Space and Congruence Compression of Proofs

Andreas Fellner

European Master in Computational Logic

Master Thesis Presentation Vienna, 23rd of September 2014

Knowledge

- **1** f(a) = a
- a = b
- **3** b = f(b)
- $f(a) \neq f(b)$

Knowledge

- **1** f(a) = a
- a = b
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Knowledge

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Proof

Equality is transitive, therefore from f(a) = a, a = b and b = f(b) follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

Knowledge

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Proof

Equality is transitive, therefore from f(a) = a, a = b and b = f(b) follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

A different Proof

f(.) is a function, therefore from a = b follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

Ground Terms

- Constants a, b, c, \ldots
- Compound Terms $f(t_1, \ldots, t_n)$

Ground Terms

- Constants a, b, c, \ldots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation

- Reflexive: t = t
- Symmetric: $s = t \Rightarrow t = s$
- Transitive: $t_1 = t_2 \dots t_{m-1} = t_m \Rightarrow t_1 = t_m$
- Compatible: $\forall i : t_i = s_i \Rightarrow f(t_1, \dots, t_n) = f(s_1, \dots, s_n)$

Ground Terms

- Constants a, b, c, \ldots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation

- Reflexive: t = t
- Symmetric: $s = t \Rightarrow t = s$
- Transitive: $t_1 = t_2 \dots t_{m-1} = t_m \Rightarrow t_1 = t_m$
- Compatible: $\forall i : t_i = s_i \Rightarrow f(t_1, \dots, t_n) = f(s_1, \dots, s_n)$

Congruence Closure R^* of R

• Smallest Congruence Relation containing R

Ground Terms

- Constants a, b, c, \ldots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation

- Reflexive: t = t
- Symmetric: $s = t \Rightarrow t = s$
- Transitive: $t_1 = t_2 \dots t_{m-1} = t_m \Rightarrow t_1 = t_m$
- Compatible: $\forall i : t_i = s_i \Rightarrow f(t_1, \dots, t_n) = f(s_1, \dots, s_n)$

Congruence Closure R^* of R

• Smallest Congruence Relation containing R

Explanation for s = t

• Set of equations E, such that $(s, t) \in E^*$

Knowledge

- f(a) = a
- a = b
- **3** b = f(b)
- $f(a) \neq f(b)$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ f(a) = a, a = b, b = f(b) \}$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- **4** $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ a = b, b = f(b) \}$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- **4** $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$a = b$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- **4** $f(a) \neq f(b)$

Explanation for
$$f(a) = f(b)$$

{ $a = b$ }

Short explanation → short proof

Short Explanation Decision Problem

Given a set of input equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \le k$?

Short Explanation Decision Problem

Given a set of input equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \le k$?

NP-complete

NP-completeness proof sketch

From a propositional logic formula Φ obtain ...

- a set of equations E_{Φ}
- a target equation $s_{\Phi} = t_{\Phi}$
- $k_{\Phi} \in \mathbb{N}$

such that ...

 Φ is satisfiable if and only if there is an explanation $E'\subseteq E_{\Phi}$ of $s_{\Phi}=t_{\Phi}$ with $|E'|\leq k_{\Phi}$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

$$t_{1}(\top_{1})$$
 $t_{1}(\hat{x}_{1})$
 $f_{1}(\perp_{1})$
 $t_{1}(\top_{2})$
 $\hat{c}_{1} - t_{1}(\hat{x}_{2})$
 $f_{1}(\perp_{2})$
 $f_{1}(\hat{x}_{3})$
 $f_{1}(\perp_{3})$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Small subset corresponding to satisfying assignment

$$\hat{c}_1 - t_1(\hat{x}_1) \quad t_1(\top_1) - \hat{c}_2 - f_2(\hat{x}_2) \quad f_2(\bot_2) - \hat{c}_3 - f_3(\hat{x}_2) \quad f_3(\bot_2) - \hat{c}_4$$

$$\hat{x}_1 - \!\!\!\!- \top_1$$

Motivation

The Complang Style

- Nicer colors
- Fewer boxes
- More room for your content!

computer languages

An overall great style for your presentation!

A Listing

Example

```
void bubble_sort(int* a, int n) {
  int i,j;
  for (i = 0; i < n; i++) {
    for (j = 0; j < i; j++) {
      if (a[i] > a[j]) SWAP(a[i],a[j]);
    }
}
```

Thank You

Thank you for using the complang style!

Bug reports & feature requests:
adrian@complang.tuwien.ac.at