

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIb
Popis sady vzdělávacích materiálů:	Mechanika III – hydrodynamika a termomechanika, 3. ročník.
Sada číslo:	G-21
Pořadové číslo vzdělávacího materiálu:	16
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-21-16
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Stavové veličiny vodní páry
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Stavové veličiny vodní páry

Páry jsou vzdušniny, které jsou při provozních teplotách blízko stavu, ve kterém začínají kapalnět. Proto u vody, čpavku, lihu, benzínu ... hovoříme o parách a ne o plynech.

Pro vodní páru má stavová rovnice tvar:

$$p \cdot v = r \cdot T$$

$$p \cdot (v + 0.016) = r \cdot T$$

Tato rovnice platí s dostatečnou přesností pro sytou nebo mírně přehřátou páru.

$$p \cdot v = r \cdot T$$

Vznik páry a kondenzace par je dějem izobarickoizotermickým (p = konst., T = konst.).

$$p = p' = p'' = konst$$

$$t = t' = t'' = konst$$

$$p \cdot v = r \cdot T$$

Kapalinové teplo

Je teplo, které se přivede kapalině (vodě) při ohřátí z teploty 0°C na teplotu bodu varu.

$$q_K = c_s \cdot t' \left[\frac{J}{kg} \right]$$

 $c_{\rm s}$ – střední měrné teplo;

t' – teplota bodu varu.

Teplo, které se přivede 1 kg kapaliny na její změnu v páru, je **měrné výparné teplo l** $_{\rm V}$ $\left\lceil \frac{J}{kg} \right\rceil$. Toto

teplo se zmenšuje s tlakem, při kterém dochází k varu. Zanedbáme–li nepatrnou práci při zvětšení objemu kapaliny, platí, že:

$$u' \doteq i' \approx q_K = c_s \cdot t'$$

apostrof' znamená sytá kapalina

Při výrobě suché syté páry za stálého tlaku se výparné teplo I_V využije na zvětšení vnitřní energie páry.

$$q=l_{v}$$

Entalpie suché syté páry:

$$i'' - i' = l_v \rightarrow i'' = i' + l_v \doteq q_K + l_v$$

Entalpie suché syté páry = kapalinové teplo + výparné teplo.

Mokrá pára

1 kg mokré (vlhké) páry obsahuje x kg suché syté páry a (1 – x) kg syté kapaliny.

Veličina x vyjadřuje tzv. **suchost páry**, udává, z kolika % je kapalina přeměněna v páru. Stavové veličiny mokré páry jsou označovány indexem **x**.

Měrný objem mokré páry: $v_x = x \cdot v'' + (1-x) \cdot v' = x \cdot v'' + v' - x \cdot v' = v' + x \cdot \left(v'' - v'\right)$

U vyšší suchosti můžeme s dostatečnou přesností psát:

$$v_x = x \cdot v''$$

Entalpie mokré páry: $i_x = i' + x \cdot l_v$

Pro sytou páru x = 1 platí: $i'' = i' + l_v$

v" – objem suché syté páry;

l_v – výparné teplo.

Přehřátá pára

Na přehřátí 1 kg suché syté páry za stálého tlaku p z teploty t'' na teplotu t potřebujeme:

$$q_{p\check{r}} = c_{ps} \cdot (t - t'') \left[\frac{J}{kg} \right]$$

 $c_{\it ps}$ — střední měrné teplo za stálého tlaku:

U přehřáté páry je měrné teplo c_p značně závislé na tlaku a teplotě páry. Proto c_{ps} určujeme pro střední teplotu dané změny stavu.

$$i_{pp} = \underbrace{i' + l_{v}}_{i''} + c_{ps} \cdot (t - t'')$$

Změny stavu vodní páry

a) Změna za stálého tlaku – izobarická:

$$w = p \cdot (v_2 - v_1)$$

$$w_t = 0$$

$$q = (1-x) \cdot l_v + c_{ps} \cdot (t-t'') = i_2 - i_1$$

 $(1-x)\cdot l_{\scriptscriptstyle v}$ – teplo potřebné pro přeměnu zbytku vody na páru;

 $\boldsymbol{c}_{ps}\cdot \left(\boldsymbol{t}-\boldsymbol{t''}\right)-$ teplo potřebné pro přehřátí.

Plocha pod křivkou v p - v diagramu znázorňuje množství práce 1 kg páry.

V T – s diagramu množství tepla potřebného ke změně stavu.

b) Změna za stálého objemu – izochorická:

$$w_t = v \cdot (p_2 - p_1)$$

$$w = 0$$

$$\Delta i = q - w_t \to q = \Delta i + w_t$$

$$q = i_2 - i_1 - v \cdot (p_2 - p_1)$$

c) Změna za stálé teploty – izotermická:

Je totožná s izobarickou pro mokrou páru.

Pro oblast přehřátí páry:

$$w_{pp} = w_{tpp} = p_1'' \cdot v_1'' \cdot \ln \frac{p_1}{p_2}$$

$$w_{celk} = w_{mp} + w_{pp} = p \cdot (v_1'' - v_1) + p_1'' \cdot v_1'' \cdot \ln \frac{p_1}{p_2}$$

$$q = T \cdot (s_2 - s_1)$$

d) Adiabatická změna stavu – bez sdílení tepla q = 0 (izoentropická):

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.