Monopoly Power and Economic Growth

Mohamad Adhami, Jean-Felix Brouillette and Emma Rockall

March 14, 2023

Welfare consequences of product market power?

The *static* perspective:

- Markup level: constrains output
- Markup dispersion: misallocation of production

We extend the analysis to a *dynamic* setting:

Endogenous growth from innovation by profit-maximizing firms

How do the welfare costs of markups change in this setting?

- Equilibrium vs. constrained-optimal allocation
- Larger markups: larger distance from constrained-optimum

Theoretical setting

To characterize consequences of markups, must take a stance on:

- Origin of product market power
- Nature of innovation

We adopt the particular view that:

- Market power from monopolistic competition among differentiated firms
- Innovation as costly reduction of firms' marginal cost of production
- VES demand and heterogeneity in productivity imply markup dispersion

Theoretical setting

To characterize consequences of markups, must take a stance on:

- Origin of product market power
- Nature of innovation

We adopt the particular view that:

- Market power from monopolistic competition among differentiated firms
- Innovation as costly reduction of firms' marginal cost of production
- VES demand and heterogeneity in productivity imply markup dispersion

Alternatives left for future work:

- Oligopolistic competition
- Product quality improvements

Outline

- 1. Partial equilibrium intuition
- 2. General equilibrium model
- 3. Quantification
- 4. Counterfactuals

Partial equilibrium intuition

Let p denote a commodity's price and q(p) be demand at this price

A monopolist produces at marginal cost 1/z > 0 and the demand function satisfies:

$$\frac{\partial q(p)}{\partial p} < 0$$
, $q(1/z) > 0$ and $\vartheta(p) \equiv -\frac{\partial \ln(q(p))}{\partial \ln(p)} > 1$

• The profit-maximizing price p(z) is such that q(p(z)) > 0

Static cost of monopoly power

What about dynamics?

Introducing dynamics

Achieve g% improvement in z at cost i(g) for i strictly increasing-convex

To 1st-order approx., the producer and planner dynamic problems are:

$$\max_{g} \{ \underbrace{\pi(z) + \pi'(z)gz}_{\approx \pi((1+g)z)} - i(g) \} \quad \text{and} \quad \max_{g} \{ \underbrace{S(z) + S'(z)gz}_{\approx S((1+g)z)} - i(g) \}$$

First-order conditions of each problem:

$$\pi'(z) = i'(g)/z$$
 and $S'(z) = i'(g)/z$

Private and social incentives won't coincide if $\pi'(z) \neq S'(z)$

Too little innovation?

Proposition 1

The ratio R(z) of marginal producer surplus to marginal social surplus from an infinitesimal reduction in marginal cost is characterized by:

$$R(z) \equiv \frac{\pi'(z)}{S'(z)} = \frac{q(p(z))}{q(1/z)} < 1.$$

All else equal, for any downward-sloping demand function with a price elasticity above unity, social incentives for productivity improvements will exceed private incentives.

• Too little innovation

Misallocation of innovation?

Proposition 2

The elasticity of the ratio R(z) *with respect to productivity is characterized by:*

$$\frac{\partial \ln(R(z))}{\partial \ln(z)} = \frac{\vartheta(p(z))[\vartheta(p(z)) - 1]}{\vartheta(p(z)) + \varepsilon(p(z)) - 1} - \vartheta(1/z)$$

where $\varepsilon(p) \equiv \partial \ln(\vartheta(p)) / \partial \ln(p)$ denotes the "super-elasticity" of demand.

Potential for misallocation of innovation

Illustrative examples

Going from partial to general equilibrium

Partial equilibrium takeaways:

- Too little innovation
- Misallocation of innovation

Why a general equilibrium model?

- Quantitative counterfactuals
- Potentially too much innovation: business stealing externality

Outline

- 1. Partial equilibrium intuition
- 2. General equilibrium model
- 3. Quantification
- 4. Counterfactuals

Theoretical ingredients

Endogenous growth from Markovian productivity improvements

• Ericson and Pakes (1995), Atkeson and Burstein (2010), Stokey (2014), Benhabib, Perla and Tonetti (2021), Lashkari (2023)

Theoretical ingredients

Endogenous growth from Markovian productivity improvements

 Ericson and Pakes (1995), Atkeson and Burstein (2010), Stokey (2014), Benhabib, Perla and Tonetti (2021), Lashkari (2023)

Heterogeneous markups from VES demand and productivity dispersion

• Kimball (1995), Klenow and Willis (2016), Edmond, Midrigan and Xu (2022)

Theoretical ingredients

Endogenous growth from Markovian productivity improvements

 Ericson and Pakes (1995), Atkeson and Burstein (2010), Stokey (2014), Benhabib, Perla and Tonetti (2021), Lashkari (2023)

Heterogeneous markups from VES demand and productivity dispersion

• Kimball (1995), Klenow and Willis (2016), Edmond, Midrigan and Xu (2022)

Selection from endogenous entry and exit

Hopenhayn (1992), Luttmer (2007), Arkolakis (2016), Lashkari (2023)

Preferences

Infinitely lived representative household with separable preferences:

$$U_0 = \int_0^\infty e^{-\rho t} [\ln(C_t) - v(H_t)] \mathrm{d}t$$

Production technology

Final good Y_t is a Kimball (1995) aggregate of differentiated varieties:

$$\int_{j\in\mathcal{J}_t} \Upsilon(q_{jt}) \mathrm{d}j = 1$$
 where $q_{jt} \equiv \frac{y_{jt}}{Y_t}$ and $M_t \equiv |\mathcal{J}_t|$

Potentially variable markups

Each variety produced by a single firm using labor l_{jt} with productivity z_{jt} :

$$y_{jt} = \exp(z_{jt})l_{jt}$$

Must pay per-period fixed cost of $c_F > 0$ units of labor to remain active

Innovation technology

Productivity follows a controlled Itô diffusion process:

$$dz_t = \gamma_t dt + \sigma dB_t$$

Labor requirement to achieve drift γ is $i(\gamma)$:

- $i: \mathbb{R}_0^+ \to \mathbb{R}_0^+$
- *i* is strictly increasing-convex
- i(0) = 0 and $\lim_{\gamma \to \infty} i(\gamma) = \infty$

Entry and exit

Endogenous and exogenous exit:

- Endogenous: unpaid fixed costs
- Exogenous: Poisson rate $\delta > 0$

Endogenous entry:

- Potential entrants allocate $c_E > 0$ units of labor to achieve unit flow of entry
- Start producing with productivity draw from CDF $F_t^E(z): [\underline{z}_t, \infty) \to [0, 1]$

Resource constraints

Final good is used for consumption:

$$C_t = Y_t$$

Labor can be allocated to production, innovation, entry or fixed costs:

$$L_t + I_t + c_E E_t + c_F M_t = H_t$$

Aggregate production and innovation labor:

$$L_t \equiv M_t \int_{\underline{z}_t}^{\infty} l_t(z) dF_t(z)$$
 and $I_t \equiv M_t \int_{\underline{z}_t}^{\infty} i(\gamma_t(z)) dF_t(z)$

Economic environment

$$U_0 = \int_0^\infty e^{-(\rho-n)t} [u(C_t) + v(H_t)] dt$$
 Preferences
$$M_t \int_{z_t}^\infty \Upsilon(q_t(z)) dF_t(z) = 1, \quad q_t(z) \equiv y_t(z)/Y_t$$
 Final good
$$y_t(z) = \exp(z) l_t(z)$$
 Varieties
$$dz_t = \gamma_t dt + \sigma dB_t$$
 Innovation
$$C_t = Y_t$$
 Final good r.c.
$$L_t + I_t + c_E E_t + c_F M_t = H_t$$
 Labor r.c.
$$\dot{M}_t = [e_t - \delta - \sigma^2 F_t''(z_t)/2] M_t$$
 Measure
$$\dot{F}_t(z) = -\gamma_t(z) F_t'(z) + \sigma^2 \{F_t''(z) - F_t''(z_t)[1 - F_t(z)]\}/2 + e_t [F_t^E(z) - F_t(z)]$$
 Distribution

Market structure

- Perfectly competitive **final good** (numéraire) market
- Perfectly competitive labor market
- Perfectly competitive asset market
- *Monopolistically* competitive **variety** markets

All prices taken as given besides firms choosing their variety's price

Decision problems

- 1. Household's problem Details
 - Choose $\{C_t, H_t\}_t$ to maximize lifetime utility
- 2. Final sector's problem Details
 - Choose $q_t(z)$ to maximize profits each period
- 3. Firm's static problem Details
 - Choose $p_t(z)$ to maximize profits each period
- 4. Firm's dynamic problem Details
 - Choose $\{\gamma_t(z), \underline{z}_t\}_t$ to maximize expected PDV of profits
- 5. Entrant's problem Details
 - Choose E_t to maximize expected PDV of profits

$$v'(H_t)/u'(C_t)=w_t$$

$$\dot{C}_t/C_t = r_t - \rho$$

Household's static FOC

Intertemporal Euler equation

$$v'(H_t)/u'(C_t)=w_t$$

Household's static FOC

$$\dot{C}_t/C_t = r_t - \rho$$

Intertemporal Euler equation

$$p_t(z) = \Upsilon'(q_t(z))D_t$$

Inverse demand function

$v'(H_t)/u'(C_t) = w_t$	Household's static FOC
$\dot{C}_t/C_t = r_t - \rho$	Intertemporal Euler equation
$p_t(z) = \Upsilon'(q_t(z))D_t$	Inverse demand function
$p_t(z) = \mu(q_t(z))w_t \exp(-z)$	Monopoly pricing

Household's static FOC
Intertemporal Euler equation
Inverse demand function
Monopoly pricing
Optimal innovation
Value matching and smooth pasting

$v'(H_t)/u'(C_t)=w_t$	Household's static FOC
$\dot{C}_t/C_t = r_t - \rho$	Intertemporal Euler equation
$p_t(z) = \Upsilon'(q_t(z))D_t$	Inverse demand function
$p_t(z) = \mu(q_t(z))w_t \exp(-z)$	Monopoly pricing
$V_t'(z) = w_t i'(\gamma)$	Optimal innovation
$V_t(\underline{z}_t) = V_t'(\underline{z}_t) = 0$	Value matching and smooth pasting
$(\int_{\underline{z}_t}^{\infty} V_t(z) dF_t^E(z) - w_t c_E) E_t = 0$	Free-entry condition

Equilibrium allocation

Given initial conditions $\{M_0, F_0(z)\}$:

- $\{C_t, H_t\}_{t=0}^{\infty}$ solve the household's problem
- $\{q_t(z)\}_{t=0}^{\infty}$ solve the final sector's problem
- $\{p_t(z)\}_{t=0}^{\infty}$ solve the firms' static problem
- $\{\gamma_t(z), \underline{z}_t\}_{t=0}^{\infty}$ solve the firms' dynamic problem
- $\{E_t\}_{t=0}^{\infty}$ satisfies the free-entry condition
- $\{Y_t\}_{t=0}^{\infty}$ satisfies the Kimball (1995) aggregator
- $\{w_t\}_{t=0}^{\infty}$ clears the labor market
- $\{r_t\}_{t=0}^{\infty}$ clears the asset market
- Measure of varieties and distribution of firms evolve as described

Balanced growth path

Restrict attention to BGP equilibrium allocations:

- $\{C_t, Y_t, w_t, \underline{z}_t\}$ grow at *endogenous* constant rate g
- $\{L_t, I_t, E_t, H_t, M_t, r_t, q_t(z), p_t(z), D_t, \gamma_t(z)\}$ are stationary
- Distribution $\mathcal{F}_t(\hat{z})$ of detrended productivity is stationary: $\hat{z}_t \equiv z_t gt$

Economic growth

Contributions to growth from:

- Incumbent firms' productivity growth (+)
- Incumbent firms' productivity volatility (\pm)
- Selection from entry (\pm)
- Selection from exit (+)

Characterization

$$v(h) = eta imes rac{h^{1+\eta}}{1+\eta}$$

$$\Upsilon(q) = 1 + (\theta - 1) \exp\left(\frac{1}{\epsilon}\right) \epsilon^{\theta/\epsilon - 1} \left[\Gamma\left(\frac{\theta}{\epsilon}, \frac{1}{\epsilon}\right) - \Gamma\left(\frac{\theta}{\epsilon}, \frac{q^{\epsilon/\theta}}{\epsilon}\right)\right]$$

Price elasticity: $\vartheta(q) = \theta q^{-\epsilon/\theta}$

$$i(\gamma) = \psi imes rac{\gamma^{1+\lambda}}{1+\lambda}$$

 $\mathcal{F}^{E}(\hat{z}) = 1 - [1 - \mathcal{F}(\hat{z})]^{\zeta}$

MaCurdy (1981)

Klenow and Willis (2016)

Assumption

Benhabib, Perla and Tonetti (2021)

Firm-level static outcomes

Outline

- 1. Partial equilibrium intuition
- 2. General equilibrium theory
- 3. Quantification
- 4. Counterfactuals

Policy intervention

Size-dependent transfers to firms:

$$\pi_t^*(z) = \max_{p_t(z)} \{\pi_t(z) + T_t(q)\}$$
 where $T_t(q) = [\Upsilon(q) - \Upsilon'(q)q]D_tY_t$

• Eliminate markup level and dispersion

Output and value function

Innovation incentives response

Next steps

- 1. Solution and estimation strategy
 - Spectral collocation + quadrature
 - $\bullet \ \ Mathematical\ program\ with\ equilibrium\ constraints + Tik Tak\ multi-start$
- 2. Estimation with firm-level administrative data from France
 - Data on revenues and quantities for manufacturing firms
- 3. Alternative policy interventions?
 - Uniform subsidy: markup level
 - Size-dependent subsidy: markup dispersion
- 4. Transition dynamics with physical capital

Defining the surpluses

$$\pi(z) = p(z)q(p(z))/\vartheta(p(z))$$
 Producer surplus $C(z) = \int_{p(z)}^{\overline{p}} q(p) dp$ Consumer surplus $H(z) = \int_{1/z}^{p(z)} [q(p) - q(p(z))] dp$ Harberger triangle $S(z) = \pi(z) + C(z) + H(z)$ Social surplus

Distribution

Cumulative density $M_t(z)$ of firms with productivity z:

$$M_t(z) = F_t(z)M_t$$
 where $M_t = \int_{\underline{z}_t}^{\infty} dM_t(z)$

Law of motion given by Kolmogorov forward equation for all $z > \underline{z}_t$:

$$\dot{M}_{t}(z) = -\gamma_{t}(z)M'_{t}(z) + \sigma^{2}[M''_{t}(z) - M''_{t}(\underline{z}_{t})]/2 + E_{t}F_{t}^{E}(z) - \delta M_{t}(z)$$

Standard boundary conditions:

$$M'_t(\underline{z}_t) = \lim_{z \to \infty} M'_t(z) = \lim_{z \to \infty} M''_t(z) = 0$$

Distribution

Boundary conditions imply law of motion for measure of varieties:

$$\dot{M}_t = [e_t - \delta - \sigma^2 F_t''(\underline{z}_t)/2] M_t$$

Which in turn implies law of motion for $F_t(z)$ for all $z > \underline{z}_t$:

$$\dot{F}_t(z) = -\gamma_t(z)F_t'(z) + \sigma^2\{F_t''(z) - F_t''(\underline{z}_t)[1 - F_t(z)]\}/2 + e_t[F_t^E(z) - F_t(z)]$$

Household's problem

Choose consumption and labor supply to maximize lifetime utility:

$$\max_{\{C_t, H_t\}_{t=0}^{\infty}} \int_0^{\infty} e^{-\rho t} [\ln(C_t) - v(H_t)] dt \quad \text{s.t.} \quad \dot{A}_t = r_t A_t + w_t H_t - C_t$$

Value of corporate assets denoted by A_t :

$$A_t = M_t \int_{\underline{z}_t}^{\infty} V_t(z) dF_t(z)$$
 where $\lim_{t \to \infty} e^{-\int_0^t r_{t'} dt'} A_t = 0$

Delivers standard static and dynamic first-order conditions:

$$\frac{v'(H_t)}{u'(C_t)} = w_t$$
 and $\frac{\dot{C}_t}{C_t} = r_t - \rho$

Final sector's problem

Choose demand for each variety to maximize profits:

$$\max_{\{q_t(z)\}_{z=\underline{z}_t}^{\infty}} \left\{ P_t - M_t \int_{\underline{z}_t}^{\infty} p_t(z) q_t(z) \mathrm{d}F_t(z) \right\} Y_t \quad \text{s.t.} \quad M_t \int_{\underline{z}_t}^{\infty} \Upsilon(q_t(z)) \mathrm{d}F_t(z) = 1$$

Delivers inverse demand functions:

$$p_t(z) = \Upsilon'(q_t(z))P_tD_t$$

Price and demand indices defined as:

$$P_t \equiv M_t \int_{\underline{z}_t}^{\infty} p_t(z) q_t(z) dF_t(z) = 1$$
 and $D_t \equiv \left(M_t \int_{\underline{z}_t}^{\infty} \Upsilon'(q_t(z)) q_t(z) dF_t(z) \right)^{-1}$

Firm's static problem

Choose variety's price to maximize profits:

$$\pi_t(z) = \max_{p_t(z)} \{ [p_t(z) - w_t \exp(-z)] q_t(z) \} Y_t - w_t c_F \quad \text{s.t.} \quad p_t(z) = \Upsilon'(q_t(z)) D_t$$

Set price to a markup above marginal cost:

$$p_t(z) = \frac{\mu(q_t(z))w_t}{\exp(z)}$$
 where $\mu(q) \equiv \frac{\vartheta(q)}{\vartheta(q) - 1}$

Express firm profits as implicit function of productivity:

$$\pi_t(z) = rac{p_t(z)q_t(z)Y_t}{\vartheta(q_t(z))} - w_t c_F$$

Firm's dynamic problem

Control productivity drift and choose optimal exit time to maximize PDV of profits:

$$egin{aligned} V_t(z) &= \max_{ au, \{\gamma_s\}_{s=t}^\infty} \mathbb{E}_t \left\{ \int_t^{t+ au} e^{-\int_t^s r_{t'} \mathrm{d}t'} [\pi_s(z_s) - w_t i(\gamma_s)] \mathrm{d}s \middle| z_t = z
ight\} \ \mathrm{s.t.} \quad \mathrm{d}z_t &= \gamma_t \mathrm{d}_t + \sigma \mathrm{d}B_t \end{aligned}$$

Value function satisfies HJB equation in continuation region:

$$r_t V_t(z) = \pi_t(z) + \max_{\gamma} \{ \gamma V_t'(z) - w_t i(\gamma) \} + \sigma^2 V_t''(z) / 2 + \dot{V}_t(z)$$

As well as first-order, value matching and smooth pasting conditions:

$$V'_t(z) = w_t i'(\gamma)$$
 and $V_t(\underline{z}_t) = V'_t(\underline{z}_t) = 0$

Entrant's problem

Engage in perfect competition on labor market:

$$V_t^E = \max_{E_t} \left\{ E_t \int_{\underline{z}_t}^{\infty} V_t(z) \mathrm{d}F_t^E(z) - w_t c_E E_t
ight\}$$

Delivers free-entry condition (in complementary-slackness form):

$$\left(\int_{\underline{z}_t}^{\infty} V_t(z) dF_t^E(z) - w_t c_E\right) E_t = 0$$

Economic growth

$$\begin{split} & \operatorname{Defining} \, \hat{Z} \equiv \left(\int_{\hat{\underline{z}}}^{\infty} q(\hat{p}(\hat{z})) \exp(-\hat{z}) \mathrm{d}\mathcal{F}(\hat{z}) \right)^{-1} \operatorname{and} \, \hat{Z}^E \equiv \left(\int_{\hat{\underline{z}}}^{\infty} q(\hat{p}(\hat{z})) \exp(-\hat{z}) \mathrm{d}\mathcal{F}^E(\hat{z}) \right)^{-1} \colon \\ & g = \frac{\int_{\hat{\underline{z}}}^{\infty} \left[q'(\hat{p}(\hat{z})) \hat{p}'(\hat{z}) - q(\hat{p}(\hat{z})) \right] \exp(-\hat{z}) \gamma(\hat{z}) \mathrm{d}\mathcal{F}(\hat{z})}{\int_{\hat{\underline{z}}}^{\infty} \left[q''(\hat{p}(\hat{z})) \hat{p}'(\hat{z}) - q(\hat{p}(\hat{z})) \right] \exp(-\hat{z}) \mathrm{d}\mathcal{F}(\hat{z})} \\ & + \frac{\sigma^2 \int_{\hat{\underline{z}}}^{\infty} \left[q''(\hat{p}(\hat{z})) \hat{p}'(\hat{z})^2 + q'(\hat{p}(\hat{z})) \hat{p}''(\hat{z}) - 2 q'(\hat{p}(\hat{z})) \hat{p}'(\hat{z}) + q(\hat{p}(\hat{z})) \right] \exp(-\hat{z}) \mathrm{d}\mathcal{F}(\hat{z})}{2 \int_{\hat{\underline{z}}}^{\infty} \left[q'(\hat{p}(\hat{z})) \hat{p}'(\hat{z}) - q(\hat{p}(\hat{z})) \right] \exp(-\hat{z}) \mathrm{d}\mathcal{F}(\hat{z})} \\ & + \frac{e(\hat{Z}/\hat{Z}^E - 1)}{\hat{Z} \int_{\hat{\underline{z}}}^{\infty} \left[q'(\hat{p}(\hat{z})) \hat{p}'(\hat{z}) - q(\hat{p}(\hat{z})) \right] \exp(-\hat{z}) \mathrm{d}\mathcal{F}(\hat{z})}{2 \hat{Z} \int_{\hat{\underline{z}}}^{\infty} \left[q'(\hat{p}(\hat{z})) \hat{p}'(\hat{z}) - q(\hat{p}(\hat{z})) \right] \exp(-\hat{z}) \mathrm{d}\mathcal{F}(\hat{z})} \end{split}$$

Firm-level static outcomes

Firm's relative price (W denotes Lambert W-function), relative demand and profits:

$$\hat{p}(\hat{z}) = \frac{(\theta/\epsilon) \exp(-\hat{z}) w_0 / \overline{p}_0}{W[(\theta/\epsilon) \exp(\theta/\epsilon - \hat{z}) w_0 / \overline{p}_0]}$$

$$q(\hat{p}) = \begin{cases} [-\epsilon \ln(\hat{p})]^{\theta/\epsilon} & \text{if } \hat{p} < 1\\ 0 & \text{if } \hat{p} \ge 1 \end{cases}$$

$$\pi_t(\hat{z}) = \hat{p}(\hat{z}) q(\hat{p}(\hat{z}))^{1+\epsilon/\theta} \overline{p}_t Y_t / \theta - w_t c_F$$

Policy interventions

Size-dependent transfers to firms:

$$\pi_t^*(z) = \pi_t(z) + T_t(q)$$
 where $T_t(q) = [\varrho_0 \Upsilon(q) + \varrho_1 \Upsilon'(q)q] D_t Y_t$

Optimal subsidy: $(\varrho_0, \varrho_1) = (1, -1)$

• Eliminate markup level and dispersion

Uniform subsidy: $(\varrho_0, \varrho_1) = (0, x/(1-x))$

• Reduce markup level by x% but leave dispersion unchanged

Size-dependent subsidy: $(\varrho_0, \varrho_1) = (1/(1+x), -1)$

• Eliminate markup dispersion but leave level to 1 + x