

Description

The VSM80N05 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =50V,I_D =80A
 - $R_{DS(ON)}$ <7.5m Ω @ V_{GS} =10V
 - $R_{DS(ON)}$ <9m Ω @ V_{GS} =4.5V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Load switching
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM80N05-T2	VSM80N05	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	50	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	80	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	56.5	А	
Pulsed Drain Current	I _{DM}	320	Α	
Maximum Power Dissipation	P _D	100	W	
Derating factor		0.67	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	400	mJ	
Operating Junction and Storage Temperature Range	T_J, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	1.5	°C/W
---	-------------------	-----	------

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25[°]Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	50	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =50V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	•		•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.5	2.5	V
Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =20A	- 5.6 7.5 6.7 9		7.5	mΩ
Dialii-Source Oil-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =15A			9	
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	-	20	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	\/ -05\/\/ -0\/	-	3600	-	PF
Output Capacitance	Coss	V _{DS} =25V,V _{GS} =0V, F=1.0MHz	-	340	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0ivinz	-	230	-	PF
Switching Characteristics (Note 4)	•		•			
Turn-on Delay Time	t _{d(on)}		-	12	-	nS
Turn-on Rise Time	t _r	V_{DD} =25 $V_{,,}R_{L}$ =1 Ω	-	30	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	45	-	nS
Turn-Off Fall Time	t _f		-	31	-	nS
Total Gate Charge	Qg	V -25V/1 -20A	-	65		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=25V,I_{D}=20A,$	-	13		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	20		nC
Drain-Source Diode Characteristics	•		•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	36	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	48	-	nC

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : Tj=25 $^{\circ}$ C, V_{DD} =25V, V_{G} =10V,L=0.5mH,Rg=25 Ω ,

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance