

Departamento de Matemática, Universidade de Aveiro

Cálculo II-Agrupamento 3 — Exame Final da Época de Recurso (V 1)

11 de julho de 2022 Duração: **2h45**

N.º Mec.:			_ No	me:								
(Declaro q	ue desis	to:					N.º folhas suplementares:					
Questão [Cotação]	1 [60pts]	2 [20pts]	3a [08pts]	3b [12pts]	4a [15pts]	4b [10pts]	5 [20pts]	6 [15pts]	7a [10pts]	7b [10pts]	8 [20pts]	Classificaç (valores)
– Na	s ques	stões 2	2 a 6 ju	ıstifiqu	ie toda	as as r	espos	tas e ii	ndique	os cá	lculos	efetuados –
segu (i) re (ii) r		correta: errada:	10 por -3 pon	ntos; tos;				correta.	A cota	ação a a	tribuir a	a cada resposta
(a)	Com b	ase nur	n dos se	eguinte	s desenv	volvime	entos en	n série o	de Macl	Laurin		
	$\cos(x)$	$=\sum_{n=0}^{+\infty}$	$(-1)^n \frac{1}{(-1)^n}$	$\frac{x^{2n}}{(2n)!}$	para x	$\in \mathbb{R}$						
	$\cos(x)$ $\sin(x)$ $\ln(1 + x)$	$=\sum_{n=0}^{+\infty}$	$(-1)^n$	$\frac{x^{2n+1}}{(2n+1)}$	$\overline{)!}$, par	$\mathbf{r}\mathbf{a}\;x\in\mathbb{F}$	\mathbb{R}					
	ln(1 +	$(x) = \sum_{r=1}^{\infty} x_r$	$\sum_{i=0}^{+\infty} (-1$	$\binom{n}{n+1}$, para	$[x \in]$	- 1,1[
	podem	os con	cluir qu	e a série	e numéi	rica $\sum_{n=0}^{+\infty}$	$\frac{(-4)^n}{(2n)!}$	$\left(\frac{\pi}{2}\right)^{2n}$	tem so	oma igu	al a:	
	1						$\boxed{4}$			-4		
(b)	Seja <i>f</i> para to é igual	do o n	ınção q ≥ 3. Sa	ue satis abendo	sfaz as o que a sé	condiçõ Érie de T	es: $f(5)$	f(s) = 1, $f(s) = 1$	f'(5) = 1	=2, f''oara f , p	$y'(5) = -\frac{1}{2}$	-4 , e $f^{(n)}(5)$ s concluir que f
	5			1			-1			-3		
(c)	Relativ	amente	è à funç	ão $f:\mathbb{I}$	$\mathbb{R}^2 \to \mathbb{R}$	definio	da por					
					f(x, y)	$y = \begin{cases} \frac{1}{2} \\ 0 \end{cases}$	$\frac{xy^2}{x^2+y^2}$	se (x, y)	$y) \neq (0$	0,0)		
	podem	os afirr	nar que	:		Į ()	se (x, y)	y) = (0	0, 0)		
		$\lim_{y\to (0,0)}$	f(x, y)) = -1					$\lim_{y\to(0,0)}$	f(x, y)	= 1	
			nua em					não	existe	lim	f(x) = 1 $f(x)$,y)

		(d) Uma equação do plano tangente à superfície de equação $x^2y - y + e^{2z} = 1$ no ponto $(1,1,0)$ é:
		(e) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y) = x^2y + xy^2$. Podemos afirmar que:
		(f) Qual é a solução geral da equação diferencial exacta $(xy^2+3x^2y)dx+(x^3+x^2y)dy=0$?
[20pts]	2.	Indique o maior intervalo onde a série de potências $\sum_{n=0}^{+\infty} \frac{(-3)^n}{\sqrt{3n+1}} (x+2)^n$ é absolutamente
[convergente.

	Laurin de ordem 2 da função $f,T_0^2f(x).$	(a) Determine o polinómio de MacLaurin de ordem 2 da função $f,T_0^2f(x).$	(x)
Continua na folha supler	Continua na folha suplementa	Continua na folha suplementa	(x)
			(w).
			inua na falha sunlamente

Continua na folha suplementar No

	4. Seja f a função 2π -periódica, definida em $[-\pi,\pi]$ por $f(x)= x (3\pi- x)$.
[15pts]	(a) Justifique que a série de Fourier associada a f é uma série da forma
	$\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx), a_n \in \mathbb{R}$
	e determine o valor de a_0 .
[10pts]	Continua na folha suplementar N° (b) Calcule, justificando, a soma da série de Fourier de f no ponto $x=3\pi$.
[Topus]	

Continua na folha suplementar N°

[20pts]	5. Determine os extremos globais da função f definida por $f(x,y)=x^2$ ao conjunto $\mathcal{C}=\{(x,y)\in\mathbb{R}^2:x^2+y^2=\frac{1}{2}\}.$	$x^2 + x + y^2 + y - 1$, restringida
		Continua na folha suplementar N°
[15pts]	6. Resolva a seguinte equação diferencial: $xy' + 2y = \sin x$, $x > 0$	
		Continua na folha suplementar N°

	7. C	ons	sidere a EDO $y''' - 2y'' + y' = 4x + 1$.	
[10pts]		(a)	Resolva a EDO homogénea associada.	
			Continua na folha suplementar N°	-
[10pts]		(b)	Sabendo que a EDO completa admite uma solução do tipo $y=Ax^2+Bx$, onde $A\in B$	
			são constantes, determine a solução geral da EDO completa.	

Formulário Transformada de Laplace

Função	Transformada	Função	Transformada	Função	Transformada
t^n $(n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$		$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ cos(at) (a \in \mathbb{R}) $	$\frac{s}{s^2 + a^2}$ $(s > 0)$	$ senh(at) (a \in \mathbb{R}) $	$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

Propriedades da transformada de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \text{com } s > s_f$$

$$\mathcal{L}\{f(t)+g(t)\}(s) = F(s)+G(s) , \ s > \max\{s_f,s_g\}$$

$$\mathcal{L}\{\alpha f(t)\}(s) = \alpha F(s) , \ s > s_f \in \alpha \in \mathbb{R}$$

$$\mathcal{L}\{e^{\lambda t}f(t)\}(s) = F(s-\lambda) , \ s > s_f + \lambda \in \mathbb{R}$$

$$\mathcal{L}\{t^n f(t)\}(s) = (-1)^n F^{(n)}(s) , \ s > s_f \in n \in \mathbb{N}$$

$$\mathcal{L}\{H_a(t) \cdot f(t-a)\}(s) = e^{-as}F(s) , \ s > s_f \in a > 0$$

$$\mathcal{L}\{f(at)\}(s) = \frac{1}{a} F\left(\frac{s}{a}\right) , \ s > a s_f \in a > 0$$

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$
$$\cos s > \max\{s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\}, n \in \mathbb{N}$$

Função	Primitiva	Função	Primitiva	Função	Primitiva
$u^r u'$ $(r \neq -1)$	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\sin u$	$u'\sin u$	$-\cos u$
$u'\sec^2 u$	$\tan u$	$u'\csc^2 u$	$-\cot u$	$u' \sec u$	$ \ln \sec u + \tan u $
$u'\csc u$	$-\ln \csc u + \cot u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$

Algumas fórmulas trigonométricas

$$sec x = \frac{1}{\cos x}$$

$$cos(x \pm y) = sen x cos y \pm cos x sen y$$

$$cos^{2} x = \frac{1 + cos (2x)}{2}$$

$$cos(x \pm y) = cos x cos y \mp sen x sen y$$

$$sin^{2} x = \frac{1 - cos (2x)}{2}$$

$$cos x = \frac{1}{\sin x}$$

$$sin(2x) = 2 \sin x cos x$$

$$cos(2x) = cos^{2} x - sin^{2} x$$

$$1 + cot^{2} x = csc^{2} x$$