Exam Answers Chapter 1.4 - Circular Motion Answer 1 2011:1:12

(5 marks)

The diagram below shows the forces acting on a car following a curve on a banked track. The car is travelling at 17.0 m s⁻¹ without slipping. Calculate the radius of the track.

Description	Marks
Centripetal force = $(11.5 \times 10^3 \text{ N} \times \sin 20^{\circ}) + (1300 \text{N} \times \cos 20^{\circ}) = 3933 \text{ N} + 1222$	1–2
N - 5155 N (1 mark each component)	1
Convert weight to mass m = W/g = 10000/9.8 = 1020 kg	
Rearrange and substitute $r = \frac{mv^2}{F} = \frac{1020 \times 17^2}{5155}$	1
Rearrange and substitute $r = \frac{1}{F} = \frac{1}{5155}$	
	1
r = 57.2 m	Total 5

Exam Answers Chapter 1.4 - Circular Motion Answer 2 2013:1:6

(3 marks)

A car is driving over a hill with a radius of 250 m at a speed of 30.0 m s⁻¹. Determine the magnitude of the net force experienced between a 65.0 kg passenger and their seat or seat belt.

A car is driving over a hill with a radius of 250 m at a speed of 30.0 m s⁻¹. Determine the magnitude of the net force experienced between a 65.0 kg passenger and their seat or seat belt.

Description	Marks
$F_{c}=F_{a}-F_{c}$	1
$F_r = F_g - F_c$ So $F_r = mg - mv^2/r$	
$F_1 = 65 \times 9.8 - 65 \times 30^2 / 250$	1
F _r = 403 N	1
Total	3

If stated 'net force = F_c ' and calculates F_c correctly, then 2 only.

Answer 3

2013:1:9

(5 marks)

Use a labelled free body diagram to help explain why a runner or a cyclist needs to lean when making a turn.

Description	Marks
Uses a diagram	
F _R > Centripetal force F _C F _g	1–3
Draws and labels two forces F_g and F_R (can include components of normal and	
frictional forces)	
Explains or draws a resultant F _c is produced The unbalanced force is directed towards the centre of the circle	1
The unparanced force is directed towards the centre of the choice	1
which provides the acceleration to move the object in a circle Total	5

Exam Answers Chapter 1.4 - Circular Motion Answer 4 2014:1:11

(6 marks)

Shown are a photograph and diagram of a child's swing suspended 7.00 metres below the branch of a large tree. The wooden seat has a mass of 1.00 kg and is supported by ropes as shown in the diagram below. When the seat is horizontal, the ropes that **attach to the seat** each make an angle of 15.0° to the vertical.

Calculate the maximum tension in each of the angled sections of the rope that attach to the seat when a 27.0 kg boy is sitting on the swing and moving with a tangential velocity of 4.00 m s⁻¹. Show **all** workings.

Description	Marks
Total mass in motion = 1 + 27 = 28.0 kg	1
$T = mg + mv^2 / r$	
$T = 28 \times 9.8 + 28 \times 4^2 / 7$	1–2
T = 274 + 64	1-2
T = 338 N	
Let t _r = tension in each section of rope:	
$t_r \times \cos 15^\circ = 338 / 4$	1–2
$t_r \times 0.966 = 84.5 \text{ N}$	
t _r = 87.6 N (no mark for unit)	1
Total	6

Exam Answers Chapter 1.4 - Circular Motion Answer 5 2014:2:19

(10 marks)

A string linking two balls M_1 and M_2 , (shown in the figure below) allows them to revolve in circular motion on the horizontal plane with radii R_1 and R_2 . The periods of revolution of M_1 and M_2 are the same and equal to T. Ignore gravitational force and air resistance force.

(a) Draw a free body diagram for M₁.

(3 marks)

Description	Marks
F_2 F_1	
Force drawn towards the centre of the circle (left)	1
2 forces drawn in opposite direction	1
F ₁ is larger than F ₂	1
Total	3

- (b) Complete the following for M_1 and M_2 .
 - (i) Write an appropriate expression for the tangential velocity v_1 of M_1 in terms of R_1 , R_2 and T. (2 marks)

Description	Marks
$v = s/t = (2\pi R / T)$	1
$v_1 = (2\pi R_1 / T)$	1
Total	2

(ii) Write an appropriate expression for the tension F_1 acting in the string between M_1 and M_2 , in terms of the mass m_2 , the radius R_2 and the period T. (2 marks)

Description		Marks
$F_1 = m_2 v_2^2 / R_2$		1
$= m_2(2\pi R_2/T)^2/R_2 = m_2 (4\pi^2 R_2) / T^2$		1
	Total	2

(iii) Write an appropriate expression for the tension F_2 acting in the string between P and M_1 , in terms of the masses m_1 and m_2 , the radii R_1 and R_2 and the period T. (3 marks)

Description	Marks
$F_c = F_2 - F_1$	1
$F_2 = m_1 v_1^2 / R_1 + m_2 v_2^2 / R_2$	1
$= m_1(2\pi R_1/T)^2/R_1 + m_2(2\pi R_2/T)^2/R_2$	1
$= (m_1 R_1 + m_2 R_2) (4\pi^2 / T^2)$	•
Total	3