Harmonic Analysis

Jacob Denson

February 28, 2017

Table Of Contents

Ι	Cla	Classical Fourier Analysis		
1	Spri 1.1 1.2	Ings, Strings, and Symmetry The Heat Equation	4 8 10	
2	Intr 2.1 2.2	oductory Results Methods of Summation	15 18 20	
3	The	Fourier Transform	22	
4 II	4.1 4.2	The Wirtinger Inequality on an Interval Energy Preservation in the String equation	27 27 28 29	
II	I A	Abstract Harmonic Analysis	30	
5	Fini	te Character Theory	32	
	5.1 5.2 5.3 5.4 5.5	Convolutions	34 35 36 39 41	

6	Top	ological Groups	43
	6.1	Basic Results	43
	6.2	Quotient Groups	47
	6.3	Uniform Continuity	47
	6.4	Ordered Groups	49
	6.5	Topological Groups arising from Normal subgroups	52
7	The	Haar Measure	53
	7.1	Fubini, Radon Nikodym, and Duality	60
	7.2	Unimodularity	61
	7.3	Convolution	63
	7.4	The Riesz Thorin Theorem	71
	7.5	Homogenous Spaces and Haar Measures	72
	7.6	Function Spaces In Harmonic Analysis	75
8	The	Character Space	76
9	Banach Algebra Techniques		
10	0 Vector Spaces		

Part I Classical Fourier Analysis

Deep mathematical knowledge often comes hand in hand with symmetry. Nowhere is this more clear than in the foundations of harmonic analysis, where we attempt to understand 'oscillating' mathematical objects, in one form or another. In the mid 18th century, problems in mathematical physics instigated D. Bernoulli, D'Alembert, Lagrange, and Euler to consider functions representable as a trigonometric sum

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nt) + b_n \sin(kt)$$

In 1811, Joseph Fourier announced his conviction that *all* functions were representable in this form. As a result, the classical theory of harmonic analysis is often named Fourier analysis, in which we analyze the degree to which Fourier's confidence holds in our modern definition of a function, and the elementary properties we learn from the scrutinization. In the 1820s, Poisson, Cauchy, and Dirichlet all attempted to form rigorous proofs that 'Fourier summation' holds. The resulting is in a large part responsible for the rigorous analysis we now know today. The large questions are how we interpret the convergence of Fourier summation. Pointwise convergence is not enough to justify most analytic techniques, and what's more, under pointwise convergence, the representation of a function by Fourier series need not be unique. Nonetheless, for a large class of functions, we can obtain much stronger notions of convergence.

Chapter 1

Springs, Strings, and Symmetry

Let's begin by taking a look at the problem which inspired Fourier and the mathematicians of his time to consider Fourier summation. Consider the physical problem of determining the motion of a spring, whose acceleration can be described by the differential equation

$$\ddot{x} = -k^2x$$

for some *k*. It is well known that solutions of this equation take the form

$$x = A\cos(kt) + B\sin(kt) = C\cos(kt + \phi)$$

where the two representations are connected by the trigonometric equality

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

No serious effort was required on our part of produce these equations – they were known to Newton, and to Hooke before him, and require only the basic methods of calculus. But this equation is very important; it forebodes that trigonometric functions will occur over and over again in the study of oscillatory behaviour.

Now consider a tethered string vibrating under the influence of tension. There is an obvious connection between the dynamics of the spring and string; both describe motion under the effects of tension. What makes the string's motion tricky to analyze is that the motion is infinite dimensional – we must describe the motion over a line of infinitely many points. However, as we know from physics, a string is really just a collection of

atoms, strung together by certain physical forces. Therefore we should be able to understand the motion of the string by looking at only finitely many particles at a time.

Since the horizontal tension is uniform in a string of uniform thickness and mass, there is no horizontal motion in the string. Thus we can describe the position of a string at time t by a real-valued function u(t,x), defined on $\mathbf{R} \times [0,\pi]$. Since the string is tethered down at both ends, $u(t,0) = u(t,\pi) = 0$. To obtain an equation describing u, we approximate our system by imagining a system of n evenly distributed particles on the string. We may see the dynamics of the system, as if adjacent particles are strung together by springs, since the tension between adjacent particles can be linearly approximated. Physical experience tells us that as we make the springs smaller, the tension in the spring increases. Thus we assume there is a number K such that the spring constant k of the string segments is equal to nK. If M is the total mass of the spring, then the smaller masses have mass m = M/n. We can then combine the spring forces to the left and right of each force, and conclude (by Newton's law) that

$$\frac{M}{n}\frac{\partial^{2} u}{\partial t^{2}} \approx -nK\left[u\left(t, x + \frac{\pi}{n}\right) - u(t, x)\right] - nK\left[u\left(t, x - \frac{\pi}{n}\right) - u(t, x)\right]$$

Taking this approximation to it's limits, and assuming $u \in C^2[0,\pi]$, we find

$$\frac{\partial^2 u}{\partial t^2} = \lim_{n \to \infty} -n^2 \frac{K}{M} \left[u \left(t, x + \frac{\pi}{n} \right) + u \left(t, x - \frac{\pi}{n} \right) - 2u(t, x) \right] = \frac{K}{M} \frac{\partial^2 u}{\partial x^2}$$

The one dimensional wave equation is the partial differential equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$

a normalized version of the equation describing the string.

If you've seen a string vibrate, you'll notice that it follows a motion with an initial pattern which is perturbed back and forth vertically. These are standing waves, described by a motion of the form

$$u(t,x)=\psi(x)\nu(t)$$

where ν is periodic. As a start to solving the wave equation, let us find all standing wave solutions to the wave equation. Such an equation must satisfy

$$\psi''(x)\nu(t) = \psi(x)\nu''(t)$$

or

$$\frac{\psi''(x)}{\psi(x)} = \frac{\nu''(t)}{\nu(t)}$$

Since the left side is independent of t, and the right side independent of x, the value the equations describe must be independent of both t and x, hence constant over the entire region to a value λ , where we obtain the equations¹

$$\psi''(x) = \lambda \psi(x) \quad \nu''(t) = \lambda \nu(t)$$

We can assume $\lambda < 0$, for otherwise our standing wave solution will not oscillate as required. Thus we return to the solution of the spring equation and find

$$\psi(x) = a\cos(mx) + b\sin(mx) \qquad v(t) = a'\cos(mt) + b'\sin(mt)$$

where $m^2 = -\lambda$. Since $\psi(0) = \psi(\pi) = 0$, we have a = 0, , and $m \in \mathbb{Z}$. Our final expression can then be rewritten as

$$u(t,x) = \sin(mx)(A\cos(mt) + B\sin(mt)) = A\sin(mx)\cos(mt - \phi)$$

These are the harmonics. If you've ever learned to play music, these are the 'pure tones', which overlap to form an interesting and pleasant harmony.

First assume $u \neq 0$. Then there is (t,x) such that $u(t,x) = \psi(x)v(t) \neq 0$. Here it is possible to consider the relation

$$\frac{v''(t)}{v(t)} = \frac{\psi''(x)}{\psi(x)}$$

By first varying t, and then varying x, we conclude that v''/v and ψ''/ψ are equal to some constant λ whenever ν and ψ do not equal zero. Thus $\nu''(t) = \lambda \nu(t)$, except possibly when $\nu(t) = 0$. We shall show that this relation does hold everywhere, by breaking our argument into two cases. First, suppose there is a sequence t_1, t_2, \ldots converging to t such that $\nu(t_k) \neq 0$. Then, assuming $\nu \in C^2(\mathbf{R})$, $\nu''(t_k) \rightarrow \nu''(t)$, but also $\nu''(t_k) = \lambda \nu(t_k) \rightarrow \lambda \nu(t)$, so $\nu''(t) = \lambda \nu(t)$. The second case occurs when t is contained in an interval (a,b) on which $\nu = 0$. In this case, $\nu'' = 0$ (since ν is constant here), so certainly $\nu''(t) = \lambda \nu(t)$. The same argument shows that the relation holds for ψ everywhere as well.

¹One small problem with this argument is that ψ and ν could be zero at certain points, and it is not clear that the region in which ψ and ν is non-zero is connected, so that this argument works. Technically, this doesn't cause problems, since the method 'works' (it gives us solutions to the wave equation), but for complete understanding, we should be a bit more careful.

It was Fourier who had the audacity to suggest that one could produce *all* solutions to the wave equation from these base tones. Since the wave equation is a *linear* partial differential equation, we obtain a family of solutions to the wave equation of the form

$$u(t,x) = \sum_{m=1}^{n} \sin(mx)(A_m \cos(mt) + B_m \sin(mt))$$

Fourier said that these were *all* such solutions, provided we take $n \to \infty$. Now given the initial conditions u(0,x) = f(x), we find

$$f(x) = \sum_{m=0}^{\infty} A_m \sin(mx)$$

and given the initial velocity $\frac{\partial u}{\partial t}(0,x) = g(x)$, if there's any justice in the world, we should have

$$g(x) = \sum_{m=0}^{\infty} mB_m \sin(mx)$$

Finding the expansion of u in terms of harmonic frequencies reduces to decomposing an arbitrary one dimensional function on $[0,\pi]$ into the sum of sinusoidal functions of differing frequency. The first problem of Fourier analysis is the investigation of the limits of this method; How do we obtain the coefficients of the sum from the function itself, and how can we ensure convergence?

The first question can also be approached by formal calculation. Suppose that a function f has an expansion

$$f(x) = \sum_{n=0}^{\infty} A_n \sin(nx)$$

Using the fact that

$$\int_0^{\pi} \sin(mx) \sin(nx) = \begin{cases} 0 & m \neq n \\ \frac{\pi}{2} & m = n \end{cases}$$

We find that

$$\int_0^{\pi} f(x)\sin(mx)dx = \int_0^{\pi} \sum_{n=0}^{\infty} A_n \sin(nx)\sin(mx)$$
$$= \sum_{n=0}^{\infty} \int_0^{\pi} A_n \sin(nx)\sin(mx) = \frac{\pi}{2}A_m$$

And so given any function $f : [0, \pi] \to \mathbb{R}$, a reasonable candidate for each A_n is

$$\frac{2}{\pi} \int_0^{\pi} f(x) \sin(mx)$$

These values will be known as the Fourier coefficients of the function f. The advantage of this situation is that it is effectively calculatable given initial conditions. Indeed, without

1.1 The Heat Equation

Now we come to a quite different physical situation. Suppose we have a two-dimensional region D, upon which temperature fluctuates. What differential equation describes the change of temperature over time? Let u(t, x, y) describe the temperature at a certain time and position. Consider a small square S centered at x, with sides parallel to the axis and with side lengths 2h. Then the total heat in this square at time t is

$$H(t) = \int_{S} u(t,x,y) \ dx \ dy \approx 4h^{2}u(t,x,y)$$

After differentiating, we find

$$H'(t) \approx 4h^2 \frac{\partial u}{\partial t}(t, x, y)$$

Newton's law of cooling tells us that the heat flow at a point is proportional to the negative of the gradient. To find the total amount of heat leaving the square, we perform a line integral around the sides of the square. Thus

$$H'(t) = \int_{\partial S} \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \right) \cdot n \, dS$$

$$\approx 2h \left[\frac{\partial u}{\partial x} (t, x + h) - \frac{\partial u}{\partial x} (t, x - h) + \frac{\partial u}{\partial y} (t, x + h) - \frac{\partial u}{\partial y} (t, x - h) \right]$$

Now we approximate to the extreme to obtain equality.

$$\frac{\partial u}{\partial t} = \lim_{h \to 0} \frac{1}{2h} \left[\frac{\partial u}{\partial x} (t, x + h) - \frac{\partial u}{\partial x} (t, x - h) + \frac{\partial u}{\partial y} (t, x + h) - \frac{\partial u}{\partial y} (t, x - h) \right]$$

Using the same trick as in the string equation, we find that

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u$$

where Δ is the Laplacian operator. This partial differential equation is the heat equation.

To simplify again, we start by looking at only the steady state heat equations, those functions u satisfying $\Delta u = 0$. Normally, we fix the boundary of a set C, and attempt to find a solution on the interior satisfying the boundary condition - physically, we fix a temperature on the boundary, wait for a long time, and see how the heat disperses on the interior. For now, let's consider functions on \mathbf{D} , with boundary S^1 . In this domain, we can switch to polar coordinates, in which the Laplacian operator takes the form

$$\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

We then apply the method of separation of coordinates. If $\Delta u = 0$, then

$$r^{2} \frac{\partial^{2} u}{\partial r^{2}} + r \frac{\partial u}{\partial r} = -\frac{\partial^{2} u}{\partial \theta^{2}}$$

Writing $u(r, \theta) = f(r)g(\theta)$, the equation above reads

$$r^2f''(r)g(\theta) + rf'(r)g(\theta) = -f(r)g''(\theta)$$

Or, separating variables,

$$\frac{r^2f''(r)+rf'(r)}{f(r)}=-\frac{g''(\theta)}{g(\theta)}$$

In which case we find the value is fixed, and equal to λ^2 for some λ (If the constant value was negative, g wouldn't be periodic). Solving these equations tells us

$$g''(\theta) = -\lambda g(\theta)$$
 $r^2 f''(r) + rf'(r) - \lambda f(r) = 0$

Then we have

$$g(\theta) = A\cos(\lambda\theta) + B\sin(\lambda\theta)$$

Since *g* is 2π periodic, we require λ to be an integer *m*. The equation for *f* can be solved when $m \neq 0$ to be

$$f(r) = Ar^m + Br^{-m}$$

and for physical reasons (and because we want to solve the equation on all of **D**), we force f(r) to be bounded at zero, so B = 0, and we find the only solutions with separable variables are

$$u(r,\theta) = [A\cos(m\theta) + B\sin(m\theta)]r^m = A\cos(m\theta - \phi)r^m$$

When m = 0, the solution is just constant, because the solutions to rf''(r) + f'(r) = 0. here all solutions are described by the equation $f(r) = A \log(r) + B$, which is unbounded near the origin unless A = 0. After our previous work, we would hope that all solutions are of the form

$$u(r,\theta) = \sum_{m=0}^{\infty} [A_m \cos(m\theta) + B_m \sin(m\theta)] r^m$$

If we know the values of u at r=1, then we may apply the same expansion technique of the wave equation, except now we are trying to expand a functions on $[-\pi,\pi]$ in sines and cosines. Applying a formal integration trick, given a particular function $f(\theta)$ on $[-\pi,\pi]$, the coefficients of the expansion should be

$$A_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(t) dt \qquad B_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(t) dt$$

If we begin with a function on $[0,\pi]$, and enlarge the domain to $[-\pi,\pi]$ by making the function odd, then the cosine terms cancel out, and we end up with the same expansion as on $[0,\pi]$. Since an arbitrary function f can be written as the sum of odd and even functions, expansion on $[-\pi,\pi]$ in terms of sin and cos is no more general than an expansion on $[0,\pi]$.

1.2 Exponentials and Euler

We are working with 2π -periodic functions $f : \mathbf{R} \to \mathbf{R}$, and attempting to decompose them into summations of sines and cosines, but we have a

much more elegant representation. First, define the circle group

$$T = \{z \in C : |z| = 1\}$$

Functions from **T** to **R** naturally correspond to 2π -periodic functions. Given $g: \mathbf{T} \to \mathbf{R}$, define

$$f(t) = g(e^{it})$$

Then f is 2π periodic. Conversely, a 2π periodic function f gives rise to a function g, defined by the same formula. Thus, when defining 2π periodic functions, we shall make no distinction between a function 'defined in terms of t' and a function 'defined in terms of z', after making the explicit identification $z = e^{it}$. Then an expansion of the form

$$f(t) = \sum_{k=0}^{\infty} A_k \cos(kt) + \sum B_k \sin(kt)$$

leads to an expansion (using Euler's identity $e^{it} = \cos(t) + i\sin(t)$)

$$\begin{split} f(z) &= \sum_{k=0}^{\infty} A_k \Re \left[z^k \right] + B_k \operatorname{Im} \left[z^k \right] \\ &= \sum_{k=0}^{\infty} A_k \left(\frac{z^k + z^{-k}}{2} \right) - i B_k \left(\frac{z^k - z^{-k}}{2} \right) \\ &= \sum_{k=-\infty}^{\infty} C_k z^k \end{split}$$

so a Fourier expansion is really just a power series expansion in disguise.

Now if f is real-valued, then $C_k = \overline{C_k}$, and the complex parts of the expansion cancel out. But really, in this form, we see that there is no real harm in generalizing our reach to complex-valued functions. If we are given f(t), the coefficients C_k can be found by the expansion

$$C_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-kit}dt$$

Thus a periodic function f gives rise to a function

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-kit}dt$$

defined on \mathbb{Z} , called the Fourier series of f. For notational simplicity, we shall define the integral

$$\int_{\mathbf{T}} f(z) dz = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) dt$$

which essentially just calculates the average of f over the circle. The notation for the Fourier transform then becomes

$$\hat{f}(n) = \int_{S^1} f(z)z^{-n}$$

the most austere and elegant way to write the transform. In the sequel, our core goal is to analyze the relation of \hat{f} to f, most notably the convergence of

$$\sum_{n=-\infty}^{\infty} \hat{f}(n)z^n$$

to the function f.

Before we get to the real work, let's start by computing some Fourier series, to use as examples. We also illustrate the convergence properties of the series, which we shall look at in more detail later. The brunt of the calculation is left as an exercise.

Example. Consider the function f, defined on $[0,\pi]$ by $f(x) = x(\pi - x)$, made odd so that the function is defined on $[-\pi,\pi]$. The Fourier series can be calculated as

$$\hat{f}(n) = \begin{cases} \frac{-4i}{\pi n^3} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

which we may rewrite as

$$f(x) \sim \sum_{n \text{ odd}} \frac{4i}{\pi n^3} [e^{nix} - e^{-nix}] = \sum_{n \text{ odd}} \frac{8}{\pi n^3} \sin(nx)$$

This sum converges absolutely and uniformly on the entire real line.

Example. The tent function

$$f(x) = \begin{cases} 1 - \frac{|x|}{\delta} & : |x| < \delta \\ 0 & : |x| \ge \delta \end{cases}$$

has a Fourier expansion

$$\hat{f}(n) = \frac{1 - \cos(n\delta)}{\delta \pi n^2}$$

for $n \neq 0$, and $\hat{f}(0) = \frac{\delta}{2\pi}$, so

$$f(x) \sim \frac{\delta}{2\pi} + \sum_{n \neq 0} \frac{1 - \cos(n\delta)}{\pi \delta n^2} e^{inx} = \frac{\delta}{2\pi} + 2\sum_{n=1}^{\infty} \frac{1 - \cos(n\delta)}{\pi \delta n^2} \cos(nx)$$

This sum also converges absolutely and uniformly.

Example. Consider the characteristic function

$$\chi_{(a,b)}(x) = \begin{cases} 1 & : x \in (a,b) \\ 0 & : x \notin (a,b) \end{cases}$$

Then

$$\widehat{\chi_{(a,b)}}(n) = \frac{1}{2\pi} \int_a^b e^{-inx} = \frac{e^{-ina} - e^{-inb}}{2\pi in}$$

Hence we may write

$$\chi_{(a,b)}(x) = \frac{b-a}{2\pi} + \sum_{n \neq 0} \frac{e^{-ina} - e^{-inb}}{2\pi i n} e^{inx}$$

$$= \frac{b-a}{2\pi} + \sum_{n=1}^{\infty} \frac{\sin(nb) - \sin(na)}{\pi n} \cos(nx) + \frac{\cos(na) - \cos(nb)}{\pi n} \sin(nx)$$

This sum does not converge absolutely for any value of x (except when a and b are chosen trivially). To see this, note that

$$\left| \frac{e^{-inb} - e^{-ina}}{2\pi n} \right| = \left| \frac{1 - e^{in(b-a)}}{2\pi n} \right| \geqslant \left| \frac{\sin(n(b-a))}{2\pi n} \right|$$

so that it suffices to show $\sum |\sin(nx)| n^{-1} = \infty$ for every $x \notin \pi \mathbb{Z}$. This follows because enough of the values of $|\sin(nx)|$ are large, so that the divergence of $\sum n^{-1}$ become applicable. First, assume $x \in (0, \pi/2)$. If

$$m\pi - x/2 < nx < m\pi + x/2$$

for some $m \in \mathbb{Z}$, then

$$m\pi + x/2 < (n+1)x < m\pi + 3x/2 < (m+1)\pi - x/2$$

so that if $nx \in (-x/2, x/2) + \pi \mathbb{Z}$, $(n+1)x \notin (-x/2, x/2) + \pi \mathbb{Z}$. For y outside of $(-x/2, x/2) + \pi \mathbb{Z}$, we have $|\sin(y)| > |\sin(x/2)|$, and therefore for any n,

$$\frac{|\sin(nx)|}{n} + \frac{|\sin((n+1)x)|}{n+1} > \frac{|\sin(x/2)|}{n+1}$$

and thus

$$\sum_{n=1}^{\infty} \frac{|\sin(nx)|}{n} = \sum_{n=1}^{\infty} \frac{|\sin(2nx)|}{2n} + \frac{|\sin((2n+1)x)|}{2n+1}$$
$$> |\sin(x/2)| \sum_{n=1}^{\infty} \frac{1}{2n+1} = \infty$$

In general, we may replace x with $x - k\pi$, with no effect to the values of the sum, so we may assume $0 < x < \pi$. If $\pi/2 < x < \pi$, then

$$\sin(nx) = \sin(n(\pi - x))$$

and $0 < \pi - x < \pi/2$, completing the proof, except when $x = \pi$, in which case

$$\sum_{n=1}^{\infty} \left| \frac{1 - e^{in\pi}}{2\pi n} \right| = \sum_{n \text{ even}} \left| \frac{1}{\pi n} \right| = \infty$$

Thus the convergence of Fourier series need not be absolute.

Example. We can often find formulas for certain fourier summations from taking the corresponding power series. For instance, the power series expansion

$$\log\left(\frac{1}{1-x}\right) = \sum_{k=1}^{\infty} \frac{z^k}{k}$$

implies that for $x \notin 2\pi \mathbb{Z}$ *,*

$$\sum_{k=1}^{\infty} \frac{\cos(kx)}{k} = \Re\left(\log\left(\frac{1}{1 - e^{ix}}\right)\right) = -\frac{1}{2}\log(2 - 2\cos(x))$$

$$\sum_{k=1}^{\infty} \frac{\sin(kx)}{k} = \operatorname{Im}\left(\log\left(\frac{1}{1 - e^{ix}}\right)\right) = \arctan\left(\frac{\sin(x)}{1 - \cos(x)}\right)$$

where we agree that $\arctan(\pm \infty) = \pm \pi/2$.

Chapter 2

Introductory Results

Let's focus in on the problem we introduced in the last chapter. For each function $f : \mathbf{T} \to \mathbf{C}$, we have an associated series

$$\sum_{n=-\infty}^{\infty} a_n e^{inx}$$

known as a trigonometric series. We can also consider finite sums

$$\sum_{n=-N}^{N} a_n e^{inx}$$

which we call a **trigonometric polynomial**. The largest value of n such that $|a_n| + |a_{-n}| \neq 0$ is known as the **degree** of the polynomial. At this point, we haven't deduced a reason for the equation

$$f(x) = \sum_{n = -\infty}^{\infty} \hat{f}(n)e^{nix}$$

to hold in any reasonable way. First, we define the m'th partial sum

$$S_m(f)(x) = \sum_{n=-m}^{m} \hat{f}(n)e^{inx}$$

The first relation we can expect is pointwise convergence; is it true that for every x,

$$\lim_{m\to\infty} S_m(f)(x) = f(x)$$

Perhaps if we're lucky, we'll get uniform convergence as well. Unfortunately, we will show that there are even continuous functions whose partial sums diverge, so we must search for more exotic methods of convergence.

To begin with, we shall begin with a brief look at the properties of the association of f and \hat{f} . For a start, since the operation of integration is linear, we know that

$$(a\widehat{f+b}g)(n) = a\widehat{f}(n) + b\widehat{g}(n)$$

If we rotate the argument of a function, writing g(z) = f(zw), for $w \in S^1$, then

$$\hat{g}(n) = \int_{S^1} f(zw)z^{-n}dz = \int_{S^1} f(z)(zw^{-1})^{-n} = w^n \hat{f}(n)$$

If we take complex conjugates, we find

$$\hat{\overline{f}}(n) = \int_{S^1} \overline{f}(z) z^{-n} dz = \overline{\int_{S^1} f(z) z^n dz} = \overline{\hat{f}(-n)}$$

The relations among the Fourier coefficients essentially holds because of the rotational, scaling, and inversion symmetry of the circle. Note that this shows us that for real valued functions, the n'th Fourier coefficient is the conjugate of the -n'th coefficient.

If the Fourier series of every function converged pointwise, we could conclude that if *f* and *g* have the same fourier coefficients, they must necessarily be equal. This is clearly not true, for if we alter a function at a point, the fourier series, defined by integrals, remains the same. Nonetheless, if a function is continuous editing the function at a point will break continuity, so we may have some hope.

Theorem 2.1. If the Fourier coefficients of a function vanishes, then the function vanishes at every point of continuity.

Proof. We shall begin by proving this for real valued functions. Consider a function f whose Fourier coefficients vanish. Then for every trigonometric polynomial $P(x) = \sum_{n=-N}^{N} a_n e^{-nix}$, we have

$$\int_{-\pi}^{\pi} f(x)P(x)dx = 2\pi \sum_{n} a_n \hat{h}(n) = 0$$

Suppose that f is continuous at zero, and assume without loss of generality that f(0) > 0. Pick δ such that if $|x| < \delta$, |f(x)| > f(0)/2. Consider the trigonometric polynomial

$$P(x) = \varepsilon + \cos x = \varepsilon + \frac{e^{ix} + e^{-ix}}{2}$$

where ε is chosen small enough that P(x) > A > 1 for $|x| < \delta/2$, and P(x) < B < 1 for $|x| \ge \delta$. Consider the series of trigonometric polynomials

$$P_n(x) = (\varepsilon + \cos x)^n$$

For which we have

$$\left| \int_{-\pi}^{\pi} P_n(x) f(x) dx \right| \ge \left| \int_{|x| < \delta/2} P_n(x) f(x) dx \right| - \left| \int_{|x| \ge \delta/2} P_n(x) f(x) dx \right|$$
$$> \delta A^n \frac{f(0)}{2} - B^n \|f\|_{\infty}$$

The left side is always equal to zero, regardless of n, whereas the right side tends to infinity as we take n to extreme values.

In general, for an arbitrary point of continuity x, we replace f with the function g(y) = f(x + y). Then

$$\hat{g}(n) = e^{nix}\hat{f}(n) = 0$$

So the Fourier coefficients of g vanish at 0, hence g(0) = f(x) = 0. For an arbitrary function f(x) = u(x) + iv(x), we have

$$\hat{u}(n) = \frac{\hat{f}(n) + \widehat{\overline{f}}(n)}{2} = \frac{\hat{f}(n) + \overline{\hat{f}}(-n)}{2} = 0$$

$$\hat{v}(n) = \frac{\hat{f}(n) - \widehat{\overline{f}}(n)}{2i} = \frac{\hat{f}(n) - \overline{\hat{f}}(-n)}{2i} = 0$$

so u=v=0.

Corollary 2.2. If two continuous functions f and g have the same Fourier coefficients, then f = g.

Proof. Because then f - g is a continuous function whose Fourier coefficients vanish, so f - g = 0.

We also have a first positive result for convergence.

Corollary 2.3. If a continuous function f has absolutely convergent Fourier coefficients, then it's Fourier series converges uniformly to f.

Proof. If $\sum |\hat{f}(n)| < \infty$, then the functions $S_m(f)$ converge uniformly to a function g, which necessarily must be continuous. We may apply uniform convergence again to conclude

$$\hat{g}(n) = \lim_{m \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} S_m(f)(t) e^{-int} = \hat{f}(n)$$

Hence $\hat{f} = \hat{g}$, so f = g.

2.1 Methods of Summation

The standard method of summation suffices for much of analysis. To recall, given a sequence a_0, a_1, \ldots , we define the infinite sum as the limit of partial sums.

$$\sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=0}^{n} a_k$$

Similarily,

$$\sum_{k=-\infty}^{\infty} a_k = \sum_{k=0}^{\infty} a_k + a_{-k} = \lim_{n \to \infty} \sum_{k=-n}^{n} a_k$$

However, we shall see that this method of summation is not sufficient for understanding the convergence of fourier series, which we have seen manifest in the dirichlet kernel not vanishing away from the origin.

Thus we must introduce more subtle methods of convergence. The first is due to Cesaro. Rather than considering limits of partial sums, we consider limits of averages of sums. Letting $s_n = \sum_{k=0}^n a_k$, we define the Cesaro summation as

$$\lim_{n\to\infty}\frac{s_0+\cdots+s_n}{n+1}=\lim_{n\to\infty}\sigma_n$$

If the normal summation exists, then the Cesaro limit exists, and is equal to the original sum. However, the Cesaro summation is stronger, for if we consider the sequence

$$1, -1, 1, -1, 1, \dots$$

Then the partial sums do not converge, but the Cesaro sum converges to zero.

Finally, we consider Abel summation. Given a sequence $\{a_i\}$, we can consider the power series $\sum a_k r^k$. If this converges in (-1,1), we can ask if $\lim_{r\to 1} \sum a_k r^k$, which should be 'almost like' $\sum a_k$. If this limit exists, we call in the Abel summation.

Theorem 2.4. If a sequence is Cesaro summable, it is Abel summable, and to the same value.

Proof. Let $\{a_i\}$ be a Cesaro summable sequence, which we may without loss of generality assume converges to 0. Now $(n+1)\sigma_n - n\sigma_{n-1} = s_n$, so

$$(1-r)^2 \sum_{k=0}^{n} (k+1)\sigma_k r^k = (1-r) \sum_{k=0}^{n} s_k r^k = \sum_{k=0}^{n} a_k r^k$$

As $n \to \infty$, the left side tends to a well defined value for r < 1, hence the same is true for $\sum_{k=0}^{n} a_k r^k$. Given $\varepsilon > 0$, let N be large enough that $|\sigma_n| < \varepsilon$ for n > N, and let M be a bound for all $|\sigma_n|$. Then

$$\left| (1-r)^{2} \sum_{k=0}^{\infty} (k+1)\sigma_{k} r^{k} \right| \leq (1-r)^{2} \left(\sum_{k=0}^{N} (k+1)|\sigma_{k}| r^{k} + \varepsilon \sum_{k=N+1}^{\infty} (k+1) r^{k} \right)$$

$$= (1-r)^{2} \left(\sum_{k=0}^{N} (k+1)(|\sigma_{k}| - \varepsilon) r^{k} + \varepsilon \left[\frac{r^{n+1}}{1-r} + \frac{1}{(1-r)^{2}} \right] \right)$$

$$\leq (1-r)^{2} M \sum_{k=0}^{N} (k+1) r^{k} + \varepsilon r^{n+1} (1-r) + \varepsilon$$

$$\leq (1-r)^{2} M \frac{(N+1)(N+2)}{2} + \varepsilon r^{n+1} (1-r) + \varepsilon$$

Fixing N, and letting $r \to 1$, we may make the complicated sum on the end as small as possible, so the absolute value of the infinite sum is less than ε . Thus the Abel limit converges to zero.

To relate Abel summation to fourier analysis, we express the limit of the abel sum as a limit of convolutions. If

$$f(z) \sim \sum a_i z^i$$

then formally, we write

$$f(z) \sim \lim_{r \to 1} \sum_{i = -\infty}^{\infty} a_i r^{|i|} z^i = \left(\sum a_i z^i\right) * \left(\sum r^{|i|} z^i\right)$$

Now for r < 1, and $z \in S^1$,

$$\sum_{i=-\infty}^{\infty} r^{|i|} z^{i} = 1 + \frac{rz}{1 - rz} + \frac{rz^{-1}}{1 - rz^{-1}} = \frac{1 - r^{2}}{1 + r^{2} - 2r\Re\varepsilon[z]}$$

We define the Poisson kernel P_r by this formula, and by convergence properties we have already established, the abel limit of the fourier series is

$$\lim_{r\to 1}(f*P_r)$$

Thankfully, we find P_r is a good kernel, and the Abel means work nicely with Fourier series.

2.2 A Continuous Function with Divergent Fourier Series

Analysis was built to analyze continuous functions, so we would hope the method of fourier expansion would work for all continuous functions. Unfortunately, this is not so. The behaviour of the Dirichlet kernel away from the origin already tells us that the convergence of Fourier series is subtle. We shall take advantage of this to construct a continuous function with divergent fourier series at a point.

To start with, we shall consider the series

$$f(t) \sim \sum_{n \neq 0} \frac{e^{int}}{n}$$

where f is an odd function equaling $i(\pi - t)$ for $t \in (0, \pi]$. Such a function is nice to use, because its Fourier representation is simple, yet very close to diverging. Indeed, if we break the series into the pair

$$\sum_{n=1}^{\infty} \frac{e^{int}}{n} \qquad \sum_{n=-\infty}^{-1} \frac{e^{int}}{n}$$

Then these series no longer are the Fourier representations of a Riemann integrable function. For instance, if $g(t) \sim \sum_{n=1}^{\infty} \frac{e^{int}}{n}$, then the Abel means $A_r(f)(t) =$

Chapter 3

The Fourier Transform

For the last 4 chapters, we have been discussing the role of Fourier analysis on $[-\pi,\pi]$. Is there any way to extend this to functions on $(-\infty,\infty)$? If f is such a function, we can certainly compute the fourier expansion by restricting f to $[-\pi,\pi]$, though there is no guarantee that the fourier expansion will converge outside of $[-\pi,\pi]$, to a function that looks anything like f. In general, we can also expand the function on [-x,x], obtaining expansions of the form

$$f(t) \sim \sum_{n=-\infty}^{\infty} \frac{a_n}{2x} e^{nit/x}$$

where

$$a_n = \int_{-x}^{x} f(t)e^{-yit}dt$$

as we take x to ∞ , we might expect the limit of the expansions on [-x,x] to converge on all of **R**, provided they converge to anything meaningful. The trick to guessing the convergence is to view these expansions as Riemann sums, sampling the **Fourier transform**

$$\widehat{f}(x) = \int_{-\infty}^{\infty} f(t)e^{-tix}dt$$

which results in the relation

$$f \sim \int_{-\infty}^{\infty} \widehat{f}(y) e^{yit} dy$$

This is the inversion formula, which essentially says that \hat{f} is another representation of f (for we may obtain f uniquely, given that we know \hat{f}). The duality of a function and its Fourier transform shall be the main focus in this chapter.

For a general f, we may not even be able to define \hat{f} for all real values, so it is hopeless to pursue the inversion formula for all functions. Thus, to understand the Fourier transform, we restrict ourselves to certain subclasses of all functions. This also gives us insight into the transform, for it tells us upon which subspaces the transformation performs well. First, we recall the definition of an integral over \mathbf{R} .

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{y \to \infty} \int_{-y}^{y} f(x)dx$$

As should be expected this far into analysis, these types of limits do not play nicely with certain manipulations which will soon become essential. In the theory of series, we restrict our understanding to absolutely converging sequences; in integration, the corresponding objects are functions f such that

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty$$

such a function shall be called absolutely integrable. It is then clear that $\int f(x)dx$ exists, because if

$$\int_{-\infty}^{\infty} |f(x)| - \int_{-a}^{a} |f(x)| < \varepsilon$$

Then for b > a,

$$\left| \int_{-b}^{b} f(x) dx - \int_{-a}^{a} f(x) dx \right| \le \int_{-b}^{-a} |f(x)| dx + \int_{a}^{b} |f(x)| dx < \varepsilon$$

This is essentially the same proof as that for the convergence of absolutely convergent series.

If f(x) is an absolutely integrable function, then $f(x)e^{-nix}$ is absolutely integrable, since $|e^{-nix}|=1$ for all x. Thus we see that the Fourier transform is well defined for all real values. However, we still may not be able to interpret the inversion formula in this setting, because \hat{f} may not be

absolutely integrable. In the theory of Fourier series, we found that the smoothness of f had a direct relationship with the decay of \hat{f} . We find respite in the refinement of our space of functions, considered by Schwartz and very useful in the analysis of the Fourier transform.

The **Schwartz space** consists of all smooth functions f (continous derivatives of all orders) which rapidly decrease at infinity. That is, for any k > 0, $l \in \mathbb{Z}$,

$$\sup |x|^k |f^{(l)}(x)| < \infty$$

We denote this space by S. The Schwartz space is closed under addition, scalar multiplication, differentiation, and multiplication by polynomials.

It is not even obvious that S contains functions other than those which are constant, but there is a central example. Consider the Gaussian, defined by

$$f(x) = e^{-x^2}$$

s

Lemma 3.1. If f is an increasing function which tends to ∞ , and g is a decreasing function which tends to $-\infty$, then for any absolutely integrable h,

$$\lim_{x \to \infty} \int_{g(x)}^{f(x)} h = \int_{-\infty}^{\infty} h$$

Proof. We shall prove the theorem assuming $h \ge 0$. In this case the limit above is increasing in x, and since

$$\int_{g(x)}^{f(x)} h \leqslant \int_{-M}^{M} h \leqslant \int_{-\infty}^{\infty} h$$

taking limits of both sides, we find

$$\lim_{x \to \infty} \int_{g(x)}^{f(x)} h \le \int_{-\infty}^{\infty} h$$

Similarly, if we take x big enough that $N \le f(x)$, $g(x) \le -N$, then

$$\int_{g(x)}^{f(x)} h \geqslant \int_{-N}^{N} h$$

As we take x to ∞ , we may also increase N to ∞ , and we find

$$\lim_{x \to \infty} \int_{g(x)}^{f(x)} h \geqslant \int_{-\infty}^{\infty} h$$

and now we've squeezed the limit between the same value. The general case where h is not necessarily positive results by comparing the growth of h with the growth of |h|, as in the last theorem.

Corollary 3.2 (Translation Invariance). *If* f *is absolutely integrable, and* $h \in \mathbb{R}$, *then*

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} f(x+h)dx$$

Lemma 3.3. If $\delta > 0$, and f is integrable on **R**, then

$$\int_{-\infty}^{\infty} f(\delta x) dx = \frac{1}{\delta} \int_{-\infty}^{\infty} f(x)$$

Proof. By the change of variables formula,

$$\int_{-N}^{N} f(\delta x) dx = \frac{1}{\delta} \int_{-\delta N}^{\delta N} f(y) dy$$

We then take limits of both sides of the equation.

We say a continuous function f is of **moderate decrease** if $|f| = O\left(\frac{1}{1+|x|^2}\right)$. Certainly then f is absolutely integrable.

Theorem 3.4. *If f is of moderate decrease, then*

$$\lim_{h \to 0} \int_{-\infty}^{\infty} |f(x-h) - f(x)| dx = 0$$

On the Schwarz space of infinitely differentiable rapidly vanishing functions, the Fourier transform is well defined

$$\widehat{f}(y) = \int e^{-2\pi i x y} f(x) dx$$

and is an automorphism of the vector space. We have the basic properties

$$\mathcal{F}(f(x+a)) = e^{2\pi i a} \mathcal{F}(f(x))$$

$$\mathcal{F}(e^{2\pi i a x} f(x)) = f(x - a)$$

$$\mathcal{F}(f(bx)) = \frac{1}{b} f(x/b)$$

$$\mathcal{F}\left(\frac{df}{dx}\right) = 2\pi i x \frac{d\hat{f}(x)}{dx}$$

$$\mathcal{F}(-2\pi i x f(x)) = \frac{d\hat{f}(x)}{dx}$$

Theorem 3.5. The Gaussian distribution function $f(x) = e^{-\pi x^2}$ satisfies $\hat{f} = f$ (that is, the Gaussian functions are eigenvectors of the Fourier transform).

Proof. We have

$$\frac{d\hat{f}}{dx} = 2\pi i \int xe^{-2\pi ixy - \pi y^2} dy$$

Chapter 4

Applications

4.1 The Wirtinger Inequality on an Interval

Theorem 4.1. Given $f \in C^1[-\pi,\pi]$ with $\int_{-\pi}^{\pi} f(t)dt = 0$,

$$\int_{-\pi}^{\pi} |f(t)|^2 \le \int_{-\pi}^{\pi} |f'(t)|^2$$

Proof. Consider the fourier series

$$f(t) \sim \sum a_n e^{nit}$$
 $f'(t) \sim \sum ina_n e^{nit}$

Then $a_0 = 0$, and so

$$\int_{-\pi}^{\pi} |f(t)|^2 dt = 2\pi \sum |a_n|^2 \le 2\pi \sum n^2 |a_n|^2 = \int_{-\pi}^{\pi} |f'(t)|^2 dt$$

equality holds here if and only if $a_i = 0$ for i > 1, in which case we find

$$f(t) = Ae^{nit} + \overline{A}e^{-nit} = B\cos(t) + C\sin(t)$$

for some constants $A \in \mathbb{C}$, $B, C \in \mathbb{R}$.

Corollary 4.2. Given $f \in C^1[a,b]$ with $\int_a^b f(t) dt = 0$,

$$\int_a^b |f(t)|^2 dt \leqslant \left(\frac{b-a}{\pi}\right)^2 \int_a^b |f'(t)|^2 dt$$

4.2 Energy Preservation in the String equation

Solutions to the string equation are If u(t,x)

Part II A More Sophisticated Viewpoint

Part III Abstract Harmonic Analysis

The main property of spaces where Fourier analysis applies is symmetry – for a function \mathbf{R} , we can translate and invert about the axis. On \mathbf{R}^n we have rotational symmetry as well. It turns out that we can apply Fourier analysis to any 'space with symmetry', that is, functions on an Abelian group. We shall begin with the study of finite abelian groups, where convergence questions disappear, and with it much of the analytical questions. We then proceed to generalize to a study of infinite abelian groups with topological structure.

Chapter 5

Finite Character Theory

Let us review our achievements so far. We have found several important families of functions on the spaces we have studied, and shown they can be used to approximate arbitrary functions. On the circle group **T**, the functions take the form of the power maps

$$\phi_n: z \mapsto z^n$$

for $n \in \mathbb{Z}$. The important properties of these functions is that

- The functions are orthogonal to one another.
- A large family of functions can be approximated by linear combinations of the power maps.
- The power maps are multiplicative: $\phi_n(zw) = \phi_n(z)\phi_n(w)$.

The existence of a family with these properties is not dependant on much more than the symmetry properties of T, and we can therefore generalize the properties of the fourier series to a large number of groups. In this chapter, we consider the generalization to finite abelian groups.

The last property of these exponentials should be immediately recognizable to any student of group theory. It implies the exponentials are homomorphisms from the circle group to itself. This is the easiest of the three properties to generalize to arbitrary groups; we shall call a homomorphism from a finite abelian group to T a **character**. For any abelian group T, we can put all characters together to form the character group T T0, which forms an abelian group under pointwise multiplication.

$$(fg)(z) = f(z)g(z)$$

It is these functions which are 'primitive' in synthesizing functions defined on the group.

Example. If μ_n is the set of nth roots of unity, then $\Gamma(\mu_n)$ consists of the power maps $\phi_m : z \mapsto z^m$, for $m \in \mathbb{Z}$. Since $\phi_i \phi_j = \phi_{i+j}$, and $\phi_i = \phi_j$ if and only if i - j is divisible by n, this also shows that $\Gamma(\mu_n) \cong \mu_n$. Because

$$\phi(\omega)^n = \phi(\omega^n) = \phi(1) = 1$$

we see that any character on μ_n is really a homomorphism from μ_n to μ_n . Since the homomorphisms on μ_n are determined by their action on this primitive root, there can only be at most n characters on μ_n , since there are only n elements in μ_n . Our derivation then shows us that the ϕ_n enumerate all such characters, which completes our proof.

Example. The group \mathbb{Z}_n is isomorphic to μ_n under the identification $n \mapsto \omega^n$, where ω is a primitive root of unity. This means that we do not need to distinguish functions 'defined in terms of n' and 'defined in terms of ω ', assuming the correspondence $n = \omega^n$, as with the correspondence with functions on \mathbb{T} and periodic functions on \mathbb{R} . The characters of \mathbb{Z}_n are then exactly the maps $n \mapsto \omega^{kn}$. This follows from the general fact that if $f: G \to H$ is an isomorphism of abelian groups, the map $F: \phi \mapsto \phi \circ f$ is an isomorphism from $\Gamma(H)$ to $\Gamma(G)$.

Example. If **F** is a finite field, then the set of non-zero elements is a group under multiplication. In fact, a rather sneaky algebraic proof shows the existence of elements of **F**, known as primitive elements, which generate the multiplicative group of all numbers. Thus **F** is cyclic, and therefore isomorphic to μ_n , where $n = |\mathbf{F}| - 1$. The characters of **F** are then easily found under the correspondence.

Example. For a fixed n, the set of invertible elements of \mathbf{Z}_n form a group under multiplication, denoted \mathbf{Z}_n^* . Any character from \mathbf{Z}_n^* maps into $\mu_{\varphi(n)}$, because the order of each element in \mathbf{Z}_n^* divides $\varphi(n)$. The groups are in general noncyclic, for instance $\mathbf{Z}_8^* \cong \mathbf{Z}_2^3$. However, we can always break down a finite abelian group into cyclic subgroups to calculate the character group; a simple argument shows that $\Gamma(G \times H) \cong \Gamma(G) \times \Gamma(H)$, where we identify (f,g) with the map $(x,y) \mapsto f(x)g(y)$.

5.1 Fourier analysis on Cyclic Groups

We shall start our study of abstract Fourier analysis by looking at Fourier analysis on μ_n . Geometrically, these points uniformly distribute themselves over **T**, and therefore μ_n provides a good finite approximation to **T**. Functions from μ_n to **C** are really just functions from $[n] = \{1, ..., n\}$ to **C**, so we're really computing the fourier analysis of finite domain functions, in a way which encodes the translational symmetry of the function relative to translational shifts on **Z**_n.

There is a trick which we can use to obtain quick results in μ_n . Given a function $f : [n] \to \mathbb{C}$, consider the n-periodic function defined by

$$g(t) = \sum_{k=1}^{n} f(k) \mathbf{I} (t \in (k-1/2, k+1/2))$$

Classical Fourier analysis of this function (and the fact that g is differentiable at each k) give us an expansion of f(k) as an infinite series in the $e^{2\pi ikl/n}$ for $l \in \mathbf{Z}$, which may be summed up over equivalence classes of kl modulo n to give us a finite expansion. This method certainly 'works', but does not generalize to finite abelian groups which cannot be expressed as subgroups of \mathbf{T} , and we therefore do not discuss it further. Perhaps more interesting is the fact that we can recover much of the theory of Fourier series on \mathbf{T} from finite fourier anlaysis, which I'll do the calculations for later.

The correct generalization of Fourier analysis is to analyze the set of 'square integrable functions' on μ_n , which is really just the set of all functions from μ_n to **C** since the domain is finite. We make V into an inner product space by defining

$$\langle f, g \rangle = \sum_{k=1}^{n} f(k) \overline{g(k)}$$

We claim that the characters $\phi_i: z \mapsto z^i$ are orthonormal in this space, since

$$\langle \phi_i, \phi_j \rangle = \sum_{k=1}^n \omega^{k(i-j)}$$

If i = j, we may sum up to find $\langle e_i, e_j \rangle = n$. Otherwise we use a standard

summation formula to find

$$\sum_{k=1}^{n} \omega^{k(i-j)} = \omega^{(i-j)} \frac{\omega^{n(i-j)} - 1}{\omega^{(i-j)} - 1}$$

But $\omega^{n(i-j)} = 1$, since it is an n'th root of unity, so the sum is zero.

Since the family of characters is orthonormal, they are linearly independant. Because V is only n dimensional, the family of characters must span the space. Thus, for any function f, we have

$$f(k) = \sum_{m=1}^{n} \frac{\langle f, \phi_m \rangle}{\langle \phi_m, \phi_m \rangle} \omega^{mk} = \sum_{m=1}^{n} \left(\frac{1}{n} \sum_{l=1}^{n} f(l) \omega^{-ml} \right) \omega^{mk}$$

We can perform this calculation, with slightly more care, on an arbitrary abelian group to obtain the same results.

5.2 The Fast Fourier Transform

The main use of the fourier series on μ_n is to approximate the Fourier transform on \mathbf{T} , where we need to compute integrals explicitly. If we have a function $f \in L^1(\mathbf{T})$, then f may be approximated in $L^1(\mathbf{T})$ by step functions of the form

$$f_n(t) = \sum_{k=1}^n a_k \mathbf{I}(x \in (2\pi(k-1)/n, 2\pi k/n))$$

And then $\hat{f}_n \to \hat{f}$ uniformly. The Fourier transform of f_n is the same as the Fourier transform of the corresponding function $k \mapsto a_k$ on \mathbb{Z}_n , and thus we can approximate the Fourier transform on \mathbb{T} by a discrete computation on \mathbb{Z}_n . Looking at the formula in the definition of the discrete transform, we find that we can compute the Fourier coefficients of a function $f: \mathbb{Z}_n \to \mathbb{C}$ in $O(n^2)$ addition and multiplication operations. It turns out that there is a much better method of computation which employs a divide and conquer approach, which works when n is a power of 2, reducing the calculation to $O(n \log n)$ multiplications.

To see this, consider a symmetry in the group \mathbb{Z}_{2n} . Given $f : \mathbb{Z}_{2n} \to \mathbb{C}$, define two functions $g, h : \mathbb{Z}_n \to \mathbb{C}$, defined by

$$g(k) = f(2k)$$
 $h(k) = f(2k+1)$

Then this pair of functions encodes all the information in f. Indeed, if $v = e^{\pi i/n}$ is the canonical generator of \mathbf{Z}_{2n} , we have

$$\hat{f}(m) = \frac{\hat{g}(m) + \hat{h}(m)v^m}{2}$$

Because

$$\frac{1}{2n} \sum_{k=1}^{n} \left(g(k) \omega^{-km} + h(m) \omega^{-km} v^{m} \right) = \frac{1}{2n} \sum_{k=1}^{n} f(2k) v^{-2km} + f(2k+1) v^{-(2k+1)m}
= \frac{1}{2n} \sum_{k=1}^{2n} f(k) v^{-km}$$

If H(m) is the number of operations needed to calculate the fourier transform of a function on μ_{2^n} , then the above relation tells us

$$H(2m) = 2H(m) + 3 \cdot (2m)$$

If $G(n) = H(2^n)$, then

$$G(n) = 2H(n-1) + 3 \cdot 2^n$$

and G(0) = 1. Now it follows that

$$G(n) = 2^{n} + 3\sum_{k=1}^{n} 2^{k} 2^{n-k} = 2^{n} (1 + 3n)$$

Hence for $m = 2^n$, we have $H(m) = m(1 + 3\log_2(m)) = O(m\log m)$.

5.3 An Arbitrary Finite Abelian Group

It should be easy to guess how we proceed for a general finite abelian group. Given some group G, we study the character group \hat{G} , and how \hat{G} represents general functions from G to C. We shall let V be the space of all such functions, and on it we define the inner product

$$\langle f, g \rangle = \frac{1}{|G|} \sum_{a \in G} f(a) \overline{g(a)}$$

If there's any justice in the world, the characters of *G* should be independent.

Theorem 5.1. The set \hat{G} of characters is an orthonormal set.

Proof. If *e* is a character of *G*, then |e(a)| = 1 for each *a*, and so

$$\langle e, e \rangle = \frac{1}{|G|} \sum_{a \in G} |e(a)| = 1$$

Now if $e \neq 1$ is a non-trivial character, then

$$\sum_{a \in G} e(a) = 0$$

Now for any $b \in G$, the map $a \mapsto ba$ is a bijection of G, and so

$$e(b)\sum_{a\in G}e(a)=\sum_{a\in G}e(ba)=\sum_{a\in G}e(a)$$

Implying either e(b) = 1, or $\sum_{a \in G} e(a) = 0$. Finally, if $e \neq e'$ are characters,

$$\langle e, e' \rangle = \frac{1}{|G|} \sum_{a \in G} e(a)e'(a)^{-1} = 0$$

since $e(e')^{-1} \neq 1$ is a character.

We see from this that $|\hat{G}| \le |G|$. All that remains is to show equality. This can be shown very simply by applying the structure theorem for finite abelian groups. First, note it is true for all cyclic groups. Second, note that if it is true for two groups G and H, it is true for $G \times H$, because

$$\widehat{G \times H} \cong \widehat{G} \times \widehat{H}$$

since a finite abelian group is a finite product of cyclic groups, this proves the theorem. There are more basic ways to prove this statement however, without using much more than elementary linear algebra.

Theorem 5.2. Let $\{T_1, ..., T_n\}$ be a family of commuting unitary matrices in $U_m(\mathbb{C})$. Then there is a basis $v_1, ..., v_m \in \mathbb{C}^m$ which are eigenvectors for each T_i .

Proof. For n = 1, the theorem is trivial. For induction, suppose that the T_1, \ldots, T_{k-1} are simultaneously diagonalizable. Write

$$\mathbf{C}^m = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_l}$$

where λ_i are the eigenvalues of T_k , and V_{λ_i} are the corresponding eigenspaces. Then if $v \in V_{\lambda_i}$, and j < k,

$$T_k T_j v = T_j T_k v = \lambda_i T_j v$$

so $T_j(V_{\lambda_i}) = V_{\lambda_i}$. Now on each V_{λ_i} , we may apply the induction hypotheis to diagonalize the T_1, \ldots, T_{k-1} . Putting this together, we simultaneously diagonalize T_1, \ldots, T_k .

This theorem enables us to prove the theorem in a much more simple manner. Let V be the space of complex valued functions on G, and define, for $a \in G$, the map $(T_a f)(b) = f(ab)$. An orthonormal basis of V is the set \mathcal{B} of χ_a , for $a \in G$, which maps a to 1, and maps any other element to zero. In this basis, we find

$$T_a \chi_b = \chi_{ba^{-1}}$$

so the matrix of T_a with respect to this basis is a permutation matrix, hence T_a is unitary. The operators commute, since $T_aT_b=T_{ab}=T_{ba}=T_bT_a$. Hence these operators can be simultaneously diagonalized – there is a family f_1,\ldots,f_n such that for each $a\in G$, $T_af_i=\lambda_{i,a}f_i$. We may assume $f_i(1)=1$ for each i. Then, for any $a\in G$, we have

$$f_i(a) = f_i(a \cdot 1) = \lambda_{i,a} f_i(1) = \lambda_{i,a}$$

So for any $b \in G$,

$$f_i(ab) = \lambda_{i,a} f_i(b) = f_i(a) f_i(b)$$

and each f_i is a character, completing the proof.

We summarize our arguments with the following theorem.

Theorem 5.3. Let G be a finite abelian group. Then \hat{G} has the same cardinality as G, and for any function $f: G \to \mathbb{C}$,

$$f(a) = \sum_{e \in \hat{G}} \langle f, e \rangle e(a)$$

where

$$\langle f, g \rangle = \sum_{a \in G} f(a) \overline{g(a)}$$

In this context, we also have Parseval's theorem

$$||f(a)||^2 = \sum_{e \in \hat{G}} |\langle f, e \rangle|^2$$

$$\langle f, g \rangle = \sum_{e \in \hat{G}} \langle f, e \rangle \overline{\langle g, e \rangle}$$

5.4 Convolutions

There is a version of convolutions for finite functions, which is analogous to the convolutions on \mathbf{R} . Given two functions f, g, we define

$$(f * g)(a) = \frac{1}{|G|} \sum_{b \in G} f(b)g(b^{-1}a)$$

The mapping $b \mapsto ab^{-1}$ is a bijection of G, and so we also have

$$(f * g)(a) = \frac{1}{|G|} \sum_{b \in G} f(ab^{-1})g(b) = (g * f)(a)$$

Now for $e \in \hat{G}$,

$$\widehat{(f * g)}(e) = \frac{1}{|G|} \sum_{a \in G} (f * g)(a) \overline{e(a)}$$
$$= \frac{1}{|G|^2} \sum_{a,b \in G} f(ab) g(b^{-1}) \overline{e(a)}$$

The bijection $a \mapsto ab^{-1}$ shows that

$$\widehat{(f * g)}(e) = \frac{1}{|G|^2} \sum_{a,b} f(a)g(b^{-1}) \overline{e(a)} \overline{e(b^{-1})}$$

$$= \frac{1}{|G|} \left(\sum_{a} f(a) \overline{e(a)} \right) \frac{1}{|G|} \left(\sum_{b} g(b) \overline{e(b)} \right)$$

$$= \widehat{f}(e) \widehat{g}(e)$$

In the finite case we do not need approximations to the identity, for we have an identity for convolution. Define $D: G \to \mathbb{C}$ by

$$D(a) = \sum_{e \in \hat{G}} e(a)$$

We claim that D(a) = |G| if a = 1, and D(a) = 0 otherwise. Note that since $|G| = |\hat{G}|$, the character space of \hat{G} is isomorphic to G. Indeed, for each $a \in G$, we have the maps $\hat{a} : e \mapsto e(a)$, which is a character of \hat{G} . Suppose e(a) = 1 for all characters e. Then e(a) = e(1) for all characters e, and for any function $f : G \to \mathbb{C}$, we have f(a) = f(1), implying a = 1. Thus we obtain |G| distinct maps \hat{a} , which therefore form the space of all characters. It therefore follows from a previous argument that if $a \neq 1$, then

$$\sum_{e \in \hat{G}} e(a) = 0$$

Now f * D = f, because

$$\widehat{D}(e) = \frac{1}{|G|} \sum_{a \in G} D(a) \overline{e(a)} = \overline{e}(1) = 1$$

D is essentially the finite dimensional version of the 'Dirac delta function', since it has unit mass, and acts as the identity in convolution.

Returning to μ_n , an important use of the fast fourier transform is reducing the time to multiply two numbers. The naive algorithm runs in $O(\log^2 n)$ time, for numbers of size $\leq n$. However, we can use the fast Fourier transform to reduce the computation to $O(\log(n)\log\log(n)\log\log(n))$ (and all the logs are important, those the third iteration of the logarithm has almost no effect on the speed of the algorithm for all but the most incredibly large numbers (even $x = e^{10000000}$ has $\log\log \log x \leq 1$!). Given two n digit numbers x and y, write

$$x = \sum_{k=1}^{n} a_k 2^k$$
 $y = \sum_{k=1}^{n} b_k 2^k$

Then

$$xy = \sum_{k=1}^{n} \left(\sum_{i=1}^{k} a_i b_{k-i} \right) 2^k$$

which is just the convolution of the two polynomials.

5.5 Dirichlet's Theorem

We now apply the theory of Fourier series on finite abelian groups to prove Dirichlet's theorem.

Theorem 5.4. *If m and n are relatively prime, then the set*

$$\{m + kn : k \in \mathbf{N}\}$$

contains infinitely many prime numbers.

An exploration of this requries the Riemann-Zeta function, defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

The function is defined on $(1,\infty)$, since for s>1 the map $t\mapsto 1/t^s$ is decreasing, and so

$$\sum_{n=1}^{\infty} \frac{1}{n^s} \le 1 + \int_1^{\infty} \frac{1}{t^s} = 1 + \lim_{n \to \infty} \frac{1}{s-1} \left[1 - 1/n^{s-1} \right] = 1 + \frac{1}{s-1}$$

The series converges uniformly on $[1 + \varepsilon, N]$ for any $\varepsilon > 0$, so ζ is continuous on $(1, \infty)$. As $t \to 1$, $\zeta(t) \to \infty$, because $n^s \to n$ for each n, and if for a fixed M we make s close enough to 1 such that $|n/n^s - 1| < 1/2$ for $1 \le n \le M$, then

$$\sum_{n=1}^{\infty} \frac{1}{n^s} \ge \sum_{n=1}^{M} \frac{1}{n^s} = \sum_{n=1}^{M} \frac{1}{n} \frac{n}{n^s} \ge \frac{1}{2} \sum_{n=1}^{M} \frac{1}{n}$$

Letting $M \to \infty$, we obtain that $\sum_{n=1}^{\infty} \frac{1}{n^s} \to \infty$ as $s \to 1$.

The Riemann-Zeta function is very good at giving us information about the prime integers, because it encodes much of the information about the prime numbers.

Theorem 5.5. For any s > 1,

$$\zeta(s) = \prod_{p \ prime} \frac{1}{1 - p^s}$$

Proof. The general idea is this – we may write

$$\prod_{p \text{ prime}} \frac{1}{1-p^s} = \prod_{p \text{ prime}} (1+1/p^s+1/p^{2s}+\dots)$$

If we expand this product out formally, enumating the primes to be p_1, p_2, \ldots , we find

$$\prod_{p \leq n} (1 + 1/p^s + 1/p^{2s} + \dots) = \sum_{n_1, n_2, \dots = 0}^{\infty} \frac{1}{p_1^{n_1}}$$

Chapter 6

Topological Groups

In abstract harmonic analysis, the main subject matter is the **topological group**, a group *G* equipped with a topology which makes the operation of multiplication and inversion continuous. In the mid 20th century, it was realized that basic Fourier analysis could be generalized to a large class of groups. The nicest generalization occurs over the locally compact groups, which simplifies the theory considerably.

Example. There are a few groups we should keep in mind for intuition in the general topological group.

- The classical groups \mathbf{R}^n and \mathbf{T}^n , from which Fourier analysis originated.
- The group μ of roots of unity, rational numbers \mathbf{Q} , and cyclic groups \mathbf{Z}_n .
- The matrix subgroups of the general linear group GL(n).
- The product \mathbf{T}^{ω} of Torii, occurring in the study of Dirichlet series.
- The product \mathbf{Z}_2^{ω} , which occurs in probability theory, and other contexts.
- The field of p-adic numbers \mathbf{Q}_p , which are the completion of \mathbf{Q} with respect to the absolute value $|p^{-m}q|_p = p^m$.

6.1 Basic Results

The topological structure of a topological group naturally possesses large amounts of symmetry, simplifying the spatial structure. For any topological group, the maps

$$x \mapsto gx$$
 $x \mapsto xg$ $x \mapsto x^{-1}$

are homeomorphisms. Thus if U is a neighbourhood of x, then gU is a neighbourhood of gx, Ug a neighbourhood of xg, and U^{-1} a neighbourhood of x^{-1} , and as we vary U through all neighbourhoods of x, we obtain all neighbourhoods of the other points. Understanding the topological structure at any point reduces to studying the neighbourhoods of the identity element of the group.

In topological group theory it is even more important than in basic group theory to discuss set multiplication. If U and V are subsets of a group, then we define

$$U^{-1} = \{x^{-1} : x \in U\} \qquad UV = \{xy : x \in U, y \in V\}$$

We let $V^2 = VV$, $V^3 = VVV$, and so on.

Theorem 6.1. Let U and V be subsets of a topological group.

- (i) If U is open, then UV is open.
- (ii) If U is compact, and V closed, then UV is closed.
- (iii) If U and V are connected, UV is connected.
- (iv) If U and V are compact, then UV is compact.

Proof. To see that (i) holds, we see that

$$UV = \bigcup_{x \in V} Ux$$

and each Ux is open. To see (ii), suppose $u_iv_i \to x$. Since U is compact, there is a subnet u_{i_k} converging to y. Then $y \in U$, and we find

$$v_{i_k} = u_{i_k}^{-1}(u_{i_k}v_{i_k}) \to y^{-1}x$$

Thus $y^{-1}x \in V$, and so $x = yy^{-1}x \in UV$. (iii) follows immediately from the continuity of multiplication, and the fact that $U \times V$ is connected, and (iv) follows from similar reasoning.

Example. If U is merely closed, then (ii) need not hold. For instance, in **R**, take $U = \alpha \mathbf{Z}$, and $V = \mathbf{Z}$, where α is an irrational number. Then $U + V = \alpha \mathbf{Z} + \mathbf{Z}$ is dense in **R**, and is hense not closed.

There are useful ways we can construct neighbourhoods under the group operations, which we list below.

Lemma 6.2. Let U be a neighbourhood of the identity. Then

- (1) There is an open V such that $V^2 \subset U$.
- (2) There is an open V such that $V^{-1} \subset U$.
- (3) For any $x \in U$, there is an open V such that $xV \subset U$.
- (4) For any x, there is an open V such that $xVx^{-1} \subset U$.

Proof. (1) follows simply from the continuity of multiplication, and (2) from the continuity of inversion. (3) is verified because $x^{-1}U$ is a neighbourhood of the origin, so if $V = x^{-1}U$, then $xV = U \subset U$. Finally (4) follows in a manner analogously to (3) because $x^{-1}Ux$ contains the origin.

If \mathcal{U} is an open basis at the origin, then it is only a slight generalization to show that for any of the above situations, we can always select $V \in \mathcal{U}$. Conversely, suppose that \mathcal{V} is a family of subsets of a (not yet topological) group G containing e such that (1), (2), (3), and (4) hold. Then the family $\mathcal{V}' = \{xV : V \in \mathcal{V}, x \in G\}$ forms a subbasis for a topology on G which forms a topological group. If \mathcal{V} also has the base property, then \mathcal{V}' is a basis.

Theorem 6.3. If K and C are disjoint, K is compact, and C is closed, then there is a neighbourhood V of the origin for which KV and CV is disjoint. If G is locally compact, then we can select V such that KV is precompact.

Proof. For each $x \in K$, C^c is an open neighbourhood containing x, so by applying the last lemma recursively we find that there is a symmetric neighbourhood V_x such that $xV_x^4 \subset C^c$. Since K is compact, finitely many of the xV_x cover K. If we then let V be the open set obtained by intersecting the finite subfamily of the V_x , then KV is disjoint from CV.

Taking *K* to be a point, we find that any open neighbourhood of a point contains a closed neighbourhood. Provided points are closed, we can set *C* to be a point as well.

Corollary 6.4. Every Kolmogorov topological group is Hausdorff.

Related to this theorem is the

Theorem 6.5. *For any set* $A \subset G$ *,*

$$\overline{A} = \bigcap_{V} AV$$

Where V ranges over the set of neighbourhoods of the origin.

Proof. If $x \notin \overline{A}$, then the last theorem guarantees that there is V for which $\overline{A}V$ and Ax are disjoint. We conclude $\bigcap AV \subset \overline{A}$. Conversely, any neighbourhood contains a closed neighbourhood, so that $\overline{A} \subset AV$ for a fixed V, and hence $\overline{A} \subset \bigcap AV$.

Theorem 6.6. Every open subgroup of G is closed.

Proof. Let *H* be an open subgroup of *G*. Then

$$\overline{H} = \bigcap_{V} HV$$

If W is a neighbourhood of the origin contained in H, then we find

$$\overline{H} \subset HW \subset H$$

so H is closed.

We see that open subgroups of a group therefore correspond to connected components of the group, so that connected groups have no proper open subgroups. This also tells us that a locally compact group is σ -compact on each of its components, for if V is a pre-compact neighbourhood of the origin, then V^2, V^3, \ldots are all precompact, and $\bigcup_{k=1}^{\infty} V^k$ is an open subgroup of G, which therefore contains the component of e, and is σ -compact. Since the topology of a topological group is homogenous, we can conclude that all components of the group are σ compact.

6.2 Quotient Groups

If G is a topological group, and H is a subgroup, then G/H can be given a topological structure in the obvious way. The quotient map is open, because VH is open in G for any open set V, and if H is normal, G/H is also a topological group, because multiplication is just induced from the quotient map of $G \times G$ to $G/H \times G/H$, and inversion from G to G/H. We should think the quotient structure is pleasant, but if no conditions on H are given, then G/H can have pathological structure. One particular example is the quotient T/μ_{∞} of the torus modulo the roots of unity, where the quotient is lumpy.

Theorem 6.7. *If* H *is closed,* G/H *is* Hausdorff.

Proof. If $x \neq y \in G/H$, then xHy^{-1} is a closed set in G, not containing e, so we may conclude there is a neighbourhood V for which V and $VxHy^{-1}$ are disjoint, so VyH and VxH are disjoint. This implies that the open sets V(xH) and V(yH) are disjoint in G/H.

Theorem 6.8. If G is locally compact, G/H is also.

Proof. If $\{U_i\}$ is a basis of precompact neighbourhoods at the origin, then U_iH is a family of precompact neighbourhoods of the origin in G/H, and is in fact a basis, for if V is any neighbourhood of the origin, there is $U_i \subset \pi^{-1}(V)$, and so $U_iH \subset V$.

If G is a non-Hausdorff group, then $\overline{\{e\}} \neq \{e\}$, and $G/\overline{\{e\}}$ is Hausdorff. Thus we can get away with assuming all our topological groups are Hausdorff, because a slight modification in the algebraic structure of the topological group gives us this property.

6.3 Uniform Continuity

An advantage of the real line **R** is that continuity can be explained in a *uniform sense*, because we can transport any topological questions about a certain point x to questions about topological structure near the origin via the map $g \mapsto x^{-1}g$. We can then define a uniformly continuous function $f: \mathbf{R} \to \mathbf{R}$ to be a function possessing, for every $\varepsilon > 0$, a $\delta > 0$ such that if $|y| < \delta$, $|f(x+y)-f(x)| < \varepsilon$. Instead of having to specify a δ for every point

on the domain, the δ works uniformly everywhere. The group structure is all we need to talk about these questions.

We say a function $f:G\to H$ between topological groups is (left) uniformly continuous if, for any open neighbourhood U of the origin in H, there is a neighbourhood V of the origin in G such that for each x, $f(xV) \subset f(x)U$. Right continuity requires $f(Vx) \subset Uf(x)$. The requirement of distinguishing between left and right uniformity is important when we study non-commutative groups, for there are certainly left uniform maps which are not right uniform in these groups. If $f:G\to \mathbb{C}$, then left uniform continuity is equivalent to the fact that $\|L_xf-f\|_\infty\to 0$ as $x\to 1$, where $(L_xf)(y)=f(xy)$. Right uniform continuity requires $\|R_xf-f\|_\infty\to 0$, where $(R_xf)(y)=f(yx)$. R_x is a homomorphism, but L_x is what is called an antihomomorphism.

Example. Let G be any Hausdorff non-commutative topological group, with sequences x_i and y_i for which $x_iy_i \to e$, $y_ix_i \to z \neq e$. Then the uniform structures on G are not equivalent.

It is hopeless to express uniform continuity in terms of a new topology on G, because the topology only gives a local description of continuity, which prevents us from describing things uniformly across the whole group. However, we can express uniform continuity in terms of a new topology on $G \times G$. If $U \subset G$ is an open neighbourhood of the origin, let

$$L_U = \{(x,y) : yx^{-1} \in U\}$$
 $R_U = \{(x,y) : x^{-1}y \in U\}$

The family of all L_U (resp. R_U) is known as the left (right) uniform structure on G, denoted LU(G) and RU(G). Fix a map $f: G \to H$, and consider the map

$$g(x,y) = (f(x),f(y))$$

from G^2 to H^2 . Then f is left (right) uniformly continuous if and only if g is continuous with respect to LU(G) and LU(H) (RU(G) and RU(H)). LU(G) and RU(G) are weaker than the product topologies on G and H, which reflects the fact that uniform continuity is a strong condition than normal continuity. We can also consider uniform maps with respect to LU(G) and RU(H), and so on and so forth. We can also consider uniform continuity on functions defined on an open subset of a group.

Example. Here are a few examples of easily verified continuous maps.

- If the identity map on G is left-right uniformly continuous, then LU(G) = RU(G), and so uniform continuity is invariant of the uniform structure chosen.
- Translation maps $x \mapsto axb$, for $a, b \in G$, are left and right uniform.
- *Inversion is uniformly continuous.*

Theorem 6.9. All continuous maps on compact subsets of topological groups are uniformly continuous.

Proof. Let K be a compact subset of a group G, and let $f: K \to H$ be a continuous map into a topological group. We claim that f is then uniformly continuous. Fix an open neighbourhood V of the origin, and let V' be a symmetric neighbourhood such that $V'^2 \subset V$. For any x, there is U_x such that

$$f(x)^{-1}f(xU_x) \subset V'$$

Choose U_x' such that $U_x'^2 \subset U_x$. The xU_x' cover K, so there is a finite subcover corresponding to sets $U_{x_1}', \ldots, U_{x_n}'$. Let $U = U_{x_1}' \cap \cdots \cap U_{x_n}'$. Fix $y \in G$, and suppose $y \in x_k U_{x_k}'$. Then

$$f(y)^{-1}f(yU) = f(y)^{-1}f(x_k)f(x_k)^{-1}f(yU)$$

$$\subset f(y)^{-1}f(x_k)f(x_k)^{-1}f(x_kUx_k)$$

$$\subset f(y)^{-1}f(x_k)V'$$

$$\subset V'^2 \subset V$$

So that f is left uniformly continuous. Right uniform continuity is proven in the exact same way.

Corollary 6.10. All maps with compact support are uniformly continuous.

Corollary 6.11. Uniform continuity on compact groups is invariant of the uniform structure chosen.

6.4 Ordered Groups

In this section we describe a general class of groups which contain both interesting and pathological examples. Let *G* be a group with an ordering

< preserved by the group operations, so that a < b implies both ag < bg and ga < gb. We now prove that the order topology gives G the structure of a normal topological group (the normality follows because of general properties of order topologies).

First note, that a < b implies $a^{-1} < b^{-1}$. This results from a simple algebraic trick, because

$$a^{-1} = a^{-1}bb^{-1} > a^{-1}ab^{-1} = b^{-1}$$

This implies that the inverse image of an interval (a, b) under inversion is (b^{-1}, a^{-1}) , hence inversion is continuous.

Now let e < b < a. We claim that there is then e < c such that $c^2 < a$. This follows because if $b^2 \ge a$, then $b \ge ab^{-1}$ and so

$$(ab^{-1})^2 = ab^{-1}ab^{-1} \le ab^{-1}b = a$$

Now suppose a < e < b. If $\inf\{y : y > e\} = x > e$, then $(x^{-1}, x) = \{e\}$, and the topology on G is discrete, hence the continuity of operations is obvious. Otherwise, we may always find c such that $c^2 < b$, $a < c^{-2}$, and then if $c^{-1} < g$, h < c, then

$$a < c^{-2} < gh < c^2 < b$$

so multiplication is continuous at every pair (x,x^{-1}) . In the general case, if a < gh < b, then $g^{-1}ah^{-1} < e < g^{-1}bh^{-1}$, so there is c such that if $c^{-1} < g',h' < c$, then $g^{-1}ah^{-1} < g'h' < g^{-1}bh^{-1}$, so a < gg'h'h < b. The set of gg', where $c^{-1} < g' < c$, is really just the set of $gc^{-1} < x < gc$, and the set of h'h is really just the set of $c^{-1}h < x < ch$. Thus multiplication is continuous everywhere.

Example (Dieudonne). For any well ordered set S, the dictionary ordering on \mathbf{R}^S induces a linear ordering inducing a topological group structure on the set of maps from S to \mathbf{R} .

Let us study Dieudonne's topological group in more detail. If S is a finite set, or more generally possesses a maximal element w, then the topology on \mathbf{R}^S can be defined such that $f_i \to f$ if eventually $f_i(s) = f(s)$ for all s < w simultaneously, and $f_i(w) \to f(w)$. Thus \mathbf{R}^S is isomorphic (topologically) to a discrete union of a certain number of copies of \mathbf{R} , one for each tuple in $S - \{w\}$.

If S has a countable cofinal subset $\{s_i\}$, the topology is no longer so simple, but \mathbb{R}^S is still first countable, because the sets

$$U_i = \{ f : (\forall w < s_i : f(w) = 0) \}$$

provide a countable neighbourhood basis of the origin.

The strangest properties of \mathbf{R}^S occur when S has no countable cofinal set. Suppose that $f_i \to f$. We claim that it follows that $f_i = f$ eventually. To prove by contradiction, we assume without loss of generality (by thinning the sequence) that no f_i is equal to f. For each f_i , find the largest $w_i \in S$ such that for $s < w_i$, $f_i(s) = f(s)$ (since S is well ordered, the set of elements for which $f_i(s) \neq f(s)$ has a minimal element). Then the w_i form a countable cofinal set, because if $v \in S$ is arbitrary, the f_i eventually satisfy $f_i(s) = f(s)$ for s < v, hence the corresponding w_i is greater than v_i . Hence, if $f_i \to f$ in \mathbf{R}^S , where S does not have a countable cofinal subset, then eventually $f_i = f$. We conclude all countable sets in \mathbf{R}^S are closed, and this proof easily generalises to show that if S does not have a cofinal set of cardinality s, then every set of cardinality s is closed.

The simple corollary to this proof is that compact subsets are finite. Let $X = f_1, f_2,...$ be a denumerable, compact set. Since all subsets of X are compact, we may assume $f_1 < f_2 < ...$ (or $f_1 > f_2 > ...$, which does not change the proof in any interesting way). There is certainly $g \in \mathbf{R}^S$ such that $g < f_1$, and then the sets $(g, f_2), (f_1, f_3), (f_2, f_4),...$ form an open cover of X with no finite subcover, hence X cannot be compact. We conclude that the only compact subsets of \mathbf{R}^S are finite.

Furthermore, the class of open sets is closed under countable intersections. Consider a series of functions

$$f_1 \leqslant f_2 \leqslant \cdots < h < \cdots \leqslant g_2 \leqslant g_1$$

Suppose that $f_i \leq k < h < k' \leq g_j$. Then the intersection of the (f_i, g_i) contains an interval (k, k') around h, so that the intersection is open near h. The only other possiblity is that $f_i \to h$ or $g_i \to h$, which can only occur if $f_i = h$ or $g_i = h$ eventually, in which case we cannot have $f_i < h$, $h < g_i$. We conclude the intersection of countably many intervals is open, because we can always adjust any intersection to an intersection of this form without changing the resulting intersecting set (except if the set is empty, in which case the claim is trivial). The general case results from noting that any open set in an ordered group is a union of intervals.

6.5 Topological Groups arising from Normal subgroups

Let G be a group, and \mathcal{N} a family of normal subgroups closed under intersection. If we interpret \mathcal{N} as a neighbourhood base at the origin, the resulting topology gives G the structure of a totally disconnected topological group, which is Hausdorff if and only if $\bigcap \mathcal{N} = \{e\}$. First note that $g_i \to g$ if g_i is eventually in gN, for every $N \in \mathcal{N}$, which implies $g_i^{-1} \in Ng^{-1} = g^{-1}N$, hence inversion is continuous. Furthermore, if h_i is eventually in hN, then $g_ih_i \in gNhN = ghN$, so multiplication is continuous. Finally note that $N^c = \bigcup_{g \neq e} gN$ is open, so that every open set is closed.

Example. Consider $\mathcal{N} = \{\mathbf{Z}, 2\mathbf{Z}, 3\mathbf{Z}, \ldots\}$. Then \mathcal{N} induces a Hausdorff topology on \mathbf{Z} , such that $g_i \to g$, if and only if g_i is eventually in $g + n\mathbf{Z}$ for all n. In this topology, the series $1, 2, 3, \ldots$ converges to zero!

This example gives us a novel proof, due to Furstenburg, that there are infinitely many primes. Suppose that there were only finitely many, $\{p_1, p_2, ..., p_n\}$. By the fundamental theorem of arithmetic,

$$\{-1,1\} = (\mathbf{Z}p_1)^c \cap \cdots \cap (\mathbf{Z}p_n)^c$$

and is therefore an open set. But this is clearly not the case as open sets must contain infinite sequences.

Chapter 7

The Haar Measure

One of the reasons that we isolate locally compact groups to study is that they possess an incredibly useful object allowing us to understand functions on the group, and thus the group itself. A **left (right) Haar measure** for a group G is a Radon measure μ for which $\mu(xE) = \mu(E)$ for any $x \in G$ and measurable $E(\mu(Ex) = \mu(E))$ for all x and E). For commutative groups, all left Haar measures are right Haar measures, but in non-commutative groups this need not hold. However, if μ is a right Haar measure, then $\nu(E) = \mu(E^{-1})$ is a left Haar measure, so there is no loss of generality in focusing our study on left Haar measures.

Example. The example of a Haar measure that everyone knows is the Lebesgue measure on \mathbf{R} (or \mathbf{R}^n). It commutes with translations because it is the measure induced by the linear functional corresponding to Riemann integration on $C_c^+(\mathbf{R}^n)$. A similar theory of Darboux integration can be applied to linearly ordered groups, leading to the construction of a Haar measure on such a group.

Example. If G is a Lie group, consider a 2-tensor $g_e \in T_e^2(G)$ inducing an inner product at the origin. Then the diffeomorphism $f: a \mapsto b^{-1}a$ allows us to consider $g_b = f^*\lambda \in T_b^2(G)$, and this is easily verified to be an inner product, hence we have a Riemannian metric. The associated Riemannian volume element can be integrated, producing a Haar measure on G.

Example. If G and H have Haar measures μ and ν , then $G \times H$ has a Haar measure $\mu \times \nu$, so that the class of topological groups with Haar measures is closed under the product operation. We can even allow infinite products, provided that the groups involved are compact, and the Haar measures are normalized to probability measures. This gives us probability measures on F_2^{ω} and

 T^{ω} , which essentially measures the probability of an infinite sequence of coin flips.

Example. dx/x is a Haar measure for the multiplicative group of positive real numbers, since

$$\int_{a}^{b} \frac{1}{x} = \log(b) - \log(a) = \log(cb) - \log(ca) = \int_{ca}^{cb} \frac{1}{x}$$

If we take the multiplicative group of all non-negative real numbers, the Haar measure becomes dx/|x|.

Example. $dxdy/(x^2+y^2)$ is a Haar measure for the multiplicative group of complex numbers, since we have a basis of 'arcs' around the origin, and by a change of variables to polar coordinates, we verify the integral is changed by multiplication. Another way to obtain this measure is by noticing that \mathbf{C}^{\times} is topologically isomorphic to the product of the circle group and the multiplicative group of real numbers, and hence the measure obtained should be the product of these measures. Since

$$\frac{dxdy}{x^2 + v^2} = \frac{drd\theta}{r}$$

We see that this is just the product of the Haar measure on \mathbf{R}^+ , dr/r, and the Haar measure on \mathbf{T} , $d\theta$.

Example. The space $M_n(\mathbf{R})$ of all n by n real matrices under addition has a Haar measure dM, which is essentially the Lebesgue measure on \mathbf{R}^{n^2} . If we consider the measure on $GL_n(\mathbf{R})$, defined by

$$\frac{dM}{det(M)^n}$$

To see this, note the determinant of the map $M \mapsto NM$ on $M_n(\mathbf{R})$ is $det(N)^n$, because we can view $M_n(\mathbf{R})$ as the product of \mathbf{R}^n n times, multiplication operates on the space componentwise, and the volume of the image of the unit parallelliped in each \mathbf{R}^n is det(N). Since the multiplicative group of complex numbers z = x + iy can be identified with the group of matrices of the form

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

and the measure on $\mathbb{C} - \{0\}$ then takes the form dM/det(M). More generally, if G is an open subset of \mathbb{R}^n , and left multiplication acts affinely, xy = A(x)y + b(x), then dx/|det(A(x))| is a left Haar measure on G, where dx is Lebesgue measure.

It turns out that there is a Haar measure on any locally compact group, and what's more, it is unique up to scaling. The construction of the measure involves constructing a positive linear functional $\phi: C_c(G) \to \mathbf{R}$ such that $\phi(L_x f) = \phi(f)$ for all x. The Riesz representation theorem then guarantees the existence of a Radon measure μ which represents this linear functional, and one then immediately verifies that this measure is a Haar measure.

Theorem 7.1. Every locally compact group G has a Haar measure.

Proof. The idea of the proof is fairly simple. If μ was a Haar measure, $f \in C_c^+(G)$ was fixed, and $\phi \in C_c^+(G)$ was a function supported on a small set, and behaving like a step function, then we could approximate f well by translates of ϕ ,

$$f(x) \approx \sum c_i(L_{x_i}\phi)$$

Hence

$$\int f(x)d\mu \approx \sum c_i \int L_{x_i} \phi = \sum c_i \int \phi$$

If $\int \phi = 1$, then we could approximate $\int f(x) d\mu$ as literal sums of coefficients c_i . Since μ is outer regular, and ϕ is supported on neighbourhoods, one can show $\int f(x) d\mu$ is the infinum of $\sum c_i$, over all choices of $c_i > 0$ and $\int \phi \geqslant 1$, for which $f \leqslant \sum c_i L_{x_i} \phi$. Without the integral, we cannot measure the size of the functions ϕ , so we have to normalize by a different factor. We define $(f:\phi)$ to be the infinum of the sums $\sum c_i$, where $f \leqslant \sum c_i L_{x_i} \phi$ for some $x_i \in G$. We would then have

$$\int f d\mu \leqslant (f:\phi) \int \phi d\mu$$

If *k* is fixed with $\int k = 1$, then we would have

$$\int f d\mu \leqslant (f:\phi)(\phi:k)$$

We cannot change k if we wish to provide a limiting result in ϕ , so we notice that $(f:g)(g:h) \leq (f:h)$, which allows us to write

$$\int f d\mu \leqslant \frac{(f:\phi)}{(k:\phi)}$$

Taking the support of ϕ to be smaller and smaller, this value should approximate the integral perfectly accurately.

Define the linear functional

$$I_{\phi}(f) = \frac{(f:\phi)}{(k:\phi)}$$

Then I_{ϕ} is a sublinear, monotone, function with a functional bound

$$(k:f)^{-1} \leqslant I_{\phi}(f) \leqslant (f:k)$$

Which effectively says that, regardless of how badly we choose ϕ , the approximation factor $(f:\phi)$ is normalized by the approximation factor $(k:\phi)$ so that the integral is bounded. Now we need only prove that I_{ϕ} approximates a linear functional well enough that we can perform a limiting process to obtain a Haar integral. If $\varepsilon > 0$, and $g \in C_c^+(G)$ with g = 1 on $\operatorname{supp}(f_1 + f_2)$, then the functions

$$h = f_1 + f_2 + \varepsilon g$$

$$h_1 = f_1/h$$
 $h_2 = f_2/h$

are in $C_0^+(G)$, if we define $h_i(x) = 0$ if $f_i(x) = 0$. This implies that there is a neighbourhood V of e such that if $x \in V$, and y is arbitrary, then

$$|h_1(xy) - h_1(y)| \le \varepsilon \quad |h_2(xy) - h_2(y)| < \varepsilon$$

If supp $(\phi) \subset V$, and $h \leq \sum c_i L_{x_i} \phi$, then

$$f_j(x) = h(x)h_j(x) \le \sum c_i\phi(x_ix)h_j(x) \le \sum c_i\phi(x_ix)\left[h_j(x_i^{-1}) + \varepsilon\right]$$

since we may assume that $x_i x \in \text{supp}(\phi) \subset V$. Then, because $h_1 + h_2 \leq 1$,

$$(f_1:\phi) + (f_2:\phi) \le \sum c_j[h_1(x_j^{-1}) + \varepsilon] + \sum c_j[h_2(x_j^{-1}) + \varepsilon] \le \sum c_j[1 + 2\varepsilon]$$

Now we find, by taking infinums, that

$$I_{\phi}(f_1) + I_{\phi}(f_2) \le I_{\phi}(h)(1 + 2\varepsilon) \le [I_{\phi}(f_1 + f_2) + \varepsilon I_{\phi}(g)][1 + 2\varepsilon]$$

Since g is fixed, and we have a bound $I_{\phi}(g) \leq (g:k)$, we may always find a neighbourhood V (dependant on f_1 , f_2) for any $\varepsilon > 0$ such that

$$I_{\phi}(f_1) + I_{\phi}(f_2) \leqslant I_{\phi}(f_1 + f_2) + \varepsilon$$

if $supp(\phi) \subset V$.

Now we have estimates on how well I_{ϕ} approximates a linear function, so we can apply a limiting process. Consider the product

$$X = \prod_{f \in C_0^+(G)} [(k:f)^{-1}, (k:f_0)]$$

a compact space, by Tychonoff's theorem, consisting of $F: C_c^+(G) \to \mathbf{R}$ such that $(k:f)^{-1} \leq F(f) \leq (f:k)$. For each neighbourhood V of the identity, let K(V) be the closure of the set of I_ϕ such that $\sup(\phi) \subset V$. Then the set of all K(V) has the finite intersection property, so we conclude there is some $I: C_c^+(G) \to \mathbf{R}$ contained in $\bigcap K(V)$. This means that every neighbourhood of I contains I_ϕ with $\sup(\phi) \subset V$, for all ϕ . This means that if $f_1, f_2 \in C_c^+(G)$, $\varepsilon > 0$, and V is arbitrary, there is ϕ with $\sup(\phi) \subset V$, and

$$|I(f_1) - I_{\phi}(f_1)| < \varepsilon \quad |I(f_2) - I_{\phi}(f_2)| < \varepsilon$$

 $|I(f_1 + f_2) - I_{\phi}(f_1 + f_2)| < \varepsilon$

this implies that if V is chosen small enough, then

$$|I(f_1 + f_2) - (I(f_1) - I(f_2))| \le 2\varepsilon + |I_{\phi}(f_1 + f_2) - (I_{\phi}(f_1) + I_{\phi}(f_2))| < 3\varepsilon$$

Taking $\varepsilon \to 0$, we conclude I is linear. Similar limiting arguments show that I is homogenous of degree 1, and commutes with all left translations. We conclude the extension of I to a linear functional on $C_0(G)$ is well defined, and the Radon measure obtained by the Riesz representation theorem is a Haar measure.

We shall prove that the Haar measure is unique, but first we show an incredibly useful regularity property.

Proposition 7.2. If U is open, and μ is a Haar measure, then $\mu(U) > 0$. It follows that if f is in $C_c^+(G)$, then $\int f d\mu > 0$.

Proof. If $\mu(U) = 0$, then for any $x_1, ..., x_n \in G$,

$$\mu\left(\bigcup_{i=1}^n x_i U\right) \leqslant \sum_{i=1}^n \mu(x_i U) = 0$$

If *K* is compact, then *K* can be covered by finitely many translates of *U*, so $\mu(K) = 0$. But then $\mu = 0$ by regularity, a contradiction.

Theorem 7.3. Haar measures are unique up to a multiplicative constant.

Proof. Let μ and ν be Haar measures. Fix a compact neighbourhood V of the identity. If f, $g \in C_c^+(G)$, consider the compact sets

$$A = \operatorname{supp}(f)V \cup V\operatorname{supp}(f)$$
 $B = \operatorname{supp}(g)V \cup V\operatorname{supp}(g)$

Then the functions $F_y(x) = f(xy) - f(yx)$ and $G_y(x) = g(xy) - g(yx)$ are supported on A and B. There is a neighbourhood $W \subset V$ of the identity such that $\|F_y\|_{\infty}$, $\|G_y\|_{\infty} < \varepsilon$ if $y \in W$. Now find $h \in C_c^+(G)$ with $h(x) = h(x^{-1})$ and $\sup h(x) \subset W$ (take $h(x) = h(x)h(x^{-1})$ for some function $h \in C_c^+(G)$ with $h(x) \subset W$, and $h \in C_c^+(G)$ with supp $h(x) \subset W$, supp $h(x) \subset W$ with supp $h(x) \subset W$ wit

$$\left(\int h d\mu\right) \left(\int f d\lambda\right) = \int h(y) f(x) d\mu(y) d\lambda(x)$$
$$= \int h(y) f(yx) d\mu(y) d\lambda(x)$$

and

$$\left(\int h d\lambda\right) \left(\int f d\mu\right) = \int h(x)f(y)d\mu(y)d\lambda(x)$$

$$= \int h(y^{-1}x)f(y)d\mu(y)d\lambda(x)$$

$$= \int h(x^{-1}y)f(y)d\mu(y)d\lambda(x)$$

$$= \int h(y)f(xy)d\mu(y)d\lambda(x)$$

Hence, applying Fubini's theorem,

$$\left| \int h d\mu \int f d\lambda - \int h d\lambda \int f d\mu \right| \leq \int h(y) |F_y(x)| d\mu(y) d\lambda(x)$$

$$\leq \varepsilon \lambda(A) \int h d\mu$$

In the same way, we find this is also true when f is swapped with g, and A with B. Dividing this inequalities by $\int h d\mu \int f d\mu$, we find

$$\left| \frac{\int f \, d\lambda}{\int f \, d\mu} - \frac{\int h \, d\lambda}{\int h \, d\mu} \right| \le \frac{\varepsilon \lambda(A)}{\int f \, d\mu}$$

and this inequality holds with f swapped out with g, A with B. We then combine these inequalities to conclude

$$\left| \frac{\int f d\lambda}{\int f d\mu} - \frac{\int g d\lambda}{\int g d\mu} \right| \le \varepsilon \left[\frac{\lambda(A)}{\int f d\mu} + \frac{\lambda(B)}{\int g d\mu} \right]$$

Taking ε to zero, we find $\lambda(A)$, $\lambda(B)$ remain bounded, and hence

$$\frac{\int f \, d\lambda}{\int f \, d\mu} = \frac{\int g \, d\lambda}{\int g \, d\mu}$$

Thus there is a cosntant c > 0 such that $\int f d\lambda = c \int f d\mu$ for any function $f \in C_c^+(G)$, and we conclude that $\lambda = c\mu$.

The theorem can also be proven by looking at the translation invariant properties of the derivative $f = d\mu/d\nu$, where $\nu = \mu + \lambda$ (We assume our group is σ compact for now). Consider the function g(x) = f(yx). Then

$$\int_{A} g(x)d\nu = \int_{vA} f(x)d\nu = \mu(vA) = \mu(A)$$

so g is derivative, and thus f = g almost everywhere. Our interpretation is that for a fixed y, f(yx) = f(x) almost everywhere with respect to v. Then (applying a discrete version of Fubini's theorem), we find that for almost all x with respect to v, f(yx) = f(x) holds for almost all y. But this implies that there exists an x for which f(yx) = f(x) holds almost everywhere. Thus for any measurable A,

$$\mu(A) = \int_{A} f(y) d\nu(y) = f(x)\nu(A) = f(x)\mu(A) + f(x)\nu(A)$$

Now $(1 - f(x))\mu(A) = f(x)\nu(A)$ for all A, implying (since $\mu, \nu \neq 0$), that $f(x) \neq 0, 1$, and so

 $\frac{1 - f(x)}{f(x)}\mu(A) = \nu(A)$

for all A. This shows the uniqueness property for all σ compact groups. If G is an arbitrary group with two measures μ and ν , then there is c such that $\mu = c\nu$ on every component of G, and thus on the union of countably many components. If A intersects uncountably many components, then either $\mu(A) = \nu(A) = \infty$, or the intersection of A on each set has positive measure on only countably many components, and in either case we have $\mu(A) = \nu(A)$.

7.1 Fubini, Radon Nikodym, and Duality

Before we continue, we briefly mention that integration theory is particularly nice over locally compact groups, even if we do not have σ finiteness. This essentially follows because the component of the identity in G is σ compact (take a compact neighbourhood and its iterated multiples), hence all components in G are σ compact. The three theorems that break down outside of the σ compact domain are Fubini's theorem, the Radon Nikodym theory, and the duality between $L^1(X)$ and $L^\infty(X)$. We show here that all three hold if X is a locally compact topological group.

First, suppose that $f \in L^1(G \times G)$. Then the essential support of f is contained within countably many components of $G \times G$ (which are simply products of components in G). Thus f is supported on a σ compact subset of $G \times G$ (as a locally compact topological group, each component of $G \times G$ is σ compact), and we may apply Fubini's theorem on the countably many components (the countable union of σ compact sets is σ compact). The functions in $L^p(G)$, for $1 \le p < \infty$, also vanish outside of a σ compact subset (for if $f \in L^p(G)$, $|f|^p \in L^1(G)$ and thus vanishes outside of a σ compact set). What's more, all finite sums and products of functions from these sets (in either variable) vanish outside of σ compact subsets, so we almost never need to explicitly check the conditions for satisfying Fubini's theorem, and from now on we apply it wantonly.s

Now suppose μ and ν are both Radon measures, with $\nu \ll \mu$, and ν is σ -finite. By inner regularity, the support of ν is a σ compact set E. By inner regularity, μ restricted to E is σ finite, and so we may find a Radon

Nikodym derivative on E. This derivative can be extended to all of G because ν vanishes on G.

Finally, we note that $L^{\infty}(X) = L^1(X)^*$ can be made to hold if X is not σ finite, but locally compact and Hausdorff, provided we are integrating with respect to a Radon measure μ , and we modify $L^{\infty}(G)$ slightly. Call a set $E \subset X$ **locally Borel** if $E \cap F$ is Borel whenever F is Borel and $\mu(F) < \infty$. A locally Borel set is **locally null** if $\mu(E \cap F) = 0$ whenever $\mu(F) < \infty$ and F is Borel. We say a property holds **locally almost everywhere** if it is true except on a locally null set. $f: X \to \mathbf{C}$ is **locally measurable** if $f^{-1}(U)$ is locally Borel for every borel set $U \subset \mathbf{C}$. We now define $L^{\infty}(X)$ to be the space of all functions bounded except on a locally null set, modulo functions that are locally zero. That is, we define a norm

$$||f||_{\infty} = \inf\{c : |f(x)| \le c \text{ locally almost everywhere}\}$$

and then $L^{\infty}(X)$ consists of the functions that have finite norm. It then follows that if $f \in L^{\infty}(X)$ and $g \in L^{1}(X)$, then g vanishes outside of a σ -finite set Y, so $fg \in L^{1}(X)$, and if we let $Y_{1} \subset Y_{2} \subset \cdots \to Y$ be an increasing subsequence such that $\mu(Y_{i}) < \infty$, then $|f(x)| \leq ||f||_{\infty}$ almost everywhere for $x \in Y_{i}$, and so by the monotone convergence theorem

$$\int |fg| d\mu = \lim_{Y_i \to \infty} \int_{Y_i} |fg| d\mu \le ||f||_{\infty} \int_{Y_i} |g| d\mu \le ||f||_{\infty} ||g||_{1}$$

Thus the map $g \mapsto \int f g d\mu$ is a well defined, continuous linear functional with norm $||f||_{\infty}$. That $L^1(X)^* = L^{\infty}(X)$ follows from the decomposibility of the Carathéodory extension of μ , a fact we leave to the general measure theorists.

7.2 Unimodularity

We have thus defined a left invariant measure, but make sure to note that such a function is not right invariant. We call a group who's left Haar measure is also right invariant **unimodular**. Obviously all abelian groups are unimodular.

Given a fixed y, the measure $\mu_y(A) = \mu(Ay)$ is a new Haar measure on the space, hence there is a constant $\Delta(y) > 0$ depending only on y such that $\mu(Ay) = \Delta(y)\mu(A)$ for all measurable A. Since $\mu(Axy) = \Delta(y)\mu(Ay) = \Delta(y)\mu(Ay) = \Delta(y)\mu(Ay)$

 $\Delta(x)\Delta(y)\mu(A)$, we find that $\Delta(xy)=\Delta(x)\Delta(y)$, so Δ is a homomorphism from G to the multiplicative group of real numbers. For any $f\in L^1(\mu)$, we have

$$\int f(xy)d\mu(x) = \Delta(y^{-1}) \int f(x)d\mu(x)$$

If $y_i \to e$, and $f \in C_c(G)$, then $||R_{y_i}f - f||_{\infty} \to 0$, so

$$\Delta(y_i^{-1}) \int f(x) d\mu = \int f(xy_i) d\mu \to \int f(x) d\mu$$

Hence $\Delta(y_i^{-1}) \to 1$. This implies Δ , known as the unimodular function, is a continuous homomorphism from G to the real numbers. Note that Δ is trivial if and only if G is unimodular.

Theorem 7.4. Any compact group is unimodular.

Proof. $\Delta : G \to \mathbb{R}^*$ is a continuous homomorphism, hence $\Delta(G)$ is compact. But the only compact subgroup of \mathbb{R} is trivial, hence Δ is trivial.

Let G^c be the smallest closed subgroup of G containing the commutators $[x,y] = xyx^{-1}y^{-1}$. It is verified to be a normal subgroup of G by simple algebras.

Theorem 7.5. If G/G^c is compact, then G is unimodular.

Proof. Δ factors through G/G^c since it is abelian. But if Δ is trivial on G/G^c , it must also be trivial on G.

The modular function relates right multiplication to left multiplication in the group. In particular, if $d\mu$ is a Left Haar measure, then $\Delta^{-1}d\mu$ is a right Haar measure. Hence any right Haar measure is a constant multiple of $\Delta^{-1}d\mu$. Hence the measure $\nu(A)=\mu(A^{-1})$ has a value c such that for any function f,

$$\int \frac{f(x)}{\Delta(x)} d\mu(x) = c \int f(x) d\nu(x) = c \int f(x^{-1}) d\mu$$

If $c \neq 1$, pick a symmetric neighbourhood U such that for $x \in U$, $|\Delta(x) - 1| \leq \varepsilon |c - 1|$. Then if f > 0

$$|c-1|\mu(U) = |c\mu(U^{-1}) - \mu(U)| = \left| \int_{U} [\Delta(x^{-1}) - 1] d\mu(x) \right| \le \varepsilon \mu(U) |c-1|$$

A contradiction if ε < 1. Thus we have

$$\int f(x^{-1})d\mu(x) = \int \frac{f(x)}{\Delta(x)}d\mu(x)$$

A useful integration trick. When Δ is unbounded, then it follows that $L^p(\mu)$ and $L^p(\nu)$ do not consist of the same functions. There are two ways of mapping the sets isomorphically onto one another – the map $f(x) \mapsto f(x^{-1})$, and the map $f(x) \mapsto \Delta(x)^{1/p} f(x)$.

From now on, we assume a left invariant Haar measure is fixed over an entire group. Since a Haar measure is uniquely determined up to a constant, this is no loss of generality, and we might as well denote our integration factors $d\mu(x)$ and $d\mu(y)$ as dx and dy, where it is assumed that this integration is over the Lebesgue measure.

7.3 Convolution

If G is a topological group, then C(G) does not contain enough algebraic structure to identify G – for instance, if G is a discrete group, then C(G) is defined solely by the cardinality of G. The algebras we wish to study over G is the space M(G) of all complex valued Radon measures over G and the space $L^1(G)$ of integrable functions with respect to the Haar measure, because here we can place a Banach algebra structure with an involution. We note that $L^1(G)$ can be isometrically identified as the space of all measures $\mu \in M(G)$ which are absolutely continuous with respect to the Haar measure. Given $\mu, \nu \in M(G)$, we define the convolution measure

$$\int \phi d(\mu * \nu) = \int \phi(xy) d\mu(x) d\nu(y)$$

The measure is well defined, for if $\phi \in C_c^+(X)$ is supported on a compact set K, then

$$\left| \int \phi(xy) d\mu(x) d\nu(y) \right| \leq \int_{G} \int_{G} \phi(xy) d|\mu|(x) d|\nu|(y)$$
$$\leq \|\mu\| \|\nu\| \|\phi\|_{\infty}$$

This defines an operation on M(G) which is associative, since, by applying the associativity of G and Fubini's theorem.

$$\int \phi d((\mu * \nu) * \lambda) = \int \int \phi(xz)d(\mu * \nu)(x)d\lambda(z)$$

$$= \int \int \int \phi((xy)z)d\mu(x)d\nu(y)d\lambda(z)$$

$$= \int \int \int \phi(x(yz))d\mu(x)d\nu(y)d\lambda(z)$$

$$= \int \int \phi(xz)d\mu(x)d(\nu * \lambda)(z)$$

$$= \int \phi d(\mu * (\nu * \lambda))$$

Thus we begin to see how the structure of G gives us structure on M(G). Another example is that convolution is commutative if and only if G is commutative. We have the estimate $\|\mu * \nu\| \le \|\mu\| \|\nu\|$, because of the bound we placed on the integrals above. M(G) is therefore an involutive Banach algebra, which has a unit, the dirac delta measure at the identity.

As a remark, we note that involutive Banach algebras have nowhere as near a nice of a theory than that of C^* algebras. M(G) cannot be renormed to be a C^* algebra, since every weakly convergent Cauchy sequence converges, which is impossible in a C^* algebra, except in the finite dimensional case.

A **discrete measure** on G is a measure in M(G) which vanishes outside a countable set of points, and the set of all such measures is denoted $M_d(G)$. A **continuous measure** on G is a measure μ such that $\mu(\{x\}) = 0$ for all $x \in G$. We then have a decomposition $M(G) = M_d(G) \oplus M_c(G)$, for if μ is any measure, then $\mu(\{x\}) \neq 0$ for at most countably many points x, for

$$\|\mu\| \geqslant \sum_{x \in C} |\mu|(x)$$

This gives rise to a discrete measure ν , and $\mu - \nu$ is continuous. If we had another decomposition, $\mu = \psi + \phi$, then $\mu(\{x\}) = \psi(\{x\}) = \nu(\{x\})$, so $\psi = \nu$ by discreteness, and we then conclude $\phi = \mu - \nu$. $M_c(G)$ is actually a closed subspace of M(G), since if $\mu_i \to \mu$, and $\mu_i \in M_c(G)$, and $\|\mu_i - \mu\| < \varepsilon$, then for any $x \in G$,

$$\varepsilon > \|\mu - \mu_i\| \ge |(\mu_i - \mu)(\{x\})| = |\mu(\{x\})|$$

Letting $\varepsilon \to 0$ shows continuity.

The convolution on M(G) gives rise to a convolution on $L^1(G)$, where

$$(f * g)(x) = \int f(y)g(y^{-1}x)dy$$

which satisfies $||f * g||_1 \le ||f||_1 ||g||_1$. This is induced by the identification of f with f(x)dx, because then

$$\int \phi(f(x)dx * g(x)dx) = \int \int \phi(yx)f(y)g(x)dydx$$
$$= \int \phi(y)\left(\int f(y)g(y^{-1}x)dx\right)dy$$

Hence $f d\mu * g d\mu = (f * g) d\mu$. What's more,

$$||f||_1 = ||fd\mu||$$

If $\nu \in M(G)$, then we can still define $\nu * f \in L^1(G)$

$$(\nu * f)(x) = \int f(y^{-1}x)d\mu(y)$$

which holds since

$$\int \phi d(v * f \mu) = \int \phi(yx) f(x) dv(y) d\mu(x) = \int \phi(x) f(y^{-1}x) dv(y) d\mu(x)$$

If *G* is unimodular, then we also find

$$\int \phi d(f \mu * \nu) = \int \phi(yx) f(y) d\mu(y) d\nu(x) = \int \phi(x) f(y) d\mu(y) d\nu(y^{-1}x)$$

So we let $f * \mu(x) = \int f(y) d\mu(y^{-1}x)$.

Theorem 7.6. $L^1(G)$ and $M_c(G)$ are closed ideals in M(G), and $M_d(G)$ is a closed subalgebra.

Proof. If $\mu_i \to \mu$, and each μ_i is discrete, the μ is discrete, because there is a countable set K such that all μ_i are equal to zero outside of K, so μ must also vanish outside of K (here we have used the fact that M(G) is a Banach space, so that we need only consider sequences). Thus $M_d(G)$ is closed,

and is easily verified to be subalgebra, essentially because $\delta_x * \delta_y = \delta_{xy}$. If $\mu_i \to \mu$, then $\mu_i(\{x\}) \to \mu(\{x\})$, so that $M_c(G)$ is closed in M(G). If ν is an arbitrary measure, and μ is continuous, then

$$(\mu * \nu)(\{x\}) = \int_G \mu(\{y\}) d\nu(y^{-1}x) = 0$$

$$(\nu * \mu)(\{x\}) = \int_{G} \mu(\{y\}) d\nu(xy^{-1}) = 0$$

so $M_c(G)$ is an ideal. Finally, we verify $L^1(G)$ is closed, because it is complete, and if $v \in M(G)$ is arbitrary, and if U has null Haar measure, then

$$(f dx * v)(U) = \int \chi_U(xy) f(x) dx \, dv(y) = \int_G \int_{v^{-1}U} f(x) dx dv(y) = 0$$

$$(v * f dx)(U) = \int \chi_U(xy) dv(x) f(y) dy = \int_G \int_{Ux^{-1}} f(y) dy dv(x) = 0$$

So $L^1(G)$ is a two-sided ideal.

If we wish to integrate by right multiplication instead of left multiplication, we find by the substitution $y \mapsto xy$ that

$$(f * g)(x) = \int f(y)g(y^{-1}x)dy$$
$$= \int \int f(xy)g(y^{-1})dy$$
$$= \int \int \frac{f(xy^{-1})g(y)}{\Delta(y)}dy$$

Observe that

$$f * g = \int f(y) L_{y^{-1}} g \ dy$$

which can be interpreted as a vector valued integral, since for $\phi \in L^{\infty}(\mu)$,

$$\int (f * g)(x)\phi(x)dx = \int f(y)g(y^{-1}x)\phi(x)dxdy$$

so we can see convolution as a generalized 'averaging' of translate of g with respect to the values of f. If G is commutative, this is the same as

the averaging of translates of f, but not in the noncommutative case. It then easily follows from operator computations $L_z(f*g)=(L_zf)*g$, and $R_z(f*g)=f*(R_zg)$, or from the fact that

$$(f * g)(zx) = \int f(y)g(y^{-1}zx)dy = \int f(zy)g(y^{-1}x)dy = [(L_z f) * g](x)$$
$$(f * g)(xz) = \int f(y)g(y^{-1}xz)dy = [f * (R_z g)](x)$$

Convolution can also be applied to the other L^p spaces, but we have to be a bit more careful with our integration.

Theorem 7.7. If $f \in L^1(G)$ and $g \in L^p(G)$, then f * g is defined for almost all x, $f * g \in L^p(G)$, and $||f * g||_p \le ||f|| ||g||_p$. If G is unimodular, then the same results hold for g * f, or if G is not unimodular and f has compact support.

Proof. We use Minkowski's inequality to find

$$||f * g||_{p} = \left(\int \left| \int f(y) |g(y^{-1}x) dy \right|^{p} dx \right)^{1/p}$$

$$\leq \int |f(y)| \left(\int |g(y^{-1}x)|^{p} dx \right)^{1/p} dy$$

$$= ||f||_{1} ||g||_{p}$$

If *G* is unimodular, then

$$\|g * f\|_p = \left(\int \left| \int g(xy^{-1})f(y)dy \right|^p dx \right)^{1/p}$$

and we may apply the same trick as used before.

If *f* has compact support *K*, then $1/\Delta$ is bounded above by M > 0 on *K* and

$$\begin{split} \|g * f\|_p &= \left(\int \left| \int \frac{g(xy^{-1})f(y)}{\Delta(y)} dy \right|^p dx \right)^{1/p} \\ &\leq \int \left(\int \left| \frac{g(xy^{-1})f(y)}{\Delta(y)} \right|^p dx \right)^{1/p} dy \\ &= \|g\|_p \int_K \frac{|f(y)|}{\Delta(y)} d\mu(y) \\ &\leq M \|g\|_p \|f\|_1 \end{split}$$

which shows that g * f is defined almost everywhere.

Theorem 7.8. If G is unimodular, $f \in L^p(G)$, $g \in L^q(G)$, and $p = q^*$, then $f * g \in C_0(G)$ and $||f * g||_{\infty} \le ||f||_p ||g||_q$.

Proof. First, note that

$$|(f * g)(x)| \le \int |f(y)||g(y^{-1}x)|dy$$

$$\le ||f||_p \left(\int |g(y^{-1}x)|^q dy\right)^{1/q}$$

$$= ||f||_p ||g||_q$$

For each x and y, applying Hölder's inequality, we find

$$\begin{aligned} |(f*g)(x) - (f*g)(y)| &\leq \int |f(z)||g(z^{-1}x) - g(z^{-1}y)|dz \\ &\leq \|f\|_p \left(\int |g(z^{-1}x) - g(z^{-1}y)|^q dz\right)^{1/q} \\ &= \|f\|_p \left(\int |g(z) - g(zx^{-1}y)|^q dz\right)^{1/q} \\ &= \|f\|_p \|g - R_{x^{-1}y}g\|_q \end{aligned}$$

Thus to prove continuity (and in fact uniform continuity), we need only prove that $\|g - R_x g\|_q \to 0$ for $q \neq \infty$ as $x \to \infty$ or $x \to 0$. This is the content of the next lemma.

We now show that the map $x \mapsto L_x$ is a continuous operation from G to the weak * topology on the L_p spaces, for $p \neq \infty$. It is easily verified that translation is not continuous on L_{∞} , by taking a suitable bumpy function.

Theorem 7.9. If
$$p \neq \infty$$
, then $\|g - R_x g\|_p \to 0$ and $\|g - L_x g\|_p \to 0$ as $x \to 0$.

Proof. If $g \in C_c(G)$, then one verifies the theorem by using left and right uniform continuity. In general, we let $g_i \in C_c(G)$ be a sequence of functions converging to g in the L_p norm, and we then find

$$\|g - L_x g\|_p \le \|g - g_i\|_p + \|g_i - L_x g_i\|_p + \|L_x (g_i - g)\|_p = 2\|g - g_i\|_p + \|g_i - L_x g_i\|_p$$

Taking *i* large enough, *x* small enough, we find $||g - L_x g||_p \to 0$. The only problem for right translation is the appearance of the modular function

$$||R_x(g-g_i)||_p = \frac{||g-g_i||_p}{\Delta(x)^{1/p}}$$

If we assume our x values range only over a compact neighbourhood K of the origin, we find that $\Delta(x)$ is bounded below, and hence $||R_x(g-g_i)||_p \to 0$, which effectively removes the problems in the proof.

Since the map is linear, we have verified that the map $x \mapsto L_x f$ is uniformly continuous in L^p for each $f \in L^p$. In the case where $p = \infty$, the same theorem cannot hold, but we have even better conditions that do not even require unimodularity.

Theorem 7.10. If $f \in L^1(G)$ and $g \in L^{\infty}(G)$, then f * g is left uniformly continuous, and g * f is right uniformly continuous.

Proof. We have

$$||L_z(f * g) - (f * g)||_{\infty} = ||(L_z f - f) * g||_{\infty} \le ||L_z f - f||_1 ||g||_{\infty}$$
$$||R_z(g * f) - (g * f)||_{\infty} = ||g * (R_z f - f)||_{\infty} \le ||g||_{\infty} ||R_z f - f||_1$$

and both integrals converge to zero as $z \rightarrow 1$.

The passage from M(G) to $L^1(G)$ removes an identity from the Banach algebra in question (except if G is discrete), but there is always a way to approximate an identity.

Theorem 7.11. For each neighbourhood U of the origin, pick a function $f_U \in (L^1)^+(G)$, with $\int \phi_U = 1$, supp $(f_U) \subset U$. Then if g is any function in $L^p(G)$,

$$\|f_U*g-g\|_p\to 0$$

where we assume g is left uniformly continuous if $p = \infty$, and if f_U is viewed as a net with neighbourhoods ordered by inclusion. If in addition $f_U(x) = f_U(x^{-1})$, then $\|g * f_U - g\|_p \to 0$, where g is right uniformly continuous for $p = \infty$.

Proof. Let us first prove the theorem for $p \neq \infty$. If $g \in C_c(G)$ is supported on a compact K, and if U is small enough that $|g(y^{-1}x) - g(x)| < \varepsilon$ for $y \in U$, then because $\int_U f_U(y) = 1$, and by applying Minkowski's inequality, we find

$$||f_{U} * g - g||_{p} = \left(\int \left| \int f_{U}(y) [g(y^{-1}x) - g(x)] dy \right|^{p} dx \right)^{1/p}$$

$$\leq \int f_{U}(y) \left(\int |g(y^{-1}x) - g(x)|^{p} dx \right)^{1/p} dy$$

$$\leq 2\mu(K)\varepsilon \int f_{U}(y) dy \leq 2\mu(K)\varepsilon$$

Results are then found for all of L^p by taking limits. If g is left uniformly continuous, then we may find U such that $|g(y^{-1}x)-g(x)|<\varepsilon$ for $y\in U$ then

$$|(f_U * g - g)(x)| = \left| \int f_U(y) [g(y^{-1}x) - g(x)] \right| \leqslant \varepsilon$$

For right convolution, we find that for $g \in C_c(G)$, where $|g(xy) - g(x)| < \varepsilon$ for $y \in U$, then

$$||g * f_{U} - g||_{p} = \left(\int \left| \int g(y) f_{U}(y^{-1}x) - g(x) dy \right|^{p} dx \right)^{1/p}$$

$$= \left(\int \left| \int [g(xy) - g(x)] f_{U}(y) dy \right|^{p} dx \right)^{1/p}$$

$$\leq \int \left(\int |g(xy) - g(x)|^{p} dx \right)^{1/p} f_{U}(y) dy$$

$$\leq \mu(K) \varepsilon \int f_{U}(y) (1 + \Delta(y)) dy$$

$$= \mu(K) \varepsilon + \mu(K) \varepsilon \int f_{U}(y) \Delta(y) dy$$

We may always choose U small enough that $\Delta(y) < \varepsilon$ for $y \in U$, so we obtain a complete estimate $\mu(K)(\varepsilon + \varepsilon^2)$. If g is right uniformly continuous, then choosing U for which $|g(xy) - g(x)| < \varepsilon$, then

$$|(g * f_U - g)(x)| = \left| \int [g(xy) - g(x)] f_U(y) dy \right| \le \varepsilon$$

We will always assume from hereon out that the approximate identities in $L^1(G)$ are of this form.

We have already obtained enough information to characterize the closed ideals of $L^1(G)$.

Theorem 7.12. If V is a closed subspace of $L^1(G)$, then V is a left ideal if and only if it is closed under left translations, and a right ideal if and only if it is closed under right translations.

Proof. If V is a closed left ideal, and f_U is an approximate identity at the origin, then for any g,

$$||(L_z f_U) * g - L_z g||_1 = ||L_z (f_U * g - g)||_1 = ||f_U * g - g|| \to 0$$

so $L_2g \in V$. Conversely, if V is closed under left translations, $g \in L^1(G)$, and $f \in V$, then

$$g * f = \int g(y) L_{y^{-1}} f \, dy$$

which is in the closed linear space of the translates of f. Right translation is verified very similarily.

7.4 The Riesz Thorin Theorem

We finalize our basic discussion by looking at convolutions of functions in $L^p * L^q$. Certainly $L^p * L^1 \subset L^p$, and $L^p * L^q \subset L^\infty$ for $q = p^*$. To prove general results, we require a foundational interpolation result.

Theorem 7.13. For any $0 < \theta < 1$, and $0 < p, q \le \infty$. If we define

$$1/r_{\theta} = (1 - \theta)/p + \theta/q$$

to be the inverse interpolation of the two numbers. Then

$$||f||_{r_{\theta}} \le ||f||_{p}^{1-\theta} ||f||_{q}^{\theta}$$

Proof. We apply Hölder's inequality to find

$$||f||_{r_{\theta}} \leq ||f||_{p/(1-\theta)} ||f||_{q/\theta} = \left(\int |f|^{p/(1-\theta)} \right)^{(1-\theta)/p} \left(\int |f|^{q/\theta} \right)^{\theta/q}$$

so it suffices to prove $\|f\|_{p/(1-\theta)} \le \|f\|_p^{1-\theta}$, $\|f\|_{q/\theta} \le \|f\|_q^{\theta}$.

The map $x \mapsto x^p$ is concave for 0 , so we may apply Jensen's inequality in reverse to conclude

$$\left(\int |f|^{p/(1-\theta)}\right)^{(1-\theta)/p} \leqslant \left(\int |f|^p\right)^{1/p}$$

The Riesz Thorin interpolation theorem then implies $L^p * L^q \subset L^r$, for $p^{-1} + q^{-1} = 1 + r^{-1}$. However, these estimates only guarantee $L^1(G)$ is closed under convolution. If G is compact, then $L_p(G)$ is closed under convolution for all p (TODO). The L_p conjecture says that this is true if and only if G is compact. This was only resolved in 1990.

7.5 Homogenous Spaces and Haar Measures

The natural way for a locally compact topological group G to act on a locally compact Hausdorff space X is via a representation of G in the homeomorphisms of X. We assume the action is transitive on X. The standard example are the action of G on G/H, where H is a closed subspace. These are effectively all examples, because if we fix $x \in X$, then the map $y \mapsto yx$ induces a continuous bijection from G/H to X, where H is the set of all y for which yx = x. If G is a σ compact space, then this map is a homeomorphism.

Theorem 7.14. If a σ compact topological group G has a transitive topological action on X, and $x \in X$, then the continuous bijection from G/G_x to X is a homeomorphism.

Proof. It suffices to show that the map $\phi: G \to X$ is open, and we need only verify this for the neighbourhood basis of compact neighbourhoods V of the origin by properties of the action. G is covered by countably many translates $y_1V,y_2V,...$, and since each $\phi(y_kV)=y_k\phi(V)$ is closed (compactness), we conclude that $y_k\phi(V)$ has non-empty interior for some y_k , and hence $\phi(V)$ has a non-empty interior point $\phi(y_0)$. But then for any $y \in V$, y is in the interior of $\phi(y_0Vy_0^{-1}) \subset \phi(V_0Vy_0^{-1})$, so if we fix a compact U, and find V with $V^3 \subset U$, we have shown $\phi(U)$ is open in X.

We shall say a space X is homogenous if it is homeomorphic to G/H for some group action of G over X. The H depends on our choice of basepoint x, but only up to conjugation, for if if we switch to a new basepoint y, and c maps x to y, then ax = x holds if and only if $cac^{-1}y = y$. The question here is to determine whether we have a G-invariant measure on X. This is certainly not always possible. If we had a measure on \mathbb{R} invariant under the affine maps ax + b, then it would be equal to the Haar measure by uniqueness, but the Haar measure is not invariant under dilation $x \mapsto ax$.

Let G and H have left Haar measures μ and ν respectively, denote the projection of G onto G/H as $\pi: G \to G/H$, and let Δ_G and Δ_H be the respective modular functions. Define a map $P: C_c(G) \to C_c(G/H)$ by

$$(Pf)(Hx) = \int_{H} f(xy)d\nu(y) = \int_{H}$$

this is well defined by the invariance properties of ν . Pf is obviously continuous, and $\operatorname{supp}(Pf) \subset \pi(\operatorname{supp}(f))$. Moreover, if $\phi \in C(G/H)$ we have

$$P((\phi \circ \pi) \cdot f)(Hx) = \phi(xH) \int_{H} f(xy) d\nu(y)$$

so $P((\phi \circ \pi) \cdot f) = \phi P(f)$.

Lemma 7.15. *If* E *is a compact subset of* G/H*, there is a compact* $K \subset G$ *with* $\pi(K) = E$.

Proof. Let V be a compact neighbourhood of the origin, and cover E by finitely many translates of $\pi(V)$. We conclude that $\pi^{-1}(E)$ is covered by finitely many of the translates, and taking the intersections of these translates with $\pi^{-1}(E)$ gives us the desired K.

Lemma 7.16. A compact $F \subset G/H$ gives rise to a function $f \ge 0$ in $C_c(G)$ such that Pf = 1 on E.

Proof. Let E be a compact neighbourhood containing F, and if $\pi(K) = E$, there is a function $g \in C_c(G)$ with g > 0 on K, and $\phi \in C_c(G/H)$ is supported on E and $\phi(x) = 1$ for $x \in F$, let

$$f = \frac{\phi \circ \pi}{Pg \circ \pi}g$$

Hence

$$Pf = \frac{\phi}{Pg}Pg = \phi$$

Lemma 7.17. If $\phi \in C_c(G/H)$, there is $f \in C_c(G)$ with $Pf = \phi$, and $\pi(suppf) = supp(\phi)$, and also $f \ge 0$ if $\phi \ge 0$.

Proof. There exists $g \ge 0$ in $C_c(G/H)$ with Pg = 1 on $supp(\phi)$, and then $f = (\phi \circ \pi)g$ satisfies the properties of the theorem.

We can now provide conditions on the existence of a measure on G/H.

Theorem 7.18. There is a G invariant measure ψ on G/H if and only if $\Delta_G = \Delta_H$ when restricted to H. In this case, the measure is unique up to a common factor, and if the factor is chosen, we have

$$\int_{G} f d\mu = \int_{G/H} Pf d\psi = \int_{G/H} \int_{H} f(xy) d\nu(y) d\psi(xH)$$

Proof. Suppose ψ existed. Then $f \mapsto \int Pf d\psi$ is a non-zero left invariant positive linear functional on G/H, so $\int Pf d\psi = c \int f d\mu$ for some c > 0. Since $P(C_c(G)) = C_c(G/H)$, we find that ψ is determined up to a constant factor. We then compute, for $y \in H$,

$$\begin{split} \Delta_G(y) \int f(x) d\mu(x) &= \int f(xy^{-1}) d\mu(x) \\ &= \int_{G/H} \int_H f(xzy^{-1}) d\nu(z) d\psi(xH) \\ &= \Delta_H(y) \int_{G/H} \int_H f(xz) d\nu(z) d\psi(xH) \\ &= \Delta_H(y) \int f(x) d\mu(x) \end{split}$$

Hence $\Delta_G = \Delta_H$. Conversely, suppose $\Delta_G = \Delta_H$. First, we claim if $f \in C_c(G)$ and Pf = 0, then $\int f d\mu = 0$. Indeed if $P\phi = 1$ on $\pi(\text{supp} f)$ then

$$0 = Pf(xH) = \int_{H} f(xy) d\nu(y) = \Delta_{G}(y^{-1}) \int_{H} f(xy^{-1}) d\nu(y)$$

$$0 = \int_{G} \int_{H} \Delta_{G}(y^{-1})\phi(x)f(xy^{-1})d\nu(y)d\mu(x)$$

$$= \int_{H} \int_{G} \phi(xy)f(x)d\mu(x)d\nu(y)$$

$$= \int_{G} P\phi(xH)f(x)d\mu(x)$$

$$= \int_{G} f(x)d\mu(x)$$

This implies that if Pf = Pg, then $\int_G f = \int_G g$. Thus the map $Pf \mapsto \int_G f$ is a well defined G invariant positive linear functional on $C_c(G/H)$, and we obtain a Radon measure from the Riesz representation theorem.

If H is compact, then Δ_G and Δ_H are both continuous homomorphisms from H to \mathbb{R}^+ , so Δ_G and Δ_H are both trivial, and we conclude a G invariant measure exists on G/H.

7.6 Function Spaces In Harmonic Analysis

There are a couple other function spaces that are interesting in Harmonic analysis. We define AP(G) to be the set of all almost periodic functions, functions $f \in L^{\infty}(G)$ such that $\{L_x f : x \in G\}$ is relatively compact in $L^{\infty}(G)$. If this is true, then $\{R_x f : x \in G\}$ is also relatively compact, a rather deep theorem. If we define WAP(G) to be the space of weakly almost periodic functions (the translates are relatively compact in the weak topology). It is a deep fact that WAP(G) contains $C_0(G)$, but AP(G) can be quite small. The reason these function spaces are almost periodic is that in the real dimensional case, $AP(\mathbf{R})$ is just the closure of the set of all trigonometric polynomials.

Chapter 8

The Character Space

Let G be a locally compact group. A character on G is a *continuous* homomorphism from G to \mathbf{T} . The space of all characters of a group will be denoted $\Gamma(G)$.

Example. Determining the characters of **T** involves much of classical Fourier analysis. Let $f: \mathbf{T} \to \mathbf{T}$ be an arbitrary continuous character. For each $w \in \mathbf{T}$, consider the function g(z) = f(zw) = f(z)f(w). We know the Fourier series acts nicely under translation, telling us that

$$\hat{g}(n) = w^n \hat{f}(n)$$

Conversely, since g(z) = f(z)f(w),

$$\hat{g}(n) = f(w)\hat{f}(n)$$

Thus $(w^n - f(w))\hat{f}(n) = 0$ for all $w \in \mathbf{T}$, $n \in \mathbf{Z}$. Fixing n, we either have $f(w) = w^n$ for all w, or $\hat{f}(n) = 0$. This implies that if $f \neq 0$, then f is just a power map for some $n \in \mathbf{Z}$.

Example. The characters of **R** are of the form $t \mapsto e^{ti\xi}$, for $\xi \in \mathbf{R}$. To see this, let $e : \mathbf{R} \to \mathbf{T}$ be an arbitrary character. Define

$$F(x) = \int_0^x e(t)dt$$

Then F'(x) = e(x). Since e(0) = 1, for suitably small δ we have

$$F(\delta) = \int_0^{\delta} e(t)dt = c > 0$$

and then it follows that

$$F(x+\delta) - F(x) = \int_{x}^{x+\delta} e(t)dt = \int_{0}^{\delta} e(x+t)dt = ce(x)$$

As a function of x, F is differentiable, and by the fundamental theorem of calculus,

$$\frac{dF(x+\delta) - F(x)}{dt} = F'(x+\delta) - F'(x) = e(x+\delta) - e(x)$$

This implies the right side of the above equation is differentiable, and so

$$ce'(x) = e(x+\delta) - e(x) = e(x)[e(\delta) - 1]$$

Implying e'(x) = Ae(x) for some $A \in \mathbb{C}$, so $e(x) = e^{Ax}$. We require that $e(x) \in \mathbb{T}$ for all x, so $A = \xi i$ for some $\xi \in \mathbb{R}$.

Example. Consider the group \mathbf{R}^+ of positive real numbers under multiplication. The map $x \mapsto \log x$ is an isomorphism from \mathbf{R}^+ and \mathbf{R} , so that every character on \mathbf{R}^+ is of the form $e^{is\log(x)} = x^{is}$, for some $s \in \mathbf{R}$. The character group is then \mathbf{R} , since $x^{is}x^{is'} = x^{i(s+s')}$.

There is a connection between characters on G and characters on $L^1(G)$ that is invaluable to the generalization of Fourier analysis to arbitrary groups.

Theorem 8.1. For any character $\phi: G \to \mathbb{C}$, the map

$$\varphi(f) = \int \frac{f(x)}{\phi(x)} dx$$

is a non-zero character on the convolution algebra $L^1(G)$, and all characters arise this way.

Proof. The induced map is certainly linear, and

$$\varphi(f * g) = \int \int \frac{f(y)g(y^{-1}x)}{\phi(x)} dy dx$$
$$= \int \int \frac{f(y)g(x)}{\phi(y)\phi(x)} dy dx$$
$$= \int \frac{f(y)}{\phi(y)} dy \int \frac{g(x)}{\phi(x)} dx$$

Since ϕ is continuous, there is a compact subset K of G where $\phi > \varepsilon$ for some $\varepsilon > 0$, and we may then choose a positive f supported on K in such a way that $\varphi(f)$ is non-zero.

The converse results from applying the duality theory of the L^p spaces. Any character on $L^1(G)$ is a linear functional, hence is of the form

$$f \mapsto \int f(x)\phi(x)dx$$

for some $\phi \in L^{\infty}(G)$. Now

$$\iint f(y)g(x)\phi(yx)dydx = \iint f(y)g(y^{-1}x)\phi(x)dydx$$
$$= \iint f(y)g(y)\phi(x)dx \int g(y)\phi(y)dy$$
$$= \iint f(x)g(y)\phi(x)\phi(y)dxdy$$

Since this holds for all functions f and g in $L^1(G)$, we must have $\phi(yx) = \phi(x)\phi(y)$ almost everywhere. Also

$$\int \varphi(f)g(y)\phi(y)dy = \varphi(f*g)$$

$$= \int \int g(y)f(y^{-1}x)\phi(x)dydx$$

$$= \int \int (L_{y^{-1}}f)(x)g(y)\phi(x)dydx$$

$$= \int \varphi(L_{y^{-1}}f)g(y)dy$$

which implies $\varphi(f)\phi(y)=\varphi(L_{y^{-1}}f)$ almost everywhere. Since the map $\varphi(L_{y^{-1}}f)/\varphi(f)$ is a uniformly continuous function of y, ϕ is continuous almost everywhere, and we might as well assume ϕ is continuous. We then conclude $\phi(xy)=\phi(x)\phi(y)$. Since $\|\phi\|_{\infty}=1$ (this is the norm of any character operator on $L^1(G)$), we find ϕ maps into T, for if $\|\phi(x)\|<1$ for any particular x, $\|\phi(x^{-1})\|>1$.

Thus there is a one-to-one correspondence with $\Gamma(G)$ and $\Gamma(L^1(G))$, which implies a connection with the Gelfand theory and the character

theory of locally compact groups. This also gives us a locally compact topological structure on $\Gamma(G)$, induced by the Gelfand representation on $\Gamma(L^1(G))$. A sequence $\phi_i \to \phi$ if and only if

$$\int \frac{f(x)}{\phi_i(x)} dx \to \int \frac{f(x)}{\phi(x)} dx$$

for all functions $f \in L^1(G)$. This actually makes the map

$$(f,\phi) \mapsto \int \frac{f(x)}{\phi(x)} dx$$

a jointly continuous map, because as we verified in the proof above,

$$\widehat{f}(\phi)\phi(y) = \widehat{L_y f}(\phi)$$

And the map $y \mapsto L_y f$ is a continuous map into $L^1(G)$. If $K \subset G$ and $C \subset \Gamma(G)$ are compact, this allows us to find open sets in G and $\Gamma(G)$ of the form

$$\{\gamma : \|1 - \gamma(x)\| < \varepsilon \text{ for all } x \in K\} \quad \{x : \|1 - \gamma(x)\| < \varepsilon \text{ for all } \gamma \in C\}$$

And these sets actually form a base for the topology on $\Gamma(G)$.

Theorem 8.2. If G is discrete, $\Gamma(G)$ is compact, and if G is compact, $\Gamma(G)$ is discrete.

Proof. If G is discrete, then $L^1(G)$ contains an identity, so $\Gamma(G) = \Gamma(L^1(G))$ is compact. Conversely, if G is compact, then it contains the constant 1 function, and

$$\widehat{1}(\phi) = \int \frac{dx}{\phi(x)}$$

And

$$\frac{1}{\phi(y)}\widehat{1}(\phi) = \int \frac{dx}{\phi(yx)} = \int \frac{dx}{\phi(x)} = \widehat{1}(\phi)$$

So either $\phi(y) = 1$ for all y, and it is then verified by calculation that $\widehat{1}(\phi) = 1$, or $\widehat{1}(\phi) = 0$. Since $\widehat{1}$ is continuous, the trivial character must be an open set by itself, and hence $\Gamma(G)$ is discrete.

Given a function $f \in L^1(G)$, we may take the Gelfand transform, obtaining a function on $C_0(\Gamma(L^1(G)))$. The identification then gives us a function on $C_0(\Gamma(G))$, if we give $\Gamma(G)$ the topology induced by the correspondence (which also makes $\Gamma(G)$ into a topological group). The formula is

 $\hat{f}(\phi) = \phi(f) = \int \frac{f(x)}{\phi(x)}$

This gives us the classical correspondence between $L^1(\mathbf{T})$ and $C_0(\mathbf{Z})$, and $L^1(\mathbf{R})$ and $C_0(\mathbf{R})$, which is just the Fourier transform. Thus we see the Gelfand representation as a natural generalization of the Fourier transform. We shall also denote the Fourier transform by \mathcal{F} , especially when we try and understand it's properties as an operator. Gelfand's theory (and some basic computation) tells us instantly that

- $\widehat{f * g} = \widehat{f}\widehat{g}$ (The transform is a homomorphism).
- \mathcal{F} is norm decreasing and therefore continuous: $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$.
- If *G* is unimodular, and $\gamma \in \Gamma(G)$, then $(f * \gamma)(x) = \gamma(x)\widehat{f}(\gamma)$.

Whenever we integrate a function with respect to the Haar measure, there is a natural generalization of the concept to the space of all measures on G. Thus, for $\mu \in M(G)$, we define

$$\widehat{\mu}(\phi) = \int \frac{dx}{\phi(x)}$$

which we call the **Fourier-Stieltjes transform** on G. It is essentially an extension of the Gelfand representation on $L^1(G)$ to M(G). Each $\hat{\mu}$ is a bounded, uniformly continuous function on $\Gamma(G)$, because the transform is still contracting, i.e.

$$\left| \int \frac{d\mu(x)}{\phi(x)} dx \right| \le \|\mu\|$$

It is uniformly continuous, because

$$(L_{\nu}\widehat{\mu} - \widehat{\mu})(\phi) = \int \frac{1 - \nu(x)}{\nu(x)\phi(x)} d\mu(x)$$

The regularity of μ implies that there is a compact set K such that $|\mu|(K^c) < \varepsilon$. If $\nu_i \to 0$, then eventually we must have $|\nu_i(x) - 1| < \varepsilon$ for all $x \in K$, and then

$$|(L_{\nu}\widehat{\mu} - \widehat{\mu})(\phi)| \leq 2|\mu|(K^{c}) + \varepsilon||\mu|| \leq \varepsilon(2 + ||\mu||)$$

Which implies uniform continuity.

Let us consider why it is natural to generalize operators on $L^1(G)$ to M(G). The first reason is due to the intuition of physicists; most of classical Fourier analysis emerged from physical considerations, and it is in this field that $L^1(G)$ is often confused with M(G). Take, for instance, the determination of the electric charge at a point in space. To determine this experimentally, we take the ratio of the charge over some region in space to the volume of the region, and then we limit the size of the region to zero. This is the historical way to obtain the density of a measure with respect to the Lebesgue measure, so that the function we obtain can be integrated to find the charge over a region. However, it is more natural to avoid taking limits, and to just think of charge as an element of $M(\mathbf{R}^3)$. If we consider a finite number of discrete charges, then we obtain a discrete measure, whose density with respect to the Lebesgue measure does not exist. This doesn't prevent physicists from trying, so they think of the density obtained as shooting off to infinity at points. Essentially, we obtain the Dirac Delta function as a 'generalized function'. This is fine for intuition, but things seem to get less intuitive when we consider the charge on a subsurface of \mathbb{R}^3 , where the 'density' is 'dirac'-esque near the function, where as measure theoretically we just obtain a density with respect to the two-dimensional Hausdorff measure on the surface. Thus, when physicists discuss quantities as functions, they are really thinking of measures, and trying to take densities, where really they may not exist.

There is a more austere explanation, which results from the fact that, with respect to integration, $L^1(G)$ is essentially equivalent to M(G). Notice that if $\mu_i \to \mu$ in the weak-* topology, then $\hat{\mu}_i \to \hat{\mu}$ pointwise, because

$$\int \frac{d\mu_i(x)}{\phi(x)} \to \int \frac{d\mu(x)}{\phi(x)}$$

(This makes sense, because weak-* convergence is essentially pointwise convergence in M(G)). Thus the Fourier-Stietjes transform is continuous with respect to these topologies. It is the unique continuous extension of the Fourier transform, because

Theorem 8.3. $L^1(G)$ is weak-* dense in M(G).

Proof. First, note that the Dirac delta function can be weak-* approximated by elements of $L^1(G)$, since we have an approximate identity in the space.

First, note that if $\mu_i \to \mu$, then $\mu_i * \nu \to \mu * \nu$, because

$$\int f d(\mu_i * \nu) = \int \int f(xy) d\mu_i(x) d\nu(y)$$

The functions $y \mapsto \int f(xy) d\mu_i(x)$ converge pointwise to $\int f(xy) d\mu(y)$. Since

$$\left| \int f(xy) d\mu_i(x) \right| \le \|f\|_1 \|\mu_i\|$$

If i is taken large enough that

If $\phi_{\alpha} \to \phi$, in the sense that $\phi_{\alpha}(x) \to \phi(x)$ for all $x \in G$, then, because $\|\phi_{\alpha}(x)\| = 1$ for all x, we can apply the dominated convergence theorem on any compact subset K of G to conclude

$$\int_{K} \frac{d\mu(x)}{\phi_{\alpha}(x)} \to \int_{K} \frac{d\mu(x)}{\phi(x)}$$

It is immediately verified to be a map into $L^1(\Gamma(G))$, because

$$\int \left| \int \frac{d\mu(x)}{\phi(x)} \right| d\phi \leqslant \int \int \|\mu\|$$

The formula above immediately suggests a generalization to a transform on M(G). For $v \in M(G)$, we define

$$\mathcal{F}(\nu)(\phi) = \int \frac{d\nu}{\phi}$$

If $\mathcal{G}: L^1(G) \to C_0(\Gamma(G))$ is the Gelfand transform, then the transform induces a map $\mathcal{G}^*: M(\Gamma(G)) \to L^{\infty}(G)$.

The duality in classical Fourier analysis is shown through the inversion formulas. That is, we have inversion functions

$$\mathcal{F}^{-1}(\{a_k\}) = \sum a_k e^{kit}$$
 $\mathcal{F}^{-1}(f)(x) = \int f(t)e^{2\pi ixt}$

which reverses the fourier transform on **T** and **R** respectively, on a certain subclass of L^1 . One of the challenges of Harmonic analysis is trying to find where this holds for the general class of measurable functions.

The first problem is to determine surjectivity. We denote by A(G) the space of all continuous functions which can be represented as the fourier transform of some function in $L^1(G)$. It is to even determine $A(\mathbf{T})$, the most basic example. A(G) always separates the points of $\Gamma(G)$, by Gelfand theory, and if G is unimdoular, then it is closed under conjugation. If we let $g(x) = \overline{f(x^{-1})}$, we find

$$\mathcal{F}(g)(\phi) = \int \frac{g(x)}{\phi(x)} dx = \overline{\int \frac{f(x^{-1})}{\phi(x^{-1})} dx} = \int \frac{f(x)}{\phi(x)} dx = \overline{\mathcal{F}(f)(\phi)}$$

so that by the Stone Weirstrass theorem A(G) is dense in $C_0(\Gamma(L^1(G)))$.

Chapter 9

Banach Algebra Techniques

In the mid 20th century, it was realized that much of the analytic information about a topological group can be captured in various C^* algebras related to the group. For instance, consider the Gelfand space of $L^1(\mathbf{Z})$ is \mathbf{T} , which represents the fact that one can represent functions over \mathbf{T} as sequences of numbers. Similarily, we find the characters of $L^1(\mathbf{R})$ are the maps $f \mapsto \widehat{f}(x)$, so that the Gelfand space of \mathbf{R} is \mathbf{R} , and the Gelfand transform is the Fourier transform on this space. For a general G, we may hope to find a generalized Fourier transform by understanding the Gelfand transform on $L^1(G)$. We can also generalize results by extending our understanding to the class M(G) of regular, Borel measures on G.

Chapter 10

Vector Spaces

If **K** is a closed, multiplicative subgroup of the complex numbers, then **K** is also a locally compact abelian group, and we can therefore understand **K** by looking at its dual group **K***. The map $\langle x,y\rangle=xy$ is bilinear, in the set that it is a homomorphism in the variable y for each fixed x, and a homomorphism in the variable x for each y.

If **K** is a subfield of the complex numbers, then **K** is also an abelian group under addition, and we can consider the dual group **K***. The inner product $\langle x,y\rangle=xy$ gives a continuous bilinear map $\mathbf{K}\times\mathbf{K}\to\mathbf{C}$, and therefore we can define $x^*\in\mathbf{K}^*$ by $x^*(y)=\langle x,y\rangle$. If $x^*(y)=xy=0$ for all y, then in particular $x^*(1)=x$, so x=0. This means that the homomorphism $\mathbf{K}\to\mathbf{K}^*$ is injective.