Convex optimization exercise sheet

Mathurin Massias

Notation

For a linear operator A, its adjoint is A^* and its Moore-Penrose pseudoinverse is A^{\dagger} . \mathcal{X} and \mathcal{Y} are two Hilbert spaces.

1 Convexity

Exercise 1.1 (Pointwise sup preserves convexity). Let $(f_i)_I$ be a family of convex functions (not necessarily countable). Show that $x \mapsto \sup_{i \in I} f_i(x)$ is convex.

Exercise 1.2 (Precomposition by linear operator preserves convexity). Let $f: \mathcal{X} \to \mathbb{R}$ be a convex function and $A: \mathcal{X} \to \mathcal{Y}$ a linear operator. Show that $f(A\cdot)$ is convex (on \mathcal{Y}).

Exercise 1.3 (Misconceptions on existence of minima). Provide an example of convex function which does not admit a minimizer.

What if the function is continuous and lower bounded?

2 Least squares

2.1 From a linear algebra perspective

Exercise 2.1. Let $A \in \mathbb{R}^{n \times d}$. Show that $\operatorname{Ker} A = \operatorname{Ker} A^*A$.

Exercise 2.2. Show that there always exist a solution to $A^*Ax = A^*b$.

Show that this no longer holds in the infinite dimensional space (when A is a bounded linear operator between infinite dimensional Hilbert spaces.)

Exercise 2.3. Let $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$. Show that solving Ordinary Least Squares:

$$\min \frac{1}{2} ||Ax - b||^2 ,$$

amounts to solving $A^*Ax = A^*b$ (aka the normal equations).

Show that the set of solutions is:

$$(A^*A)^{\dagger}A^*b + \operatorname{Ker} A$$
.

2.2 Gradient descent on least squares

Exercise 2.4 (Gradient descent on isotropic parabola). Let $A \in \mathbb{R}^{n \times d}$ be such that its condition number¹ $\kappa(A)$ is equal to 1. Show that gradient descent with stepsize 1/L converges in a single iteration for the problem $\min \frac{1}{2} ||Ax - b||^2$.

¹i.e. the ratio between the largest and the smallest eigenvalues of A^*A .

3 Gradient

Exercise 3.1. Provide an example of setting where the gradient is not equal to the vector of partial derivatives.

Exercise 3.2. Let $f: \mathcal{X} \to \mathbb{R}$ and $\theta: \mathbb{R}_+ \to \mathcal{X}$ be differentiable. Show that

$$\frac{d}{dt}f(\theta(t)) = \langle \nabla f(\theta(t)), \dot{\theta}(t) \rangle .$$

Exercise 3.3. Show that the gradient of a function is orthogonal to the level lines of that function.

Exercise 3.4. Let $A \in \mathbb{R}^{n \times d}$, $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^d \to \mathbb{R}$ defined as g(x) = f(Ax) for all $x \in \mathbb{R}^d$. Show that

$$\nabla g(x) = A^* \nabla f(Ax) ,$$

$$\nabla^2 g(x) = A^* \nabla^2 f(Ax) A .$$

Exercise 3.5 (Polyak-Lojasiewicz inequality). Let f be a μ -strongly-convex and differentiable function. Let $x^* = \operatorname{argmin} f(x)$. Show that f satisfies the Polyak-Lojasiewicz inequality:

$$\mu(f(x) - f(x^*)) \le \frac{1}{2} \|\nabla f(x)\|^2 . \tag{1}$$

Provide an example of function which is not strongly convex, but satisfies the inequality.

Exercise 3.6. Provide an example of matrix $A \in \mathbb{R}^{n \times d}$ such that the gradient of $x \mapsto \frac{1}{2}x^{\top}Ax$ is not equal to Ax.

4 Convexity inequalities

Exercise 4.1. Let f be a convex and Gateaux-differentiable function. Let L > 0. Show that the following properties are equivalent:

- 1. $\forall x, y, \|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
- 2. $\forall x, y, f(x) \le f(y) + \langle \nabla f(y), x y \rangle + \frac{L}{2} ||x y||^2$
- 3. $\forall x, y, \frac{1}{L} \|\nabla f(x) \nabla f(y)\| \le \langle x y, \nabla f(x) \nabla f(y) \rangle$

Note: 2 is known as the descent lemma; 3 is known as the Baillon-Haddad theorem, or cocoercivity of the gradient.

Exercise 4.2. Let f be a L-smooth μ -strongly convex function. Show that for any x, y, y

$$\frac{\mu L}{\mu + L} \|x - y\|^2 + \frac{1}{L + \mu} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle x - y, \nabla f(x) - \nabla f(y) \rangle.$$

5 Around fixed point schemes

Exercise 5.1. Let $T: \mathcal{X} \to \mathcal{X}$ be a linear operator which is q-contractive, meaning that for all $x \in \mathcal{X}$,

$$||Tx|| \leq q||x||$$
.

Show that T admits at most one fixed point.

Show that the sequence defined by $x_0 \in \mathcal{X}$, $x_{k+1} = Tx_k$ converges, and that the limit is a fixed point. Show that, denoting x^* this fixed point, the sequence x_k converges to x^* at linear speed.

Exercise 5.2. Show that the results of the above exercise do not hold when q = 1.

6 Constrained optimization

Exercise 6.1. Show that the indicator function ι_C is convex (resp. lower semicontinuous, resp. proper) if C is convex (resp. closer, resp. nonempty).

Exercise 6.2 (Global optimality condition for constrained convex optimisation). Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex differentiable function, let C be a convex subset of \mathbb{R}^d . Show that $x^* \in \operatorname{argmin}_{x \in C} f(x)$ if and only if

$$\forall x \in \mathbb{R}^d, \langle \nabla f(x^*), x - x^* \rangle \ge 0$$
.