More Induction Proofs

Example 1

Prove that $f(n) = 6n^2 + 2n + 15$ is odd for all $n \in \mathbb{Z}^+$.

Proof by induction:

Define P(n) as the property that f(n) is odd.

Base case: We prove P(1).

$$2(1) + 15 + 6(1)^2 = 2 + 15 + 6 = 23$$
. Since 23 is odd, $P(1)$ is true.

Inductive hypothesis: Assume P(k) for some $k \in \mathbb{Z}^+$.

That means that $16k^2 + 2k + 15 = 2m + 1$ for some $m \in \mathbb{Z}$.

Inductive step: We will now prove P(k+1).

$$6(n+1)^{2} + 2(n+1) + 15 = (6n^{2} + 12n + 6) + (2n+2) + 15$$

$$= (2n+15+6n^{2}) + 12n + 8$$

$$= (2m+1) + 12n + 8$$

$$= 2(m+6n+4) + 1 = 2j + 1$$

Since $j = m + 6n + 4 \in \mathbb{Z}$, f(k+1) is odd. Thus, $P(k) \to P(k+1)$. Since P(1) and $P(k) \to P(k+1)$, P(k) for all $k \in \mathbb{Z}^+$.

Example 2

Prove that if $x \ge -1$, then $(1+x)^n \ge 1 + nx$ for all integers $n \ge 1$.

Proof by induction:

Let P(n) be that statement that $(1+x)^n \ge 1 + nx$ for all $x \ge -1$.

Base Case: First, we prove P(1).

$$(1+x)^1 \ge 1+x$$
 for all $x \ge -1$. Therefore $P(1)$ holds.

Inductive Hypothesis: Assume that P(k) is true for some natural number $k \geq 1$.

Inductive Step: We will prove P(k+1).

From the IH, we know that for all $x \ge -1$, $(1+x)^k \ge 1 + kx$.

Multiplying both sides by $1 + x \ge 0$ gives:

$$(1+x)^{k+1} \ge (1+kx)(1+x)$$

= 1 + (k+1)x + kx²
\ge 1 + (k+1)x

So $P(k) \to P(k+1)$, and the inductive step is proved.

Because P(1) is true and P(k) implies P(k+1) for all $k \ge 1$, P(n) is true for all $n \ge 1$.

More Induction Proofs

Example 3

The substrings of a string $a_1a_2...a_n$ are all strings of the form $a_ia_{i+1}...a_j$ for all i, j such that $0 \le i \le j \le n$ and where a_0 is the empty string. For example, "", "ba", and "banana" are substrings of the string "banana," while "bann" is not. "b" can be represented as either a_0a_1 or a_1 , but these different representations are not distinct substrings. "an" can be represented as either a_1a_2 or a_3a_4 ; these are distinct substrings.

Prove that the number of distinct substrings of a string $a_1 a_2 \dots a_n$ is

$$\frac{n(n+1)}{2} + 1.$$

Proof by induction:

Let P(k) be the property "all strings $a_1 a_2 \dots a_k$ have exactly $\frac{n(n+1)}{2} + 1$ distinct substrings.

Base Case: We show P(0).

A string of length 0 is simply the empty string a_0 . The only substring of the empty string is the empty string, meaning that there is only one substring. $\frac{0*1}{2} + 1 = 1$. Thus, P(0) is true.

Inductive Hypothesis: Assume that P(k) is true for some $k \geq 0$; that is, for all strings $a_1 a_2 \dots a_k$ there are exactly $\frac{k(k+1)}{2} + 1$ distinct substrings.

Inductive Step: Now P(k+1) must be shown to hold, meaning that for all strings $a_1 a_2 \dots a_k a_{k+1}$ there are exactly $\frac{(k+1)(k+2)}{2} + 1$ substrings.

The string $a_1a_2...a_ka_{k+1}$ has exactly one more character than some string $a_1a_2...a_k$. All substrings of the shorter string are substrings of the longer, and for the longer there are also k+1 distinct new substrings: all substrings of the shorter string that end in a_k with a_{k+1} added to the end, as well as just a_{k+1} .

By inductive hypothesis, there are $\frac{k(k+1)}{2} + 1$ substrings of the shorter string; thus, there are $\frac{k(k+1)}{2} + 1 + k + 1$ substrings of the longer.

$$\frac{k(k+1)}{2} + 1 + k + 1 = \frac{k(k+1)}{2} + 1 + \frac{2(k+1)}{2}$$

$$= \frac{k(k+1) + 2(k+1)}{2} + 1$$

$$= \frac{k^2 + 3k + 2}{2} + 1$$

$$= \frac{(k+1)(k+2)}{2} + 1$$

This is what was expected and required; clearly the number of substrings of all strings $a_1 a_2 \dots a_k a_{k+1}$ is $\frac{(k+1)(k+2)}{2} + 1$, so P(k) implies P(k+1).

Thus, because P(0) is true and P(k) implies P(k+1) for all $k \ge 0$, P(n) is true for all $n \ge 0$.

More Induction Proofs

Example 4

Prove that for $n \in \mathbb{Z}^+$, a $2^n \times 2^n$ chessboard with any one square removed can be tiled by these 3-square L-tiles.

Proof by induction:

Let P(n) be the property that a $2^n \times 2^n$ chessboard with any one square removed can be tiled by the 3-square L-tiles.

Base case: We prove P(1).

For n = 1, we have a 2×2 board with 1 square removed, which can be tiled by 1 L-tile.

Inductive hypothesis: Assume P(k) holds for some $k \ge 1$.

Inductive step: We prove P(k+1).

Divide the $2^{k+1} \times 2^{k+1}$ board as follows, where A,B,C,D are each a $2^k \times 2^k$ board.

A	В
С	D

Without loss of generality, suppose that the one square has been removed from B. Then by the inductive hypothesis, B can be tiled.

Remove the center corners of A,C, and D, such that each of their remainders can be tiled by the inductive hypothesis. Tile the remaining 3 squares in the center with a single L-tile, and we have completed the tiling.

Since the base case P(1) holds and we have shown that $P(k) \to P(k+1)$, P(n) holds for $n \ge 1$. QED.