黄冈中学信息奥赛训练题

测试时间 14:00-17:30

(请仔细阅读本页面内容)

一. 题目概况

中文题目名称	删图游戏	吃零食	追逐
英文题目与子目录名	graph	eat	chase
可执行文件名	graph	eat	chase
输入文件名	graph.in	eat.in	chase.in
输出文件名	graph.out	eat.out	chase.out
每个测试点时限	1s	2s	1s
测试点数目	10	10	10
每个测试点分值	10	10	10
附加样例文件	有	有	有
结果比较方式	全文比较(过滤行末空格及文末换行)		
题目类型	传统	传统	传统
运行内存上限	512M	1024M	512M

二. 提交源程序文件名

对于 C++文件	graph.cpp	eat.cpp	chase.cpp
对于c文件	graph.c	eat.c	chase .c

三. 编译命令((不包含任何优化开关))

对于 C++文件	g++.exe %s.cpp -o %s.exe -lm
对于c文件	gcc.exe %s.c -o %s.exe -lm

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中的函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 评测时允许使用万能头文件# include <bits/stdc++.h>,默认支持 c++14。
- 4. 程序执行时堆栈空间限制与内存空间限制相同。
- 5. 提交的文件目录如下图所示,HB-0088 为考生准考证号,date、robot、tax 为题目规定的 英文名称,目录中只包含源程序,不能包含其他任何文件。

删图游戏(graph)

【题目描述】

小凯有一张 n 个点 m 条边组成的带点权和边权的无向简单图(没有重边和自环)。小凯为了学习关于图论的知识,它决定玩一个游戏。这个游戏是这样的:每一次,小凯可以在图中任意选择一个点,并把这个点与这个点相连的边全部删除,得到一张新的图。

小凯可以执行这个删除操作若干次,直到他想让这个游戏停止为止。但这个游戏停止需要满足一个条件,剩下的点两两之间都是可达的,并且至少有2个点。

当小凯结束这个游戏时,小凯会获得一个欢乐值,这个欢乐值定义为这张图剩下的点权和与边权和的比。小凯想让最后得到的欢乐值最大。特别地,如果无法结束这个游戏,小凯获得的欢乐值为 0。

【输入格式】

从文件 graph. in 中读入数据。

一开始有两个数 n,m, 如题意所示。

第二行有 n 个数 ai 表示这个图中第 i 个点的点权。

接下来有 m 行每行三个数 u,v,w($1 \le u,v \le n$,且 u!=v),表示一条连接 u,v 的 边权为 w 的边。

【输出格式】

输出到文件 graph. out 中。

输出一行,你需要输出小凯停止游戏时能得到的最大的欢乐值,保留小数点后两位数字。

【样例输入】

- 3 3
- 2 3 4
- 2 3 5
- 1 2 3
- 1 3 4

【样例输出】

1.67

【样例说明】

删除编号为3的点。

【数据范围与约定】

对于 20%的数据 n=2

对于 50%的数据 n≤5

对于 100%的数据 $1 \le n,m \le 100000$, $1 \le ai,w \le 1000$, 且输入均为正整数。

吃零食(eat)

【题目描述】

一个商店里只卖薯片、香肠、牛奶和饼干,小凯想各买一种作为自己的午饭(为了健康还是偶尔吃一次吧)。

但每一种商品,都有不同的品牌,我们用 A, B, C, D 表示卖薯片、香肠、牛奶和饼干的商家个数。

给定 A 个数 a1, a2, …, aA 表示对于薯片而言,不同品牌的薯片的价格。

给定 B 个数 b1, b2, ···, bB 表示对于香肠而言,不同品牌的香肠的价格。

牛奶和饼干也依次这么给出。

小凯只有n块钱,它想知道存在多少种组合方案,能够不超过n块钱恰好买到一包薯片,一根香肠,一袋牛奶和一包饼干。

【输入格式】

从文件 eat. in 中读入数据。

第一行5个数分别表示n, A, B, C, D。

接下来4行,分别是: A个数表示ai, B个数表示bi, C个数表示ci, D个数表示di。

【输出格式】

输出到文件 eat. out 中。

输出一个整数,表示有多少种组合方案。

【样例输入】

11 3 1 1 1

4 5 6

3

2

1

【样例输出】

2

【数据范围与约定】

对于30%的数据A, B, C, D≤50

对于另外30%的数据n≤1000。

对于100%的数据1 \leq n \leq 10 8 , 1 \leq A, B, C, D \leq 5000, 0 \leq ai, bi, ci, di \leq 10 8 .

追逐(chase)

【题目描述】

有 n 只猎豹, 第 i 只猎豹 ti 时刻出发, 以速度 vi 每时刻向前奔跑。

小凯观察到了这么个有趣的现象:可能出现猎豹之间的超越,也有可能一只跑得很快的猎豹把其它猎豹拉的距离越来越大。

小凯想找一个时刻,使得所有猎豹都已经出发,并且跑的最快的猎豹和跑的最慢的猎豹之间的距离尽可能小。但这个时刻比较难找,因此小凯只想知道这个最短的距离是多少?

【输入格式】

从文件 chase. in 中读入数据。

第一行一个数n。

接下来n行,每行两个数分别是ti和vi。。

【输出格式】

输出到文件 chase. out 中。

输出一个数,保留小数点后两位,表示这个拉的最开的两只的猎豹的距离最小是多少。

【样例输入1】

- 3
- 1 4
- 2 5
- 3 7

【样例输出1】

0.33

【样例说明】

在第 5+2/3 这个时刻, 三只豹子分别位于 18+2/3, 18+1/3, 18+2/3。

【数据范围与约定】

对于 20%的数据 n=2。

对于 20%的数据 n=3

对于 60%的数据 n≤100。

对于 80%的数据 n≤1000。

对于 100%的数据 n≤100000, 1≤vi, ti≤100000。并且输入均为正整数。