Ein Kozykel-Modell für den äquivarianten Chern-Charakter und differenzielle äquivariante *K*-Theorie.

Eric Schlarmann

Dissertationsprüfung am

9. Juli 2020

Kohomologietheorien

Sind Familien von Funktoren Diff \to Ab mit Eigenschaften

- Mayer-Vietoris Sequenz
- ∐ wird zu ∏
- Homotopieinvarianz

Kohomologietheorien

Sind Familien von Funktoren Diff \rightarrow Ab mit Eigenschaften

- Mayer-Vietoris Sequenz
- ∐ wird zu ∏
- Homotopieinvarianz

Beispiele

- \blacksquare H^* : De Rham-Kohomologie
- K^* : K-Theorie
- *MU**: Komplexer Bordismus
- **...**

Differenzielle Kohomologietheorien

Sind Familien von Funktoren Diff \rightarrow Ab mit Eigenschaften

- Mayer-Vietoris Sequenz
- ∐ wird zu ∏
- Homotopicinvarianz

Beispiele

- \hat{H}^* : Differenzielle De Rham-Kohomologie
- \hat{K}^* : Differenzielle K-Theorie
- \blacksquare \widehat{MU} : Differenzieller Komplexer Bordismus
- **...**

Klassische Definition

Eine differenzielle Erweiterung ist eine Familie von Funktoren \hat{K}^* : Diff \to Ab zusammen mit Transformationen R, I und a sodass

$$\begin{array}{ccc}
\hat{K}^*(M) & \xrightarrow{I} & K^*(M) \\
\downarrow^R & & \downarrow^{\text{ch}} \\
\Omega^*_{d=0}(M) & \xrightarrow{\text{Rham}} & H^*(M),
\end{array}$$

kommutiert und die folgende Sequenz exakt ist:

$$K^{*-1}(M) \xrightarrow{\operatorname{ch}} \Omega^{*-1}(M)/\operatorname{im}(d) \xrightarrow{a} \hat{K}^{*}(M) \xrightarrow{I} K^{*}(M) \longrightarrow 0$$

$$\downarrow R$$

$$\Omega^{*}_{I=0}(M)$$

Äquivariante Version, 1. Versuch

Äquivariante Version, 1. Versuch

$$\hat{K}_{G}^{*}(M) \xrightarrow{I} K_{G}^{*}(M)$$

$$\downarrow_{R} \qquad \qquad \downarrow_{\operatorname{ch}_{G}}$$

$$(\Omega_{d=0}^{*}(M))^{G} \xrightarrow{\operatorname{Rham}} H_{G}^{*}(M),$$
wobei $\operatorname{ch}_{G}(E) = \operatorname{ch}(EG \times_{G} E \to EG \times_{G} M).$

Äquivariante Version, 1. Versuch

$$\begin{array}{ccc}
\hat{K}_{G}^{*}(M) & \xrightarrow{I} & K_{G}^{*}(M) \\
\downarrow_{R} & & \downarrow_{\operatorname{ch}_{G}} \\
(\Omega_{d=0}^{*}(M))^{G} & \xrightarrow{\operatorname{Rham}} & H_{G}^{*}(M),
\end{array}$$

wobei
$$\operatorname{ch}_G(E) = \operatorname{ch}(EG \times_G E \to EG \times_G M)$$
.

Aber: Borel äquivariante Kohomologie ist kein gutes Ziel für den Chern-Charakter!

Der Delokalisierte Chern-Charakter

Delokalisierte Kohomologie [Baum, Connes]

Definiere die Gruppen

$$H^0_{
m delok}(M) = \left(igoplus_{g \in G} \prod_{k \in \mathbb{N}} H^{2k}(M^g; \mathbb{C})
ight)^G \quad {
m und}$$
 $H^1_{
m delok}(M) = \left(igoplus_{g \in G} \prod_{k \in \mathbb{N}} H^{2k+1}(M^g; \mathbb{C})
ight)^G.$

Dann gibt es gibt einen Chern-Charakter Isomorphismus

$$K_G^*(M)\otimes \mathbb{C}\stackrel{\operatorname{ch}_{\operatorname{delok}}}{\longrightarrow} H_{\operatorname{delok}}^*(M)$$

Äquivariante Version, 2. Versuch

$$\begin{array}{ccc} \hat{K}_{G}^{*}(M) & \xrightarrow{I} & K_{G}^{*}(M) \\ & \downarrow_{R} & & \downarrow_{\operatorname{ch}_{\operatorname{delok}}} \\ \Omega_{\operatorname{delok}, d=0}^{*}(M) & \xrightarrow{\operatorname{Rham}} & H_{\operatorname{delok}}^{*}(M) \end{array}$$

Äquivariante Version, 2. Versuch

$$\begin{array}{ccc} \hat{K}_{G}^{*}(M) & \xrightarrow{I} & K_{G}^{*}(M) \\ & \downarrow_{R} & \downarrow_{\operatorname{ch}_{\operatorname{delok}}} \\ \Omega_{\operatorname{delok}, \operatorname{d}=0}^{*}(M) & \xrightarrow{\operatorname{Rham}} & H_{\operatorname{delok}}^{*}(M) \end{array}$$

Frage: Wie kann man eine solche Erweiterung konkret konstruieren?

K-Theorie über ein Spektrum

Theorem [Atiyah]

$$K_G^0(M) \cong [M, \mathscr{F}_0]_G$$

 $K_G^1(M) \cong [M, \mathscr{F}_1]_G$

wobei $\mathscr{F}_i \subset \operatorname{Fred}(\mathcal{H} \otimes L^2(G))$ geeignete Unterräume in der Norm Topologie mit Konjugationswirkung.

Idee: Die universellen Räume \mathscr{F}_i besitzen jeweils eine universelle K-Theorie Klasse, welche wir entlang von Abbildungen zurückziehen. ("Indexbündel")

Eine differenzielle *K*-Theorie Klasse besteht aus

- \blacksquare einer *K*-Theorie Klasse *x*
- einem Differenzialform-Repräsentanten ihres Chern-Charakters Ch(x).

Eine differenzielle *K*-Theorie Klasse besteht aus

- \blacksquare einer *K*-Theorie Klasse *x*
- \blacksquare einem Differenzialform-Repräsentanten ihres Chern-Charakters Ch(x).

Wenn wir einen universellen Repräsentanten für den Chern-Charakter finden, können wir also möglicherweise differenzielle *K*-Theorie klassifizieren.

Auf Atiyahs Räumen von Fredholm Operatoren sind bis heute allerdings keine konkreten geometrischen Repräsentanten bekannt.

⇒ Wir brauchen also besser geeignete Modelle von den klassifizierenden Räumen.

Arbeiten von Segal, Quillen und Freed beschäftigen sich mit unendlich dimensionalen Mannigfaltigkeiten, um den universellen Chern-Charakter zu beschreiben. Arbeiten von Segal, Quillen und Freed beschäftigen sich mit unendlich dimensionalen Mannigfaltigkeiten, um den universellen Chern-Charakter zu beschreiben.

Definition

Die eingeschränkte Grassmann Mannigfaltigkeit Gr_{res} ist der Raum aller Unterräume $W \subset \mathcal{H}_+ \oplus \mathcal{H}_-$, sodass

- π_+ : $W \to \mathcal{H}_+$ ein Fredholm Operator ist.
- π_- : $W \to \mathcal{H}_-$ ein Hilbert–Schmidt Operator ist.

Arbeiten von Segal, Quillen und Freed beschäftigen sich mit unendlich dimensionalen Mannigfaltigkeiten, um den universellen Chern-Charakter zu beschreiben.

Definition

Die eingeschränkte Grassmann Mannigfaltigkeit Gr_{res} ist der Raum aller Unterräume $W \subset \mathcal{H}_+ \oplus \mathcal{H}_-$, sodass

- $\pi_+ \colon W \to \mathcal{H}_+$ ein Fredholm Operator ist.
- π_- : $W \to \mathcal{H}_-$ ein Hilbert–Schmidt Operator ist.

Definition

Die eingeschränkte unitäre Gruppe U¹ ist der Raum aller beschränkten unitären Operatoren P auf \mathcal{H}_+ , sodass $P - \mathrm{id} \in L^1$ ein Spurklasseoperator ist.

Klassifizierende Räume für K-Theorie

Theorem

Für jede glatte G-Mannigfaltigkeit ist

$$([M, \operatorname{Gr}_{\operatorname{res}}]_G, \boxplus) \cong K_G^0(M)$$
$$([M, \operatorname{U}^1]_G, \boxplus) \cong K_G^1(M)$$

wobei die Blocksummenoperation

$$\begin{split} \boxplus \colon Gr_{res} \times Gr_{res} &\to Gr_{res} \\ \boxplus \colon U^1 \times U^1 &\to U^1. \end{split}$$

der Summe von Untervektorräumen bzw. Blocksumme von Matrizen entspricht.

Auf Gr_{res} und U^1 existieren (per Konstruktion!) spezielle Lie-Algebra-wertige Differenzialformen:

- Die Krümmungsform auf dem universellen Bündel $R \in \Omega^2(\operatorname{Gr}_{\operatorname{res}}; L^1)$.
- Die Maurer-Cartan Form $\omega \in \Omega^1(U^1; L^1)$.

Auf Gr_{res} und U^1 existieren (per Konstruktion!) spezielle Lie-Algebra-wertige Differenzialformen:

- Die Krümmungsform auf dem universellen Bündel $R \in \Omega^2(\operatorname{Gr}_{\operatorname{res}}; L^1)$.
- Die Maurer-Cartan Form $\omega \in \Omega^1(U^1; L^1)$.

Theorem

Die folgenden Differenzialformen sind de Rham-Repräsentanten des universellen delokalisierten Chern-Charakters:

$$\begin{split} \mathrm{ch}_{\mathrm{even}} &= \bigoplus_{g \in G} \mathrm{tr} \left(g \exp \left(\frac{i}{2\pi} R_g \right) \right). \\ \mathrm{ch}_{\mathrm{odd}} &= \bigoplus_{g \in G} \sum_{k \geq 1} \left(\frac{i}{2\pi} \right)^k \frac{(-1)^{k-1} (k-1)!}{(2k-1)!} \mathrm{tr} \left(g \left(\omega_g \right)^{2k-1} \right) \end{split}$$

Äquivariante Differenzielle K-Theorie

Definition/Theorem

Die Gruppen

$$\begin{split} \hat{K}^0_G(M) &= \mathrm{Map}^G_{\mathrm{Smooth}}(M, \mathrm{Gr}_{\mathrm{res}}) \times \Omega^1_{\mathrm{delok}}(M) / \sim \text{ und} \\ \hat{K}^1_G(M) &= \mathrm{Map}^G_{\mathrm{Smooth}}(M, \mathrm{U}^1) \times \Omega^0_{\mathrm{delok}}(M) / \sim \end{split}$$

definieren eine differenzielle Erweiterung.

Äquivariante Differenzielle K-Theorie

Definition/Theorem

Die Gruppen

$$\begin{split} \hat{K}^0_G(M) &= \mathrm{Map}^G_{\mathrm{Smooth}}(M, \mathrm{Gr}_{\mathrm{res}}) \times \Omega^1_{\mathrm{delok}}(M) / \sim \text{ und} \\ \hat{K}^1_G(M) &= \mathrm{Map}^G_{\mathrm{Smooth}}(M, \mathrm{U}^1) \times \Omega^0_{\mathrm{delok}}(M) / \sim \end{split}$$

definieren eine differenzielle Erweiterung. Hierbei ist $(f_1, \omega_1) \sim (f_0, \omega_0)$, falls es eine glatte G-Homotopie f_t von f_0 zu f_1 gibt, sodass

$$CS_G(f_t) = \bigoplus_g \int_I Ch(f_t) = \omega_1 - \omega_0 + \text{exakt.}$$

Äquivariante Differenzielle K-Theorie

Definition/Theorem

Die Gruppen

$$\hat{K}_G^0(M) = \operatorname{Map}_{\operatorname{Smooth}}^G(M, \operatorname{Gr}_{\operatorname{res}}) \times \Omega^1_{\operatorname{delok}}(M) / \sim \operatorname{und}$$

$$\hat{K}_G^1(M) = \operatorname{Map}_{\operatorname{Smooth}}^G(M, \operatorname{U}^1) \times \Omega^0_{\operatorname{delok}}(M) / \sim$$

definieren eine differenzielle Erweiterung. Hierbei ist $(f_1, \omega_1) \sim (f_0, \omega_0)$, falls es eine glatte G-Homotopie f_t von f_0 zu f_1 gibt, sodass

$$CS_G(f_t) = \bigoplus_g \int_I Ch(f_t) = \omega_1 - \omega_0 + \text{exakt.}$$

Vermutung (Äquivariantes Venice-Lemma)

Sei

$$\mathrm{d}\omega \in \Omega^0_{\mathrm{delok}}(M) \qquad \mathrm{oder} \qquad \mathrm{d}\omega \in \Omega^1_{\mathrm{delok}}(M)$$

eine exakte delokalisierte Differenzialform. Dann ist d ω die Chern Form f^* ch einer nullhomotopen G-Abbildung

$$f: M \to Gr_{res}$$
 oder $f: M \to U^1$.

Wenn das äquivariante Venice-Lemma gilt, so kann man stets auf Zykel (f, ω) mit $\omega = 0$ reduzieren. Somit ist in diesem Fall jede Klasse in \hat{K}_G allein durch eine Abbildung f charakterisiert.

Zykelabbildungen (gerader Fall)

Ein Zykel für $K_G^0(M)$ ist ein G-Vektorbündel $E \to M$. Es gibt eine natürliche Transformation

cycl:
$$Vect_G \to K_G^0$$
,

die wir die topologische Zykelabbildung nennen.

Ein **geometrischer Lift** der topologischen Zykelabbildung ist eine natürliche Transformation

$$\widehat{\operatorname{cycl}} \colon \operatorname{Vect}_G^{\nabla} \to \hat{K}_G^0$$

$$\operatorname{mit} R \circ \widehat{\operatorname{cycl}} = \operatorname{Ch}_G \operatorname{und} I \circ \widehat{\operatorname{cycl}} = \operatorname{cycl}.$$

Zykelabbildungen sind nützlich, um Klassen in \hat{K}_G explizit zu beschreiben.

Zykelabbildungen sind nützlich, um Klassen in \hat{K}_G explizit zu beschreiben.

Theorem (Existenz von Zykelabbildungen)

Die oben definierte differenzielle Erweiterung \hat{K}_G^* besitzt sowohl eine gerade als auch eine ungerade geometrische Zykelabbildung.

Zykelabbildungen sind nützlich, um Klassen in \hat{K}_G explizit zu beschreiben.

Theorem (Existenz von Zykelabbildungen)

Die oben definierte differenzielle Erweiterung \hat{K}_G^* besitzt sowohl eine gerade als auch eine ungerade geometrische Zykelabbildung.

Theorem (Äquivariante Eindeutigkeit)

Bis auf Isomorphie ist \hat{K}_G^* die eindeutige differenzielle Erweiterung, die sowohl eine gerade, als auch eine ungerade Zykelabbildung zulässt.

Offene Fragen

- Kompakte Lie Gruppen / diskrete Gruppen?
- Explizite Cup Produkt Struktur auf \hat{K}_G ?
- Explizite Pushforward / Indexabbildungen?
- Erweiterung auf unendlich-dimensionale Mannigfaltigkeiten?
- Mehr explizite Berechnungen!

Vielen Dank für eure Aufmerksamkeit!