UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO – BCC

HELENA VARGAS TANNURI

IMPLEMENTAÇÃO DE UMA BIBLIOTECA DA LÓGICA DE INCONSISTÊNCIA FORMAL LFI1 EM COQ

JOINVILLE 2024

HELENA VARGAS TANNURI

IMPLEMENTAÇÃO DE UMA BIBLIOTECA DA LÓGICA DE INCONSISTÊNCIA FORMAL LFI1 EM COQ

Trabalho de conclusão de curso submetido à Universidade do Estado de Santa Catarina como parte dos requisitos para a obtenção do grau de Bacharel em Ciência da Computação

Orientadora: Karina Girardi Roggia Coorientador: Miguel Alfredo Nunes

HELENA VARGAS TANNURI

IMPLEMENTAÇÃO DE UMA BIBLIOTECA DA LÓGICA DE INCONSISTÊNCIA FORMAL LFI1 EM COQ

Trabalho de conclusão de curso submetido à Universidade do Estado de Santa Catarina como parte dos requisitos para a obtenção do grau de Bacharel em Ciência da Computação

Orientadora: Karina Girardi Roggia Coorientador: Miguel Alfredo Nunes

BANCA EXAMINADORA:

Orientadora:	
	Dra. Karina Girardi Roggia UDESC
Coorientador	:
	Miguel Alfredo Nunes UNICAMP
Membros:	
	Dr. Cristiano Damiani Vasconcellos UDESC
	Me. Paulo Henrique Torrens University of Kent

Joinville, Junho de 2024

AGRADECIMENTOS

"Different conclusions are reached when one fact is viewed from two separate points of view. When that happens, there is no immediate way to judge which point of view is the correct one. There is no way to conclude one's own conclusion is the correct one. But for that exact reason, it is also premature to decide one's own conclusion is wrong."

(Senjougahara Hitagi - Bakemonogatari, [2009])

RESUMO

Palavras-chave: Coq, Lógica paraconsistente, LFI1, Lógica de Inconsistência Formal, Lógica Trivalorada.

ABSTRACT

Keywords: teste.

LISTA DE ILUSTRAÇÕES

LISTA DE TABELAS

SUMÁRIO

1	INTRODUÇÃO
1.1	OBJETIVO GERAL
1.2	OBJETIVOS ESPECÍFICOS
1.3	TRABALHOS RELACIONADOS
1.4	METODOLOGIA
1.5	ESTRUTURA DO TRABALHO
2	LÓGICAS DE INCONSISTÊNCIA FORMAL 13
2.1	PARACONSISTÊNCIA
2.2	INCONSISTÊNCIA
3	A LÓGICA DE INCONSISTÊNCIA FORMAL LFI1 19
3.1	LINGUAGEM
3.2	AXIOMATIZAÇÃO
3.3	SEMÂNTICA
	REFERÊNCIAS

1 INTRODUÇÃO

As lógicas paraconsistentes são uma família de lógicas na qual a presença de contradições não implica trivialidade, ou seja, são sistemas lógicos que possuem uma negação que não respeita o Princípio da Explosão, definido como $\alpha \to (\neg \alpha \to \beta)$ (CARNIELLI; CONIGLIO; MARCOS, 2007). Tradicionalmente, em lógicas ortodoxas, qualquer teoria que seja inconsistente e, portanto, não respeite o Princípio da não-contradição, definido como $\neg(\alpha \land \neg \alpha)$ - será uma teoria trivial (uma teoria que contem todas as sentenças). Deste modo, as lógicas paraconsistentes surgem como uma ferramenta que permite tratar contradições sem trivializar o sistema lógico (CARNIELLI; CONIGLIO, 2016).

De acordo com Priest, Tanaka e Weber (2022), as motivações para o estudo de lógicas paraconsistentes podem ser observadas em diversos campos do conhecimento. Nas ciências naturais, por exemplo, teorias inconsistentes e não-triviais são comuns, como é o caso da teoria do átomo de Bohr, que, segundo Brown e Priest (2015), deve possuir um mecanismo de inferência paraconsistente¹. No campo da linguística, inconsistências não-triviais também são possíveis, como a preservação da noção espacial da palavra "Próximo" mesmo tratandose de objetos impossíveis² (MCGINNIS, 2013). Ademais, no contexto da computação, uma aplicação da paraconsistência é o uso de lógicas de inconsistência formal para a modelagem e o desenvolvimento de bancos de dados evolucionários (CARNIELLI; MARCOS; AMO, 2000).

As lógicas de inconsistência formal (LFIs), são lógicas paraconsistentes que introduzem na sua linguagem os conceitos de consistência e inconsistência como formas de representar o excesso de informações (por exemplo, evidência para α e evidência para $\neg \alpha$), para resgatar a capacidade de se obter a trivialidade em alguns casos (CARNIELLI; CONIGLIO; MARCOS, 2007). Ao explicitamente representar a consistência dentro da sua linguagem, é possível estudar teorias inconsistentes sem necessariamente assumir que elas são triviais, porém possibilitando a trivialidade em situações específicas. A ideia por trás das LFIs é que deve-se respeitar as noções da lógica clássica o máximo possível, desviando desta somente na presença de contradições. Isto significa que, na ausência de contradições, o Princípio da Explosão deve ser tomado como válido (PRIEST; TANAKA; WEBER, 2022). Segundo Carnielli e Coniglio; Barrio e Carnielli (2016, 2019), na lógica LFI1, uma lógica paraconsistente e trivalorada, os conceitos de inconsistência e consistência são introduzidos à linguagem por meio do operador • para a inconsistência ou o para a consistência, sendo que qualquer um destes pode ser usado para definir a linguagem da LFI1. Desta forma, como veremos ao longo do presente trabalho, e possível resgatar a trivialidade através do Princípio da Explosão Gentil, definido, no caso da LFI1o, como $\circ \alpha \to (\alpha \to (\neg \alpha \to \beta))$ (CARNIELLI; CONIGLIO; MARCOS, 2007). Este princípio diz que a

De acordo com a teoria, um elétron orbita o núcelo do átomo sem radiar energia. Porém, de acordo com as equações de Maxwell, que compõem parte da teoria de Bohr, um elétron que está acelerando em órbita deve radiar energia. Estes fatos são inconsistentes entre si, entretanto, não é possível inferir *tudo* sobre o comportamento dos elétrons a partir disso. Portanto, o mecanismo de inferência deve se tratar de um mecanismo paraconsistente.

Por exemplo, na sentença "Adam está próximo de um cubo esférico", a noção espacial entre Adam e um objeto impossível é preservada.

trivialidade é obtida a partir da contradição de uma informação consistente.

Um sistema lógico capaz de lidar com informações inconsistentes é de grande interesse no campo da computação, sobretudo no gerenciamento de bancos de dados (CARNIELLI; MARCOS; AMO, 2000). Um banco de dados pode ser definido como um conjunto estruturado de relações finitas que armazena informações. Estas informações precisam satisfazer condições conhecidas como restrições de integridade antes de serem inseridas no banco (CODD, 1970). As restrições são definidas pelo projetista do banco de dados no momento da implementação e podem ser formalizadas como sentenças de primiera ordem fixas (CARNIELLI; MARCOS; AMO, 2000). Conforme o banco de dados evloui, é preciso atualizar as informações contidas para refletir a realidade, contudo, como informações contraditórias não são permitidas pelas restrições de integridade, isso torna o processo de atualização difícil e trabalhoso. Ademais, a existência de bancos de dados que possam alterar suas restrições de integridade com o passar do tempo (conhecidos como bancos de dados evolucionários) é outro ponto de interesse que pode ser explorado com o uso das LFIs.

Concomitante aos estudos das lógicas paraconsistentes, avanços nas áreas da computação e da matemática - como a definição de teoria de tipos por Russell (1903, 1908), a formulação desta teoria com base na sintaxe do Cálculo-λ por Church (1940) e o descobrimento da Correspondência de Curry-Howard por Curry e Feys; Howard (1958, 1980) - possibilitaram o desenvolvimento de assistentes de provas (HARRISON; URBAN; WIEDIJK, 2014). Assistentes de provas são ferramentas da área de verificação formal, que buscam garantir que um programa está correto de acordo com uma especificação formal. Isto é feito a partir de provas desenvolvidas utilizando métodos matemáticos para a correção de propriedades de um *software* (CHLIPALA, 2019). Tradicionalmente, a verificação da validade de provas é feita manualmente por avaliadores, que seguem o raciocínio do autor e dão um veredito baseado no quão convincente a prova é. Os assistentes de provas surgem como alternativas à verificação manual, possibilitando ao matemático - ou programador - verificar provas na medida em que elas são desenvolvidas, tornando este processo mais fácil e confiável (PAULIN-MOHRING, 2015).

Assistentes de provas como Coq, Lean e Isabelle permitem ao usuário definir e provar propriedades sobre objetos matemáticos com valor computacional (GEUVERS, 2009). No presente trabalho será utilizado o Coq, este que utiliza o Cálculo de Construções Indutivas como formalismo para o desenvolvimento de provas (TEAM, 2024). O Coq ganhou notoriedade como ferramenta de verificação formal após seu uso na prova de correção de diversos teoremas e sistemas computacionais complexos, como a prova do teorema das quatro cores (GEUVERS, 2009), a certificação de um compilador para a linguagem de programação C (LEROY, 2021) e a prova da correção do algoritmo união-busca (CONCHON; FILLIÂTRE, 2007).

A proposta deste trabalho é desenvolver uma biblioteca da lógica de inconsistência formal **LFI1** em Coq, de maneira análoga como foi feito para a lógica modal em Silveira (2020). Após a implementação da biblioteca, propõe-se que sejam provados metateoremas relevantes para a **LFI1** utilizando o Coq.

1.1 OBJETIVO GERAL

O objetivo geral deste trabalho é implementar uma biblioteca da **LFI1** em Coq, assim como desenvolver provas da completude, da correção e do metateorema da dedução dentro da biblioteca.

1.2 OBJETIVOS ESPECÍFICOS

- Estudar conceitos relevantes sobre lógicas paraconsistentes, em especial a LFI1;
- Estudar e revisar as provas manuais para completude, correção e metateorema da dedução da LFI1:
- Realizar um levantamento do estado da arte do desenvolvimento de lógicas paraconsistentes em assistentes de provas;
- Desenvolver uma biblioteca da LFI1 em Coq, baseada na semântica e sintaxe previamente definidas;
- Desenvolver e verificar formalmente as provas para completude, correção e metateorema da dedução em Coq.

1.3 TRABALHOS RELACIONADOS

A partir de um levantamento acerca do estado da arte do desenvolvimento de lógicas paraconsistentes em assistentes de provas na literatura, foram encontrados alguns trabalhos semelhantes ao presente trabalho. Estes são: Villadsen e Schlichtkrull (2017), no qual os autores implementam uma biblioteca de uma lógica paraconsistente utilizando assistente de provas Isabelle. A lógica em questão possui uma quantidade infinita contável de valores verdades nãoclássicos, sendo uma generalização da lógica trivalorada proposta por Łukasiewicz, como definida por Simons (2023). Além de implementar a biblioteca, são provados teoremas e metateoremas sobre esta lógica, como o número mínimo de valores verdades a serem analisados para determinar o valor verdade de uma fórmula e os metateoremas da redução e da dedução.

1.4 METODOLOGIA

1.5 ESTRUTURA DO TRABALHO

2 LÓGICAS DE INCONSISTÊNCIA FORMAL

No estudo de lógicas clássicas uma contradição é considerada inseparável da trivialidade, ou seja, se uma teoria possuir um subconjunto $\{\alpha, \neg \alpha\}$ de fórmulas, pode-se derivar qualquer sentença. Esta propriedade é chamada de *explosividade*. Desta forma, as lógicas clássicas (e certas lógicas não-clássicas, como a lógica intuicionista), expressam sua *explosividade* como representada pela seguinte equação: **MIGS:** Esse parágrafo ficou muito bom

Contradições = Trivialidade

As *Lógicas de Inconsistência Formal* são lógicas paraconsistentes que se propõem a questionar a noção apresentada anteriormente sem abrir mão completamente da trivialidade. Isto é feito estabelecendo uma nova propriedade, chamada de *explosividade gentil*, que resgata a trivialidade introduzindo o conceito de consistência na sua linguagem (CARNIELLI; CONIGLIO; MARCOS, 2007). A consistência é expressa na *explosividade gentil* da seguinte forma:

Contradições + Consistência = Trivialidade

Definir uma lógica que consiga superar o tabu da *explosividade* e, ao mesmo tempo, representar uma ferramenta legítima capaz de formalizar o raciocínio e separar inferências aceitáveis de inferências equivocadas é um dos objetivos do *paraconsistentista*.**HELENA:** Esse termo é do diabo mas o carnielli e o joão marcos usaram e eu achei até que bonitinho. **MIGS:** Eu acho que seria melhor expressar isso como "dos lógicos que se descrevem como paraconsistentistas" ou algo nessas linhas, dependendo de como estiver na tua referência original As *Lógicas de Inconsistência Formal* cumprem este objetivo de maneira elegante, servindo um propósito importante no estudo de lógicas não-clássicas.**HELENA:** eu boto aquele lerolero de banco de dados aqui tb? **MIGS:** Creio que aqui não é necessário, visto que você pretende dar uma visão geral sobre o que é paraconsistência/inconsistência formal e não falar de suas aplicações. Neste capítulo são apresentadas algumas definições necessárias para caracterizar as *Lógicas de Inconsistência Formal*, baseadas em Carnielli e Coniglio (2016) e em Carnielli, Coniglio e Marcos (2007). Antes de definir as **LFIs** é preciso apresentar alguns conceitos básicos acerca de sistemas lógicos paraconsistentes. Nas definições que seguem, utiliza-se a seguinte representação: **MIGS:** Isso deveria ir para a lista de símbolos

- Letras minúsculas do alfabeto latim p, q, r, \dots para representar fórmulas atômicas.
- Letras maiúsculas do alfabeto latim A, B, C, \ldots para representar conjuntos quaisquer.
- Letra minúsculas do alfabeto grego $\alpha, \beta, \gamma, \dots$ para representar fórmulas quaisquer.
- As letras Γ, Δ para representar teorias (conjuntos de fórmulas).
- As letras Σ , Θ para representar a assinatura de uma linguagem.

- O operador ⊢ para representar uma relação de consequência sintática.
- O operador ⊨ para representar uma relação de consequência semântica.
- O operador ⊩ para representar uma relação de consequência qualquer (sintática ou semântica).

Ademais, o presente trabalho segue o mesmo caminho de Carnielli e Coniglio (2016), baseando-se na teoria geral de relações de consequências para definir *lógicas tarskianas* MIGS: Não gostei muito desse "para definir lógicas tarskianas", mas não sei direito como mudar preservando o sentido. Neste sentido, como a lógica LFI1 se trata de uma *lógica tarskiana*, o presente trabalho se restringe a trabalhar somente neste escopo.

Nas Seções 2.1 e 2.2 MIGS: Fale explicitamente o que será abordado em cada seção, por exemplo "Na seção 2.1 será tratado blah blah, na seção 2.2 será tratado blah blah...", serão apresentadas definições que se aplicam tanto a relações de consequência semântica quanto a relações de consequência sintática, denotadas genericamente pelo operador ⊩. MIGS: O leitor é encorajado a tomar conhecimento dos trabalhos de Wójcicki (1984, 1988a, 1988b) e Carnielli et al. (2008) a fim de compreender mais sobre relações e operações de consequência, suas propriedades e as diferenças entre abordagens prova-teóricas (exploradas na Seção 3.2) e abordagens modelo-teóricas (exploradas na Seção 3.3) Este trabalho não se aprofunda em detalhes sobre conceitos envolvendo relações e operações de consequência, suas propriedades e as diferenças entre abordagens prova-teóricas, o leitor interessado nesses assuntos poderia consultar os trabalhos de Wójcicki (1984, 1988a, 1988b) e Carnielli et al. (2008).

2.1 PARACONSISTÊNCIA

Um sistema lógico que se atreve MIGS: atreve a romper com o Princípio da Explosão - o qual afirma que a partir de uma teoria contraditória, qualquer conclusão segue - é dito paraconsistente. As justificativas para questionar tal princípio existem em diversos campos do conhecimento, como na linguística (MCGINNIS, 2013), na computação (CARNIELLI; MARCOS; AMO, 2000) e até mesmo nas ciências naturais (BROWN; PRIEST, 2015). Outra justificativa para o desenvolvimento de sistemas lógicos paraconsistentes é um mero descontentamento com o caráter explosivo das lógicas ortodoxas. Por exemplo, um descontentamento com a conclusão de que "Um triângulo tem quatro lados." a partir da evidência de que "Choveu na tarde de ontem." e da evidência de que "Não choveu na tarde de ontem." 1. Nesta seção, a paraconsistência será definida formalmente, partindo de definições básicas sobre lógica e classificando diferentes sistemas de acordo com propriedades acerca de sua *relação de consequência*.

Uma lógica \mathscr{L} será representada como uma dupla $\mathscr{L} = \langle \mathcal{L}, \Vdash \rangle$, onde \mathcal{L} é sua linguagem (seu conjunto de fórmulas) e \Vdash é uma relação de consequência de conclusão única, definida

Esta forma de explosividade é MIGS: objeto de estudo das um exemplo de uma contradição (não sei o que colocar aqui, acho que contradição pode ficar) estudada pelas lógicas de relevância, que tratam da conexão entre as premissas e a conclusão de uma inferência (MARES, 2024).

como $\Vdash \subseteq \mathscr{O}(\mathcal{L}) \times \mathcal{L}$. Em uma consequência do tipo $A \Vdash \alpha$ (lida como " α é uma consequência de A.") diz-se que o conjunto A é o conjunto de premissas e α é a conclusão. A fim de facilitar a escrita e leitura, **MIGS:** uma notação que resume o conjunto de premissas pode ser estabelecida usaremos a seguinte notação no restante do trabalho.

Notação 1. Sejam Γ, Δ teorias e φ, ψ fórmulas, então $\Gamma, \Delta, \varphi \Vdash \psi$ denota $\Gamma \cup \Delta \cup \{\varphi\} \Vdash \psi$.

Definição 1 (Assinatura proposicional). Uma assinatura proposicional Θ é um conjunto de conectivos lógicos MIGS: eom a informação acerca da aridade de cada um destes cada um contendo também informção sobre sua aridade.

Por exemplo, a assinatura proposicional para a lógica proposicional clássica pode ser definida como $\Theta_{LPC} = \{\wedge^2, \vee^2, \neg^1, \rightarrow^2\}$, onde o operador \wedge^2 representa uma conjunção, \vee^2 representa uma disjunção, \neg^1 representa uma negação e \rightarrow^2 representa uma implicação. No **MIGS:** que segue restante do texto, as aridades **MIGS:** de cada operador serão omitidas destes conectivos será omitida e a aridade de novos conectivos será apresentada somente na sua definição.

Uma assinatura proposicional juntamente com um conjunto enumerável de átomos são base para a definição de uma linguagem proposicional, que por sua vez é utilizada para definir uma lógica proposicional MIGS: . No presente trabalho, a lógica de interesse (a lógica LFII) é uma lógica proposicional., como é o caso da LFII.

Definição 2 (Lógica proposicional). Um sistema lógico \mathcal{L} , definido sobre uma linguagem \mathcal{L} é dito proposicional caso \mathcal{L} seja definida a partir de um conjunto enumerável de átomos $\mathcal{P} = \{p_i \mid i \in \mathbb{N}\}$ e uma assinatura proposicional Θ . A linguagem \mathcal{L} é chamada de linguagem proposicional.

Definição 3 (Substituição). Uma substituição σ de todas as ocorrências de uma variável p_i por uma fórmula ψ em uma fórmula φ , é denotada por $\sigma(\varphi) = \varphi\{p_i \mapsto \psi\}$ (SILVA; FINGER; MELO, 2006). A substituição $\varphi\{p_i \mapsto \psi\}$ é definida indutivamente como (considerando \triangle , \otimes conectivos quaisquer de aridade 1 e 2 respectivamente): **MIGS:** Se você quisesse ser muito pedante, poderia estipular apenas um conectivo qualquer \otimes de aridade n e fazer a definição mais genérica possível

- 1. Se $\varphi = p_i$ então, $\varphi \{p_i \mapsto \psi\} = \psi$;
- 2. Se $\varphi = p_j$ e $j \neq i$ então, $\varphi\{p_i \mapsto \psi\} = \varphi$;
- 3. Se $\varphi = \triangle \gamma$ então, $\varphi \{p_i \mapsto \psi\} = \triangle (\gamma \{p_i \mapsto \psi\});$
- 4. Se $\varphi = \varphi_0 \otimes \varphi_1$ então, $\varphi\{p_i \mapsto \psi\} = \varphi_0\{p_i \mapsto \psi\} \otimes \varphi_1\{p_i \mapsto \psi\}.$

Uma fórmula α é dita *instância de substituição* de uma fórmula β caso exista uma substituição σ tal que $\alpha = \sigma(\beta)$. Ademais, a aplicação de uma substituição σ sobre todos os elementos de uma teoria Γ é definida como $\sigma[\Gamma] = {\sigma(\phi) \mid \phi \in \Gamma}$.

Tendo definido a noção de substituição para lógicas proposicionais, é possível descrever as *lógicas estruturais* como sendo lógicas nas quais todas as inferências são fechadas para a substituição: MIGS: Eu creio que é melhor deixar essa definição dentro da definição de lógica tasrkiana, tal qual é o caso da finitária ademais, poderiam te perguntar "O que tem de tão especial nas lógicas estruturais para elas precisarem de uma definição própria? Por que as lógicas finitárias também não tem uma definição própria?"

Definição 4 (Lógica Estrutural). Uma lógica proposicional \mathcal{L} definida sobre uma linguagem proposicional \mathcal{L}_{Θ} MIGS: Pq aqui vc escreveu \mathcal{L}_{Θ} ? Isso não apareceu em nenhum outro lugar do texto até agora. é dita *estrutural* caso respeite a seguinte condição para todo $\Gamma \cup \Delta \cup \{\alpha\} \subseteq \mathcal{L}$:

Se
$$\Gamma \Vdash \alpha$$
 então $\sigma[\Gamma] \Vdash \sigma(\alpha)$, para toda substituição σ de variável por fórmula.

Definição 5 (Lógica Tarskiana). Uma lógica \mathcal{L} , definida sobre uma linguagem \mathcal{L} e munida com uma relação de consequência \Vdash é dita *Tarskiana* caso satisfaça as seguintes propriedades para todo $\Gamma \cup \Delta \cup \{\alpha\} \subseteq \mathcal{L}$:

- (i) Se $\alpha \in \Gamma$ então $\Gamma \Vdash \alpha$; (reflexividade)
- (ii) Se $\Delta \Vdash \alpha$ e $\Delta \subseteq \Gamma$ então $\Gamma \Vdash \alpha$; (monotonicidade)
- (iii) Se $\Delta \Vdash \alpha$ e $\Gamma \Vdash \delta$ para todo $\delta \in \Delta$ então $\Gamma \Vdash \alpha$. (corte para conjuntos)

Uma lógica \mathcal{L} é dita *finitária* caso satisfaça o seguinte:

(iv) Se $\Gamma \Vdash \alpha$ então existe conjunto finito $\Gamma_0 \subseteq \Gamma$ tal que $\Gamma_0 \Vdash \alpha$.

Por fim, uma lógica proposicional \mathcal{L} é dita padrão caso ela seja Tarskiana, finitária e estrutural. **MIGS:** Isso pode ficar fora da definição

Com isto, é possível definir formalmente o conceito de *paraconsistência* para lógicas Tarskianas.

Definição 6 (Lógica Tarskiana paraconsistente). Uma lógica Tarskiana \mathcal{L} , definida sobre uma linguagem \mathcal{L} , é dita *paraconsistente* se ela possuir uma negação² \neg tal que existem fórmulas $\alpha, \beta \in \mathcal{L}$ de modo que $\alpha, \neg \alpha \nvDash \beta$.

Caso a linguagem de $\mathscr L$ possua uma implicação \to que respeite o metateorema da dedução³, então $\mathscr L$ é paraconsistente se e somente se a fórmula $\alpha \to (\neg \alpha \to \beta)$ não for válida. Ou seja, **MIGS:** se o Princípio da Explosão é inválido (em relação a \neg), $\frac{\log \sigma}{\sigma}$ é uma negação *não explosiva*.

² Esta negação pode ser primitiva (pertencente à assinatura da linguagem) ou definida a partir de outras fórmulas.

³ Definido como Γ , $\alpha \Vdash \beta \iff \Gamma \Vdash \alpha \to \beta$.

2.2 INCONSISTÊNCIA

MIGS: Pelo amor de deus use tabulação para distinguir onde começam e onde terminam seções, isso torna navegar o .tex muito mais fácil A motivação para o desenvolvimento das **LFI**s é possuir sistemas lógicos paraconsistentes nos quais é possível resgatar, de maneira *controlada*, o Princípio da Explosão. Ao internalizar o conceito de consistência, as **LFI**s propõem a noção de que uma contradição que é reconhecidamente inconsistente numa dada teoria é inofensiva e é somente fruto do excesso de informação. O resgate *controlado* da *explosividade* **MIGS:** Creio que esse segundo itálico não é necessário é feito definindo um conjunto $\bigcirc(p)$ de fórmulas dependentes somente em uma variável proposicional p. Caso uma lógica $\mathscr L$ seja explosiva ao unir-se um conjunto $\bigcirc(\alpha)$ – definido **MIGS:** Como ? Se você não vai dar a definição aqui deveria indicar onde ela está no texto a partir de $\bigcirc(p)$ – com uma contradição $\{\alpha, \neg \alpha\}$, ou seja, se $\bigcirc(\alpha)$, $\alpha, \neg \alpha \Vdash \beta$ para todo α e β pertencentes à sua linguagem, e ainda $\bigcirc(\alpha)$, $\alpha \nvDash \beta$ e $\bigcirc(\alpha)$, $\neg \alpha \nvDash \beta$, então dizemos que $\mathscr L$ é *gentilmente explosiva*.

Notação 2. Dado um átomo p, define-se $\bigcirc(p)$ como um conjunto não-vazio de fórmulas dependentes somente em p. Com base neste conjunto, define-se a notação $\bigcirc(\varphi)$ para representar o conjunto obtido pela substituição de todas as ocorrências de p por φ em todos os elementos de $\bigcirc(p)$, ou seja, para uma fórmula φ qualquer, $\bigcirc(\varphi) = \{\psi\{p \mapsto \varphi\} \mid \psi \in \bigcirc(p)\}$.

MIGS: Seria interessante ter algum texto aqui antes de ir direto para a definição, tipo algo falando que essa é a definição "usual" de LFI mas que você vai apresentar outras mais adiante.

Definição 7 (Lógica de Inconsistência Formal). Seja $\mathscr{L} = \langle \mathcal{L}_{\Theta}, \Vdash \rangle$ MIGS: Novamente \mathcal{L}_{Θ} uma lógica padrão, de forma que sua assinatura proposicional Θ possua uma negação \neg . Seja $\bigcirc(p)$ um conjunto não-vazio de fórmulas dependentes somente na variável proposicional p. Então \mathscr{L} será uma *Lógica de Inconsistência Formal* (**LFI**) (em relação a $\bigcirc(p)$ e \neg) caso ela respeite as seguintes condições:

- (i) Existem $\gamma, \delta \in \mathcal{L}_{\Theta}$ de modo que $\gamma, \neg \gamma \not\Vdash \delta$;
- (ii) Existem $\alpha, \beta \in \mathcal{L}_{\Theta}$ de modo que:

(ii.a)
$$\bigcirc$$
 (α) , $\alpha \nvDash \beta$;

(ii.a)
$$\bigcirc$$
 (α), $\neg \alpha \nvDash \beta$;

(iii) Para todo $\varphi, \psi \in \mathcal{L}_{\Theta}$ tem-se $\bigcirc (\varphi), \varphi, \neg \varphi \Vdash \psi$.

A condição (i) diz que toda **LFI** é *não-explosiva* (em relação a \neg) **MIGS:** , a condição (ii) diz que ... e a condição (iii) diz que toda **LFI** é *gentilmente explosiva* (em relação a $\bigcirc p$ e \neg).

MIGS: Sinto que você ainda não terminou essa seção, mas é importante você falar que o conceito de consistência é internalizado na linguagem por meio de um conectivo e aqui (ou logo depois das outras definições) seria o lugar ideal para você fazer isso.

Na literatura existem outras definições para as Lógicas de Inconsistência Formal, que relaxam a condição (ii) para obter uma definição mais uniforme. Segundo Carnielli e Coniglio (2016), elas definem LFIs *fracas* da seguinte forma:

Definição 8 (**LFI** fraca). Seja $\mathscr{L} = \langle \mathcal{L}_{\Theta}, \Vdash \rangle$ uma lógica padrão, de forma que sua assinatura proposicional Θ possua uma negação \neg . Seja $\bigcirc(p)$ um conjunto não-vazio de fórmulas dependentes somente na variável proposicional p. Então \mathscr{L} será uma **LFI** fraca (em relação a $\bigcirc(p)$ e \neg) caso ela respeite as seguintes condições:

- (i) Existem $\varphi, \psi \in \mathcal{L}_{\Theta}$ de modo que $\varphi, \neg \varphi \not\Vdash \psi$;
- (ii) Existem $\varphi, \psi \in \mathcal{L}_{\Theta}$ de modo que $\bigcirc (\varphi), \varphi \not\Vdash \psi$;
- (iii) Existem $\varphi, \psi \in \mathcal{L}_{\Theta}$ de modo que $\bigcap (\varphi), \neg \varphi \not\Vdash \psi$;
- (iv) Para todo $\varphi, \psi \in \mathcal{L}_{\Theta}$ tem-se $((\varphi), \varphi, \neg \varphi \Vdash \psi)$.

Como é possível observar pelas duas definições acima, toda **LFI** é uma **LFI** fraca (já que a condição (ii) da Definição 7 satisfaz as condições (ii) e (iii) da Definição 8), mas o inverso não é necessariamente verdade. Ademais, é possível estabelecer outra definição (também mais uniforme do que a Definição 7) que introduz o conceito de **LFI**s *fortes* como feito abaixo:

Definição 9 (**LFI** forte). Seja $\mathscr{L} = \langle \mathcal{L}_{\Theta}, \Vdash \rangle$ uma lógica padrão, de forma que sua assinatura proposicional Θ possua uma negação \neg . Seja $\bigcirc(p)$ um conjunto não-vazio de fórmulas dependentes somente na variável proposicional p. Então \mathscr{L} será uma **LFI** forte (em relação a $\bigcirc(p)$ e \neg) caso ela respeite as seguintes condições:

(i) Existem $\alpha, \beta \in \mathcal{L}_{\Theta}$ de modo que:

(i.a)
$$\alpha, \neg \alpha \nvDash \beta$$
;

(i.b)
$$\bigcap (\alpha), \alpha \nvDash \beta$$
;

(i.c)
$$\bigcirc$$
 (α), $\neg \alpha \nvDash \beta$;

(ii) Para todo
$$\varphi, \psi \in \mathcal{L}_{\Theta}$$
 tem-se $\bigcirc (\varphi), \varphi, \neg \varphi \Vdash \psi$.

É imediato perceber que toda **LFI** forte é uma **LFI** (já que a condição (i) da Definição 9 satisfaz as condições (i) e (ii) da Definição 7), mas o inverso não é necessariamente verdade. Ademais, no escopo das lógicas proposicionais, é possível estabelecer uma forma mais simples de provar que uma dada lógica proposicional é uma **LFI** forte, tomando α e β como dois átomos p e q quaisquer nas condições (i.a), (i.b) e (i.c) da definição acima.

MIGS: Seria bom você explicar em mais detalhes pq as definições são diferentes, ou seja, falar do impacto das diferentes quantificações nas definições.

3 A LÓGICA DE INCONSISTÊNCIA FORMAL LFI1

HELENA: coisas bancos de dados. A *Lógica De Inconsistência Formal* **LFI1** introduz na sua assinatura o operador \circ para representar a consistência. Uma informação é dita consistente caso ela e sua negação não sejam simultaneamente verdadeiras, ou seja, dada uma informação α , sua consistência $\circ \alpha$ será equivalente a fórmula $\neg(\alpha \land \neg \alpha)$. Com a introdução deste novo operador, é possível lidar com a inconsistência de informações sem que trivialidade ocorra, já que, caso uma informação seja conhecidamente *inconsistente*, ou seja, $\neg \circ \alpha$, então ela se trata de uma contradição inofensiva, fruto do excesso de informações numa dada teoria **MIGS:** Essa parte sobre o operador de consistência deveria estar no capítulo anterior. No trabalho de Carnielli, Marcos e Amo (2000) a lógica **LFI1*** é definida como uma extensão de primeira ordem da lógica proposicional **LFI1**. A motivação para definir-se uma *Lógica de Inconsistência Formal* de primeira ordem vem da natureza das informações contidas em bancos de dados, estas que podem ser compreendidas como sentenças de primeira ordem fixas (CODD, 1970). Entretanto, o presente trabalho trata somente da lógica proposicional **LFI1**. **MIGS:** A. Cada. Frase. Tem. Um. Ponto.

MIGS: Idealmente você deveria falar que no artigo que originalmente foi definida a LFI1 era usado o conectivo de inconsistência e que você está usando a formulação do livrão que uso o conectivo de consistência.

MIGS: Nas seções que seguem, serão apresentados conceitos utilizados para definir e provar metapropriedades sobre a lógica LFH Esse capítulo é divido da seguinte forma: na Seção 3.1 é apresentado..., na Seção

3.1 LINGUAGEM

A lógica proposicional **LFI1** aqui apresentada é definida com base em Carnielli e Coniglio (2016) sobre a linguagem \mathcal{L}_{Σ} , que por sua vez é definida sobre um conjunto enumerável de átomos $\mathcal{P} = \{p_n \mid n \in \mathbb{N}\}$ e uma assinatura proposicional $\Sigma = \{\wedge^2, \vee^2, \rightarrow^2, \neg^1, \circ^1\}$. Como de costume, o conectivo \wedge^2 representa uma conjunção, \vee^2 representa uma disjunção, \rightarrow^2 representa uma implicação, \neg^1 representa uma negação e \circ^1 é o conectivo de consistência, definido de forma primitiva. No restante do texto a aridade destes conectivos será omitida. Portanto A linguagem \mathcal{L}_{Σ} da **LFI1** é definida da seguinte forma:

Definição 10 (Linguagem da **LFI1**). A linguagem \mathcal{L}_{Σ} da **LFI1** é definida indutivamente como o menor conjunto a que respeita as seguintes regras:

- 1. $\mathcal{P} \subseteq \mathcal{L}_{\Sigma}$
- 2. Se $\varphi \in \mathcal{L}_{\Sigma}$, então $\triangle \varphi \in \mathcal{L}_{\Sigma}$, com $\triangle \in \{\neg, \circ\}$
- 3. Se $\varphi, \psi \in \mathcal{L}_{\Sigma}$, então $\varphi \otimes \psi \in \mathcal{L}_{\Sigma}$, com $\otimes \in \{\land, \lor, \rightarrow\}$

A precedência dos conectivos é dada de maneira costumeira, com a adição do operador \circ de consistência, seguindo a ordem (da maior precedência para a menor): \circ , \neg , \wedge , \vee , \rightarrow . Os conectivos binários \wedge e \vee são associativos à esquerda, ou seja, uma expressão do tipo $\alpha \wedge \beta \wedge \gamma$ é lida como $((\alpha \wedge \beta) \wedge \gamma)$, e o conectivo \rightarrow é associativo à direita, ou seja, uma expressão do tipo $\alpha \rightarrow \beta \rightarrow \gamma$ é lida como $(\alpha \rightarrow (\beta \rightarrow (\gamma)))$.

A linguagem da **LFI1** pode ser definida de maneira equivalente utilizando-se o operador de inconsistência (representado por •), **MIGS:** seguindo a definição definido como • $\alpha \stackrel{\text{def}}{=} \neg \circ \alpha$, como feito por Carnielli, Marcos e Amo (2000). Naquele trabalho o foco era explorar a **LFI1** como uma ferramenta para lidar com inconsistências em bancos de dados, portanto tomar o operador • como primitivo era de grande interesse. Entretanto, no presente trabalho, **MIGS:** a escolha de seguir o que foi feito será utilizada a definição apresentada em Carnielli e Coniglio (2016)**MIGS:** (definir a semântica e a sintaxe em termos de •), onde a linguagem é definida utilizando o operador •. **MIGS:** foi tomada Isso foi feito pois **MIGS:** isto salienta algumas propriedades interessantes da negação ¬, como a presença das leis de De Morgan, axiomatizadas na Seção 3.2. **MIGS:** Isso deveria estar na introdução do capítulo, veja meu comentário anterior

No desenvolvimento de metateoremas sobre propriedades de uma determinada lógica, a indução na complexidade de uma fórmula é um método comum de prova. Para isso, define-se uma função recursiva $C(\phi): \mathcal{L}_{\Sigma} \to \mathbb{N}$ que retorna, para uma dada fórmula, um número natural representando sua complexidade, baseada na quantidade de operadores e átomos. **MIGS:** Isso deveria estar no capítulo anterior, aqui ao invés de dar essa definição você apenas estende ela adicionando a cláusula para \circ

Definição 11 (Complexidade de fórmulas). Dada uma fórmula $\varphi \in \mathcal{L}_{\Sigma}$, a complexidade $C(\varphi)$ é definida recursivamente da seguinte forma:

```
1. Se \varphi = p, onde p \in \mathcal{P}, então C(\varphi) = 1;

2. Se \varphi = \neg \psi, então C(\varphi) = C(\psi) + 1;

3. Se \varphi = \circ \psi, então C(\varphi) = C(\psi) + 2;

4. Se \varphi = \psi \otimes \gamma, onde \otimes \in \{ \land, \lor, \rightarrow \}, então C(\varphi) = C(\psi) + C(\gamma) + 1.
```

Note que a complexidade de uma fórmula do tipo $\circ \alpha$ é estritamente maior que a complexidade de α e $\neg \alpha$. Isto se dá pois, como evidenciado pela semântica de valorações na Definição 16, exite uma dependência de $\circ \alpha$ em $\{\alpha, \neg \alpha\}$.

3.2 AXIOMATIZAÇÃO

MIGS: Eu suponho que esse primeiro trecho você pegou todo do verbete do SEP que citas no final, o cerne do texto está bom, porém acho muito importante você considerar minhas sugestões e, caso elas contradigam o que está no SEP, você ache uma maneira de manter preservar a estrutura do que falei mas com a ideia do que está na fonte, visto que esse texto tem muita vibe de algo que foi mal traduzido.

A teoria das provas é uma das abordagens para o estudo das relações de consequência MIGS: Nela, onde a validade de uma inferência é atestada caso haja uma *prova* das conclusões a partir das premissas. Uma *prova* consiste em MIGS: uma sequência de passos bem definidos MIGS: aplicados sobre conjuntos (ocasionalmente unitários) de proposições com base nos princípios de um determinado sistema de provas. A teoria das provas é sintática por natureza, ou seja, numa inferência do tipo $A \vdash B$, MIGS: as *strings* de $A \in B$ são manipuladas de alguma forma a é relevante apenas a estrutura das fórmulas presentes em $A \in B$, não sua interpretação ou valor verdade, essa estrutura que é manipulada a fim de obter-se uma sequência de passos que – além de atestar sua validade – serve como argumento para tal (BEALL; RESTALL; SAGI, 2024). Desta forma, pode-se definir um sistema de provas sintático para servir como relação de consequência para uma determinada lógica.

No contexto da **LFI1** existem dois sistemas de prova sintáticos estabelecidos até o momento: **MIGS:** uma Axiomatização **MIGS:** no estilo de Hilbert **MIGS:** Eu creio que o mais correto é "no estilo de Hilbert", mas seria bom conferir isso se tiveres tempo, descrita em Carnielli, Marcos e Amo; Carnielli e Coniglio (2000, 2016) e **MIGS:** θ um sistema de *Tableau*, descrito em Carnielli e Marcos (2001). No presente trabalho, foi escolhida a Axiomatização de Hilbert para definir a sintaxe da **LFI1**, dada a maior facilidade desenvolver metateoremas em relação ao sistema de *Tableau*.

A Axiomatização de Hilbert (também conhecida como Sistema de Hilbert ou Cálculo de Hilbert) é um sistema composto por um conjunto de fórmulas, chamadas de *axiomas*, e um conjunto de *regras de inferência*. Uma regra de inferência é formada por uma lista de fórmulas chamadas de premissas da regra e uma fórmula chamada de conclusão da regra (RESTALL, 1999). Uma prova (também chamada de derivação) de uma dada fórmula φ consiste em uma sequência finita de **MIGS:** passos fórmulas ψ_0, \dots, ψ_n , onde $\psi_n = \varphi$, e cada **MIGS:** passos ψ_i ($0 \le i \le n$) é uma *instância de substituição* (ver Definição 3) de um axioma ou **MIGS:** o resultado de uma aplicação de uma regra de inferência **MIGS:** em fórmulas anteriores. A prova termina quando a última linha contiver a fórmula φ . **HELENA:** Falta explicar pra LFI1

MIGS: Eu sugiro uma breve explicação do que é um sistema sintático de Hilbert assim como uma breve explicação de que existem diversas axiomatizações (para a mesma assinatura) e uma explicação sobre pq vc escolheu a axiomatização que escolheu

Notação 3. Utiliza-se $\alpha \leftrightarrow \beta$ para denotar uma bi-implicação, como forma de abreviar a fórmula $(\alpha \to \beta) \land (\beta \to \alpha)$. **MIGS:** \leftarrow isso deveria estar onde você introduz os conectivos da sua linguagem | LFI1 para conectivos os apresenta você onde estar deveria isso \to Além disso, utiliza-se $\bullet \alpha$ para denotar a inconsistência de uma fórmula α , de modo a abreviar $\neg \circ \alpha$.

Definição 12 (**LFI1**). A lógica **LFI1** é definida sobre a linguagem \mathcal{L}_{Σ} através do seguinte cálculo de Hilbert:

Vale notar que a separação (prova × sintaxe × semântica × modelo) MIGS: Coloquei o times pq acho que fica mais apropriado que –, porém ainda acho que pode melhorar não é tão bem definida, MIGS: vide algo que é explorado em Prawitz (2005).

(Axiomas Livrão da paraconsistência VERSÃO DO CALCULO DE HILBERT LFI1.):

$$\begin{array}{llll} \alpha \rightarrow (\beta \rightarrow \alpha) & & & & & & & & & \\ (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) & & & & & & \\ (\alpha \rightarrow \beta) \rightarrow (\alpha \land \beta)) & & & & & & \\ (\alpha \land \beta) \rightarrow \alpha & & & & & & \\ (\alpha \land \beta) \rightarrow \beta & & & & & & \\ (\alpha \land \beta) \rightarrow \beta & & & & & & \\ (\alpha \rightarrow \beta) \rightarrow & & & & & & \\ (\alpha \rightarrow \beta) & & & & & & \\ (\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\alpha \lor \beta) \rightarrow \gamma)) & & & & \\ (\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\alpha \lor \beta) \rightarrow \gamma)) & & & & \\ (\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\alpha \lor \beta) \rightarrow \gamma)) & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & & \\ (\alpha \rightarrow \beta) \lor \alpha & & & & & \\ (\alpha \lor \alpha) & & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & \\ (\alpha \rightarrow \gamma) \rightarrow & & & & \\ (\alpha \rightarrow \gamma) \rightarrow & \\ (\alpha \rightarrow \gamma) \rightarrow & & \\ (\alpha \rightarrow \gamma) \rightarrow & \\ (\alpha$$

Regra de inferência:

$$\frac{\alpha, \alpha \to \beta}{\beta}$$
 MP

3.3 SEMÂNTICA

HELENA: qq eu boto aqui ahuahuhuahua

MIGS: Idem ao que eu falei acima

Uma das formas de se definir a semântica de uma dada lógica \mathcal{L} é definir uma *matriz lógica* para seus conectivos.

Definição 13 (Matriz Lógica). Uma matriz lógica é uma dupla $\mathcal{M} = \langle M, D \rangle$ onde M é seu domínio e D é seu conjunto de valores designados (valores considerados tautologias **MIGS**: Eu acho que "considerados verdadeiros" fica melhor, mas seria bom conferir).

Por exemplo, a matriz lógica $\mathcal{M}_{LPC} = \langle M, D \rangle$ da lógica proposicional clássica possui um domínio $M = \{1,0\}$ e um conjunto de valores designados $D = \{1\}$.

Definição 14 (Lógica Trivalorada). Uma lógica \mathcal{L} é dita uma lógica trivalorada caso ela esteja associada a uma matriz $\mathcal{M} = \langle M, D \rangle$ de forma que seu domínio M possua três elementos.

MIGS: Acho que seria interessante explicar o que significa o valor verdade de $\frac{1}{2}$

Definição 15 (Matriz lógica da **LFI1**). A matriz lógica $\mathcal{M}_{\mathbf{LFI1}} = \langle M, D \rangle$ com domínio $M = \{1, \frac{1}{2}, 0\}$ e um conjunto de valores designados $D = \{1, \frac{1}{2}\}$ é definida da seguinte forma:

\rightarrow	1	$\frac{1}{2}$	0	
1	1	$\frac{1}{2}$	0	
$\frac{1}{2}$	1	$\frac{1}{2}$	0	
0	1	1	1	

$$\begin{array}{c|cccc}
 & \neg \\
\hline
 1 & 0 \\
 \frac{1}{2} & \frac{1}{2} \\
 0 & 1
\end{array}$$

$$\begin{array}{c|c} & \circ \\ \hline 1 & 1 \\ \frac{1}{2} & 0 \\ 0 & 1 \\ \end{array}$$

A lógica **LFI1** é, portanto, dita trivalorada.

MIGS: Aqui acho interessante você explicar que essa é uma semântica não determinística e explicar pq você está incluindo ela, assim como eventualmente provar que ela é intertraduzível para a semântica de matrizes (isso deve ter no livro eu creio, se não fazemos juntos essa prova)

Definição 16 (Semântica de valorações para **LFI1** $_{\circ}$). A função $v:\mathcal{L}_{\Sigma} \to \{1,0\}$ é uma valoração

 $(vCIp_{\rightarrow})$

para LFI1_o caso ela satisfaça as seguintes cláusulas:

$$v(\alpha \land \beta) = 1 \Longleftrightarrow v(\alpha) = 1 \text{ e } v(\beta) = 1$$

$$v(\alpha \lor \beta) = 1 \Longleftrightarrow v(\alpha) = 1 \text{ ou } v(\beta) = 1$$

$$v(\alpha \to \beta) = 1 \Longleftrightarrow v(\alpha) = 0 \text{ ou } v(\beta) = 1$$

$$v(\neg \alpha) = 0 \Longrightarrow v(\alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\alpha) = 0 \text{ ou } v(\neg \alpha) = 0$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\alpha) = 1 \text{ e } v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\neg \alpha) = 1$$

$$v(\neg \alpha) =$$

REFERÊNCIAS

BARRIO, Eduardo Alejandro; CARNIELLI, Walter. Volume II: New advances in Logics of Formal Inconsistency. **Logic Journal of the IGPL**, v. 28, n. 5, p. 845–850, 01 2019. ISSN 1367-0751. Disponível em: https://doi.org/10.1093/jigpal/jzy063. Citado na página 10.

BEALL, Jc; RESTALL, Greg; SAGI, Gil. Logical Consequence. In: ZALTA, Edward N.; NODELMAN, Uri (Ed.). **The Stanford Encyclopedia of Philosophy**. Summer 2024. [S.l.]: Metaphysics Research Lab, Stanford University, 2024. Citado na página 21.

BROWN, M. Bryson; PRIEST, Graham. Chunk and permeate ii: Bohr?s hydrogen atom. **European Journal for Philosophy of Science**, Springer Verlag, v. 5, n. 3, p. 297–314, 2015. Citado 2 vezes nas páginas 10 e 14.

CARNIELLI, Walter et al. **Analysis and Synthesis of Logics**: How to cut and paste reasoning systems. [S.l.]: Springer, 2008. v. 35. (Applied Logics Series, v. 35). Citado na página 14.

CARNIELLI, Walter; CONIGLIO, Marcelo; MARCOS, João. Logics of formal inconsistency. In: _____. [S.l.]: Springer, 2007. p. 1–93. ISBN 978-1-4020-6323-7. Citado 2 vezes nas páginas 10 e 13.

CARNIELLI, Walter; CONIGLIO, Marcelo Esteban. **Paraconsistent logic: Consistency, contradiction and negation**. [S.l.]: Springer International Publishing, 2016. Citado 7 vezes nas páginas 10, 13, 14, 18, 19, 20 e 21.

CARNIELLI, Walter; MARCOS, Joao. Tableau systems for logics of formal inconsistency. In: . [S.l.: s.n.], 2001. v. 2, p. 848–852. Citado na página 21.

CARNIELLI, Walter; MARCOS, João; AMO, Sandra De. Formal inconsistency and evolutionary databases. **Logic and logical philosophy**, p. 115–152, 2000. Citado 6 vezes nas páginas 10, 11, 14, 19, 20 e 21.

CHLIPALA, Adam. Certified programming with dependent types: A pragmatic introduction to the coq proof assistant. [S.l.]: The MIT Press, 2019. Citado na página 11.

CHURCH, Alonzo. A formulation of the simple theory of types. **The journal of symbolic logic**, Cambridge University Press, v. 5, n. 2, p. 56–68, 1940. Citado na página 11.

CODD, E. F. A relational model of data for large shared data banks. **Commun. ACM**, Association for Computing Machinery, New York, NY, USA, v. 13, n. 6, p. 377–387, jun 1970. ISSN 0001-0782. Disponível em: https://doi.org/10.1145/362384.362685. Citado 2 vezes nas páginas 11 e 19.

CONCHON, Sylvain; FILLIÂTRE, Jean-Christophe. A persistent union-find data structure. In: **Proceedings of the 2007 Workshop on Workshop on ML**. New York, NY, USA: Association for Computing Machinery, 2007. (ML '07), p. 37–46. ISBN 9781595936769. Disponível em: https://doi.org/10.1145/1292535.1292541. Citado na página 11.

CURRY, Haskell Brooks; FEYS, Robert. **Combinatory logic**. Amsterdam: North-Holland Amsterdam, 1958. v. 1. Citado na página 11.

GEUVERS, Herman. Proof assistants: History, ideas and future. **Sadhana**, Springer, v. 34, p. 3–25, 2009. Citado na página 11.

HARRISON, John; URBAN, Josef; WIEDIJK, Freek. History of interactive theorem proving. In: **Computational Logic**. Amsterdam: [s.n.], 2014. v. 9, p. 135–214. Citado na página 11.

HOWARD, William Alvin. The formulae-as-types notion of construction. In: CURRY, Haskell et al. (Ed.). **To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism**. Chicago: Academic Press, 1980. Citado na página 11.

LEROY, Xavier. The CompCert C verified compiler: Documentation and user's manual. Tese (Doutorado) — Inria, 2021. Citado na página 11.

MARES, Edwin. Relevance Logic. In: ZALTA, Edward N.; NODELMAN, Uri (Ed.). **The Stanford Encyclopedia of Philosophy**. Summer 2024. [S.l.]: Metaphysics Research Lab, Stanford University, 2024. Citado na página 14.

MCGINNIS, Nicholas D. The unexpected applicability of paraconsistent logic: A chomskyan route to dialetheism. **Foundations of Science**, Springer Verlag, v. 18, n. 4, p. 625–640, 2013. Citado 2 vezes nas páginas 10 e 14.

PAULIN-MOHRING, Christine. Introduction to the calculus of inductive constructions. In: PALEO, Bruno Woltzenlogel; DELAHAYE, David (Ed.). **All about Proofs, Proofs for All**. College Publications, 2015, (Studies in Logic (Mathematical logic and foundations), v. 55). Disponível em: https://inria.hal.science/hal-01094195>. Citado na página 11.

PRAWITZ, Dag. Logical consequence: A constructivist view. In: SHAPIRO, Stewart (Ed.). **Oxford Handbook of Philosophy of Mathematics and Logic**. [S.l.]: Oxford University Press, 2005. Citado na página 21.

PRIEST, Graham; TANAKA, Koji; WEBER, Zach. Paraconsistent Logic. In: ZALTA, Edward N. (Ed.). **The Stanford Encyclopedia of Philosophy**. Spring 2022. [S.l.]: Metaphysics Research Lab, Stanford University, 2022. Citado na página 10.

RESTALL, Greg. **An Introduction to Substructural Logics**. New York: Routledge, 1999. Citado na página 21.

RUSSELL, Bertrand. **Principles of Mathematics**. Cambridge: Cambridge University Press, 1903. Citado na página 11.

RUSSELL, Bertrand. Mathematical logic as based on the theory of types. **American Journal of Mathematics**, Association for Symbolic Logic, v. 30, n. 3, p. 222–262, 1908. Citado na página 11.

SILVA, Flávio Soares Corrêa da; FINGER, Marcelo; MELO, Ana Cristina Vieira de. **Lógica** para Computação. [S.l.]: Cengage Learning, 2006. v. 1. Citado na página 15.

SILVEIRA, Ariel Agne da. **Implementação de uma biblioteca de lógica modal em Coq**. Dissertação (Projeto de Diplomação) — Bacharelado em Ciência da Computação—Centro de Ciências Tecnológicas, UDESC, Joinville, 2020. Citado na página 11.

SIMONS, Peter. Jan Łukasiewicz. In: ZALTA, Edward N.; NODELMAN, Uri (Ed.). **The Stanford Encyclopedia of Philosophy**. Spring 2023. [S.l.]: Metaphysics Research Lab, Stanford University, 2023. Citado na página 12.

TEAM, The Coq Development. **The Coq Reference Manual**. France, 2024. Citado na página 11.

VILLADSEN, Jørgen; SCHLICHTKRULL, Anders. Formalizing a paraconsistent logic in the isabelle proof assistant. In: _____. Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIV: Special Issue on Consistency and Inconsistency in Data-Centric Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. p. 92–122. ISBN 978-3-662-55947-5. Disponível em: https://doi.org/10.1007/978-3-662-55947-5_5. Citado na página 12.

WÓJCICKI, Ryszard. Lectures on Propositional Calculi. Ossolineum [Poland]: Pub. House of the Polish Academy of Sciences, 1984. Citado na página 14.

WÓJCICKI, Ryszard. An axiomatic treatment of non-monotonic arguments. **Bulletin of the Section of Logic**, Department of Logic, University of Lodz, v. 17, n. 2, p. 56–61, 1988. Citado na página 14.

WÓJCICKI, Ryszard. **Theory of Logical Calculi: Basic Theory of Consequence Operations**. Dordrecht, Boston and London: Kluwer Academic Publishers, 1988. Citado na página 14.