Beam Algorithm - Software Version (v0.0.6)

1. Initialize algorithm variables.

- (a) Initialize G, a groupoid of minimum size 3x3.
- (b) Initialize w, the beam width of minimum size 1.
- (c) Initialize H, the current level of a female term in the beam, to 0.
- (d) Initizlize M, the set of candidate male terms, to the set of term variables \overrightarrow{x} .
- (e) Initialize T to the target array of length g^k where g is the size of the groupoid G and k is the number of term variables in \overrightarrow{x} .
- (f) Initialize lrlc to an integer value ≥ 0 that determines the number of beam levels that should use the solution term for the left (LA) or right array (RA) of some target A, in order to produce a female term that is valid wrt A.
- (g) Initialize F to a set containing w empty female terms $f_0(\lozenge)$ at beam level 0.
- (h) Initialize $P_{f_H(\overrightarrow{x},\Diamond)}$, a process for each female term $f_H(\overrightarrow{x},\Diamond)$ in F for a total of w processes. Let each process $P_{f_H(\overrightarrow{x},\Diamond)}$ search for a female term at level H+1 called $f_{H+1}(\overrightarrow{x},\Diamond)$ that is valid wrt the validity array of $f_H(\overrightarrow{x},\Diamond)$.
- (i) Initialize pcc, a positive integer that specifies the number of child terms of some term $f_H(\overrightarrow{x}, \lozenge)$ that are required to promote a process $P_{f_H(\overrightarrow{x}, \lozenge)}$ to level H+1 before a higher beam level is full. A beam level is considered full when there are w valid female terms at that level.

2. Define subalgorithms.

- (a) Define Valid Female Term Generation Method 1 as a method for finding valid female terms by using the GRA to produce a term $u(\overrightarrow{x})$ and then check both $u(\overrightarrow{x}) \Diamond$ and $\Diamond u(\overrightarrow{x})$ for validity with respect to the validity array of $f_H(\overrightarrow{x}, \Diamond)$.
- (b) Define Valid Female Term Generation Method 2 as a method for finding valid female terms by randomly choosing L or R. If L, then, for each GRA term $u(\overrightarrow{x})$, check $u(\overrightarrow{x}) \Diamond$ for validity wrt to LA where A is the validity array of $f_H(\overrightarrow{x}, \Diamond)$. If $u(\overrightarrow{x}) \Diamond$ is valid wrt the the validity array of LA, take $u(\overrightarrow{x}) \Diamond$ to be the term at $f_{H+1}(\overrightarrow{x}, \Diamond)$. If R, then, for each GRA term $u(\overrightarrow{x})$, check $\Diamond u(\overrightarrow{x})$ for validity wrt to RA where R is the validity array of R, take R is the term at R is valid wrt the the validity array of RA, take R is the term at R is the term at R is the validity array of R i

- (c) Define Child Promotion Method 1 as a method for reassigning processes when a process has produced pcc child terms. Assign process $P_{f_H(\overrightarrow{x},\Diamond)}$ to the child term $f_{H+1}(\overrightarrow{x},\Diamond)$ at level H+1 and have it search for some term $f_{H+2}(\overrightarrow{x},\Diamond)$ that is valid wrt validity array of $f_{H+1}(\overrightarrow{x},\Diamond)$.
 - Next let PL be the ordered set of processes actively running at a level below H+1 and sorted ascending by process level and number of produced child terms. For each process $P_{f_{LH}}(\overrightarrow{x}, \lozenge)$ in PL, kill $P_{f_{LH}}(\overrightarrow{x}, \lozenge)$ and assign $P_{f_{LH}}(\overrightarrow{x}, \lozenge)$ to the next child of $f_H(\overrightarrow{x}, \lozenge)$ that doesn't already have a running process $P_{f_{H+1}}(\overrightarrow{x}, \lozenge)$ associated with it. Have process $P_{f_{LH}}(\overrightarrow{x}, \lozenge)$ search for some term $f_{H+2}(\overrightarrow{x}, \lozenge)$ that is valid wrt the validity array of that child of $f_H(\overrightarrow{x}, \lozenge)$ that it was assigned to.
- (d) Define Child Promotion Method 2 as a method for reassigning processes when the beam is full at a level above the level of the lowest running process. Let PL be the set of processes running at a level below the highest full level. Kill all processes $P_{f_{LH}(\overrightarrow{x}, \diamondsuit)}$ in PL, assign them to terms at the highest full level, and have each of them search for a new female term that is valid wrt the array of the term that they were respectively assigned to.
- 3. At beam level 0 mate each female term $f_0(\lozenge)$ with each male term $m(\overrightarrow{x})$ in M and check if the resulting offspring $f_0(m(\overrightarrow{x}))$ is a solution to the target array T. If $f_0(m(\overrightarrow{x}))$ is a solution to T, then return $f_0(m(\overrightarrow{x}))$.

START LOOPING CONTINUOUSLY

- 4. Let $f_{H+1}(\overrightarrow{x}, \lozenge)$ be a valid female term returned by a process $P_{f_H(\overrightarrow{x}, \lozenge)}$ and add $f_{H+1}(\overrightarrow{x}, \lozenge)$ to beam level H+1. If H>lrlc, then assume $f_{H+1}(\overrightarrow{x}, \lozenge)$ was found using subalgorithm (a) Valid Female Term Generation Method 1. If $H \leq lrlc$, then assume $f_{H+1}(\overrightarrow{x}, \lozenge)$ was found using subalgorithm (b) Valid Female Term Generation Method 2.
- 5. Mate the valid female term $f_{H+1}(\overrightarrow{x}, \lozenge)$ (from 4) with each male term $m(\overrightarrow{x})$ in M and check if the resulting offspring $f_{H+1}(\overrightarrow{x}, m(\overrightarrow{x}))$ has a term operation that is a solution to the validity array of $f_H(\overrightarrow{x}, \lozenge)$. If $f_{H+1}(\overrightarrow{x}, m(\overrightarrow{x}))$ is a solution to the validity array of $f_H(\overrightarrow{x}, \lozenge)$, then break from the loop and proceed to step 9.
- 6. If $f_H(\overrightarrow{x}, \lozenge)$ has produced pcc children at H+1, then proceed with reassigning processes according to subalogrithm defintion (c) Child Promotion Method 1. Return to step 4.
- 7. If the beam is full at a level above the level of the lowest running process, then proceed with reassigning processes according to sub-

- alogrithm defintion (d) Child Promotion Method 2. Return to step 4.
- 8. If conditions 6 and 7 both were not satisfied, then rerun process $P_{f_H(\overrightarrow{x},\Diamond)}$ for the parent $f_H(\overrightarrow{x},\Diamond)$ of the valid female term $f_{H+1}(\overrightarrow{x},\Diamond)$. Essentially don't reassign any processes to a higher level and continue searching for another female term $f_{H+1}(\overrightarrow{x},\Diamond)$ that is valid wrt $f_H(\overrightarrow{x},\Diamond)$. Return to step 4.

CONTINUE LOOPING CONTINUOUSLY

9. Some solution term $f_H(\overrightarrow{x}, m(\overrightarrow{x}))$ was found at step 5. Recursively mate $f(\overrightarrow{x}, m(\overrightarrow{x}))$ with each of parent term at $f_{H-1}(\overrightarrow{x}, \lozenge)$, until reaching the term that has no parent. The result is a term which has an array that is a solution to the target array T.