Modely sebeskládajících DNA nanostruktur

Vypracoval: Jakub Klemsa

Školitel: Ing. Štěpán Starosta, Ph.D.

Fakulta jaderná a fyzikálně inženýrská Matematická informatika

19. června 2014

- 1. Motivace
- 2. DNA vs. Chomského hierarchie
 - Regulární jazyky
 - Bezkontextové jazyky
 - Turingova univerzalita
- 3. Modely založené na Wangovo dláždění
 - Wangovo dláždění
 - aTAM
 - Studované složitosti
 - Výpočetní síla
 - Jiný důkaz TU
 - Meze studovaných složitostí
 - Důsledky
- 4. Návrh řešení NP problémů
 - Přizpůsobení modelu NP
 - Problém *k*-kliky
 - Počítačová simulace
 - Další vyřešené problémy

Motivace

There's plenty of room at the bottom – R. P. Feynman, 1959, [3]

budoucnost počítačů na úrovni molekul

První experiment s DNA - L. Adleman, 1994, [1]

- využití sebeskládajících DNA molekul ke hledání Hamiltonovské cesty orientovaným grafem
- Hamiltonovská cesta projde každý vrchol grafu právě jednou, počáteční a cílový vrchol jsou označeny
- rozhodovací problém existence HC je NP-complete

Motivace

Výhody

paralelizmus – ve zkumavce může být až 10¹⁸ "větších" molekul

Nevýhody

- 10¹⁸ není zdaleka neupočitatelné hrubou silou
- pravděpodobnostní povaha
- chybovost

Pole studia

- kinetika reakcí
- abstraktní modely pohledem matematické informatiky

Souvislost s Chomského hierarchií

Lineární vlákna ↔ regulární jazyky (E. Winfree [4])

Obrázek: Vlákno pro iniciální symbol I a vlákno pro pravidlo $A \rightarrow bB$.

 \overline{B} značí Watson-Crick komplementární sekvenci k B $(A \leftrightarrow T, C \leftrightarrow G)$

Souvislost s Chomského hierarchií

Stromové struktury ↔ bezkontextové jazyky (E. Winfree [4])

Obrázek: Struktura odpovídající pravidlu $A \rightarrow aBbC$.

Souvislost s Chomského hierarchií

Dvojkřížené molekuly ↔ Turingův stroj (TS) (E. Winfree [4])

Obrázek: Dvojkřížená molekula.

Předpoklady budou upřesněny v abstraktním modelu.

Wangovo dláždění

Čtvercové dláždění roviny (její části), kde

- dlaždice mají na hranách barvu z konečné množiny barev (lepidel)
- máme-li fond, dlaždicemi je zakázáno rotovat nebo je překlápět
- soudedit smí pouze dlaždice se stejnou barvou na společné hraně

Obrázek: Wangovo dláždění.

aTAM

Rothemund, Winfree rozšířili definici

- každé lepidlo má přidružené přirozené číslo síla lepidla
- existuje prázdné lepidlo se silou 0, které smí soudedit se všemi
- dláždění se utváří
 - z iniciální dlaždice
 - po jedné dlaždici
 - součet právě připojených lepidel musí být větší nebo roven zadané hodnotě (tzv. teplota, ozn. τ)

Studované složitosti I

Biostep complexity Bs(n)

- počet laboratorních procedur
- iedna trvá až desítky minut
- za proveditelné budeme uvažovat pouze $Bs(n) \in O(1)$

Binding complexity Bnd(n)

- počet vazeb v koncovém dláždění
- v nedeterministickém případě uvažujeme nejmenší přijímací
- v pravděpodobnostním případě uvažujeme střední hodnotu
- kvůli rostoucí psti chyby proveditelné Bnd(n) polynomiální

Studované složitosti II

Tile complexity Ti(n)

- počet různých dlaždic
- potřeba je syntetizovat proveditelné Ti(n) polynomiální

Glue complexity GI(n)

- počet různých lepidel sekvencí
- příliš dlouhé se mohou vázat chybně proveditelné Gl(n) polynomiální

Lemma

- 1. $Ti(n) \leq Gl^4(n)$,
- 2. $GI(n) \le 4 Ti(n)$.

Výpočetní síla

- aTAM je Turingovsky univerzální (TU)
 - ve 2D při teplotě $\tau = 2$, Winfree [4]
 - ve 3D při teplotě $\tau = 1$, Cook [2]

Neví se ve 2D při teplotě au=1

existují modifikace aTAMu, které jsou TU

Důkaz TU ve 2D při teplotě au=2 – převod na celulární automat

neříká nic o spotřebě zdrojů

Důkaz TU ve 2D při au=2

- přímočarý
- včetně odhadů studovaných složitostí v závislosti na čase a prostoru spotřebovaným simulovaným TS

Assembly of input tape. E_L is left stop, $a_i^{(0)}$ is i-th symbol of input word $a_0^{(0)} \dots a_{n-1}^{(0)}$, Following assembly starts at a place denoted "next tile" while simulating a Turing machine reading $a_n^{(0)}$, and being in state s_0 . The arrow over s_0 means "comes from right".

Coming from right, being in state s_i , reading tape symbol a_j . Transition function says: write $a_{l_{i,j}}$, switch to state $s_{k_{i,j}}$ and go left.

Situation is like before with only difference: go right. Now the rest of the tape must be copied by special tiles which thus exist for all pairs a_m , $s_{k_{i,j}}$ of tape symbol and state, respectively.

Coming from right, being in state s_i , reading left stop E_L which stands for blank symbol in terms of tape alphabet.

Transition function says: write $a_{l_{i,B}}$, switch to state $s_{k_{i,B}}$ and go left. Note that a glue of strength 2 must have been used.

Situation is like before with only difference: go right.

Note that tiles from previous figure are utilized to finish copying.

Coming from right, being in state s_i , reading blank symbol. Transition function says: write $a_{l_{i,B}}$, switch to state $s_{k_{i,B}}$ and go left.

Situation is like before with only difference: go right. Note that there already exist tiles which finish the turnaround.

Meze studovaných složitostí

Lemma

Studované složitosti v tomto systému jsou omezené jak následuje:

Biostep. $Bs(n) \in O(1)$.

Binding. $Bnd(n) \in O(s(n) \cdot t(n))$, $kde\ t(n)\ stoji\ za\ čas\ a\ s(n)\ za$ prostor spotřebovaný simulovaným TS.

Tile. $Ti(n) \in O(n)$.

Glue. $Gl(n) \in O(n)$.

Zachování tříd složitosti

Důsledek

Ve 2D při $\tau=2$ se za použití přísušného modelu (determ., nedeterm. nebo pravď.) zachovají složitostní třídy odolné k polynomiálnímu zpomalení pro všechny studované složitosti (tj. P, ZPP, RP, BPP, NP, ...).

Navíc, biostep complexity zůstane v O(1).

Proveditelnost BPP ve 2D při $\tau = 2$

BPP se považuje za proveditelnou na TS, z předchozího důsledku (zachování tříd a $Bs(n) \in O(1)$) pak plyne:

Důsledek

BPP je proveditelná ve 2D při $\tau = 2$.

Poznámka

P, ZPP, RP, co-RP \subseteq BPP.

Přizpůsobení aTAMu

Odvozen z Winfreeho ukázky řešení problému Hamiltonovské cesty – avšak srozumitelnější

- $\tau = 2$
- 5 dalších typů dlaždic včetně daných sil lepidel
- pevně nastavená počáteční t_0

Poznámka

Tento model lze snadno simulovat klasickým aTAMem.

С Ε (a) Rohová molekula

DONE

G

(b) Schéma sebeskladu

В

DONE

0

(c) Model

Obrázek: Evoluce modelu od molekul k dlaždicím. Zde lepidla A, B, G a J mají sílu 2, všechna ostatní mají sílu 1.

Problém k-kliky

NP-complete problém, Bnd \sim 5/4 k^2 , Ti \sim 2 k^2e+3kn , Gl \sim kn.

Obrázek: Nalezení k-kliky. Pořadí barev je dáno jejich vlnovou délkou.

Simulace v xgrow

xgrow je open-source simulátor jak kinetických tak abstraktních modelů.

- skriptem k zadanému grafu generuji potřebné dlaždice
- se zapnutím kinetiky není jednoduché dosáhnout bezchybného dláždění

```
flake 1 (32 by 32, seed 1 @ (8,2)) 105932 events, 27 tiles, 0 mismatches ([DX] = 0.827988 uM, T = 41.315 C, 5-mer s.e.) Gmc=17.0 Gse= 8.6 k=1000000 T = 2.0 t = 316.722 sec; G = -19.016 105932 events (52979a,52953d,0h,0f), 27 tiles total
```


left: identify middle:puncture right: Gmc Gse EW '98-'04

Další vyřešené problémy

3-obarvení grafu

NP-complete problém

Grafový izomorfizmus

je domníváno, že není NP-complete

Bnd $\sim 5/4n^2$, $Ti \sim 8e^2 - 4en^2 + n^4$, $GI \sim n^2$.

Reference

Leonard M Adleman.

Molecular computation of solutions to combinatorial problems. *Science - New York then Washington*, pages 1021–1024, 1994.

Matthew Cook, Yunhui Fu, and Robert Schweller.

Temperature 1 self-assembly: Deterministic assembly in 3d and probabilistic assembly in 2d.

In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 570–589. SIAM, 2011.

Richard P Feynman.

There's plenty of room at the bottom. *Engineering and Science*, 23(5):22–36, 1960.

Erik Winfree.

Algorithmic self-assembly of DNA.

PhD thesis, California Institute of Technology, 1998.