AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A method for generating code to perform
anticipatory prefetching for data references, comprising:
receiving code to be executed on a computer system;
analyzing the code to identify data references to be prefetched; and
inserting prefetch instructions into the code in advance of the identified
data references, wherein inserting prefetch instructions involves inserting multiple
prefetch instructions for a given cache line, and wherein inserting the prefetch
instructions involves,
attempting to calculate a stride value for a given data
reference within a loop,
if the stride value cannot be calculated, setting the stride
value to a default stride value, and
inserting a prefetch instruction to prefetch the given data
reference for a subsequent loop iteration based on the stride value;
wherein the stride value is constant for some [[(]]but not necessarily
all[[)]] loop iterations.
2. (Original) The method of claim 1, further comprising allowing a system
user to specify the default stride value.

1	3. (Original) The method of claim 1, wherein calculating the stride value
2	involves:
3	identifying an induction variable for the stride value;
4	identifying a stride function for the stride value; and
5	calculating the stride value based upon the stride function and the
6	induction variable.
1	4. (Original) The method of claim 1, wherein inserting the prefetch
2	instruction based on the stride value involves:
3	calculating a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculating a prefetch ahead distance as a function of a prefetch latency,
6	the prefetch cover distance and an execution time of a loop; and
7	calculating a prefetch address by multiplying the stride value by the
8	prefetch cover distance and the prefetch ahead distance and adding the result to an
9	address accessed by the given data reference.
1	5. (Original) The method of claim 1, wherein analyzing the code involves:
2	identifying loop bodies within the code; and
3	identifying data references to be prefetched from within the loop bodies.
1	6. (Original) The method of claim 5, wherein analyzing the code to
2	identify data references to be prefetched involves examining a pattern of data
3	references over multiple loop iterations.
1	7. (Original) The method of claim 1, wherein analyzing the code involves
2	analyzing the code within a compiler.

1	8. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for generating code to perform anticipatory prefetching for data
4	references, the method comprising:
5	receiving code to be executed on a computer system;
6	analyzing the code to identify data references to be prefetched; and
7	inserting prefetch instructions into the code in advance of the identified
8	data references, wherein inserting prefetch instructions involves inserting multiple
9	prefetch instructions for a given cache line, and wherein inserting the prefetch
0	instructions involves,
1	attempting to calculate a stride value for a given data
2	reference within a loop,
3	if the stride value cannot be calculated, setting the stride
4	value to a default stride value, and
5	inserting a prefetch instruction to prefetch the given data
6	reference for a subsequent loop iteration based on the stride value;
7	wherein the stride value is constant for some [[(]]but not necessarily all[[)]
8	loop iterations.
1	9. (Original) The computer-readable storage medium of claim 8, wherein
2	the method further comprises allowing a system user to specify the default stride
3	value.
1	10. (Original) The computer-readable storage medium of claim 8, wherein
2	calculating the stride value involves:
3	identifying an induction variable for the stride value;
4	identifying a stride function for the stride value; and

6	induction variable.
1	11. (Original) The computer-readable storage medium of claim 8, wherein
2	inserting the prefetch instruction based on the stride value involves:
3	calculating a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculating a prefetch ahead distance as a function of a prefetch latency,
6	the prefetch cover distance and an execution time of a loop; and
7	calculating a prefetch address by multiplying the stride value by the
8	prefetch cover distance and the prefetch ahead distance and adding the result to an
9	address accessed by the given data reference.
1	12. (Original) The computer-readable storage medium of claim 8, wherein
2	analyzing the code involves analyzing the code within a compiler.
1	13. (Currently amended) An apparatus that generates code to perform
2	anticipatory prefetching for data references, comprising:
3	a receiving mechanism that is configured to receive code to be executed on
4	a computer system;
5	an analysis mechanism that is configured to analyze the code to identify
6	data references to be prefetched; and
7	an insertion mechanism that is configured to insert prefetch instructions
8	into the code in advance of the identified data references wherein the insertion
9	mechanism facilitates inserting multiple prefetch instructions for a given cache
10	line;
11	wherein the insertion mechanism is configured to,

calculating the stride value based upon the stride function and the

5

12	attempt to calculate a stride value for a given data reference
13	within a loop,
14	set the stride value to a default stride value if the stride
15	value cannot be calculated, and to
16	insert a prefetch instruction to prefetch the given data
17	reference for a subsequent loop iteration based on the stride value;
18	wherein the stride value is constant for some [[(]]but not necessarily all[[)]]
19	loop iterations.
1	14. (Original) The apparatus of claim 13, further comprising a
2	configuration mechanism that is configured to receive the default stride value
3	from a system user.
1	15. (Original) The apparatus of claim 13, wherein while calculating the
2	stride value, the insertion mechanism is configured to:
3	identify an induction variable for the stride value;
4	identify a stride function for the stride value; and to
5	calculate the stride value based upon the stride function and the induction
6	variable.
1	16. (Original) The apparatus of claim 13, wherein the insertion mechanism
2	is configured to:
3	calculate a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculate a prefetch ahead distance as a function of a prefetch latency, the
6	prefetch cover distance and an execution time of a loop; and to

- 7 calculate a prefetch address by multiplying the stride value by the prefetch
- 8 cover distance and the prefetch ahead distance and adding the result to an address
- 9 accessed by the given data reference.
- 1 17. (Original) The apparatus of claim 13, wherein the apparatus resides
- 2 within a compiler.
- 1 18-45 (Canceled).