Group 11 Final Presentation

Tom Tribe, Ken MacIver, Jundi Yang, Mei Huang

2022-10-05

Group 11: Diamonds Dataset

Group Members (photos)

Group Members (name, email, ORCID)

Tom Tribe

- tom.tribe2016@gmail.com
- **>** 0000-0002-5002-8066

Ken Maclver

- ▶ ken.maciver68@gmail.com
- 0000-0001-8999-4598

Jundi Yang

- ▶ ivyli112358@gmail.com
- 0000-0003-0888-9564

Mei Huang

- huangmei139@gmail.com
- 0000-0003-2401-0679

The Diamonds dataset

- ➤ This large dataset has 53940 rows (diamonds) of ten variables (approx 540,000 values)
- Slow to process!
- Nine of the variables are various measures of diamond size and quality, while the tenth is the price
- We selected diamonds because it was simple to understand what each variable was measuring, and to have the opportunity to work with a large dataset
- Particularly interested in which variables are most predictive of diamond price

The Variables

red font = categorical variable

- carat: the diamond's weight
- cut: a measure of quality (4 levels)
- color: a measure of colour quality (7 levels)
- clarity: a measure of clearness (6 levels)
- x: length in mm
- y: width in mm
- z: depth in mm
- depth: total depth percentage
- table: width of top of diamond relative to widest point
- price: the price of the diamond in US dollars

(List adapted from list at kaggle.com).

Summary of Numeric Variables

	carat	depth	table	price	X	у	z
sample size	53940	53940	53940	53940	53940	53940	53940
minimum	0.20	43.00	43.00	326.00	0.00	0.00	0.00
first	0.40	61.00	56.00	950.00	4.71	4.72	2.91
quartile							
median	0.70	61.80	57.00	2401.00	5.70	5.71	3.53
mean	0.80	61.75	57.46	3932.80	5.73	5.73	3.54
third	1.04	62.50	59.00	5324.25	6.54	6.54	4.04
quartile							
maximum	5.01	79.00	95.00	18823.0	0.74	58.90	31.80
IQR	0.64	1.50	3.00	4374.25	5 1.83	1.82	1.13
standard	0.47	1.43	2.23	3989.44	1.12	1.14	0.71
deviation							
skewness	1.12	-0.08	0.80	1.62	0.38	2.43	1.52
kurtosis	4.26	8.74	5.80	5.18	2.38	94.21	50.08

Cateogrical Summary

Cut

Fair

Good

	Cou	ınt	1610	496	0	120	82	2155	51	13791	
_	Color	-	D	Е	F	=	G	H	<u> </u>	l J	
	Count	67	775 9	797	9542	2 112	92	8304	542	2 2808	_
Cla	arity	l1	IF	,	SI1	SI2	V	S1	VS2	VVS1	VVS2
Сс	unt	741	1790	13	3065	9194	81	71	12258	3655	5066

Very Good

Ideal

Premium

Pairs Plot

Figure 1: Pairs plot

Normal QQ Plots

Correlation Plot

Price by Cateogrical

Figure 4: Price by Categorical

Leading Question 1

- ► How can we best predict diamond price?
- ► We intend to use the following techniques to investigate this question:
- Stepwise Regression, Principal Components Analysis, Principal Components Regression and an Exploratory Factor Analysis

Multiple Regression

- Starting with the full model we used a stepwise regression procedure to find the best model for predicting diamond price.
- According to AIC the best model was:
- price ~ carat + cut + color + clarity + depth + table + x
- ► All variables excluding y and z are significant in the model
- ▶ The 'best' model had an Adjusted R² of 91.98%

Regression Assumptions

Figure 5: Regression Diagnostics

Principal Components Analysis: Screeplot

Figure 6: PCA Screeplot

Principal Components Analysis: Values v1

Can decide which of these two to keep

```
## PC1 PC2
## carat 0.45032907 -0.049484287
## depth -0.03619535 -0.722832026
## table 0.10580678 0.678011337
## price 0.42566082 -0.052989386
## x 0.45214098 -0.003202394
## y 0.45214716 -0.004959419
## z 0.44118352 -0.111906516
```

Principal Components Analysis: Values v2

Can decide which of these two to keep

Table 2: Principal Components 1 and 2

	PC1	PC2
carat	0.4503	-0.04948
depth	-0.0362	-0.7228
table	0.1058	0.678
price	0.4257	-0.05299
x	0.4521	-0.003202
y	0.4521	-0.004959
Z	0.4412	-0.1119

Biplot

Figure 7: PCA Biplot

Principal Components Regression

- We conducted a Principal Components Regression with diamond price as the response variable
- ► We found that all six principal components were significant in the model for predicting price
- ► However when we only used the first two principal components we were still able to explain over 80% of the variation in price

Factor Analysis

- We hypothesized that the variation in the data might be able to be explained by two factors
- ► These were: "Dimension x Price" and "Light Conductance"
- We tested this hypothesis with a Factor Analysis