Homework 3 solutions: coheirs and invariant types

Advanced Model Theory

Due March 17, 2022

Let DLO be the theory of dense linear orders¹, like (\mathbb{Q}, \leq) or (\mathbb{R}, \leq) . Fix a model $M \models DLO$.

1. Show that the collection of formulas x > a for $a \in M$ generates a complete type $\tau_M(x) \in S_1(M)$. In other words, show that the partial type $\{(x > a) : a \in M\}$ has a unique completion.

Solution. Let $\Gamma(x) = \{(x > a) : a \in M\}$. Then $\Gamma(x)$ is finitely satisfiable, so it can be extended to a complete type. It remains to show that the extension is unique. Otherwise, take two distinct completions p_1, p_2 . Take an $|M|^+$ -saturated elementary extension $N \succeq M$. Then p_1 and p_2 are realized by $b_1, b_2 \in N$. So b_1, b_2 both satisfy $\Gamma(x)$, but have distinct types over M. The fact that b_1, b_2 satisfy Γ means that $b_1 > M$ and $b_2 > M$. Let $f = \mathrm{id}_M \cup \{(b_1, b_2)\}$. Then f is an order-preserving bijection from $M \cup \{b_1\}$ to $M \cup \{b_2\}$. By quantifier elimination in DLO, f is a partial elementary map. Therefore $p_1 = \mathrm{tp}(b_1/M) = \mathrm{tp}(b_2/M) = p_2$, a contradiction.

The type τ_M of Exercise 1 is called the *type at* $+\infty$.

2. Show that τ_M is definable.

Solution. See below. \Box

3. Suppose $N \succeq M$. Show that τ_N is an heir of τ_M .

Solution for problems 2 and 3. Suppose $N \succeq M$ and $p \in S_1(N)$ is an heir of τ_M . We claim that $p = \tau_N$. If $p(x) \vdash x > a$ for every $a \in N$, then $p = \tau_N$ because p contains all the formulas x > a generating τ_N . Otherwise, $p(x) \vdash x \leq a$ for some $a \in N$. As p is an heir of τ_M , there must be $a' \in M$ such that $\tau_M(x) \vdash x \leq a'$, which contradicts the definition of τ_M .

This proves the claim. Letting N vary, we see that τ_M has a unique heir over any elementary extension $N \succeq M$ (because there is always at least one heir). Therefore τ_M is a definable type (problem 2), and its unique heir over $N \succeq M$ is τ_N (problem 3).

¹Non-empty, without endpoints.

4. Suppose $N \succeq M$ and N is $|M|^+$ -saturated. Show that τ_N is not a coheir of τ_M .

Solution. As N is $|M|^+$ -saturated, the type τ_M is realized by some $c \in N$. Then c > M. The formula x > c is part of $\tau_N(x)$, but is not satisfied by any element of M. Therefore τ_N is not finitely satisfiable in M.

5. If $N \succeq M$, show that τ_M has a unique coheir over N.

Solution. Let $U = \{a \in N : a > M\}$. So U is the set of realizations of τ_M in N. Let $p \in S_1(N)$ be a coheir of τ_M .

- If $a \in U$, then the formula $x \ge a$ is not finitely satisfiable in M, so it cannot be in p(x). Then $p(x) \vdash x < a$ by completeness of p.
- If $a \notin U$, then there is $b \in M$ with $a \leq b$. Then p(x) implies $\tau_M(x)$ which implies x > b which implies x > a.

So we see

$$a \in U \implies p(x) \vdash x < a$$

 $a \notin U \implies p(x) \vdash x > a.$

By quantifier elimination in DLO, this generates a complete type.

6. Give an example of models $M \leq N$ of DLO where τ_N is a coheir of τ_M (and $M \neq N$).

Solution. Take $M = (\mathbb{Q}, \leq)$ and $N = (\mathbb{R}, \leq)$. The embedding $M \leq N$ is order-preserving, so it is an elementary embedding by quantifier elimination. Therefore $M \leq N$ (and $M \neq N$). Let $p \in S_1(N)$ be the unique coheir of τ_M . By the analysis in the solution to problem 5,

$$\begin{aligned} a \in U &\implies p(x) \vdash x < a \\ a \notin U &\implies p(x) \vdash x > a. \end{aligned}$$

where $U = \{a \in N : a > M\}$. By choice of M, N, the set U is empty, and so $p(x) \vdash x > a$ for all a. This implies $p(x) = \tau_N(x)$. Therefore τ_N is the coheir of τ_M .