QUICK NOTE

ÔN TẬP HÀM SỐ TX1

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Cho hàm số y = f(x) có bảng biến thiên như sau:

•• 0110 1	idili bo g	$-\int (x) \cos bc$	1115 01011 0.	men mna s	au.		
x	$-\infty$		-1		1		$+\infty$
y'		_	0	+	0	_	
y	+∞ (0		4		$-\infty$

Chọn khẳng định đúng.

- (\mathbf{A}) Hàm số y = f(x) nghịch biến trên khoảng (-1; 1).
- **B** Hàm số y = f(x) nghịch biến trên khoảng $(-1; +\infty)$.
- (**c**) Hàm số y = f(x) đồng biến trên khoảng $(-\infty; -1)$.
- (\mathbf{D}) Hàm số y = f(x) đồng biến trên khoảng (-1; 1).

CÂU 2. Cho hàm số y = f(x) có bảng biến thiên như sau:

x	$-\infty$		-1		0		1		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞		0		√ ³ <				+∞

Mệnh đề nào dưới đây sai?

- **A** Hàm số y = f(x) có hai điểm cực tiểu.
- **(B)** Hàm số y = f(x) có giá trị cực đại bằng 0.
- **(C)** Hàm số y = f(x) có ba điểm cực trị.
- (**D**) Hàm số y = f(x) có giá trị cực đại bằng 3.

CÂU 3.

Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có đạo hàm f'(x). Biết rằng hàm số f'(x) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?

- (A) Hàm số y = f(x) đồng biến trên khoảng (-2; 0).
- **(B)** Hàm số y = f(x) nghịch biến trên khoảng $(0; +\infty)$.
- **C** Hàm số y = f(x) đồng biến trên khoảng $(-\infty; -3)$.
- (\mathbf{D}) Hàm số y = f(x) nghịch biến trên khoảng (-3, -2).

CÂU 4.	Cho hàm số	$\hat{o} y = f(x)$) liên tục trên \mathbb{R}	và có bảng xét	dấu của đạo hàm như sau:
--------	------------	--------------------	------------------------------	----------------	--------------------------

02.0	• cho ham so g	$J(\omega)$	ioii vạc	OI OII IId	, a co ,	oung nee a	aa caa	ado man	i iiii a baa.		
x	$-\infty$	-3		-2		3		5		$+\infty$	
y'	_	0	+	0	_	0	+	0	_		

Số điểm cực trị của hàm số đã cho là

- (A) 5.
- **(B)** 3
- **(C)** 2.
- \bigcirc 4.

CÂU 5. Hàm số $y = 2x^3 - 6x - 3$ nghịch biến trên khoảng nào?

- (\mathbf{A}) $(-\infty; +\infty)$.
- (\mathbf{B}) $(1; +\infty).$
- (\mathbf{c}) $(-\infty; -1)$.
- $(\mathbf{D})(-1;1).$

CÂU 6. Hàm số $y = \frac{2x-1}{x+2}$ đồng biến trên khoảng nào?

- $(-\infty; -2), (-2; +\infty).$
- $(\mathbf{B})(-\infty;-1).$

 \bigcirc $(-4; +\infty).$

 \bigcirc $\mathbb{R} \setminus \{-2\}.$

CÂU 7. Hàm số $y = \sqrt{4 - x^2}$ đồng biến trên khoảng nào?

$oldsymbol{\Omega}$	V	N	\circ	ī	-

..........

(A) $(-2; +\infty)$.

B) (0; 2).

 (\mathbf{C}) (-2; 2).

 $(\mathbf{D})(-2;0).$

CÂU 8. Hàm số $y = -x^3 + 4x^2 - 5x + 1$ có điểm cực đại là x = a và giá trị cực tiểu là y = b. Tính a-b.

 $\bigcirc \frac{24}{27}$.

 (\mathbf{B}) 0.

 $\mathbf{c} \frac{68}{27}$.

CÂU 9. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x^2 - 4)(3 - x)(x + 2), \forall x \in \mathbb{R}$. Số điểm cực trị của hàm số đã cho là

 (\mathbf{A}) 2.

(C) 3.

(D) 4.

CÂU 10. Hàm số $f(x) = 3^{x^2-2x}$ đồng biến trên khoảng nào sau đây?

 (\mathbf{A}) $(1; +\infty)$.

(B) (0;2).

 $(\mathbf{C})(-\infty;0).$

 $(\mathbf{D})(0;+\infty).$

CÂU 11. Hàm số $f(x) = \log_{\frac{\sqrt{2}}{2}}(4x - 3)$ nghịch biến trên khoảng nào sau đây?

(A) $(-\infty; +\infty)$. (B) $(1; +\infty)$. (C) $\left(-\infty; \frac{3}{4}\right)$. (D) $\left(0; \frac{3}{4}\right)$.

CÂU 12. Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-2024; 2026) để hàm số $f(x) = \frac{1}{3}x^3 + mx^2 + 9x - 3$ đồng biến trên \mathbb{R} ?

 \bigcirc 6.

B) 7.

(C) 4046.

(D) 4044.

CÂU 13. Cho hàm số $y = \frac{x^2 + 4}{x}$, khi đó giá trị nhỏ nhất của hàm số trên khoảng $(0; +\infty)$ đạt được tại điểm nào?

 \mathbf{A} x=1.

(B) x = 4.

 $(\mathbf{C}) x = 3.$

 $(\mathbf{D}) x = 2.$

CÂU 14. Giá trị lớn nhất hàm số $y = x^4 - 4x^2 + 5$ trên [-2; 3] là

(A) 122.

(C) 5.

(D) 50.

CÂU 15.

Cho hàm số y = f(x) liên tục trên đoạn [-1; 3] và có đồ thị như hình vẽ. Giá trị lớn nhất của hàm số đã cho trên đoạn [-1;3] bằng

(A) 3.

(B) 2.

 $(\mathbf{C}) 0.$

(D) 1.

CÂU 16.

Cho hàm số y = f(x) xác định và liên tục trên có đồ thị như hình bên. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [1; 3]. Giá trị của M+m bằng

(A) M + m = 2.

(B) M + m = -4.

 $(\mathbf{C}) M + m = -3.$

(D) M + m = 1.

CÂU 17.

Cho hàm số y = f(x) liên tục trên [-2; 3] và có đồ thị như hình vẽ bên dưới. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y = f(2\cos 5x + 1)$. Giá trị của M - 2m bằng bao nhiêu?

B
$$M - 2m = 3$$
.

$$(\mathbf{C}) M - 2m = 6.$$

(D)
$$M - 2m = 7$$
.

CÂU 18. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình dưới đây

x	$-\infty$	-1	1		2	$+\infty$
f'(x)	_	+	0	+	_	
f(x)	$+\infty$	-3			2	- 4

Trong các mệnh đề sau, mệnh đề nào sai?

- (A) Giá trị lớn nhất của hàm số y = f(x) trên đoạn [-1; 2] bằng 2.
- **(B)** Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-1; 2] bằng -3.
- (**c**) Giá trị nhỏ nhất của hàm số y = f(x) trên nửa khoảng $[-1; +\infty)$ bằng -4.
- \bigcirc Giá trị lớn nhất của hàm số y = f(x) trên nửa khoảng $[-1; +\infty)$ bằng 2.

CÂU 19. Cho hàm số y = f(x) liên tục trên [-3; 2] và có bảng biến thiên như hình dưới

x	-3		-1		0		1		2
f'(x)		+	0	_	0	+	0	_	
f(x)	-2		× 3 \		0		<i>2</i> \		1

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-1; 2]. Tính 2M + 3m.

$$(A) 2M + 3m = 0.$$

(B)
$$2M + 3m = 6$$
.

©
$$2M + 3m = -2$$
. **D** $2M + 3m = 8$.

$$\bigcirc 2M + 3m = 8.$$

Cho hàm số y = f(x) xác định và liên tục trên R, có đồ thị trên đoạn[-1; 3] như hình vẽ. Tìm giá trị lớn nhất Mcủa hàm số $y = g(x) = f(\sin x + 1)$ trên \mathbb{R} .

$$\bigcirc$$
 $M-3$

$$\bigcirc M = 0$$

(A)
$$M = 3$$
. **(B)** $M = 0$. **(C)** $M = 1$. **(D)** $M = 2$.

$$\bigcirc$$
 $M-2$

CÂU 21. Giá trị lớn nhất của hàm số $f(x) = |x^3 - 3x^2 - 1|$ trên đoạn [-1; 3] là

- /	о ,	٠,
- (D	. `
_ \	_	•

$$(\mathbf{C}) 2$$

(D)
$$5$$
.

CÂU 22. Cho hàm số $y = x^3 - 3x + m$. Giá trị của tham số m để giá trị nhỏ nhất của hàm số trên đoạn [0; 2] bằng 1 là

$$(\mathbf{A}) m = 1.$$

$$\bigcirc$$
 $m=3.$

(c)
$$m = -1$$
.

(D)
$$m = 2$$
.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
																											•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

٠	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	

•		•										•																		•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
	•					•	•	•	•	•			•			•	•	•	•	•	•	•	•	•	•	•						•	•
		•	•	•	•	•	•	•	•	•		•				•	•		•	•	•	•	•	•	•	•				•			•

					_
Q		CK	Ν	\sim	1
	UI	CK	1	v	15

CÂU 23. Cho hàm số $f(x) = \frac{x+m^2}{x-1}$. Tất cả các giá trị của tham số m để hàm số f(x) có giá trị nhỏ nhất trên đoạn [-2;0] lớn hơn -4 là

B
$$-2 < m < 2$$
.

$$\bigcirc$$
 $-\sqrt{14} < m < \sqrt{14}$.

CÂU 24. Tất cả các giá trị của tham số thực m để hàm số $y=x^4-2mx^2+3$ có 3 cực trị

$$\bigcirc$$
 $m < 0.$

(c)
$$m > 0$$
.

CÂU 25. Cho hàm số $y = \frac{-x^2 + 3x + m}{x - 4}$. Hàm số có cực trị khi và chỉ khi

$$\bigcirc$$
 $M \ge 4$.

$$(\mathbf{B}) m > 4.$$

$$\bigcirc m < 4$$

$$\bigcirc m \le 4$$

CÂU 26. Cho hàm số $y = -\frac{1}{3}x^3 - x^2 + 15x + 1$. Hàm số đồng biến trên khoảng nào sau đây?

$$(\mathbf{A})$$
 $(-\infty; 5)$.

B)
$$(-3; +\infty)$$
. **C**) $(-5; 3)$.

$$(\mathbf{C})$$
 (-5; 3)

$$\bigcirc$$
 (-3; 5).

CÂU 27. Hàm số $y = ax^3 + bx^2 + cx + d$ với a, b, c, d là các số thực và $a \neq 0$ có tối đa bao nhiêu điểm cực trị?

$$\bigcirc$$
 1.

$$\bigcirc$$
 0.

$$(\mathbf{c})$$
 2.

CÂU 28. Cho hàm số y = f(x) liên tục trên $\mathbb R$ và có bảng xét dấu của đạo hàm như hình

Hàm số đã cho có bao nhiêu điểm cực trị?

$$\bigcirc$$
 4.

$$\bigcirc$$
 2.

CÂU 29. Cho hàm số y = f(x) có bảng biên thiên như hình vẽ

x	$-\infty$		-2		3		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		× 4 \		-2		+∞

Hàm số $g(x) = f\left(2x^2 - \frac{5}{2}x - \frac{3}{2}\right)$ nghịch biến trên khoảng nào trong các khoảng sau?

$$\bigcirc \left(-1; \frac{1}{4}\right)$$

$$\bigcirc$$
 $\left(\frac{1}{4};1\right)$

$$\bigcirc$$
 $\left(1; \frac{5}{4}\right)$

CÂU 30. Số giá trị thực của m để hàm số $y=x^3-3mx^2+(m+2)x-m$ đạt cực tiểu tại x = 1 là

 (\mathbf{C}) 1.

CÂU 31. Tìm tập hợp S tất cả các giá trị của tham số thực m để hàm số $y=\frac{1}{3}x^3+(m+1)$ $1)x^2 + (m^2 + 2m)x - 3$ nghịch biến trên khoảng (-1; 1).

$$S = \{-1\}.$$

$$\bigcirc S = \{1; 0\}.$$

CÂU 32. Cho hàm số y = f(x) có đồ thị như hình vẽ bên.

Số điểm cực trị của hàm số y = |f(x-1)| là

 \bigcirc 7

B 5.

(C) 3.

 (\mathbf{D}) 6.

CÂU 33. Cho hàm số y = f(x) có bảng biến thiên như hình bên dưới

x	$-\infty$ ()	1		$+\infty$
y'	_	_	0	+	
y	+∞	+∞	-2	,	+∞

Khẳng định nào sau đây là sai?

- (\mathbf{A}) Hàm số nghịch biến trên khoảng $(-\infty; -1)$.
- (\mathbf{B}) Hàm số nghịch biến trên khoảng (0;1).
- \bigcirc Hàm số đồng biến trên khoảng $(2; +\infty)$.
- (\mathbf{D}) Hàm số đồng biến trên khoảng $(-2; +\infty)$.

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 34.**

Người ta muốn chế tạo một chiếc hộp hình hộp chữ nhật có thể tích $500 \mathrm{cm}^3$. Chiều cao hộp phải là 2 cm, các kích thước khác là x,y với x>0 và y>0. Gọi S(x) là diện tích toàn phần của chiếc hộp. Xét tính đúng sai các phát biểu sau

Mệnh đề	Ð	S
a) Khi $x = 10$ thì $y = 20$.		
b) Diện tích toàn phần của chiếc hộp là $S(x) = 500 + 4x + \frac{1000}{x}$.		
c) Hàm số $S(x)$ nghịch biến trên khoảng $(0;5)$.		
d) Nếu kích thước của hộp lần lượt là 20; 12,5; 2 thì diện tích toàn phần đạt cực tiểu.		

CÂU 35. Độ giảm huyết áp của một bệnh nhân được cho bởi công thức $G(x) = 0.025x^2(30-x)$, trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Mỗi kết quả dưới đây **đúng** hay sai?

Mệnh đề	Ð	S
a) Khi liều lượng thuốc được tiêm cho bệnh nhân là 30 mg thì độ giảm huyết áp của bệnh nhân bằng 0.		
b) Đạo hàm của độ giảm huyết áp theo liều lượng thuốc tiêm cho bệnh nhân là một tam thức bậc hai theo biến x .		
c) Nghiệm của đạo hàm độ giảm huyết áp theo liều lượng là 0 và 30 .		
d) Độ giảm huyết áp sẽ giảm khi liều lượng thuốc tăng 0 đến $20~\mathrm{mg}$.		

QUI	CK	NC	Ж

GV.VŨ	NGOC	PHÁ

CÂU 36. Cho hàm số $y = \frac{-x^2 - 3x + 4}{x - 3}$ có đồ thị là (C). Những mệnh đề sau **Đúng** hay Sai?

Mệnh đề	Đ	S
a) Đồ thị (C) có tiệm cận xiên là $y = -x - 6$.		
b) Đồ thị (C) nhận giao điểm $I(3;-9)$ làm tâm đối xứng.		
c) Đồ thị (C) có hai điểm cực trị nằm 2 phía đối với Oy .		
d) Đồ thị không cắt trực Ox .		

CÂU 37. Cho hàm số $y = x^3 + (m+1)x^2 + 3x + 2$ (tham số m).

Mệnh đề	Ð	S
a) Khi $m=-1$ thì hàm số đồng biến trên $(-\infty;+\infty)$.		
b) Đạo hàm của hàm số là $y' = 3x^2 + 2(m+1)x + 3$.		
c) Có 3 giá trị nguyên dương của tham số m để hàm số $y = x^3 + (m + 1)x^2 + 3x + 2$ đồng biến trên \mathbb{R} .		
d) Có 6 giá trị nguyên của tham số m đề hàm số $y = x^3 + (m+1)x^2 + 3x + 2$ đồng biến trên \mathbb{R} .		

CÂU 38. Cho hàm số $f(x) = ax^3 + bx^2 + cx + d \ (a \neq 0)$ có bảng biến thiên như sau:

Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Hàm số $f(x)$ đồng biến trên khoảng $(0;2)$.		
b) Hàm số $f(x)$ nghịch biến trên khoảng $(2; +\infty)$.		
c) Hàm số $f(x)$ đồng biến trên khoảng $(-2;1)$.		
d) Hàm số $y = f(2x - 1)$ nghịch biến trên khoảng $\left(-\infty; -\frac{1}{2}\right)$.		

CÂU 39. Cho hàm số $f(x) = \frac{x^2 - 2x + 6}{x + 1}$. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Hàm số $f(x)$ có tập xác định là \mathbb{R} .		
b) Hàm số $f(x)$ có đạo hàm $f'(x) = \frac{x^2 + 2x - 8}{(x+1)^2}$.		
c) Hàm số $f(x)$ có giá trị cực đại bằng 2.		
d) Hàm số $y = f(x^2 - 2)$ có 3 điểm cực trị.		

CÂU 40. Cho hàm số $y = f(x) = \log_5(x^2 + 4x)$. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Tập xác định của hàm số là $\mathscr{D}=(-\infty;-4)\cup(0;+\infty).$		
b) $f'(x) = \frac{2x+4}{(x^2+4x)\log 5}$.		

QUICK NOTE

Mệnh đề	Đ	\mathbf{S}
c) Hàm số $y = f(x)$ nghịch biến trên $(0; +\infty)$.		
d) Hàm số $y = f(e^x)$ đồng biến trên \mathbb{R} .		

CÂU 41. Cho hàm số $y = f(x) = 7^{x^3 - x^2 - x - 1}$. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Tập xác định của hàm số là $\mathscr{D} = \mathbb{R}$.		
b) $f'(x) = (3x^2 - 2x - 1) \cdot 7^{x^3 - x^2 - x - 1} \cdot \ln 7.$		
c) Hàm số $y = f(x)$ đạt cực đại tại $x = 1$.		
d) Hàm số $y = f(e^x)$ đạt cực tiểu tại $x = 0$.		

CÂU 42. Trong các khẳng định sau, khẳng định nào đúng hay sai?

Mệnh đề	Ð	S
a) Giá trị nhỏ nhất của hàm số $y = 2x^3 + 3x^2 - 1$ trên đoạn $[-2;1]$ là -5 .		
b) Hàm số $y = 4x^3 - 12x^2 + 9x$ đạt giá trị lớn nhất trên đoạn $[0;1]$ tại điểm $x = 2$.		
c) Giá trị nhỏ nhất của hàm số $y = \sqrt{4x - x^2}$ là 4.		
d) Hàm số $y = x + \frac{4}{x}$ không có giá trị lớn nhất trên khoảng $(0; +\infty)$.		

CÂU 43. Cho hàm số y = f(x) có đạo hàm như sau $f'(x) = (x-3)(x+3)(x-1)^2$.

Mệnh đề	Ð	\mathbf{S}
a) Giá trị lớn nhất của hàm số trên đoạn $[-3;3]$ là $f(-3)$.		
b) Hàm số có giá trị lớn nhất trên \mathbb{R} .		
c) Gọi $g(x) = f(-2x+3)$. Khi đó giá trị nhỏ nhất của hàm số $g(x)$ trên đoạn $[0;3]$ là $g(3)$.		
d) Gọi $h(x) = f(-x+5)$ và $h(0) + h(4) = h(2) + h(8)$. Giá trị lớn nhất của hàm số $h(x)$ trên đoạn $[0;8]$ là $h(8)$.		

CÂU 44. Cho hàm số $y = f(x) = x^3 - 3x^2 - 9x + 7$.

Mệnh đề	Ð	\mathbf{S}
a) Giá trị lớn nhất của hàm số $y = f(x)$ trên đoạn $[-2;0]$ là 12.		
b) Hàm số $y=f(x)+m$ đạt giá trị nhỏ nhất trên đoạn $[-2;0]$ là 10 khi $m=3$.		
c) Giá trị nhỏ nhất của hàm số $y = f(2x^2 + 1) - 5$ là -25 .		
d) Hàm số $y = f(x) + m $ đạt giá trị nhỏ nhất trên đoạn $[0;4]$ là 17 có tích các giá trị của m là -30 .		_

CÂU 45. Cho hàm số y = f(x) liên tục trên đoạn $\mathbb R$ và có đồ thị như hình vẽ.

x	$-\infty$		-2		0		2		$+\infty$
y'		+	0	_	0	+	0	_	
y	$-\infty$		4		* ₀ /		* ⁴ \		$-\infty$

_	_	_	_	_	-	-	-	_	-							_	_	_	_	_	_	_	_	_	-		Ŧ
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	

																														•	
			•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•		•														

•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	

																•

QUICK NOTE	Khi đó
	Mệnh đề
	$\mathbf{a)} \ \max_{x \in \mathbb{R}^3} f(x) = 4.$
	b) Hàm số $y = f(x)$ có giá trị lớn nhất là 4 và giá trị r
	c) Hàm số $y = f(2\cos x)$ có giá trị lớn nhất là 4 tại x
	d) Không tồn tại giá trị lớn nhất của hàm số $y = f(f(x))$
	Phần III. Học sinh điền kết quả vào ô trống. CÂU 46.
	Cho hàm số $f(x)$ có đạo hàm liên tục và xác định trên
	\mathbb{R} và có đồ thị hàm số $f'(x)$ như hình vẽ bên. Biết
	hàm số $g(x) = f(x^2 - 2x)$ đồng biến trên $(-\infty; a)$ và $(b; c)$ và nghịch biến trên $(a; b)$ và $(c; +\infty)$. Tính
	a+b+c.
	/ -
	CÂU 47. Biết hàm số $y = -x^4 + 2x^2 + 1$ đồng biến trên (
	trên $(a;b)$ và $(c;+\infty)$. Tính $a+2024b+c$.
	$x^2 + x + m^2 - 6$
	CÂU 48. Cho hàm số $y = \frac{x^2 + x + m^2 - 6}{x + 2}$. Tìm số giá trị
	số đơn điệu trên mỗi khoảng xác định.
	CÂU 49. Thể tích V của 1 kg nước ở nhiệt độ T ($0^{\circ} \leq T$
	$V = 999.87 - 0.06426T + 0.0085043T^2 - 0.0000679T^3$ (The
	Edition, Brooks/Cole, CENGAGE Learning 2012). Gọi (a°;
	mà trong khoảng đó khi nhiệt độ tăng thì thể tích V của 1 biểu thức $P = b - a$ $(a, b \ làm \ tròn đến hàng đơn vị).$
	, , , , , , , , , , , , , , , , , , , ,
	CÂU 50. Trên khoảng $(0;100)$ hàm số $y=2\sin^2 x-x$ có b
	CÂU 51.
	Một công ty muốn xây dựng hệ thống dây cáp từ trạm A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn
	dảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho
	BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9
	km . Giá để lắp đặt mỗi km hệ thống dây trên bờ là 50 triệu đồng và dưới nước là 130 triệu đồng. Người ta cần
	xác định một vị trí D trên AC để lắp đặt hệ thống dây
	theo đường gấp khúc ADB mà số tiền chi phí thấp nhất.
	Khi đó chi phí lắp đặt thấp nhất là bao nhiêu triệu đồng?
	CÂU 52. Có bao nhiêu giá trị nguyên m thuộc $[-7:7]$ để

Mệnh đề	Đ	S
a) $\max_{[0;2]} f(x) = 4.$		
b) Hàm số $y = f(x)$ có giá trị lớn nhất là 4 và giá trị nhỏ nhất là 0.		
c) Hàm số $y = f(2\cos x)$ có giá trị lớn nhất là 4 tại $x = \frac{\pi}{2}$.		
d) Không tồn tại giá trị lớn nhất của hàm số $y = f(f(x))$ trên $(-2; 2)$.		

 $(-\infty;a)$ và (b;c) và nghịch biến

KQ:				
-----	--	--	--	--

nguyên của tham số m để hàm

 $\leq 30^{\circ})$ được cho bởi công thức c
o: J. Stewart, Calculus, Seventh (b°) là khoảng nhiệt độ lớn nhất kg nước cũng tăng. Tính giá trị

KQ:		

oao nhiêu điểm cực đại?

KQ:				
-----	--	--	--	--

đồng biến trên khoảng (1;5).

KQ:	
-----	--

QUICK NOTE

CÂU 53. Hàm số $y = |x^2 + 5x + 6|$ có mấy điểm cực trị?

KQ:		

CÂU 54. Giả sử a, b là các số thực sao cho đồ thị hàm số $y = \frac{2x^2 - ax + 5}{x^2 + b}$ có điểm cực đại là $\left(\frac{1}{2}; 6\right)$, tính giá trị của ab.

CÂU 55. Số giá trị nguyên của tham số m để hàm số $y=\frac{x+2}{x+3m}$ đồng biến trên khoảng $(-\infty;-6)$ là

CÂU 56. Tìm tổng các giá trị nguyên dương của tham số m để hàm số $y=x^3+(m-1)x^2+3x-2$ không có cực trị.

CÂU 57. Cho hàm số $y=\frac{x^2+(m+1)x+2m+1}{x+1}$. Số nguyên bé nhất m để hàm số sau đây có 2 điểm cực trị.

CÂU 58. Tìm giá trị nhỏ nhất của hàm số $y = x^3 - 3x + 4$ trên đoạn [0; 2].

CÂU 59. Cho hàm số y = f(x) liên tục và có bảng biến thiên trên đoạn [-1;3] như hình vẽ bên. Giả sử giá trị lớn nhất của y = f(x) trên [-1;3] đạt được tại giá trị x_0 . Tìm x_0

x	-1		0		2		3
y'		+	0	_	0	+	
y	0		<i>5</i> \		1		4

KQ:		

CÂU 60.

Cho hàm số có f(x) có đạo hàm là hàm f'(x). Đồ thị hàm số f'(x) như hình vẽ bên. Biết rằng f(0) - f(2) = f(4) - f(3). Giả sử giá trị nhỏ nhất m và giá trị lớn nhất M của f(x) trên đoạn [0;4] đạt được lần lượt tại x_0 và x_1 . Tổng x_0 và x_1 là

KQ:		

CÂU 61. Gọi S là tập hợp chứa các tham số m để đồ thị hàm số $y=\frac{mx-1}{x+m}$ có tiệm cận đứng và tiệm cận ngang tạo với các trục tọa độ hình chữ nhật có diện tích bằng 4. Số phần tử của S là

KQ:		

CÂU 62. Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hinh hoá bằng hàm số $P(t)=\frac{a}{b+\mathrm{e}^{-0.75t}}$, trong đó thời gian t được tính bằng giờ. Tại thời điểm ban đầu t=0, quần thể có 20 tế bào và tăng với tốc độ 12 tế

QUICK NOTE
GOICK NOTE

bào/giờ. Tìm các giá trị của a và b. Theo mô hình này, số lượng nấm men không vượt quá bao nhiêu?

KQ:

CÂU 63.

Cho hàm số y=f(x) là hàm đa thức bậc hai và có đồ thị hàm số $f\left(x^2-1\right)$ như hình vẽ. Đặt $g(x)=\left|f(x^2)+m\right|$. Có bao nhiêu giá trị nguyên thuộc [-2024;2024] của tham số m để với mọi bộ ba số phân biệt a,b,c thuộc [-2;2] ta đều có bộ ba số g(a);g(b);g(c) là số đo độ dài ba cạnh của một tam giác?

