Prereqs: Mathematics and Classical Computing

By Emilio Peláez and Alejandro Gómez

Course Overview:

- Lecture 1: Pre-requisite overview
- Lecture 2: Qubits, Quantum Logic Gates and Quantum Circuits
- Lecture 3: Teleportation, No Cloning Theorem, Superdense Coding, and BB84
- Lecture 4: Review on Quantum Circuits, Oracle, Deutsch
- Lecture 5: Practical Workshop
- Weekend: Hackathon!

Goals of this lecture

- Get you comfortable with the basic tools of mathematics commonly used in quantum computing
- Get you comfortable with Dirac notation, used in quantum mechanics and therefore in quantum computing
- Look at the inner works of classical computers so we can compare them to those of quantum computers later

Contents

- Complex Numbers
 - Basic operations
- Linear algebra
 - Vector spaces
 - Operators
 - Eigenvalues, eigenvectors
- Classical computing
 - Gates and universality

Complex numbers

- z = a + bi, where $i^2 = -1$
- $z = r \cos(\varphi) + i r \sin(\varphi)$

- Magnitude of z is $|z| = \sqrt{a^2 + b^2}$
- Addition:
- Subtraction:
- Multiplication:

Complex conjugation

- All it does is turn i into -i
- If we have a complex number z = a + bi, its complex conjugate is $z^* = a bi$
- z times its conjugate:

Complex conjugate

• Sum of conjugates:

Conjugate of conjugate:

Magnitude of z:

Linear algebra

- Since quantum states can be represented as vectors, we need to get into linear algebra
- Linear algebra allows us to study vectors, how they interact with each other, and how they are transformed about matrices
- The field is much broader than this, but we only need some basic concepts to get started

Vectors

- A vector has the form $\vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ or $\vec{a}^T = (a_1 \cdots a_n)$
- The dimension of a vector is its number of entries
 - n = 1
 - n = 2

• n = 3

Vectors

Vector addition

Scalar multiplication

Conjugate transpose:

• Magnitude:

Vector space

- A vector space is a collection of vectors, a field of scalars, and two operations: vector addition and scalar multiplication
- There are real vector spaces and complex vector spaces
- In quantum computing, we work with complex vector spaces

Vector space

- Imagine a vector space V and two vectors \vec{u} and \vec{v} in it. The following are true:
 - $\vec{u} + \vec{v}$ is in V
 - $\bullet \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$
 - $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{w} + \vec{v})$, where \vec{w} is also in V
 - There is a $\vec{0}$ vector in V, where $\vec{u} + \vec{0} = \vec{u}$
 - For every \vec{u} there is a $-\vec{u}$ such that $\vec{u} \vec{u} = \vec{0}$

Vector space

- Imagine a vector space V with scalar field \mathbb{C} , two vectors \vec{u} and \vec{v} in V, and scalars c and d in \mathbb{C} . The following are true:
 - $c\vec{u}$ is in V
 - $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
 - $c(d\vec{u}) = d(c\vec{u})$
 - $(c+d)\vec{u} = c\vec{u} + d\vec{u}$
 - $1(\vec{u}) = \vec{u}$

Dot (Inner) product

- Vector space → Hilbert Space
- The dot product of two vectors $\vec{u}, \vec{v} \in \mathbb{C}^n$ is denoted by:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i^* v_i$$

 We can write the magnitude of a vector in terms of an inner product:

$$|\vec{u}| = \sqrt{\sum_{i=1}^{n} u_i^* u_i} = \sqrt{\sum_{i=1}^{n} |u_i|^2}$$

Dot (Inner) product

Geometrically, the dot product is defined as

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

If we are working with unit vectors,

$$|\vec{u}| = |\vec{v}| = 1$$

• If the vectors are orthogonal, $\theta = \pi/2$ and thus $\vec{u} \cdot \vec{v} = 0$

Orthonormal basis

- Vectors can be represented as a sum of other vectors, i.e. a linear combination
- Particularly, we are interested in representing a vector as a sum of linearly independent vectors of unit magnitude that are orthogonal to each other

$$\bullet \ \binom{a}{b} = a \binom{1}{0} + b \binom{0}{1}$$

$$\bullet \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Orthonormal basis

• Given a set of basis vectors \vec{u}_i , we can write any vector as a linear combination of them

$$\vec{a} = \sum_{i} \alpha_{i} \vec{u}_{i}$$

Dirac notation

- Makes working with the concepts presented easier
- Uses bras and kets: (· | and | ·)

•
$$|v\rangle = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
 and $\langle v| = |v\rangle^\dagger = (v_1^* \cdots v_n^*)$

A bra-ket takes an inner product!

$$\langle v|u\rangle = (v_1^* \quad \cdots \quad v_n^*) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \sum_{i=1}^n v_i^* u_i$$
TEQS

Qubits as quantum states

- We can represent a quantum state as $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$
- |0| and |1| are distinguishable quantum states

•
$$|0\rangle = {1 \choose 0}$$
 and $|1\rangle = {0 \choose 1}$

• Therefore, we can write $|\psi\rangle=\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix}+\beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}=\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

Qubit representation

- A qubit is represented as $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$
- Values α and β are called probability amplitudes. Furthermore, $|\alpha|^2$ is the probability of finding the qubit in state $|0\rangle$ and $|\beta|^2$ is the same but for state $|1\rangle$
- Therefore, $|\alpha|^2 + |\beta|^2 = 1$ (Statevector) In other words, $||\psi\rangle| = 1$

Qubit representation

• What if $|\alpha|^2 + |\beta|^2 \neq 1$? We need to normalize our state!

$$|\hat{\psi}\rangle = \frac{|\psi\rangle}{||\psi\rangle|}$$

Multi-qubit representation

- Most of the times, we will be working with more than 1 qubit
- Suppose you have two qubits $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ and $|\phi\rangle = \delta|0\rangle + \gamma|1\rangle$. The combined state is $|\psi\rangle \otimes |\phi\rangle$

- Dimension of vector representing n qubits = 2^n .
- A statevector in a Hilbert space \mathcal{H} of dimension 2^n describes an n qubit system

Operators

- Operators act on qubits to transform them. $A|v\rangle = |w\rangle$
- Operators in quantum computing need to be linear and unitary to preserve probability:
 - $A(|v\rangle + |w\rangle) = A|v\rangle + A|w\rangle$
 - $A(c|v\rangle) = c(A|v\rangle)$, where c is a complex scalar
 - $||v\rangle| = |A|v\rangle|$, i.e., magnitude is conserved

Operators

- What is the outer product $(|a\rangle\langle b|)$?
- Pauli Operators:
 - $I = |0\rangle\langle 0| + |1\rangle\langle 1|$
 - $X = |1\rangle\langle 0| + |0\rangle\langle 1|$
 - $Y = i|1\rangle\langle 0|-i|0\rangle\langle 1|$
 - $Z = |0\rangle\langle 0| |1\rangle\langle 1|$

Operators

• Let's apply the Pauli operators on a qubit defined by $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

Operators as matrices

 To convert from outer product to matrix, just perform the operation they encode

$$|a\rangle\langle b| = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}(b_1^* \dots b_n^*)$$

- Now, we can write the Pauli operators as matrices
- $|0\rangle\langle 0|$
- $|0\rangle\langle 1|$
- |1\\d\
- |1\\(1|

Operators as matrices

Let's apply multiple Pauli matrices to the same qubit

Operators as matrices

Multi-qubit operators

- The CNOT **always** acts on two qubits. It has a control qubit and a target qubit. If the control is set to |1>, it'll apply the X operator to the target qubit.
- Outer product representation:

$$|00\rangle\langle00| + |01\rangle\langle01| + |11\rangle\langle10| + |10\rangle\langle11|$$

• We can define it as $CNOT|x,y\rangle = |x,x \oplus y\rangle$, where \oplus denotes addition modulo 2

Unitary matrices

- In quantum computing, all operators need to be unitary matrices
- This means that $U^{\dagger}U = UU^{\dagger} = I$

Eigenvalues and eigenvectors

- The eigenvectors of a matrix are those that remain unchanged, up to a constant factor, when the matrix acts on them
- $A|u_{\lambda}\rangle = \lambda |u_{\lambda}\rangle$, A is an operator, $|u_{\lambda}\rangle$ is an eigenvector, and λ is the corresponding eigenvalue
- Characteristic equation:

Eigenvalues and eigenvectors

 Let's get the eigenvalues and eigenvectors of some of the Pauli matrices

Eigenvalues and eigenvectors

The spectral decomposition of an operator is

$$A = \sum_{i} \lambda_i |u_{\lambda_i}\rangle\langle u_{\lambda_i}|$$

Classical computing

• In classical computing, we also use gates!

NOT:

AND:

• OR:

Classical computing

• NAND:

• XOR:

Classical computing

Let's build a half adder

Universality of NAND

- In classical computing, you can build any gate out of NAND gates. Therefore, any computation can be done with only NAND gates
- Let's build the AND, OR, and NOT from NAND gates

Universal quantum gates

 Like in classical computing, we also have a set of universal quantum gates that can compute any function

• These are the rotation gates $R_{i \in \{x,y,z\}}$, phase shift gate

 $P(\theta)$, and the *CNOT* gate

Thanks for listening!

Good luck on Lecture 2!

