

CSE 4202: Structured Programming II Lab

Lecture 6 — Linked Lists

Syed Rifat Raiyan

Lecturer

Department of Computer Science & Engineering Islamic University of Technology, Dhaka, Bangladesh

Email: rifatraiyan@iut-dhaka.edu

Lecture Plan

The agenda for today

- Recap on resizing arrays dynamically
- Pictorial overview of linking
- Creating a single node
- Different ways of inserting a single node
- Printing the list via traversal
- Searching for a value
- Deleting the entire linked list (recursively)
- Different ways of deleting a single node

What we did so far...

Linked Lists

An overview

It is an **Abstract Data Type (ADT)** that allows us to utilize *non-contiguously located* memory slots as a linear sequence of elements by stitching them together.

✓ Other languages like Java, Python, and C++ readily offers us the list data structure.

Types of linked lists —

- Singly Linked List
- Doubly Linked List
- Circular Linked List
- and many more...

Prerequisite syntax: **struct**, *, ., ->

Node representation

Recall that, **struct**s give us "containers" for holding variables of different data types, typically.

A linked list node is a special kind of **struct** with two members:

- Data of some data type (int, char, float...)
- A pointer to another node of the same type

In this way, a set of nodes together can be thought of as forming a chain of elements that we can follow from beginning to end.

Node representation

Let's define the structure of the node.

```
typedef struct
{

node;
```


Node representation

We need a **value** field to store the number being stored within the node. What else do we need?

```
typedef struct
{
    int value;
} node;
```


Node representation

We also need a **next** pointer to point to the next node in the list. But will this work?

```
typedef struct
{
    int value;
    node* next;
} node;
```


Node representation

Recall that C parses from top to bottom and from left to right.

```
typedef struct node
{
    int value;
    struct node* next;
} node;
```


Creating a node

node* list;

Creating a node

```
node* list = NULL;
```


Creating a node

```
node* n = malloc(sizeof(node));
```


Creating a node

node* n = malloc(sizeof(node));

Creating a node

```
node* n = malloc(sizeof(node));
```


Creating a node

$$(*n).value = 1;$$

Creating a node

$$n->value = 1;$$

Creating a node

$$n->next = NULL;$$

Creating a node

$$list = n;$$

Creating a node

Disregarding the node \mathbf{n} , we end up with a list of size 1.

Inserting a node (prepending)

Let's say we want to add another node to the list.

node* n = malloc(sizeof(node));


```
n->value = 2;
n->next = NULL;
```


$$list = n;$$

Inserting a node (prepending)

Disregarding the node **n**, we end up with a list of size 2.

Inserting a node (prepending)

After adding another node having the value 3.


```
The C implementation is,
 void prepend(int element)
     node* n = (node*)malloc(sizeof(node));
     n->value = element;
     n->next = NULL;
     n->next = list;
     list = n;
 int main()
     int x;
     while(scanf("%d", &x) != EOF)
         prepend(x);
     print list();
     . . .
     . . .
```

```
"D:\IUT Teaching\CSE4202 Structured Programming II Lab\Demo C Programs\singlylinkedlist.exe'

1 2 3

^Z
3 2 1

Process returned 0 (0x0) execution time : 4.289 s

Press any key to continue.
```

Printing the contents of the list

We traverse through the list and print the values.

```
void print list()
    if(list == NULL)
        printf("List is empty!\n");
        return;
    for(node* ptr = list; ptr != NULL; ptr = ptr->next)
        printf("%d ", ptr->value);
    printf("\n");
```


Printing the contents of the list

We traverse through the list and print the values.

```
void print_list()
{
    if(list == NULL)
    {
        printf("List is empty!\n");
        return;
    }
    for(node* ptr = list; ptr != NULL; ptr = ptr->next)
    {
        printf("%d ", ptr->value);
    }
    printf("\n");
}
```


Printing the contents of the list

We traverse through the list and print the values.

Printing the contents of the list

We traverse through the list and print the values.

```
void print_list()
{
    if(list == NULL)
        printf("List is empty!\n");
        return;
}
    for(node* ptr = list; ptr != NULL; ptr = ptr->next)
        {
            printf("%d ", ptr->value);
        }
        printf("\n");
}
```

■ "D:\IUT Teaching\CSE4202 Structured Programming II Lab\Demo C Programs\singlylinkedlist.exe"

```
1 2 3
^Z
3 2 1
Process returned 0 (0x0) execution time : 4.479 s
Press any key to continue.
```

What are we sacrificing here?

There are no indices!

Inserting a node (appending)

Inserting a node (appending)

```
void append(int element)
    node* n = (node*)malloc(sizeof(node));
    n->value = element;
    n->next = NULL;
    if(list == NULL)
        list = n;
        return;
    node* temp = list;
    while(temp->next != NULL)
        temp = temp->next;
    temp->next = n;
```

```
int main()
{
    int x;
    while(scanf("%d", &x) != EOF)
    {
        append(x);
    }
    print_list();
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ...
    ..
```

```
Select "D:\IUT Teaching\CSE4202 Structured Programming II Lab\Demo C Programs\singlylinkedlist.exe"

1 2 3

^Z

1 2 3

Process returned 0 (0x0) execution time : 5.047 s

Press any key to continue.
```

Inserting a node (sorted order)

Inserting a node (sorted order)

```
void insert sorted(int element)
    node* n = (node*)malloc(sizeof(node));
    n->value = element;
    n->next = NULL;
    if(list == NULL)
        list = n;
                                  Prepending
        return;
    else if(n->value < list->value)
        n->next = list;
        list = n;
```

```
else
    for(node* curr = list; curr != NULL; curr = curr->next)
        if(curr->next == NULL)
                                       Appending
            curr->next = n;
            break;
        if(n->value < curr->next->value)
            n->next = curr->next;
            curr->next = n; ___
            break;
                                      Splicing
                      int main()
                          int x;
                          while(scanf("%d", &x) != EOF)
                              insert sorted(x);
                          print list();
```

```
□ "D:\IUT Teaching\CSE4202 Structured Programming II Lab\Demo C Programs\singlylinkedlist.exe"

2 1 4 3

^Z

1 2 3 4

Process returned 0 (0x0) execution time : 13.213 s

Press any key to continue.
```

. . .

. . .

Searching for an element

```
bool find(int element)
    for(node* trav = list; trav != NULL; trav = trav->next)
        if(trav->value == element)
            return true;
                                list
    return false;
```

Searching for an element

```
bool find(int element)
    for(node* trav = list; trav != NULL; trav = trav->next)
        if(trav->value == element)
            return true;
                             list
    return false;
                                                                              6
                             trav
```

Searching for an element

```
bool find(int element)
    for(node* trav = list; trav != NULL; trav = trav->next)
        if(trav->value == element)
            return true;
                             list
    return false;
                                                                              6
                                             trav
```

Searching for an element

```
bool find(int element)
    for(node* trav = list; trav != NULL; trav = trav->next)
        if(trav->value == element)
            return true;
                             list
    return false;
                                                                              6
                                                                                              8
                                                             trav
```

Searching for an element

```
bool find(int element)
    for(node* trav = list; trav != NULL; trav = trav->next)
        if(trav->value == element)
            return true;
                                                              Complexity: O(n)
                              list
    return false;
                                                                               6
                                                                                              8
                                                                             trav
```

Inserting a node (after an element)

We search for the element, and insert the new node after it.

```
void insert_after(int element, int pred)
    node *n = (node*)malloc(sizeof(node));
    n->value = element;
    n->next = NULL;
    node* curr = list;
    while(curr->value != pred)
        curr = curr->next;
    n->next = curr->next;
    curr->next = n;
```

```
int main()
    int x;
    while(scanf("%d", &x) != EOF)
         insert sorted(x);
    print list();
    int k = 3, new element = 13;
    insert after (new element, k);
    printf("%d has been inserted after %d.\n", new element, k);
    print list();
  "D:\IUT Teaching\CSE4202 Structured Programming II Lab\Demo C Programs\singlylinkedlist.exe"
  1 2 3 4
    2 3 4
  13 has been inserted after 3.
  1 2 3 13 4
                                execution time: 8.489 s
  Process returned 0 (0x0)
```

Press any key to continue.

Deleting the entire list

We need to let go of the dynamically allocated memory slots to avoid memory leaks!

```
int main()
void destroy(node* n)
                                                   int x;
    if(n == NULL)
                                                   while(scanf("%d", &x) != EOF)
          printf("List is empty!\n");
                                                       insert sorted(x);
        return;
                                                   print list();
    destroy (n->next);
    free(n);
                                                   destroy(list);
       list
        12
                     15
                                              13
                                                          10
                                  9
                                                                      destroy()
                                                                      STACK FRAMES
```

Deleting the entire list

We need to let go of the dynamically allocated memory slots to avoid memory leaks!

```
void destroy(node* n)
   if(n == NULL)
         printf("List is empty!\n");
       return;
   destroy(n->next);
   free(n);
      list
                 list
                                                               destroy()
                  15
       12
                                         13
                                                    10
                              9
                                                               destroy()
                                                               STACK FRAMES
```

Deleting the entire list

```
void destroy(node* n)
   if(n == NULL)
        printf("List is empty!\n");
       return;
   destroy(n->next);
   free(n);
                                                             destroy()
      list
                 list
                            list
                                                             destroy()
       12
                  15
                                                   10
                              9
                                        13
                                                             destroy()
                                                              STACK FRAMES
```

Deleting the entire list

```
void destroy(node* n)
   if(n == NULL)
         printf("List is empty!\n");
       return;
   destroy(n->next);
   free(n);
       list
                   list
                              list
                                          list
        12
                    15
                                            13
                                                       10
                                 9
```


Deleting the entire list

```
void destroy(node* n)
    if(n == NULL)
         printf("List is empty!\n");
        return;
    destroy (n->next);
    free(n);
                   list
        list
                                                       list
                               list
                                           list
         12
                     15
                                             13
                                                        10
                                 9
```

```
destroy()
destroy()
destroy()
destroy()

destroy()

STACK FRAMES
```

Deleting the entire list

```
void destroy(node* n)
   if(n == NULL)
                                                          destroy()
        printf("List is empty!\n");
                                                          destroy()
      return;
   destroy(n->next);
                                                          destroy()
   free(n);
                                                          destroy()
       list
                 list
                                               list
                           list
                                     list
                                                          destroy()
        12
                  15
                                      13
                                                 10
                             9
                                                          destroy()
                                                           STACK FRAMES
                                                list
```

Deleting the entire list

```
void destroy(node* n)
    if(n == NULL)
          printf("List is empty!\n");
        return;
    destroy(n->next);
    free(n);
        list
                    list
                                list
                                            list
                      15
                                             13
                                  9
```


Deleting the entire list

```
void destroy(node* n)
{
    if(n == NULL)
    {
        printf("List is empty!\n");
        return;
    }
    destroy(n->next);
    free(n);
}
```


Deleting the entire list

```
void destroy(node* n)
{
    if(n == NULL)
    {
        printf("List is empty!\n");
        return;
    }
    destroy(n->next);
    free(n);
}
```


Deleting the entire list

```
void destroy(node* n)
    if(n == NULL)
          printf("List is empty!\n");
        return;
    destroy(n->next);
    free(n);
        list
```


Deleting the entire list

```
void destroy(node* n)
{
    if(n == NULL)
    {
        printf("List is empty!\n");
        return;
    }
    destroy(n->next);
    free(n);
}
```


Poof!

STACK FRAMES

Deleting from the front of the list

To remove the first node from the linked list.

```
void delete_front()
{
    if(list == NULL)
        printf("List is empty!\n");
        return;
    }
    node* temp;
    temp = list;
    list = list->next;
    free(temp);
}
```

```
int main()
    int x;
    while(scanf("%d", &x) != EOF)
        insert sorted(x);
    print list();
    delete front();
    printf("The first element has been deleted.\n");
    print list();
```

```
Select "D:\IUT Teaching\CSE4202 Structured Programming II Lab\Demo C Programs\singlylinkedlist.exe"

1 2 3 4

^Z

1 2 3 4

The first element has been deleted.

2 3 4

Process returned 0 (0x0) execution time: 3.528 s

Press any key to continue.
```

Deleting from the back of the list

To remove the first node from the linked list.

```
void delete back()
    if(list == NULL)
        printf("List is empty!\n");
        return;
    node* curr = list;
    node* prev = NULL;
    while(curr->next != NULL)
        prev = curr;
        curr = curr->next;
    if(prev != NULL)
        prev->next = curr->next;
    free (curr);
```

```
int main()
{
   int x;
   while(scanf("%d", &x) != EOF)
   {
      insert_sorted(x);
   }
   print_list();
   delete_back();
   printf("The last element has been deleted.\n");
   print_list();
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
   ...
```

```
"D:\IUT Teaching\CSE4202 Structured Programming II Lab\Demo C Programs\singlylinkedlist.exe"

1 2 3 4

^Z

1 2 3 4

The last element has been deleted.

1 2 3

Process returned 0 (0x0) execution time: 2.870 s

Press any key to continue.
```

Deleting a particular element

Search for the element, then delete it.

```
void delete node(int element)
    if(list == NULL)
        printf("List is empty!\n");
        return;
    node* curr = list;
    node* prev = NULL;
    while(curr->value != element)
        prev = curr;
        curr = curr->next;
    if(prev != NULL)
        prev->next = curr->next;
    free (curr);
```

```
int main()
    int x;
    while(scanf("%d", &x) != EOF)
        insert sorted(x);
   print list();
    int k = 3;
   delete_node(k);
   printf("%d has been deleted.\n", k);
   print list();
```

```
"D:\IUT Teaching\CSE4202 Structured Programming II Lab\Demo C Programs\singlylinkedlist.exe"

1 2 3 4

AZ

1 2 3 4

3 has been deleted.

1 2 4

Process returned 0 (0x0) execution time: 4.595 s

Press any key to continue.
```

Linked List Variants

Types and nomenclature

There are a plethora of other approaches to implementing a linked list, each with their own advantages and disadvantages —

- Doubly Linked List
- Circular Linked List
- Your assignment for this lab.
- Multiply Linked List
- Linked List with Hash Linking

Now that you understand the *basic building blocks*, it will be easy to conceptualize other data structures like Binary Tree, Binary Search Tree, AVL Tree, Trie, Hash Table, Stack, Queue, Heap, etc. (in the *next semester*, insha'Allah)