

planetmath.org

Math for the people, by the people.

restricted homomorphism

Canonical name RestrictedHomomorphism

Date of creation 2013-03-22 18:59:11 Last modified on 2013-03-22 18:59:11

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 68Q45

 $\begin{array}{ll} {\rm Synonym} & & k\text{-restricted homomorphism} \\ {\rm Synonym} & & k\text{-restricted homomorphism} \end{array}$

Related topic LinearErasing

Let h be a homomorphism over an alphabet Σ . Let L be a language over Σ . We say that h is k-restricted on L if

- 1. there is a letter $b \in Alpha(L)$ such that no word in L begins with b and contains more than k-1 consecutive occurrences of b in it,
- 2. for any $a \in Alpha(L)$,

$$h(a) = \begin{cases} \lambda & \text{if } a = b \\ a & \text{otherwise.} \end{cases}$$

Here, Alpha(L) is the set of all letters in Σ that occur in words of L.

It is easy to see that any k-restricted homomorphism on L is a k-linear erasing on L, for if $u \in L$ is a non-empty word, then we may write $u = v_1 b^{m_1} v_2 b^{m_2} \cdots v_n b^{m_n}$, where each $0 < m_i \le k - 1$, and each v_i is a non-empty word not containing any occurrences of b. Then

$$|u| = |v_1 \cdots v_{n-1}| + \sum_{i=1}^n m_i \le |h(u)| + n(k-1) \le |h(u)| + (k-1)|h(u)| = k|h(u)|.$$

Note that $n \leq |h(u)|$ since $1 \leq |v_i|$ for each $i = 1, \ldots, n$. A k-linear erasing is in general not a k-restricted homomorphism, an example of which is the following: $L = \{a, ab\}^*$ and $h : \{a, b\} \to \{a, b\}$ given by $h(a) = a^2$ and $h(b) = \lambda$. Then h is a 1-linear erasing, but not a 1-restricted homomorphism, on L.

A family \mathscr{F} of languages is said to be closed under restricted homomorphism if for every $L \in \mathscr{F}$, and every k-restricted homomorphism h on L, $h(L) \in \mathscr{F}$. By the previous paragraph, we see that if \mathscr{F} is closed under linear erasing, it is closed under restricted homomorphism. The converse of this is not necessarily true.

References

[1] A. Salomaa, Formal Languages, Academic Press, New York (1973).