The number of teeth on the pinion is 23. The number of teeth on the super gear is 67.

Given:

Module m = 15mm Pressure angle \emptyset = 20° Addendum a = 15mm Dedendum d = 18.75mm

1. Addendum diameter

For the pinion, d_{o1} = d_{P1} + 2*a = 345 + 2*15 = 375.0000mm For the super gear, d_{o2} = d_{P2} + 2*a = 1005 + 2*15 = 1035.0000mm

2. Pitch diameter (Briozzo, 2020)

For the pinion, d_{P1} = m*N = 15 *23 = 345.0000mm. For the super gear, d_{P2} = m*N = 15 *67 = 1005.0000mm

3. Base diameter

For the pinion, d_{b1} = 2* R_{P1} *cos ϕ = 2 *(345/2) * cos 20° = 324.1939mm For the super gear, d_{b2} = 2* R_{P2} *cos ϕ = 2 *(1005/2) * cos 20° = 944.3911mm

4. Dedendum diameter

For the pinion, d_{r1} = d_{P1} – 2*d = 345 – 2*18.75 = 307.5000mm For the super gear, d_{r2} = d_{P2} – 2*d = 1005 – 2*18.75 = 967.5000mm

$$Ro_{1} = \frac{\frac{1}{275}}{2} = 127.5 \text{ mm} \qquad Ro_{2} = \frac{10\frac{1}{27}}{2} = 517.5 \text{ mm}$$

$$Rb_{1} = \frac{\frac{1}{2}24.1929}{2} = 1b2.09b9 \text{ mm} \qquad Rb_{2} = \frac{944.2911}{2} = 472.1955 \text{ mm}$$

$$Rp_{1} = \frac{\frac{1}{2}45}{2} = 172.5 \text{ mm} \qquad Rp_{2} = \frac{1005}{2} = 502.5 \text{ mm}$$

$$AC = \sqrt{Ro_{2}^{2} - Rb_{2}^{2}} - \sqrt{Rp_{2}^{2} - Rb_{2}^{2}}$$

$$= \sqrt{517.5^{2} - 472.1955^{2}} - \sqrt{502.5^{2} - 472.1955^{2}}$$

$$= \sqrt{44.827.6598} - \sqrt{275.27.6598}$$

$$= 211.7490 - 171.8652$$

$$= \sqrt{187.5^{2} - 162.0965^{2}} - \sqrt{172.5^{2} - 162.0965^{2}}$$

$$= \sqrt{187.5^{2} - 162.0965^{2}} - \sqrt{172.5^{2} - 162.0965^{2}}$$

$$= \sqrt{888.0.8450} - \sqrt{2480.8450}$$

$$= 94.2282 - 58.9987$$

$$= 35.2295 \text{ mm}$$

$$AE = AC + EC = 59.8828 + 35.2295 = 75.1252 \text{ mm}$$

5. Tooth width (arc length) (Briozzo, 2020)

For the pinion, pitch diameter d_{P1} = 345mm. Pitch circumference = π^*d_{P1} = π^* 345 = 1083.8495mm. 1083.8495/pinion teeth number = 1083.8495/23 = 47.1239mm per tooth. The tooth thickness is (47.1239/2) = 23.5619mm. For the super gear, pitch diameter d_{P2} = 1005mm. Pitch circumference = π^*d_{P2} = π^* 1005 = 3157.3006mm. 3157.3006/pinion teeth number = 3157.3006/67 = 41.1239mm per tooth. The tooth thickness is (41.1239/2) = 23.5619mm.

6. Tooth width with a 0.01 mm backlash (in mesh) (Briozzo, 2020)

Only consider half of the backlash per tooth.

For the pinion, 23.5619 - (0.01/2) = 23.5569mm.

For the super gear, 23.5619 - (0.01/2) = 23.5569mm.

7. Contact ratio

The line of contact AE = 75.1233mm (Briozzo, 2020)

For the pinion, P_{b1} = $2*\pi*R_{b1}$ / pinion teeth number = $2*\pi*(324.1939/2)/23$ = 44.2820mm.

$$m_{C1} = Z/P_{b1} = 75.1233/44.2820 = 1.6965$$

For the super gear, $P_{b2} = 2*\pi*R_{b2}$ / gear teeth number = $2*\pi*(944.3911/2)/67 = 44.2820$ mm. $m_{C2} = Z/P_{b2} = 75.1233/44.2820 = 1.6965$

8. Length of line of access

AC = 39.8838mm.

9. Length of line of recess

EC = 35.2395mm.

10. Length of line of single tooth contact

AE = 75.1233mm

Reference

Briozzo, P. (2020). MECH2400 9400 Mechanical Design 1: Gear Part 1 [Lecture PowerPoint slides].

Given:

Speed = 2880 RPM

The gearbox starts and stops 10 to 20 times a day.

DG = BG = 50mm, CG = AG = 106/2 = 53 (based on the last two digits of SID)

The number of teeth on the pinion N_p = 23.

The number of teeth on the super gear is $N_a = 67$.

Efficiency for each gear = 98%

Shaft Design:

Assume the shaft diameter is 20mm.

The volume of shaft AB:

$$V_{AB} = \frac{\pi d^2}{4} \cdot length = \frac{\pi (0.02)^2}{4} \cdot (0.05 + 0.053) = 3.2358 \cdot 10^{-5} m^3$$

Based on the data sheet of hot rolled steel, the density of shaft AB is $\rho_{steel}=7872kg/m^3$. The weight of shaft AB:

$$W_{AB} = \rho_{steel} \cdot V_{AB} \cdot 9.81 = 7872 \cdot 3.2358 \cdot 10^{-5} \cdot 9.81 = 2.4989N$$

For calculating the weight of gear, use pitch circle diameter of pinion which is 345mm. The volume of pinion:

$$V_p = \frac{\pi (D^2 - d^2)}{4} \cdot length = \frac{\pi (0.345^2 - 0.02^2)}{4} \cdot 0.025 = 232.9196 \cdot 10^{-5} m^3$$

Consider the pinion material is the same as the shaft, then the density of pinion is $\rho_{steel}=7872kg/m^3$. The weight of pinion:

$$W_p = \rho_{steel} \cdot V_p \cdot 9.81 = 7872 \cdot 232.9196 \cdot 10^{-5} \cdot 9.81 = 179.8706N$$

The gear is turning with 20° pressure angle, and the vertical force caused by 20° pressure angle is pulling the super gear and the pinion away from each other. However, the input torque is transmitted in a clockwise direction and consider some loss of torque due to 98% of pinion efficiency.

The actual torque has applied on the pinion:

$$\tau_p = 0.98 \cdot 28Nm = 27.44Nm$$

The base diameter of pinion is 324.1939mm.

The resultant force caused by torque and 20° pressure angle:

$$F = \tau_n/r_b = 27.44/(324.1939 \cdot 10^{-3}/2) = 169.2814N$$

The vertical force: $F_v = F \cdot \sin 20^\circ = 169.2814 \cdot \sin 20^\circ = 57.8977N$

The horizontal force: $F_x = F \cdot \cos 20^\circ = 169.2814 \cdot \cos 20^\circ = 159.0725N$

The shaft AB has been pushed upward by the application of torque, while the weight of shaft AB and the weight of pinion are acting downward.

Based on the FBD of shaft AB, calculate the total reaction force at point G.

$$F_{Gy} = -W_{AB} - W_p + F_y = -2.4988 - 179.8706 + 57.8977 = -124.4718N$$

For vertical plane, use F_{ν} calculate the corresponding reaction force at point A and point B.

$$\sum M_B = 0 \text{ , } A_y = F_{Gy} \cdot \frac{0.05}{0.05 + 0.053} = 124.4717 \cdot \frac{50}{103} = 60.4232N$$

$$\sum F_y = 0, B_y = F_G - A_y = 124.4717 - 60.4232 = 64.0486N$$

For horizontal plane, use F_x calculate the corresponding reaction force at point A and point B.

$$\sum M_B = 0, A_y = F_{Gx} \cdot \frac{0.05}{0.05 + 0.053} = 159.0725 \cdot \frac{50}{103} = 77.2197N$$

$$\sum F_y = 0, B_y = F_{Gx} - A_y = 159.0725 - 77.2197 = 81.8528N$$

Max bending moment: $M_{Max\ Bending} = \sqrt{3.2024^2 + 4.0926^2} = 5.1967\ Nm$

The ultimate tensile strength of hot rolled steel is 325 MPa.

The endurance limit $F_R = 0.45 \cdot F_{uf} = 146.25 MPa$.

Based on the figures above (Committee ME-005, 2004), at D=20mm, size factor $K_s=1.15$.

The equivalent torque: $T_E = 1.15 \sqrt{{M_q}^2 + 0.75 T_q^2} = 1.15 \sqrt{5.1967^2 + 0.75 \cdot 28^2} = 28.5192 \, Nm$ The trial diameter:

$$D^{3} = \frac{12000K_{s}}{F_{R}} \cdot T_{E} = \frac{12000 \cdot 1.15}{146.25} \cdot 28.5192, \qquad D = 13.91 \, mm$$

The value of trial diameter is much lower than the assumed diameter. Therefore, try 14 mm as shaft diameter. According to AS1403(Committee ME-005, 2004), at D=14mm, size factor $K_s\approx 1.15$.

Shaft Diameter (m)	0.014	BG (m)	0.05	Ultimate tensile strength (MPa)	325
Shaft Volume (m^3)	1.58556E-05	AG (m)	0.053	Endurance limit (Mpa)	146.25
Shaft Weight (N)	1.224439328	Steel Density (kg/m^3)	7872	Ks	1.05
Pinion Pitch Diameter (m)	0.345	Efficiency	0.98	Trial Diameter (mm)	13.493315
Pinion Base Diameter (m)	0.3241939	Input Torque (Nm)	28		
Pinion width (m)	0.025	Gear Torque (Nm)	27.44	Max Bending moment (Nm)	5.1813949
		F (N)	169.28141		
Pinion Volume (m^3)	0.002333202	Fy (N)	57.897652	T(E)	28.515521
Pinion Weight (N)	180.1799	Fx (N)	159.07249		
				Vector sum of Force at G	201.39007
For vertical plane:				Vector sum of Force at A	97.762168
Resultant force at G (N)	-123.5066878	Max moment_y (Nm)	3.1775992	Vector sum of Force at B	103.6279
Reaction force at A (N)	59.95470279				
Reaction force at B (N)	63.55198496				
For horizontal plane:					
Resultant force at G (N)	159.0724903	Max moment_x (Nm)	-4.0926417		
Reaction force at A (N)	77.21965551				
Reaction force at B (N)	81.85283484				

The detail calculations about 14mm diameter of shaft are presented by Excel in the figure above. The result is fairly close to convergence, thereby the shaft diameter $D\approx 14mm$.

For vertical plane:

For horizontal plane:

Both planes with vector sum:

Overview Shaft and Pinion Diagram:

Use the standard formula (Committee ME-005, 2004) to calculate minimum diameter of shaft AB.

TABLE 2
FORMULAS FOR CALCULATING MINIMUM DIAMETER OF SHAFT D

Number of mechanism starts per year	Number of revolutions of shaft per year	Torque application conditions	Formula		Formulas	
Application	≤900 Infrequent	Manually or power applied	$D^3 = \frac{10^4 F_{\rm S}}{F_{\rm Y}} \sqrt{\left(M_{\rm q} + \frac{P_{\rm q}D}{8000}\right)^2 + \frac{3}{4}T_{\rm q}^2}$		1	
≤600	>900	Power applied	$D^{3} = \frac{10^{4} F_{\rm S}}{F_{\rm R}} \sqrt{\left[K_{\rm S} K \left(M_{\rm q} + \frac{P_{\rm q} D}{8000}\right)\right]^{2} + \frac{3}{4} T_{\rm q}^{2}}$	2	13	
>600	>900	Power applied torque reversals	$D^{3} = \frac{10^{4} F_{\rm S}}{F_{\rm R}} K_{\rm S} K \sqrt{\left(M_{\rm q} + \frac{P_{\rm q} D}{8000}\right)^{2} + \frac{3}{4} T_{\rm q}^{2}}$	3	See Notes 2 and 3	
		Power applied, no torque reversals (see Note 1)	$D^{3} = \frac{10^{4} F_{\rm S}}{F_{\rm R}} \sqrt{\left[K_{\rm S} K \left(M_{\rm q} + \frac{P_{\rm q} D}{8000}\right)\right]^{2} + \frac{3}{16} \left[\left(1 + K_{\rm S} K\right) T_{\rm q}\right]^{2}}$	4	Sec	

NOTES:

- 1 Where the magnitude of the torque in one direction is not greater than 0.1 times the torque in the other direction, the torque application conditions may be considered as being nonreversing.
- 2 These formulas are extracted from a paper titled 'Shortcuts for Designing Shafts' by H.A. Borchardt, published in *Machine Design*, Vol. 45, No.3, 8 February 1973, pp 139-141.
- 3 The value of F_R is based on 10⁶ stress cycles and is applicable for numbers of revolutions of shafts per year greater than 50 000.
- 4 For numbers of revolutions of shafts per year from 50 000 down to 900, formulas 2, 3 and 4 result in progressively more conservative values for the theoretical diameter of shaft.
- 5 The value of F₈ is 2.0 for Formula 1 and 1.2 for Formulas 2, 3 and 4. Where severe injury, death or extensive equipment damage is likely to occur because of the failure of the shaft, higher factors of safety may be used.
- 6 The values of K_s , K and the term P_q D/8000 may require the calculation of a 'trial' diameter (see Appendix A).

Given information indicates that the gearbox starts and stops 10 to 20 times a day across a working year. But no detail information about 'Number of revolutions of shaft per year' and 'Number of mechanisms starts per year'. The shaft is reversed bending and steady torque. Therefore, consider the worst case which is highlighted in the above figure.

Two single deep groove bearings are applied at both point A and point B, the rolling element bearings induce vibration into the shaft. Thus, stress raising factor caused by rolling element bearing needs to significantly consider.

Fits for solid steel shafts (for thrust bearings) $^{\!$		
Conditions	Shaft diameter [mm]	Tolerance class ²⁾
Axial loads only		
Thrust ball bearings	-	h6
Combined radial and axial loads on spherical roller thrust bearings		
Stationary load on shaft washer	≤ 250 > 250	j6 is6
Rotating load on shaft washer,	≤ 200	k6
or direction of load indeterminate	> 200 to 400 > 400	m6 n6

According to SKF rolling bearings catalogue (SKF Group, 2016), for any shaft operating under rotating load condition with diameter less than 200mm, consider k6 tolerance class. Based on the AS1403 (Committee ME-005, 2004), the steel shaft has 325MPa tensile strength, the corresponding stress concentration factor is approximately 1.45. $\rightarrow K_1 = 1.45$

The gear and hub are connected to the respective shaft by a plain square key. Thus, stress raising factor caused by key component has to consider as well.

Refers to AS1403 (Committee ME-005, 2004), select side-milled keyway with transition fit H7/k6, the steel shaft has 325MPa tensile strength, the corresponding stress concentration factor is approximately 1.35. \rightarrow $K_2=1.35$

Those two stress-raising characteristics are coincident and separated by an axial distance (from A to G/ from B to G) greater than 0.24*14mm = 3.36mm. Therefore, selection the greater value between K_1 and K_2 . \rightarrow the stress raising factor is $K = K_1 = 1.45$.

Maximum axial tensile force $P_q = 0$ in this case.

$$D^{3} = \frac{10^{4} \cdot F_{s}}{F_{R}} \cdot \sqrt{\left[K_{s} \cdot K \cdot \left(M_{q} + \frac{P_{q} \cdot D}{8000}\right)\right]^{2} + \frac{3}{16}\left[\left(1 + K_{s} \cdot K\right) \cdot T_{q}\right]^{2}}$$

$$D^{3} = \frac{10^{4} \cdot 10}{146.25} \cdot \sqrt{\left[1.05 \cdot 1.45 \cdot \left(5.1814\right)\right]^{2} + \frac{3}{16}\left[\left(1 + 1.05 \cdot 1.45\right) \cdot 28\right]^{2}}$$

$$D = 27.85mm$$

D=27.8mm from AS1403 (Committee ME-005, 2004), to obtain a new value for the size factor $K_{\rm S}=1.26$.

$$D^{3} = \frac{10^{4} \cdot 10}{146.25} \cdot \sqrt{[1.26 \cdot 1.45 \cdot (5.1814)]^{2} + \frac{3}{16}[(1 + 1.26 \cdot 1.45) \cdot 28]^{2}}$$

$$D = 28.97mm \approx 29mm$$

Bearing selection:

For selecting a proper deep groove bearing, consider angular deflection at each end of the shaft AB. Use the standard equation for support beam. The modulus of elasticity of hot rolled steel is 200GPa. The moment of inertia of shaft AB, and use unround up shaft diameter D=28.97mm:

$$I = \frac{\pi D^4}{64} = \frac{\pi (0.02897)^4}{64} = 0.03457 \cdot 10^{-6} m^4$$

$$\theta_B = \frac{F_G \cdot b \cdot a \cdot (l+a)}{6 \cdot l \cdot E \cdot I} = \frac{201.3901 \cdot 0.05 \cdot 0.053 \cdot (0.103 + 0.053)}{6 \cdot 0.103 \cdot 200 \cdot 10^9 \cdot 0.03471 \cdot 10^{-6}} = 0.1948 \cdot 10^{-4} \ rads$$

$$\theta_B = 0^\circ 0' 4.02''$$

$$\theta_A = \frac{F_G \cdot b \cdot a \cdot (l+b)}{6 \cdot l \cdot E \cdot I} = \frac{201.3901 \cdot 0.05 \cdot 0.053 \cdot (0.103 + 0.05)}{6 \cdot 0.103 \cdot 200 \cdot 10^9 \cdot 0.03471 \cdot 10^{-6}} = 0.1911 \cdot 10^{-4} \ rads$$

$$\theta_A = 0^\circ 0' 3.94''$$

		ngs				
Dimension standards	Boundary dimensions: ISO 15 Snap rings and grooves: ISO 464					
Tolerances	Normal P6 or P5 on request					
For additional information	SKF Explorer and SKF E2 bearing: Dimensional tolerance to P6 and reduced width tolerance: 0 ≤ 110 mm → 0/ -60 µm 0 > 110 mm → 0/ -100 µm	Geometrical tolerance D ≤ 52 mm → P5 52 mm < D ≤ 110 mm → P6 D > 110 mm → Normal tolerances				
(→ page 132) Internal						
Check availability of C2, C3, C4, C5, reduced ranges of standard clear classes or partitions of adjacent classes SKF E2 bearings C3 Check availability of other clearance classes Check availability of other clearance classes						
(→ page 149)	Values: ISO 5753-1 (→ table 6, page 314), except for stainless steel					
Misalignment	≈ 2 to 10 minutes of arc					
		ent between the inner and outer rings sign of the bearing, the radial internal s and moments acting on the				
Friction, start- ing torque, power loss	Frictional moment, starting torque, and power loss can be calculated as specified under <i>Friction</i> (→ page 97), or using the tools					
Defect freguencies	Defect frequencies can be calculated using the tools					

As the figure shown above (SKF Group, 2016), the permissible angular misalignment of deep groove single row ball bearing is $2\sim10$ minutes of arc. Thus, it is safe to use deep groove bearings.

SKF

312

Select a suitable single row deep groove ball bearing from SKF catalogue, choose a size up from 29mm. However, to ensure all rolling elements are rolling inside the race, best to choose a bearing that can withstand the reaction forces at A and B. Also, the thickness of bearing cannot exceed the thickness of gearbox which is 30mm based on the given information.

1.1 Single row deep groove ball bearings d 25 – 35 mm

Principal dimensions		Basic load ratings dynamic static		Fatigue load limit		ngs Limiting speed	Mass	Designation	
d	D	В	С	C_0	$P_{\rm u}$	speed speed			
mm			kN		kN	r/min		kg	-
25	37 42	7 9	4,36 7,02	2,6 4,3	0,125 0,193	38 000 36 000	24 000 22 000	0,022 0,045	61805 61905
	47 47	8 12	8,06 11,9	4,75 6,55	0,212 0,275	32 000 32 000	20 000	0,06 0,078	* 16005 * 6005
	52 52 62	15 15 17	14,8 17,8 23,4	7,8 9,8 11,6	0,335 0,4 0,49	28 000 28 000 24 000	18 000 18 000 16 000	0,13 0,12 0,23	* 6205 6205 ETN9 * 6305
	62 80	17 21	26 35,8	13,4 19,3	0,57 0,815	24 000 20 000	16 000 13 000	0,22 0,54	6305 ETN9 6405
28	58 68	16 18	16,8 25,1	9,5 13,7	0,405 0,585	26 000 22 000	16 000 14 000	0,17 0,3	62/28 63/28
30	42	7	4,49	2,9	0,146	32000	20000	0,025	61806
	4 / 55	9	7,28 11.9	4,55 7,35	0,212 0.31	30 000 28 000	19 000 17 000	0,049 0.089	61906 * 16006
	55	13	13,8	8,3	0,355	28 000	17 000	0,12	* 6006
	62	16	20,3	11,2	0,475	24 000	15 000	0,2	* 6206
	62 72	16 19	23,4 29,6	12,9 16	0,54 0,67	24 000 20 000	15 000 13 000	0,18 0,35	6206 ETN9 * 6306
	72	19	32,5	17,3	0,735	22 000	14 000	0,33	6306 ETN9
	90	23	43,6	23,6	1	18000	11000	0,75	6406

There are several options for 30mm diameter bearing. Select 61806 as it is the smallest of nine choices above (SKF Group, 2016).

Pick the reaction force at point G as the dynamic bearing load to calculate the basic rating life

$$\begin{split} L_{10} &= (\frac{C}{P})^p = (\frac{4490}{201.3901})^3 = 11082.17 \ million \ revolution \\ L_{10h} &= \frac{10^6}{60 \cdot n} \cdot L_{10} = \frac{10^6}{60 \cdot 2880} \cdot 11082.17 = 64132.9 \ operating \ hours \end{split}$$

Where index p = 3 for ball bearings.

Key design:

Yield strength of material of shaft, $\sigma_{AB}=180MPa$ Yield strength of material of gear, $\sigma_{G}=180MPa$ Factor of safety 1 for key. Rounded up shaft diameter D=29mm

A plain square key is designed to resist crushing and shear forces due to the hub and the shaft. The yield strength of key material normally is the half of the shaft material. Based on the research (SubsTech, 2012), consider using cast aluminum alloy 514 due to its yield strength is 80MPa. The related data about cast aluminum alloy 514 is indicated in the table below. Yield strength of material of key, $\sigma_K = 80MPa$.

Cast aluminum alloy 514.0							
Chemical composition: Mg=4.0%, Al balance, sand casting							
Property	Value in n	netric unit	Value in US unit				
Density	2.65 *103	kg/m³	165	lb/ft³			
Modulus of elasticity	71	GPa	10300	ksi			
Thermal expansion (20 °C)	24.1*10 ⁻⁶	0C-1	13.4*10 ⁻⁶	in/(in* °F)			
Specific heat capacity	963	J/(kg*K)	0.230	BTU/(lb*ºF)			
Thermal conductivity	138	W/(m*K)	957	BTU*in/(hr*ft2*0F)			
Electric resistivity	4.9*10 ⁻⁸	Ohm*m	4.9*10 ⁻⁶	Ohm*cm			
Heat of fusion	3.89*10 ⁵	J/kg	167	BTU/lb			
Liquidus temperature	641	°C	1185	oF			
Solidus temperature	599	°C	1110	oF			
Tensile strength (F)	170	MPa	24660	psi			
Yield strength (F)	80	MPa	11600	psi			
Elongation (F)	5	%	5	%			
Shear strength (F)	140	MPa	20300	psi			
Fatigue strength (F)	50	MPa	7250	psi			
Hardness (F), range	35-65	НВ	35-65	НВ			

 $^{\mathrm{a}}$ Tolerance limits $\mathrm{J_{S}}9$ are quoted from BS 4500, "ISO Limits and Fits," to three significant figures.

All dimensions in millimeters

Select the key from the above figure (Briozzo, 2020), that the dimension of 10mm in width * 8mm in height.

Tangential force on key
$$F$$
 ,
$$F = \frac{\tau}{r} = \frac{28}{0.029/2} = 1931.0345 N$$

Area resisting crushing $A_C = L \cdot \frac{h}{2} = 0.5(8)L = 4L \ mm^2$

The Maximum crushing stress,

$$\frac{\sigma_K}{F.S.} = \frac{F}{A_C}$$
 $\frac{80}{1} = \frac{1931.0345}{4L}$ $L = 6.0345 \ mm$

Area resisting shear $A_S = L \cdot b = 10L \, m^2$.

By the distortion-energy theory, the shear stress,
$$\frac{0.577 \cdot \sigma_K}{F.S.} = \frac{F}{A_S} \quad \frac{0.577 \cdot 80}{1} = \frac{1931.0345}{10L} \qquad L = 4.1834 \ mm$$

Based on the calculation above, the minimum key length that can withstand the compressive stress is 6.0345mm, and shear strengths is 4.1834mm. Therefore, consider the key length is the same as the hub length of the pinion.

L = 25mm

Area resisting crushing $A_{\rm C}=L\cdot \frac{h}{2}=0.5(8)(25)=100~mm^2$

The Maximum crushing stress,

$$\sigma_C = F.S.(\frac{F}{A_C}) = 1 \cdot (\frac{1931.0345}{100}) = 19.31 MPa < 80 MPa$$

Area resisting shear $A_S = L \cdot b = 10(25) = 250 \text{ } m^2$.

By the distortion-energy theory, the shear stress,

$$\sigma_S = F.S.(\frac{F}{A_S}) = 1 \cdot (\frac{1931.0345}{250}) = 7.724MPa < 80MPa * 0.577 = 46.16MPa$$

Therefore, it is safe to apply that the key dimension is 10mm in width * 8mm in height * 25mm in length.

The table below lists all the components that have been calculated in this document.

Components	Dimensions		
Shaft	Minimum diameter: 28.97mm		
	Minimum diameter (rounded up): 29mm		
Single row deep groove ball bearings	Inner diameter: 30mm		
Key	Width: 10mm		
	Height: 8mm		
	Length: 25mm		

FBD (Key)

Reference:

Committee ME-005 (2004). MECH2400 AS1403-2004 Australian Standard Design of rotating steel shafts [tutorial materials]. Retrieved from $\frac{\text{https://www.saiglobal.com/pdftemp/previews/osh/as/as1000/1400/1403-2004.pdf}{\text{https://www.saiglobal.com/pdftemp/previews/osh/as/as1000/1400/1403-2004.pdf}}$

SKF Group (2016). MECH2400 *SKF Rolling Bearings Catalogue* [tutorial materials]. Retrieved from https://www.skf.com/binaries/pub12/Images/0901d196802809de-Rolling-bearings---17000 1-EN tcm 12-121486.pdf

SubsTech (2012). *Cast Aluminum Alloy 514*. Retrieved from https://www.substech.com/dokuwiki/doku.php?id=cast_aluminum_alloy_514.0

Briozzo, P. (2020). MECH2400 Keyway Metric Sizes Table [tutorial materials]