Kịch bản chia data:

Ånh training Bayesian Gaussian Mixture:

```
[15] BGM = BayesianGaussianMixture(n_components=7,covariance_type='full',random_state=1,n_init=15)
# fit model and predict clusters
preds = BGM.fit_predict(X)

#Adding the Clusters feature to the orignal dataframe.
df["Clusters"] = preds
```

Ånh kết quả Bayesian Gaussian Mixture:

```
[200]
       valid_0's multi_logloss: 0.000151038
       valid_0's multi_logloss: 0.000151038
[400]
       valid_0's multi_logloss: 0.000151576
[200]
        valid_0's multi_logloss: 0.000151576
[400]
        valid 0's multi logloss: 0.00015433
[200]
        valid 0's multi logloss: 0.00015433
[400]
        valid_0's multi_logloss: 0.000155486
[200]
       valid_0's multi_logloss: 0.000155486
[400]
        valid_0's multi_logloss: 0.000153559
[200]
       valid 0's multi logloss: 0.000153559
[400]
       valid_0's multi_logloss: 0.000155711
[200]
        valid 0's multi logloss: 0.000155711
[400]
       valid_0's multi_logloss: 8.58365e-06
[200]
       valid_0's multi_logloss: 8.48634e-06
[400]
[600]
       valid 0's multi logloss: 8.42158e-06
       valid_0's multi_logloss: 8.37546e-06
[800]
       valid_0's multi_logloss: 8.34101e-06
[1000]
       valid_0's multi_logloss: 8.3143e-06
[1200]
       valid 0's multi logloss: 8.29302e-06
[1400]
       valid_0's multi_logloss: 8.27566e-06
[1600]
       valid_0's multi_logloss: 8.26123e-06
[1800]
       valid_0's multi_logloss: 8.24906e-06
[2000]
       valid 0's multi logloss: 8.23866e-06
[2200]
       valid_0's multi_logloss: 8.22966e-06
[2400]
[2600]
       valid 0's multi logloss: 8.2218e-06
       valid_0's multi_logloss: 8.21489e-06
[2800]
       valid_0's multi_logloss: 8.20875e-06
[3000]
       valid 0's multi logloss: 8.20327e-06
[3200]
       valid_0's multi_logloss: 8.19834e-06
[3400]
       valid_0's multi_logloss: 8.19389e-06
[3600]
       valid_0's multi_logloss: 8.18985e-06
[3800]
       valid_0's multi_logloss: 8.18617e-06
[4000]
       valid_0's multi_logloss: 8.1828e-06
[4200]
       valid_0's multi_logloss: 8.1797e-06
[4400]
       valid_0's multi_logloss: 8.17684e-06
[4600]
       valid_0's multi_logloss: 8.1742e-06
[4800]
       valid_0's multi_logloss: 8.17175e-06
[5000]
       valid 0's multi logloss: 0.000220707
[200]
       valid_0's multi_logloss: 0.000220707
[400]
[200]
       valid_0's multi_logloss: 0.000156024
       valid_0's multi_logloss: 0.000156024
[400]
       valid 0's multi logloss: 0.0120099
[200]
[400]
        valid_0's multi_logloss: 0.0120099
[200]
       valid_0's multi_logloss: 0.0238626
```

Ånh training Arima:

```
[24] from statsmodels.tsa.arima.model import ARIMA

# Khởi tạo và phù hợp với mô hình ARIMA
model_arima = ARIMA(r_t, order=(2, 0, 2))
model_fit = model_arima.fit()

# In ra tóm tắt của mô hình
print(model_fit.summary())
```

Ảnh kết quả Arima:

SARIMAX Results

Dep. Variable:			y N	o. Observation	s:	365
Model: ARI		ARIMA(2, 0	, 2) L	og Likelihood		563.223
Date: Tue, 0		ue, 07 May	2024 A	IC		-1114.446
Time:		03:4	1:01 B	IC		-1091.047
Sample:			0 H	QIC		-1105.147
		-	365			
Covarianc	ce Type:		opg			
=======	coef	std err	======	z P> z	[0.025	0.975]
const	-4.829e-06	0.001	-0.0	06 0. 995	-0.002	0.002
ar.L1	-0.1328	0.059	-2.2	33 0.026	-0.249	-0.016
ar.L2	0.5723	0.054	10.5	93 0.000	0.466	0.678
ma.L1	-0.0099	0.040	-0.2	49 0.804	-0.087	0.068
ma.L2	-0.8488	0.043	-19.5	43 0.000	-0.934	-0.764
sigma2	0.0027	0.000	25.5	0.000	0.002	0.003
Ljung-Box (L1) (Q):			 0.2	======================================	======= a (ЈВ):	665.01
Prob(0):			0.6		,	0.00
Heteroskedasticity (H):			1.7	. ` '		0.50
Prob(H) (two-sided):			0.0	0 Kurtosis:		9.54

Link github:

<u>CuongNgD203/TH1_TimeSeries (github.com)</u>