

Figure 11-9. Six-month return correlations to S&P 500

User-Defined Moving Window Functions

The apply method on rolling and related methods provides a means to apply an array function of your own devising over a moving window. The only requirement is that the function produce a single value (a reduction) from each piece of the array. For example, while we can compute sample quantiles using rolling(...).quan tile(q), we might be interested in the percentile rank of a particular value over the sample. The scipy.stats.percentileofscore function does just this (see Figure 11-10 for the resulting plot):

```
In [265]: from scipy.stats import percentileofscore
In [266]: score_at_2percent = lambda x: percentileofscore(x, 0.02)
In [267]: result = returns.AAPL.rolling(250).apply(score_at_2percent)
In [268]: result.plot()
```


Figure 11-10. Percentile rank of 2% AAPL return over one-year window

If you don't have SciPy installed already, you can install it with conda or pip.

11.8 Conclusion

Time series data calls for different types of analysis and data transformation tools than the other types of data we have explored in previous chapters.

In the following chapters, we will move on to some advanced pandas methods and show how to start using modeling libraries like statsmodels and scikit-learn.