Examen

Durée : 2 heures. Les téléphones, les calculatrices et tous les documents sont interdits. Le barême est indicatif, sur 25 points.

Exercice 1.— (5pt) Soit Δ le demi-disque obtenu comme intersection du disque de centre (0,0) et de rayon 1 avec le demi-plan d'équation $y \geq 0$.

1. En utilisant les coordonnées polaires, calculer l'intégrale

$$I = \iint_{\Delta} y dx dy.$$

- 2. Donner un deuxième calcul de cette intégrale à l'aide du théorème de Fubini.
- 3. Donner une interprétation physique du nombre $\frac{I}{\text{Aire de }\Delta}$.

Corrigé de l'exercice 1.—

1. Après le passage en polaire, on calcule

$$I = \iint_{\Delta} r^2 \sin \theta d\theta dr = \int_{r=0}^{1} r^2 dr \int_{\theta=0}^{\pi} \sin \theta d\theta = \frac{1}{3} \times 2.$$

2. Le théorème de Fubini donne par exemple

$$I = \int_{x=-1}^{1} \left(\int_{y=0}^{\sqrt{1-x^2}} y dy \right) dx.$$

L'intégrale en y vaut $\frac{1-x^2}{2}$, qui a pour primitive $\frac{x}{2} - \frac{x^3}{6}$, et on retrouve bien 2/3 en prenant la valeur en 1 moins la valeur en -1.

3. Ce nombre est l'ordonnée du centre de gravité du demi-disque Δ (qui vaut donc $\frac{4}{3\pi} \simeq 0,42$).

Exercice 2.— (6pt) Soit $\alpha = yzdx + zxdy + xydz$ qui est définie sur \mathbb{R}^3 .

- 1. La forme α est-elle fermée?
- **2.** Trouver une fonction f telle que $df = \alpha$.
- 3. Qu'en déduit-on concernant le champ de vecteurs défini par

$$\vec{V}(x,y,z) = (yz,zx,xy) ?$$

4. Donner la valeur du travail de ce champ le long de la courbe d'équation

$$\gamma(t) = (t, t^2, t^{2017}), \quad t \in [0, 1].$$

Corrigé de l'exercice 2.—

1. On calcule $d\alpha = 0$, ce qui signifie que la forme est fermée.

- 2. On voit facilement que f(x, y, z) = xyz convient, ce qu'on peut trouver plus systématiquement en résolvant le systèmes d'équations donné par $df = \alpha$.
- **3.** Le champ de vecteurs \vec{V} est associé à la 1-forme α . L'égalité $\alpha = df$ se traduit donc par $\vec{V} = \operatorname{grad} f$: en particulier, ce champ dérive d'un potentiel.
- **4.** Puisque le champ dérive d'un potentiel, cette valeur ne dépend pas du chemin parcouru et vaut $f(\gamma(1)) f(\gamma(0)) = f(1,1,1) f(0,0,0)$.

Exercice 3.— (6pt) On considère la forme différentielle $\omega = xdy$, définie sur le plan, et les points A = (1, -1) et B = (1, 1). Le cercle D de diamètre [AB] est paramétré par $\gamma_1 : \theta \mapsto (\cos(\theta) + 1, \sin(\theta))$. Soit D^+ le demi disque droit découpé par [AB] dans D.

- 1. En paramétrant le bord de D^+ , calculer $\int_{\partial D^+} \omega$.
- **2.** En calculant $d\omega$, retrouver la valeur de $\int_{\partial D^+} \omega$ par une autre méthode.

Corrigé de l'exercice 3.—

1. Le bord du demi-disque est formé du demi-cercle paramétré par γ_1 et du segment [AB] parcouru de B vers A.

Après substitution par le paramétrage γ_1 , la forme xdy devient $(1 + \cos(\theta))\cos(\theta)d\theta$, que l'on intègre entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$. En utilisant que $\cos^2\theta = \frac{1}{2}(\cos(2\theta) + 1)$, on obtient $\int_{\gamma_1} \omega = 2 + \frac{\pi}{2}$.

Le segment [AB] est paramétré par $t \mapsto (1, 1-2t)$ pour t variant entre 0 et 1. Après substitution la forme devient -2dt que l'on intègre entre 0 et 1, on obtient -2. On a donc

$$\int_{\partial D^+} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega = \frac{\pi}{2}.$$

2. On trouve $d\omega = dx \wedge dy$. Le théorème de Stokes donne

$$\int_{\partial D^+} \omega = \int_{D^+} d\omega = \int_{D^+} dx \wedge dy$$

Or l'intégrale de $dx \wedge dy$ sur D^+ est égale à l'aire de D^+ , soit $\frac{\pi}{2}$, comme avant.

Exercice 4.— (8pt) On considère la 1-forme, définie sur \mathbb{R}^3 ,

$$\eta = xzdx + yzdy.$$

- 1. Calculer la 2-forme $\omega = d\eta$.
- **2.** On voudrait calculer l'intégrale $\int_S \omega$ de ω sur la sphère unité $S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$.
- a. Donner les expressions de x,y,z en coordonnées sphérique en les illustrant par un dessin. En déduire un paramétrage $f(\phi,\theta)=(x,y,z)$ de la sphère S. b. Calculer la 2-forme $f^*\omega$ obtenue en substituant x,y,z par leurs valeurs en fonction de ϕ et θ . Que vaut $\int_S \omega$?
- 3. Que vaut $d\omega$? En déduire une autre méthode pour obtenir $\int_S \omega.$
- **4.** a. Donner l'expression du champ de vecteurs \vec{V} associé à la 2-forme ω . b. Comment interprèteton la relation $\omega = d\eta$ pour le champ \vec{V} ? c. Comment interprète-t-on la valeur de $d\omega$ pour le champ \vec{V} ? d. Comment interprète-t-on la valeur de $\int_S \omega$ pour le champ \vec{V} ?

Corrigé de l'exercice 4.—

1. on trouve $\omega = -ydy \wedge dz + xdz \wedge dx$.

2. a. La sphère est paramétrée par $f(\phi,\theta)=(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi)$. b. On trouve

$$-ydy \wedge dz = -\sin^3 \phi \sin \theta \cos \theta, \quad xdz \wedge dx = \sin^3 \phi \sin \theta \cos \theta,$$

d'où $f^*\omega=0$: l'intégrale de ω sur la sphère est donc nulle.

3. Puisque $\omega=d\eta$, la forme ω est exacte, elle est donc fermée : $d\omega=0$. En notant B la boule unité bordée par la sphère S, le théorème de Stokes donne

$$\int_{\partial B} \omega = \int_{B} d\omega = 0.$$

4. a. $\vec{V} = (-y, x, 0)$. **b.** La relation $\omega = d\eta$ signifie que $\vec{V} = \text{rot}\vec{W}$, où le champ $\vec{W} = (xz, yz, 0)$ est associé à la 1-forme η . **c.** La relation $d\omega = 0$ signifie que la divergence du champ \vec{V} est nulle.

d. Le nombre $\int_S \omega$ est égal au flux du champ \vec{V} à travers la sphère S.