On considère un rectangle ABCD tel que AB = 16 cm et AD = 6 cm. On place un point M sur le segment [DC]. Fais une figure à main levée.

a. Exprime l'aire de AMCB en fonction de MC.

aire de AMCB = $(AB + MC) \times BC \div 2$

aire de AMCB = $(16 + MC) \times 6 \div 2$

aire de AMCB = 48 + 3MC

b. On pose MC = x. Donne un encadrement des valeurs de x possibles puis indique une expression de la fonction f qui, à x associe l'aire de AMCB.

x est compris entre 0 et 16.

aire de AMCB : f(x) = 48 + 3x

c. Calcule l'aire du trapèze AMCB si MC = 7 en utilisant la fonction f.

 $f(7) = 48 + 3 \times 7 = 69$

aire de AMCB: 69 cm².

2 On considère ce programme de calcul.

- · Choisis un nombre.
- •Ajoute-lui 5.
- •Multiplie cette somme par 3.
- •Soustrais 6 à ce produit.

a. Teste ce programme avec le nombre 2.

$$(2 + 5) \times 3 - 6 = 15$$

b. En notant x le nombre choisi au départ, détermine la fonction g qui associe à x le résultat obtenu avec le programme.

$$g(x) = (x + 5) \times 3 - 6$$

$$g(x) = 3x + 9$$

c. Détermine g(0).

$$g(0) = 3 \times 0 + 9 = 9$$

d. Quel nombre faut-il choisir pour obtenir 18?

$$g(x) = 3x + 9 = 18$$
 donc $3x = 9$ donc $x = 3$

 $\fill 3$ On appelle h la fonction qui à un nombre associe son résultat obtenu avec le programme de calcul suivant.

- Choisis un nombre.
- •Ajoute-lui -5.
- Calcule le carré de la somme obtenue.
- a. Complète le tableau de valeurs suivant.

x	- 3	– 2	0	2	5	π
h(x)	<mark>64</mark>	<mark>49</mark>	<mark>25</mark>	9	0	$(\pi - 5)^2$

- **b.** Quelle est l'image de 0 par h?
- 25
- c. Donne un antécédent de 0 par h.
- 5

4 Pourcentage et fonction linéaire

Durant les soldes, un magasin pratique une remise de 15 % sur tous les articles.

a. Un article coûtait 28 € avant les soldes.
 Quel est son nouveau prix ?

Nouveau prix = 28 € × (100 % - 15%)

Nouveau prix = 28 € × 85% = 28 € × 0.85

Nouveau prix = 23,80 €

b. On appelle f la fonction qui, au prix de départ p, associe le prix soldé. Donne son expression.

$$f(p) = p \times 0.85$$

$$f(p) = 0.85 p$$

c. Un article coûtait 45 € avant les soldes. Quel est son prix soldé ?

$$f(45) = 0.85 \times 45 = 38.25$$

Son prix soldé est de 38,25 €.

d. Un article est soldé à 31,79 €.
Quel était son prix avant les soldes ?

$$f(p) = 0.85 p = 31.79$$

donc
$$p = 31,79 \div 0,85 = 37,40$$

Son prix avant les soldes était de 37,40 €.

- 5 Indique si chaque fonction est affine. Justifie.
- a. La fonction qui, à un nombre, associe le résultat du programme de calcul suivant.
 - Choisis un nombre.
 - •Ajoute-lui 1.
 - •Multiplie le tout par 3.
 - Annonce le résultat.

$$f(x) = (x + 1) \times 3$$

$$f(x) = 3x + 3$$

t est une fonction affine.

b. La fonction par laquelle la longueur du rayon d'un cercle a pour image le périmètre de ce cercle.

$$P(r) = 2 r \times \pi = 2 \pi r$$

t est une fonction linéaire (donc affine).

c. La fonction qui, à la longueur du rayon d'un disque, associe l'aire de ce disque.

$$A(r) = \pi \times r^2 = \pi r^2$$

f n'est pas une fonction affine.

6 La vitesse d'un train en km/h, t minutes après le départ, vaut $3t^2$ pour $0 \le t \le 10$.

On appelle v la fonction qui, au temps écoulé depuis le départ exprimé en minutes, associe la vitesse du train en km/h.

a. Calcule v(5).

Donne une interprétation du résultat.

$$v(t) = 3t^2$$
 donc $v(5) = 3 \times 5^2 = 75$

5 minutes après le départ la vitesse du train est de 75 km/h.

b. Quel est l'antécédent de 168,75 par *v* ? Donne une interprétation du résultat.

$$v(t) = 3t^2 = 168,75$$

donc
$$t^2 = 168,75 \div 3 = 56,25$$

t est positif donc $t = \sqrt{56,25} = 7,5$

7,5 minutes (ou 7 min 30 s) après son départ la vitesse du train est de 168,75 km/h.

- ABCD est un rectangle tel que AB = 7 cm et AD = 5 cm. Un point M se déplace sur les côtés [AB] et [BC] du rectangle et on note x la distance à parcourir du point A au point M en parcourant le rectangle dans le sens ABCD.
- a. Fais une figure

On appelle f(x) l'aire du quadrilatère AMCD.

b. Donne un encadrement de *x* lorsque :

$$M \in [AB]$$
 $M \in [BC]$

$$M \in [AB] : 0 \le x \le 7$$
 $M \in [BC] : 7 \le x \le 12$

c. Déterminer f(x) dans les cas suivants ? $M \in [AB]$ $M \in [BC]$

$$M \in [AB]$$
: On a $0 \le x \le 7$

aire de OMCD = aire de ABCD - aire de MBC

$$f(x) = 5 \times 7 - \frac{(7-x) \times 5}{2} = 35 - \frac{35}{2} + \frac{5x}{2}$$

$$f(x) = {35 \over 2} + {5 \ x \over 2} = 17.5 + 2.5 \ x$$

$$M \in [BC]$$
: On a $7 \le x \le 12$

aire de OMCD = aire de ABCD - aire de ABM

$$f(x) = 5 \times 7 - \frac{7(x-7)}{2}$$
 $35 - \frac{7x}{2} + \frac{49}{2}$

$$f(x) = \frac{119}{2} - \frac{7 x}{2} = 59.5 - 3.5 x$$

d. Calculer f(2), f(7), f(10).

$$f(2) = 17.5 + 2.5 \times 2 = 22.5$$
 (Mest sur [AB])

$$f(7) = 17.5 + 2.5 \times 7 = 35$$

ou
$$f(7) = 59.5 - 3.5 \times 7 = 35$$
 (M est en B)

$$f(10) = 59.5 - 3.5 \times 10 = 24.5$$
 (M est sur [BC])