

Universidad Nacional de Colombia Departamento de Matemáticas

Análisis Funcional

Taller 1: Espacios vectoriales normados (I-2025)

Profesor: Oscar Guillermo Riaño Castañeda **Integrantes:** Andrés David Cadena Simons

Jairo Sebastián Niño Castro

Iván Felipe Salamanca Medina

Fecha: 03 de Junio del 2025

Ejercicio 1.

(I) Sea \mathbb{R} con la σ-álgebra de Borel.

(a) Dado $x_0 \in \mathbb{R}$, considere δ_{x_0} la medida de Dirac centrada en x_0 dada por: $\delta_{x_0}(A) = 1$ si $x_0 \in A$ y $\delta_{x_0}(A) = 0$ si $x_0 \notin A$ para cada $A \in \mathcal{B}(\mathbb{R})$. Muestre que x_0 es una medida.

(b) Sea $f : \mathbb{R} \to \mathbb{R}$ una función medible. Muestre que

$$\int_{\mathbb{R}} f(x) \delta_{x_0} = f(x_0).$$

(c) De un ejemplo de una función que sea integrable con la medida δ_{x_0} para algún $x_0 \in \mathbb{R}$ pero que no sea integrable con la medida de Lebesgue.

(II) Sea $\mathbb{N} = \{1, 2, 3, ...\}$ con la σ -álgebra $\mathcal{P}(\mathbb{N})$.

(a) Considere la medida contadora μ dada por $\mu(A) := \operatorname{cardinal}(A)$ si A es finito y $\mu(A) = \infty$ si A es infinito, para cada $A \in \mathcal{P}(\mathbb{N})$. Muestre que μ es una medida.

(b) Dada $f: \mathbb{N} \to \mathbb{R}$ una función medible, es decir, f es una sucesión $f = \{a_j\}_{j \in \mathbb{N}}$ para algunos $a_j \in \mathbb{R}$. Muestre que si f es integrable (es decir, $\int_{\mathbb{N}} |f| \, d\mu < \infty$), entonces

$$\int_{\mathbb{N}} f \, dx = \sum_{j=1}^{\infty} a_j.$$

(I)

Demostración. (a) Veamos que δ_{x_0} es una medida.

Note que $\delta_{x_0}(\emptyset) = 0$ ya que $x_0 \notin \emptyset$ por definición del conjunto \emptyset .

Por otro lado, veamos que si tomamos una unión numerable de conjuntos disjuntos y le calculamos su medida, esto va a ser igual que la suma de la medida de cada conjunto, es decir, dados $\{A_n\}_{n\in\mathbb{N}}$ conjuntos disjuntos se satisface que

satisface que

$$\delta_{x_0}\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\delta_{x_0}\left(A_n\right), \ \ \text{para toda familia numerable de conjuntos disjuntos}.$$

Esto ya que si $\delta_{x_0}\left(\bigcup_{n\in\mathbb{N}}(A_n)\right)=0$, significa que $x_0\notin\bigcup_{n\in\mathbb{N}}(A_n)$, en parti-

cular, $x_0 \notin A_n$ para todo $n \in \mathbb{N}$, luego es válido afirmar que

$$\begin{split} \delta_{x_0}\left(\bigcup_{n\in\mathbb{N}}(A_n)\right) &= 0,\\ &= \sum_{n\in\mathbb{N}}\delta_{x_0}(A_n). \end{split}$$

Por otra parte, si $\delta_{x_0}\left(\bigcup_{n\in\mathbb{N}}(A_n)\right)=1$, entonces $x_0\in\bigcup_{n\in\mathbb{N}}(A_n)$, pero como la familia de conjuntos $\{A_n\}$ es disjunta 2 a 2, entonces podemos afirmar que existe un único $N\in\mathbb{N}$ tal que $x_0\in A_N$ y $x_0\notin n$ para todo $n\neq N$, es decir que $\delta_{x_0}(A_N)=1$ y $\delta_{x_0}(A_n)=0$ para todo $n\neq N$, luego

$$\begin{split} \delta_{x_0} \left(\bigcup_{n \in \mathbb{N}} (A_n) \right) &= 1, \\ &= \delta_{x_0} (A_N), \\ &= \sum_{n \in \mathbb{N}} \delta_{x_0} (A_n). \end{split}$$

lo que nos permite afirmar que $\delta_{x_0} : \mathbb{R} \to [0, +\infty]$ es una medida.

(b) Veamos que dada $f : \mathbb{R} \to \mathbb{R}$ función medible se cumple que

$$\int_{\mathbb{R}} f(x) d\delta_{x_0} = f(x_0).$$

Usaremos funciones simples para demostrar el resultado para funciones simples positivas, luego usaremos la densidad de las funciones simples positivas en las funciones medibles no negativas para extender este resultado a las funciones medibles no negativas y por último esto nos servirá para concluir el resultado a cualquier función medible.

Sea $f(x) = \sum_{i=1}^n \alpha_i \chi_{A_i}(x)$, donde $\alpha_i > 0$ para todo $i \in \mathbb{N}$, además

$$\chi_{A_i}(x) = \begin{cases} 1, & \text{si } x \in A_i, \\ 0, & \text{si } x \notin A_i \end{cases}$$

para todo $i=1,\cdots,n$. Además, podemos suponer que los conjuntos sobre los cuales se definen las funciones características son disjuntos 2 a 2, es decir, $A_i\cap A_j=\emptyset$ para todo $i\neq j$. Note que,

$$\begin{split} \int_{\mathbb{R}} f(x) \, d\delta_{x_0} &= \int_{\mathbb{R}} \left(\sum_{i=1}^n \alpha_i \chi_{A_i}(x) \right) d\delta_{x_0}, \\ &= \sum_{i=1}^n \alpha_i \delta_{x_0}(A_i), \end{split}$$

no obstante, como en un principio asumimos que la familia numerable de conjuntos $\{A_i\}$ son disyuntos, entonces x_0 solo puede pertenecer a uno de

los A_i , sin pérdida de generalidad suponga que $x_0 \in A_I$ (caso contrario $x \notin \bigcup_{i=1}^n (A_i)$ y por ende $f(x_0) = 0$ lo que concluye el resultado), entonces

$$\int_{\mathbb{R}} f(x) d\delta_{x_0} = \sum_{i=1}^{n} \alpha_i \delta_{x_0}(A_i),$$

$$= \alpha_I,$$

$$= f(x_0).$$

Lo que nos permite afirmar el resultado para funciones simples positivas, ahora veamos que esto se repite para funciones simples no negativas.

Tomemos $f : \mathbb{R} \to [0, \infty]$ una función medible no negativa.

Entonces, como las funciones simples no negativas se pueden aproximar por funciones simples positivas, sabemos que existe una sucesión monótona de funciones $\{f_n\}_{n\in\mathbb{N}}$ simples positivas tales que

$$0 \leq f_1(x) \leq \cdots \leq f_n(x) \leq f_{n+1}(x) \leq \cdots \leq f(x) \ y \ \lim_{n \to \infty} f_n(x) = f(x),$$

para todo $x \in \mathbb{R}$. Luego como cada f_n es simple positiva, es medible y por ende usando el teorema de la convergencia monótona podemos afirmar que

$$\begin{split} \int_{\mathbb{R}} f(x) \, d\delta_{x_0} &= \lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) \, d\delta_{x_0}, \\ &= \lim_{n \to \infty} f_n(x_0), \\ &= f(x_0), \end{split}$$

por lo que podemos afirmar el resultado para funciones medibles no negativas

Ahora usemos que las funciones medibles se pueden reescribir como suma de funciones medibles no negativas, sea $f: \mathbb{R} \to \mathbb{R}$ una función medible, vamos a particionar a f como su parte no negativa (f⁺) y su parte negativa (f⁻) de forma que $f = f^+ - f^-$. Luego,

$$\int_{\mathbb{R}} f(x) d\delta_{x_0} = \int_{\mathbb{R}} f^+(x) d\delta_{x_0} + \int_{\mathbb{R}} -f^-(x) d\delta_{x_0}.$$

Pero como el resultado vale para funciones medibles no negativas se puede afirmar que

$$\int_{\mathbb{R}} f(x) d\delta_{x_0} = f^+(x_0) + -f^-(x_0),$$

= $f(x_0)$.

Lo que concluye el teorema.

(c) Sea $f(x) = |x| y x_0 = 0$. Sabemos que

$$\int_{\mathbb{R}} |x| \, \mathrm{d}x = \infty.$$

pero note que

$$\int_{\mathbb{R}} |x| \, \mathrm{d}\delta_0 = |0| = 0.$$

por lo cual podemos afirmar que |x| no es integrable respecto a Lebesgue, pero si respecto a la medida de Dirac centrada en 0.

(II)

Demostración. (a) Veamos que μ es medida.

Note que si tomamos $\emptyset \in P(\mathbb{N})$ como cardinal $(\emptyset) = 0$, entonces $\mu(\emptyset) = 0$. Por otro lado, veamos que dados $\{A_n\}_{n \in \mathbb{N}}$ conjuntos disjuntos 2 a 2 se satisface que

$$\mu\left(\bigcup_{n\in\mathbb{N}}(A_n)\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right).$$

Esto ya que, si suponemos que cardinal $\left(\bigcup_{n\in\mathbb{N}}(A_n)\right)=n<\infty$, entonces podemos afirmar que todos los conjuntos A_n son finitos, pues cardinal $(A_n)\leq$ cardinal $\left(\bigcup_{n\in\mathbb{N}}(A_n)\right)$, además, sabemos que los conjuntos A_n con cardinal distinto a 0 deben de ser finitos, de lo contrario cardinal $\left(\bigcup_{n\in\mathbb{N}}(A_n)\right)=\infty$, por lo que podemos asumir que para cierta selección de n_j se tiene que usando el principio de inclusión-exclusión y que la familia de conjuntos $\{A_n\}_{n\in\mathbb{N}}$ es disjunta 2 a 2 se cumple que

$$\begin{split} \mu\left(\bigcup_{n\in\mathbb{N}}(A_n)\right) &= \text{cardinal}\left(\bigcup_{n\in\mathbb{N}}(A_n)\right),\\ &= \text{cardinal}\left(\bigcup_{n_j=0}^m(A_{n_j})\right),\\ &= \sum_{n_j} \text{cardinal}\left(A_{n_j}\right),\\ &= \sum_{n\in\mathbb{N}} \text{cardinal}\left(A_n\right),\\ &= \sum_{n\in\mathbb{N}} \mu(A_n). \end{split}$$

Caso contrario, si cardinal $\left(\bigcup_{n\in\mathbb{N}}(A_n)\right)=\infty$, entonces sabemos que existe al menos un A_I tal que cardinal $(A_I)=\infty$ o que existe una subcolección $\{A_{n_j}\}_{n_j\in\mathbb{N}}\subset\{A_n\}_{n\in\mathbb{N}}$ tal que para todo n_j se satisface que cardinal $\left(A_{n_j}\right)\leq 1$, supongamos que $A_I\notin\{A_{n_j}\}_{n_j\in\mathbb{N}}$, por lo que podemos afirmar en ambos

casos que

$$\begin{split} \mu\left(\bigcup_{n\in\mathbb{N}}(A_n)\right) &= cardinal\left(\bigcup_{n\in\mathbb{N}}(A_n)\right),\\ &= \infty,\\ &= \sum_{n_j\in\mathbb{N}} cardinal\left(A_{n_j}\right) + A_I,\\ &= \sum_{n\in\mathbb{N}} cardinal\left(A_n\right),\\ &= \sum_{n\in\mathbb{N}} \mu(A_n). \end{split}$$

Lo que nos permite concluir que μ es una medida.

(b) Vemos que si f es integrable, entonces

$$\int_{\mathbb{N}} f \, dx = \sum_{j=1}^{\infty} \alpha_j.$$

Para esto, usaremos un argumento similar al numeral anterior, demostraremos el resultado para funciones simples positivas, este se podrá extender a las funciones medibles no negativas por densidad y el teorema de la convergencia monótona para en el final descomponer a la f como suma de 2 funciones medibles no negativas, por lo que se demostrará para funciones positivas y se procederá con la descomposición con el fin de no aburrir al profesor.

Suponga f función simple medible y positiva, es decir que existen $a_i \in \mathbb{R}$ tales que $a_i > 0$ y además tomemos la colección de conjuntos A_i medibles como conjuntos unitarios, luego $f(x) = \sum_{i=1}^n a_i \chi_{A_i}(x)$, luego

$$\begin{split} \int_{\mathbb{N}} f \, dx &= \int_{\mathbb{N}} \left(\sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}}(x) \right) \, dx, \\ &= \sum_{i=1}^{n} \alpha_{i} \mu(A_{i}), \\ &= \sum_{i=1}^{n} \alpha_{i}. \end{split}$$

Lo que demuestra que el resultado se cumple para funciones medibles simples y positivas, luego por densidad este resultado se puede extender a funciones medibles no negativas.

Siendo así, suponga f función medible, note que como lo hicimos anterior-

mente podemos descomponer a f como $f = f^+ + (-f^-)$, luego

$$\begin{split} \int_{\mathbb{N}} f \, dx &= \int_{\mathbb{N}} f^+ + (-f^-) \, dx, \\ &= \int_{\mathbb{N}} f^+ \, dx + \int_{\mathbb{N}} (-f^-) \, dx, \\ &= \sum_{i^+=1}^n \alpha_{i^+} + \sum_{i^-=1}^n \alpha_{i^-}, \\ &= \sum_{i=1}^m \alpha_i. \end{split}$$

Lo que nos permite concluir el ejercicio.

Ejercicio 3. Sea $\Omega \subseteq \mathbb{R}^n$ abierto. Sea $1 \le p \le \infty$. Entonces $L^p(\Omega)$ es un espacio de Banach.

Demostración. Vamos a seguir la prueba como en el libro de Haim Brezis. Veamos dos casos

■ Caso 1: Si $p = \infty$, sea (f_j) una sucesión de Cauchy en $L^{\infty}(\Omega)$. Por definición, para todo $\epsilon > 0$ existe $N \in \mathbb{Z}^+$ y un conjunto E_{ϵ} con $\mu(E_{\epsilon}) = 0$ (μ es la medida de Lebesgue), tal que si j, $m \ge N$, entonces

$$\|f_j - f_m\|_{\infty} = \sup_{x \in \Omega \setminus E_{\varepsilon}} |f_j(x) - f_m(x)| < \varepsilon.$$

En particular, para todo $k \in \mathbb{Z}^+$ existe N_k y E_k con $\mu(E_k) = 0$ tal que si j, $m \ge N_k$, entonces

$$\|f_j - f_m\|_{\infty} = \sup_{x \in \Omega \setminus E_k} |f_j(x) - f_m(x)| < \frac{1}{k}.$$

Sea
$$E = \bigcup_{k=1}^{\infty} E_k$$
, por tanto

$$\mu(\mathsf{E}) \leq \sum_{k=1}^{\infty} \mu(\mathsf{E}_k) = 0,$$

por tanto $\mu(E)=0$ y, además, la sucesión $(f_j(x))$ es una sucesión de Cauchy en $\mathbb R$ para todo $x\in\Omega\setminus E$, de manera que $f_j(x)\to f(x)$, con $f(x)\in\mathbb R$ para todo $x\in\Omega\setminus E$. Sea $x\in\Omega\setminus E$ cualquiera y $j\geq N_{2k}$. Sea $m\geq j$, suficientemente grande para que $|f(x)-f_m(x)|<\frac{1}{2k}$, entonces

$$|f(x) - f_j(x)| \leq |f(x) - f_m(x)| + |f_m(x) - f_j(x)| < \frac{1}{2k} + \frac{1}{2k} = \frac{1}{k},$$

como x es arbitrario, concluimos que $|f(x)-f_j(x)|<\frac{1}{k}$, para todo $x\in\Omega\setminus E$, y como $\mu(E)=0$, concluimos que $\|f-f_j\|_\infty<\frac{1}{k}$ para $j\geq N_k$, es decir, $f_j\to f$ en $L^\infty(\Omega)$.

■ Caso 2: Si $1 \le p < \infty$, sea (f_j) una sucesión de Cauchy en $L^p(\Omega)$. Para todo $\varepsilon > 0$ existe $N_\varepsilon > 0$ tal que si $j, m \ge N_\varepsilon$, entonces $\|f_j - f_m\|_p < \varepsilon$. Para $\varepsilon = \frac{1}{2}$, existe $j_1 \in \mathbb{Z}^+$ tal que si $m \ge j_1$, entonces

$$\|f_{j_1} - f_m\|_p < \frac{1}{2}.$$

Ahora, para $\varepsilon=\frac{1}{4}$, existe $j_2\in\mathbb{Z}^+$, con $j_2>j_1$ tal que si $m\geq j_2$, entonces

$$\left\|f_{j_2}-f_{\mathfrak{m}}\right\|_{\mathfrak{p}}\leq \frac{1}{4},$$

en particular, $\|f_{j_1} - f_{j_2}\|_p < \frac{1}{2}$. Análogamente, para $\varepsilon = \frac{1}{8}$, existe $j_3 \in \mathbb{Z}^+$ con $j_3 > j_2$ tal que si $m \ge j_3$, entonces

$$\left\|f_{j_3}-f_{\mathfrak{m}}\right\|_{\mathfrak{p}}<\frac{1}{8},$$

en particular $\|f_{j_2} - f_{j_3}\| < \frac{1}{4}$. Realizando un argumento inductivo, encontramos que para todo $k \in \mathbb{Z}^+$, existe una sucesión creciente de enteros positivos (j_k) , tal que la subsucesión (f_{j_k}) cumple que

$$\left\| f_{j_k} - f_{j_{k+1}} \right\|_p < \frac{1}{2^k}.$$

Veamos que la subsucesión (f_{j_k}) converge en $L^p(\Omega)$. Dado $\mathfrak{m} \in \mathbb{Z}^+$ definimos

$$g_{\mathfrak{m}}(x) = \sum_{k=1}^{\mathfrak{m}} |f_{j_{k+1}}(x) - f_{j_k}(x)|,$$

entonces

$$\left\|g_{\mathfrak{m}}\right\|_{p} = \left\|\sum_{k=1}^{m} |f_{j_{k+1}} - f_{j_{k}}|\right\|_{p} \leq \sum_{k=1}^{m} \left\|f_{j_{k+1}} - f_{j_{k}}\right\|_{p} \leq \sum_{k=1}^{m} \frac{1}{2^{k}} \leq \sum_{k=1}^{\infty} \frac{1}{2^{k}} = 1,$$

además, si $m_1 \le m_2$, entonces

$$g_{\mathfrak{m}_1}(x) = \sum_{k=1}^{\mathfrak{m}_1} |f_{j_{k+1}}(x) - f_{j_k}(x)| = \sum_{k=1}^{\mathfrak{m}_2} |f_{j_{k+1}}(x) - f_{j_k}(x)| = g_{\mathfrak{m}_2}(x),$$

es decir, g_{m_1} es una sucesión monótona creciente. Así, por el Teorema de la Convergencia Monótona, tenemos que

$$1 = 1^p \ge \lim_{m \to \infty} \|g_m\|_p^p = \lim_{m \to \infty} \int_{\Omega} |g_m(x)|^p dx = \int_{\Omega} \lim_{m \to \infty} |g_m(x)|^p dx,$$

por tanto, $\lim_{m \to \infty} |g_m(x)| < \infty$ para casi todo $x \in \Omega$, es decir, $\lim_{m \to \infty} |g_m(x)| < \infty$ para todo $x \in \Omega \setminus E$, donde $\mu(E) = 0$, definimos

$$g(x) = \begin{cases} \lim_{m \to \infty} g_m(x), & \text{si } x \in \Omega \setminus E \\ 0, & \text{en otro caso }. \end{cases}$$

Por lo hecho anteriormente, $g\in L^p(\Omega)$ y $\|g\|_p\leq 1$, además, para $x\in \Omega\setminus E$, podemos escribir

$$g(x) = \sum_{k=1}^{\infty} |f_{j_{k+1}}(x) - f_{j_k}(x)|.$$

Sean $\mathfrak{m}, k \in \mathbb{Z}^+$ con $\mathfrak{m} \geq k \geq 2$, entonces existe $\mathfrak{l} \in \mathbb{N}$ tal que $\mathfrak{m} = k + \mathfrak{l}$ y para $x \in \Omega \setminus E$

$$\begin{split} |f_{j_m}(x) - f_{j_k}(x)| &= |(f_{j_m}(x) - f_{j_{k+l-1}}(x)) + (f_{j_{k+l-1}}(x) - f_{j_{k+l-2}}(x)) + \dots + (f_{j_{k+1}}(x) - f_{j_k}(x))| \\ &\leq \sum_{i=1}^l |f_{j_{k+i}}(x) - f_{j_{k+i-1}}(x)| \\ &= \sum_{i=k}^m |f_{j_{i+1}}(x) - f_{j_i}(x)| \\ &\leq \sum_{i=k}^\infty |f_{j_{i+1}}(x) - f_{j_i}(x)| \\ &= \sum_{i=1}^\infty |f_{j_{i+1}}(x) - f_{j_i}(x)| - \sum_{i=1}^{k-1} |f_{j_{i+1}}(x) - f_{j_i}(x)| \\ &= g(x) - g_{k-1}(x), \end{split}$$

por tanto,

$$|f_{j_m}(x) - f_{j_k}(x)| \le g(x) - g_{k-1}(x) \xrightarrow{k \to \infty} 0,$$

es decir, la sucesión $(f_{j_k}(x))$ es de Cauchy en $\mathbb R$ para casi todo $x \in \Omega$, más precisamente, para $x \in \Omega \setminus E$. Definimos entonces

$$f(x) = \begin{cases} \lim_{k \to \infty} f_{j_k}(x), & \text{si } x \in \Omega \setminus E \\ 0, & \text{en otro caso.} \end{cases}$$

Sea $x \in \Omega \setminus E$. Vimos que, dados $m \ge k \ge 2$, se tiene que

$$|f_{j_m}(x) - f_{j_k}(x)| \le g(x) - g_{k-1}(x) \le g(x),$$

como esto se tiene para todo $m \ge k \ge 2$, por la definición de f $k \ge 2$ y $x \in \Omega \setminus E$

$$|f(x) - f_{i_k}(x)| \le g(x), \tag{1}$$

en particular, como $|f(x)| - |f_{j_k}(x)| \le |f(x) - f_{j_k}(x)|$, tenemos que

$$|f(x)| \le g(x) + |f_{j_k}(x)|,$$

de manera que $\|f\|_p \leq \|g\|_p + \|f_{j_k}\|_p < \infty$, dado que $g \in L^p(\Omega)$ y $f_{j_k} \in L^p(\Omega)$. Finalmente por la desigualdad (1) y el Teorema de la Convergencia Dominada, se tiene

$$\lim_{k\to\infty}\|f_{j_k}-f\|_p^p=\lim_{k\to\infty}\int_{\Omega}|f_{j_k}(x)-f(x)|^p\,dx=\int_{\Omega}\lim_{k\to\infty}|f_{j_k}(x)-f(x)|^p\,dx=0,$$

es decir, $f_{j_k} \to f$ en $L^p(\Omega)$. Como la sucesión (f_j) es de Cauchy, al tener una subsucesión convergente, la sucesión "completa" es convergente, con lo que se concluye el resultado.

Ejercicio 5. Considere el espacio L^p , $1 \le p \le \infty$. Sean

$$f_0(x) = \begin{cases} |x|^{-\alpha}, & \text{ si } |x| \le 1, \\ 0, & \text{ si } |x| > 1. \end{cases} \quad f_1(x) = \begin{cases} 0, & \text{ si } |x| \le 1 \\ |x|^{-\alpha}, & \text{ si } |x| > 1. \end{cases}$$

- (I) ¿Para qué valores de $\alpha \in \mathbb{R}$, $f_0 \in L^p(\mathbb{R}^n)$.
- (II) ¿Para qué valores de $\alpha \in \mathbb{R}$, $f_1 \in L^p(\mathbb{R}^n)$.
- (III) ¿Para qué valores de $\alpha \in \mathbb{R}$, $f_2(x) = \frac{1}{1+|x|^\alpha} \in L^p(\mathbb{R}^n)$.

Demostración. (I) Consideramos dos casos acá:

a)
$$1 \le p < \infty$$

En primer lugar, haciendo el cambio a coordenadas polares se tiene que

$$\int_{\mathbb{R}^n} f_0(x) d\lambda(x) = \int_0^1 \int_{S^{n-1}} (r^{-\alpha}) r^{n-1} dS dr = \int_0^1 C(r^{-\alpha}) r^{n-1} dr,$$

en donde en la primera igualdad se utilizó el cambio a coordenadas polares, y en la segunda igualdad C corresponde a la medida de la S^{n-1} esfera respecto a la medida de Lebesgue. Luego

$$\begin{split} \|f_0\|_{L^p} &= \left(\int_{\mathbb{R}^n} (f_0(x))^p d\lambda(x)\right)^{1/p} = \left(\int_0^1 \int_{S^{n-1}} (r^{-\alpha})^p r^{n-1} dS dr\right)^{1/p} \\ &= \left(\int_0^1 C(r^{-\alpha})^p r^{n-1} dr\right)^{1/p} \\ &= \left(\int_0^1 Cr^{-\alpha p + n - 1} dr\right)^{1/p} \end{split}$$

Veamos cuando $\int_{0}^{1} r^{-\alpha p+n-1} dr$ converge. Esto ocurre si y sólo si

$$-\alpha p + n - 1 > -1$$

$$-\alpha p + n > 0$$

$$n > \alpha p$$

$$\frac{n}{p} > \alpha$$

b) $p = \infty$

En este caso se tiene que

$$\|f_0\|_{L^\infty} = \inf\{C \ge 0 : |f_0(x)| \le C \quad \text{para casi todo } x \in \mathbb{R}^n\}.$$

Como $0 \le C$ para todo $C \in \mathbb{R}^+$, es suficiente considerar cuándo $|x| \le 1$. De esta forma

$$\|f_0(x)\|_{L^\infty} = \inf\{C \ge 0 : |x|^{-\alpha} \le C \quad \text{para casi todo } x\},$$

luego este ínfimo existe siempre que $|x|^{-\alpha}$ sea acotado en $|x| \le 1$ (para casi todo x). Esto se tiene si y solo si $\alpha \le 0$.

Por tanto, $f_0 \in L^p(\mathbb{R}^n)$ con $1 \le p < \infty$ si y solo si $\alpha < \frac{n}{p}$, y para $p = \infty$, $f_0 \in L^\infty(\mathbb{R}^n)$ si y sólo si $\alpha \le 0$.

(II) Consideramos dos casos

a)
$$1 \le p < \infty$$

Al igual que en el item (I), se considera el cambio a coordenadas polares de la misma forma. Así:

$$\int_{\mathbb{R}^n} f_1(x) d\lambda(x) = \int_1^\infty \int_{S^{n-1}} (r^{-\alpha}) r^{n-1} dS dr = \int_1^\infty C(r^{-\alpha)} r^{n-1} dr$$

Esto nos lleva a:

$$\begin{split} \|f_1\|_{L^p} &= \left(\int_{\mathbb{R}^n} (f_1(x))^p d\lambda(x)\right)^{1/p} = \left(\int_1^\infty \int_{S^{n-1}} (r^{-\alpha})^p r^{n-1} dS dr\right)^{1/p} \\ &= \left(\int_1^\infty C(r^{-\alpha})^p r^{n-1} dr\right)^{1/p} \\ &= \left(\int_1^\infty Cr^{-\alpha p + n - 1} dr\right)^{1/p} \end{split}$$

Veamos cuando $\int_{1}^{\infty} r^{-\alpha p+n-1} dr$ converge. Esto ocurre si y sólo si

$$-\alpha p + n - 1 < -1$$
$$-\alpha p + n < 0$$
$$n < \alpha p$$
$$\frac{n}{p} < \alpha$$

b)
$$p = \infty$$

En este caso se tiene que

$$\|f_1\|_{L^\infty}=\inf\{C\geq 0: |f_1(x)|\leq C\quad \text{ para casi todo } x\in \mathbb{R}^n\}.$$

Como $0 \le C$ para todo $C \in \mathbb{R}^+$, es suficiente considerar cuándo|x| > 1. De esta forma

$$||f_1(x)||_{L^{\infty}} = \inf\{C \ge 0 : |x|^{-\alpha} \le C \text{ para casi todo } x\},$$

luego este ínfimo existe siempre que $|x|^{-\alpha}$ sea acotado en |x|>1. Esto se tiene siempre que $\alpha\geq 0$.

Por tanto, $f_1 \in L^p(\mathbb{R}^n)$ con $1 \le p < \infty$ si y sólo si $\alpha > \frac{n}{p}$, y para $p = \infty$, $f_1 \in L^\infty(\mathbb{R}^n)$ si y sólo si $\alpha \ge 0$.

(III) Consideramos dos casos:

a)
$$1 \le p < \infty$$

Queremos ver cuando $f_2 \in L^p$. Esto es, cuando

$$\begin{split} \|f_2\|_{L^p} &= \left(\int_{\mathbb{R}^n} (f_2(x))^p d\lambda(x)\right)^{1/p} = \left(\int_0^\infty \int_{S^{n-1}} \left(\frac{1}{1+r^\alpha}\right)^p r^{n-1} dS dr\right)^{1/p} \\ &= \left(\int_0^\infty C\left(\frac{1}{1+r^\alpha}\right)^p r^{n-1} dr\right)^{1/p} \\ &< \infty \end{split}$$

Para ello, veamos cuando $\left(\int_0^\infty \left(\frac{1}{1+r^\alpha}\right)^p r^{n-1}dr\right)$ converge. Como

$$\int_0^\infty \left(\frac{1}{1+r^\alpha}\right)^p r^{n-1} dr = \int_0^1 \left(\frac{1}{1+r^\alpha}\right)^p r^{n-1} dr + \int_1^\infty \left(\frac{1}{1+r^\alpha}\right)^p r^{n-1} dr$$

y la primera integral converge por ser $\left(\frac{1}{1+r^{\alpha}}\right)^p r^{n-1}$ continua en el compacto [0,1], es suficiente estudiar la convergencia de la segunda integral. Para ello, utilizaremos criterio de comparación por paso al límite. Sea $g(r)=\left(\frac{1}{1+r^{\alpha}}\right)^p r^{n-1}$, consideremos los siguientes casos:

$$\sqrt{\alpha} > 0$$

Considerando $h(r) = r^{-\alpha p + n - 1}$, se tiene que

$$\lim_{r \to \infty} \frac{g(r)}{h(r)} = \lim_{r \to \infty} \frac{\left(\frac{1}{1 + r^{\alpha}}\right)^{p} r^{n-1}}{r^{-\alpha p + n - 1}} = \lim_{r \to \infty} \left(\frac{r^{\alpha}}{1 + r^{\alpha}}\right)^{p} = 1$$

donde la última igualdad se tiene pues al evaluar el límite, $\alpha > 0$. Así,

$$\int_{1}^{\infty}h(r)dr\quad converge\ si\ y\ s\'olo\ si\quad \int_{1}^{\infty}g(r)dr\quad converge$$

la primera converge si y sólo si

$$-\alpha p + n - 1 < -1$$
$$-\alpha p + n < 0$$
$$\frac{n}{p} < \alpha$$

 $\sqrt{\alpha} = 0$

Para este caso,

$$\int_{1}^{\infty} g(r)dr = \int_{1}^{\infty} \frac{1}{2^{p}} r^{n-1}dr$$

la cual diverge pues $n \ge 1$.

 $\sqrt{\alpha} < 0$

Considerando $t(r) = r^{n-1}$, se tiene que

$$\lim_{r\to\infty}\frac{g(r)}{t(r)}=\lim_{r\to\infty}\frac{\left(\frac{1}{1+r^\alpha}\right)^pr^{n-1}}{r^{n-1}}=\lim_{r\to\infty}\left(\frac{1}{1+r^\alpha}\right)^p=1$$

donde la última igualdad se tiene pues al evaluar el límite, α < 0. Así,

$$\int_{1}^{\infty} t(r)dr \quad \text{converge si y sólo si} \quad \int_{1}^{\infty} g(r)dr \quad \text{converge}$$

la primera converge si y sólo si n-1<0. Es decir, cuando n<1 lo cual no se tiene dado que $n\geq 0$. Por lo tanto, $\int_1^\infty g(r)dr$ diverge.

b) $p = \infty$ En este caso se tiene que

$$\begin{split} \|f_2\|_{L^\infty} &= \inf\{C \geq 0: |f_2(x)| \leq C \quad \text{para casi todo } x \in \mathbb{R}^n\} \\ &= \inf\{C \geq 0: \frac{1}{1+|x|^\alpha} \leq C \quad \text{para casi todo } x \in \mathbb{R}^n\} \end{split}$$

Luego este ínfimo existe siempre pues:

$$|x|^{\alpha} \ge 0$$

$$1 + |x|^{\alpha} \ge 1$$

$$1 \ge \frac{1}{1 + |x|^{\alpha}}$$

Por lo tanto, $f_2 \in L^p(\mathbb{R}^n)$ con $1 \le p < \infty$ si y sólo si $\frac{n}{p} < \alpha$, y para $p = \infty$, $f_2 \in L^\infty(\mathbb{R}^n)$ para todo $\alpha \in \mathbb{R}$.

Ejercicio 8.

(I) Sea $1 . Considere las secuencias <math>x_n = \{x_n^j\}_{j=1}^\infty$, para cada $n \in \mathbb{N}$ y $x = \{x^j\}_{j=1}^\infty$. Asuma que $x_n, x \in l^p$, para todo $n \in \mathbb{N}$. Muestre que $x_n \rightharpoonup x$ en l^p si y sólo si $\{x_n\}$ es acotada en l^p y $x_n^j \rightarrow x^j$ para cada entero positivo j.

- (II) Considere la secuencia $x_n = \left(1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, 0, 0, 0,\right)$. ¿En cuales espacios l^p , con $1 \le p \le \infty$ esta secuencia converge débilmente?
- **Demostración.** (I) \bullet (\Longrightarrow) Supongamos que $x_n \rightharpoonup x$ en l^p . Como l^p es un espacio de Banach, sabemos que $\{x_n\}$ es acotada y además, $\|x\|_{l^p} \le \liminf \|x_n\|_{l^p}$. Dado $j \in \mathbb{Z}^+$, definimos

$$\begin{split} \pi_j : l^p &\longrightarrow \mathbb{R} \\ y &\longmapsto \pi_j(y) = y^j, \end{split}$$

donde $y=\{y^i\}_{i=1}^\infty\in l^p$. Veamos que $\pi_j\in (l^p)^\bigstar$ para todo $j\in \mathbb{Z}^+$. π_j es claramente lineal como consecuencia de la suma y producto por escalar definida en l^p , además

$$|\pi_j(y)| = |y^j| = (|y^j|^p)^{1/p} \le \left(\sum_{i=1}^\infty |y^i|^p\right)^{1/p} = \|y\|_{L^p}\,,$$

por tanto, π_j es continuo y $\|\pi_j\|_{(l^p)^{\bigstar}} \leq 1$. Sabemos que $x_n \rightharpoonup x$ si y sólo si $\langle f; x_n \rangle \xrightarrow{n \to \infty} \langle f; x \rangle$ para todo $f \in (l^p)^{\bigstar}$, en particular para π_j . En este caso, se obtiene que

$$\pi_{\mathbf{j}}(\mathbf{x}_{\mathbf{n}}) = \mathbf{x}_{\mathbf{n}}^{\mathbf{j}} \xrightarrow{\mathbf{n} \to \infty} \mathbf{x}^{\mathbf{j}} = \pi_{\mathbf{j}}(\mathbf{x}),$$

como j $\in \mathbb{Z}^+$ es arbitrario, se obtiene el resultado.

• (\Leftarrow) Supongamos ahora que $\{x_n\}$ es acotada y que $x_n^j \to x^j$ para todo $j \in \mathbb{Z}^+$. Sea V una vecindad débil de x, que sin pérdida de generalidad, podemos expresar como

$$V = \{ y \in l^p : |\langle f_i; y - x \rangle| < \varepsilon \text{ para todo } i = 1, ..., k \},$$

para algunos $f_1,...,f_k\in (l^p)^\bigstar$ y $\varepsilon>0$. Queremos ver que existe $N\in \mathbb{Z}^+$ tal que si $n\geq N$, entonces $x_n\in V$. Sea f_i con $1\leq i\leq k$, dado que $1< p<\infty$, por el Teorema de Representación de Riesz, existe una única $y_i=\{y_i^j\}_{j=1}^\infty\in l^{p'}$ con $\frac{1}{p}+\frac{1}{p'}=1$ tal que

$$\langle f_i; z \rangle = \sum_{i=1}^{\infty} y_i^j z^j,$$

para toda $z=\{z^j\}_{j=1}^\infty\in \mathfrak{l}^\mathfrak{p}.$ Entonces, dado $\mathfrak{n}\in\mathbb{N}$

$$|\langle f_i; x_n - x \rangle| = \left| \sum_{j=1}^{\infty} y_i^j (x_n^j - x^j) \right| \leq \sum_{j=1}^{\infty} |y_i^j| |x_n^j - x^j|.$$

Ahora, note que si $z=\{z^j\}_{j=1}^\infty\in l^q$ con $1\le q<\infty$, entonces, dado $l\ge 1$, la sucesión

$$z_{l} = (\underbrace{0, 0, ..., 0}_{l-1 \text{ ceros}}, z^{l}, z^{l+1}, ...),$$

también está en l^q, dado que

$$||z_j||_{\mathfrak{t}^q}^q = \sum_{j=1}^{\infty} |z^j|^q \le \sum_{j=1}^{\infty} |z^j|^q = ||z||_{\mathfrak{t}^q}^q < \infty,$$

de esta manera, también vale la desigualdad de Hölder para estas sucesiones, en otras palabras, dadas $z=\{z^j\}_{j=1}^\infty\in \mathfrak{l}^{\mathfrak{q}}\ y\ w=\{w^j\}_{j=1}^\infty\in \mathfrak{l}^{\mathfrak{q}'}$ con $\frac{1}{\mathfrak{q}}+\frac{1}{\mathfrak{q}'}=1$, dado $\mathfrak{l}\geq 1$

$$\sum_{j=1}^{\infty} |z^{j}| |w^{j}| \leq \left(\sum_{j=1}^{\infty} |z^{j}|^{q}\right)^{1/q} \left(\sum_{j=1}^{\infty} |w^{j}|^{q'}\right)^{1/q'}.$$

Como $y_i \in l^{p'}$, entonces

$$\|y_i\|_{l^{p'}} = \left(\sum_{j=1}^{\infty} |y_i^j|^{p'}\right)^{1/p'} < \infty,$$

además, como $\{x_n\}$ es una sucesión acotada, podemos definir

$$M = \sup_{n \in \mathbb{N}} ||x_n|| + ||x|| + 1,$$

de esta manera, por ser una serie absolutamente convergente, existe $J_i \in \mathbb{Z}^+$ con $J_i \geq 2$ tal que

$$\|y_i\|_{L^{p'}} = \left(\sum_{j=J_i}^\infty |y_i^j|^{p'}\right)^{1/p'} < \frac{\varepsilon}{2M}.$$

Entonces

$$|\langle f_i; x_n - x \rangle| \leq \sum_{j=1}^{\infty} |y_i^j| |x_n^j - x^j| = \underbrace{\sum_{j=1}^{J_i - 1} |y_i^j| |x_n^j - x^j|}_{S_1} + \underbrace{\sum_{j=J_i}^{\infty} |y_i^j| |x_n^j - x^j|}_{S_2},$$

Acotemos primero S₂, por la observación que hicimos antes con las suce-

siones z_l, la manera como escogimos J_i y la definición de M, tenemos que

$$\begin{split} S_2 &= \sum_{j=J_i}^{\infty} |y_i^j| |x_n^j - x^j| \leq \left(\sum_{j=J_i}^{\infty} |y_i^j|^{p'} \right)^{1/p'} \left(\sum_{j=J_i}^{\infty} |x_n^j - x^j|^p \right)^{1/p} \\ &\leq \left(\sum_{j=J_i}^{\infty} |y_i^j|^{p'} \right)^{1/p'} \|x_n - x\|_{l^p} \\ &\leq \left(\sum_{j=J_i}^{\infty} |y_i^j|^{p'} \right)^{1/p'} (\|x_n\|_{l^p} + \|x\|_{l^p}) \\ &< \frac{\varepsilon}{2M} (\|x_n\|_{l^p} + \|x\|) \\ &\leq \frac{\varepsilon}{2}. \end{split}$$

Para S₁, definamos

$$N = \max_{1 \le j \le J_i - 1} |y_i^j| + 1.$$

Como $x_n^j \to x^j$ para todo $j \in \mathbb{Z}^+$, existe n_i tal que si $n \ge n_i$, entonces

$$|x_n^j - x^j| < \frac{\varepsilon}{2NJ_i},$$

para todo $j = 1, ..., J_i - 1$, de esta manera

$$S_1 = \sum_{j=1}^{J_i-1} |y_i^j| |x_n^j - x^j| < N \frac{\varepsilon}{2NJ_i} \sum_{j=1}^{J_i-1} 1 = \frac{\varepsilon}{2J_i} \cdot (J_i-1) < \frac{\varepsilon}{2}.$$

Así

$$|\langle f_i; x_n - x \rangle| \leq S_1 + S_2 < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

para $n \geq n_i.$ De esta manera, para $n \geq N = \text{m\'a} x_{1 \leq i \leq k} \, n_i,$ se tiene que

$$|\langle f_i; x_n - x \rangle| < \varepsilon$$
 para todo $i = 1, ..., k$,

es decir, para $n \ge N$, $x_n \in V$, lo cuál prueba el resultado.

- (I) Vamos a dividir la prueba en 3 casos
 - (a) **Caso** p = 1. En este caso, note que

$$\|x_n\|_{l^1} = \sum_{j=1}^n \frac{1}{j},$$

como la serie armónica no es convergente, tenemos que la sucesión $\{x_n\}$ es no acotada y, por tanto, no puede converger débilmente en $\sigma(l^1, (l^1)^*)$.

(b) Caso 1 En este caso, tenemos que

$$\|x_n\|_{l^p}^p = \sum_{j=1}^n \frac{1}{j^p} \le \sum_{j=1}^\infty \frac{1}{j^p} = C_p < \infty,$$

la convergencia de esta serie se sigue de que p>1 y el criterio de la integral para convergencia de series. También se puede ver como la evaluación en p de la función zeta de Riemann. De esta manera, la sucesión $\{x_n\}$ es acotada en l^p . Consideremos la sucesión $x=\left\{\frac{1}{j}\right\}_{j=1}^{\infty}$. Por lo que vimos anteriormente, $x\in l^p$ y $\|x_n\|_{l^p} \le \|x\|_{l^p}$ para todo $n\in \mathbb{Z}^+$. Sea $j\in \mathbb{Z}^+$, entonces $x^j=\frac{1}{j}$ y

$$x_n^j = \begin{cases} \frac{1}{j}, & \text{si } n \ge j, \\ 0, & \text{si } n < j, \end{cases}$$

de manera que, para $n \ge j$ se tiene que $|x_n^j - x^j| = \left|\frac{1}{j} - \frac{1}{j}\right| = 0$, es decir, $x_n^j \to x^j$ para todo $j \in \mathbb{Z}^+$. Usando el ítem (I), tenemos que $x_n \to x$ en l^p .

(c) **Caso** $p=\infty$ Consideremos nuevamente la sucesión $x=\left\{\frac{1}{j}\right\}_{j=1}^{\infty}$, claramente $x\in l^{\infty}$. Sea $\varepsilon>0$ y $n\in\mathbb{Z}^+$ tal que $\frac{1}{n+1}<\varepsilon$, entonces, por la forma de los x_n^j 's

$$\|x-x_n\|_{l^\infty}=\sup_{j\in\mathbb{Z}^+}|x^j-x_n^j|=\sup_{j>n+1}\frac{1}{j}=\frac{1}{n+1}<\varepsilon,$$

es decir, $x_n \to x$ fuertemente en l^∞ , y como la convergencia fuerte implica la convergencia débil, tenemos que $x_n \rightharpoonup x$ en l^∞ .