Escola de Química - UFRJ Março de 2012

DISCIPLINA

ENGENHARIA DE PROCESSAMENTO DE GÁS NATURAL EQE753 Carga Horária 36 hs

José Luiz de Medeiros Engenharia Química – UFRJ jlm@eq.ufrj.br Tel. 21-2562-7535

OBJETIVOS

- # Fundamentos de Termodinâmica, Equilíbrio Líquido-Vapor (ELV), Cálculo de Propriedades Termodinâmicas, Equações de Estado (EOS)
- # Termodinâmica de Sistemas GN e GN Rico em CO2, Comportamento de Fase (Phase Behavior)
- # Equipamentos de Processamento de GN
- # Fundamentos Teóricos do Projeto e Simulação de Processos de Separação do Processamento de GN
- # Fluxogramas de Processamento de GN
- # Simulação de Fluxogramas de Processamento de GN

EMENTA

0. Notação, Símbolos e Convenções

1. Revisão de Termodinâmica

Forma Fundamental em Sistemas Abertos; Sistemas Abertos, Monofásicos, sem Reações Químicas; Funções Auxiliares: Fugacidade e Atividade; Equações de Estado Cúbicas; Modelos de Solução; Cálculo de Propriedades; Equilíbrio de Fases; Equações de Equilíbrio de Fases; Regra das Fases; Equilíbrio Líquido-Vapor (ELV); Equações ELV; Fator de Separação ELV; Resolução de ELV: Pontos de Bolha e de Orvalho; Flash; Volatilidade Relativa.

2. Termodinâmica de Sistemas de GN

Envelopes de Fase ELV. Comportamento de Fase. Resolução de Problemas Simples de Condensação Parcial, Orvalho e Bolha. Uso de Equações de Estado (EOS). Previsão de Formação de Sólidos (Freeze-Out).

EMENTA

3. Equipamentos de Processamento e Condicionamento de Gás Natural

Modelagem de Equipamentos de Processamento/ Condicionamento de GN: Válvula, *Expander*, Compressor, Trocador de Calor, Vaso de Separação, Permeador de Membrana, Contactora de Membranas, Coluna de Absorção com Etanolaminas. Desidratadores. Gasodutos (Pipelines). Sistemas de Refrigeração. Demetanizadora e De-etanizadora.

- **4. Fluxogramas de Processamento de Gás Natural** Síntese de Fluxogramas de Processamento de GN: Métricas de Desempenho Econômico, Ambiental e de Controlabilidade
- 5. Simulação de Fluxogramas de Processamento de Gás Natural em HYSYS

Trem de Compressão. Recuperação de Líquidos de GN (GNL). Planta de Liquefação de GN (LNG). Trem de Separação de CO2 com Membranas. Fracionamento de GN. Linhas de Transporte de GN via Gasodutos.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Introduction to Chemical Engineering Thermodynamics, 5th Ed., Smith-VanNess-Abbott, McGraw-Hill, 1996.
- 2. Separation Process Principles, 2nd Ed., Henley & Seader, John Wiley, 2006
- 3. The Gas Processing Industry—Origins & Evolution. Tulsa Gas Processors Suppliers Association GPSA, Cannon, R.E. 1993.
- 4. GPSA Engineering Data Book, 12th edition, V. 2, Tulsa, GPSA, 2004.
- 5. Gas Conditioning & Processing: V.1, The Basic Principles, 8th Ed., 2004
- 6. Gas Conditioning & Processing: V.2: The Equipment Modules

AVALIAÇÃO DE DESEMPENHO

Trabalhos MATLAB - HYSYS: T1, T2, T3, T4, T5

Prova: PV

Listas de Exercícios : Para treino, não entregar

Critério para Grau : A partir da Média Final (MF)

$$MF = \frac{\sum_{i=1}^{5} T_i + 2 * PV}{7} \Rightarrow MF < 4 \Rightarrow D$$

$$4 \le MF < 6.5 \Rightarrow C$$

$$6.5 \le MF < 8.5 \Rightarrow B$$

$$8.5 \le MF \Rightarrow A$$

Metodologia

- Aulas Expositivas Baseadas em Recursos Microsoft-Office
- Material Expositivo Digital Disponibilizado para Acompanhamento Individual pelos Alunos
- Exercícios e Trabalhos Práticos em Sala de Aula e/ou Laboratório de Computação Utilizando Ambiente MATLAB R12 (The Mathworks Inc.) for Windows e Simulador HYSYS ou UNISIM DESIGN
- Trabalhos em Grupo acerca dos Principais Pontos do Curso
- Provas Individuais

Símbolo	Unidade	Descrição
i, j, k, l		Índices de Componentes (1, 2,, nc)
j, m		Índices de Fases (1, 2,, nf)
k, l		Índices de Reação Química (1, 2,, nr)
n		Contador de Estágios em Separador (1,2,, N)
j		Contador de Seções em Separador (0,1,2,,M)
nc		Número de Componentes
nf		Número de Fases
nr		Número de Reações Químicas Independentes
nx		Número de Restrições Extras na Regra das Fases
i		Componente Chave Leve em um Corte de Destilação
\dot{J}		Componente Chave Pesado em um Corte de Destilação

Símbolo	Unidade	Descrição
M		Número da Última Seção em Coluna de Destilação
N		Número Total de Estágios em Coluna de Destilação
N_{j}		Estágio que abriga a Emenda j em Separador
N_D		Número de Graus de Liberdade em Processo de Separação
N_E		Número de Equações em Processo de Separação
N_{GL}		Número de Graus de Liberdade em Geral
$N_{\scriptscriptstyle V}$		Número de Variáveis em Processo de Separação

Símbolo	Unidade	Descrição
M		Propriedade Extensiva M
M	kg	Massa do Sistema
M		Número de Mach em Escoamento Compressível
MM_i	kg/mol	Massa Molar (Mol) do Comp. i

Propriedade M Parcial Molar (PPM) do Comp. i
Propriedade M por Unidade de Volume
Propriedade M por Unidade de Mol
Propriedade M por Unidade de Mol do Comp. i
Número de Mols do Comp. i
Número de Mols Totais

Símbolo	Unidade	Descrição
P	Pa, bar	Pressão
Q	J, kJ	Calor Recebido pelo Sistema (Entra: >0, Sai: <0)
$\dot{\mathcal{Q}}$	kW	Carga Térmica do Sistema (Entra: >0, Sai: <0)
R=8.314 J/mol.K R=8.314 Pa.m³/mol.K R=0.08314 bar.L/mol.K R=83.14 bar.cm³/mol.K	J/mol.K	Constante dos Gases Ideais
T	K	Temperatura
V	m^3	Volume
V	Mol/s	Vazão de Fase Vapor
V_k	Mol/s	k-ésima Corrente V em um Processo

Símbolo Unidade	Descrição
-----------------	-----------

ξ_L		Eficiência de Estágio de Murphree via Fase Líquida
ξ_V		Eficiência de Estágio de Murphree via Fase Vapor
F_{j}	Mol/s	Carga na Emenda j/j-1
U_{j}	Mol/s	Retirada Lateral de Líquido na Emenda j/j-1
W_{j}	Mol/s	Retirada Lateral de Vapor na Emenda j/j-1
W	J, kJ	Trabalho Realizado pelo Sistema (Entra: <0, Sai: >0)
\dot{W}	kW	Potência Realizada pelo Sistema (Entra: <0, Sai: >0)

Símbolo	Unidade	Descrição
Símbolos de (Constantes	Críticas e Coordenadas Reduzidas de Espécies
P_C	Pa, bar	Pressão Crítica
$P_R = P/P_C$		Pressão Reduzida
T_C	K	Temperatura Crítica
$T_R = T/T_C$		Temperatura Reduzida
V_C	cm ³ /mol L/mol m ³ /mol	Volume Molar Crítico
$V_R = V_N / V_C$		Volume Molar Reduzido
Z_C		Fator de Compressibilidade Crítico
ω		Fator Acêntrico de Pitzer

Notação

Símbolo Unidade Descrição

Tipos de Variáveis Termodinâmicas de Sistemas em Equilíbrio

Campos (e.g. T, P, μ_k) Campos : Uniformes no Equilíbrio

Quantidades (e.g. G, V, A, S, H) Quantidades: Proporcionais ao Tamanho do Sistema

Densidades (e.g. $A_V, S_N, \rho = M/V$) Densidades : Razões de Quantidades

Propriedades Termodinâmicas Clássicas

A J Energia Livre de Helmholtz

 $A_V = A/V$ J/m³ Energia Livre de Helmholtz por Volume

 $A_N = \overline{A} = A / N$ J/mol Energia Livre de Helmholtz por Mol

 $A_M = A / M$ J/kg Energia Livre de Helmholtz por Unidade de Massa

G J Energia Livre de Gibbs

 $G_V = G/V$ J/m³ Energia Livre de Gibbs por Volume

 $G_N = \overline{G} = G/N$ J/mol Energia Livre de Gibbs por Mol

 $G_M = G/M$ J/kg Energia Livre de Gibbs por Unidade de Massa

Símbolo	Unidade	Descrição
H	J	Entalpia
$H_V = H / V$	J/m^3	Entalpia por Volume
$H_N = \overline{H} = H / N$	J/mol	Entalpia por Mol
$H_{\scriptscriptstyle M}=H/M$	J/kg	Entalpia por Unidade de Massa
S	J/K	Entropia
$S_V = S / V$	$J/K.m^3$	Entropia por Volume
$S_N = \overline{S} = S / N$	J/K.mol	Entropia por Mol
$S_M = S / M$	J/K.kg	Entropia por Unidade de Massa
U	J	Energia Interna
$U_V = U / V$	J/m^3	Energia Interna por Volume
$U_N = \overline{U} = U / N$	J/mol	Energia Interna por Mol
$U_{\scriptscriptstyle M} = U / M$	J/kg	Energia Interna por Unidade de Massa

Símbolo	Unidade	Descrição
S_{N_i} , $\overline{S_i}$	J/K.mol	Entropia Molar i e Entropia Parcial Molar i
$\overline{A_{\!\scriptscriptstyle i}},\overline{G_{\!\scriptscriptstyle i}},\overline{H_{\scriptscriptstyle i}},\overline{U_{\scriptscriptstyle i}}$	J/mol	PPMs para A, G, H, U
$A_{\scriptscriptstyle N_i}$, $G_{\scriptscriptstyle N_i}$, $H_{\scriptscriptstyle N_i}$, $U_{\scriptscriptstyle N_i}$	J/mol	A, G, H, U por Mol i
V_{N_i} , \overline{V}_i	m³/mol	Volume por Mol i e Volume Parcial Molar i
Densidades Diversas e Outros Símbolos Gregos		
$\rho_i = N_i / V$	mol/m ³	Densidade Molar do Comp. i
$ ho_i$		Densidade Genérica do Comp. i i.e. uma Razão entre Duas Variáveis <i>Quantidades</i> (e.g. <i>M/V</i> , <i>U/V</i> , <i>G/N</i> , <i>S/V</i> , etc)
$\underline{\rho} = \begin{bmatrix} \rho_1 \\ \vdots \\ \rho_{nc} \end{bmatrix}$		Vetor $nc x 1$ de Densidades Relativas aos nc Componentes
$\rho = M / V$	kg/m ³	Densidade (Mássica) da Mistura

Símbolo	Unidade	Descrição
$\boldsymbol{\mathcal{Z}}_{T} = \left(\frac{\partial \rho}{\partial T}\right)_{P,\underline{N}}$	kg/K.m ³	Derivada da Densidade com <i>T</i> (Relacionada à Expansividade Isobárica)
$\mathcal{Z}_{P} = \left(\frac{\partial \rho}{\partial P}\right)_{T,\underline{N}}$	kg/Pa.m ³	Derivada da Densidade com <i>P</i> (Relacionada à Compressibilidade Isotérmica)
$oldsymbol{\mathcal{E}}_k$	mol	Grau de Avanço da Reação Química k
$\underline{\boldsymbol{arepsilon}} = egin{bmatrix} oldsymbol{arepsilon}_1 \ drapprox \ oldsymbol{arepsilon}_{nr} \end{bmatrix}$	mol	Vetor <i>nr x 1</i> de Graus de Avanço das <i>nr</i> Reações
$\mathcal{\delta}_{_{ki}}$		Delta de Kronecker
$k = i \Longrightarrow \delta_{ki} = 1$ $k \neq i \Longrightarrow \delta_{ki} = 0$		
$k \neq i \Longrightarrow \delta_{ki} = 0$		

Notação

Símbolo

Unidade

Descrição

Frações Molares e Normalização

$$X_i = N_i / N$$

$$Y_i = N_i / N$$

$$\underline{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_{nc} \end{bmatrix} \Rightarrow \underline{I}^t \underline{X} = I$$

Fração Molar i em Fase Líquida

Fração Molar *i* em Fase Vapor

Vetores *nc x 1* de Frações Molares e

suas Condições de Normalização

$$\underline{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_{nc} \end{bmatrix} \Rightarrow \underline{I}^t \underline{Y} = I$$

$$\underline{X}_n$$
, \underline{Y}_n

 \underline{Z}

Vetores de Frações Mol Líquido e Vapor do Estágio n

Vetor de Frações Molares de Carga de Flash ou de Coluna

Símbolo	Descrição
Siglas Especiais para Si	stemas, Transformações e Leis da Termodinâmica
EE	Estado de Equilíbrio em um Sistema. Em um <i>EE</i> Propriedades são Definidas.
EOS	Equação de Estado
ER	Estado de Referência
ID, GI	Solução Ideal e Gás Ideal
MV	Mudança de Variável

Símbolo	Descrição
Siglas Especiais 1 para Processos de Separação	
BE	Balanço de Energia em RE
BMC	Balanço de Massa de Componentes em RE
BMG	Balanço de Massa Global em RE
EF	Equilíbrio de Fases
ELV	Equilíbrio Líquido-Vapor
MESH	Equações de BMC, EF, SS, BE em Estágio de Equilíbrio
MESH-MT	Equações de <i>BMC</i> , <i>EF</i> , <i>SS</i> , <i>BE</i> em um Estágio de Equilíbrio com Aproximação McCabe-Thiele
RE	Regime Estacionário de Operação
SS	Equações de Normalização de Frações Molares
SX, SY	Normalização de Fr. Molares de Líquido e Vapor
IG	Equações de Igualdade entre Variáveis (p.e. <i>T&P</i> de ELV)

Símbolo	Descrição
Siglas Especiais 2 para Processos de Separação	
AMT	Aproximação McCabe-Thiele
BP	Método Bubble-Point (Wang-Henke)
DB	Destilação em Batelada
ELV	Equilíbrio Líquido-Vapor
ELL	Equilíbrio Líquido-Líquido
FUG	Fenske-Underwood-Gilliland
MMT	Método McCabe-Thiele
MPA	Método de Projeto Ascendente
MPD	Método de Projeto Descendente
MPS	Método Ponchon-Savarit
PC	Par de Cruzamento : Duas Correntes, L e V , opostas em Cruzamento no mesmo Inter-Estágio

Símbolo	Descrição
Siglas Especiais 3 para Processos de Separação	
RELV	Relação de Equilíbrio Líquido-Vapor
RR	Razão de Refluxo de Topo
S	Razão de Refluxo de Fundo (Stripping)
SC	Método de Correções Simultâneas (Simultaneous Corrections)
SR	Método Sum of Rates

Símbolo	Descrição
Símbolos Especiais 4 para Processos de Separação	
$\alpha_{ij} = K_i / K_j$	Volatilidade Relativa do composto i com respeito a j
$oldsymbol{eta}$	Fração Molar de Vaporização em Flash, Carga ou similar
$ \Phi(\phi) $	Primeira Função de Underwood para Refluxo Mínimo
$\Psi(\psi)$	Segunda Função de Underwood para Refluxo Mínimo
$egin{aligned} arXi (\eta) \ K_i \end{aligned}$	Terceira Função de Underwood para Refluxo Mínimo Fator de Separação de ELV para Composto <i>i</i>
L_{j} , V_{j}	Vazões Molares de Líquido e de Vapor da Seção j em
	Coluna McCabe-Thiele
$\{j\},\{\bar{j}\}$	Colchetes da Seção <i>j</i> pelos métodos de projeto MPD e MPA
X_{oj} , Y_{oj}	Abscissa e Ordenada da Emenda <i>j-1/j</i> no Método McCabe-thiele

Símbolo	Descrição
Símbolos Especiais 5 para Processos de Separação	
$arDelta_j$	Corrente de Diferenças da Seção <i>j</i> no Método Ponchon-Savarit em destilação Binária
$Z_{A\!j}$	Fração Molar "1" da Corrente de Diferenças da Seção j
$H_{\Delta\! j}$	Entalpia Molar "1" da Corrente de Diferenças da Seção j
$oldsymbol{\eta}_j$	Corrente Equivalente da Emenda <i>j-1/j</i> no Método Ponchon-Savarit
$Z_{\eta j}$	Fração Molar "1" da Corrente Equiv. da Emenda j-1/j
$H_{\eta j}$	Entalpia Molar "1" da Corrente Equiv. da Emenda j-1/j
$F_{j},\;U_{j},\;W_{j}$	Efeitos Externos na Emenda j - $1/j$, sendo, respectivamente
	Carga, Retirada Lateral de Líquido e Retirada Lateral de
	Vapor
z_j , s_j , t_j	Frações Molares "1" das correntes acima F_j , U_j , W_j

Notação

scrição

Siglas Especiais para Sistemas, Transformações e Leis da Termodinâmica

PPM Propriedade Parcial Molar

Operador PPM Operador Gerador de Propriedade Parcial Molar

PR EOS Peng-Robinson

RK EOS Redlich-Kwong

SA, SF, SI Sistema Aberto, Sistema Fechado, Sistema Isolado

SRK EOS Soave-Redlich-Kwong

TI, TR Transformação Irreversível e Transformação Reversível

TQE Transformação Quase-Estática

VDW EOS Van der Waals

1ºLTD Primeira Lei da Termodinâmica

2ºLTD Segunda Lei da Termodinâmica

Símbolo	Descrição
Siglas Especiais para Sistemas Auxiliares Reservatórios	
RC	Reservatório de Calor <i>SF</i> , <i>EE</i> Interno, Infinito, Rígido, Parede Diatérmica Parâmetro Intensivo Constante <i>T</i>
RE_1	Reservatório de Espécie I SA , EE Interno, Infinito, Rígido, Parede Permeável a I Parâmetros Intensivos Constantes T , μ_I
$RE_k \ (k=1, 2, \ldots, nc)$	Reservatório de Espécie k SA, EE Interno, Infinito, Rígido, Parede Permeável a k Parâmetros Intensivos Constantes T , μ_k
RV	Reservatório de Volume <i>SF, EE</i> Interno, Infinito, Parede Móvel p/ Troca de Volume Parâmetro Intensivo Constante <i>P</i>

Símbolo	Descrição
Sobres	scritos, Subscritos e Marcadores
6	Referente a Gás Ideal
M'	Propriedade M de Gás Ideal
*	Estado de Gás Ideal Puro i , em Temperatura T e 1 bar
$M^*(T)$	Propriedade M no Estado *
0	ER de Puro i na T e P do Sistema de Interesse
$M^o(T,P)$	Propriedade M no Estado o
E	Referente a Excesso
M^E	Propriedade M de Excesso
R	Referente a Residual
M^R	Propriedade M Residual
ID	Referente à Solução Ideal
M^{ID}	Propriedade M de Solução Ideal

Símbolo	Descrição
Sobrescritos, Subscritos e Marcadores	
∞ (Por exemplo D^{∞} , B^{∞} , etc)	Valor associado à condição de <i>Pinch</i> ou equivalente em Problemas de Separação
* (Por exemplo D^* , B^* , etc)	Valor associado à condição de Refluxo Total ou equivalente em Problemas de Separação
ν	Propriedade de Fase Vapor
l	Propriedade de Fase Líquida
$M^M \equiv M(T,P, \underline{N}) - M^o(T,P, \underline{N})$	Propriedade M de Mistura
o	ER de Puro <i>i</i> na <i>T</i> e <i>P</i> do Sistema de Interesse
$M^o(T,P)$	Propriedade M no Estado o

Notação

Símbolo Descrição

Símbolos de Propriedades em Termodinâmica de Soluções

٨

 \hat{a}_{k}

 \hat{a}_{k}^{ID}

 \hat{f}_k , \hat{f}_k'

 f_k , f_k'

 $\hat{\phi}_k = \frac{\hat{f}_k}{\hat{f}_k'}$

 $\phi_k = \frac{f_k}{f_k'}$

 $\hat{\gamma}_k = \frac{\hat{a}_k}{\hat{a}_k^{ID}}$

Indica em Mistura

Atividade de Espécie k em Mistura a (T,P, N)

Atividade de Espécie k em Solução Ideal a (T,P, N)

Fugacidade de Espécie k em Mistura a (T,P, N) e como GI

Fugacidade de Espécie k Pura em (T,P) e como GI

Coeficiente de Fugacidade de Espécie k em Mistura a (T,P, N)

Coeficiente de Fugacidade de Espécie k Pura a (T,P, N)

Coeficiente de Atividade de Espécie k em Mistura a (T,P, N)

Notação

Símbolo

Descrição

Gradientes Colunares e Geração de PPMs

$$\underline{\nabla}_{N} M = \begin{bmatrix} \left(\frac{\partial M}{\partial N_{I}} \right)_{T,P,N_{j \neq I}} \\ \vdots \\ \left(\frac{\partial M}{\partial N_{nc}} \right)_{T,P,N_{j \neq nc}} \end{bmatrix}$$

Opera no Contexto M(T,P, N)

$$M(T,P,\underline{N}) \Rightarrow \overline{M}_k = \left(\frac{\partial M}{\partial N_k}\right)_{T,P,N_{j\neq k}}$$

Formato Tradicional para Gerar PPM

$$\underline{\overline{M}} = \begin{bmatrix} \overline{M}_I \\ \vdots \\ \overline{M}_{nc} \end{bmatrix} = \underline{\nabla}_N M$$

Vetor nc x 1 de PPMs

Notação

Símbolo

Descrição

$$\underline{\nabla}_{X} M_{N} = \begin{bmatrix} \left(\frac{\partial M_{N}}{\partial X_{I}} \right)_{T,P,X_{j \neq I}} \\ \vdots \\ \left(\frac{\partial M_{N}}{\partial X_{nc}} \right)_{T,P,X_{j \neq nc}} \end{bmatrix}$$

Opera no Contexto $M_N(T,P, X)$

$$M_N(T, P, \underline{X}) \Rightarrow \overline{M}_i = M_N - \sum_{k=1}^{nc} X_k \left(\frac{\partial M_N}{\partial X_k}\right)_{T, P, X_{j \neq k}} + \left(\frac{\partial M_N}{\partial X_i}\right)_{T, P, X_{j \neq i}}$$
 Formato Alternate para Gerar PPM

Formato Alternativo

$$\underline{\overline{M}} = \begin{bmatrix} \overline{M}_I \\ \vdots \\ \overline{M}_{nc} \end{bmatrix} = (M_N - \underline{X}^T \underline{\nabla}_X M_N) \underline{I} + \underline{\nabla}_X M_N$$

Vetor *nc x* 1 de PPMs