分數欄

111 學年度第一學期五專(資工一乙)數學期中考

一、單一選擇題(共 70 分,每題 10 分)

1. (C) 化簡
$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$$
 得 (A) $8 + 2\sqrt{15}$ (B) $8 - 2\sqrt{15}$ (C) $4 + \sqrt{15}$ (D) $4 - \sqrt{15}$

解析: 原式 =
$$\frac{(\sqrt{5} + \sqrt{3})(\sqrt{5} + \sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} = \frac{5 + 2\sqrt{15} + 3}{5 - 3} = 4 + \sqrt{15}$$

2. (D) 面積為
$$\frac{3\pi}{5}$$
的扇形,若圓心角為 150 °,則其半徑為何? (A) $\frac{3}{5}$ (B) $\frac{5}{6}$ (C) 90 (D) $\frac{6}{5}$

解析:
$$150^{\circ} = \frac{5\pi}{6}, \frac{3\pi}{5} = \frac{1}{2} \cdot r^2 \cdot \frac{5\pi}{6} \implies r^2 = \frac{36}{25} \implies r = \frac{6}{5}$$

3. (A)
$$\cos \frac{\pi}{6} \cdot \cos \frac{\pi}{3} + \sin \frac{\pi}{6} \cdot \sin \frac{\pi}{3} = (A) \frac{\sqrt{3}}{2} (B) \frac{\sqrt{3}}{3} (C) \frac{\sqrt{3}}{4} (D) \sqrt{3}$$

解析: 原式 =
$$\frac{\sqrt{3}}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$

4. (D) 設
$$a \times b$$
 為實數,若不等式 $2x^2 + ax + b < 0$ 的解為 $-3 < x < 2$,則 $a + b = ?$ (A)14 (B)10 (C)-14 (D)-10

解析:
$$(x-2)(x+3) < 0 \Rightarrow x^2 + x - 6 < 0 \Rightarrow 2x^2 + 2x - 12 < 0$$

比較係數得 $a = 2 \cdot b = -12 \Rightarrow a + b = -10$

5. (B) 設
$$P(1,5) \cdot Q(-3,9)$$
 為坐標平面上兩點, 若 A 點在 \overline{PQ} 的延長線上, 且 $\overline{PA} : \overline{AQ} = 5:3$,

則
$$A$$
 點坐標為何? (A) $(9,-15)$ (B) $(-9,15)$ (C) $(\frac{-17}{3},\frac{35}{3})$ (D) $(\frac{17}{3},\frac{-35}{3})$

解析: $\Rightarrow A(x, y)$

$$\therefore \overline{PA} : \overline{AQ} = 5 : 3 \Rightarrow \overline{PQ} : \overline{QA} = 2 : 3 \qquad \therefore (-3,9) = (\frac{2x+3}{5}, \frac{2y+15}{5}) \Rightarrow A(x,y) = A(-9,15)$$

6. (C)
$$\triangle ABC$$
 中, $A(-2,3)$ 、 $B(1,3)$ 、 $C(-3,-1)$,若 \overline{BC} 的中點為 M ,則中線 \overline{AM} =? (A)3

(B)
$$\sqrt{7}$$
 (C) $\sqrt{5}$ (D) $\sqrt{10}$

解析: : 中點
$$M(\frac{1+(-3)}{2},\frac{3+(-1)}{2}) = M(\frac{-2}{2},\frac{2}{2}) = M(-1,1)$$
 : $\overline{AM} = \sqrt{[-2-(-1)]^2+(3-1)^2} = \sqrt{5}$

7. (A) 設
$$\theta$$
 為銳角,已知 $\cot \theta = \frac{2}{3}$,則 $\frac{3\sin \theta - 2\cos \theta}{2\sin \theta + 3\cos \theta} = ?$ (A) $\frac{5}{12}$ (B) $\frac{12}{13}$ (C) $-\frac{5}{12}$ (D) $-\frac{12}{13}$

解析: 原式 =
$$\frac{\frac{3\sin\theta - 2\cos\theta}{\sin\theta}}{\frac{2\sin\theta + 3\cos\theta}{\sin\theta}} = \frac{3 - 2\cot\theta}{2 + 3\cot\theta} = \frac{5}{12}$$

二、計算題(共 30 分,每題 10 分)

1. 對所有實數,不等式 $kx^2 - (k-1)x + 4k > 0$ 恆成立,則k的範圍為。

答案:
$$k > \frac{1}{5}$$

解析:對所有實數,不等式 $kx^2 - (k-1)x + 4k > 0$ 恆成立

所以滿足條件
$$\begin{cases} k > 0 \\ (k-1)^2 - 16k^2 < 0 \end{cases}$$
$$\Rightarrow \begin{cases} k > 0 \\ (5k-1)(3k+1) > 0 \end{cases} \Rightarrow k > \frac{1}{5}$$

2. 小華和小英想用48公尺長的籬笆沿河岸圍出2塊相連的矩形農地(如圖),這2塊農地面積相等,農地的短邊與河岸垂直,且靠河的一邊不圍,試問每塊農地的長、寬應如何安排才能圍出最大的面積?

答案: 設 2 塊農地的總長為 a 公尺, 寬為 b 公尺

此處a>0、b>0

則依題意 a+3b=48

而所求的農地面積為ab

利用算幾不等式
$$\frac{a+3b}{2} \ge \sqrt{a \cdot 3b}$$

得 $24 \ge \sqrt{3ab}$,即 $192 \ge ab$

故最大面積為192平方公尺

此時
$$a = 3b = \frac{48}{2} = 24$$

即長為24公尺,寬為8公尺時所圍出的農地面積最大,分成的2塊農地,每塊農地的長為12公尺,寬為8公尺

- 3. 設 θ 為銳角,若 $\sin\theta + \cos\theta = \sqrt{2}$,試求下列各式之值:
- $(1)\sin\theta\cos\theta$ $(2)\sin\theta-\cos\theta$ $(3)\tan\theta+\cot\theta$ $(4)\sin^3\theta+\cos^3\theta$

答案:(1)將等式兩邊平方得 $(\sin\theta + \cos\theta)^2 = \sqrt{2}^2$

所以
$$\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = 2$$

$$3 \sin \theta \cos \theta = 2 - 1 = 1$$

(2):
$$(\sin\theta - \cos\theta)^2 = \sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta$$
$$= 1 - 2\sin\theta\cos\theta$$
$$= 1 - 2 \times \frac{1}{2} = 0$$

$$\therefore \sin\theta - \cos\theta = 0$$

(3)
$$\tan \theta + \cot \theta = \frac{1}{\sin \theta \cos \theta} = \frac{1}{\frac{1}{2}} = 2$$

$$(4) \sin^3 \theta + \cos^3 \theta$$

$$= (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)$$

$$= (\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta)$$

$$= \sqrt{2} \times (1 - \frac{1}{2}) = \frac{\sqrt{2}}{2}$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$
$$a^{3} - b^{3} = (a-b)(a^{2} + a + bb^{2})$$