

00

10

PROBLEM STATEMENT

This problem statement should be conducted using the Keil Wision compiler and simulator. In all ocases, the code should be structured. All code should be appropriately documented.

Use the Logic analyser in KEIL uvision to plot the output, response and the start and stop button signals.

PART 1:

As part of an early prototype of a control system for lowering an aircraft undercarriage, you are asked to a create a system which generates the following sequence of outputs on an 8051 MCU:

h 6 1 1 0	1 1 1 0		
OUTPUT	OUTPUT TIME	RESPONSE TIME	RESPONSE PIN
	1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 £1.2 0 0 0 1 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0 P2.2 0 0 0 1 0 1 1
0 P3.1 0 0 1 1 0	32 seconds 1 1 0 0 1 1 1 0 0 0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 10 1 0 0 P2.6 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 second 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			0 0 0 1

- "Output time" refers to the time after the application of Start" button is pressed (see below).
- "Response time" refers to the maximum time before a positive pulse is 0 detected on the corresponding Response pin after each output is generated.
- The sequence of outputs will be initiated by pressing the "Start" button (connected to Pin 3.0).
 - The lowering of the undercarriage must be aborted within 10 ms if at any time during the above process the "Stop" button is pressed. The Stop button is connected to Pin 3.21

The Technical Realm of glitches

PROBLEM STATEMENT

You are required to:

- Create suitable software for this system that meets these timing constraints. Ensure that your code is las portable as possible. Ensure that your code is appropriately structured and flexible enough to deal with specification changes (e.g. change of port pins, addition or removal of output steps in the sequence).
- Fully document all of the tests you perform (using the Keil simulator) to confirm that your program operates correctly and meets its timing constraints.

PART 2:

Once you have confirmed the 1 correctness of the functionality as specified in Part 1, repeat the same problem statement using a timer interrupt using the most appropriate timer in the 8052 Microcontroller that will generate a 'tick' at the most suitable interval. Use this 'tick' to control the firing of the appropriate tasks. Use the idle mode of the microcontroller to put the microcontroller to sleep when ito is not executing any task to achieve power saving.

Please 1 start by considering how many tasks you will require in your system. Trigger the tasks at the correct time to achieve the same functionality as in Part 1.

O Comment on the reliability of the systems created in Part

- 11) Start starts the system operation
- 2) Stop aborts the system operation

S1 to S5 are the steps of the sequence i.e. the output.

R1 to R5 are the Responses to the Corresponding sequences

S1 to S5.

All the pins lare ivisible in the Logic analyzer. The grid of the LA1 is set to 5sec 9

0 10 1 1

⁰ 1 **0 P**

1**0** 0 0

0

0 1 0 0 0 0

1 ()

0 00 Q

0

 $\frac{1}{1}$

10

00

11

0

PROBLEM STATEMENT

-	7	Outputs o and	/\ -	achieved		Part
1 (Super	loop ¹ ar	chitecture)	0 0 1	¹ 0 ⁰ ₀	1	0 1 0
6 0 0	1 0 1		$\frac{1}{0}$ 0 1 1 $_{0}$	1 O O	0	1 0

1 0

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 S1=9.9 sec! 0 S10error=1%		$\mathbf{R}1 \mathbf{error} = 0 0 0 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R2 error=1%0 1 0 1 0 0 1 1
0 S3=30.23 sec 0 S3 error=-0.176% 0 0 1 1 1 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R3 error=-0.62%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1R4=35.121sec 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R5 $e^{100} = 0.37\%$

0 0 0 11 1 0		$\frac{1}{1}$	
$\mathbf{S}_{1}^{1} = 10 \cdot 00005 \mathbf{sec} 1 10 $	$\begin{array}{c} 0 \\ S1 \\ error = -0.0005 \\ 0 \\ 1 \\ 1 \\ 1 \end{array}$	0 1R1=11 sed to 0 0 0 1 0 to 1	R1 lerror=0% 1 0 1 0
S2=107.000050sec	S2 error=-0.0005%	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	R2 error=0% 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R3=31.000010sec	R3 \text{\text{error}} 0\% 0
○ S4=32.000051sec	S4 error=-0.0005%	$R_{0}^{1} = 35.00001 \text{ sec}$	R4 error=0%
$\begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\ \end{array} \text{S5=40.00005} \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ \end{array} \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 1 \\$	S5 error=-0.0005%	1 R5= $\frac{1}{0}$ 41.00001 sec	R5 lerror = 0%

The Technical Realm of glitches