엘머로 해 보는 오픈소스 엔지니어<u>링 (2)</u>

엘머 중심의 시뮬레이션 환경을 구축해 보자

이번 호에서는 엘머(Elmer) 및 관련 오픈소스 유틸리티를 설치하고 시뮬레이션 환경을 갖추는 방법을 설명한다. 다음 호부터는 이렇게 구축된 환경에서 쉬운 것부터 하나씩 실제로 문제를 해결할 수 있도록 준비한다.

연 / 재 / 순 / 서

제1회 엘머와 오픈소스 엔지니어링의 소개

제2회 엘머 중심의 시뮬레이션 환경을 구축해 보자

제3회 엘머로 해 보는 구조 해석 [

제4회 엘머로 해 보는 구조 해석 Ⅱ

제5회 엘머로 해 보는 동역학 해석

제6회 엘머로 해 보는 음향 해석

제7회 엘머로 해 보는 열전달 해석

제8회 엘머로 해 보는 대류열전달 해석

제9회 엘머로 해 보는 복사열전달 해석 제10회 엘머로 해 보는 다물체 해석

제11회 엘머로 해 보는 최적화

김동호

E-mail | Dymaxion,Kim@gmail.com 홈페이지 | http://dymaxionkim.github.io

대진디엠피 헬스케어사업부의 개발파트장으로 의료기기 및 헬스케어 제품 개발을 하고 있다. 역동적으로 혁신을 주도하고 있는 오픈소스 소프트웨어 생태계로부터 새로운 방법론과 기술을 얻어 차세대 제조업의 새로운 돌파 구를 찾아내는데 관심을 갖고 있다.

운영화경

이번 호에서는 사용자의 PC에서 엘머(Elmer)를 사용하는 것을 가정하고 설명하기로 한다. 특히 다음과 같은 환경을 기준으로 하였다.

- 운영체제: Lubuntu 16.04 64bit
- 윈도우 PC 상의 버추얼박스(VirtualBox) 가상머신

루분투(Lubuntu) 16.04를 선택한 이유는 윈도우보다 리눅스 환경에서 엘머의 능력을 모두 사용하기가 좋고, 특히 우분투 계열 배포판에서 편리성을 얻을 수 있기 때문이다. 데스크톱 환경은 해석을 위해 사용 가능한 메모리를 가장 많이 아낄 수 있는 가벼운 것으로 LXDE를 선정한 것이다. 운영체제는 반드시 64비트 사양이어야 한다.

가장 신속하게 가상머신을 활용하고 싶다면, www.osboxes.org 사이트에서 루분투 16.04 배포판이 이미 설치되어 있는 가상머신 파일을 직접 다운로드받고 버추얼박스에서 이를 불러들여 사용하 면 된다.

버추얼박스와 같은 가상머신에서 운영할 경우, 사용자가 주력으로 사용하는 윈도우 환경과 파일 교환이 쉬워지고 PC의 자원을 끝까지 끌어내어 사용할 수 있기 때문에, 입문단계에서 편리하게 사용하기에 좋다. 물론 해석의 규모가 커져서 더 많은 컴퓨팅 자원이필요하게 된다면 전용 PC를 따로 꾸며서 사용해도 좋다.

▲ 버추얼박스

▲ 우분투

▲ 루분투

가상머신이든 실제 PC이든 간에 필요한 컴퓨팅 자원은 다음과 같다.

- CPU: AMD64 호환(64비트), 최소 코어 2개 이상
- RAM : 최소 2GB, 권장 4GB 이상, 다중코어 병렬 연산에 대비하려면 8GB 이상
- HDD: 최소 10GB, 권장 20GB 이상
- **그래픽:** 최소 3D 가속기능 불필요, 권장 인텔 내장 그래픽 카드 또는 엔비디아 그래픽 카드

엘머 설치

이미 빌드된 배포판을 설치할 경우

가상머신 리눅스를 최초 부팅하고 로그인한 후, 터미널을 열어서 다음 명령으로 시스템을 최신으로 업데이트하자.

\$ sudo apt update

\$ sudo apt upgrade

우분투에서 기본적으로 제공하는 원격 소프트웨어 저장소에서 이미 엘머를 제공하고 있으나 계속적인 엘머의 업데이트를 따라가 지는 못하기 때문에, 항상 최신버전으로 유지할 수 있도록 CSC 연구소 엘머 개발팀에서 직접 제공하는 저장소를 추가적으로 등 록하자.

\$ sudo apt-add-repository ppa:elmer-csc-ubuntu/elmer-csc-ppa

이제 다음과 같이 2개의 명령으로 간단히 엘머를 설치한다.

\$ sudo apt update

\$ sudo apt install elmerfem-csc

엘머 패키지가 제공하는 물리학 공식들을 전부 ElmerGUI에서 로드할 수 있도록 다음 명령도 추가로 넣어주자.

\$ sudo cp /usr/share/ElmerGUI/edf-extra/*.xml /usr/share/ElmerGUI/edf/

혹시 환경변수(경로설정 등) 문제로 작동에 이상이 있을지도 모르기 때문에, 사용하는 터미널에서 실행시 문제가 없도록 다음과 같이 조치해 두자. 우선 터미널에서 다음 명령으로 bash 환경설정 파일을 편집기로 연다.

\$ nano ~/.bashrc

이후 편집기에서 끝부분에 다음 구문을 추가한 후 저장하고 빠져 나온다.

ELMERGUI_HOME=/usr/share/ElmerGUI
ELMERSOLVER_HOME=/usr/share/elmersolver
ELMERLIB=/usr/lib/elmersolver
LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:\$ELMERLIB:\$ELMERSOL
VER_HOME/lib

터미널을 종료했다가 다시 실행한 후, 이제부터 다음 명령으로 간 단히 ElmerGUI를 실행할 수 있다.

\$ ElmerGUI

터미널에서 뿐만 아니라, 보통의 GUI 앱처럼 데스크톱에서 실행 아이콘을 더블클릭해서 실행할 수 있도록 할 수도 있다. 우선 Start_Elmer.sh라는 이름으로 직접 실행할 수 있는 셸 스크립트를 보통의 사용자 애플리케이션 실행파일을 모아두는 장소인 /usr/bin/ 안에 만든다. 이 장소는 기본적으로 경로(path)가 잡혀있기 때문에, 어디서나 명령어만 치면 실행 가능하다. 엘머를 실행하기 전에 미리 필요한 경로를 강제로 잡아주는 것이다.

\$ sudo nano /usr/bin/Start Elmer.sh

이렇게 해 주고 다음 내용을 써 넣어서 저장한다.(Ctrl + O)

#!/bin/bash

export ELMERGUI_HOME=/usr/share/ElmerGUI
export ELMERSOLVER_HOME=/usr/share/elmersolver
export ELMERLIB=/usr/lib/elmersolver
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:\$ELMERLIB:\$ELM
ERSOLVER_HOME/lib
/usr/bin/ElmerGUI

그 다음, 만들어진 셸 스크립트를 아무나 실행할 수 있도록 속성 을 준다.

\$ sudo chmod o+x /usr/bin/Start_Elmer.sh

이제 데스크톱 실행용 아이콘 그림 파일을 받아서 적절한 장소에 배치한다.

\$ sudo mkdir /usr/share/ElmerGUI/icons

\$ sudo wget -O /usr/share/ElmerGUI/icons/Mesh3D.png \
https://raw.githubusercontent.com/tehnick/elmerfem/master/
ElmerGUI/Application/icons/Mesh3D.png

이제 데스크톱 등록 파일(.desktop)을 만든다.

\$ sudo nano /usr/share/applications/ElmerGUI.desktop

이렇게 해 주고 다음 내용을 써 넣어서 저장한다.(Ctrl + O)

[Desktop Entry]

Encoding=UTF-8

Name=Elmer

Comment=Elmer FEA software

Exec=/usr/bin/Start_Elmer.sh

lcon=/usr/share/ElmerGUI/icons/Mesh3D.png

StartupNotify=true

Terminal=false

Type=Application

Categories=Education;Math;Science

이제 ElmerGUI를 일반적인 데스크톱 프로그램처럼 아이콘으로 실행시킬 수 있고, 또 터미널로 직접 다른 엘머 명령들도 실행시킬 수도 있게 되었다.

ANALYSIS

소스코드를 받아서 직접 컴파일해서 설치할 경우

만일 현재의 운영체제가 우분투 리눅스가 아니라 데비안 등 다른 배포판이라면 CSC 연구소에서 직접 저장소를 제공해 주지 않기 때문에, 설치 및 최신 버전을 계속 유지하려면 직접 소스코드를 컴파일해서 갱신해 나갈 수 있다. 또는 CSC 연구소의 빌드가 아니라 다른 기능들을 추가한 커스텀 버전의 엘머가 필요할 경우에도 컴파일해야 할 것이다.

이번 호에서는 가장 기본적인 컴파일 방법을 설명한다. cmake를 이용하여 모듈별로 간단히 빌드할 수 있도록 버전 관리가 잘 되고 있기 때문에. 빌드작업 자체는 상당히 쉽다.

먼저 다음과 같이 의존성 있는 것들을 설치해 주자. 이 중에는 버전이 맞지 않아 연결하기가 곤란한 것들도 있을 수 있으나, 기본적인 기능들은 살릴 수 있다.

\$ sudo apt install automake gcc g++ gfortran cmake cmake-qt-qui

\$ sudo apt install libopenmpi-dev mpi-default-dev mpi-default-bin libscotchmetis-dev

 $\$ sudo apt install libreadline-dev libncurses5-dev libx11-dev tk-dev tcl-dev $\$

libfreetype6-dev libftgl-dev libgl1-mesa-dev libglu1-mesa-dev \$ sudo apt install libblas-dev liblapack-dev libhypre-dev

\$ sudo apt install liboce-modeling-dev

libsuitesparse-dev libarpack2-dev r-base-core

\$ sudo apt install qt-sdk

엘머의 소스코드를 확보한다.

 $mkdir \sim /github$

\$ cd ~/github

\$ git clone https://www.github.com/ElmerCSC/elmerfem

\$ mkdir elmer-build

cmake-gui를 실행 및 설정하기 위해 다음 명령을 입력한다.

\$ cmake-gui

설정창이 뜨면 경로 및 옵션 등을 적절히 선택해 준다. 일단 기본 적으로 다음의 옵션들을 체크하는 것에는 문제가 없을 것이다.

WITH_ELMERGUI WITH_MATC WITH_MPI

나머지 옵션들은 관련된 소스코드를 추가해서 연결해 주거나, 또는 버전에 맞는 의존성이 추가적으로 충족되어야 한다. 옵션 체크후 configure를 눌러서 의존성에 문제가 없는지 체크할 수 있다. 의존성 경로를 찾아내는데 실패할 경우 붉은색 줄이 생기며, 이것

을 다 없도록 해 줘야 한다.

문제가 없는 것이 확인되면 Generate해 준다. 이번 호에서는 2코 어로 빌드 실행 및 설치한다. 물론 자신의 상황에 맞게 CPU 코어 개수를 조절해 주면 된다.

\$ cd ~/github/elmer-build

\$ sudo make -j2 install

이렇게 하면 자동적으로 빌드가 되고 나서 시스템에 설치가 된다.

실행 파일 경로를 추가하기 위해 우선 터미널 bash 셸 설정을 편집할 수 있도록 다음과 같이 텍스트 편집기를 실행한다.

\$ nano ~/.bashrc

마지막 부분에 다음 구문을 추가해 준다.

Flmer

export PATH="/home/사용자홈/elmer/bin/:\$PATH"

이제 터미널을 재시작한 후, ElmerGUI 명령을 쳐서 실행이 되는 지 확인해 보자.

이상과 같이 소개한 기본적인 빌드 절차대로 할 경우, WITH_OCC 옵션이 제외되었기 때문에 STEP 3D 모델링 파일을 직접 읽어들이는 능력이 없고, WITH_VTK 옵션이 제외되었기 때문에 ElmerGUI에 내장된 ElmerVTK 후처리기가 실행되지 않을 것이다. 이러한 옵션들까지 모두 빌드하기 위해서는 해당 소스코드를 붙여서 함께 빌드해야 한다는 점에 유의한다.

Gmsh 설치

해석을 효율적으로 하기 위해 계산량을 줄이려는 목적으로 2차원 메시를 활용할 때가 있다. 2차원 메시를 효과적으로 생성하기에 적합한 대표적인 오픈소스로 Gmsh가 있으며, 이것을 설치해서 활용하도록 하자. 다음 명령으로 간단히 설치할 수 있다.

\$ sudo apt install gmsh

Gmesh의 최신 버전을 설치하고 싶다면 홈페이지(http://gmsh.info)에서 직접 다운로드 받아 압축을 풀고, 들어있는 gmsh 실행파일을 사용하면 된다.

Gmsh를 사용하는 가장 큰 이유는, 형상을 모델링하는 명령이 텍스트 기반으로 되어 있어서 GUI와 텍스트 편집기를 이용하여 지오메트리 파일을 효과적으로 편집할 수 있는 독특한 방식 때문이다. 텍스트 지오메트리 파일을 적절히 편집하면 물체의 형상과 크기등을 원하는 대로 파라메트릭하게 조정할 수 있기 때문에, 최적설계 등을 위해 형상 파라미터를 반복 변경해 가면서 해석하도록 자동화하기에 매우 유리하다.

Gmsh도 3D STEP 파일을 직접 읽어들일 수는 있으나, 자잘한 오류나 기능 부족 때문에 권장할 만하지는 않다. 또한 STEP 파일로부터 다중물체(Multi-Bodies)를 인식하거나 저장(Export)하는 기능이 아직 구현되어 있지 않다. 따라서, 일반적으로 지오메트리파일을 편집하고 전용 메시 포맷인 msh 파일을 생성해 주는 용도로 주로 사용한다. 3D의 경우에는 다중물체를 생성했을 때 엘머에서 인식되도록 하기가 어렵기 때문에(제대로 구현되어 있지 않음), 보통은 2D로 간소화한 모델을 만들어내어 사용할 때 이용한다.

Gmsh의 메시 포맷인 .msh 파일은 많은 메시 관련 소프트웨어들이 기본적으로 지원하기 때문에, 다양한 유한요소해석 소프트웨어간의 데이타 변환시 중간(Neutral) 포맷으로 사용하기에도 유용하다.

이번 호에서는 Gmsh의 구체적인 사용방법을 별도로 설명하지는 않는다. 다만 인터넷상에 매우 많은 정보와 튜토리얼들이 있기 때 문에 쉽고 빠르게 사용법을 익히는데 문제가 없을 것이다.

Salome Platform 설치

살로메 플랫폼(Salome Platform)은 3차원 형상의 매시를 생성하기에 적합한 오픈소스 중에서 가장 발전된 것이다. 특히 엘머에서 다물체(Multi-Bodies) 메시를 생성할 때는 현재 이것 외에 대안이 없다.

웹브라우저로 홈페이지(www.salome-platform.org)의 DOWNLOADS 카테고리에서 압축파일을 다운로드받는다. 외부 의존성에 구애받지 않으려면 Binaries for officially supported Linux platforms 중에 Linux Ubuntu 16,04 64-bits 판본을 다운

로드 받는 것이 좋겠다. 설치는 홈페이지의 설명대로 따라하면 된다.

Gmsh에서 3D 다중물체 메시를 만들어서 제공하기가 곤란하므로, 살로메를 이용하여 이 부분을 해결할 수 있다. 살로메에서 unv 포맷의 메시 파일을 생성해 내고, 이것을 ElmerGrid 유틸리티를 사용하여 엘머 전용 메시 포맷으로 변환한 후 사용하는 방식을 취한다.

살로메의 3D 그래픽 퍼포먼스가 썩 좋지는 않다. 지나치게 복잡한 3D 형상을 전처리하려면 상당한 인내심을 요구하게 되므로, 가급적 단순한 형상을 사용하도록 노력하는 것이 좋다. 아울러, 살로메의 자체 파이썬(Python) 스크립트 기능을 사용하여 모델링과 전처리 작업의 자동화도 가능하다는 점을 염두에 둔다.

이번 호에서는 살로메의 구체적인 사용방법을 자세하게 설명하지는 않는다. 다만 역시 인터넷상에 매우 많은 정보와 튜토리얼들이 있기 때문에 쉽고 빠르게 사용법을 익히는데 문제가 없을 것이다. 아울러, 입문 단계에서 쉽게 사용법을 익히고, 빠르고 효과적으로 전처리 작업을 수행하기 위한 기본적인 기능의 사용방법은 연재 과정에서 필요에 따라 조금씩 설명하도록 한다.

Paraview 설치

파라뷰(Paraview)는 오픈소스 후처리기 중에서 가장 품질이 좋은 것으로 볼 수 있을 것 같다. 살로메 플랫폼 안에 파라뷰가 이미 내장되어 있으므로 굳이 별도 설치할 필요까지는 없으나, 최신 버전을 사용하고 싶다면 따로 설치해서 사용해도 무방하다. 홈페이지 (www.paraview.org)에서 Download Latest Release를 찾아 들어가서 리눅스용 압축파일을 받아서 풀면 된다.

또는 웹 브라우저를 사용하지 않고 다음 터미널 명령으로 직접 다운로드 및 설치를 하는 것이 더 간편하다.

\$ cd ^

 $\$ wget \ "https://www.paraview.org/paraview-downloads/ \ download.php?submit=Download&version=v5.4&type=binary&os=lin ux64& \

downloadFile=ParaView-5,4,1-RC3-Qt5-OpenGL2-MPI-Linux-64bit,tar,gz"

\$ mkdir ParaView

\$ tar -xzf ParaView-5,4,1-RC3-Qt5-OpenGL2-MPI-Linux-64bit, tar.gz -C ParaView

파라뷰는 최근에 특히 아주 빠르게 업데이트되고 있는 강력한 후처리기이다. 특히 수퍼컴퓨터 기반에서 엄청난 대용량의 데이터를 가시화하기 위한 기반기술들이 잘 갖추어져 있기 때문에 확장성

ANALYSIS

도 좋다. 파이썬 스크립트를 이용한 자동화나 커스터마이제이션도 가능하며, 스크립트까지 활용하지 않더라도 기본으로 제공되는 GUI 후처리 도구들도 상당히 훌륭하다.

역시 이번 호에서는 파라뷰의 사용법을 별도로 자세히 설명하지는 않는다. 다만 필요에 따라 약간의 사용법들을 소개하도록 하겠다.

GNU Octave 설치

공학도에게 친숙한 매트랩(Matlab)은 라이선스 문제로 아무나 사용하기가 어렵다. 대신 매트랩과 호환성이 높은 GNU 옥타브 (GNU Octave, www.gnu.org/software/octave)를 설치해서 자료분석이나 진행과정을 자동화하는데 사용하기가 좋다.

다음과 같은 명령어로 최신버전을 계속 받을 수 있는 저장소를 등록한 후 간단하게 설치하고 실행해 보자.

- \$ sudo add-apt-repository ppa:octave/stable
- \$ sudo apt update
- \$ sudo apt install octave
- \$ octave

전문적인 코딩 경험이 없는 초심자의 경우 GNU 옥타브가 가장 진입장벽이 낮다고 생각한다. 특정 해석 주제에 대한 단순 반복 작 업, 간단한 시퀀스에 따라 동작하는 매크로 역할을 맡기기에도 좋 다. 물론 다른 훌륭한 스크립트 언어들도 수없이 많으므로 자신의 상황에 맞게 선택하고 응용해 나가면 좋을 것으로 생각된다.

기타 권장할 만한 것들

- FreeCAD: 리눅스 상에서 3D CAD 모델을 간단히 그리기 좋다.
- Scientific Python: 방대하고 성숙된 과학기술 계산용 도구들이 제공된다. 다만 파이썬 언어를 익혀서 사용해야 하므로 매트랩에 익숙한 사용자에게는 약간 진입장벽이 있다.
- Julia Lang: 옥타브는 매트랩과 호환성이 높지만, 대량의 데이터를 처리할 때는 속도가 느려서 문제가 될 수 있다. 이때 Julia Lang은좋은 대안이 된다고 생각한다. 과학기술용 스크립트 언어 중에서 가장처리속도가 빠른 편에 속하고, 완전한 오픈소스이며, 최신 소프트웨어 공학이 많이 적용된 젊은 언어이다. 매트랩 문법과 완전히 호환되지는 않으나 거의 유시하게 사용하는 것도 가능하다. 장기적인 비전을 생각한다면 좋은 선택이 될 것이라고 본다.

■ Jupyter Notebook: 웹 서비스형 대화식 개발환경(REPL)으로, 파이썬을 기반으로 하지만 옥타브, Julia Lang 및 기타 수십 가지의 언어에 모두 대응한다. 노트북(Notebook) 형태로 웹 브라우저상에서 효율적으로 간략한 코딩, 결과 가시화, 도큐멘테이션까지 한꺼번에 쉽 게 가능하다.

또한 엘머 이외에도 Calculix, Z88 Aurora, Code_Aster, OpenFoam, SU2 등 잘 성숙한 다른 유한요소해석 소프트웨어들도 배합해서 문제를 해결해 나가면 좋을 것이다.

이번 호에서 소개한 엔지니어링 환경 구축을 가장 신속하고 편하 게 할 수 있도록, 필자가 만든 일괄작업 설치 레시피를 다음 주소에 업로드 해 놓았으므로, 그곳의 설명대로 따라해도 좋다.

https://github.com/dymaxionkim/Elmer_Examples_for_CADG

이 주소에서 권장하는 것은 osboxes 가상머신에 셸 스크립트로 자동 환경설정이 되도록 하는 방식이다. 앞서 설명한 엘머 및 기타 필요한 유틸리티들의 설치와 필요한 시스템 환경이 자동으로 잡히 도록 세팅해 놓았고, 설명서도 기재해 두었다.

설치된 가상머신 리눅스 데스크톱은 그림과 같은 상태로 사용할 수 있게 된다.

맺음말

전통적으로 유닉스 계열 오픈소스 코드들은 소스코드를 배포한 후 그것을 사용자가 받아서 직접 컴파일하고 설치하는 방식이 표준적인 방법이었다. 하지만 유닉스 계열 운영체제를 능수능란하게 다루지 못하는 사람들에게는 상당히 높은 진입장벽이 된 것도 사실이다.

그래서, 이미 빌드된 배포본을 온라인으로 간단한 명령만으로 편리하게 다운로드받아 자동으로 설치가 될 수 있도록 하는 체제가 발달하게 되었는데, 대표적으로 데비안 리눅스 계열의 apt 설치관리자 명령이 그것이다. 실제로 성공적인 오픈소스 공학용 소프트웨어의 대다수는 apt 설치관리자로 최신 버전을 받아서 설치할 수 있도록 원격저장소를 운영해 주고 있다.

우리는 이러한 오픈소스 생태계의 혜택을 최대한 누려서, 몇 개의 간단한 명령과 약간의 설정만으로 실제 필요한 도구들을 간단하게 준비할 수 있다.