Neural Networks: A Concise Overview

CONTENTS

I	Introduction	2	
	I-A Probabilistic formulation	3	
	I-B Datasets	3	
II	Fundamentals	5	
	II-A Cost functions	5	
	II-B Neuron models	6	
	II-C Update Rules	9	
Ш	Generalization	12	
111	III-A Regularization	13	
	III-B Validation	15	
IV	Feedforward Networks with Supervision	16	
	IV-A Multilayer perceptrons	17	
	IV-B Hyper-parameters	18	
	IV-C Visualization	19	
	IV-D Deep learning	20	
	IV-E Convolutional, inception & residual networks	21	
	IV-F Transfer Learning	24	
V	Recurrent Neural Networks with Supervision	25	
VI	Unsupervised Learning	27	
VII	Applications	28	
,	VII-A Health care & Biomedicine	29	
VIII	Visual Recognition	30	
	VIII-A Color	30	
	VIII-B Dataset	31	
	VIII-C Image Processing	32	
	VIII-D Vision with legacy machine learning	34	
	VIII-E Vision with neural networks	35	
IX	Natural language processing	38	
X	Tools	43	
21		73	
XI	VC Generalization Bound	45	
XII	Bias & Variance Method	47	
XIII	SVM's & Kernel Methods	48	
XIV	Similarity Methods	51	
XV	Miscellaneous Mathematical Entities	52	
D.e.		E C	
Keier	References 56		

I. INTRODUCTION

- Computer science, artificial intelligence, machine learning & neural networks:
 - computer science, or CS, is the study of the principles and use of computers
 - artificial intelligence, or AI, is a subfield of CS that studies tasks that normally require human intelligence
 - machine learning, or ML, is a subfield of AI that evolved from the study of pattern recognition and computational learning theory
 - neural networks, or NN, ia a subfield ML that is inspired by biological neural networks

$$CS \longrightarrow AI \longrightarrow ML \longrightarrow NN \tag{1}$$

- Machine learning:
 - ML is the science of getting computers to act without being explicitly programmed
 - ML is applied on problems where
 - 1) data is available
 - 2) a pattern or correlations exist
 - 3) mathematical formulation is not practical or possible
- Learning:
 - in nature, cause precedes effect

$$cause \rightarrow effect \tag{2}$$

in learning, observations lead to constructing cause

$$effect \rightarrow cause$$
 (3)

- formalization of learning (\mathcal{H}, A) :
 - * $\mathcal{H} = \{h_i\}$ is a hypothesis set,
 - st a learning algorithm, A, picks the final hypothesis g

$$\mathcal{H} = \{h_i\} \xrightarrow{A} g \in \mathcal{H} \tag{4}$$

- learning versus memorization:
 - * learning allows for generalization, whereas memorization does not, see Section III
- Paradigms of learning:
 - 1) supervised learning, Sections IV and V
 - supervised learning implies data is available for training with the desired outcome
 - in classification, the correct outcome is referred to as the *label*
 - at present, supervised learning is the prevalent learning paradigm
 - 2) unsupervised learning, Section VI
 - no labels available during training
 - 3) reinforcement learning,
 - no supervision, only a reward system
 - feedback is delayed, not instantaneous
 - for applications where time matters, i.e. sequential, not i.i.d.
 - e.g. backgammon
- Neural networks:
 - a neural network is sometimes referred to as artificial neural network or ANN
 - NN is hands-on, empirical field for now
 - * experimentation over deep thoughts
 - a NN is composed of neurons, see Section II-B
 - little is known about biological learning to provide guidance for learning of NNs
 - NNs come in two flavors:
 - * feedforward, see Section IV, and
 - * recurrent, see Section V
 - NNs have been successful in recent years and are the main focus of this write-up [1]
- Factors of variation:
 - when analyzing a speech, the *factors of variation* include the speakers age, their sex, their accent and the words that they are speaking

- when analyzing an image of a car, the factors of variation include the position of the car, its color, and the angle and brightness of the sun
- unfortunately, many of the factors of variation influence every single piece of data we are able to observe
- it is usually needed to disentangle the factors of variation and discard the ones that we do not care about
- Features in a representation:
 - the performance of a machine learning algorithm depends on the representation of the data they are given
 - each piece of information included in the representation is known as a feature
 - feature extraction from input data is nonlinear
 - features reduce the input data dimensionality by trying to extract useful information
- Template matching:
 - template matching is a simple feature extractor, that may work if factors of variations are limited
- Representation learning:
 - externally identifying relevant features is difficult
 - current philosophy is to use NN to discover not only the mapping from representation to output but also the representation itself
 - this approach is known as representation learning

A. Probabilistic formulation

- Interpreting NN as generating a conditional probability: target distribution
 - consider a NN with supervised learning, where the data & label pairs $\{(x_n, y_n)\}$, are available
 - * x_n is a d dimensional random vector, representing the input
 - * y_n is a d_o dimensional vector, representing the observed output,
 - a NN models the conditional probability of the map

$$x_n \xrightarrow{P(y|x)} y_n$$
 (5)

where P(y|x) is a conditional probability function

- P(x) & P(y|x) are in general unknown
- $(\boldsymbol{x}_n, \boldsymbol{y}_n)$ can be generated from $P(\boldsymbol{x}, \boldsymbol{y})$, where

$$P(x, y) = P(x) P(y|x)$$
(6)

- P(y|x), is referred to as the target distribution
 - * the target distribution is the quantity that needs to be learned
- Equivalent formulation: target function
 - the target distribution can be interpreted as a deterministic mapping, known as the target function

$$f(\boldsymbol{x}_n) \triangleq E_v(\boldsymbol{y}|\boldsymbol{x}_n) \tag{7}$$

together with some stochastic noise

$$\boldsymbol{n}_n \stackrel{\triangle}{=} \boldsymbol{y}_n - f(\boldsymbol{x}_n) \tag{8}$$

- stochastic noise is a characteristic of the environment and is independent of the NN
- under this formulation, the goal of a NN is to learn f(x) (7), from $\{(x_n, y_n)\}$
- target function is assumed to be unknown
- Classification versus regression:
 - in a classification problem, $\{y_n\}$ is a finite set
 - in a regression problem, $\{y_n\}$ is a subset of the real number
 - * regression means real-valued output

B. Datasets

- Obtaining large repository of data, along with talent, are the two scarce resources
 - this is a major bottleneck for startups
 - some products are launched with the purpose of collecting data rather than revenue
- Mean & variance:
 - consider sample data set $\{x_n\}$, of sample size N
 - arrange the data set $\{x_n\}$ into an $(N \times d)$ data matrix X, whose n^{th} rows is x_n

- the mean \bar{x} , associated with $\{x_n\}$, is

$$\bar{x} = \frac{1}{N} \sum_{n \le N} x_n$$

$$= \frac{1}{N} \mathbf{1}^T X$$
(9)

where 1 is $(N \times 1)$ vector of 1s

- the covariance \bar{C} , associated with X is

$$\bar{C} = \frac{1}{N} \sum_{n \le N} (\boldsymbol{x}_n - \bar{\boldsymbol{x}}) (\boldsymbol{x}_n - \bar{\boldsymbol{x}})^T
= \frac{X^T X}{N} - \bar{\boldsymbol{x}} \bar{\boldsymbol{x}}^T$$
(10)

- Dataset modifications:
 - various modifications can be applied to a dataset, including
 - * preprocessing
 - * normalization
 - * expansion, or augmentation
 - * reuse
- Data preprocessing:
 - dataset $\{x_n\}$ is usually modified before applying to a NN, by making it zero mean,

$$\hat{\boldsymbol{x}}_n \stackrel{\triangle}{=} \boldsymbol{x}_n - \bar{\boldsymbol{x}} \tag{11}$$

- it is possible to reduce data dimensionality (d), using principle component analysis, or PCA (233)
- a dataset $\{x\}$ can be whitened by normalizing the variance on each component by dividing each component by the square root of its eigenvalue
- for images, usually only mean centering is performed
- Batch normalization:
 - in practice the data-set is partitioned to mini-batches and the NN is updated one mini-batch at a time
 - * denote the mini-batch size by m
 - with batch normalization, every layer k, of a network is augmented with another normalizing layer
 - each layer performs the following normalization:
 - * determine the batch mean μ_k (9) & variance σ_k^2
 - * given scale & shift parameters $(\gamma^{(k)}, \beta^{(k)})$ compute

$$\boldsymbol{x}_k \longrightarrow \hat{\boldsymbol{x}}_k \triangleq \frac{\boldsymbol{x}_k - \boldsymbol{\mu}_k}{\boldsymbol{\sigma}_k} \longrightarrow \boldsymbol{y}_k \triangleq \gamma^{(k)} \hat{\boldsymbol{x}}_k + \beta^{(k)}$$
 (12)

- Data expansion or augmentation:
 - the training data $\{(x_n, y_n)\}$, can be artificially expanded by applying, on the available data, application-dependent transformations
 - * for image recognition, can use
 - · translation
 - · rotation
 - · horizontal flip
 - · random crops & scales and then rescale
 - · deformation, distortion, stretch and sheer
 - · color jitter such as contrast, brightness, saturation
 - * for speech recognition, can introduce background interference, change the speed etc.
- Data snooping:
 - if a data set has affected any step in the learning process, its ability to assess the outcome has been compromised
 - this phenomenon is known as data snooping
 - data reuse and expansion should be carried out carefully
 - data snooping is a common trap for a practitioner
- Data partitioning:
 - data is partitioned into training, testing and validation, see Section III

II. FUNDAMENTALS

A. Cost functions

- General remarks:
 - learning is accomplished by minimizing some cost function
 - * or equivalently by reward maximization
 - cost functions are also referred to as error metrics, lost functions, or objective functions
- Pointwise cost function:
 - for a given input x, the pointwise cost function between hypotheses h & f is

$$c_{h,y} \triangleq c\left(\boldsymbol{y}^{(h)}, \boldsymbol{y}^{(f)}\right) \tag{13}$$

where

- * $\mathbf{y}^{(h)} \triangleq h(\mathbf{x})$ is the output associated with hypothesis h
- * such a cost function can be applied for all learning paradigms
- * when the label y associated with data x is available, the cost function associated with hypothesis h becomes

$$c_h \triangleq c\left(\boldsymbol{y}^{(h)}, \boldsymbol{y}\right) \tag{14}$$

- Cost function examples:
 - 1) The Hamming distance, defined as

$$c_{h,f} \triangleq [h(\boldsymbol{x}) \neq f(\boldsymbol{x})] \tag{15}$$

is often used when $f(x) \in \{0, 1\}$

2) The generalized Euclidean distance is defined as

$$c_{h,f} \triangleq (\boldsymbol{y}^{(h)} - \boldsymbol{y}^{(f)})^T Q (\boldsymbol{y}^{(h)} - \boldsymbol{y}^{(f)})$$
(16)

where Q is an arbitrary positive semi-definite matrix two special classes include

- the Euclidean distance, when Q = I
- the Mahalanobis distance, when Q is the inverse of the covariance matrix of the data
 - * the Mahalanobis distance metric depends on the data set
 - * the main advantage of the Mahalanobis distance over the standard Euclidean distance is that it takes into account correlations among the data dimensions and scale
- 3) The log-likelihood cost function:
 - the log-likelihood cost function, from the ML criterion (238), is given by

$$\log_2 \frac{1}{P(y|\boldsymbol{x})} \tag{17}$$

- since a NN can model P(y|x) (5), using hypothesis h (4, 37), the log-likelihood cost function is expressed as

$$c_h = \log_2 \frac{1}{h(\mathbf{x})}$$

$$= -\log_2 h(\mathbf{x})$$
(18)

- the log-likelihood cost function is often used with softmax activation (46)
- 4) The *cross-entropy* cost function (246):
 - the cross-entropy measure is a useful metric when the NN is estimating the probability distribution associated with a classification problem
 - then the label y represents a probability distribution
 - * y = p(x) is the desired probability distribution
 - * $\hat{y} = h(x)$ is the estimated probability distribution
 - from (246), the cross-entropy cost function associated with data (x, y) and hypothesis h is

$$c_h = -\sum_i y_i \log_2 h_i(\mathbf{x}) \tag{19}$$

- with disjoint classification problems only a single outcome is valid, & y becomes a one-hot vector
 - * the cross-entropy simplifies to

$$c_h \triangleq -\log_2 h_i(\boldsymbol{x}) \tag{20}$$

- * the above cost coincides with the log-likelihood cost function (18)
- 5) Multi-class SVM loss function:
 - consider a margin of △, as described in Section XIII
 - given (x_i, y_i) , define the score of the j^{th} class as

$$s_j \triangleq f_j(\boldsymbol{x}_i, \boldsymbol{w}), \tag{21}$$

- the multi-class SVM loss, or hinge loss, for data (x_i, y_i) is defined as,

$$c_i \triangleq \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta) \tag{22}$$

6) The cosine similarity metric, $\in [1, 1]$, is defined as

$$c_{h,f} \triangleq \frac{\boldsymbol{y}^{(h)} \cdot \boldsymbol{y}^{(f)}}{\|\boldsymbol{y}^{(h)}\| \|\boldsymbol{y}^{(f)}\|}$$
(23)

7) The Jaccard coefficient is often used when the objects represent sets,

$$c(S1, S2) \triangleq \frac{|S1 \cap S2|}{|S1 \cup S2|} \tag{24}$$

- In-sample versus out-of-sample cost functions:
 - using (14), the in-sample cost function $C_{in}(h)$, over N samples, of using hypothesis h is defined as

$$C_{\text{in}}(h) \triangleq \frac{1}{N} \sum_{n=1}^{N} c(\boldsymbol{y}_n^{(h)}, \boldsymbol{y}_n)$$
 (25)

- the *out-of-sample* cost function $C_{\text{out}}(h)$ is defined as

$$C_{\text{out}}(h) \triangleq E_{x,y}[c(h(X), Y)] \tag{26}$$

B. Neuron models

- A neuron:
 - a neuron is also referred to as a unit or a node
 - a neuron takes a (d+1) dimensional input vector x, and outputs a scalar y
 - a neuron is some linear circuit followed by a non-linear function,

$$x \xrightarrow{w} s \triangleq w^T x \xrightarrow{\theta} y \triangleq \theta(s)$$
 (27)

- * the linear portion is modeled with the parameter vector w, called the weight
 - · linearity in the weights means the weights have linear dependency
 - \cdot s is a scalar called the signal or the score
- * the non-linearity is introduced through the activation function θ
- a neuron can also be defined in a more setting

$$y \triangleq \theta(\boldsymbol{x}, \boldsymbol{w}) \tag{28}$$

- most neurons considered here have a (d+1) dimensional w, with $x^0 \triangleq 1 \Rightarrow w^0$ is the bias
- a hypothesis h is a function of weights w
- Non-linearities & Activation functions:
 - deeper networks can generate more sophisticated non-linear transformations
 - various activation functions can be applied on s (27)
 - in general, activations need to be monotonically non-decreasing, and mostly differentiable
- Feature transform:
 - in addition to activation functions, non-linearities could also be introduced by non-linear mapping of the input data
 - a feature transform Φ , is a non-linear transformation

$$\mathbf{x} = (x_0, \cdots, x_d) \xrightarrow{\phi} \mathbf{z} = (z_0, \cdots, z_{\tilde{d}})$$
 (29)

where $z \in \mathbb{R}^{\tilde{d}+1}$ is in the *feature space*

- strictly speaking Φ may not satisfy the constraints of a function
- the linear summation (27) generalizes to

$$\tilde{\boldsymbol{w}}^T \boldsymbol{z} = \tilde{\boldsymbol{w}}^T \Phi(\boldsymbol{x}) \tag{30}$$

- linearity in weights is retained since non-linearities are applied on the inputs, not the weights,
- if $\tilde{d} > d$, then we might have generalization concerns
- if $\tilde{d} < d$, then we are acting as a learning machine, and should account for that for generalization
- latest approaches rely on deeper NN rather than feature transformations to obtain sophisticated non-linearities
- Identity, linear classifiers & cybernetics:
 - in certain networks, a fraction of the neurons do not have activation functions
 - in this case, θ collapses to the identity function, and the *linear regression* hypotheses is obtained, see Section XV

$$\theta(s) = s = \boldsymbol{w}^T \boldsymbol{x} \tag{31}$$

- if a single neuron is used, a hypothesis can then be determined by the (d+1) parameters $\mathbf{w} = \{w_i\}$, and the signal s (27) itself is used to classify inputs
 - * cybernetics implied learning w of such a model
- List of activation functions:
 - 1) Perceptron:
 - the McCulloch-Pitts Neuron, 1943, is a binary classifier, obtained by setting the activation function to be the sign() of the input value

$$\theta_{MP}(s) \triangleq \operatorname{sign}(s) = \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x}) \tag{32}$$

- a perceptron [2] is a McCulloch-Pitts Neuron that can learn its weights
- since the derivative of this activation vanishes, it is not a useful activation for learning
- based on Section XI a complexity measure can be associated with the perceptron
 - * theorem: $d_{VC} = d + 1$, which coincides with the number of parameters w_i
- 2) The softsign function is the soft version of the McCulloch-Pitts Neuron:

$$\theta_{SS}(s) \triangleq \frac{s}{1+|s|},\tag{33}$$

- 3) The logistic sigmoid function:
 - the *logistic sigmoid* function:

$$\theta_L(s) \triangleq \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}}} \tag{34}$$

- $\theta_L(s) \ge 0 \Rightarrow x_i \ge 0$, (i.e. not centered around zero) implies the changes of w_i , due to gradient, are all positive or negative, see sub-section II-C
- furthermore, saturated regions have no gradient information
- useful for gating functions
- 4) Stochastic neuron & logistic regression:
 - a boolean variable $y \in \{0,1\}$ can be referred to as an *indicator variable*
 - in logistic regression, the goal is to determine the conditional probability of an indicator variable, P(y=1|x)
 - since the output of (34) is $\in [0,1]$, this output can be reinterpreted as a conditional probability, P(y=1|x)
 - a stochastic neuron has the same activation function as the logistic sigmoid, $\theta_L(s)$ that implements a logistic regression
 - * the goal is to estimate P(y=1|x) rather than y
 - this is similar to obtaining soft data in data communication
 - in general P(y=1|x) is not a linear function with respect to x
 - logistic regression converts the problem to a linear regression (with infinite range), by assuming the transformation

$$\log \frac{P(y=1|\boldsymbol{x})}{1 - P(y=1|\boldsymbol{x})} = \boldsymbol{w}^T \boldsymbol{x} = s \Rightarrow$$

$$P(y=1|\boldsymbol{x}) = \frac{e^s}{1 + e^s},$$
(35)

- note that this coincides with (34), and that

$$\theta(-s) = \frac{1}{1+e^s}$$

$$= 1 - \frac{e^s}{1+e^s}$$

$$= 1 - \theta(s)$$

$$= P(y=0|\mathbf{x})$$
(36)

- both P(y=1|x) & P(y=0|x) can be expressed by the unified form

$$P(y|\mathbf{x}) = \theta(y\mathbf{w}^T\mathbf{x}) \tag{37}$$

5) The tangent hyperbolic function:

$$\theta_T(s) \triangleq \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}} \tag{38}$$

- popular in 1980s
- the range is $\theta_T \in [-1, 1]$
- $\theta_T(s)$ can be obtained from θ_L (34) by the transformation y=2x-1
- 6) The hard tanh function:

$$\theta_{HT}(s) \triangleq \begin{cases} -1, & \text{if } s < -1\\ s, & \text{if } -1 \le s \le 1\\ 1, & \text{if } s > 1 \end{cases}$$

$$(39)$$

7) The rectified linear unit, or ReLU:

$$\theta_R(s) \triangleq \max(0, s)$$

$$= \max(0, \boldsymbol{w}^T \boldsymbol{x})$$
(40)

- currently a popular activation function
- typically learns faster in networks with many layers
- when the signal stays negative, we have a dead ReLU
 - * positive bias initialization addresses the dead ReLU concern
- 8) The parametric ReLU, or PReLU:

$$\theta_{PR}(s) \triangleq \max(\alpha s, s) \tag{41}$$

- setting $\alpha = 0.01$ gives the *leaky ReLU*:

$$\theta_{LR}(s) \triangleq \max(0.01s, s) \tag{42}$$

9) The exponential linear unit, or ELU:

$$\theta_{ELU}(s) \triangleq \begin{cases} s, & \text{if } s > 0\\ \alpha(e^s - 1), & \text{if } s \le 0 \end{cases}$$
(43)

10) The softplus function is smooth (soft) version of (40):

$$\theta_{SP}(s) \triangleq \log(1 + \exp(x))$$
 (44)

11) The *Maxout* activation:

$$\theta_{MO}(\boldsymbol{x}) \triangleq \max(\boldsymbol{w}_1^T \boldsymbol{x}, \boldsymbol{w}_2^T \boldsymbol{x}) \tag{45}$$

12) The *softmax* function, with $1 \le j \le K$ output nodes, is

$$\theta_{SM}(j; s_1^K) \triangleq \frac{e^{s_j}}{\sum_{k=1}^{k=K} e^{s_k}} \tag{46}$$

where the j^{th} node generates the probability of the j^{th} event

- since $\theta(j) \geq 0$ and $\sum_j \theta(j) = 1$, we can also interpret $\{\theta(j)\}$ as probabilities softmax can be useful with classification problems involving disjoint classes
- the log-likelihood cost function is often used with softmax activation
- Log-likelihood criterion on stochastic neuron:
 - substituting (37) into (18)

$$c_{\boldsymbol{w}} = \log \frac{1}{\theta(y_{\boldsymbol{w}}^T \boldsymbol{x})}$$

$$= \log(1 + e^{-y_{\boldsymbol{w}}^T \boldsymbol{x}})$$
(47)

- analytic solution to $\nabla C_{\rm in}(w)=0$ is not feasible, but gradient descent algorithms can be used
- with classification problems, this cost metric converges faster than the mean square error metric

C. Update Rules

- Perceptron Learning Algorithm (PLA):
 - pick any (x, y) that is misclassified, and make the update

$$w(t+1) = w(t) + yx \Rightarrow$$

$$y w^{T}(t+1)x = y w^{T}(t)x + y^{2}||x||^{2} \Rightarrow$$

$$y w^{T}(t+1)x > y w^{T}(t)x$$

$$(48)$$

- since its a misclassified pair

$$y \, \boldsymbol{w}^T(t) \boldsymbol{x} < 0 \tag{49}$$

- combining (48) with (49) implies w is moving in the right direction
- theorem: if the input data is linearly separable then the PLA will converge with $C_{\rm in}=0$
- Pocket algorithm:
 - when input data-set is not linearly separable, then the PLA is not stable
 - * the problem of choosing w that minimizes $C_{\rm in}$, i.e. error rate, is NP-hard
 - the pocket algorithm is a variation of PLA, that keeps "in its pocket" the best w
 - * in other words, pick the best w rather than the last w
 - * $C_{\rm in}$ needs to be computed in every step
- Gradient descent:
 - gradient descent can be applied to a differentiable graph whether or not there is an analytic solution
 - let $\nabla C_{\rm in}(w) = \nabla_{\omega} C_{\rm in}(w)$ be the gradient of the cost function $C_{\rm in}(w)$ with respect to w
 - gradient descent is based on the observation that $C_{\rm in}(\boldsymbol{w})$ decreases fastest in the direction of $-\nabla C_{\rm in}(\boldsymbol{w})$
 - define \hat{v} to be a unit vector in the direction of steepest descent

$$\hat{\boldsymbol{v}} \triangleq -\frac{\nabla C_{\text{in}}(\boldsymbol{w})}{\|\nabla C_{\text{in}}(\boldsymbol{w})\|} \tag{50}$$

- gradient descent is an iterative solution, where at time (t+1), the weights are adjusted as

$$w(t+1) = w(t) + \delta w$$

$$= w(t) + \eta_t \hat{v}$$
(51)

where η_t is a hyper-parameter called the *learning rate*

- to see why gradient descent proceeds in direction of $-\nabla C_{\rm in}(w)$, apply Taylor expansion on $C_{\rm in}(w)$

$$\Delta C_{\text{in}} \triangleq C_{\text{in}}(\boldsymbol{w}(t) + \delta \boldsymbol{w}) - C_{\text{in}}(\boldsymbol{w}(t))$$

$$\approx \nabla C_{\text{in}}(\boldsymbol{w}(t)) \cdot \delta \boldsymbol{w}$$
(52)

- choosing $\delta \boldsymbol{w} = \hat{\boldsymbol{v}}$ and $\eta_t = 1$

$$\Delta C_{\text{in}} = \nabla C_{\text{in}}(\boldsymbol{w}(t)) \cdot \hat{\boldsymbol{v}}$$

$$= -\nabla C_{\text{in}}(\boldsymbol{w}(t)) \cdot \frac{\nabla C_{\text{in}}(\boldsymbol{w}(t))}{\|\nabla C_{\text{in}}(\boldsymbol{w}(t))\|}$$

$$\geq -\|\nabla C_{\text{in}}(\boldsymbol{w}(t))\|$$
(53)

* steepest descent is achieved when we have equality in (52), i.e. when

$$\delta \boldsymbol{w} = \hat{\boldsymbol{v}} = -\frac{\nabla C_{\text{in}}(\boldsymbol{w}(t))}{\|\nabla C_{\text{in}}(\boldsymbol{w}(t))\|}$$
(54)

- Local and global minima:
 - if the cost function is *convex* then there is no *local minima* but only a single *global minimum*
 - in practice, poor local minima are rarely a problem with large networks, or in higher dimensional space
 - instead, the landscape is packed with a combinatorially large number of saddle points where the gradient is zero in many but not all dimensions
 - practically, it does not much matter which of these saddle points the algorithm ends up being
- Batch gradient descent:
 - it is desirable to get large steps when we are far from minimum, & small steps when close to the minimum
 - can choose learning rate η_t to be proportional to the gradient

$$\eta_t = \eta \|\nabla C_{\text{in}}(\boldsymbol{w}(t))\| \tag{55}$$

- substituting (54, 55) into $\delta w(t)$

$$\delta \boldsymbol{w}(t) = \eta_t \,\hat{\boldsymbol{v}}$$

$$= -\eta \|\nabla C_{\text{in}}(\boldsymbol{w}(t))\| \frac{\nabla C_{\text{in}}(\boldsymbol{w}(t))}{\|\nabla C_{\text{in}}(\boldsymbol{w}(t))\|}$$

$$= -\eta \nabla C_{\text{in}}(\boldsymbol{w}(t))$$
(56)

- it follows that

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla C_{\text{in}}(\mathbf{w}(t))$$
(57)

- this algorithm is sometimes referred to as the batch gradient descent or fixed learning rate gradient descent algorithm
- note that a single update is generated from the entire data set
 - batch gradient descent can be very slow since the gradients for the whole dataset are calculated to perform just one update
 - * batch gradient descent are intractable for datasets that don't fit in memory
- Batch gradient descent for logistic regression:
 - the gradient of (47) is

$$\nabla C_{\text{in}}(\boldsymbol{w}(t)) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \boldsymbol{x}_n e^{-y_n \boldsymbol{w}^T \boldsymbol{x}_n}}{(1 + e^{-y_n \boldsymbol{w}^T \boldsymbol{x}_n})}$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \boldsymbol{x}_n}{1 + e^{y_n \boldsymbol{w}^T \boldsymbol{x}_n}}$$

$$= -\frac{1}{N} \sum_{n=1}^{N} y_n \boldsymbol{x}_n \theta(-y \boldsymbol{w}^T \boldsymbol{x}_n)$$
(58)

- substituting (58) into (56)

$$\delta \boldsymbol{w}(t) = \frac{1}{N} \sum_{n=1}^{N} y_n \boldsymbol{x}_n \theta(-y \boldsymbol{w}^T \boldsymbol{x}_n)$$
 (59)

- Stochastic gradient descent (SGD):
 - stochastic gradient descent (SGD), is the sequential version of batch gradient descent, where an update is generated for each sample point (x_n, y_n)
 - * (x_n, y_n) is picked uniformly at random, hence the name 'stochastic'
 - compared to batch gradient descent, SGD is simpler, faster and, due to randomization, is less prone to getting trapped in a local minima
 - the rule of thumb is to use $\delta \approx 0.1$
 - SGD complicates convergence to the exact minimum, as SGD will keep overshooting
- Mini-batch gradient descent:
 - mini-batch gradient descent implies a single gradient update is generated per mini-batch of data $\{(x_n, y_n)\}$
 - each element of the mini-batch is picked uniformly at random
 - mini-batch gradient descent takes the best of both SGD and batch gradient descent
 - * compared to SGD, it reduces the variance of the parameter updates, which can lead to more stable convergence
 - common mini-batch sizes range between 50 and 256
 - the term SGD usually is employed also when mini-batches are used
- Learning rate with annealing:
 - with step decay, the learning rate is reduced by some factor as a function of training iterations
 - the exponential decay and the 1/t-decay annealing functions are respectively

$$\eta_t = \eta_o \exp(-kt)
\eta_t = \frac{\eta_o}{1+kt}$$
(60)

where η_0 , k are hyper-parameters & t is the iteration number

- Hessian technique:
 - applying Taylor's extension, as in (52), but including second order terms

$$\Delta C_{\rm in}(\boldsymbol{w} + \delta \boldsymbol{w}) \approx \nabla C_{\rm in} \cdot \delta \boldsymbol{w} + \frac{1}{2} \delta \boldsymbol{w}^T H \delta \boldsymbol{w}$$
 (61)

where the *Hessian matrix* H, is defined as

$$H_{jk} \triangleq \frac{\partial^2 C_{\text{in}}}{\partial w_i \partial w_k} \tag{62}$$

- differentiating (61) with respect to δw , and setting it to zero

$$0 = \nabla C_{\text{in}} + H\delta \mathbf{w} \Rightarrow$$

$$\delta \mathbf{w} = -H^{-1}\nabla C$$
(63)

- this approach to minimizing a cost function is known as the Hessian technique or the Hessian optimization
 - * it is also referred to as the Newton's method
- Hessian methods converge in fewer steps than standard gradient descent
- furthermore, the Hessian approach could avoid many pathologies that can occur in gradient descent
- these benefits come at the expense of significant additional complexity
- two simplifications are BGFS and limited-memory BFGS (L-BFGS)
- Momentum based gradient descent:
 - the momentum technique modifies gradient descent by introducing two new concepts:
 - 1) Introducing the notion of "velocity" v_t , for the parameters we're trying to optimize
 - * the gradient acts to change the velocity, not (directly) the "position" w_t , in much the same way as physical forces change the velocity, that only indirectly affect position
 - 2) Introduces the notion of "friction" which tends to gradually reduce the velocity.
 - the update rules are summarized as follows

$$v_t = \mu v_{t-1} - \eta \nabla C$$

$$w_t = w_{t-1} + v_t$$
(64)

where μ is the momentum coefficient, that controls the amount of damping or friction in the system

- * $\mu = 0$ corresponds to the gradient descent method
- * $0.5 \le \mu \le 0.9$ is common
- the momentum technique is more practical than the Hessian technique
- the momentum technique often speeds up learning and is commonly used
- Nesterov accelerated gradient:
 - Nesterov accelerated gradient (NAG), is a momentum based technique, where the gradient is evaluated at $w + \mu v$ rather than at w
- Adagrad:
 - Adagrad adapts the learning rate to the parameters
 - so far, at time t, all the parameter w_i used the same learning rate
 - define G_t to be a diagonal matrix, where $G_{t,ii}$ is the sum of the squares of the gradients w.r.t. w_i up to time step t
 - the update rule for Adagrad is

$$w_{t,i+1} = w_{t,i} - \frac{\eta}{\sqrt{G_{t,i} + \epsilon}} \nabla C(w_i)$$
(65)

where $\epsilon \sim 10^{-8}$ is a smoothing term that avoids division by zero

- compared to SGD, the learning rate is adaptively scaled by $\sqrt{G_{t,ii} + \epsilon}$
- without the square root operation, the algorithm performs much worse
- Adagrad eliminates the need to manually tune the learning rate
- most implementations use a default value of $\eta = 0.01$
- Adagrad also implicitly implements momentum based updates (why?)
- Adagrad's main weakness is its accumulation of the squared gradients in the denominator which eventually makes infinitesimally small

Adadelta:

- Adadelta is an extension of Adagrad that seeks to reduce its aggressive, monotonically decreasing learning rate
- instead of accumulating all past squared gradients, Adadelta restricts the window of accumulated past gradients to some fixed size L
- RMSProp:
 - RMSProp is an adaptive gradient technique where the learning rate is tailored for each parameter

- if the gradient at time t is $\nabla_t C$, then the learning rate, at time t is

$$s_t = \alpha s_{t-1} + (1 - \alpha) \|\nabla_t C\|^2$$

$$\mathbf{w}_t = \mathbf{w}_{t-1} + \eta \frac{\nabla_t C}{\sqrt{s_t}}$$
(66)

- · Adam:
 - in the momentum technique (64), v_t is linear in g_t , whereas in RMSProp (66, s_t is quadratic in g_t
 - Adam combines features from both of these techniques

$$v_{t} = \mu v_{t-1} + (1 - \mu) \nabla_{t}$$

$$s_{t} = \alpha s_{t-1} + (1 - \alpha) \|\nabla_{t}\|^{2}$$

$$w_{t} = w_{t-1} + \eta \frac{v_{t}}{\sqrt{s_{t}}}$$
(67)

- its is recommended to use $\mu = 0.9$, $\alpha = 0.999$

III. GENERALIZATION

- Generalization & feasibility of learning:
 - generalization is the capability of predicting a function for unobserved data
 - * learning an arbitrary boolean function is not feasible by just observing a subset of the function
 - in machine learning, generalization is done based on probabilistic inference, Section I-A
 - learning is feasible under the assumption that the training & testing samples share the same distribution
- Two goals of learning: choose hypothesis $g \in \{h_i\}$:
 - 1) to approximate, or minimize $C(h)_{in}$ (25), and
 - 2) to generalize, i.e. from (25, 26),

$$C(g)_{\text{out}} \approx C(g)_{\text{in}}$$
 (68)

where \approx means $C_{in}(h) = C_{out}(h)$ is probably approximately correct, or P.A.C.

- Testing:
 - testing is performed after a hypothesis g is chosen
 - testing is performed as a *final* evaluation of accuracy
 - testing is performed on a different data set than the training set
- Overfitting:
 - overfitting is the phenomenon where the in-sample data is fitted more than is warranted
 - small $C_{\rm in}$ is observed at the expense of $C_{\rm out}$
 - when overfitting, the network is learning about the peculiarities of the training set
 - when overfitting, the network is
 - * more memorizing than learning
 - * not learning to generalize from trend
 - a simple approach to contain overfitting is to early termination, where training stops if no improvements are observed
- Overfitting dependencies:
 - overfitting gets worst as
 - * stochastic noise variance σ_n^2 increases
 - * target function complexity increases
 - · for example if target function is modeled by a polynomial of higher degree
 - * data size N decreases
 - · In many situations the data size should decide the complexity of the hypothesis family chosen, not the assumed complexity of the target function
- Deterministic noise:
 - as defined in (190), deterministic noise is the part of the target function f that \mathcal{H} cannot capture
 - deterministic noise is defined as

$$f(\boldsymbol{x}) - g(\boldsymbol{x}) \tag{69}$$

- deterministic noise occurs when
 - * \mathcal{H} does not capture important aspects of f, i.e. \mathcal{H} is oversimplified, or when
 - * target function complexity Q_f is large and N is not large enough

- unlike stochastic noise, deterministic noise
 - * depends on \mathcal{H} , and
 - * is repeatable
- given \mathcal{H} , both noise sources have similar impact on the learning process
- VC generalization bound:
 - VC bound provide a lower bound on $C_{\text{out}}(g) C_{\text{in}}(g)$ as a function of sample size N
 - see Appendix XI, and (188)
 - in general, the VC bounds are very loose
- Bias & variance model:
 - an alternative method to decompose $C_{\mathrm{out}}(g)$ is the bias & variance method reviewed in Appendix XII
- Two common approaches to address overfitting:
 - 1) Regularization
 - 2) Validation

A. Regularization

- General remarks:
 - regularization constrains the learning algorithm to improve out-of-sample error
 - * constraining implies lowering $d_{\rm VC}$
 - regularization is as much an art as it is science
 - * there is no systematic understanding, only heuristics
 - in general, regularization reduces noise more than it limits the signal
- The augmented metric:
 - the goal of regularization is to minimize an augmented metric

$$C_{\text{aug}}(h) = C_{\text{in}}(h) + \Omega(h) \tag{70}$$

rather than $C_{in}(h)$ alone, see (187)

- $\Omega(h)$ is the regularizer, or the regularization term
 - * $\Omega(h)$ depends on h rather than \mathcal{H}
 - * $\Omega(h)$ is a proxy for overfit penalty
- the augmented metric $C_{\text{aug}}(h)$ is a proxy for $C_{\text{out}}(h)$
- Regularization methods:
 - 1) L2 regularization, or weight decay
 - other quadratic forms include
 - * L2 regularization with importance factors
 - * Tikhonov regularization
 - 2) L1 regularization
 - 3) Soft weight elimination
 - 4) Soft targets to train
 - 5) Dropout
 - 6) Artificially expand the data set
- Hard & soft order constraint:
 - for definiteness, consider a linear regression problem on the Z space (30), of polynomials
 - a polynomial hypothesis with lower degree (simpler) may result in better out-of-sample error
 - * excluding all polynomials higher than a degree threshold is known as hard order constraint
 - an example of a soft order constraint is the constraint that polynomial coefficients satisfy

$$\sum_{q=0}^{Q} w_q^2 \le C \Rightarrow \boldsymbol{w}^T \boldsymbol{w} \le C \tag{71}$$

- * this is similar to FIR with normalized weight energy constraint
- L2 regularization:
 - the augmented error metric associated with (71) uses Lagrange multipliers to solve this constrained linear regression problem

$$C_{\text{aug}}(\boldsymbol{w}) = C_{\text{in}}(\boldsymbol{w}) + \frac{\lambda}{N} \boldsymbol{w}^T \boldsymbol{w}$$
(72)

- with this augmented metric, the network prefers to learn small weights, all other things being equal
 - * the smallness of the weights means that the behaviour of the network won't change too much if we change a few random inputs here and there
 - * this implies less noisy behaviour and simpler models
- λ is called the regularization parameter
- minimizing (72) is called L2 regularization, or weight decay, since taking the gradient of (72) gives the additional term that is proportional to w
- for the linear regression case, the resulting weight vector becomes (compare to (249))

$$\boldsymbol{w}_{\text{reg}} = (Z^T Z + \lambda I)^{-1} Z^T \boldsymbol{y} \tag{73}$$

- for gradient descent, the updated weights have the form

$$w \to \left(1 - \frac{\eta \lambda}{N}\right) w - \eta \frac{\partial e}{\partial w} \tag{74}$$

- · Weight decay of bias terms:
 - having a large bias doesn't make a neuron sensitive to its inputs
 - no need to worry about large biases enabling our network to learn the noise in our training data
 - allowing large biases gives our networks more flexibility in behaviour
 - * in particular, large biases make it easier for neurons to saturate, which is sometimes desirable
 - for these reasons, usually bias terms are not regularized
- Alternative weight constraints:
 - the constraint (71) can be generalized to,

$$\sum_{q=0}^{Q} \gamma_q w_q^2 \le C \tag{75}$$

where the *importance factor* $\{\gamma_q\}$ are parameters that amplify/attenuate certain degrees

- in neural networks, different layers may get different importance factors
- the Tikhonov regularizer

$$\boldsymbol{w}^T \Gamma^T \Gamma \boldsymbol{w} \le C \tag{76}$$

considers non-diagonal quadratic form, and captures relationships within w_i by using matrix Γ

- L1 regularization:
 - the augmented error metric of L2 regularization (72), is modified to

$$C_{\text{aug}}(\boldsymbol{w}) = C_{\text{in}}(\boldsymbol{w}) + \frac{\lambda}{N} \sum_{n} |w_n|$$
(77)

- the weights are then updated as

$$w \to w - \frac{\eta \lambda}{N} \operatorname{sign}(w) - \eta \frac{\partial e}{\partial w}$$
 (78)

- since derivative is not defined at w=0, apply the un-regularized rule for stochastic gradient, i.e. set sign(0)=0
- compared to (74), the decay in weight is constant, whereas in L2 regularization it is proportional w
- L1 regularization tends to concentrate the weight of the network in a relatively small number of high-importance connections, while the other weights are driven toward zero
- Hard & soft weight elimination:
 - with hard weight elimination, weights with values less than a threshold are eliminated
 - with soft weight elimination, the regularizer could be defined as

$$\Omega(\boldsymbol{w}) \triangleq \sum_{i,j,l} \frac{(w_{ij}^{(l)})^2}{\beta^2 + (w_{ij}^{(l)})^2}$$

$$\tag{79}$$

- * for $\|\boldsymbol{w}^{(l)}\| \ll \beta$, numerator dominates and the regularizer reduces to weight decay (72)
- * for $\|\boldsymbol{w}^{(l)}\| \gg \beta$, $\Omega(\boldsymbol{w})$ is a constant and no updates are generated from the regularizer
- * in summary, the regularizer attenuates small weights but not the large weights
- Dropout & dropconnect:
 - dropout modifies the network itself rather than modifying the cost metric

- more specifically, for each training example, forward propagation involves randomly deleting any hidden neuron with probability p
 - * the error is then backpropagated only through the remaining activations
 - * p = 0.5 is common
- we can think of dropout as a way of making sure that the model is robust to the loss of any individual piece of
- dropout has been useful in training large, deep networks, where the problem of overfitting is often acute
- inverted dropout: after dropout the signal levels should be attenuated by p, (not \sqrt{p} ?) since more inputs are contributing
- dropconnect generalizes dropout by randomly dropping the weights rather than the activations
- Soft targets:
 - soft target means that, the label is a probability distribution rather than a one-hot vector
 - when using a small network, use some combination of soft target, obtained from a larger circuit, and hard target to train data,
 - soft targets are good regularizers
- Practical rule for regularization:
 - constrain learning towards smoother hypothesis, since noise is high frequency
 - in general smaller weights result in smoother hypothesis

B. Validation

- The concept:
 - partition available training data, that was originally designated to training, to two parts

$$\mathcal{D} = \mathcal{D}_{\text{val}} \cup \mathcal{D}_{\text{train}} \tag{80}$$

where the validation sample size is $|\mathcal{D}_{val}| = K$, and the re-allocated training data size as $|\mathcal{D}_{train}| = N - K$

- * validation comes at the expense of training
- * validation is used to optimize various hyper-parameters
- similar to the in-sample error (25), validation error is defined as

$$C_{\text{val}}(h) \triangleq \frac{1}{K} \sum_{n=1}^{K} e(h(\boldsymbol{x}_n), y_n)$$
(81)

- whereas regularization predicts C_{out} indirectly through $\Omega(h)$, validation directly measures C_{out}
- · A validation procedure:
 - generate a hypothesis g^- from N-K samples
 - measure $C_{\text{out}}(g^-)$ from remaining K samples
 - generate a hypothesis g from all N samples

 - report g with measure $C_{\rm out}(g^-)$ as a rule of thumb, use $K \approx \frac{N}{5}$
- Early stopping:
 - with early stopping, validation data is used to monitor overfitting, picking the hypothesis where C_{out} estimate is minimized
 - validation then becomes an integral part of training
- Training, testing and validating:
 - when training, C_{in} is optimistically (deceptively) biased
 - since testing does not alter the outcome of the learning process, C_{test} is unbiased
 - validating is similar to testing but can influence the outcome of the learning process because of feedback
 - * then validation becomes optimistically biases as in training
 - * i.e. C_{val} becomes a biased estimate of C_{out}
 - we want C_{val} to be only slightly contaminated to be useful
- Dependence of $g \in \mathcal{H}$ on data:
 - q is a strong function of peculiarities of the training data
 - g should be a weak function of the peculiarities of validation data
 - g is independent of the peculiarities of the test data
- M models:

- many validation approaches can be interpreted as choosing one of M hypotheses, where each hypothesis was obtained from some model and training data
- then validation coincides with training, and bounds similar to (179, 184) can be applied

• Cross-validation:

- so far the goal was to achieve

$$C_{\text{out}}(g) \approx C_{\text{out}}(g^{-}) \approx C_{\text{val}}(g^{-})$$
 (82)

where for the first approximation to hold, K needed to be small, while for the second approximation K needed to be large

- in theory can run training N separate times, where at each attempt the n^{th} sample point is removed for validation purposes
- the cross-validation error is then defined as the average of the N validation errors

$$E_{\rm cv} \triangleq \frac{1}{N} \sum_{n=1}^{N} e_n \tag{83}$$

- even though
 - * each error term is from a different hypothesis, and
 - * the error terms are correlated

effectively, the error samples are almost uncorrelated

- in summary, effectively K = 1 was used for first approximation of (82), and K = N was used for second

• R-fold validation:

- cross validation, is not practical as described above, since it introduces N times amplification in training time
- R-fold validation implies partitioning sample data into R subsets rather than N
- training sessions reduce from N to R
- rule of thumb is to use 10-fold cross-validation

IV. FEEDFORWARD NETWORKS WITH SUPERVISION

• Historical overview:

- cybernetics in the 1940s1960s
 - * biological learning
 - * perceptron
- artificial neural networks (ANN) or *connectionism*, in the 1980s-1990s
 - * parallel distributed processing (Rumelhart et al., 1986; McClelland et al., 1995)
 - * a large number of simple computational units can achieve intelligent behavior when networked together
 - * back propagation (Rumelhart et al., 1986)
- deep learning starting in 2006, see Section IV-D
 - * pioneered by Georey Hinton at University of Toronto, Yoshua Bengio at University of Montreal, and Yann LeCun at New York University

• Universality:

- since a perceptron can model a NAND, a network of perceptrons can model any boolean function
- consider an arbitrary continuous function f(x), with range within the activation function
- then for any $\epsilon > 0$, there exist a NN g(x), with a single hidden layer, such that

$$|g(\mathbf{x}) - f(\mathbf{x})| < \epsilon \tag{84}$$

for all inputs x

- the underlying concept is for the hidden layers to generate a basis function
- the result holds for any activation function $\theta(z)$, where $\theta(\pm \infty)$ are distinct and well-defined
- the question is not whether any particular function is computable, but rather what's a good way to compute the function

• Feedforward networks:

- feedforward multilayer networks are the most popular ANNs
- such networks include an input layer, an output layer, and hidden layers
- the role of the *hidden layers* can be interpreted as distorting the input in a non-linear way so that categories become linearly separable by the last layer

A. Multilayer perceptrons

- · General remarks:
 - multilayer perceptron, or MLP, is a feedforward network where each layer is fully connected (FC) to the previous layer
 - proposed in the 1980s
 - the name is misnomer since the unit of MLP is not the perceptron
 - MLPs use the supervised backpropagation algorithm to learn as will be discussed shortly
 - MLPs do not learn well in the presence of many hidden layers
- Notation:
 - a network is L layers with $l \in \{0, 1, \dots, L\}$
 - * the input layer corresponds to l=0 and does not count as a layer
 - * the output layer corresponds to l=L which determines the value of the function
 - layer l has dimension $d^{(l)}$, which means it has $(d^{(l)} + 1)$ nodes (or units)
 - * every layer has a bias node, labelled by 0
 - connections are between layers (l-1) and l
 - * $\boldsymbol{W}^{(l)} = \{w_{ij}^{(l)}\}$ is the weight from node i in layer (l-1) to node j in layer l
 - * the signal and the output of node j in layer l are denoted respectively as $\mathbf{s}^{(l)} = \{s_i^{(l)}\}$ and $\mathbf{x}^{(l)} = \{x_i^{(l)}\}$
 - hypothesis $h(\boldsymbol{w}) \in \mathcal{H}$ corresponds to hypothesis

$$\boldsymbol{w} \triangleq \{\boldsymbol{W}^{(1)}, \boldsymbol{W}^{(2)}, \cdots \boldsymbol{W}^{(L)}\} \tag{85}$$

- Forward propagation:
 - load $\boldsymbol{x}^{(0)} = \boldsymbol{x}$
 - for $l \in \{1, 2, \cdots, L\}$

$$\mathbf{s}^{(l)} = (\mathbf{W}^{(l)})^T \mathbf{x}^{(l-1)}$$

$$\mathbf{x}^{(l)} = \begin{bmatrix} 1 \\ \theta(\mathbf{s}^{(l)}) \end{bmatrix}$$
(86)

- the final output is $h(x) = x^{(L)}$
- The sensitivity vector:
 - the sensitivity vector $\boldsymbol{\delta}^{(l)}$ has components defined as

$$\delta_j^{(l)} \triangleq \frac{\partial C_{\text{in}}}{\partial s_j^{(l)}}$$
(87)

where the signal $s_i^{(l)}$ is given by (86), and the sample cost function $C_{\rm in}$ is defined in (25)

- interpretation
 - * $oldsymbol{\delta}_{j}^{(l)}$ is the 'signal error' in the $j^{ ext{th}}$ unit
 - * $\|\boldsymbol{\delta}^{(l)}\|$ is a measure on how fast layer l is learning
- applying the chain rule

$$\boldsymbol{\delta}_{j}^{(l)} = \frac{\partial C_{\text{in}}}{\partial \boldsymbol{x}_{j}^{(l)}} \cdot \frac{\partial \boldsymbol{x}_{j}^{(l)}}{\partial \boldsymbol{s}_{j}^{(l)}}$$

$$= \theta'(\boldsymbol{s}_{j}^{(l)}) \cdot \frac{\partial C_{\text{in}}}{\partial \boldsymbol{x}_{j}^{(l)}}$$
(88)

where the unit output $x_j^{(l)}$ is is given by (86)

- Recursive computation of of the sensitivity vector:
 - computing $\boldsymbol{\delta}^{(l)}$:
 - * for last layer L, both terms in (88) are readily available
 - * for the other layers, a recursion on the sensitivity vectors can be obtained by running, a slightly modified version of the neural network backwards

- since any component of $x^{(l)}$ can affect $s_k^{(l+1)}$, $\partial C_{\text{in}}/\partial x_i^{(l)}$ in (88) is computed as follows

$$\frac{\partial C_{\text{in}}}{\partial \boldsymbol{x}_{j}^{(l)}} = \sum_{k=1}^{d^{(l+1)}} \frac{\partial \boldsymbol{s}_{k}^{(l+1)}}{\partial \boldsymbol{x}_{j}^{(l)}} \frac{\partial C_{\text{in}}}{\partial \boldsymbol{s}_{k}^{(l+1)}}$$

$$= \sum_{k=1}^{d^{(l+1)}} w_{jk}^{(l+1)} \boldsymbol{\delta}_{k}^{(l+1)}$$
(89)

- substituting (89) into (88)

$$\delta_j^{(l)} = \theta'(s_j^{(l)}) \sum_{k=1}^{d^{(l+1)}} w_{jk}^{(l+1)} \delta_k^{(l+1)}$$
(90)

- in vector form

$$\boldsymbol{\delta}^{(l)} = \theta'(\boldsymbol{s}^{(l)}) \otimes [\boldsymbol{W}^{(l+1)} \boldsymbol{\delta}^{(l+1)}]_{1}^{d^{(l)}}$$
(91)

where \otimes denotes component-wise multiplication, known as Hadamard product or Schur product

- The backpropagation algorithm:
 - for each batch $\{(x_n, y_n)\}$, and for all i, j and l, it is desired to efficiently compute

$$\nabla C_{\rm in} : \frac{\partial C_{\rm in}}{\partial w_{ij}^{(l)}} \tag{92}$$

- backpropagation is an algorithm that efficient computes (92)
 - * backpropagation is usually applied using the batch gradient descent update rule
- to express (92) in terms of sensitivity vector $\delta^{(l)}$, first apply the chain rule, then substitute the components with (86, 87)

$$\frac{\partial C_{\text{in}}}{\partial w_{ij}^{(l)}} = \frac{\partial C_{\text{in}}}{\partial \boldsymbol{s}_{j}^{(l)}} \cdot \frac{\partial \boldsymbol{s}_{j}^{(l)}}{\partial w_{ij}^{(l)}}
= \boldsymbol{\delta}_{j}^{(l)} \cdot \boldsymbol{x}_{i}^{(l-1)} \Rightarrow
\frac{\partial C_{\text{in}}}{\partial \boldsymbol{W}^{(l)}} = \boldsymbol{x}^{(l-1)} \cdot \boldsymbol{\delta}^{(l)}$$
(93)

- * recursively computation of $\delta^{(l)}$ (90), enables the backpropagation algorithm
- in forward propagation, the nonlinearity was the activation $\theta(.)$, whereas in backpropagation, it is multiplication by $\theta'(s_i^{(l)})$
- the backpropagation algorithm described above is SGD based, where the weights change after processing each data sample (x_i, y_i)
- in practice, multiple δ s are computed before making a weight update
- the size of the samples grouped together is called the *mini batch size*
- more specifically, if the mini-batch size is m, then from (93)

$$\boldsymbol{W}^{(l)} \to \boldsymbol{W}^{(l)} - \frac{\eta}{m} \sum_{x} \boldsymbol{x}^{(l-1)} (\boldsymbol{\delta}_{x}^{(l)})^{T}$$
(94)

B. Hyper-parameters

- General remarks:
 - hyper-parameters are variables set before actually optimizing the weights of the NN
 - finding a pseudo-optimal set of such parameters is a major challenge
 - randomly generated parameters do in general better than grid search
- An epoch is a single forward and backward pass of the whole dataset
- List of hyper-parameters include:
 - 1) hidden layers, & nodes per layer
 - 2) cost function
 - 3) activation
 - 4) epochs & mini batch sizes
 - 5) learning rate

- 6) generalization parameter
- 7) weight initialization
- Weight initialization:
 - initialization is critical for deeper networks
 - if initial weights are large then many nodes will saturate
 - if initial weights are small then many node outputs stay close to zero, and weights do not get updated
 - with fan-in d, it is recommended to generate weights using

$$\mathcal{N}\left(0,\sqrt{\frac{\alpha}{d}}\right) \tag{95}$$

where α is a hyper-parameter that is usually set to $\alpha = 1$ for tanh and $\alpha = 2$ for ReLU neuron models

- bias is not sensitive to initialization, so can be set to 0, to Gaussian with standard deviation of one, or as in (95)

C. Visualization

- General remarks:
 - NN have high dimensionality and are hard to visualize
 - in dimensionality reduction high-dimensional data is mapped into lower dimensional data
 - * one such method is PCA, see Appendix XV
 - * another approach is to find maps that are distance preserving
 - visualization addresses the problem of visualizing high dimensional data
 - the space traversed by $\{x_n\}$, at the input if a NN, is a very small subset of \mathcal{R}^d
- Multidimensional scaling
 - multidimensional scaling, or MDS, finds a distance preserving map by minimizing the cost function

$$\sum_{i,j} (d_{i,j}^* - d_{i,j})^2 \tag{96}$$

where $d_{i,j}^*$, and $d_{i,j}$ are the distances between x_i and x_j in the original and reduced spaces respectively

- Sammon's mapping:
 - in Sammons mapping, more emphasis is given to preserving the distances between nearby points than between those which are far apart
 - the associated cost function is a modification of (96)

$$\sum_{i,j} \frac{(d_{i,j}^* - d_{i,j})^2}{d_{i,j}^*} \tag{97}$$

- Graph based visualization:
 - similar to Sammon's mapping, graph based visualization prioritizes local or nearby points
 - in a *nearest neighbor graph*, input vectors are the nodes and each node is connected to the three points that are closest to it in the original space
 - the associated cost function is

$$\sum_{i,j} \frac{1}{d_{i,j}} + \frac{1}{2} \sum_{(i,j) \in E} (d_{i,j} - d_{i,j}^*)^2$$
(98)

- t-SNE:
 - t-SNE stands for t-distributed stochastic neighbor embedding
 - t-SNE finds an embedding in two dimensions, such that locally, pairwise distances are conserved
 - t-SNE tries preserve the topology of the data
 - * for every point, t-SNE constructs a notion of which other points are its neighbors, trying to make all points have the same number of neighbors
 - * then it tries to embed them so that those points all have the same number of neighbors
 - * t-SNE is similar to the graph based visualization, but instead of just having points be neighbors or not neighbors, t-SNE has a continuous spectrum of having points be neighbors to different extents
- Deconv approach to visualization:
 - to visualize some neuron, forward propagate signals to that neuron
 - set that neuron gradient to one and set all other neuron gradients in that layer to zero
 - back propagate and reconstruct the input

- in (90), set

$$S_j^{(l)} \triangleq \sum_{k=1}^{d^{(l)}} w_{jk}^{(l)} \boldsymbol{\delta}_k^{(l)} \tag{99}$$

- with guided backpropagation, backpropagation (90), is modified to

$$\boldsymbol{\delta}_{j}^{(l)} = \theta'(\boldsymbol{s}^{(l)}) \left(S_{j}^{(l+1)} > 0 \right) S_{j}^{(l+1)} \tag{100}$$

i.e. only positive gradients are passed on to the previous layer, and so only neurons that positively help activation are incorporated

- with backward deconvnet

$$\boldsymbol{\delta}_{j}^{(l)} = (S_{j}^{(l+1)} > 0) S_{j}^{(l+1)} \tag{101}$$

- Examples of visualization:
 - at first, or lowest, layer can use weights for visualization
 - * the filters look like Gabor filters, see Section XV
 - at the top layers, check what set of stimuli does a neuron responds to
 - in an occlusion experiment the classification decision is monitored as a squared section of the input is zeroed out and moved around
- Optimization over image approaches:
 - the goal is to find an image that maximizes some score,
 - start by feeding all zeros
 - set the gradient of the scores vector to be [0, 0,1,, 0], then back-propagate to image
 - update image
 - * can blur it, or zero pixels with small norm
 - forward propagate
 - keep iterating
- Adversarial examples:
 - can take an arbitrary image, can make targeted but minor changes to the input so that it will be classified to any other false object
 - presently this is a concern

D. Deep learning

- Deep neural networks & deep learning:
 - the quintessential example of deep neural networks (DNN) is the feedforward ANN
 - * DNN includes more hidden layers, and each hidden layer in general includes more neurons
 - in recent years, deep learning (DL) has become the most popular approach to developing AI
- Shallow versus deep NNs:
 - even though any function could be computed using a shallow network, it may not be a good choice
 - with DNN, it is possible to construct a solution through multiple layers of abstraction
 - for some functions very shallow circuits require exponentially more elements to compute a problem than do DNNs
- Unstable gradient as main challenge to DNNs:
 - in general, the gradient in DNNs is unstable, tending to either explode or vanish in earlier layers
 - * this is due to the fact that the updated quantity is the product of terms from all the later layers
 - when the gradient tends to get smaller as we move backward through the hidden layers, then neurons in the earlier layers learn slower than neurons in later layers
 - * this is known as the vanishing gradient problem
 - * it occurs due to product of small quantities
 - in other instances, the gradient gets larger in earlier layers
 - * this is known as the exploding gradient problem
 - * it occurs if the weights in the product are of large quantities
- The traditional ML approach
 - to address unstable gradient problem, traditional ML approach was based on first developing hand-tuned feature extractors
 - kernel methods, Appendix XIII, can handle non-linearities but do not generalize well in practice

- hand tuned feature extractors are not robust
- it is difficult to design reliable feature extractors

• Deep belief networks:

- deep belief networks, or DBNs, are a class of DNN that use RBMs (125), to train the initial layers
- they were the first generation of DNNs to address unstable gradient problem

• Hierarchical approach in DL:

- DL methods are representation-learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level
- deep layers allow for hierarchical feature representations
- with the composition of enough such transformations, very complex functions can be learned
- each module in the stack transforms its input to increase both the selectivity and the invariance of the representation
- for classification tasks, higher layers of representation amplify aspects of the input that are important for discrimination and suppress irrelevant variations

• Enablers of DNN:

- 1) Diverse data availability
 - availability of digitized data due to internet, cloud etc.
 - techniques to artificially expand the training data, see Section I-B
- 2) Improvements in learning algorithms
 - introduction of new activations such as ReLU (40)
 - regularization algorithms such as dropout
 - automatic feature extractors using convolutional & pooling layers
- 3) Hardware acceleration
 - Moore's law
 - Graphic Processing Units (GPU), see Section X

E. Convolutional, inception & residual networks

- Convolutional neural network:
 - a convolutional neural network, or CNN, is a class within DNN
 - the *Neocognitron* (Fukushima, 1980) introduced a powerful model architecture for processing images, inspired by the structure of the mammalian visual system
 - Neocognitron is the basis for CNN network as proposed by LeCun et al., in 1998 used in vision tasks
- Network size concerns & remedies:
 - if size of data set is fixed, larger network usually means more parameters, making it prone to overfitting
 - larger networks increase computational resources
 - to remedy these two issues, additional constraints are introduced into the network such as regularization, sparsity, or structure
 - sparsity replaces the fully connected layers by sparser ones
 - * todays computing infrastructures are inefficient when it comes to numerical calculation on non-uniform sparse data
 - convolutional neural networks introduce some form of constraint to the network
- CNNs use three ideas:
 - 1) Local receptive fields
 - 2) Shared weights
 - 3) Pooling
- Local receptive fields & stride length:
 - usually input data is represented as a rectangular format, rather than linear
 - in ANN there is full connectivity between layers (l-1) and l
 - in a CNN the connections are in a small, localized regions of the input image
 - the region in the input image that is connected to a hidden neuron is called the local receptive field or a patch
 - different hidden neurons cover different local receptive fields
 - adjacent local receptive fields are separated by one or more pixels, known as the *stride length*
- Shared weights:
 - the set of hidden units that cover all the receptive fields, all share the same weights and biases

- * the shared weights and bias are often said to define a kernel or filter bank
- every element of this set is extracting the same feature, but at a different position
 - * the map from the input layer to the hidden layer is sometimes called a feature map
- the weights and biases learned for a given output layer are shared across all patches in a given input layer
- Plurality of features:
 - in many visual applications, data at each layer is presented in 3-dimensions $(H \times W \times F)$
 - * the amount of filters F, in a convolutional layer is called the *filter depth*
 - * for input layer, the feature set could be the three primary colors
 - * for hidden layers, multiple feature maps are usually extracted using multiple filter banks
 - consider the convolutional layer connection

$$(H \times W \times F_1) \xrightarrow{F_2 \times (3 \times 3 \times F_1)} (H \times W \times F_2)$$
 (102)

where each filter has $3 \times 3 \times F_1$ inputs, & for each location on the output layer there are F_2 filters

- F_1 & F_2 refer to the feature sets at first and second layers
- Convolutional layer:
 - a hidden layer with shared filter bank is called a convolutional layer since the output is the convolution of a rectangular window and the input
 - it is common to zero pad the border if hidden layer sizes need to be preserved,
 - convolutional filters
 - * provides translation invariance of images
 - * dramatically reduces the number of parameters, compared to full FC layers
- On filter size trends: (1×1) convolutions
 - recently, multiple layers of smaller sized filters are chosen over a single layer of larger sized filters
 - * such architectures, in general, use less memory, are more computationally efficient, & provide more non-linearities
 - can factor $(n \times n)$ convolutions into $(1 \times n)$ & $(n \times 1)$
 - in the extreme, can have $(1 \times 1 \times F)$ layers
- Example on filter size tradeoffs: a bottleneck architecture
 - consider the connection architecture of (102) with $F_1 = F_2 = F$
 - this connection architecture can be replaced by a bottleneck architecture, where

$$(H \times W \times F) \xrightarrow{\frac{F}{2} \times (1,1,F)} (H \times W \times \frac{F}{2}) \xrightarrow{F/2 \times (3,3,\frac{F}{2})} (H \times W \times \frac{F}{2}) \xrightarrow{F \times (1,1,\frac{F}{2})} (H \times W \times F)$$
 (103)

- * first, the layer size is reduced to $(H \times W \times F/2)$ by using F/2 $(1 \times 1 \times F)$ filters per position
- * then another layer of same size is generated by using F/2 (3 × 3 × F/2) filters
- * finally, original layer size $(H \times W \times F)$ is restored using F $(1 \times 1 \times F/2)$ filters
- Filter implementation:
 - im2col: convert both the input and weights into matrices, so that a layer update reduces to matrix multiplication
 - alternatively, for large filters, can use FFT
- Super-parameters needed for convolutional layer:
 - 1) Features or filer banks
 - choose a power of 2, like 64
 - 2) Filter size, or local receptive fields
 - use smaller sizes at lower layers and larger sizes for higher layers
 - 3) The stride length
 - choose 1 or 2
 - 4) Zero padding
- Pooling layer:
 - a pooling layer is usually used after convolutional layers
 - a pooling layer simplifies, or condenses, the output information from the convolutional layer
 - $\ast\,$ the role of the pooling layer is to merge semantically similar features into one
 - * each feature map is pooled separately
 - conceptually, the benefit of the max pooling operation is to reduce the size of the input, and allow the neural network to focus on only the most important elements

- pooling reduces the dimension of the representation and creates an invariance to small shifts and distortions
 - * pooling reduces the number of parameters needed in later layers
- common pooling strategies do not introduce new parameters but do introduce new hyper-parameters, including pooling size and pooling stride
- the pooling operation is applied individually for each depth slice
 - * for a pooling layer the output depth is the same as the input depth
- (2×2) pooling with stride of 2 is common

• Pooling methods:

- with max-pooling, a unit simply outputs the maximum activation in an input region

$$y = \max_{i}(X_i) \tag{104}$$

- with average pooling, the average signal is picked

$$y = \operatorname{mean}_{i}(X_{i}) \tag{105}$$

- with L2 pooling, the square root of the sum of the squares of the activations are computed

$$y = \sqrt{\sum_{i} X_i^2} \tag{106}$$

- Hierarchical approach to the softmax output layer:
 - when there are large number of classes, the softmax output layer becomes complex
 - a hierarchical approach introduces classes c_t , where multiple classes would belong to class c_t
 - the conditional probably distribution can then be factored as

$$p(o_t|\text{history}) = p(c_t|\text{history}) p(o_t|c_t)$$
(107)

- Inception network:
 - inception is computationally efficient architecture
 - inception-v1, see [3]:
 - * an inception module or layer, is constructed by the concatenation of various filters such as pooling operations & convolutional filters of different width
 - * an inception layer also uses filter size reduction as discussed in (102)
 - * an *inception network* is a network consisting of Inception modules, stacked upon each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid
 - inception-v2 introduced batch normalization (12)
 - inception-v4 includes more diverse types of inception & reduction layers [4]
- Residual connections:
 - introduced by He et al. in 2015
 - residual connection utilize additive merging of signals from different layers
 - if x is the ReLU output from previous layer, then residual connection computes the next layer output as

$$y = \text{ReLU}[\text{Conv}(\text{Conv}(x)) + x] \tag{108}$$

- Trends:
 - smaller filters
 - deeper architectures
 - possibly dropping pooling
 - * recent datasets are so big and complex we are more concerned about under-fitting
 - * dropout is a better regularizer
 - * pooling results in a loss of information
 - dropping some or all FC layers
 - special layers such as residual connections, inception layers or some combinations of the two

F. Transfer Learning

- Transfer learning involves taking a pre-trained neural network and re-adapting it to a new, different data set
- Approaches to transfer learning:
 - 1) new data set is small, new data is similar to original training data
 - retrain only top FC layer
 - 2) new data set is small, new data is different from original training data
 - replace all FC layers and last convolutional layer with a single FC layer
 - this is known as feature extraction
 - 3) new data set is large, new data is similar to original training data
 - remove the last FC layer and replace with a layer matching the number of classes in the new data set
 - initialize the rest of the weights using the pre-trained weights
 - re-train the entire neural network
 - this is known as finetuning
 - 4) new data set is large, new data is different from original training data
 - remove the last FC layer and replace with a layer matching the number of classes in the new data set
 - retrain the network from scratch with randomly initialized weights
- With modest training data, can retrain both middle and upper layers
 - re-learn middle layers with 1% learning rate of original network
 - re-learn upper layers with 10% learning rate of original network
- Popular networks to start from:
 - 1) LeNet [5]
 - the first successful applications of CNN, in 1998
 - best known for reading zip codes, digits, etc.
 - 2) AlexNet [6]
 - popularized CNN in computer vision by winning ImageNet 2012, by a significant margin
 - compared to LeNet, its deeper, bigger, & featured convolutional layers stacked on top of each other
 - used ReLU activation and dropout to avoid overfitting
 - 8 layers, 5 convolution layers followed by 3 FC layers
 - 3) ZFNet [7]
 - winner of ImageNet 2013
 - compared to AlexNet, the size of the middle convolutional layers were expanded and the stride and filter size on the first layer were reduced
 - 4) GoogLeNet [3]
 - winner of ImageNet 2014
 - the GoogLeNet name refers to a particular incarnation of the inception architecture used in the submission for the ILSVRC 2014 competition
 - it is known to be fast and has potential for real-time applications
 - 22 layers with parameters, i.e. without pooling
 - 5) VGGNet [8]
 - from Visual Geometry Group at Oxford University
 - the runner-up in ImageNet 2014
 - it features a homogeneous architecture that only performs (3×3) convolutions with (2×2) pooling layers, followed by three layers of FC layers
 - known to be a flexible network
 - but it is expensive to evaluate and uses a lot more memory and parameters (140M)
 - 19 total layers
 - 6) ResNet [9]
 - winner of ImageNet 2015
 - ResNet, short for residual network
 - ResNet is an ultra-deep network with 152 layers
 - ResNet uses residual connections (108), batch normalization (12), and (1×1) convolutional filters (102)
 - * ResNet does not include FC fully layers at the top of the network
 - ResNet is currently the state of the art of CNNs, and are the default choice for using CNNs in practice

V. RECURRENT NEURAL NETWORKS WITH SUPERVISION

· Overview:

- Recurrent Neural Networks (RNN) entail feedback,
- RNN networks are effective for
 - * visual attention systems work sequentially on an input,
 - * systems that receive a sequence of inputs, such as sentiment analysis,
 - * systems that produce a sequence of outputs, for example, captioning an image,
 - * systems with both sequential inputs and outputs such as machine translation,
- RNNs can be viewed as programs, or state machine,
- the final state vector of an RNN's hidden units may represent the thought expressed by the sentence.

• RNN model:

- if x is the input, and h is output of the hidden layer, then

$$\boldsymbol{h}_{t} = f\left(\boldsymbol{x}_{t}, \boldsymbol{h}_{t-1}\right),\tag{109}$$

- if hidden layers form a single layer,

$$\boldsymbol{h}_{t} = \theta \left(W^{(x)} \boldsymbol{x}_{t} + W \boldsymbol{h}_{t-1} \right), \tag{110}$$

- alternatively, if h is the signal level at the hidden layer, then the an RNN can be modeled as

$$\boldsymbol{h}_t = W^{(x)} \boldsymbol{x}_t + W \, \theta(\boldsymbol{h}_{t-1}), \tag{111}$$

- then the output is of the form

$$\hat{y}_t = W^{(s)} \,\theta(\boldsymbol{h}_t). \tag{112}$$

• Deep RNN:

- stack multiple RNN layers, where the hidden state of one RNN is the input of the next RNN,
- there are multiple hidden layers between inputs and outputs.
- Bidirectional RNN:
 - causal is forward, anti-causal in backwards, like BCJR,
 - the output is a function of the concatenation of the two hidden layer outputs.
- Deep bidirectional RNN:
 - a deep and bidirectional extensions of an RNN can be combined to create a deep bidirectional RNN.
- Encoder and decoders:
 - for some applications, such and language translation, can think of the system model of doing two tasks, encoding and decoding
 - in the basic RNN model (111)
 - * encoding occurs while there is an incoming stream of inputs x_t ,
 - * decoding occurs when there is an output \hat{y}_t ,
 - assume decoder starts after encoder ends.
- Extensions to RNN for encoders/decoders:
 - this basic model (111), can be extended in multiple ways:
 - * use different weights W', for decoding,

$$\boldsymbol{h}_{D,t} = W' \, \theta(\boldsymbol{h}_{t-1}), \tag{113}$$

* remember last state of the encoder h_T ,

$$\boldsymbol{h}_{D,t} = W' \, \theta(\boldsymbol{h}_{t-1}) + W^T \theta(\boldsymbol{h}_T) \tag{114}$$

* include the previous output \hat{y}_{t-1} ,

$$\mathbf{h}_{D,t} = W' \,\theta(\mathbf{h}_{t-1}) + W^T \,\theta(\mathbf{h}_T) + W^y \,\hat{y}_{t-1}. \tag{115}$$

- Vanishing / exploding problem in RNN:
 - denote the cost function at time t as E_t ,

- the derivative of E_t w.r.t. W can be expressed as,

$$\frac{\partial E_t}{\partial W} = \sum_{\tau=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_\tau} \frac{\partial h_\tau}{\partial W}$$
(116)

- using (111), expand one of Jacobian terms in (116),

$$\frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{\tau}} = \prod_{j=\tau+1}^{t} \frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}}$$

$$= \prod_{j=\tau+1}^{t} W^{T} \operatorname{diag}[\theta'(\mathbf{h}_{j-1})],$$
(117)

- then the gradient becomes the product of all these Jacobian matrices which becomes very small or very large quickly,
- for exploding problem can saturate the gradient,
- for vanishing problem initialize W = I and use ReLU.
- Learning with long term memory:
 - theoretical and empirical evidence shows that it is difficult to learn to store information for long sequences,
 - three approaches include,
 - * gating techniques,
 - * Neural Turing Machine, where the network is augmented by a tape-like memory that the RNN can choose to read from or write to,
 - * memory networks, where a regular network is augmented by a kind of associative memory.

Gating:

- gating is a technique that helps the network to decide when to forget or remember an input,
- gating techniques use RNN where each hidden layer is more complex,
- two popular gating techniques are GRU and LSTM,

GRU:

- the ideas of Gated Recurrent Units (GRU) are,
 - * to keeps around memories to capture long distance dependencies,
 - * allow error messages to flow at different strengths depending on inputs,
- the GRU first computes two gates, update gate z_t , and the reset gate r_t ,

$$z_t \triangleq \sigma \left(U^{(z)} x_t + W^{(z)} h_{t-1} \right),$$

$$r_t \triangleq \sigma \left(U^{(r)} x_t + W^{(r)} h_{t-1} \right),$$
(118)

- * σ is the sigmoid activation (34),
- * h_t is the output of the activation,
- * think of these two gates as a special hidden layers,
- intermediate memory content is

$$\tilde{h}_t \triangleq \tanh(Wx_t + r_t \circ Uh_{t-1}),\tag{119}$$

where o is the Hadamard multiplication,

the hidden layer is updated as

$$h_t \triangleq z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t. \tag{120}$$

LSTM:

- Long short-term memory (LSTM) [10], is a popular and powerful tool,
- LSTM is similar to GRU but three gates are used rather than two: input gate i_t , forget gate f_t , and output gate o_t ,

$$i_{t} \triangleq \sigma \left(W^{(i)} x_{t} + U^{(i)} h_{t-1} \right),$$

$$f_{t} \triangleq \sigma \left(W^{(f)} x_{t} + U^{(f)} h_{t-1} \right),$$

$$o_{t} \triangleq \sigma \left(W^{(o)} x_{t} + U^{(o)} h_{t-1} \right),$$

$$(121)$$

- the intermediate memory cell \tilde{c}_t , the final memory cell c_t , and the final hidden state h_t , are respectively,

$$\tilde{c}_{t} \triangleq \tanh\left(W^{(c)}x_{t} + U^{(c)}h_{t-1}\right),
c_{t} \triangleq f_{t} \circ c_{t-1} + i_{t} \circ \tilde{c}_{t},
h_{t} \triangleq o_{t} \circ \tanh(c_{t}),$$
(122)

- c_t introduces additive interaction, similar to a ResNet,
- these additions also help backpropagation,
- multiple LSTM's are usually stacked up to generate a deep LSTM.
- · Recursive neural networks are covered in Section IX.

VI. UNSUPERVISED LEARNING

- Unsupervised learning:
 - the goal of unsupervised learning is to learn some structure of the data, without labels or teacher,
 - still mostly a research topic,
 - examples include
 - * clustering,
 - · k-means clustering is unsupervised clustering algorithm, not based in NN, see Appendix XV.
 - * dimensionality reduction & feature learning,
 - · see autoencoders below,
 - * generative modeling,
 - · see variational autoencoders below.
- · Hebbian rule:
 - neurons that fire together, wire together,
 - more specifically, Hebbian rule, is a simple, unsupervised learning algorithm [11], where the weight w_{ij} connecting neurons x_i to x_j is updated proportional to

$$\frac{dw_{ij}}{dt} \propto \operatorname{correlation}(x_i x_j). \tag{123}$$

- Energy-based models:
 - energy-based models associate a scalar energy to each configuration of the variables of interest,
 - learning corresponds to modifying the energy function so that its shape has desirable properties,
 - * for example, we would like desirable configurations to have low energy,
 - Hopfield networks and Boltzmann machines are examples of energy-based models.
- Hopfield networks:
 - a Hopfield network is an undirected graph with only visible nodes,
 - a Hopfield model is an energy-based model, where the goal is to make the N samples $\{x_i\}$, the stable states of the network,
 - the neurons can be activated synchronously (simultaneously), or asynchronously (one at a time),
 - applications:
 - * associative memories, or content addressable memories,
 - * optimization problems.
- Hopfield network learning:

 - let $x_i^{(n)} \in [-1,1]$, be the activation output, the weights are set based on Hebbian learning (123),

$$w_{ij} \sim \sum_{n \le N} x_i^{(n)} x_j^{(n)},$$
 (124)

- the resulting learning algorithm is unsupervised,
- the weights are symmetric, i.e., $w_{ij} = w_{ji}$,
- there are no self connections, i.e., set $w_{ii} = 0$.
- Boltzmann machines & RBM:
 - a Boltzmann machine differs from a Hopfield network in two ways,
 - * the Boltzmann machine also allows hidden nodes,
 - * the Boltzmann machine uses stochastic neuron, with probabilistic firing mechanism,
 - a restricted Boltzmann machine (RBM) is a Boltzmann machine with a bipartite structure

$$x \leftrightarrow h$$
 (125)

where the hidden nodes constitute one layer and visible nodes the other,

* there are no connections within a layer.

· Autoencoders:

- an *autoencoder* is trained to encode the input x into some representation c(x), so that x can be reconstructed from c(x),

$$x \xrightarrow{\text{encoder}} c(x) \xrightarrow{\text{decoder}} x$$
 (126)

- * autoencoders are symmetric in the sense that the encoder and a decoder could share weights,
- * the encoder could be a deep network,
- * c(x) is viewed as a lossy compression of x,
- * can think of c(x) as features of x,
- the associated cost function is

$$-\log p(\boldsymbol{x}|c(\boldsymbol{x})),\tag{127}$$

- as an example, if there is one linear hidden layer and the mean squared error criterion is used to train the network, then the k hidden units learn to project the input in the span of the first k principal components of the data,
- an autoencoder is usually used as component of neural network, such as feature extraction, and dimensionality reduction, where only the encoder is used after training,
 - * autoencoders are not very effective in training deep networks.

• Autoencoder versus RBM:

- taking h = c(x) in (125, 126), an autoencoder and RBM become equivalent when,
 - * the encoder is one layer,
 - * the encoder and decoder are symmetric and share weights,
 - * an RBM uses the same activation as an autoencoder.

• Variation autoencoder:

- using a Bayesian approach on an autoencoder, a variational autoencoder (VAE) can generate new data,
 - * generating new data from available one is called generative modeling,
- in VAE, $z \triangleq c(x)$ (see (126)) is called the *latent variables*,
 - * think of z_i as an object or a high level attribute of an object,
 - * P(z) is assumed to be diagonal, unit Gaussian random vector,
- assume P(x|z) & P(z|x) are also diagonal Gaussian, with mean and variances of (μ, Σ) ,
- the encoder & decoder are used to predict the corresponding means & variances,

$$z \in P(z) \xrightarrow{\text{VAE decoder}} (\mu^x, \Sigma^x),$$

$$x \xrightarrow{\text{VAE encoder}} (\mu^z, \Sigma^z),$$
(128)

- during training the process is as follows

$$x \to (\mu^z, \Sigma^z) \to z \to (\mu^x, \Sigma^x) \to x',$$
 (129)

- the loss function is the reconstruction loss which could be based on KL divergence rather than L2,
- to generate data,

$$z \to (\mu^x, \Sigma^x) \to x.$$
 (130)

- Generative adversarial networks:
 - * generative adversarial networks is a framework for estimating generative models via an adversarial process, with two components
 - · a generative model (G), similar to VAE decoder, generates fake data,
 - · a discriminator model (D), is a binary classifier that decides whether a data is real or generated by G.
 - * generator and discriminator model are trained together,

VII. APPLICATIONS

- Andrew Ng: AI is the new electricity
 - rule of thumb: what humans can do in less than a second
- Applications:
 - vision, Section VIII
 - automatic speech recognition & natural language processing, Section IX
 - health care & biomedicine, Section VII-A
 - web searches, content filtering & online advertising

- * what ad to provide to a given user?
- personal assistant such as e-mail smart reply
- recommendations on e-commerce web sites
 - * Netflix
- automotive & robotics
- analyzing particle accelerator data
- video games
- finance
- education
- Search engine:
 - given a query, a search engines can also search for other phrases that have word vectors close to the query, see Section IX,
 - given a query and a document, a neural network can return a score for the query, document pair.
- Some startups:
 - Capio, clarifai, calrify, Dato, emotient, enlitic, ersatz labs, EyeEm, herta security, IFLYTEK, Intelligent Voice, iQIY, Letv, megv11, MetaMind, NERVANA SYSTEMS, rbeus, SENSETIME, Sogou, Unisound, VIONVISION, zebra.

A. Health care & Biomedicine

- Medical image understanding
 - radiology
- Massive amount of genomic data availability
- Bioinformatics:
 - can think of gene expression as object classification
 - drug discovery
- Molecular activity prediction

VIII. VISUAL RECOGNITION

• Generalities:

- vision recognition is also known as image perception, machine vision, or computer vision
- computer vision enables computers to see, identify and process images in the same way that human vision does, and then provide appropriate output
 - * the goal of computer vision is to extract useful information from an image
- a camera looks at a 3D object and transforms them to 2D image
 - * this transformation is modeled by a camera matrix C
 - * computer vision can infer depth resolution, i.e. 3D
- compared to other sensors
 - * images are characterized as having high spatial resolution
 - * cameras and image processing are cheap
- A list of vision tasks:
 - classification (of a single object)
 - * classification implies single object classification
 - * classification partitions images to C classes, or labels
 - * e.g., face recognition, identity verification
 - localization (put box around an object), see below
 - classification + localization
 - * generates both the label as well as the location of an object
 - detection (classification + localization of variable number of objects)
 - semantic segmentation (classification at pixel level)
 - instance segmentation
 - attention models
 - video & action recognition
 - 3D and depth interpretation

• Localization:

- localization implies localizing a classified object
- given an image, generate box around object
 - * box means object coordinates at upper left corner (x, y), width and height (w, h)
 - * sometimes referred to as bounding-box regression
- can be approached as a regression problem, where the metric is the L2 distance between estimated box and ideal box coordinates
- metric can also be generated as the intersection of box and object, divided by their union
- Localization of K objects:
 - K is the number of objects in an image
 - for example, K = 4

- in the above example, the output is 4K values
- Image location to other regression tasks:
 - the localization regression technique can also be used to characterize other real valued properties of an object
 - for example, human pose estimation
- Detection & mAP:
 - detection is the classification and the localization of variable number of objects,
 - evaluation is through the metric mean average precision, or mAP
 - * mAP computes average precision separately for each class, then averages over classes,
 - * $0 \le mAP \le 100$, high is good

A. Color

- · Color space:
 - a color space is a specific organization of colors
 - a color space provides a way to categorize colors and represent them in digital images
 - the color space of a pixel is usually represented by a triplet while greyscale is a scalar

· Hue:

- hue represents color independent of any change in brightness
- hue is in degrees on the color wheel
 - * hue is a cylindrical-coordinate representation
- let $V_{\max} \triangleq \max(R, G, B)$, $V_{\min} \triangleq \min(R, G, B)$ and $\Delta = V_{\max} V_{\min}$, then the hue H is

$$H = \frac{30}{\Delta}(G - B),$$
 if $V_{\text{max}} = R$
$$H = 60 + \frac{30}{\Delta}(B - R),$$
 if $V_{\text{max}} = G$ (132)
$$H = 120 + \frac{30}{\Delta}(R - G),$$
 if $V_{\text{max}} = B$

- * 0 (or 360/2) is red, 120/2 is green, 240/2 is blue
- Lightness or value:
 - lightness measures the relative lightness or darkness of a color
 - lightness is a percentage value
 - * 0% is dark (black)
 - * 100% is light (white)
 - if $V_{\max} \triangleq \max(R, G, B)$, and $V_{\min} \triangleq \min(R, G, B)$, then the lightness L is

$$L = \frac{V_{\text{max}} + V_{\text{min}}}{2} \tag{133}$$

• Saturation:

- saturation is a measurement of colorfulness
 - * as colors get lighter and closer to white, they have a lower saturation value, whereas colors that are the most intense, like a bright primary color have a high saturation value
- saturation is a percentage value
 - * 100% is the full colour
- if $V_{\text{max}} \triangleq \max(R, G, B)$, and $V_{\text{min}} \triangleq \min(R, G, B)$, then the saturation S is

$$S = \frac{V_{\text{max}} - V_{\text{min}}}{V_{\text{max}} + V_{\text{min}}} \quad \text{if } L < 0.5$$

$$S = \frac{V_{\text{max}} - V_{\text{min}}}{2 - (V_{\text{max}} + V_{\text{min}})} \quad \text{if } L \ge 0.5$$

$$(134)$$

- Color space representations:
 - RGB (Red, Green, Blue)
 - BGR (Blue, Green, Red)
 - HSV (Hue, Saturation, Value)
 - HLS (Hue, Lightness, Saturation)
 - LUV (Luminance, while $(x, y) \rightarrow (u, v)$)
 - Lab (Lightness, a and b for the color opponents green-red and blue-yellow)

B. Dataset

- Data sets:
 - MNIST, see below
 - CIFAR, see below
 - ImageNet
 - * ImageNet Large Scale Visual Recognition Challenge, or ILSVRC
 - * a database of labeled images
 - vehicle image database, GTI, http://www.gti.ssr.upm.es/data/Vehicle_database.html
 - KITTI, http://www.cvlibs.net/datasets/kitti/
 - PASCAL VOC
 - MS-COCO
- · MNIST data set:
 - MNIST data set is a database of the 10 digits

- http://yann.lecun.com/exdb/mnist/
- NIST stands for the United States' National Institute of Standards and Technology
- MNIST is a modified subset of two data sets collected by NIST
- specifics:
 - * the images are greyscale, (28×28) pixels
 - * training data contains 60,000 images
 - · these images are scanned handwriting samples from 250 people, half of whom were US Census Bureau employees, and half of whom were high school students
 - * test data contains 10,000 images
 - the test data was taken from a different set of 250 people than the original training data (a group split between Census Bureau employees and high school students)

· CIFAR:

- https://www.cs.toronto.edu/~kriz/cifar.html
- the CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset
- CIFAR-10 dataset:
 - * 60,000 images
 - · 50,000 training images and 10,000 test images
 - * 32×32 colour images
 - * 10 classes
 - · with 6000 images per class
- CIFAR-100 dataset:
 - * like the CIFAR-10, except it has 100 classes containing 600 images each
 - * there are 500 training images and 100 testing images per class

• Formats:

- LMDB
- HDF5

C. Image Processing

- Edge detection:
 - an edge detection algorithm extracts edges from an image
 - an image is converted to a binary image where the ones correspond to the edges
 - approaches to detect edges
 - gradient based, for example by using Sobel operator or Canny Edge detection, where first gradient is taken and then passed through a threshold
 - * threshold based, by looking into some of the color space attributes and then passing it through a threshold
- Image convolution:
 - an image f(x,y) is convolved with a filter, or mask h(x,y)

$$g(x,y) = h(x,y) * f(x,y)$$
 (135)

- h(x,y) is $(n \times n)$, when n is odd, e.g. n=3
- applications include blurring, sharpening, edge detection, noise reduction etc.
 - * Gaussian smoothing
 - * Sobel operator
- Sobel operator:
 - the Sobel operators or filters are defined as

$$S_x \triangleq \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}, \qquad S_y \triangleq \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$
 (136)

- the Sobel operators take the derivative of the image in the x (horizontal) or y (vertical) direction
- Canny Edge Detection:
 - developed by John F. Canny in 1986
 - the goal is to identify the boundaries in an image
 - the Sobel operator is at the heart of the Canny edge detection algorithm

- the following steps are usually included:
 - * convert image to greyscale
 - * apply Gaussian smoothing function to suppress noise and spurious gradients
 - * compute the gradient
 - * have two thresholds, where all edges detected above the high threshold are retained while pixels between two threshold are retained if connected to strong edges
- The Hough Transform & lines:
 - developed by Paul Hough in 1962
 - Hough transform represents lines in parameter space, or in Hough space
 - * the line y = mx + b (in *image space*) transforms to the point (m, b) in Hough space

$$(x,y) \to (m,b) \tag{137}$$

- * a point (x_o, y_o) transforms to the line $(m, y_o mx_o)$ over variable m
 - · a line is transformed to a point
 - · a point is transformed to line
- * a line that passes through two points in image space is the intersection of the two lines, associated with the two points, in Hough space
- instead of detecting lines, from multiple points, in image space, can detect intersection of lines in Hough space
- Hough Transform in polar coordinates:
 - polar coordinates (ρ, θ) , are used to address vertical line representations with $m = \infty$,
 - draw a segment s, from origin that intersects perpendicular to y = mx + b
 - $* \rho$ is the perpendicular distance of s
 - * θ is the angle at origin from x-axis to s
 - since the product of the slopes of perpendicular lines is -1

$$-1 = m \cdot \tan \theta \Rightarrow m = -\frac{\cos \theta}{\sin \theta} \tag{138}$$

- using simple geometry

$$\sin \theta = \frac{\rho}{h} \Rightarrow b = \frac{\rho}{\sin \theta} \tag{139}$$

- substituting m and b into the line equation

$$y = mx + b$$

$$= -\frac{\cos \theta}{\sin \theta} x + \frac{\rho}{\sin \theta} \Rightarrow$$

$$x \cos \theta + y \sin \theta = \rho$$
(140)

- a point in image space (x_o, y_o) corresponds to the sinusoidal equation in Hough space

$$x_o \cos \theta + y_o \sin \theta = \rho \tag{141}$$

 detecting lines (from points) in image space becomes equivalent to detecting intersection of sinusoidal equations in Hough space

• Distortion:

- during 3D to 2D transformation of a camera capture, distortion changes the shape and size of 3D objects captured on 2D image
- types of distortion:
 - * radial distortion
 - * tangential distortion
- a regular pattern, like a chessboard, can be used to calibrate a camera
- Radial distortion:
 - cameras use curved lenses to form an image, and light rays often bend a little too much or too little at the edges of these lenses
 - this creates an effect that distorts the edges of images, where lines or objects appear more or less curved than they actually are
 - this phenomenon is known as radial distortion, and its the most common type of distortion
 - let (x, y) be a point on the distorted image

- let r be the distance from distortion center to (x, y)
- to correct the appearance of radially distorted points in an image, a correction formula can be applied that uses three distortion coefficients k1, k2, k3, and r

$$x_c = x(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

$$y_c = y(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$
(142)

• Tangential distortion:

- tangential distortion occurs when a cameras lens is not aligned perfectly parallel to the imaging plane, where the camera film or sensor is
- this makes an image look tilted so that some objects appear farther away or closer than they actually are
- given the two distortion coefficients $p_1 \& p_2$, the correction formulae is

$$x_c = x + 2p_1xy + p_2(r^2 + 2x^2)$$

$$y_c = y + 2p_2xy + p_1(r^2 + 2y^2)$$
(143)

• Perspective transform:

- a perspective transform maps the points in a given image to different, desired, image points with a new perspective
- the birds-eye view transform that lets us view a lane from above is useful for calculating the lane curvature

D. Vision with legacy machine learning

• Features:

- raw pixel intensity
 - * it can provide both color & shape characteristics about an object
 - * for example, template matching
- histogram of pixel intensity
 - * it provides color characteristics about an object
 - * histograms lose shape characteristics but make detection less sensitive to orientation
 - * for example, saturation histogram forms a feature vector
- gradient of pixel intensity
 - * it provides shape characteristic of an object
 - * it loses color characteristics & becomes color invariant
 - * for example, the direction of gradient can be used to identify a shape, see HOG below
- recommended to use multiple features
 - * need to normalize features if all features are represented as a single vector
- finally, the features are fed to a classifier to be trained on data

· HOG:

- histogram of oriented gradients (HOG) is a detection algorithm from 2005
- HOG assumes that an object can be described by the distribution (histogram) of intensity gradients (edge directions)
- an image is divided into small connected regions called *cells*, and for the pixels within each cell, a histogram of gradient directions is compiled
 - * orientation is quantized to M bins
 - * each pixel in a cell is assigned to one of the M orientations
 - * each pixel influences on that bin based on its magnitude
 - * the resulting histogram is the feature vector associated with each cell
- hyperparameters include cell size, cell overlap, quantized bins M,
- afterwards a linear classifier is applied on these features
- there are similarities to CNNs

• DPM:

- deformable parts model (DPM), from 2010, is based on HOG but uses more more complex functions than linear classifier
- DPM was state of the art before CNNs

• Sliding window & Overfeat:

- so far feature extraction and classification was performed on a single window on a larger image
- to be able to do detection, run classification at multiple locations & scales on a high resolution image
- at each location generate score

- using heuristics, combine classifier & regressor predictions across all scales for final prediction
- Overfeat:
 - Overfeat [12] is an example of a sliding window architecture
 - Overfeat was the winner of ILSVRC 2013 classification + localization challenge

E. Vision with neural networks

- Classification and localization with CNN:
 - the corresponding CNN network is the union of some CNN for classification, with a second FC *regression-head*, appended to the network, at the top
 - * the resulting CNN will have two heads, a classification-head and a regression-head
 - * the regression head gets its input either from the final convolutional layer, or after last FC layer
 - * the regression head is trained separately
 - * localization can be class agnostic, with 4 coordinate numbers, or class specific, with 4C numbers
- Detection as classification:
 - detection can be reduced to classification / localization problem by using moving window techniques
 - need to test many positions and scales
- Region proposal and selective search:
 - region proposal algorithm looks only at a small subset of possible positions
 - it finds blobby image regions that are likely to contain objects
 - it performs class-agnostic object detector on a region
 - one method of doing region proposal is called selective search which is a bottom-up segmentation approach, merging regions at multiple scales

• R-CNN [13]:

- region based CNN, or R-CNN is a region based algorithm proposal, implemented on a CNN
- using selective search module (not NN), called *region proposal*, get around 2000 different sized regions of interest (RoI)
- crop and warp each region to some fixed size
- run CNN on each region of interest
- the classification-head used was SVM with capability of classifying C=21 different objects
- R-CNN is slow, with multistage training pipeline
- Fast R-CNN [14],
 - to minimize process time

$$R-CNN \rightarrow Fast R-CNN$$
 (144)

- in fast R-CNN, an image goes through CNN once, not per RoI
- the flow is as follows

$$x \xrightarrow{\text{CNN}}$$
 feature map $\xrightarrow{\text{region proposal}}$ RoIs

 $\text{llayer} \downarrow$ (145)

classifier, loc. $\xleftarrow{\text{FCs}}$ pooled RoI

- region proposal module is not NN
 - * region proposal is the bottleneck in fast R-CNN
- course localization in inferred from the RoI, fine localization from regression head

• RPN:

- RPN stands for region proposal network
- RPN takes an image as input and outputs a set of rectangular object proposals, each with a score
- RPN is modeled as a fully deep convolutional network
- RPN is trained to produce region proposals directly; no need for external region proposals
- for each position N rectangular sizes are considered called *anchor boxes*

• Faster R-CNN [15]:

- with faster R-CNN, region proposal is done by RPN
- the entire system is a single, unified network for object detection
- two level of decisions:
 - * whether there is a RoI

- * what the object is
- results were further improved by using faster R-CNN with ResNet [16]

• Image segmentation:

- image segmentation aims to group perceptually similar pixels into regions and is a fundamental problem in computer vision
- two segmentation types:
 - 1) semantic segmentation
 - 2) instance segmentation

• Semantic segmentation:

- with semantic segmentation, every pixel in an image is classified to belong to some object
- different instances of the same object are not differentiated
- if different object types are labeled by different colors, then every pixel in an image is colored by a classification

• Semantic segmentation using NN:

- semantic segmentation can be performed by extracting patches, performing patch classification, and by labeling the patch center-pixel by that object
 - * this method is straight forward but tedious and expensive
- similar to detection (R-CNN), can run CNN on the whole image once, and then pick patches from higher layers
- refinement combines CNN and recurrence by using raw image and output of previous iteration as inputs for next iteration

• Upsampling:

- upsampling addresses the issue of mapping CNN upper layers (with lower dimensions) to higher (pixel) dimensions
 - * upsampling is the opposite of downsampling that occurs in generic CNNs
- upsampling can be generated using by a union of inner layers using skipping
- another approach is to use convolution type technique, where a filter will take a single input and will copy it to all $(n \times n)$ output values, each scaled by some filter weight w_{ij}
 - * a stride length of > 1 is used, at the output rather than the input
 - * overlapping outputs, from multiple filters, sum their values
- sometimes referred to as backward strided convolution

• Instance segmentation:

- instance segmentation is similar to semantic segmentation, however different instances of the same object are differentiated
- sometimes called simultaneous detection and segmentation or SDS
- can use combination of
 - * region proposal network (RPN)
 - * capturing RoI and passing them through CNN to generate segmentation masks
 - * mask our background and predict object class

• Attention:

- visual attention is the ability to focus on a certain region of an image with high resolution, while perceiving the surrounding image in low resolution
- in NLP, see Section IX, attention is the ability to focus on certain words in a sentence
 - * examples include translation, question & answer
- Visual Attention with captioning, a case study [17]:
 - attention can be used in image captioning, where the network flow is as follows

$$x \xrightarrow{\text{CNN}} a \xrightarrow{\phi} z_{t} \xrightarrow{\text{LSTM}} h_{t-1} \xrightarrow{\text{NN}} y_{t}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

- * a is a set of L features, with $a_i \in \mathbb{R}^d$
- * the context vector z_t is a dynamic representation of the relevant part of the image input at time t
- * h_t is the hidden state of an LSTM network

* the caption is

$$y = \{ \boldsymbol{y}_1, \cdots, \boldsymbol{y}_C \}, \ \boldsymbol{y}_i \in \mathbb{R}^K$$
 (147)

where K is vocabulary size and C is caption length

* f is the attention model, where ignoring normalization

$$\alpha_{ti} = f(\{\boldsymbol{a}_i\}, \boldsymbol{h}_{t-1}) \tag{148}$$

* given the weights α_i

$$\boldsymbol{z}_t = \phi(\{\boldsymbol{a}_i\}, \{\alpha_i\}). \tag{149}$$

- * soft attention corresponds to interpreting $\{\alpha_{ti}\}$ as probabilities of locations
- * hard attention corresponds to picking a single location, or non-zero α_{ti}
 - · hard attention gradient descent not effective
 - · one proposal is to use reinforcement learning
- Spatial transformer module [18]:
 - the spatial transformer module, included in a standard neural network architecture transforms deformed inputs to non-deformed ones by providing spatial transformation capabilities
 - the action of the spatial transformer is conditioned on individual data samples, with the appropriate behaviour learnt during training
 - the spatial transformer module is a dynamic mechanism that can actively spatially transform an image by producing an appropriate transformation for each sample
 - the transformation is then performed on the entire feature map (non-locally) and can include scaling, cropping, rotations, as well as non-rigid deformations
 - the spatial transformer has three component:
 - * the *localisation network* predicts a transformation to apply to the input image input sample, this is where attention comes is
 - * the *grid generator* generates a set of points where the input map should be sampled to produce the transformed output
 - * given the feature map and the sampling grid, the *sampler* produces the output map, sampled from the input at the grid points
 - insert spatial transformer into a classification network
- Dense trajectories in action recognition:
 - dense trajectories is a legacy approach to action recognition
 - idea is to find key points & track them using tracklets
 - * a tracklet is 15 set of (x, y) coordinates
 - three steps to do this:
 - * detect feature points
 - * track each key point feature using optical flow
 - · optical fields provide motion field
 - * extract HOG/HOF/MBH time-based features in the coordinate system of each tracklet
 - · HOG is generalized to include time
 - · HOF is histogram of flow
 - * the output of histograms was processed by an SVM
- NN & action recognition:
 - one approach to include time, is to extend the convolutional filters, in a CNN, by adding a fourth dimension
 - * these filters are referred to as 3D filters to emphasize their spatio-temporal nature,
 - * 3D filters are useful for local, short-term events
 - * the fusion of time into the network can be done at different levels: slow, early, late or single-frame fusion
 - another approach is to have two networks, one dedicated to images and one to temporal flow, and then fusing the two
 - if global motion need to be captured (i.e. longer than a fraction of a second), then use RNN or LSTM
 - can combine CNN (with or without 3D filters) with LSTMs
 - another proposal is to have each neuron in the CNN to have a local feedback term as well [19]
 - * this is similar to using a first order IIR filter rather than a an FIR filer

IX. NATURAL LANGUAGE PROCESSING

- Natural language processing:
 - natural language processing, or NLP, is the study of the computational treatment of natural language
 - * natural means human
 - the goal of NLP is to be able to design algorithms to allow computers to "understand" natural language to perform certain tasks
- Related fields:
 - linguistics
 - theoretical computer science & AI
 - statistics
 - psychology
- Linguistic Definitions:
 - syntax refers to grammatical structure,
 - semantics refers to the meaning of the vocabulary symbols arranged with that structure
 - morphology is the study of word components, how they are formed, & their relationship to other words in the same language
 - phonetics is the study of sound
 - linguistics is the scientific study of language and its structure, including the study of morphology, syntax, phonetics, and semantics
 - lexicon is the set of words used in a language
 - a corpus is a collection of written texts
 - n-gram is a contiguous sequence of n items from a given sequence of text or speech
- Phonemes & triphones:
 - a phoneme is a single "unit" of sound that has meaning in any language
 - * there are 44 phonemes in English
 - a triphone is a sequence of three phonemes
 - * there are $44^3 = 85,184$ triphones in English
 - because of interference between neighboring phonemes, the 44 phonemes are not sufficiently distinguishable
 - triphones address this interference
- Automatic speech recognition:
 - automatic speech recognition, or ASR, addresses the problem of converting spoken speech to text
 - ASR's output is a transcription which could be NLP's input
 - conventional ASR is based on GMM-HMM model, described shortly
- Challenges in ASR:
 - natural / conversational speech
 - low SNR
 - speaker variability- age, gender, accents
- Traditional acoustic model:
 - feature extraction, such as spectrogram
 - speaker adaptation
 - phoneme prediction, such as GMM
- Spectrogram:
 - spectrogram is a two dimensional, time-frequency representation of voice
 - through signal processing, voice is converted to a spectrogram
 - spectrograms are generated using short term Fourier transforms (SFT)
 - a spectrogram has similarities to an image, but its interpretation is not just a classification problem
 - through filtering, background noise and echoes could be removed from a spectrogram
- GMM:
 - the Gaussian Mixture Model (GMM), is a statistical acoustic model

spectrogram, or observation vector,
$$x \xrightarrow{\text{GMM}}$$
 feature $p(x|s)$ (150)

where s is a triphone (class)

- p(x|s) is assumed to be a mixture of M Gaussian distributions

$$p(x|s) = \sum_{m=1}^{M} c_{sm} N(x; \mu_{sm}, C_{sm})$$
(151)

where for each component m & class s, there is an associated weight c_{sm} , mean μ_{sm} and covariance C_{sm}

• GMM training:

- the GMM parameters are trained iteratively using the expectation maximisation (EM) algorithm
- the expectation step estimates $p_m(x|s)$ for all m & the data points x_i in class s
- the maximization step updates the parameters of the model using the following formulas:

$$\mu_{sm} = \frac{\sum_{i=1}^{N} p_m(x_i|s) x_i}{\sum_{i=1}^{N} p_m(x_i|s)}$$

$$C_{sm} = \frac{\sum_{i=1}^{N} p_m(x_i|s) (x_i - \mu_{sm})(x_i - \mu_{sm})^T}{\sum_{i=1}^{N} p_m(x_i|s)}$$

$$c_{sm} = \frac{1}{N} \sum_{i=1}^{N} p_m(x_i|s)$$
(152)

where N is the number of training points that belong to the class j

• HMM:

- hidden Markov-model (HMM) was a breakthrough technology in speech recognition during the 1970's
- an HMM considers triphones as its states s, and reconstruct words & sentences
- the trellis of HMM is constrained, i.e. not fully connected
- using merged/shared states, the triphone states are reduced from

$$85, 184 \rightarrow 10,000$$
 (153)

- HMMs are the most complex part of an ASR system
- training the model involves estimating the transition probabilities, and the emission probability density functions
 - * this is usually performed by an instance of the EM algorithm known as the Baum-Welch algorithm
 - * the expectation part of Baum-Welch algorithm is the BCJR algorithm

HMM-DNN:

- starting around 2011, DNNs replaced GMMs as acoustic models
 - * DNN replaced the whole acoustic model
- a DNN generates posterior probabilities p(s|x) rather than p(x|s)
- this hybrid system dominates current ASR

• HMM-free RNN recognition:

- an active research area is the replacement of HMMs with RNNs
 - * RNNs seem to work well as a replacement for both DNN and HMM
- phonemes can be replaced by characters as the building block
- the acoustic model outputs p(a|s) where a is a character
- blanks and junk are represented as underscore
- using dynamic programming, character sequences are converted to words, multiple characters are collapsed, etc.

· Word vectors:

- the English vocabulary V is around |V| = 1 million words
- if each word forms a vector basis we end up with a one million dimensional space
- since words are related, or correlated, the space could be shrunk to $d \ll 10^{13}$ dimensions
 - * d = 100 500 is a good range
 - * each dimension would encode some meaning that we transfer using speech
 - * this is known as distributed representation of a word
- thus, we will treat words as a real valued vector

$$w \in \mathbb{R}^d \tag{154}$$

called word vectors

- correlation between vectors is a measure to how related these words are
- SVD based methods to generate word vectors:

- see Appendix XV, for SVD review,
- word w_i is near word w_i if its within some window t away from w_i ,
- given a corpus, construct a $(|V| \times |V|)$ co-occurrence matrix X, where X_{ij} is the number of times word w_j was found near w_j ,

$$X_{ij} = X_{ji}, (155)$$

- perform singular value decomposition (SVD) on X and pick d vectors based on largest d eigenvectors,
- this is a global approach and is not practical.
- · Language models:
 - a language model computes the joint probability associated with a sequence of words

$$p(w_1, \cdots, w_n), \tag{156}$$

- * consistent sentences are associated with high probabilities,
- the unigram model is very simple,,

$$p(w_1, \dots, w_n) = \prod_{i=1}^{n} p(w_i),$$
(157)

- the bigram model is a Markov chain with single memory,

$$p(w_1, \dots, w_n) = \prod_{i=2}^n p(w_i | w_{i-1}).$$
(158)

- more generally, the conditional probability is conditioned over a causal or anti-causal window m,

$$p(w_t|w_{t-m},\cdots,w_{t-1},w_{t+1},\cdots,w_{t+m}).$$
 (159)

- Word vectors to conditional probabilities:
 - given word vectors u and v, the conditional probability p(u|v) is assumed to be of the form,

$$p(u|v) = \frac{\exp(u^T v)}{\sum_{i=1}^{|V|} \exp(u_i^T v)},$$
(160)

- in other words, the softmax activation (46) of the inner products of two word vectors, is the conditional probability.
- Continuous Bag of Words Model:
 - both the Continuous Bag of Words Model and Skip-Gram model were proposed by Mikolov et al.,
 - in Continuous Bag of Words Model (CBOW) model, the center word is predicted from the surrounding context,
 - using ML criterion (238) and (159), minimize

$$\min[-\log p(w_t|w_{t-m},\cdots,w_{t+m})],\tag{161}$$

define

$$\hat{v} \triangleq \frac{w_{t-m} + \dots + w_{t-1} + w_{t+1} + \dots + w_{t+m}}{2m},\tag{162}$$

- as the name CBOW implies, the order of words in the window does not influence the projection \hat{v} ,
- relabeling $u \triangleq w_t$, the ML criterion (161) is approximated to

$$\min[-\log p(u|\hat{v})],\tag{163}$$

- substituting in (160), we want to minimize,

$$-\frac{\exp(u^T\hat{v})}{\sum_{i=1}^{|V|} \exp(u_i^T\hat{v})} \Rightarrow$$

$$-u^T\hat{v} + \log\sum_{i=1}^{|V|} \exp(u_i^T\hat{v}),$$
(164)

- this can be implemented by a single hidden layer that holds \hat{v} and with an output layer with softmax activation (46).
- Skip-Gram model:
 - the Skip-Gram model, the surrounding words are predicted from the center word,

- the objective function J, that we want to minimize becomes

$$-\log p(w_{c-m}, \cdots w_{c+m}|w_c)$$

$$\approx -\log \prod_{j=0, j\neq m}^{2m} p(w_{c-m+j}|w_c)$$

$$= -\log \prod_{j=0, j\neq m}^{2m} p(u_{c-m+j}|v_c)$$

$$= -\log \prod_{j=0, j\neq m}^{2m} \frac{\exp(u_{c-m+j}^T v_c)}{\sum_{i=1}^{|V|} \exp(u_i^T v_c)}$$

$$= -\sum_{j=-m, \neq 0}^{m} u_{c+j}^T v_c + 2m \log \sum_{i=1}^{|V|} \exp(u_i^T v_c).$$
(165)

- given the objective function (165), and a window, the gradient w.r.t each center vector v and outside vectors u can be computed,
- collectively denote the parameters that we can optimize as $\sigma \in \mathbb{R}^{2d|V|}$,
 - * each word is associated with two vectors, one center and one outside,
- then,

$$\theta^{\text{new}} = \theta^{\text{old}} - \eta \nabla_{\theta} J(\theta). \tag{166}$$

- · Negative sampling:
 - since $|V|\gg 1$ in (165), the resulting algorithm is not practical,
 - instead of the softmax function, can train a binary logistic regression for the center word, and a randomly picked k
 few word vectors to push down the probability,
 - then a cost function that is simpler than (165), can be used,

$$-\log \theta(u_{c-m+j}^T v_c) - \sum_{j=1}^k E_{j \sim p(w)} \log \theta(-u_j^T v_c), \tag{167}$$

- note that $\theta(-x) = 1 \theta(x)$,
- pick p(w) to be the unigram distribution (157) to the power 3/4 to amplify rare occurrences.
- · GloVe model:
 - the GloVe model is an alternate approach of NLP modelling where global and iterative features are combined,
 - the cost function is

$$J(\sigma) = \frac{1}{2} \sum_{i,j=1}^{|V|} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2,$$
(168)

- where $u_i^T v_i$ is a proxy for P_{ij} ,
- can think of the f function as a linear function that saturates for very high frequent words.
- Neural network language model:
 - with neural networks, both the weights and code vectors are being optimized and are parameters,
 - as a result, overfitting is a serious concern,
 - various architectures for neural network language model (NNLM),
 - effective models include deep RNNs, and RNTN.
- Recursive networks:
 - recurrent neural networks are based on a chain graph, while recursive networks form a parsing tree,
 - unfortunately both systems are abbreviated by RNN,
 - * when ambiguous, will refer to them as recurrent NN and recursive NN
 - a sentence is better modeled using a parsed tree rather than a chain,
 - * recursion is helpful in describing natural language,
 - since chains are special case of a tree, recursive NN's are a superset of recurrent NN's.
- Principle of compositionality:
 - phrases, like words, can be mapped to vectors,
 - phrase vectors are generated using word vectors in that phrase, and combining them using some rule.

- Standard recursive neural network:
 - given a parsed tree, a recursive neural network progresses from the leaves to the root of the tree,
 - * recursive NN's require a parser to get tree structure,
 - * when forming a parsing tree, the greedy algorithm can be used, using a score metric,
 - * the *greedy algorithm* recursively makes locally optimal choices at each stage with the hope of finding a global optimum,
 - if p_1 and p_2 are two vectors associated with two phrases, then the concatenated phrase, represented by vector q, is modeled by a single layer neural network,

$$q = \tanh(W_1 p_1 + W_2 p_2 + b),$$

$$s = U^T p,$$
(169)

where $W_1, W_2 \in \mathbb{R}^{d \times d}$, $p_1, p_2, b, q \in \mathbb{R}^{d \times 1}$,

- the associated score is s,
- recursive implies all nodes of the tree would use the same W_1, W_2 ,
- the rule (169) can be expressed in a more compact form

$$q = \tanh(Wp + b), \tag{170}$$

where

$$W \triangleq (W_1, W_1), \qquad p \triangleq \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}.$$
 (171)

- Sentiment:
 - one application of recursive neural network is to classify a word, phrase, or sentence to a sentiment or a rating,
 - the n-way sentiment y^a associated with sentence a, can be extracted using the softmax function (46),

$$y^a = \operatorname{softmax}(W_s a), \tag{172}$$

where $W_s \in \mathbb{R}^{n \times d}$, and d is the dimensionality of a.

- Determining tree structures using score:
 - the score s(x,y) associated with tree y, and sentence x, is the sum of the parsing decision scores at each node (169),

$$s(x,y) = \sum_{n \in \text{nodes}(y)} s_n, \tag{173}$$

- the training set is $\{x_i, y_i\}$.
- Recursive RNN variations:
 - Syntactically-Untied, or SU-RNN uses different weights W depending on verb, noun etc.,
 - Matrix-Vector, or MV-RNN associates a word with both a vector and a matrix,
 - * the matrix is used to pre-multiply the vector of another phrase vector.
- Recurrent neural tensor networks:
 - recurrent neural tensor networks, RNTN were used for sentimental classification,
 - the goal is to generalize (170) by incorporating multiplicative interactions in the update rule to allow a greater interactions between the input vectors,
 - given tensor $V \in \mathbb{R}^{2d \times 2d \times \hat{d}}$, the generalized update rule (170, 171) is

$$q = \tanh(p^T V p + W p + b), \tag{174}$$

- when V=0 the standard recursive neural network is obtained.

- CNN for NLP:
 - the idea is to compute all phrase combinations rather than using a parser,
 - the convolution operator of a CNN is well suited for considering multiple parsing structures in parallel,
 - * a convolutional layer computes all sequential h word-vectors,
 - * a single convolution operation involves a filter $w \in \mathbb{R}^{hd}$, which is applied to a window of h words to produce a scalar feature c_i ,
 - * if CNN can handle n words then a feature map $c \in \mathbb{R}^{n-h+1}$,
 - * multiple variations are possible,
 - a max pooling layer picks the most important feature by the function,

$$\hat{c} = \max\{c\},\tag{175}$$

- will zero-pad shorter phrases,
- a CNN would use multiple (100s of) different filters, with varying window sizes, resulting in multiple features,
- the pooled layer outputs are passed to a fully connected softmax layer whose output is the probability distribution over labels.

• Machine translation:

- consider
 - * English language e with model p(e),
 - * French language f, with translation model p(f|e),
- using Bayes' rule, French to English translation can be interpreted as maximizing

$$\max_{e} p(e|f) = \max_{e} p(f|e)p(e), \tag{176}$$

- i.e., given f, using p(f|e) generate multiple candidates for e's, then a decoder computes the most probable joint probability.

X. Tools

• GPU:

- GPU is an effective hardware that accelerates parallel computations,
- a GPU is composed of multiple streaming multiprocessors or SMs,
 - * each SM includes multiple simple processors and a memory,
- GPUs need to be explicitly parallel-programmed,
- compute capability is usually measured with *floating point operations per second*, or FLOPS.

• CPU:

- Intel Advanced Vector Extensions (AVX) is a set of instructions for doing Single Instruction Multiple Data (SIMD) operations on a CPU,
 - * AVX2 allows for 32 single precision FLOPS per second, per core
 - * power consumption is a concern and AVX2 is usually operated at lower frequencies,
 - * at 2500 MHz, AVX2 generates 80 GFLOPS,
- FMA instruction set is an extension to SIMD instruction set to perform *fused multiply add* (FMA) operations,
- AVX2 together with FMA could generate up to 500 GFLOPS of computation from a single CPU.

• GPU versus CPU:

- GPUs optimize throughput whereas CPU optimizes latency,
- GPUs use more, but simpler processors than CPUs,
- FLOPS:
 - * CPUs ~ 500 GFLOPS,
 - * GPUs ~ 10 TFLOPS.

• GPU interface:

- fastest GPU interface is PCIe3 ×16,
 - * with PCIe3 each channel toggles at 8 GT/s,
 - * over 16 channels thats 16 GB/s,
 - * compared to 10 TFLOPs 16 GB/s may not be sufficient,
- can connect multiple GPUs using high-performance computer-networking communications standard such as *Infini-Band*(IB).

• NVIDIA Titan X:

- GPU architecture is Pascal,
- 3584 NVIDIA CUDA cores,
- Graphics Card Power is 250 W,
- GPU engine base clock is 1417 MHz,
- memory 12 GB GDDR5X,
- 11 TFLOPs.
- System software i.e. drivers for GPU,
 - CUDA:
 - * NVIDIA's CUDA is general purpose parallel computing tool that allows the user to write a single C code that runs on both CPU and GPU,

- * https://developer.nvidia.com/deep-learning/getting-started,
- * higher-level APIs: cuBLAS, cuFFT, cuDNN, etc, see below.
- OpenCL:
 - * similar to CUDA, but runs on any GPU brand,
 - * usually slower than CUDA.
- CPU ↔ GPU interactions in CUDA:
 - CPU is in charge,
 - each CPU and GPU have their dedicated memory,
 - CPU moves data back and forth the two memories using the command *cudaMemcpy*,
 - CPU allocates memory on GPU memory using command cudaMalloc,
 - GPU memory capacity may be limited,
 - the host launches kernels on the device.
- Parallel computing using CUDA
 - a thread is one path of execution through the code,
 - a CUDA command is of the form
 - * name<<
blocks, threads>>>(d-out,d-in)
 - number of threads per block is 512 on older GPUs, and 1024 on newer GPUs,
 - GPU is responsible of allocating blocks to SMs,
 - the blocks and threads are in general three-dimensional entities denoted by

$$\dim 3(x, y, z), \tag{177}$$

- a map operation with arguments elements and function, applies the function element-wise on each element.
- Data versus model parallelism:
 - with data parallelism, different data x_i , are sent to different GPUs,
 - with model parallelism, the ANN is partitioned over multiple GPUs.
- With distributed asynchronous gradient descent, different workers don't wait on other events to complete but continue
 processing data asynchronously.
- BLAS:
 - the BLAS (Basic Linear Algebra Subprograms) are low-level routines that provide standard building blocks for performing basic vector and matrix operations,
 - they are the de facto standard low-level routines for linear algebra libraries,
 - BLAS implementations take advantage of special floating point hardware,
 - many numerical software applications use BLAS-compatible libraries to do linear algebra computations, including cuBLAS, Mathematica, MATLAB, NumPy, and R.
- Software package trends:
 - many of the programming frameworks have performance libraries that harness the HW acceleration,
 - NVIDIA's cuDNN, cuBLAS are optimized for DNN,
 - * cuDNN provides a common set of tools that higher level frameworks can use/reuse,
 - * cuDNN identifies the 5% of code that (such as convolutions, pooling, activation) takes 80% of run time and delegates the execution of that code to GPU,
- List of software packages:
 - the four major packages are Caffe, Torch, Theano, Tensorflow,
 - Kaldi, is specialized to speech recognition toolkit, & is written in C++,
 - NVIDIA's DIGITS, is an interactive system that provides a quick design capability and visual monitoring tools.
- Caffe:
 - http://caffe.berkeleyvision.org/,
 - developed by U.C. Berkeley,
 - written in C++ / CUDA,
 - * do not need to write code to train,
 - * Python and Matlab interfaces optional,
 - * need to write C++ / CUDA for new GPU layers,
 - popular for CNN users,
 - four main classes:
 - * blobs are tensors that store data, weights & activations,

- · both data and gradients (diffs) are stored,
- * layers interact with bottom blobs & top blobs,
- * a net is a bunch of layers, or a graph,
- * a solver runs the net forward and backward,
- makes use of protocol buffers, (.proto) to define, for example, net & solver
- many pre-trained models available through model zoo,
 - * good for fine-tuning existing networks.
- not great for RNNs,
- cumbersome for big networks (GoogLeNet, ResNet).

· Torch:

- developed at NYU,
- written in C & Lua,
 - * Python and Matlab interfaces optional,
- used & maintained by Facebook & Twitter,
- uses tensors that are very similar to NumPy,
 - * in addition to tensor, the nn module lets you easily build and train neural nets,
- unlike NumPy, GPU is just a data-type away,
 - * very easy to run code that runs on GPU,
- uses *modules* instead of net/layers (Caffe),
- many pre-trained models available,
- not great for RNNs.

• Theano:

- http://deeplearning.net/software/theano/,
- developed at University of Montreal,
- Theano is a Python library for symbolic math, with compiler
 - * is built on top on NumPy, but also shares similarities with SymPy
 - * its some combination of a programming language, a compiler and Python library,
 - * embraces computational graphs,
 - * automatically computes gradients, through symbolic differentiation,
- Theano can run on either a CPU or a GPU/CPU,
 - * C/C++ compiler on CPU
 - * CUDA/OpenCL compiler for GPU,
 - * using g++ compiler from TDM-GCC-64 for CPU, see http://tdm-gcc.tdragon.net.
- a shared variable lives in computational graph & persist call to call,
 - * shared variables do not need to be identified as inputs in a function,
- Keras and Lasagne are higher level wrappers around Theano, or Tensorflow
 - * raw Theano is somewhat low-level,
 - * Lasagne sets up weights & writes update rules for you,
 - * Keras is more high level than Lasagne,
- works well for RNN,
- large models can have long compile times,
- fatter than Torch; more magic,
- patchy support for pre-trained models.
- · Tensorflow is discussed separately.

XI. VC GENERALIZATION BOUND

• Hoeffding's inequality:

- Hoeffding's inequality addresses the conditions under which generalization (68) holds,
- Hoeffding's inequality is a form of large number theory that states

$$P[|C_{\rm in}(h) - C_{\rm out}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

$$\tag{178}$$

- the right hand side of (178) does not depend on $C_{\text{out}}(h)$,
- Hoeffding's inequality can be applied during testing but not during learning.

- Bounds with M hypotheses:
 - when learning, all M hypotheses may be considered,
 - we do not want any of the M hypothesis deviate from $E(h)_{out}$,
 - then whatever hypothesis g we chose we are OK,
 - using the union bound, the probability that final hypothesis g is bad (i.e. not tracking) is upper bounded as

$$P[|C_{\rm in}(g) - C_{\rm out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N},\tag{179}$$

- it follows that as $M \to \infty$ the inequality gets looser.
- Dichotomies & growth functions:
 - N-tuple $(h(x_1), \dots h(x_N))$ for classifier $h \in \mathcal{H}$, applied on a finite samples $x_1, \dots x_N \in \mathcal{X}$, is called a *dichotomy*, * in other words, a dichotomy is an allowed hypothesis that assigns each vector to a one or a zero,
 - the growth function $m_{\mathcal{H}}(N)$, is the maximum number of distinct dichotomies that can be generated with wisely chosen set of N vectors,

$$m_{\mathcal{H}}(N) \triangleq \max_{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N \in \mathcal{X}} |\mathcal{H}|,$$
 (180)

- the growth function is upper bounded by

$$m_{\mathcal{H}}(N) \le 2^N,\tag{181}$$

- e.g., for the set of convex function hypotheses,

$$m_{\mathcal{H}}(N) = 2^N. \tag{182}$$

- Break points ⇒ polynomial growth functions:
 - the smallest value of N for which $m_{\mathcal{H}}(N) \neq 2^N$ is called the *break point*,
 - theorem: if the break point is less than infinity then $m_{\mathcal{H}}(N)$ is polynomial in N,
 - more specifically, Sauer's Lemma states that given a break point k,

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} \binom{N}{i} \tag{183}$$

- note that there are no middle points; $m_{\mathcal{H}}(N) = 2^N$, or $m_{\mathcal{H}}(N)$ is polynomial in N of order (k-1).
- Vapnik-Chervonenkis (VC) Inequality:
 - the Vapnik-Chervonenkis Inequality,

$$P[|C_{\text{in}}(g) - C_{\text{out}}(g)| > \epsilon] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}$$
(184)

is a tighter bound than (179),

- compared to (179), the growth function $m_{\mathcal{H}}(N)$ is substituted for M,
- VC inequality implies that as long as there is a break point, generalization from in sample to out of sample is possible.
- VC dimension:
 - the VC dimension of a hypothesis set \mathcal{H} , denoted by $d_{VC}(\mathcal{H})$, is equivalent to break point, where

$$d_{VC}(\mathcal{H}) \triangleq k - 1,\tag{185}$$

- $d_{VC}(\mathcal{H})$ is finite $\Rightarrow g \in \mathcal{H}$ will generalize,
 - * independent of the learning algorithm,
 - * independent of the input distribution,
 - * independent of target function,
- VC dimension is the effective binary degrees of freedom of a hypothesis,
 - * it measures the effective number of parameters,
- observation: larger VC dimensions need larger example set N to learn,
- rule of thumb is to use $N \approx 10 \, d_{\rm VC}$.
- VC generalization bound:

- denote the right hand side of (184) to be δ ,

$$\delta \triangleq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^{2}N} \Rightarrow$$

$$\ln \frac{\delta}{4m_{\mathcal{H}}(2N)} = -\frac{1}{8}\epsilon^{2}N \Rightarrow$$

$$\epsilon = \sqrt{\frac{8}{N}\ln\frac{4m_{\mathcal{H}}(2N)}{\delta}}$$

$$\triangleq \Omega.$$
(186)

where Ω is called the *generalization error*,

- it follows that with probability $\geq 1 - \delta$,

$$|C_{\text{out}} - C_{\text{in}}| \le \Omega(N, \mathcal{H}, \delta) \Rightarrow$$

$$C_{\text{out}} - C_{\text{in}} \le \Omega \Rightarrow$$

$$C_{\text{out}} \le C_{\text{in}} + \Omega,$$
(187)

- theorem: for any tolerance $\delta > 0$, with probability $\geq 1 - \delta$,

$$C_{\text{out}}(g) \le C_{\text{in}}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}$$
(188)

- with a larger hypothesis set, we get a better approximation (smaller $C_{\rm in}$) but a worst generalization error (larger Ω).
- Classification versus estimation:
 - VC generalization bound can be generalized from classification problems to also include estimation problems,
 - bias and variance analysis is an alternative to VC analysis, that is suited when squared error measure is used as an
 error metric.

XII. BIAS & VARIANCE METHOD

- Average hypothesis:
 - let $g^{(\mathcal{D})}(x)$ be the final hypothesis associated with data set \mathcal{D} ,
 - the average hypothesis $\bar{g}(x)$ is defined as

$$\bar{g}(\boldsymbol{x}) \triangleq E_{\mathcal{D}}[g^{(\mathcal{D})}(\boldsymbol{x})],$$
 (189)

- in general $\bar{g}(x)$ is not known,
- $\bar{g}(x)$ is a function of the specific learning algorithm,
- given N, it is assumed that $\bar{g}(x)$ is the best hypothesis a family of hypothesis \mathcal{H} can generate.
- Bias or deterministic noise:
 - define bias as

bias
$$\triangleq E_x[(\bar{g}(x) - f(x))^2],$$
 (190)

- the bias term is the part of the target function f that \mathcal{H} can not capture,
- an alternative name is deterministic noise,
- bias is related to approximation, i.e. on how well the hypothesis fits the data.
- Bias & variance method:
 - bias and variance analysis is an alternate decomposition of $C_{\rm out}$,

$$C_{\text{out}}(g^{\mathcal{D}}) \triangleq E_x[(g(\boldsymbol{x}) - f(\boldsymbol{x}) - n)^2]$$
(191)

- instead of $C_{\rm in}$, the decomposition is w.r.t. the average hypothesis $\bar{g}(x)$,
 - * as a result, the bias-variance analysis depends on the learning algorithm,
- the variance term,

$$\operatorname{var} \triangleq E_x[E_{\mathcal{D}}(g^{(\mathcal{D})}(\boldsymbol{x}) - \bar{g}(\boldsymbol{x}))^2], \tag{192}$$

is the variation in error due to different data sets and the corresponding hypotheses choices,

- let σ_n^2 denote the variance of stochastic noise,
- by introducing $\bar{g}(x)$ inside (191), by taking expectations w.r.t. all data sets \mathcal{D} , and by substituting (189, 190, 192) into (191), we obtain

$$E_{\mathcal{D}}[C_{\text{out}}(g^{\mathcal{D}})] = \text{var} + \text{bias} + \sigma_n^2, \tag{193}$$

- the bias & variance analysis decomposes $C_{\rm out}$ to three components:
 - 1) the variance term quantifies the distance from a hypothesis $g^{(\mathcal{D})}$ to optimal hypothesis \bar{q} ,
 - 2) the bias term quantifies the distance from optimal hypothesis \bar{q} to target function f,
 - 3) the noise term quantifies the distance target function f to observed quantities y,
- bias-variance analysis is a conceptual tool; in practice the terms can not be computed.

XIII. SVM'S & KERNEL METHODS

- Support vector machine classifiers:
 - a support vector machine, or SVM, is a learning algorithm for the perceptron
 - SVM is a classifier based on supervised training
 - two other classifiers with supervised learning are covered in Section XV:
 - * naive Bayes
 - * decision tree
- Hard versus soft margin:
 - hard margin SVM implies training data is linearly separable
 - soft margin SVM implies training data is not linearly separable
 - will start with hard margin, where in general, an infinite number of linear solutions classify data correctly
- Distance:
 - relabel & shorten w by pulling out the bias $b = w_0$, and dropping $x_0 = 1$
 - * the resulting vector w, which represents the decision hyperplane, is orthogonal to the hyperplane itself
 - define the *distance* $d(x_n, x)$, between any $x_n \in \mathbb{R}^d$ & an arbitrary x on hyperplane, as the projection of $(x_n x)$ orthogonal to the decision hyperplane

$$d(\boldsymbol{x}_{n}, \boldsymbol{x}) \triangleq \left| \frac{\boldsymbol{w}^{T}}{\|\boldsymbol{w}\|} \cdot (\boldsymbol{x}_{n} - \boldsymbol{x}) \right|$$

$$= \frac{1}{\|\boldsymbol{w}\|} \left| \boldsymbol{w}^{T} \boldsymbol{x}_{n} + b - \boldsymbol{w}^{T} \boldsymbol{x} - b \right|$$

$$= \frac{|\boldsymbol{w}^{T} \boldsymbol{x}_{n} + b|}{\|\boldsymbol{w}\|}$$
(194)

- Margin:
 - an SVM determines the weight vector w in order to maximize the distance from the decision hyperplane to the nearest point(s)
 - the minimum distance is called the margin
 - with SVM, the *margin* around a hyperplane is maximized
 - similar to minmax
- Support vectors:
 - the nearest vectors (points) that define the margin are called the support vectors (SV)
 - * only SVs influence the weights, i.e. learning
 - * all other points are ignored
- SVM & complexity d_{VC} :
 - imposing margin around hyperplane reduces the growth function
 - as a result, d_{VC} gets smaller which should help with generalization
- Normalization:
 - normalize (\boldsymbol{w}, b) such that for any $\boldsymbol{x}_{\text{SV}}$

$$|\boldsymbol{w}^T \boldsymbol{x}_{SV} + b| = 1 \tag{195}$$

- since all x_{SV} are at same distance from hyperplane, the above normalization applies to all support vectors
- when $x_n = x_{SV}$, substituting (195) into (194)

$$d(\boldsymbol{x}_{SV}, \boldsymbol{x}) = \frac{1}{\|\boldsymbol{w}\|}$$
(196)

- the constraint (195) can be re-interpreted as

$$\min_{\boldsymbol{x}_{n} \in \boldsymbol{x}_{SV}} |\boldsymbol{w}^{T} \boldsymbol{x}_{n} + b| = 1 \Rightarrow$$

$$\forall \boldsymbol{x}_{n}, \ y_{n}(\boldsymbol{w}^{T} \boldsymbol{x}_{n} + b) \geq 1$$
(197)

- Margin violation with soft-margin:
 - with soft-margin, data points (\boldsymbol{x}_n,y_n) are permitted to violate the margin by $\xi_n>0$
 - in other words, from (197), training data (x_n, y_n) violates the margin by $\xi_n > 0$, if

$$y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) \ge 1 - \xi_n \tag{198}$$

- the total violation is

$$\sum_{i} \xi_{i} \tag{199}$$

- SVM optimization:
 - with hard margin SVM, & under constraint (195), maximizing 1/||w|| (196), is equivalent to minimizing

$$C = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} \tag{200}$$

- with soft margin SVM, the total violation (199) is also included in the cost function

$$C = \min \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i} \xi_i$$
 (201)

under the two sets of constraints, $\forall n$

$$y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) \ge 1 - \xi_n$$

$$\xi_n \ge 0$$
(202)

- C is usually determined through cross validation
 - * C trades error penalty for stability
 - * larger C may minimize error rate on training data but may also overfit
- the associated Lagrangian $\mathcal{L}(w, b, \alpha, \xi)$, with the inequality constraints is known as KKT, and is given by

$$\mathcal{L} = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{n} \xi_n - \sum_{n} \beta_n \xi_n - \sum_{n} \alpha_n [y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) - 1 + \xi_n]$$
(203)

- we want to minimize $\mathcal{L}(\boldsymbol{w},b,\boldsymbol{\alpha},\boldsymbol{\xi})$ w.r.t (\boldsymbol{w},b) and $\boldsymbol{\xi}$, but maximize it w.r.t. $\alpha_n \geq 0$
- $\mathcal{L}(\boldsymbol{w}, b, \boldsymbol{\alpha}, \boldsymbol{\xi}) \to \mathcal{L}(\boldsymbol{\alpha})$:
 - differentiating w.r.t (w, b) and ξ

$$\nabla_{\omega} \mathcal{L} = \boldsymbol{w} - \sum_{n} \alpha_{n} y_{n} \boldsymbol{x}_{n} = 0$$

$$\frac{\partial \mathcal{L}}{\partial b} = \sum_{n} \alpha_{n} y_{n} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \xi_{n}} = C - \alpha_{n} - \beta_{n} = 0$$
(204)

- substituting (204) into (203), SVM optimization is reduced to a maximization over α

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n,m=1}^{N} y_n y_m \alpha_n \alpha_m \boldsymbol{x}_n^T \boldsymbol{x}_m^T$$
(205)

under the constraints

$$\forall n, \ 0 \le \alpha_n \le C$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0$$
(206)

- Quadratic programming, $\mathcal{L}(\alpha) \to \alpha$:
 - the optimization in (205) can be expressed as

$$\min_{\alpha} \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{1}^T \boldsymbol{\alpha} \tag{207}$$

where

$$Q_{ij} \triangleq y_i y_j \boldsymbol{x}_i^T \boldsymbol{x}_j \tag{208}$$

- from (206), the constraints in vector form are

$$\begin{aligned}
\mathbf{0} &\leq \alpha \leq C \\
\mathbf{y}^T \boldsymbol{\alpha} &= 0
\end{aligned} \tag{209}$$

- there are tools available to solve such optimization problems, known as quadratic programming
- since Q is $(N \times N)$, such an optimization can become problematic for large N
- Classes of α :
 - $\alpha_n = 0 \Rightarrow \boldsymbol{x}_n$ is an interior point,
 - $0 < \alpha_n < C \Rightarrow x_n$ is a margin support vector, with $\xi_n = 0$
 - $\alpha_n = C \Rightarrow x_n$ is non-margin support vector, with $\xi_n > 0$
- $\alpha \rightarrow w, b$:
 - given α , w is determined from (204)
 - the KKT condition implies $\alpha_n = 0$ for all n that are not support vectors,
 - as a result w can be expressed as

$$\boldsymbol{w} = \sum_{\alpha_n > 0} \alpha_n y_n \boldsymbol{x}_n \tag{210}$$

- in PLA (48), all points that mismatch are updated whereas in (210) only the SV are used to derive w
- the b parameter can be solved from any SV, see (203)

$$y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i}+b) = 1 \Rightarrow$$

$$b = \frac{1}{y_{i}} - \boldsymbol{w}^{T}\boldsymbol{x}_{i}$$

$$= \frac{1}{y_{i}} - \sum_{\alpha_{n}>0} \alpha_{n}y_{n}\boldsymbol{x}_{n}^{T}\boldsymbol{x}_{i}$$
(211)

- SVM in feature space & the kernel:
 - consider a nonlinear space mapping

$$x \in \mathbb{R}^n \to z \in \mathbb{R}^m \tag{212}$$

- * in general m > n
- * the goal for this mapping is to make a classification problem linearly separable in the z-space, whereas it was not in the x-space
- optimization in z-space proceeds similar to (207, 209), but with the substitution $x_i \to z_i$
- since sample size N does not change, the only difference is the change in the inner products

$$\boldsymbol{x}_i^T \boldsymbol{x}_i \to \boldsymbol{z}_i^T \boldsymbol{z}_i \tag{213}$$

inside the Lagrangian (208)

- * only the inner product of z is needed to do the computations, not z itself
- * the dimensionality of z is not important
- * this inner product $z_i^T z_j$ is some function of (x_i, x_j) , called the kernel

$$\boxed{\boldsymbol{z}_i^T \boldsymbol{z}_j \triangleq K(\boldsymbol{x}_i, \boldsymbol{x}_j)}$$
 (214)

- when used with non-linear transformations, SVM's generate sophisticated boundaries (or hypothesis h) that are simply generated (i.e. simple \mathcal{H})
- Bound on C_{out} :
 - theorem: given the sample size N and number of SV's, the out-of-sample performance can be bounded

$$E[C_{\text{out}}] \le \frac{E[\#SV's]}{N-1} \tag{215}$$

where #SV's is an in-sample determined value that is applied on out-of-sample estimate

- key takeaway is that this bound is independent of dimensionality d
 - * we can transform space so that $\tilde{d} \to \infty$, without impacting C_{out}
- this is the main theoretical result in support of SVM
- $z_i^T z_i$ is sufficient statistics:
 - it was observed in (213) that individual z_i vectors need not to be known to optimize the Lagrangian, just their inner product

- i.e., when using quadratic programming the Q matrix components (208), become

$$Q_{ij} \triangleq y_i y_j K(\boldsymbol{x}_i, \boldsymbol{x}_j) \tag{216}$$

- similarly, only $z_i^T z_j$ is needed to compute g, since from (210, 211), g(x) is given by

$$\operatorname{sign}(\boldsymbol{w}^{T}\boldsymbol{z} + b) \\
= \operatorname{sign}\left(\sum_{\boldsymbol{z}_{n} \text{ is SV}} \alpha_{n} y_{n}(\boldsymbol{z}_{n}^{T}\boldsymbol{z} - \boldsymbol{z}_{n}^{T}\boldsymbol{z}_{i}) + \frac{1}{y_{i}}\right) \\
= \operatorname{sign}\left(\sum_{\alpha_{n} > 0} \alpha_{n} y_{n}(K(\boldsymbol{x}_{n}, \boldsymbol{x}) - K(\boldsymbol{x}_{n}, \boldsymbol{x}_{i})) + \frac{1}{y_{i}}\right) \tag{217}$$

- note that the signal goes through two nonlinearities, K and the sign()
- as long as we have access to $K(x_i, x_j) = z_i^T z_j$, we do not need to know about z-space
- Kernel requirements:
 - two characteristics desired from a kernel:
 - * the kernel should be valid, i.e., represent the inner product in some $\mathcal Z$ space
 - * the kernel should be a good match for the learning problem in hand
 - · hand picking a kernel is a disadvantage compared to deep learning
 - theorem: Mercer's condition, a kernel is valid iff for any x_1, \cdots, x_N
 - * $K(x_i, x_j)$ is symmetric, and
 - * the $(N \times N)$ matrix with coefficients $K(x_i, x_j)$ is positive semi-definite
- Kernel examples:
 - kernels of space \mathcal{Z} , that supports polynomial order Q, can be computed efficiently in the form

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = (b + a\boldsymbol{x}_i^T \boldsymbol{x}_j)^Q \tag{218}$$

where a and b are scale factors

- the radial basis function (RBS) kernel

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) \triangleq e^{-\gamma \|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2}$$
(219)

is associated with an infinite dimensional Z space

XIV. SIMILARITY METHODS

- Nearest neighbor method:
 - decode any x to its nearest data set of N elements (x_i, y_i)
 - in other words, the data output is the same output as its nearest neighbor (NN)
 - like ML decoding
 - complexity is proportional to N
- k-nearest neighbor method:
 - find the best k closest neighbors, and make a decision based on the k candidates y_i
 - higher values of k have a smoothing effect that makes the classifier more resistant to outliers
- Bounded distance method:
 - this is similar to bounded distance decoding
 - can think of a cylinder around each training data point
- · Radial basis function method:
 - after observing N data samples, the radius basis function hypothesis, or RBF, is

$$h(\boldsymbol{x}) = \sum_{n=1}^{N} w_n e^{-\gamma \|\boldsymbol{x} - \boldsymbol{x}_n\|^2}$$
(220)

- the exponents form the basis functions
- since we have N equations and N unknowns, the exact interpolation solution ends up being

$$\boldsymbol{w} = \Phi^{-1} \boldsymbol{x} \tag{221}$$

where $\Phi_{ij} = e^{-\gamma \|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2}$

• Bounded distance as an RBF:

- when the basis function is chosen to be the cylinder function rather than Gaussian, RBF becomes bounded distance method
- can think of RBF to be the softened version of bounded distance method
- Similarity methods:
 - the nearest neighbor, bounded distance and the RBF are examples of *similarity methods* since we are comparing how similar data is to the training set
- RBF with K centers:
 - use $K \ll N$ centers instead of N, for better generalization,
 - then the model of (220) changes to

$$h(\mathbf{x}) = \sum_{n=1}^{K} w_n e^{-\gamma \|\mathbf{x} - \boldsymbol{\mu}_n\|^2},$$
(222)

- the K centers μ_n are new parameters, each being a d dimensional vector.
- Weights for K-centers:
 - from (222),

$$\Phi \boldsymbol{w} = \boldsymbol{y},\tag{223}$$

where $\Phi_{ij} = e^{-\gamma \|\boldsymbol{x}_i - \boldsymbol{\mu}_j\|^2}$,

- given the centers μ_k , or Φ , there are N equations and K unknowns in (223),
- such a system, can be solved similar to linear regression,
- if $\Phi^T\Phi$ is invertible,

$$\boldsymbol{w} = (\Phi^T \Phi)^{-1} \Phi^T \boldsymbol{y}. \tag{224}$$

- Determining γ through EM:
 - $-\gamma$ in (222)can be determined iteratively, using expectation-maximization (EM) algorithm,
 - * given γ , solve for \boldsymbol{w} ,
 - * given w, minimize error w.r.t. γ .
- RBF versus SVM:
 - when the kernel is chosen as in (219), the SVM solution is in the form, see (217)

$$\operatorname{sign}\left(\sum_{\alpha_n>0} \alpha_n y_n e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2} + b\right),\tag{225}$$

- similarity with RBF can be noted by comparing (225) to (222).
- Smoothness quantified:
 - smooth function are functions with small derivatives,
 - smoothness can be measured by the metric

$$\sum_{k=0}^{\infty} a_k \int_{-\infty}^{\infty} \left(\frac{d^k h}{dx^k} \right) dx. \tag{226}$$

- RBF and regularization:
 - consider minimizing a function under smoothness (226) constraint,

$$\sum_{n=1}^{N} (h(x_n) - y_n)^2 + \lambda \sum_{k=0}^{\infty} a_k \int_{-\infty}^{\infty} \left(\frac{d^k h}{dx^k}\right) dx \tag{227}$$

- when this is solved, we get RBF with Gaussian functions.

XV. MISCELLANEOUS MATHEMATICAL ENTITIES

- Singular value decomposition:
 - $\forall (m \times n) \Omega, \exists$
 - * unitary $(m \times m) U$
 - * unitary $(n \times n) V$ and
 - * non-negative real diagonal $(m \times n)$ D

such that

$$\Omega = UDV^H \tag{228}$$

- this factorization is called *singular value decomposition* (SVD)
- SVD singular vectors & singular values:
 - the columns of U, u_k , are the eigenvectors of AA^T
 - * u_k are called the *left singular vectors*
 - the columns of V, are the eigenvectors of A^TA
 - * the columns of V, v_k , are called the right singular vectors
 - $D_{ii} > 0$ are called the *singular values* of Ω
 - * by convention, order diagonal entries such that

$$D_{i,i} \ge D_{i-1,i-1} \tag{229}$$

- if there are $r \leq \min(m, n)$ singular values, then the rank of Ω in (228) is r
- D_{ii} are the square roots of the nonzero eigenvalues of both AA^T & A^TA
- if all singular values of Ω are unique and non-zero, then its SVD is unique
 - * this uniqueness is up to the multiplication of a column of U by a unit-phase factor and simultaneous multiplication of the corresponding column of V by the same unit-phase factor
- SVD & vector compression:
 - let $D^{(s)}$ be the matrix derived from D, that keeps only the s < r largest singular values, replacing the rest with zeros
 - from (228), define rank s < r matrix

$$\Omega^{(s)} \triangleq UD^{(s)}V^{H}$$

$$= \sum_{k=0}^{s-1} \mathbf{u}_{k} D_{kk} \mathbf{v}_{k}^{T}$$
(230)

- each term $u_k D_{kk} v_k^T$ is called *principle image*
- $\Omega^{(s)}$ is the closest rank-1 matrix to Ω , where the term closest is in term of componentwise Euclidean norm

$$\sum_{i,j} (\Omega_{ij} - \Omega_{ij}^{(s)})^2 \tag{231}$$

- the property of SVD to provide the closest rank-s approximation for a matrix Ω can be used to reduce vector dimensionality
 - * in other words, SVD can be used to compress Ω
- such a compression is not necessarily the best way to compress images
- Principle component analysis:
 - principle component analysis, or PCA, reduces the data set dimensionality from d to $\tilde{d} < d$
 - given $(N \times d)$ data matrix X, first the $(d \times d)$ covariance matrix \overline{C} , is computed (10)
 - \overline{C} is symmetric and has a spectral factorization

$$\overline{C} = V\Lambda V^T \tag{232}$$

- the d dimensional columns of V are the eigenvectors of \overline{C} called *principle axes*
- the $(d \times d)$ diagonal Λ contains the associated eigenvectors
- choose d eigenvalues corresponding to the largest d eigenvalues
- denote the resulting $(d \times d)$ matrix by V
- the projections of the data on the principal axes are called *principal components*
- any data vector x can be compressed to \tilde{x} by

$$\tilde{\boldsymbol{x}} = \tilde{V}\boldsymbol{x} \tag{233}$$

- Relating SVD to PCA:
 - when $X = \Omega$ (228),

$$X^{T}X = (UDV^{T})^{T}(UDV^{T})$$

$$= VDU^{T}UDV^{T}$$

$$= VD^{2}V^{T}$$
(234)

- comparing (234) to (232),

$$D^2 = \Lambda. (235)$$

• Relative entropy:

- the relative entropy of p(x) with respect to the entropy measure q(x) is defined as

$$D(p||q) \triangleq \sum_{x \in \mathfrak{X}} p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)}, \tag{236}$$

- -q(x) does not need to be a probability measure,
- when q(x) = 1, the entropy measure is known as the *uniform measure*,
 - * with uniform measure, relative entropy reduces to entropy,

$$H(X) \triangleq D(X||1),\tag{237}$$

- * in that sense relative entropy generalizes entropy,
- when q(x) is a probability measure, then relative entropy is also called *Kullback Leibler distance* between p(x) and q(x),
 - * D(p||q) is a measure of the inefficiency of assuming the distribution is q when when the true distribution is p,
 - * $D(p||q) \geq 0$,
 - * $D(p||q) = 0 \Leftrightarrow p = q$,
 - * D(p||q) is not a true distance since it is not symmetric and does not satisfy the triangle inequality,
 - * D(p||q) is *convex* in the pair (p,q).

• Bayesian criterion:

- consider the hypotheses set $h \in \mathcal{H}$, & a data set \mathcal{D} ,
 - * practical hypotheses sets are infinite,
- in the Bayesian approach, the posterior $P(h|\mathcal{D})$ is computed from prior P(h), and the maximum $P(h=g|\mathcal{D})$ is chosen,
- it assumes the prior distribution on hypothesis set P(h), is known,
 - * this approach is justified when prior is valid or irrelevant.
- Maximum-likelihood criterion:
 - for independently generated data $\{x_n\}$, the maximum-likelihood (ML) criterion maximizes the expression

$$\max_{\{\boldsymbol{y}_n\}} \prod_{n=1}^{N} P(\boldsymbol{y}_n | \boldsymbol{x}_n) \Rightarrow \\
\min_{\{\boldsymbol{y}_n\}} -\log \left(\prod_{n=1}^{N} P(\boldsymbol{y}_n | \boldsymbol{x}_n) \right) \Rightarrow \\
\min_{\{\boldsymbol{y}_n\}} \frac{1}{N} \sum_{n=1}^{N} \log \frac{1}{P(\boldsymbol{y}_n | \boldsymbol{x}_n)}$$
(238)

• Naive Bayes model:

- Naive Bayes model is a subclass of Bayesian Network, BN, that makes "naive assumptions"
- often used in classification, where given feature observations X_1, X_2, \cdots, X_n per sample, the model inferences the class C
- analytically:

$$\forall i, j \neq i, \ (X_i \perp X_j \mid C) \Rightarrow$$

$$P(C, X_1, \dots, X_n) = P(C) \prod_{i=1}^n P(X_i \mid C) \Rightarrow$$

$$P(c_i \mid x_1, \dots, x_n) \propto P(c_i) \prod_{j=1}^n P(x_j \mid c_i) \Rightarrow$$

$$\hat{c} = \arg \max_{c_i} P(c_i) \prod_{j=1}^n P(x_j \mid c_i)$$
(239)

- $P(c_i)$ is determined using the relative frequency of c_i from the training data
- Gaussian Naive Bayes model assumes $P(x_i|c_i)$ is Gaussian
 - * use MAP estimation to find (μ_i, σ_i)
- Decision tree:
 - the space is partitioned into sub-regions by sequentially & linearly splitting the space based on single features

- the resulting structure is a decision tree
- a decision is designed to maximize the information gain, where

- · Cross-entropy:
 - define cross-entropy between two probability distributions p & q over the same underlying set of events X to be

$$H(p,q) \triangleq -E_p \log q(X),\tag{241}$$

- expanding (236),

$$D(p||q) = E_p \log \frac{p(X)}{q(X)}$$

$$= E_p \log p(X) - E_p \log q(X) \Rightarrow$$

$$H(p,q) = H(p) + D(p||q),$$
(242)

- the cross entropy between two probability distributions measures the average number of bits needed to identify an
 event from a set of possibilities.
- ML criterion & cross-entropy:
 - consider the ML criterion (238) with scalar x_n , with $y_n \in \{0,1\}$ and in the limit $N \to \infty$

$$\min_{\{y_n\}} \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \log \frac{1}{P(y_n | x_n)}$$

$$= \min_{\{y_n\}} \lim_{N \to \infty} \frac{1}{N} \left(\sum_{n: y_n = 1} \log \frac{1}{P(y_n = 1 | x_n)} + \sum_{n: y_n = 0} \log \frac{1}{P(y_n = 0 | x_n)} \right)$$
(243)

- define two terms

$$q(x_n) \triangleq P(y_n = 1|x_n)$$

$$p \triangleq \lim_{N \to \infty} \frac{\sum_{n=1}^{N} y_n}{N}$$
(244)

- substitute $q(x_n)$ into (243)

$$= \min_{p} \lim_{N \to \infty} \left(\frac{1}{N} \sum_{i=1}^{pN} \log \frac{1}{q(x_i)} + \frac{1}{N} \sum_{i=1}^{(1-p)N} \log \frac{1}{1 - q(x_i)} \right)$$

$$= \min_{p} \left(p E_X \log \frac{1}{q(X)} + (1 - p) E_X \log \frac{1}{1 - q(X)} \right)$$
(245)

- compare this to minimizing the cross-entropy (241)

$$= \min_{p} E_{p} \frac{1}{\log q(X)} \tag{246}$$

- · Linear regression:
 - linear regression has a long history in statistics
 - given dataset $\{(x_n, y_n)\}$, with $y_n \in \mathbb{R}$, find best linear fit that minimizes mean-square error
 - from (25), the in-sample error can be represented as

$$C_{in}(\boldsymbol{w}) = \frac{1}{N} ||X\boldsymbol{w} - \boldsymbol{y}||^{2}$$

$$= \frac{1}{N} (X\boldsymbol{w} - \boldsymbol{y})^{T} (X\boldsymbol{w} - \boldsymbol{y})$$

$$= \frac{1}{N} (\boldsymbol{w}^{T} X^{T} X \boldsymbol{w} - 2 \boldsymbol{w}^{T} X^{T} \boldsymbol{y} + \boldsymbol{y}^{T} \boldsymbol{y})$$
(247)

where

- * X is the $N \times (d+1)$ data matrix whose rows are the inputs \boldsymbol{x}_n
- * $y = \{y_n\} \text{ is } (N \times 1)$
- imposing $\nabla C_{\text{in}}(\boldsymbol{w}) = 0$ on (247)

$$\nabla(\boldsymbol{w}^T X^T X \boldsymbol{w}) = \nabla(2\boldsymbol{w}^T X^T \boldsymbol{y}) \Rightarrow X^T X \boldsymbol{w} = X^T \boldsymbol{y}$$
(248)

- if $(d+1) \times (d+1) X^T X$ is invertible, a one-shot learning formulation is obtained

$$\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$$
$$= X^{\dagger} \mathbf{y}$$
(249)

where

$$X^{\dagger} \triangleq (X^T X)^{-1} X^T \tag{250}$$

is the pseudo-inverse of X

- · Gabor filter:
 - in image processing, a Gabor filter, named after Dennis Gabor, is a linear filter used for edge detection,
 - in the spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane wave.
- *K*-means clustering:
 - K-means clustering is a method of clustering data into K classes where each cluster is identified by its center μ_k ,
 - each center μ_k is the representative of a group of data, called *cluster* S_k ,
 - the goal is to minimize

$$\sum_{k=1}^{K} \sum_{\boldsymbol{x}_n \in S_k} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|^2, \tag{251}$$

- since no y_n is involved in the above minimization, this is an example of unsupervised learning,
 - * unsupervised learning does not 'corrupt' the data,
- in general this is an NP hard problem.
- · Lloyd's algorithm:
 - Lloyd's algorithm is an iterative solution to the K-means clustering:
 - * given S_k , update μ_k ,

$$\boldsymbol{u}_k = \frac{1}{|S_k|} \sum_{\boldsymbol{x}_n \in S_k} \boldsymbol{x}_n,\tag{252}$$

* given μ_k , update S_k so that each sample picks the nearest cluster.

REFERENCES

- [1] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, 2015.
- [2] F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain," Psychological Review, 1958.
- [3] C. Szegedy, W. Liu, et al., "Going deeper with convolutions," 2015.
- [4] C. Szegedy, S. Ioffe, V. Vanhoucke, et al., "Inception-v4, inception-resnet and the impact of residual connections on learning," 2016.
- [5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradientbased learning applied to document recognition," 1998.
- [6] A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," 2012.
- [7] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," 2013.
- [8] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," 2015.
- [9] K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," 2016.
- [10] S. Hochreiter and J. Schmidhuber, "Long short-term memory," 1997.
- [11] D. Hebb, The Organization of Behavior. New York: Wiley & Sons, 1949.
- [12] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, "Overfeat: Integrated recognition, localization and detection using convolutional networks," 2014.
- [13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation supplementary material," 2014.
- [14] R. Girshick, "Fast r-cnn," 2015.
- [15] S. Ren, K. He, R. Girshick, , and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," 2016.
- [16] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," 2015.
- [17] K. Xu, J. L. Ba, R. Kiros, K. Cho, et al., "Show, attend and tell: Neural image caption generation with visual attention," 2015.
- [18] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, "Spatial transformer networks," 2016.
- [19] N. Ballas, L. Yao, C. Pal, and A. Courville, "Delving deeper into convolution networks for learning video representation," 2016.