Detailed Syllabus for SF2935: Modern Methods of Statistical Learning, 7.5 Credits (Autumn 2025)

The basic syllabus is available at https://www.kth.se/student/kurser/kurs/SF2935/?l=en. This document aims to provide a detailed course plan that includes information on the main texts, the tentative schedule, and the course assessments.

1 Main Texts

The main texts for this course are:

- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, by Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2nd edition, corrected 12th printing, 2017). Available at: https://hastie.su.domains/ElemStatLearn/ (ESL)
- Learning Theory From First Principles, by Francis Bach (final version, 2025). Available at: https://www.di.ens.fr/~fbach/ltfp_book.pdf (Bach)

These texts provide both theoretical and practical foundations for the methods covered in the course. We aim to cover about 70% of the materials in ESL and about 30% of the materials in Bach. Additional reading materials may also be assigned periodically to supplement the main texts.

2 Tentative Schedule

*All lecture and tutorial sessions are held from 13:00-15:00 except the sessions on Aug 29 and Sep 19 (15:00-17:00).

Date	Session	Topic	References (ESL / Bach)
Aug 26	1	Course Introduction, Fundamentals of Supervised Learning & Risk Minimization	ESL Ch. $1-2$ / Bach Ch. $1-2$
Aug 28	2	Model Evaluation: Bias-Variance Tradeoff, Selection & Cross-Validation	ESL Ch. 2, 7.1–7.3 / Bach Ch. 2
Aug 29*	3	Tutorial	ESL + Bach
Sep 2	4	Linear Models: Regression, Classification & Regularization (Ridge, Lasso)	ESL Ch. 3–4, 18.1 / Bach Ch. 4–5
Sep 4	5	Instance-Based Learning: Nearest Neighbors & Support Vector Machines (SVMs)	ESL Ch. 12–13 / Bach Ch. 6.1–6.3
Sep 5	6	Tutorial	ESL + Bach
Sep 9	7	Kernel Methods: Kernel Trick, Duality, Reproducing Kernel Hilbert Spaces (RKHS)	ESL Ch. 12 / Bach Ch. 6.2–6.3
Sep 11	8	Generalization Theory: VC Dimension, Rademacher Complexity & Bounds	ESL Ch. 7 / Bach Ch. 7–8
Sep 12	9	Tutorial	ESL + Bach
Sep 16	10	Decision Trees: CART, Splitting Criteria, Overfitting & Pruning Strategies	ESL Ch. 9 / Notes
Sep 18	11	Ensemble Methods: Bagging, Boosting, Random Forests & Model Averaging	ESL Ch. 8, 10, 15 / Notes

Sep 19*	12	Tutorial	ESL + Bach
Sep 23	13	Neural Networks I: Perceptrons, MLPs, Backpropagation & Optimization	ESL Ch. 11 / Bach Ch. 8.3
Sep 25	14	Neural Networks II: Deep Architectures (CNNs, RNNs, Transformers) & Universal Approximation	Additional materials
Sep 26	15	Tutorial	ESL + Bach
Sep 30	16	Neural Networks III: Deep Learning Theory (SGD, Overparameterization, Double Descent)	ESL Ch. 11 / Bach Ch. 8 + additional materials
Oct 2	17	Unsupervised Learning: Dimensionality Reduction (PCA, Kernel PCA), Clustering (k-Means) & Representation Learning (Autoencoders)	ESL Ch. 14 / Bach Ch. 10
Oct 3	18	Tutorial	ESL + Bach
Oct 7	19	Probabilistic Methods: Bayesian Inference & Variational Methods	Bach Ch. 14
Oct 9	20	Generative Models Intro: VAEs, GANs & Diffusion Models	Additional materials
Oct 10	21	Tutorial	Additional materials
Oct 17	-	Final Project Submission Deadline	-
Oct 23	-	Final Exam	-

3 Assessments and Grading

The final grade for the course will be based on the following components:

• Biweekly assignments (3 in total): 30%

• Final project: 30%

• Final exam: 40%

Further details regarding the format, expectations, and evaluation criteria for each component will be provided during the course.

4 Additional Resources

The following additional references may also be useful for deepening your understanding of the topics covered:

- An Introduction to Statistical Learning, by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2nd edition, 2021)
- Pattern Recognition and Machine Learning, by Christopher M. Bishop (2006)
- Deep Learning: Foundations and Concepts, by Christopher M. Bishop and Hugh Bishop (2023)
- Probabilistic Machine Learning: An Introduction, by Kevin P. Murphy (2022)
- Patterns, Predictions, and Actions, by Moritz Hardt, Benjamin Recht (2022)
- Understanding Machine Learning: From Theory to Algorithms, by Shai Shalev-Shwartz and Shai Ben-David (2014)

- Foundations of Machine Learning, by Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar (2nd edition, 2018)
- Learning from Data, by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin (2012)
- Deep Learning, by Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016)
- Neural Networks and Deep Learning, by Michael Nielsen (2015)
- Dive into Deep Learning (D2L)*, by Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola (available at https://d2l.ai/)
- Practical Deep Learning for Coders*, by Jeremy Howard (available at https://course.fast.ai/)
- PyTorch in One Hour: From Tensors to Training Neural Networks on Multiple GPUs*, by Sebastian Raschka (available at https://sebastianraschka.com/teaching/pytorch-1h/)

^{*:} useful references for coding and implementation in Python and PyTorch