(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年3 月20 日 (20.03.2003)

PCT

(10) 国際公開番号 WO 03/022821 A1

(51) 国際特許分類7: C07D 231/12, 261/08, 401/04, 401/14, 403/12, 405/12, 405/14, 409/12, 413/12, 413/14, 417/12, 417/14, A61K 31/395, 31/42, 31/422, 31/4439, 31/454, 31/496, 31/5377, 31/4245, 31/4196, 31/4178, 31/427, 31/4155, 31/4545, 31/55, A61P 9/00, 9/08, 13/12, 43/00

(21) 国際出願番号:

PCT/JP02/09054

(22) 国際出願日:

2002 年9 月5 日 (05.09.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-269896 2001年9月6日(06.09.2001) JP 特願2001-269897 2001年9月6日 (06.09.2001) JP 特願2001-396526

2001年12月27日(27.12.2001)

(71) 出願人 (米国を除く全ての指定国について): 大正製薬 株式会社 (TAISHO PHARMACEUTICAL CO.,LTD.) [JP/JP]; 〒170-8633 東京都 豊島区 高田 3 丁目 2 4 番 1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 佐藤 正和 (SATO,Masakazu) [JP/JP]; 〒170-8633 東京都 豊島区 高田3丁目24番1号大正製薬株式会社内 Tokyo (JP). 柿沼 浩行 (KAKINUMA,Hiroyuki) [JP/JP]; 〒 170-8633 東京都 豊島区 高田 3 丁目 2 4 番 1 号 大正 製薬株式会社内 Tokyo (JP). 梅宮 広樹 (UMEMIYA, Hiroki) [JP/JP]; 〒170-8633 東京都 豊島区 高田 3 丁目

24番1号大正製薬株式会社内 Tokyo (JP). 中村年 男 (NAKAMURA, Toshio) [JP/JP]; 〒170-8633 東京都 豊島区 高田3丁目24番1号 大正製薬株式会社内 Tokyo (JP).

- (74) 代理人: 北川 富造 (KITAGAWA, Tomizo); 〒170-8633 東京都 豊島区 高田3丁目24番1号 大正製薬株式 会社 知的財産部 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ 特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI 特 許(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: HETEROCYCLE DERIVATIVE HAVING 20-HETE-PRODUCING ENZYME INHIBITORY ACTIVITY
- (54) 発明の名称: 20-HETE産生酵素阻害作用を有するヘテロ環誘導体

$$R^{3} \xrightarrow{\text{[i]}} R^{1} (R^{2})_{n} \qquad (I)$$

(57) Abstract: A heterocycle derivative represented by the formula (I) (wherein Y is carbon or nitrogen; R¹ is a heterocyclic group; R² is hydrogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, or halogeno; n is an integer of 1 to 4; and R³ is morpholino, pyrrolidino, 4-C₁₋₅-alkoxycarbonylpiperazin-1-yl-propyl, etc.) or a pharmaceutically acceptable salt of the derivative. Also provided is a medicine which inhibits a 20-HETE-producing enzyme, which participates in microvascular constrictive/dilative activity, cell proliferation activity, and other activity in principal organs such as the kidneys and cerebral blood vessels.

(57) 要約:

式

$$R^3 \xrightarrow{\stackrel{[1]}{U}} (R^2)_n$$

(式中、Yは炭素原子又は窒素原子であり、 R^1 はヘテロ環基であり、 R^2 は水素原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基又はハロゲン原子であり、nは $1\sim 4$ の整数であり、 R^3 はモルホリノ基、ピロリジノ基、 $4-C_{1-6}$ アルコキシカルボニルピペラジン-1-イループロピル基などである。)で表されるヘテロ環誘導体又はその製薬学的に許容される塩。

腎臓、脳血管等の主要臓器における微小血管収縮、拡張作用、細胞増殖惹起作用等に関与している20-HETEの産生酵素を阻害する薬剤を提供する。

明 細 書

20-HETE 産生酵素阻害作用を有するヘテロ環誘導体

技術分野

本発明は、アラキドン酸から生合成される20-ヒドロキシエイコサテトラエン酸(20-HETE)の産生酵素を阻害するヘテロ環誘導体に関する。

背景技術

アラキドン酸から産生される生理活性物質として、シクロオキシゲナーゼによって産生されるプロスタグランジン類及びリポキシゲナーゲによって産生されるロイコトリエン類が広く知られている。しかし、近年、チトクロームp450属に属する酵素によってアラキドン酸から産生される20-HETEが生体内で多彩な働きをしていることが明らかとされつつある。これまでに20-HETEは腎臓、脳血管等の主要臓器において微小血管を収縮又は拡張させることや細胞増殖を惹起することが明らかにされており、生体内で重要な生理作用を演じていると共に各種腎疾患、脳血管疾患、循環器疾患等の病態に深く関与していることが示唆されている(J. Vascular Research,第32巻,79頁,1995年、Am. J. Physiol.,第277巻,R607頁,1999年、Physiol. Rev.,第82巻,131頁,2002年)。

この様な背景の中で、N'-ヒドロキシフェニルホルムアミジン誘導体やカルボン酸誘導体に強い 20-HETE 産生酵素阻害作用(国際特許公開 W00132164、W001096309、W00168610号明細書、日本公開特許公報 JP01354658、JP01354646号明細書)があると報告されている。

本発明の化合物に類似したヘテロ環誘導体としては、例えば、ベンゼン環上のパラ位が置換C₁₋₄アルキル基、置換アルカノイル基、置換フェニルアルコキシ基又は置換アルコキシ基である1-フェニルーイミダゾール誘導体が、それぞれニトリックオキシド合成酵素阻害活性(国際特許公開 W09715555 号明細書)、脳神経細胞死抑制効果(国際特許公開 W09418172 号明細書)、抗高脂血症若しくは動脈硬化(国際特許公開 W09529163 号明細書) 又は抗不整脈、抗高血圧若しくは高虚

血治療剤(ヨーロッパ特許公開 EP0306440 号明細書、米国特許 US5202346 号明細 書)を有すると報告されている。トリアゾール誘導体については、1-(4-メト キシフェニル)-1H-[1,2,4]トリアゾールの合成反応に関する研究や (Tetrahedron, 第 56 巻, 第 3 項, 2000 年)、1-(4-アゾリルアルキルコキシ) -1H-[1,2,4]トリアゾールの抗ウイルス活性又は除草剤としての研究があ る (ヨーロッパ特許公開 EP035636 号明細書又は日本特許公開公報 11171877 号明 細書)。5-(5-イソオキサゾリル)サリチル酸には、抗炎症作用があると報告さ れている (J. Med. Chem., 第 21 巻, 1100 頁,1978 年)。また、 1 - (4 - メトキ シフェニル)-1H-ピラゾールについては、合成やルイス酸複合体との構造解析 に関する報告がある (J. Chem. Soc. Dalton Trans., 第 18 巻, 3065 項, 1998 年、 Polyhedron 第17巻, 2115項, 1998年、Synlett 第8巻, 959項, 1997年、Inorg. Chem. 第 31 巻, 3943 項, 1992 年、Synthesis 第 6-7 巻, 690 項, 1985 年、又は J. Orgnomet. Chem. 第534巻,159項,1997年)。1-フェニルーピラゾールの2又は3位にピペ ラジニルアルコキシ基、C,_4アルコキシ基が置換した誘導体が、それぞれ抗不 安作用(日本公開特許公報 JP58159413 号明細書)、抗真菌作用(ヨーロッパ特許 公開 EP538156 号明細書)に関する記載がある。

しかしながら、これらのヘテロ環誘導体のいずれについても、20-IETE 産生酵素阻害作用は報告されていない。

発明の開示

本発明は、腎臓、脳血管等の主要臓器における微小血管収縮又は拡張、あるいは細胞増殖惹起に関与する 20-HETE の産生酵素を阻害する薬剤を提供することを目的としている。

本発明者らは前記課題を解決する目的で鋭意探索研究した結果、ある特異な部分構造を有する芳香族化合物、特に様々な置換基を4位に有するある種の芳香族へテロ環置換ベンゼンあるいはピリジン誘導体が意外にも 20-HETE 産生酵素阻害作用を有することを見出し、本発明を完成した。

本発明は、式

$$R^3$$
 $(R^2)_n$

【式中、Yは炭素原子又は窒素原子であり(但し、Yが窒素原子のとき、R²及 びR³は窒素原子上に置換しない)、

R1は式

$$-Q^{1}$$
 Q^{2} Q^{3} Q^{4} Q^{5} Q^{4} Q^{5}

(式中、 $Q^1 \sim Q^5$ のうち少なくとも1個は窒素原子であり、その他は炭素原子、窒素原子、酸素原子又は硫黄原子であり、Eは水素原子又は C_{1-4} アルキル基である。)で表されるヘテロ環基又は式

$$Q_{10}-Q_{9}$$

(式中、 $Q^6 \sim Q^{10}$ のうち1又は2個は窒素原子であり、その他は炭素原子である。)で表されるヘテロ環基であり、

 R^2 は水素原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基又はハロゲン原子であり、n は $1\sim4$ の整数であり、

R³はモルホリノ基、

ピロリジノ基、

 $4-C_{1-6}$ アルコキシカルボニルピペラジン-1-イループロピル基、

 C_{3-14} アルコキシ基、

 $1 \sim 6$ 個のハロゲン原子で置換された C_{2-14} アルコキシ基、

 C_{3-10} シクロアルコキシ基、

C2-14アルケニルオキシ基、

C₃₋₁₄アルキニルオキシ基、

1-フェニルー2-プロピニルオキシ基

ビス (N, N-ジメチルアミノメチル) メトキシ基、

式 R⁴-A-O-

[式中、

 $AはC_{1-10}$ アルキレン基であり、

R⁴はC₃₋₁₀シクロアルキル基、

 C_{1-6} アルキル基で置換された C_{3-10} シクロアルキル基、

C1-6アルコキシC1-6アルコキシ基、

C1-10アルコキシ基、

C2-10アルケニルオキシ基、

C2-14アルカノイル基、

オキソラニル基、

ジオキソラニル基、

C₁₋₆アルキル基で置換されたジオキソラニル基、

オキサニル基、

ジオキサニル基、

C₁₋₆アルキル基で置換されたジオキサニル基、

オキセタニル基、

C₁₋₆アルキル基で置換されたオキセタニル基、

ベンゾジオキサニル基、

C1-6アルキルチオ基、

C4-10シクロアルケニル基、

 C_{1-6} アルキル基で置換された C_{4-10} シクロアルケニル基、

ビシクロ[2.2.1]ヘプタン-2-イル基、

 $N, N-ジC_{1-6}$ アルキルアミノ C_{1-6} アルコキシ基、

ピロリル基、

フリル基、

チエニル基、

2-オキソピロリジン-1-イル基、

ジヒドロピラニル基、

カルパゾリル基、

C2-6アルコキシカルボニル基、

ピロリジニル基、

C1-6アルキル基で置換されたピロリジニル基、

ピペリジル基、

C₁₋₆アルキル基で置換されたピペリジル基、

4-カルボキシピペリジノカルボニル基、

ピリジル基、

「 C_{1-6} アルキル基、 C_{2-6} アルコキシカルボニル基、カルバモイル基、ヒドロキシメチル基、N, N - ジ C_{1-6} アルキルアミノ C_{1-6} アルキル基、4- エトキシカルボニルピペラジノメチル基又はピペリジノメチル基」で置換されたピリジル基、

2-ピリジルオキシ基、

フェニル基、

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲン原子、フェニルエチル基、フェノキシ基、シアノ基、メチルチオ基及びN,N-9ジメチルアミノ基」から選ばれる基で置換されたフェニル基、チアゾリル基、

 C_{1-6} アルキル基で置換されたチアゾリル基、

アミノ基、

N, N-ジC, -6アルキルアミノ基、

アニリノ基、

N-C₁₋₆アルキルアニリノ基(当該アニリノ基はC₁₋₆アルキル基、C₁₋₆アルコキシ基又はハロゲン原子で置換されてもよい。)、ベンジルアミノ基、

 $N-C_{1-6}$ アルキル-N-ベンジルアミノ基(当該ベンジル基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換さ

れてもよい。)、

 $N, N-ジC_{1-6}$ アルキルアミノ C_{1-6} アルコキシ C_{1-6} アルキルアミノ基、

アジリジンー1ーイル基、

モルホリノ基、

C1-6アルキル基で置換されたモルホリノ基、

ピペリジノ基、

「カルボキシル基、モルホリノカルボニル基、ピロリジン-1-1ルーカルボニル基、ピペリジノカルボニル基、 C_{1-6} アルキル基で置換されたカルバモイル基、ピペリジノメチル基、ピロリジン-1-1ルスチル基、モルホリノメチル基又はN, $N-ジC_{1-6}$ アルキルアミノ C_{1-6} アルキル基」で置換されたピペリジノ基、

ペルヒドロアゾシン-1-イル基、

ペルヒドロアゼピン-1-イル基、

イミダゾリン-2-オン-1-イル基、

オキサゾリジン-3-イル基、

 $1-C_{1-6}$ アルキルー 2- オキソピペラジンー 4- イル基、

フェノキシ基、

オキサゾリル基、

ピフェニル基、

フェニルチオ基

N-メチルインドール-3-イル基、

ベンソ[1,2,5]オキサジアゾール基、

2-ピラジル基、

ピリミジル基又は

C₁₋₆アルキル基で置換されたピリミジル基である。]で表される基

又は式

[式中、

Aは前記と同意義であり、

R⁵は水素原子、

C1-6アルキル基、

ヒドロキシエチル基、

オキソラニルメチル基、

ピリジルメチル基、

2- (ピロリジン-1-イル) エチル基、

 C_{3-8} シクロアルキル C_{1-6} アルキル基、

 $N, N-ジC_{1-4}$ アルキルアミノ C_{1-4} アルキル基、

C2-6アルコキシカルボニル基、

C3-8シクロアルキルカルボニル基、

4-メトキシシクロヘキシルカルポニル基、

N-アセチルピペリジン-4-イル-カルポニル基、

N-メチルピペリジン-4-イル-カルポニル基、

オキソラニルカルボニル基、

N-Boc-ピロリジン-2-イルーカルボニル基、

C2-14アルカノイル基、

「 $1 \sim 6$ 個のハロゲン原子、 C_{3-8} シクロアルキル基、 C_{1-6} アル

コキシ基、ピペリジノ基、アセチル基、シアノ基、N,Nージ

 C_{1-4} アルキルアミノ基又は4-オキソー2-チオキソチアゾリジンー3-イル基」で置換された C_{2-6} アルカノイル基、

3- (4-メチルシクロヘキシル)プロピオニル基、

2-(2-オキソピロリジン-1-イル)アセチル基、

3-メチル-2-プテノイル基、

カルバモイル基、

「 C_{1-6} アルキル基又は C_{3-8} シクロアルキル基」で置換されたカルバモイル基、

ベンジル基、

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基及びハロゲン原子」から選ばれる基で置換されたペンジル基、

ベンジルスルホニル基又は

 C_{1-6} アルキルスルホニル基である。] で表される基である。}

で表されるヘテロ環誘導体又はその製薬学的に許容される塩を有効成分として含むことを特徴とする20-HETE産生酵素阻害剤である。

また、他の本発明は、式

$$R^{13}$$
 $(R^2)_n$

{式中、R²及びnは前記と同意義であり、

 R^{11} は水素原子又は C_{1-4} アルキル基であり、

R¹³はモルホリノ基

 C_{3-10} シクロアルコキシ基、

1-フェニルー2-プロピニルオキシ基、

式 R¹⁴-A-O-

[式中、

Aは前記と同意義であり、

R14はC3-10シクロアルキル基、

C1-10アルコキシ基、

 C_{1-6} アルコキシ C_{1-6} アルコキシ基、

C2-14アルカノイル基、

ジオキソラニル基、

C₁₋₆アルキル基で置換されたジオキソラニル基、

オキサニル基、

ジオキサニル基、

C₁₋₆アルキル基で置換されたジオキサニル基、

ベンゾジオキサニル基、

C1-6アルキルチオ基、

ビシクロ[2.2.1] ヘプタン-2-イル基、

 $N, N-ジC_{1-6}$ アルキルアミノ C_{1-6} アルコキシ基、

ピロリル基、

フリル基、

チエニル基又は

2-オキソピロリジン-1-イル基である。] で表される基又は

式

[式中、

Aは前記と同意義であり、

R 15 は水素原子、

C1-6アルキル基、

ヒドロキシエチル基、

オキソラニルメチル基、

ピリジルメチル基、

2- (ピロリジン-1-イル) エチル基、

 C_{3-8} シクロアルキル C_{1-6} アルキル基、

 $N, N-ジC_{1-4}$ アルキルアミノ C_{1-4} アルキル基、

C₂₋₆アルコキシカルボニル基、

C₃₋₈シクロアルキルカルボニル基、

4-メトキシシクロヘキシルカルボニル基、

N-アセチルピペリジン-4-イル-カルボニル基、

N-メチルピペリジン-4-イル-カルボニル基、 オキソラニルカルボニル基、

N-Вос-ピロリジン-2-イルーカルボニル基、

C2-14アルカノイル基、

「 $1\sim 6$ 個のハロゲン原子、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、ピペリジノ基、アセチル基、シアノ基、 $N,N-\Im C_{1-4}$ アルキルアミノ基又は4-オキソー2-チオキソチアゾリジンー3-イル基」で置換された C_{2-6} アルカノイル基、

3- (4-メチルシクロヘキシル) プロピオニル基、

2- (2-オキソピロリジン-1-イル)アセチル基、

3-メチル-2-プテノイル基、

カルバモイル基、

「 C_{1-6} アルキル基又は C_{3-8} シクロアルキル基」で置換されたカルバモイル基、

ベンジルスルホニル基又は

 C_{1-6} アルキルスルホニル基である。] で表される基である。} で表されるイミダゾール誘導体又はその製薬学的に許容される塩である。また、他の本発明は、式、

{式中、R²³は、

 C_{1-14} アルコキシ基、

 $1\sim6$ 個のハロゲン原子で置換された C_{2-14} アルコキシ基、

C₃₋₁₀シクロアルコキシ基、

C₂₋₁₄アルケニルオキシ基、

 C_{3-14} アルキニルオキシ基、

式 R²⁴-A-O-

[式中、Aは前記と同意義であり、

 R^{24} は C_{3-10} シクロアルキル基、

 C_{1-6} アルキル基で置換された C_{3-10} シクロアルキル基、

C1-10アルコキシ基、

 C_{1-6} アルコキシ C_{1-6} アルコキシ基、

C2-10アルケニルオキシ基、

C2-14アルカノイル基、

オキソラニル基、

ジオキソラニル基、

C₁₋₆アルキル基で置換されたジオキソラニル基、

オキサニル基、

ジオキサニル基、

オキセタニル基、

C₁₋₆アルキル基で置換されたオキセタニル基、

C1-6アルキルチオ基、

С4-10シクロアルケニル基、

 C_{1-6} アルキル基で置換された C_{4-10} シクロアルケニル基、

 $N, N-ジC_{1-6}$ アルキルアミノ C_{1-6} アルコキシ基、

ピロリル基、

ピリジル基、

カルバゾリル基、

C2-6アルコキシカルボニル基、

ピロリジニル基、

C₁₋₆アルキル基で置換されたピロリジニル基、

ピペリジル基、

C₁₋₆アルキル基で置換されたピペリジル基、

フェニル基、

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲン原子、フェ

ニルエチル基、フェノキシ基、シアノ基、メチルチオ基及びN, N-ジメチルアミノ基」から選ばれる基の1又は2個で置換されたフェニル基、

アミノ基、

N, N-ジC1-6アルキルアミノ基、

アニリノ基、

 $N-C_{1-6}$ アルキルアニリノ基(当該アニリノ基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換されてもよい。)、

ペンジルアミノ基、

 $N-C_{1-6}$ アルキル-N-ベンジルアミノ基(当該ベンジル基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換 されてもよい。)、

N, N-ジC₁₋₆アルキルアミノC₁₋₆アルコキシC₁₋₆アルキルアミノ基、

モルホリノ基、

C₁₋₆アルキル基で置換されたモルホリノ基、

ペルヒドロアゾシンー1ーイル基、

ペルヒドロアゼピン-1-イル基、

2-オキソピロリジン-1-イル基である。]で表される基又は

左

(式中、A及びR¹⁵は前記と同意義である。)で表される基である。} で表されるイミダゾール-1-イルーピリジン誘導体又はその製薬学的に許容される塩である。

また、他の本発明は、式

$$R^{33}$$
 $(R^2)_n$

{式中、Y、R²及びnは前記と同意義であり、

 R^{31} は C_{1-4} アルキル基で置換されてもよいピラゾールー3ーイル基、イソオキサゾールー5ーイル基、イソチアゾールー5ーイル基、1,2,4ートリアゾールー1ーイル基、ピラジンー2ーイル基であり、

 R^{33} は4- C_{1-6} アルコキシカルボニルピペラジン-1-イループロピル基、

 $1 \sim 6$ 個のハロゲン原子で置換された C_{2-14} アルコキシ基、

C₃₋₁₀シクロアルコキシ基、

C2-14アルケニルオキシ基、

C₃₋₁₄アルキニルオキシ基、

1-フェニル-2-プロピニルオキシ基

ビス (N, N-ジメチルアミノメチル) メトキシ基、

式 R³⁴-A-O-

[式中、

Aは前記と同意義であり、

 R^{34} は C_{3-10} シクロアルキル基、

C1-6アルキル基で置換されたC3-10シクロアルキル基、

 C_{1-10} アルコキシ基、

C-6アルコキシC1-6アルコキシ基、

C2-10アルケニルオキシ基、

 C_{2-10} アルカノイル基、

オキソラニル基、

ジオキソラニル基、

C,-。アルキル基で置換されたジオキソラニル基、

オキサニル基、

ジオキサニル基、

 C_{1-6} アルキル基で置換されたジオキサニル基、オキセタニル基、

C₁₋₆アルキル基で置換されたオキセタニル基、

ベンゾジオキサニル基、

C1-6アルキルチオ基、

C4-10シクロアルケニル基、

C₁₋₆アルキル基で置換されたC₄₋₁₀シクロアルケニル基、

N, N-ジC, -6 アルキルアミノC, -6 アルコキシ基、

ビシクロ[2.2.1] ヘプタン-2-イル基、

ピロリル基、

フリル基、

チエニル基、

ピリジル基、

「 C_{1-6} アルキル基、 C_{2-6} アルコキシカルボニル基、カルバモイル基、ヒドロキシメチル基、N, N-ジ C_{1-6} アルキルアミノ C_{1-6} アルキル基、4-エトキシカルボニルピペラジノメチル基又はピペリジノメチル基」で置換されたピリジル基、

2-ピリジルオキシ基、

カルバゾリル基、

C2-6アルコキシカルボニル基、

ピロリジニル基、

C₁₋₆アルキル基で置換されたピロリジニル基、

ピペリジル基、

C1-6アルキル基で置換されたピペリジル基、

フェニル基、

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲン原子、フェニルエチル基、フェノキシ基、シアノ基、メチルチオ基及びN,N-9 ジメチルアミノ基、」から選ばれる基の 1 又は 2 個で置換されたフェニル基、

アミノ基、

N, N-ジC₁₋₆アルキルアミノ基、

アニリノ基、

 $N-C_{1-6}$ アルキルアニリノ基(当該フェニル基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換されてもよい。)、ベンジルアミノ基、

 $N-C_{1-6}$ アルキル-N-ベンジルアミノ基(当該ベンジル基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換されてもよい。)、

モルホリノ基、

 C_{1-6} アルキル基で置換されたモルホリノ基、

ペルヒドロアゾシンー1ーイル基、

ペルヒドロアゼピン-1-イル基、

2-オキソピロリジン-1-イル基、

4-カルポキシピペリジノカルボニル基、

N, N-ジC₁₋₆アルキルアミノC₁₋₆アルコキシC₁₋₆アルキルアミノ基、

アジリジン-1-イル基、

1-C1-6アルキル-2-オキソピペラジン-4-イル基、

「カルボキシル基、モルホリノカルボニル基、ピロリジン-1-1ルーカルボニル基、ピペリジノカルボニル基、 C_{1-6} アルキル基で置換されたカルバモイル基、ピペリジノメチル基、ピロリジン-1-1ルーメチル基、モルホリノメチル基又はN, N-ジ C_{1-6} アルキルアミノ C_{1-6} アルキル基」で置換されたピペリジノ基、

イミダゾリンー2ーオンー1ーイル基又は

オキサゾリジン-1-イル基である。] で表される基又は

(式中、A及びR 15 は前記と同意義である。)で表される基である。)で表されるアゾール誘導体又はその製薬学的に許容される塩である。

本発明において、 R^1 で示されるヘテロ環基としては、例えば下記式で示される基、 C_{1-4} アルキル基で置換された下記式で示される基などが挙げられる。

好ましくは、ピラゾールー3ーイル基、イソオキサゾールー5ーイル基、イソチアゾールー5ーイル基、イミダゾールー1ーイル基、1, 2, 4ートリアゾールー1ーイル基、ピラジンー2ーイル基、及びこれらが C_{1-4} アルキル基で置換された基である。

また、本発明において、 R^3 、 R^{13} 、 R^{23} 、 R^{33} で示される基としては、式

(式中、A及びR¹⁵は前記と同意義である)で示される基が好ましい。

本発明において使用される用語が以下に定義される。

本発明において、「 C_{x-y} 」とは、その後に続く基が $x\sim y$ 個の炭素原子を有することを意味する。

ハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であり、好ましくはフッ素原子、塩素原子又は臭素原子であり、より好ましくはフッ素原子 又は塩素原子である。

 C_{1-10} アルコキシ基は、炭素原子を $1\sim10$ 個有する直鎖状又は分枝状のアルコキシ基を意味し、 C_{1-8} アルコキシ基が好ましい。 C_{1-8} アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、2-プロペニルオキシ基、n-プトキシ基、イソプトキシ基、tert-プトキシ基、ヘキシルオキシ基、ヘプチルオキシ基などが挙げられる。

 C_{3-14} アルコキシ基は、炭素原子を $3\sim1$ 4個有する直鎖状又は分枝状のアルコキシ基を意味し、例えば、プロポキシ基、イソプロポキシ基、2-プロペニルオキシ基、n-プトキシ基、イソプトキシ基、tert-プトキシ基、ヘキシルオキシ基、ヘプチルオキシ基などが挙げられる。

 C_{2-14} アルカノイル基は、炭素原子を $1\sim13$ 個有する直鎖状又は分枝状のアルキル基と1個のカルボニル基(-CO-)が複合した形態を有するものであり、 C_{2-7} アルカノイル基が好ましい。 C_{2-7} アルカノイル基としては、例えば、アセチル基、プロピオニル基、n-プチリル基、イソブチリル基、ピバロイル基、n-ペンタノイル基、4-メチルペンタノイル基、2-エチルプチリル基、3,3-ジメチルプチリル基、n-ヘキサノイル基、n-ヘプタノイル基などが挙げられる。

 $1\sim 6$ 個のハロゲン原子で置換された C_{2-14} アルコキシ基は、 $1\sim 6$ 個のハロゲン原子で置換された炭素原子を $2\sim 1$ 4 個有する直鎖状又は分枝状のアルコキシ基であり、例えば、2, 2, 2 - トリフルオロエチル基、4, 4, 4 - トリフルオロブトキシ基などが挙げられる。

 $1\sim6$ 個のハロゲン原子で置換された C_{2-6} アルカノイル基は、 $1\sim6$ 個のハ

ロゲン原子で置換された C_{1-5} アルキル基と1個のカルボニル基(-CO-)が 複合した形態を有するものであり、 C_{2-4} アルカノイル基が好ましい。それらと して、例えば、4, 4, 4-トリフルオロプチリル基などが挙げられる。

 C_{1-6} アルコキシ C_{1-6} アルコキシ基は、 C_{1-6} アルコキシ基と C_{1-6} アルコキシ基が複合した形態を有するものであり、 C_{1-4} アルコキシ C_{1-4} アルコキシ基が好ましい。中でも、メトキシエトキシ基、エトキシエトキシ基、n-7トキシエトキシ基、イソプトキシエトキシ基などがより好ましい。

 C_{2-6} アルコキシカルボニル基は、炭素原子を $1\sim 5$ 個有する直鎖状又は分枝状のアルコキシ基と1 個のカルボニル基(-CO-)が複合した形態を有するものであり、 C_{2-4} アルコキシカルボニル基が好ましい。中でも、メトキシカルボニル基、エトキシカルボニル基、イソプロボキシカルボニル基、4- lert - ブトキシカルボニル基などがより好ましい。

 C_{1-6} アルコキシ C_{2-6} アルカノイル基は、 C_{1-6} アルコキシ基と C_{2-6} アルカノイル基が複合した形態を有するものであり、例えば、2-メトキシアセチル基などが挙げられる。

 C_{3-10} シクロアルキル基は、炭素原子を $3\sim10$ 個有する環状アルキル基を意味し、例えば、シクロプロピル基、シクロプチル基、シクロペンチル基、シクロペンチル基、シクロペンチル基、シクロペンチル基、シクロプロピル基、シクロプチル基、シクロペンチル基、シクロペンチル基が好ましい。

 C_{1-6} アルキル基で置換された C_{3-10} シクロアルキル基は、その基上の少なくとも1つの水素原子が C_{1-6} アルキル基、好ましくは C_{1-4} アルキル基によって置換された C_{3-10} シクロアルキル基であり、例えば1-メチルシクロプロピル基などが挙げられる。

C₃₋₁₀シクロアルコキシ基は、炭素原子を3~10個有する環状アルコキシ基を意味し、例えば、シクロプロポキシ基、シクロプトキシ基、シクロペントキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基などが挙げられる。中でも、シクロプロポキシ基、シクロプトキシ基、シクロペナシルオキシ基が好ましい。

 C_{3-8} シクロアルキル C_{1-6} アルキル基は、 C_{3-8} シクロアルキル基と C_{1-6} アルキル基が複合した形態を有するものであり、 C_{3-6} シクロアルキル C_{1-3} アルキル基が好ましい。 C_{3-6} シクロアルキル C_{1-3} アルキル基として、例えば、シクロプロピルメチル基、シクロプチルメチル基、シクロペンチルメチル基、シクロペキシルメチル基などが挙げられる。

 C_{3-8} シクロアルキルカルボニル基は、 C_{3-8} シクロアルキル基と1個のカルボニル基(-CO-)が複合した形態を有するものであり、 C_{3-6} シクロアルキルカルボニル基が好ましい。 C_{3-6} シクロアルキルカルボニル基として、例えば、シクロプロピルカルボニル基、シクロプチルカルボニル基、シクロペンチルカルボニル基、シクロペキシルカルボニル基などが挙げられる。

 $N, N-\Im C_{1-6}$ アルキルアミノ基は、 $N, N-\Im X$ チルアミノ基、 $N, N-\Im X$ チルアミノ基などが好ましい。

 $N, N-\Im C_{1-4}$ アルキルアミノ C_{1-4} アルキル基は、 $N, N-\Im C_{1-4}$ アルキルアミノ基と C_{1-4} アルキル基が複合した形態を有するものであり、例えば、 $N, N-\Im$ メチルアミノメチル基、 $N, N-\Im$ メチルアミノエチル基などが挙げられる。

 $N, N-\Im C_{1-6}$ アルキルアミノ C_{1-6} アルコキシ基は、 $N, N-\Im C_{1-6}$ アルキルアミノ基と C_{1-6} アルコキシ基が複合した形態を有するものであり、例えば、 $N, N-\Im$ メチルアミノエトキシ基、 $N, N-\Im$ エチルアミノエトキシ基などが挙げられる。

 C_{2-10} アルケニルオキシ基は、少なくとも1つの二重結合及び炭素原子を2~10個有する直鎖状又は分枝状のアルケニルオキシ基を意味し、例えば、エテニルオキシ基、プロペニルオキシ基、プテニルオキシ基、2-メチルプテニルオキシ基、3-メチルプテニルオキシ基、2-メチルー2-プテニルオキシ基、ペンテニルオキシ基、2-メチルー2-ペンテニルオキシ基、ヘキセニルオキシ基、ヘプテニルオキシ基、オクテニルオキシ基などが挙げられる。

 C_{2-14} アルキニルオキシ基は、少なくとも1つの三重結合及び炭素原子を2~14個有する直鎖状又は分枝状のアルキニルオキシ基を意味し、例えば、エチニルオキシ基、プロピニルオキシ基、ブチニルオキシ基、ペンチニルオキシ基、ヘオセニルオキシ基、ヘプチニルオキシ基、オクチニルオキシ基、ペントー2ーエ

ンー4-イニルオキシ基などが挙げられる。

 C_{4-10} シクロアルケニル基は、炭素原子を $4\sim10$ 個有する環状アルケニル基を示し、例えば、シクロプテニル基、シクロペンテニル基、シクロペキセニル基、などが挙げられる。

 C_{1-6} アルキル基で置換された C_{4-10} シクロアルケニル基は、その基上の少なくとも1つの水素原子が C_{1-6} アルキル基、好ましくは C_{1-4} アルキル基によって置換された C_{4-10} シクロアルケニル基であり、例えば3-メチルシクロヘキセン-4-イル基などが挙げられる。

オキセタニル基は、ヘテロ原子として酸素原子を1個有する飽和四員環の形態 を有するもので、オキセタン-2-イル基、オキセタン-3-イル基などが挙げ られる。

 C_{1-6} アルキル基で置換されたオキセタニル基は、その基上の少なくとも1つの水素原子が C_{1-6} アルキル基、好ましくは C_{1-4} アルキル基によって置換されたオキセタニル基であり、例えば3-メチルオキセタン-3-イル基などが挙げられる。

オキソラニル基は、ヘテロ原子として酸素原子を1個有する飽和五員環の形態を 有するもので、2-オキソラニル基、3-オキソラニル基等が挙げられる。

ジオキソラニル基は、ヘテロ原子として酸素原子を2個有する飽和五員環 (ジオキソラン)、好ましくは1,3-ジオキソランの環から水素を除いて誘導される1価の基を意味する。

 C_{1-6} アルキル基で置換されたジオキソラニル基は、その基上の少なくとも 1 つの水素原子が C_{1-6} アルキル基、好ましくは C_{1-4} アルキル基によって置換されたジオキソラニル基であり、例えば 2 , 2 -ジメチルー 1 , 3 -ジオキソランー 4 -イル基などが挙げられる。

オキサニル基は、ヘテロ原子として酸素原子を1個有する飽和六員環の形態を 有するもので、2-オキサニル基、3-オキサニル基、4-オキサニル基を含む。

ジオキサニル基は、ヘテロ原子として酸素原子を2個有する飽和六員環 (ジオキサン)、例えば1,3ージオキサンの環から水素を除いて誘導される1価の基を意味する。

 C_{1-6} アルキル基で置換されたジオキサニル基は、その基の環が C_{1-6} アルキル基で置換されていてもよく、例えば5,5-ジメチル-1,3-ジオキサン-2ーイル基などである。

フリル基は、2-フリル基、3-フリル基を含む。

チエニル基は、2-チエニル基、3-チエニル基を含む。

 C_{1-6} アルキルチオ基は、炭素原子を $1\sim6$ 個有する直鎖状又は分枝状のアルキル基と1個のチオ基(-S-)が複合した形態を有しており、 C_{1-4} アルキルチオ基が好ましい。例えば、メチルチオ基、エチルチオ基などが挙げられる。

ピロリジニル基は、ピロリジンの窒素原子又は炭素原子上から水素原子を除いて誘導される1価の基を意味し、例えば、1-ピロリジニル基、2-ピロリジニル基、2-ピロリジニル基などが挙げられる。

 C_{1-6} アルキル基で置換されたピロリジニル基は、その基上の少なくとも1つの水素原子が C_{1-6} アルキル基、好ましくは C_{1-4} アルキル基によって置換されたピロリジニル基であり、例えば、N-メチルピロリジン-2-イル基などが挙げられる。

ピペリジル基は、ピペリジンの炭素原子上から水素原子を除いて誘導される1 価の基を意味する。

 C_{1-6} アルキル基で置換されたピペリジル基は、その基の水素原子が C_{1-6} アルキル基によって置換されたピペリジル基であり、例えば、N-メチルピペリジン-2-イル基、N-メチルピペリジン-3-イル基などが挙げられる。

ピペリジノ基は、ピペリジンの窒素原子上から水素原子を除いて誘導される1 価の基を意味する。

「カルボキシル基、モルホリノカルボニル基、ピロリジン-1-イルーカルボニル基、ピペリジノカルボニル基、 C_{1-6} アルキル基で置換されたカルバモイル基、ピペリジノメチル基、ピロリジン-1-イルーメチル基、モルホリノメチル基又はN,N-ジ C_{1-6} アルキルアミノ C_{1-6} アルキル基」で置換されたピペリジノ基は、ピペリジンの炭素原子上の少なくとも1つの水素原子がカルボキシル基、モルホリノカルボニル基、ピロリジン-1-イルーカルボニル基、ピペリジノカルボニル基、ピペリジンメチル

基、ピロリジン-1-イルーメチル基、モルホリノメチル基又はN,N-ジ C_{1-6} P N + + N

モルホリノ基は、モルホリンの窒素原子上から水素原子を除いて誘導される 1 価の基を意味する。

 C_{1-6} アルキル基で置換されたモルホリノ基は、その基上の少なくとも1つの水素原子が C_{1-6} アルキル基、好ましくは C_{1-4} アルキル基によって置換されたモルホリノ基であり、3,5-ジメチルモルホリノ基などが挙げられる。

チアゾリル基は、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、 を含む。

 C_{1-6} アルキル基で置換されたチアゾリル基は、その環上の少なくとも1つの水素原子が C_{1-6} アルキル基、好ましくは C_{1-4} アルキル基、より好ましくはメチル基によって置換されたチアゾリル基であり、例えば4-メチルチアゾール-5-イル基などが挙げられる。

オキサゾリル基は、4-オキサゾリル基、5-オキサゾリル基が好ましい。 ピリジル基は、2-ピリジル基、3-ピリジル基、4-ピリジル基を含み、好 ましくは2-ピリジル基、3-ピリジル基である。

「 C_{1-6} アルキル基、 C_{2-6} アルコキシカルボニル基、カルバモイル基、ヒドロキシメチル基、 $N,N-\Im C_{1-6}$ アルキルアミノ C_{1-6} アルキル基、4-エトキシカルボニルピペラジノメチル基及びピペリジノメチル基」から選ばれる基で置換されたピリジル基は、ピリジン環上の少なくとも1つの水素原子が C_{1-6} アルキル基、 C_{2-6} アルコキシカルボニル基、カルバモイル基、ヒドロキシメチル基、 $N,N-\Im C_{1-6}$ アルキルアミノ C_{1-6} アルキル基、4-エトキシカルボニルピペラジノメチル基又はピペリジノメチル基によって置換されたピリジル基であり、

例えば2-メチルピリジン-5-イル基、2-メチルピリジン-6-イル基、5-エトキシカルボニルピリジン-2-イル基、5-ヒドロキシエチルピリジン-2-イル基、5-ヒドロキシエチルピリジン-2-イル基、5-(エトキシカルボニルピペラジノメチル)ピリジン-2-イル基などが挙げられる。

ピロリル基は、1 - ピロリル基、2 - ピロリル基、3 - ピロリル基を含み、1 - ピロリル基が好ましい。

 C_{1-6} アルキル基で置換されたカルバモイル基は、カルバモイル基の窒素原子上の少なくとも1つの水素原子が C_{1-6} アルキル基によって置換された基を意味し、 C_{2-5} アルキル基によって置換されたカルバモイル基が好ましい。 C_{2-5} アルキル基によって置換されたカルバモイル基として、例えば、N-エチルカルバモイル基、N-プロピルカルバモイル基、N-イソプロピルカルバモイル基、N-イソプロピルカルバモイル基、N-イソプロピルカルバモイル基、N-インチルカルバモイル基、N-インチルカルバモイル基、N-インチルカルバモイル基、N-

 C_{3-8} シクロアルキル基で置換されたカルバモイル基は、カルバモイル基の窒素原子上の少なくとも1つの水素原子が C_{3-8} シクロアルキル基によって置換された基を意味し、 C_{5-6} シクロアルキル基によって置換されたカルバモイル基が好ましい。 C_{5-6} シクロアルキル基によって置換されたカルバモイル基として、例えば、N-シクロペンチルカルバモイル基、N-シクロペキシルカルバモイル

基が挙げられる。

 C_{1-6} アルキルスルホニル基は、 C_{1-6} アルキル基とスルホニル基($-SO_2-$)が複合した形態を有するものであり、 C_{1-4} アルキルスルホニル基が好ましい。 C_{1-4} アルキルスルホニル基として、例えば、メタンスルホニル基、エタンスルホニル基、イソプロパンスルホニル基、プロパンスルホニル基、ブタンスルホニル基、が挙げられる。

「 $1\sim 6$ 個のハロゲン原子、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、ピペリジノ基、アセチル基、シアノ基、 $N,N-\Im C_{1-4}$ アルキルアミノ基又は 4 ーオキソー 2 ーチオキソチアゾリジンー 3 ーイル基」で置換された C_{2-6} アルカノイル基は、その基上の少なくとも 1 つの水素原子が、 $1\sim 6$ 個のハロゲン原子、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、ピペリジノ基、アセチル基、シアノ基、 $N,N-\Im C_{1-4}$ アルキルアミノ基又は 4 ーオキソー 2 ーチオキソチアゾリジンー 3 ーイル基の内いずれかで置換された C_{2-6} アルカノイル基を意味する。例えば、4,4,4 ートリフルオロブチリル基、2 ーメトキシアセチル、3 ーピペリジノプロピオニル基、2 ーシアノアセチル基、3 ー (N,N ージエチルアミノ)プロピオニル基、4 ー (N,N ージメチルアミノ)ブチリル基、3 ーアセチルプロピオニル基、4 ー (N,N ージメチルアミノ)ブチリル基、3 ーアセチルプロピオニル基、4 ー 4 ー 4 ーシクロペンチルプロピオニル基、4 ー 4 ー

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子」で置換されたベンジル基は、ベンゼン環上の少なくとも1つの水素原子が C_{1-6} アルキル基、 C_{1-6} アルコキシ基若しくはハロゲン原子から選ばれる基で置換されてもよい。それらは、例えば、4-フルオロベンジル基、4-メトキシベンジル基、3-メチルベンジル基、3, 4-ジメトキシベンジル基、2-プロモベンジル基、3, 5-ジクロロベンジル基などが挙げられる。

 C_{1-4} アルキル基で置換されてもよいピラゾールー3ーイル基、イソオキサゾールー5ーイル基、イソチアゾールー5ーイル基、イミダゾールー1ーイル基、

1,2,4ートリアゾールー1ーイル基、ピラジンー2ーイル基とは、それらの基の一つの水素原子がC₁₋₄アルキル基で置換されてもよいことを意味する。これらとしては、例えば、1Hーピラゾールー3ーイル基、2Hーピラゾールー3ーイル基、1ーメチルピラゾールー3ーイル基、2ーメチルピラゾールー3ーイル基、4ーメチルピラゾールー3ーイル基、イソオキサゾールー5ーイル基、3ーメチルイソオキサゾールー5ーイル基、4ーメチルイソオキサゾールー5ーイル基、イソチアゾールー5ーイル基、4ーメチルイソチアゾールー5ーイル基、イミダゾールー1ーイル基、2ーメチルイミダゾールー1ーイル基、4ーメチルイミダゾールー1ーイル基、5ーメチルイミダゾールー1ーイル基、1,2,4ートリアゾールー1ーイル基、ピラジンー2ーイル基などが挙げられる。

Aで定義される C_{1-10} アルキレン基は、炭素原子を $1\sim10$ 個有する直鎖状又は分枝状のアルキレン基を意味し、例えば、メチレン基、メチルメチレン基、エチレン基、プロピレン基、ヘプチレン基、2,2-ジメチルプロピレン基、ヘキシレン基などが挙げられる。中でも、エチレン基が好ましい。

そして、上記した各種の基は、上記に挙げた置換された形態の他にも、その基上の少なくとも1つの水素原子が、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基、チオール基、ホルミル基、カルボキシル基、シアノ基、カルバモイル基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソプチル基、secーブチル基、tertープチル基、ペンチル基、イソペンチル基、ネオペンチル基、tertーペンチル基等のアルキル基、フェニル基、ナフチル基、ピフェニル基、アントラニル基等のアリール基、ピロリル基、ピリジル基、チエニル基等の複素環基、メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等のアシル基、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、メチルチオ基、エチルチオ基、プロピルチオ基等のアルキルチオ基、等の非水素原子又は基によって置換されていてもよい。なお、これらの置換基中の炭素原子数は、上記した×又はyには含まれない。

また、製薬学的に許容される塩とは、アルカリ金属類、アルカリ土類金属類、アンモニウム、アルキルアンモニウムなどとの塩、鉱酸又は有機酸との塩であり、

例えば、ナトリウム塩、カリウム塩、カルシウム塩、アンモニウム塩、アルミニウム塩、トリエチルアンモニウム塩、酢酸塩、プロピオン酸塩、酪酸塩、ぎ酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、クエン酸塩、ステアリン酸塩、コハク酸塩、エチルコハク酸塩、ラクトピオン酸塩、グルコン酸塩、グルコヘプトン酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、2ーヒドロキシエタンスルホン酸塩、ベンゼンスルホン酸塩、 pートルエンスルホン酸塩、ラウリル硫酸塩、リンゴ酸塩、アスパラギン酸塩、グルタミン酸塩、アジピン酸塩、システインとの塩、Nーアセチルシステインとの塩、塩酸塩、臭化水素酸塩、リン酸塩、硫酸塩、よう化水素酸塩、ニコチン酸塩、シュウ酸塩、ピクリン酸塩、チオシアン酸塩、ウンデカン酸塩、アクリル酸ポリマーとの塩、カルボキシビニルポリマーとの塩などを挙げることができる。

本発明の化合物は、以下に示す製造法によって合成することができる。(以下の反応式中、Y、 R^2 、 R^{13} 、E、n は前記と同意義であり、Xはフッ素、塩素等の脱離基であり、 X^1 はB(OH)2又はハロゲン原子であり、 X^2 はハロゲン原子であり、 R^{41} Oは R^{13} で定義される各種のアルコキシ基である。)

製造法1 (イミダゾールー1-イル-フェニル誘導体の製造)

$$X = \begin{pmatrix} NO_2 & & & & & \\ R^{41}OH & & & & & \\ R^{41}OH & & & & & \\ R^{13} & & & & & \\ R^{13} & & & \\ R^{13$$

ニトロベンゼン誘導体 I を適当な溶媒中(メタノール、エタノール、プロパノ

ール、テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N,Nージメチルホルムアミド等)必要に応じて塩基(トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、炭酸カリウム、炭酸カルシウム、炭酸セシウム、水素化ナトリウム、ナトリウムメトキシド、tertーブトキシカリウム等)の存在下、対応する種々のアルコール類と反応し化合物 II を製造することができる。この時反応温度は0℃~80℃、好ましくは0℃~室温で、反応時間は1~12時間、好ましくは1~2時間である。

次に、化合物 II を適当な溶媒(メタノール、エタノール、プロパノール、テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル等)中、還元剤(パラジウム活性炭/水素雰囲気下、パラジウム活性炭/ヒドラジン水和物、パラジウム活性炭/ぎ酸アンモニウム、塩化スズ(II) 1 水和物、鉄/塩化アンモニウム、ラネーニッケル/ヒドラジン水和物等、好ましくはパラジウム活性炭/水素雰囲気下)を用いてニトロ基を還元することでアニリン誘導体 III を製造することができる。反応温度は室温~150℃、好ましくは室温~100℃で、反応時間は1時間~24時間である。

次に、J. Heterocyclic Chem., 25 巻, 1649 項, 1988 年を参照にアニリン誘導体 III を酢酸又は塩酸等の酸触媒の存在下あるいは非存在下に、オルトぎ酸トリメチル、オルトぎ酸トリエチル等のオルトぎ酸エステル類と反応させ、イミノエーテル誘導体 IV を得る。反応温度は室温から150 ℃、好ましくは70 ~100 ℃ で反応時間は2 ~ 72 時間である。

次に、イミノエーテル誘導体 IV を適当な溶媒中(メタノール、エタノール、プロパノール、テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N, Nージメチルホルムアミド等)アミノアセトアルデヒドジメチルアセタールと反応させホルムアミジン誘導体 V を得る。この時の反応温度は室温~150 ℃、好ましくは70~100 ℃であり、反応時間は2~24 時間である。

次に、ホルムアミジン誘導体 V を適当な溶媒中(エーテル、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン等)にルイス酸あるいは酸触媒(四塩

化チタン、トリフルオロボランエーテラート、酢酸等)の共存下反応させ、本発明化合物 VI を合成することができる。

また、化合物 VI はアニリン誘導体 III から直接合成することもできる。すなわち、アニリン誘導体 III とアンモニア、ホルムアルデヒド、そしてグリオキサールを1:1:1:1 の比率で混合し、水又はアルコール/水の混合溶媒中にて、反応温度は室温 ~ 150 ℃、好ましくは $70\sim 120$ ℃で反応することによって本発明化合物 VI を合成することができる。

製造法2(イミダゾール-1-イルーフェニル誘導体の製造)

本発明化合物 VI は鍵中間体 X を経て以下の様にして製造することができる。フェニルボロン酸又はハロゲン化フェニル誘導体 VII を適当な溶媒(メタノール、エタノール、プロパノール、テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N,Nージメチルホルムアミド等)中、銅触媒([Cu (OH) TMEDA] $_2$ Cl $_2$ 、(CuOTf) $_2$ benzene等)存在下、好ましくは酸素雰囲気下でイミダゾール誘導体 VIII と縮合し化合物 IX を製造することができる(Organic Lett.,第2巻,1237項,2000年)。反応温度は室温が好ましく、反応時間は12~24時間である。

次いで、化合物 IX を 4 8 % 臭化水素中 1 0 0 ℃ ~ 1 5 0 ℃で反応し、4 - (イミダゾール-1-イル)フェノール誘導体 X を製造することができる。反応時間は 1 2 時間 ~ 7 2 時間、好ましくは 1 2 時間 ~ 2 4 時間である。 次に、化合物 X と

対応する種々のアルコールを用いて光延反応(Org. Reactions,第 42 巻,第 335 項)を行うことによって製造することができる。すなわち、化合物 X を適当な溶媒(テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N,Nージメチルホルムアミド等)中、ホスフィン試薬(トリフェニルホスフィン、トリプチルホスフィンやジフェニルー2ーピリジルホスフィン等)、ジアゾ試薬(ジエチルアゾジカルボキシレートやジーtertープチルアゾジカルボキシレート等)、及び対応する種々のアルコール類とを、0℃~室温、好ましくは室温にて2~12時間反応し、本発明化合物 VI を製造することができる。あるいは、種々のハロゲン化アルキル類と、適当な溶媒(アセトン、N,Nージメチルホルムアミド、テトラヒドロフラン、エーテル等)中、適当な塩基(トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、炭酸カリウム、炭酸カルシウム、炭酸セシウム、水素化ナトリウム、ナトリウムメトキシド、tertープトキシカリウム等)存在下、0℃~室温、好ましくは室温にて2~24時間反応し、式中R¹³が置換アルコキシ基R⁴¹Oである本発明化合物 VI を製造することができる。

製造法3(3-イミダゾール-1-イルーピリジン誘導体の製造)

化合物 XI をN.N-ジメチルホルムアミド ジメチルアセタールと適当な溶媒

の存在下若しくは非存在下、室温~150℃、好ましくはトルエン溶液中、加熱 還流下、1~5時間反応する。次いで、ここで得られるイミノエーテル XII を、 単離又は単離せずに、適当な溶媒(トルエン、テトラヒドロフラン、ジエチルエ ーテル、メタノール等)中、アミノアセトアルデヒド ジメチルアセタール又はそ の塩酸塩で処理することにより、化合物 XIII を合成することができる。

あるいは、化合物 XI を触媒量の酸(酢酸等の有機酸、塩酸等の鉱酸、ビリジン塩酸塩等のアミン類の鉱酸塩等)の存在下又は非存在下、オルトぎ酸エステル類(オルトぎ酸トリメチル、オルトぎ酸トリエチル等)と、室温~150℃、好ましくはトルエン溶液中、加熱還流下、1~5時間反応する。次いで、ここで得られる反応中間体 XII を上記と同様な方法で反応することにより、化合物 XIII を合成することができる。

次に、化合物 XIII を酸(四塩化チタン等のルイス酸あるいは酢酸等の有機酸等)存在下、適当な溶媒(トルエン、1,2-ジメトキシエタン、テトラヒドロフラン、ジエチルエーテル等)中、室温~150℃、好ましくは100℃で1~3時間反応して、化合物 XIV を合成することができる。

次に、化合物 XIV を Shi ao らの方法(Synth. Commun., 第 20 巻, 2971 項, 1990年)に従い、N, Nージメチルホルムアミド中オキシ塩化リンを用い、100でで $6\sim24$ 時間反応することにより、一連の誘導体合成に必要な鍵合成中間体である化合物 XV を合成することができる。

又は、別の方法でも化合物 XV を合成することができる。すなわち、化合物 XVIIを、UIIman 型反応(Tetrahedron Lett.,第 40 巻,2657 項,1999 年)を用いて、キシレン等の適当な溶媒中、触媒量の $(Cu(I)0Tf)_2$ benzene、1, $10-フェナンスロリン、ジベンジリデンアセトン及びイミダゾールと共に炭酸セシウム等の塩基の存在下、<math>110\sim125$ で $24\sim48$ 時間反応することにより、化合物 XVIIIを合成することができる。次に、化合物 XVIIIを亜硝酸ナトリウム、塩化銅(II) 1水和物と水等の適当な溶媒中、室温又は氷冷下で $1\sim6$ 時間反応させて、化合物 XV を合成することができる。

次いで、化合物 XV を適当な溶媒 (N, N - ジメチルホルムアミド、アセトン、テトラヒドロフラン、ジエチルエーテル等) 中、適当な塩基 (水素化ナトリウム、

炭酸カリウム、トリエチルアミン、N, N - ジイソプロピルエチルアミン、ピリジン、炭酸カルシウム、炭酸セシウム、ナトリウムメトキシド、tert- プトキシカリウム等)の存在下、式 R^{41} OHで表されるアルコール類と室温~150 ℃、好ましくは50~100 ℃で1~3 時間反応させて、本発明化合物 XVI を合成することができる。

さらに、化合物 XIX をキシレン等の適当な溶媒中、触媒量の(Cu(I)0Tf), benzene、 1,10 ーフェナンスロリン、ジベンジリデンアセトン及びイミダゾールと共に炭酸セシウム等の塩基存在下、 110 ~ 125 ℃で 24 ~ 48 時間反応することにより、本発明化合物 XVI を合成することができる。

製造法4(トリアゾールー1-イルーフェニル誘導体の製造)

4-(トリアゾール-1-イル)フェノール XX と対応する種々のアルコールを光延反応 (Org. Reactions, 第 42 巻, 第 335 項)を利用し製造することができる。すなわち、化合物 XX を適当な溶媒 (テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N,Nージメチルホルムアミド等)中、ホスフィン試薬 (トリフェニルホスフィン、トリプチルホスフィン、ジフェニル-2-ピリジルホスフィン等)、ジアゾ試薬 (ジエチルアゾジカルボキシレート、N,N,N',N',-テトラメチルアゾジカルボキサミド、ジーtertープチルアゾジカルボキシレート等)、及び対応する種々のアルコール類 (R 41 O H)と、0℃~室温、好ましくは室温にて2~12時間反応することによって、本発明化合物 XXI を製造することができる。あるいは、化合物 XX と種々のハロゲン化アルキル類と、適当な溶媒 (アセトン、N,Nージメチルホルムアミド、テトラヒドロフラン、エーテル等)中、適当な塩基(トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、炭酸カリ

ウム、炭酸カルシウム、炭酸セシウム、水素化ナトリウム、ナトリウムメトキシド、tert-ブトキシカリウム等)存在下、0℃~室温、好ましくは室温にて2~24時間反応し、本発明化合物 XXI を製造することができる。

製造法5 (イソオキサゾール又はピラゾール誘導体の製造)

化合物 XXII をぎ酸エチルと水素化ナトリウム、ナトリウムメトキシド、tert ープトキシカリウム等の塩基存在下、適当な溶媒(テトラヒドロフラン、エーテル、メタノール等)中で、0 \mathbb{C} $\mathbb{C$

次に化合物 XXIII 又は XXIV を塩化ヒドロキシアンモニウム、塩化ヒドラジウム又はヒドラジン1水和物と、塩酸等の酸存在下若しくは非存在下、適当な溶媒(テトラヒドロフラン、メタノール、エタノール、水等)中、室温~100℃、好ましくは室温で1~3時間反応して化合物 XXV を得る。化合物 XXV を48%臭化水素中で還流加熱する。又は、三臭化ホウ素若しくは塩酸と適当な溶媒(ジクロロメタン、テトラヒドロフラン、メタノール、エタノール等)中、室温~100℃、好ましくは室温~80℃で3~12時間反応して、鍵中間体 XXVI を合成することができる。

成することができる。

次に光延反応を利用し、化合物 XXVII を合成することができる。すなわち、化合物 XXVI とトリフェニルホスフィンやジフェニルー2ーピリジルホスフィン等のホスフィン試薬、ジエチルアゾジカルボキシレートやジーtertープチルアゾジカルボキシレート等の試薬及び対応する種々のアルコール類とを、適当な溶媒(テトラヒドロフラン、ジエチルエーテル、N,Nージメチルホルムアミド等)中、0℃~室温、好ましくは室温にて2~1 2時間反応し、化合物 XXVII (式中、 Z は O 又はNHである。)を合成することができる。あるいは、化合物 XXVI と種々のハロゲン化アルキル類 (R⁴¹-X²)と、適当な溶媒(アセトン、N,Nージメチルホルムアミド、テトラヒドロフラン、エーテル等)中、適当な塩基(トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、炭酸カリウム、炭酸カルシウム、炭酸セシウム、水素化ナトリウム、ナトリウムメトキシド、tertーブトキシカリウム等)存在下、0℃~室温、好ましくは室温にて2~24時間反応し、本発明化合物 XXVII を製造することができる。

製造法6 (イソオキサゾール又はピラゾール誘導体の製造)

HO (
$$\mathbb{R}^2$$
)_n (XXXIII)

 \mathbb{R}^{41} OH

 \mathbb{R}^{4

ベンゼン、ピリジン骨格又はヘテロ環に置換基を導入した化合物 XXXIII や前

記の化合物 XXVII を別の方法で製造することができる。すなわち、化合物 XXVIII から光延反応を利用し、化合物 XXX を得る。又は、化合物 XXIX と水酸化カリウム、tertープトキシカリウム、炭酸セシウム、炭酸カリウム、水素化ナトリウム等の適当な塩基存在下、対応する種々のアルコールとを、適当な溶媒(トルエン、テトラヒドロフラン、ジエチルエーテル、N,Nージメチルホルムアミド、ジクロロメタン等)中、18ークラウンー6ーエーテル存在下若しくは非存在下、0℃~100℃、好ましくは100℃にて2~12時間反応し、化合物 XXX を合成することができる。

次に化合物 XXX をぎ酸エチル、酢酸エチル等の低級アルキルエチルエステル(E'CO₂Et;式中、E'は水素原子又は C_{1-4} アルキル基を意味する。但しE、E'は同時に水素原子であるか、どちらか一方が C_{1-4} アルキル基である。)と水素化ナトリウム、ナトリウムメトキシド、tert-プトキシカリウム等の塩基存在下、適当な溶媒(テトラヒドロフラン、エーテル、メタノール等)中、0 で~室温、好ましくは10 で~25 で 2 時間反応して化合物 XXXI を得る。また、化合物 XXX をN, N-ジメチルホルムアミドジメチルアセタール中、室温から15 0 で、好ましくは還流温度で12 ~48 時間反応するか、tert-プトキシピス(ジメチルアミノ)メタン中、室温~<math>100 で、好ましくは90 で 2 ~3 時間反応 し、化合物 XXXII を得る。

化合物 XXXI 又は XXXII を塩化ヒドロキシルアンモニウム、塩化ヒドラジニウム、ヒドラジン 1 水和物又は $N-C_{1-4}$ アルキルヒドラジン(E"NHNH $_2$;式中、E"は水素原子 C_{1-4} アルキル基を意味する。但し $E\sim E$ "は同時に水素原子であるか、いずれか一方が C_{1-4} アルキル基である。)とを、塩酸等の酸存在下若しくは非存在下、適当な溶媒(テトラヒドロフラン、メタノール、エタノール、水等)中、室温 ~ 100 $^{\circ}$ $^{\circ}$ 、好ましくは室温で $1\sim 3$ 時間反応して本発明化合物 XXXIII(を合成することができる。

製造法7 (ピラゾール誘導体の製造)

4-置換ピペラジン-1-イルーエタノールを側鎖に有する化合物を以下のように製造することができる。まず、光延反応を利用し、化合物 XXXIV とN-Bocーピペラジンエタノールから化合物 XXXV を得る。これをトリフルオロ酢酸若しくは塩酸と適当な溶媒(ジクロロメタン、テトラヒドロフラン、メタノール、エタノール等)中、室温 ~ 100 C、好ましくは室温で $2\sim 24$ 時間、好ましくは $2\sim 4$ 時間反応して、化合物 XXXVI を得る。

また、化合物 XXXVI とジシクロヘキシルカルボジイミド、カルボニルジイミダゾール、N-エチルーN' -3-ジメチルアミノプロピルカルボジイミド塩酸等の縮合剤、N-ヒドロキシスクシンイミド、1-ヒドロキシベンゾトリアゾール等の添加剤存在下若しくは非存在下、対応する種々のカルボン酸とを、適当な溶媒(テトラヒドロフラン、ジエチルエーテル、N, N-ジメチルホルムアミド、ジクロロメタン等)中、0 \mathbb{C} \sim 1 0 0 \mathbb{C} 、好ましくは室温にて 2 \sim 1 2 時間反応し、化合物 XXXVII(式中、 \mathbb{R}^{42} は隣接のカルボニル基とともに \mathbb{R}^{15} で定義される基の一部を示す。)を合成することができる。また、化合物 XXXVI と種々の酸クロラ

イドを適当な溶媒(テトラヒドロフラン、ジエチルエーテル、N, N - ジメチルホルムアミド、ジクロロメタン等)中、0 \mathbb{C} \sim 1 0 \mathbb{O} 、好ましくは室温にて 1 \sim 2 時間反応し、化合物 XXXVII を合成することができる。

次に、化合物 XXXVII を水素化リチウムアルミニウム、ボラン・テトラヒドロフラン錯体等の適当な還元剤を用いて、適当な溶媒(テトラヒドロフラン、ジエチルエーテル、ジクロロメタン等)中、0℃~70℃、好ましくは室温にて1~12時間反応し、化合物 XXXVIII(式中、R 43は隣接のメチレン基とともにR 15で定義される基の一部を示す。)を合成することができる。また、化合物 XXXVIと NaBH₃CN、NaBH(OAc)₃等の適当な還元剤と酢酸等の適当な酸存在下、種々のアルデヒドとを、適当な溶媒(テトラヒドロフラン、ジエチルエーテル等)中、0℃~室温、好ましくは室温にて1~12時間反応し、化合物 XXXVIII を合成することができる。

製造法8 (ピラゾール誘導体の製造)

HN-N
$$X^2$$
-(CH₂)_mOH X^2 -(CH₂)_mOH X^2 -(CH₂)_mO X^2

アミンとフェノール間のアルキレンの長さが異なった化合物 XLII を次のように合成することもできる。光延反応を利用し化合物 XXXIV とハロゲン化アルコール $(X^2-(CH_2)_mOH;$ 式中、mは $1\sim1$ 0の整数である。)を縮合し化合物 XXXIX を得る。あるいは化合物 XL と水酸化ナトリウム、tert-ブトキシカリウム、炭酸セシウム、炭酸カリウム、水素化ナトリウム等の適当な塩基存在下、対応す

次に、化合物 XLI から製造法 5 に記載した方法でピラゾール環を構築し、化合物 XXXIX を製造することもできる。化合物 XXXIX を tert-プトキシカリウム、炭酸セシウム、炭酸カリウム、水素化ナトリウム等の適当な塩基存在下、対応する種々のアミンと、適当な溶媒(アセトニトリル、テトラヒドロフラン、ジエチルエーテル、N, Nージメチルホルムアミド、ジクロロメタン等)中、0 \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} 好ましくは \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C} に \mathbb{C} の \mathbb{C} に \mathbb{C} に \mathbb{C} に \mathbb{C} \mathbb{C} に \mathbb{C}

製造法9 (ピラゾール誘導体の製造)

4 - 置換 - ピペリジノエタノールを側鎖に有する化合物を以下のように製造することができる。まず、光延反応を利用し、化合物 XXXIV と 4 - カルボメトキシピペリジンエタノールを縮合し化合物 XLIII を得る。これを水酸化ナトリウム、水酸化リチウム等の塩基存在下、水中、室温~100℃、好ましくは室温で1~12時間反応後、塩酸等の酸を用い中和して化合物 XLIV を得る。化合物 XLIV とジシクロヘキシルカルボジイミド、カルボニルジイミダゾール、N - エチル- N'

-3-ジメチルアミノプロピルカルボジイミド塩酸等の縮合剤、N-ヒドロキシスクシンイミド、1-ヒドロキシベンゾトリアゾール等の添加剤存在下若しくは非存在下、対応する種々のアミンとを、適当な溶媒(テトラヒドロフラン、ジエチルエーテル、N,N-ジメチルホルムアミド、ジクロロメタン等)中、0℃~100℃、好ましくは室温にて2~12時間反応し、化合物 XLV を合成することができる。さらに、化合物 XLV と水素化リチウムアルミニウム、ボラン・テトラヒドロフラン錯体等の還元剤を、適当な溶媒(テトラヒドロフラン、ジエチルエーテル、ジクロロメタン等)中、0℃~70℃、好ましくは室温にて1~12時間反応し、化合物 XLVI を合成することができる。

製造法10(ピラゾール誘導体の製造)

化合物 XLVII と $1-C_{2-6}$ アルコキシカルボニルピペラジン(式中、R 46 OCOはR 15 で定義される C_{2-6} アルコキシカルボニル基である。)を、炭酸セシウム存在下、N,N-ジメチルホルムアミド中、室温で12時間、50℃にて1時間反応し、化合物 XLVIII を得る。さらに、化合物 XLVIII から製造法 5 に記載した方法でピラゾール環を構築しフェノキシ部分が炭素に置き換わった化合物 XLIXを製造することがきる。

製造法11 (イソチアゾール誘導体の製造)

5-(4-メトキシフェニル)イソチアゾール L(J. 0rg. Chem., 第 45 巻, 4857項, 1980年)を48%臭化水素中で還流加熱する。又は、三臭化ホウ素若しくは塩酸と適当な溶媒(ジクロロメタン、テトラヒドロフラン、メタノール、エタノール等)中、室温~100%、好ましくは室温~80%で3~12時間反応して、鍵中間体 LI を合成することができる。

次に、製造法5に記載した方法と同様に光延反応を利用し化合物 LI と対応する種々のアルコール類とを縮合し、化合物 LII を合成することができる。あるいは、化合物 LI と種々のハロゲン化アルキル類と、適当な溶媒(アセトン、N,Nージメチルホルムアミド、テトラヒドロフラン、エーテル等)中、適当な塩基(トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、炭酸カリウム、炭酸カルシウム、炭酸セシウム、水素化ナトリウム、ナトリウムメトキシド、tertープトキシカリウム等)存在下、0℃~室温、好ましくは室温にて2~24時間反応し、本発明化合物 LII を製造することができる。

また、3-イソチアゾール-5-イルーピリジン誘導体などは次のように合成

することができる。化合物 LIII と水酸化カリウム、tert-プトキシカリウム、炭酸セシウム、炭酸カリウム、水素化ナトリウム等の適当な塩基存在下、対応する種々のアルコールとを、適当な溶媒(トルエン、テトラヒドロフラン、ジエチルエーテル、<math>N,N-ジメチルホルムアミド、ジクロロメタン等)中、<math>18-クラウン-6-エーテル存在下若しくは非存在下、0 $\mathbb C$ \sim 100 $\mathbb C$ 、好ましくは 100 $\mathbb C$ にて 2 \sim 12 時間反応し、化合物 LIV を合成することができる。

次に、これをN,Nージメチルホルムアミド ジメチルアセタール中、室温から 150 ℃、好ましくは還流温度で12 ~48 時間反応するか、tert 一プトキシピス (ジメチルアミノ) メタン中、室温~100 ℃、好ましくは90 ℃で2 ~3 時間反応し、化合物 LV を得る。次に、この化合物を文献 (J. 0rg. Chem.,第 45 巻,4857 項,1980 年) 記載の方法に従い、化合物 LVI を経由して目的とする化合物 LVII を製造することができる。

製造法12 (窒素原子を1~2個持つ複素6員環-フェニル誘導体の製造)

$$Ar - X^{2}$$

$$(LVIII)$$

$$Ar = 2-Pyridyl, 3-Pyridyl,$$

$$4-Pyridyl, 2-Pyrazyl$$
etc.
$$Ar$$

$$B(OH)_{2}$$

$$Ar$$

$$Ar$$

$$Ar$$

$$Ar$$

$$Ar$$

$$Reaction$$

$$Reaction$$

$$R^{41}OH$$

$$R^{41}-X^{2}/Base$$

$$R^{41}O$$

$$(LXII)$$

本発明化合物 LXII は鍵中間体 LXI を経て以下の様にして製造することができる。フェニルボロン酸誘導体 LIX とアリールハライド LVIII (式中、Ar はR¹で定義される6員環へテロ環基である。)とを、適当な溶媒 (メタノール、エタノール、プロパノール、テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N,Nージメチルホルムアミド、1,2ージメトキシエタン、水等)中、パラジウム触媒

 $(Pd(OAc)_1, PdCl_2(dppb)_2$ 等)存在下、トリフェニルホスフィン存在下若しくは非存在下、炭酸カリウム、炭酸ナトリウム等の塩基存在下、室温 $\sim 1\ 2\ 0\ C$ 、好ましくは還流温度で $1\sim 2\ 4$ 時間反応させ化合物 LX を得る。

次に、化合物 LX を 4 8 %臭化水素中、100℃~150℃で12~24時間 反応し、鍵中間体 LXI を得る。化合物 LXI と対応する種々のアルコールを光延反 応を利用し、本発明化合物 LXII を製造することができる。あるいは、種々のハロゲン化アルキル類と、適当な溶媒(アセトン、N,Nージメチルホルムアミド、テトラヒドロフラン、エーテル等)中、適当な塩基(トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、炭酸カリウム、炭酸カルシウム、炭酸セシウム、水素化ナトリウム、ナトリウムメトキシド、tertーブトキシカリウム等)存在下、0℃~室温、好ましくは室温にて2~24時間反応し、本発明化合物 LXIIを製造することができる。

本発明に係る化合物は、経口又は非経口的に投与することができる。その投与 剤型は錠剤、カプセル剤、顆粒剤、散剤、粉剤、トローチ剤、軟膏剤、クリーム 剤、乳剤、懸濁剤、坐剤、注射剤等であり、いずれも慣用の製剤技術(例えば、 第14改正日本薬局方に規定する方法等)によって製造することができる。これ らの投与剤型は、患者の症状、年齢及び治療の目的に応じて適宜選択することが できる。各種剤型の製剤の製造においては、常用の賦形剤(例えば、結晶セルロ ース、デンプン、乳糖、マンニトール等)、結合剤(例えば、ヒドロキシプロピル セルロース、ポリビニルピロリドン等)、滑沢剤(例えば、ステアリン酸マグネシ ウム、タルク等)、崩壊剤(例えば、カルボキシメチルセルロースカルシウム等) などを用いることができる。

本発明に係る化合物の投与量は、成人を治療する場合で1日1~2000mg であり、これを1日1回又は数回に分けて投与する。この投与量は、患者の年齢、 体重及び症状によって適宜増減することができる。

発明を実施するための最良の形態

以下、実施例を挙げて本発明をさらに詳しく説明する。

実施例1

2-メトキシー5-イミダゾールー1-イルーピリジン(化合物1)の製造2-メトキシー5-アミノピリジン(30.0 g, 0.242 mol)をトルエン(150 ml)に溶解し、オルトぎ酸エチル(97 ml, 0.580 mol)を加えて還流下、3時間撹拌した。原料消失を確認した後、2-アミノアセトアルデヒドジメチルアセタール(52 ml, 0.483 mol)を加えて室温にて1晩撹拌した。反応終了後、減圧濃縮して得られた褐色油状物質を1,2-ジメトキシエタン(60 ml)に溶解した。氷冷下1.0Mー四塩化チタン/トルエン溶液(300 ml, 0.300 mol)を滴下し、100℃にて3時間撹拌した後、氷冷下、5Mー水酸化ナトリウム水溶液で中和した。析出した不溶物をセライトで濾過し、不溶物を酢酸エチルで洗浄した。濾液の水層を酢酸エチルで2回抽出し、有機層とあわせて飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧濃縮して得られた残査をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製し、標題化合物(20.5 g)を黄色固体として得た。

融点84.0~88.0℃

実施例2

2-(2,2-ジメチルプロポキシ)-5-イミダゾール-1-イルーピリジン(化合物 1 1) の製造

- (1) 実施例1で合成した2-メトキシ-5-イミダゾール-1-イルーピリジン(20.5 g, 0.117 mol)をN,N-ジメチルホルムアミド(400 ml)に溶解し、氷冷下、オキシ塩化リン(35 ml, 0.374 mol)を滴下した後、100℃にて6時間撹拌した。反応終了後、5 M-水酸化ナトリウム水溶液で中和し、減圧濃縮した。残査を酢酸エチルで希釈し、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧濃縮し、NHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製し、2-クロロ-5-イミダゾール-1-イルーピリジン(9.42 g)を黄色固体として得た。
- (2) 水素化ナトリウム(60% oil,17 mg, 0.425 mmol)のテトラヒドロフラン (0.2 ml) 懸濁液に、2,2ージメチルー1ープロパノール(37 mg, 0.418 mmol)のテトラヒドロフラン(0.2 ml)溶液を滴下して室温にて撹拌した。発泡がおさまっ

た後、2-クロロ-5-イミダゾール-1-イルーピリジン(25 mg, 0.139 mmol) のテトラヒドロフラン(0.2 ml)溶液を加えて還流下、3時間撹拌した。溶媒を留去後、蒸留水(0.2 ml)を加え、酢酸エチルで3回抽出した。有機層を無水硫酸マグネシウムで乾燥した後、減圧濃縮し、残査を陽イオン交換シリカゲルカラムクロマトグラフィーに移して、メタノールで溶出した。さらに1M-アンモニア/メタノールで溶出し、目的物を含む画分を減圧濃縮した。残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製し、標題化合物(26 mg)を無色固体として得た。

融点87.0~91.0℃

実施例3

2-[3-(N,N-ジプロピルアミノ)-2,2-ジメチルプロポキシ]-5-イミダゾール-1-イルーピリジン(化合物 1 1 0) の合成

水素化ナトリウム(60% oil, 17 mg, 0.425 mmol)のテトラヒドロフラン(0.2 ml)懸濁液に、2,2ージメチルー3ー(N,Nージプロピルアミノ)ー1ープロパノール(72 mg, 0.418 mmol)のテトラヒドロフラン(0.2 ml)溶液を滴下して室温にて撹拌した。発泡がおさまった後、2ークロロー5ーイミダゾールー1ーイルーピリジン(25 mg, 0.139 mmol)のテトラヒドロフラン(0.2 ml)溶液を加えて還流下、3時間撹拌した。Merrifield樹脂(140 mg)を加え室温にて1晩撹拌した。樹脂を濾過し、濾液を減圧濃縮した後、蒸留水(0.2 ml)を加え、酢酸エチルで3回抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮した。残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製して標題化合物(4.8 mg)を無色固体として得た。

融点115.0~121.0℃

実施例4

2-[2-(N,N-ジメチルアミノ)エトキシ]-5-イミダゾール-1-イルーピリジン(化合物 9 5)の合成

水素化ナトリウム(60% oil, 17 mg, 0.425 mmol)のテトラヒドロフラン(0.2

ml) 懸濁液に、2-(N,N-ジメチルアミノ)-1-エタノール(37.2 mg, 0.418 mmol)のテトラヒドロフラン(1.2 ml)溶液を滴下して室温にて撹拌した。発泡がおさまった後、2-クロロ-5-イミダゾール-1-イルーピリジン(150 mg, 0.835 mmol)のテトラヒドロフラン(0.2 ml)溶液を加えて還流下、3時間撹拌した。反応液を減圧濃縮した後、蒸留水(0.2 ml)を加え、酢酸エチルで3回抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮した。残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製して標題化合物(29.5 mg)を黄色油状物質として得た。

実施例5

1-(4-プロピルフェニル)イミダゾール 塩酸(化合物618)の製造

4 ープロピルアニリン(2.03 g, 0.0150 mol)とオルトぎ酸トリエチル(4.99 g, 0.0337 mol)の混合物を100℃で7時間攪拌した。室温に冷却した後に、反応液にメタノール(15 ml)とアミノアセトアルデヒドジメチルアセタール(5.69 g, 0.0541 mol)を加え、室温にて30分間攪拌し、さらに100℃で4時間攪拌した。室温に冷却後、反応液を濃縮して得られた残査に1,2ージメトキシエタン(20 ml)と1Mー四塩化チタン/トルエン溶液(21 ml, 0.021 mol)を加え、室温にて1時間、さらに加熱還流下、4時間攪拌した。室温に冷却後、反応液に水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=97:3)で精製し、1ー(4ープロピルフェニル)イミダゾール(2.0 g)を褐色油状物として得た。生成物に4Mー塩酸/酢酸エチル溶液を加え、酢酸エチルークロロホルムの混合溶媒から再結晶し、無色粉末状の標題化合物(1.38 g)を得た。

融点155.5~157.0℃

実施例6

{2-[2-(4-イミダゾール-1-イル-フェノキシ)エトキシ]エチル}ジ メチルアミン 2塩酸(化合物626)の製造

- (1) 水素化ナトリウム (60% oil, 1.0 g, 0.026 mol)のN, Nージメチルホルムアミド (3.0 ml) 懸濁液に氷冷下、N, Nージメチルアミノエトキシエタノール (3.46 g, 0.026 mol) のN, Nージメチルホルムアミド(5 ml)溶液を滴下し、1 0 分間攪拌した。この反応混合物に4ーフルオロニトロベンゼン (3.00 g, 0.021 mol)のN, Nージメチルホルムアミド(10 ml)溶液を滴下し、室温にて2時間攪拌した。反応混合物に水を加え、酢酸エチルで抽出し、有機層を飽和食塩水洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮して、ジメチルー{2-[2-(4-ニトロフェノキシ)エトキシ]エチル}アミン(5.90 g)を得た。
- (2)上記で得た化合物をメタノール(100 ml)に溶解し、10%パラジウムー活性炭(0.60 g)を加え、水素雰囲気下、室温にて3時間攪拌した。TLC分析により原料の消失を確認した後に、セライトを用いて不溶物を濾過し、濾液を濃縮してアニリン誘導体(5.00 g)を褐色油状物質として得た。
- (3) 次に、このアニリン誘導体にオルトぎ酸トリエチル(10 ml, 0.060 mol)を加えて100℃で20時間攪拌した。室温に冷却した後に、反応液にメタノール(80 ml)とアミノアセトアルデヒドジメチルアセタール(6.8 ml, 0.063 mol)を加え、100℃で1.5時間攪拌した。反応液を濃縮して得られた残査にジメトキシエタン(30 ml)と1Mー四塩化チタン/トルエン溶液(25 ml, 0.025 mol)を加え、加熱還流下、5時間攪拌した。室温に冷却した後に、反応液に水酸化ナトリウム水溶液を加えた。析出した不溶物を濾過後、濾液を酢酸エチルで抽出した。有機層を飽和食塩水洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:2)で精製し、{2-[2-(4-イミダゾール-1-イルーフェノキシ)エトキシ]エチル}ジメチルアミン(0.40 g)を油状物質として得た。生成物をジエチルエーテルに溶解し、4 Mー塩酸/酢酸エチル溶液を加え、減圧濃縮して析出した粉末を酢酸エチルで洗い、標題化合物(0.428 g)を淡褐色粉末として得た。

融点174.0~179.0℃

実施例7

1-(4-プロポキシフェニル)イミダゾール トルエンスルホネート (化合物

604)の製造

4 - (イミダゾール-1-イル)フェノール (1.0 g, 6.25 mmol)、プロパノール (563 mg, 9.38 mmol)、トリフェニルホスフィン (2.46 g, 9.38 mmol)及びテトラヒドロフラン (20 ml)の混合物にジエチルアゾジカルボキシレート(1.48 ml, 9.38 mmol)を加え、室温にて6時間攪拌した。反応混合物を濃縮した後に、酢酸エチル(40 ml)を加え、1 M - 塩酸水溶液(20 ml)で抽出した。水層を5 M - 水酸化ナトリウム水溶液で中和した後に、酢酸エチルで抽出した。有機層を飽和食塩水洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:2)で精製し、1-(4-プロポキシフェニル)イミダゾール (1.17 g)を無色油状物質として得た。

これをエタノールに溶解し、p-トルエンスルホン酸1水和物(1.10 g, 5.78 mmol)のエタノール溶液を加え、析出した結晶を濾過し、無色粉末状の標題化合物 <math>(1.98 g)を得た。

融点148.0~150.0℃。

実施例8

- 1-(4-プトキシフェニル)-2-メチルーイミダゾール トルエンスルホネート (化合物 6 2 7) の製造。
- (1) 4ーメトキシフェニルボレート(3.70 g, 24.4 nmol)と2ーメチルイミダゾール (1.00 g, 12.2 nmol)、塩化メチレン溶液(48 ml)の混合物に、 [Cu(OH) TMEDA]₂Cl₂ (0.57 g, 1.22 nmol)を加え、酸素雰囲気下、室温にて18時間攪拌した。反応混合物を濾過して不溶物を除いた後、濾液を減圧濃縮した。 得られた残査をNHシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=4:1)で精製し、1ー(4ーメトキシフェニル)-2ーメチルーイミダゾール(2.35 g)を得た。
- (2) 1-(4-メトキシフェニル)-2-メチルーイミダゾール(2.00 g)と 48%臭化水素(20 ml)の混合物を100℃で16時間反応した。反応液を室温に 冷却した後に、6M-水酸化ナトリウム水溶液で中和後、析出した結晶を濾過し、

4-(2-メチルーイミダゾールー1-イル)フェノール(0.75 g)を得た。

(3) 4-(2-メチルーイミダゾールー1-イル)フェノール(0.20 g, 1.2 nmol)とN, N-ジメチルホルムアミド溶液(2 ml)に、1-イオドーn-ブタン(0.25 g, 1.38 mmol)と炭酸カリウム(0.19 g, 1.38 mmol)を加え、室温で6 4時間攪拌した。反応液に水を加え、ヘキサン:酢酸エチル=1:1の混合溶媒で抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製し、1-(4-ブトキシフェニル)-2-メチルーイミダゾール(0.17 g)を得た。これをエタノールに溶解し、p-トルエンスルホン酸1水和物のエタノール溶液を加え、析出した結晶を濾過し、無色粉末状の標題化合物(0.18 g)を得た。

融点148.0~149.0℃

実施例9

1-(4-シクロヘキシルメトキシフェニル)-1,2,4-トリアゾール (化合物 695) の製造

4-(1,2,4-トリアゾール-1-イル)フェノール(700 mg, 4.34 mmol)、シクロヘキシルメタノール(742 mg, 6.51 mmol)、トリフェニルホスフィン(1.70 g, 6.51 mmol)及びテトラヒドロフラン(25 ml)の混合物にジエチルアゾジカルボキシレート(1.00 ml, 6.51 mmol)を加え、室温にて4時間攪拌した。反応混合物を減圧濃縮した後に、得られた残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製した。これをヘキサン-酢酸エチルの混合溶媒から再結晶し、無色粉末状の標題化合物(461 mg)を得た。

融点 80.0~83.0℃

実施例10

 $3-\{3-[4-(1,2,4-トリアゾール-1-イル)フェノキシ]プロピル}$ ピリジン(化合物 7 1 9)の製造

4-(1,2,4-トリアゾール-1-イル)フェノール(700 mg, 4.34 mmol)、

融点81.0~83.0℃

実施例11

5-(4-プトキシフェニル)イソオキサゾール(化合物136)の合成

(1)水素化ナトリウム(60% oil, 4.87 g, 0.122 mol)のテトラヒドロフラン(50 ml)溶液に氷冷下、ぎ酸エチル(15 ml, 0.244 mol)を加え、続いて1-(4-メトキシメトキシフェニル)エタノン(10.0 g, 0.0555 mol)のテトラヒドロフラン(60 ml)溶液を内温が20℃以下になるように1.5時間かけて滴下した。反応混合物を室温になるまで放置し、酢酸エチル(200 ml)を加えた。この混合物を、水(100 ml)で2回抽出し、合わせた水層を0℃に冷却した。この水溶液に、塩酸ヒドロキシルアミン(4.20 g, 60.9 mmol)とメタノール(60 ml)溶液を加え室温で1時間攪拌した。濃塩酸(10 ml)とメタノールを加え室温で一昼夜攪拌した後に、さらに80℃で2時間反応させた。反応混合物を室温に冷却した後に、メタノールをエパポレーターで除去し、得られた水溶液を酢酸エチルで2回抽出した。合わせた有機層を、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製し4-(5-イソオキサゾリル)フェノール(5.00 g)を橙色粉末として得た。

融点192.0~194.0℃

(2) 4 - (5 - イソオキサゾリル) フェノール(20.0 ng, 0.124 nmo1) とブタノール(23.0 ng, 0.310 nmo1) のテトラヒドロフラン(0.5 nl) 溶液に、ジフェニルー2ーピリジルホスフィン(81.6 ng, 0.310 nmo1) とジーtertープチルアゾジカルボキシレート(71.4 ng, 0.310 nmo1) を加え、室温にて2時間反応した。反応液を減圧濃縮した後に、4 M - 塩酸/1, 4 - ジオキサン溶液(0.5 nl)を加え、室温にて12時間攪拌した。反応液を減圧濃縮した後に、4 M - 塩酸水溶液(0.3 nl)を加え、これを酢酸エチルで3回抽出した。合わせた有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し、標題化合物(16.9 ng)を無色結晶として得た。

融点44.0~46.0℃

実施例12

2-(4-イソオキサゾール-5-イルーフェノキシメチル)ピリジン (化合物 222) の合成

2ーピリジンメタノール(11.3 mg, 0.104 mmol)と4ー(5ーイソオキサゾリル)フェノール(41.9 mg, 0.260 mmol)のテトラヒドロフラン(1 ml)溶液に、トリフェニルホスフィン(68.1 mg, 0.260 mmol)とジエチルアゾジカルボキシレート(45.2 mg, 0.260 mmol)を加え室温にて一昼夜攪拌した。反応液を直接陽イオン交換シリカゲルカラムクロマトグラフィーに移し、テトラヒドロフランで溶出した。さらに、1Mーアンモニア/メタノール溶液で目的物を溶出した。目的物を含む画分を減圧濃縮した後に、NH型シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し標題化合物(18.9 mg)を無色結晶として得た。

融点70.0~71.0℃

実施例13

- 5-[4-(2-ピロール-1-イルーエトキシ)フェニル]-1H-ピラゾール (化合物378) の合成
 - (1) 水素化ナトリウム(60% oil, 10.0 g, 0.25 mol)のテトラヒドロフラン

(100 ml)溶液に氷冷下、ぎ酸エチル(30.8 ml, 0.500 mol)を加え、続いて4'-メトキシアセトフェノン(18.8 g, 0.125 mol)のテトラヒドロフラン(60 ml)溶液を滴下した。反応液を室温にもどした後に、水浴中で1時間攪拌した。反応混合物に酢酸エチル(100 ml)を加え、この混合物を水(100 ml)で2回抽出した。この水溶液にヒドラジン1水和物(22.5 g, 0.450 mol)を加え、室温で1時間攪拌した。反応混合物を酢酸エチル(100 ml)で2回抽出し、合わせた有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:2)で精製し5-(4ーメトキシフェニル)-1H-ピラゾール(9.7 g)を無色粉末として得た。

融点124.0~126.0℃

(2) 47%臭化水素(50 ml)に5-(4-メトキシフェニル)-1H-ピラゾール(9.66 g, 0.055 mol)を加え、80℃で一昼夜攪拌した。さらに、47%臭化水素(20 ml)を追加し、9時間還流加熱した。反応液を室温に冷却した後に氷に注ぎ、この混合液を5M-水酸化ナトリウム水溶液で中和した。生成した固体を濾過し、4-(2H-ピラゾール-3-イル)フェノール(7.63 g)を得た。

融点174.5~176.0℃ (参照 J.Med.Chem., 第21巻, 1100頁, 1978年; 融点165.0~168.0℃)

(3) 4-(2H-ピラゾール-3-イル)フェノール(96 mg, 0.6 mmol)、2-ピロール-1-イルエタノール(120 mg, 1.08 mmol)、トリフェニルホスフィン(315 mg, 1.2 mmol)及びテトラヒドロフラン(3.0 ml)の混合物にジエチルアゾジカルボキシレート(209 mg, 1.2 mmol)のテトラヒドロフラン(1.2 ml)溶液を加え、室温にて6時間攪拌した。反応混合物をそのままNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:4)にて精製し、酢酸エチルーヘキサンにて再結晶して、標題化合物(75 mg)を無色粉末として得た。

融点 129.0~130.0℃

実施例14

5-[4-(4-N,N-ジメチルアミノブトキシ)フェニル]-1H-ピラゾール (化合物383) の合成

PCT/JP02/09054

- (1) 水素化ナトリウム(60% oil, 1.74 g, 43.5 mmol)をヘキサン洗浄、真空乾燥後、窒素雰囲気下、N,Nージメチルホルムアミド(20 ml)に懸濁し、これに4-N,Nージメチルアミノブタノール(5.10 g, 43.5 mmol)のN,Nージメチルホルムアミド(9 ml)溶液を滴下し、室温にて1時間攪拌した。反応混合物に氷冷下、4'ーフルオロアセトフェノン(2.00 g, 14.5 mmol)のN,Nージメチルホルムアミド(7.2 ml)溶液を滴下し、室温にて3時間攪拌した。反応混合物に水を加え、酢酸エチルで抽出し、有機層を飽和食塩水洗浄、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1~1:1)にて精製し、4'ー(4-N,Nージメチルアミノブトキシ)アセトフェノン(2.03 g)を黄色油状物質として得た。
- (2) 水素化ナトリウム(60% oil, 0.101 g, 2.54 mmoi)をヘキサン洗浄、真空乾燥後、窒素雰囲気下、テトラヒドロフラン(1 ml)に懸濁した。これにぎ酸エチル (0.378 g, 5.10 mmol)を加え、さらに4'ー(4ーN, Nージメチルアミノブトキシ)アセトフェノン(0.30 g, 1.27 mmol)のテトラヒドロフラン(2 ml)溶液を滴下し、室温にて30分間攪拌した。反応混合物に0.5 Mー塩酸水溶液を加え、ジエチルエーテルで洗浄し、水層にヒドラジン1水和物(1.91 g, 38.1 mmol)を加え、室温にて30分間攪拌した。反応混合物に6 Mー水酸化ナトリウム水溶液を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた粗生成物をNHシリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製し、酢酸エチルーヘキサンにて再結晶し、標題化合物(0.190 g)を無色粉末として得た

融点 76.0~78.0℃

実施例15

- 4,4,4-トリフルオロー $1-(4-\{2-[4-(2H-ピラゾールー3-イル)]$ フェノキシ]エチル $\}$ ピペラジンー1-イル)ブタンー1-オン 2 塩酸 (化合物 432) の合成
- (1) tert-ブチル $4-\{2-[4-(2H-ピラゾール-3-イル)フェノキシ]エチル\} ピペラジン-1-カルボキシレート(74.5 g, 0.20 mol)の塩化メチレ$

ン(320 ml)溶液にトリフルオロ酢酸(150 ml, 1.9 mol)を加え、室温で一晩攪拌した。減圧濃縮後、氷冷しながら残査に25%アンモニア水溶液を加えて中和した。 クロロホルムーメタノール溶媒で3回抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮した。得られた粗生成物をNHシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=9:1)にて精製し、1-{2-[4-(2H-ピラゾール-3-イル)フェノキシ]エチル}ピペラジン(48.7 g)を淡黄色粉末として得た。

融点 148.0~151.0℃

(2) 4, 4, 4 ートリフルオロ酪酸(0. 12 g, 0. 82 mmo1) o N, N ージメチルホルムアミド(5 ml) 溶液に、N ーエチルーN $^{\prime}$ ー 3 ージメチルアミノプロピルカルボジイミド塩酸(0. 18 g, 0. 96 mmo1)、1 ーヒドロキシベンゾトリアゾール 1 水和物(0. 13 g, 0. 95 mmo1)、1 ー{2 ー[4 ー(2 H ーピラゾールー3 ーイル)フェノキシ]エチル}ピペラジン(0. 21 g, 0. 76 mmo1)を加え、室温で一晩反応した。反応混合物に酢酸エチルを加えて、飽和食塩水で2回洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し、得られた残査をN H シリカゲルカラムクロマトグラフィー(0 キサン:酢酸エチル=0 : 0 ・ 0

融点125.0~127.5℃

実施例16

5-[4-(6-ピロリジン-1-イルーヘキシロキシ)フェニル]-1H-ピラゾール2塩酸(化合物474)の合成

(1) 4-(2H-ピラゾール-3-イル)フェノール(1.0 g, 6.28 mmol)、6 -ブロモヘキサノール(2.3 g, 12.6 mmol)、トリフェニルホスフィン(3.3 g, 12.6 mmol)とテトラヒドロフラン(20 ml)の混合物に、ジエチルアゾジカルボキシレート(2.2 g, 12.6 mmol)のテトラヒドロフラン溶液(10 ml)を滴下し、室温にて1時 間攪拌した。反応液を減圧濃縮して残査をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=1:2)で精製し、5-[4-(6-プロモヘキシロキシ)フェニル]-1H-ピラゾール(1.1 g)を黄色固体として得た。

(2) 5 − [4 − (6 − プロモヘキシロキシ)フェニル] − 1 H − ピラゾール(300 ng, 0.928 nmol)をアセトニトリル(9 ml)に溶解し、ピロリジン(155 μl, 1.86 nmol) 及び炭酸カリウム(257 ng, 1.86 nmol)を加えて 50℃にて 1 時間攪拌した。反応液を減圧濃縮して残査に飽和食塩水を加え、酢酸エチルで 2 回抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮後、得られた残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:5)で精製した。得られた無色の液体をメタノールに溶解し、4 M − 塩酸/酢酸エチル溶液を加えて室温にて攪拌した。析出した固体を濾取し、標題化合物(180 ng)を無色固体として得た。

融点172.0~177.0℃

実施例17

 $4-(1-\{2-[4-(2H-ピラゾール-3-イル)フェノキシ]エチル} ピペリジン-4-イルーメチル) モルホリン3 塩酸(化合物 5 0 0) の合成$

(1) 4-(2H-ピラゾール-3-イル)フェノール(10.0 g, 62.5 mmol)のテトラヒドロフラン(100 ml)溶液に、トリフェニルホスフィン(21.7 g, 82.7 mmol)、メチル 1-(2-ヒドロキシエチル)ピペリジン-4-カルボキシレート(15.5 g, 82.8 mmol)のテトラヒドロフラン(50 ml)溶液を加えた。反応液を0℃に冷却後、ジエチルアゾジカルボキシレート(40% トルエン溶液;36.1 g, 82.8 mmol)を加えた。室温まで昇温後、そのまま一晩攪拌し、反応液に酢酸エチルを加え、1 M-塩酸水溶液で2回洗浄した。合わせた水層を炭酸水素ナトリウムで中和し、酢酸エチルで2回抽出し、合わせた有機層を無水硫酸マグネシウムを用い乾燥した。減圧濃縮後、得られた残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:7)にて精製し、メチル 1-{2-[4-(2H-ピラゾール-3-イル)フェノキシ]エチル}ピペリジン-4-カルボキシレート(10.7 g)を無色粉末として得た。

54

- (2) メチル 1ー{2ー[4ー(2Hーピラゾールー3ーイル)フェノキシ]エチル}ピペリジンー4ーカルボキシレート(0.43 g, 1.3 mmol)のメタノール(15 ml)溶液に、1Nー水酸化ナトリウム水溶液(6.5 ml, 6.5 mmol)を加え、室温で一晩攪拌した。反応混合物を1Mー塩酸水溶液を用いて中和し、減圧濃縮後、1ー{2ー[4ー(2Hーピラゾールー3ーイル)フェノキシ]エチル}ピペリジンー4ーカルボキシリック アシッドの粗結晶を得た。これをN,Nージメチルホルムアミド(10 ml)に溶解させ、NーエチルーN'ー3ージメチルアミノプロピルカルボジイミド1塩酸(0.30 g, 1.6 mmol)、1ーヒドロキシペンゾトリアゾール1水和物(0.21 g, 1.6 mmol)、モルホリン(0.12 g, 1.4 mmol)を加え、室温で一晩反応した。反応混合物に酢酸エチルを加えて、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し、得られた残査をNHシリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製し、モルホリンー4ーイルー(1ー{2ー[4ー(2Hーピラゾールー3ーイル)フェノキシ]エチル}ピペリジンー4ーイル)メタノン(0.26 g)を無色非晶物質として得た。
- (3) 水素化リチウムアルミニウム(77 mg, 2.0 mmol)のテトラヒドロフラン (15 ml) 懸濁液に、氷冷下、モルホリンー4ーイルー(1ー{2ー[4ー(2 Hーピラゾールー3ーイル)フェノキシ]エチル}ピペリジンー4ーイル)メタノン(0.25 g, 0.64 mmol)のテトラヒドロフラン(10 ml)溶液をゆっくりと滴下した。室温まで昇温して、そのまま室温で一晩攪拌した。反応液を氷水に注ぎ込み、セライトで濾過して不溶物を除いた後、濾液にクロロホルムを加え抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残査をNHシリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製し、4ー(1ー{2ー[4ー(2 Hーピラゾールー3ーイル)フェノキシ]エチル}ピペリジンー4ーイルーメチル)モルホリン(0.21 g)を得た。これを酢酸エチルに溶解し、4 Mー塩酸/酢酸エチル溶液を加え、析出した結晶をメタノールー酢酸エチルから再結晶し、標題化合物(0.24 g)を無色粉末として得た。

融点242.5~243.0℃

実施例18

エチル $4-\{3-[4-(2H-ピラゾール-3-イル)フェニル]プロピル\}ピペラジン-1-カルボキシレート2塩酸(化合物492)の合成$

- (1) エチル ピペラジンー 1-カルボキシレート(1.5~g, 9.6~mol)のN,N -ジメチルホルムアミド(15~ml)溶液に、炭酸セシウム(6.4~g, 19.6~mol)、4 -(3-プロモプロピル)アセトフェノン(2.8~g, 11.7~mol)のN,N-ジメチルホルムアミド(10~ml)溶液を加え、室温で一晩攪拌し、5~0℃でさらに 1 時間反応した。酢酸エチルで洗浄しながら不溶物を濾過し、濾液に酢酸エチルを加え、飽和食塩水で 2 回洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮後、得られた残査をシリカゲルカラムクロマトグラフィー(0キサン:酢酸エチルー 1:4~酢酸エチル)にて精製し、エチル 00、エチル 00、マセチルフェニル)プロピル]ピペラジン00、にて精製し、エチル 00、の)を黄色油状物質として得た。
- (2) エチル 4-[3-(4-アセチルフェニル)プロピル]ピペラジン-1-カルボキシレート(0.73 g, 2.3 mmol)と tert-ブトキシピス(ジメチルアミノ)メタン(1.9 g, 11.0 mmol)を90℃で1時間反応した。室温まで冷却後、反応混合物をそのままNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:3~1:4)にて精製し、中間体である、エチル 4-{3-[4-(3-ジメチルアミノアクリロイル)フェニル]プロピル}ピペラジン-1-カルボキシレート(0.90g)を得た。この中間体をテトラヒドロフラン(10 ml)に溶解し、ヒドラジン1水和物(0.47 g, 9.3 mmol)を加え、室温で一晩、50℃で4時間反応した。室温まで冷却後、反応液に酢酸エチルを加え、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮後、残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:7)にて精製し、エチル 4-{3-[4-(2 Hーピラゾール-3-イル)フェニル]プロピル}ピペラジン-1-カルボキシレート(0.65 g)を淡黄色ガム状物質として得た。これを酢酸エチルに溶解し、4 M-塩酸/酢酸エチル溶液を加えた。析出した結晶を濾別し、メタノールー酢酸エチルより再結晶して標題化合物(0.75 g)を淡黄色粉末として得た。

融点175.0~177.5℃

実施例19

- (1) 5-(4-メトキシフェニル)イソチアゾール(5.00 g, 0.026 mol; J. 0rg. Chem., 第 45 巻, 4857 項, 1980 年)と4 8 %臭化水素 (35 ml)の溶液を、加熱還流下、1 2時間攪拌した。室温に冷却した後に、反応液を5 M-水酸化ナトリウム水溶液で中和した。析出した結晶を濾過し、水で洗い、4-(5-イソチアゾリル)フェノール(3.08 g)を赤色結晶として得た。
- (2) エチル 4-(2-ヒドロキシエチル)ピペラジン-1-カルボキシレート(7.99 g, 39.5 mmol)のテトラヒドロフラン(80 ml)溶液に、トリフェニルホスフィン(10.4 g, 39.5 mmol)とジエチルアゾジカルボキシレート(40% トルエン溶液;17.2 ml, 39.5 mmol)を加え、10分間攪拌した。反応液に4-(5-イソチアゾリル)フェノール(2.8 g, 15.8 mmol)のテトラヒドロフラン溶液を加え、室温で2時間攪拌した。溶媒を減圧濃縮後、残査を酢酸エチルに溶解させ、4M-塩酸水溶液で2回洗浄した。水層を5M-水酸化ナトリウム水溶液で中和後、酢酸エチルで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1~1:1)により精製し、4-[2-(4-イソチアゾール-5-イルーフェノキシ)エチル]ピペラジン-1-カルボキシレート(5.0 g)を無色油状物質として得た。4-[2-(4-イソチアゾール-5-イルーフェノキシ)エチル]ピペラジン-1-カルボキシレート(5.0 g)の酢酸エチル溶液に4M-塩酸/酢酸エチル溶液を加え、析出した結晶を濾別し、標題化合物(3.37 g)を無色結晶として得た。

融点216.0~217.0℃

実施例20

エチル 4-[2-(4-ピラジン-2-イルーフェノキシ)エチル] ピペラジン <math>-1-カルボキシレート 2 塩酸 (化合物 7 4 3) の合成

(1) クロロピラジン(1.00 g, 8.7 mmol)のジメトキシエタン(10 ml)溶液に

4-メトキシフェニルボレート(1.60~g,~10.6~mmol)、トリフェニルホスフィン(0.23~g,~0.88~mmol)、2 M - 炭酸カリウム水溶液(12~ml,~24~mmol)を加え、室温で3.0分攪拌した。 $Pd(0Ac)_2(0.05~g,~0.22~mmol)$ を加え、1.0.0でで5時間反応した。室温まで冷却し、水を加えて酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮後、残査をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1~1:1) で精製し、2-(4-メトキシフェニル) ピラジン(1.57~g)を無色固体として得た。

- (2) 2-(4-メトキシフェニル) ピラジン (1.50 g, 8.1 mmol)に48%臭酸(15 ml)を加え、100℃で19時間反応した。室温まで冷却し、反応液を水酸化ナトリウム水溶液と炭酸水素ナトリウム水溶液で中和後、析出した結晶を濾取し、4-ピラジン-2-イルーフェノール(1.06 g)を橙色結晶として得た。
- (3) 4ーピラジン-2ーイルーフェノール(0.21 g, 1.2 mmol)のテトラヒドロフラン(15 ml)溶液に、トリフェニルホスフィン(0.48 g, 1.8 mmol)、エチル 4ー(2ーヒドロキシエチル)ピペラジンー1ーカルボキシレート(0.37 g, 1.8 mmol)を加え、氷冷下、ジエチルアゾジカルボキシレート(40% トルエン溶液; 0.80 g, 1.8 mmol)を加えた。室温まで昇温し、そのまま12時間攪拌した。溶媒を濃縮後、残査を酢酸エチルに溶解させ、1Mー塩酸水溶液で2回洗浄した。水層を水酸化ナトリウム水溶液で中和後、酢酸エチルで2回抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残査をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1~1:1)により精製し、エチル 4ー[2ー(4ーピラジンー2ーイルーフェノキシ)エチル]ピペラジンー1ーカルボキシレート(0.47 g)の粗結晶を得た。得られたエチル 4ー[2ー(4ーピラジンー2ーイルーフェノキシ)エチル]ピペラジンー1ーカルボキシレートの酢酸エチル溶液に、4Mー塩酸/酢酸エチル溶液を加えた。析出した結晶を濾別し、標題化合物(0.34 g)を淡黄色粉末として得た。

融点204.0~204.5℃ (dec.)

実施例21

4-(4-ブトキシフェニル)オキサゾール(化合物759)の合成

- (1) 4'-ブトキシアセトフェノン(2.50 g, 13 mmol)のクロロホルム(75 ml) 溶液を0℃に冷却し、臭素(2.75 g, 14.3 mmol)を滴下した。反応温度を室温に戻し、そのまま2時間反応した。反応液に飽和亜硫酸ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=19:1)で精製し、2-プロモー4'-ブトキシアセトフェノン(1.85 g)を淡黄色油状物質として得た。
- (2) 2-プロモー4'-プトキシアセトフェノン(0.20 g, 0.74 mmol)をホルムアミド(2.5 ml)中、180℃で1時間反応した。室温まで冷却後、水を加えて酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥後、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製し、標題化合物(0.091 g)を淡褐色結晶として得た。

融点52.0~52.5 ℃

実施例22

エチル 4-[2-(4-オキサゾール-5-イル-フェノキシ)エチル] ピペラジン-1-カルボキシレート 2 塩酸 (化合物 760) の合成

(1) 4'-メトキシアセトフェノン(5.00 g, 36.7 mmo1)のメタノール(50 ml) 溶液に、TOSMIC(8.6 g, 44.0 mmol)とナトリウムメトキシド(5.9 g, 110 mmol)を加え、2時間還流加熱した。水を加え、室温でそのまま3日間反応した。溶媒を減圧濃縮後、残査に水を加えて析出した結晶を濾過し、5-(4-メトキシフェニル)オキサゾール(5.37 g)を淡黄色結晶として得た。

融点63.0~64.5 ℃

(2) 5-(4-メトキシフェニル)オキサゾール(2.50 g)に47%臭酸(18 ml)を加え、105℃で16時間反応した。室温まで冷却し、反応液を氷ー炭酸水素ナトリウム水溶液に注いだ。5M-水酸化ナトリウム水溶液で中和後、酢酸エチルで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残査をクロロホルムーメタノールー酢酸エチルより再結晶し、4-オキサゾールー4-イルーフェノール(0.96 g)を茶色結晶として得た。

融点 235.0~236.0℃

(3) エチル 4-(2-ヒドロキシエチル) ピペラジン-1-カルボキシレート(0.75 g, 3.7 mmol)のテトラヒドロフラン(10 ml)溶液に、トリフェニルホスフィン(0.98 g, 3.7 mmol)とジエチルアゾジカルボキシレート(40% トルエン溶液;1.6 ml, 3.7 mmol)を加え、10分間攪拌した。反応液に4-オキサゾールー4-イルーフェノール(0.30 g, 1.9 mmol)を加え、室温で一晩反応した。溶媒を濃縮後、残査を酢酸エチルに溶解させ、4M-塩酸水溶液で2回洗浄した。水層を5M-水酸化ナトリウム水溶液で中和後、酢酸エチルで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、濃縮した。残査をSephadex LH20を用いてゲル濾過(メタノール)して、エチル 4-[2-(4-オキサゾール-5-イルーフェノキシ)エチル]ピペラジン-1-カルポキシレート(0.78 g)を得た。得られたエチル 4-[2-(4-オキサゾール-5-イルーフェノキシ)エチル]ピペラジン-1-カルポキシレート(0.78 g)を得た。得られたエチルは-[2-(4-オキサゾール-5-イルーフェノキシ)エチル]ピペラジン-1-カルボキシレート(0.35 g, 1.0 mmol)の酢酸エチル溶液に4M-塩酸/酢酸エチル溶液を加えた。析出した結晶を濾別し、標題化合物(0.33 g)を無色結晶として得た。

融点195.0~197.0℃ (dec.)

実施例23

 $1-(4-\{2-[4-(2H-ピラゾール-3-イル)フェノキシ]エチル} ピペラジン-1-イル)-ブタン-1-オン 2 塩酸 (化合物 <math>399$) の合成

 $1-\{2-[4-(2H-ピラゾール-3-Tル)]$ エチル $\}$ ピペラジン(2.0 g, 7.3 mmol)のN, N-ジメチルホルムアミド(25 ml)けん濁液に、氷冷下、プチリルクロリド(0.86 g, 8.1 mmol)のN, N-ジメチルホルムアミド(5 ml)溶液を滴下した。氷冷下、1時間攪拌した後に、反応液に2.5 M-水酸化ナトリウム水溶液を加え、酢酸エチルで2回抽出した。有機層を無水硫酸ナトリウムで乾燥後に濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=92:8)で精製し、無色油状物(2.4 g)を得た。これをヘキサンー酢酸エチルの混合溶媒から結晶化し、 $1-(4-\{2-[4-(2H-ピラゾール-3-Tル)]$ フェノキシ]エチル $\}$ ピペラジン-1-T ピペラジン-1-T ア

無色粉末(1.3g)として得た。これを酢酸エチルーメタノールの混合物に溶解し、4M-塩酸/酢酸エチル溶液を加えた。析出した結晶を濾別し、標題化合物(1.1g)を無色粉末として得た。

融点204.0~207.0℃ (dec.)

実施例 2 4

2ーシクロプロピルー1ー(4ー{2ー[4ー(2Hーピラゾールー3ーイル)フェノキシ]エチル}ピペラジンー1ーイル)エタノン 2塩酸(化合物440)の合成2ーシクロプロピル酢酸(11 g, 0.11 mol)、1ー{2ー[4ー(2Hーピラゾールー3ーイル)フェノキシ]エチル}ピペラジン(20 g, 0.73 mol)のN,Nージメチルホルムアミドーテトラヒドロフラン混合溶液に、N,N'ージシクロヘキシルカルボジイミド(21 g, 0.11 mol)、1ーヒドロキシベンゾトリアゾール1水和物(15 g, 0.11 mol)を加え、室温で一晩反応した。析出した不溶物を濾過し、1 Mー塩酸水溶液、つづいて酢酸エチルで洗浄した。ろ液を5 Mー水酸化ナトリウム水溶液で中和し、混合物を酢酸エチルで2回抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し、得られた粗結晶をメタノールにて洗浄し2ーシクロプロピルー1ー(4ー{2ー[4ー(2Hーピラゾールー3ーイル)フェノキシ]エチル}ピペラジンー1ーイル)エタノンを無色粉末(12.5g)として得た。融点161.0~163.5℃

これを酢酸エチルーメタノールの混合物に溶解し、4M-塩酸/酢酸エチル溶液を加えた。析出した結晶を濾別し、標題化合物を無色粉末として得た。

融点162.0~174.0℃

実施例25

エチル $4-\{2-[4-(2H-ピラゾール-3-イル)フェノキシ]エチル} ピペラジン-1-カルボキシレート(化合物381)の合成$

4-(2H-ピラゾールー3-イル)フェノール(5.0 g, 0.031 mol)、トリフェニルホスフィン(16.5g, 0.0628 mmol)、エチル <math>1-(2-ヒドロキシエチル)ピペラジンー4-カルボキシレート(11.4 g, 0.0628 mmol)のテトラヒドロフラン

(150ml)溶液に、ジエチルアゾジカルボキシレート (9.9 ml, 0.0628 mmol)を滴下した。室温にて 6 時間攪拌した後に、反応液を濃縮した。残査を 1 M - 塩酸水溶液に溶解し、混合物をエーテルで洗浄した。水層を 5 M - 水酸化ナトリウム水溶液で中和し、混合物を酢酸エチルで 2 回抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し、得られた残査をN H シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:5)にて精製し、エチル 4-{2-[4-(2 H - ピラゾールー3-イル)フェノキシ]エチル}ピペラジン-1-カルボキシレートを無色油状物として得た。これを酢酸エチルーメタノールの混合物に溶解し、4 M - 塩酸/酢酸エチル溶液を加えた。析出した結晶を濾別し、標題化合物を無色粉末(10.5g)として得た。

融点217.0~218.0℃ (dec.)

相当する出発原料と反応物を用い、上記実施例と同様な操作を行なうことにより、下記表に示す本発明化合物を得た。上記実施例で得た本発明化合物を合わせ表に示した。

化合物番号	構造式	¹ H NMR(300MHz, CDCl ₃) spectra, mass spectra(APCI) and melting points	抑制率 % (at 0.1uM)	IC ₅₀ (nM)
化合物 1	N O N O	δ 4.00 (s, 3H), 6.88 (d, J = 8.8Hz, 1H), 7.21 (m, 2H), 7.61 (dd, J = 8.8, 2.8Hz, 1H), 7.76 (s, 1H), 8.26 (d, J = 2.8Hz, 1H).		
化合物 2	N N SHC!	δ 0.88 (t, J = 6.8Hz, 3H), 1.22–1.48 (m, 6H), 1.67–1.81 (m, 2H), 4.33 (t, J = 6.8Hz, 2H), 7.08 (d, J = 9.0Hz), 7.93 (m, 1H), 8.15 (dd, J = 3.0, 9.0Hz, 1H), 8.23 (m, 1H), 8.61 (d, J = 3.0Hz, 1H), 9.66 (t, J = 1.3Hz, 1H).		7.7
化合物 3	N N O	δ 0.90 (t, $J = 7.2$ Hz, 3H), 1.48–1.26 (m, 8H), 1.78 (m, 2H), 4.32 (t, $J = 6.7$ Hz, 2H), 6.84 (dd, $J = 8.7$, 0.6Hz), 7.20 (d, $J = 11.0$ Hz, 1H), 7.21 (d, $J = 11.0$ Hz, 1H), 7,58 (dd, $J = 8.7$, 2.8Hz, 1H), 7.74 (s, 1H), 8.22 (dd, $J = 2.8$, 0.6Hz, 1H).	54.1	
化合物 4	N N N	δ 1.04 (t, $J = 7.4$, 3H), 1.82 (dt, $J = 6.7$, 7.4Hz, 2H), 4.29 (t, $J = 6.7$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).		
化合物 5	N N N N N N N N N N N N N N N N N N N	δ 0.90 (t, $J = 6.0$ Hz, 3H), 0.96 (d, $J = 6.4$ Hz, 3H), 1.15–1.41 (m, 3H), 1.53–1.79 (m, 3H), 1.82 (m, 1H), 4.36 (m, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	42.1	

六 合 参 6	N N N N N N N N N N N N N N N N N N N	δ 0.92 (d, $J = 6.7$ Hz, 6H), 1.35(m, 2H), 1.62 (m, 2H), 1.80 (m, 2H), 4.31 (t, $J = 6.8$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	39.5	
化合物 7	N N N	M+H = 260, M-H = 258.	23.2	
化合物 8	N N O O	δ 0.98 (d, $J = 6.7$ Hz, 6H), 1.69 (dt, $J = 6.7$ Hz, 2H), 1.82 (m, 1H), 4.35 (t, $J = 6.7$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	12.2	
6 体导引			31.1	
允 05 10	N O O	δ 1.01 (s, 9H), 1.73 (t, $J = 7.5$ Hz, 2H), 4.40 (t, $J = 7.5$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	33.9	,
化合物 11	N N N N N N N N N N N N N N N N N N N	δ 1.05 (s, 9H), 4.01 (s, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H). M+H = 232, M-H = 230.	14.5	

化合物 12	N N O	δ 1.03 (d, J = 6.7Hz, 6H), 2.11 (ddt, J = 6.7, 6.7Hz, 1H), 4.10 (d, J = 6.7Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	
化合物 13		δ 0.89-0.97 (m, 6H), 1.26 (m, 1H), 1.43 (m, 1H), 1.61 (m, 2H), 1.83 (m, 1H), 4.36 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.44 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	
元	N N N N N N N N N N N N N N N N N N N	δ 0.94 (s, 9H), 1.12 (dd, J = 14.0, 6.0Hz, 1H), 1.40 (dd, J = 14.0, 4.0Hz, 1H), 2.01 (m, 1H), 4.03 (dd, J = 10.0, 7.5Hz, 1H), 4.17 (dd, J = 10.0, 5.9Hz, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	
化合物 15		δ 0.90-0.94 (m, 6H), 1.26-1.63 (m, 8H), 1.83 (m, 1H), 4.21 (d, $J=5.8$ Hz, 2H), 6.85 (dd, $J=8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J=8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J=2.8$, 0.6Hz, 1H).	7
化合物 16		δ 1.63–1.75 (m, 2H), 1.79–1.85 (m, 4H), 1.96–2.01 (m, 2H), 5.42 (m, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	rờ
化合物 17	N N N	δ 1.26–1.57 (m, 6H), 1.79–1.83 (m, 2H), 2.00–2.05 (m, 2H), 5.05 (m, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 44.4 $M+H=230$, $M-H=228$.	4.

化合物 18	N N O N	δ 0.37 (m, 2H), 0.65 (m, 2H), 1.31 (m, 1H), 4.18 (d, $J = 7.2$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	30.0
化合物 19		δ 0.99 (d, J = 6.8Hz, 3H), 1.04–1.29 (m, 6H), 1.69–1.86 (m, 6H), 4.13 (dd, J = 10.3, 7.2Hz, 1H), 4.31 (dd, J = 10.3, 5.8Hz, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	56.2
化合物 20		δ 1.31–1.43 (m, 2H), 1.55–1.69 (m, 4H), 1.79–1.87 (m, 2H), 2.38 (m, 1H), 4.20 (d, J = 7.2Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	74.0
化合物 21		δ 1.10–1.14 (m, 2H), 1.42–1.67 (m, 7H), 1.74–1.86 (m, 4H), 4.32 (t, J = 6.8Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	115.5
化合物 22		δ 0.44 (m, 2H), 0.57 (m, 2H), 1.24 (s, 3H), 4.13 (s, 2H), 6.85 (dd, $J=8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J=8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J=2.8$, 0.6Hz, 1H).	32.6
化合物 23	N O O	δ 0.36 (ddd, J = 8.2, 5.0, 5.0Hz, 1H), 0.54 (m, 1H), 0.80 (m, 1H), 1.00 (m, 1H), 1.10 (d, J = 6.0Hz, 3H), 4.13 (dd, J = 11.2, 7.2Hz, 1H), 4.21 (dd, J = 11.2, 7.2Hz, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J =2.8, 0.6Hz, 1H).	61.6

		T			· · · · · · · · · · · · · · · · · · ·
54.2			50.2	88.1	53.0
δ 0.89 (m, 2H), 1.11–1.29 (m, 6H), 1.41–1.51 (m, 2H), 1.62–1.82 (m, 7H), 4.32 (t, J = 6.8Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	M+H = 286, M-H = 284.	δ 1.15–1.26 (m, 2H), 1.51–1.70 (m, 4H), 1.80–2.02 (m, 5H), 4.35 (t, J = 6.8Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 0.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	δ 1.01-1.12 (m, 2H), 1.19-1.37 (m, 3H), 1.69-1.88 (m, 6H), 4.14 (d, $J = 6.2$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	δ 0.93–1.04 (m, 2H), 1.15–1.32 (m, 3H), 1.49 (m, 1H), 1.66–1.80 (m, 7H), 4.36 (t, J = 6.9Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 0.6Hz, 1H), 7.74 (s, 1H), 8.21(dd, J = 2.8, 0.6Hz, 1H).	δ 1.03-1.26 (m, 5H), 1.29 (d, J = 6.4Hz, 3H), 1.56-1.90 (m, 6H), 5.05 (dq, J = 6.4, 6.4Hz, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9,2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).
N N O N O N O N O N O N O N O N O N O N	N N N N N N N N N N N N N N N N N N N	Choly Man	N N O C	N N N O	
化合物 24	化合物 25	化合物 26	化合物 27	化合物 28	化合物 29

化合物 30	N O N	δ 1.85–2.02 (m, 4H), 2.15 (m, 2H), 2.79 (m, 1H), 4.31 (d, J = 6.8Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	39.6	
化合物 31	N O	21	64.0	
化合物 32		.82 (m, 2H), 2.14 (m, 2H), 4.34 (t, J = 6.7Hz, 2H), (ddt, J = 17.0, 10.3, 6.7Hz, 1H), 6.85 (dd, J = 8.9, 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd,	63.5	
七	N N N	iH), 2.04 (m, 2H), 2.50 (m, 2H), 4.34 (t, $J = 6.9$ Hz, im, 1H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	57.4	
化 合物 34	N N O	δ 1.66 (m, 3H), 1.85 (dt, $J = 7.6$, 6.7Hz, 2H), 2.16 (m, 2H), 4.35 (t, $J = 6.7$ Hz, 2H), 2.16 (m, 2H), 4.35 (t, $J = 6.7$ Hz, 2H), 5.49 (m, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	36.6	
公公公公公公公公公公公公公公公公公公公公公公公公公公公公公公公公公公公公		δ 1.15 (d, J = 6.8Hz, 3H), 2.71 (m, 1H), 4.20 (dd, J = 10.4, 6.8Hz, 1H), 4.26 (dd, J = 10.4, 6.8Hz, 1H), 5.06–5.17 (m, 2H), 5.87 (ddd, J = 17.0, 10.4, 7.0Hz, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	36.3	

	·				
50.7			84.0	110.4	82.1
δ 1.67 (s, 3H), 1.73 (s, 3H), 2.49 (dt, $J = 7.0$, 7.0Hz, 2H), 4.31(t, $J = 7.0$ Hz, 2H), 5.22 (m, 1H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	M+H = 226 M-H = 224	δ 1.82 (m, 3H), 2.52 (t, J = 6.8Hz, 2H), 4.47 (t, J = 6.8Hz, 2H), 4.81 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	δ 1.35 (m, 3H), 1.26–1.40 (m, 4H), 2.08 (dt, J = 6.8, 6.8Hz, 2H), 2.55 (dt, J = 6.8, 6.8Hz, 2H), 4.34 (t, J = 6.8Hz, 2H), 5.42–5.59 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9,2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	δ 0.97 (t, J = 7.5Hz, 3H), 1.47–1.57 (m, 2H), 1.76–1.86 (m, 2H), 2.01–2.16 (m, 4H), 4.34 (t, J = 6.7Hz, 2H), 5.32–5.45 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	δ 1.46–1.53 (m, 6H), 1.81 (m, 2H), 2.09 (m, 2H), 4.33 (t, J = 6.7Hz, 2H), 4.93–5.05 (m, 2H), 5.82 (ddt, J = 16.8, 10.1, 6.7Hz, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).
N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N O	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
化合物 36	化合物 37	化合物 38	化合物 39	化合物 40	化合物 41

化合物 42	N N N O	δ 1.77 (m, 3H), 4.81 (m, 2H), 5.73–5.96 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 5.8, 0.6Hz, 1H). M+H = 216, M-H = 214.	59.1
化合物 43	N N N O	δ 1.78 (s, 3H), 1.81 (s, 3H), 4.86 (d, $J = 7.2$ Hz, 2H), 5.53 (t, $J = 7.2$ Hz, 1H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	48.6
化合物 44	N N N N N N N N N N N N N N N N N N N	5.7, 1.4Hz, 2H), 4.40 (t, J = 6.8Hz, 2H), 5.09-5.21 6.9, 9.8, 6.7Hz, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7 = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8,	39.4
化合物 45	N N O	δ 1.90 (tt, $J = 6.8$, 6.4Hz, 2H), 2.24 (dt, $J = 7.9$, 7.0Hz, 2H), 4.35 (t, $J = 6.8$, 6.4Hz, 2H), 4.99–5.11 (m, 2H), 5.87 (ddt, $J = 16.9$, 10.5, 6.8Hz, 1H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	67.2
化合物 46	N N N N N N N N N N N N N N N N N N N	δ 1.03 (t, $J = 7.5$ Hz, 3H), 2.20 (m, 2H), 4.92 (dd, $J = 3.4$, 2.0Hz, 2H), 5.65–5.72 (m, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 5.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	55.9
化合物 47	N N O	6.8Hz, 2H), 2.56 (dt, $J = 7.3$ Hz, 2H), 7.40 (tq, $J = 7.3$, 7.3Hz, 2H), 2.07 (dt, $J = 7.3$, 6.8Hz, 2H), 2.56 (dt, $J = 7.0$, 6.2Hz, 2H), 4.34 (t, $J = 7.0$ Hz, 2H), 5.46–5.56 (m, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	70.6

公公 48	N O N	δ 0.98 (t, $J = 7.3$ Hz, 3H), 1.56 (tq, $J = 7.3$, 7.1Hz, 2H), 2.23 (tt, $J = 7.1$, 2.24z, 2H), 5.00 (t, $J = 2.2$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	π.
化合物 49	N O N O	δ 0.98 (t, $J = 7.3$ Hz, 3H), 1.50–1.64 (m, 4H), 2.25 (tt, $J = 7.1$, 2.2Hz, 2H), 5.00 (t, $J = 2.2$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	
化合物 50		δ 0.97 (t, J = 7.2Hz, 3H), 1.51 (tq, J = 7.2, 7.2Hz, 2H), 2.14 (tt, J = 7.2, 2.3Hz, 2H), 2.67 (tt, J = 7.0, 2.3Hz, 2H), 4.43 (t, J = 7.0Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	
六	N	δ 0.91 (t, J = 7.3Hz, 3H), 1.26–1.49 (m, 4H), 2.16 (tt, J = 2.3, 2.3Hz, 2H), 2.66 (tt, J = 7.1, 2.3Hz, 2H), 4.43 (t, J = 7.11z, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	80.
CP 52	N N N N N N N N N N N N N N N N N N N	δ 1.17 (t, $J = 7.5$ Hz, 3H), 2.27 (tq, $J = 7.5$, 2.2Hz, 2H), 5.00 (t, $J = 2.2$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	0.
た合物 53		δ 1.77 (m, 2H), 1.88–1.98 (m, 3H), 2.29 (m, 2H), 4.36 (t, J = 6.5Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	ည

化合物 54	N	δ 1.89 (t, $J = 2.3$ Hz, 3H), 4.98(q, $J = 2.3$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 8.9$, 2.8 0.6Hz, 1H).	32.3
化合物 55			20.3
化合物 56	N N N N N N N N N N N N N N N N N N N	H), 2.18 (m, 2H), 2.67 (tt, $J = 7.0$, 2.3Hz, 2H), 4.43 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 1.8$), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	26.7
化合物 57	N N N O NO	H), 3.54 (q, J = 7.0Hz, 2H), 3.63 (m, 2H), 3.72 (m, m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	8.9
化合物 58	N N O O O		5.9
化合物 59	N N N O	M·Th = 220, M·H = 218. δ 1.25 (t, J = 7.0Hz, 3H), 3.60 (m, 2H), 3.83 (m, 2H), 4.52 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	

化合物 60	N~N~0~0~0~	δ 0.91 (t, J = 7.3Hz, 3H), 1.35 (m, 2H), 1.57 (m, 2H), 3.47 (t, J = 6.7Hz, 2H), 3.61 (m, 2H), 3.71 (m, 2H), 3.88 (m, 2H), 4.52 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.7 4(s, 1H), 8.21 (dd, J = 8.9, 2.8Hz, 1H), 7.7 4(s, 1H), 8.21 (dd, M-H = 306, M-H = 304.
化 哈梦 61	N N N O O	δ 1.22 (t, J = 6.2Hz, 3H), 1.96 (m, 2H), 3.35 (s, 3H), 3.55 (m, 1H), 4.43 (dd, J = 7.0, 6.4Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).
六	N N N N N N N N N N N N N N N N N N N	δ 3.82 (m, 2H), 4.10 (m, 2H), 4.53 (m, 2H), 5.20–5.35 (m, 2H), 5.96 (ddt, J = 17.1, 10.4, 5.6Hz, 1H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).
化合物 63		δ 1.26 (s, 6H), 2.01 (t, J = 7.3Hz, 2H), 3.24 (s, 3H), 4.45 (t, J = 7.3Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9,2.8Hz, 1H), 36.3 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).
化合物 64	N O O O O O O O O O O O O O O O O O O O	δ 0.89 (t, J = 7.2Hz, 3H), 1.26–1.37 (m, 6H), 1.57–1.64 (m, 2H), 3.53 (t, J = 6.7Hz, 2H), 3.80 (m, 2H), 4.51 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H). 1H). M+H = 290, M-H = 288.
元 65	N N N O N O N N N N N N N N N N N N N N	δ 1.24 (s, 9H), 3.74 (m, 2H), 4.46 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H). M+H = 262, M-H = 260.

化合物 66	N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ogo - II W ogo - III w	·
化合物 67		δ 0.91 (d, J = 6.7Hz, 6H), 1.91 (m, 1H), 3.29 (d, J = 6.8Hz, 2H), 3.80 (m, 2H), 4.51 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H).	
化合物 68	N N O O O O O	δ 0.94 (t, J = 7.5Hz, 3H), 1.64 (m, 2H), 3.50 (t, J = 6.8Hz, 2H), 3.80 (m, 2H), 4.51 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	4.0
化合物 69	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	δ 1.70–1.79 (m, 2H), 1.83–1.92 (m, 2H), 3.36 (s, 3H), 3.45 (t, J = 6.3Hz, 2H), 4.36 (t, J = 6.5Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	
化合物 70	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	δ 0.89 (d, $J = 6.7$ Hz, 6H), 1.87 (m, 1H), 3.23 (d, $J = 6.7$ Hz, 2H), 3.61 (m, 2H), 3.72 (m, 2H), 3.89 (m, 2H), 4.52 (m, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H). M+H = 306, M-H = 304.	
化合物 71	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

化合物 72	N O O	δ 0.93 (t, $J = 7.4$ Hz, 3H), 1.40 (m, 2H), 1.61 (m, 2H), 3.54 (t, $J = 6.7$ Hz, 2H), 3.80 (m, 2H), 4.51 (m, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	30.1	
化合物 73	N 0 0 0	δ 1.20 (d, $J = 6.2$ Hz, 6H), 3.70 (m, 1H), 3.80 (m, 2H), 4.49 (m, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).		
化合物 74	N N N O N O N N O N O N O N O N O N O N	6 0.88 (t, $J = 6.9$ Hz, 3H), 1.27–1.31 (m, 8H), 1.57–1.61 (m, 2H), 3.53 (t, $J = 6.8$ Hz, 2H), 3.80 (m, 2H), 4.51 (m, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).		
化合物 75	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	δ 0.90 (m, 3H), 1.26–1.36 (m, 4H), 1.58–1.62 (m, 2H), 3.53 (t, $J=6.8$ Hz, 2H), 3.80 (m, 2H), 4.51 (m, 2H), 6.85 (dd, $J=8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J=8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J=2.8$, 0.6Hz, 1H).	41.3	
化合物 76	N N O N O N O N O N O N O N O N O N O N	- T	53.5	
化合物 77	N N O O O		39.6	
		11.11		

化合物 78	N N O O	M+H = 234, M-H = 232.	18.4	
化合物 79	N O O	M+H = 248, M-H = 246. mp 110.0-115.0 °C	28.4	
化合物 80	Q ON NON	M+H = 246, M-H = 244.	. 26.8	
化合物 81	CO ON NON	M+H = 246, M-H = 244.	49.1	
化合物 82		M+H = 246, M-H = 244.		
化合物 83	O O O O	M+H = 248, M-H = 246.	·	

化合物 84	N N N N N N N N N N N N N N N N N N N	δ 1.43–1.68 (m, 5H), 1.91 (m, 1H), 3.51 (m, 1H), 3.74 (m, 1H), 4.06 (m, 1H), 4.30 (dd, $J = 11.3$, 6.7Hz, 1H), 4.37 (dd, $J = 11.3$, 3.5Hz, 1H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	28.9	
化合物 85	N N O O O O	δ 1.41 (s, 3H), 1.48 (s, 3H), 3.87 (dd, $J=8.4$, 6.1Hz, 1H), 4.17 (dd, $J=8.4$, 6.4Hz, 1H), 4.35–4.54 (m, 3H), 6.85 (dd, $J=8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J=8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J=2.8$, 0.6Hz, 1H). M+H = 276, M-H = 274.	27.7	
化合物 86	N N O D	M+H = 232, M-H = 230.	24.7	
化合物 87	N N N N N N N N N N N N N N N N N N N	δ 2.20 (s, 3H), 2.91 (t, J = 6.8Hz, 2H), 4.55 (t, J = 6.8, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	39.1	
化合物 88	N N N N N N N N N N N N N N N N N N N	δ 1.31 (t, $J = 7.5$ Hz, 3H), 2.66 (q, $J = 7.5$ Hz, 2H), 2.93 (t, $J = 6.9$ Hz, 2H), 4.53 (d, $J = 6.9$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H). M+H = 250, M-H = 248.	57.1	
化合物 89	N N N N N N N N N N N N N N N N N N N	δ 2.10 (m, 2H), 2.14 (s, 3H), 2.68 (t, $J = 7.3$ Hz, 2H), 4.44 (t, $J = 6.3$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	58.8	

49.0	60.2	102.8			59.1
M+H = 244 M-H = 242	δ 2.07 (m, 2H), 2.30 (m, 2H), 4.41 (t, $J = 6.2$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	δ 0.97&1.05 (d, $J=5.9$ &7.0Hz, 3H), 1.77–1.87 (m, 2H), 2.00–2.29 (m, 4H), 4.18–4.44 (m, 2H), 5.66 (d, $J=5.8$ Hz, 2H), 6.85 (dd, $J=8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J=8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J=2.8$, 0.6Hz, 1H).	δ 5.42 (s, 2H), 6.92 (dd, J = 8.8, 0.6Hz, 1H), 7.21 (d, J = 10.7Hz, 1H), 7.31-7.43 (m, 3H), 7.46-7.49 (m, 2H), 7.62 (dd, J = 8.8, 2.8Hz, 1H), 7.75 (s, M+H = 252 M-H = 250	δ 0.86 (m, 6H), 1.13 (m, 2H), 1.26–1.47 (m,, 7H), 1.84(m, 2H), 4.33 (t, J = 6.8Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 0.6Hz, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	δ 2.35 (s, 6H), 2.74 (t, J = 5.6Hz, 2H), 4.45 (t, J = 5.6Hz, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), $M+H = 233$, $M-H = 233$, $M-H = 231$.
T N N N N N N N N N N N N N N N N N N N			N N N N N N N N N N N N N N N N N N N	Chiral	N N N N N N N N N N N N N N N N N N N
化合物 90	化合物 91	化 哈物 92	化合物 93	化合物 94	化合物 95

化合物 96	N O N	δ 1.09 (t, $J = 7.2$ Hz, 6H), 2.67 (q, $J = 7.2$ Hz, 4H), 2.90 (t, $J = 6.2$ Hz, 2H), 4.44 (t, $J = 6.2$ Hz, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	46.1
化合物 97	N N O N	δ 1.63–2.02 (m, 6H), 2.21 (m, 2H), 2.37 (s, 3H), 3.11 (m, 1H), 4.39 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	21.9
化合物 98	N N N N N N N N N N N N N N N N N N N		47.9
化合物 99		δ 5.55 (s, 2H), 7.00 (dd, $J=8.7$, 0.6Hz, 1H), 7.19–7.25 (m, 3H), 7.46 (d, $J=7.8$ Hz, 1H), 7.65 (dd, $J=8.7$, 2.8Hz, 1H), 7.70 (dd, $J=7.8$, 1.9Hz, 1H), 7.74 (m, 1H), 8.23 (dd, $J=2.8$, 0.6Hz, 1H), 8.63 (ddd, $J=4.8$, 1.9, 0.9Hz, 1H). M+H = 253, M-H = 251.	61.9
化合物 100		δ 5.45 (s, 2H), 6.93 (dd, $J = 8.6$, 0.6Hz, 1H), 7.19–7.24 (m, 2H), 7.32 (dd, $J = 8.9$, 5.0Hz, 1H), 7.64 (dd, $J = 8.6$, 2.8Hz, 1H), 7.75 (d, $J = 1.0$ Hz, 1H), 7.80 (m, 1H), 8.25 (dd, $J = 2.8$, 0.6Hz, 1H), 8.59 (dd, $J = 5.0$, 1.7Hz, 1H). $J = 1.7$ Hz, 1H).	92.6
化合物 101	N O O	δ 5.46(s, 2H), 6.99 (dd, J = 8.8, 0.6Hz, 1H), 7.19–7.24 (m, 2H), 7.36 (m, 2H), 7.66 (dd, J = 8.8, 2.8Hz, 1H), 7.76 (t, J = 1.1Hz, 1H), 8.22 (dd, J = 2.8, 0.6Hz, 1H), 8.62 (dd, J = 4.5, 1.7Hz, 2H). M+H = 253, M-H = 251. mp 86.0–91.0 °C.	0.06

化合物 102		σ 1.26–1.83 (m, 6H), 2.16 (m, 1H), 2.97 (m, 1H), 2.39 (s, 3H), 2.93 (m, 1H), 4.39 (dd, $J = 11.2$, 3.9Hz, 1H), 4.43 (dd, $J = 11.2$, 4.2Hz, 1H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58(dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	52.6	
化合物 103	N N N N N N N N N N N N N N N N N N N	δ 0.81–1.15 (m, 2H), 1.59–1.86 (m, 3H), 1.95 (m, 1H), 2.21 (m, 1H), 2.30 (s, 3H), 2.80 (m, 1H), 2.99 (m, 1H), 4.14 (dd, $J = 10.5$, 7.5Hz, 1H), 4.26 (dd, $J = 10.5$, 5.6Hz, 1H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	30.2	
化合物 104		δ 1.04 (t, J = 7.2Hz, 6H), 2.59 (q, J = 7.2Hz, 4H), 2.70 (t, J = 6.4Hz, 2H), 3.64 (t, J = 6.4Hz, 2H), 3.84 (m, 2H), 4.51 (m, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 8.8, 0.6Hz, 1H). 2.8, 0.6Hz, 1H). M+H = 305 M−H = 303	19.0	
化合物 105	N N N N N N N N N N N N N N N N N N N	M+H = 181, M−H = 179.	60.4	
化合物 106	N N N N N N N N N N N N N N N N N N N	M+H = 277, M-H = 275.	50.3	
化合物 107		δ 1.01 (s, 6H), 2.30 (s, 8H), 4.10 (s, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H). M+H = 277, M-H = 273 mp 68.5-69.0 °C.	34.1	>1,000

-	8.99	73.8	47.3	76.0	
	6.75 (t, $J = 2.1$ Hz, 2H), 6.83 (dd, $J = 8.7$, 0.6Hz, 1H), 7.19 (t, $J = 1.2$ Hz, 1H), 7.23 (t, $J = 1.2$ Hz, 1H), 7.61 (dd, $J = 8.7$, 2.8Hz, 1H), 7.75 (t, $J = 1.2$ Hz, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	δ 2.25 (tt, $J = 6.8$, 6.1Hz, 2H), 4.10 (t, $J = 6.8$ Hz, 2H), 4.32 (t, $J = 6.1$ Hz, 2H), 6.15 (dd, $J = 4.2$, 2.2Hz, 2H), 6.87 (dd, $J = 8.8$, 0.6Hz, 1H), 7.20 (m, 2H), 7.60 (dd, $J = 8.8$, 2.8Hz, 1H), 7.75 (dd, $J = 1.2$, 0.9Hz, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	M+H = 331, M-H = 329.		M+H = 343 M-H - 341
	N O N O N O N O N O N O N O N O N O N O	N N N O N			:
	化合物 108	化合物 109	化合物 110	化合物 111	

化合物 114		δ 0.98 (s, 6H), 2.27 (s, 3H), 2.32 (s, 3H), 2.40 (m, 4H), 2.58 (m, 4H), 4.08 (s, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H).	37.5	
化合物 115		δ 0.93 & 0.99 (s, 6H), 1.09 & 1.44 (d, $J = 6.3$ Hz, 6H), 2.10 (m, 2H), 2.27 (s, 2H), 2.60 (d, $J = 10.1$ Hz, 2H), 3.60–3.66 (m, 2H), 4.10 (s, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	45.6	
化合物 116	N NO XN	M+H = 315, M-H = 313.	15.9	
化合物 117	N N N N N N N N N N N N N N N N N N N	δ 1.03 (s, 6H), 1.68–1.74 (m, 4H), 2.48 (s, 2H), 2.60 (m, 4H), 4.11 (s, 2H), 6.85 (dd, J = 8.9, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, J = 8.9, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, J = 2.8, 0.6Hz, 1H). M+H = 301, M-H = 299.	32.7	
化合物 118		δ 0.96 (t, $J = 7.2$ Hz, 6H), 0.98 (s, 6H), 2.36 (s, 2H), 2.49 (q, $J = 7.2$ Hz, 4H), 4.07 (s, 2H), 6.85 (dd, $J = 8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J = 8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J = 2.8$, 0.6Hz, 1H).	41.7	
化合物 119	N N O N O	M+H = 273, M−H = 271.	3.0	

化合物 120	Su S	δ 1.68 (m, 2H), 2.07 (m, 2H), 2.41 (m, 2H), 3.44 (m, 2H), 4.37 (t, $J=6.3$ Hz, 2H), 6.85 (dd, $J=8.9$, 0.6Hz, 1H), 7.19 (m, 2H), 7.58 (dd, $J=8.9$, 2.8Hz, 1H), 7.74 (s, 1H), 8.21 (dd, $J=2.8$, 0.6Hz, 1H).	28.5	
化合物 121	N N O N O N O N O N O N O N O N O N O N	M+H = 281, M-H = 279.	65.0	
化合物 122	Z V O V	M+H = 295, M-H = 293.	55.7	
化合物 123		M+H = 339, M-H = 337.	46.7	
化合物 124	Z O O	M+H = 267, M–H = 265.	58.1	
化合物 125		M+H = 281, M-H = 279.	53.9	·

化合物 126		M+H = 323. M-H = 321.	86.9	
化合物 127	N N N N N N N N N N N N N N N N N N N	M+H = 233, M-H = 231.	4.1	
化合物 128	N O O O	M+H = 277, M-H = 275.	56.4	
化合物 129	N N N N N N N N N N N N N N N N N N N	M+H = 273. M-H = 271.	22.3	
化合物 130		(200 MHz) δ 0.90 (t, J = 6.6Hz, 3H), 1.23–1.58 (m, 8H), 1.81(quint, J = 6.6Hz, 2H), 4.01(t, J = 6.6Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 260, M-H = 258. mp 42.0–44.0 °C.	36.6	
化合物 131	- N-0	(200 MHz) δ 1.06 (t, $J=7.0$ Hz, 3H), 1.84 (dt, $J=7.0$ Hz, 2H), 3.98 (t, $J=7.0$ Hz, 2H), 6.39 (d, $J=2.0$ Hz, 1H), 6.97 (m, $J_{AB}=8.6$ Hz, 2H), 7.72 (m, $J_{AB}=8.6$ Hz, 2H), 8.26 (d, $J=2.0$ Hz, 1H). M+H = 204, M-H = 202. mp 51.0-53.0 °C.	17.3	

化合物 132		= 7.0Hz, 3H), 0.95 (d, $J = 6.4$ Hz, 3H), 1.10–1.43 (m, 0.5 (dt, $J = 1.1$, 6.6Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 17.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz,	45.8	26.5
化合物 133	N-0	MATH = 200, MITH = 236. (200 MHz) δ 0.93 (d, J = 6.6Hz, 6H), 1.30–1.41 (m, 2H), 1.64 (ddt, J = 6.6Hz, 1H), 1.78–1.89 (m, 2H), 4.00 (t, J =6.8Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). 4.0Hz = 246, M-H = 244.	62.1	25.0
化合物 134		(200 MHz) δ 0.94 (t, $J = 7.0$ Hz, 6H), 1.26–1.72 (m, 8H), 433 (quint, $J = 5.7$ Hz, 1H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	15.8	
化合物 135		(200 MHz) δ 0.98 (d, J = 6.6Hz, 6H), 1.70 (q, J = 6.6Hz, 2H), 1.84 (ddt, J = 6.6Hz, 1H), 4.05 (t, J =6.6Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	44.0	
允 6 5 4 3 6 4 3 6 4 4 6 4 6 4 6 4 6 4 6 4 6 4		(200 MHz) σ 0.99 (t, $J = 7.3$ Hz, 3H), 1.46–1.56 (m, 2H), 1.73–1.87 (m, 2H), 4.02(t, $J = 6.6$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H). M+H = 218, M-H = 216. mp 44.0–46.0 °C.	45.5	
化合物 137		(200 MHz) δ 1.00 (s, 9H), 1.75 (t, $J=7.3$ Hz, 2H), 4.08 (t, $J=7.3$ Hz, 2H), 6.39 (d, $J=2.0$ Hz, 1H), 6.97 (m, $J_{AB}=8.6$ Hz, 2H), 7.72 (m, $J_{AB}=8.6$ Hz, 2H), 8.26 (d, $J=2.0$ Hz, 1H). M+H = 246, M-H = 244. mp 53.0-50.0 °C.	35.3	26.0

化合物 138			38.3	
化合物 139	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	(200 MHz) δ 0.92 (t, $J = 7.3$ Hz, 3H), 0.95 (d, $J = 6.2$ Hz, 3H), 1.17–1.52 (m, 2H), 1.54–1.70 (m, 2H), 1.80–1.91 (m, 1H), 4.05 (t, $J = 6.6$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).		
· 化合物 140	N-0 O-X	(200 MHz) δ 0.95 (s, 9H), 1.09 (d, J = 6.8Hz, 3H), 1.43–1.48 (m, 2H), 1.98–2.27 (m, 1H), 3.70 (dd, J = 7.4, 9.0Hz, 1H), 3.83 (dd, J = 5.9, 9.0Hz, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).		47.4
化合物 141			21.4	
化合物 142	C. C.	(m, 8H), 4.86–4.78 (m, 1H), 6.39 (d, J = 2.0Hz, 1H), 1), 7.72 (m, J _{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz,	37.3	
化合物 143			38.5	

化合物 144		(200 MHz) δ 0.34–0.41 (m, 2H), 0.63–0.72 (m, 2H), 1.22–1.48 (m, 1H), 3.87 (d, $J = 7.0$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	33.9	
化合物 145		(200 MHz) δ 0.99 (d, J = 7.0Hz, 3H), 1.05–1.50 (m, 6H), 1.60–1.92 (m, 6H), 3.81 (dd, J = 7.0, 9.2Hz, 1H), 3.98 (dd, J = 5.7, 9.2Hz, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	29.3	
化合物 146		(200 MHz) δ 1.30–1.48 (m, 2H), 1.57–1.72 (m, 4H), 1.75–1.95 (m, 2H), 2.39 (sept, $J = 7.0$ Hz, 1H), 3.89 (d, $J = 6.8$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H). M+H = 244, M-H = 242.	56.7 1:	13.1
化合物 147	\$300°~~	(200 MHz) ∂ 1.02–1.20 (m, 2H), 1.41–1.66 (m, 6H), 1.72–1.90 (m, 5H), 4.00 (t, J = 6.6Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 272, M-H = 270.	40.2	
六 合 5 148		(200 MHz) δ 0.46 (m, 2H), 0.56 (m, 2H), 1.25 (s, 3H), 3.79 (s, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	64.0	95.6
化合物 149		(200 MHz) δ 0.40 (dt, J = 5.0, 8.1Hz, 1H), 0.52 (dt, J = 4.8, 8.1Hz, 1H), 0.72–0.94 (m, 1H), 1.01–1.07 (m, 1H), 1.11 (d, J =5.9Hz, 3H), 3.82–3.90 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	41.1	·

化合物 150	(200 MHz) δ 0.78–0.99 (m, 2H), 1.15–1.53 (m, 6H), 1.40–1.86 (m, 9H), 4.00 (t, J = 6.6Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	12.1	
化合物 151	(200 MHz) δ 0.80–1.05 (m, 2H), 1.17–1.41 (m, 6H), 1.61–1.89 (m, 7H), 3.99 (t, J = 6.6Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).		
化合物 152	(200 MHz) \mathcal{O} 1.10–1.29 (m, 2H), 1.46–1.74 (m, 4H), 1.79–1.93 (m, 4H), 1.98 (sept, \mathcal{J} =6.8Hz, 1H), 4.04 (t, \mathcal{J} = 6.8Hz, 2H), 6.39 (d, \mathcal{J} = 2.0Hz, 1H), 6.97 (m, \mathcal{J}_{AB} = 8.6Hz, 2H), 7.72 (m, \mathcal{J}_{AB} = 8.6Hz, 2H), 8.26 (d, \mathcal{J} = 2.0Hz, 1H). M+H = 258. M-H = 256.		50.4
化合物 153	(200 MHz) δ 0.98–1.42 (m, 5H), 1.64–1.95 (m, 6H), 3.81 (d, J = 6.2Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 258, M-H = 256. mp 88.0–90.0 °C	49.0	
化合物 154	(200 MHz) δ 0.78–1.39 (m, 6H), 1.45–1.85 (m, 7H), 4.05 (t, J = 6.8Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 272, M-H = 270.	36.4	97.8
化合物 155	(200 MHz) δ 1.00–1.35 (m, 5H), 1.28 (d, J =6.2Hz, 3H), 1.56–1.98 (m, 6H), 4.25 (quint, J = 6.2Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	36.2	

化合物 156	0-N	(200 MHz) δ 1.83–2.22 (m, 6H), 2.72–2.87 (m, 1H), 3.98 (d, J = 6.6Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 230, M-H = 228. mp 52.0–54.0 °C.	51.3	
化合物 157		(200 MHz) δ 1.31–1.88 (m, 14H), 1.96–2.15 (m, 1H), 3.78 (d, J = 6.8Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	36.7	42.9
化合物 158		(200 MHz) δ 1.51–1.64 (m, 2H), 1.77–1.95 (m, 2H), 2.14 (q, $J = 7.0$ Hz, 2H), 4.02 (t, $J = 6.4$ Hz, 2H), 4.96–5.10 (m, 2H), 5.74–5.94 (m, 1H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	56.6	28.1
化 0秒 159	0-18	(200 MHz) δ 0.99 (t, $J = 7.5$ Hz, 3H), 2.05 (q, $J = 7.5$ Hz, 2H), 2.51 (q, $J = 7.0$ Hz, 2H), 4.01 (t $J = 7.0$ Hz, 2H), 5.41–5.71 (m, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H). 4.4 = 244, M-H = 242.	51.3	15.0
化合物 160		(200 MHz) δ 1.66 (dd, J = 1.6, 3.6Hz, 3H), 1.86 (quint, J = 6.4Hz, 2H), 2.13–2.23 (m, 2H), 4.01 (t J = 6.4Hz, 2H), 5.45–5.57 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	48.6	
化合物 161		(200 MHz) O 1.17 (d, J = 6.8Hz, 3H), 2.70 (sept, J = 6.8Hz, 1H), 3.84 (dd, J = 6.8, 9.0Hz, 1H), 3.95 (dd, J = 6.4, 9.0Hz, 1H), 5.07–5.21 (m, 2H), 5.88 (ddd, J = 6.8, 10.3, 17.1Hz, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	46.3	

化合物 162		(200 MHz) \mathcal{O} 1.68 (s, 3H), 1.75 (s, 3H), 2.51 (q, $\mathcal{J}=7.0$ Hz, 2H), 3.99 (t, $\mathcal{J}=7.0$ Hz, 2H), 5.18–5.26 (m, 1H), 6.39 (d, $\mathcal{J}=2.0$ Hz, 1H), 6.97 (m, $\mathcal{J}_{AB}=8.6$ Hz, 2H), 7.72 (m, $\mathcal{J}_{AB}=8.6$ Hz, 2H), 8.26 (d, $\mathcal{J}=2.0$ Hz, 1H).	59.0	
化合物 163	0-N	(200 MHz) δ 1.82(s, 3H), 2.53 (t, J = 6.6Hz, 2H), 4.29 (t, J = 6.6Hz, 2H), 4.82 (brs, 1H), 4.87 (brs, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).		
化合物 164	%.3 000000000000000000000000000000000000	(200 MHz) δ 0.91 (t, J = 6.8Hz, 3H), 1.25–1.41 (m, 4H), 2.10 (brq, J = 6.8Hz, 2H), 2.57 (q, J = 6.8Hz, 2H), 4.01 (t, J = 6.8Hz, 2H), 5.39–5.63 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	35.6	
化合物 165	%	(200 MHz) ϕ 0.97 (t, $J=7.5$ Hz, 3H), 1.51–1.62 (m, 2H), 1.76–1.90 (m, 2H), 2.00–2.17 (m, 4H), 4.02 (t $J=6.4$ Hz, 2H), 5.29 (dd, $J=6.2$, 10.9Hz, 1H), 5.34 (dd, $J=5.7$, 10.9Hz, 1H), 6.39 (d, $J=2.0$ Hz, 1H), 6.97 (m, $J_{AB}=8.6$ Hz, 2H), 7.72 (m, $J_{AB}=8.6$ Hz, 2H), 8.26 (d, $J=2.0$ Hz, 1H).	51.3 20	20.4
化合物 166		(200 MHz) ∂ 1.41–1.52 (m, 4H), 1.75–1.90 (m, 2H), 2.05–2.15 (m, 2H), 4.01 (t, J = 6.6Hz, 2H), 4.93–5.08 (m, 2H), 5.73–5.93 (m, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). 4.56.	48.2 1.	17.5
化合物 167		(200 MHz) σ 1.78 (dd, J = 1.3, 6.1Hz, 3H), 4.52 (dd, J = 1.1, 5.1Hz, 2H), 5.67–5.96 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 216.	51.9	

化合物 168	100 C	M+H = 230, M-H = 228.	36.8	
化合物 169	N.J.	(200 MHz) δ 2.58 (q, J = 6.8Hz, 2H), 4.08 (t, J = 6.8Hz, 2H), 5.11–5.25 (m, 2H), 5.82–6.02 (m, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	67.1	
化合物 170		(200 MHz) δ 1.91 (q, $J=6.8$ Hz, 2H), 2.21–2.32 (m, 2H), 4.03 (t, $J=6.6$ Hz, 2H), 4.99–5.13 (m, 2H), 5.77–5.97 (m, 1H), 6.39 (d, $J=2.0$ Hz, 1H), 6.97 (m, $J_{AB}=8.6$ Hz, 2H), 7.72 (m, $J_{AB}=8.6$ Hz, 2H), 8.26 (d, $J=2.0$ Hz, 1H). M+H = 230, M-H = 228.	71.8	6.9
化合物 171		(200 MHz) δ 1.04 (t, $J = 7.5$ Hz, 3H), 2.11–2.25 (m, 2H), 4.64 (d, $J = 5.2$ Hz, 2H), 5.64 (dd, $J = 5.2$, 11.0Hz, 1H), 5.72 (dd, $J = 6.2$, 11.0Hz, 1H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	50.0	
化合物 172		(200 MHz) δ 0.93 (t, $J = 7.3$ Hz, 3H), 1.36–1.51 (m, 2H), 2.08 (q, $J = 6.8$ Hz, 2H), 2.57 (q, $J = 6.8$ Hz, 2H), 4.02 (t, $J = 6.8$ Hz, 2H), 5.41–5.63 (m, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	52.4	
化合物 173	8-0 0-N	(200 MHz) δ 0.96 (t, J = 7.2Hz, 3H), 1.53 (q, J =7.2Hz, 2H), 2.21 (tt, J = 2.1, 6.8Hz, 2H), 4.74 (t, J = 2.1Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 242, M-H = 240.	33.8	

化合物 174		(200 MHz) δ 0.89 (t, $J = 7.0$ Hz, 3H), 1.26–1.58 (m, 4H), 2.19–2.27 (m, 2H), 4.72 (t, $J = 2.2$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).		
化合物 175	N-0	(200 MHz) J_{A} (0.98 (t, J_{A} = 7.2Hz, 3H), 1.52 (q, J_{A} =7.2Hz, 2H), 2.15 (tt, J_{A} = 2.4, 7.2Hz, 2H), 2.68 (tt, J_{A} = 2.4, 7.2Hz, 2H), 4.11 (t, J_{A} = 7.2Hz, 2H), 6.39 (d, J_{A} = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J_{A} = 2.0Hz, 1H).		
化合物 176		= 7.3Hz, 3H), 1.36–1.60 (m, 4H), 2.10–2.24 (m, 2H), (t, $J=7.3$ Hz, 2H), 6.39 (d, $J=2.0$ Hz, 1H), 6.97 (m, $J_{AB}=8.6$ Hz, 2H), 8.26 (d, $J=2.0$ Hz, 1H).	42.3	
化合物 177			41.1	
化合物 178	N. Down	(200 MHz) ∂ 1.70–1.81 (m, 2H), 1.90–1.99 (m, 3H), 2.30 (dt, J = 2.6, 7.0Hz, 2H), 4.05 (t, J = 6.2Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 242, M-H = 240.	98.0	8.4
化合物 179		8 (t, $J = 2.4$ Hz, 3H), 4.71 (q, $J = 2.4$ Hz, 2H), 6.39 (d, $J = m$, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 212$.	44.6	

化合物 180		(200 MHz) δ 1.99 (t, J = 2.4Hz, 1H), 2.05 (q, J = 6.8Hz, 2H), 2.43 (dt, J = 2.4, 6.8Hz, 2H), 4.14 (t, J = 6.2Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 228, M-H = 226.	74.7
化合物 181		(200 MHz) δ 1.13 (t, $J = 7.5$ Hz, 3H), 2.19 (ddt, $J = 2.4$, 7.5, 14.9Hz, 2H), 2.67 (tt, $J = 2.4$, 7.3Hz, 2H), 4.11 (t, $J = 7.3$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H). M+H = 242, M-H = 240.	61.4
化合物 182		(200 MHz) δ 1.22 (t, $J=7.0$ Hz, 3H), 3.54 (q, $J=7.0$ Hz, 2H), 3.60–3.65 (m, 2H), 3.72–3.76 (m, 2H), 3.87–3.92 (m, 2H), 4.18–4.23 (m, 2H), 6.39 (d, $J=2.0$ Hz, 1H), 6.97 (m, $J_{AB}=8.6$ Hz, 2H), 7.72 (m, $J_{AB}=8.6$ Hz, 2H), 8.26 (d, $J=2.0$ Hz, 1H).	31.4
化合物 183	%-0~0<	(200 MHz) δ 3.47 (s, 3H), 3.78 (m, 2H), 4.17 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). $M+H$ = 220, $M-H$ = 218.	44.5
化合物 184	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(200 MHz) δ 1.26 (t, J = 7.0Hz, 3H), 3.62 (q, J = 7.0Hz, 2H), 3.82 (m, 2H), 4.18 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 234, M-H = 232.	50.4
化合物 185		(200 MHz) ∂ 0.91 (t, $J=7.0$ Hz, 3H), 1.32–1.43 (m, 2H), 1.51–1.61 (m, 2H), 3.48 (t, $J=6.8$ Hz, 2H), 3.60–3.64 (m, 2H), 3.71–3.76 (m, 2H), 3.89 (m, 2H), 4.19 (m, 2H), 6.39 (d, $J=2.0$ Hz, 1H), 6.97 (m, $J_{AB}=8.6$ Hz, 2H), 7.72 (m, $J_{AB}=8.6$ Hz, 2H), 8.26 (d, $J=2.0$ Hz, 1H).	66.1

化合物 186		(200 MHz) δ 1.22 (d, J = 6.2Hz, 3H), 1.96 (q, J = 6.2Hz, 2H), 3.35 (s, 3H), 3.58 (sext, J = 6.2Hz, 1H), 4.05–4.21 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 248, M-H = 246.		13.7
化合物 187	N-0~0~	(200 MHz) δ 3.83 (m, 2H), 4.11 (dt, J = 1.3, 4.6Hz, 2H), 4.19 (m, 2H), 5.20–5.38 (m, 2H), 5.86–6.05 (m, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).		92.5
化合物 188	0-N	(200 MHz) δ 1.26 (s, 6H), 2.03 (t, $J = 7.3$ Hz, 2H), 3.23 (s, 3H), 4.13 (t, $J = 7.3$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	49.6	30.7
化合物 189	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	(200 MHz) δ 0.89 (t, J = 6.8Hz, 3H), 1.23–1.41 (m, 4H), 1.52–1.75 (m, 4H), 3.54 (t, J = 6.6Hz, 2H), 3.81 (dd, J = 4.6, 5.0Hz, 2H), 4.18 (dd, J = 4.6, 5.0Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	38.8	
化合物 190	N-0 0000	(200 MHz) \mathcal{S} 1.24 (s, 9H), 3.74 (m, 2H), 4.14 (m, 2H), 6.39 (d, \mathcal{J} = 2.0Hz, 1H), 6.97 (m, \mathcal{J}_{AB} = 8.6Hz, 2H), 7.72 (m, \mathcal{J}_{AB} = 8.6Hz, 2H), 8.26 (d, \mathcal{J} = 2.0Hz, 1H). M+H = 262, M-H = 260.	37.2	
化合物 191	N-0	(200 MHz) δ 0.92 (d, J = 6.8Hz, 6H), 1.91 (ddt, J = 6.8Hz, 1H), 3.31 (d, J =6.6Hz, 2H), 3.81 (m, 2H), 4.18 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 262, M-H = 260.	48.1	36.7

化合物 192		M+H = 292. M-H = 290.	22.7	
允哈 193	\$.0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	= 6.8Hz, 3H), 1.64 (q, J = 6.8Hz, 2H), 3.51 (t, J = 0, 4.19 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	46.3	
化合物 194	N-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(200 MHz) δ 1.69–1.97 (m, 4H), 3.36 (s, 3H), 3.46 (t, J = 6.2Hz, 2H), 4.05 (t, J = 6.2Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	72.7	32.7
化合物 195		(200 MHz) δ 0.90 (d, J = 6.6Hz, 6H), 1.91 (ddt, J = 6.6Hz, 1H), 3.24 (d, J = 6.6Hz, 2H), 3.59–3.64 (m, 2H), 3.71–3.76 (m, 2H), 3.90 (m, 2H), 4.19 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	58.9	
化合物 196	N-0 0000	(200 MHz) δ 3.40 (s, 3H), 3.57–3.61 (m, 2H), 3.71–3.76 (m, 2H), 3.89 (m, 2H), 4.21 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	14.6	
化合物 197		(200 MHz) δ 0.93 (t, $J=7.3$ Hz, 3H), 1.38–1.48 (m, 2H), 1.54–1.65 (m, 2H), 3.55 (t, $J=6.6$ Hz, 2H), 3.78–3.83 (m, 2H), 4.15–4.20 (m, 2H), 6.39 (d, $J=2.0$ Hz, 1H), 6.97 (m, $J_{AB}=8.6$ Hz, 2H), 7.72 (m, $J_{AB}=8.6$ Hz, 2H), 8.26 (d, $J=2.0$ Hz, 1H).	19.0	

化合物 198	1000 PM	(200 MHz) δ 1.21 (d, J = 6.2Hz, 6H), 3.70 (sept, J = 6.2Hz, 1H), 3.80 (t, J = 5.0Hz, 2H), 4.17 (t, J = 5.0Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	
化合物 199		(200 MHz) δ 0.88 (t, J = 6.6Hz, 3H), 1.22–1.40 (m, 8H), 1.52–1.70 (m, 2H), 3.54 (t, J =6.8Hz, 2H), 3.78–3.83 (m, 2H), 4.15–4.20 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	
化合物 200	0.N		32.1
化合物 201	(1-0) O-00-00-00-00-00-00-00-00-00-00-00-00-00	(200 MHz) σ 0.89 (t, J = 6.8Hz, 3H), 1.24–1.39 (m, 4H), 1.52–1.67 (m, 2H), 3.47 (t, J =6.8Hz, 2H), 3.59–3.64 (m, 2H), 3.71–3.76 (m, 2H), 3.89 (m, 2H), 4.21 (m, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	37.7
化合物 202	1-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(200 MHz) δ 3.83 (s, 3H), 4.70 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 234, M-H = 232.	21.0
化合物 203		(200 MHz) \mathcal{O} 1.31 (t, \mathcal{J} = 7.2 Hz, 3H), 4.30 (q, \mathcal{J} = 7.2 Hz, 2H), 4.68 (s, 2H), 6.39 (d, \mathcal{J} = 2.0Hz, 1H), 6.97 (m, \mathcal{J}_{AB} = 8.6Hz, 2H), 7.72 (m, \mathcal{J}_{AB} = 8.6Hz, 2H), 8.26 (d, \mathcal{J} = 2.0Hz, 1H).	38.9

化合物 204		(200 MHz) ∂ 1.67–1.74 (m, 1H), 2.06–2.22 (m, 1H), 2.73–2.82 (m, 1H), 3.70–4.04 (m, 6H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 246, M-H = 244.	62.4	12.9
化合物 205	\$1.00 Oc. 20	(200 MHz) δ 1.74–2.19 (m, 4H), 3.80–4.00 (m, 2H), 4.02 (d, J = 5.1Hz, 2H), 4.24–4.39 (m, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	24.2	
化合物 206		(200 MHz) δ 1.14 (s, 3H), 3.64–3.94 (m, 2H), 3.98 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 246, M-H = 244.		
化合物 207	· N-0 Po	M+H = 248, M-H = 246.		
化合物 208		(200 MHz) δ 1.40–1.77 (m, 6H), 3.47–3.60 (m, 1H), 3.65–3.80 (m, 1H), 3.93 (dd, $J = 4.1$, 10.1Hz, 1H), 4.04 (dd, $J = 4.6$, 10.1Hz, 1H), 4.02–4.12 (m, 1H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	63.6	
化合物 209		(200 MHz) δ 1.99–2.12 (m, 2H), 3.73–3.83 (m, 2H), 3.96 (dd, J = 7.3, 9.5Hz, 1H), 4.08 (dd, J = 3.3, 9.5Hz, 1H), 4.24–4.37 (m, 1H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 232, M-H = 230.	65.1	. 25.4

化合物 210	6-0-0-10-10-10-10-10-10-10-10-10-10-10-10	(200 MHz) δ 1.80–2.18 (m, 4H), 3.87–4.25 (m, 3H), 4.75 (m, 1H), 6.40 (d, J = 2.0Hz, 1H), 6.43 (dd, J = 1.7, 6.2Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.25 (d, J = 2.0Hz, 1H).	79.2	33.8
化合物 211	N-0 Ows	(200 MHz) δ 2.24 (s, 3H), 2.92 (t, J = 6.8 Hz, 2H), 4.22 (t, J = 6.8 Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	53.1	
化合物 212	N-0	(200 MHz) δ 1.31 (t, $J = 7.5$ Hz, 3H), 2.67 (q, $J = 7.5$ Hz, 2H), 2.94 (t, $J = 6.8$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	56.2	
化合物 213	N-0 0 ~~ s	(200 MHz) ∂ 2.08 (quint, $J = 6.2$ Hz, 2H), 2.14 (s, 3H), 2.71 (brt, $J = 6.2$ Hz, 2H), 4.13 (t, $J = 6.2$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H). M+H = 250, M-H = 248. Imp 54.0–58.0 °C.	64.3	31.9
化合物 214	N. O. J. H.	(200 MHz) δ 2.02–2.15 (m, 2H), 2.20–2.47 (m, 2H), 4.08 (t, J = 5.9Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	90.4	
化合物 215	N-0 0 ←	(200 MHz) δ 1.04 (d, $J = 5.7$ Hz, 3H), 2.04–2.38 (m, 6H), 3.95 (dd, $J = 5.9$, 9.3Hz, 1H), 4.05 (dd, $J = 4.0$, 9.3Hz, 1H), 5.60–5.75 (m, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	75.1	46.2

化合物 216	3	(200 MHz) δ 5.13 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 7.30–7.50 (m, 5H), 8.26 (d, J = 2.0Hz, 1H). M+H = 252, M-H = 250. mp 93.0–95.0 °C.		30.6
化合物 217	N-O Chiral	(200 MHz) δ 0.83–0.90 (m, 6H), 1.08–1.54 (m, 9H), 1.75–1.88 (m, 2H), 3.99 (t, $J = 6.6$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).		
化合物 218	N-O-O-N-	mp 203.0–205,0 °C (dec.)	28.9	>300.0
化合物 219	N-O N	(200 MHz) β 1.08 (t, $J = 7.2$ Hz, 6H), 2.65 (q, $J = 7.2$ Hz, 4H), 2.90 (t, $J = 6.3$ Hz, 2H), 4.10 (t, $J = 6.3$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.72 (m, $J_{AB} = 8.6$ Hz, 2H), 8.26 (d, $J = 2.0$ Hz, 1H).	16.9	
化合物 220	N-0 0 - N	M+H = 273, M-H = 271.	20.9	
化合物 22.1	N-0 O-N	(200 MHz) δ 2.57–2.62 (m, 2H), 2.83 (t, J = 5.7Hz, 2H), 3.73–3.77 (m, 4H), 4.17 (t, J = 5.7Hz, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	27.0	

化合物 222		(200 MHz) ∂ 5.27 (s, 2H), 6.40 (d, J = 1.8Hz, 1H), 7.08 (m, J_{AB} = 8.7Hz, 2H), 7.23-7.29 (m, 1H), 7.52 (d, J_{AB} = 7.9Hz, 1H), 7.75 (m, J_{AB} = 8.7Hz, 2H), 7.70-7.73 (m, 1H), 8.26 (d, J_{AB} = 1.8Hz, 1H), 8.63 (d, J_{AB} = 5.1Hz, 1H). M+H = 253, M-H = 251.	47.6	
化合物 223	\$ 0-N	(200 MHz) ∂ 5.15 (s, 2H), 6.40 (d, J = 1.8Hz, 1H), 7.08 (m, J_{AB} = 8.7Hz, 2H), 7.35 (dd, J = 4.8, 8.9Hz, 1H), 7.75 (m, J_{AB} = 8.7Hz, 2H), 7.75–7.83 (m, 1H), 8.26 (d, J = 1.8Hz, 1H), 8.62 (dd, J = 1.5, 4.8Hz, 1H), 8.72 (d, J = 2.0Hz, 1H).	91.2	16.7
化合物 224	N O O O	(200 MHz) δ 5.16 (s, 2H), 6.40 (d, J = 1.8Hz, 1H), 7.08 (m, J_{AB} = 8.7Hz, 2H), 7.75 (m, J_{AB} = 8.7Hz, 2H), 8.26 (d, J = 1.8Hz, 1H), 8.59 (d, J = 6.2Hz, 2H), 8.65 (d, J = 6.2Hz, 2H).	59.6	
化合物 225	\$1-0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M+H = 273, M-H = 271.	18.9	
化合物 226	() O O	M+H = 273, M-H = 271.	6.6	
化合物 227		M+H = 305, M-H = 303.		

化合物 228	, N , HCI	mp 138.0-143.5 °C	68.3	62.6
化合物 229		(200 MHz) δ 1.01 (s, 6H), 2.28 (s, 6H), 2.29 (s, 2H), 3.76 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	25.4	
化合物 230	N-O O-N	(200 MHz) δ 4.12–4.35 (m, 4H), 6.19 (t, J = 2.0Hz, 2H), 6.40 (d, J = 1.8Hz, 1H), 6.78 (t, J = 2.0Hz, 2H), 7.08 (m, J_{AB} = 8.7Hz, 2H), 7.75 (m, J_{AB} = 8.7Hz, 2H), 8.26 (d, J = 1.8Hz, 1H). M+H = 255, M-H = 253. mp 90.0–96.0 °C.	70.2	8.7
化合物 231	- O-W	(200 MHz) δ 2.24 (quint, J = 6.1Hz, 2H), 3.94 (t, J = 6.1Hz, 2H), 4.13 (t, J = 6.1Hz, 2H), 6.15(t, J = 2.0Hz, 2H), 6.40 (d, J = 1.8Hz, 1H), 6.66 (t, J = 2.0Hz, 2H), 7.08 (m, J_{AB} = 8.7Hz, 2H), 7.75 (m, J_{AB} = 8.7Hz, 2H), 8.26 (d, J = 1.8Hz, 1H).	57.2	105.6
化合物 232		(200 MHz) δ 0.79 (t, J = 7.3Hz, 6H), 0.98 (s, 6H), 1.30–1.45 (m, 4H), 3.73 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 331, M-H = 329.	29.6	
化合物 233	2000 C	(200 MHz) δ 0.99 (s, 6H), 1.50–1.70 (m, 10H), 2.50 (s, 2H), 2.60–2.70 (m, 4H), 3.78 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 343, M-H = 341.	26.2	

化合物 234		(200 MHz) σ 0.99 (s, 6H), 2.31 (s, 2H), 2.48–2.52 (m, 4H), 3.60–3.65 (m, 4H), 3.75 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 317, M+H = 315. mp 77.0–84.0 °C.	43.5	21.4
化合物 235		(200 MHz) δ 0.83 (d, J = 6.6Hz, 12H), 0.98 (s, 6H), 1.67 (quint, J = 6.6Hz, 2H), 3.56 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	6.3	
化合物 236	N-0 0-X-N-0-	M+H = 330, M-H = 328.	27.3	
化合物 237	STO CONTRACTOR	(200 MHz) δ 0.99 (s, 6H), 1.07 (d, J = 6.2Hz, 6H), 2.28 (s, 2H), 3.74 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.7 $\frac{1}{2}$ (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	28.6	
化合物 238	Or Sold Sold Sold Sold Sold Sold Sold Sold	(200 MHz) δ 0.97 (s, 6H), 1.30–1.50 (m, 6H), 2.23 (s, 2H), 2.27–2.45 (m, 4H), 3.78 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 315, M+H = 313.	8.9	
化合物 239	CN.X.O	(200 MHz) δ 1.02 (s, 6H), 2.64–2.82 (m, 4H), 2.49 (s, 2H), 2.52–2.68 (m, 4H), 3.77 (s, 2H), 6.39 (d, J = 2.0Hz, 1H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H). M+H = 301, M+H = 299.	1:1	

化合物 240			13.4	
		M+H = 303; M-H = 301.		
:	√ √ √ √ √ √	(200 MHz) 0 1.37-2.11 (III, 2H), 2.40 (t, $J = 7.7$ Hz, 2H), 5.39 (t, $J = 7.0$ Hz, 1H), 3.71 (t, $J = 5.3$ Hz, 2H), 4.18 (t, $J = 5.3$ Hz, 2H), 6.39 (d, $J = 2.0$ Hz, 1H),		
化合物 241		6.97 (m, J_{AB} = 8.6Hz, 2H), 7.72 (m, J_{AB} = 8.6Hz, 2H), 8.26 (d, J = 2.0Hz, 1H).	33.2	
		M+H = 273, $M-H = 271$.		
	N-O	(200 MHz) δ 2.00–2.13 (m, 4H), 2.40 (t, $J = 7.7$ Hz, 2H), 3.44 (t, $J = 7.0$ Hz, 0.0) 3.46 (t, $J = 7.0$ Hz, 0.0) 3.46 (t, $J = 7.0$ Hz, $J = 7$		
化合物 242		27), 3.43 (t, $O = I.0$ PZ, ZH), 4.03 (t, $O = I.0$ PZ, ZH), 0.38 (d, $O = Z.0$ PZ, IH), 6.97 (m, $J_{AR} = 8.6$ HZ, 2H), 7.72 (m, $J_{AR} = 8.6$ HZ, 2H), 8.26 (d, $J_{AR} = 2.0$ HZ,	43.1	
		元		
	•	M+H = 287, $M-H = 285$.		
	5	(200 MHz) ∂ 2.13–2.22 (m, 2H), 2.85 (dd, $J = 7.0$, 8.1Hz, 2H), 4.03 (t, $J = 1$) 6.0Hz, 2H), 6.39 (d, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2Hz, 2H), 7.16 (dd, $J = 1.8$ Hz, 1H), 6.97 (m, $J_{AR} = 8.7$ Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2		
化合物 243		1.5, 4.1Hz, 2H), 7.72 (m, JAB = 8.7Hz, 2H), 8.26 (d, J = 1.8Hz, 1H), 8.52 (dd,	67.4	
) =Z	J = 1.5, 4.1 Hz, 2H). W+H = 281, M-H = 279.		
		(200 MHz) δ 2.00-2.11 (m, 2H), 2.53 (s, 3H), 2.84 (t, $J = 7.5$ Hz, 2H), 3.59		
;		(t, J = 6.6 Hz, 2H), 3.79–3.84 (m, 2H), 4.15–4.20 (m, 2H), 6.39 (d, $J = 1.8 Hz$,		_
化合物 244	>	1H), 6.94-7.04 (m, 4H), 7.46 (t, $J = 7.7$ Hz, 1H), 7.72 (m, $J_{AB} = 8.7$ Hz, 2H),	48.9	
	NO N	8.26 (d, J = 1.8Hz, 1H).		
		M+H = 339, M-H = 337. (200 MHz) 0.3330 (4. $J = 6.7$ Hz. 2H) 0.39 (d. $J = 6.7$ Hz. 2Hz. 2Hz. 2Hz. 2Hz. 2Hz. 2Hz. 2Hz. 2		
	N-0	1.8Hz, 1H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.62 (dd, $J = 2.0$, 7.7Hz, 1H), 7.72 (m,		
化合物 245		$J_{AB} = 8.7 \text{Hz}$, 2H), 8.25 (d, $J = 2.0 \text{Hz}$, 1H), 8.57 (d, $J = 4.8 \text{Hz}$, 1H).	61.2	16.0
7000	N/0-/-N/	M+H = 267, M-H = 265.		
		O 0:00 0:70 dill		

化合物 246		(200 MHz) ∂ 1.21 (t, $J = 7.3$ Hz, 3H), 2.32 (s, 3H), 3.48 (q, $J = 7.3$ Hz, 2H), 3.74 (t, $J = 6.2$ Hz, 2H), 4.17 (t, $J = 6.2$ Hz, 2H), 6.39 (d, $J = 1.8$ Hz, 1H), 6.50–6.60 (m, 3H), 6.97 (m, $J_{AB} = 8.6$ Hz, 2H), 7.08–7.18 (m, 1H), 7.72 (m, $J_{AB} = 8.7$ Hz, 2H), 8.26 (d, $J = 1.8$ Hz, 1H).	56.1	3.8
化合物 247	N	тр 149.0−155.0 °C (dec.)		177.2
化合物 248		(200 MHz) δ 3.07 (s, 3H), 3.80 (t, J =5.9Hz, 2H), 4.20 (t, J = 5.9Hz, 2H), 6.39 (d, J = 1.8Hz, 1H), 6.74-6.80 (m, 3H), 6.97 (m, J_{AB} = 8.6Hz, 2H), 7.23-7.31 (m, 2H), 7.72 (m, J_{AB} = 8.7Hz, 2H), 8.26 (d, J = 1.8Hz, 1H).		& &
化合物 249	W HCI O	mp 193.0–195.0 °C (dec.)		>300.0
化合物 250	N-O I I N-O	mp 167.0–169.0 °C (dec.)	·	>300.0
化合物 251	HCI .	mp 188.0-189.0 °C (dec.)		>300

化合物 252	Z _N O-N	mp 212.0-213.0 °C (dec.)	,	17.5
化合物 253	N-O-O-N-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-	mp 182.0–183.0 °C (dec.)	×	>300.0
化合物 254	NO POINT OF THE PO	$DMSO-d_{\theta}$, \mathcal{S} 1.09–1.27 (m, 2H), 1.74–2.00 (m, 6H), 3.07–3.58 (m, 6H), 4.52 (t, $\mathcal{J}=5.4$ Hz, 2H), 6.92 (d, $\mathcal{J}=1.9$ Hz, 1H), 7.16 (d, $\mathcal{J}=8.9$ Hz, 2H) 7.86 (d, $\mathcal{J}=9.0$ Hz, 2H), 8.61 (d, $\mathcal{J}=2.0$ Hz, 1H).	^	>300.0
化合物 255	N-0 0-N N-0 N-0	$DMSO-d_{6},~~\mathcal{S}$ 2.90 (s, 6H), 2.94 (s, 3H), 3.48–3.76 (m, 3H), 4.17 (m, 1H), 4.24–4.98 (m, 4H), 6.94 (d, $\mathcal{J}=1.9$ Hz, 1H), 7.19 (d, $\mathcal{J}=8.9$ Hz, 2H), 7.90 (d, $\mathcal{J}=8.9$ Hz, 2H), 8.62 (d, $\mathcal{J}=1.9$ Hz, 1H).	^	>300.0
化合物 256	N-O HCI	mp 197.0–199.0 °C (dec.)	^	>300.0
化合物 257	N-O ISH	mp 188.0–191.0 °C (dec.)		>300

化合物 258	N-00 N-00	mp 157.0–159.0 °C		>316.0
化合物 259	N. C.	mp 206.0–208.0 °C (dec.)		4.4
化合物 260	P C N N O C SHCI	mp 252.0–253.0 °C (dec.)		15.6
化合物 261	N-200-N-V	mp 171.0–172.0 °C		>300.0
化合物 262	N-NH	δ 0.90 (t, J = 6.6Hz, 3H), 1.23–1.52 (m, 8H), 1.80 (tt, J = 6.6, 6.6Hz, 2H), 3.99 (t, J = 6.6Hz, 2H), 6.54 (s, 1H), 6.95 (d, J = 9.0Hz, 2H), 7.59 (s, 1H), 7.64 (d, J = 9.0Hz, 2H).	64.5	
化合物 263	N-NH O-	δ 1.06 (t, $J = 7.4$ Hz, 3H), 1.83 (tt, $J = 6.6$, 7.4Hz, 2H), 3.96 (t, $J = 6.6$ Hz, 2H), 6.53 (s, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H). M+H = 203, M-H = 201.	58.5	

			-
化合物 264	N-NH	δ 0.91 (t, $J = 7.2$ Hz, 3H), 0.95 (d, $J = 6.6$ Hz, 3H), 1.09–1.92 (m, 7H), 3.99–4.06 (m, 2H), 6.53 (s, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H). M+H = 259, M-H = 257.	64.2
化合物 265	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	\mathcal{O} 0.93 (d, \mathcal{J} = 6.6Hz, 6H), 1.34–1.39 (m, 2H), 1.62 (septet, \mathcal{J} = 6.6Hz, 1H), 1.75–1.84 (m, 2H), 3.98 (t, \mathcal{J} = 6.6Hz, 2H), 6.53 (s, 1H), 6.95 (d, \mathcal{J} = 9.0Hz, 2H), 7.59 (s, 1H), 7.63 (d, \mathcal{J} = 9.0Hz, 2H). M+H = 246, M-H = 243.	79.1
化合物 266	R. A.	δ 0.93 (t, $J = 7.2$ Hz, 6H), 1.30–1.75 (m, 8H), 4.24–4.32 (m, 1H), 6.53 (d, $J = 2.1$ Hz, 1H), 6.93 (d, $J = 9.0$ Hz, 2H), 7.59 (d, $J = 2.1$ Hz, 1H), 7.65 (d, $J = 9.0$ Hz, 2H). W+H = 259, M-H = 257.	27.9
化合物 267	R-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A	δ 0.97 (d, J = 6.6Hz, 6H), 1.70 (dt, J = 6.6, 6.9Hz, 2H), 1.86 (septet, 1H), 4.03 (t, J =6.6Hz, 2H), 6.54 (s, 1H), 6.95 (d, J = 9.0Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 9.0Hz, 2H). M+H = 231, M-H = 229.	26.8
化合物 268	N-NH O	∂ 0.99 (t, $J = 7.2$ Hz, 3H), 1.51 (tt, $J = 7.2$, 7.8 Hz, 2H), 1.79 (tt, $J = 6.2$, 7.8 Hz, 2H), 4.00(t, $J = 6.2$ Hz, 2H), 6.54 (s, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H). M+H = 217, M+H = 215.	69.0 26.2
化合物 269	N-NH O	δ 1.00 (s, 9H), 1.75 (t, $J=7.4$ Hz, 2H), 4.06 (t, $J=7.4$ Hz, 2H), 6.54 (s, 1H), 6.95 (d, $J=9.0$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J=9.0$ Hz, 2H). M+H = 245, M-H = 243.	56.7

化合物 270	N-NH O	δ 1.04 (d, J = 6.6Hz, 6H), 2.10 (septet, J = 6.6Hz, 1H), 3.76 (d, J =6.6Hz, 2H), 6.53 (d, J =2.1Hz, 1H), 6.95 (d, J = 9.0Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.64 (d, J = 9.0Hz, 2H). M+H = 217, M-H = 215.	59.7
化合物 271	N-NH	δ 0.92 (t, $J = 7.3$ Hz, 3H), 0.95 (d, $J = 6.6$ Hz, 3H), 1.19–1.20 (m, 5H), 3.99–4.06 (m, 2H), 6.53 (d, $J = 2.1$ Hz, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (d, $J = 2.1$ Hz, 1H), 7.64 (d, $J = 9.0$ Hz, 2H).	71.7
化 合物 272	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	δ 0.94 (s, 9H), 1.08 (d, J = 6.6Hz, 3H), 1.11 (dd, J = 6.0, 14.0Hz, 2H), 1.40 (dd, J = 3.8, 14.0Hz, 2H), 1.98–2.03 (m, 1H), 3.68 (dd, J = 7.5, 8.8Hz, 1H), 3.81 (dd, J = 6.0, 8.8Hz, 1H), 6.53 (d, J = 2.1Hz, 1H), 6.94 (d, J = 9.0Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.65 (d, J = 9.0Hz, 2H).	66.7
化合物 273	N. A. T. A.	δ 0.92 (t, J = 7.1Hz, 6H), 1.21–1.49 (m, 8H), 1.78–1.88 (m, 1H), 3.87 (d, J = 5.4Hz, 2H), 6.53 (s, 1H), 6.95 (d, J = 9.0Hz, 2H), 7.59 (s, 1H), 7.64 (d, J = 9.0Hz, 2H). M+H = 273, M-H = 271.	54.8
化合物 274	N-NH O	δ 1.48–1.99 (m, 8H), 4.79 (tt, J = 3.0, 3.0Hz, 1H), 6.52 (d, J =2.3Hz, 1H), 6.92 (d, J = 9.0Hz, 2H), 7.59 (d, J = 2.3Hz, 1H), 7.63 (d, J = 9.0Hz, 2H). M+H = 229, M-H = 227.	74.7
化合物 275	N-NH-	δ 1.24–1.62 (m, 6H), 1.69–1.88 (m, 2H), 1.96–2.05 (m, 2H), 4.28 (tt, J = 3.8, 3.8Hz, 1H), 6.53 (d, J = 2.1Hz, 1H), 6.95 (d, J = 8.9Hz, 2H), 7.63 (d, J = 8.9Hz, 2H). M+H = 243, M-H = 241.	62.7

化合物 276	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 0.34-0.40 (m, 2H), 0.62-0.70 (m, 2H), 0.72-0.89 (m, 1H), 3.84 (d, J = 71.1 7.2Hz, 2H), 6.54 (d, J = 2.1Hz, 1H), 6.95 (d, J = 9.0Hz, 2H), 7.65 (d, J = 9.0Hz, 2H).	
化合物 277		δ 1.00 (d, $J = 6.6$ Hz, 3H), 0.98–1.86 (m, 12H), 3.79 (dd, $J = 6.9$, 9.0Hz, 1H), 3.96 (dd, $J = 5.7$, 9.0Hz, 1H), 6.53 (d, $J = 2.1$ Hz, 1H), 6.95 (d, $J = 2.1$ Hz, 1H), 7.64 (d, $J = 9.0$ Hz, 2H).	
化合物 278	N-NH N-NH	δ 1.22–1.93 (m, 8H), 2.38 (tt, $J = 7.2$, 7.2Hz, 1H), 4.07 (d, $J = 7.2$ Hz, 2H), 6.53 (d, $J = 2.1$ Hz, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (d, $J = 9.0$ Hz, 1H), 7.64 77.5 (d, $J = 9.0$ Hz, 2H).	10
化合物 279		δ 1.08-1.89 (m, 13H), 3.99 (t, J = 6.6Hz, 2H), 6.50 (d, J =2.4Hz, 1H), 6.95 (d, J = 8.7Hz, 2H), 7.56 (d, J = 2.4Hz, 1H), 7.64 (d, J = 8.7Hz, 2H). M+H = 271, M-H = 269.	
化合物 280	N-NH O	δ 0.45 (dd, J =4.2, 6.0Hz, 2H), 0.56 (dd, J = 4.2, 6.0Hz, 2H), 1.25 (s, 3H), 3.77 (s, 2H), 6.53 (s, 1H), 6.95 (d, J = 8.7Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 62.2 8.7Hz, 2H). M+H = 229, M-H = 227.	8
化合物 281	N-NH O	δ 0.36–0.44 (m, 1H), 0.48–0.56 (m, 1H), 0.72–1.09 (m, 2H), 1.11 (d, J =5.7Hz, 3H), 3.75–3.92 (m, 2H), 6.53 (s, 1H), 6.94 (d, J = 8.7Hz, 2H), 7.60 (s, 1H), 7.64 (d, J = 8.7Hz, 2H).	

			c c
化合物 282		∂ 0.80–1.80 (m, 17H), 3.99 (t, J = 6.5Hz, 2H), 6.53 (s, 1H), 6.94 (d, J = 9.0Hz, 2H), 7.59 (s, 1H), 7.65 (d, J = 9.0Hz, 2H). M+H = 300, M-H = 298.	3
化合物 283		3.97 (t, $J = 6.6$ Hz, 2H), 6.53 (d, $J = 2.1$ Hz, 1H), 6.95 (d, $J = 2.1$ Hz, 1H), 7.64 (d, $J = 9.0$ Hz, 2H).	39.4
化合物 284		1.99 (dt, J =6.8, 8.1Hz, 1H), 4.01 (t, J = 6.8Hz, 2H), = 8.7Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 8.7Hz, 2H).	75.0
化合物 285	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	8–1.92 (m, 6H), 3.79 (d, $J=6.3$ Hz, 2H), 6.53 (s, 2H), 7.60 (s, 1H), 7.65 (d, $J=9.0$ Hz, 2H).	68.1
化合物 286	N-NH	61–1.82 (m, 6H), 4.03(t, $J=6.8$ Hz, 2H), 6.53 (s, 1H), 7.59 (s, 1H), 7.65 (d, $J=8.9$ Hz, 2H).	53.5
化合物 287	N-NH O	δ 0.98–1.97 (m, 11H), 1.26 (d, J =6.3Hz, 3H), 4.25 (dt, J = 6.3, 6.3Hz, 2H), 6.53 (s, 1H), 6.93 (d, J = 8.9Hz, 2H), 7.60 (s, 1H), 7.63 (d, J = 8.9Hz, 2H). M+H = 271, M-H = 269.	37.0

化合物 288	N-NH O	δ 1.83–2.10 (m, 6H), 2.70–2.81 (m, 1H), 3.97 (d, J = 6.9Hz, 2H), 6.54 (s, 1H), 6.95 (d, J = 9.0Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 9.0Hz, 2H). M+H = 229, M-H = 227.	52.4
化合物 289	HN-N	δ 1.24–1.84 (m, 14H), 2.00–2.10 (m, 1H), 3.76 (d, J = 6.6Hz, 2H), 6.53 (s, 1H), 6.94 (d, J = 9.0Hz, 2H), 7.59 (s, 1H), 7.64 (d, J = 9.0Hz, 2H).	41.1
化合物 290	N-NH O	δ 1.52–1.64 (m, 2H), 1.78–1.90 (m, 2H), 2.12–2.19 (m, 2H), 4.00 (t, J = 6.8Hz, 2H), 4.94–5.10 (m, 2H), 5.79–5.91 (m, 1H), 6.53 (s, 1H), 6.94 (d, J = 6.90Hz, 2H), 7.60 (s, 1H), 7.64 (d, J = 9.0Hz, 2H).	60.8
化合物 291	N-NH	δ 0.99 (t, $J = 7.5$ Hz, 3H), 2.05 (m, 2H), 2.51 (m, 2H), 4.01 (t $J = 6.8$ Hz, 2H), 5.52 (m, 1H), 5.61 (m, 1H), 6.54 (s, 1H), 6.95 (d, $J = 8.7$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 8.7$ Hz, 2H). M+H = 243, M-H = 241.	55.4
化合物 292	N-NH	δ 1.66 (d, J = 4.8Hz, 3H), 1.85 (m, 2H), 2.15 (m, 2H), 3.99 (t J = 6.6Hz, 2H), 5.47 (m, 2H), 6.53 (d, J = 2.1Hz, 1H), 6.94 (d, J = 8.7Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.65 (d, J = 8.7Hz, 2H).	
化合物 293	N-NH O	δ 1.16 (d, J = 6.9Hz, 3H), 2.70 (m, 1H), 3.84 (dd, J = 6.9, 9.0Hz, 1H), 3.93 (dd, J = 6.3, 9.0Hz, 1H), 5.08–5.19 (m, 2H), 5.89 (m, 1H), 6.53 (d, J = 2.1Hz, 1H), 6.95 (d, J = 8.7Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.65 (d, J = 8.7Hz, 2H). M+H = 229, M-H = 227.	52.3

化合物 294	N-NH O	δ 1.67 (s, 3H), 1.74 (s, 3H), 2.51 (dt, J = 6.9, 6.9Hz, 2H), 3.97 (t, J = 6.9Hz, 2H), 5.23 (tq, J = 1.2, 6.9Hz, 1H), 6.54 (s, 1H), 6.95 (d, J = 8.9Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 8.9Hz, 2H).	66.2
化合物 295	N-NH O	H), 4.63 (dd, $J = 1.8$, 5.1Hz, 2H), 5.87 (ddt, $J = 1.8$, 1t, $J = 5.1$, 16.0Hz, 1H), 6.55 (s, 1H), 6.95 (d, $J = 7.67$ (d, $J = 8.9$ Hz, 2H).	63.5
化合物 296	N-NH-NO	δ 1.82(s, 3H), 2.53 (t, J = 6.9Hz, 2H), 4.12 (t, J = 6.9Hz, 2H), 4.82 (s, 1H), 4.86 (s, 1H), 6.54 (s, 1H), 6.96 (d, J = 9.0Hz, 2H), 7.60 (s, 1H), 7.66 (d, J = 8.0Hz, 2H). W+H = 229, M-H = 227.	81.1
化合物 297	HN-N	δ 0.91 (t, $J = 7.2$ Hz, 3H), 1.30–1.39 (m, 4H), 2.10 (m, 2H), 2.56 (m, 2H), 4.00 (t $J = 6.9$ Hz, 2H), 5.51 (m, 2H), 6.54 (s, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H).	58.6
化合物 298	No.	δ 0.97 (t, $J = 7.5$ Hz, 3H), 1.54 (m, 2H), 1.82 (m, 2H), 2.00–2.16 (m, 4H), 4.00 (t $J = 6.2$ Hz, 2H), 5.33–5.45 (m, 2H), 6.54 (s, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.59 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H).	55.1
化合物 299	N-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A	δ 1.47–1.50 (m, 4H), 1.81 (m, 2H), 2.09 (m, 2H), 3.99 (t, J = 6.5Hz, 2H), 4.92–5.06 (m, 2H), 5.81 (m, 1H), 6.53 (s, 1H), 6.94 (d, J = 9.0Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 9.0Hz, 2H).	60.7

化合物 300	N-NH 0	δ 1.77 (dd, J = 1.2, 6.3Hz, 3H), 4.49 (dd, J = 1.1, 5.0Hz, 2H), 5.77 (m, 1H), 5.86 (m, 1H), 6.54 (s, 1H), 6.94 (d, J = 8.9Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 8.9Hz, 2H). M+H = 215.	. 52.5	
化合物 301	N-NH O	δ 2.57 (m, 2H), 4.06 (t, J = 6.8Hz, 2H), 5.11–5.23 (m, 2H), 5.92 (m, 1H), 6.95 (d, J = 9.0Hz, 2H), 7.60 (s, 1H), 7.66 (d, J = 9.0Hz, 2H). $M+H$ = 215, $M-H$ = 213.	53.0	
化合物 302	N-N-H	δ 1.91 (m, 2H), 2.25 (m, 2H), 4.01 (t, $J = 6.4$ Hz, 2H), 4.98–5.12 (m, 2H), 5.86 (m, 1H), 6.54 (s, 1H), 6.95 (d, $J = 8.9$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 8.9$ Hz, 2H). $M+H = 229$, $M-H = 227$.	62.4	
化合物 303	HW-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	δ 1.04 (t, $J = 7.5$ Hz, 3H), 2.17 (m, 2H), 4.62 (d, $J = 5.1$ Hz, 2H), 5.62–5.72 (m, 2H), 6.54 (s, 1H), 6.97 (d, $J = 9.0$ Hz, 2H), 7.60 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H). M+H = 229.	60.7	
化合物 304	No.	δ 0.93 (t, $J = 7.2$ Hz, 3H), 1.43 (m, 2H), 2.07 (m, 2H), 2.57 (q, $J = 6.8$ Hz, 2H), 4.00 (t, $J = 6.9$ Hz, 2H), 5.46–5.59 (m, 2H), 6.54 (s, 1H), 6.95 (d, $J = 8.9$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 8.9$ Hz, 2H).	48.9	
化合物 305	Z Z	δ 0.96 (t, $J = 7.2$ Hz, 3H), 1.53 (qt, $J = 7.2$, 7.2Hz, 2H), 2.21 (tt, $J = 2.2$, 7.2Hz, 2H), 4.71 (t, $J = 2.2$ Hz, 2H), 6.55 (s, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (s, 1H), 7.67 (d, $J = 9.0$ Hz, 2H). M+H = 241, M-H = 239.	36.8	

化合物 306	N-NH O	δ 0.89 (t, $J = 7.2$ Hz, 3H), 1.34–1.53 (m, 4H), 2.23 (m, 2H), 4.71 (t, $J = 2.1$ Hz, 2H), 6.55 (s, 1H), 7.02 (d, $J = 9.0$ Hz, 2H), 7.60 (s, 1H), 7.67 (d, $J = 9.0$ Hz, 2H). M+H = 255. M-H = 253.	53.9
化合物 307	N-NH	1), 1.52 (m, 2H), 2.15 (m, 2H), 2.67 (m, 2H), 4.09 (t, 1H), 7.02 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H), 7.61 (s, 1H), 7.61 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 7.61 (s, 1H), 7.61 (s	57.5
化合物 308	Nath Or of the second of the s	δ 0.91(t, $J = 7.2$ Hz, 3H), 1.26–1.61 (m, 4H), 2.17 (m, 2H), 2.66 (m, 2H), 4.09 (t, $J = 7.4$ Hz, 2H), 6.54 (s, 1H), 7.02 (d, $J = 8.9$ Hz, 2H), 7.60 (s, 1H), 7.66 (d, $J = 8.9$ Hz, 2H).	52.3
化合物 309	₹ •	δ 1.15 (t, $J = 7.5$ Hz, 3H), 2.25 (m, 2H), 4.71 (m, 2H), 6.55 (s, 1H), 7.03 (d, $J = 8.7$ Hz, 2H), 7.60 (s, 1H), 7.67 (d, $J = 8.7$ Hz, 2H).	40.5
化合物 310	F	δ 1.75 (m, 2H), 1.93 (m, 2H), 1.98 (s, 1H), 2.29 (m, 2H), 4.03 (t, J = 6.3Hz, 2H), 6.54 (s, 1H), 6.94 (d, J = 8.7Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 8.7Hz, 2H). M+H = 241, M-H = 239.	72.9
化合物 311	N-NH O	δ 1.87 (t, J = 2.4Hz, 3H), 4.69 (q, J = 2.4Hz, 2H), 6.56 (s, 1H), 7.02 (d, J = 9.0Hz, 2H), 7.61 (s, 1H), 7.68 (d, J = 9.0Hz, 2H).	58.9

化合物 312	THE STATE OF THE S	δ 1.98 (s, 1H), 2.03 (m, 2H), 2.43 (m, 2H), 4.14 (t, $J=6.0$ Hz, 2H), 6.54 (s, 71H), 6.96 (d, $J=9.0$ Hz, 2H), 7.61 (s, 1H), 7.66 (d, $J=9.0$ Hz, 2H).	74.5
化 金物 313	R. F.		73.5
化合物 314	K-AH OOOOO	1), 3.54 (m, 2H), 3.63 (m, 2H), 3.74 (m, 2H), 3.89 (t, J = 5.0Hz, 2H), 6.54 (s, 1H), 6.97 (d, J = 9.0Hz, d, J = 9.0Hz, 2H).	49.7
化合物 315	N-NH O	, 6.55 (s, 1H), 6.99 (d, $J=9.0$ Hz,	61.6
化合物 316	RANGE OF THE PARTY	1), 3.62 (m, 2H), 3.82 (m, 2H), 4.17 (m, 2H), 6.55 (s, 2H), 7.60 (s, 1H), 7.66 (d, $J = 9.0 \text{Hz}$, 2H).	42.1
化合物 317	R-NH Orogo	H), 1.35 (m, 2H), 1.58 (m, 2H), 3.48 (t, $J=6.8$ Hz, m, 2H), 3.88 (m, 2H), 4.17 (m, 2H), 6.53 (s, 1H), 6.97 (s, 1H), 7.65 (d, $J=9.0$ Hz, 2H).	56.3

化合物 318	N-NH O	δ 1.22 (d, J = 6.3Hz, 3H), 1.95 m, 2H), 3.35 (s, 3H), 3.58 (m, 1H), 4.09 (m, 2H), 6.54 (s, 1H), 6.96 (d, J = 8.9Hz, 2H), 7.60 (s, 1H), 7.66 (d, J = 8.9Hz, 2H). M+H = 247, M-H = 245.	69.7
化合物 319	N-NH O-	δ 3.83 (m, 2H), 4.09–4.20 (m, 4H), 5.20–5.38 (m, 2H), 5.95 (m, 1H), 6.54 (s, 1H), 6.98 (d, J = 8.9Hz, 2H), 7.60 (s, 1H), 7.66 (d, J = 8.9Hz, 2H). M+H = 245, M-H = 243.	50.0
化合物 320	N-NH O to	δ 1.26 (s, 6H), 2.02 (t, $J = 7.2$ Hz, 2H), 3.23 (s, 3H), 4.11 (t, $J = 7.2$ Hz, 2H), 6.53 (s, 1H), 6.95 (d, $J = 8.9$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 8.9$ Hz, 2H). M+H = 261, M-H = 259.	74.5
化合物 321	N-MH OCOCOC	δ 0.89 (t, J = 6.6Hz, 3H), 1.24–1.39 (m, 6H), 1.60 (m, 2H), 3.54 (t, J = 6.6Hz, 2H), 3.80 (m, 2H), 4.16 (t, J = 4.5Hz, 2H), 6.54 (s, 1H), 6.98 (d, J = 8.9Hz, 2H), 7.64 (s, 1H), 7.65 (d, J = 8.9Hz, 2H).	8.09
化合物 322	N-NH 0-0	δ 1.25 (s, 9H), 3.74 (t, J = 5.4Hz, 2H), 4.12 (t, J = 5.4Hz, 2H), 6.54 (s, 1H), 6.97 (d, J = 8.7Hz, 2H), 7.60 (s, 1H), 7.65 (d, J = 8.7Hz, 2H). M+H = 261, M-H = 259.	51.0
化合物 323	N-NiH	δ 0.92 (d, $J = 6.6$ Hz, 6H), 1.91 (septet, $J = 6.6$ Hz, 1H), 3.31 (d, $J = 6.6$ Hz, 2H), 3.80 (t, $J = 4.8$ Hz, 2H), 4.18 (t, $J = 4.8$ Hz, 2H), 6.54 (s, 1H), 6.98 (d, $J = 9.0$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 9.0$ Hz, 2H).	52.4

化合物 324	N-NH-N	δ 0.94 (t, $J = 7.5$ Hz, 3H), 1.63 (tq, $J = 6.8$, 7.5Hz, 2H), 3.51 (t, $J = 6.8$ Hz, 2H), 3.81 (m, 2H), 4.16 (m, 2H), 6.53 (s, 1H), 6.98 (d, $J = 8.7$ Hz, 2H), 7.60 (s, 1H), 7.65 (d, $J = 8.7$ Hz, 2H).	47.4
化合物 325	K-NH O	δ 1.76–1.92 (m, 4H), 3.36 (s, 3H), 3.46 (t, J = 6.3Hz, 2H), 4.02 (t, J = 6.3Hz, 2H), 6.53 (d, J =2.1Hz, 1H), 6.98 (d, J = 8.9Hz, 2H), 7.65 (d, J = 8.9Hz, 2H). M+H = 247, M-H = 245.	58.4
允合		∂ 0.90 (d, J = 6.6Hz, 6H), 1.88 (septet, J = 6.6Hz, 1H), 3.24 (d, J =6.6Hz, 2H), 3.62 (m, 2H), 3.73 (m, 2H), 3.89 (m, 2H), 4.17 (m, 2H), 6.53 (d, J =2.1Hz, 1H), 6.97 (d, J = 9.0Hz, 2H), 7.59 (d, J = 2.1Hz, 1H), 7.65 (d, J = 9.0Hz, 2H). M+H = 305, M-H = 303.	40.1
化合物 327	N-NH O	δ 3.40 (s, 3H), 3.591 (m, 2H), 3.74 (m, 2H), 3.88 (m, 2H), 4.18 (m, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.97 (d, J = 8.9Hz, 2H), 7.60 (d, J = 2.3Hz, 1H), 7.65 (d, J = 8.9Hz, 2H). M+H = 263, M-H = 261.	39.7
化合物 328	N-NH O-CO	δ 0.93 (t, $J = 7.2$ Hz, 3H), 1.39 (m, 2H), 1.60 (m, 2H), 3.55 (t, $J = 6.6$ Hz, 2H), 3.80 (m, 2H), 4.16 (m, 2H), 6.54 (d, $J = 2.1$ Hz, 1H), 6.98 (d, $J = 9.0$ Hz, 2H), 7.65 (d, $J = 9.0$ Hz, 2H). M+H = 261, M-H = 259.	55.2
化合物 329	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	\mathcal{O} 1.21 (d, $\mathcal{J}=6.0$ Hz, 6H), 3.70 (septet, $\mathcal{J}=6.0$ Hz, 1H), 3.80 (m, 2H), 4.15 (m, 2H), 6.53 (d, $\mathcal{J}=2.1$ Hz, 1H), 6.97 (d, $\mathcal{J}=8.9$ Hz, 2H), 7.60 (d, $\mathcal{J}=2.1$ Hz, 1H), 7.65 (d, $\mathcal{J}=8.9$ Hz, 2H).	47.9

化合物 330	N-MI	δ 0.88 (t, J = 6.3Hz, 3H), 1.21–1.39 (m, 8H), 1.60 (m, 2H), 3.54 (t, J =6.8Hz, 2H), 3.80 (m, 2H), 4.16 (m, 2H), 6.54 (d, J =2.3Hz, 1H), 6.98 (d, J = 9.0Hz, 2H), 7.60 (d, J = 2.3Hz, 1H), 7.65 (d, J = 9.0Hz, 2H).	47.8	
化合物 331	M-NH O	∂ 0.90 (t, J = 6.6Hz, 3H), 1.23–1.47 (m, 4H), 1.63 (m, 2H), 3.54 (t, J = 6.6Hz, 2H), 3.80 (m, 2H), 4.16 (m, 2H), 6.53 (d, J =2.1Hz, 1H), 6.98 (d, J = 8.9Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.65 (d, J = 8.9Hz, 2H).	60.7	
化合物 332	HWH O LOCAL OF THE STATE OF THE	∂ 0.89 (t, $J = 7.0$ Hz, 3H), 1.24–1.35 (m, 4H), 1.59 (m, 2H), 3.47 (t, $J = 6.8$ Hz, 2H), 3.62 (m, 2H), 3.73 (m, 2H), 3.88 (m, 2H), 4.17 (m, 2H), 6.53 (d, $J = 2.1$ Hz, 1H), 6.97 (d, $J = 9.0$ Hz, 2H), 7.60 (d, $J = 2.1$ Hz, 1H), 7.65 (d, $J = 9.0$ Hz, 2H). M+H = 319, M-H = 317.	59.6	
化合物 333	HN-NH O O	δ 3.82 (s, 3H), 4.68 (s, 2H), 6.54 (s, 1H), 6.97 (d, J = 9.0Hz, 2H), 7.60 (s, 1H), 7.68 (d, J = 9.0Hz, 2H).	40.3	
化合物 334	N-NH Q	δ 1.75–2.13 (m, 4H), 3.80–4.00 (m, 2H), 4.00 (m, 2H), 4.28 (m, 1H), 6.53 (d, J =2.1Hz, 1H), 6.97 (d, J = 9.0Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.65 (d, J = 9.0Hz, 2H). W+H = 245, M-H = 243.	49.2	
化合物 335	HIN-N	δ 3.90 (m, 1H), 4.00–4.13 (m, 3H), 4.45 (m, 1H), 4.95 (s, 1H), 5.11 (s, 1H), 6.55 (s, 1H), 6.97 (d, J = 8.9Hz, 2H), 7.61 (s, 1H), 7.68 (d, J = 8.90Hz, 2H). M+H = 247, M-H = 245.	52.2	

化合物 336	N-NH S-O-S	∂ 2.23 (s, 3H), 2.91 (t, J = 6.6 Hz, 2H), 4.20 (t, J = 6.6Hz, 2H), 6.55 (d, J = 2.1Hz, 1H), 6.96 (d, J = 8.7Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.67 (d, J = 8.7Hz, 2H). W+H = 235, M-H = 233.	37.1 .
化合物 337	N-NH S	δ 1.31 (t, $J = 7.4$ Hz, 3H), 2.67 (q, $J = 7.4$ Hz, 2H), 2.93 (t, $J = 6.9$ Hz, 2H), 4.18 (t, $J = 6.9$ Hz, 2H), 6.54 (d, $J = 2.1$ Hz, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (d, $J = 2.1$ Hz, 1H), 7.67 (d, $J = 9.0$ Hz, 2H).	37.4
化合物 338	N-NH O S	δ 2.08 (quint, J = 6.2Hz, 2H), 2.13 (s, 3H), 2.71 (t, J = 6.2 Hz, 2H), 4.11 (t, J = 6.2 Hz, 2H), 6.54 (d, J =2.1Hz, 1H), 6.95 (d, J = 9.0Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.66 (d, J = 9.0Hz, 2H).	59.1
化合物 339	F-F-	δ 2.07 (m, 2H), 2.34 (m, 2H), 4.06 (t, J = 6.2Hz, 2H), 6.54 (d, J =2.1Hz, 1H), 6.94 (d, J = 8.9Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.67 (d, J = 8.9Hz, 2H). M+H = 271, M-H = 269.	74.9
化合物 340	N-NH-NH-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	\mathcal{O} 1.03 (d, $\mathcal{J}=6.3$ Hz, 3H), 1.79–2.32 (m, 6H), 3.94 (m, 1H), 4.03 (m, 1H), 5.68 (m, 2H), 6.53 (d, $\mathcal{J}=2.1$ Hz, 1H), 6.95 (d, $\mathcal{J}=9.0$ Hz, 2H), 7.65 (d, $\mathcal{J}=9.0$ Hz, 2H).	62.3
化合物 341	N-NH O	δ 5.11 (s, 2H), 6.53 (d, J = 2.1Hz, 1H), 7.03 (d, J = 9.0Hz, 2H), 7.31–7.48 (m, 5H), 7.60 (d, J = 2.1Hz, 1H), 7.67 (d, J = 9.0Hz, 2H). M+H = 251.	. 69.4

化合物 342	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 0.86 (d, J = 6.3Hz, 3H), 0.86 (t, J = 7.2Hz, 3H), 1.09–1.47 (m, 9H), 1.79 (m, 2H), 3.99 (t, J = 6.6Hz, 2H), 6.53 (d, J =2.1Hz, 1H), 6.95 (d, J = 8.9Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.65 (d, J = 9.0Hz, 2H).	42.6
化合物 343	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-		24.8
化合物 344		H), 2.31 (s, 3H), 3.47 (q, $J = 6.9$ Hz, 2H), 3.73 (t, $J = 6.3$ Hz, 2H), 6.50 (4, 1H, $J = 2.3$ Hz, 1H), 6.50–6.57 (hz, 2H), 7.12 (dd, $J = 1.8$, 7.5Hz, 1H), 7.59 (d, $J = 9.0$ Hz, 2H).	66.2
化合物 345	N-A-	1), 2.66 (q, $J = 7.2$ Hz, 4H), 2.90 (t, $J = 6.3$ Hz, 2H), 6.53 (d, $J = 2.3$ Hz, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.65 (d, $J = 9.0$ Hz, 2H).	24.1
化合物 346	HW. N	36 (s, 3H), 3.10 (dt, $J = 2.1$, 7.2Hz, 2H), 4.05 (d, $J = 2.3$ Hz, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.59 (d, $J = 9.0$ Hz, 2H).	34.4
化合物 347	N-NH O	δ 2.60 (t, $J = 4.7$ Hz, 4H), 2.83 (t, $J = 5.7$ Hz, 2H), 3.75 (t, $J = 4.7$ Hz, 4H), 4.15 (t, $J = 5.7$ Hz, 2H), 6.54 (d, $J = 2.3$ Hz, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.60 (d, $J = 2.3$ Hz, 1H), 7.66 (d, $J = 9.0$ Hz, 2H). M+H = 274, M-H = 272.	42.9

化合物 348	N-NH N-NH	∂ 1.48-2.95 (m, 9H), 2.42 (s, 3H), 4.03 (dd, J = 4.4Hz, 1H), 4.04 (dd, J = 4.4Hz, 1H), 6.53 (d, J = 2.3Hz, 1H), 6.95 (d, J = 8.7Hz, 2H), 7.59 (d, J = 3.3Hz, 1H), 7.64 (d, J = 8.7Hz, 2H).	3.8
化合物 349	N-NH	29 (s, 3H), 2.73–2.81 (m, 1H), 2.95–3.01 (m, 1H), (d, J = 2.3Hz, 1H), 6.94 (d, J = 8.7Hz, 2H), 7.59 (d, J = 8.7Hz, 2H).	49.9
化合物 350	N-NH O-O-SH-/	7.2Hz, 4H), 2.71 (t, $J=6.3$ Hz, 2H), 16 (m, 2H), 6.53 (d, $J=2.3$ Hz, 1H), 1.65 (d, $J=9.0$ Hz, 2H).	29.7
化合物 351	N-MH	δ 1.20–1.58 (m, 6H), 1.81 (m, 2H), 2.23 (s, 6H), 2.28 (t, $J=7.5$ Hz, 2H), 3.99 (t, $J=6.2$ Hz, 2H), 6.53(d, $J=2.3$ Hz, 1H), 6.94 (d, $J=9.0$ Hz, 2H), 7.59 (d, $J=2.3$ Hz, 1H), 7.64 (d, $J=9.0$ Hz, 2H).	76.3
化合物 352	N-NH O X N-	δ 1.01 (s, 6H), 2.29 (s, 6H), 2.36 (s, 2H), 3.74 (s, 2H), 6.53 (d, J=2.1Hz, 1H), 6.96(d, J = 8.7Hz, 2H), 7.59 (d, J = 2.1Hz, 1H), 7.63 (d, J = 8.7Hz, 2H). М+H = 274, М-H = 272.	
化合物 353	N-NH O N	δ 0.79 (t, $J = 7.5$ Hz, 6H), 0.97 (s, 6H), 1.301.48 (m, 4H), 2.35-2.41 (m, 6H), 3.70 (s, 2H), 6.53 (d, $J = 2.4$ Hz, 1H), 6.94 (d, $J = 9.0$ Hz, 2H), 7.59 (d, $J = 2.4$ Hz, 1H), 7.63 (d, $J = 9.0$ Hz, 2H).	23.7

	N-NH	Ś	
化合物 354		2H), 6.53 (d, J = 2.1Hz, 1H), 6.96 (d, J = 9.0Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.64(d, J = 9.0Hz, 2H). M+H = 330, M-H = 328.	86.1
化合物 355	N-NH ON NO	\mathcal{S} 0.99 (s, 6H), 2.31 (s, 2H), 2.50 (t, $\mathcal{J}=4.5$ Hz, 4H), 3.62 (t, $\mathcal{J}=4.5$ Hz, 4H), 3.72 (s, 2H), 6.53 (d, $\mathcal{J}=2.3$ Hz, 1H), 6.94 (d, $\mathcal{J}=8.9$ Hz, 2H), 7.60 (d, $\mathcal{J}=2.3$ Hz, 1H), 7.64 (d, $\mathcal{J}=8.9$ Hz, 2H).	64.6
化合物 356	N-NH OXN	δ 0.83 (d, J = 6.6Hz, 12H), 1.00 (s, 6H), 1.67 (m, 2H), 2.10 (d, J = 7.2Hz, 4H), 2.34 (s, 2H), 3.73 (s, 2H), 6.53 (d, J = 2.1Hz, 1H), 6.94 (d, J = 8.7Hz, 2H), 7.60 (d, J = 2.1Hz, 1H), 7.64 (d, J = 8.7Hz, 2H). M+H = 358, M-H = 359.	34.8
化合物 357	N-NH O	δ 0.97 (s, 6H), 2.24 (s, 3H), 2.32 (s, 2H), 2.37 (m, 4H), 2.55 (t, J = 5.0Hz, 4H), 3.71 (s, 2H), 6.53 (d, J = 2.4Hz, 1H), 6.94 (d, J = 8.7Hz, 2H). 1.59 (d, J = 2.4Hz, 1H), 7.64 (d, J = 8.7Hz, 2H).	36.2
化合物 358	N-NH O NO	J = 6.3Hz, 6H), 2.00 (d, J = 11.4Hz, 2H), 2.28 (s, z, 2H), 3.55-3.64 (m, 2H), 3.72 (s, 2H), 6.53 (d, J = 8.9Hz, 2H), 7.60 (d, J = 2.3Hz, 1H), 7.65(d, J =	55.5
化合物 359	N-NH O	δ 0.97 (s, 6H), 1.26–1.56 (m, 6H), 2.24 (s, 2H), 2.39–2.45 (m,4H), 3.71 (s, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.96 (d, J = 9.0Hz, 2H), 7.59 (d, J = 2.3Hz, 1H), 7.65 (d, J = 9.0Hz, 2H).	11.2

化合物 360	N-NH O X N	∂ 1.03 (s, 6H), 1.61–1.90 (m, 4H), 2.49 (s, 2H), 2.53–2.68 (m, 4H), 3.75 (s, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.96 (d, J = 9.0Hz, 2H), 7.59 (d, J = 9.0Hz, 2H). (4H), 7.65 (d, J = 9.0Hz, 2H).	13.5
化合物 361	HN-N O N	δ 0.94 (t, $J = 7.2$ Hz, 6H), 0.98 (s, 6H), 2.36 (s, 2H), 2.51 (q, $J = 7.2$ Hz, 4H), 3.70 (s, 2H), 6.53 (d, $J = 2.1$ Hz, 1H), 6.95 (d, $J = 8.7$ Hz, 2H), 7.63 (d, $J = 8.7$ Hz, 2H).	.5
化合物 362	NAH OO NA D	J=6.0Hz, 2H), 3.63 (s, 2H), 4.13 (t, $J=6.0$ Hz, 2H), 6.94 (d, $J=8.9$ Hz, 2H), 7.20–7.38 (m, 5H), 7.59 (d, $J=8.9$ Hz, 2H).	45.7
化合物 363	HN-N O	δ 1.98 (tt, $J = 6.5$, 7.4Hz, 2H), 2.27 (s, 6H), 2.48 (t, $J = 7$.4Hz, 2H), 4.05 (t, $J = 6.5$ Hz, 2H), 6.53 (d, $J = 2.3$ Hz, 1H), 6.95 (d, $J = 8.9$ Hz, 2H), 7.59 (d, $J = 2.3$ Hz, 1H), 7.65 (d, $J = 8.9$ Hz, 2H). M+H = 246, M-H = 244.	47.5
化合物 364	HW-N O	∂ 1.04 (t, $J = 7.1$ Hz, 6H), 1.95 (tt, $J = 6.5$, 7.4Hz, 2H), 2.56 (q, $J = 7.1$ Hz, 4H), 2.63 (t, $J = 7.4$ Hz, 2H), 4.04 (t, $J = 6.5$ Hz, 2H), 6.53 (d, $J = 2.3$ Hz, 1H), 6.95 (d, $J = 9.0$ Hz, 2H), 7.59 (d, $J = 2.3$ Hz, 1H), 7.65(d, $J = 9.0$ Hz, 2H). W+H = 274, M-H = 272.	59.3
化合物 365	N-NH N	δ 1.72–1.89 (m, 4H), 2.60–2.71 (m, 4H), 2.93 (t, J = 5.9Hz, 2H), 4.15 (t, J = 5.9Hz, 2H), 6.53 (d, J = 2.4Hz, 1H), 6.96 (d, J = 9.0Hz, 2H), 7.59 (d, J = 17 2.4Hz, 1H), 7.65 (d, J = 9.0Hz, 2H).	17.8

化合物 366		δ 1.38–1.68 (m, 6H), 2.38–2.59 (m, 4H), 2.80 (t, J = 6.0Hz, 2H), 4.15 (t, J = 6.0Hz, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.95 (d, J = 8.9Hz, 2H), 7.59 (d, J = 8.3Hz, 1H), 7.65 (d, J = 8.9Hz, 2H).	24.2
化合物 367	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	J=6.0Hz, 2H), 4.17 (t, $J=6.0$ Hz, 2H), 6.53 (d, $J=0.3$ H), 6.92 (d, $J=9.0$ Hz, 2H), 7.20–7.29 (m, 2H), 7.64 (d, $J=9.0$ Hz, 2H).	86.8
化合物 368	N-NH.	δ 1.20 (s, 6H), 2.37 (s, 6H), 3.78 (s, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.99 (d, J = 8.7Hz, 2H), 7.60 (d, J = 2.3Hz, 1H), 7.64 (d, J =8.7Hz, 2H).	22.6
化合物 369	State Of the Park	δ 2.26(s, 6H), 2.40(s, 3H), 2.51(t, $J=6.0$ Hz, 2H), 2.73 (t, $J=6.0$ Hz, 2H), 2.89 (t, $J=6.0$ Hz, 2H), 3.54 (t, $J=6.0$ Hz, 2H), 3.58 (t, $J=6.0$ Hz, 2H), 4.12 (t, $J=6.0$ Hz, 2H), 6.53 (d, $J=2.3$ Hz, 1H), 6.95 (d, $J=8.9$ Hz, 2H), 7.59 (d, $J=2.3$ Hz, 1H), 7.64 (d, $J=8.9$ Hz, 2H).	22.1
. 化合物 370	N-NH O	δ 1.20–1.68 (m, 12H), 2.28–2.43 (m, 6H), 3.64 (t, J = 6.5Hz, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.94 (d, J = 9.0Hz, 2H), 7.59 (d, J = 2.3Hz, 2H), 7.64(d, J = 9.0Hz, 2H). M-H = 312.	47.2
化合物 371	N-AH	δ 1.40–1.62 (m, 6H), 2.00 (m, 2H), 2.31–2.58 (m, 6H), 4.04 (t, J = 6.2Hz, 2H), 6.53 (d, J = 2.1Hz, 1H), 6.95 (d, J = 8.7Hz, 2H), 7.60 (d, J = 2.1Hz, 2H). 7.64 (d, J = 8.7Hz, 2H).	18.9

化合物 372	NATE OF THE PARTY	δ 2.04 (tt, J = 6.5, 7.8Hz, 2H), 2.53 (s, 3H), 2.84 (t, J = 7.8Hz, 2H), 3.58 (t, J = 6.5Hz, 2H), 3.80 (m, 2H), 4.15 (m, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.93–7.00 (m, 2H), 6.97 (d, J = 9.0Hz, 2H), 7.45 (t, J = 7.7Hz, 1H), 7.60 (d, J = 9.0Hz, 2H).	0
化合物 373	N. N.	δ 3.29 (t, J = 6.8Hz, 2H), 4.41 (t, J = 6.8Hz, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.95 (d, J = 8.9Hz, 2H), 7.13-7.19 (m, 1H), 7.26-7.30 (m, 1H), 7.59 (d, J = 79.0 2.3Hz, 1H), 7.60-7.66 (m, 1H), 7.64 (d, J = 8.9Hz, 2H), 8.55-8.59 (m, 1H). M+H = 266, M-H = 264.	0:
化合物 374	N. H.	δ 5.25 (s, 2H), 6.54 (d, J = 2.1Hz, 1H), 7.04 (d, J = 9.0Hz, 2H), 7.21–7.27 (m, 1H), 7.53 (d, J = 7.8Hz, 1H), 7.59 (d, J = 2.1Hz, 1H), 7.67 (d, J = 9.0H, 2H), 7.72 (dt, J = 1.8, 7.8Hz, 1H), 8.60–8.63 (m, 1H).	6.
化合物 375	N-A-N-A-N-A-N-A-N-A-N-A-N-A-N-A-N-A-N-A	∂ 5.13 (s, 2H), 6.56 (d, J = 2.1Hz, 1H), 7.03 (d, J = 9.0Hz, 2H), 7.34 (dd, J = 4.8, 7.8Hz, 1H), 7.61 (d, J = 2.1Hz, 1H), 7.70 (d, J = 7.8Hz, 2H), 7.80 (d, J = 91.0 = 7.8Hz, 1H), 8.60 (d, J = 4.8Hz, 1H), 8.71 (s, 1H).	0.
化合物 376	N O O	δ 5.14 (s, 2H), 6.55 (d, J = 2.3Hz, 1H), 7.01 (d, J = 9.0Hz, 2H), 7.37 (d, J = 6.3Hz, 2H), 7.61 (d, J = 2.3Hz, 1H), 7.70 (d, J = 9.0Hz, 2H), 8.63 (d, J = 81.7 6.3Hz, 2H).	7.
化合物 377	F	δ 2.14 (tt, $J = 6.0$, 7.6Hz, 2H), 2.84 (t, $J = 7.6$ Hz, 2H), 4.01 (t, $J = 6.0$ Hz, 2H), 6.54 (d, $J = 2.3$ Hz, 1H), 6.93 (d, $J = 8.7$ Hz, 2H), 7.16 (d, $J = 6.0$ Hz, 2H), 7.60 (d, $J = 2.3$ Hz, 1H), 7.67 (d, $J = 8.7$ Hz, 2H), 8.51 (d, $J = 6.0$ Hz, 88.0 2H).	0

化合物 378	N-NH O-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	δ 4.21-4.34 (m, 4H), 6.18 (t, J = 2.2Hz, 2H), 6.55 (d, J = 2.2Hz, 1H), 6.78 (t, J = 2.2Hz, 2H), 6.91 (d, J = 8.6Hz, 2H), 7.60 (d, J = 2.2Hz, 1H), 7.66 (d, J = 8.6Hz, 2H). M+H = 254, M+Na = 276, M-H = 252.	·	6.1
化合物 379	N-NH O-N	δ 2.23 (m, 2H), 3.94 (t, J = 5.9Hz, 2H), 4.12 (t, J = 6.8Hz, 2H), 6.15 (t, J = 2.0Hz, 2H), 6.55 (d, J = 2.2Hz, 1H), 6.66 (t, J = 2.0Hz, 2H), 6.94 (d, J = 8.5Hz, 2H), 7.60 (d, J = 2.2Hz, 1H), 7.68 (d, J = 8.5Hz, 2H).		22.4
化合物 380	HN-N N-~O	δ 4.39 (t, J = 6.0Hz, 2H), 4.75 (t, J = 6.0Hz, 2H), 6.52 (d, J = 2.2Hz, 1H), 6.87 (d, J = 8.6Hz, 2H), 7.22–7.30 (m, 2H), 7.45–7.64 (m, 7H), 8.11 (d, J = 7.7Hz, 2H). M+H = 354, M+Na = 376, M-H = 352. mp 199.5–200.5°C.		16.2
化合物 381	Po N N O SHCI	mp 217.0-218.0 °C (dec.)		7.1
化合物 382	Ts0H HN-N F	$DMSO-d_{\delta}$, δ 2.38 (s, 3H), 6.55 (d, J = 2.2Hz, 1H), 6.87 (d, J = 8.8Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 7.20–7.40 (m, 4H), 7.60 (d, J = 2.2Hz, 1H), 7.66 (d, J = 8.8Hz, 2H), 7.81 (d, J = 8.4Hz, 2H).		38.2
化合物 383	N-NH O	∂ 1.60–1.91 (m, 4H), 2.25 (s, 6H), 2.34 (t, $J = 7.3$ Hz, 2H), 4.02 (t, $J = 6.2$ Hz, 2H), 6.54 (d, $J = 2.2$ Hz, 1H), 6.95 (d, $J = 8.8$ Hz, 2H), 7.60 (d, $J = 8.6$ Hz, 2H). M+H = 260, M+Na = 282, M-H = 258.		111.4

_				
化合物 384	N-NH O	0 2.27 (m, 2H), 3.02 (t, $J = 7.5$ Hz, 2H), 4.05 (t, $J = 6.4$ Hz, 2H), 6.54 (d, $J = 2.2$ Hz, 1H), 6.95 (d, $J = 8.8$ Hz, 2H), 7.11–7.22 (m, 3H), 7.61 (d, $J = 2.2$ Hz, 1H), 7.57–7.68 (m, 3H), 8.55 (m, 1H). M+Na = 302, M-H = 278.	80.3	5.2
化合物 385	N-NH O-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	δ 2.30 (s, 6H), 2.39 (s, 3H), 2.49 (m, 2H), 2.65 (m, 2H), 2.87 (t, J = 5.9Hz, 2H), 4.13 (t, J = 5.9Hz, 2H), 6.55 (d, J = 2.2Hz, 1H), 6.96 (d, J = 8.8Hz, 2H), 7.60 (d, J = 2.2Hz, 1H), 7.66 (d, J = 8.8Hz, 2H). M+H = 289, M+Na = 311, M-H = 287.	20.3	>300
允 合物 386	R-NH O	δ 2.25 (m, 2H), 2.55 (s, 3H), 2.97 (t, $J = 7.5$ Hz, 2H), 4.05 (t, $J = 6.4$ Hz, 2H), 6.54 (d, $J = 2.2$ Hz, 1H), 6.73–7.01 (m, 4H), 7.50 (t, $J = 7.5$ Hz, 1H), 7.65 (d, $J = 8.6$ Hz, 2H). M+Na = 316, M-H = 292.	73.1	3.55
化合物 387	Ts0H Ts0H NA-N	$DMSO-d_{\delta}$, δ 1.55–1.92 (m, 8H), 2.29 (s, 3H), 3.18–3.60 (m, 6H), 4.37 (brt, J = 5.0Hz, 2H), 6.64 (d, J = 2.2Hz, 1H), 7.05 (d, J = 9.0Hz, 2H), 7.11 (d, J = 8.1Hz, 2H), 7.48 (d, J = 8.1Hz), 7.68 (brd, J = 2.2Hz, 1H), 7.77 (d, J = 9.0Hz, 2H). M+H = 286.	38.7	224
化合物 388	N-NH O	2.2Hz, 1H), 6.95 (d, $J = 8.8$ Hz, 2H), 7.22 (m, 1H), 7.55 (m, 1H), 7.60 (d, $J = 2.2$ Hz, 1H), 7.67 (d, $J = 8.8$ Hz, 2H), 8.47 (dd, $J = 1.5$, 4.8Hz, 1H), 8.51 (d, $J = 2.2$ Hz, 1H). M+H = 280, M+Na = 302, M-H = 278.	87.6	4.1
化合物 389	HN-N	∂ 2.94 (s, 6H), 3.02 (t, $J = 7.3$ Hz, 2H), 4.16 (t, $J = 7.3$ Hz, 2H), 6.54 (d, $J = 2.2$ Hz, 1H), 6.74 (d, $J = 8.8$ Hz, 2H), 6.96 (d, $J = 8.8$ Hz, 2H), 7.18 (d, $J = 8.8$ Hz), 7.60 (d, $J = 2.2$ Hz, 1H), 7.65 (d, $J = 8.8$ Hz, 2H). M+Na = 330, M-H = 306.	68.9	5.7
			_	-

化合物 390	N-NH S	δ 2.47 (s, 3H), 3.27 (t, J = 6.5Hz, 2H), 4.19 (t, J = 6.5Hz, 2H), 6.55 (d, J = 2.2Hz, 1H), 6.96 (d, J = 8.8Hz, 2H), 7.61 (d, J = 2.2Hz, 1H), 7.68 (d, J = 8.8Hz, 2H), 8.62 (s, 1H). M+Na = 308, M-H = 284. mp 157.0-158.0°C.	95.1	2.4
化合物 391	HN-N O N	δ 1.27 (m, 2H), 1.83 (m, 2H), 2.65 (t, $J=5.7$ Hz, 2H), 4.18 (t, $J=5.7$ Hz, 2H), 6.45 (d, $J=2.2$ Hz, 1H), 6.98 (d, $J=8.8$ Hz, 2H), 7.60 (d, $J=8.8$ Hz, 2H).		
化合物 392	A HN-N HN-N SHOI	$DMSO-d_{\delta}$, δ 1.21 (t, $J=7.2$ Hz, 3H), 2.24 (s, 3H), 3.10–3.45 (m, 4H), 3.50–3.65 (m, 4H), 4.03–4.16 (m, 4H), 4.44 (t, $J=4.5$ Hz, 2H), 6.64 (d, $J=2.2$ Hz, 1H), 7.01 (d, $J=8.2$ Hz, 2H), 7.58–7.65 (m, 2H), 7.70 (d, $J=2.2$ Hz, 1H). mp 203.5–204.5°C.		3.2
化合物 393	AN CONTRACTOR OF STREET	DMSO- d_{δ} , δ 1.21 (t, $J=7.2$ Hz, 3H), 3.08–3.25 (m, 2H), 3.28–3.45 (m, 2H), 3.51–3.68 (m, 4H), 3.86 (s, 3H), 4.00–4.15 (m, 4H), 4.44 (brt, $J=4.8$ Hz, 2H), 6.75 (d, $J=2.2$ Hz, 1H), 7.10 (d, $J=8.2$ Hz, 1H), 7.38 (dd, $J=1.9$, 8.2Hz, 1H), 7.49 (d, $J=1.9$ Hz, 1H), 7.77 (d, $J=2.2$ Hz, 1H).		>300.0
化合物 394	HN-N 2HC3 ON N	$DMSO-d_{\delta}$, \mathcal{O} 1.21 (t, $\mathcal{J}=7.2$ Hz, 3H), 3.17 (m, 2H), 3.35 (m, 2H), 3.56 (m, 4H), 4.05-4.10 (m, 2H), 4.08 (q, $\mathcal{J}=7.2$ Hz, 2H), 4.48 (t, $\mathcal{J}=5.0$ Hz, 2H), 6.74 (d, $\mathcal{J}=2.2$ Hz, 1H), 6.94 (dd, $\mathcal{J}=1.6$, 8.0Hz, 1H), 7.36 (t, $\mathcal{J}=8.0$ Hz, 1H), 7.46 (m, 2H), 7.74 (d, $\mathcal{J}=2.2$ Hz, 1H).		>300.0
化合物 395	HN-N O N N 2HG	$DMSO-d_{g}$, \mathcal{S} 1.20 (t, $\mathcal{J}=7.2$ Hz, 3H), 3.64 (brt, $\mathcal{J}=4.8$ Hz, 2H), 4.08 (q, $\mathcal{J}=7.2$ Hz, 2H), 4.56 (brt, $\mathcal{J}=4.8$ Hz, 2H), 6.81 (d, $\mathcal{J}=2.2$ Hz, 1H), 7.10 (m, 1H), 7.20 (d, $\mathcal{J}=7.7$ Hz, 1H), 7.40 (m, 1H), 7.79 (dd, $\mathcal{J}=1.8$, 7.7Hz, 1H), 7.84 (d, $\mathcal{J}=2.2$ Hz, 1H).		>300.0

化合物 396	2HCI HN-N	DMSO-d6, δ 1.21 (t, $J=7.2$ Hz, 3H), 3.13–3.48 (m, 4H), 3.53–3.66 (m, 4H), 4.00–4.14 (m, 4H), 4.57 (brt, $J=4.8$ Hz, 2H), 6.76 (d, $J=2.3$ Hz, 1H), 7.26 (d, $J=8.7$ Hz, 1H), 7.75 (d, $J=2.2$ Hz, 1H), 7.78 (dd, $J=2.2$, 8.5Hz, 1H), 7.91 (d, $J=2.0$ Hz, 1H).	85.6
化合物 397	HN-N-O-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	δ 2.55–2.59 (m, 4H), 2.82 (t, J = 5.9Hz, 2H), 2.91–2.96 (m, 4H), 4.15 (t, J = 5.9Hz, 2H), 6.54 (d, J = 2.2Hz, 1H), 6.96 (m, 2H), 7.60 (d, J = 2.2Hz, 1H), 7.66 (m, 2H). mp 148.0–151 0°C	>300.0
化合物 398	N N N N N N N N N N N N N N N N N N N	δ 1.46 (s, 9H), 2.53–2.56 (m, 4H), 2.84 (t, J = 5.8Hz, 2H), 3.45–3.48 (m, 4H), 4.15 (t, J = 5.8Hz, 2H), 6.53 (d, J = 2.3Hz, 1H), 6.96 (m, 2H), 7.67 (m, 2H).	>300.0
化合物 399	A 2HGI HIN-N	δ 0.97 (t, $J = 7.5$ Hz, 3H), 1.66 (sext, $J = 7.5$ Hz, 2H), 2.31 (t, $J = 7.5$ Hz, 2H), 2.54–2.64 (m, 4H), 2.85 (t, $J = 5.6$ Hz, 2H), 3.51 (t, $J = 5.0$ Hz, 2H), 3.67 (t, $J = 5.0$ Hz, 2H), 4.15 (t, $J = 5.6$ Hz, 2H), 6.54 (d, $J = 2.3$ Hz, 1H), 6.95 (m, 2H), 7.60 (d, $J = 2.3$ Hz, 1H), 7.67 (m, 2H).	14.0
化合物 400	N-NH 3HCI	mp 159.0–163.0 °C	. >300.0
化合物 401	HN-N HCI N O N	mp 215.0–220.0 °C (dec.)	>300.0

化合物 402	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	mp 221.5–225.0 °C (dec.)	2	22.4
允	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	mp 245.0–246.0 °C	14	144.8
化合物 404	N-NHOI WHO!	mp 161.0–164.5 °C (dec.)	ω	86.1
化合物 405	A SHCI HN-N	mp 138.0-144.0 °C	~ ~	>300.0
化合物 406	N-NH O-N	$DMSO-J_{\delta}$, δ 1.34 (t, $J=7.0$ Hz, 3H), 4.37 (q, $J=7.0$ Hz, 2H), 5.32 (s, 2H), 6.61 (m, 1H), 7.07 (m, 2H), 7.68–7.73 (m, 4H), 8.34 (m, 1H), 9.10 (d, $J=2.2$ Hz, 1H). M+H = 324, M+Na = 346, M-H = 322. mp 177.0–178.0°C		22.0
化合物 407	HIN-NH O N OH	mp = 167.0–169.0°C	-	159.4

化合物 408	H ₂ N (N) (N	<i>DMSO-d₆</i> , δ 5.28 (s, 2H), 6.61 (d, J = 2.0Hz, 1H), 7.08 (brd, J =8.6Hz, 2H), 7.62 (d, J = 8.6Hz, 2H), 7.71–7.75 (m, 2H), 8.25 (dd, J = 2.2, 8.1Hz, 1H), 9.03 (d, J = 1.5Hz, 1H). M+Na = 318, M-H = 294.	12	17.5
化合物 409	HIN'N N	δ 1.26 (t, $J = 7.2$ Hz, 3H), 2.41 (t, $J = 4.8$ Hz, 4H), 3.48 (t, $J = 4.8$ Hz, 4H), 3.53 (s, 2H), 4.13 (q, $J = 7.2$ Hz, 2H), 5.24 (s, 2H), 6.55 (d, $J = 2.2$ Hz, 1H), 7.04 (m, 2H), 7.50 (d, $J = 7.9$ Hz, 1H), 7.59 (d, $J = 2.2$ Hz, 1H), 7.66–7.72 (m, 3H), 8.53 (d, $J = 1.4$ Hz, 1H).	>30	>300.0
化合物 410	HN-N 2	DMSO- d_6 , δ 2.71 (s, 3H), 2.73 (s, 3H), 4.39 (d, J = 5.3Hz, 2H), 5.33 (s, 2H), 6.74 (d, J = 2.3Hz, 1H), 7.14 (m, 2H), 7.74 (d, J = 8.0Hz, 1H), 7.80 (m, 2H), 7.82 (d, J = 2.3Hz, 1H), 8.22 (dd, J = 2.2, 8.1Hz, 1H), 8.84 (d, J = 1.6Hz, 1H). mp 226.0-232.0°C	13	133.4
化合物 411	HN-N 5	DMSO-d ₆ , δ 1.62-1.82 (m, 6H), 2.80 (m, 2H), 3.28 (m, 2H), 4.33 (d, J = 5.0Hz, 2H), 5.28 (s, 2H), 6.66 (d, J = 2.2Hz, 1H), 7.10 (m, 2H), 7.68 (d, J = 8.0Hz, 1H), 7.72 (d, J = 2.2Hz, 1H), 7.75 (m, 2H), 8.16 (m, 1H), 8.79 (d, J = 1.6Hz, 1H). mp 244.0-250.0°C (dec.)	22	52.2
化合物 412	N-N O	mp 151.5–154.0 °C		>1000
化合物 413	N-NH O	mp 100.0-101.0 °C	<u>×</u>	>300.0

化合物 414	N-NH N-NH	тр 71.5–72.5 °C	43.5
化合物 415	N-NH 0000 N	тр 130.0–138.5 °C	>316.0
化合物 416	I HILLING	mp 202.0–203.0 °C	16.3
化合物 417	HO~N~ O~N~OH	mp 171.0–175.0 °C (dec.)	>300.0
化合物 418	N N N N N N N N N N N N N N N N N N N	$DMSO-d_{6}$, δ 2.81 (s, 3H), 2.83 (s, 3H), 2.96-3.43 (m, 3H), 3.54-3.74 (m, 5H), 3.76-3.91 (m, 1H), 4.23-4.57 (m, 5H), 6.65 (d, $J=2.2$ Hz, 1H), 7.06 (d, $J=8.9$ Hz, 2H), 7.70 (d, $J=2.0$ Hz, 1H), 7.77 (d, $J=8.9$ Hz, 2H).	86.4
化合物 419	N-NH OH	mp 232.5–234.0 °C	>300.0

化合物 420	N-NH C 1992		>300.0
化合物 421	PO N SHCI	$DMSO-d_{\delta}$, δ 1.20 (t, $J=7.5$ Hz, 3H), 1.66–1.95 (m, 4H), 2.88–3.19 (m, 4H), 3.22–3.52 (m, 6H), 3.97–4.15 (m, 4H), 6.66 (d, $J=2.2$ Hz, 1H), 6.99 (d, $J=8.9$ Hz, 2H), 7.71–7.77 (m, 3H).	>300.0
化合物 422	HN-N O N ZHCI	mp 158.0–164.0 °C	>300.0
化合物 423	~o h h h h h	mp 198.0–200.0 °C	>300.0
化合物 424	HIN-N	mp 202.0-206.0 °C	11.0
化合物 425	O'F'N O'F'N 2HCI	mp 188.0–194.0 °C	106.0

化合物 426 이	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-		-	72.5
		mp 196.0-198.0 °C (dec.)		
化合物 427	T SHCI SHCI	153 0-165 0°C	•	>300.0
化合物 428	ZHCI CHCI	тр 188.5–190.5 °C		13.0
化合物 429	HIN-N N-NO	mp 181.0-184.0 °C		21.8
化合物 430	SHCI HN-N	mp 198.5–200.0 °C		23.3
化合物 431	SHCI HN-N	mp 186.0–189.0 °C		>300.0

化合物 439	N SHCI HN-N	mp 218.5-222.5 °C (dec.)	, , , , , , , , , , , , , , , , , , ,	171.5
化合物 440	2HCI HN-IN	$DMSO-d_{\delta}$, δ 0.07–0.15 (m, 2H), 0.41–0.51(m, 2H), 0.96 (m, 1H), 2.27–2.37 (m, 2H), 2.97–3.25 (m, 2H), 3.40–3.80 (m, 7H), 4.03 (m, 1H), 4.40–4.55 (m 3H) 6.73 (d, $J=2.2$ Hz, 1H), 7.08 (d, $J=8.9$ Hz, 2H), 7.77–7.86 (m, 3H), 9.91 (br, 1H) 11.61 (br, 1H).		29.0
化合物 441	O HIN-N	<i>DMSO</i> - d_{6} , δ 1.94–2.11 (m, 2H), 2.97–3.26 (m, 3H), 3.39 (m, 1H), 3.48–3.80 (m, 8H), 3.87 (m, 1H), 4.18 (m, 1,H), 4.39–4.54 (m, 3H), 6.69 (d, J = 1.9Hz, 1H), 7.07 (d, J = 8.9Hz, 2H), 7.75 (d, J = 2.2Hz, 1H), 7.79 (d, J = 8.9Hz, 2H), 1.47 (br, 1H).		250.8
化合物 442	ZHCI HN-1N	mp 204,0–209.0 °C (dec.)		>300.0
化合物 443	HN-N N SHCI	mp 194.0200.0 °C (dec.)		46.7
化合物 444	SHCI HIN-IN	$DMSO-d_{\delta}$, δ 0.90 (s, 3H), 0.92 (s, 3H), 1.98 (m, 1H), 2.22–2.27 (m, 2H), 2.97–3.25 (m, 2H), 3.48–3.69 (m, 6H), 4.09 (m, 1H), 4.40–4.56 (m, 3H), 6.72 (d, $J=2.3$ Hz, 1H), 7.07 (d, $J=8.9$ Hz, 2H), 7.77–7.84 (m, 3H), 11.67 (br, 1H).		40.2
化合物 445	O.S.O ZHCI HIN-N	mp 217.0−218.5 °С (dec.)		60.1

化合物 446	HN-N H N N O	m 2050–0250 (AeA.)	35.0
化合物 447	HN'N SHCI	mp 240.0–242.0 °C	>300.0
化合物 448	Chi 2HCI HIN'IN	mp 200.0–210.0 °C	>300.0
化合物 449	OMe THU-N	mp 204.0–210.0 °C	>300.0
化合物 450	Chy h 2HCI HN-N	mp 215.0–217.0 °C	230.4
化合物 451	HN-N N 2HCI	тр 205.0-215.0 °С	213.9
化合物 452	HN-N SHCI	тр 169.0–172.0 °C.	169.1

化合物 453	2HC1 HIN-N 2HC1 HIN-N 2HC1 HIN-N 2HC1 HIN-N 2HC1 HIN-N 3HC1 HIN-N	106.0
化合物 454	Mp 215.0-220.0 °C	160.8
化合物 455	2HCI HIN'N 2HCI HIN'N 2HCI HIN'N 3HCI HIN'N	111.2
化合物 456	2HCI HIN-N IMP 121.0-125.0 °C	149.9
化合物 457	N 3HCI HIN-IN MP 159.0-165.0 °C	>300.0
化合物 458	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>300.0
化合物 459	HN-N 2HCI HN-N IMP 203.5–204.5 °C	102.0

	49.9	200.2	>300.0	>300.0	231.3	>300.0	49.4
			-				
-							
		·					o N
						• ()	(")
)4.5 °C	37.0 °C	87.0 °C	10.5 °C	ට° 08.0	°C	P) 0, 0 62
	mp 202.0-204.5 °C	тр 163.0–167.0 °C	mp 185.0-187.0 °C	тр 209.0-210.5 °C	тр 206.0–208.0 °C	mp 138.0-144.0 °C	mo 170 0–172 0 °C (dec.)
N, ÑH		HN-N T	Z Z	Z-NE	N.NH	N N N N N N N N N N N N N N N N N N N	
-	ZHCI N	2HCI	ZHCI	ZHCI ZHCI ZHCI ZHCI ZHCI ZHCI ZHCI ZHCI	SHCI N O	ZHCI N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	Z Z
0	A A X	0=450	Y Y	. O=0;-O	-	O-\Z±	
	化合物 460	化合物 461	化合物 462	化合物 463	化合物 464	化合物 465	化合物 466

mp 195.0-199.0 °C (dec.)
-
mp 2/2.0-2/3.0 °C (dec.)
mp 223.0-227.0 °C (dec.)
mp 180.0-184.0 °C (dec.)
mp 195.0-197.0 °C (dec.)
mp 236.0-238.5 °C (dec.)
mp 154.0-158.0 °C

化合物 474	ZHCI HN-N		>1000
化合物 475	SHCI O	mp 1/2.0-1//.0 °C	655.1
化合物 476		mp 191.0–198.0 °C	435.4
化合物 477	2HCI HN-N	mp 122.0-126.0 °C	>1000
	N-NH O O O	mp 192.0–196.0 °C	
化合物 478		mp 196.0–198.0 °C	>1000
化合物 479	HIN-N		>1000
		mp 192.0-195.0 °C	

				ſ
化合物 480	ZHCI HIN-N	mp 163.0-166.0 °C	>1000	8
化合物 481	2HCI HIN-N	mp 191.0–193.5 °C	>1000	00
化合物 482	2HCI HIN-N	mp 125.0–128.0 °C	597.1	1.7
化合物 483	ZHCI HŅ-Ŋ	mp 161.0–163.0 °C	>1000	000
化合物 484	HN-N	mp 105.0-113.0 °C	361.7	1.7
化合物 485	F F N 2HCI HIN-N	mp 154.0–158.0 °C	>1000	00

>1000	>1000	68.3	248.4	131.1	>1000
$DMSO-d_{\delta}$, \mathcal{S} 1.20–1.58 (m, 2H), 1.61–1.82 (m, 2H), 1.99 (s, 3H), 2.25 (s, 3H), 2.61 (m, 1H), 2.85–3.31 (m, 6H), 3.48–3.74 (m, 5H), 3.81 (m, 1H) 4.16–4.55 (m, 4H), 6.73 (d, J = 2.3Hz, 1H), 7.04 (d, J = 9.0Hz, 1H), 7.67 (d, J = 9.5Hz, 2H), 7.81 (d, J = 2.2Hz, 1H).	mp 144.0–147.0 °C	mp 181.0-186.0 °C	mp 164.0-166.5 °C	mp 135.0-140.0 °C	mp 188.5–192.0 °C
THY-N N SHEI	HIN-IN SHCI	S N 2HCI HIN-N	N-NH NON ON O	S-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	N-NH ON ON ON
化合物 486	化合物 487	化合物 488	化合物 489	化合物 490	化合物 491

化合物 492	O RICI HN-IN	mp 175.0–177.5 °C	502.8
化合物 493	SHCI THE		>1000
		mp 224.0-226.0 °C	
化合物 494	AN BHCI CHANNIN	mp 159.0-161.5 °C	>1000
化合物 495	ZHCI HN-N	mp 205 5208 0 °C	>1000
化合物 496	N 2HCI HW-N	mn 197 0–130 0 °C	>1000
·化合物 497	3HCI N-N-N	mn 212 0-215 0 °C	>1000
		UP 515.0 510.0 C	 _

			-	
化合物 498	3HCI HN-N	mp 148.0-150.5 °C		>1000
化合物 499	3HCI HN-N	mp 272.0-275.0 °С		>1000
化合物 500	ON 3HCI HN-N	mp 242.5-243.0 °C		>1000
化合物 501	O SHCI HIN-IN	mp 196.5–199.0 °C		372.5
化合物 502	HN-N N-NN NO-NN-N	mp 147.0–150.0 °C		>1000
化合物 503	O SHCI HIN-N	тр 193.0–195.0 °C		>1,000

HIV-N mp 2070-208.5 °C mp 185.0-186.0 °C mp 78.0-81.0 °C mp 78.0-81.0 °C mp 194.0-196.0 °C mp 206.0-210.0 °C mp 206.0-210.0 °C mp 207.0-230.0 °C (dec.)		Ŧ,	mp 199.5–201.0 °C	>1,000
CI HN-N TO MID 185.0–186.0 °C TO MID 194.0–196.0 °C TO MID 227.0–230.0 °C (dec.)	(u	mp 207.0-208.5 °C	>1,000
CI HIV-N mp 194.0–196.0 °C mp 206.0–210.0 °C mp 227.0–230.0 °C (dec.)	Ô		mp 185.0-186.0 °C	>1,000
HN-N mp 194.0-196.0 °C mp 206.0-210.0 °C mp 227.0-230.0 °C (dec.)			mp 78.0-81.0 °C	>1,000
HN-N mp 227.0-230.0 °C (dec.)	\triangleright		mp 194.0196.0 °C	>1,000
HN-N mp 227.0-230.0 °C (dec.)		Ħ N	mp 206.0–210.0 °C	>1,000
			mp 227.0–230.0 °C (dec.)	>1,000

化合物 511	Z O	d 1.86–2.04 (m, 4H), 2.15 (m, 2H), 2.79 (m, 1H), 3.96 (d, J = 6.7Hz, 2H), 6.98 (m, J_{AB} = 8.9Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 8.9Hz, 2H). 7.76 (s, 1H).	85.8
化合物 512	N O O	4H), 1.27 (d, $J = 6.1$ Hz, 3H), 1.58–1.80 (m, 6H), 1.93 (m, 6.1Hz, 1H), 6.95 (m, $J_{AB} = 9.0$ Hz, 2H), 7.18 (s, 1H), 7.20 $J_{AB} = 9.0$ Hz, 2H), 7.76 (s, 1H).	79.6
化合物 513	N N N N N N N N N N N N N N N N N N N	d 1.04–1.19 (m, 2H), 1.20–1.39 (m, 3H), 1.62–1.92 (m, 6H), 3.78 (d, $J = 6.2$ Hz, 2H), 6.96 (m, $J_{AB} = 8.9$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.28 (m, $J_{AB} = 8.9$ Hz, 2H).	84.4
化合物 514		d 1.00 (m, 2H), 1.19–1.38 (m, 3H), 1.45–1.80 (m, 8H), 4.03 (t, $J = 6.7$ Hz, 2H), 6.98 (m, $J_{AB} = 8.9$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.28 (m, $J_{AB} = 8.9$ Hz, 2H).	94.1
化合物 515	N O O O	d 4.37 (s, 4H), 6.95–6.98 (m, 3H), 7.05 (m, J _{AB} = 8.9Hz, 2H), 7.19 (s, 1H), 7.22 (s, 1H), 7.26–7.33 (m, 3H), 7.77 (s, 1H).	6.96
化合物 516	N N N N N N N N N N N N N N N N N N N	d 3.14 (t, $J = 7.5$ Hz, 2H), 3.86 (s, 3H), 4.19 (t, $J = 7.5$ Hz, 2H), 6.88-6.95 (m, 2H), 6.99 (m, $J_{AB} = 8.9$ Hz, 2H), 7.18-7.13 (m, 6H), 7.76 (s, 1H).	97.3

化合物 517		d 3.07 (t, $J = 6.7$ Hz, 2H), 4.18 (t, $J = 6.7$ Hz, 2H), 6.96 (m, $J_{AB} = 9.0$ Hz, 2H), 7.16–7.20 (m, 4H), 7.29 (m, $J_{AB} = 9.0$ Hz, 2H), 7.45 (m, $J_{AB} = 8.2$ Hz, 2H), 7.75 (s, 1H).	100.8
化合物 518		d 2.34 (s, 3H), 3.09 (t, $J = 7.1$ Hz, 2H), 4.18 (t, $J = 7.1$ Hz, 2H), 6.97 (m, $J_{AB} = 9.0$ Hz, 2H), 7.13–7.20 (m, 4H), 7.27 (m, $J_{AB} = 9.0$ Hz, 2H), 7.75 (s, 1H).	105.9
化合物 519	N O O O O O O O O O O O O O O O O O O O	d 3.32 (t, J = 6.9Hz, 2H), 4.18 (t, J = 6.9Hz, 2H), 6.93 (m, J_{AB} = 9.0Hz, 2H), 7.18 (s, 1H), 7.19 (s, 1H), 7.21–7.35 (m, 5H), 7.43 (m, J_{AB} = 9.0Hz, 2H), 7.75 (s, 1H).	0.66
化合物 520	N	d 2.56 (t, J = 2.5Hz, 1H), 4.75 (d, J = 2.5Hz, 2H), 7.08 (m, J_{AB} = 9.0Hz, 2H), 7.10 (s, 1H), 7.19 (s, 1H), 7.33 (m, J_{AB} = 9.0Hz, 2H), 7.77 (s, 1H).	42.9
化合物 521	N N O	d 1.77 (s, 3H), 1.82 (s, 3H), 4.55 (d, J = 6.7Hz, 2H), 5.50 (m, 1H), 6.99 (m, J_{AB} = 8.9Hz, 2H), 7.18 (s, 1H), 7.21 (s, 1H), 7.29 (m, J_{AB} = 8.9Hz, 2H), 7.76 (s, 1H).	93.8
化合物 522	N N N N N N N N N N N N N N N N N N N	d 1.62 (s, 3H), 1.69 (s, 3H), 1.82 (s, 3H), 2.15 (m, 4H), 4.54 (d, $J = 6.8$ Hz, 2H), 5.12 (m, 1H), 5.51 (t, $J = 6.8$ Hz, 1H), 6.99 (m, $J_{AB} = 8.9$ Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.29 (m, $J_{AB} = 8.9$ Hz, 2H), 7.76 (s, 1H).	91.9

化合物 523	N N N N N N N N N N N N N N N N N N N	71.78 (dd, $J = 1.4$, 6.2Hz, 3H), 4.50 (dt, $J = 1.2$, 5.9Hz, 2H), 5.69–5.96 (m, 2H), 6.98 (m, $J_{AB} = 9.0$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.28 (m, $J_{AB} = 8.0$ Hz, 2H).	6:3
化合物 524	N N N N N N N N N N N N N N N N N N N	d 1.78 (d, $J = 6.8$ Hz, 3H), 4.58 (d, $J = 6.2$ Hz, 2H), 5.73–5.81 (m, 2H), 6.10 (m, 1H), 6.35 (dd, $J = 10.7$, 15.7Hz, 3H), 6.99 (m, $J_{AB} = 8.9$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, $J_{AB} = 8.9$ Hz, 2H), 7.76 (s, 1H).	-
化合物 525	N N N N N N N N N N N N N N N N N N N	d 0.92 (d, $J=7.5$ Hz, 3H), 0.96 (d, $J=6.4$ Hz, 3H), 1.26 (m, 1H), 1.40 (m, 1H), 1.62 (m, 2H), 1.84 (m, 1H), 4.02 (m, 2H), 6.97 (m, $J_{AB}=8.9$ Hz, 2H), 7.20 (s, 1H), 7.29 (m, $J_{AB}=8.9$ Hz, 2H), 7.76 (s, 1H).	104.0
化合物 526	N O O O	d 2.11 (tt, $J = 6.2$, 7.2Hz, 2H), 2.78 (t, $J = 7.2$ Hz, 2H), 3.84 (s, 3H), 3.87 (s, 3H), 3.99 (t, $J = 6.2$ Hz, 2H), 6.74-6.82 (m, 3H), 6.85 (m, $J_{AB} = 9.0$ Hz, 2H), 7.20 (s, 1H), 7.29 (m, $J_{AB} = 9.0$ Hz, 2H), 7.76 (s, 1H).	97.4
化合物 527		1), 3.98 (t, 2H), 7.13 0Hz, 2H),	99.5
化合物 528	N NO CONTRACTOR	d 2.09 (tt, J = 6.1, 7.2Hz, 2H), 2.19 (s, 3H), 2.68 (t, J = 7.2Hz, 2H), 4.02 (t, J = 6.1Hz, 2H), 6.96 (m, J_{AB} = 9.0Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 9.0Hz, 2H).	105.4

化合物 529	N N N N N N N N N N N N N N N N N N N	d 0.94 (d, J = 6.5Hz, 6H), 1.37 (m, 2H), 1.63 (m, 2H), 1.81 (m, 2H), 3.98 (t, J = 6.5Hz, 2H), 6.98 (m, J_{AB} = 8.8Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 8.8Hz, 2H), 7.76 (s, 1H).	85.7
化合物 530		.1Hz, 2H), 4.00 (t, J = 6.1Hz, 2H), 6.95 1, 9H), 7.76 (s, 1H).	94.0
化合物 531	N O O		99.2
化合物 532	N O O O O O O O O O O O O O O O O O O O	d 1.47–1.89 (m, 6H), 2.66 (t, $J=7.5$ Hz, 2H), 3.98 (t, $J=6.5$ Hz, 2H), 6.96 (m, $J_{AB}=8.9$ Hz, 2H), 7.18–7.20 (m, 5H), 7.26–7.31 (m, 4H), 7.76 (s, 1H).	88.5
化合物 533	N N N N N N N N N N N N N N N N N N N	d 1.74 (m, 2H), 1.92 (m, 2H), 1.98 (t, $J = 2.6$ Hz, 2H), 2.30 (dt, $J = 2.6$, 7.0Hz, 2H), 4.03 (t, $J = 6.3$ Hz, 2H), 6.96 (m, $J_{AB} = 8.9$ Hz, 2H), 7.18 (s, 1H), 7.29 (m, $J_{AB} = 8.9$ Hz, 2H), 7.76 (s, 1H).	99.5
化合物 534	N N N	d 1.60 (m, 2H), 1.83 (quint, $J = 7.0$ Hz, 2H), 2.14 (q, $J = 7.0$ Hz, 2H), 4.00 (t, $J = 6.5$ Hz, 2H), 4.98–5.08 (m, 2H), 5.77–5.91 (m, 1H), 6.97 (m, $J_{AB} = 8.9$ Hz, 2H), 7.20 (s, 1H), 7.29 (m, $J_{AB} = 8.9$ Hz, 2H), 7.76 (s, 1H).	99.1

化合物 535	N O O	d 0.92 (t, $J = 7.0$ Hz, 3H), 1.33–1.39 (m, 4H), 1.47 (m, 2H), 1.81 (m, 2H), 3.99 (t, $J = 6.7$ Hz, 2H), 6.97 (m, $J_{AB} = 8.9$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, $J_{AB} = 8.9$ Hz, 2H), 7.76 (s, 1H).	9.96
化合物 536	N O	8.9Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H),	91.5
化合物 537	Z O	d 0.89 (t, J = 6.8Hz, 3H), 1.23–1.54 (m, 10H), 1.79 (quint, J = 6.8Hz, 2H), 3.99 (t, J = 6.8Hz, 2H), 6.97 (m, J_{AB} = 9.0Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 9.0Hz, 2H), 7.76 (s, 1H).	0.99
化合物 538		(dt, J = 5.5, 7.7Hz, 2H), 4.95 (s, 1H), 7.19 (s, 1H), 7.20 (s, 1H), 7.31 (m,	80.3
化合物 539	N O O	d 5.05 (s, 2H), 6.40 (dd, J = 1.9, 3.1Hz, 1H), 6.47 (d, J = 3.1Hz, 1H), 7.07 (m, J_{AB} = 9.0Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.31 (m, J_{AB} = 9.0Hz, 2H), 7.77 (s, 1H).	64.1
化合物 540		5Hz, 2H), 6.97 (m, J _{AB} = 8.9Hz, 2H), _B = 8.9Hz, 2H), 7.76 (s, 1H).	102.2

化合物 541	N. N. N.	d 0.92 (t, $J = 7.0$ Hz, 3H), 1.26–1.39 (m, 4H), 1.59 (m, 2H), 1.97 (m, 2H), 4.74 (m, 1H), 7.11 (m, $J_{AB} = 9.0$ Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.31 (m, $J_{AB} = 9.0$ Hz, 2H), 7.77 (s, 1H).	87.1
化合物 542	Br O N	d 5.18 (s, 2H), 7.07 (m, J_{AB} = 8.9Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.26 (m, 1H), 7.32 (m, J_{AB} = 8.9Hz, 2H), 7.36 (m, 1H), 7.74 (d, J_{AB} = 7.6Hz, 1H), 7.60 (d, J_{AB} = 7.9Hz, 1H), 7.77 (s, 1H).	108.3
化合物 543	N N O C IS	d 5.17 (s, 2H), 7.05 (m, J _{AB} = 8.9Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.26-7.35 (m, 3H), 7.45-7.52 (m, 2H), 7.77 (s, 1H).	106.6
化合物 544	N O O	d 3.88 (s, 3H), 5.16 (s, 2H), 6.93 (d, J = 8.4Hz, 1H), 6.99 (d, J = 7.3Hz, 1H), 7.07 (m, J_{AB} = 8.9Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.26–7.35 (m, 3H), 7.44 (d, J = 7.3Hz, 1H), 7.76 (s, 1H).	108.9
化合物 545	N N N N N N N N N N N N N N N N N N N	d 3.90 (s, 6H), 5.16 (s, 2H), 6.93 (dd, $J = 2.3$, 7.5Hz, 1H), 7.04-7.13 (m, 4H), 7.18 (s, 1H), 7.20 (s, 1H), 7.30 (m, $J_{AB} = 8.9$ Hz, 2H), 7.76 (s, 1H).	97.2
化合物 546	N O O	d 2.40 (s, 3H), 5.08 (s, 2H), 7.07 (m, J _{AB} = 8.9Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.23-7.33 (m, 5H), 7.41 (d, J = 7.3Hz, 1H), 7.77 (s, 1H).	100.5

化合物 547		d 2.92–3.03 (m, 4H), 4.98 (s, 2H), 7.02 (m, J_{AB} = 8.9Hz, 2H), 7.12–7.36 (m, 10H), 7.41 (d, J = 7.8Hz, 1H), 7.77 (s, 1H).	83.5
六	N CONTRACTOR OF THE PARTY OF TH	d 5.08 (s, 2H), 6.96–7.05 (m, 5H), 7.10–7.20 (m, 5H), 7.26–7.39 (m, 5H), 7.76 (s, 1H).	90.2
化合物 549		d 2.39 (s, 3H), 5.07 (s, 2H), 7.05 (m, J_{AB} = 8.9Hz, 2H), 7.15–7.32 (m, 8H), 7.76 (s. 1H).	110.6
化合物 550	N N N N N N N N N N N N N N N N N N N	<i>d</i> 3.83 (s, 3H), 5.03 (s, 2H), 6.93 (m, J_{AB} = 8.7Hz, 2H), 7.04 (m, J_{AB} = 8.9Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 8.9Hz, 2H), 7.37 (m, J_{AB} = 8.7Hz, 1H), 7.76 (s, 1H).	101.9
化合物 551		d 5.16 (s, 2H), 7.08 (m, J_{AB} = 8.9Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.31 (m, J_{AB} = 8.9Hz, 2H), 7.32–7.65 (m, 9H), 7.77 (s, 1H).	67.0
化合物 552	N O O	<i>d</i> 2.37 (s, 3H), 5.07 (s, 2H), 7.04 (m, J_{AB} = 8.7Hz, 2H), 7.19–7.23 (m, 4H), 7.26–7.35 (m, 4H), 7.76 (s, 1H).	97.3

化 4553	N C		61.3
) o }=o	d 3.83 (s, 3H), 4.69 (s, 2H), 7.00 (m, J_{AB} = 9.0Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.32 (m, J_{AB} = 9.0Hz, 2H), 7.78 (s, 1H).	
化合物 554	N N N N N N N N N N N N N N N N N N N	d 5.27 (s, 2H), 7.02 (m, 1H), 7.07 (m, J_{AB} = 8.9Hz, 2H), 7.14 (d, J = 3.4Hz, g. 1H), 7.19 (s, 1H), 7.21 (s, 1H), 7.31 (m, J_{AB} = 8.9Hz, 2H), 7.35 (m, 1H), 7.77 (s, 1H).	99.7
化合物 555	N N N N N N N N N N N N N N N N N N N	d 2.47 (s, 3H), 3.28 (t, $J = 6.4$ Hz, 2H), 4.18 (t, $J = 6.4$ Hz, 2H), 6.98 (m, J_{AB} (e) = 9.0Hz, 2H), 7.19 (s, 1H), 7.20 (s, 1H), 7.30 (m, $J_{AB} = 9.0$ Hz, 2H), 7.76 (s, 1H), 8.61 (s, 1H).	96.0
化合物 556	N N N N N N N N N N N N N N N N N N N	7Hz, 2H), 4.23 (t, $J=6.7$ Hz, 2H), 5.95 (m, 1H), 7.00 (m, J_{AB} 8 (s, 1H), 7.19 (m, 1H), 7.20 (s, 1H), 7.29 (m, $J_{AB}=8.9$ Hz,	100.4
化合物 557		5H), 3.53 (m, 1H), 3.74 (m, 1H), 3.92 (dd, $J = 3.9$, 10.0Hz, = 6.4, 10.0Hz, 1H), 4.08 (m, 1H), 7.01 (m, $J_{AB} = 8.9$ Hz, 2H), (s, 1H), 7.29 (m, $J_{AB} = 8.9$ Hz, 2H), 7.29 (m, $J_{AB} = 8.9$ Hz, 2H), 7.76 (s, 1H).	10.9
化合物 558		d 4.17–4.30 (m, 3H), 4.42 (dd, J = 2.5, 11.4Hz, 1H), 4.59 (m, 1H), 6.86–6.95 (m, 4H), 7.03 (m, J_{AB} = 8.9Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.28 (m, J_{AB} = 8.9Hz, 2H).	15.1

化合物 559	N O S	<i>d</i> 2.50 (s, 3H), 5.06 (s, 2H), 7.04 (m, J_{AB} = 8.9Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.26-7.38 (m, 6H), 7.76 (s, 1H).	95.0	
化合物 560	N O US	d 3.16 (t, J = 6.8Hz, 2H), 4.21 (t, J = 6.8Hz, 2H), 6.98 (m, J_{AB} = 9.0Hz, 2H), 7.05 (m, 1H), 7.10 (m, 1H), 7.19 (s, 1H), 7.21 (s, 1H), 7.26–7.32 (m, 3H), 7.76 (s, 1H).	106.7	
化合物 561	N O J	d 5.15 (s, 2H), 6.89–7.11 (m, 4H), 7.19 (m, 3H), 7.30–7.49 (m, 2H), 7.77 (s, 1H).	102.8	
化合物 562	N N N N N N N N N N N N N N N N N N N	δ 2.05 (m, 2H), 2.41 (t, $J = 8.1$ Hz, 2H), 3.60 (t, $J = 7.0$ Hz, 2H), 3.71 (t, $J = 5.2$ Hz, 2H), 4.15 (t, $J = 5.2$ Hz, 2H), 6.97 (m, $J_{AB} = 8.8$ Hz, 2H), 7.21 (s, 1H), 7.30 (m, $J_{AB} = 8.8$ Hz, 2H), 7.76 (s, 1H),	95.7	
化合物 563	NOW	8 5.12 (s, 2H), 7.04 (m, 8.8Hz, 2H), 7.16–7.21 (m, 3H), 7.26–7.39 (m, 4H), 7.77 (s, 1H).	106.6	
化合物 564	N N N N N N N N N N N N N N N N N N N	δ 2.75 (d, J = 2.0Hz, 1H), 5.86 (d, J = 2.0Hz, 1H), 7.17–7.71 (m, 11H), 7.78 (s, 1H).	92.9	

化合物 565	N N N N N N N N N N N N N N N N N N N	δ 0.94 (t, $J = 7.2$ Hz, 6H), 1.26–1.54 (m, 4H), 1.57–1.73 (m, 4H), 4.27 (quint. $J = 5.9$ Hz, 1H), 6.96 (m, $J_{AB} = 9.0$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.26 (m, $J_{AB} = 9.0$ Hz, 2H), 7.76 (s, 1H).	84.7
化合物 566	N O S	δ 2.09–2.15 (m, 2H), 2.14 (s, 3H), 2.71 (t, J = 7.0Hz, 2H), 4.11 (t, J = 6.1Hz, 2H), 6.99 (m, J_{AB} = 8.8Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.30 (m, J_{AB} = 8.8Hz, 2H), 7.76 (s, 1H).	95.0
化合物 567	N O O O O	δ 2.29 (quint. $J = 6.0$ Hz, 2H), 4.18 (t, $J = 6.1$ Hz, 2H), 4.21 (t, $J = 6.1$ Hz, 2H), 6.91–7.02 (m, 5H), 7.18 (s, 1H), 7.20 (s, 1H), 7.26–7.33 (m, 4H), 7.76 (s, 1H).	98.0
化合物 568	N N N N N N N N N N N N N N N N N N N	δ 1.61 (s, 3H), 1.76 (s, 3H), 1.82 (s, 3H), 2.08–2.17 (m, 4H), 4.58 (d, J = 6.7Hz, 2H), 5.09 (m, 1H), 5.49 (t, J = 6.7Hz, 1H), 6.99 (m, J_{AB} = 8.8Hz, 2H), 7.19 (s, 1H), 7.21 (s, 1H), 7.29 (m, J_{AB} = 8.8Hz, 2H), 7.77 (s, 1H).	100.7
化合物 569	N H	δ 1.13–1.82 (m, 9H), 2.26–2.62 (m, 2H), 3.85–4.00 & 3.28–3.69 (m, 2H), 6.99 (m, J_{AB} = 9.0Hz, 2H), 7.19 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 9.0Hz, 2H), 7.19 (s, 1H), 7.20 (s, 1H).	96.1
化合物 570		δ 0.87–0.94 (m, 2H), 1.08–1.33 (m, 6H), 1.43–1.53 (m, 2H), 1.63–1.83 (m, 7H), 3.98 (t, J = 6.5 Hz, 2H), 6.97 (m, J_{AB} = 9.0Hz, 2H), 7.18 (s, 1H), 7.29 (m, J_{AB} = 9.0Hz, 2H), 7.76 (s, 1H).	28.8

化合物 57.1	To Color	δ 0.74 (s, 3H), 1.21 (s, 3H), 2.15 (dt, J = 5.1, 6.5Hz, 2H), 3.46 (d, J = 11.0Hz, 2H), 3.63 (d, J = 11.0Hz, 2H), 4.14 (t, J = 6.5Hz, 2H), 4.70 (t, J = 5.1Hz, 1H), 6.99 (m, J_{AB} = 8.8Hz, 2H), 7.19 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 8.8Hz, 2H).	91.8
化合物 572	N N N N N N N N N N N N N N N N N N N	5–1.58 (m, 2H), 1.65–1.75 (m, 2H), 1.77–1.88), 3.99 (t, J = 6.4Hz, 2H), 4.14 (q, J = 7.1Hz, 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} =	98.0
化合物 573		H), 4.20 (t, $J = 6.8$ Hz, 2H), 6.97 (m, $J_{AB} = 8.8$ Hz, 7.39 (ddd, $J = 1.7$, 2.1, 7.1Hz, 1H), 7.45 (d, $J =$	92.9
化合物 574		:H), 4.21 (t, $J = 6.7$ Hz, 2H), 6.98 (m, $J_{AB} = 9.0$ Hz, 7.41 (d, $J = 2.2$ Hz, 1H), 7.76 (s, 1H).	83.2
化合物 575	Z Z Z Z	2 (s, 1H), 7.33 7.77 (s, 1H).	76.9
化合物 576		δ 1.21 (t, J = 7.2Hz, 3H), 2.32 (s, 3H), 3.48 (q J = 7.2Hz, 2H), 3.74 (t, J = 6.2Hz, 2H), 6.53–6.67 (m, 3H), 6.97 (m, J_{AB} = 9.0Hz, 2H), 7.10–7.16 (m, 1H), 7.20 (s, 1H), 7.21 (s, 1H), 7.29 (m, J_{AB} = 9.0Hz, 2H), 7.80 (s, 1H).	85.1

化合物 577	N N N N N N N N N N N N N N N N N N N	δ 1.63–1.82 (m, 6H), 2.40 & 2.43 (m, 3H), 2.60–2.91 (m, 3H), 4.05 & 4.52 (m, 1H), 6.96 (m, 9.0Hz, 2H), 7.19 (d, $J=5.6$ Hz, 2H), 7.28 (m, $J_{AB}=9.0$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.28 (m, $J_{AB}=9.0$ Hz, 2H), 7.18 (s, 1H).	40.2	
化合物 578	N O O O O	δ 2.24 (tt, J = 5.9, 6.7Hz, 2H), 3.91 (t, J = 5.9Hz, 2H), 4.14 (t, J = 6.7Hz, 2H), 6.15 (dd, J = 2.0, 2.2Hz, 2H), 6.66 (dd, J = 2.0, 2.2Hz, 2H), 6.96 (m, J_{AB} = 8.9Hz, 2H), 7.20 (s, 1H), 7.21 (s, 1H), 7.30 (m, J_{AB} = 8.9Hz, 2H), 7.78 (s, 1H).	110.5	·
化合物 579	N N N N N N N N N N N N N N N N N N N	d 1.88 (t, J = 2.2Hz, 3H), 4.70 (q, J = 2.2Hz, 2H), 7.06 (m, J_{AB} = 8.8Hz, 2H), 7.19 (s, 1H), 7.22 (s, 1H), 7.32 (m, J_{AB} = 8.8Hz, 2H), 7.78 (s, 1H). mp 81.0–83.5 °C	80.6	7.2
化合物 580	N N N	δ 0.99 (t, $J=7.3$ Hz, 3H), 1.49 (sext. $J=7.3$ Hz, 2H), 1.73–1.87 (m, 2H), 4.00 (t, $J=6.4$ Hz, 2H), 6.97 (m, $J_{AB}=8.8$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, $J_{AB}=8.8$ Hz, 2H), 7.76 (s, 1H). mp 47.0–50.0 °C	98.3	6.4
化合物 581	N O O	∂ 5.07 (s, 2H), 7.03–7.46 (m, 10H), 7.77 (s, 1H). mp 91.5–93.0 °C	109.0	1.3
化合物 582	N O C	δ 4.99 (s, 2H), 6.51 (d, J = 1.1Hz, 1H), 7.01–7.09 (m, 2H), 7.19–7.36 (m, 4H), 7.46 (t, J = 1.7Hz, 1H), 7.54 (dd, J = 0.9, 1.7Hz, 1H), 7.78 (t, J = 1.1Hz, 1H).	99.3	4.7

化	· O	δ 2.01–2.13 (m, 4H), 2.40 (t, J = 8.4Hz, 2H), 3.38–3.54 (m, 4H), 4.03 (t, J = 6.2Hz, 2H), 6.97 (m, J_{AB} = 8.8Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 8.8Hz, 2H), 7.76 (s, 1H).	72.4	7.3
化合物 584	N O O	δ 2.58–2.67 (m, 4H), 2.84 (t, J = 5.7Hz, 2H), 3.71–3.78 (m, 4H), 4.15 (t, J = 5.7Hz, 2H), 6.97 (m, J_{AB} = 8.8Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 8.8Hz, 2H), 7.76 (s, 1H).	55.2	33.5
化合物 585	N N N N N N N N N N N N N N N N N N N	δ 2.60 (m, 4H), 2.83 (t, J = 5.6Hz, 2H), 3.75 (m, 4H), 4.15 (t, J = 5.6Hz, 2H), 7.00 (m, J_{AB} = 8.9Hz, 2H), 7.19 (s, 1H), 7.20 (s, 1H), 7.30 (m, J_{AB} = 8.9Hz, 2H), 7.76 (s, 1H).	66.7	8.6
化合物 586	N O N	(200 MHz, $DMSO-d_{\delta}$) δ 5.24 (s, 2H), 7.08 (t, $J=1.1$ Hz, 2H), 7.10–7.21 (m, 2H), 7.37 (m, 1H), 7.50–7.63 (m, 3H), 7.65 (t, $J=1.3$ Hz, 1H), 7.78 (dt, $J=1.8$, 7.7Hz, 1H), 8.14 (t, $J=1.1$ Hz, 1H), 8.60 (m, 1H).	70.8	4.5
化合物 587		δ 5.14 (s, 2H), 7.07 (m, J_{AB} = 8.8Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), 7.27-7.79 (m, 3H), 7.78–7.83 (m, 2H), 8.63 (dd, J = 1.8, 4.8Hz, 1H), 8.72 (d, J = 2.2Hz, 1H).	93.7	0.63
化合物 588	N O O	(200 MHz, $DMSO-d_{\delta}$) δ 5.26 (s, 2H), 7.09–7.23 (m, 3H), 7.43–7.70 (m, 5H), 8.20 (s, 1H), 8.60 (dd, J = 1.8, 4.6Hz, 2H). mp 104.0–106.0 °C	95.1	4.9

化合物 589	N 0 0 0 N	δ 1.05 (t, $J = 7.2$ Hz, 6H), 2.62 (q, $J = 7.2$ Hz, 4H), 2.73 (t, $J = 6.2$ Hz, 2H), 3.67 (t, $J = 6.2$ Hz, 2H), 3.84 (m, 2H), 4.16 (m, 2H), 7.01 (m, $J_{AB} = 9.0$ Hz, 2H), 7.18 (s, 1H), 7.20 (s, 1H), $J_{AB} = 9.0$ Hz, 2H), 7.76 (s, 1H).	34.8	62.6
化合物 590	· · · · · · · · · · · · · · · · · · ·	δ 2.16 (ddt, J = 6.2, 7.3, 8.1Hz, 2H), 2.85 (dd, J = 7.3, 8.1Hz, 2H), 4.00 (t, J = 6.2Hz, 2H), 6.97 (m, J_{AB} = 8.9Hz, 2H), 7.15–7.22 (m, 4H), 7.30 (m, J_{AB} = 8.9Hz, 2H), 7.77 (s, 1H), 8.51–8.54 (m, 2H).	94.7	Ξ.
化合物 591	Z Z Z	δ 2.28 (ddt, J = 6.2, 7.0, 8.1Hz, 2H), 3.01 (dd, J = 7.0, 8.1Hz, 2H), 4.05 (t, J = 6.2Hz, 2H), 6.97 (m, J_{AB} = 9.0Hz, 2H), 7.11–7.21 (m, 4H), 7.30 (m, J_{AB} = 9.0Hz, 2H), 7.16 (s, 1H), 8.56 (d, J = 4.0Hz, 1H).	79.0	2.1
化合物 592	Z O O Z	δ 1.01 (s, 6H), 2.29 (s, 6H), 2.30 (s, 2H), 3.74 (s, 2H), 7.01 (m, J_{AB} = 8.8Hz, 2H), 7.19 (s, 1H), 7.20 (s, 1H), 7.29 (m, J_{AB} = 8.8Hz, 2H), 7.76 (s, 1H). mp 64.0-66.0 °C	55.8	106.3
化合物 593	N N N N N N N N N N N N N N N N N N N	(200 MHz, $DMSO-d_{\delta}$) δ 4.27 (s, 4H), 6.00 (t, J = 2.2Hz, 2H), 6.85 (t, J = 2.2Hz, 2H), 7.00–7.13 (m, 3H), 7.49–7.60 (m, 2H), 7.64 (t, J = 1.3Hz, 1H), 8.13 (t, J = 1.1Hz, 1H). mp 128.5–129.0 °C	110.5	8.0
化合物 594	Ts0H O	DMSO- d_6 , d 0.36 (m, 2H), 0.60 (m, 2H), 1.25 (m, 1H), 2.29 (s, 3H), 3.91 (q, $J = 7.0$ Hz, 2H), 7.10–7.21 (m, 4H), 7.49 (m, $J_{AB} = 7.9$ Hz, 2H), 7.10–7.21 (m, 4H), 7.49 (m, $J_{AB} = 7.9$ Hz, 2H), 7.90 (dd, $J = 1.3$, 1.9Hz, 1H), 8.22 (dd, $J = 1.5$, 1.9Hz, 1H), 9.60 (dd, $J = 1.3$, 1.5Hz, 1H). mp 136.0–138.0 °C	71.8	12.5

化合物 595	TsoH	(200 MHz, $DMSO-d_{\delta}$), d 1.28–2.15 (m, 15H), 2.29 (s, 3H), 3.84 (d, $J=6.6$ Hz, 2H), 7.08–7.25 (m, 4H), 7.48 (m, $J_{AB}=8.1$ Hz, 2H), 7.70 (m, $J_{AB}=9.0$ Hz, 2H), 7.89 (dd, $J=1.5$, 1.8Hz, 1H), 8.21 (dd, $J=1.3$, 1.8Hz, 1H), 9.56 (dd, $J=1.3$, 1.5Hz, 1H).	91.6	2.7
化合物 596	N N N N N N N N N N N N N N N N N N N	(200 MHz, $DMSO-d_6$) d 1.10 (s, 3H), 1.13 (s, 3H), 2.29 (s, 3H), 3.55–3.78 (m, 3H), 4.13–4.20 (m, 2H), 7.11 (m, $J_{AB} = 7.9$ Hz, 2H), 7.20 (m, $J_{AB} = 9.2$ Hz, 2H), 7.48 (m, $J_{AB} = 8.1$ Hz, 2H), 7.72 (m, $J_{AB} = 9.0$ Hz, 2H), 7.89 (dd, $J = 1.5$, 1.8Hz, 1H), 9.58 (dd, $J = 1.3$, 1.5Hz, 1H).	90.0	5.5
化合物 597	N N N N N N N N N N N N N N N N N N N	$DMSO-d_{\ell}$, d 2.29 (s, 3H), 3.25 (s, 3H), 3.48 (m, 2H), 3.60 (m, 2H), 3.76 (m, 2H), 4.20 (m, 2H), 7.11 (m, $J_{AB} = 8.1$ Hz, 2H), 7.19 (m, $J_{AB} = 9.0$ Hz, 2H), 7.49 (m, $J_{AB} = 8.1$ Hz, 2H), 7.72 (m, $J_{AB} = 9.0$ Hz, 2H), 7.90 (dd, $J = 1.3$, 1.9Hz, 1H), 8.23 (dd, $J = 1.5$, 1.9Hz, 1H), 9.61 (dd, $J = 1.3$, 1.5Hz, 1H). mp 113.0–1160 °C	72.1	32.4
公公 598	N N N N N N N N N N N N N N N N N N N	(200 MHz, $DMSO-d_{\delta}$) d 1.10 (t, $J=7.0$ Hz, 3H), 2.29 (s, 3H), 3.38–3.65 (m, 6H), 3.74–3.83 (m, 2H), 4.15–4.25 (m, 2H), 7.12 (m, $J_{AB}=7.9$ Hz, 2H), 7.20 (m, $J_{AB}=9.0$ Hz, 2H), 7.49 (m, $J_{AB}=8.1$ Hz, 2H), 7.72 (m, $J_{AB}=9.2$ Hz, 2H), 7.90 (dd, $J=1.3, 1.8$ Hz, 1H), 8.22 (dd, $J=1.5, 1.8$ Hz, 1H), 9.59 (dd, $J=1.3, 1.5$ Hz, 1H).		18.5
化合物 599	N N O O O O O O O O O O O O O O O O O O	(200 MHz, $DMSO-d_{\delta}$) d 0.88 (t, $J=7.0$ Hz, 3H), 1.23–1.60 (m, 4H), 2.29 (s, 3H), 3.46 (t, $J=6.4$ Hz, 2H), 3.69–3.75 (m, 2H), 4.13–4.23 (m, 2H), 7.11 (m, $J_{AB}=7.9$ Hz, 2H), 7.20 (m, $J_{AB}=9.0$ Hz, 2H), 7.48 (m, $J_{AB}=8.1$ Hz, 2H), 7.72 (m, $J_{AB}=9.0$ Hz, 2H), 7.90 (dd, $J_{AB}=1.5$, 1.8Hz, 1H), 8.22 (dd, $J_{AB}=1.3$, 1.8Hz, 1H), 9.59 (dd, $J_{AB}=1.3$, 1.5Hz, 1H).	96.7	1.1
化合物 600	N N N N N N N N N N N N N N N N N N N	$DMSO-d_{\theta}$, d 2.17 (s, 1H), 2.29 (s, 3H), 2.88 (t, J = 6.6Hz, 1H), 4.24 (t, J = 6.6Hz, 2H), 7.12 (m, J_{AB} = 8.0Hz, 2H), 7.20 (m, J_{AB} = 9.2Hz, 2H), 7.49 (m, J_{AB} = 8.0Hz, 2H), 7.73 (m, J_{AB} = 9.2Hz, 2H), 7.90 (dd, J = 1.3, 1.9Hz, 1H), 8.23 (dd, J = 1.5, 1.9Hz, 1H), 9.61 (dd, J = 1.3, 1.5Hz, 1H).	91.8	7.5

化合物 601	N N O O O O O O O O O O O O O O O O O O		101.8	1.8
化合物 602	N N N N N N N N N N N N N N N N N N N		102.8	2.3
化合物 603	N N Host	(200 MHz, $DMSO-d_{\delta}$) d 0.93 (d, $J=6.2$ Hz, 3H), 1.08–2.10 (m, 13H), 2.29 (s, 3H), 4.09 (t, $J=7.0$ Hz, 2H), 5.10 (m, 1H), 7.08–7.25 (m, 4H), 7.48 (m, $J_{AB}=8.1$ Hz, 2H), 7.71 (m, $J_{AB}=9.0$ Hz, 2H), 7.90 (dd, $J=1.3$, 2.0Hz, 1H), 8.21 (dd, $J=1.5$, 2.0Hz, 1H), 9.58 (dd, $J=1.3$, 1.5Hz, 1H).	100.2	5.3
化合物 604	N N N O	$D\dot{M}SO-d_{\theta}$, d 0.99 (t, $J=7.5$ Hz, 3H), 1.76 (tq, $J=6.6$, 7.5Hz, 2H), 2.29 (s, 3H), 4.02 (t, $J=6.6$ Hz, 2H), 7.12 (m, $J_{AB}=7.9$ Hz, 2H), 7.17 (m, $J_{AB}=9.0$ Hz, 2H), 7.49 (m, $J_{AB}=7.9$ Hz, 2H), 7.72 (m, $J_{AB}=9.0$ Hz, 2H), 7.90 (dd, $J=1.3$, 1.9Hz, 1H), 8.22 (dd, $J=1.5$, 1.9Hz, 1H), 9.61 (dd, $J=1.3$, 1.5Hz, 1H).	82.7	7.7
化合物 605	N N O O	(200 MHz, $DMSO-d_{\delta}$) d 1.11 (t, $J=7.0$ Hz, 3H), 1.90-2.05 (m, 2H), 2.29 (s, 3H), 3.44 (q, $J=7.0$ Hz, 2H), 3.52 (t, $J=6.2$ Hz, 2H), 4.11 (t, $J=6.4$ Hz, 2H), 7.11 (m, $J_{AB}=8.3$ Hz, 2H), 7.19 (m, $J_{AB}=9.2$ Hz, 2H), 7.48 (m, $J_{AB}=8.3$ Hz, 2H), 7.71 (m, $J_{AB}=9.0$ Hz, 2H), 7.89 (dd, $J=1.5$, 1.8Hz, 1H), 8.21 (dd, $J=1.3$, 1.8Hz, 1H), 9.56 (dd, $J=1.3$, 1.5Hz, 1H).	94.3	2.0
化合物 606	N N O TSOH	DMSO- d_{θ} , δ 1.77 (t, J = 2.6Hz, 3H), 2.29 (s, 3H), 2.58–2.66 (m, 2H), 4.12 (t, J = 6.7Hz, 2H), 7.11 (d, J = 7.7Hz, 2H), 7.20 (m, J_{AB} = 9.0Hz, 2H), 7.48 (m, J_{AB} = 8.1Hz, 2H), 7.72 (m, J_{AB} = 9.0Hz, 2H), 7.89 (t, J = 1.5, 1.8Hz, 1H), 8.22 (t, J = 1.3, 1.8Hz, 1H), 9.58 (t, J = 1.3, 1.5Hz, 1H).	95.8	5.0

101.9 2.5	96.2 3.7	100.6 4.3	99.1 1.1	90.0 2.2	53.4
(200 MHz, $DMSO-d_{\beta}$) d 2.29 (s, 3H), 2.45–2.58 (m, 2H), 4.12 (t, $J=6.6$ Hz, 2H), 5.05–5.25 (m, 2H), 5.90 (m, 1H), 7.11 (m, $J_{AB}=7.9$ Hz, 2H), 7.19 (m, $J_{AB}=9.0$ Hz, 2H), 7.48 (m, $J_{AB}=8.1$ Hz, 2H), 7.71 (m, $J_{AB}=9.0$ Hz, 2H), 7.90 (dd, $J=1.5$, 1.8Hz, 1H), 8.21 (dd, $J=1.3$, 1.8Hz, 1H), 9.58 (dd, $J=1.3$, 1.5Hz, 1H).	(200 MHz, $DMSO-d_{\delta}$) d 1.13–2.05 (m, 10H), 2.29 (s, 3H), 4.47(m, 1H), 7.11 (m, $J_{AB} = 7.7$ Hz, 2H), 7.18 (m, $J_{AB} = 9.0$ Hz, 2H), 7.48 (m, $J_{AB} = 8.1$ Hz, 2H), 7.68 (m, $J_{AB} = 9.0$ Hz, 2H), 7.89 (dd, $J = 1.5$, 1.8Hz, 1H), 8.20 (dd, $J = 1.3$, 1.5Hz, 1H). mp 187.5–188.0 °C	$DMSO-d_{\delta}$, δ 0.99 (d, $J=6.6$ Hz, 6H), 2.05 (m, 1H), 2.29 (s, 3H), 3.84 (d, $J=6.6$ Hz, 2H), 7.11 (d, $J_{AB}=8.1$ Hz, 2H), 7.18 (m, $J_{AB}=9.0$ Hz, 2H), 7.48 (m, $J_{AB}=8.1$ Hz, 2H), 7.71 (m, $J_{AB}=9.0$ Hz, 2H), 7.88 (t, $J=1.5$, 1.8Hz, 1H), 8.20 (t, $J=1.3$, 1.8Hz, 1H), 9.55 (t, $J=1.3$, 1.5Hz, 1H).	(200 MHz, $DMSO-d_{\delta}$) d 2.05–2.23 (m, 2H), 2.99 (t, J =7.9Hz, 2H), 4.11 (t, J = 6.4Hz, 2H), 7.16 (m, J_{AB} = 9.2Hz, 2H), 7.74 (m, J_{AB} = 9.2Hz, 2H), 7.88–8.03 (m, 2H), 8.23 (dd, J = 1.3, 1.8Hz, 1H), 8.48 (m, 1H), 8.77 (dd, J = 0.95.5Hz, 1H), 8.86 (d, J = 2.0Hz, 1H), 9.69 (dd, J = 1.3, 1.5Hz, 1H).	(200 MHz, DMSO- d_{δ}) δ 1.28–1.85 (m, 8H), 2.69 (s, 3H), 2.72 (s, 3H), 2.91–3.10 (m, 2H), 4.07 (t, $J = 6.4$ Hz, 2H), 7.18 (m, $J_{AB} = 9.2$ Hz, 2H), 7.73 (m, $J_{AB} = 9.0$ Hz, 2H), 7.89 (dd, $J = 1.5$, 1.8Hz, 1H), 8.22 (dd, $J = 1.3$, 1.8Hz, 1H), 9.65 (dd, $J = 1.3$, 1.5Hz, 1H).	δ 0.96 (t, J = 7.3 Hz, 3H), 1.35–1.42 (m, 2H), 1.58–1.68 (m, 2H), 2.18 (s, 3H), 2.67 (t, J = 7.6 Hz, 2H), 7.21–7.28 (m, 4H), 7.62 (dd, J = 1.4, 1.7Hz, 1H), 8.74 (dd, J = 1.2, 1.4Hz, 1H).
N N N N N N N N N N N N N N N N N N N	N N O	N N N N N N N N N N N N N N N N N N N	N I I I I I I I I I I I I I I I I I I I	N N O SHCI	HCI N
化合物 607	化合物 608	化合物 609	化合物 610	化合物 611	化合物 612

化合物 613	HC.	δ 1.03 (t, J = 7.5 Hz, 3H), 1.76–1.83 (m, 2H), 2.34 (s, 3H), 2.98 (t, J = 7.3 Hz, 2H), 7.29 (dd, J = 1.3, 1.6Hz, 1H), 7.53 (d, J = 8.2Hz, 1H), 7.66 (dd, J = 1.5, 1.6Hz, 1H), 7.97 (dd, J = 1.9, 8.2Hz, 1H), 8.00 (d, J = 1.9Hz, 1H), 9.35 (dd, J = 1.3, 1.5Hz, 1H).	462.3
化合物 614	E S	(200 MHz) δ 1.30 (t, J = 7.5 Hz, 3H), 2.76 (q, J = 7.5 Hz, 2H), 7.40-7.50 (m, 5H), 7.58 (d, J = 1.3Hz, 1H), 9.05 (s, 1H).	65.5
化合物 615	E S	(200 MHz) δ 0.89 (t, J = 6.8 Hz, 3H), 1.13–1.43 (m, 8H), 1.50–1.75 (m, 2H), 2.70 (t, J = 7.3 Hz, 2H), 7.35–7.65 (m, 6H), 9.35 (dd, J = 1.3, 1.5Hz, 1H).	3.8
化 合物 616	₹ 2 2 2	(200 MHz) δ 1.28 (s, 3H), 1.31 (s, 3H), 3.02 (m, 1H), 7.40–7.63 (m, 6H), 9.43 (dd, J = 1.3, 1.5Hz, 1H). mp 205.5–207.5 °C	7.9
化合物 617	¥ N	(200 MHz) δ 0.85 (t, $J = 7.5$ Hz, 3H), 1.28 (d, $J = 6.8$ Hz, 3H), 1.55–1.75 (m, 2H), 2.63–2.84 (m, 2H), 7.38–7.53 (m, 5H), 7.59 (dd, $J = 1.3$, 1.8Hz, 1H), 9.13 (dd, $J = 1.3$, 1.5Hz, 1H). mp 142.0–146.0 °C	17.3
化合物 618	HG.	(200 MHz) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.58–1:80 (m, 2H), 2.69 (t, $J = 7.3$ Hz, 2H), 7.35–7.55 (m, 5H), 7.59 (dd, $J = 1.3$, 1.8Hz, 1H), 9.29 (dd, $J = 1.3$, 1.5Hz, 1H).	18.8

化合物 619	N N N N N N N N N N N N N N N N N N N	$DMSO-d_{\theta}$, δ 2.29 (s, 6H), 2.29 (s, 6H), 2.83 (s, 3H), 2.85 (s, 3H), 3.24 (m, 2H), 4.13 (t, $J=6.0$ Hz, 2H), 7.12 (m, $J_{AB}=8.0$ Hz, 4H), 7.18 (m, $J_{AB}=9.0$ Hz, 2H), 7.49 (m, $J_{AB}=8.0$ Hz, 4H), 7.74 (m, $J_{AB}=9.0$ Hz, 2H), 7.92 (dd, $J=1.3$, 1.9Hz, 1H), 8.22 (dd, $J=1.5$, 1.9Hz, 1H), 9.61 (dd, $J=1.3$, 1.5Hz, 1H)	35.9	50.6
化合物 620	N N N N N N N N N N N N N N N N N N N	11.7. $DMSO-d_{\delta}$, δ 1.21 (t, $J=7.5$ Hz, 3H), 2.29 (s, 3H), 2.64 (q, $J=7.5$ Hz, 2H), 2.91 (t, $J=6.6$ Hz, 2H), 4.23 (t, $J=6.6$ Hz, 2H), 7.11 (d, $J=7.9$ Hz, 2H), 7.20 (m, $J_{AB}=9.2$ Hz, 2H), 7.49 (d, $J=7.9$ Hz, 2H), 7.73 (m, $J_{AB}=9.2$ Hz, 2H), 7.90 (dd, $J=1.3$, 1.9Hz, 1H), 8.22 (dd, $J=1.5$, 1.9Hz, 1H), 9.61 (dd, $J=1.5$, 1.9Hz, 1H). mp 147.0–149.0 °C	97.9	8.
化合物 621	- SHCI	DMSO- a_6 , δ 1.28 (t, $J=7.3$ Hz, 6H), 3.10–3.30 (m, 4H), 3.46–3.58 (m, 2H), 4.51 (t, $J=5.0$ Hz, 2H), 7.25 (m, $J_{AB}=9.0$ Hz, 2H), 7.78 (m, $J_{AB}=8.9$ Hz, 2H), 7.90 (dd, $J=1.5$, 1.8Hz, 1H), 8.23 (dd, $J=1.3$, 1.8Hz, 1H), 9.66 (dd, $J=1.3$, 1.5Hz, 1H).	33.0	49.5
化合物 622	SHCI SHCI	$DMSO-d_{\delta}$, δ 2.73 (s, 3H), 5.52 (s, 2H), 7.32 (m, J_{AB} = 9.2Hz, 2H), 7.68 (d, J = 7.9Hz, 1H), 7.73–7.83 (m, 3H), 7.92 (dd, J = 1.5, 1.8Hz, 1H), 8.20–8.30 (m, 2H), 9.72 (dd, J = 1.3, 1.5Hz, 1H). mp 236,0–237.0 °C	80.4	17.6
七合物 623	SHCI CAN	$DMSO-d_{\delta}$, δ 1.26 (m, 1H), 1.88 (m, 2H), 2.73 (s, 1H), 2.73–2.87 (m, 2H), 3.26–3.51 (m, 2H), 3.93 (dd, $J=7.3$, 9.6Hz, 1H), 4.05 (dd, $J=4.7$, 9.6Hz, 1H), 7.19 (m, $J_{AB}=9.0$ Hz, 2H), 7.75 (m, $J_{AB}=9.0$ Hz, 2H), 7.90 (d, $J=1.4$ Hz, 1H), 8.23 (d, $J=1.4$ Hz, 1H), 9.65 (d, $J=1.4$ Hz, 1H).	82.2	8.8
化合物 624	C C C	δ 3.09 (t, J = 4.5Hz, 4H), 3.90 (t, J = 4.5Hz, 4H), 7.12 (d, J = 8.7Hz, 1H), 7.20 (s, 1H), 7.22 (s, 1H), 7.27 (dd, J = 2.5, 8.7Hz, 1H), 7.45 (d, J = 2.5Hz, 1H), 7.79 (s, 1H).		40.8

化合物 625	N N N N N N N N N N N N N N N N N N N	<i>DMSO-d₆</i> , δ 2.29 (s, 6H), 2.89 brs, 6H), 3.57 (m, 2H), 4.41 (brt, J = 5.3Hz, 2H), 7.12 (brd, J = 7.9Hz, 4H), 7.25 (m, J_{AB} = 9.0Hz, 2H), 7.49 (brd, J = 7.9Hz, 4H), 7.77 (m, J_{AB} = 9.0Hz, 2H), 7.93 (t, J = 1.5Hz, 1H), 8.24 (t, J = 1.5Hz, 1H), 9.63 (d, J = 1.5Hz, 1H).	19.4	387.4
化合物 626	N N O SHCI	DMSO- d_{g} , δ 2.76 (s, 3H), 2.77 (s, 3H), 3.27 (m, 2H), 3.80-3.91 (m, 4H), 4.25 (m, 2H), 7.21 (m, J_{AB} = 9.0Hz, 2H), 7.76 (m, J_{AB} = 9.0Hz, 2H), 7.91 (dd, J_{AB} = 1.3, 1.9Hz, 1H), 8.24 (dd, J_{AB} = 1.5, 1.9Hz, 1H), 9.71 (dd, J_{AB} = 1.3, 1.5Hz, 1H).	57.2	9.0
化合物 627	N N N N N N N N N N N N N N N N N N N	$DMSO-d_{\delta}$, δ 1.00 (t, $J=7.3$ Hz, 3H), 1.52 (m, 2H), 1.83 (m, 2H), 2.37 (s, 3H), 2.68 (s, 3H), 4.04 (t, $J=6.4$ Hz, 2H), 7.18–7.27 (m, 4H), 7.42 (s, 1H), 7.88 (m, $J_{AB}=8.1$ Hz, 2H).		>300.0
化合物 628	Ts0H O	$DMSO-d_{\delta}$, δ 0.95 (t, $J=7.3$ Hz, 3H), 1.45 (tq, $J=7.3$, 7.7Hz, 2H), 1.67–1.80 (m, 2H), 2.17 (d, $J=0.9$ Hz, 3H), 2.29 (s, 3H), 4.07 (t, $J=6.5$ Hz, 2H), 7.09–7.21 (m, 4H), 7.48 (m, $J_{AB}=8.1$ Hz, 2H), 7.55 (m, $J_{AB}=8.8$ Hz, 2H), 9.25 (d, $J=1.5$ Hz, 1H).	-	4.6
化合物 629	Ts0H Ust	δ 0.99 (t, $J=7.3$ Hz, 3H), 1.45 (tq, $J=7.3$, 7.7Hz, 2H), 1.72–1.83 (m, 2H), 2.17 (d, $J=0.9$ Hz, 3H), 3.99 (t, $J=6.5$ Hz, 2H), 6.92–7.00 (m, 1H), 6.96 (m, $J_{AB}=9.0$ Hz, 2H), 7.26 (m, $J_{AB}=9.0$ Hz, 2H), 7.66 s, 1H).		173.1
化合物 630	SHCI ZHCI NON NON NON NON NON NON NON NON NON NO	$DMSO-d_{\delta}$, δ 1.21 (t, $J=7.0$ Hz, 3H), 2.17 (s, 3H), 3.11–3.50 (m, 8H), 3.55 (t, $J=4.8$ Hz, 2H), 4.09 (q, $J=7.0$ Hz, 2H), 4.52 (t, $J=4.8$ Hz, 2H), 7.25 (m, $J_{AB}=9.0$ Hz, 2H), 7.56–7.64 (m, 3H), 9.26 (s, 1H).		56.5

化合物 631	2HCI	$DMSO-d_{\delta}$, δ 1.21 (t, $J=7.2$ Hz, 3H), 3.00–3.83 (m, 8H), 3.56 (t, $J=4.8$ Hz, 2H), 4.09 (q, $J=7.2$ Hz, 2H), 4.54 (t, $J=4.7$ Hz, 2H), 7.26 (m, $J_{AB}=9.0$ Hz, 2H), 7.78 (m, $J_{AB}=9.0$ Hz, 2H), 7.89 (dd, $J=1.4$, 1.9Hz, 1H), 9.64 (t, $J=1.4$ Hz, 1H).		16.2
化合物 632		δ 0.38 (q, J = 6.1Hz, 2H) 0.68 (q, J = 5.9Hz, 2H), 1.30 (m, 1H), 3.85 (d, J = 7.0Hz, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.56 (m, J_{AB} = 8.9Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	35.3	
化合物 633	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 4.30–4.40 (m, 4H), 6.97 (d, J = 7.6Hz, 2H), 7.08 (m, J_{AB} = 8.8Hz, 2H), 7.23–7.36 (m 3H), 7.59 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46(s, 1H).	32.1	
化合物 634	N-N-N-O-O-	δ 1.21 (s,3H), 1.23 (s,3H), 3.70 (m, 1H), 3.81 (t, $J=4.7$ Hz, 2H), 4.16 (t, $J=4.8$ Hz, 2H), 7.04 (m, $J_{AB}=8.9$ Hz, 2H), 7.56 (m, $J_{AB}=8.9$ Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	8.4	
化合物 635	N-N-0~0~0	δ 3.40 (s,3H), 3.59 (t, $J=4.8$ Hz, 2H), 3.74 (t, $J=4.8$ Hz, 2H), 3.89 (t, $J=5.0$ Hz, 2H), 4.19 (t, $J=5.0$ Hz, 2H), $J_{AB}=9.0$ Hz, 2H), 7.56 (m, $J_{AB}=9.0$ Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	16.9	
化合物 636	N-N-N-0~0~0~0~	δ 1.23 (t, $J = 7.0$ Hz, 3H), 3.55 (q, $J = 7.0$ Hz, 2H), 3.60-3.77(m, 4H), 3.89 (t, $J = 5.3$ Hz, 2H), 4.19 (t, $J = 5.0$ Hz, 2H), 7.04 (m, $J_{AB} = 9.0$ Hz, 2H), 7.56 (m, $J_{AB} = 9.0$ Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	26.4	

化合物 637		δ 3.14 (t, $J = 7.3$ Hz, 2H), 3.86 (s, 3H), 4.20 (t, $J = 7.3$ Hz, 2H), 6.85–6.90 (m, 2H), 7.02 (m, $J_{AB} = 8.9$ Hz, 2H), 7.29–7.28(m, 2H), 7.54 (m, $J_{AB} = 8.7$ Hz, 2H), 8.08 (s, 1H), 8.44(s, 1H).	84.6
化合物 638	2 N N N N N N N N N N N N N N N N N N N	δ 2.24 (s, 3H), 2.92 (t, J = 6.8Hz, 2H), 4.21 (t, J =6.7Hz, 2H), 7.02 (m, J_{AB} = 8.9Hz, 2H), 7.58 (m, J_{AB} = 8.9Hz, 2H), 8.09 (s, 1H), 8.46(s, 1H).	31.7
化合物 639	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 1.31 (t, $J=7.3$ Hz, 3H), 2.67(q, $J=7.3$ Hz, 2H), 2.94 (t, $J=6.8$ Hz, 2H), 4.19 (t, $J=6.8$ Hz, 2H), 7.02 (m, $J_{AB}=9.0$ Hz, 2H), 7.57 (m, $J_{AB}=8.9$ Hz, 2H), 8.46(s, 1H).	48.1
化合物 640	N N N N N N N N N N N N N N N N N N N	δ 2.56 (t, J = 2.3Hz, 1H), 4.76 (d, J =2.3Hz, 2H), 7.11 (m, J_{AB} = 8.9Hz, 2H), 7.60 (m, J_{AB} = 8.9Hz, 2H), 8.09 (s, 1H), 8.47(s, 1H).	
化合物 641	N N N N N N N N N N N N N N N N N N N	δ 1.88 (t, J = 2.2Hz, 3H), 4.71 (q, J =2.2Hz, 2H), 7.09 (m, J_{AB} = 9.0Hz, 2H), 7.58 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46(s, 1H).	21.7
化合物 642	N. N.	δ 1.78 (d, J = 6.4Hz, 3H), 4.60 (d, J =5.8Hz, 2H), 5.70–5.85 (m, 2H), 6.10 (m, 1H), 6.36 (m, 1H), 7.02 (m, J_{AB} = 9.2Hz, 2H), 7.56 (m, J_{AB} = 9.2Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	43.1

化合物 643	N N O	δ 1.06 (t, $J = 7.5$ Hz, 3H), 1.78–1.92 (m, 2H), 3.97 (t, $J = 6.5$ Hz, 2H), 7.01 (m, $J_{AB} = 9.0$ Hz, 2H), 7.55 (m, $J_{AB} = 8.9$ Hz. 2H), 8.08 (s. 1H), 8.44(s. 1H)	33.0
化合物 644	N-N-N-O	7	45.2
化合物 645	N-N-N-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	2H), 3.79 (s, 3H), 3.99 (t, J =6.4Hz, 2H), AB = 9.0Hz, 2H), 7.13 (m, J _{AB} =8.4Hz, (s, 1H), 8.45(s, 1H).	61.3
化合物 646		=7.2Hz, 2H), 7.02 1H). 8.45(s. 1H).	24.3
化合物 647	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-		60.5
化合物 648	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 0.93 (s, 3H), 0.95 (s, 3H), 1.30–1.40 (m, 2H), 1.63 (m, 1H), 1.75–1.87 (m, 2H), 3.99 (t, J = 6.5Hz, 2H), 7.00 (m, J_{AB} = 8.9Hz, 2H), 7.55 (m, J_{AB} = 8.9Hz, 2H), 8.08 (s, 1H), 8.44(s, 1H).	68.1

化合物 649		δ 1.75–1.93 (m, 4H), 2.71 (t, J = 6.8Hz, 2H), 4.01 (t, J = 6.1Hz, 2H), 6.99 (m, J_{AB} = 9.0Hz, 2H), 7.15–7.33 (m, 5H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44(s, 1H).	7
化合物 650	N-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W	δ 1.85–1.98 (m, 2H), 2.21–2.32 (m, 2H), 4.02 (t, J = 6.5Hz, 2H), 4.98–5.13 66.2 (m, 2H), 5.87 (m, 1H), 7.00 (m, J_{AB} = 9.0Hz, 2H), 7.56 (m, J_{AB} = 9.2Hz, 2H), 8.45(s, 1H).	2
化合物 651	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	.66 (t, $J = 7.8$ Hz, 2H), 4.00 (t, $J = 6.4$ Hz, 2H), 6.99 16-7.34 (m, 5H), 7.55 (m, $J_{AB} = 8.9$ Hz, 2H), 8.08 (s,	60.8
化合物 652	N-N-N-O	δ 0.90 (t, J = 6.4Hz, 3H), 1.25–1.55 (m, 8H), 1.75–1.88 (m, 2H), 4.00 (t, J = 6.5Hz, 2H), 7.00 (m, J_{AB} = 8.9Hz, 2H), 7.55 (m, J_{AB} = 8.5Hz, 2H), 8.08 (s, 1H), 8.44(s, 1H).	52.7
化合物 653	N-N-N-O	δ 0.89 (t, $J=6.7$ Hz, 3H), 1.23–1.54 (m, 10H), 1.75–1.88 (m, 2H), 4.00 (t, $J=6.5$ Hz, 2H), 7.00 (m, $J_{AB}=9.0$ Hz, 2H), 7.55 (m, $J_{AB}=9.0$ Hz, 2H), 8.08 (s, 1H), 8.44(s, 1H).	
化合物 654	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 3.85–4.15 (m, 4H), 4.46 (m,1H), 4.96 (s, 1H), 5.11 (s, 1H), 7.04 (m, J_{AB} = 8.9Hz, 2H), 7.58 (m, J_{AB} = 8.9Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H).	33.5

化合物 655	Z N N N N N N N N N N N N N N N N N N N	δ 5.06 (s, 2H), 6.40 (m, 1H), 6.46 (m, 1H), 7.10 (m, J_{AB} = 8.9Hz, 2H), 7.47 (d, J = 1.9Hz, 1H), 7.58 (m, J_{AB} = 8.9Hz, 2H), 8.08 (s, 1H), 8.46(s, 1H).	56.5
化合物 656	N-W O	H), (s,	47.7
化合物 657	N.W.	δ 0.85–1.00 (m, 3H), 1.23–1.68 (m, 6H), 1.88–2.08 (m, 2H), 2.51 (d, $J=2.0$ Hz, 1H), 4.76 (m, 1H), 7.13 (m, $J_{AB}=8.9$ Hz, 2H), 7.58 (m, $J_{AB}=8.9$ Hz, 2H), 8.08 (s, 1H), 8.46(s, 1H).	44.7
化合物 658	Br O N'N'	δ 5.19 (s, 2H), 7.10 (m, $J_{AB} = 9.0$ Hz, 2H), 7.16–7.38 (m, 2H), 7.51–7.63 (m, 4H), 8.09 (s, 1H), 8.46(s, 1H).	67.6
化合物 659	N-N-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	δ 5.18 (s, 2H), 7.09 (m, J_{AB} = 9.0Hz, 2H), 7.30 (dd, J = 2.0Hz, 8.2Hz, 1H), 7.45 (d, J = 2.0Hz, 1H), 7.50 (d, J = 8.2Hz, 1H), 7.60 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46(s, 1H).	60.8
化合物 660	N. N	δ 3.89 (s, 3H), 5.17 (s, 2H), 6.92–7.04 (m, 2H), 7.11 (m, J_{AB} = 9.0Hz, 2H), 7.33 (t, J = 7.3Hz, 1H), 7.45 (d, J = 7.5Hz, 1H), 7.56 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	49.6

化合物 661	N-N-N-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	δ 3.90 (s, 6H), 5.17 (s, 2H), 6.93 (dd, J = 2.3Hz, 7.3Hz, 1H), 7.04–7.15 (m, 4H), 7.57 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	31.6
化合物 662	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 2.40 (s, 3H), 5.09 (s, 2H), 7.10 (m, J_{AB} =9.0Hz, 2H), 7.20–7.33 (m, 3H), 7.41 (d, J = 7.5Hz, 1H), 7.58 (m, J_{AB} = 8.9Hz, 2H), 8.09 (s, 1H), 8.45(s, 1H).	72.2
化合物 663	N _N	δ 2.90–3.08 (m, 4H), 4.98 (s, 2H), 7.04 (m, J_{AB} = 9.0Hz, 2H), 7.09–7.44 (m, 9H), 7.57 (m, J_{AB} = 8.9Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H).	41.8
化合物 664	N-N-N-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	δ 5.09 (s, 2H), 6.94–7.20 (m, 8H), 7.29–7.38 (m, 3H), 7.56 (m, J_{AB} = 8.9Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	43.0
化合物 665	N. N	δ 2.38 (s, 3H), 5.08 (s, 2H), 7.08 (m, $J_{AB} = 9.0$ Hz, 2H), 7.16 (d, $J = 7.3$ Hz, 1H), 7.20–7.33 (m, 3H), 7.57 (m, $J_{AB} = 8.9$ Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	66
化合物 666	N-W-O-C-J	δ 5.08 (s, 2H), 7.04–7.14 (m, 4H), 7.38–7.46 (m, 2H), 7.58 (m, J_{AB} = 9.2Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H).	99.4

化合物 667		δ 3.83 (s, 3H), 5.04 (s, 2H), 6.93 (m, J_{AB} = 8.7Hz, 2H), 7.07 (m, J_{AB} = 9.0Hz, 2H), 7.37 (m, J_{AB} = 8.4Hz, 2H), 7.56 (m, J_{AB} = 8.9Hz, 2H), 8.08 (s, 1H), 8.44(s, 1H).	6.69	
化合物 668	N-N-N-O	δ 2.37 (s, 3H), 5.08 (s, 2H), 7.07 (m, J_{AB} = 8.9Hz, 2H), 7.21 (d, J = 8.1Hz, 2H), 7.33 (d, J = 8.1Hz, 2H), 7.56 (m, J_{AB} = 8.9Hz, 2H), 8.08 (s, 1H), 8.44(s, 1H).	86.8	
化合物 669	N-N-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	δ 3.83 (s, 3H), 4.70 (s, 2H), 7.03 (m, J_{AB} = 9.0Hz, 2H), 7.60 (m, J_{AB} = 8.9Hz, 2H), 8.09 (s, 1H), 8.47(s, 1H).	15.5	
化合物 670	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 5.00 (s, 2H), 6.51 (t, J = 0.8Hz, 1H), 7.07 (m, J_{AB} = 9.0Hz, 2H), 7.46 (t, J = 1.6Hz, 1H), 7.53 (t, J = 0.8Hz, 1H), 7.58 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46(s, 1H).	46.1	
化合物 671	N N N N N N N N N N N N N N N N N N N	δ 4.15–4.65 (m, 5H), 6.84–6.96 (m, 4H), 7.05 (m, J_{AB} = 9.0Hz, 2H), 7.59 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46(s, 1H).	89.6	
化合物 672	N-N-N-O-	δ 0.94 (t, J = 7.2Hz, 6H), 1.25–1.76 (m, 8H), 4.29 (m, 1H), 6.99 (m, J_{AB} = 9.0Hz, 2H), 7.53 (m, J_{AB} = 8.9Hz, 2H), 8.08 (s, 1H), 8.44(s, 1H).		

化合物 673	N.N.	δ 3.83 (s, 3H), 4.70 (s, 2H), 7.03 (m, J_{AB} = 9.0Hz, 2H), 7.60 (m, J_{AB} = 8.9Hz, 2H), 8.09 (s, 1H), 8.46(s, 1H).	
化合物 674	N. N	.0Hz, 2H), 4.12 (t, J = 6.2Hz, 2H), 7.01 = 9.0Hz, 2H), 8.08 (s, 1H), 8.45(s, 1H).	41.3
化合物 675			57.0
化合物 676			41.4
化合物 677	N. N	1.68 (s, 3H), 1.76 (s, 3H), 2.08–2.13 (m, 4H), 4.59 (d, $J=$ (m, 1H), 5.49 (dd, $J=$ 5.4, 7.6Hz, 1H), 7.02 (m, $J_{AB}=$ 8.8Hz, 8.8 Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	80.6
化合物 678	N-N-N-H	δ 0.75–1.97 (m, 9H), 2.17–2.40 (m, 2H), 3.67–4.02 (m, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	85.6

化合物 679		δ 0.86–0.94 (m, 2H), 1.08–1.27 (m, 6H), 1.43–1.53 (m, 2H), 1.68–1.83 (m, 7H), 4.00 (t, J = 6.5Hz, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	29.2
化合物 680	N.N. O	19 (dt, $J = 5.1$, 6.4Hz, 2H), 3.46 (d, $J = 0.4$), 4.15 (t, $J = 0.4$ Hz, 2H), 4.70 (t, $J = 0.4$), 7.55 (m, $J_{AB} = 9.0$ Hz, 2H), 8.08 (s,	36.1
化合物 681	NN O	δ 1.26 (t, $J = 7.2$ Hz, 3H), 1.50–1.58 (m, 2H), 1.67–1.78 (m, 2H), 1.79–1.89 (m, 2H), 2.35 (t, $J = 7.5$ Hz, 2H), 4.01 (t, $J = 6.4$ Hz, 2H), 4.14 (q, $J = 7.2$ Hz, 2H), 7.01 (m, $J_{AB} = 9.0$ Hz, 2H), 7.55 (m, $J_{AB} = 9.0$ Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	81.1
化合物 682	R. N.	δ 3.10 (t, J = 6.8Hz, 2H), 4.21 (t, J = 6.8Hz., 2H),7.01 (m, J_{AB} = 9.0Hz, 2H), 7.17–7.25 (m, 2H), 7.38–7.41 (m, 1H), 7.46 (s, 1H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	72.2
化合物 683	N. IO	'= 6.8Hz, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2.0Hz, 1H), 7.55 (m, J_{AB} = 9.0Hz, 2H),	68.3
化合物 684	N N N N N N N N N N N N N N N N N N N	$J = 5.7$ Hz, 2H), 4.12 (t, $J = 5.7$ Hz, 2H), 7.01 (m, $J_{AB} = 9.0$ Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	28.4

化合物 685	N N N N N N N N N N N N N N N N N N N	δ 1.21 (t, J =7.0Hz, 3H), 2.32 (s, 3H), 3.48 (q, J = 7.0Hz, 2H), 3.74 (t, J = 6.2Hz, 2H), 4.16 (t, J = 6.2Hz, 2H), 6.52–6.55 (m, 3H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.13 (dd, J = 7.2, 9.0Hz, 1H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	76.3
化合物 686	N N O N	δ 1.09 (t, $J = 7.2$ Hz, 6H), 2.67 (q, $J = 7.2$ Hz, 4H), 2.91 (t, $J = 6.2$ Hz, 2H), 4.10 (t, $J = 6.2$ Hz), 7.01 (m, $J_{AB} = 9.0$ Hz, 2H), 7.55 (m, $J_{AB} = 9.0$ Hz, 2H), 8.44 (s, 1H).	
化合物 687	N N N N N N N N N N N N N N N N N N N	δ 1.99–2.03 (m, 2H), 2.30 (s, 6H), 2.51 (t, J = 7.6Hz, 2H), 4.07 (t, J = 6.5Hz, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	11.0
化合物 688	Z-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X	δ 5.26 (s, 2H), 7.11 (m, J_{AB} = 9.0Hz, 2H), 7.24–7.28 (m, 1H), 7.51–7.55 (m, 1H), 7.57 (m, J_{AB} = 9.0Hz, 2H), 7.74 (dt, J =1.7, 7.8Hz, 1H), 8.08 (s, 1H), 8.62 (d, J = 4.8Hz, 1H).	34.8
化合物 689		, 3H), 2.60–2.91 (m, 3H), 4.05–4.54 (m, (m, J _{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44	23.4
化合物 690	Z. W.	δ 1.13–2.31 (m, 7H), 2.31 (s, 3H), 2.76–2.80 (m, 1H), 2.96–2.99 (m, 1H), 3.82–3.91 (m, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	26.5

化合物 691	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	δ 1.05 (t, $J = 7.0$ Hz, 3H), 2.61–2.73 (m, 6H), 3.56–3.69 (m, 4H), 3.83–3.87 (m, 2H), 4.16–4.19 (m, 4H), 7.01 (m, $J_{AB} = 9.0$ Hz, 2H), 7.55 (m, $J_{AB} = 9.0$ Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	9.3	
化合物 692	Z-Z	 3 2.59 (s, 3H), 5.22 (s, 1H), 7.03-7.13 (m, 3H), 7.32 (d, J = 8.1Hz, 1H), 7.55-7.65 (m, 3H), 8.08 (s, 1H), 8.45 (s, 1H). 	26.1	
化合物 693		δ 1.02 (s, 6H), 2.29 (s, 8H), 376 (s, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.44 (s, 1H).	20.3	
化合物 694	Z N	δ 1.84–2.22 (m, 6H), 2.76–2.87 (m, 1H), 3.98 (d, J = 6.6Hz, 2H), 7.00 (m, J_{AB} = 9.0Hz, 2H), 7.56 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H). mp 71.0–72.5 °C	63.5	28.0
化合物 695	Z Z Z	δ 0.99–1.49 (m, 5H), 1.64–1.96 (m, 6H), 3.80 (t, J = 5.9Hz, 2H), 7.00 (m, J_{AB} = 8.8Hz, 2H), 7.56 (m, J_{AB} = 8.8Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H). mp 80.0–83.0 °C	85.5	5.7
化合物 696	N N N N N N N N N N N N N N N N N N N	δ 0.96–1.80 (m, 13H), 4.04 (t, J = 6.7Hz, 2H), 7.00 (m, J_{AB} = 9.0Hz, 2H), 7.56 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H).	88.9	8.0

化合物 697		δ 1.36–1.92 (m, 14H), 2.05 (m, 1H), 3.77 (t, J = 6.8Hz, 2H), 7.00 (m, J_{AB} = 9.0Hz, 2H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.45 (s, 1H). mp 83.0–85.0 °C	80.5	5.3
化合物 698	Br Shannan Sha	δ 3.08 (t, J = 6.8Hz, 2H), 4.20 (t, J = 6.8Hz, 2H), 6.99 (m, J_{AB} = 9.1Hz, 2H), 7.18 (m, J_{AB} = 8.4Hz, 2H), 7.46 (m, J_{AB} = 8.4Hz, 2H), 7.56 (m, J_{AB} = 9.1Hz, 2H), 8.08 (s, 1H), 8.45 (s, 1H).	81.9	12.4
化合物 699		δ 2.34 (s, 3H), 3.09 (t, J = 7.0Hz, 2H), 4.20 (t, J = 7.0Hz, 2H), 7.01 (m, J_{AB} = 8.8Hz, 2H), 7.12–7.21 (m, 4H), 7.56 (m, J_{AB} = 8.8Hz, 2H), 8.08 (s, 1H), 8.45 (s, 1H).	78.8	10.7
化合物 700	N.W.N.W.	δ. 3.32 (t, $J = 7.0$ Hz, 2H), 4.19 (t, $J = 7.0$ Hz, 2H), 6.96 (m, $J_{AB} = 9.0$ Hz, 2H), 7.40–7.46 (m, 5H), 7.55 (m, $J_{AB} = 9.0$ Hz, 2H), 8.08 (s, 1H), 8.45 (s, 1H). mp 123.5–124.5 °C	78.0	10.0
化合物 701	N.V.	δ 1.76 (s, 3H), 1.82 (s, 3H), 4.57 (d, J = 6.8Hz, 2H), 5.50 (m, 1H), 7.03 (m, J_{AB} = 9.0Hz, 2H), 7.56 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H). mp 68.0-70.0 °C	64.4	6.6
化合物 702	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	(200 MHz, $DMSO-d_6$), δ 1.66–1.76 (m, 3H), 4.50–4.58 (m, 2H), 5.60–5.99 (m, 2H), 7.11 (m, J_{AB} = 9.2Hz, 2H), 7.75 (m, J_{AB} = 9.2Hz, 2H), 8.19 (s, 1H), 9.17 (s, 1H).	70.7	20.0

化合物 703	N N N N N N N N N N N N N N N N N N N	(200 MHz, $DMSO-d_{\ell}$), δ 0.93 (s, 3H), 0.96 (s, 3H), 1.56–1.91 (m, 3H), 4.05 (t, $J=6.6$ Hz, 2H), 7.11 (m, $J_{AB}=9.2$ Hz, 2H), 7.75 (m, $J_{AB}=9.0$ Hz, 2H), 8.19 (s, 1H), 9.17 (s, 1H).	91.3	6.2
化合物 704	N.N.	(200 MHz, $DMSO-d_{\delta}$), δ 0.80–0.99 (m, 6H), 1.06–1.90 (m, 5H), 3.95–4.16 (m, 2H), 7.11 (m, $J_{AB}=9.2$ Hz, 2H), 7.75 (m, $J_{AB}=9.0$ Hz, 2H), 8.19 (s, 1H), mp 57.0–58.0 °C	94.0	4.4
化合物 705	N N N N N N N N N N N N N N N N N N N	δ 1.21 (t, $J = 7.0$ Hz, 3H), 2.08 (quint, $J = 6.2$ Hz, 2H), 3.52 (q, $J = 7.0$ Hz, 2H), 3.59 (t, $J = 6.2$ Hz, 2H), 4.12 (t, $J = 6.2$ Hz, 2H), 7.02 (m, $J_{AB} = 9.0$ Hz, 2H), 7.56 (m, $J_{AB} = 9.0$ Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H).	64.0	19.9
化合物 706	N N N N N N N N N N N N N N N N N N N	δ 2,53–2.63 (m, 2H), 4.07 (t, J = 6.6Hz, 2H), 5.11–5.25 (m, 2H), 5.92 (ddt, J = 6.6, 10.3, 17.1Hz, 1H), 7.02 (m, J_{AB} = 9.0Hz, 2H), 7.57 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H).	46.3	158.0
化合物 707		δ 1.70–1.78 (m, 2H), 1.92–1.99 (m, 2H), 1.98 (t, J = 2.6Hz, 1H), 2.30 (dt, J = 2.6, 6.8Hz, 2H), 4.05 (t, J = 6.2Hz, 2H), 7.01 (m, J_{AB} = 8.8Hz, 2H), 7.57 (m, J_{AB} = 8.8Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H).	70.6	7.6
化合物 708		δ 1.23–2.05 (m, 13H), 3.78 (d, J = 6.6Hz, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.55 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.45 (s, 1H).	83.3	6.7

化合物 709		δ 5.29 (s, 2H), 7.01–7.16 (m, 4H), 7.36 (dd, J = 1.3, 5.0Hz, 1H), 7.59 (m, J_{AB} = 8.8Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H).	68.0	25.8
化合物 710	N-N-N-S	δ 2.47 (s, 3H), 3.29 (t, J = 6.5Hz, 3H), 4.19 (t, J = 6.5Hz, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H), 8.62 (s, 1H).	81.1	1.7
化合物 711	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 3.35 (t, J = 6.8Hz, 2H), 4.25 (t, J = 6.8Hz, 2H), 6.93–7.00 (m, 2H), 7.03 (m, J_{AB} = 9.0Hz, 2H), 7.20 (m, 1H), 7.58 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H).	71.9	32.7
化合物 712	N-N O	δ 1.45–1.95 (m, 6H), 3.47–3.77 (m, 1H), 3.90–4.11 (m, 3H), 7.05 (m, J_{AB} = 9.0Hz, 2H), 7.57 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H).	46.4	102.0
化合物 713	S O O	δ 3.16 (t, J = 6.8Hz, 2H), 4.23 (t, J = 6.8Hz, 2H), 7.02 (m, J_{AB} = 9.2Hz, 2H), 7.04–7.12 (m, 2H), 7.29–7.33 (m, 1H), 7.57 (m, J_{AB} = 9.2Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H).	95.5	7.8
化合物 714	N'N'N'	δ 5.17 (s, 2H), 6.99–7.15 (m, 4H), 7.25 (m, 1H), 7.60 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.47 (s, 1H).	78.3	37.2

	2			i
化合物 715	S S	δ 5.14 (s, 2H), 7.08 (m, J_{AB} = 8.8Hz, 2H), 7.17 (dd, J = 1.8, 4.8Hz, 1H), 7.36–7.40 (m, 2H), 7.58 (m, J_{AB} = 8.8Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H). mp 128.0–130.0 °C	73.5	13.0
化合物 716	Z N	δ 5.16 (s, 2H), 7.08 (m, J_{AB} = 8.8Hz, 2H), 7.50–7.71 (m, 5H), 7.78 (s, 1H), 8.10 (s, 1H), 8.48 (s, 1H). mp 135.0–136.5 °C	77.9	6.3
化合物 717	N N N N N N N N N N N N N N N N N N N	δ 2.62 (m, 4H), 2.84 (t, J = 5.7Hz, 2H), 3.76 (m, 4H), 4.16 (t, J = 5.7Hz, 2H), 7.03 (m, J_{AB} = 9.0Hz, 2H), 7.58 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H). mp 96.0-97.0 °C	27.5	754.3
化合物 718	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	δ 5.15 (s, 2H), 7.00 (m, J_{AB} = 9.0Hz, 2H), 7.35 (dd, J = 4.8, 7.9Hz, 1H), 7.61 (m, J_{AB} = 9.0Hz, 2H), 7.78–7.82 (m, 1H), 8.10 (s, 1H), 8.47 (s, 1H), 8.62 (dd, J = 1.6, 4.8Hz, 1H), 8.72 (d, J = 1.8Hz, 1H).	9.09	49.6
化合物 719		$ ο'$ 2.19 (ddt, J = 6.2, 7.3, 8.1Hz, 2H), 2.86 (dd, J = 7.3, 8.1Hz, 2H), 4.02 (t, J = 6.2Hz, 2H), 7.00 (m, J_{AB} = 8.8Hz, 2H), 7.23 (dd, J = 5.1, 7.9Hz, 2H), 7.57 (m, J_{AB} = 8.8Hz, 2H), 7.56 (m, 1H), 8.09 (s, 1H), 8.46 (s, 1H), 8.46 (m, 2H). 8.52 (m, 2H).	81.2	15.4
化合物 720		δ 5.16 (s, 2H), 7.08 (m, J_{AB} = 9.0Hz, 2H), 7.38 (d, J = 5.5Hz, 2H), 7.61 (m, J_{AB} = 9.0Hz, 2H), 8.10 (s, 1H), 8.47 (s, 1H), 8.64–8.67 (m, 2H). mp 149.5–151.0 °C	56.4	78.2

化合物 721	Z-N N	δ 1.34–1.59 (m, 6H), 1.81 (m, 2H); 2.22 (s, 6H), 2.27 (t, J = 6.5Hz, 2H), 4.00 (t, J = 6.5Hz, 2H), 7.01 (m, J_{AB} = 9.0Hz, 2H), 7.56 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.45 (s, 1H).	63.7	29.3
化合物 722	N N N N N N N N N N N N N N N N N N N	δ 2.20 (ddt, J = 6.2, 7.3, 7.9Hz, 2H), 2.85 (dd, J = 7.3, 7.9Hz, 2H), 4.02 (t, J = 6.2Hz, 2H), 6.99 (m, J = 9.0Hz, 2H), 7.16 (d, J = 5.7Hz, 2H), 7.57 (m, J_{AB} = 9.0Hz, 2H), 8.09 (s, 1H), 8.46 (s, 1H), 8.53 (d, J = 5.7Hz, 2H). mp 150.5–152.0 °C	56.3	25.2
化合物 723	N O N	δ 4.23–4.35 (m, 4H), 6.18–6.20 (m, 2H), 6.77–6.79 (m, 2H), 6.98 (m, J_{AB} = 9.0Hz, 2H), 7.56 (m, J_{AB} = 9.0Hz, 2H), 8.08 (s, 1H), 8.45 (s, 1H). mp 90.0–91.5 °C	78.9	32.5
化合物 724	N-N-N-O	δ 0.99–1.91 (m, 11H), 1.20(d, J = 6.2Hz, 3H), 2.29 (s, 3H), 4.31–4.34 (m, 1H), 7.07–7.13 (m, 4H), 7.47 (m, J_{AB} = 8.4Hz, 2H), 7.72 (m, J_{AB} = 9.0Hz, 2H), 8.19 (s, 1H), 9.16 (s, 1H).	72.5	15.5
化合物 725	N-N-0 N-N-0 150H	$DMSO-d_{\it b}$, $\it \delta$ 0.88 (t, $\it J$ = 7.3Hz, 3H), 1.20–1.58 (m, 4H), 2.30 (s, 3H), 3.46 (t, $\it J$ = 6.4Hz, 2H), 3.66–3.76 (m, 2H), 4.15–4.20 (m, 2H), 7.08–7.18 (m, 4H), 7.50 (d, $\it J$ = 8.1Hz, 2H), 7.76 (m, $\it J_{AB}$ = 9.0Hz, 2H), 8.27 (s, 1H), 9.28 (s, 1H). mp 140.0–141.0 °C	49.7	127.8
化合物 726	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	$DMSO-d_{6}$, δ 1.43–1.83 (m, 4H), 2.03–2.18 (m, 2H), 2.29 (s, 3H), 4.04 (t, J = 6.4Hz, 2H), 4.93–5.10 (m, 2H), 5.83 (m, 1H), 7.05–7.16 (m, 4H), 7.43 (d, J = 8.1Hz, 2H), 7.75 (m, J_{AB} = 9.0Hz, 2H), 8.22 (s, 1H), 9.22 (s, 1H). mp 164.5–165.5 °C	79.9	4.9

化合物 727	N N N N N N N N N N N N N N N N N N N	$δ$ 0.93 (d, J = 6.2Hz, 3H), 1.57 (s, 3H), 1.65 (s, 3H), 1.91–1.98 (m, 2H), 2.29 (s, 3H), 4.06 (t, J = 6.8Hz, 2H), 5.10 (t, J = 7.3Hz, 1H), 7.07–7.14 (m, 4H), 7.48 (m, J_{AB} = 8.1Hz, 2H), 7.75 (m, J_{AB} = 9.0Hz, 2H), 8.22 (s, 1H), 9.21 (s, 1H).	80.7	10.9
化合物 728	N N O O O O O O O O O O O O O O O O O O	δ 0.89 (t, J = 6.8Hz, 3H), 1.27–1.46 (m, 6H), 1.66–1.76 (m, 2H), 2.29 (s, 3H), 4.02 (t, J = 6.5Hz, 2H), 7.06–7.14 (m, 4H), 7.49 (m, J_{AB} = 8.1Hz, 2H), 7.75 (m, J_{AB} = 9.0Hz, 2H), 8.21 (s, 1H), 9.20 (s, 1H),	78.9	4.7
化合物 729	N N O	δ 1.02 (d, J = 6.8Hz, 6H), 2.04 (m, 1H), 2.30 (s, 3H), 3.81 (d, J = 6.6Hz, 2H), 7.09–7.15 (m, 4H), 7.49 (m, J_{AB} = 7.9Hz, 2H), 7.76 (m, J_{AB} = 9.0Hz, 2H), 8.26 (s, 1H), 9.27 (s, 1H).	44.3	78.2
化合物 730	N N N O	δ 0.98 (s, 9H), 1.68 (t, $J=7.3$ Hz, 2H), 2.29 (s, 3H), 4.08 (t, $J=7.3$ Hz, 2H), 7.08–7.14 (m, 4H), 7.48 (m, $J_{AB}=8.1$ Hz, 2H), 7.75 (m, $J_{AB}=9.0$ Hz, 2H), 8.22 (s, 1H), 9.21 (s, 1H).	83.3	5.2
化合物 731	Ts0H VS-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	δ 1.57 (d, J = 0.9Hz, 3H), 1.63 (s, 3H), 1.76 (d, J = 1.1Hz, 3H), 2.08–2.29 (m, 4H), 2.30 (s, 3H), 4.58 (dd, J = 0.9, 6.7Hz, 2H), 5.13 (m, 1H), 5.47 (dd, J = 1.3, 6.7Hz, 1H), 7.07–7.16 (m, 4H), 7.49 (m, J_{AB} = 8.1Hz, 2H), 7.76 (m, J_{AB} = 9.2Hz, 2H), 8.28 (s, 1H), 9.28 (s, 1H), mp 215 $^{\circ}$ C (dec.)	71.6	11.8
化合物 732	N N N N N N N N N N N N N N N N N N N	$DMSO-d_{\delta},~~\delta~~2.09-2.20~(m, 2H), 3.94~(t,~~J=6.1Hz, 2H), 4.07~(t,~~J=7.0Hz, 2H), 5.98~(t,~~J=2.2Hz, 2H), 6.76~(t,~~J=2.2Hz, 2H), 7.10~(m,~~J_{AB}=9.2Hz, 2H), 7.76~(m,~~J_{AB}=9.2Hz, 2H), 8.24~(s,~1H), 9.24~(s,~1H).$	75.7	38.0

化合物 733	N N N N N N N N N N N N N N N N N N N	δ 2.29 (s, 3H), 3.85 (d, J = 2.2Hz, 1H), 6.32 (d, J = 2.2Hz, 1H), 7.13 (d, J = 7.9Hz, 2H), 7.28 (m, J_{AB} = 9.2Hz, 2H), 7.42-7.55 (m, 5H), 7.60-7.65 (m, 2H), 7.80 (m, J_{AB} = 9.2Hz, 2H), 8.27 (s, 1H), 9.27 (s, 1H).	79.0	. 22.6
化合物 734	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	δ 1.00 (t, $J = 7.4$ Hz, 3H), 1.43–1.61 (m, 2H), 1.74–1.88 (m, 2H), 4.02 (t, $J = 6.5$ Hz, 2H), 7.01 (m, $J_{AB} = 9.0$ Hz, 2H), 7.56 (m, $J_{AB} = 9.0$ Hz, 2H), 8.09 (s, 1H), 8.45 (s,1H).	62.0	60.2
化合物 735	O N N O SHCI	(200 MHz, $DMSO-d_{\delta}$), δ 1.21 (t, $J=7.0$ Hz, 3H), 3.06–3.64 (m, 8H), 4.00–4.14 (m, 4H), 4.48 (t, $J=4.8$ Hz, 2H), 7.19 (m, $J_{AB}=9.2$ Hz, 2H), 7.81 (m, $J_{AB}=9.2$ Hz, 2H), 8.21 (s, 1H), 9.21 (s, 1H).		>300.0
化合物 736	S O	mp 71.0-72.0 °C		>1000
化合物 737	S N=N	mp 82.0-83.0 °С		1417.8
化合物 738	Z ^N ZH	mp 198.5–200.0 °C		>1,000

化合物 739	N'N O	mp 97.5–98.5 °С	>1,000
化合物 740	N O	mp 81.5-82.5 °C	>1,000
化合物 741		 mp 47.0–48.5 °C	>1,000
化合物 742	N O	mp 72.0-74.5 °C	82.1
化合物 743	-2HCI	mp 204.0-204.5 °С (dec.)	15.5
化合物 744		mp 58.5–59.5 °C	704.3

化合物 745	HDS1	Control	36	30.8
化合物 746	~ Charles and the charles are charles and the charles are charles	mp 204.5-207.0 °C	, <u>, , , , , , , , , , , , , , , , , , </u>	>300.0
化合物 747	No.	mp 75.0–76.5 °C	φ	61.4
化合物 748	N-S N-S	тр 200.0-201.5 °C	*	>316
化合物 749	N-S	mp 99,5–101.0 °C	.,,	24
化合物 750	N-S O	mp 113.0–114,5 °C	2	21.9

化合物 751	N-S N N N N N N N N N N N N N N N N N N	mp 216,0-217.0 °C	# 1.1
化合物 752	S-N SHCI	$DMSO-d_{6}$, δ 1.21 (t, $J=7.1$ Hz, 3H), 2.26 (s, 3H), 3.08-3.44 (m, 4H), 3.51-3.66 (m, 4H), 4.03-4.24 (m, 4H), 4.44-4.54 (m, 2H), 7.08 (d, $J=9.2$ Hz, 1H), 7.56-7.64 (m, 2H), 7.70 (d, $J=1.7$ Hz, 1H), 8.55 (d, $J=1.9$ Hz, 1H).	
化合物 753	S-N N-O-N-O-N 3HCI	mp 169.0–180.0 °C	
化合物 754	N-NH O N O SHCI	mp 130.0-160.0 °C	
化合物 755	H200~H200	mp 175.0-177.0 °C	
化合物 756	N-NH H ² OO H ² OO O	mp 166.0-167.0 °C	

化合物 757	N-NH HOO HOO	mp 135.0–139.0 °C
化合物 758	N-NH W-N-OO-H-OO-	mp 111.0-113.0 °C
. 化合物 759		mp 176.0-177.0 °C
化合物 760	N-NH HOP N	mp 150.5–151.0 °C
化合物 761	HN-N N N N N N N N N TsOH	mp 145.0-146.5 °C
化合物 762	HyPO4 HN-N	測定不能

化合物 763	ぞ 子	mp 176.5–177.5 °C	
化合物 764	N-NH HOS	mp 196.5–197.5 °C	
化合物 765	W-NH-OS ON	mp 198.0–199.0 °C	
化合物 766	H ₃ PO ₄ HN-N	mp 209.0-210.5 °C.	
化合物 767	N-O-N	mp 46.0-49.0 °C	>316
化合物 768	N-O NO NO	mp 112.5–113.5 °C (dec.)	86

化合物 769	N-0 N	тр 88.0–89.5 °С	111.1
化合物 770	N-0 N O N	тр 60.0-62.0 °C	>316
化合物 771		mp 52.0–52.5 °C	>1,000
化合物 772		mp 195.0–197.0 °C (dec.)	53
化合物 773		mp 57.5–59.0 °C	6.3
化合物 774	HN NO	mp 120.0-122.0 °C	

	L N		
化合物 775			
		mp 172.0-173.0°C	
化合物 776	N-O	mp 77.5–79.0°C	
化合物 777	N-N O	mp 57.0–59.5°С	
化合物 778	N-0	mp 34.5-35.5°С	
化合物 779	N-O	mp 71.0–72.0°C	
化合物 780	N-O N-O	mp 161.0–162.0°C	

化合物 781	N-O N	mp 143.5–144.5°C
化合物 782	N-0	mp 69.0-70.5°C
化合物 783	N-0 ()	mp 93.0-94.0°C
化合物 784	N-O S	mp 76.0–78.0°C
化合物 785	0-N	mp 100.0–102.0°C
化合物 786	0.N	mp 118.5–119.0°С

化合物 787	HCI OCT	mp 172.0174.0°C (dec)	
化合物 788	N-O N	тр 84.0−89.0°C	
化合物 789	N-0 N-O-N-	mp 184.0–188.0 °С (dec)	
化合物 790	N-O O-N	тр 88.0–89.0°C	
化合物 791	N-0 () ()	тр 80.0−81.5°С	_
化合物 792	N-0 SN	mp 94.0–95.5°С	

	E		
化合物 793)	mp 158.0–160.0°C (dec.)	
化合物 794	N. JO CHO	mp 156.0–158.0°C	
化合物 795	N-0	тр 160.0−164.0°C	
化合物 796	(N-0	mp 86.5−88.0°C	
化合物 797	N-O N N N	mp 94.5–96.0°С	
化合物 798	HCI O-N	mp 149.0–153.0°C	

化合物 799	N-O-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	mp 105.0–109.0°C (dec.)
化合物 800	6-N	mp 100.0−103.0°C (dec.)
化合物 801	0-N (N-0	mp 71.0-75.0°C
化合物 802	O HOI O'N	mp 202.0204.0°С (dec)
化合物 803	TO PACI CHI	mp 196.0–198.0 °C
化合物 804	HN-N HCI N-NO N-NO	mp 163.0–165.0 °C

対照化合物1	x-0		0,1<	000'1
	> 0<	J. Org. Chem., 45 (1980) 4857. mp 62.0-64.0 °C		

試験例[ヒト腎ミクロソーム由来 20-HETE 産生酵素の阻害作用] 上記表記載の化合物について、20-HETE 産生阻害作用を試験した。

本試験は J. Pharmacol. Exp. Ther., 第268巻, 474頁, 1994年に記載の方法に準拠して行った。

DMS0で 1μ Mに調製した被験薬溶液を、 $5\,m$ Mの塩化マグネシウム及び $1\,m$ Mのエチレンジアミンテトラアセティックアシッド ジソディウムソルト(EDTA)を含む $5\,0\,m$ Mの $3\,-$ モルホリノプロパンスルホン酸 (MOPS) ($p\,H\,7.4$) 緩衝液に加え、酵素源としてヒト腎ミクロソーム画分 (Human Cell Culture Center, Anatomic Gift Foundation)、基質として[5,6,8,9,11,12,14,15]トリチウムーアラキドン酸、そして補酵素としてNADPHを添加し、 $3\,7\,$ 度で $1.5\,$ 時間反応させた。反応液にギ酸を添加して反応を停止させた後、アセトニトリル (終濃度 $5\,$ 0%)を加えた。ODSカラム (バイオシルC $1\,8$, バイオラッド社製)を装着した放射性物質検出器付き高速液体クロマトグラフィーを用いて $20\,-$ HETE の産生量を測定した。

化合物無添加時の 20-HETE の産生量を100%とし、化合物を添加した時の20-HETE 産生量から、抑制率(%)を算出した。その結果を上記表に併せて示した。

また、化合物無添加時の 20-HETE の産生量を100%とし、化合物を添加した時の 20-HETE 産生が50%阻害される化合物濃度(IC_{50} 値)も算出した。その結果についても上記表に併せて示した。

産業上の利用可能性

本発明に係る化合物は20-HETE産生阻害作用を有し、ヒト及び動物における20-HETEが関わる疾病、例えば各種腎疾患、脳血管疾患、各種循環器疾患治療薬として有用である。

請求の範囲

1. 式

$$R^3$$
 $(R^2)_n$

 ${式中、Yは炭素原子又は窒素原子であり、<math>R^1$ は式

$$Q^{2} = Q^{3}$$
 $Q^{5} \cdot Q^{4}$

[式中、 $Q^1 \sim Q^5$ のうち少なくとも1個は窒素原子であり、その他は炭素原子、窒素原子、酸素原子又は硫黄原子であり、Eは水素原子又は C_{1-4} アルキル基である。]で表されるヘテロ環基又は式

[式中、 $Q^6 \sim Q^{10}$ のうち1又は2個は窒素原子であり、その他は炭素原子である。] で表されるヘテロ環基であり、

R 2 は水素原子、C $_{1-4}$ アルキル基、C $_{1-4}$ アルコキシ基又はハロゲン原子であり、 n は 1 ~ 4 の整数であり、

R³はモルホリノ基、

ピロリジノ基、

 $4-C_{1-6}$ アルコキシカルボニルピペラジン-1-イループロピル基、

C3-14アルコキシ基、

 $1 \sim 6$ 個のハロゲン原子で置換された C_{2-14} アルコキシ基、

C₃₋₁₀シクロアルコキシ基、

C2-14アルケニルオキシ基、

C3-14アルキニルオキシ基、

1-フェニル-2-プロピニルオキシ基

ビス (N, N-ジメチルアミノメチル) メトキシ基、

式 R⁴-A-O-

[式中、

AはC₁₋₁₀アルキレン基であり、

R⁴はC₃₋₁₀シクロアルキル基、

 C_{1-6} アルキル基で置換された C_{3-10} シクロアルキル基、・

 C_{1-6} アルコキシ C_{1-6} アルコキシ基、

C1-10アルコキシ基、

C2-10アルケニルオキシ基、

C2-14アルカノイル基、

オキソラニル基、

ジオキソラニル基、

C₁₋₆アルキル基で置換されたジオキソラニル基、

オキサニル基、

ジオキサニル基、

C₁₋₆アルキル基で置換されたジオキサニル基、

オキセタニル基、

C1-6アルキル基で置換されたオキセタニル基、

ベンゾジオキサニル基、

C₁₋₆アルキルチオ基、

С4-10シクロアルケニル基、

 C_{1-6} アルキル基で置換された C_{4-10} シクロアルケニル基、

ピシクロ[2.2.1] ヘプタン-2-イル基、

N, N-ジC:1-6アルキルアミノC:1-6アルコキシ基、

ピロリル基、

フリル基、

チエニル基、

2-オキソピロリジン-1-イル基、

ジヒドロピラニル基、

カルパゾリル基、

C2-6アルコキシカルボニル基、

ピロリジニル基、

C1-6アルキル基で置換されたピロリジニル基、

ピペリジル基、

C₁₋₆アルキル基で置換されたピペリジル基、

4-カルポキシピペリジノカルボニル基、

ピリジル基、

「 C_{1-6} アルキル基、 C_{2-6} アルコキシカルボニル基、カルバモイル基、ヒドロキシメチル基、 $N,N-\Im C_{1-6}$ アルキルアミノ C_{1-6} アルキル基、4-エトキシカルボニルピペラジノメチル基又はピペリジノメチル基」で置換されたピリジル基、

2-ピリジルオキシ基、

フェニル基、

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲン原子、フェニルエチル基、フェノキシ基、シアノ基、メチルチオ基及VN, Nージメチルアミノ基」から選ばれる基で置換されたフェニル基、チアゾリル基、

C1-6アルキル基で置換されたチアソリル基、

アミノ基、

N, N-ジC, -6アルキルアミノ基、

アニリノ基、

 $N-C_{1-6}$ アルキルアニリノ基(当該アニリノ基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換されてもよい。)、ベンジルアミノ基、

 $N-C_{1-6}$ アルキル-N-ペンジルアミノ基(当該ペンジル基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換されてもよい。)、

N, N-ジC₁₋₆アルキルアミノC₁₋₆アルコキシC₁₋₆アルキルアミノ基、

アジリジン-1-イル基、

モルホリノ基、

C₁₋₆アルキル基で置換されたモルホリノ基、

ピペリジノ基、

ペルヒドロアゾシン-1-イル基、

ペルヒドロアゼピン-1-イル基、

イミダゾリンー2-オン-1-イル基、

オキサゾリジン-3-イル基、

1-C1-6アルキルー2ーオキソピペラジンー4ーイル基、

フェノキシ基、

オキサゾリル基、

ビフェニル基、

フェニルチオ基

N-メチルインドール-3-イル基、

ベンゾ[1,2,5]オキサジアゾール基、

2-ピラジル基、

ピリミジル基又は

C₁₋₆アルキル基で置換されたピリミジル基である。]で表される基

又は式

[式中、

Aは前記と同意義であり、

R⁵は水素原子、

C1-6アルキル基、

ヒドロキシエチル基、

オキソラニルメチル基、

ピリジルメチル基、

2-(ピロリジン-1-イル)エチル基、

C 3-8シクロアルキル C 1-6 アルキル基、

N, N-ジC₁₋₄アルキルアミノC₁₋₄アルキル基、

C,-6アルコキシカルボニル基、

C,_。シクロアルキルカルボニル基、

4-メトキシシクロヘキシルカルボニル基、

N-アセチルピペリジン-4-イル-カルポニル基、

N-メチルピペリジン-4-イルーカルボニル基、

オキソラニルカルポニル基、

N-Вос-ピロリジン-2-イルーカルポニル基、

C。_,,アルカノイル基、

「 $1\sim6$ 個のハロゲン原子、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、ピペリジノ基、アセチル基、シアノ基、N,N-ジ C_{1-4} アルキルアミノ基又は4-オキソー2-チオキソチア**ゾ**リジンー

- 3-イル基」で置換されたC2-6アルカノイル基、
- 3-(4-メチルシクロヘキシル)プロピオニル基、
- 2-(2-オキソピロリジン-1-イル)アセチル基、
- 3-メチル-2-プテノイル基、

カルバモイル基、

「С1-6アルキル基又はС3-8シクロアルキル基」で置換されたカ

ルパモイル基、

ベンジル基、

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基及びハロゲン原子」から 選ばれる基で置換されたベンジル基、

ベンジルスルホニル基又は

 C_{1-6} アルキルスルホニル基である。] で表される基である。} で表されるヘテロ環誘導体又はその製薬学的に許容される塩を有効成分として含むことを特徴とする 2 0-HETE 産生酵素阻害剤。

2. R^1 が下記式で示されるヘテロ環基(当該ヘテロ環基は C_{1-4} アルキル基で置換されていてもよい。)である請求の範囲 1 記載のヘテロ環誘導体又はその製薬学的に許容される塩を有効成分として含むことを特徴とする 20-HETE 産生酵素阻害剤。

3. 式

nは1~4の整数であり、

R¹¹は水素原子又はC₁₋₄アルキル基であり、

R¹³はモルホリノ基

 C_{3-10} シクロアルコキシ基、

1-フェニル-2-プロピニルオキシ基、

式 R¹⁴-A-O-

[式中、

AはC,_,oアルキレン基であり、

R¹⁴はC₃₋₁₀シクロアルキル基、

C1-10アルコキシ基、

 C_{1-6} アルコキシ C_{1-6} アルコキシ基、

C2-14アルカノイル基、

ジオキソラニル基、

C1-6アルキル基で置換されたジオキソラニル基、

オキサニル基、

ジオキサニル基、

C1-6アルキル基で置換されたジオキサニル基、

ベンゾジオキサニル基、

C1-6アルキルチオ基、

ビシクロ[2.2.1] ヘプタン-2-イル基、

 $N, N-ジC_{1-6}$ アルキルアミノ C_{1-6} アルコキシ基、

ピロリル基、

フリル基、

チエニル基又は

2-オキソピロリジン-1-イル基である。] で表される基又は

式

[式中、

Aは前記と同意義であり、

R 15 は水素原子、

C1-6アルキル基、

ヒドロキシエチル基、

オキソラニルメチル基、

ピリジルメチル基、

2-(ピロリジン-1-イル) エチル基、

C3-8シクロアルキルC1-6アルキル基、

N, N-ジC₁₋₄アルキルアミノC₁₋₄アルキル基、

C,_6アルコキシカルポニル基、

C,_,シクロアルキルカルボニル基、

4-メトキシシクロヘキシルカルボニル基、

N-アセチルピペリジン-4-イル-カルポニル基、

N-メチルピペリジン-4-イル-カルポニル基、

オキソラニルカルポニル基、

N-Boc-ピロリジン-2-イル-カルボニル基、

C2-14アルカノイル基、

「 $1\sim6$ 個のハロゲン原子、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、ピペリジノ基、アセチル基、シアノ基、N,N-ジ C_{1-4} アルキルアミノ基又は4-オキソー2-チオキソチアゾリジンー3-

イル基」で置換されたC2-6アルカノイル基、

3-(4-メチルシクロヘキシル)プロピオニル基、

2-(2-オキソピロリジン-1-イル)アセチル基、

3-メチル-2-プテノイル基、

カルバモイル基、

「 C_{1-6} アルキル基又は C_{3-8} シクロアルキル基」で置換されたカルバモイル基、

ベンジルスルホニル基又は

C₁₋₆アルキルスルホニル基である。] で表される基である。}

で表されるイミダゾール誘導体又はその製薬学的に許容される塩。

4. R¹³が式

で表される基である請求の範囲3記載のイミダゾール誘導体又はその製薬学的に 許容される塩。

5. R^{15} が C_{2-6} アルコキシカルボニル基、 C_{2-14} アルカノイル基、「 $1\sim 6$ 個のハロゲン原子又は C_{3-8} シクロアルキル基」で置換された C_{2-6} アルカノイル基、 C_{3-8} シクロアルキル C_{2-6} アルキル基又はオキソラニルメチル基である請求の範囲 4 記載のイミダゾール誘導体又はその製薬学的に許容される塩。

6. 式、

{式中、R²³は、

 C_{1-14} アルコキシ基、

WO 03/022821 PCT/JP02/09054

 $1 \sim 6$ 個のハロゲン原子で置換された C_{2-14} アルコキシ基、

 C_{3-10} シクロアルコキシ基、

C2-14アルケニルオキシ基、

C3-14アルキニルオキシ基、

式 R²⁴-A-O-

[式中、Aは C_{1-10} アルキレン基であり、

 R^{24} は C_{3-10} シクロアルキル基、

 C_{1-6} アルキル基で置換された C_{3-10} シクロアルキル基、

C1-10アルコキシ基、

 C_{1-6} アルコキシ C_{1-6} アルコキシ基、

C₂₋₁₀アルケニルオキシ基、

C2-14アルカノイル基、

オキソラニル基、

ジオキソラニル基、

C₁₋₆アルキル基で置換されたジオキソラニル基、

オキサニル基、

ジオキサニル基、

オキセタニル基、

C1-6アルキル基で置換されたオキセタニル基、

C1-6アルキルチオ基、

C4-10シクロアルケニル基、

C₁₋₆アルキル基で置換されたC₄₋₁₀シクロアルケニル基、

N, N-ジC₁₋₆アルキルアミノC₁₋₆アルコキシ基、

ピロリル基、

ピリジル基、

カルバゾリル基、

C2-6アルコキシカルボニル基、

ピロリジニル基、

C1-6アルキル基で置換されたピロリジニル基、

ピペリジル基、

C₁₋₆アルキル基で置換されたピペリジル基、

フェニル基、

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲン原子、フェニルエチル基、フェノキシ基、シアノ基、メチルチオ基及びN、N-ジメチルアミノ基」から選ばれる基の1又は2個で置換されたフェニル基、

アミノ基、

 $N, N-ジC_{1-6}$ アルキルアミノ基、

アニリノ基、

 $N-C_{1-6}$ アルキルアニリノ基(当該アニリノ基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換されてもよい。)、

ベンジルアミノ基、

 $N-C_{1-6}$ アルキルーN-ペンジルアミノ基(当該ペンジル基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換 されてもよい。)、

 $N, N-ジC_{1-6}$ アルキルアミノ C_{1-6} アルコキシ C_{1-6} アルキルアミノ基、

モルホリノ基、

C,-6アルキル基で置換されたモルホリノ基、

ペルヒドロアゾシン-1-イル基、

ペルヒドロアゼピン-1-イル基、

2-オキソピロリジン-1-イル基]で表される基又は

尤

[式中、

Aは前記と同意義であり、

R 15 は水素原子、

C1-6アルキル基、

ヒドロキシエチル基、

オキソラニルメチル基、

ピリジルメチル基、

2- (ピロリジン-1-イル) エチル基、

C3-8シクロアルキルC1-6アルキル基、

 $N, N-ジC_{1-4}$ アルキルアミノ C_{1-4} アルキル基、

C2-6アルコキシカルポニル基、

C₃₋₈シクロアルキルカルポニル基、

4-メトキシシクロヘキシルカルボニル基、

N-アセチルピペリジン-4-イル-カルボニル基、

N-メチルピペリジン-4-イルーカルボニル基、

オキソラニルカルポニル基、

N-Вос-ピロリジン-2-イルーカルボニル基、

C₂₋₁₄アルカノイル基、

「 $1\sim 6$ 個のハロゲン原子、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、ピペリジノ基、アセチル基、シアノ基、N,N-ジ C_{1-4} アルキルアミノ基又は4-オキソー2-チオキソチアゾリジンー3-イル基」で置換された C_{2-6} アルカノイル基、

3- (4-メチルシクロヘキシル)プロピオニル基、

2-(2-オキソピロリジン-1-イル)アセチル基、

3-メチル-2-プテノイル基、

カルバモイル基、

「 C_{1-6} アルキル基又は C_{3-8} シクロアルキル基」で置換されたカルバモイル基、

ベンジルスルホニル基又は

· C₁₋₆アルキルスルホニル基である。] で表される基である。}

で表されるイミダゾール-1-イルーピリジン誘導体又はその製薬学的に許容される塩。

7. R²³が式

で表される基である請求の範囲 6 記載のイミダゾールー 1 ーイルーピリジン誘導 体又はその製薬学的に許容される塩。

8. R^{15} が C_{2-6} アルコキシカルボニル基、 C_{2-14} アルカノイル基、「 $1\sim6$ 個のハロゲン原子又は C_{3-8} シクロアルキル基」で置換された C_{2-6} アルカノイル基、 C_{3-8} シクロアルキル C_{2-6} アルキル基、オキソラニルメチル基である請求の範囲 7 記載のイミダゾールー 1 ーイルーピリジン誘導体又はその製薬学的に許容される塩。

9. 式

$$R^{33}$$
 $(R^2)_n$

{式中、Yは炭素原子又は窒素原子であり、

 R^2 は水素原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基又はハロゲン原子であり、n は $1\sim4$ の整数であり、

 R^{31} は C_{1-4} アルキル基で置換されてもよいピラゾール-3-イル基、イソオキサゾール-5-イル基、イソチアゾール-5-イル基、1,2,4-トリアゾール-1-イル基、ピラジン-2-イル基であり、

 R^{33} は $4-C_{1-6}$ アルコキシカルボニルピペラジン-1-イループロピル基、

 $1 \sim 6$ 個のハロゲン原子で置換された C_{2-14} アルコキシ基、

C₃₋₁₀シクロアルコキシ基、

_{、C2-14}アルケニルオキシ基、

C3-14アルキニルオキシ基、

1-フェニル-2-プロピニルオキシ基

ビス (N, N-ジメチルアミノメチル) メトキシ基、

式 R³⁴-A-O-

[式中、

AはC₁₋₁₀アルキレン基であり、

R³⁴はC₃₋₁₀シクロアルキル基、

 C_{1-6} アルキル基で置換された C_{3-10} シクロアルキル基、

C,-,,アルコキシ基、

 C_{-6} アルコキシ C_{1-6} アルコキシ基、

C2-10アルケニルオキシ基、

C2-10アルカノイル基、

オキソラニル基、

ジオキソラニル基、

C1-6アルキル基で置換されたジオキソラニル基、

オキサニル基、

ジオキサニル基、

C₁₋₆アルキル基で置換されたジオキサニル基、

オキセタニル基、

C1-6アルキル基で置換されたオキセタニル基、

ペンゾジオキサニル基、

C₁₋₆アルキルチオ基、

С4-10シクロアルケニル基、

 C_{1-6} アルキル基で置換された C_{4-10} シクロアルケニル基、

N, N-ジC1-6アルキルアミノC1-6アルコキシ基、

ビシクロ[2.2.1] ヘプタン-2-イル基、

ピロリル基、

フリル基、

チエニル基、

ピリジル基、

「 C_{1-6} アルキル基、 C_{2-6} アルコキシカルボニル基、カルバモイル基、ヒドロキシメチル基、N, N - ジ C_{1-6} アルキルアミノ C_{1-6} アルキル基、4-エトキシカルボニルピペラジノメチル基又はピペリジノメチル基」で置換されたピリジル基、

2-ピリジルオキシ基、

カルパゾリル基、

C2-6アルコキシカルボニル基、

ピロリジニル基、

 C_{1-6} アルキル基で置換されたピロリジニル基、

ピペリジル基、

C₁₋₆アルキル基で置換されたピペリジル基、

フェニル基、

「 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲン原子、フェニルエチル基、フェノキシ基、シアノ基、メチルチオ基及びN,N-ジメチルアミノ基、」から選ばれる基の1又は2個で置換されたフェニル基、

アミノ基、

N, N-ジC1-6アルキルアミノ基、

アニリノ基、

 $N-C_{1-6}$ アルキルアニリノ基(当該アニリノ基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換されてもよい。)、 ベンジルアミノ基、

 $N-C_{1-6}$ アルキルーN-ベンジルアミノ基(当該ベンジル基は C_{1-6} アルキル基、 C_{1-6} アルコキシ基又はハロゲン原子で置換されてもよい。)、

モルホリノ基、

C₁₋₆アルキル基で置換されたモルホリノ基、

ペルヒドロアゾシン-1-イル基、

ペルヒドロアゼピン-1-イル基、

2-オキソピロリジン-1-イル基、

4-カルボキシピペリジノカルボニル基、

N, N-ジC₁₋₆アルキルアミノC₁₋₆アルコキシC₁₋₆アルキルアミノ基、

アジリジンー1ーイル基、

1-C1-6アルキル-2-オキソピペラジン-4-イル基、

「カルボキシル基、モルホリノカルボニル基、ピロリジン-1-イルーカルボニル基、ピペリジノカルボニル基、 C_{1-6} アルキル基で置換されたカルバモイル基、ピペリジノメチル基、ピロリジン-1-イルーメチル基、モルホリノメチル基又はN, N-ジ C_{1-6} アルキルアミノ C_{1-6} アルキル基」で置換されたピペリジノ基、

イミダゾリン-2-オン-1-イル基又は

オキサゾリジン-1-イル基である。] で表される基又は

大

[式中、

Aは前記と同意義であり、

R 15 は水素原子、

C,_6アルキル基、

ヒドロキシエチル基、

オキソラニルメチル基、

ピリジルメチル基、

2- (ピロリジン-1-イル) エチル基、

C3-8シクロアルキルC1-6アルキル基、

 $N, N-ジC_{1-4}$ アルキルアミノ C_{1-4} アルキル基、

C2-6アルコキシカルボニル基、

С3-8シクロアルキルカルボニル基、

4-メトキシシクロヘキシルカルポニル基、

N-アセチルピペリジン-4-イルーカルポニル基、

N-メチルピペリジン-4-イル-カルポニル基、

オキソラニルカルボニル基、

N-Boc-ピロリジン-2-イルーカルボニル基、

C₂₋₁₄アルカノイル基、

「 $1\sim 6$ 個のハロゲン原子、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基、ピペリジノ基、アセチル基、シアノ基、N,N-ジ C_{1-4} アルキルアミノ基又は4-オキソー2-チオキソチアゾリジンー3-イル基」で置換された C_{2-6} アルカノイル基、

- 3-(4-メチルシクロヘキシル)プロピオニル基、
- 2-(2-オキソピロリジン-1-イル)アセチル基、
- 3-メチルー2-プテノイル基、

カルパモイル基、

「 C_{1-6} アルキル基又は C_{3-8} シクロアルキル基」で置換されたカルバモイル基、

ベンジルスルホニル基又は

 C_{1-6} アルキルスルホニル基である。] で表される基である。] で表されるアゾール誘導体又はその製薬学的に許容される塩。

10. Yが炭素原子であり、R33が式

で表される基である請求の範囲9記載のアゾール誘導体又はその製薬学的に許容される塩。

11. Yが炭素原子であり、R³¹がピラゾール-3-イル基であり、R³³が式

で表される基である請求の範囲9記載のアゾール誘導体又はその製薬学的に許容される塩。

- 12. R^{15} が C_{2-6} アルコキシカルボニル基、 C_{2-14} アルカノイル基、「 $1\sim 6$ 個のハロゲン原子又は C_{3-8} シクロアルキル基」で置換された C_{2-6} アルカノイル基、 C_{3-8} シクロアルキル C_{2-6} アルキル基又はオキソラニルメチル基である請求の範囲 1 0 又は 1 1 記載のアゾール誘導体又はその製薬学的に許容される塩。
- 13. 以下の化合物群から選ばれるヘテロ環誘導体又はその製薬学的に許容される塩。

エチル 4-[2-(4-イソオキサゾール-5-イルーフェノキシ) エチル] ピペラジン-1-カルポキシレート

エチル $4 - \{2 - [4 - (2H - ピラゾール - 3 - 1 - 1 - 1)]$ エチル $\{2 - [4 - (2H - ピラゾール - 3 - 1 - 1)]$ エチル $\{2 - [4 - (2H - ピラゾール - 3 - 1)]$ エチール $\{2 - [4 - (2H - ピラゾール - 3 - 1)]$ エチール $\{2 - [4 - (2H - ピラゾール - 3 - 1)]\}$

エチル 4-{2-[2-メチル-4-(2H-ピラゾール-3-イル)フェ ノキシ] エチル} ピペラジン-1-カルポキシレート

1-(4-{2-[4-(2H-ピラゾール-3-イル) フェノキシ] エチル} ピペラジン-1-イル) -ブタン-1-オン

1-(4-{2-[4-(2H-ピラゾール-3-イル) フェノキシ] エチル} ピペラジン-1-イル) エタノン 2 1 5

1- [4-(4-{2-[4-(2H-ピラゾール-3-イル) フェノキシ] エチル} ピペラジン-1-カルボニル) ピペリジン-1-イル] エタノン

4,4,4-トリフルオロー1-(4-{2-[4-(2H-ピラゾールー3-イル) フェノキシ] エチル} ピペラジン-1-イル) プタン-1-オン

2-シクロプロピル $-1-(4-\{2-[4-(2H-ピラゾール-3-イル)$ フェノキシ] エチル $\}$ ピペラジン-1-イル) エタノン

 $4-\{2-[4-(2H-ピラゾール-3-イル)]$ フェノキシ] エチル} ピペラジンー 1-カルボキシリックアシッド シクロペンチルアミド

3-メチル-1-(4-{2-[4-(2H-ピラゾール-3-イル) フェノ キシ] エチル} ピペラジン-1-イル) -2-プテン-1-オン

シクロプロピルー $(4 - \{2 - [4 - (2H - ピラゾール - 3 - 4 - 4 - 4 - 4]\})$ エチル $\{2 - [4 - (2H - ピラゾール - 3 - 4 - 4 - 4]\}$

1-(4-{2-[4-(2H-ピラゾール-3-イル) フェノキシ] エチル} ピペラジン-1-イル) ヘキサン-1-オン

4-{2-[4-(2H-ピラゾール-3-イル) フェノキシ] エチル} ピペ ラジン-1-カルボキシリックアシッド プチルアミド

 $1-シクロヘキシルメチル-4-\{2-[4-(2H-ピラゾール-3-イル) フェノキシ] エチル\} ピペラジン$

1-{2-[4-(2H-ピラゾール-3-イル)フェノキシ]エチル}-4-(テトラヒドローフラン-3-イルメチル)ピペラジン

3- [2-オキソ-2-(4-{2-[4-(2H-ピラゾール-3-イル) フェノキシ] エチル} ピペラジン-1-イル) エチル] -2-チオキソーチアゾ リジン-4-オン

1- [2-オキソ-2-(4-{2-[4-(2H-ピラゾール-3-イル) フェノキシ] エチル] ピペラジン-1-イル) エチル] ピロリジン-2-オン

エチル 4- [2-(4-イミダゾール-1-イルーフェノキシ) エチル] ピペラジン-1-カルボキシレート

エチル 4- [2-(4-イソチアゾール-5-イル-フェノキシ) エチル] ピペラジン-1-カルボキシレート

エチル 4-[2-(4-ピラジン-2-イル-フェノキシ) エチル] ピペラ ジン-1-カルボキシレート

エチル 4-[2-(5-イソオキサゾール-5-イルーピリジン-2-イル オキシ)エチル] ピペラジン-1-カルボキシレート

エチル 4- {2-[5-(2H-ピラゾール-3-イル) ピリジン-2-イ

ルオキシ] エチル} ピペラジン-1-カルボキシレート

- 14. 請求の範囲3~13のいずれか記載の化合物又はその製薬学的に許容される塩を有効成分とする医薬。
- 15. 20-HETE産生酵素阻害剤である請求の範囲14記載の医薬。
- 16. 腎疾患、脳血管疾患又は循環器疾患治療薬である請求の範囲14記載の医薬。

INTERNATIONAL SEARCH REPORT

Internation application No.
PCT/JP02/09054

Int.	SIFICATION OF SUBJECT MATTER C17 C07D231/12, 261/08, 401/0 405/14, 409/12, 413/12, 41 31/42, 31/422, 31/4439, 3 to International Patent Classification (IPC) or to both n	l3/14, 417/12, 417/14, A 1/454, 31/496, 31/5377,	61K31/395,	
B. FIELD	S SEARCHED			
	ocumentation searched (classification system followed	by classification symbols)		
Int.	Cl ⁷ C07D, A61K, A61P			
Documenta	tion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched	
	lata base consulted during the international search (name of the later		rch terms used)	
CAPI	.US(STN), REGISTRY(STN), WPIL(C	OF21FT)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	opropriate, of the relevant passages	Relevant to claim No.	
P,A	WO 01/68610 A1 (Taisho Pharm 20 September, 2001 (20.09.01 Claims (Family: none)		1-16	
P,A	WO 01/96309 A1 (Taisho Pharm 20 December, 2001 (20.12.01) Claims (Family: none)		1-16	
P,A	JP 2001-354658 A (Taisho Phan 25 December, 2001 (25.12.01), Claims (Family: none)		1-16	
X Furthe	er documents are listed in the continuation of Box C.	See patent family annex.		
Special categories of cited documents: "A" document defining the gracial state of the art which is not		"T" later document published after the inte		
	ent defining the general state of the art which is not red to be of particular relevance	priority date and not in conflict with the understand the principle or theory und		
"B" carlier	document but published on or after the international filing	"X" document of particular relevance; the	laimed invention cannot be	
	ent which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone		
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other		document of particular relevance; the considered to involve an inventive step	when the document is	
"O" document referring to an oral disclosure, use, exhibition or other means		combined with one or more other such combination being obvious to a person	skilled in the art .	
"P" document published prior to the international filing date but later than the priority date claimed		"&" document member of the same patent i	amily	
	ctual completion of the international search ecember, 2002 (09.12.02)	Date of mailing of the international search report 24 December, 2002 (24.12.02)		
	ailing address of the ISA/	Authorized officer		
Japan	nese Patent Office	, .		
Facsimile No	.	Telephone No.		

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

Internation No.
PCT/JP02/09054

		101/01	702709054
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant		Relevant to claim No.
P,A	JP 2001-354656 A (Taisho Pharmaceutical C 25 December, 2001 (25.12.01), Claims (Family: none)	o., Ltd.),	1-16

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

Internation application No. PCT/JP02/09054

Continuation of	of.	Α.	CLAS	SIFICATI	ON O	F SUBJECT	MATTER
(Internation							

Int.Cl⁷ 31/4196, 31/4198, 31/427, 31/4155, 31/4545, 31/55, A61P9/00, 9/08, 13/12, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Form PCT/ISA/210 (extra sheet) (July 1998)

			<u> </u>
Int. Cl' CO7 A61K31/395, 3	属する分野の分類(国際特許分類(IPC)) 7D231/12, 261/08, 401/04, 401/14, 403/12, 405/12 31/42, 31/422, 31/4439, 31/454, 31/496, 31/5377 99/00, 9/08, 13/12, 43/00	2, 405/14, 409/12, 413/12, 413/14, 417/12, , 31/4245, 31/4196, 31/4198, 31/427, 31/41	417/14, 55, 31/4545,
D 御水も	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー		
			
	最小限資料(国際特許分類(IPC))	·	
int. Ci Cui	D, A61K, A61P		
息 小阳次约07	メの次的で調本と伝 より取けるよとです。		
双小队员补炒力	外の資料で調査を行った分野に含まれるもの		•
•			
•			•
国際調本が休日	用した電子データベース (データベースの名称	entieten i meri	
CAPLIIS	B (STN), REGISTRY (STN), V	、神食に使用した用語) 以PII(ヘリアゥアアI)	
0 200	o (billy, REGIOTRI (GILY),	WIIL (QUESTEL)	
			•
C. 関連する			
引用文献の	3と2000年の大阪		BRYLL W
カテゴリー*	引用文献名 及び一部の箇所が関連する	LAN ZOBENIA ZATECONE	関連する
			請求の範囲の番号
PA į	│ WO 01/68610 A1 (大正製薬株式会)	社)2001.09.20	1-16
	特許請求の範囲 (ファミリーなし)	•	•
			•
704	WO 01/00000 11 /-L-工機は放送と	HI) 0004 40 00	
PA	WO 01/96309 A1 (大正製薬株式会		1-16
	特許請求の範囲 (ファミリーなし)	•	
PA	JP 2001-354658 A(大正製薬株式会	≥\$ +) 2001 12 25	1-16
***			1-10
	特許請求の範囲 (ファミリーなし)	*	
	•		
× C欄の続き	にも文献が列挙されている。	D 25-11 211 1-99-1-7 DI	64. 4. 40 mg .
C CAMPONICO	にも文献がつり手とれてている。	□ パテントファミリーに関する別	似を移用。
* 引用文献の	カテゴリー	の日の後に公表された文献	
	マップラッ 国のある文献ではなく、一般的技術水準を示す	「丁」国際出願日又は優先日後に公安さ	- Landahara de an
もの	こうりつくはなく、一般的技術が年をかり	element to the new to an it.	
_	日前の出願または特許であるが、国際出願日	出願と矛盾するものではなく、発 の理解のために引用するもの	部の原理文は理論
	と表されたもの	「X」特に関連のある文献であって、当	## ** ** ** ** ** ** ** ** ** ** ** ** *
	こ扱に疑義を提起する文献又は他の文献の発行		
	は他の特別な理由を確立するために引用する	の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、当	
	由を付す)		
	お開示、使用、展示等に言及する文献	上の文献との、当業者にとって自	
「P」国際出席	日前で、かつ優先権の主張の基礎となる出願	よって進歩性がないと考えられる 「&」同一パテントファミリー文献	ששי
	はいて、から近近間の土地の金融となる山風	「②」向一ハナントノナミリー文献	· .
国際調査を完了	1. <i>†</i> - A	日際調本初生の発送に	00
岡欧柳耳で元1	09. 12. 02	国際調査報告の発送日 24.12.	.02
<u> </u>			
国際調本機関へ	名称及びあて先	此次中国大学 (按照 n + + + + + + + + + + + + + + + + + +	
	名が及びあて光 特許庁(ISA/JP)		14C 9166
	ができる (15A/) ドラック (15A/) ドラッ	岡崎 美穂 川	÷1
果 从郁	3千代田区段が関三丁目4番3号	電話番号 03-3581-1101	PM 3452 ·

国際調查報告

国際出願番号·PCT/JP02/09054

C (続き). 引用文献の	関連すると認められる文献		日田・井・丁・	2
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する	の箇所の表示	関連する	o D番号
PA ·	JP 2001-354656 A (大正製薬株式会社) 2001.12.25 特許請求の範囲 (ファミリーなし)		1-16	
			·	
	•			٠.
				٠,
			•	
·				
			·	•
			·	