DATE: March 10, 2011 COURSE: MATH 2130 PAGE: 1 of 5 TIME: 70 minutes EXAMINER: G.I. Moghaddam

Answers

[10] 1. Evaluate each of these limits or explain why it does not exist.

(a) $\lim_{(x,y)\to(1,-1)} \frac{(x^2-y)(1+y)}{x^4-y^2}$ Exist

(b)
$$\lim_{(x,y)\to(0,-1)} \frac{\sin(\sqrt{x^2+y^2}-1)}{x^4+y^4+2x^2y^2-1}$$
 b) $\frac{1}{4}$

[10] 2. Let $u(x,y) = f(x^2 + y) + g(x^2 + y)$ where f and g are twice differentiable functions. Show that $\frac{\partial^2 u}{\partial x^2} - 4x^2 \frac{\partial^2 u}{\partial y^2} - 2 \frac{\partial u}{\partial y} = 0$ to write <math>u = f(v) + g(v)then use the tree-diagram

[9] 3. Find
$$\frac{dz}{dx}$$
 if
$$xy + xz + yz = 1 \quad , \quad 2xy - 2y^2 - \frac{1}{2}x^2 = 0.$$

Simplify your answer.

 \rightarrow 3. $-(\chi+\lambda y+3\hat{x})$ = $(\chi+\lambda y+3\hat{x})$

[8] 4. Let $f(x, y, z) = x^2 + y + z$ and $g(x, y, z) = xz + \frac{1}{4}z^2$. Find the directional derivative of f + g, at the origin, along the curve

$$C: x = t^2, y = 2t, z = -2t.$$

[13] 5. Let S_1 be the surface $z=x^3-y^2$ and also let S_2 be the surface x+y=xz.

 $\Rightarrow 5 \text{ a}$ 12x-4y-2 = 12 S₁ at

- (a) Find the equation of the tangent plane to the surface S_1 at the point (2, 2, 4).
- (b) Find a tangent vector for the curve of intersection of the two surfaces S_1 and S_2 at the point (1, -1, 0).

b) -1î+2ĵ+k

(c) Find the point(s) on the surface S_2 at which the tangent plane is parallel to the plane 2x + y - 3z = 0.

c) $(32,-62^2,1-22)$ λ is arbitrary Constant , $\lambda \neq 0$