

Solving 2048 Puzzle

Jun Hui Teo ID: junhui96

junhui 96@stanford.edu

Stanford

Motivation

Since games have welldefined utility functions and known rules, using Al to solve games allow for a consistent benchmark to compare inference & learning algorithms.

Challenges

- 1. Stochastic placement and value of tiles in each turn
- Identify promising board states efficiently in move generation.

References

Nie, Hou, An, Al Plays 2048:

http://cs229.stanford.edu/ proj2016/report/NieHouA n-AIPlays2048-report.pdf

Yulin Zhou From AlphaGo Zero to 2048 From: http://www.cse.msu.edu/ ~zhaoxi35/DRL4KDD/2.pdf

Problem Definition

Game Dynamics

- Agent chooses one of: UP, DOWN, LEFT, RIGHT
- Tile of value either '2' or '4' placed in an empty tile in each turn
- Merge two tiles of the same value aligned horizontally/vertically to produce a tile of double the value.
- value 2^k are merged.

Objective

Choose an action in each turn to:

- Obtain the '2048' tile
- Maximise the game score

Model of problem

Two-player, adversarial, turn-taking, S-shaped weight zero sum game with stochastic actions.

Approaches

Depth Limited Expectiminimax Search

- Learn p via Monte Carlo Gain a score of 2^{k+1} if 2 tiles of same $p = (1 - \eta)p + \eta u$, $\eta = \frac{1}{\#turns+1}$; u = ['2'] in turn
 - Learn depth d via gird search from d = 1 to 4 Heuristics

Pruning of game tree by

successor states by heuristic

dynamically ordering

415	414	413	412
48	49	410	411
47	46	45	44
40	41	42	43

aligned tiles

function. Limit branching to a fixed factor f, by selecting top f matrix to enforce states for exploration. monocity of

Results

2048 1024 512 256 128

Fig 1: Expectiminimax search to depth 3 with different heuristics v/s baseline

Fig 3: Plot of branching factor f against max tile distribution with normalised time* for a turn

*time is normalised w.r.t d =1 of unpruned case

Monotonic heuristic performs significantly better than the naive score heuristic or the baseline of random moves success rate of 53%

Analysis

 Monte Carlo updates learns p well & has comparable performance.

Success rate increases with depth as further look-ahead ensures more accurate estimate of minimax value.

d = 3 best manages the success, time-efficiency trade-off

 Limits to branching early on mean that agent neglects states that seem less promising initially but have higher true minimax values Most substantial improvement in performance seen from f=5 to f=6. But average time for a step similar to unpruned case, due to time to

evaluate heuristic and order states.