Write answers in spaces provided.

Partial Credit: If you show your work and briefly describe your approach, we will happily give partial credit where possible. Answers without supporting work (or that are not clear/legible) may not be given credit. We also reserve the right to take off points for overly long answers.

Pseudocode: Pseudocode can be written at the level discussed in class and does not necessarily need to conform to any particular programming language or API.

Q1-2. Search: Algorithms	/4
Q3. Search: Heuristic Function Properties	/3
Q4-7. Search: Adversarial Search	/6
Q8. Games: Alpha-Beta Pruning	/3
Q9. MDPs: Mini-Gridworld	/4
Total	/20

Name:		

1. (2 points) The following implementation of graph search may be incorrect. Circle all the problems with the code.

```
function Graph-Search(problem, fringe)
closed \leftarrow \text{an empty set},
fringe \leftarrow \text{Insert}(\text{Make-Node}(\text{Initial-State}[problem]), fringe)
loop
if fringe is empty then
return failure
end if
node \leftarrow \text{Remove-Front}(fringe)
if Goal-Test(problem, State[node]) then
return node
end if
ADD State[node] To closed
fringe \leftarrow \text{InsertAll}(\text{Expand}(node, problem), fringe)
end loop
```

- (a) Nodes may be expanded twice.
- (b) The algorithm is no longer complete.
- (c) The algorithm could return an incorrect solution.
- (d) None of the above.
- 2. (2 points) The following implementation of A* graph search may be incorrect. You may assume that the algorithm is being run with a consistent heuristic. Circle all the problems with the code.

```
function A^*-Search(problem, fringe)
   closed \leftarrow an empty set
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop
      if fringe is empty then
          return failure
      end if
      node \leftarrow \text{Remove-Front}(fringe)
      if STATE[node] is not in closed then
          ADD STATE[node] TO closed
          for successor in GetSuccessors(problem, State[node]) do
              fringe \leftarrow Insert(Make-Node(successor), fringe)
              if Goal-Test(problem, successor) then
                 return successor
              end if
          end for
      end if
   end loop
end function
```

- (a) Nodes may be expanded twice.
- (b) The algorithm is no longer complete.
- (c) The algorithm does not always find the optimal solution.
- (d) None of the above.

3. For the following questions, consider the search problem shown on the left. It has only three states, and three directed edges. A is the start node and G is the goal node. To the right, four different heuristic functions are defined, numbered I through IV.

	h(A)	h(B)	h(G)
Ι	4	1	0
II	5	4	0
III	4	3	0
IV	5	2	0

(a) (2 points) Admissibility and Consistency. For each heuristic function, circle whether it is admissible and whether it is consistent with respect to the search problem given above.

	Admissible?		Consistent?	
Ι	Yes	No	Yes	No
II	Yes	No	Yes	No
III	Yes	No	Yes	No
IV	Yes	No	Yes	No

(b) (1 points) Function Domination. Recall that *domination* has a specific meaning when talking about heuristic functions.

Circle all true statements among the following.

- i. Heuristic function III dominates IV.
- ii. Heuristic function IV dominates III.
- iii. Heuristic functions III and IV have no dominance relationship.
- iv. Heuristic function I dominates IV.
- v. Heuristic function IV dominates I.
- vi. Heuristic functions I and IV have no dominance relationship.

4. (2 points) Write down pseudocode for Minimax Search. Make sure to include the base case. Hint: You can define 3 functions: MINVALUE(s), MAXVALUE(s), VALUE(s)

- 5. (2 points) Write down psuedocode for Expectimax Search. Make sure to include the base case. $\mathit{Hint: You \ can \ define \ 3 \ functions: } \ \mathsf{ExpValue}(s), \ \mathsf{MaxValue}(s), \ \mathsf{Value}(s)$ 6. (1 points) What is the O() number of states expanded by Expectimax search, assuming there are bpossible actions and the game ends after m moves (here you can assume m = number of agent moves + number of opponent moves)?
- 7. (1 points) Is exhaustive search with Expectimax feasible for Pacman? If not, how did we deal with this in Project #2?

- 8. (3 points) Assume we run $\alpha \beta$ pruning expanding successors from left to right on a game with tree as shown in Figure 1 (a). Then we have that:
 - (a) (true or false) For some choice of pay-off values, no pruning will be achieved (shown in Figure 1 (a)).
 - (b) (true or false) For some choice of pay-off values, the pruning shown in Figure 1 (b) will be achieved.
 - (c) (true or false) For some choice of pay-off values, the pruning shown in Figure 1 (c) will be achieved.
 - (d) (true or false) For some choice of pay-off values, the pruning shown in Figure 1 (d) will be achieved.
 - (e) (true or false) For some choice of pay-off values, the pruning shown in Figure 1 (e) will be achieved.
 - (f) (true or false) For some choice of pay-off values, the pruning shown in Figure 1 (f) will be achieved.

Figure 1: Game trees.

9. The following problems take place in various scenarios of the gridworld MDP. In all cases, A is the start state and double-rectangle states are exit states. From an exit state, the only action available is Exit, which results in the listed reward and ends the game (by moving into a terminal state X, not shown). From non-exit states, the agent can choose either Left or Right actions, which move the agent in the corresponding direction. There are no living rewards; the only non-zero rewards come from exiting the grid. Throughout this problem, assume that value iteration begins with initial values $V_0(s) = 0$ for all states s.

First, consider the following mini-grid. For now, the discount is $\gamma = 1$ and legal movement actions will always succeed (and so the state transition function is deterministic).

- (a) (0.5 points) What is the optimal value $V^*(A)$?
- (b) (0.5 points) When running value iteration, remember that we start with $V_0(s) = 0$ for all s. What is the first iteration k for which $V_k(A)$ will be non-zero?
- (c) (0.5 points) What will $V_k(A)$ be when it is first non-zero?
- (d) (0.5 points) After how many iterations k will we have $V_k(A) = V^*(A)$? If they will never become equal, write never.

Now the situation is as before, but the discount γ is less than 1.

- (e) (1 points) If $\gamma = 0.5$, what is the optimal value $V^*(A)$?
- (f) (1 points) For what range of values γ of the discount will it be optimal to go Right from A? Remember that $0 \le \gamma \le 1$. Write all or none if all or no legal values of γ have this property.