Bootstrap

Grinnell College

November 1, 2024

- **Standard deviation** (σ) and standard error (σ/\sqrt{n})
- A sampling distribution
- ▶ Point Estimate ± Margin of Error (critical values)
- A confidence interval is an interval with the properties that:
 - ▶ It is constructed according to a procedure or set of rules
 - It is intended to give plausible range of values for a parameter based on a statistic
 - ▶ It has no probability; the interval either contains the true value or it does not

Grinnell College STA 209 is cool :) November 1, 2024 2 / 26

The Statistical Framework

Repeated Samples

The confidence intervals we constructed of the form:

Point Estimate \pm Margin of Error

- ▶ Relied on assumptions (TBD) about our sampling process
- Examined what might happen if we could repeat sampling ad infinitum

There are, naturally, some limitations:

- ▶ We are limited to collecting a single sample
- Our assumptions may be tenuous, i.e., what if our statistic doesn't not follow the CLT?

It would be helpful to have a more general method of constructing intervals with similar properties we had before

Grinnell College STA 209 is cool :) November 1, 2024 4 / 26

Bootstrapping

Somewhat amazingly, we can get around this problem with a resampling technique known as **bootstrapping**

Bootstrapping refers to an algorithmic process whereby, for a sample of size *n*, we resample *with replacement* and compute a new statistic on the bootstrapped sample.

Instead of drawing more samples from our *original population*, we treat our sample as an *estimate* of the population and instead draw bootstrapped samples from our original sample

Bootstrapping

"Pick yourself up from bootstraps"

6/26

Grinnell College STA 209 is cool :) November 1, 2024

Bootstrapped Samples (n = 30)

Bootstrapped Samples (n = 30)

Means from 1000 Bootstraps

Bootstrapped Sampling Distribution

The collection of bootstrapped statistics gives us an estimate of the sampling distribution

- What values did we see?
- How frequently did they appear?

In this case, because we were bootstrapping the sample mean we find that the sampling distribution looks approximately normal

In general, we should expect that our bootstrapped sampling distribution to be theoretically identical to the *true* sampling distribution, whatever that may be

Quantiles

Recall that Monday we introduced the $\mathtt{qnorm}()$ and $\mathtt{qt}()$ functions to find us the quantiles of our sampling distribution when the distribution was known

If we don't know the distribution, we can use a vector of values, along with the quantiles () function to perform a similar task

```
1 > ## Find mean/se
2 > mean(mass_sample); se(mass_sample)
3 [1] 5484.8
4 [1] 40.096
6 > ## Find critical value from t
7 > \text{quants}95 <- c(0.025, 0.975)
8 > gt (guants95, df = 29)
9 [1] -2.0452 2.0452
10 >
11 > \#\# Point +/- MOE
12 > 5484.8 + c(-2.0452, 2.0452)*40.096
13 [1] 5402.8 5566.8
14 >
15 > ## Using quantile() on bootstrap
16 > quantile(boot_sample, probs = quants95)
17 2.5% 97.5%
18 5408.6 5565.2
```

Bootstrapped Sample Means

When the sampling distribution is approximately normal, the quantiles of the bootstrap should match closely with those computed using the margin of error method

Boostrapping is especially appropriate when our sampling distribution is not normal:

- The population variable is highly skewed
- ► The number of observations in our sample is not large enough for CLT approximation
- We want the sampling distribution of a statistic that is not normally distributed

Bootstrapped Enrollment Samples (n = 20)

Bootstrapped Enrollment Samples (n = 20)

Means from 1000 Bootstraps

Creating confidence intervals for college enrollment

Bootstrapped Sample Means

Frequently Unasked Questions

Concern: What if our sample sucks?

Concern: If we can use bootstrapping, why do we bother with CLT?

Review

Bootstrapping involves the process of *resampling with replacement* from our original sample

When we compute a statistic on our bootstrapped sample (i.e., sample mean), we have a bootstrapped sample statistic

Repeating this process many many times gives us an estimate of the *sampling distribution*

Quantiles can be used on this bootstrapped sampling distribution without needing any further assumptions

Grinnell College STA 209 is cool :) November 1, 2024 26 / 26