

Kingman's subadditive ergodic theorem

 ${\bf Canonical\ name} \quad {\bf Kingmans Subadditive Ergodic Theorem}$

Date of creation 2014-03-18 14:34:03 Last modified on 2014-03-18 14:34:03

Owner Filipe (28191) Last modified by Filipe (28191)

Numerical id 5

Author Filipe (28191) Entry type Theorem

Related topic birkhoff ergodic theorem

Let (M, \mathcal{A}, μ) be a probability space, and $f: M \to M$ be a measure preserving dynamical system. let $\phi_n: M \to \mathbf{R}, n \geq 1$ be a subadditive sequence of measurable functions, such that ϕ_1^+ is integrable, where $\phi_1^+ = \max\{\phi, 0\}$. Then, the sequence $(\frac{\phi_n}{n})_n$ converges μ almost everywhere to a function $\phi: M \to [-\infty, \infty)$ such that:

 ϕ^+ is integrable

 ϕ is f invariant, that is, $\phi(f(x)) = \phi(x)$ for μ almost all x, and

$$\int \phi d\mu = \lim_{n} \frac{1}{n} \int \phi_n d\mu = \inf_{n} \frac{1}{n} \int \phi_n d\mu \in [-\infty, \infty)$$

The fact that the limit equals the infimum is a consequence of the fact that the sequence $\int \phi_n d\mu$ is a subadditive sequence and Fekete's subadditive lemma.

A superadditive version of the theorem also exists. Given a superadditive sequence φ_n , then the symmetric sequence is subadditive and we may apply the original version of the theorem.

Every additive sequence is subadditive. As a consequence, one can prove the Birkhoff ergodic theorem from Kingman's subadditive ergodic theorem.