Results with simple average indexes

César Garro-Marín*

January 27, 2022

Section here I show estimated skill acquisition costs when I compute them using simple average indexes. These θ_i come from the regression:

$$d\ln f^e(J) = \sum_i \beta_i^e S_i^e(J) \tag{1}$$

(2)

where:

$$\beta_i^e = \frac{\varepsilon}{1 - \varepsilon} \theta_i^e (d \ln A_i - K^e)$$

I define the indexes as follows:

$$S_i(J) = \frac{\tilde{S}_i(J)}{\sum_k^K \tilde{S}_k(J)}$$

where $S_k(J)$ is the simple average of the scores I assigned to each SES question:

$$S_i(J) = \frac{1}{||i||} \sum_{j=1}^{||i||} \sum_{l=1}^{5} c_{ijl} 1_{d_{ij}=l}$$

remember that the SES questions have possible answer going from 1 to 5. I normalized these answers c_{ijl} to be between zero and one.

$$c_{ijl} = \frac{l-1}{4}$$

1 Results

Weighted result weights observation by the occupation-years cells size.

^{*}Boston University, email: cesarlgm@bu.edu

Table 1: Estimates of β_i^e

	Unweighted			Weighted		
	$\mathbf{Low} $ (1)	Mid (2)	High (3)	$\mathbf{Low} \\ (4)$	$\mathbf{Mid} \\ (5)$	High (6)
i_manual	0.24	-0.40	0.22	0.93**		-0.04
i_routine	(0.31) 0.47	(0.38) 1.03	(0.22) -0.42	(0.30) -0.88	$(0.57) \\ 0.65$	(0.18) -0.13
i_abstract	(0.39) -0.66	(1.09) -2.15	(0.46) 0.20	(0.47) -0.51	(1.26) $-3.08*$	(0.57) 0.30
	(0.60)	(1.14)	(0.30)	(0.71)	(1.35)	(0.33)
i_social	0.14 (0.54)	1.56* (0.72)	-0.16 (0.28)	0.42 (0.68)	2.04* (0.86)	-0.25 (0.27)
$n_occupations$	42	10	59	42	10	59
N	100	25	170	100	25	170
r2	0.13	0.40	0.01	0.21	0.55	0.02