Artificial Intelligence: State Space Search for Game Playing

Russell & Norvig: Sections 5.1 & 5.4

Motivation

chess

tic-tac-toe

Today

- State Space Search for Game Playing
 - MiniMax
 - Alpha-beta pruning
- Where we are today

State Space Search for Game Playing

- Classical application for heuristic search
 - simple games: exhaustibly searchable
 - complex games: only partial search possible
 - additional problem: playing against opponent
- Type of game:
 - 2 person adversarial games
 - win, lose or tie
 - Perfect information
 - both players know the state of the game and all possible moves
 - No chance involved
 - outcome of the game is only dependent on player's moves
 - zero-sum game
 - If the total gains of one player are added up, and the total losses are subtracted, they will sum to zero.
 - a gain by one player must be matched by a loss by the other player
 - ex. chess, GO, tic-tac-toe, ...

Today

- State Spa
 MiniMax

 - Alpha-beta pruning
- Where we are today

MiniMax Search

- Game between two opponents, MIN and MAX
 - MAX tries to win, and
 - MIN tries to minimize MAX's score
 - Existing heuristic search methods do not work
 - would require a helpful opponent
 - Need to incorporate "hostile" moves into search strategy

Exhaustive MiniMax Search

- For small games where exhaustive search is feasible
- Procedure:
 - build complete game tree
 - 2. label each level according to player's turn (MAX or MIN)
 - Jabel leaves with a utility function to determine the outcome of the game
 - e.g., (0, 1) or (-1, 0, 1)
 - 4. propagate this value up:
 - if parent=MAX, give it max value of children
 - if parent=MIN, give it min value of children
 - 5. Select best next move for player at root as the move leading to the child with the highest value (for MAX) or lowest values (for MIN)

Example: Game of Nim

Rules

- 2 players start with a pile of tokens
- move: split (any) existing pile into two non-empty differently-sized piles
- game ends when no pile can be unevenly split
- player who cannot make his move loses

State Space of Game Nim

- start with one pile of tokens
- each step has to divide one pile of tokens into 2 non-empty piles of different size
- player without a move left loses game

Exhaustive MiniMax for Nim

source: G. Luger (2005)

n-ply MiniMax with Heuristic

- Exhaustive search for interesting games is rarely feasible
- Search only to predefined level
 - called n-ply look-ahead
 - n is number of levels
- No exhaustive search
 - nodes evaluated with heuristics and not win/loss
 - indicates best state that can be reached
 - horizon effect
- Games with opponent
 - simple strategy: try to maximize difference between players using a heuristic function e(n)

Heuristic Function for 2-player games

- simple strategy:
 - try to maximize difference between MAX's game and MIN's game
- typically called e(n)
- e(n) is a heuristic that estimates how favorable a node n is for MAX
 - $\neg e(n) > 0 \longrightarrow n$ is favorable to MAX
 - $\neg e(n) < 0 \longrightarrow n$ is favorable to MIN
 - = e(n) = 0 --> n is neutral

Choosing a Heuristic Function e(n)

Usually e(n) is a weighted sum of various features:

$$e(n) = \sum w_i f_i(n)$$

- E.g. of features:
 - \neg f_1 = number of pieces left on the game for MAX
 - \neg f_2 = number of possible moves left for MAX
 - \neg $f_3 = -(number of pieces left on the game for MIN)$
 - \neg $f_4 = -(number of possible moves left for MIN)$
- E.g. of weights:
 - $w_1 = 0.5 // f_1$ is a very important feature
 - $w_2 = 0.2 // f_2$ is not very important
 - $w_3 = 0.2 // f_3$ is not very important
 - $w_4 = 0.1 // f_4$ is really not important

Leaf nodes show the actual heuristic value e(n)

Leaf nodes show the actual heuristic value e(n)Internal nodes show <u>back-up</u> heuristic value

source: G. Luger (2005)

Leaf nodes show the actual heuristic value e(n)Internal nodes show <u>back-up</u> heuristic value

Leaf nodes show the actual heuristic value e(n) Internal nodes show back-up heuristic value

Leaf nodes show the actual heuristic value e(n)Internal nodes show <u>back-up</u> heuristic value

Example: e(n) for Tic-Tac-Toe

Possible e(n)

$$e(n) = \begin{cases} \text{number of rows, columns, and diagonals open for } MAX \\ -\text{number of rows, columns, and diagonals open for } MIN \\ +\infty, & \text{if n is a forced win for } MAX \\ -\infty, & \text{if n is a forced win for } MIN \end{cases}$$

$$e(n) = 8-8 = 0$$

$$e(n) = 6-4 = 2$$

$$e(n) = 3-3 = 0$$

More examples...

X has 6 possible win paths:

O has 5 possible wins:

$$E(n) = 6 - 5 = 1$$

X has 4 possible win paths; O has 6 possible wins

$$E(n) = 4 - 6 = -2$$

X has 5 possible win paths;

O has 4 possible wins

$$E(n) = 5 - 4 = 1$$

Two-ply MiniMax for Opening Move

Two-ply MiniMax: MAX's possible 2nd moves

Two-ply minimax: MAX's move at end

Today

- State Space Search for Game Playing
 - MiniMax
 - □ Alpha-beta pruning M/h ~~
- Where we are today

Alpha-Beta Pruning

- Optimization over minimax, that:
 - ignores (cuts off, prunes) branches of the tree
 that cannot possibly lead to a better solution
 - reduces branching factor
 - allows deeper search with same effort

Alpha-Beta Pruning: Example 1

- With minimax, we look at all possible nodes at the n-ply depth
- With a-B pruning, we ignore branches that could not possibly contribute to the final decision

source: G. Luger (2005)

Alpha-Beta Pruning Algorithm

- α : lower bound on the final backed-up value.
- β : upper bound on the final backed-up value.
- Alpha pruning:

eg. if MAX node's α = 6, then the search can prune branches from a MIN descendant that has a $\beta \leftarrow 6$.

if child β <= ancestor $\alpha \rightarrow$ prune

so stop searching the right branch; the value cannot come from there!

value ≥ 6 incompatible... MIMß=5 $\alpha = -\infty$ value ≤ 5

- Beta pruning:
 - eg. if a MIN node's β = 6, then the search can prune branches from a MAX descendant that has an $\alpha > = 6$.
 - if ancestor β <= child $\alpha \rightarrow$ prune

incompatible... so stop searching the right branch; the value cannot come from there!

α=6

Alpha-Beta Pruning Algorithm

```
01 function alphabeta (node, depth, \alpha, \beta, maximizingPlayer)
         if depth = 0 or node is a terminal node
02
03
              return the heuristic value of node
04
         if maximizingPlayer
                                                            Initial call:
0.5
              v := -∞
                                                            alphabeta(origin, depth, -\infty, +\infty, TRUE)
              for each child of node
06
07
                   v := max(v, alphabeta(child, depth - 1, \alpha, \beta, FALSE))
0.8
                  \alpha := \max(\alpha, v)
                  if \beta \leq \alpha
09
                       break (* β cut-off *)
10
11
              return v
         else
12
13
              ∨ := ∞
14
              for each child of node
                   v := min(v, alphabeta(child, depth - 1, \alpha, \beta, TRUE))
1.5
                  \beta := \min(\beta, v)
16
                   if \beta \leq \alpha
17
                       break (* α cut-off *)
18
19
              return v
```


Alpha-Beta Pruning: Example 2

Alpha-Beta Pruning: Example 2

prune

prune

Efficiency of Alpha-Beta Pruning

- Depends on the order the siblings
- In worst case:
 - alpha-beta provides no pruning
- In best case:
 - branching factor is reduced to its square root

- best ordering:
 - children of MIN: smallest node first
 - children of MAX: largest node first

- best ordering:
 - children of MIN: smallest node first
 - children of MAX: largest node first

- best ordering:
 - children of MIN: smallest node first
 - 2. children of MAX: largest node first

Today

- State Space Search for Game Playing
 - MiniMax
 - Alpha-beta pruning
- Where we are today

1992-1994 - Checkers: Tinsley vs. Chinook

Marion Tinsley

World champion for over 40 years

VS.

Chinook

Developed by Jonathan Schaeffer, professor at the U. of Alberta

1992: Tinsley beat Chinook in 4 games to 2,

with 33 draws.

1994: 6 draws

In 2007, Schaeffer announced that checkers was solved, and anyone playing against Chinook would only be able to draw, never win.

Play against Chinook: http://games.cs.ualberta.ca/cgi-bin/player.cgi?nodemo

1997 - Othello: Murakami vs. Logistello

Takeshi Murakami World Othello champion

VS

Logistello developed by Michael Buro runs on a standard PC

https://skatgame.net/mburo/log.html

(including source code)

Logistello beat Murakami by 6 games to 0

1997- Chess: Kasparov vs. Deep Blue

Garry Kasparov
50 billion neurons
2 positions/sec
VS
Deep Blue

32 RISC processors + 256 VLSI chess engines 200,000,000 pos/sec

Deep Blue wins by 3 wins, 1 loss, and 2 draws

2003 - Chess: Kasparov vs. Deep Junior

Garry Kasparov still 50 billion neurons still 2 positions/sec

VS

Deep Junior
8 CPU, 8 GB RAM, Win 2000
2,000,000 pos/sec
Available at \$100

Match ends in a 3/3 tie!

2016 - Go: AlphaGo vs Lee Se-dol

- GO was always considered a much harder game to automate than chess because of its very o high a branching factor (35 for chess vs 250 for Go!)
- In 2016, AlphaGo beat Lee Sedol in a five-game match of GO.
- In 2017 AlphaGo beat Ke Jie, the world No.1 ranked player at the time
- uses a Monte Carlo tree search algorithm to find its moves based on knowledge previously "learned" by deep learning

Today

- State Space Search for Game Playing
 - MiniMax
 - Alpha-beta pruning
- Where we are today

