Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки Кафедра інформатики та програмної

інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів

розгалуження»

Варіант 26

Виконав студент	III-11 Рябов Юріи Ігорович
·	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище, ім'я, по батькові)

Лабараторна робота№2 Дослідження алгоритмів розгалуження

Мета – дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання:

Варіант 26

26. Задані дійсні числа x, y. Визначити, чи належить точка з координатами (x, y) заштрихованій частині площини:

Постановка задачі

За допомогою координат точки потрібно визначити чи лежить точка в областях, обмежених колом і/або прямими, рівняння яких можна визначити. Отже, вхідних даних достатньо, результатом програми є відповідь на питання "Чи належить точка заштрихованій області?"

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Координата х точки	дійсний	х	Вхідне дане
Координата у точки	дійсний	у	Вхідне дане

Спочатку перевіримо, чи належить точка колу x^2+y^2=4, оскільки всі заштриховані області йому належать, для першої чверті умовою буде y>=2-x,

другої - у<=x+2, третьої - у<=-2-х, четвертої у>=x-1, перевірятимемо умови за допомогою альтернативного блоку

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії
- Крок 2. Деталізуємо перевірку належності до кола
- Крок 3. Деталізуємо належність точок до 1 області
- Крок 4. Деталізуємо належність точок до 2 області
- Крок 5. Деталізуємо належність точок до 3 області
- Крок 6. Деталізуємо належність точок до 4 області

Псевдокод

Крок 1

Початок

Визначення належності до кола

Визначення належності до 1 області

Визначення належності до 2 області

Визначення належності до 3 області

Визначення належності до 4 області

Кінепь

Крок 2

Початок

якщо х^2+у^2>4

TO

виведення "Точка не належить області"

інакше

Визначення належності до 1 області

Визначення належності до 2 області

Визначення належності до 3 області

```
Визначення належності до 4 області
```

Кінець

Крок 3

Початок

якщо х^2+у^2>4

T0

виведення "Точка не належить області"

інакше

якщо x>0 і y>0 і y>=2-x

T0

виведення "Точка належить області"

інакше

Визначення належності до 2 області

Визначення належності до 3 області

Визначення належності до 4 області

все якщо

все якщо

Кінець

Крок 4

Початок

якщо х^2+у^2>4

TO

виведення "Точка не належить області"

інакше

якщо x>0 i y>0 i y>=2-x

T0

виведення "Точка належить області"

інакше

```
якщо x \le 0 і y \ge 0 і y \le 2+x
           T0
              виведення "Точка належить області"
           інакше
              Визначення належності до 3 області
              Визначення належності до 4 області
          все якщо
       все якщо
якщо х^2+у^2>4
    виведення "Точка не належить області"
     якщо x>0 i y>0 i y>=2-x
         виведення "Точка належить області"
       інакше
          якщо x \le 0 і y \ge 0 і y \le 2+x
           T0
              виведення "Точка належить області"
           інакше
             якщо x<0 i y<0 i y<=-2-х
                T0
                  виведення "Точка належить області"
                інакше
                   Визначення належності до 4 області
             все якщо
```

T0

інакше

T0

все якшо

Кінець

Крок 4

Початок

```
все якщо
```

Кінець

Крок 6

Початок

якщо х^2+у^2>4

T0

виведення "Точка не належить області"

інакше

якщо x>0 і y>0 і y>=2-x

T0

виведення "Точка належить області"

інакше

якщо x<=0 i y>=0 i y<=2+x

T0

виведення "Точка належить області"

інакше

якщо x<0 i y<0 i y<=-2-х

T0

виведення "Точка належить області"

інакше

якщо x>=0 i y<=0 i y>=-2+x

T0

виведення "Точка належить області"

інакше

виведення "Точка не належить області"

все якщо

все якщо

все якщо

все якщо

Кінець

Блок-схема

Крок 1

Крок 4

Крок 5

Крок 6

Перевірка

Hexaй x=1, y=3

Блок	Дія
	Початок
1	1^2+3^2 > 4 - так
2	Виведення "Точка не належить області"
	Кінець

Hexaй x=1, y=-1.5

Блок	Дія
	Початок
1	1^2+3^2 > 4 - ні
2	x>0 i y>0 i y>=2-х - ні
3	x<=0 i y>=0 i y<=2+х - ні
4	x<0 і y<0 і y<=-2-х - ні
5	x>=0 i y<=0 i y>=-2+х - ні
6	Виведення "Точка не належить області"
	Кінець

Hexaй x=1, y=-0.5

Блок	Дія
	Початок
1	1^2+3^2 > 4 - ні
2	x>0 і y>0 і y>=2-х - ні
3	x<=0 i y>=0 i y<=2+х - ні
4	x<0 i y<0 i y<=-2-х - ні
5	x>=0 i y<=0 i y>=-2+x - так
6	Виведення "Точка належить області"
	Кінець

Висновок

Отже, ми навчились будувати алгоритми з розгалуженням з використанням альтернативної форми, побудувавши алгоритм для дослідження належності точки до певної області на площині