介绍

介绍

二能级系统 基塔夫定理 - 通用完备集 表面码 量子比特和错误模型 表面码和纠错 表面码和错误探测 宇称鉴别 镇定子 注释: 量子测量

2022-11-11

二能级系统

二能级系统操作

表面码约定下	传统泡利算子
$\hat{I},\hat{X},\hat{Y},\hat{Z}$	$\hat{\sigma}_0,\hat{\sigma}_x,-i\hat{\sigma}_y,\hat{\sigma}_z$

操作关系

$$\hat{X}^2 = -\hat{Y}^2 = \hat{Z}^2 = \hat{I}^2$$

$$\hat{X}\hat{Z} = -\hat{Z}\hat{X}$$

$$[\hat{X}, \hat{Y}] \equiv \hat{X}\hat{Y} - \hat{Y}\hat{X} = -2\hat{Z}$$

能够应用上述关系的系统都可以作为一个量子比特。

基塔夫定理 - 通用完备集

Solovay-Kitaev 定理 [2, 12] 表明由 $\hat{X},\hat{Z},\hat{H},\hat{S},\hat{S}^\dagger,\hat{T},\hat{T}^\dagger$ 和 CNOT 门可以执行任何量子算法。

最小的通用完备集可以为: \hat{T} , \hat{H} 和 CNOT, 因为:

$${\hat T}^2 = {\hat S}, {\hat T}^4 = {\hat Z}, {\hat H} {\hat Z} {\hat H} = {\hat X}, {\hat Z} {\hat S} = {\hat S}^\dagger, {\hat T}^7 = {\hat T}^\dagger$$

表面码

表面码中物理比特通过物理 CNOT 纠缠起来,随后的测量用来探测和纠正错误。纠缠起来的物理比特来 定义逻辑比特。

表面码包括,

- 1. 逻辑比特的构造
- 2. 完备集的构造 (逻辑单比特门和逻辑 CNOT 门)

量子比特和错误模型

量子比特的基态 $|g\rangle$ 和激发态 $|e\rangle$ 对应 \hat{Z} 的两个本征态

$$\hat{Z}|g\rangle = +|g\rangle, \ \hat{Z}|e\rangle = -|e\rangle$$

注:哈密顿量通常正比于-2

对比特的测量直接反映的是系统的能量水平,即本征值 +1 或 -1

错误来自于不想要的外界相互作用,例如从 $|e\rangle$ 到 $|g\rangle$ 的衰变,或比特跃迁频率的波动。

借助在演化中引入随机 \hat{X} 翻转和 \hat{Z} 相位翻转,可以模拟大部分单比特错误 [42],更稀有的错误则对应更小的算符振幅。

表面码和纠错

错误模型表明错误可以通过补偿来消除。

表面码仅在错误会影响最终测量时才予以纠正,即纠正测量结果: \hat{X} 错误影响紧随的 \hat{Z} 基底测量 M_Z , \hat{Z} 错误影响紧随的 \hat{X} 基底测量 M_X 。

表面码的纠错在经典控制软件中完成。

表面码本身更着眼于错误探测,而非纠错。

表面码和错误探测

试图用 M_Z 探测 \hat{X} 错误与用 M_X 探测 \hat{Z} 错误是冲突的,因为 $[\hat{X},\hat{Z}]\neq 0$ 。测量本身会破坏量子态,不存在 \hat{X} 和 \hat{Z} 的共同本征态。

 \dot{Z} : 在量子线路上, M_Z 测量对于比特的后果等价于随机作用一个和 \hat{Z} 有共同本征态的投影算符, P_g 或 P_e , M_X 类似。

宇称鉴别

由于 $[\hat{X}_a,\hat{X}_b]=0$,所以 $[\hat{X}_a\hat{X}_b,\hat{Z}_a\hat{Z}_b]=0$ 。 $\hat{X}_a\hat{X}_b$ 和 $\hat{Z}_a\hat{Z}_b$ 具有共同本征态,即贝尔态,可以同时被观测,但本征值不同。通过测量他们的本征值可以在一定程度上鉴别比特 a 和 b 所处的状态。

$\hat{Z}_a\hat{Z}_b$	$\hat{X}_a\hat{X}_b$	$ \psi angle$
+	+	$ eta_{gg} angle=(gg angle+ ee angle)/\sqrt{2}$
+	_	$ eta_{eg} angle=(gg angle- ee angle)/\sqrt{2}$
_	+	$ eta_{ge} angle=(ge angle+ eg angle)/\sqrt{2}$
_	_	$ eta_{ee} angle=(ge angle- eg angle)/\sqrt{2}$

注1: \hat{X}_a 是比特 a 上的 \hat{X} 算符, $\hat{X}_a\hat{X}_b$ 即 $\hat{X}_a\otimes\hat{X}_b$,而 XZ 是同一个比特上两个算符的积。

注 2: $\hat{X}_a\hat{X}_b$ 的本征值是比特 a 和 b 的 \hat{X} 宇称, $\hat{Z}_a\hat{Z}_b$ 类似。

a 和 b 上的 \hat{X} 或 \hat{Z} 错误会将 $|\psi\rangle$ 的状态改变

$ \psi_0 angle$	after X_a error	after X_b error	after Z_a error	after Z_b error
$ eta_{gg} angle; ++$	$ eta_{ge} angle; \; -+$	$ eta_{ge} angle; \; -+$	$ eta_{eg} angle; +-$	$ eta_{eg} angle; +-$
$ eta_{eg} angle; + -$	$- eta_{ee} angle;\;$	$ eta_{ee} angle; \;$	$ eta_{gg} angle; ++$	$ eta_{gg} angle; ++$
$ eta_{ge} angle; -+$	$ eta_{gg} angle; ++$	$ eta_{gg} angle; ++$	$ eta_{ee} angle; \;$	$- eta_{ee} angle;$
$ eta_{ee} angle; \;$	$- eta_{eg} angle;$ + $-$	$ eta_{eg} angle; +-$	$ eta_{ge} angle;-+$	$- eta_{ge} angle; \; -+$

所以只要观测到状态的宇称值发生变化,就表明发生了错误,只是不能鉴别出来。

表面码加强了这种探测和鉴别的能力。

镇定子

像 $\hat{X}_a\hat{X}_b$ 和 $\hat{Z}_a\hat{Z}_b$ 是镇定子 (stabilizers) 。用一组完备的镇定子反复测量量子系统,系统会塌缩到一个唯一的共同本征态。这个态可以不被测量影响。一旦测量结果变化,就表明有错误发生,测量后的态落入了另一个镇定子本征态。

注释: 量子测量

所谓测量一个算符 A,即意味着将系统置于 A 的一个本征态,并取得对应的本征值。

假设 A 的对角化表示为:

$$\operatorname{diag}(A_1, A_2, A_3, \cdots, A_N)$$

测量 A 意味着存在一组投影算符 $\{P_i\}$,

$$egin{aligned} P_1 &= \mathrm{diag}(A_1, 0, \cdots, 0) \ P_2 &= \mathrm{diag}(0, A_2, \cdots, 0) \ &dots \ P_N &= \mathrm{diag}(0, 0, \cdots, A_N) \end{aligned}$$

在测量时根据系统的状态 $|\psi\rangle$ 随机应用一个 P_i ,将系统置为 A 的第 i 个本征态 $|A_i\rangle=P_i|\psi\rangle$ 上,系统的本征值即为 $\langle\psi|P_i|\psi\rangle$ 。

类似的,测量算符 B ,意味着找到另一组投影算符 $\{Q_i\}$ 。如果 [A,B]=0,意味着施加 Q_j 不会影响施加 P_i 所得到的结果。