Pasin Manurangsi Google Research

Parameterized Inapproximability: Recent Developments

Parameterized Inapproximability: Recent Developments

k-Clique

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that induces a clique

k-Dominating Set

Input: Graph G = (V, E), integer k

k-Vertex Cover

Input: Graph G = (V, E), integer k

k-Clique

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that induces a clique

k-Dominating Set

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k such that $S \cup N(S) = V$

k-Vertex Cover

Input: Graph G = (V, E), integer k

k-Clique

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that induces a clique

k-Dominating Set

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k such that $S \cup N(S) = V$

k-Vertex Cover

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that covers all edges

k-Clique

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that induces a clique

k-Dominating Set

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k such that $S \cup N(S) = V$

k-Vertex Cover

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that covers all edges

Is there any poly time algo for the problems?

Unlikely: all are

NP-complete [Karp'72]

k-Clique

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that induces a clique

k-Dominating Set

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k such that $S \cup N(S) = V$

k-Vertex Cover

Parameter

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that covers all edges

 $2^k \cdot n^{O(1)}$ time algo

Enumeration Algoirthm: $n^{O(k)}$ time

k-Clique

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that induces a clique

k-Dominating Set

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k such that $S \cup N(S) = V$

k-Vertex Cover

Parameter

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that covers all edges

 $2^k \cdot n^{O(1)}$ time algo

k-Clique

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that induces a clique

[Downey-Fellows'92] W[1]-complete

k-Dominating Set

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k such that $S \cup N(S) = V$

[Downey-Fellows'92] W[2]-complete

k-Vertex Cover

Parameter

Input: Graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k that covers all edges

 $2^k \cdot n^{O(1)}$ time algo

k-Clique

Parameter |

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k

that induces a clique

[Downey-Fellows'92] k-Clique is W[1]-complete

k-Dominating Set

Parameter

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k

such that $S \cup N(S) = V$

[Downey-Fellows'92] k-DomSet is W[2]-complete

k-Clique

Parameter I

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k

that induces a clique

k-Dominating Set

Parameter

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k

such that $S \cup N(S) = V$

k-Clique

Parameter I

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k/g(k)

that induces a clique

k-Dominating Set

Parameter

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k

such that $S \cup N(S) = V$

Parameter

k-Clique

Input:

A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k/g(k)

that induces a clique

Is there 1.1-FPT-approx. algo?

k-Dominating Set

Parameter

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size $k \cdot g(k)$

such that $S \cup N(S) = V$

Is there 1.1-FPT-approx. algo?

Parameter

k-Clique

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k/g(k)

that induces a clique

Is there o(k)-FPT-approx. algo?

k-Dominating Set

Parameter

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size $k \cdot g(k)$

such that $S \cup N(S) = V$

Is there 1.1-FPT-approx. algo?

Parameter

k-Clique

Input:

A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size k/g(k)

that induces a clique

Is there o(k)-FPT-approx. algo?

k-Dominating Set

Parameter

Input: A graph G = (V, E), integer k

Output: A subset $S \subseteq V$ of size $k \cdot g(k)$

such that $S \cup N(S) = V$

Is there g(k)-FPT-approx. algo for any g?

Complexity Assumptions

Parameterized Inapproximability: Recent Developments

Part I: Clique

k-Clique

Input: A graph G = (V, E), integer k

Parameter: k

Output: A subset $S \subseteq V$ of size k

that induces a clique

FPT Algo: $f(k)n^{O(1)}$ -time for some function f

[Downey-Fellows'92] k-Clique is W[1]-complete [Chen-Chor-Fellows-Huang-Juedes-Kanj-Xia'05]

ETH \Rightarrow no $f(k)n^{o(k)}$ -time algo for k-Clique

k-Clique

Input: A graph G = (V, E), integer k

Parameter: k

Output: A subset $S \subseteq V$ of size k/g(k)

that induces a clique

FPT Approx Algo: g(k)-approx $f(k)n^{O(1)}$ -time for some function f, g

[Downey-Fellows'92] k-Clique is W[1]-complete [Chen-Chor-Fellows-Huang-Juedes-Kanj-Xia'05] ETH \Rightarrow no $f(k)n^{o(k)}$ -time algo for k-Clique

[Bonnet-Escoffier-Kim-Paschos'15]

Gap-ETH \Rightarrow no constant factor FPT approx algo for k-Clique [Chalermsook-Cygan-Kortsarz-Laekhanukit-M-Nanongkai-Trevisan'17]

 $\mbox{Gap-ETH} \Rightarrow \mbox{no } g(k)\mbox{-approx } f(k) n^{o(k/g(k))}\mbox{-time algo}$ for $k\mbox{-Clique for any } g = o(k)$

Inherently Enumerative

There exists $\delta > 0$ such that for any sufficiently large k < r, no $O(n^{\delta k})$ -time algo can distinguish between

- $Clique(G) \leq k$
- $Clique(G) \ge r$

k-Clique

Input: A graph G = (V, E), integer k

Parameter: k

Output: A subset $S \subseteq V$ of size k/g(k)

that induces a clique

FPT Approx Algo: g(k)-approx $f(k)n^{O(1)}$ -time for some function f, g

[Downey-Fellows'92] k-Clique is W[1]-complete [Chen-Chor-Fellows-Huang-Juedes-Kanj-Xia'05] ETH \Rightarrow no $f(k)n^{o(k)}$ -time algo for k-Clique

[Bonnet-Escoffier-Kim-Paschos'15]

Gap-ETH \Rightarrow no constant factor FPT approx algo for k-Clique [Chalermsook-Cygan-Kortsarz-Laekhanukit-M-Nanongkai-Trevisan'17]

 $\mbox{Gap-ETH} \Rightarrow \mbox{no } g(k)\mbox{-approx } f(k) n^{o(k/g(k))}\mbox{-time algo}$ for $k\mbox{-Clique for any } g = o(k)$

Inherently Enumerative

There exists $\delta > 0$ such that for any sufficiently large k < r, no $O(n^{\delta k})$ -time algo can distinguish between

- $Clique(G) \leq k$
- $Clique(G) \ge r$

GOAL

Assuming Gap-ETH, there exists $\delta > 0$ such that for any sufficiently large k < r, no $O(N^{\delta k})$ -time algo can distinguish between

- $Clique(G) \le k$
- $Clique(G) \ge r$

3SAT Instance Φ

Size: n

YES: $val(\Phi) = 1$

NO: $val(\Phi) < 0.99$

Clique Instance G

Size: $N = r \cdot 2^{O(n/k)}$

YES: Clique(G) = r

NO: $Clique(G) \leq k$

[Bellare-Goldreich-Sudan'98]

71000m/k vortices vasser-Lovasz-Safra-Szegedy'96]

- Random subsets $S_1, S_2, ..., S_r$ of 1000m/k clauses
- For each S_i , create one vertex for a partial assignment to S_i
- Join two vertices by an edge if they are consistent

$$S_1 = \{(x_1 \lor x_3 \lor \overline{x_5})\}$$
 $S_2 = \{(\overline{x_3} \lor \overline{x_4} \lor \overline{x_6})\}$

$${x_1 = 0, x_3 = 0, x_5 = 0}$$

$${x_1 = 0, x_3 = 1, x_5 = 0}$$

 ${x_1 = 1, x_3 = 1, x_5 = 1}$

Pick all partial assignments

of a satisfying assignment!

$${x_3 = 0, x_4 = 0, x_6 = 0}$$

$$\{x_3 = 0, x_4 = 0, x_6 = 1\}$$

$$\{x_3 = 1, x_4 = 0, x_6 = 1\}$$

m = # of clauses

Assume w.l.o.g. m = O(n)

GOAL: $val(\Phi) < 0.99 \Rightarrow Clique(G) < k$

$$S_{1} = \{(x_{1} \lor x_{3} \lor \overline{x_{5}})\} \qquad S_{2} = \{(\overline{x_{3}} \lor \overline{x_{4}} \lor \overline{x_{6}})\}$$

$$\{x_{1} = 0, x_{3} = 0, x_{5} = 0\} \qquad \{x_{3} = 0, x_{4} = 0, x_{6} = 0\}$$

$$\{x_{1} = 0, x_{3} = 1, x_{5} = 0\} \qquad \{x_{3} = 0, x_{4} = 0, x_{6} = 1\}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\{x_{1} = 1, x_{3} = 1, x_{5} = 1\} \qquad \{x_{3} = 1, x_{4} = 0, x_{6} = 1\}$$

Suppose that $Clique(G) \ge k$

$$S_r = \{ (\overline{x_5} \lor \overline{x_n} \lor \overline{x_{n-1}}) \}$$

$$\{ x_3 = 0, x_4 = 0, x_6 = 0 \}$$

$$\{ x_3 = 0, x_4 = 0, x_6 = 1 \}$$

$$\vdots$$

$$\{ x_3 = 1, x_4 = 1, x_6 = 1 \}$$

Suppose that $Clique(G) \ge k$ GOAL: $val(\Phi) < 0.99 \Rightarrow Clique(G) < k$ $S_1 = \{(x_1 \lor x_3 \lor \overline{x_5})\}$ $S_2 = \{(\overline{x_3} \lor \overline{x_4} \lor \overline{x_6})\}$ $S_r = \{(\overline{x_5} \vee \overline{x_n} \vee \overline{x_{n-1}})\}$ ${x_1 = 0, x_3 = 0, x_5 = 0}$ $\{x_3 = 0, x_4 = 0, x_6 = 0\}$ ${x_3 = 0, x_4 = 0, x_6 = 0}$ ${x_3 = 0, x_4 = 0, x_6 = 1}$ ${x_1 = 0, x_3 = 1, x_5 = 0}$ $\{x_3 = 0, x_4 = 0, x_6 = 1\}$ $\{x_3 = 1, x_4 = 1, x_6 = 1\}$ ${x_1 = 1, x_3 = 1, x_5 = 1}$ $\{x_3 = 1, x_4 = 0, x_6 = 1\}$ Let these vertices be An assignment that satisfies all $val(\Phi) \ge 0.99$ from $S_{i_1}, S_{i_2}, ..., S_{i_k}$ clauses in $S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_k}$ With high probability, Recall S_{i_1} , S_{i_2} , \cdots , S_{i_k} are random $\left|S_{i_1} \cup S_{i_2} \cup \dots \cup S_{i_k}\right| \ge 0.99m$ QED! subsets of clauses of size 1000m/k

Part II: Dominating Set

k-Dominating Set

Input: A graph G = (V, E), integer k

Parameter: k

Output: A subset $S \subseteq V$ of size k

such that $S \cup N(S) = V$


```
[Downey-Fellows'92] k-Dominating Set is W[2]-complete [Chen-Chor-Fellows-Huang-Juedes-Kanj-Xia'05] 
ETH \Rightarrow no f(k)n^{o(k)}-time algo for k-Dom Set [Patrascu-Williams'10] 
SETH \Rightarrow no f(k)n^{k-\varepsilon}-time algo for k-Dom Set
```

k-Dominating Set

Input: A graph G = (V, E), integer k

Parameter: k

Output: A subset $S \subseteq V$ of size $g(k) \cdot k$

such that $S \cup N(S) = V$

FPT Approx Algo: g(k)-approx $f(k)n^{O(1)}$ -time for some function f, g

```
[Downey-Fellows'92] k-Dominating Set is W[2]-complete [Chen-Chor-Fellows-Huang-Juedes-Kanj-Xia'05] 
ETH \Rightarrow no f(k)n^{o(k)}-time algo for k-Dom Set [Patrascu-Williams'10] 
SETH \Rightarrow no f(k)n^{k-\varepsilon}-time algo for k-Dom Set
```

```
approx algo for k-Dom Set [Karthik-Laekhanukit-M'18]  \text{W[1]} \neq \text{FPT} \Rightarrow \text{no FPT } g(k)\text{-approx algo for } k\text{-Dom Set}   \text{ETH} \Rightarrow \text{no } g(k)\text{-approx } f(k)n^{o(k)}\text{-time algo for } k\text{-Dom Set}   \text{SETH} \Rightarrow \text{no } g(k)\text{-approx } f(k)n^{k-\varepsilon}\text{-time algo for } k\text{-Dom Set}   \text{SETH} \Rightarrow \text{No } g(k)\text{-approx } f(k)n^{k-\varepsilon}\text{-time algo for } k\text{-Dom Set}   \text{[Lin'18]} \text{Alternative (beautiful) proof}
```

[Chen-Lin'16] W[1] \neq FPT \Rightarrow no constant factor FPT

Overview

Key: Communication Protocol ⇒ hardness of approximation

"Distributed PCP" framework of [Abboud-Rubinstein-Williams'18]

k-Sum

Input: k sets of n integers

 $A_1, \dots, A_k \subseteq [-n^{2k}, n^{2k}]$

Output: Whether there exists

 $a_1 \in A_1, \dots, a_k \in A_k$ s.t.

 $a_1 + \cdots + a_k = 0$

[Abboud-Williams-Lewi'14]

k-Sum is W[1]-complete ETH \Rightarrow no $f(k)n^{o(k)}$ -time algo for k-Sum

Max Cover

Input: A bipartite graph $(U_1 \cup \cdots \cup U_h, W_1 \cup \cdots \cup W_k, E)$

Parameter: *k*

k-Sum

Input: k sets of n integers

 $A_1, \dots, A_k \subseteq [-n^{2k}, n^{2k}]$

Output: Whether there exists

 $a_1 \in A_1, \dots, a_k \in A_k$ s.t.

 $a_1 + \cdots + a_k = 0$

[Abboud-Williams-Lewi'14]

k-Sum is W[1]-complete ETH \Rightarrow no $f(k)n^{o(k)}$ -time algo for k-Sum Max Cover

Input: A bipartite graph $(U_1 \cup \cdots \cup U_h, W_1 \cup \cdots \cup W_k, E)$

Parameter: k

Output: $w_1 \in W_1, ..., w_k \in W_k$ that "covers"

maximum number of vertices in $\it U$

k-Sum

Input: k sets of n integers

 $A_1, \dots, A_k \subseteq [-n^{2k}, n^{2k}]$

Output: Whether there exists

 $a_1 \in A_1, \dots, a_k \in A_k$ s.t.

 $a_1 + \cdots + a_k = 0$

[Abboud-Williams-Lewi'14]

k-Sum is W[1]-complete ETH \Rightarrow no $f(k)n^{o(k)}$ -time algo for k-Sum Max Cover

Input: A bipartite graph $(U_1 \cup \cdots \cup U_h, W_1 \cup \cdots \cup W_k, E)$

Parameter: k

Output: $w_1 \in W_1, ..., w_k \in W_k$ that "covers"

maximum number of vertices in U

k-Sum

Input: k sets of n integers

 $A_1, \dots, A_k \subseteq [-n^{2k}, n^{2k}]$

Output: Whether there exists

 $a_1 \in A_1, \dots, a_k \in A_k$ s.t.

 $a_1 + \cdots + a_k = 0$

[Abboud-Williams-Lewi'14]

k-Sum is W[1]-complete ETH \Rightarrow no $f(k)n^{o(k)}$ -time algo for k-Sum Max Cover

Input: A bipartite graph $(U_1 \cup \cdots \cup U_h, W_1 \cup \cdots \cup W_k, E)$

Parameter: *k*

Output: $w_1 \in W_1, ..., w_k \in W_k$ that "covers"

maximum number of vertices in U

k-Sum Instance $(A_1, ..., A_k)$

Size: *n*

Parameter: k

 $\begin{aligned} &\text{YES: } \exists a_1 \in A_1, \dots, a_k \in A_k, a_1 + \dots + a_k = 0 \\ &\text{NO: } \forall a_1 \in A_1, \dots, a_k \in A_k, a_1 + \dots + a_k \neq 0 \end{aligned}$

ETH Lower Bound: $n^{\Omega(k)}$

W[1]-hard

Max Cover Instance G

Size: $N = n^{1+o(1)}$

Parameter: k

YES: MaxCover(G) = h

NO: $MaxCover(G) \leq h/r$

ETH Lower Bound: $N^{\Omega(k)}$

W[1]-hard

Proof Sketch: Total Inapproximability of k-Dom Set

k-Sum Instance $(A_1, ..., A_k)$

Size: *n*

Parameter: k

 $\begin{aligned} &\text{YES: } \exists a_1 \in A_1, \dots, a_k \in A_k, a_1 + \dots + a_k = 0 \\ &\text{NO: } \forall a_1 \in A_1, \dots, a_k \in A_k, a_1 + \dots + a_k \neq 0 \end{aligned}$

ETH Lower Bound: $n^{\Omega(k)}$ W[1]-hard

Max Cover Instance G

Size: $N = n^{1+o(1)}$

Parameter: k

YES: MaxCover(G) = h

NO: $MaxCover(G) \leq h/r$

ETH Lower Bound: $N^{\Omega(k)}$ W[1]-hard

Key: Communication Protocol \Rightarrow hardness of approximation

"Distributed PCP" framework of [Abboud-Rubinstein-Williams'18]

Communication Model: Simultaneous Message Passing (SMP)

Goal: Compute

$$f(a_1, ..., a_k) \in \{0, 1\}$$

Guarantee

Completeness:

If $f(a_1, ..., a_k) = 1$, then always output 1.

Soundness:

If
$$f(a_1, ..., a_k) = 0$$
, output 0 w.p. 1/2.

Zero-Sum Communication Problem

Goal: Compute

$$\mathbf{1}[a_1 + \dots + a_k = \mathbf{0}]$$

Guarantee

Completeness:

If $f(a_1, ..., a_k) = 1$, then always output 1.

Soundness:

If
$$f(a_1, ..., a_k) = 0$$
, output 0 w.p. 1/2.

Zero-Sum Communication Problem

Goal: Compute

$$\mathbf{1}[a_1 + \dots + a_k = \mathbf{0}]$$

Guarantee

Completeness:

 $\text{If } a_1+\cdots+a_k=0,$

then always output 1.

Soundness:

If $a_1 + \cdots + a_k \neq 0$, output 0 w.p. 1/2.

Zero-Sum Communication Protocol

Goal: Compute

$$\mathbf{1}[a_1+\cdots+a_k=0]$$

Guarantee

Completeness:

If $a_1 + \cdots + a_k = 0$, then always output 1.

Soundness:

If $a_1 + \cdots + a_k \neq 0$, output 0 w.p. 1/2.

Zero-Sum Communication Protocol

Goal: Compute

$$\mathbf{1}[a_1 + \dots + a_k = \mathbf{0}]$$

Guarantee

Completeness:

 $\text{If } a_1+\cdots+a_k=0,$

then always output 1.

Soundness:

If $a_1 + \cdots + a_k \neq 0$, output 0 w.p. 1/2.

Goal: Compute

$$\mathbf{1}[a_1 + \dots + a_k = \mathbf{0}]$$

Guarantee

Completeness:

 $\text{If } a_1+\cdots+a_k=0,$

then always output 1.

Soundness:

If
$$a_1 + \cdots + a_k \neq 0$$
, output 0 w.p. 1/2.

k-Sum Problem

Given $A_1, ..., A_k \in [-M, M]$, determine whether there exist $a_1 \in A_1, ..., a_k \in A_k$ such that $a_1 + \cdots + a_k = 0$

Nodes ≡ **Accepting Configurations**

$$p_1=2$$

$$p_2 = 3$$
 $\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$

:

k-Sum Problem

Given $A_1, \dots, A_k \in [-M, M]$, determine whether there exist $a_1 \in A_1, \dots, a_k \in A_k$ such that $a_1 + \dots + a_k = \mathbf{0}$

k-Sum Problem

Given $A_1, ..., A_k \in [-M, M]$, determine whether there exist $a_1 \in A_1, ..., a_k \in A_k$ such that $a_1 + \cdots + a_k = 0$

k-Sum Problem

Given $A_1, ..., A_k \in [-M, M]$, determine whether there exist $a_1 \in A_1, ..., a_k \in A_k$ such that $a_1 + \cdots + a_k = 0$

k-Sum Problem

Given $A_1, ..., A_k \in [-M, M]$, determine whether there exist $a_1 \in A_1, ..., a_k \in A_k$ such that $a_1 + \cdots + a_k = \mathbf{0}$

k-Sum Problem

Given $A_1, ..., A_k \in [-M, M]$, determine whether there exist $a_1 \in A_1, ..., a_k \in A_k$ such that $a_1 + \cdots + a_k = \mathbf{0}$

YES
$$\Rightarrow$$
 MaxCover(G) = h
NO \Rightarrow MaxCover(G) $\leq h/2$

Remark: Size of *G* depends on parameters of the protocol

Recap

k-Sum Instance $(A_1, ..., A_k)$

Size: $n = |A_1| + \dots + |A_k|$

Parameter: *k*

YES: $\exists a_1 \in A_1, ..., a_k \in A_k, a_1 + \cdots + a_k = 0$

NO: $\forall a_1 \in A_1, ..., a_k \in A_k, a_1 + \cdots + a_k \neq 0$

SMP Communication Protocol for Zero-Sum

Max Cover Instance G

Size: $N = n^{1+o(1)}$

Parameter: *k*

YES: MaxCover(G) = h

NO: $MaxCover(G) \le h/2$

A General Framework

Product Space Problem $(A_1, ..., A_k)$

Size: $n = |A_1| + \dots + |A_k|$

Parameter: *k*

YES: $\exists a_1 \in A_1, ..., a_k \in A_k, f(a_1, ..., a_k) = 1$

NO: $\forall a_1 \in A_1, ..., a_k \in A_k, f(a_1, ..., a_k) = 0$

SMP Communication Protocol for f

Max Cover Instance G

Size: $N = n^{1+o(1)}$

Parameter: *k*

YES: MaxCover(G) = h

NO: $MaxCover(G) \le h/2$

Clique as Product Space Problem

k-Clique

Input: A graph G = (V, E), integer k

Parameter: *k*

Output: A subset $S \subseteq V$ of size k

that induces a clique

Product Space Problem

Input: $A_1 = \cdots = A_{\binom{k}{2}} = \overrightarrow{E}$

Parameter: $\binom{k}{2}$

Predicate:

f "checks that the edges form a clique"

Clique as Product Space Problem

k-Clique

Input: A graph G = (V, E), integer k

Parameter: *k*

Output: A subset $S \subseteq V$ of size k

that induces a clique

Product Space Problem

Input:
$$A_{(1,2)} = \cdots = A_{(k-1,k)} = \overline{E}$$

Parameter: $\binom{k}{2}$

Predicate:

f "checks that the edges form a clique"

More formally:

$$f((v_1, v_2), (v_1, v_3), \dots, (v_{k-1}, v_k)) = 1$$

iff, for all $i \in [k]$, v_i 's are all equal

Consistent Clique Communication Problem

Consistent Clique Communication Problem

iput Informal Goal:

"Check that the edges form a valid clique"

Goal: Output 1 iff for all $i \in [k]$, v_i received by different players are the same

Error Correcting Codes

 $\phi: [n] \to \{0,1\}^{\ell}$ such that $\Delta(\phi(x), \phi(y)) > 0.1 \cdot \ell$ for all $x \neq y$.

A General Framework

[Lin'18] Alternative approach that doesn't use communication protocols...

Part III: Repeated Gap Amplification

Dinur's Proof of PCP Theorem

PCP Theorem Clique is NP-hard to approximate to within 2 factor

Gap Amplification for k-Clique?

<u>Parameterized PCP Theorem?</u> Clique is W[1]-hard to approximate to within 2 factor

Gap Amplification for k-Clique?

<u>Parameterized PCP Theorem?</u> Clique is W[1]-hard to approximate to within 2 factor

Gap Amplification: a success story

Theorem [Wlodarczyk'19] k-Steiner Orientation (k-SO) is W[1]-hard to approximate to within $(\log k)^{o(1)}$ factor

Input: A mixed graph G = (V, E), k terminal pairs $(s_1, t_1), ..., (s_k, t_k)$

Input: A mixed graph G = (V, E),

k terminal pairs $(s_1, t_1), ..., (s_k, t_k)$

Parameter: k

Output: Orientation of undirected edges

that maximizes pairs $s_i \rightarrow t_i$

Input: A mixed graph G = (V, E),

k terminal pairs $(s_1, t_1), ..., (s_k, t_k)$

Parameter: k

Output: Orientation of undirected edges

that maximizes pairs $s_i \rightarrow t_i$

Input: A mixed graph G = (V, E),

k terminal pairs $(s_1, t_1), \dots, (s_k, t_k)$

Parameter: k

Output: Orientation of undirected edges

that maximizes pairs $s_i \rightarrow t_i$

[Cygan-Kortsarz-Nutov'13]

k-Steiner Orientation is solvable in $n^{O(k)}$ time

[Pilipczuk-Wahlstrom'16]

k-Steiner Orientation is W[1]-hard

[Wlodarczyk'19]

k-Steiner Orientation is in W[1]

[Wlodarczyk'19]

k-Steiner Orientation is in W[1]-hard to approximate to within $(\log k)^{o(1)}$ factor

[Wlodarczyk'19]

[Wlodarczyk'19]

Concluding Remarks

- Useful not just for ruling out approximation algorithms

Parameterized Inapproximability: Recent Developments

Parameterized Inapproximability: Recent Developments

Concluding Remarks

- Useful not just for ruling out approximation algorithms
- Many open problems:
 - Directed Odd Cycle Traversal, Minimum k-Cut, ...
- W[1]-Completeness of Approximating k-Clique?
- W[2]-Completeness of Approximating k-Domset?
- Unify Gap-Producing Techniques?
- Try to understand the hypotheses better

Complexity Assumptions

Complexity Assumptions

Complexity Assumptions

THANK YOU

Main References

[Chalermsook-Cygan-Kortsarz-Laekhanukit-Manurangsi-Nanongkai-Trevisan'17]

From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More. FOCS'17

[Karthik-Laekhanukit-Manurangsi'18]

On the parameterized complexity of approximating dominating set. STOC'18

[Wlodarczyk'19]

Inapproximability within W[1]: the case of Steiner Orientation. arXiv:1907.06529.