Background Main Idea Manipulating Generated Data Interpreting Results Conclusions References

Adapting Back-Translation for Theoretical Drug-Protein Scoring Mechanisms

Nathan Wood

July 30, 2020

Table of Contents

- Background
- 2 Main Idea
- Manipulating Generated Data
- 4 Interpreting Results
- Conclusions

Computational Drug Discovery Overview

CDD Scoring Mechanisms (Koes et.al)

- Machine Learning methods are less computationally expensive than quantum-mechanical models
- Gnina
 - Divides structures in 24Å grid spaces to be processed using Convolutional Neural Networks
 - Rescoring poses generated using AutoDock Vina using CNN yields better results

Computational Linguistics: Back-Translation

Iterative Back-Translation (Hoang, et.al 2018)

- Back Translation typically improves model performance
- BLEU Score: specific sections are compared to a bitext reference, then averaged against the entire set

Setting	French-English		English-French		Farsi-English	English-Farsi
	100K	1M	100K	1M	100K	100K
NMT baseline	16.7	24.7	18.0	25.6	21.7	16.4
back-translation	22.1	27.8	21.5	27.0	22.1	16.7
back-translation iterative+1	22.5	-	22.7	-	22.7	17.1
back-translation iterative+2	22.6	-	22.6	-	22.6	17.2
back-translation (w/ Moses)	23.7	27.9	23.5	27.3	21.8	16.8

Essential Question

What if We Implement Unconfirmed Data into Our CNN Models?

We Generate It !- A Proposal

- Like back-translation in neural-translation, adding computationally generated data may improve model performance
- This is accomplished by generating unconfirmed binding affinity data and protein-ligand docking poses

Generated Binding Affinities

- Affinities are predicted from, and implemented into, the CrossDock 2020 Reduced Set
- Stochastic Gradient Descent: Seeds 0-4 are chosen
- new "*.caffemodel" weights are then cross-validated against the same set, but without the generated affinities
 - Root Mean Squared Error: maintaining a high binding affinity and low RMSE is optimal

Generated Protein-Ligand Docking Poses

- Docking Poses are generated from the BindingDB set, and implemented into the PDBBind 2016 set for training and evaluation
- Trained weights will be cross-validated against the BindDB Validation Set
 - Measured using Reciever Operating Characteristic Curve (true vs. false positives)
 - Root Mean Squared Deviation: 2Å(or less), and matching database is optimal

Generated Docking Poses (Intermediate Results)

• 11gs (ligand 1), CNN Score: .1515

 There is approximately 1 pose for every receptor (PDB) that has a CNN Score of .9 or higher

Default 2018 IT2 Binding Affinities (Intermediate)

Conclusions

- Adding generated binding affinities slightly improves model performance
 - Significance is unknown, highlighting a need to train an ensemble
- Assuming only one pose is correct, a .9 CNN Score threshold is preferable for labeling poses prior to model training

Moving Forward

- Complete binding affinities workflow for CrossDock 2020 CompleteSet
- Complete binding affinities workflow for the DenseNet Model
- Generated Poses Set
 - Train, cluster, and evaluate
- Establish SMARTer goals
- Examine data more thoroughly prior to each workflow step

Acknowledgements

- TECBio REU @ Pitt is supported by the National Science Foundation under Grant DBI-1659611
- Koes Group- Dr. David Koes, Paul Francoer, Johnathan King, Tomohide Masuda, Jocylyn Sunseri
- Dr. Ayoob, Adam Kohlhaas, and TECBIO 2020 Students

References

- Vu Cong Duy Hoang et al. "Iterative Back-Translation for Neural Machine Translation". In: Proceedings of the 2nd Workshop on Neural Machine Translation and Generation. Melbourne, Australia: Association for Computational Linguistics, July 2018. DOI: 10.18653/v1/W18-2703.
- Matthew Ragoza et al. "Protein-Ligand Scoring with Convolutional Neural Networks". In: Journal of Chemical Information and Modeling 57.4 (2017). PMID: 28368587, pp. 942-957. DOI: 10.1021/acs.jcim.6b00740. eprint: https://doi.org/10.1021/acs.jcim.6b00740. URL: https://doi.org/10.1021/acs.jcim.6b00740.

Questions and Answers

Questions