Maximum Liklihood Estimator

 $\begin{array}{c} {\rm David} \ {\rm Armstrong} \\ {\rm UCI} \end{array}$

Estimating Parameters

Suppose X_1, \ldots, X_n is a random sample from a continuous pdf $f_X(x)$ whose unknown parameter is θ .

The question is, how should we use the data to approximate θ ?

Method of Maximum Likelihood

The likelihood function $L(\theta)$ is the product of the pdf $f_X(x;\theta)$ evaluated at the n data points. That is,

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta)$$

L is a function of θ ; it should not be considered a function of the x_i 's.

MLE

Let X_1, \ldots, X_n is a random sample from a continuous pdf $f_X(x; \theta)$ and let $L(\theta)$ be the corresponding likelihood function. Suppose $L(\hat{\theta}) \geq L(\theta)$ for all possible values of θ . The $\hat{\theta}$ is called the maximum likelihood estimate (MLE) for θ

Note

Finding $\hat{\theta}$ that maximizes a likelihood function is basically an exercise in Calculus. Since $\ln L(\theta)$ increases with $L(\theta)$, the same $\hat{\theta}$ that maximizes the ln of the likelihood function maximizes the likelihood function.

Maximum Likelihood Steps

- 1. Find $L(\theta)$
- 2. Find $\ln L(\theta)$
- 3. Calculate the Score Function = $\frac{\partial \ln L(\theta)}{\partial \theta}$
- 4. Find the Score equation by setting the Score Function $\equiv 0$
- 5. Solve for the parameter
- 6. Check that the second derivative of the $\ln L(\theta)$ is negative, that is $\frac{\partial^2 \ln L(\theta)}{\partial \theta^2} < 0$
- 7. Check the support

Ex: Suppose x_1, \ldots, x_n is a set of n observations representing a Bernoulli probability model.

- Find the MLE of p.
- Assume you see the data $\{0,1,0,0,1,1,0,0,1,0\}$ from Bernoulli trials Use the Maximum Liklihood Estimator to estimate the true population parameter p.

EX: Suppose x_1, \dots, x_n are i.i.d. random variables with density function:

$$f_X(x;\sigma) = \frac{1}{2\sigma}e^{-\frac{|x|}{\sigma}}$$

Find the maximum liklihood estimate of σ