Deep Learning based Recommender System

Chen Si

XIAMEN UNIVERSITY

sichen@stu.xmu.edu.cn

November 7, 2018

Overview

- DEEP LEARNING BASED RECOMMENDATION
 - MLP based Recommendation
 - Autoencoder based Recommendation
 - CNN based Recommendation
 - RNN based Recommendation
 - RBM based Recommendation
 - Neural Attention based Recommendation
 - Neural AutoRegressive based Recommendation
 - Deep Reinforcement Learning for Recommendation
 - GAN based Recommendation
- Summary

Outline

- DEEP LEARNING BASED RECOMMENDATION
 - MLP based Recommendation
 - Autoencoder based Recommendation
 - CNN based Recommendation
 - RNN based Recommendation
 - RBM based Recommendation
 - Neural Attention based Recommendation
 - Neural AutoRegressive based Recommendation
 - Deep Reinforcement Learning for Recommendation
 - GAN based Recommendation
- 2 Summary

Multilayer Perceptron based Recommendation

- What is Multilayer Perceptron(MLP)
- Neural Extension of Traditional Recommendation Methods.
- Feature Representation Learning with MLP

What is Multilayer Perceptron(MLP)

MLP is a feed-forward neural network with multiple hidden layers

$$y_I = \phi(W_2 * \phi(W_1 * x))$$

Neural Extension of Traditional Methods

Neural Collaborative Filtering (NCF)

$$\hat{r}_{ui} = f(U^T \cdot s_u^{user}, V^T \cdot s_i^{item} | U, V, \theta)$$

Feature Representation

- Deep Factorization Machine(DeepFM)
 - FM: linear and pairwise low-order interactions between features.
 - MLP leverages the non-linear activations and deep structure to model the high-order interactions.

$$\hat{r}_{ui} = \sigma(y_{FM}(x) + y_{MLP}(x) + bias)$$

Autoencoder based Recommendation

- What is Autoencoder
- Autoencoder based Collaborative Filtering.
- Feature Representation Learning with Autoencoder

What is Autoencoder

• An autoencoder neural network is an unsupervised learning algorithm, tring to learn a function $h_{W,b}(x) \approx x$.

- filling the blanks of the interaction matrix directly in the reconstruction layer.
- using autoencoder to learn lower-dimensional feature representations at the bottleneck layer;

Autoencoder based Collaborative Filtering.

AutoRec

- takes user partial vectors $r^{(u)}$ or item partial vectors $r^{(i)}$ as input, and aims to reconstruct them in the output layer.
- Two variants: item-based AutoRec (I-AutoRec) and user-based AutoRec

$$argmin_{\theta} = \sum_{i=1}^{N} \left\| r^i - h(r^i; \theta) \right\|_{O}^2 + \lambda \times reg$$

here $\|\cdot\|_Q^2$ means that it only considers observed ratings

9 / 39

Feature Representation Learning with Autoencoder

general framework to build hybrid collaborative models.

$$arg_{U,V}min\ I(R,U,V) + \beta(U^2 + V^2) + \gamma L(X,U) + \delta L(Y,V)$$

Convolutional Neural Networks based Recommendation

- What is Convolutional Neural Networks(CNN)
- Feature Representation Learning with CNNs.
- CNNs based Collaborative filtering.
- Graph CNNs for Recommendation.

What is Convolutional Neural Networks(CNN)

 a special kind of feed-forward neural network with convolution layers and pooling operations.

- 默认输入是图像,把特定的性质编码入网络结构,使前馈函数更加 有效率,并减少了大量参数。
- CNNs are powerful in processing unstructured multimedia data with convolution and pool operations.

Feature Representation Learning with CNNs

- Most of the CNNs based recommendation models utilize CNNs for feature extraction.
 - Image Feature Extraction.
 - Text Feature Extraction
 - model user behaviors and item properties from review texts
 - alleviates the sparsity problem and enhances the model interpretability
 - Audio and Video Feature Extraction.
 - content based model can alleviate the cold start problem (music has not been consumed)

CNNs based Collaborative filtering

ConvNCF

- use outer product instead of dot product to model the user item interaction patterns.
- CNNs are applied over the result of outer product and could capture the high-order correlations among embeddings dimensions.

Figure 1: Outer Product-based NCF framework

CNNs based Collaborative filtering

ConvNCF

- 外积:交互矩阵融合了每个维度下特征之间的关系(传统 CF:主对 角线求和),能刻画特征维度之间的高阶关系。
- 卷积:后一层的每一个元素都是由前一层的4个元素计算得来的,可以认为是一个4阶关系的刻画。直到最后的输出层,降到1×1后,即包含了特征每一个维度之间的交互信息。CNN比MLP更容易泛化和建立更深的网络。

Figure 2: An example of the architecture of our ConvNCF model that has 6 convolution layers with embedding size 64.

Graph CNNs for Recommendation.

- Interactions in recommendation area can also be viewed as bipartite graph, thus the recommendation problem can be considered as a link prediction task with graph CNNs.
 - GCN: Graph Convolution Network
 - Set K = 2 and view the center node as one of its neighbor, resulting in only one free parameter for each convolution filter
 - Offer an explanation of feature diffusion over graph

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$
 $H^{(0)} = X$

Recurrent Neural Networks based Recommendation

- What is Recurrent Neural Networks(RNN)
- Session-based Recommendation without User Identifier
- Sequential Recommendation with User Identifier
- Feature Representation Learning with RNNs

What is Recurrent Neural Networks(RNN)

- RNN is suitable for modelling sequential data. Unlike feedforward neural network, there are loops and memories in RNN to remember former computations.
- RNN 的结构不同于 MLP ,输入层与来自序列中上一元素隐层的信号共同作用到当前的隐藏层

Session-based Recommendation without User Identifier

GRU4Rec

- 输入:用户的行为序列: [x₁, x₂, x₃, ..., x_N](1-of-N encoding,或者再过一个Embedding层)
- ② 过若干层的GRU(核心的序列化建模)
- Feedforward网络转换
- ₫ 对下一个目标x_{N+1}进行预测

Sequential Recommendation with User Identifier

- Recurrent Recommender Network (RRN)
 - modelling the seasonal evolution of items and changes of user preferences over time
 - uses two LSTM networks to model dynamic user state u_{ut} and item state v_{it} .
 - incorporates stationary latent attributes such as user long-term interests and item static features: u_{ij} and v_{ij} .

$$\hat{r}_{ui|t} = f(u_{ut}, v_{it}, u_u, v_i)$$

Feature Representation Learning with RNNs

- For side information with sequential patterns
 - learn representations of evolution and co-evolution of user and item features.
 - encode the text sequences into latent factor model.
 - learn more expressive aggregation for user browsing history
 - predicting ratings as well as generating textual tips for users simultaneously
 - two sub-networks to modelling user static features (with MLP) and user temporal features (with RNNs).

Restricted Boltzmann Machine based Recommendation

- What is Restricted Boltzmann Machine(RBM)
- Restricted Boltzmann Machine based Recommendation

What is Restricted Boltzmann Machine(RBM)

- RBM is a two layer neural network consisting of a visible layer and a hidden layer.
 - 限制在同一层的神经元之间不会相互连接,而不在同一层的神经元 之间会相互连接,连接是双向的以及对称的。这意味着在网络进行 训练以及使用时信息会在两个方向上流动,而且两个方向上的权值 是相同的。
 - 可见变量和隐藏变量都是二元变量,亦即其状态取0,1

Restricted Boltzmann Machine based Recommendation

RBM-CF

- the first recommendation model that built on neural networks.
- user/item-based RBM-CF :given user' s/item's rating is clamped on the visible layer.
- 假设有m个电影,则使用m个softmax单元来作为可见单元来构造RBM.如果一个用户没有对第j个电影评分,则该用户的RBM中不存在第j个softmax单元.

Algorithm 4.4 RBM - Making recommendations

Inputs: a user u, an movie i

Outputs: an estimation of R(u, i)

- 1. Clamp the ratings of *u* over the softmax units of the RBM.
- 2. Compute $\hat{p}_j = p(h_j = 1|V)$ for all hidden units j.
- 3. Compute $p(v_i^k = 1|\hat{p}) = \frac{\exp(v_i^k + \sum_{j=1}^F \hat{p}_j W_{ij}^k)}{\sum_{i=1}^K \exp(b_i^l + \sum_{i=1}^F \hat{p}_j W_{ii}^l)}$ for k = 1, ..., K.
- 4. Take the expectation as the prediction, i.e., $R(u,i) = \sum_{k=1}^K p(v_i^k = 1|\hat{p})k$.

Neural Attention based Recommendation

- What is Neural Attention.
- Recommendation with Vanilla Attention
- Recommendation with Co-Attention

What is Neural Attention

- Attention mechanism is motivated by human visual attention.
- 核心目标:从众多信息中选择出对当前任务目标更关键的信息。

What is Neural Attention

 attention model learns to attend to the input with attention scores (the heart of neural attention models).

Recommendation with Vanilla Attention

- 基于记忆优先级的短序列推荐
 - 对session内前n-1个全局商品用attention建模得到一个全局表达,并输入MLP

Recommendation with Vanilla Attention

- Attentive Collaborative Filtering(ACF)
 - select items from implicit that are representative to user preferences and then aggregate them to characterize users.

item-level attention

$$u_i + \sum_{l \in R(i)} \alpha(i, l) p_l$$

• component-level attention

$$\bar{x}_l = \sum_{m=1}^{|\{x_{l*}\}|} \beta(i, l, m) \cdot x_{lm}$$

Recommendation with Vanilla Attention

- Attentive Collaborative Filtering(ACF)
 - Attention Visualization

Neural AutoRegressive based Recommendation

- tractable的分布估计器,它是RBM的理想的替代品
- NADE based collaborative filtering model (CF-NADE)
 - models the distribution of user ratings.
 - 有4部电影: m1(评分为4), m2(评分为2), m3(评分为3), m4(评分为5)。 CF-NADE利用链式法则得到的评分向量r的联合概率

$$p(r) = \sum_{i=1}^{4} p(r_{m_i} | r_{m_{< i}})$$

Deep Reinforcement Learning for Recommendation

- What is Deep Reinforcement Learning (DRL)
- Deep Reinforcement Learning for Recommendation

What is Deep Reinforcement Learning (DRL)

- Reinforcement Learning:Learn to make good sequences of decisions
 - Repeated Interactions with World
 - Reward for Sequence of Decisions
 - Repeated Interactions with World
- trial-and-error paradigm
- components: agents, environments, states, actions and rewards.

Deep Reinforcement Learning for Recommendation

 recommender agent (RA) interacts with environment E (or users) by sequentially choosing recommendation items over a sequence of time steps, so as to maximize its cumulative reward.

Adversarial Network based Recommendation

- What is Adversarial Network (AN)
- Adversarial Network based Recommendation

What is Adversarial Network (AN)

- Adversarial Networks (AN) is a generative neural network which consists of a discriminator and a generator.
- They trained simultaneously by competing with each other in a min-max game framework.

Adversarial Network based Recommendation

IRGAN

- 在信息检索上有两个思维方式,即生成式检索和判别式检索:
- Generative retrieval assumes that there is an underlying generative process between documents and queries, and retrieval tasks can be achieved by generating relevant document given a query.
- Discriminative retrieval learns to predict the relevance score given labelled relevant query-document pairs.
- minimax game: generative retrieval aims to generate relevant documents similar to ground truth to fool the discriminative retrieval model.

Outline

- DEEP LEARNING BASED RECOMMENDATION
- 2 Summary

Why Deep Neural Networks for Recommendation

- Nonlinear Transformation
 - 捕获非线性和非平凡的用户-物品关系
- Representation Learning
 - 捕获数据本身的复杂联系(上下文, 文本和视觉信息)
- Sequence Modelling
- Flexibility

The End