Fast arithmetics in Artin-Schreier towers over finite fields

L. De Feo and E. Schost

C4, École Polytechnique

June 10, 2008

- Artin-Schreier towers
- Couveignes' algorithm
- Arithmetics
- Benchmarks

Artin-Schreier

Definition (Artin-Schreier polynomial)

 \mathbb{K} a field of characteristic p, $\alpha \in \mathbb{K}$

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

Theorem

 $X^p - X - \alpha$ irreducible $\Leftrightarrow \operatorname{Tr}_{\mathbb{K}/\mathbb{F}_p}(\alpha) \neq 0$.

If $\eta \in \mathbb{K}$ is a root, then $\eta + 1, \dots, \eta + (p-1)$ are roots.

Definition (Artin-Schreier extension)

 ${\cal P}$ an irreducible Artin-Schreier polynomial.

$$\mathbb{L} = \mathbb{K}[X]/\mathcal{P}(X).$$

 \mathbb{L}/\mathbb{K} is called an Artin-Schreier extension.

Artin-Schreier towers over finite fields

Base field

 $\mathbb{U}_0 = \mathbb{F}_{p^d}$ reasonably sized, d odd, "easy" arithmetics.

- Crypto size : $\mathbb{F}_{2^{199}}$
- Record size : $\mathbb{F}_{2^{1999}}$
- Huge size : $\mathbb{F}_{2^{2^{30}-1}}$

YES

YES

NO

NO

Tower: $\mathbb{U}_0, \mathbb{U}_1, \dots, \overline{\mathbb{U}_k}$

- height k;
- $\alpha_i \in \mathbb{U}_i$, $\mathcal{P}_i = X^p X \alpha_i$;
- $\bullet \ \mathbb{U}_{i+1} = \mathbb{U}_i[X_{i+1}]/\mathcal{P}_i(X_{i+1}).$

Motivation

- p^k -torsion points of elliptic curves;
- isogeny computation via Couveignes II;
- many more ?

Arithmetics

- $M(n) = \text{complexity of multiplication of polynomials of degree } n \text{ in } \mathbb{F}_p[X].$
- Elements of \mathbb{U}_i represented as polynomials of degree $< p^i d$ over \mathbb{F}_p .

Operations over \mathbb{U}_i			
Addition, subtraction, equality in \mathbb{U}_i		$O(p^id)$	
Multiplication in \mathbb{U}_i	$M(\mathbb{U}_i)$	$O(M(p^id))$	
Inversion in \mathbb{U}_i		$O(M(\mathbb{U}_i))$	
Vector space isomorphism $\mathbb{U}_i\cong\mathbb{U}_{i-1}^p$	P(i), $L(i)$	$O(M(2p^id)i\log_p d)$	
n-th power		$O(M(\mathbb{U}_i)\log n)$	
$\mathrm{Tr}_{\mathbb{F}_{p^d}/\mathbb{F}_p}$	T(d)		
$\mathrm{Tr}_{\mathbb{U}_i/\mathbb{U}_j}$		$O\left(\sum_{l=j}^{i}P(i)\right)$	
$\mathrm{Tr}_{\mathbb{U}_i/\mathbb{F}_p}$		$O\left(\sum_{l=0}^{i}P(i)+T(d)\right)\\O\left(F_{\mathbb{U}_{i}}(j-1)+d^{2}M(p^{i}d)\right)\\\tilde{O}\left(M(2p^{i}d)i^{2}p\right)$	
p^jd -th pseudotrace PTr_{p^jd}	$PT_{\mathbb{U}_i}(j)$	$O\left(F_{\mathbb{U}_i}(j-1) + d^2M(p^id)\right)$	
p^jd -iterated frobenius	$F_{\mathbb{U}_i}(j)$	$\tilde{O}(M(2p^id)i^2p)$	
Arithmetics in $\mathbb{U}_i[X]$, degree n	$M_{\mathbb{U}_i}(n)$	$O(M(p^idn))$	

Unusual arithmetics

Vector space isomorphism

•
$$v \in \mathbb{U}_i \mapsto v_0, \dots, v_{p-1} \in \mathbb{U}_{i-1}$$
 such that $v = \sum_{l=0}^{p-1} v_l X_i^l$;

• $v_0, \dots, v_{p-1} \in \mathbb{U}_{i-1} \mapsto v \in \mathbb{U}_i$ such that $v = \sum_{l=0}^{p-1} v_l X_i^l$.

Pseudotrace

- $PTr_{p^j d}(v) = \sum_{l=0}^{p^j d-1} v^{p^l};$
- if $v \in \mathbb{U}_i$ then $\mathrm{PTr}_{p^i d}(v) = \mathrm{Tr}_{\mathbb{U}_i/\mathbb{F}_p}(v)$.

Iterated frobenius

 $v \mapsto v^{p^j d}$

- Artin-Schreier towers
- 2 Couveignes' algorithm
- Arithmetics
- Benchmarks

Isomorphism between towers

Goal

- We want quasi-linear complexity for all arithmetic operations.
- Unfortunately, for generic elements $\alpha_0, \alpha_1, \ldots, \alpha_k$ there's no way of controlling both $M(\mathbb{U}_i)$ and P(i), L(i).

Isomorphism

- $\mathbb{U}_0 = \mathbb{U}_0'$;
- $\mathbb{U}_0, \mathbb{U}_1, \dots, \mathbb{U}_k$ defined by $\alpha_0, \dots, \alpha_{k-1}$;
- ullet $\mathbb{U}_0',\mathbb{U}_1',\ldots,\mathbb{U}_k'$ defined by $lpha_0',\ldots,lpha_{k-1}';$
- the two towers are isomorphic.

Idea

- One tower has faster arithmetics.
- If one can efficiently compute the isomorphism, all arithmetics can be done in the faster tower.

Couveignes' algorithm

- The isomorphism can be computed by factorising each $X^p X \alpha_i'$ into \mathbb{U}_{i+1} .
- Standard algorithms for factorisation are too slow.
- Couveignes' algorithm gives a good solution.

Couveignes

Entrée : $\alpha_i \in \mathbb{U}_{i+1}$ with $\mathrm{Tr}_{\mathbb{U}_{i+1}/\mathbb{F}_p}(\alpha_i) = 0$

Sortie : a root of $X^p - X - \alpha_i$ in \mathbb{U}_{i+1}

$$\delta_{i+1} = \beta - \gamma^p + \gamma \in \mathbb{U}_i \text{ and } \operatorname{Tr}_{\mathbb{U}_i/\mathbb{F}_p}(\delta) = 0$$
 $O(\mathsf{P}(i))$

• $z = \text{Couveignes}(\delta);$

- Artin-Schreier towers
- Couveignes' algorithm
- Arithmetics
- Benchmarks

A fast tower

Theorem

- $\mathbb{U}_0 = \mathbb{F}_{p^d} = \mathbb{F}_p[X_0]/P(X_0)$. If d is odd, one of $X^p X X_0$ and $X^p X (X_0 + 1)$ is irreducible over \mathbb{U}_0 .
- If p = 2, $X^p X X_1$ is irreducible over \mathbb{U}_1 .
- If p > 2 or p = 2 and $i \geqslant 2$, $X^p X X_i^{2p-1}$ is irreducible over \mathbb{U}_i .

$\mathbb{U}_i = \mathbb{F}_p[X_i]/Q_i(X_i)$

We want to compute such Q_i , we know Q_{i-1} .

Construction of the tower

Entrée : $Q_{i-1} \in \mathbb{F}_p[X]$, a (2p-1)-th root of unity ω

Sortie: $Q_i \in \mathbb{F}_p[X]$

$$Q_i(X) = g_i(X^p - X); O(p^{i+1}di\log_p d)$$

Vector space isomorphism, Push-down

Push-down

Entrée : $v \in \mathbb{U}_i$

Sortie : $v_0,\dots,v_{p-1}\in\mathbb{U}_{i-1}$ such that $v=v_0+v_1X_i+\dots+v_{p-1}X_i^{p-1}$

- **②** Reduce each of the p coefficients of X_i by Q_{i-1} $O(p\mathsf{M}(2p^{i-1}d))$

Complexity

$$\mathsf{P}(i) = O(\mathsf{M}(2p^id)i\log_p d)$$

12 / 19

Vector space isomorphism, Lift-up

Transposition principle

Every algorithm that computes a function f can be transformed in an algorithm that computes the *transpose* of f in the same running time up to a constant factor.

Push-down

- $\bullet \ \ \text{Given} \ v \in \mathbb{F}_p(X_i), \qquad v = \textstyle \sum_{l=0}^{p^i d-1} a_l X^l,$
- let $y_i^{(l,m)} \in \mathbb{F}_p(X_{i-1})$ such that $X_i^l = y_i^{(l,p-1)} X_i^{p-1} + \dots + y_i^{(l,0)}$,
- Push-down computes $v_m = \sum_{l=0}^{p^i d-1} a_l y_i^{(l,m)}$ for $m=0,\ldots,p-1$.

Transposition of push-down

- given $v_m \in \mathbb{F}_p(X_{i-1})$ for $m = 0, \dots, p-1$,
- let $y_i^{(l,m)} \in \mathbb{F}_p(X_{i-1})$ such that $X_i^l = y_i^{(l,p-1)} X_i^{p-1} + \dots + y_i^{(l,0)}$,
- given a linear form L over $\mathbb{F}_p[X_i]$,
- ullet push-down T computes $L(y_i^{(l,p-1)}X_i^{p-1}+\cdots+y_i^{(l,0)})$ for $l=0,\ldots,p^id-1$.

Vector space isomorphism, Lift-up

Lift-up

Entrée : $v_0, \ldots, v_{p-1} \in \mathbb{U}_{i-1}$

Sortie: $v \in \mathbb{U}_i$ such that $v = v_0 + v_1 X_i + \ldots + v_{p-1} X_i^{p-1}$

- $\begin{array}{l} \bullet \quad \text{Let } R \text{ be the linear form of the residue, compute} \\ r_l = R(y_i^{(l,p-1)}X_i^{p-1} + \cdots + y_i^{(l,0)}) \text{ for } l < p^id; \end{array} \qquad O(\mathsf{P}(i))$
- $\textbf{@} \ \text{compute} \ v.R \text{, the linear form} \ x \mapsto R(v \cdot x); \qquad \qquad O(\mathsf{M}(p^id))$
- $\text{ ompute } r_l' = v.R(y_i^{(l,p-1)}X_i^{p-1} + \cdots + y_i^{(l,0)})$ for $l < p^id;$ $O(\mathsf{P}(i))$

Complexity

$$L(i) = O(P(i))$$

Iterated frobenius

Theorem

$$X_i^{p^h} = X_i + \mathrm{PTr}_h(\alpha_{i-1})$$

Iterated frobenius

Entrée : $v \in \mathbb{U}_i$, $j \leqslant i$

Sortie: $v^{p^{p^j d}}$

• if j = i return v.

 $v = v_0 + \dots + v_{p-1} X_i^{p-1};$ O(P(i))

1 $u_m = \text{Iterated frobenius}(v_m \in \mathbb{U}_{i-1}, j) \text{ for } m < p; \qquad p\mathsf{F}_{\mathbb{U}_{i-1}}(j)$

• $t = \mathsf{Pseudotrace}(X_i, j);$ precomputed

 $\bullet \text{ return } \sum_{l=0}^{p-1} u_l(X_i+t)^l. \qquad O(\mathsf{M}(p^id)p\log p + \mathsf{L}(i))$

Complexity

 $O(\mathsf{M}(2p^id)i^2p\log_p d\log p)$

Trace, pseudotrace

Theorem

- $\operatorname{PTr}_{p^i d}(v) = \operatorname{Tr}_{\mathbb{U}_i/\mathbb{F}_p}(v) = \operatorname{Tr}_{\mathbb{U}_{i-1}/\mathbb{F}_p} \circ \operatorname{Tr}_{\mathbb{U}_i/\mathbb{U}_{i-1}}(v);$
- $\operatorname{Tr}_{\mathbb{U}_i/\mathbb{U}_{i-1}}\left(\sum_{m=0}^{p-1} v_m X_i^m\right) = -v_m.$

Trace

Entrée : $v \in \mathbb{U}_i$

Sortie: $\operatorname{Tr}_{\mathbb{U}_i/\mathbb{F}_n}(v)$

• if $v \in \mathbb{U}_0$ return $\mathrm{Tr}_{\mathbb{F}_{n^d}/\mathbb{F}_p}(v)$.

 $O(\mathsf{T}(d))$

 $v = v_0 + \dots + v_{p-1} X_i^{p-1};$ O(P(i))

 \bullet return Trace $(-v_{p-1})$.

Complexity

$$O(\sum_{l=0}^{i} \mathsf{P}(l) + \mathsf{T}(d))$$

Trace, pseudotrace

Theorem

- $PTr_{p^{j}d}(v) = PTr_{p^{j-1}d}(v) + (PT_{p^{j-1}d}(v))^{p^{j-1}d};$
- $\bullet \ \operatorname{PTr}_{p^id}(v) = \operatorname{Tr}_{\mathbb{U}_i/\mathbb{F}_p}(v) = \operatorname{Tr}_{\mathbb{U}_{i-1}/\mathbb{F}_p} \circ \operatorname{Tr}_{\mathbb{U}_i/\mathbb{U}_{i-1}}(v);$

Pseudotrace

Entrée : $v \in \mathbb{U}_i$, j < iSortie : $PTr_{p^jd}(v)$

- $\bullet \ \ \text{if} \ j=0 \ \text{return} \ \textstyle \sum_{l=0}^{d-1} v^{p^l}. \qquad \qquad O(d^2\mathsf{M}(p^id))$
- $\textbf{ o} \ \ \mathsf{return} \ t + \ \mathsf{Iterated} \ \mathsf{frobenius}(t,j-1). \qquad \qquad \mathsf{F}_{\mathbb{U}_i}(j-1)$

Complexity

$$O\left(\sum_{l=0}^{j-1}\mathsf{F}_{\mathbb{U}_{i}}(l-1)+d^{2}\mathsf{M}(p^{i}d)
ight)$$

- Artin-Schreier towers
- 2 Couveignes' algorithm
- Arithmetics
- Benchmarks

Benchmarks

- Implementation in NTL for p = 2 (no FFT).
- ullet Two fields: $\mathbb{F}_{2^{101}}$ and $\mathbb{F}_{2^{1999}}$.
- \bullet Up to 15 levels.

	$\mathbb{F}_{2^{101}}$	$\mathbb{F}_{2^{1999}}$	levels
Construction of Q_i	0:42	42:00	15
Precomputations for lift-up	3:00	> 60:00:00	15
Push-down, lift-up	0:30		15
Push-down, lift-up	0:02	2:00	12
Couveignes	3:40:00		15
Couveignes	14:00	24:40:00	12