UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE CIENCIAS PURAS Y NATURALES

Guía de Ejercicios Cálculo II

ELABORADO POR: DAISY ARROYO FERNANDEZ

Paralelo A: M.Sc. Roberto Huaranca Ampa Paralelo B: Dra. Daisy Arroyo Fernandez Paralelo C: M.Sc. Eugenio Castaños Calle Paralelo D: Lic. Ramiro Choque Canaza

EVALUACIÓN	Ponderación	FECHA
Examen Primer Parcial (Cap. 1,2 y 3)	30	Sábado 29/03/2025
Examen Segundo Parcial (Cap. 4)	30	Sábado 17/05/2025
Examen Final (Cap. 5)	30	Sábado 21/06/2025
Prácticas	10	
Examen Segundo Turno (Todos los Capítulos)	100	Miércoles 25/06/2025
Nota mínima 35/100		

GESTIÓN I - 2025

4. FUNCIONES VECTORIALES DE VARIABLE VECTORIAL

Funciones de \mathbb{R}^n en \mathbb{R}^m

- 1. Sea $g(x) = \cos(x + 2y)$.
 - a) Evalúe g(2,-1).
 - b) Encuentre el dominio de g.
 - c) Determine el rango de g.
- 2. Sea $F(x, y) = 1 + \sqrt{4 y^2}$.
 - a) Evalúe F(3, 1).
 - b) Determine y trace el dominio de F.
 - c) Determine el rango de F.
- 3. Determine y grafique el dominio de la función
 - a) $f(x,y) = \sqrt{2x y}$
 - b) $f(x,y) = \ln(9 x^2 9y^2)$
 - c) $f(x,y) = \sqrt{1-x^2} \sqrt{1-y^2}$
 - d) $f(x,y) = \frac{\sqrt{y-x^2}}{1-x^2}$
 - e) $f(x,y,z) = \sqrt{1-x^2-y^2-z^2}$
- 4. Trace la gráfica de la función.
 - a) f(x, y) = 1 + y
 - b) f(x,y) = 10 4x 5y
 - c) $f(x,y) = y^2 + 1$
 - d) $f(x,y) = 9 x^2 9y^2$
 - e) $f(x,y) = \sqrt{4 4x^2 y^2}$
- 5. Haga corresponder la función con su gráfica (marcadas de I a VI). Dé razones por su elección.
 - a) f(x,y) = |x| + |y|
 - b) f(x,y) = |xy|
 - c) $f(x,y) = \frac{1}{1+x^2+y^2}$
 - d) $f(x,y) = (x^2 y^2)^2$
 - e) $f(x,y) = (x y)^2$
 - f) $f(x,y) = \sin(|x| + |y|)$

- 6. Dibuje un mapa de contorno de la función mostrando varias curvas de nivel.
 - a) $f(x, y) = x^3 y$
 - b) $f(x,y) = \ln(x^2 + 4y^2)$
 - c) $f(x,y) = y \sec x$
 - d) $f(x,y) = \frac{y}{x^2 + y^2}$
- 7. Describa las superficies de nivel de la función.
 - a) f(x, y, z) = x + 3y + 5z
 - b) $f(x,y,z) = y^2 + z^2$
- 8. Grafique las funciones:
 - a) $f(x,y) = \sqrt{x^2 + y^2}$

 - b) $f(x,y) = \ln \sqrt{x^2 + y^2}$ c) $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$

Límites y Continuidad

- 9. Explique por qué cada una de las funciones es continua o discontinua.
 - a) La temperatura en el exterior como función de la longitud, latitud y tiempo.
 - b) Elevación (altura sobre el nivel del mar) en función de la longitud, latitud y tiempo.
 - c) El costo de un viaje en taxi en función de la distancia re corrida y el tiempo.
- 10. Determine el límite, si existe, o demuestre que no existe.

a)
$$\lim_{(x,y)\to(1,2)} (5x^3 - x^2y^2)$$

b)
$$\lim_{(x,y)\to(2,1)} \frac{4-xy}{x^2+3y^2}$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{x^4-4y^4}{x^2+2y^2}$$

d)
$$\lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2 x}{x^4 + y^4}$$

e)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

f)
$$\lim_{(x,y)\to(0,0)} \frac{x^2ye^y}{x^4+4y^2}$$

g)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$$

h)
$$\lim_{(x,y,z)\to(\pi,0,1/3)} e^{y^2} \tan(xz)$$

i)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz^2+xz^2}{x^2+y^2+z^4}$$

- 11. Encuentre h(x, y) = g(f(x, y)) y el conjunto en el cual h es continua.
 - a) $g(t) = t^2 + \sqrt{t}, f(x, y) = 2x + 3y 6$
 - b) $g(t) = t + \ln t$, $f(x, y) = \frac{1 xy}{1 + x^2y^2}$
- 12. Determine el conjunto de puntos en los cuales la función es continua.
 - a) $F(x,y) = \cos\sqrt{1 + x y}$
 - b) $H(x,y) = \frac{e^x + e^y}{e^{xy} 1}$
 - c) $G(x,y) = \tan^{-1}((x+y)^{-2})$

 - d) $f(x,y) = \tan \frac{x}{x}$ e) $f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2}, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$
- 13. Mediante coordenadas polares determine el límite. [Si (r, θ) son las coordenadas polares del punto (x, y)con $r \ge 0$, observe que $r \to 0^+$ cuando $(x, y) \to (0, 0)$.]
 - $\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2}$

b)
$$\lim_{(x,y)\to(0,0)} \frac{e^{-x^2-y^2}-1}{x^2+y^2}$$

Derivadas Parciales

- 14. Si $f(x,y) = 16 4x^2 y^2$, determine $f_x(1,2)$ y $f_y(1,2)$ e interprete estos números como pendientes. Ilustre con gráficas elaboradas a mano o mediante una computadora.
- 15. Si $f(x,y) = \sqrt{4-x^2-4y^2}$, determine $f_x(1,0)$ y $f_y(1,0)$ e interprete estos valores como pendientes. Ilustre con gráficas elaboradas a mano o mediante una computadora.
- 16. Calcule las primeras derivadas parciales de la función.
 - a) $f(x,y) = x^4y^3 + 8x^2y$
 - b) $f(x,t) = \sqrt{x} \ln t$
 - c) $z = \tan xy$
 - d) $f(x,y) = \frac{x}{(x+y)^2}$ e) $w = \frac{e^v}{u+v^2}$

 - f) $u(r,\theta) = \sin(r\cos\theta)$
 - g) $f(x,y) = x^y$
 - h) $F(\alpha, \beta) = \int_{\alpha}^{\beta} \sqrt{t^3 + 1} dt$
 - i) $f(x, y, z) = x \sin(y z)$
 - j) $w = ze^{xyz}$
 - k) $u = x^{y/z}$
 - I) $\phi(x, y, z, t) = \frac{\alpha x + \beta y^2}{vz + \delta t^2}$
 - $m) u = \sin(x_1 + 2x_2 + \dots + nx_n)$
- 17. Determine las derivadas parciales indicadas.
 - a) $f(x,y) = \ln(x + \sqrt{x^2 + y^2}); f_x(3,4)$
 - b) $f(x,y) = \arctan(y/x); f_x(2,3)$
 - c) $f(x,y,z) = \frac{y}{x+y+z}$; $f_y(2,1,-1)$
 - d) $f(x,y,z) = \sqrt{\sin^2 x + \sin^2 y + \sin^2 z}$; $f_z(0,0,\pi/4)$
- 18. Mediante derivación implícita determine $\partial z/\partial x$ y $\partial z/\partial y$.
 - a) $x^2 + 2y^2 + 3z^2 = 1$
 - b) $e^z = xyz$
 - c) $yz + x \ln y = z^2$
- 19. Calcule $\partial z/\partial x$ y $\partial z/\partial y$.
 - a) z = f(x)g(y)
 - b) z = f(xy)
 - c) z = f(x/y)
- 20. Determine las segundas derivadas parciales.
 - a) $f(x,y) = \sin^2(mx + ny)$ b) $v = \frac{xy}{x-y}$

 - c) $v = e^{xe^y}$
- 21. Compruebe que la conclusión del teorema de Clairaut se cumple, es decir, $u_{xy} = u_{yx}$.
 - a) $u = e^{xy} \sin y$
 - b) $u = \ln(x + 2y)$
- 22. Encuentre la derivada parcial indicada.
 - a) $f(x,y) = x^4y^2 x^3y$; f_{xxx}, f_{xyx}
 - b) $f(x, y, z) = e^{xyz^2}$; f_{xyz}
 - c) $u = e^{r\theta} \sin \theta$; $\frac{\partial^3 u}{\partial r^2 \partial \theta}$

CÁLCULO II FCPN - UMSA

d)
$$w = \frac{x}{y+2z}$$
; $\frac{\partial^3 w}{\partial z \partial y \partial x}$, $\frac{\partial^3 w}{\partial x^2 \partial y}$

- 23. Compruebe que la función $u=e^{-\alpha^2k^2t}\sin kx$ es una solución de la ecuación de la conducción de calor $u_t=\alpha^2u_{xx}$.
- 24. Determine si cada una de las funciones siguientes es una solución de la ecuación de Laplace $u_{xx} + u_{yy} = 0$.
 - a) $u = x^2 y^2$
 - b) $u = \ln \sqrt{x^2 + y^2}$
 - c) $u = e^{-x} \cos y e^{-y} \cos x$
- 25. Verifique que la función $u=1/\sqrt{x^2+y^2+z^2}$ es una solución de la ecuación tridimensional de Laplace $u_{xx}+u_{yy}+u_{zz}=0$.
- 26. Si $f(x, y) = \sqrt[3]{x^3 + y^3}$, determine $f_x(0, 0)$.

Regla de la Cadena

- 27. Aplique la regla de la cadena para hallar dz/dt o dw/dt.
 - a) $z = x^2 + y^2 + xy, x = \sin t, y = e^t$
 - b) $z = \sqrt{1 + x^2 + y^2}, x = \ln t, y = \cos t$
 - c) $w = xe^{y/z}$, $x = t^2$, y = 1 t, z = 1 + 2t
- 28. Mediante la regla de la cadena encuentre $\partial z/\partial s$ y $\partial z/\partial t$.
 - a) $z = \arcsin(x y), x = s^2 + t^2, y = 1 2st$
 - b) $z = e^{x+2y}, x = s/t, y = t/s$
 - c) $\tan(u/v)$, u = 2s + 3t, v = 3s 2t
- 29. Si z = f(x, y), donde f es derivable,

$$x = g(t)$$
 $y = h(t)$
 $g(3) = 2$ $h(3) = 7$
 $g'(3) = 5$ $h'(3) = -4$
 $f_x(2,7) = 6$ $f_y(2,7) = -8$

determine dz/dt cuando t = 3.

- 30. Use la regla de la cadena para calcular las derivadas parciales que se indican.
 - a) $z = x^4 + x^2y$, x = s + 2t u, $y = stu^2$; $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$, $\frac{\partial z}{\partial u}$ donde s = 4, t = 2, u = 1
 - b) w = xy + yz + zx, $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$; $\frac{\partial w}{\partial r}, \frac{\partial w}{\partial \theta}$ donde $r = 2, \theta = \pi/2$
 - c) $N = \frac{p+q}{p+r}$, p = u + vw, q = v + uw, r = w + uv; $\frac{\partial N}{\partial u}$, $\frac{\partial N}{\partial v}$, $\frac{\partial N}{\partial w}$ donde u = 2, v = 3, w = 4

Diferenciabilidad de una función de varias variables

- 31. Explique por qué la función es diferenciable en el punto dado. Luego determine la linealización L(x, y) de la función en ese punto.
 - a) $f(x,y) = x^3y^4$, (1,1)
 - b) $f(x,y) = \sqrt{x + e^{4y}}$, (3,0)
 - c) $f(x,y) = y + \sin(x/y)$, (0,3)
- 32. Dado que f es una función diferenciable con f(2,5)=6, $f_x(2,5)=1$, y $f_y(2,5)=-1$, utilice una aproximación lineal para estimar f(2,2,4,9).
- 33. Calcule la aproximación lineal de la función $f(x,y) = 1 xy \cos \pi y$ en (1,1) y utilícela para aproximar f(1.02,0.97). Grafique f y su plano tangente.
- 34. Calcule la aproximación lineal de la función $f(x,y,z)=\sqrt{x^2+y^2+z^2}$ y con ella aproxime el número $\sqrt{(3.02)^2+(1.97)^2+(5.99)^2}$.

- 35. Determine la diferencial de la función.
 - a) $z = e^{-2x} \cos 2\pi t$
 - b) $m = p^5 q^3$
 - c) $R = \alpha \beta^2 \cos \gamma$
- 36. Si $z = 5x^2 + y^2$ y (x, y) cambia de (1, 2) a (1.05, 2.1), compare los valores de Δz y dz.
- 37. Si $z = x^2 xy + 3y^2$ y (x, y) cambia de (3, -1) a (2.96, -0.95), compare los valores de Δz y dz.
- 38. Use diferenciales para estimar la cantidad de metal en una lata cilíndrica cerrada que mide $10\,\mathrm{cm}$ de altura y $4\,\mathrm{cm}$ de diámetro. El metal para la parte superior y el fondo es de $0.1\,\mathrm{cm}$ de grueso y el metal de los lados tiene $0.05\,\mathrm{cm}$ de espesor.
- 39. Use diferenciales para estimar la cantidad de estaño en una lata cerrada de estaño cuyo diámetro es 8 cm y altura de 12 cm si el estaño tiene 0.04 cm de espesor.

Vector Gradiente

- 40. Determine la derivada direccional de f en el punto dado en la dirección que indica el ángulo θ .
 - a) $f(x,y) = x^3y^4 + x^4y^3$, (1,1), $\theta = \pi/6$
 - b) $f(x,y) = e^x \cos y$, (0,0), $\theta = \pi/4$
- 41. Determine el gradiente de f. Luego evalúe el gradiente en el punto P. Y encuentre la razón de cambio de f en P en la dirección del vector \mathbf{u} .
 - a) $f(x,y) = y^2/x$, P(1,2), $\mathbf{u} = \frac{1}{3}(2\mathbf{i} + \sqrt{5}\mathbf{j})$
 - b) $f(x,y,z) = y^2 e^{xyz}$, P(0,1,-1), $u = \langle \frac{3}{13}, \frac{4}{13}, \frac{12}{13} \rangle$
- 42. Calcule la derivada direccional de la función en el punto dado en la dirección del vector v.
 - a) $f(x,y) = e^x \sin y$, $(0,\pi/3)$, $\mathbf{v} = \langle -6,8 \rangle$
 - b) $g(p,q) = p^4 p^2 q^3$, (2,1), $\mathbf{v} = \mathbf{i} + 3\mathbf{j}$
 - c) $f(x,y,z) = xe^y + ye^z + ze^x$, (0,0,0), $\mathbf{v} = (5,1,-2)$
 - d) $h(r, s, t) = \ln(3r + 6s + 9t)$ (1, 1, 1), $\mathbf{v} = 4\mathbf{i} + 12\mathbf{j} + 6\mathbf{k}$
- 43. Calcule la derivada direccional de $f(x, y) = \sqrt{xy}$ en P(2, 8) en la dirección de Q(5, 4).
- 44. Encuentre la derivada direccional de f(x,y,z) = xy + yz + zx en P(1,-1,3) en la dirección de Q(2,4,5).
- 45. La segunda derivada direccional de f(x,y) es $D_u^2 f(x,y) = D_u[D_u f(x,y)]$. Si $f(x,y) = x^3 + 5x^2y + y^3$ y $\mathbf{u} = \langle \frac{3}{\epsilon}, \frac{4}{\epsilon} \rangle$, calcule $D_u^2 f(2,1)$.
- 46. Si f(x,y) = xy, determine el vector gradiente $\nabla f(3,2)$ y con éste determine la recta tangente a la curva de nivel f(x,y) = 6 en el punto (3,2). Dibuje la curva de nivel, la recta tangente y el vector gradiente.
- 47. Si $g(x,y) = x^2 + y^2 4x$, determine el vector gradiente $\nabla g(1,2)$ y utilícelo para encontrar la recta tangente a la curva de nivel g(x,y) = 1 en el punto (1,2). Dibuje la curva de nivel, la recta tangente y el vector gradiente.

Matriz Jacobiana

- 48. Halla la matriz Jacobiana en el punto (0, -2) de la siguiente función vectorial con 2 variables: $f(x, y) = (e^{xy} + y, y^2x)$.
- 49. Calcula la matriz Jacobiana en el punto (2,-1) de la siguiente función con 2 variables: $f(x,y) = (x^3y^2 5x^2y^2, y^6 3y^3x + 7)$.
- 50. Determina la matriz Jacobiana en el punto (2, -2, 2) de la siguiente función con 3 variables: $f(x, y, z) = \left(z \tan(x^2 y^2), xy \ln\left(\frac{z}{2}\right)\right)$.
- 51. Determina la matriz Jacobiana en el punto (π,π) de la siguiente función multivariable: $f(x,y) = \left(\frac{\cos(x-y)}{x}, e^{x^2-y^2}, x^3\sin(2y)\right)$.
- 52. Determina la matriz Jacobiana en el punto $(3,0,\pi)$ de la siguiente función con 3 variables: $f(x,y,z) = \left(xe^{2y}\cos(-z),(y+2)^3\sin\left(\frac{z}{2}\right),e^{2y}\ln\left(\frac{x}{3}\right)\right)$.

CÁLCULO II FCPN - UMSA

53. Encuentra la matriz Hessiana de la siguiente función de 2 variables en el punto (1,1): $f(x,y) = x^2y + y^2x$.

- 54. Encuentra la matriz Hessiana en el punto (1,1) de la siguiente función con 2 variables: $f(x,y) = e^{y \ln x}$.
- 55. Calcule la matriz Hessiana de la función $g(x, y) = \sin(xy) + x^2 + \cos(y^2)$ en el punto (0, 0).
- 56. Hallar el determinante de la matriz Hessiana de la función $f(x,y) = x^3 + x^2y + 3xy + 2$ en el punto (-1,2).
- 57. Determinar la matriz Hessiana en el punto (2,-1,1,-1) de la siguiente función con 4 variables: $f(x,y,z,w) = 2x^3y^4zw^2 2y^3w^4 + 3x^2z^2$.

Derivada Direccional

- 58. Calcular la derivada direccional en la dirección de \mathbf{v} en el punto que se indica.
 - a) $f(x,y) = x^2y^3$, $\mathbf{v} = \mathbf{i} + \mathbf{j}$, P = (-2,1).
 - b) $f(x,y) = \sin(x-y)$, $\mathbf{v} = \langle 1, 1 \rangle$, $P = (\frac{\pi}{2}, \frac{\pi}{6})$.
 - c) $f(x,y) = e^{xy-y^2}$, $\mathbf{v} = \langle 12, -5 \rangle$, P = (2,2).
 - d) $g(x, y, z) = z^2 xy^2$, $\mathbf{v} = \langle -1, 2, 2 \rangle$, P = (2, 1, 3).
 - e) $g(x, y, z) = x \ln(y + z)$, $\mathbf{v} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$, P = (2, e, e).
- 59. Hallar la derivada direccional de $f(x,y) = x^2 + 4y^2$ en P = (3,2) en la dirección que apunta al origen.
- 60. Hallar la derivada direccional de $f(x, y, z) = xy + z^3$ en P = (3, -2, -1) en la dirección que apunta al origen.
- 61. Suponga que $\nabla f_P = \langle 2, -4, 4 \rangle$. ¿Es f creciente o decreciente en P para la dirección dada por $\mathbf{v} = \langle 2, 1, 3 \rangle$?
- 62. Sea $f(x, y, z) = \sin(xy + z)$ y $P = (0, -1, \pi)$. Calcule $D_{\bf u} f(P)$, donde $\bf u$ es un vector unitario que forma un ángulo de $\theta = 30^{\circ}$ con ∇f_P .
- 63. Halle una función f(x, y, z) tal que $\nabla f = \langle 1, 3, 1 \rangle$.
- 64. Halle una función f(x, y, z) tal que $\nabla f = \langle 2x, 1, 2 \rangle$.
- 65. Halle una función f(x, y, z) tal que $\nabla f = \langle z, 2y, x \rangle$.
- 66. Halle una función f(x, y) tal que $\nabla f = \langle y, x \rangle$.
- 67. Sea $f(x,y) = \tan^{-1}\frac{x}{y}$ y $\mathbf{u} = \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$.
 - a) Calcule el gradiente de f.
 - b) Calcule $D_{\mathbf{u}}f(1,1)$ y $D_{\mathbf{u}}f(\sqrt{3},1)$.
 - c) Pruebe que las rectas y = mx para $m \neq 0$ son curvas de nivel para f.
 - d) Compruebe que ∇f_P es ortogonal a la curva de nivel que pasa por P para $P=(x,y)\neq (0,0)$.
- 68. Compruebe las relaciones de linealidad para los gradientes:
 - a) $\nabla(f+g) = \nabla f + \nabla g$
 - b) $\nabla(cf) = c\nabla f$

Plano Tangente

- 69. Halle una ecuación del plano tangente en el punto que se indica.
 - a) $f(x,y) = x^2y + xy^3$, (2,1)
 - b) $f(x,y) = x^2 + y^{-2}$, (4,1)
 - c) $f(r,s) = r^2 s^{-1/2} + s^{-3}$, (2,1)
 - d) f(x,y) = sech(x y), $(\ln 4, \ln 2)$
- 70. Halle los puntos sobre la gráfica de $z=3x^2-4y^2$ en los que el vector $n=\langle 3,2,2\rangle$ es normal al plano tangente.
- 71. Halle los puntos sobre la gráfica de $z = xy^3 + 8y^{-1}$ en los que el plano tangente es paralelo a 2x + 7y + 2z = 0.
- 72. Halle una ecuación del plano tangente a z=f(x,y) en P(1.2,10) suponiendo que:
 - f(1,2) = 10; f(1.1,2.01) = 10.3; f(1.04,2.1) = 9.7
- 73. Suponga que la ecuación del plano tangente a z = f(x, y) en (-2.3, 4) es 4x + 2y + z = 2. Estime f(-2.1, 3.1).

Diferenciación Implícita

74. Suponga que z está definida implícitamente como función de x y de y mediante la ecuación F(x, y, z) = $xz^2 + y^2z + xy - 1 = 0.$

- a) Calcule F_x , F_y , F_z .
- b) Use las siguientes ecuaciones para calcular $\frac{\partial z}{\partial x} y \frac{\partial z}{\partial y}$:

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \quad y \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}.$$

- 75. Calcule $\partial z/\partial x$ y $\partial z/\partial y$ en los puntos (3, 2, 1) y (3, 2, -1), donde z está definida implícitamente por la ecuación $z^4 + z^2x^2 - y - 8 = 0$.
- 76. Calcular las derivadas parciales usando derivación implícita.

a)
$$\frac{\partial z}{\partial x}$$
, $x^2y + y^2z + xz^2 = 10$

b)
$$\frac{\partial w}{\partial z}$$
, $x^2w + w^3 + wz^2 + 3yz = 0$

a)
$$\frac{\partial z}{\partial x}$$
, $x^2y + y^2z + xz^2 = 10$
b) $\frac{\partial w}{\partial z}$, $x^2w + w^3 + wz^2 + 3yz = 0$
c) $\frac{\partial w}{\partial y}$, $\frac{1}{w^2 + x^2} + \frac{1}{w^2 + y^2} = 1$ en $(x, y, w) = (1, 1, 1)$
d) $\frac{\partial U}{\partial T}$ y $\frac{\partial T}{\partial U}$, $\frac{\partial U}{\partial T}$ en $\frac{\partial U}{\partial T}$

- 77. Según el teorema del coseno $c^2 = a^2 + b^2 2ab\cos\theta$, donde a, b, c son los lados de un triángulo y θ es el ángulo opuesto al lado de longitud c.
 - a) Calcule $\partial \theta / \partial a$, $\partial \theta / \partial b$, y $\partial \theta / \partial c$ usando derivación implícita.
 - b) Suponga que a=10, b=16, c=22. Estime el cambio en θ , si a y b aumentan en 1 y c lo hace
- 78. La presión P, volumen V, y temperatura T de un gas de van der Waals de n moléculas (n constante) están relacionadas por medio de la ecuación:

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

donde a, b y R son constantes. Calcule $\partial P/\partial T$ y $\partial V/\partial P$.

Máximos y Mínimos de Funciones de Varias Variables. Valores Extremos **Locales. Valores Extremos Globales**

79. Halle los puntos críticos de las funciones:

$$f(x,y) = x^2 + 2y^2 - 4y + 6x$$
 $g(x,y) = x^2 - 12xy + y$

Use el criterio de la segunda derivada para determinar el máximo local, el mínimo local y los puntos de silla. Relacione f(x, y) y g(x, y) con sus gráficas:

80. Halle los puntos críticos de:

$$f(x,y) = 8y^4 + x^2 + xy - 3y^2 - y^3$$

Use el mapa de contorno para determinar su naturaleza (máximo local. Mínimo local o punto de silla).

81. Use el mapa de contorno para determinar si los puntos críticos A, B, C, D son máximos locales, mínimos locales, o puntos de silla.

82. Halle los puntos críticos de la función. A continuación, utilice el criterio de la segunda derivada para determinar si se trata de máximos locales, mínimos locales o puntos de silla (o ben establezca que el criterio no decide).

a)
$$f(x,y) = x^2 + y^2 - xy + x$$

b)
$$f(x,y) = x^3 + 2xy - 2y^2 - 10x$$

c)
$$f(x,y) = 4x - 3x^3 - 2xy^2$$

d)
$$f(x,y) = x^4 + y^4 - 4xy$$

e)
$$f(x,y) = xye^{-x^2-y^2}$$

f)
$$f(x,y) = \ln x + 2 \ln y - x - 4y$$

g)
$$f(x,y) = x - y^2 - \ln(x + y)$$

h)
$$f(x,y) = (x+3y)e^{y-x^2}$$

- 83. Sea $f(x,y) = (x^2 + y^2)e^{-x^2 y^2}$.
 - a) ¿En qué punto alcanza f su valor mínimo? No use cálculo para responder a esta pregunta.
 - b) Compruebe que el conjunto de puntos críticos de f está formado por el origen (0,0) y la circunferencia unitaria $x^2 + y^2 = 1$.
 - c) El criterio de la segunda derivada no decide para los puntos sobre la circunferencia unitaria (esto se puede verificar con algo de álgebra, aunque la comprobación es larga). Demuestre que f alcanza su valor máximo sobre la circunferencia unitaria analizando la función $g(t) = te^{-t}$ para t > 0.
- 84. Determine los valores extremos globales de la función sobre el conjunto que se indica sin utilizar argumentos de cálculo.

a)
$$f(x,y) = 2x - y$$
, $0 \le x \le 1$, $0 \le y \le 3$

b)
$$f(x,y) = e^{-x^2 - y^2}$$
, $x^2 + y^2 \le 1$

85. Halle el máximo de

$$f(x,y) = x + y - x^2 - y^2 - xy$$

sobre el cuadrado $0 \le x \le 2$, $0 \le y \le 2$.

- a) En primer lugar, localice el punto crítico de f en el cuadrado y evalúe f en este punto.
- b) Sobre el segmento inferior del cuadrado, y = 0 y $f(x, 0) = x x^2$. Halle los valores extremos de

f sobre el segmento inferior.

- c) Halle los valores extremos de f sobre el resto de los segmentos.
- d) Halle el mayor de los valores que ha obtenido en a), b) y c).

- 86. Halle el máximo de $f(x, y) = y^2 + xy x^2$ sobre el cuadrado $0 \le x \le 2, 0 \le y \le 2$.
- 87. Determine los valores extremis globales de la función en el dominio que se indica.
 - a) $f(x,y) = x^3 2y$, $0 \le x \le 1$, $0 \le y \le 1$
 - b) $f(x,y) = x^2 + 2y^2$, $0 \le x \le 1$, $0 \le y \le 1$
 - c) $f(x,y) = x^3 + y^3 3xy$, $0 \le x \le 1$, $0 \le y \le 1$
 - d) $f(x,y) = (4y^2 x^2)e^{-x^2 y^2}, x^2 + y^2 \le 2$
- 88. Halle el volumen máximo de una caja inscrita en el tetraedro limitado por los planos coordenados y el plano $x + \frac{1}{2}y + \frac{1}{3}z = 1$.
- 89. Halle el punto sobre el plano z = x + y + 1 más cercano al punto P = (1, 0, 0). Indicación: minimice el cuadrado de la distancia.
- 90. Halle el volumen máximo de mayor caja del tipo que se muestra en la figura, con una esquina en el origen y la esquina opuesta en el punto P = (x, y, z) sobre el paraboloide

Máximos y Mínimos Condicionados (Multiplicadores de Lagrange)

- 91. Aplique el método de los multiplicadores de Lagrange a la función $f(x,y)=(x^2+1)y$ sujeta a la restricción $x^2+y^2=5$. Indicación: pruebe en primer lugar, que $y\neq 0$; a continuación, considere los casos x=0 y $x\neq 0$ por separado.
- 92. Halle los valores mínimo y máximo de la función sujeta a la restricción dada.
 - a) $f(x,y) = x^2 + y^2$, 2x + 3y = 6
 - b) f(x,y) = xy, $4x^2 + 9y^2 = 32$
 - c) $f(x,y) = x^2 + y^2$, $x^4 + y^4 = 1$
 - d) f(x, y, z) = 3x + 2y + 4z, $x^2 + 2y^2 + 6z^2 = 1$
 - e) f(x,y,z) = xy + 3xz + 2yz, 5x + 9y + z = 10
- 93. Halle la caja rectangular de volumen máximo si la suma de las longitudes de sus bordes es igual a 300 cm.

- 94. El área de un cono circular de radio r y altura h es $S=\pi r\sqrt{r^2+h^2}$, y su volumen es $V=\frac{1}{3}\pi r^2h$.
 - a) Determine el cociente h/r para el cono de área dada S y máximo volumen V.
 - b) ¿A qué es igual el cociente h/r para un cono de volumen dado V y área mínima S?
 - c) ¿Existe un cono de volumen dado V y área máxima?
- 95. Halle el valor máximo de $f(x,y)=x^ay^b$ para $x\geq 0, y\geq 0$ sobre la recta x+y=1, donde a,b>0 son constantes.
- 96. Halle el valor máximo de $f(x,y)=x^ay^b$ para $x\geq 0, y\geq 0$ sobre la circunferencia unitaria, donde a,b>0 son constantes.
- 97. Halle el valor máximo de $f(x,y,z)=x^ay^bz^c$ para $x,y,z\geq 0$ sobre la esfera unitaria, donde a,b,c>0 son constantes.
- 98. El cilindro $x^2 + y^2 = 1$ interseca con el plano x + z = 1 formando una elipse. Halle el punto sobre esta elipse que esté más lejos del origen.
- 99. Halle el mínimo y el máximo de f(x, y, z) = y + 2z sujeta a las dos restricciones, 2x + z = 4 y $x^2 + y^2 = 1$.
- 100. Halle el valor mínimo de $f(x, y, z) = x^2 + y^2 + z^2$ sujeta a las dos restricciones x + 2y + z = 3 y x y = 4.

NOTA: El estudiante debe resolver los ejercicios pares de cada sección y ser entregados en el formato solicitado por el docente.