Exame de Qualificação

Mestrado em Estatística

Prova de Probabilidade 02 de Agosto de 2019

Instruções:

- A prova é composta de 5 questões.
- A duração da prova é de 4 horas.
- Não é permitido consulta.
- Inicie a resolução de cada questão em uma nova folha.
- Escreva seu nome completo e seu RA em cada folha.
- Escreva de maneira clara e organizada.
- Justifique suas respostas.

Boa prova!

Questão 1:

Sejam A, B, A_1, A_2, \ldots eventos em um espaço de probabilidade. Suponha que $A_n \uparrow A$, ou seja,

$$A_n \subset A_{n+1}$$
 para todo $n \ge 1$ e $\bigcup_{n=1}^{\infty} A_n = A$.

Suponha também que B é independente de A_n para todo $n \geq 1$. Prove que A e B são independentes.

Questão 2:

Sejam X_1, X_2, \dots, X_n variáveis aleatórias independentes e identicamente distribuídas, com distribuição uniforme em $[0, \theta]$, onde $\theta > 0$. Sejam

$$U = \min_{1 \le i \le n} X_i \quad e \quad V = \max_{1 \le i \le n} X_i.$$

(a) Prove que a densidade conjunta de (U, V) é

$$f(u,v) = \begin{cases} \frac{n(n-1)(v-u)^{n-2}}{\theta^n}, & \text{se } 0 \le u < v \le \theta, \\ 0, & \text{caso contrário.} \end{cases}$$

(b) Obtenha a densidade de V-U.

Questão 3:

Seja (X,Y) um ponto escolhido aleatoriamente no quadrado $(0,1)\times(0,1)$. A densidade conjunta de X e Y é

$$f_{X,Y}(x,y) = \begin{cases} 1 & \text{se } 0 < x < 1 \text{ e } 0 < y < 1, \\ 0 & \text{caso contrário.} \end{cases}$$

2

Seja Z = XY. Determine:

- (a) A densidade de Z.
- (b) $E(X \mid Z = z)$ para 0 < z < 1.

Questão 4:

Sejam X_1, X_2, \ldots variáveis aleatórias independentes e identicamente distribuídas tais que $X_1 \sim U[0, 1]$.

- (a) Prove que $n^{-X_n} \xrightarrow{P} 0$, ou seja, $n^{-X_n} \to 0$ em probabilidade.
- (b) Prove que n^{-X_n} não converge quase certamente para 0.

Questão 5:

Sejam X_1, X_2, \ldots variáveis aleatórias independentes e identicamente distribuídas, com distribuição uniforme em $(-\theta, \theta), \theta > 0$. Para $n \ge 1$, definimos

$$S_n = \sum_{i=1}^n X_i$$
 e $Y_n = \max\{X_1, \dots, X_n\}.$

Mostre que

$$\frac{S_n}{\sqrt{n}Y_n} \xrightarrow{\mathrm{D}} N\left(0, \frac{1}{3}\right),$$

ou seja, $\frac{S_n}{\sqrt{n}Y_n}$ converge em distribuição para uma variável aleatória que possui distribuição $N\left(0,\frac{1}{3}\right)$.