CS221: Digital Design

http://jatinga.iitg.ernet.in/~asahu/cs221

FSM: Optimization and State Encoding

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- FSM State Optimization: RM and IC
- FSM State Encoding
- FSM + Data Path
- ASM

FSM State Minimization

FSM State Minimization

- Minimizing number of state reduce
 - Requirement of bigger size state register
 - Possibly reduce the CCC

Some Definitions

- State Equivalence: S1 and S2 are equivalent if for every input sequence applied to machine goes to same NS and Output
 - If S1(t+1)=S2(t+1) and Z1=Z2 then S1=S2

 Distinguishable States: Two states S1 and S2 are Distinguishable iff there exist at least one finite input sequence which produce different outputs from S1 and S2

Methods

- Row Matching Method or Partitioning Method
 - Completely specified machine (n² edges)
 - Partially specified machine
- Implication Chart Method

FSM Reduction: Implication Chart Method

Problem:

Single input X, Single output Z

Output a 1 whenever the serial sequence 010 or 110 has been observed at the inputs

Input Sequence	Present State		State X=1	Outp X=0	
Reset	S ₀	S ₁	S ₂	0	0
0	S_1	S_3	$S_{\underline{A}}$	0	0
1	S_2	S_3 S_5	S_6	0	0
00	S_3		S	0	0
01	S_4	S	S	1	0
10	S_5^{-}	S _o S _o	S	0	0
11	S_6	S ₀	S_0	1	0

Enumerate all possible combinations of states taken two at a time

Naive Data Structure: Xij will be the same as Xji Also, can eliminate the diagonal

Filling in the Implication Chart

Entry X_{ij} — Row is S_i , Column is S_j

 \mathbf{S}_{i} is equivalent to \mathbf{S}_{j} if outputs are the same and next states are equivalent

 X_{ij} contains the next states of S_i , S_j which must be equivalent if S_i and S_j are equivalent

If $\mathbf{S_i}$, $\mathbf{S_j}$ have different output behavior, then $\mathbf{X_{ij}}$ is crossed out

If S_i , S_j have different output behavior, then X_{ij} is crossed out

		NS		Out	put
Input	P State	I ^{X=0}	X=1	X=0	X=1
Reset	S ₀	S ₁	S	0	0
0	S ₁	S ₃	S	0	0
1	S	S ₃ S ₅	S ₄ S ₆	0	0
00			S	0	0
01	S	S _o	S	1	0
10	S ₅	S ₀	S	0	0
11	$\mathcal{S}^{\scriptscriptstyle 3}\mathcal{S}^{\scriptscriptstyle 4}\mathcal{S}^{\scriptscriptstyle 5}\mathcal{S}^{\scriptscriptstyle 6}$	ທ [ຸ] ທ [ຸ] ທຸທຸ	ທ [ຸ] ທ [ຸ] ທ [ຸ] ທຸ	1 11	0

Starting Implication Chart

If Si, Sj have different output behavior, then Xij is crossed out

S4 have different out put behavior with S0, S1, S 2, S3, S5 S6 have different out put behavior with S0, S1, S 2, S3, S5

		NS		Out	put
Input	P State	I ^{X=0}	X=1	X=0	X=1
Reset	S ₀	S ₁	S	0	0
0	S	S ₃	S	0	0
1	S	S^3 S_5	S ₄ S ₆	0	0
00		S ₀	S	0	0
01	S	S	S	1	0
10	S ₅	၂ နွိ	S	0	0
11	$\mathcal{O}^{\scriptscriptstyle 3}\mathcal{O}^{\scriptscriptstyle 4}\mathcal{O}^{\scriptscriptstyle 5}\mathcal{O}^{\scriptscriptstyle 6}$	S° S°	ທ ^o ທ ^o ທ ^o ທ ^o	1 ₁₂	0

Fill others Sij Based on Next State Transaction

		NS		Out	put
Input	P State	L ^{X=0}	X=1	X=0	X=1
Reset	S ₀	S ₁	S	0	0
0	S	S ₃	S	0	0
1	S_2	S ₃ S ₅	S ₄ S ₆	0	0
00		S ₀	S	0	0
01	S	S	S	1	0
10	S ₅	S	S	0	0
11	$\mathcal{O}^{\scriptscriptstyle 7}$ $\mathcal{O}^{\scriptscriptstyle 4}$ $\mathcal{O}^{\scriptscriptstyle 5}$ $\mathcal{O}^{\scriptscriptstyle 6}$	S° S°	ທ ^o ທ ^o ທ ^o ທ ^o	1 14	0

Second Pass Adds No New Information

Second Pass Adds No New Information

Final: Reduce State Tabe

Reduces State table

Input	P State	NS Æ0	X=1	Out X=0	•
Reset	So	S ₁	S	0	0
0	S ₁	S	S	0	0
1	$\mathcal{O}^{^{-}} \mathcal{O}^{^{lpha}} \mathcal{O}^{^{lpha}} \mathcal{O}^{^{lpha}} \mathcal{O}^{^{4}} \mathcal{O}^{^{5}} \mathcal{O}^{^{6}}$	S_3 S_5	\mathcal{O}_{ω} \mathcal{O}_{ω} \mathcal{O}_{ω} \mathcal{O}_{ω} \mathcal{O}_{ω} \mathcal{O}_{ω} \mathcal{O}_{ω}	0	0
00	S	S	S	0	0
01	S	S	S	1	0
10	S	S	S	0	0
11	S ₆	ທ ^o ທ ^o ທ ^o ທ	S ₀	1	0

State Encoding/Assignment

State assignment

- Since we don't care about the actual flip-flop values for each state we can assign each state to any binary number we like as long as each state is assigned a unique binary number
- Suppose a FSM have 5 states
- If we use 3 bits to encode the 5 states, we have

$$\binom{8}{5} = \frac{8!}{5!(8-5)!}$$

possible encodings

State assignment

state	Encoding 1 (binary)	Encoding 2 (Gray)	Encoding 3
a	000	000	000
b	001	001	100
C	010	011	010
d	011	010	101
e	100	110	011

State Encoding

- Hamming/Edit Distance
 - HD(0000,0100)=1, HD(0011,1100)=4, HD(1010,1111)=2
- Binary and Gray encoding use the minimum number of bits for state register
- Gray and Johnson code: Two adjacent codes differ by only one bit
 - Reduce simultaneous switching
 - Reduce crosstalk, Reduce glitch

One-hot encoding

- One flip-flop per state encoding
- Leads to greater number of flip-flops than binary encoding but possibly to simpler o/p logic