

041

10진 데이터 표현법

2회 ▶ 산 09-2, 00-3

EBCDIC 코드에 의한 (-123)₁₀의 팩 10진수 형식은?

	1바	이트						1바	기트						1바	이트				1바	이트			
1	F	1	F	2	D	3	2	F	1	F	2	С	3	3	1	2	3	D	4	1	2	3	С	

핵 심 이 론

팩 형식 (Packed Format) = 팩 10진 형식 (Packed Decimal Format)	1Byte로 10진수 2자리를 표현하며, Digit 비트는 10진수 1자리를 4비트 2진수로 표현한다.
	_ 1 2 3 D 16진수 표현 • 연산은 가능하나, 입·출력이 불가능하다.
언팩 형식 (Unpacked Format) = 존 10진 형식 (Zoned Decimal Format)	 1Byte로 10진수 1자리를 표현하며, Zone 비트는 무조건 F(1111)를 넣고, Digit 비트는 10진수 1자리를 4비트 2진수로 표현한다. — 1 Byte →

유 사 문 제

1회 ▶ 산 09-4

1. 다음 그림은 어떤 데이터 형식을 나타낸 것인가?

zone	숫자	zone	숫자		부호	숫자	
① Unp	ack 형	10진수		2	고정데여	이터 10	진수
③ Pacl	k 형 10	지수		(<u>4</u>)	가벼노i	리 데이	터

1회 ▶ 산 12-3

2. -426을 Pack 10진수 형식으로 표현한 것은?

1회 ▶ 산 08-2

3. +475를 존(Zone) 형식으로 올바르게 표현한 것은?

① 475C	② 475D	③ F4F7D5	④ F4F7C5
--------	--------	----------	----------

2회 ▶ 산 11-2, 10-4

4. Unpacked decimal 형식으로 (543)₁₀을 표현한 것은?

1	F5	F4	D3	2	5F	4F	3C
3	F5	F4	СЗ	4	5F	F4	D3

1회 ▶ 11-3

5. 다음은 팩(pack)형식의 10진수를 16진수로 나타낸 것이다. A 와 B의 덧셈 연산의 결과는?

		•	~ -	_		_	. — .				
Α	: 0	0 0	4 (9	5C		В:	00	03	84	0D
1	00	07	93	50)		2	00	07	93	5D
3	00	00	FF	FC			4	00	00	25	5C

1회 ▶ 산 05-4

6. 10진법의 데이터를 표현하기 위한 Packed나 Unpacked format의 일반적인 용도가 가장 올바르게 연결된 것은?

- ① Unpacked format 10진수 입출력 형식, Packed format - 10진수 입출력 형식 ② Unpacked format - 10진수 연산 형식.
- Packed format 10진수 연산 형식 ③ Unpacked format - 10진수 입·출력 형식,
- Packed format 10진수 연산형식

 ④ Unpacked format 10진수 연사 형식
- ④ Unpacked format 10진수 연산 형식, Packed format - 10진수 입·출력 형식

1회 ▶ 산 05-1추

7. CPU에서 연산 처리된 데이터를 출력하기 위한 데이터의 형 식은?

- 식근 :
 ① pack된 10진법 형식 ② pack된 2진법 형식
 ③ unpack된 10진법 형식 ④ unpack된 2진법 형식
- [정답] 핵심문제 ③ / 유사문제 1. ① 2. ① 3. ④ 4. ③ 5. ④ 6. ③ 7. ③

THEME

042 2진 데이터 표현법(고정 소수점 표현)

3회 ▶ 산 03-3, 02-2, 99-2

음수를 표시하는 방법이 아닌 것은?

- ① 1의 보수(1's Complement)
- ② 부호 및 크기(Signed Magnitude)
- ③ 2의 보수(2's Complement)
- ④ 10의 보수(10's Complement)

핵 심 이 론

부호화 절대치(Signed Magnitude)

- 최상위 1비트는 부호 비트(양수:0, 음수:1), 나머지 n-1 비트들은 2진수로 표현된 정수값의 크기(절대치)가 저장된다.
- 고정 소수점 표현에서 음수로의 변화이 가장 쉬운 방법이다.

부호화 1의 보수(Signed 1's Complement)

• 부호화 절대치에서 부호 비트를 제외한 나머지 n-1 비트들을 1의 보수 형태로 변환한다.

부호화 2의 보수(Signed 2's Complement)

• 부호화 절대치에서 부호 비트를 제외한 나머지 n-1 비트들을 2의 보수 형태로 변환한다.

유 사 문 제

1회 ▶ 산 04-2

1. 컴퓨터 내부에서 음수를 표현하는 방법에 속하지 않는 것은?

- ① 부호~크기(절대치) 표현법
- ② 크기~부호~크기 표현법
- ③ 부호~1의 보수 표현법
- ④ 부호~2의 보수 표현법

1회 ▶ 산 07-2

2. 컴퓨터에서 음수를 표현하는 방법으로 옳지 않은 것은?

- ① 부호와 절대값 표시
- ② 부호화된 1의 보수 표시
- ③ 부호화된 2의 보수 표시
- ④ 부호화된 16의 보수 표시

2회 ▶ 산 09-2, 05-2

3. 고정 소수점(Fixed Point Number) 표현 방식이 아닌 것은?

- ① 1의 보수에 의한 표현
- ② 2의 보수에 의한 표현
- ③ 9의 보수에 의한 표현
- ④ 부호와 절대값에 의한 표현

1회 ▶ 산 06-4

4. 고정소수점에서 음수를 표현하는 방법 중 거리가 먼 것은?

- ① 언팩(unpack) 형식의 십진법
- ② 부호와 1의 보수
- ③ 부호와 2의 보수
- ④ 부호와 절대치

1회 ▶ 산 05-1

5. 수치를 표현하는데 있어서 0의 판단이 가장 쉬운 방법은?

- ① 1의 보수
- ② 2의 보수
- ③ 부호와 절대치
- ④ 부동 소수점

1회 ▶ 산 11-3

6. 고정 소수점 수에 대한 표현에서 음수로의 변환이 가장 쉬운 것은?

- ① 부호와 절대치 방법
- ② 1의 보수
- ③ 2의 보수
- ④ r의 보수

THEME

043 부호화 1의 보수 / 부호화 2의 보수 표현법

1회 ▶ 11-3

8비트 메모리 워드에서 비트패턴 (1110 1101)2 는 "① 부호 있는 절대치(signed magnitude), © 부호와 1의 보수, © 부호화 2의 보수"로 해석될 수 있다. 각각에 대 응되는 10진수를 순서대로 나타낸 것은?

- ① つ -109
- © −19
- € -18
- ② つ -109
- (L) -18 □ -19
- ③ ① 237 ④ ① 237
- <u>L</u> -19 (L) -18
- © -18 □ -19

핵 심 이 론

부호화 1의 보수(Signed 1's Complement)

+0	-0 1 0 0 0 0 0 0 0
+8	-8 1 1 1 1 0 1 1 1
+36	-36 1 1 0 1 1 0 1 1
+127	-127 1 0 0 0 0 0 0 0 0

부호화 2의 보수(Signed 2's Complement)

유사문제

1회 ▶ 산 08-4

- 1. 10진수 -11을 부호화 1의 보수 표현에 대한 16진 표현으로 옳 은 것은? (단, 8비트 데이터 형식임)
- (1) $(F4)_{16}$

② (B4)₁₆

③ (8F)₁₆

- (4) (C4)₁₆
- 1회 ▶ 산 07-2
- 2. 부호가 붙어있는 십진수 -1을 2의 보수 표시법으로 표현하면?
- ① 00000001
- 2 10000001
- ③ 10000010
- 4 11111111
- 1회 🕨 13-1
- 3. 8비트로 -9를 부호와 2의 보수(signed-2's complement)로 표현한 것은?
- ① 10001001
- ② 11111001
- ③ 11110110
- (4) 11110111

2회 ▶ 산 13-3, 02-3

- 4. -14를 부호화된 2의 보수 표현법으로 표현한 것은? (단, 8bit 로 표시)
- ① 10001110
- ② 11100011
- ③ 11110010
- 4 11111001

1회 ▶ 산 07-1

- 5. -121을 표시하는 부호화된 2's complement number는 어 느 것인가?
- ① 00000111
- ② 10000111
- ③ 01111000
- (4) 11111000
- 1회 ▶ 산 00-2
- 6. 1의 보수(1 's complement)로 표시되는 16비트 수에 0을 나 타내는 표현은 몇 개 있는가?
- ① 3개

② 2개

③ 1개

④ 없다.

044 고정 소수점의 수 표현 범위

1회 ▶ 13-3

정수 n bit를 사용하여 1의 보수(1's complement)로 표현하였을 때 그 값의 범위는?

- (1) $-2^{n-1}-1 \sim 2^{n-1}-1$
- (2) $-2^{n-1} \sim 2^{n-1}-1$
- $(3) -2^n \sim 2^n -1$
- (4) $-2^{n}-1 \sim 2^{n-1}-1$

핵 심 이 론

종 류	비고	표현 범위 (n: 비트 개수)	
부호화 절대치 (=부호 및 크기) (Signed Magnitude)	2가지 형태의 0 존재	$-(2^{n-1}-1) \sim +(2^{n-1}-1)$	
부호화 1의 보수 (Signed 1's Complement)	(-0, +0)	$= -2^{n-1} + 1 \sim 2^{n-1} - 1$	
부호화 2의 보수 (Signed 2's Complement)	한 가지 형태의 0만 존재 (+0)	$-2^{n-1} \sim +(2^{n-1}-1)$	

유 사 문 제

1회 ▶ 09-4

- 1. 8bit로 된 register가 있다. 첫째 bit는 부호 bit로서 0,1 일 때 각각 양(+), 음(-)을 나타낸다고 할 때 2의 보수로 숫자를 표시한다면 이 register로 표시할 수 있는 10진수의 범위는?
- ① $-256 \sim +256$
- ② -128 ~ +127
- $(3) -128 \sim +128$
- 4 $-256 \sim +127$

1회 ▶ 산 14-2

- 3. 고정소수점 수에서 10비트로써 표현할 수 있는 수의 범위는? (단, 2의 보수로 표현)
- $\bigcirc 1$ -511 \sim 511
- $\bigcirc 2$ -511 \sim 512
- $(3) -512 \sim 511$
- 4 -512 \sim 512

5회 ▶ 산 06-1, 04-4, 04-1, 02-3, 01-2

- 2. 2의 보수 표현 방식으로 8비트의 기억 공간에 정수를 표현할 때 표현 가능 범위는?
- $(1) -2^7 \sim +2^7$
- ② $-2^8 \sim +2^8$
- $(3) -2^7 \sim +(2^7-1)$
- $(4) -2^8 \sim +(2^8-1)$

045 고정 소수점 – 기타

1회 ▶ 09-4

부호화된 2의 보수로 표현된 데이터를 연산할 때 overflow에 대해서 잘못 설명한 것은? (단, 가장 왼쪽 비트는 부호 비트이고, 그 다음 비트는 MSB라 한다.)

- ① 양수끼리 더할 때 MSB에서 자리올림이 발생하지 않으면 overflow가 일어난다.
- ② 음수끼리 더할 때 MSB에서 자리올림이 발생하지 않으면 overflow가 일어난다.
- ③ 부호 bit로 들어온 자리올림이 carry bit로 나가지 못하면 overflow가 일어난다.
- ④ 부호 bit로 들어온 자리올림이 없는데 carry가 발생하면 overflow가 일어난다.

유사문제

1회 ▶ 10-4

- 1. 부호를 포함하여 6비트로 수를 표현할 때 오버플로우가 발생하는 경우는?
- ① 14+18
- ② 30-14
- $\bigcirc 3 -20-4$
- (4) 24+6

1회 ▶ 06-4

- 2. 2의 보수 표현이 1의 보수 표현보다 더 널리 사용되고 있는 주요 이유는?
- ① 음수 표현이 가능하다.
- ② 10진수 변환이 더 용이하다.
- ③ 보수 변환이 더 편리하다.
- ④ 표현할 수 있는 수의 개수가 하나 더 많다.

1회 ▶ 10-1

- 3. 2의 보수 표현이 1의 보수 표현보다 더 널리 사용되고 있는 주요 이유는?
- ① 음수 표현이 가능하다.
- ② 10진수 변환이 더 용이하다.
- ③ 보수 변환이 더 편리하다.
- ④ 덧셈 연산이 더 간단하다.

1회 ▶ 산 03-2

- 4. 정수 표현에서 음수를 나타내는데 부호화된 2의 보수법이 1의 보수법에 비해 장점은?
- ① 산술 연산 속도가 빠른 점과 양수 표현이 좋다.
- ② 2의 보수에서는 carry가 발생하면 무시한다.
- ③ 양수 표현이 유리하다.
- ④ 보수 취하기가 쉽다.

1회 ▶ 산 08-4

- 5. 정수 표현에서 음수를 나타내는데 부호화된 2의 보수법이 1의 보수법에 비해 장점은?
- ① 양수 표현이 용이하고 연산 속도가 빠르다.
- ② 올림수(carry)가 발생하면 무시한다.
- ③ 음수로의 변환이 용이하다.
- ④ 보수 취하기가 쉽다.

1회 ▶ 산 11-2

- 6. 보수 연산에 있어서 부호화된 2의 보수를 이용하여 계산할 때, 부호화된 1의 보수를 이용하여 계산하는 경우에 비해 갖 는 장점은?
- ① 산술 연산 속도가 빠르다.
- ② 산술 가산에서 올림수가 발생하면 1을 더해주면 된다.
- ③ 양수 표현에 있어 유리하다.
- ④ 산술 가산에서 올림수가 발생하면 무시한다.

1회 ▶ 13-1

- 7. 2의 보수를 사용하여 음수를 표현할 때의 설명으로 옳은 것은?
- ① 0은 두 가지로 표현된다.
- ② 보수를 구하기가 쉽다.
- ③ 보수를 이용한 연산 과정 중 end around carry 과정이 있다.
- ④ 음수의 최대 절대치가 양수의 최대 절대치 보다 1만큼 크다.

1회 ▶ 산 11-3

- 8. 고정 소수점 수와 부동 소수점 수의 표현에서 숫자 표현 크기 를 제한하는 요소는?
- ① 제한이 없다.
- ② 기억 용량
- ③ Word의 bit수
- ④ 기억장치의 품질

THEME **046** 부동 소수점 표현 형식

1회 ▶ 산 05-4

컴퓨터에서 수치 자료에 대한 부동소수점(floating point)표현 방식의 일반적인 형식으로 사용되는 것은?

- ③ 지수부 부호 가수부
- ④ 기수부 지수부 부호

핵심이론

부동 소수점 표현 방식

부호	지수부	가수부
(Sign)	(Exponent)	(Mantissa)

유사문제

1회 ▶ 산 11-2

1. 부동소수점 연산의 일반적인 형식은?

1	부호	지수부	가수부

- ② 지수부 가수부
- ③ 가수부 지수부
- ④
 부호
 가수부
 지수부

1회 ▶ 산 05-1

- 3. 부동 소수점 숫자가 기억장치 내에 있을 때 다음 4가지 정보 중에서 비트를 차지하지 않아도 되는 것은?
- ① 소수점
- ② 소수
- ③ 지수
- ④ 부호

3회 ▶ 산 09-4, 08-1, 05-2

- 2. FLOATING POINT NUMBER에서 저장 비트가 필요 없는 것은?
- ① 부호
- ② 지수
- ③ 소수점
- ④ 소수(가수)

047 부동 소수점 표현 방식의 특징

1회 ▶ 산 00-1

다음에서 수치 자료에 대한 부동 소수점 표현(floating point representation)의 특징이 아닌 것은?

- ① 고정 소수점 표현보다 표현의 정밀도를 높일 수 있다.
- ② 아주 작은 수와 아주 큰 수의 표현에는 부적합하다.
- ③ 수 표현에 필요한 자리 수에 있어서 효율적이다.
- ④ 과학이나 공학 또는 수학적인 응용에 주로 사용되는 수 표현이다.

핵 심 이 론

부동 소수점 표현 방식의 특징

- 실수 데이터의 표현 및 연산에 사용되는 방식이다.
- 소수점의 위치를 움직일 수 있도록 함으로써 고정 소수점 표현 방식보다 표현의 정밀도를 높일 수 있다.
- 매우 큰 수나 작은 수를 표현할 수 있다.
- 수 표현에 필요한 자리 수에 있어서 효율적이다.
- 고정 소수점 표현 방식보다 연산 절차가 복잡하고 많은 시간이 걸리며, 하드웨어적으로 복잡하다.
- 과학이나 공학 또는 수학적인 응용에 주로 사용된다.
- ⓐ $274,000,000,000,000 \rightarrow 2.74 \times 10^{14}$ 0.00000000000000274 → 2.74 × 10⁻¹⁴

유사문제

1회 ▶ 05-1추

- 1. 부동 소수점 연산에 대한 설명으로 옳지 않은 것은?
- ① 부동 소수점 수에 대한 가감산의 경우 먼저 두 수의 지수부가 같도록 소수점의 위치를 조정해야 한다.
- ② 부동 소수점 수의 연산은 고정 소수점 수의 연산에 비해 단순하며 계산속도 역시 빠르게 처리된다.
- ③ 부동 소수점 수의 연산에서 승제산의 경우 지수부와 가수부를 별도로 처리해야 하며 경우에 따라 계산 결과를 정규화 시켜야 한다.
- ④ 부동 소수점 수의 연산에서 승산의 경우 지수부는 더하고 가수부는 곱해야 한다.

048 부동 소수점 표현

1회 ▶ 산 06-4

10진수 +14925를 단정도 부동 소수점 표현 방식으로 올바른 것은?

- ① 지수부 = 16진수 44(부호 +), 소수부 = 3A4D(부호 +)
- ② 지수부 = 16진수 43(부호 +), 소수부 = 3A4B(부호 +)
- ③ 지수부 = 16진수 42(부호 +), 소수부 = 3A4C(부호 +)
- ④ 지수부 = 16진수 41(부호 +), 소수부 = 3A4E(부호 +)

[]] 핵 심 이 론

부동 소수점 표현 방식

• 단일-정밀도(Single-Precision, 단정도) : 32비트

부호	지수부	가수부
(Sign)	(Exponent)	(Mantissa)
1비트	8비트	23비트

• 복수-정밀도(Double-Precision, 배정도) : 64비트

부호	지수부	가수부
(Sign)	(Exponent)	(Mantissa)
1비트	8비트	55비트

- 부호(Sign) : 0(양수), 1(음수)
- 지수부(Exponent) : 정규화시켜 분리한 지수값에 바이어스(Bias) 값을 더해서 표현한다.
- 가수부(Mantissa) : 정규화시켜 분리한 소수 이하를 왼쪽에서부터 채우고, 자릿수를 맞추기 위해 빈 자리는 0으로 채운다.
- 2진 부동 소수점 수의 표현 형태 : N = $(-1)^{S}M \times 2^{E}$ (S: 부호, M: 가수, E: 지수)

유 사 문 제

1회 ▶ 08-4

- 1. 수 -13.625를 부동소수점으로 표현할 때 지수부에 해당 하는 값은? (단, 바이어스는 128이고, 소수점 아래의 1번째 비트는 저장하지 않는 것으로 가정한다.)
- ① 0000 0100
- 2 1000 0000
- ③ 1000 0100
- ④ 0110 1101

1회 ▶ 13-2

- 실수 0.01101₂을 32비트 부동 소수점으로 표현하려고 한다. 지수부에 들어갈 알맞은 표현은? (단, 바이어스된 지수 (biased exponent)는 01111111₂로 나타내며 IEEE 754 표준 을 따른다.)
- ① 011111002
- $\bigcirc 011111101_2$
- ③ 011111102
- ④ 10000000₂

1회 ▶ 산 10-4

- 2. 수 13.625를 2진수 형태의 IEEE 754 표준 부동소수점 형식으로 표현했을 때 가수(mantissa)의 처음 다섯 비트는? (단,소수점 바로 다음이 가수의 1번째 비트이다.)
- ① 10110
- ② 01100
- ③ 00110
- ④ 01011

THEME **049** 부동소수점 수의 연산

2회 ▶ 11-3, 09-2

부동 소수점인 두 수의 나눗셈을 위한 순서를 올바르게 나열한 것은?

- ㄱ. 가수의 나눗셈을 한다.
- ㄴ. 피제수를 위치 조정한다.
- 다. 레지스터를 초기화시키고 부호를 결정한다.
- ㄹ. 지수의 뺄셈을 한다.
- ロ. 0(ZERO) 인지의 여부를 조사한다.
- (1) C-L-2-7-D
- ② ローヒーレーコーゼ
- ④ □-□-L-=-¬

핵 심 이 론

덧셈, 삘	④ 결과를 정규화한다. ◉에 (0.12×10 ⁵) + (0.34×10 ³) = (0.12×10 ⁵) + (0.0034×10 ⁵) = (0.12+0.0034)×10 ⁵ = 0.1234×10 ⁵
곱셈	 ① 0(Zero)인지의 여부를 조사한다.(한쪽이라도 0이면 결과가 0이 된다.) ② 지수는 서로 더한다. ③ 가수는 서로 곱한다. ④ 결과를 정규화한다. 젤 (0,12×10⁵) × (0,34×10³) = (0,12×0,34) × (10⁵×10³) = (0,12×0,34) × 10⁽⁵⁺³⁾ = 0,0408 × 10⁸ = 0,408 × 10⁷
나눗섣	1 0인지의 여부를 조사한다.(피제수가 0이면 결과가 0이 되고, 제수가 0이면 오류다) 2 부호를 결정한다. 3 피제수의 위치를 조정한다.(피제수가 제수보다 작게 조정) 4 지수의 뺄셈을 한다. 5 가수의 나눗셈을 한다.

유 사 문 제

1회 ▶ 10-2, 09-1

- 1. 다음은 정규화된 부동소수점(floating point) 방식으로 표현된 두 수의 덧셈 과정이다. 다음 중 그 순서가 바르게 나열된 것은? (단. A: 정규화, B: 지수의 비교, C: 가수의 정렬, D: 가수의 덧셈)
- ① B-C-D-A ② C-B-D-A ③ A-C-B-D ④ A-B-C-D

1회 ▶ 14-2

2. 다음 내용은 산술 파이프라인(arithmetic) 구조에서 정규화된 부동소 수점 수의 연산을 할 때 실행되는 단계이다. 실행 순서가 옳은 것은?

© 가수 조정 라 지수 비교 ② 정규화 ④ 가수 합산

- (1) (7)—(L)—(L)—(L)
- (2) (1) (2) (1) (2) (1)
- 3 2 1 1
- (4) (7)—(1)—(1)—(1)

3회 ▶ 산 14-1, 08-1, 01-2

- 3. 부동소수점 표현의 수들 사이의 곱셈 알고리즘 과정에 해당하 지 않은 것은?
- ① 0(zero)인지 여부를 조사한다. ② 가수의 위치를 조정한다.
- ③ 가수를 곱한다.
- ④ 결과를 정규화한다.

2회 ▶ 산 05-1추. 02-1

- 4. 부동소수점 표현의 수치 자료 2개에 대하여 합산을 할 때 두 자료의 지수 베이스(base)는 같고, 지수 크기가 다르다면 지 수를 어느 쪽에 일치시켜 계산해야 하는가?
- ① 지수가 큰 쪽에 일치시킨다.
- ② 지수가 작은 쪽에 일치시킨다.
- ③ 어느 쪽에 일치시켜도 상관없다.
- ④ 큰 쪽과 작은 쪽의 평균값에 일치시킨다.

1회 ▶ 11-3

- 5. 유효자리에는 4자리, 지수에는 2자리까지 저장할 수 있는 시 스템에서 (1,110 * 10¹⁰) * (9,200 * 10⁻⁵)의 부동소수점 곱 셈을 계산한 결과를 올바르게 표시한 것은?(단, IEEE 754 정 규화 표현에 따르며 바이어스 등은 고려하지 않음)
- $(1) 10.212 * 10^{\circ}$
- $(2) 1.0212 * 10^6$
- 31.021×10^6
- $(4) \ 0.1021 \times 10^7$

[정답] 핵심문제 ④ / 유사문제 1. ① 2. ③ 3. ② 4. ① 5. ③

050 부동 소수점 - 기타

1회 ▶ 07-1

부동 소수점 수(Floating Point Number)에서 음수를 나타내는 방법을 가장 잘 설명한 것은?

- ① 가수의 부호가 (+)이면 1, (-)이면 0으로 나타낸다.
- ② 지수는 부호에 관계없이 bias 값에 더한다.
- ③ 지수는 부호 (-)이면 2의 보수로 나타낸다.
- ④ 지수는 부호 (-)이면 1의 보수로 나타낸다.

핵심이론

┛ 유 사 문 제

1회 ▶ 11-2

- 1. 다음 중 IEEE 754에 대한 설명으로 옳은 것은?
- ① 고정소수점 표현에 대한 국제 표준이다.
- ② 가수는 부호 비트와 함께 부호화-크기로 표현된다.
- ③ $0.M \times 2^{E}$ 의 형태를 취한다.(단, M:가수, E:지수)
- ④ 64비트 복수-정밀도 형식의 경우 지수는 10비트이다.

1회 ▶ 산 11-2

- 2. 부동소수점(floating point) 숫자 연산에서 정규화(normalize) 하는 주된 이유는?
- ① 연산 속도를 증가시키기 위해서이다.
- ② 숫자 표시를 간단히 하기 위해서이다.
- ③ 유효숫자를 늘리기 위해서이다.
- ④ 연산 결과의 정확성을 높이기 위해서이다.

1회 ▶ 산 13-2

- 3. 다음 중 부동소수점 연산에서 정규화를 하는 주 목적은?
- ① 연산 속도를 증가시키기 위해서
- ② 숫자 표시를 간단히 하기 위해서
- ③ 수의 정밀도를 높이기 위해서
- ④ 부호 비트를 생략하기 위해서

1회 ▶ 산 08-4

- 4. 어떤 수를 32비트 단정도 부동 소수점 표현 방법으로 표현할 때 지수 부분에서 underflow가 발생되는 것은? (단, 지수부 분의 bias는 64이다.)
- ① 2^{-65}
- ② 2^{-64}
- $3 2^{64}$
- $\bigcirc 4 2^{65}$

1호 ▶ 11-1

- 5. 메가플롭스(MFLOPS)에 대한 설명으로 옳은 것은?
- ① 1클록펄스 간에 실행되는 부동소수점 연산의 수를 10만을 단위로 하여 나타낸 수
- ② 1클록펄스 간에 실행되는 고정소수점 연산의 수를 10만을 단위로 하여 나타낸 수
- ③ 1초 간에 실행되는 부동소수점 연산의 수를 100만을 단위로 하여 나타낸 수
- ④ 1초 간에 실행되는 고정소수점 연산의 수를 100만을 단위로 하여 나타낸 수