Axler: Bases

James Pagan

March 2024

Contents

1	Span and Linear Independence	2
	1.1 Linear Combinations and Span	2
	1.2 Linear Independence and Bases	2
2	Bases	4
3	Dimension	6

1 Span and Linear Independence

1.1 Linear Combinations and Span

Let (\mathbf{v}_{α}) be vectors in an F-vector space V. Any vector of the form $\lambda_1 \mathbf{v}_{\alpha_1} + \cdots + \lambda_n \mathbf{v}_{\alpha_n}$ for $\mathbf{v}_{\alpha_i} \in (\mathbf{v}_{\alpha})$ and $\lambda_i \in F$ is called a **linear combination** of $\mathbf{v}_1, \ldots, \mathbf{v}_n$. The set of all linear combinations constitutes the **span** of the vectors:

$$\operatorname{span}(\mathbf{v}_{\alpha}) \stackrel{\text{def}}{=} \{\lambda_1 \mathbf{v}_{\alpha_i} + \dots + \lambda_n \mathbf{v}_{\alpha_n} \mid n \in \mathbb{Z}_{>0}, \mathbf{v}_{\alpha_i} \in (\mathbf{v}_{\alpha}), \lambda_i \in F\}.$$

It is quite clear that $\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ is the smallest subspace of V that contains (\mathbf{v}_α) . The vectors $\operatorname{span} V$ if $\operatorname{span}(\mathbf{v}_\alpha) = V$; if V is spanned by some finite list of vectors, it is **finite-dimensional**. Otherwise, V is **infinite-dimensional**. These are the classical terms for V being a finitely-generated F-module.

1.2 Linear Independence and Bases

A list of vectors (\mathbf{v}_{α}) in V is **linearly independent** if for every nonempty finite subset $\mathbf{v}_{\alpha_1}, \ldots, \mathbf{v}_{\alpha_n} \in (\mathbf{v}_{\alpha})$, the only solution to the equation

$$\lambda_1 \mathbf{v}_{\alpha_1} + \cdots + \lambda_n \mathbf{v}_{\alpha_n} = \mathbf{0}$$

is when $\lambda_1 = \cdots = \lambda_n = 0$. We declare the empty list \emptyset to be linearly independent. A **linearly independent subset** is a list of vectors (\mathbf{v}_{α}) which are linearly independent.

Lemma 1 (Linear Dependence Lemma). Suppose v_1, \ldots, v_n is a dependent list of vectors in V. Then there exists v_k from the list such that

$$\mathbf{v}_k \in \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_n),$$

and if one removes \mathbf{v}_k from the list, the span of the remaining list equals $\mathrm{span}(\mathbf{v}_1,\ldots,\mathbf{v}_n)$.

Proof. Let $k \ge 2$ be the smallest integer such that $\mathbf{v}_1, \dots, \mathbf{v}_k$ is dependent; there exist $\lambda_1, \dots, \lambda_n$ not all zero such that $\lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k = \mathbf{0}$. We must have $\lambda_k \ne 0$, since $\mathbf{v}_1, \dots, \mathbf{v}_{k-1}$ are dependent; thus

$$\mathbf{v}_k = -\frac{\lambda_1}{\lambda_k} \mathbf{v}_1 - \dots - \frac{\lambda_{k-1}}{\lambda_k} \mathbf{v}_k,$$

so $\mathbf{v}_k \in \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$. If we have any $\mathbf{w} \in \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$, we can substitute this expression for \mathbf{v}_k into the equation to express \mathbf{w} as a linear combination of the \mathbf{v}_i excluding \mathbf{v}_k ; hence the span remains unchanged.

Proposition 1 (Finite-Dimensional Case). Let V be a finite-dimensional vector space. Suppose that $\mathbf{u}_1, \dots, \mathbf{u}_m$ is independent in V and $\mathbf{w}_1, \dots, \mathbf{w}_n$ spans V. Then $m \leq n$

Proof. We present an algorithmic proof:

- 1. Step 1: The list $\mathbf{u}_1, \mathbf{w}_1, \dots, \mathbf{w}_n$ must be linearly dependent, since \mathbf{u}_1 lies in the span of the \mathbf{w}_i . Hence we may remove some \mathbf{w}_i from this list via the Linear Dependence Lemma to attain a new list which spans V.
- 2. **Step 2**: Now consider the list $\mathbf{u}_2, \mathbf{u}_1, \mathbf{w}_1, \dots, \mathbf{w}_n$. The Linear Dependence Lemma allows us to remove some \mathbf{w}_i to attain a list which spans V.

We continue this process for m steps. Along each step, the Linear Dependence Lemma allows us to pluck out a \mathbf{w}_i — a \mathbf{v}_i is never removed. Thus $m \leq n$.

This theorem generalizes to infinite lengths: suppose $\mathbf{v}_1, \dots, \mathbf{v}_n$ spans V. Any infinite independent list (\mathbf{u}_β) in V contains an independent sublist with length greater than n-a contradiction. Hence all independent lists in V are finite.

Proposition 2 (Infinite-Dimensional Case). Let V be a vector space. Suppose that (\mathbf{u}_{β}) of length U is independent in V and (\mathbf{w}_{α}) of length W spans V. Then $U \leq W$.

Proof. If one of U and W is finite, the result is implied by Proposition 1. Otherwise — suppose that (\mathbf{u}_{β}) is an independent list of length U in V and (\mathbf{w}_{α}) is a spanning list of length W in V such that U, $W \geqslant \aleph_0$.

By Corollary 1, the list (\mathbf{u}_{β}) may be extended to become a basis (\mathbf{v}_{γ}) . For each $\mathbf{w} \in (\mathbf{w}_{\alpha})$, there exists a finite subset $\mathsf{E}_{\mathbf{w}} \subset (\mathbf{v}_{\gamma})$ such that

$$\mathbf{w} = \sum_{\mathbf{v} \in \mathsf{E}_{\mathbf{w}}} \lambda_{\mathsf{i}} \mathbf{v}.$$

for $\lambda_i \in F$. By the Axiom of Choice, $\bigcup_{\mathbf{w} \in (\mathbf{w}_\alpha)} E_{\mathbf{w}}$ has the same cardinality as $(\mathbf{w})_\alpha$.

We claim this union is equal to (\mathbf{v}_{γ}) . All \mathbf{v}_{γ} are expressible as linear combination of some $\mathbf{w}_{\alpha_1},\ldots,\mathbf{w}_{\alpha_n}$ — which in turn are a linear combination of finitely many elements in (\mathbf{v}_{γ}) . As the elements in (\mathbf{v}_{γ}) are independent, the only possibility is that $\mathbf{v}_{\gamma} \in \mathsf{E}_{\mathbf{w}_{\alpha_i}}$ for some i. Hence $\bigcup_{\mathbf{w} \in (\mathbf{w}_{\alpha})} \mathsf{E}_{\mathbf{w}} = (\mathbf{v}_{\gamma})$, so

$$U = |(\mathbf{u}_{\beta})| \leq |(\mathbf{v}_{\gamma})| = |(\mathbf{w}_{\alpha})| = W$$

Thus the desired result holds.

The following result is an easy corollary from Commutative Algebra. We prove it using elementary techniques as well:

Proposition 3. Every subspace of a finite-dimensional vector space V is finite-dimensional.

Proof. V is a finitely-generated module over a Noetherian ring, so all submodules of V are finitely generated. If desired without modules, the proof is algorithmic: let $W \subseteq V$ be a subspace. We construct a set of vectors which span V.

- 1. **Step 1**: If W = 0, we are done; otherwise, select some vector $\mathbf{w} \in W$.
- 2. **Step n**: If $U = \text{span}(\mathbf{w}_1, \dots, \mathbf{w}_{n-1})$, then U is finite-dimensional. Otherwise, choose a vector $\mathbf{u}_n \notin W$ such that

$$\mathbf{u}_n \notin \text{span}(\mathbf{u}_1, \dots, \mathbf{u}_{n-1}).$$

This set constructs a linearly independent list — the length of which must be finite by Proposition 2. Thus the process must terminate, in which case \mathbf{w}

2 Bases

A **basis** of V is a list of vectors in V that are linearly independent and span V. If (\mathbf{v}_{α}) is a basis of V, each vector $\mathbf{w} \in V$ may be written as a unique combination

$$\mathbf{w} = \lambda_1 \mathbf{v}_{\alpha_1} + \cdots + \lambda_n \mathbf{v}_{\alpha_n}$$

for scalars $\lambda_1, \ldots, \lambda_n \in F$ and indices α_i . We now expand upon Axler by discussing infinite-dimensional vector spaces:

Theorem 1. All vector spaces V have a basis.

Proof. We furnish the tools necessary to apply Zorn's Lemma. Let S be the family of all linearly independent subsets of V, partially ordered by inclusion. Let T be a totally ordered subset of sets in S.

Claim 1. The union of all sets in T is a linearly independent subset of V.

Proof. Let $B = \bigcup_{A \in \mathcal{T}} A$. We must demonstrate that B is linearly independent; hence, let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be some finite subset of B. Then there exist $A_1, \ldots, A_n \in \mathcal{T}$ such that $\mathbf{v}_i \in A_i$.

Since \mathcal{T} is totally ordered, one of these sets is a maximal element; thus $\mathbf{v}_1,\ldots,\mathbf{v}_n\in A_j$ for some j. Because $A_j\in \mathcal{S}$, it is a linearly independent subset; hence $\mathbf{v}_1,\ldots,\mathbf{v}_n$ are linearly independent. We conclude that B is a linearly independent subset of V—hence, it lies in \mathcal{S} .

The set B described above thus functions as an upper bound of T with respect to inclusion. Zorn's lemma now implies the existence of a maximal subset $M \in S$.

The maximality of M entails that for all $\mathbf{w} \in V$, we have $span(M) \cup \{\mathbf{w}\} = span(M)$. Hence $\mathbf{w} \in span(M)$; we conclude that $V \subseteq span(M)$, which entails V = span(M). Hence M is a basis of V.

Hence all F-modules are free. Theorem 1 is actually *equivalent* to the Axiom of Choice.

Corollary 1. Any linearly independent list (\mathbf{v}_{α}) can be extended to become a basis.

Proof. The argument follows Theorem 1 precisely — except we define S as the set of all linearly independent subsets of V that contains (\mathbf{v}_{α}) . The argument demonstrates the existence of a basis which contains (\mathbf{v}_{α}) .

Its sister theorem is proven below:

Corollary 2. Any spanning list (\mathbf{v}_{α}) can be reduced to become a basis.

Proof. In the proof of Theorem 1, let S be the all the linearly independent subsets of (\mathbf{v}_{α}) . The same argument demonstrates that an element of S is a basis, as desired. \square

If V is finite-dimensional, algorithms can prove the above results by elementary means. The fact that all finite-dimensional vector spaces have a basis follows from Corollary 2.

Proposition 4. Let $W \subseteq V$ be a subspace. Then there exist a subspace $U \subseteq V$ such that $V \cong W \oplus U$.

Proof. Let (\mathbf{w}_{α}) be a basis of W; extend it to become (\mathbf{v}_{α}) , a basis of V. Define $(\mathbf{u}_{\gamma}) = (\mathbf{v}_{\alpha}) \setminus (\mathbf{w}_{\alpha})$, and let $U = \text{span}(\mathbf{u}_{\gamma})$. Two things:

- 1. Clearly W + U = V, since we defined these spaces by splitting the bases.
- 2. $W \cap U = \mathbf{0}$, since the contrary would provide a nontrivial equation which expresses a linear combination of (\mathbf{v}_{α}) as $\mathbf{0}$.

We conclude via the results of LinearAlgebra/axler1.tex that $V \cong W \oplus U$.

3 Dimension

Before we may define dimension, we need the assistance of the following theorem:

Theorem 2 (Dimension Theorem). Let V be a vector space. All bases of V have the same cardinality.

Proof. Let (\mathbf{u}_{α}) and (\mathbf{w}_{β}) be bases of V with cardinalities U and W. We apply Proposition 2 in two ways:

- 1. Since (\mathbf{u}_{α}) is independent and (\mathbf{w}_{β}) is spanning, $U \leq W$.
- 2. Since (\mathbf{w}_{β}) is independent and (\mathbf{u}_{α}) is spanning, $W \leq U$.

We conclude that U = W.

The cardinality of s bases of V is called the **dimension** of V. Clearly finite-dimensional vector spaces have finite dimension, and otherwise for infinite-dimensional vector spaces.

Proposition 5. *Suppose* $W \subseteq V$ *is a subspace. Then* dim $W \leq \dim V$.

Proof. Let (\mathbf{w}_{β}) and (\mathbf{v}_{α}) be bases of W and V respectively. Observe that (\mathbf{w}_{β}) is independent in V and (\mathbf{v}_{α}) spans V; hence the result is implied by Proposition 2.

Unfortunately, the next two results do not generalize to infinite-dimensional vector spaces.

Proposition 6. Let V be finite-dimensional. Then any independent list or spanning list of of length dim V is a basis.

Proof. Let dim V = n and let $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ be an independent list. We may extend it to become a basis, yielding a list of length n. Thus it must add no new vectors; $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis. Similarly, if $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ is spanning, it may be reduced to attain a basis — a reduction which eliminates no vectors, so $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis.

Corollary 3. Let V be finite dimensional and let $W \subseteq V$ be a subspace. Then V = W if and only if dim $V = \dim W$.

For a counterexample, consider the vector space of polynomials in real coefficients and countably many variables: $\mathbb{R}[x_1, x_2, x_3, ...]$ The list $x_2, x_3, ...$ is independent and the list $x_1, x_2, x_3, ..., x_1 + x_2$ spans. Both have cardinality \aleph_0 , but neither is a basis.