Inheritance, Entrepreneurship, and Estate Taxation

Yanran Guo *

York University

Abstract. In this paper, I investigate the efficiency and distributional implications of estate taxation in a quantitative model that incorporates a non-homothetic bequest motive and entrepreneurship. The benchmark model is guided by novel empirical findings regarding the heterogeneity in the importance of inheritance. The key takeaway from this paper is that the effects of changing estate taxation are much smaller than commonly perceived. Varying the estate tax from 0 to 1 only leads to only a 0.71 percentage point decline in the wealth share held by the top 5% in the benchmark model.

Keywords: inheritance, intergenerational links, household wealth, inequality, entrepreneurship, estate taxation.

JEL Codes: D14, D31, D64, E21, H21.

1. Introduction

How should we tax estates? This question has long been at the center of various policy debates. Proponents of the estate tax argue that it serves as a vital mechanism for reducing wealth inequality by directly targeting the rich. For instance, the American Housing and Economic Mobility Act of 2024 proposes increasing the estate tax as part of broader efforts to ensure that wealthy individuals contribute more¹. Conversely, opponents characterize the estate tax as a "death tax," contending that it hinders business activity and job creation. They advocate for reducing or even repealing the estate tax altogether. For example, in January 2024, House Republicans reintroduced legislation aimed at permanently abolishing the federal estate tax through the proposed Death Tax Repeal Act².

To effectively address the question of how to tax estates and assess the impact of estate taxation, it is crucial to understand the roots of pronounced wealth inequality, particularly whether fortunes are inherited or self-made. In this paper, I make two key contributions. First, I document new empirical findings about the inheritance patterns of wealthy households. Second, by employing

^{*}Address: Department of Economics, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada Email: vrguo@yorku.ca

Acknowledgments: I am grateful to Tasso Adamopoulos, Chaoran Chen, Lutz Hendricks, Barış Kaymak, Matthias Kredler, Georgios Stefanidis, and all participants at the University of Melbourne Macro Seminar, York Macro Reading Group, and the 2024 European Winter Meeting of the Econometric Society for their questions, comments, and insights.

¹Forbes: Kamala Harris Endorses American Housing and Economic Mobility Act Tax Proposals

²CNBC: House Republicans Reintroduce Bill to Repeal 'Death Tax'

a quantitative model, I examine the effects of changing estate taxation on aggregate output, inequality, and welfare. The calibration of the benchmark model is informed not only by standard moments widely used in the literature but also by the new empirical moments documented in this study. My key finding reveals that the effects of changing estate taxation are much smaller than commonly perceived.

Previous empirical studies have mainly focused on the overall value of inheritances, documenting that rich households receive a significant share of wealth transfers (see, for example, Feiveson and Sabelhaus (2018)). Instead, this paper examines inheritance patterns specifically among the top wealth holders. I find that while richer households typically receive larger amounts of inheritance, the relative importance of these inheritances is less pronounced to them, as wealthy heirs inherit less relative to their own wealth. Specifically, using the Survey of Consumer Finances data (SCF), I document that inheritances directly account for, on average, just 13% of the net worth of the richest 1%. Moreover, over half of the wealthiest 1% have not received any inheritance during their lifetime.

However, relying solely on these empirical moments does not provide a complete understanding of the effects of changing estate taxation. An emerging body of research highlights substantial and persistent differences in individual returns to wealth (e.g., Bach et al. (2020), Fagereng et al. (2020), Hubmer et al. (2020)). Both theoretical and empirical studies have demonstrated that the rate of return heterogeneity is a key mechanism for generating the highly skewed wealth distribution observed in the U.S. economy (e.g., Benhabib et al. (2019)). Following this reasoning, inheritances received in the past may have served as "seed capital" for current wealth accumulation among the wealthy, amplified over time by their high rates of return. Thus, while the immediate contribution of inheritance to wealth appears modest, reflected in a low inheritance-to-wealth ratio, there is a possibility that increasing the estate tax rate could reduce wealth inequality by limiting the wealth accumulated through inheritance. To what extent can estate taxation affect wealth inequality? This complex dynamic cannot be directly observed in the data, highlighting the necessity of employing a formal model to explore these interactions.

To address this gap, I develop a heterogeneous agent, general equilibrium, overlapping generations model that explicitly incorporates occupation choice between wage work and entrepreneurship, a non-homothetic bequest motive, and intergenerational transmission of ability. The model features two key components. First, the model incorporates a non-homothetic bequest function and the coexistence of parents and children. This modeling choice allows for a more nuanced perspective on the timing and incidence of inheritances. Children observe their parents' state variables, allowing them to infer the size of the bequest they are likely to receive in the future. Consequently, inheritance affects children's optimal decisions both directly, by altering their wealth holdings, and indirectly, through its anticipated effects. Second, return heterogeneity, a well-documented concept in the literature, is explicitly modeled as entrepreneurial activities, which serve as a driver of differences in wealth accumulation over time. By modeling entrepreneurship as a source of

³Intergenerational wealth transfer includes both inter vivos gifts and bequests. However, throughout this paper, I will interchangeably use the two terms: inheritance and intergenerational wealth transfer. From the Survey of Consumer Finances data, around 85% of intergenerational transfers are in the form of inheritances. Therefore, in this paper, the term *inheritance* is used to refer to the total intergenerational wealth transfers a household receives.

return heterogeneity, the framework provides a deeper understanding of how inheritances and entrepreneurial returns jointly shape wealth inequality and broader economic outcomes.

The model is then calibrated to match not only the standard moments related to wealth, entrepreneurship, and inheritance commonly used in the literature, but also my new empirical findings on the inheritance patterns of wealthy households. This calibrated model successfully reproduces all key characteristics of U.S. data, thereby establishing itself as a good laboratory to study the effects of estate taxation.

The policy counterfactual analysis is conducted in the long-run steady state by varying the estate tax rate from 0 to 1 while fixing the estate tax exemption level at its baseline value. Additional tax revenues are redistributed among all households through a lump-sum transfer. The key finding is that changes in estate tax have limited effects in both aggregate and distributional terms. In the benchmark model, increasing the estate tax rate from 0 to 1 results in a change in aggregate capital that shifts from 3.16% to -1.78%, which in turn leads to a change in aggregate output from 0.50% to -0.32%.

Moreover, increasing the estate tax rate does reduce wealth concentration at the top, as expected. However, the magnitude of this effect in the model is quite small. When the estate tax is raised from 0 to 1, there is only a 0.71 percentage point decrease in the wealth share held by the top 5%, dropping from 60.84% to 60.13%. The limited effects from estate taxation arise from how the model incorporates new empirical moments, which constrain the role of inheritance in driving wealth concentration at the top. A large fraction of the wealthy households are self-made, resulting in their decisions being less affected by changes in estate tax.

Notably, the wealth share held by the richest 1% exhibits a non-linear trend in relation to the estate tax in my model. Specifically, the wealth share of the top 1% generally increases with the tax rate, except at the extreme tax rates. This finding contrasts with previous literature.

This diverging effect arises from the different degrees of inheritance's influence on wealth concentration at the top. In my model, the role of inheritance in wealth concentration is governed by two key moments: the inheritance-to-wealth ratio for the richest 1% is 0.13, and 87% of this wealth group either receive no inheritance at all or have small inheritances with an inheritance-to-wealth ratio less than 0.2. The model successfully matches these two moments and reproduces the observation that only about 4% of the richest 1% have an inheritance-to-wealth ratio greater than 1.

When the estate tax rate decreases, the returns from leaving a bequest increase for wealthy and older households, allowing them to accumulate even more wealth. Young households in the top wealth brackets that have received substantial inheritances also benefit from the reduced estate tax rate, receiving larger inheritances and accumulating greater wealth. As the estate tax rate decreases, the total wealth held by the top 5% of households increases. However, the wealth increase among households in the 95th to 99th percentiles is slightly larger than that of the top 1%. As a result, when considering the overall wealth share, the share held by the top 1% decreases despite their absolute wealth increasing.

Additionally, I calculate the optimal estate tax rate that maximizes welfare, as measured by consumption equivalent variation in the new steady state. The resulting tax rate is 0.75. When comparing the new steady state with a tax rate of 0.75 to the baseline economy, I find only a modest welfare gain of 0.02% of consumption equivalent per year for newborns in the benchmark calibration. The implementation of the welfare-maximizing estate tax rate yields disparate effects across households with different innate abilities. Newborns with high innate ability face a welfare loss, largely because they tend to be born into wealthy families where their parents similarly possess high innate ability due to the intergenerational transmission of skills. Additionally, these high-ability newborns are likely to accumulate significant wealth in the future as a result of their considerable innate potential. As a consequence, these households experience a reduction in utility, not only due to receiving lower net estates but also because the utility they can get in the future by leaving bequests is reduced. In contrast, the remaining newborns experience a welfare gain as a result of the higher estate tax rate.

The rest of the paper is organized as follows. Section 2 frames the contribution of this paper in the context of the previous literature. Section 3 presents motivating facts on inheritances received by the rich. Section 4 lays out the quantitative model and defines the equilibrium. Section 5 discusses the calibration procedure and evaluates the fit of the model against a number of important features of the data. The core of my analysis, the policy experiments, is presented in Section 6. Section 7 concludes.

2. Related Literature

In this paper, I first document facts regarding inheritances received by wealthy households. Then, I develop a heterogeneous agent general equilibrium OLG model that incorporates bequest motives and entrepreneurship to investigate the effects of estate taxation. This research contributes to the macroeconomic literature in several key ways.

This paper adds to the empirical work on intergenerational wealth transfers. The previous studies focus on the aggregate evidence either by studying intergenerational transfers as an essential determinant of household wealth in the overall economy (e.g., Kotlikoff and Summers (1981), Gale and Scholz (1994), Davies and Shorrocks (2000), Brown and Weisbenner (2004)) or by looking at the aggregate value of inheritance received by the rich (e.g., Feiveson and Sabelhaus (2018)). Previous research highlights that intergenerational transfers, particularly bequests, are substantial and predominantly received by rich households. The literature finds that around 40% of the U.S. capital stock is attributable to intergenerational transfers. As for the concentration of bequests, the intergenerational transfers reported by the richest ten percent are seven times as high as those reported by the bottom half of the wealth distribution (e.g., Feiveson and Sabelhaus (2018)). Rather than solely examining aggregate moments related to inheritance, my study delves deeper into the heterogeneity of the relative importance of inheritance. I demonstrate that while wealthier heirs inherit larger amounts, the relative significance of inheritance is greater for less affluent heirs, who

 $^{^4}$ Kotlikoff and Summers (1981) estimate that around 80% of the U.S. capital stock is attributable to intergenerational transfers. Even though Modigliani (1988) reaches a different conclusion, claiming that less than 20% of wealth can be attributed to transfers, this discrepancy is mainly due to methodological issues. After summarizing the findings of the literature, Davies and Shorrocks (2000) conclude that inheritances are responsible for approximately 35%-45% of aggregate wealth.

inherit more relative to their wealth. This finding is consistent with the observation made by Elinder et al. (2018) using population register data in Sweden. Another closely related study is Hurd and Mundaca (1989), which examines the importance of inheritances for individual wealth holdings but focuses specifically on income-rich households. Furthermore, Wolff and Gittleman (2014) also discusses inheritances as a proportion of current net worth. But they focus on the aggregate economy and investigate how inheritances as a share of household wealth change over time. My paper completes the literature by characterizing the features of inheritance received by the richest few.

This paper contributes to the body of literature examining the effects of estate taxation within quantitatively calibrated models with incomplete markets and heterogeneous agents. This includes studies by Nishiyama (2002), Castañeda et al. (2003), Cagetti and De Nardi (2009), De Nardi and Yang (2016). What sets my approach apart is that, unlike these quantitative studies, which primarily calibrate their models to match moments on inheritance for the overall economy, my model is further governed by new moments on inheritance received by the rich. The findings of this paper diverge from previous literature, highlighting the critical importance of integrating these new empirical moments to discipline the model. This integration informs the underlying interplay between inheritance and other mechanisms that contribute to wealth concentration. Additionally, these new moments yield important implications for revising estate taxation policies, emphasizing the need for a nuanced understanding of how inheritance shapes wealth dynamics in the economy.

Lastly, this paper contributes to the extensive literature on wealth distribution and the sources contributing to the highly skewed wealth inequality observed in the U.S. economy. For instance, Castaneda et al. (2003) demonstrate that a temporary high earning state can create a significantly skewed wealth distribution. Additionally, studies by Cao and Luo (2017), Benhabib et al. (2019), and Hubmer et al. (2020) provide quantitative assessments of the contribution of rate of return heterogeneity to wealth concentration. Works such as Quadrini (2000) and Cagetti and Nardi (2006) explicitly model entrepreneurship to generate wealth distribution, while research like that of De Nardi (2004) seeks to explain skewed wealth distribution through parental background and bequests. In my model, I incorporate not only the key mechanisms identified in the literature as drivers of wealth concentration but also emphasize the interplay between these channels. In particular, the relationship between inheritance and entrepreneurship among the rich is further guided by new empirical moments, providing novel insights into the dynamics of wealth accumulation and distribution.

3. Motivating Facts

This section characterizes the features of inheritances received by rich households that will serve as inputs for the calibration of the quantitative model. I present a series of empirical findings following a brief overview of my primary data source and methodology. Discussions regarding the robustness of these findings are included in the final part of this section.

3.1. Data and Methodology

The primary data source is the Survey of Consumer Finances (SCF) 1989-2019, a cross-sectional survey conducted every three years. I compute the statistics by pooling across all years. SCF asks interviewees to provide details for up to three inheritances, gifts, or trusts they have received: the year in which the transfer was received, the value of the transfer when received, and the type of the transfer. Given that more than 85% of transfers are in the form of inheritances, I use the term *inheritance* in this paper to refer to the total wealth transfers (bequests and intervivos) received by a household. Therefore, all results presented herein can be regarded as an upper bound.

Adopting the standard approach in the literature (e.g., Brown and Weisbenner (2004), Wolff and Gittleman (2014)), I apply a 3% real interest rate to calculate the present value of each inheritance. This calculation is based on both the reported value and the date of receipt. I then aggregate the value of all past inheritances received by each household. Finally, I directly estimate the fraction of wealth attributable to inheritances by taking the ratio of these two. The wealth concept used here is net worth, defined as the current value of all marketable assets less the current value of debts. Both the value of wealth and the value of inheritances are in 2019 dollars. As Brown and Weisbenner (2004) discusses, this direct estimation method computes the maximum possible portion of current household wealth that could be derived from past inheritances, assuming that all received inheritances, along with their accumulated interest, have been saved until the present.

On average, from 1989 to 2019, 21% of households in the U.S. received an inheritance at some point in the past, contributing to approximately 43% of their net worth. To investigate the total inheritances received over a lifetime, the facts presented next focus on households who are at least 60 years old and do not expect to receive a substantial inheritance or transfer of assets in the future. Over the lifetime, about 30% of households could expect to receive an inheritance, and these inheritances constitute nearly 49% of their net worth.

3.2. Facts

Fact 1. The size distribution of inheritances received over a lifetime is highly skewed.

Most households do not receive any inheritances, as evidenced by more than 70% of households report having zero inheritance. At the other end of the size distribution, 10% of households receive inheritances that account for almost 90.6% of total dollars inherited. The top one percentile in the inheritance size distribution accounts for a staggering 54.3% of the total dollars inherited. On average, 2.9% of inheritances, by count, exceed the top decile cutoff value in a given year's wealth distribution, representing 68.8% of the total dollars inherited.

Fact 2. The majority of inheritances predominantly flow to wealthy households.

Figure 1 displays the share of total inheritances received by households in different wealth groups. Households in the top decile of the wealth distribution receive a substantial 61% of the total

⁵The group of interviewees changes in each survey year. However, similar results are obtained using the data from every survey year.

⁶The type of transfers in the SCF is defined as bequest or inter vivos.

dollars inherited. Furthermore, the wealthiest one percent alone holds 22.1% of these inheritances. In stark contrast, households in the bottom half of the wealth distribution receive less than 5% of the total amount inherited.

Fact 3. Inheritances received by rich households account for a small fraction of their wealth holding.

Facts 1 and 2 present aggregate moments about inheritance that are consistent with previous findings (see, for example, Feiveson and Sabelhaus (2018)). I then examine the relative importance of inheritance among the wealthy, introducing new empirical facts. The fraction of wealth directly accounted for by inheritances is calculated as the ratio of the present value of inheritance to the current net worth. I compute this statistic using households in the top decile wealth group who are at least 60 years old and do not expect to receive a substantial inheritance or transfer of assets in the future. As shown in Table 1, less than 20% of the wealth of the richest ten percent can be directly attributed to transfers. Among households in the top one percentile, this fraction is even smaller, at approximately 13%.

Figure 1. Concentration of Inheritances Received by Wealth

Notes: This figure illustrates the percentage of aggregate inheritances received by different household groups, categorized according to percentiles of the wealth distribution. Specifically, I focus on households within each wealth group who are at least 60 years old and do not anticipate receiving a substantial inheritance in the future.

Wealth top decile	Sub-groups in top decile					
	90 - 95	95 - 99	Top 1%			
0.18	0.24	0.22	0.13			

Table 1. Ratio of Inheritances to Current Net Worth

Notes: 1989 - 2019 SCF data. This table presents the ratio of inheritance to the current net worth for households in each top wealth group. The focus is on households that are at least 60 years old and do not expect any substantial future inheritance or asset transfer. Inheritances are calculated as their present value, applying a 3% real interest rate, and based on both the reported value and the date of receipt. Since the net worth values are expressed in 2019 dollars, the value of the inheritance is also converted to 2019 dollars for consistency.

Fact 4. Half of the rich households do not receive any inheritances over their lifetime.

Figure 2 shows the number of households within each inheritance-to-wealth ratio bin, reported as a fraction of the total number of households in each wealth group. Notably, 52% of households in the top one percent by wealth do not receive any inheritances throughout their lifetime. Additionally, approximately 35% of the wealthiest one percent receive inheritances that account for less than one-fifth of their wealth. Less than 10% of the top one percent fall into the category where inheritances account for at least half of their current net worth. Similar patterns are also observed in households within the wealth $90-95^{th}$ and $95-99^{th}$ percentile groups.

Figure 2. Share of Households in Each Inheritance-to-Wealth Ratio Category

Notes: This figure shows the number of households within each inheritance-to-wealth ratio bin, reported as a fraction of the total number of households in different wealth groups. More precisely, there are three subgroups of households within the top decile of wealth distribution: 90 - 95 percentile, 95 - 99 percentile, and the top 1%. The y-axis shows the share of households that belong to each category.

The primary insight derived from the SCF data is that wealthier heirs tend to receive larger

inheritances (Facts 1 and 2); however, the relative importance of inheritance is less significant for them, as they inherit less relative to their own net worth (Facts 3 and 4). In fact, nearly 90% of the wealthiest one percent either received no inheritances or only a small amount relative to their current net worth. Facts 1 and 2 are well-established in the existing literature, whereas Facts 3 and 4 provide new insights. I conducted various robustness checks using the SCF data, which are detailed in Appendix A. Additionally, to further validate these findings, I employed data from the Panel Study of Income Dynamics (PSID) from 1984, which yielded similar results. A detailed description of the sample, along with the corresponding results, is provided in Appendix B.

My findings are also consistent with the observations made by Korom et al. (2017). Using data from the annual American Forbes 400 ranking (1982-2013), Korom et al. (2017) noted that 55% of the fortunes on this list are self-made, defined as those built entirely from scratch. Furthermore, their finding indicates that approximately 60-70% of multimillionaires originate from backgrounds where their parents were blue-collar workers or from lower-middle or middle-class families, rather than wealthy ones.

3.3. Discussions

The concerns regarding the empirical findings of this paper are as follows. First, the results are derived using a 3% real interest rate to compute the present value of inheritances. There is a concern that wealthier households may have access to better investment portfolios yielding higher returns, which could elevate the role of inheritance in their wealth accumulation. Hubmer et al. (2020) estimates that the expected excess return on net worth for households in the top decile of wealth distribution ranges from 3% to 6%. As a robustness check, I recalculated all statistics using a 6% real interest rate to compute the present value of inheritances.⁷

When using the higher interest rate, all figures in Table 1 increase. This increase is expected, as the denominator (households' current net worth) remains constant while the numerator (present value of inheritances) grows due to the higher interest rate. However, as Figure 3 indicates, the inheritances of most wealthy individuals remain small relative to their wealth holdings. Firstly, regardless of the interest rate used, half of the wealthy received no inheritance, making the interest rate irrelevant for them. Secondly, when applying a 6% real interest rate, the proportion of the richest one percent with an inheritance-to-wealth ratio below 0.2 decreases only slightly, from 34.6% to 30.5%. This suggests that most wealthy households received only small inheritances relative to their wealth. My conclusion, that the relative importance of inheritance is less significant for the wealthy, is robust. It stems from the fact that half of this group inherited nothing and a third received only small inheritances compared with their wealth. This finding holds true even when a higher real interest rate is used for the present value calculations of inheritances.

⁷According to the estimates by Hubmer et al. (2020), the mean excess returns for households in the 90^{th} to 99^{th} percentile are lower than 6%, but I use the 6% rate for all households, treating this as an upper bound analysis.

Figure 3. Share of Households in Each Inheritance-to-Wealth Ratio Category

Notes: This figure shows the number of households within each inheritance-to-wealth ratio bin, reported as a fraction of total number of households in different wealth groups. The x-axis categorizes households into three subgroups within the top decile of the wealth distribution: the $90^{th}-95^{th}$ percentile, the $95^{th}-99^{th}$ percentile, and the top 1%. On the y-axis, households in each of these wealth groups are classified into five categories based on the ratio of inheritance received to their current net worth. Present value of inheritance in the left panel of the figure is computed using a 3% real interest rate. This panel contains the same information as Figure 2. The right panel, on the other hand, calculates the present value of inheritance using a 6% real interest rate.

Another potential issue with the data is underreporting of received inheritances. Recall error is a possible cause of this. The SCF collects information on bequests and gifts received by individual households in a retrospective way, which can lead to underreporting, particularly for small inheritances received long ago. However, the likelihood of recall error decreases for larger inheritances. de Nicola and Giné (2014) investigates the accuracy of recall data by comparing administrative records with retrospective, self-reported survey responses. Their findings suggest that higher-value variables are more accurately recalled. My paper, which focuses on inheritances received by the very wealthy, deals primarily with significant-value inheritances, thereby suffering less from recall error. The second factor that might lead to underreporting is tax avoidance. Nevertheless, the SCF, being a cross-sectional household survey, does not delve into detailed questions about household tax filings or liabilities. As a result, respondents have less motivation to misreport their inheritance in this survey context.

4. Model

While the data indicate a relatively small inheritance-to-wealth ratio among the wealthiest households, this observation alone is insufficient to conclude that inheritance plays a minor role in wealth accumulation. Inheritances, even when modest, can serve as pivotal "seed capital," enabling households to establish businesses or alleviate financial constraints faced by incumbent entrepreneurs. The high returns generated from entrepreneurial activities can significantly amplify wealth, propelling these households into the ranks of the wealthy. Without inheritances, these pathways to wealth accumulation may become inaccessible. Thus, despite a seemingly small

⁸The data they use are on earnings. They find that monthly earnings higher than the median are better recalled.

inheritance-to-wealth ratio, inheritances could still play a crucial role in driving wealth concentration. However, this underlying mechanism is not directly observable in the data. At present, it is unclear which perspective holds true: that inheritance is unimportant due to its modest immediate contribution to wealth, or that it is critical because it provides the seed capital necessary for substantial wealth accumulation. To resolve this ambiguity, a quantitative model calibrated to capture the key features of wealth distribution and inheritance patterns is necessary.

To analyze these dynamics, I develop a heterogeneous agent, general equilibrium model that explicitly incorporates entrepreneurship as a central mechanism driving return heterogeneity. Additionally, the overlapping generations framework integrates a non-homothetic bequest function, enabling a more nuanced analysis of the timing and effects of inheritances. In this model, children observe their parents' state variables, which allows them to form expectations about the size of the bequest they are likely to receive. As a result, inheritance influences wealth not only directly, by increasing children's wealth holdings upon receipt, but also indirectly, by shaping their expectations and subsequent decision-making. This comprehensive framework facilitates an in-depth examination of how inheritances and entrepreneurial returns jointly contribute to wealth concentration and broader economic outcomes.

4.1. Demographics and Preferences

Time is modeled as discrete, with each period corresponding to one year. The economy consists of a government, a representative corporate firm, and overlapping generations of households, who are heterogeneous in their productivity levels. Parents and children are linked through both bequests and the intergenerational transmission of a portion of the parents' productivity.

Figure 4. Life Cycle of the Model

Agents enter the economy at the age of 25 (t=1) and have children at age 35 (t=1). During their working years, agents make occupation choices between wage employment and entrepreneurship in each period. Upon reaching age 60 (t=36), agents are mandatorily retired, and their children enter the economy. From that period on, each household faces an age-dependent probability of death (Ω_t). To simplify computations, the model assumes a zero mortality rate before age 60, reflecting the small share of adults in the U.S. who die before this age. This assumption has negligible effects on my results. Agents face a mortality rate of 1 at age 95, meaning they die with

certainty by this age. Additionally, since the analysis is conducted in a stationary environment, variables are indexed only by model age (t), and the time index is omitted for clarity. Preferences are time-separable, with a constant discount factor, β . The utility derived from consumption in each period is represented by the following function:

$$u(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma} \tag{1}$$

where c denotes consumption, and σ is the coefficient of relative risk aversion, capturing the curvature of the utility function.

Moreover, parents derive utility from leaving bequests to their children, which are subject to estate taxes. The utility from leaving a bequest, net of estate taxes, b, is given by

$$\nu(b) = \phi_1 \cdot [(b + \phi_2)^{1 - \sigma} - 1] \tag{2}$$

where ϕ_1 represents the strength of the bequest motive, indicating the relative weight parents place on bequests compared to consumption, and ϕ_2 reflects the extent to which bequests are luxury goods, with higher values of ϕ_2 implying that households are more willing to leave larger bequests as their wealth increases.

4.2. Endowments

Households are endowed with one unit of time each period. In addition, each household possesses two types of skills: one that determines their productivity as a worker and another that governs their productivity in entrepreneurial activities. As a result, households make occupation choices at each period during their working years, based on these two skills as well as other state variables.

Labor Market Productivity: Labor market productivity for individual i at age t, denoted by ω_{it} , is specified as follows:

$$\log(\omega_{it}) = \log(\kappa_i) + \log(g(t)) + \log(s_{it})$$
(3)

where κ_i is an individual fixed effect, g(t) is an exogenous age-dependent component that is common to all individuals, and s_{it} is a persistent idiosyncratic working productivity shock that follows an AR(1) process:

$$log(s_{it}) = \rho_s \log(s_{i,t-1}) + \epsilon_{it}^s, \quad \epsilon_{it}^s \sim \mathcal{N}(0, \sigma_{\epsilon_s}^2)$$
(4)

The permanent component, κ_i , is imperfectly inherited from parents:

$$log(\kappa_i^{\text{child}}) = \rho_{\kappa} \log(\kappa_i^{\text{parent}}) + \epsilon_i^{\kappa}, \quad \epsilon_i^{\kappa} \sim \mathcal{N}(0, \sigma_{\epsilon_{\kappa}}^2)$$
 (5)

Due to the imperfect transmission of ability, the intergenerational link in this model operates through two channels: bequests and ability. Notably, the imperfect transmission of ability means that some low-ability children may inherit substantial fortunes from their high-ability parents, while some high-ability children will inherit little wealth from their low-ability parents.

Entrepreneurial Productivity: The entrepreneurial productivity for individual i at age t, denoted by Q_{it} , is given as:

$$\log(Q_{it}) = \log(\kappa_i) + \log(q_{it}) \tag{6}$$

where κ_i , again, the permanent innate productivity, which can be partially inherited from parents, and q_{it} is the idiosyncratic business productivity shock that evolves according to a Markov chain. The idiosyncratic shock q_{it} is assumed to be independent of the individual's ability as a worker, as represented by both g(t) and s_{it} .

4.3. Technologies

Entrepreneurial Sector: Households must pay a fixed one-time entry cost, C_{entry} , to start a business. Once they enter entrepreneurship, they produce using a decreasing returns to scale production function:

$$f(k,n) = Q\left(k^{\alpha}(\omega+n)^{1-\alpha}\right)^{\eta} \tag{7}$$

where $\eta < 1$ is the span-of-control parameter. A fraction η of the output is allocated to factor inputs, with a share α going to capital and $1 - \alpha$ allocated to labor. The production function also allows entrepreneurs to supply their own labor, ω , as an input to production, in addition to hiring external labor, n. Entrepreneurs rent capital at rate r and hire labor at rate w, choosing their capital and labor inputs in each period to maximize profits.

Corporate Sector: Following Cagetti and De Nardi (2008), I model a second production sector, referred to as the non-entrepreneurial corporate sector, which consists of a large number of homogeneous firms that are not directly managed by households. This sector is represented by a single representative corporate firm operating under a constant returns to scale production function:

$$F_c(K_c, N_c) = A_c K_c^{\alpha} N_c^{1-\alpha} \tag{8}$$

where A_c denotes the time-invariant corporate productivity, normalized to one without loss of generality. The variables K_c and N_c represent the corporate sector's demand for capital and labor, respectively. The outputs produced by the corporate and entrepreneurial sectors are assumed to be perfect substitutes. Additionally, capital depreciates at a rate δ in both sectors.

4.4. Asset Market and Borrowing Constraints

Households have access to competitive financial intermediaries, who accept deposits from both workers and entrepreneurs and rent out capital to entrepreneurs. The analysis focuses on withinperiod borrowing, where capital can only be rented for production purposes. This implies that households cannot borrow for intertemporal consumption smoothing, resulting in a non-negativity constraint on financial wealth: $a \geq 0$. Entrepreneurs face a collateral constraint when renting capital for production:

$$k \le \lambda a \tag{9}$$

where $\lambda \geq 1$. A value of $\lambda = 1$ indicates that entrepreneurs can only use their own wealth as capital input for production, while higher values of λ allow for greater leverage.

4.5. Government and Tax Systems

The government levies taxes on household income, consumption, and estates to finance its expenditures, denoted by \overline{G} , and to provide retirement benefits τ_p to the retired agents.

Consumption is taxed at a flat rate, τ_c . Income taxation is progressive and follows a non-linear function as in Heathcote et al. (2017)

$$T_y(y) = y - (1 - \tau_y^1)y^{1 - \tau_y^2}$$
(10)

where τ_y^1 governs the average tax rate, and τ_y^2 determines the degree of progressivity of the tax system. The U.S. federal estate tax is modeled as a progressive tax on the total value of net worth at the time of a household's death. In line with the literature, I assume a constant marginal tax rate for estates above an exemption threshold (see, for example, Castañeda et al. (2003), Cagetti and De Nardi (2009), De Nardi and Yang (2016)). Specifically, the estate tax is described by two parameters: an exemption level, \underline{e} , and a constant marginal tax rate, τ_e , applied to estates exceeding the exemption threshold. The estate tax is defined as:

$$T_e(a) = \begin{cases} 0 & \text{for } a \le \underline{e} \\ \tau_e(a - \underline{e}) & \text{for } a > \underline{e} \end{cases}$$
 (11)

4.6. The Household's Recursive Problem

I assume that children have full knowledge of their parents' state variables and can infer the size of the bequest they are likely to receive based on this information. As a result, the potential state variables for a young household are given by $x=(t,\kappa,s,q,a,a_p)$, where t is the household's age, κ represents the fixed innate individual ability, s is the current working productivity shock, q is the current entrepreneurial productivity shock, a is the household's asset holdings, and a_p denotes the asset holdings of the household's parent. Due to the demographic setup, young households enter the model economy in the year their parents retire. For retired households, the state space is defined by two variables: age and asset holdings, (t,a). Given the fixed age gap between parents and children, a young household's age inherently provides information about the parent's age. Consequently, only the parent's asset holdings, a_p , enter the state space of the young household.

Old Retirees: From t=36 to 70 (physical age 60 to 94), households are retired and receive Social Security benefits, τ_p , which are uniform across all individuals regardless of their occupation during their working years. Due to the demographic structure of the model, old households do not have living parents. Instead, they face a positive probability of death each period. Upon death, retirees derive utility from leaving bequests to their children, consisting of their remaining assets net of estate taxes.

$$V^{r}(a,t) = \max u(c) + \beta (1 - \Omega_{t+1})V^{r}(a',t+1) + \beta \Omega_{t+1}\nu(b')$$
s.t. $(1 + \tau_c)c + a' = y - T(y) + a$
 $a' \ge 0, \quad y = \tau_p + ra, \quad b' = a' - T_e(a')$

Young without Living Parents: From t=1 to 35 (physical age 25 to 59), households are in their working years and survive with certainty to the next period. Young households who have already received their inheritance make decisions regarding their occupation, consumption, and savings based solely on their own state variables. The value function for a worker is denoted by $V_I^w(t,\kappa,s,q,a)$, while the value function for an entrepreneur is given by $V_I^e(t,\kappa,s,q,a)$, where I stands for "inherited."

$$\begin{split} V_I(t,\kappa,s,q,a) &= \max \ \big\{ V_I^w(t,\kappa,s,q,a), \ V_I^e(t,\kappa,s,q,a) \big\} \\ V_I(t,\kappa,s,q,a) &= \max \ u(c) + \beta \ \mathbb{E} \big\{ V_I(t+1,\kappa,s',q',a') | s,q \big\} \\ s.t. \quad (1+\tau_c)c + a' &= y - T(y) + a, \quad a' \geq 0 \\ & \text{If } V_I = V_I^w: \ y = w\omega + ra \\ & \text{If } V_I = V_I^e: \ y = Q \Big(k^\alpha (\omega + n)^{1-\alpha} \Big)^\eta - (r+\delta)k - wn + ra, \quad k \leq \lambda a \end{split}$$

Young with Living Parents: When the parents of young households are still alive, they are at least 60 years old and face a positive probability of dying in any given period. As a result, young households may receive a bequest at the beginning of the next period. The parents' asset holdings, a_p , enter the children's recursive problem, as the children form expectations about the bequest they may receive. This expectation influences their optimal decisions regarding occupation, consumption, and saving. Note that $\Omega_{t'_p}$ represents the probability of a parent dying in the next period at age t'_p . Since the age gap between parents and children is fixed at 35 years, the parent's age can be inferred from the child's age: $t_p = t + 35$. When parents die, the value function for the inherited household applies, and assets are augmented by the inheritance, net of the estate tax.

$$\begin{split} V(t,\kappa,s,q,a,a_p) &= \max \ \big\{ V^w(t,\kappa,s,q,a,a_p), \ V^e(t,\kappa,s,q,a,a_p) \big\} \\ V(t,\kappa,s,q,a,a_p) &= \max \ u(c) + \beta \ (1-\Omega_{t_p'}) \ \mathbb{E} \big\{ V(t+1,\kappa,s',q',a',a_p') | s,q \big\} \\ &+ \beta \ \Omega_{t_p'} \ \mathbb{E} \big\{ V_I(t+1,\kappa,s',q',a'+b') | s,q \big\} \\ s.t. \quad (1+\tau_c)c+a' &= y-T(y)+a, \quad a' \geq 0 \\ &\text{If } V = V^w: \ y = w\omega + ra \\ &\text{If } V = V^e: \ y = Q \Big(k^\alpha (\omega+n)^{1-\alpha} \Big)^\eta - (r+\delta)k - wn + ra, \quad k \leq \lambda a \\ b' &= a_p' - T_e(a_p') \end{split}$$

4.7. Stationary Equilibrium

I focus on a stationary equilibrium concept where factor prices and distribution are constant over time. Define $x=(t,\kappa,s,q,a,a_p)$ as the state vector. A stationary equilibrium is defined by the household value function, their decision rules c(x), a'(x), n(x), k(x), corporate sector choices K_c and N_c , public policies $\{\tau_p,\tau_y,\tau_c,\tau_e,\underline{e}\}$, factor prices $\{r,w\}$, and a distribution over households $\Lambda(x)$, such that, given prices and government tax and transfer schedules:

1. policy functions c(x), a'(x), n(x), k(x) maximize household's value function;

- 2. the corporate firm maximizes profit
- 3. the government budget is balanced
- 4. the goods market clears

$$Y = \int c(x) \ d\Lambda(x) + K' - (1 - \delta)K + \overline{G} + \int C_{entry} \cdot \mathbf{1}_{new \ ent} \ d\Lambda(x)$$
 (12)

5. the labor market clears

$$N_e + N_c = \int \omega(x) \cdot \mathbf{1}_{\text{occup=w}} d\Lambda(x)$$
 (13)

6. the capital market clears

$$K_e + K_c = \int a(x) \, d\Lambda(x) \tag{14}$$

7. the distribution of household over the state variables, $\Lambda(x)$, is stationary.

5. Quantitative Analysis

In this section, I describe the process of parameterizing the model in a stationary equilibrium. The model is calibrated through a two-step procedure using the simulated method of moments. In the first step, a subset of the parameters is externally calibrated, relying on estimates that are independent of the model or commonly used values in the literature. The parameters determined in this step are presented in Table 2. In the second step, the remaining 16 parameters are endogenously calibrated within the model to match key features of the U.S. economy during the late 1990s and early 2000s, a period during which the estate tax remained relatively stable. The parameters calibrated to match model-generated moments with those observed in the data are listed in Table 3.

5.1. Calibration

Demographics: Within the model framework, one model period corresponds to one year. Agents enter the economy at the age of 25 (model age t=1) and retire at the age of 60. During their working years, agents transition to the next period with certainty. Upon reaching retirement at age 60, agents face a positive mortality rate increasing in age, denoted as $\{\Omega_t\}_{t=36,\dots,70}$. The mortality rates are taken from Bell and Miller (2005), and agents die by age 95 with certainty.

Preferences and Bequest: As in Attanasio et al. (1999), I set the coefficient of risk aversion σ to be 1.5. The discount factor, β , is calibrated to match a capital-output ratio of 2.65, as in Brüggemann (2021). The warm-glow bequest utility function includes two parameters, ϕ_1 and ϕ_2 . The parameter ϕ_1 , which reflects the importance of the bequest motive, is calibrated to replicate a targeted bequest-wealth ratio of 0.88% as reported by De Nardi and Yang (2016)⁹. The parameter

⁹De Nardi and Yang (2016) also reported this figure as 1.18% when including college expenses in the computation of bequests. However, in the context of this analysis, which centers exclusively on inheritances subject to estate taxation, the target moment of 0.88% is employed, excluding college expenses from consideration.

 ϕ_2 captures the extent to which bequests are luxury goods. When $\phi_2 > 0$, the marginal utility of bequests is bounded at the point where bequests are zero, thereby permitting certain households to leave no bequests. Given that ϕ_2 affects the upper tail of the inheritance size distribution, I choose ϕ_2 to match the 90th percentile of the bequest distribution scaled by income, which is estimated at 4.31 (see De Nardi and Yang (2016) and Guvenen et al. (2023)).

Entrepreneurial Productivity: Entrepreneurial productivity is composed of two components: an individual's innate fixed ability, denoted as κ , and an idiosyncratic business productivity shock, q_t , which evolves according to a Markov chain. The intergenerational correlation of the fixed ability effect is set to $\rho_{\kappa} = 0.5$, with a dispersion parameter of $\sigma_{\epsilon_{\kappa}} = 0.309$, following Guvenen et al. (2023). The ability inheritance process is discretized using the method of Tauchen (1986).

Business productivity, q, can take on five possible values: $q \in \{q_{dis}, q_1, q_2, q_3, q_4\}$. Following Brüggemann (2021), I assume that the lowest state is a disaster state, where $q_{dis} = 0$. Agents in this state always choose to work as employees rather than entrepreneurs, and once in the disaster state, they remain there permanently. The remaining four productivity levels are characterized by three parameters: \bar{q} , \hat{q} , and q_{max} , such that $\{q_1, q_2, q_3, q_4\} = \{\hat{q} \times (1 - \bar{q}), \hat{q}, \hat{q} \times (1 + \bar{q}), q_{max}\}$. Following Kitao (2008) and Brüggemann (2021), I calibrate the transition matrix for q under the assumption that business productivity evolves gradually over time. Specifically, productivity can only transition to adjacent grid points in the next period, restricting movements to neighboring states. Additionally, I assume that transition probabilities between adjacent states are identical for q_1 , q_2 , and q_3 . This structure results in three key parameters governing the transition probability matrix, denoted as:

$$\Lambda = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
p_1 & p_2 & 1 - p_1 - p_2 & 0 & 0 \\
0 & p_1 & p_2 & 1 - p_1 - p_2 & 0 \\
0 & 0 & p_1 & p_2 & 1 - p_1 - p_2 \\
0 & 0 & 0 & 1 - p_3 & p_3
\end{bmatrix}$$
(15)

The stochastic process for q is governed by six parameters: \overline{q} , \hat{q} , q_{max} , p_1 , p_2 , and p_3 , which are jointly determined by targeting the characteristics of entrepreneurship and the steady-state wealth distribution, consistent with approaches commonly employed in the previous literature. However, in this paper, these parameters are additionally governed by the inheritance patterns documented in Fact 3 and Fact 4 of Section 3.2. As a result, this model not only captures fundamental patterns of wealth distribution and entrepreneurship but also integrates the role of inheritance in wealth concentration at the top.

To discipline these parameters, I target six empirical moments: (i) the fraction of entrepreneurs in the population (0.07), (ii) the annual entry rate into entrepreneurship (0.02), (iii) the wealth share of entrepreneurs (0.33), (iv) the wealth share of the top 1% (0.32), (v) the present value of inheritance relative to wealth for the richest 1% (0.13), and (vi) the fraction of the richest 1% with an inheritance-to-wealth ratio below 0.2 (0.87).

The fraction of entrepreneurs is determined using Survey of Consumer Finances (SCF) data, where entrepreneurs are defined as self-employed households that own a business. The entry rate

into entrepreneurship is computed from the Panel Study of Income Dynamics (PSID) data. The calculated entry rate aligns closely with those reported in the existing literature (see, for example, Cagetti and Nardi (2006)). Wealth inequality statistics are also computed using SCF data. The final two moments related to inheritance patterns among wealthy households are detailed in Fact 3 and Fact 4 of Section 3.2. All model statistics are generated using the same methodologies applied to the data. Specifically, when calculating the last two moments concerning inheritance patterns, I focus exclusively on simulated households aged at least 60 years and calculate the present value of their inheritance using a 3% real interest rate.

Working Productivity: Working productivity consists of three components. The first component is an individual's fixed ability, denoted as κ , which is imperfectly inherited from parents, as previously discussed. The second component is a deterministic life-cycle productivity profile, g(t), which is exogenously assigned to all agents and empirically estimated from data. This age-efficiency profile, sourced from Peterman and Sommer (2019), captures the evolution of productivity over the life cycle. The third component involves an idiosyncratic shock to working productivity, which follows an AR(1) process with persistence $\rho_s = 0.9$ and unconditional variance $\sigma_{\epsilon_s}^2 = 0.2$, consistent with Guvenen et al. (2023). This stochastic process is discretized into five states, represented as $s \in \{s_1, ..., s_5\}$.

In this model, the capacity to generate large wealth concentration through inheritance is constrained by integrating new inheritance patterns documented from the data. Consequently, the model tends to overstate the role of entrepreneurship in wealth inequality, resulting in an overrepresentation of entrepreneurs among the top 1% of wealth holders. To address this issue, I introduce a sixth, superstar labor state, denoted as s_{star} , following Kindermann and Krueger (2022). Households in labor state s_5 can transition to s_{star} with probability p_{star} . However, this high-productivity state is risky, as individuals face a probability p_{drop} of reverting to the medium ability level, s_3 . Therefore, the labor productivity process involves three parameters that require calibration: s_{star} , p_{star} , and p_{drop} . These parameters are selected to match three empirical moments: (i) the Gini coefficient of workers' income (0.52), (ii) the income share of the top 1% (0.21), and (iii) the fraction of entrepreneurs within the top 1% of the wealth distribution (0.53). All moments are computed using SCF data.

Production Technologies: Corporate productivity A_c is normalized to be one. The capital share of corporate firm's production function α is set to be 0.36 as in Cooley and Prescott (1995). For simplicity, I make the value of the capital share of the entrepreneurial sector equal to that of the corporate sector. The span of control parameter η is set to be 0.79, following Buera et al. (2011). This parameterization choice implies that the capital share in the entrepreneurial sector within my model is $\alpha \eta = 0.28$, a value that aligns closely with those employed in macroeconomic literature on entrepreneurship (see, for example, Buera et al. (2011), Cagetti and Nardi (2006)).

I set the capital depreciation rate δ to be 0.05, which is a standard value in the literature, as in Guvenen et al. (2023). Entrepreneurs can only borrow up to 50 percent of their assets, allowing for a maximum investment of $\lambda=1.5$ times their assets. This borrowing limit is adopted from Kitao (2008) and is commonly used in the literature on entrepreneurship.

The last parameter related to entrepreneurial production is the one-time fixed cost of entry, C_{entry} . Using PSID data, Hincapié (2020) documents that the average age at which individuals first enter entrepreneurship is approximately 32 to 35 years old. The timing of business initiation is important to my analysis, as it influences the interplay between inheritance and entrepreneurship in the accumulation of wealth. Given that a higher entry cost presents a significant barrier to entry, I introduce this one-time fixed cost to capture the stylized fact that individuals attempt entrepreneurship for the first time in their mid-30s.

Parameter	Description	Value	Source
Demographics			
$\{\Omega_t\}_{t=36,\dots,70}$	Mortality rate		Bell and Miller (2005)
Preferences	•		,
σ	Risk aversion	1.5	Attanasio et al. (1999)
	Kisk aversion	1.3	Attanasio et al. (1999)
Endowments			
$ ho_{\kappa}$	Interg. corr. of ability fixed effect	0.5	Guvenen et al. (2023)
$\sigma_{\epsilon_{\kappa}}$	Dispersion of ability fixed effect	0.309	Guvenen et al. (2023)
$\{g_t\}_{t=1,,35}$	Age-dependent working prod.		Peterman and Sommer (2019)
$ ho_s$	Working prod. shock: persistence	0.9	Guvenen et al. (2023)
σ_{ϵ_s}	Working prod. shock: std. dev.	0.2	Guvenen et al. (2023)
Production			
α	Capital's share of output	0.36	Cooley and Prescott (1995)
η	Span of control	0.79	Buera et al. (2011)
δ	Capital depreciation rate	0.05	Guvenen et al. (2023)
λ	Collateral constraint parameter	1.5	Kitao (2008)
A_c	Corporate productivity	1	
Taxes			
$ au_p$	Retirement benefit	$0.4\times$ ave. inc.	Kotlikoff et al. (1999)
$ au_c$	Consumption tax rate	0.065	Bhandari and McGrattan (2021)
$ au_y^1$	Income tax: level shifter	0.09	
$ au_y^2$	Income tax: progressivity	0.14	

Table 2. Parameters Calibrated Outside of the Model

Parameter	Value	Targeted Moment	Data	Model
D (
Preferences				
β	0.92	Capital-to-wealth ratio	2.65	2.46
ϕ_1	-9.58	Bequest-to-wealth ratio	0.88%	0.88%
ϕ_2	3.99	90th percentile of bequest dist.	4.31	4.22
Endowments				
\overline{q}	0.76	Ent population share	0.07	0.07
$\hat{\hat{q}}$	1.73	Ent entry rate	0.02	0.02
q_{max}	5.02	Ent wealth share	0.33	0.35
p_1	0.33	Top 1% wealth share	0.32	0.32
p_2	0.43	Richest 1%: inh-to-wealth ratio	0.13	0.11
p_3	0.29	Frac. richest 1%: inh-to-wealth ratio ≤ 0.2	0.87	0.88
s_{star}	6.06	Workers' income Gini	0.52	0.52
p_{star}	0.10	Top 1% income share	0.21	0.23
p_{drop}	0.02	Ent pop share in wealth top 1%	0.53	0.54
Production				
C_{entry}	6.58	Ave. age of first-time ents.	33	30
Taxes				
\underline{e}	59.11	Frac. of estates paying estate taxes	0.02	0.02
$ au_e$	0.68	Estate tax revenues-to-GDP ratio	0.33%	0.32%

Table 3. Parameters Calibrated (Jointly) Inside the Model

Government and Tax Systems: The government provides a uniform retirement benefit, τ_p , to all retirees, regardless of their occupation during their working years. The retirement benefit amounts to 40 percent of average income as in Kotlikoff et al. (1999). Following Bhandari and McGrattan (2021), I set the consumption tax rate τ_c to 0.065. Regarding the progressive income tax, the two income tax parameters, τ_y^1 and τ_y^2 , are estimated with PSID data using the tax functional form proposed by Benabou (2002) and Heathcote et al. (2017). τ_y^1 and τ_y^2 are set to be 0.09 and 0.14, respectively.

Estate taxation serves as another source of government income. Estates that exceed a specified threshold, denoted as \underline{e} , are subjected to a tax rate τ_e applied to the amount exceeding this threshold. I choose the tax parameters \underline{b} and τ_b to match the fraction of estates subject to estate taxes (0.02, Gale and Slemrod (2001)) and the fraction of estate tax revenue as a percentage of total output (0.33%, Gale and Slemrod (2001)).

5.2. Model Performance

In this section, I compare key features of the actual data for the U.S. economy with the corresponding characteristics of the model-generated data. It is important to note that almost all statistics presented in this section are untargeted moments in the calibration process. A good alignment between the model and the aspects of the data that were not explicitly matched during the calibration

procedure enhances my confidence in the policy projections generated by the model.

Wealth Distribution: Table 4 compares the wealth distribution of the U.S. economy, derived from the SCF data, with that generated by the model. Although my calibration specifically targeted the top 1% of the wealth distribution, the overall fit of the model's generated wealth distribution is quite good, effectively capturing the significant degree of wealth inequality. Furthermore, while I focused solely on the population share of entrepreneurs in the top 1%, the model accurately generates a wealth share for entrepreneurs that closely corresponds to the empirical data. In the observed data, entrepreneurs hold 54.3% of the wealth within the richest 1% group, whereas my model yields a figure of 57.8%. Accurate representation of the population share and wealth share of entrepreneurs, along with the inheritance patterns of wealthy households, is essential for subsequent policy counterfactuals. These elements directly influence the model's ability to reflect the complex interplay between inheritance and entrepreneurship in the context of wealth concentration. Understanding these dynamics is crucial for analyzing the aggregate and distributional effects of potential estate tax reforms.

	Share of	Wealth Ho	ld by We	alth Perc	centile	Ents' Wealth Share
	Bottom 50	Next 40	90-95	95-99	99-100	in the Top 1%
Data	2.8	27.7	12.2	25.1	32.2	54.3
Model	0.4	22.2	17.1	28.2	32.1	57.8

Table 4. Wealth Distribution

Inheritance-to-Wealth Ratio: Table 5 presents the percent share of the richest 1% of households across various inheritance-to-wealth ratio categories. The data moments have been discussed in Figure 2 of Section 3.2. The model moments were generated using the same methodologies applied to the empirical data. In the calibration process, I focused only on the fraction of the richest 1% with an inheritance-to-wealth ratio no greater than 0.2. Nevertheless, the model successfully generates the share of households in each inheritance-to-wealth ratio category that closely aligns with the data. Notably, in the data, less than 4% of these wealthy households receive substantial inheritances that exceed their current net worth. The model effectively mimics this feature. In the simulated economy, only 3% of the richest 1% of households display an inheritance-to-wealth ratio greater than 1.

Inheritance-to-Wealth Ratio							
	[0, 0.2]	(0.2, 0.5]	(0.5,1]	> 1			
Data	87.06	5.73	3.44	3.77			
Model	88.26	6.42	2.28	3.04			

Table 5. Share of Top 1% Households in Each Inheritance-to-Wealth Ratio Category

Notes: This table shows the share of the richest 1% households within each inheritance-to-wealth ratio bin.

		PS	SID: 19	94			N	Model:	After 1	10 Year	`S
984	1	2	3	4	5		1	2	3	4	
1	62.9	23.4	8.7	2.6	1.8	1	42.6	24.9	14.2	14.4	
2	22.9	41.3	21.4	9.8	4.7	2	4.9	50.2	34.1	8.0	2
3	10.0	27.6	32.6	20.6	9.2	3	9.0	32.3	29.3	19.6	9
4	5.3	8.3	26.3	37.1	22.9	4	3.4	10.4	26.1	33.8	2
5	1.7	3.4	8.8	25.2	60.9	5	0.0	0.0	0.7	30.0	6

Table 6. Transition Matrices of Wealth Quintiles

Notes: The left panel displays the mobility matrix for U.S. households from 1984 to 1994, taken from Carroll and Hoffman (2017). The right panel presents the mobility matrix over the same 10-year period, derived from model-generated data.

Wealth Mobility: Next, I assess the model's implications for both intragenerational and intergenerational wealth mobility. For intragenerational wealth mobility, I examine the wealth mobility of individuals over a 10-year period. Carroll and Hoffman (2017) use PSID data to track household wealth from 1984 to 1994, focusing exclusively on households that were alive at the end of this period. The left panel of Table 6 presents the movement of wealth quintiles within this timeframe, indicating the percentage of households in a given wealth quintile that transitioned to each quintile after 10 years. Each row sums to 100 percent. According to the table, approximately 63% of households in the first quintile in 1984 remained in that quintile by 1994, while just under 2% experienced a significant upward shift, transitioning to the fifth quintile. The right panel displays the wealth mobility over the same period as generated by the model. Notably, the model successfully mimics the data patterns, particularly for the upper wealth quintile groups.

For intergenerational wealth mobility, I follow the methodology of Pfeffer and Killewald (2018) and use PSID data to estimate two-generation persistence in wealth based on a sample of parent-child pairs aged 25 to 64. In their analysis, Pfeffer and Killewald (2018) regress the child's wealth rank on the parental wealth rank, where the wealth rank is defined as the percentile rank within their respective net worth distributions. The rank slope serves as a measure of relative mobility and is estimated to be 0.32, which falls within the range reported by Pfeffer and Killewald (2018). Using my model-generated data, the estimated rank slope is 0.26.

¹⁰Pfeffer and Killewald (2018) report the rank slope to be in the range of 0.32 to 0.39.

6. Policy Counterfactuals

In this section, I examine the effects of changing the estate tax rate. In the baseline economy, the effective estate tax rate is calibrated at 0.68. In my policy experiments, I vary the tax rate between 0 and 1, while keeping the tax exemption threshold at its calibrated level. Government expenditure is maintained as in the baseline economy. Any additional tax revenue generated is redistributed to all households via a lump-sum transfer, denoted as T, to maintain the government's budget balance. Consequently, a negative value of T acts as a lump-sum tax, compensating for decreased tax revenue. All policy counterfactuals are conducted in a general equilibrium context, and I focus on the steady-state comparison.

6.1. Aggregate Effects

Figure 5 reports the aggregate effects as the estate tax rate varies from 0 to 1. The upper left panel displays the lump-sum transfer required to balance the government budget. The upper right panel, along with the two middle panels, shows the percentage changes in aggregate output, labor, and capital compared to their counterparts in the baseline economy. The two bottom panels show the percentage changes in factor prices: wages and interest rates.

The figure indicating the lump-sum transfer necessary to balance the government budget when adjusting the estate tax rate exhibits a Laffer curve feature. The abolition of the estate tax necessitates collecting a lump-sum tax from households to compensate for the loss in government tax revenue. However, as the tax rate increases, the requirement for this lump-sum tax diminishes due to the decreasing deficit in estate tax revenue. Once the tax rate exceeds the baseline level, the government generates additional revenue, allowing for lump-sum transfers to households.

Nevertheless, excessively high tax rates can dampen the incentive for wealthy households to save, consequently reducing other forms of tax revenue for the government. The curve of lump-sum transfers peaks at a tax rate of 0.94, suggesting that the optimal revenue-maximizing estate tax rate is 0.94. The magnitude of these lump-sum transfers ranges from -0.021 to 0.005, translating to a value of approximately -133 to 31 dollars per year. This modest range results from the relatively minor role of estate taxes in the government's total tax revenue, contributing just 0.33% of GDP. Consequently, alterations in the estate tax rate have a limited impact on the overall balance of the government's budget.

Figure 5. Aggregate Effects of Changing the Estate Tax Rate

Notes: This figure illustrates the aggregate effects of modifying the estate tax rate while maintaining the exemption value at its calibrated benchmark level. The upper left panel displays the lump-sum transfer required to balance the government budget. The upper right panel and the two middle panels show the percentage changes in aggregate output, labor, and capital compared to their benchmark economy counterparts. The two bottom panels present the percentage changes in factor prices: wages and interest rates.

Due to the assumption of an inelastic labor supply, the change in aggregate labor is minimal, ranging from an increase of 0.06% when the estate tax is repealed to a decrease of 0.04% when the tax rate is set to 1. The shift in aggregate labor primarily comes from occupational choice. As the estate tax rate rises, the wage rate declines, making entrepreneurship more attractive compared to wage work and encouraging more households to enter entrepreneurship. Moreover, while higher interest rates resulting from increased estate taxes make capital input more expensive, entrepreneurs offset this expense by hiring workers at lower wages. Consequently, as the estate tax rate increases, the number of entrepreneurs rises. This expansion in entrepreneurship reduces the labor pool available for wage work, ultimately leading to a decrease in aggregate labor.

Abolishing the estate tax increases the return to leaving bequests for wealthy households. This policy change results in an increase in the savings of the very rich, which is sufficient to counterbalance the decline in savings by other groups due to lower interest rates. As a result, the abolition of the estate tax leads to a 3.16% increase in the aggregate capital stock (K), which in turn derives a 0.50% rise in aggregate output. Conversely, higher estate tax rates lead to lower savings among wealthy households. This shift in savings behavior reduces the overall aggregate capital. In scenarios where the estate tax rate is particularly high, reaching confiscatory levels, aggregate capital experiences a decrease of 1.78%, corresponding to a reduction in aggregate output of 0.32%. When the estate tax is repealed, wages increase despite a rise in aggregate labor supply, as the substantial increase in capital results in a higher capital-labor ratio.

I also conducted a policy counterfactual exercise in partial equilibrium, where I fixed factor prices at the baseline level and calibrated the lump-sum transfer only to balance the government budget. This approach allows me to eliminate the indirect effects through adjustment in general equilibrium prices, thereby focusing exclusively on the direct effects of tax changes. Importantly, in this partial equilibrium scenario, the abolition of the estate tax leads to an increase in the number of entrepreneurs, while raising the tax rate results in a decrease in the number of entrepreneurs. This finding indicates the interaction between inheritance and entrepreneurship. Repealing the estate tax benefits households that inherit larger estates. Furthermore, if they opt for entrepreneurship, they can establish larger firms and generate higher profits. Conversely, a higher estate tax rate reduces the seed money available for starting businesses, leading to fewer households choosing entrepreneurship.

While this channel exists, its magnitude is notably small. The number of entrepreneurs increases by only 0.075% when the estate tax is abolished, while it decreases by 0.084% when the estate tax is set to 1. This limited response is due to the benchmark model being governed by new empirical findings on the inheritance patterns of the very wealthy. Half of the wealthiest 1% are self-made, having received no inheritance, and only 13% of this group inherits large sums resulting in an inheritance-to-wealth ratio exceeding 0.2. While it could be argued that some households in the richest 1% may receive substantial inheritances, their pronounced entrepreneurial abilities often generate even greater wealth, leading to a relatively small inheritance-to-wealth ratio. However, this scenario is unlikely, as the model is also guided by the empirical fact that the wealth share of the richest 1% is 32%. If significant inheritances were indeed common among them, the wealth share of this group would be even higher.

6.2. Distributional Effects

In the model, households in the top 5% of wealth are subject to the estate tax. A reduction in the estate tax rate increases the returns from leaving a bequest for wealthy and older households, enabling them to accumulate even more wealth. Furthermore, young households that are rich due to substantial inheritances also benefit from the lowered estate tax rate by receiving larger inheritances, which in turn enhances their wealth accumulation. On the other hand, in the meantime, those self-made young rich experience a slight decrease in their savings due to the lower interest rates associated with the reduced estate tax rate. However, compared to the first two direct effects, this indirect effect is relatively weaker. Consequently, when the estate tax decreases, wealth concentration at the top intensifies.

While this channel operates in the model, it is quantitatively small. Figure 6 illustrates the share of wealth held by the richest 5% as the estate tax rate varies from 0 to 1. In response to the tax change, the wealth share decreases only from 60.84% to 60.13%. This small distributional effect arises because many wealthy households are self-made, and their wealth holdings are less affected by changes in the estate tax.

Figure 6. Wealth Share of the Top 5%

Turning to the wealth share held by the top 1%, Figure 7 illustrates the share of wealth as the estate tax rate varies from 0 to 1. Instead of monotonically decreasing in the estate tax rate, the wealth share of the richest 1% generally increases with the tax rate, except at extreme rates. Furthermore, in terms of magnitude, the observed changes are quite limited, with the wealth share ranging from 31.91% to 32.31%.

Intuitively, a lower estate tax rate enables those top 1% households, who primarily accumulated their wealth through inheritance, to become even wealthier. Additionally, some households in the 95th to 99th wealth percentiles from the earlier steady state, under the baseline estate tax rate, now enter the richest 1% group due to receiving larger inheritances resulting from the lower estate tax rate. This influx of households with significant inheritances crowds out the initial

steady-state households in the richest 1% that do not possess large inheritances but are wealthy due to entrepreneurship.

Figure 7. Distributional Effects of Changing the Estate Tax Rate

This mechanism exists in the model. However, it is quantitatively limited, as the significance of inheritance is constrained. The model is governed by the fact that half of the wealthiest 1% received no inheritance, while an additional one-third of this group has only a small inheritance. Together, this means that approximately 87% of the richest 1% have an inheritance-to-wealth ratio of no greater than 0.2. Consequently, regardless of changes in the estate tax rate, a substantial fraction of the wealthiest 1% remains self-made. When the estate tax is reduced, households with larger inheritances in the 95th to 99th wealth percentiles do not crowd out self-made households in the top 1% significantly. As a result, these households continue to reside within the 95th to 99th percentile group.

Moreover, as the estate tax rate decreases, the total wealth held by the top 5% of households increases. Notably, the wealth increase among households in the 95th to 99th percentiles is slightly larger than that of the top 1%. This discrepancy occurs because inheritance plays a relatively more significant role in wealth accumulation for households in the 95th to 99th percentiles, as their inheritance-to-wealth ratio is higher than that of the richest 1% group. Therefore, when considering overall wealth share, the fraction of wealth held by the top 1% decreases, despite their absolute wealth increasing, due to the relatively larger gains made by households in the 95th to 99th percentiles. For example, when the estate tax rate decreases from the baseline level of 0.68 to 0.15, the total wealth held by the top 1% increases by 1.65%. However, the wealth share of the top 1% declines from 32.14% to 31.91%, while the wealth share of the 95th to 99th percentile rises from 28.15% to 28.76%.

When the estate tax rate is 0.1 or lower, the increased savings of the very wealthy become substantial enough that the share of the top 1% begins to increase. The same logic applies at the upper end of the estate tax rates. When the estate tax rate reaches 0.96 or above, the net return on bequests becomes so low that it significantly reduces the savings of the very rich, resulting in

a decrease in the share of the top 1%. This explains why the overall trend for the top 1% wealth share in the benchmark model increases with the estate tax rate, albeit with non-linear behavior at the extremes of the tax rate range.

6.3. Welfare Analysis

I compute the welfare of each new steady state using Consumption Equivalent Variation (CEV). Following McGrattan (1994), CEV is defined as the percentage change in the initial steady-state per-period consumption required for every newborn household to be indifferent between the initial and the new steady state, holding all other factors constant. Positive values of CEV indicate a welfare gain in the new steady state, suggesting that households would not be willing to stay in the benchmark steady state unless they were compensated with additional consumption.

Figure 8. Welfare Effects of Changing the Estate Tax Rate

Notes: Welfare is calculated using consumption equivalent variation (CEV), which is defined as the percentage by which every newborn's initial steady-state per-period consumption would have to be permanently increased to be indifferent between the initial and the new steady state, keeping everything else constant. Positive values of CEV indicate a welfare gain in the new steady state, while negative values imply welfare loss.

The left panel of Figure 8 shows the CEV for estate tax rates ranging from 0 to 1. The welfare changes resulting from the tax reforms are relatively small. In the best-case scenario, where the CEV reaches its peak, newborns in the benchmark would need to increase their consumption by only 0.02% to be indifferent between the two steady states. The welfare-maximizing tax rate is at 0.75.

The right panel of Figure 8 presents the average welfare gains or losses conditional on a newborn's innate ability, categorized as low, middle, and high. The average welfare gains associated with being born with a fixed innate ability are generally positive, with the exception of the high ability group. For this group, the welfare loss from increased estate taxation is approximately 0.03%. This loss arises because newborns with high innate ability are likely to be born into wealthy families, where their parents also possess high innate ability due to intergenerational transmission

of skills. Moreover, these high-ability newborns are expected to achieve significant wealth in the future owing to their high innate potential. Consequently, these households experience a loss of utility not only because they receive lower net estates but also due to the smaller utility they can derive from leaving bequests in the future.

7. Conclusion

In this paper, I investigate the efficiency and distributional implications of estate taxation within a quantitative model that incorporates occupational choices between wage work and entrepreneurship, a non-homothetic bequest motive, and the transmission of ability across generations. The overlapping generations framework allows children's decisions to be influenced not only by their own state variables but also by their expectations regarding potential inheritances from their parents. This rich model facilitates a comprehensive examination of the intricate relationships between inheritance, entrepreneurship, and estate taxation, yielding new insights into how these factors shape wealth distribution and economic behavior in the U.S. economy.

My empirical findings indicate that while inheritances are concentrated in wealthy households, their relative importance is less significant for wealthy heirs, as they inherit less compared to their wealth. Notably, the present value of the inheritance to wealth ratio for the richest 1% is less than 0.13, with half of this group receiving no inheritance throughout their lifetimes. This observation holds profound implications for policy formulation. In my model, changes in estate tax have limited effects in both aggregate and distributional terms. Moreover, the share of wealth held by the richest 1% generally increases with rising estate tax rates.

The primary goal here is to develop a model calibrated to match these new moments on the direct link between inheritance and wealth, and to study the implications of estate taxation in this model. Therefore, I have focused specifically on the value of inheritances received by the wealthy. However, there are numerous interesting avenues for future research that could extend my model. For instance, wealth transfers in the form of human capital investment, such as college tuition payments, could be explored. While I assume exogenous transmission of innate ability across generations in this study, endogenizing human capital investments from parents to children may further enhance children's wealth, potentially leading to greater wealth dispersion in the future. Investigating these indirect links offers a promising direction for future research.

References

- Attanasio, O. P., Banks, J., Meghir, C., and Weber, G. (1999). Humps and bumps in lifetime consumption. *Journal of Business & Economic Statistics*, 17(1):22–35.
- Bach, L., Calvet, L. E., and Sodini, P. (2020). Rich pickings? risk, return, and skill in household wealth. *American Economic Review*, 110(9):2703–47.
- Bell, F. C. and Miller, M. L. (2005). *Life tables for the United States social security area, 1900-2100.* Social Security Administration, Office of the Chief Actuary.
- Benabou, R. (2002). Tax and education policy in a heterogeneous-agent economy: What levels of redistribution maximize growth and efficiency? *Econometrica*, 70(2):481–517.
- Benhabib, J., Bisin, A., and Luo, M. (2019). Wealth distribution and social mobility in the us: A quantitative approach. *American Economic Review*, 109(5):1623–47.
- Bhandari, A. and McGrattan, E. R. (2021). Sweat equity in us private business. *The Quarterly Journal of Economics*, 136(2):727–781.
- Brown, J. and Weisbenner, S. (2004). *Intergenerational Transfers and Savings Behavior*, pages 181–204. University of Chicago Press.
- Brüggemann, B. (2021). Higher taxes at the top: The role of entrepreneurs. *American Economic Journal: Macroeconomics*, 13(3):1–36.
- Buera, F. J., Kaboski, J. P., and Shin, Y. (2011). Finance and development: A tale of two sectors. *American economic review*, 101(5):1964–2002.
- Cagetti, M. and De Nardi, M. (2008). Wealth inequality: Data and models. *Macroeconomic Dynamics*, 12(S2):285–313.
- Cagetti, M. and De Nardi, M. (2009). Estate taxation, entrepreneurship, and wealth. *American Economic Review*, 99(1):85–111.
- Cagetti, M. and Nardi, M. D. (2006). Entrepreneurship, Frictions, and Wealth. *Journal of Political Economy*, 114(5):835–870.
- Cao, D. and Luo, W. (2017). Persistent heterogeneous returns and top end wealth inequality. *Review of Economic Dynamics*, 26:301–326.
- Carroll, D. R. and Hoffman, N. (2017). New data on wealth mobility and their impact on models of inequality. *Economic Commentary*.
- Castaneda, A., Diaz-Gimenez, J., and Rios-Rull, J.-V. (2003). Accounting for the us earnings and wealth inequality. *Journal of political economy*, 111(4):818–857.
- Castañeda, A., Díaz-Giménez, J., and Ríos-Rull, J. (2003). Accounting for the u.s. earnings and wealth inequality. *Journal of Political Economy*, 111(4):818–857.
- Cooley, T. F. and Prescott, E. C. (1995). *Economic Growth and Business Cycles*, pages 1–38. Princeton University Press, Princeton.
- Davies, J. and Shorrocks, A. F. (2000). The distribution of wealth. In Atkinson, A. and Bourguignon, F., editors, *Handbook of Income Distribution*, volume 1, chapter 11, pages 605–675. Elsevier, 1 edition.
- De Nardi, M. (2004). Wealth Inequality and Intergenerational Links. *The Review of Economic Studies*, 71(3):743–768.
- De Nardi, M. and Yang, F. (2016). Wealth inequality, family background, and estate taxation. *Journal of Monetary Economics*, 77:130–145.
- de Nicola, F. and Giné, X. (2014). How accurate are recall data? evidence from coastal india. *Journal of Development Economics*, 106:52–65.

- Elinder, M., Erixson, O., and Waldenström, D. (2018). Inheritance and wealth inequality: Evidence from population registers. *Journal of Public Economics*, 165:17–30.
- Fagereng, A., Guiso, L., Malacrino, D., and Pistaferri, L. (2020). Heterogeneity and persistence in returns to wealth. *Econometrica*, 88(1):115–170.
- Feiveson, L. and Sabelhaus, J. (2018). How does intergenerational wealth transmission affect wealth concentration? Feds notes, Washington: Board of Governors of the Federal Reserve System.
- Gale, W. G. and Scholz, J. K. (1994). Intergenerational transfers and the accumulation of wealth. *Journal of Economic Perspectives*, 8(4):145–160.
- Gale, W. G. and Slemrod, J. B. (2001). Rethinking the estate and gift tax: Overview. Working Paper 8205, National Bureau of Economic Research.
- Guvenen, F., Kambourov, G., Kuruscu, B., Ocampo, S., and Chen, D. (2023). Use it or lose it: Efficiency and redistributional effects of wealth taxation. *The Quarterly Journal of Economics*, 138(2):835–894.
- Guvenen, F., Kaplan, G., Song, J., and Weidner, J. (2022). Lifetime earnings in the united states over six decades. *American Economic Journal: Applied Economics*, 14(4):446–79.
- Heathcote, J., Storesletten, K., and Violante, G. L. (2017). Optimal tax progressivity: An analytical framework*. *The Quarterly Journal of Economics*, 132(4):1693–1754.
- Heer, B. and Trede, M. (2003). Efficiency and distribution effects of a revenue-neutral income tax reform. *Journal of Macroeconomics*, 25(1):87–107.
- Hincapié, A. (2020). Entrepreneurship over the life cycle: Where are the young entrepreneurs? *International Economic Review*, 61(2):617–681.
- Hubmer, J., Krusell, P., and Jr., A. A. S. (2020). *Sources of US Wealth Inequality: Past, Present, and Future*, pages 391–455. University of Chicago Press.
- Hurd, M. D. and Mundaca, B. G. (1989). *The Importance of Gifts and Inheritances Among the Affluent*, pages 737–764. University of Chicago Press, 1989.
- Kindermann, F. and Krueger, D. (2022). High marginal tax rates on the top 1 percent? lessons from a life-cycle model with idiosyncratic income risk. *American Economic Journal: Macroeconomics*, 14(2):319–66.
- Kitao, S. (2008). Entrepreneurship, taxation and capital investment. *Review of Economic Dynamics*, 11(1):44–69.
- Korom, P., Lutter, M., and Beckert, J. (2017). The enduring importance of family wealth: Evidence from the forbes 400, 1982 to 2013. *Social Science Research*, 65:75–95.
- Kotlikoff, L. J., Smetters, K., and Walliser, J. (1999). Privatizing social security in the united states—comparing the options. *Review of Economic Dynamics*, 2(3):532–574.
- Kotlikoff, L. J. and Summers, L. H. (1981). The role of intergenerational transfers in aggregate capital accumulation. *Journal of Political Economy*, 89(4):706–732.
- Kuhn, M. and Rios-Rull, J.-V. (2020). 2019 update on the u.s. earnings, income, and wealth distributional facts: A view from macroeconomics. Report, University of Mannheim.
- McGrattan, E. R. (1994). The macroeconomic effects of distortionary taxation. *Journal of Monetary Economics*, 33(3):573–601.
- Modigliani, F. (1988). The role of intergenerational transfers and life cycle saving in the accumulation of wealth. *Journal of Economic Perspectives*, 2(2):15–40.
- Nishiyama, S. (2002). Bequests, inter vivos transfers, and wealth distribution. *Review of Economic Dynamics*, 5(4):892–931.

- Peterman, W. B. and Sommer, K. (2019). How well did social security mitigate the effects of the great recession? *International Economic Review*, 60(3):1433–1466.
- Pfeffer, F. T. and Killewald, A. (2018). Generations of advantage. multigenerational correlations in family wealth. *Social Forces*, 96(4):1411–1442.
- Quadrini, V. (2000). Entrepreneurship, saving, and social mobility. *Review of economic dynamics*, 3(1):1–40.
- Tauchen, G. (1986). Finite state markov-chain approximations to univariate and vector autoregressions. *Economics letters*, 20(2):177–181.
- Wolff, E. and Gittleman, M. (2014). Inheritances and the distribution of wealth or whatever happened to the great inheritance boom? *The Journal of Economic Inequality*, 12(4):439–468.

Appendices

A. SCF Data

I obtained data on income, wealth distributions, and intergenerational wealth transmission statistics from the Survey of Consumer Finances (SCF). The SCF conducts regular cross-sectional surveys every three years to provide comprehensive information on the finances of U.S. families. Each survey year includes a core representative sample. Due to variations in the interviewee group each survey year, I computed statistics on an annual basis and then averaged them across years to derive the statistics presented in the Appendix.

Household wealth is defined as the net worth of a household, calculated by deducting the current value of all debts from the current value of all marketable assets. Assets encompass both financial and nonfinancial types. Financial assets include liquid assets, certificates of deposit, directly held pooled investment funds, bonds, stocks, quasi-liquid retirement assets, whole life insurance, other managed assets, and various financial instruments. Nonfinancial assets consist of vehicles, houses, businesses, and other tangible goods. Total liabilities comprise the sum of mortgage debt, consumer debt, and any other outstanding debts.

The SCF also provides information on bequests and gifts received by individual households, with data collected retrospectively. Households are asked to report the amount of the transfer they received, the year it was received, and the type of the transfer (bequest or inter vivos). The survey additionally queries participants about their expectations regarding substantial future transfers. To analyze the cumulative inheritance a household might receive over its lifetime, I focus on households that are at least 60 years old and indicate that they do not expect to receive substantial wealth transfers in the future.

In the main text, I argue that a significant portion of the wealthy received relatively small inheritances. To define what constitutes "small," I computed additional statistics presented in Table 7. Using the 2019 SCF, Kuhn and Rios-Rull (2020) report that the average earnings for the entire economy amount to \$77,800. Using this figure as a benchmark, I find that only 44% of the top one percent by wealth received transfers exceeding this amount. This suggests that more than half of the top one percent either inherited nothing or received inheritances smaller than the average earnings of the overall economy.

Guvenen et al. (2022) estimate the threshold value for the 99th percentile of the lifetime earnings distribution to be \$9,335,650. Treating the lifetime earnings of the top one percent earners as a proxy for those at the top of the wealth distribution, I find that less than 25% of the superrich inherited more than 10% of the lifetime earnings of a typical top one percent by lifetime earnings. This indicates that a considerable portion of the top one percent by wealth inherited only a relatively small fraction of their lifetime resources. Moreover, using the cutoff value for the top one percentile of the wealth distribution as a criterion for what is considered "small," only 27% of the top one percent by wealth received wealth transfers greater than one-tenth of the cutoff value for the 99th percentile of the wealth distribution.

Inheritance > average earnings of the whole economy	44%
Inheritance $> 0.1 \times \text{cutoff}$ for the 99^{th} percentile of lifetime earnings distribution	24%
Inheritance $> 0.1 \times$ wealth top percentile cutoff value	27%

Table 7. Fraction of the Richest One Percent

Notes: 1989 - 2019 SCF data. This table shows the percentage share of households in the top one percent of wealth distribution who are at least 60 years old and do not expect to receive a substantial inheritance or transfer of assets in the future and with wealth transfers that satisfy the requirement.

B. PSID Data as a Robustness Check

In this section, I utilize an alternative data source, the Panel Survey of Income Dynamics (PSID), to examine inheritance patterns among the very wealthy. This serves as a robustness check to cross-validate the results obtained using SCF data in the main text. As will be demonstrated, the findings from the PSID are remarkably consistent with the SCF results reported in Section 3.

The PSID is a longitudinal survey of a representative sample of U.S. individuals and the families they reside in. Data were collected annually until 1997 and have been collected biennially since then. Data prior to 1984 do not include information on wealth. Importantly, starting in 1984, questions about inheritances were also introduced to help understand the origins of family assets. Specifically, in 1984, respondents were asked if they had *ever* received an inheritance, the year it was received, and its value at that time. Although questions about inheritance continued in later years, they were revised to inquire only about inheritances worth \$10,000 or more, resulting in less comprehensive information than in 1984. Therefore, the following analysis utilizes only the 1984 PSID data, where a complete history of inheritances is available. Note that in the PSID, questions are asked only about inheritances, not on *inter-vivo* transfers, so the results presented are exclusively for *inheritance*.

Following the same approach as outlined in Section 3, I apply a 3% real interest rate to calculate the present value of each inheritance based on the reported inheritance values and the year of receipt. I then sum all inheritances received by each household and compute the ratio of inheritance to wealth for each household.

Approximately 19% (21% in the SCF) of households in the U.S. have received an inheritance at some point in the past, contributing to roughly 44% (43% in the SCF) of their total wealth. To investigate inheritance received over a lifetime, I focus exclusively on households that are at least 60 years old and do not expect to receive any future inheritances. Over the lifetimes, 30% (30% in the SCF) of the U.S. households may receive an inheritance, which contributes to 42% (49% in the SCF) of their wealth.

Fact 1. The distribution of inheritances received over a lifetime is highly skewed.

Table 8 presents the size distribution of inheritances received over a lifetime. Consistent with findings from the SCF, the PSID data shows that 70% of households do not receive any inheritance during their lifetime. Conversely, the top 10% of households receive substantial inheritances that account for nearly 90% of the total dollars inherited.

	Decile						
	1-7	8	9	10			
SCF	0	1.5	7.9	90.6			
PSID	0	1.9	8.5	89.6			

Table 8. Inheritance Size Distribution

Fact 2. The majority of inheritances predominantly flow to rich households.

Figure 9 shows the share of total dollars inherited by households across different wealth percentile groups. Consistent with the findings from the SCF, the PSID data exhibits a similar pattern, revealing that a significant portion of inheritances is concentrated among rich households. Specifically, 54.9% (61% in the SCF) of the total inherited dollars are held by households in the top decile of the wealth distribution, whereas the inheritances received by households in the bottom 50% account for only 8.6% (5% in the SCF) of the total inherited dollars.

Figure 9. PSID: Concentration of Inheritances Received by Wealth

Notes: This figure shows the percentage of aggregate inheritances received by different household groups, categorized according to percentiles of the wealth distribution.

Fact 3. Inheritances received by rich households account for a small fraction of their wealth holding.

As in the main text, I calculate the ratio of the present value of inheritance to current wealth. For all households, this ratio is nearly 50%, indicating that almost half of household wealth can be directly attributed to inheritance. I then compute this ratio specifically for households in the top wealth group. Table 9 presents these results, computed using both SCF and PSID data. Consistent with the SCF findings, the PSID data indicates that the inheritance-to-wealth ratio is relatively low

for affluent households. For households in the top decile of the wealth distribution, the present value of the inheritance-to-wealth ratio is approximately 0.2. For the wealthiest 1% of households, this ratio is even lower, at 0.08.

	Wealth top decile	Sub-groups in top decile				
		90 - 95	95 - 99	Top 1%		
SCF	0.18	0.24	0.22	0.13		
PSID	0.20	0.37	0.19	0.08		

Table 9. Ratio of Inheritances to Current Net Worth

Notes: This table presents the ratio of inheritance to the current net worth for households in each top wealth group. Inheritances are calculated as their present value, applying a 3% real interest rate, and based on both the reported value and the date of receipt.

Fact 4. Half of the rich households do not receive any inheritances over their lifetime.

Figure 10 presents the number of households within each inheritance-to-wealth ratio bin, reported as a fraction of the total number of households in each wealth group, based on the PSID data. The findings are similar to the results from the SCF data. However, in the PSID data, all households in the wealthiest 1% have an inheritance-to-wealth ratio of less than or equal to 0.2, with 63% of them reporting a ratio of zero. In contrast, the SCF data indicates that 52% of the wealthiest 1% have zero inheritances, with an additional 7% receiving large inheritances that result in an inheritance-to-wealth ratio above 0.5. This divergence between the PSID and SCF results may stem from the fact that the PSID does not oversample the very wealthy and focuses exclusively on inheritances, excluding inter vivos transfers.

Figure 10. PSID: Share of Households in Each Inheritance-to-Wealth Ratio Category

Notes: This figure shows the number of households within each inheritance-to-wealth ratio bin, reported as a fraction of the total number of households in different wealth groups.

C. Welfare

C.1. Consumption Equivalent Variation (CEV)

Following Heer and Trede (2003), aggregate welfare W is defined as the aggregate lifetime utility:

$$W = \int V(x)d\Lambda^*(x)$$

$$= \int \mathbb{E}_0 \Big[\sum_{t=0}^{\infty} \beta_i^t u(c_t) \Big] d\Lambda^*(x)$$

$$= \int \mathbb{E}_0 \Big[\sum_{t=0}^{\infty} \beta_i^t \frac{(c_t^*)^{1-\sigma_1}}{1-\sigma_1} \Big] d\Lambda^*(x)$$
(16)

Policy functions in steady state of the benchmark economy are marked with an asterisk. x is the state vector for a newborn household. Λ^* is the stationary distribution over newborn household types in the benchmark economy.

Welfare in the new steady state is denoted by \tilde{W} . The CEV is defined as the percentage (Δ^{CEV}) by which benchmark consumption c^* has to be increased to make a newborn household indifferent between the two steady states. Therefore,

$$\tilde{W} = W(\Delta^{CEV})$$

$$= \int \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta_i^t \frac{((1 + \Delta^{CEV})c_t^*)^{1-\sigma_1}}{1 - \sigma_1} \right] d\Lambda^*(x)$$
(17)

The expression for the CEV can be obtained by rearranging the equation above.

$$\Delta^{CEV} = \left[\frac{\tilde{W} - W}{\int \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta_t^t \frac{(c_t^*)^{1-\sigma_1}}{1-\sigma_1} \right] d\Lambda^*(x)} + 1 \right]^{\frac{1}{1-\sigma_1}} - 1$$
 (18)