502 ASSIGNMENTS SPRING 2017

Assignment I

- 1. Let \mathcal{V} be a vector space over the field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A seminorm on \mathcal{V} is a map $\rho: \mathcal{V} \to \mathbb{R}$ satisfying
 - (i) $\rho(v) \geq 0$ for all $v \in \mathcal{V}$
 - (ii) $\rho(\alpha v) = |\alpha|\rho(v)$ for all $\alpha \in \mathbb{F}$ and $v \in \mathcal{V}$.
 - (iii) $\rho(v+w) \leq \rho(v) + \rho(w)$ for all $v, w \in \mathcal{V}$.

Let φ be a continuous function $[0,1] \to \mathbb{R}$.

For $f \in C[0,1]$ define $\rho(f) = \int_0^1 |f(x)| \varphi(x) dx$. What conditions must φ satisfy so that ρ is a seminorm? What conditions must φ satisfy so that ρ is a norm?

- 2. Let $C^{1}[0,1]$ denote the vector space of functions defined on the interval [0, 1] which have continuous derivatives. (The derivative at an endpoint is the one-sided derivative.) For $f \in C^1[0,1]$, let $\rho(f) =$ $\max_{0 \le x \le 1} |f'(x)|$. Is ρ a norm? Is it a seminorm?
 - 3, Determine which of the following formulas define a metric.
 - (i) On \mathbb{R} , $d(x,y) = \sqrt{|x-y|}$ (ii) On \mathbb{R} , $d(x,y) = (x-y)^2$

 - (iii) On $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}, \ d(x,y) = |\log(y/x)|$
 - 4. Do exercises 1, 2, and 4 in section 2.1, p. 27 due 1/18

Assignment II

- 1. In $(\mathbb{Q}, |\cdot|)$, let $a \in \mathbb{Q}$, describe
 - (i) $\partial B_r(a)$ if $r \in \mathbb{Q}$, r > 0.
- (ii) $\partial B_r(a)$ if $r \in \mathbb{R} \setminus \mathbb{Q}$, r > 0.
- 2. Do problems 1, 2, 4, and 5 in Sec. 2.2, p. 34.
- 3. Do problems 1 and 3 in Sec. 2.3, p. 40. due 1/25

Assignment III

1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ x^2, & \text{if } x \text{ is irrational} \end{cases}$$

Using the definition of continuity (i.e., involving convergent sequences), verify that f is continuous at x = 0 and at x = 1.

Show that for $0 < \epsilon < 1$, $f^{-1}(B_{\epsilon}(1))$ is a neighborhood of 1, but it is not an open neighborhood.

Recall the notation: $B_{\epsilon}(1) = (1 - \epsilon, 1 + \epsilon)$.

- 2. Let (X, d) be a metric space.
 - (i) If $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence with $\lim_{n\to\infty} x_n = x_0$, then the sequence $x_1, x_0, x_2, x_0, x_3, x_0, \dots$ is Cauchy.
- (ii) If $\{x_n\}_{n=1}^{\infty}$ is a sequence, and the sequence $x_1, x_0, x_2, x_0, x_3, x_0, \dots$ is Cauchy, then $\lim_{n\to\infty} x_n = x_0$.
- (iii) If $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, and $x_0 \in X$ is such that $x_n = x_0$ for infinitely many $n \in \mathbb{N}$, then $\lim_{n \to \infty} x_n = x_0$.
- 3. Let d, d' be two metrics on a (non-empty) set X. The metrics d, d' are equivalent if they satisfy the condition of Definition 2.3.12 in our text. We say the metrics d, d' are Cauchy equivalent if whenever a sequence $\{x_n\}$ is Cauchy in one of the metrics, it is Cauchy in the other. We say that the metrics d, d' are strongly equivalent if there exist positive constants m, M such that, for $x, y \in X$,

$$m d(x, y) \le d'(x, y) \le M d(x, y)$$

- (i) Show that each of these definitions gives an equivalence relation on the set of all metrics on the space X.
- (ii) Show that d, d' strongly equivalent implies d, d' Cauchy equivalent.
- (iii) Show that d, d' Cauchy equivalent implies d, d' equivalent.
- (iv) Show that on $X = \mathbb{R}_+$, the positive reals, the metrix d(x,y) = |y-x| and $d'(x,y) = |\log(y/x)|$ are equivalent metrics, but not Cauchy equivalent.
- (v) On $X = \mathbb{R}$, let d(x,y) = |y-x| and $d'(x,y) = \sqrt{|y-x|}$. Show that the two metrics are Cauchy equivalent but not strongly equivalent.

Recall, an equivalence relation \sim on a set S is a relation which satisfies

- (1) $s \sim s \ \forall s \in S$
- (2) If $s \sim t$ then $t \sim s$

(3) If $s \sim t$ and $t \sim u$ then $s \sim u$

Apply this definition to the set S of all metrics on a space X.

- $4.\ \,$ Do problem 6 in Sec. 2.3, p. 40.
- 5. Do problems 2 and 4 in Sec. 2.4, p. 51.

Hint: For problem 2, show that $d(x_{n+1}, x_n) \leq \theta^{n-1} d(x_2, x_1)$. Use this to estimate $d(x_m, x_n)$.

due 2/1