Variables antithétiques

MATHEMATIQUEMENT

Au lieu de calculer $\theta = E(Y) = E(f(X))$, pour Z v. a.

On cherche un estimateur de θ tel que θ 1= 1/N \sum h(Xi)

On introduit alors une nouvelle variable indépendante de Y, Z tel que Y=-Z en loi

On a alors un estimateur de Z θ 2=1/2N Σ h(Xi)

IDEES GLOBALES

On utilise le fait que Y=-Z avec Y, Z indépendante et suivant des échantillons opposés en loi d'où $P0=E[\emptyset(Y)]=E[\frac{[\emptyset(Y)+\emptyset(Z)]}{2}]$

On va alors avoir à simuler 2 fois moins de trajectoires.

AVANTAGES

- Méthode généraliste
- Idée assez simple

INCONVENIENTS

- Réduction de variance modéré

RESULTATS

Classique	Variables antithétiques	Résultats
otm: 4.30166 [4.27414, 4.32917]	otm: 4.29163 [4.26412, 4.31913]	Réduction en moy de : 0,23317%
atm: 7.98609 [7.94962, 8.02257]	atm: 7.96354 [7.92708, 8.00001]	Réduction en moy de : 0,28237%
itm: 13.62350 [13.57846,13.66854]	itm: 13.58743 [13.54240,13.63246]	Réduction en moy de : 0,26476%

On voit globalement une faible réduction des intervalles de valeurs obtenus à hauteur d'environ 0,25%.

La variance a donc été faiblement réduite et le temps de calcul aussi par la même occasion.

Variables de Contrôle

MATHEMATIQUEMENT

 $\Theta:=\mathsf{E}[\mathsf{Y}],\,\mathsf{Y}=\mathsf{f}(\mathsf{X})$

Θ1 = Y, notre estimateur usuel & θbéta = Y + β (Z - E[Z]) où β est réel.

 $Var(\theta b \acute{e}ta) = Var(Y) + \beta \ 2Var(Z) + 2 \ \beta \ Cov \ (Y, Z)$. On choisit ensuite β de sorte à ce que la variance de notre estimateur soit minimale.

 $\beta * = -[Cov(Y,Z)/Var(Z)]$ en remplaçant β dans la formule ci-dessus il vient

 $Var(\theta b\acute{e}ta^*) = Var(\Theta) - [Cov(Y, Z)^2 / Var(Z)]$

IDEES GLOBALES

Produire par simulation une variable auxiliaire qui est en corrélation positive avec la variable d'intérêt et introduire un coefficient β.

Il faut alors trouver le meilleur estimateur de notre variable.

AVANTAGES

-Permet de réduire fortement la variance.

INCONVENIENTS

- -nécessite une étude préalable coûteuse en temps.
- -chaque estimateur coefficient est propre au problème.

Monte Carlo conditionnel

MATHEMATIQUEMENT

```
Au lieu de calculer \theta = E(Y) = E(f(X)), pour Z v. a.

-Posons V = E(Y|Z) = g(Z) v. a.;

-Et \theta = E(V).

On calcule alors avec cette méthode la variance de Y|Z tel que :

Var(Y|Z) = E[(Y - E(Y|Z))^{2}|Z]
Y - E(Y) - (E(Y|Z) - E(Y)) \perp E(Y|Z) - E(Y),
Var(Y) = E(Var(Y|Z)) + Var(E(Y|Z)) \Rightarrow Var(Y) \ge Var(E(Y|Z)).
```

IDEES GLOBALES

Remplacer l'estimateur (ici Y) en le conditionnant avec une autre variable (Z ici) où Z est une information partielle sur notre estimateur de base (Y).

```
Var(Y) = E(Var(Y|Z)) + Var(E(Y|Z))
```

Variance résiduelle pour Z connu éliminé par CMC

Variance due à la variation de Z

Pour minimiser la variance au mieux, on doit maximiser E [Var [Y | Z]], Z doit contenir

Le moins d'information possible.

Cependant moins Z contient d'informations plus il est dur de calculer Y donc il faut trouver le bon compromis entre rapidité de calcul et informations perçus sur Z.

AVANTAGES

- -Permet de réduire la variance efficacement.
- -Procéder simple de conditionnement.

INCONVENIENTS

- -Nécessite une étude préalable de Y afin de conditionner au mieux.
- -Ne pas toujours trouver la meilleure optimisation de Y.

Echantillonnage préférentiel

MATHEMATIQUEMENT

 $\Theta = E(f(X)),$

La densité de probabilité f n'est pas nécessairement la meilleure densité de probabilité à utiliser dans la méthode de Monte Carlo. En effet, on peut écrire Θ sous la forme suivante :

$$\Theta = \left[\int_{R} \frac{f(x)g(x)}{g_1(x)} * g_1(x) dx \right]$$
 où g1 désigne une autre densité de probabilité avec

g1(x) > 0 et $\int g1(x)dx$ = 1. Suivant le même principe de Monte Carlo, on estime alors Θ par

 Θ 1= (1/n) * $\sum_{i=1}^{n} (f(Yi)g(Yi))/g1(Yi)$ bien choisir g1 permet alors d'avoir une meilleure variance pour notre calcul.

IDEES GLOBALES

L'idée principale de l'échantillonnage préférentiel est de remplacer dans la simulation la densité uniforme f par une densité alternative (ou *densité biaisée*), notée g, qui tente d'imiter la fonction f. Ce faisant, on remplace les tirages uniformes, qui n'avantagent aucune région, par des tirages plus « fidèles ». Ainsi, l'échantillonnage est fait suivant l'importance de la fonction f: il est inutile regarder les valeurs dans les régions où f prend des valeurs non pertinentes, pour, au contraire, se concentrer sur les régions de haute importance. On espère ainsi diminuer la variance . Autrement dit, si on se fixe un niveau d'erreur donné, l'échantillonnage préférentiel permet de diminuer théoriquement le nombre de simulations N en ne s'intéressant qu'au tirage pertinent par rapport à une méthode de Monte-Carlo classique.

AVANTAGES

- -réduit convenablement la variance.
- méthode complémentaire aux méthodes de réductions sur les variables.

INCONVENIENTS

-Nécessite une étude préalable.

Echantillonnage par Stratification

MATHEMATIQUEMENT

On Considère un échantillon J de taille N possédant Ni valeur dans chaque strate.

On estime

$$Ji=[(1/ni) *\sum_{1}^{ni} f(X(j))], X(j) \sim L(X|X \in Di)$$

On forme ensuite un estimateur de notre échantillon I tel que :

 $\hat{I} = \sum_{i=1}^{m} Ii * pi l'estimateur est convergent et non biaisé de variance :$

 $Var(\hat{I}) = \sum_{i=1}^{m} pi^{2}(\Thetai^{2}/ni)$ avec ni la strate i et $\Thetai^{2} = Var(f(X))$

IDEES GLOBALES

- 1. On subdivise l'échantillon en strates (groupes relativement homogènes) qui sont mutuellement exclusives
- 2. Proportionnellement à son importance dans la simulation, on calcule combien il faut de valeur au sein de l'échantillon pour représenter chaque strate.
- 3.Dans chacune des strates, on choisit au hasard le nombre nécessaire de valeur

AVANTAGES

-Il est peu probable de choisir un échantillon absurde puisqu'on s'assure de la présence proportionnelle de tous les divers sous-groupes composant l'échantillon.

INCONVENIENTS

- La méthode suppose de connaître la fonction de répartitions de notre expérience. Il faut aussi connaître comment ces valeurs se répartissent selon certaines strates.

Suites à discrépance faible (Quasi-Monte Carlo)

MATHEMATIQUEMENT

Les suites suivantes peuvent être utilisés afin de réduire la variance

Suites de Van Der Corput

Suites de Halton

Suite de Faure

Translations irrationnelles du tore

IDEES GLOBALES

Une autre façon d'améliorer les méthodes de type Monte-Carlo est de renoncer au caractère aléatoire des tirages et de tirer les points de façon "plus ordonnée". On cherche à trouver des suites (xi, $i \ge 0$) déterministes permettant d'approximer des intégrales par une formule de la forme :

$$\int_0^1 f(x)dx \approx \lim 1/n (f(x1) + \cdots + f(xn)).$$

On parle dans ce cas de méthode de quasi Monte-Carlo. On peut trouver des suites, telles que la vitesse de convergence de l'approximation soit de l'ordre de K log(n)/n, mais à condition que la fonction f possède une certaine régularité, ce qui est sensiblement meilleur qu'une méthode de Monte-Carlo. C'est ce genre de suite que l'on appelle une suite à discrépance faible.

AVANTAGES

- -Vitesse de convergence accrue
- -Des modèles existants
- -Majoration déterministe de l'erreur

INCONVENIENTS

-Variation de la fonction de densité incalculable