Helmholtz resonator

$$f = \frac{v}{2\pi} \sqrt{\frac{A}{l_{\text{eff}}V}}$$

• Example:

$$r = 1 \text{ cm}, l = 2.7 \text{ cm}, V = 425 \text{ mL}, v = 346 \text{ m/s}$$

 $A = \pi r^2, 1 \text{ mL} = 10^{-6} \text{ m}^3 \implies f = 239 \text{ Hz}$

1

4. Fourier analysis & synthesis

Fourier's theorem

- standing wave vibrations are the "building blocks" for any complex vibration
- any complex periodic wave can be written as a sum of harmonics:

$$y(t) = A_1 \sin(2\pi f_1 t + \phi_1) + A_2 \sin(2\pi f_2 t + \phi_2) + \cdots$$
$$f_N = Nf_1, \qquad N = 1, 2, \cdots$$

- Ohm's law of hearing: Phases have little effect on the timbre of the sound
- Fourier analysis: decomposing a complex periodic wave into its contributing harmonics
- Fourier synthesis: constructing a complex periodic wave by combining harmonics

5. String instruments

Plucked versus bowed strings

- Plucked string: https://www.youtube.com/watch?v=_X72on6CSL0
- Bowed string: https://www.youtube.com/watch?v=6JeyiM0YNo4
- iPhone guitar video: https://www.youtube.com/watch?v=TKF6nFzpHBU

 NOTE: the iPhone guitar video does not show the wave pulses on the strings as they really are. Rather one sees multiple images of the same pulse shape on the string due to the "rolling shutter" effect of the iPhone camera. The actual pulses on a guitar string behave as shown in the first video.

Fourier coefficients of a plucked string

- Sounds are richer when the string is plucked closer to the bridge
- If the string is plucked in the middle, there at no even harmonics

Stick-slip motion of a bowed string

• The violin string alternately "sticks" and then "slips" against the bow hundreds of times per second

Harp

Guitar

Violin

6. Wind instruments

Open and closed tubes (recall previous discussion)

$$\lambda_N = \frac{2L}{N} \qquad f_N = Nf_1 \qquad f_1 = \frac{v}{2L} \qquad N = 1, 2, \dots$$

$$f_N = N f_1$$

$$f_1 = \frac{v}{2L}$$

$$N=1,2,\cdots$$

(both even and odd harmonics)

$$\lambda_N = \frac{4L}{N}$$

$$f_N = N f_1$$

$$f_1 = \frac{v}{4L}$$

$$\lambda_N = \frac{4L}{N} \qquad f_N = Nf_1 \qquad f_1 = \frac{v}{4L} \qquad N = 1,3,5,\cdots$$

(only odd harmonics)

Excitations produced by an oscillating air stream or a vibrating reed

Flue-organ pipe

Penny whistle

Clarinet

