CLASSICAL ENCRYPTION TECHNIQUES

- Symmetric Cipher Model
- Substitution Techniques
- Transposition Techniques
- Rotor Machines
- Steganography

SYMMETRIC ENCRYPTION

- Conventional / private-key / single-key
- Sender and recipient share a common key
- all classical encryption algorithms are private-key
- The only type prior to invention of public-key in 1970's
- Most widely used

SOME BASIC TERMINOLOGY

- Plaintext original message
- Ciphertext coded message
- Cipher algorithm for transforming plaintext to ciphertext
- Key info used in cipher known only to sender/receiver
- Encipher (encrypt) converting plaintext to ciphertext
- Decipher (decrypt) recovering plaintext from ciphertext
- Cryptography study of encryption principles/methods
- Cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- Cryptology field of both cryptography and cryptanalysis

SYMMETRIC CIPHER MODEL

REQUIREMENTS

- Requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- > Mathematically:

$$Y = E_K(X)$$

$$X = D_{\kappa}(Y)$$

- > Assumption: encryption algorithm is known
- > Implication: a secure channel to distribute key

SYMMETRIC CRYPTO SYSTEM

CRYPTOGRAPHY

- Characterize cryptographic system along three dimensions:
 - Type of encryption operations used
 - substitution / transposition / product
 - Number of keys used
 - single-key or private / two-key or public
 - Way in which plaintext is processed
 - block / stream

CRYPTANALYSIS

- Objective is to recover key not just message
- General approaches:
 - Cryptanalytic attack
 - Rely on the nature of the algorithm plus some knowledge of the general characteristics of the plaintext or even some sample plaintext-ciphertext pairs
 - Brute-force attack
 - Try every possible key on a piece of ciphertext until an intelligible translation into plaintext is obtained. On average half of all possible keys must be tried to achieve success.

CRYPTANALYTIC ATTACKS

Ciphertext only

- Only know algorithm & ciphertext, is statistical, know or can identify plaintext
- Known plaintext
 - Know/suspect plaintext & ciphertext
- Chosen plaintext
 - Select plaintext and obtain ciphertext
- Chosen ciphertext
 - Select ciphertext and obtain plaintext
- Chosen text
 - Select plaintext or ciphertext to en/decrypt

ENCRYPTION SCHEME

Unconditionally secure

 No matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

Computationally secure

 Given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

BRUTE FORCE SEARCH

- > Always possible to simply try every key
- Most basic attack, proportional to key size
- Assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys		e required at 1 ecryption/μs	Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ μs	= 35.8 minutes	2.15 milliseconds
56 (DES)	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs	= 1142 years	10.01 hours
128 (AES)	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs	$= 5.4 \times 10^{24} \text{ years}$	$5.4 \times 10^{18} \text{ years}$
168 (Triple-DES)	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ μs	$= 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years
26 characters (permutation) (Mono-alphabetic)	$26! = 4 \times 10^{26}$	2 × 10 ²⁶ μs	$= 6.4 \times 10^{12} \text{ years}$	6.4×10^6 years

CLASSICAL ENCRYPTION TECHNIQUES

- Symmetric Cipher Model
- Substitution Techniques
- Transposition Techniques
- Rotor Machines
- Steganography

CLASSICAL SUBSTITUTION CIPHERS

- Where letters of plaintext are replaced by other letters or by numbers or symbols
- If plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns
 - Caesar Cipher
 - Monoalphabetic Cipher
 - Playfair Cipher
 - ➤ Hill Cipher

- Vignere Cipher
- Auto key Cipher
- Vernam Cipher

CAESAR CIPHER

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- > replaces each letter by 3rd letter on
- example:

```
meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB
```

> can define transformation as:

```
abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC
```

CAESAR CIPHER

> can define transformation as:

```
abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC
```

- Decrypt the following :
 - wuhdwb lpsrvvleoh

CAESAR CIPHER

> can define transformation as:

mathematically give each letter a number

```
abcdefghij k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

> then have Caesar cipher as:

$$c = E(p) = (p + k) \mod (26)$$

$$p = D(c) = (c - k) \mod (26)$$

CRYPTANALYSIS OF CAESAR CIPHER

- only have 26 possible ciphers
 - A maps to A,B,..Z
- could simply try each in turn
- > a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

MONOALPHABETIC CIPHER

- Rather than just shifting the alphabet
- Could shuffle (jumble) the letters arbitrarily
- Each plaintext letter maps to a different random ciphertext letter
- Hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

MONOALPHABETIC CIPHER SECURITY

- Now have a total of 26! = 4 x 1026 keys
- With so many keys, might think is secure
- > But would be !!!WRONG!!!
- Problem is language characteristics

LANGUAGE REDUNDANCY AND CRYPTANALYSIS

- Human languages are redundant
- Eg "th Ird s m shphrd shll nt wnt"
- Letters are not equally commonly used
- In english E is by far the most common letter
 - Followed by T,R,N,I,O,A,S
- > Other letters like Z,J,K,Q,X are fairly rare
- Have tables of single, double & triple letter frequencies for various languages

ENGLISH LETTER FREQUENCIES

USE IN CRYPTANALYSIS

- Key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- Discovered by arabian scientists in 9th century
- Calculate letter frequencies for ciphertext
- Compare counts/plots against known values
- If caesar cipher look for common peaks/troughs
 - Peaks at: A-E-I triple, NO pair, RST triple
 - Troughs at: JK, X-Z
- For monoalphabetic must identify each letter
 - Tables of common double/triple letters help

EXAMPLE CRYPTANALYSIS

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies
 quess P & Z are e and t
 - guess P & Z are e and t

P 13.33	H 5.83	F 3.33	B 1.67	C 0.00
Z 11.67	D 5.00	W 3.33	G 1.67	K 0.00
S 8.33	E 5.00	Q 2.50	Y 1.67	L 0.00
U 8.33	V 4.17	T 2.50	I 0.83	N 0.00
0 7.50	X 4.17	A 1.67	J 0.83	R 0.00
M 6.67				

guess ZW is th and hence ZWP is the

```
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
ta e e te a that e e a a
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
e t ta t ha e ee a e th t a
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t
```

EXAMPLE CRYPTANALYSIS

Given ciphertext:

Uzqsovuohxmopvgpozpevsgzwszopfpesxudbmetsxaiz

Vuephzhmdzshzowsfpappdtsvpquzwymxuzuhsx Epyepopdzszufpombzwpfupzhmdjudtmohmq

- Count relative letter frequencies
- Guess P & Z are e and t
- Guess ZW is th and hence ZWP is the
- Proceeding with trial and error finally get:

It was disclosed yesterday that several informal but Direct contacts have been made with political Representatives of the viet cong in moscow

P 13.33	H 5.83	F 3.33	B 1.67	C 0.00
Z 11.67	D 5.00	W 3.33	G 1.67	K 0.00
S 8.33	E 5.00	Q 2.50	Y 1.67	L 0.00
U 8.33	V 4.17	T 2.50	I 0.83	N 0.00
O 7.50	X 4.17	A 1.67	J 0.83	R 0.00
M 6.67				

PLAYFAIR CIPHER

- Not even the large number of keys in a monoalphabetic cipher provides security
- One approach to improving security was to encrypt multiple letters
- > The playfair cipher is an example
- Invented by charles wheatstone in 1854, but named after his friend baron playfair

PLAYFAIR KEY MATRIX

- A 5X5 matrix of letters based on a keyword
- > Fill in letters of keyword (sans duplicates)
- > Fill rest of matrix with other letters
- Eg. Using the keyword MONARCHY

M	0	N	А	R
С	Н	Υ	В	D
Е	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	X	Z

Example of Playfair Cipher

Key: MONARCHY

Plaintext: BALLOON

M	0	N	A	R
C	Н	Y	В	D
E	F	G	I/J	К
	Р	Q	S	Т
L U	V	w	×	Z

OBA LX LO ON

Ciphertext: <u>IB SU PM NA</u>

ENCRYPTING

> INSTRUMENTS

М	0	N	Α	R
С	I	Y	В	D
Е	F	G	1	K
L	P	Q	S	Т
U	V	W	X	Z

ENCRYPTING

> INSTRUMENTS

> IN ST RU ME NT SZ

> GATL MZ CL RQ TX

М	0	N	А	R
С	Н	Υ	В	D
Е	F	G	t	K
L	P	Q	S	Т
U	V	W	X	Z

DECRYPTING

> KOKFRYPBFS

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	t	K
L	P	Q	S	Т
U	V	W	X	Z

DECRYPTING

> KOKFRYPBFS

> KO KF RY PB FS

> FR IE ND SH IP

M	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	1	K
L	P	Q	S	Т
U	V	W	X	Z

ENCRYPTING AND DECRYPTING

- Plaintext is encrypted two letters at a time
 - 1. If a pair is a repeated letter, insert filler like 'X'
 - If both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - If both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
 - Otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

SECURITY OF PLAYFAIR CIPHER

- Security much improved over monoalphabetic
- > Since have 26 x 26 = 676 digrams
- Would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- And correspondingly more ciphertext
- Was widely used for many years
 - Eg. By US & british military in WW1
- > It can be broken, given a few hundred letters
- Since still has much of plaintext structure

Hill Cipher

- Developed by the mathematician Lester Hill in 1929.
- The encryption algorithm takes m successive plain text and substitute for them m cipher text letters.
- Each character is assigned a numerical value (a=0,...z=25).

$$\begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} K_{11} K_{12} K_{13} \\ K_{21} K_{22} K_{23} \\ K_{31} K_{32} K_{33} \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} \mod 26$$

$$C = KP \mod 26$$

 $P = K^{-1}C \mod 26 = KK^{-1}P = P$

ENCRYPT

- > Text : ACT
- > Key: GYBNQKURP

$$\begin{bmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 19 \end{bmatrix} = \begin{bmatrix} 67 \\ 222 \\ 319 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 7 \end{bmatrix} \pmod{26}$$

ENCRYPT: POH

DECRYPT

To decrypt the message, we turn the ciphertext back into a vector, then simply multiply by the inverse matrix of the key matrix

$$\begin{bmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{bmatrix} = \begin{bmatrix} 8 & 5 & 10 \\ 21 & 8 & 21 \\ 21 & 12 & 8 \end{bmatrix} \pmod{26}$$

DECRYPT

Decrypt -> POH

$$\begin{bmatrix} 8 & 5 & 10 \\ 21 & 8 & 21 \\ 21 & 12 & 8 \end{bmatrix} \begin{bmatrix} 15 \\ 14 \\ 7 \end{bmatrix} = \begin{bmatrix} 260 \\ 574 \\ 539 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 19 \end{bmatrix} \pmod{26}$$

Plain text ->ACT

INVERSE OF A MATRIX

$$A = \left[egin{array}{cc} a & b \ c & d \end{array}
ight]$$

The inverse of a matrix is found using the following formula:

$$A^{-1} = egin{bmatrix} a & b \ c & d \end{bmatrix}^{-1}$$
 $A^{-1} = rac{1}{ad-bc}egin{bmatrix} d & -b \ -c & a \end{bmatrix}$

$$\begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}^{-1} = \frac{1}{4 \times 6 - 7 \times 2} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$
$$= \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

FINDING K

Suppose that the plaintext "friday" is encrypted using a 2 x 2 Hill cipher to yield the ciphertext PQCFKU

$$\mathbf{K} \binom{5}{17} \bmod 26 = \binom{15}{16}; \quad \mathbf{K} \binom{8}{3} \bmod 26 = \binom{2}{5} \qquad \quad \mathbf{K} \binom{0}{24} \bmod 26 = \binom{10}{20}$$

$$\mathbf{K} \binom{0}{24} \mod 26 = \binom{10}{20}$$

$$\begin{pmatrix} 15 & 2 \\ 16 & 5 \end{pmatrix} = \mathbf{K} \begin{pmatrix} 5 & 8 \\ 17 & 3 \end{pmatrix} \mod 26 \qquad \begin{pmatrix} 5 & 8 \\ 17 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 9 & 2 \\ 1 & 15 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 8 \\ 17 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 9 & 2 \\ 1 & 15 \end{pmatrix}$$

$$\mathbf{K} = \begin{pmatrix} 15 & 2 \\ 16 & 5 \end{pmatrix} \begin{pmatrix} 9 & 2 \\ 1 & 15 \end{pmatrix} = \begin{pmatrix} 137 & 60 \\ 149 & 107 \end{pmatrix} \mod 26 = \begin{pmatrix} 7 & 8 \\ 19 & 3 \end{pmatrix}$$

POLYALPHABETIC CIPHERS

- Improve security using multiple cipher alphabets
- Make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- Use a key to select which alphabet is used for each letter of the message
- Use each alphabet in turn
- Repeat from start after end of key is reached
- A set of related monoalphabetic substitution rules is used.
- A key determines which particular rule is chosen for a given transformation.

VIGENÈRE CIPHER

VS.	Α	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	т	U	V	W	х	Y	Z
A	A	В	C	D	Ε	F	G	н	1	J	К	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z
В	В	C	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	ν	W	X	Y	Z	A
C	C	D	E	F	G	н	I	J	К	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В
D	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U	v	W	X	Y	Z	A	В	C
E	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	v	W	×	Y	Z	A	В	С	D
F	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	X	Y	Z	A	В	C	D	E
G	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	v	M	х	Y	Z	A	В	C	D	E	F
H	н	I	J	К	L	M	H	0	P	Q	R	s	T	U	ν	W	×	Y	Z	A	В	C	D	E	F	G
I	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	X	Y	2	A	В	С	D	E	F	G	н
J	J	К	L	М	N	0	P	Q	R	s	T	U	v	W	X	Y	Z	A	В	С	D	E	F	G	Н	I
K	K	L	М	N	0	P	Q	R	s	T	U	v	W	X	Y	Z	A	В	C	D	E	F	G	н	I	J
L	L	M	N	0	P	Q	R	s	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	н	I	J	K
М	М	N	0	P	Q	R	s	T	U	V	M	X	Y	2	A	В	C	D	E	F	G	Н	I	J	K	L
N	N	0	P	Q	R	s	T	U	v	M	X	Y	2	A	В	C	D	E	F	G	н	I	J	K	L	М
0	0	P	Q	R	S	T	U	٧	W	X	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N
P	P	Q	R	s	T	U	V	W	X	Y	2	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0
Q	Q	R	s	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P
R	R	S	T	U	V	M	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q
S	S	T	U	v	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R
T	Т	U	V	M	X	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S
U	U	٧	W	Х	Y	2	A	В	С	D	Е	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	Т
V	V	M	X	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U
M	M	X	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U	V
X	Х	Y	Z	Α	В	C	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	S	T	U	٧	W
Y	Y	Z	A	В	C	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	ν	W	X
z	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	٧	W	X	Y

EXAMPLE OF VIGENÈRE CIPHER

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword deceptive

```
key: deceptivedeceptive
```

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

VIGENÈRE CIPHER

key: deceptivedeceptive

plaintext:wearediscoveredsaveyourself

Ciphertxt: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

VIGENÈRE CIPHER ENCRYPT

key: lemon

plaintext:attackatdawn

150	А	В	C	D	E	F	G	Н	Ι	J	K	L	М	N	0	P	Q	R	S	т	U	٧	W	Х	Y	Z
A	Α	В	С	D	Ε	F	G	н	1	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z
В	В	C	D	E	F	G	н	1	J	K	L	M	N	0	P	Q	R	s	T	U	ν	W	X	Y	2	A
C	C	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	٧	W	X	Y	Z	A	В
D	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U	v	W	X	Y	Z	A	В	C
E	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	v	W	×	Y	Z	A	В	С	D
F	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	V	W	X	Y	Z	A	В	C	D	E
G	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	ν	M	х	Y	Z	A	В	С	D	E	F
H	н	I	J	К	L	M	N	0	P	Q	R	s	T	U	ν	W	×	Y	Z	A	В	C	D	E	F	G
I	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	X	Y	2	A	В	С	D	E	F	G	н
J	J	К	L	M	N	0	P	Q	R	s	T	U	v	M	Х	Y	Z	A	В	C	D	E	F	G	Н	I
K	K	L	М	N	0	P	Q	R	s	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	н	I	J
L	L	M	N	0	P	Q	R	s	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	н	I	J	K
M	М	N	0	P	Q	R	s	T	U	V	M	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L
N	N	0	P	Q	R	s	T	U	v	M	X	Y	2	A	В	C	D	E	F	G	н	I	J	K	L	М
0	0	P	Q	R	S	T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N
P	P	Q	R	s	T	U	ν	W	Х	Y	2	А	В	C	D	E	F	G	H	I	J	K	L	M	N	0
Q	Q	R	s	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P
R	R	s	T	U	V	W	Х	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q
S	s	T	U	v	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R
T	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S
U	U	٧	W	Х	Y	Z	Α	В	C	D	Ε	F	G	н	I	J	K	L	М	H	0	P	Q	R	s	T
V	V	W	×	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U
M	W	X	Y	Z	A	В	C	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U	V
X	X	Y	Z	А	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	s	T	U	٧	W
Y	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	s	T	U	ν	W	Х
Z	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	٧	W	х	Y

VIGENÈRE CIPHER DECRYPT

Cipher: VVVRBACP

Key: COVER

Plain text:

300	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z
A	A	В	С	D	Ε	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	Т	U	V	W	Х	Y	Z
В	В	C	D	Е	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	ν	M	X	Y	Z	A
C	C	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	S	T	U	٧	W	х	Y	Z	A	В
D	D	Ε	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U	v	W	Х	Y	Z	A	В	C
E	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	v	W	X	Y	Z	A	В	C	D
F	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	×	Y	Z	A	В	C	D	E
G	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	ν	W	X	Y	Z	A	В	C	D	E	F
H	н	I	J	К	L	M	N	0	P	Q	R	s	T	U	ν	W	×	Y	Z	A	В	C	D	E	F	G
I	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	X	Y	2	A	В	С	D	E	F	G	н
J	J	К	L	М	N	0	P	Q	R	s	T	U	v	W	×	Y	Z	A	В	С	D	E	F	G	Н	I
K	K	L	М	N	0	P	Q	R	s	T	U	٧	W	X	Y	Z	A	В	C	D	E	F	G	н	I	J
L	L	M	N	0	P	Q	R	s	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	н	I	J	K
M	М	N	0	P	Q	R	s	T	U	V	M	X	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L
N	N	0	P	Q	R	s	T	U	v	M	X	Y	2	A	В	C	D	E	F	G	н	I	J	K	L	М
0	0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	M	N
P	P	Q	R	s	T	U	V	W	Х	Y	2	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0
Q	Q	R	s	T	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P
R	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q
S	s	T	U	v	W	X	Y	Z	A	В	С	D	E	F	G	H	I	J	K	L	М	N	0	P	Q	R
T	Т	U	V	M	X	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S
U	U	٧	W	X	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	H	0	P	Q	R	s	Т
V	v	W	×	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	S	T	U
M	W	X	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U	v
X	X	Y	2	A	В	C	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	U	٧	W
Y	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	М	N	0	P	Q	R	s	T	U	ν	W	x
Z	Z	A	В	C	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	٧	W	x	Y

VIGENÈRE CIPHER

- Simplest polyalphabetic substitution cipher
- > Effectively multiple caesar ciphers
- Key is multiple letters long K = k₁ k₂ ... k_d
- > Ith letter specifies ith alphabet to use
- Use each alphabet in turn
- Repeat from start after d letters in message
- Decryption simply works in reverse

SECURITY OF VIGENÈRE CIPHERS

- Have multiple ciphertext letters for each plaintext letter
- Hence letter frequencies are obscured
- But not totally lost
- Start with letter frequencies
 - See if it looks monoalphabetic or not
- If not, then need to determine number of translation alphabets, since then can attack each

KASISKI METHOD

- Method developed by babbage / kasiski
- > Repetitions in ciphertext give clues to period
- > So find same plaintext an exact period apart
- > Which results in the same ciphertext
- > Of course, could also be random fluke
- Eg repeated "VTW" in previous example
- Suggests size of 3 or 9
- Then attack each monoalphabetic cipher individually using same techniques as before

VIGENÈRE CIPHER

key: deceptivedeceptive

plaintext:wearediscoveredsaveyourself

Ciphertxt: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

AUTOKEY CIPHER

- Ideally want a key as long as the message
- > Vigenère proposed the autokey cipher
- With keyword is prefixed to message as key
- Knowing keyword can recover the first few letters
- Use these in turn on the rest of the message
- But still have frequency characteristics to attack
- Eg. Given key deceptive

Key: deceptivewearediscoveredsav

Plaintext: wearediscoveredsaveyourself

Ciphertext: zicvtwqngkzeiigasxstslvvwla

VERNAM CIPHER

Plain text - H E L L O → 7 4 11 11 14

Key-MONEY → 12 14 13 4 24

Plain text + key → 19 18 24 15 38

 \rightarrow 19 18 24 15 12 (=38 - 26)

Cipher Text \rightarrow T S Y P M

Cipher Text – TSYPM \rightarrow 19 18 24 15 12

Key-MONEY→ 12 14 13 4 24

Cipher text - key → 7 4 11 11 -12

 \rightarrow 74111114

 $Message \rightarrow H\,E\,L\,L\,0$

ONE-TIME PAD

- If a truly random key as long as the message is used, the cipher will be secure
- Called a one-time pad
- Is unbreakable since ciphertext bears no statistical relationship to the plaintext
- Since for any plaintext & any ciphertext there exists a key mapping one to other
- Can only use the key once though
- Problems in generation & safe distribution of key

ONE-TIME PAD

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih

plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

key: mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt

plaintext: miss scarlet with the knife in the library

TRANSPOSITION CIPHERS

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

RAIL FENCE CIPHER

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- > eg. write message out as:

```
mematrhtgpry
etefeteoaat
```

giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Rail fence of depth 2

ROW TRANSPOSITION CIPHERS

- a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

```
Key: 4 3 1 2 5 6 7
Plaintext: a t t a c k p
    o s t p o n e
    d u n t i l t
    w o a m x y z
Plain text: attack postponed till 2 am
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
```

KEY: FANCY

PLAIN TEXT: MEETMEATNEXTMIDNIGHT

PRODUCT CIPHERS

- Ciphers using substitutions or transpositions are not secure because of language characteristics
- Hence consider using several ciphers in succession to make harder, but:
 - Two substitutions make a more complex substitution
 - Two transpositions make more complex transposition
 - But a substitution followed by a transposition makes a new much harder cipher
- This is bridge from classical to modern ciphers

woamxyz

duntilt

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

03 10 17 24 04 11 18 25 02 09 16 23 01 08 15 22 05 12 19 26 06 13 20 27 07 14 21 28

Key: 4 3 1 2 5 6 7
Input: t t n a a p t
m t s u o a o
d w c o i x k

nlypetz

Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

17 09 05 27 24 16 12 07 10 02 22 20 03 25 15 13 04 23 19 14 11 01 26 21 18 08 06 28

ROTOR MACHINES

- Before modern ciphers, rotor machines were most common complex ciphers in use
- Widely used in WW2
 - · German enigma, allied hagelin, japanese purple
- Implemented a very complex, varying substitution cipher
- Used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- > With 3 cylinders have 26³=17576 alphabets

HAGELIN ROTOR MACHINE

https://www.youtube.com/watch?v=ybkkiGtJmkM#:~:tex t=URL%3A%20https%3A%2F%2Fwww,100

Figure 2.8 Three-Rotor Machine with Wiring Represented by Numbered Contacts

Steganography

Example

Since everyone can read, encoding text in neutral sentences is doubtfully effective

Since Everyone Can Read, Encoding Text In Neutral Sentences Is Doubtfully Effective

'Secret inside'

STEGANOGRAPHY

- An alternative to encryption
- Hides existence of message
 - Using only a subset of letters/words in a longer message marked in some way
 - Using invisible ink
 - Hiding in LSB in graphic image or sound file
- > Has drawbacks
 - High overhead to hide relatively few info bits

SUMMARY

- Classical cipher techniques and terminology
- Monoalphabetic substitution ciphers
- Cryptanalysis using letter frequencies
- Playfair cipher
- Polyalphabetic ciphers
- Transposition ciphers
- Product ciphers and rotor machines
- Stenography