CLAIMS

- 1. 52. (CANCEL)
- 53. (NEW) A method of estimating arterial delay and arterial dispersion (t, α , σ) values for outputting blood perfusion indices for a region of interest (ROI) by operating a computer program on intensity data in a computer comprising:
 - a. applying a first gamma-variate function (GVF) to an arterial input function (AIF_a) to provide an estimated first model of a vascular transport function $h_a(t)$, wherein for $t < t_1$, $h_a(t) = 0$ and for $t \ge t_1$, $h_a(t) = \frac{1}{\sigma_1} (t - t_1)^{\alpha_1} e^{-(t - t_1)/\sigma_1}$, wherein an estimated t₁ is the transit time of a contrast agent from a measured initial said AIF_a to a region of interest (ROI);
 - b. estimating an initial value σ_1 of said contrast agent, wherein said $\sigma_1 = (t_1)(\beta_1)/(1-\beta_1)$, wherein said β_1 is a known relative dispersion value having a range from 0 to 1;
 - c. convolving AIF_a(t) with said h_a(t, α₁=0) for obtaining an arterial input function AIF_t(t) = AIF_a(t) \otimes h_a(t, α_1 =0) at said ROI;
 - d. estimating a blood flow rate F_t and a tissue impulse residue function R_e(t) by deconvolving a concentration curve $C(t) = (F_t/k_H)AIF_t(t) \otimes R_e(t)$, wherein k_H is a hermocrit correction constant having a known value; and
- e. outputting estimated and optimized tissue mean transit time and dispersion (t₂, 20 α_2 , σ_2) values from an estimated transport function $h_e(t)$ for input to a simulated transport function h_s(t), wherein a simulated tissue impulse residue function $R_s(t)$ is determined, wherein a simulated concentration curve $C_s(t)$ is

5

10

15

fitted to said measured C(t) and quantitative said blood perfusion indices are calculated.

54. (NEW) The method of claim 53, wherein said intensity data is generated by administering a contrast agent to a body lumen of a body during a dynamic imaging scan, wherein said body lumen comprises an artery or vein, wherein an image response from said contrast agent is recorded to computer data storage in a computer.

5

- 55. (NEW) The method of claim 53, wherein said C(t) is a temporal concentration of said contrast agent obtained from said intensity data, wherein said intensity data comprises contrast images sequentially acquired from a region in a body, whereby said contrast agent concentration is plotted versus time.
- 15 56. (NEW) The method of claim 53, wherein said AIF_a is based on a measured early arrival contrast agent peak intensity from a feeding blood vessel to said ROI.
- 57. (NEW) The method of claim 53, wherein said AIFa is scaled upward according to a venous input function (VIF), wherein said VIF is based on a measured late arrival contrast agent peak intensity from a large vein draining from said ROI.
 - 58. (NEW) The method of claim 53, wherein said estimated transit time t_1 is the

APL-101/US 3/12 Reply 1

transit time of said contrast agent from a measured initial said AIF_a of said contrast agent C(t) in a body lumen to said ROI, wherein said t_1 is estimated from plots of said AIF_a versus time and said C(t) versus time.

- 59. (NEW) The method of claim 53, wherein said $h_a(t)$ is calculated using said estimated transit time t_1 and said estimated dispersion value σ_1 , wherein $h_a(t, \sigma_1=0)$ is plotted versus time.
 - 60. (NEW) The method of claim 53, wherein said estimated transport function $h_e(t)$ is calculated using the relation $h_e(t) = -dR_e(t)/dt$.
 - 61. (NEW) The method of claim 53, wherein said tissue mean transit time and dispersion $(t_2, \alpha_2, \sigma_2)$ values are estimated from said estimated transport function $h_e(t)$, wherein said t_2 , said σ_2 and said σ_2 are input to a simulated transport function $h_s(t)$, wherein said $h_s(t)$ is said second gamma-variate function.
 - 62. (NEW) The method of claim 53, wherein said simulated tissue impulse resistive function $R_s(t)$ is determined using the relation $R_s(t) = 1 \int_0^t h_s(\tau) d\tau$.

20

10

15

63. (NEW) The method of claim 53, wherein said simulated concentration curve $C_s(t)$ is determined using the relation $C_s(t) = (F_t/k_H)AIF_t(t) \otimes R_e(t) = (F_t/k_H)$

APL-101/US 4/12 Reply 1

$$\int_{0}^{t} AIF_{t}(t) R_{t}(t-\tau)d\tau.$$

- 64. (NEW) The method of claim 53, wherein said F_t , said t_1 , said t_2 , said t_3 , said t_4 , said t_5 , said t_6 , said t_7 , said t_8 ,
- 65. (NEW) The method of claim 53, wherein said perfusion indices have the relations:
 - a. blood flow $(BF) = F_t$;
- b. Mean Transit Time (MTT) = $t_2 + \sigma_2(1+\alpha_2)$;
 - c. Blood Volume (BV) = BF * MTT;
 - d. Arterial Delay (DT) = $t_1 + \sigma_1(1+\alpha_1)$;
 - e. Arterial Dispersion time (ADT) = $\sigma_1 \sqrt{1 + \alpha_1}$;
 - f. Tissue Dispersion Time (TDT) = $\sigma_2 \sqrt{1 + \alpha_2}$;
- g. Relative Arterial Dispersion (RAD) = ADT/DT; and
 - h. Relative Tissue Dispersion (RTD) = TDT/MTT.
 - 66. (NEW) The method of claim 53, wherein said AIF_t(t) is measureable in a small lumen showing a delay relative to said AIF_a(t), wherein optimized values for said σ₁ and said t₁ are determined by fitting said simulated AIF_t(t) to said measured AIF_t(t), wherein said relative dispersion β₁ is determined and applied to all other said intensity data of said ROI using said β₁, wherein a more robust

20

5

fitting process is provided by a reduced number of parameters for optimization.

- 67. (NEW) The method of claim 66, wherein when said relative dispersion β_1 is determined, said vascular transport function $h_a(t)$ is described by a single variable said t_1 with a constant said β_1 , wherein a two-step method is used to determine said delay and said dispersion values comprising:
 - a. deriving an initial tissue impulse residue function $R_0(t)$ by deconvolving $C(t) = (F_0/k_H)AIF_a(t) \otimes R_0(t)$ using a model-free singular value decomposition (SVD) method, wherein said time delay t_1 is determined by a maximum position of said $R_0(t)$ at $R_{0 \text{ max}}(t=t_1)$; and
 - b. determine said AIF_t(t) at an input of said ROI using said $h_a(t)$ with said t_1 and said β_1 held constant, wherein said σ_1 is determined.
 - 68. (NEW) The method of claim 67, wherein a value of tissue blood flow F_t and a corrected impulse residue function $R_e(t)$ are obtained by deconvolving $C(t) = (F_t/k_H)AIF_t(t) \otimes R_e(t)$ using said SVD method, wherein said perfusion indices are determined from a curve of said $R_e(t)$, wherein MTT= $\int_0^\infty R_e(\tau)d\tau$, BF= F_t , and BV=BF*MTT.
- 69. (NEW) The method of claim 53, wherein said contrast agent is in a tissue ROI having a tissue mean transit time τ, wherein a tissue impulse residue function is approximated by the relation R(t >τ) = Ee^{-k(t-τ)} and R(t≤τ) = 1, wherein E is an extraction fraction of said contrast agent in said tissue, wherein k is a constant

10

15

5

APL-101/US 6/12 Reply 1

clearance rate of said contrast agent diffusing from said tissue having a relation $k = E*F_t/V_e$, wherein V_e is the volume fraction of extravascular and extracellular space (EES) in said tissue.

5

70. (NEW) The method of claim 69, wherein said tissue impulse residue function R_s(t) of said simulated concentration curve C_s(t) is replaced by an average impulse residue function that incorporates said contrast agent leaked out of a blood vessel into said tissue and gradually clearing from said tissue, wherein said simulated concentration curve C_s(t) is fitted to said measured C(t) and quantitative said blood perfusion indices are calculated, wherein said E and said V_e are additional parameters optimized with other adjustable parameters using a least squares method.

10