Homework 3

Walker Bagley

February 17, 2023

1. (a) Prove that any regular expression with quantifiers has an equivalent expression without quantifiers

Proof. Consider some regular expression with quantifiers q = rst where r, t are any other regular expressions and $s = \alpha^{\{m,n\}}$ is the quantified section of q. By definition, s matches all strings $w^{(1)} \cdots w^{(l)}$ where $m \leq l \leq n$ and $w^{(i)} = \alpha$ for all $1 \leq i \leq l$. So, we can then define \bar{s} as $\bar{s} = \bigcup_{i=m}^n w^{(1)} \cdots w^{(i)} = [w^{(1)} \cdots w^{(n)}] \cup [w^{(1)} \cdots w^{(n+1)}] \cup \cdots [w^{(1)} \cdots w^{(m)}]$. This is in itself a regular expression representing s without quantifiers, so then we reconstruct $q = r\bar{s}t$.

(b) Prove that a language with backreferences is not regular

Proof. Consider the language given by a Unix regular expression $R=(a+)b\backslash 1$. Suppose, towards a contradiction that R is regular. By the pumping lemma, there is some $p\geq 1$ such that any $s\in R$ where $|s|\geq p$ can be written as s=xyz with |y|>0, $|xy|\leq p$ and for all $i,\,xy^iz\in R$. Let $s=a^pba^p$. Because $|xy|\leq p,\,y$ consists of at least one a. Let i=2, so according to the lemma $xyyz\in R$, but xyy contains more a's than z, so $xyyz\notin R$ and we have a contradiction. \square

2. (a) Show that B is regular

Proof. Consider the DFA below that accepts $B = \{w \in \Sigma_3^* | \text{ the bottom row of } w \text{ is the sum of the top two rows}\}$. As a result, we know that B is regular.

(b) Prove that ADD is not regular

Proof. Consider the language given by $ADD = \{x = y + z | x, y, z \in \{0, 1\}^* \text{ and } x = y + z \text{ is true}\}$. Suppose, towards a contradiction that ADD is regular. By the pumping lemma, there is some $p \geq 1$ such that any $s \in ADD$ where $|s| \geq p$ can be written as s = tuv with |u| > 0, $|tu| \leq p$ and for all $i, tu^iv \in ADD$. Let s be $x^p = y^p + z^p$. Because $|tu| \leq p$, u contains at least one character in x^p . Let i = 0, so according to the lemma $tv \in ADD$, but tv does not make x = y + z true, so $tv \notin ADD$ and we have a contradiction.

3. (a) Prove that B is a regular language

Proof. Let B be the language defined by $B = \{1^k w | w \in \{0,1\}^* \text{ and } w \text{ contains at least } k \text{ 1s for } k \geq 1\}$. Then any string in B must begin with a 1, and have at least one other 1 after it. So, we can write this condition as a regular expression $B = 1(0|1)^*1(0|1)^*$. The existence of this regular expression means that B is regular.

(b) Prove that C is not a regular language

Proof. Consider the language given by $C = \{1^k w | w \in \{0,1\}^* \text{ and } w \text{ contains at most } k \text{ 1s for } k \geq 1\}$. Suppose, towards a contradiction that C is regular. By the pumping lemma, there is some $p \geq 1$ such that any $s \in C$ where $|s| \geq p$ can be written as s = xyz with |y| > 0, $|xy| \leq p$ and for all $i, xy^iz \in C$. Let $s = 1^p01^p$. Because $|xy| \leq p$, y consists of at least one 1 before the 0. Letting i = 0, according to the lemma, $xz \in C$, but we know that there are now fewer 1s before the 0 than after, so $xz \notin C$ and we have a contradiction.