Universidade Federal de Minas Gerais Departamento de Engenharia Eletrônica

ELT016 - Técnicas de Modelagem de Sistemas Dinâmicos

Prof. Bruno Otávio Soares Teixeira

2016/2

Exercício Computacional

Exercício 1

Considere os dados de tempo, entrada e saída do arquivo de dados tmsd_model1.txt. Deseja-se identificar um modelo ARX para esse sistema. **Pede-se**:

a) Pré-processamento:

- (i) Divida tal massa de dados entre dados de identificação e dados de validação.
- (ii) Escolha um tempo de amostragem adequado para identificação desse sistema (ou seja, se necessário, decime os dados). Considere o método da Seção 12.2.4.¹ (iii) Verifique se os dados de entrada e saída estão correlacionados para que sejam usados para identificação de um modelo.

b) Seleção de estrutura:

Empregue o critério de Akaike para selecionar a ordem do modelo ARX (linear).

c) Estimação de parâmetros:

Use o estimador de mínimos quadrados para achar os parâmetros do modelo ARX de ordem selecionada no item anterior.

d) Validação:

Valide o modelo para os seguintes casos: (i) simulação um passo a frente e (ii) simulação livre.

- (iii) Calcule o índice RMSE em cada caso.
- (iv) Verifique se os resíduos do modelo estão suficientemente não-correlacionados.

Exercício 2

Considere o sistema linear e invariante no tempo representado pela seguinte função de transferência

$$H(z) = \frac{b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}},$$

em que a_1, a_2, b_1 e b_2 são constantes definidas de forma a obter um sistema estável. **Pede-se**:

a) Simulação:

Escolha valores para a_1, a_2, b_1 e b_2 que resultem em em sistema estável. Simule a resposta y(k) desse sistema a (i) uma entrada $u_1(k)$ do tipo ruído branco produzindo $y_1(k)$ e (ii) a uma entrada $u_2(k)$ do tipo degrau produzindo $y_2(k)$. A partir das saídas simuladas $y_1(k)$ e $y_2(k)$, obtenha também saídas ruidosas $y_{m,1}$ e $y_{m,2}$. Considere o caso de ruído na equação (ruído de processo), tal que:

$$y_{\rm m}(k) = -a_1 y_{\rm m}(k-1) - a_2 y_{\rm m}(k-2) + b_1 u(k-1) + b_2 u(k-2) + e(k).$$

Observação: escolha o desvio padrão do ruído branco e(k) de forma a obter uma relação sinal-ruído maior que $10\mathrm{dB}.^2$

 $^{^{1}\}mathrm{Em}$ edições anteriores, equivale à Seção 12.2.3.

²A relação sinal-ruído (SNR) de um sinal $y_{\rm m}=y(k)+e(k)$ é dada por SNR = $20\log_{10}\frac{\sigma_y}{\sigma_e}$, em que σ_y e σ_e são os desvios padrão de y(k) e e(k), respectivamente.

b) Estimação de parâmetros (sem ruído):

Formule o problema de estimação de parâmetros sob a perspectiva do algoritmos de mínimos quadrados. Ou seja, defina a matriz de regressores Ψ , o vetor de observações \mathbf{y} e o vetor de parâmetros θ .

c) Estime os parâmetros desse sistema usando os dados sem ruído, isto é, (i) use os dados $u_1(k)$ e $y_1(k)$ e, em seguida, (ii) $u_2(k)$ e $y_2(k)$. Interprete os resultados fazendo comparação entre os valores estimados para os parâmetros e os valores verdadeiros, bem como comparando os gráficos da resposta ao degrau dos modelos estimados e da resposta ao degrau do sistema verdadeiro. Para realizar a simulação da resposta ao degrau dos modelos estimados, considere ambos os casos de simulação um passo a frente e simulação livre. Analise os resultados.

d) Estimação de parâmetros (com ruído)

Repita o item c) utilizando dados ruidosos, isto é: (i) use os dados $u_1(k)$ e $y_{m,1}(k)$ e, em seguida, (ii) $u_2(k)$ e $y_{m,2}(k)$. Considere crescentes níveis de ruído nas medições, por exemplo, considere SNRs de 20,15,10, e 5 dB. Por simplicidade, utilize para tal somente os dados do ensaio a entrada de ruído branco.

e) Estimação de parâmetros (com entrada PRBS):

Repita o procedimento descrito nos items anteriores considerando uma entrada $u_3(k)$ do tipo PRBS. Compare com o caso em que foi usado ruído branco como sinal de entrada.

f) Estrutura do modelo:

Nos items b), c), e d), assumiu-se conhecida a estrutura do modelo, a qual é de segunda ordem para o sistema em estudo. Considere os seguintes casos: (i) que o modelo estimado seja escolhido de primeira ordem ($b_2 = a_2 = 0$) e (ii) que o modelo estimado tenha estrutura de terceira ordem (defina os parâmetros b_3 e a_3). Repita os items b), c), e d) para os dois casos e interprete os resultados. Utilize para tal somente os dados do ensaio a entrada de ruído branco.