UPPSALA UNIVERSITET

LECTURE NOTES

Analysis of Categorical Data

Rami Abou Zahra

Contents

1. Chapter 1 & 2	2
1.1. Slide 33	2
1.2. Slide 38	2
1.3. Slide 41	2
2. Chapter 3	4
2.1. Slide 6	4
3. Chapter 4	4
3.1. Slide 9	4
3.2. Slide 12	4
3.3. Slide 13	4
3.4. Slide 16	4
3.5. Slide 20	4
3.6. Slide 21	4
3.7. Slide 25	5
3.8. Slide 32	5
3.9. Slide 35	5
3.10. Slide 37	5
4. Chapter 5 & 6	6
4.1. Slide 4	6
4.2. Slide 5	6
4.3. Slide 17	6
4.4. Slide 20	6
4.5. Slide 21	7
4.6. Slide 22	7
4.7. Slide 23	7
4.8. Slide 24	7
4.9. Slide 26	7
4.10. Slide 27	7
4.11. Slide 28	7
4.11. Slide 28 4.12. Slide 30	7
5. Chapter 7	8
5.1. Slide 5	8
5.2. Slide 13	8
5.3. Slide 14	8
5.4. Slide 15	8
	9
6. Chapter 8 6.1. Slide 4	
6.2. Slide 5	9
6.3. Slide 6	
	9
6.4. Slide 7	
6.5. Slide 10	9
6.6. Slide 11	9
6.7. Slide 13	9
7. Chapter 9	10
7.1. Slide 4	10
7.2. Slide 5	10
7.3. Slide 6	10
7.4. Slide 11	10
7.5. Slide 14	10
7.6. Slide 17	10
7.7. Slide 25	10
8. Course Summary	11

1. Chapter 1 & 2

• Nominal: no ordering behind the categories

Note: The features can be continuous, but in this course the categorical variable is discrete.

1.1. Slide 33.

One can always construct a table whose partial tables has odds ratio 1. For the Berkley data, looking at the university as a whole we had independence but dependence when looking departmentwise. Just because the odds ratio is 1, does not mean that the marginal odds will also be 1.

$$\begin{array}{c|cccc} & & & Y \\ Z & X & 0 & 1 \\ \hline Z_1 & 0 & 100 & 10 \\ Z_2 & 1 & 200 & 20 \\ Z_3 & 0 & 100 & 50 \\ Z_4 & 1 & 60 & 30 \\ \hline \end{array}$$

Here, the odds ratio is $\frac{100 \cdot 20}{10 \cdot 200} = 1 = \frac{100 \cdot 30}{50 \cdot 60}$, but the marginal table looks like this:

$$\begin{array}{c|cccc}
 & & & & & & & & \\
X & & & & & & & & \\
\hline
0 & 100+100 & 10+50 \\
1 & 200+60 & 20+30 \\
\end{array}$$

We can see that $\theta_{xy} = \frac{200 \cdot 50}{60 \cdot 260} \neq 1$

1.2. Slide 38.

Odds ratio can be computed by pairwise computation.

Local odds ratio: only adjacent, eg X=0 and Y=2 columns will not be included. Only this is needed.

1.3. Slide 41.

For the following table:

$$\begin{array}{c|cccc}
 & Y \\
\hline
 X & 1 & 2 \\
\hline
 1 & n_{11} & n_{12} \\
 2 & n_{21} & n_{22}
\end{array}$$

Assuming multinomial sampling with the total sum being fixed to nm we wish to find the distribution of all n_{ij} . Since n is known, we normalize:

$$\begin{array}{c|cccc}
X & 1 & 2 \\
\hline
1 & n_{11}/n & n_{12}/n \\
2 & n_{21}/n & n_{22}/n
\end{array}$$

Note that this is indeed a valid estimation, since they all sum to 1. Also, since they sum to 1, we only need to know three of them. When we want to estimate the distribution of $\frac{1}{n} \begin{bmatrix} n_{11} \\ n_{12} \\ n_{21} \end{bmatrix}$, we use the CLT:

$$\frac{1}{\sqrt{n}} \left(\frac{1}{n} \begin{bmatrix} n_{11} \\ n_{12} \\ n_{21} \end{bmatrix} - \begin{bmatrix} \pi_{11} \\ \pi_{12} \\ \pi_{21} \end{bmatrix} \right) \approx N \left(0, \begin{bmatrix} \pi_{11}(1 - \pi_{11}) & -\pi_{11}\pi_{12} & \pi_{11}\pi_{21} \\ & \pi_{12}(1 - \pi_{12}) & -\pi_{12}\pi_{21} \\ & & \pi_{21}(1 - \pi_{21}) \end{bmatrix} \right)$$

Example: Consider $g(x_1, x_2, x_3) = \ln(x_1) - \ln(x_2) - \ln(x_3) + \ln(1 - x_1 - x_2 - x_3)$

$$\frac{\frac{n_{11}}{n} = x_1}{\frac{n_{12}}{n} = x_2} = \lim_{n \to \infty} \left\{ \ln\left(\frac{n_{11}}{n}\right) - \ln\left(\frac{n_{12}}{n}\right) - \ln\left(\frac{n_{21}}{n}\right) + \underbrace{\ln\left(1 - \frac{n_{11}}{n} - \frac{n_{12}}{n} - \frac{n_{21}}{n}\right)}_{\ln\left(n_{22}/n\right)} = \ln\left(\widehat{\theta}\right) \right\}$$

To find the distribution of $\ln(\widehat{\theta})$, apply the delta method to g:

$$\frac{\partial g}{\left[\frac{\partial x_1}{\partial x_2}\right]} = \begin{bmatrix} \frac{1}{x_1} - \frac{1}{1 - x_1 - x_2 - x_3} \\ \vdots \end{bmatrix}$$

$$\Rightarrow \ln\left(\widehat{\theta}\right) - \ln\left(\theta_0\right) \approx N(0, ?)$$

$$? = \begin{bmatrix} \frac{1}{\pi_{11}} - \frac{1}{\pi_{22}}, -\frac{1}{\pi_{12}} - \frac{1}{\pi_{21}} - \frac{1}{\pi_{22}} \end{bmatrix} \begin{bmatrix} \pi_{11}(1 - \pi_{11}) & -\pi_{11}\pi_{12} & \pi_{11}\pi_{21} \\ & \pi_{12}(1 - \pi_{12}) & -\pi_{12}\pi_{21} \\ & & \pi_{21}(1 - \pi_{21}) \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{\pi_{11}} - \frac{1}{\pi_{22}} \\ -\frac{1}{\pi_{12}} - \frac{1}{\pi_{22}} \\ -\frac{1}{\pi_{21}} - \frac{1}{\pi_{22}} \end{bmatrix} = \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}$$

The last equality holds regardless of sampling method.

2.1. Slide 6.

It does not need to be from multinomial sampling, but then we would need to change the likelilhood-

Under H_0 , we have (I-1)+(J-1) parameters under H_1 we have IJ-1 parameters

3. Chapter 4

3.1. **Slide 9.**

$$\frac{\partial \ell}{\partial \beta} = \frac{\partial \ell}{\partial \theta} \frac{\partial \theta}{\partial \mu} \frac{\partial \mu}{\partial n} \frac{\partial \eta}{\partial \beta}$$

With the following holding:

$$\mu = b'(\theta) \Rightarrow \frac{\partial \mu}{\partial \theta} = b''(\theta) = \frac{\operatorname{Var}(Y_i)}{\phi_i}$$
$$\Rightarrow \frac{\partial \theta}{\partial \mu} = \frac{\phi_i}{\operatorname{Var}(Y_i)}$$
$$\eta = x_i^T \beta \Rightarrow \frac{\partial \eta}{\partial \beta} = x_i$$

This yields for functions belonging to the exponential family:

$$\frac{\partial}{\partial \beta} \left[\frac{y_i \theta_i - b(\theta_i)}{\phi_i} + c(y_i, \phi_i) \right] = \underbrace{\frac{\partial \ell / \partial \theta}{y_i - b'(\theta_i)}}_{Q_i} \cdot \underbrace{\frac{\partial \rho}{\partial \beta}}_{Q_i} \cdot \underbrace{\frac{\partial \rho}{\partial \beta}}_{$$

3.2. Slide 12.

In the Poisson case, we have the link-function $g(\mu) = \ln(\mu) \Rightarrow \mu = \exp{\{\eta_i\}}$, this yields the following

•
$$D = \frac{\partial \mu_i}{\partial \eta} = \exp\{\eta_i\} = \exp\{x_i^T \beta\}$$

• $V = \mu_i = \exp\{\eta\} \exp\{x_i^T \beta\}$

•
$$V = \mu_i = \exp\{\eta\} \exp\{x_i^T \beta\}$$

3.3. Slide 13.

$$\frac{\partial \ell}{\partial \beta} = \boldsymbol{X}^T \boldsymbol{D} \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})$$

3.4. Slide 16.

The Fisher infortmation can be expressed in the following way:

$$I(\beta) = \operatorname{Var}\left(\frac{\partial \ell}{\partial \beta}\right) = -\mathbb{E}\left[\frac{\partial^2 \ell(\beta)}{\partial^2}\right] = \operatorname{Var}\left(\boldsymbol{X}^T \boldsymbol{D} \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})\right) = \boldsymbol{X}^T \boldsymbol{D} \boldsymbol{V}^{-1} \underbrace{\operatorname{Var}\left(\boldsymbol{y} - \boldsymbol{\mu}\right)}_{=\boldsymbol{V}} \boldsymbol{V}^{-1} \boldsymbol{D} \boldsymbol{X}$$
$$= \boldsymbol{X}^T \boldsymbol{D} \boldsymbol{V}^{-1} \boldsymbol{D} \boldsymbol{X}$$

3.5. Slide 20.

$$\widehat{\beta} \approx N\left(\beta, (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1}\right)$$

The likelihood function here is not the same the same as the one for β , since the MLE assumes β follows a certain model.

3.7. **Slide 25.**

Note that we have continuous data in the x_2 column, therefore it is automatically ungrouped

3.8. **Slide 32.**

Here n = number of observations

3.9. **Slide 35.**

Note that we have patterns due to ungrouped data.

3.10. **Slide 37.**

In the second figure, we have the quantile regression (3 lines). Reading this, they should be straight in the quantiles .75, .5, .25

4. Chapter 5 & 6

4.1. Slide 4.

Say we have two models, $M_1 = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ and $M_2 = \beta_0 + \beta_1 x_2 + \beta_2 x_2 + \beta_3 x_1 x_2$ In M_1 , if there is change in x_1 there is no change in the other covariates not concerning x_1 , however, in M_2 , if we change x_1 then this also changes $\beta_1 \wedge \beta_3$

4.2. Slide 5.

Prospective: Look ahead in time (will smoking cause cancer?)

Case-control: Data already available (is probability of cancer higher given that you smoke?)

In the prospective case,

$$P(Y = 1 \mid X) = \frac{\exp\{\alpha + \beta x\}}{1 + \exp\{\alpha + \beta x\}}$$

Since we are using the logit model, $\ln\left(\frac{\pi}{1+\pi}\right) = \alpha + \beta x$

In the case-control case it depends on the sampling. It yields slightly different models and probabilities

$$P(Z = 1 \mid Y = 1), \quad P(Z = 1 \mid Y = 0)$$

If we take a study of cancer vs driving+smoking, then we look at the subset we are interested in. This Z variable is that, if what we are interested in is sampled in the observation.

$$P(Y = 1 \mid Z = 1, X) = \frac{P(Z = 1 \mid Y = 1, X)P(Y = 1 \mid X)}{P(Z = 1 \mid Y = 1, X)P(Y = 1 \mid X) + P(Z = 1 \mid Y = 0, X)P(Y = 0 \mid X)}$$

$$= \frac{P(Z = 1 \mid Y = 1) \frac{\exp{\{\alpha + \beta x\}}}{1 + \exp{\{\alpha + \beta x\}}}}{P(Z = 1 \mid Y = 1) \frac{\exp{\{\alpha + \beta x\}}}{1 + \exp{\{\alpha + \beta x\}}} + \frac{P(Z = 1 \mid Y = 0)}{1 + \exp{\{\alpha + \beta x\}}}}$$

$$= \frac{P(Z = 1 \mid Y = 1) \exp{\{\alpha + \beta x\}}}{P(Z = 1 \mid Y = 1) \exp{\{\alpha + \beta x\}} + P(Z = 1 \mid Y = 0)}$$

$$= \frac{P(Z = 1 \mid Y = 1) \exp{\{\alpha + \beta x\}} + P(Z = 1 \mid Y = 0)}{1 + \frac{P(Z = 1 \mid Y = 1)}{P(Z = 1 \mid Y = 0)}}$$

$$\Rightarrow \alpha = \alpha + \ln{\left(\frac{P(Z = 1 \mid Y = 1)}{P(Z = 1 \mid Y = 0)}\right)}$$

4.3. **Slide 17.**

If X is the gender, and Z is the department (from the Berkley admission data example), then

$$\bullet \ \beta_i^X = \begin{cases} 1 & \text{female} \\ 0 & \text{male} \end{cases}$$

$$\bullet \ \beta_k^Z = \begin{cases} 1 & \text{dept. k} \\ 0 & \text{else} \end{cases}$$

$$\bullet \ \beta_{ik}^{XZ} = \begin{cases} 1 & \text{dept. k} \land \text{female} \\ 0 & \text{else} \end{cases}$$

4.4. Slide **20.**

Residual deviance tells us if we have a good model by comparing to χ^2 . If it is less than χ^2 , then the model assuming conditional independence is good.

In order to compare models, we compare their residuals. Say we have two models M_1 and M_2 with respective residuals R_1 and R_2 , then we compare $R_1 - R_2$ with $\chi^2(1)$ (one-degree of freedom). If the difference is larger than the χ^2 , we reject the null-hypothesis that we have conditional independence.

4.5. Slide 21.

This is like the Fisher-exact test, but without confounding factos.

4.6. Slide 22.

If we have confounding factors, we do the Fisher-exact on each partial table. If they are independent, then all are hypergeometrically distributed.

4.7. Slide 23.

We need homogeneous association here!

4.8. Slide **24.**

As $k \to \infty$, we get more partial tables.

$$\underbrace{1}_{\text{intcpt.}} + \underbrace{1}_{\beta_1} + \underbrace{(k-1)}_{\text{deg. free.}}$$

4.9. Slide **26.**

We should be seeing convergence to $\beta=0.5$, but it is centered around 1 instead. This is because n=2k and the MLE converges to 2β

4.10. Slide 27.

CMH is popular for Meta-analysis.

4.11. Slide 28.

If $Z \wedge X \mid Y$ are conditionally independent, then they are conditionally independent given Y, i.e $Z \perp X \mid Y \Rightarrow P(X=1 \mid Y=j,Z=k)$ cond. independent $Z = Y \mid Y = Y$

Odds-ratio between X, Y for some level of Z is given by:

$$\frac{P(X=1 \mid Y=1, Z=k)P(X=2 \mid Y=2, Z=k)}{P(X=1 \mid Y=2, Z=k)P(X=2 \mid Y=1, Z=k)} = \underbrace{\frac{P(X=1 \mid Y=1)P(X=2 \mid Y=2)}{P(X=1 \mid Y=2)P(X=2 \mid Y=1)}}_{\text{marginal table}} = \theta(X, Y, Z=k) \leftarrow \text{partial table}$$

4.12. **Slide 30.**

Just use residual deviance, if larger than χ^2 , then bad & switch to saturated model.

5.1. **Slide 5.**

For F_{ε} , what distribution you might ask? Logistic distribution:

$$\varepsilon \sim F(X) = \frac{\exp\{x\}}{1 + \exp\{x\}} \quad \pi \Rightarrow \frac{\exp\{x^T \beta\}}{1 + \exp\{x^T \beta\}} \Leftrightarrow \ln\left(\frac{\pi}{1 - \pi}\right) = x^T \beta$$

Choice of link-function needs to be motivated for the error.

5.2. **Slide 13.**

Here it is assumed $y_i \in \{0, 1\}$

5.3. **Slide 14.**

This is for the Frequentist only. We assume we have a distribution with known θ . Y_i is observed from distribution.

A statistic $T = T(Y_1, \dots, Y_n)$, conditional distribution of data given sufficient statistic does not depend on θ , all information about θ is contained in the sufficient statistic.

Minimal sufficient statistic uses the smallest dimension.

As an example, assume we have two samples X_i, Y_j . Take the ratio $\frac{f(Y \mid \theta)}{f(X \mid \theta)}$. A statistic T(Y) is minimal sufficient if the ratio does not depend on $\theta \Leftrightarrow T(X) = T(Y)$ In order to not be dependent on α , we need

$$\sum_{i} y_i = \sum_{i} y_i^*$$

so that they cancel. Thus, $\sum_i y_i$ is a minimal sufficient statistic.

5.4. Slide 15.

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta_1 x_1 + \beta_2 x_2$$

Here, α and β_2 are nuisance parameters, and the minimal sufficent statistic for

- α : $\sum y$ β_j : $\sum y_i x_{ij}$

6.1. Slide 4.

In order to get rid of π_C :

$$1 = \sum_{j=1}^{J} \pi_j(x) = \sum_j \pi_C(x) \exp\left\{\alpha_j + \beta_j^T x\right\} \qquad \begin{array}{l} \alpha_C = 0\\ \beta_C = 0 \end{array} \Rightarrow \exp\left\{0\right\} = 1$$
$$\Rightarrow \pi_C = \frac{1}{\sum_j \exp\left\{\alpha_j + \beta_j^T x\right\}}$$

6.2. Slide 5.

We use maximum likelihood to find α, β . C can be freely chosen and = 0, this does not change probability due to softmax since:

$$\frac{\exp\{z_1\}/\exp\{z_C\}}{(\sum_i \exp\{z_i\}) \exp\{z_C\}}$$

$$\ln\left(\frac{\pi_j}{\pi_C}\right) = \alpha_j + \beta_j^T x$$

$$\ln\left(\frac{\pi_j}{\pi_A}\right) = \ln\left(\pi_j\right) - \ln\left(\pi_A\right) = \ln\left(\frac{\pi_j}{\pi_C}\right) - \ln\left(\frac{\pi_A}{\pi_C}\right)$$

$$= (\alpha_j - \alpha_A) + \underbrace{(\beta_j - \beta_A)}_{\text{normal since}} x$$

$$\begin{bmatrix} \widehat{\beta}_j \\ \widehat{\beta}_k \end{bmatrix}_{\text{joint normal}}^{\text{normal}}$$

6.3. Slide 6.

$$P(Y=j)P(U_j > U_k \quad \forall k \neq j) = \int P(U_j > U_k \quad \forall k \neq j)f(U_j)dU_j$$

By the law of total probability

6.4. Slide 7.

Ordering, eg grades, if you get a 4, then you also get a 3. We do cumulative probabilities.

6.5. Slide 10.

$$\ln\left(\frac{P(Y < j)}{1 - P(Y \le j)}\right) = \alpha_j \beta^T x$$

(same as the binary outcome)

$$\frac{P(Y \le j \mid x_1)}{1 - P(Y \le j \mid x = x_1)} = \exp \left\{ \beta^T (x_1 - x_2) \right\} \frac{P(Y \le j \mid x_2)}{1 - P(Y \le j \mid x = x_2)}$$

6.6. Slide 11.

Ordinal data assumes $\beta_j = \beta_i \ \forall i, j$. Because of total representation.

6.7. Slide 13.

Can happen here that as we include more categories, our probabilities decrease.

7.1. Slide 4.

 N_1, \dots, N_C are independent Poisson with mean μ_i . $P(N_1 = n_1, \dots, N_C = n_C \mid \sum_{i=1}^C N_i = n)$ for Poisson, total number of observations in random variable but we condition on it so we know it.

$$= \frac{P(N_1 = n_1 \cdots, N_C = n_C)}{P(\sum_{i=1}^C N_i = n)} \stackrel{\text{indep.}}{=} \frac{\prod_{i=1}^C \frac{\mu_i^{n_i}}{n_i!} \exp\left\{-\mu_i\right\}}{\sum N_i \sim \text{Po}(\sum \mu_i)}$$

$$\Rightarrow \frac{\prod_{i=1}^C \frac{\mu_i^{n_i}}{n_i!} \exp\left\{-\mu_i\right\}}{\frac{(\sum \mu_i)^n}{n!} \exp\left\{-\sum \mu_i\right\}} = \frac{n! \prod_{i=1}^C \mu_i^{n_i}}{\prod_{i=1}^C n_i! \left(\sum \mu_i\right)^n} = \frac{n!}{\prod_{i=1}^C n_i!} \prod_{i=1}^C \left(\frac{\mu_i}{\sum \mu_i}\right)^{n_i}$$

$$\Rightarrow \pi_i = \frac{\mu_i}{\sum \mu_i} \leftarrow \text{multinomial}$$

7.2. Slide 5.

Log-likelihood for Poisson:

$$\frac{\mu^{y}}{y!} \mathrm{exp}\left\{-\mu\right\} \Rightarrow \mathrm{exp}\left\{y \ln \left(\mu\right) - \mu - \ln \left(y!\right)\right\}$$

Maximizing this like-likehood, i.e $\frac{\partial \ell}{\partial \lambda} = 0$ yields

$$\frac{\partial \ell}{\partial \lambda} = \exp\left\{\lambda\right\} \sum_{i} \exp\left\{\beta^{T} x\right\} = \sum_{i} \underbrace{\exp\left\{\lambda + \beta^{T} x\right\}}_{\substack{\text{exponential} = \mu_{i} \\ \text{transformed linear predictor}}}_{\substack{\text{predictor}}}$$

7.3. Slide 6.

 β :s are almost the same, even if we start with Poisson or multinomial, since λ in Poisson but multinomial cancels.

Given contingency table, just build loglinear and find β (simplest and fastest way)

7.4. Slide 11.

For association, we only care about the interaction term λ^{XY}

7.5. Slide 14.

- Do not inference each other at all. Eg, BMW prices in USA vs weather
- ullet X is blood pressure, Z is the disease, Y is BMW prices

7.6. Slide 17.

$$\pi_{ijk} = n\pi_{i+k} = \frac{\pi_{+jk}}{\pi_{++k}}$$

$$\Rightarrow \ln(\pi_{ijk}) = \underbrace{\ln(n)}_{\lambda} + \underbrace{\ln(\pi_{i+k})}_{\lambda^{XZ}} + \underbrace{\ln(\pi_{+jk})}_{\lambda^{YZ}} - \underbrace{\ln(\pi_{++k})}_{\lambda^{Z}}$$

Now, by the hierarchical principle, we need λ^X, λ^Y as well, which is given thanks to the generative class.

If $\ln(\theta_{ij(k)})$ expanded does not depend on $k, C \Rightarrow$ homogeneous association.

7.7. Slide 25.

Minimal sufficient statistic: $\frac{f(y)}{f(y')}$ does not depend on the parameter $\Leftrightarrow T(y) = T(y')$

In order to find sufficient statistic, use factorization theorem:

$$\ln(L(\theta)) = g(T(y), \theta) + h(y) \Rightarrow T(y)$$
 is sufficient stat.

8. Course Summary

1. Contingency Table

- Able to identify sampling themes and what conclusion we can draw from this
- Odds ratio:
 - Independence
 - Pairwise OR, local OR, conditional OR
- Partial Table, marginal Table
- Simpsons paradox (marginal \neq conditional)
- Homogeneous association
 - Test homogeneous association
 - Breslow day Test
 - Modelling to test
- Inference of OR or conditional OR
- Conf. intervals for log-OR and their derivation
- Test independence:
 - Pearson χ^2 , likelihood ratio, Fishers exact
- Ordinal data:
 - Concordant & discordant Pairwise
 - -Goodman-Kruskals γ
 - Wilcoxon test

2. Logistic Regression

- Express model (link functions, logit link)
- Interpret β , log Ordinal
- Interpret R outputs, residual deviance, null deviance, test homogeneous association
- Test conditional independence
- Logistic regression for case-control study
- Meaning of link function: probit, cloglog
- Conditional MLE with large k (for binary data, other models aswell)

3. Multinomial Data

- Baseline category model
- Cummulative logit model/proportional Odds
- Test conditional independence
- Model-free test: CMH (Multinomial + binomial data)

4. Log-linear model

- Multinomial sampling vs Poisson sampling (dff. likelihood same β)
- Different types of independence
- Interpret R ouputs (estimate deviance, residual deviance, AIC)
- Relation between log-linear model and Logistic
- Generating class \Leftrightarrow conditional independence graph
- Graphical model and chordal graph
- \bullet Decomposable model express point probability using sufficient statistic
- Multigraph maximum spannin tree + branch set to determine decomposability