

Bayes Theorem

Likelihood

Probability of collecting this data when our hypothesis is true

$$P(H|D) = \frac{P(D|H) P(H)}{P(D)}$$

Prior

The probability of the hypothesis being true before collecting data

Posterior

The probability of our hypothesis being true given the data collected

Marginal

What is the probability of collecting this data under all possible hypotheses?

	A	~A -
В٠	P(A∩B)	
~B		

$$P(A \cap B) = P(A|B) * P(B) = P(B|A) * P(A)$$

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Question

1% of women at age forty who participate in routine screening have breast cancer.

80% of women with breast cancer will get positive mammographies.

9.6% of women without breast cancer will also get positive mammographies.

A woman in this age group had a positive mammography in a routine screening.

What is the probability that she actually has breast cancer?

	Have Cancer (1%)	Do Not Have Cancer (99%)	
Positive Test	True Positive: 1% * 80%	False Positive: 99% * 9.6%	
Negative Test	False Negative: 1% * 20%	True Negative: 99% * 90.4%	

5

$$P(cancer \mid positive test) = \frac{P(positive test \mid cancer) P(cancer)}{P(positive test)}$$

P(positive test) = P(positive test | cancer) * P(cancer) + P(positive test | no cancer) * P(no cancer)

P(positive test) =
$$0.8 * 0.01 + 0.096 * 0.99 \neq 0.103$$

$$P(cancer) = 0.01$$

P(positive test | cancer) = 0.8 ·

P(cancer | positive test) =
$$\frac{0.8 * 0.01}{0.103}$$
 = 0.078

Spam Filtering with Naïve Bayes

$$P(s\underline{pam}|words) = \frac{P(s\underline{pam})P(words|s\underline{pam})}{P(words)}$$

$$P(\underbrace{spam|viagra,rich,...,friend}) = \frac{P(spam)P(viagra,rich,...,friend|spam)}{P(viagra,rich,...,friend)}$$

P(spam)P(viagra, rich, ..., friend|spam)

- $\propto P(spam)P(viagra|spam)P(rich,...,friend|spam,viagra)$
- $\propto P(spam)P(viagra|spam)P(rich|spam,viagra)P(...,friend|spam,viagra,rich)$

P(viagra|spam)P(rich|spam)...P(friend|spam)