What Is Claimed Is:

1	1. A method for designing an integrated circuit using a mask-
2	programmable fabric, which contains both mask-programmable logic and a mask-
3	programmable interconnect, the method comprising:
4	receiving a description of a mask-programmable cell, wherein instances of
5	the mask-programmable cell are repeated to form the mask-programmable fabric;
6	using the description of the mask-programmable cell to generate a derived
7	library containing cells that can be obtained by programming the mask-
8	programmable cell;
9	receiving a high-level design for the integrated circuit;
10	performing a synthesis operation on the high-level design to generate a
11	preliminary netlist for the high-level design that contains references to cells in the
12	derived library; and
13	converting the preliminary netlist into a netlist that contains references to
14	the mask-programmable cell.
1	2. The method of claim 1, further comprising performing a placement
2	operation and a routing operation on the netlist to produce a layout for the
3	integrated circuit.
1	3. The method of claim 2, wherein performing the routing operation
2	involves programming the mask-programmable logic and mask-programmable
3	interconnect.

Inventors: Shenoy et al.

2	the mask-programmable interconnect that make up the mask-programmable fabric
3	can be programmed by changing inter-metal via layers and/or metal layers
1	5. The method of claim 1, wherein the method further comprises
2	performing a packing operation on the netlist to combine cells that can use free
3	resources from other cells.
1	6. The method of claim 5, wherein performing the packing operation
2	involves considering:
3	drive strengths of output pins for mask-programmable cells;
4	routability of pins for mask-programmable cells;
5	net count for mask-programmable cells; and
6	active pin count for mask-programmable cells.
1	7. The method of claim 1, wherein the mask-programmable cell
2	includes a sequential logic portion, and wherein the derived library contains a
3	sequential cell, which corresponds the sequential logic portion of the mask-
4	programmable cell.
	·
1	8. The method of claim 1,
2	wherein the description of the mask-programmable cell defines one or
3	more pins;
4	wherein a pin may be specified as being tied to, power, ground, a route
5	segment or another pin;
6	wherein a pin may be associated with a logic function; and
7	wherein a pin may be specified as part of a sequential element.
	10

The method of claim 1, wherein the mask-programmable logic and

Inventors: Shenoy et al.

1

4.

1	9. The method of claim 8,
2	wherein the description of the mask-programmable cell defines route
3	segments for routing signals within the mask-programmable fabric;
4	wherein route segments may be horizontal, vertical or at any angle;
5	wherein several route segments may be collinear; and
6	wherein route segments may be coupled to pins or to other route segments
1	10. The method of claim 9,
2	wherein the description of the mask-programmable fabric includes
3	information related to timing for route segments and connections; and
4	wherein the information related to timing can be used while performing a
5	routing operation for the mask-programmable fabric.
1	11. A computer-readable storage medium storing instructions that
2	when executed by a computer cause the computer to perform a method for
3	designing an integrated circuit using a mask-programmable fabric, which contains
4	both mask-programmable logic and a mask-programmable interconnect, the
5	method comprising:
6	receiving a description of a mask-programmable cell, wherein instances of
7	the mask-programmable cell are repeated to form the mask-programmable fabric;
8	using the description of the mask-programmable cell to generate a derived
9	library containing cells that can be obtained by programming the mask-
10	programmable cell;
11	receiving a high-level design for the integrated circuit;

12	performing a synthesis operation on the high-level design to generate a		
13	preliminary netlist for the high-level design that contains references to cells in t		
14	derived library; and		
15	converting the preliminary netlist into a netlist that contains references to		
16	the mask-programmable cell.		
	10		
1	12. The computer-readable storage medium of claim 11, wherein the		
2	method further comprises performing a placement operation and a routing		
3	operation on the netlist to produce a layout for the integrated circuit.		
1	13. The computer-readable storage medium of claim 12, wherein		
2	performing the routing operation involves programming the mask-programmable		
3	logic and mask programmable interconnect.		
1	14. The computer-readable storage medium of claim 11, wherein the		
2	mask-programmable logic and the mask-programmable interconnect that make up		
3	the mask-programmable fabric can be programmed by changing inter-metal via		
4	layers and/or metal layers.		
1	15. The computer-readable storage medium of claim 11, wherein the		
2	method further comprises performing a packing operation on the netlist to		
3	combine cells that can use free resources from other cells.		
J	combine cens that can use free resources from other cens.		
1	16. The computer-readable storage medium of claim 15, wherein		
2	performing the packing operation involves considering:		
3	drive strengths of output pins for mask-programmable cells;		

routability of pins for mask-programmable cells;

4

5	net count for mask-programmable cells; and
6	active pin count for mask-programmable cells.
1	17. The computer-readable storage medium of claim 11, wherein the
2	mask-programmable cell includes a sequential logic portion, and wherein the
3	derived library contains a sequential cell, which corresponds the sequential logic
4	portion of the mask-programmable cell.
1	18. The computer-readable storage medium of claim 11,
2	wherein the description of the mask-programmable cell defines one or
3	more pins;
4	wherein a pin may be specified as being tied to, power, ground, a route
5	segment or another pin;
6	wherein a pin may be associated with a logic function; and
7	wherein a pin may be specified as part of a sequential element.
1	19. The computer-readable storage medium of claim 18,
2	wherein the description of the mask-programmable cell defines route
3	segments for routing signals within the mask-programmable fabric;
4	wherein route segments may be horizontal, vertical or at any angle;
5	wherein several route segments may be collinear; and
6	wherein route segments may be coupled to pins or to other route segments
1	20. The computer-readable storage medium of claim 19,
2	wherein the description of the mask-programmable fabric includes
3	information related to timing for route segments and connections; and

5	routing operation for the mask-programmable fabric.
	¥.
1	21. An apparatus that facilitates designing an integrated circuit using a
2	mask-programmable fabric, which contains both mask-programmable logic and a
3	mask-programmable interconnect, the apparatus comprising:
4	a receiving mechanism configured to receive a description of a mask-
5	programmable cell, wherein instances of the mask-programmable cell are repeated
6	to form the mask-programmable fabric;
7	a deriving mechanism configured to use the description of the mask-
8	programmable cell to generate a derived library containing cells that can be
9	obtained by programming the mask-programmable cell;
10	wherein the receiving mechanism is additionally configured to receive a
11	high-level design for the integrated circuit;
12	a synthesis mechanism configured to perform a synthesis operation on the
13	high-level design to generate a preliminary netlist for the high-level design that
14	contains references to cells in the derived library; and
15	a conversion mechanism configured to convert the preliminary netlist into
16	a netlist that contains references to the mask-programmable cell.
•	
1	22. The apparatus of claim 21, further comprising a placement
2	mechanism and a routing mechanism configured to perform a placement operation
3	and a routing operation, respectively, on the netlist to produce a layout for the

wherein the information related to timing can be used while performing a

4

integrated circuit.

1	23.	The apparatus of claim 22, wherein the routing mechanism is
2	configured to	program the mask-programmable logic and mask programmable
3	interconnect.	
1	24.	The apparatus of claim 21, wherein the mask-programmable logic
2	and the mask-	programmable interconnect that make up the mask-programmable
3	fabric can pro	grammed by changing inter-metal via layers and/or metal layers.
1	25.	The apparatus of claim 21, wherein the apparatus further comprises
2	a packing med	chanism configured to perform a packing operation on the netlist to
3	combine cells	that can use free resources from other cells.
1	26.	The apparatus of claim 25, wherein performing the packing
2	operation invo	olves considering:
3	drive s	strengths of output pins for mask-programmable cells;
4	routab	ility of pins for mask-programmable cells;
5	net co	unt for mask-programmable cells; and
6	active	pin count for mask-programmable cells.
1	27.	The apparatus of claim 21, wherein the mask-programmable cell
2	includes a seq	uential logic portion, and wherein the derived library contains a
3	sequential cel	, which corresponds the sequential logic portion of the mask-
4	programmable	e cell.
1	28.	The apparatus of claim 21,
2	where	in the description of the mask-programmable cell defines one or
3	more pins;	

4	wherein a pin may be specified as being tied to, power, ground, a route
5	segment or another pin;
6	wherein a pin may be associated with a logic function; and
7	wherein a pin may be specified as part of a sequential element.
1	29. The apparatus of claim 28,
2	wherein the description of the mask-programmable cell defines route
3	segments for routing signals within the mask-programmable fabric;
4	wherein route segments may be horizontal, vertical or at any angle;
5	wherein several route segments may be collinear; and
6	wherein route segments may be coupled to pins or to other route segments.
1	30. The apparatus of claim 29,
2	wherein the description of the mask-programmable fabric includes
3	information related to timing for route segments and connections; and
4	wherein the information related to timing can be used while performing a
5	routing operation for the mask-programmable fabric.
1	31. An integrated circuit created through a process that uses a mask-
2	programmable fabric to design the integrated circuit, wherein the mask-
3	programmable fabric contains both mask-programmable logic and a mask-
4	programmable interconnect, the process comprising:
5	receiving a description of a mask-programmable cell, wherein instances of
6	the mask-programmable cell are repeated to form the mask-programmable fabric;
7	using the description of the mask-programmable cell to generate a derived
8	library containing cells that can be obtained by programming the mask-
9	programmable cell;

10	receiving a high-level design for the integrated circuit;
11	performing a synthesis operation on the high-level design to generate a
12	preliminary netlist for the high-level design that contains references to cells in the
13	derived library; and
14	converting the preliminary netlist into a netlist that contains references to
15	the mask-programmable cell.
1	32. A mask for use in an optical lithography process for manufacturing
2	an integrated circuit, wherein the mask is generated through a process that uses a
3	mask-programmable fabric to design the integrated circuit, wherein the mask-
4	programmable fabric contains both mask-programmable logic and a mask-
5	programmable interconnect, the process comprising:
6	receiving a description of a mask-programmable cell, wherein instances of
7	the mask-programmable cell are repeated to form the mask-programmable fabric;
8	using the description of the mask-programmable cell to generate a derived
9	library containing cells that can be obtained by programming the mask-
10	programmable cell;
11	receiving a high-level design for the integrated circuit;
12	performing a synthesis operation on the high-level design to generate a
13	preliminary netlist for the high-level design that contains references to cells in the
14	derived library; and
15	converting the preliminary netlist into a netlist that contains references to
16	the mask-programmable cell.