

Analyse canonique des corrélations

Emma Da Costa Silva, Maud Lesage, Elise Lonchampt

Plan

Introduction

- I. Quand utiliser l'ACC?
- II. Principe général de l'ACC
- III. Hypothèse et conditions d'utilisation
- IV. Explication de la méthode
- V. Interprétation des résultats
- VI. Comparaison avec d'autres méthodes
- VII. Limites de l'ACC

Conclusion

Introduction

ACC = méthode descriptive multidimensionnelle

- → Analogies avec :
 - l'ACP : construction et interprétation des graphiques
 - la régression linéaire : nature des données

Méthode mise au point par Harold Hotelling en 1936

Objectif: explorer les relations entre deux groupes de variables

Méthode peu utilisée mais connaît un essor avec le développement des biopuces

I. Quand utiliser l'Analyse Canonique des Corrélations ? (ACC)

- Etude des relations entre deux groupes de variables quantitatives
- Lorsque les deux groupes de variables peuvent influencer de manière réciproque les résultats
- Lorsque la **symétrie** entre deux groupes de variables est essentielle

Application dans les domaines : biologie, psychologie, économie...

II. Principe général de l'ACC

Réduction des groupes à une combinaison linéaire — variables canoniques

$$X = a_1Gène_1 + ... + a_{10}Gène_{10}$$

 $Y = b_1AG_1 + ... + b_{11}AG_{11}$

L'algorithme ACC cherche une suite de p couples de variables canoniques avec p correspondant au nombre minimum de variables dans les deux groupes.

→ Chaque paire maximise la corrélation entre les deux groupes tout en étant orthogonale à la paire précédente.

Obtention de p coefficients de corrélation canoniques : $1 \ge r1 \ge ... \ge rp \ge 0$

On ne prend pas en compte la direction

— corrélation exprimée en valeur absolue

III. Hypothèses et conditions d'utilisation

L'ACC repose sur l'**hypothèse** de linéarité et, idéalement, de normalité des variables dans chaque groupe.

Conditions d'utilisation :

- Variables quantitatives -> calcul de corrélation linéaire
- Deux groupes de variables minimum: avec un nombre de variables <= au nombre d'individus
- Indépendance inter groupes
- Colinéarité intra groupes
 - maximiser les corrélations entre les combinaisons linéaires des deux groupes

Etude sur 40 souris → deux catégories de données

- Gènes : expression de 120 gènes
- AG : proportion de 21 AG hépatiques

En ACC, il est nécessaire d'avoir un nombre de variables inférieur au nombre d'individus dans le groupe → sélection des gènes les plus importants

	Gène 1		Gène 10	AG 1	***	AG 11	
1							
2							
40							
	X						

A. Calcul des matrices de covariance

- R_{xx} est la matrice de variance-covariance 10×10 des variables du groupe X,
- R_{yy} est la matrice de variance-covariance 11×11 des variables du groupe Y,
- R_{xy} est la matrice de covariance entre les variables de X et Y, c'est une matrice 10×11,
- R_{vx} est simplement la transposée de R_{xv}, c'est une matrice 11×10.

$$R_X = R_{XX}^{-1} R_{XY} R_{YY}^{-1} R_{YX}$$

$$R_Y = R_{YY}^{-1} R_{XY} R_{XX}^{-1} R_{XY}$$

B. Définition des variables canoniques

$$X = a_1Gène_1 + ... + a_{10}Gène_{10}$$

 $Y = b_1AG_1 + ... + b_{11}AG_{11}$

Poids canoniques déterminés à partir des vecteurs propres des matrices R_X et R_Y associés au valeurs propres λ_s (s = 1, ..., 10).

Plus une variable a un poids élevé, plus elle est fortement appliquée dans la corrélation entre les deux ensemble de variables.

C. Calcul du coefficient de corrélation

	Gène 1		Gène 10	AG 1		AG 11	Х	Υ
1								
2								
40								
9		Υ			Υ .			Y
	x			Ÿ			Variables canoniques	

Correlation
0.96
0.93
0.91
0.86
0.79
0.72
0.61
0.41
0.25
0.04

Dans R

```
# on importe le package et le jeu de données
library(CAA)
data(nutrimouse)
# on extrait les matrices des variables gene et lipid
X=as.matrix(nutrimouse$gene)
Y=as.matrix(nutrimouse$lipid)
# on réalise l'analyse canonique des corrélations
res.cc=rcc(X,Y,0.1,0.2)
# on visualise les résultats sous forme de graphiques
plt.cc(res.cc)
```


V. Interprétation des résultats

V. Interprétation des résultats

Axes : 2 premières variables canoniques

Triangles bleus : variables du groupe X (gènes)

Ronds rouges : variables du groupe Y (lipides)

Cercles : niveau de corrélation entre les variables canonique et les variables d'origines

V. Interprétation des résultats

Axes: 2 premières variables canoniques

Points numérotés : individus (souris)

VI. Comparaison avec d'autres méthodes

Analyse Canonique des Corrélations	analyse simultanée de deux groupes complets de variables maximise les corrélations entre groupes			
Analyse en Composantes Principales	= construction et interprétation des graphiques ≠ focalise sur la structure interne d' <u>un seul groupe</u> de variables			
Régression linéaire multiple	 = nature des données ≠ étudie les relations entre une variable dépendante et plusieurs variables explicatives 			
Analyse Factorielle Discriminante	≠ maximise la séparation entre des groupes de <u>variables</u> <u>catégorielles</u>			
Partial Least Squares	maximise la corrélation entre deux groupes de variables plus utilisée lorsque un des groupes est fortement influencé par un grand nombre de variables			

VII. Limites de l'ACC

- → Hypothèse de linéarité
- → Hypothèse de normalité
- → Sensibilité aux valeurs extrêmes
- → Difficultés d'interprétation

Pour pallier ces limites, utiliser des méthodes alternatives ou complémentaires (ACP, techniques de rééchantillonnage,...)

Conclusion

- → Relations linéaires maximales entre deux ensembles de variables quantitatives
- → Utilisée dans de nombreux domaines (biologie, psychologie, économie, ...)
- → Limites : hypothèse de linéarité, de normalité, sensible aux valeurs extrêmes et interprétation difficile

Bibliographie

Besse, P.-A. (n.d.). Statistiques multivariées - Exploitation des données : Analyse Canonique des Corrélations (ACC). Université de Toulouse. https://www.math.univ-toulouse.fr/~besse/Wikistat/pdf/st-m-explo-acc.pdf

SysBio_SU. (2023). *Introduction à l'Analyse Canonique des Correspondance* [Video]. YouTube. https://www.youtube.com/watch?v=GoIRbqBq04c

TileStats. (2022). Canonical correlation analysis - explained [Vidéo]. YouTube. https://www.youtube.com/watch?v=2tUuyWTtPqM