```
Problem 1
4'(0) = 0 , 4(1) = D
       For X < 7:
       u"(x) = 0 => } " "(+) dt = 0 =>
  = > u'(x) - u'(0) = 0 = > u'(x) = 0 = > u(x) = c

for x > \overline{x}:
       unix1 = 0 => | quit) dt = <1 =>
  => u_1(x) = c_1 = 1 \int_{x}^{1} u_1(t) dt = c_1 \int_{1}^{1} dt = 5
   = > u(i) - u(x) = c_1(1-x) = > u(x) = c_1(x-i)
      Since u'(x) = \delta(x-\overline{x}) = \sum_{x=0}^{x+\epsilon} u''(x) dx = 1
     4'(x+6) - 4(x - 6) = 1
     We can make & infinitely small, so that
     u'(x-e)= u'(x_)= (0)= 0
                                     -> c1-0=1=> C1=1
     u'(x+e) = u'(x_+) = C_1
      Since \lim_{x\to x^+} U(x) = \lim_{x\to x^+} U(x) = 0 C = C_1(x-1) = 0
     Hence: (G(x, \overline{x})) = \begin{cases} \overline{x} - 1 & \text{for } x < \overline{x} \\ x - 1 & \text{for } x > \overline{x} \end{cases}
      こう くっ えーし
      y "(x) = 0 on (01)
      41(6)=1 ,411)=0
      Itegrating twice: 4LX) = ax+b
      41(0) = a = 1 , 4(1) = a + b = 0 = > b = -1
```

=> Go(X) = X-1

```
u"(x)=0 on (0,1)
       "(0) = 0 , W(1) = 1
       u'(0) = a = 0 , ull) = a+b=b=1
                   = > G(X) = 1
Let B = A-1. From the textbook:
     Bio = 6,(x;)= x;-1
     B_{i,4} = G_{i}(x_{i}) = 1

B_{i,j} = h G(x_{i,j}x_{j}) = \begin{cases} 0.25(x_{j-1}) & i = 1,2,-j \\ 0.25(x_{i-1}) & i = j,j+1,-j \end{cases}
   Since h=0.25 : X0=0, X1=0.25, X2=0.5, X3=0.75, X4=1
    Boo = X0-1=-1, Bro= X1-1=-0.75, Bro= X2-1=-0.5,
  B30 = X3-1=-0.25 , B40= X4-1= 0
    Boy = B14 = B24 = B34 = B44 = 1
    B_{01} = B_{11} = -0.1875 B_{21} = -0.125
     B31 = B32 = -0.0625, B41 = B42 = B43 = 0
 Boz = Biz = Boz = -0.125, Boz = Biz = Bzz = Bzz = -0.0625
           A_{-1} = \begin{bmatrix} -1 & -0.1812 & -0.0651 & 1 \\ -0.52 & -0.0651 & -0.0652 & 1 \\ -0.52 & -0.0651 & -0.0652 & 1 \end{bmatrix}
```

Proble m 2

See the attach ments,

Problem 3

I From Matlab: Elh) = 5.95256 . h 1.9776 % O(h2)

You can find the corresponding outputs at the end of the pdf.

1 LT E = $\frac{1}{3}(h_{i-1}-h_i) u^{ii}(x_i) + O(h^2)$

h;-, = x;-x;-, & h X'(zi)

h: = xi+1 - x; & h x' 12 (+1)

 $\frac{1}{3}(h_{i-1}-h_i)u^m(x_i) = \frac{1}{3}h(x'(z_i)-x'(z_{i+1}))u^m(x_i)$

X'(zin1) = x'(z; +ih) & x'(zi) + x"(zi) ih + O(h2)

Hence if X is at least twice differentiable:

LTE = $\frac{1}{3}(h_{i-1}-h_i)u^{ii}(x_i)+O(h^2)$

= \frac{3}{1} h (x' (\frac{5}{1}) - x' (\frac{9}{1}(1)) n (x;) + O(\h^2)

= \frac{3}{1} \rangle (\chi_1 \text{(si) ih + O(\rho_5)) \rangle (\chi_1) + O(\rho_5)

= $\frac{1}{3}ih^2 X''(z_i)u^{(1)}(x_i) + O(h^2) = O(h^2)$

13) Average order of accuracy is h1.74939

You can find the corresponding outputs at the end of the pdf.

(Problem 4)

1 u"(x)+ u(x)=0 in (a,b)

u(a) = d , u(b) = B

u(x) = c2 sin(x) + c2 cos(x) -> general solution

 $u(a) = c_2 \sin(a) + c_1 \cos(a) = \lambda = c_2 \sin(a)$ $c_1 = c_2 \sin(a)$

```
u(b) = (2 sin(b) + C1 cos(b) = B
           C_2 sin(b) + \frac{1 - C_2 sin(a)}{2} cos(b) = \beta
C_{2} \left( \frac{\sin(b)}{\cos(a)} - \frac{\sin(a) \cos(b)}{\cos(a)} \right) = \beta - \lambda \frac{\cos(b)}{\cos(a)}
C_{2} = \frac{\beta - \lambda \cos(b) / \cos(a)}{\sin(b) - \sin(a) \cos(b) / \cos(a)}
You can find the corresponding outputs at the end
   the pdf. See the attach ments for the code.
       u(b) = C2 sino + C1 coso = C1 = 2
12
       U(T) = C2 sint + C1 WST = -C1 = B
       For d=-p=c1, BVP has solutions:
        u(x) = c<sub>2</sub> sin(x) + d cos(x) is a family of solutions
You can find the corresponding sketch for d= 2 and
 c2=-10:2:10 at the end of the pdf.
3 You can find the corresponding outputs at the end
  of the pdf. See the attach ments for the code.
  For B = -1, u_n(x) \rightarrow u(x) = \omega_s(x)
 Because, byp2.m makes cz=0.
  For B=1, numerical solution just approximates
   ulli-0 and error does not change, because dt-B.
 14 A =
                 1 -2+/21
                       1 -2-4/2/
```

 $|A-\lambda I| = (1-\lambda) \det A_1 - \frac{1}{h^2} \det A_2$ Where A, is (A-II) without 1st row and 1st column. and Az is (A-2I) without 2nd row and 1st column. Notice that Az has a now of all zeros, hence det (A2)=0. $|A-\lambda I| = (l-\lambda) \det A_1 = (l-\lambda) ((l-\lambda) \det A_1 + \frac{1}{h^2}$ · det A12) is A, without last row and last column. Where A 11 and A12 is A, without penultinde now and last column. Notice that A12 has a now of all zeros, hence det (A2)=0. 1A-2Il= (1-2)2 Let A11 Using the textbook as a guidance we can find that $\lambda_p = \frac{2\cos(ph) - 24h^2}{h^2}$ for p = 1, 2, -1, m $u_j^p = \sin(pjh)$ we have $\cos(ph)$ instead $u_j^p = \sin(pjh)$ we have $\cos(ph)$ instead $V_0 = V_{m+1}^p = 0$ of $cos(P\pi h)$ be cause our $h = \frac{\pi}{m}$ instead of $h = \frac{1}{m}$ $(A_{ii}^{qP})_{j} = \frac{1}{h^{2}} (q_{j-1}^{P} - (2 - h^{2}) q_{j}^{P} + q_{j+1}^{P})$ $= \frac{1}{h^2} \left(\sin(p (j-1)h) - (2 - h^2) \sin(p (jh) + \sin(p (j+1)h) \right)$ = $\frac{1}{h^2}$ (sin (p jh) ws (p h) - (2 - h2) sin(p jh) t sin(p jh) ws (p h)) = lp yp for j=1,-im $\frac{1}{h^2} \cdot h^2 \cdot yP_j = 0 = \frac{1}{h^2} yP_j \qquad \text{for } j = 0 \mid m+1 \mid m+$ $\approx \lim_{h \to 0} -(P)^2 \omega s(Ph) + 1 = -P^2 + 1$

So for P=1: lim 1=-1+1=0

Since A^{-1} is also symmetric: $|A^{-1}||_2 = p(A^{-1}) = \max_{1 \le p \le m} |(\lambda_p)^{-1}| = \frac{1}{\min_{1 \le p \le m} |\lambda_p|}$

Since as hoo minhaphono : ILA-Ill2 000

You can find the corresponding outputs at the end of the pdf. See the attach ments for the code.

Problem 2.

1. Modifications made:

```
% first row for Dirichlet BC at ax:
A(1,1:3) = fdcoeffF(0, x(1), x(1:3));
% interior rows:
for i=2:m1
    A(i,i-1:i+1) = fdcoeffF(2, x(i), x((i-1):(i+1)));
end
% last row for Neumann BC at bx:
A(m2,m:m2) = fdcoeffF(1,x(m2),x(m:m2));
```

Outputs:

2. Modifications made:

```
% first row for Dirichlet BC on u'(x(1))
A(1,1:5) = fdcoeffF(0, x(1), x(1:5));
% second row for u''(x(2))
A(2,1:6) = fdcoeffF(2, x(2), x(1:6));
% interior rows:
for i=3:m
    A(i,i-2:i+2) = fdcoeffF(2, x(i), x((i-2):(i+2)));
end
% next to last row for u''(x(m+1))
A(m1,m-3:m2) = fdcoeffF(2,x(m1),x(m-3:m2));
% last row for Neumann BC on u(x(m+2))
A(m2,m-2:m2) = fdcoeffF(1,x(m2),x(m-2:m2));
```


Problem 3.

1. rtlayer results:

h	error	ratio	observed order
0.30000	5.45012e-01	NaN	NaN
0.15000	1.41393e-01	3.85460	1.94658
0.07500	3.56757e-02	3.96328	1.98670
0.03750	8.93948e-03	3.99080	1.99668

Least squares fit gives $E(h) = 5.95256 * h^1.97766$

Indeed since 1.97766 ~ 2, second-order accuracy is observed.

- 2. Check the handwritten proof.
- 3. random results with m from 10 to 1000:

h	error	ratio	observed order		
0.30000	7.71268e-01	NaN	NaN		
0.27273	5.14687e-01	1.49852	4.24380		
0.25000	4.84159e+00	0.10631	-25.76032		
0.23077	6.85630e+00	0.70615	-4.34672		log-log plot of errors vs. h
0.20000	1.76170e-01	38.91873	25.58668	10 ¹	
0.18750	4.04848e+00	0.04352	-48.57020	E	9 0 10
0.16667	8.11682e-01	4.98776	13.64362		\\ \mathbb{R} \tau\)
0.15789	8.15744e-02	9.95020	42.49512		PIVI
0.14286	3.10441e+00	0.02628	-36.36027	10 ⁰	9 99 1000
0.13043	1.06393e+00	2.91787	11.77128	-	1 11 11 0
0.11538	5.70502e+00	0.18649	-13.69777	l l	$\phi \phi $
0.10714	9.68836e-01	5.88853	23.92463	1	
0.09677	7.88057e-02	12.29399	24.65165	10 ⁻¹	4 1 8 6 6 1
0.08824	1.58603e+00	0.04969	-32.49863		Q 1 12 P 1
0.08108	1.57003e-01	10.10193	27.35097	1	
0.07317	1.68526e-01	0.93162	-0.68997	10 ⁻²	Y 9/1 3/1
0.06667	9.41136e-02	1.79067	6.25832	10	N N P P
0.06122	6.70772e-01	0.14031	-23.06219	Ŧ	
0.05556	6.46659e-01	1.03729	0.37678	1	
0.05000	1.35806e-01	4.76164	14.81192	10 ⁻³	
0.04545	3.26210e-02	4.16315	14.96453	10	
0.04167	8.21861e-03	3.96916	15.84338	1	1 1/90
0.03797	7.09451e-01	0.01158	-48.04923	+	——— errors
0.03448	2.45521e-01	2.88957	11.00048	10-4	least squares fit
0.03158	4.72927e-02	5.19153	18.72287		, cust squares in
0.02857	1.62595e-02	2.90862	10.66789	-	10 ⁻² 10 ⁻¹
0.02609	9.69222e-02	0.16776	-19.62403		10 ⁻² 10 ⁻¹
0.02381	4.61798e-02	2.09880	8.11570		

Least squares fit gives $E(h) = 24.3375 * h^1.74939$

Problem 4.

1. Modifications:

```
f = @(x) 0*x; % right hand side function
c2 = (beta - sigma*cos(bx)/cos(ax))/(sin(bx)-sin(ax)*cos(bx)/cos(ax));
c1 = (sigma - c2*sin(ax))/cos(ax);
utrue = @(x) c2*sin(x) + c1*cos(x); % true soln
A = A + eye(size(A));
A(1,1) = A(1,1)-1;
A(m2,m2) = A(m2,m2)-1;
% solve linear system:
U = A\F;
```

Outputs:

Least squares fit gives $E(h) = 0.0324764 * h^2.00028$

2. Family of solutions:

3. beta = 1:

h	error	ratio	observed order
0.31416	2.31489e-03	NaN	NaN
0.15708	5.73244e-04	4.03823	2.01372
0.07854	1.44354e-04	3.97111	1.98954
0.03927	3.60617e-05	4.00296	2.00107

Least squares fit gives $E(h) = 0.0233813 * h^2.00026$

beta = -1:

h	error	ratio	observed order
0.31416	1.63312e+16	NaN	NaN
0.15708	1.63312e+16	1.00000	-0.00000
0.07854	1.63312e+16	1.00000	-0.00000
0.03927	1.63312e+16	1.00000	-0.00000

Least squares fit gives $E(h) = 1.63312e+16 * h^-2.70735e-13$

Problem 5.

Implementation is in file p5.m.
 Testing using figure 2.4 boundary conditions:

As it can be seen plots are identical to figure 2.4.

Testing using figure 2.5 boundary conditions:

As it can be seen plots are identical to figure 2.5. For $u_0(t) = 0.7*\cos(t)$, we can get this plot:

2. T = 20 and iterations = 100:

T = 50 and iterations = 300:

Notice that max value is increasing as T increases, hence max_i theta_i should approach infinity as T increases.

Implementation:

```
T = 2*pi;
 ax = 0;
 bx = T;
 sigma = 0.7; % Dirichlet boundary condition at ax
 beta = 0.7; % Dirichlet boundary condtion at bx
 m1 = 50;
 m2 = m1 + 1;
                             % number of interior grid points
 m = m1 - 1;
 h = (bx-ax)/m1; % average grid spacing, for convergence tests
 % set grid points:
 gridchoice = 'uniform';
                                 % see xgrid.m for other choices
 % gridchoice = 'random';
 t = xgrid(ax,bx,m,gridchoice);
 % set up matrix A (using sparse matrix storage):
 A = spalloc(m2, m2, 3*m2); % initialize to zero matrix
 % first row for Dirichlet BC at ax:
 A(1,1:3) = fdcoeffF(0, t(1), t(1:3));
 % interior rows:
\exists for i=2:m1
     A(i,i-1:i+1) = fdcoeffF(2, t(i), t((i-1):(i+1)));
-end
```

```
% last row for Dirichlet BC at bx:
 A(m2,m:m2) = fdcoeffF(0,t(m2),t(m:m2));
 G = \emptyset(x) A*x + \sin(x); % true soln
 % set up matrix JM (using sparse matrix storage):
 JM = spalloc(m2,m2,3*m2); % initialize to zero matrix
 JM(1,1:3) = fdcoeffF(2, t(1), t(1:3));
  % interior rows:
\Box for i=2:m1
      JM(i,i-1:i+1) = fdcoeffF(2, t(i), t((i-1):(i+1)));
 L end
 JM(m2,m:m2) = fdcoeffF(2,t(m2),t(m:m2));
 J = Q(x) JM + diag(cos(x)); % true soln
 theta = 0.7*\cos(t);
 % theta = 0.7 + \sin(t/2);
 % theta = 0.7*\cos(t) + 0.5*\sin(t);
  % theta = 0.7*ones(size(t));
 hold on
 plot(t,theta) % plot true solution
 hold off
] for k=1:10
     % solve linear system:
     J1 = J(theta);
     J1 = J1(2:m2-1,2:m2-1);
     G1 = G(theta);
     G1 = G1(2:m2-1);
     G1 = -G1;
     dtheta = J1\G1;
     theta(2:m2-1) = theta(2:m2-1) + dtheta;
     hold on
     plot(t,theta) % plot true solution
     hold off
-end
```