Раздел 7. Многочлены

Вариант 1

1. Найти сумму многочленов f(x) и g(x):

$$f(x) = 4x^3 + 8x^2 - 5x + 9, \ g(x) = 10x^3 - 13x^2 + 18x - 6.$$

2. Найти произведение многочленов p(x) и q(x):

$$p(x) = -4x^2 + 5$$
, $q(x) = 2x^2 + 7x + 1$

- 3. Найти НОД многочленов $f(x) = 12x^5 14x^4 + 22x^3 4x + 3$ и $q(x) = 3x^3 2x^2 + 1$
- 4. Найти кратность корня x = 2 многочлена $f(x) = x^5 8x^4 + 25x^3 38x^2 + 28x 8$
- 5. Пользуясь алгоритмом Евклида, подобрать полиномы u(x) и v(x) так, чтобы $f(x)u(x) + \phi(x)v(x) = d(x)$, где d(x) HOД многочленов f(x) и $\phi(x)$.

Раздел 7. Многочлены

Вариант 2

1. Найти сумму многочленов f(x) и g(x):

$$f(x) = 5x^3 + 9x^2 - 6x + 10$$
, $g(x) = 9x^3 - 12x^2 + 17x - 6$.

2. Найти произведение многочленов p(x) и q(x):

$$p(x) = -3x^2 + 4$$
, $q(x) = 3x^2 + 8x + 2$

- 3. Найти НОД многочленов $f(x) = x^4 + x^3 + 2x^2 + x + 1$ и $q(x) = x^3 2x^2 + x 2$
- 4. Найти кратность корня x = -3 многочлена $f(x) = 2x^4 + 17x^3 + 45x^2 27x 27$
- 5. Пользуясь алгоритмом Евклида, подобрать полиномы u(x) и v(x) так, чтобы $f(x)u(x) + \phi(x)v(x) = d(x)$, где d(x) HOД многочленов f(x) и $\phi(x)$.

Раздел 7. Многочлены

Вариант 3

1. Найти сумму многочленов f(x) и g(x):

$$f(x) = 6x^3 + 10x^2 - 7x + 11, g(x) = 8x^3 - 11x^2 + 16x - 4.$$

2. Найти произведение многочленов p(x) и q(x):

$$p(x) = -2x^2 + 3$$
, $q(x) = 4x^2 + 9x + 3$

- 3. Найти НОД многочленов $f(x) = x^6 7x^4 + 8x^3 7x + 7$ и $q(x) = 3x^5 7x^3 + 3x^2 7$
- 4. Найти кратность корня $x = -\frac{1}{2}$ многочлена $f(x) = 4x^4 7x^2 5x^3 1$
- 5. Пользуясь алгоритмом Евклида, подобрать полиномы u(x) и v(x) так, чтобы $f(x)u(x) + \phi(x)v(x) = d(x)$, где d(x) HOД многочленов f(x) и $\phi(x)$.

$$f(x) = x^4 - 4x^3 + 3x^2 - 2x + 2$$
 $g(x) = 3x^3 + 2x^2 + x - 1$

Раздел 7. Многочлены

Вариант 4

1. Найти сумму многочленов f(x) и g(x):

$$f(x) = 7x^3 + 11x^2 - 8x + 12$$
, $g(x) = 7x^3 - 10x^2 + 15x - 3$.

2. Найти произведение многочленов p(x) и q(x):

$$p(x) = 2x^2 - 3$$
, $q(x) = 3x^2 + 8x + 2$

- 3. Найти НОД многочленов $f(x) = x^5 + 4x^4 x^3 3x^2 3x 1$ и $q(x) = x^4 2x^3 x^2 2x + 1$
- 4. Найти кратность корня x = -2 многочлена $f(x) = x^5 + 7x^4 + 16x^3 + 8x^2 + 16x 16$
- 5. Пользуясь алгоритмом Евклида, подобрать полиномы u(x) и v(x) так, чтобы $f(x)u(x) + \phi(x)v(x) = d(x)$, где d(x) HOД многочленов f(x) и $\phi(x)$. $f(x) = 2x^4 3x^3 + 4x^2 2x + 2$ $g(x) = 2x^3 + 3x^2 + x 1$

Раздел 7. Многочлены

Вариант 5

- 1. Найти сумму многочленов f(x) и g(x):
- $f(x) = 8x^3 + 12x^2 9x + 13$, $g(x) = 6x^3 17x^2 + 13x 2$. 2. Найти произведение многочленов p(x) и q(x):
- 2. Найти произведение многочленов p(x) и $q(p(x) = 3x^2 4, q(x) = 4x^2 + 7x + 1$
- 3. Найти НОД многочленов $f(x) = 2x^5 3x^4 5x^3 x^2 + 6x + 3$ и $q(x) = 3x^4 2x^3 3x^2 5x 2$
- 4. Найти кратность корня x = 1 многочлена $f(x) = x^6 9x^5 + 33x^4 65x^3 + 74x^2 46x + 12$
- 5. Пользуясь алгоритмом Евклида, подобрать полиномы u(x) и v(x) так, чтобы $f(x)u(x)+\phi(x)v(x)=d(x)$, где d(x)-HOД многочленов f(x) и $\phi(x)$. $f(x)=3x^4-2x^3+4x^2-3x+1 \ \ g(x)=2x^3+3x^2+x-1$

Раздел 7. Многочлены

Вариант 6

- 1. Найти сумму многочленов f(x) и g(x): $f(x) = 9x^3 + 13x^2 9x + 12$, $g(x) = 5x^3 8x^2 + 11x 3$.
- 2. Найти произведение многочленов p(x) и q(x): $p(x) = 4x^2 5$, $q(x) = 2x^2 + 5x + 7$
- 3. Найти НОД многочленов $f(x) = x^6 + 2x^4 4x^3 3x^2 + 8x 5$ и $q(x) = x^5 + x^2 x + 1$
- 4. Найти кратность корня x = -2 многочлена $f(x) = x^6 + 9x^5 + 30x^4 + 40x^3 48x 32$
- 5. Пользуясь алгоритмом Евклида, подобрать полиномы u(x) и v(x) так, чтобы $f(x)u(x) + \phi(x)v(x) = d(x)$, где d(x) HOД многочленов f(x) и $\phi(x)$. $f(x) = 5x^4 3x^3 + 4x^2 2x + 3$ $g(x) = 2x^3 + 3x^2 + x 1$

Раздел 7. Многочлены

Вариант 7

- 1. Найти сумму многочленов f(x) и g(x): $f(x) = 10x^3 + 4x^2 12x + 5$, $g(x) = 3x^3 7x^2 + 12x 4$.
- 2. Найти произведение многочленов p(x) и q(x): $p(x) = 5x^2 6$, $q(x) = 5x^2 4x + 3$
- 3. Найти НОД многочленов $f(x) = 2x^5 + 8x^4 2x^3 6x^2 6x 2$ и $q(x) = x^4 2x^3 x^2 2x + 1$
- 4. Найти кратность корня x = 3 многочлена $f(x) = 2x^5 13x^4 + 26x^3 24x^2 + 24x 9$
- 5. Пользуясь алгоритмом Евклида, подобрать полиномы u(x) и v(x) так, чтобы $f(x)u(x)+\phi(x)v(x)=d(x)$, где d(x)-HOД многочленов f(x) и $\phi(x)$. $f(x)=3x^4-4x^3+5x^2-2x+1 \ \ g(x)=2x^3+3x^2+x-1$

Раздел 7. Многочлены

Вариант 8

- 1. Найти сумму многочленов f(x) и g(x): $f(x) = 11x^3 + 6x^2 2x + 9$, $g(x) = 11x^3 9x^2 + 17x 5$.
- 2. Найти произведение многочленов p(x) и q(x): $p(x) = 6x^2 5$, $q(x) = 3x^2 + 4x + 5$
- 3. Найти НОД многочленов $f(x) = 2x^6 + 4x^4 8x^3 6x^2 + 16x 10$ и $g(x) = x^5 + x^2 x + 1$
- 4. Найти кратность корня x = -2 многочлена $f(x) = x^6 7x^5 + 17x^4 + 13x^3 10x^2 20x 8$
- 5. Пользуясь алгоритмом Евклида, подобрать полиномы u(x) и v(x) так, чтобы $f(x)u(x) + \phi(x)v(x) = d(x)$, где d(x) HOД многочленов f(x) и $\phi(x)$. $f(x) = 3x^4 x^3 + 2x^2 4x + 2$ $g(x) = 2x^3 + 3x^2 + x 1$