Exercise 1.1

a)

Each clause is a disjunction containing at least one negated atom. Therefore, the interpretation $p_i \mapsto \top \quad \forall i$ satisfies S.

b)

$(p \land (q \lor \neg p)) \lor (r \land \neg (s \lor r))$	Commutativity
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (r \wedge \neg (r \vee s))$	De Morgan
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (r \wedge \neg r \wedge \neg s))$	Contradiction
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (\bot \wedge \neg s))$	Falsity
$\Longrightarrow (p \land (\neg p \lor q)) \lor \bot$	Falsity
$\Longrightarrow p \wedge (\neg p \vee q)$	Distributivity
$\Longrightarrow (p \land \neg p) \lor (p \land q)$	Contradiction
$\Longrightarrow \bot \lor (p \land q)$	Falsity
$\implies p \land q$	

Exercise 1.2

a)

All branches are either saturated or closed. The only open branch provides the model $p\mapsto F, q\mapsto F, r\mapsto T.$

b)

Since its negation is unsatisfiable, $(\neg p \land q \land r) \lor (p \land q) \lor (\neg p \land \neg r) \lor \neg q$ is a tautology.

c)

 $p \wedge \neg q \wedge (r \wedge p) \rightarrow (q \vee \neg r) \wedge r$ is unsatisfiable, therefore $\{p \wedge \neg q, (r \wedge p) \rightarrow (q \vee \neg r)\} \models r$

Exercise 1.3

Detailed transformations for the first statement, with C meaning that Cyclope is guilty and $\neg C$ that Cyclope is not guilty. Other abbreviations analogous.

$$\begin{array}{c} (\neg C \wedge E \wedge \neg A) \vee (C \wedge \neg (E \wedge \neg A)) \\ \equiv \\ (\neg C \wedge E \wedge \neg A) \vee (C \wedge (\neg E \vee A)) \\ \equiv \\ (\neg C \vee (C \wedge (\neg E \vee A))) \wedge (E \vee (C \wedge (\neg E \vee A))) \wedge (\neg A \vee (C \wedge (\neg E \vee A))) \\ \equiv \\ (\neg C \vee C) \wedge (\neg C \vee \neg E \vee A) \wedge (E \vee C) \wedge (E \vee \neg E \vee A) \wedge (\neg A \vee C) \wedge (\neg A \vee \neg E \vee A) \\ \equiv \\ (\neg C \vee \neg E \vee A) \wedge (E \vee C) \wedge (\neg A \vee C) \end{array}$$

This leads to the following

$\neg E \lor A) \land (E \lor C) \land (E \lor \neg E \lor A) \land (\neg A \lor C) \land (\neg A \lor \neg E)$ $(\neg C \lor \neg E \lor A) \land (E \lor C) \land (\neg A)$	
lowing set of formulae:	
$\{\neg C, \neg E, A\}$	(1.1)
$\{C,E\}$	(1.2)
$\{C, \neg A\}$	(1.3)
$\{\neg E, \neg G, \neg L\}$	(2.1)
$\{E,G\}$	(2.2)
$\{E,L\}$	(2.3)
$\{\neg A, \neg Sh, L\}$	(3.1)
$\{A,Sh\}$	(3.2)
$\{A, \neg L\}$	(3.3)
$\{\neg G, \neg W, P\}$	(4.1)
$\{G,W\}$	(4.2)
$\{G, \neg P\}$	(4.3)
$\{ \neg I, E, St \}$	(5.1)
$\{I, \neg E\}$	(5.2)
$\{I, \neg St\}$	(5.3)
$\{ \neg L, \neg I, W \}$	(6.1)
$\{L,I\}$	(6.2)
$\{L, \neg W\}$	(6.3)
$\{\neg M, \neg P, C\}$	(7.1)
$\{M,P\}$	(7.2)
(, -)	()

 $\{M, \neg C\}$

(7.3)

$$(16) + (7.2): \{M\} \tag{21}$$

$$(21) + (10.3): \{St\}$$
 (22)

$$(2.1) + (18) : \{\neg G, \neg L\}$$
 (23)

$$(23) + (19) : \{\neg L\}$$
 (24)

$$(24) + (6.3): \{\neg W\}$$
 (25)

$$(25) + (12.3): \{V\}$$
 (26)

$$(20) + (9.3) : \{Sh\}$$
 (27)

$$(3.1) + (27) : \{ \neg A, L \}$$
 (28)

$$(28) + (24): \{\neg A\} \tag{29}$$

$$(29) + (1.1): \{\neg C, \neg E\} \tag{30}$$

$$(30) + (18) : \{\neg C\}$$
 (31)

This leads to the following set of guilty people: Emma Frost, Gambit, Iceberg, Malicia, Shadowcat, Storm, and Vega