$$F(p) = \int_{0}^{\infty} f(t) e^{-pt} dt$$

$$F(p) = \int_{0}^{\infty} f(t) e^{-pt} dt$$

$$f(t) = \frac{1}{2\pi j} \int_{\alpha - j\infty}^{\alpha + j\infty} F(p) e^{pt} dp$$

Свойства преобразования Лапласа:

1. Свойство линейности	$C_1f_1(t) + C_2f_2(t) \div C_1F_1(p) + C_2F_2(p),$ где C_1 , C_2 – const
2. Теорема дифференцирования	$\frac{\mathrm{d}f(t)}{\mathrm{d}t} \div p \ F(p) - f(0_+)$
3. Теорема интегрирования	$\int_{0}^{t} f(t) dt \div \frac{F(p)}{p}$
4. Теорема запаздывания	$f(t-t_0) \div F(p) e^{-pt_0}$
5. Теорема смещения	$f(t)e^{-\lambda t} \div F(p+\lambda), \lambda$ — комплексное число
6. Теорема подобия	$f(\alpha t) \div \frac{1}{\alpha} F\left(\frac{p}{\alpha}\right), \alpha > 0 - \text{const}$
7. Теорема свертывания	$\int_{0}^{t} f_1(\tau) f_2(t-\tau) d\tau = \int_{0}^{t} f_1(t-\tau) f_2(\tau) d\tau$

Связь между изображениями и оригиналами:

	F(p)	f(t)
1.	1	$\delta(t)$
2.	$\frac{1}{p}$	$\sigma(t)$
3.	$\frac{1}{p^2}$	t
4.	$\frac{1}{p+a}$	e^{-at}
5.	$\frac{p}{p+a}$	$\delta(t) - a e^{-at}$
6.	$\frac{a}{p(p+a)}$	$1-e^{-at}$

	1	$\begin{pmatrix} -at & -bt \end{pmatrix}$
7.	$\overline{(p+a)(p+b)}$	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$
8.	$\frac{p}{(p+a)(p+b)}$	$\frac{1}{b-a} \left(be^{-bt} - ae^{-at} \right)$
9.	$\frac{p^2}{(p+a)(p+b)}$	$\delta(t) + \frac{1}{b-a} \left(a^2 e^{-at} - b^2 e^{-bt} \right)$
10.	$\frac{1}{(p+a)^2}$	te^{-at}
11.	$\frac{p}{(p+a)^2}$	$(1-at)e^{-at}$
12.	$\frac{\omega}{p^2 + \omega^2}$	$\sin(\omega t)$
13.	$\frac{p}{p^2 + \omega^2}$	$\cos(\omega t)$
14.	$\frac{\omega}{(p+a)^2+\omega^2}$	$e^{-at}\sin(\omega t)$
15.	$\frac{p}{\left(p+a\right)^2+\omega^2}$	$e^{-at} \left[\cos(\omega t) - \frac{a}{\omega} \sin(\omega t) \right]$
16.	$\frac{p+a}{(p+a)^2+\omega^2}$	$e^{-at}\cos(\omega t)$
17.	$\frac{a^2}{p^2(p+a)}$	$at-(1-e^{-at})$
18.	$\frac{a^2}{p(p+a)^2}$	$1 - (1 + at)e^{-at}$
19.	$\frac{1}{p(p+a)(p+b)}$	$\frac{1}{ab} \left[1 + \frac{1}{a-b} \left(be^{-at} - ae^{-bt} \right) \right]$
20.	$\frac{1}{p[(p+a)^2+\omega^2]}$	$\frac{1}{a^2 + \omega^2} \left[1 - e^{-at} \left(\cos(\omega t) + \frac{a}{\omega} \sin(\omega t) \right) \right]$
21.	$\frac{1}{(p+a)(p^2+\omega^2)}$	$\frac{1}{a^2 + \omega^2} \left[e^{-at} - \cos(\omega t) + \frac{a}{\omega} \sin(\omega t) \right]$
22.	$\frac{p}{(p+a)(p^2+\omega^2)}$	$\frac{1}{a^2 + \omega^2} \left[-ae^{-at} - a \cos(\omega t) + \omega \sin(\omega t) \right]$
23.	$\frac{p^2}{(p+a)(p^2+\omega^2)}$	$\frac{1}{a^2 + \omega^2} \left[a^2 e^{-at} - a\omega \sin(\omega t) + \omega^2 \cos(\omega t) \right]$