Sum vs XOR

Given an integer, n, find each x such that:

- $0 \le x \le n$
- $n+x=n\oplus x$

where \oplus denotes the bitwise XOR operator. Then print an integer denoting the total number of \boldsymbol{x} 's satisfying the criteria above.

Input Format

A single integer, n.

Constraints

• $0 < n < 10^{15}$

Subtasks

• 0 < n < 100 for 60% of the maximum score.

Output Format

Print the total number of integer x's satisfying both of the conditions specified above.

Sample Input 0

5

Sample Output 0

2

Explanation 0

For n=5, the $m{x}$ values $m{0}$ and $m{2}$ satisfy the conditions:

- $5 + 0 = 5 \oplus 0 = 5$
- $5+2=5\oplus 2=7$

Thus, we print ${\bf 2}$ as our answer.

Sample Input 1

10

Sample Output 1

4

Explanation 1

For n = 10, the x values 0, 1, 4, and 5 satisfy the conditions:

- $10 + 0 = 10 \oplus 0 = 10$
- $10 + 1 = 10 \oplus 1 = 11$

- $10 + 4 = 10 \oplus 4 = 14$
- $10 + 5 = 10 \oplus 5 = 15$

Thus, we print ${\bf 4}$ as our answer.