MANE 6520-01 Fluid Mechanics Fall Semester 2019 Problem Set #2

Due: October 10, 2019

- 1. Given the flow velocity field: u(x,y,z,t) = 2xt, v(x,y,z,t) = 4y, and w(x,y,z,t) = 0.
 - a) Find the element's path line and velocity vector as function of time t only for an element that passed through the point x=1, y=1, z=1 at t=1. Construct a relationship $x_e=f_I(y_e)$ for the element's path line.
 - b) Find the equation $x=f_2(y)$ which describes the streamline that passes through the point x=1, y=1, z=1 at t=1.
 - c) Find the equation $x=f_3(y)$ for the streak line at time t=1 constructed by all fluid elements that have passed through the point x=1, y=1, z=1.
 - d) Plot all the above lines in a diagram x vs. y and compare between the lines.
- 2. The temperature on the surface of a lake is given by the field T(x,t). Find the rate of change of temperature recorded on a thermometer that is dragged through the surface along a trajectory given by x = r(t). Write the answer in terms of T and r and their derivatives.
- 3. Consider the plane (2D) stagnation flow given by u = cx, v = -cy, w = 0. Find the expressions for the vorticity vector $\mathbf{\Theta}$, the rate of strain tensor $\nabla \vec{V}$, its symmetric (\mathbf{S}) and skew-symmetric (\mathbf{T}) components, and the rate of volumetric expansion for this flow.
- 4. Use the identities given in class to prove that: $V \bullet \nabla V = \frac{1}{2} \nabla (V \bullet V) V \times \omega$, where $\omega = \nabla \times V$.
- 5. Determine the size of the diameter of a cylinder and the Knudsen number (Kn) of the flow of air characterized by speed of sound of 340 m/s and kinematic viscosity $\nu = 1.7 \times 10^{-5}$ m²/s:
 - a) with Ma = 0.5 and Re = 10;
 - b) with Ma = 0.5 and Re = 10^6 ;
 - c) with Ma = 0.001 and Re = 100;
 - d) with Ma = 0.001 and $Re = 10^6$.

Discuss the differences between the various cases and the implications with respect to the validity of fluid mechanics theory for each case.