ECE368: Probabilistic Reasoning

Lab 2: Bayesian Linear Regression

Name: Armaun Lalani Student Number: 1005013115

You should hand in: 1) A scanned .pdf version of this sheet with your answers (file size should be under 2 MB); 2) four figures for Question 2 and three figures for Question 4 in the .pdf format; and 3) one Python file regression.py that contains your code. All these files should be uploaded to Quercus.

1. Express posterior distribution $p(\mathbf{a}|z_1,\ldots,z_N;x_1,\ldots,x_N)$ using $\sigma^2,\beta,x_1,z_1,x_2,z_2,\ldots,x_N,z_N$. (1 **pt**)

Let
$$A = \begin{bmatrix} 1 & \lambda_1 \\ 1 & \lambda_1 \end{bmatrix}$$
, $\Sigma a^{-1} = \begin{bmatrix} 1/B & 0 \\ 0 & 1/B \end{bmatrix}$, $\Sigma w^{-1} = \frac{1}{D^{\perp}}$, $Z = \begin{bmatrix} 2_1 \\ 2_2 \\ 2_1 \end{bmatrix}$
 $P(a \mid z_1, ..., z_n; \lambda_1, ..., \lambda_n) \sim N(Mal \lambda_1, ..., z_n, \Sigma_{al \lambda_1, ..., z_n})$
 $Mal \lambda_1, ..., z_n = (\Sigma a^{-1} + A^T \Sigma w^T A)^{-1} (A^T \Sigma w^T Z)$, $\Sigma_{al \lambda_1, ..., z_n} = (\Sigma a^{-1} + A^T \Sigma w^T A)^{-1}$

- 2. Let $\sigma^2 = 0.1$ and $\beta = 1$. Draw four contour plots corresponding to the distributions $p(\mathbf{a})$, $p(\mathbf{a}|z_1;x_1)$, $p(\mathbf{a}|z_1,\ldots,z_5;x_1\ldots x_5)$, and $p(\mathbf{a}|z_1,\ldots,z_{100};x_1\ldots x_{100})$. In all contour plots, the x-axis represents a_0 , and the y-axis represents a_1 . Please save the figures with names **prior.pdf**, **posterior1.pdf**, **posterior5.pdf**, **posterior100.pdf**, respectively. (1.5 **pt**)
- 3. Suppose that there is a new input x, for which we want to predict the corresponding target value z. Write down the distribution of the prediction z, i.e, $p(z|z_1, \ldots, z_N; x, x_1, \ldots x_N)$. (1 **pt**)

Let
$$A = [1 \ x]$$
, $\Sigma w = T^{2}$, and all other variables hold their sume value as in question 1.

 $p[z] X_{1}X_{1},...z_{N} \sim N(M_{21}X_{1}X_{1},...z_{N}), \Sigma_{21}X_{1}X_{1},...z_{N})$
 $M_{21}X_{1}X_{1},...z_{N} = A \cdot M_{41}X_{1},...z_{N}, \Sigma_{21}X_{1}X_{1}...z_{N} = \Sigma_{W} + A \sum_{41}\Sigma_{41}X_{41}...z_{N} A^{T}$

- 4. Let $\sigma^2 = 0.1$ and $\beta = 1$. Given a set of new inputs $\{-4, -3.8, \dots, 3.8, 4\}$, plot three figures, whose x-axis is the input and y-axis is the prediction, corresponding to three cases:
 - (a) The predictions are based on one training sample, i.e., based on $p(z|z_1; x, x_1,)$.
 - (b) The predictions are based on 5 training samples, i.e., based on $p(z|z_1,\ldots,z_5;x,x_1,\ldots,x_5)$.
 - (c) The predictions are based on 100 training samples, i.e., based on $p(z|z_1,\ldots,z_{100};x,x_1,\ldots,x_{100})$.

The range of each figure is set as $[-4,4] \times [-4,4]$. Each figure should contain the following three components: 1) the new inputs and the corresponding predicted targets; 2) a vertical interval at each predicted target, indicating the range within one standard deviation; 3) the training sample(s) that are used for the prediction. Use plt.errorbar for 1) and 2); use plt.scatter for 3). Please save the figures with names **predict1.pdf**, **predict5.pdf**, **predict100.pdf**, respectively. (1.5 **pt**)