

Gauss Dispersiyon Modeli

- Maddenin korunumu esasına dayanan diferansiyel denklemlerin belirli kabuller ile elde edilen analitik çözümleridir.
- ➤ Bir noktasal kaynaktan çıkan hüzmenin kararlı durumda, rüzgar yönüne dik olan eksenlerde (y ve z eksenleri) belirli bir süreç içerisinde "Normal" veya "Gauss" tipi bir dağılım gösterdiği esasına dayanmaktadır.
- ➤ Rüzgarla beraber hareket eden hüzme dağılmasındaki esas etken türbülanstır. Maksimum kirletici konsantrasyonu hüzme merkez çizgisinde (x ekseninde) oluşmaktadır.

Gauss Dispersiyon Modeli - Kabuller

- > Rüzgar sadece x yönünden eser.
- Rüzgar hızı sabittir, zamanla değişmez.
- Rüzgarın estiği yönde, rüzgar ile taşınım difüzyonla taşınıma göre çok daha önemlidir.
- ➤ Kirletici emisyonu sabittir, zamanla değişmez.
- ➤ Kütle korunumu mevcuttur, kirleticiler kimyasal reaksiyona girmezler.

Gauss Dispersiyon Modeli - Kısıtlamalar

- ➤ Gauss dispersiyon modelinin en büyük dezavantajlarından birisi düşük rüzgar hızlarında ve kirletici kaynağa çok yakın olan mesafelerde (<100m.) konsantrasyonları olduğundan daha fazla tahmin etmesidir.
- Ayrıca bu model tüm rüzgar yönü boyunca konsantrasyonları sıfırdan farklı olarak hesapladığı için uzak mesafeler (>50km.) için kullanılmamalıdır.

Gauss Dispersiyon Model Formülasyonu

$$C(x, y, z, H) = \frac{Q}{2\pi u \sigma_y \sigma_z} exp \left[\frac{-y^2}{2\sigma_y^2} \right] \left\{ exp \left[\frac{-(z-H)^2}{2\sigma_z^2} \right] \right\}$$

> C: kirletici konsantrasyonu (μg/m³)

u : x-yönündeki ortalama rüzgar hızı (m/s)

Q : kirletici emisyonu (μg/s)

 $\triangleright \sigma_v$: y yönünde hüzmenin standart sapması (m)

σ_z : z yönünde hüzmenin standart sapması (m)

H: etkin baca yüksekliği (m)

Gauss Dispersiyon Modeli Hüzme Merkez Çizgisi Konsantrasyonu

$$C(x, 0, 0, H) = \frac{Q}{\pi u \sigma_y \sigma_z} \left\{ exp \left[\frac{-(H)^2}{2\sigma_z^2} \right] \right\}$$

➤ Hüzme merkez çizgisinde: y=0, z=0

Atmosferik Stabilite								
Rüzgar Hızı (m/s)	Gündüz – Güneş Radyasyonu (W/m²)			Gece – Bulutluluk				
(10 m yüksekte)	Kuvvetli (>600)	Orta (300-600)	Zayıf (<300)	≥ 4/8	≤ 3/8			
< 2	Α	A - B	В	-	-			
2 – 3	A –B	В	С	Е	F			
3 – 5	В	B – C	С	D	Е			
5 – 6	С	C – D	D	D	D			
> 6	С	D	D	D	D			
A: en kararsız	B: orta kararsız		C: hafif kararsız					
D: nötr	E: hafif kararlı		F: en kararlı					

Gauss Modeli Çözüm Adımları

$$C(x, y, z, H) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left[\frac{-y^2}{2\sigma_y^2}\right] \left\{ \exp\left[\frac{-(z-H)^2}{2\sigma_z^2}\right] + \exp\left[\frac{-(z+H)^2}{2\sigma_z^2}\right] \right\}$$

- 1. Etkin baca yüksekliğinin hesaplanması
 - Briggs, Holland, Concawe, Carson ve Moses, Stumke denklemleri vb.
- 2. Etkin baca yüksekliğindeki rüzgar hızının hesaplanması
- 3. Dispersiyon katsayılarının hesaplanması (σ_v ve σ_z)
 - Turner abakları, McElroy-Pooler için Briggs denklemi vb.
- 4. İstenilen koordinattaki konsantrayonun hesaplanması

Hüzme Yükselmesi

- > Hüzme yükselmesini (Δh) etkileyen faktörler:
 - Bacanın geometrik yapısı,
 - Meteorolojik parametreler,
 - Baca gazının fiziksel ve kimyasal özellikleri
- > Δh'ın hesaplamasında kullanılan terimler:
- ➤ Momentum: baca gazının kendi hızından (V_s) dolayı meydana gelen dikey yöndeki momentum
- ➤ Termal Kaldırma (Buoyancy): baca gazı sıcaklığı (T_s) ile atmosfer sıcaklığı (T_a) arasındaki farktan ileri gelen yükselme

 $T_s >> T_a$ ise kaldırma kuvveti etkilidir. $T_s \sim T_a$ ise momentum etkilidir.

Hüzme Yükselmesinin Hesaplanması/ Briggs Formülleri

- > Kaldırma akısı (F) ile stabilite (s) parametreleri hesaplanmalıdır.
- Stabilite parametresi, sadece atmosferik koşulların kararlı olması (E veya F sınıfı stabilite) durumunda kullanılacaktır.

$$F = g v_s d^2 (T_s - T) / (4T_s)$$

$$>$$
 s = g ($\Delta\theta$ / Δz)/T

Hüzme Yükselmesinin Hesaplanması Briggs Formülleri

- ightharpoonup F=g V_s d² (T_s T) / (4T_s)
- F: Kaldırma akısı parametresi (m⁴/s³)
- g: Yerçekimi ivmesi (9.806 m/s²)
- ➤ V_s: Baca gazı çıkış hızı (m/s)
- > d: Baca ağzının iç çapı (m)
- ➤ T_s: Baca gazı sıcaklığı (°K)
- > T: Dış ortam sıcaklığı (°K)

- > s = g ($\Delta\theta$ / Δ z)/T
- > s: Stabilite parametresi
- > g: Yerçekimi ivmesi (9.806 m/s²)
- Δθ / Δz : Sıcaklığı yükseklik ile değişimi
- > T: Dış ortam sıcaklığı (°K)

Kaldırma Kuvveti Etkisiyle Yükselen Hüzme

Kararsız (A, B, C) veya Nötr (D) Koşullar

$$H = h + 21.425 \frac{F^{3/4}}{u} \qquad (F < 55)$$

$$H = h + 38.71 \frac{F^{3/5}}{u} \qquad (F \ge 55)$$

- > H: Etkin baca yüksekliği (m)
- h: Baca yüksekliği (m)
- > F: Kaldırma akısı parametresi (m⁴/s³)
- u: Rüzgar hızı (m/s)

Kararlı Koşullar (E, F)

$$H = h + 2.6 \left[\frac{F}{us} \right]^{1/3}$$

- H: Etkin baca yüksekliği (m)
- h: Baca yüksekliği (m)
- F: Kaldırma akısı parametresi (m⁴/s³)
- u: Rüzgar hızı (m/s)
- > s: Stabilite parametresi

Momentum Etkisiyle Yükselen Hüzme

Kararsız (A, B, C) veya Nötr (D) Koşullar

$$H = h + 3d \, \frac{V_s}{u}$$

- H: Etkin baca yüksekliği (m)
- h: Baca yüksekliği (m)
- > d: Baca iç çapı (m)
- V_s: Baca gazı çıkış hızı (m/s)
- u: Rüzgar hızı (m/s)

Kararlı Koşullar (E, F)

$$H = h + 1.5 \left[\frac{F}{u\sqrt{s}} \right]^{1/3}$$

- > H: Etkin baca yüksekliği (m)
- h: Baca yüksekliği (m)
- > F: Kaldırma akısı parametresi (m⁴/s³)
- u: Rüzgar hızı (m/s)
- > s: Stabilite parametresi

Hüzme Yükselmesi Holland Formülü

$$\Delta h = \frac{V_s d}{u} \left(1.5 + 2.68 \times 10^{-3} P_d \frac{(T_s - T)}{T_s} \right)$$

- $\triangleright \Delta h$: Hüzme yükselmesi (m) $\triangleright P$: Basınç (mbar)
- V_s: Baca gazı çıkış hızı (m/s)
 T_s: Baca gazı sıcaklığı (°K)
- ≻d: Baca ağzının iç çapı (m)
- ➤ u: Rüzgar hızı (m/s)

- ➤ T: Dış ortam sıcaklığı (°K)

Hüzme Yükselmesi

Holland Formülü

- ➤ Holland Formülü sadece nötr atmosferik şartlar için kullanılmalıdır.
- ➤ Hesaplanan hüzme yükselmesi değeri, A ve B sınıfı stabilite için 1.1 ve 1.2; E ve F sınıfı stabilite için de 0.8 ve 0.9 düzeltme katsayıları ile çarpılmalıdır (de Nevers, 1995).

Etkin Baca Yüksekliğindeki Rüzgar Hızı

$$u(z) = u_0 (z/z_0)^p$$

- ➤ u_(z) : z yüksekliğindeki rüzgar hızı (m/s)
- ➤ u₍₀₎: anemometre yüksekliğindeki rüzgar hızı (m/s)
- > z : etkin baca yüksekliği (m)
- > z₍₀₎ : anemometre yüksekliği (m)
- p : parametre (pürüzlülük ve stabiliteye bağlı)

Pasquill Stabilite Sınıfı	Engebeli Araziler için p parametresi	Düz Araziler için p parametresi
A — En kararsız	0.15	0.07
В	0.15	0.07
C	0.20	0.10
D	0.25	0.15
E	0.40	0.35
F — En kararlı	0.60	0.55

(Colls 2002)

Dispersiyon Katsayılarının Hesaplanması (σ_v ve σ_z) **Briggs Equation for McElroy-Pooler** $\sigma_{v} = cx^{d}$ $\sigma_z = ax^b$ Table 6.7 Equations for the variation of σ_v and σ_z with stability class Pasquill category $\sigma_{\rm y}/{\rm m}$ $\sigma_{\rm z}/{\rm m}$ (100m. < x < 10000m.)Open-country $0.22x (1 + 0.0001x)^{-0.5}$ 0.20x $0.16x (1 + 0.0001x)^{-0.5}$ В 0.12x $0.11x(1 + 0.0001x)^{-0.5}$ $0.08x (1 + 0.0002x)^{-0.5}$ C $0.06x (1 + 0.0015x)^{-0.5}$ $0.08x (1 + 0.0001x)^{-0.5}$ D $0.06x (1 + 0.0001x)^{-0.5}$ $0.03x(1 + 0.0003x)^{-1}$ Ε $0.04x (1 + 0.0001x)^{-0.5}$ $0.016x (1 + 0.0003x)^{-1}$ Urban

 $0.024x (1 + 0.001x)^{0.5}$

 $0.14x (1 + 0.0003x)^{-0.5}$

 $0.08x (1 + 0.0015x)^{-0.5}$

(Briggs 1973)

 $0.32x (1 + 0.0004x)^{-0.5}$

 $0.22x (1 + 0.0004x)^{-0..5}$

 $0.16x (1 + 0.0004x)^{-0.5}$

 $0.11x (1 + 0.0004x)^{-0.5}$

A-B

C

D

E-F

Örnek Problem

- Etkin baca yüksekliği 150 metre olan bacanın emisyon oranı 1.2 kg/saniyedir. Yer seviyesindeki rüzgar hızı 3 m/saniyedir. Düz ve kırsal arazi yapısına sahip olan bu bölgede C sınıfı atmosferik stabilite mevcuttur.
- Aşağıdaki mesafeler için hüzme merkez çizgisindeki konsantrayonunu hesaplayınız: 500, 750, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 metre.
- X eksenindeki konsantrasyon değerlerini grafikte gösteriniz.

Örnek Problem - Çözüm

- Etkin baca yüksekliğindeki rüzgar hızının bulunması:
- $> u_0 = 3 \text{ m/s}$
- ➤ Düz arazi ve C sınıfı stabilite ise p = 0.1

$$u_z = u_0 \left(\frac{z}{z_0}\right)^p = 3\left(\frac{150}{10}\right)^{0.1} = 3.93 \, m/s$$

> Hüzme merkez çizgisi konsantrasyonu isteniyor.

$$C(x, 0, 0, H) = \frac{Q}{\pi u \sigma_y \sigma_z} \left\{ exp \left[\frac{-(H)^2}{2\sigma_z^2} \right] \right\}$$
 formülü kullanılacak.

Örnek Problem - Çözüm

 $ightharpoonup \sigma_y$ ve σ_z değerlerinin bulunması (Kırsal arazi için):

$$\sigma_{\rm v} = 0.11X \cdot (1 + 0.0001X)^{-0.5}$$

$$\sigma_z = 0.08X \cdot (1 + 0.0002X)^{-0.5}$$

Excel'deki formüller:

B2: =0,11*A2*(1+0,0001*A2)^(-0,5)

B3: =0,08*A2*(1+0,0002*A2)^(-0,5)

4	А	В	С	
1	x (m)	σy (m)	σz (m)	
2	500	53,7	38,1	
3	750	79,6	56,0	
4	1000	104,9	73,0	
5	1500	153,9	105,2	
6	2000	200,8	135,2	
7	2500	246,0	163,3	
8	3000	289,4	189,7	
9	3500	331,4	214,8	
10	4000	371,9	238,5	
11	4500	411,1	261,2	
12	5000	449,1	282,8	

Baca Gazının Aşağıya Sapması (Stack Downwash)

- Düşük baca yüksekliği
- Düşük rüzgar hızı

Baca gazının aşağı sapmasına neden olur.

Baca yakınındaki binalar türbülansa sebep olur.

https://www.researchgate.net/publication/264396988_A_DISPERSION_MODELLING_SYSTEM_FOR_URBAN_AIR_POLLUTION

Baca Gazının Aşağıya Sapması (Stack Downwash)

 $V_s > 1.5 \text{ u}$ ise h' = h

 $V_s < 1.5 \text{ u}$ ise $h' = h + 2d \left[\frac{V_s}{u} - 1.5 \right]$

➤ V_s: baca gazı çıkış hızı (m/s)

➤ u : rüzgar hızı (m/s)

→ d : baca iç çapı (m)

▶ h : baca yüksekliği (m)

▶ h': farazi baca yüksekliği (m)

(Griffin 2007)

Alansal Kaynakların Modellenmesi

 t_0 anındaki alansal kaynağın emisyonunun, - Δt süre öncesinde -x yönündeki bir noktasal kaynaktan salındığı varsayımı ile çözüm yapılabilir.

Kaynaklar

- Edokpa D. O., Nwagbara M. O. (2017) Atmospheric Stability Pattern over Port Harcourt, Nigeria, Journal of Atmospheric Pollution. 5(1), 9-17.
- https://www.weblakes.com/guides/iscst3/section6/6 1 4.html
- Colls J. (2002) Air Pollution, 2nd ed., Spon Press, U.S.A.
- de Nevers N. (1995) Air Pollution Control Engineering, Mc-Graw Hill Inc., New York.
- Zanetti P. (1990) Air Pollution Modeling Theroies, Computational Methods and Available Software, Computational Mechanics Publications, UK.
- Arya S. P. (1999) Air Pollution Meteorology and Dispersion, Oxford University Press, U.S.A.
- Griffin R. D. (2007) Principles of Air Quality Management, 2nd ed., Taylor & Francis Group, LLC, U.S.A.
- ➢ Boubel R.W., Fox D.L., Turner D. B. (1994) Stern A.C., Fundamentals of Air Pollution, 3rd ed., Academic Press, U.S.A.