Generování matic bez zakázaných vzorů

Stanislav Kučera

Informatický ústav Univerzity Karlovy

8. 9. 2016

Zadání

Cílem bakálářské práce bylo navrhnout a implementovat postup, jak vytvořit aproximaci rovnoměrně náhodné binární matice bez daného zakázaného vzoru.

Zakázaný vzor

Definice

Binární matice $M \in \{0,1\}^{m \times n}$ obsahuje binární matici $P \in \{0,1\}^{k \times l}$ jako podmatici, pokud lze z M vynecháním některých řádků a sloupečků získat matici M' $k \times l$ takovou, že pokud má P jedničku na nějaké pozici, má na téže pozici jedničku i M'. Jinak řekneme, že M neobsahuje (vyhýbá se) P jako podmatici.

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} M_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Zakázaný vzor

Definice

Binární matice $M \in \{0,1\}^{m \times n}$ obsahuje binární matici $P \in \{0,1\}^{k \times l}$ jako podmatici, pokud lze z M vynecháním některých řádků a sloupečků získat matici M' $k \times l$ takovou, že pokud má P jedničku na nějaké pozici, má na téže pozici jedničku i M'. Jinak řekneme, že M neobsahuje (vyhýbá se) P jako podmatici.

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} M_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Příklady použití

- Za pomoci matic bez zakázaných vzorů se dokázal horní odhad časové složitosti algoritmu Efrata a Sharira na "Segment-center problem".
- Existuje korelace mezi některými třídami matic bez zakázených vzorů a Davenport-Schinzelovým posloupnostmi, které souvisí se složitostí dolní (horní) obálky arrangementů v rovině.

Markovovy řetězce

Definice (neformální)

Pro předepsané pravděpodobnosti $p_{i,j}$ je Markovův řetězec posloupnost náhodných veličin X_0, X_1, \ldots prvků ze stavové množiny \mathcal{X} dodržující $P[X_{t+1} = j | X_t = i] = p_{i,j}$.

Markovovy řetězce

Definice (neformální)

Pro předepsané pravděpodobnosti $p_{i,j}$ je Markovův řetězec posloupnost náhodných veličin X_0, X_1, \ldots prvků ze stavové množiny \mathcal{X} dodržující $P[X_{t+1} = j | X_t = i] = p_{i,j}$.

Věta (neformální)

Pokud je Markovův řetězec aperiodický, nerozložitelný a symetrický, potom je jeho limita uniformně náhodně rozložena na stavové množině \mathcal{X} .

Markovův řetězec pro matice

Pokud chceme generovat matici neobsahující vzor *P*, postupujeme takto:

- 2 Zvolíme libovolnou matici M neobahující P.
- 2 Změníme uniformně náhodně vybraný bit M, čímž dostaneme M'.
- **1** Pokud M' neobsahuje P jako podmatici, nastavíme M := M'.
- Goto 2.

Markovův řetězec pro matice

Pokud chceme generovat matici neobsahující vzor P, postupujeme takto:

- 2 Zvolíme libovolnou matici M neobahující P.
- 2 Změníme uniformně náhodně vybraný bit M, čímž dostaneme M'.
- **3** Pokud M' neobsahuje P jako podmatici, nastavíme M := M'.
- Goto 2.

Protože definovaný Markovův řetězec splňuje předpoklady věty z minulého slidu, je jeho limita náhodná matice neobsahující vzor P jako podmatici. My nemáme čas čekat nekonečně dlouho, a zároveň zmíněná věta ani žádná jiná (pro obecné Markovovy řetězce) nedává odhad na dostačující počet iterací (mixing time), proto volbu počtu iterací necháme na uživateli.

Definice

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Definice

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Definice

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 & w_3 & w_4 \end{bmatrix}$$

$$\begin{bmatrix} w_5 & w_6 \\ w_7 \end{bmatrix}$$

Definice

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.
- Volitelně program při mapování linie testuje, také jestli je dost jedniček tam, kam se budou později mapovat dosud nenamapované linie.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.
- Volitelně program při mapování linie testuje, také jestli je dost jedniček tam, kam se budou později mapovat dosud nenamapované linie.
- Protože známe generující proces a již víme, že matice před změnou bitu vzor neobsahovala, víme také, že pokud ho po změně obsahuje, tak jedině proto, že právě změněný bit je součástí mapování vzoru.

'	Vzo	r	n	#iterací	pořadí	one	rek	ort	čas (s)
			100	100 000	MAX	ano	ano	ano	121,85
			100	100 000	MAX	ano	ano	ne	120,80
			100	100 000	MAX	ne	ne	ne	263,71
			500	10 000	MAX	ano	ano	ano	1 053,18
1	0	0	500	10 000	MAX	ano	ano	ne	1 051,97
1	1	1	500	10 000	MAX	ne	ne	ne	2 695,26
0	0	1	100	100 000	DESC	ano	ano	ano	82,39
			100	100 000	DESC	ano	ano	ne	92,72
			100	100 000	DESC	ne	ne	ne	113,34
			500	10 000	DESC	ano	ano	ano	430,01
			500	10 000	DESC	ano	ano	ne	446,21
			500	10 000	DESC	ne	ne	ne	195,15

	Vzo	r	n	#iterací	pořadí	one	rek	ort	čas (s)
			100	100 000	MAX	ano	ano	ano	121,85
			100	100 000	MAX	ano	ano	ne	120,80
			100	100 000	MAX	ne	ne	ne	263,71
			500	10 000	MAX	ano	ano	ano	1 053,18
1	0	0	500	10 000	MAX	ano	ano	ne	1 051,97
1	1	1	500	10 000	MAX	ne	ne	ne	2 695,26
0	0	1	100	100 000	DESC	ano	ano	ano	82,39
			100	100 000	DESC	ano	ano	ne	92,72
			100	100 000	DESC	ne	ne	ne	113,34
			500	10 000	DESC	ano	ano	ano	430,01
			500	10 000	DESC	ano	ano	ne	446,21
			500	10 000	DESC	ne	ne	ne	195,15

'	Vzo	r	n	#iterací	pořadí	one	rek	ort	čas (s)
			100	100 000	MAX	ano	ano	ano	121,85
			100	100 000	MAX	ano	ano	ne	120,80
			100	100 000	MAX	ne	ne	ne	263,71
			500	10 000	MAX	ano	ano	ano	1 053,18
1	0	0	500	10 000	MAX	ano	ano	ne	1 051,97
1	1	1	500	10 000	MAX	ne	ne	ne	2 695,26
0	0	1	100	100 000	DESC	ano	ano	ano	82,39
			100	100 000	DESC	ano	ano	ne	92,72
			100	100 000	DESC	ne	ne	ne	113,34
			500	10 000	DESC	ano	ano	ano	430,01
			500	10 000	DESC	ano	ano	ne	446,21
			500	10 000	DESC	ne	ne	ne	195,15

Vícevláknové generování

Pokud generujeme dostatečně velkou matici a už je dostatečně zahuštěná, potom pravděpodobnost, že nějaká změna bitu uspěje je malá a tedy většina iterací neuspěje (matice zůstane taková, jaká byla před iterací).

Vícevláknové generování

Pokud generujeme dostatečně velkou matici a už je dostatečně zahuštěná, potom pravděpodobnost, že nějaká změna bitu uspěje je malá a tedy většina iterací neuspěje (matice zůstane taková, jaká byla před iterací).

Idea: místo abychom provedli jen jednu jednobitovou změnu v generované matici a testovali obsahování vzoru, provedeme jednobitových změn několik (paralelně) a výsledek získáme výběrem některých změn ze všech provedených (některé výpočty tedy poběží aniž by měly vliv na generovanou matici).

Vícevláknové generování

Pokud generujeme dostatečně velkou matici a už je dostatečně zahuštěná, potom pravděpodobnost, že nějaká změna bitu uspěje je malá a tedy většina iterací neuspěje (matice zůstane taková, jaká byla před iterací).

Idea: místo abychom provedli jen jednu jednobitovou změnu v generované matici a testovali obsahování vzoru, provedeme jednobitových změn několik (paralelně) a výsledek získáme výběrem některých změn ze všech provedených (některé výpočty tedy poběží aniž by měly vliv na generovanou matici).

Výběr změn, které ovlivní generovanou matici musíme dělat opatrně, aby stále neobsahovala zakázaný vzor a zároveň se proces držel definovaného Markovova řetězce a tedy konvergoval k náhodné matici.

•	Vzor n		n	#iterací	#workerů	spekulace	čas (s)
			100	100 000	1	-	82,39
			100	100 000	4	ano	24,37
			100	100 000	4	ne	26,68
1	0	0	100	100 000	8	ano	14,74
1	1	1	100	100 000	8	ne	16,70
0	0	1	500	10 000	1	-	430,01
			500	10 000	4	ano	152,11
			500	10 000	4	ne	162,65
			500	10 000	8	ano	92,10
			500	10 000	8	ne	121,26

'	Vzor n		n	#iterací	#workerů	spekulace	čas (s)
			100	100 000	1	-	82,39
			100	100 000	4	ano	24,37
			100	100 000	4	ne	26,68
1	0	0	100	100 000	8	ano	14,74
1	1	1	100	100 000	8	ne	16,70
0	0	1	500	10 000	1	-	430,01
			500	10 000	4	ano	152,11
			500	10 000	4	ne	162,65
			500	10 000	8	ano	92,10
			500	10 000	8	ne	121,26

'	Vzor n		n	#iterací	#workerů	spekulace	čas (s)
			100	100 000	1	-	82,39
			100	100 000	4	ano	24,37
			100	100 000	4	ne	26,68
1	0	0	100	100 000	8	ano	14,74
1	1	1	100	100 000	8	ne	16,70
0	0	1	500	10 000	1	-	430,01
			500	10 000	4	ano	152,11
			500	10 000	4	ne	162,65
			500	10 000	8	ano	92,10
			500	10 000	8	ne	121,26

Poděkování

Děkuji svému vedoucímu za ochotu se vším mi pomoci a čas a úsilí, které mé práci věnoval.

Děkuji svému oponentovi, že posudek odevzdal dříve než včas.

Děkuji katedrám KAM a IÚUK za možnost pro své experimenty používat jejich výpočetní servery.

Děkuji za pozornost.

Pravděpodobnost úspěchu iterace

"Heuristicky, pokud se dívám na vzor, který má lineární extremální funkci, tj. každá vygenerovaná matice tvaru $N \times N$ má nejvýš cN jedniček pro nějakou konstantu c, tak to znamená, že v dlouhodobém průměru s pravděpodobností nejvýš $cN/N^2 = c/N$ program jedničku změní na nulu, a tedy v průměru také s pravděpodobností nejvýš c/N program úspěšně změní nulu na jedničku, protože počet jedniček bude zhruba konstantní. A tedy pravděpodobnost neúspěšné změny by měla být aspoň 1-2c/N. Podíl neúspěšných kroků tedy poroste s N. Já bych si přál, aby ten program šlo použít i v situacích, kdy N jsou řádově stovky, a potom pravděpodobnost úspěšné změny bude v jednotkách procent (pro vzory s lineární extremální funkcí)." Vít Jelínek, 2016