Tìm tập xác định, tập giá trị của hàm số lượng giác

1. Lý thuyết

a. Hàm số $y = \sin x$

- Tập xác định: $D = \mathbb{R}$

- Tập giá trị: [-1;1]

b. Hàm số $y = \cos x$

- Tập xác định: $D = \mathbb{R}$

- Tập giá trị: [-1;1]

c. Hàm số y = tanx

- Tập xác định: $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$

- Tập giá trị: $\mathbb R$

d. Hàm số $y = \cot x$

- Tập xác định: $D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$

- Tập giá trị: $\mathbb R$

2. Các dạng bài tập

Dạng 1. Tìm tập xác định của hàm số lượng giác

- Phương pháp giải:

$$y = \frac{f(x)}{g(x)}$$
 xác định khi $g(x) \neq 0$

$$y = \sqrt{f(x)} \text{ xác định khi } f(x) \ge 0$$

$$y = \frac{f(x)}{\sqrt{g(x)}}$$
 xác định khi $g(x) > 0$

$$y = tan[u(x)]$$
 xác định khi $u(x) \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

$$y = \cot[u(x)]$$
 xác định khi $u(x) \neq k\pi, k \in \mathbb{Z}$

$$\sin x \neq 0$$
 khi $x \neq k\pi (k \in \mathbb{Z})$

$$\cos x \neq 0$$
 khi $x \neq \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$

- Ví dụ minh họa:

Ví dụ 1. Tìm tập xác định của hàm số sau

a)
$$y = \tan\left(3x + \frac{\pi}{3}\right)$$

b)
$$y = \sqrt{2 - \sin x}$$

Lời giải

a)
$$y = \tan\left(3x + \frac{\pi}{3}\right) = \frac{\sin\left(3x + \frac{\pi}{3}\right)}{\cos\left(3x + \frac{\pi}{3}\right)}$$

Điều kiện xác định: $\cos\left(3x + \frac{\pi}{3}\right) \neq 0$

$$\Leftrightarrow 3x + \frac{\pi}{3} \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow 3x \neq \frac{\pi}{6} + k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x \neq \frac{\pi}{18} + k \frac{\pi}{3}, k \in \mathbb{Z}$$
.

Vậy tập xác định của hàm số là $D = \mathbb{R} \setminus \left\{ \frac{\pi}{18} + k \frac{\pi}{3}, k \in \mathbb{Z} \right\}$

b) Điều kiện xác định: $2 - \sin x \ge 0$

$$\Leftrightarrow \sin x \le 2 \text{ (đúng } \forall x \in \mathbb{R} \text{) vì } -1 \le \sin x \le 1 \forall x \in \mathbb{R}$$

Vậy tập xác định của hàm số là D = R.

Ví dụ 2. Tìm tập xác định của hàm số sau

a)
$$y = \frac{2}{\sin x - \cos x}$$

b)
$$y = \frac{\tan 3x}{2\sin x + 1} + \cot(x - 1)$$

Lời giải

- a) Điều kiện xác định: $\sin x \cos x \neq 0 \Leftrightarrow \sin x \neq \cos x$ (*)
- + Trường hợp 1: $\cos x = 0$. Ta có $\sin^2 x + \cos^2 x = 1 \iff \sin^2 x = 1 \iff \sin x = \pm 1$.

Hiển nhiên $\sin x \neq \cos x$.

+ Trường hợp 2: $\cos x \neq 0$. Chia cả hai vế cho $\cos x$

(*)
$$\Leftrightarrow \frac{\sin x}{\cos x} \neq 1 \Leftrightarrow \tan x \neq 1 \Leftrightarrow x \neq \frac{\pi}{4} + k\pi; k \in \mathbb{Z}$$
.

Vậy tập xác định của hàm số là $D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; k \in \mathbb{Z} \right\}$

b) Vì
$$\tan 3x = \frac{\sin 3x}{\cos 3x}$$
 và $\cot(x-1) = \frac{\cos(x-1)}{\sin(x-1)}$

Điều kiện xác định:
$$\begin{cases} \cos 3x \neq 0 \\ \sin x \neq \frac{-1}{2} \\ \sin (x-1) \neq 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x \neq \frac{\pi}{2} + k\pi \\ x \neq -\frac{\pi}{6} + k2\pi \\ x \neq \frac{7\pi}{6} + k2\pi \\ x - 1 \neq k\pi \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{6} + \frac{k\pi}{3} \\ x \neq -\frac{\pi}{6} + k2\pi \\ x \neq \frac{7\pi}{6} + k2\pi \\ x \neq 1 + k\pi \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{6} + \frac{k\pi}{3} \\ x \neq 1 + k\pi \\ x \neq 1 + k\pi \end{cases}$$

Vậy tập xác định của hàm số là $D = \mathbb{R} \setminus \left\{ \frac{\pi}{6} + \frac{k\pi}{3}; 1 + k\pi; k \in \mathbb{Z} \right\}.$

Dạng 2. Tìm tập giá trị của hàm số lượng giác

- Phương pháp giải:

Sử dụng tính bị chặn của hàm số lượng giác

$$-1 \le \sin[u(x)] \le 1$$
; $0 \le \sin^2[u(x)] \le 1$; $0 \le |\sin[u(x)]| \le 1$

$$-1 \le \cos[u(x)] \le 1$$
; $0 \le \cos^2[u(x)] \le 1$; $0 \le |\cos[u(x)]| \le 1$

- Ví dụ minh họa:

Ví dụ 1. Tìm tập giá trị của các hàm số sau:

a)
$$y = 2\sin 3x - 5$$

b)
$$y = 2\sin^2\left(x^2 - \frac{\pi}{12}\right) + 5$$

c)
$$y = |\cos(3x-2)| + 4$$

a) Ta có:
$$-1 \le \sin 3x \le 1 \forall x \in \mathbb{R}$$

$$\Leftrightarrow$$
 $-2 \le 2\sin 3x \le 2 \forall x \in \mathbb{R}$

$$\Leftrightarrow$$
 $-7 \le 2\sin 3x - 5 \le -3 \forall x \in \mathbb{R}$

Vậy tập giá trị: T = [-7; -3].

b) Ta có:
$$0 \le \sin^2\left(x^2 - \frac{\pi}{12}\right) \le 1 \forall x \in \mathbb{R}$$

$$\Leftrightarrow 0 \le 2\sin^2\left(x^2 - \frac{\pi}{12}\right) \le 2 \forall x \in \mathbb{R}$$

$$\Leftrightarrow 5 \le 2\sin^2\left(x^2 - \frac{\pi}{12}\right) + 5 \le 7 \forall x \in \mathbb{R}$$

Vậy tập giá trị: T = [5;7].

c) Ta có:
$$0 \le |\cos(3x-2)| \le 1 \forall x \in \mathbb{R}$$

$$\Leftrightarrow 4 \le |\cos(3x-2)| + 4 \le 5 \forall x \in \mathbb{R}$$

Vậy tập giá trị: T = [4;5].

Ví dụ 2. Tìm tập giác trị của các hàm số sau:

a)
$$y = \sqrt{\sin x + 1} - 2$$

b)
$$y = \cos 2x + 4\sin x + 1$$

Lời giải

a) Điều kiện xác định: $\sin x + 1 \ge 0 \Leftrightarrow \sin x \ge -1 \forall x \in \mathbb{R}$.

Tập xác định D = R.

Ta có: $-1 \le \sin x \le 1 \forall x \in \mathbb{R}$

$$\Leftrightarrow 0 \le \sin x + 1 \le 2 \forall x \in \mathbb{R}$$

$$\Leftrightarrow 0 \le \sqrt{\sin x + 1} \le \sqrt{2} \forall x \in \mathbb{R}$$

$$\Leftrightarrow -2 \le \sqrt{\sin x + 1} - 2 \le \sqrt{2} - 2 \forall x \in \mathbb{R}$$
.

Vậy tập giá trị:
$$T = \left[-2; \sqrt{2} - 2\right]$$
.

b)
$$y = \cos 2x + 4\sin x + 1 = 1 - 2\sin^2 x + 4\sin x + 1 = -2\sin^2 x + 4\sin x + 2 = -2(\sin x - 1)^2 + 4$$
.

Ta có: $-1 \le \sin x \le 1 \forall x \in \mathbb{R}$

$$\Leftrightarrow$$
 $-2 \le \sin x - 1 \le 0 \forall x \in \mathbb{R}$

$$\Leftrightarrow 0 \le (\sin x - 1)^2 \le 4 \forall x \in \mathbb{R}$$

$$\Leftrightarrow$$
 $-8 \le -2(\sin x - 1)^2 \le 0 \forall x \in \mathbb{R}$

$$\Leftrightarrow$$
 $-4 \le -2(\sin x - 1)^2 + 4 \le 4 \forall x \in \mathbb{R}$.

Vậy tập giá trị: T = [-4;4].

Dạng 3. Tìm m để hàm số lượng giác có tập xác định là R

- Phương pháp giải:

$$m \! \geq \! f \! \left(x \right) \! \forall x \in \! \left[a; b \right] \! \Rightarrow \! m \! \geq \! \max_{x \in \left[a; b \right]} \! f \! \left(x \right)$$

$$m > f(x) \forall x \in [a;b] \Rightarrow m > \max_{x \in [a;b]} f(x)$$

$$m \le f(x) \forall x \in [a;b] \Rightarrow m \le \min_{x \in [a;b]} f(x)$$

$$m < f(x) \forall x \in [a;b] \Rightarrow m < \min_{x \in [a;b]} f(x)$$

- Ví dụ minh họa:

Ví dụ 1. Tìm m để hàm số $y = \sqrt{\sin x + m}$ xác định trên R.

Lời giải

Để hàm số xác định trên R thì $\sin x + m \ge 0 \, \forall x \in \mathbb{R} \iff m \ge -\sin x \, \forall x \in \mathbb{R}$.

Mà ta có
$$-1 \le \sin x \le 1 \forall x \in \mathbb{R} \iff -1 \le -\sin x \le 1 \forall x \in \mathbb{R}$$

Nên m≥1.

Ví dụ 2. Tìm m để hàm số $y = \sqrt{\sin^2 x - 2\sin x + m}$ xác định trên R.

Lời giải

Ta có:
$$y = \sqrt{\sin^2 x - 2\sin x + m} = \sqrt{(\sin x - 1)^2 + m - 1}$$

Hàm số xác định trên R khi

$$\left(\sin x - 1\right)^{2} + m - 1 \ge 0 \forall x \in \mathbb{R} \iff m \ge 1 - \left(\sin x - 1\right)^{2} \forall x \in \mathbb{R}$$

Ta có: $-1 \le \sin x \le 1 \forall x \in \mathbb{R}$

$$\Leftrightarrow$$
 $-2 \le \sin x - 1 \le 0 \forall x \in \mathbb{R}$

$$\Leftrightarrow 0 \le (\sin x - 1)^2 \le 4 \forall x \in \mathbb{R}$$

$$\Leftrightarrow -4 \le -(\sin x - 1)^2 \le 0 \forall x \in \mathbb{R}$$

$$\Leftrightarrow$$
 $-3 \le 1 - (\sin x - 1)^2 \le 1 \forall x \in \mathbb{R}$

Vậy m≥1.

3. Bài tập tự luyện

Câu 1. Tập xác định của hàm số $y = \cot\left(2x - \frac{\pi}{3}\right)$ là

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{6} + \frac{k\pi}{2}; k \in \mathbb{Z} \right\}$$

B.
$$D = \mathbb{R} \setminus \left\{ \frac{5\pi}{12} + k\pi; k \in \mathbb{Z} \right\}$$

C.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

D.
$$D = \mathbb{R} \setminus \left\{ \frac{5\pi}{12} + \frac{k\pi}{2}; k \in \mathbb{Z} \right\}$$

Câu 2. Tập xác định của hàm số $y = \tan x + \cot x$ là

A.
$$\mathbb{R}$$

B.
$$\mathbb{R} \setminus \{k\pi; k \in \mathbb{Z}\}$$

B.
$$\mathbb{R} \setminus \left\{ k\pi; k \in \mathbb{Z} \right\}$$
 C. $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$ **D.**

$$\mathbb{R}\setminus\left\{\frac{k\pi}{2};k\in\mathbb{Z}\right\}$$

Câu 3. Tập xác định của hàm số $y = \sqrt{\sin x + 1}$ là:

A.
$$D = [-1; +\infty)$$

$$\mathbf{B} \cdot \mathbf{D} = \mathbf{R}$$

C.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

D. D =
$$(-\infty; -1]$$

Câu 4. Tập xác định của hàm số $y = \frac{3\sin x}{2\cos x - \sqrt{3}}$ là:

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{6} + k2\pi; k \in \mathbb{Z} \right\}$$

B. D =
$$\mathbb{R} \setminus \left\{ \frac{\pi}{3} + k2\pi; k \in \mathbb{Z} \right\}$$

C.
$$D = \mathbb{R} \setminus \left\{ \pm \frac{\pi}{6} + k2\pi; k \in \mathbb{Z} \right\}$$

$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{3} + k2\pi; \frac{2\pi}{3} + k2\pi; k \in \mathbb{Z} \right\}.$$

Câu 5. Tập xác định của hàm số $y = \frac{2021}{1 - \tan x} + \sin^2 x$ là

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; \frac{\pi}{2} + k2\pi; k \in \mathbb{Z} \right\}$$
 B. $D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$

B.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

C.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; k \in \mathbb{Z} \right\}$$
 D.

$$D = \mathbb{R} \setminus \left\{ -\frac{\pi}{4} + k\pi; -\frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

Câu 6. Tập xác định của hàm số $y = \frac{2x-1}{\sin^2 x - \cos^2 x}$ là

A.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; k \in \mathbb{Z} \right\}.$$

B.
$$\mathbf{D} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + \mathbf{k}\pi; \mathbf{k} \in \mathbb{Z} \right\}.$$

C.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k \frac{\pi}{2}; k \in \mathbb{Z} \right\}.$$

D.
$$D = \mathbb{R} \setminus \left\{ \frac{3\pi}{4} + k2\pi; k \in \mathbb{Z} \right\}.$$

Câu 7. Tập xác định của hàm số $y = \sqrt{\frac{1-\cos 3x}{1+\sin 4x}}$ là

A.
$$D = \mathbb{R} \setminus \left\{ -\frac{\pi}{8} + k\frac{\pi}{2}, \ k \in \mathbb{Z} \right\}$$

B. D =
$$\mathbb{R} \setminus \left\{ -\frac{3\pi}{8} + k\frac{\pi}{2}, k \in \mathbb{Z} \right\}$$

C.
$$D = \mathbb{R} \setminus \left\{ -\frac{\pi}{4} + k\frac{\pi}{2}, k \in \mathbb{Z} \right\}$$

$$\mathbf{D.} \ \mathbf{D} = \mathbb{R} \setminus \left\{ -\frac{\pi}{6} + \mathbf{k} \frac{\pi}{2}, \ \mathbf{k} \in \mathbb{Z} \right\}$$

Câu 8. Hàm số nào dưới đây có tập xác định là R?

A.
$$y = \sin x + \cot 5x$$
 B. $y = \frac{\tan 3x}{\sin^2 x + 1}$ **C.** $y = 2\cos \sqrt{x}$ **D.** $y = \sqrt{1 - \sin 2x}$

$$\mathbf{C.} \ \mathbf{y} = 2\cos\sqrt{\mathbf{x}}$$

D.
$$y = \sqrt{1 - \sin 2x}$$

Câu 9. Tập giá trị của hàm số $y = 1 - 2|\sin 2x|$ là

Câu 10. Tập giá trị của hàm số $y = 3 + \sqrt{1 - \sin^2 3x}$ là

Câu 11. Tập giá trị của hàm số $y = 2 + \sin x \cos x$ có dạng T = [m,M]. Giá trị của m là:

A.
$$\frac{5}{2}$$

B.
$$\frac{3}{2}$$

c.
$$\frac{2}{3}$$

Câu 12. Tập giá trị của hàm số $y = 2\sin 3x + 1$ là

Câu 13. Tìm m để hàm số $y = \frac{2}{\sin x - m}$ xác định trên R.

A.
$$m \in (-\infty; -1) \cup (1; +\infty)$$

B.
$$m \in (-\infty; -1] \cup [1; +\infty)$$

C.
$$m \neq 1$$

D.
$$m \in [-1;1]$$

Câu 14. Hàm số $y = \frac{2 - \sin 2x}{\sqrt{2\cos x + m - 1}}$ có tập xác định R khi và chỉ khi:

A.
$$m > 3$$

B. m
$$< -1$$

C.
$$m \ge 3$$

D.
$$m \le -1$$

Câu 15. Tìm tất cả các giá trị của tham số m để hàm số

$$y = \sqrt{\sin^2 x - 4\cos x + 2m - 1} \ \text{có tập xác định là R}.$$

A.
$$m \ge -\frac{3}{2}$$

B.
$$m \ge \frac{5}{2}$$

 ${\bf C.}$ Không có m thỏa mãn ${\bf D.}$ ${\bf m} \ge 5$

Bảng đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	D	В	С	В	С	A	D	В	D	В	D	A	A	В