图神经网络 GNN

Graph Neural Network

王博 天津大学智能与计算学部 2019.12

当前的两类主要深度学习模型

当前的两类主要深度学习模型

无论卷积还是序列模型,实际上都假定输入对象的结构是一个均匀的网络。 换言之,就是基本元素(像素、词汇)之间的关系结构是处处相同的。

均匀的结构使得同一个卷积核可以处理任 何一个局部区域,并且参数共享

均匀的结构使得序列模型可以通过一遍简单的扫描,有序的处理全部输入信息

但是,现实中元素之间的结构并不总是均匀的。

而任意图才是元素结构的一般化表示,网格与序列都只是一般图的特例

具有一般图结构的对象十分广泛,他们都无法用普通的CNN和RNN有效处理

具有一般图结构的对象十分广泛,他们都无法用普通的CNN和RNN有效处理

具有一般图结构的对象十分广泛,他们都无法用普通的CNN和RNN有效处理

试想:

- (1) 若使用基于局部特征的方法来处理 一般图,如何定义卷积核的尺寸和方法?
- (2) 若使用序列的方法来处理一般图, 如何给出序列的行走路线?

面向一般图的NN的基本目标

那么,当我们要用NN来处理一般图的时候,我们到底想做什么?

输入

Networks

传统机器学习方法:

选取相关特征,做分类(点、边、图分类)或相似度分析(边预测)

深度学习方法:

通过特定神经网络结构(如经典的CNN和RNN)形成蕴含了<mark>图信息的表示(NN</mark>的表示就相当于特征信息)。

图信息包括顶点的属性和拓扑结构

表示对于当前的NN来说是向量或张量表示

输出

- 顶点类别
- 图/子图的类别
- 边的存在与类别
- 图生成

-般图中的顶点表示

那么,图中的结点所蕴含的网络信息应该什么样呢?

CNN:每个卷积的表示蕴含局部的关键特征信息

RNN:每个节点的表示蕴含前序序列的信息

Attention: 对局部/前序中的信息有所侧重

GNN:每个顶点的表示要包含顶点属性和顶点拓扑结构

输入

Networks

具体而言,GNN的顶点表示要满足:

一阶相似性: 有边相连的节点, 表示相似

二阶 (高阶) 相似性: 领域相似的节点, 表示相似

输出

- 顶点类别
- 图/子图的类别
- 边的存在与类别
- 图生成

一般的图自编码器

SDNE (Structural deep network embedding)

同时优化一阶和二阶相似度:

每个结点用一个自编码器来重建领域信息,从而建模二阶相似度

节点之间使用拉普拉斯特征映射(反映节点之间的距离)来惩罚使得相邻节点距离较远的编码结果

Figure 2: The framework of the semi-supervised deep model of SDNE

让我们进一步引入一些使GNN更有效的结构(如果用CNN或RNN来改进原始的全连接网络)

试想:

- (1) 若使用基于局部特征的方法来处理一般图,如何定义卷积核的尺寸和方法?
 - (2) 若使用序列的方法来处理一般图,如何给出序列的行走路线?

试想:

(2) 若使用序列的方法来处理一般图,如何给出序列的行走路线?

通过随机游走在图中形成序列。

DeepWalk

- ullet Generate γ random walks for each vertex
- Each random walk has length t
 - in each random walk step, jump to the next vertex uniformly.
- Example: $v_{46} \rightarrow v_{45} \rightarrow v_{71} \rightarrow v_{24} \rightarrow v_5 \rightarrow v_1 \rightarrow v_{17}$
- \bullet Finally, for vertex v_1 in a network, we have

- 每个序列视为一个句子
- 每个顶点视为一个词汇
- 应用词向量技术构建顶点表示

Node2Vec

与与DeepWalk的最大区别在于, node2vec采用有偏随机游走, 在广度优先 (bfs) 和深度优先 (dfs) 图搜索之间进行权衡, 从而产生比DeepWalk更高质量和更多信息量的嵌入

Figure 1: BFS and DFS search strategies from node $u\ (k=3)$.

Node2Vec

通过调整参数可以使得顶点的上下文在远距离邻居 (DFS) 和近距离邻居 (BFS) 之间调整

Return parameter *p*:

Return back to the previous node

In-out parameter *q*:

Moving outwards (DFS) vs. inwards (BFS)

BFS:
Micro-view of neighbourhood

DFS: Macro-view of neighbourhood

Node2Vec

通过调整参数可以使得顶点的上下文在远距离邻居 (DFS) 和近距离邻居 (BFS) 之间调整

Return parameter *p*:

Return back to the previous node

In-out parameter *q*:

Moving outwards (DFS) vs. inwards (BFS)

Interactions of characters in a novel:

p=1, q=2 Microscopic view of the network neighbourhood

p=1, q=0.5
Macroscopic view of the network neighbourhood

Metapath2vec: 异质性网络中的顶点表示

随机路径必须符合预设的若干元路径 (Metapath)

 LINE: explicitly preserves both firstorder and second-order proximities.

 PTE: learn heterogeneous text network embedding via a semisupervised manner.

试想:

- (1) 若使用基于局部特征的方法来处理一般图,如何定义卷积核的尺寸和方法?
 - (2) 若使用序列的方法来处理一般图,如何给出序列的行走路线?

Networks

试想:

(1) 若使用基于局部特征的方法来处理一般图,如何定义卷积核的尺寸和方法?

以每个节点为核心,将其邻域设为卷积范围,卷积方法是汇聚邻居节点的信息做为核心节点的表示。

基于GCN的语义角色标注

Standard Deep Learning Architecture for NLP problems (above is for Semantic-Role Labeling (SRL))

Model with GCN as part of the network

GCN weights are trained based on the final objective

注意力图卷积神经网络GAT

基本的GCN中邻居节点的权重是平均的。

GAT中邻居节点的权重是可以训练的参数。

(a) Graph Convolution Networks [14] explicitly assign a non-parametric weight $a_{ij} = \frac{1}{\sqrt{deg(v_i)deg(v_j)}}$ to the neighbor v_j of v_i during the aggregation process.

(b) Graph Attention Networks [15] implicitly capture the weight a_{ij} via an end-to-end neural network architecture, so that more important nodes receive larger weights.

GCN和GAT 是Transductive learning: 训练语料包含待标注语料,标注在训练过程中完成。优点,质量高;缺点,扩展性差(标注新样本需要全局重新训练)

GCN和GAT的缺点: 网络的任何变化都要重新进行全局训练 (类似word embedding)

GraphSage是Inductive learning:训练语料不包含待标注语料,先训练获得模型,然后泛化到测试语料上。

GraphSage学习一个由邻居节点形成中心节点表示的神经网络模型。

GraphSage学习一个由邻居节点形成中心节点表示的神经网络模型(聚合函数)。

GraphSage学习一个由邻居节点形成中心节点表示的神经网络模型。

GraphSAGE 如何聚合邻居节点信息

- GraphSage是分层的,类似神经网络的层次。
 每一层的节点表示由前一层的邻居节点通过聚合函数获得。
- 随着层次的推进,每个结点实际上不仅可以获得邻居结点的信息,还可以获得更远距离的结点的信息。

GraphSage学习一个由邻居节点形成中心节点表示的神经网络模型。

GraphSAGE 如何聚合邻居节点信息

- GraphSage的参数学习需要 设计一个损失函数。
- 损失函数可以是无监督的, 也可以是有监督的。
- 对于无监督学习,损失函数 应该让临近的节点的拥有相 似的表示。

文本分类: Text-GCN 2019

以文档和词汇为结点构造异质性网络,训练获得文档的向量表示并分类到类别。

GNN的应用

关系抽取: 2018

以依存句法树做为GCN的输入图,得到词汇的表示,进而分类词汇是否为关系标记词

Figure 2: Relation extraction with a graph convolutional network. The left side shows the overall architecture, while on the right side, we only show the detailed graph convolution computation for the word "relative" for clarity. A full unlabeled dependency parse of the sentence is also provided for reference.

GNN的应用

个性化推荐: 2018

- 建立用户-用户-物品关系图。
- 在关系图上分别得到用户和物品的表示。
- 基于用户和物品的表示建立 Rating预测模型

是否需要建立物品之间的关系?

Figure 2: The overall architecture of the proposed model. It contains three major components: user modeling, item modeling, and rating prediction.

