Autocovariance Functions (ACVFs)

& Autocorrelation Functions (ACFs)

STAT 464 / 864 | Fall 2024 Discrete Time Series Analysis Skyepaphora Griffith, Queen's University

We learned something today, in Time Series 🕛

Observations or RVs within the **same** time series can be correlated with each other.

We can describe the whole situation using a matrix

If the correlations depend on the distance between time points, but not time itself, then the series is called stationary.

Stationarity kinda feels like an M.C. Escher tesselation

What do we tell quin?

Covariance Matrices of Stationary Processes

The covariance matrix Γ_N of a stationary time series is Toeplitz

Toeplitz: Identical entries along diagonals

There are only N distinct values in Γ_N

We can capture all info about Γ_N in one N-length vector (or... function?)

Autocovariance Functions | ACVFs

Covariance Kernel: $\gamma_X(t, t+h) \stackrel{\text{def}}{=} \text{Cov}(X_t, X_{t+h})$ $t \in T, h \in \mathbb{Z}$

$$= \operatorname{Cov}(X_s, X_{s+h}) \qquad \forall s \in T$$

The time difference h is called "lag"

Autocovariance Function:

$$\gamma_X(h) \stackrel{\text{def}}{=} \text{Cov}(X_t, X_{t+h}) \qquad t \in T, h \in \mathbb{Z}$$

$$\gamma_X(0, h)$$

ACVFs and Stationarity

To show X_t is stationary:

- 1) Show that $\mathrm{E}[X_t]$ is time independent
- 2) Show that $Cov(X_t, X_{t+h})$ is time independent

This will show up in your assignments and stuff. A lot.

If I ask you to find the ACVF of $\,X_t$, you can assume $\,X_t$ is stationary

Autocorrelation Functions (ACFs)

Denoted $\rho_X(h)$, or just $\rho(h)$

ACVFs are easy to standardize!

Properties of ACVFs and ACFs

- 1) $\gamma_X(0)$ is the variance $Var(X_t) \quad \forall t \in T$ (independent of t)
- 2) γ_X is an even function. So is ρ_X , by extension.

$$\gamma_X(-h) = \operatorname{Cov}(X_t, X_{t-h})$$

$$= \operatorname{Cov}(X_{t-h}, X_t)$$

$$= \operatorname{Cov}(X_t, X_{t+h}) = \gamma_X(h)$$

3) $\rho_X(0) = 1$. Always.

Example: White Noise

Definition:

A time series {Xt} is called white noise if

- It's weakly stationary (assume mean = 0, WLOG)
- 2) All X_t are pairwise uncorrelated: $\rho_X(h) = 0 \quad \forall h \neq 0$

If the mean is μ and the variance is σ^2 , we write: Xt ~ wn (μ, σ^2)

i.i.d. Time Series
$$\Longrightarrow$$
 White noise

We learned something today, in Time Series 🕛

Autocovariance: $\gamma_X(h) \stackrel{\text{def}}{=} \text{Cov}(X_t, X_{t+h})$,

for all t (time independent)

compares two observations/RVs distanced in time

Stationary:

frequency structure doesn't change over time,

(neither does mean or variance)

kinda feels like MC escher

What do we tell quin?