

a.p. ot.s. o karnataka o tamilnadu o maharastra o delhi o ranch A right Choice for the Real Aspirant

Date: 01-10-2023

ICON Central Office - Madhapur - Hyderabad

Sec: Sr.Super60_NUCLEUS & STERLING_BT Paper -1(Adv-2022-P1-Model

KEY SHEET

MATHEMATICS

1	9	2	3	3	2	4	3	5	13	6	5
7	2	8	0	9	AD	10	ABC	11	ACD	12	BCD
13	AC	14	ВС	15	A	16	В	17	В	18	A

PHYSICS

19	6	20	5	21	32	22	1	23	2	24	4.95
25	7.50	26	20	27	A	28	ABC	29	AC	30	ВС
31	AD	32	ABD	33	В	34	C	35	C	36	D

CHEMISTRY

37	13	38	438	39	16	40	4	41	5	42	6
43	2	44	7	45	BCD	46	BCD	47	ВС	48	A
49	ABCD	50	ABCD	51	A	52	В	53	С	54	A

SOLUTIONS **MATHEMATICS**

1.
$$R = P^{T} (PAP^{T}) (PAP^{T})......(PAP^{T}) P = A^{8}$$

$$R = (I+B)^{8}, B = \begin{bmatrix} \sqrt{3}-1 & -2\\ 0 & 0 \end{bmatrix}$$

$$R = {}^{8} C_{0}I + {}^{8} C_{1}B + {}^{8} C_{2}B^{2} + {}^{8} C_{3}B^{3} + + {}^{8} C_{8}B^{8}$$

$$B^{2} = \begin{bmatrix} \sqrt{3}-1 & -2\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{3}-1 & -2\\ 0 & 0 \end{bmatrix} = (\sqrt{3}-1)B$$

$$R = I + {}^{8} C_{1}B + {}^{8} C_{2} (\sqrt{3}-1)B + {}^{8} C_{3} (\sqrt{3}-1)^{2}B + {}^{8} C_{8} (\sqrt{3}-1)^{7}B$$

$$= I + \frac{B}{(\sqrt{3}-1)} ({}^{8} C_{1} (\sqrt{3}-1) + {}^{8} C_{2} (\sqrt{3}-1)^{2} + {}^{8} C_{8} (\sqrt{3}-1)^{8})$$

2.
$$A^{-1} + B^{-1} = (A + B)^{-1} \Rightarrow (A^{-1} + B^{-1})(A + B) = (A + B)^{-1}(A + B)$$
$$\Rightarrow 2I + A^{-1}B + B^{-1}A = I \qquad \Rightarrow A^{-1}B + B^{-1}A = -I$$
Let
$$A^{-1}B = P$$
$$P + P^{-1} = -I \Rightarrow \qquad P^{2} + I = -P \Rightarrow \qquad P^{2} + P + I = O$$
$$\Rightarrow (P - I)(P^{2} + P + I) = O \Rightarrow \qquad P^{3} = I$$
$$\Rightarrow \qquad |P| - I \Rightarrow \qquad |A^{-1}||B| = 1 \Rightarrow \qquad |A| = |B|$$

3.
$$a_{ij} = 0 \ i \neq j \text{ And } a_{ij} = (n-1)^2 + i \ i = j$$

Sum of the all the element of
$$= (2n-1)(n-1)^2 + (2n-1)n = 2n^3 - 3n^2 + 3n - 1 = n^3 - 1 = n^3 + (n-1)^3$$
So, $T_n = (-1)^n \left[n^3 + (n-1)^3 \right] = (-1)^n n^3 - (-1)^{n-1} (n-1)^3 = V_n - V_{n-1}$

4.
$$|A - \lambda J| = 0 \Rightarrow \left[\frac{1}{2} - \lambda \frac{1}{2} \right] = 0$$

$$\Rightarrow \lambda^2 - \left(b + \frac{1}{2} \right) \lambda + \frac{b - a}{2} = 0$$

$$A^2 = xA - yI; \quad x = b + \frac{1}{2}, y = \frac{b - a}{2}$$

$$A^3 = xA^2 - yA; \quad x(xA - yI) - yA$$

$$A^3 = A \Rightarrow \left(x^2 - y - 1 \right) A = xyI$$

$$x^2 - y - 1 \Rightarrow x^2 - y - 1$$

$$A^{2} = xA - yI; \quad x = b + \frac{1}{2}, y = \frac{b - a}{2}$$

 $A^{3} = xA^{2} - yA; x(xA - yI) - yA$

$$A^{3} = xA^{2} - yA; x(xA - yI) - yA$$

$$A^{3} = A \qquad \Rightarrow \qquad (x^{2} - y - 1)A = xyI$$

$$\therefore \frac{x^2 - y - 1}{2} = xy \qquad \frac{x^2 - y - 1}{2} = 0 \quad and \quad xy = 0$$

if
$$x = 0$$
, $y = -1$ or $y = 0$, $x = \pm 1$

$$(a,b) = \left(\frac{3}{2}, -\frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}\right), \left(-\frac{3}{2}, -\frac{3}{2}\right)$$

$$5. AA^T = 4I \Rightarrow |A| = \pm 8$$

$$A^{T} = 4A^{-1} = \frac{4Adj(A)}{|A|}$$

$$\Rightarrow \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} = \frac{4}{|A|} \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix}$$

Now,
$$a_{ij} = \frac{4}{|A|}c_{ij} = -\frac{1}{2}c_{ij} \Rightarrow |A| = -8$$

Now,
$$|A+4I| = |A+AA^T| = |A||I+A^T| = -2|(I+A)^T| = -8|1+A|so$$
, $\frac{|A+4I|}{|A+I|} = -8 = -5\lambda \lambda = \frac{8}{5}$

6.
$$|A-nI| = 0$$
$$\begin{vmatrix} 1-n & 2 & 0 \\ 2 & 1-n & 0 \\ 0 & 0 & 1-n \end{vmatrix} = (1-n)^3 - 4(1-n)$$

$$\Rightarrow n = -1, 1, n_1 = -1, n_2 = 1, n_3 = 3$$
 $\Rightarrow A^3 - 3A^2 + 3I = O$

$$|A||B||A|^{T} = |N| = n_{1}n_{2}n_{3} = -3 = |A|^{2}|B||B| = \frac{1}{3}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = I + B \quad B^2 = 4 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}, B^3 = 8 \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

$$Tr(A^k) = 3 + 2({}^kC_22^2 + {}^kC_42^4 + {}^kC_62^6 + \dots)$$

$$= 1 + 2({}^{k}C_{0}{}^{k}C_{2}2^{2} + {}^{k}C_{4}2^{4} + \dots) = 1 + 3^{k} + (-1)^{k}$$

7. Differentiating w.r.t to x.

$$-f'(x) = \begin{vmatrix} -\sin x & x & 1 \\ 2\cos x & x^2 & 2x \\ \sec^2 x & x & 1 \end{vmatrix} + \begin{vmatrix} \cos x & 1 & 1 \\ 2\sin x & 2x & 2x \\ \tan x & 1 & 1 \end{vmatrix} + \begin{vmatrix} \cos x & x & 0 \\ 2\sin x & x^2 & 2 \\ \tan x & x & 0 \end{vmatrix}$$

$$\Rightarrow \frac{-f'(x)}{x} = \begin{vmatrix} -\sin x & 1 & 1 \\ 2\cos x & x & 2x \\ \sec^2 x & 1 & 1 \end{vmatrix} + \begin{vmatrix} \cos x & 1 & 0 \\ 2\sin x & x & 2 \\ \tan x & 1 & 0 \end{vmatrix}$$

$$\Rightarrow \frac{-f'(x)}{x} = \begin{vmatrix} -\sin x & 1 & 1 \\ 2\cos x & x & 2x \\ \sec^2 x & 1 & 1 \end{vmatrix} + \begin{vmatrix} \cos x & 1 & 0 \\ 2\sin x & x & 2 \\ \tan x & 1 & 0 \end{vmatrix}$$

As
$$x \to 0$$

As
$$x \to 0$$

$$\therefore \lim_{x \to 0} \frac{(-)f'(x)}{x} = -2$$

On differentiating determinant we get 8.

$$f'(x) = \begin{bmatrix} \sin \alpha & \cos(x+\alpha) & \sin(x+\alpha) \\ \sin \beta & \cos(x+\beta) & \sin(x+\beta) \\ \sin \gamma & \cos(x+\gamma) & \sin(x+\gamma) \end{bmatrix} + \begin{vmatrix} -1 + x \sin \alpha & -\sin(x+\alpha) & \sin(x+\alpha) \\ 13 + x \sin \beta & -\sin(x+\beta) & \sin(x+\beta) \\ -12 + x \sin \gamma & -\sin(x+\gamma) & \sin(x+\gamma) \end{vmatrix}$$

$$\begin{vmatrix}
-1 + x \sin \alpha & \cos(x + \alpha) & \sin(x + \alpha) \\
+ 13 + x \sin \beta & \cos(x + \beta) & \cos(x + \beta) \\
-12 + x \sin \gamma & \cos(x + \gamma) & \cos(x + \gamma)
\end{vmatrix}$$

This determinant can be expressed as the sum of four determinant's in each of which two column's coincide after taking $\cos x$, $\sin x$ common from them respectively.

 \therefore The value of the determinant = 0

i.e.,
$$f'(x) = 0$$

 $\Rightarrow f(x) = a, a$ Constant function i.e., independent of $x, \alpha, \beta, \lambda$.

$$\Rightarrow$$
 NMNMN M = 3*NMNM*

9.
$$(MN)^2 = 3MN$$
 $\Rightarrow (NM)^3 = 3(NM)^2 \Rightarrow (NM) = 3I$

$$P = \frac{1}{3}I \ SO, P + P^2 + \dots = \left(\frac{1}{3} + \frac{1}{3^2} + \dots\right)I = \frac{1}{2}I$$

10.
$$\Delta = \begin{vmatrix} 3 & 1 + \alpha + \beta & 1 + \alpha^2 + \beta^2 \\ 1 + \alpha + \beta & 1 + \alpha^2 + \beta^2 & 1 + \alpha^3 + \beta^3 \\ 1 + \alpha^2 + \beta^2 & 1 + \alpha^3 + \beta^3 & 1 + \alpha^4 + \beta^4 \end{vmatrix}$$

$$=, \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix}^2 = \left((1 - \alpha)(1 - \beta)(\alpha - \beta) \right)^2 = \left(\frac{a + b + c}{a} \right)^2 \left(\frac{b^2 - 4ac}{a^2} \right)$$

11. A)
$$a_{ij} = -a_{ji} \Rightarrow a_{ij} + a_{ij} = 0 \Rightarrow A$$
 is skew symmetric matrix C. $A^2 = 2A \Rightarrow A^3 = 2^2 A \Rightarrow A^6 = 2^5 A$

D. A⁶B⁷ is skew symmetric matrix of odd order

12.
$$P^{T}(P+Q)Q^{T} = (P+Q)^{T} \Rightarrow |P+Q| = 0, P^{T}(P-I) = -(P-I)^{T}$$
Either $|P||P-1| = -|P-1|or|Q||Q-1| = -|Q-1|$, because $|P| |Q| < 0$

$$P(P^{-1}+Q^{-1})Q = P+Q \Rightarrow |P^{-1}+Q^{-1}| = -|P+Q| = 0$$

13.
$$A_{1} + A_{2} + \dots A_{n} = \sum_{i=1}^{n} A_{1}$$

$$= \begin{bmatrix} \sum_{i=1}^{n} C_{i-1}^{2} & 0 \\ 0 & \sum_{i=1}^{n} C_{i}^{2} \end{bmatrix} = \begin{bmatrix} 2^{n} C_{n} - 1 & 0 \\ 0 & 2^{n} C_{n} - 1 \end{bmatrix} \therefore K_{1} = K_{2} = 2n_{C_{n}} - 1$$

14. conceptual

15.
$$A(t) = \begin{bmatrix} 2\cos t & 1 & 0 \\ 1 & 2\cos t & 1 \\ 0 & 1 & 2\cos t \end{bmatrix}$$

$$|A(t)| = 2\cos t (4\cos^2 t - 1) - 2\cos t = 8\cos^3 t - 4\cos t$$

$$|A(t)| = 4\cos t \cos 2t$$

$$|A(t)| = 2\cos t (4\cos^2 t - 1) - 2\cos t = 8\cos^3 t - 4\cos t$$

$$|A(t)| = 4\cos t \cos 2t$$

$$(A)|A(t)| = 4 \Rightarrow t = -2n\pi, n \in 1 \qquad \Rightarrow t = -2\pi, 0, 2\pi, 4\pi$$

(B)
$$\left| A\left(\frac{\pi}{17}\right) \right| \left| A\left(\frac{4\pi}{17}\right) \right| = \left| 16\cos\frac{\pi}{17}\cos\frac{2\pi}{17}\cos\frac{4\pi}{17}\cos\frac{8\pi}{17} \right| = \left| \frac{\sin\frac{16\pi}{17}}{\sin\frac{\pi}{17}} \right| = 1$$

(C)
$$|A(t)| + |A(2t)| = 4\cos t \cos 2t + 4\cos 2t \cos 4t \le 8$$

(D)
$$\int_{0}^{\pi} 16\cos t \cos 2t \cos 4t \cos 8t dt = \int_{0}^{\pi} \frac{\sin 16t dt}{\sin t} = \int_{0}^{\pi} \left(\frac{\sin 16t}{\sin t} + \frac{\sin (16\pi - 16t)}{\sin (\pi - t)} \right) dt = 0$$

$$\left| M_r \right| = \frac{1}{r - 1} - \frac{1}{r}$$

$$|M_2| + |M_3| + \dots + |M_n| = 1 - \frac{1}{n}$$

$$\underset{n\to\infty}{Lt} \left(\left| M_2 \right| + \left| M_3 \right| + \dots + \left| M_n \right| \right) = \underset{n\to\infty}{Lt} \left(1 - \frac{1}{n} \right)^{\log_e^n} = 1$$

- b)2
- c) $|C| = |A|^2 = 16$

d)
$$A^2 = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$$
 and $A = \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$

$$A^T D = DA^T$$

$$DD^T = D^T D = I$$

$$\Rightarrow DD^T A^T D = DA^T$$

$$DA^{-1} = DA^{T}$$

$$BC^{2} = B^{T}$$

$$B = B^{T}$$

$$B^{2} = I$$

$$\Rightarrow BC^2 = B$$

$$B = B^{T}$$

(A)
$$B = B^{-1}$$

$$\Rightarrow |B^{2018}C| = |C| = \pm 1$$

(B)
$$(ACA^T)^{2019} = (ACA^T)(ACA^T)....(ACA^T) = AC^{2019}A^T = AC^kA^T$$

$$\Rightarrow k$$
 is odd

(C)
$$|ACA^{T}| = |A|^{2} |C| = |C| = \pm 1$$

(D)
$$\left| BB^T \left(B^{-1} \right)^2 \right| + \left| \left(AA^T \right)^{2018} \right| = 1 + 1 = 2$$

As A and B are invertible matrices A^{-1} , B^{-1} both exist, Also, for every positive integer, 18. A^n and B^n are invertible.

Suppose $(AB)^n = A^n B^n$ holds three consecutive positive integer m, m + 1 and m + 2. We

have
$$(AB)^m = A^m B^m$$
(1)

$$(AB)^{m+1} = A^{m+1}B^{m+1} (2)$$

And
$$(AB)^{m+2} = A^{m+2}B^{m+2}$$
 (3)

From (2), we have

$$A^{m+1}B^{m+1} = (AB)^{m+1} = (AB)^{m}(AB) \qquad \Rightarrow A^{m}AB^{m}B = A^{m}B^{m}AB$$

[using (1)]

Since A^m and B are invertible matrices

$$AB^m = B^m A \dots (4)$$

Similarly, using (2) and (3) we can show that

$$AB^{m+1} = B^{m+1}A \dots (5)$$

We have $(AB)B^{m} = AB^{m+1} = B^{m+1}A$

[using (5)]
$$= B(B^m A) = B(AB^m) = (BA)B^m$$

[Using (4)] Thus,
$$(AB)B^m = (BA)B^m$$

As B^m is an invertible matrix, we can cancel B^m from both the sides to obtain AB - BA $\Rightarrow A^{-1}BA = B$ and $B^{-1}AB = A$ etc.,

PHYSICS

19.

Here,
$$\rho g H \pi R^2 - F_{slant} = F_{upthrust} = \frac{1}{3} \pi R^2 H \rho g$$

$$F_{slant} = \frac{2}{3} \pi R^2 H \rho g$$

20. Taking moments about end point

$$(6-X)^2$$
. $A\rho_{\omega} \cdot \frac{g}{2} = 18.A\rho_r \cdot g$

$$X = 1 m$$

21.

$$(P_{B^1} - P_A) = \rho_0(g+6)6$$
(i)

$$(P_B - P_B) = \rho_0(8)8 \qquad \dots (ii)$$

22. Velocity of efflux, $V = \sqrt{2gh}$

Velocity of top layer =
$$\frac{AV}{A_0} = \frac{A}{A_0} \sqrt{2gh}$$

$$\therefore \text{ Acceleration of top layer} = \frac{d}{dt} \left(\frac{A}{A_0} \sqrt{2gh} \right)$$

$$\frac{A}{A_0}\sqrt{2g} \times \frac{1}{2\sqrt{h}} \times \frac{dh}{dt} = \frac{A}{A_0}\sqrt{2g} \times \frac{1}{2\sqrt{h}} \times \frac{A}{A_0}\sqrt{2gh} \qquad \left(\frac{A}{A_0}\right)^2 g = \frac{1}{2\sqrt{h}} \left(\frac{A}{A_0}\right)^2 g = \frac{1}{2\sqrt{h}}$$

23.

Applying Bernoulli's equation

$$P_0 + rgh + (2r)(g)^{\frac{2}{2}} = P_0 + \frac{1}{2}(2r)v^2$$
 $\Rightarrow v = \sqrt{2gh}$

This is required velocity of efflux

Applying continuity equation between 3 and 4 cross-section.

Applying Bernoulli's equation between 3 & 4

$$P_{atm} + \frac{1}{2}(2\rho)v^{2} + 2\rho g \times \frac{h}{2} = P_{atm} + \frac{1}{2}(2\rho)v_{1}^{2} + 0$$

$$\rho v^{2} + \rho g h = \rho v_{1}^{2} = 3gh$$

$$a_{1} = \frac{av}{v_{1}} = \frac{\sqrt{6}.\sqrt{2gh}}{\sqrt{3gh}} = 2 cm^{2}$$

24.
$$V = \sqrt{\frac{2gh}{1 - \left(\frac{1}{10}\right)^2}} \qquad F = (\rho) \left(\frac{A_0}{10}\right) V^2 \qquad = \frac{20}{99} \rho gHA_0$$

25.

26.
$$P_0 + 6\rho gh = \rho_0 + \frac{1}{2}3\rho V^2$$
 $V = 2\sqrt{gh}$

27. For cone A

For cone A
$$\frac{V_{i}}{V} = \frac{1}{3} \qquad V_{i} = \frac{1}{3}V$$

$$\frac{1}{3} \times \pi \times \frac{h_{1}^{2}}{4} \times h_{1} = \frac{1}{3} \times \frac{1}{3} \times \pi R^{2} \times 2R$$

$$\frac{h_{1}^{3}}{4} = \frac{2}{3}R^{3} \qquad h_{1}^{3} = \frac{8}{3}R^{3} \qquad h_{1} = \frac{2}{3\sqrt{3}}R$$

$$\frac{1}{3} \times \pi \times \frac{h_1^2}{4} \times h_1 = \frac{1}{3} \times \frac{1}{3} \times \pi R^2 \times 2R$$

$$\frac{h_1^3}{4} = \frac{2}{3} R^3 \qquad h_1^3 = \frac{8}{3} R^3 \qquad h_1 = \frac{2}{3\sqrt{3}} R$$
For cone B
$$\frac{V - V_i}{V} = \frac{2}{3} \qquad \frac{1}{3} \times \pi \times \frac{h_2^2}{4} \times h_2 = \frac{2}{3} \times \frac{1}{3} \pi R^2 \times 2R$$

$$h_2 = 2\sqrt[3]{\frac{2}{3}} R \qquad \frac{h_1}{h_2} = \frac{1}{2^{\left(\frac{1}{3}\right)}} = (2)^{\frac{1}{3}}$$

Time period:

$$\rho\pi\left(\frac{h_1^2}{4}\right)xg = \sigma\left(\frac{1}{3}\pi R^2\right)(2R)a \qquad \omega = \frac{3}{2}\sqrt{\frac{gh_1^2}{2R^3}} \qquad T = 3^{-\frac{2}{3}}\left[2\pi\sqrt{\frac{2R}{g}}\right]$$

28. Pressure difference will accelerate the fluid.

- Point 1 and 5 are open to atmosphere. 29.
- Force of upthrust will be there on mass m shown in given figure, so A weighs less than 2 30. kg. Balance will show sum of load of beaker and reaction of upthrust so it reads more than 5kg.
- 31. $V = \sqrt{2gy}$

$$F = \rho a \ 2gy$$

$$(\rho Ay)\alpha = \rho a2gy \Rightarrow \alpha = \frac{a}{A}2g$$

Applying Bernoulli's equation at C and D, we have 32.

$$P_0 + 0 + \rho g(3.6) = P_0 + \frac{1}{2}\rho v^2 + 0$$
 $\Rightarrow v = 6\sqrt{2} \ m/s$

$$\Rightarrow v = 6\sqrt{2} \ m/s$$

Volume blown per unit time = $av = \pi r^2 v = 96\sqrt{2} \times 10^{-4} m^3 / s$ Similarly, at A and C,

$$= av = \pi r^2 v = 96\sqrt{2} \times 10^{-4} m^3 / s$$

$$P_A + \frac{1}{2}\rho v^2 + \rho g(3.6 + 1.8) = P_0 + \frac{1}{2}\rho vH2 + 0$$

$$\Rightarrow P_A = 0.46 \times 10^5 N / m^2$$

Pressure at bottom of vessel 33.

$$P = 2\rho gh$$

Force on bottom of vessel

$$F = 2\rho g h A_2$$

Force exerted by vessel at level x on liquid is

$$F = h\rho g(A_2 - A_1)$$

Force of buoyancy $F_B = V_{in}\rho g = Ah\rho g$ 34

Hydrostatic force on side wall of cube $F_H = \text{average pressure x area } F_H = \frac{1}{2} \rho g h A$

Impact force on vessel $F = Av^2 \rho$, Aerodynamic force on flat roof $= Av^2 \rho$

35 A) $F_B = \rho \left(\frac{m}{\sigma}\right) g_{eff} = m \left(\frac{\rho}{\sigma}\right) \sqrt{a^2 + g^2}$

FBC of cube w.r.t container

So
$$\cos \theta = \frac{g}{\sqrt{a^2 + g^2}}$$
 and $\sin \theta = \frac{a}{\sqrt{a^2 + g^2}}$

Let $a_x = acc$ of cube w.r.t container in x-direction $mg + F_B \sin \theta - \frac{mg}{2} = ma_x$

$$a_x^1 = \frac{g}{2} + \frac{\rho}{\sigma} a \Rightarrow a_x^1 = \frac{g}{2} + \frac{\rho}{\sigma} \cdot \frac{g}{2}$$

Hence
$$a_x^1 = \frac{g}{2} + \frac{\rho}{\sigma} a \Rightarrow a_x^1 = \frac{g}{2} + \frac{\rho}{\sigma} \cdot \frac{g}{2}$$

In Y-direction:

$$F_R \cos \theta - mg = ma_{\chi}$$

$$\Rightarrow m \left(\frac{\rho}{\sigma}\right) \sqrt{a^2 + g^2} \frac{g}{\sqrt{a^2 + g^2}} - mg = ma_y$$

FBD for sphere

$$a_y = g \left[\frac{\rho}{\sigma} - 1 \right] = g \left[\frac{\rho}{\sigma} \right] : \frac{a_x}{a_y} = \frac{(2\sigma + \rho)}{2(\rho - \sigma)}$$

B)
$$a_x = g$$
 $a_y = \frac{-mg + m\left(\frac{\rho}{\sigma}\right)g}{m} = \left(\frac{\rho - \sigma}{\sigma}\right)g$ $\therefore \frac{a_x}{a_y} = \frac{\sigma}{\rho - \sigma}$

C) $(P_1 - P_2)A = m a_x$

FBD of cylinder

$$\frac{\rho\omega^2 2}{2} \left[\left(2x \right)^2 - x^2 \right] A = m \ a_x \qquad \frac{\rho}{2} \left(\frac{2g}{3x} \right) 3x^2 A = \left(A - x \right) \sigma a_x \therefore \frac{a_x}{g} = \frac{\rho}{\sigma}$$

D) When cart is not filled with liquid, $\tan \theta = \frac{a}{a}$

$$Cart: (T + F_B) \sin \theta^1 = ma$$

FBD of pendulum

When cart is filled with liquid

$$\frac{When cart is filled with liquid}{Cart : (T + F_B) \sin \theta^1 = ma} \qquad(1)$$

$$\tan \theta^1 = \frac{a}{g} \qquad(2) \qquad (F_B + T) \cos \theta^1 = mg \qquad(3)$$

$$\therefore \frac{\tan \theta^1}{\tan \theta} = \frac{1}{1} = \frac{\theta^1}{\theta} = \frac{1}{1}$$

36. If volume of water displaced is equal to volume of formed water due to melting of ice then water level remains same.

CHEMISTRY

37.

(c)
$$BCl_3 + NH_4Cl \rightarrow B_3N_3Cl_3H_3$$
 $NaBH_4$ $B_3N_3H_6$ H_2O $NH_3 + H_3BO_3 + H_2$

- 38. $Li_3N + 4H_2O \rightarrow 3LiOH + NH_4OH$ Therefore, mass of HCl required = $12 \times 36.5 = 438g$
- 39. (a) The total number of ligands attached to a central ion is called the coordination number of that ion. The coordination number of aluminium ion $\left[Al(BH_4)_4\right]^-$ is 8, because eight ligands are attached to aluminium ion.

 $[Al(BH_4)_4]^-$ contain the complex ion BH_4^- which is formed by sp^3 – hybridization of the orbitals of boron. In every tetrahedral structure of BH_4^- ion is attached to aluminium therefore eight bridging hydrogen atoms are attached to central atom.

40. (4) The number of isomeric structure of disubstituted borazine $(B_3N_3H_4X_2)$ is Four

- 41. X=5, Y=0
- 42. $3B_2H_6 + 6NH_3 \xrightarrow{200^{0}C} 2B_3N_3H_6 + 12H_2$
- 43. $1 H_2 O_2$ is almost colourless 2 Magnesium is present in chlorophyll
- 44. all are correct

- 45 . B,C,D
- 46. $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$

$$CaO + H_2O \rightarrow Ca(OH)_2$$

$$Ca(OH)_2 + SO_2 \rightarrow CaSO_3 + H_2O$$

White Ppt

$$CaSO_3 + SO_2 + H_2O \rightarrow Ca(HSO_3)_2$$

Soluble

47. $Li + O_2 \to LiO_2$; $Li + N_2 \to Li_3N$; $Mg + O_2 \to MgO$; $Mg + N_2 \to Mg_3N_2$

$$Li_3N + H_2O \rightarrow NH_3 + LiOH;$$

$$Mg_3N_2 + H_2O \rightarrow NH_3 + Mg(OH)_2$$

 $NH_3 \xrightarrow{HCl}$ White dense fumes

- 48. In Borax, Two Boron atoms will show sp^2 and other 2 Boron atoms show sp^3
- 49. Graphite is thermodynamically more stable and more reactive than diamond Graphite is an aromatic compound
- Zeolites are 3D silicates in which some of the SiO_4^{4-} units are replaced by $A\ell O_4^{5-}$ ions. Due to honey comb structure they can take up small molecules. The sodium ions present in zeolites are exchanged with cations like Mg^{2+} or Ca^{2+} during the softening of hard water.
- 51. (A) $2Na_2O \xrightarrow{400^0 C} Na_2O_2 + 2Na$
 - (B) $4LiNO_3 \rightarrow 2Li_2O + 4NO_2 + O_2$
 - (C) $2Na + O_2(excess) \xrightarrow{350^{0}C} Na_2O_2$
 - (D) $K(NH_3)_x^+ + [e(NH_3)y]^-$ Blue colour solution
- 52. (A) $4H_3BO_3 + 2NaOH \rightarrow 7H_2O + Na_2B_4O_7$
 - (B) $Na_2B_4O_7 + H_2O \rightarrow H_3BO_3 + NaOH$
 - (C) $K_3BO_3 + H_2SO_4 \rightarrow K_2SO_4 + H_3BO_3$
 - (D) $B_2H_6 + 6H_2O_{(excess)} \rightarrow 2H_3BO_3 + 6H_2 \uparrow$
- 53. Hybridization concept
- 54. (A) $Cl_2 + cold$ and dilute $2NaOH \xrightarrow{0^0C} NaCl + NaOCl + H_2O$
 - (B) $Cl_2 + hot \ and \ cone. \ 6NaOH \xrightarrow{>50^0C} 5NaCl + NaClO_3 + 3H_2O$
 - (C) $2NaNO_3 \xrightarrow{\Delta} 2NaNO_2 + O_2$
 - (D) $2ClO_2 + H_2O \rightarrow HClO_2 + HClO_3$

$$HClO_2 + NaOH \rightarrow NaClO_2 + H_2O$$

$$HClO_3 + NaOH \rightarrow NaClO_3 + H_2O$$