Gaussian Process Semi-Parametric Regression w/ Misspecified Models

Kyla Jones

kjones29@nd.edu

Nonlinear & Stochastic Optimization: Final Presentation May 8, 2023

Motivating Example – The Simple Machine^[1]

Ground Truth Model

$$\zeta(x) = \frac{\theta x}{1 + x/a}$$

Data

$$y = \zeta(x) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

Misspecified Model

$$\eta(x,\theta) = \theta x$$

 ζ : work

x: effort

 θ : efficiency

a: friction factor

y: observations

 ϵ : measurement error

 σ_{ϵ}^2 : variance of error

How to learn model-form uncertainty?

[2] Brynjarsdóttir, J. & O'Hagan, A. (2014). *Inverse Probl.* 30(11): 114007.

Kennedy & O'Hagan (KOH) model^[2]:

$$y = \zeta(x) + \epsilon = \eta(x, \theta) + \delta(x) + \epsilon$$

$$\delta(x) \sim \mathcal{GP}(0, \sigma_{\delta}^2 K(x, x'; \psi))$$
: model discrepancy

 σ_{δ}^2 : process variance

 $K(\cdot,\cdot)$: correlation function

 ψ : length scale parameters

Objective: Find $(\theta, \sigma_{\epsilon}^2, \sigma_{\delta}^2, \psi)$ that best reproduce y.

Gaussian Process Semi-Parametric Regression w/ Correlated Errors [3]

Parameter estimation as nested optimization:

Problem size: 3 decision variables, 3 supporting equations, 44 data variables, 0 constraints

Results

KOH model:

- (+) outperforms misspecified model
- (-) is model better at interpolation than prediction

- (-) nuisance parameters not identifiable $\Rightarrow \theta$ not identifiable
- (-) different approach needed for parameter estimation

Thank you for your attention! References:

[1] Kennedy, Marc C. & O'Hagan, Anthony. (2001). Bayesian calibration of computer models. *Journal of the Royal Statistical Society Series B: Statistical Methodology* 63(3):425–464.

[2] Brynjarsdóttir, Jenný & O'Hagan, Anthony. (2014). Learning about model parameters: the importance of model discrepancy. *Inverse Problems* 30(11): 114007.

[3] He, Heping & Severini, Thomas A. (2016). A flexible approach to inference in semi-parametric regression models with correlated errors using Gaussian processes. *Computational Statistics & Data Analysis* 103(3):316–329.