Instructions: Problems 4 and 6 are to be handed in by next Friday (as always, theoretical part on Moodle, SAGE exercises via CoCalc).

- 1. Find examples of elliptic curves E/\mathbb{Q} with rational 2-torsion group $E(\mathbb{Q})[2]$ isomorphic to O, $\mathbb{Z}/2\mathbb{Z}$ and $(\mathbb{Z}/2\mathbb{Z})^2$ (explain why these isomorphisms hold).
- 2. (a) Code a function $\operatorname{avgfivetorsion}(p,B)$ which computes the proportion over all elliptic curves E over \mathbb{F}_p for p>3 prime with non-trivial \mathbb{F}_q -rational five-torsion $E[5](\mathbb{F}_q)$ for each $q=p^r$ with r varying between one and B. (Hint: you can deduce non-trivial five-torsion from a computation of the order of $E(\mathbb{F}_q)$, for which you may use a SAGE function)
 - (b) Set B = 30 and run your code for p = 7 and then p = 5. What do you observe and how would you explain it? Make a conjecture from the data you see and check if further varying the prime p confirms it.
- 3. Prove that the q-th power Frobenius map on E/\mathbb{F}_q is actually an endomorphism by showing

$$\varphi(P) \in E(\overline{\mathbb{F}}_q)$$
 and $\varphi(P+Q) = \varphi(P) + \varphi(Q)$

for points $P, Q \in E(\overline{\mathbb{F}}_q)$ (for simplicity assume p > 3). (Hint: use the fact that the Frobenius $\sigma : x \mapsto x^q$ on $\overline{\mathbb{F}}_q$ is a field automorphism.)

4. Prove that if two elliptic curves E, E' over \mathbb{F}_p are \mathbb{F}_p -isogenous (so there exists an isogeny $f: E \to E'$ given by rational functions with \mathbb{F}_p -coefficients, in particular f preserves \mathbb{F}_p -rational points), then $|E(\mathbb{F}_p)| = |E'(\mathbb{F}_p)|$.

(Hint: consider the p-th power Frobenius maps $\varphi_p: E \to E$ and $\varphi_p': E' \to E'$, and compare $(\operatorname{Id} - \varphi_p') \circ f$ and $f \circ (\operatorname{Id} - \varphi_p)$ as well as the degrees of these morphisms.)

5. The zeta function of an elliptic curve E/\mathbb{F}_q is defined as the power series in $\mathbb{Q}[[T]]$ given by

$$Z(T, E/\mathbb{F}_q) := e^{\sum_{r \ge 1} N_r T^r/r},$$

where $N_r = \sharp E(\mathbb{F}_{q^r})$. Weil proved that in fact the zeta function is a rational function

$$Z(T, E/\mathbb{F}_q) = \frac{1 - a_q T + q T^2}{(1 - T)(1 - q T)},$$

where $a_q = N_1 - q - 1$ satisfies the Hasse bound.

- (a) Deduce that the zeroes of the zeta function are complex conjugate of absolute value q^{-s} with $s = \frac{1}{2}$. (you should think of this as a Riemann Hypothesis in this setting!).
- (b) The zeta function encodes data about all the cardinalities N_r . Writing the numerator of $Z(T, E/\mathbb{F}_q)$ as $(1 \alpha T)(1 \beta T)$, show that:

$$N_r = q^r + 1 - \alpha^r - \beta^r.$$

(Hint: take log derivatives of the two formulas for zeta)

(c) Compute N_r for the so-called *Koblitz curves* defined over \mathbb{F}_2 by

$$y^{2} + xy = x^{3} + ax^{2} + 1$$
 for $a \in \mathbb{F}_{2}$

.

- 6. (a) Prove that for an elliptic curve E/\mathbb{F}_p defined by $E: y^2 = f(x)$, if the cubic satisfies f(-x) = -f(x), then $|E(\mathbb{F}_p)| = p+1$ for all primes $p \equiv 3 \mod 4$.
 - (b) Find the group structure of $E(\mathbb{F}_{107})$ for $E: y^2 = x^3 x$.
- 7. A number n is called a *congruent number* if n can be realized as the area of a right-angled triangle with rational sides (this goes back to the Greeks!). So iff there exist rational a, b, c with $a^2 + b^2 = c^2$ and ab = 2n.
 - (a) Check that there is a bijection between the two sets:

$$\{(a,b,c) \in \mathbb{Q}^3 : a^2 + b^2 = c^2, 2n = ab\} \leftrightarrow \{(x,y) \in \mathbb{Q}^2 : y^2 = x^3 - n^2x, y \neq 0\}$$

given by the maps

$$(a,b,c) \mapsto \left(\frac{nb}{c-a}, \frac{2n^2}{c-a}\right) \text{ and } (x,y) \mapsto \left(\frac{x^2-n^2}{y}, \frac{2nx}{y}, \frac{x^2+n^2}{y}\right).$$

- (b) Use this to produce 20 rational points on $E_6: y^2 = x^3 36x$ (you may use SAGE). Given that Mazur proved that the torsion part of $E(\mathbb{Q})$ has size ≤ 16 what do you deduce about the rank of E_6 ?
- (c) Show that the only rational torsion on the elliptic curve $E_n: y^2 = x^3 n^2x$ is $E_n(\mathbb{Q})[2]$ and deduce a relationship between congruent numbers and the rank of the elliptic curves E_n . (Hint: you can use that for $p \nmid \Delta(E_n)$ the rational torsion injects into $E(\mathbb{F}_p)$ and argue $\sharp E(\mathbb{F}_p) = p+1$ for $p \equiv 3 \mod 4$. Then conclude by using Dirichlet's theorem on infinitely many primes in arithmetic progressions.)