Hints for Lab4-Various Sets

Exercise for CS363-Computability Theory, Xiaofeng Gao

1. Let A, B be subsets of \mathbb{N} . Define sets $A \oplus B$ and $A \otimes B$ by

$$A \oplus B = \{2x : x \in A\} \cup \{2x + 1 : x \in B\},\$$

 $A \otimes B = \{\pi(x, y) : x \in A \text{ and } y \in B\},\$

where π is the pairing function $\pi(x,y) = 2^x(2y+1) - 1$ of Theorem 4-1.2. Prove that

- (a) $A \oplus B$ is recursive iff A and B are both recursive.
 - "\(= \)" Consider the computability of $C_{A \oplus B}$ with the help of C_A and C_B .
 - " \Rightarrow " If $C_{A \oplus B}$ is computable, rewrite C_A and C_B by operations on $C_{A \oplus B}$.
- (b) If $A, B \neq \emptyset$, then $A \otimes B$ is recursive iff A and B are both recursive. Similar as the above question. Don't forget to prove the both directions.
- (c) Suppose B is r.e. If A is creative, then so are $A \oplus B$ and $A \otimes B$ (provided $B \neq \emptyset$).
 - For $A \oplus B$. We need to prove (1) $A \oplus B$ is r.e.; (2) $\overline{A \oplus B}$ is productive. (1) can be easily proved according to Q1(a). (2) Apply \overline{A} is productive with Reduction Theorem of productive set such that $x \in \overline{A} \Leftrightarrow f(x) \in A \oplus B$.
 - Similarly for $A \otimes B$. We need to prove (1) $A \otimes B$ is r.e.; (2) $\overline{A \otimes B}$ is productive. (1) can be easily proved according to Q1(b). (2) Apply \overline{A} is productive with Reduction Theorem of productive set such that $x \in \overline{A} \Leftrightarrow f(x) \in A \otimes B$.
- (d) If A is simple, then $A \otimes \mathbb{N}$ is r.e., but neither recursive, creative nor simple.
 - i. $A \otimes \mathbb{N}$ is r.e. Distinguish what is $A \otimes \mathbb{N}$ by pairing function $\pi_1(x)$. Then you can easily prove this property.
 - ii. $A \otimes \mathbb{N}$ is not recursive. Use the facts that A is not recursive and Q1(b); or prove by contradiction.
 - iii. $A \otimes \mathbb{N}$ is not creative. By contradiction if $\overline{A \otimes \mathbb{N}}$ is productive and $x \in \overline{A \otimes \mathbb{N}} \Leftrightarrow x \in \overline{A}$, then we can have A is creative, which violates the fact that A is simple.
 - iv. $A \otimes \mathbb{N}$ is not simple. $\overline{A \otimes \mathbb{N}} = \{x \mid \pi_1(x) \notin A\}$. Find an infinite r.e. subset in this set.
- (e) If A, B are simple sets, then $A \oplus B$ is simple, $A \otimes B$ is not simple but $\overline{A \otimes B}$ is simple.
 - i. $A \oplus B$ is simple. (1) $A \oplus B$ is r.e. by Q1.(c). (2) $\overline{A \oplus B} = \overline{A} \oplus \overline{B}$. Prove it is infinite and use contradiction to prove it doesn't contain any r.e. subset.
 - ii. $A \otimes B$ is not simple. Prove $\overline{A \otimes B}$ has an infinite r.e. subset.
 - iii. $\overline{A} \otimes \overline{B} = \{t \mid \pi_1(t) \in \overline{A} \wedge \pi_2(t) \in \overline{B}\} = \{t \mid \pi_1(t) \in A \vee \pi_2(t) \in B\}$. Prove it is r.e.; $\overline{A} \otimes \overline{B}$ is infinite, and by contradiction $\not\exists C \subseteq \overline{A} \otimes \overline{B}$, otherwise A or B will not be simple.
- 2. (a) Let $B \subseteq \mathbb{N}$ and n > 1; prove if B is recursive (or r.e.) then the predicate $M(x_1, \ldots, x_n)$ given by " $M(x_1, \ldots, x_n) \equiv 2^{x_1} 3^{x_2} \ldots p_n^{x_n} \in B$ " is decidable (or partially decidable). $C_M = C_B(2^{x_1} 3^{x_2} \ldots p_n^{x_n}) \quad \chi_M = \chi_B(2^{x_1} 3^{x_2} \ldots p_n^{x_n})$
 - (b) Prove that $A \subseteq \mathbb{N}^n$ is recursive (or r.e.) iff $\{2^{x_1}3^{x_2}\dots p_n^{x_n}: (x_1,\dots,x_n)\in A\}$ is recursive (or r.e., respectively).

$$C_M((\mathbf{x})_1, \cdots, (\mathbf{x})_n) \Leftrightarrow C_A(\mathbf{x}) \quad \chi_M((\mathbf{x})_1, \cdots, (\mathbf{x})_n) \Leftrightarrow \chi_A(\mathbf{x})$$

- (c) Prove that $A \subseteq \mathbb{N}^n$ is r.e. iff $A = \emptyset$ or there is a total computable function $\mathbf{f} : \mathbb{N} \to \mathbb{N}^n$ such that $A = Ran(\mathbf{f})$. (A computable function \mathbf{f} from \mathbb{N} to \mathbb{N}^n is an n-tuple $\mathbf{f} = (f_1, \ldots, f_n)$ where each f_i is a unary computable function and $\mathbf{f}(x) = (f_1(x), \ldots, f_n(x))$.) Mimic the proof of Listing Theorem with Coding technique.
- 3. Which of the following sets are recursive? Which are r.e.? Which are productive? Which are creative? Prove your judgements.
 - (a) $\{x : x \in E_x\},\$
 - (b) $\{x : x \text{ is a perfect square}\},$
 - (c) $\{x: \phi_x \text{ is not injective}\},\$
 - (d) $\{x : \phi_x \text{ is not surjective}\},$
 - (e) $\{x: \phi_x(x) = f(x)\}\$, where f is any total computable function.

You can (1) consider the C or χ function, or (2) consider reduction, or (3) try theorems (like Quasi-Rice Theorem); and (3) consider the complement of each set.

- 4. Suppose A is an r.e. set. Prove the following statements.
 - (a) Show that the sets $\bigcup_{x \in A} W_x$ and $\bigcup_{x \in A} E_x$ are both r.e. Describe each form as a combination of quantifier + partial decidable predicates.
 - (b) Show that $\bigcap_{x\in A}W_x$ is not necessarily r.e. ($Hint: \forall t\in \mathbb{N} \text{ let } K_t=\{x:P_x(x)\downarrow \text{ in t steps}\}.$ Show that for any t, K_t is recursive; moreover $K=\bigcup_{t\in \mathbb{N}}K_t$ and $\overline{K}=\bigcap_{t\in \mathbb{N}}\overline{K}_t.$) $\bigcap_{x\in A}W_x \text{ is not necessarily r.e. means there exists special r.e. set } A^*, \text{ such that } \bigcap_{x\in A^*}W_x \text{ is not r.e. Firstly, prove all the descriptions from the Hint. Next, since } K_t \text{ is recursive, } \overline{K}_t \text{ is also recursive, but } \overline{K}=\bigcap_{t\in \mathbb{N}}\overline{K}_t \text{ is not r.e. Thus let } A^*=\mathbb{N}.$
- 5. Suppose that f is a total computable function, A is a recursive set and B is an r.e.set. Show that $f^{-1}(A)$ is recursive and that f(A), f(B) and $f^{-1}(B)$ are r,e, but not necessarily recursive. What extra information about these sets can be obtained if f is a bijection?

 Describe f(A), f(B), $f^{-1}(A)$, $f^{-1}(B)$ by quantifier + predicates and then use reduction. If f is bijection, then you may have stronger conclusion for some of these sets.
- 6. Prove Rice's theorem (Theorem 6-1.7) from Rice-Shapiro theorem (Theorem 7-2.16). (*Hint*. Suppose that ' $\phi_x \in \mathcal{B}$ ' is decidable; then both \mathcal{B} and $\mathcal{C}_1 \setminus \mathcal{R}$ satisfy the conditions of Rice-Shapiro: consider the cases $f_{\varnothing} \in \mathcal{B}$ and $f_{\varnothing} \notin \mathcal{B}$.)
 - Just follow the hint.
- 7. Let \mathscr{B} be a set of unary computable functions, and suppose that $g \in \mathscr{B}$ is such that for all finite $\theta \subseteq g$, $\theta \notin \mathscr{B}$. Prove that the set $\{x : \phi_x \in \mathscr{B}\}$ is productive. (*Hint*. Follow the first part of the proof of the Rice-Shapiro theorem.)

Define appropriate function then reduce from \overline{K} .

8. Prove the following statements.

- (a) If B is r.e. and $A \cap B$ is productive, then A is productive. Construct a f with $Dom(f) = K \cap B$, then construct the productive function of A with the help of f + s-m-n theorem
- (b) If C is creative and A is an r.e. set such that $A \cap C = \emptyset$, then $C \cup A$ is creative. (1) $C \cup A$ is r.e. (2) $\overline{C} \cap \overline{A}$ is productive by a construction of f with $Dom(f) = C \cup A$.
- (c) Every productive set contains an infinite recursive subset. r. subsubset \subseteq r.e. subset \subseteq productive set
- (a) (Cf. Theorem 7-2.14) Let A be an infinite r.e. set. Show that A can be enumerated without repetitions by a total computable function.
 Listing Theorem + μ operator
 - (b) Suppose f is a total injective computable function such that Ran(f) is not recursive ((a) showed that such functions abound). Show that $A = \{x : \exists y(y > x \land f(y) < f(x))\}$ is simple. (*Hint*. To see that \overline{A} is infinite, assume the contrary and show that there would then be a sequence of numbers $y_0 < y_1 < y_2 < \ldots$ such that $f(y_0) > f(y_1) > f(y_2) > \ldots$ To see that \overline{A} does not contain an infinite r.e. set B, suppose to the contrary that $B \subseteq \overline{A}$. Then show that the problem $z \in Ran(f)$ is decidable as follows. Given z, find $n \in B$ such that f(n) > z; now use the fact that $n \notin A$ to devise a finite procedure for testing whether $z \in Ran(f)$.)

Just follow the hint. Notice that $f(y_0)$ is finite.

10. Recursively Inseparable and Effectively Recursively Inseparable

Disjoint sets A, B are said to be recursively inseparable if there is no recursive set C such that $A \subseteq C$ and $B \subseteq \overline{C}$. Furthermore, A and B are said to be effectively recursively inseparable if there is a total computable function f such that whenever $A \subseteq W_a$, $B \subseteq W_b$ and $W_a \cap W_b = \emptyset$ then $f(a,b) \notin W_a \cup W_b$ (see the right figure). Note: Recursive inseparability for a pair of disjoint sets corresponds to non-recursiveness for a single set; pair of recursively inseparable sets that are also r.e. correspond to r.e. sets that are not recursive.

Fig. Effectively Recursively Inseparable Sets

- (a) Show that two disjoint sets A, B are recursively inseparable iff whenever $A \subseteq W_a$, $B \subseteq W_b$ and $W_a \cap W_b = \emptyset$, there is a number $x \notin W_a \cup W_b$. Use contradiction, assume $\forall x, x \in W_a \cup W_b$, then $W_a \cup W_b = \mathbb{N}$.
- (b) Suppose A, B are effectively recursively inseparable. Prove that if A, B are both r.e. then they are both creative. (Note. Extending the idea of effectiveness to a pair of recursively inseparable sets in this way parallels the step from a nonrecursive set to a set having productive complement; the counterpart to a single creative set is then a pair of effectively recursively separable sets that are both r.e.)
 - For symmetry, you only need to prove \overline{A} is productive. Construct computable function g with $Dom(g) = K \cup B$, then create the productive function from f and g.
- (c) Let $K_0 = \{x : \phi_x(x) = 0\}$ and $K_1 = \{x : \phi_x(x) = 1\}$. Show that K_0 and K_1 are r.e. (in particular neither K_0 nor K_1 is recursive), and that they are both recursively inseparable and effectively recursively inseparable. (*Hint*. For recursively inseparable, suppose that there is such a set C and let m be an index for its characteristic function; consider

whether or not $m \in C$. For effectively recursively inseparable, find a total computable function f such that if $W_a \cap W_b = \emptyset$, then $\phi_{f(a,b)}(x) = \begin{cases} 1 & \text{if } x \in W_a, \\ 2 & \text{if } x \in W_b, \end{cases}$ undefined otherwise.

Prove by contradiction for recursively inseparable. Then follow the hint for effectively recursively inseparable.