Indústria do nitrogênio Amônia

Curso de Engenharia Química da UNESP, 2021
Disciplina de Processos da Indústria Química
Apresentado por Felipe Kreft Batista
Professor Dr Arnaldo Sarti

Sumário

Rota química do processo

Amônia

- Histórico do processo
- Aplicação do produto
- Matéria-Prima
- Descrição do processo
- Fluxograma
- Resíduos
- Designs de reatores
- Fluxogramas de rotas

Atenção aqui

Química

Compound, structure	Oxidation state		
Nitrate, NO ₃ -	+5		
Nitrogen dioxide, NO ₂	+4		
Nitrite, NO ₂ -	+3		
Nitric oxide, NO	+2		
Nitroxyl, HNO	+1		
Nitrogen, N ₂	0		
Hydroxylamine, NH ₂ OH	-1		
Ammonia, NH ₃	-3		

Compound, structure	Oxidation state
Nitrate, NO ₃ -	+5
Nitrogen dioxide, NO ₂	+4
Nitrite, NO ₂ -	+3
Nitric oxide, NO	+2
Nitroxyl, HNO	+1
Nitrogen, N ₂	0
Hydroxylamine, NH₂OH	-1
Ammonia, NH ₃	-3

Comece aqui

Compound, structure	Oxidation state
Nitrate, NO ₃ -	+5
Nitrogen dioxide, NO ₂	+4
Nitrite, NO ₂ -	+3
Nitric oxide, NO	+2
Nitroxyl, HNO	+1
Nitrogen, N ₂	0
Hvdroxvlamine. NH OH	-1
Ammonia, NH ₃	-3

Venha pra cá

Oxidat	ion state
+5	
+4	
+3	
+2	
+1	
0	
-1	
-3	
	+5 +4 +3 +2 +1 0

Depois pra cá

Oxidation state			Compound, structure		
3	+5				
	+4				
	+3				
	+2				
	+1				
1	0				
	-1				
_	-3				
		3 +5 +4 +3 +2 +1 0 -1			

Pronto, vc sabe oq acontece com o nitrogênio!

Amônia

Histórico

- Joseph Priestley (1733 1804), químico inglês, 1º a isolar a amônia, 1774
- Claude Louis Berthollet, químico francês, determinou a composição, 1785
- Em 1898, Adolph Frank e Nikodem Caro criam o processo Frank-Caro
 - CaCN₂
- Itália,1906, primeira planta comercial por cianamida construída
 - Consumo excessivo de energia

Responsável por descobrir:

- O_2
- · CO
- · NO
- N_2O
- NH₃
- \cdot SO_2
- N_2O_4
- Ciclo do carbono

Histórico

- Fritz Haber, Gabriel van Oordt, Robert le Rossignol, Kirchenbauer Desenvolveram o
 processo inicial com catalisador de ósmio e o conceito de reciclo. Devido a tecnologia, não
 haviam materiais capazes de aguentar as condições do processo
- 1910 BASF comprou a patente e Carl Bosch e Alvin Mittasch catalizador de ferro em 1910.

Fig 1: Fritz Haber, Carl Bosch e Alvin Mittasch

Histórico

- Ludwigshafen (Alemanha)
- 9-set-1913
- 30 ton/dia

Fig 3: Localização da cidade

Fig 2: Fluxograma conceitual da primeira planta de amônia -[6]

- Reciclo de gases
- Reaproveitamento de calor

Produção mundial

Fig 4: Histórico da produção mundial de amônia - [6]

Produção Mundial

Fig 5: Capacidade mundial instalada, 2005 - [6]

Aplicação do produto

- Urea (42%)
- Fertilizantes que n\u00e3o urea (43%)
- Outras coisas (15%)
 - Solvente
 - Gás refrigerante
 - Material de síntese orgânica
 - Aminas

Fig 6: Usos da amônia – [6]

Matéria-Prima

Descrição do processo

fluxograma genérico do processo

Dessulfurizaão

- Alimentação
 - Enxofre
 - Compostos sulfurados
 - Halogênios
 - Transporte por gasodutos
- Veneno pros catalisadores

Fig 7: Catalisador de gases – [6]

- Catalisadores
 - ZnO \rightarrow S, H₂S
 - $ZnO \rightarrow ZnS$
- Mercaptanas e tiofenos não são absorvidos por ZnO
 - Hidrogenados a H₂S
 - Catalisador de Cobalto-Molibdênio

Fig 8: Mercaptana e Tiofeno

- Reforma à vapor $CH_4 + H_2O \rightleftharpoons CO + 3 H_2$ $\Delta H = +206 \text{ kJ/mol}$
 - Equilíbrio termodinâmico
 - Princípio de le Chatelier
 - 800 oC
 - A reação não se completa aqui
 - Quantidade de vapor controla a reação
 - Caro
 - Pouco vapor → Acúmulo de C no catalisador
- Catalisador
 - NiO em alfa-alumina

Fig 9: Equilíbrio da reação de reforma a vapor - [1]

Fig 10: Esquemas de reformadores primários e a posição de seus queimadores – [2]

Fig 11: Reformador primário a gás ICI -[2]

Fig 12: Reformador primário tipo terraço - [2]

24

Fig 13: Reformador Uhde - [2]

Reformador Secundário

- Alimentação
 - Gás do reformador primário
 - Ar para queima
 - Aumento da temperatura (1000 oC)
- Reação se completa aqui $CH_4 + H_2O \rightleftharpoons CO + 3 H_2$ $\Delta H = +206 \text{ kJ/mol}$
- Catalisador
 - NiO

Fig 15: Equilíbrio da reação de reforma a vapor — [1]

Reformador Secundário

Reformador Secundário básico

Fig 16: Reformador secundário – [2]

Reformador Secundário

- a) Entrada de gás
- b) Saída de gás reformado
- c) Entrada de Ar, oxigênio e vapor
- d) Catalisador
- e) Catalisador de alta temperatura
- f) Material Inerte
- g) Isolamento interno
- h) Isolamento de múltiplas camadas
- i) Queimador
- j) Jaqueta de água

A - resfriamento com água com jaqueta

- B resfriamento com ar
- C resfriamento com água sem jaqueta

Fig 17: Reformadores Secundários – [5]

Water Gas Shift

- Alimentação
 - Gás do reformador secundário
- Reação

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

 $\Delta H = -41,2 \text{ kJ/mol}$

- Princípio de le Chatelier
 - · Pressão não influencia
 - Temperatura influencia

- Leitos catalíticos
 - Leito #1
 - Mais quente (HTS)
 - $Fe_2O_3 + Cr_2O_3$
 - Leito #2 e #3
 - Mais frio (LTS)
 - ZnO
 - CuO

Integração energética

Fig 18: Equilíbrio da reação WGS – [2]

- Veneno pro catalisador de Ferro
 - CO
 - CO₂
- Remoção por solvente
 - Transferência de massa
 - FT3
- Processo
 - Solvente Físico
 - Alta pressão parcial de CO₂
 - Poliglicol éter
 - N-metil pirrolidona
 - Metanol
 - Carbamato de propileno
 - Solvente Químico
 - Baixa pressão parcial de CO₂
 - MEA (Metil Etil amina)
 - DEA (DiEtil Amina)
 - MDEA (Metil DiEtil Amina)
 - Potassa quente

Fig 19: Equilíbrio termodinâmico de CO2 em diversos solventes – [2]

- Sistema de remoção Benfield LoHeat
- Potassa quente

Fig 20: Sistema de remoção de CO2 -[2]

- Sistema de remoção Catacarb
- Potassa quente modificada

Fig 21: Sistema de remoção de CO2 - [2]

 Sistema de remoção física com selexol
 Polietileno glicol dimetil éter PEGDE

35

Fig 22: Sistema de remoção de CO2 - [2]

Localização do processo de remoção de CO2 e de regeneração do líquido de lavagem

- a) Oxidação seletiva
- b) Lavagem de CO2
- c) Metanação
- d) Regeneração do agente de lavagematural quas
- e) Resfriamento do gás
- f) Aquecimento do gás

Fig 23: Sistema de remoção de CO2 - [5]

Metanação

- CO e CO₂ residuais são veneno para o catalisador
- Remoção de Co e CO₂ residual

CO + 3
$$H_2 \rightleftharpoons CH_4 + H_2O$$
 (g)
 $\Delta H = -206 \text{ kJ/mol}$

$$CO_2 + 4 H_2 \rightleftharpoons CH_4 + 2 H_2O (g)$$

 $\Delta H = -165 \text{ kJ/mol}$

Remoção de CO e CO₂ residual

- Vantagens
 - Simples
 - Baixo custo total
 - Preserva catalisador
- Desvantagens
 - Consome H₂

Compressor

- a) Resfriador a ar
- b) Separador
- c) Silenciador
- d) Resfriador a água

150 a 190 bar

Fig 24: Compressor centrífugo - [2]

Conversão de amônia

$$N_2 + 3 H_2 \rightleftharpoons 2 NH_3$$

 $\Delta H = -91,8 \text{ kJ/mol}$

- Equilíbrio termodinâmico
 - Princípio de le Chatelier
 - Pressão influencia
 - Temperatura influencia

Fig 25: Equilíbrio da reação da amônia – [1]

- Conversão de amônia
 - 25 a 35% dos gases
 - Separação e reciclos
- A) gases secos
- B) recuperação antes do compressor de reciclo
- C) recuperação depois do compressor de reciclo
- D) condensação em dois estágios

- a) Conversor de amônia com trocadores de calor
- b) recuperação por resfriamento e condensação
- c) recuperação de amônia a temperatura ambiente
- d) compressor do gás de síntese
- e) compressor de reciclo

Fig 26: Tipos de reciclos de amônia – [2]

- Parâmetros de operação para dois tipos de pressão do loop
 - Vazão de entrada
 - Concentração de entrada
 - Concentração de intertes na entrada
 - Concentração de saída
 - Temperatura do condensador
 - Volume relativo de catalisador

Parameters	Inlet pressure, bar		
	140	220	
Inlet flow, Nm ³ /h	500 000	407 000	
Inlet NH ₃ conc., mol %	4.1	3.8	
Outlet NH ₃ conc., mol %	17.1	19.9	
Inlet inert conc., mol %	8.0	12.0	
NH ₃ separator temperature, °C	-5	-5	
Relative catalyst volume	1	0.6	

Fig 27: parâmetros de operação típicos de conversores - [2]

- Concentração de NH₃ em função da
 - Pressão do sistema (MPa)
 - Velocidade dos gases (m3/h)

- Concentração de NH₃ em função da
 - Concentração de Inertes (%)
 - Velocidade dos gases (m3/h)

Fig 28: pressão e velocidade - [2]

Fig 29: inertes e velocidade – [2]

- Concentração de NH₃ em função da
 - concentração de oxigênio (ppm)

- Concentração de NH₃ em função da
 - Razão H₂-N₂
 - Velocidade dos gases (m3/h)
- Linha pontilhada
 - máximo das curvas

Fig 31: razão H2 / N2 - [2]

- Velocidade da reação em função da
 - Concentração NH₃ (%)
 - Temperatura (oC)
- Linhas indicam a velocidade da reação
 - Equilibrio \rightarrow v = 0
 - Tracejada → máximo de amônia produzida (%)

Fig 32: equilíbrio termodinâmico e yelocidades - [2]

Produção da amônia - conclusões

- Velocidade do gás
 - Aumento dela diminui C_{NH3}
 - Cuidado para não 'apagar' a reação

Velocidade pode ser usada para manter o máximo operacional conforme envelhecimento do catalisador

- Cuidado: Máximo operacional está próximo do ponto de 'apagão'
 - Requer controle preciso
 - Se for feito para operar assim, então a plantadeve ser oversized

- Desenhos de conversor de amônia é tarefa difícil
 - Engenharia Química
 - Dimensões e números de leitos catalíticos
 - Perfil de temperaturas
 - Otimização dos catalisadores de acordo com a temperatura de operação dos leitos
 - Composição dos gases
 - Queda de pressão
- Integração energética é o norte do projetista

Desenhos de Reatores de amônia

Maravilhas da engenharia química

Figura 33:
Conversor
contracorrente
resfriado por
tubos - Tennessee
Valley Authority [2]

- ▶ a) Catalisador
- b) Trocador de calor
- c) tubos de resfriamento
- d) Entrada principal de gás
- e) Entrada de gás da jaqueta externa de resfriamento
- ▶ f) Entrada de gás de controle de temperatura
- b g) saída do gás

- A) Layout do conversor
- B) Perfil de temperatura através do conversor
- C) Concentração de amônia versus temperatura

- A) Layout do conversor
- ▶ B) Perfil de temperatura através do conversor
- C) Concentração de amônia versus temperatura
- b) Trocador de calor
- c) Tubos de resfriamento
- d) Entrada principal de gás
- e) Entrada de gás de controle de temperatura
- f) saída do gás

Figura 34:
Conversor
resfriado por
fluxo cocorrente
[2]

Bypass gas inlet

Tube cooled bed

Adiabatic bed

- Figura 35: Conversor ICI resfriado por tubo -[4]
- a) topo do leito catalítico
- b) tubos de resfriamento
- c) catalisador

Figura 38:
Conversor
multileito com
resfriamento por
têmpera - [4]

- A) Layout do conversor
- ▶ B) Perfil de temperatura através do conversor
- C) Concentração de amônia versus temperatura

- a) Catalisador
- b) Trocador de calor
- c) Entrada dos gases de têmpera
- d) Entrada principal de gás
- e) saída do gás

- Fig 38: Conversor kellog com 4 leitos verticais e resfriamento por têmpera [4]
 - a) Entrada de gás
 - b) Catalisador
 - c) Cesta
 - d) Têmpera
 - e) Intertrocador
 - f) saída do gás
 - g) Bypass

- Fig 39: Conversor ICI lozenge [2]
- a) distribuidores de gás de têmpera
- b) trocadores de calor
- c) bocal de descarga de catalisador
- d) tubo para termopares

Figura 40: Conversor multileito com resfriamento indireto - [4]

- A) Layout do conversor
- ▶ B) Perfil de temperatura através do conversor
- C) Concentração de amônia versus temperatura

- b) Trocador de calor
- c) seção de resfriamento
- d) Entrada principal de gás
- ▶ e) Gás de controle de temperatura
- f) saída do gás

Figura 41: Conversor Topsoe Série 200 - [4]

- a) Casco de pressão
- b) Trocador de calor interleito
- c) 1º leito catalítico
- d) Anel ao redor do leito catalítico
- ▶ e) 2º leito catalítico
- ▶ f) Trocador de calor inferior
- ▶ g) By-pass frio
- ▶ h) tubo do by-pass frio

- ► Figura 42: Conversor horizontal Kellog interresfriado [4]
- a) Entrada de gás
- b) Trocador de calor interleito
- c) by-pass
- d) Leito 1
- e) Leito 2
- f) saída

Figura 43:
Conversores
CF Braun com
trocador de calor
interleito e
caldeira de gás de
saída - [4]

- ▶ a) Entrada do gás
- b) Alimentação trocador do primeiro leito.
- > c) By-pass de controle de temperatura
- ▶ d) 1° leito
- ▶ e) Linha para o 2º leito
- f) 2° leito

- g) Caldeira de aproveitamento de calor (Borsig)
- h) Vaso de vapor
- i) Saída de vapor
- k) Saída de gás

- Figura 44: Conversor KAAP de quatro leitos [4]
- a) Leito 1: Catalisador de magnetita
- b) Leito 2: Catalisador KAAP
- c) Leito 3: Catalisador KAAP
- d) Leito 4: Catalisador KAAP

Residuos

Tabela 1: Emissões de plantas de amônia – [3]

Tipo de Emissão	Componente	Plantas antigas (kg/t NH ₃)	Plantas novas (kg/t NH ₃)
Emissão na água	NH ₃ /NH ₄	0.1	0.1
Emissão atmosférica	NO_x	0.9	0.45
Catalisador	-	< 0.2	< 0.2

A amônia produzida na forma líquida pode ser reaproveitada para produzir fertilizantes de amônio

Fluxogramas de rotas tecnológicas

Figura 45: processo Uhde - [7]

Legenda processo Uhde

- a) remoção de enxofre
- b) reformador primário
- c) superaquecedor de vapor
- d) reformador secundário
- e) caldeira de calor residual
- f) Seção de conversão
- g) Ventilador de remoção forçada
- h) Ventilador de remoção induzida
- i) Chaminé
- k) Conversores de Alta e Baixa temperaturas

- ▶ l) Metanadores
- m) Caldeira de solvente de remoção de CO2
- n) Separador de condensado de processo
- o) Absorção de CO2
- p) Compressor de gás de sínt<mark>ese</mark>
- q) compressor de ar de processo
- r) conversor de amônia
- s) Separador de amônia de alta pressão
- t) Recuperação de amônia e hidrogênio da purga e gás de flash

Fig 47: Kellogs - [7]

Legenda processo Kellogg

- a) compressor de gás de alimentação
- b) remoção de enxofre
- d) reformador primário
- e) compressor de ar
- f) reformador secundário
- g) recuperação de calor
- ▶ h) conversor WGS de alta temperatura
- i) conversor WGS de baixa temperatura
- j) stripper de condensado
- k) absorção de CO2
- l)tambor de flash de CO2

- m) compressor de reciclo
- n) bomba
- o) Stripper de gás
- p) soprador de ar do stripper
- q) bomba de CO2
- r) preaquecedor de metanação
- > s) metanador
- t) compressor de gás de síntese
- u) secador
- v) Recuperação de H2 do gás de purga
- w) conversor de amônia
- x) Aquecedor
- y) Trocador de refrigeração
- > z) compressor de refrigeração

Fig 48: Haldop Topsoe de baixa energia- [7]

Legenda processo Haldop-Topsoe baixa energia

- a) remoção de enxofre
- b) reformador primário
- c) reformador secundário
- d) conversor WGS
- e) remoção de CO2
- ▶ f) metanador
- g) compressor principal
- h) compressor de reciclo
- i) recuperação de calor
- j) conversor

Fig 49: Braun - [7]

Legenda processo C.F Braun

- a) remoção de enxofre
- b) reformador primário
- c) seção de conversão
- d) reformador secundário
- e) caldeira de gás residual
- ▶ f) compressor de ar de processo
- g) turbina a gás
- h) conversor WGS de alta e baixa temperatura
- i) caldeira de remoção de CO2 do solvente
- k) absorvedor de CO2
- l) dessorvedor de CO2
- m) stripper de Co2

- n) metanador
- o) secador
- p) trocador de calor de purificação
- q) turbina de expansão
- r) coluna de purificação
- > s) compressor de gás de síntese
- t) conversor de síntese
- u) caldeira de gás residual
- v) separador de amônia de alta pressão
- w) vaso de repouso de amônia
- x) recuperação de amônia da purga

Fig 50: ICI AMV - [7]

Legenda processo ICI AMV

- a) remoção de enxofre
- b) saturação de gás natural
- c) compressor de ar de processo
- d1) reformador primário
- d2) reformador secundário
- e) caldeira
- f) conversor WGS de alta temperatura
- g) conversor WGS de baixa temperatura
- h) remoção de CO2 selexol

- ▶ h1) Absorvedor de CO2
- ▶ h2) regenerador
- i) compressor de estágio único
- j) metanação
- k) resfriamento e secagem
- ▶ l) circulador
- m) recuperação de H2
- n) conversor de amôniabomba
- o) sistema de refrigeração

Fig 51: ICI LCA - [7]

Legenda processo ICI LCA

- a) compressor de ar de processo
- b) aquecedor inicial de ar
- c) hidrodessulfurização
- ▶ d) saturador
- e) GHR
- f) reformador secundário
- g) conversor WGS
- ▶ h) dessaturador

- i) Sistema de absorção por variação de pressão
- ▶ j) metanador
- k) secador de gás
- l) conversor de amônia
- m) refrigeração de flash de 2 estágios
- n) refrigerador
- o) vaso de coleta
- p) vaso de flash
- q) compressor de gás de síntese

Fig 52: KBR KAAP plus - [7]

Legenda processo KBR KAAP plus

- a) compressor de ar
- b) remoção de enxofre
- c) aquecedor de processo
- d) reformador autotérmico
- e) trocador de calor do reformador (KRES)
- f) stripper do condensado
- g) absorção de CO2
- h) metanador
- i) stripper de CO2

- ▶ j) secador
- k) expansor
- l) trocador de calor -alimentação/efluente
- m) condensador
- n) coluna de retificação
- o) compressor de gás de síntese
- p) conversor de amônia KAAP
- q) compressor de refrigeração
- r) trocador de calor de refrigeração