Adatbázis kezelés I. Számított mezők

Rostagni Csaba

2024. október 8.

Ezen az órán... I

- ALIAS
- Számított mezők
- Matematikai függvények

Tartalom I

ALIAS - Álnevek

- Ideiglenes neveket lehet adni
 - adatházisnak
 - táblának
 - mezőknek
 - számított mezőknek
- Az alábbi záradékokban használható mezőkre hivatkozáskor
 - GROUP BY
 - HAVING
 - ORDER BY

igyelem

Szabvány szerint a WHERE záradékban nem használható

Linkek:

• MySQL dokumentáció: ALIAS problémák

ALIAS definiálása

```
SELECT `gyarto` AS `marka` FROM `autok`;
```

• Az AS kulcsszóval lehet mezőt ideiglenesen átnevezni.

```
SELECT `gyarto` `marka`
FROM `autok`;
```

Az AS kulcsszó elhagyható

ALIAS akalmazása

```
SELECT `gyarto` AS `marka`
FROM autok;
```

• A név megadásánál célszerű a backticket alkalmazni

```
SELECT `gyarto` AS 'marka'
FROM autok;
```

• A név megadható aposztróffal is, de nem ajánlott

ALIAS táblanevekre

```
SELECT `autok`.`gyarto`, `autok`.`tipus`
FROM `autok`;
```

• A SELECT részben a tábla neve is megadható

```
SELECT `a`.`gyarto`, `a`.`tipus`
FROM `autok` AS a;
```

- A tábla neveket is át lehet nevezni
- Ez használható például a SELECT-ben

Álnév problémák

```
SELECT `gyarto` AS 'marka'
FROM `autok`
ORDER BY 'marka' ASC;
```

- Az eredmény nincs növekvő sorrendben az aposztróf használatakor
- A rendezést egy láthatatlan oszlop alapján végezte, de minden egyes sorában ugyanaz az adat található: marka

```
SELECT `gyarto` AS `marka` FROM `autok` ORDER BY `marka` ASC;
```

SELECT	ORDER BY
Ford	Ford
Ford	Ford
Honda	Honda
Opel	Opel

8/31

A backtick használata a kívánt sorrendet eredményezi

Tartalom I

Számított mezők

Számított mezők

- SQL lekérdezésben lehetőség van számítások elvégzésére
- Szerepelhet benne:
 - Kontstans érték: 1, 'hello', '2000-01-01', true
 - Egy mező az adatbázisból: `ar`
 - Valamilyen függvény: sqrt(9), round(1.975,2)

Rostagni Csaba Adatbázis kezelés 2024. október 8.

A DUAL "tábla"

```
SELECT 10 + 5 AS `eredmeny`
FROM dual;
```

- Előfordulhatnak olyan lekérdezések, amit nem táblától szeretnénk lekérdezni.
- A dual egy speciális "tábla", ahonnan bármit lekérdezhetünk.
 - Itt a backtick nem használható!

```
SELECT 10 + 5 AS `eredmeny`;
```

- Más adatbázisoknál kötelező
- A MySQL-ben elhagyható

Linkek:

SELECT - MySQL dokumentáció

Aritmetikai operátorok

Operátor	Művelet
-	Negatív előjel
*	Szorzás
/	(Valós) Osztás
MOD vagy %	Modulo operátor / Maradék képzés
DIV	Egész osztás
+	Összeadás
-	Kivonás

 A műveletek precedencia (műveleti sorrend) szerinti sorrendben láthatóak

Linkek:

Aitmetikai műveletek - MySQL dokumentáció

A termekek tábla

id	nev	kategoria	netto	penznem	afa
1	4K TV	tv	499	EUR	0.19
2	Mobil 32GB	mobil	299	EUR	0.19
3	Mobil 128GB	mobil	679	EUR	0.19
4	Olcsó laptop	laptop	269	EUR	0.19
5	Drága laptop	laptop	1729	EUR	0.19
6	Könyv	könyv	NULL	NULL	NULL

Rostagni Csaba Adatbázis kezelés 2024. október 8.

Számított mezők

Jelenítsük meg a termékek bruttó árait.

```
SELECT

'nev' AS 'termek_nev',

'netto' * (1 + afa) AS 'brutto'

FROM

'termekek';
```

 A lekérdezések során a tábla mezői felhasználhatóak különböző számításokhoz.

Rostagni Csaba Adatbázis kezelés 2024. október 8

Szűrés számított mező alapján

Jelenítsük meg azokat a termékeket, melyek **bruttó ára** több, mint 400 euro

```
SELECT

'nev' AS 'termek_nev',

'netto' * (1 + afa) AS 'brutto'

FROM 'termekek'

WHERE 'brutto' > 400;
```

```
#1054 - A(z) 'brutto' oszlop ervenytelen 'where clause'-ben
```

 Az ANSI SQL szabvány szerint a WHERE záradékban nem használható ALIAS

Rostagni Csaba Adatbázis kezelés 2024. október 8.

Számított mezők feltételként

Jelenítsük meg azokat a termékeket, melyek **bruttó ára** több, mint 400 euro

```
SELECT

'nev' AS 'termek_nev',

'netto' * (1 + afa) AS 'brutto'

FROM 'termekek'

WHERE 'netto' * (1 + afa) > 400;
```

`termek_nev `	`brutto `
4K TV	633.73
Mobil 128GB	862.33
Drága laptop	2195.83

A WHERE záradékban alkalmazhatóak számított értékek

Jelenítsük meg a termékek nevét és a bruttó árat a bruttó szerinti növekvő sorrendben.

```
SELECT `nev`, `netto` * (1 + `afa`) AS 'brutto'
FROM `termekek`
ORDER BY 'brutto' ASC;
```

• A kód le fog futni, de nem a várt eredménnyel.

Rostagni Csaba Adatbázis kezelés 2024. október 8.

`nev `	`brutto `
4K TV	94.80999881029129
Mobil 32GB	56.80999928712845
Mobil 128GB	129.00999838113785
Olcsó laptop	51.10999935865402
Drága laptop	328.50999587774277
Könyv	-

brutto	
brutto	

18 / 31

'brutto'

- Az eredmény rendezett, de egy harmadik, mesterségesen generált mező alapján.
- Fontos, hogy az álnév backtick legyen, itt ennek hiányában nem működött a rendezés.

Jelenítsük meg a termékek nevét és a bruttó árat a bruttó szerinti növekvő sorrendben.

```
SELECT `nev`, `netto` * (1 + `afa`) AS `brutto`

FROM `termekek`

ORDER BY `netto` * (1 + `afa`) ASC;
```

• A rendezési feltétel kiszámítása elvégezhető az ORDER BY záradékban

```
SELECT `nev`, `netto` * `afa` AS `brutto`

FROM `termekek`

ORDER BY `brutto` ASC;
```

 Az ORDER BY záradékban használható a SELECT-ben meghatározott álnév

`nev `	`brutto `
Könyv	NULL
Olcsó laptop	51.10999935865402
Mobil 32GB	56.80999928712845
4K TV	94.80999881029129
Mobil 128GB	129.00999838113785
Drága laptop	328.50999587774277

- Rendezéskor a NULL értékeket mindennél kisebbnek tekinti a MySQL
- Növekvő sorrend esetében az elsők között szerepel
- Csökkenő sorrend esetében az utolsók között szerepel

Tartalom I

- Matematikai függvények
 - Egyszerű matematikai függvények
 - Kerekítés

Tartalom

- Matematikai függvények
 - Egyszerű matematikai függvények
 - Kerekítés

Matematikai függvények

```
ABS(x) |x| abszokút érték MOD(x,y) maradékos osztás POW(x,y) x^yhatványozás POWER(x,y) x^y hatványozás SQRT(x) \sqrt{x} gyök
```

https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html

Rostagni Csaba Adatbázis kezelés 2024. október 8. 23/31

Függvényhaszálat: SQRT()

A lekérdezésben használhatunk függvényeket, például a gyök függvényt!

```
SELECT SQRT(9) AS `negyzetgyok`
FROM DUAL;
```


Linkek:

MySQL dokumentáció: Matematikai függvények

Rostagni Csaba Adatbázis kezelés 2024. október 8. 24 / 31

PI()

PI()

- Megadja a π (pi) értékét.
- Alapértelmezetten 7 számjegyet jelenít meg
 - ebből 1 számjegy az egész résznek,
 - és 6 számjegy a tört résznek.
- Ennél nagyobb pontosságal tárolja és számol vele.

```
SELECT PI() as `pite` FROM DUAL;
```

MySQL

25 / 31

pite 3.141593

Rostagni Csaba Adatbázis kezelés 2024. október 8.

Tartalom

- Matematikai függvények
 - Egyszerű matematikai függvények
 - Kerekítés

Kerekítő függvények

```
CEILING(x) [x] felső egész rész

CEIL(x) alias a CEILING() függvényre

FLOOR(x) [x] alsó egész rész

ROUND(x,n) matematikai kerekítés

TRUNCATE(x,n) nem kerekít, levágja a tizedes jegyeket
```

Linkek:

MySQL dokumentáció: Matematikai függvények

Rostagni Csaba Adatbázis kezelés 2024. október 8. 27 / 31

Kerekítés ROUND(x,d)

- x Kerekítendő érték
- d tizedesek száma

A bruttó árat két tizedesre kerekítve jelenítse meg!

```
SELECT ROUND(`netto` * (1 + afa) ,2) AS `brutto` FROM `termekek`;
```

- Alapvetően a matematikai kerekítést alkalmazza, 5-től felfelé kerekít
- Lebegőpontos számábrázolás esetén bizonyos rendszereken előfordul, hogy a "Round to Even", más néven "Banker's Rounding" módszert alkalmazhatja

Linkek:

- MySQL dokumentáció: Az ROUND() függvény
- Wikipedia: Szimmetrikus kerekítés (Banker's Rounding)

Rostagni Csaba Adatbázis kezelés 2024. október 8.

ROUND() példák

```
SELECT ROUND(123.4567) as `eredmeny` FROM DUAL;
```

eredmeny 123

• Ha a második paraméter 0, vagy nincs, akkor egészre kerekít

```
SELECT ROUND(123.4567,1) as `eredmeny` FROM DUAL;
```

eredmeny 123.5

• A második paraméter 1, így egy tizedesre kerekít

```
SELECT ROUND(123.4567,-1) as `eredmeny` FROM DUAL;
```

eredmeny 120

29 / 31

Mivel a a második paraméter -1, így a tizes helyiértékű számra kerekíti

Linkek:

MySQL dokumentáció: Az ROUND() függvény

Rostagni Csaba Adatbázis kezelés 2024. október 8.

CEIL(), FLOOR(), és ROUND() összehasonlítása

```
MySQL
SELECT CEIL(222.111) as `eredmeny`
FROM DUAL:
```

eredmeny 223

 A CEIL() függvény visszaadja a tőle nem kisebb legkisebb egész számot

```
MvSQL
SELECT FLOOR(111.888) as `eredmeny`
FROM DUAL:
```

eredmeny 111

 A FLOOR() függvény visszaadja a tőle nem nagyobb legnagyobb egész számot

```
MvSQL
SELECT ROUND (111.888) as `eredmeny`
FROM DUAL:
```

eredmeny 112

A ROUND() függvény kerekítést alkalmaz

Linkek:

 MySQL dokumentáció: Az ROUND() Rostagni Csaba Adatbázis kezelés

CEIL(), FLOOR(), és ROUND() negatív számokkal

```
SELECT CEIL(-222.111) as `eredmeny` FROM DUAL;
```

eredmeny -222

 A CEIL() függvény visszaadja a tőle nem kisebb legkisebb egész számot

```
SELECT FLOOR(-111.888) as `eredmeny` FROM DUAL;
```

eredmeny -112

 A FLOOR() függvény visszaadja a tőle nem nagyobb legnagyobb egész számot

```
SELECT ROUND(-111.888) as `eredmeny` FROM DUAL;
```

eredmeny

-112

31 / 31

A ROUND() függvény kerekítést alkalmaz

Linkek: