# M1課題レポート第1回目

## りゅう ゆしん†

† 東京工業大学 〒 152-8550 東京都目黒区大岡山 2-12-1 E-mail: †liuyuchen@radio.ict.e.titech.ac.jp

## Technical Report for M1 Labwork 1-st

#### Liu YUCHEN<sup>†</sup>

† Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8550 Japan E-mail: †liuyuchen@radio.ict.e.titech.ac.jp

Table 1 ACRONYMS AND FULL MEANING

| Acronyms | Full Form                     |  |
|----------|-------------------------------|--|
| MLE      | Maximum Likelihood Estimator  |  |
| QPSK     | Quadrature Phase Shift Keying |  |
| SNR      | Signal Noise Ratio            |  |
| CNR      | Channel Noise Ratio           |  |
|          |                               |  |
|          |                               |  |
|          |                               |  |
|          |                               |  |
|          |                               |  |
|          |                               |  |

### 1. Introduction

Let's introduce the AWGN [1]

- 2. QPSK and MLE Background
- 3. Simulation and Result
- 4. Conclusion

#### REFERENCE

[1] Wikipedia, "Additive white Gaussian noise — Wikipedia, the free encyclopedia," https://en.wikipedia.org/wiki/Additive\_white\_Gaussian\_noise&oldid=974195879, 2020, [Online; accessed 15-October-2020].

Table 2 BER SIMULATION RESULT

| $E_b/N_0$ | BER (With Gray Code)  | BER (Without Gray Code) |
|-----------|-----------------------|-------------------------|
| 0         | $7.89 \times 10^{-2}$ | $1.12 \times 10^{-1}$   |
| 1         | $5.62\times10^{-2}$   | $8.18 \times 10^{-2}$   |
| 2         | $3.80\times10^{-2}$   | $5.50\times10^{-2}$     |
| 3         | $2.30\times10^{-2}$   | $3.41\times10^{-2}$     |
| 4         | $1.27\times10^{-2}$   | $1.86 \times 10^{-2}$   |
| 5         | $5.93\times10^{-3}$   | $8.94 \times 10^{-3}$   |
| 6         | $2.50\times10^{-3}$   | $3.64\times10^{-3}$     |
| 7         | $8.06 \times 10^{-4}$ | $1.19\times10^{-3}$     |
| 8         | $2.04\times10^{-4}$   | $2.96 \times 10^{-4}$   |
| 9         | $4.52\times10^{-5}$   | $6.09 \times 10^{-5}$   |
| 10        | $1.48\times10^{-5}$   | $3.05\times10^{-5}$     |
| 11        | $7.80 \times 10^{-6}$ | $1.09 \times 10^{-5}$   |



Fig. 1  $\,$  QPSK MLE Estimation BER in Different SNR