MAT2001 Statistics for Engineers

Module 3 Correlation and Regression

Syllabus

Correlation and regression:

Correlation and Regression – Partial and Multiple correlation- Multiple regression.

Covariance

$$Var(x) = E(x-E(x))\cdot(x-E(x))$$

Covar
$$(X,Y) = E(X-E(X)) \cdot (Y-E(Y))$$

Correlation

CORRELATION COEFFICIENT

As the variance $E\{X - E(X)\}^2$ measures the variations of the R.V. X from its mean value E(X), the quantity $E\{[X - E(X)][Y - E(Y)]\}$ measures the simultaneous variation of two R.V.'s X and Y from their respective means and hence it is called the covariance of X, Y and denoted as Cov (X, Y).

Cov $(X, Y) = E\{[X - E(X)][Y - E(Y)]\}$ is also called the *product moment* of X and Y and is also denoted as p(X, Y).

 $\frac{p(x, y)}{\sigma_x \sigma_y}$ is a measure of intensity of linear relationship between X and Y and is

called Karl Pearson's Product Moment Correlation Coefficient or simply correlation coefficient between X and Y. It is denoted by r(X, Y) or r_{XY} or simply r.

$$r_{XY} = \frac{E\{[X - E(X)][Y - E(Y)]\}}{\sqrt{E\{X - E(X)\}^2 E\{Y - E(Y)\}^2}}$$
(1)

since σ_x , the standard deviation of X is the positive square root of the variance of X.

$$r_{XY} = \frac{E\{[X - E(X)][Y - E(Y)]\}}{\sqrt{E\{X - E(X)\}^2 E\{Y - E(Y)\}^2}}$$

$$r_{XY} = \frac{E(XY) - E(X) \cdot E(Y)}{\sqrt{\left\{E(X^{2}) - E^{2}(X)\right\} \left\{E(Y^{2}) - E^{2}(Y)\right\}}}$$

$$r_{XY} = \frac{\frac{1}{n} \sum x_i \ y_i - \frac{1}{n} \sum x_i \ \frac{1}{n} \sum y_i}{\sqrt{\left\{\frac{1}{n} \sum x_i^2 - \left(\frac{1}{n} \sum x_i\right)^2\right\} \left\{\frac{1}{n} \sum y_i^2 - \left(\frac{1}{n} \sum y_i\right)^2\right\}}}$$

$$r_{XY} = \frac{n \sum xy - \sum x \cdot \sum y}{\sqrt{\left\{n \sum x^2 - \left(\sum x\right)^2\right\} \left\{n \sum y^2 - \left(\sum y\right)^2\right\}}}$$

Properties of Correlation Coefficient

1.
$$-1 \le r_{XY} \le 1$$
 or $|\operatorname{Cov}(X, Y)| \le \sigma_X \cdot \sigma_Y$.

Note: When $0 < r_{XY} \le 1$, the correlation between X and Y is said to be positive or direct.

When $-1 \le r_{XY} \le 0$, the correlation is said to be negative or inverse.

When $-1 \le r_{XY} \le -0.5$ or $0.5 \le r_{XY} \le 1$, the correlation is assumed to be high, otherwise the correlation is assumed to be poor.

Correlation coefficient is independent of change of origin and scale.

Example:

Compute the coefficients of correlation between X and Y using the following data:

X: 65 67 66 71 67 70 68 69 Y: 67 68 68 70 64 67 72 70

Comment about the nature of correlation.

Solution:

We effect change of origin in respect of both X and Y. The new origins are chosen at or near the average of extreme values. Thus we take $\frac{65+71}{2}=68$ as the new origin for X and $\frac{64+72}{2}=68$ as the new origin for Y. viz., we put $u_i=(x_i-68)$ and $v_i=y_i-68$ and find r_{IV} .

$X = x_i$	$Y = y_i$	$u_i = x_i - 68$	$v_i = y_i68$. u2 .	v2	u_iv_i
65	67	-3	-1	. 9	1	3
67	68	-1	0 -	1	0	0
66	68	-2	0	4	0 -	0
71	70	3	2	9	4	6
67	64	-1	-4	1-	16	4
70	67	2	-1	4	1	-2
68	72	0	4	0	16 .	0
69	70	1	2	1	1.	2
	Total	-1-	2	29	39	13

$$r_{XY} = r_{UV} = \frac{n\Sigma uv - \Sigma u \cdot \Sigma v}{\sqrt{\left\{n\Sigma u^2 - (\Sigma u)^2\right\} \left\{n\Sigma v^2 - (\Sigma v)^2\right\}}}$$
$$= \frac{8 \times 13 - (-1) \times 2}{\sqrt{(8 \times 29 - 1)(8 \times 39 - 4)}} = \frac{106}{\sqrt{231 \times 308}} \le 0.3974$$

Exercise:

Find the coefficient of correlation between X and Y using the following data:

X: 5 10 15 20 25 Y: 16 19 23 26 30

Rank Correlation Coefficient

Sometimes the actual numerical values of X and Y may not be available, but the positions of the actual values arranged in order of merit (ranks) only may be available. The ranks of X and Y will in general, be different and hence may be considered as random variables. Let them be denoted by U and V. The correlation coefficient between U and V is called the rank correlation coefficient between (the ranks of) X, Y and denoted by ρ_{XY} .

Let us now derive a formula for ρ_{XY} or r_{UV} . Since U represents ranks of n values of X, U takes the values $1, 2, 3, \dots, n$.

. Similarly V takes the same values 1, 2, 3, \cdots , n in a different order.

$$D = U - V$$

$$\rho_{XY} = 1 - \frac{6 \Sigma d^2}{n(n^2 - 1)}$$

[Note: The formula for the rank correlation coefficient is known as spearman's formula. The values of r_{XY} and ρ_{XY} (or r_{UV}) will be, in general, different.

Example:

Ten students got the following percentage of marks in Mathematics and Physical sciences:

Students:	1	2	3	4	5	6	- 7	. 8	9	10
Marks in										
Mathematics	:78	36	98	25	. 75	82	90	62	65	39
Marks in						-				
Phy. Sciences	s:84	51	91	60	68	62	86	58	63	47
Calculate th	e rani			coeff	cient					

Solution:

Denoting the ranks in Mathematics and in Phy. Sciences by U and V, we have the following values of U and V:

U; 4 9 1 10 5 3 2 7 6 8
V: 3 9 1 7 4 6 2 8 5 10
D: 1 0 0 3 1 -3 0 -1 1 -2
D²: 1 0 0 9 1 9 0 1 1 4 :
$$\Sigma d^2 = 26$$

$$\rho_{XY} = r_{UV} = 1 - \frac{6 \Sigma d^2}{n(n^2 - 1)}$$

$$=1-\frac{6\times26}{10\times99}=0.8424$$

Exercise:

Ten competitors in a beauty contest were ranked by three judges as follows:

		Competitors							7	
Judges	1	2	3	4	5	6	7	8	. 9	10
A:	6	5	3	10	2	4	9	7	8	1
B:	5	8	4	7	10	. 2	1	6	9	3
C:	4	9	8	1	2	3	10	. 5	7	6

Discuss which pair of judges have the nearest approach to common taste of beauty.

Regression

When the random variables X and Y are linearly correlated, the points plotted on the scatter diagram, corresponding to n pairs of observed values of X and Y, will have a tendency to cluster round a straight line. This straight is called the regression line. The regression line can be taken as the best fitting straight line for the observed pairs of values of X and Y in the least square sense, with which the students are familiar.

When two R.V.'s X and Y are linearly correlated, we may not know which variable takes independent values. If we treat X as the independent variable and hence assume that the values of Y depend on those of X, the regression line is called the regression line of Y on X. If we assume that the values of X depend on those of the independent variable Y, the regression line of X on Y is obtained. Thus in situations where the distinction cannot be made between the X of Y and Y as to which is the independent variable and which is the dependent variable, there will be two regression lines. However, when the value of Y(X) is to be predicted corresponding to a specified value of X(Y), we should make use of the regression line of Y(X) on X(Y).

Equation of the Regression Line of Y on X:

By the principle of least squares, the normal equations which give the values of a and b.

are
$$\sum y_i = a \sum x_i + nb$$
 (2)

and
$$\sum x_i y_i = a \sum x_i^2 + b \sum x_i$$
 (3)

Dividing equation (2) by n, we get

$$\overline{y} = a \overline{x} + b$$
 (4)

the equation of the regression line of Y on X as

$$y - \overline{y} = \frac{p_{\chi \gamma}}{\sigma_{\chi}^2} (x - \overline{x})$$

$$y - \overline{y} = \frac{r_{XY} \, \sigma_Y}{\sigma_X} (x - \overline{x})$$

$$\left[:: r_{XY} = \frac{p_{XY}}{\sigma_X \sigma_Y} \right]$$

Equation of the Regression Line of X on Y:

In a similar manner, assuming the equation of the regression line of X and Y as x = ay + b and using the equations

we can get the equation of the regression line of X on Y as

$$x - \overline{x} = \frac{p_{XY}}{\sigma_Y^2} (y - \overline{y})$$

or

$$x - \overline{x} = \frac{p_{XY}}{\sigma_Y^2} (y - \overline{y})$$

$$x - \overline{x} = \frac{r_{XY} \sigma_X}{\sigma_Y} (y - \overline{y})$$

Yonx; (y-y) = Kxy(x-x) χ_{0} χ_{j} (χ_{-j}) = $\chi_{\chi_{j}}$ (χ_{-j})

Obtain the equations of the lines of regression from the following data:

X: 1 2 3 4 5 6 .7

Y: 9 8 10 12 11 13 14

Solution:

. X	Y	U = X - 4	V = Y - II	U^2	V^2	UV
1	9	-3	-2	9	4	6
2	8	- 2	-3	4	- 9	`6
3	10	1	-1	1	1	1
4	12	0	1	0	1 .	0
5	11	1	0	1	0	0
6	13	2	2	4	4	4
7	14	3	3	9	9	9
	Total	0	0	28	28	26 .

$$\overline{x} = E(X) = 4 + \frac{1}{n} \Sigma u = 4$$

$$\overline{y} = E(Y) = 11 + \frac{1}{n} \Sigma v = 11$$

$$\sigma_X^2 = \frac{1}{n} \Sigma u^2 - \left(\frac{1}{n} \Sigma u\right)^2 = \frac{1}{7} \times 28 = 4$$

$$\sigma_Y^2 = \frac{1}{n} \Sigma v^2 - \left(\frac{1}{n} \Sigma v\right)^2 = \frac{1}{7} \times 28 = 4$$

$$C_{XY} = \frac{1}{n} \Sigma u v - \left(\frac{1}{n} \Sigma u\right) \cdot \left(\frac{1}{n} \Sigma v\right) = \frac{1}{7} \times 26 = 3.7$$

The regression line of Y on X is

$$y - \overline{y} = \frac{p_{XY}}{\sigma_X^2} (x - \overline{x})$$

e.,
$$y - 11 = \frac{3.7}{4} (x - 4)$$

i.e.,
$$3.7x - 4y + 29.2 = 0$$

The regression line of X on Y is

$$x - \overline{x} = \frac{p_{XY}}{\sigma_X^2} (y - \overline{y})$$

i.e.,
$$x-4 = \frac{3.7}{4} (y-11)$$

i.e.,
$$4x - 3.7y + 24.7 = 0$$

Exercise:

Find the equations of the regression lines from the following data. Also estimate the value of Y when X = 71 and the value of X when Y = 70.

X: 65 66 67 67 68 69 70 72 Y: 67 68 65 68 72 72 69 71

Exercise:

Obtain the equations of the regression lines from the following data, using the method of least squares.

Also estimate the value of (i) Y, when X = 38 and (ii) X, when Y = 18.

X: 22 26 29 30 31 31 34 35 Y: 20 20 21 29 27 24 27 31

$$(X_{1}, X_{2}, X_{3}) \rightarrow Trivariale Distribution$$

$$Y(X_{1}, X_{2}) = Y_{X_{1}X_{2}} = Y_{12} = Y_{21}$$

$$Y(X_{1}, X_{3}) = Y_{X_{1}X_{3}} = Y_{13} = Y_{31}$$

$$Y(X_{2}, X_{3}) = Y_{X_{2}X_{3}} = Y_{33} = Y_{32}$$

$$Y(X_{2}, X_{3}) = Y_{X_{2}X_{3}} = Y_{33} = Y_{32}$$

$$Y_{3} = \underbrace{Cov(Y_{3}Y_{3})}_{\nabla X_{2}, \nabla X_{3}} = Y_{33} = Y_{32}$$

Multiple and Partial Correlation

Multiple Correlation Suppose one variable may be influenced by many other variables. Such a correlation is called multiple

Multiple Correlation Co-Officient (R) In a frivariate distribution (X1,X4X), the multiple correlation Ge-efficient of XI on X2 XX3 is denoted and $= \frac{\gamma_{12}^{2} + \gamma_{13}^{2} - 2\gamma_{12}\gamma_{13}\zeta_{23}}{1 - \gamma_{23}^{2}}$ Ra. 13 & R3.12 $| \Upsilon_{XY} | \leq 1$

Partial Correlation The correlation between 2 Variables X1 and X2 may be partly due to the conduction of a third Variable X3 with both X1 and X2. In a situation, the effect of X3 each of the and the were cleminated. Such a combation is called Partial

Partial Correlation Co-efficient: The partial co-prelation Co-efficient between $X_1 \times X_2$ after eliminating the linear effect of X_3 , is denoted

 $r_{13\cdot 2} = \frac{r_{13} - r_{12} r_{32}}{\sqrt{(1 - r_{12}^2)(1 - r_{32}^2)}}$ and $r_{23\cdot 1} = \frac{r_{23} - r_{21} r_{31}}{\sqrt{(1 - r_{21}^2)(1 - r_{31}^2)}}$

Example:

In a trivariate distribution: $r_{12} = 0.77$, $r_{13} = 0.72$ and $r_{23} = 0.52$

Find the the partial correlation coefficient $r_{12\cdot3}$ and multiple correlation coefficient $R_{1\cdot23}$.

Solution:

$$r_{12\cdot3} = \frac{r_{12} - r_{13} \, r_{23}}{\sqrt{(1 - r_{13}^2) \, (1 - r_{23}^2)}} = \frac{0.77 - 0.72 \times 0.52}{\sqrt{[1 - (0.72)^2][1 - (0.52)^2]}} = 0.62$$

$$R_{1\cdot23}^2 = \frac{r_{12}^2 + r_{13}^2 - 2r_{12} \, r_{13} \, r_{23}}{1 - r_{23}^2}$$

$$= \frac{(0.77)^2 + (0.72)^2 - 2 \times 0.77 \times 0.72 \times 0.52}{1 - (0.52)^2} = 0.7334$$

$$\therefore R_{1\cdot23} = +0.8564$$

Exercise:

In a trivariate distribution: $\dot{r}_{12} = 0.7$, $\dot{r}_{23} = \dot{r}_{31} = 0.5$.

Find (i) r_{23-1} , (ii) R_{1-23} ,

Multiple Regression

Regression equation of X_1 on X_2 and X_3 is given by

$$(X_1 - \overline{X}_1) \frac{\omega_{11}}{\sigma_1} + (X_2 - \overline{X}_2) \frac{\omega_{12}}{\sigma_2} + (X_3 - \overline{X}_3) \frac{\omega_{13}}{\sigma_3} = 0$$

where
$$\omega = \begin{vmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{vmatrix}$$

$$\omega_{11} = \left| \begin{array}{cc} 1 & r_{23} \\ r_{32} & 1 \end{array} \right| = 1 - r_{23}^2$$

$$\omega_{12} = - \begin{vmatrix} r_{21} & r_{23} \\ r_{31} & 1 \end{vmatrix} = r_{13} r_{23} - r_{21}$$

$$\omega_{13} = r_{23} \, r_{12} - r_{13}$$

Example:

Find the regression equation of X_1 on X_2 and X_3 given the following results:—

Trait	Mean	Standard deviation	r_{I2}	r ₂₃	r ₃₁
X_{I}	28.02	4.42	+ 0-80	-	_
X_2	4.91	1.10	_	-0.56	_
X_3	594	85	_	-	- 0.40

where $X_1 = \text{Seed per acre}$; $X_2 = \text{Rainfall in inches}$ $X_3 = \text{Accumulated temperature above } 42^{\circ}F$. **Solution.** Regression equation of X_1 on X_2 and X_3 is given by

$$(X_1 - \bar{X}_1) \frac{\omega_{11}}{\sigma_1} + (X_2 - \bar{X}_2) \frac{\omega_{12}}{\sigma_2} + (X_3 - \bar{X}_3) \frac{\omega_{13}}{\sigma_3} = 0$$

where

$$\omega = \begin{vmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{vmatrix}$$

$$\omega_{11} = \begin{vmatrix} 1 & r_{23} \\ r_{32} & 1 \end{vmatrix} = 1 - r_{23}^2 = 1 - (-0.56)^2 = 0.686$$

$$\omega_{12} = - \begin{vmatrix} r_{21} & r_{23} \\ r_{31} & 1 \end{vmatrix} = r_{13} r_{23} - r_{21} = -0.576$$

$$\omega_{13} = r_{23} r_{12} - r_{13} = (-0.56) (0.80) - (-0.40) = -0.048$$

 \therefore Required equation of plane of regression of X_1 on X_2 and X_3 is given by

$$\frac{0.686}{4.42}(X_1 - 28.02) + \frac{(-0.576)}{1.10}(X_2 - 4.91) + \frac{(-0.048)}{85.00}(X_3 - 594) = 0$$

