International Trade: Assignment 1

Carlos Lezama, Marco Hinojosa, Luis Jiménez and Antonio Carbonell October 27, 2021

Patterns of trade¹

¹ Data obtained from DataBank and WITS.

(a)

i. and ii.

- Merchandise trade to GDP ratio average before NAFTA: 0.1822774
- Merchandise trade to GDP ratio average after NAFTA: 0.4822469
- Merchandise exports to GDP ratio average before NAFTA: 0.0862539
- Merchandise exports to GDP ratio average after NAFTA: 0.2341628
- Merchandise imports to GDP ratio average before NAFTA: 0.0960235
- Merchandise imports to GDP ratio average after NAFTA: 0.2480841

In all cases, the merchandise to GDP ratio increased such that trade activity increased for merchandise exports, imports and trade.

Furthermore, note that during the period from 1994 to 2011, the average increased more than 100% for all merchandise trade. This means that the importance of trade increased significantly when comparing both periods.

- Services trade to GDP ratio average before NAFTA: 0.0488722
- Services trade to GDP ratio average after NAFTA: 0.0358815
- Services exports to GDP ratio average before NAFTA: 0.0274048
- Services exports to GDP ratio average after NAFTA: 0.0183926
- Services imports to GDP ratio average before NAFTA: 0.0214674
- Services imports to GDP ratio average after NAFTA: 0.0174889

All exports, imports and trade in services relative to GDP ratios decreased after NAFTA, which means that services have a lesser impact on GDP. We cannot say that trade in services had decreased, but it is certain that it did not grow at the same pace as merchandise trade.

(b)

i.

Table 1: Top 10 exported commodities in 1993

Trade value in \$1000USD	Product
6485314	Petrol./bitum. oil,crude
4242559	Passenger cars etc
2779688	Electrical distrib equip
2013789	Motor veh parts/access
2008824	Electrical equipment nes
1774014	Television receivers
1719531	Telecomms equipment nes
1653492	Internal combust engines
1465697	Electric circuit equipmt
1226761	Vegetables,frsh/chld/frz

Table 2: Top 10 exported commodities in 2007

Product	
Petrol./bitum. oil,crude	
Television receivers	
Passenger cars etc	
Telecomms equipment nes	
Motor veh parts/access	
Goods/service vehicles	
Computer equipment	
Electrical distrib equip	
Electrical equipment nes	
Electric circuit equipmt	

Each of the products included in the list increased its commercial value. Oil remained number one, even after NAFTA. The 2007 list shows a preference for auto parts and electrical products, while the 1993 list includes vegetables in 10th place.

Table 3: Top 10 imported commodities in 1993

Trade value in \$1000USD	Product	
2249819	Valves/transistors/etc	
1976657	Electric circuit equipmt	
1931746	Electrical equipment nes	
1881474	Telecomms equipment nes	
1837823	Articles nes of plastics	
1806154	Base metal manufac nes	
1745784	Electrical distrib equip	
1084777	Computer equipment	
1061950	Heavy petrol/bitum oils	
970129	Special indust machn nes	

Table 4: Top 10 imported commodities in 2007

Trade value in \$1000USD	Product	
15373515	Telecomms equipment nes	
13886076	Heavy petrol/bitum oils	
12302190	Motor veh parts/access	
10141118	Electric circuit equipmt	
9436330	Passenger cars etc	
6569592	Valves/transistors/etc	
6098386	Computer equipment	
6096571	Optical instruments nes	
5989200	Articles nes of plastics	
5944279	Base metal manufac nes	

Like exports, the trade value of the top 10 imported commodities increased after NAFTA. The first place changed from valves to telecommunications equipment, but the composition remained substantially the same.

Clearly, preferences did not change, but the composition of exports did after economic openness or a greater focus on US and Canadian consumer preferences.

iii. Table 5: Top 10 commodities that experienced greatest growth in exports

Product	Trade value in 1993	Trade value in 2007	Percentage change
Cheese and curd	67	14125.680	209.83104
Road motor vehicles nes	9942	1186586.096	118.35084
Tea and mate	169	19373.554	113.63641
Iron ore/concentrates	708	79841.827	111.77094
Flour/meal wheat/meslin	381	32065.129	83.16044
Pearls/precious stones	997	80428.061	79.67007
Rice	61	4910.652	79.50249
Butter and cheese	55	3457.157	61.85740
Prefabricated buildings	1431	84074.669	57.75239
Meat/offal presvd n.e.s	1529	70281.044	44.96537

Table 6: Top 10 commodities that experienced greatest growth in imports

Product	Trade value in 1993	Trade value in 2007	Percentage change
Precious metal ore/conc.	1	215157.058	215156.05800
Optical instruments nes	19685	6096571.468	308.70645
Iron ore/concentrates	697	214721.729	307.06561
Tobacco, manufactured	799	69334.933	85.77714
Coal non-agglomerated	4925	403015.007	80.83046
Silk	1	72.245	71.24500
Coin nongold non current	416	16992.294	39.84686
Natural gas	90370	2749684.017	29.42696
Nf base metal waste nes	23304	664650.037	27.52086
Knit/crochet fabrics	42507	1000009.364	22.52576

There is almost no linear relation between data obtained from 1993 and their percentage change to 2007 as shown with Pearson's r correlations. On the other hand, we can observe weakly negative monotonic and concordant relations with Spearman's ρ and Kendall's τ coefficients.

_	
7	
/	

	Pearson's r	Spearman's ρ	Kendall's $ au$
Exports	-0.0847531	-0.176944	-0.127743
Imports	-0.0403417	-0.1013539	-0.068744

² Data obtained from the OECD

We computed the imports model prediction by the least squares method. Given

$$x_{t,m}^{\text{obs}} - y_t = \alpha_m + \sigma(p_t - p_{t,m}),$$

we can estimate

$$\begin{pmatrix} \hat{\alpha}_m \\ \hat{\sigma} \end{pmatrix} = \left(X^T X \right)^{-1} X^T Y$$

where $X = [\mathbf{1}, p - p_m]_{t \times 2}$ and $Y = [x_m^{\text{obs}} - y]_{t \times 1}$.

Thus, with our predictions $x_{t,m}^{\text{pred}} = X \cdot (\hat{\alpha}_m, \hat{\sigma})^T + y_t$, import wedges were defined as follows:

$$\tau_t = x_{t,m}^{\text{obs}} - x_{t,m}^{\text{pred}}.$$

Plus, we used the following variables:

$\log(\cdot)$	Data
р	GDP deflator
у	Volume of GDP
p_m	Imports deflator
x_m	Volume of imports

Remember that both the data and the estimate of α_m , $\hat{\alpha}_m$, are scaled logarithmically. Furthermore, the volumes of GDP and imports were measured at constant prices.

Mexican and Argentinian economies show a similar behavior around the financial crisis of 2008, since both present import wedges below the expected trend. On the other hand, it is interesting to analyze how Mexico's wedge in 1995 is below the trend while Argentina's wedge in 2018 is above its own. These two economies reacted differently towards their devaluations. It is also important to mention that the fall of the 1995 import wedge of Mexico is a fall from an increasing trend, while Argentina increases in its wedge, it is a higher import wedge from a decreasing trend.

See the theoretical part on the next page.

ici) We know	that in equilibrium	Ferms make	e profits
than for			
Px; Zx; Lix	lix - wilix	- V; K;x = 0	
-> Px; = w; L	ix + ri Kix		
	Kix lix-a		
	ix + v: K: x) li		
wi lix	+ ri k:x li		
W: lix a	r: (2 w:) li		
wilix (1 = \(\mathreal{\alpha} \)		
ω_i	lix		
also we know	tunt		
Ki= Zai	Lin Lin Lin		
x; = 2x:(K	Lin Lix		
1: = 2x: (d wi) x lix		
$\theta_{x:} = \frac{w_i \mathcal{L}_{i \times}}{1 - \alpha}$ $\frac{2x_i \left(\frac{\alpha}{1 - \alpha}\right)}{2x_i \left(\frac{\alpha}{1 - \alpha}\right)}$	_		
$P_{Xi} = W: Lix$	(a vi) dix		
$P_{X_i} = W_i$ $(1-\alpha)^2$	- 4 \α		
(1-x) Z	ri (Fa vi)		
Similarly			
	2		
γy: = (1-β) ;	Zyi (B wi)?		

References

DataBank. World development indicators. URL https: //databank.worldbank.org/reports.aspx?source= world-development-indicators.

OECD. Organisation for economic co-operation and development statistics. URL https://stats.oecd.org/.

WITS. World integrated trade solution. URL https://wits.worldbank.org/WITS/.