Systemtheorie und Regelungstechnik 1 – Abschlussklausur

Prof. Dr. Moritz Diehl und Dr. Jörg Fischer, IMTEK, Universität Freiburg 16. März 2015, 9:00-11:30, Freiburg, Georges-Koehler-Allee 101 Raum 026 und 036

Seite	0	1	2	3	4	5	6	7	8	9	Summe
Punkte auf Seite (max)	3	9	8	5	4	9	8	7	9	0	62
Erreichte Punkte											
Zwischensumme											
Zwischensumme (max)	3	12	20	25	29	38	46	53	62	62	

Note:	Klausur eingesehen am:	Unterschrift des Prüfers:
Nachname:	Vorname:	Matrikelnummer:
Fach:	Studiengang:	Bachelor Master Sonstiges Sonstiges
Untersch	nrift:	
Bedarf nach Möglich Korrektur einfließen so Papier für Zwischenre Taschenrechner auch o Machen Sie bei den	keit die Rückseite desselben Blattes (od ollen; verweisen Sie zudem direkt bei der schnungen verwenden, aber bitte geben Sie ein doppelseitiges Blatt mit Formelsamml	n ein. Geben Sie die Antworten direkt unter den Fragen an oder nutzen Sie bei der, falls diese bereits voll ist, die leere Seite am Ende) für Ergebnisse, die in die Frage im Hauptteil auf die entsprechende Seite. Sie können zudem weiteres weißes ie dieses Extrapapier nicht ab. Als Hilfsmittel ist neben Schreibmaterial und einem lung und Notizen erlaubt; einige juristische Hinweise finden sich in einer Fußnote. In Kreuz bei der richtigen Antwort. Beantworten Sie zunächst die Ihnen einfach en, sind Sie nach ca. 2 Stunden fertig. Viel Erfolg!
$\operatorname{f\"{u}r} t \in \mathbb{R}? (\sigma$	em hat die Sprungantwort $h(t) = -\cos(t)$ ist die Sprungfunktion und $\delta(t)$ de $(t) + \sin(t) \cdot \sigma(t)$	os $(t) \cdot \sigma(t) + 2\sigma(t)$ für $t \in \mathbb{R}$. Wie lautet die Impulsantwort $g(t)$ des Systems er Dirac-Impuls)
(c) <u>2δ</u> ($f(t) - \sin(t) \cdot \sigma(t)$	$(d) \qquad 3\delta(t) - \sin(t) \cdot \sigma(t)$
	em wird durch die Zustandsgleichung $\begin{bmatrix} -2 & 3 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$, C	$\dot{x} = Ax + Bu, y = Cx + Du \text{ beschrieben,}$ $= \begin{bmatrix} 3 & -1 & 0 \end{bmatrix}, D = 0.$

2

Berechnen Sie das charakteristische Polynom $p_A(\lambda)$ des Systems. Sie müssen das Polynom nicht ausmultiplizieren.

¹PRÜFUNGSUNFÄHIGKEIT: Durch den Antritt dieser Prüfung erklären Sie sich für prüfungsfähig. Sollten Sie sich während der Prüfung nicht prüfungsfähig fühlen, können Sie aus gesundheitlichen Gründen auch während der Prüfung von dieser zurücktreten. Gemäß den Prüfungsordnungen sind Sie verpflichtet, die für den Rücktritt oder das Versäumnis geltend gemachten Gründe unverzüglich (innerhalb von 3 Tagen) dem Prüfungsamt durch ein Attest mit der Angabe der Symptome schriftlich anzuzeigen und glaubhaft zu machen. Weitere Informationen: https://www.tf.uni-freiburg.de/studium/pruefungen/pruefungsunfaehigkeit.html.

TÄUSCHUNG/STÖRUNG: Sofern Sie versuchen, während der Prüfung das Ergebnis ihrer Prüfungsleistung durch Täuschung (Abschreiben von Kommilitonen ...) oder Benutzung nicht zugelassener Hilfsmittel (Skript, Buch, Mobiltelefon, ...) zu beeinflussen, wird die betreffende Prüfungsleistung mit "nicht ausreichend" (5,0) und dem Vermerk "Täuschung" bewertet. Als Versuch gilt bei schriftlichen Prüfungen und Studienleistungen bereits der Besitz nicht zugelassener Hilfsmittel während und nach der Ausgabe der Prüfungsaufgaben. Sollten Sie den ordnungsgemäßen Ablauf der Prüfung stören, werden Sie vom Prüfer/Aufsichtsführenden von der Fortsetzung der Prüfung ausgeschlossen. Die Prüfung wird mit "nicht ausreichend" (5,0) mit dem Vermerk "Störung" bewertet.

3.	Wie lautet die Übertragungsfunktion $G(s) = \frac{Y(s)}{U(s)}$ der folgen	nden Anordnung?	
	$\frac{1}{s}$		
	$U(s)$ $\xrightarrow{\frac{2}{s}}$	$\xrightarrow{\frac{s}{s+3}} Y(s)$	
	(a) $\frac{2s}{s+3}$ (b) $\frac{3s}{s+3}$	(c) $\frac{3}{s+3}$ (d) $\frac{s^3+2s+3}{s^2(s+3)}$	
			1
4.	Ein System wird durch die Differentialgleichung $4\ddot{y} + 6\dot{y} - 1$ des Systems?		
	(a) $\frac{2s^2-4}{2s^2+3s-9}$ (b) $\frac{4s^2+6s-18}{4s^2-8}$	(c) $\frac{8s^2-4}{-18s^2+6s+4}$ (d) $\frac{-9s^2+3s+2}{4s^2-2}$	2
			1
5.	Ein System ist durch die Differentialgleichung $\dot{y}(t) = 7t^2(u(t))$	II .	invariant?
	(a) nur linear (c) linear und zeitinvariant	(b) nur zeitinvariant	
	(c) linear und zeitinvariant	(d) keines von beiden	1
6.	Ein System ist durch die Differentialgleichung $\dot{y}(t) = \sin(-\frac{1}{2}t \cos t)$		edener kon-
	stanter Parameter ist. Ist das System <i>linear</i> und/oder <i>zeitinvan</i> (a) nur linear	(b) nur zeitinvariant	
	(c) linear und zeitinvariant	(d) keines von beiden	
			1
7.	Ein System in Eingangs-Ausgangsform ist durch die Darstell Matrizen A,B,C,D einer äquivalenten Zustandsdarstellung.	lung $-2\ddot{y} - 6\ddot{y} + 3y = 2\dot{u} + 8u$ beschrieben. Berec	hnen Sie die
	•		
			2
8.	Welches System wird durch die Übertragungsfunktion $G(s)$	$=\frac{4}{s}\cdot\frac{s^2+1}{s-2}$ beschrieben?	
	(a) $\ddot{y} - y = 2\ddot{u} + \dot{u}$ (b) $\ddot{y} - 2\dot{y} = 4\ddot{u} + 4u$		$+4\dot{u}$
			1
9.	Gegeben ist die offene Kette $G_0(s) = \frac{s+3}{s^2+1}$. Wie lautet die Einheitsfeedback)?	Übertragungsfunktion des geschlossenen Kreises (be	ei negativem
	(a) $\frac{-(s+3)}{s^2+1}$ (b) $\frac{s+3}{s^2+1}$	(c) $\frac{s+3}{s^2+s+4}$ (d) $\frac{s^2+s-4}{s-3}$	
10	Walaha Übartragungafunlitian hat das 7ta-da	$\dot{\sigma}(t) = 4\sigma(t) + \alpha(t) - \alpha(t) - 2\sigma(t) + 2\sigma(t) = 0$	1
10.	Welche Übertragungsfunktion hat das Zustandsraummodell (a) $\frac{3s+10}{s+4}$ (b) $\frac{s+4}{3s+10}$		1
10.		The state of the s	1
10.			

(a) $(\cos(t) - \sin(t)) e^{-t}$	-t			
			$(t))e^{-t}$	
				1
Welches der folgenden System	me ist BIBO-stabil?			
(a) $\frac{3s^2+5}{3s^2+9s+20}$	(b) $\frac{s-5}{s^2-3s+10}$	(c) $\frac{s^3 - 1}{s(s+3)(s-1)}$		
				1
Der Zusammenhang zwische	n Eingang $u(t)$ und Ausg	ang $y(t)$ eines Systems sei durch	n die nichtlineare Differer	ntialgleich
$\dot{y}(t) = b\sqrt{u(t)} - c(y(t) - y(t))$	(y _{ext}) beschrieben, wobei	$y_{\rm ext}$ ein gegebener konstanter Par	rameter ist.	
(a) Berechnen Sie den kons	stanten Eingang $u_{\rm ss}$ des S	ystems bei dem der Ausgang $y($	t) im stationären Zustand	den Wert
annimmt.				
				2
				2
(b) Linearisieren Sie das S	ystem im Punkt (u_{ss}, y_{ss})	und geben Sie die linearisierte	Differentialgleichung für	
(b) Linearisieren Sie das Sy hängigkeit der Variable	ystem im Punkt $(u_{ m ss},y_{ m ss})$ n $\Delta y(t)=y(t)-y_{ m ss}$ und	und geben Sie die linearisierte l $\Delta u(t) = u(t) - u_{\rm ss}$ an.	Differentialgleichung für	
(b) Linearisieren Sie das Sy hängigkeit der Variable	ystem im Punkt $(u_{ m ss},y_{ m ss})$ n $\Delta y(t)=y(t)-y_{ m ss}$ und	und geben Sie die linearisierte $\Delta u(t) = u(t) - u_{\rm ss} \ {\rm an}. \label{eq:deltau}$	Differentialgleichung für	
(b) Linearisieren Sie das Sy hängigkeit der Variabler	ystem im Punkt $(u_{ m ss},y_{ m ss})$ n $\Delta y(t)=y(t)-y_{ m ss}$ und	und geben Sie die linearisierte $\Delta u(t) = u(t) - u_{\rm ss}$ an.	Differentialgleichung für	
(b) Linearisieren Sie das Sy hängigkeit der Variabler	ystem im Punkt $(u_{ m ss},y_{ m ss})$ n $\Delta y(t)=y(t)-y_{ m ss}$ und	und geben Sie die linearisierte $\Delta u(t) = u(t) - u_{\rm ss}$ an.	Differentialgleichung für	
(b) Linearisieren Sie das Sy hängigkeit der Variabler	ystem im Punkt $(u_{ m ss},y_{ m ss})$ n $\Delta y(t)=y(t)-y_{ m ss}$ und	und geben Sie die linearisierte $\Delta u(t) = u(t) - u_{\rm ss}$ an.	Differentialgleichung für	
(b) Linearisieren Sie das Sy hängigkeit der Variablei	ystem im Punkt $(u_{ m ss},y_{ m ss})$ n $\Delta y(t)=y(t)-y_{ m ss}$ und	und geben Sie die linearisierte $\Delta u(t) = u(t) - u_{\rm ss}$ an.	Differentialgleichung für	
(b) Linearisieren Sie das Sy hängigkeit der Variabler	ystem im Punkt $(u_{ m ss},y_{ m ss})$ n $\Delta y(t)=y(t)-y_{ m ss}$ und	und geben Sie die linearisierte $\Delta u(t) = u(t) - u_{ m ss}$ an.	Differentialgleichung für	$\Delta \dot{y}(t)$ in
hängigkeit der Variable	n $\Delta y(t) = y(t) - y_{ m ss}$ und	$\Delta u(t) = u(t) - u_{ m ss}$ an.		$\Delta \dot{y}(t)$ in
hängigkeit der Variabler (c) Berechnen Sie die Über	in $\Delta y(t) = y(t) - y_{ m ss}$ und extragungsfunktion $G(s)$.	und geben Sie die linearisierte $\Delta u(t)=u(t)-u_{\rm ss}$ an.		$\Delta \dot{y}(t)$ in
hängigkeit der Variable	in $\Delta y(t) = y(t) - y_{ m ss}$ und extragungsfunktion $G(s)$.	$\Delta u(t) = u(t) - u_{ m ss}$ an.		$\Delta \dot{y}(t)$ in
hängigkeit der Variabler (c) Berechnen Sie die Über	in $\Delta y(t) = y(t) - y_{ m ss}$ und extragungsfunktion $G(s)$.	$\Delta u(t) = u(t) - u_{ m ss}$ an.		$\Delta \dot{y}(t)$ in
hängigkeit der Variabler (c) Berechnen Sie die Über	in $\Delta y(t) = y(t) - y_{ m ss}$ und extragungsfunktion $G(s)$.	$\Delta u(t) = u(t) - u_{ m ss}$ an.		$\Delta \dot{y}(t)$ in
hängigkeit der Variabler (c) Berechnen Sie die Über	in $\Delta y(t) = y(t) - y_{ m ss}$ und extragungsfunktion $G(s)$.	$\Delta u(t) = u(t) - u_{ m ss}$ an.		$\Delta \dot{y}(t)$ in

14. Betrachten Sie die folgende Sprungantwort.

(a) Von welchem der unten angegeben Systeme könnte die Sprungantwort stammen?

(a) $\frac{1}{s}$		(c)	$\frac{1}{s+1}$	
				1
(b) Ist das System BIBO-	stabil und/oder grenzstabil?			
(a) BIBO-stabi	l und grenzstabil.	(b)	BIBO-stabil aber ni	icht grenzstabil.
(c) Grenzstabil	aber nicht BIBO-stabil.	(d)	Nicht BIBO-stabil ı	and nicht grenzstabil.

15. Betrachten Sie das Nyquist-Diagramm der stabilen offenen Kette $G_0(s)$.

(a) Ist der geschlossene Kreis bei negativem Einheitsfeedback stabil?

	(a) Ja		(b)	Nein		
	(c) Keine Aussage mögl	ich, weil das System eine un-	(d)	Keine Aussage mögl	lich, weil das Sy	stem Pole auf
	endliche Verstärkung besitzt.		der Ima	ginärachse besitzt.		
						1
(b) <u>W</u>	Vie hoch ist die statische Vers	tärkung (DC-Gain) der offenen	Kette G_0	(s)?		
	(a)1.25	(b) 0	(c)	3	(d) <u></u> ∞	
						1

(c) Enthält die offene Kette $G_0(s)$ ein Totzeitglied und/oder Integratorglied?

(a) Nur Totzeitglied	(b) Nur Integrator-	(c) Totzeitglied und Integratorglied	(d) Keines von beiden
	giicu	integratorgied	

16. Ein Kollege von Ihnen hat einen Regler für ein elektrisches Antriebssystem entworfen. Er konnte dabei durch Probieren fast alle nötigen Anforderungen umsetzen, allerdings besitzt der geschlossene Regelkreis eine zu hohe bleibende Regelabweichung, die die Regelung unbrauchbar macht. Da ihr Kollege gehört hat, dass Sie eine regelungstechnische Vorlesung besucht haben, fragt er Sie um Rat. Er zeigt Ihnen das Bode-Diagramm der offenen Kette $G_0 = K(s)G(s)$ seines Regelungsentwurfs.

Abbildung 1: Bode-Diagramm der offenen Kette ohne PI-Regler

(a) Sie erkennen, dass die Verstärkung bei geringen Frequenzen zu niedrig ist und wissen, dass ein PI-Regler Abhilfe schaffen könnte. Alternativ könnte auch ein...

fen konnte. Alternativ konnte auch ein	
(a)phasenanhebendes Korrekturglied	(b)phasenabsenkendes Korrekturglied
(lead compensator) eingesetzt werden.	(lag compensator) eingesetzt werden.
(c)reines Differenzierglied (D-Glied) eingesetzt werden.	(d)Proportional-Differenzier-Glied (PD-Glied) eingesetzt werden.
	1

(b) Da der PI-Regler den bleibenden Regelfehler im Gegensatz zum alternativen Regler vollständig beseitigen kann, empfehlen Sie Ihrem Kollegen den PI-Regler. Die Übertragungsfunktion eines PI-Reglers ist

(a) $K(s) = k_{\rm P} \frac{1}{1+Ts}$.	(b) $K(s) = k_{P}(1 + Ts).$
(c) $K(s) = k_{\rm P} \frac{1}{T_s}$.	(d) $K(s) = k_{\rm P} \left(1 + \frac{1}{T_s}\right)$.

(c) Da Ihr Kollege den PI-Regler nicht kennt, erklären Sie ihm diesen anschaulich anhand des Bode-Diagramms. (Skizzieren Sie unten den prinzipiellen Verlauf des Bode-Diagramms des PI-Reglers. Kennzeichnen Sie dabei, wie das Bode-Diagramm von den Parametern T und $k_{\rm P}$ abhängt).

2

(d) Ihr Kollege hat viel Zeit benötigt, um die Reglerparameter seines vorherigen Entwurfes so einzustellen, dass die Bandbreite $\omega_{\rm B}$ und Phasenreserve $\Phi_{\rm P}$ des geschlossenen Kreises genau die Anforderungen erfüllen. Sie überlegen daher, wie Sie den PI-Regler so dimensionieren können, dass $\omega_{\rm B}$ und $\Phi_{\rm P}$ des geschlossenen Kreises mit zusätzlichem PI-Regler die gleichen Werte annehmen wie $\omega_{\rm B}$ und $\Phi_{\rm P}$ des geschlossenen Kreises ohne zusätzlichen PI-Regler. (Beschreiben Sie in Worten, wie Sie $k_{\rm P}$ und T wählen müssen, damit $\omega_{\rm B}$ und $\Phi_{\rm P}$ nur sehr wenig verändert werden. Begründen Sie Ihre Wahl).

(Hinweis: Die Bandbreite des geschlossenen Kreises entspricht in guter Näherung der Durchtrittsfrequenz der offenen Kette.)

3

(e) Zeichnen Sie oben in Abbildung 1 das Bode-Diagramm des PI-Reglers für ihre Wahl von $k_{\rm P}$ und T mit ein. Zeichnen Sie zudem das Bode-Diagramm der durch den PI-Regler erweiterten offenen Kette in das Diagramm ein.

3

17. Skizzieren Sie das Bode-Diagramm des Systems

$$G(s) = 100 \cdot \frac{10s+1}{(1000s+1)(0.1s+1)}$$

18. Gegeben ist das folgende Zustandsraummodell einer Strecke

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 3 \\ 0 \end{bmatrix} u(t) \; .$$

Zur Regelung der Strecke soll ein Zustandsregler $u(t) = -\mathbf{K}x(t)$ mit Rückführmatrix $\mathbf{K} = \begin{bmatrix} k_0 & k_1 \end{bmatrix}$ mittels Polvorgabe entworfen werden. Die Pole des geschlossenen Kreises sollen die Werte $-3\pm j3$ annehmen.

(a) Zeigen Sie, dass die Strecke steuerbar ist.

2

(b) Nehmen Sie an, dass der Zustand direkt gemessen werden kann. Bestimmen Sie die konstanten Parameter k_0 und k_1 , die sicher stellen, dass die Pole des geschlossenen Kreises die gewünschten Werte annehmen.

- (c) In Wahrheit zeigt sich, dass die Zustände der Strecke nicht direkt gemessen werden können, sondern nur der Ausgang $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$. Wir möchten daher einen Luenberger-Beobachter verwenden, um den Zustand zu schätzen.
 - i. Zeigen Sie, dass die Strecke über den Ausgang y(t) beobachtbar ist.

ii. Schreiben Sie die generelle Differentialgleichung des Luenberger-Beobachters auf, welche die Entwicklung des geschätzten Zustands in Abhängigkeit der Messungen und der Stellgrößen beschreibt. Es ist nicht notwendig, die vorkommenden Matrizen der Gleichung zu berechnen.

gearbeitet hat, dimensioniert und implementiert hat. Das Luenberger-Gain wurde dabei zu L = $\begin{bmatrix} 7.5 \\ 1.5 \\ 1.5 \end{bmatrix}$ gewählt, soolass die Figenwerte der Matrix $A - LC$ die Werte $-2.75 + 31.5$ annehmen. Können wir diesen Luenberger-Beobachter zusammen mit dem Regler, den wir in Ikb uusgelegt haben, verwenden? Oder sollten wir den Luenberger-Gain ündern? Begründen Sie Ihre Antwort. Es ist nicht nonvendig, einen alternativen Luenberger-Gain zu berechnen. 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram (a) Wie hoch ist der relative Grad (Polüberschuss) des Systems? (a) 0 (b) 1 (c) 2 (d) 3 (b) Wie hoch ist die statische Verstärkung (DC-Gain) des Systems? (a) -170 (b) 0 (c) 60 (d) ∞ (c) Wie hoch ist die Phasenreserve des Systems (in etwa)? (a) 174° (b) 6° (c) -83° (d) ∞ (d) Welche Amplitudenreserve hat das System (in etwa)? (a) 1 144° (b) 20 (c) 40 (d) ∞ (e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (b) Nur Integrator und Totzeitglied (d) Keines von beiden	i	iii.	Glücklicherweise finden v	vir den Lu	enberger-Beobachter	r, den die v	vorherige Regelungste	chnikerin, die m	it der Strecke
Beobachter zusammen mit dem Regler, den wir in 18h) ausgelegt haben, verwenden? Oder sollten wir den Luenberger-Gain ändern? Begründen Sie Ihre Antwort. Es ist nicht notwendig, einen alternativen Luenberger-Gain zu berechnen. 1 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 1 1 1 8 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagramm ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagram ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagram ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes Bode-Diagram ermittelt. Bode Diagram 4 9. Für ein BIBO-stabiles LTI-System $G(s)$ wurde folgendes $G(s)$ wurde folgendes $G(s)$ wurde			gearbeitet hat, dimension	iert und i	mplementiert hat. D	as Luenbe	erger-Gain wurde dab	ei zu $\mathbf{L} = \begin{bmatrix} 7.6 \\ 6.8 \end{bmatrix}$	gewählt,
Bode Diagram			Beobachter zusammen mi	t dem Reg	der, den wir in 18b) a	usgelegt h	aben, verwenden? Ode	er sollten wir de	n Luenberger-
Bode Diagram									
Bode Diagram									
Bode Diagram									1
Bode Diagram		_		~()					
(a) Wie hoch ist die statische Verstärkung (DC-Gain) des Systems? (a)	. Für ein	ı BI	IBO-stabiles LTI-System (G(s) wurd	_	_	ermittelt.		
180	100								
180	<u>ම</u> 50	_			_				_
180	o) epr	_							_
180	agnitt.	_							_
135	Š ₋₁₀₀	_							_
(a) Wie hoch ist die relative Grad (Polüberschuss) des Systems? (a) 0 (b) 1 (c) 2 (d) 3 (b) Wie hoch ist die statische Verstärkung (DC-Gain) des Systems? (a) -170 (b) 0 (c) 60 (d) ∞ (c) Wie hoch ist die Phasenreserve des Systems (in etwa)? (a) 174° (b) 6° (c) -83° (d) ∞ (d) Welche Amplitudenreserve hat das System (in etwa)? (a) 0 (b) 20 (c) 40 (d) ∞ (c) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (a) Integrator und Totzeitglied (d) Keines von beiden									
(a) Wie hoch ist der relative Grad (Polüberschuss) des Systems? (a) 0 (b) 1 (c) 2 (d) 3				1	'	1			
(a) Wie hoch ist der relative Grad (Polüberschuss) des Systems? (a) 0 (b) 1 (c) 2 (d) 3	(deg								
(a) Wie hoch ist der relative Grad (Polüberschuss) des Systems? (a) 0 (b) 1 (c) 2 (d) 3	-135								
(a) Wie hoch ist der relative Grad (Polüberschuss) des Systems? (a) 0 (b) 1 (c) 2 (d) 3 (b) Wie hoch ist die statische Verstärkung (DC-Gain) des Systems? (a) -170 (b) 0 (c) 60 (d) ∞ (c) Wie hoch ist die Phasenreserve des Systems (in etwa)? (a) 174° (b) 6° (c) -83° (d) ∞ (d) Welche Amplitudenreserve hat das System (in etwa)? (a) 0 (b) 20 (c) 40 (d) ∞ (e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (a) Integrator und Totzeitglied (b) Nur Integrator (c) Nur Totzeitglied (d) Keines von beiden	⊡								
(a) Wie hoch ist der relative Grad (Polüberschuss) des Systems? (a) 0 (b) 1 (c) 2 (d) 3 (b) Wie hoch ist die statische Verstärkung (DC-Gain) des Systems? 1 (d) ∞ (c) Wie hoch ist die Phasenreserve des Systems (in etwa)? 1 (d) ∞ (a) 174° (b) 6° (c) -83° (d) ∞ 1 (d) ∞ (d) Welche Amplitudenreserve hat das System (in etwa)? 1 (d) ∞ (a) 0 (b) 20 (c) 40 (d) ∞ 1 (d) ∞ (e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? 1 (d) ∞ (a) Integrator und Totzeitglied (b) Nur Integrator 1 (d) ∞	-180 [[] 10	∟) ⁻³	10 ⁻²	10 ⁻¹	100	10 ¹	10 ²	10 ³	10 ⁴
(a) 0 (b) 1 (c) 2 (d) 3 (b) Wie hoch ist die statische Verstärkung (DC-Gain) des Systems? (a) -170 (b) 0 (c) 60 (d) ∞ (c) Wie hoch ist die Phasenreserve des Systems (in etwa)? (a) 174° (b) 6° (c) -83° (d) ∞ (d) Welche Amplitudenreserve hat das System (in etwa)? (a) 0 (b) 20 (c) 40 (d) ∞ (e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (a) Integrator und Totzeitglied (b) Nur Integrator (c) Nur Totzeitglied (d) Keines von beiden					Frequency (ra	ad/s)			
(b) Wie hoch ist die statische Verstärkung (DC-Gain) des Systems? (a)170	(a) V	Vie	hoch ist der relative Grad	(Polübers	chuss) des Systems?	11		П	
(a)		(a)	0	(b)	1	(c)	2	(d) 3	
(a)	(1.) V	57 °.	Landa taratta arada da XV	47.1 (1		9			1
(c) Wie hoch ist die Phasenreserve des Systems (in etwa)? (a) 174° (b) 6° (c) -83° (d) ∞ (d) Welche Amplitudenreserve hat das System (in etwa)? (a) 0 (b) 20 (c) 40 (d) ∞ (e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (a) Integrator und Totzeitglied (b) Nur Integrator (c) Nur Totzeitglied (d) Keines von beiden							60	(d) \(\sigma \)	
(c) Wie hoch ist die Phasenreserve des Systems (in etwa)? (a)		(a)	-170	(0)	0	(c)		(u) &	
(a) 174° (b) 6° (c)83° (d) \times (d) Welche Amplitudenreserve hat das System (in etwa)? (a) 0 (b) 20 (c) 40 (d) \times (e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (a) Integrator und Totzeitglied (b) Nur Integrator (c) Nur Totzeitglied (d) Keines von beiden	(c) V	Vie	hoch ist die Phasenreserv	e des Syst	ems (in etwa)?				1
(d) Welche Amplitudenreserve hat das System (in etwa)? (a) □ 0 (b) □ 20 (c) □ 40 (d) □ ∞ (e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (a) □ Integrator und Totzeitglied (b) □ Nur Integrator (c) □ Nur Totzeitglied (d) □ Keines von beiden	· · · _			· ·		(c)	-83°	(d) <u></u> ∞	
(a)						-11		11	1
(e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (a) Integrator und Totzeitglied (b) Nur Integrator (c) Nur Totzeitglied (d) Keines von beiden	(d) <u>V</u>	Velo	che Amplitudenreserve ha	t das Syst	em (in etwa)?				
(e) Entält das System einen Integrator (d.h. eine Polstelle bei Null) und/oder ein Totzeitglied? (a) Integrator und Totzeitglied (b) Nur Integrator (c) Nur Totzeitglied (d) Keines von beiden		(a)	0	(b)	20	(c)	40	(d) ∞	
(a) Integrator und Totzeitglied (b) Nur Integrator (c) Nur Totzeitglied (d) Keines von beiden									1
(c) Nur Totzeitglied (d) Keines von beiden	(e) E	Entä	lt das System einen Integr	rator (d.h.	eine Polstelle bei Nu	ıll) und/od	ler ein Totzeitglied?		
		(a)	Integrator und Totze	eitglied		(b)	Nur Integrator		
	Ī	(c)	Nur Totzeitglied			(d)	Keines von beiden		
									1

(a) integrator und fotzeitg	ned	(b)	Nur integrator
(c) Nur Totzeitglied		(d)	Keines von beiden
(f) Wenn man den Ausgangs des Sys stem BIBO-stabil?	stems mit minus eins multipl	liziert und	auf seinen Eingang gibt, ist das entstehende Sy-
(a) Ja		(b)	Nein
(c) Keine Aussage möglic stand abhängt.	ch, da dies vom Initialzu-	(d) sal ist.	Keine Aussage möglich, da das System nicht kau-
			1
	17		

20.	In dieser Aufgabe soll die Vertikalbewegung eines aktiven Stoßdämpfersystems eines Fahrzeugs modelliert und untersucht
	werden. Betrachten Sie dazu das unten gezeigte vereinfachte physikalische Modell des Stoßdämpfersystems. Die Masse ${\cal M}$
	$\ des\ Fahrzeugs\ ist\ durch\ einen\ D\"{a}mpfer\ D\ und\ eine\ Feder\ K\ mit\ dem\ auf\ der\ Straße\ aufliegenden\ Reifen\ verbunden.\ Es\ wird$
	angenommen, dass der Reifen starr ist und immer Kontakt zur Straße hat. Zudem wird angenommen, dass die Straße glatt ist
	und keine Steigung besitzt. Der Dämpfer und die Feder können dann wie in der Abbildung eingezeichnet als direkt mit der Stra-
	Be verbunden angesehen werden. Auf die Masse wirkt die Gewichtskraft $F_{\rm G}=M\cdot g$, wobei g die Erdbeschleunigung ist. Die
	$\ \text{Vertikalbewegung des Schwerpunktes von } M \text{ bezüglich der Straße soll mittels der eingezeichneten Koordinate } z(t) \text{ beschrie-}$
	ben werden. Dabei ist das Koordinatensystem von $z(t)$ so gewählt, dass es immer den gleichen Abstand zur Straße hat und dass
	z(t) = 0 ist, wenn die Feder entspannt ist und somit keine Federkräfte vorhanden sind. Mit dieser Konvention kann die Feder-
	kraft, welche immer entgegen der Vertikalauslenkung wirkt, durch den nichtlinearen Zusammenhang $F_{\rm K}(t)=u(t)\cdot(z(t))^3$
	beschrieben werden, wobei $u(t)$ die verstellbare Federsteifigkeit darstellt, die als Stellgröße des aktiven Stoßdämpfersystems
	dient. Der Dämpfer verursacht eine Kraft $F_{\rm D}(t)=\mu\dot{z}(t)$, die der Vertikalgeschwindigkeit $\dot{z}(t)$ des Fahrzeugs entgegen wirkt.
	Dabei ist μ ein gegebener konstanter Wert.

(b) Berechnen Sie die Ruhelage $x_{\rm ss}$, in der das Stoßdämpfersystem zur Ruhe kommt, wenn u(t) konstant auf dem Wert $u_{\rm ss}$ gehalten wird. *Hinweis:* $x_{\rm ss}$ hängt von M, g und $u_{\rm ss}$ ab.

(c) Linearisieren Sie das System in der zuvor berechneten Ruhelage ($x_{\rm ss},\,u_{\rm ss}$).

(d) Ist das linearisierte System steuerbar? Begründen Sie Ihre Antwort.

2

3

2

Leeres Blatt für Zwischenrechnungen

points on page: 0

19