Задача 5

1	знак	порядок	знак	мантисса	Умножить (со сдвигом промеж. рез-та) два наибольших
Α	1	1001	1	110111	числа и поделить большее на меньшее (с
В	1	1011	0	111001	восстановлением остатка) . Представить конечный
					результат в стандарте IEEE 754.

или

1	знак	порядок	знак	мантисса
Α	1	1001	1	110111
		Ап		A_{M}
В	1	1011	0	111001
		Вп		B _M

Теория

Умножение чисел в формате с плавающей точкой происходит по следующему алгоритму: сложение порядков, умножение мантисс, нормализация результата.

Если есть два числа $A = A_M 2^{An}$; $B = B_M 2^{Bn}$, то результат их умножения можно получить как $A > B = A_M = A_$

Для соблюдения длины хранения результата после каждого суммирования происходит сдвиг. Сдвигают или промежуточный результат или исходное число. Начинать можно как со старшего бита, так и с младшего. Эта вариация и приводит к четырем басовым методикам перемножения

Умножение будем производить без учета знака. Знак можно сразу получить путем применения операции XOR к битам знака. Но есть варианты умножения и отрицательных чисел.

В нашем примере мантиссы имеют разные знаки, поэтому результат перемножения отрицательный.

Будем сдвигать промежуточный результат и начинать с последнего бита.

В некоторых системах при сдвиге могут хранить бит, который отбрасывается при сдвиге чтобы по окончанию процесса перемножения произвести правильно округление.

	00 . 110111		$\frac{1}{2}A_{\text{M}}$
	00 . 111001		1∕B _M 1⁄2
	00 . 000000	<u></u>	Первичное заполнение регистра хранения промежуточного
+			результата нулями
	00 . 110111		Результат умножения последнего бита B_M на мантиссу A_M
	00 . 110111		Результат сложения
	00 . 011011	1	Результат сдвига
+	00 . 000000		Результат умножения 2 с конца бита B _M на мантиссу A _M
	00 . 011011		Результат сложения
	00 . 001101	1	Результат сдвига
+	00 . 000000		Результат умножения 3 с конца бита B_M на мантиссу A_M
	00 . 001101		Результат сложения
	00 . 000110	1	Результат сдвига
+	00 . 110111		Результат умножения 4 с конца бита B_M на мантиссу A_M
	00 . 111101		Результат сложения
	00 . 011110	1	Результат сдвига
+	00 . 110111		Результат умножения 5 с конца бита B _M на мантиссу A _M
	01 . 010101		Результат сложения
	00 . 101010	1	Результат сдвига
+	00 . 110111		Результат умножения 6 с конца бита В _м на мантиссу А _м
	01 . 100001		Результат сложения
	00 . 110000	1	Результат нормализации путем сдвига
	00 . 110001	-	Результат округления
	33		• • • • • • • • • • • • • • • • • • • •

Получен результат с переполнение. Его следует нормализовать путем сдвига. Это повлечет увеличение порядка на 1. В буфере на последнем этапе имеется единица, поэтому округляем путем прибавления к младшему биту.

Сложим порядки. Порядки отрицательные, поэтому переведем в дополнительный код. Поскольку дальше, для перевода в IEEE 754 потребуется прибавить 127. для весовых коэффициентов использует 9 бит, и еще два бита для знака.

```
A\Pi = 11.00001001\Pi K = 11.111101100K = 11.111101111 JK
 B\Pi = 11.00001011\Pi K = 11.111101000K = 11.11110101ДK.
 11 . 11110111 Ап
 11 . 11110101
                Вп
411 . 11101100 Результат сложения
 00 . 01111111
                127
400 . 01101011 Результат добавления 127
      00000001 Прибавления 1 вследствие нормализации мантиссы
 00 . 01101100 Окончательный результат
 Тогда в стандарте окончательно результат получим
                1.01101100.1000100000.....
                             23 бита мантиссы без первой 1
 Бит знака
              8 бит порядка
```

Базовых алгоритмов деления два. Один с восстановлением остатка другой без. При делении чисел с плавающей точкой, алгоритм в целом похож на процесс умножения: Вычитание порядков, деление мантисс, нормализация результата.

Если есть два числа $A = A_M 2^{An}$; $B = B_M 2^{Bn}$, то результат их деления можно получить как $A/B = A_M / B_M 2^{An-Bn}$.

Для процесса необходимо получить отрицательное значение модуля делителя. Затем провести сложение (фактически вычитание). Если в результате получается отрицательное число, то в данном разряде результата деления пишем ноль, если положительное, то 1. Различие алгоритмов, которые указаны выше только в том, что в первом случае мы прибавляем модуль делителя (восстанавливаем остаток), а потом делаем сдвиг, то во втором случае, сразу делаем сдвиг. При получении положительного результат, операции одинаковые

Используем те же два числа, что и для умножения. И опять будем делить модули мантисс. Знак результата получим также, как и для умножения. И данном

примере он также будет отрицательным

1	знак	порядок	знак	мантисса	Умножить (со сдвигом промеж. рез-та) два
Α	1	1001	_		наибольших числа и поделить большее на меньшее
В	1	1011	0	111001	(с восстановлением остатка) . Представить
					конечный результат в стандарте IEEE 754.

 ${}^{1}\!\!/\!\!B_{M}{}^{1}\!\!/\!\!2=00.111001;$ $-{}^{1}\!\!/\!\!B_{M}{}^{1}\!\!/\!\!2=11.111001$ пк = 11.000110ок = 11.000111дк Деление с восстановлением остатка

Результат деления в ПК и комментарий

			1 coysistat desictions structure manufacture print
	00 . 110111	$\frac{1}{2}A_{M}\frac{1}{2}$	
+	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	11 . 111110	-	11.0 Результат отрицательный, поэтому записали 0
+	00 . 111001	${}^{1}\!\!\!/\!\!\!/ B_{M} {}^{1}\!\!\!/_{2}$	
	1 00 . 110111	_	Восстановленный остаток
	01 . 101110		Результат сдвига
+	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 110101	_	11.01 Результат положительный, поэтому записали 1
	01 . 101010	_	Результат сдвига
+	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 110001	_	11.011 Результат положительный, поэтому записали 1
	01 . 100010		Результат сдвига
+	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 101001	_	11.0111 Результат положительный, поэтому записали 1
	01 010010		Результат сдвига
+	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 011001	_	11.01111 Результат положительный, записали 1
	00 . 110010		Результат сдвига
+	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
+	11 . 111001		11.011110 Результат отрицательный, записали 0
т	00 . 111001	$^{1/2}B_{M}^{1/2}$	
	1 00 . 110010	_	Восстановленный остаток
+	01 . 100100		Результат сдвига
т	11 . 000111	$-1/B_{M}1/2$	
	1 00 . 101101		11.0111101 Результат положительный, записали 1
+	01 011010		Результат сдвига
т	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 100001		11.01111011 Результат положительный, записали 1

Полученных бит достаточно для формирования результата с учетом разрядной сетки и округления.

Итоговая мантисса после сдвига 11.1111011пк, после округления 11.11110пк. Вследствие нормализации необходимо будет понизить порядок на единицу.

Вычитание порядков

 $A\Pi = 11.\ 00001001$ $\Pi K = 11.11110110$ 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001 00001001

 $-B\pi = 00.00001011\pi \kappa$.

+ 11 . 11110111 Ап 00 . 00001011 Вп + 100 . 00000010 Результат сложения 00 . 01111111 127 00 . 10000001 Результат добавления 127

11 . 11111111 Прибавления (–1) вследствие нормализации мантиссы 100 . 10000000 Окончательный результат

Тогда в стандарте окончательно результат получим

Бит знака 8 бит порядка 23 бита мантиссы без первой 1

Деление без восстановления остатка.

Отличие от предыдущего алгоритма, что при получение отрицательного результата осуществляется сразу сдвиг, но к отрицательному остатку уже прибавляется ${}^{1}\!\!/\!\!\!/ B_{M}$ Формирование результата идентично.

 ${}^{1}\!\!/\!\!B_{\text{M}}\!\!/\!\!\!\!/=00.111001;}$ – ${}^{1}\!\!/\!\!\!\!/\!\!\!/B_{\text{M}}\!\!/\!\!\!\!/=11.111001пк}=11.000110ок=11.000111дк$ Результат деления в ПК и комментарий

+	00 . 110111	$\frac{1}{2}A_{M}\frac{1}{2}$	
•	11 . 000111	$-1/2B_{M}1/2$	
	11 . 111110		11.0 Результат отрицательный, поэтому записали 0
+	11 . 111100		Результат сдвига
т.	00 . 111001	$\frac{1}{2}B_{M}\frac{1}{2}$	
+	1 00 . 110101		
т.	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 110100		11.01 Результат положительный, поэтому записали 1
+	01 . 101000		Результат сдвига
	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 101111		11.011 Результат положительный, поэтому записали 1
+	01 . 011110		Результат сдвига
	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 100101		11.0111 Результат положительный, поэтому записали 1
+	01 001010		Результат сдвига
т.	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 010001		11.01111 Результат положительный, записали 1
+	00 . 100010		
•	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	11 . 101001		11.011110 Результат отрицательный, записали 0
+	11 010010		Результат сдвига
•	00 . 111001	$\frac{1}{2}B_{M}\frac{1}{2}$	
	1 00 . 001011		11.0111101 Результат положительный, записали 1
+	00 . 010110		Результат сдвига
Τ.	11 . 000111	$-\frac{1}{2}B_{M}\frac{1}{2}$	
	11 . 010101		11.01111010 Результат отрицательный, записали 0

Результат отличается в последних битах, что является особенностями и неэквивалентности операций сдвига отрицательных чисел в дополнительном коде и положительных чисел.

Α	1	1001	1	110111
В	1	1011	0	111001

Число $A = -1 (1 + 0.5 + 0.125 + 0.0625 + 0.03125) 2^{-9}$

Число B = +1 (1 + 0,5 + 0,25 + 0,03125) 2^{-11}

Деление чисел в калькуляторе -3,859649122807018

Преобразование результата деления методом с восстановлением остатка – 3,8125

Преобразование результата деления методом без восстановления остатка – 3,875.

Первый метод результат деления смещает в сторону 0, второй в сторону плюс бесконечности. Если производить вычисления для последнего метода в обратном коде, то будет результат аналогичный методу с восстановлением остатка.