Al and Deep Learning

Logistic Regression & Classification

Jeju National University Yungcheol Byun

Agenda

- Logistic regression and classification
- New loss/cost function
- Decision boundary
- Implementation using TensorFlow
- Multiple-class problem

Logistic Regression

The shape of regression is not linear but logistic.

What does that mean?

desmos

Draw (-2,0), (-1,0), (1,1), (2,1).

$$y = wx$$

$$y = \underbrace{\frac{1}{1 + e^{-wx}}}$$

$$y = \frac{1}{1 + e^{-wx}}$$
 $y = \frac{1}{1 + e^{-w(x-0)}}$

Logistic function

From Wikipedia, the free encyclopedia

For the recurrence relation, see Logistic map.

A logistic function or logistic curve is a common "S" shape (sigmoid curve), with equation:

$$f(x)=rac{L}{1+e^{-k(x-x_0)}}$$

where

- e = the natural logarithm base (also known as Euler's number),
- x_0 = the x-value of the sigmoid's midpoint,
- L = the curve's maximum value, and
- k =the logistic growth rate or steepness of the curve.^[1]

Revisited

Real operation of a neuron

- ullet signal ON if the weighted sum is greater than T
- otherwise signal OFF

Revisited

Thresholding

- Activated(1) or not(0) according to the input x
- Let's find the decision boundary to decide 1 or 0.

Decision boundary

Decision boundary

Decision Boundary

Classification

- Pass(1) or Fail(0)
- Spam(1) or Ham(0)
- Scam(fraud, 1) or not(0)
- Safe(1) or Dangerous(0)
- Intrusion/virus(1) or not(0)
- Cancer(1) or not(0)
- Binary classification -> Multiple classification

Guess the decision boundary from the below figure.

$$h = \begin{cases} 1 & if \ wx \ge 0 \\ 0 & otherwise \end{cases}$$

Guess the decision boundary from the below figure.

Hypothesis

- What is hypothesis? The answer of a neuron
- Find decision boundary from the equation.

$$h = \frac{1}{1 + e^{-wx}}$$

$$h = \frac{1}{1 + e^{-(wx+b)}}$$

Cost/Error Function

Does MSE work?

Cost/Error Function

Does MSE work?

desmos

Draw (-2,0), (-1,0), (1,1), (2,1).

$$h = wx$$

$$h = \frac{1}{1 + e^{-wx}}$$

Draw (1, 1) only.

$$E = \left(\frac{1}{1 + e^{-w \cdot 1}} - 1\right)^2$$

(w, E)

Draw 4 points: (-1,0), (1,1), (-3,0), (3,1).

$$E = \left(\frac{1}{1 + e^{-w(-1)}} - 0\right)^2 + \left(\frac{1}{1 + e^{-w(1)}} - 1\right)^2 + \left(\frac{1}{1 + e^{-w(-3)}} - 0\right)^2 + \left(\frac{1}{1 + e^{-w(3)}} - 1\right)^2$$

Add bias b.

plot the error: $\left(w, \frac{E}{2}\right)$

Cost/Error Function

What problem in the error function?

No gradient decent in some parts

New Cost/Error Function

When ground truth is 1

- if hypo is equal to 1,then error = 0
- if hypo is equal to 0 then error = ∞

New Cost/Error Function

When ground truth is 0

- if hypo is equal to 0,then error = 0
- if hypo is equal to 1 then error = ∞

desmos

$$E = -\log(h)$$

$$E = -\log(1 - h)$$

$$E = -\log\left(\frac{1}{1 + e^{-wx}}\right)$$

$$E = -\log\left(1 - \frac{1}{1 + e^{-wx}}\right)$$

New Cost/Error Function

Prediction by a neuron

$$E = \begin{cases} \frac{-\log(h)}{-\log(1-h)} : y = 1 \end{cases}$$
Correct answer

New Cost/Error Function

$$E = \begin{cases} -\log(wx) &: y = 1\\ -\log(1 - wx) : y = 0 \end{cases}$$

$$E = -y \log(wx) - (1 - y)\log(1 - wx)$$

$$E = -(y \log(wx) + (1 - y) \log(1 - wx))$$

$$w = w - \alpha \cdot \frac{\partial E}{\partial w}$$

$$E = -\frac{1}{N} \sum_{h=0}^{\infty} (y \log(h) + (1 - y) \log(1 - h))$$

Binary Cross-Entropy Loss

Computational graph for the new cost function

Computational Graph

Computational Graph

Binary Cross-Entropy Loss

influence of *hypo* change on ②

$$\frac{\partial 2}{\partial h}$$

Local Gradients

 $\frac{\partial 2}{\partial h}$

Forward propagation

randomly initialized → will be optimized

Back-propagation

$$w = w - \propto \frac{\partial E}{\partial w}$$

$$b = b - \propto \frac{\partial E}{\partial b}$$

Derivative of Sigmoid

Desmos.com

Parameters(w, b) tuning for what?

decision boundary

$$wx + b = 0$$

for better decision boundary

Lab 11.py Classification of an input as 1 or 0

```
cost = -(y \log(H(X)) + (1 - y)\log(1 - H(X)))
x_{data} = [-2., -1, 1, 2]
y_{data} = [0., 0, 1, 1]
#---- a neuron
w = tf.Variable(tf.random_normal([1]))
hypo = tf.sigmoid(x_data * w)
#---- learning
cost = -tf.reduce_mean(y_data * tf.log(hypo) +
        tf.subtract(1., y_data) * tf.log(tf.subtract(1., hypo)))
train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for step in range(5001):
    sess.run(train)
#---- testing(classification)
```

predicted = tf.cast(hypo > 0.5, dtype=tf.float32)

p = sess.run(predicted)
print("Predicted: ", p)

Lab _{12.py} With a bias

Guess a decision boundary.

$$h = \frac{1}{1 + e^{-(wx)}}$$

Guess a decision boundary.

View from above

$$x_1 + x_2 = 0$$

Logistic Regression: 2 Features (Inputs)

y = 1

{Side view} looks like a slide!

The meaning of parameters

 $sigmoid(w1 \cdot length + w2 \cdot width + b)$

$$w_1 x_1 + w_2 x_2 + b = 0$$


```
surface(f(x,z)=sig(w1·x+w2·z+b))

w1 = 10.00

w2 = 0.00

b = 0.00
```

Lab 13.py

Implementation of OR gate with a neuron(a decision boundary)

$$E = -(y \log(h) + (1 - y)\log(1 - h))$$

$$x_1 \qquad \qquad \uparrow$$

$$x_2 \qquad \qquad \downarrow$$

$$x_2 \qquad \qquad \downarrow$$

x_1	x_2	AND(h)
0	0	0
0	1	0
1	0	0
1	1	1

NAND

- NAND gates are functionally complete.
- We can build any logical functions out of them.

NAND Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

Decision boundary by a neuron

View from above

Decision boundary by a neuron

- A neuron, only 1 linear decision boundary
- A decision boundary yielding 2 classes (1 or 0)
- How to solve multiple classes more than 2

4-Class(A, B, C, D) Classification

The output of a neuron is 1 for A, and 0 for other cases.

View from above

2nd neuron for 2nd decision boundary to classify B

View from above

3rd neuron for 3rd decision boundary to classify D

View from above

4th neuron for 4th decision boundary to classify C

View from above

4 neurons for4 decision boundarieshaving the same inputs

 x_2

View from above

$$(x_1, x_2)$$
 $\binom{w_{11}, w_{21}, w_{31}, w_{41}}{w_{12}, w_{22}, w_{32}, w_{42}} \rightarrow (h_1, h_2, h_3, h_4)$

Ground truth (y)

 x_2

Ground truth (y)

 x_2

Ground truth (y)

 x_2

4 Neurons

Ground truth (y)

 x_2

One-hot Encoding

- For the ground truth (y),
- setting only one as ON(1) and others as OFF(0)

Considerations

- For the answers of four neurons, if a neuron's output is 1, and others must be 0.
- However, each neuron produce output independently.
- No way to control the 4 outputs together
- A special function introduced → Softmax

 x_2

Initial architecture

 x_2

New architecture

Initial architecture

- For example, if the logits are 12, 4, 2, 2, then the Softmax function returns $\frac{12}{20}$, $\frac{4}{20}$, $\frac{2}{20}$, $\frac{2}{20}$ as results.
- Normalization of logits values
- Each value means the probability to be in the class.

- Distance between the output of a network(softmax) and correct answer (ground truth)
- If answer correctly, then the distance is 0,
- If not(incorrect), then the distance is ∞

If answer correctly, then the distance(error) is 0.

If incorrect, then the distance (error) is ∞ .

The output of softmax

correct answer L
$$-\sum_{i}^{L_{i}} L_{i} \log (S_{i})$$

$$\begin{array}{c}
\left(5, L\right) = -\sum_{i} L_{i} \log(5_{i}) \\
0.7 \\
0.2 \\
0.0 \\
0.0
\end{array}$$

softmax_cross_entropy_with_logits(logits, y_data)

- The function returns 0 if the answer is correct
- or returns ∞

Lab 14.py

- Fully-connected xemtlos
- Classification into one of four classes
- 4 neurons where each has 2-input
- A bias for each neuron