Regras de inferência e Leis de equivalência

Regra	Nome da regra
α , $\alpha \rightarrow \beta \models \beta$	modus ponens
$\alpha \rightarrow \beta$, $\neg \beta \models \neg \alpha$	modus tollens
$\alpha \rightarrow \beta, \ \beta \rightarrow \gamma \mid = \alpha \rightarrow \gamma$	silogismo hipotético (regra da cadeia)
$\begin{array}{ccc} \alpha \vee \beta, \neg \alpha & \models \beta \\ \alpha \vee \beta, \neg \beta & \models \alpha \end{array}$	silogismo disjuntivo
$ \begin{array}{c} \alpha \wedge \beta \models \alpha \\ \alpha \wedge \beta \models \beta \end{array} $	simplificação
$\alpha, \beta \models \alpha \land \beta$	conjunção (ou combinação)

Regra	Nome da regra
$\alpha \to \beta, \neg \alpha \to \beta \models \beta$	de casos
$ \alpha \models \alpha \lor \beta \beta \models \alpha \lor \beta $	adição
$\boxed{\alpha \to \beta, \gamma \to \delta, \ \alpha \lor \gamma \models \beta \lor \delta}$	dilema construtivo
$\alpha \to \beta, \gamma \to \delta, \neg \beta \lor \neg \delta \models \neg \alpha \lor \neg \gamma$	dilema destrutivo
$\alpha \to \beta \models \neg \beta \to \neg \alpha$	contraposição
α , $\neg \alpha \models \beta$	da inconsistência
$\alpha \to \beta, \beta \to \alpha \models \alpha \leftrightarrow \beta$	introdução da equivalência
$ \begin{array}{ c c } \alpha \leftrightarrow \beta & \models \alpha \to \beta \\ \alpha \leftrightarrow \beta & \models \beta \to \alpha \end{array} $	eliminação da equivalência

Lei	Nome da lei
$\alpha \land \neg \alpha \equiv F$ $\alpha \lor \neg \alpha \equiv V$	Lei da contradição Lei do terceiro excluído
$\alpha \wedge V \equiv \alpha$ $\alpha \vee F \equiv \alpha$	Leis da identidade
$\alpha \land F \equiv F$ $\alpha \lor V \equiv V$	Leis da dominação
$\alpha \wedge \alpha \equiv \alpha$ $\alpha \vee \alpha \equiv \alpha$	Leis idempotentes
$\neg(\neg\alpha)\equiv\alpha$	Lei da dupla negação

Lei	Nome da lei
$\alpha \wedge \beta \equiv \beta \wedge \alpha$ $\alpha \vee \beta \equiv \beta \vee \alpha$	Leis comutativas
$(\alpha \wedge \beta) \wedge \gamma \equiv \alpha \wedge (\beta \wedge \gamma)$ $(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$	Leis associativas
$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$ $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	Leis distributivas
$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$ $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$	Leis de De Morgan

Lei	Nome da lei
$\alpha \to \beta \equiv \neg \alpha \lor \beta$	Definição de $ ightarrow$ em termos de $ ightharpoonup$ e
$\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha)$	Definição de \leftrightarrow em termos de \rightarrow e \land
$\alpha \leftrightarrow \beta \equiv (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$	Definição de \leftrightarrow em termos de \lor e \neg
$\alpha \lor (\alpha \land \beta) \equiv \alpha$ $\alpha \land (\alpha \lor \beta) \equiv \alpha$	Lei da absorção
$(\alpha \land \beta) \lor (\neg \alpha \land \beta) \equiv \beta$ $(\alpha \lor \beta) \land (\neg \alpha \lor \beta) \equiv \beta$	