-C₆alkyl, halogeno-C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkylthio-C₁-C₆alkyl, halogeno-C₁-C₆alkylthio-C₁-C₆alkyl, C₁-C₆alkyl-sulfinyl-C₁-C₆alkyl, halogeno-C₁-C₆-alkylsulfinyl-C₁-C₆alkyl, C₁-C₆-alkylsulfonyl-C₁-C₆alkyl, halogeno-C₁-C₆-alkylsulfonyl-C₁-C₆alkyl, C₁-C₆-alkylcarbonyl, halogeno-C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, halogeno-C₁-C₆-alkoxycarbonyl, C₁-C₆-alkylaminocarbonyl, C₁-C₄-alkoxyiminomethyl; di(C₁-C₆alkyl)-aminocarbonyl, where the alkyl groups can be identical or different; C₁-C₆-alkylaminothiocarbonyl; di(C₁-C₆alkyl)-aminothiocarbonyl, where the alkyl groups can be identical or different; C₁-C₆-alkyl-amino, di(C₁-C₆alkyl)-amino, where the alkyl groups can be identical or different; halogen, NO₂, CN, SF₅, thioamido, thiocyanatomethyl; an unsubstituted or mono- to tetrasubstituted C₁-C₄alkylenedioxy group, where the substituents are selected from the

group consisting of C₁-C₄alkyl and halogen; or QR₆, where, if n is greater than 1, the radicals R₅ can be identical or different;

R₆ is C₂-C₆alkenyl or C₂-C₆ alkynyl which are unsubstituted or substituted by 1 to 3 halogen atoms; (C₁-C₄alkyl)₃Si, where the alkyl groups can be identical or different; CN; or an unsubstituted or mono- to pentasubstituted C₃-C₆cycloalkyl, aryl or heterocyclyl group, where the substituents are selected from the group consisting of halogen, C₁-C₆alkyl, halogeno-C₁-C₆alkyl, C₁-C₆alkoxy, halogeno-C₁-C₆alkoxy, phenoxy, naphthoxy and CN;

A either is a direct bond, C₁-C₁₀alkylene, -C(=O)-, -C(=S)- or halogeno-C₁-C₁₀alkylene and R₇ is a radical R₁₀,
or is C₁-C₁₀alkylene, -C(=O)-, -C(=S)- or halogeno-C₁-C₁₀alkylene and R₇ is OR₁₀, N(R₁₀)₂, where the radicals R₁₀ can be identical or different, or -S(=O)_qR₁₀;

R₈ is H or C₁-C₄alkyl;

R₉ is methyl, fluoromethyl or difluoromethyl;

R₁₀ is H; an unsubstituted or substituted C₁-C₆alkyl, C₂-C₆alkenyl or C₂-C₆alkynyl group, where the substituents are selected from the group consisting of halogen; (C₁-C₄alkyl)₃Si, where the alkyl groups can be identical or different; C₃-C₆cyclo-alkyl, which is unsubstituted or substituted by halogen; C₁-C₆alkoxycarbonyl, which is unsubstituted or substituted by halogen; unsubstituted or substituted aryl, where the substituents are selected from the group consisting of halogen, halogeno-C₁-C₄alkyl and CN; a (C₁-C₄alkyl)₃Si group, where the alkyl groups can be identical or different; C₃-C₆cycloalkyl, which is unsubstituted or substituted by halogen; C₁-C₆alkoxycarbonyl which is unsubstituted or substituted by halogen; or an unsubstituted or substituted aryl or heterocyclyl group, where the substituents are selected from the group consisting of halogen and halogeno-C₁-C₄alkyl;

Q is a direct bond, C₁-C₆alkylene, C₂-C₆alkenylene, C₂-C₆alkynylene, O, O(C₁-C₆alkylene), (C₁-C₆alkylene)O, S(=O)_p, S(=O)_p(C₁-C₆alkylene) or (C₁-C₆alkylene)S(=O)_p;

m is 0, 1 or 2;

n is 0, 1, 2, 3, 4 or 5;

p is 0, 1 or 2; and

q is 0, 1 or 2,

and the C=N double bond marked with E has the E configuration,

which comprises

a1) reacting either a compound of the formula

in which A, R₂, R₅, R₇ and n are as defined for formula I and the C=N double bond marked with E has the E configuration, or a tautomer thereof, in each case in the free form or in salt form, if appropriate in the presence of a base, with a compound of the formula

which is known or can be prepared by methods known per se and
in which X, Y, Z, R₃, R₄ and R₉ are as defined for formula I and X₁ is a leaving group,
or a tautomer thereof, in each case in the free form or in salt form, or
a2) reacting a compound of the formula

in which A, R₂, R₅, R₇ and n are as defined for formula I and the C=N double bond marked with E has the E configuration, or a tautomer thereof, in each case in the free form or in the salt form, if appropriate in the presence of a base, with a compound of the formula

which is known or can be prepared by methods known per se and
in which X, Y, Z, R₃, R₄ and R₅ are as defined for formula I, or a tautomer thereof, in each
case in the free form or in salt form, or

b1) reacting a compound of the formula

in which R₂, R₅ and n are as defined for formula I and the C=N double bond marked with E
has the E configuration, or a tautomer thereof, in each case in the free form or in salt form,
if appropriate in the presence of a base, with a compound of the formula

which is known or can be prepared by methods known per se and
in which A and R₇ are as defined for formula I and X₂ is a leaving group, and either further
reacting the compound thus obtainable, of the formula IV, for example according to method
a2), or

b2) reacting it with hydroxylamine or a salt thereof, if appropriate in the presence of a base
or acid catalyst, and further reacting the compound thus obtainable, of the formula II, for
example according to method a1), or

c) reacting a compound of the formula

which is known or can be prepared by methods known per se and
in which R₂, R₅ and n are as defined for formula I, or a tautomer thereof, in each case in the
free form or in salt form, if appropriate in the presence of a base, with a C₁-C₆alkyl nitrite,
and further reacting the compound thus obtainable, of the formula VI, for example
according to method b),

the E isomers of the compounds of the formulae II, IV and VI, or a tautomer thereof, in each
case in the free form or in salt form, a process for their preparation and their use for the
preparation of compounds of the formula I.

The compounds of the formula I are known pesticides. The processes known to date for their preparation give mixtures of E and Z isomers in respect of the C=N double bond marked with E in formula I of different composition, depending on the process. Since the biological properties of the E isomers are in each case found to be superior to those of the mixtures and of the Z isomers, there is a need to develop preparation processes for compounds of the formula I having the isomerically pure E configuration. This object is achieved by the preparation process according to the invention.

Unless defined differently, the general terms used above and below are defined as follows. Carbon-containing groups and compounds in each case contain 1 up to and including 8, preferably 1 up to and including 6, in particular 1 up to and including 4, especially 1 or 2, carbon atoms.

Alkyl - as a group per se and as a structural element of other groups and compounds, such as of halogenoalkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylcarbonyl, alkoxy carbonyl, halogenoalkoxy carbonyl, alkylaminocarbonyl, alkoxyiminomethyl, alkylaminothiocarbonyl and alkylamino - is, in each case taking into due consideration the number, included from case to case, of carbon atoms contained in the corresponding group or compound, either straight-chain, i.e. methyl, ethyl, propyl, butyl, pentyl or hexyl, or branched, for example isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl or isohexyl.

Alkenyl - as a group per se and as a structural element of other groups and compounds, such as of halogenoalkenyl - is, in each case under due consideration of the number, included from case to case, of carbon atoms contained in the corresponding group or compound, either straight-chain, for example vinyl, 1-methylvinyl, allyl, 1-but enyl or 2-hexenyl, or branched, for example iso-propenyl.

Alkynyl - as a group per se and as a structural element of other groups and compounds, such as of halogenoalkynyl - is, in each case under due consideration of the number, included from case to case, of carbon atoms contained in the corresponding group or compound, either straight-chain, for example propargyl, 2-butynyl or 5-hexynyl, or branched, for example 2-ethynylpropyl or 2-propargylisopropyl.

C₃-C₆cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

Alkylene - as a group per se and as a structural element of other groups and compounds, such as of O(alkylene), (alkylene)O, S(=O)_p(alkylene), (alkylene)S(=O)_p or alkyleneedioxy - is, in each case under due consideration of the number, included from case to case, of carbon atoms contained in the corresponding group or compound, either straight-chain, for example -CH₂CH₂-, -CH₂CH₂CH₂- or -CH₂CH₂CH₂CH₂-, or branched, for example -CH(CH₃)-, -CH(C₂H₅)-, -C(CH₃)₂- , - CH(CH₃)CH₂- or -CH(CH₃)CH(CH₃)-.

Alkenylene is, in each case under due consideration of the number, from case to case, of carbon atoms contained in the corresponding compound, either straight-chain, for example vin-1,2-ylene, all-1,3-ylene, but-1-en-1,4-ylene or hex-2-en-1,6-ylene, or branched, for example 1-methylvin-1,2-ylene.

Alkynylene is, in each case under due consideration of the number, from case to case, of carbon atoms contained in the corresponding compound, either straight-chain, for example propargylene, 2-butynylene or 5-hexynylene, or branched, for example 2-ethynylpropylene or 2-propargylisopropylene.

Aryl is phenyl or naphthyl, in particular phenyl.

Heterocyclil is a 5- to 7-membered aromatic or non-aromatic ring having one to three heteroatoms, which are selected from the group consisting of N, O and S. 5- and 6-membered rings which contain a nitrogen atom as a heteroatom and, if appropriate, a further heteroatom, preferably nitrogen or sulfur, in particular nitrogen, are preferred.

Halogen - as a group per se and as a structural element of other groups and compounds, such as of halogenoalkyl, halogenoalkenyl and halogenoalkynyl - is fluorine, chlorine, bromine or iodine, especially fluorine, chlorine or bromine, in particular fluorine or chlorine, very especially fluorine.

Halogen-substituted carbon-containing groups and compounds, such as halogenoalkyl, halogenoalkenyl or halogenoalkynyl, can be partly halogenated or perhalogenated, and in the case of polyhalogenation, the halogen substituents can be identical or different.

Examples of halogenoalkyl- as a group per se and as a structural element of other groups and compounds, such as of halogenoalkenyl- are methyl which is mono- to trisubstituted by fluorine, chlorine and/or bromine, such as CHF₂ or CF₃; ethyl which is mono- to pentasubstituted by fluorine, chlorine and/or bromine, such as CH₂CF₃, CF₂CF₃, CF₂CCl₃, CF₂CHCl₂, CF₂CHF₂, CF₂CFCI₂, CF₂CHBr₂, CF₂CHClF, CF₂CHBrF or CCIFCHClF; propyl or

isopropyl which is mono- to heptasubstituted by fluorine, chlorine and/or bromine, such as $\text{CH}_2\text{CHBrCH}_2\text{Br}$, $\text{CF}_2\text{CHFCF}_3$, $\text{CH}_2\text{CF}_2\text{CF}_3$ or $\text{CH}(\text{CF}_3)_2$; and butyl or one of its isomers which is mono- to nonasubstituted by fluorine, chlorine and/or bromine, such as $\text{CF}(\text{CF}_3)\text{-CHFCF}_3$ or $\text{CH}_2(\text{CF}_2)_2\text{CF}_3$. Halogenoalkenyl is, for example, $\text{CH}_2\text{CH=CHCl}$, $\text{CH}_2\text{CH=CCl}_2$, $\text{CH}_2\text{CF=CF}_2$ or $\text{CH}_2\text{CH=CHCH}_2\text{Br}$. Halogenoalkynyl is, for example, $\text{CH}_2\text{C}\equiv\text{CF}$, $\text{CH}_2\text{C}\equiv\text{CCH}_2\text{Cl}$ or $\text{CF}_2\text{CF}_2\text{C}\equiv\text{CGH}_2\text{F}$.

Some compounds I to VI and VIII can be present as tautomers, as is familiar to the expert, in particular if AR_7 is H. Compounds I above and below are therefore also to be understood as meaning corresponding tautomers, even if the latter are not mentioned specifically in each case.

Compounds I to VI and VIII which contain at least one basic centre, can form, for example, acid addition salts. These are formed, for example, with strong inorganic acids, such as mineral acids, for example perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphoric acid, or a hydrogen halide acid, with strong inorganic carboxylic acids, such as $\text{C}_1\text{-C}_4$ alkanecarboxylic acids which are unsubstituted or substituted, for example by halogen, for example acetic acid, such as dicarboxylic acids which are saturated or unsaturated, for example oxalic, malonic, succinic, maleic, fumaric or phthalic acid, such as hydroxycarboxylic acids, for example ascorbic, lactic, malic, tartaric or citric acid, or such as benzoic acid, or with organic sulfonic acids, such as $\text{C}_1\text{-C}_4$ alkane- or arylsulfonic acids which are unsubstituted or substituted, for example by halogen, for example methane- or p-toluenesulfonic acid. Compounds I with at least one acid group can furthermore form salts with bases. Suitable salts with bases are, for example, metal salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine, for example ethyl-, diethyl-, triethyl- or dimethyl-propyl-amine, or a mono-, di- or trihydroxy-lower alkylamine, for example mono-, di- or triethanolamine. Furthermore, where appropriate, corresponding inner salts can be formed. Agrochemically advantageous salts are preferred in the context of the invention; however, salts which have disadvantages for agrochemical uses, for example salts which are toxic to bees or fish, which are employed, for example, for isolation or purification of free compounds I or agrochemically usable salts thereof, are also included. Compounds of the formulae I to VI and VIII in the free form and in the form of their salts are also to be understood above and below as meaning the corresponding salts or the free compounds I to VI and VIII. The same

applies to tautomers of compounds of the formulae I to VI and VIII and salts thereof. In general, the free form is in each case preferred.

The reactions described above and below are carried out in a manner known per se, for example in the absence or usually in the presence of a suitable solvent or diluent or a mixture thereof, the reaction being carried out, as required, with cooling, at room temperature or with heating, for example in a temperature range from about -80°C up to the boiling point of the reaction medium, preferably from about 0°C up to about 150°C, and, if necessary, in a closed vessel, under pressure, in an inert gas atmosphere and/or under anhydrous conditions. Particularly advantageous reaction conditions can be seen from the examples.

The starting materials mentioned above and below, which are used for the preparation of the compounds I, in each case in the free form or in salt form, are known or can be prepared by methods known per se, for example in accordance with the following statements.

Variants a1/a2)

Suitable leaving groups X₁ in compounds III are, for example, hydroxyl, C₁-C₈alkoxy, halogeno-C₁-C₈alkoxy, C₁-C₈alkanoyloxy, mercapto, C₁-C₈alkylthio, halogeno-C₁-C₈alkylthio, C₁-C₈alkanesulfonyloxy, halogeno-C₁-C₈alkanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy and halogen, preferably toluenesulfonyloxy, trifluoromethanesulfonyloxy and halogen, in particular halogen.

Suitable bases for facilitating the reaction are, for example, alkali metal or alkaline earth metal hydroxides, hydrides, amides, alkanolates, acetates, carbonates, dialkylamides or alkylsilylamides, alkylamines, alkylenediamines, N-alkylated or non-alkylated, saturated or unsaturated cycloalkylamines, basic heterocyclic compounds, ammonium hydroxides and carbocyclic amines. Examples are sodium hydroxide, hydride, amide, methanolate, acetate and carbonate, potassium tert-butanolate, hydroxide, carbonate, and hydride, lithium diisopropylamide, potassium bis(trimethylsilyl)amide, calcium hydride, triethylamine, diisopropyl-ethyl-amine, triethylenediamine, cyclohexylamine, N-cyclohexyl-N,N-dimethyl-amine, N,N-diethylaniline, pyridine, 4-(N,N-dimethylamino)pyridine, quinuclidine, N-methylmorpholine, benzyl-trimethyl-ammonium hydroxide and 1,5-diazabicyclo[5.4.0]undec-5-ene (DBU).

The reaction partners can be reacted with one another as such, i.e. without addition of a solvent or diluent, for example in the melt. However, the addition of an inert solvent or diluent or of a mixture thereof is usually advantageous. Examples of such solvents or diluents are: aromatic, aliphatic and alicyclic hydrocarbons and halogenohydrocarbons, such as benzene, toluene, xylene, mesitylene, tetralin, chlorobenzene, dichlorobenzene, bromobenzene, petroleum ether, hexane, cyclohexane, methylene chloride, chloroform, carbon tetrachloride, dichloroethane, trichloroethene or tetrachloroethene; esters, such as ethyl acetate; ethers, such as diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tert-butyl methyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, dimethoxydiethyl ether, tetrahydrofuran or dioxane; ketones, such as acetone, methyl ethyl ketone or methyl isobutyl ketone; alcohols, such as methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol or glycerol; amides, such as N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone or hexamethylphosphoric acid triamide; nitriles such as acetonitrile or propionitrile; and sulfoxides, such as dimethyl sulfoxide. If the reaction is carried out in the presence of a base, bases employed in excess, such as triethylamine, pyridine, N-methylmorpholine or N,N-diethylaniline, can also serve as the solvent or diluent.

The reaction is advantageously carried out in a temperature range from about 0°C up to about 180°C, preferably from about 10°C up to about 80°C, in many cases in the range between room temperature and the reflux temperature of the reaction mixture.

The reaction is preferably carried out under normal pressure.

The reaction can be carried out without an inert gas atmosphere; preferably, however, it is carried out under an inert gas atmosphere, for example nitrogen or argon, in particular nitrogen.

The reaction time is not critical; a reaction time of about 0.1 to about 24 hours, in particular about 0.5 to about 2 hours, is preferred.

The product is isolated by customary methods, for example by filtration, crystallization, distillation or chromatography or any suitable combination of these processes.

In a preferred embodiment of variants a1/a2), a compound II is reacted with a compound III at 0°C to 80°C, preferably 10 ° C to 30 ° C, in an inert solvent, preferably an amide, in

particular N,N-dimethylformamide in the presence of a metal hydride, preferably sodium hydride.

Particularly preferred conditions for the reaction are described in Examples H1d) and H 3f).

The compounds of the formula III are known or can be prepared analogously to known compounds.

The compounds I are known. However, their preparation according to the prior art has a large number of serious industrial, ecological, economic and other disadvantages.

Thus, in the preparation processes according to the prior art, as a rule E/Z isomer mixtures with respect to the C=N double bond marked with E in formula I are obtained. Since the biological properties of the E isomers are in each case found to be superior to those of the mixtures and of the Z isomers in each case, the processes according to the prior art have the significant disadvantage that products are produced which are either significantly less active as E/Z mixtures or from which the Z isomers must be removed in order to increase their biological activity, which means that many unnecessary handling operations must be carried out for separation of isomers, which has the effect of being very time-consuming, blocks valuable production lines for a long time and is associated with high additional energy costs. The removal of the less active Z isomer also leads to additional enormous losses in yield, which in turn not only is problematic and ecologically disadvantageous, but also renders the process according to the prior art much more expensive and consequently economically of no interest. The industrial, ecological, economic and other disadvantages of the processes according to the prior art are not limited to those described above, these latter being intended to serve only as a few examples of the large number of disadvantages of the processes according to the prior art. The disadvantages of the processes according to the prior art cause serious problems even when the processes are carried out on a laboratory scale. When the processes are carried out on a larger scale, these disadvantages intensify considerably. In the end, however, the aim is to carry out a specific process on an industrial scale if this process is to be suitable for preparing products for agrochemical purposes.

According to the process of the present invention, the compounds I are prepared by reaction of the compound II with a compound III or by reaction of the compound IV with a compound V. These processes according to the invention have extremely surprising

industrial, ecological, economic and other advantages compared with the processes from the prior art. Since the compounds II or, respectively, IV are present in the preparation process according to the invention as pure E isomers in respect of the C=N double bond marked with E, only the E isomer of the compounds I is produced in the present process, which has the effect of an enormous saving in time and at the same time a high saving in cost and energy, since no valuable production lines are blocked for a long time for separation of the isomers, and at the same time the amount of biologically more active E isomer produced by per unit time is much higher than in the processes according to the prior art. The resources such as starting products and energy are consequently utilized to the optimum in the present process, which not only very greatly simplifies the process and renders it ecologically advantageous, but consequently renders it cheaper and therefore of greater economic interest. This means that all the disadvantages of the processes according to the prior art which can be attributed to the formation of E/Z isomers are avoided. The industrial, ecological, economic and other advantages of the process according to the invention are not limited only to those described above, these latter being intended to serve only as a few examples of the large number of advantages inherent in this process. Due to all the abovementioned advantages of the present process, the serious problems which occur in the processes according to the prior art are avoided even at the stage of a laboratory process. If the present process is used on a larger scale, these advantages prove to be even much more significant, which has the effect that these advantages first allow the process to be used on an industrial scale.

For this reason, all the industrial, ecological, economic and other disadvantages of the processes according to the prior art are surprisingly advantageously overcome in the preparation of compounds I, by the present process.

Variant b)

The process according to variant b) is carried out by first reacting compound VI with compound VII, if appropriate further reacting the resulting product IV, if appropriate after isolation, with hydroxylamine or a salt thereof, and further reacting the resulting products II or, respectively, IV, if appropriate after isolation, in accordance with variants a1/a2), for example in the manner described above, to give the compounds I.

Suitable leaving groups X_2 in the compounds VII are, for example, those which are mentioned as examples for X_1 in variants a1/a2).

Suitable bases for facilitating the reaction are, for example, those which are mentioned in variants a1/a2).

The reaction partners can be reacted with one another as such, i.e. without addition of a solvent or diluent, for example in the melt. However, the addition of an inert solvent or diluent or of a mixture thereof is usually advantageous. Examples of such solvents or diluents are those mentioned in variants a1/a2).

The reaction is advantageously carried out in a temperature range from about 0°C to about 180°C, preferably from about 10°C to about 80°C, in many cases in the range between room temperature and the reflux temperature of the reaction mixture.

The reaction is preferably carried out under normal pressure.

The reaction can be carried out without an inert gas atmosphere; preferably, however, it is carried out under an inert gas atmosphere, for example nitrogen or argon, in particular nitrogen.

The reaction time is not critical; a reaction time of about 0.1 to about 24 hours, in particular about 0.5 to about 5 hours, is preferred.

The product is isolated by customary methods, for example filtration, crystallization, distillation or chromatography or any suitable combination of these processes.

In a preferred embodiment of variant b), a compound VI is reacted with a compound VII at 0°C to 80°C, preferably 10°C to 60°C, in an inert solvent, preferably a nitrile, in particular acetonitrile, in the presence of a metal carbonate, preferably potassium carbonate, and the compound IV thus obtainable is then further reacted, preferably in accordance with method a2).

Particularly preferred conditions for the reaction are described in Examples H 1b) to 1d) and H 3d) to 3f).

The compounds of the formula VII are known or can be prepared analogously to known compounds.

The present process according to the invention of variant b), which in principle is an advantageous combination of an O-alkylation reaction with process variants a1/a2)

according to the invention, has all the great advantages compared with the prior art which have already been discussed above for the process according to the invention of variants a1/a2). In particular, the process of variant b) ensures that the E configuration of the C=N double bond marked with E in compound VI is retained. Furthermore, however, the process according to the invention of variant b) also has further industrial, ecological, economic and other advantages which are connected with the specific property that the intermediate product IV initially formed is not purified but is directly further processed as the moist crude product, in the case of intermediate isolation, or in situ in the reaction mixture, if it is not isolated. This missing purification step on the intermediate product mentioned is of advantage, for example, in as much as it is not necessary to dry it, which not only saves energy and further resources, but also enormously increases the safety of the preparation process, since the possible danger of a dust explosion of the dry intermediate product is averted completely. The savings in resources are even greater if the intermediate product is further reacted without purification, since, for example, no additional solvents are consumed for the recrystallization. The process of variant b) is of particular advantage compared with the individual process steps of the alkylation reaction of variants a1/a2) carried out in that the total reaction time in the process of variant b) is much shorter, which consequently leads to a much higher production of reaction product I per unit time and therefore to a much more efficient utilization of the valuable production lines. Furthermore, the total yield of reaction product I is surprisingly good when the process of variant b) is employed, and, compared with the combined yields of the individual process steps of the alkylation reaction and variants a1/a2) carried out, is in the same percentage range or even better. The industrial, ecological, economic and other advantages of the process according to the invention of variant b) are not limited to those described above, these latter being intended to serve only as a few examples of the large number of advantages inherent in the process according to the invention of variant b).

By using process variant b) according to the invention for preparation of the compounds I, a large number of industrial, ecological, economic and other advantages can therefore surprisingly be utilized efficiently.

Variant c)

The process according to variant c) is carried out by first reacting compound VIII with an alkyl nitrite and further reacting the resulting product VI, if appropriate after isolation, in

accordance with variant b), for example in the manner described above, to give the compounds I.

Suitable bases for facilitating the reaction are, for example, those which are mentioned in variants a1/a2).

The reaction partners can be reacted with one another as such, i.e. without addition of a solvent or diluent, for example in the melt. However, the addition of an inert solvent or diluent or of a mixture thereof is usually advantageous. Examples of such solvents or diluents are those mentioned in variants a1/a2).

The reaction is advantageously carried out in a temperature range from about 0°C to about 180°C, preferably from about 0°C to about 60°C, in many cases in the range between room temperature and the reflux temperature of the reaction mixture.

The reaction is preferably carried out under normal pressure.

The reaction can be carried out without an inert gas atmosphere; preferably, however, it is carried out under an inert gas atmosphere, for example nitrogen or argon, in particular nitrogen.

The reaction time is not critical; a reaction time of about 0.1 to about 24 hours, in particular about 0.5 to about 3 hours, is preferred.

The product is isolated by customary methods, for example filtration, crystallization, distillation or chromatography or any suitable combination of these processes.

In a preferred embodiment of variant c), a compound VIII is reacted with an alkyl nitrite at 0°C to 80°C, preferably 0°C to 40°C, in an inert solvent, preferably an alcohol, in particular methanol, in the presence of a metal alcoholate, preferably sodium methanolate, and the compound VI thus obtainable is then further reacted, preferably in accordance with method b).

Particularly preferred conditions for the reactions are described in Examples H 3d) to 3f).

The compounds of the formula VIII are known or can be prepared analogously to known compounds.

The present process according to the invention of variant c), which in principle is an advantageous combination of an oximation reaction with process variants a1/a2) and b)

according to the invention, has all the great advantages compared with the prior art which have already been discussed above for the processes according to the invention of variants a1/a2) and b). Furthermore, the present oximation process for the preparation of the compounds VI surprisingly result exclusively in the E configuration of the C=N double bond marked with E in formula VI. It is thus ensured that the particular starting products II, IV or, respectively, VI in the subsequent processes according to the invention for the preparation of the compounds I, for example in process variants a1/a2) and b), are pure E isomers.

A large number of industrial, ecological, economic and other advantages can therefore surprisingly be utilized efficiently by using process variants c) according to the invention for the preparation of the compounds of the formula I.

The E isomers of the compounds of the formulae II, IV and VI and tautomers thereof, in each case in the free form or in salt form, are novel and the present invention likewise relates to them.

The present invention furthermore relates to a process for the preparation of the E isomers of a compound of the formula VI or of a tautomer thereof, in each case in the free form or in salt form, according to the abovementioned process c),

a process for the preparation of the E isomers of a compound of the formula IV, or of a tautomer thereof, in each case in the free form or in salt form, according to the abovementioned process b1), and

a process for the preparation of the E isomers of a compound of the formula II, or of a tautomer thereof, in each case in the free form or in salt form, according to the abovementioned process b2).

The process conditions for the preparation of these intermediate products can be seen from the abovementioned processes a), b) and c).

Preparation Examples

Example H1: Methyl 2-[[[(1-methyl-2-phenyl-2-E-[(2-propynyl)oxyimino]-ethyldene)amino]oxy]methyl] α -(methoxymethylene)-phenylacetate (Compound 1.16)

H1a) 1-Phenyl-1,2-propanedione 1-E-oxime

69.7 g of a 30 % solution of sodium methylate in methanol are added dropwise to a solution of 40.2 g of 1-phenyl-2-propanone and 36.1 g of isopentyl nitrite in 460 ml of methanol at 20-25°, while cooling. The reaction mixture is then further stirred at room temperature for 1 hour. After the solution has been concentrated in vacuo, the residue is dissolved in 600 ml of water, the solution is acidified with 10 % hydrochloric acid, the product which precipitates out is filtered off and dissolved in ethyl acetate and the organic phase is washed twice with water, dried with sodium sulfate and evaporated in vacuo. The residue is stirred up in hexane and filtered. The title product is thus obtained with a melting of 168-70°C.

H1b) 1-Phenyl-1,2-propanedione 1-E-[(2-propynyl)oxime]

A mixture of 14 g of 1-phenyl-1,2-propanedione 1-E-oxime, 11.9 g of 1-bromo-2-propyne, 13.8 g of potassium carbonate and 0.5 g of potassium iodide in 170 ml of acetonitrile is stirred at 50° for 2 hours, the solvent is then distilled off in vacuo and the residue is dissolved again in ethyl acetate. The organic phase is washed in each case twice with water and saturated sodium chloride solution, dried with sodium sulfate and evaporated in vacuo. After recrystallization of the residue from hexane, 1-phenyl-1,2-propanedione 1-E-[(2-propynyl)oxime] is obtained with a melting point of 54-56°C.

H1d) 1-Phenyl-1,2-propanedione 1-E-[(2-propynyl)oxime]-2-oxime

A mixture of 14.3 g of 1-phenyl-1,2-propanedione 1-E-[(2-propynyl)oxime], 10.3 g of hydroxylamine hydrochloride and 11.7 g of pyridine in 230 ml of ethanol is boiled under reflux for 1 hour and then concentrated in vacuo, and 800 ml of water are added to the residue. The product which has precipitated out is filtered off and dissolved in ethyl acetate and the solution is washed three times with water, dried with sodium sulfate and evaporated in vacuo. The residue is suspended in hexane and filtered. The title product is thus obtained with a melting point of 163-165°C.

H1e) Methyl 2-[[[(1-methyl-2-phenyl-2-E-[(2-propynyl)oxyimino]ethy-lidene)amino]oxy]-methyl]- α -(methoxymethylene)-phenylacetate

A solution of 5 g of 1-phenyl-1,2-propanedione 1-E-[(2-propynyl)oxime]-2-oxime in 24 ml of N,N-dimethylformamide is added dropwise to a suspension of 1.16 g of sodium hydride (about 55% in oil) in 45 ml of N,N-dimethylformamide at room temperature and the mixture is further stirred for 10 minutes. 6.5 g of methyl 2-(bromomethyl)- α -(methoxymethylene)-phenylacetate in 24 ml of N,N-dimethylformamide are then added dropwise and the reaction mixture is further stirred at room temperature for 1 hour. Thereafter, the mixure is acidified

with acetic acid and evaporated in vacuo. The residue is dissolved in ethyl acetate and the solution is washed three times with water and twice with saturated sodium chloride solution, dried with sodium sulfate and evaporated in vacuo. After recrystallization of the residue from hexane/ethyl acetate, the title compound is obtained with a melting point of 82-84°.

Example H2: Methyl 2-[[[(1-methyl-2-(4-fluorophenyl)-2-E-[(2-propynyl)oxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymethylene)-phenylacetate (compound 1.44)

The title compound with a melting point of 91-93° can be prepared in a manner analogous to that described in Example H1, starting from 1-(4-fluorophenyl)-2-propanone.

Example H3: Methyl 2-[[[(1-methyl-2-(4-(3-trifluoromethylphenylmethoxy)-phenyl) 2-E-[(2-propynyl)oxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymethylene)-phenylacetate (compound 1.240)

H3a) 1-(4-Hydroxyphenyl)-2-propanone

A mixture of 82 g of 1-(4-methoxyphenyl)-2-propanone, 500 ml of acetic acid and 500 ml of aqueous hydrobromic acid is boiled under reflux for 2 hours and then evaporated in vacuo. The oily residue is extracted four times with 700 ml of hexane/ether (5:2) each time, the extract is evaporated and the residue is chromatographed over silica gel using hexane/ethyl acetate (3:1). 1-(4-Hydroxyphenyl)-2-propanone is thus obtained with a melting point of 40-41°.

H3b) 1-[4-(3-Trifluoromethylphenylmethoxy)-phenyl]-2-propanone

A mixture of 5.8 g of 1-(4-hydroxyphenyl)-2-propanone, 61.6 g of potassium carbonate, 72.3 g of 1-(chloromethyl)-3-(trifluoromethyl)-benzene, and 1 g of potassium iodide in 800 ml of acetone is boiled under reflux for 5 hours. Thereafter, the reaction mixture is filtered and the filtrate is evaporated in vacuo. The residue is then dissolved in diethyl ether and the ethereal phase is washed three times with water, dried with sodium sulfate and evaporated. The 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-2-propanone thus obtainable is employed in the next reaction stage without further purification.

H3c) 1-[4-(3-Trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-oxime

45 g of a 30% solution of sodium methanolate in methanol are slowly added dropwise to a solution of 59.6 g of 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-2-propanone and 23.4 g of isopentyl nitrite in 300 ml of methanol such that the temperature does not exceed 20-25°. The reaction mixture is then further stirred at room temperature for 1 hour and thereafter evaporated in vacuo. The residue is dissolved in 600 ml of water and the solution is

acidified with 10% hydrochloric acid. The precipitate which separates out is filtered off and dissolved in ethyl acetate and the organic phase is washed twice with water, dried with sodium sulfate and evaporated. After the crude product has been suspended in hexane and filtered, 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-oxime is obtained with a melting point of 134-136°.

H3d) 1-[4-(3-Trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-[(2-propynyl)oxime]

A mixture of 6 g of 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-oxime, 2.4 g of 1-bromo-2-propyne, 2.6 g of potassium carbonate and 0.5 g of potassium iodide in 40 ml of acetonitrile is boiled under reflux for 1 hour and then evaporated in vacuo and the residue is dissolved in ethyl acetate. The organic phase is washed twice with water and once with saturated sodium chloride solution, dried with sodium sulfate and evaporated. The crude 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-[(2-propynyl)oxime] thus obtainable is further processed without further purification.

H3e) 1-[4-(3-Trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-[(2-propynyl)oxime]-2-oxime

A mixture of 5.9 g of 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-[(2-propynyl)oxime], 2.3 g of hydroxylamine hydrochloride and 2.6 g of pyridine in 60 ml of ethanol is boiled under reflux for 1 hour and then concentrated in vacuo, and 200 ml of water are added to the residue. The product which has precipitated out is filtered off and dissolved in ethyl acetate, and the solution is washed twice with water and once with saturated sodium chloride solution, dried with sodium sulfate and evaporated in vacuo. The residue is suspended in hexane and filtered. 1-[4-(3-Trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-[(2-propynyl)oxime]-2-oxime is thus obtained with a melting point of 114-115°.

H3f) Methyl 2-[[[1-methyl-2-(4-(3-trifluoromethylphenylmethoxy)-phenyl)-2-E-[(2-propynyl)oxyimino]ethylidene]amino]oxy]methyl]- α -(methoxymethylene)-phenylacetate

A solution of 5.5 g of 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-[(2-propynyl)oxime]-2-oxime in 25 ml of N,N-dimethylformamide is added dropwise to a suspension of 0.7 g of sodium hydride (about 55% in oil) in 25 ml of N,N-dimethylformamide and the mixture is further stirred at room temperature for 10 minutes. 4 g of methyl 2-(bromomethyl)- α -(methoxymethylene)-phenylacetate in 15 ml of N,N-dimethylformamide are

then added dropwise and the reaction mixture is further stirred at room temperature for 1 hour. Thereafter, the mixture is acidified with acetic acid and evaporated in vacuo at 50°. The residue is dissolved in ethyl acetate and the solution is washed twice with water and once with saturated sodium chloride solution, dried with sodium sulfate and evaporated in vacuo. After purification by chromatography (silica gel, ethyl acetate/hexane 1:3), the title compound is obtained as a resin.

Example H4: Methyl 2-[[[(1-methyl-2-(4-(4-chlorophenoxy)-phenyl)-2-E-[(2-ethyl)oxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymethylene)-phenylacetate (compound 1.366)

H4a) 1-[4-(4-Chlorophenoxy)-phenyl]-1,2-propanedione 1-E-oxime

16.7 g of a 30% solution of sodium methylate in methanol are added dropwise to a solution of 22.5 g of 1-[4-(4-chlorophenoxy)-phenyl]-2-propanone and 10.3 g of isopentyl nitrite in 120 ml of methanol at 20-25°, while cooling. The reaction mixture is then further stirred at room temperature for 1 hour. After the solution has been concentrated in vacuo, the residue is dissolved in 300 ml of water and the solution is acidified with 10% hydrochloric acid, the product which precipitates out is filtered off and dissolved in ethyl acetate and the organic phase is washed twice with water, dried with sodium sulfate and evaporated in vacuo. The residue is stirred up in hexane and filtered. The title product is thus obtained with a melting point of 154-155°C.

H4b) 1-[4-(4-Chlorophenoxy)-phenyl]-1,2-propanedione 1-E-[(2-ethyl)oxime]

A mixture of 6 g of 1-[4-(4-Chlorophenoxy)-phenyl]-1,2-propanedione 1-E-oxime, 3.3 g of ethyl bromide, 3.5 g of potassium carbonate and 0.5 g of potassium iodide in 30 ml of acetonitrile is stirred at 50° for 2 hours, the solvent is then distilled off in vacuo and the residue is dissolved again in ethyl acetate. The organic phase is washed in each case twice with water and saturated sodium chloride solution, dried with sodium sulfate and evaporated in vacuo. After recrystallization of the residue from hexane, the title product is obtained with a melting point of 77-78°C.

H4c) 1-[4-(4-Chlorophenoxy)-phenyl]-1,2-propanedione 1-E-[(2-ethyl)oxime]-2-oxime

A mixture of 5.5 g of 1-[4-(4-chlorophenoxy)-phenyl]-1,2-propanedione 1-E-[(2-ethyl)oxime], 2.4 g of hydroxylamine hydrochloride and 2.7 g of pyridine in 50 ml of ethanol is boiled under reflux for 1 hour and then concentrated in vacuo, and 800 ml of water are added to the residue. The product which has precipitated out is filtered off and dissolved in ethyl

acetate and the solution is washed three times with water, dried with sodium sulfate and evaporated in vacuo. The residue is suspended in hexane and filtered. The title product is thus obtained in a pure form with a melting point of 176-177°C.

H4d) Methyl 2-[[[(1-methyl-2-(4-(4-chlorophenoxy)-phenyl)-2-E-[(2-ethyl)oxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymethylene)-phenylacetate.

A solution of 4.7 g of 1-[4-(4-chlorophenoxy)-phenyl]-1,2-propanedione 1-E-[(2-propynyl)oxime]-2-oxime in 25 ml of N,N-dimethylformamide is added dropwise to a suspension of 0.65 g of sodium hydride (about 55% in oil) in 20 ml of N,N-dimethylformamide and the mixture is further stirred at room temperature for 10 minutes. 4 g of methyl 2-(bromomethyl)- α -(methoxymethylene)-phenylacetate in 15 ml of N,N-dimethylformamide are then added dropwise and the reaction mixture is further stirred at room temperature for 1 hour.

Thereafter, the mixture is acidified with acetic acid and evaporated in vacuo at 50°. The residue is dissolved in ethyl acetate and the solution is washed twice with water and once with saturated sodium chloride solution, dried with sodium sulfate and evaporated in vacuo. After purification by flash chromatography (silica gel, ethyl acetate/hexane 1:3), the title compound is obtained with a melting point of 87-89°C.

Example H5: Methyl 2-[[[(1-methyl-2-(4-(4-chlorophenoxy)-phenyl)-2-E-[(2-ethyl)oxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymethylene)-phenylacetate (compound 2.366)

The title compound with a melting point of 90 to 93°C is obtained in a manner analogous to that described in Example H4 from 1-[4-(4-chlorophenoxy)-phenyl]-1,2-propanedione 1-E-[(2-propynyl)oxime]-2-oxime and methyl 2-(bromomethyl)- α -(methoxymino)-phenylacetate.

Example H6: 2-[[[(1-Methyl-2-(4-(4-chlorophenoxy)-phenyl)-2-E-[(2-ethyl)oxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymino)-phenylacetic acid methylamide (compound 3.366)

13.3 g of methyl 2-[[[(1-methyl-2-(4-(4-chlorophenoxy)-phenyl)-2-E-[(2-ethyl)oxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymino)-phenylacetate are left to stand together with 80 ml of dimethylformamide and 9.2 ml of an 8 molar solution of methylamine in ethanol at room temperature for two days. The mixture is concentrated at 50°C, n-hexane is added and the mixture is cooled to room temperature and filtered. The residue is dried under a high vacuum. The title compound is obtained with a melting point of 126-129°C.

Example H7: The other compounds listed in Tables 1 to 3 can also be prepared in a manner analogous to that described in Examples H1 to H6. In the "physical data" column of the tables, the temperatures stated in each case designate the melting point of the compound in question. c.propyl is cyclopropyl.

Table 1
Compounds of the general formula

in which X is CH and Y is oxygen and the combination of substituents R₂, (R₅)_n and A-R₇ for a compound in each case corresponds to a line in Table A. The compound numbers of the following table correspond to the particular numbers in Table A.

Compound No.	Phys. Data(Melting point °C)
1.14	75-77°
1.16	82-84°
1.22	111-113°
1.42	Resin
1.44	91-93°
1.50	Resin
1.70	Resin
1.72	Resin
1.78	Resin
1.225	102-103°
1.226	81-83°
1.227	Resin
1.233	Resin
1.234	73-75°
1.238	Resin
1.240	Resin
1.241	Resin
1.242	Resin
1.244	Resin
1.245	Resin
1.294	Resin
1.296	112-114°
1.366	87-89°

Table 2

Compounds of the general formula I.1, in which

X is nitrogen and

Y is oxygen

and the combination of substituents R₂, (R₅)_n and A-R₇ for a compound in each case corresponds to a line in Table A.

Compound No.	Melting point (°C)
2.198	75-77
2.254	80-82
2.309	106-108
2.310	102-104
2.366	90-93

Table 3

Compounds of the general formula I.1, in which

X is nitrogen and

Y is NH and

the combination of substituents R₂, (R₅)_n and A-R₇ for a compound in each case corresponds to a line in Table A.

Compound No.	Melting point (°C)
3.198	75-77
3.254	112-114
3.309	89-91
3.310	88-90
3.366	126-129

Table A

Compound No.	R ₂	(R ₅) _n	A-R ₇
1	CH ₃	H	CH ₃
2	CH ₃	H	C ₂ H ₅
3	CH ₃	H	n-C ₃ H ₇

Compound No.	R ₂	(R ₅) _n	A-R ₇
4	CH ₃	H	i-C ₃ H ₇
5	CH ₃	H	n-C ₄ H ₉
6	CH ₃	H	n-C ₆ H ₁₃
7	CH ₃	H	CH ₂ F
8	CH ₃	H	CHF ₂
9	CH ₃	H	CH ₂ CF ₃
10	CH ₃	H	CH ₂ CH=CH ₂
11	CH ₃	H	CH ₂ CH=CHCH ₃
12	CH ₃	H	CH ₂ CH=C(CH ₃) ₂
13	CH ₃	H	CH ₂ CH=CHCl
14	CH ₃	H	CH ₂ CH=CCl ₂
15	CH ₃	H	CH ₂ C(CH ₃)=CH ₂
16	CH ₃	H	CH ₂ C≡CH
17	CH ₃	H	CH ₂ Si(CH ₃) ₃
18	CH ₃	H	CH ₂ -c.propyl-2,2-Cl ₂
19	CH ₃	H	CH ₂ CN
20	CH ₃	H	CH ₂ COOC ₂ H ₅
21	CH ₃	H	CH(CH ₃)COOC ₂ H ₅
22	CH ₃	H	CH ₂ C ₆ H ₄ -3-CF ₃
23	CH ₃	H	CH ₂ C ₆ H ₄ -4-F
24	CH ₃	H	CH ₂ C ₆ H ₄ -3-F
25	CH ₃	H	CH ₂ C ₆ H ₄ -2-F
26	CH ₃	H	C(=O)OC ₂ H ₅
27	CH ₃	H	C(=O)NHCH ₃
28	CH ₃	H	C(=O)C(=O)OC ₂ H ₅
29	CH ₃	4-F	CH ₃
30	CH ₃	4-F	C ₂ H ₅
31	CH ₃	4-F	n-C ₃ H ₇
32	CH ₃	4-F	i-C ₃ H ₇
33	CH ₃	4-F	n-C ₄ H ₉

Compound No.	R ₂	(R ₅) _n	A-R ₇
34	CH ₃	4-F	n-C ₆ H ₁₃
35	CH ₃	4-F	CH ₂ F
36	CH ₃	4-F	CHF ₂
37	CH ₃	4-F	CH ₂ CF ₃
38	CH ₃	4-F	CH ₂ CH=CH ₂
39	CH ₃	4-F	CH ₂ CH=CHCH ₃
40	CH ₃	4-F	CH ₂ CH=C(CH ₃) ₂
41	CH ₃	4-F	CH ₂ CH=CHCl
42	CH ₃	4-F	CH ₂ CH=CCl ₂
43	CH ₃	4-F	CH ₂ C(CH ₃)=CH ₂
44	CH ₃	4-F	CH ₂ C≡CH
45	CH ₃	4-F	CH ₂ Si(CH ₃) ₃
46	CH ₃	4-F	CH ₂ -c.propyl-2,2-Cl ₂
47	CH ₃	4-F	CH ₂ CN
48	CH ₃	4-F	CH ₂ COOC ₂ H ₅
49	CH ₃	4-F	CH(CH ₃)COOC ₂ H ₅
50	CH ₃	4-F	CH ₂ C ₆ H ₄ -3-CF ₃
51	CH ₃	4-F	CH ₂ C ₆ H ₄ -4-F
52	CH ₃	4-F	CH ₂ C ₆ H ₄ -3-F
53	CH ₃	4-F	CH ₂ C ₆ H ₄ -2-F
54	CH ₃	4-F	C(=O)OC ₂ H ₅
55	CH ₃	4-F	C(=O)NHCH ₃
56	CH ₃	4-F	C(=O)C(=O)OC ₂ H ₅
57	CH ₃	4-OCH ₃	CH ₃
58	CH ₃	4-OCH ₃	C ₂ H ₅
59	CH ₃	4-OCH ₃	n-C ₃ H ₇
60	CH ₃	4-OCH ₃	i-C ₃ H ₇
61	CH ₃	4-OCH ₃	n-C ₄ H ₉
62	CH ₃	4-OCH ₃	n-C ₆ H ₁₃
63	CH ₃	4-OCH ₃	CH ₂ F

Compound No.	R ₂	(R ₅) _n	A-R ₇
64	CH ₃	4-OCH ₃	CHF ₂
65	CH ₃	4-OCH ₃	CH ₂ CF ₃
66	CH ₃	4-OCH ₃	CH ₂ CH=CH ₂
67	CH ₃	4-OCH ₃	CH ₂ CH=CHCH ₃
68	CH ₃	4-OCH ₃	CH ₂ CH=C(CH ₃) ₂
69	CH ₃	4-OCH ₃	CH ₂ CH=CHCl
70	CH ₃	4-OCH ₃	CH ₂ CH=CCl ₂
71	CH ₃	4-OCH ₃	CH ₂ C(CH ₃)=CH ₂
72	CH ₃	4-OCH ₃	CH ₂ C≡CH
73	CH ₃	4-OCH ₃	CH ₂ Si(CH ₃) ₃
74	CH ₃	4-OCH ₃	CH ₂ -c.propyl-2,2-Cl ₂
75	CH ₃	4-OCH ₃	CH ₂ CN
76	CH ₃	4-OCH ₃	CH ₂ COOC ₂ H ₅
77	CH ₃	4-OCH ₃	CH(CH ₃)COOC ₂ H ₅
78	CH ₃	4-OCH ₃	CH ₂ C ₆ H ₄ -3-CF ₃
79	CH ₃	4-OCH ₃	CH ₂ C ₆ H ₄ -4-F
80	CH ₃	4-OCH ₃	CH ₂ C ₆ H ₄ -3-F
81	CH ₃	4-OCH ₃	CH ₂ C ₆ H ₄ -2-F
82	CH ₃	4-OCH ₃	C(=O)OC ₂ H ₅
83	CH ₃	4-OCH ₃	C(=O)NHCH ₃
84	CH ₃	4-OCH ₃	C(=O)C(=O)OC ₂ H ₅
85	CH ₃	4-OC ₂ H ₅	CH ₃
86	CH ₃	4-OC ₂ H ₅	C ₂ H ₅
87	CH ₃	4-OC ₂ H ₅	n-C ₃ H ₇
88	CH ₃	4-OC ₂ H ₅	i-C ₃ H ₇
89	CH ₃	4-OC ₂ H ₅	n-C ₄ H ₉
90	CH ₃	4-OC ₂ H ₅	n-C ₆ H ₁₃
91	CH ₃	4-OC ₂ H ₅	CH ₂ F
92	CH ₃	4-OC ₂ H ₅	CHF ₂
93	CH ₃	4-OC ₂ H ₅	CH ₂ CF ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
94	CH ₃	4-OC ₂ H ₅	CH ₂ CH=CH ₂
95	CH ₃	4-OC ₂ H ₅	CH ₂ CH=CHCH ₃
96	CH ₃	4-OC ₂ H ₅	CH ₂ CH=C(CH ₃) ₂
97	CH ₃	4-OC ₂ H ₅	CH ₂ CH=CHCl
98	CH ₃	4-OC ₂ H ₅	CH ₂ CH=CCl ₂
99	CH ₃	4-OC ₂ H ₅	CH ₂ C(CH ₃)=CH ₂
100	CH ₃	4-OC ₂ H ₅	CH ₂ C≡CH
101	CH ₃	4-OC ₂ H ₅	CH ₂ Si(CH ₃) ₃
102	CH ₃	4-OC ₂ H ₅	CH ₂ c.propyl-2,2-Cl ₂
103	CH ₃	4-OC ₂ H ₅	CH ₂ CN
104	CH ₃	4-OC ₂ H ₅	CH ₂ COOC ₂ H ₅
105	CH ₃	4-OC ₂ H ₅	CH(CH ₃)COOC ₂ H ₅
106	CH ₃	4-OC ₂ H ₅	CH ₂ C ₆ H ₄ -3-CF ₃
107	CH ₃	4-OC ₂ H ₅	CH ₂ C ₆ H ₄ -4-F
108	CH ₃	4-OC ₂ H ₅	CH ₂ C ₆ H ₄ -3-F
109	CH ₃	4-OC ₂ H ₅	CH ₂ C ₆ H ₄ -2-F
110	CH ₃	4-OC ₂ H ₅	C(=O)OC ₂ H ₅
111	CH ₃	4-OC ₂ H ₅	C(=O)NHCH ₃
112	CH ₃	4-OC ₂ H ₅	C(=O)C(=O)OC ₂ H ₅
113	CH ₃	4-O-n-C ₃ H ₇	CH ₃
114	CH ₃	4-O-n-C ₃ H ₇	C ₂ H ₅
115	CH ₃	4-O-n-C ₃ H ₇	n-C ₃ H ₇
116	CH ₃	4-O-n-C ₃ H ₇	i-C ₃ H ₇
117	CH ₃	4-O-n-C ₃ H ₇	n-C ₄ H ₉
118	CH ₃	4-O-n-C ₃ H ₇	n-C ₆ H ₁₃
119	CH ₃	4-O-n-C ₃ H ₇	CH ₂ F
120	CH ₃	4-O-n-C ₃ H ₇	CHF ₂
121	CH ₃	4-O-n-C ₃ H ₇	CH ₂ CF ₃
122	CH ₃	4-O-n-C ₃ H ₇	CH ₂ CH=CH ₂
123	CH ₃	4-O-n-C ₃ H ₇	CH ₂ CH=CHCH ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
124	CH ₃	4-O-n-C ₃ H ₇	CH ₂ CH=C(CH ₃) ₂
125	CH ₃	4-O-n-C ₃ H ₇	CH ₂ CH=CHCl
126	CH ₃	4-O-n-C ₃ H ₇	CH ₂ CH=CCl ₂
127	CH ₃	4-O-n-C ₃ H ₇	CH ₂ C(CH ₃)=CH ₂
128	CH ₃	4-O-n-C ₃ H ₇	CH ₂ C≡CH
129	CH ₃	4-O-n-C ₃ H ₇	CH ₂ Si(CH ₃) ₃
130	CH ₃	4-O-n-C ₃ H ₇	CH ₂ -c.propyl-2,2-Cl ₂
131	CH ₃	4-O-n-C ₃ H ₇	CH ₂ CN
132	CH ₃	4-O-n-C ₃ H ₇	CH ₂ COOC ₂ H ₅
133	CH ₃	4-O-n-C ₃ H ₇	CH(CH ₃)COOC ₂ H ₅
134	CH ₃	4-O-n-C ₃ H ₇	CH ₂ C ₆ H ₄ -3-CF ₃
135	CH ₃	4-O-n-C ₃ H ₇	CH ₂ C ₆ H ₄ -4-F
136	CH ₃	4-O-n-C ₃ H ₇	CH ₂ C ₆ H ₄ -3-F
137	CH ₃	4-O-n-C ₃ H ₇	CH ₂ C ₆ H ₄ -2-F
138	CH ₃	4-O-n-C ₃ H ₇	C(=O)OC ₂ H ₅
139	CH ₃	4-O-n-C ₃ H ₇	C(=O)NHCH ₃
140	CH ₃	4-O-n-C ₃ H ₇	C(=O)C(=O)OC ₂ H ₅
141	CH ₃	2-CH ₃	CH ₃
142	CH ₃	2-CH ₃	C ₂ H ₅
143	CH ₃	2-CH ₃	n-C ₃ H ₇
144	CH ₃	2-CH ₃	i-C ₃ H ₇
145	CH ₃	2-CH ₃	n-C ₄ H ₉
146	CH ₃	2-CH ₃	n-C ₆ H ₁₃
147	CH ₃	2-CH ₃	CH ₂ F
148	CH ₃	2-CH ₃	CHF ₂
149	CH ₃	2-CH ₃	CH ₂ CF ₃
150	CH ₃	2-CH ₃	CH ₂ CH=CH ₂
151	CH ₃	2-CH ₃	CH ₂ CH=CHCH ₃
152	CH ₃	2-CH ₃	CH ₂ CH=C(CH ₃) ₂
153	CH ₃	2-CH ₃	CH ₂ CH=CHCl

Compound No.	R ₂	(R ₅) _n	A-R ₇
154	CH ₃	2-CH ₃	CH ₂ CH=CCl ₂
155	CH ₃	2-CH ₃	CH ₂ C(CH ₃)=CH ₂
156	CH ₃	2-CH ₃	CH ₂ C≡CH
157	CH ₃	2-CH ₃	CH ₂ Si(CH ₃) ₃
158	CH ₃	2-CH ₃	CH ₂ -c.propyl-2,2-Cl ₂
159	CH ₃	2-CH ₃	CH ₂ CN
160	CH ₃	2-CH ₃	CH ₂ COOC ₂ H ₅
161	CH ₃	2-CH ₃	CH(CH ₃)COOC ₂ H ₅
162	CH ₃	2-CH ₃	CH ₂ C ₆ H ₄ -3-CF ₃
163	CH ₃	2-CH ₃	CH ₂ C ₆ H ₄ -4-F
164	CH ₃	2-CH ₃	CH ₂ C ₆ H ₄ -3-F
165	CH ₃	2-CH ₃	CH ₂ C ₆ H ₄ -2-F
166	CH ₃	2-CH ₃	C(=O)OC ₂ H ₅
167	CH ₃	2-CH ₃	C(=O)NHCH ₃
168	CH ₃	2-CH ₃	C(=O)C(=O)OC ₂ H ₅
169	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₃
170	CH ₃	4-OCH ₂ Si(CH ₃) ₃	C ₂ H ₅
171	CH ₃	4-OCH ₂ Si(CH ₃) ₃	n-C ₃ H ₇
172	CH ₃	4-OCH ₂ Si(CH ₃) ₃	i-C ₃ H ₇
173	CH ₃	4-OCH ₂ Si(CH ₃) ₃	n-C ₄ H ₉
174	CH ₃	4-OCH ₂ Si(CH ₃) ₃	n-C ₆ H ₁₃
175	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ F
176	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CHF ₂
177	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ CF ₃
178	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ CH=CH ₂
179	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ CH=CHCH ₃
180	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ CH=C(CH ₃) ₂
181	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ CH=CHCl
182	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ CH=CCl ₂
183	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ C(CH ₃)=CH ₂

Compound No.	R ₂	(R ₅) _n	A-R ₇
184	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ C≡CH
185	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ Si(CH ₃) ₃
186	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ -c.propyl-2,2-Cl ₂
187	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ CN
188	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ COOC ₂ H ₅
189	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH(CH ₃)COOC ₂ H ₅
190	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ C ₆ H ₄ -3-CF ₃
191	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ C ₆ H ₄ -4-F
192	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ C ₆ H ₄ -3-F
193	CH ₃	4-OCH ₂ Si(CH ₃) ₃	CH ₂ C ₆ H ₄ -2-F
194	CH ₃	4-OCH ₂ Si(CH ₃) ₃	C(=O)OC ₂ H ₅
195	CH ₃	4-OCH ₂ Si(CH ₃) ₃	C(=O)NHCH ₃
196	CH ₃	4-OCH ₂ Si(CH ₃) ₃	C(=O)C(=O)OC ₂ H ₅
197	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₃
198	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	C ₂ H ₅
199	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	n-C ₃ H ₇
200	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	i-C ₃ H ₇
201	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	n-C ₄ H ₉
202	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	n-C ₆ H ₁₃
203	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ F
204	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CHF ₂
205	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ CF ₃
206	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ CH=CH ₂
207	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ CH=CHCH ₃
208	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ CH=C(CH ₃) ₂
209	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ CH=CHCl
210	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ CH=CCl ₂
211	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ C(CH ₃)=CH ₂
212	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ C≡CH
213	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ Si(CH ₃) ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
214	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ -c.propyl-2,2-Cl ₂
215	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ CN
216	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ COOC ₂ H ₅
217	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH(CH ₃)COOC ₂ H ₅
218	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ C ₆ H ₄ -3-CF ₃
219	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ C ₆ H ₄ -4-F
220	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ C ₆ H ₄ -3-F
221	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	CH ₂ C ₆ H ₄ -2-F
222	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	C(=O)OC ₂ H ₅
223	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	C(=O)NHCH ₃
224	CH ₃	4-OCH ₂ C ₆ H ₄ -4-CF ₃	C(=O)C(=O)OC ₂ H ₅
225	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₃
226	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	C ₂ H ₅
227	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	n-C ₃ H ₇
228	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	i-C ₃ H ₇
229	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	n-C ₄ H ₉
230	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	n-C ₆ H ₁₃
231	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ F
232	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CHF ₂
233	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CF ₃
234	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=CH ₂
235	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=CHCH ₃
236	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=C(CH ₃) ₂
237	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=CHCl
238	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=CCl ₂
239	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C(CH ₃)=CH ₂
240	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C≡CH
241	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ Si(CH ₃) ₃
242	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ -c.propyl-2,2-Cl ₂
243	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CN

Compound No.	R ₂	(R ₅) _n	A-R ₇
244	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ COOC ₂ H ₅
245	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH(CH ₃)COOC ₂ H ₅
246	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -3-CF ₃
247	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -4-F
248	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -3-F
249	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -2-F
250	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	C(=O)OC ₂ H ₅
251	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	C(=O)NHCH ₃
252	CH ₃	4-OCH ₂ C ₆ H ₄ -3-CF ₃	C(=O)C(=O)OC ₂ H ₅
253	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₃
254	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	C ₂ H ₅
255	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	n-C ₃ H ₇
256	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	i-C ₃ H ₇
257	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	n-C ₄ H ₉
258	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	n-C ₆ H ₁₃
259	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ F
260	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CHF ₂
261	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ CF ₃
262	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ CH=CH ₂
263	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ CH=CHCH ₃
264	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ CH=C(CH ₃) ₂
265	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ CH=CHCl
266	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ CH=CCl ₂
267	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ C(CH ₃)=CH ₂
268	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ C≡CH
269	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ Si(CH ₃) ₃
270	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ -c.propyl-2,2-Cl ₂
271	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ CN
272	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ COOC ₂ H ₅
273	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH(CH ₃)COOC ₂ H ₅

Compound No.	R ₂	(R ₅) _n	A-R ₇
274	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ C ₆ H ₄ -3-CF ₃
275	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ C ₆ H ₄ -4-F
276	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ C ₆ H ₄ -3-F
277	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	CH ₂ C ₆ H ₄ -2-F
278	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	C(=O)OC ₂ H ₅
279	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	C(=O)NHCH ₃
280	CH ₃	4-OCH ₂ C ₆ H ₄ -2-CF ₃	C(=O)C(=O)OC ₂ H ₅
281	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₃
282	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	C ₂ H ₅
283	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	n-C ₃ H ₇
284	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	i-C ₃ H ₇
285	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	n-C ₄ H ₉
286	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	n-C ₆ H ₁₃
287	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ F
288	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CHF ₂
289	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ CF ₃
290	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ CH=CH ₂
291	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ CH=CHCH ₃
292	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ CH=C(CH ₃) ₂
293	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ CH=CHCl
294	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ CH=CCl ₂
295	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ C(CH ₃)=CH ₂
296	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ C≡CH
297	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ Si(CH ₃) ₃
298	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ -c.propyl-2,2-Cl ₂
299	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ CN
300	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ COOC ₂ H ₅
301	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH(CH ₃)COOC ₂ H ₅
302	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ C ₆ H ₄ -3-CF ₃
303	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ C ₆ H ₄ -4-F

Compound No.	R ₂	(R ₅) _n	A-R ₇
304	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ C ₆ H ₄ -3-F
305	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	CH ₂ C ₆ H ₄ -2-F
306	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	C(=O)OC ₂ H ₅
307	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	C(=O)NHCH ₃
308	CH ₃	4-OCH ₂ C ₆ H ₄ -4-F	C(=O)C(=O)OC ₂ H ₅
309	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₃
310	CH ₃	4-OC ₆ H ₄ -3-CF ₃	C ₂ H ₅
311	CH ₃	4-OC ₆ H ₄ -3-CF ₃	n-C ₃ H ₇
312	CH ₃	4-OC ₆ H ₄ -3-CF ₃	i-C ₃ H ₇
313	CH ₃	4-OC ₆ H ₄ -3-CF ₃	n-C ₄ H ₉
314	CH ₃	4-OC ₆ H ₄ -3-CF ₃	n-C ₆ H ₁₃
315	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ F
316	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CHF ₂
317	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ CF ₃
318	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ CH=CH ₂
319	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ CH=CHCH ₃
320	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ CH=C(CH ₃) ₂
321	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ CH=CHCl
322	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ CH=CCl ₂
323	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ C(CH ₃)=CH ₂
324	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ C≡CH
325	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ Si(CH ₃) ₃
326	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ -c.propyl-2,2-Cl ₂
327	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ CN
328	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ COOC ₂ H ₅
329	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH(CH ₃)COOC ₂ H ₅
330	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -3-CF ₃
331	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -4-F
332	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -3-F
333	CH ₃	4-OC ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -2-F

Compound No.	R ₂	(R ₅) _n	A-R ₇
334	CH ₃	4-OC ₆ H ₄ -3-CF ₃	C(=O)OC ₂ H ₅
335	CH ₃	4-OC ₆ H ₄ -3-CF ₃	C(=O)NHCH ₃
336	CH ₃	4-OC ₆ H ₄ -3-CF ₃	C(=O)C(=O)OC ₂ H ₅
337	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₃
338	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	C ₂ H ₅
339	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	n-C ₃ H ₇
340	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	i-C ₃ H ₇
341	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	n-C ₄ H ₉
342	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	n-C ₆ H ₁₃
343	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ F
344	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CHF ₂
345	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CF ₃
346	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=CH ₂
347	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=CHCH ₃
348	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=C(CH ₃) ₂
349	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=CHCl
350	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CH=CCl ₂
351	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C(CH ₃)=CH ₂
352	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C≡CH
353	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ Si(CH ₃) ₃
354	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ -c.propyl-2,2-Cl ₂
355	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ CN
356	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ COOC ₂ H ₅
357	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH(CH ₃)COOC ₂ H ₅
358	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -3-CF ₃
359	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -4-F
360	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -3-F
361	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	CH ₂ C ₆ H ₄ -2-F
362	C ₂ H ₅	4-OC ₆ H ₄ -3-CF ₃	C(=O)OC ₂ H ₅
363	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	C(=O)NHCH ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
364	C ₂ H ₅	4-OCH ₂ C ₆ H ₄ -3-CF ₃	C(=O)C(=O)OC ₂ H ₅
365	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₃
366	CH ₃	4-OC ₆ H ₄ -4-Cl	C ₂ H ₅
367	CH ₃	4-OC ₆ H ₄ -4-Cl	n-C ₃ H ₇
368	CH ₃	4-OC ₆ H ₄ -4-Cl	i-C ₃ H ₇
369	CH ₃	4-OC ₆ H ₄ -4-Cl	n-C ₄ H ₉
370	CH ₃	4-OC ₆ H ₄ -4-Cl	n-C ₆ H ₁₃
371	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ F
372	CH ₃	4-OC ₆ H ₄ -4-Cl	CHF ₂
373	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ CF ₃
374	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ CH=CH ₂
375	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ CH=CHCH ₃
376	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ CH=C(CH ₃) ₂
377	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ CH=CHCl
378	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ CH=CCl ₂
379	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ C(CH ₃)=CH ₂
380	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ C≡CH
381	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ Si(CH ₃) ₃
382	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ -c.propyl-2,2-Cl ₂
383	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ CN
384	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ COOC ₂ H ₅
385	CH ₃	4-OC ₆ H ₄ -4-Cl	CH(CH ₃)COOC ₂ H ₅
386	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ C ₆ H ₄ -3-CF ₃
387	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ C ₆ H ₄ -4-F
388	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ C ₆ H ₄ -3-F
389	CH ₃	4-OC ₆ H ₄ -4-Cl	CH ₂ C ₆ H ₄ -2-F
390	CH ₃	4-OC ₆ H ₄ -4-Cl	C(=O)OC ₂ H ₅
391	CH ₃	4-OC ₆ H ₄ -4-Cl	C(=O)NHCH ₃
392	CH ₃	4-OC ₆ H ₄ -4-Cl	C(=O)C(=O)OC ₂ H ₅
393	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
394	CH ₃	4-OC ₆ H ₄ -3-Cl	C ₂ H ₅
395	CH ₃	4-OC ₆ H ₄ -3-Cl	n-C ₃ H ₇
396	CH ₃	4-OC ₆ H ₄ -3-Cl	i-C ₃ H ₇
397	CH ₃	4-OC ₆ H ₄ -3-Cl	n-C ₄ H ₉
398	CH ₃	4-OC ₆ H ₄ -3-Cl	n-C ₆ H ₁₃
399	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ F
400	CH ₃	4-OC ₆ H ₄ -3-Cl	CHF ₂
401	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ CF ₃
402	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ CH=CH ₂
403	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ CH=CHCH ₃
404	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ CH=C(CH ₃) ₂
405	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ CH=CHCl
406	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ CH=CCl ₂
407	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ C(CH ₃)=CH ₂
408	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ C≡CH
409	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ Si(CH ₃) ₃
410	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ -c.propyl-2,2-Cl ₂
411	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ CN
412	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ COOC ₂ H ₅
413	CH ₃	4-OC ₆ H ₄ -3-Cl	CH(CH ₃)COOC ₂ H ₅
414	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ C ₆ H ₄ -3-CF ₃
415	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ C ₆ H ₄ -4-F
416	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ C ₆ H ₄ -3-F
417	CH ₃	4-OC ₆ H ₄ -3-Cl	CH ₂ C ₆ H ₄ -2-F
418	CH ₃	4-OC ₆ H ₄ -3-Cl	C(=O)OC ₂ H ₅
419	CH ₃	4-OC ₆ H ₄ -3-Cl	C(=O)NHCH ₃
420	CH ₃	4-OC ₆ H ₄ -3-Cl	C(=O)C(=O)OC ₂ H ₅
421	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₃
422	CH ₃	4-OC ₆ H ₄ -2-Cl	C ₂ H ₅
423	CH ₃	4-OC ₆ H ₄ -2-Cl	n-C ₃ H ₇

Compound No.	R ₂	(R ₅) _n	A-R ₇
424	CH ₃	4-OC ₆ H ₄ -2-Cl	i-C ₃ H ₇
425	CH ₃	4-OC ₆ H ₄ -2-Cl	n-C ₄ H ₉
426	CH ₃	4-OC ₆ H ₄ -2-Cl	n-C ₆ H ₁₃
427	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ F
428	CH ₃	4-OC ₆ H ₄ -2-Cl	CHF ₂
429	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ CF ₃
430	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ CH=CH ₂
431	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ CH=CHCH ₃
432	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ CH=C(CH ₃) ₂
433	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ CH=CHCl
434	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ CH=CCl ₂
435	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ C(CH ₃)=CH ₂
436	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ C≡CH
437	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ Si(CH ₃) ₃
438	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ -c.propyl-2,2-Cl ₂
439	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ CN
440	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ COOC ₂ H ₅
441	CH ₃	4-OC ₆ H ₄ -2-Cl	CH(CH ₃)COOC ₂ H ₅
442	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ C ₆ H ₄ -3-CF ₃
443	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ C ₆ H ₄ -4-F
444	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ C ₆ H ₄ -3-F
445	CH ₃	4-OC ₆ H ₄ -2-Cl	CH ₂ C ₆ H ₄ -2-F
446	CH ₃	4-OC ₆ H ₄ -2-Cl	C(=O)OC ₂ H ₅
447	CH ₃	4-OC ₆ H ₄ -2-Cl	C(=O)NHCH ₃
448	CH ₃	4-OC ₆ H ₄ -2-Cl	C(=O)C(=O)OC ₂ H ₅
449	CH ₃	4-OC ₆ H ₄ -4-F	CH ₃
450	CH ₃	4-OC ₆ H ₄ -4-F	C ₂ H ₅
451	CH ₃	4-OC ₆ H ₄ -4-F	n-C ₃ H ₇
452	CH ₃	4-OC ₆ H ₄ -4-F	i-C ₃ H ₇
453	CH ₃	4-OC ₆ H ₄ -4-F	n-C ₄ H ₉

Compound No.	R ₂	(R ₅) _n	A-R ₇
454	CH ₃	4-OC ₆ H ₄ -4-F	n-C ₆ H ₁₃
455	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ F
456	CH ₃	4-OC ₆ H ₄ -4-F	CHF ₂
457	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ CF ₃
458	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ CH=CH ₂
459	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ CH=CHCH ₃
460	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ CH=C(CH ₃) ₂
461	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ CH=CHCl
462	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ CH=CCl ₂
463	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ C(CH ₃)=CH ₂
464	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ C≡CH
465	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ Si(CH ₃) ₃
466	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ -c.propyl-2,2-Cl ₂
467	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ CN
468	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ COOC ₂ H ₅
469	CH ₃	4-OC ₆ H ₄ -4-F	CH(CH ₃)COOC ₂ H ₅
470	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ C ₆ H ₄ -3-CF ₃
471	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ C ₆ H ₄ -4-F
472	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ C ₆ H ₄ -3-F
473	CH ₃	4-OC ₆ H ₄ -4-F	CH ₂ C ₆ H ₄ -2-F
474	CH ₃	4-OC ₆ H ₄ -4-F	C(=O)OC ₂ H ₅
475	CH ₃	4-OC ₆ H ₄ -4-F	C(=O)NHCH ₃
476	CH ₃	4-OC ₆ H ₄ -4-F	C(=O)C(=O)OC ₂ H ₅
477	CH ₃	4-OC ₆ H ₄ -3-F	CH ₃
478	CH ₃	4-OC ₆ H ₄ -3-F	C ₂ H ₅
479	CH ₃	4-OC ₆ H ₄ -3-F	n-C ₃ H ₇
480	CH ₃	4-OC ₆ H ₄ -3-F	i-C ₃ H ₇
481	CH ₃	4-OC ₆ H ₄ -3-F	n-C ₄ H ₉
482	CH ₃	4-OC ₆ H ₄ -3-F	n-C ₆ H ₁₃
483	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ F

Compound No.	R ₂	(R ₅) _n	A-R ₇
484	CH ₃	4-OC ₆ H ₄ -3-F	CHF ₂
485	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ CF ₃
486	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ CH=CH ₂
487	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ CH=CHCH ₃
488	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ CH=C(CH ₃) ₂
489	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ CH=CHCl
490	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ CH=CCl ₂
491	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ C(CH ₃)=CH ₂
492	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ C≡CH
493	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ Si(CH ₃) ₃
494	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ -c.propyl-2,2-Cl ₂
495	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ CN
496	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ COOC ₂ H ₅
497	CH ₃	4-OC ₆ H ₄ -3-F	CH(CH ₃)COOC ₂ H ₅
498	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ C ₆ H ₄ -3-CF ₃
499	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ C ₆ H ₄ -4-F
500	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ C ₆ H ₄ -3-F
501	CH ₃	4-OC ₆ H ₄ -3-F	CH ₂ C ₆ H ₄ -2-F
502	CH ₃	4-OC ₆ H ₄ -3-F	C(=O)OC ₂ H ₅
503	CH ₃	4-OC ₆ H ₄ -3-F	C(=O)NHCH ₃
504	CH ₃	4-OC ₆ H ₄ -3-F	C(=O)C(=O)OC ₂ H ₅
505	CH ₃	4-OC ₆ H ₄ -2-F	CH ₃
506	CH ₃	4-OC ₆ H ₄ -2-F	C ₂ H ₅
507	CH ₃	4-OC ₆ H ₄ -2-F	n-C ₃ H ₇
508	CH ₃	4-OC ₆ H ₄ -2-F	i-C ₃ H ₇
509	CH ₃	4-OC ₆ H ₄ -2-F	n-C ₄ H ₉
510	CH ₃	4-OC ₆ H ₄ -2-F	n-C ₆ H ₁₃
511	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ F
512	CH ₃	4-OC ₆ H ₄ -2-F	CHF ₂
513	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ CF ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
514	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ CH=CH ₂
515	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ CH=CHCH ₃
516	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ CH=C(CH ₃) ₂
517	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ CH=CHCl
518	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ CH=CCl ₂
519	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ C(CH ₃)=CH ₂
520	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ C≡CH
521	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ Si(CH ₃) ₃
522	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ -c.propyl-2,2-Cl ₂
523	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ CN
524	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ COOC ₂ H ₅
525	CH ₃	4-OC ₆ H ₄ -2-F	CH(CH ₃)COOC ₂ H ₅
526	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ C ₆ H ₄ -3-CF ₃
527	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ C ₆ H ₄ -4-F
528	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ C ₆ H ₄ -3-F
529	CH ₃	4-OC ₆ H ₄ -2-F	CH ₂ C ₆ H ₄ -2-F
530	CH ₃	4-OC ₆ H ₄ -2-F	C(=O)OC ₂ H ₅
531	CH ₃	4-OC ₆ H ₄ -2-F	C(=O)NHCH ₃
532	CH ₃	4-OC ₆ H ₄ -2-F	C(=O)C(=O)OC ₂ H ₅
533	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₃
534	CH ₃	4-OC ₆ H ₄ -4-Br	C ₂ H ₅
535	CH ₃	4-OC ₆ H ₄ -4-Br	n-C ₃ H ₇
536	CH ₃	4-OC ₆ H ₄ -4-Br	i-C ₃ H ₇
537	CH ₃	4-OC ₆ H ₄ -4-Br	n-C ₄ H ₉
538	CH ₃	4-OC ₆ H ₄ -4-Br	n-C ₆ H ₁₃
539	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ F
540	CH ₃	4-OC ₆ H ₄ -4-Br	CHF ₂
541	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ CF ₃
542	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ CH=CH ₂
543	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ CH=CHCH ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
544	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ CH=C(CH ₃) ₂
545	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ CH=CHCl
546	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ CH=CCl ₂
547	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ C(CH ₃)=CH ₂
548	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ C≡CH
549	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ Si(CH ₃) ₃
550	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ -c.propyl-2,2-Cl ₂
551	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ CN
552	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ COOC ₂ H ₅
553	CH ₃	4-OC ₆ H ₄ -4-Br	CH(CH ₃)COOC ₂ H ₅
554	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ C ₆ H ₄ -3-CF ₃
555	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ C ₆ H ₄ -4-F
556	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ C ₆ H ₄ -3-F
557	CH ₃	4-OC ₆ H ₄ -4-Br	CH ₂ C ₆ H ₄ -2-F
558	CH ₃	4-OC ₆ H ₄ -4-Br	C(=O)OC ₂ H ₅
559	CH ₃	4-OC ₆ H ₄ -4-Br	C(=O)NHCH ₃
560	CH ₃	4-OC ₆ H ₄ -4-Br	C(=O)C(=O)OC ₂ H ₅
561	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₃
562	CH ₃	4-OC ₆ H ₄ -3-Br	C ₂ H ₅
563	CH ₃	4-OC ₆ H ₄ -3-Br	n-C ₃ H ₇
564	CH ₃	4-OC ₆ H ₄ -3-Br	i-C ₃ H ₇
565	CH ₃	4-OC ₆ H ₄ -3-Br	n-C ₄ H ₉
566	CH ₃	4-OC ₆ H ₄ -3-Br	n-C ₆ H ₁₃
567	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ F
568	CH ₃	4-OC ₆ H ₄ -3-Br	CHF ₂
569	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ CF ₃
570	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ CH=CH ₂
571	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ CH=CHCH ₃
572	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ CH=C(CH ₃) ₂
573	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ CH=CHCl

Compound No.	R ₂	(R ₅) _n	A-R ₇
574	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ CH=CCl ₂
575	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ C(CH ₃)=CH ₂
576	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ C≡CH
577	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ Si(CH ₃) ₃
578	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ -c.propyl-2,2-Cl ₂
579	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ CN
580	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ COOC ₂ H ₅
581	CH ₃	4-OC ₆ H ₄ -3-Br	CH(CH ₃)COOC ₂ H ₅
582	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ C ₆ H ₄ -3-CF ₃
583	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ C ₆ H ₄ -4-F
584	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ C ₆ H ₄ -3-F
585	CH ₃	4-OC ₆ H ₄ -3-Br	CH ₂ C ₆ H ₄ -2-F
586	CH ₃	4-OC ₆ H ₄ -3-Br	C(=O)OC ₂ H ₅
587	CH ₃	4-OC ₆ H ₄ -3-Br	C(=O)NHCH ₃
588	CH ₃	4-OC ₆ H ₄ -3-Br	C(=O)C(=O)OC ₂ H ₅
589	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₃
590	CH ₃	4-OC ₆ H ₄ -2-Br	C ₂ H ₅
591	CH ₃	4-OC ₆ H ₄ -2-Br	n-C ₃ H ₇
592	CH ₃	4-OC ₆ H ₄ -2-Br	i-C ₃ H ₇
593	CH ₃	4-OC ₆ H ₄ -2-Br	n-C ₄ H ₉
594	CH ₃	4-OC ₆ H ₄ -2-Br	n-C ₆ H ₁₃
595	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ F
596	CH ₃	4-OC ₆ H ₄ -2-Br	CHF ₂
597	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ CF ₃
598	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ CH=CH ₂
599	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ CH=CHCH ₃
600	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ CH=C(CH ₃) ₂
601	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ CH=CHCl
602	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ CH=CCl ₂
603	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ C(CH ₃)=CH ₂

Compound No.	R ₂	(R ₅) _n	A-R ₇
604	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ C≡CH
605	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ Si(CH ₃) ₃
606	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ -c.propyl-2,2-Cl ₂
607	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ CN
608	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ COOC ₂ H ₅
609	CH ₃	4-OC ₆ H ₄ -2-Br	CH(CH ₃)COOC ₂ H ₅
610	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ C ₆ H ₄ -3-CF ₃
611	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ C ₆ H ₄ -4-F
612	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ C ₆ H ₄ -3-F
613	CH ₃	4-OC ₆ H ₄ -2-Br	CH ₂ C ₆ H ₄ -2-F
614	CH ₃	4-OC ₆ H ₄ -2-Br	C(=O)OC ₂ H ₅
615	CH ₃	4-OC ₆ H ₄ -2-Br	C(=O)NHCH ₃
616	CH ₃	4-OC ₆ H ₄ -2-Br	C(=O)C(=O)OC ₂ H ₅
617	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₃
618	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	C ₂ H ₅
619	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	n-C ₃ H ₇
620	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	i-C ₃ H ₇
621	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	n-C ₄ H ₉
622	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	n-C ₆ H ₁₃
623	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ F
624	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CHF ₂
625	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ CF ₃
626	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ CH=CH ₂
627	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ CH=CHCH ₃
628	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ CH=C(CH ₃) ₂
629	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ CH=CHCl
630	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ CH=CCl ₂
631	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ C(CH ₃)=CH ₂
632	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ C≡CH
633	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ Si(CH ₃) ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
634	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ -c.propyl-2,2-Cl ₂
635	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ CN
636	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ COOC ₂ H ₅
637	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH(CH ₃)COOC ₂ H ₅
638	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ C ₆ H ₄ -3-CF ₃
639	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ C ₆ H ₄ -4-F
640	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ C ₆ H ₄ -3-F
641	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	CH ₂ C ₆ H ₄ -2-F
642	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	C(=O)OC ₂ H ₅
643	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	C(=O)NHCH ₃
644	CH ₃	4-OC ₆ H ₃ -2,4-Cl ₂	C(=O)C(=O)OC ₂ H ₅
645	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₃
646	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	C ₂ H ₅
647	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	n-C ₃ H ₇
648	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	i-C ₃ H ₇
649	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	n-C ₄ H ₉
650	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	n-C ₆ H ₁₃
651	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ F
652	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CHF ₂
653	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ CF ₃
654	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=CH ₂
655	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=CHCH ₃
656	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=C(CH ₃) ₂
657	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=CHCl
658	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=CCl ₂
659	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ C(CH ₃)=CH ₂
660	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ C≡CH
661	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ Si(CH ₃) ₃
662	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ -c.propyl-2,2-Cl ₂
663	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ CN

Compound No.	R ₂	(R ₅) _n	A-R ₇
664	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ COOC ₂ H ₅
665	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH(CH ₃)COOC ₂ H ₅
666	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ C ₆ H ₄ -3-CF ₃
667	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ C ₆ H ₄ -4-F
668	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ C ₆ H ₄ -3-F
669	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	CH ₂ C ₆ H ₄ -2-F
670	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	C(=O)OC ₂ H ₅
671	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	C(=O)NHCH ₃
672	CH ₃	4-OC ₆ H ₃ -3,4-Cl ₂	C(=O)C(=O)OC ₂ H ₅
673	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₃
674	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	C ₂ H ₅
675	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	n-C ₃ H ₇
676	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	i-C ₃ H ₇
677	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	n-C ₄ H ₉
678	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	n-C ₆ H ₁₃
679	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ F
680	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CHF ₂
681	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ CF ₃
682	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ CH=CH ₂
683	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ CH=CHCH ₃
684	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ CH=C(CH ₃) ₂
685	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ CH=CHCl
686	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ CH=CCl ₂
687	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ C(CH ₃)=CH ₂
688	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ C≡CH
689	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ Si(CH ₃) ₃
690	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ -c.propyl-2,2-Cl ₂
691	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ CN
692	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ COOC ₂ H ₅
693	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH(CH ₃)COOC ₂ H ₅

Compound No.	R ₂	(R ₅) _n	A-R ₇
694	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ C ₆ H ₄ -3-CF ₃
695	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ C ₆ H ₄ -4-F
696	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ C ₆ H ₄ -3-F
697	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	CH ₂ C ₆ H ₄ -2-F
698	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	C(=O)OC ₂ H ₅
699	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	C(=O)NHCH ₃
700	CH ₃	4-OC ₆ H ₃ -2-Cl,4-Br	C(=O)C(=O)OC ₂ H ₅
701	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₃
702	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	C ₂ H ₅
703	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	n-C ₃ H ₇
704	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	i-C ₃ H ₇
705	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	n-C ₄ H ₉
706	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	n-C ₆ H ₁₃
707	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ F
708	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CHF ₂
709	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ CF ₃
710	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ CH=CH ₂
711	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ CH=CHCH ₃
712	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ CH=C(CH ₃) ₂
713	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ CH=CHCl
714	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ CH=CCl ₂
715	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ C(CH ₃)=CH ₂
716	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ C≡CH
717	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ Si(CH ₃) ₃
718	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ -c.propyl-2,2-Cl ₂
719	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ CN
720	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ COOC ₂ H ₅
721	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH(CH ₃)COOC ₂ H ₅
722	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ C ₆ H ₄ -3-CF ₃
723	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ C ₆ H ₄ -4-F

Compound No.	R ₂	(R ₅) _n	A-R ₇
724	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ C ₆ H ₄ -3-F
725	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	CH ₂ C ₆ H ₄ -2-F
726	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	C(=O)OC ₂ H ₅
727	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	C(=O)NHCH ₃
728	CH ₃	4-OC ₆ H ₃ -3,4-(OCH ₂ O-)	C(=O)C(=O)OC ₂ H ₅
729	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₃
730	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	C ₂ H ₅
731	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	n-C ₃ H ₇
732	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	i-C ₃ H ₇
733	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	n-C ₄ H ₉
734	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	n-C ₆ H ₁₃
735	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ F
736	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CHF ₂
737	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ CF ₃
738	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ CH=CH ₂
739	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ CH=CHCH ₃
740	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ CH=C(CH ₃) ₂
741	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ CH=CHCl
742	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ CH=CCl ₂
743	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ C(CH ₃)=CH ₂
744	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ C≡CH
745	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ Si(CH ₃) ₃
746	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ -c.propyl-2,2-Cl ₂
747	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ CN
748	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ COOC ₂ H ₅
749	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH(CH ₃)COOC ₂ H ₅
750	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ C ₆ H ₄ -3-CF ₃
751	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ C ₆ H ₄ -4-F
752	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ C ₆ H ₄ -3-F
753	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	CH ₂ C ₆ H ₄ -2-F

Compound No.	R ₂	(R ₅) _n	A-R ₇
754	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	C(=O)OC ₂ H ₅
755	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	C(=O)NHCH ₃
756	CH ₃	4-OC ₆ H ₄ -4-SCH ₃	C(=O)C(=O)OC ₂ H ₅
757	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₃
758	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	C ₂ H ₅
759	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	n-C ₃ H ₇
760	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	i-C ₃ H ₇
761	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	n-C ₄ H ₉
762	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	n-C ₆ H ₁₃
763	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ F
764	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CHF ₂
765	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ CF ₃
766	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ CH=CH ₂
767	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ CH=CHCH ₃
768	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ CH=C(CH ₃) ₂
769	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ CH=CHCl
770	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ CH=CCl ₂
771	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ C(CH ₃)=CH ₂
772	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ C≡CH
773	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ Si(CH ₃) ₃
774	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ -c.propyl-2,2-Cl ₂
775	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ CN
776	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ COOC ₂ H ₅
777	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH(CH ₃)COOC ₂ H ₅
778	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ C ₆ H ₄ -3-CF ₃
779	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ C ₆ H ₄ -4-F
780	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ C ₆ H ₄ -3-F
781	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	CH ₂ C ₆ H ₄ -2-F
782	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	C(=O)OC ₂ H ₅
783	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	C(=O)NHCH ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
784	CH ₃	4-OC ₆ H ₄ -4-OCH ₃	C(=O)C(=O)OC ₂ H ₅
785	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₃
786	CH ₃	4-OC ₆ H ₄ -4-t-butyl	C ₂ H ₅
787	CH ₃	4-OC ₆ H ₄ -4-t-butyl	n-C ₃ H ₇
788	CH ₃	4-OC ₆ H ₄ -4-t-butyl	i-C ₃ H ₇
789	CH ₃	4-OC ₆ H ₄ -4-t-butyl	n-C ₄ H ₉
790	CH ₃	4-OC ₆ H ₄ -4-t-butyl	n-C ₆ H ₁₃
791	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ F
792	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CHF ₂
793	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ CF ₃
794	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ CH=CH ₂
795	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ CH=CHCH ₃
796	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ CH=C(CH ₃) ₂
797	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ CH=CHCl
798	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ CH=CCl ₂
799	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ C(CH ₃)=CH ₂
800	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ C≡CH
801	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ Si(CH ₃) ₃
802	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ -c.propyl-2,2-Cl ₂
803	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ CN
804	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ COOC ₂ H ₅
805	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH(CH ₃)COOC ₂ H ₅
806	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ C ₆ H ₄ -3-CF ₃
807	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ C ₆ H ₄ -4-F
808	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ C ₆ H ₄ -3-F
809	CH ₃	4-OC ₆ H ₄ -4-t-butyl	CH ₂ C ₆ H ₄ -2-F
810	CH ₃	4-OC ₆ H ₄ -4-t-butyl	C(=O)OC ₂ H ₅
811	CH ₃	4-OC ₆ H ₄ -4-t-butyl	C(=O)NHCH ₃
812	CH ₃	4-OC ₆ H ₄ -4-t-butyl	C(=O)C(=O)OC ₂ H ₅
813	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₃

Compound No.	R ₂	(R ₅) _n	A-R ₇
814	CH ₃	4-OC ₆ H ₄ -4-CF ₃	C ₂ H ₅
815	CH ₃	4-OC ₆ H ₄ -4-CF ₃	n-C ₃ H ₇
816	CH ₃	4-OC ₆ H ₄ -4-CF ₃	i-C ₃ H ₇
817	CH ₃	4-OC ₆ H ₄ -4-CF ₃	n-C ₄ H ₉
818	CH ₃	4-OC ₆ H ₄ -4-CF ₃	n-C ₆ H ₁₃
819	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ F
820	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CHF ₂
821	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ CF ₃
822	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ CH=CH ₂
823	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ CH=CHCH ₃
824	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ CH=C(CH ₃) ₂
825	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ CH=CHCl
826	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ CH=CCl ₂
827	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ C(CH ₃)=CH ₂
828	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ C≡CH
829	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ Si(CH ₃) ₃
830	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ -c.propyl-2,2-Cl ₂
831	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ CN
832	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ COOC ₂ H ₅
833	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH(CH ₃)COOC ₂ H ₅
834	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ C ₆ H ₄ -3-CF ₃
835	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ C ₆ H ₄ -4-F
836	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ C ₆ H ₄ -3-F
837	CH ₃	4-OC ₆ H ₄ -4-CF ₃	CH ₂ C ₆ H ₄ -2-F
838	CH ₃	4-OC ₆ H ₄ -4-CF ₃	C(=O)OC ₂ H ₅
839	CH ₃	4-OC ₆ H ₄ -4-CF ₃	C(=O)NHCH ₃
840	CH ₃	4-OC ₆ H ₄ -4-CF ₃	C(=O)C(=O)OC ₂ H ₅
841	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₃
842	CH ₃	4-OC ₆ H ₄ -2-CF ₃	C ₂ H ₅
843	CH ₃	4-OC ₆ H ₄ -2-CF ₃	n-C ₃ H ₇

Compound No.	R ₂	(R ₅) _n	A-R ₇
844	CH ₃	4-OC ₆ H ₄ -2-CF ₃	i-C ₃ H ₇
845	CH ₃	4-OC ₆ H ₄ -2-CF ₃	n-C ₄ H ₉
846	CH ₃	4-OC ₆ H ₄ -2-CF ₃	n-C ₆ H ₁₃
847	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ F
848	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CHF ₂
849	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ CF ₃
850	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ CH=CH ₂
851	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ CH=CHCH ₃
852	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ CH=C(CH ₃) ₂
853	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ CH=CHCl
854	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ CH=CCl ₂
855	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ C(CH ₃)=CH ₂
856	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ C≡CH
857	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ Si(CH ₃) ₃
858	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ -c.propyl-2,2-Cl ₂
859	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ CN
860	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ COOC ₂ H ₅
861	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH(CH ₃)COOC ₂ H ₅
862	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ C ₆ H ₄ -3-CF ₃
863	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ C ₆ H ₄ -4-F
864	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ C ₆ H ₄ -3-F
865	CH ₃	4-OC ₆ H ₄ -2-CF ₃	CH ₂ C ₆ H ₄ -2-F
866	CH ₃	4-OC ₆ H ₄ -2-CF ₃	C(=O)OC ₂ H ₅
867	CH ₃	4-OC ₆ H ₄ -2-CF ₃	C(=O)NHCH ₃
868	CH ₃	4-OC ₆ H ₄ -2-CF ₃	C(=O)C(=O)OC ₂ H ₅
869	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₃
870	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	C ₂ H ₅
871	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	n-C ₃ H ₇
872	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	i-C ₃ H ₇
873	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	n-C ₄ H ₉

Compound No.	R ₂	(R ₅) _n	A-R ₇
874	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	n-C ₆ H ₁₃
875	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ F
876	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CHF ₂
877	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ CF ₃
878	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ CH=CH ₂
879	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ CH=CHCH ₃
880	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ CH=C(CH ₃) ₂
881	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ CH=CHCl
882	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ CH=CCl ₂
883	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ C(CH ₃)=CH ₂
884	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ C≡CH
885	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ Si(CH ₃) ₃
886	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ -c.propyl-2,2-Cl ₂
887	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ CN
888	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ COOC ₂ H ₅
889	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH(CH ₃)COOC ₂ H ₅
890	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ C ₆ H ₄ -3-CF ₃
891	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ C ₆ H ₄ -4-F
892	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ C ₆ H ₄ -3-F
893	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	CH ₂ C ₆ H ₄ -2-F
894	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	C(=O)OC ₂ H ₅
895	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	C(=O)NHCH ₃
896	CH ₃	4-OCH ₂ C ₆ H ₄ -4-Cl	C(=O)C(=O)OC ₂ H ₅
797	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₃
898	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	C ₂ H ₅
899	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	n-C ₃ H ₇
900	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	i-C ₃ H ₇
901	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	n-C ₄ H ₉
902	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	n-C ₆ H ₁₃
903	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ F

Compound No.	R ₂	(R ₅) _n	A-R ₇
904	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CHF ₂
905	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ CF ₃
906	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=CH ₂
907	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=CHCH ₃
908	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=C(CH ₃) ₂
909	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=CHCl
910	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ CH=CCl ₂
911	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ C(CH ₃)=CH ₂
912	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ C≡CH
913	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ Si(CH ₃) ₃
914	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ -c.propyl-2,2-Cl ₂
915	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ CN
916	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ COOC ₂ H ₅
917	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH(CH ₃)COOC ₂ H ₅
918	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ C ₆ H ₄ -3-CF ₃
919	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ C ₆ H ₄ -4-F
920	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ C ₆ H ₄ -3-F
921	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	CH ₂ C ₆ H ₄ -2-F
922	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	C(=O)OC ₂ H ₅
923	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	C(=O)NHCH ₃
924	CH ₃	4-OCH ₂ C ₆ H ₃ -3,4-Cl ₂	C(=O)C(=O)OC ₂ H ₅

In Tables 2.1 and 2.2, the ¹³C-NMR data of the compounds 1-[4-(3-trifluoromethyl-phenylmethoxy)-phenyl]-1,2-propanedione 1-E-[methyloxime]-2-oxime and 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-Z-[methyloxime]-2-oxime (which was prepared by one of the known processes and from which the E/Z isomer mixture formed in the preparation was isolated) or, respectively, methyl 2-[[[(1-methyl-2-(4-(3-trifluoromethylphenylmethoxy)-phenyl)-2-E-[methoxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymethylene)-phenylacetate (compound A225 in Table 1) are shown. The similar

chemical shifts of atoms 1 and 4 of compound A in Table 2.1 and those in Table 2.2 confirm the E configuration of the compounds of the formula I.

Table 2.1: ^{13}C -NMR shifts and $^1\text{J}_{\text{CC}}$ coupling constants of 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-E-[methyloxime]-2-oxime (A) and 1-[4-(3-trifluoromethylphenylmethoxy)-phenyl]-1,2-propanedione 1-Z-[methyloxime]-2-oxime (B)

Compound	Atom No.	Shift δ (ppm)	Coupling $^1\text{J}_{\text{CC}}$ (Hz)
A	1	125.6	$J_{12} = 56.0$
	3	155.0	$J_{23} = 72.0$
	4	10.1	$J_{34} = 43.0$
B	1	127.8	$J_{12} = 69.0$
	3	152.1	$J_{23} = 56.5$
	4	14.4	$J_{34} = 41.5$

Table 2.2: ^{13}C -NMR shifts of methyl 2-[[[(1-methyl-2-(4-(3-trifluoromethylphenylmethoxy)-phenyl)-2-E-[methoxyimino]ethylidene)amino]oxy]methyl]- α -(methoxymethylene)-phenylacetate (compound 1.225)

Atom No.	Shift δ (ppm)
1	124.9
2	155.1
3	155.0
4	11.1