WEAK RICCI CURVATURE BOUNDS FOR RICCI SHRINKERS

BENNETT CHOW, PENG LU, AND BO YANG¹

ABSTRACT. We show that for a complete Ricci shrinker there exists a sequence of points tending to infinity whose norms of the Ricci tensor grow at most linearly.

All objects are C^{∞} . Let (\mathcal{M}^n, g) be a Riemannian manifold and $\phi, f : \mathcal{M} \to \mathbb{R}$. For $\gamma : [0, \bar{s}] \to \mathcal{M}$, $\bar{s} > 0$, define $S = \gamma'$ and $\mathcal{J}(\gamma) = \int_0^{\bar{s}} \left(|S(s)|^2 + 2\phi(\gamma(s)) \right) ds$. A critical point γ of \mathcal{J} on paths with fixed endpoints, called a ϕ -geodesic, satisfies $\nabla_S S = \nabla \phi$ and $|S|^2 - 2\phi = C$. Let $\operatorname{Rc}_f = \operatorname{Rc} + \nabla \nabla f$. For a minimal ϕ -geodesic,

$$(1) \qquad -\int_{0}^{\bar{s}} \zeta^{2} \Delta_{f} \phi ds + \int_{0}^{\bar{s}} \zeta^{2} \operatorname{Rc}_{f}(S, S) ds \leq \int_{0}^{\bar{s}} \left(n \left(\zeta' \right)^{2} - 2 \zeta \zeta' \left\langle \nabla f, S \right\rangle \right) ds,$$

where $\Delta_f = \Delta - \nabla f \cdot \nabla$ and $\zeta : [0, \bar{s}] \to \mathbb{R}$ is piecewise C^{∞} , vanishing at 0 and \bar{s} . Let (g, f) be a complete shrinker and satisfy $\operatorname{Rc}_f = \frac{1}{2}g$ and $f - |\nabla f|^2 = R > 0$.

Let (g, f) be a complete similar and satisfy $\operatorname{Re}_f = \frac{1}{2}g$ and f = |Vf| = R > 0. Let c > 0 and $2\phi = c\frac{R}{f}$. From $\Delta_f R = -2\left|\operatorname{Re}\right|^2 + R$ and $\Delta_f f = \frac{n}{2} - f$ we compute

$$\Delta_f \frac{R}{f} = \frac{R}{f^2} (2f - \frac{n}{2}) - 2\frac{|\operatorname{Rc}|^2}{f} - 4\frac{\operatorname{Rc}(\nabla f, \nabla f)}{f^2} + 2\frac{R|\nabla f|^2}{f^3} \le -\frac{|\operatorname{Rc}|^2}{f} + 4\frac{(1 + \sqrt{n})^2}{f}.$$

If $\zeta(s) = \bar{s}$ for $s \in [0, 1]$, $\zeta(s) = 1$ for $s \in [1, \bar{s} - 1]$, $\zeta(s) = \bar{s} - s$ for $s \in [\bar{s} - 1, \bar{s}]$, then

$$\frac{c}{2}\int_{0}^{\bar{s}}\zeta^{2}\left(\frac{|\operatorname{Rc}|^{2}}{f}-4\frac{(1+\sqrt{n})^{2}}{f}\right)ds+\frac{1}{2}\int_{0}^{\bar{s}}\zeta^{2}\left|S\right|^{2}ds\leq 2n-\int_{0}^{\bar{s}}2\zeta\zeta'\left\langle\nabla f,S\right\rangle ds.$$

Let $\gamma(0)=x, \ \gamma(\bar{s})=y,$ and $\bar{s}=d(x,y).$ Then $1-c\leq C\leq 1+c;$ the lower by $\frac{R}{f}\leq 1$ and the upper since for a minimal geodesic $\bar{\gamma}(s),\ s\in[0,\bar{s}],$ from x and y,

$$C\bar{s} \leq \int_{0}^{\bar{s}} \left(\left| \gamma'\left(s\right) \right|^{2} + c \frac{R(\gamma(s))}{f(\gamma(s))} \right) ds \leq \int_{0}^{\bar{s}} \left(\left| \bar{\gamma}'\left(s\right) \right|^{2} + c \frac{R(\bar{\gamma}(s))}{f(\bar{\gamma}(s))} \right) ds \leq (1+c)\bar{s}.$$

Let $f\left(O\right) = \min_{\mathcal{M}} f \leq \frac{n}{2}$ and $r = d\left(\cdot, O\right)$. Then $|\nabla f|\left(z\right) \leq \sqrt{f\left(z\right)} \leq \sqrt{\frac{n}{2}} + r\left(z\right)$. Since $|S| \leq \sqrt{C+c}$ and $r\left(\gamma\left(s\right)\right) \leq \min\{r\left(x\right) + s\sqrt{C+c}, r\left(y\right) + (\bar{s}-s)\sqrt{C+c}\}$,

$$-\int_{0}^{\bar{s}} \zeta \zeta' \left\langle \nabla f, S \right\rangle ds \leq \int_{0}^{1} s \sqrt{f\left(\gamma\left(s\right)\right)} \left|S\left(s\right)\right| ds + \int_{\bar{s}-1}^{\bar{s}} \left(\bar{s}-s\right) \sqrt{f\left(\gamma\left(s\right)\right)} \left|S\left(s\right)\right| ds$$
$$\leq \frac{1}{2} \sqrt{C+c} \left(\sqrt{2n} + r\left(x\right) + r\left(y\right) + 2\sqrt{C+c}\right).$$

Let $A = \sqrt{C + c}$. Since $f(\gamma(s)) \ge f(O)$ and $\bar{s} = d(x, y)$, we have

$$\int_{0}^{\bar{s}} \frac{\zeta^{2} |\operatorname{Rc}|^{2}}{f} ds \leq \frac{4(1+\sqrt{n})^{2} d\left(x,y\right)}{f\left(O\right)} + \frac{4(\sqrt{n}+A)^{2}}{c} + \frac{2A\left(r\left(x\right)+r\left(y\right)\right)}{c}$$

Take x = O and $\bar{s} = r(y) \ge 2\sqrt{\frac{n}{2}}$. Then $d(\gamma(s), y) \le \frac{r(y)}{2}$ for $s \in \left[\frac{2A-1}{2A}\bar{s}, \bar{s}\right]$ and

$$\frac{(\frac{r(y)}{2A} - 1) \min_{s \in [(1 - \frac{1}{2A})\bar{s}, \bar{s}]} |\operatorname{Rc}|^2 (\gamma(s))}{(\sqrt{\frac{n}{2}} + \frac{3r(y)}{2})^2} \le \int_{(1 - \frac{1}{2A})\bar{s}}^{\bar{s} - 1} \frac{|\operatorname{Rc}|^2 (\gamma(s))}{f(\gamma(s))} ds \le \operatorname{Const}(r(y) + 1).$$

Thus there exists $C < \infty$ such that for any $y \in \mathcal{M}$ with $r(y) \ge \max\{\sqrt{2n}, 3A\}$, there exists a point $z \in \mathcal{M}$ with $d(z, y) \le \frac{r(y)}{2}$ and $|\operatorname{Rc}|(z) \le C(r(y) + 1)$.

 $^{^1\}mathrm{Address}.$ Bennett Chow, Bo
 Yang: Math. Dept., UCSD; Peng Lu: Math. Dept., U
 of Oregon.