

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Домашнее задание №3 по дисциплине «Архитектура АСОИУ» на тему: «Методы решения многокритериальных задач принятия решений»

Выполнил: студент группы ИУ5-21Б М.С. Торжков

Проверил: к.т.н., доц., Г.И. Афанасьев

Замечание: в данном образце возможны ошибки и опечатки

Постановка задачи:

Пусть известны три различных модели телевизоров. Каждая модель из этих телевизоров характеризуется следующими локальными критериями:

- Размер диагонали f_I (дюймы);
- Частота смены кадров f_2 (Γ ц);
- Мощность звука f_3 (Вт);

Конкретные значения указанных локальных критериев (Таблице №1):

Таблица №1

№/вар	f_{I}	f_2	f_3
1	55	50	20
2	40	60	40
3	50	120	30

Проверяем, находятся ли эти значения локальных критериев в области компромиссов согласно правилу: При переходе от одного варианта к другому улучшение решения по одному или нескольким локальным критериям должно обязательно приводит к снижению значений одного или нескольких оставшихся локальных критериев.

Если указанное правило не соблюдается, исходные данные надо переопределить, так как в этом случае тогда эти исходные данные лежат в области согласия.

При этом по одному любому критерию должен быть лучше 1 вариант, по следующему любому из оставшихся критериев должен быть лучше 2 вариант, и по оставшемуся в остатке критерию – 3 вариант

Указанные данные в таблице 1 лежат в области компромиссов, так как при переходе от варианта 1 к варианту 2 решение по критериям $\langle f_2 \rangle$,

 $\langle f_3 \rangle$ улучшается, а по критерию $\langle f_1 \rangle$ ухудшается. При переходе от варианта 2 к варианту 3 решение по критериям $\langle f_1 \rangle$, $\langle f_2 \rangle$ улучшается, а по критерию $\langle f_3 \rangle$ ухудшается. И наконец при переходе от варианта 1 к варианту 3 решение по критериям $\langle f_2 \rangle$, $\langle f_3 \rangle$ улучшается, а по $\langle f_1 \rangle$ ухудшается.

Проверяем нет ли среди значений локальных критериев такого локального критерия, значения которого >> (много больше) чем значения остальных критериев. Если есть, то это недопустимо, и значения в таблице 1 надо переопределить. В исходных данных такого локального критерия нет.

Проверяем, что все критерии должны находиться в одной понятийной области - то есть, чем больше значение критерия, тем лучше значение критерия. Иначе, если часть критериев соответствует выше указанному правилу, а другая нет (чем больше значение критерия, тем хуже значение критерия), то необходимо критерии переопределить.

В исходных данных все критерии находятся в одной понятийной области - то есть, чем больше значение критерия, тем лучше значение критерия.

Требуется выбрать наилучший вариант:

- а) без учета приоритета локальных критериев;
- б) с учетом приоритета локальных критериев;

Решение:

Нормализация исходных данных

Поскольку локальные критерии имеют различную размерность, прежде всего необходимо нормализовать данные Таблицы №1. Для этого используется следующие соотношение:

f(нормализованный) = f(исходный) / f(ид.)

Для того, чтобы значения нормированных локальных критериев лежали в диапазоне от 0 до 1, примем f(ug.) = f(max) и совершим переход к таблице N2, где вместо действительных значений локальных критериев представлены их нормализованные значения.

Таблица №2

№/вар	f_{I}	f_2	f_3
1	1	0,4	0,5
2	0,7	0,5	1
3	0,9	1	0,7

Выбор лучшего варианта без учета приоритета критериев

Принцип равенства

$$\bar{\mathbf{F}} = \mathbf{opt} \; \mathbf{F} = \{f_1 = f_2 = f_3\}$$

Из таблицы №2 видно, что критерии не равны ни в одном из возможных вариантов и, в связи с тем, что по определению принципа равенства оптимальный вариант имеет критерии равные между собой, принцип равенства применить к этой задаче нельзя.

Принцип квазиравенства

Принцип квазиравентсва, используется, когда нет возможности использовать принцип равенства. Тогда лучшим будет являться вариант, в котором локальные критерии наиболее близки к этому равенству, т.е. вариант, у которого локальные критерии примерно равны между собой при определенном допуске.

$$\bar{\mathbf{F}} = \mathbf{opt} \; \mathbf{F} = \{f_1 \approx f_2 \approx f_3\}$$

Пусть допуск $\Delta = 0.3$ (выбирается произвольно) , и построим таблицу разностей между значениями локальных критериев.

Таблица №3

№/вар	$ f_1 - f_2 $	$ f_2 - f_3 $	$ f_3 - f_1 $
1	$0,6 > \Delta$	$0,1 < \Delta$	$0,5 > \Delta$
2	$0,2 < \Delta$	$0.5 > \Delta$	$0,3=\Delta$
3	0,1 < Δ	$0,3=\Delta$	$0,2 < \Delta$

Из полученных данных следует, что по принципу квазиравенства оптимальным вариантом является **Вариант 3**, т.к. именно в этом варианте достигается приближенное равенство $f_1 \approx f_2 \approx f_3$ с допуском Δ , так как совместно выполняются все 3 условия

$$|f_1 - f_2| = < \Delta \& |f_2 - f_3| = < \Delta \& |f_3 - f_1| = < \Delta$$

Принцип максимина

Принцип максимина заключается в том, что для каждого варианта выбирается минимальное значение локального критерия, и окончательный выбор останавливается на варианте, для которого минимальное значение локального критерия является максимальным по отношению к оставшимся минимальным значениям остальных локальных критериев.

$$\bar{\mathbf{F}} = \mathbf{opt} \; \mathbf{F} = \mathbf{max} \; \mathbf{min} f_{q,l}$$

где q - номер варианта,

і-номер локального критерия

Таблица №4

№/вар	max min
1	0,4
2	0,5
3	0,7

В таблице 4 представлены наименьшие значения локальных критериев по каждому варианту и из них необходимо выбрать наибольшее значение.

Согласно принципу максимина следует, что предпочтение следует отдать **Варианту №3**.

Принцип абсолютной уступки

Здесь необходимо добавить расчет методом учета мажорируемых и минарируемых факторов!

$$\mathbf{F} = \mathbf{opt} \; \mathbf{F} = \sum f_{q,i} \rightarrow \mathbf{max},$$

где q - номер варианта,

і-номер локального критерия

Согласно принципу абсолютной уступки оптимальным вариантом считается вариант с максимальной суммой всех локальных критериев в абсолютных значениях.

Таблица №5

№/вар	Σ
1	125
2	140
3	200

Согласно принципу абсолютной уступки следует, что предпочтение следует отдать **Варианту №3**.

Принцип относительной уступки

Здесь необходимо добавить расчет методом учета мажорируемых и минарируемых факторов!

$$\bar{\mathbf{F}} = \mathbf{opt} \; \mathbf{F} = \prod \mathbf{f}_{q,i} \rightarrow \mathbf{max},$$

где q - номер варианта,

і-номер локального критерия

Согласно принципу относительной уступки оптимальным считается тот вариант, у которого максимально произведение нормализованных критериев.

Таблица №6

№увар	П
1	0,2
2	0,35
3	0,63

Согласно принципу относительной уступки следует, что предпочтение следует отдать **Варианту №3**.

Здесь необходимо добавить расчет методом последовательной уступки!

Выбор лучшего варианта с учетом приоритета критериев

Пусть задан следующий вектор приоритета: $\lambda = (2, 4, 5)$

Перейдем от этого вектора к весовому вектору *а*, используя следующую формулу

$$a_i = \left(\prod_{i=k}^n \lambda i\right) / \left(\sum_{k=1}^n \prod_{i=k}^n \lambda i\right)$$

$$A = \lambda_1 * \lambda_2 * \lambda_3 + \lambda_2 * \lambda_3 + \lambda_3 = 40 + 20 + 5 = 65;$$

$$a_1 = (\lambda_1 * \lambda_2 * \lambda_3) / A = 0,6$$

$$a_2 = (\lambda_2 * \lambda_3) / A = 0,3$$

$$a_3 = \lambda_3 / A = 0,1$$

Итак, весовой вектор:

$$\overline{a} = (0.6; 0.3; 0.1)$$

и новые значения локальных критериев с учетом приоритетов f будут рассчитаны по следующей формуле

$$f^*_i = a_i * f_i,$$

вместо исходного множества локальных критериев будет использоваться следующее множество локальных критериев

$$\{a_1f_1, a_2f_2, a_3f_3,.., a_nf_n\}$$

Преобразованные значения из таблица 1 будут представлены в таблице 7, преобразованные значения из таблицы 2 будут представлены в Таблице 8

Таблица №7

№/вар	f_{I}	f_2	f_3
1	33	15	2
2	24	18	4
3	30	36	3

Таблица №8

№/вар	f_1	f_2	f_3
1	0,6	0,12	0,05
2	0,42	0,15	0,1
3	0,54	0,3	0,07

Принцип равенства

F=opt **F** =
$$\{f_1 = f_2 = f_3\}$$

Из Таблицы №8 видно, что критерии не равны ни в одном из возможных вариантов и, в связи с тем, что по определению принципа

равенства оптимальный вариант имеет критерии равные между собой, принцип равенства применить к этой задаче нельзя.

Принцип квазиравенства.

$$\mathbf{F} = \mathbf{opt} \; \mathbf{F} = \{f_1 \approx f_2 \approx f_3\}$$

Возьмем уступку $\Delta = 0.35$ (выбирается произвольно) и определим абсолютные разности между локальными критериями, которые представленные в таблице 9

Таблица №9

№/вар	f1 - f2	f2 - f3	f3 - f1
1	$0,48 > \Delta$	$0.07 < \Delta$	$0,55 > \Delta$
2	$0,27 < \Delta$	$0.05 < \Delta$	$0,32 < \Delta$
3	$0,24 < \Delta$	$0,23 < \Delta$	$0,47 > \Delta$

Из полученных данных следует, что по принципу квазиравенства оптимальным вариантом является **Вариант** №2, т.к. именно в этом варианте достигается приближенное равенство $f1 \approx f2 \approx f3$ с учетом Δ .

Принцип максимина

$$\mathbf{F} = \mathbf{opt} \; \mathbf{F} = \mathbf{max} \; \mathbf{min} \, f_{q,i}$$

где q - номер варианта,

і-номер локального критерия

Таблица №10

№/вар	max min
1	0,05
2	0,1
3	0,07

В таблице 9 представлены наименьше значения локальных критерии и из них необходимо выбрать наибольшее значение.

Согласно принципу максимина следует, что предпочтение следует отдать **Варианту №2**.

Принцип абсолютной уступки

Здесь необходимо добавить расчет методом учета мажорируемых и минарируемых факторов!

$$\mathbf{F} = \mathbf{opt} \; \mathbf{F} = \sum f_{q,i} \rightarrow \mathbf{max},$$

где q - номер варианта,

і-номер локального критерия

Используем таблицу 7 с абсолютными значениями локальных критериев с учетом весовых коэффициентов.

Тогда таблица для выбора наилучшего варианта будет иметь следующий вид:

Таблица №11

№/вар	Σ
1	50
2	46
3	69

Согласно принципу абсолютной уступки следует, **что** предпочтение следует отдать **Варианту №3**.

Принцип относительной уступки

Здесь необходимо добавить расчет методом учета мажорируемых и минарируемых факторов!

$$F = opt F = \prod f_{q,i} \rightarrow max$$
,

где q - номер варианта, i-номер локального критерия

Для расчета используется таблица 8 с относительными значениями локальных критериев

Таблица №12

№/вар	П
1	0.0036
2	0.0063
3	0.01134

Согласно принципу относительной уступки следует, что предпочтение следует отдать **Варианту №3**.

Здесь необходимо добавить расчет методом последовательной уступки!

Свертка критериев

Теперь представим, что вместо третьего критерия будет использоваться не мощность звука, а стоимость телевизора в тыс. руб. Тогда для выбора оптимального варианта необходимо учесть, что третий критерий должен стремился к минимуму. В соответствии с этим исходные значения выглядят таким образом:

Таблица №13

№/вар	f_{I}	f_2	f_3
1	55	50	40
2	40	60	80
3	50	120	60

Приведем к нормализованному виду значения, представленные в таблице 13

Таблица №14

№/вар	f_I	f_2	f_3
1	1	0,4	0.5
2	0,7	0,5	1
3	0,9	1	0.75

Для выбора оптимального варианта необходимо с одной стороны, максимизировать размер диагонали (a) и частоту смены кадров телевизора (f2), с другой стороны минимизировать стоимость телевизора. В таком случае необходимо использовать два принципа (принцип абсолютной уступки и принцип относительной уступки).

Принцип абсолютной уступки.

$$\bar{\mathbf{F}} = \mathbf{opt} \; \mathbf{F} = \mathbf{max} \; \{ \sum f_i - \sum f_j \}$$

где $\sum f_i$ – сумма значений локальных критериев, которые надо максимизировать

 $\sum f_j$ - сумма значений локальных критериев, которые надо минимизировать

Таблица №15

№/вар	Результат
1	65
2	20
3	110

Согласно принципу абсолютной уступки следует, что предпочтение следует отдать **Варианту №3**.

Принцип относительной уступки

Формально принцип относительной уступки записывается следующим образом:

$$\bar{\mathbf{F}} = \mathbf{opt} \; \mathbf{F} = \mathbf{max} \; \{ \prod f_i / \prod f_j \},$$

где $\prod f_i$ – произведение значений локальных критериев, которые надо максимизировать,

 $\prod f_{j}$ — произведение локальных критериев, которые надо минимизировать

Таблица №16

№/вар	Результат
1	0.8
2	0.35
3	1.2

Согласно принципу относительной уступки следует, что предпочтение следует отдать **Варианту №3**.