

We claim:

1. A method for producing an elliptic curve point multiplication product, $Q = eP$, using an arbitrary integer e , a point P on an elliptic curve group G defined over a field F , where $G \subset F$ $\times F$, comprising the steps of:

constructing a set G' ;

constructing a mapping T from G into the set G' , constructing a mapping T^{-1} from G' onto G , and constructing an operation \oplus defined on G' , such that (a) given $P \in G$, $T^{-1}(T(P)) = P$, and (b) $P + P = T^{-1}(P' \oplus P')$, where $P' = T(P)$;

producing an elliptic curve point multiplication product Q by transforming the point P to the point P' using the mapping T , performing the operation \oplus on the point P' to determine the point $Q' = eP'$, transforming the point Q' to the product Q using the mapping T^{-1} ; and
using the product Q in a cryptographic operation.

2. The method of claim 1 wherein the set G , the set G' , the mapping T , the operation \oplus , and the mapping T^{-1} are constructed such that given $P_1, P_2, \dots, P_N \in G$, where N is an integer, the computation of $T^{-1}(T(P_1) \oplus T(P_2) \oplus \dots \oplus T(P_N))$ is more efficient than the computation of $P_1 + P_2 + \dots + P_N$.

3. The method of claim 1 wherein:

the mapping T is constructed by selecting any element r of the field F , and defining T as $T: (x, y) \rightarrow (x \cdot r, y \cdot r)$, where $P = (x, y) \in G$, and \cdot is the multiplication operator in F ; and
the mapping T is constructed by defining $T: (u, v) \rightarrow (u \cdot r^{-1}, v \cdot r^{-1})$, where $P' = (u, v) \in$

5 G'

4. The method of claim 3 wherein the field F is a member of GF(p).

5. The method of claim 4 wherein the element r is selected as the smallest power of 2 that is larger than p.

6. The method of claim 4 wherein the element r is selected as the product of prime numbers.

7. The method of claim 4 wherein the operation \oplus is constructed such that the addition of two points in the set G' is given by:

$$(x_3', y_3') = (x_1', y_1') \oplus (x_2', y_2');$$

$$z' = (x_2' - x_1')^{-l} \cdot r^2;$$

$$L' = (y_2' - y_1') \cdot z' \cdot r^{-l};$$

$$x_3' = L' \cdot L' \cdot r^{-l} - x_1' - x_2', \text{ and}$$

$$y_3' = L' \cdot (x_1' - x_3') \cdot r^{-l} - y_1'.$$

8. The method of claim 4 wherein the operation \oplus is constructed such that the doubling of a point in the set G' is given by:

$$(x_1', y_1') \oplus (x_1', y_1') = (x_3', y_3');$$

$$z' = (y_1' + y_1')^{-l} \cdot r^2;$$

$$L' = ((x_1' + x_1' + x_1') \cdot x_1' \cdot r^{-l} + a) \cdot z' \cdot r^{-l};$$

$$x_3' = L' \cdot L' \cdot r^{-l} - x_1' - x_1', \text{ and}$$

$$y_3' = L' \cdot (x_1' - x_3') \cdot r^{-l} - y_1'.$$

9. The method of claim 4 wherein the Montgomery Algorithm in GF(p) is utilized to perform the operation \oplus on the point P' to determine the point $Q' = e P'$.

10. The method of claim 3 wherein the field F is a member of $GF(2^k)$.

11. The method of claim 10, wherein the operation \oplus is constructed such that the addition of two points in the set G' is given by:

$$(x_3', y_3') = (x_1', y_1') \oplus (x_2', y_2');$$

$$z' = (x_1' + x_2')^{-1} \cdot r^2;$$

$$L' = (y_1' + y_2') \cdot z' \cdot r^{-1},$$

$$x_3' = (L' \cdot L' \cdot r^{-1}) + L' + x_1' + x_2' + \alpha'; \text{ and}$$

$$y_3' = (L' \cdot (x_1' + x_2') \cdot r^{-1}) + x_3' + y_1'.$$

12. The method of claim 10, wherein the operation \oplus is constructed such that the doubling of a point is given by:

$$(x_1', y_1') \oplus (x_1', y_1') = (x_3', y_3');$$

$$z' = (x_1')^{-1} \cdot r^2;$$

$$x_3' = x_1' \cdot x_1' \cdot r^{-1} + (z' \cdot z' \cdot r^{-1}) \cdot b \cdot r^{-1}; \text{ and}$$

$$y_3' = x_1' \cdot x_1' \cdot r^{-1} + (x_1' + y_1' \cdot z' \cdot r^{-1}) \cdot x_3' \cdot r^{-1} + x_3'.$$

5

13. The method of claim 10 wherein the element r is selected as $x^k \bmod n(x)$, where $n(x)$ is the irreducible polynomial generating the field $GF(2^k)$.

14. The method of claim 10 wherein the Montgomery Algorithm in $GF(2^k)$ is utilized

to perform the operation \oplus on the point P' to determine the point $Q' = e P'$.

15. The method of claim 1 wherein the step of performing the operation \oplus on the point P' utilizes a binary method.

16. The method of claim 1 wherein the step of performing the operation \oplus on the point P' utilizes an M-ary method.

17. The method of claim 1 wherein the elements of sets G and G' are implemented using Projective Coordinates.

5

18. A method for optimizing the calculation of an expression $f = f(x_1, \dots, x_i, \dots, x_n)$, wherein the expression f is comprised of a finite number of arbitrary field operations over any finite field F , and $x_1, \dots, x_i, \dots, x_n$ are all elements of F , comprising the steps of:
selecting an element r , a constant, from the field F ;
transforming the expression $f = f(x_1, \dots, x_i, \dots, x_n)$ to the $f' = f'(x_1', \dots, x_i', \dots, x_n')$ by
replacing all occurrences of x in the expression f with x' , giving f_1 , where x denotes a variable or constant of f ;
replacing all occurrences of $x \cdot y$ in the expression f_1 with $x \otimes y$, giving f_2 ,
where x and y denote subexpressions of f_1 ;
replacing all occurrences of x^{-1} in the expression f_2 with $x^{-1} \cdot r^2$, giving f_3 ,
where x denotes a subexpression of f_2 ;
replacing all occurrences of $x \otimes y$ in the expression f_3 with $x \cdot y \cdot r^{-1}$,
giving f_4 , where x and y denote subexpressions of f_3 ; and

10

15

replacing all occurrences of x' in the expression f_4 with $x \cdot r$; giving f' ;
where x denotes a primed variable or primed constant in f_4 ;
determining $f = f' \cdot m^{-l}$; and
using $f' \cdot m^{-l}$ to calculate f in a cryptographic operation.

19. The method of claim 18 wherein each instance of $x' \cdot y' \cdot m^{-l}$ is computed using the Montgomery Algorithm when the set F is a member of $GF(p)$.

20. The method of claim 18 wherein each instance of $x' \cdot y' \cdot m^{-l}$ is computed using the Montgomery Algorithm in $GF(2^k)$ when the set F is a member of $GF(2^k)$.

21. A method for producing an elliptic curve point addition product, $Q = P + P$, using a point P on an elliptic curve group G defined over a field F , where $G \subset F \times F$, comprising the steps of:

constructing a set G' ;
5 constructing a mapping T from G into the set G' ; constructing a mapping T^{-l} from G' onto G , and constructing an operation \oplus defined on G' , such that (a) given $P \in G$, $T^{-l}(T(P)) = P$, and (b) $P + P = T^{-l}(P' \oplus P)$, where $P' = T(P)$; and
producing an elliptic curve point addition product Q by transforming the point P to the point P' using the mapping T , performing the operation \oplus on the point P' and the point P' to 10 determine the point Q' , transforming the point Q' to the product Q using the mapping T^{-l} ; and using the product Q in a cryptographic operation.

22. A method for producing an elliptic curve point addition product, $Q = P + S$, using

points P and S on an elliptic curve group G defined over a field F , where $G \subset F \times F$, comprising the steps of:

constructing a set G' ;

5 constructing a mapping T from G into the set G' ; constructing a mapping T^{-1} from G' onto G , and constructing an operation \oplus defined on G' , such that (a) given $P \in G$, $T^{-1}(T(P)) = P$, and (b) $P + S = T^{-1}(P' \oplus S')$, where $P' = T(P)$ and $S' = T(S)$; and

producing an elliptic curve point addition product Q by transforming the point P to the point P' using the mapping T , by transforming the point S to the point S' using the mapping T ,

10 performing the operation \oplus on the point P' and the point S' to determine the point Q' , transforming the point Q' to the product Q using the mapping T^{-1} ; and

using the product Q in a cryptographic operation.

23. Apparatus for producing an elliptic curve point multiplication product, $Q = eP$, using an arbitrary integer e , a point P on an elliptic curve group G defined over a field F , where $G \subset F \times F$, comprising:

means for constructing a set G' ;

5 means for constructing a mapping T from G into the set G' ; constructing a mapping T^{-1} from G' onto G , and constructing an operation \oplus defined on G' , such that (a) given $P \in G$, $T^{-1}(T(P)) = P$, and (b) $P + P = T^{-1}(P' \oplus P')$, where $P' = T(P)$; and

means for producing an elliptic curve point multiplication product Q by transforming the point P to the point P' using the mapping T , performing the operation \oplus on the point P' to

10 determine the point $Q' = eP'$, transforming the point Q' to the product Q using the mapping T^{-1} ; and

means for using the product Q in a cryptographic operation.