

Fakultät Informatik – Institut SMT – Professur Computergraphik und Visualisierung

## Aufgabenkomplex Kurven

1. Führen Sie graphisch den De-Casteljau-Algorithmus für den Parameterwert t=0.25 auf folgendem Kontrollpolygon durch.



(HA) 2. a) Bestimmen Sie die mathematische Darstellung einer Bézier-Kurve in der Bernsteinbasis mit den Kontrollpunkten  $\underline{\boldsymbol{b}}_1$ ,  $\underline{\boldsymbol{b}}_2$  und  $\underline{\boldsymbol{b}}_3$ . Hinweis: Sie brauchen den Term nicht expandieren.

b) Stellen Sie die x- und y-Komponente dieser Bézier-Kurve als Polynome dar. Die Komponenten der Bernsteinbasis sind wie folgt definiert:  $B_i^g(t) = \binom{g}{i}(1-t)^{g-i}t^i$ . Die Kontrollpunkte sind:

$$\underline{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \underline{b}_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \ \underline{b}_3 = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \text{ , L\"osung: } \begin{pmatrix} c_\chi(t) \\ c_V(t) \end{pmatrix} = \begin{pmatrix} -t^2 + 4t + 1 \\ 2t^2 - 2t \end{pmatrix}$$

HA c) Berechnen Sie den Kurvenpunkt bei t=0.1. Lösung:  $c(t=0.1)={1.39 \choose -0.18}$ 

(HA) 3. Gegeben sei die stückweise definierte Funktion f(t). Berechnen Sie die C-Stetigkeit bei t.

a) 
$$t=1$$
,  $f(t)=\begin{cases} -t^2,\ t<1\\ -2t+1,\ t\geq 1\end{cases}$  Lösung:  $C^1$ -stetig HA b)  $t=0$ ,  $f(t)=\begin{cases} 2,\ t<0\\ t^2+2,\ t\geq 0\end{cases}$  Lösung:  $C^1$ -stetig HA c)  $t=1$   $f(t)=\begin{cases} -t^2,\ t<1\\ t-2,\ t\geq 1\end{cases}$  Lösung:  $C^0$ -stetig



## Fakultät Informatik – Institut SMT – Professur Computergraphik und Visualisierung

4. Gegeben sei die Transformationsmatrix von Bézier-Kontrollmatrizen in Hermite-Kontrollmatrizen  $T_{H\leftarrow B}$ . Rechnen Sie damit aus den gegebenen Bézier-Kontrollpunkten  $\underline{\boldsymbol{b}}_1 = {2 \choose 0}$ ,  $\underline{\boldsymbol{b}}_2 = {2 \choose 2}$ ,  $\underline{\boldsymbol{b}}_3 = {1 \choose 2}$  und  $\underline{\boldsymbol{b}}_4 = {-2 \choose 0}$  die Kontrollpunkte  $\underline{\boldsymbol{q}}_1$  und  $\underline{\boldsymbol{q}}_2$  sowie die Kontrolltangentenvektoren  $\overline{\boldsymbol{m}}_1$  und  $\overline{\boldsymbol{m}}_2$  einer äquivalenten Hermite-Darstellung aus.

$$T_{H \leftarrow B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\text{L\"osung:} \left( \underline{q}_1 \quad \overrightarrow{m}_1 \quad \overrightarrow{m}_2 \quad \underline{q}_2 \right) = \begin{pmatrix} 2 & 0 & -9 & -2 \\ 0 & 6 & -6 & 0 \end{pmatrix}$$

- HA 5. Gesucht ist eine Gewichtsfunktion  $L_i^g(t)$  mit den folgenden Eigenschaften:  $L_i^g(1) = 0$ ,  $L_i^g(2) = 1$ ,  $L_i^g(5) = 0$ .
  - a) Geben Sie Grad g und Index i der gesuchten Lagrange Basisfunktion an. Lösung: g=2, i=1
  - b) Geben Sie ein Polynom  $L_i^g(t)$  an, das den Vorgaben entspricht. Lösung:  $L_1^g(t) = -\frac{1}{3}(t-1)(t-5)$
  - 6. a) Erklären Sie den Begriff konvexe Hülleigenschaft.
    - b) Wie lautet die mathematische Definition dieser Eigenschaft?
    - c) Welche der folgenden Kurven erfüllen diese Eigenschaft? Bézier-Kurve, Lagrange-Kurve, Hermite-Spline, B-Spline
- HA 7. Was ist der Grad g eines Polynoms und wie viele Koeffizienten benötigt man, um ein Polynom vom Grad g zu definieren?
- HA 8. Welche der folgenden Kurven interpolieren **alle** Kontrollpunkte? Bézier-Kurve, Lagrange-Kurve, Hermite-Spline, B-Spline
- HA 9. Für welche der folgenden Kurven kann man die Endtangenten explizit oder über das Kontrollpolygon vorgeben? Bézier-Kurve, Lagrange-Kurve, Hermite-Spline, B-Spline
- HA 10. Geben Sie Pseudo-Code für die Auswertung eines Polynoms in Monombasis mit Hilfe des Hornerschemas an.
  - Gegeben ist  $K=\begin{pmatrix} 1 & 3 \\ 4 & -2 \end{pmatrix}$  als Koeffizientenmatrix für die Monombasis einer Kurve c(t) in  $\mathbb{R}^2$  (ein Punkt pro Spalte). Geben Sie den Kurvenpunkt für den Laufparameterwert t=0.5 an. Lösung:  $c(t=0.5)=\begin{pmatrix} 5/2 \\ 3 \end{pmatrix}$
- (HA) 12. HA a) Wie lautet die Bézier-Basis vom Grad g=1? Lösung:  $B=(1-t,t)^T$  b) Bestimmen Sie die Basistransformationsmatrix  $A_{B\leftarrow M}$  von der Monombasis zur Bézierbasis für Grad g=1. Lösung:  $A_{B\leftarrow M}=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ 
  - HA c) Wie lautet die Transformationsmatrix für den Koeffizientenvektor  $T_{B\leftarrow M}$  für den Grad g=1? Lösung:  $T_{B\leftarrow M}=\begin{pmatrix}1&0\\1&1\end{pmatrix}$



## Fakultät Informatik – Institut SMT – Professur Computergraphik und Visualisierung

- 13. Skizzieren Sie jeweils eine G<sup>0</sup>-, G<sup>1</sup>- und G<sup>2</sup>-Unstetigkeit.
- (HA) 14. In welchem Zusammenhang steht die Anzahl K der Kontrollpunkte mit der Anzahl n der Kurvensegmente bei einem B-Spline vom Grad g?

  HA a) bei einem offenen B-Spline
  - b) bei einem geschlossenen B-Spline
  - 15. Geben Sie einen Knotenvektor für einen offenen B-Spline vom Grad 4 mit 8 Kontrollpunkten an, der die Eigenschaft der Endpunktinterpolation besitzt.
  - HA 16. Wieviele Kontrollpunkte beeinflussen jeweils ein Kurvensegment in einem geschlossenen B-Spline vom Grad 3?