Übungen zur Linearen Algebra und Analytischen Geometrie Sommersemester 2025 Esentepe-Gharbi-Pompili

Blatt 1

- (1) Sie haben im letzten Semester gelernt, dass \mathbb{C} ein 2-dimensionaler Vektorraum über \mathbb{R} ist und dass $\mathcal{B} = (1, i)$ eine Basis von \mathbb{C} als Vektorraum über \mathbb{R} ist.
 - (a) Es sei $k: \mathbb{C} \to \mathbb{C}$ die komplexe Konjugation

$$k(x+yi) = x - yi.$$

Bestimmen Sie $[k]_{\mathcal{B},\mathcal{B}}$.

(b) Es sei $m_i : \mathbb{C} \to \mathbb{C}$ die Multiplikation mit i

$$m_i(z) = iz.$$

Bestimmen Sie $[m_i]_{\mathcal{B},\mathcal{B}}$.

(2) Es sei $P_2(\mathbb{R}) = \{a + bx : a, b \in \mathbb{R}\}$ der Vektorraum der Polynome mit Koeffizienten in \mathbb{R} vom Grad ≤ 1 . Die lineare Abbildung $f : P_2(\mathbb{R}) \to \mathbb{R}^3$ ist gegeben durch

$$f(a+bx) = \begin{bmatrix} a+b \\ a-b \\ 2a+3b \end{bmatrix}.$$

(a) Bestimmen Sie $[f]_{\mathcal{B},\mathcal{C}}$ mit den Basen

$$\mathcal{B} = (1, 1 + x)$$
 , $\mathcal{C} = \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right)$.

- (b) Bestimmen Sie $[v]_{\mathcal{B}}$ mit v = 2 + 3x.
- (c) Berechnen Sie $[f(v)]_{\mathcal{C}}$ und f(v) mit v = 2 + 3x.
- (3) Es sei $V = M_{2\times 2}(\mathbb{R})$ der Vektorraum der 2×2 Matrizen mit Koeffizienten in \mathbb{R} . Die lineare Abbildung $f: V \to V$ ist gegeben durch $f(A) = A + A^T$.
 - (a) Bestimmen Sie $[f]_{\mathcal{B},\mathcal{B}}$ mit

$$\mathcal{B} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

- (b) Eine Matrix heißt symmetrisch, wenn $A = A^T$ gilt. Berechnen Sie f(A), wobei A eine symmetrische Matrix ist.
- (c) Eine Matrix heißt antisymmetrisch, wenn $A = A^T$ gilt. Berechnen Sie f(A), wobei A eine antisymmetrische Matrix ist.
- (d) Bestimmen Sie $[f]_{\mathcal{C},\mathcal{C}}$ mit

$$\mathcal{C} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right).$$

(4) Es seien K ein Körper, V ein K-Vektorraum und $\mathcal{B} = (v_1, v_2, v_3, v_4), \mathcal{C} = (v_2, v_3, v_4, v_1)$ zwei Basen.

- (a) Bestimmen Sie die Basiswechselmatrix A zum Basiswechsel von \mathcal{B} nach \mathcal{C} .
- (b) Berechnen Sie A^2 , A^3 , A^4 und A^{2025} .
- (5) Es seien $V=M_{2\times 2}(\mathbb{R})$ der Vektorraum der 2×2 Matrizen mit Koeffizienten in \mathbb{R} und

$$\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \text{ und}$$

$$\mathcal{C} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}$$

zwei Basen von V.

- (a) Bestimmen Sie die Basiswechselmatrix zum Basiswechsel von \mathcal{B} nach \mathcal{C} .
- (b) Bestimmen Sie die Basiswechselmatrix zum Basiswechsel von \mathcal{C} nach \mathcal{B} .