

Audio, Dual-Matched NPN Transistor

Data Sheet SSM2212

FEATURES

Very low voltage noise: 1 nV/ $\sqrt{\text{Hz}}$ maximum at 100 Hz Excellent current gain match: 0.5% Low offset voltage (Vos): 200 μ V maximum (SOIC) Outstanding offset voltage drift: 0.03 μ V/°C High gain bandwidth product: 200 MHz

GENERAL DESCRIPTION

The SSM2212 is a dual, NPN-matched transistor pair that is specifically designed to meet the requirements of ultralow noise audio systems.

With its extremely low input base spreading resistance (rbb' is typically $28~\Omega)$ and high current gain (h $_{\rm FE}$ typically exceeds 600 at $I_{\rm C}=1$ mA), the SSM2212 can achieve outstanding signal-to-noise ratios. The high current gain results in superior performance compared to systems incorporating commercially available monolithic amplifiers.

Excellent matching of the current gain (Δh_{FE}) to approximately 0.5% and low V_{OS} of less than 10 μV typical make the SSM2212 ideal for symmetrically balanced designs, which reduce high-order amplifier harmonic distortion.

PIN CONNECTIONS

Figure 2. 16-Lead LFCSP_WQ

Stability of the matching parameters is guaranteed by protection diodes across the base-emitter junction. These diodes prevent degradation of beta and matching characteristics due to reverse biasing of the base-emitter junction.

The SSM2212 is also an ideal choice for accurate and reliable current biasing and mirroring circuits. Furthermore, because the accuracy of a current mirror degrades exponentially with mismatches of V_{BE} between transistor pairs, the low V_{OS} of the SSM2212 does not need offset trimming in most circuit applications.

The SSM2212 SOIC performance and characteristics are guaranteed over the extended temperature range of -40° C to $+85^{\circ}$ C.

The SSM2212 is available in 8-lead SOIC and 16-lead LFCSP packages.

SSM2212* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

 SSM2212: Audio Dual Matched NPN Transistor Preliminary Data Sheet

TOOLS AND SIMULATIONS •

SSM2212 SPICE Macro Model

DESIGN RESOURCES 🖵

- SSM2212 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all SSM2212 EngineerZone Discussions.

SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

6/10—Revision 0: Initial Version

Features 1
Pin Connections1
General Description1
Revision History
Specifications
Electrical Characteristics—SOIC Package3
Electrical Characteristics—LFCSP Package4
Absolute Maximum Rating 5
REVISION HISTORY
6/15—Rev. B to Rev. C
Added LFCSP PackageUniversal
Changes to Features Section and General Description Section 1
Changed Pin Configuration Section to Pin Connections Section 1
Added Figure 2; Renumbered Sequentially1
Added Electrical Characteristics—LFCSP Package Section and
Table 2; Renumbered Sequentially4
Changes to Table 45
Added Pin Configurations and Function Descriptions Section,
Figure 17, Table 5, Figure 18, and Table 69
Added Figure 2111
Updated Outline Dimensions11
Changes to Ordering Guide11
7/10—Rev. A to Rev. B
Changes to Figure 1
6/10—Rev. 0 to Rev. A
Changes to Fast Logarithmic Amplifier Section

Thermal Resistance	5
ESD Caution	
Typical Performance Characteristics	e
Pin Configurations and Function Descriptions	9
Applications Information	10
Fast Logarithmic Amplifier	10
Outline Dimensions	11
Ordering Guide	11

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—SOIC PACKAGE

 V_{CB} = 15 V, I_O = 10 μA , T_A = 25 °C, unless otherwise specified.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
DC AND AC CHARACTERISTICS						
Current Gain ¹	h _{FE}					
		$I_C = 1 \text{ mA}$	300	605		
		-40 °C \leq T _A \leq $+85$ °C	300			
		$I_C = 10 \mu A$	200	550		
		-40 °C $\leq T_A \leq +85$ °C	200			
Current Gain Match ²	$\Delta h_{ extsf{FE}}$	$10 \mu\text{A} \leq I_{\text{C}} \leq 1 \text{mA}$		0.5	5	%
Noise Voltage Density ³	e _N	$I_C = 1 \text{ mA}, V_{CB} = 0 \text{ V}$				
		$f_O = 10 \text{ Hz}$		1.6	2	nV/√Hz
		f ₀ = 100 Hz		0.9	1	nV/√Hz
		$f_0 = 1 \text{ kHz}$		0.85	1	nV/√Hz
		$f_0 = 10 \text{ kHz}$		0.85	1	nV/√Hz
Low Frequency Noise (0.1 Hz to 10 Hz)	e _N p-p	$I_C = 1 \text{ mA}$		0.4		μV p-p
Offset Voltage	Vos	$V_{CB} = 0 \text{ V, } I_{C} = 1 \text{ mA}$		10	200	μV
		-40 °C \leq T _A \leq $+85$ °C			220	μV
Offset Voltage Change vs. V _{CB}	$\Delta V_{OS}/\Delta V_{CB}$	$0 \text{ V} \le \text{V}_{CB} \le \text{V}_{MAX}^4, 1 \mu\text{A} \le \text{I}_{C} \le 1 \text{mA}^5$		10	50	μV
Offset Voltage Change vs. Ic	$\Delta V_{OS}/\Delta I_{C}$	$1 \mu A \le I_C \le 1 \text{ mA}^5, V_{CB} = 0 \text{ V}$		5	70	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40 °C \leq T _A \leq $+85$ °C		80.0	1	μV/°C
		-40 °C \leq T _A \leq +85°C, V _{OS} trimmed to 0 V		0.03	0.3	μV/°C
Breakdown Voltage	BV _{CEO}		40			V
Gain Bandwidth Product	f⊤	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$		200		MHz
Collector-to-Base Leakage Current	Ісво	$V_{CB} = V_{MAX}$		25	500	рА
		-40 °C $\leq T_A \leq +85$ °C		3		nA
Collector-to-Collector Leakage Current	Icc	$V_{CC} = V_{MAX}^{6,7}$		35	500	рА
		-40 °C $\leq T_A \leq +85$ °C		4		nA
Collector-to-Emitter Leakage Current	Ices	$V_{CE} = V_{MAX}, V_{BE} = 0 V^{6,7}$		35	500	рА
		-40 °C \leq T _A \leq $+85$ °C		4		nA
Input Bias Current	I _B	$I_C = 10 \mu A$			50	nA
		-40 °C \leq T _A \leq $+85$ °C			50	nA
Input Offset Current	los	$I_C = 10 \mu A$			6.2	nA
		-40 °C $\leq T_A \leq +85$ °C			13	nA
Input Offset Current Drift	$\Delta I_{OS}/\Delta T$	$I_C = 10 \ \mu A^6, -40^{\circ}C \le T_A \le +85^{\circ}C$		40	150	pA/°C
Collector Saturation Voltage	V _{CE (SAT)}	$I_C = 1 \text{ mA}, I_B = 100 \mu\text{A}$		0.05	0.2	V
Output Capacitance	Сов	$V_{CB} = 15 \text{ V}, I_E = 0 \mu A$		23		pF
Bulk Resistance	R _{BE}	$10 \mu A \le I_C \le 10 mA^6$		0.3	1.6	Ω
Collector-to-Collector Capacitance	Ccc	$V_{CC} = 0 V$		35		pF

 $^{^1}$ Current gain is guaranteed with collector-to-base voltage (V_CB) swept from 0 V to V_MAX at the indicated collector currents. 2 Current gain match (Δh_{FE}) is defined as follows: $\Delta h_{FE} = (100(\Delta l_B)(h_{FE\,min})/l_C)$.

³ Noise voltage density is guaranteed, but not 100% tested.

 $^{^4}$ This is the maximum change in V_{OS} as V_{CB} is swept from 0 V to 40 V.

 $^{^{5}}$ Measured at I_{C} = 10 μ A and guaranteed by design over the specified range of I_{C} .

⁶ Guaranteed by design.

⁷ I_{CC} and I_{CES} are verified by measurement of I_{CBO}.

ELECTRICAL CHARACTERISTICS—LFCSP PACKAGE

 V_{CB} = 15 V, I_O = 100 μA , T_A = 25°C, unless otherwise specified.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
DC AND AC CHARACTERISTICS						
Current Gain ¹	h _{FE}					
		$I_C = 1 \text{ mA}, V_{CB} = 15 \text{ V}$	300	1800	2400	
		$I_C = 1 \text{ mA}, V_{CB} = 0 \text{ V}$	200	1300	2200	
		$I_C = 100 \mu A$, $V_{CB} = 15 V$	350	2100	2500	
		$I_C = 100 \ \mu A, V_{CB} = 0 \ V$	250	1500	2300	
Current Gain Match ²	$\Delta h_{ extsf{FE}}$	100 μ A ≤ I _C ≤ 1 mA		0.5	5	%
Noise Voltage Density ³	e _N	$I_C = 1 \text{ mA}, V_{CB} = 0 \text{ V}$				
		$f_0 = 10 \text{ Hz}$		1.6	2	nV/√Hz
		$f_0 = 100 \text{ Hz}$		0.9	1	nV/√Hz
		$f_0 = 1 \text{ kHz}$		0.85	1	nV/√Hz
		$f_0 = 10 \text{ kHz}$		0.85	1	nV/√Hz
Low Frequency Noise (0.1 Hz to 10 Hz)	e₁ p-p	$I_C = 1 \text{ mA}$		0.4		μV p-p
Offset Voltage	Vos	$V_{CB} = 0 \text{ V}, I_{C} = 1 \text{ mA}$		25	250	μV
		$V_{CB} = 0 \text{ V, } I_C = 100 \mu\text{A}$		10	250	μV
Gain Bandwidth Product	f _T	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$		200		MHz
Input Bias Current	I _B	$I_C = 100 \mu A$			200	nA
Input Offset Current	los	$I_C = 100 \mu A$			10	nA
Output Capacitance	Сов	$V_{CB} = 15 \text{ V}, I_E = 0 \mu A$		23		pF
Collector-to-Collector Capacitance	Ccc	$V_{CC} = 0 V$		35		pF

 $^{^1}$ Current gain is guaranteed with collector-to-base voltage (V_{CB}) swept from 0 V to V_{MAX} at the indicated collector currents. 2 Current gain match (Δh_{FE}) is defined as follows: $\Delta h_{FE} = (100(\Delta l_B)(h_{FE\,min})/l_C)$. 3 Noise voltage density is guaranteed, but not 100% tested.

ABSOLUTE MAXIMUM RATING

Table 3.

Table 3.	
Parameter	Rating
Breakdown Voltage of	40 V
Collector-to-Base Voltage (BV _{CBO})	
Breakdown Voltage of	40 V
Collector-to-Emitter Voltage (BV _{CEO})	
Breakdown Voltage of	40 V
Collector-to-Collector Voltage (BVcc)	
Breakdown Voltage of	40 V
Emitter-to-Emitter Voltage (BV_{EE})	
Collector Current (Ic)	20 mA
Emitter Current (I _E)	20 mA
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	-40°C to +85°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θ _{JA}	θις	Unit
8-Lead SOIC (R-8)	120	45	°C/W
16-Lead LFCSP (CP-16-22)	75	4.4	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

 T_A = 25°C, V_{CE} = 5 V, unless otherwise specified.

Figure 3. Low Frequency Noise (0.1 Hz to 10 Hz), $I_C = 1$ mA, Gain = 10,000,000

Figure 4. Noise Voltage Density vs. Frequency

Figure 5. Total Noise vs. Collector Current, f = 1 kHz

Figure 6. Current Gain vs. Collector Current ($V_{CB} = 0 V$)

Figure 7. Current Gain vs. Temperature (Excludes IcBO)

Figure 8. Base Emitter Voltage vs. Collector Current

Figure 9. Small Signal Input Resistance vs. Collector Current

Figure 10. Small Signal Output Conductance vs. Collector Current

Figure 11. Collector Current vs. Saturation Voltage

Figure 12. Collector-to-Base Leakage Current vs. Temperature

Figure 13. Collector-to-Base Capacitance vs. Reverse Bias Voltage

Figure 14. Collector-to-Collector Capacitance vs. Collector-to-Substrate Voltage

Figure 15. Collector-to-Collector Leakage Current vs. Temperature

Figure 16. Collector-to-Collector Capacitance vs. Reverse Bias Voltage

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 5. SOIC Pin Function Descriptions

Pin No.	Mnemonic	Description
1	C ₁	Collector of Channel 1.
2	B ₁	Base of Channel 1.
3	E ₁	Emitter of Channel 1.
4, 5	NIC	No Internal Connection.
6	E ₂	Emitter of Channel 2.
7	B ₂	Base of Channel 2.
8	C ₂	Collector of Channel 2.

Table 6. LFCSP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	E _{1A}	Emitter of Channel 1. Must be connect to E _{1B} .
2	E _{1B}	Emitter of Channel 1. Must be connect to E _{1A} .
3	E _{2B}	Emitter of Channel 2. Must be connect to E _{2A} .
4	E _{2A}	Emitter of Channel 2. Must be connect to E _{2B} .
5, 7, 8, 9, 10, 12, 14, 16	NIC	No Internal Connection.
6	B ₂	Base of Channel 2.
11	C ₂	Collector of Channel 2.
13	C ₁	Collector of Channel 1.
15	B ₁	Base of Channel 1.
	EPAD	Exposed Pad. The exposed pad must be connected to the lowest potential.

APPLICATIONS INFORMATION FAST LOGARITHMIC AMPLIFIER

The circuit in Figure 19 is a modification of a standard logarithmic amplifier configuration. Running the SSM2212 at 2.5 mA per side (full scale) allows a fast response with a wide dynamic range. The circuit has a 7 decade current range and a 5 decade voltage range, and it is capable of 2.5 μs settling time to 1% with a 1 V to 10 V step. The output follows the equation:

$$V_{O} = \frac{R3 + R2}{R2} \frac{kT}{q} \ln \frac{V_{REF}}{V_{IN}}$$

To compensate for the temperature dependence of the kT/q term, a resistor with a positive 0.35%/°C temperature coefficient is chosen for R_2 . The output is inverted with respect to the input and is nominally -1 V/decade using the component values indicated.

Figure 19. Fast Logarithmic Amplifier

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 20. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters (and inches)

Figure 21. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 3 mm × 3 mm Body, Very Very Thin Quad (CP-16-22) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
SSM2212RZ	−40°C to +85°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
SSM2212RZ-R7	−40°C to +85°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
SSM2212RZ-RL	−40°C to +85°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
SSM2212CPZ-R7	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-22	A3F
SSM2212CPZ-RL	−40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-22	A3F

¹ Z = RoHS Compliant Part.

NOTES