Results are obtained with \boldsymbol{h}_0^P estimated

CALIBRATED PARAMETERS ON WEDNESDAYS, h_0^Q IS UNC UNDER P, UPDATED UNDER Q 1 YEAR, THEN 1 WEEK AGAIN									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ ext{std} \ ext{median}$	2.9372e - 07 $(1.5899e - 06)$ $4.2959e - 10$	8.3428e - 06 $(2.7177e - 05)$ $2.1679e - 09$	1.9798e - 09 $(4.0482e - 09)$ $1.1009e - 09$	$ \begin{array}{r} 1.4603e - 06 \\ (4.9823e - 06) \\ 1.4234e - 09 \end{array} $	1.9936e - 06 $(6.7868e - 06)$ $1.3082e - 09$	4.7130e - 07 $(2.5577e - 06)$ $1.3856e - 09$	6.9594e - 07 $(3.0411e - 06)$ $7.3148e - 10$	3.5609e - 07 (2.0030e - 06) 2.9299e - 10	2.8350e - 07 $(1.8911e - 06)$ $4.3848e - 10$
$lpha \ ext{std} \ ext{median}$	2.6179e - 05 $(2.1706e - 05)$ $2.1958e - 05$	2.2651e - 05 $(2.2461e - 05)$ $1.9805e - 05$	2.0039e - 05 $(1.7805e - 05)$ $1.4954e - 05$	1.5773e - 05 $(1.2289e - 05)$ $1.5487e - 05$	1.3702e - 05 $(9.1911e - 06)$ $1.3321e - 05$	1.3916e - 05 $(7.4013e - 06)$ $1.2722e - 05$	1.4253e - 05 $(8.6749e - 06)$ $1.3097e - 05$	9.1931e - 06 (5.0026e - 06) 9.1517e - 06	1.4938e - 05 $(1.2109e - 05)$ $1.5464e - 05$
$egin{array}{c} eta \ ext{std} \ ext{median} \end{array}$	0.4597 (0.3333) 0.5280	0.3159 (0.3216) 0.3131	0.4507 (0.3648) 0.6081	0.3427 (0.3819) 0.0023	0.1703 (0.2815) 0.0002	0.1908 (0.2349) 0.0090	0.2213 (0.3006) 0.0006	0.1635 (0.3075) 0.0001	0.2141 (0.3211) 0.0001
$\gamma^* \ ext{std} \ ext{median}$	152.9585 (151.4998) 112.7097	257.3214 (289.2871) 148.3374	173.7617 (124.0874) 137.7486	247.3587 (267.6364) 166.2098	220.0693 (206.2198) 189.4759	223.2081 (50.0536) 226.1581	256.9357 (247.3525) 201.7685	271.4808 (186.4748) 233.7905	173.2928 (126.4052) 155.2827
$h_0^Q \ ext{std} \ ext{median}$	1.8223e - 04 $(3.1877e - 04)$ $1.0669e - 04$	3.8904e - 04 $(8.6076e - 04)$ $2.3320e - 04$	1.7339e - 02 $(1.2058e - 01)$ $6.9032e - 05$	4.3557e - 04 $(2.5955e - 03)$ $4.5761e - 05$	2.2272e - 03 $(1.4869e - 02)$ $3.9921e - 05$	0.0001 (1.2548e - 04) 8.4594e - 05	4.4099e - 04 $(2.1257e - 03)$ $5.0257e - 05$	9.8437e - 04 (6.0874e - 03) 2.0248e - 05	3.3125e - 04 $(1.1695e - 03)$ $5.2086e - 05$
persistency std median	0.8128 (0.1873) 0.8790	0.8243 (0.1406) 0.8230	0.7739 (0.2400) 0.8744	0.7081 (0.2390) 0.7076	0.6449 (0.2471) 0.6817	0.7931 (0.1014) 0.7949	0.7524 (0.1541) 0.7223	0.6538 (0.2214) 0.6810	0.5870 (0.3019) 0.6351
MSE	9.7524	33.3817	11001.0677	111.6171	2993.5580	35.9510	346.3288	1348.0144	553.0027
median MSE	4.0110	6.1030	5.4600	5.1855	9.7501	21.4788	20.7609	27.1687	32.2412
IVRMSE	0.1698	0.2538	1.2289	0.2091	0.5618	0.2566	0.3483	0.4248	0.3429
MAPE	0.2917	0.4590	8.7008	0.5331	4.1787	0.6761	2.0044	2.9383	2.4796
OptLL	158.8844	154.2561	182.6992	268.8077	245.4039	300.3246	377.1797	443.1593	428.7699