Bộ môn Khoa học Máy tính

Thời gian: 90 phút. Được dùng tài liệu (không Internet). Lớp MH:

MSSV:

Câu 1. Cho bảng dữ liệu sau:

ID	Màu sắc	Giới tính	Kết quả Xét nghiệm	Kích cỡ	Tuổi
1	Đỏ	0	0	Nhỏ	20
2	Xanh dương	1	1	Trung bình	30
3	Đỏ	0	1	Lớn	40
4	Xanh lá	1	0	Trung bình	50
5	Vàng	1	1	Lớn	60

a) Cho biết mỗi thuộc tính ở trên thuộc loại nào?

Họ và tên:

- b) Đối với hai đối tượng 1 và 3:
 - i) Xác định độ khác biệt theo từng thuộc tính.
 - ii) Xác định độ khác biệt của hai đối tượng.
- c) Trả lời nhanh: Ma trận độ khác biệt giữa các đối tượng.

Câu 2. Xây dựng cây quyết định từ bảng dữ liệu sau. Yêu cầu: Trình bày chi tiết các bước đầu tiên.

Customer ID	Gender	Car Type	Shirt Size	Class
1	М	Family	Small	C0
2	М	Sports	Medium	C0
3	М	Sports	Medium	C0
4	М	Sports	Large	C0
5	М	Sports	Extra Large	C0
6	М	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	М	Family	Large	C1
12	М	Family	Extra Large	C1
13	М	Family	Medium	C1
14	М	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Câu 3. Cho cơ sở dữ liệu giao dịch

Customer ID	Transaction ID	Items Bought
1	0001	{a, d, e}
1	0024	{a, b, c, e}
2	0012	{a, b, d, e}
2	0031	{a, c, d, e}
3	0015	{b, c, e}
3	0022	{b, d, e}
4	0029	{c, d}
4	0040	{a, b, c}
5	0033	{a, d, e}
5	0038	{a, b, e}

- a) Tính giá tương đối cho các tập mục {e}, {b, d} và {b, d, e} bằng cách xem mỗi mã giao dịch (transaction ID) như một "giỏ hàng" (market basket).
- b) Dùng kết quả ở ý (a) để tính độ tin cậy cho hai quy tắc kết hợp $\{b, d\} \rightarrow \{e\}$ và $\{e\} \rightarrow \{b, d\}$. Độ tin cậy có phải là một phép đo đối xứng
- c) Lặp lại ý (a) nhưng coi mỗi mã khách hàng (customer ID) là một "giỏ hàng". Mỗi mục được biểu diễn như một biến nhị phân (1 nếu mục đó xuất hiện trong ít nhất một giao dịch của khách hàng, 0 nếu không).
- d) Dùng kết quả ở ý (c) để tính độ tin cậy cho hai quy tắc kết hợp $\{b, d\} \rightarrow \{e\}$ và $\{e\} \rightarrow \{b, d\}$.

Đề thi môn: Khai phá dữ liệu, Đề số 94

Thời gian: 90 phút. Được dùng tài liệu (không Internet).

Họ và tên: ______Lớp MH:

Câu 1. a) Phát biểu nguyên lý bù trừ cho *n* tâp.

- b) Cho *n* vật đánh số từ 1 tới *n*, và *n* hộp đánh số từ 1 tới *n*. Xếp *n* vật vào *n* hộp sao cho mỗi hộp chỉ chứa 1 vật. Có bao nhiều cách xếp để có ít nhất một vật cùng số với hộp chứa nó.
- c) Với n = 7 có bao nhiều cách xếp như vậy?.

Câu 2. Trên tập $A = \{a, b, c, d, e, f\}$ cho quan hệ hai ngôi \mathcal{R} gồm các cặp:

```
(a, a), (a, e), (c, c), (c, e), (e, d), (f, b), (a, d), (b, b), (c, d), (d, d), (e, e), (f, f).
```

- a) Thông qua ma trận quan hệ, chứng minh ${\mathcal R}$ là quan hệ thứ tự.
- b) Vẽ biểu đồ Hasse cho \mathcal{R} . Từ đó:
 - i) Cho biết các phần tử tối đại, tối tiểu của A.

Câu 3. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
for j = 1 to i do
for k = 1 to i do
print i, j, k
```

- a) ($Tr \hat{a} l \partial i nhanh$) Với n = 12, lệnh print được thực thi bao nhiều lần?
- b) Với n ∈ Z⁺ bất kỳ, số lần thực thi lệnh print là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 4. Cho chương trình đệ quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

```
def a(n):
    if n == 0:
        return -7
    if n == 1:
        return 2

        x = a(n-1)
        for i in range(56):
            x = x + a(n-2)
        return x
```

- a) (Trả lời nhanh) Xác định a₄.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) (Trả lời nhanh) Tìm công thức tường minh của f_n .

Đề thi môn: Khai phá dữ liệu, Đề số 29

Thời gian: 90 phút. Được dùng tài liệu (không Internet).

Lớp MH:

Họ và tên: MSSV:

Câu 1. a) Phát biểu nguyên lý bù trừ cho *n* tâp.

- b) Cho *n* vật đánh số từ 1 tới *n*, và *n* hộp đánh số từ 1 tới *n*. Xếp *n* vật vào *n* hộp sao cho mỗi hộp chỉ chứa 1 vật. Có bao nhiều cách xếp để không có hộp nào chứa vật cùng số với nó.
- c) Với n = 8 có bao nhiều cách xếp như vậy?.

Câu 2. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
for j = 1 to i do
for k = 1 to i do
print i, j, k
```

- a) ($Tr \stackrel{?}{a} l \stackrel{?}{v} i n hanh$) Với n = 14, lệnh print được thực thi bao nhiều lần?
- b) Với n ∈ Z⁺ bất kỳ, số lần thực thi lệnh print là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 3. Cho chương trình đệ quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

```
def a(n):
    if n == 0:
        return 2
    if n == 1:
        return 0

    x = a(n-1)
    for i in range(30):
        x = x + a(n-2)
    return x
```

- a) (Trả lời nhanh) Xác định a₉.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) (Trả lời nhanh) Tìm công thức tường minh của f_n .

Câu 4. Cho tập $A = \{a, b, c, d, e, f\}$ và quan hệ \mathcal{R} trên A:

```
\mathcal{R} = \{(a, c), (b, c), (b, d), (c, a), (c, b), (c, d), (d, d), (d, e), (e, b), (e, d), (f, f)\}.
```

- a) Lập ma trận biểu diễn M của \mathcal{R} .
- b) Tìm các ma trận biểu diễn M^k của \mathbb{R}^k , với $k = \overline{2, 6}$.
- c) Tìm ma trận biểu diễn M^* của bao đóng bắc cầu \mathcal{R}^* của \mathcal{R} . Từ đó xác định \mathcal{R}^* .

Câu 5. Cho dãy Fibonacci $\{F_n\}$, $n \in \mathbb{N}$. Bằng quy nạp toán học, chứng minh

$$F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}, \ \forall n \in \mathbb{Z}^+.$$

MSSV:

Lớp MH:

Câu 1. Cho chương trình đệ quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

Họ và tên:

```
def a(n):
    if n == 0:
        return 4
    if n == 1:
        return -2

        x = a(n-1)
    for i in range(2):
        x = x + a(n-2)
    return x
```

- a) (Trả lời nhanh) Xác định a₅.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) (Trả lời nhanh) Tìm công thức tường minh của f_n .

Câu 2. a) Trình bày thuật toán chia đôi liên tiếp để tính a^n với $a \in \mathbb{R}$, $n \in \mathbb{N}$.

- b) Mô tả giá trị của các biến với n = 26.
- c) Đặt f(n) là số chu trình của thuật toán. Bằng phương pháp quy nạp, chứng minh $f(n) \le 1 + \log_2 n$.

Câu 3. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
for j = i to n do
for k = j to n do
print i, j, k
```

- a) ($Tr \hat{a} l \dot{o} i n han h$) Với n = 13, lệnh print được thực thi bao nhiều lần?
- b) Với $n \in \mathbb{Z}^+$ bất kỳ, số lần thực thi lệnh print là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 4. Cho dãy Fibonacci $\{F_n\}$, $n \in \mathbb{N}$. Bằng quy nạp toán học, chứng minh

$$F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}, \ \forall n \in \mathbb{Z}^+.$$

Câu 5. Trên tập $A = \{a, b, c, d, e, t\}$ cho quan hệ hai ngôi \mathcal{R} gồm các cặp:

- (a, a), (a, f), (b, c), (c, c), (d, d), (e, e), (a, c), (b, b), (b, f), (c, f), (d, e), (f, f).
 - a) Thông qua ma trận quan hệ, chứng minh ${\mathcal R}$ là quan hệ thứ tự.
 - b) Vẽ biểu đồ Hasse cho \mathcal{R} . Từ đó:
 - i) Cho biết các phần tử tối đại, tối tiểu của A.

Thời gian: 90 phút. Được dùng tài liệu (không Internet).

Lớp MH:

Họ và tên: MSSV:

Câu 1. Cho dãy Fibonacci $\{F_n\}$, $n \in \mathbb{N}$. Bằng quy nạp toán học, chứng minh

$$F_0 + F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1, \ \forall n \in \mathbb{N}.$$

Câu 2. Cho chương trình đệ quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

```
def a(n):
    if n == 0:
        return -3
    if n == 1:
        return 7

    x = a(n-1)
    for i in range(2):
        x = x + a(n-2)
    return x
```

- a) (Trả lời nhanh) Xác định a₆.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) ($Tr \hat{a} l \hat{o} i nhanh$) Tìm công thức tường minh của f_n .

Câu 3. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
for j = 1 to i do
for k = 1 to i do
print i, j, k
```

- a) ($Tr \hat{a} l \partial i nhanh$) Với n = 6, lệnh print được thực thi bao nhiều lần?
- b) Với $n \in \mathbb{Z}^+$ bất kỳ, số lần thực thi lệnh **print** là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 4. a) Phát biểu nguyên lý bù trừ cho n tập.

- b) Cho *n* vật đánh số từ 1 tới *n*, và *n* hộp đánh số từ 1 tới *n*. Xếp *n* vật vào *n* hộp sao cho mỗi hộp chỉ chứa 1 vật. Có bao nhiều cách xếp để không có hộp nào chứa vật cùng số với nó.
- c) Với n = 8 có bao nhiều cách xếp như vậy?.

Câu 5. Cho tập $A = \{a, b, c, d, e\}$ và quan hệ \mathcal{R} trên A:

$$\mathcal{R} = \big\{ (a,c)\,,\; (b,a)\,,\; (b,b)\,,\; (b,c)\,,\; (c,a)\,,\; (c,b)\,,\; (d,d)\,,\; (e,b)\,,\; (e,c)\,,\; (e,e) \big\}.$$

- a) Lập ma trận biểu diễn M của \mathcal{R} .
- b) Theo thuật toán Warshall:
 - i) Tìm các ma trận W_k với $k = \overline{1, 4}$.
 - ii) Tìm ma trận biểu diễn M^* của bao đóng bắc cầu \mathcal{R}^* của \mathcal{R} . Từ đó xác định \mathcal{R}^* .

Lớp MH:

Bộ môn Khoa học Máy tính

Họ và tên: MSSV:

Câu 1. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
    for j = i to n do
        for k = j to n do
            print i, j, k
```

- a) ($Tr \hat{a} l \partial i nhanh$) Với n = 19, lệnh print được thực thi bao nhiều lần?
- b) Với $n \in \mathbb{Z}^+$ bất kỳ, số lần thực thi lệnh print là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 2. Cho tập $A = \{a, b, c, d, e\}$ và quan hệ \mathcal{R} trên A:

$$\mathcal{R} = \{(a, a), (a, b), (b, a), (b, d), (c, c), (d, e), (e, a), (e, d), (e, e)\}.$$

- a) Lập ma trận biểu diễn M của \mathcal{R} .
- b) Theo thuật toán Warshall:
 - i) Tìm các ma trận W_k với $k = \overline{1, 4}$.
 - ii) Tìm ma trận biểu diễn M^* của bao đóng bắc cầu \mathcal{R}^* của \mathcal{R} . Từ đó xác định \mathcal{R}^* .

Câu 3. a) Bằng quy nạp toán học, chứng minh

$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3}, \ \forall n \in \mathbb{Z}^+.$$

b) Chứng minh nếu n > 1 thì $\sum_{k=1}^{n} (2k-1)^2$ không chia hết cho $\sum_{k=1}^{n} (2k-1)$.

Câu 4. a) Trình bày thuật toán Euclid tìm ước chung lớn nhất của hai số nguyên dương. Từ đó:

- b) Xây dựng công thức tìm khai triển Euclid của hai số nguyên dương.
- c) Minh họa công thức trên để tìm khai triển Euclid của 2025 và 1940.

Câu 5. Cho chương trình đệ quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

```
def a(n):
    if n == 0:
        return 8
    x = 9
    for i in range(6):
        x = x + a(n-1)
    for i in range(n):
```

- a) (Trả lời nhanh) Xác định a4.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) (Trả lời nhanh) Tìm công thức tường minh của f_n .

Đề thi môn: Khai phá dữ liệu, Đề số 91 Thời gian: 90 phút. Được dùng tài liệu (không Internet).

nan: 90 pnut. Được dung tai liệu (không intel MSSV: Lớp MH:

Câu 1. a) Phát biểu nguyên lý bù trừ cho *n* tâp.

Họ và tên:

- b) Cho *n* vật đánh số từ 1 tới *n*, và *n* hộp đánh số từ 1 tới *n*. Xếp *n* vật vào *n* hộp sao cho mỗi hộp chỉ chứa 1 vật. Có bao nhiều cách xếp để không có hộp nào chứa vật cùng số với nó.
- c) Với n = 9 có bao nhiều cách xếp như vậy?.

Câu 2. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
for j = i to n do
for k = j to n do
print i, j, k
```

- a) ($Tr \stackrel{?}{a} l \stackrel{?}{o} i n hanh$) Với n = 16, lệnh print được thực thi bao nhiều lần?
- b) Với n ∈ Z⁺ bất kỳ, số lần thực thi lệnh print là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 3. Cho tập $A = \{a, b, c, d, e\}$ và quan hệ \mathcal{R} trên A:

$$\mathcal{R} = \{(a, a), (a, c), (b, a), (b, e), (c, a), (c, c), (c, e), (d, d), (e, a), (e, b)\}.$$

- a) Lập ma trận biểu diễn M của \mathcal{R} .
- b) Tìm các ma trận biểu diễn M^k của \mathcal{R}^k , với $k = \overline{2,5}$.
- c) Tìm ma trận biểu diễn M^* của bao đóng bắc cầu \mathcal{R}^* của \mathcal{R} . Từ đó xác định \mathcal{R}^* .

Câu 4. a) Bằng quy nạp toán học, chứng minh

$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3}, \ \forall n \in \mathbb{Z}^+.$$

b) Chứng minh nếu n > 1 thì $\sum_{k=1}^{n} (2k-1)^2$ không chia hết cho $\sum_{k=1}^{n} (2k-1)$.

Câu 5. Cho chương trình đệ quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

```
def a(n):
    if n == 0:
        return -3

4     x = -1
5     for i in range(7):
        x = x + a(n-1)
7     for i in range(n):
        x = x - 1
9     return x
```

- a) (Trả lời nhanh) Xác định a4.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) (Trả lời nhanh) Tìm công thức tường minh của f_n .

Thời gian: 90 phút. Được dùng tài liệu (không Internet).

MSSV: Lớp MH:

Họ và tên:

Câu 1. Cho chương trình đê quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

```
def a(n):
    if n == 0:
        return -8
    if n == 1:
        return 8

    x = a(n-1)
    for i in range(56):
        x = x + a(n-2)
    return x
```

- a) (Trả lời nhanh) Xác định a9.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) (Trả lời nhanh) Tìm công thức tường minh của f_n .

Câu 2. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
for j = 1 to i do
for k = 1 to i do
print i, j, k
```

- a) ($Tr \hat{a} l \hat{o} i n han h$) Với n = 14, lệnh print được thực thi bao nhiều lần?
- b) Với n ∈ Z⁺ bất kỳ, số lần thực thi lệnh print là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 3. a) Định nghĩa hàm Euler phi Φ (n), $n \in \mathbb{Z}^+$, $n \ge 2$.

- b) Giả sử n có phân tích nguyên tố $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, với p_i nguyên tố, $e_i \in \mathbb{Z}^+$, i = 1, ..., k, $k \in \mathbb{Z}^+$. Nêu công thức của Φ (n) và chứng minh.
- c) Áp dụng công thức trên để tính Φ (2025)

Câu 4. Cho dãy Fibonacci $\{F_n\}$, $n \in \mathbb{N}$. Bằng quy nạp toán học, chứng minh

$$F_0 + F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1, \ \forall n \in \mathbb{N}.$$

Câu 5. Cho tập $A = \{a, b, c, d, e, f\}$ và quan hệ \mathcal{R} trên A:

$$\mathcal{R} = \{(a, a), (a, d), (b, a), (b, e), (c, b), (c, c), (c, e), (d, a), (d, b), (d, c), (e, a), (f, f)\}.$$

- a) Lập ma trận biểu diễn M của \mathcal{R} .
- b) Tìm các ma trận biểu diễn M^k của \mathbb{R}^k , với $k = \overline{2, 6}$.
- c) Tìm ma trận biểu diễn M^* của bao đóng bắc cầu \mathcal{R}^* của \mathcal{R} . Từ đó xác định \mathcal{R}^* .

Đề thi môn: Khai phá dữ liệu, Đề số 22

Thời gian: 90 phút. Được dùng tài liệu (không Internet).

MSSV: Lớp MH:

Họ và tên:

Câu 1. a) Phát biểu nguyên lý bù trừ cho *n* tập.

- b) Cho *n* vật đánh số từ 1 tới *n*, và *n* hộp đánh số từ 1 tới *n*. Xếp *n* vật vào *n* hộp sao cho mỗi hộp chỉ chứa 1 vật. Có bao nhiều cách xếp để có ít nhất một vật cùng số với hộp chứa nó.
- c) Với n = 10 có bao nhiều cách xếp như vậy?.

Câu 2. a) Bằng quy nạp toán học, chứng minh

$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3}, \ \forall n \in \mathbb{Z}^+.$$

b) Chứng minh nếu n>1 thì $\sum_{k=1}^n{(2k-1)^2}$ không chia hết cho $\sum_{k=1}^n{(2k-1)}$.

Câu 3. Cho chương trình đệ quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

```
def a(n):
    if n == 0:
        return 1

x = 7
for i in range(3):
        x = x + a(n-1)
for i in range(n):
        x = x - 8
return x
```

- a) (Trả lời nhanh) Xác định a5.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) (Trả lời nhanh) Tìm công thức tường minh của f_n .

Câu 4. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
for j = 1 to i do
for k = 1 to i do
print i, j, k
```

- a) ($Tr \hat{a} l \dot{o} i nhanh$) Với n = 17, lệnh print được thực thi bao nhiều lần?
- b) Với n ∈ Z⁺ bất kỳ, số lần thực thi lệnh print là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 5. Cho tập $A = \{a, b, c, d, e\}$ và quan hệ \mathcal{R} trên A:

$$\mathcal{R} = \{(a, e), (b, b), (c, c), (c, d), (c, e), (d, a), (d, d), (d, e), (e, c)\}.$$

- a) Lập ma trận biểu diễn M của \mathcal{R} .
- b) Theo thuật toán Warshall:
 - i) Tìm các ma trận W_k với $k = \overline{1, 4}$.
 - ii) Tìm ma trận biểu diễn M^* của bao đóng bắc cầu \mathcal{R}^* của \mathcal{R} . Từ đó xác định \mathcal{R}^* .

Đề thi môn: Khai phá dữ liệu, Dề số 26 Thời gian: 90 phút. Được dùng tài liệu (không Internet).

Họ và tên: MSSV: Lớp MH:

- Câu 1. a) Phát biểu nguyên lý bù trừ cho n tập.
 - b) Cho các số nguyên dương $m \ge n$. Nêu và chứng minh công thức đếm số toàn ánh từ tập cỡ m vào tập cỡ n.
 - c) Lập bảng tính số toàn ánh với $5 \ge m \ge n \ge 1$.

Câu 2. Cho đoạn chương trình giả mã:

```
for i = 1 to n do
   for j = 1 to i do
       for k = 1 to i do
            print i, j, k
```

- a) ($Tr \stackrel{?}{a} l \stackrel{?}{o} i n hanh$) Với n = 16, lệnh print được thực thi bao nhiều lần?
- b) Với $n \in \mathbb{Z}^+$ bất kỳ, số lần thực thi lệnh print là một đa thức với biến n. Xác định đa thức đó, từ đó cho biết chương trình có độ phức tạp bậc mấy?

Câu 3. Cho chương trình đệ quy bằng mã Python để tính a_n , với n = 0, 1, 2, ...

```
def a(n):
    if n == 0:
        return 8
    x = -3
    for i in range(7):
        x = x + a(n-1)
    for i in range(n):
```

- a) (Trả lời nhanh) Xác định a7.
- b) Lập hệ thức đệ quy của dãy $\{a_n\}$.
- c) Đặt f_n là số phép toán (số học, so sánh, logic, gán) mà chương trình cần để tính a_n . Lập hệ thức đệ quy của dãy $\{f_n\}$.
- d) (Trả lời nhanh) Tìm công thức tường minh của f_n .

Câu 4. Cho tập $A = \{a, b, c, d, e\}$ và quan hệ \mathcal{R} trên A:

$$\mathcal{R} = \{(a, a), (a, b), (a, c), (b, a), (b, d), (c, d), (d, b), (d, c), (e, e)\}.$$

- a) Lập ma trận biểu diễn M của \mathcal{R} .
- b) Tìm các ma trân biểu diễn M^k của \mathbb{R}^k , với $k = \overline{2,5}$.
- c) Tìm ma trận biểu diễn M^* của bao đóng bắc cầu \mathcal{R}^* của \mathcal{R} . Từ đó xác định \mathcal{R}^* .

Câu 5. Cho dãy Fibonacci $\{F_n\}$, $n \in \mathbb{N}$. Bằng quy nạp toán học, chứng minh

$$F_n^2 - F_{n+1}F_{n-1} = (-1)^{n-1}, \ \forall n \in \mathbb{Z}^+.$$

12)

1	a) 1330
	b) Mỗi lệnh print được thực thi tương ứng với một chu trình tối giản của vòng lặp, tức là ứng với một bộ (i, j, k) thỏa mãn $1 \le i \le j \le k \le n$ Đó là một tổ hợp lặp chập 3 của n số từ 1 tới n
	Vậy số lệnh print được thực thi là $\binom{n+3-1}{3} = \frac{(n+2)(n+1)n}{6} \in O(n^3)$
	Chương trình có độ phức tạp bậc 3
	[1 1 0 0 0]
2	a) $M = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$
	b) $W_1 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}$
	Còn lại
	$W_2 = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}$ $W_4 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}$
	$W_3 = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}$
	c) $M^* = W_5 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}$
3	a) $(2 \cdot 1 - 1)^2 = \frac{1(2 \cdot 1 - 1)(2 \cdot 1 + 1)}{3}$
3	a) $(2 \cdot 1 - 1) = {3}$
	$\sum_{k=1}^{m} (2k-1)^2 = \sum_{k=1}^{m} (2k-1)^2 + (2n+1)^2 \dots \dots$
	$=\frac{n(2n-1)(2n+1)}{3}+(2n+1)^2$
	$=\frac{(n+1)(2n+1)(2n+3)}{3}$
	Kết luận
	b) $\sum_{k=1}^{n} (2k-1) = n^2$ (kết quả đã học)
	$\sum_{k=1}^{n} (2k-1)^2 / \sum_{k=1}^{n} (2k-1) = \frac{(2n-1)(2n+1)}{3n} = \frac{1}{3} \left(4n - \frac{1}{n} \right) \dots $
	$n>1\Rightarrow \frac{1}{n}\notin\mathbb{Z}\Rightarrow \mathrm{dpcm}$
4	a)
	b)

	c) $r_2 = 85$, $r_3 = 70$, $r_4 = 15$, $r_5 = 10$, $r_6 = 5$,
	$q_1 = 1, x_2 = 1, y_2 = -1;$ $q_2 = 22, x_3 = -22, y_3 = 23;$ $q_3 = 1, x_4 = 23, y_4 = -24;$ $q_4 = 4, x_5 = -114, y_5 = 119;$ $q_5 = 1, x_6 = 137, y_6 = -143;$
	$137 \times 2025 - 143 \times 1940 = 5;$
5	a) a ₄ = 15489
	b) $a_0 = 8$, $a_n = 9 + 6a_{n-1} + 9n$
	c) $f_0 = 1$
	d) $f_n = \frac{-6^n + 2n + 22}{21}$
17	7)
1	a) $a_5 = 18 \dots $
	b) $a_0 = 4$, $a_1 = -2$, $a_n = a_{n-1} + 2a_{n-2} \dots \dots$
	c) $f_0 = 1$
	$f_1 = 1 + 1 = 2$
	d) $f_n = 5(-1)^n + 4 \cdot 2^n - 5 \cdot \dots \cdot$
2	a)
	b)
	c)
3	a) 455
	b) Mỗi lệnh print được thực thi tương ứng với một chu trình tối giản của vòng lặp, tức là ứng với một bộ (i, j, k) thỏa mãn $1 \le i \le j \le k \le n$ Đó là một tổ hợp lặp chập 3 của n số từ 1 tới $n = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
	Vậy số lệnh print được thực thi là $\binom{n+3-1}{3} = \frac{(n+2)(n+1)n}{6} \in O(n^3)$
	Chương trình có độ phức tạp bậc 3
4	$F_1 = F_2$
	= F _{2n+2}
5	a) $M = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$.
5	$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} $
	$M \geq I_n$
	$M^{\top} \wedge M \leq I_n \dots \dots$
	$M^{2} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \leq M. \qquad 0.56$

	i) Phần tử tối đại: f, e, tối tiểu: a, b, d
22	
1	a)
	b)
	c)
2	a) $(2 \cdot 1 - 1)^2 = \frac{1(2 \cdot 1 - 1)(2 \cdot 1 + 1)}{3}$
	$\sum_{k=1}^{n+1} (2k-1)^2 = \sum_{k=1}^{n} (2k-1)^2 + (2n+1)^2 \dots \dots$
	$= \frac{n(2n-1)(2n+1)}{3} + (2n+1)^2 \dots \dots$
	$= \frac{(n+1)(2n+1)(2n+3)}{3} \dots \dots$
	Kết luận
	b) $\sum_{k=1}^{n} (2k-1) = n^2$ (kết quả đã học)
	$\sum_{k=1}^{n} (2k-1)^2 / \sum_{k=1}^{n} (2k-1) = \frac{(2n-1)(2n+1)}{3n} = \frac{1}{3} \left(4n - \frac{1}{n} \right) \dots $
	$n>1\Rightarrow \frac{1}{n}\notin\mathbb{Z}\Rightarrow dpcm\ldots\ldots\ldots\ldots\ldots\ldots$ 0.25đ
3	a) $a_5 = -342$ 0.5đ
	b) $a_0 = 1$, $a_n = 7 + 3a_{n-1} - 8n$
	c) $f_0 = 1$
	$f_n = (1) + (1) + (3 + f_{n-1}) \times 3 + 2 \times n = 3f_{n-1} + 2n + 11 \dots $
	d) $f_n = \frac{-3^n + 2n + 13}{12}$
4	a) 1785
	b) Với mỗi i cố định, theo quy tắc nhân, dòng 2-4 thực hiện $i \times i = i^2$ lệnh \mathtt{print}
	Theo quy tắc cộng, chương trình thực hiện $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \in O(n^3)$ lệnh print
5	a) $M = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
	b) $W_1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

	c) $M^* = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ $\mathcal{R}^* \text{ (nên xem } M^*) \dots \dots$
5	$F_{1}^{2} - F_{2}F_{0} = 1 = (-1)^{0} . 0.5d$ $F_{n+1}^{2} - F_{n+2}F_{n} = F_{n+1}^{2} - (F_{n+1} + F_{n})F_{n} . 0.5d$ $= F_{n+1}^{2} - F_{n+1}F_{n} - F_{n}^{2} = F_{n+1}(F_{n+1} - F_{n}) - F_{n}^{2} . 0.5d$ $= F_{n+1}F_{n-1} - F_{n}^{2} = -(F_{n}^{2} - F_{n+1}F_{n-1}) = -(-1)^{n-1} = (-1)^{n} . 0.5d$ $K\hat{e}t lu\hat{q}n$
29	
1	
	b)
	c)
2	a) 1015
	b) Với mỗi i cố định, theo quy tắc nhân, dòng 2-4 thực hiện $i \times i = i^2$ lệnh print
	Theo quy tắc cộng, chương trình thực hiện $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \in O(n^3)$ lệnh print
	ⁱ =1 Chương trình có độ phức tạp bậc 3
3	a) $a_9 = 7030860 \dots \dots$
	b) $a_0 = 2$, $a_1 = 0$, $a_n = a_{n-1} + 30a_{n-2}$
	c) f ₀ = 1
	$f_1 = 1 + 1 = 2 \dots \dots$
	$f_n = (1) + (1) + (2 + f_{n-1}) + (3 + f_{n-2}) \times 30 = f_{n-1} + 30f_{n-2} + 94 \dots $
	d) $f_n = \frac{415(-5)^n + 432 \cdot 6^n - 517}{165}$
4	a) $M = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
	b) $M^2 = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
	[0 0 1 1 1 0] [0 1 1 1 1 0]
	$M^{3} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ $M^{5} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
	$M^4 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad M^6 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

	c) $M^* =$	Lo o	U	U	U 1	J																			
	\mathcal{R}^* (n	ên xem	<i>M</i> *)																	 	 		 	. 0.2	25đ
5	$F_1 = F_2$. $F_1 + F_3 + F_4$ $= F_{2n} + F_5$ $= F_{2n+2}$. Kết luận	- F ₅ + · - 2 _{n+1} ·	· · + <i>F</i> · · · ·	2 <i>n</i> +1	= (<i>F</i> ₁	+ <i>F</i> ₃	+ · · ·	+ F _{2n}	_{2—1}) -	+ F _{2n+}	+1 · ·		 			 	 			 	 	· ·	 	. 0.	.5đ .5đ .5đ
63	3)																								
1	$F_0 = F_1 - F_0 + F_2 + F_0 + F_2 + F_0 + F_2 + F_0 $	- <i>F</i> ₄ + · — 1) + <i>i</i> – 1	· · + <i>F</i> F _{2n+2} · · ·	= _{2n+2} = (F ₂	$= (F_0 = (F_{n+1} + (F_n + ($	+ F ₂ + F _{2n+2}	+ · · · ·) — 1 	+ F _{2n}) + F ₂ 	2n+2 ·	 				 		 	 		 	 	· · · ·	 	. 0.	.5đ .5đ .5đ
2	a) a ₆ =	= 81																		 	 		 	. 0.	.5đ
	b) $a_0 = -$	−3, a ₁ =	= 7,	<i>a</i> _n =	a_{n-1}	+ 2 <i>a</i> _r	n—2 ·													 	 		 	. 0	.5đ
	c) $f_0 = 1$																								
		+ 1 = 2																							
	$f_n = (1$) + (1) -	+ (2 -	+ f _{n-1}	1)+($3 + f_n$	_2) >	< 2 =	f_{n-1}	+ 2f _n	_2 +	10 .								 	 		0.25	+ 0.2	25đ
	d) $f_n = -$	8(-1)	ⁿ — 1	4 · 2	ⁿ + 15	<u>5</u> 														 	 		 	. 0	.5đ
3	a) 91.																			 	 		 	. 0	.5đ
	b) Với mớ	ỗi <i>i</i> cố đ	lịnh, t	heo d	quy tắ	ıc nhâ	ın, dòı	ng 2-	-4 thi	ực hiệ	ện <i>i</i> >	< i = 1	i² lện∣	h pr	int					 	 		 	. 0	.5đ
	Theo	quy tắc	cộng	, chư	'ơng t	rình th	nực hi	\hat{e} n $\sum_{i=1}^{r}$	$\sum_{i=1}^{n} i^2 =$	= n(ı	n + 1)	(2 <i>n</i> +	- 1)	0(n³)	lệnh	pr	int		 	 		. 0.	5 + 0	.5đ
	Chươ	ng trình	có đ	ộ phú	rc tạp	bậc 3	3													 	 		 	. 0	.5đ
4	a)																			 	 		 	. 0	.5đ
	b)																			 	 		 	. 1.	.5đ
	c)																			 	 		 	. 0	.5đ
5	a) <i>M</i> =	0 (1 - 1 - 0 (0 -	0 1 1 1 1 0 0 0	0 0 0 1 0	0 0 0 0 0 1															 	 		 	. 0	.5đ
	b) W ₁ =	0 0 1 1 1 1 0 0 0 1	1 1 1 0 1	0 0 0 1 0	0 0 0 . 0 1															 	 		 	. 0	.5đ
	<i>W</i> ₂ =	0 0 1 1 1 1 0 0 1 1	1 1 1 0 1	0 0 0 1 0	0 0 0 0 0 1								ν	<i>V</i> ₃ =	\[\begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \]	1 1 1 0 1	1 1 1 0 1	0 0 0 1	0 0 0 0 0						

$$W_4 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

)

1 a)
$$a_9 = -235799416...$$
 0.5d

c)
$$f_0 = 1 + 1 = 2 +$$

$$M^{3} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M^{4} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

		<i>M</i> ⁵ =																								1 1 1 1 1 0									
	c)	M* =	1 1 1 1 1 0	1 1 1 1 1 0	1 1 1 1 1 0	1 1 1 1 1 0	1 1 1 1 1 0	0 0 0 0 0 0		•		-																				 	 		0.5
		\mathcal{R}^* (1	nên x	kem	M*)			•																									 	. 0	.25
91																																			
1		a) 																																	
2		 a) 810																																	
_		a) ön Mỗi lớ																																	
	υ,	Đó là	một	tổ h	ợp là	ặp c	hập	3 cỉ	ia n	số t	ù 1	tới	n.																				 		0.5
		Vậy s	ố lệr	nh pi	rin	t đu	rợc t	hực	thi là	à	n + :	3 – 3	۱ - ر) =	(n	1 + 2	2) (<i>1</i> 6	n + S	1) /	<i>-</i> ∈	0	(n³) .										 . 0.	5 +	0.50
		Chươ	ing tr	rình d	có đ	ộ ph	ıức t	ap b	ąc 3	3.																							 		0.50
3		a) <i>M</i>																														 	 		0.50
	b)	<i>M</i> ² =					1 0 1 0 1								•									-				-							
		Còn I	ại . _										٠																		 •	 ٠	 	. 0	.250
		<i>M</i> ³ =	1 1 1 0 1	1 0 1 0 1	1 1 1 0 1	0 0 0 1	1 1 1 0 1													I	M ⁵ ⊧	= [1 1 1 0	1 1 1 0 1	1 1 1 0 1	0 0 0 1 0	1 1 1 0 1								
		<i>M</i> ⁴ =	1 1 1 0 1	1 1 1 0 1	1 1 1 0 1	0 0 0 1	1 1 1 0 1																												
	c)	$M^* = \mathcal{R}^*$ (1	L'	- 1	1	U	']					-																				 	 	. 0	0.50
		•			,				2 · 1	+ 1)		•		•	•		•			•	•	•		•	•		•	- '	•	 •			. •	
4		a) (2 ·																																	U.50
		$\sum_{k=1}^{n+1} ($	2k –	- 1) ²	$=\sum_{k}$	=1 (2	2k -	- 1) ²	2 + (2	2n +	- 1) ²																				 		 	. 0	.25

		$= \frac{n(2n-1)(2n+1)}{3} + (2n+1)^2 \dots \dots$
		$=\frac{(n+1)(2n+1)(2n+3)}{3}$
		Kết luận
	b)	$\sum_{k=1}^{n} (2k-1) = n^2 \text{ (k\'et quả đã học)} \dots \dots$
		$\sum_{k=1}^{n} (2k-1)^2 / \sum_{k=1}^{n} (2k-1) = \frac{(2n-1)(2n+1)}{3n} = \frac{1}{3} \left(4n - \frac{1}{n} \right) $
		$n > 1 \Rightarrow \frac{1}{n} \notin \mathbb{Z} \Rightarrow \text{dpcm} \dots \dots$
5		a) $a_4 = -8069 \dots \dots$
		$a_0 = -3$, $a_n = -1 + 7a_{n-1} - 1n$
	c)	$f_0=1$
		$f_n = (1) + (1) + (3 + f_{n-1}) \times 7 + 2 \times n = 7f_{n-1} + 2n + 23 \dots $
	d)	$f_n = \frac{-7^n + 2n + 25}{24} \dots \dots$
94		24
	,	a)
	b)	·
	,	
		a) $M = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \dots \dots$
2		a) $M = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
		$M \ge I_n$
		$M^{\top} \wedge M \leq I_n \dots \dots$
		$M^{2} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \leq M$
	b)	Biểu đồ Hasse
		\overline{d}
		(b)
		$\begin{pmatrix} a \end{pmatrix} \begin{pmatrix} c \end{pmatrix} \begin{pmatrix} f \end{pmatrix}$
		i) Phần tử tối đại: <i>d, b,</i> tối tiểu: <i>a, c, f</i>
3		a) 650
		Với mỗi i cố định, theo quy tắc nhân, dòng 2–4 thực hiện $i \times i = i^2$ lệnh print
	,	Theo quy tắc cộng, chương trình thực hiện $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \in O(n^3) \text{ lệnh print.} \dots \dots$
		Theo day tac cong, chaong thin the men $\sum_{i=1}^{r} r^i = \frac{1}{6}$

Chương trình có độ phức tạp bậc 3.

1	a) a ₄ = -22118	0.5d
	b) $a_0 = -7$, $a_1 = 2$, $a_n = a_{n-1} + 56a_{n-2} \dots \dots$	0.5đ
	c) $f_0 = 1$	0.25d
	$f_1 = 1 + 1 = 2 \dots \dots$	0.25đ
	$f_n = (1) + (1) + (2 + f_{n-1}) + (3 + f_{n-2}) \times 56 = f_{n-1} + 56f_{n-2} + 172$ 0.25 +	0.25đ
	d) $f_n = -\frac{511(-7)^n + 314 \cdot 8^n + 645}{210}$	0.5d