Adv Abstract Algebra Spr2022 midterm

xianzhi wang

Sept 2022

Q 1

Question 1. Let $H \leq G$ such that |G:H| = 4. Prove: if $g \in G$ and g has order 19, then $g \in H$.

Let G act on $\{Hb\} = \mathcal{R}$, the set of right cosets by right action. We have homomorphism

$$\rho: G \mapsto Sym(\mathcal{R}) \cong S_4 \text{ since there are 4 cosets of } H.$$

$$g \mapsto g^{\rho},$$

$$g^{\rho}: \mathcal{R} \mapsto \mathcal{R}$$

$$Hb \mapsto Hbq$$

Let $g \in G$, and |g| = 19. Want to show $g \in H$. Since $\rho(g)$ is in $Sym(\mathcal{R}) \cong S_4$, $|\rho(g)|$ divide 4!, which is the order of S_4 . Also, $|\rho(g)|$ divide |g| = 19 since ρ is homomorphism, so $|\rho(g)|$ divide $\gcd(24, 19) = 1$, so $\rho(g) = id$. So g is mapped to the identity permutation on the right cosets of H. Thus,

$$g \in \ker \rho = \bigcap_{g \in G} g^{-1} H g \le H.$$

Q 2

Question 2. let a (finite) group G act on Ω and on Δ . the action on Ω is transitive, and $|\Omega| = 22$, $|\Delta| = 10$. Prove that the action of G on Δ is not faithful. (i.e. the kernel of the action on Δ is non-trivial)

Use O-S, G act on Ω , for $x \in \Omega$, $|\mathcal{O}(x)| = 22$,

$$|\mathcal{O}(x)| \cdot |stab(x)| = |G| \implies 22 \mid |G|$$

Let ρ be denote the homomorphism assoicated with the group action.

$$\rho: G \mapsto Sym(\Delta) \cong S_{10}$$
$$g \mapsto g^{\rho}$$

We have

$$G/\ker \rho \cong \operatorname{Im} \rho \leq Sym(\Delta)$$

| $\operatorname{Im} \rho$ | divide $|G| = 22k$
| $\operatorname{Im} \rho$ | divide 10!

If G has finite order, then assume for contradiction $|\ker \rho| = 1$, then $|G| = |\operatorname{Im} \rho|$ divide 10!, but |G| has a factor of 11. Contradiction. So $\ker \rho > 1$.

If G has infinite order, then since $|\operatorname{Im} \rho| \leq 10! < \infty$, $|\ker \rho|$ must be infinite.

Q 3

Question 3. Let \mathbb{C}^{\times} denote the multiplicative group of all non-zero complex numbers (under the ordinary multiplication). Prove that \mathbb{C}^{\times} does not have any non-trivial subgroup of finite index.

Supp that H has finite index in \mathbb{C}^{\times} and $m = [\mathbb{C}^{\times} : H]$. Then for any nonzero complex number $z^m \in H$, we have

$$z^m H = (zH)^m = H, \implies z^m \in H.$$

For all $w \in \mathbb{C}$, we can solve $z^m - w = 0$ to write w as z^m for some z, hence $w \in H$, so $\mathbb{C} \subseteq H$, so $H = \mathbb{C}$.

Q 4

Proposition 1. Let a group G have order $2^2 \cdot 5 \cdot 17$. Show that

- 1. G has a unique Sylow 5-subgroup and a unique Sylow 17-subgroup.
- 2. \exists an element of order $85 = 5 \cdot 17$ in G.

Soln 1: $|G| = 2^2 \cdot 5 \cdot 17$. Let $n_5 = \#$ of Sylow 5 subgroup. By Sylow's theorem, we have:

$$n_5 \equiv 1 \mod 5 \tag{1}$$

$$n_5 \mid 2^2 \cdot 17$$
 (2)

hence, n_5 can be $1, 2, 4, 17, 34, 4 \cdot 17 = 68$. Only $1 \equiv 1 \mod 5$ among them. Thus, $n_5 = 1$, so Sylow 5 subgroup is unique.

Let $n_{17} = \#$ of Sylow 17 subgroup. We have

$$n_{17} \equiv 1 \mod 17 \tag{3}$$

$$n_{17} \mid 2 \cdot 2 \cdot 5 \tag{4}$$

Thus, n_{17} can be 1, 2, 5, 4, 10, 20, and only 1 satisfy

$$n_{17} \equiv 1 \mod 17 \tag{5}$$

among them. So $n_{17} = 1$, and the Sylow 17 subgroup is unique.

Soln 2: Since there exists unique Sylow 5 subgroup =: H and there exists unique Sylow 17 subgroup =: N. We know that $H \triangleleft G$, $N \triangleleft G$, so we know that $H \cdot N$ is a

group (as long as one of H or N is normal).

$$H \cdot N \le G$$
$$|H| = 5$$
$$|N| = 17$$

Thus, since there are of prime order, they are cyclic.

$$\exists h \in H, |h| = 5$$

(take the generator for example.)

$$\exists n \in \mathbb{N}, |n| = 17.$$

Also, $H \cap N = \{1\}$, since for cyclic group of prime order, every element $\neq 1$ has same order, so if $1 \neq x \in H \cap N$, then $x \in H$, x has order 5, but $x \in N$ implies |x| divide N = 17, but $|x| = 5 \nmid 17$.

 $N \cdot N$ is the internal direct product of N and N,

$$H \cdot N \cong H \times N \cong \mathbb{Z}_5^+ \times \mathbb{Z}_{17}^+ \cong \mathbb{Z}_{5\cdot 17}^+ = \mathbb{Z}_{85}^+ \tag{6}$$

Since 5 and 17 are coprime, so \exists an element $x \in H \cdot N$ of order 85, since Isomorphism preserve the order, so $x \in H \cdot N \leq G$ implies $x \in G$, and x has order 85.

Q 5

Proposition 2. Let $Z \subseteq G$ such that |Z| = 2 and |G:Z| = 97. Show that

- 1. $Z \leq Z(G)$
- 2. G is cyclic.

soln to 1:

 $Z \triangleleft G$ and |Z| = 2. 97 is prime. G act on Z by conjugation.

$$G \stackrel{\rho}{\mapsto} Aut(Z)$$
 (7)

$$g \mapsto g^{\rho}$$
 (8)

 $g^{\rho} \in Aut(Z)$ so $g^{\rho}: Z \to Z$ is isomorphism from Z to Z,

$$g^{\rho}: Z \to Z$$
 (9)

$$z \to q^{-1}zq \in Z,\tag{10}$$

since $Z \triangleleft G$. Recall that $(g \text{ in the center of } G) g \in Z(G) \iff g^{\rho} \text{ is trivial} \iff g^{\rho} = id$. WTS: $x^{\rho} = id \ \forall \ x \in G$

We have

$$x^{\rho} \in Im\rho \le Aut(Z) \tag{11}$$

$$|Aut(z)| = 1 \text{ since } |z| = 2 \tag{12}$$

Thus, $|x^{\rho}|$ divides |Aut(z)| = 1.

This implies that $x^{\rho} = id$, and any $x \to x^{\rho}$: $x^{-1}zx = z$ for $z \in Z$. $1 \in Z(G)$ automatically, so $Z \subset Z(G)$.

soln to 2 (not complete):

We have $Z \triangleleft G$ and |G/Z| = 97. Since |Z| = 2 is prime, Z is cyclic. G/Z is cyclic? G abelian? See HW01.

$$G \stackrel{\eta}{\mapsto} G/Z$$
 (13)

$$g \mapsto gz$$
 (14)

Consider the following map?

$$f: G \to Z \subset Z(G) \tag{15}$$

$$g \to g^{97} \tag{16}$$

so we have

$$Zg^{97} = (Zg)^{97} = Z, \implies g^{97} \in Z.$$
 (17)

Do we have

$$G \cong \mathbb{Z}_2 \otimes \mathbb{Z}_{97} \cong \mathbb{Z}_{194}? \tag{18}$$