MATH-1564-K1,K2,K3 –Linear Algebra with Abstract Vector Spaces Final exam

- ♦ The exam starts when this fact is indicated by the instructor. The exam ends at 5:40. The length of the exam is roughly two hours and 50 minutes.
- ♦ The use of calculators is NOT permitted.
- ♦ The use of written notes is NOT permitted.
- ♦ There are 9 questions with points as indicated (with 100 points in all).
- ♦ Explain yourself clearly and justify all of your claims. If you use a result which was stated in class, recitation or homework then make sure to indicate this fact explicitly.

Name:			
Recitati	on group:		

1. [10 points] Find a basis for the following space. Justify your computations

$${x^3 - 2x^2 + x + 1, 2x^3 + 3x - 2, x^3 - 2x^2 + x - 3, x^3 - 6x^2 - 3}.$$

2. Let $A \in M_4(\mathbb{R})$ be a matrix which satisfies

$$A := \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & a & b \\ 0 & 1 & c & d \end{array}\right).$$

Assume that $\dim(\text{null}(A)) = \text{rank}(A)$.

- i. [5 points] Find the value of each one of the parameters $a,\,b,\,c,\,d.$
- ii. [5 points] Find a basis for the **row** space of A and a basis for the **column** space of A.

3. Let $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ be defined by

$$TA = \left(\begin{array}{cc} 2 & -1 \\ 4 & -2 \end{array}\right),$$

and consider the following basis of $M_2(\mathbb{R})$:

$$B=(\left(\begin{array}{cc}1&1\\0&0\end{array}\right),\left(\begin{array}{cc}1&-1\\0&0\end{array}\right),\left(\begin{array}{cc}0&0\\1&1\end{array}\right),\left(\begin{array}{cc}0&0\\1&-1\end{array}\right)).$$

(You do not need to prove that T is a linear transformation or that B is a basis for the space.)

- i. [5 points] Find $[T]_B$.
- ii. [5 points] Use the matrix $[T]_B$ to find dim(ImT). Justify your answer.
- iii. [5 points] Use the matrix $[T]_B$ to find a basis for kerT. Justify your answer.

4. [10 points] Consider the matrix:

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -6 & 5 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

Is A diagonalizable? If so, find a diagonal matrix D which is similar to A. Justify your answers.

5. [10 points] Let V be a vector space of dimension 3 over \mathbb{R} and let $B = (v_1, v_2, v_3)$ and $C = (w_1, w_2, w_3)$ be two ordered bases of V. Assume that

$$[id]_B^C = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 0 & 0 \end{pmatrix}$$

- a. [5 points] Is the set $\{w_2, w_3, v_1, v_2\}$ a spanning system for V? Justify your answer.
- b. [5 points] Find $[v_1]_C$, $[v_2]_C$ and $[v_3]_C$.

6. [10 points] **Prove** the following claim: If $A \in M_n(R)$ is such that |A| = 0, then A is similar to a matrix who's left most column is the zero column (that is, the column with all of its entries being equal to zero).

- 7. [10 points] Let V be a vector space and let $v_1, v_2, v_3, w, u \in V$ be vectors in V. Assume that $u \notin \text{span}\{v_1, v_2, v_3\}$ and $u \in \text{span}\{v_1, v_2, v_3, w\}$. **Prove** each one of the following claims.
 - i. [5 points] $w \notin \operatorname{span}\{v_1, v_2, v_3\}$.
 - ii. [5 points] $w \in \text{span}\{v_1, v_2, v_3, u\}$

- 8. Let V be a vector space and $T:V\to V$ be a linear transformation which satisfies $T^2=T$. **Prove** the following claims:
 - i. [5 points] If a vector $v \in V$ belongs both to the kernel of T and to the image of T then v = 0.
 - ii. [5points] If T is 1–1 then $T = id_V$.
 - iii. [5points] If λ is an eigenvalue of T then $\lambda = 1$ or $\lambda = 0$.

- 9. Prove or disprove the following claims: Let V be a vector space of dimension 4 over \mathbb{R} .
 - i. [5 points] If $T:V\to V$ is a linear transformation which satisfies $\dim({\rm Im}T^2)=3$ then $\dim({\rm Im}T)=3$.
 - ii. [5 points] If $T:V\to V$ is a linear transformation which satisfies $\dim({\rm Im}T)=3$ then $\dim({\rm Im}T^2)=3$.