Übungsblatt 1

Aufgabe 1. Sei P_0 das gleichseitige Dreieck mit Seitenlänge 1. Wir definieren die Polygone P_n rekursiv wie folgt: P_{n+1} entsteht aus P_n , indem jede Kante des Polygons gedrittelt wird, auf dem mitteleren Drittel ein gleichseitiges Dreieck mit Seitenlänge gleich dem mittleren Drittel gesetzt wird und dann dieses mittlere Drittel gelöscht wird.

Sei ℓ_n der Umfang des Polygons P_n und A_n der Flächeninhalt des Polygons P_n .

- (a) Bestimmen Sie ℓ_n und zeigen Sie, dass $\lim_{n\to\infty}\ell_n=\infty$ gilt.
- (b) Bestimmen Sie $A_n A_{n-1}$. Zeigen Sie, dass A_n für $n \to \infty$ konvergiert.

Aufgabe 2 (1+2.5+1.5). Sei $\gamma: t \in [0, \frac{\pi}{2}] \mapsto (\cos^2(t), 2\sin^2(t))^T$.

- (i) Skizzieren Sie γ .
- (ii) Berechnen Sie die Bogenlänge s(t), das ist die Länge der Kurve γ auf dem Intervall [0,t] (Also s(0)=0 und $s(\frac{\pi}{2})=L(\gamma)$).
- (iii) Die Funktion der Bogenlänge $s\colon [0,\frac{\pi}{2}]\to [0,L(\gamma)]$ ist ein Homöomorphismus. Warum? Ist es auch ein C^1 -Diffeomorphismus Begründen Sie?

Aufgabe 3 (2.5+2.5). Sei $f:[a,b]\to\mathbb{R}$ eine Funktion. Die Variation V(f) von f ist definiert als

$$V(f) := \sup_{\mathcal{Z}} \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})|,$$

wobei das Supremum über alle Zerlegungen $\mathcal{Z} = (x_0 = a < x_1 < \ldots < x_n = b)$ des Intervalls [a, b] geht.

- (i) Beweisen Sie: Sei $\gamma \colon [a,b] \to \mathbb{R}^n$ eine parametrisierte Kurve; $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))^T$ für $\gamma_i \colon [a,b] \to \mathbb{R}$. Dann ist γ genau dann rektifizierbar, falls alle γ_i beschränkte Variation haben, d.h. falls $V(\gamma_i) < \infty$ für alle $1 \le i \le n$ gilt.
- (ii) Zeigen Sie, dass die Funktion $f: [0,1] \to \mathbb{R}$

$$f(x) = \begin{cases} x \cos \frac{\pi}{x} & x \in (0, 1] \\ 0 & x = 0 \end{cases}$$

unbeschränkte Variation hat.

Nach (i) ist dann somit die Kurve $\gamma(t)=(t,f(t))^T$ mit f aus (ii) und $t\in[0,1]$ nicht rektifizierbar.