习题课时间:12月31日 上 第二至小村	S) T.
主要内容、不定的分的计算. 新奇峰	78
	and the second control of the second control
1. Jixidx.	
爾、沒F'(x)= 1x1. 即	Photos movement and defending
$F(x) = \begin{cases} -x & x > 0 \\ -x & x < 0 \end{cases}$	
$\Rightarrow F(x) = \frac{1}{2} \chi^2 + C_1 (x > 0); F(x) = -\frac{1}{2} \chi^2 + C_2 $	x<0)
か F 连 i 集 は , 有 C, = C,	AND SUPPLIES AND SECURITION
Yrib: Pixi qx = 7 squix) x2 + C' C Ells.	E
z. Jx f(n)x) dx	Appendix of the second
$\int x \int_{(u)}(x) dx = \int x df_{(u-1)}(x)$	STANK
= , x f(m) (x) - } t(n-1) (x) qx	antan masarat and mantanani mba
$= x f_{(n+1)}(x) - f_{(n)}(x) + C$	D
D 9x	
	Annie and Annie and Annie

and the same of th				^			
爾. /主	ex -1 =	t. 17	X (15	= 1 n	11+	+51	
1912: 12	7+			- Andrews			
	20						

$$\int \frac{dx}{\sqrt{e^{x}-1}} = \int \frac{1}{t} \cdot \frac{2t}{t^{2}+1} dt$$

$$=\int \frac{2}{t^2+1} dt$$

$$\frac{4}{\left(1-\frac{2}{x}\right)^2}e^{x}dx$$

$$\frac{1}{16} \cdot \int (1 - \frac{x}{3})_{5} e_{x} dx = \int \frac{4}{6} e_{x} dx - \int \frac{x}{4} e_{x} dx + \int \frac{x_{5}}{4} e_{x} dx$$

$$\int \frac{1}{x^2} e^{x} dx = -4 \int e^{x} d\frac{1}{x}$$

$$= \frac{4}{x} e^{x} + 4 \int \frac{1}{x} de^{x}$$

$$= -\frac{4}{x}e^{x} + \int \frac{\psi}{x}e^{x}dx$$

$$\frac{1}{10} \int \frac{2^{2} e^{x} dx}{1 - x^{2} e^{x} dx} = \left(\frac{4}{x}\right) e^{x}.$$

$$\int \frac{1}{1+x^{4}} dx$$

[] /2 M(x) =
$$\int \frac{dx}{1+x^4}$$
, $N(x) = \int \frac{x^2 dx}{1+x^4}$, 河有

$$M(x) - N(x) = \int \frac{1-x^2}{1+x^4} dx = -\int \frac{1-\frac{1}{x^2}}{x^2+\frac{1}{x^2}} dx$$

$$= -\int \frac{d(x+\frac{1}{x})^2-2}{(x+\frac{1}{x})^2-2}$$

$$= -\frac{1}{2\sqrt{2}} \ln \frac{\chi^2 - \sqrt{2}\chi + 1}{\chi^2 + \sqrt{2}\chi + 1} + C.$$

$$M(x) + N(x) = \int \frac{1+x^2}{1+x^4} dx = \int \frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}} dx$$

$$=\int \frac{d(x-\frac{1}{x})}{(x-\frac{1}{x})^2+2}$$

$$= \frac{1}{\sqrt{2}} \arctan \frac{\chi - \frac{1}{\chi}}{\sqrt{2}} + C$$

$$= -\frac{1}{452} \ln \frac{x^2 - 52x + 1}{x^2 + 52x + 1} + \frac{1}{352} \arctan \frac{x^2 - 1}{52x} + C$$

6.
$$\int \frac{dx}{(x+b)^2(x+b)^3}$$
.

頃. ①
$$\alpha = b$$
. [] $\frac{dx}{(x+a)^5} = -\frac{1}{4}(x+a)^{-4}$]

20 +b. 10 $\int \frac{dx}{(x+a)^2(x+b)^3} = \frac{1}{b-a} \int \frac{1}{(x+a)(x+b)^2} \left(\frac{1}{x+a-x+b}\right) dx$ $\frac{1}{b-a}\left(\int \frac{dx}{(x+a)^2(x+b)^2} - \int \frac{dx}{(x+a)(x+b)^3}\right)$ $\frac{1}{b-a}\left(\frac{1}{b-a}\left(\frac{1}{(x+a)^2(x+b)}-\frac{1}{(x+a)(x+b)^2}\right)\right)$ $\frac{1}{b-a}\left(\int \frac{(x+a)(x+b)^2}{(x+b)^3}\right)$ $\frac{1}{(b-a)^2} \left(\frac{1}{b-a} \left(\int \frac{dx}{(x+a)^2} \right) \frac{dx}{(x+a)(x+b)} \right)$ $\frac{1}{b-a} \left(\frac{dx}{(x+a)(x+b)} \right) \frac{dx}{(x+b)^2} + \frac{1}{2} \frac{(x+b)^{-2}}{(x+b)^2}$ $\frac{1}{x+a} = \frac{3}{b-a} \left(\ln(x+a) - \ln(x+b) \right)$ $-2\frac{1}{x+b}$) $+\frac{1}{2(b-a)^2}(x+b)^{-2}+C$ $\frac{4}{(b-a)^4} \frac{1}{(b-a)^3} \left(\frac{1}{x+a} + \frac{2}{x+b} \right)$ 2(p-a)2- (x+p)2 + C

	The second second second			
	0	dx	-) (m,	n E M+)
10 共局	-\-			• .
10 15 200 :		(x+a)m (x+b)"		
	_	() (

$$\frac{1}{1} \int \frac{dx}{\sqrt{1+x^n}} = \frac{x}{\sqrt{1+x^n}} \int x d\frac{1}{\sqrt{1+x^n}}$$

$$= \frac{\sqrt{1+x_{\nu}}}{\sqrt{x}} - \int \sqrt{x} \cdot \left(-\frac{\nu}{1}\right) \frac{(1+x_{\nu})\sqrt{1+x_{\nu}}}{\nu \cdot x_{\nu-1}} dx$$

$$= \frac{\sqrt[n]{1+x^n}}{\sqrt[n]{1+x^n}} + \int \frac{(1+x^n)\sqrt[n]{1+x^n}}{(1+x^n)\sqrt[n]{1+x^n}} dx$$

$$\frac{2^{1+x_{u}}}{x} + \frac{2^{1+x_{u}}}{y^{x}} - \frac{1+x_{u}}{y^{x}}$$

$$\Rightarrow \int \frac{(1+x_{\nu})_{\nu} l_{1}+x_{\nu}}{\varphi_{X}} = \frac{l_{1}+x_{\nu}}{x} + C$$

$$= \frac{1}{2} \chi^2 \arctan \chi - \frac{1}{2} \int \frac{\chi^2}{1+\chi^2} d\chi$$

$= \frac{1}{2} \left(x^2 - \operatorname{corctan} x - \left(x - \operatorname{arctan} x \right) \right) + C$
$=\frac{1}{2}\left(\left(\chi^{2}+1\right)\operatorname{arctan}\chi-\chi\right)+C$
I x arctanx In (1+x2) dx
$=\frac{1}{2}\int \ln(1+\chi^2) d\left((\chi^2+1) \arctan \chi - \chi\right)$
$=\frac{1}{2}\left((x^2+1)\arctan x-x\right)\ln(1+x^2)$
((x2+1) arctanx -x) 2x dx
$= \frac{1}{\nu} \left((x^2 + 1) \operatorname{arctan} x - x \right) \ln \left((1 + x^2) - \int \left(x \operatorname{arctan} x - \frac{x^2}{1 + x^2} \right) dx$
= 1 ((x2+1) or ctanx -x) In (1+x2)
$-\frac{1}{\nu}\left(1\chi^{2}n\right)\operatorname{curetan}\chi-\chi\right)+\chi-\operatorname{arctan}\chi+C$
= 1 ((x2+1) arctanx-x) (ln(1+x2)-1)-+ x-arctanx+(
9. 5 1-lnx dx (x-lnx)2
$\frac{1}{\sqrt{1 - \ln x}} \frac{1 - \ln x}{\sqrt{1 - \ln x}} dx = \int \frac{1 - \ln x}{1 - \frac{1}{x}} dx = \int \frac{1 - \ln x}{x - \ln x}$

= \(\frac{\times (1-lnx)}{1-x} d	X-Inx
= x (1-lnx) (1-x)(x-lnx)	$\int \frac{1}{x-\ln x} d \frac{x(1-\ln x)}{1-x}$
$= \frac{\chi \left(1 - \ln \chi\right)}{\left(1 - \chi\right)\left(\chi - \ln \chi\right)}$	Sylvx 1-x)2 dx
- X(1-lnx) (1-x)(x-lnx)	- 1-x +C
Lnx X-lnx	C .

过、於不及积分的一个很好的习惯就是就完之历 及过点出导施好了一下。 一定安记得高数项CI

 $\frac{1}{\sqrt{2}}$, m < n, to Lagrange $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{$

TD如意,没Q(X)=C(X-K)---(X-K), C+O,

1PM : Q'(Ni) = CK	T (X)	-1/k). H	ऄ :	
E.	P(X:)-	Q1X) 7-72		1 - 18
Î=I	(1 ''')	0,(x2)) - 12 + 274	
DIV	2	Divi)

$$\Rightarrow \frac{P(x)}{Q(x)} = \frac{\sum_{i=1}^{n} P(x_i)}{Q'(x_i)} \frac{1}{x-x_i}$$

$$\frac{1}{100} \int \frac{D(x)}{Q(x)} dx = \sum_{i=1}^{n} \frac{P(x_i)}{Q'(x_i)} \frac{1}{100} \frac{$$

最后和大家新学儿中,期末考试顺利!

给大家的"连下车礼的"。

最近在海市沧滨上层到的Furstenburg的一个泰名园 子中国网络两个引擎。

(7IMA 表 大 以前 前: Y (p,q) C (0,1), 日水, {xn} E (P, 9), Yn).

2. 沒f鬼 R→R 连奏函数, 且fix+i)=fix). 若∃nEN+, & x ∈ R \ Q,1& ∑f(x+jx) = 0.

成 i正: f(x) = 0.	1	7 .		-
水水: +(x) = 0,	- [kw]:	k = 1N+5 Tz	(0,1)中春	割金姓
		. p	I'	
			ı	
	- -:::			
•	,		,	
1		4.4		
				10
				- 41
			18	
		-		