ELEC 433 Formula Sheet

Coding Approaches and Characteristics

Channel Capacity for Additive White Gaussian for bandwidth W and noise N_0 :

$$C = W \log_2 \left(1 + \frac{P}{N_0 W} \right)$$

BFSK bit error probability:

$$p = \frac{1}{2}e^{-E_b/2N_0}$$

Binary Linear Block Codes

(n, k, d) code:

- *n* length of codeword
- k number of message bits in codeword
- *d* Code minimum distance

Number of codewords in a code C:

$$|C| = M = 2^k$$

Code rate:

$$R = \frac{\log_2(M)}{n} = \frac{k}{n}$$

Vector space dimensions:

 $\dim S + \dim S^{\perp} = \dim V$

Def (*Binary Linear Block Codes*): A subset $C \subseteq V_n$ is a binary linear block code if:

- $\mathbf{u} + \mathbf{v} \in C \quad \forall \mathbf{u}, \mathbf{v} \in C$
- a**u** \in C \forall **u** \in C, a \in $\{0, 1\}$

Hamming Weight:

 $w(\mathbf{x})$ = number of non-zero elements in \mathbf{x}

Hamming Distance:

 $d(\mathbf{x}, \mathbf{y})$ = number of places in which \mathbf{x} and \mathbf{y} differ Hamming Distance for binary linear codes:

$$d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} + \mathbf{y})$$

Minimum Hamming Distance:

- $d(C) = \min \{d(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}$
- A code C can detect up to v errors if $d(C) \ge v + 1$
- A code C can correct up to t errors if $d(C) \ge 2t + 1$

Def (*Generator Matrix*): A $k \times n$ matrix whose rows for a basis for a linear (n, k) code of a subspace C is said to be a generator matrix for C.

Groups, Rings, and Fields

Def (*Group*) A group (G, \cdot) is a set of objects G on which a binary operation \cdot is defined: $a \cdot b \in G : \forall a, b \in G$. The operation must satisfy:

- Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Identity: $\exists e \in G \mid \forall a \in G, a \cdot e = a$
- Inverse: $\forall a \in G, \exists \text{ unique } a^{-1} \in G \mid a \cdot a^{-1} = e$

Def (*Commutative Group*) A group is said to be commutative or abelian if it also satisfies:

 $\forall a, b \in G, a \cdot b = b \cdot a$

Def (*Ring*) A ring $(R, +, \cdot)$ is a set of objects R on which two binary operations (+ and $\cdot)$ are defined. It has properties:

- (*R*, +) is a commutative group under + with identity "0"
- Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Distribution: $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Def (*Commutative Ring*) A ring is said to be commutative if it also satisfies: $\forall a, b \in G, a \cdot b = b \cdot a$

Def (*Ring with Identity*) A ring is said to be a ring with identity if the operation \cdot has an identity element "1" **Def** (*Division Ring*) Let $(R + \cdot)$ be a ring, and $R^* = R - \cdot$

Def (*Division Ring*) Let $(R, +, \cdot)$ be a ring, and $R^* = R - 0$. If the ring is a commutative ring with identity, and (R^*, \cdot) is a group, then the ring is said to be a division ring.

Def (*Field*) A field $(F, +, \cdot)$ is a set of objects F for which two binary operations $(+ \text{ and } \cdot)$ are defined. F is said to be a field if and only if:

- (*F*, +) is a commutative group under + with additive identity "0"
- (F^*, \cdot) is a commutative group under \cdot with multiplicative identity "1"
- Distribution: $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Finite Integer Fields:

 $S = \{0, 1, \dots, p-1\}$ form a finite field if p is prime. Properties of Finite Fields:

- Order: A field of order q has cardinality |F| = q, denoted GF(q)
- Let $\beta \in GF(q)$, $\beta \neq 0$. The order of β is the smallest positive integer m such that $\beta^m = 1$

- If t is the order of β , then $t \mid (q-1)$
- In any finite field, there are on or more elements of order q − 1 called primitive elements.

Euler's Totient Function:

 $\phi(t)$ = number of positive integers less than t that are relatively prime to t

Finite Fields and Euler's Totient Function:

- The number of elements in GF(q) of order t is $\phi(t)$
- In GF(q) there are exactly $\phi(q-1)$ primitive elements
- If α is a primitive element, then $1, \alpha, \alpha^2, \dots, \alpha^{q-2}$ must be non-zero elements of GF(q)

Def (*Primitive Polynomial*) If an irriducible polynomial p(x) such that the smallest positive integer n for which p(x) divides $x^n - 1$ is $n = p^m - 1$ for a prime p and positive integer m, the polynomial is said to be a primitive polynomial.

Encoding and Decoding

Codeword convention: Data appears unaltered at the start of the code word.

Thm (Equivalence of Binary Linear Codes) Two linear binary codes are called equivalent if one can be obtained from the other by permuting the positions of the code. Two $k \times n$ mbinary matrices generate equivalent linear (n, k, d) codes if one matrix can be obtained from the other by a sequence of row, column permutations and row addition.

Thm (*Systematic Codes*) Let G be a generator matrix of an (n, k) code. Then G can be transformed to the form $[I_k \mid P]$ where P is called the parity matrix.

Encoding of a message \mathbf{m} with a code C:

$$c = \mathbf{m}G$$

Def (*Parity Check Matrix*). H satisfies $GH^T = 0$ and is a basis for the dual space. In systematic form $H = [P^T \mid I_{n-k}]$

Syndrome of a received word r:

$$\mathbf{s} = \mathbf{r}H^T$$

Hamming Codes

Def (Binary Hamming Code) Let $m \in \mathbb{Z}$ and H be a $m \times (2^m - 1)$ matrix with columns which are the non-zero distinct words from a vector space V_m . The code having H as its parity-check matrix is a binary Hamming code of length $2^m - 1$

Hamming code parameters:

$$C: (2^m-1, 2^m-1-m, 3)$$
 $C^{\perp}: (2^m-1, m, 2^{m-1})$

Decoding Hamming Codes where columns of *H* are arranged in order of increasing binary numbers:

- 1. Compute $S(\mathbf{r}) = \mathbf{r}H^T$
- 2. If $S(\mathbf{r}) = 0$, then \mathbf{r} is a valid codeword
- 3. Else, $S(\mathbf{r})$ gives the binary position of the error

Hamming Bound:

$$\sum_{i=0}^{t} \binom{n}{i} \le 2^{n-k}$$

Cyclic Codes

Def (*Cyclic Code*) A code C is cyclic if C is linear and a cyclic shift of any codeword is another codeword. Properties of a (n, k) binary cyclic code C:

- 1. There exists a generator polynomial of minimal degree n k
- 2. Every code polynomial in C can be expressed as c(x) = m(x)g(x) where m(x) has degree < k 1
- 3. We can write $x^n 1 = g(x)h(x)$ where h(x) is the parity check polynomial.
- 4. If g(x) is a primitive polynomial then C is also a Hamming code.

Generator Matrix:

$$G = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 \\ 0 & 0 & \ddots & \ddots & & \ddots & 0 \\ 0 & 0 & 0 & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

Parity Check Matrix:

$$H^*(x) = x^k h(x^{-1}) = h_k + h_{k-1}x + \dots + h_0 x^k$$

$$H = \begin{bmatrix} h_k & \cdots & h_1 & h_0 & 0 & \cdots & 0 \\ 0 & h_k & \cdots & h_1 & h_0 & 0 & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & h_k & \cdots & h_1 & h_0 \end{bmatrix}$$

Systematic Generator Matrix:

- 1. For i = n k to n 1, compute $x^i \mod g(x) = p_i(x)$
- 2. Rows of G are formed by $x^i + p_i(x)$.

Systematic Encoding:

$$c(x) = m(x)x^{n-k} + m(x)x^{n-k} \mod g(x)$$

Updated February 27, 2022 https://github.com/DonneyF/formula-sheets