← Optimization algorithms

Quiz, 10 questions

descent.

Un-selected is correct

	✓	Congratulations! You passed!	Next Item
~	1 / 1 point		
1.			
wnich	$a^{[8]\{3\}(7)}$	ld you use to denote the 3rd layer's activations when the input is the 7th exan	nple from the 8th minipatch?
	$a^{[3]\{8\}(7)}$		
	$a^{[\sigma] \setminus {}^{\sigma} \cap {}^{(1)}}$		
Cori	rect		
	$a^{[3]\{7\}(8)}$		
	$a^{[8]\{7\}(3)}$		
~	1 / 1 point		
2. Mhich	of these state	ments about mini-batch gradient descent do you agree with?	
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient		
	descent.		
Corı	rect		
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).		
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.		
	1/1		
•	point		
3. Why is	s the best mini	-batch size usually not 1 and not m, but instead something in-between?	
		atch size is m, you end up with stochastic gradient descent, which is usually sl	ower than mini-batch gradient

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making $\mathbf{Optimization}$ algorithms

Quiz, 10 questions

Correct

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

Correct

If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

Un-selected is correct

1/1 point

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

~

Optimization algorithms

Quiz, 10 questions

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

Correct

$$v_2=10$$
, $v_2^{corrected}=10$

1/1 point

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$lpha = rac{1}{1+2*t}lpha_0$$

$$\bigcirc \qquad \alpha = e^t \alpha_0$$

Correct

1/1 point

7.

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

 $\hfill \square$ Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

8. Optimization algorithms Consider this figure: Quiz, 10 questions

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

1/1 point

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Correct

Correct

Try initializing all the weights to zero

Un-selected is correct

Adam combines the advantages of RMSProp and momentum

