Otázka 11 - Směrovače, směrování a směrovací protokoly RIPv1, RIPv2, OSPF, EIGRP

Směrovače

- routery
- propojuje sítě
- směruje a přepíná pakety
- segmentuje domény všesměrového vysílání, jeho různé porty proto nemohou patřit do stejné sítě
- primární úkol je směrovat pakety do lokální či vzdálené sítě pomocí
 - o určení nejlepší cesty pomocí směrovací tabulky
 - o přepínání paketů směrem k cíli včetně jejich zapouzdření na linkové vrstvě
- směrovací tabulka se vytváří:
 - o dynamicky směrovací protokol vypočítává cestu dynamicky
 - staticky admin ručně vytváří směrování, v případě změny topologie musí tabulku upravit
- směrovač na vrstvách ISO/OSI:
 - 1. vrstva zpracování signálů
 - o 2. vrstva rozbalení a zapouzdření paketů z a do rámců, nebo přepíná dle L3
 - o 3. vrstva směrování paketů z jedné sítě do druhé

Směrování

- Statické
 - o využívá předem vytvořené statické cesty, pakety jdou tudy, kudy řekl admin
 - o nerozpoznává jiné cesty
 - o nedokáží vyměňovat směrovací informace s jinými routery
- Dynamické
 - o routery rozpoznávají cesty pomocí dynamických směrovacích protokolů
 - směrovací protokol tvoří komunikaci mezi routery a umožňuje sdílení informací o stavu sítě
 - o všechny procesy probíhají automaticky
 - o mezi směrovací protokoly patří např.: RIP, EIGRP, OSPF, ...
 - výhody:
 - admin nemusí znát přesnou topologii sítě
 - změny se automaticky šíří
 - složitější konfigurací lze dosáhnout jednodušší správy
- Passive Interface
 - o volba vypínající odesílání dat o směrování do dané sítě
 - o z bezpečnostních důvodů se nastavuje u sítí, kde jsou pouze klienti
- Autonomní oblast
 - slouží k rozdělení větší sítě na menší, v nichž můžou operovat směrovací protokoly odlišným způsobem
 - o každé oblasti je přidělen identifikátor
 - o protokoly pracující v oblasti jsou interní (IGP), protokoly pracující mezi oblastmi jsou externí (EGP)

- Směrování skupinového vysílání
 - o zajištění toku paketů optimálním způsobem i do vzdálených oblastí sítě
 - hledání minimálního stromu spojů pro pokrytí cesty od zdroje k momentálním zájemcům o příjem
 - velmi dynamický proces
 - zájemci o příjem skup. vysílání mohou vznikat a zanikat trvale, tyto změny musí být vhodně reflektovány
 - směrovací protokoly pro tento typ vysílání jsou předmětem vývoje a výzkumu,
 v současnosti se nejčastěji užívají protokoly DVMRP a PIM
- Hierarchické směrování
 - o cesta se určuje na základě sítě, pak podsítě, a nakonec podle IP adresy
 - o při směrování pomocí VLSM se volí cesta nejvíce podobná cílové adrese
 - o protokol užitý v síti s VLSM musí propagovat adresu sítě a masku podsítě

Směrovací tabulka

- obsahuje seznam připojených sítí
- přímo připojené sítě
 - o v tabulce označeny písmenem "C"
 - o připojené k rozhraní routeru
- vzdálené sítě
 - o připojené alespoň o jeden router dál
 - o je u nich zapsáno:
 - kód protokolu
 - cílová síť
 - admin. vzdálenost/metrika
 - next hop
 - doba od poslední aktualizace
 - odchozí port routeru
- v případě dvou cest k stejné síti se upřednostní ta s nižší admin. vzdáleností
- routery se řídí každý svou tabulkou
- informace jednoho routeru se mohou lišit od informací ostatních
- informace o cestě tam nesdělují routeru informace o cestě zpátky

Metrika

- hledání nejlepší cesty podle:
 - o 1. nejmenší administrativní vzdálenosti
 - o 2. číslo za lomítkem (maskovací číslo
 - o 3. metriky
- administrativní vzdálenost číselně vyjadřuje kvalitu/důvěryhodnost směrovacího protokolu, který vytvořil danou řádku ve směrovací tabulce (přímo připojená 0, statická cesta 1, OSPF 110, ...)
- metrika je vyjádření kvality linky pro jeden konkrétní protokol
- nejnižší metrika = nejkvalitnější cesta

- k výpočtu může sloužit:
 - o **počet skoků** počet směrovačů, přes které komunikace projde
 - přenosová rychlost a kapacita a šířka pásma preferuje se linka s vyšší přenosovou rychlostí
 - o **zatížení** vytížení linky provozem
 - o **zpoždění** doba cesty paketu po síti
 - spolehlivost vypočítává pravděpodobnost chyby po cestě na základě předchozích incidentů
 - o cena určena buď IOS, nebo adminem

Statické směrování

- ve směrovací tabulce označeno "S"
- používá se:
 - o v menších sítích, kde může být dynamické směrování zbytečně náročné na zdroje
 - síť je připojena k Internetu jediným providerem (ISP), který je jediným výstupním bodem ze sítě
 - o velká síť s topologií s jedním centrálním zařízením, z každé větve vede do cíle jen jedna cesta přes toto zařízení
- často se kombinuje statické a dynamické směrování
- lze nastavit pomocí adresy next hop, nebo pomocí odchozího rozhraní
- pro úpravu cesty se musí nejprve smazat stará a pak nastavit nová, bez smazání by totiž existovaly dvě cesty

Implicitní cesta

- default route, Gateway of last resort
- speciální případ statické cesty pro cílové sítě mimo naši správu (většinou provider)
- paket se na tuto cestu odešle, pokud router nenalezl cílovou síť v předchozích záznamech směrovací tabulky
- ve směrovací tabulce označena *

DVA algoritmus

- Distance-Vector Algorithm
- cesty jsou inzerovány jako vektory vzdálenosti a směru
- vzdálenost definována metrikou, směr definuje nex-hop
- routery si tato data sdílejí a vytvářejí si směrovací tabulky
- některé DVA protokoly posílají kompletní směrovací tabulky všem připojeným sousedům
- protokoly DVA počítají nejkratší cestu v ohodnoceném grafu z uzlu do uzlu, hodnoty mohou být i záporné (Bellman-Ford algoritmus)
- lze získat mnoho informací o topologii, ale nelze získat znalost přesné topologie
- je celkem pomalý a náchylný ke smyčkám, TTL je proto omezen na 16 skoků
- využívá se v sítích s méně než 50 routery

RIP

- Routing Information Protocol
- jeden z nejstarších protokolů, které se dnes užívají (v1 vznikla 1988)
- protokol typu DVA

- v pravidelných intervalech posílá aktualizované zprávy o směrovacích tabulkách
- routery užívající RIP udržují cesty s nejnižší metrikou
- užívá časovače pro zabránění vzniku smyček
- užívá automatické aktualizace (triggered update) při změně v topologii
- Triggered update se aktivuje když:
 - o je přidána cesta do směrovací tabulky
 - o změní se stav rozhraní či routeru

- RIPv1

- jedinou metrikou je počet přeskoků, s každým přeskokem se hodnota zvyšuje o hop count value (většinou 1)
- o třídní protokol směruje celé velikostní třídy
- o nelze vypnout automatickou sumarizaci
- o maximální počet skoků je 15, 16 mají nedosažitelné cesty, cesty s více než 15 skoky jsou inzerovány jako neplatné/nedostupné
- o aktualizace směrovací tabulky vysílány každých 30 s, nesdílí masku podsítě
- o nepodporuje autentizaci
- o standartní administrativní vzdálenost je 120
- o užívá se v malých, plochých sítích, nebo na okrajích větších sítí

- RIPv2

- 0 1994
- o podporuje rozdílnou velikost masek subsítí (VLSM), masky jsou zahrnuty ve směrovacích informacích
- o podporuje automatickou sumarizaci, lze ji i vypnout
- o používá multicast v zasílaných informacích
- o umožňuje autentizaci
- o výchozí administrativní vzdálenost je 120
- o v jedné zprávě podporuje až 25 cest
- o užití je stejné jako u RIPv1

LSA algoritmus

- link-state algorithm
- router zjišťuje jaké má sousední routery, pomocí HELLO paketu pravidelně kontroluje jejich dostupnost
- sdílí směrovací informace (zejména o svých sousedních routerech)
- router má úplné znalosti o topologii
- pro router je složitější než DVA
- položky směrovací tabulky se počítají z dat od ostatních routerů
- větší sítě se rozdělují na oblasti s hraničními routery, hraniční routery si vyměňují informace o celých oblastech – předchází se zahlcení komunikace velkým množstvím směrovacích informací
- stabilní protokoly aplikovatelné i u větších sítí
- protokoly užívající tento algoritmus se také nazývají Shortest Path Firts Protocols (SPF),
 jsou založeny na algoritmu SPF Dijsktra
- Dijkstrův algoritmus:
 - o každý router se dozví o každé přímo připojené síti
 - o každý router pošle sousednímu HELLO paket a vytvoří vztah přilehlosti
 - o každý router sestavuje pakety obsahující stav přilehlých linek (LSP pakety)

- LSP paket obsahuje údaje o lince mezi dvěma routery:
 - ID souseda
 - typ linky
 - adresu sítě
 - masku
 - přenosová kapacita
 - atd.
- při změně topologie rozesílá každý router LSP pakety všem přímo připojeným sousedům ve směrovací oblasti, přijaté pakety se ukládají do databáze stavu linky (LSDB – Link-state Database)
- každý router si vytváří úplnou mapu topologie a nezávisle vypočítává nejlepší cestu do každé cílové sítě – vytváří strom neobsahující smyčky
- stavy LSDB:
 - o full plně synchronizovaná
 - o 2-way obousměrná komunikace na obou linkách
 - down, attempt, init, loading, exstart, Exchange neběží kompletně, stav se sousedy

OSPF

- Open Shortest Path First
- nahradil RIP, který byl nepoužitelný pro velké sítě
- beztřídní protokol podporuje VLSM
- pro rozšiřitelnost používá koncept oblastí
- rychlá konvergence a rozšiřitelnost
- založen na myšlence oblastí (area sítě)
- oblast je složena z logické skupiny segmentů sítě a v nich připojených zařízení
- oblasti slouží jako strategie řízení toku dat a zjednodušení směrovací tabulky
- každá doména (autonomní systém) užívající OSPF musí obsahovat páteřní oblast číslo 0
- typy paketů OSPF:
 - o HELLO kontaktní a udržovací pakety, vytváří a udržují vztah přilehlosti
 - DBD (The Database Description) zkrácený výpis LSDB, slouží k synchronizaci a ověření LSDB u příjemce
 - o LSR (Link-state Request) žádost o informace
 - LSU (Link-state Update) odpověď na LSR, může obsahovat až 11 typů oznamovačů LSA (Link-state Advertisements)
- Zjednodušená činnost:
 - o router vysílá HELLO pakety, když se dva propojené routery shodnou na parametrech, stanou se sousedy
 - o mezi některými sousedy se vytvoří užší vazby označují se jako přilehlé
 - přilehlé routery si vyměňují aktualizační pakety (obsahující oznamovače LSA)
 s informacemi o stavu rozhraní routeru nebo seznam routerů připojených routerů
 - všechny routery si ukládají přijaté LSA do LSDB a přeposílají je ostatním přilehlým routerům – výsledkem je shodná topologická databáze na všech routerech
 - o po naplnění LSDB provede každý router samostatně výpočet pomocí SPF algoritmu, výsledkem je nalezení nejkratší cesty do každé sítě v podobě stromu, čímž se odstraní možné smyčky

- o na základě výpočtů ve stromu SPF lze naplnit směrovací tabulku nejlepšími cestami
- o při změně topologie, odešle router, na kterém ke změně došlo, informaci všem přilehlým routerům v podobě LSA v LSU paketu, tato data se rozšíří výše popsaným způsobem a dojde k úpravě topologické databáze přepočtu SPF
- Router ID slouží k jednoznačné identifikaci routeru v doméně, určuje se podle nevyšší IP adresy loopback, případně podle nejvyšší IP aktivního rozhraní
- Link-state ID udává typ inzerované informace, např. LS = 3 je sumarizace linek
- OSPF Area
 - o každá oblast běží s oddělenou kopií základního link-state algoritmu
 - struktura oblasti není viditelná zvenčí
 - o oblast označená 0 se užívá jako páteřní oblast, tvořící jádro OSPF sítě
 - páteřní oblast zodpovídá za distribuci směrovacích informací mezi oblastmi
 - každá nepáteřní oblast musí být připojena k páteřní oblasti
 - do oblasti přidáváme buď jednotlivé sítě, nebo skupinu agregujeme se specifickou cenou – to umožňuje snížit množství předávaných informací a snížuje zátěž procesoru
- Role routerů v OSPF
 - Autonomous System Boarder Router (ASBR)
 - spojen s ostatními AS (Autonomous System), používá se pro předávání cest přijatých z jiných AS
 - Area Boarder Router (ABR)
 - router propojující více oblastí, poskytuje vícenásobnou kopii link-state databáze (LSDB) do každé oblasti
 - Internal Router (IR)
 - router propojen jen v jedné oblasti
 - Designated Router (DR)
 - generuje LSA pro síť s více branami, je zálohován pomocí BDR (Backup Designated Router)
 - umožňuje snížit počet vyžadovaných sousedství v síti s více přístupy, snižuje počet aktualizací a velikost topologické databáze
 - redukuje provoz, v NBMA (Non-Broadcast Multiple Access) a broadcast sítích je jediným zdrojem pro update směrovacích informací
 - funkce:
 - sestavuje tabulku topologie a rozesílá změny
 - má nejvyšší prioritu (podle router ID)
 - jako BDR se volí druhy s nejvyšší prioritou
 - router s 0 prioritou nemůže nikdy být DR nebo BDR
 - zodpovědný za aktualizace ostatních routerů OSPF (DROther), když nastane změna v topologii s více přístupy
 - BDR monitoruje DR a nahradí ho, když DR selže
 - Volba DR a BDR:
 - DR router s nejvyšší prioritou OSPF
 - BRD router s 2. nejvyšší prioritou
 - když jsou priority shodné, rozhodne nejvyšší router ID

- DROther formují full sousedství jen s DR a BDR
- DROther formují přilehlé sousedství se všemi routery v síti, přijímají z nich kontaktní pakety s ví o všech routerech v síti
- DROther mezi sebou navazují 2-way sousedství
- Metrika OSPF
 - o určena součtem cen podle rychlostí dělících linek

Ceny rozhraní podle rychlosti

Medium	Nominal bandwidth	Default Cost	Changing reference bandwidth to 10 Gbps	Cost with 1/square root model
9,6kbps line	9,6kbps	10,416	1,041,666	1,020
56kbps line	56kbps	1,785	178,571	422
64kbps line	64kbps	1,562	156,250	395
T1 circuit	1,544Mbps	64	6,476	80
E1 circuit	2,048Mbps	48	4,882	69
T3 circuit	45Mbps	2	222	14
4Mbps Token Ring	4Mbps	25	2,500	50
16Mbps Token Ring	16Mbps	6	625	25
Ethernet	10Mbps	10	1,000	31
Fast Ethernet	100Mbps	1	100	10
Gigabit Ethernet	1Gbps	1	10	3
10 Gigabit Ethernet	10Gbps	1	1	1

- o rychlost linky lze ovlivnit nastavením rychlosti rozhraní
- o parametry při stanovení externí metriky:
 - default route se nepovažuje za statické směrování
 - if-installed zasílá default route jen pokud byla nastavena
 - always vždy zasílá default route
 - as-type1 směrovací rozhodnutí založena na součtu externí a interní metriky
 - as-type2 směrovací rozhodnutí založena jen na externí metrice (vnitřní určena jen prvním spojem)

EIGRP

- Enhaced Interior Gateway Routing Protocol
- IGRP vylepšený o VLSM
- používá bounded aktualizace jen při změně topologie
- specifické funkce:
 - o spolehlivý transportní protokol RTP (Reliable Transport Protocol)
 - o omezené aktualizace při změně odešle aktualizaci s daty jen o určité síti, místo celé tabulky, informace zasílány jen routerům, které je potřebují
 - konvergentní algoritmus DUAL (Diffusing Update Algorith) nazýván hybridní algoritmus
 - o vytvážení vztahů sousedství
 - o používá informace o stavu linek protokol s DVA
 - o vyvažuje zátěž i na linkách s různou metrikou

- o metrika je založena na:
 - počtu přeskoků
 - šířce pásma
 - zpoždění
 - spolehlivost
 - zatížení
- o rychlejší konvergence nepoužívá zadržovací časovače, smyčkám předchází pomocí systému výpočtu trasy (rozptylové výpočty)
- o používá číslo autonomního systému AS, jeden router může používat více instancí
- administrativní vzdálenost interního směrování = 90
- pro činnost používá 3 tabulky:
 - o Směrovací obsahuje nejlepší cesty s nejlepší metrikou
 - Topologie obsahuje zjištěné směry nejlepší, záložní i ostatní do všech cílových sítí ve stejné doméně
 - Sousedů obsahuje informace o sousedních routerech, se kterými si vyměňuje aktualizace ve stejném AS
- Typy paketů:
 - Aktualizace jen pro změny, nejsou periodické, unicast/multicast cílová adresa (podle počtu adresátů, potvrzované
 - bounded (vázané) jen na routery na které má změna vliv
 - partial (částečné) jen změny topologie a metriky
 - o Dotaz hledání sítí, multicast/unicast, potvrzované
 - Odpověď na dotaz unicast, potvrzované
 - Kontaktní paket (Hello) hledání identifikace a verifikace sousedních routerů ve stejném AS, multicast, periodické, udržování vztahu sousedství
- Vzorec pro výpočet metriky:

metric = [K1*bandwidth + (K2*bandwidth)/(256 - load) + K3*delay]*[K5/(reliability + K4)]

- Procesy:
 - Vytvoření sousedství pomocí Hello paketů:
 - Hello zprávy používají multicast adresu 224.0.0.10
 - každých 5 s na vysokorychlostních rozhraních
 - každých 60 s na pomalejších multipoint rozhraních
 - obsahují hold-time časovač, pokud chybí 3x Hello, soused je považovaný za nedostupný, všechny cesty přes souseda jsou smazány z tabulek a je inciovaný DUAL
 - o Dva směrovače se stanou sousedy:
 - jsou ve stejném AS
 - IP rozhraní ze stejné sítě
 - stejné K-hodnoty
 - routery nemusí mít stejné Hello a Hold-down časovače
 - o Pojmy:
 - Successor next-hop
 - cesta k cíli přes Successor je nejkratší a bez smyček
 - Feasible Successor záložní next-hop
 - cesta k cíli není nekratší, ale je pořád bez smyček
 - Feasible Distance (FD)
 - doposud nejkratší známá vzdálenost do cíle

- Reported Distance (RD, advertised distance)
 - sousedova současná vzdálenost od cíle, kterou oznamuje
- Feasibility connection (FC)
 - podmínka kontrolující, jestli cesta přes souseda neobsahuje smyčku

o Tabulky:

- Neigbour table
 - uchovává info o sousedech
- Topology table
 - pro každou cílovou síť eviduje vzdálenost, kterou ohlásili sousedi routeru
 - uchovává info o cílových sítích a jejich stavu, FD a RD
 - neobsahuje topoligický popis sítě, ale seznam cílových sítí a vzdáleností

o Stav procesu:

- Passive state
 - stav cílové sítě, když je znám, successor a použitelný směr
- Active state
 - stav cílové sítě, když není successor ani feasible successor a router ho hledá
- Diffusing computations (Difuzní výpočet)
 - způsob řízení distribuovaného výpočtu v síti
 - cílem je spustit výpočet, mít info o jeho průběhu, získávat výsledky a správě ohlásit jeho konec
 - spustí se tím, že směrovač pošle sousedům žádost (query)
 - soused odpoví, nebo (když nezná odpověď) odešle svou žádost do svého okolí
 - router musí odpovídat tak, aby poslední odpověď přišla, až když on sám na žádné odpovědi nečeká, a aby ji odeslal tomu, kdo se ptal první