Zadaci treće domaće zadaće iz Fizike 2

- 1 Zadatak: Youngovim uređajem čije su pukotine obasjane svjetlošću valne duljine $\lambda = 600 \,\mathrm{nm}$ promatramo pruge interferencije na zaslonu. Prekrijemo li jednu od dvije pukotine staklom debljine $d = 0.1 \,\mathrm{mm}$ središnja će se pruga pomaknuti na mjesto na kojem se ranije nalazila m = 100-ta po redu svijetla pruga. Odredi indeks loma stakla.
- **2 Zadatak:** Plastična folija debljine $d = 0.4 \,\mu\mathrm{m}$ čiji je indeks loma n = 1.7 nalazi se u zraku i osvijetljena je bijelom svjetlošću koja na nju pada okomito. Pri kojim će valnim duljinama interferencija reflektirane svjetlosti biti destruktivna?
- 3 Zadatak: Plankonveksna leća polumjera zakrivljenosti $R=20\,\mathrm{cm}$ položena je svojom izbočenom stranom na vodoravnu plankovneksnu staklenu ploču. Sustav je odozgo obasjan svjetlošću valne duljine $\lambda=589.3\,\mathrm{nm}$. Između leće i stakla najprije se nalazi zrak (indeks loma jednak jedinici), a zatim je u taj prostor uliven ugljik tetraklorid čiji je indeks loma $n_{\mathrm{t}}=1.461$. Odredi omjer polumjera 23. tamnog prstena prije i poslije ulijevanja tekućine. Stakla su optički gušća od tekućine.
- **4 Zadatak:** Ako se pri ogibu svjetlosti na jednoj pukotini peti minimum opaža pod kutom $\theta_5 = 75^{\circ}$, pod se kojim kutom opaža prvi minimum?
- 5 Zadatak: Indeks loma kristala kremena za svjetlost valne duljine $\lambda = 590 \,\mathrm{nm}$ je $n_1 = 1.544$ za redovnu zraku te $n_2 = 1.553$ za izvanrednu. Ako svjetlost upada okomito na kristal, odredi najmanju debljinu kristala kojom se postiže razlika u fazi $\Delta \phi = 60^\circ$ između redovne i izvanredne zrake.
- 6 Zadatak: Kružno polarizirana svjetlost pada na niz od N polarizatora koji su postavljeni tako da je kut među ravninama polarizacije susjednih polarizatora svuda jednak ϕ . Odredi omjer intenziteta svjetlosti koja izlazi iz posljednjeg i intezniteta svjetlosti koja ulazi u prvi polarizator.
- 7 Zadatak: Linearno polarizirana svjetlost pada na prvi, a zatim na drugi polarizator, nakon čega je njena ravnina polarizacije okomita na ravninu polarizacije upadne svjetlosti. Odredi kut između ravnine polarizacije upadne svjetlosti i ravnine polarizacije prvog polarizatora koji daje najveći intenzitet izlazne svjetlosti.
- 8 Zadatak: Otporna žica duljine $\ell=10\,\mathrm{cm}$ i promjera $d=1\,\mathrm{mm}$ priključena je na napon $U=12\,\mathrm{V}$ te njome teče struja $I=0.01\,\mathrm{A}$. Odredi temperaturu žice ako se ona nalazi u okruženju temperature $T_0=300\,\mathrm{K}$. (Štefan–Boltzmannova konstanta $\sigma=5.670\times10^{-8}\,\mathrm{W\,m^{-2}\,K^{-4}}$.)
- 9 Zadatak: Ploča načinjena od metala čiji je izlazni rad $W=3\,\mathrm{eV}$ obasjana je najprije svjetlošću valne duljine $\lambda_1=340\,\mathrm{nm}$, a zatim svjetlošću valne duljine λ_2 pri čemu je izmjereno da se brzina izbačenih elektrona povećala za $\epsilon=25\%$. Odredi valnu duljinu λ_2 . (Planckova konstanta $h=6.626\times10^{-34}\,\mathrm{J}\,\mathrm{s}$, brzina svjetlosti $c=2.998\times10^8\,\mathrm{m}\,\mathrm{s}^{-1}$, elektronvolt eV = $1.602\times10^{-19}\,\mathrm{J}$.)
- 10 Zadatak: Uzak snop monokromatskog elektromagnetskog zračenja raspršuje se na uzorku nekog materijala. Valna duljina zračenja raspršenog pod kutom $\theta_1 = 30^{\circ}$ tri je puta manja od valne duljine zračenja raspršenog pod kutom $\theta_2 = 120^{\circ}$. Pod pretpostavkom da se fotoni elektromagnetskog zračenja raspršuju na slobodnim elektronima (Comptonovo raspršenje) odredi valnu duljinu upadnog zračenja. (Planckova konstanta $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$, masa elektrona $m_{\rm e} = 9.109 \times 10^{-31} \,\mathrm{kg}$, brzina svjetlosti $c = 2.998 \times 10^8 \,\mathrm{m\,s^{-1}}$.)

- 11 Zadatak: Foton energije $E_0 = 1 \text{ MeV}$ se raspršuje na mirnom slobodnom elektronu. Odredi kinetičku energiju elektrona nakon raspršenja ako se valna duljina fotona u raspršenju promijenila za 25%.
- 12 Zadatak: Prema klasičnoj teoriji elektromagnetizma nabijena čestica koja kruži stalnom brzinom zrači elektromagnetski val frekvencije koja je jednaka frekvenciji njena kruženja. Kolikom bi frekvencijom prema toj teoriji zračio elektron u Bohrovu modelu vodikova atoma u drugom pobuđenom stanju (n = 3)? (Planckova konstanta $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$, masa elektrona $m_{\rm e} = 9.109 \times 10^{-31} \,\mathrm{kg}$, naboj elektrona $e = 1.602 \times 10^{-19} \,\mathrm{C}$, permitivnost vakuuma $\epsilon_0 = 8.854 \times 10^{-12} \,\mathrm{F}\,\mathrm{m}^{-1}$.)
- 13 Zadatak: U atomu nalik vodikovom neka je λ_{32} valna duljina fotona emitiranog pri prijelazu iz drugog (n=3) u prvo (n=2) pobuđeno stanje. Izrazi frekvenciju λ_{41} fotona emitiranog pri prijelazu iz trećeg pobuđenog (n=4) u osnovno (n=1) stanje istog atoma preko valne duljine λ_{32} .
- 14 Zadatak: Energija ionizacije atoma neona iznosi $E_{\text{Ne}} = 21.5 \,\text{eV}$. Ako se najveća valna duljina zračenja koja može izazvati tu ionizaciju upola smanji, kolika će biti brzina zbačenih elektrona? (masa elektrona $m_{\text{e}} = 9.109 \times 10^{-31} \,\text{kg}$, elektronvolt eV = $1.602 \times 10^{-19} \,\text{J}$.)
- 15 Zadatak: Aktivnost nekog uzorka se nakon nekog vremena smanjila za 20% početne aktivnosti. Za koliko bi se smanjila aktivnost istog uzorka (u odnosu na početnu) da smo čekali šest puta dulje?