rls_mkl: A Projection-based MATLAB Implementation for Multiple Kernel Learning

(Jeremiah) Zhe Liu

ZHL112@MAIL.HARVARD.EDU

Department of Biostatistics Harvard School of Public Health Boston, MA, 02115

Contents

1	Introduction			
1	1.1	Multiple Kernel Learning Problem		
	1.2			
	1.3	3 Implementation Detail		
		1.3.1	Choice of Stepsize	3
			Parallel	3
		1.3.3	Alternative Regularization through Early Stopping	3
2	Software Structure and Usage		3	
3	Exa	mple		3

1. Introduction

1.1. Multiple Kernel Learning Problem

Multiple kernel learning (MKL) (Bach et al. (2004)) is the process of finding an optimal kernel from a prescribed (convex) set \mathcal{K} of basis kernels, for learning a real-valued function by regularization. In this work, we consider a RKHS $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \cdots \oplus \mathcal{H}_M$ with reproducting kernel $\mathbf{k} \in \mathcal{K} = \{\sum_{i=1}^M c_i \mathbf{k}_i | (c_i \geq 0 \forall i) \land \sum_{i=1} c_i = 1\}$ such that $f = \sum_{i=1}^M f_i, f_i \in \mathcal{H}_i$. By Micchelli and Pontil (2005), the problem of multiple kernel learning corresponds to find f^* such that:

$$\arg\min_{f\in\mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} Q(\sum_{j=1}^{M} f_j(\mathbf{x}), \mathbf{y}) + \tau g\left(\left(\sum_{j=1}^{M} ||f_j||_{\mathcal{H}}\right)^2\right) \right\}$$

Rosasco et al. (2009) generalized above problem by taking Q to be square loss, $g(.) = \sqrt{.}$ and also impose L1 regularization, leading to the elastic-net-regulated problem:

$$\arg\min_{f\in\mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{M} f_j(x_i) - y_i \right)^2 + \mu \sum_{j=1}^{M} ||f_j||_{\mathcal{H}}^2 + 2\tau \sum_{j=1}^{M} ||f_j||_{\mathcal{H}} \right\}$$
(1)

1.2. Iterative Projection Algorithm

By Theorem 1 of Rosasco et al. (2009), since the penalty function is lower semicontinuous, coercive, convex and one-homogenous, solution to problem 1 f^* is the unique fixed point of the the contractive mapping with step size σ :

$$\mathcal{T}_{\sigma}(f) = (\mathbf{I} - \pi_{\frac{\tau}{\sigma}K}) \left(f - \frac{1}{2\sigma} \nabla_f \left[\frac{1}{n} ||f - y||^2 \right] \right)$$

where $\pi_{\frac{\tau}{\sigma}K}(g)$ is a project operator which project g to $\mathcal{H}' = \{f \in \mathcal{H} | ||f_j||_{\mathcal{H}_j} \leq \frac{1}{\tau/\sigma} \,\forall j\}$, or more rigorously:

$$\pi_{\frac{\tau}{\sigma}K}(g) = \frac{\tau}{\sigma}v, \quad \text{where } v = \arg\min_{v \in \mathcal{H}, ||v_i|| \le 1} ||\frac{\tau}{\sigma}v - g||_{\mathcal{H}}^2$$

Above mapping can also be written in terms of Kernel matrices by generalizing representer theorem and write $f_j^*(x) = \sum_{i=1}^n \alpha_{ji}^T k_j(x_i, x) = \alpha_j^T \mathbf{k}_j(x)$, where α_j and $\mathbf{k}_j(x)$ are $n \times 1$ vectors. Further, if denote:

$$\boldsymbol{\alpha}_{Mn\times 1} = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_M)^T$$

$$\mathbf{k}(x)_{Mn\times 1} = (\mathbf{k}_1(x)^T, \dots, \mathbf{k}_M(x)^T)^T$$

$$\mathbf{K}_{Mn\times Mn} = \begin{bmatrix} \mathbf{K}_1 & \dots & \mathbf{K}_M \\ \vdots & \vdots & \vdots \\ \mathbf{K}_1 & \dots & \mathbf{K}_M \end{bmatrix}, \text{ where } \mathbf{K}_i = \mathbf{k}_i(.)\mathbf{k}_i(.)^T$$

$$\mathbf{y}_{Mn\times 1} = (y_{n\times 1}^T, \dots, y_{n\times 1}^T)^T$$

The contraction mapping can be written as:

$$\mathcal{T}_{\sigma}(f) = (\mathbf{I} - \pi_{\frac{\tau}{\sigma}K}) \left((1 - \frac{\mu}{\sigma}) \boldsymbol{\alpha} - \frac{1}{\sigma n} (\mathbf{K} \boldsymbol{\alpha} - \mathbf{y}) \mathbf{k} \right) \quad \text{where}$$

$$\pi_{\frac{\tau}{\sigma}K}(g)_{j} = \min\{1, \frac{||g_{j}||_{\mathcal{H}_{j}}}{\tau/\sigma}\} * \frac{g_{j}}{||g_{j}||_{\mathcal{H}_{j}}} = \min\{1, \frac{\sqrt{\boldsymbol{\alpha}_{j}^{T} \mathbf{K}_{j} \boldsymbol{\alpha}_{j}}}{\tau/\sigma}\} * \frac{\boldsymbol{\alpha}_{j}^{T} \mathbf{k}_{j}}{\sqrt{\boldsymbol{\alpha}_{j}^{T} \mathbf{K}_{j} \boldsymbol{\alpha}_{j}}}$$

Thus the projection $\mathbf{I} - \pi_{\frac{\tau}{\sigma}K}$ corresponds to the soft-thresholding operator for α_j :

$$\mathbf{S}_{\frac{\tau}{\sigma}}(K, \boldsymbol{\alpha})_{j} = \frac{\boldsymbol{\alpha}_{j}^{T}}{\sqrt{\boldsymbol{\alpha}_{j}^{T} \mathbf{K}_{j} \boldsymbol{\alpha}_{j}}} (\sqrt{\boldsymbol{\alpha}_{j}^{T} \mathbf{K}_{j} \boldsymbol{\alpha}_{j}} - \frac{\tau}{\sigma})_{+}$$

Above discussions lead to below algorithm:

Algorithm 1: MKL Algorithm

set $\alpha^0 = \mathbf{0}$

for p = 1 to MAX_ITER do

$$\boldsymbol{\beta}^{p-1} = (1 - \frac{\mu}{\sigma})\boldsymbol{\alpha}^{p-1} - \frac{1}{\sigma n}(\mathbf{K}\boldsymbol{\alpha}^{p-1} - \mathbf{y})$$
$$\boldsymbol{\alpha}^{p} = \mathbf{S}_{\frac{\tau}{\sigma}}(K, \boldsymbol{\beta}^{p-1})$$

end for

$$\mathbf{return}\ f^{\texttt{MAX_ITER}} = (\boldsymbol{\alpha}^{\texttt{MAX_ITER}})^T \mathbf{k}$$

1.3. Implementation Detail

1.3.1. Choice of Stepsize

Micchelli and Pontil (2005)

- 1.3.2. Parallel
- 1.3.3. ALTERNATIVE REGULARIZATION THROUGH EARLY STOPPING
- 2. Software Structure and Usage
- 3. Example

References

- F Bach, G Lanckriet, and M Jordan. Multiple kernel learning, conic duality, and the smo algorithm. ACM International Conference Proceeding Series, 69, 2004.
- C Micchelli and M Pontil. Learning the kernel function via regularization. *Journal of Machine Learning Research*, 6:10991125, 2005.
- S Mosci, L Rosasco, M Santoro, A Verri, and S Villa. Solving structured sparsity regularization with proximal methods. *Machine Learning and Knowledge Discovery in Databases*, II:418, September 2010.
- L Rosasco, S Mosci, M Santoro, A Verri, and S Villa. Iterative projection methods for structured sparsity regularization. Technical report, MIT, 2009.