

16-Bit ALU and Multiplier

Team:

Paula Ayman Mikhael	B.N.30
Paula Emad Shohdy	B.N.31
Mickel Samy Habashy	B.N.57
Antonious Emad Kamel	B.N.22
Tony Mikhael Soryan	B.N.33

Under Supervision of Professor Dr. Shaimaa Rizk Eng. Shaimaa Yosry

Arithmetic Logic Unit (ALU)

- Is a digital circuit that performs arithmetic and logical operations on binary numbers.
- It typically consists of several sub-components, including adders, multiplexers, logic gates, and registers.
- The ALU is responsible for operations such as addition, subtraction, bitwise logical operations (AND, OR).
- It takes input operands, performs the specified operation based on control signals, and produces the output result.

Multiplier Circuit

- Is designed specifically to perform the multiplication operation on binary numbers.
- It takes two input operands, multiplies them together using the chosen multiplication algorithm, and produces the resulting product as output.
- The complexity of the multiplier circuit depends on factors such as the bit width of the operands and the desired speed and precision of the multiplication operation.

First: 16-Bit ALU

Consists of 2 levels:

level 1: Basic ALU

- **AND** connected to 2 i/p A,B.
- **OR** connected to 2 i/p A,B.
- **ADD/SUB** connected to 2 i/p A,B using a multiplexer to switch between +B/-B for SUB.
- Operational multiplexer to choose between them.

Note: a one-selector selects 2nd bit of operation input so mux selects this bit

Level 2: multi connected ALU

- Input Every ALU is connected with 2-bits from both the 16-bit input A and B, carry in of previous alu, the operation bits.
- Output Result of sum, carry out to next alu.
- Checkers Zero checker if all result is zero, overflow checker if both MSB and carry out are diff.

Second: 16-Bit Multiplier

Consists of 3 levels:

Level 1: 4-bit parallel adder 4 connected single adder.

Level 2:

• 16-bit parallel adder 4 connected 4-bit adders.

• 16-bit AND Circuit every bit of the 16 is ANDed with a single bit

Level 3: 16-bit Multiplier circuit

It works with the same principle of this simple 2-bits multiplication but on large scale

Personally I don't recommend you to see its full circuit image. Here is a sample of its circuit...

If you are still curious to see it, then... you will find it in the next slide.

Finally heres a truth table for operations:

Input Opera Contro		What it does
0	0	OR
0	1	SUM
1	0	AND
1	1	SUB

Circuit	What it
Control	does
0	ALU
1	Multiplier
	·

Note:

If circuit control is changed from/to ALU/Multiplier the result is automatically becomes all zeros in the unused circuit.