

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCSE Combined Science - Paper 3 Chemistry 1 (1SC0_1CH)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 1SC0_1CH_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word		
Strand	Element	Describe	Explain	
A01*		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description		
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning	
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment		
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning	

^{*}there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Question Number	Answer	Additional guidance	Mark
1(a)(i)	A description including		(2)
	 apply lighted splint (1) 	allow flame / ignite gas / fire	AO 2 2
	• (squeaky) pop (1)	ignore 'squeaky pop test' / glowing splint	
		second mark is dependent on first	

Question Number	Answer		Mark
1(a)(ii)	An explanation linking		(2)
	• loss of electron(s) (1)	allow gains two electrons for 1 mark	AO 1 1
	• two electrons (1)	zero marks overall if sharing of electrons / gain or loss of protons / positive electrons	
		marks can be awarded for suitably drawn diagram / half equation	

Question Number	Answer	Additional guidance	Mark
1(b)	final answer of 94 (g dm ⁻³) with or without working (2)	allow ECF (error carried forward) throughout	(2)
	OR <u>23.5</u> (1) (= 0.094) 250	other final answers: 0.094 / 9.4 (1) 0.000094 or 9.4 x 10 ⁻⁵ (1)	AO 2 1
	0.094 x 1000 (1)		
	OR <u>250</u> (dm ³) (1) (= 0.25 (dm ³)) 1000	0.25 (dm³) (1)	
	23.5 (1) 0.25		
	OR 1000 (1) = 4 250		
	4 x 23.5 (1)	allow <u>250</u> x 1000 or 10638(.3) (1) 23.5	

Question Number	Answer	Additional guidance	Mark
1(c)	A description to include	if filtration not first stage, ignore it and give maximum 2 marks	(3) AO 2 2
	filter (1) and two in a logical order from	allow description of filtration ignore filtration to obtain nickel sulfate (crystals)	
	• crystallisation (1)		
	 heat solution (to concentrate) (1) 	allow 'leave until water evaporates' / use of water bath / evaporate {water/the solution}	
	allow to cool (1)dry crystals between filter	allow leave {until crystals form / for a few hours / in a warm place / on a window sill}	
	papers (1)	allow 'dry crystals in (warm) oven'	
		if alternative methods of making nickel sulfate solution described, max 1 mark from last four marking points	

Total for question 1 = 9 marks

Question Number	Answer	Mark
2(a)(i)	C iron oxide is reduced	(1)
	The only correct answer is C	AO 1 1
	A is not correct because carbon gains oxygen	
	B is not correct because it is not an acid-base reaction	
	D is not correct because iron oxide loses oxygen	

Question Number	Answer	Additional guidance	Mark
2(a)(ii)	final answer of 168 (tonnes) with or without working (3)	allow ECF throughout	(3)
	OR	M_r [Fe ₂ O ₃]= 160 seen without working (1)	AO 2 1
	relative formula mass $Fe_2O_3 = 2x56 + 3x16 (= 160) (1)$	allow 320 tonnes : 224 tonnes (1)	
	160 tonnes Fe_2O_3 produces {2x56 / 112} tonnes Fe (1)	final answer 84 (tonnes) with or without working (2)	
	240 tonnes Fe_2O_3 produces 2x56 x 240 (1) = 168 (tonnes) 160	Without working (2)	
	OR relative formula mass Fe_2O_3 = $2x56 + 3x16$ (= 160) (1)	Note: final answer 1.5 scores 2 overall	
	240 (1) = 1.5 160 1.5 x 112 (1) = 168 (tonnes)		
	OR relative formula mass Fe ₂ O ₃ = 2x56 + 3x16 (= 160) (1)		
	112 (1) = 0.7 160 0.7 x 240 (1) = 168 (tonnes)		

Question Number	Answer	Additional guidance	Mark
2(b)	An explanation linking the following points		(2)
	aluminium is high in reactivity / aluminium oxide is (very) stable (1)	allow carbon is less reactive than aluminium / ORA / aluminium is very reactive ignore 'aluminium is more reactive' (alone)	AO 1 1
	aluminium (oxide) cannot be reduced by carbon (1)	allow carbon cannot displace aluminium / aluminium oxide does not react with carbon ignore aluminium extracted by electrolysis	

Question Number	Answer	Mark
2(c)	electrolysis	(1) AO 3
		2a

Question Number	Answer	Additional guidance	Mark
Number 2(d)	 A description to include plants absorb {copper/metal} (ions) from the {soil/ores} / plants concentrate copper ions (1) plants (harvested and) burned (to leave copper/metal compound) 	ignore plants absorb copper from solid metal ignore copper {atoms/metal/compounds} ignore plants heated mark independently	(2) AO 1 1
	(1)		

Total for question 2 = 9 marks

Answer	Mark
C 30 2403	(1)
The only correct answer is C	AO 1 1
A is not correct because it will be a solid above 80 °C	
B is not correct because it will be a liquid at 20 °C and gas at 80 °C	
D is not correct because it will be a liquid at 20 °C and gas at 80 °C	
	C 30 2403 The only correct answer is C A is not correct because it will be a solid above 80 °C B is not correct because it will be a liquid at 20 °C and gas at 80 °C

Question Number	Answer	Additional guidance	Mark
3(b)(i)	An explanation linking		(2)
	 water {boils / evaporates} (to form steam / water vapour / leaving salt behind) (1) 	ignore sea water evaporates	AO 1 1
	(steam / water vapour) condenses (to form pure water) (1)	sea water evaporates and condenses scores 1 overall	
	allow alternative wording for evaporate and condense	mark independently	

Question Number	Answer	Additional guidance	Mark
3(b)(ii)	An explanation linking		(2)
	 use a (Liebig) condenser / surround test tube with (beaker of) {iced/cold} water / wrap delivery tube with cold cloth (1) 	ignore anti bumping granules / fractionating column	AO 3 3b
	to increase effectiveness of cooling / amount of condensation / remove the heat energy more effectively /	allow alternative suitably described methods / prevent water vapour escaping / cools water vapour faster	
	ensure all the water (vapour) condenses (1)	ignore sea water vapours	
		a closed system scores 0 overall	
		mark independently	

Question Number	Answer	Additional guidance	Mark
3(c)	An explanation linking		(4)
	from B to C / at B: graph flat because • particles in solid use energy to {break out of lattice / break (intermolecular) bonds (between particles) / particles becoming randomly arranged / turn solid to liquid} (1)		AO 3 2a AO 3 2b
	and any three from		
	from A to B / at A: graph rises because • particles in solid in a lattice / fixed (mean) positions (1) • vibrate more (rapidly) (as temperature increases) (1)	may be shown as a diagram / on graph	
	from C to D / at C: graph rises because • particles in liquid move past one another / randomly (1) • particles move more (rapidly) (as temperature increases) (1)	may be shown as a diagram / on graph ignore references to gas / evaporation / boil	

Total for question 3 = 9 marks

Question Number	Answer	Mark
4(a)(i)	C chlorine zinc	(1)
	The only correct answer is C	AO 2 1
	A is not correct because oxygen cannot be produced by the electrolysis of this molten salt	
	B is not correct because hydrogen cannot be produced by the electrolysis of this molten salt	
	D is not correct because hydrogen and oxygen cannot be produced by the electrolysis of this molten salt	

Question Number	Answer	Mark
4(a)(ii)	D it contains ions that can move	(1)
	The only correct answer is D	AO 1 1
	A is not correct because molten zinc chloride does not contain molecules	
	B is not correct because molten zinc chloride does not have a giant structure	
	C is not correct because delocalised electrons are not present	

Question Number	Answer	Additional guidance	Mark
4(b)(i)	A diagram of a workable apparatus showing a complete circuit		(2)
	including	max 1 if circuit not complete	AO 1 2
	 electrodes labelled in (copper sulfate) solution (1) 	allow labelling as 'electrodes' or 'anode' and 'cathode' or 'copper'	
	 {power supply / power pack / battery} connected (1) 	ignore 'connected to mains' allow symbol for cell/battery even if wrong way round	

Question Number	Answer	Additional guidance	Mark
4(b)(ii)	An explanation linking the following point to a maximum of four	ignore references to zinc, chlorine and zinc chloride	(4) AO 2 1
	 anode lost copper and cathode gained copper / reaction at cathode is reverse of reaction at anode / copper ions move into solution at anode AND copper ions move out of solution at cathode (1) and any three from at anode copper atoms become copper ions (1) and lose two electrons (1) OR (at anode) Cu → Cu²+ + 2e (2) at cathode copper ions become copper atoms (1) and gain two electrons (1) OR (at cathode) Cu²+ + 2e → Cu (2) 	allow copper atoms are oxidised (1) marking points independently allow copper ions are reduced (1) marking points independently penalise wrong use of atom / ion once only penalise wrong use of reduced / oxidised once only	

Question Number	Answer	Additional guidance	Mark
4(c)	$2H^{+} + 2e^{(-)} \rightarrow H_{2} /$ $2H^{+} \rightarrow H_{2} - 2e^{(-)}$ (2)	allow use of = or ≠ in place of → allow multiples	(2) AO 1 1
	species in correct place as shown above (1) balancing of correct species in correct place (1)	reject h2 / h ₂ / H2 / H ²	

Total for question 4 = 10 marks

Question Number	Answer	Mark
5(a)(i)	B -78 -33 does not conduct	(1)
	The only correct answer is B	AO 2 1
	A is not correct because simple molecular, covalent substances do not have high mpt and bpt	
	C is not correct because ammonia is a gas at room temperature and does not conduct	
	D is not correct because simple molecular, covalent substances do not have these properties	

Question Number	Answer	Additional guidance	Mark
5(a)(ii)	$N_2 + 3H_2 \rightarrow 2NH_3 (2)$	accept multiples allow = or ≠ in place of →	(2)
	left hand side formulae (1) balancing of correct formulae (1)	ignore state symbols even if incorrect do not allow N2, n2, etc	AO 2 1

Question Number	Answer	Additional guidance	Mark
5(b)		double bond (1) rest of molecule (1)	(2)
		(dependent on correct double bond) ignore atomic symbol	AO 1 1
	(2)	allow all x or ● ignore inner shells of electrons even if incorrect	

Question Number	Indica	ative content	Mark		
5(c)		rs will be credited according to candidate's deployment of	(6)		
		edge and understanding of the material in relation to the	1011		
	qualitie	es and skills outlines in the generic mark scheme.	AO 1 1		
	not red relevar	dicative content below is not prescriptive and candidates are quired to include all the material which is indicated as nt. Additional content included in the response must be fic and relevant.			
	• in a bon	all structures the carbon atoms bonded by single covalent			
	• sha	ong bonds			
	diargra	diamond each carbon atom joined to four others mond has a giant covalent {structure/lattice} phene has a giant covalent {structure/lattice} erene has a molecular structure			
	in gin d	graphene and fullerene each carbon atom joined to three others diamond and graphene many bonds need to be broken to melt ed lots of energy			
		refore very high melting / sublimation points			
		ullerene weak forces between molecules			
		because diamond and graphene have lots of strong covalent			
	• bec	nds so both are very strong materials cause weak forces between fullerene molecules so its strength very low			
	• in d	diamond there are no free electrons			
		diamond does not conduct			
		graphene and fullerene each carbon atom has one free			
		nce delocalised electrons			
		phene conducts electricity			
		erene only conducts electricity across the surface of the lecule			
		little movement of electrons between molecules			
	• so f	fullerene is poor conductor of electricity (/ semi conductor)			
Level	Mark	Descriptor			
	0	No rewardable material.			
Level 1	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas, enquiry, techniques and procedures lacks detail. (AO1) 				
		 Presents an explanation with some structure and coherence. 	•		
Level 2	3–4	 Demonstrates chemical understanding, which is mostly relevant may include some inaccuracies. Understanding of scientific idenquiry, techniques and procedures is not fully detailed and fidevolved. (AO1) 	eas,		

		 Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5–6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully devolved. (AO1) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Total for question 5 = 11 marks

Question Number	Answer	Additional guidance	Mark
6(a)(i)	P R Q S (2)	two in correct order (1)	(2) AO 3 2a AO 3 2b

Question Number	Answer		Mark
6(a)(ii)	A workable diagram showing a method to measure the volume of the gas	if diagram is not workable (e.g. no bung at top of test tube), max 1 mark	(2) AO 3 3a AO 3 3b
	delivery tube between test- tube and (1)	allow connection shown as	
	 gas syringe / (graduated tube / inverted burette / measuring cylinder) over water bath (1) 	if collection vessel not labelled, graduations must be shown for the second mark	

Question	Answer	Additional guidance	Mark
Number			
6(b)			(2)
	iron <u>10.00</u> = 0.179 / 0.18 /	allow max 1 mark for	
	0.2 and	Fe: <u>56</u> = 5.6	AO 3 2a
	56	10.00	AO 3 2b
	copper <u>11.34</u> = 0.179 / 0.18 /	Cu: $63.5 = 5.6$	
	0.2 (1)	11.34 so reaction A	
	63.5		
		other methods of calculation	
	(ratio 1:1) so reaction A (1)	include	
		10.00 g Fe forms 10.00 x 63.5	
		(1) g copper	
		56	
		= 11.34 g	
		copper	
		so reaction A (1)	
		second mark dependent on first	
		-	

Question Number	Answer	Additional guidance	Mark
6(c)	$2AI + 6H^{+} \rightarrow 2AI^{3+} + 3H_{2}$ (2)	Al and H ₂ (1) balancing of correct species (1) allow multiples	(2) AO 2 1

Question Number	Answer	Additional guidance	Mark
6(d)	pH {increases / goes up} by one / moves 1 closer to neutral		(1) AO 1 1

Question Number	Answer	Additional guidance	Mark
6(e)	1 mol of hydrogen atoms = a mass of 1.00 g = 6.02×10^{23} atoms	if 1 x 6.02 x 10 ²³ is followed by atoms or particles, then award 1 st marking point	(3) AO 2 1
	$6.02 \times 10^{23} \text{ H atoms has mass} = 1.00 \text{ g (1)}$	on answer line 3.32 x 10 ⁻²⁴ (g) (2)	
	mass of 1 H atom = $\frac{1.00}{(1)}$ (1) 6.02×10^{23} = 1.66×10^{-24} (g) (1)	ignore sig figs except for one	

Total for question 6 = 12 marks