

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 ÁLGEBRA LINEAL PARA INGENIERÍA Prueba Parcial I

13 de Septiembre de 2012

Nombre:Carrera	Grupo
■ Conteste en forma ordenada identificando la pregunta e item que corresponde.	1.(2,0 pts)
■ El uso de la CALCULADORA es personal.	2.(1,5 pts)
 Los celulares deben estar apagados. 	
 Cada solución debe llevar desarrollo y respuesta. 	3.(2,5 pts)
 Debe justificar adecuadamente su respuesta. 	Nota:
■ Tiempo: 90 minutos.	2 (0 000000000000000000000000000000000

1. Consideremos dos matrices A y B dadas por:

$$A = \begin{pmatrix} 4 & -8 & 1 \\ 1 & -2 & 0 \\ 0 & 1 & 2 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 6 & 2 & -1 \\ 0 & -1 & -2 \\ 0 & 1 & 0 \end{pmatrix}$$

Calcule:

- a) A^{-1}
- b) det(2B-I)
- 2. a) Sea $A \in M_n(\mathbb{R})$ una matriz invertible. Sabiendo que $A^3 3A^2 + 2A + I = 0$, determine A^{-1} en términos de A.
 - b) Sea $B \in M_3(\mathbb{R})$, invertible tal que $B^{-1} = \frac{1}{4}B^t$. Calcule det(B)
 - c) Sea $C \in M_n(\mathbb{R})$ una matriz invertible tal que $C^2 = C$. Muestre que la solución del sistema CX = B es X = B.
- 3. Dado el sistema

$$\begin{array}{rcl} x + y + 2z + 2w & = & 1 \\ x - y - z + w & = & 2 \\ x + 3y + z - 2w & = & 3 \\ 2x + 4y + z + 2aw & = & b \end{array}$$

Determine los valores de $a, b \in \mathbb{R}$, tal que el sistema:

- a) Tenga única solución.
- b) Tenga conjunto solución vacío.
- c) Tenga infinitas soluciones y encuéntrelas.

Respuestas

1) $a)\begin{pmatrix} 4 & -8 & 1 \\ 1 & -2 & 0 \\ 0 & 1 & 2 \end{pmatrix} \qquad \overrightarrow{OEF} \qquad A^{-1} = \begin{pmatrix} -4 & 17 & 2 \\ -2 & 8 & 1 \\ 1 & -4 & 0 \end{pmatrix}$

b)
$$2B - I = \begin{pmatrix} 12 & 4 & -2 \\ 0 & -2 & -4 \\ 0 & 2 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 11 & 4 & -2 \\ 0 & -3 & -4 \\ 0 & 2 & -1 \end{pmatrix}$$

Luego

$$det(2B - I) = 11 \cdot \begin{vmatrix} -3 & -4 \\ 2 & -1 \end{vmatrix} = 11 \cdot 11 = 121$$

a) Si $A^3 - 3A^2 + 2A + I = 0$ entonces $I = -A^3 + 3A^2 - 2A = A(-A^2 + 3A - 2I)$.

De lo anterior se concluye que $A^{-1} = (-A^2 + 3A - 2I)$

b) De la igualdad

$$B^{-1} = \frac{1}{4}B^t$$

Se obtiene utilizando las propiedades del determinante:

$$det(B^{-1}) = det(\frac{1}{4}B^t) \quad \Leftrightarrow \frac{1}{det(B)} = \frac{1}{4^3}det(B) \quad \Leftrightarrow 64 = det(B)^2 \quad \Leftrightarrow det(B) = \pm 8$$

c)
$$C^2 = C$$
 $/C^{-1}$ $\Leftrightarrow C = I$ Reemplazando $CX = B$ $\Leftrightarrow I \cdot X = B$ $\Leftrightarrow X = B$

3)
La matriz ampliada del sistema es:

$$[A|b] = \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 1 & -1 & -1 & 1 & 2 \\ 1 & 3 & 1 & -2 & 3 \\ 2 & 4 & 1 & 2a & b \end{pmatrix} \quad \overrightarrow{OEF} \quad [T|B] = \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 0 & -2 & -3 & -1 & 1 \\ 0 & 0 & -4 & -5 & 3 \\ 0 & 0 & 0 & 2a + \frac{5}{2} & b - \frac{11}{2} \end{pmatrix}$$

a) Solución única

Si Rg([T])=4
$$\Rightarrow a \in \mathbb{R} - \{-\frac{5}{4}\}, b \in \mathbb{R}$$

b) Solución vacía

Si Rg([T])=3 y Rg([T|B])=4
$$\Rightarrow a = -\frac{5}{4}, b \in \mathbb{R} - \{-\frac{11}{2}\}$$

c) Infinitas soluciones

Si Rg([T])=Rg([T|B])=3
$$\Rightarrow a = -\frac{5}{4}, b = -\frac{11}{2}$$

Para encontrar las infinitas soluciones reemplazamos los valores de a y b, se escalona la matriz, obteniendo:

$$\begin{pmatrix}
1 & 0 & 0 & \frac{7}{8} & \frac{15}{8} \\
0 & 1 & 0 & -\frac{11}{8} & \frac{5}{8} \\
0 & 0 & 1 & \frac{5}{4} & \frac{-3}{4} \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

De donde se obtiene:

$$S = \left\{ \left(\frac{15}{8}, \frac{5}{8}, -\frac{3}{4}, 0 \right) + w(-7, 11, -10, 8) / w \in \mathbb{R} \right\}$$